espresso-5.1/0000755000175000017500000000000012364233502011302 5ustar mbambaespresso-5.1/pseudo/0000755000175000017500000000000012341373043012601 5ustar mbambaespresso-5.1/pseudo/Pt.rel-pbe-n-rrkjus.UPF0000644000175000017500000313240412341373031016642 0ustar mbamba Generated using "atomic" code by A. Dal Corso (espresso distribution) Author: anonymous Generation date: 2Sep2007 Pt 2 The Pseudo was generated with a Fully-Relativistic Calculation 0 2.6000000E+00 L component and cutoff radius for Local Potential nl pn l occ Rcut Rcut US E pseu 5D 3 2 4.00 2.10000000000 2.40000000000 -0.64797028262 5D 3 2 0.00 2.10000000000 2.40000000000 -0.20000000000 5D 3 2 4.00 2.10000000000 2.40000000000 -0.54452487475 5D 3 2 0.00 2.10000000000 2.40000000000 -0.20000000000 6P 2 1 0.00 3.30000000000 3.30000000000 -0.11873242514 6P 2 1 0.00 3.40000000000 3.40000000000 -0.07447049527 6S 1 0 2.00 2.60000000000 2.60000000000 -0.47650100725 0 Version Number Pt Element US Ultrasoft pseudopotential T Nonlinear Core Correction SLA PW PBX PBC PBE Exchange-Correlation functional 10.00000000000 Z valence -89.74702787920 Total energy 27.476 227.928 Suggested cutoff for wfc and rho 2 Max angular momentum component 1277 Number of points in mesh 3 6 Number of Wavefunctions, Number of Projectors Wavefunctions nl l occ 5D 2 4.00 5D 2 4.00 6S 0 2.00 1.16907944302E-05 1.18378465214E-05 1.19867483002E-05 1.21375230328E-05 1.22901942781E-05 1.24447858913E-05 1.26013220275E-05 1.27598271460E-05 1.29203260134E-05 1.30828437081E-05 1.32474056237E-05 1.34140374734E-05 1.35827652937E-05 1.37536154487E-05 1.39266146342E-05 1.41017898815E-05 1.42791685621E-05 1.44587783919E-05 1.46406474353E-05 1.48248041095E-05 1.50112771896E-05 1.52000958123E-05 1.53912894809E-05 1.55848880698E-05 1.57809218291E-05 1.59794213896E-05 1.61804177672E-05 1.63839423680E-05 1.65900269932E-05 1.67987038437E-05 1.70100055260E-05 1.72239650562E-05 1.74406158660E-05 1.76599918075E-05 1.78821271587E-05 1.81070566286E-05 1.83348153629E-05 1.85654389495E-05 1.87989634236E-05 1.90354252741E-05 1.92748614484E-05 1.95173093591E-05 1.97628068891E-05 2.00113923979E-05 2.02631047274E-05 2.05179832083E-05 2.07760676658E-05 2.10373984261E-05 2.13020163227E-05 2.15699627028E-05 2.18412794334E-05 2.21160089083E-05 2.23941940546E-05 2.26758783393E-05 2.29611057762E-05 2.32499209325E-05 2.35423689363E-05 2.38384954831E-05 2.41383468433E-05 2.44419698694E-05 2.47494120029E-05 2.50607212825E-05 2.53759463507E-05 2.56951364622E-05 2.60183414910E-05 2.63456119386E-05 2.66769989417E-05 2.70125542801E-05 2.73523303851E-05 2.76963803474E-05 2.80447579254E-05 2.83975175540E-05 2.87547143524E-05 2.91164041334E-05 2.94826434119E-05 2.98534894133E-05 3.02290000832E-05 3.06092340959E-05 3.09942508636E-05 3.13841105462E-05 3.17788740598E-05 3.21786030872E-05 3.25833600868E-05 3.29932083027E-05 3.34082117745E-05 3.38284353473E-05 3.42539446820E-05 3.46848062653E-05 3.51210874201E-05 3.55628563163E-05 3.60101819811E-05 3.64631343101E-05 3.69217840781E-05 3.73862029499E-05 3.78564634920E-05 3.83326391835E-05 3.88148044279E-05 3.93030345645E-05 3.97974058801E-05 4.02979956214E-05 4.08048820065E-05 4.13181442375E-05 4.18378625125E-05 4.23641180387E-05 4.28969930445E-05 4.34365707928E-05 4.39829355936E-05 4.45361728175E-05 4.50963689091E-05 4.56636114001E-05 4.62379889233E-05 4.68195912263E-05 4.74085091857E-05 4.80048348211E-05 4.86086613096E-05 4.92200830003E-05 4.98391954292E-05 5.04660953337E-05 5.11008806683E-05 5.17436506195E-05 5.23945056213E-05 5.30535473713E-05 5.37208788460E-05 5.43966043172E-05 5.50808293686E-05 5.57736609117E-05 5.64752072027E-05 5.71855778597E-05 5.79048838796E-05 5.86332376555E-05 5.93707529940E-05 6.01175451335E-05 6.08737307617E-05 6.16394280342E-05 6.24147565927E-05 6.31998375839E-05 6.39947936783E-05 6.47997490895E-05 6.56148295932E-05 6.64401625476E-05 6.72758769126E-05 6.81221032702E-05 6.89789738450E-05 6.98466225248E-05 7.07251848815E-05 7.16147981923E-05 7.25156014609E-05 7.34277354399E-05 7.43513426518E-05 7.52865674123E-05 7.62335558522E-05 7.71924559403E-05 7.81634175066E-05 7.91465922660E-05 8.01421338414E-05 8.11501977883E-05 8.21709416187E-05 8.32045248259E-05 8.42511089094E-05 8.53108574000E-05 8.63839358857E-05 8.74705120371E-05 8.85707556340E-05 8.96848385917E-05 9.08129349878E-05 9.19552210899E-05 9.31118753822E-05 9.42830785946E-05 9.54690137298E-05 9.66698660926E-05 9.78858233187E-05 9.91170754038E-05 1.00363814734E-04 1.01626236114E-04 1.02904536800E-04 1.04198916529E-04 1.05509577552E-04 1.06836724660E-04 1.08180565224E-04 1.09541309221E-04 1.10919169271E-04 1.12314360666E-04 1.13727101409E-04 1.15157612243E-04 1.16606116688E-04 1.18072841077E-04 1.19558014586E-04 1.21061869279E-04 1.22584640135E-04 1.24126565091E-04 1.25687885075E-04 1.27268844046E-04 1.28869689034E-04 1.30490670172E-04 1.32132040744E-04 1.33794057215E-04 1.35476979280E-04 1.37181069899E-04 1.38906595339E-04 1.40653825217E-04 1.42423032542E-04 1.44214493755E-04 1.46028488776E-04 1.47865301045E-04 1.49725217569E-04 1.51608528963E-04 1.53515529497E-04 1.55446517146E-04 1.57401793629E-04 1.59381664463E-04 1.61386439006E-04 1.63416430508E-04 1.65471956160E-04 1.67553337142E-04 1.69660898674E-04 1.71794970066E-04 1.73955884772E-04 1.76143980439E-04 1.78359598961E-04 1.80603086533E-04 1.82874793705E-04 1.85175075436E-04 1.87504291149E-04 1.89862804789E-04 1.92250984878E-04 1.94669204575E-04 1.97117841731E-04 1.99597278951E-04 2.02107903652E-04 2.04650108124E-04 2.07224289592E-04 2.09830850277E-04 2.12470197458E-04 2.15142743541E-04 2.17848906115E-04 2.20589108024E-04 2.23363777429E-04 2.26173347880E-04 2.29018258376E-04 2.31898953441E-04 2.34815883189E-04 2.37769503397E-04 2.40760275573E-04 2.43788667032E-04 2.46855150966E-04 2.49960206520E-04 2.53104318865E-04 2.56287979275E-04 2.59511685203E-04 2.62775940359E-04 2.66081254791E-04 2.69428144960E-04 2.72817133825E-04 2.76248750923E-04 2.79723532449E-04 2.83242021347E-04 2.86804767387E-04 2.90412327255E-04 2.94065264640E-04 2.97764150321E-04 3.01509562257E-04 3.05302085674E-04 3.09142313164E-04 3.13030844770E-04 3.16968288081E-04 3.20955258333E-04 3.24992378496E-04 3.29080279380E-04 3.33219599728E-04 3.37410986315E-04 3.41655094056E-04 3.45952586100E-04 3.50304133940E-04 3.54710417513E-04 3.59172125311E-04 3.63689954484E-04 3.68264610952E-04 3.72896809515E-04 3.77587273963E-04 3.82336737191E-04 3.87145941312E-04 3.92015637774E-04 3.96946587477E-04 4.01939560891E-04 4.06995338180E-04 4.12114709319E-04 4.17298474219E-04 4.22547442855E-04 4.27862435389E-04 4.33244282298E-04 4.38693824509E-04 4.44211913521E-04 4.49799411549E-04 4.55457191650E-04 4.61186137864E-04 4.66987145351E-04 4.72861120529E-04 4.78808981219E-04 4.84831656786E-04 4.90930088286E-04 4.97105228612E-04 5.03358042641E-04 5.09689507387E-04 5.16100612157E-04 5.22592358697E-04 5.29165761356E-04 5.35821847243E-04 5.42561656383E-04 5.49386241885E-04 5.56296670106E-04 5.63294020813E-04 5.70379387357E-04 5.77553876840E-04 5.84818610292E-04 5.92174722842E-04 5.99623363897E-04 6.07165697322E-04 6.14802901623E-04 6.22536170128E-04 6.30366711177E-04 6.38295748306E-04 6.46324520445E-04 6.54454282105E-04 6.62686303578E-04 6.71021871134E-04 6.79462287223E-04 6.88008870676E-04 6.96662956915E-04 7.05425898159E-04 7.14299063635E-04 7.23283839792E-04 7.32381630521E-04 7.41593857370E-04 7.50921959767E-04 7.60367395249E-04 7.69931639683E-04 7.79616187503E-04 7.89422551938E-04 7.99352265252E-04 8.09406878985E-04 8.19587964189E-04 8.29897111679E-04 8.40335932282E-04 8.50906057084E-04 8.61609137689E-04 8.72446846474E-04 8.83420876855E-04 8.94532943544E-04 9.05784782826E-04 9.17178152823E-04 9.28714833772E-04 9.40396628304E-04 9.52225361722E-04 9.64202882290E-04 9.76331061521E-04 9.88611794466E-04 1.00104700001E-03 1.01363862119E-03 1.02638862547E-03 1.03929900506E-03 1.05237177723E-03 1.06560898463E-03 1.07901269561E-03 1.09258500451E-03 1.10632803204E-03 1.12024392558E-03 1.13433485951E-03 1.14860303558E-03 1.16305068320E-03 1.17768005986E-03 1.19249345142E-03 1.20749317251E-03 1.22268156687E-03 1.23806100770E-03 1.25363389809E-03 1.26940267133E-03 1.28536979132E-03 1.30153775295E-03 1.31790908250E-03 1.33448633803E-03 1.35127210977E-03 1.36826902052E-03 1.38547972609E-03 1.40290691568E-03 1.42055331234E-03 1.43842167334E-03 1.45651479065E-03 1.47483549136E-03 1.49338663812E-03 1.51217112958E-03 1.53119190086E-03 1.55045192398E-03 1.56995420837E-03 1.58970180130E-03 1.60969778837E-03 1.62994529400E-03 1.65044748189E-03 1.67120755557E-03 1.69222875882E-03 1.71351437626E-03 1.73506773380E-03 1.75689219921E-03 1.77899118260E-03 1.80136813698E-03 1.82402655880E-03 1.84696998848E-03 1.87020201098E-03 1.89372625634E-03 1.91754640029E-03 1.94166616476E-03 1.96608931852E-03 1.99081967774E-03 2.01586110658E-03 2.04121751783E-03 2.06689287346E-03 2.09289118531E-03 2.11921651566E-03 2.14587297791E-03 2.17286473717E-03 2.20019601097E-03 2.22787106988E-03 2.25589423817E-03 2.28426989452E-03 2.31300247270E-03 2.34209646221E-03 2.37155640907E-03 2.40138691644E-03 2.43159264539E-03 2.46217831565E-03 2.49314870628E-03 2.52450865646E-03 2.55626306626E-03 2.58841689737E-03 2.62097517388E-03 2.65394298309E-03 2.68732547630E-03 2.72112786957E-03 2.75535544462E-03 2.79001354955E-03 2.82510759979E-03 2.86064307883E-03 2.89662553917E-03 2.93306060314E-03 2.96995396381E-03 3.00731138582E-03 3.04513870635E-03 3.08344183600E-03 3.12222675972E-03 3.16149953771E-03 3.20126630644E-03 3.24153327955E-03 3.28230674882E-03 3.32359308520E-03 3.36539873977E-03 3.40773024473E-03 3.45059421448E-03 3.49399734659E-03 3.53794642290E-03 3.58244831053E-03 3.62750996300E-03 3.67313842128E-03 3.71934081492E-03 3.76612436312E-03 3.81349637592E-03 3.86146425528E-03 3.91003549630E-03 3.95921768831E-03 4.00901851614E-03 4.05944576127E-03 4.11050730306E-03 4.16221111998E-03 4.21456529085E-03 4.26757799613E-03 4.32125751915E-03 4.37561224745E-03 4.43065067406E-03 4.48638139886E-03 4.54281312988E-03 4.59995468469E-03 4.65781499178E-03 4.71640309194E-03 4.77572813968E-03 4.83579940466E-03 4.89662627313E-03 4.95821824942E-03 5.02058495739E-03 5.08373614199E-03 5.14768167069E-03 5.21243153514E-03 5.27799585261E-03 5.34438486767E-03 5.41160895375E-03 5.47967861473E-03 5.54860448664E-03 5.61839733929E-03 5.68906807796E-03 5.76062774509E-03 5.83308752203E-03 5.90645873076E-03 5.98075283568E-03 6.05598144540E-03 6.13215631454E-03 6.20928934558E-03 6.28739259072E-03 6.36647825374E-03 6.44655869194E-03 6.52764641805E-03 6.60975410219E-03 6.69289457386E-03 6.77708082392E-03 6.86232600665E-03 6.94864344178E-03 7.03604661659E-03 7.12454918799E-03 7.21416498470E-03 7.30490800937E-03 7.39679244078E-03 7.48983263605E-03 7.58404313291E-03 7.67943865194E-03 7.77603409888E-03 7.87384456697E-03 7.97288533930E-03 8.07317189117E-03 8.17471989259E-03 8.27754521061E-03 8.38166391192E-03 8.48709226527E-03 8.59384674405E-03 8.70194402886E-03 8.81140101014E-03 8.92223479075E-03 9.03446268870E-03 9.14810223983E-03 9.26317120054E-03 9.37968755060E-03 9.49766949592E-03 9.61713547142E-03 9.73810414391E-03 9.86059441498E-03 9.98462542399E-03 1.01102165510E-02 1.02373874200E-02 1.03661579016E-02 1.04965481164E-02 1.06285784382E-02 1.07622694970E-02 1.08976421824E-02 1.10347176465E-02 1.11735173077E-02 1.13140628536E-02 1.14563762450E-02 1.16004797184E-02 1.17463957904E-02 1.18941472606E-02 1.20437572156E-02 1.21952490321E-02 1.23486463810E-02 1.25039732311E-02 1.26612538525E-02 1.28205128205E-02 1.29817750198E-02 1.31450656477E-02 1.33104102190E-02 1.34778345689E-02 1.36473648579E-02 1.38190275754E-02 1.39928495441E-02 1.41688579240E-02 1.43470802168E-02 1.45275442701E-02 1.47102782817E-02 1.48953108042E-02 1.50826707493E-02 1.52723873925E-02 1.54644903772E-02 1.56590097200E-02 1.58559758149E-02 1.60554194384E-02 1.62573717537E-02 1.64618643165E-02 1.66689290791E-02 1.68785983957E-02 1.70909050277E-02 1.73058821484E-02 1.75235633484E-02 1.77439826408E-02 1.79671744666E-02 1.81931736999E-02 1.84220156537E-02 1.86537360848E-02 1.88883712002E-02 1.91259576621E-02 1.93665325937E-02 1.96101335854E-02 1.98567987004E-02 2.01065664806E-02 2.03594759528E-02 2.06155666344E-02 2.08748785403E-02 2.11374521885E-02 2.14033286065E-02 2.16725493382E-02 2.19451564498E-02 2.22211925368E-02 2.25007007303E-02 2.27837247040E-02 2.30703086811E-02 2.33604974409E-02 2.36543363259E-02 2.39518712491E-02 2.42531487009E-02 2.45582157566E-02 2.48671200834E-02 2.51799099483E-02 2.54966342254E-02 2.58173424035E-02 2.61420845938E-02 2.64709115380E-02 2.68038746160E-02 2.71410258540E-02 2.74824179325E-02 2.78281041947E-02 2.81781386547E-02 2.85325760063E-02 2.88914716309E-02 2.92548816068E-02 2.96228627174E-02 2.99954724606E-02 3.03727690574E-02 3.07548114611E-02 3.11416593667E-02 3.15333732200E-02 3.19300142269E-02 3.23316443636E-02 3.27383263854E-02 3.31501238374E-02 3.35671010636E-02 3.39893232177E-02 3.44168562727E-02 3.48497670315E-02 3.52881231373E-02 3.57319930842E-02 3.61814462276E-02 3.66365527957E-02 3.70973838996E-02 3.75640115453E-02 3.80365086442E-02 3.85149490250E-02 3.89994074449E-02 3.94899596015E-02 3.99866821447E-02 4.04896526883E-02 4.09989498226E-02 4.15146531261E-02 4.20368431787E-02 4.25656015735E-02 4.31010109302E-02 4.36431549076E-02 4.41921182167E-02 4.47479866341E-02 4.53108470155E-02 4.58807873090E-02 4.64578965688E-02 4.70422649695E-02 4.76339838198E-02 4.82331455769E-02 4.88398438612E-02 4.94541734705E-02 5.00762303950E-02 5.07061118323E-02 5.13439162028E-02 5.19897431647E-02 5.26436936297E-02 5.33058697789E-02 5.39763750788E-02 5.46553142970E-02 5.53427935194E-02 5.60389201658E-02 5.67438030075E-02 5.74575521838E-02 5.81802792196E-02 5.89120970424E-02 5.96531200002E-02 6.04034638794E-02 6.11632459227E-02 6.19325848476E-02 6.27116008649E-02 6.35004156974E-02 6.42991525990E-02 6.51079363741E-02 6.59268933967E-02 6.67561516305E-02 6.75958406488E-02 6.84460916548E-02 6.93070375018E-02 7.01788127145E-02 7.10615535094E-02 7.19553978166E-02 7.28604853011E-02 7.37769573847E-02 7.47049572680E-02 7.56446299528E-02 7.65961222650E-02 7.75595828771E-02 7.85351623318E-02 7.95230130654E-02 8.05232894317E-02 8.15361477257E-02 8.25617462086E-02 8.36002451324E-02 8.46518067646E-02 8.57165954138E-02 8.67947774555E-02 8.78865213577E-02 8.89919977077E-02 9.01113792383E-02 9.12448408553E-02 9.23925596644E-02 9.35547149988E-02 9.47314884478E-02 9.59230638846E-02 9.71296274953E-02 9.83513678080E-02 9.95884757219E-02 1.00841144538E-01 1.02109569988E-01 1.03393950266E-01 1.04694486059E-01 1.06011380578E-01 1.07344839591E-01 1.08695071454E-01 1.10062287143E-01 1.11446700289E-01 1.12848527208E-01 1.14267986938E-01 1.15705301275E-01 1.17160694800E-01 1.18634394922E-01 1.20126631909E-01 1.21637638928E-01 1.23167652074E-01 1.24716910417E-01 1.26285656031E-01 1.27874134036E-01 1.29482592634E-01 1.31111283151E-01 1.32760460073E-01 1.34430381086E-01 1.36121307120E-01 1.37833502386E-01 1.39567234416E-01 1.41322774111E-01 1.43100395777E-01 1.44900377170E-01 1.46722999543E-01 1.48568547682E-01 1.50437309960E-01 1.52329578373E-01 1.54245648593E-01 1.56185820009E-01 1.58150395777E-01 1.60139682867E-01 1.62153992107E-01 1.64193638239E-01 1.66258939961E-01 1.68350219981E-01 1.70467805065E-01 1.72612026090E-01 1.74783218095E-01 1.76981720334E-01 1.79207876327E-01 1.81462033915E-01 1.83744545315E-01 1.86055767174E-01 1.88396060625E-01 1.90765791345E-01 1.93165329607E-01 1.95595050344E-01 1.98055333207E-01 2.00546562618E-01 2.03069127837E-01 2.05623423021E-01 2.08209847283E-01 2.10828804758E-01 2.13480704662E-01 2.16165961360E-01 2.18884994430E-01 2.21638228725E-01 2.24426094445E-01 2.27249027198E-01 2.30107468074E-01 2.33001863711E-01 2.35932666362E-01 2.38900333973E-01 2.41905330247E-01 2.44948124721E-01 2.48029192838E-01 2.51149016020E-01 2.54308081748E-01 2.57506883631E-01 2.60745921488E-01 2.64025701426E-01 2.67346735916E-01 2.70709543879E-01 2.74114650758E-01 2.77562588609E-01 2.81053896179E-01 2.84589118993E-01 2.88168809435E-01 2.91793526840E-01 2.95463837577E-01 2.99180315140E-01 3.02943540236E-01 3.06754100877E-01 3.10612592469E-01 3.14519617912E-01 3.18475787684E-01 3.22481719946E-01 3.26538040633E-01 3.30645383554E-01 3.34804390488E-01 3.39015711289E-01 3.43280003985E-01 3.47597934880E-01 3.51970178660E-01 3.56397418496E-01 3.60880346154E-01 3.65419662100E-01 3.70016075611E-01 3.74670304888E-01 3.79383077161E-01 3.84155128813E-01 3.88987205485E-01 3.93880062199E-01 3.98834463474E-01 4.03851183445E-01 4.08931005986E-01 4.14074724828E-01 4.19283143689E-01 4.24557076393E-01 4.29897347005E-01 4.35304789952E-01 4.40780250158E-01 4.46324583174E-01 4.51938655315E-01 4.57623343790E-01 4.63379536844E-01 4.69208133893E-01 4.75110045668E-01 4.81086194354E-01 4.87137513736E-01 4.93264949347E-01 4.99469458609E-01 5.05752010990E-01 5.12113588152E-01 5.18555184103E-01 5.25077805358E-01 5.31682471088E-01 5.38370213285E-01 5.45142076924E-01 5.51999120121E-01 5.58942414304E-01 5.65973044376E-01 5.73092108888E-01 5.80300720208E-01 5.87600004697E-01 5.94991102881E-01 6.02475169636E-01 6.10053374361E-01 6.17726901168E-01 6.25496949060E-01 6.33364732122E-01 6.41331479713E-01 6.49398436652E-01 6.57566863418E-01 6.65838036344E-01 6.74213247818E-01 6.82693806484E-01 6.91281037446E-01 6.99976282476E-01 7.08780900225E-01 7.17696266431E-01 7.26723774140E-01 7.35864833916E-01 7.45120874070E-01 7.54493340876E-01 7.63983698802E-01 7.73593430735E-01 7.83324038216E-01 7.93177041671E-01 8.03153980653E-01 8.13256414079E-01 8.23485920473E-01 8.33844098218E-01 8.44332565800E-01 8.54952962063E-01 8.65706946466E-01 8.76596199340E-01 8.87622422155E-01 8.98787337778E-01 9.10092690752E-01 9.21540247560E-01 9.33131796906E-01 9.44869149995E-01 9.56754140810E-01 9.68788626407E-01 9.80974487197E-01 9.93313627247E-01 1.00580797457E+00 1.01845948144E+00 1.03127012467E+00 1.04424190596E+00 1.05737685217E+00 1.07067701567E+00 1.08414447462E+00 1.09778133336E+00 1.11158972267E+00 1.12557180013E+00 1.13972975047E+00 1.15406578590E+00 1.16858214647E+00 1.18328110037E+00 1.19816494435E+00 1.21323600404E+00 1.22849663432E+00 1.24394921970E+00 1.25959617468E+00 1.27543994413E+00 1.29148300366E+00 1.30772786003E+00 1.32417705155E+00 1.34083314842E+00 1.35769875321E+00 1.37477650118E+00 1.39206906078E+00 1.40957913400E+00 1.42730945683E+00 1.44526279967E+00 1.46344196776E+00 1.48184980163E+00 1.50048917755E+00 1.51936300796E+00 1.53847424193E+00 1.55782586562E+00 1.57742090278E+00 1.59726241517E+00 1.61735350306E+00 1.63769730572E+00 1.65829700192E+00 1.67915581040E+00 1.70027699039E+00 1.72166384211E+00 1.74331970732E+00 1.76524796978E+00 1.78745205583E+00 1.80993543489E+00 1.83270162005E+00 1.85575416857E+00 1.87909668245E+00 1.90273280901E+00 1.92666624144E+00 1.95090071939E+00 1.97544002955E+00 2.00028800624E+00 2.02544853199E+00 2.05092553820E+00 2.07672300569E+00 2.10284496538E+00 2.12929549888E+00 2.15607873913E+00 2.18319887106E+00 2.21066013227E+00 2.23846681361E+00 2.26662325995E+00 2.29513387079E+00 2.32400310096E+00 2.35323546135E+00 2.38283551956E+00 2.41280790068E+00 2.44315728793E+00 2.47388842348E+00 2.50500610914E+00 2.53651520709E+00 2.56842064070E+00 2.60072739527E+00 2.63344051878E+00 2.66656512273E+00 2.70010638291E+00 2.73406954020E+00 2.76845990142E+00 2.80328284013E+00 2.83854379749E+00 2.87424828309E+00 2.91040187584E+00 2.94701022480E+00 2.98407905010E+00 3.02161414382E+00 3.05962137091E+00 3.09810667005E+00 3.13707605467E+00 3.17653561380E+00 3.21649151309E+00 3.25694999572E+00 3.29791738341E+00 3.33940007740E+00 3.38140455945E+00 3.42393739284E+00 3.46700522341E+00 3.51061478061E+00 3.55477287850E+00 3.59948641689E+00 3.64476238236E+00 3.69060784936E+00 3.73702998135E+00 3.78403603188E+00 3.83163334573E+00 3.87982936009E+00 3.92863160568E+00 3.97804770796E+00 4.02808538828E+00 4.07875246514E+00 4.13005685537E+00 4.18200657538E+00 4.23460974243E+00 4.28787457587E+00 4.34180939843E+00 4.39642263755E+00 4.45172282665E+00 4.50771860650E+00 4.56441872655E+00 4.62183204631E+00 4.67996753673E+00 4.73883428161E+00 4.79844147898E+00 4.85879844259E+00 4.91991460335E+00 4.98179951077E+00 5.04446283450E+00 5.10791436581E+00 5.17216401914E+00 5.23722183361E+00 5.30309797465E+00 5.36980273554E+00 5.43734653904E+00 5.50573993899E+00 5.57499362200E+00 5.64511840912E+00 5.71612525747E+00 5.78802526202E+00 5.86082965729E+00 5.93454981913E+00 6.00919726644E+00 6.08478366306E+00 6.16132081950E+00 6.23882069485E+00 6.31729539863E+00 6.39675719267E+00 6.47721849304E+00 6.55869187197E+00 6.64119005985E+00 6.72472594719E+00 6.80931258664E+00 6.89496319504E+00 6.98169115546E+00 7.06951001933E+00 7.15843350853E+00 7.24847551752E+00 7.33965011556E+00 7.43197154886E+00 7.52545424284E+00 7.62011280436E+00 7.71596202400E+00 7.81301687841E+00 7.91129253260E+00 8.01080434235E+00 8.11156785657E+00 8.21359881977E+00 8.31691317450E+00 8.42152706383E+00 8.52745683390E+00 8.63471903645E+00 8.74333043142E+00 8.85330798955E+00 8.96466889508E+00 9.07743054835E+00 9.19161056862E+00 9.30722679673E+00 9.42429729797E+00 9.54284036484E+00 9.66287451993E+00 9.78441851882E+00 9.90749135301E+00 1.00321122529E+01 1.01583006907E+01 1.02860763837E+01 1.04154592970E+01 1.05464696471E+01 1.06791279044E+01 1.08134547973E+01 1.09494713144E+01 1.10871987088E+01 1.12266585004E+01 1.13678724804E+01 1.15108627135E+01 1.16556515423E+01 1.18022615904E+01 1.19507157659E+01 1.21010372650E+01 1.22532495758E+01 1.24073764819E+01 1.25634420657E+01 1.27214707129E+01 1.28814871158E+01 1.30435162772E+01 1.32075835146E+01 1.33737144639E+01 1.35419350832E+01 1.37122716574E+01 1.38847508019E+01 1.40593994670E+01 1.42362449419E+01 1.44153148590E+01 1.45966371984E+01 1.47802402921E+01 1.49661528284E+01 1.51544038565E+01 1.53450227910E+01 1.55380394166E+01 1.57334838924E+01 1.59313867571E+01 1.61317789334E+01 1.63346917330E+01 1.65401568614E+01 1.67482064229E+01 1.69588729258E+01 1.71721892871E+01 1.73881888379E+01 1.76069053286E+01 1.78283729340E+01 1.80526262590E+01 1.82797003436E+01 1.85096306686E+01 1.87424531610E+01 1.89782041998E+01 1.92169206217E+01 1.94586397265E+01 1.97033992833E+01 1.99512375364E+01 2.02021932109E+01 2.04563055192E+01 2.07136141669E+01 2.09741593589E+01 2.12379818060E+01 2.15051227310E+01 2.17756238751E+01 2.20495275048E+01 2.23268764180E+01 2.26077139511E+01 2.28920839855E+01 2.31800309546E+01 2.34715998506E+01 2.37668362319E+01 2.40657862298E+01 2.43684965556E+01 2.46750145087E+01 2.49853879829E+01 2.52996654749E+01 2.56178960911E+01 2.59401295556E+01 2.62664162182E+01 2.65968070618E+01 2.69313537105E+01 2.72701084381E+01 2.76131241756E+01 2.79604545199E+01 2.83121537421E+01 2.86682767960E+01 2.90288793264E+01 2.93940176783E+01 2.97637489053E+01 3.01381307785E+01 3.05172217961E+01 3.09010811916E+01 3.12897689439E+01 3.16833457863E+01 3.20818732159E+01 3.24854135035E+01 3.28940297030E+01 3.33077856616E+01 3.37267460295E+01 3.41509762700E+01 3.45805426701E+01 3.50155123503E+01 3.54559532756E+01 3.59019342657E+01 3.63535250061E+01 3.68107960587E+01 3.72738188731E+01 3.77426657975E+01 3.82174100903E+01 3.86981259311E+01 3.91848884328E+01 3.96777736531E+01 4.01768586063E+01 4.06822212753E+01 4.11939406242E+01 4.17120966101E+01 4.22367701959E+01 4.27680433631E+01 4.33059991240E+01 4.38507215354E+01 4.44022957113E+01 4.49608078362E+01 4.55263451788E+01 4.60989961054E+01 4.66788500940E+01 4.72659977479E+01 4.78605308101E+01 4.84625421776E+01 4.90721259159E+01 4.96893772737E+01 5.03143926978E+01 5.09472698482E+01 5.15881076131E+01 5.22370061248E+01 5.28940667750E+01 5.35593922307E+01 5.42330864504E+01 5.49152547002E+01 5.56060035703E+01 5.63054409916E+01 5.70136762526E+01 5.77308200165E+01 5.84569843384E+01 5.91922826831E+01 5.99368299425E+01 6.06907424534E+01 6.14541380163E+01 6.22271359133E+01 6.30098569269E+01 6.38024233588E+01 6.46049590492E+01 6.54175893959E+01 6.62404413741E+01 6.70736435559E+01 6.79173261310E+01 6.87716209265E+01 6.96366614277E+01 7.05125827990E+01 7.13995219047E+01 7.22976173310E+01 7.32070094071E+01 7.41278402274E+01 7.50602536735E+01 7.60043954369E+01 7.69604130418E+01 7.79284558678E+01 7.89086751736E+01 7.99012241204E+01 8.09062577960E+01 8.19239332390E+01 8.29544094633E+01 8.39978474828E+01 8.50544103369E+01 8.61242631156E+01 8.72075729857E+01 8.83045092165E+01 8.94152432065E+01 9.05399485102E+01 9.16788008650E+01 9.28319782190E+01 9.39996607584E+01 9.51820309361E+01 9.63792734998E+01 9.75915755210E+01 9.88191264245E+01 1.46134930377E-07 1.47973081517E-07 1.49834353753E-07 1.51719037910E-07 1.53627428477E-07 1.55559823641E-07 1.57516525344E-07 1.59497839325E-07 1.61504075168E-07 1.63535546351E-07 1.65592570296E-07 1.67675468417E-07 1.69784566171E-07 1.71920193109E-07 1.74082682927E-07 1.76272373518E-07 1.78489607026E-07 1.80734729899E-07 1.83008092941E-07 1.85310051369E-07 1.87640964870E-07 1.90001197654E-07 1.92391118511E-07 1.94811100872E-07 1.97261522864E-07 1.99742767371E-07 2.02255222090E-07 2.04799279600E-07 2.07375337414E-07 2.09983798047E-07 2.12625069075E-07 2.15299563203E-07 2.18007698325E-07 2.20749897594E-07 2.23526589483E-07 2.26338207857E-07 2.29185192037E-07 2.32067986868E-07 2.34987042795E-07 2.37942815926E-07 2.40935768105E-07 2.43966366989E-07 2.47035086114E-07 2.50142404973E-07 2.53288809092E-07 2.56474790103E-07 2.59700845822E-07 2.62967480326E-07 2.66275204034E-07 2.69624533785E-07 2.73015992917E-07 2.76450111354E-07 2.79927425683E-07 2.83448479242E-07 2.87013822202E-07 2.90624011656E-07 2.94279611703E-07 2.97981193539E-07 3.01729335542E-07 3.05524623367E-07 3.09367650036E-07 3.13259016031E-07 3.17199329384E-07 3.21189205777E-07 3.25229268637E-07 3.29320149232E-07 3.33462486771E-07 3.37656928501E-07 3.41904129814E-07 3.46204754342E-07 3.50559474068E-07 3.54968969424E-07 3.59433929405E-07 3.63955051668E-07 3.68533042648E-07 3.73168617666E-07 3.77862501040E-07 3.82615426198E-07 3.87428135796E-07 3.92301381827E-07 3.97235925748E-07 4.02232538590E-07 4.07292001085E-07 4.12415103783E-07 4.17602647181E-07 4.22855441842E-07 4.28174308526E-07 4.33560078316E-07 4.39013592751E-07 4.44535703953E-07 4.50127274764E-07 4.55789178876E-07 4.61522300976E-07 4.67327536873E-07 4.73205793650E-07 4.79157989794E-07 4.85185055349E-07 4.91287932056E-07 4.97467573501E-07 5.03724945268E-07 5.10061025082E-07 5.16476802968E-07 5.22973281406E-07 5.29551475484E-07 5.36212413056E-07 5.42957134909E-07 5.49786694920E-07 5.56702160219E-07 5.63704611364E-07 5.70795142501E-07 5.77974861541E-07 5.85244890329E-07 5.92606364821E-07 6.00060435264E-07 6.07608266370E-07 6.15251037504E-07 6.22989942865E-07 6.30826191671E-07 6.38761008354E-07 6.46795632744E-07 6.54931320267E-07 6.63169342141E-07 6.71510985574E-07 6.79957553966E-07 6.88510367108E-07 6.97170761396E-07 7.05940090033E-07 7.14819723246E-07 7.23811048496E-07 7.32915470694E-07 7.42134412425E-07 7.51469314169E-07 7.60921634521E-07 7.70492850427E-07 7.80184457409E-07 7.89997969799E-07 7.99934920979E-07 8.09996863618E-07 8.20185369915E-07 8.30502031845E-07 8.40948461407E-07 8.51526290877E-07 8.62237173063E-07 8.73082781561E-07 8.84064811019E-07 8.95184977404E-07 9.06445018262E-07 9.17846692998E-07 9.29391783148E-07 9.41082092654E-07 9.52919448153E-07 9.64905699253E-07 9.77042718833E-07 9.89332403325E-07 1.00177667302E-06 1.01437747235E-06 1.02713677023E-06 1.04005656032E-06 1.05313886137E-06 1.06638571750E-06 1.07979919857E-06 1.09338140046E-06 1.10713444543E-06 1.12106048240E-06 1.13516168735E-06 1.14944026362E-06 1.16389844228E-06 1.17853848243E-06 1.19336267162E-06 1.20837332616E-06 1.22357279148E-06 1.23896344255E-06 1.25454768417E-06 1.27032795142E-06 1.28630671000E-06 1.30248645662E-06 1.31886971939E-06 1.33545905825E-06 1.35225706530E-06 1.36926636526E-06 1.38648961588E-06 1.40392950833E-06 1.42158876762E-06 1.43947015304E-06 1.45757645861E-06 1.47591051346E-06 1.49447518233E-06 1.51327336599E-06 1.53230800169E-06 1.55158206363E-06 1.57109856343E-06 1.59086055058E-06 1.61087111292E-06 1.63113337715E-06 1.65165050929E-06 1.67242571519E-06 1.69346224100E-06 1.71476337374E-06 1.73633244174E-06 1.75817281521E-06 1.78028790677E-06 1.80268117193E-06 1.82535610970E-06 1.84831626307E-06 1.87156521961E-06 1.89510661203E-06 1.91894411872E-06 1.94308146433E-06 1.96752242036E-06 1.99227080578E-06 2.01733048757E-06 2.04270538135E-06 2.06839945200E-06 2.09441671427E-06 2.12076123342E-06 2.14743712582E-06 2.17444855965E-06 2.20179975548E-06 2.22949498701E-06 2.25753858166E-06 2.28593492131E-06 2.31468844295E-06 2.34380363936E-06 2.37328505986E-06 2.40313731097E-06 2.43336505719E-06 2.46397302164E-06 2.49496598689E-06 2.52634879565E-06 2.55812635155E-06 2.59030361990E-06 2.62288562846E-06 2.65587746823E-06 2.68928429426E-06 2.72311132644E-06 2.75736385030E-06 2.79204721787E-06 2.82716684850E-06 2.86272822970E-06 2.89873691801E-06 2.93519853986E-06 2.97211879246E-06 3.00950344466E-06 3.04735833790E-06 3.08568938708E-06 3.12450258151E-06 3.16380398582E-06 3.20359974094E-06 3.24389606503E-06 3.28469925449E-06 3.32601568489E-06 3.36785181200E-06 3.41021417282E-06 3.45310938653E-06 3.49654415562E-06 3.54052526684E-06 3.58505959233E-06 3.63015409069E-06 3.67581580800E-06 3.72205187901E-06 3.76886952821E-06 3.81627607093E-06 3.86427891455E-06 3.91288555962E-06 3.96210360102E-06 4.01194072916E-06 4.06240473121E-06 4.11350349226E-06 4.16524499660E-06 4.21763732894E-06 4.27068867570E-06 4.32440732625E-06 4.37880167425E-06 4.43388021891E-06 4.48965156638E-06 4.54612443104E-06 4.60330763690E-06 4.66121011893E-06 4.71984092454E-06 4.77920921489E-06 4.83932426640E-06 4.90019547217E-06 4.96183234346E-06 5.02424451114E-06 5.08744172725E-06 5.15143386649E-06 5.21623092774E-06 5.28184303569E-06 5.34828044236E-06 5.41555352873E-06 5.48367280636E-06 5.55264891902E-06 5.62249264437E-06 5.69321489563E-06 5.76482672331E-06 5.83733931689E-06 5.91076400661E-06 5.98511226523E-06 6.06039570983E-06 6.13662610358E-06 6.21381535765E-06 6.29197553301E-06 6.37111884234E-06 6.45125765196E-06 6.53240448371E-06 6.61457201695E-06 6.69777309053E-06 6.78202070478E-06 6.86732802356E-06 6.95370837632E-06 7.04117526016E-06 7.12974234196E-06 7.21942346051E-06 7.31023262866E-06 7.40218403553E-06 7.49529204871E-06 7.58957121653E-06 7.68503627029E-06 7.78170212660E-06 7.87958388971E-06 7.97869685382E-06 8.07905650556E-06 8.18067852631E-06 8.28357879472E-06 8.38777338917E-06 8.49327859028E-06 8.60011088345E-06 8.70828696144E-06 8.81782372699E-06 8.92873829543E-06 9.04104799740E-06 9.15477038151E-06 9.26992321712E-06 9.38652449709E-06 9.50459244062E-06 9.62414549604E-06 9.74520234378E-06 9.86778189922E-06 9.99190331565E-06 1.01175859873E-05 1.02448495524E-05 1.03737138960E-05 1.05041991535E-05 1.06363257136E-05 1.07701142211E-05 1.09055855809E-05 1.10427609607E-05 1.11816617943E-05 1.13223097853E-05 1.14647269103E-05 1.16089354222E-05 1.17549578538E-05 1.19028170215E-05 1.20525360286E-05 1.22041382690E-05 1.23576474308E-05 1.25130875002E-05 1.26704827649E-05 1.28298578184E-05 1.29912375632E-05 1.31546472154E-05 1.33201123079E-05 1.34876586951E-05 1.36573125564E-05 1.38291004005E-05 1.40030490698E-05 1.41791857439E-05 1.43575379447E-05 1.45381335400E-05 1.47210007482E-05 1.49061681427E-05 1.50936646564E-05 1.52835195858E-05 1.54757625963E-05 1.56704237262E-05 1.58675333916E-05 1.60671223915E-05 1.62692219119E-05 1.64738635313E-05 1.66810792254E-05 1.68909013721E-05 1.71033627565E-05 1.73184965761E-05 1.75363364460E-05 1.77569164042E-05 1.79802709167E-05 1.82064348831E-05 1.84354436420E-05 1.86673329765E-05 1.89021391198E-05 1.91398987607E-05 1.93806490497E-05 1.96244276046E-05 1.98712725163E-05 2.01212223547E-05 2.03743161750E-05 2.06305935237E-05 2.08900944446E-05 2.11528594852E-05 2.14189297032E-05 2.16883466725E-05 2.19611524902E-05 2.22373897825E-05 2.25171017123E-05 2.28003319850E-05 2.30871248560E-05 2.33775251372E-05 2.36715782043E-05 2.39693300036E-05 2.42708270595E-05 2.45761164816E-05 2.48852459718E-05 2.51982638323E-05 2.55152189728E-05 2.58361609182E-05 2.61611398163E-05 2.64902064458E-05 2.68234122238E-05 2.71608092147E-05 2.75024501372E-05 2.78483883735E-05 2.81986779771E-05 2.85533736816E-05 2.89125309087E-05 2.92762057777E-05 2.96444551134E-05 3.00173364554E-05 3.03949080674E-05 3.07772289456E-05 3.11643588285E-05 3.15563582058E-05 3.19532883283E-05 3.23552112171E-05 3.27621896735E-05 3.31742872886E-05 3.35915684537E-05 3.40140983697E-05 3.44419430577E-05 3.48751693694E-05 3.53138449973E-05 3.57580384853E-05 3.62078192396E-05 3.66632575393E-05 3.71244245476E-05 3.75913923227E-05 3.80642338294E-05 3.85430229501E-05 3.90278344965E-05 3.95187442214E-05 4.00158288305E-05 4.05191659944E-05 4.10288343603E-05 4.15449135650E-05 4.20674842471E-05 4.25966280591E-05 4.31324276810E-05 4.36749668324E-05 4.42243302862E-05 4.47806038816E-05 4.53438745375E-05 4.59142302661E-05 4.64917601865E-05 4.70765545390E-05 4.76687046990E-05 4.82683031911E-05 4.88754437037E-05 4.94902211038E-05 5.01127314517E-05 5.07430720159E-05 5.13813412882E-05 5.20276389997E-05 5.26820661357E-05 5.33447249516E-05 5.40157189894E-05 5.46951530931E-05 5.53831334258E-05 5.60797674858E-05 5.67851641235E-05 5.74994335586E-05 5.82226873973E-05 5.89550386493E-05 5.96966017460E-05 6.04474925582E-05 6.12078284141E-05 6.19777281177E-05 6.27573119674E-05 6.35467017748E-05 6.43460208837E-05 6.51553941892E-05 6.59749481576E-05 6.68048108459E-05 6.76451119218E-05 6.84959826841E-05 6.93575560830E-05 7.02299667412E-05 7.11133509745E-05 7.20078468137E-05 7.29135940253E-05 7.38307341344E-05 7.47594104460E-05 7.56997680675E-05 7.66519539317E-05 7.76161168198E-05 7.85924073840E-05 7.95809781717E-05 8.05819836492E-05 8.15955802256E-05 8.26219262774E-05 8.36611821732E-05 8.47135102990E-05 8.57790750832E-05 8.68580430223E-05 8.79505827074E-05 8.90568648499E-05 9.01770623088E-05 9.13113501171E-05 9.24599055097E-05 9.36229079506E-05 9.48005391613E-05 9.59929831492E-05 9.72004262360E-05 9.84230570871E-05 9.96610667412E-05 1.00914648640E-04 1.02183998657E-04 1.03469315133E-04 1.04770798899E-04 1.06088653316E-04 1.07423084301E-04 1.08774300361E-04 1.10142512627E-04 1.11527934884E-04 1.12930783609E-04 1.14351277998E-04 1.15789640007E-04 1.17246094382E-04 1.18720868699E-04 1.20214193393E-04 1.21726301799E-04 1.23257430187E-04 1.24807817800E-04 1.26377706888E-04 1.27967342750E-04 1.29576973769E-04 1.31206851455E-04 1.32857230478E-04 1.34528368713E-04 1.36220527280E-04 1.37933970581E-04 1.39668966346E-04 1.41425785671E-04 1.43204703062E-04 1.45005996480E-04 1.46829947380E-04 1.48676840758E-04 1.50546965194E-04 1.52440612901E-04 1.54358079763E-04 1.56299665389E-04 1.58265673156E-04 1.60256410256E-04 1.62272187747E-04 1.64313320597E-04 1.66380127737E-04 1.68472932112E-04 1.70592060724E-04 1.72737844693E-04 1.74910619302E-04 1.77110724051E-04 1.79338502710E-04 1.81594303376E-04 1.83878478521E-04 1.86191385053E-04 1.88533384367E-04 1.90904842406E-04 1.93306129715E-04 1.95737621500E-04 1.98199697687E-04 2.00692742979E-04 2.03217146922E-04 2.05773303956E-04 2.08361613489E-04 2.10982479947E-04 2.13636312847E-04 2.16323526855E-04 2.19044541855E-04 2.21799783010E-04 2.24589680832E-04 2.27414671249E-04 2.30275195671E-04 2.33171701061E-04 2.36104640003E-04 2.39074470776E-04 2.42081657421E-04 2.45126669818E-04 2.48209983755E-04 2.51332081008E-04 2.54493449410E-04 2.57694582930E-04 2.60935981754E-04 2.64218152356E-04 2.67541607581E-04 2.70906866727E-04 2.74314455623E-04 2.77764906710E-04 2.81258759128E-04 2.84796558800E-04 2.88378858514E-04 2.92006218011E-04 2.95679204074E-04 2.99398390614E-04 3.03164358762E-04 3.06977696957E-04 3.10839001043E-04 3.14748874354E-04 3.18707927818E-04 3.22716780043E-04 3.26776057422E-04 3.30886394225E-04 3.35048432701E-04 3.39262823175E-04 3.43530224156E-04 3.47851302433E-04 3.52226733184E-04 3.56657200079E-04 3.61143395387E-04 3.65686020085E-04 3.70285783968E-04 3.74943405757E-04 3.79659613217E-04 3.84435143264E-04 3.89270742084E-04 3.94167165250E-04 3.99125177837E-04 4.04145554545E-04 4.09229079818E-04 4.14376547967E-04 4.19588763295E-04 4.24866540222E-04 4.30210703409E-04 4.35622087894E-04 4.41101539217E-04 4.46649913552E-04 4.52268077845E-04 4.57956909946E-04 4.63717298745E-04 4.69550144316E-04 4.75456358052E-04 4.81436862812E-04 4.87492593061E-04 4.93624495019E-04 4.99833526809E-04 5.06120658604E-04 5.12486872782E-04 5.18933164077E-04 5.25460539734E-04 5.32070019669E-04 5.38762636628E-04 5.45539436345E-04 5.52401477708E-04 5.59349832927E-04 5.66385587694E-04 5.73509841362E-04 5.80723707110E-04 5.88028312118E-04 5.95424797747E-04 6.02914319712E-04 6.10498048265E-04 6.18177168381E-04 6.25952879937E-04 6.33826397904E-04 6.41798952535E-04 6.49871789558E-04 6.58046170371E-04 6.66323372237E-04 6.74704688485E-04 6.83191428713E-04 6.91784918992E-04 7.00486502072E-04 7.09297537593E-04 7.18219402298E-04 7.27253490245E-04 7.36401213030E-04 7.45664000002E-04 7.55043298492E-04 7.64540574033E-04 7.74157310595E-04 7.83895010811E-04 7.93755196217E-04 8.03739407488E-04 8.13849204676E-04 8.24086167459E-04 8.34451895381E-04 8.44948008110E-04 8.55576145685E-04 8.66337968773E-04 8.77235158931E-04 8.88269418867E-04 8.99442472707E-04 9.10756066264E-04 9.22211967309E-04 9.33811965850E-04 9.45557874410E-04 9.57451528312E-04 9.69494785964E-04 9.81689529148E-04 9.94037663318E-04 1.00654111790E-03 1.01920184657E-03 1.03202182761E-03 1.04500306416E-03 1.05814758456E-03 1.07145744267E-03 1.08493471819E-03 1.09858151697E-03 1.11239997135E-03 1.12639224048E-03 1.14056051069E-03 1.15490699580E-03 1.16943393749E-03 1.18414360560E-03 1.19903829856E-03 1.21412034369E-03 1.22939209760E-03 1.24485594652E-03 1.26051430672E-03 1.27636962485E-03 1.29242437832E-03 1.30868107573E-03 1.32514225723E-03 1.34181049489E-03 1.35868839318E-03 1.37577858929E-03 1.39308375361E-03 1.41060659009E-03 1.42834983673E-03 1.44631626593E-03 1.46450868500E-03 1.48292993652E-03 1.50158289887E-03 1.52047048660E-03 1.53959565093E-03 1.55896138022E-03 1.57857070039E-03 1.59842667545E-03 1.61853240793E-03 1.63889103939E-03 1.65950575091E-03 1.68037976358E-03 1.70151633900E-03 1.72291877982E-03 1.74459043020E-03 1.76653467638E-03 1.78875494721E-03 1.81125471463E-03 1.83403749428E-03 1.85710684603E-03 1.88046637450E-03 1.90411972966E-03 1.92807060741E-03 1.95232275011E-03 1.97687994722E-03 2.00174603583E-03 2.02692490134E-03 2.05242047799E-03 2.07823674951E-03 2.10437774976E-03 2.13084756331E-03 2.15765032612E-03 2.18479022619E-03 2.21227150418E-03 2.24009845409E-03 2.26827542394E-03 2.29680681644E-03 2.32569708968E-03 2.35495075782E-03 2.38457239181E-03 2.41456662008E-03 2.44493812930E-03 2.47569166508E-03 2.50683203272E-03 2.53836409797E-03 2.57029278777E-03 2.60262309104E-03 2.63536005947E-03 2.66850880827E-03 2.70207451700E-03 2.73606243037E-03 2.77047785907E-03 2.80532618056E-03 2.84061283998E-03 2.87634335093E-03 2.91252329639E-03 2.94915832953E-03 2.98625417466E-03 3.02381662809E-03 3.06185155901E-03 3.10036491047E-03 3.13936270026E-03 3.17885102185E-03 3.21883604538E-03 3.25932401860E-03 3.30032126782E-03 3.34183419896E-03 3.38386929848E-03 3.42643313447E-03 3.46953235761E-03 3.51317370224E-03 3.55736398741E-03 3.60211011794E-03 3.64741908550E-03 3.69329796972E-03 3.73975393925E-03 3.78679425295E-03 3.83442626096E-03 3.88265740587E-03 3.93149522390E-03 3.98094734605E-03 4.03102149933E-03 4.08172550792E-03 4.13306729442E-03 4.18505488110E-03 4.23769639112E-03 4.29100004982E-03 4.34497418600E-03 4.39962723325E-03 4.45496773120E-03 4.51100432692E-03 4.56774577624E-03 4.62520094514E-03 4.68337881110E-03 4.74228846452E-03 4.80193911016E-03 4.86234006856E-03 4.92350077748E-03 4.98543079342E-03 5.04813979307E-03 5.11163757483E-03 5.17593406035E-03 5.24103929611E-03 5.30696345492E-03 5.37371683756E-03 5.44130987440E-03 5.50975312697E-03 5.57905728968E-03 5.64923319144E-03 5.72029179738E-03 5.79224421055E-03 5.86510167367E-03 5.93887557085E-03 6.01357742942E-03 6.08921892171E-03 6.16581186683E-03 6.24336823261E-03 6.32190013737E-03 6.40141985189E-03 6.48193980129E-03 6.56347256697E-03 6.64603088859E-03 6.72962766606E-03 6.81427596155E-03 6.89998900152E-03 6.98678017880E-03 7.07466305471E-03 7.16365136111E-03 7.25375900261E-03 7.34500005871E-03 7.43738878601E-03 7.53093962045E-03 7.62566717952E-03 7.72158626460E-03 7.81871186325E-03 7.91705915153E-03 8.01664349641E-03 8.11748045815E-03 8.21958579272E-03 8.32297545430E-03 8.42766559773E-03 8.53367258105E-03 8.64101296807E-03 8.74970353095E-03 8.85976125281E-03 8.97120333039E-03 9.08404717674E-03 9.19831042395E-03 9.31401092587E-03 9.43116676095E-03 9.54979623503E-03 9.66991788419E-03 9.79155047770E-03 9.91471302089E-03 1.00394247582E-02 1.01657051760E-02 1.02935740059E-02 1.04230512277E-02 1.05541570725E-02 1.06869120258E-02 1.08213368308E-02 1.09574524918E-02 1.10952802769E-02 1.12348417222E-02 1.13761586344E-02 1.15192530945E-02 1.16641474613E-02 1.18108643749E-02 1.19594267601E-02 1.21098578301E-02 1.22621810900E-02 1.24164203406E-02 1.25725996821E-02 1.27307435180E-02 1.28908765584E-02 1.30530238245E-02 1.32172106521E-02 1.33834626958E-02 1.35518059328E-02 1.37222666670E-02 1.38948715333E-02 1.40696475016E-02 1.42466218809E-02 1.44258223238E-02 1.46072768308E-02 1.47910137546E-02 1.49770618043E-02 1.51654500505E-02 1.53562079290E-02 1.55493652463E-02 1.57449521835E-02 1.59429993016E-02 1.61435375457E-02 1.63465982504E-02 1.65522131444E-02 1.67604143553E-02 1.69712344151E-02 1.71847062648E-02 1.74008632597E-02 1.76197391750E-02 1.78413682104E-02 1.80657849958E-02 1.82930245970E-02 1.85231225204E-02 1.87561147194E-02 1.89920375995E-02 1.92309280241E-02 1.94728233203E-02 1.97177612848E-02 1.99657801896E-02 2.02169187882E-02 2.04712163215E-02 2.07287125240E-02 2.09894476299E-02 2.12534623798E-02 2.15207980264E-02 2.17914963415E-02 2.20655996223E-02 2.23431506978E-02 2.26241929361E-02 2.29087702506E-02 2.31969271071E-02 2.34887085306E-02 2.37841601126E-02 2.40833280180E-02 2.43862589924E-02 2.46930003694E-02 2.50036000779E-02 2.53181066499E-02 2.56365692275E-02 2.59590375712E-02 2.62855620673E-02 2.66161937360E-02 2.69509842391E-02 2.72899858883E-02 2.76332516533E-02 2.79808351702E-02 2.83327907494E-02 2.86891733849E-02 2.90500387620E-02 2.94154432669E-02 2.97854439945E-02 3.01600987584E-02 3.05394660991E-02 3.09236052935E-02 3.13125763642E-02 3.17064400886E-02 3.21052580088E-02 3.25090924408E-02 3.29180064847E-02 3.33320640341E-02 3.37513297863E-02 3.41758692525E-02 3.46057487677E-02 3.50410355016E-02 3.54817974686E-02 3.59281035387E-02 3.63800234480E-02 3.68376278099E-02 3.73009881262E-02 3.77701767978E-02 3.82452671363E-02 3.87263333757E-02 3.92134506834E-02 3.97066951725E-02 4.02061439136E-02 4.07118749464E-02 4.12239672926E-02 4.17425009675E-02 4.22675569931E-02 4.27992174105E-02 4.33375652927E-02 4.38826847576E-02 4.44346609813E-02 4.49935802111E-02 4.55595297795E-02 4.61325981170E-02 4.67128747669E-02 4.73004503985E-02 4.78954168216E-02 4.84978670012E-02 4.91078950711E-02 4.97255963495E-02 5.03510673535E-02 5.09844058142E-02 5.16257106921E-02 5.22750821923E-02 5.29326217804E-02 5.35984321984E-02 5.42726174804E-02 5.49552829694E-02 5.56465353331E-02 5.63464825812E-02 5.70552340819E-02 5.77729005789E-02 5.84995942092E-02 5.92354285201E-02 5.99805184872E-02 6.07349805324E-02 6.14989325418E-02 6.22724938846E-02 6.30557854313E-02 6.38489295727E-02 6.46520502392E-02 6.54652729202E-02 6.62887246832E-02 6.71225341943E-02 6.79668317379E-02 6.88217492373E-02 6.96874202751E-02 7.05639801140E-02 7.14515657184E-02 7.23503157752E-02 7.32603707162E-02 7.41818727391E-02 7.51149658305E-02 7.60597957882E-02 7.70165102437E-02 7.79852586856E-02 7.89661924829E-02 7.99594649084E-02 8.09652311630E-02 8.19836483996E-02 8.30148757481E-02 8.40590743399E-02 8.51164073330E-02 8.61870399380E-02 8.72711394433E-02 8.83688752416E-02 8.94804188566E-02 9.06059439690E-02 9.17456264445E-02 9.28996443608E-02 9.40681780355E-02 9.52514100545E-02 9.64495253000E-02 9.76627109801E-02 9.88911566575E-02 1.00135054279E-01 1.01394598207E-01 1.02669985247E-01 1.03961414681E-01 1.05269088298E-01 1.06593210424E-01 1.07933987956E-01 1.09291630393E-01 1.10666349869E-01 1.12058361188E-01 1.13467881854E-01 1.14895132108E-01 1.16340334959E-01 1.17803716225E-01 1.19285504561E-01 1.20785931499E-01 1.22305231485E-01 1.23843641913E-01 1.25401403161E-01 1.26978758634E-01 1.28575954796E-01 1.30193241213E-01 1.31830870588E-01 1.33489098806E-01 1.35168184966E-01 1.36868391430E-01 1.38589983860E-01 1.40333231256E-01 1.42098406004E-01 1.43885783918E-01 1.45695644279E-01 1.47528269880E-01 1.49383947074E-01 1.51262965813E-01 1.53165619698E-01 1.55092206023E-01 1.57043025821E-01 1.59018383911E-01 1.61018588947E-01 1.63043953465E-01 1.65094793933E-01 1.67171430798E-01 1.69274188539E-01 1.71403395717E-01 1.73559385024E-01 1.75742493338E-01 1.77953061774E-01 1.80191435738E-01 1.82457964980E-01 1.84753003651E-01 1.87076910355E-01 1.89430048206E-01 1.91812784888E-01 1.94225492707E-01 1.96668548655E-01 1.99142334464E-01 2.01647236668E-01 2.04183646662E-01 2.06751960767E-01 2.09352580287E-01 2.11985911573E-01 2.14652366089E-01 2.17352360474E-01 2.20086316607E-01 2.22854661675E-01 2.25657828238E-01 2.28496254295E-01 2.31370383357E-01 2.34280664512E-01 2.37227552498E-01 2.40211507771E-01 2.43232996581E-01 2.46292491041E-01 2.49390469205E-01 2.52527415136E-01 2.55703818990E-01 2.58920177086E-01 2.62176991987E-01 2.65474772575E-01 2.68814034137E-01 2.72195298439E-01 2.75619093810E-01 2.79085955225E-01 2.82596424389E-01 2.86151049819E-01 2.89750386932E-01 2.93394998133E-01 2.97085452899E-01 3.00822327872E-01 3.04606206945E-01 3.08437681358E-01 3.12317349787E-01 3.16245818436E-01 3.20223701138E-01 3.24251619445E-01 3.28330202728E-01 3.32460088272E-01 3.36641921381E-01 3.40876355476E-01 3.45164052195E-01 3.49505681499E-01 3.53901921777E-01 3.58353459950E-01 3.62860991580E-01 3.67425220979E-01 3.72046861316E-01 3.76726634732E-01 3.81465272451E-01 3.86263514895E-01 3.91122111799E-01 3.96041822329E-01 4.01023415199E-01 4.06067668793E-01 4.11175371288E-01 4.16347320770E-01 4.21584325368E-01 4.26887203375E-01 4.32256783376E-01 4.37693904379E-01 4.43199415945E-01 4.48774178321E-01 4.54419062576E-01 4.60134950734E-01 4.65922735914E-01 4.71783322469E-01 4.77717626128E-01 4.83726574139E-01 4.89811105411E-01 4.95972170664E-01 5.02210732578E-01 5.08527765941E-01 5.14924257802E-01 5.21401207626E-01 5.27959627449E-01 5.34600542039E-01 5.41324989050E-01 5.48134019193E-01 5.55028696391E-01 5.62010097952E-01 5.69079314735E-01 5.76237451318E-01 5.83485626175E-01 5.90824971849E-01 5.98256635126E-01 6.05781777220E-01 6.13401573949E-01 6.21117215922E-01 6.28929908723E-01 6.36840873102E-01 6.44851345164E-01 6.52962576560E-01 6.61175834687E-01 6.69492402883E-01 6.77913580630E-01 6.86440683753E-01 6.95075044629E-01 7.03818012395E-01 7.12670953157E-01 7.21635250206E-01 7.30712304230E-01 7.39903533539E-01 7.49210374281E-01 7.58634280667E-01 7.68176725204E-01 7.77839198916E-01 7.87623211586E-01 7.97530291986E-01 8.07561988116E-01 8.17719867449E-01 8.28005517176E-01 8.38420544449E-01 8.48966576638E-01 8.59645261582E-01 8.70458267847E-01 8.81407284987E-01 8.92494023809E-01 9.03720216637E-01 9.15087617589E-01 9.26598002842E-01 9.38253170918E-01 9.50054942962E-01 9.62005163023E-01 9.74105698348E-01 9.86358439670E-01 9.98765301505E-01 1.01132822245E+00 1.02404916549E+00 1.03693011829E+00 1.04997309354E+00 1.06318012921E+00 1.07655328895E+00 1.09009466232E+00 1.10380636521E+00 1.11769054008E+00 1.13174935638E+00 1.14598501081E+00 1.16039972774E+00 1.17499575948E+00 1.18977538670E+00 1.20474091875E+00 1.21989469401E+00 1.23523908031E+00 8.61945391287E+00 8.61945391281E+00 8.61945391275E+00 8.61945391269E+00 8.61945391263E+00 8.61945391256E+00 8.61945391250E+00 8.61945391243E+00 8.61945391236E+00 8.61945391229E+00 8.61945391222E+00 8.61945391214E+00 8.61945391207E+00 8.61945391199E+00 8.61945391191E+00 8.61945391183E+00 8.61945391174E+00 8.61945391166E+00 8.61945391157E+00 8.61945391148E+00 8.61945391138E+00 8.61945391129E+00 8.61945391119E+00 8.61945391109E+00 8.61945391099E+00 8.61945391088E+00 8.61945391077E+00 8.61945391066E+00 8.61945391055E+00 8.61945391043E+00 8.61945391031E+00 8.61945391019E+00 8.61945391007E+00 8.61945390994E+00 8.61945390980E+00 8.61945390967E+00 8.61945390953E+00 8.61945390939E+00 8.61945390924E+00 8.61945390909E+00 8.61945390894E+00 8.61945390878E+00 8.61945390862E+00 8.61945390845E+00 8.61945390828E+00 8.61945390811E+00 8.61945390793E+00 8.61945390775E+00 8.61945390756E+00 8.61945390737E+00 8.61945390717E+00 8.61945390697E+00 8.61945390676E+00 8.61945390655E+00 8.61945390633E+00 8.61945390611E+00 8.61945390588E+00 8.61945390565E+00 8.61945390541E+00 8.61945390516E+00 8.61945390491E+00 8.61945390465E+00 8.61945390438E+00 8.61945390411E+00 8.61945390383E+00 8.61945390354E+00 8.61945390325E+00 8.61945390295E+00 8.61945390264E+00 8.61945390232E+00 8.61945390199E+00 8.61945390166E+00 8.61945390132E+00 8.61945390097E+00 8.61945390061E+00 8.61945390024E+00 8.61945389986E+00 8.61945389948E+00 8.61945389908E+00 8.61945389867E+00 8.61945389826E+00 8.61945389783E+00 8.61945389739E+00 8.61945389694E+00 8.61945389648E+00 8.61945389601E+00 8.61945389552E+00 8.61945389502E+00 8.61945389451E+00 8.61945389399E+00 8.61945389346E+00 8.61945389291E+00 8.61945389234E+00 8.61945389177E+00 8.61945389117E+00 8.61945389057E+00 8.61945388994E+00 8.61945388931E+00 8.61945388865E+00 8.61945388798E+00 8.61945388729E+00 8.61945388659E+00 8.61945388587E+00 8.61945388512E+00 8.61945388436E+00 8.61945388358E+00 8.61945388278E+00 8.61945388197E+00 8.61945388112E+00 8.61945388026E+00 8.61945387938E+00 8.61945387847E+00 8.61945387755E+00 8.61945387659E+00 8.61945387562E+00 8.61945387462E+00 8.61945387359E+00 8.61945387254E+00 8.61945387146E+00 8.61945387035E+00 8.61945386922E+00 8.61945386806E+00 8.61945386686E+00 8.61945386564E+00 8.61945386439E+00 8.61945386310E+00 8.61945386179E+00 8.61945386043E+00 8.61945385905E+00 8.61945385763E+00 8.61945385617E+00 8.61945385468E+00 8.61945385315E+00 8.61945385158E+00 8.61945384997E+00 8.61945384832E+00 8.61945384663E+00 8.61945384489E+00 8.61945384311E+00 8.61945384129E+00 8.61945383942E+00 8.61945383750E+00 8.61945383554E+00 8.61945383352E+00 8.61945383145E+00 8.61945382934E+00 8.61945382716E+00 8.61945382494E+00 8.61945382265E+00 8.61945382031E+00 8.61945381791E+00 8.61945381545E+00 8.61945381292E+00 8.61945381033E+00 8.61945380768E+00 8.61945380496E+00 8.61945380217E+00 8.61945379931E+00 8.61945379638E+00 8.61945379337E+00 8.61945379029E+00 8.61945378713E+00 8.61945378389E+00 8.61945378056E+00 8.61945377716E+00 8.61945377366E+00 8.61945377008E+00 8.61945376641E+00 8.61945376264E+00 8.61945375878E+00 8.61945375482E+00 8.61945375076E+00 8.61945374660E+00 8.61945374234E+00 8.61945373796E+00 8.61945373347E+00 8.61945372888E+00 8.61945372416E+00 8.61945371932E+00 8.61945371437E+00 8.61945370928E+00 8.61945370407E+00 8.61945369873E+00 8.61945369325E+00 8.61945368763E+00 8.61945368187E+00 8.61945367597E+00 8.61945366991E+00 8.61945366370E+00 8.61945365734E+00 8.61945365081E+00 8.61945364412E+00 8.61945363726E+00 8.61945363022E+00 8.61945362301E+00 8.61945361561E+00 8.61945360803E+00 8.61945360026E+00 8.61945359228E+00 8.61945358411E+00 8.61945357573E+00 8.61945356714E+00 8.61945355833E+00 8.61945354930E+00 8.61945354003E+00 8.61945353054E+00 8.61945352080E+00 8.61945351082E+00 8.61945350058E+00 8.61945349009E+00 8.61945347933E+00 8.61945346829E+00 8.61945345698E+00 8.61945344538E+00 8.61945343349E+00 8.61945342130E+00 8.61945340879E+00 8.61945339598E+00 8.61945338283E+00 8.61945336936E+00 8.61945335554E+00 8.61945334137E+00 8.61945332685E+00 8.61945331195E+00 8.61945329668E+00 8.61945328103E+00 8.61945326497E+00 8.61945324851E+00 8.61945323164E+00 8.61945321434E+00 8.61945319659E+00 8.61945317840E+00 8.61945315975E+00 8.61945314063E+00 8.61945312102E+00 8.61945310092E+00 8.61945308031E+00 8.61945305917E+00 8.61945303750E+00 8.61945301528E+00 8.61945299250E+00 8.61945296915E+00 8.61945294520E+00 8.61945292064E+00 8.61945289547E+00 8.61945286965E+00 8.61945284319E+00 8.61945281605E+00 8.61945278823E+00 8.61945275970E+00 8.61945273045E+00 8.61945270046E+00 8.61945266971E+00 8.61945263818E+00 8.61945260585E+00 8.61945257271E+00 8.61945253872E+00 8.61945250388E+00 8.61945246815E+00 8.61945243152E+00 8.61945239396E+00 8.61945235545E+00 8.61945231597E+00 8.61945227548E+00 8.61945223398E+00 8.61945219142E+00 8.61945214778E+00 8.61945210304E+00 8.61945205716E+00 8.61945201013E+00 8.61945196190E+00 8.61945191246E+00 8.61945186176E+00 8.61945180978E+00 8.61945175648E+00 8.61945170183E+00 8.61945164580E+00 8.61945158835E+00 8.61945152945E+00 8.61945146905E+00 8.61945140713E+00 8.61945134364E+00 8.61945127854E+00 8.61945121180E+00 8.61945114336E+00 8.61945107319E+00 8.61945100125E+00 8.61945092748E+00 8.61945085185E+00 8.61945077430E+00 8.61945069479E+00 8.61945061326E+00 8.61945052968E+00 8.61945044397E+00 8.61945035610E+00 8.61945026600E+00 8.61945017362E+00 8.61945007891E+00 8.61944998179E+00 8.61944988222E+00 8.61944978012E+00 8.61944967544E+00 8.61944956811E+00 8.61944945807E+00 8.61944934524E+00 8.61944922955E+00 8.61944911093E+00 8.61944898931E+00 8.61944886461E+00 8.61944873676E+00 8.61944860567E+00 8.61944847126E+00 8.61944833344E+00 8.61944819214E+00 8.61944804726E+00 8.61944789872E+00 8.61944774641E+00 8.61944759025E+00 8.61944743013E+00 8.61944726596E+00 8.61944709764E+00 8.61944692505E+00 8.61944674810E+00 8.61944656666E+00 8.61944638064E+00 8.61944618990E+00 8.61944599433E+00 8.61944579382E+00 8.61944558822E+00 8.61944537743E+00 8.61944516129E+00 8.61944493969E+00 8.61944471247E+00 8.61944447951E+00 8.61944424064E+00 8.61944399573E+00 8.61944374462E+00 8.61944348715E+00 8.61944322316E+00 8.61944295250E+00 8.61944267497E+00 8.61944239043E+00 8.61944209868E+00 8.61944179954E+00 8.61944149283E+00 8.61944117836E+00 8.61944085593E+00 8.61944052533E+00 8.61944018637E+00 8.61943983882E+00 8.61943948248E+00 8.61943911712E+00 8.61943874250E+00 8.61943835840E+00 8.61943796458E+00 8.61943756079E+00 8.61943714678E+00 8.61943672229E+00 8.61943628705E+00 8.61943584079E+00 8.61943538324E+00 8.61943491410E+00 8.61943443309E+00 8.61943393990E+00 8.61943343422E+00 8.61943291574E+00 8.61943238414E+00 8.61943183908E+00 8.61943128022E+00 8.61943070722E+00 8.61943011971E+00 8.61942951732E+00 8.61942889969E+00 8.61942826642E+00 8.61942761712E+00 8.61942695139E+00 8.61942626880E+00 8.61942556893E+00 8.61942485134E+00 8.61942411559E+00 8.61942336121E+00 8.61942258773E+00 8.61942179468E+00 8.61942098154E+00 8.61942014783E+00 8.61941929300E+00 8.61941841654E+00 8.61941751789E+00 8.61941659649E+00 8.61941565177E+00 8.61941468313E+00 8.61941368997E+00 8.61941267166E+00 8.61941162758E+00 8.61941055707E+00 8.61940945946E+00 8.61940833406E+00 8.61940718017E+00 8.61940599707E+00 8.61940478402E+00 8.61940354026E+00 8.61940226502E+00 8.61940095750E+00 8.61939961687E+00 8.61939824231E+00 8.61939683295E+00 8.61939538791E+00 8.61939390629E+00 8.61939238716E+00 8.61939082958E+00 8.61938923256E+00 8.61938759512E+00 8.61938591623E+00 8.61938419483E+00 8.61938242986E+00 8.61938062021E+00 8.61937876475E+00 8.61937686231E+00 8.61937491172E+00 8.61937291175E+00 8.61937086114E+00 8.61936875863E+00 8.61936660289E+00 8.61936439258E+00 8.61936212632E+00 8.61935980269E+00 8.61935742023E+00 8.61935497746E+00 8.61935247286E+00 8.61934990485E+00 8.61934727183E+00 8.61934457216E+00 8.61934180414E+00 8.61933896605E+00 8.61933605612E+00 8.61933307253E+00 8.61933001340E+00 8.61932687683E+00 8.61932366087E+00 8.61932036349E+00 8.61931698263E+00 8.61931351620E+00 8.61930996201E+00 8.61930631784E+00 8.61930258143E+00 8.61929875043E+00 8.61929482245E+00 8.61929079503E+00 8.61928666567E+00 8.61928243176E+00 8.61927809068E+00 8.61927363971E+00 8.61926907606E+00 8.61926439688E+00 8.61925959925E+00 8.61925468017E+00 8.61924963657E+00 8.61924446529E+00 8.61923916310E+00 8.61923372669E+00 8.61922815266E+00 8.61922243753E+00 8.61921657772E+00 8.61921056957E+00 8.61920440933E+00 8.61919809314E+00 8.61919161707E+00 8.61918497705E+00 8.61917816895E+00 8.61917118851E+00 8.61916403136E+00 8.61915669303E+00 8.61914916894E+00 8.61914145438E+00 8.61913354453E+00 8.61912543446E+00 8.61911711908E+00 8.61910859320E+00 8.61909985150E+00 8.61909088850E+00 8.61908169862E+00 8.61907227611E+00 8.61906261507E+00 8.61905270947E+00 8.61904255312E+00 8.61903213968E+00 8.61902146263E+00 8.61901051530E+00 8.61899929085E+00 8.61898778226E+00 8.61897598235E+00 8.61896388374E+00 8.61895147887E+00 8.61893875998E+00 8.61892571913E+00 8.61891234817E+00 8.61889863874E+00 8.61888458228E+00 8.61887016999E+00 8.61885539288E+00 8.61884024171E+00 8.61882470702E+00 8.61880877908E+00 8.61879244796E+00 8.61877570344E+00 8.61875853506E+00 8.61874093210E+00 8.61872288355E+00 8.61870437813E+00 8.61868540429E+00 8.61866595016E+00 8.61864600358E+00 8.61862555211E+00 8.61860458294E+00 8.61858308299E+00 8.61856103881E+00 8.61853843664E+00 8.61851526235E+00 8.61849150145E+00 8.61846713911E+00 8.61844216010E+00 8.61841654881E+00 8.61839028924E+00 8.61836336498E+00 8.61833575921E+00 8.61830745469E+00 8.61827843371E+00 8.61824867817E+00 8.61821816945E+00 8.61818688850E+00 8.61815481579E+00 8.61812193126E+00 8.61808821437E+00 8.61805364406E+00 8.61801819873E+00 8.61798185624E+00 8.61794459388E+00 8.61790638837E+00 8.61786721585E+00 8.61782705184E+00 8.61778587125E+00 8.61774364835E+00 8.61770035678E+00 8.61765596948E+00 8.61761045872E+00 8.61756379609E+00 8.61751595242E+00 8.61746689784E+00 8.61741660170E+00 8.61736503259E+00 8.61731215830E+00 8.61725794579E+00 8.61720236121E+00 8.61714536985E+00 8.61708693609E+00 8.61702702346E+00 8.61696559453E+00 8.61690261093E+00 8.61683803333E+00 8.61677182141E+00 8.61670393380E+00 8.61663432812E+00 8.61656296090E+00 8.61648978757E+00 8.61641476244E+00 8.61633783867E+00 8.61625896821E+00 8.61617810182E+00 8.61609518901E+00 8.61601017801E+00 8.61592301575E+00 8.61583364780E+00 8.61574201837E+00 8.61564807026E+00 8.61555174482E+00 8.61545298191E+00 8.61535171988E+00 8.61524789552E+00 8.61514144403E+00 8.61503229895E+00 8.61492039217E+00 8.61480565384E+00 8.61468801235E+00 8.61456739427E+00 8.61444372435E+00 8.61431692539E+00 8.61418691827E+00 8.61405362188E+00 8.61391695303E+00 8.61377682645E+00 8.61363315472E+00 8.61348584821E+00 8.61333481501E+00 8.61317996090E+00 8.61302118929E+00 8.61285840114E+00 8.61269149491E+00 8.61252036651E+00 8.61234490921E+00 8.61216501358E+00 8.61198056745E+00 8.61179145580E+00 8.61159756071E+00 8.61139876130E+00 8.61119493362E+00 8.61098595061E+00 8.61077168199E+00 8.61055199420E+00 8.61032675032E+00 8.61009580997E+00 8.60985902923E+00 8.60961626055E+00 8.60936735266E+00 8.60911215047E+00 8.60885049501E+00 8.60858222328E+00 8.60830716816E+00 8.60802515834E+00 8.60773601820E+00 8.60743956768E+00 8.60713562219E+00 8.60682399249E+00 8.60650448458E+00 8.60617689956E+00 8.60584103355E+00 8.60549667751E+00 8.60514361717E+00 8.60478163284E+00 8.60441049931E+00 8.60402998571E+00 8.60363985537E+00 8.60323986566E+00 8.60282976784E+00 8.60240930694E+00 8.60197822157E+00 8.60153624376E+00 8.60108309883E+00 8.60061850519E+00 8.60014217417E+00 8.59965380986E+00 8.59915310892E+00 8.59863976041E+00 8.59811344556E+00 8.59757383762E+00 8.59702060166E+00 8.59645339431E+00 8.59587186364E+00 8.59527564886E+00 8.59466438016E+00 8.59403767847E+00 8.59339515521E+00 8.59273641208E+00 8.59206104082E+00 8.59136862294E+00 8.59065872949E+00 8.58993092079E+00 8.58918474617E+00 8.58841974370E+00 8.58763543990E+00 8.58683134948E+00 8.58600697502E+00 8.58516180670E+00 8.58429532196E+00 8.58340698524E+00 8.58249624760E+00 8.58156254644E+00 8.58060530514E+00 8.57962393271E+00 8.57861782348E+00 8.57758635670E+00 8.57652889616E+00 8.57544478989E+00 8.57433336967E+00 8.57319395073E+00 8.57202583128E+00 8.57082829213E+00 8.56960059626E+00 8.56834198840E+00 8.56705169455E+00 8.56572892157E+00 8.56437285671E+00 8.56298266711E+00 8.56155749933E+00 8.56009647889E+00 8.55859870969E+00 8.55706327357E+00 8.55548922972E+00 8.55387561419E+00 8.55222143928E+00 8.55052569302E+00 8.54878733858E+00 8.54700531369E+00 8.54517852998E+00 8.54330587244E+00 8.54138619874E+00 8.53941833861E+00 8.53740109316E+00 8.53533323422E+00 8.53321350365E+00 8.53104061265E+00 8.52881324103E+00 8.52653003647E+00 8.52418961379E+00 8.52179055420E+00 8.51933140449E+00 8.51681067623E+00 8.51422684502E+00 8.51157834958E+00 8.50886359100E+00 8.50608093177E+00 8.50322869500E+00 8.50030516347E+00 8.49730857874E+00 8.49423714020E+00 8.49108900416E+00 8.48786228283E+00 8.48455504339E+00 8.48116530694E+00 8.47769104752E+00 8.47413019105E+00 8.47048061426E+00 8.46674014365E+00 8.46290655435E+00 8.45897756904E+00 8.45495085681E+00 8.45082403198E+00 8.44659465298E+00 8.44226022111E+00 8.43781817934E+00 8.43326591112E+00 8.42860073909E+00 8.42381992383E+00 8.41892066258E+00 8.41390008792E+00 8.40875526649E+00 8.40348319759E+00 8.39808081189E+00 8.39254497003E+00 8.38687246119E+00 8.38106000176E+00 8.37510423387E+00 8.36900172397E+00 8.36274896137E+00 8.35634235677E+00 8.34977824080E+00 8.34305286255E+00 8.33616238799E+00 8.32910289855E+00 8.32187038954E+00 8.31446076863E+00 8.30686985435E+00 8.29909337450E+00 8.29112696462E+00 8.28296616645E+00 8.27460642638E+00 8.26604309388E+00 8.25727141998E+00 8.24828655570E+00 8.23908355055E+00 8.22965735096E+00 8.22000279879E+00 8.21011462984E+00 8.19998747232E+00 8.18961584545E+00 8.17899415797E+00 8.16811670672E+00 8.15697767529E+00 8.14557113264E+00 8.13389103180E+00 8.12193120858E+00 8.10968538035E+00 8.09714714487E+00 8.08430997916E+00 8.07116723841E+00 8.05771215506E+00 8.04393783779E+00 8.02983727071E+00 8.01540331263E+00 8.00062869631E+00 7.98550602798E+00 7.97002778677E+00 7.95418632446E+00 7.93797386513E+00 7.92138250515E+00 7.90440421318E+00 7.88703083030E+00 7.86925407042E+00 7.85106552075E+00 7.83245664245E+00 7.81341877157E+00 7.79394312004E+00 7.77402077703E+00 7.75364271037E+00 7.73279976838E+00 7.71148268181E+00 7.68968206614E+00 7.66738842407E+00 7.64459214843E+00 7.62128352524E+00 7.59745273727E+00 7.57308986783E+00 7.54818490491E+00 7.52272774582E+00 7.49670820209E+00 7.47011600488E+00 7.44294081079E+00 7.41517220813E+00 7.38679972369E+00 7.35781282998E+00 7.32820095302E+00 7.29795348066E+00 7.26705977147E+00 7.23550916424E+00 7.20329098809E+00 7.17039457318E+00 7.13680926215E+00 7.10252442223E+00 7.06752945805E+00 7.03181382518E+00 6.99536704452E+00 6.95817871737E+00 6.92023854143E+00 6.88153632757E+00 6.84206201751E+00 6.80180570239E+00 6.76075764230E+00 6.71890828666E+00 6.67624829571E+00 6.63276856291E+00 6.58846023835E+00 6.54331475325E+00 6.49732384554E+00 6.45047958640E+00 6.40277440804E+00 6.35420113253E+00 6.30475300169E+00 6.25442370824E+00 6.20320742798E+00 6.15109885316E+00 6.09809322701E+00 6.04418637935E+00 5.98937476338E+00 5.93365549359E+00 5.87702638471E+00 5.81948599182E+00 5.76103365143E+00 5.70166952363E+00 5.64139463514E+00 5.58021092334E+00 5.51812128112E+00 5.45512960250E+00 5.39124082902E+00 5.32646099668E+00 5.26079728341E+00 5.19425805704E+00 5.12685292345E+00 5.05859277489E+00 4.98948983841E+00 4.91955772399E+00 4.84881147242E+00 4.77726760265E+00 4.70494415838E+00 4.63186075366E+00 4.55803861737E+00 4.48350063616E+00 4.40827139562E+00 4.33237721948E+00 4.25584620636E+00 4.17870826390E+00 4.10099513969E+00 4.02274044891E+00 3.94397969801E+00 3.86475030412E+00 3.78509160986E+00 3.70504489286E+00 3.62465336970E+00 3.54396219373E+00 3.46301844617E+00 3.38187112010E+00 3.30057109674E+00 3.21917111340E+00 3.13772572270E+00 3.05629124235E+00 2.97492569497E+00 2.89368873752E+00 2.81264157949E+00 2.73184688963E+00 2.65136869050E+00 2.57127224036E+00 2.49162390197E+00 2.41249099788E+00 2.33394165169E+00 2.25604461512E+00 2.17886908049E+00 2.10248447841E+00 2.02696026068E+00 1.95236566820E+00 1.87876948410E+00 1.80623977226E+00 1.73484360155E+00 1.66464675623E+00 1.59571343322E+00 1.52810592703E+00 1.46188430332E+00 1.39710606233E+00 1.33382579360E+00 1.27209482357E+00 1.21196085813E+00 1.15346762199E+00 1.09665449756E+00 1.04155616585E+00 9.88202252485E-01 9.36616981955E-01 8.86818843790E-01 8.38820274394E-01 7.92627358695E-01 7.48239555985E-01 7.05649454579E-01 6.64842560194E-01 6.25797123096E-01 5.88484009294E-01 5.52866621160E-01 5.18900872939E-01 4.86535226647E-01 4.55710793799E-01 4.26366995685E-01 3.98460427959E-01 3.71952274967E-01 3.46803280318E-01 3.22973686411E-01 3.00423212498E-01 2.79111065958E-01 2.58995981758E-01 2.40036285328E-01 2.22189974406E-01 2.05414815732E-01 1.89668452906E-01 1.74908521791E-01 1.61092770578E-01 1.48179181689E-01 1.36126093118E-01 1.24892317145E-01 1.14437254651E-01 1.04721003529E-01 9.57044601337E-02 8.73494125305E-02 7.96186251464E-02 7.24759141616E-02 6.58862133823E-02 5.98156304636E-02 5.42314935110E-02 4.91023882171E-02 4.43981858057E-02 4.00900621511E-02 3.61505085158E-02 3.25533344156E-02 2.92736631654E-02 2.62879206942E-02 2.35738182395E-02 2.11103295423E-02 1.88776631638E-02 1.68572305400E-02 1.50316103733E-02 1.33845099428E-02 1.19007238869E-02 1.05660909836E-02 9.36744942163E-03 8.29259102031E-03 7.33021481975E-03 6.46988042594E-03 5.70196145826E-03 5.01759940959E-03 4.40865819307E-03 3.86767961446E-03 3.38783997526E-03 2.96290797981E-03 2.58720408940E-03 2.25556143837E-03 1.96328840114E-03 1.70613287522E-03 1.48024832381E-03 1.28216160177E-03 1.10874257165E-03 9.57175501044E-04 8.24932219104E-04 7.09746998605E-04 6.09593120227E-04 5.22661067533E-04 4.47338294551E-04 3.82190502657E-04 3.25944359440E-04 2.77471589466E-04 2.35774364988E-04 1.99971923764E-04 1.69288341021E-04 1.43041383126E-04 1.20632371713E-04 1.01536988616E-04 8.52969540149E-05 7.15125125883E-05 5.98356650900E-05 4.99640856258E-05 4.16356678756E-05 3.46236465926E-05 2.87322438290E-05 2.37927924793E-05 1.96602928403E-05 1.62103609523E-05 1.33365304732E-05 1.09478727323E-05 8.96690239482E-06 7.32773883772E-06 5.97449586655E-06 4.85987480804E-06 3.94393826891E-06 3.19304397116E-06 2.57892005027E-06 2.07786503993E-06 1.67005746757E-06 1.33896155266E-06 1.07081694022E-06 8.54201720100E-07 6.79659184861E-07 5.39379871304E-07 4.26931420580E-07 3.37029684558E-07 2.65345309704E-07 2.08340749987E-07 1.63133303975E-07 1.27380344567E-07 9.91834186266E-08 7.70083439370E-08 5.96188278330E-08 4.60214806017E-08 3.54204021868E-08 2.71797872724E-08 2.07932256472E-08 1.58585756623E-08 1.20574621181E-08 9.13859924870E-09 6.90426753621E-09 5.19938251611E-09 3.90268691045E-09 2.91967647188E-09 2.17693674180E-09 1.61762420396E-09 1.19787254248E-09 8.83944199486E-10 6.49980321185E-10 4.76229480508E-10 3.47658137558E-10 2.52864394496E-10 1.83231862590E-10 1.32272936761E-10 9.51209361773E-11 6.81388159033E-11 4.86188202170E-11 3.45528151852E-11 2.44573425737E-11 1.72408759843E-11 1.21034964288E-11 8.46137316667E-12 5.89014737533E-12 4.08266179795E-12 2.81753288484E-12 1.93588309353E-12 1.32418842327E-12 9.01688911550E-13 6.11188928410E-13 4.12364547956E-13 2.76916794208E-13 1.85077739655E-13 1.23103533349E-13 8.14840379107E-14 5.36703258630E-14 3.51746087382E-14 2.29367068270E-14 1.48803342105E-14 9.60388427894E-15 6.16603832800E-15 3.93788220106E-15 2.50142919686E-15 1.58035318008E-15 9.92959743648E-16 6.20428043150E-16 3.85481788417E-16 2.38143636145E-16 1.46273750356E-16 8.93213651863E-17 5.42218951583E-17 3.27184291089E-17 1.96235491615E-17 1.16976104862E-17 6.92976406139E-18 4.07951205666E-18 2.38634280218E-18 1.38694168568E-18 8.00847513714E-19 4.59380742384E-19 2.61752979222E-19 1.48139475198E-19 8.32671801568E-20 4.64795007875E-20 2.57630370329E-20 1.41791192895E-20 7.74762758215E-21 4.19627270564E-21 2.25991728670E-21 1.20808459155E-21 6.40974108071E-22 3.37564931508E-22 1.76452085840E-22 9.13481784069E-23 4.69203273548E-23 2.39092242939E-23 1.20855931135E-23 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -5.62107712295E+00 -5.62107710571E+00 -5.62107708890E+00 -5.62107707249E+00 -5.62107705649E+00 -5.62107704088E+00 -5.62107702564E+00 -5.62107701078E+00 -5.62107699629E+00 -5.62107698214E+00 -5.62107696834E+00 -5.62107695488E+00 -5.62107694174E+00 -5.62107692893E+00 -5.62107691643E+00 -5.62107690423E+00 -5.62107689233E+00 -5.62107688072E+00 -5.62107686939E+00 -5.62107685834E+00 -5.62107684756E+00 -5.62107683704E+00 -5.62107682678E+00 -5.62107681677E+00 -5.62107680700E+00 -5.62107679747E+00 -5.62107678818E+00 -5.62107677911E+00 -5.62107677026E+00 -5.62107676163E+00 -5.62107675321E+00 -5.62107674499E+00 -5.62107673697E+00 -5.62107672915E+00 -5.62107672152E+00 -5.62107671408E+00 -5.62107670682E+00 -5.62107669974E+00 -5.62107669283E+00 -5.62107668608E+00 -5.62107667951E+00 -5.62107667309E+00 -5.62107666683E+00 -5.62107666073E+00 -5.62107665477E+00 -5.62107664896E+00 -5.62107664329E+00 -5.62107663776E+00 -5.62107663237E+00 -5.62107662711E+00 -5.62107662213E+00 -5.62107661426E+00 -5.62107661137E+00 -5.62107660844E+00 -5.62107659803E+00 -5.62107659515E+00 -5.62107659518E+00 -5.62107659227E+00 -5.62107658232E+00 -5.62107658236E+00 -5.62107657949E+00 -5.62107656993E+00 -5.62107656997E+00 -5.62107656716E+00 -5.62107656432E+00 -5.62107655803E+00 -5.62107655528E+00 -5.62107655249E+00 -5.62107654654E+00 -5.62107654385E+00 -5.62107654390E+00 -5.62107654118E+00 -5.62107653556E+00 -5.62107653293E+00 -5.62107653299E+00 -5.62107653033E+00 -5.62107652505E+00 -5.62107652249E+00 -5.62107652255E+00 -5.62107651996E+00 -5.62107651501E+00 -5.62107651253E+00 -5.62107651260E+00 -5.62107651008E+00 -5.62107650547E+00 -5.62107650554E+00 -5.62107650313E+00 -5.62107650321E+00 -5.62107650077E+00 -5.62107649649E+00 -5.62107649657E+00 -5.62107649425E+00 -5.62107649434E+00 -5.62107648796E+00 -5.62107648805E+00 -5.62107648814E+00 -5.62107648590E+00 -5.62107648600E+00 -5.62107648225E+00 -5.62107648013E+00 -5.62107648023E+00 -5.62107648034E+00 -5.62107647820E+00 -5.62107647479E+00 -5.62107647490E+00 -5.62107647289E+00 -5.62107647301E+00 -5.62107647313E+00 -5.62107647325E+00 -5.62107646802E+00 -5.62107646815E+00 -5.62107646829E+00 -5.62107646638E+00 -5.62107646652E+00 -5.62107646365E+00 -5.62107646379E+00 -5.62107646202E+00 -5.62107646218E+00 -5.62107646233E+00 -5.62107646250E+00 -5.62107645802E+00 -5.62107645819E+00 -5.62107645836E+00 -5.62107645854E+00 -5.62107645873E+00 -5.62107645709E+00 -5.62107645728E+00 -5.62107645496E+00 -5.62107645516E+00 -5.62107645366E+00 -5.62107645388E+00 -5.62107645410E+00 -5.62107645433E+00 -5.62107645456E+00 -5.62107645086E+00 -5.62107645110E+00 -5.62107645135E+00 -5.62107645161E+00 -5.62107645188E+00 -5.62107645215E+00 -5.62107645081E+00 -5.62107644906E+00 -5.62107644935E+00 -5.62107644965E+00 -5.62107644996E+00 -5.62107645027E+00 -5.62107644911E+00 -5.62107644944E+00 -5.62107644978E+00 -5.62107644826E+00 -5.62107644862E+00 -5.62107644898E+00 -5.62107644800E+00 -5.62107644838E+00 -5.62107644878E+00 -5.62107644918E+00 -5.62107644960E+00 -5.62107645002E+00 -5.62107644875E+00 -5.62107644797E+00 -5.62107644843E+00 -5.62107644890E+00 -5.62107644938E+00 -5.62107644987E+00 -5.62107645038E+00 -5.62107645090E+00 -5.62107645143E+00 -5.62107645073E+00 -5.62107644990E+00 -5.62107645047E+00 -5.62107645106E+00 -5.62107645166E+00 -5.62107645228E+00 -5.62107645292E+00 -5.62107645357E+00 -5.62107645423E+00 -5.62107645380E+00 -5.62107645450E+00 -5.62107645522E+00 -5.62107645473E+00 -5.62107645549E+00 -5.62107645626E+00 -5.62107645705E+00 -5.62107645787E+00 -5.62107645870E+00 -5.62107645956E+00 -5.62107645946E+00 -5.62107646035E+00 -5.62107646128E+00 -5.62107646222E+00 -5.62107646319E+00 -5.62107646418E+00 -5.62107646414E+00 -5.62107646518E+00 -5.62107646625E+00 -5.62107646735E+00 -5.62107646848E+00 -5.62107646963E+00 -5.62107646998E+00 -5.62107647119E+00 -5.62107647244E+00 -5.62107647371E+00 -5.62107647502E+00 -5.62107647636E+00 -5.62107647774E+00 -5.62107647915E+00 -5.62107648059E+00 -5.62107648117E+00 -5.62107648269E+00 -5.62107648425E+00 -5.62107648585E+00 -5.62107648749E+00 -5.62107648847E+00 -5.62107649019E+00 -5.62107649195E+00 -5.62107649377E+00 -5.62107649562E+00 -5.62107649753E+00 -5.62107649948E+00 -5.62107650148E+00 -5.62107650353E+00 -5.62107650564E+00 -5.62107650780E+00 -5.62107651001E+00 -5.62107651228E+00 -5.62107651460E+00 -5.62107651624E+00 -5.62107651869E+00 -5.62107652119E+00 -5.62107652377E+00 -5.62107652584E+00 -5.62107652854E+00 -5.62107653131E+00 -5.62107653415E+00 -5.62107653707E+00 -5.62107654005E+00 -5.62107654312E+00 -5.62107654626E+00 -5.62107654947E+00 -5.62107655278E+00 -5.62107655616E+00 -5.62107655963E+00 -5.62107656319E+00 -5.62107656684E+00 -5.62107657058E+00 -5.62107657441E+00 -5.62107657834E+00 -5.62107658238E+00 -5.62107658651E+00 -5.62107659016E+00 -5.62107659451E+00 -5.62107659896E+00 -5.62107660311E+00 -5.62107660780E+00 -5.62107661260E+00 -5.62107661753E+00 -5.62107662258E+00 -5.62107662775E+00 -5.62107663306E+00 -5.62107663851E+00 -5.62107664409E+00 -5.62107664981E+00 -5.62107665568E+00 -5.62107666169E+00 -5.62107666786E+00 -5.62107667418E+00 -5.62107668067E+00 -5.62107668732E+00 -5.62107669413E+00 -5.62107670112E+00 -5.62107670829E+00 -5.62107671563E+00 -5.62107672317E+00 -5.62107673089E+00 -5.62107673881E+00 -5.62107674693E+00 -5.62107675526E+00 -5.62107676379E+00 -5.62107677255E+00 -5.62107678152E+00 -5.62107679072E+00 -5.62107680016E+00 -5.62107680940E+00 -5.62107681932E+00 -5.62107682922E+00 -5.62107683965E+00 -5.62107685034E+00 -5.62107686130E+00 -5.62107687254E+00 -5.62107688406E+00 -5.62107689588E+00 -5.62107690799E+00 -5.62107692042E+00 -5.62107693315E+00 -5.62107694621E+00 -5.62107695960E+00 -5.62107697333E+00 -5.62107698740E+00 -5.62107700183E+00 -5.62107701663E+00 -5.62107703180E+00 -5.62107704736E+00 -5.62107706331E+00 -5.62107707966E+00 -5.62107709643E+00 -5.62107711362E+00 -5.62107713125E+00 -5.62107714932E+00 -5.62107716785E+00 -5.62107718685E+00 -5.62107720633E+00 -5.62107722631E+00 -5.62107724679E+00 -5.62107726779E+00 -5.62107728932E+00 -5.62107731139E+00 -5.62107733402E+00 -5.62107735723E+00 -5.62107738102E+00 -5.62107740542E+00 -5.62107743044E+00 -5.62107745608E+00 -5.62107748238E+00 -5.62107750934E+00 -5.62107753699E+00 -5.62107756533E+00 -5.62107759439E+00 -5.62107762419E+00 -5.62107765474E+00 -5.62107768607E+00 -5.62107771819E+00 -5.62107775112E+00 -5.62107778488E+00 -5.62107781950E+00 -5.62107785500E+00 -5.62107789140E+00 -5.62107792871E+00 -5.62107796697E+00 -5.62107800597E+00 -5.62107804608E+00 -5.62107808732E+00 -5.62107812961E+00 -5.62107817297E+00 -5.62107821742E+00 -5.62107826300E+00 -5.62107830974E+00 -5.62107835766E+00 -5.62107840679E+00 -5.62107845716E+00 -5.62107850881E+00 -5.62107856177E+00 -5.62107861607E+00 -5.62107867174E+00 -5.62107872882E+00 -5.62107878735E+00 -5.62107884736E+00 -5.62107890889E+00 -5.62107897197E+00 -5.62107903666E+00 -5.62107910298E+00 -5.62107917098E+00 -5.62107924070E+00 -5.62107931218E+00 -5.62107938548E+00 -5.62107946063E+00 -5.62107953768E+00 -5.62107961668E+00 -5.62107969769E+00 -5.62107978074E+00 -5.62107986590E+00 -5.62107995321E+00 -5.62108004273E+00 -5.62108013452E+00 -5.62108022864E+00 -5.62108032513E+00 -5.62108042407E+00 -5.62108052551E+00 -5.62108062952E+00 -5.62108073617E+00 -5.62108084551E+00 -5.62108095762E+00 -5.62108107257E+00 -5.62108119043E+00 -5.62108131127E+00 -5.62108143518E+00 -5.62108156222E+00 -5.62108169247E+00 -5.62108182602E+00 -5.62108196296E+00 -5.62108210336E+00 -5.62108224731E+00 -5.62108239491E+00 -5.62108254624E+00 -5.62108270141E+00 -5.62108286050E+00 -5.62108302362E+00 -5.62108319087E+00 -5.62108336236E+00 -5.62108353818E+00 -5.62108371846E+00 -5.62108390330E+00 -5.62108409282E+00 -5.62108428714E+00 -5.62108448638E+00 -5.62108469066E+00 -5.62108490011E+00 -5.62108511486E+00 -5.62108533505E+00 -5.62108556082E+00 -5.62108579230E+00 -5.62108602964E+00 -5.62108627299E+00 -5.62108652250E+00 -5.62108677832E+00 -5.62108704062E+00 -5.62108730956E+00 -5.62108758531E+00 -5.62108786804E+00 -5.62108815793E+00 -5.62108845516E+00 -5.62108875991E+00 -5.62108907238E+00 -5.62108939275E+00 -5.62108972124E+00 -5.62109005804E+00 -5.62109040337E+00 -5.62109075744E+00 -5.62109112047E+00 -5.62109149270E+00 -5.62109187434E+00 -5.62109226565E+00 -5.62109266686E+00 -5.62109307824E+00 -5.62109350002E+00 -5.62109393248E+00 -5.62109437589E+00 -5.62109483053E+00 -5.62109529667E+00 -5.62109577462E+00 -5.62109626466E+00 -5.62109676711E+00 -5.62109728228E+00 -5.62109781049E+00 -5.62109835208E+00 -5.62109890737E+00 -5.62109947672E+00 -5.62110006048E+00 -5.62110065903E+00 -5.62110127272E+00 -5.62110190195E+00 -5.62110254711E+00 -5.62110320860E+00 -5.62110388684E+00 -5.62110458225E+00 -5.62110529526E+00 -5.62110602632E+00 -5.62110677589E+00 -5.62110754443E+00 -5.62110833243E+00 -5.62110914038E+00 -5.62110996878E+00 -5.62111081815E+00 -5.62111168903E+00 -5.62111258195E+00 -5.62111349748E+00 -5.62111443618E+00 -5.62111539864E+00 -5.62111638548E+00 -5.62111739729E+00 -5.62111843472E+00 -5.62111949841E+00 -5.62112058903E+00 -5.62112170725E+00 -5.62112285379E+00 -5.62112402935E+00 -5.62112523467E+00 -5.62112647050E+00 -5.62112773762E+00 -5.62112903682E+00 -5.62113036891E+00 -5.62113173471E+00 -5.62113313510E+00 -5.62113457093E+00 -5.62113604312E+00 -5.62113755257E+00 -5.62113910024E+00 -5.62114068708E+00 -5.62114231410E+00 -5.62114398231E+00 -5.62114569274E+00 -5.62114744648E+00 -5.62114924461E+00 -5.62115108827E+00 -5.62115297860E+00 -5.62115491678E+00 -5.62115690403E+00 -5.62115894158E+00 -5.62116103072E+00 -5.62116317275E+00 -5.62116536900E+00 -5.62116762085E+00 -5.62116992971E+00 -5.62117229701E+00 -5.62117472425E+00 -5.62117721293E+00 -5.62117976462E+00 -5.62118238091E+00 -5.62118506342E+00 -5.62118781385E+00 -5.62119063390E+00 -5.62119352535E+00 -5.62119648999E+00 -5.62119952969E+00 -5.62120264634E+00 -5.62120584189E+00 -5.62120911834E+00 -5.62121247773E+00 -5.62121592217E+00 -5.62121945380E+00 -5.62122307484E+00 -5.62122678755E+00 -5.62123059426E+00 -5.62123449733E+00 -5.62123849921E+00 -5.62124260240E+00 -5.62124680947E+00 -5.62125112304E+00 -5.62125554581E+00 -5.62126008055E+00 -5.62126473010E+00 -5.62126949735E+00 -5.62127438528E+00 -5.62127939696E+00 -5.62128453552E+00 -5.62128980416E+00 -5.62129520618E+00 -5.62130074497E+00 -5.62130642397E+00 -5.62131224674E+00 -5.62131821693E+00 -5.62132433825E+00 -5.62133061454E+00 -5.62133704974E+00 -5.62134364784E+00 -5.62135041298E+00 -5.62135734938E+00 -5.62136446139E+00 -5.62137175346E+00 -5.62137923014E+00 -5.62138689610E+00 -5.62139475612E+00 -5.62140281514E+00 -5.62141107818E+00 -5.62141955042E+00 -5.62142823715E+00 -5.62143714379E+00 -5.62144627592E+00 -5.62145563924E+00 -5.62146523962E+00 -5.62147508305E+00 -5.62148517568E+00 -5.62149552382E+00 -5.62150613395E+00 -5.62151701270E+00 -5.62152816686E+00 -5.62153960341E+00 -5.62155132950E+00 -5.62156335247E+00 -5.62157567982E+00 -5.62158831927E+00 -5.62160127872E+00 -5.62161456626E+00 -5.62162819021E+00 -5.62164215909E+00 -5.62165648162E+00 -5.62167116677E+00 -5.62168622370E+00 -5.62170166185E+00 -5.62171749086E+00 -5.62173372063E+00 -5.62175036131E+00 -5.62176742327E+00 -5.62178491723E+00 -5.62180285411E+00 -5.62182124511E+00 -5.62184010174E+00 -5.62185943580E+00 -5.62187925935E+00 -5.62189958482E+00 -5.62192042490E+00 -5.62194179263E+00 -5.62196370136E+00 -5.62198616479E+00 -5.62200919699E+00 -5.62203281234E+00 -5.62205702560E+00 -5.62208185193E+00 -5.62210730686E+00 -5.62213340629E+00 -5.62216016655E+00 -5.62218760438E+00 -5.62221573692E+00 -5.62224458179E+00 -5.62227415701E+00 -5.62230448109E+00 -5.62233557298E+00 -5.62236745213E+00 -5.62240013850E+00 -5.62243365250E+00 -5.62246801512E+00 -5.62250324783E+00 -5.62253937267E+00 -5.62257641226E+00 -5.62261438975E+00 -5.62265332888E+00 -5.62269325404E+00 -5.62273419019E+00 -5.62277616292E+00 -5.62281919851E+00 -5.62286332387E+00 -5.62290856661E+00 -5.62295495505E+00 -5.62300251817E+00 -5.62305128576E+00 -5.62310128832E+00 -5.62315255714E+00 -5.62320512429E+00 -5.62325902267E+00 -5.62331428600E+00 -5.62337094886E+00 -5.62342904669E+00 -5.62348861588E+00 -5.62354969368E+00 -5.62361231833E+00 -5.62367652900E+00 -5.62374236589E+00 -5.62380987021E+00 -5.62387908419E+00 -5.62395005117E+00 -5.62402281556E+00 -5.62409742291E+00 -5.62417391992E+00 -5.62425235448E+00 -5.62433277568E+00 -5.62441523387E+00 -5.62449978069E+00 -5.62458646905E+00 -5.62467535325E+00 -5.62476648892E+00 -5.62485993315E+00 -5.62495574443E+00 -5.62505398278E+00 -5.62515470971E+00 -5.62525798831E+00 -5.62536388326E+00 -5.62547246089E+00 -5.62558378921E+00 -5.62569793796E+00 -5.62581497865E+00 -5.62593498460E+00 -5.62605803099E+00 -5.62618419492E+00 -5.62631355545E+00 -5.62644619363E+00 -5.62658219259E+00 -5.62672163756E+00 -5.62686461593E+00 -5.62701121732E+00 -5.62716153364E+00 -5.62731565910E+00 -5.62747369034E+00 -5.62763572643E+00 -5.62780186898E+00 -5.62797222216E+00 -5.62814689282E+00 -5.62832599049E+00 -5.62850962752E+00 -5.62869791909E+00 -5.62889098332E+00 -5.62908894134E+00 -5.62929191736E+00 -5.62950003875E+00 -5.62971343610E+00 -5.62993224337E+00 -5.63015659788E+00 -5.63038664048E+00 -5.63062251559E+00 -5.63086437131E+00 -5.63111235952E+00 -5.63136663595E+00 -5.63162736032E+00 -5.63189469641E+00 -5.63216881216E+00 -5.63244987980E+00 -5.63273807597E+00 -5.63303358177E+00 -5.63333658296E+00 -5.63364727002E+00 -5.63396583827E+00 -5.63429248805E+00 -5.63462742477E+00 -5.63497085912E+00 -5.63532300714E+00 -5.63568409040E+00 -5.63605433612E+00 -5.63643397733E+00 -5.63682325300E+00 -5.63722240821E+00 -5.63763169431E+00 -5.63805136906E+00 -5.63848169682E+00 -5.63892294871E+00 -5.63937540276E+00 -5.63983934415E+00 -5.64031506532E+00 -5.64080286621E+00 -5.64130305443E+00 -5.64181594549E+00 -5.64234186294E+00 -5.64288113863E+00 -5.64343411293E+00 -5.64400113491E+00 -5.64458256260E+00 -5.64517876320E+00 -5.64579011331E+00 -5.64641699924E+00 -5.64705981715E+00 -5.64771897340E+00 -5.64839488478E+00 -5.64908797878E+00 -5.64979869385E+00 -5.65052747972E+00 -5.65127479767E+00 -5.65204112084E+00 -5.65282693453E+00 -5.65363273652E+00 -5.65445903738E+00 -5.65530636085E+00 -5.65617524411E+00 -5.65706623819E+00 -5.65797990830E+00 -5.65891683422E+00 -5.65987761066E+00 -5.66086284764E+00 -5.66187317092E+00 -5.66290922239E+00 -5.66397166050E+00 -5.66506116067E+00 -5.66617841577E+00 -5.66732413653E+00 -5.66849905203E+00 -5.66970391020E+00 -5.67093947826E+00 -5.67220654326E+00 -5.67350591259E+00 -5.67483841449E+00 -5.67620489863E+00 -5.67760623664E+00 -5.67904332268E+00 -5.68051707406E+00 -5.68202843180E+00 -5.68357836127E+00 -5.68516785282E+00 -5.68679792242E+00 -5.68846961236E+00 -5.69018399189E+00 -5.69194215793E+00 -5.69374523581E+00 -5.69559438000E+00 -5.69749077484E+00 -5.69943563533E+00 -5.70143020793E+00 -5.70347577137E+00 -5.70557363746E+00 -5.70772515198E+00 -5.70993169552E+00 -5.71219468438E+00 -5.71451557150E+00 -5.71689584741E+00 -5.71933704113E+00 -5.72184072123E+00 -5.72440849678E+00 -5.72704201839E+00 -5.72974297928E+00 -5.73251311636E+00 -5.73535421129E+00 -5.73826809163E+00 -5.74125663202E+00 -5.74432175529E+00 -5.74746543371E+00 -5.75068969020E+00 -5.75399659957E+00 -5.75738828982E+00 -5.76086694339E+00 -5.76443479856E+00 -5.76809415074E+00 -5.77184735389E+00 -5.77569682189E+00 -5.77964502999E+00 -5.78369451625E+00 -5.78784788303E+00 -5.79210779849E+00 -5.79647699812E+00 -5.80095828626E+00 -5.80555453771E+00 -5.81026869932E+00 -5.81510379158E+00 -5.82006291028E+00 -5.82514922815E+00 -5.83036599656E+00 -5.83571654716E+00 -5.84120429365E+00 -5.84683273345E+00 -5.85260544948E+00 -5.85852611185E+00 -5.86459847965E+00 -5.87082640271E+00 -5.87721382336E+00 -5.88376477821E+00 -5.89048339987E+00 -5.89737391878E+00 -5.90444066496E+00 -5.91168806971E+00 -5.91912066741E+00 -5.92674309722E+00 -5.93456010480E+00 -5.94257654396E+00 -5.95079737839E+00 -5.95922768322E+00 -5.96787264666E+00 -5.97673757153E+00 -5.98582787682E+00 -5.99514909910E+00 -6.00470689399E+00 -6.01450703748E+00 -6.02455542725E+00 -6.03485808393E+00 -6.04542115218E+00 -6.05625090188E+00 -6.06735372905E+00 -6.07873615681E+00 -6.09040483620E+00 -6.10236654689E+00 -6.11462819784E+00 -6.12719682784E+00 -6.14007960585E+00 -6.15328383139E+00 -6.16681693468E+00 -6.18068647669E+00 -6.19490014915E+00 -6.20946577428E+00 -6.22439130451E+00 -6.23968482205E+00 -6.25535453829E+00 -6.27140879307E+00 -6.28785605386E+00 -6.30470491474E+00 -6.32196409528E+00 -6.33964243926E+00 -6.35774891330E+00 -6.37629260526E+00 -6.39528272257E+00 -6.41472859038E+00 -6.43463964956E+00 -6.45502545457E+00 -6.47589567113E+00 -6.49726007372E+00 -6.51912854289E+00 -6.54151106241E+00 -6.56441771606E+00 -6.58785868433E+00 -6.61184424062E+00 -6.63638474724E+00 -6.66149065090E+00 -6.68717247778E+00 -6.71344082791E+00 -6.74030636903E+00 -6.76777982946E+00 -6.79587199013E+00 -6.82459367542E+00 -6.85395574267E+00 -6.88396907009E+00 -6.91464454284E+00 -6.94599303689E+00 -6.97802540044E+00 -7.01075243225E+00 -7.04418485674E+00 -7.07833329508E+00 -7.11320823183E+00 -7.14881997646E+00 -7.18517861918E+00 -7.22229398004E+00 -7.26017555092E+00 -7.29883242914E+00 -7.33827324205E+00 -7.37850606159E+00 -7.41953830772E+00 -7.46137663997E+00 -7.50402683588E+00 -7.54749365551E+00 -7.59178069112E+00 -7.63689020117E+00 -7.68282292792E+00 -7.72957789821E+00 -7.77715220703E+00 -7.82554078395E+00 -7.87473614263E+00 -7.92472811430E+00 -7.97550356627E+00 -8.02704610742E+00 -8.07933578327E+00 -8.13234876371E+00 -8.18605702793E+00 -8.24042805177E+00 -8.29542450392E+00 -8.35100395906E+00 -8.40711863715E+00 -8.46371517996E+00 -8.52073447827E+00 -8.57811156555E+00 -8.63577559870E+00 -8.69364995315E+00 -8.75165247217E+00 -8.80980150859E+00 -8.86860764149E+00 -8.92868646940E+00 -8.98986554957E+00 -9.05168762606E+00 -9.11398724140E+00 -9.17668028921E+00 -9.23967061833E+00 -9.30284904659E+00 -9.36609238694E+00 -9.42926250670E+00 -9.49220544672E+00 -9.55475062272E+00 -9.61671013550E+00 -9.67787822815E+00 -9.73803091159E+00 -9.79692578819E+00 -9.85430210791E+00 -9.90988108048E+00 -9.96336647465E+00 -1.00144455197E+01 -1.00627901279E+01 -1.01080584689E+01 -1.01498968945E+01 -1.01879422220E+01 -1.02218243941E+01 -1.02511695156E+01 -1.02756032734E+01 -1.02947547453E+01 -1.03082606021E+01 -1.03157697049E+01 -1.03169480916E+01 -1.03114843397E+01 -1.02990952729E+01 -1.02795319588E+01 -1.02525859151E+01 -1.02180954134E+01 -1.01759517347E+01 -1.01261052040E+01 -1.00685708115E+01 -1.00034332173E+01 -9.93085094416E+00 -9.85105957945E+00 -9.76437384105E+00 -9.67125190711E+00 -9.57250555484E+00 -9.46901451555E+00 -9.36121518376E+00 -9.24949840850E+00 -9.13455355734E+00 -9.01718725098E+00 -8.89824699050E+00 -8.77860433562E+00 -8.65913373231E+00 -8.54068621240E+00 -8.42405702004E+00 -8.30994602253E+00 -8.19890953294E+00 -8.09130191207E+00 -7.98720503267E+00 -7.88634327028E+00 -7.78797989064E+00 -7.69109467842E+00 -7.59543023773E+00 -7.50097054098E+00 -7.40771193707E+00 -7.31562483886E+00 -7.22466463132E+00 -7.13484395657E+00 -7.04616153057E+00 -6.95858811857E+00 -6.87210897806E+00 -6.78670966532E+00 -6.70237601929E+00 -6.61909414689E+00 -6.53685040950E+00 -6.45563141041E+00 -6.37542398371E+00 -6.29621518389E+00 -6.21799227642E+00 -6.14074272904E+00 -6.06445420383E+00 -5.98911455005E+00 -5.91471179761E+00 -5.84123415094E+00 -5.76866998341E+00 -5.69700783234E+00 -5.62623639433E+00 -5.55634452097E+00 -5.48732121488E+00 -5.41915562606E+00 -5.35183704854E+00 -5.28535491725E+00 -5.21969880510E+00 -5.15485842027E+00 -5.09082360369E+00 -5.02758432663E+00 -4.96513068845E+00 -4.90345291449E+00 -4.84254135406E+00 -4.78238647848E+00 -4.72297887925E+00 -4.66430926632E+00 -4.60636846632E+00 -4.54914742099E+00 -4.49263718552E+00 -4.43682892704E+00 -4.38171392312E+00 -4.32728356027E+00 -4.27352933250E+00 -4.22044283995E+00 -4.16801578746E+00 -4.11623998324E+00 -4.06510733752E+00 -4.01460986127E+00 -3.96473966484E+00 -3.91548895675E+00 -3.86685004241E+00 -3.81881532288E+00 -3.77137729367E+00 -3.72452854352E+00 -3.67826175323E+00 -3.63256969450E+00 -3.58744522875E+00 -3.54288130606E+00 -3.49887096397E+00 -3.45540732645E+00 -3.41248360281E+00 -3.37009308661E+00 -3.32822915463E+00 -3.28688526585E+00 -3.24605496040E+00 -3.20573185860E+00 -3.16590965993E+00 -3.12658214209E+00 -3.08774316001E+00 -3.04938664489E+00 -3.01150660332E+00 -2.97409711627E+00 -2.93715233824E+00 -2.90066649631E+00 -2.86463388929E+00 -2.82904888678E+00 -2.79390592833E+00 -2.75919952258E+00 -2.72492424639E+00 -2.69107474400E+00 -2.65764572617E+00 -2.62463196942E+00 -2.59202831514E+00 -2.55982966884E+00 -2.52803099932E+00 -2.49662733789E+00 -2.46561377761E+00 -2.43498547250E+00 -2.40473763680E+00 -2.37486554420E+00 -2.34536452713E+00 -2.31622997601E+00 -2.28745733851E+00 -2.25904211888E+00 -2.23097987722E+00 -2.20326622880E+00 -2.17589684333E+00 -2.14886744436E+00 -2.12217380855E+00 -2.09581176500E+00 -2.06977719467E+00 -2.04406602966E+00 -2.01867425261E+00 -1.99359789608E+00 -1.96883304189E+00 -1.94437582056E+00 -1.92022241064E+00 -1.89636903820E+00 -1.87281197615E+00 -1.84954754372E+00 -1.82657210585E+00 -1.80388207264E+00 -1.78147389878E+00 -1.75934408300E+00 -1.73748916753E+00 -1.71590573754E+00 -1.69459042063E+00 -1.67353988628E+00 -1.65275084534E+00 -1.63222004953E+00 -1.61194429091E+00 -1.59192040138E+00 -1.57214525222E+00 -1.55261575354E+00 -1.53332885385E+00 -1.51428153958E+00 -1.49547083455E+00 -1.47689379958E+00 -1.45854753215E+00 -1.44042916479E+00 -1.42253586376E+00 -1.40486486828E+00 -1.38741332765E+00 -1.37017862307E+00 -1.35315798023E+00 -1.33634878183E+00 -1.31974839063E+00 -1.30335421270E+00 -1.28716368664E+00 -1.27117428252E+00 -1.25538350198E+00 -1.23978887765E+00 -1.22438797287E+00 -1.20917838119E+00 -1.19415772610E+00 -1.17932366058E+00 -1.16467386679E+00 -1.15020605565E+00 -1.13591796655E+00 -1.12180736695E+00 -1.10787205202E+00 -1.09410984437E+00 -1.08051859360E+00 -1.06709617605E+00 -1.05384049446E+00 -1.04074947759E+00 -1.02782107994E+00 -1.01505328143E+00 -1.00244408706E+00 -9.89991526612E-01 -9.77693654357E-01 -9.65548548726E-01 -9.53554312020E-01 -9.41709070115E-01 -9.30010972168E-01 -9.18458190314E-01 -9.07048919436E-01 -8.95781376797E-01 -8.84653801821E-01 -8.73664455801E-01 -8.62811621629E-01 -8.52093603529E-01 -8.41508726788E-01 -8.31055337498E-01 -8.20731802295E-01 -8.10536508106E-01 -8.00467861895E-01 -7.90524290417E-01 -7.80704239967E-01 -7.71006176142E-01 -7.61428583602E-01 -7.51969965827E-01 -7.42628844889E-01 -7.33403761218E-01 -7.24293273378E-01 -7.15295957835E-01 -7.06410408741E-01 -6.97635237711E-01 -6.88969073605E-01 -6.80410562319E-01 -6.71958366568E-01 -6.63611165679E-01 -6.55367655384E-01 -6.47226547619E-01 -6.39186570319E-01 -6.31246467221E-01 -6.23404997668E-01 -6.15660936414E-01 -6.08013073433E-01 -6.00460213733E-01 -5.93001177162E-01 -5.85634798232E-01 -5.78359925931E-01 -5.71175423545E-01 -5.64080168480E-01 -5.57073052090E-01 -5.50152979498E-01 -5.43318869427E-01 -5.36569654036E-01 -5.29904278745E-01 -5.23321702075E-01 -5.16820895486E-01 -5.10400843213E-01 -5.04060542111E-01 -4.97799001493E-01 -4.91615242983E-01 -4.85508300354E-01 -4.79477219385E-01 -4.73521057708E-01 -4.67638884658E-01 -4.61829781136E-01 -4.56092839457E-01 -4.50427163212E-01 -4.44831867128E-01 -4.39306076928E-01 -4.33848929196E-01 -4.28459571242E-01 -4.23137160968E-01 -4.17880866736E-01 -4.12689867239E-01 -4.07563351374E-01 -4.02500518112E-01 -3.97500576375E-01 -3.92562744911E-01 -3.87686252175E-01 -3.82870336205E-01 -3.78114244504E-01 -3.73417233922E-01 -3.68778570544E-01 -3.64197529567E-01 -3.59673395195E-01 -3.55205460523E-01 -3.50793027426E-01 -3.46435406454E-01 -3.42131916719E-01 -3.37881885792E-01 -3.33684649598E-01 -3.29539552308E-01 -3.25445946244E-01 -3.21403191772E-01 -3.17410657202E-01 -3.13467718692E-01 -3.09573760152E-01 -3.05728173142E-01 -3.01930356780E-01 -2.98179717651E-01 -2.94475669710E-01 -2.90817634191E-01 -2.87205039519E-01 -2.83637321219E-01 -2.80113921828E-01 -2.76634290806E-01 -2.73197884456E-01 -2.69804165830E-01 -2.66452604655E-01 -2.63142677241E-01 -2.59873866406E-01 -2.56645661391E-01 -2.53457557783E-01 -2.50309057433E-01 -2.47199668384E-01 -2.44128904785E-01 -2.41096286825E-01 -2.38101340650E-01 -2.35143598293E-01 -2.32222597603E-01 -2.29337882166E-01 -2.26489001239E-01 -2.23675509680E-01 -2.20896967874E-01 -2.18152941669E-01 -2.15443002304E-01 -2.12766726348E-01 -2.10123695625E-01 -2.07513497157E-01 -2.04935723095E-01 -2.02389970656E-01 1 2 Beta L 990 -9.34190325327E-14 -9.69887603312E-14 -1.00694894558E-13 -1.04542647575E-13 -1.08537430919E-13 -1.12684862912E-13 -1.16990776565E-13 -1.21461227778E-13 -1.26102503859E-13 -1.30921132368E-13 -1.35923890296E-13 -1.41117813595E-13 -1.46510207077E-13 -1.52108654682E-13 -1.57921030151E-13 -1.63955508094E-13 -1.70220575490E-13 -1.76725043624E-13 -1.83478060475E-13 -1.90489123587E-13 -1.97768093421E-13 -2.05325207230E-13 -2.13171093449E-13 -2.21316786649E-13 -2.29773743055E-13 -2.38553856654E-13 -2.47669475928E-13 -2.57133421219E-13 -2.66959002760E-13 -2.77160039394E-13 -2.87750878010E-13 -2.98746413721E-13 -3.10162110810E-13 -3.22014024482E-13 -3.34318823446E-13 -3.47093813351E-13 -3.60356961134E-13 -3.74126920280E-13 -3.88423057066E-13 -4.03265477788E-13 -4.18675057048E-13 -4.34673467106E-13 -4.51283208362E-13 -4.68527641002E-13 -4.86431017852E-13 -5.05018518486E-13 -5.24316284640E-13 -5.44351456977E-13 -5.65152213262E-13 -5.86747807985E-13 -6.09168613510E-13 -6.32446162791E-13 -6.56613193716E-13 -6.81703695157E-13 -7.07752954766E-13 -7.34797608607E-13 -7.62875692681E-13 -7.92026696422E-13 -8.22291618232E-13 -8.53713023146E-13 -8.86335102694E-13 -9.20203737049E-13 -9.55366559561E-13 -9.91873023745E-13 -1.02977447283E-12 -1.06912421198E-12 -1.10997758324E-12 -1.15239204341E-12 -1.19642724481E-12 -1.24214511919E-12 -1.28960996486E-12 -1.33888853707E-12 -1.39005014194E-12 -1.44316673390E-12 -1.49831301692E-12 -1.55556654954E-12 -1.61500785399E-12 -1.67672052939E-12 -1.74079136936E-12 -1.80731048408E-12 -1.87637142701E-12 -1.94807132650E-12 -2.02251102233E-12 -2.09979520761E-12 -2.18003257594E-12 -2.26333597436E-12 -2.34982256200E-12 -2.43961397487E-12 -2.53283649695E-12 -2.62962123777E-12 -2.73010431682E-12 -2.83442705499E-12 -2.94273617333E-12 -3.05518399938E-12 -3.17192868143E-12 -3.29313441093E-12 -3.41897165341E-12 -3.54961738823E-12 -3.68525535749E-12 -3.82607632443E-12 -3.97227834175E-12 -4.12406703013E-12 -4.28165586742E-12 -4.44526648890E-12 -4.61512899897E-12 -4.79148229478E-12 -4.97457440221E-12 -5.16466282471E-12 -5.36201490545E-12 -5.56690820333E-12 -5.77963088330E-12 -6.00048212170E-12 -6.22977252697E-12 -6.46782457653E-12 -6.71497307032E-12 -6.97156560162E-12 -7.23796304598E-12 -7.51454006870E-12 -7.80168565180E-12 -8.09980364107E-12 -8.40931331408E-12 -8.73064996980E-12 -9.06426554087E-12 -9.41062922916E-12 -9.77022816569E-12 -1.01435680957E-11 -1.05311740901E-11 -1.09335912835E-11 -1.13513856416E-11 -1.17851447565E-11 -1.22354786733E-11 -1.27030207485E-11 -1.31884285401E-11 -1.36923847328E-11 -1.42155980981E-11 -1.47588044909E-11 -1.53227678848E-11 -1.59082814462E-11 -1.65161686501E-11 -1.71472844381E-11 -1.78025164207E-11 -1.84827861259E-11 -1.91890502951E-11 -1.99223022286E-11 -2.06835731828E-11 -2.14739338205E-11 -2.22944957165E-11 -2.31464129213E-11 -2.40308835838E-11 -2.49491516366E-11 -2.59025085456E-11 -2.68922951259E-11 -2.79199034282E-11 -2.89867786958E-11 -3.00944213980E-11 -3.12443893399E-11 -3.24382998533E-11 -3.36778320717E-11 -3.49647292917E-11 -3.63008014243E-11 -3.76879275413E-11 -3.91280585174E-11 -4.06232197741E-11 -4.21755141283E-11 -4.37871247497E-11 -4.54603182314E-11 -4.71974477774E-11 -4.90009565125E-11 -5.08733809180E-11 -5.28173543993E-11 -5.48356109894E-11 -5.69309891944E-11 -5.91064359851E-11 -6.13650109421E-11 -6.37098905586E-11 -6.61443727079E-11 -6.86718812819E-11 -7.12959710060E-11 -7.40203324387E-11 -7.68487971623E-11 -7.97853431715E-11 -8.28341004679E-11 -8.59993568690E-11 -8.92855640383E-11 -9.26973437459E-11 -9.62394943695E-11 -9.99169976421E-11 -1.03735025659E-10 -1.07698948150E-10 -1.11814340036E-10 -1.16086989264E-10 -1.20522904952E-10 -1.25128325836E-10 -1.29909729049E-10 -1.34873839228E-10 -1.40027637969E-10 -1.45378373653E-10 -1.50933571632E-10 -1.56701044819E-10 -1.62688904674E-10 -1.68905572611E-10 -1.75359791845E-10 -1.82060639685E-10 -1.89017540301E-10 -1.96240277983E-10 -2.03739010895E-10 -2.11524285365E-10 -2.19607050720E-10 -2.27998674680E-10 -2.36710959349E-10 -2.45756157812E-10 -2.55146991371E-10 -2.64896667434E-10 -2.75018898087E-10 -2.85527919387E-10 -2.96438511376E-10 -3.07766018872E-10 -3.19526373049E-10 -3.31736113844E-10 -3.44412413215E-10 -3.57573099298E-10 -3.71236681476E-10 -3.85422376414E-10 -4.00150135082E-10 -4.15440670817E-10 -4.31315488456E-10 -4.47796914576E-10 -4.64908128899E-10 -4.82673196888E-10 -5.01117103599E-10 -5.20265788814E-10 -5.40146183528E-10 -5.60786247820E-10 -5.82215010183E-10 -6.04462608343E-10 -6.27560331653E-10 -6.51540665091E-10 -6.76437334952E-10 -7.02285356281E-10 -7.29121082117E-10 -7.56982254620E-10 -7.85908058155E-10 -8.15939174399E-10 -8.47117839559E-10 -8.79487903768E-10 -9.13094892762E-10 -9.47986071909E-10 -9.84210512676E-10 -1.02181916165E-09 -1.06086491220E-09 -1.10140267883E-09 -1.14348947446E-09 -1.18718449059E-09 -1.23254918052E-09 -1.27964734582E-09 -1.32854522606E-09 -1.37931159193E-09 -1.43201784200E-09 -1.48673810311E-09 -1.54354933464E-09 -1.60253143676E-09 -1.66376736275E-09 -1.72734323573E-09 -1.79334846975E-09 -1.86187589553E-09 -1.93302189105E-09 -2.00688651711E-09 -2.08357365798E-09 -2.16319116761E-09 -2.24585102122E-09 -2.33166947285E-09 -2.42076721884E-09 -2.51326956756E-09 -2.60930661569E-09 -2.70901343115E-09 -2.81253024305E-09 -2.92000263898E-09 -3.03158176970E-09 -3.14742456172E-09 -3.26769393807E-09 -3.39255904736E-09 -3.52219550172E-09 -3.65678562375E-09 -3.79651870300E-09 -3.94159126211E-09 -4.09220733327E-09 -4.24857874513E-09 -4.41092542074E-09 -4.57947568685E-09 -4.75446659503E-09 -4.93614425506E-09 -5.12476418108E-09 -5.32059165091E-09 -5.52390207918E-09 -5.73498140466E-09 -5.95412649241E-09 -6.18164555130E-09 -6.41785856746E-09 -6.66309775434E-09 -6.91770801994E-09 -7.18204745184E-09 -7.45648782092E-09 -7.74141510411E-09 -8.03723002731E-09 -8.34434862898E-09 -8.66320284520E-09 -8.99424111720E-09 -9.33792902205E-09 -9.69474992744E-09 -1.00652056715E-08 -1.04498172686E-08 -1.08491256421E-08 -1.12636923852E-08 -1.16941005505E-08 -1.21409554704E-08 -1.26048856081E-08 -1.30865434418E-08 -1.35866063821E-08 -1.41057777247E-08 -1.46447876397E-08 -1.52043941987E-08 -1.57853844403E-08 -1.63885754777E-08 -1.70148156476E-08 -1.76649857031E-08 -1.83400000530E-08 -1.90408080472E-08 -1.97683953122E-08 -2.05237851372E-08 -2.13080399136E-08 -2.21222626285E-08 -2.29675984165E-08 -2.38452361702E-08 -2.47564102120E-08 -2.57024020301E-08 -2.66845420812E-08 -2.77042116612E-08 -2.87628448480E-08 -2.98619305187E-08 -3.10030144432E-08 -3.21877014582E-08 -3.34176577247E-08 -3.46946130708E-08 -3.60203634248E-08 -3.73967733411E-08 -3.88257786223E-08 -4.03093890418E-08 -4.18496911706E-08 -4.34488513117E-08 -4.51091185466E-08 -4.68328278989E-08 -4.86224036181E-08 -5.04803625888E-08 -5.24093178711E-08 -5.44119823750E-08 -5.64911726763E-08 -5.86498129778E-08 -6.08909392218E-08 -6.32177033598E-08 -6.56333777860E-08 -6.81413599389E-08 -7.07451770799E-08 -7.34484912541E-08 -7.62551044407E-08 -7.91689638998E-08 -8.21941677243E-08 -8.53349706031E-08 -8.85957898054E-08 -9.19812113927E-08 -9.54959966694E-08 -9.91450888782E-08 -1.02933620153E-07 -1.06866918737E-07 -1.10950516476E-07 -1.15190156598E-07 -1.19591801792E-07 -1.24161642591E-07 -1.28906106083E-07 -1.33831864947E-07 -1.38945846837E-07 -1.44255244127E-07 -1.49767524026E-07 -1.55490439080E-07 -1.62125474602E-07 -1.68303052995E-07 -1.74715025387E-07 -1.81374068481E-07 -1.87667719056E-07 -1.94835551385E-07 -2.02278486294E-07 -2.10004333249E-07 -2.18026675327E-07 -2.26354367835E-07 -2.35001286592E-07 -2.43977633834E-07 -2.53297883692E-07 -2.62973387845E-07 -2.73018721097E-07 -2.83448404712E-07 -2.94275826225E-07 -3.05517965685E-07 -3.17188585224E-07 -3.29305922488E-07 -3.41886050110E-07 -3.54946656583E-07 -3.68505965697E-07 -3.82584128605E-07 -3.97198910137E-07 -4.12373374600E-07 -4.28128020545E-07 -4.44482851685E-07 -4.61463834332E-07 -4.79093694608E-07 -4.97396570747E-07 -5.16399363616E-07 -5.36128012351E-07 -5.56610582306E-07 -5.77874657034E-07 -5.99953460517E-07 -6.22874128982E-07 -6.46670766463E-07 -6.71376702597E-07 -6.97026920858E-07 -7.23657415173E-07 -7.51304939110E-07 -7.80009537135E-07 -8.09810805778E-07 -8.40749889796E-07 -8.72872784609E-07 -9.06221666101E-07 -9.40844970995E-07 -9.76791425879E-07 -1.01411146119E-06 -1.05285783310E-06 -1.09308371514E-06 -1.13484776553E-06 -1.17820649563E-06 -1.22322289235E-06 -1.26995960423E-06 -1.31848081052E-06 -1.36885728649E-06 -1.42115794627E-06 -1.47545759262E-06 -1.53183123267E-06 -1.59036053430E-06 -1.65112394794E-06 -1.71421129388E-06 -1.77970733581E-06 -1.84770639235E-06 -1.91830515549E-06 -1.99160074471E-06 -2.06769688968E-06 -2.14670090610E-06 -2.22872313107E-06 -2.31387977563E-06 -2.40228951821E-06 -2.49407886978E-06 -2.58937396464E-06 -2.68831280770E-06 -2.79103038710E-06 -2.89767247050E-06 -3.00839087970E-06 -3.12333783481E-06 -3.24267896800E-06 -3.36657929138E-06 -3.49521352925E-06 -3.62876270866E-06 -3.76741675093E-06 -3.91136684368E-06 -4.06081963543E-06 -4.21597904039E-06 -4.37707084430E-06 -4.54431832164E-06 -4.71795310842E-06 -4.89822544676E-06 -5.08538479681E-06 -5.27969501593E-06 -5.48143142674E-06 -5.69087456910E-06 -5.90832132127E-06 -6.13407654612E-06 -6.36845903155E-06 -6.61179685767E-06 -6.86443064708E-06 -7.12672193600E-06 -7.39903109506E-06 -7.68174985227E-06 -7.97526736563E-06 -8.28000210882E-06 -8.59637979165E-06 -8.92484576244E-06 -9.26586429208E-06 -9.61991146798E-06 -9.98748885140E-06 -1.03691101433E-05 -1.07653118770E-05 -1.11766554495E-05 -1.16037141593E-05 -1.20470910863E-05 -1.25074103875E-05 -1.29853172557E-05 -1.34814825857E-05 -1.39966107750E-05 -1.45314193098E-05 -1.50866641487E-05 -1.56631234087E-05 -1.62616087929E-05 -1.68829619700E-05 -1.75280588106E-05 -1.81978026855E-05 -1.88931364692E-05 -1.96150389226E-05 -2.03645260251E-05 -2.11426461030E-05 -2.19505027266E-05 -2.27892246373E-05 -2.36599917567E-05 -2.45640334669E-05 -2.55026143458E-05 -2.64770577421E-05 -2.74887312701E-05 -2.85390643298E-05 -2.96295267394E-05 -3.07616550228E-05 -3.19370389489E-05 -3.31573313181E-05 -3.44242503927E-05 -3.57395768625E-05 -3.71051567935E-05 -3.85229156843E-05 -3.99948366693E-05 -4.15230063227E-05 -4.31095575719E-05 -4.47567289791E-05 -4.64668355337E-05 -4.82422802324E-05 -5.00855584183E-05 -5.19992639953E-05 -5.39860854265E-05 -5.60488160300E-05 -5.81903623142E-05 -6.04137226162E-05 -6.27220340906E-05 -6.51185402149E-05 -6.76065988374E-05 -7.01897242508E-05 -7.28715355847E-05 -7.56558114961E-05 -7.85464595074E-05 -8.15475477409E-05 -8.46632867846E-05 -8.78980746246E-05 -9.12564362531E-05 -9.47431103077E-05 -9.83629915844E-05 -1.02121162717E-04 -1.06022917120E-04 -1.10073730657E-04 -1.14279305018E-04 -1.18645547941E-04 -1.23178532489E-04 -1.27885352931E-04 -1.32765563300E-04 -1.37894598967E-04 -1.42613493599E-04 -1.50569433463E-04 -1.50193021271E-04 -1.64791778960E-04 -1.62626727333E-04 -1.75584919109E-04 -1.77096225066E-04 -1.86329591363E-04 -1.93229359790E-04 -2.02879132739E-04 -2.02863576296E-04 -2.21700323223E-04 -2.23312347138E-04 -2.30295667810E-04 -2.43456416364E-04 -2.53316665707E-04 -2.58743915989E-04 -2.67997796040E-04 -2.83554116690E-04 -2.94766189707E-04 -2.96701721178E-04 -3.18668706485E-04 -3.25709422115E-04 -3.37745588046E-04 -3.53752570415E-04 -3.65984231493E-04 -3.77398518742E-04 -3.94101962622E-04 -4.09976801002E-04 -4.23443798408E-04 -4.41083156585E-04 -4.56863513618E-04 -4.75237425482E-04 -4.93922598153E-04 -5.12669134194E-04 -5.29927609062E-04 -5.50107285349E-04 -5.75813521639E-04 -5.93889672638E-04 -6.21300700693E-04 -6.33753894888E-04 -6.72377357848E-04 -6.88173312464E-04 -7.14319843911E-04 -7.48880163465E-04 -7.73260287729E-04 -8.02109093509E-04 -8.31922861439E-04 -8.70005748051E-04 -8.93382814743E-04 -9.34742822493E-04 -9.64917025215E-04 -1.01078338195E-03 -1.03895586672E-03 -1.08953326557E-03 -1.11880277966E-03 -1.16999791138E-03 -1.21055007660E-03 -1.26366148120E-03 -1.30512798734E-03 -1.35447120583E-03 -1.40928092053E-03 -1.46055539388E-03 -1.52027505002E-03 -1.57878573834E-03 -1.63483606192E-03 -1.69403564846E-03 -1.76825604508E-03 -1.83183454272E-03 -1.89644574341E-03 -1.97808616426E-03 -2.04504906443E-03 -2.12987843517E-03 -2.20656934877E-03 -2.29371783100E-03 -2.37933721828E-03 -2.46997466858E-03 -2.56705905178E-03 -2.66008648274E-03 -2.76843077538E-03 -2.86839542602E-03 -2.98125491442E-03 -3.09185883973E-03 -3.21224335617E-03 -3.33468755873E-03 -3.46219899254E-03 -3.59285046934E-03 -3.73008068187E-03 -3.87397684144E-03 -4.01917975578E-03 -4.17820165608E-03 -4.33080178374E-03 -4.49946635602E-03 -4.67013865648E-03 -4.84966091587E-03 -5.03292732098E-03 -5.22575187522E-03 -5.42752224009E-03 -5.62960780019E-03 -5.84776112709E-03 -6.06979480284E-03 -6.30193781156E-03 -6.54160690877E-03 -6.79135888655E-03 -7.04986099611E-03 -7.31992755361E-03 -7.59741248208E-03 -7.88842842886E-03 -8.18888716072E-03 -8.50030959221E-03 -8.82575926839E-03 -9.16078749455E-03 -9.51106628835E-03 -9.87233087673E-03 -1.02499193087E-02 -1.06395130741E-02 -1.10459987924E-02 -1.14661964080E-02 -1.19028878702E-02 -1.23573513021E-02 -1.28267572440E-02 -1.33166785132E-02 -1.38231127779E-02 -1.43502467581E-02 -1.48959310401E-02 -1.54639642438E-02 -1.60528481253E-02 -1.66632484070E-02 -1.72980840001E-02 -1.79569510308E-02 -1.86398599142E-02 -1.93497254849E-02 -2.00859594425E-02 -2.08503893247E-02 -2.16433457814E-02 -2.24672219025E-02 -2.33218428093E-02 -2.42084393810E-02 -2.51298342886E-02 -2.60848445680E-02 -2.70767171174E-02 -2.81064852521E-02 -2.91746360720E-02 -3.02833351054E-02 -3.14346131033E-02 -3.26284404858E-02 -3.38686156937E-02 -3.51546610710E-02 -3.64901059293E-02 -3.78757561235E-02 -3.93138395048E-02 -4.08062333687E-02 -4.23550280232E-02 -4.39623682143E-02 -4.56304150537E-02 -4.73615874501E-02 -4.91576507143E-02 -5.10219672794E-02 -5.29564641300E-02 -5.49636177225E-02 -5.70468927704E-02 -5.92082726497E-02 -6.14513873093E-02 -6.37785879330E-02 -6.61937637271E-02 -6.86996053841E-02 -7.12997126360E-02 -7.39974793800E-02 -7.67968821365E-02 -7.97011596952E-02 -8.27146243481E-02 -8.58411477849E-02 -8.90849181337E-02 -9.24502944373E-02 -9.59418726819E-02 -9.95641283400E-02 -1.03322092925E-01 -1.07220476893E-01 -1.11264806184E-01 -1.15460325406E-01 -1.19812315619E-01 -1.24326996555E-01 -1.29010078711E-01 -1.33867612806E-01 -1.38906341132E-01 -1.44132554577E-01 -1.49553224030E-01 -1.55175640342E-01 -1.61006710090E-01 -1.67054557844E-01 -1.73326583780E-01 -1.79831316095E-01 -1.86576874002E-01 -1.93572222530E-01 -2.00826246211E-01 -2.08348337858E-01 -2.16148106205E-01 -2.24235647436E-01 -2.32621129215E-01 -2.41315465198E-01 -2.50329473631E-01 -2.59674757275E-01 -2.69363002112E-01 -2.79406537979E-01 -2.89817880956E-01 -3.00610124704E-01 -3.11796756989E-01 -3.23391672665E-01 -3.35409251020E-01 -3.47864424192E-01 -3.60772366267E-01 -3.74149150201E-01 -3.88010921943E-01 -4.02374690114E-01 -4.17257802166E-01 -4.32678330564E-01 -4.48654698540E-01 -4.65206139025E-01 -4.82352353190E-01 -5.00113639028E-01 -5.18511047549E-01 -5.37566114482E-01 -5.57301194488E-01 -5.77739130539E-01 -5.98903643339E-01 -6.20819018777E-01 -6.43510315845E-01 -6.67003298653E-01 -6.91324521116E-01 -7.16501237185E-01 -7.42561483817E-01 -7.69534141258E-01 -7.97448788785E-01 -8.26335903500E-01 -8.56226723442E-01 -8.87153332466E-01 -9.19148682291E-01 -9.52246526994E-01 -9.86481484690E-01 -1.02188908885E+00 -1.05850566517E+00 -1.09636845968E+00 -1.13551557290E+00 -1.17598599756E+00 -1.21781957516E+00 -1.26105702617E+00 -1.30573994807E+00 -1.35191079633E+00 -1.39961282354E+00 -1.44889019545E+00 -1.49978783599E+00 -1.55235148270E+00 -1.60662764463E+00 -1.66266359581E+00 -1.72050729558E+00 -1.78020741496E+00 -1.84181324114E+00 -1.90537467124E+00 -1.97094214508E+00 -2.03856658821E+00 -2.10829934379E+00 -2.18019212850E+00 -2.25429693128E+00 -2.33066592126E+00 -2.40935140778E+00 -2.49040565604E+00 -2.57388087745E+00 -2.65982901268E+00 -2.74830168198E+00 -2.83934999239E+00 -2.93302441683E+00 -3.02937462175E+00 -3.12844928071E+00 -3.23029590933E+00 -3.33496064166E+00 -3.44248802111E+00 -3.55292077098E+00 -3.66629953814E+00 -3.78266263674E+00 -3.90204575440E+00 -4.02448166418E+00 -4.14999988623E+00 -4.27862637314E+00 -4.41038311721E+00 -4.54528779672E+00 -4.68335335711E+00 -4.82458758082E+00 -4.96899265347E+00 -5.11656466601E+00 -5.26729313747E+00 -5.42116047116E+00 -5.57814142077E+00 -5.73820250137E+00 -5.90130139460E+00 -6.06738631202E+00 -6.23639534643E+00 -6.40825578346E+00 -6.58288339492E+00 -6.76018170399E+00 -6.94004122321E+00 -7.12233867209E+00 -7.30693616801E+00 -7.49368039623E+00 -7.68240176028E+00 -7.87291351536E+00 -8.06501088021E+00 -8.25847014819E+00 -8.45304777250E+00 -8.64847946303E+00 -8.84447926738E+00 -9.04073866476E+00 -9.23692566677E+00 -9.43268392972E+00 -9.62763189715E+00 -9.82136196364E+00 -1.00134396853E+01 -1.02034030333E+01 -1.03907617072E+01 -1.05749965189E+01 -1.07555588576E+01 -1.09318702504E+01 -1.11033220323E+01 -1.12692751426E+01 -1.14290600595E+01 -1.15819769001E+01 -1.17272956910E+01 -1.18642568439E+01 -1.19920718460E+01 -1.21099241916E+01 -1.22169705810E+01 -1.23123424010E+01 -1.23951475241E+01 -1.24644724392E+01 -1.25193847470E+01 -1.25589360448E+01 -1.25821652197E+01 -1.25881021850E+01 -1.25757720756E+01 -1.25441999282E+01 -1.24924158698E+01 -1.24194608273E+01 -1.23243927818E+01 -1.22062935725E+01 -1.20642762650E+01 -1.18974930827E+01 -1.17051439017E+01 -1.14864852975E+01 -1.12408401294E+01 -1.09676076360E+01 -1.06662740044E+01 -1.03364233744E+01 -9.97774921071E+00 -9.59006598318E+00 -9.17332106674E+00 -8.72760676189E+00 -8.25317233240E+00 -7.75043591865E+00 -7.21999619803E+00 -6.66264362116E+00 -6.07937105325E+00 -5.47138363283E+00 -4.84010763560E+00 -4.18719813377E+00 -3.51454521723E+00 -2.82427853681E+00 -2.11876993524E+00 -1.40063390765E+00 -6.72725657053E-01 6.18634964739E-02 7.99813584358E-01 1.53758653494E+00 2.27143999654E+00 2.99744458537E+00 3.71150468809E+00 4.40938290435E+00 5.08672815869E+00 5.73910747639E+00 6.36204135174E+00 6.95104258041E+00 7.50165837969E+00 8.00951554838E+00 8.47036837787E+00 8.88014896877E+00 9.23501957084E+00 9.53142653285E+00 9.76615542972E+00 9.93638693138E+00 1.00397529867E+01 1.00743929218E+01 1.00390090904E+01 9.93292176366E+00 9.75612300171E+00 9.50932930950E+00 9.19403292286E+00 8.81255161490E+00 8.36807690349E+00 7.86472052512E+00 7.30755894671E+00 6.70267554972E+00 6.05719991986E+00 5.37934339363E+00 4.67842969096E+00 3.96491907643E+00 3.25042410575E+00 2.54771465065E+00 1.87070962135E+00 1.23445272066E+00 6.55069754726E-01 1.49705543453E-01 -2.63559448377E-01 -5.65819665752E-01 -7.37399574643E-01 -7.58609454686E-01 -6.03766643969E-01 -3.00570874253E-01 -1.76550042952E-01 -1.08341994675E-01 -5.29491244223E-02 -1.80485576339E-02 -2.36792829575E-03 2.77254405324E-04 2.70628279912E-04 2.64103828993E-04 2.57725661104E-04 2.51487671186E-04 2.45388578827E-04 2.10 2.40 5D 2 2 Beta L 990 5.71773961381E-14 5.93622586324E-14 6.16306090860E-14 6.39856377405E-14 6.64306567431E-14 6.89691048047E-14 7.16045520362E-14 7.43407049696E-14 7.71814117709E-14 8.01306676522E-14 8.31926204906E-14 8.63715766620E-14 8.96720070973E-14 9.30985535708E-14 9.66560352281E-14 1.00349455364E-13 1.04184008460E-13 1.08165087487E-13 1.12298291494E-13 1.16589433481E-13 1.21044548573E-13 1.25669902509E-13 1.30472000457E-13 1.35457596158E-13 1.40633701427E-13 1.46007596015E-13 1.51586837848E-13 1.57379273653E-13 1.63393049998E-13 1.69636624748E-13 1.76118778958E-13 1.82848629225E-13 1.89835640511E-13 1.97089639452E-13 2.04620828179E-13 2.12439798668E-13 2.20557547635E-13 2.28985492001E-13 2.37735484953E-13 2.46819832610E-13 2.56251311333E-13 2.66043185694E-13 2.76209227129E-13 2.86763733309E-13 2.97721548249E-13 3.09098083181E-13 3.20909338233E-13 3.33171924929E-13 3.45903089551E-13 3.59120737399E-13 3.72843457968E-13 3.87090551095E-13 4.01882054103E-13 4.17238769981E-13 4.33182296641E-13 4.49735057295E-13 4.66920331991E-13 4.84762290354E-13 5.03286025577E-13 5.22517589717E-13 5.42484030329E-13 5.63213428511E-13 5.84734938397E-13 6.07078828155E-13 6.30276522563E-13 6.54360647202E-13 6.79365074342E-13 7.05324970578E-13 7.32276846293E-13 7.60258607005E-13 7.89309606674E-13 8.19470703059E-13 8.50784315170E-13 8.83294482936E-13 9.17046929137E-13 9.52089123714E-13 9.88470350527E-13 1.02624177667E-12 1.06545652444E-12 1.10616974604E-12 1.14843870115E-12 1.19232283744E-12 1.23788387422E-12 1.28518588920E-12 1.33429540864E-12 1.38528150090E-12 1.43821587356E-12 1.49317297432E-12 1.55023009565E-12 1.60946748353E-12 1.67096845031E-12 1.73481949185E-12 1.80111040920E-12 1.86993443489E-12 1.94138836405E-12 2.01557269054E-12 2.09259174829E-12 2.17255385806E-12 2.25557147973E-12 2.34176137052E-12 2.43124474916E-12 2.52414746640E-12 2.62060018200E-12 2.72073854849E-12 2.82470340195E-12 2.93264096008E-12 3.04470302787E-12 3.16104721106E-12 3.28183713784E-12 3.40724268894E-12 3.53744023660E-12 3.67261289257E-12 3.81295076567E-12 3.95865122916E-12 4.10991919834E-12 4.26696741872E-12 4.43001676523E-12 4.59929655289E-12 4.77504485930E-12 4.95750885947E-12 5.14694517349E-12 5.34362022738E-12 5.54781062786E-12 5.75980355131E-12 5.97989714774E-12 6.20840096002E-12 6.44563635931E-12 6.69193699698E-12 6.94764927389E-12 7.21313282757E-12 7.48876103803E-12 7.77492155285E-12 8.07201683243E-12 8.38046471595E-12 8.70069900909E-12 9.03317009410E-12 9.37834556322E-12 9.73671087636E-12 1.01087700438E-11 1.04950463350E-11 1.08960830148E-11 1.13124441069E-11 1.17447151879E-11 1.21935042102E-11 1.26594423572E-11 1.31431849314E-11 1.36454122753E-11 1.41668307291E-11 1.47081736233E-11 1.52702023105E-11 1.58537072363E-11 1.64595090505E-11 1.70884597619E-11 1.77414439361E-11 1.84193799395E-11 1.91232212315E-11 1.98539577049E-11 2.06126170783E-11 2.14002663413E-11 2.22180132557E-11 2.30670079127E-11 2.39484443510E-11 2.48635622359E-11 2.58136486028E-11 2.68000396670E-11 2.78241227036E-11 2.88873379982E-11 2.99911808725E-11 3.11372037874E-11 3.23270185265E-11 3.35622984628E-11 3.48447809124E-11 3.61762695776E-11 3.75586370836E-11 3.89938276126E-11 4.04838596379E-11 4.20308287624E-11 4.36369106665E-11 4.53043641675E-11 4.70355343967E-11 4.88328560975E-11 5.06988570498E-11 5.26361616248E-11 5.46474944764E-11 5.67356843729E-11 5.89036681754E-11 6.11544949685E-11 6.34913303482E-11 6.59174608743E-11 6.84362986929E-11 7.10513863345E-11 7.37664016972E-11 7.65851632186E-11 7.95116352469E-11 8.25499336153E-11 8.57043314318E-11 8.89792650881E-11 9.23793404993E-11 9.59093395818E-11 9.95742269784E-11 1.03379157041E-10 1.07329481080E-10 1.11430754888E-10 1.15688746559E-10 1.20109444595E-10 1.24699066330E-10 1.29464066677E-10 1.34411147203E-10 1.39547265554E-10 1.44879645244E-10 1.50415785810E-10 1.56163473362E-10 1.62130791534E-10 1.68326132849E-10 1.74758210526E-10 1.81436070736E-10 1.88369105320E-10 1.95567064999E-10 2.03040073092E-10 2.10798639746E-10 2.18853676724E-10 2.27216512751E-10 2.35898909441E-10 2.44913077846E-10 2.54271695626E-10 2.63987924879E-10 2.74075430653E-10 2.84548400165E-10 2.95421562756E-10 3.06710210600E-10 3.18430220220E-10 3.30598074810E-10 3.43230887420E-10 3.56346425025E-10 3.69963133510E-10 3.84100163617E-10 3.98777397871E-10 4.14015478553E-10 4.29835836725E-10 4.46260722371E-10 4.63313235694E-10 4.81017359599E-10 4.99397993429E-10 5.18480987978E-10 5.38293181852E-10 5.58862439211E-10 5.80217688964E-10 6.02388965450E-10 6.25407450677E-10 6.49305518185E-10 6.74116778567E-10 6.99876126747E-10 7.26619791052E-10 7.54385384165E-10 7.83211956028E-10 8.13140048755E-10 8.44211753658E-10 8.76470770440E-10 9.09962468660E-10 9.44733951534E-10 9.80834122190E-10 1.01831375244E-09 1.05722555419E-09 1.09762425356E-09 1.13956666790E-09 1.18311178562E-09 1.22832084922E-09 1.27525744139E-09 1.32398757445E-09 1.37457978318E-09 1.42710522121E-09 1.48163776107E-09 1.53825409815E-09 1.59703385848E-09 1.65805971080E-09 1.72141748275E-09 1.78719628165E-09 1.85548861975E-09 1.92639054442E-09 2.00000177316E-09 2.07642583388E-09 2.15577021051E-09 2.23814649414E-09 2.32367054000E-09 2.41246263035E-09 2.50464764371E-09 2.60035523042E-09 2.69971999504E-09 2.80288168563E-09 2.90998539032E-09 3.02118174133E-09 3.13662712683E-09 3.25648391091E-09 3.38092066191E-09 3.51011238950E-09 3.64424079083E-09 3.78349450604E-09 3.92806938359E-09 4.07816875573E-09 4.23400372439E-09 4.39579345817E-09 4.56376550051E-09 4.73815608976E-09 4.91921049139E-09 5.10718334297E-09 5.30233901225E-09 5.50495196903E-09 5.71530717112E-09 5.93370046517E-09 6.16043900270E-09 6.39584167208E-09 6.64023954707E-09 6.89397635241E-09 7.15740894725E-09 7.43090782702E-09 7.71485764454E-09 8.00965775098E-09 8.31572275748E-09 8.63348311834E-09 8.96338573636E-09 9.30589459136E-09 9.66149139279E-09 1.00306762572E-08 1.04139684114E-08 1.08119069232E-08 1.12250514591E-08 1.16539830714E-08 1.20993050159E-08 1.25616435998E-08 1.30416490628E-08 1.35399964915E-08 1.40573867689E-08 1.45945475601E-08 1.51522343360E-08 1.57312314353E-08 1.63323531677E-08 1.69564449596E-08 1.76043845427E-08 1.82770831885E-08 1.89754869901E-08 1.97005781926E-08 2.04533765748E-08 2.12349408831E-08 2.20463703207E-08 2.28888060936E-08 2.37634330156E-08 2.46714811745E-08 2.56142276623E-08 2.65929983710E-08 2.76091698577E-08 2.86641712806E-08 2.97594864086E-08 3.08966557085E-08 3.20772785115E-08 3.33030152622E-08 3.45755898541E-08 3.58967920542E-08 3.72684800200E-08 3.86925829128E-08 4.01711036112E-08 4.17061215273E-08 4.32997955321E-08 4.49543669911E-08 4.66721629169E-08 4.84555992418E-08 5.03071842156E-08 5.22295219333E-08 5.42253159976E-08 5.62973733211E-08 5.84486080740E-08 6.06820457830E-08 6.30008275857E-08 6.54082146492E-08 6.79075927557E-08 7.05024770654E-08 7.31965170592E-08 7.59935016721E-08 7.88973646217E-08 8.19121899407E-08 8.50422177206E-08 8.82918500753E-08 9.16656573321E-08 9.51683844593E-08 9.92031215054E-08 1.02983788208E-07 1.06907966506E-07 1.10983276270E-07 1.14865472410E-07 1.19252621936E-07 1.23808103180E-07 1.28536788602E-07 1.33446901591E-07 1.38543954597E-07 1.43836343463E-07 1.49330411733E-07 1.55034900416E-07 1.60956884486E-07 1.67105215756E-07 1.73488757356E-07 1.80115782753E-07 1.86996573491E-07 1.94139680661E-07 2.01556158880E-07 2.09255907692E-07 2.17249737478E-07 2.25548805083E-07 2.34165424536E-07 2.43110525372E-07 2.52398135271E-07 2.62040838655E-07 2.72050936035E-07 2.82444248299E-07 2.93234693661E-07 3.04437085867E-07 3.16067855876E-07 3.28142865417E-07 3.40679346949E-07 3.53694170630E-07 3.67207580845E-07 3.81236326608E-07 3.95801183153E-07 4.10922602107E-07 4.26621952979E-07 4.42921279503E-07 4.59843118746E-07 4.77411878885E-07 4.95651896183E-07 5.14588343872E-07 5.34249284009E-07 5.54660656371E-07 5.75852021273E-07 5.97853239024E-07 6.20695147001E-07 6.44410039627E-07 6.69030518467E-07 6.94592359684E-07 7.21130318729E-07 7.48682805001E-07 7.77288212921E-07 8.06985883654E-07 8.37818999094E-07 8.69829881972E-07 9.03064213358E-07 9.37567980256E-07 9.73391071617E-07 1.01058161865E-06 1.04919448816E-06 1.08928167366E-06 1.13090081067E-06 1.17411108903E-06 1.21897194214E-06 1.26554693860E-06 1.31390168151E-06 1.36410376197E-06 1.41622426335E-06 1.47033585201E-06 1.52651590244E-06 1.58484172689E-06 1.64539760321E-06 1.70826636957E-06 1.77353710987E-06 1.84130277259E-06 1.91165658040E-06 1.98469980083E-06 2.06053355019E-06 2.13926467680E-06 2.22100406062E-06 2.30586782435E-06 2.39397310990E-06 2.48544628186E-06 2.58041232651E-06 2.67900923059E-06 2.78137370576E-06 2.88764767249E-06 2.99798411877E-06 3.11253575995E-06 3.23146420518E-06 3.35493783659E-06 3.48312842202E-06 3.61621768315E-06 3.75439212674E-06 3.89784692065E-06 4.04678288843E-06 4.20140858298E-06 4.36194500743E-06 4.52861307553E-06 4.70165224356E-06 4.88130096841E-06 5.06781518158E-06 5.26145560193E-06 5.46249462542E-06 5.67121654090E-06 5.88791273649E-06 6.11289006790E-06 6.34646312753E-06 6.58896021575E-06 6.84072486664E-06 7.10210813786E-06 7.37347901741E-06 7.65521958584E-06 7.94772466491E-06 8.25140511727E-06 8.56669166899E-06 8.89402378440E-06 9.23386403577E-06 9.58668865976E-06 9.95299455834E-06 1.03332968574E-05 1.07281314405E-05 1.11380515350E-05 1.15636340183E-05 1.20054780484E-05 1.24642053863E-05 1.29404578867E-05 1.34349106084E-05 1.39482546473E-05 1.44812123104E-05 1.50345357292E-05 1.56089992035E-05 1.62054125683E-05 1.68246129055E-05 1.74674749652E-05 1.81348985064E-05 1.88278239123E-05 1.95472243410E-05 2.02941112421E-05 2.10695363898E-05 2.18745895754E-05 2.27104008712E-05 2.35781486597E-05 2.44790469077E-05 2.54143723991E-05 2.63854309483E-05 2.73935925245E-05 2.84402740741E-05 2.95269462910E-05 3.06551367399E-05 3.18264328072E-05 3.30424801077E-05 3.43049884230E-05 3.56157362182E-05 3.69765594837E-05 3.83893777021E-05 3.98561761723E-05 4.13790106868E-05 4.29600313069E-05 4.46014540196E-05 4.63055909901E-05 4.80748342144E-05 4.99116735849E-05 5.18186863723E-05 5.37985639533E-05 5.58540766946E-05 5.79881242086E-05 6.02037028362E-05 6.25039235637E-05 6.48920260384E-05 6.73713621376E-05 6.99454213663E-05 7.26178199795E-05 7.53922772015E-05 7.82731081998E-05 8.12603073664E-05 8.43974489012E-05 8.73064317704E-05 9.20817111151E-05 9.20805552467E-05 1.00686193740E-04 9.96747612832E-05 1.07355784725E-04 1.08473323870E-04 1.14034302396E-04 1.18265521898E-04 1.24083516853E-04 1.24387068702E-04 1.35449491845E-04 1.36725342413E-04 1.41079949617E-04 1.48950169369E-04 1.54924333267E-04 1.58475862770E-04 1.64147426889E-04 1.73438783094E-04 1.80268120875E-04 1.81905222533E-04 1.94833664770E-04 1.99394588896E-04 2.06776029932E-04 2.16440659747E-04 2.23976349274E-04 2.31075297047E-04 2.41197099760E-04 2.50883467192E-04 2.59232313891E-04 2.69943565218E-04 2.79658284285E-04 2.90858736400E-04 3.02284912322E-04 3.13755509489E-04 3.24415810280E-04 3.36776987441E-04 3.52310558833E-04 3.63545623331E-04 3.80118888635E-04 3.88191402626E-04 4.11274478995E-04 4.21318477198E-04 4.37316633753E-04 4.58235309672E-04 4.73260225946E-04 4.90987985773E-04 5.09244089968E-04 5.32323458194E-04 5.47005379890E-04 5.72041586565E-04 5.90722622669E-04 6.18455985533E-04 6.36104033252E-04 6.66608220635E-04 6.85060951098E-04 7.16018766364E-04 7.41044253852E-04 7.73191379099E-04 7.98931027559E-04 8.29149498890E-04 8.62520630018E-04 8.94068032317E-04 9.30421615929E-04 9.66181842165E-04 1.00073666800E-03 1.03709401333E-03 1.08209285358E-03 1.12117645594E-03 1.16096447677E-03 1.21054668431E-03 1.25189643354E-03 1.30351374873E-03 1.35067969149E-03 1.40387135434E-03 1.45638917583E-03 1.51186122572E-03 1.57117400528E-03 1.62831471223E-03 1.69435243810E-03 1.75579656564E-03 1.82470208012E-03 1.89256964279E-03 1.96614091746E-03 2.04110055968E-03 2.11914097652E-03 2.19917686870E-03 2.28317333817E-03 2.37118582983E-03 2.46018780580E-03 2.55726675689E-03 2.65098666227E-03 2.75407476657E-03 2.85859403355E-03 2.96842279253E-03 3.08068156676E-03 3.19868659870E-03 3.32207451356E-03 3.44600569835E-03 3.57939468833E-03 3.71535375186E-03 3.85742605135E-03 4.00417013464E-03 4.15703743893E-03 4.31530861932E-03 4.48056463193E-03 4.65050685006E-03 4.82859106670E-03 5.01253142466E-03 5.20320434777E-03 5.40237302328E-03 5.60752413951E-03 5.82190500057E-03 6.04311914593E-03 6.27420514257E-03 6.51275432876E-03 6.76154670235E-03 7.01881752861E-03 7.28615731546E-03 7.56433926853E-03 7.85175972050E-03 8.15163311035E-03 8.46170472451E-03 8.78439282655E-03 9.11849594080E-03 9.46621863072E-03 9.82674136393E-03 1.02004716122E-02 1.05891159579E-02 1.09924736968E-02 1.14105967039E-02 1.18451853364E-02 1.22959423795E-02 1.27639543112E-02 1.32494605566E-02 1.37538578744E-02 1.42771127000E-02 1.48199633581E-02 1.53840747383E-02 1.59688299955E-02 1.65761316825E-02 1.72066296608E-02 1.78606601513E-02 1.85395232666E-02 1.92444360979E-02 1.99754579168E-02 2.07348127806E-02 2.15223137468E-02 2.23400359128E-02 2.31885265019E-02 2.40691301043E-02 2.49830039635E-02 2.59314297610E-02 2.69157142064E-02 2.79371888862E-02 2.89973260809E-02 3.00972396633E-02 3.12389427730E-02 3.24236501516E-02 3.36528838471E-02 3.49287344391E-02 3.62524583039E-02 3.76262465517E-02 3.90515746133E-02 4.05307911548E-02 4.20655740445E-02 4.36581210782E-02 4.53105169594E-02 4.70251870838E-02 4.88041400283E-02 5.06500042851E-02 5.25651608716E-02 5.45521813192E-02 5.66137361459E-02 5.87526445516E-02 6.09716574656E-02 6.32738561060E-02 6.56621426616E-02 6.81398935890E-02 7.07103334561E-02 7.33767163633E-02 7.61428397008E-02 7.90122207003E-02 8.19885793607E-02 8.50760411097E-02 8.82784822133E-02 9.16001806794E-02 9.50456031612E-02 9.86190146910E-02 1.02325380384E-01 1.06169269376E-01 1.10155903577E-01 1.14290287630E-01 1.18577918686E-01 1.23024264694E-01 1.27635097301E-01 1.32416325602E-01 1.37374152908E-01 1.42514839304E-01 1.47845086406E-01 1.53371559560E-01 1.59101388313E-01 1.65041769042E-01 1.71200283072E-01 1.77584638947E-01 1.84202894311E-01 1.91063352346E-01 1.98174570214E-01 2.05545404642E-01 2.13185049230E-01 2.21102861464E-01 2.29308733953E-01 2.37812628713E-01 2.46625024438E-01 2.55756621564E-01 2.65218560865E-01 2.75022213437E-01 2.85179441019E-01 2.95702404067E-01 3.06603635152E-01 3.17896128415E-01 3.29593189618E-01 3.41708625270E-01 3.54256557261E-01 3.67251644586E-01 3.80708907151E-01 3.94643845085E-01 4.09072400923E-01 4.24011009671E-01 4.39476548516E-01 4.55486385010E-01 4.72058413450E-01 4.89210973585E-01 5.06962964731E-01 5.25333769951E-01 5.44343305274E-01 5.64012033515E-01 5.84360928692E-01 6.05411512407E-01 6.27185884145E-01 6.49706653235E-01 6.72997012607E-01 6.97080702934E-01 7.21982035704E-01 7.47725869668E-01 7.74337629528E-01 8.01843306261E-01 8.30269447669E-01 8.59643125079E-01 8.89992000799E-01 9.21344241062E-01 9.53728549159E-01 9.87174142463E-01 1.02171074995E+00 1.05736856821E+00 1.09417827711E+00 1.13217098695E+00 1.17137823550E+00 1.21183195060E+00 1.25356441859E+00 1.29660824621E+00 1.34099633562E+00 1.38676182773E+00 1.43393804950E+00 1.48255849140E+00 1.53265670252E+00 1.58426628433E+00 1.63742076715E+00 1.69215358062E+00 1.74849794324E+00 1.80648679207E+00 1.86615268299E+00 1.92752768281E+00 1.99064327275E+00 2.05553021873E+00 2.12221844910E+00 2.19073692062E+00 2.26111346844E+00 2.33337465581E+00 2.40754560180E+00 2.48364981166E+00 2.56170897807E+00 2.64174279508E+00 2.72376872702E+00 2.80780179883E+00 2.89385434841E+00 2.98193577198E+00 3.07205226609E+00 3.16420653259E+00 3.25839749402E+00 3.35461997031E+00 3.45286435983E+00 3.55311628802E+00 3.65535625134E+00 3.75955923633E+00 3.86569433013E+00 3.97372430738E+00 4.08360520481E+00 4.19528587856E+00 4.30870754431E+00 4.42380330401E+00 4.54049765587E+00 4.65870599041E+00 4.77833407368E+00 4.89927751875E+00 5.02142124302E+00 5.14463892302E+00 5.26879243250E+00 5.39373128485E+00 5.51929206462E+00 5.64529786404E+00 5.77155772131E+00 5.89786606346E+00 6.02400216395E+00 6.14972961071E+00 6.27479579825E+00 6.39893144275E+00 6.52185012881E+00 6.64324789514E+00 6.76280286441E+00 6.88017492619E+00 6.99500548114E+00 7.10691725583E+00 7.21551419597E+00 7.32038145304E+00 7.42108546859E+00 7.51717417511E+00 7.60817732070E+00 7.69360693214E+00 7.77295793273E+00 7.84570892263E+00 7.91132314466E+00 7.96924964310E+00 8.01892463511E+00 8.05977311014E+00 8.09121066943E+00 8.11264562558E+00 8.12348137357E+00 8.12311904824E+00 8.11096048349E+00 8.08641148175E+00 8.04888540861E+00 7.99780711698E+00 7.93261721089E+00 7.85277664944E+00 7.75777169330E+00 7.64711918830E+00 7.52037218006E+00 7.37712584545E+00 7.21702372222E+00 7.03976421478E+00 6.84510734019E+00 6.63288168134E+00 6.40299149688E+00 6.15542393328E+00 5.89025627936E+00 5.60766318333E+00 5.30792375808E+00 4.99142847623E+00 4.65868575636E+00 4.31032813096E+00 3.94711787260E+00 3.56995195507E+00 3.17986621234E+00 2.77803855330E+00 2.36579109306E+00 1.94459104663E+00 1.51605024396E+00 1.08192312004E+00 6.44103039203E-01 2.04616829959E-01 -2.34382594585E-01 -6.70625625720E-01 -1.10173744294E+00 -1.52525165279E+00 -1.93862611088E+00 -2.33926093511E+00 -2.72451867962E+00 -3.09174660584E+00 -3.43830095792E+00 -3.76157310752E+00 -4.05901740741E+00 -4.32818055855E+00 -4.56673227134E+00 -4.77249698110E+00 -4.94348636310E+00 -5.07793238757E+00 -5.17432065638E+00 -5.23142377427E+00 -5.24833452668E+00 -5.22449865998E+00 -5.15974709195E+00 -5.05432740906E+00 -4.90893453479E+00 -4.72474047672E+00 -4.50342305701E+00 -4.24719352497E+00 -3.95882290125E+00 -3.64166683023E+00 -3.29968860944E+00 -2.93747991107E+00 -2.56027853566E+00 -2.17398232506E+00 -1.78515814996E+00 -1.40104468630E+00 -1.02954754401E+00 -6.79225265441E-01 -3.59264819813E-01 -7.94455128726E-02 1.49908598998E-01 3.17991636693E-01 4.13547761328E-01 4.25296180291E-01 3.38577182282E-01 1.68669032284E-01 9.91950683107E-02 6.09388127247E-02 2.98135863207E-02 1.01712055815E-02 1.33349630182E-03 -1.59066703475E-04 -1.55306061581E-04 -1.51597362101E-04 -1.47966431128E-04 -1.44410553679E-04 -1.40929645271E-04 2.10 2.40 5D 3 2 Beta L 990 -1.90208147444E-13 -1.97476380619E-13 -2.05022347499E-13 -2.12856660843E-13 -2.20990338946E-13 -2.29434821133E-13 -2.38201983848E-13 -2.47304157360E-13 -2.56754143099E-13 -2.66565231666E-13 -2.76751221520E-13 -2.87326438389E-13 -2.98305755414E-13 -3.09704614069E-13 -3.21539045878E-13 -3.33825694961E-13 -3.46581841442E-13 -3.59825425756E-13 -3.73575073874E-13 -3.87850123507E-13 -4.02670651294E-13 -4.18057501046E-13 -4.34032313056E-13 -4.50617554535E-13 -4.67836551214E-13 -4.85713520143E-13 -5.04273603757E-13 -5.23542905232E-13 -5.43548525198E-13 -5.64318599856E-13 -5.85882340547E-13 -6.08270074834E-13 -6.31513289158E-13 -6.55644673119E-13 -6.80698165455E-13 -7.06709001766E-13 -7.33713764078E-13 -7.61750432289E-13 -7.90858437584E-13 -8.21078717892E-13 -8.52453775463E-13 -8.85027736643E-13 -9.18846413932E-13 -9.53957370418E-13 -9.90409986671E-13 -1.02825553019E-12 -1.06754722751E-12 -1.10834033905E-12 -1.15069223685E-12 -1.19466248524E-12 -1.24031292464E-12 -1.28770775850E-12 -1.33691364360E-12 -1.38799978385E-12 -1.44103802754E-12 -1.49610296844E-12 -1.55327205070E-12 -1.61262567777E-12 -1.67424732546E-12 -1.73822365937E-12 -1.80464465676E-12 -1.87360373312E-12 -1.94519787350E-12 -2.01952776896E-12 -2.09669795817E-12 -2.17681697442E-12 -2.25999749829E-12 -2.34635651609E-12 -2.43601548443E-12 -2.52910050101E-12 -2.62574248197E-12 -2.72607734602E-12 -2.83024620560E-12 -2.93839556535E-12 -3.05067752811E-12 -3.16725000890E-12 -3.28827695699E-12 -3.41392858646E-12 -3.54438161563E-12 -3.67981951558E-12 -3.82043276816E-12 -3.96641913393E-12 -4.11798393029E-12 -4.27534032020E-12 -4.43870961203E-12 -4.60832157075E-12 -4.78441474115E-12 -4.96723678326E-12 -5.15704482070E-12 -5.35410580232E-12 -5.55869687759E-12 -5.77110578643E-12 -5.99163126388E-12 -6.22058346022E-12 -6.45828437722E-12 -6.70506832097E-12 -6.96128237205E-12 -7.22728687370E-12 -7.50345593859E-12 -7.79017797498E-12 -8.08785623299E-12 -8.39690937172E-12 -8.71777204808E-12 -9.05089552809E-12 -9.39674832154E-12 -9.75581684093E-12 -1.01286060855E-11 -1.05156403516E-11 -1.09174639700E-11 -1.13346420713E-11 -1.17677613810E-11 -1.22174310444E-11 -1.26842834838E-11 -1.31689752871E-11 -1.36721881323E-11 -1.41946297452E-11 -1.47370348955E-11 -1.53001664298E-11 -1.58848163446E-11 -1.64918069003E-11 -1.71219917773E-11 -1.77762572769E-11 -1.84555235680E-11 -1.91607459805E-11 -1.98929163498E-11 -2.06530644111E-11 -2.14422592479E-11 -2.22616107955E-11 -2.31122714020E-11 -2.39954374491E-11 -2.49123510347E-11 -2.58643017194E-11 -2.68526283409E-11 -2.78787208964E-11 -2.89440224976E-11 -3.00500314004E-11 -3.11983031122E-11 -3.23904525793E-11 -3.36281564583E-11 -3.49131554742E-11 -3.62472568688E-11 -3.76323369420E-11 -3.90703436908E-11 -4.05632995493E-11 -4.21133042326E-11 -4.37225376904E-11 -4.53932631723E-11 -4.71278304114E-11 -4.89286789287E-11 -5.07983414642E-11 -5.27394475391E-11 -5.47547271535E-11 -5.68470146266E-11 -5.90192525825E-11 -6.12744960888E-11 -6.36159169532E-11 -6.60468081848E-11 -6.85705886249E-11 -7.11908077558E-11 -7.39111506923E-11 -7.67354433651E-11 -7.96676579012E-11 -8.27119182104E-11 -8.58725057856E-11 -8.91538657238E-11 -9.25606129782E-11 -9.60975388486E-11 -9.97696177199E-11 -1.03582014058E-10 -1.07540089674E-10 -1.11649411263E-10 -1.15915758237E-10 -1.20345130849E-10 -1.24943758634E-10 -1.29718109170E-10 -1.34674897174E-10 -1.39821093947E-10 -1.45163937176E-10 -1.50710941114E-10 -1.56469907151E-10 -1.62448934780E-10 -1.68656432995E-10 -1.75101132114E-10 -1.81792096055E-10 -1.88738735091E-10 -1.95950819077E-10 -2.03438491195E-10 -2.11212282217E-10 -2.19283125319E-10 -2.27662371453E-10 -2.36361805315E-10 -2.45393661918E-10 -2.54770643797E-10 -2.64505938881E-10 -2.74613239031E-10 -2.85106759303E-10 -2.96001257941E-10 -3.07312057128E-10 -3.19055064539E-10 -3.31246795713E-10 -3.43904397283E-10 -3.57045671085E-10 -3.70689099202E-10 -3.84853869953E-10 -3.99559904881E-10 -4.14827886771E-10 -4.30679288738E-10 -4.47136404429E-10 -4.64222379374E-10 -4.81961243542E-10 -5.00377945134E-10 -5.19498385670E-10 -5.39349456421E-10 -5.59959076228E-10 -5.81356230762E-10 -6.03571013301E-10 -6.26634667041E-10 -6.50579629046E-10 -6.75439575866E-10 -7.01249470897E-10 -7.28045613557E-10 -7.55865690338E-10 -7.84748827805E-10 -8.14735647632E-10 -8.45868323725E-10 -8.78190641540E-10 -9.11748059661E-10 -9.46587773740E-10 -9.82758782863E-10 -1.02031195847E-09 -1.05930011591E-09 -1.09977808870E-09 -1.14180280566E-09 -1.18543337096E-09 -1.23073114729E-09 -1.27775984211E-09 -1.32658559726E-09 -1.37727708202E-09 -1.42990558962E-09 -1.48454513759E-09 -1.54127257179E-09 -1.60016767453E-09 -1.66131327674E-09 -1.72479537450E-09 -1.79070324998E-09 -1.85912959698E-09 -1.93017065134E-09 -2.00392632622E-09 -2.08050035272E-09 -2.16000042566E-09 -2.24253835513E-09 -2.32823022369E-09 -2.41719654965E-09 -2.50956245655E-09 -2.60545784919E-09 -2.70501759624E-09 -2.80838172002E-09 -2.91569559335E-09 -3.02711014404E-09 -3.14278206717E-09 -3.26287404542E-09 -3.38755497795E-09 -3.51700021784E-09 -3.65139181879E-09 -3.79091879113E-09 -3.93577736766E-09 -4.08617127960E-09 -4.24231204319E-09 -4.40441925709E-09 -4.57272091127E-09 -4.74745370767E-09 -4.92886339306E-09 -5.11720510471E-09 -5.31274372916E-09 -5.51575427483E-09 -5.72652225873E-09 -5.94534410807E-09 -6.17252757712E-09 -6.40839218004E-09 -6.65326964031E-09 -6.90750435718E-09 -7.17145389010E-09 -7.44548946158E-09 -7.72999647928E-09 -8.02537507807E-09 -8.33204068274E-09 -8.65042459232E-09 -8.98097458662E-09 -9.32415555602E-09 -9.68045015528E-09 -1.00503594824E-08 -1.04344037832E-08 -1.08331231833E-08 -1.12470784475E-08 -1.16768517686E-08 -1.21230475861E-08 -1.25862934364E-08 -1.30672408352E-08 -1.35665661939E-08 -1.40849717712E-08 -1.46231866602E-08 -1.51819678143E-08 -1.57621011114E-08 -1.63644024595E-08 -1.69897189442E-08 -1.76389300196E-08 -1.83129487457E-08 -1.90127230723E-08 -1.97392371724E-08 -2.04935128260E-08 -2.12766108573E-08 -2.20896326270E-08 -2.29337215808E-08 -2.38100648576E-08 -2.47198949596E-08 -2.56644914850E-08 -2.66451829283E-08 -2.76633485481E-08 -2.87204203076E-08 -2.98178848878E-08 -3.09572857790E-08 -3.21402254512E-08 -3.33683676080E-08 -3.46434395264E-08 -3.59672344863E-08 -3.73416142920E-08 -3.87685118914E-08 -4.02499340941E-08 -4.17879643937E-08 -4.33847658985E-08 -4.50425843733E-08 -4.67637513981E-08 -4.85506876472E-08 -5.04059062937E-08 -5.23320165441E-08 -5.43317273076E-08 -5.64078510066E-08 -5.85633075314E-08 -6.08011283473E-08 -6.31244607580E-08 -6.55365723317E-08 -6.80408554970E-08 -7.06408323139E-08 -7.33401594274E-08 -7.61426332100E-08 -7.90521951013E-08 -8.20729371511E-08 -8.52091077745E-08 -8.84651177269E-08 -9.18455463076E-08 -9.53551477999E-08 -9.89988581578E-08 -1.02781801948E-07 -1.06709299556E-07 -1.10786874672E-07 -1.15020262054E-07 -1.19415415601E-07 -1.23978516718E-07 -1.28715983017E-07 -1.33634477336E-07 -1.38740917117E-07 -1.44042484130E-07 -1.49546634573E-07 -1.55261109562E-07 -1.61193946015E-07 -1.67353487958E-07 -1.73748398258E-07 -1.80387670807E-07 -1.87280643171E-07 -1.94437009725E-07 -2.01866835283E-07 -2.09580569255E-07 -2.17589060347E-07 -2.25903571811E-07 -2.34535797295E-07 -2.43497877279E-07 -2.52802416159E-07 -2.62462499968E-07 -2.72491714783E-07 -2.82904165830E-07 -2.93714497325E-07 -3.04937913068E-07 -3.16590197827E-07 -3.28687739535E-07 -3.41247552343E-07 -3.54287300542E-07 -3.70710394174E-07 -3.84800302384E-07 -3.96722260022E-07 -4.11877578921E-07 -4.27607041194E-07 -4.43941724903E-07 -4.60899326349E-07 -4.78503287542E-07 -4.96781814572E-07 -5.15757300725E-07 -5.35459293655E-07 -5.55913331230E-07 -5.77148167700E-07 -5.99194743795E-07 -6.22082757356E-07 -6.45848577306E-07 -6.70518245023E-07 -6.96133549465E-07 -7.22724534831E-07 -7.50333472509E-07 -7.78999523782E-07 -8.08755991290E-07 -8.39651517490E-07 -8.71730172302E-07 -9.05031188036E-07 -9.39604419856E-07 -9.75502419484E-07 -1.01276631382E-06 -1.05145951000E-06 -1.09162803080E-06 -1.13333638660E-06 -1.17662847281E-06 -1.22158387454E-06 -1.26825279679E-06 -1.31670443756E-06 -1.36700739350E-06 -1.41923300476E-06 -1.47345885382E-06 -1.52975131493E-06 -1.58819423485E-06 -1.64887410663E-06 -1.71186687578E-06 -1.77727166880E-06 -1.84517437473E-06 -1.91566970879E-06 -1.98886091843E-06 -2.06484793554E-06 -2.14373817102E-06 -2.22564179036E-06 -2.31067852892E-06 -2.39895858068E-06 -2.49061865678E-06 -2.58577839111E-06 -2.68456972444E-06 -2.78714028886E-06 -2.89362856529E-06 -3.00418701110E-06 -3.11897030608E-06 -3.23814137515E-06 -3.36186210622E-06 -3.49031072897E-06 -3.62366757046E-06 -3.76211619367E-06 -3.90586515857E-06 -4.05509838403E-06 -4.21003641339E-06 -4.37089591147E-06 -4.53789860215E-06 -4.71128451806E-06 -4.89130200095E-06 -5.07818271316E-06 -5.27221940700E-06 -5.47366424122E-06 -5.68280479957E-06 -5.89993529204E-06 -6.12537163551E-06 -6.35940650930E-06 -6.60239746242E-06 -6.85467130926E-06 -7.11657874330E-06 -7.38850159743E-06 -7.67080671020E-06 -7.96390481443E-06 -8.26820064252E-06 -8.58411558946E-06 -8.91211306913E-06 -9.25264289195E-06 -9.60617955552E-06 -9.97323183759E-06 -1.03542941152E-05 -1.07499306852E-05 -1.11606843734E-05 -1.15871263369E-05 -1.20298648294E-05 -1.24895234566E-05 -1.29667436674E-05 -1.34622011345E-05 -1.39765836120E-05 -1.45106275810E-05 -1.50650737668E-05 -1.56407097850E-05 -1.62383379187E-05 -1.68587955988E-05 -1.75029726584E-05 -1.81717541613E-05 -1.88660923920E-05 -1.95869638699E-05 -2.03353863666E-05 -2.11123955516E-05 -2.19190957680E-05 -2.27566196888E-05 -2.36261486441E-05 -2.45288970264E-05 -2.54661459641E-05 -2.64392058594E-05 -2.74494368890E-05 -2.84982779612E-05 -2.95871920183E-05 -3.07177165314E-05 -3.18914381583E-05 -3.31099997036E-05 -3.43751292641E-05 -3.56885928445E-05 -3.70522606853E-05 -3.84680055823E-05 -3.99378639184E-05 -4.14638827785E-05 -4.30481941304E-05 -4.46930554995E-05 -4.64007625210E-05 -4.81737198184E-05 -5.00144233320E-05 -5.19254572962E-05 -5.39095031388E-05 -5.59693485882E-05 -5.81079261586E-05 -6.03281732188E-05 -6.26333053533E-05 -6.50264749033E-05 -6.75110970709E-05 -7.00906546981E-05 -7.27687616814E-05 -7.55491975556E-05 -7.84358806584E-05 -8.14328313044E-05 -8.45443129436E-05 -8.77746629492E-05 -9.11284511926E-05 -9.46103849943E-05 -9.82253428521E-05 -1.01978408022E-04 -1.05874891559E-04 -1.09920210718E-04 -1.14120126219E-04 -1.18480503443E-04 -1.23007452702E-04 -1.27707375822E-04 -1.32586870482E-04 -1.37652788467E-04 -1.42912248072E-04 -1.48372677576E-04 -1.54041691580E-04 -1.59927330704E-04 -1.66037796417E-04 -1.72381737340E-04 -1.78968047567E-04 -1.85805981374E-04 -1.92905165042E-04 -2.00275572930E-04 -2.07927577155E-04 -2.15871891104E-04 -2.24119736549E-04 -2.32682672634E-04 -2.41572735688E-04 -2.50802452296E-04 -2.60384767191E-04 -2.70333142406E-04 -2.80661618969E-04 -2.91384484146E-04 -3.02518766061E-04 -3.14061158849E-04 -3.26211837383E-04 -3.37201154484E-04 -3.55430413965E-04 -3.56649988175E-04 -3.88285853964E-04 -3.86569053448E-04 -4.08486342848E-04 -4.31171220270E-04 -4.33561396590E-04 -4.63353482554E-04 -4.63882078409E-04 -5.07058280061E-04 -4.96009068112E-04 -5.39287036902E-04 -5.52457335279E-04 -5.71835311136E-04 -5.83496989598E-04 -6.36674337075E-04 -6.23992846854E-04 -6.64910317141E-04 -6.87799979811E-04 -7.29935865921E-04 -7.40172815584E-04 -7.69184338645E-04 -8.02948462239E-04 -8.31557221988E-04 -8.64859582744E-04 -8.91915202072E-04 -9.38830202475E-04 -9.68881741398E-04 -9.94830492411E-04 -1.04734602295E-03 -1.08821204031E-03 -1.11789876515E-03 -1.16629106785E-03 -1.21193190814E-03 -1.25484653336E-03 -1.31019859420E-03 -1.34916109116E-03 -1.40536607337E-03 -1.48757215081E-03 -1.47151126005E-03 -1.61827410348E-03 -1.59517365497E-03 -1.72253710386E-03 -1.75422635497E-03 -1.83647366620E-03 -1.88256143778E-03 -1.99060404487E-03 -2.03783617237E-03 -2.12458111704E-03 -2.19856229862E-03 -2.31278841182E-03 -2.36902728053E-03 -2.44975749870E-03 -2.58124562340E-03 -2.66062074413E-03 -2.75970826946E-03 -2.85786581139E-03 -2.99349136058E-03 -3.08621938147E-03 -3.20368464391E-03 -3.34226045820E-03 -3.43293597324E-03 -3.62172392861E-03 -3.70487454792E-03 -3.89749612626E-03 -3.99980897279E-03 -4.17229392932E-03 -4.33878966187E-03 -4.48786405092E-03 -4.67014411617E-03 -4.84255824530E-03 -5.04288289637E-03 -5.21379681740E-03 -5.42278865300E-03 -5.63359147025E-03 -5.84058375845E-03 -6.07037648990E-03 -6.29909926212E-03 -6.53608339551E-03 -6.78965225767E-03 -7.05147003072E-03 -7.31281063070E-03 -7.60654006255E-03 -7.88293624822E-03 -8.17697183715E-03 -8.51070628373E-03 -8.81647973205E-03 -9.16761887445E-03 -9.50589697750E-03 -9.87396909761E-03 -1.02538811273E-02 -1.06372981176E-02 -1.10458360538E-02 -1.14725433918E-02 -1.19027584344E-02 -1.23572187518E-02 -1.28372989883E-02 -1.33166925700E-02 -1.38287671462E-02 -1.43580280568E-02 -1.49024043930E-02 -1.54709552710E-02 -1.60661246448E-02 -1.66707651492E-02 -1.73097189094E-02 -1.79718709741E-02 -1.86544803953E-02 -1.93649167707E-02 -2.01075600974E-02 -2.08683122059E-02 -2.16680446526E-02 -2.24884471915E-02 -2.33518858590E-02 -2.42392773754E-02 -2.51606751257E-02 -2.61226064824E-02 -2.71145274507E-02 -2.81502219363E-02 -2.92214081337E-02 -3.03338044145E-02 -3.14904631504E-02 -3.26881174488E-02 -3.39350962967E-02 -3.52233051574E-02 -3.65682346289E-02 -3.79592971880E-02 -3.94038963736E-02 -4.09022630213E-02 -4.24614554656E-02 -4.40754787767E-02 -4.57532903937E-02 -4.74922407798E-02 -4.93019870491E-02 -5.11747948056E-02 -5.31219620962E-02 -5.51426256606E-02 -5.72375990481E-02 -5.94154259174E-02 -6.16736635956E-02 -6.40163717415E-02 -6.64512967346E-02 -6.89738124779E-02 -7.15963921347E-02 -7.43157505217E-02 -7.71370654726E-02 -8.00678065480E-02 -8.31074115542E-02 -8.62617626513E-02 -8.95368948955E-02 -9.29341507344E-02 -9.64611286736E-02 -1.00119509527E-01 -1.03917546229E-01 -1.07858503792E-01 -1.11947473656E-01 -1.16191448627E-01 -1.20594922938E-01 -1.25164878729E-01 -1.29905547298E-01 -1.34826721468E-01 -1.39931859802E-01 -1.45229155937E-01 -1.50725985752E-01 -1.56429609028E-01 -1.62347491169E-01 -1.68486833013E-01 -1.74857932711E-01 -1.81467472681E-01 -1.88324858298E-01 -1.95439953228E-01 -2.02820808432E-01 -2.10479161716E-01 -2.18422920058E-01 -2.26665408367E-01 -2.35215250002E-01 -2.44084618117E-01 -2.53285356920E-01 -2.62830174925E-01 -2.72730274990E-01 -2.82999951702E-01 -2.93652236019E-01 -3.04701454186E-01 -3.16161281251E-01 -3.28047647131E-01 -3.40375858757E-01 -3.53161483802E-01 -3.66421904472E-01 -3.80173586171E-01 -3.94435065839E-01 -4.09224579601E-01 -4.24560651128E-01 -4.40463729938E-01 -4.56954269399E-01 -4.74052730513E-01 -4.91781478224E-01 -5.10163133907E-01 -5.29220730759E-01 -5.48978768780E-01 -5.69462074870E-01 -5.90696422273E-01 -6.12708777025E-01 -6.35526195502E-01 -6.59177747602E-01 -6.83692498284E-01 -7.09101059237E-01 -7.35434806633E-01 -7.62726109427E-01 -7.91008430647E-01 -8.20316595222E-01 -8.50686209428E-01 -8.82153821031E-01 -9.14757920186E-01 -9.48537423523E-01 -9.83532870679E-01 -1.01978601013E+00 -1.05733976556E+00 -1.09623866375E+00 -1.13652831067E+00 -1.17825563652E+00 -1.22146956121E+00 -1.26621964889E+00 -1.31255765137E+00 -1.36053635018E+00 -1.41021027107E+00 -1.46163567046E+00 -1.51487000673E+00 -1.56997274015E+00 -1.62700478042E+00 -1.68602883198E+00 -1.74710916293E+00 -1.81031198448E+00 -1.87570503879E+00 -1.94335795254E+00 -2.01334224472E+00 -2.08573097206E+00 -2.16059927633E+00 -2.23802398467E+00 -2.31808374586E+00 -2.40085924896E+00 -2.48643273744E+00 -2.57488847099E+00 -2.66631258805E+00 -2.76079289089E+00 -2.85841907888E+00 -2.95928262441E+00 -3.06347674551E+00 -3.17109632742E+00 -3.28223808555E+00 -3.39700005839E+00 -3.51548220731E+00 -3.63778568268E+00 -3.76401328895E+00 -3.89426896332E+00 -4.02865803345E+00 -4.16728682644E+00 -4.31026281954E+00 -4.45769415679E+00 -4.60968990037E+00 -4.76635949639E+00 -4.92781289102E+00 -5.09416009777E+00 -5.26551114857E+00 -5.44197577271E+00 -5.62366314229E+00 -5.81068163249E+00 -6.00313849342E+00 -6.20113951257E+00 -6.40478869570E+00 -6.61418786466E+00 -6.82943624460E+00 -7.05063002931E+00 -7.27786196343E+00 -7.51122072238E+00 -7.75079049750E+00 -7.99665036021E+00 -8.24887363524E+00 -8.50752729290E+00 -8.77267123703E+00 -9.04435754979E+00 -9.32262973478E+00 -9.60752187719E+00 -9.89905777438E+00 -1.01972499948E+01 -1.05020989442E+01 -1.08135917599E+01 -1.11317013033E+01 -1.14563849962E+01 -1.17875836044E+01 -1.21252200226E+01 -1.24691979384E+01 -1.28194004886E+01 -1.31756888179E+01 -1.35379006157E+01 -1.39058485504E+01 -1.42793187105E+01 -1.46580689251E+01 -1.50418270735E+01 -1.54302893361E+01 -1.58231183904E+01 -1.62199415650E+01 -1.66203489645E+01 -1.70238915530E+01 -1.74300792130E+01 -1.78383787830E+01 -1.82482120897E+01 -1.86589539820E+01 -1.90699303555E+01 -1.94804162349E+01 -1.98896338595E+01 -2.02967508435E+01 -2.07008783962E+01 -2.11010696441E+01 -2.14963180432E+01 -2.18855559570E+01 -2.22676533604E+01 -2.26414167635E+01 -2.30055883327E+01 -2.33588452750E+01 -2.36997995088E+01 -2.40269976473E+01 -2.43389213700E+01 -2.46339881780E+01 -2.49105526262E+01 -2.51669080361E+01 -2.54012887822E+01 -2.56118731644E+01 -2.57967869589E+01 -2.59541076641E+01 -2.60818695426E+01 -2.61780694749E+01 -2.62406737158E+01 -2.62676255930E+01 -2.62568542183E+01 -2.62062842462E+01 -2.61138467654E+01 -2.59774913238E+01 -2.57951991893E+01 -2.55649978154E+01 -2.52849766019E+01 -2.49533039230E+01 -2.45682454442E+01 -2.41281837275E+01 -2.36316390810E+01 -2.30772916297E+01 -2.24640045166E+01 -2.17908481801E+01 -2.10571255621E+01 -2.02623981249E+01 -1.94065124923E+01 -1.84896275187E+01 -1.75122415362E+01 -1.64752195032E+01 -1.53798197485E+01 -1.42277199296E+01 -1.30210418437E+01 -1.17623746179E+01 -1.04547958366E+01 -9.10189007323E+00 -7.70776429763E+00 -6.27705956787E+00 -4.81495844348E+00 -3.32718746160E+00 -1.82001411126E+00 -3.00237642667E-01 1.22482685486E+00 2.74737169289E+00 4.25912767765E+00 5.75140351678E+00 7.21513393711E+00 8.64093684700E+00 1.00191796967E+01 1.13400551600E+01 1.25936660446E+01 1.37701192239E+01 1.48596282290E+01 1.58526239316E+01 1.67398726312E+01 1.75126006438E+01 1.81626243514E+01 1.86824845449E+01 1.90655836989E+01 1.93063248127E+01 1.94002502804E+01 1.93441792897E+01 1.91363422064E+01 1.87765104446E+01 1.82661203956E+01 1.76083900684E+01 1.68084272089E+01 1.58733277889E+01 1.48122638345E+01 1.36365596737E+01 1.23597556925E+01 1.09976586646E+01 9.56837766357E+00 8.09234435000E+00 6.59231630573E+00 5.09336179442E+00 3.62282423810E+00 2.21026468296E+00 8.87380837468E-01 -3.12097873444E-01 -1.35253818217E+00 -2.19655029179E+00 -2.80514395058E+00 -3.13790536588E+00 -3.15291705846E+00 -2.80886386147E+00 -2.04520378109E+00 -9.74191848956E-01 -5.75062695722E-01 -3.54741525324E-01 -1.74573270732E-01 -6.03646929523E-02 -8.76409620115E-03 4.78744676293E-08 3.14209160257E-06 5.72038066728E-06 7.95298869306E-06 9.84567391332E-06 1.14205425145E-05 2.10 2.40 5D 4 2 Beta L 990 1.54072382518E-13 1.59959795950E-13 1.66072179206E-13 1.72418128833E-13 1.79006569868E-13 1.85846768394E-13 1.92948344565E-13 2.00321286144E-13 2.07975962546E-13 2.15923139420E-13 2.24173993793E-13 2.32740129790E-13 2.41633594950E-13 2.50866897175E-13 2.60453022317E-13 2.70405452446E-13 2.80738184805E-13 2.91465751504E-13 3.02603239949E-13 3.14166314071E-13 3.26171236347E-13 3.38634890679E-13 3.51574806133E-13 3.65009181599E-13 3.78956911380E-13 3.93437611772E-13 4.08471648644E-13 4.24080166090E-13 4.40285116159E-13 4.57109289732E-13 4.74576348577E-13 4.92710858623E-13 5.11538324515E-13 5.31085225478E-13 5.51379052564E-13 5.72448347311E-13 5.94322741887E-13 6.17033000765E-13 6.40611063989E-13 6.65090092096E-13 6.90504512753E-13 7.16890069179E-13 7.44283870409E-13 7.72724443492E-13 8.02251787671E-13 8.32907430639E-13 8.64734486947E-13 8.97777718638E-13 9.32083598201E-13 9.67700373934E-13 1.00467813780E-12 1.04306889587E-12 1.08292664147E-12 1.12430743113E-12 1.16726946341E-12 1.21187316073E-12 1.25818125441E-12 1.30625887283E-12 1.35617363307E-12 1.40799573597E-12 1.46179806492E-12 1.51765628831E-12 1.57564896597E-12 1.63585765966E-12 1.69836704777E-12 1.76326504444E-12 1.83064292317E-12 1.90059544520E-12 1.97322099280E-12 2.04862170762E-12 2.12690363432E-12 2.20817686979E-12 2.29255571789E-12 2.38015885028E-12 2.47110947331E-12 2.56553550129E-12 2.66356973637E-12 2.76535005536E-12 2.87101960359E-12 2.98072699630E-12 3.09462652757E-12 3.21287838740E-12 3.33564888696E-12 3.46311069248E-12 3.59544306814E-12 3.73283212816E-12 3.87547109853E-12 4.02356058882E-12 4.17730887429E-12 4.33693218878E-12 4.50265502891E-12 4.67471046971E-12 4.85334049252E-12 5.03879632523E-12 5.23133879568E-12 5.43123869845E-12 5.63877717572E-12 5.85424611268E-12 6.07794854802E-12 6.31019910017E-12 6.55132440974E-12 6.80166359893E-12 7.06156874848E-12 7.33140539285E-12 7.61155303429E-12 7.90240567657E-12 8.20437237918E-12 8.51787783253E-12 8.84336295536E-12 9.18128551474E-12 9.53212076997E-12 9.89636214095E-12 1.02745219021E-11 1.06671319030E-11 1.10747443161E-11 1.14979324135E-11 1.19372913732E-11 1.23934391162E-11 1.28670171755E-11 1.33586915981E-11 1.38691538823E-11 1.43991219499E-11 1.49493411557E-11 1.55205853362E-11 1.61136578976E-11 1.67293929460E-11 1.73686564602E-11 1.80323475100E-11 1.87213995203E-11 1.94367815839E-11 2.01794998248E-11 2.09505988130E-11 2.17511630335E-11 2.25823184116E-11 2.34452338965E-11 2.43411231054E-11 2.52712460302E-11 2.62369108094E-11 2.72394755683E-11 2.82803503289E-11 2.93609989927E-11 3.04829414001E-11 3.16477554674E-11 3.28570794065E-11 3.41126140283E-11 3.54161251355E-11 3.67694460052E-11 3.81744799680E-11 3.96332030844E-11 4.11476669243E-11 4.27200014520E-11 4.43524180220E-11 4.60472124891E-11 4.78067684374E-11 4.96335605324E-11 5.15301580016E-11 5.34992282476E-11 5.55435406001E-11 5.76659702102E-11 5.98695020942E-11 6.21572353320E-11 6.45323874256E-11 6.69982988239E-11 6.95584376213E-11 7.22164044349E-11 7.49759374684E-11 7.78409177700E-11 8.08153746904E-11 8.39034915499E-11 8.71096115216E-11 9.04382437401E-11 9.38940696431E-11 9.74819495552E-11 1.01206929524E-10 1.05074248416E-10 1.09089345286E-10 1.13257867026E-10 1.17585676306E-10 1.22078859821E-10 1.26743736852E-10 1.31586868149E-10 1.36615065166E-10 1.41835399631E-10 1.47255213502E-10 1.52882129284E-10 1.58724060755E-10 1.64789224094E-10 1.71086149437E-10 1.77623692871E-10 1.84411048896E-10 1.91457763349E-10 1.98773746833E-10 2.06369288656E-10 2.14255071301E-10 2.22442185448E-10 2.30942145576E-10 2.39766906155E-10 2.48928878459E-10 2.58440948020E-10 2.68316492755E-10 2.78569401776E-10 2.89214094924E-10 3.00265543056E-10 3.11739289089E-10 3.23651469871E-10 3.36018838869E-10 3.48858789734E-10 3.62189380762E-10 3.76029360293E-10 3.90398193080E-10 4.05316087662E-10 4.20804024785E-10 4.36883786915E-10 4.53577988865E-10 4.70910109610E-10 4.88904525299E-10 5.07586543544E-10 5.26982439014E-10 5.47119490381E-10 5.68026018692E-10 5.89731427199E-10 6.12266242708E-10 6.35662158518E-10 6.59952078989E-10 6.85170165826E-10 7.11351886119E-10 7.38534062225E-10 7.66754923560E-10 7.96054160359E-10 8.26472979503E-10 8.58054162468E-10 8.90842125497E-10 9.24882982066E-10 9.60224607738E-10 9.96916707498E-10 1.03501088566E-09 1.07456071843E-09 1.11562182929E-09 1.15825196718E-09 1.20251108777E-09 1.24846143773E-09 1.29616764232E-09 1.34569679624E-09 1.39711855803E-09 1.45050524801E-09 1.50593195002E-09 1.56347661699E-09 1.62322018058E-09 1.68524666502E-09 1.74964330529E-09 1.81650066976E-09 1.88591278762E-09 1.95797728110E-09 2.03279550277E-09 2.11047267807E-09 2.19111805333E-09 2.27484504940E-09 2.36177142117E-09 2.45201942315E-09 2.54571598149E-09 2.64299287239E-09 2.74398690751E-09 2.84884012636E-09 2.95769999604E-09 3.07071961869E-09 3.18805794677E-09 3.30988000663E-09 3.43635713062E-09 3.56766719802E-09 3.70399488525E-09 3.84553192559E-09 3.99247737881E-09 4.14503791116E-09 4.30342808602E-09 4.46787066568E-09 4.63859692459E-09 4.81584697468E-09 4.99987010304E-09 5.19092512250E-09 5.38928073566E-09 5.59521591277E-09 5.80902028410E-09 6.03099454725E-09 6.26145089012E-09 6.50071342988E-09 6.74911866889E-09 7.00701596793E-09 7.27476803757E-09 7.55275144825E-09 7.84135715993E-09 8.14099107192E-09 8.45207459376E-09 8.77504523790E-09 9.11035723498E-09 9.45848217274E-09 9.81990965920E-09 1.01951480113E-08 1.05847249697E-08 1.09891884412E-08 1.14091072693E-08 1.18450720337E-08 1.22976958819E-08 1.27676153907E-08 1.32554914616E-08 1.37620102509E-08 1.42878841339E-08 1.48338527073E-08 1.54006838294E-08 1.59891746998E-08 1.66001529806E-08 1.72344779607E-08 1.78930417640E-08 1.85767706042E-08 1.92866260876E-08 2.00236065653E-08 2.07887485375E-08 2.15831281109E-08 2.24078625127E-08 2.32641116613E-08 2.41530797981E-08 2.50760171807E-08 2.60342218419E-08 2.70290414146E-08 2.80618750275E-08 2.91341752730E-08 3.02474502496E-08 3.14032656836E-08 3.26032471306E-08 3.38490822618E-08 3.51425232381E-08 3.64853891736E-08 3.78795686944E-08 3.93270225949E-08 4.08297865952E-08 4.23899742044E-08 4.40097796930E-08 4.56914811790E-08 4.74374438316E-08 4.92501231980E-08 5.11320686567E-08 5.30859270030E-08 5.51144461714E-08 5.72204791008E-08 5.94069877461E-08 6.16770472446E-08 6.40338502408E-08 6.64807113764E-08 6.90210719520E-08 7.16585047673E-08 7.43967191458E-08 7.72395661514E-08 8.01910440050E-08 8.32553037073E-08 8.64366548772E-08 8.97395718124E-08 9.31686997825E-08 9.67288615622E-08 1.00425064214E-07 1.04262506129E-07 1.08246584342E-07 1.12382902116E-07 1.16677276828E-07 1.21135748146E-07 1.25764586529E-07 1.30570302041E-07 1.35559653507E-07 1.40739658022E-07 1.46117600818E-07 1.51701045510E-07 1.57497844732E-07 1.63516151184E-07 1.69764429099E-07 1.76251466140E-07 1.82986385769E-07 1.89978660070E-07 1.97238123076E-07 2.04774984596E-07 2.12599844579E-07 2.20723708015E-07 2.29158000420E-07 2.37914583898E-07 2.47005773831E-07 2.56444356194E-07 2.66243605538E-07 2.76417303663E-07 2.86979758999E-07 3.00209825143E-07 3.11622056641E-07 3.21356512404E-07 3.33632617905E-07 3.46373900704E-07 3.59605328183E-07 3.73341358565E-07 3.87600997802E-07 4.02407001486E-07 4.17777571235E-07 4.33736607264E-07 4.50304829974E-07 4.67505533193E-07 4.85363758353E-07 5.03903574436E-07 5.23154351607E-07 5.43137379838E-07 5.63886313349E-07 5.85425647217E-07 6.07789476518E-07 6.31009549848E-07 6.55113000144E-07 6.80139065296E-07 7.06123428474E-07 7.33097972632E-07 7.61103090880E-07 7.90181178555E-07 8.20365819784E-07 8.51708099808E-07 8.84245458462E-07 9.18030028324E-07 9.53097683332E-07 9.89512439620E-07 1.02731528922E-06 1.06656216734E-06 1.10730866468E-06 1.14961254690E-06 1.19353651673E-06 1.23913465481E-06 1.28647467790E-06 1.33562660452E-06 1.38665217337E-06 1.43963138958E-06 1.49463401362E-06 1.55173673599E-06 1.61102314548E-06 1.67257422359E-06 1.73647698334E-06 1.80282066648E-06 1.87170211833E-06 1.94321091982E-06 2.01745740824E-06 2.09453877122E-06 2.17456192832E-06 2.25764618415E-06 2.34390395341E-06 2.43345859709E-06 2.52643542572E-06 2.62296643467E-06 2.72318279749E-06 2.82722889346E-06 2.93525073154E-06 3.04739708961E-06 3.16383662400E-06 3.28471867270E-06 3.41022170828E-06 3.54052121588E-06 3.67579691502E-06 3.81624311872E-06 3.96206081969E-06 4.11343831680E-06 4.27061190692E-06 4.43378639176E-06 4.60319462937E-06 4.77907486643E-06 4.96168283479E-06 5.15125614436E-06 5.34808373848E-06 5.55243073272E-06 5.76458123010E-06 5.98484425253E-06 6.21351736266E-06 6.45093279794E-06 6.69741873047E-06 6.95331651776E-06 7.21900119578E-06 7.49483732042E-06 7.78120934006E-06 8.07852919806E-06 8.38719774123E-06 8.70767146948E-06 9.04039038831E-06 9.38581727002E-06 9.74444470036E-06 1.01167776137E-05 1.05033359010E-05 1.09046666647E-05 1.13213272692E-05 1.17539139069E-05 1.22030268260E-05 1.26693039181E-05 1.31533950994E-05 1.36559788780E-05 1.41777755844E-05 1.47195025484E-05 1.52819310516E-05 1.58658519372E-05 1.64720895544E-05 1.71014832968E-05 1.77549273130E-05 1.84333392430E-05 1.91376758449E-05 1.98689209848E-05 2.06281122232E-05 2.14163109922E-05 2.22346195259E-05 2.30842027659E-05 2.39662460398E-05 2.48819946433E-05 2.58327337199E-05 2.68197943744E-05 2.78445759797E-05 2.89085092431E-05 3.00131086905E-05 3.11598922907E-05 3.23505085508E-05 3.35866161147E-05 3.48699422488E-05 3.62023148952E-05 3.75855938736E-05 3.90217270850E-05 4.05127361472E-05 4.20607144103E-05 4.36678341426E-05 4.53363533739E-05 4.70686467481E-05 4.88670953401E-05 5.07343013030E-05 5.26728206918E-05 5.46854181988E-05 5.67749157124E-05 5.89442406418E-05 6.11964542427E-05 6.35347302863E-05 6.59623260257E-05 6.84826941952E-05 7.10993486818E-05 7.38159906751E-05 7.66364334600E-05 7.95646289802E-05 8.26046951048E-05 8.57609328002E-05 8.90377318501E-05 9.24397566869E-05 9.59717592866E-05 9.96386899977E-05 1.03445733314E-04 1.07398233741E-04 1.11501741745E-04 1.15762023269E-04 1.20185094750E-04 1.24777125742E-04 1.29544627385E-04 1.34494245305E-04 1.39632983134E-04 1.44968046526E-04 1.50506931420E-04 1.56257435156E-04 1.62227637443E-04 1.68425939469E-04 1.74861020877E-04 1.81541969944E-04 1.88478150886E-04 1.95679313666E-04 2.03155603951E-04 2.10917508680E-04 2.18975932390E-04 2.27342247199E-04 2.36028032309E-04 2.45047031234E-04 2.54397046058E-04 2.64235570545E-04 2.73174338296E-04 2.87806538156E-04 2.89103246440E-04 3.14281475329E-04 3.13300379092E-04 3.30879597652E-04 3.49075947218E-04 3.51359011536E-04 3.75154322198E-04 3.76049640412E-04 4.10328333048E-04 4.02200544381E-04 4.36616685540E-04 4.47441582011E-04 4.63219759231E-04 4.72942219470E-04 5.15180993612E-04 5.05905171269E-04 5.38560056681E-04 5.57230209817E-04 5.90882470476E-04 5.99667828914E-04 6.23137521401E-04 6.50397543641E-04 6.73583315972E-04 7.00558431336E-04 7.22615416280E-04 7.60285019430E-04 7.84768514983E-04 8.06090192102E-04 8.48254606061E-04 8.81295814590E-04 9.05704175174E-04 9.44719142084E-04 9.81691425616E-04 1.01651852021E-03 1.06117932517E-03 1.09300900146E-03 1.13841410313E-03 1.20431127194E-03 1.19309867962E-03 1.30973192114E-03 1.29314357583E-03 1.39466843107E-03 1.42114458665E-03 1.48743363159E-03 1.52534244982E-03 1.61195664344E-03 1.65093090493E-03 1.72100705191E-03 1.78108318676E-03 1.87283879705E-03 1.91922367361E-03 1.98490423878E-03 2.09039000715E-03 2.15518183619E-03 2.23553232785E-03 2.31522418322E-03 2.42442135754E-03 2.50005030735E-03 2.59523825103E-03 2.70707246457E-03 2.78148299850E-03 2.93289406208E-03 3.00170703253E-03 3.15638146563E-03 3.24047930309E-03 3.37968800144E-03 3.51436751429E-03 3.63554610393E-03 3.78294527145E-03 3.92275701480E-03 4.08458993278E-03 4.22363866962E-03 4.39265102257E-03 4.56333901453E-03 4.73120210651E-03 4.91715559715E-03 5.10253025213E-03 5.29460427335E-03 5.49988331597E-03 5.71188781716E-03 5.92381790304E-03 6.16135089690E-03 6.38562099902E-03 6.62398874179E-03 6.89375765605E-03 7.14195891970E-03 7.42601552798E-03 7.70034207086E-03 7.99836404706E-03 8.30602482260E-03 8.61684052761E-03 8.94769461240E-03 9.29322767934E-03 9.64192946533E-03 1.00100648919E-02 1.03987224719E-02 1.07873494940E-02 1.12020643626E-02 1.16307370293E-02 1.20718261786E-02 1.25323865209E-02 1.30143793528E-02 1.35044069450E-02 1.40219232856E-02 1.45582689484E-02 1.51113031879E-02 1.56868490862E-02 1.62883344955E-02 1.69047676359E-02 1.75525135351E-02 1.82172645655E-02 1.89165650740E-02 1.96355056353E-02 2.03819991632E-02 2.11611740020E-02 2.19648282761E-02 2.28037837023E-02 2.36715921468E-02 2.45727837471E-02 2.55097761969E-02 2.64800638171E-02 2.74902108182E-02 2.85339286324E-02 2.96233918887E-02 3.07503626882E-02 3.19206897222E-02 3.31346162411E-02 3.43977092867E-02 3.57053505041E-02 3.70646035920E-02 3.84734655804E-02 3.99395502437E-02 4.14568913129E-02 4.30343826745E-02 4.46714392531E-02 4.63687648115E-02 4.81331349507E-02 4.99627092299E-02 5.18607663840E-02 5.38334415789E-02 5.58772245440E-02 5.80019607758E-02 6.02051856968E-02 6.24910520755E-02 6.48655182989E-02 6.73282505529E-02 6.98839728943E-02 7.25375271274E-02 7.52900897316E-02 7.81477357260E-02 8.11119164899E-02 8.41892316680E-02 8.73823758248E-02 9.06954926539E-02 9.41342039579E-02 9.77021903159E-02 1.01405085729E-01 1.05246375690E-01 1.09233899994E-01 1.13370560185E-01 1.17662957747E-01 1.22117069081E-01 1.26738782981E-01 1.31534161397E-01 1.36509063876E-01 1.41671780858E-01 1.47027788259E-01 1.52584695246E-01 1.58350481501E-01 1.64331718883E-01 1.70537873228E-01 1.76975422887E-01 1.83655096973E-01 1.90583956751E-01 1.97771852786E-01 2.05228390654E-01 2.12963863129E-01 2.20987399619E-01 2.29310561453E-01 2.37943934183E-01 2.46899131792E-01 2.56187273864E-01 2.65821260256E-01 2.75813515794E-01 2.86176691630E-01 2.96924869706E-01 3.08071437522E-01 3.19631416217E-01 3.31619616241E-01 3.44051088550E-01 3.56942412086E-01 3.70310190937E-01 3.84171055194E-01 3.98543149097E-01 4.13444837754E-01 4.28894836173E-01 4.44913028198E-01 4.61519582198E-01 4.78735431458E-01 4.96582470810E-01 5.15082694082E-01 5.34259699580E-01 5.54137112585E-01 5.74739799107E-01 5.96093256441E-01 6.18223791230E-01 6.41158601639E-01 6.64925986446E-01 6.89554892054E-01 7.15075041003E-01 7.41517713538E-01 7.68914564120E-01 7.97298559873E-01 8.26703655590E-01 8.57164770862E-01 8.88718124836E-01 9.21400829085E-01 9.55251078755E-01 9.90308677309E-01 1.02661398312E+00 1.06420911959E+00 1.10313707137E+00 1.14344224310E+00 1.18517045284E+00 1.22836851813E+00 1.27308488481E+00 1.31936919567E+00 1.36727256313E+00 1.41684738988E+00 1.46814766729E+00 1.52122865547E+00 1.57614716113E+00 1.63296154621E+00 1.69173145154E+00 1.75251822802E+00 1.81538462455E+00 1.88039489821E+00 1.94761498571E+00 2.01711212615E+00 2.08895522411E+00 2.16321474375E+00 2.23996254312E+00 2.31927205781E+00 2.40121820666E+00 2.48587737152E+00 2.57332733783E+00 2.66364742427E+00 2.75691808716E+00 2.85322139189E+00 2.95264044002E+00 3.05525973458E+00 3.16116477402E+00 3.27044225447E+00 3.38317976559E+00 3.49946590904E+00 3.61938992141E+00 3.74304187151E+00 3.87051224285E+00 4.00189202485E+00 4.13727237438E+00 4.27674457715E+00 4.42039979625E+00 4.56832887202E+00 4.72062213370E+00 4.87736914069E+00 5.03865841739E+00 5.20457720056E+00 5.37521112238E+00 5.55064388422E+00 5.73095691271E+00 5.91622902879E+00 6.10653595754E+00 6.30194999808E+00 6.50253951993E+00 6.70836846552E+00 6.91949586700E+00 7.13597528050E+00 7.35785418556E+00 7.58517338259E+00 7.81796632402E+00 8.05625842153E+00 8.30006629582E+00 8.54939703088E+00 8.80424729259E+00 9.06460252248E+00 9.33043600806E+00 9.60170791032E+00 9.87836429041E+00 1.01603360403E+01 1.04475378054E+01 1.07398668289E+01 1.10372017771E+01 1.13394014824E+01 1.16463036894E+01 1.19577237044E+01 1.22734530344E+01 1.25932579764E+01 1.29168781634E+01 1.32440250726E+01 1.35743805100E+01 1.39075950582E+01 1.42432865042E+01 1.45810382448E+01 1.49203976880E+01 1.52608746500E+01 1.56019397437E+01 1.59430228084E+01 1.62835113397E+01 1.66227489740E+01 1.69600340176E+01 1.72946180529E+01 1.76257046117E+01 1.79524479758E+01 1.82739520740E+01 1.85892695486E+01 1.88974009747E+01 1.91972942831E+01 1.94878444066E+01 1.97678931704E+01 2.00362294847E+01 2.02915898389E+01 2.05326591691E+01 2.07580721036E+01 2.09664146587E+01 2.11562263976E+01 2.13260031228E+01 2.14742001189E+01 2.15992360236E+01 2.16994973423E+01 2.17733436777E+01 2.18191137075E+01 2.18351319665E+01 2.18197164616E+01 2.17711871902E+01 2.16878755620E+01 2.15681348084E+01 2.14103513558E+01 2.12129572363E+01 2.09744435172E+01 2.06933747664E+01 2.03684045571E+01 1.99982919802E+01 1.95819191466E+01 1.91183096115E+01 1.86066476817E+01 1.80462984917E+01 1.74368287560E+01 1.67780280546E+01 1.60699304991E+01 1.53128365838E+01 1.45073350065E+01 1.36543242186E+01 1.27550334048E+01 1.18110426073E+01 1.08243016236E+01 9.79714732480E+00 8.73231897573E+00 7.63297113624E+00 6.50268367467E+00 5.34546844466E+00 4.16577210115E+00 2.96847460297E+00 1.75888287183E+00 5.42719151570E-01 -6.73896405025E-01 -1.88446935579E+00 -3.08216117011E+00 -4.25982633848E+00 -5.41005666815E+00 -6.52523290106E+00 -7.59758376645E+00 -8.61925241028E+00 -9.58237005313E+00 -1.04791366058E+01 -1.13019078059E+01 -1.20432883448E+01 -1.26962302818E+01 -1.32541359291E+01 -1.37109642892E+01 -1.40613399689E+01 -1.43006634851E+01 -1.44252217392E+01 -1.44322974600E+01 -1.43202763766E+01 -1.40887509127E+01 -1.37386192461E+01 -1.32721786390E+01 -1.26932120291E+01 -1.20070669756E+01 -1.12207261080E+01 -1.03428683257E+01 -9.38392000225E+00 -8.35609544040E+00 -7.27342578965E+00 -6.15177547762E+00 -5.00884512701E+00 -3.86415971051E+00 -2.73904064004E+00 -1.65656048347E+00 -6.41479253962E-01 2.79838103609E-01 1.07952214111E+00 1.72831445918E+00 2.19568998283E+00 2.44999526976E+00 2.45838631086E+00 2.18846841010E+00 1.59285262515E+00 7.58699518057E-01 4.48046185353E-01 2.76491643578E-01 1.36114356307E-01 4.70802353832E-02 6.83455764305E-03 -3.49346663795E-06 -5.70110159848E-06 -7.51700062631E-06 -9.07330291704E-06 -1.03740509153E-05 -1.14360297139E-05 2.10 2.40 5D 5 1 Beta L 1017 1.26759593980E-09 1.29968528379E-09 1.33258697339E-09 1.36632157322E-09 1.40091016852E-09 1.43637437828E-09 1.47273636878E-09 1.51001886746E-09 1.54824517708E-09 1.58743919033E-09 1.62762540476E-09 1.66882893805E-09 1.71107554374E-09 1.75439162736E-09 1.79880426285E-09 1.84434120956E-09 1.89103092956E-09 1.93890260545E-09 1.98798615859E-09 2.03831226779E-09 2.08991238851E-09 2.14281877251E-09 2.19706448799E-09 2.25268344030E-09 2.30971039308E-09 2.36818099006E-09 2.42813177724E-09 2.48960022582E-09 2.55262475558E-09 2.61724475892E-09 2.68350062542E-09 2.75143376717E-09 2.82108664460E-09 2.89250279300E-09 2.96572684982E-09 3.04080458245E-09 3.11778291693E-09 3.19670996723E-09 3.27763506532E-09 3.36060879202E-09 3.44568300862E-09 3.53291088925E-09 3.62234695420E-09 3.71404710391E-09 3.80806865396E-09 3.90447037088E-09 4.00331250889E-09 4.10465684753E-09 4.20856673031E-09 4.31510710431E-09 4.42434456070E-09 4.53634737647E-09 4.65118555703E-09 4.76893087996E-09 4.88965693993E-09 5.01343919465E-09 5.14035501208E-09 5.27048371871E-09 5.40390664924E-09 5.54070719733E-09 5.68097086779E-09 5.82478532996E-09 5.97224047257E-09 6.12342845989E-09 6.27844378933E-09 6.43738335051E-09 6.60034648584E-09 6.76743505258E-09 6.93875348652E-09 7.11440886726E-09 7.29451098513E-09 7.47917240982E-09 7.66850856073E-09 7.86263777912E-09 8.06168140206E-09 8.26576383830E-09 8.47501264601E-09 8.68955861250E-09 8.90953583598E-09 9.13508180939E-09 9.36633750629E-09 9.60344746903E-09 9.84655989904E-09 1.00958267495E-08 1.03514038203E-08 1.06134508555E-08 1.08821316430E-08 1.11576141169E-08 1.14400704629E-08 1.17296772253E-08 1.20266154178E-08 1.23310706364E-08 1.26432331756E-08 1.29632981471E-08 1.32914656018E-08 1.36279406553E-08 1.39729336152E-08 1.43266601135E-08 1.46893412408E-08 1.50612036844E-08 1.54424798707E-08 1.58334081095E-08 1.62342327438E-08 1.66452043020E-08 1.70665796547E-08 1.74986221753E-08 1.79416019042E-08 1.83957957185E-08 1.88614875038E-08 1.93389683328E-08 1.98285366465E-08 2.03304984410E-08 2.08451674589E-08 2.13728653849E-08 2.19139220475E-08 2.24686756247E-08 2.30374728555E-08 2.36206692568E-08 2.42186293452E-08 2.48317268653E-08 2.54603450229E-08 2.61048767250E-08 2.67657248247E-08 2.74433023737E-08 2.81380328799E-08 2.88503505726E-08 2.95807006735E-08 3.03295396751E-08 3.10973356263E-08 3.18845684245E-08 3.26917301157E-08 3.35193252024E-08 3.43678709584E-08 3.52378977525E-08 3.61299493795E-08 3.70445834010E-08 3.79823714929E-08 3.89438998032E-08 3.99297693185E-08 4.09405962394E-08 4.19770123654E-08 4.30396654905E-08 4.41292198074E-08 4.52463563231E-08 4.63917732842E-08 4.75661866135E-08 4.87703303577E-08 5.00049571458E-08 5.12708386596E-08 5.25687661164E-08 5.38995507630E-08 5.52640243832E-08 5.66630398173E-08 5.80974714956E-08 5.95682159845E-08 6.10761925471E-08 6.26223437180E-08 6.42076358918E-08 6.58330599279E-08 6.74996317691E-08 6.92083930770E-08 7.09604118831E-08 7.27567832561E-08 7.45986299866E-08 7.64871032888E-08 7.84233835198E-08 8.04086809179E-08 8.24442363585E-08 8.45313221300E-08 8.66712427289E-08 8.88653356753E-08 9.11149723485E-08 9.34215588448E-08 9.57865368556E-08 9.82113845693E-08 1.00697617595E-07 1.03246789908E-07 1.05860494825E-07 1.08540365996E-07 1.11288078429E-07 1.14105349531E-07 1.16993940191E-07 1.19955655871E-07 1.22992347739E-07 1.26105913827E-07 1.29298300214E-07 1.32571502247E-07 1.35927565782E-07 1.39368588470E-07 1.42896721060E-07 1.46514168751E-07 1.50223192565E-07 1.54026110762E-07 1.57925300290E-07 1.61923198270E-07 1.66022303517E-07 1.70225178106E-07 1.74534448970E-07 1.78952809544E-07 1.83483021446E-07 1.88127916206E-07 1.92890397035E-07 1.97773440637E-07 2.02780099075E-07 2.07913501672E-07 2.13176856971E-07 2.18573454742E-07 2.24106668033E-07 2.29779955282E-07 2.35596862478E-07 2.41561025378E-07 2.47676171777E-07 2.53946123840E-07 2.60374800492E-07 2.66966219863E-07 2.73724501806E-07 2.80653870467E-07 2.87758656926E-07 2.95043301905E-07 3.02512358544E-07 3.10170495247E-07 3.18022498597E-07 3.26073276353E-07 3.34327860511E-07 3.42791410456E-07 3.51469216180E-07 3.60366701595E-07 3.69489427917E-07 3.78843097147E-07 3.88433555633E-07 3.98266797722E-07 4.08348969510E-07 4.18686372681E-07 4.29285468450E-07 4.40152881594E-07 4.51295404599E-07 4.62720001905E-07 4.74433814256E-07 4.86444163165E-07 4.98758555490E-07 5.11384688125E-07 5.24330452814E-07 5.37603941080E-07 5.51213449283E-07 5.65167483808E-07 5.79474766380E-07 5.94144239514E-07 6.09185072107E-07 6.24606665167E-07 6.40418657691E-07 6.56630932686E-07 6.73253623351E-07 6.90297119406E-07 7.07772073588E-07 7.25689408312E-07 7.44060322492E-07 7.62896298544E-07 7.82209109565E-07 8.02010826688E-07 8.22313826627E-07 8.43130799416E-07 8.64474756337E-07 8.86359038054E-07 9.08797322953E-07 9.31803635689E-07 9.55392355951E-07 9.79578227454E-07 1.00437636715E-06 1.02980227468E-06 1.05587184206E-06 1.08260136362E-06 1.11000754616E-06 1.13810751944E-06 1.16691884685E-06 1.19645953641E-06 1.22674805200E-06 1.25780332491E-06 1.28836451554E-06 1.32100857654E-06 1.35448718064E-06 1.38880200106E-06 1.42399423358E-06 1.46005690094E-06 1.49708976723E-06 1.53499758979E-06 1.57389688275E-06 1.61377877526E-06 1.65464399886E-06 1.69658417646E-06 1.73954840475E-06 1.78364060669E-06 1.82879628571E-06 1.87512780274E-06 1.92266381956E-06 1.97132387545E-06 2.02130262147E-06 2.07247851809E-06 2.12497120905E-06 2.17878540493E-06 2.23401031384E-06 2.29058297885E-06 2.34860218178E-06 2.40810578316E-06 2.46907629246E-06 2.53160796690E-06 2.59573725856E-06 2.66152024949E-06 2.72885954540E-06 2.79801742436E-06 2.86889146600E-06 2.94151884988E-06 3.01602696305E-06 3.09241237223E-06 3.17073835394E-06 3.25102305520E-06 3.33336282864E-06 3.41778070916E-06 3.50433964348E-06 3.59308173849E-06 3.68405854279E-06 3.77736807223E-06 3.87303274048E-06 3.97109713929E-06 4.07165611890E-06 4.17478014831E-06 4.28049104380E-06 4.38887327959E-06 4.50001679712E-06 4.61395635346E-06 4.73081865871E-06 4.85058372531E-06 4.97342372710E-06 5.09937512678E-06 5.22845916994E-06 5.36088729336E-06 5.49662301278E-06 5.63578639009E-06 5.77849212941E-06 5.92479683668E-06 6.07485581885E-06 6.22864523722E-06 6.38635490046E-06 6.54807605314E-06 6.71384681799E-06 6.88386237188E-06 7.05816103921E-06 7.23685418033E-06 7.42011382858E-06 7.60796264768E-06 7.80060046697E-06 7.99811524247E-06 8.20061036364E-06 8.40825071965E-06 8.62111892416E-06 8.83941219760E-06 9.06321894406E-06 9.29268571202E-06 9.52795440419E-06 9.76916773827E-06 1.00165730539E-05 1.02701338808E-05 1.05301453345E-05 1.07967579592E-05 1.10701146730E-05 1.13503829829E-05 1.16377682165E-05 1.19323784954E-05 1.22344994205E-05 1.25442322684E-05 1.28618643497E-05 1.31874645563E-05 1.35213345251E-05 1.38636829714E-05 1.42146609720E-05 1.45745535548E-05 1.49435116631E-05 1.53218762860E-05 1.57097445031E-05 1.61074851964E-05 1.65152973064E-05 1.69333881209E-05 1.73620936673E-05 1.78016889190E-05 1.82523247832E-05 1.87144187953E-05 1.91882296517E-05 1.96739840834E-05 2.01721035573E-05 2.06827403713E-05 2.12063863989E-05 2.17432680919E-05 2.22937224966E-05 2.28581201107E-05 2.34368204258E-05 2.40301226161E-05 2.46385273963E-05 2.52622554589E-05 2.59018130778E-05 2.65575604844E-05 2.72298516395E-05 2.79192576014E-05 2.86260351808E-05 2.93507268096E-05 3.00938014289E-05 3.08556311164E-05 3.16367893442E-05 3.24376872283E-05 3.32589069484E-05 3.41008888777E-05 3.49641386922E-05 3.58493485609E-05 3.67568594335E-05 3.76874053740E-05 3.86415098238E-05 3.96197166896E-05 4.06227462038E-05 4.16511188954E-05 4.27055642744E-05 4.37866564197E-05 4.48951635760E-05 4.60317187391E-05 4.71970446306E-05 4.83918364722E-05 4.96169417357E-05 5.08729922388E-05 5.21608810370E-05 5.34813592199E-05 5.48352593571E-05 5.62234583025E-05 5.76467254523E-05 5.91061246946E-05 6.06024071278E-05 6.21365863881E-05 6.37095708048E-05 6.53224152823E-05 6.69760930538E-05 6.86715844867E-05 7.04100375673E-05 7.21924833124E-05 7.40200295964E-05 7.58939127729E-05 7.78151468633E-05 7.97850386878E-05 8.18048435434E-05 8.38757001302E-05 8.59990730566E-05 8.81761020891E-05 9.04083201620E-05 9.26969997426E-05 9.50436079606E-05 9.74496803315E-05 9.99165761588E-05 1.02445994228E-04 1.05039377619E-04 1.07698452541E-04 1.10424858301E-04 1.13220217813E-04 1.16086402477E-04 1.19025072037E-04 1.22038183651E-04 1.25127584225E-04 1.28295125597E-04 1.31542903724E-04 1.34872873807E-04 1.38287131097E-04 1.41787841830E-04 1.45377165898E-04 1.49057330910E-04 1.52830665814E-04 1.56699505813E-04 1.60666285601E-04 1.64733502514E-04 1.68903625880E-04 1.73179366746E-04 1.77563300721E-04 1.82058238407E-04 1.86666932258E-04 1.91392282742E-04 1.96237280579E-04 2.01204871802E-04 2.06298260708E-04 2.11520549681E-04 2.16875025623E-04 2.22365070237E-04 2.27994054292E-04 2.33765546732E-04 2.39683131280E-04 2.45750471098E-04 2.51971447156E-04 2.58349835406E-04 2.64889750712E-04 2.71595150315E-04 2.78470278019E-04 2.85519469483E-04 2.92747067231E-04 3.00157648155E-04 3.07755748574E-04 3.15546215315E-04 3.23533872398E-04 3.31723691416E-04 3.40120837853E-04 3.48730518887E-04 3.57558130986E-04 3.66609187665E-04 3.75889303323E-04 3.85404409136E-04 3.95160264094E-04 4.05163075346E-04 4.15419111870E-04 4.25934682362E-04 4.36716482530E-04 4.47771116831E-04 4.59105571278E-04 4.70726917598E-04 4.82642398120E-04 4.94859502220E-04 5.07385797503E-04 5.20229128958E-04 5.33397560366E-04 5.46899233709E-04 5.60742714099E-04 5.74936512807E-04 5.89489533326E-04 6.04410952029E-04 6.19709956028E-04 6.35396238273E-04 6.51479471133E-04 6.67969775687E-04 6.84877413382E-04 7.02212971529E-04 7.19987331684E-04 7.38211415957E-04 7.56896783062E-04 7.76055060127E-04 7.95698112871E-04 8.15838390008E-04 8.36488296060E-04 8.57660806067E-04 8.79369131719E-04 9.01626841391E-04 9.24447803883E-04 9.47846309068E-04 9.71836913267E-04 9.96434647743E-04 1.02165480632E-03 1.04751323142E-03 1.07402598155E-03 1.10120964125E-03 1.12908117362E-03 1.15765799330E-03 1.18695791610E-03 1.21699926711E-03 1.24780074984E-03 1.27938163636E-03 1.31176158727E-03 1.34496088218E-03 1.37900017821E-03 1.41390075022E-03 1.44968437548E-03 1.48637335641E-03 1.52399065417E-03 1.56255969407E-03 1.60210449414E-03 1.64264986672E-03 1.68422092767E-03 1.72684381758E-03 1.77054492971E-03 1.81535168077E-03 1.86129192575E-03 1.90839434453E-03 1.95668837176E-03 2.00620401087E-03 2.05697226987E-03 2.10902472439E-03 2.16239386761E-03 2.21711301563E-03 2.27321619939E-03 2.33073848063E-03 2.38971564650E-03 2.45018452386E-03 2.51218283552E-03 2.57574913616E-03 2.64092308499E-03 2.70774533897E-03 2.77625742041E-03 2.84650259970E-03 2.91852230169E-03 2.99236720489E-03 3.06807417145E-03 3.14569928736E-03 3.22528852893E-03 3.30688470167E-03 3.39054664198E-03 3.47632754176E-03 3.56426990602E-03 3.65444183168E-03 3.74689114485E-03 3.84167739476E-03 3.93885976407E-03 4.03849845234E-03 4.14065771697E-03 4.24539557659E-03 4.35278463375E-03 4.46288555267E-03 4.57576655928E-03 4.69150999743E-03 4.81016417790E-03 4.93182654047E-03 5.05656679382E-03 5.18444464529E-03 5.31556725749E-03 5.44999364807E-03 5.58782664330E-03 5.72912457269E-03 5.87401140254E-03 6.02254379567E-03 6.17483798393E-03 6.33096580775E-03 6.49105371835E-03 6.65516779505E-03 6.82344023166E-03 6.99594952267E-03 7.17282416095E-03 7.35416013641E-03 7.54007608386E-03 7.73067930263E-03 7.92610583261E-03 8.12645056786E-03 8.33186126501E-03 8.54245654459E-03 8.75835878144E-03 8.97971550484E-03 9.20665677402E-03 9.43931723058E-03 9.67785557520E-03 9.92240421861E-03 1.01731217829E-02 1.04301666622E-02 1.06936897366E-02 1.09638558410E-02 1.12408394862E-02 1.15247996959E-02 1.18159187598E-02 1.21143789129E-02 1.24203563998E-02 1.27340445766E-02 1.30556383488E-02 1.33853335045E-02 1.37233307478E-02 1.40698432702E-02 1.44250810560E-02 1.47892625833E-02 1.51626144452E-02 1.55453632764E-02 1.59377460927E-02 1.63400019623E-02 1.67523802459E-02 1.71751327635E-02 1.76085164356E-02 1.80528031577E-02 1.85082594963E-02 1.89751650591E-02 1.94538090352E-02 1.99444804616E-02 2.04474814533E-02 2.09631189284E-02 2.14917068657E-02 2.20335709801E-02 2.25890366195E-02 2.31584481744E-02 2.37421468371E-02 2.43404943840E-02 2.49538480149E-02 2.55825858098E-02 2.62270882038E-02 2.68877452159E-02 2.75649591990E-02 2.82591396392E-02 2.89707089261E-02 2.97000940613E-02 3.04477402800E-02 3.12140937206E-02 3.19996285648E-02 3.28048051330E-02 3.36301101241E-02 3.44760512753E-02 3.53431281162E-02 3.62318588157E-02 3.71428029920E-02 3.80764475525E-02 3.90334278222E-02 4.00142535097E-02 4.10195496002E-02 4.20498893327E-02 4.31059178241E-02 4.41882227348E-02 4.52974905367E-02 4.64343444685E-02 4.75994861634E-02 4.87935820937E-02 5.00173652109E-02 5.12715291762E-02 5.25568413763E-02 5.38740165975E-02 5.52238918633E-02 5.66072062211E-02 5.80247831303E-02 5.94774738996E-02 6.09660984928E-02 6.24915434628E-02 6.40546764295E-02 6.56564267007E-02 6.72977176835E-02 6.89794716749E-02 7.07027166246E-02 7.24683780013E-02 7.42775199913E-02 7.61311518673E-02 7.80303582801E-02 7.99761870043E-02 8.19697906523E-02 8.40122652211E-02 8.61047757272E-02 8.82485266180E-02 9.04446894351E-02 9.26945236639E-02 9.49992830321E-02 9.73602480845E-02 9.97787409718E-02 1.02256098802E-01 1.04793696360E-01 1.07392923026E-01 1.10055222284E-01 1.12782035188E-01 1.15574856635E-01 1.18435205570E-01 1.21364625564E-01 1.24364695435E-01 1.27437030995E-01 1.30583267613E-01 1.33805082818E-01 1.37104182988E-01 1.40482307411E-01 1.43941226491E-01 1.47482745764E-01 1.51108713135E-01 1.54820984747E-01 1.58621487481E-01 1.62512146294E-01 1.66494946387E-01 1.70571896092E-01 1.74745038565E-01 1.79016459749E-01 1.83388262635E-01 1.87862613255E-01 1.92441676689E-01 1.97127689555E-01 2.01922895356E-01 2.06829579314E-01 2.11850073107E-01 2.16986722302E-01 2.22241918532E-01 2.27618087778E-01 2.33117674145E-01 2.38743173230E-01 2.44497092430E-01 2.50381986313E-01 2.56400423197E-01 2.62555011320E-01 2.68848383949E-01 2.75283193325E-01 2.81862125517E-01 2.88587883007E-01 2.95463198679E-01 3.02490811499E-01 3.09673493493E-01 3.17014020137E-01 3.24515192110E-01 3.32179811126E-01 3.40010694139E-01 3.48010664176E-01 3.56182541253E-01 3.64529156214E-01 3.73053320655E-01 3.81757858472E-01 3.90645563625E-01 3.99719228322E-01 4.08981614937E-01 4.18435472332E-01 4.28083505723E-01 4.37928398741E-01 4.47972784791E-01 4.58219253448E-01 4.68670341263E-01 4.79328523574E-01 4.90196206458E-01 5.01275722297E-01 5.12569319268E-01 5.24079151866E-01 5.35807273326E-01 5.47755626246E-01 5.59926028904E-01 5.72320171458E-01 5.84939593797E-01 5.97785684675E-01 6.10859663702E-01 6.24162563047E-01 6.37695227042E-01 6.51458280059E-01 6.65452127355E-01 6.79676926081E-01 6.94132576439E-01 7.08818699017E-01 7.23734617822E-01 7.38879339533E-01 7.54251536345E-01 7.69849517812E-01 7.85671214289E-01 8.01714150192E-01 8.17975419077E-01 8.34451662413E-01 8.51139033462E-01 8.68033179540E-01 8.85129207648E-01 9.02421651533E-01 9.19904447377E-01 9.37570894191E-01 9.55413623512E-01 9.73424563224E-01 9.91594900569E-01 1.00991504465E+00 1.02837458722E+00 1.04696226340E+00 1.06566590591E+00 1.08447241020E+00 1.10336767852E+00 1.12233658853E+00 1.14136293256E+00 1.16042938192E+00 1.17951742866E+00 1.19860734393E+00 1.21767811945E+00 1.23670742248E+00 1.25567153923E+00 1.27454532452E+00 1.29330214552E+00 1.31191383268E+00 1.33035062087E+00 1.34858109925E+00 1.36657215735E+00 1.38428893056E+00 1.40169475156E+00 1.41875109773E+00 1.43541754174E+00 1.45165170819E+00 1.46740922517E+00 1.48264368588E+00 1.49730661020E+00 1.51134741036E+00 1.52471336330E+00 1.53734958662E+00 1.54919902227E+00 1.56020242608E+00 1.57029836610E+00 1.57942323102E+00 1.58751124585E+00 1.59449450142E+00 1.60030299643E+00 1.60486469082E+00 1.60810557779E+00 1.60994977035E+00 1.61031960598E+00 1.60913577469E+00 1.60631746577E+00 1.60178253852E+00 1.59544772289E+00 1.58722884327E+00 1.57704107696E+00 1.56479924255E+00 1.55041812560E+00 1.53381284199E+00 1.51489923957E+00 1.49359434769E+00 1.46981686739E+00 1.44348771534E+00 1.41453061590E+00 1.38287274925E+00 1.34844545758E+00 1.31118500924E+00 1.27103342666E+00 1.22793937958E+00 1.18185914348E+00 1.13275762973E+00 1.08060948273E+00 1.02540025128E+00 9.67127630590E-01 9.05802774854E-01 8.41451684083E-01 7.74116654018E-01 7.03857798683E-01 6.30754628430E-01 5.54907688833E-01 4.76440246896E-01 3.95500017201E-01 3.12260919653E-01 2.26924852204E-01 1.39723466037E-01 5.09199248425E-02 -3.91893752071E-02 -1.30273143685E-01 -2.21963625416E-01 -3.13855148385E-01 -4.05502824547E-01 -4.96421446316E-01 -5.86084615903E-01 -6.73924159775E-01 -7.59329876933E-01 -8.41649676355E-01 -9.20190168076E-01 -9.94217764141E-01 -1.06296036708E+00 -1.12560970816E+00 -1.18132441311E+00 -1.22923387325E+00 -1.26844298986E+00 -1.29803787682E+00 -1.31709258702E+00 -1.32467693400E+00 -1.31986547295E+00 -1.30174768921E+00 -1.26943944164E+00 -1.22209568135E+00 -1.15892445438E+00 -1.07920217499E+00 -9.82290117967E-01 -8.67652063355E-01 -7.34872972222E-01 -5.83678541610E-01 -4.13955438278E-01 -2.25771950206E-01 -1.93987528599E-02 2.04670587911E-01 4.45699807986E-01 7.02691331560E-01 9.74369423323E-01 1.25916573080E+00 1.55520791402E+00 1.86031210686E+00 2.17197999978E+00 2.48740137268E+00 2.80346291018E+00 3.11676413898E+00 3.42364128544E+00 3.72019979420E+00 4.00235615663E+00 4.26588955406E+00 4.50650365454E+00 4.71989867303E+00 4.90185353376E+00 5.04831766393E+00 5.15551156970E+00 5.22003494537E+00 5.23898060678E+00 5.21005205334E+00 5.13168194844E+00 5.00314826557E+00 4.82468430253E+00 4.59757820979E+00 4.32425712326E+00 4.00835045019E+00 3.65472629475E+00 3.26949446108E+00 2.85996887298E+00 2.43458160059E+00 2.00273994013E+00 1.57461709083E+00 1.16086588303E+00 7.72243657153E-01 4.19134744240E-01 1.10955022224E-01 -1.44579278641E-01 -3.42338920864E-01 -4.80848316516E-01 -5.63557487227E-01 -6.00348120561E-01 -6.05421205161E-01 -5.83963784368E-01 -5.38479673325E-01 -4.71852256592E-01 -3.87339064022E-01 -2.88560395945E-01 -1.79481395994E-01 -6.43869984376E-02 5.21507734458E-02 1.65313614950E-01 2.70086221584E-01 3.61314301514E-01 4.33771434786E-01 4.82234787054E-01 5.01568931441E-01 4.86822316915E-01 4.33287291293E-01 3.36992847777E-01 1.91061470967E-01 2.23009623422E-02 -2.25780418558E-03 1.81177224673E-04 -5.68059000914E-05 -2.96662412909E-05 -2.90774210197E-05 -2.61066668833E-05 -2.36076103107E-05 -2.12840221612E-05 -1.91521263194E-05 -1.71976529397E-05 -1.54100758754E-05 -1.37787083243E-05 3.30 3.30 6P 6 1 Beta L 1017 1.21766554672E-09 1.24849089679E-09 1.28009659431E-09 1.31250239388E-09 1.34572855017E-09 1.37979583061E-09 1.41472552836E-09 1.45053947561E-09 1.48726005726E-09 1.52491022486E-09 1.56351351099E-09 1.60309404396E-09 1.64367656289E-09 1.68528643318E-09 1.72794966235E-09 1.77169291631E-09 1.81654353602E-09 1.86252955457E-09 1.90967971472E-09 1.95802348686E-09 2.00759108741E-09 2.05841349775E-09 2.11052248353E-09 2.16395061457E-09 2.21873128518E-09 2.27489873507E-09 2.33248807072E-09 2.39153528735E-09 2.45207729138E-09 2.51415192354E-09 2.57779798250E-09 2.64305524911E-09 2.70996451128E-09 2.77856758950E-09 2.84890736290E-09 2.92102779615E-09 2.99497396686E-09 3.07079209379E-09 3.14852956574E-09 3.22823497116E-09 3.30995812852E-09 3.39375011747E-09 3.47966331071E-09 3.56775140680E-09 3.65806946365E-09 3.75067393299E-09 3.84562269564E-09 3.94297509766E-09 4.04279198747E-09 4.14513575387E-09 4.25007036505E-09 4.35766140856E-09 4.46797613231E-09 4.58108348658E-09 4.69705416715E-09 4.81596065948E-09 4.93787728400E-09 5.06288024255E-09 5.19104766607E-09 5.32245966336E-09 5.45719837120E-09 5.59534800566E-09 5.73699491477E-09 5.88222763245E-09 6.03113693389E-09 6.18381589223E-09 6.34035993681E-09 6.50086691274E-09 6.66543714211E-09 6.83417348667E-09 7.00718141212E-09 7.18456905406E-09 7.36644728553E-09 7.55292978635E-09 7.74413311415E-09 7.94017677723E-09 8.14118330928E-09 8.34727834590E-09 8.55859070321E-09 8.77525245831E-09 8.99739903185E-09 9.22516927267E-09 9.45870554459E-09 9.69815381537E-09 9.94366374798E-09 1.01953887941E-08 1.04534862901E-08 1.07181175554E-08 1.09894479930E-08 1.12676471933E-08 1.15528890399E-08 1.18453518182E-08 1.21452183270E-08 1.24526759926E-08 1.27679169861E-08 1.30911383433E-08 1.34225420881E-08 1.37623353586E-08 1.41107305367E-08 1.44679453808E-08 1.48342031616E-08 1.52097328023E-08 1.55947690211E-08 1.59895524782E-08 1.63943299261E-08 1.68093543638E-08 1.72348851952E-08 1.76711883909E-08 1.81185366545E-08 1.85772095933E-08 1.90474938929E-08 1.95296834961E-08 2.00240797873E-08 2.05309917801E-08 2.10507363111E-08 2.15836382375E-08 2.21300306404E-08 2.26902550328E-08 2.32646615732E-08 2.38536092844E-08 2.44574662778E-08 2.50766099838E-08 2.57114273873E-08 2.63623152698E-08 2.70296804575E-08 2.77139400753E-08 2.84155218078E-08 2.91348641663E-08 2.98724167634E-08 3.06286405932E-08 3.14040083205E-08 3.21990045751E-08 3.30141262557E-08 3.38498828398E-08 3.47067967026E-08 3.55854034430E-08 3.64862522188E-08 3.74099060900E-08 3.83569423701E-08 3.93279529878E-08 4.03235448561E-08 4.13443402526E-08 4.23909772075E-08 4.34641099029E-08 4.45644090818E-08 4.56925624669E-08 4.68492751908E-08 4.80352702367E-08 4.92512888900E-08 5.04980912019E-08 5.17764564645E-08 5.30871836976E-08 5.44310921486E-08 5.58090218038E-08 5.72218339141E-08 5.86704115331E-08 6.01556600690E-08 6.16785078505E-08 6.32399067069E-08 6.48408325633E-08 6.64822860505E-08 6.81652931304E-08 6.98909057372E-08 7.16602024348E-08 7.34742890914E-08 7.53342995700E-08 7.72413964378E-08 7.91967716925E-08 8.12016475070E-08 8.32572769942E-08 8.53649449892E-08 8.75259688532E-08 8.97416992965E-08 9.20135212225E-08 9.43428545941E-08 9.67311553203E-08 9.91799161668E-08 1.01589165598E-07 1.04157312207E-07 1.06797089559E-07 1.09515323965E-07 1.12276138963E-07 1.15118996550E-07 1.18052419384E-07 1.21034028773E-07 1.24100914072E-07 1.27239010820E-07 1.30471155070E-07 1.33776869385E-07 1.37156574173E-07 1.40641355141E-07 1.44203475200E-07 1.47851832761E-07 1.51606431426E-07 1.55427546855E-07 1.59388523901E-07 1.63418767970E-07 1.67546354367E-07 1.71800844762E-07 1.76145634082E-07 1.80623618807E-07 1.85179390343E-07 1.89885700830E-07 1.94686110792E-07 1.99616303805E-07 2.04675419667E-07 2.09857769164E-07 2.15172930728E-07 2.20631761421E-07 2.26204436924E-07 2.31942823966E-07 2.37820349745E-07 2.43830360612E-07 2.50024560133E-07 2.56340641950E-07 2.62833226098E-07 2.69501298667E-07 2.76313284552E-07 2.83324503726E-07 2.90484293132E-07 2.97853991346E-07 3.05390642210E-07 3.13120055149E-07 3.21062774882E-07 3.29178034057E-07 3.37524685631E-07 3.46062946997E-07 3.54832876698E-07 3.63820107264E-07 3.73020618663E-07 3.82480890771E-07 3.92155455960E-07 4.02091544251E-07 4.12273853887E-07 4.22706587544E-07 4.33418140088E-07 4.44384610511E-07 4.55645005299E-07 4.67178893254E-07 4.78999455269E-07 4.91146519777E-07 5.03569251429E-07 5.16323951335E-07 5.29395704511E-07 5.42795100847E-07 5.56551078639E-07 5.70641785149E-07 5.85075636599E-07 5.99906000747E-07 6.15081748554E-07 6.30660810001E-07 6.46636508251E-07 6.62995039308E-07 6.79796194596E-07 6.96993179718E-07 7.14653097314E-07 7.32739581649E-07 7.51291864886E-07 7.70316236230E-07 7.89823249504E-07 8.09811369021E-07 8.30314039017E-07 8.51348026636E-07 8.72889422288E-07 8.95002024053E-07 9.17646219725E-07 9.40897115085E-07 9.64706369844E-07 9.89129681646E-07 1.01418107200E-06 1.03985020287E-06 1.06618009020E-06 1.09317583146E-06 1.12084878366E-06 1.14922061233E-06 1.17833200653E-06 1.20814921199E-06 1.23873741981E-06 1.27010511744E-06 1.30225720173E-06 1.33523138897E-06 1.36902573203E-06 1.40369982090E-06 1.43921944229E-06 1.47567010893E-06 1.51302245051E-06 1.55133487773E-06 1.59060309993E-06 1.63086491418E-06 1.67217492871E-06 1.71448716817E-06 1.75790481201E-06 1.80239898208E-06 1.84804740714E-06 1.89480716564E-06 1.94280168608E-06 1.99197571943E-06 2.04240672924E-06 2.09411151549E-06 2.14712659359E-06 2.20148947390E-06 2.25721464816E-06 2.31436697223E-06 2.37295426861E-06 2.43302709941E-06 2.49462308381E-06 2.55778476059E-06 2.62252450796E-06 2.68892978159E-06 2.75698942902E-06 2.82680350719E-06 2.89834045238E-06 2.97174365875E-06 3.04695290830E-06 3.12410832528E-06 3.20319576171E-06 3.28427203449E-06 3.36743173589E-06 3.45266921359E-06 3.54008759877E-06 3.62969995555E-06 3.72159579991E-06 3.81580667467E-06 3.91241063347E-06 4.01144765877E-06 4.11301078153E-06 4.21712747553E-06 4.32389804462E-06 4.43334392492E-06 4.54559029081E-06 4.66066090733E-06 4.77864941383E-06 4.89961876154E-06 5.02366886417E-06 5.15082603057E-06 5.28123769537E-06 5.41493619418E-06 5.55200788526E-06 5.69257228965E-06 5.83667006459E-06 5.98444194572E-06 6.13592978838E-06 6.29127168372E-06 6.45053697384E-06 6.61383678940E-06 6.78125732271E-06 6.95294705896E-06 7.12895381369E-06 7.30942405201E-06 7.49447353887E-06 7.68419733302E-06 7.87871926035E-06 8.07818053804E-06 8.28268115112E-06 8.49235552985E-06 8.70735311668E-06 8.92777363123E-06 9.15378967269E-06 9.38551796519E-06 9.62311378773E-06 9.86672953725E-06 1.01165075790E-05 1.03726171282E-05 1.06351897655E-05 1.09044446932E-05 1.11804681090E-05 1.14635287234E-05 1.17537160508E-05 1.20512693375E-05 1.23563504105E-05 1.26691597951E-05 1.29898792030E-05 1.33187241283E-05 1.36558790857E-05 1.40016098622E-05 1.43560265172E-05 1.47194867214E-05 1.50920970395E-05 1.54741498660E-05 1.58659044457E-05 1.62675374489E-05 1.66793578512E-05 1.71015999980E-05 1.75345306564E-05 1.79784187898E-05 1.84335457738E-05 1.89002007409E-05 1.93786531390E-05 1.98692444628E-05 2.03722182819E-05 2.08879611084E-05 2.14167279262E-05 2.19589088978E-05 2.25148004624E-05 2.30847609720E-05 2.36691615043E-05 2.42683407685E-05 2.48827047943E-05 2.55126194061E-05 2.61584653678E-05 2.68206723990E-05 2.74996449494E-05 2.81957995129E-05 2.89095793878E-05 2.96414268152E-05 3.03918086650E-05 3.11611793030E-05 3.19500241134E-05 3.27588454519E-05 3.35881381187E-05 3.44384177044E-05 3.53102429431E-05 3.62041124488E-05 3.71206286165E-05 3.80603401030E-05 3.90238395213E-05 4.00117303925E-05 4.10246258309E-05 4.20631670143E-05 4.31280037988E-05 4.42197881871E-05 4.53392073596E-05 4.64869814953E-05 4.76637958335E-05 4.88704071827E-05 5.01075556983E-05 5.13760354131E-05 5.26766242532E-05 5.40101217606E-05 5.53773975163E-05 5.67792679891E-05 5.82166427047E-05 5.96903913094E-05 6.12014438349E-05 6.27507781734E-05 6.43392834896E-05 6.59680540679E-05 6.76380189472E-05 6.93502725721E-05 7.11058676014E-05 7.29059166426E-05 7.47515186292E-05 7.66438485803E-05 7.85840806128E-05 8.05734159621E-05 8.26131458217E-05 8.47044774687E-05 8.68487575624E-05 8.90473226332E-05 9.13015542666E-05 9.36128197567E-05 9.59826385542E-05 9.84124027878E-05 1.00903713012E-04 1.03458054786E-04 1.06077093423E-04 1.08762402266E-04 1.11515705364E-04 1.14338697284E-04 1.17233155046E-04 1.20200891272E-04 1.23243741750E-04 1.26363628018E-04 1.29562483544E-04 1.32842331680E-04 1.36205194824E-04 1.39653180352E-04 1.43188470374E-04 1.46813225538E-04 1.50529759666E-04 1.54340374388E-04 1.58247434031E-04 1.62253410885E-04 1.66360803176E-04 1.70572148974E-04 1.74890116608E-04 1.79317384740E-04 1.83856720898E-04 1.88510973365E-04 1.93283041144E-04 1.98175900588E-04 2.03192629683E-04 2.08336340112E-04 2.13610265010E-04 2.19017685656E-04 2.24561997637E-04 2.30246649831E-04 2.36075196641E-04 2.42051298962E-04 2.48178666712E-04 2.54461138400E-04 2.60902654934E-04 2.67507222723E-04 2.74278951213E-04 2.81222143979E-04 2.88341045967E-04 2.95640162063E-04 3.03124063915E-04 3.10797391482E-04 3.18664940566E-04 3.26731664391E-04 3.35002577170E-04 3.43482849904E-04 3.52177766977E-04 3.61092804290E-04 3.70233493006E-04 3.79605560136E-04 3.89214840038E-04 3.99067393376E-04 4.09169312195E-04 4.19526946678E-04 4.30146751887E-04 4.41035375669E-04 4.52199614295E-04 4.63646444805E-04 4.75383011263E-04 4.87416677289E-04 4.99754902324E-04 5.12405465298E-04 5.25376237521E-04 5.38675280526E-04 5.52311007565E-04 5.66291822607E-04 5.80626543881E-04 5.95324081611E-04 6.10393647440E-04 6.25844626402E-04 6.41686700049E-04 6.57929756917E-04 6.74583909947E-04 6.91659631290E-04 7.09167526351E-04 7.27118574864E-04 7.45523955900E-04 7.64395187381E-04 7.83744068887E-04 8.03582651832E-04 8.23923363085E-04 8.44778893058E-04 8.66162256401E-04 8.88086851358E-04 9.10566326230E-04 9.33614745552E-04 9.57246495630E-04 9.81476350476E-04 1.00631942472E-03 1.03179126577E-03 1.05790774117E-03 1.08468518246E-03 1.11214032399E-03 1.14029029274E-03 1.16915268275E-03 1.19874550548E-03 1.22908725360E-03 1.26019685662E-03 1.29209376605E-03 1.32479788704E-03 1.35832962659E-03 1.39270994508E-03 1.42796030501E-03 1.46410269022E-03 1.50115970786E-03 1.53915447378E-03 1.57811068271E-03 1.61805270711E-03 1.65900544297E-03 1.70099446962E-03 1.74404600446E-03 1.78818690282E-03 1.83344473560E-03 1.87984775579E-03 1.92742489389E-03 1.97620588797E-03 2.02622114830E-03 2.07750192120E-03 2.13008017780E-03 2.18398873810E-03 2.23926127914E-03 2.29593222088E-03 2.35403698885E-03 2.41361181358E-03 2.47469384006E-03 2.53732123321E-03 2.60153299644E-03 2.66736924424E-03 2.73487102717E-03 2.80408041065E-03 2.87504080962E-03 2.94779398549E-03 3.02239500595E-03 3.09887122722E-03 3.17729364622E-03 3.25769368534E-03 3.34012377333E-03 3.42465060442E-03 3.51129754541E-03 3.60016150081E-03 3.69124377250E-03 3.78465239758E-03 3.88041340663E-03 3.97859622958E-03 4.07926478017E-03 4.18247776614E-03 4.28830199114E-03 4.39680045826E-03 4.50804116777E-03 4.62210223432E-03 4.73903958878E-03 4.85893396815E-03 4.98186557572E-03 5.10790096537E-03 5.23712440116E-03 5.36961025082E-03 5.50545314353E-03 5.64472737729E-03 5.78751662010E-03 5.93392436850E-03 6.08402411331E-03 6.23792695843E-03 6.39571183058E-03 6.55748864391E-03 6.72335207588E-03 6.89340997044E-03 7.06776298274E-03 7.24652209067E-03 7.42979932517E-03 7.61770720401E-03 7.81036205801E-03 8.00788444436E-03 8.21039860779E-03 8.41802619065E-03 8.63090262859E-03 8.84915261124E-03 9.07291445352E-03 9.30233220959E-03 9.53754229061E-03 9.77868938171E-03 1.00259304957E-02 1.02794109592E-02 1.05392961880E-02 1.08057380948E-02 1.10789070505E-02 1.13589772765E-02 1.16461104291E-02 1.19404957511E-02 1.22423062156E-02 1.25517389678E-02 1.28689758513E-02 1.31942207379E-02 1.35276673680E-02 1.38695324183E-02 1.42200152804E-02 1.45793426691E-02 1.49477313907E-02 1.53254114061E-02 1.57126137786E-02 1.61095819017E-02 1.65165551858E-02 1.69337904985E-02 1.73615416580E-02 1.78000727310E-02 1.82496584678E-02 1.87105695144E-02 1.91830947144E-02 1.96675236792E-02 2.01641546665E-02 2.06732941105E-02 2.11952539557E-02 2.17303570678E-02 2.22789323028E-02 2.28413133245E-02 2.34178527944E-02 2.40088982837E-02 2.46148147775E-02 2.52359745099E-02 2.58727587853E-02 2.65255573779E-02 2.71947690730E-02 2.78808065367E-02 2.85840870878E-02 2.93050422222E-02 3.00441118562E-02 3.08017498609E-02 3.15784152096E-02 3.23745849334E-02 3.31907444304E-02 3.40273892889E-02 3.48850320255E-02 3.57641909403E-02 3.66654060811E-02 3.75892174448E-02 3.85361990983E-02 3.95069099681E-02 4.05019538548E-02 4.15219231202E-02 4.25674409376E-02 4.36391351634E-02 4.47376633739E-02 4.58636822841E-02 4.70178672640E-02 4.82009226626E-02 4.94135612706E-02 5.06565067099E-02 5.19305062515E-02 5.32363380528E-02 5.45747706453E-02 5.59466124505E-02 5.73526841180E-02 5.87938349277E-02 6.02709049158E-02 6.17848051883E-02 6.33364135298E-02 6.49266579293E-02 6.65564982215E-02 6.82268881546E-02 6.99388232450E-02 7.16933173435E-02 7.34914023073E-02 7.53341529025E-02 7.72226435306E-02 7.91579909984E-02 8.11413289876E-02 8.31738296781E-02 8.52566751743E-02 8.73910899232E-02 8.95783112893E-02 9.18196267842E-02 9.41163324166E-02 9.64697557704E-02 9.88812748135E-02 1.01352274549E-01 1.03884180274E-01 1.06478453973E-01 1.09136583993E-01 1.11860099532E-01 1.14650548243E-01 1.17509530899E-01 1.20438671061E-01 1.23439632392E-01 1.26514116299E-01 1.29663856228E-01 1.32890628115E-01 1.36196241396E-01 1.39582552603E-01 1.43051449728E-01 1.46604857985E-01 1.50244761376E-01 1.53973160595E-01 1.57792117988E-01 1.61703729352E-01 1.65710134296E-01 1.69813519746E-01 1.74016113512E-01 1.78320189306E-01 1.82728069138E-01 1.87242115762E-01 1.91864744540E-01 1.96598414402E-01 2.01445630098E-01 2.06408952747E-01 2.11490978845E-01 2.16694369578E-01 2.22021822813E-01 2.27476089055E-01 2.33059977806E-01 2.38776334500E-01 2.44628067930E-01 2.50618128218E-01 2.56749525179E-01 2.63025312236E-01 2.69448598058E-01 2.76022543325E-01 2.82750354491E-01 2.89635296636E-01 2.96680680724E-01 3.03889865934E-01 3.11266269539E-01 3.18813352040E-01 3.26534624673E-01 3.34433646122E-01 3.42514028047E-01 3.50779420201E-01 3.59233526852E-01 3.67880092263E-01 3.76722904012E-01 3.85765794638E-01 3.95012635328E-01 4.04467334741E-01 4.14133842888E-01 4.24016139840E-01 4.34118241394E-01 4.44444192130E-01 4.54998064704E-01 4.65783956675E-01 4.76805984742E-01 4.88068287906E-01 4.99575014634E-01 5.11330328236E-01 5.23338394163E-01 5.35603383683E-01 5.48129460950E-01 5.60920783502E-01 5.73981495926E-01 5.87315720324E-01 6.00927554350E-01 6.14821061625E-01 6.29000265825E-01 6.43469142644E-01 6.58231611843E-01 6.73291527635E-01 6.88652671501E-01 7.04318740585E-01 7.20293338161E-01 7.36579963018E-01 7.53181998077E-01 7.70102697195E-01 7.87345172769E-01 8.04912384931E-01 8.22807121651E-01 8.41031989107E-01 8.59589393851E-01 8.78481524921E-01 8.97710339384E-01 9.17277542142E-01 9.37184565107E-01 9.57432551785E-01 9.78022331305E-01 9.98954400771E-01 1.02022889661E+00 1.04184557732E+00 1.06380379238E+00 1.08610245967E+00 1.10874003587E+00 1.13171448961E+00 1.15502327148E+00 1.17866328092E+00 1.20263083885E+00 1.22692164892E+00 1.25153076844E+00 1.27645256841E+00 1.30168069864E+00 1.32720805145E+00 1.35302671759E+00 1.37912795196E+00 1.40550212687E+00 1.43213869315E+00 1.45902613429E+00 1.48615192313E+00 1.51350247602E+00 1.54106310580E+00 1.56881797682E+00 1.59675005412E+00 1.62484105868E+00 1.65307141658E+00 1.68142021170E+00 1.70986513670E+00 1.73838244457E+00 1.76694690211E+00 1.79553174096E+00 1.82410861384E+00 1.85264754904E+00 1.88111690786E+00 1.90948334514E+00 1.93771177097E+00 1.96576531668E+00 1.99360530420E+00 2.02119122019E+00 2.04848069496E+00 2.07542948631E+00 2.10199147296E+00 2.12811865046E+00 2.15376114092E+00 2.17886720774E+00 2.20338328303E+00 2.22725400627E+00 2.25042227489E+00 2.27282930987E+00 2.29441473650E+00 2.31511668195E+00 2.33487189106E+00 2.35361586369E+00 2.37128301120E+00 2.38780684035E+00 2.40312015874E+00 2.41715531112E+00 2.42984444310E+00 2.44111979715E+00 2.45091404274E+00 2.45916064078E+00 2.46579424818E+00 2.47075116000E+00 2.47396979532E+00 2.47539122685E+00 2.47495975525E+00 2.47262353278E+00 2.46833523455E+00 2.46205278014E+00 2.45374010775E+00 2.44336799737E+00 2.43091494828E+00 2.41636810528E+00 2.39972423635E+00 2.38099075698E+00 2.36018679966E+00 2.33734432483E+00 2.31250926674E+00 2.28574270910E+00 2.25712208340E+00 2.22674237693E+00 2.19471734474E+00 2.16118070640E+00 2.12628731707E+00 2.09021429245E+00 2.05316206739E+00 2.01535536791E+00 1.97704406736E+00 1.93850390096E+00 1.90003700684E+00 1.86197225669E+00 1.82466534253E+00 1.78849857460E+00 1.75388034988E+00 1.72124424496E+00 1.69104768231E+00 1.66377012410E+00 1.63991073790E+00 1.61998548551E+00 1.60452358313E+00 1.59406328107E+00 1.58914692069E+00 1.59031522244E+00 1.59810077274E+00 1.61302068239E+00 1.63556839936E+00 1.66620467760E+00 1.70534771247E+00 1.75336248094E+00 1.81054934267E+00 1.87713198414E+00 1.95324482461E+00 2.03892002489E+00 2.13407428831E+00 2.23849567449E+00 2.35183069091E+00 2.47357197485E+00 2.60304691503E+00 2.73940761580E+00 2.88162264251E+00 3.02847102758E+00 3.17853905509E+00 3.33022035848E+00 3.48171989165E+00 3.63106232916E+00 3.77610543815E+00 3.91455893729E+00 4.04400929282E+00 4.16195082996E+00 4.26582342389E+00 4.35305689373E+00 4.42112205674E+00 4.46758818667E+00 4.49018638780E+00 4.48687812043E+00 4.45592781000E+00 4.39597814356E+00 4.30612629359E+00 4.18599893528E+00 4.03582352106E+00 3.85649285920E+00 3.64961961665E+00 3.41757690639E+00 3.16352064799E+00 2.89138886648E+00 2.60587251962E+00 2.31235178205E+00 2.01679093310E+00 1.72558406560E+00 1.44534270366E+00 1.18261506423E+00 9.43525091833E-01 7.33317528480E-01 5.55793178747E-01 4.12616238088E-01 3.02473141844E-01 2.20059929363E-01 1.57298701694E-01 1.11639087044E-01 8.22094956279E-02 6.79177328845E-02 6.74472565570E-02 7.92561830748E-02 1.01579421255E-01 1.32434310087E-01 1.69630130022E-01 2.10781839435E-01 2.53328360866E-01 2.94555702053E-01 3.31625146802E-01 3.61606681663E-01 3.81517742492E-01 3.88367309791E-01 3.79204893835E-01 3.51177399431E-01 3.01562002608E-01 2.28080232367E-01 1.26522118783E-01 1.45373050181E-02 -1.43677064937E-03 1.47556125994E-04 -9.02120411457E-06 6.91376935955E-06 5.66311847810E-06 6.03951900278E-06 6.18351565946E-06 6.28520444003E-06 6.33145346319E-06 6.32940491556E-06 3.40 3.40 6P 8 Number of nonzero Dij 1 1 -2.76801641410E+00 1 2 -4.81511968938E+00 2 2 -8.53110063635E+00 3 3 -2.60411026024E+00 3 4 -3.35334485262E+00 4 4 -4.33249127866E+00 5 5 3.98477616209E-02 6 6 5.26500399833E-02 0 nqf. If not zero, Qij's inside rinner are computed using qfcoef's 1 1 2 i j (l(j)) 3.64379416709E-01 Q_int 1.06215238861E-29 1.14487722550E-29 1.23404501606E-29 1.33015756428E-29 1.43375575671E-29 1.54542260638E-29 1.66578653382E-29 1.79552490355E-29 1.93536783603E-29 2.08610231657E-29 2.24857662414E-29 2.42370510518E-29 2.61247331927E-29 2.81594358542E-29 3.03526096048E-29 3.27165968307E-29 3.52647011943E-29 3.80112625025E-29 4.09717374061E-29 4.41627863838E-29 4.76023675014E-29 5.13098374737E-29 5.53060605966E-29 5.96135261642E-29 6.42564750299E-29 6.92610360255E-29 7.46553730046E-29 8.04698433389E-29 8.67371687579E-29 9.34926194953E-29 1.00774212777E-28 1.08622926769E-28 1.17082931185E-28 1.26201835861E-28 1.36030958685E-28 1.46625614393E-28 1.58045425865E-28 1.70354659657E-28 1.83622587670E-28 1.97923876990E-28 2.13339010085E-28 2.29954737731E-28 2.47864567216E-28 2.67169288562E-28 2.87977541738E-28 3.10406428043E-28 3.34582169113E-28 3.60640817247E-28 3.88729021063E-28 4.19004850782E-28 4.51638687790E-28 4.86814183482E-28 5.24729292787E-28 5.65597388184E-28 6.09648460488E-28 6.57130413152E-28 7.08310457380E-28 7.63476615892E-28 8.22939343815E-28 8.87033275810E-28 9.56119109271E-28 1.03058563421E-27 1.11085192120E-27 1.19736967980E-27 1.29062580056E-27 1.39114509509E-27 1.49949324952E-27 1.61628000796E-27 1.74216260390E-27 1.87784945893E-27 2.02410416944E-27 2.18174980388E-27 2.35167353470E-27 2.53483163099E-27 2.73225484008E-27 2.94505418815E-27 3.17442723275E-27 3.42166480215E-27 3.68815825968E-27 3.97540733385E-27 4.28502855824E-27 4.61876436875E-27 4.97849290947E-27 5.36623860209E-27 5.78418353871E-27 6.23467976180E-27 6.72026250066E-27 7.24366443877E-27 7.80783109236E-27 8.41593738666E-27 9.07140552329E-27 9.77792423910E-27 1.05394695651E-26 1.13603272021E-26 1.22451166391E-26 1.31988171499E-26 1.42267958152E-26 1.53348377258E-26 1.65291785396E-26 1.78165395734E-26 1.92041656280E-26 2.06998657595E-26 2.23120572255E-26 2.40498128547E-26 2.59229121052E-26 2.79418961002E-26 3.01181269489E-26 3.24638516891E-26 3.49922712085E-26 3.77176145348E-26 4.06552189116E-26 4.38216161103E-26 4.72346254658E-26 5.09134541562E-26 5.48788052947E-26 5.91529944390E-26 6.37600751746E-26 6.87259744804E-26 7.40786386361E-26 7.98481904934E-26 8.60670989970E-26 9.27703619073E-26 9.99957027562E-26 1.07783783140E-25 1.16178431550E-25 1.25226890022E-25 1.34980079996E-25 1.45492888887E-25 1.56824478969E-25 1.69038620320E-25 1.82204049696E-25 1.96394857356E-25 2.11690904017E-25 2.28178270279E-25 2.45949741059E-25 2.65105327744E-25 2.85752831027E-25 3.08008447565E-25 3.31997423892E-25 3.57854761262E-25 3.85725975389E-25 4.15767915352E-25 4.48149646289E-25 4.83053400833E-25 5.20675604648E-25 5.61227981847E-25 6.04938746494E-25 6.52053886912E-25 7.02838550016E-25 7.57578533461E-25 8.16581894012E-25 8.80180681172E-25 9.48732805837E-25 1.02262405449E-24 1.10227026027E-24 1.18811964311E-24 1.28065533220E-24 1.38039808480E-24 1.48790921695E-24 1.60379376228E-24 1.72870387695E-24 1.86334250977E-24 2.00846735810E-24 2.16489513192E-24 2.33350614999E-24 2.51524929392E-24 2.71114734817E-24 2.92230275590E-24 3.14990382313E-24 3.39523140605E-24 3.65966611927E-24 3.94469610540E-24 4.25192540976E-24 4.58308300736E-24 4.94003253300E-24 5.32478276906E-24 5.73949895022E-24 6.18651494865E-24 6.66834640815E-24 7.18770490130E-24 7.74751318921E-24 8.35092166973E-24 9.00132610680E-24 9.70238674052E-24 1.04580488857E-23 1.12725651346E-23 1.21505192890E-23 1.30968521563E-23 1.41168893543E-23 1.52163712821E-23 1.64014854250E-23 1.76789011751E-23 1.90558073646E-23 2.05399527218E-23 2.21396894778E-23 2.38640203706E-23 2.57226493084E-23 2.77260359801E-23 2.98854547187E-23 3.22130579489E-23 3.47219445766E-23 3.74262337050E-23 4.03411440915E-23 4.34830797935E-23 4.68697224844E-23 5.05201309596E-23 5.44548483927E-23 5.86960179448E-23 6.32675073781E-23 6.81950433754E-23 7.35063563199E-23 7.92313363523E-23 8.54022015813E-23 9.20536793957E-23 9.92232018971E-23 1.06951116555E-22 1.15280913265E-22 1.24259469100E-22 1.33937312110E-22 1.44368905682E-22 1.55612955034E-22 1.67732737593E-22 1.80796459093E-22 1.94877637413E-22 2.10055516311E-22 2.26415511374E-22 2.44049690713E-22 2.63057293082E-22 2.83545286363E-22 3.05628969538E-22 3.29432621553E-22 3.55090200712E-22 3.82746098550E-22 4.12555952409E-22 4.44687521316E-22 4.79321630064E-22 5.16653186831E-22 5.56892280052E-22 6.00265360718E-22 6.47016516766E-22 6.97408846707E-22 7.51725940259E-22 8.10273474279E-22 8.73380933006E-22 9.41403462276E-22 1.01472386815E-21 1.09375477123E-21 1.17894092868E-21 1.27076173723E-21 1.36973393101E-21 1.47641448953E-21 1.59140377216E-21 1.71534889678E-21 1.84894738146E-21 1.99295106988E-21 2.14817036241E-21 2.31547877677E-21 2.49581786383E-21 2.69020250636E-21 2.89972663040E-21 3.12556936147E-21 3.36900166027E-21 3.63139347518E-21 3.91422145183E-21 4.21907724310E-21 4.54767646641E-21 4.90186835856E-21 5.28364618253E-21 5.69515844491E-21 6.13872098683E-21 6.61683001672E-21 7.13217615805E-21 7.68765959117E-21 8.28640637445E-21 8.93178603663E-21 9.62743053925E-21 1.03772547160E-20 1.11854783042E-20 1.20566496914E-20 1.29956715126E-20 1.40078282402E-20 1.50988159232E-20 1.62747742424E-20 1.75423210621E-20 1.89085896736E-20 2.03812689379E-20 2.19686465566E-20 2.36796557116E-20 2.55239253378E-20 2.75118343112E-20 2.96545698579E-20 3.19641905107E-20 3.44536939711E-20 3.71370902552E-20 4.00294805365E-20 4.31471421307E-20 4.65076200974E-20 5.01298259781E-20 5.40341442230E-20 5.82425469070E-20 6.27787173810E-20 6.76681835526E-20 7.29384615479E-20 7.86192105622E-20 8.47423997711E-20 9.13424882408E-20 9.84566188516E-20 1.06124827324E-19 1.14390267525E-19 1.23299454321E-19 1.32902525349E-19 1.43253523172E-19 1.54410699405E-19 1.66436842544E-19 1.79399631306E-19 1.93372015507E-19 2.08432626593E-19 2.24666220149E-19 2.42164152873E-19 2.61024896697E-19 2.81354592949E-19 3.03267649682E-19 3.26887385512E-19 3.52346723617E-19 3.79788939774E-19 4.09368468664E-19 4.41251772973E-19 4.75618280179E-19 5.12661392308E-19 5.52589574324E-19 5.95627527292E-19 6.42017452914E-19 6.92020416548E-19 7.45917816386E-19 8.04012967058E-19 8.66632806573E-19 9.34129736200E-19 1.00688360366E-18 1.08530384074E-18 1.16983176747E-18 1.26094307565E-18 1.35915050589E-18 1.46500673313E-18 1.57910747688E-18 1.70209485368E-18 1.83466099072E-18 1.97755192085E-18 2.13157178099E-18 2.29758733747E-18 2.47653286390E-18 2.66941539888E-18 2.87732041326E-18 3.10141791871E-18 3.34296905212E-18 3.60333317281E-18 3.88397551246E-18 4.18647542090E-18 4.51253525404E-18 4.86398995410E-18 5.24281737597E-18 5.65114941778E-18 6.09128401842E-18 6.56569808945E-18 7.07706145419E-18 7.62825187243E-18 8.22237123537E-18 8.86276302186E-18 9.55303111414E-18 1.02970600791E-17 1.10990370293E-17 1.19634751858E-17 1.28952392776E-17 1.38995729178E-17 1.49821281128E-17 1.61489970696E-17 1.74067464803E-17 1.87624544766E-17 2.02237504632E-17 2.17988580524E-17 2.34966413438E-17 2.53266548078E-17 2.72991970540E-17 2.94253687881E-17 3.17171352818E-17 3.41873937085E-17 3.68500457237E-17 3.97200756975E-17 4.28136350405E-17 4.61481330975E-17 4.97423351203E-17 5.36164678700E-17 5.77923334460E-17 6.22934319780E-17 6.71450938757E-17 7.23746223776E-17 7.80114472021E-17 8.40872901653E-17 9.06363436986E-17 9.76954632686E-17 1.05304374784E-16 1.13505898158E-16 1.22346188276E-16 1.31874994740E-16 1.42145941835E-16 1.53216830306E-16 1.65149962632E-16 1.78012493638E-16 1.91876808417E-16 2.06820929673E-16 2.22928956809E-16 2.40291539189E-16 2.59006386284E-16 2.79178817528E-16 3.00922355010E-16 3.24359362331E-16 3.49621733201E-16 3.76851633683E-16 4.06202302237E-16 4.37838912073E-16 4.71939500670E-16 5.08695971688E-16 5.48315174909E-16 5.91020070294E-16 6.37050982692E-16 6.86666954272E-16 7.40147202290E-16 7.97792690386E-16 8.59927822263E-16 9.26902267268E-16 9.99092928160E-16 1.07690606213E-15 1.16077956701E-15 1.25118544555E-15 1.34863246160E-15 1.45366900316E-15 1.56688616846E-15 1.68892109232E-15 1.82046053163E-15 1.96224473003E-15 2.11507158363E-15 2.27980113115E-15 2.45736039371E-15 2.64874859164E-15 2.85504276753E-15 3.07740384720E-15 3.31708317278E-15 3.57542954454E-15 3.85389681116E-15 4.15405205115E-15 4.47758439148E-15 4.82631451298E-15 5.20220489605E-15 5.60737086432E-15 6.04409248843E-15 6.51482741688E-15 7.02222470612E-15 7.56913972784E-15 8.15865023716E-15 8.79407369232E-15 9.47898592314E-15 1.02172412535E-14 1.10129941911E-14 1.18707228058E-14 1.27952539297E-14 1.37917903190E-14 1.48659399316E-14 1.60237474847E-14 1.72717284704E-14 1.86169058199E-14 2.00668494238E-14 2.16297187296E-14 2.33143086576E-14 2.51300990912E-14 2.70873082232E-14 2.91969500557E-14 3.14708963783E-14 3.39219435729E-14 3.65638846218E-14 3.94115867231E-14 4.24810749514E-14 4.57896224330E-14 4.93558475448E-14 5.31998186821E-14 5.73431671863E-14 6.18092090670E-14 6.66230762030E-14 7.18118577619E-14 7.74047526329E-14 8.34332337302E-14 8.99312250929E-14 9.69352927763E-14 1.04484850609E-13 1.12622381977E-13 1.21393678871E-13 1.30848099564E-13 1.41038846342E-13 1.52023264871E-13 1.63863166877E-13 1.76625177952E-13 1.90381112451E-13 2.05208377577E-13 2.21190408943E-13 2.38417140042E-13 2.56985508293E-13 2.77000000480E-13 2.98573240672E-13 3.21826623933E-13 3.46890999374E-13 3.73907406396E-13 4.03027868276E-13 4.34416247543E-13 4.68249167967E-13 5.04717008349E-13 5.44024973699E-13 5.86394249823E-13 6.32063247829E-13 6.81288945537E-13 7.34348333352E-13 7.91539972723E-13 8.53185675964E-13 9.19632316885E-13 9.91253782405E-13 1.06845307615E-12 1.15166458587E-12 1.24135652733E-12 1.33803357868E-12 1.44223971975E-12 1.55456129257E-12 1.67563030018E-12 1.80612796228E-12 1.94678854775E-12 2.09840350560E-12 2.26182591763E-12 2.43797529765E-12 2.62784276458E-12 2.83249661820E-12 3.05308834907E-12 3.29085911651E-12 3.54714673499E-12 3.82339317748E-12 4.12115273690E-12 4.44210071646E-12 4.78804287720E-12 5.16092560039E-12 5.56284683106E-12 5.99606787963E-12 6.46302613425E-12 6.96634878965E-12 7.50886760392E-12 8.09363484945E-12 8.72394045704E-12 9.40333054656E-12 1.01356273480E-11 1.09249507264E-11 1.17757413369E-11 1.26927855808E-11 1.36812426018E-11 1.47466732068E-11 1.58950712031E-11 1.71328971095E-11 1.84671144325E-11 1.99052289170E-11 2.14553306919E-11 2.31261397839E-11 2.49270551832E-11 2.68682076401E-11 2.89605167254E-11 3.12157520547E-11 3.36465998667E-11 3.62667339141E-11 3.90908924434E-11 4.21349612843E-11 4.54160631973E-11 4.89526537712E-11 5.27646253543E-11 5.68734194244E-11 6.13021460808E-11 6.60757151447E-11 7.12209752829E-11 7.67668655323E-11 8.27445775603E-11 8.91877311564E-11 9.61325639381E-11 1.03618133553E-10 1.11686538680E-10 1.20383154946E-10 1.29756889821E-10 1.39860458217E-10 1.50750678456E-10 1.62488791087E-10 1.75140803503E-10 1.88777861473E-10 2.03476647901E-10 2.19319814399E-10 2.36396445624E-10 2.54802559972E-10 2.74641648736E-10 2.96025257976E-10 3.19073615289E-10 3.43916304620E-10 3.70692995392E-10 3.99554226155E-10 4.30662250944E-10 4.64191949544E-10 5.00331811854E-10 5.39284994829E-10 5.81270464327E-10 6.26524224133E-10 6.75300642220E-10 7.27873879178E-10 7.84539426963E-10 8.45615769254E-10 9.11446167959E-10 9.82400592509E-10 1.05887779510E-09 1.14130754990E-09 1.23015306739E-09 1.32591358950E-09 1.42912719779E-09 1.54037382794E-09 1.66027852763E-09 1.78951496541E-09 1.92880920405E-09 2.07894378068E-09 2.24076209633E-09 2.41517314478E-09 2.60315661196E-09 2.80576837211E-09 3.02414640719E-09 3.25951719443E-09 3.51320257406E-09 3.78662717690E-09 4.08132638687E-09 4.39895496952E-09 4.74129634316E-09 5.11027256855E-09 5.50795512266E-09 5.93657650593E-09 6.39854275831E-09 6.89644692578E-09 7.43308359992E-09 8.01146455737E-09 8.63483563164E-09 9.30669489828E-09 1.00308122443E-08 1.08112504925E-08 1.16523881153E-08 1.25589437701E-08 1.35360026822E-08 1.45890451119E-08 1.57239770102E-08 1.69471630445E-08 1.82654622017E-08 1.96862661430E-08 2.12175405290E-08 2.28678695397E-08 2.46465038612E-08 2.65634123731E-08 2.86293378481E-08 3.08558569458E-08 3.32554448964E-08 3.58415451242E-08 3.86286443331E-08 4.16323533326E-08 4.48694941820E-08 4.83581940143E-08 5.21179861798E-08 5.61699191518E-08 6.05366738850E-08 6.52426902621E-08 7.03143032618E-08 7.57798897024E-08 8.16700262822E-08 8.80176598519E-08 9.48582908345E-08 1.02230170777E-07 1.10174515214E-07 1.18735732870E-07 1.27961672641E-07 1.37903889556E-07 1.48617931266E-07 1.60163646664E-07 1.72605518209E-07 1.86013019946E-07 2.00461003060E-07 2.16030111099E-07 2.32807227245E-07 2.50885955896E-07 2.70367141466E-07 2.91359426882E-07 3.13979855236E-07 3.38354517549E-07 3.64619250344E-07 3.92920386870E-07 4.23415565891E-07 4.56274602700E-07 4.91680426870E-07 5.29830091958E-07 5.70935862660E-07 6.15226385304E-07 6.62947947875E-07 7.14365836757E-07 7.69765797176E-07 8.29455605389E-07 8.93766761183E-07 9.63056309705E-07 1.03770880249E-06 1.11813840822E-06 1.20479118470E-06 1.29814752393E-06 1.39872478394E-06 1.50708012077E-06 1.62381353654E-06 1.74957115920E-06 1.88504877200E-06 2.03099561109E-06 2.18821845183E-06 2.35758600521E-06 2.54003364791E-06 2.73656851098E-06 2.94827495417E-06 3.17632045464E-06 3.42196194117E-06 3.68655260747E-06 3.97154923991E-06 4.27852009851E-06 4.60915339225E-06 4.96526639304E-06 5.34881523586E-06 5.76190545609E-06 6.20680331871E-06 6.68594799811E-06 7.20196467149E-06 7.75767859334E-06 8.35613022344E-06 9.00059148615E-06 9.69458324403E-06 1.04418940753E-05 1.12466004507E-05 1.21130884120E-05 1.30460768623E-05 1.40506425861E-05 1.51322471242E-05 1.62967656390E-05 1.75505179149E-05 1.89003016481E-05 2.03534281911E-05 2.19177609297E-05 2.36017564812E-05 2.54145089178E-05 2.73657972297E-05 2.94661362625E-05 3.17268313739E-05 3.41600370759E-05 3.67788199454E-05 3.95972261042E-05 4.26303535912E-05 4.58944299723E-05 4.94068955528E-05 5.31864925870E-05 5.72533609009E-05 6.16291403747E-05 6.63370807600E-05 7.14021593369E-05 7.68512069517E-05 8.27130430069E-05 8.90186200163E-05 9.58011783734E-05 1.03096412025E-04 1.10942645786E-04 1.19381025070E-04 1.28455718870E-04 1.38214136872E-04 1.48707161624E-04 1.59989396760E-04 1.72119432321E-04 1.85160128294E-04 1.99178917531E-04 2.14248129307E-04 2.30445334819E-04 2.47853716031E-04 2.66562459316E-04 2.86667175462E-04 3.08270347648E-04 3.31481809148E-04 3.56419252528E-04 3.83208772276E-04 4.11985442841E-04 4.42893934190E-04 4.76089167072E-04 5.11737010306E-04 5.50015022480E-04 5.91113240603E-04 6.35235018301E-04 6.82597916327E-04 7.33434648191E-04 7.87994083886E-04 8.46542314760E-04 9.09363782690E-04 9.76762476843E-04 1.04906320136E-03 1.12661291746E-03 1.20978216344E-03 1.29896655625E-03 1.39458837836E-03 1.49709825345E-03 1.60697691503E-03 1.72473707148E-03 1.85092537152E-03 1.98612447371E-03 2.13095522397E-03 2.28607894441E-03 2.45219983746E-03 2.63006750823E-03 2.82047960872E-03 3.02428460659E-03 3.24238468125E-03 3.47573874959E-03 3.72536562331E-03 3.99234729919E-03 4.27783238321E-03 4.58303964871E-03 4.90926172801E-03 5.25786893621E-03 5.63031322455E-03 6.02813226018E-03 6.45295362739E-03 6.90649914436E-03 7.39058928782E-03 7.90714771642E-03 8.45820588143E-03 9.04590771187E-03 9.67251435834E-03 1.03404089777E-02 1.10521015378E-02 1.18102336192E-02 1.26175831856E-02 1.34770692950E-02 1.43917567152E-02 1.53648604072E-02 1.63997498331E-02 1.74999530428E-02 1.86691604863E-02 1.99112284951E-02 2.12301823706E-02 2.26302190100E-02 2.41157089968E-02 2.56911980735E-02 2.73614079102E-02 2.91312360746E-02 3.10057551018E-02 3.29902105560E-02 3.50900179683E-02 3.73107585269E-02 3.96581733911E-02 4.21381564895E-02 4.47567456596E-02 4.75201119767E-02 5.04345471156E-02 5.35064485813E-02 5.67423026408E-02 6.01486647847E-02 6.37321375426E-02 6.74993454759E-02 7.14569071719E-02 7.56114040629E-02 7.99693458983E-02 8.45371327066E-02 8.93210130861E-02 9.43270386827E-02 9.95610147210E-02 1.05028446478E-01 1.10734481607E-01 1.16683848254E-01 1.22880788923E-01 1.29328990110E-01 1.36031507736E-01 1.42990688483E-01 1.50208087174E-01 1.57684380407E-01 1.65419276711E-01 1.73411423568E-01 1.81658311728E-01 1.90156177319E-01 1.98899902360E-01 2.07882914360E-01 2.17097085815E-01 2.26532634508E-01 2.36178025620E-01 2.46019876796E-01 2.56042867411E-01 2.66229653398E-01 2.76560789115E-01 2.87014657850E-01 2.97567412643E-01 3.08192929225E-01 3.18862772945E-01 3.29546181615E-01 3.40210066286E-01 3.50819031959E-01 3.61335420254E-01 3.71719376053E-01 3.81928940024E-01 3.91920168890E-01 4.01647285117E-01 4.11062857546E-01 4.20118014236E-01 4.28762688504E-01 4.36945898809E-01 4.44616062737E-01 4.51721344857E-01 4.58210037770E-01 4.64030975041E-01 4.69133974149E-01 4.73470306893E-01 4.76993194029E-01 4.79658320159E-01 4.81424364173E-01 4.82253539792E-01 4.82112140013E-01 4.80971078574E-01 4.78806420853E-01 4.75599896064E-01 4.71339382070E-01 4.66019353745E-01 4.59641285558E-01 4.52213998926E-01 4.43753944974E-01 4.34285413552E-01 4.23840659895E-01 4.12459940935E-01 4.00191454270E-01 3.87091173894E-01 3.73222578222E-01 3.58656267548E-01 3.43469469873E-01 3.27745436054E-01 3.11572727346E-01 2.95044400650E-01 2.78257099097E-01 2.61310057863E-01 2.44304037407E-01 2.27340198412E-01 2.10518934696E-01 1.93938682079E-01 1.77694722604E-01 1.61878004573E-01 1.46573999583E-01 1.31861617895E-01 1.17812203325E-01 1.04488628044E-01 9.19445065050E-02 8.02235459527E-02 6.93590488071E-02 5.93735795110E-02 5.02788053604E-02 4.20755173417E-02 3.47538331779E-02 2.82935806728E-02 2.26648551177E-02 1.78287400571E-02 1.37381761957E-02 1.03389587801E-02 7.57083952835E-03 5.36870527920E-03 3.66380215019E-03 2.38497136114E-03 1.45986120848E-03 8.16079228894E-04 3.86178907659E-04 1.20677793354E-04 -2.23596612958E-05 -8.03596596240E-05 -8.54895577174E-05 -6.39916705887E-05 -3.56102154177E-05 -1.31196824012E-05 -1.96200842198E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 2 2 i j (l(j)) 5.98936341010E-01 Q_int 1.98339591139E-29 2.13787101780E-29 2.30437728670E-29 2.48385175498E-29 2.67730443981E-29 2.88582402274E-29 3.11058397633E-29 3.35284916805E-29 3.61398297852E-29 3.89545497407E-29 4.19884917700E-29 4.52587297979E-29 4.87836675379E-29 5.25831420605E-29 5.66785354301E-29 6.10928950348E-29 6.58510632890E-29 7.09798174372E-29 7.65080202474E-29 8.24667824392E-29 8.88896377645E-29 9.58127317230E-29 1.03275024976E-28 1.11318512602E-28 1.19988460432E-28 1.29333659787E-28 1.39406702058E-28 1.50264274674E-28 1.61967480112E-28 1.74582179769E-28 1.88179364597E-28 2.02835554619E-28 2.18633229556E-28 2.35661292991E-28 2.54015572688E-28 2.73799359873E-28 2.95123990524E-28 3.18109471926E-28 3.42885158028E-28 3.69590477405E-28 3.98375717904E-28 4.29402872417E-28 4.62846550513E-28 4.98894961078E-28 5.37750971490E-28 5.79633249279E-28 6.24777492708E-28 6.73437757203E-28 7.25887885078E-28 7.82423046624E-28 8.43361401221E-28 9.09045887819E-28 9.79846154880E-28 1.05616064062E-27 1.13841881528E-27 1.22708359802E-27 1.32265396208E-27 1.42566774278E-27 1.53670466432E-27 1.65638960221E-27 1.78539609985E-27 1.92445015901E-27 2.07433432549E-27 2.23589209300E-27 2.41003265004E-27 2.59773599650E-27 2.80005845869E-27 3.01813863406E-27 3.25320379869E-27 3.50657681405E-27 3.77968357156E-27 4.07406101696E-27 4.39136579972E-27 4.73338359603E-27 5.10203915797E-27 5.49940714529E-27 5.92772380087E-27 6.38939953545E-27 6.88703249256E-27 7.42342316995E-27 8.00159017975E-27 8.62478723613E-27 9.29652146603E-27 1.00205731460E-26 1.08010169762E-26 1.16422450113E-26 1.25489913776E-26 1.35263589146E-26 1.45798478922E-26 1.57153869642E-26 1.69393665325E-26 1.82586747101E-26 1.96807360846E-26 2.12135535017E-26 2.28657531016E-26 2.46466328643E-26 2.65662149348E-26 2.86353020248E-26 3.08655382056E-26 3.32694744373E-26 3.58606392009E-26 3.86536146316E-26 4.16641185818E-26 4.49090930754E-26 4.84067996516E-26 5.21769221340E-26 5.62406774041E-26 6.06209348022E-26 6.53423448277E-26 7.04314778633E-26 7.59169737032E-26 8.18297027278E-26 8.82029396308E-26 9.50725506773E-26 1.02477195546E-25 1.10458544891E-25 1.19061514851E-25 1.28334519820E-25 1.38329744906E-25 1.49103439607E-25 1.60716234371E-25 1.73233481791E-25 1.86725624395E-25 2.01268591066E-25 2.16944224345E-25 2.33840741006E-25 2.52053228517E-25 2.71684180149E-25 2.92844071773E-25 3.15651983585E-25 3.40236270235E-25 3.66735283168E-25 3.95298149216E-25 4.26085609823E-25 4.59270925649E-25 4.95040851609E-25 5.33596687868E-25 5.75155412683E-25 6.19950903478E-25 6.68235253021E-25 7.20280188113E-25 7.76378598762E-25 8.36846186470E-25 9.02023240879E-25 9.72276554803E-25 1.04800148840E-24 1.12962419412E-24 1.21760401493E-24 1.31243606934E-24 1.41465403775E-24 1.52483316578E-24 1.64359350159E-24 1.77160338526E-24 1.90958320996E-24 2.05830947608E-24 2.21861916106E-24 2.39141442966E-24 2.57766771093E-24 2.77842717077E-24 2.99482261054E-24 3.22807182527E-24 3.47948745690E-24 3.75048438135E-24 4.04258767099E-24 4.35744117712E-24 4.69681678102E-24 5.06262436543E-24 5.45692256268E-24 5.88193033993E-24 6.34003948672E-24 6.83382807507E-24 7.36607496796E-24 7.93977545774E-24 8.55815812256E-24 9.22470299563E-24 9.94316114960E-24 1.07175758062E-23 1.15523050901E-23 1.24520465547E-23 1.34218636184E-23 1.44672140597E-23 1.55939807314E-23 1.68085046675E-23 1.81176207678E-23 1.95286962626E-23 2.10496721725E-23 2.26891079980E-23 2.44562298888E-23 2.63609825655E-23 2.84140852847E-23 3.06270921633E-23 3.30124572008E-23 3.55836043656E-23 3.83550031406E-23 4.13422499522E-23 4.45621559410E-23 4.80328415690E-23 5.17738385949E-23 5.58061999920E-23 6.01526184262E-23 6.48375539626E-23 6.98873717174E-23 7.53304902318E-23 8.11975414004E-23 8.75215428570E-23 9.43380837858E-23 1.01685525204E-22 1.09605215844E-22 1.18141724850E-22 1.27343092594E-22 1.37261101033E-22 1.47951565116E-22 1.59474646894E-22 1.71895194086E-22 1.85283105022E-22 1.99713722002E-22 2.15268255297E-22 2.32034240173E-22 2.50106029502E-22 2.69585324751E-22 2.90581748319E-22 3.13213460452E-22 3.37607824204E-22 3.63902122193E-22 3.92244329178E-22 4.22793944804E-22 4.55722891208E-22 4.91216480539E-22 5.29474457822E-22 5.70712125054E-22 6.15161552843E-22 6.63072886417E-22 7.14715753354E-22 7.70380780943E-22 8.30381231730E-22 8.95054766449E-22 9.64765344250E-22 1.03990527093E-21 1.12089740668E-21 1.20819754581E-21 1.30229698177E-21 1.40372527198E-21 1.51305321798E-21 1.63089607771E-21 1.75791702794E-21 1.89483089639E-21 2.04240818454E-21 2.20147940370E-21 2.37293974885E-21 2.55775413646E-21 2.75696263468E-21 2.97168631650E-21 3.20313356868E-21 3.45260689218E-21 3.72151023210E-21 4.01135687862E-21 4.32377798320E-21 4.66053173815E-21 5.02351327107E-21 5.41476530991E-21 5.83648967877E-21 6.29105968890E-21 6.78103349486E-21 7.30916849085E-21 7.87843682836E-21 8.49204214234E-21 9.15343758004E-21 9.86634523415E-21 1.06347770893E-20 1.14630576001E-20 1.23558480275E-20 1.33181726709E-20 1.43554471426E-20 1.54735088455E-20 1.66786498233E-20 1.79776521703E-20 1.93778261982E-20 2.08870515759E-20 2.25138216737E-20 2.42672913604E-20 2.61573285240E-20 2.81945696043E-20 3.03904794509E-20 3.27574158432E-20 3.53086990357E-20 3.80586867191E-20 4.10228548203E-20 4.42178845953E-20 4.76617565051E-20 5.13738514033E-20 5.53750596042E-20 5.96878984459E-20 6.43366390098E-20 6.93474427089E-20 7.47485085152E-20 8.05702316525E-20 8.68453746502E-20 9.36092517183E-20 1.00899927483E-19 1.08758431200E-19 1.17228987653E-19 1.26359266032E-19 1.36200648204E-19 1.46808517862E-19 1.58242572212E-19 1.70567157924E-19 1.83851633249E-19 1.98170758345E-19 2.13605115999E-19 2.30241565117E-19 2.48173729530E-19 2.67502524881E-19 2.88336726536E-19 3.10793581733E-19 3.34999469407E-19 3.61090611400E-19 3.89213839073E-19 4.19527419613E-19 4.52201946705E-19 4.87421300569E-19 5.25383682770E-19 5.66302731620E-19 6.10408724460E-19 6.57949873571E-19 7.09193723020E-19 7.64428654302E-19 8.23965509239E-19 8.88139339286E-19 9.57311291070E-19 1.03187063880E-18 1.11223697493E-18 1.19886257150E-18 1.29223492534E-18 1.39287950152E-18 1.50136269045E-18 1.61829499535E-18 1.74433446792E-18 1.88019041158E-18 2.02662737319E-18 2.18446944563E-18 2.35460490548E-18 2.53799121189E-18 2.73566039483E-18 2.94872486293E-18 3.17838366370E-18 3.42592923135E-18 3.69275466007E-18 3.98036154387E-18 4.29036842695E-18 4.62451991228E-18 4.98469647953E-18 5.37292506771E-18 5.79139048202E-18 6.24244768904E-18 6.72863506965E-18 7.25268870401E-18 7.81755776920E-18 8.42642113602E-18 9.08270525848E-18 9.79010345652E-18 1.05525967006E-17 1.13744760152E-17 1.22603666267E-17 1.32152539926E-17 1.42445118579E-17 1.53539324959E-17 1.65497593055E-17 1.78387219461E-17 1.92280742097E-17 2.07256348423E-17 2.23398315448E-17 2.40797484009E-17 2.59551769983E-17 2.79766715324E-17 3.01556082007E-17 3.25042492238E-17 3.50358118519E-17 3.77645427469E-17 4.07057981560E-17 4.38761303311E-17 4.72933806783E-17 5.09767801614E-17 5.49470575269E-17 5.92265559562E-17 6.38393588042E-17 6.88114251310E-17 7.41707357881E-17 7.99474508838E-17 8.61740795113E-17 9.28856626971E-17 1.00119970597E-16 1.07917715050E-16 1.16322778689E-16 1.25382461895E-16 1.35147748979E-16 1.45673595105E-16 1.57019235553E-16 1.69248519069E-16 1.82430267180E-16 1.96638661491E-16 2.11953661147E-16 2.28461452811E-16 2.46254935683E-16 2.65434244296E-16 2.86107312032E-16 3.08390478520E-16 3.32409144350E-16 3.58298476766E-16 3.86204170330E-16 4.16283266827E-16 4.48705039024E-16 4.83651943264E-16 5.21320646242E-16 5.61923131761E-16 6.05687893681E-16 6.52861221770E-16 7.03708587717E-16 7.58516139080E-16 8.17592309592E-16 8.81269554879E-16 9.49906223366E-16 1.02388857289E-15 1.10363294438E-15 1.18958810481E-15 1.28223777266E-15 1.38210334004E-15 1.48974680681E-15 1.60577394330E-15 1.73083769919E-15 1.86564187808E-15 2.01094509808E-15 2.16756506094E-15 2.33638315369E-15 2.51834940859E-15 2.71448784944E-15 2.92590225426E-15 3.15378236677E-15 3.39941059161E-15 3.66416921105E-15 3.94954816375E-15 4.25715342928E-15 4.58871606575E-15 4.94610195118E-15 5.33132228368E-15 5.74654489934E-15 6.19410647153E-15 6.67652566042E-15 7.19651728653E-15 7.75700760813E-15 8.36115078853E-15 9.01234664583E-15 9.71425978504E-15 1.04708402203E-14 1.12863456031E-14 1.21653651816E-14 1.31128456265E-14 1.41341188671E-14 1.52349320965E-14 1.64214801130E-14 1.77004401802E-14 1.90790096025E-14 2.05649462264E-14 2.21666120967E-14 2.38930205125E-14 2.57538867472E-14 2.77596827199E-14 2.99216959239E-14 3.22520929441E-14 3.47639879222E-14 3.74715163534E-14 4.03899146303E-14 4.35356057818E-14 4.69262918897E-14 5.05810537019E-14 5.45204580040E-14 5.87666733532E-14 6.33435948244E-14 6.82769784728E-14 7.35945862672E-14 7.93263423113E-14 8.55045012309E-14 9.21638296753E-14 9.93418019528E-14 1.07078810904E-13 1.15418395194E-13 1.24407484312E-13 1.34096662641E-13 1.44540454105E-13 1.55797628972E-13 1.67931534561E-13 1.81010451691E-13 1.95107978903E-13 2.10303446596E-13 2.26682363413E-13 2.44336897395E-13 2.63366394605E-13 2.83877938136E-13 3.05986950659E-13 3.29817843889E-13 3.55504718631E-13 3.83192119345E-13 4.13035847466E-13 4.45203838069E-13 4.79877104801E-13 5.17250758395E-13 5.57535104508E-13 6.00956827044E-13 6.47760263635E-13 6.98208780440E-13 7.52586254010E-13 8.11198668547E-13 8.74375837548E-13 9.42473259514E-13 1.01587411817E-12 1.09499143846E-12 1.18027041038E-12 1.27219089384E-12 1.37127011856E-12 1.47806559415E-12 1.59317824689E-12 1.71725580072E-12 1.85099642148E-12 1.99515264501E-12 2.15053561101E-12 2.31801962669E-12 2.49854708573E-12 2.69313377025E-12 2.90287456567E-12 3.12894962055E-12 3.37263098607E-12 3.63528977249E-12 3.91840386286E-12 4.22356622736E-12 4.55249388504E-12 4.90703756329E-12 5.28919210962E-12 5.70110771363E-12 6.14510200285E-12 6.62367308755E-12 7.13951358607E-12 7.69552582731E-12 8.29483811937E-12 8.94082237453E-12 9.63711307535E-12 1.03876277217E-11 1.11965888706E-11 1.20685478612E-11 1.30084104517E-11 1.40214643969E-11 1.51134091939E-11 1.62903881339E-11 1.75590228712E-11 1.89264506545E-11 2.04003644756E-11 2.19890563528E-11 2.37014639188E-11 2.55472207666E-11 2.75367105871E-11 2.96811255353E-11 3.19925292644E-11 3.44839246627E-11 3.71693270808E-11 4.00638431448E-11 4.31837556088E-11 4.65466149916E-11 5.01713383112E-11 5.40783154616E-11 5.82895236112E-11 6.28286514463E-11 6.77212315703E-11 7.29947844823E-11 7.86789733436E-11 8.48057707811E-11 9.14096384969E-11 9.85277210192E-11 1.06200054913E-10 1.14469793209E-10 1.23383448790E-10 1.32991155201E-10 1.43346949064E-10 1.54509073252E-10 1.66540304811E-10 1.79508307812E-10 1.93486013239E-10 2.08552029596E-10 2.24791084140E-10 2.42294499440E-10 2.61160706820E-10 2.81495799169E-10 3.03414127596E-10 3.27038943428E-10 3.52503091673E-10 3.79949757508E-10 4.09533269697E-10 4.41419969500E-10 4.75789143921E-10 5.12834034108E-10 5.52762920365E-10 5.95800292989E-10 6.42188111975E-10 6.92187168969E-10 7.46078549726E-10 8.04165214110E-10 8.66773697452E-10 9.34255945272E-10 1.00699129105E-09 1.08538858312E-09 1.16988848276E-09 1.26096594111E-09 1.35913286117E-09 1.46494097725E-09 1.57898494902E-09 1.70190570100E-09 1.83439402423E-09 1.97719444755E-09 2.13110942202E-09 2.29700382437E-09 2.47580981053E-09 2.66853204463E-09 2.87625334131E-09 3.10014073834E-09 3.34145204977E-09 3.60154291492E-09 3.88187441063E-09 4.18402124707E-09 4.50968059748E-09 4.86068161614E-09 5.23899570436E-09 5.64674755478E-09 6.08622707784E-09 6.55990222717E-09 7.07043285320E-09 7.62068559261E-09 8.21374994753E-09 8.85295560644E-09 9.54189109933E-09 1.02844238956E-08 1.10847220849E-08 1.19472777313E-08 1.28769320147E-08 1.38789023780E-08 1.49588117110E-08 1.61227198597E-08 1.73771575465E-08 1.87291629333E-08 2.01863210143E-08 2.17568060554E-08 2.34494273565E-08 2.52736785175E-08 2.72397905689E-08 2.93587891786E-08 3.16425563200E-08 3.41038967073E-08 3.67566093885E-08 3.96155648710E-08 4.26967882287E-08 4.60175486493E-08 4.95964559116E-08 5.34535643385E-08 5.76104847709E-08 6.20905052663E-08 6.69187210724E-08 7.21221747193E-08 7.77300068821E-08 8.37736189932E-08 9.02868483559E-08 9.73061568597E-08 1.04870834243E-07 1.13023217079E-07 1.21808924719E-07 1.31277113402E-07 1.41480750067E-07 1.52476907249E-07 1.64327080795E-07 1.77097532083E-07 1.90859656660E-07 2.05690381342E-07 2.21672591931E-07 2.38895593922E-07 2.57455608774E-07 2.77456308353E-07 2.99009390699E-07 3.22235200004E-07 3.47263394489E-07 3.74233665612E-07 4.03296512665E-07 4.34614077073E-07 4.68361040709E-07 5.04725593531E-07 5.43910475369E-07 5.86134098027E-07 6.31631753445E-07 6.80656914697E-07 7.33482636987E-07 7.90403065993E-07 8.51735062119E-07 9.17819949259E-07 9.89025397589E-07 1.06574745071E-06 1.14841270811E-06 1.23748067460E-06 1.33344628973E-06 1.43684265068E-06 1.54824394324E-06 1.66826859700E-06 1.79758268141E-06 1.93690356131E-06 2.08700383124E-06 2.24871555012E-06 2.42293479839E-06 2.61062658282E-06 2.81283011434E-06 3.03066448796E-06 3.26533479437E-06 3.51813869636E-06 3.79047350451E-06 4.08384379030E-06 4.39986957659E-06 4.74029514908E-06 5.10699853526E-06 5.50200170093E-06 5.92748151813E-06 6.38578156186E-06 6.87942479804E-06 7.41112722872E-06 7.98381256643E-06 8.60062801375E-06 9.26496123098E-06 9.98045857947E-06 1.07510447360E-05 1.15809437790E-05 1.24747018568E-05 1.34372115528E-05 1.44737380752E-05 1.55899474034E-05 1.67919365376E-05 1.80862660033E-05 1.94799947779E-05 2.09807178167E-05 2.25966063676E-05 2.43364512782E-05 2.62097095131E-05 2.82265541160E-05 3.03979278641E-05 3.27356008848E-05 3.52522325196E-05 3.79614377407E-05 4.08778584506E-05 4.40172400120E-05 4.73965133851E-05 5.10338832713E-05 5.49489226931E-05 5.91626744657E-05 6.36977600506E-05 6.85784963125E-05 7.38310207373E-05 7.94834257048E-05 8.55659024524E-05 9.21108954059E-05 9.91532675999E-05 1.06730477958E-04 1.14882771250E-04 1.23653381609E-04 1.33088750525E-04 1.43238760323E-04 1.54156984159E-04 1.65900953683E-04 1.78532445536E-04 1.92117787959E-04 2.06728188869E-04 2.22440086815E-04 2.39335526349E-04 2.57502559408E-04 2.77035674421E-04 2.98036254956E-04 3.20613069805E-04 3.44882796554E-04 3.70970580773E-04 3.99010633093E-04 4.29146866571E-04 4.61533576857E-04 4.96336167858E-04 5.33731925671E-04 5.73910843782E-04 6.17076502618E-04 6.63447006741E-04 7.13255983114E-04 7.66753644049E-04 8.24207918619E-04 8.85905656483E-04 9.52153908264E-04 1.02328128681E-03 1.09963941379E-03 1.18160445644E-03 1.26957875914E-03 1.36399257502E-03 1.46530590289E-03 1.57401043464E-03 1.69063161904E-03 1.81573084742E-03 1.94990776727E-03 2.09380272978E-03 2.24809937746E-03 2.41352737810E-03 2.59086531151E-03 2.78094371537E-03 2.98464829665E-03 3.20292331504E-03 3.43677514480E-03 3.68727602129E-03 3.95556797830E-03 4.24286698218E-03 4.55046726836E-03 4.87974588561E-03 5.23216745301E-03 5.60928913371E-03 6.01276582958E-03 6.44435559943E-03 6.90592530309E-03 7.39945647231E-03 7.92705140859E-03 8.49093950638E-03 9.09348379892E-03 9.73718772187E-03 1.04247020885E-02 1.11588322674E-02 1.19425455518E-02 1.27789787072E-02 1.36714456788E-02 1.46234454411E-02 1.56386699645E-02 1.67210122708E-02 1.78745745475E-02 1.91036762821E-02 2.04128623760E-02 2.18069111896E-02 2.32908424657E-02 2.48699250707E-02 2.65496844872E-02 2.83359099818E-02 3.02346613687E-02 3.22522752741E-02 3.43953708044E-02 3.66708545072E-02 3.90859245053E-02 4.16480736741E-02 4.43650917201E-02 4.72450660099E-02 5.02963809821E-02 5.35277159694E-02 5.69480412387E-02 6.05666120502E-02 6.43929605202E-02 6.84368850630E-02 7.27084371713E-02 7.72179052867E-02 8.19757954975E-02 8.69928087930E-02 9.22798145917E-02 9.78478202545E-02 1.03707936287E-01 1.09871336931E-01 1.16349215842E-01 1.23152736547E-01 1.30292977395E-01 1.37780870697E-01 1.45627135777E-01 1.53842205687E-01 1.62436147314E-01 1.71418574696E-01 1.80798555340E-01 1.90584509418E-01 2.00784101734E-01 2.11404126438E-01 2.22450384506E-01 2.33927554095E-01 2.45839053957E-01 2.58186900195E-01 2.70971556748E-01 2.84191780119E-01 2.97844458960E-01 3.11924449309E-01 3.26424406380E-01 3.41334614008E-01 3.56642812992E-01 3.72334029774E-01 3.88390407081E-01 4.04791038343E-01 4.21511807916E-01 4.38525239307E-01 4.55800353857E-01 4.73302542459E-01 4.90993453152E-01 5.08830897564E-01 5.26768779341E-01 5.44757047872E-01 5.62741680685E-01 5.80664698013E-01 5.98464213024E-01 6.16074521247E-01 6.33426232617E-01 6.50446449476E-01 6.67058993645E-01 6.83184685432E-01 6.98741677097E-01 7.13645842816E-01 7.27811226713E-01 7.41150549853E-01 7.53575776387E-01 7.64998738194E-01 7.75331816465E-01 7.84488677616E-01 7.92385059850E-01 7.98939605460E-01 8.04074732750E-01 8.07717540126E-01 8.09800733586E-01 8.10263567528E-01 8.09052787446E-01 8.06123561881E-01 8.01440389799E-01 7.94977968545E-01 7.86722006681E-01 7.76669965318E-01 7.64831711195E-01 7.51230064623E-01 7.35901225632E-01 7.18895062256E-01 7.00275245884E-01 6.80119219959E-01 6.58517990223E-01 6.35575726896E-01 6.11409171942E-01 5.86146847658E-01 5.59928066330E-01 5.32901744485E-01 5.05225029392E-01 4.77061749664E-01 4.48580706209E-01 4.19953824084E-01 3.91354190020E-01 3.62954004315E-01 3.34922479409E-01 3.07423720488E-01 2.80614625940E-01 2.54642847213E-01 2.29644848513E-01 2.05744106765E-01 1.83049491273E-01 1.61653860532E-01 1.41632910612E-01 1.23044305522E-01 1.05927114982E-01 9.03015791181E-02 7.61692129422E-02 6.35132560608E-02 5.22994651509E-02 4.24772384180E-02 3.39810527343E-02 2.67321856532E-02 2.06406862268E-02 1.56075507960E-02 1.15270529491E-02 8.28917098536E-03 5.78205180505E-03 3.89444754682E-03 2.51806087030E-03 1.54973689445E-03 8.93444777113E-04 4.65388273984E-04 2.04571477974E-04 6.17842197853E-05 -3.58178766310E-06 -2.33992186517E-05 -2.10075647546E-05 -1.17775611279E-05 -4.06010096227E-06 -5.38611387824E-07 6.93889390391E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 3 2 i j (l(j)) 0.00000000000E+00 Q_int 9.66356489479E-30 1.04162034411E-29 1.12274606014E-29 1.21019018369E-29 1.30444481854E-29 1.40604039560E-29 1.51554865791E-29 1.63358587824E-29 1.76081632724E-29 1.89795601174E-29 2.04577670411E-29 2.20511028559E-29 2.37685342776E-29 2.56197263874E-29 2.76150970227E-29 2.97658754055E-29 3.20841653365E-29 3.45830133102E-29 3.72764819365E-29 4.01797290796E-29 4.33090931612E-29 4.66821851070E-29 5.03179874549E-29 5.42369611814E-29 5.84611608487E-29 6.30143587203E-29 6.79221785418E-29 7.32122397428E-29 7.89143128683E-29 8.50604871174E-29 9.16853509290E-29 9.88261866331E-29 1.06523180262E-28 1.14819647705E-28 1.23762278469E-28 1.33401398437E-28 1.43791253078E-28 1.54990312726E-28 1.67061601625E-28 1.80073052609E-28 1.94097889405E-28 2.09215038706E-28 2.25509574343E-28 2.43073196052E-28 2.62004745523E-28 2.82410762650E-28 3.04406085093E-28 3.28114494546E-28 3.53669413338E-28 3.81214655281E-28 4.10905235002E-28 4.42908240312E-28 4.77403772516E-28 5.14585959953E-28 5.54664050486E-28 5.97863589067E-28 6.44427687027E-28 6.94618390216E-28 7.48718153704E-28 8.07031431331E-28 8.69886389069E-28 9.37636751817E-28 1.01066379404E-27 1.08937848543E-27 1.17422380371E-27 1.26567722757E-27 1.36425342368E-27 1.47050714311E-27 1.58503634326E-27 1.70848555291E-27 1.84154949942E-27 1.98497701841E-27 2.13957526792E-27 2.30621427081E-27 2.48583181093E-27 2.67943871064E-27 2.88812451932E-27 3.11306364500E-27 3.35552196347E-27 3.61686394218E-27 3.89856031897E-27 4.20219637886E-27 4.52948087542E-27 4.88225564706E-27 5.26250598222E-27 5.67237179183E-27 6.11415965195E-27 6.59035578439E-27 7.10364004822E-27 7.65690102105E-27 8.25325225491E-27 8.89604979818E-27 9.58891108224E-27 1.03357352790E-26 1.11407252441E-26 1.20084111691E-26 1.29436760754E-26 1.39517832947E-26 1.50384060887E-26 1.62096595761E-26 1.74721351468E-26 1.88329375551E-26 2.02997249034E-26 2.18807517386E-26 2.35849155061E-26 2.54218066215E-26 2.74017624413E-26 2.95359254386E-26 3.18363059085E-26 3.43158495577E-26 3.69885103582E-26 3.98693290752E-26 4.29745179114E-26 4.63215517429E-26 4.99292664618E-26 5.38179649775E-26 5.80095314744E-26 6.25275545680E-26 6.73974600530E-26 7.26466539906E-26 7.83046769398E-26 8.44033702008E-26 9.09770550067E-26 9.80627256703E-26 1.05700257775E-25 1.13932632582E-25 1.22806178907E-25 1.32370833852E-25 1.42680423823E-25 1.53792967452E-25 1.65771002102E-25 1.78681935808E-25 1.92598426619E-25 2.07598791495E-25 2.23767447049E-25 2.41195384607E-25 2.59980682277E-25 2.80229056900E-25 3.02054458980E-25 3.25579713962E-25 3.50937213444E-25 3.78269660233E-25 4.07730871422E-25 4.39486644017E-25 4.73715687985E-25 5.10610631965E-25 5.50379107313E-25 5.93244916580E-25 6.39449292985E-25 6.89252257994E-25 7.42934084623E-25 8.00796874712E-25 8.63166259048E-25 9.30393229894E-25 1.00285611625E-24 1.08096271294E-24 1.16515257556E-24 1.25589949409E-24 1.35371415927E-24 1.45914703654E-24 1.57279146387E-24 1.69528699086E-24 1.82732297788E-24 1.96964247555E-24 2.12304640637E-24 2.28839807199E-24 2.46662801157E-24 2.65873923853E-24 2.86581288515E-24 3.08901428676E-24 3.32959953985E-24 3.58892257092E-24 3.86844275586E-24 4.16973313284E-24 4.49448925476E-24 4.84453873122E-24 5.22185151362E-24 5.62855098137E-24 6.06692589147E-24 6.53944325881E-24 7.04876223964E-24 7.59774909634E-24 8.18949332768E-24 8.82732505543E-24 9.51483376503E-24 1.02558885060E-23 1.10546596654E-23 1.19156424374E-23 1.28436821206E-23 1.38440013854E-23 1.49222296655E-23 1.60844348384E-23 1.73371573728E-23 1.86874471366E-23 2.01429030702E-23 2.17117159514E-23 2.34027144895E-23 2.52254150106E-23 2.71900750113E-23 2.93077508851E-23 3.15903601428E-23 3.40507484809E-23 3.67027620714E-23 3.95613254842E-23 4.26425256763E-23 4.59637025237E-23 4.95435464039E-23 5.34022033784E-23 5.75613885676E-23 6.20445083557E-23 6.68767921129E-23 7.20854341776E-23 7.76997468959E-23 8.37513255811E-23 9.02742263205E-23 9.73051576307E-23 1.04883687040E-22 1.13052463759E-22 1.21857458697E-22 1.31348223168E-22 1.41578167746E-22 1.52604862845E-22 1.64490362699E-22 1.77301554585E-22 1.91110535237E-22 2.05995016582E-22 2.22038763073E-22 2.39332063089E-22 2.57972237039E-22 2.78064185050E-22 2.99720977305E-22 3.23064490365E-22 3.48226093037E-22 3.75347385680E-22 4.04580997074E-22 4.36091443361E-22 4.70056053881E-22 5.06665969120E-22 5.46127216376E-22 5.88661869206E-22 6.34509297177E-22 6.83927512948E-22 7.37194624276E-22 7.94610399100E-22 8.56497952528E-22 9.23205565211E-22 9.95108643341E-22 1.07261183130E-21 1.15615128885E-21 1.24619714567E-21 1.34325614711E-21 1.44787450593E-21 1.56064097620E-21 1.68219016661E-21 1.81320611177E-21 1.95442612178E-21 2.10664493148E-21 2.27071917295E-21 2.44757219631E-21 2.63819926604E-21 2.84367316192E-21 3.06515021626E-21 3.30387682130E-21 3.56119644350E-21 3.83855718402E-21 4.13751992813E-21 4.45976712932E-21 4.80711227749E-21 5.18151010467E-21 5.58506758548E-21 6.02005579444E-21 6.48892268675E-21 6.99430687447E-21 7.53905247570E-21 8.12622512020E-21 8.75912920164E-21 9.44132647354E-21 1.01766560935E-20 1.09692562286E-20 1.18235873434E-20 1.27444573019E-20 1.37370484245E-20 1.48069466519E-20 1.59601729812E-20 1.72032173495E-20 1.85430751569E-20 1.99872866342E-20 2.15439792765E-20 2.32219135818E-20 2.50305323519E-20 2.69800138327E-20 2.90813289941E-20 3.13463032703E-20 3.37876831092E-20 3.64192077044E-20 3.92556863146E-20 4.23130816048E-20 4.56085994778E-20 4.91607859034E-20 5.29896312875E-20 5.71166829714E-20 6.15651664920E-20 6.63601162866E-20 7.15285165775E-20 7.70994532294E-20 8.31042774337E-20 8.95767821415E-20 9.65533922380E-20 1.04073369528E-19 1.12179033687E-19 1.20916000422E-19 1.30333438176E-19 1.40484344835E-19 1.51425845976E-19 1.63219516352E-19 1.75931726409E-19 1.89634015796E-19 2.04403495964E-19 2.20323284120E-19 2.37482970979E-19 2.55979124947E-19 2.75915835575E-19 2.97405299334E-19 3.20568451015E-19 3.45535644304E-19 3.72447385368E-19 4.01455123567E-19 4.32722103755E-19 4.66424284966E-19 5.02751330638E-19 5.41907675974E-19 5.84113678424E-19 6.29606857775E-19 6.78643232825E-19 7.31498762155E-19 7.88470897129E-19 8.49880255832E-19 9.16072427389E-19 9.87419916812E-19 1.06432424132E-18 1.14721818992E-18 1.23656825899E-18 1.33287727753E-18 1.43668723691E-18 1.54858234097E-18 1.66919229375E-18 1.79919584314E-18 1.93932460069E-18 2.09036715881E-18 2.25317352867E-18 2.42865992375E-18 2.61781391592E-18 2.82169999315E-18 3.04146554999E-18 3.27834734472E-18 3.53367845932E-18 3.80889580155E-18 4.10554819133E-18 4.42530507688E-18 4.76996592973E-18 5.14147037149E-18 5.54190908921E-18 5.97353560107E-18 6.43877893820E-18 6.94025731437E-18 7.48079286029E-18 8.06342750544E-18 8.69144009687E-18 9.36836485124E-18 1.00980112441E-17 1.08844854479E-17 1.17322134403E-17 1.26459659113E-17 1.36308851113E-17 1.46925137895E-17 1.58368263860E-17 1.70702626539E-17 1.83997638996E-17 1.98328120457E-17 2.13774717361E-17 2.30424357209E-17 2.48370737752E-17 2.67714854291E-17 2.88565568032E-17 3.11040218715E-17 3.35265284953E-17 3.61377096004E-17 3.89522598977E-17 4.19860185785E-17 4.52560584517E-17 4.87807820219E-17 5.25800250513E-17 5.66751681874E-17 6.10892572839E-17 6.58471330936E-17 7.09755710613E-17 7.65034320052E-17 8.24618245332E-17 8.88842801088E-17 9.58069417523E-17 1.03268767438E-16 1.11311749333E-16 1.19981150112E-16 1.29325757674E-16 1.39398159702E-16 1.50255039601E-16 1.61957495490E-16 1.74571384034E-16 1.88167691056E-16 2.02822931016E-16 2.18619577596E-16 2.35646527830E-16 2.53999602374E-16 2.73782084741E-16 2.95105302535E-16 3.18089253952E-16 3.42863283075E-16 3.69566807762E-16 3.98350104226E-16 4.29375152719E-16 4.62816549083E-16 4.98862487290E-16 5.37715818513E-16 5.79595192670E-16 6.24736288887E-16 6.73393141783E-16 7.25839571056E-16 7.82370722404E-16 8.43304728463E-16 9.08984499096E-16 9.79779651126E-16 1.05608858835E-15 1.13834074355E-15 1.22699899513E-15 1.32256227195E-15 1.42556836107E-15 1.53659693409E-15 1.65627280926E-15 1.78526946765E-15 1.92431284311E-15 2.07418540744E-15 2.23573057374E-15 2.40985744267E-15 2.59754591835E-15 2.79985222277E-15 3.01791483954E-15 3.25296092071E-15 3.50631319241E-15 3.77939739848E-15 4.07375032366E-15 4.39102844172E-15 4.73301723717E-15 5.10164125284E-15 5.49897492009E-15 5.92725423244E-15 6.38888932834E-15 6.88647805396E-15 7.42282058226E-15 8.00093517051E-15 8.62407514521E-15 9.29574720961E-15 1.00197311772E-14 1.08001012420E-14 1.16412489053E-14 1.25479076882E-14 1.35251797685E-14 1.45785646923E-14 1.57139903214E-14 1.69378461915E-14 1.82570194673E-14 1.96789336990E-14 2.12115905964E-14 2.28636150563E-14 2.46443036971E-14 2.65636771731E-14 2.86325365627E-14 3.08625241488E-14 3.32661889315E-14 3.58570572447E-14 3.86497088703E-14 4.16598590816E-14 4.49044470754E-14 4.84017312913E-14 5.21713921544E-14 5.62346428192E-14 6.06143485384E-14 6.53351553277E-14 7.04236286508E-14 7.59084029049E-14 8.18203425480E-14 8.81927157742E-14 9.50613817143E-14 1.02464992215E-13 1.10445209333E-13 1.19046939767E-13 1.28318587541E-13 1.38312326376E-13 1.49084393268E-13 1.60695404919E-13 1.73210698833E-13 1.86700700948E-13 2.01241321923E-13 2.16914384265E-13 2.33808082735E-13 2.52017480596E-13 2.71645044510E-13 2.92801221098E-13 3.15605058383E-13 3.40184875641E-13 3.66678985413E-13 3.95236471732E-13 4.26018028971E-13 4.59196866000E-13 4.94959680754E-13 5.33507710702E-13 5.75057865109E-13 6.19843945468E-13 6.68117960981E-13 7.20151546461E-13 7.76237490659E-13 8.36691383599E-13 9.01853392190E-13 9.72090174107E-13 1.04779694070E-12 1.12939968053E-12 1.21735755610E-12 1.31216548712E-12 1.41435693503E-12 1.52450690426E-12 1.64323517723E-12 1.77120980129E-12 1.90915084704E-12 2.05783445947E-12 2.21809722439E-12 2.39084087494E-12 2.57703736454E-12 2.77773433483E-12 2.99406100937E-12 3.22723454893E-12 3.47856688461E-12 3.74947212728E-12 4.04147449644E-12 4.35621689455E-12 4.69547017216E-12 5.06114306632E-12 5.45529294807E-12 5.88013739191E-12 6.33806665806E-12 6.83165712090E-12 7.36368578230E-12 7.93714587524E-12 8.55526370733E-12 9.22151680750E-12 9.93965349010E-12 1.07137139303E-11 1.15480528778E-11 1.24473641984E-11 1.34167072025E-11 1.44615351600E-11 1.55877259475E-11 1.68016150952E-11 1.81100314406E-11 1.95203355251E-11 2.10404609777E-11 2.26789591624E-11 2.44450472170E-11 2.63486599428E-11 2.84005056266E-11 3.06121263033E-11 3.29959626679E-11 3.55654238892E-11 3.83349631581E-11 4.13201591047E-11 4.45378028851E-11 4.80059931977E-11 5.17442375946E-11 5.57735623890E-11 6.01166308666E-11 6.47978705262E-11 6.98436106933E-11 7.52822303282E-11 8.11443173695E-11 8.74628413879E-11 9.42733382626E-11 1.01614110021E-10 1.09526440582E-10 1.18054826988E-10 1.27247230629E-10 1.37155345963E-10 1.47834891233E-10 1.59345921657E-10 1.71753167228E-10 1.85126396169E-10 1.99540806927E-10 2.15077451019E-10 2.31823688498E-10 2.49873678534E-10 2.69328908847E-10 2.90298765679E-10 3.12901148298E-10 3.37263131803E-10 3.63521680718E-10 3.91824418145E-10 4.22330455564E-10 4.55211286395E-10 4.90651749463E-10 5.28851066332E-10 5.70023961225E-10 6.14401866652E-10 6.62234222534E-10 7.13789878072E-10 7.69358600407E-10 8.29252701047E-10 8.93808791802E-10 9.63389671343E-10 1.03838636591E-09 1.11922031981E-09 1.20634576367E-09 1.30025226488E-09 1.40146747286E-09 1.51056008111E-09 1.62814302109E-09 1.75487689573E-09 1.89147369175E-09 2.03870077116E-09 2.19738517903E-09 2.36841827761E-09 2.55276074983E-09 2.75144798877E-09 2.96559590063E-09 3.19640716399E-09 3.44517797600E-09 3.71330531270E-09 4.00229476490E-09 4.31376898453E-09 4.64947676677E-09 5.01130285657E-09 5.40127851391E-09 5.82159289363E-09 6.27460530484E-09 6.76285843540E-09 7.28909258995E-09 7.85626103502E-09 8.46754654569E-09 9.12637921833E-09 9.83645568182E-09 1.06017597777E-08 1.14265848736E-08 1.23155578779E-08 1.32736651377E-08 1.43062803312E-08 1.54191945284E-08 1.66186485794E-08 1.79113680147E-08 1.93046006506E-08 2.08061571000E-08 2.24244544378E-08 2.41685632316E-08 2.60482582254E-08 2.80740729418E-08 3.02573585149E-08 3.26103470802E-08 3.51462200705E-08 3.78791817821E-08 4.08245386647E-08 4.39987847069E-08 4.74196934628E-08 5.11064171654E-08 5.50795935273E-08 5.93614607826E-08 6.39759816287E-08 6.89489767391E-08 7.43082685968E-08 8.00838364415E-08 8.63079831844E-08 9.30155151822E-08 1.00243935949E-07 1.08033654753E-07 1.16428211358E-07 1.25474518074E-07 1.35223120484E-07 1.45728478286E-07 1.57049267756E-07 1.69248707555E-07 1.82394909604E-07 1.96561257012E-07 2.11826811092E-07 2.28276749679E-07 2.46002839266E-07 2.65103943345E-07 2.85686569933E-07 3.07865461156E-07 3.31764228146E-07 3.57516034725E-07 3.85264333588E-07 4.15163659020E-07 4.47380480437E-07 4.82094121419E-07 5.19497749196E-07 5.59799440053E-07 6.03223326259E-07 6.50010830956E-07 7.00421997518E-07 7.54736920666E-07 8.13257287037E-07 8.76308033566E-07 9.44239132569E-07 1.01742751316E-06 1.09627912942E-06 1.18123118623E-06 1.27275453507E-06 1.37135625219E-06 1.47758241332E-06 1.59202107958E-06 1.71530551062E-06 1.84811762198E-06 1.99119170532E-06 2.14531843114E-06 2.31134915516E-06 2.49020055155E-06 2.68285959705E-06 2.89038893277E-06 3.11393263164E-06 3.35472240204E-06 3.61408426030E-06 3.89344570686E-06 4.19434344382E-06 4.51843167441E-06 4.86749102726E-06 5.24343815237E-06 5.64833603846E-06 6.08440510512E-06 6.55403512739E-06 7.05979805412E-06 7.60446178624E-06 8.19100498578E-06 8.82263299129E-06 9.50279492153E-06 1.02352020540E-05 1.10238475726E-05 1.18730277832E-05 1.27873649067E-05 1.37718315615E-05 1.48317770616E-05 1.59729556592E-05 1.72015568755E-05 1.85242380684E-05 1.99481594007E-05 2.14810213801E-05 2.31311051571E-05 2.49073157776E-05 2.68192286031E-05 2.88771391221E-05 3.10921163977E-05 3.34760604066E-05 3.60417635460E-05 3.88029766044E-05 4.17744795081E-05 4.49721571812E-05 4.84130808750E-05 5.21155953510E-05 5.60994123219E-05 6.03857105871E-05 6.49972433230E-05 6.99584530230E-05 7.52955946092E-05 8.10368672764E-05 8.72125556612E-05 9.38551809683E-05 1.00999662727E-04 1.08683491889E-04 1.16946916028E-04 1.25833137448E-04 1.35388525051E-04 1.45662840866E-04 1.56709482218E-04 1.68585740527E-04 1.81353077842E-04 1.95077422232E-04 2.09829483242E-04 2.25685088702E-04 2.42725544215E-04 2.61038016757E-04 2.80715943888E-04 3.01859470143E-04 3.24575912270E-04 3.48980255060E-04 3.75195679617E-04 4.03354125969E-04 4.33596892075E-04 4.66075271322E-04 5.00951230736E-04 5.38398132225E-04 5.78601499268E-04 6.21759831572E-04 6.68085470316E-04 7.17805516703E-04 7.71162806654E-04 8.28416944555E-04 8.89845399092E-04 9.55744664272E-04 1.02643148885E-03 1.10224417745E-03 1.18354396667E-03 1.27071647975E-03 1.36417326313E-03 1.46435340844E-03 1.57172526363E-03 1.68678823656E-03 1.81007469479E-03 1.94215196500E-03 2.08362443547E-03 2.23513576508E-03 2.39737120195E-03 2.57106001490E-03 2.75697804049E-03 2.95595034841E-03 3.16885402734E-03 3.39662109341E-03 3.64024152262E-03 3.90076640836E-03 4.17931124437E-03 4.47705933296E-03 4.79526531746E-03 5.13525883705E-03 5.49844830115E-03 5.88632477941E-03 6.30046600214E-03 6.74254046461E-03 7.21431162725E-03 7.71764220188E-03 8.25449851246E-03 8.82695491662E-03 9.43719827218E-03 1.00875324301E-02 1.07803827332E-02 1.15183004960E-02 1.23039674397E-02 1.31402000507E-02 1.40299538291E-02 1.49763273891E-02 1.59825663689E-02 1.70520671032E-02 1.81883800072E-02 1.93952126149E-02 2.06764322107E-02 2.20360679857E-02 2.34783126461E-02 2.50075233947E-02 2.66282221982E-02 2.83450952495E-02 3.01629915261E-02 3.20869203371E-02 3.41220477488E-02 3.62736917676E-02 3.85473161550E-02 4.09485227411E-02 4.34830420986E-02 4.61567224309E-02 4.89755165245E-02 5.19454666094E-02 5.50726869682E-02 5.83633441299E-02 6.18236344854E-02 6.54597591559E-02 6.92778959520E-02 7.32841682590E-02 7.74846106917E-02 8.18851313678E-02 8.64914706590E-02 9.13091562899E-02 9.63434546745E-02 1.01599318395E-01 1.07081329752E-01 1.12793640350E-01 1.18739906694E-01 1.24923221846E-01 1.31346043182E-01 1.38010116396E-01 1.44916395894E-01 1.52064961830E-01 1.59454934057E-01 1.67084383383E-01 1.74950240544E-01 1.83048203457E-01 1.91372643339E-01 1.99916510410E-01 2.08671240004E-01 2.17626659970E-01 2.26770900415E-01 2.36090306881E-01 2.45569358228E-01 2.55190590528E-01 2.64934528446E-01 2.74779625652E-01 2.84702215891E-01 2.94676476460E-01 3.04674405869E-01 3.14665817549E-01 3.24618351497E-01 3.34497505748E-01 3.44266689577E-01 3.53887300261E-01 3.63318825191E-01 3.72518970960E-01 3.81443820953E-01 3.90048022716E-01 3.98285006164E-01 4.06107233374E-01 4.13466480369E-01 4.20314150886E-01 4.26601621678E-01 4.32280618387E-01 4.37303620465E-01 4.41624293036E-01 4.45197942937E-01 4.47981995526E-01 4.49936488121E-01 4.51024575284E-01 4.51213040406E-01 4.50472807414E-01 4.48779445756E-01 4.46113661216E-01 4.42461764617E-01 4.37816110016E-01 4.32175493699E-01 4.25545505103E-01 4.17938820759E-01 4.09375432523E-01 3.99882801695E-01 3.89495931160E-01 3.78257348493E-01 3.66216993902E-01 3.53432008120E-01 3.39966416777E-01 3.25890709381E-01 3.11281312854E-01 2.96219961524E-01 2.80792967544E-01 2.65090397860E-01 2.49205166056E-01 2.33232049550E-01 2.17266644724E-01 2.01404274526E-01 1.85738864846E-01 1.70361807495E-01 1.55360828812E-01 1.40818883794E-01 1.26813096078E-01 1.13413764142E-01 1.00683453630E-01 8.86761947753E-02 7.74368024991E-02 6.70003348308E-02 5.73917029574E-02 4.86254433742E-02 4.07056593944E-02 3.36261356849E-02 2.73706255980E-02 2.19133069286E-02 1.72193974232E-02 1.32459169935E-02 9.94257925959E-03 7.25279088544E-03 5.11473334165E-03 3.46249839670E-03 2.22724601016E-03 1.33835159453E-03 7.24509067582E-04 3.18856263874E-04 7.26710296683E-05 -5.52356167852E-05 -1.01665259678E-04 -9.82592669319E-05 -7.08034067141E-05 -3.86202287514E-05 -1.40582108380E-05 -2.08595773538E-06 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 4 2 i j (l(j)) 0.00000000000E+00 Q_int 1.35234123334E-29 1.45766718199E-29 1.57119635272E-29 1.69356764651E-29 1.82546972461E-29 1.96764488406E-29 2.12089323508E-29 2.28607720379E-29 2.46412638564E-29 2.65604277684E-29 2.86290641320E-29 3.08588144822E-29 3.32622270451E-29 3.58528273547E-29 3.86451943696E-29 4.16550425184E-29 4.48993101345E-29 4.83962547791E-29 5.21655559880E-29 5.62284260208E-29 6.06077292363E-29 6.53281107641E-29 7.04161351990E-29 7.59004360965E-29 8.18118771125E-29 8.81837256925E-29 9.50518402886E-29 1.02454872158E-28 1.10434482878E-28 1.19035578804E-28 1.28306563782E-28 1.38299611553E-28 1.49070959364E-28 1.60681224453E-28 1.73195745179E-28 1.86684948726E-28 2.01224747437E-28 2.16896966024E-28 2.33789802048E-28 2.51998322261E-28 2.71624997609E-28 2.92780279901E-28 3.15583223390E-28 3.40162154769E-28 3.66655395348E-28 3.95212039473E-28 4.25992793577E-28 4.59170880577E-28 4.94933014709E-28 5.33480452291E-28 5.75030124316E-28 6.19815857265E-28 6.68089688995E-28 7.20123287117E-28 7.76209477844E-28 8.36663893910E-28 9.01826750836E-28 9.72064761539E-28 1.04777320006E-27 1.12937812603E-27 1.21733878237E-27 1.31215017973E-27 1.41434588226E-27 1.52450101030E-27 1.64323547695E-27 1.77121747671E-27 1.90916724584E-27 2.05786111559E-27 2.21813588113E-27 2.39089351068E-27 2.57710622150E-27 2.77782195118E-27 2.99417025503E-27 3.22736866279E-27 3.47872953052E-27 3.74966742598E-27 4.04170708935E-27 4.35649201391E-27 4.69579369500E-27 5.06152159939E-27 5.45573391105E-27 5.88064911383E-27 6.33865847634E-27 6.83233950912E-27 7.36447046989E-27 7.93804599866E-27 8.55629397040E-27 9.22269366040E-27 9.94099532434E-27 1.07152413034E-26 1.15497887730E-26 1.24493342636E-26 1.34189400908E-26 1.44640628444E-26 1.55905840962E-26 1.68048434990E-26 1.81136744642E-26 1.95244426176E-26 2.10450872505E-26 2.26841659993E-26 2.44509030045E-26 2.63552408209E-26 2.84078963709E-26 3.06204212551E-26 3.30052667610E-26 3.55758539338E-26 3.83466491054E-26 4.13332453057E-26 4.45524500147E-26 4.80223797485E-26 5.17625620126E-26 5.57940451960E-26 6.01395170231E-26 6.48234322329E-26 6.98721502008E-26 7.53140832797E-26 8.11798566947E-26 8.75024808901E-26 9.43175373011E-26 1.01663378593E-25 1.09581344494E-25 1.18115994444E-25 1.27315358358E-25 1.37231206916E-25 1.47919342917E-25 1.59439915312E-25 1.71857757704E-25 1.85242753202E-25 1.99670227707E-25 2.15221373808E-25 2.31983707715E-25 2.50051561760E-25 2.69526615271E-25 2.90518466782E-25 3.13145250817E-25 3.37534302707E-25 3.63822875186E-25 3.92158910803E-25 4.22701874484E-25 4.55623650946E-25 4.91109512001E-25 5.29359159201E-25 5.70587847681E-25 6.15027597539E-25 6.62928499563E-25 7.14560122649E-25 7.70213030837E-25 8.30200418500E-25 8.94859872890E-25 9.64555273953E-25 1.03967884212E-24 1.12065334556E-24 1.20793447942E-24 1.30201343023E-24 1.40341964019E-24 1.51272378666E-24 1.63054099370E-24 1.75753429382E-24 1.89441835921E-24 2.04196352373E-24 2.20100011802E-24 2.37242314232E-24 2.55719730320E-24 2.75636244260E-24 2.97103938964E-24 3.20243626827E-24 3.45185529615E-24 3.72070011307E-24 4.01048368008E-24 4.32283679394E-24 4.65951726462E-24 5.02241980762E-24 5.41358670675E-24 5.83521930736E-24 6.28969040471E-24 6.77955759720E-24 7.30757767960E-24 7.87672215730E-24 8.49019396886E-24 9.15144551099E-24 9.86419806737E-24 1.06324627507E-23 1.14605630758E-23 1.23531592907E-23 1.33152746029E-23 1.43523234482E-23 1.54701419612E-23 1.66750208186E-23 1.79737406413E-23 1.93736101531E-23 2.08825073115E-23 2.25089236419E-23 2.42620120251E-23 2.61516382062E-23 2.81884363153E-23 3.03838687129E-23 3.27502904954E-23 3.53010190257E-23 3.80504088779E-23 4.10139326200E-23 4.42082678877E-23 4.76513912402E-23 5.13626793257E-23 5.53630179262E-23 5.96749194950E-23 6.43226498484E-23 6.93323647255E-23 7.47322569826E-23 8.05527152526E-23 8.68264949614E-23 9.35889026629E-23 1.00877994732E-22 1.08734791533E-22 1.17203508264E-22 1.26331803787E-22 1.36171048836E-22 1.46776615108E-22 1.58208186878E-22 1.70530096880E-22 1.83811688349E-22 1.98127705258E-22 2.13558712950E-22 2.30191551531E-22 2.48119824576E-22 2.67444425892E-22 2.88274107316E-22 3.10726090729E-22 3.34926727736E-22 3.61012210731E-22 3.89129339335E-22 4.19436346533E-22 4.52103789148E-22 4.87315507679E-22 5.25269660883E-22 5.66179840943E-22 6.10276275485E-22 6.57807123218E-22 7.09039870480E-22 7.64262836552E-22 8.23786796216E-22 8.87946728682E-22 9.57103702728E-22 1.03164690867E-21 1.11199584856E-21 1.19860269703E-21 1.29195484594E-21 1.39257764724E-21 1.50103736947E-21 1.61794438450E-21 1.74395660250E-21 1.87978317442E-21 2.02618848279E-21 2.18399644345E-21 2.35409514220E-21 2.53744183263E-21 2.73506832323E-21 2.94808678399E-21 3.17769600529E-21 3.42518814430E-21 3.69195599670E-21 3.97950083490E-21 4.28944085659E-21 4.62352029141E-21 4.98361921680E-21 5.37176413843E-21 5.79013939461E-21 6.24109944895E-21 6.72718214044E-21 7.25112296543E-21 7.81587047208E-21 8.42460285365E-21 9.08074583424E-21 9.78799194750E-21 1.05503213169E-20 1.13720240543E-20 1.22577244033E-20 1.32124067626E-20 1.42414437366E-20 1.53506263701E-20 1.65461967387E-20 1.78348830765E-20 1.92239376401E-20 2.07211775220E-20 2.23350286420E-20 2.40745731656E-20 2.59496006144E-20 2.79706629587E-20 3.01491339996E-20 3.24972733770E-20 3.50282955619E-20 3.77564442228E-20 4.06970723840E-20 4.38667288267E-20 4.72832512191E-20 5.09658665008E-20 5.49352990847E-20 5.92138874862E-20 6.38257100365E-20 6.87967203864E-20 7.41548935637E-20 7.99303834068E-20 8.61556922591E-20 9.28658538804E-20 1.00098630604E-19 1.07894725848E-19 1.16298013181E-19 1.25355783227E-19 1.35119009795E-19 1.45642636746E-19 1.56985887195E-19 1.69212596796E-19 1.82391572983E-19 1.96596982201E-19 2.11908767278E-19 2.28413097319E-19 2.46202852632E-19 2.65378147425E-19 2.86046893211E-19 3.08325406092E-19 3.32339061348E-19 3.58222998996E-19 3.86122884313E-19 4.16195727584E-19 4.48610767696E-19 4.83550424555E-19 5.21211325672E-19 5.61805412717E-19 6.05561134238E-19 6.52724731292E-19 7.03561623194E-19 7.58357901199E-19 8.17421938515E-19 8.81086125713E-19 9.49708741297E-19 1.02367596796E-18 1.10340406587E-18 1.18934171524E-18 1.28197254133E-18 1.38181783606E-18 1.48943949175E-18 1.60544316311E-18 1.73048167573E-18 1.86525869991E-18 2.01053271063E-18 2.16712125598E-18 2.33590555801E-18 2.51783547189E-18 2.71393483138E-18 2.92530721053E-18 3.15314213420E-18 3.39872177225E-18 3.66342815508E-18 3.94875095121E-18 4.25629585054E-18 4.58779360053E-18 4.94510974625E-18 5.33025512889E-18 5.74539720201E-18 6.19287222918E-18 6.67519843150E-18 7.19509015922E-18 7.75547316706E-18 8.35950107918E-18 9.01057313658E-18 9.71235332671E-18 1.04687910029E-17 1.12841431100E-17 1.21629981404E-17 1.31103019567E-17 1.41313856248E-17 1.52319954150E-17 1.64183251400E-17 1.76970510113E-17 1.90753692096E-17 2.05610363830E-17 2.21624132975E-17 2.38885118886E-17 2.57490459767E-17 2.77544859326E-17 2.99161176004E-17 3.22461058099E-17 3.47575628353E-17 3.74646221858E-17 4.03825181432E-17 4.35276714943E-17 4.69177819402E-17 5.05719277035E-17 5.45106728920E-17 5.87561832258E-17 6.33323507763E-17 6.82649284210E-17 7.35816747702E-17 7.93125103809E-17 8.54896861369E-17 9.21479647438E-17 9.93248163584E-17 1.07060629455E-16 1.15398938115E-16 1.24386667019E-16 1.34074395516E-16 1.44516642265E-16 1.55772172043E-16 1.67904326446E-16 1.80981380348E-16 1.95076926125E-16 2.10270287798E-16 2.26646967433E-16 2.44299126315E-16 2.63326103583E-16 2.83834975272E-16 3.05941156887E-16 3.29769052911E-16 3.55452756895E-16 3.83136806081E-16 4.12976994784E-16 4.45141251138E-16 4.79810582116E-16 5.17180092153E-16 5.57460081104E-16 6.00877227713E-16 6.47675865253E-16 6.98119356523E-16 7.52491575923E-16 8.11098506966E-16 8.74269964209E-16 9.42361449282E-16 1.01575615149E-15 1.09486710419E-15 1.18013950918E-15 1.27205324204E-15 1.37112555264E-15 1.47791397596E-15 1.59301946962E-15 1.71708979577E-15 1.85082316634E-15 1.99497217223E-15 2.15034801850E-15 2.31782508941E-15 2.49834586895E-15 2.69292624470E-15 2.90266122466E-15 3.12873109936E-15 3.37240808387E-15 3.63506347720E-15 3.91817537911E-15 4.22333700808E-15 4.55226566703E-15 4.90681240731E-15 5.28897244535E-15 5.70089639058E-15 6.14490234779E-15 6.62348896203E-15 7.13934947951E-15 7.69538690353E-15 8.29473033082E-15 8.94075256017E-15 9.63708907240E-15 1.03876584885E-14 1.11966846214E-14 1.20687202444E-14 1.30086727115E-14 1.40218315728E-14 1.51138983405E-14 1.62910185728E-14 1.75598164575E-14 1.89274320880E-14 2.04015616428E-14 2.19905006939E-14 2.37031908889E-14 2.55492702675E-14 2.75391274977E-14 2.96839603353E-14 3.19958386364E-14 3.44877722773E-14 3.71737843642E-14 4.00689901440E-14 4.31896820611E-14 4.65534214377E-14 5.01791372952E-14 5.40872328704E-14 5.82997004280E-14 6.28402450144E-14 6.77344178490E-14 7.30097601041E-14 7.86959578820E-14 8.48250092612E-14 9.14314043529E-14 9.85523193784E-14 1.06227825862E-13 1.14501116115E-13 1.23418746280E-13 1.33030898302E-13 1.43391662301E-13 1.54559340939E-13 1.66596777482E-13 1.79571709420E-13 1.93557149616E-13 2.08631797147E-13 2.24880480130E-13 2.42394633043E-13 2.61272811209E-13 2.81621245353E-13 3.03554439339E-13 3.27195814462E-13 3.52678403908E-13 3.80145601295E-13 4.09751967517E-13 4.41664100402E-13 4.76061572110E-13 5.13137939516E-13 5.53101833290E-13 5.96178131770E-13 6.42609226261E-13 6.92656384856E-13 7.46601222469E-13 8.04747285339E-13 8.67421758913E-13 9.34977308742E-13 1.00779406471E-12 1.08628175978E-12 1.17088203532E-12 1.26207092585E-12 1.36036153741E-12 1.46630693437E-12 1.58050325108E-12 1.70359304584E-12 1.83626891599E-12 1.97927739456E-12 2.13342315026E-12 2.29957351454E-12 2.47866336123E-12 2.67170036601E-12 2.87977067549E-12 3.10404501771E-12 3.34578528837E-12 3.60635164997E-12 3.88721018364E-12 4.18994113715E-12 4.51624781591E-12 4.86796615328E-12 5.24707506540E-12 5.65570756064E-12 6.09616273550E-12 6.57091872776E-12 7.08264664208E-12 7.63422558233E-12 8.22875883567E-12 8.86959134571E-12 9.56032851898E-12 1.03048565008E-11 1.11073640417E-11 1.19723660555E-11 1.29047290134E-11 1.39096983199E-11 1.49929278169E-11 1.61605115606E-11 1.74190181535E-11 1.87755276203E-11 2.02376712679E-11 2.18136746168E-11 2.35124035984E-11 2.53434145101E-11 2.73170076824E-11 2.94442854455E-11 3.17372145512E-11 3.42086934550E-11 3.68726249346E-11 3.97439940090E-11 4.28389527258E-11 4.61749104479E-11 4.97706318804E-11 5.36463428610E-11 5.78238438468E-11 6.23266324037E-11 6.71800355760E-11 7.24113522424E-11 7.80500062526E-11 8.41277125096E-11 9.06786544908E-11 9.77396772307E-11 1.05350493739E-10 1.13553908553E-10 1.22396058698E-10 1.31926672486E-10 1.42199349195E-10 1.53271860836E-10 1.65206475726E-10 1.78070310093E-10 1.91935704100E-10 2.06880628654E-10 2.22989123596E-10 2.40351770608E-10 2.59066201487E-10 2.79237646979E-10 3.00979528404E-10 3.24414094783E-10 3.49673109880E-10 3.76898591930E-10 4.06243612800E-10 4.37873156616E-10 4.71965047633E-10 5.08710948763E-10 5.48317438447E-10 5.91007170680E-10 6.37020125921E-10 6.86614959147E-10 7.40070453649E-10 7.97687082410E-10 8.59788702049E-10 9.26724365645E-10 9.98870287397E-10 1.07663194977E-09 1.16044638651E-09 1.25078462994E-09 1.34815436217E-09 1.45310275620E-09 1.56621955742E-09 1.68814038476E-09 1.81955030482E-09 1.96118767210E-09 2.11384827497E-09 2.27838980317E-09 2.45573665103E-09 2.64688511674E-09 2.85290898119E-09 3.07496553814E-09 3.31430208289E-09 3.57226290509E-09 3.85029683364E-09 4.14996536056E-09 4.47295139020E-09 4.82106868810E-09 5.19627202802E-09 5.60066817109E-09 6.03652766838E-09 6.50629757666E-09 7.01261518251E-09 7.55832277528E-09 8.14648357332E-09 8.78039888521E-09 9.46362659905E-09 1.02000011106E-08 1.09936547967E-08 1.18490411560E-08 1.27709597397E-08 1.37645830249E-08 1.48354853554E-08 1.59896741493E-08 1.72336235098E-08 1.85743104457E-08 2.00192539071E-08 2.15765568336E-08 2.32549514676E-08 2.50638481848E-08 2.70133881060E-08 2.91144997701E-08 3.13789602169E-08 3.38194607973E-08 3.64496780644E-08 3.92843501590E-08 4.23393591461E-08 4.56318196503E-08 4.91801744184E-08 5.30042972487E-08 5.71256038754E-08 6.15671714529E-08 6.63538672611E-08 7.15124873758E-08 7.70719060414E-08 8.30632366285E-08 8.95200049802E-08 9.64783361901E-08 1.03977155794E-07 1.12058406500E-07 1.20767281669E-07 1.30152476787E-07 1.40266460392E-07 1.51165765862E-07 1.62911305759E-07 1.75568710370E-07 1.89208692396E-07 2.03907439728E-07 2.19747038501E-07 2.36815928751E-07 2.55209395174E-07 2.75030095625E-07 2.96388630412E-07 3.19404155262E-07 3.44205041590E-07 3.70929587413E-07 3.99726783050E-07 4.30757135586E-07 4.64193556724E-07 5.00222318835E-07 5.39044084365E-07 5.80875014344E-07 6.25947961866E-07 6.74513757111E-07 7.26842590936E-07 7.83225504452E-07 8.43975992661E-07 9.09431730993E-07 9.79956433884E-07 1.05594185558E-06 1.13780994389E-06 1.22601515858E-06 1.32104696693E-06 1.42343252961E-06 1.53373959182E-06 1.65257959469E-06 1.78061102402E-06 1.91854301404E-06 2.06713922568E-06 2.22722201985E-06 2.39967694823E-06 2.58545758529E-06 2.78559072736E-06 3.00118198639E-06 3.23342180795E-06 3.48359194544E-06 3.75307242479E-06 4.04334903621E-06 4.35602139270E-06 4.69281159753E-06 5.05557356638E-06 5.44630305285E-06 5.86714842975E-06 6.32042228268E-06 6.80861387615E-06 7.33440255698E-06 7.90067216474E-06 8.51052652371E-06 9.16730609635E-06 9.87460588420E-06 1.06362946683E-05 1.14565356874E-05 1.23398088607E-05 1.32909346670E-05 1.43150998037E-05 1.54178847537E-05 1.66052934020E-05 1.78837848494E-05 1.92603075847E-05 2.07423361864E-05 2.23379107367E-05 2.40556791454E-05 2.59049425934E-05 2.78957043200E-05 3.00387219954E-05 3.23455639355E-05 3.48286694342E-05 3.75014135071E-05 4.03781763604E-05 4.34744179224E-05 4.68067577951E-05 5.03930610087E-05 5.42525299901E-05 5.84058031796E-05 6.28750607630E-05 6.76841380169E-05 7.28586467945E-05 7.84261057204E-05 8.44160796933E-05 9.08603293401E-05 9.77929711042E-05 1.05250648693E-04 1.13272716664E-04 1.21901436964E-04 1.31182189303E-04 1.41163696296E-04 1.51898264345E-04 1.63442041335E-04 1.75855292231E-04 1.89202693779E-04 2.03553649548E-04 2.18982626648E-04 2.35569515526E-04 2.53400014330E-04 2.72566039406E-04 2.93166163602E-04 3.15306084125E-04 3.39099121810E-04 3.64666753754E-04 3.92139181374E-04 4.21655936060E-04 4.53366524709E-04 4.87431117528E-04 5.24021280635E-04 5.63320756098E-04 6.05526292179E-04 6.50848526680E-04 6.99512926422E-04 7.51760786022E-04 8.07850289261E-04 8.68057636470E-04 9.32678241519E-04 1.00202800209E-03 1.07644464706E-03 1.15628916503E-03 1.24194731794E-03 1.33383124411E-03 1.43238115499E-03 1.53806713000E-03 1.65139101394E-03 1.77288842167E-03 1.90313085457E-03 2.04272793358E-03 2.19232975339E-03 2.35262936256E-03 2.52436537426E-03 2.70832471203E-03 2.90534549530E-03 3.11632006872E-03 3.34219817956E-03 3.58399030704E-03 3.84277114703E-03 4.11968325532E-03 4.41594085219E-03 4.73283379028E-03 5.07173168733E-03 5.43408822455E-03 5.82144561046E-03 6.23543920905E-03 6.67780233024E-03 7.15037117892E-03 7.65508995792E-03 8.19401611822E-03 8.76932574838E-03 9.38331909279E-03 1.00384261864E-02 1.07372125912E-02 1.14823852167E-02 1.22767982046E-02 1.31234588536E-02 1.40255335569E-02 1.49863537229E-02 1.60094216431E-02 1.70984162679E-02 1.82571988466E-02 1.94898183825E-02 2.08005168471E-02 2.21937340954E-02 2.36741124122E-02 2.52465006185E-02 2.69159576571E-02 2.86877555685E-02 3.05673817630E-02 3.25605404857E-02 3.46731533608E-02 3.69113588978E-02 3.92815108276E-02 4.17901751331E-02 4.44441256244E-02 4.72503379058E-02 5.02159815655E-02 5.33484104176E-02 5.66551506111E-02 6.01438864170E-02 6.38224434934E-02 6.76987694260E-02 7.17809113314E-02 7.60769903082E-02 8.05951725182E-02 8.53436366776E-02 9.03305377383E-02 9.55639665440E-02 1.01051905249E-01 1.06802178300E-01 1.12822398786E-01 1.19119909988E-01 1.25701721971E-01 1.32574443082E-01 1.39744206273E-01 1.47216590161E-01 1.54996534819E-01 1.63088252313E-01 1.71495132073E-01 1.80219641225E-01 1.89263220113E-01 1.98626173280E-01 2.08307556293E-01 2.18305058871E-01 2.28614884890E-01 2.39231629928E-01 2.50148157162E-01 2.61355472518E-01 2.72842600136E-01 2.84596459315E-01 2.96601744293E-01 3.08840808306E-01 3.21293553548E-01 3.33937328801E-01 3.46746836629E-01 3.59694052171E-01 3.72748155707E-01 3.85875481271E-01 3.99039483693E-01 4.12200726524E-01 4.25316893367E-01 4.38342825140E-01 4.51230585808E-01 4.63929559066E-01 4.76386578346E-01 4.88546092420E-01 5.00350368622E-01 5.11739735495E-01 5.22652866339E-01 5.33027104739E-01 5.42798832713E-01 5.51903881583E-01 5.60277985079E-01 5.67857273518E-01 5.74578807164E-01 5.80381146080E-01 5.85204952929E-01 5.88993624297E-01 5.91693945147E-01 5.93256760122E-01 5.93637654397E-01 5.92797635920E-01 5.90703809921E-01 5.87330035815E-01 5.82657555831E-01 5.76675584145E-01 5.69381844788E-01 5.60783046347E-01 5.50895281398E-01 5.39744338767E-01 5.27365917128E-01 5.13805729168E-01 4.99119486507E-01 4.83372756905E-01 4.66640686840E-01 4.49007584498E-01 4.30566360363E-01 4.11417825095E-01 3.91669847011E-01 3.71436374401E-01 3.50836330866E-01 3.29992394927E-01 3.09029678218E-01 2.88074319502E-01 2.67252014578E-01 2.46686504645E-01 2.26498047919E-01 2.06801901042E-01 1.87706838115E-01 1.69313735898E-01 1.51714253788E-01 1.34989636627E-01 1.19209667092E-01 1.04431792455E-01 9.07004477819E-02 7.80465942727E-02 6.64874874336E-02 5.60266851259E-02 4.66543004264E-02 3.83474986632E-02 3.10712321094E-02 2.47791997468E-02 1.94150133967E-02 1.49135455261E-02 1.12024283770E-02 8.20366895271E-03 5.83534007328E-03 4.01330446033E-03 2.65292691204E-03 1.67072938300E-03 9.85945479151E-04 5.25412803669E-04 2.34968428862E-04 6.94901974790E-05 -9.95538335158E-06 -3.56112297530E-05 -3.27351734992E-05 -1.95343459379E-05 -7.34771310959E-06 -1.09394445472E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 5 1 i j (l(j)) 0.00000000000E+00 Q_int 1.39342924021E-26 1.48329770509E-26 1.57896218800E-26 1.68079649996E-26 1.78919856078E-26 1.90459195385E-26 2.02742758137E-26 2.15818542623E-26 2.29737642753E-26 2.44554447716E-26 2.60326854497E-26 2.77116494119E-26 2.94988972465E-26 3.14014126630E-26 3.34266297820E-26 3.55824621832E-26 3.78773338286E-26 4.03202119791E-26 4.29206422342E-26 4.56887858314E-26 4.86354593522E-26 5.17721769873E-26 5.51111955291E-26 5.86655622650E-26 6.24491659604E-26 6.64767911288E-26 7.07641758032E-26 7.53280730324E-26 8.01863163438E-26 8.53578894290E-26 9.08630003220E-26 9.67231603633E-26 1.02961268256E-25 1.09601699541E-25 1.16670401850E-25 1.24194996288E-25 1.32204885374E-25 1.40731367923E-25 1.49807761349E-25 1.59469531859E-25 1.69754433030E-25 1.80702653337E-25 1.92356973189E-25 2.04762932094E-25 2.17969006605E-25 2.32026799747E-25 2.46991242651E-25 2.62920809202E-25 2.79877744530E-25 2.97928308226E-25 3.17143033261E-25 3.37597001590E-25 3.59370137540E-25 3.82547520111E-25 4.07219715430E-25 4.33483130637E-25 4.61440390597E-25 4.91200738910E-25 5.22880464786E-25 5.56603357440E-25 5.92501189809E-25 6.30714233452E-25 6.71391806670E-25 7.14692857961E-25 7.60786587126E-25 8.09853106414E-25 8.62084144313E-25 9.17683794740E-25 9.76869314538E-25 1.03987197241E-24 1.10693795261E-24 1.17832931692E-24 1.25432502864E-24 1.33522204266E-24 1.42133646584E-24 1.51300479214E-24 1.61058521754E-24 1.71445903968E-24 1.82503214778E-24 1.94273660865E-24 2.06803235504E-24 2.20140898280E-24 2.34338766400E-24 2.49452318341E-24 2.65540610638E-24 2.82666508641E-24 3.00896932169E-24 3.20303116998E-24 3.40960893217E-24 3.62950981536E-24 3.86359308702E-24 4.11277343264E-24 4.37802452981E-24 4.66038285297E-24 4.96095172340E-24 5.28090562050E-24 5.62149477107E-24 5.98405003461E-24 6.36998810370E-24 6.78081703973E-24 7.21814216570E-24 7.68367233903E-24 8.17922662900E-24 8.70674142476E-24 9.26827800184E-24 9.86603057661E-24 1.05023348803E-23 1.11796772857E-23 1.19007045230E-23 1.26682340219E-23 1.34852649205E-23 1.43549897848E-23 1.52808070837E-23 1.62663344683E-23 1.73154229083E-23 1.84321717395E-23 1.96209446824E-23 2.08863868930E-23 2.22334431143E-23 2.36673769976E-23 2.51937916709E-23 2.68186516326E-23 2.85483060583E-23 3.03895136103E-23 3.23494688471E-23 3.44358303364E-23 3.66567505810E-23 3.90209078751E-23 4.15375402146E-23 4.42164813951E-23 4.70681994374E-23 5.01038374919E-23 5.33352573801E-23 5.67750859455E-23 6.04367643929E-23 6.43346008104E-23 6.84838260786E-23 7.29006533853E-23 7.76023415792E-23 8.26072626091E-23 8.79349733127E-23 9.36062918352E-23 9.96433789771E-23 1.06069824788E-22 1.12910740743E-22 1.20192857872E-22 1.27944631204E-22 1.36196350963E-22 1.44980260923E-22 1.54330684402E-22 1.64284158384E-22 1.74879576285E-22 1.86158339931E-22 1.98164521334E-22 2.10945034910E-22 2.24549820794E-22 2.39032039982E-22 2.54448282060E-22 2.70858786328E-22 2.88327677190E-22 3.06923214715E-22 3.26718061370E-22 3.47789565949E-22 3.70220065814E-22 3.94097208630E-22 4.19514294852E-22 4.46570642296E-22 4.75371974228E-22 5.06030832478E-22 5.38667017200E-22 5.73408054996E-22 6.10389697225E-22 6.49756450458E-22 6.91662141139E-22 7.36270516664E-22 7.83755885230E-22 8.34303796946E-22 8.88111768875E-22 9.45390056836E-22 1.00636247698E-21 1.07126728038E-21 1.14035808394E-21 1.21390486149E-21 1.29219499866E-21 1.37553441587E-21 1.46424876368E-21 1.55868469536E-21 1.65921122134E-21 1.76622115122E-21 1.88013262861E-21 2.00139076510E-21 2.13046937948E-21 2.26787284925E-21 2.41413808144E-21 2.56983661063E-21 2.73557683221E-21 2.91200637968E-21 3.09981465534E-21 3.29973552410E-21 3.51255018111E-21 3.73909020425E-21 3.98024080359E-21 4.23694428033E-21 4.51020370887E-21 4.80108685639E-21 5.11073035508E-21 5.44034414365E-21 5.79121619513E-21 6.16471754969E-21 6.56230767197E-21 6.98554015402E-21 7.43606878595E-21 7.91565401817E-21 8.42616984039E-21 8.96961110428E-21 9.54810131837E-21 1.01639009457E-20 1.08194162368E-20 1.15172086318E-20 1.22600047696E-20 1.30507071423E-20 1.38924054366E-20 1.47883886069E-20 1.57421577268E-20 1.67574396698E-20 1.78382016723E-20 1.89886668352E-20 2.02133306260E-20 2.15169784452E-20 2.29047043249E-20 2.43819308341E-20 2.59544302675E-20 2.76283472006E-20 2.94102225003E-20 3.13070188830E-20 3.33261481217E-20 3.54755000076E-20 3.77634731801E-20 4.01990079438E-20 4.27916212038E-20 4.55514436525E-20 4.84892593562E-20 5.16165478934E-20 5.49455292118E-20 5.84892113784E-20 6.22614414079E-20 6.62769593711E-20 7.05514559916E-20 7.51016339575E-20 7.99452731881E-20 8.51013003086E-20 9.05898626069E-20 9.64324067591E-20 1.02651762633E-19 1.09272232498E-19 1.16319685981E-19 1.23821661162E-19 1.31807472170E-19 1.40308323735E-19 1.49357433119E-19 1.58990159913E-19 1.69244144206E-19 1.80159453663E-19 1.91778740094E-19 2.04147406111E-19 2.17313782545E-19 2.31329317298E-19 2.46248776374E-19 2.62130457885E-19 2.79036419843E-19 2.97032722663E-19 3.16189687286E-19 3.36582169968E-19 3.58289854776E-19 3.81397564958E-19 4.05995594393E-19 4.32180060413E-19 4.60053279386E-19 4.89724166519E-19 5.21308661445E-19 5.54930181262E-19 5.90720102787E-19 6.28818275912E-19 6.69373570073E-19 7.12544455960E-19 7.58499624743E-19 8.07418647238E-19 8.59492675584E-19 9.14925190173E-19 9.73932794754E-19 1.03674606282E-18 1.10361043857E-18 1.17478719600E-18 1.25055445982E-18 1.33120829227E-18 1.41706384992E-18 1.50845661523E-18 1.60574370741E-18 1.70930527786E-18 1.81954599566E-18 1.93689662879E-18 2.06181572739E-18 2.19479141552E-18 2.33634329857E-18 2.48702449356E-18 2.64742379053E-18 2.81816795317E-18 2.99992416798E-18 3.19340265131E-18 3.39935942448E-18 3.61859926802E-18 3.85197886636E-18 4.10041015530E-18 4.36486388544E-18 4.64637341544E-18 4.94603874985E-18 5.26503083739E-18 5.60459614653E-18 5.96606153601E-18 6.35083943961E-18 6.76043338526E-18 7.19644387012E-18 7.66057461451E-18 8.15463921929E-18 8.68056825251E-18 9.24041679316E-18 9.83637246143E-18 1.04707639669E-17 1.11460702079E-17 1.18649299582E-17 1.26301521775E-17 1.34447269881E-17 1.43118373586E-17 1.52348715412E-17 1.62174363118E-17 1.72633710632E-17 1.83767628079E-17 1.95619621479E-17 2.08236002749E-17 2.21666070669E-17 2.35962303515E-17 2.51180564123E-17 2.67380318171E-17 2.84624866542E-17 3.02981592677E-17 3.22522225874E-17 3.43323121574E-17 3.65465559719E-17 3.89036062356E-17 4.14126731726E-17 4.40835610152E-17 4.69267063144E-17 4.99532187207E-17 5.31749243955E-17 5.66044122219E-17 6.02550829964E-17 6.41412017921E-17 6.82779537005E-17 7.26815031670E-17 7.73690571541E-17 8.23589323780E-17 8.76706268812E-17 9.33248962220E-17 9.93438345768E-17 1.05750961074E-16 1.12571311695E-16 1.19831537102E-16 1.27560006780E-16 1.35786919884E-16 1.44544423252E-16 1.53866737009E-16 1.63790288292E-16 1.74353853585E-16 1.85598710239E-16 1.97568797766E-16 2.10310889532E-16 2.23874775526E-16 2.38313456914E-16 2.53683353142E-16 2.70044522399E-16 2.87460896291E-16 3.06000529660E-16 3.25735866506E-16 3.46744023064E-16 3.69107089139E-16 3.92912448869E-16 4.18253122187E-16 4.45228128294E-16 4.73942872577E-16 5.04509558485E-16 5.37047625969E-16 5.71684218187E-16 6.08554678330E-16 6.47803078467E-16 6.89582782517E-16 7.34057045518E-16 7.81399651549E-16 8.31795592798E-16 8.85441792417E-16 9.42547874008E-16 1.00333698073E-15 1.06804664722E-15 1.13692972780E-15 1.21025538447E-15 1.28831013870E-15 1.37139899097E-15 1.45984661262E-15 1.55399861447E-15 1.65422289731E-15 1.76091108949E-15 1.87448007721E-15 1.99537363350E-15 2.12406415226E-15 2.26105449421E-15 2.40687995173E-15 2.56211034061E-15 2.72735222657E-15 2.90325129543E-15 3.09049487615E-15 3.28981462658E-15 3.50198939240E-15 3.72784825051E-15 3.96827374863E-15 4.22420535388E-15 4.49664312377E-15 4.78665161393E-15 5.09536403788E-15 5.42398669508E-15 5.77380368457E-15 6.14618192260E-15 6.54257648386E-15 6.96453628723E-15 7.41371014821E-15 7.89185322165E-15 8.40083386007E-15 8.94264091428E-15 9.51939150483E-15 1.01333392947E-14 1.07868832954E-14 1.14825772414E-14 1.22231395687E-14 1.30114640371E-14 1.38506310377E-14 1.47439196296E-14 1.56948203526E-14 1.67070488672E-14 1.77845604725E-14 1.89315655627E-14 2.01525460786E-14 2.14522730208E-14 2.28358250928E-14 2.43086085459E-14 2.58763783041E-14 2.75452604517E-14 2.93217761709E-14 3.12128672233E-14 3.32259230752E-14 3.53688097715E-14 3.76499006730E-14 4.00781091747E-14 4.26629235354E-14 4.54144439529E-14 4.83434220308E-14 5.14613027900E-14 5.47802693910E-14 5.83132907389E-14 6.20741721595E-14 6.60776093443E-14 7.03392457733E-14 7.48757338423E-14 7.97047999321E-14 8.48453136742E-14 9.03173616845E-14 9.61423260508E-14 1.02342967884E-13 1.08943516258E-13 1.15969762882E-13 1.23449162886E-13 1.31410942095E-13 1.39886211238E-13 1.48908087504E-13 1.58511823954E-13 1.68734947267E-13 1.79617404381E-13 1.91201718579E-13 2.03533155654E-13 2.16659900783E-13 2.30633246808E-13 2.45507794665E-13 2.61341666737E-13 2.78196733963E-13 2.96138857603E-13 3.15238146587E-13 3.35569231464E-13 3.57211556025E-13 3.80249687721E-13 4.04773648116E-13 4.30879264640E-13 4.58668545036E-13 4.88250075952E-13 5.19739447243E-13 5.53259703634E-13 5.88941825516E-13 6.26925240747E-13 6.67358369467E-13 7.10399204045E-13 7.56215926427E-13 8.04987565305E-13 8.56904695669E-13 9.12170183468E-13 9.70999978308E-13 1.03362395726E-12 1.10028682312E-12 1.17124906054E-12 1.24678795389E-12 1.32719867073E-12 1.41279541517E-12 1.50391265559E-12 1.60090643160E-12 1.70415574521E-12 1.81406404177E-12 1.93106078644E-12 2.05560314229E-12 2.18817775664E-12 2.32930266258E-12 2.47952930323E-12 2.63944468640E-12 2.80967367834E-12 2.99088144531E-12 3.18377605275E-12 3.38911123196E-12 3.60768932524E-12 3.84036442102E-12 4.08804569114E-12 4.35170094336E-12 4.63236040302E-12 4.93112073856E-12 5.24914934664E-12 5.58768891804E-12 5.94806226972E-12 6.33167756540E-12 6.74003376217E-12 7.17472649214E-12 7.63745430138E-12 8.13002528127E-12 8.65436413355E-12 9.21251968349E-12 9.80667290293E-12 1.04391454119E-11 1.11124085711E-11 1.18290931155E-11 1.25919994573E-11 1.34041086047E-11 1.42685938338E-11 1.51888330717E-11 1.61684220780E-11 1.72111885589E-11 1.83212070416E-11 1.95028148472E-11 2.07606290380E-11 2.20995644102E-11 2.35248527691E-11 2.50420633170E-11 2.66571244280E-11 2.83763468320E-11 3.02064482263E-11 3.21545795923E-11 3.42283530012E-11 3.64358716466E-11 3.87857611759E-11 4.12872034653E-11 4.39499726498E-11 4.67844733234E-11 4.98017809303E-11 5.30136851564E-11 5.64327363581E-11 6.00722938230E-11 6.39465788653E-11 6.80707297080E-11 7.24608609764E-11 7.71341264172E-11 8.21087861276E-11 8.74042781524E-11 9.30412935631E-11 9.90418582447E-11 1.05429418609E-10 1.12228932740E-10 1.19466968777E-10 1.27171808258E-10 1.35373556356E-10 1.44104259822E-10 1.53398032489E-10 1.63291187895E-10 1.73822381608E-10 1.85032762199E-10 1.96966131925E-10 2.09669117859E-10 2.23191354132E-10 2.37585675955E-10 2.52908325650E-10 2.69219173010E-10 2.86581948665E-10 3.05064493355E-10 3.24739022630E-10 3.45682409695E-10 3.67976485197E-10 3.91708357016E-10 4.16970750482E-10 4.43862370882E-10 4.72488289310E-10 5.02960352337E-10 5.35397620158E-10 5.69926830393E-10 6.06682894484E-10 6.45809423900E-10 6.87459291390E-10 7.31795229147E-10 7.78990462465E-10 8.29229389056E-10 8.82708296878E-10 9.39636133353E-10 1.00023532056E-09 1.06474262315E-09 1.13341007411E-09 1.20650596158E-09 1.28431587369E-09 1.36714381466E-09 1.45531339449E-09 1.54916909014E-09 1.64907759443E-09 1.75542924643E-09 1.86863955935E-09 1.98915083548E-09 2.11743390334E-09 2.25398995440E-09 2.39935249760E-09 2.55408944631E-09 2.71880533418E-09 2.89414368166E-09 3.08078950280E-09 3.27947198793E-09 3.49096734586E-09 3.71610183809E-09 3.95575500933E-09 4.21086311711E-09 4.48242279635E-09 4.77149494106E-09 5.07920886031E-09 5.40676667919E-09 5.75544804027E-09 6.12661509984E-09 6.52171784608E-09 6.94229976356E-09 7.39000386158E-09 7.86657909213E-09 8.37388717497E-09 8.91390987728E-09 9.48875674471E-09 1.01006733450E-08 1.07520500318E-08 1.14454312882E-08 1.21835256529E-08 1.29692163045E-08 1.38055723177E-08 1.46958606474E-08 1.56435588834E-08 1.66523688344E-08 1.77262309780E-08 1.88693398459E-08 2.00861604073E-08 2.13814454929E-08 2.27602543608E-08 2.42279724404E-08 2.57903323624E-08 2.74534363400E-08 2.92237799854E-08 3.11082776771E-08 3.31142895399E-08 3.52496501878E-08 3.75226992961E-08 3.99423141596E-08 4.25179443428E-08 4.52596485596E-08 4.81781339357E-08 5.12847977973E-08 5.45917721474E-08 5.81119710178E-08 6.18591408576E-08 6.58479141893E-08 7.00938666899E-08 7.46135779802E-08 7.94246963116E-08 8.45460074205E-08 8.99975078272E-08 9.58004828371E-08 1.01977589590E-07 1.08552945437E-07 1.15552222015E-07 1.23002745379E-07 1.30933602595E-07 1.39375755157E-07 1.48362159754E-07 1.57927896787E-07 1.68110307146E-07 1.78949137825E-07 1.90486696879E-07 2.02768018375E-07 2.15841037940E-07 2.29756779632E-07 2.44569554796E-07 2.60337173770E-07 2.77121171147E-07 2.94987045591E-07 3.14004515031E-07 3.34247788301E-07 3.55795854232E-07 3.78732789347E-07 4.03148085337E-07 4.29136997590E-07 4.56800916132E-07 4.86247760409E-07 5.17592399458E-07 5.50957099047E-07 5.86471997592E-07 6.24275612624E-07 6.64515379802E-07 7.07348226545E-07 7.52941182519E-07 8.01472029308E-07 8.53129991811E-07 9.08116474025E-07 9.66645842047E-07 1.02894625732E-06 1.09526056338E-06 1.16584722940E-06 1.24098135436E-06 1.32095573557E-06 1.40608200561E-06 1.49669184230E-06 1.59313825609E-06 1.69579695998E-06 1.80506782715E-06 1.92137644197E-06 2.04517575031E-06 2.17694781537E-06 2.31720568599E-06 2.46649538436E-06 2.62539802084E-06 2.79453204400E-06 2.97455563439E-06 3.16616925124E-06 3.37011834172E-06 3.58719622318E-06 3.81824714926E-06 4.06416957147E-06 4.32591960876E-06 4.60451473810E-06 4.90103772013E-06 5.21664077463E-06 5.55255002162E-06 5.91007020496E-06 6.29058971593E-06 6.69558593599E-06 7.12663091858E-06 7.58539743133E-06 8.07366538119E-06 8.59332864659E-06 9.14640234202E-06 9.73503054193E-06 1.03614944929E-05 1.10282213441E-05 1.17377934287E-05 1.24929581300E-05 1.32966383691E-05 1.41519437516E-05 1.50621824156E-05 1.60308736225E-05 1.70617611374E-05 1.81588274478E-05 1.93263088703E-05 2.05687116023E-05 2.18908287734E-05 2.32977585598E-05 2.47949234243E-05 2.63880905515E-05 2.80833935487E-05 2.98873554908E-05 3.18069133872E-05 3.38494441577E-05 3.60227922065E-05 3.83352986888E-05 4.07958325699E-05 4.34138235834E-05 4.61992971986E-05 4.91629117137E-05 5.23159976007E-05 5.56705992281E-05 5.92395191023E-05 6.30363647669E-05 6.70755985147E-05 7.13725900687E-05 7.59436723979E-05 8.08062008446E-05 8.59786157432E-05 9.14805087231E-05 9.73326928951E-05 1.03557277130E-04 1.10177744647E-04 1.17219036141E-04 1.24707637681E-04 1.32671673628E-04 1.41141004832E-04 1.50147332361E-04 1.59724307050E-04 1.69907645140E-04 1.80735250309E-04 1.92247342386E-04 2.04486593066E-04 2.17498268929E-04 2.31330382099E-04 2.46033848856E-04 2.61662656545E-04 2.78274039108E-04 2.95928661583E-04 3.14690813903E-04 3.34628614328E-04 3.55814222843E-04 3.78324064846E-04 4.02239065433E-04 4.27644894583E-04 4.54632223520E-04 4.83296992513E-04 5.13740690345E-04 5.46070645643E-04 5.80400330233E-04 6.16849674629E-04 6.55545395711E-04 6.96621336599E-04 7.40218818618E-04 7.86487005227E-04 8.35583277628E-04 8.87673621712E-04 9.42933025839E-04 1.00154588886E-03 1.06370643756E-03 1.12961915265E-03 1.19949920210E-03 1.27357288050E-03 1.35207805287E-03 1.43526460112E-03 1.52339487089E-03 1.61674411659E-03 1.71560094156E-03 1.82026773044E-03 1.93106107007E-03 2.04831215494E-03 2.17236717270E-03 2.30358766479E-03 2.44235085649E-03 2.58904995037E-03 2.74409437632E-03 2.90790999051E-03 3.08093921531E-03 3.26364111098E-03 3.45649136942E-03 3.65998221923E-03 3.87462223071E-03 4.10093600799E-03 4.33946375517E-03 4.59076070180E-03 4.85539637223E-03 5.13395368256E-03 5.42702784734E-03 5.73522507779E-03 6.05916105178E-03 6.39945913526E-03 6.75674833353E-03 7.13166095043E-03 7.52482993218E-03 7.93688587265E-03 8.36845365603E-03 8.82014871263E-03 9.29257286392E-03 9.78630973276E-03 1.03019196957E-02 1.08399343555E-02 1.14008505119E-02 1.19851236144E-02 1.25931606771E-02 1.32253126466E-02 1.38818662097E-02 1.45630350396E-02 1.52689504790E-02 1.59996516684E-02 1.67550751343E-02 1.75350438593E-02 1.83392558681E-02 1.91672723714E-02 2.00185055248E-02 2.08922058695E-02 2.17874495405E-02 2.27031253394E-02 2.36379217907E-02 2.45903143151E-02 2.55585526750E-02 2.65406488683E-02 2.75343656668E-02 2.85372060179E-02 2.95464035526E-02 3.05589144622E-02 3.15714110303E-02 3.25802771281E-02 3.35816059973E-02 3.45712006677E-02 3.55445773649E-02 3.64969722793E-02 3.74233520702E-02 3.83184284813E-02 3.91766774342E-02 3.99923629567E-02 4.07595662739E-02 4.14722203594E-02 4.21241501983E-02 4.27091189529E-02 4.32208801532E-02 4.36532359452E-02 4.40001013311E-02 4.42555742130E-02 4.44140109231E-02 4.44701067704E-02 4.44189809717E-02 4.42562651542E-02 4.39781944322E-02 4.35816998566E-02 4.30645008382E-02 4.24251959369E-02 4.16633502153E-02 4.07795771603E-02 3.97756130137E-02 3.86543812042E-02 3.74200444671E-02 3.60780421758E-02 3.46351103993E-02 3.30992822560E-02 3.14798662657E-02 2.97874006136E-02 2.80335815447E-02 2.62311645061E-02 2.43938371554E-02 2.25360639487E-02 2.06729027162E-02 1.88197944100E-02 1.69923280553E-02 1.52059838372E-02 1.34758581727E-02 1.18163755300E-02 1.02409926145E-02 8.76190130378E-03 7.38973732874E-03 6.13330210857E-03 4.99930530449E-03 3.99213549982E-03 3.11366589852E-03 2.36310101872E-03 1.73686901594E-03 1.22856249504E-03 8.28928475215E-04 5.25905602403E-04 3.04703834559E-04 1.49438783418E-04 4.83948186090E-05 -9.29153419574E-06 -3.45980554670E-05 -3.81281886254E-05 -2.95592053864E-05 -1.70328434066E-05 -6.49649211804E-06 -1.00553047613E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 6 1 i j (l(j)) 0.00000000000E+00 Q_int 1.50206711000E-27 1.59894211556E-27 1.70206502220E-27 1.81183878491E-27 1.92869234705E-27 2.05308231647E-27 2.18549474966E-27 2.32644705109E-27 2.47648999494E-27 2.63620987728E-27 2.80623080701E-27 2.98721714463E-27 3.17987609817E-27 3.38496048669E-27 3.60327168189E-27 3.83566273952E-27 4.08304173268E-27 4.34637530016E-27 4.62669242362E-27 4.92508844830E-27 5.24272936315E-27 5.58085635697E-27 5.94079066832E-27 6.32393874835E-27 6.73179775653E-27 7.16596141078E-27 7.62812621503E-27 8.12009808831E-27 8.64379942140E-27 9.20127658865E-27 9.79470794421E-27 1.04264123340E-26 1.10988581567E-26 1.18146730089E-26 1.25766539528E-26 1.33877784455E-26 1.42512159735E-26 1.51703404377E-26 1.61487433371E-26 1.71902478022E-26 1.82989235344E-26 1.94791027082E-26 2.07353968993E-26 2.20727151047E-26 2.34962829244E-26 2.50116629805E-26 2.66247766536E-26 2.83419272204E-26 3.01698244842E-26 3.21156109932E-26 3.41868899506E-26 3.63917549240E-26 3.87388214712E-26 4.12372608058E-26 4.38968356338E-26 4.67279383017E-26 4.97416314049E-26 5.29496910147E-26 5.63646526938E-26 5.99998604792E-26 6.38695190246E-26 6.79887491048E-26 7.23736467011E-26 7.70413458962E-26 8.20100858263E-26 8.72992819508E-26 9.29296019187E-26 9.89230463277E-26 1.05303034692E-25 1.12094496956E-25 1.19323970906E-25 1.27019705868E-25 1.35211773094E-25 1.43932183266E-25 1.53215011576E-25 1.63096530878E-25 1.73615353423E-25 1.84812581740E-25 1.96731969242E-25 2.09420091196E-25 2.22926526713E-25 2.37304052486E-25 2.52608849009E-25 2.68900720108E-25 2.86243326625E-25 3.04704435171E-25 3.24356182931E-25 3.45275359537E-25 3.67543707128E-25 3.91248239757E-25 4.16481583401E-25 4.43342337901E-25 4.71935462241E-25 5.02372684677E-25 5.34772939319E-25 5.69262830868E-25 6.05977129328E-25 6.45059296620E-25 6.86662047165E-25 7.30947944617E-25 7.78090037087E-25 8.28272533330E-25 8.81691522543E-25 9.38555740593E-25 9.99087385651E-25 1.06352298644E-24 1.13211432648E-24 1.20512942793E-24 1.28285359888E-24 1.36559054824E-24 1.45366357243E-24 1.54741681873E-24 1.64721662999E-24 1.75345297615E-24 1.86654097806E-24 1.98692252954E-24 2.11506802415E-24 2.25147819321E-24 2.39668606242E-24 2.55125903472E-24 2.71580110736E-24 2.89095523210E-24 3.07740582750E-24 3.27588145335E-24 3.48715765749E-24 3.71206000631E-24 3.95146731066E-24 4.20631505982E-24 4.47759907694E-24 4.76637941027E-24 5.07378447526E-24 5.40101546396E-24 5.74935103860E-24 6.12015232808E-24 6.51486824656E-24 6.93504115513E-24 7.38231288866E-24 7.85843117123E-24 8.36525644549E-24 8.90476914230E-24 9.47907741936E-24 1.00904253989E-23 1.07412019365E-23 1.14339499557E-23 1.21713763848E-23 1.29563627337E-23 1.37919763537E-23 1.46814824234E-23 1.56283567075E-23 1.66362991378E-23 1.77092482718E-23 1.88513966816E-23 2.00672073374E-23 2.13614310461E-23 2.27391250152E-23 2.42056726144E-23 2.57668044107E-23 2.74286205610E-23 2.91976146485E-23 3.10806990567E-23 3.30852319795E-23 3.52190461735E-23 3.74904795647E-23 3.99084078295E-23 4.24822790758E-23 4.52221507625E-23 4.81387289989E-23 5.12434103788E-23 5.45483265137E-23 5.80663914365E-23 6.18113520638E-23 6.57978419123E-23 7.00414382796E-23 7.45587231127E-23 7.93673478024E-23 8.44861021565E-23 8.99349878214E-23 9.57352964391E-23 1.01909692845E-22 1.08482303630E-22 1.15478811417E-22 1.22926555217E-22 1.30854637255E-22 1.39294036688E-22 1.48277730658E-22 1.57840823150E-22 1.68020682163E-22 1.78857085723E-22 1.90392377320E-22 2.02671631364E-22 2.15742829316E-22 2.29657047177E-22 2.44468655065E-22 2.60235529670E-22 2.77019280412E-22 2.94885490173E-22 3.13903971572E-22 3.34149039754E-22 3.55699802781E-22 3.78640470746E-22 4.03060684830E-22 4.29055867573E-22 4.56727595740E-22 4.86183997239E-22 5.17540173628E-22 5.50918649880E-22 5.86449853153E-22 6.24272622433E-22 6.64534751056E-22 7.07393564211E-22 7.53016533692E-22 8.01581932298E-22 8.53279530440E-22 9.08311337672E-22 9.66892392047E-22 1.02925160039E-21 1.09563263274E-21 1.16629487452E-21 1.24151444008E-21 1.32158525162E-21 1.40682018768E-21 1.49755230578E-21 1.59413614377E-21 1.69694910527E-21 1.80639293431E-21 1.92289528523E-21 2.04691139371E-21 2.17892585560E-21 2.31945452052E-21 2.46904650756E-21 2.62828635093E-21 2.79779628412E-21 2.97823867121E-21 3.17031859512E-21 3.37478661275E-21 3.59244168776E-21 3.82413431258E-21 4.07076983171E-21 4.33331197939E-21 4.61278664540E-21 4.91028588376E-21 5.22697217998E-21 5.56408299346E-21 5.92293559295E-21 6.30493220375E-21 6.71156548700E-21 7.14442437227E-21 7.60520026634E-21 8.09569366243E-21 8.61782117567E-21 9.17362303234E-21 9.76527104208E-21 1.03950770843E-20 1.10655021421E-20 1.17791659182E-20 1.25388570719E-20 1.33475441157E-20 1.42083870150E-20 1.51247495354E-20 1.61002123870E-20 1.71385872161E-20 1.82439314994E-20 1.94205643983E-20 2.06730836367E-20 2.20063834665E-20 2.34256737918E-20 2.49365005272E-20 2.65447672684E-20 2.82567583608E-20 3.00791634554E-20 3.20191036495E-20 3.40841593119E-20 3.62823997039E-20 3.86224145101E-20 4.11133474029E-20 4.37649317716E-20 4.65875287558E-20 4.95921677324E-20 5.27905894127E-20 5.61952917201E-20 5.98195786259E-20 6.36776121350E-20 6.77844676246E-20 7.21561927517E-20 7.68098701600E-20 8.17636842307E-20 8.70369921388E-20 9.26503994921E-20 9.86258408480E-20 1.04986665424E-19 1.11757728336E-19 1.18965487720E-19 1.26638108117E-19 1.34805570531E-19 1.43499789576E-19 1.52754738189E-19 1.62606580374E-19 1.73093812523E-19 1.84257413832E-19 1.96141006439E-19 2.08791025872E-19 2.22256902502E-19 2.36591254692E-19 2.51850094406E-19 2.68093046082E-19 2.85383579610E-19 3.03789258349E-19 3.23382003135E-19 3.44238373310E-19 3.66439865884E-19 3.90073233990E-19 4.15230825875E-19 4.42010945754E-19 4.70518237940E-19 5.00864095748E-19 5.33167096770E-19 5.67553466220E-19 6.04157570172E-19 6.43122440596E-19 6.84600334270E-19 7.28753327725E-19 7.75753950576E-19 8.25785859687E-19 8.79044556819E-19 9.35738152572E-19 9.96088179583E-19 1.06033045818E-18 1.12871601788E-18 1.20151207827E-18 1.27900309321E-18 1.36149186236E-18 1.44930071437E-18 1.54277276642E-18 1.64227326496E-18 1.74819101294E-18 1.86093988911E-18 1.98096046523E-18 2.10872172769E-18 2.24472291007E-18 2.38949544399E-18 2.54360503564E-18 2.70765387638E-18 2.88228299587E-18 3.06817476687E-18 3.26605557176E-18 3.47669864086E-18 3.70092707397E-18 3.93961705665E-18 4.19370128403E-18 4.46417260540E-18 4.75208790384E-18 5.05857222612E-18 5.38482317893E-18 5.73211560865E-18 6.10180658291E-18 6.49534069354E-18 6.91425570140E-18 7.36018854543E-18 7.83488173908E-18 8.34019017945E-18 8.87808839550E-18 9.45067826376E-18 1.00601972216E-17 1.07090270105E-17 1.13997029828E-17 1.21349240088E-17 1.29175630235E-17 1.37506782524E-17 1.46375251621E-17 1.55815691817E-17 1.65864992443E-17 1.76562422020E-17 1.87949781709E-17 2.00071568652E-17 2.12975149855E-17 2.26710947278E-17 2.41332634874E-17 2.56897348321E-17 2.73465908295E-17 2.91103058134E-17 3.09877716839E-17 3.29863248381E-17 3.51137748389E-17 3.73784349324E-17 3.97891545332E-17 4.23553538056E-17 4.50870604745E-17 4.79949490112E-17 5.10903823458E-17 5.43854562706E-17 5.78930467071E-17 6.16268600215E-17 6.56014865856E-17 6.98324577922E-17 7.43363067476E-17 7.91306328794E-17 8.42341707101E-17 8.96668630676E-17 9.54499390173E-17 1.01605996820E-16 1.08159092241E-16 1.15134832556E-16 1.22560476617E-16 1.30465041378E-16 1.38879415282E-16 1.47836478973E-16 1.57371233786E-16 1.67520938524E-16 1.78325255064E-16 1.89826403343E-16 2.02069326354E-16 2.15101865774E-16 2.28974948922E-16 2.43742787780E-16 2.59463090844E-16 2.76197288647E-16 2.94010773819E-16 3.12973156642E-16 3.33158537076E-16 3.54645794342E-16 3.77518895175E-16 4.01867221965E-16 4.27785922057E-16 4.55376279590E-16 4.84746111312E-16 5.16010187931E-16 5.49290682636E-16 5.84717648559E-16 6.22429527028E-16 6.62573688600E-16 7.05307008998E-16 7.50796482196E-16 7.99219873045E-16 8.50766412002E-16 9.05637534664E-16 9.64047669008E-16 1.02622507341E-15 1.09241272872E-15 1.16286928788E-15 1.23787008679E-15 1.31770822039E-15 1.40269568812E-15 1.49316461334E-15 1.58946854134E-15 1.69198382109E-15 1.80111107615E-15 1.91727677044E-15 2.04093487500E-15 2.17256864231E-15 2.31269249502E-15 2.46185403654E-15 2.62063619131E-15 2.78965948316E-15 2.96958446061E-15 3.16111427866E-15 3.36499744708E-15 3.58203075604E-15 3.81306239043E-15 4.05899524511E-15 4.32079045401E-15 4.59947114689E-15 4.89612644847E-15 5.21191573557E-15 5.54807316879E-15 5.90591251667E-15 6.28683229095E-15 6.69232121322E-15 7.12396403416E-15 7.58344772825E-15 8.07256808813E-15 8.59323674437E-15 9.14748863811E-15 9.73748997590E-15 1.03655466976E-14 1.10341134908E-14 1.17458033865E-14 1.25033979746E-14 1.33098582773E-14 1.41683363253E-14 1.50821874800E-14 1.60549835515E-14 1.70905267619E-14 1.81928646108E-14 1.93663056992E-14 2.06154365743E-14 2.19451396619E-14 2.33606123553E-14 2.48673873360E-14 2.64713542059E-14 2.81787825150E-14 2.99963462755E-14 3.19311500572E-14 3.39907567673E-14 3.61832172226E-14 3.85171016304E-14 4.10015331004E-14 4.36462233195E-14 4.64615105291E-14 4.94583999530E-14 5.26486068346E-14 5.60446022512E-14 5.96596618857E-14 6.35079179453E-14 6.76044144322E-14 7.19651659804E-14 7.66072204905E-14 8.15487258077E-14 8.68090007031E-14 9.24086104365E-14 9.83694471971E-14 1.04714815737E-13 1.11469524530E-13 1.18659982821E-13 1.26314303932E-13 1.34462415242E-13 1.43136175271E-13 1.52369498312E-13 1.62198487119E-13 1.72661574156E-13 1.83799671971E-13 1.95656333274E-13 2.08277921350E-13 2.21713791484E-13 2.36016484089E-13 2.51241930315E-13 2.67449670928E-13 2.84703089330E-13 3.03069659622E-13 3.22621210690E-13 3.43434207345E-13 3.65590049623E-13 3.89175391416E-13 4.14282479680E-13 4.41009515557E-13 4.69461038824E-13 4.99748337175E-13 5.31989881943E-13 5.66311791974E-13 6.02848327937E-13 6.41742415521E-13 6.83146210738E-13 7.27221689805E-13 7.74141286180E-13 8.24088566403E-13 8.77258948514E-13 9.33860467575E-13 9.94114589834E-13 1.05825708226E-12 1.12653893409E-12 1.19922734252E-12 1.27660675729E-12 1.35897999784E-12 1.44666943771E-12 1.54001827048E-12 1.63939185330E-12 1.74517913726E-12 1.85779419905E-12 1.97767785560E-12 2.10529939815E-12 2.24115843244E-12 2.38578683283E-12 2.53975083602E-12 2.70365325617E-12 2.87813585104E-12 3.06388184184E-12 3.26161858889E-12 3.47212045303E-12 3.69621181990E-12 3.93477036668E-12 4.18873047154E-12 4.45908688936E-12 4.74689867384E-12 5.05329333703E-12 5.37947124862E-12 5.72671036316E-12 6.09637127897E-12 6.48990249951E-12 6.90884622144E-12 7.35484432103E-12 7.82964484415E-12 8.33510885095E-12 8.87321775449E-12 9.44608113846E-12 1.00559449593E-11 1.07052004817E-11 1.13963936476E-11 1.21322350434E-11 1.29156106595E-11 1.37495931998E-11 1.46374541481E-11 1.55826766833E-11 1.65889694275E-11 1.76602809824E-11 1.88008155317E-11 2.00150494008E-11 2.13077486901E-11 2.26839880604E-11 2.41491707500E-11 2.57090498929E-11 2.73697511708E-11 2.91377970487E-11 3.10201324566E-11 3.30241522345E-11 3.51577302923E-11 3.74292507841E-11 3.98476411689E-11 4.24224074983E-11 4.51636719794E-11 4.80822130213E-11 5.11895078868E-11 5.44977780096E-11 5.80200374850E-11 6.17701444422E-11 6.57628560555E-11 7.00138869075E-11 7.45399712776E-11 7.93589295745E-11 8.44897387723E-11 8.99526079640E-11 9.57690582774E-11 1.01962008564E-10 1.08555866294E-10 1.15576624418E-10 1.23051964751E-10 1.31011368284E-10 1.39486232098E-10 1.48509994353E-10 1.58118267639E-10 1.68348980494E-10 1.79242528898E-10 1.90841937097E-10 2.03193029547E-10 2.16344612893E-10 2.30348671862E-10 2.45260576666E-10 2.61139303958E-10 2.78047673011E-10 2.96052596808E-10 3.15225350497E-10 3.35641856179E-10 3.57382987989E-10 3.80534895821E-10 4.05189351334E-10 4.31444116859E-10 4.59403337626E-10 4.89177961413E-10 5.20886183798E-10 5.54653925482E-10 5.90615338641E-10 6.28913348627E-10 6.69700230601E-10 7.13138224366E-10 7.59400190288E-10 8.08670308609E-10 8.61144825255E-10 9.17032846438E-10 9.76557187662E-10 1.03995527722E-09 1.10748012134E-09 1.17940133244E-09 1.25600622737E-09 1.33760099689E-09 1.42451195506E-09 1.51708687103E-09 1.61569639001E-09 1.72073554911E-09 1.83262539541E-09 1.95181471143E-09 2.07878185659E-09 2.21403673312E-09 2.35812288218E-09 2.51161972296E-09 2.67514494050E-09 2.84935703572E-09 3.03495804678E-09 3.23269645347E-09 3.44337027930E-09 3.66783040093E-09 3.90698408418E-09 4.16179875700E-09 4.43330603997E-09 4.72260604971E-09 5.03087199434E-09 5.35935508211E-09 5.70938976394E-09 6.08239933267E-09 6.47990190557E-09 6.90351681391E-09 7.35497143193E-09 7.83610846982E-09 8.34889377020E-09 8.89542463750E-09 9.47793874002E-09 1.00988236252E-08 1.07606268886E-08 1.14660670467E-08 1.22180451584E-08 1.30196572506E-08 1.38742076045E-08 1.47852229640E-08 1.57564677261E-08 1.67919601935E-08 1.78959899538E-08 1.90731364710E-08 2.03282889761E-08 2.16666677470E-08 2.30938468774E-08 2.46157786424E-08 2.62388195752E-08 2.79697583743E-08 2.98158457799E-08 3.17848265509E-08 3.38849737063E-08 3.61251251815E-08 3.85147230872E-08 4.10638557470E-08 4.37833027257E-08 4.66845830593E-08 4.97800069213E-08 5.30827309780E-08 5.66068176989E-08 6.03672989150E-08 6.43802439308E-08 6.86628325325E-08 7.32334332445E-08 7.81116872237E-08 8.33185982074E-08 8.88766289634E-08 9.48098047187E-08 1.01143824087E-07 1.07906178052E-07 1.15126277606E-07 1.22835590677E-07 1.31067789054E-07 1.39858906049E-07 1.49247505683E-07 1.59274864293E-07 1.69985165450E-07 1.81425709222E-07 1.93647136842E-07 2.06703671937E-07 2.20653379579E-07 2.35558444498E-07 2.51485469897E-07 2.68505798434E-07 2.86695857057E-07 3.06137527474E-07 3.26918544242E-07 3.49132922539E-07 3.72881417894E-07 3.98272020306E-07 4.25420485371E-07 4.54450905233E-07 4.85496322421E-07 5.18699389819E-07 5.54213080320E-07 5.92201449954E-07 6.32840458595E-07 6.76318852644E-07 7.22839114455E-07 7.72618483618E-07 8.25890055606E-07 8.82903963752E-07 9.43928650913E-07 1.00925223776E-06 1.07918399508E-06 1.15405592813E-06 1.23422448158E-06 1.32007237442E-06 1.41201057472E-06 1.51048042506E-06 1.61595593020E-06 1.72894621939E-06 1.84999819684E-06 1.97969939470E-06 2.11868104414E-06 2.26762138125E-06 2.42724920569E-06 2.59834771157E-06 2.78175861126E-06 2.97838657454E-06 3.18920400726E-06 3.41525619521E-06 3.65766684125E-06 3.91764402537E-06 4.19648661986E-06 4.49559119425E-06 4.81645944671E-06 5.16070620209E-06 5.53006801889E-06 5.92641245123E-06 6.35174801483E-06 6.80823490955E-06 7.29819655522E-06 7.82413200097E-06 8.38872927295E-06 8.99487972995E-06 9.64569350088E-06 1.03445160838E-05 1.10949461914E-05 1.19008549331E-05 1.27664064324E-05 1.36960799804E-05 1.46946938385E-05 1.57674308067E-05 1.69198656829E-05 1.81579947485E-05 1.94882674198E-05 2.09176202199E-05 2.24535132293E-05 2.41039691872E-05 2.58776154250E-05 2.77837288226E-05 2.98322839929E-05 3.20340049080E-05 3.44004201954E-05 3.69439223438E-05 3.96778310712E-05 4.26164611228E-05 4.57751947768E-05 4.91705593537E-05 5.28203100360E-05 5.67435183212E-05 6.09606664439E-05 6.54937481180E-05 7.03663759631E-05 7.56038959943E-05 8.12335095641E-05 8.72844031629E-05 9.37878864900E-05 1.00777539222E-04 1.08289366910E-04 1.16361966449E-04 1.25036701562E-04 1.34357888746E-04 1.44372994126E-04 1.55132841660E-04 1.66691833127E-04 1.79108180316E-04 1.92444149818E-04 2.06766320796E-04 2.22145856076E-04 2.38658786865E-04 2.56386311343E-04 2.75415107338E-04 2.95837659193E-04 3.17752598878E-04 3.41265061297E-04 3.66487053608E-04 3.93537838284E-04 4.22544329456E-04 4.53641501938E-04 4.86972812143E-04 5.22690629862E-04 5.60956679673E-04 6.01942490458E-04 6.45829851202E-04 6.92811270946E-04 7.43090440364E-04 7.96882692071E-04 8.54415456287E-04 9.15928708038E-04 9.81675401518E-04 1.05192188669E-03 1.12694830258E-03 1.20704894101E-03 1.29253257390E-03 1.38372273644E-03 1.48095795754E-03 1.58459192836E-03 1.69499359847E-03 1.81254718857E-03 1.93765210750E-03 2.07072276029E-03 2.21218823304E-03 2.36249183919E-03 2.52209051084E-03 2.69145401752E-03 2.87106399391E-03 3.06141275688E-03 3.26300189126E-03 3.47634058294E-03 3.70194367703E-03 3.94032943811E-03 4.19201698932E-03 4.45752340650E-03 4.73736044386E-03 5.03203086756E-03 5.34202437467E-03 5.66781307549E-03 6.00984651921E-03 6.36854624445E-03 6.74429983920E-03 7.13745449769E-03 7.54831006590E-03 7.97711157219E-03 8.42404124524E-03 8.88921002815E-03 9.37264860535E-03 9.87429796764E-03 1.03939995508E-02 1.09314849940E-02 1.14863655774E-02 1.20581214107E-02 1.26460904610E-02 1.32494575221E-02 1.38672432477E-02 1.44982933849E-02 1.51412683692E-02 1.57946334557E-02 1.64566495869E-02 1.71253652145E-02 1.77986093149E-02 1.84739858553E-02 1.91488699878E-02 1.98204062652E-02 2.04855091835E-02 2.11408663705E-02 2.17829447435E-02 2.24079999636E-02 2.30120895051E-02 2.35910896528E-02 2.41407167154E-02 2.46565527160E-02 2.51340757834E-02 2.55686954140E-02 2.59557927136E-02 2.62907656522E-02 2.65690792751E-02 2.67863207108E-02 2.69382586978E-02 2.70209072234E-02 2.70305927222E-02 2.69640241285E-02 2.68183649114E-02 2.65913060532E-02 2.62811387550E-02 2.58868254850E-02 2.54080678158E-02 2.48453693463E-02 2.42000918692E-02 2.34745028357E-02 2.26718121004E-02 2.17961958938E-02 2.08528059979E-02 1.98477621757E-02 1.87881260608E-02 1.76818549314E-02 1.65377341016E-02 1.53652870437E-02 1.41746628301E-02 1.29765010254E-02 1.17817747855E-02 1.06016135998E-02 9.44710783585E-03 8.32909799298E-03 7.25795230679E-03 6.24333704073E-03 5.29398441443E-03 4.41746360537E-03 3.61996057652E-03 2.90607257874E-03 2.27862300779E-03 1.73850181884E-03 1.28453588485E-03 9.13392505146E-04 6.19517724081E-04 3.95109222581E-04 2.30121338811E-04 1.13451299838E-04 3.69326443349E-05 -7.12792523894E-06 -2.66803104799E-05 -2.95562022084E-05 -2.30334329788E-05 -1.33418810637E-05 -5.11532959252E-06 -7.95894902816E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 2 2 i j (l(j)) 9.83956104046E-01 Q_int 3.68688447848E-29 3.97403434546E-29 4.28354863601E-29 4.61716918426E-29 4.97677348562E-29 5.36438526265E-29 5.78218585379E-29 6.23252648921E-29 6.71794152263E-29 7.24116269374E-29 7.80513450148E-29 8.41303077458E-29 9.06827253273E-29 9.77454723883E-29 1.05358295507E-28 1.13564036890E-28 1.22408875473E-28 1.31942586798E-28 1.42218823134E-28 1.53295415412E-28 1.65234698674E-28 1.78103862874E-28 1.91975331001E-28 2.06927166644E-28 2.23043513310E-28 2.40415067951E-28 2.59139591374E-28 2.79322458404E-28 3.01077250896E-28 3.24526396927E-28 3.49801859785E-28 3.77045880606E-28 4.06411778855E-28 4.38064815152E-28 4.72183121304E-28 5.08958702760E-28 5.48598519149E-28 5.91325648978E-28 6.37380545032E-28 6.87022387557E-28 7.40530542835E-28 7.98206135351E-28 8.60373742414E-28 9.27383220764E-28 9.99611675434E-28 1.07746558196E-27 1.16138307389E-27 1.25183640842E-27 1.34933462411E-27 1.45442640552E-27 1.56770317110E-27 1.68980240137E-27 1.82141122651E-27 1.96327029324E-27 2.11617793293E-27 2.28099465428E-27 2.45864798603E-27 2.65013769666E-27 2.85654142079E-27 3.07902072371E-27 3.31882763822E-27 3.57731171062E-27 3.85592759551E-27 4.15624324200E-27 4.47994871760E-27 4.82886571929E-27 5.20495782536E-27 5.61034154574E-27 6.04729823294E-27 6.51828692067E-27 7.02595816240E-27 7.57316894767E-27 8.16299878028E-27 8.79876700853E-27 9.48405150534E-27 1.02227088033E-26 1.10188957976E-26 1.18770931398E-26 1.28021304533E-26 1.37992135124E-26 1.48739535388E-26 1.60323987795E-26 1.72810685440E-26 1.86269898928E-26 2.00777371828E-26 2.16414746936E-26 2.33270025724E-26 2.51438063587E-26 2.71021103651E-26 2.92129352159E-26 3.14881598677E-26 3.39405884593E-26 3.65840223691E-26 3.94333378841E-26 4.25045699183E-26 4.58150022512E-26 4.93832647951E-26 5.32294384368E-26 5.73751680463E-26 6.18437842857E-26 6.66604349059E-26 7.18522262691E-26 7.74483758935E-26 8.34803768787E-26 8.99821751379E-26 9.69903604328E-26 1.04544372287E-25 1.12686721940E-25 1.21463231580E-25 1.30923292220E-25 1.41120141648E-25 1.52111164034E-25 1.63958212863E-25 1.76727959030E-25 1.90492266030E-25 2.05328594392E-25 2.21320437587E-25 2.38557791906E-25 2.57137662927E-25 2.77164611422E-25 2.98751341791E-25 3.22019336320E-25 3.47099538840E-25 3.74133091632E-25 4.03272129721E-25 4.34680637042E-25 4.68535369279E-25 5.05026848579E-25 5.44360435750E-25 5.86757485948E-25 6.32456594388E-25 6.81714939072E-25 7.34809728090E-25 7.92039759652E-25 8.53727103608E-25 9.20218913949E-25 9.91889382456E-25 1.06914184452E-24 1.15241104897E-24 1.24216560468E-24 1.33891061771E-24 1.44319053389E-24 1.55559220277E-24 1.67674818013E-24 1.80734028787E-24 1.94810345098E-24 2.09982983346E-24 2.26337329634E-24 2.43965420288E-24 2.62966459807E-24 2.83447379146E-24 3.05523437486E-24 3.29318870875E-24 3.54967591375E-24 3.82613940680E-24 4.12413502411E-24 4.44533977687E-24 4.79156128888E-24 5.16474796917E-24 5.56699997696E-24 6.00058104056E-24 6.46793119688E-24 6.97168052299E-24 7.51466393729E-24 8.09993715339E-24 8.73079387657E-24 9.41078433951E-24 1.01437352818E-23 1.09337714853E-23 1.17853389870E-23 1.27032300999E-23 1.36926103820E-23 1.47590477065E-23 1.59085435956E-23 1.71475669949E-23 1.84830906785E-23 1.99226304890E-23 2.14742876339E-23 2.31467942766E-23 2.49495626773E-23 2.68927381624E-23 2.89872562181E-23 3.12449040319E-23 3.36783868263E-23 3.63013993591E-23 3.91287029928E-23 4.21762087659E-23 4.54610669349E-23 4.90017634892E-23 5.28182241837E-23 5.69319266738E-23 6.13660213839E-23 6.61454617895E-23 7.12971448461E-23 7.68500623559E-23 8.28354641228E-23 8.92870338150E-23 9.62410785247E-23 1.03736733091E-22 1.11816180336E-22 1.20524888456E-22 1.29911866899E-22 1.40029942171E-22 1.50936055126E-22 1.62691581408E-22 1.75362676850E-22 1.89020649778E-22 2.03742362303E-22 2.19610662877E-22 2.36714852536E-22 2.55151187445E-22 2.75023420605E-22 2.96443385726E-22 3.19531626594E-22 3.44418075442E-22 3.71242784168E-22 4.00156712490E-22 4.31322577494E-22 4.64915769351E-22 5.01125338341E-22 5.40155058767E-22 5.82224575718E-22 6.27570641155E-22 6.76448446261E-22 7.29133057568E-22 7.85920964928E-22 8.47131750054E-22 9.13109885005E-22 9.84226670755E-22 1.06088232673E-21 1.14350824312E-21 1.23256940855E-21 1.32856702689E-21 1.43204133787E-21 1.54357465730E-21 1.66379465416E-21 1.79337788290E-21 1.93305359085E-21 2.08360782211E-21 2.24588784118E-21 2.42080690101E-21 2.60934938247E-21 2.81257633413E-21 3.03163144336E-21 3.26774747269E-21 3.52225319727E-21 3.79658088277E-21 4.09227434565E-21 4.41099764119E-21 4.75454442818E-21 5.12484806297E-21 5.52399247974E-21 5.95422391807E-21 6.41796356398E-21 6.91782117548E-21 7.45660976935E-21 8.03736145175E-21 8.66334448181E-21 9.33808166423E-21 1.00653701743E-20 1.08493029270E-20 1.16942916106E-20 1.26050915137E-20 1.35868282866E-20 1.46450267864E-20 1.57856421690E-20 1.70150934023E-20 1.83402993901E-20 1.97687179090E-20 2.13083875781E-20 2.29679730974E-20 2.47568140094E-20 2.66849772591E-20 2.87633138465E-20 3.10035198924E-20 3.34182024598E-20 3.60209505019E-20 3.88264113358E-20 4.18503730719E-20 4.51098534642E-20 4.86231956792E-20 5.24101715255E-20 5.64920927213E-20 6.08919308297E-20 6.56344465337E-20 7.07463289808E-20 7.62563459790E-20 8.21955058924E-20 8.85972321440E-20 9.54975513108E-20 1.02935295869E-19 1.10952322726E-19 1.19593748781E-19 1.28908204820E-19 1.38948109197E-19 1.49769962824E-19 1.61434667133E-19 1.74007866815E-19 1.87560319238E-19 2.02168292643E-19 2.17913995359E-19 2.34886038436E-19 2.53179934317E-19 2.72898634348E-19 2.94153108148E-19 3.17062968108E-19 3.41757142521E-19 3.68374601148E-19 3.97065137284E-19 4.27990210741E-19 4.61323856485E-19 4.97253664040E-19 5.35981833171E-19 5.77726311790E-19 6.22722022488E-19 6.71222184587E-19 7.23499739172E-19 7.79848885095E-19 8.40586734621E-19 9.06055098016E-19 9.76622407130E-19 1.05268578879E-18 1.13467329969E-18 1.22304633532E-18 1.31830222655E-18 1.42097703841E-18 1.53164858683E-18 1.65093969046E-18 1.77952167556E-18 1.91811815404E-18 2.06750909565E-18 2.22853521736E-18 2.40210271462E-18 2.58918836104E-18 2.79084500536E-18 3.00820749645E-18 3.24249906982E-18 3.49503823154E-18 3.76724617828E-18 4.06065479527E-18 4.37691527720E-18 4.71780742046E-18 5.08524963922E-18 5.48130976150E-18 5.90821666613E-18 6.36837282604E-18 6.86436782847E-18 7.39899294815E-18 7.97525685556E-18 8.59640254856E-18 9.26592560277E-18 9.98759384328E-18 1.07654685486E-17 1.16039273058E-17 1.25076886463E-17 1.34818385994E-17 1.45318593148E-17 1.56636599141E-17 1.68836097448E-17 1.81985742248E-17 1.96159534780E-17 2.11437239797E-17 2.27904834446E-17 2.45654992119E-17 2.64787603979E-17 2.85410341111E-17 3.07639260450E-17 3.31599457907E-17 3.57425772354E-17 3.85263544453E-17 4.15269434568E-17 4.47612304389E-17 4.82474167221E-17 5.20051212282E-17 5.60554908776E-17 6.04213195958E-17 6.51271765887E-17 7.01995446077E-17 7.56669689846E-17 8.15602182730E-17 8.79124574008E-17 9.47594343099E-17 1.02139681130E-16 1.10094731023E-16 1.18669351914E-16 1.27911798425E-16 1.37874083437E-16 1.48612270791E-16 1.60186790797E-16 1.72662780308E-16 1.86110449283E-16 2.00605475903E-16 2.16229432451E-16 2.33070244369E-16 2.51222685066E-16 2.70788909262E-16 2.91879027871E-16 3.14611727657E-16 3.39114939157E-16 3.65526556613E-16 3.93995213986E-16 4.24681121402E-16 4.57756966744E-16 4.93408887466E-16 5.31837518090E-16 5.73259119294E-16 6.17906794925E-16 6.66031803808E-16 7.17904973719E-16 7.73818225479E-16 8.34086215755E-16 8.99048107808E-16 9.69069480142E-16 1.04454438382E-15 1.12589756000E-15 1.21358683018E-15 1.30810567260E-15 1.40998599932E-15 1.51980114957E-15 1.63816911622E-15 1.76575602354E-15 1.90327987587E-15 2.05151459817E-15 2.21129439129E-15 2.38351842648E-15 2.56915590545E-15 2.76925151457E-15 2.98493130385E-15 3.21740902379E-15 3.46799295575E-15 3.73809327428E-15 4.02922998288E-15 4.34304146782E-15 4.68129371805E-15 5.04589026336E-15 5.43888288636E-15 5.86248316888E-15 6.31907493755E-15 6.81122767868E-15 7.34171099794E-15 7.91351020618E-15 8.52984311912E-15 9.19417816539E-15 9.91025390494E-15 1.06821000675E-14 1.15140602295E-14 1.24108162575E-14 1.33774146547E-14 1.44192949596E-14 1.55423203570E-14 1.67528106719E-14 1.80575779339E-14 1.94639647113E-14 2.09798854301E-14 2.26138709119E-14 2.43751163793E-14 2.62735332017E-14 2.83198046692E-14 3.05254461114E-14 3.29028696984E-14 3.54654542879E-14 3.82276207123E-14 4.12049129294E-14 4.44140854929E-14 4.78731978357E-14 5.16017158948E-14 5.56206216524E-14 5.99525312065E-14 6.46218220385E-14 6.96547701906E-14 7.50796981279E-14 8.09271341156E-14 8.72299840084E-14 9.40237164184E-14 1.01346562305E-13 1.09239730106E-13 1.17747637627E-13 1.26918161988E-13 1.36802909033E-13 1.47457503726E-13 1.58941903158E-13 1.71320733935E-13 1.84663655837E-13 1.99045753800E-13 2.14547960428E-13 2.31257511400E-13 2.49268436356E-13 2.68682088001E-13 2.89607712420E-13 3.12163063807E-13 3.36475067064E-13 3.62680532008E-13 3.90926923190E-13 4.21373189671E-13 4.54190659415E-13 4.89564003333E-13 5.27692274411E-13 5.68790027746E-13 6.13088527819E-13 6.60837049781E-13 7.12304282071E-13 7.67779838271E-13 8.27575886694E-13 8.92028906869E-13 9.61501582821E-13 1.03638484378E-12 1.11710006381E-12 1.20410143274E-12 1.29787851170E-12 1.39895898770E-12 1.50791164269E-12 1.62534955384E-12 1.75193354302E-12 1.88837589490E-12 2.03544436460E-12 2.19396649740E-12 2.36483428486E-12 2.54900918343E-12 2.74752752398E-12 2.96150634250E-12 3.19214966482E-12 3.44075528072E-12 3.70872204560E-12 3.99755775061E-12 4.30888760572E-12 4.64446338320E-12 5.00617327326E-12 5.39605250693E-12 5.81629480626E-12 6.26926472597E-12 6.75751095614E-12 7.28378066076E-12 7.85103493261E-12 8.46246545164E-12 9.12151244036E-12 9.83188401754E-12 1.05975770576E-11 1.14228996737E-11 1.23124954646E-11 1.32713696127E-11 1.43049170708E-11 1.54189528826E-11 1.66197449132E-11 1.79140490838E-11 1.93091474031E-11 2.08128889419E-11 2.24337339073E-11 2.41808013011E-11 2.60639202257E-11 2.80936850973E-11 3.02815153026E-11 3.26397193904E-11 3.51815643445E-11 3.79213501236E-11 4.08744902092E-11 4.40575981808E-11 4.74885811748E-11 5.11867407796E-11 5.51728812350E-11 5.94694267712E-11 6.41005475154E-11 6.90922954826E-11 7.44727513006E-11 8.02721816725E-11 8.65232097454E-11 9.32609989304E-11 1.00523450309E-10 1.08351415404E-10 1.16788927028E-10 1.25883445364E-10 1.35686126131E-10 1.46252107454E-10 1.57640819904E-10 1.69916321392E-10 1.83147656705E-10 1.97409245155E-10 2.12781300396E-10 2.29350279938E-10 2.47209372037E-10 2.66459019634E-10 2.87207484238E-10 3.09571455901E-10 3.33676706452E-10 3.59658800200E-10 3.87663853068E-10 4.17849354123E-10 4.50385052789E-10 4.85453910690E-10 5.23253129665E-10 5.63995263475E-10 6.07909408126E-10 6.55242490377E-10 7.06260659073E-10 7.61250773714E-10 8.20522023222E-10 8.84407657436E-10 9.53266864717E-10 1.02748678588E-09 1.10748469152E-09 1.19371032282E-09 1.28664842410E-09 1.38682145970E-09 1.49479255022E-09 1.61116863798E-09 1.73660389120E-09 1.87180338798E-09 2.01752706040E-09 2.17459397137E-09 2.34388692034E-09 2.52635738125E-09 2.72303086625E-09 2.93501266529E-09 3.16349406046E-09 3.40975901941E-09 3.67519138321E-09 3.96128265192E-09 4.26964034502E-09 4.60199703979E-09 4.96022006059E-09 5.34632199506E-09 5.76247195911E-09 6.21100778230E-09 6.69444911503E-09 7.21551156691E-09 7.77712193857E-09 8.38243463509E-09 9.03484935032E-09 9.73803015506E-09 1.04959260100E-08 1.13127929324E-08 1.21932178389E-08 1.31421442663E-08 1.41649000925E-08 1.52672273567E-08 1.64553144760E-08 1.77358309273E-08 1.91159645626E-08 2.06034619288E-08 2.22066716412E-08 2.39345911124E-08 2.57969170084E-08 2.78040994586E-08 2.99674006365E-08 3.22989577382E-08 3.48118509941E-08 3.75201767851E-08 4.04391265857E-08 4.35850719257E-08 4.69756559720E-08 5.06298922373E-08 5.45682708520E-08 5.88128731898E-08 6.33874952742E-08 6.83177808083E-08 7.36313644553E-08 7.93580262835E-08 8.55298580945E-08 9.21814426984E-08 9.93500470353E-08 1.07075830217E-07 1.15402067723E-07 1.24375392936E-07 1.34046057331E-07 1.44468210780E-07 1.55700203613E-07 1.67804911964E-07 1.80850088274E-07 1.94908738941E-07 2.10059531076E-07 2.26387230764E-07 2.43983175107E-07 2.62945780813E-07 2.83381091959E-07 3.05403370120E-07 3.29135729971E-07 3.54710824045E-07 3.82271580145E-07 4.11971995888E-07 4.43977994172E-07 4.78468344977E-07 5.15635657798E-07 5.55687450946E-07 5.98847302882E-07 6.45356092437E-07 6.95473334335E-07 7.49478617556E-07 8.07673154523E-07 8.70381449084E-07 9.37953093103E-07 1.01076470083E-06 1.08922199218E-06 1.17376203576E-06 1.26485566425E-06 1.36301007522E-06 1.46877163131E-06 1.58272887525E-06 1.70551577614E-06 1.83781522424E-06 1.98036279360E-06 2.13395079285E-06 2.29943262570E-06 2.47772748542E-06 2.66982540785E-06 2.87679271088E-06 3.09977784924E-06 3.34001771629E-06 3.59884442692E-06 3.87769261734E-06 4.17810730173E-06 4.50175232715E-06 4.85041947225E-06 5.22603823830E-06 5.63068638502E-06 6.06660126675E-06 6.53619202995E-06 7.04205273624E-06 7.58697648109E-06 8.17397058232E-06 8.80627291942E-06 9.48736950913E-06 1.02210134104E-05 1.10112450585E-05 1.18624141338E-05 1.27792030808E-05 1.37666524008E-05 1.48301878489E-05 1.59756496780E-05 1.72093240814E-05 1.85379769975E-05 1.99688904513E-05 2.15099016202E-05 2.31694448257E-05 2.49565966666E-05 2.68811245254E-05 2.89535386961E-05 3.11851483980E-05 3.35881219625E-05 3.61755514970E-05 3.89615223526E-05 4.19611877476E-05 4.51908489202E-05 4.86680412143E-05 5.24116265261E-05 5.64418925739E-05 6.07806594842E-05 6.54513942180E-05 7.04793334072E-05 7.58916151964E-05 8.17174207437E-05 8.79881260623E-05 9.47374649450E-05 1.02001703755E-04 1.09819828929E-04 1.18233748082E-04 1.27288505683E-04 1.37032514320E-04 1.47517802641E-04 1.58800281142E-04 1.70940027052E-04 1.84001589611E-04 1.98054317191E-04 2.13172707725E-04 2.29436784070E-04 2.46932496001E-04 2.65752150637E-04 2.85994873244E-04 3.07767100458E-04 3.31183108102E-04 3.56365575912E-04 3.83446191638E-04 4.12566297117E-04 4.43877579086E-04 4.77542807667E-04 5.13736625630E-04 5.52646391724E-04 5.94473081555E-04 6.39432249690E-04 6.87755056879E-04 7.39689366505E-04 7.95500914595E-04 8.55474557968E-04 9.19915605332E-04 9.89151236412E-04 1.06353201444E-03 1.14343349759E-03 1.22925795534E-03 1.32143619575E-03 1.42042951038E-03 1.52673174335E-03 1.64087149181E-03 1.76341444514E-03 1.89496587055E-03 2.03617325310E-03 2.18772909849E-03 2.35037390724E-03 2.52489932916E-03 2.71215150735E-03 2.91303462133E-03 3.12851463895E-03 3.35962328717E-03 3.60746225211E-03 3.87320761858E-03 4.15811455996E-03 4.46352228910E-03 4.79085928106E-03 5.14164877866E-03 5.51751459156E-03 5.92018719978E-03 6.35151017198E-03 6.81344690904E-03 7.30808772262E-03 7.83765725818E-03 8.40452227125E-03 9.01119976492E-03 9.66036549551E-03 1.03548628525E-02 1.10977121171E-02 1.18921201029E-02 1.27414901796E-02 1.36494326787E-02 1.46197756790E-02 1.56565761653E-02 1.67641315515E-02 1.79469915571E-02 1.92099704193E-02 2.05581594222E-02 2.19969397176E-02 2.35319954068E-02 2.51693268490E-02 2.69152641532E-02 2.87764808042E-02 3.07600073677E-02 3.28732452084E-02 3.51239801476E-02 3.75203959773E-02 4.00710877363E-02 4.27850746430E-02 4.56718125687E-02 4.87412059186E-02 5.20036187795E-02 5.54698851719E-02 5.91513182344E-02 6.30597181484E-02 6.72073785947E-02 7.16070915155E-02 7.62721499367E-02 8.12163485858E-02 8.64539820188E-02 9.19998399528E-02 9.78691994748E-02 1.04077813780E-01 1.10641897070E-01 1.17578105221E-01 1.24903511805E-01 1.32635579049E-01 1.40792123254E-01 1.49391274244E-01 1.58451428322E-01 1.67991194270E-01 1.78029331871E-01 1.88584682442E-01 1.99676090863E-01 2.11322318595E-01 2.23541947175E-01 2.36353271698E-01 2.49774183823E-01 2.63822043862E-01 2.78513541543E-01 2.93864545112E-01 3.09889938468E-01 3.26603446131E-01 3.44017445891E-01 3.62142769126E-01 3.80988488861E-01 4.00561695795E-01 4.20867262657E-01 4.41907597423E-01 4.63682386129E-01 4.86188326190E-01 5.09418851388E-01 5.33363849922E-01 5.58009377178E-01 5.83337365165E-01 6.09325330854E-01 6.35946085972E-01 6.63167451138E-01 6.90951977563E-01 7.19256679870E-01 7.48032783954E-01 7.77225494139E-01 8.06773784226E-01 8.36610217351E-01 8.66660799870E-01 8.96844874761E-01 9.27075060260E-01 9.57257239625E-01 9.87290608044E-01 1.01706778275E+00 1.04647498237E+00 1.07539228132E+00 1.10369394507E+00 1.13124885127E+00 1.15792100174E+00 1.18357012929E+00 1.20805240275E+00 1.23122123247E+00 1.25292817753E+00 1.27302395453E+00 1.29135954618E+00 1.30778740669E+00 1.32216275849E+00 1.33434497342E+00 1.34419902902E+00 1.35159702855E+00 1.35641977084E+00 1.35855835414E+00 1.35791579519E+00 1.35440864309E+00 1.34796856492E+00 1.33854387829E+00 1.32610100419E+00 1.31062581220E+00 1.29212482880E+00 1.27062627944E+00 1.24618093444E+00 1.21886272998E+00 1.18876913623E+00 1.15602124702E+00 1.12076356804E+00 1.08316348420E+00 1.04341039121E+00 1.00171448152E+00 9.58305180712E-01 9.13429236917E-01 8.67348473150E-01 8.20337219837E-01 7.72679452819E-01 7.24665670051E-01 6.76589548126E-01 6.28744427296E-01 5.81419680725E-01 5.34897029886E-01 4.89446873205E-01 4.45324698943E-01 4.02767655708E-01 3.61991354690E-01 3.23186976582E-01 2.86518753051E-01 2.52121887532E-01 2.20100972936E-01 1.90528954805E-01 1.63446677404E-01 1.38863037617E-01 1.16755757337E-01 9.70727697651E-02 7.97341988659E-02 6.46348946990E-02 5.16474707590E-02 4.06257734400E-02 3.14086987220E-02 2.38242578038E-02 1.76937822579E-02 1.28361510324E-02 9.07191693072E-03 6.22720974511E-03 4.13729765566E-03 2.64969842474E-03 1.62674779166E-03 9.47554609764E-04 5.12221898113E-04 2.49293599720E-04 1.03567537669E-04 3.21565528867E-05 3.52661422873E-06 -3.85003886982E-06 -3.16169910791E-06 -1.15450113223E-06 -1.44439611136E-07 3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 3 2 i j (l(j)) 0.00000000000E+00 Q_int 1.80090339285E-29 1.94116522441E-29 2.09235122963E-29 2.25531222848E-29 2.43096530635E-29 2.62029897505E-29 2.82437873576E-29 3.04435307534E-29 3.28145992958E-29 3.53703364982E-29 3.81251251225E-29 4.10944681196E-29 4.42950758747E-29 4.77449602471E-29 5.14635359344E-29 5.54717297316E-29 5.97920982991E-29 6.44489551040E-29 6.94685072469E-29 7.48790029461E-29 8.07108905087E-29 8.69969896820E-29 9.37726763517E-29 1.01076081624E-28 1.08948306415E-28 1.17433652748E-28 1.26579873076E-28 1.36438439008E-28 1.47064830976E-28 1.58518850459E-28 1.70864956523E-28 1.84172628575E-28 1.98516757364E-28 2.13978066444E-28 2.30643566453E-28 2.48607044779E-28 2.67969593361E-28 2.88840177597E-28 3.11336249564E-28 3.35584408995E-28 3.61721115732E-28 3.89893457679E-28 4.20259978557E-28 4.52991570128E-28 4.88272433914E-28 5.26301117818E-28 5.67291633475E-28 6.11474660637E-28 6.59098845352E-28 7.10432199253E-28 7.65763607833E-28 8.25404456185E-28 8.89690381367E-28 9.58983161242E-28 1.03367275044E-27 1.11417947487E-27 1.20095639716E-27 1.29449186636E-27 1.39531226616E-27 1.50398497718E-27 1.62112157001E-27 1.74738124691E-27 1.88347455153E-27 2.03016736762E-27 2.18828522912E-27 2.35871796599E-27 2.54242471185E-27 2.74043930161E-27 2.95387608954E-27 3.18393622046E-27 3.43191438931E-27 3.69920612727E-27 3.98731565526E-27 4.29786434917E-27 4.63259986440E-27 4.99340597098E-27 5.38231315479E-27 5.80151004434E-27 6.25335572766E-27 6.74039302832E-27 7.26536281556E-27 7.83121942887E-27 8.44114730398E-27 9.09857889370E-27 9.80721398449E-27 1.05710405175E-26 1.13943570315E-26 1.22817968529E-26 1.32383541713E-26 1.42694121440E-26 1.53807731914E-26 1.65786916501E-26 1.78699089707E-26 1.92616916558E-26 2.07618721534E-26 2.23788929350E-26 2.41218540070E-26 2.60005641219E-26 2.80255959786E-26 3.02083457217E-26 3.25610970748E-26 3.50970904691E-26 3.78305975551E-26 4.07770015191E-26 4.39528836536E-26 4.73761166710E-26 5.10659652846E-26 5.50431946239E-26 5.93301870925E-26 6.39510683287E-26 6.89318429755E-26 7.43005410256E-26 8.00873755637E-26 8.63249127950E-26 9.30482553161E-26 1.00295239659E-25 1.08106649223E-25 1.16526443786E-25 1.25602006898E-25 1.35384412535E-25 1.45928712526E-25 1.57294246366E-25 1.69544975157E-25 1.82749841554E-25 1.96983157754E-25 2.12325023698E-25 2.28861777840E-25 2.46686483033E-25 2.65899450249E-25 2.86608803098E-25 3.08931086304E-25 3.32991921576E-25 3.58926714566E-25 3.86881416878E-25 4.17013347435E-25 4.49492077809E-25 4.84500386509E-25 5.22235287594E-25 5.62909139397E-25 6.06750839596E-25 6.54007113373E-25 7.04943901890E-25 7.59847858911E-25 8.19027963983E-25 8.82817261265E-25 9.51574733775E-25 1.02568732362E-24 1.10557210957E-24 1.19167865420E-24 1.28449153390E-24 1.38453306590E-24 1.49236624761E-24 1.60859792508E-24 1.73388220799E-24 1.86892415083E-24 2.01448372065E-24 2.17138007389E-24 2.34049616630E-24 2.52278372188E-24 2.71926858883E-24 2.93105651269E-24 3.15933935904E-24 3.40540182090E-24 3.67062864851E-24 3.95651244221E-24 4.26466205225E-24 4.59681163280E-24 4.95483040116E-24 5.34073315705E-24 5.75669162112E-24 6.20504665665E-24 6.68832144308E-24 7.20923567551E-24 7.77072087019E-24 8.37593686203E-24 9.02828958699E-24 9.73145024943E-24 1.04893759824E-23 1.13063321168E-23 1.21869161852E-23 1.31360837953E-23 1.41591765178E-23 1.52619519472E-23 1.64506161034E-23 1.77318583568E-23 1.91128890739E-23 2.06014801941E-23 2.22060089680E-23 2.39355051012E-23 2.57997015700E-23 2.78090893956E-23 2.99749766833E-23 3.23095522604E-23 3.48259542710E-23 3.75383441119E-23 4.04619861287E-23 4.36133335173E-23 4.70101209167E-23 5.06714642133E-23 5.46179681180E-23 5.88718421220E-23 6.34570254838E-23 6.83993219508E-23 7.37265449730E-23 7.94686742276E-23 8.56580243330E-23 9.23294267046E-23 9.95204255724E-23 1.07271489267E-22 1.15626237961E-22 1.24631689145E-22 1.34338522229E-22 1.44801363745E-22 1.56079094766E-22 1.68235182265E-22 1.81338036289E-22 1.95461394942E-22 2.10684739357E-22 2.27093740988E-22 2.44780743735E-22 2.63845283627E-22 2.84394648969E-22 3.06544484125E-22 3.30419440322E-22 3.56153877141E-22 3.83892618643E-22 4.13791768390E-22 4.46019587933E-22 4.80757443733E-22 5.18200827822E-22 5.58560457960E-22 6.02063463483E-22 6.48954663498E-22 6.99497944640E-22 7.53977746129E-22 8.12700660489E-22 8.75997158942E-22 9.44223451178E-22 1.01776348997E-21 1.09703113193E-21 1.18247246654E-21 1.27456832656E-21 1.37383699403E-21 1.48083711690E-21 1.59617085298E-21 1.72048725860E-21 1.85448594129E-21 1.99892099690E-21 2.15460525342E-21 2.32241484522E-21 2.50329414366E-21 2.69826107165E-21 2.90841283213E-21 3.13493208278E-21 3.37909359153E-21 3.64227141054E-21 3.92594660881E-21 4.23171560716E-21 4.56129916224E-21 4.91655205036E-21 5.29947350549E-21 5.71221847021E-21 6.15710972295E-21 6.63665094973E-21 7.15354083399E-21 7.71068824383E-21 8.31122860198E-21 8.95854153090E-21 9.65626987202E-21 1.04083401863E-20 1.12189848516E-20 1.20927658806E-20 1.30346005948E-20 1.40497892967E-20 1.51440450983E-20 1.63235260726E-20 1.75948699085E-20 1.89652312656E-20 2.04423220382E-20 2.20344547545E-20 2.37505893568E-20 2.56003836247E-20 2.75942475256E-20 2.97434017982E-20 3.20599410985E-20 3.45569020645E-20 3.72483366809E-20 4.01493913595E-20 4.32763921768E-20 4.66469367515E-20 5.02799932777E-20 5.41960072703E-20 5.84170166255E-20 6.29667756416E-20 6.78708886996E-20 7.31569543552E-20 7.88547206532E-20 8.49962525390E-20 9.16161123076E-20 9.87515541084E-20 1.06442733597E-19 1.14732933916E-19 1.23668809279E-19 1.33300647521E-19 1.43682653100E-19 1.54873252140E-19 1.66935421232E-19 1.79937041843E-19 1.93951282329E-19 2.09057009695E-19 2.25339233435E-19 2.42889583930E-19 2.61806828113E-19 2.82197425289E-19 3.04176126252E-19 3.27866619058E-19 3.53402225095E-19 3.80926649370E-19 4.10594789222E-19 4.42573606032E-19 4.77043064813E-19 5.14197146995E-19 5.54244942073E-19 5.97411824288E-19 6.43940720946E-19 6.94093479530E-19 7.48152341270E-19 8.06421529499E-19 8.69228961703E-19 9.36928094923E-19 1.00989991487E-18 1.08855507999E-18 1.17333623247E-18 1.26472048928E-18 1.36322212719E-18 1.46939547695E-18 1.58383804285E-18 1.70719386523E-18 1.84015714492E-18 1.98347614992E-18 2.13795742639E-18 2.30447033757E-18 2.48395195623E-18 2.67741233817E-18 2.88594020644E-18 3.11070907823E-18 3.35298386900E-18 3.61412801094E-18 3.89561112584E-18 4.19901729558E-18 4.52605397672E-18 4.87856160942E-18 5.25852397472E-18 5.66807935854E-18 6.10953258507E-18 6.58536798750E-18 7.09826338885E-18 7.65110517173E-18 8.24700452180E-18 8.88931493634E-18 9.58165109638E-18 1.03279092088E-17 1.11322889325E-17 1.19993170128E-17 1.29338727557E-17 1.39412154872E-17 1.50270141505E-17 1.61973792084E-17 1.74588970311E-17 1.88186669611E-17 2.02843412659E-17 2.18641682021E-17 2.35670384326E-17 2.54025350606E-17 2.73809875589E-17 2.95135299002E-17 3.18121632150E-17 3.42898233286E-17 3.69604535591E-17 3.98390831848E-17 4.29419120227E-17 4.62864015948E-17 4.98913733943E-17 5.37771148055E-17 5.79654932726E-17 6.24800793612E-17 6.73462794034E-17 7.25914784745E-17 7.82451945049E-17 8.43392443947E-17 9.09079230661E-17 9.79881964609E-17 1.05619909570E-16 1.13846010662E-16 1.22712792984E-16 1.32270155272E-16 1.42571882566E-16 1.53675948889E-16 1.65644843497E-16 1.78545922545E-16 1.92451788136E-16 2.07440696899E-16 2.23597000376E-16 2.41011619723E-16 2.59782557371E-16 2.80015448541E-16 3.01824155715E-16 3.25331409401E-16 3.50669498807E-16 3.77981016306E-16 4.07419659883E-16 4.39151098075E-16 4.73353902284E-16 5.10220551689E-16 5.49958516439E-16 5.92791425192E-16 6.38960323600E-16 6.88725030800E-16 7.42365601553E-16 8.00183902266E-16 8.62505309749E-16 9.29680542284E-16 1.00208763330E-15 1.08013405876E-15 1.16425903026E-15 1.25493596666E-15 1.35267515827E-15 1.45802663856E-15 1.57158327938E-15 1.69398412744E-15 1.82591800050E-15 1.96812736369E-15 2.12141250771E-15 2.28663605251E-15 2.46472780161E-15 2.65668997460E-15 2.86360284706E-15 3.08663082980E-15 3.32702902157E-15 3.58615027204E-15 3.86545279493E-15 4.16650837402E-15 4.49101120832E-15 4.84078744605E-15 5.21780546118E-15 5.62418693035E-15 6.06221877243E-15 6.53436601800E-15 7.04328568111E-15 7.59184171138E-15 8.18312111063E-15 8.82045130468E-15 9.50741886809E-15 1.02478897072E-14 1.10460308151E-14 1.19063337208E-14 1.28336397649E-14 1.38331673433E-14 1.49105412733E-14 1.60718244462E-14 1.73235519453E-14 1.86727678209E-14 2.01270647298E-14 2.16946266615E-14 2.33842749916E-14 2.52055181231E-14 2.71686049924E-14 2.92845827434E-14 3.15653588926E-14 3.40237683359E-14 3.66736455741E-14 3.95299025627E-14 4.26086126255E-14 4.59271009027E-14 4.95040418431E-14 5.33595642893E-14 5.75153647468E-14 6.19948294739E-14 6.68231660807E-14 7.20275453763E-14 7.76372542629E-14 8.36838605375E-14 9.02013905279E-14 9.72265205625E-14 1.04798783352E-13 1.12960790443E-13 1.21758471997E-13 1.31241335242E-13 1.41462743050E-13 1.52480214215E-13 1.64355747108E-13 1.77156168545E-13 1.90953509820E-13 2.05825412021E-13 2.21855562911E-13 2.39134167838E-13 2.57758457309E-13 2.77833234097E-13 2.99471462953E-13 3.22794906243E-13 3.47934809083E-13 3.75032637834E-13 4.04240876104E-13 4.35723882735E-13 4.69658816615E-13 5.06236633501E-13 5.45663160468E-13 5.88160254040E-13 6.33967048494E-13 6.83341301387E-13 7.36560843851E-13 7.93925143841E-13 8.55756991100E-13 9.22404313352E-13 9.94242133914E-13 1.07167468176E-12 1.15513766587E-12 1.24510072676E-12 1.34207007880E-12 1.44659135838E-12 1.55925269385E-12 1.68068801446E-12 1.81158061703E-12 1.95266701034E-12 2.10474105881E-12 2.26865844895E-12 2.44534150349E-12 2.63578437049E-12 2.84105861636E-12 3.06231925456E-12 3.30081124359E-12 3.55787649101E-12 3.83496140283E-12 4.13362502072E-12 4.45554779277E-12 4.80254102736E-12 5.17655708265E-12 5.57970034955E-12 6.01423909428E-12 6.48261820567E-12 6.98747296835E-12 7.53164387716E-12 8.11819260023E-12 8.75041923654E-12 9.43188084716E-12 1.01664114870E-11 1.09581437531E-11 1.18115320474E-11 1.27313776219E-11 1.37228555883E-11 1.47915440328E-11 1.59434553736E-11 1.71850702091E-11 1.85233737356E-11 1.99658950642E-11 2.15207495391E-11 2.31966844120E-11 2.50031280307E-11 2.69502428407E-11 2.90489825769E-11 3.13111538468E-11 3.37494825125E-11 3.63776853523E-11 3.92105470559E-11 4.22640034438E-11 4.55552311255E-11 4.91027440406E-11 5.29264975589E-11 5.70480007021E-11 6.14904371455E-11 6.62787955327E-11 7.14400099019E-11 7.70031113895E-11 8.29993910082E-11 8.94625764439E-11 9.64290202415E-11 1.03937905892E-10 1.12031466748E-10 1.20755224136E-10 1.30158243311E-10 1.40293409087E-10 1.51217722952E-10 1.62992623580E-10 1.75684333150E-10 1.89364227779E-10 2.04109240250E-10 2.20002291542E-10 2.37132757807E-10 2.55596971351E-10 2.75498763616E-10 2.96950047443E-10 3.20071446284E-10 3.44992973312E-10 3.71854759603E-10 4.00807843883E-10 4.32015019752E-10 4.65651751390E-10 5.01907158830E-10 5.40985080540E-10 5.83105218270E-10 6.28504372598E-10 6.77437772082E-10 7.30180506137E-10 7.87029072995E-10 8.48303041752E-10 9.14346851654E-10 9.85531740446E-10 1.06225783422E-09 1.14495639463E-09 1.23409223489E-09 1.33016633803E-09 1.43371866244E-09 1.54533117614E-09 1.66563112825E-09 1.79529456117E-09 1.93505011662E-09 2.08568311291E-09 2.24803996590E-09 2.42303292795E-09 2.61164521641E-09 2.81493652340E-09 3.03404896919E-09 3.27021350309E-09 3.52475681586E-09 3.79910877692E-09 4.09481046242E-09 4.41352278707E-09 4.75703583101E-09 5.12727887580E-09 5.52633121707E-09 5.95643383029E-09 6.42000192817E-09 6.91963851081E-09 7.45814893699E-09 8.03855667300E-09 8.66412021984E-09 9.33835136872E-09 1.00650348976E-08 1.08482497609E-08 1.16923919331E-08 1.26021990497E-08 1.35827769233E-08 1.46396281446E-08 1.57786828831E-08 1.70063321033E-08 1.83294633161E-08 1.97554991418E-08 2.12924388449E-08 2.29489030874E-08 2.47341821670E-08 2.66582879637E-08 2.87320099582E-08 3.09669755471E-08 3.33757150579E-08 3.59717317902E-08 3.87695774884E-08 4.17849336592E-08 4.50346991833E-08 4.85370847159E-08 5.23117143935E-08 5.63797353931E-08 6.07639360339E-08 6.54888729432E-08 7.05810080931E-08 7.60688564607E-08 8.19831450713E-08 8.83569843566E-08 9.52260527716E-08 1.02628795678E-07 1.10606639576E-07 1.19204222934E-07 1.28469644808E-07 1.38454732696E-07 1.49215331068E-07 1.60811612172E-07 1.73308410818E-07 1.86775585025E-07 2.01288404498E-07 2.16927969013E-07 2.33781659166E-07 2.51943621756E-07 2.71515292698E-07 2.92605960145E-07 3.15333371044E-07 3.39824384353E-07 3.66215674620E-07 3.94654489684E-07 4.25299466624E-07 4.58321510601E-07 4.93904741154E-07 5.32247511323E-07 5.73563505054E-07 6.18082918923E-07 6.66053734609E-07 7.17743089042E-07 7.73438749685E-07 8.33450703024E-07 8.98112864832E-07 9.67784921466E-07 1.04285431239E-06 1.12373836434E-06 1.21088658903E-06 1.30478315648E-06 1.40594955775E-06 1.51494747096E-06 1.63238184651E-06 1.75890422779E-06 1.89521632541E-06 2.04207386411E-06 2.20029072298E-06 2.37074339122E-06 2.55437576321E-06 2.75220429865E-06 2.96532357521E-06 3.19491226341E-06 3.44223955527E-06 3.70867208135E-06 3.99568135252E-06 4.30485176593E-06 4.63788921790E-06 4.99663036860E-06 5.38305260812E-06 5.79928477583E-06 6.24761868945E-06 6.73052154477E-06 7.25064925020E-06 7.81086076647E-06 8.41423352601E-06 9.06408001217E-06 9.76396558457E-06 1.05177276429E-05 1.13294962285E-05 1.22037161689E-05 1.31451708816E-05 1.41590079566E-05 1.52507666509E-05 1.64264074339E-05 1.76923437354E-05 1.90554760568E-05 2.05232286184E-05 2.21035887291E-05 2.38051490744E-05 2.56371531382E-05 2.76095439826E-05 2.97330166328E-05 3.20190743233E-05 3.44800888888E-05 3.71293655938E-05 3.99812127238E-05 4.30510162763E-05 4.63553201176E-05 4.99119119962E-05 5.37399158276E-05 5.78598906968E-05 6.22939370541E-05 6.70658106113E-05 7.22010444803E-05 7.77270801331E-05 8.36734077991E-05 9.00717169597E-05 9.69560576393E-05 1.04363013243E-04 1.12331885736E-04 1.20904894015E-04 1.30127386376E-04 1.40048068033E-04 1.50719244725E-04 1.62197083487E-04 1.74541891741E-04 1.87818415952E-04 2.02096161135E-04 2.17449732607E-04 2.33959201461E-04 2.51710495304E-04 2.70795815933E-04 2.91314085676E-04 3.13371424272E-04 3.37081658238E-04 3.62566864796E-04 3.89957952558E-04 4.19395281275E-04 4.51029323089E-04 4.85021367866E-04 5.21544275310E-04 5.60783276728E-04 6.02936829413E-04 6.48217526834E-04 6.96853067908E-04 7.49087288832E-04 8.05181261106E-04 8.65414459543E-04 9.30086004224E-04 9.99515980542E-04 1.07404684164E-03 1.15404489774E-03 1.23990189697E-03 1.33203670258E-03 1.43089707150E-03 1.53696153936E-03 1.65074141737E-03 1.77278290637E-03 1.90366933384E-03 2.04402351932E-03 2.19451027435E-03 2.35583904254E-03 2.52876668593E-03 2.71410042359E-03 2.91270092841E-03 3.12548558809E-03 3.35343193625E-03 3.59758125938E-03 3.85904238529E-03 4.13899565844E-03 4.43869710707E-03 4.75948280713E-03 5.10277344695E-03 5.47007909649E-03 5.86300418419E-03 6.28325268367E-03 6.73263351165E-03 7.21306613743E-03 7.72658640308E-03 8.27535255216E-03 8.86165146324E-03 9.48790508280E-03 1.01566770500E-02 1.08706795041E-02 1.16327800621E-02 1.24460089523E-02 1.33135662862E-02 1.42388294480E-02 1.52253605763E-02 1.62769141114E-02 1.73974443738E-02 1.85911131378E-02 1.98622971570E-02 2.12155955945E-02 2.26558373036E-02 2.41880878985E-02 2.58176565492E-02 2.75501024249E-02 2.93912407047E-02 3.13471480654E-02 3.34241675460E-02 3.56289126828E-02 3.79682707955E-02 4.04494052960E-02 4.30797568837E-02 4.58670434749E-02 4.88192587079E-02 5.19446688510E-02 5.52518079297E-02 5.87494708784E-02 6.24467045086E-02 6.63527960772E-02 7.04772592224E-02 7.48298170300E-02 7.94203819780E-02 8.42590324996E-02 8.93559858992E-02 9.47215673451E-02 1.00366174661E-01 1.06300238635E-01 1.12534178562E-01 1.19078352741E-01 1.25943003654E-01 1.33138197553E-01 1.40673758223E-01 1.48559194660E-01 1.56803622474E-01 1.65415678834E-01 1.74403430789E-01 1.83774276895E-01 1.93534842058E-01 2.03690865619E-01 2.14247082748E-01 2.25207099285E-01 2.36573260258E-01 2.48346512414E-01 2.60526261181E-01 2.73110222614E-01 2.86094270990E-01 2.99472282870E-01 3.13235978578E-01 3.27374762199E-01 3.41875561397E-01 3.56722668477E-01 3.71897584335E-01 3.87378867113E-01 4.03141987551E-01 4.19159193240E-01 4.35399384138E-01 4.51828001924E-01 4.68406935902E-01 4.85094448353E-01 5.01845122348E-01 5.18609835177E-01 5.35335760605E-01 5.51966403238E-01 5.68441668292E-01 5.84697970004E-01 6.00668381849E-01 6.16282831555E-01 6.31468343706E-01 6.46149332409E-01 6.60247946129E-01 6.73684466336E-01 6.86377761061E-01 6.98245793795E-01 7.09206187464E-01 7.19176842330E-01 7.28076605807E-01 7.35825991129E-01 7.42347940744E-01 7.47568629166E-01 7.51418298796E-01 7.53832121008E-01 7.54751073533E-01 7.54122823947E-01 7.51902607865E-01 7.48054089318E-01 7.42550189775E-01 7.35373871370E-01 7.26518859229E-01 7.15990287270E-01 7.03805251651E-01 6.89993256103E-01 6.74596533781E-01 6.57670231023E-01 6.39282439559E-01 6.19514065249E-01 5.98458523390E-01 5.76221252989E-01 5.52919045187E-01 5.28679184103E-01 5.03638401875E-01 4.77941653393E-01 4.51740720158E-01 4.25192656789E-01 3.98458097815E-01 3.71699446402E-01 3.45078970573E-01 3.18756835997E-01 2.92889107611E-01 2.67625754940E-01 2.43108697957E-01 2.19469931572E-01 1.96829767237E-01 1.75295229646E-01 1.54958645090E-01 1.35896455588E-01 1.18168289528E-01 1.01816315204E-01 8.68648983855E-02 7.33205790038E-02 6.11723752174E-02 5.03924157868E-02 4.09368938405E-02 3.27473270619E-02 2.57521011893E-02 1.98682657632E-02 1.50035435114E-02 1.10585079131E-02 7.92887762067E-03 5.50787186715E-03 3.68856806702E-03 2.36620187100E-03 1.44035127765E-03 8.16950329136E-04 4.13619346113E-04 1.70872192044E-04 4.08984444487E-05 -1.57216358267E-05 -2.98636397474E-05 -2.40399024838E-05 -1.29423168040E-05 -4.37148615233E-06 -5.73269061166E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 4 2 i j (l(j)) 0.00000000000E+00 Q_int 2.51692764791E-29 2.71295642059E-29 2.92425272777E-29 3.15200566842E-29 3.39749695346E-29 3.66210811878E-29 3.94732830002E-29 4.25476261289E-29 4.58614118617E-29 4.94332889824E-29 5.32833587197E-29 5.74332878693E-29 6.19064307269E-29 6.67279605177E-29 7.19250110620E-29 7.75268294751E-29 8.35649407586E-29 9.00733252123E-29 9.70886096626E-29 1.04650273585E-28 1.12800871282E-28 1.21586271359E-28 1.31055914862E-28 1.41263093507E-28 1.52265249594E-28 1.64124299266E-28 1.76906980951E-28 1.90685230945E-28 2.05536588240E-28 2.21544630887E-28 2.38799446343E-28 2.57398138449E-28 2.77445373897E-28 2.99053971254E-28 3.22345535868E-28 3.47451144215E-28 3.74512081549E-28 4.03680637008E-28 4.35120960641E-28 4.69009987184E-28 5.05538431781E-28 5.44911863268E-28 5.87351861033E-28 6.33097261986E-28 6.82405504647E-28 7.35554077918E-28 7.92842082687E-28 8.54591915062E-28 9.21151080696E-28 9.92894150426E-28 1.07022486822E-27 1.15357842331E-27 1.24342389925E-27 1.34026691379E-27 1.44465246429E-27 1.55716799475E-27 1.67844670175E-27 1.80917109787E-27 1.95007685256E-27 2.10195693231E-27 2.26566606311E-27 2.44212554053E-27 2.63232841452E-27 2.83734507782E-27 3.05832928986E-27 3.29652466960E-27 3.55327169422E-27 3.83001524283E-27 4.12831272772E-27 4.44984285891E-27 4.79641509133E-27 5.16997980778E-27 5.57263929494E-27 6.00665957433E-27 6.47448315461E-27 6.97874277717E-27 7.52227623223E-27 8.10814232887E-27 8.73963810893E-27 9.42031740156E-27 1.01540108229E-26 1.09448473332E-26 1.17972774737E-26 1.27160984117E-26 1.37064809382E-26 1.47739985667E-26 1.59246588992E-26 1.71649374345E-26 1.85018140103E-26 1.99428120829E-26 2.14960410667E-26 2.31702419708E-26 2.49748365906E-26 2.69199805298E-26 2.90166203528E-26 3.12765551880E-26 3.37125031285E-26 3.63381728057E-26 3.91683405359E-26 4.22189334763E-26 4.55071192571E-26 4.90514025949E-26 5.28717294305E-26 5.69895991773E-26 6.14281857121E-26 6.62124677896E-26 7.13693696136E-26 7.69279123566E-26 8.29193774803E-26 8.93774827768E-26 9.63385721195E-26 1.03841819994E-25 1.11929451956E-25 1.20646982265E-25 1.30043470018E-25 1.40171795240E-25 1.51088956469E-25 1.62856391528E-25 1.75540323273E-25 1.89212132268E-25 2.03948758495E-25 2.19833134340E-25 2.36954651306E-25 2.55409663079E-25 2.75302027768E-25 2.96743692386E-25 3.19855322840E-25 3.44766983002E-25 3.71618866657E-25 4.00562086461E-25 4.31759524356E-25 4.65386748203E-25 5.01632999815E-25 5.40702259946E-25 5.82814396215E-25 6.28206400447E-25 6.77133722370E-25 7.29871707200E-25 7.86717145180E-25 8.47989941808E-25 9.14034918152E-25 9.85223751374E-25 1.06195706640E-24 1.14466669048E-24 1.23381808336E-24 1.32991295675E-24 1.43349209771E-24 1.54513841207E-24 1.66548020478E-24 1.79519471577E-24 1.93501193125E-24 2.08571869177E-24 2.24816312029E-24 2.42325939511E-24 2.61199289452E-24 2.81542574219E-24 3.03470278435E-24 3.27105803262E-24 3.52582160858E-24 3.80042722918E-24 4.09642027520E-24 4.41546648810E-24 4.75936134419E-24 5.13004015892E-24 5.52958897813E-24 5.96025631760E-24 6.42446581682E-24 6.92482987839E-24 7.46416436967E-24 8.04550446944E-24 8.67212174881E-24 9.34754258242E-24 1.00755679936E-23 1.08602950452E-23 1.17061398961E-23 1.26178626544E-23 1.36005941647E-23 1.46598648833E-23 1.58016360014E-23 1.70323329925E-23 1.83588817725E-23 1.97887476765E-23 2.13299774709E-23 2.29912446375E-23 2.47818981849E-23 2.67120152614E-23 2.87924578653E-23 3.10349339725E-23 3.34520634244E-23 3.60574489483E-23 3.88657527082E-23 4.18927788182E-23 4.51555622825E-23 4.86724648620E-23 5.24632784078E-23 5.65493362423E-23 6.09536332157E-23 6.57009551125E-23 7.08180181370E-23 7.63336192620E-23 8.22787982884E-23 8.86870125252E-23 9.55943250756E-23 1.03039607787E-22 1.11064760007E-22 1.19714944378E-22 1.29038840999E-22 1.39088921372E-22 1.49921743702E-22 1.61598271178E-22 1.74184215058E-22 1.87750404464E-22 2.02373184982E-22 2.18134848312E-22 2.35124095371E-22 2.53436535471E-22 2.73175224374E-22 2.94451244254E-22 3.17384328822E-22 3.42103537149E-22 3.68747979961E-22 3.97467602505E-22 4.28424028383E-22 4.61791469117E-22 4.97757704540E-22 5.36525139562E-22 5.78311943222E-22 6.23353276470E-22 6.71902615566E-22 7.24233178551E-22 7.80639462821E-22 8.41438902447E-22 9.06973654583E-22 9.77612525001E-22 1.05375304359E-21 1.13582370153E-21 1.22428636264E-21 1.31963886264E-21 1.42241781074E-21 1.53320160950E-21 1.65261370987E-21 1.78132611974E-21 1.92006318577E-21 2.06960566972E-21 2.23079514233E-21 2.40453871934E-21 2.59181416643E-21 2.79367540172E-21 3.01125842683E-21 3.24578771990E-21 3.49858312649E-21 3.77106728720E-21 4.06477364379E-21 4.38135506878E-21 4.72259316726E-21 5.09040830311E-21 5.48687040608E-21 5.91421062063E-21 6.37483386198E-21 6.87133235010E-21 7.40650019779E-21 7.98334913488E-21 8.60512545724E-21 9.27532829564E-21 9.99772930765E-21 1.07763939031E-20 1.16157041229E-20 1.25203832992E-20 1.34955226370E-20 1.45466098652E-20 1.56795601200E-20 1.69007492324E-20 1.82170496100E-20 1.96358689117E-20 2.11651917352E-20 2.28136245522E-20 2.45904441416E-20 2.65056497962E-20 2.85700195952E-20 3.07951710591E-20 3.31936265287E-20 3.57788836366E-20 3.85654912666E-20 4.15691314298E-20 4.48067075170E-20 4.82964394248E-20 5.20579660905E-20 5.61124560130E-20 6.04827263812E-20 6.51933714807E-20 7.02709011015E-20 7.57438897254E-20 8.16431373328E-20 8.80018427333E-20 9.48557903967E-20 1.02243551835E-19 1.10206702668E-19 1.18790056596E-19 1.28041917595E-19 1.38014351755E-19 1.48763480284E-19 1.60349795345E-19 1.72838500476E-19 1.86299877536E-19 2.00809682225E-19 2.16449570407E-19 2.33307557642E-19 2.51478514502E-19 2.71064700470E-19 2.92176339418E-19 3.14932239905E-19 3.39460463787E-19 3.65899046907E-19 3.94396775902E-19 4.25114025524E-19 4.58223661169E-19 4.93912011699E-19 5.32379918029E-19 5.73843863391E-19 6.18537191614E-19 6.66711420303E-19 7.18637656282E-19 7.74608121284E-19 8.34937796466E-19 8.99966195004E-19 9.70059272751E-19 1.04561148769E-18 1.12704801982E-18 1.21482716386E-18 1.30944290843E-18 1.41142771598E-18 1.52135551930E-18 1.63984495141E-18 1.76756282700E-18 1.90522789499E-18 2.05361488340E-18 2.21355885920E-18 2.38595992780E-18 2.57178829844E-18 2.77208974422E-18 2.98799148729E-18 3.22070854243E-18 3.47155055469E-18 3.74192916959E-18 4.03336597731E-18 4.34750107562E-18 4.68610229977E-18 5.05107517113E-18 5.44447362078E-18 5.86851154822E-18 6.32557528040E-18 6.81823700100E-18 7.34926922573E-18 7.92166040498E-18 8.53863174166E-18 9.20365531889E-18 9.92047363957E-18 1.06931206877E-17 1.15259446302E-17 1.24236322865E-17 1.33912355043E-17 1.44341995894E-17 1.55583939498E-17 1.67701451263E-17 1.80762723959E-17 1.94841261480E-17 2.10016292496E-17 2.26373216320E-17 2.44004083501E-17 2.63008113851E-17 2.83492254811E-17 3.05571783312E-17 3.29370954509E-17 3.55023701035E-17 3.82674386725E-17 4.12478619035E-17 4.44604124742E-17 4.79231693839E-17 5.16556196953E-17 5.56787681995E-17 6.00152556225E-17 6.46894860384E-17 6.97277642053E-17 7.51584435977E-17 8.10120859688E-17 8.73216333390E-17 9.41225933804E-17 1.01453239239E-16 1.09354824922E-16 1.17871817453E-16 1.27052147123E-16 1.36947477213E-16 1.47613494738E-16 1.59110223830E-16 1.71502363528E-16 1.84859651877E-16 1.99257258383E-16 2.14776207038E-16 2.31503832285E-16 2.49534270501E-16 2.68968989756E-16 2.89917360830E-16 3.12497272707E-16 3.36835796000E-16 3.63069898051E-16 3.91347213723E-16 4.21826876222E-16 4.54680412631E-16 4.90092709187E-16 5.28263051736E-16 5.69406247228E-16 6.13753832553E-16 6.61555377522E-16 7.13079889338E-16 7.68617326440E-16 8.28480230260E-16 8.93005484057E-16 9.62556208746E-16 1.03752380636E-15 1.11833016271E-15 1.20543002149E-15 1.29931354344E-15 1.40050906469E-15 1.50958606998E-15 1.62715839745E-15 1.75388769305E-15 1.89048713391E-15 2.03772544177E-15 2.19643120898E-15 2.36749756139E-15 2.55188718440E-15 2.75063774047E-15 2.96486770856E-15 3.19578267837E-15 3.44468213474E-15 3.71296677047E-15 4.00214636872E-15 4.31384829923E-15 4.64982667628E-15 5.01197222996E-15 5.40232294607E-15 5.82307553487E-15 6.27659779293E-15 6.76544192771E-15 7.29235892002E-15 7.86031400493E-15 8.47250335844E-15 9.13237208367E-15 9.84363359790E-15 1.06102905295E-14 1.14366572424E-14 1.23273841146E-14 1.32874837076E-14 1.43223589744E-14 1.54378336636E-14 1.66401850918E-14 1.79361794687E-14 1.93331099726E-14 2.08388377919E-14 2.24618363627E-14 2.42112390515E-14 2.60968905519E-14 2.81294022839E-14 3.03202121075E-14 3.26816486869E-14 3.52270008680E-14 3.79705924583E-14 4.09278628309E-14 4.41154538062E-14 4.75513032999E-14 5.12547462638E-14 5.52466234885E-14 5.95493988794E-14 6.41872858660E-14 6.91863836560E-14 7.45748241009E-14 8.03829299991E-14 8.66433857277E-14 9.33914211633E-14 1.00665009925E-13 1.08505083060E-13 1.16955759363E-13 1.26064593644E-13 1.35882844319E-13 1.46465761848E-13 1.57872899634E-13 1.70168449133E-13 1.83421601063E-13 1.97706934742E-13 2.13104837745E-13 2.29701958252E-13 2.47591692606E-13 2.66874710861E-13 2.87659523241E-13 3.10063090725E-13 3.34211483172E-13 3.60240588707E-13 3.88296878347E-13 4.18538230171E-13 4.51134817677E-13 4.86270067317E-13 5.24141690603E-13 5.64962796583E-13 6.08963090958E-13 6.56390168573E-13 7.07510906562E-13 7.62612965985E-13 8.22006410399E-13 8.86025450476E-13 9.55030324476E-13 1.02940932516E-12 1.10958098456E-12 1.19599642883E-12 1.28914191654E-12 1.38954157460E-12 1.49776034721E-12 1.61440717452E-12 1.74013841872E-12 1.87566155697E-12 2.02173916193E-12 2.17919319222E-12 2.34890961691E-12 2.53184340026E-12 2.72902387448E-12 2.94156053092E-12 3.17064926221E-12 3.41757909041E-12 3.68373941915E-12 3.97062785034E-12 4.27985860966E-12 4.61317162805E-12 4.97244233029E-12 5.35969218588E-12 5.77710008128E-12 6.22701457784E-12 6.71196712407E-12 7.23468629634E-12 7.79811314891E-12 8.40541775979E-12 9.06001706149E-12 9.76559406302E-12 1.05261185809E-11 1.13458695423E-11 1.22294590806E-11 1.31818584671E-11 1.42084260931E-11 1.53149375724E-11 1.65076182635E-11 1.77931782997E-11 1.91788502725E-11 2.06724299793E-11 2.22823202238E-11 2.40175781213E-11 2.58879659887E-11 2.79040063164E-11 3.00770408934E-11 3.24192946178E-11 3.49439443038E-11 3.76651926702E-11 4.05983483526E-11 4.37599118799E-11 4.71676685620E-11 5.08407885200E-11 5.47999343948E-11 5.90673775397E-11 6.36671234371E-11 6.86250466247E-11 7.39690358045E-11 7.97291515548E-11 8.59377943791E-11 9.26298874687E-11 9.98430730757E-11 1.07617923688E-10 1.15998170692E-10 1.25030950337E-10 1.34767067828E-10 1.45261284088E-10 1.56572622953E-10 1.68764702918E-10 1.81906095647E-10 1.96070710343E-10 2.11338210105E-10 2.27794458587E-10 2.45532004725E-10 2.64650600469E-10 2.85257763366E-10 3.07469379591E-10 3.31410356715E-10 3.57215323769E-10 3.85029390106E-10 4.15008958925E-10 4.47322607042E-10 4.82152033345E-10 5.19693076981E-10 5.60156820894E-10 6.03770775383E-10 6.50780158917E-10 7.01449272829E-10 7.56062989338E-10 8.14928349065E-10 8.78376288423E-10 9.46763497034E-10 1.02047442132E-09 1.09992342558E-09 1.18555711566E-09 1.27785685322E-09 1.37734145480E-09 1.48457010140E-09 1.60014549215E-09 1.72471721070E-09 1.85898539048E-09 2.00370462704E-09 2.15968823297E-09 2.32781279021E-09 2.50902308027E-09 2.70433737526E-09 2.91485316722E-09 3.14175332163E-09 3.38631271010E-09 3.64990537518E-09 3.93401223212E-09 4.24022938524E-09 4.57027707068E-09 4.92600932536E-09 5.30942436719E-09 5.72267581895E-09 6.16808477889E-09 6.64815283853E-09 7.16557611365E-09 7.72326036220E-09 8.32433726907E-09 8.97218201095E-09 9.67043217057E-09 1.04230081245E-08 1.12341350226E-08 1.21083664556E-08 1.30506099706E-08 1.40661545757E-08 1.51607003558E-08 1.63403904096E-08 1.76118452535E-08 1.89821998875E-08 2.04591437652E-08 2.20509638121E-08 2.37665908562E-08 2.56156495695E-08 2.76085123680E-08 2.97563574227E-08 3.20712312166E-08 3.45661159201E-08 3.72550019963E-08 4.01529664549E-08 4.32762571273E-08 4.66423835114E-08 5.02702146344E-08 5.41800845011E-08 5.83939056922E-08 6.29352918051E-08 6.78296893142E-08 7.31045196684E-08 7.87893324186E-08 8.49159701357E-08 9.15187461158E-08 9.86346358603E-08 1.06303483303E-07 1.14568223079E-07 1.23475119861E-07 1.33074026323E-07 1.43418660936E-07 1.54566907311E-07 1.66581136612E-07 1.79528554915E-07 1.93481577380E-07 2.08518231302E-07 2.24722590289E-07 2.42185241964E-07 2.61003791696E-07 2.81283405300E-07 3.03137393459E-07 3.26687841321E-07 3.52066286555E-07 3.79414449695E-07 4.08885020759E-07 4.40642506429E-07 4.74864142483E-07 5.11740876397E-07 5.51478425757E-07 5.94298417817E-07 6.40439616929E-07 6.90159246191E-07 7.43734410788E-07 8.01463630571E-07 8.63668490435E-07 9.30695417365E-07 1.00291759383E-06 1.08073701801E-06 1.16458672206E-06 1.25493316028E-06 1.35227878041E-06 1.45716479182E-06 1.57017414557E-06 1.69193474266E-06 1.82312288749E-06 1.96446700559E-06 2.11675164516E-06 2.28082178448E-06 2.45758746815E-06 2.64802879681E-06 2.85320129776E-06 3.07424170461E-06 3.31237417743E-06 3.56891699621E-06 3.84528976385E-06 4.14302115670E-06 4.46375726412E-06 4.80927056141E-06 5.18146956371E-06 5.58240921203E-06 6.01430204652E-06 6.47953022577E-06 6.98065845593E-06 7.52044789743E-06 8.10187112257E-06 8.72812820233E-06 9.40266400705E-06 1.01291868109E-05 1.09116882978E-05 1.17544650722E-05 1.26621417876E-05 1.36396960116E-05 1.46924849571E-05 1.58262742168E-05 1.70472686498E-05 1.83621455781E-05 1.97780904647E-05 2.13028352535E-05 2.29446995680E-05 2.47126349789E-05 2.66162725625E-05 2.86659739937E-05 3.08728864284E-05 3.32490014532E-05 3.58072183965E-05 3.85614123173E-05 4.15265070117E-05 4.47185533971E-05 4.81548136631E-05 5.18538516036E-05 5.58356295726E-05 6.01216125381E-05 6.47348797415E-05 6.97002445032E-05 7.50443827523E-05 8.07959709005E-05 8.69858337178E-05 9.36471029163E-05 1.00815387193E-04 1.08528954532E-04 1.16828927632E-04 1.25759493347E-04 1.35368127152E-04 1.45705833626E-04 1.56827404088E-04 1.68791692556E-04 1.81661911262E-04 1.95505947078E-04 2.10396700257E-04 2.26412446995E-04 2.43637227413E-04 2.62161260664E-04 2.82081388962E-04 3.03501552449E-04 3.26533296938E-04 3.51296316667E-04 3.77919034361E-04 4.06539221010E-04 4.37304657912E-04 4.70373843688E-04 5.05916749126E-04 5.44115622859E-04 5.85165851072E-04 6.29276874575E-04 6.76673166799E-04 7.27595276408E-04 7.82300938467E-04 8.41066258259E-04 9.04186972080E-04 9.71979789531E-04 1.04478382204E-03 1.12296210263E-03 1.20690320197E-03 1.29702294637E-03 1.39376624308E-03 1.49760901893E-03 1.60906027837E-03 1.72866428722E-03 1.85700288865E-03 1.99469795814E-03 2.14241400445E-03 2.30086092370E-03 2.47079691385E-03 2.65303155723E-03 2.84842907862E-03 3.05791178675E-03 3.28246370697E-03 3.52313441321E-03 3.78104306686E-03 4.05738267078E-03 4.35342454604E-03 4.67052303913E-03 5.01012046720E-03 5.37375230836E-03 5.76305264393E-03 6.17975985893E-03 6.62572260669E-03 7.10290604244E-03 7.61339833022E-03 8.15941742644E-03 8.74331814197E-03 9.36759948377E-03 1.00349122752E-02 1.07480670526E-02 1.15100422337E-02 1.23239925512E-02 1.31932577428E-02 1.41213714843E-02 1.51120705535E-02 1.61693042034E-02 1.72972437240E-02 1.85002921669E-02 1.97830941993E-02 2.11505460534E-02 2.26078055282E-02 2.41603019958E-02 2.58137463591E-02 2.75741408970E-02 2.94477889307E-02 3.14413042309E-02 3.35616200813E-02 3.58159979022E-02 3.82120353267E-02 4.07576736152E-02 4.34612042769E-02 4.63312747612E-02 4.93768930631E-02 5.26074310780E-02 5.60326265266E-02 5.96625832532E-02 6.35077696908E-02 6.75790152680E-02 7.18875045181E-02 7.64447686361E-02 8.12626742131E-02 8.63534088625E-02 9.17294634372E-02 9.74036105241E-02 1.03388878886E-01 1.09698523510E-01 1.16345990915E-01 1.23344879344E-01 1.30708893497E-01 1.38451793401E-01 1.46587337072E-01 1.55129216574E-01 1.64090987129E-01 1.73485988901E-01 1.83327261140E-01 1.93627448349E-01 2.04398698199E-01 2.15652550939E-01 2.27399820095E-01 2.39650464298E-01 2.52413450175E-01 2.65696606259E-01 2.79506468017E-01 2.93848114136E-01 3.08724994377E-01 3.24138749369E-01 3.40089022892E-01 3.56573267346E-01 3.73586543238E-01 3.91121313730E-01 4.09167235473E-01 4.27710947141E-01 4.46735857321E-01 4.66221933630E-01 4.86145495162E-01 5.06479010628E-01 5.27190904793E-01 5.48245376055E-01 5.69602228292E-01 5.91216720296E-01 6.13039436402E-01 6.35016182079E-01 6.57087908486E-01 6.79190670130E-01 7.01255619906E-01 7.23209045858E-01 7.44972454059E-01 7.66462701930E-01 7.87592186261E-01 8.08269089965E-01 8.28397691349E-01 8.47878739306E-01 8.66609897353E-01 8.84486258838E-01 9.01400934951E-01 9.17245716318E-01 9.31911808015E-01 9.45290636734E-01 9.57274727659E-01 9.67758647240E-01 9.76640006672E-01 9.83820519319E-01 9.89207103748E-01 9.92713022382E-01 9.94259044094E-01 9.93774617395E-01 9.91199039261E-01 9.86482603061E-01 9.79587707682E-01 9.70489908674E-01 9.59178891274E-01 9.45659344414E-01 9.29951714481E-01 9.12092817556E-01 8.92136289367E-01 8.70152853078E-01 8.46230386506E-01 8.20473772353E-01 7.93004517605E-01 7.63960131365E-01 7.33493254067E-01 7.01770535212E-01 6.68971261432E-01 6.35285741746E-01 6.00913462259E-01 5.66061028114E-01 5.30939916189E-01 4.95764067595E-01 4.60747354408E-01 4.26100960062E-01 3.92030717240E-01 3.58734450816E-01 3.26399376232E-01 2.95199605449E-01 2.65293813267E-01 2.36823116121E-01 2.09909213448E-01 1.84652838302E-01 1.61132559054E-01 1.39403967782E-01 1.19499283405E-01 1.01427388883E-01 8.51743119743E-02 7.07041483731E-02 5.79604147757E-02 4.68678077357E-02 3.73343324926E-02 2.92537545571E-02 2.25083161324E-02 1.69716498650E-02 1.25118143941E-02 8.99437020211E-03 6.28541083502E-03 4.25446418174E-03 2.77718161943E-03 1.73773988285E-03 1.03089180564E-03 5.66616455116E-04 2.78971574754E-04 1.15353462429E-04 3.32600817249E-05 1.07986691811E-08 -7.90017632862E-06 -5.80416728885E-06 -2.18590965278E-06 -2.97447619972E-07 3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 5 1 i j (l(j)) 0.00000000000E+00 Q_int 2.42684434155E-26 2.58336235423E-26 2.74997491146E-26 2.92733305540E-26 3.11612981688E-26 3.31710292334E-26 3.53103768155E-26 3.75877004624E-26 4.00118988656E-26 4.25924446332E-26 4.53394213038E-26 4.82635627484E-26 5.13762951132E-26 5.46897814677E-26 5.82169693318E-26 6.19716412686E-26 6.59684687404E-26 7.02230694374E-26 7.47520683042E-26 7.95731625024E-26 8.47051905623E-26 9.01682059950E-26 9.59835556522E-26 1.02173963139E-25 1.08763617607E-25 1.15778268274E-25 1.23245325041E-25 1.31193965593E-25 1.39655249417E-25 1.48662239163E-25 1.58250129840E-25 1.68456386337E-25 1.79320889825E-25 1.90886093586E-25 2.03197188907E-25 2.16302281659E-25 2.30252580277E-25 2.45102595856E-25 2.60910355154E-25 2.77737627335E-25 2.95650165331E-25 3.14717962773E-25 3.35015527493E-25 3.56622172667E-25 3.79622326730E-25 4.04105863285E-25 4.30168452282E-25 4.57911933855E-25 4.87444716260E-25 5.18882199486E-25 5.52347226183E-25 5.87970561669E-25 6.25891404902E-25 6.66257932400E-25 7.09227877248E-25 7.54969145439E-25 8.03660471972E-25 8.55492119263E-25 9.10666620600E-25 9.69399571548E-25 1.03192047239E-24 1.09847362490E-24 1.16931908697E-24 1.24473368878E-24 1.32501211453E-24 1.41046805391E-24 1.50143542786E-24 1.59826969338E-24 1.70134923245E-24 1.81107683062E-24 1.92788125086E-24 2.05221890899E-24 2.18457565709E-24 2.32546868205E-24 2.47544852642E-24 2.63510123970E-24 2.80505066834E-24 2.98596089342E-24 3.17853882557E-24 3.38353696726E-24 3.60175635318E-24 3.83404968031E-24 4.08132463988E-24 4.34454746418E-24 4.62474670210E-24 4.92301723825E-24 5.24052457125E-24 5.57850936788E-24 5.93829231110E-24 6.32127926056E-24 6.72896674610E-24 7.16294781542E-24 7.62491825898E-24 8.11668323633E-24 8.64016432980E-24 9.19740705315E-24 9.79058884442E-24 1.04220275743E-23 1.10941906035E-23 1.18097044235E-23 1.25713649202E-23 1.33821482985E-23 1.42452227120E-23 1.51639606428E-23 1.61419520794E-23 1.71830185445E-23 1.82912280279E-23 1.94709108823E-23 2.07266767441E-23 2.20634325457E-23 2.34864016894E-23 2.50011444580E-23 2.66135797418E-23 2.83300081668E-23 3.01571367143E-23 3.21021049289E-23 3.41725128160E-23 3.63764505394E-23 3.87225300338E-23 4.12199186558E-23 4.38783750055E-23 4.67082870591E-23 4.97207127592E-23 5.29274232249E-23 5.63409487469E-23 5.99746277503E-23 6.38426589149E-23 6.79601566564E-23 7.23432101868E-23 7.70089463828E-23 8.19755967102E-23 8.72625684630E-23 9.28905205981E-23 9.88814444609E-23 1.05258749716E-22 1.12047355824E-22 1.19273789408E-22 1.26966287917E-22 1.35154909954E-22 1.43871652738E-22 1.53150577132E-22 1.63027940733E-22 1.73542339555E-22 1.84734858840E-22 1.96649233599E-22 2.09332019512E-22 2.22832774839E-22 2.37204254075E-22 2.52502614088E-22 2.68787633551E-22 2.86122946533E-22 3.04576291145E-22 3.24219774232E-22 3.45130153131E-22 3.67389135602E-22 3.91083699102E-22 4.16306430654E-22 4.43155888628E-22 4.71736987865E-22 5.02161409631E-22 5.34548038015E-22 5.69023424472E-22 6.05722282322E-22 6.44788013149E-22 6.86373267147E-22 7.30640539597E-22 7.77762805829E-22 8.27924197122E-22 8.81320720201E-22 9.38161023141E-22 9.98667210660E-22 1.06307571200E-21 1.13163820478E-21 1.20462259843E-21 1.28231408105E-21 1.36501623379E-21 1.45305221713E-21 1.54676603357E-21 1.64652387188E-21 1.75271553799E-21 1.86575597814E-21 1.98608690030E-21 2.11417850017E-21 2.25053129845E-21 2.39567809666E-21 2.55018605907E-21 2.71465892890E-21 2.88973938746E-21 3.07611156545E-21 3.27450371619E-21 3.48569106132E-21 3.71049881998E-21 3.94980543338E-21 4.20454599729E-21 4.47571591600E-21 4.76437479186E-21 5.07165056569E-21 5.39874392425E-21 5.74693299194E-21 6.11757832511E-21 6.51212822843E-21 6.93212441423E-21 7.37920802671E-21 7.85512605481E-21 8.36173815854E-21 8.90102393569E-21 9.47509065716E-21 1.00861815011E-20 1.07366843183E-20 1.14291409625E-20 1.21662572233E-20 1.29509133983E-20 1.37861755486E-20 1.46753074791E-20 1.56217834923E-20 1.66293019635E-20 1.77017997933E-20 1.88434677900E-20 2.00587670461E-20 2.13524463700E-20 2.27295608415E-20 2.41954915654E-20 2.57559666977E-20 2.74170838290E-20 2.91853338104E-20 3.10676261172E-20 3.30713158472E-20 3.52042324617E-20 3.74747103785E-20 3.98916215394E-20 4.24644100771E-20 4.52031292186E-20 4.81184805685E-20 5.12218559252E-20 5.45253817953E-20 5.80419667778E-20 6.17853520047E-20 6.57701648350E-20 7.00119760111E-20 7.45273605023E-20 7.93339622713E-20 8.44505632186E-20 8.98971565735E-20 9.56950250174E-20 1.01866823847E-19 1.08436669500E-19 1.15430233790E-19 1.22874844222E-19 1.30799590772E-19 1.39235439559E-19 1.48215353845E-19 1.57774422839E-19 1.67949998810E-19 1.78781843043E-19 1.90312281202E-19 2.02586368724E-19 2.15652066873E-19 2.29560430147E-19 2.44365805776E-19 2.60126046086E-19 2.76902734556E-19 2.94761426461E-19 3.13771905025E-19 3.34008454105E-19 3.55550148453E-19 3.78481162707E-19 4.02891100300E-19 4.28875343592E-19 4.56535426574E-19 4.85979431619E-19 5.17322411814E-19 5.50686840531E-19 5.86203089995E-19 6.24009940720E-19 6.64255123790E-19 7.07095898129E-19 7.52699664987E-19 8.01244622068E-19 8.52920459840E-19 9.07929102754E-19 9.66485498269E-19 1.02881845677E-18 1.09517154562E-18 1.16580404097E-18 1.24099194080E-18 1.32102904345E-18 1.40622809564E-18 1.49692201449E-18 1.59346518844E-18 1.69623486203E-18 1.80563260997E-18 1.92208590631E-18 2.04604979483E-18 2.17800866707E-18 2.31847815518E-18 2.46800714671E-18 2.62717992939E-18 2.79661847431E-18 2.97698486621E-18 3.16898389067E-18 3.37336578797E-18 3.59092918479E-18 3.82252421476E-18 4.06905584044E-18 4.33148738944E-18 4.61084431867E-18 4.90821822133E-18 5.22477109230E-18 5.56173986873E-18 5.92044126333E-18 6.30227690947E-18 6.70873883811E-18 7.14141530795E-18 7.60199701154E-18 8.09228368174E-18 8.61419112419E-18 9.16975870337E-18 9.76115731146E-18 1.03906978512E-17 1.10608402655E-17 1.17742031504E-17 1.25335739864E-17 1.33419200312E-17 1.42023999143E-17 1.51183759791E-17 1.60934274216E-17 1.71313642760E-17 1.82362423026E-17 1.94123788358E-17 2.06643696540E-17 2.19971069379E-17 2.34157983867E-17 2.49259875674E-17 2.65335755760E-17 2.82448440967E-17 3.00664799476E-17 3.20056012090E-17 3.40697850384E-17 3.62670972776E-17 3.86061239704E-17 4.10960049130E-17 4.37464693675E-17 4.65678740795E-17 4.95712437472E-17 5.27683141006E-17 5.61715777593E-17 5.97943330472E-17 6.36507359565E-17 6.77558554623E-17 7.21257324047E-17 7.67774421691E-17 8.17291614085E-17 8.70002390690E-17 9.26112719960E-17 9.85841854175E-17 1.04942318617E-16 1.11710516131E-16 1.18915224832E-16 1.26584597268E-16 1.34748601670E-16 1.43439139055E-16 1.52690167875E-16 1.62537836717E-16 1.73020625549E-16 1.84179496082E-16 1.96058051833E-16 2.08702708501E-16 2.22162875339E-16 2.36491148225E-16 2.51743515176E-16 2.67979575126E-16 2.85262770808E-16 3.03660636660E-16 3.23245062714E-16 3.44092575510E-16 3.66284637124E-16 3.89907963482E-16 4.15054863206E-16 4.41823598310E-16 4.70318768159E-16 5.00651718199E-16 5.32940975033E-16 5.67312709574E-16 6.03901230053E-16 6.42849506836E-16 6.84309731081E-16 7.28443909428E-16 7.75424497041E-16 8.25435071485E-16 8.78671050052E-16 9.35340453360E-16 9.95664718200E-16 1.05987956280E-15 1.12823590790E-15 1.20100085722E-15 1.27845874120E-15 1.36091222799E-15 1.44868350616E-15 1.54211554362E-15 1.64157342783E-15 1.74744579233E-15 1.86014633536E-15 1.98011543638E-15 2.10782187689E-15 2.24376467214E-15 2.38847502111E-15 2.54251838212E-15 2.70649668241E-15 2.88105067015E-15 3.06686241818E-15 3.26465798923E-15 3.47521027303E-15 3.69934200633E-15 3.93792898784E-15 4.19190350034E-15 4.46225795368E-15 4.75004876253E-15 5.05640047442E-15 5.38251016389E-15 5.72965211006E-15 6.09918277592E-15 6.49254610871E-15 6.91127918215E-15 7.35701820261E-15 7.83150490257E-15 8.33659334645E-15 8.87425717545E-15 9.44659731949E-15 1.00558502067E-14 1.07043965021E-14 1.13947704105E-14 1.21296695783E-14 1.29119656352E-14 1.37447154147E-14 1.46311728987E-14 1.55748019328E-14 1.65792897611E-14 1.76485614338E-14 1.87867951452E-14 1.99984385590E-14 2.12882261885E-14 2.26611978960E-14 2.41227185866E-14 2.56784991713E-14 2.73346188826E-14 2.90975490290E-14 3.09741782817E-14 3.29718395920E-14 3.50983388452E-14 3.73619853615E-14 3.97716243653E-14 4.23366715476E-14 4.50671498578E-14 4.79737286684E-14 5.10677654659E-14 5.43613502295E-14 5.78673526734E-14 6.15994725347E-14 6.55722931051E-14 6.98013382155E-14 7.43031328948E-14 7.90952679416E-14 8.41964686602E-14 8.96266680294E-14 9.54070845908E-14 1.01560305360E-13 1.08110374085E-13 1.15082885196E-13 1.22505083819E-13 1.30405972231E-13 1.38816423189E-13 1.47769300565E-13 1.57299587759E-13 1.67444524398E-13 1.78243751850E-13 1.89739468120E-13 2.01976592740E-13 2.15002942287E-13 2.28869417233E-13 2.43630200831E-13 2.59342970835E-13 2.76069124881E-13 2.93874020390E-13 3.12827229953E-13 3.33002813186E-13 3.54479606112E-13 3.77341529215E-13 4.01677915354E-13 4.27583858828E-13 4.55160586957E-13 4.84515855623E-13 5.15764370320E-13 5.49028234366E-13 5.84437426015E-13 6.22130306339E-13 6.62254159875E-13 7.04965770128E-13 7.50432032199E-13 7.98830604916E-13 8.50350605032E-13 9.05193346189E-13 9.63573125538E-13 1.02571806110E-12 1.09187098311E-12 1.16229038289E-12 1.23725142285E-12 1.31704701172E-12 1.40198894903E-12 1.49240914345E-12 1.58866090973E-12 1.69112034924E-12 1.80018781952E-12 1.91628949873E-12 2.03987905083E-12 2.17143939829E-12 2.31148460904E-12 2.46056190516E-12 2.61925380110E-12 2.78818037981E-12 2.96800171567E-12 3.15942045362E-12 3.36318455474E-12 3.58009021879E-12 3.81098499531E-12 4.05677109529E-12 4.31840891650E-12 4.59692079612E-12 4.89339500541E-12 5.20899000200E-12 5.54493895640E-12 5.90255457050E-12 6.28323420675E-12 6.68846534816E-12 7.11983141048E-12 7.57901792913E-12 8.06781914533E-12 8.58814501630E-12 9.14202867739E-12 9.73163439243E-12 1.03592659971E-11 1.10273759178E-11 1.17385747383E-11 1.24956414113E-11 1.33015341039E-11 1.41594017715E-11 1.50725964675E-11 1.60446864016E-11 1.70794699186E-11 1.81809903442E-11 1.93535517483E-11 2.06017357936E-11 2.19304196198E-11 2.33447949188E-11 2.48503881835E-11 2.64530823555E-11 2.81591397585E-11 2.99752265763E-11 3.19084389792E-11 3.39663306944E-11 3.61569426675E-11 3.84888343908E-11 4.09711173749E-11 4.36134908367E-11 4.64262794095E-11 4.94204735541E-11 5.26077726431E-11 5.60006305620E-11 5.96123041442E-11 6.34569056029E-11 6.75494568074E-11 7.19059487617E-11 7.65434035445E-11 8.14799410139E-11 8.67348497814E-11 9.23286623830E-11 9.82832352010E-11 1.04621834613E-10 1.11369227108E-10 1.18551776517E-10 1.26197547023E-10 1.34336412447E-10 1.43000173572E-10 1.52222681370E-10 1.62039970619E-10 1.72490399626E-10 1.83614800250E-10 1.95456638054E-10 2.08062181455E-10 2.21480682391E-10 2.35764569841E-10 2.50969653286E-10 2.67155341149E-10 2.84384874035E-10 3.02725569777E-10 3.22249088339E-10 3.43031710156E-10 3.65154635701E-10 3.88704301533E-10 4.13772718685E-10 4.40457831110E-10 4.68863899942E-10 4.99101909392E-10 5.31290000760E-10 5.65553934304E-10 6.02027579712E-10 6.40853440771E-10 6.82183210142E-10 7.26178361717E-10 7.73010784587E-10 8.22863450630E-10 8.75931131951E-10 9.32421159810E-10 9.92554235515E-10 1.05656529496E-09 1.12470441998E-09 1.19723782192E-09 1.27444887704E-09 1.35663923910E-09 1.44413000764E-09 1.53726299356E-09 1.63640204564E-09 1.74193447717E-09 1.85427257603E-09 1.97385521574E-09 2.10114957071E-09 2.23665293921E-09 2.38089468497E-09 2.53443831043E-09 2.69788365001E-09 2.87186921796E-09 3.05707470070E-09 3.25422361035E-09 3.46408611506E-09 3.68748203804E-09 3.92528406682E-09 4.17842116435E-09 4.44788218407E-09 4.73471974454E-09 5.04005433533E-09 5.36507868802E-09 5.71106244617E-09 6.07935710842E-09 6.47140131962E-09 6.88872647542E-09 7.33296271913E-09 7.80584528882E-09 8.30922130492E-09 8.84505697937E-09 9.41544529108E-09 1.00226141631E-08 1.06689351532E-08 1.13569327206E-08 1.20892940787E-08 1.28688796890E-08 1.36987344240E-08 1.45820994607E-08 1.55224249261E-08 1.65233833733E-08 1.75888841153E-08 1.87230884832E-08 1.99304260710E-08 2.12156120309E-08 2.25836654728E-08 2.40399290520E-08 2.55900898310E-08 2.72402014694E-08 2.89967078499E-08 3.08664682311E-08 3.28567840111E-08 3.49754272265E-08 3.72306708740E-08 3.96313212010E-08 4.21867520617E-08 4.49069414958E-08 4.78025106553E-08 5.08847652531E-08 5.41657396555E-08 5.76582438514E-08 6.13759134031E-08 6.53332626572E-08 6.95457413406E-08 7.40297948408E-08 7.88029283343E-08 8.38837750675E-08 8.92921690233E-08 9.50492222551E-08 1.01177407239E-07 1.07700644472E-07 1.14644395760E-07 1.22035763470E-07 1.29903596210E-07 1.38278601274E-07 1.47193464340E-07 1.56682976891E-07 1.66784171792E-07 1.77536467621E-07 1.88981822294E-07 2.01164896544E-07 2.14133227939E-07 2.27937416094E-07 2.42631319777E-07 2.58272266726E-07 2.74921276923E-07 2.92643300257E-07 3.11507469447E-07 3.31587369237E-07 3.52961322911E-07 3.75712697186E-07 3.99930226754E-07 4.25708359647E-07 4.53147624808E-07 4.82355023278E-07 5.13444444529E-07 5.46537109522E-07 5.81762042252E-07 6.19256571545E-07 6.59166865114E-07 7.01648497885E-07 7.46867056817E-07 7.94998784548E-07 8.46231264338E-07 9.00764148993E-07 9.58809936539E-07 1.02059479566E-06 1.08635944406E-06 1.15636008322E-06 1.23086939300E-06 1.31017759007E-06 1.39459355415E-06 1.48444602640E-06 1.58008488462E-06 1.68188250015E-06 1.79023518155E-06 1.90556471087E-06 2.02831997810E-06 2.15897872033E-06 2.29804937207E-06 2.44607303399E-06 2.60362556744E-06 2.77131982299E-06 2.94980801123E-06 3.13978422510E-06 3.34198712324E-06 3.55720278467E-06 3.78626774564E-06 4.03007223014E-06 4.28956358649E-06 4.56574994287E-06 4.85970409587E-06 5.17256764659E-06 5.50555540006E-06 5.85996004461E-06 6.23715712880E-06 6.63861035466E-06 7.06587720734E-06 7.52061494205E-06 8.00458695105E-06 8.51966953442E-06 9.06785909996E-06 9.65127981910E-06 1.02721917676E-05 1.09329995808E-05 1.16362616567E-05 1.23846999394E-05 1.31812103207E-05 1.40288736973E-05 1.49309677247E-05 1.58909793114E-05 1.69126178981E-05 1.79998295719E-05 1.91568120663E-05 2.03880307017E-05 2.16982353238E-05 2.30924783026E-05 2.45761336555E-05 2.61549173636E-05 2.78349089553E-05 2.96225744316E-05 3.15247906184E-05 3.35488710280E-05 3.57025933252E-05 3.79942284907E-05 4.04325717867E-05 4.30269756319E-05 4.57873844985E-05 4.87243719530E-05 5.18491799682E-05 5.51737606381E-05 5.87108204401E-05 6.24738671920E-05 6.64772598601E-05 7.07362613870E-05 7.52670947095E-05 8.00870021542E-05 8.52143083997E-05 9.06684872115E-05 9.64702321613E-05 1.02641531554E-04 1.09205747798E-04 1.16187701465E-04 1.23613760296E-04 1.31511933420E-04 1.39911971083E-04 1.48845470153E-04 1.58345985738E-04 1.68449149222E-04 1.79192793053E-04 1.90617082634E-04 2.02764655677E-04 2.15680769391E-04 2.29413455891E-04 2.44013686232E-04 2.59535543474E-04 2.76036405204E-04 2.93577135959E-04 3.12222289976E-04 3.32040324754E-04 3.53103825865E-04 3.75489743500E-04 3.99279641222E-04 4.24559957413E-04 4.51422279879E-04 4.79963634109E-04 5.10286785650E-04 5.42500557063E-04 5.76720159917E-04 6.13067542248E-04 6.51671751895E-04 6.92669316088E-04 7.36204637645E-04 7.82430408064E-04 8.31508037766E-04 8.83608103676E-04 9.38910814245E-04 9.97606491961E-04 1.05989607326E-03 1.12599162567E-03 1.19611688190E-03 1.27050779037E-03 1.34941308161E-03 1.43309484974E-03 1.52182914802E-03 1.61590659715E-03 1.71563300494E-03 1.82132999558E-03 1.93333564628E-03 2.05200512891E-03 2.17771135387E-03 2.31084561283E-03 2.45181821659E-03 2.60105912396E-03 2.75901855675E-03 2.92616759548E-03 3.10299874979E-03 3.29002649681E-03 3.48778777983E-03 3.69684245909E-03 3.91777370527E-03 4.15118832571E-03 4.39771701188E-03 4.65801449613E-03 4.93275960414E-03 5.22265518856E-03 5.52842792801E-03 5.85082797425E-03 6.19062842918E-03 6.54862463154E-03 6.92563323231E-03 7.32249103575E-03 7.74005358208E-03 8.17919344588E-03 8.64079822331E-03 9.12576817933E-03 9.63501352528E-03 1.01694512955E-02 1.07300017910E-02 1.13175845563E-02 1.19331138569E-02 1.25774936209E-02 1.32516118123E-02 1.39563342001E-02 1.46924974896E-02 1.54609017834E-02 1.62623023418E-02 1.70974006114E-02 1.79668344999E-02 1.88711678719E-02 1.98108792512E-02 2.07863497174E-02 2.17978499938E-02 2.28455267304E-02 2.39293879960E-02 2.50492880052E-02 2.62049111183E-02 2.73957551653E-02 2.86211141642E-02 2.98800605181E-02 3.11714267996E-02 3.24937872481E-02 3.38454391328E-02 3.52243841587E-02 3.66283101181E-02 3.80545730220E-02 3.95001799736E-02 4.09617730776E-02 4.24356147130E-02 4.39175745261E-02 4.54031185352E-02 4.68873007696E-02 4.83647578920E-02 4.98297072851E-02 5.12759491031E-02 5.26968728089E-02 5.40854687308E-02 5.54343451781E-02 5.67357516511E-02 5.79816086682E-02 5.91635447062E-02 6.02729407101E-02 6.13009825745E-02 6.22387219240E-02 6.30771454307E-02 6.38072527920E-02 6.44201433610E-02 6.49071112615E-02 6.52597486447E-02 6.54700565357E-02 6.55305624985E-02 6.54344440977E-02 6.51756568712E-02 6.47490652497E-02 6.41505745638E-02 6.33772619885E-02 6.24275039785E-02 6.13010974669E-02 5.99993718375E-02 5.85252884557E-02 5.68835243565E-02 5.50805365680E-02 5.31246034988E-02 5.10258398586E-02 4.87961817281E-02 4.64493386603E-02 4.40007100930E-02 4.14672639002E-02 3.88673756011E-02 3.62206276038E-02 3.35475688634E-02 3.08694364923E-02 2.82078421404E-02 2.55844273538E-02 2.30204935773E-02 2.05366139498E-02 1.81522354882E-02 1.58852816076E-02 1.37517660949E-02 1.17654305647E-02 9.93741797752E-03 8.27599491015E-03 6.78633483219E-03 5.47037358452E-03 4.32674650325E-03 3.35081413504E-03 2.53478023065E-03 1.86790170061E-03 1.33678553554E-03 9.25762453995E-04 6.17321422732E-04 3.92583441523E-04 2.33116065683E-04 1.25536638589E-04 5.82175176406E-05 2.03982084004E-05 2.55940256372E-06 -3.25434231535E-06 -3.18871309882E-06 -1.43772904365E-06 -2.34055835047E-07 6.93889390391E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 6 1 i j (l(j)) 0.00000000000E+00 Q_int 2.61605179606E-27 2.78477264123E-27 2.96437504603E-27 3.15556081076E-27 3.35907699794E-27 3.57571885150E-27 3.80633290421E-27 4.05182028547E-27 4.31314024257E-27 4.59131388892E-27 4.88742819410E-27 5.20264023118E-27 5.53818169806E-27 5.89536373030E-27 6.27558202448E-27 6.68032229183E-27 7.11116606376E-27 7.56979687166E-27 8.05800682539E-27 8.57770361596E-27 9.13091796988E-27 9.71981158426E-27 1.03466855737E-26 1.10139894620E-26 1.17243307535E-26 1.24804851223E-26 1.32854072580E-26 1.41422424115E-26 1.50543386846E-26 1.60252601134E-26 1.70588005945E-26 1.81589987098E-26 1.93301535074E-26 2.05768413000E-26 2.19039335474E-26 2.33166158914E-26 2.48204084190E-26 2.64211872320E-26 2.81252074087E-26 2.99391274448E-26 3.18700352725E-26 3.39254759559E-26 3.61134811742E-26 3.84426006056E-26 4.09219353347E-26 4.35611734160E-26 4.63706277296E-26 4.93612762795E-26 5.25448050898E-26 5.59336538687E-26 5.95410646164E-26 6.33811333690E-26 6.74688652786E-26 7.18202332466E-26 7.64522403380E-26 8.13829862213E-26 8.66317378932E-26 9.22190049651E-26 9.81666198048E-26 1.04497822846E-25 1.11237353404E-25 1.18411546339E-25 1.26048434968E-25 1.34177860598E-25 1.42831589137E-25 1.52043435218E-25 1.61849394329E-25 1.72287783470E-25 1.83399390873E-25 1.95227635386E-25 2.07818736131E-25 2.21221893110E-25 2.35489479450E-25 2.50677246054E-25 2.66844539452E-25 2.84054533694E-25 3.02374477208E-25 3.21875955572E-25 3.42635171237E-25 3.64733241290E-25 3.88256514422E-25 4.13296908334E-25 4.39952268911E-25 4.68326752556E-25 4.98531233180E-25 5.30683735450E-25 5.64909895968E-25 6.01343454204E-25 6.40126775079E-25 6.81411405264E-25 7.25358665352E-25 7.72140280219E-25 8.21939050045E-25 8.74949564607E-25 9.31378963648E-25 9.91447746273E-25 1.05539063256E-24 1.12345748073E-24 1.19591426348E-24 1.27304410727E-24 1.35514839864E-24 1.44254796190E-24 1.53558431275E-24 1.63462099276E-24 1.74004498992E-24 1.85226825080E-24 1.97172929024E-24 2.09889490486E-24 2.23426199706E-24 2.37835951672E-24 2.53175052805E-24 2.69503440975E-24 2.86884919718E-24 3.05387407540E-24 3.25083203318E-24 3.46049268802E-24 3.68367529351E-24 3.92125194057E-24 4.17415096514E-24 4.44336057567E-24 4.72993271460E-24 5.03498716884E-24 5.35971594532E-24 5.70538792885E-24 6.07335384025E-24 6.46505151438E-24 6.88201151846E-24 7.32586313283E-24 7.79834071738E-24 8.30129048863E-24 8.83667773380E-24 9.40659449028E-24 1.00132677203E-23 1.06590680127E-23 1.13465188464E-23 1.20783064505E-23 1.28572903012E-23 1.36865142948E-23 1.45692186424E-23 1.55088525305E-23 1.65090875992E-23 1.75738322889E-23 1.87072471129E-23 1.99137609145E-23 2.11980881728E-23 2.25652474248E-23 2.40205808753E-23 2.55697752718E-23 2.72188841254E-23 2.89743513652E-23 3.08430365181E-23 3.28322415124E-23 3.49497392103E-23 3.72038037808E-23 3.96032430307E-23 4.21574328219E-23 4.48763537072E-23 4.77706299298E-23 5.08515709379E-23 5.41312155766E-23 5.76223791295E-23 6.13387033953E-23 6.52947099931E-23 6.95058571062E-23 7.39885998848E-23 7.87604547456E-23 8.38400678170E-23 8.92472877994E-23 9.50032435246E-23 1.01130426517E-22 1.07652778880E-22 1.14595786851E-22 1.21986580386E-22 1.29854039175E-22 1.38228905489E-22 1.47143904304E-22 1.56633871175E-22 1.66735888359E-22 1.77489429714E-22 1.88936514941E-22 2.01121873781E-22 2.14093120796E-22 2.27900941422E-22 2.42599290027E-22 2.58245600736E-22 2.74901011859E-22 2.92630604786E-22 3.11503658300E-22 3.31593919279E-22 3.52979890869E-22 3.75745139233E-22 3.99978620091E-22 4.25775026313E-22 4.53235157938E-22 4.82466316048E-22 5.13582722051E-22 5.46705964006E-22 5.81965471729E-22 6.19499022542E-22 6.59453279644E-22 7.01984365200E-22 7.47258470390E-22 7.95452504806E-22 8.46754787733E-22 9.01365784008E-22 9.59498887342E-22 1.02138125416E-21 1.08725469122E-21 1.15737660049E-21 1.23202098492E-21 1.31147951916E-21 1.39606268926E-21 1.48610100589E-21 1.58194629584E-21 1.68397307679E-21 1.79258002074E-21 1.90819151183E-21 2.03125930463E-21 2.16226428940E-21 2.30171837114E-21 2.45016646993E-21 2.60818865016E-21 2.77640238718E-21 2.95546498010E-21 3.14607612018E-21 3.34898062493E-21 3.56497134845E-21 3.79489227958E-21 4.03964183976E-21 4.30017639369E-21 4.57751398629E-21 4.87273832079E-21 5.18700299327E-21 5.52153600043E-21 5.87764453796E-21 6.25672010851E-21 6.66024395893E-21 7.08979286836E-21 7.54704530952E-21 8.03378800734E-21 8.55192292071E-21 9.10347467435E-21 9.69059847017E-21 1.03155885087E-20 1.09808869538E-20 1.16890934755E-20 1.24429754082E-20 1.32454785641E-20 1.40997387442E-20 1.50090939912E-20 1.59770976336E-20 1.70075321696E-20 1.81044240481E-20 1.92720594016E-20 2.05150007948E-20 2.18381050526E-20 2.32465422386E-20 2.47458158568E-20 2.63417843574E-20 2.80406840284E-20 2.98491533638E-20 3.17742590047E-20 3.38235233512E-20 3.60049539574E-20 3.83270748205E-20 4.07989596889E-20 4.34302675182E-20 4.62312802136E-20 4.92129428070E-20 5.23869062249E-20 5.57655728150E-20 5.93621448084E-20 6.31906759080E-20 6.72661262039E-20 7.16044206302E-20 7.62225111922E-20 8.11384432071E-20 8.63714258168E-20 9.19419070477E-20 9.78716537128E-20 1.04183836466E-19 1.10903120341E-19 1.18055761134E-19 1.25669707995E-19 1.33774712644E-19 1.42402445624E-19 1.51586620056E-19 1.61363123375E-19 1.71770157560E-19 1.82848388410E-19 1.94641104449E-19 2.07194386074E-19 2.20557285620E-19 2.34782019031E-19 2.49924169898E-19 2.66042906651E-19 2.83201213765E-19 3.01466137875E-19 3.20909049759E-19 3.41605923229E-19 3.63637631996E-19 3.87090265689E-19 4.12055466257E-19 4.38630786061E-19 4.66920069064E-19 4.97033856610E-19 5.29089819362E-19 5.63213217115E-19 5.99537388247E-19 6.38204270748E-19 6.79364956850E-19 7.23180283427E-19 7.69821460472E-19 8.19470740112E-19 8.72322128764E-19 9.28582145226E-19 9.88470627663E-19 1.05222159263E-18 1.12008414952E-18 1.19232347394E-18 1.26922184395E-18 1.35107974303E-18 1.43821703427E-18 1.53097421023E-18 1.62971372347E-18 1.73482140281E-18 1.84670796102E-18 1.96581059968E-18 2.09259471760E-18 2.22755572935E-18 2.37122100118E-18 2.52415191170E-18 2.68694604554E-18 2.86023952840E-18 3.04470951281E-18 3.24107682414E-18 3.45010877725E-18 3.67262217486E-18 3.90948649927E-18 4.16162730990E-18 4.43002986002E-18 4.71574294669E-18 5.01988300902E-18 5.34363849075E-18 5.68827448420E-18 6.05513767373E-18 6.44566159801E-18 6.86137225175E-18 7.30389404858E-18 7.77495616868E-18 8.27639931568E-18 8.81018290939E-18 9.37839274244E-18 9.98324913068E-18 1.06271155894E-17 1.13125080688E-17 1.20421047857E-17 1.28187566886E-17 1.36454985982E-17 1.45255610665E-17 1.54623830001E-17 1.64596250987E-17 1.75211841593E-17 1.86512083037E-17 1.98541131876E-17 2.11345992554E-17 2.24976701078E-17 2.39486520543E-17 2.54932149260E-17 2.71373942316E-17 2.88876147419E-17 3.07507155958E-17 3.27339770246E-17 3.48451488014E-17 3.70924805241E-17 3.94847538521E-17 4.20313168218E-17 4.47421203764E-17 4.76277572499E-17 5.06995033608E-17 5.39693618745E-17 5.74501101076E-17 6.11553494581E-17 6.50995585552E-17 6.92981498373E-17 7.37675297792E-17 7.85251630039E-17 8.35896405291E-17 8.89807524154E-17 9.47195651006E-17 1.00828503721E-16 1.07331439744E-16 1.14253784249E-16 1.21622587229E-16 1.29466643295E-16 1.37816604199E-16 1.46705098610E-16 1.56166859622E-16 1.66238860484E-16 1.76960459078E-16 1.88373551727E-16 2.00522736913E-16 2.13455489558E-16 2.27222346550E-16 2.41877104229E-16 2.57477028612E-16 2.74083079181E-16 2.91760147101E-16 3.10577308803E-16 3.30608095925E-16 3.51930782664E-16 3.74628691658E-16 3.98790519600E-16 4.24510683857E-16 4.51889691440E-16 4.81034531774E-16 5.12059094805E-16 5.45084616071E-16 5.80240150481E-16 6.17663076655E-16 6.57499633789E-16 6.99905493156E-16 7.45046366458E-16 7.93098653432E-16 8.44250131209E-16 8.98700688157E-16 9.56663105040E-16 1.01836388658E-15 1.08404414662E-15 1.15396055046E-15 1.22838631788E-15 1.30761229090E-15 1.39194807046E-15 1.48172322634E-15 1.57728858515E-15 1.67901760146E-15 1.78730781726E-15 1.90258241566E-15 2.02529187475E-15 2.15591572818E-15 2.29496443923E-15 2.44298139592E-15 2.60054503459E-15 2.76827110071E-15 2.94681505528E-15 3.13687463667E-15 3.33919258756E-15 3.55455955785E-15 3.78381719485E-15 4.02786143273E-15 4.28764599422E-15 4.56418611819E-15 4.85856252766E-15 5.17192565382E-15 5.50550013248E-15 5.86058959060E-15 6.23858174166E-15 6.64095380957E-15 7.06927830265E-15 7.52522915998E-15 8.01058829429E-15 8.52725255691E-15 9.07724115207E-15 9.66270352950E-15 1.02859277862E-14 1.09493496101E-14 1.16555618011E-14 1.24073244057E-14 1.32075755060E-14 1.40594427048E-14 1.49662553508E-14 1.59315575539E-14 1.69591220386E-14 1.80529648928E-14 1.92173612667E-14 2.04568620856E-14 2.17763118404E-14 2.31808675260E-14 2.46760188020E-14 2.62676094535E-14 2.79618602371E-14 2.97653932006E-14 3.16852575722E-14 3.37289573201E-14 3.59044804896E-14 3.82203304342E-14 4.06855590613E-14 4.33098022234E-14 4.61033173924E-14 4.90770237652E-14 5.22425449581E-14 5.56122544544E-14 5.91993239866E-14 6.30177750393E-14 6.70825336764E-14 7.14094889064E-14 7.60155548139E-14 8.09187367011E-14 8.61382014970E-14 9.16943527118E-14 9.76089102275E-14 1.03904995238E-13 1.10607220674E-13 1.17741787459E-13 1.25336586980E-13 1.33421310177E-13 1.42027563665E-13 1.51188993355E-13 1.60941416060E-13 1.71322959582E-13 1.82374211859E-13 1.94138379724E-13 2.06661457923E-13 2.19992409037E-13 2.34183355025E-13 2.49289781125E-13 2.65370752926E-13 2.82489147450E-13 3.00711899150E-13 3.20110261802E-13 3.40760087292E-13 3.62742122411E-13 3.86142324816E-13 4.11052199384E-13 4.37569156296E-13 4.65796892234E-13 4.95845796202E-13 5.27833381550E-13 5.61884745900E-13 5.98133060779E-13 6.36720092863E-13 6.77796758902E-13 7.21523716481E-13 7.68071992932E-13 8.17623654885E-13 8.70372521075E-13 9.26524921121E-13 9.86300503316E-13 1.04993309535E-12 1.11767161852E-12 1.18978106431E-12 1.26654353054E-12 1.34825932729E-12 1.43524815182E-12 1.52785034240E-12 1.62642821211E-12 1.73136746397E-12 1.84307870585E-12 1.96199905978E-12 2.08859387080E-12 2.22335853383E-12 2.36682043298E-12 2.51954101050E-12 2.68211796318E-12 2.85518759102E-12 3.03942728564E-12 3.23555818693E-12 3.44434801880E-12 3.66661408255E-12 3.90322647748E-12 4.15511150337E-12 4.42325529630E-12 4.70870770595E-12 5.01258639354E-12 5.33608122406E-12 5.68045894994E-12 6.04706816952E-12 6.43734459503E-12 6.85281675568E-12 7.29511190412E-12 7.76596248907E-12 8.26721289846E-12 8.80082672259E-12 9.36889448404E-12 9.97364182711E-12 1.06174382274E-11 1.13028063812E-11 1.20324320322E-11 1.28091745748E-11 1.36360782922E-11 1.45163842828E-11 1.54535432671E-11 1.64512290442E-11 1.75133530861E-11 1.86440798050E-11 1.98478429530E-11 2.11293631308E-11 2.24936662925E-11 2.39461035132E-11 2.54923721714E-11 2.71385382311E-11 2.88910601709E-11 3.07568145431E-11 3.27431228443E-11 3.48577805671E-11 3.71090877468E-11 3.95058818439E-11 4.20575724606E-11 4.47741785200E-11 4.76663676759E-11 5.07454985737E-11 5.40236655198E-11 5.75137462665E-11 6.12294528911E-11 6.51853858570E-11 6.93970918713E-11 7.38811251044E-11 7.86551125930E-11 8.37378242683E-11 8.91492467619E-11 9.49106627570E-11 1.01044734992E-10 1.07575596068E-10 1.14528944260E-10 1.21932144609E-10 1.29814338065E-10 1.38206556494E-10 1.47141846329E-10 1.56655398543E-10 1.66784689505E-10 1.77569628784E-10 1.89052718206E-10 2.01279220376E-10 2.14297338605E-10 2.28158408655E-10 2.42917102711E-10 2.58631646816E-10 2.75364053268E-10 2.93180366727E-10 3.12150927907E-10 3.32350653790E-10 3.53859336276E-10 3.76761961045E-10 4.01149045851E-10 4.27117002862E-10 4.54768524255E-10 4.84212991403E-10 5.15566913860E-10 5.48954395198E-10 5.84507629539E-10 6.22367432659E-10 6.62683805007E-10 7.05616535059E-10 7.51335839418E-10 8.00023048522E-10 8.51871333645E-10 9.07086485330E-10 9.65887741505E-10 1.02850867052E-09 1.09519811337E-09 1.16622118673E-09 1.24186035424E-09 1.32241656749E-09 1.40821048331E-09 1.49958376107E-09 1.59690044732E-09 1.70054845071E-09 1.81094111682E-09 1.92851890652E-09 2.05375118599E-09 2.18713813653E-09 2.32921279197E-09 2.48054321092E-09 2.64173479419E-09 2.81343275853E-09 2.99632477384E-09 3.19114377765E-09 3.39867097851E-09 3.61973905955E-09 3.85523559835E-09 4.10610671463E-09 4.37336096500E-09 4.65807349798E-09 4.96139048949E-09 5.28453387666E-09 5.62880641215E-09 5.99559705689E-09 6.38638674121E-09 6.80275451077E-09 7.24638409332E-09 7.71907090580E-09 8.22272954109E-09 8.75940175953E-09 9.33126502605E-09 9.94064162711E-09 1.05900084074E-08 1.12820071748E-08 1.20194558099E-08 1.28053601397E-08 1.36429266198E-08 1.45355758895E-08 1.54869572530E-08 1.65009641556E-08 1.75817507273E-08 1.87337494596E-08 1.99616901043E-08 2.12706198769E-08 2.26659250527E-08 2.41533540597E-08 2.57390421709E-08 2.74295379072E-08 2.92318312778E-08 3.11533839808E-08 3.32021617108E-08 3.53866687155E-08 3.77159847698E-08 4.01998047338E-08 4.28484808789E-08 4.56730681866E-08 4.86853728266E-08 5.18980040428E-08 5.53244296977E-08 5.89790357324E-08 6.28771898261E-08 6.70353095644E-08 7.14709354305E-08 7.62028089824E-08 8.12509565821E-08 8.66367790854E-08 9.23831479266E-08 9.85145080590E-08 1.05056988262E-07 1.12038519341E-07 1.19488960812E-07 1.27440236679E-07 1.35926480987E-07 1.44984193856E-07 1.54652408784E-07 1.64972872035E-07 1.75990235019E-07 1.87752260612E-07 2.00310044476E-07 2.13718252445E-07 2.28035375238E-07 2.43324001723E-07 2.59651112162E-07 2.77088392911E-07 2.95712574178E-07 3.15605792570E-07 3.36855980292E-07 3.59557282988E-07 3.83810508390E-07 4.09723608078E-07 4.37412194861E-07 4.67000098464E-07 4.98619962400E-07 5.32413885157E-07 5.68534109057E-07 6.07143760370E-07 6.48417644610E-07 6.92543101174E-07 7.39720921836E-07 7.90166337972E-07 8.44110081715E-07 9.01799526700E-07 9.63499914444E-07 1.02949567290E-06 1.10009183424E-06 1.17561555940E-06 1.25641777753E-06 1.34287494931E-06 1.43539096325E-06 1.53439917554E-06 1.64036460416E-06 1.75378628911E-06 1.87519983159E-06 2.00518012566E-06 2.14434429724E-06 2.29335486624E-06 2.45292314888E-06 2.62381291869E-06 2.80684434581E-06 3.00289823596E-06 3.21292059201E-06 3.43792752260E-06 3.67901052454E-06 3.93734216727E-06 4.21418221016E-06 4.51088418547E-06 4.82890248245E-06 5.16979997058E-06 5.53525620293E-06 5.92707624334E-06 6.34720016493E-06 6.79771327022E-06 7.28085708756E-06 7.79904120207E-06 8.35485598370E-06 8.95108627969E-06 9.59072614343E-06 1.02769946768E-05 1.10133530691E-05 1.18035229207E-05 1.26515059467E-05 1.35616051623E-05 1.45384476582E-05 1.55870090828E-05 1.67126399545E-05 1.79210939388E-05 1.92185582298E-05 2.06116861894E-05 2.21076324037E-05 2.37140903315E-05 2.54393327252E-05 2.72922550223E-05 2.92824219126E-05 3.14201173051E-05 3.37163979263E-05 3.61831508012E-05 3.88331548803E-05 4.16801470934E-05 4.47388931253E-05 4.80252632287E-05 5.15563134036E-05 5.53503722944E-05 5.94271341710E-05 6.38077583829E-05 6.85149756922E-05 7.35732019141E-05 7.90086593102E-05 8.48495062051E-05 9.11259753120E-05 9.78705212780E-05 1.05117977976E-04 1.12905726092E-04 1.21273871572E-04 1.30265435517E-04 1.39926556117E-04 1.50306703251E-04 1.61458906358E-04 1.73439996238E-04 1.86310861406E-04 2.00136719645E-04 2.14987405404E-04 2.30937673667E-04 2.48067520909E-04 2.66462523753E-04 2.86214195867E-04 3.07420363664E-04 3.30185561258E-04 3.54621445124E-04 3.80847228780E-04 4.08990137786E-04 4.39185885188E-04 4.71579167446E-04 5.06324180751E-04 5.43585157437E-04 5.83536922029E-04 6.26365466247E-04 6.72268542032E-04 7.21456271390E-04 7.74151771523E-04 8.30591793377E-04 8.91027371339E-04 9.55724481370E-04 1.02496470439E-03 1.09904589117E-03 1.17828282445E-03 1.26300787325E-03 1.35357163383E-03 1.45034355066E-03 1.55371251037E-03 1.66408740028E-03 1.78189762254E-03 1.90759355357E-03 2.04164693761E-03 2.18455120177E-03 2.33682167903E-03 2.49899572395E-03 2.67163270489E-03 2.85531385465E-03 3.05064196038E-03 3.25824087191E-03 3.47875480594E-03 3.71284742230E-03 3.96120064679E-03 4.22451321347E-03 4.50349889806E-03 4.79888441254E-03 5.11140692992E-03 5.44181120693E-03 5.79084627164E-03 6.15926164224E-03 6.54780304309E-03 6.95720758392E-03 7.38819836891E-03 7.84147850306E-03 8.31772446519E-03 8.81757881898E-03 9.34164223667E-03 9.89046481404E-03 1.04645366601E-02 1.10642777510E-02 1.16900270455E-02 1.23420308665E-02 1.30204305640E-02 1.37252494880E-02 1.44563793079E-02 1.52135657358E-02 1.59963937236E-02 1.68042722230E-02 1.76364186175E-02 1.84918429586E-02 1.93693321591E-02 2.02674343249E-02 2.11844434307E-02 2.21183845733E-02 2.30670000666E-02 2.40277366685E-02 2.49977342626E-02 2.59738163435E-02 2.69524826833E-02 2.79299045829E-02 2.89019231328E-02 2.98640509290E-02 3.08114776997E-02 3.17390803106E-02 3.26414376113E-02 3.35128505785E-02 3.43473681908E-02 3.51388194362E-02 3.58808518089E-02 3.65669765868E-02 3.71906211060E-02 3.77451881486E-02 3.82241224450E-02 3.86209841563E-02 3.89295290444E-02 3.91437948616E-02 3.92581932961E-02 3.92676065949E-02 3.91674877575E-02 3.89539629532E-02 3.86239345665E-02 3.81751830241E-02 3.76064653161E-02 3.69176078888E-02 3.61095913820E-02 3.51846245076E-02 3.41462042383E-02 3.29991594042E-02 3.17496747958E-02 3.04052929571E-02 2.89748910335E-02 2.74686303326E-02 2.58978766671E-02 2.42750900856E-02 2.26136832700E-02 2.09278486743E-02 1.92323554086E-02 1.75423179038E-02 1.58729395233E-02 1.42392354729E-02 1.26557405742E-02 1.11362086500E-02 9.69331137877E-03 8.33834542432E-03 7.08095738553E-03 5.92889653843E-03 4.88780539494E-03 3.96105768875E-03 3.14965245264E-03 2.45217130925E-03 1.86480391927E-03 1.38144370232E-03 9.93852485382E-04 6.91888704137E-04 4.63789292800E-04 2.96490614531E-04 1.76977622943E-04 9.58036450446E-05 4.46610973599E-05 1.57300902033E-05 1.98399720609E-06 -2.53588263388E-06 -2.49772923375E-06 -1.13206601185E-06 -1.85259274095E-07 6.93889390391E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 3 2 i j (l(j)) 3.19765442955E-01 Q_int 8.78424237551E-30 9.46839563402E-30 1.02058335881E-29 1.10007062711E-29 1.18574869381E-29 1.27809972398E-29 1.37764343572E-29 1.48494002492E-29 1.60059331786E-29 1.72525416931E-29 1.85962412533E-29 2.00445937128E-29 2.16057498737E-29 2.32884953567E-29 2.51023000426E-29 2.70573713664E-29 2.91647117601E-29 3.14361805710E-29 3.38845608015E-29 3.65236310472E-29 3.93682430380E-29 4.24344052184E-29 4.57393728365E-29 4.93017450512E-29 5.31415696010E-29 5.72804556253E-29 6.17416952731E-29 6.65503947826E-29 7.17336157703E-29 7.73205275233E-29 8.33425711541E-29 8.98336365396E-29 9.68302530408E-29 1.04371795077E-28 1.12500703711E-28 1.21262725491E-28 1.30707169898E-28 1.40887186837E-28 1.51860065752E-28 1.63687558023E-28 1.76436224487E-28 1.90177810012E-28 2.04989647258E-28 2.20955091870E-28 2.38163991579E-28 2.56713191828E-28 2.76707080789E-28 2.98258176813E-28 3.21487761650E-28 3.46526562978E-28 3.73515490085E-28 4.02606426862E-28 4.33963086547E-28 4.67761933045E-28 5.04193174003E-28 5.43461831226E-28 5.85788894472E-28 6.31412565097E-28 6.80589596566E-28 7.33596739373E-28 7.90732298485E-28 8.52317812101E-28 9.18699861149E-28 9.90252019718E-28 1.06737695740E-27 1.15050870536E-27 1.24011509891E-27 1.33670041034E-27 1.44080818673E-27 1.55302430887E-27 1.67398028840E-27 1.80435682169E-27 1.94488762055E-27 2.09636354135E-27 2.25963703561E-27 2.43562694732E-27 2.62532368386E-27 2.82979478963E-27 3.05019095384E-27 3.28775248615E-27 3.54381629666E-27 3.81982341961E-27 4.11732712294E-27 4.43800164957E-27 4.78365163939E-27 5.15622228514E-27 5.55781027924E-27 5.99067561324E-27 6.45725429618E-27 6.96017206362E-27 7.50225915429E-27 8.08656623766E-27 8.71638158203E-27 9.39524955963E-27 1.01269905932E-26 1.09157226557E-26 1.17658844451E-26 1.26822603634E-26 1.36700074420E-26 1.47346843629E-26 1.58822827417E-26 1.71192608456E-26 1.84525799386E-26 1.98897434569E-26 2.14388392352E-26 2.31085850227E-26 2.49083775428E-26 2.68483453748E-26 2.89394059539E-26 3.11933270103E-26 3.36227927939E-26 3.62414754568E-26 3.90641119949E-26 4.21065871826E-26 4.53860229663E-26 4.89208748208E-26 5.27310356098E-26 5.68379475358E-26 6.12647228092E-26 6.60362737150E-26 7.11794528105E-26 7.67232040417E-26 8.26987256290E-26 8.91396456399E-26 9.60822112352E-26 1.03565492655E-25 1.11631603093E-25 1.20325935691E-25 1.29697418998E-25 1.39798792324E-25 1.50686902530E-25 1.62423023952E-25 1.75073203223E-25 1.88708630960E-25 2.03406042405E-25 2.19248149256E-25 2.36324105143E-25 2.54730007349E-25 2.74569437613E-25 2.95954045052E-25 3.19004174475E-25 3.43849543648E-25 3.70629973294E-25 3.99496173953E-25 4.30610594128E-25 4.64148334488E-25 5.00298133265E-25 5.39263428409E-25 5.81263502464E-25 6.26534716605E-25 6.75331840800E-25 7.27929487556E-25 7.84623657344E-25 8.45733404380E-25 9.11602632145E-25 9.82602028751E-25 1.05913115304E-24 1.14162068315E-24 1.23053484023E-24 1.32637400088E-24 1.42967751313E-24 1.54102673165E-24 1.66104828945E-24 1.79041762429E-24 1.92986277984E-24 2.08016850284E-24 2.24218065935E-24 2.41681099500E-24 2.60504226593E-24 2.80793376944E-24 3.02662730528E-24 3.26235360130E-24 3.51643923955E-24 3.79031412178E-24 4.08551951645E-24 4.40371673238E-24 4.74669646802E-24 5.11638888884E-24 5.51487448963E-24 5.94439580271E-24 6.40737001815E-24 6.90640258680E-24 7.44430188284E-24 8.02409500828E-24 8.64904482838E-24 9.32266833392E-24 1.00487564335E-23 1.08313952873E-23 1.16749893029E-23 1.25842859211E-23 1.35644023332E-23 1.46208542786E-23 1.57595870854E-23 1.69870091285E-23 1.83100278937E-23 1.97360888501E-23 2.12732173513E-23 2.29300637984E-23 2.47159523218E-23 2.66409332538E-23 2.87158396882E-23 3.09523484451E-23 3.33630457840E-23 3.59614982342E-23 3.87623289426E-23 4.17812999678E-23 4.50354009824E-23 4.85429448855E-23 5.23236708607E-23 5.63988554609E-23 6.07914323455E-23 6.55261213421E-23 7.06295675611E-23 7.61304913447E-23 8.20598498944E-23 8.84510114869E-23 9.53399432586E-23 1.02765413616E-22 1.10769210409E-22 1.19396376099E-22 1.28695461243E-22 1.38718797712E-22 1.49522793205E-22 1.61168248684E-22 1.73720700542E-22 1.87250789419E-22 2.01834657740E-22 2.17554378218E-22 2.34498415730E-22 2.52762125162E-22 2.72448288036E-22 2.93667690925E-22 3.16539748917E-22 3.41193177647E-22 3.67766717651E-22 3.96409915157E-22 4.27283963671E-22 4.60562611121E-22 4.96433137638E-22 5.35097409509E-22 5.76773015204E-22 6.21694489885E-22 6.70114635281E-22 7.22305942372E-22 7.78562124859E-22 8.39199772087E-22 9.04560130688E-22 9.75011024998E-22 1.05094892703E-21 1.13280118770E-21 1.22102844174E-21 1.31612720007E-21 1.41863264391E-21 1.52912163662E-21 1.64821597005E-21 1.77658586380E-21 1.91495373694E-21 2.06409827350E-21 2.22485880468E-21 2.39814003226E-21 2.58491711992E-21 2.78624118116E-21 3.00324519451E-21 3.23715037957E-21 3.48927306960E-21 3.76103211931E-21 4.05395688969E-21 4.36969585469E-21 4.71002587826E-21 5.07686221381E-21 5.47226928265E-21 5.89847229175E-21 6.35786975637E-21 6.85304699811E-21 7.38679069405E-21 7.96210455922E-21 8.58222625041E-21 9.25064558648E-21 9.97112418781E-21 1.07477166453E-20 1.15847933382E-20 1.24870650289E-20 1.34596093733E-20 1.45078994964E-20 1.56378347926E-20 1.68557741255E-20 1.81685716131E-20 1.95836152008E-20 2.11088682372E-20 2.27529142898E-20 2.45250054493E-20 2.64351143979E-20 2.84939905309E-20 3.07132204512E-20 3.31052931739E-20 3.56836704103E-20 3.84628623251E-20 4.14585091943E-20 4.46874694234E-20 4.81679144196E-20 5.19194308544E-20 5.59631308898E-20 6.03217709898E-20 6.50198799858E-20 7.00838971151E-20 7.55423208120E-20 8.14258690859E-20 8.77676523910E-20 9.46033599600E-20 1.01971460650E-19 1.09913419429E-19 1.18473930730E-19 1.27701169971E-19 1.37647064667E-19 1.48367586664E-19 1.59923067124E-19 1.72378536047E-19 1.85804088238E-19 2.00275277769E-19 2.15873543177E-19 2.32686665764E-19 2.50809263599E-19 2.70343323994E-19 2.91398777452E-19 3.14094116310E-19 3.38557061577E-19 3.64925281693E-19 3.93347167280E-19 4.23982666230E-19 4.57004183826E-19 4.92597552983E-19 5.30963080037E-19 5.72316672003E-19 6.16891051611E-19 6.64937066989E-19 7.16725103335E-19 7.72546604551E-19 8.32715713375E-19 8.97571039257E-19 9.67477563931E-19 1.04282869539E-18 1.12404848184E-18 1.21159399807E-18 1.30595791774E-18 1.40767128589E-18 1.51730650753E-18 1.63548056889E-18 1.76285850956E-18 1.90015716512E-18 2.04814920119E-18 2.20766746174E-18 2.37960965596E-18 2.56494341024E-18 2.76471171365E-18 2.98003878743E-18 3.21213641168E-18 3.46231074482E-18 3.73196967415E-18 4.02263073885E-18 4.33592967017E-18 4.67362959662E-18 5.03763096627E-18 5.42998224164E-18 5.85289142772E-18 6.30873849773E-18 6.80008878670E-18 7.32970742817E-18 7.90057491527E-18 8.51590387381E-18 9.17915714162E-18 9.89406725608E-18 1.06646574594E-17 1.14952643397E-17 1.23905622359E-17 1.33555895427E-17 1.43957770649E-17 1.55169785798E-17 1.67255037798E-17 1.80281537810E-17 1.94322593970E-17 2.09457223938E-17 2.25770599580E-17 2.43354526276E-17 2.62307959570E-17 2.82737562046E-17 3.04758303585E-17 3.28494108368E-17 3.54078552268E-17 3.81655614567E-17 4.11380488205E-17 4.43420453145E-17 4.77955817757E-17 5.15180933515E-17 5.55305288732E-17 5.98554687465E-17 6.45172520254E-17 6.95421133817E-17 7.49583307425E-17 8.07963844271E-17 8.70891286767E-17 9.38719765443E-17 1.01183099184E-16 1.09063640663E-16 1.17557949500E-16 1.26713828243E-16 1.36582802478E-16 1.47220410796E-16 1.58686517337E-16 1.71045648678E-16 1.84367356966E-16 1.98726611320E-16 2.14204219726E-16 2.30887283791E-16 2.48869688907E-16 2.68252632600E-16 2.89145194018E-16 3.11664947786E-16 3.35938625657E-16 3.62102829698E-16 3.90304801030E-16 4.20703248425E-16 4.53469241450E-16 4.88787173163E-16 5.26855797788E-16 5.67889349213E-16 6.12118746593E-16 6.59792893852E-16 7.11180080390E-16 7.66569490891E-16 8.26272832705E-16 8.90626089986E-16 9.59991414443E-16 1.03475916335E-15 1.11535009626E-15 1.20221774287E-15 1.29585095519E-15 1.39677665861E-15 1.50556281713E-15 1.62282162954E-15 1.74921297461E-15 1.88544812449E-15 2.03229374738E-15 2.19057622191E-15 2.36118628757E-15 2.54508405730E-15 2.74330442043E-15 2.95696286650E-15 3.18726176259E-15 3.43549711954E-15 3.70306588518E-15 3.99147380550E-15 4.30234389813E-15 4.63742558572E-15 4.99860454062E-15 5.38791329633E-15 5.80754268530E-15 6.25985416767E-15 6.74739312001E-15 7.27290315913E-15 7.83934158139E-15 8.44989600446E-15 9.10800230517E-15 9.81736395433E-15 1.05819728574E-14 1.14061318183E-14 1.22944787524E-14 1.32520127860E-14 1.42841223874E-14 1.53966156896E-14 1.65957531744E-14 1.78882829018E-14 1.92814784830E-14 2.07831800108E-14 2.24018381782E-14 2.41465618319E-14 2.60271692302E-14 2.80542432923E-14 3.02391911505E-14 3.25943083405E-14 3.51328479905E-14 3.78690953991E-14 4.08184484205E-14 4.39975041109E-14 4.74241521219E-14 5.11176753686E-14 5.50988585356E-14 5.93901050354E-14 6.40155630735E-14 6.90012615324E-14 7.43752564376E-14 8.01677888295E-14 8.64114549309E-14 9.31413895661E-14 1.00395463864E-13 1.08214498359E-13 1.16642492684E-13 1.25726873159E-13 1.35518759647E-13 1.46073253211E-13 1.57449746153E-13 1.69712256210E-13 1.82929786773E-13 1.97176715157E-13 2.12533211107E-13 2.29085687894E-13 2.46927288550E-13 2.66158409951E-13 2.86887267728E-13 3.09230505161E-13 3.33313849497E-13 3.59272819366E-13 3.87253487301E-13 4.17413301627E-13 4.49921972354E-13 4.84962426060E-13 5.22731835133E-13 5.63442727155E-13 6.07324180685E-13 6.54623114152E-13 7.05605675115E-13 7.60558737715E-13 8.19791516718E-13 8.83637307257E-13 9.52455360039E-13 1.02663290258E-12 1.10658731781E-12 1.19276849236E-12 1.28566134767E-12 1.38578856820E-12 1.49371354208E-12 1.61004353075E-12 1.73543308537E-12 1.87058772930E-12 2.01626792730E-12 2.17329336375E-12 2.34254755404E-12 2.52498281503E-12 2.72162562247E-12 2.93358238703E-12 3.16204567163E-12 3.40830091205E-12 3.67373364478E-12 3.95983728176E-12 4.26822155017E-12 4.60062150974E-12 4.95890733185E-12 5.34509481951E-12 5.76135674619E-12 6.21003506466E-12 6.69365410061E-12 7.21493474186E-12 7.77680973438E-12 8.38244019854E-12 9.03523339496E-12 9.73886189006E-12 1.04972842112E-11 1.13147671359E-11 1.21959096407E-11 1.31456688235E-11 1.41693877422E-11 1.52728254921E-11 1.64621895637E-11 1.77441707931E-11 1.91259809569E-11 2.06153933637E-11 2.22207865247E-11 2.39511912995E-11 2.58163417494E-11 2.78267296280E-11 2.99936637713E-11 3.23293333516E-11 3.48468765077E-11 3.75604544719E-11 4.04853305823E-11 4.36379570791E-11 4.70360663386E-11 5.06987718904E-11 5.46466748766E-11 5.89019803374E-11 6.34886220719E-11 6.84323971709E-11 7.37611105506E-11 7.95047319625E-11 8.56955645248E-11 9.23684252297E-11 9.95608420720E-11 1.07313263648E-10 1.15669287920E-10 1.24675906009E-10 1.34383767044E-10 1.44847462541E-10 1.56125833253E-10 1.68282300172E-10 1.81385220232E-10 1.95508271055E-10 2.10730864897E-10 2.27138594631E-10 2.44823715055E-10 2.63885660739E-10 2.84431605135E-10 3.06577062525E-10 3.30446537303E-10 3.56174222284E-10 3.83904754533E-10 4.13794025742E-10 4.46010059725E-10 4.80733953961E-10 5.18160899202E-10 5.58501274474E-10 6.01981827514E-10 6.48846950881E-10 6.99360051483E-10 7.53805030010E-10 8.12487877654E-10 8.75738389633E-10 9.43912023382E-10 1.01739188405E-09 1.09659088395E-09 1.18195405679E-09 1.27396105550E-09 1.37312884301E-09 1.48001459681E-09 1.59521883045E-09 1.71938876826E-09 1.85322197156E-09 1.99747025957E-09 2.15294391686E-09 2.32051624421E-09 2.50112846155E-09 2.69579497484E-09 2.90560907585E-09 3.13174906395E-09 3.37548486057E-09 3.63818511852E-09 3.92132491021E-09 4.22649397762E-09 4.55540565014E-09 4.90990645322E-09 5.29198644564E-09 5.70379037037E-09 6.14762967208E-09 6.62599544793E-09 7.14157239189E-09 7.69725383686E-09 8.29615795444E-09 8.94164521050E-09 9.63733717716E-09 1.03871368077E-08 1.11952502759E-08 1.20662105160E-08 1.30049025784E-08 1.40165909671E-08 1.51069490774E-08 1.62820909253E-08 1.75486053368E-08 1.89135927784E-08 2.03847050544E-08 2.19701880638E-08 2.36789278774E-08 2.55205003901E-08 2.75052247838E-08 2.96442211916E-08 3.19494727616E-08 3.44338925569E-08 3.71113956348E-08 3.99969766843E-08 4.31067936819E-08 4.64582580144E-08 5.00701315853E-08 5.39626313861E-08 5.81575422118E-08 6.26783380258E-08 6.75503127480E-08 7.28007211316E-08 7.84589305214E-08 8.45565843052E-08 9.11277780414E-08 9.82092491298E-08 1.05840581138E-07 1.14064423899E-07 1.22926730566E-07 1.32477012965E-07 1.42768616627E-07 1.53859017015E-07 1.65810138565E-07 1.78688698348E-07 1.92566576134E-07 2.07521212976E-07 2.23636040491E-07 2.41000943139E-07 2.59712756055E-07 2.79875801187E-07 3.01602464641E-07 3.25013818345E-07 3.50240289528E-07 3.77422381564E-07 4.06711450137E-07 4.38270539022E-07 4.72275279860E-07 5.08914861051E-07 5.48393070789E-07 5.90929420053E-07 6.36760351557E-07 6.86140541279E-07 7.39344299488E-07 7.96667078988E-07 8.58427098581E-07 9.24967090566E-07 9.96656181667E-07 1.07389191753E-06 1.15710244162E-06 1.24674884026E-06 1.34332766623E-06 1.44737365469E-06 1.55946264576E-06 1.68021472922E-06 1.81029762849E-06 1.95043034151E-06 2.10138705801E-06 2.26400137406E-06 2.43917082596E-06 2.62786176775E-06 2.83111461788E-06 3.05004950269E-06 3.28587232670E-06 3.53988130100E-06 3.81347396463E-06 4.10815473523E-06 4.42554302855E-06 4.76738198914E-06 5.13554787765E-06 5.53206016337E-06 5.95909237433E-06 6.41898376113E-06 6.91425183435E-06 7.44760584046E-06 8.02196124468E-06 8.64045529590E-06 9.30646375203E-06 1.00236188517E-05 1.07958286232E-05 1.16272976287E-05 1.25225492478E-05 1.34864496134E-05 1.45242333197E-05 1.56415310304E-05 1.68443991253E-05 1.81393515326E-05 1.95333939041E-05 2.10340603020E-05 2.26494525785E-05 2.43882826388E-05 2.62599177968E-05 2.82744294406E-05 3.04426452460E-05 3.27762051867E-05 3.52876216130E-05 3.79903436827E-05 4.08988264519E-05 4.40286049527E-05 4.73963736049E-05 5.10200713339E-05 5.49189727916E-05 5.91137861012E-05 6.36267575771E-05 6.84817838972E-05 7.37045322389E-05 7.93225689216E-05 8.53654971314E-05 9.18651043434E-05 9.88555200932E-05 1.06373384791E-04 1.14458030314E-04 1.23151673159E-04 1.32499620981E-04 1.42550493400E-04 1.53356458010E-04 1.64973482560E-04 1.77461604377E-04 1.90885218109E-04 2.05313382972E-04 2.20820150727E-04 2.37484915688E-04 2.55392788138E-04 2.74634992591E-04 2.95309292441E-04 3.17520442572E-04 3.41380671652E-04 3.67010195843E-04 3.94537765813E-04 4.24101248978E-04 4.55848249026E-04 4.89936764831E-04 5.26535891009E-04 5.65826562413E-04 6.08002344988E-04 6.53270275503E-04 7.01851752755E-04 7.53983482949E-04 8.09918482048E-04 8.69927137962E-04 9.34298335548E-04 1.00334064746E-03 1.07738359397E-03 1.15677897491E-03 1.24190227705E-03 1.33315416008E-03 1.43096202459E-03 1.53578166536E-03 1.64809901326E-03 1.76843196903E-03 1.89733233232E-03 2.03538782900E-03 2.18322423994E-03 2.34150763414E-03 2.51094670897E-03 2.69229524006E-03 2.88635464319E-03 3.09397664999E-03 3.31606609914E-03 3.55358384414E-03 3.80754977831E-03 4.07904597703E-03 4.36921995651E-03 4.67928804777E-03 5.01053888342E-03 5.36433699406E-03 5.74212650983E-03 6.14543496153E-03 6.57587717438E-03 7.03515924575E-03 7.52508259694E-03 8.04754808667E-03 8.60456017250E-03 9.19823110375E-03 9.83078512720E-03 1.05045626844E-02 1.12220245761E-02 1.19857560671E-02 1.27984709000E-02 1.36630151846E-02 1.45823711244E-02 1.55596605379E-02 1.65981481293E-02 1.77012444560E-02 1.88725085379E-02 2.01156500474E-02 2.14345310132E-02 2.28331669661E-02 2.43157274487E-02 2.58865358049E-02 2.75500681600E-02 2.93109514935E-02 3.11739607029E-02 3.31440145486E-02 3.52261703651E-02 3.74256174155E-02 3.97476687625E-02 4.21977515212E-02 4.47813953557E-02 4.75042190740E-02 5.03719151752E-02 5.33902321953E-02 5.65649546994E-02 5.99018807643E-02 6.34067967974E-02 6.70854495371E-02 7.09435150878E-02 7.49865648427E-02 7.92200281608E-02 8.36491516718E-02 8.82789550970E-02 9.31141834925E-02 9.81592558391E-02 1.03418209929E-01 1.08894643527E-01 1.14591651820E-01 1.20511761193E-01 1.26656859442E-01 1.33028122538E-01 1.39625938155E-01 1.46449826198E-01 1.53498356663E-01 1.60769065187E-01 1.68258366784E-01 1.75961468280E-01 1.83872280093E-01 1.91983328068E-01 2.00285666190E-01 2.08768791084E-01 2.17420559310E-01 2.26227108586E-01 2.35172784136E-01 2.44240071490E-01 2.53409537158E-01 2.62659778663E-01 2.71967385538E-01 2.81306912935E-01 2.90650869561E-01 2.99969721712E-01 3.09231915169E-01 3.18403916747E-01 3.27450277236E-01 3.36333717444E-01 3.45015238924E-01 3.53454260863E-01 3.61608784440E-01 3.69435585736E-01 3.76890438017E-01 3.83928363928E-01 3.90503917754E-01 3.96571497509E-01 4.02085686161E-01 4.07001620801E-01 4.11275388016E-01 4.14864443143E-01 4.17728050466E-01 4.19827740782E-01 4.21127782095E-01 4.21595658548E-01 4.21202552049E-01 4.19923820428E-01 4.17739465369E-01 4.14634582849E-01 4.10599788363E-01 4.05631608874E-01 3.99732833191E-01 3.92912812391E-01 3.85187701963E-01 3.76580637587E-01 3.67121836889E-01 3.56848620121E-01 3.45805343559E-01 3.34043240436E-01 3.21620165458E-01 3.08600240400E-01 2.95053399898E-01 2.81054838302E-01 2.66684360401E-01 2.52025640808E-01 2.37165398854E-01 2.22192497924E-01 2.07196980180E-01 1.92269049543E-01 1.77498017605E-01 1.62971228680E-01 1.48772981541E-01 1.34983466363E-01 1.21677736026E-01 1.08924731170E-01 9.67863781775E-02 8.53167786092E-02 7.45615074825E-02 6.45570361682E-02 5.53302936171E-02 4.68983770984E-02 3.92684206895E-02 3.24376264349E-02 2.63934594401E-02 2.11140042572E-02 1.65684758211E-02 1.27178740113E-02 9.51576675109E-03 6.90918254270E-03 4.83958962794E-03 3.24393572662E-03 2.05571973801E-03 1.20606510397E-03 6.24763960481E-04 2.45538566691E-04 2.04423369329E-05 -9.09385780374E-05 -1.24744706483E-04 -1.12048657585E-04 -7.81321746837E-05 -4.18456241174E-05 -1.50595764830E-05 -2.21762107641E-06 -5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 4 2 i j (l(j)) 4.15980910364E-01 Q_int 1.22857768924E-29 1.32426441936E-29 1.42740362919E-29 1.53857574881E-29 1.65840641456E-29 1.78756998997E-29 1.92679336077E-29 2.07686002558E-29 2.23861450516E-29 2.41296709503E-29 2.60089898832E-29 2.80346779753E-29 3.02181350644E-29 3.25716488549E-29 3.51084640685E-29 3.78428569810E-29 4.07902157635E-29 4.39671270822E-29 4.73914694412E-29 5.10825137972E-29 5.50610320087E-29 5.93494137328E-29 6.39717924261E-29 6.89541811588E-29 7.43246190074E-29 8.01133288475E-29 8.63528874381E-29 9.30784087513E-29 1.00327741581E-28 1.08141682543E-28 1.16564205661E-28 1.25642709840E-28 1.35428285609E-28 1.45976002637E-28 1.57345219649E-28 1.69599918474E-28 1.82809064111E-28 1.97046992840E-28 2.12393830557E-28 2.28935943699E-28 2.46766425276E-28 2.65985618770E-28 2.86701682830E-28 3.09031199947E-28 3.33099832545E-28 3.59043030154E-28 3.87006791680E-28 4.17148487026E-28 4.49637742720E-28 4.84657396505E-28 5.22404526289E-28 5.63091559222E-28 6.06947467166E-28 6.54219055259E-28 7.05172350851E-28 7.60094100602E-28 8.19293384195E-28 8.83103353722E-28 9.51883108540E-28 1.02601971616E-27 1.10593039050E-27 1.19206483987E-27 1.28490779767E-27 1.38498175041E-27 1.49284987798E-27 1.60911922306E-27 1.73444410735E-27 1.86952981384E-27 2.01513655586E-27 2.17208375534E-27 2.34125465418E-27 2.52360128481E-27 2.72014982793E-27 2.93200638742E-27 3.16036321515E-27 3.40650542048E-27 3.67181820246E-27 3.95779464516E-27 4.26604412025E-27 4.59830134395E-27 4.95643613937E-27 5.34246395920E-27 5.75855722796E-27 6.20705756762E-27 6.69048897536E-27 7.21157202776E-27 7.77323919120E-27 8.37865132468E-27 9.03121546806E-27 9.73460401558E-27 1.04927753828E-26 1.13099962831E-26 1.21908657392E-26 1.31403409649E-26 1.41637652622E-26 1.52668980917E-26 1.64559474849E-26 1.77376049803E-26 1.91190832813E-26 2.06081568465E-26 2.22132056418E-26 2.39432622994E-26 2.58080629506E-26 2.78181020168E-26 2.99846912686E-26 3.23200234843E-26 3.48372410663E-26 3.75505100019E-26 4.04750995843E-26 4.36274683424E-26 4.70253566641E-26 5.06878866319E-26 5.46356696358E-26 5.88909223660E-26 6.34775918412E-26 6.84214901730E-26 7.37504398275E-26 7.94944301999E-26 8.56857863840E-26 9.23593510861E-26 9.95526807069E-26 1.07306256696E-25 1.15663713365E-25 1.24672083449E-25 1.34382062785E-25 1.44848295615E-25 1.56129682099E-25 1.68289709788E-25 1.81396810904E-25 1.95524747458E-25 2.10753026351E-25 2.27167346810E-25 2.44860082676E-25 2.63930802247E-25 2.84486828613E-25 3.06643843631E-25 3.30526538943E-25 3.56269317693E-25 3.84017050898E-25 4.13925892734E-25 4.46164159310E-25 4.80913275892E-25 5.18368797901E-25 5.58741511423E-25 6.02258619442E-25 6.49165020450E-25 6.99724686653E-25 7.54222149507E-25 8.12964100957E-25 8.76281119391E-25 9.44529530015E-25 1.01809341012E-24 1.09738675052E-24 1.18285578538E-24 1.27498150340E-24 1.37428235470E-24 1.48131716843E-24 1.59668829769E-24 1.72104500932E-24 1.85508713778E-24 1.99956902352E-24 2.15530375816E-24 2.32316776028E-24 2.50410570756E-24 2.69913585312E-24 2.90935575583E-24 3.13594845703E-24 3.38018913820E-24 3.64345229726E-24 3.92721948374E-24 4.23308763638E-24 4.56277807014E-24 4.91814616313E-24 5.30119179802E-24 5.71407061662E-24 6.15910615108E-24 6.63880289987E-24 7.15586042221E-24 7.71318853017E-24 8.31392366407E-24 8.96144654321E-24 9.65940119135E-24 1.04117154439E-23 1.12226230525E-23 1.20966875107E-23 1.30388277362E-23 1.40543457521E-23 1.51489565253E-23 1.63288201278E-23 1.76005764038E-23 1.89713823359E-23 2.04489523223E-23 2.20416015907E-23 2.37582929929E-23 2.56086874449E-23 2.76031982952E-23 2.97530499266E-23 3.20703409238E-23 3.45681121592E-23 3.72604201826E-23 4.01624163261E-23 4.32904319706E-23 4.66620704523E-23 5.02963061286E-23 5.42135911585E-23 5.84359705997E-23 6.29872064709E-23 6.78929114749E-23 7.31806931383E-23 7.88803091763E-23 8.50238349585E-23 9.16458440170E-23 9.87836026144E-23 1.06477279464E-22 1.14770171785E-22 1.23708948964E-22 1.33343915193E-22 1.43729292563E-22 1.54923526205E-22 1.66989613202E-22 1.79995457108E-22 1.94014250088E-22 2.09124884819E-22 2.25412398463E-22 2.42968451232E-22 2.61891842212E-22 2.82289065374E-22 3.04274908880E-22 3.27973101070E-22 3.53517006761E-22 3.81050377772E-22 4.10728161913E-22 4.42717374969E-22 4.77198040608E-22 5.14364203486E-22 5.54425021263E-22 5.97605941664E-22 6.44149971215E-22 6.94319042799E-22 7.48395489718E-22 8.06683634559E-22 8.69511501815E-22 9.37232663885E-22 1.01022823085E-21 1.08890899523E-21 1.17371774375E-21 1.26513174923E-21 1.36366545644E-21 1.46987337726E-21 1.58435321125E-21 1.70774920928E-21 1.84075579915E-21 1.98412149358E-21 2.13865310255E-21 2.30522027374E-21 2.48476038660E-21 2.67828382756E-21 2.88687967616E-21 3.11172183391E-21 3.35407563068E-21 3.61530494543E-21 3.89687988168E-21 4.20038504069E-21 4.52752843902E-21 4.88015112063E-21 5.26023751759E-21 5.66992661777E-21 6.11152400223E-21 6.58751482027E-21 7.10057777484E-21 7.65360019739E-21 8.24969429666E-21 8.89221467310E-21 9.58477719728E-21 1.03312793588E-20 1.11359221996E-20 1.20032339566E-20 1.29380955440E-20 1.39457680222E-20 1.50319222044E-20 1.62026705703E-20 1.74646016648E-20 1.88248171759E-20 2.02909719002E-20 2.18713168217E-20 2.35747455449E-20 2.54108443450E-20 2.73899461161E-20 2.95231885203E-20 3.18225766671E-20 3.43010506733E-20 3.69725584856E-20 3.98521343739E-20 4.29559835395E-20 4.63015733111E-20 4.99077314454E-20 5.37947520822E-20 5.79845099524E-20 6.25005834813E-20 6.73683874789E-20 7.26153161653E-20 7.82708973353E-20 8.43669585299E-20 9.09378061499E-20 9.80204185199E-20 1.05654653988E-19 1.13883475236E-19 1.22753191053E-19 1.32313716951E-19 1.42618856063E-19 1.53726601934E-19 1.65699464883E-19 1.78604823791E-19 1.92515305281E-19 2.07509192436E-19 2.23670865348E-19 2.41091275974E-19 2.59868459985E-19 2.80108088472E-19 3.01924062621E-19 3.25439154711E-19 3.50785699028E-19 3.78106336596E-19 4.07554817902E-19 4.39296868154E-19 4.73511119913E-19 5.10390118378E-19 5.50141404951E-19 5.92988685210E-19 6.39173087833E-19 6.88954521588E-19 7.42613137993E-19 8.00450907913E-19 8.62793320933E-19 9.29991217092E-19 1.00242276128E-18 1.08049557141E-18 1.16464901234E-18 1.25535666844E-18 1.35312900875E-18 1.45851625974E-18 1.57211150172E-18 1.69455400652E-18 1.82653283504E-18 1.96879071504E-18 2.12212822094E-18 2.28740827911E-18 2.46556102414E-18 2.65758903323E-18 2.86457296838E-18 3.08767765788E-18 3.32815865155E-18 3.58736928651E-18 3.86676830321E-18 4.16792805466E-18 4.49254335508E-18 4.84244101760E-18 5.21959013490E-18 5.62611316052E-18 6.06429785314E-18 6.53661015128E-18 7.04570805061E-18 7.59445656211E-18 8.18594383527E-18 8.82349853698E-18 9.51070858394E-18 1.02514413341E-17 1.10498653507E-17 1.19104738610E-17 1.28381100430E-17 1.38379942801E-17 1.49157535404E-17 1.60774530420E-17 1.73296303864E-17 1.86793323491E-17 2.01341545365E-17 2.17022841304E-17 2.33925459626E-17 2.52144521774E-17 2.71782557620E-17 2.92950082464E-17 3.15766218970E-17 3.40359367538E-17 3.66867928889E-17 3.95441082932E-17 4.26239628284E-17 4.59436887182E-17 4.95219680867E-17 5.33789380937E-17 5.75363042587E-17 6.20174626102E-17 6.68476313494E-17 7.20539927669E-17 7.76658462141E-17 8.37147729875E-17 9.02348140546E-17 9.72626616227E-17 1.04837865627E-16 1.13003056300E-16 1.21804184078E-16 1.31290778188E-16 1.41516225382E-16 1.52538070367E-16 1.64418339649E-16 1.77223890587E-16 1.91026787637E-16 2.05904707904E-16 2.21941378269E-16 2.39227046568E-16 2.57858989470E-16 2.77942059905E-16 2.99589277126E-16 3.22922462737E-16 3.48072926246E-16 3.75182204013E-16 4.04402855760E-16 4.35899323098E-16 4.69848854934E-16 5.06442504944E-16 5.45886206736E-16 5.88401932743E-16 6.34228943387E-16 6.83625133514E-16 7.36868483711E-16 7.94258624643E-16 8.56118523230E-16 9.22796300151E-16 9.94667188893E-16 1.07213564738E-15 1.15563763407E-15 1.24564306131E-15 1.34265843974E-15 1.44722972872E-15 1.55994540869E-15 1.68143979284E-15 1.81239659668E-15 1.95355278567E-15 2.10570272245E-15 2.26970263708E-15 2.44647544548E-15 2.63701594309E-15 2.84239640302E-15 3.06377261027E-15 3.30239036577E-15 3.55959249714E-15 3.83682641531E-15 4.13565225977E-15 4.45775167812E-15 4.80493728940E-15 5.17916288451E-15 5.58253442095E-15 6.01732187390E-15 6.48597201032E-15 6.99112215785E-15 7.53561504607E-15 8.12251480365E-15 8.75512420133E-15 9.43700323787E-15 1.01719891734E-14 1.09642181232E-14 1.18181483328E-14 1.27385852662E-14 1.37307086480E-14 1.48001016111E-14 1.59527821149E-14 1.71952368103E-14 1.85344575418E-14 1.99779806931E-14 2.15339295961E-14 2.32110602432E-14 2.50188105596E-14 2.69673535134E-14 2.90676543606E-14 3.13315323498E-14 3.37717272316E-14 3.64019709483E-14 3.92370649058E-14 4.22929632643E-14 4.55868627155E-14 4.91372992513E-14 5.29642524685E-14 5.70892579975E-14 6.15355286859E-14 6.63280852204E-14 7.14938969205E-14 7.70620334982E-14 8.30638286354E-14 8.95330563008E-14 9.65061207979E-14 1.04022261614E-13 1.12123774220E-13 1.20856248072E-13 1.30268823137E-13 1.40414466408E-13 1.51350269943E-13 1.63137772122E-13 1.75843303917E-13 1.89538362133E-13 2.04300011710E-13 2.20211319358E-13 2.37361820965E-13 2.55848025396E-13 2.75773957533E-13 2.97251743600E-13 3.20402242073E-13 3.45355723720E-13 3.72252604601E-13 4.01244236142E-13 4.32493756749E-13 4.66177009725E-13 5.02483532681E-13 5.41617623985E-13 5.83799492266E-13 6.29266495430E-13 6.78274476159E-13 7.31099201409E-13 7.88037914005E-13 8.49411005064E-13 9.15563816637E-13 9.86868584745E-13 1.06372653370E-12 1.14657013352E-12 1.23586553314E-12 1.33211518305E-12 1.43586066222E-12 1.54768572510E-12 1.66821958591E-12 1.79814045865E-12 1.93817937280E-12 2.08912428607E-12 2.25182451747E-12 2.42719552550E-12 2.61622405843E-12 2.81997370563E-12 3.03959088106E-12 3.27631127275E-12 3.53146679443E-12 3.80649307874E-12 4.10293755314E-12 4.42246814288E-12 4.76688265739E-12 5.13811891211E-12 5.53826559902E-12 5.96957407936E-12 6.43447101130E-12 6.93557201987E-12 7.47569640450E-12 8.05788300237E-12 8.68540727707E-12 9.36179973999E-12 1.00908658232E-11 1.08767072607E-11 1.17237451881E-11 1.26367449868E-11 1.36208431002E-11 1.46815759129E-11 1.58249109148E-11 1.70572802236E-11 1.83856168012E-11 1.98173934265E-11 2.13606647192E-11 2.30241124496E-11 2.48170943616E-11 2.67496968018E-11 2.88327914368E-11 3.10780963846E-11 3.34982421533E-11 3.61068425857E-11 3.89185714834E-11 4.19492451680E-11 4.52159112477E-11 4.87369446647E-11 5.25321509603E-11 5.66228773451E-11 6.10321335522E-11 6.57847199599E-11 7.09073682698E-11 7.64288909963E-11 8.23803436096E-11 8.87951995422E-11 9.57095379508E-11 1.03162246382E-10 1.11195239764E-10 1.19853696459E-10 1.29186310723E-10 1.39245568289E-10 1.50088039493E-10 1.61774699264E-10 1.74371268067E-10 1.87948582302E-10 2.02582991953E-10 2.18356789919E-10 2.35358674638E-10 2.53684247823E-10 2.73436552465E-10 2.94726651549E-10 3.17674252287E-10 3.42408378190E-10 3.69068094758E-10 3.97803290234E-10 4.28775517805E-10 4.62158903608E-10 4.98141123856E-10 5.36924460850E-10 5.78726936765E-10 6.23783540728E-10 6.72347547611E-10 7.24691938707E-10 7.81110939432E-10 8.41921665439E-10 9.07465910206E-10 9.78112056490E-10 1.05425715208E-09 1.13632913364E-09 1.22478923362E-09 1.32013456551E-09 1.42290091568E-09 1.53366575156E-09 1.65305146293E-09 1.78172885408E-09 1.92042090779E-09 2.06990684591E-09 2.23102649346E-09 2.40468500253E-09 2.59185791732E-09 2.79359665991E-09 3.01103441798E-09 3.24539250137E-09 3.49798720182E-09 3.77023716226E-09 4.06367133920E-09 4.37993757211E-09 4.72081182282E-09 5.08820813044E-09 5.48418934875E-09 5.91097868985E-09 6.37097219767E-09 6.86675217558E-09 7.40110164477E-09 7.97701994534E-09 8.59773952769E-09 9.26674406902E-09 9.98778797511E-09 1.07649174045E-08 1.16024929292E-08 1.25052139374E-08 1.34781449452E-08 1.45267439362E-08 1.56568929106E-08 1.68749307885E-08 1.81876888747E-08 1.96025290763E-08 2.11273850636E-08 2.27708066383E-08 2.45420075384E-08 2.64509169334E-08 2.85082349232E-08 3.07254923339E-08 3.31151151284E-08 3.56904938267E-08 3.84660582842E-08 4.14573582741E-08 4.46811502803E-08 4.81554910447E-08 5.18998383099E-08 5.59351593979E-08 6.02840481416E-08 6.49708509023E-08 7.00218023058E-08 7.54651714655E-08 8.13314195364E-08 8.76533694001E-08 9.44663885035E-08 1.01808585795E-07 1.09721023876E-07 1.18247947517E-07 1.27437029842E-07 1.37339637489E-07 1.48011116239E-07 1.59511098665E-07 1.71903835531E-07 1.85258552698E-07 1.99649835601E-07 2.15158043291E-07 2.31869754403E-07 2.49878247470E-07 2.69284018228E-07 2.90195336685E-07 3.12728847128E-07 3.37010214224E-07 3.63174818834E-07 3.91368507297E-07 4.21748398340E-07 4.54483751881E-07 4.89756904641E-07 5.27764277537E-07 5.68717460368E-07 6.12844379730E-07 6.60390556445E-07 7.11620459404E-07 7.66818963112E-07 8.26292916843E-07 8.90372833899E-07 9.59414710193E-07 1.03380198176E-06 1.11394763208E-06 1.20029646028E-06 1.29332752258E-06 1.39355676010E-06 1.50153982713E-06 1.61787513504E-06 1.74320712813E-06 1.87822980894E-06 2.02369053198E-06 2.18039408596E-06 2.34920708636E-06 2.53106270177E-06 2.72696573908E-06 2.93799811441E-06 3.16532473897E-06 3.41019985082E-06 3.67397382605E-06 3.95810050528E-06 4.26414507397E-06 4.59379253819E-06 4.94885683990E-06 5.33129065991E-06 5.74319595931E-06 6.18683531475E-06 6.66464410608E-06 7.17924362021E-06 7.73345513853E-06 8.33031508108E-06 8.97309128546E-06 9.66530050425E-06 1.04107272109E-05 1.12134438098E-05 1.20778323550E-05 1.30086078868E-05 1.40108435055E-05 1.50899973094E-05 1.62519413331E-05 1.75029926309E-05 1.88499466632E-05 2.03001131512E-05 2.18613545801E-05 2.35421275409E-05 2.53515271174E-05 2.72993345355E-05 2.93960683115E-05 3.16530391477E-05 3.40824088454E-05 3.66972535198E-05 3.95116314250E-05 4.25406557140E-05 4.58005724845E-05 4.93088444828E-05 5.30842408638E-05 5.71469334321E-05 6.15185998177E-05 6.62225340688E-05 7.12837651781E-05 7.67291840913E-05 8.25876797828E-05 8.88902850222E-05 9.56703324958E-05 1.02963621987E-04 1.10808599373E-04 1.19246548224E-04 1.28321794874E-04 1.38081927843E-04 1.48578032591E-04 1.59864942600E-04 1.72001507880E-04 1.85050882032E-04 1.99080829096E-04 2.14164051440E-04 2.30378540089E-04 2.47807948894E-04 2.66541994094E-04 2.86676880853E-04 3.08315758489E-04 3.31569206169E-04 3.56555750968E-04 3.83402420274E-04 4.12245330631E-04 4.43230315223E-04 4.76513592307E-04 5.12262477015E-04 5.50656139076E-04 5.91886409111E-04 6.36158636288E-04 6.83692600241E-04 7.34723480285E-04 7.89502885093E-04 8.48299946100E-04 9.11402478072E-04 9.79118210341E-04 1.05177609239E-03 1.12972767753E-03 1.21334858859E-03 1.30304006962E-03 1.39923062755E-03 1.50237776828E-03 1.61296983113E-03 1.73152792616E-03 1.85860797870E-03 1.99480288539E-03 2.14074478618E-03 2.29710745666E-03 2.46460882497E-03 2.64401361753E-03 2.83613613772E-03 3.04184318135E-03 3.26205709261E-03 3.49775896400E-03 3.74999198325E-03 4.01986492985E-03 4.30855582348E-03 4.61731572587E-03 4.94747269710E-03 5.30043590647E-03 5.67769989734E-03 6.08084900424E-03 6.51156191939E-03 6.97161640473E-03 7.46289414376E-03 7.98738572632E-03 8.54719575732E-03 9.14454807873E-03 9.78179109168E-03 1.04614031635E-02 1.11859981015E-02 1.19583306729E-02 1.27813021461E-02 1.36579658273E-02 1.45915325596E-02 1.55853761508E-02 1.66430386891E-02 1.77682357040E-02 1.89648611220E-02 2.02369919627E-02 2.15888927161E-02 2.30250193333E-02 2.45500227597E-02 2.61687519295E-02 2.78862561370E-02 2.97077866890E-02 3.16387977384E-02 3.36849461889E-02 3.58520905535E-02 3.81462886407E-02 4.05737939344E-02 4.31410505252E-02 4.58546864406E-02 4.87215052158E-02 5.17484755372E-02 5.49427187824E-02 5.83114942756E-02 6.18621820671E-02 6.56022630442E-02 6.95392961722E-02 7.36808926626E-02 7.80346868645E-02 8.26083036720E-02 8.74093222467E-02 9.24452358532E-02 9.77234076182E-02 1.03251022028E-01 1.09035031999E-01 1.15082101363E-01 1.21398542650E-01 1.27990250044E-01 1.34862627455E-01 1.42020511670E-01 1.49468090573E-01 1.57208816503E-01 1.65245314856E-01 1.73579288095E-01 1.82211415415E-01 1.91141248378E-01 2.00367102918E-01 2.09885948211E-01 2.19693292998E-01 2.29783070067E-01 2.40147519697E-01 2.50777073009E-01 2.61660236262E-01 2.72783477306E-01 2.84131115499E-01 2.95685216542E-01 3.07425493844E-01 3.19329218120E-01 3.31371137103E-01 3.43523407326E-01 3.55755540094E-01 3.68034363809E-01 3.80324004939E-01 3.92585889965E-01 4.04778770664E-01 4.16858775117E-01 4.28779486768E-01 4.40492053830E-01 4.51945331181E-01 4.63086056762E-01 4.73859064247E-01 4.84207533501E-01 4.94073280005E-01 5.03397084002E-01 5.12119059690E-01 5.20179064242E-01 5.27517145809E-01 5.34074029050E-01 5.39791635969E-01 5.44613639078E-01 5.48486043089E-01 5.51357790455E-01 5.53181385230E-01 5.53913528800E-01 5.53515760156E-01 5.51955092554E-01 5.49204637558E-01 5.45244206787E-01 5.40060881025E-01 5.33649535860E-01 5.26013312702E-01 5.17164023838E-01 5.07122480240E-01 4.95918731147E-01 4.83592204931E-01 4.70191741617E-01 4.55775508458E-01 4.40410791393E-01 4.24173656839E-01 4.07148480237E-01 3.89427339948E-01 3.71109277537E-01 3.52299428103E-01 3.33108027080E-01 3.13649302804E-01 2.94040267016E-01 2.74399418332E-01 2.54845376436E-01 2.35495467262E-01 2.16464281704E-01 1.97862232271E-01 1.79794133539E-01 1.62357833232E-01 1.45642921111E-01 1.29729542633E-01 1.14687343439E-01 1.00574569178E-01 8.74373429008E-02 7.53091393634E-02 6.42104720021E-02 5.41488041807E-02 4.51186916250E-02 3.71021578091E-02 3.00692985665E-02 2.39791064793E-02 1.87804997892E-02 1.44135348472E-02 1.08107756541E-02 7.89878905244E-03 5.59972985040E-03 3.83297683168E-03 2.51677850823E-03 1.56986687178E-03 9.12998568187E-04 4.74014455062E-04 1.99863417755E-04 4.64603412016E-05 -2.42655427636E-05 -4.38479692073E-05 -3.69635823046E-05 -2.13369867772E-05 -7.89140457569E-06 -1.16358222671E-06 -1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 5 1 i j (l(j)) 0.00000000000E+00 Q_int 1.23008640933E-26 1.30942016672E-26 1.39387051187E-26 1.48376743633E-26 1.57946221429E-26 1.68132877519E-26 1.78976516480E-26 1.90519510070E-26 2.02806962785E-26 2.15886888114E-26 2.29810396151E-26 2.44631893304E-26 2.60409294897E-26 2.77204251468E-26 2.95082389676E-26 3.14113568734E-26 3.34372153388E-26 3.55937304498E-26 3.78893288360E-26 4.03329805980E-26 4.29342343582E-26 4.57032545722E-26 4.86508612466E-26 5.17885722185E-26 5.51286481619E-26 5.86841404959E-26 6.24689423842E-26 6.64978430224E-26 7.07865854273E-26 7.53519279530E-26 8.02117097747E-26 8.53849205954E-26 9.08917748489E-26 9.67537906878E-26 1.02993874066E-25 1.09636408246E-25 1.16707349073E-25 1.24234326404E-25 1.32246752064E-25 1.40775934782E-25 1.49855202524E-25 1.59520032727E-25 1.69808190924E-25 1.80759878317E-25 1.92417888863E-25 2.04827776491E-25 2.18038033107E-25 2.32100278075E-25 2.47069459924E-25 2.63004071057E-25 2.79966376313E-25 2.98022656268E-25 3.17243466229E-25 3.37703911928E-25 3.59483943002E-25 3.82668665395E-25 4.07348673913E-25 4.33620406228E-25 4.61586519703E-25 4.91356292534E-25 5.23046050756E-25 5.56779622788E-25 5.92688823295E-25 6.30913968259E-25 6.71604423264E-25 7.14919187148E-25 7.61027513292E-25 8.10109570982E-25 8.62357149425E-25 9.17974407169E-25 9.77178669858E-25 1.04020127943E-24 1.10728849812E-24 1.17870247066E-24 1.25472224873E-24 1.33564488125E-24 1.42178657517E-24 1.51348393103E-24 1.61109525824E-24 1.71500197518E-24 1.82561009961E-24 1.94335183517E-24 2.06868726027E-24 2.20210612578E-24 2.34412976884E-24 2.49531314990E-24 2.65624702133E-24 2.82756023571E-24 3.00992220316E-24 3.20404550703E-24 3.41068868834E-24 3.63065920982E-24 3.86481661106E-24 4.11407586720E-24 4.37941096418E-24 4.66185870468E-24 4.96252275937E-24 5.28257797958E-24 5.62327498804E-24 5.98594506572E-24 6.37200535382E-24 6.78296439131E-24 7.22042800955E-24 7.68610560715E-24 8.18181682943E-24 8.70949867877E-24 9.27121308345E-24 9.86915495474E-24 1.05056607635E-23 1.11832176699E-23 1.19044732424E-23 1.26722458028E-23 1.34895354391E-23 1.43595357282E-23 1.52856462152E-23 1.62714856970E-23 1.73209063627E-23 1.84380088464E-23 1.96271582503E-23 2.08930012017E-23 2.22404840092E-23 2.36748719912E-23 2.52017700501E-23 2.68271445730E-23 2.85573467464E-23 3.03991373727E-23 3.23597132888E-23 3.44467354878E-23 3.66683590543E-23 3.90332650306E-23 4.15506943382E-23 4.42304838868E-23 4.70831050123E-23 5.01197043937E-23 5.33521476092E-23 5.67930655008E-23 6.04559035299E-23 6.43549743158E-23 6.85055135622E-23 7.29237395915E-23 7.76269167179E-23 8.26334227081E-23 8.79628205931E-23 9.36359351110E-23 9.96749340800E-23 1.06103415020E-22 1.12946497359E-22 1.20230920592E-22 1.27985148759E-22 1.36239481675E-22 1.45026173327E-22 1.54379557902E-22 1.64336183955E-22 1.74934957217E-22 1.86217292625E-22 1.98227276151E-22 2.11011837066E-22 2.24620931319E-22 2.39107736741E-22 2.54528860841E-22 2.70944561995E-22 2.88418984912E-22 3.07020411279E-22 3.26821526575E-22 3.47899704087E-22 3.70337307252E-22 3.94222011491E-22 4.19647146806E-22 4.46712062466E-22 4.75522515216E-22 5.06191082525E-22 5.38837602489E-22 5.73589642091E-22 6.10582995683E-22 6.49962215597E-22 6.91881176990E-22 7.36503679115E-22 7.84004085368E-22 8.34568004618E-22 8.88393016479E-22 9.45689443354E-22 1.00668117228E-21 1.07160652975E-21 1.14071921302E-21 1.21428928140E-21 1.29260421153E-21 1.37597002070E-21 1.46471246261E-21 1.55917830030E-21 1.65973666107E-21 1.76678047890E-21 1.88072802984E-21 2.00202456641E-21 2.13114405747E-21 2.26859104024E-21 2.41490259177E-21 2.57065042765E-21 2.73644313592E-21 2.91292855519E-21 3.10079630607E-21 3.30078048587E-21 3.51366253713E-21 3.74027430109E-21 3.98150126812E-21 4.23828603785E-21 4.51163200234E-21 4.80260726688E-21 5.11234882364E-21 5.44206699448E-21 5.79305016032E-21 6.16666979549E-21 6.56438582683E-21 6.98775233838E-21 7.43842364397E-21 7.91816075152E-21 8.42883824419E-21 8.97245160537E-21 9.55112501608E-21 1.01671196552E-20 1.08228425353E-20 1.15208559076E-20 1.22638872745E-20 1.30548400474E-20 1.38968048912E-20 1.47930718020E-20 1.57471429621E-20 1.67627464253E-20 1.78438506842E-20 1.89946801771E-20 2.02197317954E-20 2.15237924546E-20 2.29119578003E-20 2.43896521186E-20 2.59626495322E-20 2.76370965626E-20 2.94195361478E-20 3.13169332094E-20 3.33367018674E-20 3.54867344117E-20 3.77754321413E-20 4.02117381920E-20 4.28051724828E-20 4.55658689143E-20 4.85046149678E-20 5.16328938573E-20 5.49629294003E-20 5.85077337831E-20 6.22811584057E-20 6.62979480066E-20 7.05737982784E-20 7.51254171988E-20 7.99705903174E-20 8.51282502533E-20 9.06185506746E-20 9.64629450493E-20 1.02684270475E-19 1.09306836916E-19 1.16356522195E-19 1.23860873108E-19 1.31849213071E-19 1.40352756695E-19 1.49404731760E-19 1.59040509057E-19 1.69297740593E-19 1.80216506723E-19 1.91839472762E-19 2.04212055703E-19 2.17382601680E-19 2.31402574889E-19 2.46326758679E-19 2.62213469620E-19 2.79124785380E-19 2.97126787292E-19 3.16289818568E-19 3.36688759168E-19 3.58403318396E-19 3.81518346360E-19 4.06124165533E-19 4.32316923688E-19 4.60198969593E-19 4.89879252947E-19 5.21473750099E-19 5.55105917232E-19 5.90907172766E-19 6.29017410882E-19 6.69585548161E-19 7.12770105477E-19 7.58739827422E-19 8.07674341679E-19 8.59764860921E-19 9.15214929980E-19 9.74241221199E-19 1.03707438109E-18 1.10395993158E-18 1.17515922940E-18 1.25095048736E-18 1.33162986143E-18 1.41751260800E-18 1.50893431577E-18 1.60625221704E-18 1.70984658360E-18 1.82012221268E-18 1.93751000869E-18 2.06246866696E-18 2.19548646617E-18 2.33708317622E-18 2.48781208932E-18 2.64826218195E-18 2.81906041630E-18 3.00087419018E-18 3.19441394480E-18 3.40043594095E-18 3.61974521401E-18 3.85319871970E-18 4.10170868261E-18 4.36624616078E-18 4.64784484012E-18 4.94760507351E-18 5.26669818054E-18 5.60637102437E-18 5.96795088397E-18 6.35285064040E-18 6.76257429776E-18 7.19872286004E-18 7.66300058712E-18 8.15722165420E-18 8.68331724073E-18 9.24334307650E-18 9.83948747450E-18 1.04740798818E-17 1.11495999817E-17 1.18686873837E-17 1.26341519371E-17 1.34489847111E-17 1.43163696822E-17 1.52396961758E-17 1.62225721100E-17 1.72688380934E-17 1.83825824328E-17 1.95681571081E-17 2.08301947776E-17 2.21736268806E-17 2.36037029066E-17 2.51260109082E-17 2.67464993366E-17 2.84715002847E-17 3.03077542307E-17 3.22624363759E-17 3.43431846825E-17 3.65581297188E-17 3.89159264296E-17 4.14257879559E-17 4.40975216348E-17 4.69415673225E-17 4.99690381880E-17 5.31917641378E-17 5.66223380421E-17 6.02741649411E-17 6.41615144257E-17 6.82995763964E-17 7.27045204180E-17 7.73935589022E-17 8.23850143661E-17 8.76983910274E-17 9.33544510173E-17 9.93752955096E-17 1.05784451081E-16 1.12606961642E-16 1.19869486296E-16 1.27600403510E-16 1.35829922006E-16 1.44590198801E-16 1.53915464859E-16 1.63842158852E-16 1.74409069546E-16 1.85657487365E-16 1.97631365735E-16 2.10377492837E-16 2.23945674428E-16 2.38388928460E-16 2.53763692248E-16 2.70130043001E-16 2.87551932574E-16 3.06097437361E-16 3.25839024306E-16 3.46853834068E-16 3.69223982450E-16 3.93036881268E-16 4.18385579914E-16 4.45369128949E-16 4.74092967144E-16 5.04669333486E-16 5.37217705751E-16 5.71865267371E-16 6.08747404397E-16 6.48008234532E-16 6.89801170268E-16 7.34289518348E-16 7.81647117894E-16 8.32059019684E-16 8.85722209241E-16 9.42846376559E-16 1.00365473547E-15 1.06838489586E-15 1.13728979211E-15 1.21063867150E-15 1.28871814623E-15 1.37183331340E-15 1.46030894717E-15 1.55449076783E-15 1.65474679271E-15 1.76146877420E-15 1.87507373053E-15 1.99600557530E-15 2.12473685205E-15 2.26177058075E-15 2.40764222336E-15 2.56292177614E-15 2.72821599695E-15 2.90417077613E-15 3.09147366035E-15 3.29085653922E-15 3.50309850512E-15 3.72902889758E-15 3.96953054385E-15 4.22554320867E-15 4.49806726632E-15 4.78816760964E-15 5.09697781112E-15 5.42570455235E-15 5.77563233913E-15 6.14812852071E-15 6.54464863274E-15 6.96674208476E-15 7.41605821457E-15 7.89435273304E-15 8.40349458458E-15 8.94547325003E-15 9.52240652063E-15 1.01365487733E-14 1.07902997797E-14 1.14862140831E-14 1.22270109809E-14 1.30155851495E-14 1.38550179561E-14 1.47485894985E-14 1.56997914226E-14 1.67123405658E-14 1.77901934806E-14 1.89375618951E-14 2.01589291700E-14 2.14590678177E-14 2.28430581508E-14 2.43163081336E-14 2.58845745135E-14 2.75539853159E-14 2.93310637893E-14 3.12227538949E-14 3.32364474403E-14 3.53800129633E-14 3.76618264778E-14 4.00908042034E-14 4.26764374055E-14 4.54288294828E-14 4.83587354458E-14 5.14776039427E-14 5.47976219947E-14 5.83317626169E-14 6.20938355107E-14 6.60985410248E-14 7.03615275972E-14 7.48994529015E-14 7.97300489369E-14 8.48721913159E-14 9.03459730206E-14 9.61727829166E-14 1.02375389330E-13 1.08978029013E-13 1.16006501853E-13 1.23488271681E-13 1.31452573590E-13 1.39930528168E-13 1.48955263105E-13 1.58562042637E-13 1.68788405342E-13 1.79674310822E-13 1.91262295843E-13 2.03597640551E-13 2.16728545400E-13 2.30706319497E-13 2.45585581093E-13 2.61424471000E-13 2.78284879779E-13 2.96232689577E-13 3.15338031558E-13 3.35675559942E-13 3.57324743714E-13 3.80370177150E-13 4.04901910368E-13 4.31015801194E-13 4.58813889732E-13 4.88404797075E-13 5.19904149748E-13 5.53435031515E-13 5.89128464322E-13 6.27123920268E-13 6.67569866587E-13 7.10624345781E-13 7.56455593167E-13 8.05242694253E-13 8.57176284511E-13 9.12459294278E-13 9.71307741704E-13 1.03395157683E-12 1.10063558013E-12 1.17162031894E-12 1.24718316568E-12 1.32761938162E-12 1.41324327063E-12 1.50438940732E-12 1.60141394433E-12 1.70469600407E-12 1.81463916001E-12 1.93167301374E-12 2.05625487354E-12 2.18887154132E-12 2.33004121478E-12 2.48031551223E-12 2.64028162803E-12 2.81056462697E-12 2.99182988676E-12 3.18478569787E-12 3.39018603118E-12 3.60883348408E-12 3.84158241654E-12 4.08934228948E-12 4.35308121844E-12 4.63382975640E-12 4.93268492222E-12 5.25081447935E-12 5.58946151215E-12 5.94994927915E-12 6.33368636207E-12 6.74217221249E-12 7.17700296918E-12 7.63987771561E-12 8.13260511872E-12 8.65711049547E-12 9.21544332236E-12 9.80978526426E-12 1.04424586885E-11 1.11159357310E-11 1.18328479756E-11 1.25959967220E-11 1.34083639329E-11 1.42731238838E-11 1.51936555891E-11 1.61735559591E-11 1.72166539065E-11 1.83270252687E-11 1.95090087585E-11 2.07672228885E-11 2.21065840518E-11 2.35323257026E-11 2.50500188338E-11 2.66655937073E-11 2.83853630493E-11 3.02160467708E-11 3.21647980249E-11 3.42392314697E-11 3.64474527511E-11 3.87980902480E-11 4.13003289748E-11 4.39639460074E-11 4.67993494120E-11 4.98176179733E-11 5.30305454457E-11 5.64506859047E-11 6.00914031581E-11 6.39669228989E-11 6.80923883916E-11 7.24839191770E-11 7.71586745996E-11 8.21349209201E-11 8.74321019158E-11 9.30709157317E-11 9.90733950506E-11 1.05462993855E-10 1.12264678487E-10 1.19505025435E-10 1.27212325236E-10 1.35416692857E-10 1.44150185622E-10 1.53446927969E-10 1.63343245284E-10 1.73877805642E-10 1.85091770784E-10 1.97028957182E-10 2.09736006966E-10 2.23262570294E-10 2.37661499283E-10 2.52989054860E-10 2.69305125641E-10 2.86673463260E-10 3.05161930153E-10 3.24842765780E-10 3.45792867676E-10 3.68094093143E-10 3.91833578544E-10 4.17104079048E-10 4.44004332501E-10 4.72639443867E-10 5.03121295962E-10 5.35568987760E-10 5.70109298020E-10 6.06877183136E-10 6.46016300260E-10 6.87679572523E-10 7.32029784974E-10 7.79240220219E-10 8.29495335266E-10 8.82991483800E-10 9.39937680867E-10 1.00055642102E-09 1.06508454663E-09 1.13377417561E-09 1.20689368219E-09 1.28472874782E-09 1.36758347885E-09 1.45578159052E-09 1.54966767525E-09 1.64960854610E-09 1.75599467147E-09 1.86924169899E-09 1.98979208213E-09 2.11811680488E-09 2.25471722237E-09 2.40012702262E-09 2.55491430813E-09 2.71968381525E-09 2.89507927689E-09 3.08178593767E-09 3.28053323009E-09 3.49209762346E-09 3.71730565832E-09 3.95703717302E-09 4.21222874063E-09 4.48387732936E-09 4.77304419467E-09 5.08085902446E-09 5.40852435100E-09 5.75732025132E-09 6.12860934216E-09 6.52384210516E-09 6.94456255100E-09 7.39241424751E-09 7.86914674391E-09 8.37662239863E-09 8.91682365549E-09 9.49186078632E-09 1.01039801267E-08 1.07555728589E-08 1.14491843405E-08 1.21875240481E-08 1.29734761601E-08 1.38101108157E-08 1.47006961040E-08 1.56487108287E-08 1.66578580917E-08 1.77320797466E-08 1.88755718008E-08 2.00928007888E-08 2.13885212168E-08 2.27677941283E-08 2.42360068606E-08 2.57988940757E-08 2.74625601554E-08 2.92335030301E-08 3.11186395439E-08 3.31253324617E-08 3.52614192067E-08 3.75352424575E-08 3.99556827120E-08 4.25321929531E-08 4.52748355437E-08 4.81943215046E-08 5.13020523186E-08 5.46101644244E-08 5.81315765891E-08 6.18800403221E-08 6.58701935359E-08 7.01176176720E-08 7.46388985017E-08 7.94516908404E-08 8.45747874349E-08 9.00281922863E-08 9.58331986920E-08 1.02012472324E-07 1.08590139636E-07 1.15591881990E-07 1.23045035829E-07 1.30978699298E-07 1.39423845732E-07 1.48413444461E-07 1.57982589374E-07 1.68168635777E-07 1.79011346048E-07 1.90553044674E-07 2.02838783258E-07 2.15916516163E-07 2.29837287437E-07 2.44655429791E-07 2.60428776345E-07 2.77218886040E-07 2.95091283524E-07 3.14115714466E-07 3.34366417311E-07 3.55922412506E-07 3.78867810313E-07 4.03292138441E-07 4.29290690712E-07 4.56964898173E-07 4.86422724047E-07 5.17779084063E-07 5.51156293828E-07 5.86684544909E-07 6.24502411530E-07 6.64757389817E-07 7.07606471672E-07 7.53216755495E-07 8.01766096153E-07 8.53443796648E-07 9.08451344199E-07 9.67003193562E-07 1.02932760062E-06 1.09566750946E-06 1.16628149631E-06 1.24144477409E-06 1.32145026131E-06 1.40660971949E-06 1.49725496351E-06 1.59373914950E-06 1.69643814523E-06 1.80575198823E-06 1.92210643731E-06 2.04595462338E-06 2.17777880586E-06 2.31809224151E-06 2.46744117269E-06 2.62640694278E-06 2.79560824675E-06 2.97570352551E-06 3.16739351317E-06 3.37142394683E-06 3.58858844934E-06 3.81973159587E-06 4.06575217598E-06 4.32760666355E-06 4.60631290765E-06 4.90295405844E-06 5.21868274277E-06 5.55472550527E-06 5.91238753173E-06 6.29305767240E-06 6.69821378415E-06 7.12942841143E-06 7.58837482732E-06 8.07683345724E-06 8.59669870915E-06 9.14998623573E-06 9.73884065538E-06 1.03655437608E-05 1.10325232450E-05 1.17423619779E-05 1.24978078658E-05 1.33017843321E-05 1.41574014556E-05 1.50679678081E-05 1.60370030338E-05 1.70682512163E-05 1.81656950811E-05 1.93335710850E-05 2.05763854460E-05 2.18989311715E-05 2.33063061445E-05 2.48039323324E-05 2.63975761858E-05 2.80933702990E-05 2.98978364066E-05 3.18179097979E-05 3.38609652319E-05 3.60348444417E-05 3.83478853229E-05 4.08089529045E-05 4.34274722058E-05 4.62134630902E-05 4.91775772304E-05 5.23311373076E-05 5.56861785710E-05 5.92554928940E-05 6.30526754668E-05 6.70921742731E-05 7.13893425086E-05 7.59604941012E-05 8.08229625051E-05 8.59951629473E-05 9.14966583111E-05 9.73482288536E-05 1.03571945958E-04 1.10191250132E-04 1.17231033475E-04 1.24717726841E-04 1.32679391929E-04 1.41145818555E-04 1.50148627355E-04 1.59721378180E-04 1.69899684453E-04 1.80721333763E-04 1.92226414989E-04 2.04457452228E-04 2.17459545841E-04 2.31280520896E-04 2.45971083332E-04 2.61584984137E-04 2.78179191847E-04 2.95814073670E-04 3.14553585548E-04 3.34465471432E-04 3.55621472075E-04 3.78097543613E-04 4.01974086186E-04 4.27336182860E-04 4.54273849052E-04 4.82882292654E-04 5.13262185016E-04 5.45519942907E-04 5.79768021509E-04 6.16125218489E-04 6.54716989072E-04 6.95675772017E-04 7.39141326294E-04 7.85261078158E-04 8.34190478232E-04 8.86093368082E-04 9.41142355625E-04 9.99519198576E-04 1.06141519497E-03 1.12703157960E-03 1.19657992502E-03 1.27028254552E-03 1.34837290229E-03 1.43109600754E-03 1.51870882536E-03 1.61148066633E-03 1.70969357307E-03 1.81364269301E-03 1.92363663453E-03 2.03999780217E-03 2.16306270596E-03 2.29318223950E-03 2.43072192086E-03 2.57606208962E-03 2.72959805293E-03 2.89174017262E-03 3.06291388476E-03 3.24355964217E-03 3.43413276980E-03 3.63510322182E-03 3.84695522855E-03 4.07018682048E-03 4.30530921554E-03 4.55284605509E-03 4.81333247289E-03 5.08731398079E-03 5.37534515341E-03 5.67798809370E-03 5.99581066018E-03 6.32938443589E-03 6.67928241853E-03 7.04607641048E-03 7.43033408720E-03 7.83261572207E-03 8.25347054568E-03 8.69343271792E-03 9.15301689138E-03 9.63271334570E-03 1.01329826735E-02 1.06542500000E-02 1.11968987211E-02 1.17612637459E-02 1.23476242357E-02 1.29561958318E-02 1.35871223719E-02 1.42404670994E-02 1.49162033769E-02 1.56142049201E-02 1.63342355813E-02 1.70759387158E-02 1.78388261792E-02 1.86222670133E-02 1.94254758906E-02 2.02475014046E-02 2.10872143036E-02 2.19432957867E-02 2.28142259955E-02 2.36982728532E-02 2.45934814254E-02 2.54976639914E-02 2.64083910406E-02 2.73229834262E-02 2.82385059274E-02 2.91517624950E-02 3.00592934696E-02 3.09573750794E-02 3.18420215414E-02 3.27089900959E-02 3.35537893159E-02 3.43716910335E-02 3.51577462212E-02 3.59068051568E-02 3.66135421824E-02 3.72724853405E-02 3.78780511334E-02 3.84245846029E-02 3.89064048696E-02 3.93178561947E-02 3.96533645413E-02 3.99074995137E-02 4.00750414324E-02 4.01510531778E-02 4.01309562876E-02 4.00106106391E-02 3.97863968783E-02 3.94553005797E-02 3.90149969405E-02 3.84639346230E-02 3.78014171794E-02 3.70276803125E-02 3.61439630668E-02 3.51525708981E-02 3.40569284572E-02 3.28616198427E-02 3.15724140471E-02 3.01962733346E-02 2.87413423771E-02 2.72169161211E-02 2.56333845923E-02 2.40021531519E-02 2.23355371229E-02 2.06466301857E-02 1.89491465169E-02 1.72572372938E-02 1.55852829048E-02 1.39476629754E-02 1.23585071208E-02 1.08314301392E-02 9.37925613582E-03 8.01373677856E-03 6.74526948537E-03 5.58262179528E-03 4.53266842265E-03 3.60014750006E-03 2.78744223322E-03 2.09439358790E-03 1.51814867857E-03 1.05304822300E-03 6.90554773316E-04 4.19221466174E-04 2.24698809013E-04 9.13656524898E-05 7.86912946626E-06 -3.62091649345E-05 -5.13683000316E-05 -4.77088492278E-05 -3.43911819771E-05 -1.90365733403E-05 -7.07885404744E-06 -1.07680071085E-06 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 6 1 i j (l(j)) 0.00000000000E+00 Q_int 1.32598935388E-27 1.41150831984E-27 1.50254278523E-27 1.59944846922E-27 1.70260403286E-27 1.81241255878E-27 1.92930312616E-27 2.05373248744E-27 2.18618685306E-27 2.32718379133E-27 2.47727425085E-27 2.63704471335E-27 2.80711948540E-27 2.98816313785E-27 3.18088310272E-27 3.38603243746E-27 3.60441276755E-27 3.83687741889E-27 4.08433475215E-27 4.34775171224E-27 4.62815760666E-27 4.92664812754E-27 5.24438963308E-27 5.58262370511E-27 5.94267200064E-27 6.32594141621E-27 6.73392958538E-27 7.16823073080E-27 7.63054189365E-27 8.12266956483E-27 8.64653674394E-27 9.20419045335E-27 9.79780973708E-27 1.04297141754E-26 1.11023729486E-26 1.18184144854E-26 1.25806367339E-26 1.33920180939E-26 1.42557290558E-26 1.51751445889E-26 1.61538573295E-26 1.71956916188E-26 1.83047184471E-26 1.94852713607E-26 2.07419633959E-26 2.20797051040E-26 2.35037237400E-26 2.50195836876E-26 2.66332082025E-26 2.83509025577E-26 3.01793786812E-26 3.21257813832E-26 3.41977162746E-26 3.64032794860E-26 3.87510893038E-26 4.12503198459E-26 4.39107369099E-26 4.67427361334E-26 4.97573836151E-26 5.29664591555E-26 5.63825022871E-26 6.00188612728E-26 6.38897452646E-26 6.80102798257E-26 7.23965660347E-26 7.70657434004E-26 8.20360568350E-26 8.73269279463E-26 9.29590309285E-26 9.89543733465E-26 1.05336382131E-25 1.12129995121E-25 1.19361758507E-25 1.27059930561E-25 1.35254592058E-25 1.43977763818E-25 1.53263531822E-25 1.63148180412E-25 1.73670334068E-25 1.84871108334E-25 1.96794270479E-25 2.09486410520E-25 2.22997123269E-25 2.37379202132E-25 2.52688845394E-25 2.68985875820E-25 2.86333974411E-25 3.04800929241E-25 3.24458900339E-25 3.45384701653E-25 3.67660101210E-25 3.91372140618E-25 4.16613475188E-25 4.43482735984E-25 4.72084915230E-25 5.02531776564E-25 5.34942291760E-25 5.69443105613E-25 6.06169030805E-25 6.45263574691E-25 6.86879500052E-25 7.31179422024E-25 7.78336443520E-25 8.28534831628E-25 8.81970737646E-25 9.38852963542E-25 9.99403777855E-25 1.06385978421E-24 1.13247284587E-24 1.20551106985E-24 1.28325985463E-24 1.36602300526E-24 1.45412392058E-24 1.54790685682E-24 1.64773827286E-24 1.75400826215E-24 1.86713207697E-24 1.98755175112E-24 2.11573782710E-24 2.25219119480E-24 2.39744504873E-24 2.55206697152E-24 2.71666115170E-24 2.89187074462E-24 3.07838038562E-24 3.27691886518E-24 3.48826197675E-24 3.71323554818E-24 3.95271866862E-24 4.20764712359E-24 4.47901705162E-24 4.76788883665E-24 5.07539125149E-24 5.40272586857E-24 5.75117175508E-24 6.12209047096E-24 6.51693138920E-24 6.93723735937E-24 7.38465073625E-24 7.86091979743E-24 8.36790557470E-24 8.90758912613E-24 9.48207927702E-24 1.00936208603E-23 1.07446034880E-23 1.14375708892E-23 1.21752308491E-23 1.29604657903E-23 1.37963440356E-23 1.46861317975E-23 1.56333059414E-23 1.66415675710E-23 1.77148564909E-23 1.88573666011E-23 2.00735622851E-23 2.13681958542E-23 2.27463261177E-23 2.42133381500E-23 2.57749643329E-23 2.74373067551E-23 2.92068610565E-23 3.10905418094E-23 3.30957095380E-23 3.52301994796E-23 3.75023522008E-23 3.99210461885E-23 4.24957325430E-23 4.52364719082E-23 4.81539737840E-23 5.12596383734E-23 5.45656011298E-23 5.80847801759E-23 6.18309267819E-23 6.58186790989E-23 7.00636193575E-23 7.45823347561E-23 7.93924822757E-23 8.45128576747E-23 8.99634689340E-23 9.57656144384E-23 1.01941966201E-22 1.08516658453E-22 1.15515381953E-22 1.22965484368E-22 1.30896077140E-22 1.39338149238E-22 1.48324688246E-22 1.57890809269E-22 1.68073892137E-22 1.78913727476E-22 1.90452672185E-22 2.02735814950E-22 2.15811152428E-22 2.29729776794E-22 2.44546075386E-22 2.60317943225E-22 2.77107009241E-22 2.94978877087E-22 3.14003381491E-22 3.34254861136E-22 3.55812449135E-22 3.78760382254E-22 4.03188330061E-22 4.29191745317E-22 4.56872236959E-22 4.86337967139E-22 5.17704073868E-22 5.51093120925E-22 5.86635576774E-22 6.24470324375E-22 6.64745203869E-22 7.07617590274E-22 7.53255008422E-22 8.01835787576E-22 8.53549758249E-22 9.08598993974E-22 9.67198600911E-22 1.02957755838E-21 1.09597961360E-21 1.16666423415E-21 1.24190762182E-21 1.32200379190E-21 1.40726572204E-21 1.49802657523E-21 1.59464100163E-21 1.69748652437E-21 1.80696501475E-21 1.92350426254E-21 2.04755964760E-21 2.17961591928E-21 2.32018909059E-21 2.46982845453E-21 2.62911873047E-21 2.79868234896E-21 2.97918188388E-21 3.17132264149E-21 3.37585541641E-21 3.59357942537E-21 3.82534543018E-21 4.07205906211E-21 4.33468436065E-21 4.61424754054E-21 4.91184100169E-21 5.22862759784E-21 5.56584518036E-21 5.92481143523E-21 6.30692903194E-21 6.71369110442E-21 7.14668708557E-21 7.60760891792E-21 8.09825766504E-21 8.62055054917E-21 9.17652844286E-21 9.76836384374E-21 1.03983693636E-20 1.10690067649E-20 1.17828965805E-20 1.25428283530E-20 1.33517715352E-20 1.42128870936E-20 1.51295398593E-20 1.61053116769E-20 1.71440154001E-20 1.82497097909E-20 1.94267153792E-20 2.06796313454E-20 2.20133534918E-20 2.34330933732E-20 2.49443986612E-20 2.65531748218E-20 2.82657081913E-20 3.00886905402E-20 3.20292452220E-20 3.40949550071E-20 3.62938917134E-20 3.86346477472E-20 4.11263696777E-20 4.37787939783E-20 4.66022850716E-20 4.96078758291E-20 5.28073106822E-20 5.62130915145E-20 5.98385265127E-20 6.36977821694E-20 6.78059386388E-20 7.21790486631E-20 7.68342002991E-20 8.17895836906E-20 8.70645621468E-20 9.26797478053E-20 9.86570821751E-20 1.05019921873E-19 1.11793129892E-19 1.19003172753E-19 1.26678223925E-19 1.34848273911E-19 1.43545247443E-19 1.52803128224E-19 1.62658091722E-19 1.73148646529E-19 1.84315784832E-19 1.96203142595E-19 2.08857170067E-19 2.22327313286E-19 2.36666207297E-19 2.51929881820E-19 2.68177980194E-19 2.85473992431E-19 3.03885503312E-19 3.23484456473E-19 3.44347435529E-19 3.66555963333E-19 3.90196820522E-19 4.15362384625E-19 4.42150991031E-19 4.70667317235E-19 5.01022791876E-19 5.33336030150E-19 5.67733297303E-19 6.04349002021E-19 6.43326221640E-19 6.84817261228E-19 7.28984248726E-19 7.75999768475E-19 8.26047535595E-19 8.79323113867E-19 9.36034679910E-19 9.96403836645E-19 1.06066647922E-18 1.12907371679E-18 1.20189285373E-18 1.27940843418E-18 1.36192335386E-18 1.44976004373E-18 1.54326172986E-18 1.64279377461E-18 1.74874510435E-18 1.86152972918E-18 1.98158836073E-18 2.10939013427E-18 2.24543444187E-18 2.39025288387E-18 2.54441134608E-18 2.70851221109E-18 2.88319671210E-18 3.06914743859E-18 3.26709100364E-18 3.47780088316E-18 3.70210043841E-18 3.94086613329E-18 4.19503095925E-18 4.46558808101E-18 4.75359471750E-18 5.06017627299E-18 5.38653073477E-18 5.73393335440E-18 6.10374163090E-18 6.49740061529E-18 6.91644855735E-18 7.36252291646E-18 7.83736676018E-18 8.34283557551E-18 8.88090451940E-18 9.45367613696E-18 1.00633885774E-17 1.07124243399E-17 1.14033195834E-17 1.21387740375E-17 1.29216615511E-17 1.37550413235E-17 1.46421698575E-17 1.55865136858E-17 1.65917629161E-17 1.76618456512E-17 1.88009433385E-17 2.00135071101E-17 2.13042751755E-17 2.26782913379E-17 2.41409247031E-17 2.56978906603E-17 2.73552732163E-17 2.91195487695E-17 3.09976114180E-17 3.29967998994E-17 3.51249262682E-17 3.73903064234E-17 3.98017926043E-17 4.23688079823E-17 4.51013834844E-17 4.80101969910E-17 5.11066150621E-17 5.44027373547E-17 5.79114439053E-17 6.16464454615E-17 6.56223370600E-17 6.98546550608E-17 7.43599378591E-17 7.91557905136E-17 8.42609535431E-17 8.96953761601E-17 9.54802942278E-17 1.01638313246E-16 1.08193496687E-16 1.15171460035E-16 1.22599470881E-16 1.30506555483E-16 1.38923612195E-16 1.47883532212E-16 1.57421328105E-16 1.67574270642E-16 1.78382034440E-16 1.89886853004E-16 2.02133683776E-16 2.15170383816E-16 2.29047896828E-16 2.43820452243E-16 2.59545777136E-16 2.76285321828E-16 2.94104500022E-16 3.13072944440E-16 3.33264778943E-16 3.54758908204E-16 3.77639326064E-16 4.01995443783E-16 4.27922439452E-16 4.55521629958E-16 4.84900866923E-16 5.16174958201E-16 5.49466116544E-16 5.84904437222E-16 6.22628406444E-16 6.62785442572E-16 7.05532472246E-16 7.51036543677E-16 7.99475479487E-16 8.51038571666E-16 9.05927321362E-16 9.64356226374E-16 1.02655361946E-15 1.09276256070E-15 1.16324178744E-15 1.23826672550E-15 1.31813056560E-15 1.40314540924E-15 1.49364348849E-15 1.58997846446E-15 1.69252680952E-15 1.80168927871E-15 1.91789247602E-15 2.04159052173E-15 2.17326682736E-15 2.31343598498E-15 2.46264577855E-15 2.62147932489E-15 2.79055735283E-15 2.97054062933E-15 3.16213254219E-15 3.36608184926E-15 3.58318560509E-15 3.81429227632E-15 4.06030505809E-15 4.32218540437E-15 4.60095678602E-15 4.89770869135E-15 5.21360088467E-15 5.54986793966E-15 5.90782406517E-15 6.28886824230E-15 6.69448969299E-15 7.12627370134E-15 7.58590781049E-15 8.07518841934E-15 8.59602780486E-15 9.15046159740E-15 9.74065673834E-15 1.03689199511E-14 1.10377067589E-14 1.17496310838E-14 1.25074754657E-14 1.33142019403E-14 1.41729636191E-14 1.50871170163E-14 1.60602351714E-14 1.70961216179E-14 1.81988252546E-14 1.93726561746E-14 2.06222025175E-14 2.19523484074E-14 2.33682930500E-14 2.48755710604E-14 2.64800741036E-14 2.81880739315E-14 3.00062469058E-14 3.19417001036E-14 3.40019991084E-14 3.61951975935E-14 3.85298688151E-14 4.10151391374E-14 4.36607237218E-14 4.64769645193E-14 4.94748707140E-14 5.26661617779E-14 5.60633133039E-14 5.96796057968E-14 6.35291766140E-14 6.76270752575E-14 7.19893222364E-14 7.66329717269E-14 8.15761782784E-14 8.68382678241E-14 9.24398132767E-14 9.84027150025E-14 1.04750286491E-13 1.11507345557E-13 1.18700311423E-13 1.26357308082E-13 1.34508274318E-13 1.43185080840E-13 1.52421654980E-13 1.62254113428E-13 1.72720903556E-13 1.83862953851E-13 1.95723834073E-13 2.08349925745E-13 2.21790603662E-13 2.36098429111E-13 2.51329355577E-13 2.67542947725E-13 2.84802614538E-13 3.03175857492E-13 3.22734534780E-13 3.43555142588E-13 3.65719114542E-13 3.89313140504E-13 4.14429505949E-13 4.41166453278E-13 4.69628566459E-13 4.99927180531E-13 5.32180817726E-13 5.66515650751E-13 6.03065998333E-13 6.41974850826E-13 6.83394427922E-13 7.27486779466E-13 7.74424415719E-13 8.24390985360E-13 8.77581994899E-13 9.34205574553E-13 9.94483292252E-13 1.05865102403E-12 1.12695987716E-12 1.19967717336E-12 1.27708749849E-12 1.35949381647E-12 1.44721865688E-12 1.54060537913E-12 1.64001952097E-12 1.74585022668E-12 1.85851177850E-12 1.97844521701E-12 2.10612007339E-12 2.24203620786E-12 2.38672577407E-12 2.54075530337E-12 2.70472793052E-12 2.87928575607E-12 3.06511236844E-12 3.26293553244E-12 3.47353002410E-12 3.69772070551E-12 3.93638573388E-12 4.19046001720E-12 4.46093890558E-12 4.74888205011E-12 5.05541764313E-12 5.38174674841E-12 5.72914812363E-12 6.09898316581E-12 6.49270129990E-12 6.91184566844E-12 7.35805920839E-12 7.83309105991E-12 8.33880350266E-12 8.87717928654E-12 9.45032934691E-12 1.00605012037E-11 1.07100877283E-11 1.14016366328E-11 1.21378604351E-11 1.29216471617E-11 1.37560717270E-11 1.46444080236E-11 1.55901418476E-11 1.65969845768E-11 1.76688878488E-11 1.88100591162E-11 2.00249782200E-11 2.13184150801E-11 2.26954484766E-11 2.41614860998E-11 2.57222858795E-11 2.73839787481E-11 2.91530927408E-11 3.10365789169E-11 3.30418386736E-11 3.51767531020E-11 3.74497140023E-11 3.98696571907E-11 4.24460977736E-11 4.51891677046E-11 4.81096560305E-11 5.12190514444E-11 5.45295877755E-11 5.80542925638E-11 6.18070384843E-11 6.58025985925E-11 7.00567044364E-11 7.45861088693E-11 7.94086523401E-11 8.45433336542E-11 9.00103853778E-11 9.58313543669E-11 1.02029187107E-10 1.08628321083E-10 1.15654781853E-10 1.23136286832E-10 1.31102355147E-10 1.39584425429E-10 1.48615981218E-10 1.58232683950E-10 1.68472515543E-10 1.79375929601E-10 1.90986013058E-10 2.03348658049E-10 2.16512745567E-10 2.30530340449E-10 2.45456899673E-10 2.61351494637E-10 2.78277047327E-10 2.96300582412E-10 3.15493495980E-10 3.35931841964E-10 3.57696637349E-10 3.80874187503E-10 4.05556433186E-10 4.31841320080E-10 4.59833192971E-10 4.89643216199E-10 5.21389821431E-10 5.55199185296E-10 5.91205738577E-10 6.29552709582E-10 6.70392702582E-10 7.13888315529E-10 7.60212798272E-10 8.09550754363E-10 8.62098890310E-10 9.18066813503E-10 9.77677884110E-10 1.04117012343E-09 1.10879718211E-09 1.18082937469E-09 1.25755478093E-09 1.33928042230E-09 1.42633351668E-09 1.51906281652E-09 1.61784003696E-09 1.72306137996E-09 1.83514916015E-09 1.95455353923E-09 2.08175437869E-09 2.21726321466E-09 2.36162536749E-09 2.51542219292E-09 2.67927348447E-09 2.85384003793E-09 3.03982639007E-09 3.23798374143E-09 3.44911307691E-09 3.67406849855E-09 3.91376078317E-09 4.16916118235E-09 4.44130547999E-09 4.73129832635E-09 5.04031786649E-09 5.36962068508E-09 5.72054708791E-09 6.09452674394E-09 6.49308471453E-09 6.91784789425E-09 7.37055189338E-09 7.85304839335E-09 8.36731300749E-09 8.91545368192E-09 9.49971967593E-09 1.01225111615E-08 1.07863894856E-08 1.14940881429E-08 1.22485245062E-08 1.30528123734E-08 1.39102753827E-08 1.48244613617E-08 1.57991576744E-08 1.68384076407E-08 1.79465280975E-08 1.91281281923E-08 2.03881294895E-08 2.17317874862E-08 2.31647146399E-08 2.46929050149E-08 2.63227606625E-08 2.80611198649E-08 2.99152873684E-08 3.18930667603E-08 3.40027951363E-08 3.62533802270E-08 3.86543401633E-08 4.12158460716E-08 4.39487677024E-08 4.68647223207E-08 4.99761270849E-08 5.32962551818E-08 5.68392959848E-08 6.06204195321E-08 6.46558456475E-08 6.89629180359E-08 7.35601837301E-08 7.84674782800E-08 8.37060171082E-08 8.92984934865E-08 9.52691836370E-08 1.01644059469E-07 1.08450909531E-07 1.15719468797E-07 1.23481557925E-07 1.31771232718E-07 1.40624944538E-07 1.50081712502E-07 1.60183308337E-07 1.70974454848E-07 1.82503039035E-07 1.94820340940E-07 2.07981279435E-07 2.22044676213E-07 2.37073539376E-07 2.53135368083E-07 2.70302479883E-07 2.88652362423E-07 3.08268051413E-07 3.29238536831E-07 3.51659199515E-07 3.75632280466E-07 4.01267385370E-07 4.28682026993E-07 4.58002208384E-07 4.89363049987E-07 5.22909464019E-07 5.58796879756E-07 5.97192023606E-07 6.38273758186E-07 6.82233984939E-07 7.29278615137E-07 7.79628614569E-07 8.33521127541E-07 8.91210686300E-07 9.52970512453E-07 1.01909391744E-06 1.08989580972E-06 1.16571431679E-06 1.24691253103E-06 1.33388038867E-06 1.42703669235E-06 1.52683128818E-06 1.63374740914E-06 1.74830419773E-06 1.87105942154E-06 2.00261239653E-06 2.14360713404E-06 2.29473572857E-06 2.45674200484E-06 2.63042544390E-06 2.81664540969E-06 3.01632569885E-06 3.23045943857E-06 3.46011435886E-06 3.70643846770E-06 3.97066615971E-06 4.25412479103E-06 4.55824175587E-06 4.88455210225E-06 5.23470672787E-06 5.61048119940E-06 6.01378524196E-06 6.44667294894E-06 6.91135376572E-06 7.41020430477E-06 7.94578105375E-06 8.52083404239E-06 9.13832153876E-06 9.80142585024E-06 1.05135703098E-05 1.12784375335E-05 1.20999890420E-05 1.29824863426E-05 1.39305135780E-05 1.49490018530E-05 1.60432553574E-05 1.72189794120E-05 1.84823105726E-05 1.98398489346E-05 2.12986927910E-05 2.28664758036E-05 2.45514068598E-05 2.63623127958E-05 2.83086841775E-05 3.04007243424E-05 3.26494019150E-05 3.50665070238E-05 3.76647114549E-05 4.04576329940E-05 4.34599042185E-05 4.66872460148E-05 5.01565461094E-05 5.38859429142E-05 5.78949150008E-05 6.22043765291E-05 6.68367789696E-05 7.18162194717E-05 7.71685562381E-05 8.29215312791E-05 8.91049009309E-05 9.57505745254E-05 1.02892761612E-04 1.10568128131E-04 1.18815961949E-04 1.27678348149E-04 1.37200354497E-04 1.47430227456E-04 1.58419599158E-04 1.70223705675E-04 1.82901616964E-04 1.96516478787E-04 2.11135766903E-04 2.26831553776E-04 2.43680787990E-04 2.61765586508E-04 2.81173539840E-04 3.01998030097E-04 3.24338561812E-04 3.48301105306E-04 3.73998452234E-04 4.01550582815E-04 4.31085044076E-04 4.62737338252E-04 4.96651320289E-04 5.32979603134E-04 5.71883969275E-04 6.13535786656E-04 6.58116426818E-04 7.05817682723E-04 7.56842183362E-04 8.11403801794E-04 8.69728052821E-04 9.32052475982E-04 9.98626999020E-04 1.06971427637E-03 1.14558999659E-03 1.22654315198E-03 1.31287626293E-03 1.40490554869E-03 1.50296103558E-03 1.60738659275E-03 1.71853988454E-03 1.83679222801E-03 1.96252834267E-03 2.09614597904E-03 2.23805541132E-03 2.38867877859E-03 2.54844925797E-03 2.71781005234E-03 2.89721317411E-03 3.08711800587E-03 3.28798961790E-03 3.50029682200E-03 3.72450994042E-03 3.96109826855E-03 4.21052720984E-03 4.47325506153E-03 4.74972943031E-03 5.04038325782E-03 5.34563043705E-03 5.66586100238E-03 6.00143587825E-03 6.35268117421E-03 6.71988201736E-03 7.10327591752E-03 7.50304566532E-03 7.91931176909E-03 8.35212444320E-03 8.80145516805E-03 9.26718785078E-03 9.74910962529E-03 1.02469013412E-02 1.07601278030E-02 1.12882278353E-02 1.18305042606E-02 1.23861138971E-02 1.29540576938E-02 1.35331711433E-02 1.41221151251E-02 1.47193673560E-02 1.53232146372E-02 1.59317461110E-02 1.65428477544E-02 1.71541983573E-02 1.77632672449E-02 1.83673140205E-02 1.89633906156E-02 1.95483459395E-02 2.01188334262E-02 2.06713217736E-02 2.12021091621E-02 2.17073412244E-02 2.21830330168E-02 2.26250952083E-02 2.30293646646E-02 2.33916395484E-02 2.37077189967E-02 2.39734473569E-02 2.41847628757E-02 2.43377506331E-02 2.44286994003E-02 2.44541619725E-02 2.44110183937E-02 2.42965413416E-02 2.41084627892E-02 2.38450409027E-02 2.35051259751E-02 2.30882240436E-02 2.25945566900E-02 2.20251153943E-02 2.13817086977E-02 2.06670003525E-02 1.98845365822E-02 1.90387605731E-02 1.81350123609E-02 1.71795123757E-02 1.61793270739E-02 1.51423153152E-02 1.40770544498E-02 1.29927454544E-02 1.18990969061E-02 1.08061880959E-02 9.72431215690E-03 8.66380069930E-03 7.63483208569E-03 6.64722613027E-03 5.71022862842E-03 4.83228969287E-03 4.02084035104E-03 3.28207220745E-03 2.62072515571E-03 2.03988809735E-03 1.54081735528E-03 1.12277692691E-03 7.82903888343E-04 5.16101128517E-04 3.14958172783E-04 1.69699179645E-04 6.93631987521E-05 6.00534867487E-06 -2.77775677494E-05 -3.96126942734E-05 -3.69829369226E-05 -2.67986562824E-05 -1.49114091701E-05 -5.57388063160E-06 -8.52306536125E-07 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 4 2 i j (l(j)) 5.41841945057E-01 Q_int 1.71765925520E-29 1.85143768779E-29 1.99563534000E-29 2.15106370392E-29 2.31859747398E-29 2.49917946946E-29 2.69382594032E-29 2.90363228629E-29 3.12977922136E-29 3.37353941844E-29 3.63628467149E-29 3.91949361546E-29 4.22476004756E-29 4.55380189651E-29 4.90847089046E-29 5.29076297785E-29 5.70282955985E-29 6.14698959768E-29 6.62574266292E-29 7.14178300411E-29 7.69801470910E-29 8.29756804811E-29 8.94381708982E-29 9.64039868940E-29 1.03912329554E-28 1.12005453106E-28 1.20728902714E-28 1.30131770787E-28 1.40266973256E-28 1.51191547362E-28 1.62966972647E-28 1.75659516931E-28 1.89340609249E-28 2.04087241825E-28 2.19982403357E-28 2.37115546048E-28 2.55583089008E-28 2.75488960871E-28 2.96945184661E-28 3.20072508221E-28 3.45001083738E-28 3.71871200192E-28 4.00834072848E-28 4.32052694248E-28 4.65702751467E-28 5.01973614818E-28 5.41069403561E-28 5.83210134613E-28 6.28632960719E-28 6.77593505066E-28 7.30367299833E-28 7.87251336794E-28 8.48565738669E-28 9.14655560669E-28 9.85892732335E-28 1.06267815063E-27 1.14544393602E-27 1.23465586432E-27 1.33081598790E-27 1.43446546106E-27 1.54618758541E-27 1.66661109255E-27 1.79641368229E-27 1.93632583650E-27 2.08713493004E-27 2.24968966176E-27 2.42490483072E-27 2.61376648433E-27 2.81733746746E-27 3.03676340374E-27 3.27327914274E-27 3.52821570922E-27 3.80300779370E-27 4.09920182633E-27 4.41846467967E-27 4.76259304922E-27 5.13352356461E-27 5.53334368820E-27 5.96430346260E-27 6.42882817305E-27 6.92953199611E-27 7.46923271123E-27 8.05096755823E-27 8.67801032978E-27 9.35388979511E-27 1.00824095586E-26 1.08676694653E-26 1.17140886729E-26 1.26264305217E-26 1.36098293407E-26 1.46698193415E-26 1.58123657634E-26 1.70438984431E-26 1.83713479997E-26 1.98021848377E-26 2.13444611877E-26 2.30068564215E-26 2.47987258963E-26 2.67301536034E-26 2.88120089172E-26 3.10560077642E-26 3.34747785556E-26 3.60819332560E-26 3.88921439861E-26 4.19212255923E-26 4.51862246469E-26 4.87055153800E-26 5.24989030830E-26 5.65877355657E-26 6.09950232937E-26 6.57455688834E-26 7.08661066818E-26 7.63854532177E-26 8.23346693711E-26 8.87472351719E-26 9.56592382139E-26 1.03109576742E-25 1.11140178559E-25 1.19796236979E-25 1.29126465156E-25 1.39183370230E-25 1.50023548814E-25 1.61708005501E-25 1.74302496172E-25 1.87877898052E-25 2.02510608577E-25 2.18282975333E-25 2.35283759477E-25 2.53608635255E-25 2.73360728417E-25 2.94651196577E-25 3.17599854767E-25 3.42335849707E-25 3.68998386601E-25 3.97737512534E-25 4.28714960879E-25 4.62105061474E-25 4.98095721692E-25 5.36889483908E-25 5.78704665340E-25 6.23776586658E-25 6.72358896280E-25 7.24724997817E-25 7.81169588687E-25 8.42010318567E-25 9.07589577009E-25 9.78276420283E-25 1.05446864829E-24 1.13659504326E-24 1.22511778272E-24 1.32053504054E-24 1.42338379041E-24 1.53424282780E-24 1.65373602712E-24 1.78253585275E-24 1.92136714337E-24 2.07101119110E-24 2.23231013834E-24 2.40617171704E-24 2.59357435706E-24 2.79557269247E-24 3.01330349659E-24 3.24799207938E-24 3.50095918301E-24 3.77362841455E-24 4.06753425748E-24 4.38433070723E-24 4.72580057925E-24 5.09386554206E-24 5.49059693170E-24 5.91822740845E-24 6.37916352146E-24 6.87599925187E-24 7.41153061087E-24 7.98877137460E-24 8.61097004458E-24 9.28162812911E-24 1.00045198485E-23 1.07837133750E-23 1.16235937269E-23 1.25288874460E-23 1.35046891969E-23 1.45564904376E-23 1.56902103238E-23 1.69122290194E-23 1.82294236022E-23 1.96492067651E-23 2.11795685325E-23 2.28291212249E-23 2.46071479261E-23 2.65236547249E-23 2.85894270261E-23 3.08160902461E-23 3.32161752374E-23 3.58031888070E-23 3.85916897282E-23 4.15973706719E-23 4.48371465193E-23 4.83292495527E-23 5.20933320603E-23 5.61505769320E-23 6.05238168687E-23 6.52376628773E-23 7.03186427716E-23 7.57953504618E-23 8.16986068702E-23 8.80616333806E-23 9.49202387958E-23 1.02313020857E-22 1.10281583456E-22 1.18870770772E-22 1.28128919630E-22 1.38108131531E-22 1.48864565856E-22 1.60458755911E-22 1.72955949586E-22 1.86426476549E-22 2.00946144035E-22 2.16596663458E-22 2.33466110256E-22 2.51649419551E-22 2.71248920402E-22 2.92374911680E-22 3.15146282792E-22 3.39691182741E-22 3.66147741308E-22 3.94664846395E-22 4.25402981908E-22 4.58535130907E-22 4.94247749090E-22 5.32741814096E-22 5.74233956537E-22 6.18957679114E-22 6.67164670686E-22 7.19126222685E-22 7.75134755843E-22 8.35505465830E-22 9.00578097061E-22 9.70718854656E-22 1.04632246530E-21 1.12781439864E-21 1.21565326166E-21 1.31033337953E-21 1.41238757756E-21 1.52239017965E-21 1.64096024047E-21 1.76876502920E-21 1.90652378472E-21 2.05501176322E-21 2.21506460105E-21 2.38758301736E-21 2.57353788305E-21 2.77397568449E-21 2.99002441269E-21 3.22289991133E-21 3.47391271898E-21 3.74447544440E-21 4.03611071617E-21 4.35045975148E-21 4.68929159231E-21 5.05451306095E-21 5.44817949090E-21 5.87250629355E-21 6.32988142566E-21 6.82287882799E-21 7.35427291042E-21 7.92705416537E-21 8.54444599715E-21 9.20992286217E-21 9.92722982183E-21 1.07004036184E-20 1.15337953924E-20 1.24320951691E-20 1.34003582523E-20 1.44440336739E-20 1.55689948586E-20 1.67815726781E-20 1.80885910783E-20 1.94974054822E-20 2.10159441837E-20 2.26527529647E-20 2.44170431881E-20 2.63187436358E-20 2.83685563841E-20 3.05780170313E-20 3.29595596156E-20 3.55265865894E-20 3.82935442437E-20 4.12760040058E-20 4.44907500703E-20 4.79558738541E-20 5.16908758080E-20 5.57167751587E-20 6.00562281966E-20 6.47336557777E-20 6.97753807545E-20 7.52097761121E-20 8.10674246405E-20 8.73812910431E-20 9.41869074505E-20 1.01522573382E-19 1.09429571280E-19 1.17952398835E-19 1.27139019400E-19 1.37041131912E-19 1.47714461832E-19 1.59219074750E-19 1.71619714412E-19 1.84986167073E-19 1.99393654227E-19 2.14923255926E-19 2.31662367074E-19 2.49705189243E-19 2.69153260815E-19 2.90116028395E-19 3.12711462739E-19 3.37066722651E-19 3.63318870582E-19 3.91615643969E-19 4.22116286645E-19 4.54992445008E-19 4.90429133976E-19 5.28625778190E-19 5.69797334295E-19 6.14175500640E-19 6.62010021189E-19 7.13570090985E-19 7.69145871083E-19 8.29050121464E-19 8.93619961134E-19 9.63218765301E-19 1.03823821032E-18 1.11910047789E-18 1.20626063095E-18 1.30020917458E-18 1.40147481641E-18 1.51062744197E-18 1.62828132177E-18 1.75509856822E-18 1.89179286175E-18 2.03913346709E-18 2.19794956244E-18 2.36913490576E-18 2.55365286452E-18 2.75254183712E-18 2.96692109665E-18 3.19799708971E-18 3.44707022584E-18 3.71554219572E-18 4.00492385938E-18 4.31684374871E-18 4.65305723222E-18 5.01545639360E-18 5.40608067963E-18 5.82712837742E-18 6.28096898550E-18 6.77015654847E-18 7.29744403014E-18 7.86579880622E-18 8.47841936350E-18 9.13875329971E-18 9.85051672529E-18 1.06177151762E-17 1.14446661555E-17 1.23360234306E-17 1.32968032228E-17 1.43324124368E-17 1.54486790884E-17 1.66518851024E-17 1.79488016648E-17 1.93467273285E-17 2.08535290862E-17 2.24776866436E-17 2.42283401387E-17 2.61153415800E-17 2.81493102888E-17 3.03416926610E-17 3.27048265827E-17 3.52520108627E-17 3.79975800733E-17 4.09569852190E-17 4.41468806890E-17 4.75852179810E-17 5.12913467249E-17 5.52861235750E-17 5.95920295827E-17 6.42332967102E-17 6.92360441985E-17 7.46284255559E-17 8.04407869936E-17 8.67058382023E-17 9.34588364285E-17 1.00737784888E-16 1.08583646631E-16 1.17040575066E-16 1.26156162436E-16 1.35981707650E-16 1.46572504967E-16 1.57988155172E-16 1.70292900982E-16 1.83555988579E-16 1.97852057294E-16 2.13261559649E-16 2.29871214106E-16 2.47774493081E-16 2.67072148968E-16 2.87872781127E-16 3.10293447034E-16 3.34460321030E-16 3.60509404371E-16 3.88587290587E-16 4.18851990439E-16 4.51473821136E-16 4.86636364803E-16 5.24537501596E-16 5.65390523282E-16 6.09425333545E-16 6.56889741779E-16 7.08050857647E-16 7.63196594242E-16 8.22637288332E-16 8.86707446786E-16 9.55767629022E-16 1.03020647606E-15 1.11044289760E-15 1.19692842947E-15 1.29014977460E-15 1.39063154200E-15 1.49893919896E-15 1.61568225325E-15 1.74151768309E-15 1.87715363432E-15 2.02335340548E-15 2.18093974325E-15 2.35079947244E-15 2.53388848662E-15 2.73123712734E-15 2.94395598237E-15 3.17324213549E-15 3.42038590305E-15 3.68677809516E-15 3.97391784240E-15 4.28342103214E-15 4.61702940182E-15 4.97662034049E-15 5.36421745369E-15 5.78200195116E-15 6.23232492143E-15 6.71772056236E-15 7.24092044218E-15 7.80486887107E-15 8.41273947002E-15 9.06795303006E-15 9.77419676236E-15 1.05354450476E-14 1.13559818014E-14 1.22404245812E-14 1.31937505714E-14 1.42213245915E-14 1.53289292856E-14 1.65227976639E-14 1.78096481773E-14 1.91967225250E-14 2.06918264052E-14 2.23033734407E-14 2.40404325246E-14 2.59127788540E-14 2.79309489373E-14 3.01062998868E-14 3.24510733277E-14 3.49784642848E-14 3.77026954348E-14 4.06390971402E-14 4.38041937172E-14 4.72157964213E-14 5.08931036753E-14 5.48568091022E-14 5.91292179728E-14 6.37343727208E-14 6.86981882339E-14 7.40485976808E-14 7.98157096947E-14 8.60319777992E-14 9.27323830273E-14 9.99546307637E-14 1.07739362916E-13 1.16130386611E-13 1.25174920697E-13 1.34923861451E-13 1.45432068970E-13 1.56758675870E-13 1.68967420027E-13 1.82127003229E-13 1.96311477756E-13 2.11600663071E-13 2.28080594959E-13 2.45844009641E-13 2.64990865595E-13 2.85628906003E-13 3.07874265017E-13 3.31852121218E-13 3.57697401977E-13 3.85555542666E-13 4.15583304987E-13 4.47949659035E-13 4.82836734045E-13 5.20440843181E-13 5.60973588131E-13 6.04663049717E-13 6.51755071220E-13 7.02514641651E-13 7.57227386732E-13 8.16201175985E-13 8.79767854972E-13 9.48285112426E-13 1.02213849278E-12 1.10174356540E-12 1.18754826278E-12 1.28003540074E-12 1.37972539497E-12 1.48717918902E-12 1.60300141034E-12 1.72784377206E-12 1.86240873971E-12 2.00745348336E-12 2.16379413761E-12 2.33231039325E-12 2.51395044646E-12 2.70973633338E-12 2.92076968008E-12 3.14823790026E-12 3.39342087553E-12 3.65769815583E-12 3.94255672055E-12 4.24959934390E-12 4.58055361173E-12 4.93728164030E-12 5.32179055277E-12 5.73624376650E-12 6.18297317089E-12 6.66449223179E-12 7.18351016080E-12 7.74294710860E-12 8.34595063621E-12 8.99591339195E-12 9.69649221321E-12 1.04516286803E-11 1.12655713016E-11 1.21428994237E-11 1.30885489413E-11 1.41078401210E-11 1.52065074771E-11 1.63907320654E-11 1.76671762149E-11 1.90430210326E-11 2.05260067683E-11 2.21244763673E-11 2.38474223802E-11 2.57045375382E-11 2.77062692956E-11 2.98638785204E-11 3.21895029182E-11 3.46962252070E-11 3.73981467658E-11 4.03104668536E-11 4.34495681498E-11 4.68331089451E-11 5.04801220703E-11 5.44111226114E-11 5.86482226232E-11 6.32152556572E-11 6.81379111281E-11 7.34438781095E-11 7.91630014123E-11 8.53274497850E-11 9.19718957778E-11 9.91337115623E-11 1.06853178777E-10 1.15173714509E-10 1.24142116508E-10 1.33808825118E-10 1.44228207368E-10 1.55458862283E-10 1.67563951378E-10 1.80611551636E-10 1.94675040620E-10 2.09833506232E-10 2.26172194181E-10 2.43782984574E-10 2.62764909761E-10 2.83224710131E-10 3.05277434608E-10 3.29047086990E-10 3.54667322158E-10 3.82282198115E-10 4.12046984736E-10 4.44129037181E-10 4.78708733961E-10 5.15980493515E-10 5.56153864079E-10 5.99454701548E-10 6.46126438833E-10 6.96431452644E-10 7.50652538303E-10 8.09094495427E-10 8.72085843217E-10 9.39980666963E-10 1.01316059671E-09 1.09203696593E-09 1.17705310589E-09 1.26868684913E-09 1.36745319582E-09 1.47390722558E-09 1.58864719302E-09 1.71231790767E-09 1.84561432905E-09 1.98928549101E-09 2.14413869021E-09 2.31104402446E-09 2.49093927296E-09 2.68483515975E-09 2.89382102796E-09 3.11907093909E-09 3.36185028303E-09 3.62352284999E-09 3.90555850268E-09 4.20954141260E-09 4.53717893506E-09 4.89031120317E-09 5.27092143486E-09 5.68114705195E-09 6.12329167102E-09 6.59983800473E-09 7.11346179581E-09 7.66704680753E-09 8.26370096948E-09 8.90677381838E-09 9.59987525498E-09 1.03468957590E-08 1.11520282083E-08 1.20197913316E-08 1.29550550419E-08 1.39630676995E-08 1.50494854871E-08 1.62204040958E-08 1.74823928267E-08 1.88425313792E-08 2.03084494473E-08 2.18883694365E-08 2.35911524367E-08 2.54263478094E-08 2.74042465933E-08 2.95359390370E-08 3.18333766159E-08 3.43094388505E-08 3.69780052786E-08 3.98540330143E-08 4.29536403437E-08 4.62941967279E-08 4.98944198255E-08 5.37744800456E-08 5.79561131137E-08 6.24627414010E-08 6.73196046847E-08 7.25539008980E-08 7.81949379257E-08 8.42742969839E-08 9.08260087629E-08 9.78867430877E-08 1.05496013308E-07 1.13696396442E-07 1.22533770330E-07 1.32057569147E-07 1.42321058592E-07 1.53381632366E-07 1.65301131527E-07 1.78146188460E-07 1.91988597450E-07 2.06905713794E-07 2.22980883676E-07 2.40303907286E-07 2.58971537471E-07 2.79088017005E-07 3.00765657087E-07 3.24125460507E-07 3.49297792676E-07 3.76423104496E-07 4.05652710640E-07 4.37149627846E-07 4.71089477625E-07 5.07661458396E-07 5.47069392276E-07 5.89532852394E-07 6.35288376639E-07 6.84590774693E-07 7.37714535357E-07 7.94955341807E-07 8.56631703025E-07 9.23086710382E-07 9.94689928661E-07 1.07183943206E-06 1.15496399594E-06 1.24452545636E-06 1.34102125011E-06 1.44498714875E-06 1.55700020178E-06 1.67768190458E-06 1.80770160788E-06 1.94778018783E-06 2.09869399552E-06 2.26127910773E-06 2.43643590140E-06 2.62513397633E-06 2.82841745239E-06 3.04741066951E-06 3.28332432085E-06 3.53746205158E-06 3.81122755854E-06 4.10613222824E-06 4.42380335361E-06 4.76599297325E-06 5.13458737924E-06 5.53161734408E-06 5.95926912017E-06 6.41989626996E-06 6.91603238817E-06 7.45040478314E-06 8.02594918811E-06 8.64582557988E-06 9.31343518574E-06 1.00324387683E-05 1.08067762818E-05 1.16406880014E-05 1.25387372349E-05 1.35058347331E-05 1.45472649236E-05 1.56687141026E-05 1.68763007284E-05 1.81766079702E-05 1.95767186775E-05 2.10842529467E-05 2.27074084750E-05 2.44550039026E-05 2.63365253622E-05 2.83621764675E-05 3.05429319887E-05 3.28905954826E-05 3.54178611612E-05 3.81383803034E-05 4.10668325356E-05 4.42190023308E-05 4.76118610961E-05 5.12636552485E-05 5.51940007034E-05 5.94239842300E-05 6.39762721577E-05 6.88752269527E-05 7.41470322151E-05 7.98198266884E-05 8.59238479074E-05 9.24915861566E-05 9.95579494528E-05 1.07160440313E-04 1.15339345121E-04 1.24137936949E-04 1.33602692762E-04 1.43783525980E-04 1.54734035433E-04 1.66511771817E-04 1.79178522833E-04 1.92800618243E-04 2.07449256179E-04 2.23200852103E-04 2.40137411914E-04 2.58346930777E-04 2.77923819348E-04 2.98969359176E-04 3.21592189138E-04 3.45908824909E-04 3.72044213550E-04 4.00132325431E-04 4.30316785819E-04 4.62751548596E-04 4.97601614700E-04 5.35043798013E-04 5.75267541571E-04 6.18475787113E-04 6.64885901126E-04 7.14730660712E-04 7.68259302759E-04 8.25738640031E-04 8.87454248006E-04 9.53711726393E-04 1.02483803949E-03 1.10118293967E-03 1.18312047841E-03 1.27105060961E-03 1.36540088983E-03 1.46662828055E-03 1.57522105739E-03 1.69170083168E-03 1.81662468963E-03 1.95058745468E-03 2.09422407851E-03 2.24821216649E-03 2.41327464335E-03 2.59018256460E-03 2.77975807988E-03 2.98287755359E-03 3.20047484884E-03 3.43354478011E-03 3.68314674011E-03 3.95040850611E-03 4.23653023056E-03 4.54278862074E-03 4.87054131149E-03 5.22123143469E-03 5.59639238854E-03 5.99765280896E-03 6.42674174447E-03 6.88549403522E-03 7.37585589529E-03 7.89989069666E-03 8.45978495116E-03 9.05785448571E-03 9.69655080388E-03 1.03784676249E-02 1.11063475890E-02 1.18830891155E-02 1.27117533967E-02 1.35955715089E-02 1.45379516162E-02 1.55424862417E-02 1.66129595743E-02 1.77533547766E-02 1.89678612526E-02 2.02608818320E-02 2.16370398173E-02 2.31011858401E-02 2.46584044592E-02 2.63140204338E-02 2.80736045909E-02 2.99429792028E-02 3.19282227804E-02 3.40356741780E-02 3.62719358995E-02 3.86438764823E-02 4.11586318282E-02 4.38236053382E-02 4.66464666988E-02 4.96351491552E-02 5.27978450965E-02 5.61429997665E-02 5.96793029030E-02 6.34156780953E-02 6.73612696423E-02 7.15254266802E-02 7.59176843398E-02 8.05477416860E-02 8.54254361817E-02 9.05607144137E-02 9.59635988123E-02 1.01644150093E-01 1.07612425150E-01 1.13878430127E-01 1.20452068409E-01 1.27343083263E-01 1.34560994901E-01 1.42115031724E-01 1.50014055543E-01 1.58266480601E-01 1.66880186251E-01 1.75862423171E-01 1.85219713078E-01 1.94957741906E-01 2.05081246537E-01 2.15593895186E-01 2.26498161662E-01 2.37795193802E-01 2.49484676476E-01 2.61564689660E-01 2.74031562227E-01 2.86879722186E-01 3.00101544288E-01 3.13687196035E-01 3.27624483294E-01 3.41898696892E-01 3.56492461729E-01 3.71385590131E-01 3.86554941337E-01 4.01974289208E-01 4.17614200412E-01 4.33441925520E-01 4.49421305620E-01 4.65512697191E-01 4.81672918138E-01 4.97855217994E-01 5.14009275375E-01 5.30081225839E-01 5.46013723316E-01 5.61746038245E-01 5.77214195469E-01 5.92351154801E-01 6.07087036984E-01 6.21349397476E-01 6.35063550154E-01 6.48152942590E-01 6.60539584046E-01 6.72144526728E-01 6.82888400133E-01 6.92691997559E-01 7.01476912954E-01 7.09166225353E-01 7.15685227093E-01 7.20962190921E-01 7.24929169956E-01 7.27522823282E-01 7.28685258743E-01 7.28364883326E-01 7.26517250346E-01 7.23105891563E-01 7.18103121333E-01 7.11490799052E-01 7.03261035407E-01 6.93416827479E-01 6.81972607450E-01 6.68954689692E-01 6.54401601342E-01 6.38364282127E-01 6.20906140238E-01 6.02102952462E-01 5.82042598626E-01 5.60824622567E-01 5.38559614491E-01 5.15368412512E-01 4.91381124469E-01 4.66735974689E-01 4.41577984152E-01 4.16057496463E-01 3.90328565994E-01 3.64547228563E-01 3.38869678764E-01 3.13450381634E-01 2.88440149506E-01 2.63984217551E-01 2.40220353583E-01 2.17277039075E-01 1.95271758858E-01 1.74309436678E-01 1.54481052520E-01 1.35862475371E-01 1.18513541882E-01 1.02477407198E-01 8.77801891066E-02 7.44309206556E-02 6.24218196578E-02 5.17288760825E-02 4.23127504687E-02 3.41199683088E-02 2.70843870846E-02 2.11289045390E-02 1.61673691057E-02 1.21066465113E-02 8.84879074084E-03 6.29326318408E-03 4.33914121787E-03 2.88725711028E-03 1.84221029955E-03 1.11420111548E-03 6.23720289356E-04 3.11408871113E-04 1.28472925093E-04 3.39176813313E-05 -5.24645452146E-06 -1.40864591900E-05 -1.01281672263E-05 -4.03922552866E-06 -6.07547904707E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 5 1 i j (l(j)) 0.00000000000E+00 Q_int 1.68699657392E-26 1.79579850515E-26 1.91161755806E-26 2.03490629813E-26 2.16614647877E-26 2.30585092386E-26 2.45456553153E-26 2.61287140737E-26 2.78138713501E-26 2.96077119332E-26 3.15172452941E-26 3.35499329759E-26 3.57137177499E-26 3.80170546521E-26 4.04689440215E-26 4.30789666691E-26 4.58573213151E-26 4.88148644407E-26 5.19631527099E-26 5.53144881276E-26 5.88819661096E-26 6.26795266538E-26 6.67220088106E-26 7.10252086666E-26 7.56059410691E-26 8.04821053292E-26 8.56727551649E-26 9.11981731532E-26 9.70799499849E-26 1.03341068831E-25 1.10005995149E-25 1.17100772284E-25 1.24653123231E-25 1.32692558966E-25 1.41250493759E-25 1.50360367925E-25 1.60057778497E-25 1.70380618317E-25 1.81369224105E-25 1.93066534078E-25 2.05518255728E-25 2.18773044429E-25 2.32882693554E-25 2.47902336866E-25 2.63890663947E-25 2.80910149531E-25 2.99027297629E-25 3.18312901391E-25 3.38842319732E-25 3.60695771801E-25 3.83958650436E-25 4.08721855842E-25 4.35082150782E-25 4.63142538681E-25 4.93012666114E-25 5.24809251254E-25 5.58656539947E-25 5.94686791211E-25 6.33040794034E-25 6.73868417517E-25 7.17329196485E-25 7.63592954877E-25 8.12840469333E-25 8.65264175587E-25 9.21068920410E-25 9.80472762056E-25 1.04370782233E-24 1.11102119359E-24 1.18267590432E-24 1.25895194684E-24 1.34014737145E-24 1.42657945104E-24 1.51858592083E-24 1.61652629811E-24 1.72078328703E-24 1.83176427403E-24 1.94990291974E-24 2.07566085349E-24 2.20952947712E-24 2.35203188521E-24 2.50372490899E-24 2.66520129226E-24 2.83709200751E-24 3.02006872142E-24 3.21484641949E-24 3.42218619980E-24 3.64289824706E-24 3.87784499838E-24 4.12794451330E-24 4.39417406111E-24 4.67757393955E-24 4.97925153981E-24 5.30038567366E-24 5.64223117971E-24 6.00612382670E-24 6.39348553306E-24 6.80582992308E-24 7.24476824142E-24 7.71201564909E-24 8.20939792550E-24 8.73885860269E-24 9.30246655978E-24 9.90242410709E-24 1.05410755918E-23 1.12209165584E-23 1.19446035003E-23 1.27149642400E-23 1.35350089787E-23 1.44079420591E-23 1.53371744862E-23 1.63263372559E-23 1.73792955432E-23 1.85001638055E-23 1.96933218599E-23 2.09634319974E-23 2.23154572009E-23 2.37546805384E-23 2.52867258062E-23 2.69175795047E-23 2.86536142299E-23 3.05016135754E-23 3.24687986388E-23 3.45628562383E-23 3.67919689497E-23 3.91648470792E-23 4.16907626997E-23 4.43795858814E-23 4.72418232593E-23 5.02886590881E-23 5.35319989450E-23 5.69845162510E-23 6.06597017926E-23 6.45719164370E-23 6.87364472479E-23 7.31695672201E-23 7.78885988661E-23 8.29119819046E-23 8.82593453141E-23 9.39515840331E-23 1.00010940608E-22 1.06461092107E-22 1.13327242636E-22 1.20636221829E-22 1.28416589679E-22 1.36698748144E-22 1.45515059938E-22 1.54899974990E-22 1.64890165060E-22 1.75524667033E-22 1.86845035457E-22 1.98895504916E-22 2.11723162882E-22 2.25378133708E-22 2.39913774488E-22 2.55386883554E-22 2.71857922418E-22 2.89391252019E-22 3.08055384226E-22 3.27923249541E-22 3.49072482077E-22 3.71585722922E-22 3.95550943053E-22 4.21061787088E-22 4.48217939204E-22 4.77125512656E-22 5.07897464416E-22 5.40654036552E-22 5.75523226083E-22 6.12641285124E-22 6.52153253298E-22 6.94213524477E-22 7.38986450086E-22 7.86646981304E-22 8.37381352691E-22 8.91387809908E-22 9.48877384357E-22 1.01007471780E-21 1.07521894015E-21 1.14456460386E-21 1.21838267863E-21 1.29696161019E-21 1.38060844742E-21 1.46965004214E-21 1.56443432633E-21 1.66533167164E-21 1.77273633664E-21 1.88706800738E-21 2.00877343735E-21 2.13832819317E-21 2.27623851285E-21 2.42304328397E-21 2.57931614935E-21 2.74566774862E-21 2.92274810426E-21 3.11124916160E-21 3.31190749263E-21 3.52550717412E-21 3.75288285148E-21 3.99492300009E-21 4.25257339710E-21 4.52684081703E-21 4.81879696578E-21 5.12958266833E-21 5.46041232657E-21 5.81257866458E-21 6.18745777997E-21 6.58651452101E-21 7.01130821060E-21 7.46349873929E-21 7.94485305140E-21 8.45725204935E-21 9.00269794335E-21 9.58332207507E-21 1.02013932459E-20 1.08593265824E-20 1.15596929733E-20 1.23052291156E-20 1.30988482078E-20 1.39436513339E-20 1.48429395803E-20 1.58002269354E-20 1.68192540203E-20 1.79040027055E-20 1.90587116700E-20 2.02878929642E-20 2.15963496406E-20 2.29891945221E-20 2.44718701803E-20 2.60501702025E-20 2.77302618303E-20 2.95187100582E-20 3.14225032864E-20 3.34490806283E-20 3.56063609789E-20 3.79027739579E-20 4.03472928488E-20 4.29494696623E-20 4.57194724607E-20 4.86681250899E-20 5.18069494743E-20 5.51482106380E-20 5.87049646316E-20 6.24911095484E-20 6.65214398319E-20 7.08117040850E-20 7.53786666082E-20 8.02401729068E-20 8.54152194220E-20 9.09240277602E-20 9.67881237095E-20 1.03030421352E-19 1.09675312601E-19 1.16748762513E-19 1.24278410747E-19 1.32293679566E-19 1.40825888808E-19 1.49908378264E-19 1.59576637960E-19 1.69868446829E-19 1.80824020337E-19 1.92486167626E-19 2.04900458789E-19 2.18115402936E-19 2.32182637750E-19 2.47157131253E-19 2.63097396605E-19 2.80065720736E-19 2.98128407742E-19 3.17356037962E-19 3.37823743778E-19 3.59611503194E-19 3.82804452350E-19 4.07493218198E-19 4.33774272625E-19 4.61750309418E-19 4.91530645548E-19 5.23231648323E-19 5.56977190095E-19 5.92899132299E-19 6.31137840702E-19 6.71842733883E-19 7.15172867092E-19 7.61297553762E-19 8.10397027102E-19 8.62663144366E-19 9.18300136537E-19 9.77525406362E-19 1.04057037786E-18 1.10768140063E-18 1.17912071243E-18 1.25516746392E-18 1.33611880942E-18 1.42229106806E-18 1.51402095980E-18 1.61166692118E-18 1.71561050589E-18 1.82625787573E-18 1.94404138768E-18 2.06942128337E-18 2.20288748743E-18 2.34496152193E-18 2.49619854422E-18 2.65718951623E-18 2.82856351364E-18 3.01099018405E-18 3.20518236359E-18 3.41189886238E-18 3.63194742960E-18 3.86618790974E-18 4.11553560253E-18 4.38096483943E-18 4.66351279090E-18 4.96428351912E-18 5.28445229219E-18 5.62527017644E-18 5.98806892509E-18 6.37426618203E-18 6.78537102132E-18 7.22298984396E-18 7.68883265486E-18 8.18471974480E-18 8.71258880321E-18 9.27450248973E-18 9.87265649414E-18 1.05093881160E-17 1.11871853978E-17 1.19086968468E-17 1.26767417845E-17 1.34943213628E-17 1.43646302916E-17 1.52910693214E-17 1.62772585325E-17 1.73270514804E-17 1.84445502533E-17 1.96341215015E-17 2.09004135001E-17 2.22483743119E-17 2.36832711225E-17 2.52107108218E-17 2.68366619127E-17 2.85674778337E-17 3.04099217849E-17 3.23711931549E-17 3.44589556533E-17 3.66813672563E-17 3.90471120843E-17 4.15654343353E-17 4.42461744066E-17 4.70998073469E-17 5.01374837871E-17 5.33710735119E-17 5.68132118414E-17 6.04773490037E-17 6.43778026919E-17 6.85298140108E-17 7.29496070319E-17 7.76544521892E-17 8.26627337640E-17 8.79940217215E-17 9.36691481810E-17 9.97102888180E-17 1.06141049516E-16 1.12986558606E-16 1.20273565058E-16 1.28030543002E-16 1.36287802990E-16 1.45077610438E-16 1.54434311701E-16 1.64394468282E-16 1.74996999701E-16 1.86283335568E-16 1.98297577474E-16 2.11086671317E-16 2.24700590745E-16 2.39192532428E-16 2.54619123926E-16 2.71040644963E-16 2.88521262969E-16 3.07129283815E-16 3.26937418724E-16 3.48023068388E-16 3.70468625410E-16 3.94361796263E-16 4.19795943996E-16 4.46870453056E-16 4.75691117636E-16 5.06370555064E-16 5.39028645860E-16 5.73793002170E-16 6.10799466414E-16 6.50192642093E-16 6.92126458826E-16 7.36764773840E-16 7.84282012238E-16 8.34863848571E-16 8.88707932368E-16 9.46024660447E-16 1.00703799905E-15 1.07198635901E-15 1.14112352730E-15 1.21471965876E-15 1.29306233171E-15 1.37645767166E-15 1.46523154753E-15 1.55973084494E-15 1.66032482172E-15 1.76740655077E-15 1.88139445598E-15 2.00273394727E-15 2.13189916100E-15 2.26939481269E-15 2.41575816920E-15 2.57156114807E-15 2.73741255237E-15 2.91396044955E-15 3.10189470378E-15 3.30194967164E-15 3.51490707159E-15 3.74159903856E-15 3.98291137554E-15 4.23978701487E-15 4.51322970272E-15 4.80430792132E-15 5.11415906398E-15 5.44399387954E-15 5.79510120336E-15 6.16885299347E-15 6.56670969149E-15 6.99022592937E-15 7.44105660408E-15 7.92096334419E-15 8.43182139345E-15 8.97562693827E-15 9.55450490792E-15 1.01707172777E-14 1.08266719075E-14 1.15249319509E-14 1.22682258703E-14 1.30594580985E-14 1.39017203881E-14 1.47983038924E-14 1.57527120252E-14 1.67686741513E-14 1.78501601581E-14 1.90013959685E-14 2.02268800538E-14 2.15314010112E-14 2.29200562754E-14 2.43982720368E-14 2.59718244447E-14 2.76468621773E-14 2.94299304677E-14 3.13279966797E-14 3.33484775326E-14 3.54992680822E-14 3.77887725705E-14 4.02259372658E-14 4.28202854199E-14 4.55819544803E-14 4.85217357024E-14 5.16511163163E-14 5.49823244132E-14 5.85283767267E-14 6.23031294958E-14 6.63213326078E-14 7.05986872340E-14 7.51519071818E-14 7.99987842036E-14 8.51582575186E-14 9.06504878174E-14 9.64969360399E-14 1.02720447234E-13 1.09345339822E-13 1.16397500626E-13 1.23904486019E-13 1.31895629602E-13 1.40402156825E-13 1.49457307000E-13 1.59096463184E-13 1.69357290436E-13 1.80279882997E-13 1.91906920951E-13 2.04283837004E-13 2.17458994009E-13 2.31483873941E-13 2.46413279067E-13 2.62305546080E-13 2.79222774052E-13 2.97231067083E-13 3.16400792604E-13 3.36806856337E-13 3.58528994981E-13 3.81652087792E-13 4.06266488237E-13 4.32468377055E-13 4.60360138078E-13 4.90050758293E-13 5.21656253708E-13 5.55300122679E-13 5.91113828478E-13 6.29237312982E-13 6.69819543489E-13 7.13019094806E-13 7.59004768875E-13 8.07956254357E-13 8.60064828762E-13 9.15534105858E-13 9.74580831285E-13 1.03743572948E-12 1.10434440521E-12 1.17556830329E-12 1.25138573013E-12 1.33209294126E-12 1.41800529885E-12 1.50945850406E-12 1.60680990871E-12 1.71043991164E-12 1.82075344511E-12 1.93818155702E-12 2.06318309521E-12 2.19624650040E-12 2.33789171473E-12 2.48867221337E-12 2.64917716723E-12 2.82003374509E-12 3.00190956419E-12 3.19551529893E-12 3.40160745775E-12 3.62099133914E-12 3.85452417825E-12 4.10311849652E-12 4.36774566718E-12 4.64943971091E-12 4.94930133610E-12 5.26850223979E-12 5.60828968595E-12 5.96999137904E-12 6.35502065257E-12 6.76488198838E-12 7.20117690129E-12 7.66561018599E-12 8.15999660212E-12 8.68626792805E-12 9.24648054417E-12 9.84282344542E-12 1.04776268079E-11 1.11533710816E-11 1.18726966924E-11 1.26384143678E-11 1.34535160846E-11 1.43211868026E-11 1.52448168742E-11 1.62280153185E-11 1.72746238999E-11 1.83887321601E-11 1.95746933808E-11 2.08371416054E-11 2.21810097367E-11 2.36115488106E-11 2.51343485325E-11 2.67553590751E-11 2.84809143866E-11 3.03177568849E-11 3.22730638479E-11 3.43544754069E-11 3.65701244388E-11 3.89286683781E-11 4.14393228323E-11 4.41118979824E-11 4.69568365429E-11 4.99852546870E-11 5.32089856324E-11 5.66406256031E-11 6.02935831452E-11 6.41821318280E-11 6.83214654466E-11 7.27277577946E-11 7.74182258217E-11 8.24111965728E-11 8.77261794228E-11 9.33839416457E-11 9.94065899404E-11 1.05817656513E-10 1.12642191676E-10 1.19906860649E-10 1.27640048984E-10 1.35871972075E-10 1.44634794693E-10 1.53962755560E-10 1.63892301602E-10 1.74462230105E-10 1.85713840551E-10 1.97691095958E-10 2.10440794204E-10 2.24012751525E-10 2.38459996612E-10 2.53838978386E-10 2.70209785464E-10 2.87636382252E-10 3.06186858001E-10 3.25933692848E-10 3.46954041435E-10 3.69330033880E-10 3.93149097241E-10 4.18504295805E-10 4.45494696198E-10 4.74225754496E-10 5.04809725182E-10 5.37366105246E-10 5.72022094075E-10 6.08913098400E-10 6.48183251802E-10 6.89985988306E-10 7.34484631830E-10 7.81853043402E-10 8.32276290821E-10 8.85951380895E-10 9.43088022122E-10 1.00390944792E-09 1.06865328663E-09 1.13757249147E-09 1.21093632767E-09 1.28903142199E-09 1.37216288915E-09 1.46065551493E-09 1.55485503215E-09 1.65512946820E-09 1.76187058130E-09 1.87549539342E-09 1.99644781852E-09 2.12520039571E-09 2.26225613531E-09 2.40815048393E-09 2.56345341588E-09 2.72877166203E-09 2.90475107164E-09 3.09207914484E-09 3.29148771349E-09 3.50375579648E-09 3.72971265088E-09 3.97024100072E-09 4.22628049195E-09 4.49883136012E-09 4.78895833471E-09 5.09779480278E-09 5.42654722845E-09 5.77649987157E-09 6.14901979792E-09 6.54556222303E-09 6.96767618907E-09 7.41701061930E-09 7.89532075701E-09 8.40447501680E-09 8.94646228175E-09 9.52339967254E-09 1.01375408138E-08 1.07912846296E-08 1.14871847198E-08 1.22279593202E-08 1.30165019222E-08 1.38558925742E-08 1.47494098998E-08 1.57005438993E-08 1.67130095862E-08 1.77907614748E-08 1.89380090351E-08 2.01592331142E-08 2.14592034377E-08 2.28429972242E-08 2.43160190078E-08 2.58840217360E-08 2.75531292229E-08 2.93298600577E-08 3.12211530443E-08 3.32343942869E-08 3.53774460194E-08 3.76586772849E-08 4.00869966061E-08 4.26718867488E-08 4.54234417236E-08 4.83524061885E-08 5.14702173613E-08 5.47890496652E-08 5.83218622190E-08 6.20824494098E-08 6.60854947029E-08 7.03466279420E-08 7.48824863156E-08 7.97107792617E-08 8.48503575523E-08 9.03212868259E-08 9.61449258484E-08 1.02344009830E-07 1.08942739080E-07 1.15966873399E-07 1.23443832526E-07 1.31402803061E-07 1.39874852272E-07 1.48893049227E-07 1.58492593713E-07 1.68710953467E-07 1.79588010234E-07 1.91166215214E-07 2.03490754537E-07 2.16609725344E-07 2.30574323244E-07 2.45439041805E-07 2.61261884869E-07 2.78104592554E-07 2.96032881766E-07 3.15116702192E-07 3.35430508754E-07 3.57053551578E-07 3.80070184612E-07 4.04570194074E-07 4.30649148043E-07 4.58408768473E-07 4.87957327160E-07 5.19410067137E-07 5.52889651129E-07 5.88526638855E-07 6.26459994959E-07 6.66837629585E-07 7.09816973643E-07 7.55565591057E-07 8.04261830269E-07 8.56095517605E-07 9.11268695109E-07 9.69996405764E-07 1.03250752904E-06 1.09904567010E-06 1.16987010598E-06 1.24525679249E-06 1.32549943561E-06 1.41091063164E-06 1.50182308035E-06 1.59859087585E-06 1.70159088023E-06 1.81122418503E-06 1.92791766641E-06 2.05212563977E-06 2.18433162030E-06 2.32505019612E-06 2.47482902118E-06 2.63425093566E-06 2.80393622177E-06 2.98454500378E-06 3.17677980126E-06 3.38138824530E-06 3.59916596821E-06 3.83095967740E-06 4.07767042541E-06 4.34025708828E-06 4.61974006560E-06 4.91720521615E-06 5.23380804409E-06 5.57077815144E-06 5.92942397369E-06 6.31113781641E-06 6.71740121170E-06 7.14979061474E-06 7.60998346163E-06 8.09976461139E-06 8.62103319601E-06 9.17580990430E-06 9.76624472638E-06 1.03946251880E-05 1.10633851047E-05 1.17751138887E-05 1.25325664428E-05 1.33386736771E-05 1.41965536883E-05 1.51095236414E-05 1.60811123983E-05 1.71150739384E-05 1.82154016206E-05 1.93863433381E-05 2.06324176204E-05 2.19584307420E-05 2.33694948964E-05 2.48710475032E-05 2.64688717154E-05 2.81691181998E-05 2.99783282673E-05 3.19034584360E-05 3.39519065098E-05 3.61315392666E-05 3.84507218499E-05 4.09183489658E-05 4.35438779923E-05 4.63373641132E-05 4.93094975957E-05 5.24716433376E-05 5.58358828145E-05 5.94150585682E-05 6.32228213805E-05 6.72736802875E-05 7.15830555961E-05 7.61673350722E-05 8.10439334791E-05 8.62313556537E-05 9.17492633160E-05 9.76185458183E-05 1.03861395048E-04 1.10501384712E-04 1.17563554229E-04 1.25074497490E-04 1.33062456727E-04 1.41557421762E-04 1.50591234921E-04 1.60197701879E-04 1.70412708760E-04 1.81274345781E-04 1.92823037760E-04 2.05101681829E-04 2.18155792668E-04 2.32033655636E-04 2.46786488117E-04 2.62468609476E-04 2.79137619974E-04 2.96854589022E-04 3.15684253150E-04 3.35695224071E-04 3.56960207218E-04 3.79556231131E-04 4.03564888066E-04 4.29072586189E-04 4.56170813709E-04 4.84956415287E-04 5.15531881035E-04 5.48005648398E-04 5.82492417191E-04 6.19113477992E-04 6.57997054105E-04 6.99278657196E-04 7.43101456679E-04 7.89616662868E-04 8.38983923782E-04 8.91371735470E-04 9.46957865542E-04 1.00592978953E-03 1.06848513955E-03 1.13483216457E-03 1.20519020141E-03 1.27979015552E-03 1.35887499018E-03 1.44270022265E-03 1.53153442558E-03 1.62565973164E-03 1.72537233888E-03 1.83098301438E-03 1.94281759280E-03 2.06121746656E-03 2.18654006371E-03 2.31915930878E-03 2.45946606201E-03 2.60786853112E-03 2.76479264954E-03 2.93068241434E-03 3.10600017615E-03 3.29122687286E-03 3.48686219798E-03 3.69342469357E-03 3.91145175692E-03 4.14149954913E-03 4.38414279269E-03 4.63997444417E-03 4.90960522715E-03 5.19366300913E-03 5.49279200542E-03 5.80765179141E-03 6.13891610404E-03 6.48727141146E-03 6.85341522935E-03 7.23805416104E-03 7.64190163743E-03 8.06567533204E-03 8.51009422562E-03 8.97587529384E-03 9.46372979159E-03 9.97435910654E-03 1.05084501552E-02 1.10666702943E-02 1.16496617221E-02 1.22580353438E-02 1.28923640778E-02 1.35531755821E-02 1.42409443813E-02 1.49560833793E-02 1.56989347469E-02 1.64697601780E-02 1.72687305143E-02 1.80959147461E-02 1.89512684032E-02 1.98346213613E-02 2.07456650982E-02 2.16839394469E-02 2.26488189051E-02 2.36394985764E-02 2.46549798337E-02 2.56940558136E-02 2.67552968689E-02 2.78370361268E-02 2.89373553237E-02 3.00540711075E-02 3.11847220252E-02 3.23265564347E-02 3.34765216096E-02 3.46312543241E-02 3.57870732369E-02 3.69399734099E-02 3.80856233256E-02 3.92193647801E-02 4.03362160523E-02 4.14308787552E-02 4.24977487879E-02 4.35309318043E-02 4.45242636096E-02 4.54713358811E-02 4.63655275821E-02 4.72000424046E-02 4.79679525242E-02 4.86622488905E-02 4.92758981948E-02 4.98019065664E-02 5.02333899338E-02 5.05636508613E-02 5.07862615240E-02 5.08951523198E-02 5.08847054384E-02 5.07498525102E-02 5.04861752526E-02 5.00900078098E-02 4.95585392615E-02 4.88899145503E-02 4.80833318565E-02 4.71391342452E-02 4.60588932172E-02 4.48454816430E-02 4.35031334356E-02 4.20374872484E-02 4.04556114763E-02 3.87660078991E-02 3.69785914510E-02 3.51046438381E-02 3.31567390615E-02 3.11486393526E-02 2.90951605812E-02 2.70120068678E-02 2.49155749049E-02 2.28227293663E-02 2.07505517365E-02 1.87160659071E-02 1.67359449283E-02 1.48262043399E-02 1.30018884904E-02 1.12767571310E-02 9.66298029532E-03 8.17084997444E-03 6.80851731357E-03 5.58176393295E-03 4.49381544585E-03 3.54520427384E-03 2.73368740469E-03 2.05422279183E-03 1.49900566702E-03 1.05756317414E-03 7.16902509972E-04 4.61704296808E-04 2.75910108568E-04 1.47475576656E-04 6.53444022532E-05 1.85962062453E-05 -3.11388298840E-06 -9.09527613019E-06 -7.15557828385E-06 -3.14431377191E-06 -5.25510548077E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 6 1 i j (l(j)) 0.00000000000E+00 Q_int 1.81852224372E-27 1.93580685192E-27 2.06065566746E-27 2.19355653982E-27 2.33502878204E-27 2.48562519998E-27 2.64593425242E-27 2.81658235046E-27 2.99823630526E-27 3.19160593360E-27 3.39744683150E-27 3.61656332674E-27 3.84981162180E-27 4.09810313945E-27 4.36240808420E-27 4.64375923338E-27 4.94325597270E-27 5.26206859219E-27 5.60144285910E-27 5.96270488574E-27 6.34726631135E-27 6.75662981805E-27 7.19239500264E-27 7.65626462707E-27 8.15005127197E-27 8.67568441939E-27 9.23521799229E-27 9.83083838027E-27 1.04648729830E-26 1.11397993043E-26 1.18582546337E-26 1.26230463508E-26 1.34371628960E-26 1.43037854473E-26 1.52263003513E-26 1.62083123549E-26 1.72536586915E-26 1.83664240746E-26 1.95509566590E-26 2.08118850317E-26 2.21541362977E-26 2.35829553330E-26 2.51039252790E-26 2.67229893589E-26 2.84464741009E-26 3.02811140589E-26 3.22340781286E-26 3.43129975596E-26 3.65259957747E-26 3.88817201126E-26 4.13893756174E-26 4.40587610075E-26 4.69003069644E-26 4.99251168908E-26 5.31450102972E-26 5.65725689872E-26 6.02211862209E-26 6.41051190496E-26 6.82395440253E-26 7.26406165036E-26 7.73255337708E-26 8.23126022432E-26 8.76213089994E-26 9.32723979265E-26 9.92879507775E-26 1.05691473456E-25 1.12507987866E-25 1.19764129687E-25 1.27488252450E-25 1.35710538333E-25 1.44463116097E-25 1.53780186630E-25 1.63698156589E-25 1.74255780656E-25 1.85494312978E-25 1.97457668365E-25 2.10192593887E-25 2.23748851545E-25 2.38179412709E-25 2.53540665111E-25 2.69892633181E-25 2.87299212589E-25 3.05828419924E-25 3.25552658466E-25 3.46549001108E-25 3.68899491516E-25 3.92691464717E-25 4.18017888366E-25 4.44977726015E-25 4.73676323816E-25 5.04225822166E-25 5.36745593895E-25 5.71362710721E-25 6.08212439781E-25 6.47438772195E-25 6.89194985712E-25 7.33644243647E-25 7.80960232444E-25 8.31327840360E-25 8.84943879923E-25 9.42017856975E-25 1.00277278933E-24 1.06744607820E-24 1.13629043589E-24 1.20957487321E-24 1.28758575071E-24 1.37062789760E-24 1.45902580286E-24 1.55312488326E-24 1.65329283299E-24 1.75992106051E-24 1.87342621795E-24 1.99425182918E-24 2.12287002292E-24 2.25978337758E-24 2.40552688506E-24 2.56067004132E-24 2.72581907162E-24 2.90161929942E-24 3.08875766793E-24 3.28796542443E-24 3.50002097758E-24 3.72575293909E-24 3.96604336153E-24 4.22183118499E-24 4.49411590597E-24 4.78396148298E-24 5.09250049396E-24 5.42093856185E-24 5.77055906557E-24 6.14272815490E-24 6.53890008871E-24 6.96062291751E-24 7.40954453248E-24 7.88741910466E-24 8.39611393943E-24 8.93761677299E-24 9.51404353954E-24 1.01276466393E-23 1.07808237398E-23 1.14761271450E-23 1.22162737681E-23 1.30041557484E-23 1.38428517519E-23 1.47356390016E-23 1.56860060835E-23 1.66976665777E-23 1.77745735698E-23 1.89209350976E-23 2.01412305940E-23 2.14402283904E-23 2.28230043493E-23 2.42949616983E-23 2.58618521430E-23 2.75297983423E-23 2.93053178328E-23 3.11953484960E-23 3.32072756684E-23 3.53489609998E-23 3.76287731729E-23 4.00556206039E-23 4.26389862529E-23 4.53889646782E-23 4.83163014811E-23 5.14324352951E-23 5.47495424817E-23 5.82805847109E-23 6.20393596081E-23 6.60405546696E-23 7.02998046537E-23 7.48337526741E-23 7.96601152332E-23 8.47977514497E-23 9.02667367513E-23 9.60884413195E-23 1.02285613594E-22 1.08882469164E-22 1.15904785388E-22 1.23380002124E-22 1.31337328948E-22 1.39807859291E-22 1.48824691940E-22 1.58423060370E-22 1.68640470419E-22 1.79516846845E-22 1.91094689333E-22 2.03419238562E-22 2.16538652982E-22 2.30504197000E-22 2.45370441293E-22 2.61195476043E-22 2.78041137930E-22 2.95973251755E-22 3.15061887657E-22 3.35381634911E-22 3.57011893387E-22 3.80037183807E-22 4.04547478015E-22 4.30638550538E-22 4.58412352832E-22 4.87977411659E-22 5.19449253157E-22 5.52950854260E-22 5.88613123235E-22 6.26575411210E-22 6.66986056688E-22 7.10002965188E-22 7.55794226262E-22 8.04538770308E-22 8.56427067747E-22 9.11661873290E-22 9.70459018206E-22 1.03304825369E-21 1.09967414861E-21 1.17059704520E-21 1.24609407631E-21 1.32646024832E-21 1.41200959392E-21 1.50307639915E-21 1.60001650966E-21 1.70320872120E-21 1.81305625973E-21 1.92998835707E-21 2.05446192811E-21 2.18696335625E-21 2.32801039393E-21 2.47815418575E-21 2.63798142212E-21 2.80811663172E-21 2.98922462191E-21 3.18201307644E-21 3.38723532077E-21 3.60569326570E-21 3.83824054084E-21 4.08578583023E-21 4.34929642301E-21 4.62980199313E-21 4.92839862284E-21 5.24625308568E-21 5.58460740563E-21 5.94478371039E-21 6.32818939761E-21 6.73632263435E-21 7.17077821118E-21 7.63325377392E-21 8.12555645715E-21 8.64960994575E-21 9.20746199164E-21 9.80129241552E-21 1.04334216245E-20 1.11063196792E-20 1.18226159457E-20 1.25851093694E-20 1.33967794128E-20 1.42607976969E-20 1.51805403951E-20 1.61596014254E-20 1.72018064937E-20 1.83112280431E-20 1.94922011668E-20 2.07493405477E-20 2.20875584906E-20 2.35120841169E-20 2.50284837977E-20 2.66426829047E-20 2.83609889632E-20 3.01901162999E-20 3.21372122783E-20 3.42098852282E-20 3.64162341745E-20 3.87648804855E-20 4.12650015602E-20 4.39263666899E-20 4.67593752316E-20 4.97750972443E-20 5.29853167452E-20 5.64025777563E-20 6.00402333207E-20 6.39124976797E-20 6.80345018161E-20 7.24223525783E-20 7.70931956189E-20 8.20652823915E-20 8.73580414695E-20 9.29921544633E-20 9.89896368350E-20 1.05373923924E-19 1.12169962523E-19 1.19404308355E-19 1.27105229845E-19 1.35302818578E-19 1.44029106884E-19 1.53318193001E-19 1.63206374324E-19 1.73732289229E-19 1.84937068062E-19 1.96864493851E-19 2.09561173395E-19 2.23076719380E-19 2.37463944241E-19 2.52779066532E-19 2.69081930601E-19 2.86436240434E-19 3.04909808581E-19 3.24574821138E-19 3.45508119817E-19 3.67791502207E-19 3.91512041404E-19 4.16762426252E-19 4.43641323531E-19 4.72253763498E-19 5.02711550303E-19 5.35133698867E-19 5.69646899938E-19 6.06386015144E-19 6.45494603969E-19 6.87125484722E-19 7.31441331682E-19 7.78615310756E-19 8.28831756134E-19 8.82286890589E-19 9.39189592224E-19 9.99762210676E-19 1.06424143597E-18 1.13287922337E-18 1.20594377796E-18 1.28372060263E-18 1.36651361371E-18 1.45464632853E-18 1.54846312962E-18 1.64833061037E-18 1.75463900754E-18 1.86780372614E-18 1.98826696262E-18 2.11649943284E-18 2.25300221137E-18 2.39830868952E-18 2.55298665958E-18 2.71764053352E-18 2.89291370478E-18 3.07949106238E-18 3.27810166717E-18 3.48952160072E-18 3.71457699789E-18 3.95414727504E-18 4.20916856645E-18 4.48063738228E-18 4.76961450261E-18 5.07722912246E-18 5.40468326429E-18 5.75325647497E-18 6.12431082574E-18 6.51929623468E-18 6.93975613235E-18 7.38733349296E-18 7.86377725444E-18 8.37094915261E-18 8.91083099609E-18 9.48553241050E-18 1.00972990820E-17 1.07485215326E-17 1.14417444615E-17 1.21796766885E-17 1.29652017395E-17 1.38013891139E-17 1.46915062792E-17 1.56390314391E-17 1.66476671249E-17 1.77213546639E-17 1.88642895803E-17 2.00809379902E-17 2.13760540534E-17 2.27546985512E-17 2.42222586620E-17 2.57844690123E-17 2.74474340862E-17 2.92176520795E-17 3.11020402922E-17 3.31079621592E-17 3.52432560246E-17 3.75162657706E-17 3.99358734237E-17 4.25115338620E-17 4.52533117626E-17 4.81719209309E-17 5.12787661670E-17 5.45859878327E-17 5.81065092917E-17 6.18540874111E-17 6.58433663190E-17 7.00899346300E-17 7.46103863607E-17 7.94223857756E-17 8.45447364134E-17 8.99974545672E-17 9.58018475030E-17 1.01980596723E-16 1.08557846599E-16 1.15559298726E-16 1.23012312354E-16 1.30946011303E-16 1.39391397776E-16 1.48381473505E-16 1.57951368718E-16 1.68138479420E-16 1.78982613529E-16 1.90526146440E-16 2.02814186619E-16 2.15894751882E-16 2.29818957037E-16 2.44641213640E-16 2.60419442620E-16 2.77215300631E-16 2.95094421000E-16 3.14126670212E-16 3.34386420941E-16 3.55952842693E-16 3.78910211193E-16 4.03348237731E-16 4.29362419743E-16 4.57054414016E-16 4.86532433951E-16 5.17911672468E-16 5.51314752169E-16 5.86872204549E-16 6.24722980115E-16 6.65014991406E-16 7.07905691041E-16 7.53562687048E-16 8.02164397887E-16 8.53900749721E-16 9.08973918666E-16 9.67599120912E-16 1.03000545381E-15 1.09643679122E-15 1.16715273661E-15 1.24242963759E-15 1.32256166598E-15 1.40786196747E-15 1.49866388543E-15 1.59532226374E-15 1.69821483355E-15 1.80774368960E-15 1.92433686170E-15 2.04844998761E-15 2.18056809378E-15 2.32120749104E-15 2.47091779252E-15 2.63028406173E-15 2.79992909923E-15 2.98051587680E-15 3.17275012866E-15 3.37738310976E-15 3.59521453208E-15 3.82709569033E-15 4.07393278926E-15 4.33669048564E-15 4.61639565868E-15 4.91414142378E-15 5.23109140506E-15 5.56848428364E-15 5.92763863931E-15 6.30995810444E-15 6.71693685054E-15 7.15016542862E-15 7.61133698644E-15 8.10225388676E-15 8.62483475263E-15 9.18112196715E-15 9.77328965710E-15 1.04036521916E-14 1.10746732292E-14 1.17889753484E-14 1.25493502995E-14 1.33587699185E-14 1.42203977442E-14 1.51376013854E-14 1.61139656858E-14 1.71533067385E-14 1.82596868045E-14 1.94374301940E-14 2.06911401717E-14 2.20257169543E-14 2.34463768672E-14 2.49586727393E-14 2.65685156125E-14 2.82821978523E-14 3.01064177497E-14 3.20483057105E-14 3.41154521348E-14 3.63159370951E-14 3.86583619295E-14 4.11518828743E-14 4.38062468660E-14 4.66318296539E-14 4.96396763732E-14 5.28415447346E-14 5.62499510030E-14 5.98782189419E-14 6.37405319177E-14 6.78519883660E-14 7.22286608377E-14 7.68876588562E-14 8.18471958314E-14 8.71266602921E-14 9.27466917163E-14 9.87292612562E-14 1.05097757673E-13 1.11877078819E-13 1.19093729026E-13 1.26775922775E-13 1.34953695066E-13 1.43659018907E-13 1.52925930385E-13 1.62790661821E-13 1.73291783508E-13 1.84470354611E-13 1.96370083804E-13 2.09037500274E-13 2.22522135775E-13 2.36876718429E-13 2.52157379045E-13 2.68423870753E-13 2.85739802830E-13 3.04172889616E-13 3.23795215507E-13 3.44683517064E-13 3.66919483333E-13 3.90590075565E-13 4.15787867587E-13 4.42611408149E-13 4.71165606679E-13 5.01562143952E-13 5.33919909289E-13 5.68365465994E-13 6.05033546854E-13 6.44067581656E-13 6.85620258851E-13 7.29854123092E-13 7.76942212383E-13 8.27068734545E-13 8.80429791183E-13 9.37234141717E-13 9.97704024826E-13 1.06207602651E-12 1.13060200830E-12 1.20355009259E-12 1.28120571417E-12 1.36387273945E-12 1.45187465333E-12 1.54555583137E-12 1.64528288562E-12 1.75144610420E-12 1.86446097851E-12 1.98476983409E-12 2.11284356269E-12 2.24918346962E-12 2.39432323817E-12 2.54883102208E-12 2.71331167539E-12 2.88840911993E-12 3.07480887698E-12 3.27324075034E-12 3.48448169397E-12 3.70935885470E-12 3.94875282171E-12 4.20360108572E-12 4.47490169497E-12 4.76371721480E-12 5.07117885819E-12 5.39849093977E-12 5.74693562037E-12 6.11787791190E-12 6.51277104850E-12 6.93316222754E-12 7.38069862576E-12 7.85713391410E-12 8.36433514396E-12 8.90429004805E-12 9.47911492024E-12 1.00910628629E-11 1.07425326859E-11 1.14360783069E-11 1.21744188651E-11 1.29604493002E-11 1.37972518734E-11 1.46881081444E-11 1.56365120434E-11 1.66461835047E-11 1.77210831605E-11 1.88654279097E-11 2.00837075495E-11 2.13807024576E-11 2.27615023771E-11 2.42315265410E-11 2.57965449735E-11 2.74627012970E-11 2.92365368401E-11 3.11250165760E-11 3.31355565054E-11 3.52760529177E-11 3.75549136008E-11 3.99810909801E-11 4.25641175290E-11 4.53141432788E-11 4.82419760796E-11 5.13591243156E-11 5.46778420640E-11 5.82111781440E-11 6.19730269694E-11 6.59781843829E-11 7.02424051785E-11 7.47824666042E-11 7.96162337148E-11 8.47627311297E-11 9.02422173790E-11 9.60762662047E-11 1.02287851351E-10 1.08901438120E-10 1.15943080231E-10 1.23440523411E-10 1.31423315469E-10 1.39922923421E-10 1.48972859271E-10 1.58608812303E-10 1.68868791810E-10 1.79793278030E-10 1.91425383133E-10 2.03811023220E-10 2.16999101203E-10 2.31041701660E-10 2.45994298603E-10 2.61915976878E-10 2.78869668043E-10 2.96922402034E-10 3.16145574182E-10 3.36615231793E-10 3.58412377925E-10 3.81623295347E-10 4.06339893075E-10 4.32660073663E-10 4.60688126637E-10 4.90535146772E-10 5.22319479978E-10 5.56167199408E-10 5.92212611645E-10 6.30598797857E-10 6.71478189337E-10 7.15013182245E-10 7.61376791789E-10 8.10753350941E-10 8.63339254831E-10 9.19343754144E-10 9.78989801609E-10 1.04251495482E-09 1.11017233862E-09 1.18223167098E-09 1.25898035866E-09 1.34072466352E-09 1.42779094828E-09 1.52052700513E-09 1.61930347155E-09 1.72451534159E-09 1.83658357909E-09 1.95595683574E-09 2.08311328764E-09 2.21856259158E-09 2.36284797469E-09 2.51654846262E-09 2.68028125809E-09 2.85470427894E-09 3.04051886628E-09 3.23847267584E-09 3.44936276276E-09 3.67403887520E-09 3.91340696983E-09 4.16843296393E-09 4.44014674258E-09 4.72964643567E-09 5.03810298433E-09 5.36676501882E-09 5.71696406418E-09 6.09012010321E-09 6.48774751422E-09 6.91146141555E-09 7.36298444012E-09 7.84415397496E-09 8.35692989234E-09 8.90340281093E-09 9.48580292231E-09 1.01065094224E-08 1.07680605892E-08 1.14731645546E-08 1.22247108145E-08 1.30257825340E-08 1.38796696993E-08 1.47898831790E-08 1.57601697554E-08 1.67945281992E-08 1.78972264547E-08 1.90728200207E-08 2.03261716065E-08 2.16624721571E-08 2.30872633436E-08 2.46064616201E-08 2.62263839657E-08 2.79537754257E-08 2.97958385810E-08 3.17602650888E-08 3.38552694376E-08 3.60896250780E-08 3.84727031013E-08 4.10145136465E-08 4.37257502349E-08 4.66178372437E-08 4.97029807470E-08 5.29942229632E-08 5.65055005784E-08 6.02517072223E-08 6.42487604007E-08 6.85136732117E-08 7.30646311916E-08 7.79210746701E-08 8.31037870353E-08 8.86349893470E-08 9.45384417599E-08 1.00839552262E-07 1.07565493270E-07 1.14745326656E-07 1.22410137831E-07 1.30593179573E-07 1.39330026288E-07 1.48658739521E-07 1.58620045519E-07 1.69257525770E-07 1.80617821478E-07 1.92750853004E-07 2.05710055423E-07 2.19552631371E-07 2.34339822510E-07 2.50137200989E-07 2.67014982425E-07 2.85048362004E-07 3.04317875474E-07 3.24909786886E-07 3.46916505122E-07 3.70437031379E-07 3.95577439978E-07 4.22451394987E-07 4.51180705430E-07 4.81895921968E-07 5.14736978250E-07 5.49853880299E-07 5.87407447635E-07 6.27570110050E-07 6.70526764308E-07 7.16475695333E-07 7.65629566836E-07 8.18216486678E-07 8.74481152696E-07 9.34686085169E-07 9.99112952539E-07 1.06806399757E-06 1.14186357160E-06 1.22085978526E-06 1.30542628449E-06 1.39596416153E-06 1.49290401130E-06 1.59670814418E-06 1.70787296734E-06 1.82693154744E-06 1.95445636869E-06 2.09106230124E-06 2.23740979595E-06 2.39420832296E-06 2.56222007278E-06 2.74226393975E-06 2.93521980979E-06 3.14203317544E-06 3.36372010326E-06 3.60137258039E-06 3.85616426935E-06 4.12935670178E-06 4.42230594477E-06 4.73646977550E-06 5.07341540259E-06 5.43482777563E-06 5.82251852711E-06 6.23843559449E-06 6.68467357341E-06 7.16348485679E-06 7.67729161868E-06 8.22869870574E-06 8.82050750390E-06 9.45573085235E-06 1.01376090824E-05 1.08696272641E-05 1.16555337484E-05 1.24993601016E-05 1.34054425305E-05 1.43784449091E-05 1.54233835208E-05 1.65456536395E-05 1.77510580821E-05 1.90458378708E-05 2.04367051562E-05 2.19308785586E-05 2.35361210971E-05 2.52607808868E-05 2.71138347930E-05 2.91049352463E-05 3.12444604323E-05 3.35435680840E-05 3.60142531158E-05 3.86694093542E-05 4.15228956334E-05 4.45896065380E-05 4.78855480909E-05 5.14279186993E-05 5.52351956882E-05 5.93272277648E-05 6.37253337753E-05 6.84524081315E-05 7.35330332978E-05 7.89935997495E-05 8.48624338245E-05 9.11699339083E-05 9.79487154046E-05 1.05233764957E-04 1.13062604401E-04 1.21475464932E-04 1.30515471986E-04 1.40228841336E-04 1.50665086907E-04 1.61877240815E-04 1.73922086130E-04 1.86860402855E-04 2.00757227595E-04 2.15682127379E-04 2.31709488061E-04 2.48918817704E-04 2.67395065286E-04 2.87228955046E-04 3.08517336692E-04 3.31363551642E-04 3.55877815356E-04 3.82177615745E-04 4.10388127469E-04 4.40642641858E-04 4.73083011978E-04 5.07860112202E-04 5.45134311449E-04 5.85075958991E-04 6.27865881486E-04 6.73695889605E-04 7.22769292265E-04 7.75301416155E-04 8.31520127802E-04 8.91666355003E-04 9.55994603961E-04 1.02477346792E-03 1.09828612252E-03 1.17683080245E-03 1.26072125333E-03 1.35028715197E-03 1.44587448740E-03 1.54784589414E-03 1.65658092848E-03 1.77247627728E-03 1.89594588813E-03 2.02742100828E-03 2.16735011908E-03 2.31619875112E-03 2.47444916436E-03 2.64259987617E-03 2.82116501922E-03 3.01067350955E-03 3.21166800444E-03 3.42470362816E-03 3.65034644273E-03 3.88917163989E-03 4.14176142925E-03 4.40870259741E-03 4.69058371146E-03 4.98799194078E-03 5.30150947021E-03 5.63170947854E-03 5.97915165633E-03 6.34437723861E-03 6.72790352923E-03 7.13021789599E-03 7.55177121832E-03 7.99297077297E-03 8.45417254728E-03 8.93567297517E-03 9.43770009676E-03 9.96040415022E-03 1.05038476125E-02 1.10679947156E-02 1.16527004752E-02 1.22576992818E-02 1.28825931170E-02 1.35268394732E-02 1.41897390707E-02 1.48704234852E-02 1.55678428158E-02 1.62807535450E-02 1.70077067635E-02 1.77470369533E-02 1.84968515465E-02 1.92550214994E-02 2.00191731430E-02 2.07866815946E-02 2.15546660345E-02 2.23199871705E-02 2.30792472288E-02 2.38287928236E-02 2.45647210630E-02 2.52828892541E-02 2.59789285643E-02 2.66482619849E-02 2.72861269220E-02 2.78876027094E-02 2.84476432962E-02 2.89611153073E-02 2.94228416065E-02 2.98276504120E-02 3.01704299135E-02 3.04461882321E-02 3.06501184309E-02 3.07776681475E-02 3.08246132568E-02 3.07871348072E-02 3.06618982926E-02 3.04461341332E-02 3.01377180521E-02 2.97352498416E-02 2.92381288324E-02 2.86466242122E-02 2.79619381881E-02 2.71862598735E-02 2.63228076982E-02 2.53758581057E-02 2.43507583310E-02 2.32539211381E-02 2.20927995682E-02 2.08758399937E-02 1.96124121170E-02 1.83127149814E-02 1.69876585878E-02 1.56487213272E-02 1.43077841351E-02 1.29769430457E-02 1.16683026404E-02 1.03937537336E-02 9.16473947998E-03 7.99201488690E-03 6.88540542857E-03 5.85357103955E-03 4.90378215631E-03 4.04171462914E-03 3.27127018653E-03 2.59442865387E-03 2.01113726732E-03 1.51924115600E-03 1.11445738166E-03 7.90392838837E-04 5.38603871278E-04 3.48692726726E-04 2.09466108727E-04 1.12546408423E-04 5.01284291950E-05 1.43404751994E-05 -2.41381923918E-06 -7.08731613147E-06 -5.60498750127E-06 -2.47582864620E-06 -4.15950760835E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 5 1 i j (l(j)) 0.00000000000E+00 Q_int 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 6 1 i j (l(j)) 0.00000000000E+00 Q_int 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6 6 1 i j (l(j)) 0.00000000000E+00 Q_int 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5D 2 4.00 Wavefunction 1.14184918509E-15 1.18548152281E-15 1.23078113930E-15 1.27781174462E-15 1.32663948328E-15 1.37733302736E-15 1.42996367301E-15 1.48460544074E-15 1.54133517954E-15 1.60023267495E-15 1.66138076130E-15 1.72486543815E-15 1.79077599129E-15 1.85920511830E-15 1.93024905892E-15 2.00400773039E-15 2.08058486801E-15 2.16008817100E-15 2.24262945397E-15 2.32832480421E-15 2.41729474493E-15 2.50966440477E-15 2.60556369380E-15 2.70512748618E-15 2.80849580991E-15 2.91581404373E-15 3.02723312160E-15 3.14290974495E-15 3.26300660311E-15 3.38769260207E-15 3.51714310206E-15 3.65154016419E-15 3.79107280648E-15 3.93593726969E-15 4.08633729336E-15 4.24248440230E-15 4.40459820412E-15 4.57290669808E-15 4.74764659572E-15 4.92906365384E-15 5.11741302006E-15 5.31295959172E-15 5.51597838843E-15 5.72675493881E-15 5.94558568213E-15 6.17277838519E-15 6.40865257517E-15 6.65353998902E-15 6.90778504002E-15 7.17174530219E-15 7.44579201314E-15 7.73031059623E-15 8.02570120260E-15 8.33237927397E-15 8.65077612693E-15 8.98133955952E-15 9.32453448105E-15 9.68084356594E-15 1.00507679326E-14 1.04348278480E-14 1.08335634599E-14 1.12475355558E-14 1.16773263522E-14 1.21235403133E-14 1.25868050010E-14 1.30677719577E-14 1.35671176223E-14 1.40855442820E-14 1.46237810597E-14 1.51825849397E-14 1.57627418319E-14 1.63650676776E-14 1.69904095968E-14 1.76396470796E-14 1.83136932233E-14 1.90134960162E-14 1.97400396715E-14 2.04943460108E-14 2.12774759018E-14 2.20905307499E-14 2.29346540475E-14 2.38110329822E-14 2.47209001062E-14 2.56655350701E-14 2.66462664226E-14 2.76644734786E-14 2.87215882598E-14 2.98190975079E-14 3.09585447763E-14 3.21415326004E-14 3.33697247518E-14 3.46448485781E-14 3.59686974324E-14 3.73431331954E-14 3.87700888937E-14 4.02515714191E-14 4.17896643504E-14 4.33865308844E-14 4.50444168777E-14 4.67656540059E-14 4.85526630422E-14 5.04079572626E-14 5.23341459805E-14 5.43339382160E-14 5.64101465066E-14 5.85656908624E-14 6.08036028729E-14 6.31270299707E-14 6.55392398580E-14 6.80436251025E-14 7.06437079087E-14 7.33431450715E-14 7.61457331193E-14 7.90554136535E-14 8.20762788918E-14 8.52125774237E-14 8.84687201861E-14 9.18492866662E-14 9.53590313428E-14 9.90028903727E-14 1.02785988533E-13 1.06713646430E-13 1.10791387978E-13 1.15024948175E-13 1.19420281161E-13 1.23983568599E-13 1.28721228363E-13 1.33639923568E-13 1.38746571939E-13 1.44048355544E-13 1.49552730888E-13 1.55267439406E-13 1.61200518349E-13 1.67360312088E-13 1.73755483846E-13 1.80395027889E-13 1.87288282170E-13 1.94444941463E-13 2.01875070999E-13 2.09589120623E-13 2.17597939489E-13 2.25912791318E-13 2.34545370240E-13 2.43507817242E-13 2.52812737242E-13 2.62473216818E-13 2.72502842610E-13 2.82915720434E-13 2.93726495114E-13 3.04950371083E-13 3.16603133768E-13 3.28701171785E-13 3.41261499995E-13 3.54301783429E-13 3.67840362134E-13 3.81896276968E-13 3.96489296377E-13 4.11639944200E-13 4.27369528532E-13 4.43700171693E-13 4.60654841340E-13 4.78257382773E-13 4.96532552466E-13 5.15506052888E-13 5.35204568649E-13 5.55655804035E-13 5.76888521966E-13 5.98932584448E-13 6.21818994579E-13 6.45579940143E-13 6.70248838886E-13 6.95860385512E-13 7.22450600479E-13 7.50056880657E-13 7.78718051928E-13 8.08474423787E-13 8.39367846034E-13 8.71441767636E-13 9.04741297830E-13 9.39313269568E-13 9.75206305381E-13 1.01247088577E-12 1.05115942018E-12 1.09132632075E-12 1.13302807879E-12 1.17632334428E-12 1.22127300832E-12 1.26794028877E-12 1.31639081920E-12 1.36669274114E-12 1.41891679996E-12 1.47313644435E-12 1.52942792961E-12 1.58787042492E-12 1.64854612468E-12 1.71154036407E-12 1.77694173914E-12 1.84484223133E-12 1.91533733691E-12 1.98852620122E-12 2.06451175818E-12 2.14340087499E-12 2.22530450246E-12 2.31033783107E-12 2.39862045295E-12 2.49027653007E-12 2.58543496890E-12 2.68422960167E-12 2.78679937461E-12 2.89328854337E-12 3.00384687586E-12 3.11862986298E-12 3.23779893720E-12 3.36152169966E-12 3.48997215589E-12 3.62333096050E-12 3.76178567127E-12 3.90553101296E-12 4.05476915113E-12 4.20970997649E-12 4.37057140011E-12 4.53757965987E-12 4.71096963863E-12 4.89098519462E-12 5.07787950437E-12 5.27191541878E-12 5.47336583282E-12 5.68251406933E-12 5.89965427745E-12 6.12509184638E-12 6.35914383482E-12 6.60213941694E-12 6.85442034529E-12 7.11634143148E-12 7.38827104519E-12 7.67059163220E-12 7.96370025236E-12 8.26800913793E-12 8.58394627339E-12 8.91195599737E-12 9.25249962757E-12 9.60605610955E-12 9.97312269034E-12 1.03542156178E-11 1.07498708665E-11 1.11606448919E-11 1.15871154125E-11 1.20298822229E-11 1.24895680366E-11 1.29668193626E-11 1.34623074141E-11 1.39767290528E-11 1.45108077688E-11 1.50652946982E-11 1.56409696796E-11 1.62386423506E-11 1.68591532869E-11 1.75033751842E-11 1.81722140854E-11 1.88666106554E-11 1.95875415037E-11 2.03360205580E-11 2.11131004901E-11 2.19198741965E-11 2.27574763357E-11 2.36270849234E-11 2.45299229898E-11 2.54672602996E-11 2.64404151375E-11 2.74507561628E-11 2.84997043337E-11 2.95887349063E-11 3.07193795088E-11 3.18932282963E-11 3.31119321869E-11 3.43772051833E-11 3.56908267838E-11 3.70546444850E-11 3.84705763797E-11 3.99406138551E-11 4.14668243933E-11 4.30513544787E-11 4.46964326174E-11 4.64043724711E-11 4.81775761110E-11 5.00185373963E-11 5.19298454816E-11 5.39141884580E-11 5.59743571342E-11 5.81132489609E-11 6.03338721065E-11 6.26393496872E-11 6.50329241597E-11 6.75179618817E-11 7.00979578457E-11 7.27765405950E-11 7.55574773268E-11 7.84446791902E-11 8.14422067872E-11 8.45542758834E-11 8.77852633372E-11 9.11397132553E-11 9.46223433838E-11 9.82380517433E-11 1.01991923517E-10 1.05889238205E-10 1.09935477043E-10 1.14136330722E-10 1.18497707379E-10 1.23025740917E-10 1.27726799627E-10 1.32607495143E-10 1.37674691745E-10 1.42935516008E-10 1.48397366830E-10 1.54067925835E-10 1.59955168175E-10 1.66067373751E-10 1.72413138855E-10 1.79001388257E-10 1.85841387765E-10 1.92942757248E-10 2.00315484170E-10 2.07969937638E-10 2.15916882979E-10 2.24167496888E-10 2.32733383141E-10 2.41626588919E-10 2.50859621747E-10 2.60445467091E-10 2.70397606612E-10 2.80730037137E-10 2.91457290335E-10 3.02594453161E-10 3.14157189071E-10 3.26161760054E-10 3.38625049500E-10 3.51564585946E-10 3.64998567729E-10 3.78945888581E-10 3.93426164200E-10 4.08459759838E-10 4.24067818943E-10 4.40272292895E-10 4.57095971881E-10 4.74562516941E-10 4.92696493255E-10 5.11523404683E-10 5.31069729638E-10 5.51362958324E-10 5.72431631400E-10 5.94305380118E-10 6.17014967999E-10 6.40592334096E-10 6.65070637917E-10 6.90484306058E-10 7.16869080621E-10 7.44262069485E-10 7.72701798490E-10 8.02228265625E-10 8.32882997278E-10 8.64709106640E-10 8.97751354342E-10 9.32056211401E-10 9.67671924584E-10 1.00464858426E-09 1.04303819484E-09 1.08289474794E-09 1.12427429828E-09 1.16723504254E-09 1.21183740122E-09 1.25814410359E-09 1.30622027593E-09 1.35613353312E-09 1.40795407372E-09 1.46175477874E-09 1.51761131407E-09 1.57560223698E-09 1.63580910652E-09 1.69831659830E-09 1.76321262353E-09 1.83058845266E-09 1.90053884378E-09 1.97316217584E-09 2.04856058706E-09 2.12684011852E-09 2.20811086336E-09 2.29248712155E-09 2.38008756070E-09 2.47103538292E-09 2.56545849810E-09 2.66348970380E-09 2.76526687203E-09 2.87093314313E-09 2.98063712711E-09 3.09453311262E-09 3.21278128399E-09 3.33554794646E-09 3.46300576011E-09 3.59533398265E-09 3.73271872159E-09 3.87535319592E-09 4.02343800787E-09 4.17718142505E-09 4.33679967334E-09 4.50251724102E-09 4.67456719444E-09 4.85319150583E-09 5.03864139362E-09 5.23117767574E-09 5.43107113640E-09 5.63860290698E-09 5.85406486137E-09 6.07776002647E-09 6.31000300835E-09 6.55112043473E-09 6.80145141434E-09 7.06134801382E-09 7.33117575288E-09 7.61131411835E-09 7.90215709791E-09 8.20411373416E-09 8.51760869989E-09 8.84308289535E-09 9.18099406833E-09 9.53181745788E-09 9.89604646276E-09 1.02741933353E-08 1.06667899017E-08 1.10743883102E-08 1.14975618075E-08 1.19369055451E-08 1.23930374158E-08 1.28665989234E-08 1.33582560845E-08 1.38687003650E-08 1.43986496531E-08 1.49488492682E-08 1.55200730100E-08 1.61131242457E-08 1.67288370407E-08 1.73680773312E-08 1.80317441420E-08 1.87207708509E-08 1.94361265017E-08 2.01788171662E-08 2.09498873602E-08 2.17504215115E-08 2.25815454855E-08 2.34444281684E-08 2.43402831111E-08 2.52703702360E-08 2.62359976085E-08 2.72385232773E-08 2.82793571834E-08 2.93599631436E-08 3.04818609090E-08 3.16466283023E-08 3.28559034363E-08 3.41113870183E-08 3.54148447417E-08 3.67681097687E-08 3.81730853088E-08 3.96317472954E-08 4.11461471640E-08 4.27184147378E-08 4.43507612228E-08 4.60454823172E-08 4.78049614399E-08 4.96316730829E-08 5.15281862903E-08 5.34971682720E-08 5.55413881539E-08 5.76637208729E-08 5.98671512191E-08 6.21547780339E-08 6.45298185678E-08 6.69956130045E-08 6.95556291584E-08 7.22134673512E-08 7.49728654752E-08 7.78377042496E-08 8.08120126778E-08 8.38999737135E-08 8.71059301430E-08 9.04343906920E-08 9.38900363665E-08 9.74777270353E-08 1.01202508264E-07 1.05069618410E-07 1.09084495991E-07 1.13252787330E-07 1.17580354496E-07 1.22073283550E-07 1.26737893099E-07 1.31580743186E-07 1.36608644511E-07 1.41828668011E-07 1.47248154802E-07 1.52874726500E-07 1.58716295943E-07 1.64781078316E-07 1.71077602701E-07 1.77614724072E-07 1.84401635747E-07 1.91447882317E-07 1.98763373061E-07 2.06358395889E-07 2.14243631799E-07 2.22430169904E-07 2.30929523019E-07 2.39753643853E-07 2.48914941813E-07 2.58426300456E-07 2.68301095603E-07 2.78553214146E-07 2.89197073577E-07 3.00247642256E-07 3.11720460460E-07 3.23631662235E-07 3.35997998078E-07 3.48836858491E-07 3.62166298433E-07 3.76005062703E-07 3.90372612300E-07 4.05289151780E-07 4.20775657668E-07 4.36853907947E-07 4.53546512681E-07 4.70876945800E-07 4.88869578106E-07 5.07549711535E-07 5.26943614732E-07 5.47078559978E-07 5.67982861539E-07 5.89685915466E-07 6.12218240924E-07 6.35611523102E-07 6.59898657750E-07 6.85113797431E-07 7.11292399532E-07 7.38471276108E-07 7.66688645632E-07 7.95984186725E-07 8.26399093931E-07 8.57976135627E-07 8.90759714141E-07 9.24795928174E-07 9.60132637593E-07 9.96819530713E-07 1.03490819414E-06 1.07445218527E-06 1.11550710759E-06 1.15813068883E-06 1.20238286208E-06 1.24832585006E-06 1.29602425255E-06 1.34554513720E-06 1.39695813381E-06 1.45033553213E-06 1.50575238353E-06 1.56328660643E-06 1.62301909582E-06 1.68503383696E-06 1.74941802339E-06 1.81626217945E-06 1.88566028752E-06 1.95770992007E-06 2.03251237678E-06 2.11017282689E-06 2.19080045694E-06 2.27450862425E-06 2.36141501613E-06 2.45164181530E-06 2.54531587153E-06 2.64256887797E-06 2.74353756552E-06 2.84836387798E-06 2.95719518224E-06 3.07018447972E-06 3.18749061670E-06 3.30927849363E-06 3.43571931997E-06 3.56699084718E-06 3.70327761174E-06 3.84477118394E-06 3.99167047943E-06 4.14418198714E-06 4.30252008945E-06 4.46690735920E-06 4.63757486609E-06 4.81476250229E-06 4.99871932651E-06 5.18970390541E-06 5.38798467620E-06 5.59384033593E-06 5.80756021678E-06 6.02944470337E-06 6.25980564718E-06 6.49896681026E-06 6.74726431406E-06 7.00504711549E-06 7.27267750109E-06 7.55053158029E-06 7.83899983254E-06 8.13848763531E-06 8.44941585311E-06 8.77222141216E-06 9.10735792396E-06 9.45529630694E-06 9.81652547691E-06 1.01915529920E-05 1.05809058017E-05 1.09851309635E-05 1.14047964170E-05 1.18404917858E-05 1.22928291948E-05 1.27624441347E-05 1.32499963472E-05 1.37561707707E-05 1.42816784488E-05 1.48272576037E-05 1.53936745992E-05 1.59817250903E-05 1.65922350245E-05 1.72260619045E-05 1.78840959766E-05 1.85672614097E-05 1.92765176788E-05 2.00128608582E-05 2.07773249732E-05 2.15709835376E-05 2.23949510530E-05 2.32503844917E-05 2.41384849520E-05 2.50604993847E-05 2.60177222658E-05 2.70114974864E-05 2.80432201445E-05 2.91143385861E-05 3.02263563525E-05 3.13808343460E-05 3.25793929861E-05 3.38237144674E-05 3.51155451409E-05 3.64566979009E-05 3.78490548062E-05 3.92945696062E-05 4.07952705681E-05 4.23532632499E-05 4.39707334615E-05 4.56499503112E-05 4.73932693859E-05 4.92031360405E-05 5.10820887858E-05 5.30327628988E-05 5.50578939782E-05 5.71603218965E-05 5.93429946773E-05 6.16089726437E-05 6.39614326553E-05 6.64036725643E-05 6.89391158273E-05 7.15713161873E-05 7.43039627456E-05 7.71408850187E-05 8.00860583048E-05 8.31436091937E-05 8.63178213357E-05 8.96131413731E-05 9.30341851709E-05 9.65857441689E-05 1.00272792112E-04 1.04100491917E-04 1.08074202856E-04 1.12199488013E-04 1.16482121989E-04 1.20928098937E-04 1.25543640847E-04 1.30335206233E-04 1.35309499021E-04 1.40473477900E-04 1.45834365915E-04 1.51399660507E-04 1.57177143874E-04 1.63174893744E-04 1.69401294564E-04 1.75865049068E-04 1.82575190327E-04 1.89541094219E-04 1.96772492385E-04 2.04279485648E-04 2.12072557950E-04 2.20162590821E-04 2.28560878377E-04 2.37279142858E-04 2.46329550783E-04 2.55724729689E-04 2.65477785499E-04 2.75602320520E-04 2.86112452165E-04 2.97022832286E-04 3.08348667304E-04 3.20105739069E-04 3.32310426451E-04 3.44979727793E-04 3.58131284168E-04 3.71783403488E-04 3.85955085526E-04 4.00666047871E-04 4.15936752794E-04 4.31788435193E-04 4.48243131463E-04 4.65323709535E-04 4.83053899943E-04 5.01458328081E-04 5.20562547624E-04 5.40393075176E-04 5.60977426221E-04 5.82344152348E-04 6.04522879876E-04 6.27544349847E-04 6.51440459552E-04 6.76244305497E-04 7.01990227973E-04 7.28713857265E-04 7.56452161486E-04 7.85243496215E-04 8.15127655868E-04 8.46145926993E-04 8.78341143441E-04 9.11757743547E-04 9.46441829382E-04 9.82441228127E-04 1.01980555565E-03 1.05858628235E-03 1.09883680141E-03 1.14061249941E-03 1.18397082954E-03 1.22897138734E-03 1.27567598922E-03 1.32414875366E-03 1.37445618537E-03 1.42666726240E-03 1.48085352630E-03 1.53708917542E-03 1.59545116156E-03 1.65601928995E-03 1.71887632273E-03 1.78410808601E-03 1.85180358065E-03 1.92205509695E-03 1.99495833316E-03 2.07061251817E-03 2.14912053840E-03 2.23058906898E-03 2.31512870942E-03 2.40285412392E-03 2.49388418639E-03 2.58834213040E-03 2.68635570407E-03 2.78805733032E-03 2.89358427225E-03 3.00307880420E-03 3.11668838833E-03 3.23456585707E-03 3.35686960155E-03 3.48376376610E-03 3.61541844919E-03 3.75200991073E-03 3.89372078604E-03 4.04074030674E-03 4.19326452851E-03 4.35149656616E-03 4.51564683598E-03 4.68593330565E-03 4.86258175194E-03 5.04582602618E-03 5.23590832803E-03 5.43307948729E-03 5.63759925436E-03 5.84973659923E-03 6.06977001930E-03 6.29798785623E-03 6.53468862191E-03 6.78018133382E-03 7.03478585979E-03 7.29883327256E-03 7.57266621401E-03 7.85663926950E-03 8.15111935219E-03 8.45648609765E-03 8.77313226885E-03 9.10146417155E-03 9.44190208033E-03 9.79488067520E-03 1.01608494890E-02 1.05402733653E-02 1.09336329278E-02 1.13414250595E-02 1.17641633936E-02 1.22023788146E-02 1.26566199703E-02 1.31274537946E-02 1.36154660402E-02 1.41212618222E-02 1.46454661717E-02 1.51887245991E-02 1.57517036668E-02 1.63350915722E-02 1.69395987382E-02 1.75659584129E-02 1.82149272778E-02 1.88872860620E-02 1.95838401646E-02 2.03054202822E-02 2.10528830424E-02 2.18271116412E-02 2.26290164841E-02 2.34595358299E-02 2.43196364357E-02 2.52103142014E-02 2.61325948139E-02 2.70875343877E-02 2.80762201015E-02 2.90997708284E-02 3.01593377582E-02 3.12561050096E-02 3.23912902301E-02 3.35661451809E-02 3.47819563046E-02 3.60400452734E-02 3.73417695134E-02 3.86885227034E-02 4.00817352436E-02 4.15228746918E-02 4.30134461612E-02 4.45549926785E-02 4.61490954950E-02 4.77973743483E-02 4.95014876679E-02 5.12631327203E-02 5.30840456882E-02 5.49660016769E-02 5.69108146424E-02 5.89203372338E-02 6.09964605442E-02 6.31411137605E-02 6.53562637071E-02 6.76439142723E-02 7.00061057107E-02 7.24449138124E-02 7.49624489274E-02 7.75608548385E-02 8.02423074684E-02 8.30090134137E-02 8.58632082911E-02 8.88071548866E-02 9.18431410927E-02 9.49734776231E-02 9.82004954895E-02 1.01526543228E-01 1.04953983860E-01 1.08485191574E-01 1.12122548106E-01 1.15868438821E-01 1.19725248456E-01 1.23695356522E-01 1.27781132349E-01 1.31984929753E-01 1.36309081302E-01 1.40755892178E-01 1.45327633602E-01 1.50026535821E-01 1.54854780613E-01 1.59814493331E-01 1.64907734428E-01 1.70136490477E-01 1.75502664655E-01 1.81008066674E-01 1.86654402154E-01 1.92443261421E-01 1.98376107703E-01 2.04454264738E-01 2.10678903763E-01 2.17051029889E-01 2.23571467847E-01 2.30240847109E-01 2.37059586386E-01 2.44027877490E-01 2.51145668590E-01 2.58412646848E-01 2.65828220471E-01 2.73391500182E-01 2.81101280140E-01 2.88956018346E-01 2.96953816556E-01 3.05092399760E-01 3.13369095270E-01 3.21780811467E-01 3.30324016294E-01 3.38994715549E-01 3.47788431078E-01 3.56700178962E-01 3.65724447792E-01 3.74855177174E-01 3.84085736566E-01 3.93408904620E-01 4.02816849163E-01 4.12301107998E-01 4.21852570711E-01 4.31461461677E-01 4.41117324499E-01 4.50809008077E-01 4.60524654596E-01 4.70251689661E-01 4.79976814871E-01 4.89686003133E-01 4.99364497007E-01 5.08996810411E-01 5.18566734037E-01 5.28057344792E-01 5.37451019651E-01 5.46729454274E-01 5.55873686759E-01 5.64864126904E-01 5.73680591359E-01 5.82302345026E-01 5.90708149081E-01 5.98876315955E-01 6.06784771613E-01 6.14411125427E-01 6.21732747923E-01 6.28726856623E-01 6.35370610186E-01 6.41641210947E-01 6.47516015945E-01 6.52972656399E-01 6.57989165533E-01 6.62544114546E-01 6.66616756393E-01 6.70187176937E-01 6.73236452871E-01 6.75746815672E-01 6.77701820652E-01 6.79086520026E-01 6.79887638672E-01 6.80093751085E-01 6.79695457777E-01 6.78685559158E-01 6.77059224656E-01 6.74814154619E-01 6.71950732261E-01 6.68472162639E-01 6.64384595425E-01 6.59697227961E-01 6.54422384853E-01 6.48575570128E-01 6.42175487828E-01 6.35244026682E-01 6.27806204469E-01 6.19890067552E-01 6.11526541103E-01 6.02749225620E-01 5.93594135498E-01 5.84099375691E-01 5.74304752903E-01 5.64251318265E-01 5.53980839133E-01 5.43535198467E-01 5.32955721272E-01 5.22282428770E-01 5.11553222388E-01 5.00803001230E-01 4.90062718556E-01 4.79358384801E-01 4.68710026955E-01 4.58130616568E-01 4.47624981313E-01 4.37191696649E-01 4.26834512104E-01 4.16559065589E-01 4.06370745875E-01 3.96274696927E-01 3.86275822323E-01 3.76378789761E-01 3.66588035602E-01 3.56907769446E-01 3.47341978704E-01 3.37894433148E-01 3.28569678075E-01 3.19370085726E-01 3.10298800583E-01 3.01358767112E-01 2.92552733877E-01 2.83883257506E-01 2.75352706496E-01 2.66963264828E-01 2.58716935391E-01 2.50615543202E-01 2.42660738398E-01 2.34853999025E-01 2.27196633601E-01 2.19689783472E-01 2.12334424977E-01 2.05131371429E-01 1.98081274955E-01 1.91184628217E-01 1.84441766060E-01 1.77852867124E-01 1.71417955478E-01 1.65136902320E-01 1.59009427811E-01 1.53035103073E-01 1.47213352427E-01 1.41543455903E-01 1.36024552078E-01 1.30655641264E-01 1.25435589081E-01 1.20363130443E-01 1.15436873946E-01 1.10655306675E-01 1.06016799414E-01 1.01519612232E-01 9.71619004300E-02 9.29417207981E-02 8.88570381477E-02 8.49057320667E-02 8.10856038454E-02 7.73943835139E-02 7.38297369365E-02 7.03892729018E-02 6.70705501523E-02 6.38710842973E-02 6.07883545572E-02 5.78198102897E-02 5.49628772552E-02 5.22149635821E-02 4.95734654005E-02 4.70357721183E-02 4.45992713212E-02 4.22613532847E-02 4.00194150935E-02 3.78708643703E-02 3.58131226236E-02 3.38436282291E-02 3.19598390649E-02 3.01592348267E-02 2.84393190512E-02 2.67976208800E-02 2.52316965983E-02 2.37391309818E-02 2.23175384860E-02 2.09645643113E-02 1.96778853742E-02 1.84552112117E-02 1.72942848435E-02 1.61928836120E-02 1.51488200171E-02 1.41599425557E-02 1.32241365762E-02 1.23393251493E-02 1.15034699584E-02 1.07145722039E-02 9.97067351783E-03 9.26985688052E-03 8.61024753049E-03 7.99001385642E-03 7.40736826076E-03 6.86056798334E-03 6.34791587388E-03 5.86776110255E-03 5.41849979871E-03 4.99857560864E-03 4.60648016445E-03 4.24075345734E-03 3.89998410987E-03 3.58280954322E-03 3.28791603654E-03 3.01403867699E-03 2.75996120038E-03 2.52451572302E-03 2.30658236705E-03 2.10508878213E-03 1.91900956724E-03 1.74736559726E-03 1.58922325949E-03 1.44369360600E-03 1.30993142787E-03 1.18713425797E-03 1.07454130910E-03 9.71432354291E-04 8.77126556537E-04 7.90981254777E-04 7.12390713237E-04 6.40784840944E-04 5.75627888092E-04 5.16417125739E-04 4.62681515029E-04 4.13980371859E-04 3.69902032587E-04 3.30062526039E-04 2.94104256704E-04 2.61694703680E-04 2.32525139483E-04 2.06309372548E-04 1.82782516779E-04 1.61699791206E-04 1.42835352381E-04 1.25981161823E-04 1.10945890460E-04 9.75538616690E-05 8.56440342023E-05 7.50690259988E-05 6.56941795525E-05 5.73966692723E-05 5.00646509973E-05 4.35964536000E-05 3.78998123957E-05 3.28911438774E-05 2.84948611169E-05 2.46427290113E-05 2.12732583961E-05 1.83311380230E-05 1.57667725248E-05 1.35363350040E-05 1.15999482183E-05 9.92195479127E-06 8.47059890671E-06 7.21765279566E-06 6.13807276330E-06 5.20968308095E-06 4.41288609884E-06 3.73039697070E-06 3.14700142449E-06 2.64933505804E-06 2.22568268930E-06 1.86579634455E-06 1.56073052433E-06 1.30269344563E-06 1.08491301916E-06 9.01516382557E-07 7.47421872295E-07 6.18242379640E-07 5.10199098408E-07 4.20044733655E-07 3.44995301126E-07 2.82669706500E-07 2.31036351120E-07 1.88366066621E-07 1.53190734611E-07 1.24266998971E-07 1.00544527426E-07 8.11383256411E-08 6.53046511361E-08 5.24201157691E-08 4.19636044073E-08 3.35006736718E-08 2.66701283621E-08 2.11725043842E-08 1.67602157951E-08 1.32291500179E-08 1.04115194744E-08 8.16979992988E-09 6.39160586302E-09 4.98537127554E-09 3.87672066953E-09 3.00542956234E-09 2.32288700761E-09 1.78998426727E-09 1.37536415630E-09 1.05397477874E-09 8.05879510234E-10 6.15282274909E-10 4.69733533313E-10 3.57387451761E-10 2.70968395412E-10 2.04724763326E-10 1.54125702643E-10 1.15614692481E-10 8.64100631930E-11 6.43441062943E-11 4.77337933744E-11 3.52772859042E-11 2.59714070192E-11 1.90460836012E-11 1.39124725568E-11 1.01220772268E-11 7.33465443986E-12 5.29312406757E-12 3.80403353250E-12 2.72241047217E-12 1.94006713855E-12 1.37660829498E-12 9.72547382614E-13 6.84059565545E-13 4.79000022719E-13 3.33895838797E-13 2.31683671487E-13 1.60016059725E-13 1.09999295749E-13 7.52572887327E-14 5.12405027850E-14 3.47182511824E-14 2.34075039283E-14 1.57028325934E-14 1.04809105529E-14 6.95969630102E-15 4.59751989349E-15 3.02113714444E-15 1.97470325779E-15 1.28377391020E-15 8.30043597766E-16 5.33714378900E-16 3.41257458260E-16 2.16965098345E-16 1.37151614316E-16 8.61953312845E-17 5.38525650034E-17 3.34454106592E-17 2.06462610078E-17 1.26674114660E-17 7.72400155746E-18 4.68026932111E-18 2.81798666989E-18 1.68582220744E-18 1.00196849327E-18 5.91602620579E-19 3.46979377551E-19 2.02133435553E-19 1.16948991264E-19 6.71956370803E-20 3.83383941363E-20 2.17188338343E-20 1.22154605062E-20 6.82047256483E-21 3.78016188956E-21 2.07949160391E-21 1.13530827229E-21 6.15090187767E-22 3.30666460797E-22 1.76370239675E-22 9.33256875016E-23 4.89862517236E-23 2.55035230462E-23 1.31684416765E-23 6.74266451356E-24 3.42330687248E-24 1.72318062741E-24 8.59883194390E-25 4.25328231068E-25 2.08514786193E-25 1.01304469159E-25 4.87696954842E-26 2.32622191376E-26 1.09921144723E-26 5.14504347249E-27 2.38518803432E-27 1.09503845608E-27 4.97801320824E-28 2.24051946668E-28 9.98280998093E-29 4.40263832655E-29 1.92164588386E-29 8.29998244344E-30 3.54704794049E-30 1.49963269289E-30 6.27150617579E-31 2.59399024657E-31 1.06099667210E-31 4.29089427017E-32 1.71556768414E-32 6.78002847668E-33 2.64822801379E-33 1.02215136073E-33 3.89803738802E-34 0.00000000000E+00 5D 2 4.00 Wavefunction 1.13221671571E-15 1.17548097755E-15 1.22039845323E-15 1.26703231537E-15 1.31544815052E-15 1.36571405142E-15 1.41790071279E-15 1.47208153072E-15 1.52833270590E-15 1.58673335083E-15 1.64736560104E-15 1.71031473063E-15 1.77566927217E-15 1.84352114127E-15 1.91396576581E-15 1.98710222013E-15 2.06303336444E-15 2.14186598942E-15 2.22371096644E-15 2.30868340349E-15 2.39690280706E-15 2.48849325023E-15 2.58358354715E-15 2.68230743423E-15 2.78480375820E-15 2.89121667141E-15 3.00169583456E-15 3.11639662718E-15 3.23548036615E-15 3.35911453262E-15 3.48747300750E-15 3.62073631607E-15 3.75909188179E-15 3.90273429000E-15 4.05186556150E-15 4.20669543673E-15 4.36744167070E-15 4.53433033931E-15 4.70759615724E-15 4.88748280812E-15 5.07424328718E-15 5.26814025713E-15 5.46944641755E-15 5.67844488839E-15 5.89542960820E-15 6.12070574751E-15 6.35459013801E-15 6.59741171816E-15 6.84951199585E-15 7.11124552862E-15 7.38298042239E-15 7.66509884915E-15 7.95799758443E-15 8.26208856534E-15 8.57779946994E-15 8.90557431872E-15 9.24587409909E-15 9.59917741368E-15 9.96598115353E-15 1.03468011968E-14 1.07421731345E-14 1.11526530236E-14 1.15788181690E-14 1.20212679357E-14 1.24806245916E-14 1.29575341827E-14 1.34526674418E-14 1.39667207316E-14 1.45004170241E-14 1.50545069179E-14 1.56297696931E-14 1.62270144078E-14 1.68470810359E-14 1.74908416481E-14 1.81592016391E-14 1.88531010000E-14 1.95735156414E-14 2.03214587650E-14 2.10979822890E-14 2.19041783277E-14 2.27411807272E-14 2.36101666599E-14 2.45123582805E-14 2.54490244448E-14 2.64214824939E-14 2.74311001071E-14 2.84792972257E-14 2.95675480495E-14 3.06973831107E-14 3.18703914259E-14 3.30882227316E-14 3.43525898035E-14 3.56652708664E-14 3.70281120943E-14 3.84430302072E-14 3.99120151670E-14 4.14371329758E-14 4.30205285819E-14 4.46644288964E-14 4.63711459249E-14 4.81430800195E-14 4.99827232547E-14 5.18926629318E-14 5.38755852184E-14 5.59342789256E-14 5.80716394308E-14 6.02906727495E-14 6.25944997628E-14 6.49863606074E-14 6.74696192315E-14 7.00477681271E-14 7.27244332407E-14 7.55033790739E-14 7.83885139771E-14 8.13838956469E-14 8.44937368324E-14 8.77224112602E-14 9.10744597858E-14 9.45545967799E-14 9.81677167587E-14 1.01918901268E-13 1.05813426028E-13 1.09856768357E-13 1.14054614871E-13 1.18412869485E-13 1.22937661710E-13 1.27635355283E-13 1.32512557109E-13 1.37576126557E-13 1.42833185106E-13 1.48291126361E-13 1.53957626450E-13 1.59840654825E-13 1.65948485463E-13 1.72289708506E-13 1.78873242347E-13 1.85708346162E-13 1.92804632945E-13 2.00172083017E-13 2.07821058070E-13 2.15762315735E-13 2.24007024714E-13 2.32566780488E-13 2.41453621625E-13 2.50680046708E-13 2.60259031920E-13 2.70204049286E-13 2.80529085626E-13 2.91248662223E-13 3.02377855250E-13 3.13932316967E-13 3.25928297741E-13 3.38382668896E-13 3.51312946445E-13 3.64737315721E-13 3.78674656954E-13 3.93144571830E-13 4.08167411048E-13 4.23764302954E-13 4.39957183246E-13 4.56768825831E-13 4.74222874851E-13 4.92343877940E-13 5.11157320743E-13 5.30689662766E-13 5.50968374582E-13 5.72021976473E-13 5.93880078534E-13 6.16573422325E-13 6.40133924099E-13 6.64594719694E-13 6.89990211135E-13 7.16356115017E-13 7.43729512736E-13 7.72148902644E-13 8.01654254192E-13 8.32287064140E-13 8.64090414927E-13 8.97109035255E-13 9.31389363000E-13 9.66979610521E-13 1.00392983247E-12 1.04229199618E-12 1.08212005477E-12 1.12347002301E-12 1.16640005610E-12 1.21097053149E-12 1.25724413373E-12 1.30528594272E-12 1.35516352516E-12 1.40694702961E-12 1.46070928517E-12 1.51652590387E-12 1.57447538702E-12 1.63463923563E-12 1.69710206503E-12 1.76195172386E-12 1.82927941764E-12 1.89917983704E-12 1.97175129102E-12 2.04709584517E-12 2.12531946517E-12 2.20653216587E-12 2.29084816603E-12 2.37838604889E-12 2.46926892904E-12 2.56362462550E-12 2.66158584150E-12 2.76329035116E-12 2.86888119320E-12 2.97850687212E-12 3.09232156710E-12 3.21048534882E-12 3.33316440455E-12 3.46053127192E-12 3.59276508158E-12 3.73005180911E-12 3.87258453657E-12 4.02056372411E-12 4.17419749183E-12 4.33370191253E-12 4.49930131556E-12 4.67122860238E-12 4.84972557405E-12 5.03504327135E-12 5.22744232779E-12 5.42719333627E-12 5.63457722952E-12 5.84988567532E-12 6.07342148663E-12 6.30549904750E-12 6.54644475523E-12 6.79659747941E-12 7.05630903850E-12 7.32594469466E-12 7.60588366744E-12 7.89651966714E-12 8.19826144848E-12 8.51153338554E-12 8.83677606858E-12 9.17444692369E-12 9.52502085611E-12 9.88899091816E-12 1.02668690027E-11 1.06591865630E-11 1.10664953602E-11 1.14893682394E-11 1.19283999352E-11 1.23842079083E-11 1.28574332136E-11 1.33487414022E-11 1.38588234570E-11 1.43883967649E-11 1.49382061257E-11 1.55090247992E-11 1.61016555932E-11 1.67169319923E-11 1.73557193302E-11 1.80189160067E-11 1.87074547514E-11 1.94223039352E-11 2.01644689325E-11 2.09349935348E-11 2.17349614194E-11 2.25654976726E-11 2.34277703728E-11 2.43229922328E-11 2.52524223058E-11 2.62173677557E-11 2.72191856959E-11 2.82592850976E-11 2.93391287718E-11 3.04602354264E-11 3.16241818020E-11 3.28326048898E-11 3.40872042335E-11 3.53897443198E-11 3.67420570599E-11 3.81460443663E-11 3.96036808268E-11 4.11170164826E-11 4.26881797108E-11 4.43193802180E-11 4.60129121484E-11 4.77711573096E-11 4.95965885230E-11 5.14917731014E-11 5.34593764597E-11 5.55021658637E-11 5.76230143217E-11 5.98249046255E-11 6.21109335454E-11 6.44843161851E-11 6.69483905043E-11 6.95066220122E-11 7.21626086423E-11 7.49200858123E-11 7.77829316775E-11 8.07551725853E-11 8.38409887377E-11 8.70447200705E-11 9.03708723572E-11 9.38241235458E-11 9.74093303377E-11 1.01131535019E-10 1.04995972551E-10 1.09008077933E-10 1.13173493847E-10 1.17498078594E-10 1.21987914330E-10 1.26649315623E-10 1.31488838334E-10 1.36513288836E-10 1.41729733587E-10 1.47145509068E-10 1.52768232101E-10 1.58605810563E-10 1.64666454506E-10 1.70958687704E-10 1.77491359641E-10 1.84273657959E-10 1.91315121375E-10 1.98625653102E-10 2.06215534773E-10 2.14095440901E-10 2.22276453897E-10 2.30770079648E-10 2.39588263708E-10 2.48743408091E-10 2.58248388717E-10 2.68116573522E-10 2.78361841254E-10 2.88998600999E-10 3.00041812438E-10 3.11507006894E-10 3.23410309172E-10 3.35768460236E-10 3.48598840756E-10 3.61919495551E-10 3.75749158969E-10 3.90107281232E-10 4.05014055794E-10 4.20490447741E-10 4.36558223276E-10 4.53239980329E-10 4.70559180342E-10 4.88540181266E-10 5.07208271816E-10 5.26589707035E-10 5.46711745227E-10 5.67602686285E-10 5.89291911499E-10 6.11809924872E-10 6.35188396026E-10 6.59460204741E-10 6.84659487195E-10 7.10821683978E-10 7.37983589931E-10 7.66183405899E-10 7.95460792453E-10 8.25856925672E-10 8.57414555053E-10 8.90178063633E-10 9.24193530410E-10 9.59508795148E-10 9.96173525662E-10 1.03423928767E-09 1.07375961731E-09 1.11479009644E-09 1.15738843082E-09 1.20161453123E-09 1.24753059779E-09 1.29520120737E-09 1.34469340446E-09 1.39607679546E-09 1.44942364655E-09 1.50480898533E-09 1.56231070635E-09 1.62200968068E-09 1.68398986961E-09 1.74833844273E-09 1.81514590057E-09 1.88450620185E-09 1.95651689562E-09 2.03127925847E-09 2.10889843697E-09 2.18948359550E-09 2.27314806985E-09 2.36000952655E-09 2.45019012842E-09 2.54381670632E-09 2.64102093755E-09 2.74193953107E-09 2.84671441972E-09 2.95549295986E-09 3.06842813861E-09 3.18567878900E-09 3.30740981336E-09 3.43379241525E-09 3.56500434022E-09 3.70123012578E-09 3.84266136100E-09 3.98949695586E-09 4.14194342107E-09 4.30021515851E-09 4.46453476268E-09 4.63513333387E-09 4.81225080309E-09 4.99613626954E-09 5.18704835094E-09 5.38525554726E-09 5.59103661832E-09 5.80468097582E-09 6.02648909041E-09 6.25677291423E-09 6.49585631964E-09 6.74407555474E-09 7.00177971623E-09 7.26933124039E-09 7.54710641282E-09 7.83549589761E-09 8.13490528678E-09 8.44575567072E-09 8.76848423036E-09 9.10354485205E-09 9.45140876589E-09 9.81256520844E-09 1.01875221108E-08 1.05768068129E-08 1.09809668052E-08 1.14005704988E-08 1.18362080244E-08 1.22884920626E-08 1.27580587058E-08 1.32455683521E-08 1.37517066345E-08 1.42771853853E-08 1.48227436368E-08 1.53891486610E-08 1.59771970483E-08 1.65877158281E-08 1.72215636319E-08 1.78796319007E-08 1.85628461387E-08 1.92721672151E-08 2.00085927150E-08 2.07731583429E-08 2.15669393789E-08 2.23910521910E-08 2.32466558052E-08 2.41349535354E-08 2.50571946757E-08 2.60146762573E-08 2.70087448730E-08 2.80407985700E-08 2.91122888173E-08 3.02247225458E-08 3.13796642684E-08 3.25787382797E-08 3.38236309407E-08 3.51160930500E-08 3.64579423063E-08 3.78510658646E-08 3.92974229903E-08 4.07990478140E-08 4.23580521930E-08 4.39766286806E-08 4.56570536097E-08 4.74016902942E-08 4.92129923526E-08 5.10935071580E-08 5.30458794212E-08 5.50728549096E-08 5.71772843088E-08 5.93621272311E-08 6.16304563781E-08 6.39854618615E-08 6.64304556895E-08 6.89688764244E-08 7.16042940180E-08 7.43404148324E-08 7.71810868518E-08 8.01303050938E-08 8.31922172280E-08 8.63711294080E-08 8.96715123275E-08 9.30980075074E-08 9.66554338222E-08 1.00348794277E-07 1.04183283045E-07 1.08164292766E-07 1.12297422137E-07 1.16588483780E-07 1.21043512420E-07 1.25668773365E-07 1.30470771324E-07 1.35456259550E-07 1.40632249334E-07 1.46006019871E-07 1.51585128490E-07 1.57377421284E-07 1.63391044143E-07 1.69634454207E-07 1.76116431760E-07 1.82846092577E-07 1.89832900739E-07 1.97086681945E-07 2.04617637327E-07 2.12436357793E-07 2.20553838922E-07 2.28981496422E-07 2.37731182184E-07 2.46815200948E-07 2.56246327603E-07 2.66037825150E-07 2.76203463354E-07 2.86757538099E-07 2.97714891497E-07 3.09090932752E-07 3.20901659828E-07 3.33163681944E-07 3.45894242924E-07 3.59111245446E-07 3.72833276213E-07 3.87079632083E-07 4.01870347207E-07 4.17226221189E-07 4.33168848336E-07 4.49720648019E-07 4.66904896188E-07 4.84745758105E-07 5.03268322312E-07 5.22498635908E-07 5.42463741167E-07 5.63191713559E-07 5.84711701219E-07 6.07053965925E-07 6.30249925647E-07 6.54332198708E-07 6.79334649650E-07 7.05292436831E-07 7.32242061859E-07 7.60221420903E-07 7.89269857965E-07 8.19428220191E-07 8.50738915289E-07 8.83245971144E-07 9.16995097710E-07 9.52033751262E-07 9.88411201103E-07 1.02617859882E-06 1.06538905020E-06 1.10609768984E-06 1.14836175867E-06 1.19224068443E-06 1.23779616515E-06 1.28509225589E-06 1.33419545880E-06 1.38517481653E-06 1.43810200932E-06 1.49305145571E-06 1.55010041714E-06 1.60932910654E-06 1.67082080103E-06 1.73466195900E-06 1.80094234156E-06 1.86975513872E-06 1.94119710031E-06 2.01536867196E-06 2.09237413626E-06 2.17232175924E-06 2.25532394255E-06 2.34149738138E-06 2.43096322841E-06 2.52384726405E-06 2.62028007314E-06 2.72039722872E-06 2.82433948237E-06 2.93225295861E-06 3.04428937057E-06 3.16060621633E-06 3.28136701811E-06 3.40674154261E-06 3.53690603454E-06 3.67204347223E-06 3.81234382977E-06 3.95800432406E-06 4.10922971751E-06 4.26623258063E-06 4.42923361558E-06 4.59846193953E-06 4.77415542641E-06 4.95656103190E-06 5.14593514840E-06 5.34254395092E-06 5.54666378419E-06 5.75858154660E-06 5.97859508989E-06 6.20701363643E-06 6.44415822207E-06 6.69036214305E-06 6.94597140843E-06 7.21134525365E-06 7.48685662101E-06 7.77289269853E-06 8.06985545344E-06 8.37816220231E-06 8.69824619461E-06 9.03055721430E-06 9.37556222488E-06 9.73374601358E-06 1.01056118707E-05 1.04916823034E-05 1.08924997698E-05 1.13086274209E-05 1.17406499173E-05 1.21891742330E-05 1.26548305069E-05 1.31382729250E-05 1.36401806548E-05 1.41612587808E-05 1.47022392831E-05 1.52638820804E-05 1.58469761196E-05 1.64523404281E-05 1.70808252863E-05 1.77333134280E-05 1.84107212705E-05 1.91140002000E-05 1.98441378921E-05 2.06021597134E-05 2.13891301394E-05 2.22061542859E-05 2.30543793790E-05 2.39349964576E-05 2.48492419479E-05 2.57983994670E-05 2.67838015862E-05 2.78068316934E-05 2.88689259350E-05 2.99715752327E-05 3.11163273818E-05 3.23047891553E-05 3.35386286301E-05 3.48195774624E-05 3.61494333431E-05 3.75300625025E-05 3.89634022935E-05 4.04514639230E-05 4.19963352804E-05 4.36001838282E-05 4.52652596126E-05 4.69938984617E-05 4.87885251821E-05 5.06516569886E-05 5.25859070285E-05 5.45939879694E-05 5.66787158500E-05 5.88430139618E-05 6.10899169574E-05 6.34225750709E-05 6.58442584852E-05 6.83583619457E-05 7.09684094427E-05 7.36780591305E-05 7.64911084428E-05 7.94114993827E-05 8.24433239601E-05 8.55908299456E-05 8.88584267759E-05 9.22506916379E-05 9.57723758895E-05 9.94284116491E-05 1.03223918620E-04 1.07164211256E-04 1.11254806110E-04 1.15501429505E-04 1.19910025471E-04 1.24486764023E-04 1.29238049681E-04 1.34170530387E-04 1.39291106693E-04 1.44606941358E-04 1.50125469233E-04 1.55854407565E-04 1.61801766707E-04 1.67975861161E-04 1.74385321109E-04 1.81039104329E-04 1.87946508564E-04 1.95117184388E-04 2.02561148509E-04 2.10288797602E-04 2.18310922633E-04 2.26638723763E-04 2.35283825752E-04 2.44258293981E-04 2.53574651044E-04 2.63245894005E-04 2.73285512230E-04 2.83707505945E-04 2.94526405441E-04 3.05757291057E-04 3.17415813793E-04 3.29518216827E-04 3.42081357727E-04 3.55122731525E-04 3.68660494662E-04 3.82713489800E-04 3.97301271531E-04 4.12444133118E-04 4.28163134101E-04 4.44480129053E-04 4.61417797300E-04 4.78999673774E-04 4.97250181020E-04 5.16194662342E-04 5.35859416192E-04 5.56271731823E-04 5.77459926231E-04 5.99453382478E-04 6.22282589382E-04 6.45979182697E-04 6.70575987777E-04 6.96107063778E-04 7.22607749506E-04 7.50114710917E-04 7.78665990327E-04 8.08301057423E-04 8.39060862147E-04 8.70987889426E-04 9.04126215944E-04 9.38521568930E-04 9.74221387076E-04 1.01127488362E-03 1.04973311173E-03 1.08964903220E-03 1.13107758358E-03 1.17407575481E-03 1.21870266044E-03 1.26501961851E-03 1.31309023123E-03 1.36298046847E-03 1.41475875426E-03 1.46849605627E-03 1.52426597846E-03 1.58214485705E-03 1.64221185976E-03 1.70454908853E-03 1.76924168589E-03 1.83637794492E-03 1.90604942312E-03 1.97835106012E-03 2.05338129954E-03 2.13124221495E-03 2.21203964021E-03 2.29588330421E-03 2.38288697019E-03 2.47316857985E-03 2.56685040224E-03 2.66405918773E-03 2.76492632707E-03 2.86958801584E-03 2.97818542431E-03 3.09086487294E-03 3.20777801369E-03 3.32908201720E-03 3.45493976623E-03 3.58552005521E-03 3.72099779637E-03 3.86155423247E-03 4.00737715627E-03 4.15866113710E-03 4.31560775445E-03 4.47842583904E-03 4.64733172130E-03 4.82254948763E-03 5.00431124452E-03 5.19285739072E-03 5.38843689775E-03 5.59130759876E-03 5.80173648604E-03 6.02000001738E-03 6.24638443136E-03 6.48118607180E-03 6.72471172160E-03 6.97727894602E-03 7.23921644562E-03 7.51086441909E-03 7.79257493602E-03 8.08471231974E-03 8.38765354051E-03 8.70178861901E-03 9.02752104041E-03 9.36526817895E-03 9.71546173331E-03 1.00785481727E-02 1.04549891936E-02 1.08452621880E-02 1.12498607216E-02 1.16692950235E-02 1.21040924869E-02 1.25547981798E-02 1.30219753678E-02 1.35062060458E-02 1.40080914815E-02 1.45282527689E-02 1.50673313916E-02 1.56259897957E-02 1.62049119732E-02 1.68048040534E-02 1.74263949036E-02 1.80704367382E-02 1.87377057351E-02 1.94290026592E-02 2.01451534932E-02 2.08870100729E-02 2.16554507281E-02 2.24513809278E-02 2.32757339270E-02 2.41294714172E-02 2.50135841760E-02 2.59290927169E-02 2.68770479365E-02 2.78585317584E-02 2.88746577715E-02 2.99265718611E-02 3.10154528304E-02 3.21425130118E-02 3.33089988626E-02 3.45161915466E-02 3.57654074948E-02 3.70579989458E-02 3.83953544606E-02 3.97788994093E-02 4.12100964260E-02 4.26904458281E-02 4.42214859966E-02 4.58047937109E-02 4.74419844373E-02 4.91347125620E-02 5.08846715667E-02 5.26935941401E-02 5.45632522183E-02 5.64954569507E-02 5.84920585816E-02 6.05549462433E-02 6.26860476519E-02 6.48873286982E-02 6.71607929261E-02 6.95084808897E-02 7.19324693804E-02 7.44348705137E-02 7.70178306669E-02 7.96835292569E-02 8.24341773474E-02 8.52720160739E-02 8.81993148749E-02 9.12183695177E-02 9.43314999048E-02 9.75410476490E-02 1.00849373402E-01 1.04258853925E-01 1.07771878881E-01 1.11390847344E-01 1.15118163996E-01 1.18956235007E-01 1.22907463582E-01 1.26974245139E-01 1.31158962139E-01 1.35463978505E-01 1.39891633654E-01 1.44444236094E-01 1.49124056586E-01 1.53933320849E-01 1.58874201785E-01 1.63948811218E-01 1.69159191116E-01 1.74507304293E-01 1.79995024568E-01 1.85624126366E-01 1.91396273751E-01 1.97313008869E-01 2.03375739808E-01 2.09585727838E-01 2.15944074048E-01 2.22451705360E-01 2.29109359920E-01 2.35917571860E-01 2.42876655448E-01 2.49986688610E-01 2.57247495847E-01 2.64658630560E-01 2.72219356796E-01 2.79928630436E-01 2.87785079860E-01 2.95786986123E-01 3.03932262672E-01 3.12218434670E-01 3.20642617963E-01 3.29201497774E-01 3.37891307175E-01 3.46707805442E-01 3.55646256370E-01 3.64701406649E-01 3.73867464435E-01 3.83138078221E-01 3.92506316155E-01 4.01964645964E-01 4.11504915638E-01 4.21118335065E-01 4.30795458805E-01 4.40526170213E-01 4.50299667142E-01 4.60104449458E-01 4.69928308637E-01 4.79758319693E-01 4.89580835749E-01 4.99381485533E-01 5.09145174129E-01 5.18856087297E-01 5.28497699716E-01 5.38052787492E-01 5.47503445289E-01 5.56831108461E-01 5.66016580539E-01 5.75040066444E-01 5.83881211804E-01 5.92519148723E-01 6.00932548345E-01 6.09099680551E-01 6.16998481090E-01 6.24606626414E-01 6.31901616459E-01 6.38860865557E-01 6.45461801623E-01 6.51681973671E-01 6.57499167675E-01 6.62891530664E-01 6.67837702875E-01 6.72316957656E-01 6.76309348699E-01 6.79795864029E-01 6.82758586057E-01 6.85180856784E-01 6.87047447130E-01 6.88344729100E-01 6.89060849351E-01 6.89185902450E-01 6.88712101924E-01 6.87633946940E-01 6.85948382186E-01 6.83654948314E-01 6.80755919998E-01 6.77256428429E-01 6.73164564822E-01 6.68491461259E-01 6.63251344960E-01 6.57461561922E-01 6.51142565641E-01 6.44317866560E-01 6.37013937786E-01 6.29260072630E-01 6.21088189573E-01 6.12532580429E-01 6.03629597720E-01 5.94417277657E-01 5.84934895597E-01 5.75222451524E-01 5.65320083858E-01 5.55267410897E-01 5.45102800353E-01 5.34862568778E-01 5.24580114258E-01 5.14284987517E-01 5.04001908573E-01 4.93749738289E-01 4.83540416582E-01 4.73377881670E-01 4.63260107883E-01 4.53190916929E-01 4.43176195790E-01 4.33221606815E-01 4.23332591449E-01 4.13514374071E-01 4.03771965917E-01 3.94110169046E-01 3.84533580348E-01 3.75046595540E-01 3.65653413152E-01 3.56359045725E-01 3.47166307767E-01 3.38078830579E-01 3.29100063521E-01 3.20233277517E-01 3.11481568386E-01 3.02847859985E-01 2.94334907141E-01 2.85945298354E-01 2.77681458260E-01 2.69545649827E-01 2.61539976304E-01 2.53666382893E-01 2.45926658161E-01 2.38322435214E-01 2.30855192628E-01 2.23526255190E-01 2.16336794457E-01 2.09287829203E-01 2.02380225783E-01 1.95614698471E-01 1.88991809847E-01 1.82511971276E-01 1.76175443554E-01 1.69982337782E-01 1.63932616528E-01 1.58026095332E-01 1.52262444599E-01 1.46641191924E-01 1.41161724886E-01 1.35823294310E-01 1.30625018038E-01 1.25565885173E-01 1.20644760804E-01 1.15860391193E-01 1.11211409361E-01 1.06696341065E-01 1.02313611100E-01 9.80615498628E-02 9.39384001347E-02 8.99423240083E-02 8.60714098939E-02 8.23236795429E-02 7.86970950201E-02 7.51895655649E-02 7.17989542791E-02 6.85230845893E-02 6.53597464315E-02 6.23067021167E-02 5.93616918402E-02 5.65224388056E-02 5.37866539439E-02 5.11520402139E-02 4.86162964808E-02 4.61771209762E-02 4.38322143527E-02 4.15792823513E-02 3.94160381075E-02 3.73402041284E-02 3.53495139757E-02 3.34417136935E-02 3.16145630236E-02 2.98658364480E-02 2.81933241005E-02 2.65948325883E-02 2.50681857568E-02 2.36112254344E-02 2.22218121828E-02 2.08978260785E-02 1.96371675430E-02 1.84377582368E-02 1.72975420237E-02 1.62144860115E-02 1.51865816668E-02 1.42118460007E-02 1.32883228173E-02 1.24140840147E-02 1.15872309254E-02 1.08058956838E-02 1.00682426037E-02 9.37246955123E-03 8.71680929836E-03 8.09953084054E-03 7.51894066494E-03 6.97338395537E-03 6.46124572185E-03 5.98095184354E-03 5.53097001586E-03 5.10981059343E-03 4.71602732250E-03 4.34821795779E-03 4.00502476017E-03 3.68513487302E-03 3.38728057642E-03 3.11023941953E-03 2.85283423273E-03 2.61393302191E-03 2.39244874848E-03 2.18733899917E-03 1.99760555070E-03 1.82229383457E-03 1.66049230823E-03 1.51133173870E-03 1.37398440545E-03 1.24766322938E-03 1.13162083478E-03 1.02514855141E-03 9.27575363694E-04 8.38266813983E-04 7.56623866738E-04 6.82081740343E-04 6.14108712997E-04 5.52204908955E-04 4.95901071073E-04 4.44757325370E-04 3.98361942950E-04 3.56330104358E-04 3.18302671076E-04 2.83944968513E-04 2.52945584514E-04 2.25015187063E-04 1.99885364478E-04 1.77307491078E-04 1.57051620953E-04 1.38905412142E-04 1.22673083185E-04 1.08174403735E-04 9.52437205768E-05 8.37290201712E-05 7.34910285072E-05 6.44023488482E-05 5.63466376762E-05 4.92178188943E-05 4.29193363736E-05 3.73636087697E-05 3.24726582818E-05 2.81742693522E-05 2.44030268078E-05 2.10999414697E-05 1.82119105206E-05 1.56912135568E-05 1.34950428808E-05 1.15850665703E-05 9.92702284154E-06 8.49034422309E-06 7.24781005418E-06 6.17522583065E-06 5.25112793613E-06 4.45651231705E-06 3.77458568596E-06 3.19053786933E-06 2.69133395173E-06 2.26552490823E-06 1.90307546018E-06 1.59520793616E-06 1.33426096810E-06 1.11356190388E-06 9.27311869368E-07 7.70482466233E-07 6.38723145534E-07 5.28278350786E-07 4.35913577947E-07 3.58849552708E-07 2.94703777652E-07 2.41438752826E-07 1.97316222851E-07 1.60856851662E-07 1.30804772154E-07 1.06096502261E-07 8.58337611601E-08 6.92597593784E-08 5.57385744349E-08 4.47372592805E-08 3.58103642148E-08 2.85865841383E-08 2.27572719990E-08 1.80665861530E-08 1.43030641539E-08 1.12924382873E-08 8.89152908221E-09 6.98307215270E-09 5.47135118219E-09 4.27852578519E-09 3.34155751805E-09 2.60965062803E-09 2.03166485491E-09 1.57666935878E-09 1.21963652668E-09 9.40380486144E-10 7.22673483557E-10 5.53512797478E-10 4.22514610262E-10 3.21414575138E-10 2.43657729567E-10 1.84062956683E-10 1.38549420779E-10 1.03914333780E-10 7.76530791317E-11 5.78141567038E-11 4.28826443530E-11 3.16869234126E-11 2.33243091656E-11 1.71019837433E-11 1.24902662115E-11 9.08578926099E-12 6.58259848367E-12 4.74956155549E-12 3.41278205818E-12 2.44196602154E-12 1.73989712024E-12 1.23434620838E-12 8.71878870929E-13 6.13136334120E-13 4.29255010598E-13 2.99162047594E-13 2.07541762111E-13 1.43313514199E-13 9.84976532149E-14 6.73745445720E-14 4.58638839433E-14 3.10687888824E-14 2.09425457356E-14 1.40462077382E-14 9.37315156402E-15 6.22273429464E-15 4.10977190851E-15 2.70001670522E-15 1.76440598143E-15 1.14679195135E-15 7.41301937879E-16 4.76540688020E-16 3.04627274624E-16 1.93629150436E-16 1.22369920732E-16 7.68863133767E-17 4.80243899632E-17 2.98181556684E-17 1.84023393494E-17 1.12876998814E-17 6.88088727477E-18 4.16827142638E-18 2.50902888064E-18 1.50057802072E-18 8.91619271091E-19 5.26298955611E-19 3.08589801251E-19 1.79717338058E-19 1.03949073649E-19 5.97084684578E-20 3.40563307271E-20 1.92871416022E-20 1.08444359317E-20 6.05306940139E-21 3.35377509508E-21 1.84434142136E-21 1.00659972170E-21 5.45178697306E-22 2.92985075494E-22 1.56219090071E-22 8.26345366905E-23 4.33595071543E-23 2.25661847488E-23 1.16476486595E-23 5.96182745456E-24 3.02576844847E-24 1.52251183374E-24 7.59464246949E-25 3.75515648387E-25 1.84024046692E-25 8.93713094694E-26 4.30079990002E-26 2.05058542589E-26 9.68575153023E-27 4.53173271656E-27 2.09999755658E-27 9.63705220434E-28 4.37912430832E-28 1.97012610646E-28 8.77424672312E-29 3.86793715585E-29 1.68751141669E-29 7.28542786151E-30 3.11205320734E-30 1.31511711237E-30 5.49728727705E-31 2.27268586531E-31 9.29131104486E-32 6S 0 2.00 Wavefunction 1.36745517057E-06 1.38465563917E-06 1.40207246303E-06 1.41970836356E-06 1.43756609642E-06 1.45564845190E-06 1.47395825542E-06 1.49249836791E-06 1.51127168631E-06 1.53028114399E-06 1.54952971120E-06 1.56902039559E-06 1.58875624261E-06 1.60874033602E-06 1.62897579838E-06 1.64946579153E-06 1.67021351706E-06 1.69122221685E-06 1.71249517355E-06 1.73403571111E-06 1.75584719528E-06 1.77793303415E-06 1.80029667867E-06 1.82294162320E-06 1.84587140608E-06 1.86908961012E-06 1.89259986321E-06 1.91640583888E-06 1.94051125687E-06 1.96491988369E-06 1.98963553323E-06 2.01466206738E-06 2.04000339657E-06 2.06566348045E-06 2.09164632845E-06 2.11795600044E-06 2.14459660737E-06 2.17157231188E-06 2.19888732898E-06 2.22654592670E-06 2.25455242676E-06 2.28291120522E-06 2.31162669320E-06 2.34070337755E-06 2.37014580157E-06 2.39995856570E-06 2.43014632823E-06 2.46071380607E-06 2.49166577545E-06 2.52300707268E-06 2.55474259490E-06 2.58687730085E-06 2.61941621164E-06 2.65236441154E-06 2.68572704878E-06 2.71950933634E-06 2.75371655276E-06 2.78835404300E-06 2.82342721923E-06 2.85894156171E-06 2.89490261963E-06 2.93131601197E-06 2.96818742841E-06 3.00552263017E-06 3.04332745096E-06 3.08160779785E-06 3.12036965224E-06 3.15961907073E-06 3.19936218613E-06 3.23960520839E-06 3.28035442555E-06 3.32161620477E-06 3.36339699328E-06 3.40570331941E-06 3.44854179362E-06 3.49191910950E-06 3.53584204485E-06 3.58031746272E-06 3.62535231248E-06 3.67095363091E-06 3.71712854332E-06 3.76388426463E-06 3.81122810052E-06 3.85916744855E-06 3.90770979935E-06 3.95686273777E-06 4.00663394403E-06 4.05703119501E-06 4.10806236537E-06 4.15973542884E-06 4.21205845943E-06 4.26503963273E-06 4.31868722716E-06 4.37300962526E-06 4.42801531501E-06 4.48371289116E-06 4.54011105659E-06 4.59721862361E-06 4.65504451540E-06 4.71359776736E-06 4.77288752858E-06 4.83292306319E-06 4.89371375186E-06 4.95526909328E-06 5.01759870557E-06 5.08071232788E-06 5.14461982184E-06 5.20933117311E-06 5.27485649299E-06 5.34120601993E-06 5.40839012120E-06 5.47641929442E-06 5.54530416932E-06 5.61505550928E-06 5.68568421310E-06 5.75720131665E-06 5.82961799464E-06 5.90294556231E-06 5.97719547724E-06 6.05237934113E-06 6.12850890163E-06 6.20559605412E-06 6.28365284364E-06 6.36269146670E-06 6.44272427327E-06 6.52376376863E-06 6.60582261537E-06 6.68891363534E-06 6.77304981170E-06 6.85824429089E-06 6.94451038471E-06 7.03186157243E-06 7.12031150285E-06 7.20987399645E-06 7.30056304754E-06 7.39239282649E-06 7.48537768188E-06 7.57953214278E-06 7.67487092102E-06 7.77140891349E-06 7.86916120443E-06 7.96814306785E-06 8.06836996986E-06 8.16985757113E-06 8.27262172929E-06 8.37667850146E-06 8.48204414671E-06 8.58873512866E-06 8.69676811798E-06 8.80615999504E-06 8.91692785256E-06 9.02908899824E-06 9.14266095748E-06 9.25766147614E-06 9.37410852328E-06 9.49202029399E-06 9.61141521224E-06 9.73231193371E-06 9.85472934878E-06 9.97868658540E-06 1.01042030122E-05 1.02312982413E-05 1.03599921316E-05 1.04903047918E-05 1.06222565836E-05 1.07558681246E-05 1.08911602920E-05 1.10281542254E-05 1.11668713304E-05 1.13073332818E-05 1.14495620272E-05 1.15935797899E-05 1.17394090733E-05 1.18870726632E-05 1.20365936325E-05 1.21879953442E-05 1.23413014550E-05 1.24965359194E-05 1.26537229931E-05 1.28128872368E-05 1.29740535204E-05 1.31372470263E-05 1.33024932539E-05 1.34698180233E-05 1.36392474793E-05 1.38108080956E-05 1.39845266789E-05 1.41604303731E-05 1.43385466635E-05 1.45189033812E-05 1.47015287072E-05 1.48864511772E-05 1.50736996856E-05 1.52633034904E-05 1.54552922177E-05 1.56496958660E-05 1.58465448114E-05 1.60458698118E-05 1.62477020123E-05 1.64520729495E-05 1.66590145568E-05 1.68685591692E-05 1.70807395287E-05 1.72955887887E-05 1.75131405199E-05 1.77334287152E-05 1.79564877952E-05 1.81823526132E-05 1.84110584612E-05 1.86426410748E-05 1.88771366393E-05 1.91145817953E-05 1.93550136439E-05 1.95984697532E-05 1.98449881636E-05 2.00946073943E-05 2.03473664487E-05 2.06033048209E-05 2.08624625020E-05 2.11248799857E-05 2.13905982754E-05 2.16596588901E-05 2.19321038712E-05 2.22079757887E-05 2.24873177482E-05 2.27701733974E-05 2.30565869333E-05 2.33466031084E-05 2.36402672384E-05 2.39376252090E-05 2.42387234830E-05 2.45436091076E-05 2.48523297219E-05 2.51649335640E-05 2.54814694792E-05 2.58019869267E-05 2.61265359880E-05 2.64551673748E-05 2.67879324362E-05 2.71248831677E-05 2.74660722184E-05 2.78115528999E-05 2.81613791943E-05 2.85156057627E-05 2.88742879538E-05 2.92374818125E-05 2.96052440885E-05 2.99776322455E-05 3.03547044701E-05 3.07365196805E-05 3.11231375362E-05 3.15146184471E-05 3.19110235830E-05 3.23124148829E-05 3.27188550653E-05 3.31304076373E-05 3.35471369048E-05 3.39691079828E-05 3.43963868052E-05 3.48290401351E-05 3.52671355758E-05 3.57107415805E-05 3.61599274637E-05 3.66147634118E-05 3.70753204938E-05 3.75416706728E-05 3.80138868171E-05 3.84920427115E-05 3.89762130691E-05 3.94664735424E-05 3.99629007359E-05 4.04655722174E-05 4.09745665305E-05 4.14899632067E-05 4.20118427780E-05 4.25402867892E-05 4.30753778109E-05 4.36171994524E-05 4.41658363746E-05 4.47213743032E-05 4.52839000425E-05 4.58535014883E-05 4.64302676422E-05 4.70142886254E-05 4.76056556924E-05 4.82044612459E-05 4.88107988507E-05 4.94247632483E-05 5.00464503724E-05 5.06759573629E-05 5.13133825820E-05 5.19588256289E-05 5.26123873556E-05 5.32741698827E-05 5.39442766156E-05 5.46228122599E-05 5.53098828387E-05 5.60055957083E-05 5.67100595758E-05 5.74233845154E-05 5.81456819860E-05 5.88770648484E-05 5.96176473830E-05 6.03675453078E-05 6.11268757964E-05 6.18957574961E-05 6.26743105468E-05 6.34626565994E-05 6.42609188350E-05 6.50692219844E-05 6.58876923472E-05 6.67164578114E-05 6.75556478741E-05 6.84053936609E-05 6.92658279471E-05 7.01370851779E-05 7.10193014898E-05 7.19126147314E-05 7.28171644857E-05 7.37330920910E-05 7.46605406638E-05 7.55996551206E-05 7.65505822008E-05 7.75134704896E-05 7.84884704412E-05 7.94757344023E-05 8.04754166359E-05 8.14876733454E-05 8.25126626991E-05 8.35505448547E-05 8.46014819847E-05 8.56656383013E-05 8.67431800824E-05 8.78342756973E-05 8.89390956333E-05 9.00578125223E-05 9.11906011674E-05 9.23376385707E-05 9.34991039607E-05 9.46751788204E-05 9.58660469155E-05 9.70718943234E-05 9.82929094620E-05 9.95292831194E-05 1.00781208483E-04 1.02048881172E-04 1.03332499263E-04 1.04632263328E-04 1.05948376459E-04 1.07281044305E-04 1.08630475098E-04 1.09996879695E-04 1.11380471600E-04 1.12781467005E-04 1.14200084822E-04 1.15636546715E-04 1.17091077139E-04 1.18563903368E-04 1.20055255540E-04 1.21565366683E-04 1.23094472760E-04 1.24642812701E-04 1.26210628439E-04 1.27798164955E-04 1.29405670307E-04 1.31033395676E-04 1.32681595403E-04 1.34350527025E-04 1.36040451323E-04 1.37751632355E-04 1.39484337501E-04 1.41238837507E-04 1.43015406522E-04 1.44814322144E-04 1.46635865464E-04 1.48480321108E-04 1.50347977282E-04 1.52239125818E-04 1.54154062219E-04 1.56093085705E-04 1.58056499260E-04 1.60044609679E-04 1.62057727617E-04 1.64096167637E-04 1.66160248256E-04 1.68250292002E-04 1.70366625458E-04 1.72509579314E-04 1.74679488422E-04 1.76876691845E-04 1.79101532913E-04 1.81354359271E-04 1.83635522942E-04 1.85945380373E-04 1.88284292498E-04 1.90652624790E-04 1.93050747319E-04 1.95479034812E-04 1.97937866707E-04 2.00427627219E-04 2.02948705393E-04 2.05501495170E-04 2.08086395445E-04 2.10703810133E-04 2.13354148229E-04 2.16037823872E-04 2.18755256414E-04 2.21506870478E-04 2.24293096033E-04 2.27114368454E-04 2.29971128594E-04 2.32863822853E-04 2.35792903244E-04 2.38758827468E-04 2.41762058986E-04 2.44803067086E-04 2.47882326960E-04 2.51000319781E-04 2.54157532773E-04 2.57354459288E-04 2.60591598889E-04 2.63869457419E-04 2.67188547089E-04 2.70549386549E-04 2.73952500979E-04 2.77398422162E-04 2.80887688574E-04 2.84420845464E-04 2.87998444940E-04 2.91621046059E-04 2.95289214908E-04 2.99003524698E-04 3.02764555851E-04 3.06572896091E-04 3.10429140536E-04 3.14333891793E-04 3.18287760050E-04 3.22291363169E-04 3.26345326791E-04 3.30450284423E-04 3.34606877548E-04 3.38815755715E-04 3.43077576648E-04 3.47393006346E-04 3.51762719189E-04 3.56187398039E-04 3.60667734352E-04 3.65204428283E-04 3.69798188798E-04 3.74449733783E-04 3.79159790156E-04 3.83929093981E-04 3.88758390586E-04 3.93648434675E-04 3.98599990451E-04 4.03613831730E-04 4.08690742066E-04 4.13831514875E-04 4.19036953554E-04 4.24307871611E-04 4.29645092790E-04 4.35049451202E-04 4.40521791454E-04 4.46062968780E-04 4.51673849180E-04 4.57355309548E-04 4.63108237816E-04 4.68933533090E-04 4.74832105789E-04 4.80804877794E-04 4.86852782583E-04 4.92976765385E-04 4.99177783324E-04 5.05456805572E-04 5.11814813497E-04 5.18252800818E-04 5.24771773764E-04 5.31372751225E-04 5.38056764919E-04 5.44824859547E-04 5.51678092963E-04 5.58617536334E-04 5.65644274311E-04 5.72759405198E-04 5.79964041125E-04 5.87259308222E-04 5.94646346793E-04 6.02126311501E-04 6.09700371541E-04 6.17369710830E-04 6.25135528188E-04 6.32999037528E-04 6.40961468049E-04 6.49024064423E-04 6.57188086994E-04 6.65454811975E-04 6.73825531649E-04 6.82301554571E-04 6.90884205771E-04 6.99574826966E-04 7.08374776770E-04 7.17285430903E-04 7.26308182412E-04 7.35444441887E-04 7.44695637683E-04 7.54063216146E-04 7.63548641836E-04 7.73153397761E-04 7.82878985610E-04 7.92726925984E-04 8.02698758643E-04 8.12796042741E-04 8.23020357073E-04 8.33373300324E-04 8.43856491323E-04 8.54471569291E-04 8.65220194105E-04 8.76104046555E-04 8.87124828611E-04 8.98284263691E-04 9.09584096929E-04 9.21026095454E-04 9.32612048665E-04 9.44343768514E-04 9.56223089791E-04 9.68251870415E-04 9.80431991724E-04 9.92765358773E-04 1.00525390063E-03 1.01789957070E-03 1.03070434699E-03 1.04367023248E-03 1.05679925537E-03 1.07009346948E-03 1.08355495450E-03 1.09718581636E-03 1.11098818756E-03 1.12496422749E-03 1.13911612277E-03 1.15344608764E-03 1.16795636426E-03 1.18264922306E-03 1.19752696315E-03 1.21259191264E-03 1.22784642904E-03 1.24329289958E-03 1.25893374168E-03 1.27477140322E-03 1.29080836302E-03 1.30704713120E-03 1.32349024956E-03 1.34014029202E-03 1.35699986498E-03 1.37407160781E-03 1.39135819318E-03 1.40886232755E-03 1.42658675157E-03 1.44453424053E-03 1.46270760479E-03 1.48110969024E-03 1.49974337875E-03 1.51861158862E-03 1.53771727506E-03 1.55706343063E-03 1.57665308578E-03 1.59648930927E-03 1.61657520869E-03 1.63691393097E-03 1.65750866283E-03 1.67836263138E-03 1.69947910454E-03 1.72086139162E-03 1.74251284385E-03 1.76443685491E-03 1.78663686145E-03 1.80911634369E-03 1.83187882593E-03 1.85492787717E-03 1.87826711163E-03 1.90190018939E-03 1.92583081691E-03 1.95006274771E-03 1.97459978291E-03 1.99944577187E-03 2.02460461284E-03 2.05008025353E-03 2.07587669181E-03 2.10199797632E-03 2.12844820715E-03 2.15523153650E-03 2.18235216935E-03 2.20981436414E-03 2.23762243350E-03 2.26578074491E-03 2.29429372143E-03 2.32316584245E-03 2.35240164436E-03 2.38200572139E-03 2.41198272625E-03 2.44233737101E-03 2.47307442777E-03 2.50419872953E-03 2.53571517094E-03 2.56762870913E-03 2.59994436453E-03 2.63266722168E-03 2.66580243009E-03 2.69935520512E-03 2.73333082879E-03 2.76773465074E-03 2.80257208902E-03 2.83784863111E-03 2.87356983476E-03 2.90974132893E-03 2.94636881479E-03 2.98345806661E-03 3.02101493279E-03 3.05904533682E-03 3.09755527829E-03 3.13655083390E-03 3.17603815850E-03 3.21602348616E-03 3.25651313119E-03 3.29751348926E-03 3.33903103847E-03 3.38107234048E-03 3.42364404163E-03 3.46675287410E-03 3.51040565706E-03 3.55460929785E-03 3.59937079321E-03 3.64469723046E-03 3.69059578877E-03 3.73707374042E-03 3.78413845203E-03 3.83179738592E-03 3.88005810139E-03 3.92892825609E-03 3.97841560734E-03 4.02852801354E-03 4.07927343558E-03 4.13065993825E-03 4.18269569170E-03 4.23538897291E-03 4.28874816722E-03 4.34278176980E-03 4.39749838725E-03 4.45290673913E-03 4.50901565960E-03 4.56583409905E-03 4.62337112571E-03 4.68163592739E-03 4.74063781318E-03 4.80038621515E-03 4.86089069019E-03 4.92216092177E-03 4.98420672180E-03 5.04703803248E-03 5.11066492822E-03 5.17509761757E-03 5.24034644518E-03 5.30642189382E-03 5.37333458644E-03 5.44109528820E-03 5.50971490865E-03 5.57920450385E-03 5.64957527857E-03 5.72083858854E-03 5.79300594276E-03 5.86608900575E-03 5.94009960002E-03 6.01504970840E-03 6.09095147656E-03 6.16781721548E-03 6.24565940406E-03 6.32449069166E-03 6.40432390085E-03 6.48517203006E-03 6.56704825638E-03 6.64996593838E-03 6.73393861901E-03 6.81898002853E-03 6.90510408751E-03 6.99232490993E-03 7.08065680628E-03 7.17011428680E-03 7.26071206470E-03 7.35246505953E-03 7.44538840060E-03 7.53949743044E-03 7.63480770837E-03 7.73133501416E-03 7.82909535172E-03 7.92810495293E-03 8.02838028152E-03 8.12993803705E-03 8.23279515899E-03 8.33696883087E-03 8.44247648455E-03 8.54933580457E-03 8.65756473262E-03 8.76718147213E-03 8.87820449289E-03 8.99065253591E-03 9.10454461826E-03 9.21990003815E-03 9.33673838003E-03 9.45507951992E-03 9.57494363075E-03 9.69635118795E-03 9.81932297513E-03 9.94388008986E-03 1.00700439497E-02 1.01978362983E-02 1.03272792117E-02 1.04583951046E-02 1.05912067375E-02 1.07257372228E-02 1.08620100322E-02 1.10000490039E-02 1.11398783496E-02 1.12815226625E-02 1.14250069245E-02 1.15703565149E-02 1.17175972179E-02 1.18667552314E-02 1.20178571754E-02 1.21709301012E-02 1.23260015004E-02 1.24830993141E-02 1.26422519430E-02 1.28034882569E-02 1.29668376051E-02 1.31323298273E-02 1.32999952638E-02 1.34698647671E-02 1.36419697134E-02 1.38163420141E-02 1.39930141283E-02 1.41720190754E-02 1.43533904476E-02 1.45371624239E-02 1.47233697831E-02 1.49120479185E-02 1.51032328524E-02 1.52969612509E-02 1.54932704396E-02 1.56921984198E-02 1.58937838844E-02 1.60980662358E-02 1.63050856026E-02 1.65148828583E-02 1.67274996400E-02 1.69429783673E-02 1.71613622627E-02 1.73826953721E-02 1.76070225858E-02 1.78343896608E-02 1.80648432433E-02 1.82984308924E-02 1.85352011039E-02 1.87752033357E-02 1.90184880338E-02 1.92651066585E-02 1.95151117125E-02 1.97685567697E-02 2.00254965040E-02 2.02859867208E-02 2.05500843881E-02 2.08178476694E-02 2.10893359575E-02 2.13646099096E-02 2.16437314839E-02 2.19267639765E-02 2.22137720610E-02 2.25048218281E-02 2.27999808279E-02 2.30993181126E-02 2.34029042816E-02 2.37108115273E-02 2.40231136836E-02 2.43398862757E-02 2.46612065708E-02 2.49871536324E-02 2.53178083754E-02 2.56532536231E-02 2.59935741670E-02 2.63388568286E-02 2.66891905230E-02 2.70446663254E-02 2.74053775400E-02 2.77714197710E-02 2.81428909972E-02 2.85198916481E-02 2.89025246842E-02 2.92908956794E-02 2.96851129067E-02 3.00852874278E-02 3.04915331851E-02 3.09039670979E-02 3.13227091621E-02 3.17478825538E-02 3.21796137366E-02 3.26180325735E-02 3.30632724429E-02 3.35154703587E-02 3.39747670960E-02 3.44413073208E-02 3.49152397253E-02 3.53967171682E-02 3.58858968209E-02 3.63829403190E-02 3.68880139200E-02 3.74012886674E-02 3.79229405610E-02 3.84531507341E-02 3.89921056377E-02 3.95399972322E-02 4.00970231867E-02 4.06633870862E-02 4.12392986469E-02 4.18249739408E-02 4.24206356286E-02 4.30265132027E-02 4.36428432392E-02 4.42698696606E-02 4.49078440095E-02 4.55570257323E-02 4.62176824754E-02 4.68900903931E-02 4.75745344678E-02 4.82713088435E-02 4.89807171727E-02 4.97030729778E-02 5.04387000263E-02 5.11879327225E-02 5.19511165144E-02 5.27286083170E-02 5.35207769534E-02 5.43280036138E-02 5.51506823323E-02 5.59892204843E-02 5.68440393034E-02 5.77155744189E-02 5.86042764159E-02 5.95106114171E-02 6.04350616886E-02 6.13781262700E-02 6.23403216289E-02 6.33221823427E-02 6.43242618066E-02 6.53471329695E-02 6.63913890994E-02 6.74576445783E-02 6.85465357278E-02 6.96587216674E-02 7.07948852041E-02 7.19557337577E-02 7.31420003187E-02 7.43544444440E-02 7.55938532875E-02 7.68610426691E-02 7.81568581817E-02 7.94821763368E-02 8.08379057508E-02 8.22249883708E-02 8.36444007415E-02 8.50971553133E-02 8.65843017921E-02 8.81069285299E-02 8.96661639579E-02 9.12631780597E-02 9.28991838852E-02 9.45754391045E-02 9.62932475995E-02 9.80539610927E-02 9.98589808101E-02 1.01709759178E-01 1.03607801544E-01 1.05554667934E-01 1.07551974814E-01 1.09601396886E-01 1.11704668880E-01 1.13863587355E-01 1.16080012495E-01 1.18355869890E-01 1.20693152292E-01 1.23093921335E-01 1.25560309204E-01 1.28094520243E-01 1.30698832472E-01 1.33375599012E-01 1.36127249377E-01 1.38956290626E-01 1.41865308335E-01 1.44856967367E-01 1.47934012404E-01 1.51099268200E-01 1.54355639527E-01 1.57706110751E-01 1.61153745003E-01 1.64701682889E-01 1.68353140673E-01 1.72111407878E-01 1.75979844224E-01 1.79961875838E-01 1.84060990653E-01 1.88280732895E-01 1.92624696581E-01 1.97096517911E-01 2.01699866459E-01 2.06438435038E-01 2.11315928117E-01 2.16336048680E-01 2.21502483364E-01 2.26818885770E-01 2.32288857777E-01 2.37915928739E-01 2.43703532395E-01 2.49654981367E-01 2.55773439089E-01 2.62061889037E-01 2.68523101128E-01 2.75159595175E-01 2.81973601294E-01 2.88967017190E-01 2.96141362269E-01 3.03497728563E-01 3.11036728488E-01 3.18758439511E-01 3.26662345856E-01 3.34747277445E-01 3.43011346344E-01 3.51451881070E-01 3.60065359216E-01 3.68847338949E-01 3.77792390043E-01 3.86894025272E-01 3.96144633051E-01 4.05535412430E-01 4.15056311621E-01 4.24695971415E-01 4.34441674987E-01 4.44279305690E-01 4.54193314590E-01 4.64166699572E-01 4.74180997930E-01 4.84216294386E-01 4.94251246491E-01 5.04263129291E-01 5.14227901058E-01 5.24120291658E-01 5.33913914926E-01 5.43581406040E-01 5.53094584481E-01 5.62424642632E-01 5.71542359497E-01 5.80418338283E-01 5.89023265869E-01 5.97328191312E-01 6.05304819680E-01 6.12925816604E-01 6.20165117997E-01 6.26998238582E-01 6.33402572017E-01 6.39357674765E-01 6.44845525314E-01 6.49850750036E-01 6.54360806895E-01 6.58366118434E-01 6.61860146035E-01 6.64839398358E-01 6.67303368272E-01 6.69254394387E-01 6.70697445723E-01 6.71639830967E-01 6.72090837506E-01 6.72061309814E-01 6.71563182231E-01 6.70608987672E-01 6.69211371707E-01 6.67382650970E-01 6.65134466337E-01 6.62477595095E-01 6.59422002806E-01 6.55977217349E-01 6.52152897080E-01 6.47959005146E-01 6.43405807915E-01 6.38503859698E-01 6.33263987376E-01 6.27697274898E-01 6.21815047598E-01 6.15628856302E-01 6.09150461171E-01 6.02391815235E-01 5.95365047563E-01 5.88082446004E-01 5.80556439474E-01 5.72799579698E-01 5.64824522398E-01 5.56644007861E-01 5.48270840862E-01 5.39717869943E-01 5.30997966013E-01 5.22124000328E-01 5.13108821853E-01 5.03965234100E-01 4.94705971505E-01 4.85343675483E-01 4.75890870266E-01 4.66359938724E-01 4.56763098313E-01 4.47112377375E-01 4.37419591975E-01 4.27696323512E-01 4.17953897309E-01 4.08203362383E-01 3.98455472617E-01 3.88720669491E-01 3.79009066555E-01 3.69330435759E-01 3.59694195751E-01 3.50109402230E-01 3.40584740361E-01 3.31128519293E-01 3.21748668720E-01 3.12452737450E-01 3.03247893866E-01 2.94140928187E-01 2.85138256355E-01 2.76245925407E-01 2.67469620140E-01 2.58814670867E-01 2.50286062065E-01 2.41888441706E-01 2.33626131053E-01 2.25503134714E-01 2.17523150763E-01 2.09689580733E-01 2.02005539312E-01 1.94473863599E-01 1.87097121782E-01 1.79877621154E-01 1.72817415382E-01 1.65918310997E-01 1.59181873090E-01 1.52609430230E-01 1.46202078660E-01 1.39960685819E-01 1.33885893321E-01 1.27978119460E-01 1.22237561395E-01 1.16664197139E-01 1.11257787484E-01 1.06017878006E-01 1.00943801275E-01 9.60346793952E-02 9.12894269799E-02 8.67067546531E-02 8.22851731608E-02 7.80229981399E-02 7.39183555894E-02 6.99691880597E-02 6.61732615638E-02 6.25281731939E-02 5.90313594144E-02 5.56801049869E-02 5.24715524727E-02 4.94027122496E-02 4.64704729713E-02 4.36716123934E-02 4.10028084869E-02 3.84606507584E-02 3.60416516952E-02 3.37422582575E-02 3.15588633392E-02 2.94878171242E-02 2.75254382708E-02 2.56680248566E-02 2.39118650286E-02 2.22532473031E-02 2.06884704691E-02 1.92138530531E-02 1.78257423115E-02 1.65205227185E-02 1.52946239281E-02 1.41445281899E-02 1.30667772066E-02 1.20579784241E-02 1.11148107505E-02 1.02340297047E-02 9.41247199827E-03 8.64705955955E-03 7.93480300968E-03 7.27280460556E-03 6.65826066576E-03 6.08846349800E-03 5.56080284905E-03 5.07276689897E-03 4.62194282322E-03 4.20601694728E-03 3.82277451893E-03 3.47009912418E-03 3.14597177291E-03 2.84846968070E-03 2.57576477301E-03 2.32612193766E-03 2.09789705146E-03 1.88953480591E-03 1.69956635650E-03 1.52660681932E-03 1.36935263773E-03 1.22657884111E-03 1.09713621637E-03 9.79948412248E-04 8.74008994798E-04 7.78378471854E-04 6.92181302589E-04 6.14602907402E-04 5.44886692028E-04 4.82331098536E-04 4.26286694376E-04 3.76153311518E-04 3.31378701070E-04 2.91467340438E-04 2.55949419158E-04 2.24392596256E-04 1.96401180730E-04 1.71613646549E-04 1.49700256265E-04 1.30360793902E-04 1.13322407184E-04 9.83375586629E-05 8.51820848289E-05 7.36533617945E-05 6.35685757655E-05 5.47630961160E-05 4.70889485584E-05 4.04133856009E-05 3.46175512275E-05 2.95952365193E-05 2.52517227519E-05 2.15027083591E-05 1.82733160428E-05 1.54971762279E-05 1.31155830163E-05 1.10767187717E-05 9.33494347597E-06 7.85014502904E-06 6.58714671807E-06 5.51516815435E-06 4.60733606810E-06 3.84024145689E-06 3.19353970255E-06 2.64959040134E-06 2.19313379068E-06 1.81100080122E-06 1.49185391325E-06 1.22595615007E-06 1.00496569614E-06 8.21753782826E-07 6.70243639183E-07 5.45268456462E-07 4.42446463873E-07 3.58071357061E-07 2.89016460028E-07 2.32651134730E-07 1.86768080041E-07 1.49520282699E-07 1.19366497059E-07 9.50242377540E-08 7.54293696752E-08 5.97014729908E-08 4.71142473749E-08 3.70702992971E-08 2.90797293671E-08 2.27420035690E-08 1.77306530253E-08 1.37804020261E-08 1.06763737497E-08 8.24506774422E-09 6.34684316734E-09 4.86967735501E-09 3.72400084378E-09 2.83843785483E-09 2.15630578398E-09 1.63274875310E-09 1.23239906700E-09 9.27476777346E-10 6.96251757835E-10 5.21805005845E-10 3.91036558841E-10 2.91955792184E-10 2.17163678050E-10 1.60918929111E-10 1.18783513248E-10 8.73400145411E-11 6.39671680815E-11 4.66623064235E-11 3.39014802715E-11 2.45297093083E-11 1.76752286073E-11 1.26827640378E-11 9.06183337615E-12 6.44686064401E-12 4.56653735239E-12 3.22038980502E-12 2.26093691420E-12 1.58016555742E-12 1.09932511150E-12 7.61261857707E-13 5.24687836511E-13 3.59916077166E-13 2.45702071980E-13 1.66915775048E-13 1.12834076724E-13 7.58945362625E-14 5.07902960346E-14 3.38160827821E-14 2.23980467059E-14 1.47575039569E-14 9.67170070552E-15 6.30450319166E-15 4.08721520475E-15 2.63513532750E-15 1.68945610866E-15 1.07703269254E-15 6.82681080623E-16 4.30211973124E-16 2.69520004423E-16 1.67846096706E-16 1.03898829268E-16 6.39228687528E-17 3.90854097789E-17 2.37493695335E-17 1.43395087217E-17 8.60253741245E-18 5.12736081650E-18 3.03599228609E-18 1.78571001693E-18 1.04324966681E-18 6.05334918184E-19 3.48815672130E-19 1.99595714517E-19 1.13402620161E-19 6.39694815384E-20 3.58229347197E-20 1.99135326837E-20 1.09873765649E-20 6.01668782178E-21 3.26962111752E-21 1.76308014061E-21 9.43276500689E-22 5.00674470759E-22 2.63619749853E-22 1.37677366868E-22 7.13123528245E-23 3.66302194863E-23 1.86569731282E-23 9.42157598325E-24 4.71671723171E-24 2.34068336514E-24 1.15128823582E-24 5.61197155676E-25 2.71073876236E-25 1.29733124352E-25 6.15112658397E-26 2.88900279977E-26 1.34393747755E-26 6.19149624493E-27 2.82451960376E-27 1.27576980968E-27 5.70459001906E-28 2.52491000359E-28 1.10606584694E-28 4.79483029858E-29 3.73986728702E-12 3.83454247816E-12 3.93161438316E-12 4.03114367515E-12 4.13319256315E-12 4.23782483106E-12 4.34510587744E-12 4.45510275644E-12 4.56788421969E-12 4.68352075927E-12 4.80208465180E-12 4.92365000355E-12 5.04829279684E-12 5.17609093747E-12 5.30712430342E-12 5.44147479483E-12 5.57922638513E-12 5.72046517354E-12 5.86527943890E-12 6.01375969484E-12 6.16599874636E-12 6.32209174782E-12 6.48213626243E-12 6.64623232322E-12 6.81448249556E-12 6.98699194130E-12 7.16386848445E-12 7.34522267862E-12 7.53116787607E-12 7.72182029860E-12 7.91729911020E-12 8.11772649147E-12 8.32322771606E-12 8.53393122892E-12 8.74996872661E-12 8.97147523960E-12 9.19858921666E-12 9.43145261143E-12 9.67021097111E-12 9.91501352745E-12 1.01660132900E-11 1.04233671418E-11 1.06872359374E-11 1.09577846034E-11 1.12351822414E-11 1.15196022341E-11 1.18112223532E-11 1.21102248708E-11 1.24167966731E-11 1.27311293776E-11 1.30534194524E-11 1.33838683393E-11 1.37226825796E-11 1.40700739432E-11 1.44262595611E-11 1.47914620608E-11 1.51659097059E-11 1.55498365382E-11 1.59434825246E-11 1.63470937066E-11 1.67609223543E-11 1.71852271241E-11 1.76202732203E-11 1.80663325609E-11 1.85236839475E-11 1.89926132396E-11 1.94734135332E-11 1.99663853442E-11 2.04718367961E-11 2.09900838124E-11 2.15214503145E-11 2.20662684236E-11 2.26248786688E-11 2.31976301997E-11 2.37848810047E-11 2.43869981346E-11 2.50043579323E-11 2.56373462677E-11 2.62863587792E-11 2.69518011206E-11 2.76340892151E-11 2.83336495150E-11 2.90509192683E-11 2.97863467919E-11 3.05403917519E-11 3.13135254510E-11 3.21062311230E-11 3.29190042346E-11 3.37523527956E-11 3.46067976759E-11 3.54828729314E-11 3.63811261376E-11 3.73021187321E-11 3.82464263652E-11 3.92146392599E-11 4.02073625808E-11 4.12252168123E-11 4.22688381465E-11 4.33388788806E-11 4.44360078250E-11 4.55609107209E-11 4.67142906694E-11 4.78968685704E-11 4.91093835736E-11 5.03525935403E-11 5.16272755174E-11 5.29342262225E-11 5.42742625423E-11 5.56482220433E-11 5.70569634948E-11 5.85013674061E-11 5.99823365767E-11 6.15007966605E-11 6.30576967446E-11 6.46540099422E-11 6.62907340010E-11 6.79688919268E-11 6.96895326231E-11 7.14537315462E-11 7.32625913780E-11 7.51172427147E-11 7.70188447739E-11 7.89685861187E-11 8.09676854010E-11 8.30173921229E-11 8.51189874179E-11 8.72737848515E-11 8.94831312422E-11 9.17484075035E-11 9.40710295069E-11 9.64524489667E-11 9.88941543477E-11 1.01397671795E-10 1.03964566089E-10 1.06596441622E-10 1.09294943402E-10 1.12061758081E-10 1.14898615007E-10 1.17807287309E-10 1.20789593001E-10 1.23847396123E-10 1.26982607900E-10 1.30197187941E-10 1.33493145465E-10 1.36872540552E-10 1.40337485434E-10 1.43890145814E-10 1.47532742221E-10 1.51267551396E-10 1.55096907717E-10 1.59023204656E-10 1.63048896276E-10 1.67176498767E-10 1.71408592013E-10 1.75747821212E-10 1.80196898523E-10 1.84758604764E-10 1.89435791150E-10 1.94231381075E-10 1.99148371939E-10 2.04189837022E-10 2.09358927403E-10 2.14658873933E-10 2.20092989250E-10 2.25664669854E-10 2.31377398227E-10 2.37234745011E-10 2.43240371237E-10 2.49398030618E-10 2.55711571892E-10 2.62184941227E-10 2.68822184692E-10 2.75627450779E-10 2.82604993001E-10 2.89759172549E-10 2.97094461020E-10 3.04615443208E-10 3.12326819971E-10 3.20233411172E-10 3.28340158687E-10 3.36652129499E-10 3.45174518860E-10 3.53912653542E-10 3.62871995163E-10 3.72058143604E-10 3.81476840508E-10 3.91133972867E-10 4.01035576704E-10 4.11187840844E-10 4.21597110784E-10 4.32269892657E-10 4.43212857300E-10 4.54432844422E-10 4.65936866882E-10 4.77732115069E-10 4.89825961399E-10 5.02225964918E-10 5.14939876035E-10 5.27975641360E-10 5.41341408669E-10 5.55045532006E-10 5.69096576893E-10 5.83503325693E-10 5.98274783093E-10 6.13420181738E-10 6.28948987996E-10 6.44870907877E-10 6.61195893103E-10 6.77934147320E-10 6.95096132486E-10 7.12692575402E-10 7.30734474419E-10 7.49233106313E-10 7.68200033334E-10 7.87647110431E-10 8.07586492663E-10 8.28030642795E-10 8.48992339089E-10 8.70484683292E-10 8.92521108820E-10 9.15115389159E-10 9.38281646475E-10 9.62034360436E-10 9.86388377264E-10 1.01135891902E-09 1.03696159310E-09 1.06321240202E-09 1.09012775340E-09 1.11772447021E-09 1.14601980129E-09 1.17503143217E-09 1.20477749605E-09 1.23527658521E-09 1.26654776257E-09 1.29861057364E-09 1.33148505873E-09 1.36519176547E-09 1.39975176166E-09 1.43518664842E-09 1.47151857373E-09 1.50877024622E-09 1.54696494942E-09 1.58612655626E-09 1.62627954404E-09 1.66744900969E-09 1.70966068548E-09 1.75294095509E-09 1.79731687011E-09 1.84281616694E-09 1.88946728415E-09 1.93729938021E-09 1.98634235175E-09 2.03662685224E-09 2.08818431115E-09 2.14104695359E-09 2.19524782044E-09 2.25082078904E-09 2.30780059432E-09 2.36622285052E-09 2.42612407349E-09 2.48754170347E-09 2.55051412849E-09 2.61508070840E-09 2.68128179943E-09 2.74915877947E-09 2.81875407384E-09 2.89011118193E-09 2.96327470426E-09 3.03829037046E-09 3.11520506780E-09 3.19406687051E-09 3.27492506982E-09 3.35783020479E-09 3.44283409386E-09 3.52998986727E-09 3.61935200029E-09 3.71097634719E-09 3.80492017624E-09 3.90124220543E-09 4.00000263925E-09 4.10126320623E-09 4.20508719760E-09 4.31153950679E-09 4.42068667005E-09 4.53259690797E-09 4.64734016819E-09 4.76498816906E-09 4.88561444450E-09 5.00929438996E-09 5.13610530953E-09 5.26612646426E-09 5.39943912173E-09 5.53612660679E-09 5.67627435370E-09 5.81996995949E-09 5.96730323872E-09 6.11836627964E-09 6.27325350171E-09 6.43206171464E-09 6.59489017890E-09 6.76184066776E-09 6.93301753088E-09 7.10852775957E-09 7.28848105364E-09 7.47298988997E-09 7.66216959280E-09 7.85613840585E-09 8.05501756617E-09 8.25893137999E-09 8.46800730034E-09 8.68237600677E-09 8.90217148699E-09 9.12753112065E-09 9.35859576520E-09 9.59550984389E-09 9.83842143612E-09 1.00874823699E-08 1.03428483169E-08 1.06046788895E-08 1.08731377408E-08 1.11483926667E-08 1.14306157112E-08 1.17199832733E-08 1.20166762176E-08 1.23208799875E-08 1.26327847210E-08 1.29525853691E-08 1.32804818184E-08 1.36166790156E-08 1.39613870956E-08 1.43148215129E-08 1.46772031765E-08 1.50487585873E-08 1.54297199807E-08 1.58203254708E-08 1.62208191998E-08 1.66314514903E-08 1.70524790020E-08 1.74841648919E-08 1.79267789790E-08 1.83805979128E-08 1.88459053463E-08 1.93229921132E-08 1.98121564096E-08 2.03137039808E-08 2.08279483121E-08 2.13552108244E-08 2.18958210761E-08 2.24501169678E-08 2.30184449547E-08 2.36011602623E-08 2.41986271090E-08 2.48112189331E-08 2.54393186272E-08 2.60833187764E-08 2.67436219047E-08 2.74206407257E-08 2.81147984013E-08 2.88265288057E-08 2.95562767971E-08 3.03044984951E-08 3.10716615663E-08 3.18582455164E-08 3.26647419902E-08 3.34916550783E-08 3.43395016330E-08 3.52088115905E-08 3.61001283030E-08 3.70140088775E-08 3.79510245247E-08 3.89117609156E-08 3.98968185477E-08 4.09068131206E-08 4.19423759204E-08 4.30041542147E-08 4.40928116567E-08 4.52090287008E-08 4.63535030269E-08 4.75269499776E-08 4.87301030042E-08 4.99637141263E-08 5.12285544008E-08 5.25254144048E-08 5.38551047288E-08 5.52184564844E-08 5.66163218230E-08 5.80495744687E-08 5.95191102648E-08 6.10258477330E-08 6.25707286484E-08 6.41547186275E-08 6.57788077321E-08 6.74440110883E-08 6.91513695205E-08 7.09019502027E-08 7.26968473249E-08 7.45371827776E-08 7.64241068526E-08 7.83587989625E-08 8.03424683774E-08 8.23763549815E-08 8.44617300473E-08 8.65998970309E-08 8.87921923866E-08 9.10399864019E-08 9.33446840550E-08 9.57077258918E-08 9.81305889276E-08 1.00614787569E-07 1.03161874563E-07 1.05773441964E-07 1.08451122132E-07 1.11196588753E-07 1.14011557881E-07 1.16897789017E-07 1.19857086205E-07 1.22891299160E-07 1.26002324425E-07 1.29192106557E-07 1.32462639341E-07 1.35815967037E-07 1.39254185660E-07 1.42779444286E-07 1.46393946401E-07 1.50099951273E-07 1.53899775367E-07 1.57795793793E-07 1.61790441792E-07 1.65886216254E-07 1.70085677285E-07 1.74391449803E-07 1.78806225179E-07 1.83332762924E-07 1.87973892406E-07 1.92732514630E-07 1.97611604039E-07 2.02614210385E-07 2.07743460627E-07 2.13002560890E-07 2.18394798471E-07 2.23923543889E-07 2.29592252996E-07 2.35404469138E-07 2.41363825366E-07 2.47474046714E-07 2.53738952520E-07 2.60162458822E-07 2.66748580799E-07 2.73501435287E-07 2.80425243350E-07 2.87524332920E-07 2.94803141502E-07 3.02266218950E-07 3.09918230311E-07 3.17763958740E-07 3.25808308495E-07 3.34056308000E-07 3.42513112990E-07 3.51184009733E-07 3.60074418341E-07 3.69189896151E-07 3.78536141208E-07 3.88118995822E-07 3.97944450223E-07 4.08018646309E-07 4.18347881484E-07 4.28938612598E-07 4.39797459981E-07 4.50931211589E-07 4.62346827243E-07 4.74051442986E-07 4.86052375542E-07 4.98357126894E-07 5.10973388975E-07 5.23909048482E-07 5.37172191800E-07 5.50771110069E-07 5.64714304364E-07 5.79010491014E-07 5.93668607052E-07 6.08697815808E-07 6.24107512638E-07 6.39907330800E-07 6.56107147486E-07 6.72717089991E-07 6.89747542056E-07 7.07209150361E-07 7.25112831184E-07 7.43469777232E-07 7.62291464643E-07 7.81589660166E-07 8.01376428522E-07 8.21664139953E-07 8.42465477962E-07 8.63793447251E-07 8.85661381854E-07 9.08082953487E-07 9.31072180097E-07 9.54643434639E-07 9.78811454069E-07 1.00359134857E-06 1.02899861100E-06 1.05504912660E-06 1.08175918294E-06 1.10914548010E-06 1.13722514112E-06 1.16601572275E-06 1.19553522641E-06 1.22580210948E-06 1.25683529684E-06 1.28865419274E-06 1.32127869293E-06 1.35472919714E-06 1.38902662182E-06 1.42419241330E-06 1.46024856115E-06 1.49721761204E-06 1.53512268376E-06 1.57398747981E-06 1.61383630417E-06 1.65469407656E-06 1.69658634808E-06 1.73953931718E-06 1.78357984610E-06 1.82873547771E-06 1.87503445276E-06 1.92250572763E-06 1.97117899242E-06 2.02108468962E-06 2.07225403318E-06 2.12471902811E-06 2.17851249052E-06 2.23366806825E-06 2.29022026193E-06 2.34820444670E-06 2.40765689438E-06 2.46861479621E-06 2.53111628625E-06 2.59520046532E-06 2.66090742551E-06 2.72827827544E-06 2.79735516603E-06 2.86818131702E-06 2.94080104411E-06 3.01525978685E-06 3.09160413721E-06 3.16988186887E-06 3.25014196727E-06 3.33243466046E-06 3.41681145073E-06 3.50332514697E-06 3.59202989800E-06 3.68298122667E-06 3.77623606480E-06 3.87185278915E-06 3.96989125816E-06 4.07041284975E-06 4.17348050005E-06 4.27915874313E-06 4.38751375175E-06 4.49861337917E-06 4.61252720205E-06 4.72932656447E-06 4.84908462299E-06 4.97187639307E-06 5.09777879649E-06 5.22687071014E-06 5.35923301601E-06 5.49494865253E-06 5.63410266719E-06 5.77678227058E-06 5.92307689182E-06 6.07307823544E-06 6.22688033980E-06 6.38457963692E-06 6.54627501403E-06 6.71206787665E-06 6.88206221334E-06 7.05636466218E-06 7.23508457904E-06 7.41833410758E-06 7.60622825117E-06 7.79888494673E-06 7.99642514048E-06 8.19897286580E-06 8.40665532311E-06 8.61960296193E-06 8.83794956512E-06 9.06183233546E-06 9.29139198452E-06 9.52677282393E-06 9.76812285921E-06 1.00155938861E-05 1.02693415896E-05 1.05295256457E-05 1.07963098257E-05 1.10698621042E-05 1.13503547687E-05 1.16379645339E-05 1.19328726581E-05 1.22352650631E-05 1.25453324576E-05 1.28632704645E-05 1.31892797510E-05 1.35235661629E-05 1.38663408634E-05 1.42178204743E-05 1.45782272234E-05 1.49477890945E-05 1.53267399828E-05 1.57153198544E-05 1.61137749113E-05 1.65223577604E-05 1.69413275886E-05 1.73709503424E-05 1.78114989139E-05 1.82632533319E-05 1.87265009589E-05 1.92015366955E-05 1.96886631896E-05 2.01881910538E-05 2.07004390887E-05 2.12257345147E-05 2.17644132101E-05 2.23168199584E-05 2.28833087031E-05 2.34642428113E-05 2.40599953469E-05 2.46709493524E-05 2.52974981414E-05 2.59400456010E-05 2.65990065051E-05 2.72748068396E-05 2.79678841382E-05 2.86786878327E-05 2.94076796144E-05 3.01553338104E-05 3.09221377746E-05 3.17085922927E-05 3.25152120048E-05 3.33425258433E-05 3.41910774899E-05 3.50614258501E-05 3.59541455486E-05 3.68698274443E-05 3.78090791685E-05 3.87725256851E-05 3.97608098764E-05 4.07745931537E-05 4.18145560968E-05 4.28813991207E-05 4.39758431749E-05 4.50986304739E-05 4.62505252628E-05 4.74323146196E-05 4.86448092964E-05 4.98888446017E-05 5.11652813264E-05 5.24750067173E-05 5.38189354988E-05 5.51980109487E-05 5.66132060290E-05 5.80655245776E-05 5.95560025620E-05 6.10857094027E-05 6.26557493674E-05 6.42672630429E-05 6.59214288893E-05 6.76194648812E-05 6.93626302435E-05 7.11522272867E-05 7.29896033483E-05 7.48761528500E-05 7.68133194747E-05 7.88025984760E-05 8.08455391251E-05 8.29437473085E-05 8.50988882840E-05 8.73126896081E-05 8.95869442460E-05 9.19235138770E-05 9.43243324101E-05 9.67914097229E-05 9.93268356423E-05 1.01932784182E-04 1.04611518055E-04 1.07365393486E-04 1.10196865335E-04 1.13108492569E-04 1.16102944089E-04 1.19183004957E-04 1.22351583037E-04 1.25611716090E-04 1.28966579350E-04 1.32419493618E-04 1.35973933914E-04 1.39633538727E-04 1.43402119902E-04 1.47283673218E-04 1.51282389707E-04 1.55402667757E-04 1.59649126079E-04 1.64026617580E-04 1.68540244215E-04 1.73195372906E-04 1.77997652577E-04 1.82953032420E-04 1.88067781453E-04 1.93348509497E-04 1.98802189639E-04 2.04436182336E-04 2.10258261239E-04 2.16276640890E-04 2.22500006433E-04 2.28937545464E-04 2.35598982206E-04 2.42494614171E-04 2.49635351478E-04 2.57032759060E-04 2.64699101932E-04 2.72647393780E-04 2.80891449103E-04 2.89445939167E-04 2.98326452062E-04 3.07549557169E-04 3.17132874346E-04 3.27095148197E-04 3.37456327803E-04 3.48237652297E-04 3.59461742740E-04 3.71152700744E-04 3.83336214350E-04 3.96039671686E-04 4.09292282986E-04 4.23125211581E-04 4.37571714518E-04 4.52667293516E-04 4.68449857014E-04 4.84959894130E-04 5.02240661385E-04 5.20338383144E-04 5.39302466757E-04 5.59185733479E-04 5.80044666317E-04 6.01939676016E-04 6.24935386527E-04 6.49100941340E-04 6.74510332196E-04 7.01242751801E-04 7.29382972260E-04 7.59021751068E-04 7.90256266660E-04 8.23190585605E-04 8.57936163722E-04 8.94612383518E-04 9.33347130549E-04 9.74277411434E-04 1.01755001650E-03 1.06332223015E-03 1.11176259243E-03 1.16305171518E-03 1.21738315681E-03 1.27496435968E-03 1.33601765435E-03 1.40078133552E-03 1.46951081453E-03 1.54247985356E-03 1.61998188736E-03 1.70233143832E-03 1.78986563135E-03 1.88294581516E-03 1.98195929740E-03 2.08732120100E-03 2.19947645011E-03 2.31890189404E-03 2.44610857848E-03 2.58164417374E-03 2.72609557018E-03 2.88009165186E-03 3.04430625993E-03 3.21946135807E-03 3.40633041277E-03 3.60574200236E-03 3.81858366910E-03 4.04580602974E-03 4.28842716052E-03 4.54753727380E-03 4.82430370409E-03 5.11997622244E-03 5.43589269890E-03 5.77348513410E-03 6.13428608157E-03 6.51993548396E-03 6.93218794708E-03 7.37292047697E-03 7.84414070623E-03 8.34799563705E-03 8.88678092963E-03 9.46295076553E-03 1.00791283172E-02 1.07381168552E-02 1.14429115272E-02 1.21967118422E-02 1.30029348958E-02 1.38652293728E-02 1.47874903649E-02 1.57738750410E-02 1.68288192096E-02 1.79570548137E-02 1.91636283963E-02 2.04539205799E-02 2.18336665982E-02 2.33089779229E-02 2.48863650240E-02 2.65727613051E-02 2.83755482521E-02 3.03025818325E-02 3.23622201821E-02 3.45633526129E-02 3.69154299732E-02 3.94284963878E-02 4.21132224038E-02 4.49809395606E-02 4.80436763985E-02 5.13141959157E-02 5.48060344737E-02 5.85335421452E-02 6.25119244892E-02 6.67572857257E-02 7.12866732752E-02 7.61181236098E-02 8.12707093536E-02 8.67645875497E-02 9.26210489974E-02 9.88625685399E-02 1.05512856165E-01 1.12596908755E-01 1.20141062300E-01 1.28173044355E-01 1.36722026504E-01 1.45818676533E-01 1.55495210031E-01 1.65785441034E-01 1.76724831343E-01 1.88350538078E-01 2.00701458985E-01 2.13818274966E-01 2.27743489266E-01 2.42521462668E-01 2.58198444026E-01 2.74822595373E-01 2.92444010814E-01 3.11114728318E-01 3.30888733493E-01 3.51821954342E-01 3.73972245932E-01 3.97399363857E-01 4.22164925303E-01 4.48332356454E-01 4.75966824934E-01 5.05135155902E-01 5.35905730382E-01 5.68348364360E-01 6.02534167127E-01 6.38535377326E-01 6.76425175158E-01 7.16277469150E-01 7.58166655946E-01 8.02167351567E-01 8.48354092642E-01 8.96801006184E-01 9.47581446557E-01 1.00076759840E+00 1.05643004441E+00 1.11463729712E+00 1.17545529386E+00 1.23894685458E+00 1.30517110225E+00 1.37418284606E+00 1.44603192796E+00 1.52076253342E+00 1.59841246804E+00 1.67901240162E+00 1.76258508261E+00 1.84914452579E+00 1.93869517706E+00 2.03123105994E+00 2.12673490904E+00 2.22517729643E+00 2.32651575807E+00 2.43069392787E+00 2.53764068808E+00 2.64726934553E+00 2.75947684414E+00 2.87414302483E+00 2.99112994500E+00 3.11028127029E+00 3.23142175212E+00 3.35435680510E+00 3.47887219876E+00 3.60473387843E+00 3.73168793018E+00 3.85946070470E+00 3.98775911464E+00 4.11627111930E+00 4.24466640994E+00 4.37259730741E+00 4.49969988262E+00 4.62559530843E+00 4.74989144921E+00 4.87218469167E+00 4.99206201791E+00 5.10910331776E+00 5.22288393427E+00 5.33297743174E+00 5.43895857181E+00 5.54040647801E+00 5.63690796499E+00 5.72806100348E+00 5.81347828722E+00 5.89279086360E+00 5.96565178485E+00 6.03173973295E+00 6.09076256715E+00 6.14246074051E+00 6.18661052904E+00 6.22302701595E+00 6.25156677293E+00 6.27213018123E+00 6.28466333735E+00 6.28915949133E+00 6.28565997074E+00 6.27425454910E+00 6.25508122557E+00 6.22832539127E+00 6.19421836767E+00 6.15303531398E+00 6.10509251212E+00 6.05074405081E+00 5.99037794299E+00 5.92441172417E+00 5.85328759150E+00 5.77746715568E+00 5.69742588839E+00 5.61364735759E+00 5.52661735043E+00 5.43681798925E+00 5.34472194917E+00 5.25078688655E+00 5.15545018544E+00 5.05912412425E+00 4.96219155741E+00 4.86500219626E+00 4.76786956067E+00 4.67106865759E+00 4.57483442511E+00 4.47936096153E+00 4.38480153798E+00 4.29126937099E+00 4.19883910868E+00 4.10754896098E+00 4.01740338105E+00 3.92837618303E+00 3.84041396001E+00 3.75343964788E+00 3.66735606517E+00 3.58204924849E+00 3.49739139825E+00 3.41324325205E+00 3.32948854506E+00 3.24613713290E+00 3.16323359688E+00 3.08082568584E+00 2.99896436905E+00 2.91770359840E+00 2.83709978679E+00 2.75721102450E+00 2.67809607206E+00 2.59981318645E+00 2.52241885739E+00 2.44596655169E+00 2.37050558819E+00 2.29608029148E+00 2.22272960163E+00 2.15048734947E+00 2.07938339473E+00 2.00944525511E+00 1.94069866592E+00 1.87316766330E+00 1.80687462371E+00 1.74184576669E+00 1.67809452545E+00 1.61563847215E+00 1.55449361072E+00 1.49467438520E+00 1.43619368347E+00 1.37906283681E+00 1.32329161591E+00 1.26888822407E+00 1.21585928803E+00 1.16420984741E+00 1.11394334323E+00 1.06506160640E+00 1.01756484690E+00 9.71451644446E-01 9.26718941468E-01 8.83362039114E-01 8.41374597172E-01 8.00748638567E-01 7.61474559191E-01 7.23541143676E-01 6.86935587682E-01 6.51643527129E-01 6.17649074739E-01 5.84934864048E-01 5.53482100975E-01 5.23270622848E-01 4.94278964639E-01 4.66484432025E-01 4.39863180750E-01 4.14390301637E-01 3.90039910487E-01 3.66785242022E-01 3.44598746968E-01 3.23452191304E-01 3.03316756726E-01 2.84163141347E-01 2.65961659696E-01 2.48682341119E-01 2.32295025747E-01 2.16769457291E-01 2.02075371971E-01 1.88182583041E-01 1.75061060408E-01 1.62681005006E-01 1.51012917652E-01 1.40027662213E-01 1.29696523033E-01 1.19991256637E-01 1.10884137803E-01 1.02348000189E-01 9.43562717421E-02 8.68830051683E-02 7.99029037906E-02 7.33913431332E-02 6.73243885951E-02 6.16788095762E-02 5.64320904122E-02 5.15624384585E-02 4.70487896425E-02 4.28708117729E-02 3.90089058610E-02 3.54442056751E-02 3.21585757107E-02 2.91346077245E-02 2.63556159456E-02 2.38056310506E-02 2.14693929585E-02 1.93323424875E-02 1.73806118941E-02 1.56010143121E-02 1.39810320983E-02 1.25088040969E-02 1.11731118364E-02 9.96336468056E-03 8.86958396546E-03 7.88238616647E-03 6.99296515048E-03 6.19307358211E-03 5.47500356396E-03 4.83156660208E-03 4.25607299688E-03 3.74231076726E-03 3.28452422087E-03 2.87739228702E-03 2.51600672929E-03 2.19585035457E-03 1.91277533166E-03 1.66298172866E-03 1.44299637149E-03 1.24965211924E-03 1.08006764293E-03 9.31627785692E-04 8.01964572230E-04 6.88938925777E-04 5.90623140547E-04 5.05284147851E-04 4.31367604398E-04 3.67482822107E-04 3.12388550084E-04 2.64979611418E-04 2.24274390092E-04 1.89403156719E-04 1.59597216020E-04 1.34178853854E-04 1.12552057366E-04 9.41939782583E-05 7.86471063452E-05 6.55121183951E-05 5.44413657185E-05 4.51329629791E-05 3.73254402515E-05 3.07929203464E-05 2.53407838241E-05 2.08017848677E-05 1.70325822229E-05 1.39106506986E-05 1.13315401893E-05 9.20645080916E-06 7.46009445290E-06 6.02881490037E-06 4.85894042101E-06 3.90534468087E-06 3.13019358814E-06 2.50185750956E-06 1.99397003326E-06 1.58461612959E-06 1.25563415919E-06 9.92017689701E-07 7.81404502040E-07 6.13641492888E-07 4.80415407911E-07 3.74940472483E-07 2.91695027756E-07 2.26202208551E-07 1.74857244688E-07 1.34733603343E-07 1.03479886126E-07 7.92146818880E-08 6.04375601504E-08 4.59558939324E-08 3.48249010942E-08 2.62986852644E-08 1.97903974638E-08 1.48399334036E-08 1.10878343146E-08 8.25427595968E-09 6.12221555481E-09 4.52392367988E-09 3.33026150071E-09 2.44217597859E-09 1.78398009018E-09 1.29806397414E-09 9.40748612946E-10 6.79048124317E-10 4.88151701712E-10 3.49473203201E-10 2.49146635359E-10 1.76870423504E-10 1.25023350081E-10 8.79911854391E-11 6.16560112794E-11 4.30106201027E-11 2.98686438722E-11 2.06476211388E-11 1.42073848311E-11 9.73021513091E-12 6.63237653825E-12 4.49912725109E-12 3.03719980179E-12 2.04022337724E-12 1.36368575554E-12 9.06892360153E-13 6.00031890489E-13 3.94949928460E-13 2.58601182917E-13 1.68426750327E-13 1.09107541986E-13 7.02962913104E-14 4.50416832093E-14 2.86993409332E-14 1.81833977078E-14 1.14550005179E-14 7.17471007024E-15 4.46762831538E-15 2.76543573144E-15 1.70149856068E-15 1.04051515461E-15 6.32384394173E-16 3.81941454886E-16 2.29225285352E-16 1.36692919253E-16 8.09871797582E-17 4.76699693880E-17 2.78745793130E-17 1.61916936927E-17 9.34327625064E-18 5.35626681005E-18 3.05120001615E-18 1.72789409843E-18 9.73607147723E-19 5.46766667918E-19 3.07004147534E-19 1.71107976382E-19 9.46541157878E-20 5.19649976534E-20 2.83101971432E-20 1.53035905513E-20 8.20766468622E-21 4.36695307003E-21 2.30476357083E-21 1.20647662320E-21 6.26341659652E-22 3.22446868160E-22 1.64593831642E-22 8.32973049745E-23 4.17891212329E-23 2.07808218928E-23 1.02419133258E-23 5.00229687021E-24 2.42090807792E-24 1.16080018519E-24 5.51386591263E-25 2.59431728490E-25 1.20894371866E-25 5.57895011160E-26 2.54922933435E-26 1.15324435014E-26 5.16458047008E-27 2.28925749809E-27 1.00425506166E-27 4.35939679037E-28 1.87233796707E-28 7.95535061969E-29 3.34343340448E-29 1.38971131246E-29 5.71208439157E-30 2.32135482593E-30 9.32617045935E-31 3.70354233509E-31 1.45351618223E-31 5.63698233237E-32 2.15989462636E-32 8.17544812571E-33 3.05644707440E-33 1.12844620322E-33 4.11372271204E-34 1.48050538802E-34 5.25939234456E-35 1.84391391704E-35 6.37900894179E-36 2.17721026621E-36 7.33007319782E-37 2.43389747075E-37 7.96905074900E-38 2.57243621845E-38 8.18537819769E-39 2.56690871176E-39 7.93195197383E-40 2.41472204380E-40 7.24085856007E-41 2.13828816089E-41 6.21744587635E-42 1.77968329656E-42 5.01386474603E-43 1.39000017677E-43 3.79124219449E-44 1.01714674015E-44 2.68368142342E-45 6.96197242530E-46 1.77539586969E-46 4.44965248879E-47 1.09579724946E-47 2.65101135175E-48 6.29902135311E-49 1.46965807717E-49 3.36621341863E-50 7.56742690785E-51 1.66929823064E-51 3.61239573131E-52 7.66703905872E-53 1.59560342951E-53 3.25521595425E-54 6.50853863870E-55 1.27504619336E-55 2.44678397601E-56 4.59811404983E-57 5D 3 2 1.50 4.00 5D 3 2 2.50 4.00 6S 1 0 0.50 2.00 2 1.50 2 1.50 2 2.50 2 2.50 1 0.50 1 1.50 -7.00000000 100.00000000 78.00000000 0.01250000 espresso-5.1/pseudo/Au.pz-rrkjus_aewfc.UPF0000644000175000017500000250031212341373031016635 0ustar mbamba Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Author: ADC Generation date: 15Feb2010 Pseudopotential type: USPP Element: Au Functional: LDA Suggested minimum cutoff for wavefunctions: 23. Ry Suggested minimum cutoff for charge density: 297. Ry The Pseudo was generated with a Scalar-Relativistic Calculation L component and cutoff radius for Local Potential: 0 2.5000 Valence configuration: nl pn l occ Rcut Rcut US E pseu 6P 2 1 0.00 3.300 3.300 -0.065163 5D 3 2 10.00 1.800 2.400 -0.523090 6S 1 0 1.00 3.718 3.950 -0.447624 Generation configuration: 6P 2 1 0.00 3.300 3.300 -0.065163 5D 3 2 10.00 1.800 2.400 -0.523089 5D 3 2 0.00 1.800 2.400 -0.300000 6S 1 0 1.00 2.500 2.500 -0.447622 Pseudization used: rrkj 1.154280969056350E-005 1.168800036289902E-005 1.183501730907066E-005 1.198388350077537E-005 1.213462219865848E-005 1.228725695594821E-005 1.244181162213593E-005 1.259831034670267E-005 1.275677758289254E-005 1.291723809153360E-005 1.307971694490680E-005 1.324423953066353E-005 1.341083155579253E-005 1.357951905063667E-005 1.375032837296023E-005 1.392328621206732E-005 1.409841959297219E-005 1.427575588062193E-005 1.445532278417225E-005 1.463714836131719E-005 1.482126102267309E-005 1.500768953621788E-005 1.519646303178609E-005 1.538761100562044E-005 1.558116332498077E-005 1.577715023281075E-005 1.597560235246348E-005 1.617655069248639E-005 1.638002665146643E-005 1.658606202293620E-005 1.679468900034167E-005 1.700594018207249E-005 1.721984857655562E-005 1.743644760741288E-005 1.765577111868353E-005 1.787785338011243E-005 1.810272909250474E-005 1.833043339314805E-005 1.856100186130257E-005 1.879447052376059E-005 1.903087586047560E-005 1.927025481026243E-005 1.951264477656899E-005 1.975808363332066E-005 2.000660973083819E-005 2.025826190182993E-005 2.051307946745958E-005 2.077110224349020E-005 2.103237054650549E-005 2.129692520020938E-005 2.156480754180473E-005 2.183605942845244E-005 2.211072324381164E-005 2.238884190466229E-005 2.267045886761101E-005 2.295561813588121E-005 2.324436426618870E-005 2.353674237570381E-005 2.383279814910098E-005 2.413257784569717E-005 2.443612830667986E-005 2.474349696242617E-005 2.505473183991388E-005 2.536988157022581E-005 2.568899539614853E-005 2.601212317986657E-005 2.633931541075354E-005 2.667062321326119E-005 2.700609835490770E-005 2.734579325436651E-005 2.768976098965677E-005 2.803805530643692E-005 2.839073062640257E-005 2.874784205578996E-005 2.910944539398653E-005 2.947559714224954E-005 2.984635451253460E-005 3.022177543643511E-005 3.060191857423422E-005 3.098684332407067E-005 3.137660983121973E-005 3.177127899749112E-005 3.217091249074505E-005 3.257557275452785E-005 3.298532301782910E-005 3.340022730496103E-005 3.382035044556266E-005 3.424575808472945E-005 3.467651669327048E-005 3.511269357809479E-005 3.555435689272801E-005 3.600157564796161E-005 3.645441972263599E-005 3.691295987455908E-005 3.737726775156261E-005 3.784741590269696E-005 3.832347778956728E-005 3.880552779781194E-005 3.929364124872542E-005 3.978789441102760E-005 4.028836451278059E-005 4.079512975345603E-005 4.130826931615377E-005 4.182786337997445E-005 4.235399313254775E-005 4.288674078271787E-005 4.342618957338904E-005 4.397242379453232E-005 4.452552879635606E-005 4.508559100264215E-005 4.565269792424975E-005 4.622693817278916E-005 4.680840147446749E-005 4.739717868410861E-005 4.799336179934946E-005 4.859704397501473E-005 4.920831953767253E-005 4.982728400037321E-005 5.045403407757330E-005 5.108866770024757E-005 5.173128403119071E-005 5.238198348051186E-005 5.304086772132379E-005 5.370803970562962E-005 5.438360368040936E-005 5.506766520390847E-005 5.576033116213172E-005 5.646170978554432E-005 5.717191066598313E-005 5.789104477378067E-005 5.861922447510438E-005 5.935656354951406E-005 6.010317720774023E-005 6.085918210968589E-005 6.162469638265523E-005 6.239983963981079E-005 6.318473299886351E-005 6.397949910099765E-005 6.478426213003356E-005 6.559914783183196E-005 6.642428353394158E-005 6.725979816549462E-005 6.810582227735215E-005 6.896248806250284E-005 6.982992937671862E-005 7.070828175946961E-005 7.159768245510263E-005 7.249827043428588E-005 7.341018641572330E-005 7.433357288814244E-005 7.526857413255816E-005 7.621533624481720E-005 7.717400715842579E-005 7.814473666766458E-005 7.912767645099445E-005 8.012298009475629E-005 8.113080311716941E-005 8.215130299263148E-005 8.318463917632421E-005 8.423097312912878E-005 8.529046834285402E-005 8.636329036578262E-005 8.744960682853838E-005 8.854958747027862E-005 8.966340416521678E-005 9.079123094947720E-005 9.193324404828977E-005 9.308962190352450E-005 9.426054520157391E-005 9.544619690158577E-005 9.664676226405015E-005 9.786242887974772E-005 9.909338669906042E-005 1.003398280616518E-004 1.016019477265210E-004 1.028799429024331E-004 1.041740132787346E-004 1.054843610565545E-004 1.068111909803991E-004 1.081547103701436E-004 1.095151291534257E-004 1.108926598984485E-004 1.122875178471931E-004 1.136999209490521E-004 1.151300898948838E-004 1.165782481514954E-004 1.180446219965611E-004 1.195294405539774E-004 1.210329358296646E-004 1.225553427478189E-004 1.240968991876181E-004 1.256578460203925E-004 1.272384271472606E-004 1.288388895372388E-004 1.304594832658323E-004 1.321004615541076E-004 1.337620808082614E-004 1.354446006596826E-004 1.371482840055209E-004 1.388733970497657E-004 1.406202093448393E-004 1.423889938337173E-004 1.441800268925744E-004 1.459935883739699E-004 1.478299616505753E-004 1.496894336594508E-004 1.515722949468813E-004 1.534788397137734E-004 1.554093658616258E-004 1.573641750390771E-004 1.593435726890380E-004 1.613478680964186E-004 1.633773744364541E-004 1.654324088236390E-004 1.675132923612777E-004 1.696203501916560E-004 1.717539115468473E-004 1.739143098001537E-004 1.761018825181977E-004 1.783169715136675E-004 1.805599228987248E-004 1.828310871390871E-004 1.851308191087876E-004 1.874594781456253E-004 1.898174281073129E-004 1.922050374283284E-004 1.946226791774865E-004 1.970707311162290E-004 1.995495757576517E-004 2.020596004262737E-004 2.046011973185554E-004 2.071747635641826E-004 2.097807012881171E-004 2.124194176734298E-004 2.150913250249251E-004 2.177968408335618E-004 2.205363878416901E-004 2.233103941091033E-004 2.261192930799245E-004 2.289635236503331E-004 2.318435302371415E-004 2.347597628472390E-004 2.377126771479039E-004 2.407027345380032E-004 2.437304022200877E-004 2.467961532733923E-004 2.499004667277567E-004 2.530438276384738E-004 2.562267271620809E-004 2.594496626331046E-004 2.627131376417689E-004 2.660176621126839E-004 2.693637523845212E-004 2.727519312906933E-004 2.761827282410477E-004 2.796566793045879E-004 2.831743272932355E-004 2.867362218466452E-004 2.903429195180877E-004 2.939949838614123E-004 2.976929855191026E-004 3.014375023114415E-004 3.052291193267959E-004 3.090684290130384E-004 3.129560312701190E-004 3.168925335437994E-004 3.208785509205689E-004 3.249147062237523E-004 3.290016301108272E-004 3.331399611719660E-004 3.373303460298163E-004 3.415734394405378E-004 3.458699043961085E-004 3.502204122279187E-004 3.546256427116686E-004 3.590862841735835E-004 3.636030335979675E-004 3.681765967361073E-004 3.728076882165480E-004 3.774970316567558E-004 3.822453597761835E-004 3.870534145107607E-004 3.919219471288214E-004 3.968517183484923E-004 4.018434984565563E-004 4.068980674288110E-004 4.120162150519421E-004 4.171987410469287E-004 4.224464551940010E-004 4.277601774591716E-004 4.331407381223548E-004 4.385889779071016E-004 4.441057481119625E-004 4.496919107435059E-004 4.553483386510084E-004 4.610759156628384E-004 4.668755367245572E-004 4.727481080387547E-004 4.786945472066466E-004 4.847157833714514E-004 4.908127573635697E-004 4.969864218475926E-004 5.032377414711559E-004 5.095676930156690E-004 5.159772655489395E-004 5.224674605797158E-004 5.290392922141762E-004 5.356937873143838E-004 5.424319856587365E-004 5.492549401044352E-004 5.561637167519926E-004 5.631593951118168E-004 5.702430682728838E-004 5.774158430735368E-004 5.846788402744319E-004 5.920331947336580E-004 5.994800555840624E-004 6.070205864128035E-004 6.146559654431642E-004 6.223873857186529E-004 6.302160552894170E-004 6.381431974010048E-004 6.461700506854989E-004 6.542978693550558E-004 6.625279233978782E-004 6.708614987766557E-004 6.792998976294953E-004 6.878444384733860E-004 6.964964564102184E-004 7.052573033353974E-004 7.141283481490804E-004 7.231109769700670E-004 7.322065933523859E-004 7.414166185046020E-004 7.507424915118825E-004 7.601856695608600E-004 7.697476281673161E-004 7.794298614067372E-004 7.892338821477653E-004 7.991612222885870E-004 8.092134329962984E-004 8.193920849492728E-004 8.296987685825868E-004 8.401350943365271E-004 8.507026929082248E-004 8.614032155064582E-004 8.722383341096529E-004 8.832097417271350E-004 8.943191526636661E-004 9.055683027873066E-004 9.169589498006514E-004 9.284928735154701E-004 9.401718761308089E-004 9.519977825145877E-004 9.639724404887383E-004 9.760977211179330E-004 9.883755190019388E-004 1.000807752571654E-003 1.013396364388868E-003 1.026143321449788E-003 1.039050615492390E-003 1.052120263307627E-003 1.065354307054562E-003 1.078754814579454E-003 1.092323879738867E-003 1.106063622726840E-003 1.119976190406168E-003 1.134063756643857E-003 1.148328522650792E-003 1.162772717325682E-003 1.177398597603335E-003 1.192208448807300E-003 1.207204585006958E-003 1.222389349379100E-003 1.237765114574051E-003 1.253334283086409E-003 1.269099287630427E-003 1.285062591520140E-003 1.301226689054259E-003 1.317594105905907E-003 1.334167399517270E-003 1.350949159499192E-003 1.367942008035814E-003 1.385148600294291E-003 1.402571624839670E-003 1.420213804054984E-003 1.438077894566630E-003 1.456166687675094E-003 1.474483009791101E-003 1.493029722877248E-003 1.511809724895185E-003 1.530825950258439E-003 1.550081370290911E-003 1.569578993691155E-003 1.589321867002498E-003 1.609313075089058E-003 1.629555741617775E-003 1.650053029546477E-003 1.670808141618105E-003 1.691824320861146E-003 1.713104851096363E-003 1.734653057449905E-003 1.756472306872852E-003 1.778566008667319E-003 1.800937615019160E-003 1.823590621537383E-003 1.846528567800347E-003 1.869755037908821E-003 1.893273661046015E-003 1.917088112044642E-003 1.941202111961120E-003 1.965619428657000E-003 1.990343877387692E-003 2.015379321398612E-003 2.040729672528821E-003 2.066398891822259E-003 2.092390990146665E-003 2.118710028820285E-003 2.145360120246458E-003 2.172345428556188E-003 2.199670170258799E-003 2.227338614900778E-003 2.255355085732892E-003 2.283723960385707E-003 2.312449671553605E-003 2.341536707687396E-003 2.370989613695659E-003 2.400812991654878E-003 2.431011501528534E-003 2.461589861895236E-003 2.492552850686001E-003 2.523905305930825E-003 2.555652126514626E-003 2.587798272942710E-003 2.620348768115858E-003 2.653308698115162E-003 2.686683212996748E-003 2.720477527596464E-003 2.754696922344721E-003 2.789346744091569E-003 2.824432406942150E-003 2.859959393102669E-003 2.895933253736994E-003 2.932359609834037E-003 2.969244153086048E-003 3.006592646777951E-003 3.044410926687876E-003 3.082704901998998E-003 3.121480556222868E-003 3.160743948134351E-003 3.200501212718310E-003 3.240758562128229E-003 3.281522286656856E-003 3.322798755719081E-003 3.364594418847174E-003 3.406915806698530E-003 3.449769532076109E-003 3.493162290961686E-003 3.537100863562119E-003 3.581592115368773E-003 3.626642998230254E-003 3.672260551438676E-003 3.718451902829531E-003 3.765224269895452E-003 3.812584960913953E-003 3.860541376089358E-003 3.909101008709113E-003 3.958271446314606E-003 4.008060371886751E-003 4.058475565046467E-003 4.109524903270250E-003 4.161216363121066E-003 4.213558021494679E-003 4.266558056881703E-003 4.320224750645493E-003 4.374566488316133E-003 4.429591760900702E-003 4.485309166209985E-003 4.541727410201922E-003 4.598855308341918E-003 4.656701786980283E-003 4.715275884747000E-003 4.774586753964014E-003 4.834643662075306E-003 4.895455993094956E-003 4.957033249073405E-003 5.019385051582189E-003 5.082521143217301E-003 5.146451389121511E-003 5.211185778525807E-003 5.276734426310233E-003 5.343107574584374E-003 5.410315594287681E-003 5.478368986809969E-003 5.547278385632273E-003 5.617054557988352E-003 5.687708406547110E-003 5.759250971116123E-003 5.831693430366660E-003 5.905047103580363E-003 5.979323452417908E-003 6.054534082709926E-003 6.130690746270413E-003 6.207805342732992E-003 6.285889921410251E-003 6.364956683176467E-003 6.445017982374041E-003 6.526086328743852E-003 6.608174389379954E-003 6.691294990708831E-003 6.775461120493547E-003 6.860685929863129E-003 6.946982735367426E-003 7.034365021057870E-003 7.122846440594382E-003 7.212440819378772E-003 7.303162156715022E-003 7.395024627996658E-003 7.488042586921715E-003 7.582230567735516E-003 7.677603287501689E-003 7.774175648401746E-003 7.871962740063548E-003 7.970979841919119E-003 8.071242425592073E-003 8.172766157315089E-003 8.275566900377816E-003 8.379660717605496E-003 8.485063873868857E-003 8.591792838625505E-003 8.699864288493319E-003 8.809295109856230E-003 8.920102401502705E-003 9.032303477297506E-003 9.145915868886996E-003 9.260957328438504E-003 9.377445831414151E-003 9.495399579379520E-003 9.614837002847708E-003 9.735776764159128E-003 9.858237760397530E-003 9.982239126342744E-003 1.010780023746047E-002 1.023494071292978E-002 1.036368041870864E-002 1.049403947063798E-002 1.062603823758490E-002 1.075969734462530E-002 1.089503767626656E-002 1.103208037971087E-002 1.117084686815944E-002 1.131135882415843E-002 1.145363820298683E-002 1.159770723608707E-002 1.174358843453865E-002 1.189130459257564E-002 1.204087879114828E-002 1.219233440152939E-002 1.234569508896624E-002 1.250098481637825E-002 1.265822784810127E-002 1.281744875367892E-002 1.297867241170164E-002 1.314192401369399E-002 1.330722906805095E-002 1.347461340402353E-002 1.364410317575483E-002 1.381572486636648E-002 1.398950529209681E-002 1.416547160649090E-002 1.434365130464337E-002 1.452407222749459E-002 1.470676256618080E-002 1.489175086643913E-002 1.507906603306784E-002 1.526873733444279E-002 1.546079440709076E-002 1.565526726032006E-002 1.585218628090969E-002 1.605158223785722E-002 1.625348628718660E-002 1.645792997681635E-002 1.666494525148889E-002 1.687456445776207E-002 1.708682034906334E-002 1.730174609080755E-002 1.751937526557914E-002 1.773974187837941E-002 1.796288036193998E-002 1.818882558210285E-002 1.841761284326837E-002 1.864927789391159E-002 1.888385693216799E-002 1.912138661148954E-002 1.936190404637190E-002 1.960544681815359E-002 1.985205298088822E-002 2.010176106729043E-002 2.035461009475676E-002 2.061063957146217E-002 2.086988950253327E-002 2.113240039629928E-002 2.139821327062142E-002 2.166736965930209E-002 2.193991161857464E-002 2.221588173367467E-002 2.249532312549416E-002 2.277827945731910E-002 2.306479494165203E-002 2.335491434712027E-002 2.364868300547117E-002 2.394614681865532E-002 2.424735226599869E-002 2.455234641146525E-002 2.486117691101074E-002 2.517389202002901E-002 2.549054060089212E-002 2.581117213058501E-002 2.613583670843655E-002 2.646458506394756E-002 2.679746856471740E-002 2.713453922447038E-002 2.747584971118282E-002 2.782145335531270E-002 2.817140415813252E-002 2.852575680016720E-002 2.888456664973803E-002 2.924788977161398E-002 2.961578293577205E-002 2.998830362626762E-002 3.036551005021643E-002 3.074746114688973E-002 3.113421659692343E-002 3.152583683164344E-002 3.192238304250822E-002 3.232391719066996E-002 3.273050201665629E-002 3.314220105017344E-002 3.355907862003301E-002 3.398119986420345E-002 3.440863073998791E-002 3.484143803433047E-002 3.527968937425129E-002 3.572345323741392E-002 3.617279896282488E-002 3.662779676166786E-002 3.708851772827475E-002 3.755503385123378E-002 3.802741802463838E-002 3.850574405947678E-002 3.899008669516495E-002 3.948052161122526E-002 3.997712543911100E-002 4.047997577418069E-002 4.098915118782232E-002 4.150473123973004E-002 4.202679649033609E-002 4.255542851339785E-002 4.309070990874453E-002 4.363272431518325E-002 4.418155642356762E-002 4.473729199003131E-002 4.530001784938709E-002 4.586982192869545E-002 4.644679326100312E-002 4.703102199925448E-002 4.762259943037866E-002 4.822161798955269E-002 4.882817127464523E-002 4.944235406084120E-002 5.006426231545034E-002 5.069399321290290E-002 5.133164514993261E-002 5.197731776095204E-002 5.263111193362039E-002 5.329312982460709E-002 5.396347487555471E-002 5.464225182924107E-002 5.532956674594629E-002 5.602552702002453E-002 5.673024139668436E-002 5.744381998898111E-002 5.816637429502139E-002 5.889801721538568E-002 5.963886307076892E-002 6.038902761984307E-002 6.114862807734536E-002 6.191778313239248E-002 6.269661296702675E-002 6.348523927499447E-002 6.428378528076052E-002 6.509237575876319E-002 6.591113705290950E-002 6.674019709631759E-002 6.757968543130607E-002 6.842973322963503E-002 6.929047331300260E-002 7.016204017379778E-002 7.104456999611589E-002 7.193820067703731E-002 7.284307184817380E-002 7.375932489748709E-002 7.468710299137997E-002 7.562655109706737E-002 7.657781600522721E-002 7.754104635293653E-002 7.851639264689711E-002 7.950400728695148E-002 8.050404458989657E-002 8.151666081359575E-002 8.254201418139383E-002 8.358026490684094E-002 8.463157521872497E-002 8.569610938642118E-002 8.677403374555928E-002 8.786551672401310E-002 8.897072886821900E-002 9.008984286982274E-002 9.122303359266412E-002 9.237047810009920E-002 9.353235568266646E-002 9.470884788610236E-002 9.590013853970694E-002 9.710641378506871E-002 9.832786210514909E-002 9.956467435373281E-002 1.008170437852504E-001 1.020851660849731E-001 1.033692393995905E-001 1.046694643681706E-001 1.059860441535097E-001 1.073191844738783E-001 1.086690936351632E-001 1.100359825634177E-001 1.114200648378179E-001 1.128215567240347E-001 1.142406772080270E-001 1.156776480302573E-001 1.171326937203404E-001 1.186060416321258E-001 1.200979219792219E-001 1.216085678709685E-001 1.231382153488593E-001 1.246871034234251E-001 1.262554741115788E-001 1.278435724744311E-001 1.294516466555824E-001 1.310799479198949E-001 1.327287306927541E-001 1.343982525998229E-001 1.360887745072956E-001 1.378005605626601E-001 1.395338782359697E-001 1.412889983616375E-001 1.430661951807543E-001 1.448657463839383E-001 1.466879331547266E-001 1.485330402135090E-001 1.504013558620177E-001 1.522931720283739E-001 1.542087843127022E-001 1.561484920333198E-001 1.581125982735040E-001 1.601014099288509E-001 1.621152377552284E-001 1.641543964173308E-001 1.662192045378485E-001 1.683099847472505E-001 1.704270637341989E-001 1.725707722965920E-001 1.747414453932544E-001 1.769394221962740E-001 1.791650461439976E-001 1.814186649946956E-001 1.837006308808978E-001 1.860113003644170E-001 1.883510344920614E-001 1.907201988520480E-001 1.931191636311289E-001 1.955483036724307E-001 1.980079985340275E-001 2.004986325482460E-001 2.030205948817174E-001 2.055742795961881E-001 2.081600857100894E-001 2.107784172608879E-001 2.134296833682158E-001 2.161142982977957E-001 2.188326815261730E-001 2.215852578062568E-001 2.243724572336917E-001 2.271947153140589E-001 2.300524730309249E-001 2.329461769147478E-001 2.358762791126458E-001 2.388432374590492E-001 2.418475155472363E-001 2.448895828017698E-001 2.479699145518484E-001 2.510889921055738E-001 2.542473028251603E-001 2.574453402030839E-001 2.606836039391903E-001 2.639626000187776E-001 2.672828407916535E-001 2.706448450521942E-001 2.740491381204060E-001 2.774962519240060E-001 2.809867250815400E-001 2.845211029865395E-001 2.880999378927434E-001 2.917237890003874E-001 2.953932225435787E-001 2.991088118787753E-001 3.028711375743690E-001 3.066807875014048E-001 3.105383569254351E-001 3.144444485995297E-001 3.183996728584607E-001 3.224046477140645E-001 3.264599989518109E-001 3.305663602285822E-001 3.347243731716810E-001 3.389346874790906E-001 3.431979610209862E-001 3.475148599425329E-001 3.518860587679707E-001 3.563122405060083E-001 3.607940967565483E-001 3.653323278187473E-001 3.699276428004423E-001 3.745807597289491E-001 3.792924056632535E-001 3.840633168076197E-001 3.888942386266194E-001 3.937859259616160E-001 3.987391431487085E-001 4.037546641381582E-001 4.088332726153256E-001 4.139757621231161E-001 4.191829361859786E-001 4.244556084354553E-001 4.297946027373108E-001 4.352007533202687E-001 4.406749049063550E-001 4.462179128428929E-001 4.518306432361507E-001 4.575139730866701E-001 4.632687904263043E-001 4.690959944569695E-001 4.749964956911518E-001 4.809712160941747E-001 4.870210892282549E-001 4.931470603983800E-001 4.993500868000070E-001 5.056311376686321E-001 5.119911944312333E-001 5.184312508596177E-001 5.249523132257065E-001 5.315554004587596E-001 5.382415443045921E-001 5.450117894867843E-001 5.518671938699178E-001 5.588088286248770E-001 5.658377783962134E-001 5.729551414716300E-001 5.801620299535887E-001 5.874595699330757E-001 5.948489016655614E-001 6.023311797491608E-001 6.099075733050483E-001 6.175792661601324E-001 6.253474570320277E-001 6.332133597163647E-001 6.411782032764388E-001 6.492432322352620E-001 6.574097067700189E-001 6.656789029089677E-001 6.740521127308315E-001 6.825306445666780E-001 6.911158232043574E-001 6.998089900954998E-001 7.086115035651159E-001 7.175247390238465E-001 7.265500891828638E-001 7.356889642714936E-001 7.449427922575628E-001 7.543130190705188E-001 7.638011088273678E-001 7.734085440614351E-001 7.831368259540239E-001 7.929874745689737E-001 8.029620290901689E-001 8.130620480620501E-001 8.232891096331267E-001 8.336448118025784E-001 8.441307726699394E-001 8.547486306879259E-001 8.655000449184586E-001 8.763866952918815E-001 8.874102828694665E-001 8.985725301092017E-001 9.098751811349249E-001 9.213200020088576E-001 9.329087810075424E-001 9.446433289012773E-001 9.565254792370466E-001 9.685570886250112E-001 9.807400370286199E-001 9.930762280583437E-001 1.005567589269131E+000 1.018216072461586E+000 1.031023653986938E+000 1.043992335055862E+000 1.057124142051155E+000 1.070421126844380E+000 1.083885367116464E+000 1.097518966682341E+000 1.111324055819683E+000 1.125302791601751E+000 1.139457358234453E+000 1.153789967397626E+000 1.168302858590606E+000 1.182998299482174E+000 1.197878586264863E+000 1.212946044013758E+000 1.228203027049790E+000 1.243651919307596E+000 1.259295134708025E+000 1.275135117535305E+000 1.291174342818983E+000 1.307415316720644E+000 1.323860576925497E+000 1.340512693038912E+000 1.357374266987906E+000 1.374447933427716E+000 1.391736360153463E+000 1.409242248516992E+000 1.426968333848979E+000 1.444917385886317E+000 1.463092209204907E+000 1.481495643657872E+000 1.500130564819283E+000 1.518999884433488E+000 1.538106550870063E+000 1.557453549584513E+000 1.577043903584753E+000 1.596880673903445E+000 1.616966960076317E+000 1.637305900626443E+000 1.657900673554666E+000 1.678754496836160E+000 1.699870628923235E+000 1.721252369254495E+000 1.742903058770364E+000 1.764826080435129E+000 1.787024859765532E+000 1.809502865366000E+000 1.832263609470647E+000 1.855310648492040E+000 1.878647583576919E+000 1.902278061168873E+000 1.926205773578096E+000 1.950434459558341E+000 1.974967904891077E+000 1.999809942977056E+000 2.024964455435275E+000 2.050435372709473E+000 2.076226674682303E+000 2.102342391297166E+000 2.128786603187917E+000 2.155563442316470E+000 2.182677092618409E+000 2.210131790656765E+000 2.237931826283955E+000 2.266081543312110E+000 2.294585340191790E+000 2.323447670699240E+000 2.352673044632333E+000 2.382266028515196E+000 2.412231246311772E+000 2.442573380148311E+000 2.473297171044949E+000 2.504407419656528E+000 2.535908987022681E+000 2.567806795327404E+000 2.600105828668144E+000 2.632811133834565E+000 2.665927821097149E+000 2.699461065005646E+000 2.733416105197647E+000 2.767798247217268E+000 2.802612863344141E+000 2.837865393432877E+000 2.873561345763014E+000 2.909706297899732E+000 2.946305897565345E+000 2.983365863521755E+000 3.020891986464049E+000 3.058890129925276E+000 3.097366231192663E+000 3.136326302235321E+000 3.175776430643602E+000 3.215722780580345E+000 3.256171593743987E+000 3.297129190343883E+000 3.338601970087839E+000 3.380596413182052E+000 3.423119081343709E+000 3.466176618826210E+000 3.509775753457392E+000 3.553923297690754E+000 3.598626149669885E+000 3.643891294306372E+000 3.689725804371141E+000 3.736136841599649E+000 3.783131657810893E+000 3.830717596040504E+000 3.878902091688159E+000 3.927692673679322E+000 3.977096965641699E+000 4.027122687096432E+000 4.077777654664260E+000 4.129069783286941E+000 4.181007087463910E+000 4.233597682504620E+000 4.286849785796552E+000 4.340771718089170E+000 4.395371904794115E+000 4.450658877301630E+000 4.506641274313660E+000 4.563327843193642E+000 4.620727441333277E+000 4.678849037536573E+000 4.737701713421167E+000 4.797294664837412E+000 4.857637203305218E+000 4.918738757468972E+000 4.980608874570842E+000 5.043257221942480E+000 5.106693588515634E+000 5.170927886351652E+000 5.235970152190238E+000 5.301830549017776E+000 5.368519367655248E+000 5.436047028366252E+000 5.504424082485173E+000 5.573661214065809E+000 5.643769241550856E+000 5.714759119462221E+000 5.786641940112772E+000 5.859428935339488E+000 5.933131478258443E+000 6.007761085041936E+000 6.083329416717840E+000 6.159848280991737E+000 6.237329634091858E+000 6.315785582637241E+000 6.395228385529487E+000 6.475670455868155E+000 6.557124362890405E+000 6.639602833934942E+000 6.723118756430647E+000 6.807685179910347E+000 6.893315318049740E+000 6.980022550732136E+000 7.067820426139063E+000 7.156722662867154E+000 7.246743152071796E+000 7.337895959637549E+000 7.430195328376061E+000 7.523655680251497E+000 7.618291618633952E+000 7.714117930581368E+000 7.811149589149919E+000 7.909401755733683E+000 8.008889782433595E+000 8.109629214456213E+000 8.211635792542772E+000 8.314925455428606E+000 8.419514342333693E+000 8.525418795484423E+000 8.632655362667032E+000 8.741240799813346E+000 8.851192073618808E+000 8.962526364193662E+000 9.075261067747340E+000 9.189413799306600E+000 9.305002395468025E+000 9.422044917184898E+000 9.540559652589383E+000 9.660565119850022E+000 9.782080070065190E+000 9.905123490193121E+000 1.002971460601851E+001 1.015587288515670E+001 1.028361804009549E+001 1.041297003127522E+001 1.054394907020771E+001 1.067657562263422E+001 1.081087041172344E+001 1.094685442130939E+001 1.108454889917020E+001 1.122397536034822E+001 1.136515559051163E+001 1.150811164935864E+001 1.165286587406432E+001 1.179944088277074E+001 1.194785957812126E+001 1.209814515083896E+001 1.225032108335034E+001 1.240441115345448E+001 1.256043943803831E+001 1.271843031683876E+001 1.287840847625204E+001 1.304039891319106E+001 1.320442693899119E+001 1.337051818336513E+001 1.353869859840777E+001 1.370899446265109E+001 1.388143238517036E+001 1.405603930974184E+001 1.423284251905267E+001 1.441186963896407E+001 1.459314864282770E+001 1.477670785585678E+001 1.496257595955180E+001 1.515078199618207E+001 1.534135537332378E+001 1.553432586845477E+001 1.572972363360754E+001 1.592757920008046E+001 1.612792348320828E+001 1.633078778719289E+001 1.653620380999446E+001 1.674420364828453E+001 1.695481980246100E+001 1.716808518172644E+001 1.738403310923028E+001 1.760269732727551E+001 1.782411200259108E+001 1.804831173167053E+001 1.827533154617760E+001 1.850520691842025E+001 1.873797376689299E+001 1.897366846188952E+001 1.921232783118548E+001 1.945398916579281E+001 1.969869022578678E+001 1.994646924620580E+001 2.019736494302594E+001 2.045141651921032E+001 2.070866367083452E+001 2.096914659328943E+001 2.123290598756156E+001 2.149998306659294E+001 2.177041956172056E+001 2.204425772919693E+001 2.232154035679291E+001 2.260231077048313E+001 2.288661284121599E+001 2.317449099176851E+001 2.346599020368732E+001 2.376115602431743E+001 2.406003457391874E+001 2.436267255287275E+001 2.466911724897943E+001 2.497941654484593E+001 2.529361892536862E+001 2.561177348530862E+001 2.593392993696326E+001 2.626013861793359E+001 2.659045049898959E+001 2.692491719203479E+001 2.726359095817038E+001 2.760652471586138E+001 2.795377204920520E+001 2.830538721630404E+001 2.866142515774325E+001 2.902194150517542E+001 2.938699259001338E+001 2.975663545223187E+001 3.013092784928007E+001 3.050992826510663E+001 3.089369591929748E+001 3.128229077632943E+001 3.167577355493956E+001 3.207420573761245E+001 3.247764958018738E+001 3.288616812158545E+001 3.329982519365995E+001 3.371868543117002E+001 3.414281428187987E+001 3.457227801678541E+001 3.500714374046886E+001 3.544747940158435E+001 3.589335380347485E+001 3.634483661492268E+001 3.680199838103579E+001 3.726491053427013E+001 3.773364540559150E+001 3.820827623577726E+001 3.868887718686012E+001 3.917552335371663E+001 3.966829077580032E+001 4.016725644902349E+001 4.067249833778781E+001 4.118409538716618E+001 4.170212753523855E+001 4.222667572558188E+001 4.275782191991816E+001 4.329564911092098E+001 4.384024133518297E+001 4.439168368634733E+001 4.495006232840319E+001 4.551546450914947E+001 4.608797857382732E+001 4.666769397892397E+001 4.725470130615108E+001 4.784909227659762E+001 4.845095976506210E+001 4.906039781456422E+001 4.967750165103892E+001 5.030236769821636E+001 5.093509359268751E+001 5.157577819916076E+001 5.222452162590947E+001 5.288142524041374E+001 5.354659168520003E+001 5.422012489387841E+001 5.490213010738317E+001 5.559271389041655E+001 5.629198414809947E+001 5.700005014283256E+001 5.771702251136787E+001 5.844301328209676E+001 5.917813589255434E+001 5.992250520714386E+001 6.067623753508540E+001 6.143945064858844E+001 6.221226380125486E+001 6.299479774671218E+001 6.378717475748122E+001 6.458951864408225E+001 6.540195477437969E+001 6.622461009317193E+001 6.705761314202637E+001 6.790109407936390E+001 6.875518470079732E+001 6.962001845972361E+001 7.049573048817726E+001 7.138245761794451E+001 7.228033840194315E+001 7.318951313587273E+001 7.411012388013486E+001 7.504231448203151E+001 7.598623059824087E+001 7.694201971757626E+001 7.790983118403240E+001 7.888981622011970E+001 7.988212795049398E+001 8.088692142588209E+001 8.190435364730860E+001 8.293458359062834E+001 8.397777223136569E+001 8.503408256986830E+001 8.610367965677578E+001 8.718673061880878E+001 8.828340468488391E+001 8.939387321255487E+001 9.051830971478853E+001 9.165688988707623E+001 9.280979163488601E+001 9.397719510146190E+001 9.515928269597032E+001 9.635623912200305E+001 9.756825140643704E+001 9.879550892865727E+001 1.000382034501488E+002 1.442851211320437E-007 1.461000045362377E-007 1.479377163633833E-007 1.497985437596921E-007 1.516827774832310E-007 1.535907119493527E-007 1.555226452766992E-007 1.574788793337834E-007 1.594597197861567E-007 1.614654761441700E-007 1.634964618113350E-007 1.655529941332941E-007 1.676353944474067E-007 1.697439881329584E-007 1.718791046620028E-007 1.740410776508415E-007 1.762302449121524E-007 1.784469485077741E-007 1.806915348021531E-007 1.829643545164649E-007 1.852657627834137E-007 1.875961192027236E-007 1.899557878973261E-007 1.923451375702555E-007 1.947645415622597E-007 1.972143779101344E-007 1.996950294057935E-007 2.022068836560798E-007 2.047503331433304E-007 2.073257752867025E-007 2.099336125042708E-007 2.125742522759062E-007 2.152481072069452E-007 2.179555950926610E-007 2.206971389835441E-007 2.234731672514053E-007 2.262841136563093E-007 2.291304174143506E-007 2.320125232662821E-007 2.349308815470074E-007 2.378859482559450E-007 2.408781851282803E-007 2.439080597071124E-007 2.469760454165083E-007 2.500826216354774E-007 2.532282737728741E-007 2.564134933432447E-007 2.596387780436275E-007 2.629046318313187E-007 2.662115650026173E-007 2.695600942725592E-007 2.729507428556555E-007 2.763840405476455E-007 2.798605238082786E-007 2.833807358451377E-007 2.869452266985151E-007 2.905545533273588E-007 2.942092796962977E-007 2.979099768637622E-007 3.016572230712147E-007 3.054516038334983E-007 3.092937120303271E-007 3.131841479989235E-007 3.171235196278227E-007 3.211124424518567E-007 3.251515397483322E-007 3.292414426344192E-007 3.333827901657649E-007 3.375762294363462E-007 3.418224156795815E-007 3.461220123707097E-007 3.504756913304615E-007 3.548841328300322E-007 3.593480256973745E-007 3.638680674248317E-007 3.684449642781193E-007 3.730794314066824E-007 3.777721929554389E-007 3.825239821779278E-007 3.873355415508834E-007 3.922076228902466E-007 3.971409874686391E-007 4.021364061343131E-007 4.071946594315981E-007 4.123165377228637E-007 4.175028413120129E-007 4.227543805695333E-007 4.280719760591182E-007 4.334564586658811E-007 4.389086697261849E-007 4.444294611591001E-007 4.500196955995202E-007 4.556802465329499E-007 4.614119984319885E-007 4.672158468945327E-007 4.730926987837121E-007 4.790434723695910E-007 4.850690974726492E-007 4.911705156090678E-007 4.973486801378450E-007 5.036045564097574E-007 5.099391219182005E-007 5.163533664519222E-007 5.228482922496807E-007 5.294249141568469E-007 5.360842597839734E-007 5.428273696673631E-007 5.496552974316541E-007 5.565691099544508E-007 5.635698875330268E-007 5.706587240531220E-007 5.778367271598645E-007 5.851050184308436E-007 5.924647335513577E-007 5.999170224918683E-007 6.074630496876841E-007 6.151039942209068E-007 6.228410500046652E-007 6.306754259696662E-007 6.386083462530947E-007 6.466410503898840E-007 6.547747935063982E-007 6.630108465165474E-007 6.713504963203703E-007 6.797950460051171E-007 6.883458150488559E-007 6.970041395266466E-007 7.057713723193041E-007 7.146488833247892E-007 7.236380596722584E-007 7.327403059388048E-007 7.419570443689258E-007 7.512897150967528E-007 7.607397763710738E-007 7.703087047831904E-007 7.799979954976349E-007 7.898091624857939E-007 7.997437387624707E-007 8.098032766254196E-007 8.199893478978996E-007 8.303035441742698E-007 8.407474770686828E-007 8.513227784669020E-007 8.620311007812855E-007 8.728741172089828E-007 8.838535219933701E-007 8.949710306887829E-007 9.062283804285736E-007 9.176273301965413E-007 9.291696611017805E-007 9.408571766569770E-007 9.526917030602150E-007 9.646750894803225E-007 9.768092083458072E-007 9.890959556374306E-007 1.001537251184454E-006 1.014135038964618E-006 1.026891287407893E-006 1.039807989704053E-006 1.052887164114110E-006 1.066130854285675E-006 1.079541129572283E-006 1.093120085356730E-006 1.106869843378483E-006 1.120792552065210E-006 1.134890386868465E-006 1.149165550603622E-006 1.163620273794056E-006 1.178256815019674E-006 1.193077461269822E-006 1.208084528300627E-006 1.223280360996847E-006 1.238667333738255E-006 1.254247850770648E-006 1.270024346581513E-006 1.285999286280413E-006 1.302175165984182E-006 1.318554513206932E-006 1.335139887254989E-006 1.351933879626795E-006 1.368939114417822E-006 1.386158248730606E-006 1.403593973089914E-006 1.421249011863151E-006 1.439126123686048E-006 1.457228101893693E-006 1.475557774957014E-006 1.494118006924717E-006 1.512911697870808E-006 1.531941784347736E-006 1.551211239845226E-006 1.570723075254907E-006 1.590480339340757E-006 1.610486119215485E-006 1.630743540822904E-006 1.651255769426345E-006 1.672026010103268E-006 1.693057508246033E-006 1.714353550069011E-006 1.735917463122071E-006 1.757752616810492E-006 1.779862422921466E-006 1.802250336157180E-006 1.824919854674624E-006 1.847874520632192E-006 1.871117920743136E-006 1.894653686836016E-006 1.918485496422167E-006 1.942617073270322E-006 1.967052187988464E-006 1.991794658612974E-006 2.016848351205232E-006 2.042217180455676E-006 2.067905110295487E-006 2.093916154515972E-006 2.120254377395701E-006 2.146923894335591E-006 2.173928872501921E-006 2.201273531477471E-006 2.228962143920844E-006 2.256999036234059E-006 2.285388589238589E-006 2.314135238859845E-006 2.343243476820317E-006 2.372717851341411E-006 2.402562967854105E-006 2.432783489718582E-006 2.463384138952862E-006 2.494369696970647E-006 2.525745005328422E-006 2.557514966481942E-006 2.589684544552283E-006 2.622258766101464E-006 2.655242720917873E-006 2.688641562811564E-006 2.722460510419523E-006 2.756704848021126E-006 2.791379926363792E-006 2.826491163499056E-006 2.862044045629164E-006 2.898044127964269E-006 2.934497035590488E-006 2.971408464348799E-006 3.008784181725041E-006 3.046630027751097E-006 3.084951915917404E-006 3.123755834096959E-006 3.163047845480923E-006 3.202834089526011E-006 3.243120782913807E-006 3.283914220522111E-006 3.325220776408549E-006 3.367046904806516E-006 3.409399141133666E-006 3.452284103013097E-006 3.495708491307349E-006 3.539679091165443E-006 3.584202773083065E-006 3.629286493976097E-006 3.674937298267654E-006 3.721162318988783E-006 3.767968778893019E-006 3.815363991584949E-006 3.863355362662981E-006 3.911950390876487E-006 3.961156669297492E-006 4.010981886507112E-006 4.061433827796904E-006 4.112520376385340E-006 4.164249514649575E-006 4.216629325372704E-006 4.269667993006722E-006 4.323373804951356E-006 4.377755152848984E-006 4.432820533895858E-006 4.488578552169794E-006 4.545037919974594E-006 4.602207459201342E-006 4.660096102706850E-006 4.718712895709448E-006 4.778066997202295E-006 4.838167681384509E-006 4.899024339110268E-006 4.960646479356154E-006 5.023043730706955E-006 5.086225842860138E-006 5.150202688149278E-006 5.214984263086609E-006 5.280580689925013E-006 5.347002218239645E-006 5.414259226529435E-006 5.482362223838770E-006 5.551321851399531E-006 5.621148884293824E-006 5.691854233137606E-006 5.763448945785480E-006 5.835944209056965E-006 5.909351350484434E-006 5.983681840083083E-006 6.058947292143143E-006 6.135159467044622E-006 6.212330273094908E-006 6.290471768389449E-006 6.369596162695862E-006 6.449715819361744E-006 6.530843257246448E-006 6.612991152677202E-006 6.696172341429798E-006 6.780399820734207E-006 6.865686751305440E-006 6.952046459399909E-006 7.039492438897710E-006 7.128038353411047E-006 7.217698038419210E-006 7.308485503430399E-006 7.400414934170725E-006 7.493500694800780E-006 7.587757330160044E-006 7.683199568039553E-006 7.779842321483162E-006 7.877700691117713E-006 7.976789967512560E-006 8.077125633568736E-006 8.178723366938198E-006 8.281599042473479E-006 8.385768734708197E-006 8.491248720368691E-006 8.598055480917325E-006 8.706205705127730E-006 8.815716291692468E-006 8.926604351863505E-006 9.038887212125838E-006 9.152582416904824E-006 9.267707731307525E-006 9.384281143898532E-006 9.502320869510751E-006 9.621845352091452E-006 9.742873267584216E-006 9.865423526847066E-006 9.989515278607338E-006 1.011516791245373E-005 1.024240106186591E-005 1.037123460728234E-005 1.050168867920659E-005 1.063378366135281E-005 1.076754019383073E-005 1.090297917637066E-005 1.104012177158919E-005 1.117898940829583E-005 1.131960378484133E-005 1.146198687250814E-005 1.160616091894338E-005 1.175214845163511E-005 1.189997228143235E-005 1.204965550610923E-005 1.220122151397416E-005 1.235469398752424E-005 1.251009690714568E-005 1.266745455486085E-005 1.282679151812235E-005 1.298813269365487E-005 1.315150329134534E-005 1.331692883818203E-005 1.348443518224318E-005 1.365404849673584E-005 1.382579528408550E-005 1.399970238007711E-005 1.417579695804822E-005 1.435410653313490E-005 1.453465896657103E-005 1.471748247004169E-005 1.490260561009125E-005 1.509005731258697E-005 1.527986686723874E-005 1.547206393217564E-005 1.566667853858011E-005 1.586374109538034E-005 1.606328239400176E-005 1.626533361317824E-005 1.646992632382384E-005 1.667709249396588E-005 1.688686449373991E-005 1.709927510044767E-005 1.731435750367864E-005 1.753214531049588E-005 1.775267255068730E-005 1.797597368208288E-005 1.820208359593868E-005 1.843103762238877E-005 1.866287153596560E-005 1.889762156118981E-005 1.913532437823049E-005 1.937601712863639E-005 1.961973742113944E-005 1.986652333753122E-005 2.011641343861323E-005 2.036944677022219E-005 2.062566286933097E-005 2.088510177022631E-005 2.114780401076432E-005 2.141381063870454E-005 2.168316321812381E-005 2.195590383591065E-005 2.223207510834149E-005 2.251172018773951E-005 2.279488276921729E-005 2.308160709750434E-005 2.337193797386026E-005 2.366592076307519E-005 2.396360140055802E-005 2.426502639951400E-005 2.457024285821250E-005 2.487929846734615E-005 2.519224151748265E-005 2.550912090661026E-005 2.582998614777823E-005 2.615488737683332E-005 2.648387536025357E-005 2.681700150308072E-005 2.715431785695235E-005 2.749587712823499E-005 2.784173268625973E-005 2.819193857166115E-005 2.854654950482134E-005 2.890562089442006E-005 2.926920884609245E-005 2.963737017119574E-005 3.001016239568597E-005 3.038764376910668E-005 3.076987327369046E-005 3.115691063357501E-005 3.154881632413531E-005 3.194565158143283E-005 3.234747841178388E-005 3.275435960144823E-005 3.316635872643952E-005 3.358354016245935E-005 3.400596909495580E-005 3.443371152930902E-005 3.486683430114462E-005 3.530540508677687E-005 3.574949241378337E-005 3.619916567171242E-005 3.665449512292547E-005 3.711555191357561E-005 3.758240808472439E-005 3.805513658359845E-005 3.853381127498747E-005 3.901850695278586E-005 3.950929935167939E-005 4.000626515897888E-005 4.050948202660287E-005 4.101902858321070E-005 4.153498444648852E-005 4.205743023558968E-005 4.258644758373163E-005 4.312211915095137E-005 4.366452863702108E-005 4.421376079452650E-005 4.476990144210966E-005 4.533303747787818E-005 4.590325689298345E-005 4.648064878536914E-005 4.706530337369316E-005 4.765731201142442E-005 4.825676720111697E-005 4.886376260886392E-005 4.947839307893258E-005 5.010075464858440E-005 5.073094456308084E-005 5.136906129087813E-005 5.201520453901333E-005 5.266947526868349E-005 5.333197571102128E-005 5.400280938306867E-005 5.468208110395167E-005 5.536989701125877E-005 5.606636457762481E-005 5.677159262752402E-005 5.748569135427398E-005 5.820877233725354E-005 5.894094855933750E-005 5.968233442455017E-005 6.043304577594132E-005 6.119319991368696E-005 6.196291561341756E-005 6.274231314477736E-005 6.353151429021627E-005 6.433064236401889E-005 6.513982223157260E-005 6.595918032887791E-005 6.678884468230468E-005 6.762894492859602E-005 6.847961233512461E-005 6.934097982040341E-005 7.021318197485440E-005 7.109635508183888E-005 7.199063713895154E-005 7.289616787958324E-005 7.381308879475454E-005 7.474154315522385E-005 7.568167603387409E-005 7.663363432838017E-005 7.759756678416241E-005 7.857362401762815E-005 7.956195853970585E-005 8.056272477967552E-005 8.157607910929815E-005 8.260217986724944E-005 8.364118738386040E-005 8.469326400616935E-005 8.575857412328913E-005 8.683728419209283E-005 8.792956276322338E-005 8.903558050742978E-005 9.015551024223466E-005 9.128952695893779E-005 9.243780784995823E-005 9.360053233652143E-005 9.477788209669396E-005 9.597004109377112E-005 9.717719560502183E-005 9.839953425079437E-005 9.963724802398900E-005 1.008905303199009E-004 1.021595769664386E-004 1.034445862547227E-004 1.047457589700687E-004 1.060632984233607E-004 1.073974104828188E-004 1.087483036061665E-004 1.101161888732029E-004 1.115012800187838E-004 1.129037934662188E-004 1.143239483610875E-004 1.157619666054813E-004 1.172180728926769E-004 1.186924947422440E-004 1.201854625355963E-004 1.216972095519891E-004 1.232279720049691E-004 1.247779890792843E-004 1.263475029682559E-004 1.279367589116223E-004 1.295460052338580E-004 1.311754933829748E-004 1.328254779698113E-004 1.344962168078162E-004 1.361879709533320E-004 1.379010047463858E-004 1.396355858519930E-004 1.413919853019803E-004 1.431704775373354E-004 1.449713404510883E-004 1.467948554317332E-004 1.486413074071955E-004 1.505109848893535E-004 1.524041800191174E-004 1.543211886120780E-004 1.562623102047282E-004 1.582278481012658E-004 1.602181094209865E-004 1.622334051462705E-004 1.642740501711749E-004 1.663403633506369E-004 1.684326675502942E-004 1.705512896969354E-004 1.726965608295810E-004 1.748688161512102E-004 1.770683950811363E-004 1.792956413080421E-004 1.815509028436824E-004 1.838345320772601E-004 1.861468858304891E-004 1.884883254133480E-004 1.908592166805349E-004 1.932599300886345E-004 1.956908407540008E-004 1.981523285113711E-004 2.006447779732152E-004 2.031685785898325E-004 2.057241247102043E-004 2.083118156436111E-004 2.109320557220259E-004 2.135852543632918E-004 2.162718261350944E-004 2.189921908197392E-004 2.217467734797427E-004 2.245360045242497E-004 2.273603197762857E-004 2.302201605408546E-004 2.331159736738949E-004 2.360482116520998E-004 2.390173326436192E-004 2.420238005796487E-004 2.450680852269198E-004 2.481506622611027E-004 2.512720133411304E-004 2.544326261844594E-004 2.576329946432771E-004 2.608736187816658E-004 2.641550049537410E-004 2.674776658827677E-004 2.708421207412762E-004 2.742488952321830E-004 2.776985216709333E-004 2.811915390686770E-004 2.847284932164888E-004 2.883099367706504E-004 2.919364293390033E-004 2.956085375683896E-004 2.993268352331915E-004 3.030919033249837E-004 3.069043301433157E-004 3.107647113876343E-004 3.146736502503627E-004 3.186317575111515E-004 3.226396516323126E-004 3.266979588554569E-004 3.308073132993445E-004 3.349683570589676E-004 3.391817403058797E-004 3.434481213897853E-004 3.477681669414088E-004 3.521425519766566E-004 3.565719600020899E-004 3.610570831217253E-004 3.655986221451748E-004 3.701972866971507E-004 3.748537953283452E-004 3.795688756277054E-004 3.843432643361217E-004 3.891777074615428E-004 3.940729603955431E-004 3.990297880313528E-004 4.040489648833745E-004 4.091312752082036E-004 4.142775131271680E-004 4.194884827504126E-004 4.247649983025431E-004 4.301078842498490E-004 4.355179754291309E-004 4.409961171781411E-004 4.465431654676740E-004 4.521599870353111E-004 4.578474595208483E-004 4.636064716034343E-004 4.694379231404222E-004 4.753427253079798E-004 4.813218007434598E-004 4.873760836895619E-004 4.935065201403157E-004 4.997140679888875E-004 5.059996971772587E-004 5.123643898477790E-004 5.188091404966256E-004 5.253349561292011E-004 5.319428564174732E-004 5.386338738593066E-004 5.454090539397906E-004 5.522694552945952E-004 5.592161498753914E-004 5.662502231173386E-004 5.733727741086932E-004 5.805849157625390E-004 5.878877749906810E-004 5.952824928797334E-004 6.027702248694087E-004 6.103521409330653E-004 6.180294257605150E-004 6.258032789431293E-004 6.336749151612862E-004 6.416455643741577E-004 6.497164720119005E-004 6.578888991702549E-004 6.661641228075887E-004 6.745434359444339E-004 6.830281478655134E-004 6.916195843243286E-004 7.003190877503066E-004 7.091280174585545E-004 7.180477498622638E-004 7.270796786877674E-004 7.362252151923211E-004 7.454857883846115E-004 7.548628452480385E-004 7.643578509668171E-004 7.739722891549061E-004 7.837076620878345E-004 7.935654909374309E-004 8.035473160095066E-004 8.136546969845399E-004 8.238892131613688E-004 8.342524637039699E-004 8.447460678913260E-004 8.553716653704378E-004 8.661309164125326E-004 8.770255021724723E-004 8.880571249514486E-004 8.992275084629664E-004 9.105383981021726E-004 9.219915612185886E-004 9.335887873922497E-004 9.453318887133422E-004 9.572227000653402E-004 9.692630794117066E-004 9.814549080862140E-004 9.938000910868934E-004 1.006300557373707E-003 1.018958260169947E-003 1.031775177267423E-003 1.044753311335512E-003 1.057894690234062E-003 1.071201367330265E-003 1.084675421819491E-003 1.098318959050164E-003 1.112134110852737E-003 1.126123035872784E-003 1.140287919908301E-003 1.154630976251240E-003 1.169154446033331E-003 1.183860598576280E-003 1.198751731746337E-003 1.213830172313359E-003 1.229098276314364E-003 1.244558429421660E-003 1.260213047315630E-003 1.276064576062164E-003 1.292115492494881E-003 1.308368304602132E-003 1.324825551918871E-003 1.341489805923478E-003 1.358363670439541E-003 1.375449782042722E-003 1.392750810472724E-003 1.410269459050433E-003 1.428008465100337E-003 1.445970600378217E-003 1.464158671504255E-003 1.482575520401572E-003 1.501224024740273E-003 1.520107098387106E-003 1.539227691860742E-003 1.558588792792813E-003 1.578193426394736E-003 1.598044655930388E-003 1.618145583194780E-003 1.638499348998686E-003 1.659109133659426E-003 1.679978157497786E-003 1.701109681341195E-003 1.722507007033252E-003 1.744173477949621E-003 1.766112479520469E-003 1.788327439759429E-003 1.810821829799228E-003 1.833599164434083E-003 1.856663002668863E-003 1.880016948275221E-003 1.903664650354674E-003 1.927609803908777E-003 1.951856150416498E-003 1.976407478418800E-003 2.001267624110637E-003 2.026440471940355E-003 2.051929955216635E-003 2.077740056723106E-003 2.103874809340631E-003 2.130338296677486E-003 2.157134653707400E-003 2.184268067415680E-003 2.211742777453425E-003 2.239563076799970E-003 2.267733312433694E-003 2.296257886011222E-003 2.325141254555213E-003 2.354387931150767E-003 2.384002485650600E-003 2.413989545389111E-003 2.444353795905384E-003 2.475099981675344E-003 2.506232906853075E-003 2.537757436021468E-003 2.569678494952351E-003 2.602001071376118E-003 2.634730215761099E-003 2.667871042102698E-003 2.701428728722447E-003 2.735408519077162E-003 2.769815722578211E-003 2.804655715421146E-003 2.839933941425737E-003 2.875655912886561E-003 2.911827211434347E-003 2.948453488908072E-003 2.985540468238115E-003 3.023093944340454E-003 3.061119785022123E-003 3.099623931898105E-003 3.138612401319673E-003 3.178091285314504E-003 3.218066752538549E-003 3.258545049239879E-003 3.299532500234721E-003 3.341035509895669E-003 3.383060563152428E-003 3.425614226505076E-003 3.468703149050074E-003 3.512334063519251E-003 3.556513787331744E-003 3.601249223659293E-003 3.646547362504842E-003 3.692415281794734E-003 3.738860148484692E-003 3.785889219679613E-003 3.833509843767560E-003 3.881729461567939E-003 3.930555607494122E-003 3.979995910730759E-003 4.030058096425807E-003 4.080749986897637E-003 4.132079502857278E-003 4.184054664646013E-003 4.236683593488633E-003 4.289974512762327E-003 4.343935749281661E-003 4.398575734599635E-003 4.453903006325104E-003 4.509926209456855E-003 4.566654097734341E-003 4.624095535005529E-003 4.682259496611864E-003 4.741155070790669E-003 4.800791460095247E-003 4.861177982832744E-003 4.922324074520200E-003 4.984239289358856E-003 5.046933301726978E-003 5.110415907691570E-003 5.174697026538951E-003 5.239786702324733E-003 5.305695105443192E-003 5.372432534216385E-003 5.440009416503359E-003 5.508436311329438E-003 5.577723910536162E-003 5.647883040451884E-003 5.718924663583376E-003 5.790859880328804E-003 5.863699930712119E-003 5.937456196139398E-003 6.012140201177184E-003 6.087763615353186E-003 6.164338254979751E-003 6.241876085000088E-003 6.320389220857901E-003 6.399889930390416E-003 6.480390635745222E-003 6.561903915321331E-003 6.644442505734495E-003 6.728019303807402E-003 6.812647368584804E-003 6.898339923373973E-003 6.985110357810963E-003 7.072972229952668E-003 7.161939268395374E-003 7.252025374419858E-003 7.343244624163446E-003 7.435611270819518E-003 7.529139746864511E-003 7.623844666313104E-003 7.719740827001655E-003 7.816843212900345E-003 7.915166996454559E-003 8.014727540955486E-003 8.115540402940775E-003 8.217621334625237E-003 8.320986286362096E-003 8.425651409135395E-003 8.531633057083475E-003 8.638947790054467E-003 8.747612376193748E-003 8.857643794563949E-003 8.969059237798081E-003 9.081876114785798E-003 9.196112053393669E-003 9.311784903219536E-003 9.428912738381486E-003 9.547513860342098E-003 9.667606800767940E-003 9.789210324425299E-003 9.912343432112171E-003 1.003702536362711E-002 1.016327560077563E-002 1.029111387041409E-002 1.042056014753223E-002 1.055163465837424E-002 1.068435788359907E-002 1.081875056148073E-002 1.095483369114852E-002 1.109262853586833E-002 1.123215662636502E-002 1.137343976418656E-002 1.151650002511072E-002 1.166135976259428E-002 1.180804161126597E-002 1.195656849046308E-002 1.210696360781264E-002 1.225925046285775E-002 1.241345285072930E-002 1.256959486586413E-002 1.272770090576983E-002 1.288779567483673E-002 1.304990418819828E-002 1.321405177563944E-002 1.338026408555475E-002 1.354856708895580E-002 1.371898708352926E-002 1.389155069774603E-002 1.406628489502189E-002 1.424321697793067E-002 1.442237459247032E-002 1.460378573238258E-002 1.478747874352718E-002 1.497348232831078E-002 1.516182555017197E-002 1.535253783812238E-002 1.554564899134495E-002 1.574118918385031E-002 1.593918896919132E-002 1.613967928523729E-002 1.634269145900805E-002 1.654825721156871E-002 1.675640866298640E-002 1.696717833734883E-002 1.718059916784646E-002 1.739670450191829E-002 1.761552810646240E-002 1.783710417311224E-002 1.806146732357896E-002 1.828865261506134E-002 1.851869554572341E-002 1.875163206024104E-002 1.898749855541860E-002 1.922633188587579E-002 1.946816936980642E-002 1.971304879480941E-002 1.996100842379307E-002 2.021208700095396E-002 2.046632375783054E-002 2.072375841943332E-002 2.098443121045200E-002 2.124838286154043E-002 2.151565461568119E-002 2.178628823462955E-002 2.206032600543911E-002 2.233781074706915E-002 2.261878581707500E-002 2.290329511838309E-002 2.319138310615050E-002 2.348309479471149E-002 2.377847576461092E-002 2.407757216972621E-002 2.438043074447926E-002 2.468709881113847E-002 2.499762428721321E-002 2.531205569294093E-002 2.563044215886841E-002 2.595283343352879E-002 2.627927989121458E-002 2.660983253984897E-002 2.694454302895588E-002 2.728346365773012E-002 2.762664738320957E-002 2.797414782854944E-002 2.832601929140137E-002 2.868231675239737E-002 2.904309588374051E-002 2.940841305790417E-002 2.977832535643995E-002 3.015289057889715E-002 3.053216725185389E-002 3.091621463806186E-002 3.130509274570661E-002 3.169886233778352E-002 3.209758494159255E-002 3.250132285835180E-002 3.291013917293206E-002 3.332409776371436E-002 3.374326331257058E-002 3.416770131497059E-002 3.459747809021585E-002 3.503266079180177E-002 3.547331741791097E-002 3.591951682203767E-002 3.637132872374665E-002 3.682882371956682E-002 3.729207329402193E-002 3.776114983080062E-002 3.823612662406595E-002 3.871707788990830E-002 3.920407877794151E-002 3.969720538304503E-002 4.019653475725432E-002 4.070214492179984E-002 4.121411487929855E-002 4.173252462609799E-002 4.225745516477566E-002 4.278898851679636E-002 4.332720773532762E-002 4.387219691821740E-002 4.442404122113442E-002 4.498282687087357E-002 4.554864117882965E-002 4.612157255463927E-002 4.670171051999562E-002 4.728914572263617E-002 4.788396995050631E-002 4.848627614610199E-002 4.909615842099152E-002 4.971371207052124E-002 5.033903358870540E-002 5.097222068330325E-002 5.161337229108676E-002 5.226258859329888E-002 5.291997103130776E-002 5.358562232245689E-002 5.425964647611462E-002 5.494214880992644E-002 5.563323596627038E-002 5.633301592892075E-002 5.704159803992053E-002 5.775909301666596E-002 5.848561296920716E-002 5.922127141776459E-002 5.996618331046765E-002 6.072046504131523E-002 6.148423446836215E-002 6.225761093213553E-002 6.304071527428100E-002 6.383366985644544E-002 6.463659857939566E-002 6.544962690237797E-002 6.627288186272220E-002 6.710649209569060E-002 6.795058785457815E-002 6.880530103106466E-002 6.967076517582262E-002 7.054711551938569E-002 7.143448899327777E-002 7.233302425140965E-002 7.324286169174360E-002 7.416414347823054E-002 7.509701356302420E-002 7.604161770897300E-002 7.699810351239672E-002 7.796662042614823E-002 7.894731978296551E-002 7.994035481911860E-002 8.094588069835194E-002 8.196405453613007E-002 8.299503542418679E-002 8.403898445538310E-002 8.509606474887935E-002 8.616644147562175E-002 8.725028188415171E-002 8.834775532673829E-002 8.945903328583943E-002 9.058428940089745E-002 9.172369949546938E-002 9.287744160470077E-002 9.404569600314372E-002 9.522864523292440E-002 9.642647413226711E-002 9.763936986437399E-002 9.886752194667103E-002 1.001111222804199E-001 1.013703651807027E-001 1.026454474067847E-001 1.039365681928576E-001 1.052439292791712E-001 1.065677349435553E-001 1.079081920333379E-001 1.092655099976668E-001 1.106399009202351E-001 1.120315795524208E-001 1.134407633468417E-001 1.148676724913325E-001 1.163125299433503E-001 1.177755614648112E-001 1.192569956573673E-001 1.207570639981253E-001 1.222760008758149E-001 1.238140436274140E-001 1.253714325752313E-001 1.269484110644587E-001 1.285452255011937E-001 1.301621253909403E-001 1.317993633775963E-001 1.334571952829278E-001 1.351358801465430E-001 1.368356802663674E-001 1.385568612396275E-001 1.402996920043527E-001 1.420644448813953E-001 1.438513956169830E-001 1.456608234258040E-001 1.474930110346342E-001 1.493482447265158E-001 1.512268143854870E-001 1.531290135418792E-001 1.550551394181811E-001 1.570054929754788E-001 1.589803789604845E-001 1.609801059531505E-001 1.630049864148883E-001 1.650553367373899E-001 1.671314772920641E-001 1.692337324800972E-001 1.713624307831386E-001 1.735179048146295E-001 1.757004913717730E-001 1.779105314881583E-001 1.801483704870508E-001 1.824143580353463E-001 1.847088481982097E-001 1.870321994943975E-001 1.893847749522759E-001 1.917669421665472E-001 1.941790733556846E-001 1.966215454200943E-001 1.990947400010058E-001 2.015990435401035E-001 2.041348473399111E-001 2.067025476249308E-001 2.093025456035566E-001 2.119352475307625E-001 2.146010647715805E-001 2.173004138653786E-001 2.200337165909438E-001 2.228014000323885E-001 2.256038966458817E-001 2.284416443272200E-001 2.313150864802531E-001 2.342246720861624E-001 2.371708557736190E-001 2.401540978898185E-001 2.431748645724102E-001 2.462336278223348E-001 2.493308655775725E-001 2.524670617878242E-001 2.556427064901290E-001 2.588582958854315E-001 2.621143324161179E-001 2.654113248445195E-001 2.687497883324118E-001 2.721302445215070E-001 2.755532216149616E-001 2.790192544599113E-001 2.825288846310391E-001 2.860826605151999E-001 2.896811373971064E-001 2.933248775460915E-001 2.970144503039679E-001 3.007504321739843E-001 3.045334069109094E-001 3.083639656122429E-001 3.122427068105741E-001 3.161702365671077E-001 3.201471685663578E-001 3.241741242120408E-001 3.282517327241699E-001 3.323806312373699E-001 3.365614649004349E-001 3.407948869771298E-001 3.450815589482673E-001 3.494221506150650E-001 3.538173402038006E-001 3.582678144717906E-001 3.627742688146928E-001 3.673374073751672E-001 3.719579431528984E-001 3.766365981160009E-001 3.813741033138329E-001 3.861711989912185E-001 3.910286347041179E-001 3.959471694367445E-001 4.009275717201557E-001 4.059706197523423E-001 4.110771015198181E-001 4.162478149207494E-001 4.214835678896253E-001 4.267851785234984E-001 4.321534752098177E-001 4.375892967558608E-001 4.430934925198043E-001 4.486669225434357E-001 4.543104576865335E-001 4.600249797629474E-001 4.658113816783767E-001 4.716705675698937E-001 4.776034529472157E-001 4.836109648357515E-001 4.896940419214579E-001 4.958536346975040E-001 5.020907056127937E-001 5.084062292223477E-001 5.148011923395773E-001 5.212765941904819E-001 5.278334465697735E-001 5.344727739989770E-001 5.411956138865123E-001 5.480030166897872E-001 5.548960460793417E-001 5.618757791050399E-001 5.689433063643684E-001 5.760997321728415E-001 5.833461747365497E-001 5.906837663268885E-001 5.981136534574703E-001 6.056369970632763E-001 6.132549726820528E-001 6.209687706379866E-001 6.287795962277045E-001 6.366886699085939E-001 6.446972274895095E-001 6.528065203238684E-001 6.610178155051718E-001 6.693323960650005E-001 6.777515611734801E-001 6.862766263422897E-001 6.949089236302068E-001 7.036498018512434E-001 7.125006267854070E-001 7.214627813920984E-001 7.305376660262095E-001 7.397266986569293E-001 7.490313150892983E-001 7.584529691885675E-001 7.679931331073555E-001 7.776532975156858E-001 7.874349718339023E-001 7.973396844685152E-001 8.073689830510281E-001 8.175244346797461E-001 8.278076261646492E-001 8.382201642753296E-001 8.487636759920488E-001 8.594398087599665E-001 8.702502307465452E-001 8.811966311022158E-001 8.922807202243064E-001 9.035042300242895E-001 9.148689141984092E-001 9.263765485016858E-001 9.380289310253940E-001 9.498278824780109E-001 9.617752464697032E-001 9.738728898004050E-001 9.861227027514963E-001 9.985265993811748E-001 1.011086517823526E+000 1.023804420591357E+000 1.036682294882854E+000 1.049722152892071E+000 1.062926032123354E+000 1.076295995709697E+000 1.089834132735110E+000 1.103542558561049E+000 1.117423415156936E+000 1.131478871434857E+000 1.145711123588453E+000 1.160122395436075E+000 1.174714938768274E+000 1.189491033699629E+000 1.204452989025038E+000 1.219603142580463E+000 1.234943861608216E+000 1.250477543126860E+000 -1.154562602979889E+001 -1.154562602979853E+001 -1.154562602979817E+001 -1.154562602979780E+001 -1.154562602979742E+001 -1.154562602979704E+001 -1.154562602979664E+001 -1.154562602979625E+001 -1.154562602979585E+001 -1.154562602979543E+001 -1.154562602979501E+001 -1.154562602979458E+001 -1.154562602979414E+001 -1.154562602979370E+001 -1.154562602979325E+001 -1.154562602979277E+001 -1.154562602979228E+001 -1.154562602979179E+001 -1.154562602979128E+001 -1.154562602979076E+001 -1.154562602979022E+001 -1.154562602978966E+001 -1.154562602978909E+001 -1.154562602978852E+001 -1.154562602978791E+001 -1.154562602978729E+001 -1.154562602978666E+001 -1.154562602978602E+001 -1.154562602978535E+001 -1.154562602978467E+001 -1.154562602978396E+001 -1.154562602978324E+001 -1.154562602978250E+001 -1.154562602978174E+001 -1.154562602978096E+001 -1.154562602978016E+001 -1.154562602977934E+001 -1.154562602977849E+001 -1.154562602977763E+001 -1.154562602977674E+001 -1.154562602977582E+001 -1.154562602977488E+001 -1.154562602977392E+001 -1.154562602977294E+001 -1.154562602977192E+001 -1.154562602977088E+001 -1.154562602976981E+001 -1.154562602976872E+001 -1.154562602976760E+001 -1.154562602976644E+001 -1.154562602976526E+001 -1.154562602976405E+001 -1.154562602976280E+001 -1.154562602976153E+001 -1.154562602976021E+001 -1.154562602975887E+001 -1.154562602975749E+001 -1.154562602975607E+001 -1.154562602975463E+001 -1.154562602975314E+001 -1.154562602975160E+001 -1.154562602975004E+001 -1.154562602974842E+001 -1.154562602974677E+001 -1.154562602974509E+001 -1.154562602974335E+001 -1.154562602974156E+001 -1.154562602973973E+001 -1.154562602973786E+001 -1.154562602973594E+001 -1.154562602973396E+001 -1.154562602973194E+001 -1.154562602972986E+001 -1.154562602972774E+001 -1.154562602972555E+001 -1.154562602972331E+001 -1.154562602972100E+001 -1.154562602971864E+001 -1.154562602971623E+001 -1.154562602971375E+001 -1.154562602971120E+001 -1.154562602970859E+001 -1.154562602970591E+001 -1.154562602970317E+001 -1.154562602970035E+001 -1.154562602969746E+001 -1.154562602969450E+001 -1.154562602969146E+001 -1.154562602968834E+001 -1.154562602968515E+001 -1.154562602968187E+001 -1.154562602967850E+001 -1.154562602967505E+001 -1.154562602967152E+001 -1.154562602966789E+001 -1.154562602966417E+001 -1.154562602966035E+001 -1.154562602965643E+001 -1.154562602965243E+001 -1.154562602964831E+001 -1.154562602964409E+001 -1.154562602963976E+001 -1.154562602963532E+001 -1.154562602963078E+001 -1.154562602962611E+001 -1.154562602962132E+001 -1.154562602961641E+001 -1.154562602961137E+001 -1.154562602960621E+001 -1.154562602960091E+001 -1.154562602959549E+001 -1.154562602958992E+001 -1.154562602958420E+001 -1.154562602957835E+001 -1.154562602957235E+001 -1.154562602956619E+001 -1.154562602955988E+001 -1.154562602955340E+001 -1.154562602954677E+001 -1.154562602953996E+001 -1.154562602953297E+001 -1.154562602952581E+001 -1.154562602951847E+001 -1.154562602951095E+001 -1.154562602950323E+001 -1.154562602949531E+001 -1.154562602948719E+001 -1.154562602947886E+001 -1.154562602947033E+001 -1.154562602946158E+001 -1.154562602945260E+001 -1.154562602944340E+001 -1.154562602943396E+001 -1.154562602942428E+001 -1.154562602941436E+001 -1.154562602940419E+001 -1.154562602939375E+001 -1.154562602938305E+001 -1.154562602937209E+001 -1.154562602936084E+001 -1.154562602934930E+001 -1.154562602933747E+001 -1.154562602932535E+001 -1.154562602931291E+001 -1.154562602930016E+001 -1.154562602928709E+001 -1.154562602927368E+001 -1.154562602925992E+001 -1.154562602924583E+001 -1.154562602923138E+001 -1.154562602921656E+001 -1.154562602920136E+001 -1.154562602918577E+001 -1.154562602916980E+001 -1.154562602915341E+001 -1.154562602913661E+001 -1.154562602911938E+001 -1.154562602910172E+001 -1.154562602908361E+001 -1.154562602906504E+001 -1.154562602904600E+001 -1.154562602902648E+001 -1.154562602900645E+001 -1.154562602898594E+001 -1.154562602896488E+001 -1.154562602894331E+001 -1.154562602892118E+001 -1.154562602889849E+001 -1.154562602887522E+001 -1.154562602885136E+001 -1.154562602882691E+001 -1.154562602880183E+001 -1.154562602877611E+001 -1.154562602874975E+001 -1.154562602872270E+001 -1.154562602869499E+001 -1.154562602866656E+001 -1.154562602863742E+001 -1.154562602860754E+001 -1.154562602857690E+001 -1.154562602854548E+001 -1.154562602851327E+001 -1.154562602848024E+001 -1.154562602844638E+001 -1.154562602841164E+001 -1.154562602837605E+001 -1.154562602833954E+001 -1.154562602830211E+001 -1.154562602826373E+001 -1.154562602822437E+001 -1.154562602818402E+001 -1.154562602814265E+001 -1.154562602810023E+001 -1.154562602805673E+001 -1.154562602801213E+001 -1.154562602796640E+001 -1.154562602791952E+001 -1.154562602787144E+001 -1.154562602782215E+001 -1.154562602777160E+001 -1.154562602771978E+001 -1.154562602766665E+001 -1.154562602761216E+001 -1.154562602755631E+001 -1.154562602749902E+001 -1.154562602744029E+001 -1.154562602738008E+001 -1.154562602731833E+001 -1.154562602725503E+001 -1.154562602719012E+001 -1.154562602712357E+001 -1.154562602705533E+001 -1.154562602698535E+001 -1.154562602691362E+001 -1.154562602684005E+001 -1.154562602676463E+001 -1.154562602668730E+001 -1.154562602660801E+001 -1.154562602652671E+001 -1.154562602644334E+001 -1.154562602635787E+001 -1.154562602627023E+001 -1.154562602618038E+001 -1.154562602608825E+001 -1.154562602599377E+001 -1.154562602589692E+001 -1.154562602579760E+001 -1.154562602569577E+001 -1.154562602559136E+001 -1.154562602548430E+001 -1.154562602537454E+001 -1.154562602526200E+001 -1.154562602514660E+001 -1.154562602502828E+001 -1.154562602490696E+001 -1.154562602478257E+001 -1.154562602465503E+001 -1.154562602452426E+001 -1.154562602439018E+001 -1.154562602425269E+001 -1.154562602411173E+001 -1.154562602396719E+001 -1.154562602381900E+001 -1.154562602366705E+001 -1.154562602351125E+001 -1.154562602335150E+001 -1.154562602318771E+001 -1.154562602301977E+001 -1.154562602284757E+001 -1.154562602267101E+001 -1.154562602248998E+001 -1.154562602230437E+001 -1.154562602211405E+001 -1.154562602191891E+001 -1.154562602171882E+001 -1.154562602151368E+001 -1.154562602130333E+001 -1.154562602108765E+001 -1.154562602086651E+001 -1.154562602063976E+001 -1.154562602040727E+001 -1.154562602016889E+001 -1.154562601992447E+001 -1.154562601967386E+001 -1.154562601941690E+001 -1.154562601915343E+001 -1.154562601888329E+001 -1.154562601860629E+001 -1.154562601832228E+001 -1.154562601803108E+001 -1.154562601773249E+001 -1.154562601742634E+001 -1.154562601711243E+001 -1.154562601679057E+001 -1.154562601646055E+001 -1.154562601612217E+001 -1.154562601577522E+001 -1.154562601541946E+001 -1.154562601505470E+001 -1.154562601468069E+001 -1.154562601429721E+001 -1.154562601390400E+001 -1.154562601350082E+001 -1.154562601308744E+001 -1.154562601266356E+001 -1.154562601222895E+001 -1.154562601178332E+001 -1.154562601132640E+001 -1.154562601085789E+001 -1.154562601037751E+001 -1.154562600988496E+001 -1.154562600937990E+001 -1.154562600886205E+001 -1.154562600833107E+001 -1.154562600778663E+001 -1.154562600722839E+001 -1.154562600665598E+001 -1.154562600606907E+001 -1.154562600546727E+001 -1.154562600485021E+001 -1.154562600421750E+001 -1.154562600356875E+001 -1.154562600290354E+001 -1.154562600222146E+001 -1.154562600152208E+001 -1.154562600080497E+001 -1.154562600006966E+001 -1.154562599931570E+001 -1.154562599854261E+001 -1.154562599774991E+001 -1.154562599693710E+001 -1.154562599610366E+001 -1.154562599524908E+001 -1.154562599437281E+001 -1.154562599347431E+001 -1.154562599255301E+001 -1.154562599160831E+001 -1.154562599063965E+001 -1.154562598964640E+001 -1.154562598862793E+001 -1.154562598758361E+001 -1.154562598651277E+001 -1.154562598541474E+001 -1.154562598428884E+001 -1.154562598313434E+001 -1.154562598195053E+001 -1.154562598073665E+001 -1.154562597949193E+001 -1.154562597821559E+001 -1.154562597690684E+001 -1.154562597556484E+001 -1.154562597418873E+001 -1.154562597277765E+001 -1.154562597133072E+001 -1.154562596984701E+001 -1.154562596832559E+001 -1.154562596676549E+001 -1.154562596516573E+001 -1.154562596352529E+001 -1.154562596184315E+001 -1.154562596011822E+001 -1.154562595834941E+001 -1.154562595653561E+001 -1.154562595467567E+001 -1.154562595276841E+001 -1.154562595081261E+001 -1.154562594880703E+001 -1.154562594675040E+001 -1.154562594464143E+001 -1.154562594247875E+001 -1.154562594026100E+001 -1.154562593798677E+001 -1.154562593565462E+001 -1.154562593326304E+001 -1.154562593081054E+001 -1.154562592829553E+001 -1.154562592571642E+001 -1.154562592307156E+001 -1.154562592035926E+001 -1.154562591757781E+001 -1.154562591472541E+001 -1.154562591180023E+001 -1.154562590880042E+001 -1.154562590572405E+001 -1.154562590256915E+001 -1.154562589933370E+001 -1.154562589601563E+001 -1.154562589261281E+001 -1.154562588912306E+001 -1.154562588554413E+001 -1.154562588187373E+001 -1.154562587810948E+001 -1.154562587424898E+001 -1.154562587028972E+001 -1.154562586622918E+001 -1.154562586206471E+001 -1.154562585779364E+001 -1.154562585341321E+001 -1.154562584892058E+001 -1.154562584431284E+001 -1.154562583958702E+001 -1.154562583474004E+001 -1.154562582976877E+001 -1.154562582466996E+001 -1.154562581944032E+001 -1.154562581407645E+001 -1.154562580857484E+001 -1.154562580293191E+001 -1.154562579714397E+001 -1.154562579120725E+001 -1.154562578511787E+001 -1.154562577887182E+001 -1.154562577246503E+001 -1.154562576589329E+001 -1.154562575915228E+001 -1.154562575223757E+001 -1.154562574514460E+001 -1.154562573786869E+001 -1.154562573040505E+001 -1.154562572274874E+001 -1.154562571489469E+001 -1.154562570683769E+001 -1.154562569857239E+001 -1.154562569009330E+001 -1.154562568139477E+001 -1.154562567247101E+001 -1.154562566331605E+001 -1.154562565392376E+001 -1.154562564428786E+001 -1.154562563440188E+001 -1.154562562425917E+001 -1.154562561385290E+001 -1.154562560317605E+001 -1.154562559222141E+001 -1.154562558098156E+001 -1.154562556944887E+001 -1.154562555761551E+001 -1.154562554547341E+001 -1.154562553301429E+001 -1.154562552022963E+001 -1.154562550711068E+001 -1.154562549364841E+001 -1.154562547983357E+001 -1.154562546565662E+001 -1.154562545110777E+001 -1.154562543617694E+001 -1.154562542085374E+001 -1.154562540512752E+001 -1.154562538898729E+001 -1.154562537242175E+001 -1.154562535541930E+001 -1.154562533796796E+001 -1.154562532005541E+001 -1.154562530166901E+001 -1.154562528279569E+001 -1.154562526342204E+001 -1.154562524353423E+001 -1.154562522311803E+001 -1.154562520215879E+001 -1.154562518064141E+001 -1.154562515855035E+001 -1.154562513586961E+001 -1.154562511258270E+001 -1.154562508867263E+001 -1.154562506412190E+001 -1.154562503891249E+001 -1.154562501302580E+001 -1.154562498644268E+001 -1.154562495914341E+001 -1.154562493110763E+001 -1.154562490231439E+001 -1.154562487274203E+001 -1.154562484236828E+001 -1.154562481117015E+001 -1.154562477912391E+001 -1.154562474620511E+001 -1.154562471238851E+001 -1.154562467764809E+001 -1.154562464195698E+001 -1.154562460528747E+001 -1.154562456761095E+001 -1.154562452889788E+001 -1.154562448911779E+001 -1.154562444823921E+001 -1.154562440622963E+001 -1.154562436305551E+001 -1.154562431868216E+001 -1.154562427307379E+001 -1.154562422619341E+001 -1.154562417800280E+001 -1.154562412846246E+001 -1.154562407753156E+001 -1.154562402516792E+001 -1.154562397132789E+001 -1.154562391596639E+001 -1.154562385903678E+001 -1.154562380049080E+001 -1.154562374027856E+001 -1.154562367834844E+001 -1.154562361464703E+001 -1.154562354911905E+001 -1.154562348170728E+001 -1.154562341235252E+001 -1.154562334099345E+001 -1.154562326756659E+001 -1.154562319200621E+001 -1.154562311424419E+001 -1.154562303421001E+001 -1.154562295183058E+001 -1.154562286703016E+001 -1.154562277973027E+001 -1.154562268984956E+001 -1.154562259730366E+001 -1.154562250200515E+001 -1.154562240386332E+001 -1.154562230278411E+001 -1.154562219866994E+001 -1.154562209141957E+001 -1.154562198092796E+001 -1.154562186708608E+001 -1.154562174978076E+001 -1.154562162889451E+001 -1.154562150430534E+001 -1.154562137588657E+001 -1.154562124350663E+001 -1.154562110702882E+001 -1.154562096631114E+001 -1.154562082120601E+001 -1.154562067156007E+001 -1.154562051721392E+001 -1.154562035800181E+001 -1.154562019375143E+001 -1.154562002428357E+001 -1.154561984941185E+001 -1.154561966894238E+001 -1.154561948267345E+001 -1.154561929039513E+001 -1.154561909188899E+001 -1.154561888692764E+001 -1.154561867527438E+001 -1.154561845668275E+001 -1.154561823089611E+001 -1.154561799764715E+001 -1.154561775665747E+001 -1.154561750763700E+001 -1.154561725028353E+001 -1.154561698428210E+001 -1.154561670930448E+001 -1.154561642500851E+001 -1.154561613103749E+001 -1.154561582701951E+001 -1.154561551256670E+001 -1.154561518727456E+001 -1.154561485072117E+001 -1.154561450246634E+001 -1.154561414205083E+001 -1.154561376899537E+001 -1.154561338279981E+001 -1.154561298294211E+001 -1.154561256887730E+001 -1.154561214003644E+001 -1.154561169582542E+001 -1.154561123562387E+001 -1.154561075878381E+001 -1.154561026462847E+001 -1.154560975245081E+001 -1.154560922151214E+001 -1.154560867104060E+001 -1.154560810022961E+001 -1.154560750823615E+001 -1.154560689417909E+001 -1.154560625713731E+001 -1.154560559614782E+001 -1.154560491020372E+001 -1.154560419825213E+001 -1.154560345919194E+001 -1.154560269187149E+001 -1.154560189508616E+001 -1.154560106757579E+001 -1.154560020802198E+001 -1.154559931504529E+001 -1.154559838720227E+001 -1.154559742298236E+001 -1.154559642080464E+001 -1.154559537901439E+001 -1.154559429587948E+001 -1.154559316958661E+001 -1.154559199823737E+001 -1.154559077984407E+001 -1.154558951232532E+001 -1.154558819350158E+001 -1.154558682109017E+001 -1.154558539270034E+001 -1.154558390582795E+001 -1.154558235784988E+001 -1.154558074601815E+001 -1.154557906745383E+001 -1.154557731914056E+001 -1.154557549791783E+001 -1.154557360047380E+001 -1.154557162333788E+001 -1.154556956287288E+001 -1.154556741526672E+001 -1.154556517652396E+001 -1.154556284245654E+001 -1.154556040867429E+001 -1.154555787057504E+001 -1.154555522333396E+001 -1.154555246189261E+001 -1.154554958094733E+001 -1.154554657493714E+001 -1.154554343803080E+001 -1.154554016411357E+001 -1.154553674677305E+001 -1.154553317928439E+001 -1.154552945459477E+001 -1.154552556530704E+001 -1.154552150366271E+001 -1.154551726152384E+001 -1.154551283035428E+001 -1.154550820119977E+001 -1.154550336466706E+001 -1.154549831090246E+001 -1.154549302956806E+001 -1.154548750981870E+001 -1.154548174027589E+001 -1.154547570900155E+001 -1.154546940347020E+001 -1.154546281053940E+001 -1.154545591641975E+001 -1.154544870664155E+001 -1.154544116602211E+001 -1.154543327862932E+001 -1.154542502774494E+001 -1.154541639582532E+001 -1.154540736446019E+001 -1.154539791432981E+001 -1.154538802515947E+001 -1.154537767567242E+001 -1.154536684353960E+001 -1.154535550532793E+001 -1.154534363644518E+001 -1.154533121108247E+001 -1.154531820215430E+001 -1.154530458123474E+001 -1.154529031849184E+001 -1.154527538261724E+001 -1.154525974075398E+001 -1.154524335841967E+001 -1.154522619942614E+001 -1.154520822579578E+001 -1.154518939767324E+001 -1.154516967323306E+001 -1.154514900858297E+001 -1.154512735766268E+001 -1.154510467213750E+001 -1.154508090128715E+001 -1.154505599188937E+001 -1.154502988809768E+001 -1.154500253131423E+001 -1.154497386005548E+001 -1.154494380981292E+001 -1.154491231290613E+001 -1.154487929833023E+001 -1.154484469159534E+001 -1.154480841455949E+001 -1.154477038525325E+001 -1.154473051769724E+001 -1.154468872171065E+001 -1.154464490271175E+001 -1.154459896150963E+001 -1.154455079408686E+001 -1.154450029137192E+001 -1.154444733900274E+001 -1.154439181708001E+001 -1.154433359990958E+001 -1.154427255573480E+001 -1.154420854645691E+001 -1.154414142734465E+001 -1.154407104673232E+001 -1.154399724570490E+001 -1.154391985777197E+001 -1.154383870852821E+001 -1.154375361530123E+001 -1.154366438678649E+001 -1.154357082266860E+001 -1.154347271322928E+001 -1.154336983894144E+001 -1.154326197004951E+001 -1.154314886613570E+001 -1.154303027567248E+001 -1.154290593556084E+001 -1.154277557065493E+001 -1.154263889327258E+001 -1.154249560269252E+001 -1.154234538463811E+001 -1.154218791074823E+001 -1.154202283803575E+001 -1.154184980833412E+001 -1.154166844773251E+001 -1.154147836600105E+001 -1.154127915600600E+001 -1.154107039311731E+001 -1.154085163460849E+001 -1.154062241905085E+001 -1.154038226570419E+001 -1.154013067390434E+001 -1.153986712245109E+001 -1.153959106899741E+001 -1.153930194944309E+001 -1.153899917733547E+001 -1.153868214327868E+001 -1.153835021435747E+001 -1.153800273357550E+001 -1.153763901931307E+001 -1.153725836480990E+001 -1.153686003767334E+001 -1.153644327941874E+001 -1.153600730504653E+001 -1.153555130265899E+001 -1.153507443312269E+001 -1.153457582978176E+001 -1.153405459822624E+001 -1.153350981612143E+001 -1.153294053310306E+001 -1.153234577074431E+001 -1.153172452259806E+001 -1.153107575432251E+001 -1.153039840389222E+001 -1.152969138190116E+001 -1.152895357196156E+001 -1.152818383120317E+001 -1.152738099087582E+001 -1.152654385705970E+001 -1.152567121148428E+001 -1.152476181245988E+001 -1.152381439592075E+001 -1.152282767658210E+001 -1.152180034920864E+001 -1.152073108999454E+001 -1.151961855805123E+001 -1.151846139699970E+001 -1.151725823666285E+001 -1.151600769485118E+001 -1.151470837923556E+001 -1.151335888929848E+001 -1.151195781835492E+001 -1.151050375563193E+001 -1.150899528839621E+001 -1.150743100411804E+001 -1.150580949265736E+001 -1.150412934845991E+001 -1.150238917274914E+001 -1.150058757569894E+001 -1.149872317857410E+001 -1.149679461582259E+001 -1.149480053710760E+001 -1.149273960926351E+001 -1.149061051816417E+001 -1.148841197049103E+001 -1.148614269538893E+001 -1.148380144600080E+001 -1.148138700087065E+001 -1.147889816520917E+001 -1.147633377201387E+001 -1.147369268304103E+001 -1.147097378962529E+001 -1.146817601334638E+001 -1.146529830654242E+001 -1.146233965267283E+001 -1.145929906653352E+001 -1.145617559432887E+001 -1.145296831360820E+001 -1.144967633307243E+001 -1.144629879226106E+001 -1.144283486112770E+001 -1.143928373951605E+001 -1.143564465654557E+001 -1.143191686992034E+001 -1.142809966517130E+001 -1.142419235484548E+001 -1.142019427765358E+001 -1.141610479758809E+001 -1.141192330302469E+001 -1.140764920581778E+001 -1.140328194040221E+001 -1.139882096291131E+001 -1.139426575032269E+001 -1.138961579964043E+001 -1.138487062712369E+001 -1.138002976756961E+001 -1.137509277365900E+001 -1.137005921537154E+001 -1.136492867947688E+001 -1.135970076910814E+001 -1.135437510342232E+001 -1.134895131735283E+001 -1.134342906145755E+001 -1.133780800186673E+001 -1.133208782033286E+001 -1.132626821438593E+001 -1.132034889759522E+001 -1.131432959994068E+001 -1.130821006829373E+001 -1.130199006701016E+001 -1.129566937863467E+001 -1.128924780471877E+001 -1.128272516675175E+001 -1.127610130720545E+001 -1.126937609069268E+001 -1.126254940523988E+001 -1.125562116367337E+001 -1.124859130511991E+001 -1.124145979662071E+001 -1.123422663485956E+001 -1.122689184800433E+001 -1.121945549766235E+001 -1.121191768094915E+001 -1.120427853267068E+001 -1.119653822761916E+001 -1.118869698298207E+001 -1.118075506086500E+001 -1.117271277092780E+001 -1.116457047313431E+001 -1.115632858061600E+001 -1.114798756264905E+001 -1.113954794774554E+001 -1.113101032685855E+001 -1.112237535670095E+001 -1.111364376317866E+001 -1.110481634493753E+001 -1.109589397702429E+001 -1.108687761466132E+001 -1.107776829713489E+001 -1.106856715179684E+001 -1.105927539817888E+001 -1.104989435221942E+001 -1.104042543060205E+001 -1.103087015520471E+001 -1.102123015765896E+001 -1.101150718401785E+001 -1.100170309953134E+001 -1.099181989352760E+001 -1.098185968439847E+001 -1.097182472468725E+001 -1.096171740627669E+001 -1.095154026567453E+001 -1.094129598939445E+001 -1.093098741942908E+001 -1.092061755881246E+001 -1.091018957726814E+001 -1.089970681693993E+001 -1.088917279820114E+001 -1.087859122553832E+001 -1.086796599350570E+001 -1.085730119274546E+001 -1.084660111606968E+001 -1.083587026459920E+001 -1.082511335395442E+001 -1.081433532049346E+001 -1.080354132759251E+001 -1.079273677196363E+001 -1.078192729000506E+001 -1.077111876417912E+001 -1.076031732941324E+001 -1.074952937951949E+001 -1.073876157362846E+001 -1.072802084263367E+001 -1.071731439564275E+001 -1.070664972643258E+001 -1.069603461990564E+001 -1.068547715854561E+001 -1.067498572887095E+001 -1.066456902788555E+001 -1.065423606952676E+001 -1.064399619111139E+001 -1.063385905978146E+001 -1.062383467895215E+001 -1.061393339476488E+001 -1.060416590254999E+001 -1.059454325330322E+001 -1.058507686018162E+001 -1.057577850502456E+001 -1.056666034490554E+001 -1.055773491872147E+001 -1.054902740953067E+001 -1.054047688453058E+001 -1.053215853382580E+001 -1.052408657217942E+001 -1.051627563105383E+001 -1.050874076547809E+001 -1.050149746095518E+001 -1.049456164039654E+001 -1.048794967106513E+001 -1.048167837150117E+001 -1.047576501839475E+001 -1.047022735335965E+001 -1.046508358954925E+001 -1.046035241804083E+001 -1.045605301389769E+001 -1.045220504179802E+001 -1.044882866109774E+001 -1.044594453016814E+001 -1.044357380982067E+001 -1.044173816559866E+001 -1.044045976867943E+001 -1.043976129509019E+001 -1.043966592289668E+001 -1.044019732697466E+001 -1.044137967092157E+001 -1.044323759560726E+001 -1.044579620380108E+001 -1.044908104024514E+001 -1.045311806647237E+001 -1.045793362959262E+001 -1.046355442419001E+001 -1.047000744639240E+001 -1.047731993908748E+001 -1.048551932717207E+001 -1.049463314163229E+001 -1.050468893116257E+001 -1.051571415994380E+001 -1.052773609011578E+001 -1.054078164739849E+001 -1.055487726824365E+001 -1.057004872683352E+001 -1.058632094019196E+001 -1.060371774963579E+001 -1.062226167677606E+001 -1.064197365228275E+001 -1.066287271565701E+001 -1.068497568431587E+001 -1.070829679039182E+001 -1.073284728378670E+001 -1.075863500020376E+001 -1.078566389311683E+001 -1.081393352892851E+001 -1.084343854492626E+001 -1.087416807007019E+001 -1.090610510914824E+001 -1.093922589141544E+001 -1.097349918550264E+001 -1.100888558313865E+001 -1.104533675508425E+001 -1.108279468362875E+001 -1.112119087705269E+001 -1.116044557261396E+001 -1.120046693586781E+001 -1.124115026548097E+001 -1.128237721413996E+001 -1.132401503767558E+001 -1.136591588611635E+001 -1.140791615202882E+001 -1.144983589318045E+001 -1.149147834824693E+001 -1.153262956595009E+001 -1.157305816961856E+001 -1.161251528066916E+001 -1.165073462586445E+001 -1.168743285435469E+001 -1.172231009140092E+001 -1.175505075622902E+001 -1.178524340667159E+001 -1.181264428472853E+001 -1.183688174023431E+001 -1.185759198670198E+001 -1.187440451439064E+001 -1.188694503718497E+001 -1.189483886663710E+001 -1.189771472331176E+001 -1.189520898940383E+001 -1.188697039929101E+001 -1.187266515619132E+001 -1.185198245339373E+001 -1.182464036760848E+001 -1.179039207985637E+001 -1.174903236601588E+001 -1.170039956840497E+001 -1.164436606889598E+001 -1.158085509616031E+001 -1.150985087495566E+001 -1.143140427344161E+001 -1.134563799775903E+001 -1.125275115897255E+001 -1.115302301836211E+001 -1.104681569687122E+001 -1.093457561257730E+001 -1.081683338531763E+001 -1.069420191860982E+001 -1.056737233375029E+001 -1.043710738687849E+001 -1.030423194367097E+001 -1.016962001442752E+001 -1.003417776043710E+001 -9.898821766284843E+000 -9.764451727993222E+000 -9.631916530161991E+000 -9.501972474611375E+000 -9.375232178693686E+000 -9.252102386521779E+000 -9.132708636883700E+000 -9.016804415326884E+000 -8.903662090514878E+000 -8.792251518989517E+000 -8.682301890048088E+000 -8.573788517338086E+000 -8.466687498787691E+000 -8.360975678783026E+000 -8.256630611940800E+000 -8.153630528447211E+000 -8.051954300927704E+000 -7.951581413065765E+000 -7.852491931429260E+000 -7.754666472148942E+000 -7.658086175662432E+000 -7.562732680980290E+000 -7.468588101004163E+000 -7.375634999124522E+000 -7.283856367048431E+000 -7.193235603822353E+000 -7.103756496004993E+000 -7.015403198949334E+000 -6.928160219150427E+000 -6.842012397615489E+000 -6.756944894214643E+000 -6.672943172967790E+000 -6.589992988226454E+000 -6.508080371707629E+000 -6.427191620337466E+000 -6.347313284865227E+000 -6.268432159206211E+000 -6.190535270471284E+000 -6.113609869652673E+000 -6.037643422919518E+000 -5.962623603492375E+000 -5.888538284059168E+000 -5.815375529699898E+000 -5.743123591287067E+000 -5.671770899329974E+000 -5.601306058234177E+000 -5.531717840945942E+000 -5.462995183955812E+000 -5.395127182634671E+000 -5.328103086877593E+000 -5.261912297033086E+000 -5.196544360094839E+000 -5.131988966136247E+000 -5.068235944967912E+000 -5.005275262999978E+000 -4.943097020292977E+000 -4.881691447780508E+000 -4.821048904650134E+000 -4.761159875868287E+000 -4.702014969836583E+000 -4.643604916168651E+000 -4.585920563575921E+000 -4.528952877853291E+000 -4.472692939955591E+000 -4.417131944156086E+000 -4.362261196280633E+000 -4.308072112009532E+000 -4.254556215241879E+000 -4.201705136516419E+000 -4.149510611483723E+000 -4.097964479425730E+000 -4.047058681817943E+000 -3.996785260931109E+000 -3.947136358469100E+000 -3.898104214239594E+000 -3.849681164855832E+000 -3.801859642466181E+000 -3.754632173510318E+000 -3.707991377499718E+000 -3.661929965805261E+000 -3.616440740546165E+000 -3.571516593336483E+000 -3.527150504207775E+000 -3.483335540510927E+000 -3.440064855756008E+000 -3.397331688571431E+000 -3.355129361623747E+000 -3.313451280564734E+000 -3.272290932993290E+000 -3.231641887431287E+000 -3.191497792313642E+000 -3.151852374991534E+000 -3.112699440748970E+000 -3.074032871832213E+000 -3.035846626491520E+000 -2.998134738035562E+000 -2.960891313897551E+000 -2.924110534713501E+000 -2.887786653412120E+000 -2.851913994315963E+000 -2.816486952254225E+000 -2.781499991686336E+000 -2.746947645836745E+000 -2.712824515840495E+000 -2.679125269899292E+000 -2.645844642448373E+000 -2.612977433333487E+000 -2.580518506998261E+000 -2.548462791681769E+000 -2.516805278625815E+000 -2.485541021292379E+000 -2.454665134590528E+000 -2.424172794113121E+000 -2.394059235382963E+000 -2.364319753108209E+000 -2.334949700447217E+000 -2.305944488282332E+000 -2.277299584502837E+000 -2.249010513296819E+000 -2.221072854451656E+000 -2.193482242663454E+000 -2.166234366854819E+000 -2.139324969501269E+000 -2.112749845965994E+000 -2.086504843842749E+000 -2.060585862307132E+000 -2.034988851475688E+000 -2.009709811773146E+000 -1.984744793307485E+000 -1.960089895252664E+000 -1.935741265301758E+000 -1.911695098808287E+000 -1.887947638586808E+000 -1.864495174055385E+000 -1.841334040765837E+000 -1.818460619664828E+000 -1.795871336784257E+000 -1.773562662507729E+000 -1.751531111064110E+000 -1.729773240038639E+000 -1.708285649605962E+000 -1.687064982351123E+000 -1.666107922504229E+000 -1.645411195484138E+000 -1.624971567386871E+000 -1.604785844478007E+000 -1.584850872795055E+000 -1.565163536538812E+000 -1.545720768020530E+000 -1.526519517449181E+000 -1.507556749086161E+000 -1.488829578397980E+000 -1.470335040359468E+000 -1.452070245161492E+000 -1.434032338892655E+000 -1.416218503093462E+000 -1.398625954315852E+000 -1.381251943688314E+000 -1.364093756486392E+000 -1.347148711708443E+000 -1.330414161656795E+000 -1.313887491523979E+000 -1.297566118984183E+000 -1.281447493789797E+000 -1.265529097372845E+000 -1.249808442451556E+000 -1.234283072641624E+000 -1.218950562158805E+000 -1.203808515087685E+000 -1.188854565546177E+000 -1.174086376949271E+000 -1.159501641737443E+000 -1.145098081016145E+000 -1.130873444199722E+000 -1.116825508659723E+000 -1.102952079377656E+000 -1.089250988601960E+000 -1.075720095509323E+000 -1.062357285870186E+000 -1.049160471718338E+000 -1.036127591024736E+000 -1.023256607375250E+000 -1.010545509652490E+000 -9.979923117215919E-001 -9.855950521198220E-001 -9.733517937501615E-001 -9.612606235785738E-001 -9.493196523351143E-001 -9.375270142187422E-001 -9.258808666057491E-001 -9.143793897618891E-001 -9.030207865579974E-001 -8.918032821892095E-001 -8.807251238976583E-001 -8.697845806985571E-001 -8.589799431097881E-001 -8.483095228847363E-001 -8.377716527485284E-001 -8.273646861375281E-001 -8.170869969420177E-001 -8.069369792521611E-001 -7.969130471070389E-001 -7.870136342468526E-001 -7.772371938682151E-001 -7.675821983824143E-001 -7.580471391767729E-001 -7.486305263788884E-001 -7.393308886238458E-001 -7.301467728243350E-001 -7.210767439435688E-001 -7.121193847710890E-001 -7.032732957012987E-001 -6.945370945147779E-001 -6.859094161623259E-001 -6.773889125516370E-001 -6.689742523366983E-001 -6.606641207097247E-001 -6.524572191957397E-001 -6.443522654496915E-001 -6.363479930560610E-001 -6.284431513310093E-001 -6.206365051269301E-001 -6.129268346394683E-001 -6.053129352169312E-001 -5.977936171720375E-001 -5.903677055960507E-001 -5.830340401751757E-001 -5.757914750092645E-001 -5.686388784327863E-001 -5.615751328379626E-001 -5.545991345001818E-001 -5.477097934055077E-001 -5.409060330803731E-001 -5.341867904233931E-001 -5.275510155392249E-001 -5.209976715745477E-001 -5.145257345560326E-001 -5.081341932303487E-001 -5.018220489061673E-001 -4.955883152980887E-001 -4.894320183725610E-001 -4.833521961956609E-001 -4.773478987828008E-001 -4.714181879503001E-001 -4.655621371687713E-001 -4.597788314183722E-001 -4.540673670458095E-001 -4.484268516231503E-001 -4.428564038083926E-001 -4.373551532077247E-001 -4.319222402395553E-001 -4.265568160001753E-001 -4.212580421311283E-001 -4.160250906882239E-001 -4.108571440121456E-001 -4.057533946007181E-001 -4.007130449827074E-001 -3.957353075932300E-001 -3.908194046506966E-001 -3.859645680352652E-001 -3.811700391688431E-001 -3.764350688965374E-001 -3.717589173696060E-001 -3.671408539298670E-001 -3.625801569955046E-001 -3.580761139483510E-001 -3.536280210225130E-001 -3.492351831944188E-001 -3.448969140742255E-001 -3.406125357985526E-001 -3.363813789245814E-001 -3.322027823254411E-001 -3.280760930869081E-001 -3.240006664053984E-001 -3.199758654871961E-001 -3.160010614489742E-001 -3.120756332195131E-001 -3.081989674426628E-001 -3.043704583815140E-001 -3.005895078237305E-001 -2.968555249881016E-001 -2.931679264322082E-001 -2.895261359612739E-001 -2.859295845381298E-001 -2.823777101942966E-001 -2.788699579421846E-001 -2.754057796883664E-001 -2.719846341479403E-001 -2.686059867599583E-001 -2.652693096038888E-001 -2.619740813171416E-001 -2.587197870135900E-001 -2.555059182031270E-001 -2.523319727122157E-001 -2.491974546054125E-001 -2.461018741078893E-001 -2.430447475288932E-001 -2.400255971861756E-001 -2.370439513313556E-001 -2.340993440761989E-001 -2.311913153198347E-001 -2.283194106768513E-001 -2.254831814063041E-001 -2.226821843416027E-001 -2.199159818212526E-001 1.063737951762341E-009 1.090666606216019E-009 1.118276962802672E-009 1.146586278893950E-009 1.175612248733955E-009 1.205373014498704E-009 1.235887177635586E-009 1.267173810489876E-009 1.299252468225562E-009 1.332143201047976E-009 1.365866566735805E-009 1.400443643490381E-009 1.435896043110248E-009 1.472245924499227E-009 1.509516007516471E-009 1.547729587177095E-009 1.586910548212334E-009 1.627083379998270E-009 1.668273191862489E-009 1.710505728778241E-009 1.753807387455867E-009 1.798205232841612E-009 1.843727015034101E-009 1.890401186629043E-009 1.938256920503047E-009 1.987324128047597E-009 2.037633477864664E-009 2.089216414935571E-009 2.142105180275127E-009 2.196332831083331E-009 2.251933261407171E-009 2.308941223325519E-009 2.367392348670316E-009 2.427323171297617E-009 2.488771149922455E-009 2.551774691531738E-009 2.616373175389878E-009 2.682606977652111E-009 2.750517496600905E-009 2.820147178521250E-009 2.891539544230940E-009 2.964739216282520E-009 3.039791946853830E-009 3.116744646344600E-009 3.195645412696997E-009 3.276543561458373E-009 3.359489656605109E-009 3.444535542146739E-009 3.531734374530142E-009 3.621140655864070E-009 3.712810267984705E-009 3.806800507383656E-009 3.903170121020114E-009 4.001979343039618E-009 4.103289932422377E-009 4.207165211584606E-009 4.313670105957120E-009 4.422871184565835E-009 4.534836701639574E-009 4.649636639271213E-009 4.767342751158708E-009 4.888028607453535E-009 5.011769640744417E-009 5.138643193205139E-009 5.268728564935963E-009 5.402107063528710E-009 5.538862054886693E-009 5.679079015331115E-009 5.822845585026531E-009 5.970251622758851E-009 6.121389262099941E-009 6.276352968994156E-009 6.435239600802604E-009 6.598148466842145E-009 6.765181390456996E-009 6.936442772661561E-009 7.112039657394508E-009 7.292081798424705E-009 7.476681727950895E-009 7.665954826938013E-009 7.860019397233984E-009 8.058996735512273E-009 8.263011209086246E-009 8.472190333642763E-009 8.686664852943711E-009 8.906568820544991E-009 9.132039683584448E-009 9.363218368690768E-009 9.600249370067192E-009 9.843280839805170E-009 1.009246468048414E-008 1.034795664011563E-008 1.060991640949087E-008 1.087850772199263E-008 1.115389845593408E-008 1.143626073948802E-008 1.172577105827269E-008 1.202261036566102E-008 1.232696419588231E-008 1.263902277998731E-008 1.295898116474864E-008 1.328703933457147E-008 1.362340233649024E-008 1.396828040832977E-008 1.432188911011078E-008 1.468444945878176E-008 1.505618806636191E-008 1.543733728158096E-008 1.582813533510467E-008 1.622882648843685E-008 1.663966118659062E-008 1.706089621462474E-008 1.749279485814266E-008 1.793562706785452E-008 1.838966962830525E-008 1.885520633087378E-008 1.933252815115195E-008 1.982193343081373E-008 2.032372806408840E-008 2.083822568895457E-008 2.136574788317394E-008 2.190662436528792E-008 2.246119320070246E-008 2.302980101298991E-008 2.361280320054014E-008 2.421056415869591E-008 2.482345750751192E-008 2.545186632527947E-008 2.609618338796288E-008 2.675681141469730E-008 2.743416331950114E-008 2.812866246936083E-008 2.884074294884897E-008 2.957084983144122E-008 3.031943945770197E-008 3.108697972051172E-008 3.187395035751542E-008 3.268084325097427E-008 3.350816273520787E-008 3.435642591181997E-008 3.522616297290333E-008 3.611791753242731E-008 3.703224696601423E-008 3.796972275931714E-008 3.893093086521724E-008 3.991647207006313E-008 4.092696236918200E-008 4.196303335189674E-008 4.302533259628970E-008 4.411452407396038E-008 4.523128856502872E-008 4.637632408364529E-008 4.755034631427260E-008 4.875408905901118E-008 4.998830469624999E-008 5.125376465092691E-008 5.255125987669483E-008 5.388160135029316E-008 5.524562057843471E-008 5.664417011752470E-008 5.807812410653566E-008 5.954837881337314E-008 6.105585319507219E-008 6.260148947217519E-008 6.418625371765091E-008 6.581113646072034E-008 6.747715330597119E-008 6.918534556814239E-008 7.093678092298037E-008 7.273255407457130E-008 7.457378743956555E-008 7.646163184872623E-008 7.839726726623447E-008 8.038190352720586E-008 8.241678109387721E-008 8.450317183093428E-008 8.664237980047046E-008 8.883574207706650E-008 9.108462958350587E-008 9.339044794764693E-008 9.575463838098403E-008 9.817867857945393E-008 1.006640836470418E-007 1.032124070427712E-007 1.058252415516672E-007 1.085042202802964E-007 1.112510176775145E-007 1.140673505810489E-007 1.169549792905789E-007 1.199157086679811E-007 1.229513892654239E-007 1.260639184820262E-007 1.292552417497906E-007 1.325273537495626E-007 1.358822996577720E-007 1.393221764247315E-007 1.428491340853022E-007 1.464653771027329E-007 1.501731657465210E-007 1.539748175051567E-007 1.578727085346246E-007 1.618692751435824E-007 1.659670153161294E-007 1.701684902731293E-007 1.744763260730569E-007 1.788932152533668E-007 1.834219185134207E-007 1.880652664400105E-007 1.928261612765682E-007 1.977075787371634E-007 2.027125698664172E-007 2.078442629465084E-007 2.131058654524484E-007 2.185006660568569E-007 2.240320366854917E-007 2.297034346248061E-007 2.355184046828713E-007 2.414805814049909E-007 2.475936913454119E-007 2.538615553965423E-007 2.602880911771287E-007 2.668773154809006E-007 2.736333467871910E-007 2.805604078351218E-007 2.876628282629534E-007 2.949450473142438E-007 3.024116166125262E-007 3.100672030062146E-007 3.179165914855379E-007 3.259646881733149E-007 3.342165233914330E-007 3.426772548049710E-007 3.513521706458991E-007 3.602466930183965E-007 3.693663812878451E-007 3.787169355556042E-007 3.883042002217674E-007 3.981341676380939E-007 4.082129818534235E-007 4.185469424539094E-007 4.291425085004525E-007 4.400063025658352E-007 4.511451148740329E-007 4.625659075443261E-007 4.742758189428506E-007 4.862821681443029E-007 4.980939285623949E-007 5.107109199184611E-007 5.236466340907011E-007 5.369073657527699E-007 5.505483486112143E-007 5.644511487661471E-007 5.787819030814056E-007 5.934403678185058E-007 6.084789817428412E-007 6.238946264838865E-007 6.396958557068590E-007 6.559032476704116E-007 6.725310477405712E-007 6.895477505007771E-007 7.070385984382111E-007 7.249507832446103E-007 7.432971296411132E-007 7.621416913310826E-007 7.814504627735727E-007 8.012268861169807E-007 8.215394994507253E-007 8.423304209692927E-007 8.636860959778853E-007 8.855537161567413E-007 9.079914844374112E-007 9.309842878526222E-007 9.545713962130285E-007 9.787360396956451E-007 1.003526835316374E-006 1.028975904213483E-006 1.054998175267045E-006 1.081737476861400E-006 1.109137727525565E-006 1.137212548521584E-006 1.166022653930697E-006 1.195571536473416E-006 1.225813782306692E-006 1.256894127593351E-006 1.288697914040630E-006 1.321359071618325E-006 1.354794034834044E-006 1.389124755786049E-006 1.424294068298996E-006 1.460357945919424E-006 1.497356222183086E-006 1.535262914484766E-006 1.574146156135409E-006 1.614010241727666E-006 1.654872979784014E-006 1.696788230166706E-006 1.739750040514842E-006 1.783802840104321E-006 1.828976349325820E-006 1.875292809762255E-006 1.922773598347988E-006 1.971467377541383E-006 2.021379996147386E-006 2.072567864581524E-006 2.125045283513135E-006 2.178864565687857E-006 2.234025024812375E-006 2.290594343783738E-006 2.348597521467532E-006 2.408052593791635E-006 2.469055074455800E-006 2.531546508705100E-006 2.595651360316213E-006 2.661376096396841E-006 2.728757503132314E-006 2.797854473422128E-006 2.868693773266278E-006 2.941327642900696E-006 3.015809744681709E-006 3.092144860370956E-006 3.170450912604401E-006 3.250720732635918E-006 3.333039522086472E-006 3.417396200116278E-006 3.503958121484260E-006 3.592657096854155E-006 3.683615137687898E-006 3.776884641873196E-006 3.872501148331434E-006 3.970559322127686E-006 4.071084154413070E-006 4.174147344382572E-006 4.279841020943328E-006 4.388183087690191E-006 4.499297399669306E-006 4.613214139632996E-006 4.730005978952900E-006 4.849752111214601E-006 4.972540099326404E-006 5.098439068694836E-006 5.227495026728307E-006 5.359884649439551E-006 5.495539693903133E-006 5.634702281816145E-006 5.777354009516051E-006 5.923609556547919E-006 6.073591373748441E-006 6.227355513602062E-006 6.385003887676653E-006 6.546664950539108E-006 6.712404870101536E-006 6.882330939053249E-006 7.056590843943230E-006 7.235237237219291E-006 7.418395294094393E-006 7.606212614485692E-006 7.798792155803859E-006 7.996212400794375E-006 8.198650863966870E-006 8.406229506037856E-006 8.619038304158124E-006 8.837243701414065E-006 9.060973755345198E-006 9.290354772854000E-006 9.525572655773786E-006 9.766701609558541E-006 1.001398538176365E-005 1.026748269272255E-005 1.052743381912225E-005 1.079393403728686E-005 1.106720247722896E-005 1.134738415214246E-005 1.163466093270907E-005 1.192919279246836E-005 1.223120153785652E-005 1.254084889501466E-005 1.285833483177732E-005 1.318384594657561E-005 1.351762392082878E-005 1.385983289687805E-005 1.421069467413887E-005 1.457047769683310E-005 1.493931613926660E-005 1.531754232656403E-005 1.570528861182464E-005 1.610292437689695E-005 1.651054433624171E-005 1.692854784058924E-005 1.735709747040905E-005 1.779650171640508E-005 1.824704282987211E-005 1.870897847771146E-005 1.918261275352855E-005 1.966822727714386E-005 2.016613408803940E-005 2.067667015831263E-005 2.120010049186286E-005 2.173679819017256E-005 2.228707990758480E-005 2.285128052070922E-005 2.342979400974382E-005 2.402291712968119E-005 2.463107839602004E-005 2.525462824355495E-005 2.589395217302108E-005 2.654947975636102E-005 2.722158971137700E-005 2.791071753536460E-005 2.861729330608510E-005 2.934173752080454E-005 3.008455578788474E-005 3.084615766677239E-005 3.162701708728066E-005 3.242769558019650E-005 3.324858735819248E-005 3.409031861632508E-005 3.495330656400670E-005 3.583816173070278E-005 3.674542185740329E-005 3.767562930752968E-005 3.862941974389559E-005 3.960731643740439E-005 4.060999587636307E-005 4.163804531406607E-005 4.269212165080833E-005 4.377288102268691E-005 4.488100655603609E-005 4.601716687126131E-005 4.718212715547689E-005 4.837650501353952E-005 4.960121295110746E-005 5.085684110029527E-005 5.214430919263774E-005 5.346434448086705E-005 5.481777938945083E-005 5.620553248293133E-005 5.762835722857818E-005 5.908722794497521E-005 6.058303023859018E-005 6.211667994137457E-005 6.368919110101992E-005 6.530145920358018E-005 6.695457525156417E-005 6.864953777617568E-005 7.038739237352376E-005 7.216925573476783E-005 7.399620460423602E-005 7.586942936692667E-005 7.779004299308103E-005 7.975931590079210E-005 8.177839173727470E-005 8.384862341151507E-005 8.597123184269123E-005 8.814759033487428E-005 9.037902451785916E-005 9.266696850283661E-005 9.501281104185027E-005 9.741804468991954E-005 9.988416519134058E-005 1.024127094912327E-004 1.050052617254359E-004 1.076634536596666E-004 1.103889168692001E-004 1.131833919606337E-004 1.160485882889814E-004 1.189863226427840E-004 1.219984351548408E-004 1.250867758879926E-004 1.282533130393581E-004 1.314999804828572E-004 1.348288792911664E-004 1.382420017400426E-004 1.417415404139081E-004 1.453296824025767E-004 1.490086066954467E-004 1.527807190783885E-004 1.566482695136820E-004 1.606137483714040E-004 1.646795911846474E-004 1.688483739469896E-004 1.731226710609341E-004 1.775051643070432E-004 1.819986036118153E-004 1.866057800858266E-004 1.913295795964624E-004 1.961729525155512E-004 2.011389477794014E-004 2.062306183685847E-004 2.114511980806896E-004 2.168039042794868E-004 2.222921399127913E-004 2.279192662983702E-004 2.336888550020094E-004 2.396044672135166E-004 2.456698400504913E-004 2.518887400920837E-004 2.582650732167338E-004 2.648027687210142E-004 2.715059836873809E-004 2.783788613368806E-004 2.854257292442840E-004 2.926509527386879E-004 3.000590570042990E-004 3.076547094251692E-004 3.154425836422598E-004 3.234276319568790E-004 3.316147653522784E-004 3.400091510423271E-004 3.486160018670137E-004 3.574407137139814E-004 3.664888042372041E-004 3.757659120264800E-004 3.852778310402757E-004 3.950305330411196E-004 4.050300728489017E-004 4.152827181091941E-004 4.257948918155663E-004 4.365731140323911E-004 4.476241679249588E-004 4.589549120613452E-004 4.705724722017695E-004 4.824840795306953E-004 4.946971671922029E-004 5.072193762975175E-004 5.200585297975345E-004 5.332226740088670E-004 5.467199702286844E-004 5.605589072145554E-004 5.747480982277290E-004 5.892964238118786E-004 6.042129600130313E-004 6.195070334753790E-004 6.351881889995076E-004 6.512662321231805E-004 6.677511787994903E-004 6.846533631258596E-004 7.019833259774782E-004 7.197518897515694E-004 7.379701217134180E-004 7.566494676661816E-004 7.758015512541066E-004 7.954382976736450E-004 8.155720538593169E-004 8.362153527195727E-004 8.573810308293309E-004 8.790824159165922E-004 9.013329800298515E-004 9.241466389851306E-004 9.475376386240433E-004 9.715205705892321E-004 9.961104598891811E-004 1.021322580579741E-003 1.047172759381325E-003 1.073677049651271E-003 1.100852066331776E-003 1.128714769729861E-003 1.157282510199747E-003 1.186573154176134E-003 1.216604988514139E-003 1.247396741259534E-003 1.278967659631778E-003 1.311337418805979E-003 1.344526267645045E-003 1.378554854878125E-003 1.413444485168297E-003 1.449216895576058E-003 1.485894418048283E-003 1.523499956506936E-003 1.562056958610559E-003 1.601589497262083E-003 1.642122238492701E-003 1.683680453870530E-003 1.726290112160883E-003 1.769977759729260E-003 1.814770668489372E-003 1.860696801018291E-003 1.907784765448059E-003 1.956063972654737E-003 2.005564508506725E-003 2.056317260894014E-003 2.108353913348694E-003 2.161706856966828E-003 2.216409396446249E-003 2.272495673788186E-003 2.330000596201936E-003 2.388960086419906E-003 2.449410875443367E-003 2.511390334462770E-003 2.574938164874837E-003 2.640092815616607E-003 2.706894863633714E-003 2.775386984822651E-003 2.845610788697080E-003 2.917611622539996E-003 2.991432008333846E-003 3.067119418878787E-003 3.144721043835732E-003 3.224284867077459E-003 3.305860447828881E-003 3.389499328607312E-003 3.475252056127673E-003 3.563173731519099E-003 3.653316994418932E-003 3.745741694743847E-003 3.840500448192172E-003 3.937655781741753E-003 4.037268179270315E-003 4.139396494101904E-003 4.244108724841013E-003 4.351465280310453E-003 4.461537376170870E-003 4.574391477725976E-003 4.690096563423628E-003 4.808725574767109E-003 4.930355107970938E-003 5.055055238846052E-003 5.182908767274563E-003 5.313991643808569E-003 5.448387155058609E-003 5.586177674059265E-003 5.727449676244338E-003 5.872292255092957E-003 6.020790880014637E-003 6.173043529738855E-003 6.329139895739674E-003 6.489180717011022E-003 6.653261348266373E-003 6.821487745197194E-003 6.993962975262044E-003 7.170791002996544E-003 7.352085772217855E-003 7.537957860672719E-003 7.728521924808727E-003 7.923898390420209E-003 8.124204898382356E-003 8.329568764681626E-003 8.540114931639376E-003 8.755976564530595E-003 8.977284056483662E-003 9.204176410988205E-003 9.436793699583343E-003 9.675280853443630E-003 9.919782470091927E-003 1.017045349287537E-002 1.042744632085274E-002 1.069092129726508E-002 1.096103985648131E-002 1.123797108372999E-002 1.152188262127947E-002 1.181295387783884E-002 1.211136148968028E-002 1.241729032045400E-002 1.273093005882688E-002 1.305247310424694E-002 1.338211811623279E-002 1.372006830658276E-002 1.406653140526204E-002 1.442172114475111E-002 1.478585661923322E-002 1.515916073919295E-002 1.554186439239853E-002 1.593420197692163E-002 1.633641476736073E-002 1.674875042128801E-002 1.717146188015852E-002 1.760480758171547E-002 1.804905516497964E-002 1.850447580732198E-002 1.897134919205989E-002 1.944996076990351E-002 1.994060384708644E-002 2.044357965707407E-002 2.095919344528269E-002 2.148776317004089E-002 2.202960993007664E-002 2.258506500549557E-002 2.315446778849103E-002 2.373816475854029E-002 2.433651235067956E-002 2.494987452146346E-002 2.557862494908799E-002 2.622314553344979E-002 2.688382864160935E-002 2.756107496107029E-002 2.825529626517830E-002 2.896691250106068E-002 2.969635594416493E-002 3.044406836457560E-002 3.121049956875925E-002 3.199611505312260E-002 3.280139458085400E-002 3.362681046146984E-002 3.447287339772390E-002 3.534008595824917E-002 3.622897514240823E-002 3.714006612488389E-002 3.807392083454310E-002 3.903108323744381E-002 4.001213666055556E-002 4.101766728622851E-002 4.204827557770564E-002 4.310457353343514E-002 4.418719902434961E-002 4.529679006392877E-002 4.643400778998592E-002 4.759953175741383E-002 4.879405207550905E-002 5.001827354281946E-002 5.127292781187215E-002 5.255874805155979E-002 5.387649867777685E-002 5.522695353359029E-002 5.661091057846727E-002 5.802917834768599E-002 5.948259265498195E-002 6.097200001940945E-002 6.249827565434170E-002 6.406230717223604E-002 6.566500418730813E-002 6.730730341355294E-002 6.899015180179256E-002 7.071452619203410E-002 7.248142498489395E-002 7.429186370662516E-002 7.614688361057835E-002 7.804755434422594E-002 7.999495951110938E-002 8.199021327861727E-002 8.403445624830259E-002 8.612884613298974E-002 8.827457277831069E-002 9.047285103497307E-002 9.272492095986916E-002 9.503204793626029E-002 9.739552680884288E-002 9.981668161957077E-002 1.022968595162225E-001 1.048374413554758E-001 1.074398345470304E-001 1.101054761388212E-001 1.128358332567776E-001 1.156324039844884E-001 1.184967172930207E-001 1.214303301303861E-001 1.244348375097385E-001 1.275118597441488E-001 1.306630542669018E-001 1.338901079491719E-001 1.371947449065088E-001 1.405787174770424E-001 1.440438164559661E-001 1.475918661571876E-001 1.512247212253722E-001 1.549442778128908E-001 1.587524617775573E-001 1.626512361897039E-001 1.666426004553306E-001 1.707285894925748E-001 1.749112717819545E-001 1.791927555720017E-001 1.835751827401940E-001 1.880607326766222E-001 1.926516189284344E-001 1.973500947243052E-001 2.021584460598612E-001 2.070789972957831E-001 2.121141076102929E-001 2.172661713587860E-001 2.225376198270065E-001 2.279309177737239E-001 2.334485652845510E-001 2.390930964800024E-001 2.448670791157556E-001 2.507731127714815E-001 2.568138314648226E-001 2.629918976006158E-001 2.693100053935536E-001 2.757708801271622E-001 2.823772706489896E-001 2.891319580473956E-001 2.960377445424589E-001 3.030974584892381E-001 3.103139510278575E-001 3.176900909150371E-001 3.252287688983351E-001 3.329328895998623E-001 3.408053727320913E-001 3.488491487122321E-001 3.570671577326882E-001 3.654623455285167E-001 3.740376599541970E-001 3.827960490133262E-001 3.917404565374870E-001 4.008738182184378E-001 4.101990572291327E-001 4.197190811807923E-001 4.294367757929630E-001 4.393550008188540E-001 4.494765851685261E-001 4.598043197786103E-001 4.703409534226599E-001 4.810891850089157E-001 4.920516580254656E-001 5.032309511506080E-001 5.146295748190022E-001 5.262499581816350E-001 5.380944449147232E-001 5.501652817244229E-001 5.624646097254464E-001 5.749944553002591E-001 5.877567176766537E-001 6.007531600793220E-001 6.139853964832783E-001 6.274548801512009E-001 6.411628905141741E-001 6.551105197311003E-001 6.692986584708708E-001 6.837279812385879E-001 6.983989302098802E-001 7.133116996547776E-001 7.284662177454009E-001 7.438621301548899E-001 7.594987799832951E-001 7.753751884445561E-001 7.914900351681146E-001 8.078416364795776E-001 8.244279223011215E-001 8.412464151276789E-001 8.582942039476239E-001 8.755679201581464E-001 8.930637120402102E-001 9.107772168185014E-001 9.287035337116327E-001 9.468371947736755E-001 9.651721348400644E-001 9.837016612252312E-001 1.002418421386198E+000 1.021314370897242E+000 1.040380739292630E+000 1.059607995978163E+000 1.078985814700644E+000 1.098503036890101E+000 1.118147636147762E+000 1.137906678775329E+000 1.157766287080274E+000 1.177711599720543E+000 1.197726732768060E+000 1.217794740579701E+000 1.237897575118287E+000 1.258016047598106E+000 1.278129787559713E+000 1.298217204734226E+000 1.318255449711104E+000 1.338220376247264E+000 1.358086504474536E+000 1.377826985604987E+000 1.397413567362219E+000 1.416816563779917E+000 1.436004823957008E+000 1.454945707509169E+000 1.473605060413830E+000 1.491947196008770E+000 1.509934881006203E+000 1.527529324981004E+000 1.544690177460472E+000 1.561375530210374E+000 1.577541926983333E+000 1.593144382730469E+000 1.608136409578422E+000 1.622470055538995E+000 1.636095952070640E+000 1.648963375424697E+000 1.661020321018377E+000 1.672213592620940E+000 1.682488907574573E+000 1.691791020393038E+000 1.700063864222759E+000 1.707250715129351E+000 1.713294376379634E+000 1.718137389790116E+000 1.721722270561323E+000 1.723991772262073E+000 1.724889180771835E+000 1.724358640059876E+000 1.722345513207471E+000 1.718796777926261E+000 1.713661461575084E+000 1.706891116099402E+000 1.698440333997467E+000 1.688267310680754E+000 1.676334449956023E+000 1.662609019074992E+000 1.647063851689059E+000 1.629678100647547E+000 1.610438042239913E+000 1.589337930789271E+000 1.566380904919955E+000 1.541579944482298E+000 1.514958875390176E+000 1.486553423612453E+000 1.456412311053221E+000 1.424598393281337E+000 1.391189831992310E+000 1.356281294936335E+000 1.319985179077053E+000 1.282432842419856E+000 1.243775837766829E+000 1.204187133267747E+000 1.163862302864252E+000 1.123020673129592E+000 1.081906401093741E+000 1.040789464281819E+000 9.999665361613648E-001 9.597617149989192E-001 9.205270811003285E-001 8.826430393025676E-001 8.465184147509638E-001 8.125902579422748E-001 7.813233126755353E-001 7.532091037612508E-001 7.287645890892064E-001 7.085303271378366E-001 6.930681045625364E-001 6.829579660851240E-001 6.787945956264834E-001 6.811829881834742E-001 6.907333639715134E-001 7.080552737486105E-001 7.337508498933851E-001 7.684071706390353E-001 8.125877055362111E-001 8.668228318271483E-001 9.315994207757727E-001 1.007349511023520E+000 1.094438114412445E+000 1.193150214977013E+000 1.303677060678138E+000 1.426101874743366E+000 1.560385149582938E+000 1.706349733698329E+000 1.863665954654132E+000 2.031837079005756E+000 2.210185451329363E+000 2.397839705171379E+000 2.593723494108663E+000 2.796546229758673E+000 3.004796367961686E+000 3.216737817106047E+000 3.430410074002439E+000 3.643632718499896E+000 3.854014894584084E+000 4.058970403761699E+000 4.255738999059442E+000 4.441414411016775E+000 4.612979559597757E+000 4.767349279887530E+000 4.901420752121310E+000 5.012131632835711E+000 5.096525662328176E+000 5.151825266747369E+000 5.175510363113417E+000 5.165402246143243E+000 5.119751055419341E+000 5.037324915812941E+000 4.917498407573333E+000 4.760337552427659E+000 4.566678013750339E+000 4.338192684755551E+000 4.077444285341959E+000 3.787917998383421E+000 3.474028518684220E+000 3.141095164002695E+000 2.795277854151310E+000 2.443465780865752E+000 2.093109415728324E+000 1.751985091598067E+000 1.427879708836012E+000 1.128181121259416E+000 8.593574435598105E-001 6.263059130483632E-001 4.315490739569610E-001 2.742530254213760E-001 1.490393397738294E-001 4.729945958125817E-002 -3.342199814220190E-002 -9.367791457660821E-002 -1.342514012829603E-001 -1.561646230035172E-001 -1.606854011876584E-001 -1.493312119924516E-001 -1.238701793411398E-001 -8.631865635363194E-002 -3.893498787533387E-002 1.579094489734844E-002 7.515278052480988E-002 1.362476883652596E-001 1.960016483338584E-001 2.512002603431164E-001 2.985252742522116E-001 3.345969441750817E-001 3.560222463392637E-001 3.594485007041914E-001 3.416254947203389E-001 2.994431337851963E-001 2.302604148525543E-001 1.294512897212974E-001 1.502735804863368E-002 -1.501258670840482E-003 1.388059763386288E-004 -2.255134777978179E-005 -5.406923284049709E-006 -6.051509853015975E-006 -5.017810898308522E-006 -4.229948593738445E-006 -3.491731052651828E-006 -2.817507742017729E-006 -2.201074808519336E-006 -1.638687847376133E-006 -1.126549320821405E-006 -6.612324917006534E-007 -2.395180507667885E-007 1.416627773688858E-007 4.850583932208651E-007 7.933385076618488E-007 1.068917888358717E-006 1.314115704775137E-006 1.531068402412968E-006 1.721757518368609E-006 1.888106952673930E-006 2.031836809908544E-006 2.154612642601275E-006 2.257990264378851E-006 2.343406783108881E-006 2.412255390516839E-006 2.465804174915485E-006 2.505274165902125E-006 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 -2.845878683938045E-013 -2.954625391902296E-013 -3.067527528753849E-013 -3.184743881729167E-013 -3.306439305642224E-013 -3.432784954738588E-013 -3.563958523409393E-013 -3.700144496103322E-013 -3.841534406788245E-013 -3.988327108327514E-013 -4.140729052149462E-013 -4.298954578603813E-013 -4.463226218413122E-013 -4.633775005643243E-013 -4.810840802633068E-013 -4.994672637340563E-013 -5.185529053579171E-013 -5.383678474637877E-013 -5.589399580795549E-013 -5.802981701261109E-013 -6.024725221090294E-013 -6.254942003651780E-013 -6.493955829236341E-013 -6.742102850426229E-013 -6.999732064865296E-013 -7.267205806094267E-013 -7.544900253142078E-013 -7.833205959589629E-013 -8.132528402850065E-013 -8.443288554438388E-013 -8.765923472031733E-013 -9.100886914153995E-013 -9.448649978348492E-013 -9.809701763736414E-013 -1.018455005889319E-012 -1.057372205600986E-012 -1.097776509234377E-012 -1.139724742000207E-012 -1.183275900513975E-012 -1.228491235769678E-012 -1.275434339284110E-012 -1.324171232532935E-012 -1.374770459804229E-012 -1.427303184600223E-012 -1.481843289722677E-012 -1.538467481182762E-012 -1.597255396081524E-012 -1.658289714612665E-012 -1.721656276345214E-012 -1.787444200949593E-012 -1.855746013536763E-012 -1.926657774786969E-012 -2.000279216050899E-012 -2.076713879613320E-012 -2.156069264316464E-012 -2.238456976748029E-012 -2.323992888206307E-012 -2.412797297663290E-012 -2.504995100954953E-012 -2.600715966436580E-012 -2.700094517350276E-012 -2.803270521161074E-012 -2.910389086127956E-012 -3.021600865386275E-012 -3.137062268828605E-012 -3.256935683081787E-012 -3.381389699890040E-012 -3.510599353224784E-012 -3.644746365455037E-012 -3.784019402924509E-012 -3.928614341294612E-012 -4.078734541026979E-012 -4.234591133392627E-012 -4.396403317410026E-012 -4.564398668129989E-012 -4.738813456700421E-012 -4.919892982661691E-012 -5.107891918939428E-012 -5.303074670020381E-012 -5.505715743814808E-012 -5.716100137728343E-012 -5.934523739486730E-012 -6.161293743276566E-012 -6.396729081787836E-012 -6.641160874765483E-012 -6.894932894701264E-012 -7.158402050320265E-012 -7.431938888542836E-012 -7.715928115627095E-012 -8.010769138225607E-012 -8.316876625116671E-012 -8.634681090400858E-012 -8.964629498982207E-012 -9.307185895186325E-012 -9.662832055399312E-012 -1.003206816564501E-011 -1.041541352505427E-011 -1.081340727621465E-011 -1.122660916342873E-011 -1.165560031994683E-011 -1.210098408528115E-011 -1.256338685375171E-011 -1.304345895545622E-011 -1.354187557090438E-011 -1.405933768060157E-011 -1.459657305091799E-011 -1.515433725763022E-011 -1.573341474857436E-011 -1.633461994690469E-011 -1.695879839651097E-011 -1.760682795120325E-011 -1.827962000933892E-011 -1.897812079562664E-011 -1.970331269191096E-011 -2.045621561880843E-011 -2.123788847013936E-011 -2.204943060217134E-011 -2.289198337977059E-011 -2.376673178163390E-011 -2.467490606686122E-011 -2.561778350520876E-011 -2.659669017346136E-011 -2.761300282044574E-011 -2.866815080331086E-011 -2.976361809779701E-011 -3.090094538532057E-011 -3.208173221981182E-011 -3.330763927735138E-011 -3.458039069176875E-011 -3.590177647949074E-011 -3.727365505704616E-011 -3.869795585477062E-011 -4.017668203038653E-011 -4.171191328627234E-011 -4.330580879438827E-011 -4.496061023296657E-011 -4.667864493924198E-011 -4.846232918265187E-011 -5.031417156311490E-011 -5.223677653916187E-011 -5.423284809088504E-011 -5.630519352285621E-011 -5.845672741236091E-011 -6.069047570850281E-011 -6.300957998794422E-011 -6.541730187326510E-011 -6.791702762015755E-011 -7.051227287990590E-011 -7.320668764385061E-011 -7.600406137679140E-011 -7.890832834654360E-011 -8.192357315715395E-011 -8.505403649354565E-011 -8.830412108568194E-011 -9.167839790062982E-011 -9.518161257123615E-011 -9.881869207045503E-011 -1.025947516407173E-010 -1.065151019880807E-010 -1.105852567512878E-010 -1.148109402562270E-010 -1.191980955667108E-010 -1.237528928428872E-010 -1.284817380190456E-010 -1.333912818130170E-010 -1.384884290798394E-010 -1.437803485228544E-010 -1.492744827758700E-010 -1.549785588705957E-010 -1.609005991040537E-010 -1.670489323212530E-010 -1.734322056290044E-010 -1.800593965573369E-010 -1.869398256856274E-010 -1.940831697512069E-010 -2.014994752588571E-010 -2.091991726103759E-010 -2.171930907740372E-010 -2.254924725146177E-010 -2.341089902053893E-010 -2.430547622443093E-010 -2.523423700975262E-010 -2.619848759941279E-010 -2.719958412970614E-010 -2.823893455760339E-010 -2.931800064092175E-010 -3.043829999416456E-010 -3.160140822291508E-010 -3.280896113979207E-010 -3.406265706508134E-010 -3.536425921527745E-010 -3.671559818289837E-010 -3.811857451105733E-010 -3.957516136641487E-010 -4.108740731426986E-010 -4.265743919969087E-010 -4.428746513874466E-010 -4.597977762402086E-010 -4.773675674882852E-010 -4.956087355459520E-010 -5.145469350617463E-010 -5.342088009995547E-010 -5.546219860984127E-010 -5.758151997637286E-010 -5.978182484446215E-010 -6.206620775541365E-010 -6.443788149913407E-010 -6.690018163264738E-010 -6.945657117127132E-010 -7.211064545905351E-010 -7.486613722531547E-010 -7.772692183441966E-010 -8.069702273613784E-010 -8.378061712429006E-010 -8.698204181161433E-010 -9.030579932911965E-010 -9.375656425851558E-010 -9.733918980661169E-010 -1.010587146309386E-009 -1.049203699261925E-009 -1.089295867814600E-009 -1.130920038185876E-009 -1.174134751224178E-009 -1.219000784740628E-009 -1.265581238987865E-009 -1.313941625405118E-009 -1.364149958754524E-009 -1.416276852778064E-009 -1.470395619509753E-009 -1.526582372382799E-009 -1.584916133276608E-009 -1.645478943654395E-009 -1.708355979947417E-009 -1.773635673348427E-009 -1.841409834182578E-009 -1.911773781030811E-009 -1.984826474787330E-009 -2.060670657839640E-009 -2.139412998566955E-009 -2.221164241360218E-009 -2.306039362374532E-009 -2.394157731233464E-009 -2.485643278912119E-009 -2.580624672035541E-009 -2.679235493837333E-009 -2.781614432033073E-009 -2.887905473872766E-009 -2.998258108646647E-009 -3.112827537929036E-009 -3.231774893856227E-009 -3.355267465744992E-009 -3.483478935370787E-009 -3.616589621236301E-009 -3.754786732174129E-009 -3.898264630639909E-009 -4.047225106066622E-009 -4.201877658664159E-009 -4.362439794063504E-009 -4.529137329219844E-009 -4.702204710004824E-009 -4.881885340934702E-009 -5.068431927497945E-009 -5.262106831564000E-009 -5.463182440372839E-009 -5.671941549624377E-009 -5.888677761206381E-009 -6.113695896120693E-009 -6.347312423187617E-009 -6.589855904132601E-009 -6.841667455680021E-009 -7.103101229304858E-009 -7.374524909316463E-009 -7.656320229975105E-009 -7.948883512368628E-009 -8.252626221804227E-009 -8.567975546499202E-009 -8.895374998384746E-009 -9.235285036867616E-009 -9.588183716426748E-009 -9.954567358956327E-009 -1.033495125179981E-008 -1.072987037245791E-008 -1.113988014098828E-008 -1.156555720115679E-008 -1.200750023143730E-008 -1.246633078700206E-008 -1.294269417388577E-008 -1.343726035655328E-008 -1.395072490014752E-008 -1.448380994874229E-008 -1.503726524097604E-008 -1.561186916449522E-008 -1.620842985069004E-008 -1.682778631126183E-008 -1.747080961822156E-008 -1.813840412897774E-008 -1.883150875823817E-008 -1.955109829851244E-008 -2.029818479107493E-008 -2.107381894931360E-008 -2.187909163646878E-008 -2.271513539983869E-008 -2.358312606361049E-008 -2.448428438255565E-008 -2.541987775891802E-008 -2.639122202490541E-008 -2.739968329329554E-008 -2.844667987875612E-008 -2.953368429258344E-008 -3.066222531366293E-008 -3.183389013856492E-008 -3.305032661380212E-008 -3.431324555338284E-008 -3.562442314492469E-008 -3.698570344771064E-008 -3.839900098619903E-008 -3.986630344263918E-008 -4.138967445257443E-008 -4.297125650716942E-008 -4.461327396643996E-008 -4.631803618762328E-008 -4.808794077309162E-008 -4.992547694237362E-008 -5.183322903302721E-008 -5.381388013528902E-008 -5.587021586560935E-008 -5.800512828438272E-008 -6.022161996338154E-008 -6.252280820861434E-008 -6.491192944455050E-008 -6.739234376587051E-008 -6.996753966315073E-008 -7.264113892912388E-008 -7.541690175242048E-008 -7.829873200594756E-008 -8.129068273735186E-008 -8.439696186927961E-008 -8.762193811745846E-008 -9.097014713491740E-008 -9.444629789099228E-008 -9.805527929408607E-008 -1.018021670674926E-007 -1.056922308879661E-007 -1.097309417970649E-007 -1.139239798956964E-007 -1.182772423326917E-007 -1.227968515986315E-007 -1.274891641366013E-007 -1.323607792819759E-007 -1.374185485438154E-007 -1.426695852409172E-007 -1.481212745060827E-007 -1.537812836726654E-007 -1.596575730580096E-007 -1.657584071589472E-007 -1.720923662750922E-007 -1.786683585762880E-007 -1.854956326311734E-007 -1.925837904144883E-007 -1.999428008114180E-007 -2.075830136379594E-007 -2.155151741970369E-007 -2.237504383908332E-007 -2.323003884105908E-007 -2.411770490259590E-007 -2.503929044967737E-007 -2.599609161310836E-007 -2.698945405140967E-007 -2.802077484336809E-007 -2.909150445290682E-007 -3.020314876903460E-007 -3.135727122374716E-007 -3.255549499085702E-007 -3.379950526884449E-007 -3.509105165094216E-007 -3.643195058578284E-007 -3.782408793207559E-007 -3.926942161089876E-007 -4.076998435934439E-007 -4.232788658938270E-007 -4.394531935597131E-007 -4.562455743857866E-007 -4.736796254046144E-007 -4.917798661019045E-007 -5.105717529009879E-007 -5.300817149650202E-007 -5.503371913672595E-007 -5.782115555504032E-007 -5.935607818629932E-007 -6.162397036852952E-007 -6.397737751340417E-007 -6.642106652830153E-007 -6.895821955352605E-007 -7.159261655937846E-007 -7.432715846340385E-007 -7.716593358023250E-007 -8.011351778938246E-007 -8.317416530238078E-007 -8.635145732593603E-007 -8.964957718511061E-007 -9.307490303603867E-007 -9.662940383820713E-007 -1.003211777572220E-006 -1.041534378273274E-006 -1.081326274343123E-006 -1.122626306390594E-006 -1.165517736012436E-006 -1.210038306330837E-006 -1.256264823625573E-006 -1.304264720542580E-006 -1.354082828359630E-006 -1.405812044437953E-006 -1.459520145178493E-006 -1.515275742178909E-006 -1.573170290276018E-006 -1.633269053565353E-006 -1.695661947660354E-006 -1.760455504685460E-006 -1.827705633558147E-006 -1.897533229466715E-006 -1.970031841553204E-006 -2.045289746841898E-006 -2.123426839601502E-006 -2.204560260491820E-006 -2.288781406083843E-006 -2.376222703006605E-006 -2.467019055186037E-006 -2.561260905138814E-006 -2.659129374082590E-006 -2.760716593107702E-006 -2.866189782422785E-006 -2.975700989513511E-006 -3.089387382233364E-006 -3.207423229914912E-006 -3.329972203317330E-006 -3.457200474197638E-006 -3.589278935579484E-006 -3.726420609851965E-006 -3.868788790485793E-006 -4.016616435145357E-006 -4.170069873549745E-006 -4.329411547118086E-006 -4.494823150180188E-006 -4.666554634812360E-006 -4.844860412306618E-006 -5.029963236765851E-006 -5.222149252837227E-006 -5.421678750438234E-006 -5.628830843435170E-006 -5.843898813138329E-006 -6.067182593726402E-006 -6.298998740701198E-006 -6.539678237248658E-006 -6.789547349644713E-006 -7.048960728194513E-006 -7.318299076326516E-006 -7.597916079273720E-006 -7.888235709617883E-006 -8.189611327372769E-006 -8.502547497129522E-006 -8.827408087673587E-006 -9.164704926049630E-006 -9.514874472073737E-006 -9.878428419142490E-006 -1.025588176213416E-005 -1.064775438610657E-005 -1.105458391726565E-005 -1.147696882186693E-005 -1.191550838438275E-005 -1.237079620691376E-005 -1.284346524640004E-005 -1.333421295641904E-005 -1.384371053294117E-005 -1.437266179329813E-005 -1.492183626872705E-005 -1.549199474053239E-005 -1.608392793099958E-005 -1.669849712521629E-005 -1.733654089452219E-005 -1.799897539213834E-005 -1.868668856980501E-005 -1.940072378812523E-005 -2.014200961513284E-005 -2.091164467837923E-005 -2.171065474834818E-005 -2.254023266376281E-005 -2.340147920054805E-005 -2.429565662117429E-005 -2.522397987252269E-005 -2.618778642591240E-005 -2.718842282102248E-005 -2.822728079671674E-005 -2.930584548984662E-005 -3.042562654531313E-005 -3.158819563498855E-005 -3.279516515807847E-005 -3.404826550420289E-005 -3.534925096611557E-005 -3.669995379647166E-005 -3.810223282101972E-005 -3.955814567237285E-005 -4.106963616172429E-005 -4.263890528800684E-005 -4.426814081638858E-005 -4.595962287564823E-005 -4.771573448443501E-005 -4.953893870833167E-005 -5.143183279800211E-005 -5.339700806226435E-005 -5.543732737977745E-005 -5.755557460335398E-005 -5.975475310366274E-005 -6.203796377279554E-005 -6.440842473192071E-005 -6.686945680717672E-005 -6.942452050813161E-005 -7.207719111768736E-005 -7.483128740400546E-005 -7.769053956069468E-005 -8.065906123370253E-005 -8.374100401170408E-005 -8.694071639117336E-005 -9.026268272720813E-005 -9.371158503744667E-005 -9.729227604226404E-005 -1.010097212985207E-004 -1.048692591069913E-004 -1.088762437253430E-004 -1.130363284822568E-004 -1.173553932987974E-004 -1.218394362731906E-004 -1.264948032074715E-004 -1.313280926082060E-004 -1.363459992997440E-004 -1.415556392069450E-004 -1.469643573033647E-004 -1.525796710750409E-004 -1.584096074001768E-004 -1.644622161244525E-004 -1.707461504351149E-004 -1.772700802745602E-004 -1.840433811321988E-004 -1.910753809225250E-004 -1.983760849257232E-004 -2.059557084522542E-004 -2.138249364371761E-004 -2.219947764907620E-004 -2.304768307134757E-004 -2.392829011403533E-004 -2.484254485234636E-004 -2.579172484397565E-004 -2.677717291135564E-004 -2.780026659373442E-004 -2.886244995303593E-004 -2.996521098733171E-004 -3.111010691881993E-004 -3.229873848361558E-004 -3.353278933808006E-004 -3.481397698994930E-004 -3.614411689505563E-004 -3.752506991216396E-004 -3.895878354394046E-004 -4.044726842315268E-004 -4.199261793252744E-004 -4.359700556820553E-004 -4.526268943459101E-004 -4.699199889457465E-004 -4.878737114569591E-004 -5.065140047953599E-004 -5.258594225838230E-004 -5.460114418230390E-004 -5.662763282570709E-004 -5.936990239485927E-004 -6.033280575910146E-004 -6.486442183091610E-004 -6.397015027429223E-004 -6.958695142658487E-004 -6.878038269735424E-004 -7.614183188008328E-004 -7.642969046113141E-004 -7.794192439111291E-004 -8.487973949398327E-004 -8.203930075847410E-004 -9.295056243272207E-004 -8.814367038925807E-004 -9.774029224685829E-004 -1.002083104142994E-003 -1.029963602101629E-003 -1.070568269850828E-003 -1.112694231022920E-003 -1.154385576697517E-003 -1.203136821021803E-003 -1.227719626701962E-003 -1.307388990992531E-003 -1.343009580425884E-003 -1.402821395269843E-003 -1.433187095846489E-003 -1.499216957139608E-003 -1.578828509975216E-003 -1.601456212952976E-003 -1.700496342755074E-003 -1.722621441081991E-003 -1.823800842464057E-003 -1.876379807299454E-003 -1.963511050543470E-003 -2.011640463346603E-003 -2.111024536812823E-003 -2.199787532258662E-003 -2.251634790043963E-003 -2.366043238041980E-003 -2.436098221333841E-003 -2.521548139965898E-003 -2.695671907072855E-003 -2.688820696781957E-003 -2.856293965170210E-003 -2.949504302990534E-003 -3.055633049020047E-003 -3.185881008438328E-003 -3.296158494452674E-003 -3.434807274865101E-003 -3.550625014074001E-003 -3.705260689327340E-003 -3.839192390244918E-003 -3.956423205127090E-003 -4.149607845388197E-003 -4.281485474228179E-003 -4.448622361538181E-003 -4.646378098338115E-003 -4.790334866049094E-003 -4.978954912034379E-003 -5.185191786350525E-003 -5.357321207782366E-003 -5.608158223689791E-003 -5.784065199931396E-003 -5.983623299661844E-003 -6.275448296837377E-003 -6.465069872504864E-003 -6.726594123402346E-003 -6.986949806669820E-003 -7.236559761981412E-003 -7.556347495646404E-003 -7.805873157654755E-003 -8.102702452493976E-003 -8.419131337460944E-003 -8.758416416229459E-003 -9.082174232904194E-003 -9.418920738302056E-003 -9.782202765858172E-003 -1.015357151689651E-002 -1.056860986804400E-002 -1.092105836184455E-002 -1.138503876015121E-002 -1.179038477499433E-002 -1.225385467722157E-002 -1.272178163046364E-002 -1.319615067797031E-002 -1.371370207240036E-002 -1.422616625513390E-002 -1.477448223651828E-002 -1.533947142372027E-002 -1.592282837578499E-002 -1.652032676306334E-002 -1.717183326847047E-002 -1.780790336302679E-002 -1.849606597154677E-002 -1.919987903956261E-002 -1.993078610578747E-002 -2.069089219325387E-002 -2.148708896746290E-002 -2.229469566066961E-002 -2.315467535674182E-002 -2.403123668948659E-002 -2.495358382849588E-002 -2.589768487745275E-002 -2.689574607534978E-002 -2.790998276009138E-002 -2.897770356580565E-002 -3.008718285669931E-002 -3.122633920374818E-002 -3.242714093477245E-002 -3.365006857640318E-002 -3.494022398711172E-002 -3.627000417751214E-002 -3.765442812961417E-002 -3.908653961134106E-002 -4.057780161904861E-002 -4.211720086287690E-002 -4.373323792532291E-002 -4.538923354450830E-002 -4.712156914377130E-002 -4.892054499413079E-002 -5.077526154514356E-002 -5.271356004852856E-002 -5.472043805674898E-002 -5.680255235047738E-002 -5.896644068876522E-002 -6.121086776582918E-002 -6.354110500198240E-002 -6.595612184802668E-002 -6.847000535620118E-002 -7.107331592985500E-002 -7.377683323594042E-002 -7.658520693378568E-002 -7.949635448877179E-002 -8.252338503625967E-002 -8.565632860586592E-002 -8.891754384468586E-002 -9.229616066019708E-002 -9.580562031234408E-002 -9.944723486872165E-002 -1.032254871480838E-001 -1.071475434445877E-001 -1.112211338635927E-001 -1.154439963342633E-001 -1.198298988323878E-001 -1.243791360218820E-001 -1.291039291477638E-001 -1.340034320515135E-001 -1.390906233046427E-001 -1.443682450139843E-001 -1.498481315563740E-001 -1.555332263954499E-001 -1.614298266273990E-001 -1.675545781839864E-001 -1.739073756541716E-001 -1.804989010615738E-001 -1.873403308326016E-001 -1.944398071697218E-001 -2.018056910363737E-001 -2.094503703981814E-001 -2.173807936285166E-001 -2.256115863349546E-001 -2.341506030036857E-001 -2.430112587964972E-001 -2.522053001312030E-001 -2.617437999941923E-001 -2.716416452726986E-001 -2.819094465084531E-001 -2.925640764198869E-001 -3.036168324330069E-001 -3.150844115051816E-001 -3.269827883411458E-001 -3.393241963604989E-001 -3.521294198283007E-001 -3.654124223568918E-001 -3.791932484677467E-001 -3.934873413887932E-001 -4.083160811271123E-001 -4.236977111366311E-001 -4.396535410490277E-001 -4.562033352528747E-001 -4.733702210466531E-001 -4.911748111877969E-001 -5.096429450663456E-001 -5.287968008789603E-001 -5.486618526562648E-001 -5.692647951156831E-001 -5.906307785541260E-001 -6.127891397196352E-001 -6.357680091970712E-001 -6.595962153059585E-001 -6.843060529644225E-001 -7.099272094196305E-001 -7.364949626254234E-001 -7.640411342288616E-001 -7.926019706531644E-001 -8.222134738153635E-001 -8.529134808454888E-001 -8.847406409680829E-001 -9.177346335297241E-001 -9.519380781237938E-001 -9.873923375958693E-001 -1.024143238102747E+000 -1.062235617390829E+000 -1.101716980694494E+000 -1.142635877657256E+000 -1.185043635756200E+000 -1.228991247384661E+000 -1.274533392453723E+000 -1.321724647613699E+000 -1.370623386320721E+000 -1.421287705962545E+000 -1.473779031504211E+000 -1.528160513882934E+000 -1.584496554979903E+000 -1.642854249771794E+000 -1.703302524566308E+000 -1.765912434728374E+000 -1.830757186680678E+000 -1.897912384308491E+000 -1.967455385861996E+000 -2.039466445777187E+000 -2.114027836082091E+000 -2.191224194107285E+000 -2.271143008536953E+000 -2.353873656778006E+000 -2.439508355419957E+000 -2.528142179200984E+000 -2.619872222036197E+000 -2.714798765685757E+000 -2.813024284066969E+000 -2.914654505429617E+000 -3.019797535186008E+000 -3.128564323313583E+000 -3.241068753898610E+000 -3.357427477085913E+000 -3.477759786877428E+000 -3.602188241006033E+000 -3.730837761767937E+000 -3.863836657854556E+000 -4.001315606806365E+000 -4.143408304407600E+000 -4.290251603884307E+000 -4.441984422258457E+000 -4.598749162853238E+000 -4.760690370938235E+000 -4.927955743489669E+000 -5.100695051717288E+000 -5.279060893044729E+000 -5.463208290676434E+000 -5.653294238417246E+000 -5.849478286466237E+000 -6.051921813712354E+000 -6.260788062970263E+000 -6.476242070973655E+000 -6.698450346628178E+000 -6.927580682428399E+000 -7.163801871806172E+000 -7.407283637647893E+000 -7.658196033240330E+000 -7.916709448217503E+000 -8.182994023501251E+000 -8.457219379462487E+000 -8.739554189641183E+000 -9.030165784137608E+000 -9.329219551700177E+000 -9.636878583816852E+000 -9.953302931042487E+000 -1.027864917096166E+001 -1.061306962315257E+001 -1.095671180581522E+001 -1.130971746882773E+001 -1.167222203864316E+001 -1.204435356896545E+001 -1.242623199182523E+001 -1.281796794277690E+001 -1.321966197259675E+001 -1.363140320120701E+001 -1.405326836098408E+001 -1.448532038543831E+001 -1.492760720100171E+001 -1.538016029510939E+001 -1.584299325550225E+001 -1.631610022226434E+001 -1.679945426062284E+001 -1.729300561976169E+001 -1.779667996190980E+001 -1.831037645635683E+001 -1.883396580934843E+001 -1.936728814754588E+001 -1.991015094474125E+001 -2.046232670336974E+001 -2.102355059678683E+001 -2.159351814368375E+001 -2.217188257862034E+001 -2.275825231906106E+001 -2.335218827558509E+001 -2.395320109055348E+001 -2.456074832264949E+001 -2.517423156022954E+001 -2.579299348057776E+001 -2.641631487096464E+001 -2.704341160832473E+001 -2.767343160989014E+001 -2.830545182834106E+001 -2.893847516569775E+001 -2.957142752961181E+001 -3.020315484135182E+001 -3.083242019772734E+001 -3.145790108860223E+001 -3.207818676933681E+001 -3.269177579693365E+001 -3.329707376827093E+001 -3.389239130460169E+001 -3.447594231263122E+001 -3.504584259190153E+001 -3.560010881975893E+001 -3.613665798171132E+001 -3.665330728623144E+001 -3.714777465666270E+001 -3.761767985045856E+001 -3.806054626058494E+001 -3.847380351219363E+001 -3.885479091326908E+001 -3.920076179928151E+001 -3.950888896353240E+001 -3.977627113578876E+001 -3.999994068238334E+001 -4.017687259183685E+001 -4.030399482169162E+001 -4.037820012873021E+001 -4.039635942241193E+001 -4.035533678049399E+001 -4.025200616032998E+001 -4.008326988654187E+001 -3.984607898300442E+001 -3.953745542094691E+001 -3.915451623808656E+001 -3.869449965509023E+001 -3.815479308531474E+001 -3.753296309114739E+001 -3.682678716944099E+001 -3.603428731171641E+001 -3.515376522934832E+001 -3.418383904803193E+001 -3.312348128795179E+001 -3.197205790285398E+001 -3.072936802818094E+001 -2.939568412077915E+001 -2.797179209009391E+001 -2.645903089618173E+001 -2.485933114672844E+001 -2.317525207050858E+001 -2.141001620783595E+001 -1.956754111411396E+001 -1.765246733818958E+001 -1.567018178816852E+001 -1.362683571499565E+001 -1.152935633544666E+001 -9.385451247798983E+000 -7.203604685090113E+000 -4.993064702184938E+000 -2.763820470782093E+000 -5.265687686174942E-001 1.707330944233036E+000 3.925913603171352E+000 6.116678190348125E+000 8.266670263556421E+000 1.036257756228713E+001 1.239083844440563E+001 1.433776290025162E+001 1.618966540989049E+001 1.793300868648885E+001 1.955455707369947E+001 2.104153790245755E+001 2.238180901066210E+001 2.356403007779795E+001 2.457783538226590E+001 2.541400523726588E+001 2.606463321287811E+001 2.652328621583320E+001 2.678515443070967E+001 2.684718824802650E+001 2.670821956659955E+001 2.636906504957716E+001 2.583260950652800E+001 2.510386797938423E+001 2.419002587179648E+001 2.310045707115398E+001 2.184672090249376E+001 2.044253949735867E+001 1.890375800115433E+001 1.724829085717050E+001 1.549605820932010E+001 1.366891721253688E+001 1.179059388401143E+001 9.886622099793684E+000 7.984297538422496E+000 6.112656204442374E+000 4.302489785429444E+000 2.586414082033450E+000 9.990127620792393E-001 -4.229127198305598E-001 -1.639943657964366E+000 -2.609435219358161E+000 -3.284609875857035E+000 -3.613284536648017E+000 -3.535637532146373E+000 -2.985096335750650E+000 -1.850481397823585E+000 -3.032681604725054E-001 6.177545333854766E-003 -1.390682283493910E-003 7.973575003278192E-004 5.668486810453011E-004 5.759977925360804E-004 5.612946933501268E-004 5.488971113676172E-004 5.362411054477413E-004 5.236091809468711E-004 5.109982938607194E-004 4.984323579816933E-004 4.859312555505402E-004 4.735122356759454E-004 4.611926839268174E-004 4.489874951264805E-004 4.369105766183228E-004 4.249755105774839E-004 4.131934102725846E-004 4.015755499722831E-004 3.901319077124132E-004 3.788712097380317E-004 3.678025225846929E-004 3.569326619976664E-004 3.462691665966007E-004 3.358183065741398E-004 3.255856268879565E-004 3.155769047807390E-004 3.057961782515049E-004 2.962484448085674E-004 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 4.854125889981621E-013 5.039611734321644E-013 5.232185363204144E-013 5.432117615031329E-013 5.639689677481709E-013 5.855193482976507E-013 6.078932119257751E-013 6.311220255655446E-013 6.552384585643020E-013 6.802764286304068E-013 7.062711495355811E-013 7.332591806400975E-013 7.612784783103910E-013 7.903684493014596E-013 8.205700061791099E-013 8.519256248600012E-013 8.844794043503791E-013 9.182771287675992E-013 9.533663317315727E-013 9.897963632167597E-013 1.027618458958696E-012 1.066885812512695E-012 1.107653650066048E-012 1.149979308108952E-012 1.193922314073409E-012 1.239544470053470E-012 1.286909939724629E-012 1.336085338584561E-012 1.387139827642128E-012 1.440145210686489E-012 1.495176035272957E-012 1.552309697567823E-012 1.611626551199462E-012 1.673210020268843E-012 1.737146716678471E-012 1.803526561944583E-012 1.872442913664142E-012 1.943992696814346E-012 2.018276540069314E-012 2.095398917325797E-012 2.175468294636749E-012 2.258597282759658E-012 2.344902795533911E-012 2.434506214310200E-012 2.527533558663056E-012 2.624115663626588E-012 2.724388363702880E-012 2.828492683901563E-012 2.936575038079549E-012 3.048787434859682E-012 3.165287691417747E-012 3.286239655439056E-012 3.411813435556195E-012 3.542185640592289E-012 3.677539627946305E-012 3.818065761469631E-012 3.963961679196544E-012 4.115432571305332E-012 4.272691468700766E-012 4.435959542623955E-012 4.605466415710781E-012 4.781450484936643E-012 4.964159256901456E-012 5.153849695926574E-012 5.350788585453353E-012 5.555252903251105E-012 5.767530210962908E-012 5.987919058536500E-012 6.216729404109315E-012 6.454283049938301E-012 6.700914094987254E-012 6.956969404808552E-012 7.222809099380130E-012 7.498807059583373E-012 7.785351453034922E-012 8.082845280011139E-012 8.391706940233841E-012 8.712370821313691E-012 9.045287909679559E-012 9.390926424852381E-012 9.749772477956037E-012 1.012233075539121E-011 1.050912522863393E-011 1.091069989115664E-011 1.132761952350881E-011 1.176047048763258E-011 1.220986155153094E-011 1.267642474544796E-011 1.316081625076558E-011 1.366371732286679E-011 1.418583524926324E-011 1.472790434433486E-011 1.529068698208058E-011 1.587497466833224E-011 1.648158915394039E-011 1.711138359049638E-011 1.776524373021789E-011 1.844408917168365E-011 1.914887465317047E-011 1.988059139541162E-011 2.064026849566381E-011 2.142897437504538E-011 2.224781828117898E-011 2.309795184825440E-011 2.398057071670372E-011 2.489691621476751E-011 2.584827710431732E-011 2.683599139338988E-011 2.786144821798060E-011 2.892608979574597E-011 3.003141345435889E-011 3.117897373737308E-011 3.237038459055570E-011 3.360732163176509E-011 3.489152450756407E-011 3.622479933988489E-011 3.760902126618544E-011 3.904613707667088E-011 4.053816795228757E-011 4.208721230734296E-011 4.369544874074486E-011 4.536513910001651E-011 4.709863166239208E-011 4.889836443746824E-011 5.076686859605751E-011 5.270677203006304E-011 5.472080304838652E-011 5.681179421406113E-011 5.898268632800963E-011 6.123653256503149E-011 6.357650276783259E-011 6.600588790513786E-011 6.852810470016068E-011 7.114670043593048E-011 7.386535794424595E-011 7.668790078526305E-011 7.961829862500771E-011 8.266067281837049E-011 8.581930220544508E-011 8.909862912934787E-011 9.250326568399772E-011 9.603800020063348E-011 9.970780398219179E-011 1.035178382950219E-010 1.074734616277686E-010 1.115802372276278E-010 1.158439409245804E-010 1.202705692546051E-010 1.248663478932953E-010 1.296377404117426E-010 1.345914573669957E-010 1.397344657398903E-010 1.450739987335119E-010 1.506175659460808E-010 1.563729639325617E-010 1.623482871698541E-010 1.685519394409830E-010 1.749926456543066E-010 1.816794641143527E-010 1.886217992615575E-010 1.958294148988016E-010 2.033124479233748E-010 2.110814225836546E-010 2.191472652805645E-010 2.275213199346285E-010 2.362153639402222E-010 2.452416247294850E-010 2.546127969691510E-010 2.643420604145217E-010 2.744430984456696E-010 2.849301173119400E-010 2.958178661118389E-010 3.071216575363741E-010 3.188573894050574E-010 3.310415670248326E-010 3.436913264033732E-010 3.568244583494360E-010 3.704594334940950E-010 3.846154282681261E-010 3.993123518720208E-010 4.145708742765702E-010 4.304124552934326E-010 4.468593747565145E-010 4.639347638566690E-010 4.816626376737431E-010 5.000679289517272E-010 5.191765231645623E-010 5.390152949218272E-010 5.596121457655973E-010 5.809960434115883E-010 6.031970624897684E-010 6.262464268417769E-010 6.501765534345904E-010 6.750210979522147E-010 7.008150021295514E-010 7.275945428949559E-010 7.553973833906667E-010 7.842626259427728E-010 8.142308670553242E-010 8.453442545058629E-010 8.776465466226516E-010 9.111831738270603E-010 9.460013025275656E-010 9.821499014552853E-010 1.019679810534339E-009 1.058643812383844E-009 1.099096706552188E-009 1.141095386587921E-009 1.184698920055673E-009 1.229968631609663E-009 1.276968189241573E-009 1.325763693824187E-009 1.376423772076604E-009 1.429019673081869E-009 1.483625368492765E-009 1.540317656566592E-009 1.599176270175409E-009 1.660283988943494E-009 1.723726755669844E-009 1.789593797199406E-009 1.857977749912972E-009 1.928974790012425E-009 2.002684768784315E-009 2.079211353032201E-009 2.158662170875184E-009 2.241148963117619E-009 2.326787740403123E-009 2.415698946373580E-009 2.508007627062879E-009 2.603843606763513E-009 2.703341670613323E-009 2.806641754159373E-009 2.913889140165308E-009 3.025234662939208E-009 3.140834920469150E-009 3.260852494664936E-009 3.385456180015697E-009 3.514821220984915E-009 3.649129558476854E-009 3.788570085720909E-009 3.933338913933762E-009 4.083639648133206E-009 4.239683673491135E-009 4.401690452628760E-009 4.569887834272152E-009 4.744512373701927E-009 4.925809665448138E-009 5.114034688698031E-009 5.309452165902444E-009 5.512336935085468E-009 5.722974336380596E-009 5.941660613337297E-009 6.168703329562231E-009 6.404421801281390E-009 6.649147546430893E-009 6.903224750908867E-009 7.167010752643404E-009 7.440876544157967E-009 7.725207294340635E-009 8.020402890151269E-009 8.326878499028481E-009 8.645065152787108E-009 8.975410353827676E-009 9.318378704510336E-009 9.674452560578484E-009 1.004413270955076E-008 1.042793907503621E-008 1.082641144796210E-008 1.124011024574418E-008 1.166961730046549E-008 1.211553667717376E-008 1.257849552344737E-008 1.305914495142460E-008 1.355816095353746E-008 1.407624535323716E-008 1.461412679204892E-008 1.517256175434406E-008 1.575233563127051E-008 1.635426382533849E-008 1.697919289721443E-008 1.762800175633598E-008 1.830160289702349E-008 1.900094368182492E-008 1.972700767390023E-008 2.048081602031927E-008 2.126342888821732E-008 2.207594695583021E-008 2.291951296050331E-008 2.379531330585452E-008 2.470457973034949E-008 2.564859103963579E-008 2.662867490507448E-008 2.764620973099581E-008 2.870262659330696E-008 2.979941125217833E-008 3.093810624163743E-008 3.212031303901161E-008 3.334769431726801E-008 3.462197628342188E-008 3.594495110629793E-008 3.731847943706292E-008 3.874449302607224E-008 4.022499743971094E-008 4.176207488105088E-008 4.335788711829244E-008 4.501467852510387E-008 4.673477923714283E-008 4.852060842919080E-008 5.037467771751655E-008 5.229959469224786E-008 5.429806658472328E-008 5.637290407498303E-008 5.852702524474640E-008 6.076345968144512E-008 6.308535273907848E-008 6.549596996188208E-008 6.799870167703775E-008 7.059706776287552E-008 7.329472259928123E-008 7.609546020726933E-008 7.900321958494468E-008 8.202209024736676E-008 8.515631797810196E-008 8.841031080055074E-008 9.178864517745606E-008 9.529607244730318E-008 9.893752550666915E-008 1.027181257479175E-007 1.066431902619944E-007 1.107182393164630E-007 1.149490041192805E-007 1.193414348792507E-007 1.239017091744798E-007 1.286362406406077E-007 1.335516879910324E-007 1.386549643818193E-007 1.439532471344560E-007 1.494539878301377E-007 1.551649227897712E-007 1.610940839544436E-007 1.672498101816567E-007 1.736407589732027E-007 1.802759186511992E-007 1.871646209993846E-007 1.943165543874626E-007 2.017417773969611E-007 2.094507329677532E-007 2.174542630851482E-007 2.257636240282051E-007 2.343905022007162E-007 2.433470305671169E-007 2.526458057164518E-007 2.622999055783825E-007 2.723229078161596E-007 2.827289089224292E-007 2.935325440447235E-007 3.047490075685241E-007 3.163940744868461E-007 3.284841225863866E-007 3.410361554814643E-007 3.540678265281179E-007 3.675974636520098E-007 3.816440951250621E-007 3.962274763270537E-007 4.113681175298431E-007 4.270873127432717E-007 4.434071696633250E-007 4.603506407646822E-007 4.779415555813426E-007 4.962046542208077E-007 5.151656221588464E-007 5.348511263638817E-007 5.552888528017330E-007 5.765075453734942E-007 5.985370463413147E-007 6.214083382989010E-007 6.451535877458215E-007 6.698061903268367E-007 6.954008177999473E-007 7.219734667991427E-007 7.495615094605128E-007 7.782037459828182E-007 8.079404591965682E-007 8.388134712182353E-007 8.708662022693561E-007 9.041437317432230E-007 9.386928616050495E-007 9.859837678190585E-007 1.012426272791592E-006 1.051108850828083E-006 1.091250399369830E-006 1.132931781737549E-006 1.176207289214236E-006 1.221141350133262E-006 1.267783757843587E-006 1.316204082614361E-006 1.366480249840281E-006 1.418684727244806E-006 1.472878875552906E-006 1.529134183544716E-006 1.587558712884236E-006 1.648187219546329E-006 1.711156585388157E-006 1.776522413786494E-006 1.844394192816882E-006 1.914838743788550E-006 1.987997263285589E-006 2.063934902249011E-006 2.142782144022933E-006 2.224653934393863E-006 2.309627498988450E-006 2.397860609347954E-006 2.489468891094113E-006 2.584569724794974E-006 2.683318594835797E-006 2.785827354392348E-006 2.892249290371974E-006 3.002765312232244E-006 3.117472152340436E-006 3.236575027592634E-006 3.360233596949105E-006 3.488599066143674E-006 3.621875349035191E-006 3.760261950405050E-006 3.903915690350374E-006 4.053061801532231E-006 4.207930061765900E-006 4.368676065674610E-006 4.535606915239456E-006 4.708881556958125E-006 4.888784113564339E-006 5.075573984206351E-006 5.269485679195239E-006 5.470815872129744E-006 5.679843895668011E-006 5.896853261390416E-006 6.122136024080041E-006 6.356054259869280E-006 6.598887709364181E-006 6.851032500855339E-006 7.112773812091033E-006 7.384557630217456E-006 7.666695432094172E-006 7.959612869496739E-006 8.263743446534219E-006 8.579468064044162E-006 8.907273965844275E-006 9.247605372674097E-006 9.600938490548163E-006 9.967773465499081E-006 1.034862188698122E-005 1.074402378405138E-005 1.115454338865366E-005 1.158073766649830E-005 1.202321150717248E-005 1.248261347292366E-005 1.295954801059187E-005 1.345473699332974E-005 1.396878518564193E-005 1.450255029569731E-005 1.505665555383821E-005 1.563197227548964E-005 1.622924607951187E-005 1.684934907012276E-005 1.749315963628720E-005 1.816156467189414E-005 1.885548208274950E-005 1.957593136053777E-005 2.032393455603072E-005 2.110050516326934E-005 2.190672278272918E-005 2.274377616249824E-005 2.361281059880461E-005 2.451502718672349E-005 2.545173747738082E-005 2.642423941983383E-005 2.743388244241709E-005 2.848213421501337E-005 2.957042628283128E-005 3.070032040201562E-005 3.187333281214397E-005 3.309124034086490E-005 3.435562969779957E-005 3.566837249370763E-005 3.703122070697719E-005 3.844620593248052E-005 3.991520879234806E-005 4.144037985791705E-005 4.302379330593310E-005 4.466772920073709E-005 4.637448434433684E-005 4.814643357553983E-005 4.998610891025995E-005 5.189608556486710E-005 5.387904456387262E-005 5.593773660235034E-005 5.807511249025256E-005 6.029416428308542E-005 6.259801733953473E-005 6.498984372845873E-005 6.747314954686423E-005 7.005125473916478E-005 7.272791023802468E-005 7.550684851945894E-005 7.839195924345965E-005 8.138730645188713E-005 8.449709219658240E-005 8.772574486356815E-005 9.107768712980830E-005 9.455779843948174E-005 9.817083010673776E-005 1.019219044556513E-004 1.058163097432487E-004 1.098595350628292E-004 1.140572451787494E-004 1.184153421477233E-004 1.229399255238287E-004 1.276375050389624E-004 1.325144488638361E-004 1.375777699523151E-004 1.428345500604992E-004 1.482922063878575E-004 1.539583877848598E-004 1.598410801835909E-004 1.659485605207235E-004 1.722893007663293E-004 1.788724026854935E-004 1.857070011158412E-004 1.928027384307781E-004 2.001696425383650E-004 2.078179468566377E-004 2.157584743057855E-004 2.240024772382576E-004 2.325613790225950E-004 2.414473147463155E-004 2.506728114438183E-004 2.602506953874018E-004 2.701946525381785E-004 2.805184189488084E-004 2.912367488448597E-004 3.023644360989220E-004 3.139174653486844E-004 3.259117537681641E-004 3.383643630790103E-004 3.512927190201525E-004 3.647150451448573E-004 3.786501198480953E-004 3.931177274854071E-004 4.081380034938646E-004 4.237321989844639E-004 4.399221073523142E-004 4.567306303923787E-004 4.741812671179403E-004 4.922986463401797E-004 5.111081509607124E-004 5.306363386956697E-004 5.509105174062957E-004 5.719593993321562E-004 5.938122864687853E-004 6.165001393797307E-004 6.400547012097337E-004 6.645091887085095E-004 6.898978979005960E-004 7.162565351199746E-004 7.436221733051248E-004 7.720333261173416E-004 8.015297314627485E-004 8.321529564054835E-004 8.639472256240129E-004 8.969444693502412E-004 9.313150225261670E-004 9.659023457834117E-004 1.012462930623180E-003 1.029363120225082E-003 1.105843740828834E-003 1.091819580144083E-003 1.186473522557066E-003 1.173999650970599E-003 1.297784692657757E-003 1.303718102786636E-003 1.329945678081739E-003 1.446897617693009E-003 1.400668944500215E-003 1.583866086148310E-003 1.505062028371178E-003 1.666363095435545E-003 1.708966856210810E-003 1.756875950627609E-003 1.826082929773182E-003 1.897932546047868E-003 1.969041217389344E-003 2.052055479218506E-003 2.094767240850039E-003 2.229441604752077E-003 2.290721541487181E-003 2.392396731722340E-003 2.445100899700233E-003 2.557314675738942E-003 2.692227125836597E-003 2.732253983252119E-003 2.899745560261034E-003 2.939130095627983E-003 3.110371459822646E-003 3.200682569894038E-003 3.348717366112988E-003 3.431848153695599E-003 3.600515913919189E-003 3.751564154837336E-003 3.841248272010718E-003 4.035333928928519E-003 4.155539514375119E-003 4.301652176189330E-003 4.595718035058864E-003 4.588051951767584E-003 4.871394966631332E-003 5.030919673501465E-003 5.212214071015187E-003 5.433846596631778E-003 5.622386296598489E-003 5.858417970218327E-003 6.056507448109510E-003 6.319568433936218E-003 6.548263779573238E-003 6.749379146311199E-003 7.077330785923444E-003 7.303213324659774E-003 7.588214453430012E-003 7.924467334503638E-003 8.171204599905543E-003 8.492842145304727E-003 8.843904358715904E-003 9.138541836564748E-003 9.564586256539026E-003 9.866158629702790E-003 1.020730106907485E-002 1.070268145679371E-002 1.102799071177321E-002 1.147353471714579E-002 1.191748240329726E-002 1.234396816096026E-002 1.288765538090486E-002 1.331485501926813E-002 1.382112305952679E-002 1.436067282394471E-002 1.493865285943513E-002 1.549134619494758E-002 1.606604312830454E-002 1.668563109179685E-002 1.731909788986183E-002 1.802604408971567E-002 1.862914209221767E-002 1.941875104019583E-002 2.011127128710169E-002 2.090135327202247E-002 2.169943240829064E-002 2.250906250681353E-002 2.339127608249625E-002 2.426586420611704E-002 2.520091382076228E-002 2.616456507929604E-002 2.715973220001183E-002 2.817927081028587E-002 2.928974106273885E-002 3.037547895616194E-002 3.154893464285341E-002 3.274955894922393E-002 3.399633183037998E-002 3.529289958763854E-002 3.665074344605612E-002 3.802877029468033E-002 3.949532927691463E-002 4.099076819310743E-002 4.256384117864143E-002 4.417454523861714E-002 4.587659094980179E-002 4.760707988445501E-002 4.942821652475804E-002 5.132057100086496E-002 5.326399823408878E-002 5.531190127459362E-002 5.739845640544350E-002 5.959888154436876E-002 6.186727980928286E-002 6.422873220975045E-002 6.667171629042501E-002 6.921543273356834E-002 7.184160644741622E-002 7.459778920180071E-002 7.742299366534300E-002 8.037789077774016E-002 8.344645566824405E-002 8.661057514756787E-002 8.991679666442065E-002 9.334019318422415E-002 9.689198096446949E-002 1.005831546935461E-001 1.044118008798365E-001 1.083868009682820E-001 1.125065839655934E-001 1.167947448751872E-001 1.212357018359620E-001 1.258475564036474E-001 1.306381958293215E-001 1.356043268216642E-001 1.407679312577532E-001 1.461125756958066E-001 1.516756809338435E-001 1.574393281690885E-001 1.634260755581103E-001 1.696383275895612E-001 1.760837394570933E-001 1.827744616830316E-001 1.897236002632585E-001 1.969276007035550E-001 2.044096311968224E-001 2.121704441983847E-001 2.202306293847425E-001 2.285890559996737E-001 2.372676074735733E-001 2.462711396260890E-001 2.556196545416496E-001 2.653183645773942E-001 2.753780725671500E-001 2.858268341330081E-001 2.966648201403448E-001 3.079101652561880E-001 3.195818672509327E-001 3.316938563089518E-001 3.442604635863149E-001 3.573027284574000E-001 3.708326501906543E-001 3.848750329849020E-001 3.994434132431870E-001 4.145606167814631E-001 4.302466969602134E-001 4.465206093043550E-001 4.634076804932201E-001 4.809261332074692E-001 4.991046402757959E-001 5.179626142511857E-001 5.375284724261551E-001 5.578294674657762E-001 5.788866267288251E-001 6.007352603119180E-001 6.233993306769703E-001 6.469129632494699E-001 6.713026419492785E-001 6.966047675949554E-001 7.228505508762968E-001 7.500763317373291E-001 7.783159133064128E-001 8.076087326839989E-001 8.379900666690272E-001 8.695039395642254E-001 9.021883076860924E-001 9.360866584063743E-001 9.712445477674549E-001 1.007705000467240E+000 1.045518056697334E+000 1.084731788383669E+000 1.125395474808530E+000 1.167564216340784E+000 1.211288814177284E+000 1.256629434360113E+000 1.303640533723218E+000 1.352383993685866E+000 1.402921340684079E+000 1.455317216398313E+000 1.509637671964420E+000 1.565950533047623E+000 1.624328588786117E+000 1.684842593467817E+000 1.747570808044308E+000 1.812589910948279E+000 1.879981097039124E+000 1.949827373269791E+000 2.022216449245136E+000 2.097235554323078E+000 2.174978140979896E+000 2.255537572289807E+000 2.339013623496516E+000 2.425505695680059E+000 2.515118826887761E+000 2.607961023432825E+000 2.704142472808403E+000 2.803777949445895E+000 2.906985381559437E+000 3.013886350692516E+000 3.124606131878558E+000 3.239274107634998E+000 3.358022698577635E+000 3.480989271842063E+000 3.608314677960806E+000 3.740143836605725E+000 3.876626547795141E+000 4.017915893727704E+000 4.164169824828541E+000 4.315551196095804E+000 4.472226373386597E+000 4.634367184230257E+000 4.802149262513730E+000 4.975753824321195E+000 5.155366208613017E+000 5.341176661127612E+000 5.533380488538306E+000 5.732177781602957E+000 5.937773217192273E+000 6.150377094575248E+000 6.370203842448916E+000 6.597473725276203E+000 6.832411153183017E+000 7.075245767569967E+000 7.326212678078591E+000 7.585550644357397E+000 7.853504450967563E+000 8.130322671221563E+000 8.416259354503325E+000 8.711572234335819E+000 9.016523985670830E+000 9.331381561739363E+000 9.656415438822265E+000 9.991900596258802E+000 1.033811530651232E+001 1.069534119795668E+001 1.106386313982424E+001 1.144396870935734E+001 1.183594787944733E+001 1.224009254900636E+001 1.265669642590660E+001 1.308605402889376E+001 1.352846069814305E+001 1.398421162029669E+001 1.445360137421412E+001 1.493692321953392E+001 1.543446843321794E+001 1.594652531045008E+001 1.647337856736888E+001 1.701530809716533E+001 1.757258824430212E+001 1.814548648908217E+001 1.873426253437535E+001 1.933916668467836E+001 1.996043891013920E+001 2.059830708599665E+001 2.125298573019421E+001 2.192467403050637E+001 2.261355451315006E+001 2.331979078026563E+001 2.404352589431926E+001 2.478488000228236E+001 2.554394829625818E+001 2.632079859855480E+001 2.711546889603068E+001 2.792796472659205E+001 2.875825642982176E+001 2.960627620533865E+001 3.047191511746104E+001 3.135501987149502E+001 3.225538947957330E+001 3.317277167781191E+001 3.410685941217258E+001 3.505728691058033E+001 3.602362568529793E+001 3.700538058420267E+001 3.800198533001094E+001 3.901279821571632E+001 4.003709753266332E+001 4.107407687377861E+001 4.212284034094353E+001 4.318239762719770E+001 4.425165900280501E+001 4.532943023105258E+001 4.641440740829910E+001 4.750517174924732E+001 4.860018443892830E+001 4.969778134287208E+001 5.079616794713206E+001 5.189341421089568E+001 5.298744966876120E+001 5.407605861839340E+001 5.515687555995237E+001 5.622738090152495E+001 5.728489699491377E+001 5.832658457634739E+001 5.934943966199546E+001 6.035029101624684E+001 6.132579824461288E+001 6.227245062543216E+001 6.318656674661111E+001 6.406429510222006E+001 6.490161573471300E+001 6.569434301488718E+001 6.643812974979051E+001 6.712847271880355E+001 6.776071970536100E+001 6.833007834746149E+001 6.883162674577011E+001 6.926032612133645E+001 6.961103563264965E+001 6.987852948063710E+001 7.005751650976390E+001 7.014266237428637E+001 7.012861450580408E+001 7.001002994231021E+001 6.978160615694424E+001 6.943811500538686E+001 6.897443991566092E+001 6.838561625064153E+001 6.766687505922164E+001 6.681369004740327E+001 6.582182786436715E+001 6.468740151241104E+001 6.340692679553899E+001 6.197738162934456E+001 6.039626788971805E+001 5.866167549986471E+001 5.677234838054483E+001 5.472775168388625E+001 5.252813978399081E+001 5.017462435815719E+001 4.766924168487049E+001 4.501501837683486E+001 4.221603450862267E+001 3.927748303502449E+001 3.620572431953701E+001 3.300833453392761E+001 2.969414643773212E+001 2.627328124099745E+001 2.275716990265209E+001 1.915856243324856E+001 1.549152358780680E+001 1.177141341662150E+001 8.014851269091650E+000 4.239661696683243E+000 4.648012092886802E-001 -3.289735385719041E+000 -7.003029798245279E+000 -1.065337676894433E+001 -1.421844265266918E+001 -1.767544569874008E+001 -2.100135764219635E+001 -2.417312541561273E+001 -2.716791141560975E+001 -2.996335029427451E+001 -3.253781946791446E+001 -3.487072035744359E+001 -3.694276644557954E+001 -3.873627415129772E+001 -4.023545192294409E+001 -4.142668269096259E+001 -4.229879474728625E+001 -4.284331599097391E+001 -4.305470666884958E+001 -4.293056616365573E+001 -4.247180969024305E+001 -4.168281174028482E+001 -4.057151378488220E+001 -3.914949501215278E+001 -3.743200589521666E+001 -3.543796587612638E+001 -3.318992770437632E+001 -3.071401238722791E+001 -2.803982009109581E+001 -2.520032370238880E+001 -2.223175303378270E+001 -1.917347910643426E+001 -1.606790959458374E+001 -1.296040855195528E+001 -9.899256625617454E+000 -6.935672358914644E+000 -4.123921849609815E+000 -1.521554057845691E+000 8.101866255235137E-001 2.805698058387335E+000 4.394008327725288E+000 5.497266789527167E+000 6.028623509743404E+000 5.888509466593568E+000 4.966097944362974E+000 3.076376843373670E+000 5.039519366996456E-001 -1.026919106309117E-002 2.301934946865069E-003 -1.333726091420508E-003 -9.503385117125328E-004 -9.652136843387501E-004 -9.404605339251523E-004 -9.195473805404459E-004 -8.982138246020777E-004 -8.769295052080495E-004 -8.556894678481911E-004 -8.345334950734086E-004 -8.134946170194649E-004 -7.926014375982970E-004 -7.718827545794889E-004 -7.513631903401064E-004 -7.310657007735687E-004 -7.110126831530819E-004 -6.912224093935220E-004 -6.717134104743037E-004 -6.525020516352522E-004 -6.336026094980841E-004 -6.150299270037969E-004 -5.967950966156374E-004 -5.789104189989771E-004 -5.613860841610804E-004 -5.442310794975436E-004 -5.274547846001195E-004 -5.110636872202160E-004 -4.950658824080991E-004 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 4.674072930999663E-002 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 -2.568687722313208E+000 -1.557960632273509E+000 0.000000000000000E+000 -1.557960632273509E+000 -9.458763416463380E-001 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 3.812860852969260E-001 2.342438276995441E-001 0.000000000000000E+000 2.342438276995441E-001 1.439705944595187E-001 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 7.616704548722910E-027 8.107939787350791E-027 8.630856976897252E-027 9.187499427644416E-027 9.780042232065523E-027 1.041080076404593E-026 1.108223972625692E-026 1.179698278103504E-026 1.255782280239949E-026 1.336773278926849E-026 1.422987748251662E-026 1.514762573126883E-026 1.612456365675171E-026 1.716450866513986E-026 1.827152436415382E-026 1.944993644169519E-026 2.070434956856638E-026 2.203966539132164E-026 2.346110168555754E-026 2.497421274448486E-026 2.658491108244958E-026 2.829949053821123E-026 3.012465086825487E-026 3.206752392623482E-026 3.413570153084847E-026 3.633726513103187E-026 3.868081738439794E-026 4.117551577230751E-026 4.383110838292692E-026 4.665797200209473E-026 4.966715266083756E-026 5.287040879797609E-026 5.628025720648086E-026 5.991002194311258E-026 6.377388639246384E-026 6.788694868884234E-026 7.226528071255828E-026 7.692599089114715E-026 8.188729105092118E-026 8.716856758007769E-026 9.279045718143061E-026 9.877492751077642E-026 1.051453630159863E-025 1.119266563122440E-025 1.191453054504827E-025 1.268295174590919E-025 1.350093185634959E-025 1.437166715142814E-025 1.529856004823406E-025 1.628523240090595E-025 1.733553965310531E-025 1.845358590324666E-025 1.964373994135106E-025 2.091065232018833E-025 2.225927352741312E-025 2.369487332970269E-025 2.522306136448491E-025 2.684980905971858E-025 2.858147296737756E-025 3.042481960181670E-025 3.238705188007241E-025 3.447583726741858E-025 3.669933773815341E-025 3.906624166869122E-025 4.158579778758298E-025 4.426785131512294E-025 4.712288243376183E-025 5.016204723964709E-025 5.339722133531109E-025 5.684104623384709E-025 6.050697875589492E-025 6.440934361246134E-025 6.856338937903900E-025 7.298534807974667E-025 7.769249861431744E-025 8.270323427577333E-025 8.803713462261872E-025 9.371504198638981E-025 9.975914291351974E-025 1.061930548597509E-024 1.130419184758543E-024 1.203324958452716E-024 1.280932750575366E-024 1.363545815261045E-024 1.451486964855668E-024 1.545099831312715E-024 1.644750208942623E-024 1.750827483761956E-024 1.863746155027766E-024 1.983947454902437E-024 2.111901072577950E-024 2.248106989596614E-024 2.393097433539806E-024 2.547438957718822E-024 2.711734654994289E-024 2.886626514374577E-024 3.072797929601832E-024 3.270976369527887E-024 3.481936220714596E-024 3.706501813366231E-024 3.945550642417571E-024 4.200016796364521E-024 4.470894607235185E-024 4.759242535963878E-024 5.066187308350341E-024 5.392928317765133E-024 5.740742311805419E-024 6.110988381213989E-024 6.505113270555764E-024 6.924657031403872E-024 7.371259040124426E-024 7.846664403775388E-024 8.352730779150461E-024 8.891435631613260E-024 9.464883962086364E-024 1.007531653238813E-023 1.072511862105819E-023 1.141682934388526E-023 1.215315157555740E-023 1.293696251120358E-023 1.377132490909606E-023 1.465949905844536E-023 1.560495551905081E-023 1.661138868258868E-023 1.768273120852822E-023 1.882316939108370E-023 2.003715951725036E-023 2.132944527984268E-023 2.270507631357725E-023 2.416942792663067E-023 2.572822210477254E-023 2.738754987014969E-023 2.915389508208791E-023 3.103415977291274E-023 3.303569111779223E-023 3.516631014398217E-023 3.743434229166139E-023 3.984864994577008E-023 4.241866706597143E-023 4.515443605005576E-023 4.806664697482623E-023 5.116667936780858E-023 5.446664667300143E-023 5.797944358442285E-023 6.171879643240827E-023 6.569931681954400E-023 6.993655871582338E-023 7.444707923612291E-023 7.924850333748820E-023 8.435959268903986E-023 8.980031898360065E-023 9.559194197752271E-023 1.017570925636471E-022 1.083198612020105E-022 1.153058920538442E-022 1.227424831866895E-022 1.306586932421937E-022 1.390854549833840E-022 1.480556961651127E-022 1.576044681999789E-022 1.677690831224831E-022 1.785892593866177E-022 1.901072770665901E-022 2.023681430671333E-022 2.154197669889709E-022 2.293131483366186E-022 2.441025758000673E-022 2.598458393890179E-022 2.766044562486027E-022 2.944439110389794E-022 3.134339118180521E-022 3.336486624272488E-022 3.551671524446292E-022 3.780734658383948E-022 4.024571095268322E-022 4.284133631285294E-022 4.560436512695870E-022 4.854559399025418E-022 5.167651581856858E-022 5.500936475712676E-022 5.855716398573599E-022 6.233377660714969E-022 6.635395981743916E-022 7.063342257006309E-022 7.518888695894460E-022 8.003815356041660E-022 8.520017098936647E-022 9.069510994135893E-022 9.654444201007067E-022 1.027710235880135E-021 1.093991851783822E-021 1.164548264670344E-021 1.239655175260731E-021 1.319606065445077E-021 1.404713345069481E-021 1.495309572684256E-021 1.591748755023843E-021 1.694407730295790E-021 1.803687640684310E-021 1.920015499822185E-021 2.043845861355771E-021 2.175662595123453E-021 2.315980777887520E-021 2.465348706007917E-021 2.624350037922348E-021 2.793606074804234E-021 2.973778188310868E-021 3.165570404907473E-021 3.369732156866110E-021 3.587061210688778E-021 3.818406784397312E-021 4.064672865871647E-021 4.326821745202130E-021 4.605877774859188E-021 4.902931372373151E-021 5.219143281164492E-021 5.555749106174509E-021 5.914064142018469E-021 6.295488512528333E-021 6.701512641767481E-021 7.133723077895232E-021 7.593808692638952E-021 8.083567280597165E-021 8.604912584161657E-021 9.159881771508027E-021 9.750643396874825E-021 1.037950587423747E-020 1.104892649748621E-020 1.176152104235632E-020 1.252007398762974E-020 1.332754939554640E-020 1.418710249394389E-020 1.510209200537890E-020 1.607609327141019E-020 1.711291222332479E-020 1.821660025389774E-020 1.939147004829997E-020 2.064211243601000E-020 2.197341432958199E-020 2.339057782036491E-020 2.489914050578871E-020 2.650499712765002E-020 2.821442260594536E-020 3.003409655826036E-020 3.197112940052387E-020 3.403309013111533E-020 3.622803590689431E-020 3.856454352671990E-020 4.105174294548214E-020 4.369935294960459E-020 4.651771913341746E-020 4.951785432479918E-020 5.271148161804427E-020 5.611108018211742E-020 5.972993402328380E-020 6.358218389265947E-020 6.768288254151270E-020 7.204805354022498E-020 7.669475389075100E-020 8.164114067723584E-020 8.690654201522566E-020 9.251153257671503E-020 9.847801398613667E-020 1.048293004014506E-019 1.115902096147414E-019 1.187871600282968E-019 1.264482738851087E-019 1.346034871571726E-019 1.432846665209692E-019 1.525257338772256E-019 1.623627989015034E-019 1.728343001435762E-019 1.839811552269275E-019 1.958469207352944E-019 2.084779624110030E-019 2.219236363301583E-019 2.362364817626366E-019 2.514724264704674E-019 2.676910052468445E-019 2.849555925496853E-019 3.033336501387656E-019 3.228969906840924E-019 3.437220583755510E-019 3.658902276303225E-019 3.894881210652958E-019 4.146079479769162E-019 4.413478646511443E-019 4.698123579113894E-019 5.001126534031911E-019 5.323671502109889E-019 5.667018835052815E-019 6.032510170279808E-019 6.421573673403300E-019 6.835729618819443E-019 7.276596330215647E-019 7.745896504208020E-019 8.245463941818736E-019 8.777250714096194E-019 9.343334789878539E-019 9.945928155505592E-019 1.058738545820740E-018 1.127021320694383E-018 1.199707956664738E-018 1.277082478414080E-018 1.359447228646883E-018 1.447124049501113E-018 1.540455540154048E-018 1.639806395536711E-018 1.745564831388050E-018 1.858144101217232E-018 1.977984111101631E-018 2.105553138630460E-018 2.241349662710679E-018 2.385904311385437E-018 2.539781935275999E-018 2.703583814749265E-018 2.877950009435498E-018 3.063561859276922E-018 3.261144646880285E-018 3.471470431576493E-018 3.695361066261396E-018 3.933691408806411E-018 4.187392740587278E-018 4.457456405489237E-018 4.744937683607954E-018 5.050959914783082E-018 5.376718888076692E-018 5.723487514349326E-018 6.092620800191354E-018 6.485561142645601E-018 6.903843965410674E-018 7.349103718548169E-018 7.823080265138329E-018 8.327625679839940E-018 8.864711485919841E-018 9.436436359031555E-018 1.004503432784493E-017 1.069288350357179E-017 1.138251537249807E-017 1.211662468783341E-017 1.289807999953100E-017 1.372993486322264E-017 1.461543977206975E-017 1.555805485815231E-017 1.656146341302907E-017 1.762958628029942E-017 1.876659717640659E-017 1.997693899954963E-017 2.126534119043070E-017 2.263683821267585E-017 2.409678922514263E-017 2.565089902298314E-017 2.730524032929249E-017 2.906627752444706E-017 3.094089190585490E-017 3.293640857682371E-017 3.506062506961349E-017 3.732184181452116E-017 3.972889457405438E-017 4.229118896893456E-017 4.501873723083945E-017 4.792219732549633E-017 5.101291459900472E-017 5.430296611011947E-017 5.780520782172634E-017 6.153332483591321E-017 6.550188486892807E-017 6.972639517498712E-017 7.422336314135590E-017 7.901036079148967E-017 8.410609344827578E-017 8.953047282568437E-017 9.530469483443787E-017 1.014513224057252E-016 1.079943736565998E-016 1.149594157415736E-016 1.223736647571295E-016 1.302660920895422E-016 1.386675376215591E-016 1.476108302403086E-016 1.571309161173187E-016 1.672649952619102E-016 1.780526668815565E-016 1.895360841172029E-016 2.017601187581948E-016 2.147725365804312E-016 2.286241839929081E-016 2.433691867219468E-016 2.590651613095238E-016 2.757734402520988E-016 2.935593116597110E-016 3.124922743718171E-016 3.326463095267400E-016 3.541001696459198E-016 3.769376863625658E-016 4.012480979971806E-016 4.271263982599880E-016 4.546737074428140E-016 4.839976675509070E-016 5.152128629186808E-016 5.484412679529621E-016 5.838127237533464E-016 6.214654454720499E-016 6.615465623958511E-016 7.042126928604809E-016 7.496305562440034E-016 7.979776244306102E-016 8.494428152904041E-016 9.042272308850868E-016 9.625449432840622E-016 1.024623831061635E-015 1.090706469743997E-015 1.161051079685406E-015 1.235932535077557E-015 1.315643438034905E-015 1.400495261952951E-015 1.490819568607379E-015 1.586969303749808E-015 1.689320176262968E-015 1.798272126264368E-015 1.914250887895221E-015 2.037709652901448E-015 2.169130841507167E-015 2.309027987500763E-015 2.457947744899520E-015 2.616472024034133E-015 2.785220265400064E-015 2.964851860160975E-015 3.156068726762730E-015 3.359618053726302E-015 3.576295219337214E-015 3.806946899640949E-015 4.052474376888483E-015 4.313837061360829E-015 4.592056240333964E-015 4.888219068833954E-015 5.203482817776742E-015 5.539079396092194E-015 5.896320164503959E-015 6.276601059775054E-015 6.681408049442997E-015 7.112322938359833E-015 7.571029549726365E-015 8.059320304774628E-015 8.579103226809037E-015 9.132409396975774E-015 9.721400890895212E-015 1.034837922717033E-014 1.101579436078586E-014 1.172625425654066E-014 1.248253507992349E-014 1.328759204525448E-014 1.414457096348347E-014 1.505682053477020E-014 1.602790543388206E-014 1.706162023954239E-014 1.816200426216206E-014 1.933335732789473E-014 2.058025658069731E-014 2.190757436805133E-014 2.332049728023791E-014 2.482454641756723E-014 2.642559896475906E-014 2.812991115678302E-014 2.994414272590209E-014 3.187538292545091E-014 3.393117823204508E-014 3.611956183447174E-014 3.844908502449923E-014 4.092885061227183E-014 4.356854849686887E-014 4.637849353103154E-014 4.936966582802000E-014 5.255375366811632E-014 5.594319917243830E-014 5.955124692254912E-014 6.339199571586195E-014 6.748045365908082E-014 7.183259681498382E-014 7.646543163171971E-014 8.139706139858789E-014 8.664675698799572E-014 9.223503216004229E-014 9.818372372401016E-014 1.045160768700215E-013 1.112568360043254E-013 1.184323414431907E-013 1.260706323432677E-013 1.342015562706655E-013 1.428568858369285E-013 1.520704428577129E-013 1.618782305193721E-013 1.723185740699378E-013 1.834322705843227E-013 1.952627483890102E-013 2.078562367692643E-013 2.212619466220676E-013 2.355322627607728E-013 2.507229486230037E-013 2.668933641818035E-013 2.841066979116249E-013 3.024302137157100E-013 3.219355137798378E-013 3.426988183797208E-013 3.648012637355381E-013 3.883292190776462E-013 4.133746241626203E-013 4.400353485586312E-013 4.684155741043485E-013 4.986262020360368E-013 5.307852863739844E-013 5.650184952620191E-013 6.014596020630961E-013 6.402510081302985E-013 6.815442992963433E-013 7.255008382564879E-013 7.722923951600610E-013 8.221018188751025E-013 8.751237515496702E-013 9.315653892625325E-013 9.916472917361320E-013 1.055604244276505E-012 1.123686175308900E-012 1.196159133095272E-012 1.273306325451044E-012 1.355429226524851E-012 1.442848754958046E-012 1.535906528308638E-012 1.634966197289394E-012 1.740414867507285E-012 1.852664613557131E-012 1.972154086245977E-012 2.099350230723092E-012 2.234750107747269E-012 2.378882839906866E-012 2.532311675525197E-012 2.695636193038777E-012 2.869494644349850E-012 3.054566445665758E-012 3.251574836511989E-012 3.461289705730069E-012 3.684530599109577E-012 3.922169922300830E-012 4.175136352181863E-012 4.444418465732084E-012 4.731068601242648E-012 5.036206975650381E-012 5.361026059317614E-012 5.706795238134554E-012 6.074865774455481E-012 6.466676088371953E-012 6.883757379936524E-012 7.327739614233886E-012 7.800357888989922E-012 8.303459223168556E-012 8.839009772784279E-012 9.409102504748340E-012 1.001596539365374E-011 1.066197012799634E-011 1.134964137487812E-011 1.208166663675610E-011 1.286090680056458E-011 1.369040726403526E-011 1.457340985868861E-011 1.551336553251845E-011 1.651394785426687E-011 1.757906731755707E-011 1.871288670437965E-011 1.991983726739578E-011 2.120463614360664E-011 2.257230470903244E-011 2.402818826509080E-011 2.557797694139467E-011 2.722772787533775E-011 2.898388892868017E-011 3.085332393129733E-011 3.284333945527421E-011 3.496171340591259E-011 3.721672540454032E-011 3.961718918147457E-011 4.217248704869881E-011 4.489260652446389E-011 4.778817948887585E-011 5.087052355835967E-011 5.415168651847581E-011 5.764449341122259E-011 6.136259648570494E-011 6.532052884550818E-011 6.953376107559942E-011 7.401876183785064E-011 7.879306216277215E-011 8.387532414157561E-011 8.928541376368153E-011 9.504447864222013E-011 1.011750307240970E-010 1.077010342689032E-010 1.146479996814361E-010 1.220430831072344E-010 1.299151927740537E-010 1.382951018478188E-010 1.472155690409698E-010 1.567114665706772E-010 1.668199162691011E-010 1.775804356981151E-010 1.890350913124248E-010 2.012286641523790E-010 2.142088245309014E-010 2.280263183586065E-010 2.427351661638571E-010 2.583928733453454E-010 2.750606566875057E-010 2.928036820374296E-010 3.116913208792723E-010 3.317974204263644E-010 3.532005931322739E-010 3.759845243183094E-010 4.002382990577186E-010 4.260567514147514E-010 4.535408346644742E-010 4.827980172246323E-010 5.139427021914171E-010 5.470966755464906E-010 5.823895828142558E-010 6.199594356645359E-010 6.599531533022414E-010 7.025271357170280E-010 7.478478773576978E-010 7.960926176442388E-010 8.474500349177967E-010 9.021209855148311E-010 9.603192894333023E-010 1.022272566887402E-009 1.088223130442197E-009 1.158428932580868E-009 1.233164576378201E-009 1.312722389768278E-009 1.397413570329535E-009 1.487569404297472E-009 1.583542563505452E-009 1.685708485531386E-009 1.794466845729548E-009 1.910243119653831E-009 2.033490253282260E-009 2.164690433299370E-009 2.304356978333370E-009 2.453036347849247E-009 2.611310284826588E-009 2.779798092727148E-009 2.959159063659575E-009 3.150095060390570E-009 3.353353267236874E-009 3.569729117051929E-009 3.800069409060716E-009 4.045275628657319E-009 4.306307479099523E-009 4.584186644030502E-009 4.880000792656444E-009 5.194907843344084E-009 5.530140505122662E-009 5.887011108331644E-009 6.266916753314539E-009 6.671344788415651E-009 7.101878643097247E-009 7.560204038703318E-009 8.048115602878229E-009 8.567523907506983E-009 9.120462966821357E-009 9.709098217409484E-009 1.033573501660354E-008 1.100282769020757E-008 1.171298916608538E-008 1.246900123107411E-008 1.327382545193010E-008 1.413061480359861E-008 1.504272605125969E-008 1.601373293201743E-008 1.704744019358999E-008 1.814789853829827E-008 1.931942053850464E-008 2.056659758170493E-008 2.189431791287679E-008 2.330778584904323E-008 2.481254223289137E-008 2.641448621883968E-008 2.811989846776695E-008 2.993546584472840E-008 3.186830772044074E-008 3.392600397671769E-008 3.611662482554824E-008 3.844876256986234E-008 4.093156541345525E-008 4.357477347641939E-008 4.638875713614347E-008 4.938455786239430E-008 5.257393170526135E-008 5.596939559677106E-008 5.958427666517895E-008 6.343276475325568E-008 6.752996833725918E-008 7.189197408755094E-008 7.653591029174764E-008 8.148001440150128E-008 8.674370496645093E-008 9.234765824168057E-008 9.831388977907603E-008 1.046658413135677E-007 1.114284733123567E-007 1.186283635251326E-007 1.262938119592398E-007 1.344549526718158E-007 1.431438728441575E-007 1.523947395966142E-007 1.622439350625106E-007 1.727302002497361E-007 1.838947882764332E-007 1.957816275724569E-007 2.084374957248778E-007 2.219122046326023E-007 2.362587977397648E-007 2.515337601088802E-007 2.677972421952146E-007 2.851132982024084E-007 3.035501399855654E-007 3.231804075115269E-007 3.440814569533988E-007 3.663356675941543E-007 3.900307687437917E-007 4.152601880024742E-007 4.421234222535292E-007 4.707264328804351E-007 5.011820667948571E-007 5.336105049661686E-007 5.681397402479062E-007 6.049060864359464E-007 6.440547205896027E-007 6.857402608112356E-007 7.301273817921429E-007 7.773914706201197E-007 8.277193254801128E-007 8.813099000521930E-007 9.383750966353815E-007 9.991406111499705E-007 1.063846833471180E-006 1.132749806685785E-006 1.206122249164108E-006 1.284254643560118E-006 1.367456397132776E-006 1.456057078079656E-006 1.550407732862995E-006 1.650882289851422E-006 1.757879054935334E-006 1.871822305177913E-006 1.993163986902418E-006 2.122385525101709E-006 2.259999751452885E-006 2.406552958750513E-006 2.562627090012185E-006 2.728842071137034E-006 2.905858296495746E-006 3.094379277504065E-006 3.295154464852508E-006 3.508982255780214E-006 3.736713198515545E-006 3.979253406788446E-006 4.237568198168360E-006 4.512685970886785E-006 4.805702334720755E-006 5.117784512542681E-006 5.450176030230001E-006 5.804201713745204E-006 6.181273013423842E-006 6.582893676782874E-006 7.010665792559961E-006 7.466296230118432E-006 7.951603499909503E-006 8.468525062336267E-006 9.019125114064589E-006 9.605602882726513E-006 1.023030146286437E-005 1.089571722808022E-005 1.160450985652426E-005 1.235951300921039E-005 1.316374570307517E-005 1.402042442336998E-005 1.493297602264266E-005 1.590505145660386E-005 1.694054041013151E-005 1.804358687002903E-005 1.921860570451360E-005 2.047030031312067E-005 2.180368141442636E-005 2.322408704314133E-005 2.473720383224944E-005 2.634908966042960E-005 2.806619774959963E-005 2.989540230238262E-005 3.184402577446396E-005 3.391986788216337E-005 3.613123645123191E-005 3.848698021880694E-005 4.099652370657615E-005 4.366990428964198E-005 4.651781159229557E-005 4.955162934880625E-005 5.278347987450261E-005 5.622627129998838E-005 5.989374772882146E-005 6.380054248708767E-005 6.796223464127304E-005 7.239540896923852E-005 7.711771957750815E-005 8.214795736679126E-005 8.750612155624131E-005 9.321349548583662E-005 9.929272692501894E-005 1.057679131244055E-004 1.126646908560669E-004 1.200103316962314E-004 1.278338428124471E-004 1.361660735248717E-004 1.450398279187016E-004 1.544899837912645E-004 1.645536182230904E-004 1.752701400671245E-004 1.866814296539139E-004 1.988319860128917E-004 2.117690819106478E-004 2.255429270057862E-004 2.402068394168357E-004 2.558174259936560E-004 2.724347715742850E-004 2.901226374971706E-004 3.089486696231813E-004 3.289846161020375E-004 3.503065550933597E-004 3.729951326228273E-004 3.971358107184306E-004 4.228191259295717E-004 4.501409582825321E-004 4.792028106681468E-004 5.101120985913042E-004 5.429824501354724E-004 5.779340159085500E-004 6.150937886373977E-004 6.545959319663551E-004 6.965821178893381E-004 7.412018721035163E-004 7.886129264145316E-004 8.389815771474395E-004 8.924830483216313E-004 9.493018581322795E-004 1.009632187041647E-003 1.073678245521549E-003 1.141654639200362E-003 1.213786728853166E-003 1.290310982331132E-003 1.371475315153369E-003 1.457539416080874E-003 1.548775053557115E-003 1.645466358429769E-003 1.747910077866541E-003 1.856415794839340E-003 1.971306106979483E-003 2.092916757999828E-003 2.221596714238105E-003 2.357708178203049E-003 2.501626530299407E-003 2.653740189174949E-003 2.814450380375011E-003 2.984170802210018E-003 3.163327176948965E-003 3.352356674647773E-003 3.551707196119676E-003 3.761836500761018E-003 3.983211164172442E-003 4.216305349777169E-003 4.461599377947581E-003 4.719578075527867E-003 4.990728888104734E-003 5.275539736947587E-003 5.574496602248024E-003 5.888080814152518E-003 6.216766033143518E-003 6.561014901608389E-003 6.921275348982068E-003 7.297976533700803E-003 7.691524406395510E-003 8.102296880338110E-003 8.530638597174510E-003 8.976855278482191E-003 9.441207656738729E-003 9.923904982917420E-003 1.042509811220606E-002 1.094487217431396E-002 1.148323884054478E-002 1.204012820631908E-002 1.261538031516233E-002 1.320873635837825E-002 1.381982959372207E-002 1.444817603638878E-002 1.509316498654997E-002 1.575404946947784E-002 1.642993667697109E-002 1.711977851227626E-002 1.782236235489845E-002 1.853630217651590E-002 1.926003015449157E-002 1.999178894504650E-002 2.072962479379190E-002 2.147138167674291E-002 2.221469667985520E-002 2.295699683915555E-002 2.369549767628427E-002 2.442720367525453E-002 2.514891095493817E-002 2.585721239766315E-002 2.654850549670295E-002 2.721900318372487E-002 2.786474789072346E-002 2.848162908887069E-002 2.906540452833202E-002 2.961172537765857E-002 3.011616542813859E-002 3.057425448676097E-002 3.098151603053244E-002 3.133350913421633E-002 3.162587461260328E-002 3.185438523680909E-002 3.201499979157170E-002 3.210392063701299E-002 3.211765432396552E-002 3.205307468706388E-002 3.190748770493562E-002 3.167869727280878E-002 3.136507088075279E-002 3.096560403191612E-002 3.047998207111088E-002 2.990863792674894E-002 2.925280410053337E-002 2.851455707173166E-002 2.769685211876637E-002 2.680354640290759E-002 2.583940800982128E-002 2.481010850756014E-002 2.372219645740546E-002 2.258304921006539E-002 2.140080023776193E-002 2.018423919669038E-002 1.894268188888523E-002 1.768580730318370E-002 1.642345896844402E-002 1.516540795677818E-002 1.392107504068182E-002 1.269920974858346E-002 1.150752439472663E-002 1.035228160133028E-002 9.237834407981010E-003 8.167391198751178E-003 7.147199896049533E-003 6.183961324964099E-003 5.283627435772015E-003 4.451268233633593E-003 3.690946452223925E-003 3.005604131665368E-003 2.396965633407022E-003 1.865461928662132E-003 1.410181222013057E-003 1.028851097140571E-003 7.178573758866436E-004 4.723047435360173E-004 2.861238916193332E-004 1.522294454623097E-004 6.273226073527649E-005 9.208778529640194E-006 -1.697098585351497E-005 -2.425658101459782E-005 -2.047269707433630E-005 -1.232025013661597E-005 -4.827976080673535E-006 -7.616201095350661E-007 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 4.835408283348811E-027 5.147265324243060E-027 5.479235416250669E-027 5.832615739720472E-027 6.208787135946086E-027 6.609219502833168E-027 7.035477538557475E-027 7.489226855657022E-027 7.972240489449166E-027 8.486405826204879E-027 9.033731978151330E-027 9.616357634121687E-027 1.023655941652833E-026 1.089676077731418E-026 1.159954146764412E-026 1.234764761833843E-026 1.314400247043889E-026 1.399171779783649E-026 1.489410606659561E-026 1.585469337848737E-026 1.687723324930862E-026 1.796572127582653E-026 1.912441074865999E-026 2.035782927210491E-026 2.167079645584674E-026 2.306844274768959E-026 2.455622948089290E-026 2.613997021444974E-026 2.782585344969469E-026 2.962046681200788E-026 3.153082279210377E-026 3.356438614749116E-026 3.572910307117548E-026 3.803343224158059E-026 4.048637787501881E-026 4.309752490986162E-026 4.587707645989424E-026 4.883589368320540E-026 5.198553822239785E-026 5.533831738195898E-026 5.890733221931944E-026 6.270652873752062E-026 6.675075237952426E-026 7.105580603710353E-026 7.563851180098696E-026 8.051677669354200E-026 8.570966264085498E-026 9.123746095762174E-026 9.712177163590029E-026 1.033855877475503E-025 1.100533852901599E-025 1.171512188275389E-025 1.247068232984923E-025 1.327497223916977E-025 1.413113439101610E-025 1.504251425760375E-025 1.601267307556868E-025 1.704540176157701E-025 1.814473572541391E-025 1.931497063843569E-025 2.056067921899821E-025 2.188672910045374E-025 2.329830185153403E-025 2.480091322344251E-025 2.640043470277258E-025 2.810311645446839E-025 2.991561174448064E-025 3.184500293754778E-025 3.389882917168996E-025 3.608511581755550E-025 3.841240583773013E-025 4.088979316854966E-025 4.352695825485356E-025 4.633420587653355E-025 4.932250541468584E-025 5.250353371470497E-025 5.588972071381184E-025 5.949429801130288E-025 6.333135057131294E-025 6.741587176011892E-025 7.176382193304249E-025 7.639219079988764E-025 8.131906381259971E-025 8.656369283456253E-025 9.214657136767446E-025 9.808951463114915E-025 1.044157448049627E-024 1.111499817710235E-024 1.183185397066506E-024 1.259494299077929E-024 1.340724702437768E-024 1.427194016712787E-024 1.519240122628030E-024 1.617222692343108E-024 1.721524594878995E-024 1.832553392187020E-024 1.950742931706072E-024 2.076555041630898E-024 2.210481335515805E-024 2.353045133265353E-024 2.504803506018199E-024 2.666349452914725E-024 2.838314218254059E-024 3.021369758094892E-024 3.216231365938449E-024 3.423660467753285E-024 3.644467597263904E-024 3.879515563128898E-024 4.129722820384484E-024 4.396067059327668E-024 4.679589025862184E-024 4.981396588235802E-024 5.302669066059647E-024 5.644661838525156E-024 6.008711249825641E-024 6.396239830950235E-024 6.808761858254675E-024 7.247889270529076E-024 7.715337967683904E-024 8.212934515666121E-024 8.742623283805297E-024 9.306474042479247E-024 9.906690050786555E-024 1.054561666582956E-023 1.122575050724838E-023 1.194974921281617E-023 1.272044182321680E-023 1.354083983658264E-023 1.441414897598919E-023 1.534378171588784E-023 1.633337061642373E-023 1.738678251774366E-023 1.850813364975829E-023 1.970180571639962E-023 2.097246301722528E-023 2.232507067326953E-023 2.376491402836241E-023 2.529761930172553E-023 2.692917557254599E-023 2.866595818243432E-023 3.051475364720945E-023 3.248278617535794E-023 3.457774589678527E-023 3.680781891216619E-023 3.918171928031131E-023 4.170872306854100E-023 4.439870459912115E-023 4.726217503339190E-023 5.031032344435905E-023 5.355506053824198E-023 5.700906519581529E-023 6.068583401541324E-023 6.459973405118064E-023 6.876605895265002E-023 7.320108872501101E-023 7.792215334358350E-023 8.294770047107525E-023 8.829736754222441E-023 9.399205849750395E-023 1.000540254657256E-022 1.065069557147156E-022 1.133760642098314E-022 1.206881921419875E-022 1.284719118101932E-022 1.367576382684365E-022 1.455777481731646E-022 1.549667062957807E-022 1.649612001944855E-022 1.756002835717103E-022 1.869255288773152E-022 1.989811897538338E-022 2.118143739585585E-022 2.254752274381172E-022 2.400171302748599E-022 2.554969052706968E-022 2.719750399834239E-022 2.895159230831891E-022 3.081880959526155E-022 3.280645205137513E-022 3.492228643283778E-022 3.717458040856834E-022 3.957213486632592E-022 4.212431830236788E-022 4.484110342905567E-022 4.773310614344511E-022 5.081162700913487E-022 5.408869541346782E-022 5.757711657262254E-022 6.129052156827594E-022 6.524342061135359E-022 6.945125974099276E-022 7.393048118028209E-022 7.869858758460388E-022 8.377421043364340E-022 8.917718283430569E-022 9.492861701900818E-022 1.010509868421969E-021 1.075682155974201E-021 1.145057694981209E-021 1.218907571874271E-021 1.297520356657596E-021 1.381203230502025E-021 1.470283186062093E-021 1.565108305207013E-021 1.666049119158240E-021 1.773500056348225E-021 1.887880983658283E-021 2.009638847057517E-021 2.139249418054019E-021 2.277219152782519E-021 2.424087170992691E-021 2.580427362671548E-021 2.746850630531036E-021 2.924007277123816E-021 3.112589545914774E-021 3.313334326237446E-021 3.527026032705422E-021 3.754499670329498E-021 3.996644097318160E-021 4.254405498310604E-021 4.528791081613846E-021 4.820873014891505E-021 5.131792614682307E-021 5.462764806119678E-021 5.815082870278444E-021 6.190123497698872E-021 6.589352167835536E-021 7.014328875450275E-021 7.466714226326167E-021 7.948275926121397E-021 8.460895687717518E-021 9.006576584054686E-021 9.587450875182774E-021 1.020578834011477E-020 1.086400514603855E-020 1.156467328954282E-020 1.231053064675145E-020 1.310449167163416E-020 1.394965878430015E-020 1.484933449377337E-020 1.580703430261900E-020 1.682650044384825E-020 1.791171650377612E-020 1.906692298797322E-020 2.029663389113555E-020 2.160565433561838E-020 2.299909934755872E-020 2.448241384395335E-020 2.606139390879265E-020 2.774220944138789E-020 2.953142826538939E-020 3.143604179270439E-020 3.346349234259319E-020 3.562170222269854E-020 3.791910468563886E-020 4.036467688213040E-020 4.296797493940446E-020 4.573917130198719E-020 4.868909448075422E-020 5.182927136557892E-020 5.517197226691134E-020 5.873025886229247E-020 6.251803523515042E-020 6.655010220531805E-020 7.084221516356948E-020 7.541114563616215E-020 8.027474681995233E-020 8.545202334416424E-020 9.096320553140461E-020 9.682982844810617E-020 1.030748160532826E-019 1.097225707744175E-019 1.167990688604998E-019 1.243319618848039E-019 1.323506847940378E-019 1.408865709260641E-019 1.499729744456297E-019 1.596454006765166E-019 1.699416448394064E-019 1.809019397375630E-019 1.925691129674253E-019 2.049887542684202E-019 2.182093936659072E-019 2.322826911033595E-019 2.472636383047829E-019 2.632107736561255E-019 2.801864109453752E-019 2.982568828551067E-019 3.174928001589728E-019 3.379693276349237E-019 3.597664777733104E-019 3.829694234275441E-019 4.076688306289818E-019 4.339612128665521E-019 4.619493082154508E-019 4.917424807885531E-019 5.234571480792390E-019 5.572172358654527E-019 5.931546624525817E-019 6.314098541473228E-019 6.721322939767605E-019 7.154811057968126E-019 7.616256760724368E-019 8.107463157592355E-019 8.630349648727809E-019 9.186959424987573E-019 9.779467451746472E-019 1.041018896762608E-018 1.108158853134486E-018 1.179628965204023E-018 1.255708504069309E-018 1.336694752271338E-018 1.422904165432625E-018 1.514673608815219E-018 1.612361673629847E-018 1.716350078239736E-018 1.827045159734412E-018 1.944879461701742E-018 2.070313424402580E-018 2.203837183952375E-018 2.345972487540018E-018 2.497274732167901E-018 2.658335134879368E-018 2.829783042953979E-018 3.012288393097601E-018 3.206564329236894E-018 3.413369989146895E-018 3.633513470801010E-018 3.867854990034162E-018 4.117310241857884E-018 4.382853978561859E-018 4.665523818583193E-018 4.966424301026992E-018 5.286731201681270E-018 5.627696127391009E-018 5.990651406744369E-018 6.377015296181066E-018 6.788297521866408E-018 7.226105178985738E-018 7.692149011511131E-018 8.188250096978626E-018 8.716346962396742E-018 9.278503159092690E-018 9.876915326093969E-018 1.051392177355472E-017 1.119201161976574E-017 1.191383451745146E-017 1.268221100736054E-017 1.350014353960597E-017 1.437082820582161E-017 1.529766722797896E-017 1.628428225266399E-017 1.733452850276270E-017 1.845250984185331E-017 1.964259481016910E-017 2.090943369479417E-017 2.225797670079326E-017 2.369349329428111E-017 2.522159279301370E-017 2.684824628496160E-017 2.857980996051204E-017 3.042304994947008E-017 3.238516875991293E-017 3.447383342220614E-017 3.669720544815605E-017 3.906397272236626E-017 4.158338345041139E-017 4.426528229648740E-017 4.712014885174136E-017 5.015913858360347E-017 5.339412642612776E-017 5.683775318167442E-017 6.050347491525092E-017 6.440561553452097E-017 6.855942276094014E-017 7.298112771073040E-017 7.768800831850324E-017 8.269845685136807E-017 8.803205177733602E-017 9.370963426885121E-017 9.975338964038817E-017 1.061869340383361E-016 1.130354067219203E-016 1.203255682957433E-016 1.280859052778051E-016 1.363467414115961E-016 1.451403561572344E-016 1.545011108246350E-016 1.644655828416132E-016 1.750727086815522E-016 1.863639360091521E-016 1.983833856387718E-016 2.111780239382182E-016 2.247978463516732E-016 2.392960727588731E-016 2.547293554339233E-016 2.711580004163610E-016 2.886462031594756E-016 3.072622993767124E-016 3.270790320663454E-016 3.481738357578368E-016 3.706291390906046E-016 3.945326869075146E-016 4.199778831217421E-016 4.470641556967354E-016 4.758973451654901E-016 5.065901182073026E-016 5.392624078980474E-016 5.740418823543406E-016 6.110644436028024E-016 6.504747586238136E-016 6.924268246448665E-016 7.370845708923852E-016 7.846224991534748E-016 8.352263656506089E-016 8.890939068937218E-016 9.464356123460848E-016 1.007475546923134E-015 1.072452226538334E-015 1.141619550117273E-015 1.215247791721947E-015 1.293624656662069E-015 1.377056405720168E-015 1.465869051883609E-015 1.560409634259791E-015 1.661047574152503E-015 1.768176118598444E-015 1.882213877004627E-015 2.003606456891308E-015 2.132828205132217E-015 2.270384061496140E-015 2.416811531732974E-015 2.572682787913898E-015 2.738606904233471E-015 2.915232237009906E-015 3.103248958183852E-015 3.303391752215709E-015 3.516442686919534E-015 3.743234269452257E-015 3.984652699399415E-015 4.241641331669426E-015 4.515204362728241E-015 4.806410754578472E-015 5.116398411816982E-015 5.446378628092970E-015 5.797640819341896E-015 6.171557562291183E-015 6.569589957925987E-015 6.993293340874209E-015 7.444323357020503E-015 7.924442433098978E-015 8.435526663545246E-015 8.979573141519549E-015 9.558707762748077E-015 1.017519353267762E-014 1.083143940940473E-014 1.153000971693548E-014 1.227363416555892E-014 1.306521851849199E-014 1.390785594647670E-014 1.480483911470068E-014 1.575967304927327E-014 1.677608883353468E-014 1.785805818772067E-014 1.900980898895543E-014 2.023584179222002E-014 2.154094741685722E-014 2.293022566733425E-014 2.440910526142108E-014 2.598336504365743E-014 2.765915656700555E-014 2.944302813093350E-014 3.134195036986139E-014 3.336334349196787E-014 3.551510627479715E-014 3.780564693097566E-014 4.024391596465757E-014 4.283944114708966E-014 4.560236474798035E-014 4.854348316815960E-014 5.167428912841130E-014 5.500701657934204E-014 5.855468850778696E-014 6.233116782657343E-014 6.635121154651079E-014 7.063052844230266E-014 7.518584043773405E-014 8.003494795001452E-014 8.519679944863990E-014 9.069156550059882E-014 9.654071759128437E-014 1.027671120291402E-013 1.093950792619243E-013 1.164505189536441E-013 1.239610011937076E-013 1.319558742338177E-013 1.404663791736381E-013 1.495257720434156E-013 1.591694537606629E-013 1.694351084687697E-013 1.803628507981639E-013 1.919953826255348E-013 2.043781599437201E-013 2.175595704944116E-013 2.315911228578663E-013 2.465276477385971E-013 2.624275122336993E-013 2.793528479211700E-013 2.973697936596433E-013 3.165487540484122E-013 3.369646745578482E-013 3.586973344054705E-013 3.818316583222642E-013 4.064580484277093E-013 4.326727375105474E-013 4.605781650959791E-013 4.902833777690793E-013 5.219044553189653E-013 5.555649643692378E-013 5.913964412676078E-013 6.295389061219926E-013 6.701414099921264E-013 7.133626173752694E-013 7.593714262626451E-013 8.083476281899860E-013 8.604826108619895E-013 9.159801061413323E-013 9.750569859482313E-013 1.037944110790081E-012 1.104887229727094E-012 1.176147944369669E-012 1.252004727068383E-012 1.332754012601932E-012 1.418711355114497E-012 1.510212661577221E-012 1.607615503728800E-012 1.711300517614211E-012 1.821672889795062E-012 1.939163939267472E-012 2.064232807162167E-012 2.197368247279725E-012 2.339090539153860E-012 2.489953518619655E-012 2.650546744826457E-012 2.821497803461704E-012 3.003474759088411E-012 3.197188766991107E-012 3.403396851845510E-012 3.622904866572330E-012 3.856570643264266E-012 4.105307343463382E-012 4.370087029141740E-012 4.651944461909313E-012 4.951981146274099E-012 5.271369636580887E-012 5.611358109984948E-012 5.973275276266185E-012 6.358535521539299E-012 6.768644476043117E-012 7.205204895249796E-012 7.669922902176737E-012 8.164614671139018E-012 8.691213542735828E-012 9.251777540176384E-012 9.848497446780665E-012 1.048370536066521E-011 1.115988381513417E-011 1.187967546069652E-011 1.264589342656414E-011 1.346153229454286E-011 1.432977981127211E-011 1.525402934736282E-011 1.623789317599199E-011 1.728521657115786E-011 1.840009284890155E-011 1.958687937388380E-011 2.085021460166994E-011 2.219503617106946E-011 2.362660025270079E-011 2.515050209675700E-011 2.677269786579139E-011 2.849952794083223E-011 3.033774173757384E-011 3.229452402910513E-011 3.437752311100522E-011 3.659488066257947E-011 3.895526355064153E-011 4.146789779930374E-011 4.414260455650313E-011 4.698983857072172E-011 5.002072904240828E-011 5.324712312768895E-011 5.668163230515179E-011 6.033768162478711E-011 6.422956223360419E-011 6.837248727997754E-011 7.278265135943596E-011 7.747729384552281E-011 8.247476638897578E-011 8.779460449868474E-011 9.345760415652503E-011 9.948590295137259E-011 1.059030668274795E-010 1.127341820700140E-010 1.200059535183095E-010 1.277468091906039E-010 1.359870108552337E-010 1.447587731981353E-010 1.540963892619801E-010 1.640363646392900E-010 1.746175606950861E-010 1.858813458680506E-010 1.978717581055586E-010 2.106356770748318E-010 2.242230067064989E-010 2.386868717032112E-010 2.540838245633155E-010 2.704740668831527E-010 2.879216852460152E-010 3.064949013848534E-010 3.262663398109479E-010 3.473133112626837E-010 3.697181157886215E-010 3.935683642663254E-010 4.189573216226276E-010 4.459842718530404E-010 4.747549060111414E-010 5.053817365381777E-010 5.379845370459674E-010 5.726908112071829E-010 6.096362920783607E-010 6.489654730012593E-010 6.908321734866477E-010 7.354001413518983E-010 7.828436930606570E-010 8.333483971425484E-010 8.871118000749223E-010 9.443441996741030E-010 1.005269468653664E-009 1.070125931502416E-009 1.139167297106219E-009 1.212663652588400E-009 1.290902521002565E-009 1.374189987152514E-009 1.462851896711400E-009 1.557235132601891E-009 1.657708973002977E-009 1.764666538543911E-009 1.878526332354812E-009 1.999733879186044E-009 2.128763472041470E-009 2.266120028615995E-009 2.412341072075078E-009 2.567998835625853E-009 2.733702506878068E-009 2.910100613357832E-009 3.097883566585706E-009 3.297786366860468E-009 3.510591485597553E-009 3.737131932675505E-009 3.978294522205813E-009 4.235023350592425E-009 4.508323498162620E-009 4.799264971156016E-009 5.108986898885030E-009 5.438702001342459E-009 5.789701347032674E-009 6.163359417434908E-009 6.561139501736268E-009 6.984599436649471E-009 7.435397721511902E-009 7.915300027496742E-009 8.426186127355452E-009 8.970057275934517E-009 9.549044066820539E-009 1.016541479809743E-008 1.082158438068125E-008 1.152012382171170E-008 1.226377032426176E-008 1.305543804010509E-008 1.389822951833717E-008 1.479544789830647E-008 1.575060988893865E-008 1.676745959275650E-008 1.784998322252078E-008 1.900242477418554E-008 2.022930271434284E-008 2.153542775090528E-008 2.292592175378402E-008 2.440623790434712E-008 2.598218215053581E-008 2.765993605540735E-008 2.944608112348768E-008 3.134762471099512E-008 3.337202761304364E-008 3.552723344161403E-008 3.782169991209097E-008 4.026443215843679E-008 4.286501821315769E-008 4.563366678812581E-008 4.858124751128297E-008 5.171933377613467E-008 5.506024837215215E-008 5.861711208250164E-008 6.240389543897298E-008 6.643547383757868E-008 7.072768623898092E-008 7.529739768364747E-008 8.016256587228537E-008 8.534231207267457E-008 9.085699664354206E-008 9.672829946377288E-008 1.029793056003628E-007 1.096345965483380E-007 1.167203474063450E-007 1.242644303799236E-007 1.322965250227055E-007 1.408482356554220E-007 1.499532164295050E-007 1.596473045415070E-007 1.699686621213302E-007 1.809579273676637E-007 1.926583755336262E-007 2.051160904044035E-007 2.183801469554878E-007 2.325028059197755E-007 2.475397210455102E-007 2.635501598725999E-007 2.805972389126271E-007 2.987481741772178E-007 3.180745480535929E-007 3.386525936029981E-007 3.605634974229895E-007 3.838937222832260E-007 4.087353508336162E-007 4.351864517685328E-007 4.633514699089775E-007 4.933416417808189E-007 5.252754383491232E-007 5.592790366968376E-007 5.954868225393695E-007 6.340419255978288E-007 6.750967899883507E-007 7.188137819150469E-007 7.653658371184989E-007 8.149371506895660E-007 8.677239120135973E-007 9.239350878185761E-007 9.837932564684932E-007 1.047535496875119E-006 1.115414335595575E-006 1.187698755935489E-006 1.264675273132440E-006 1.346649079929494E-006 1.433945267170547E-006 1.526910124327079E-006 1.625912525188778E-006 1.731345404302891E-006 1.843627330097359E-006 1.963204181024790E-006 2.090550931463135E-006 2.226173554553755E-006 2.370611049628123E-006 2.524437602356739E-006 2.688264886306036E-006 2.862744515118502E-006 3.048570655162914E-006 3.246482809103199E-006 3.457268781540464E-006 3.681767838571344E-006 3.920874073887211E-006 4.175539994844691E-006 4.446780342783800E-006 4.735676162802682E-006 5.043379139149555E-006 5.371116213431832E-006 5.720194503922917E-006 6.092006545406456E-006 6.488035870230753E-006 6.909862952525808E-006 7.359171538935498E-006 7.837755390650038E-006 8.347525463074208E-006 8.890517551108555E-006 9.468900429721285E-006 1.008498452132808E-005 1.074123112341848E-005 1.144026223188051E-005 1.218487099765261E-005 1.297803285654665E-005 1.382291737450772E-005 1.472290085303879E-005 1.568157974218751E-005 1.670278491123805E-005 1.779059683016657E-005 1.894936171795666E-005 2.018370871707090E-005 2.149856815672223E-005 2.289919097105699E-005 2.439116934203556E-005 2.598045864057896E-005 2.767340074348848E-005 2.947674880780017E-005 3.139769358844430E-005 3.344389138949966E-005 3.562349374392280E-005 3.794517892125580E-005 4.041818536768791E-005 4.305234718775442E-005 4.585813178198075E-005 4.884667975995578E-005 5.202984725340948E-005 5.542025075921856E-005 5.903131464740319E-005 6.287732147444564E-005 6.697346524742096E-005 7.133590778947123E-005 7.598183836204803E-005 8.092953670404580E-005 8.619843965230239E-005 9.180921151205021E-005 9.778381834936421E-005 1.041456063808428E-004 1.109193846379935E-004 1.181315120854768E-004 1.258099893730492E-004 1.339845554006047E-004 1.426867888741067E-004 1.519502150272066E-004 1.618104176785232E-004 1.723051567880864E-004 1.834744916677369E-004 1.953609099891469E-004 2.080094627193734E-004 2.214679050970041E-004 2.357868437417101E-004 2.510198899660242E-004 2.672238193298725E-004 2.844587374455458E-004 3.027882520025858E-004 3.222796509383742E-004 3.430040866300395E-004 3.650367659263305E-004 3.884571457737309E-004 4.133491341181206E-004 4.398012956818902E-004 4.679070621248311E-004 4.977649459953685E-004 5.294787577655490E-004 5.631578251176577E-004 5.989172135122388E-004 6.368779469146492E-004 6.771672273903730E-004 7.199186520963961E-004 7.652724259964150E-004 8.133755684110019E-004 8.643821112786249E-004 9.184532867494014E-004 9.757577014602458E-004 1.036471494545783E-003 1.100778476126071E-003 1.168870242676811E-003 1.240946265332674E-003 1.317213946798895E-003 1.397888642150518E-003 1.483193638385195E-003 1.573360087163708E-003 1.668626884725669E-003 1.769240492508639E-003 1.875454691528405E-003 1.987530263103606E-003 2.105734588029687E-003 2.230341155834739E-003 2.361628975286957E-003 2.499881876878517E-003 2.645387697593325E-003 2.798437337884625E-003 2.959323680455550E-003 3.128340360164556E-003 3.305780374179897E-003 3.491934521404194E-003 3.687089660192644E-003 3.891526773522899E-003 4.105518831057020E-003 4.329328437991350E-003 4.563205261244718E-003 4.807383224411155E-003 5.062077464033060E-003 5.327481041159998E-003 5.603761403876575E-003 5.891056598545840E-003 6.189471229944512E-003 6.499072173302767E-003 6.819884044526978E-003 7.151884438608293E-003 7.494998950430850E-003 7.849095996906289E-003 8.213981464598639E-003 8.589393212771249E-003 8.974995468087266E-003 9.370373154025920E-003 9.775026205410486E-003 1.018836392625950E-002 1.060969945741701E-002 1.103824442902774E-002 1.147310388182294E-002 1.191327155025583E-002 1.235762560965890E-002 1.280492499862461E-002 1.325380643655998E-002 1.370278226463044E-002 1.415023924583972E-002 1.459443846653522E-002 1.503351648687423E-002 1.546548789140920E-002 1.588824939260451E-002 1.629958563938686E-002 1.669717687937450E-002 1.707860861680039E-002 1.744138339792004E-002 1.778293484146006E-002 1.810064401299249E-002 1.839185821863167E-002 1.865391226477901E-002 1.888415219647313E-002 1.907996148699742E-002 1.923878960557118E-002 1.935818283813781E-002 1.943581717849093E-002 1.946953304340435E-002 1.945737149635868E-002 1.939761159032207E-002 1.928880836145947E-002 1.912983092337459E-002 1.891990002646281E-002 1.865862436025190E-002 1.834603478946800E-002 1.798261562832734E-002 1.756933197369690E-002 1.710765203781278E-002 1.659956334678849E-002 1.604758160378497E-002 1.545475095704560E-002 1.482463436458942E-002 1.416129271073693E-002 1.346925130631628E-002 1.275345239589949E-002 1.201919230335170E-002 1.127204187315431E-002 1.051774891156501E-002 9.762121401436161E-003 9.010890361015128E-003 8.269551345026757E-003 7.543183752031488E-003 6.836247313633234E-003 6.152355409008048E-003 5.494025185600410E-003 4.863101537695147E-003 4.263046854438401E-003 3.697513887174972E-003 3.169687831727747E-003 2.682217461298514E-003 2.237152595726682E-003 1.835890198105095E-003 1.479131491604904E-003 1.166852538170976E-003 8.982907051945377E-004 6.719493551401307E-004 4.856229155365960E-004 3.364442127993528E-004 2.209555746367359E-004 1.352047158676845E-004 7.486581778463897E-005 3.538549147195924E-005 1.215248454371209E-005 6.890571118550737E-007 -3.139070050284243E-006 -2.898385061123054E-006 -1.354200333272826E-006 -2.346952195572682E-007 -1.387778780781446E-017 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.353968426677736E-029 1.459421107901923E-029 1.573086881660480E-029 1.695605417691441E-029 1.827666205867238E-029 1.970012436393534E-029 2.123445182214079E-029 2.288827907158641E-029 2.467091325204142E-029 2.659238638195335E-029 2.866351181500756E-029 3.089594509375917E-029 3.330224954279805E-029 3.589596697058144E-029 3.869169387781997E-029 4.170516360128700E-029 4.495333485533075E-029 4.845448716936603E-029 5.222832375843380E-029 5.629608240574836E-029 6.068065498123512E-029 6.540671626866977E-029 7.050086282641011E-029 7.599176266317666E-029 8.191031657120704E-029 8.828983202470099E-029 9.516621062220427E-029 1.025781501277788E-028 1.105673622479800E-028 1.191788073702095E-028 1.284609475834626E-028 1.384660194053836E-028 1.492503277504365E-028 1.608745627935364E-028 1.734041415123369E-028 1.869095758302455E-028 2.014668694319477E-028 2.171579454845716E-028 2.340711076715488E-028 2.523015371337152E-028 2.719518281142304E-028 2.931325653217647E-028 3.159629462611172E-028 3.405714520335270E-028 3.670965703817061E-028 3.956875750486011E-028 4.265053658358702E-028 4.597233740895896E-028 4.955285387089485E-028 5.341223581705621E-028 5.757220244887775E-028 6.205616454935474E-028 6.688935623043560E-028 7.209897694144909E-028 7.771434453773852E-028 8.376706027091280E-028 9.029118662922711E-028 9.732343902890858E-028 1.049033924351977E-027 1.130737040758977E-027 1.218803535007722E-027 1.313729013377730E-027 1.416047682022724E-027 1.526335353289044E-027 1.645212686178666E-027 1.773348679192834E-027 1.911464435212940E-027 2.060337219605922E-027 2.220804834391731E-027 2.393770333089194E-027 2.580207102773515E-027 2.781164341945634E-027 2.997772965040711E-027 3.231251966804257E-027 3.482915282352366E-027 3.754179181521745E-027 4.046570239122575E-027 4.361733925947683E-027 4.701443868885164E-027 5.067611832247057E-027 5.462298476485206E-027 5.887724954840714E-027 6.346285413188499E-027 6.840560463421624E-027 7.373331706198916E-027 7.947597384783981E-027 8.566589258070735E-027 9.233790787749800E-027 9.952956741967042E-027 1.072813432579660E-026 1.156368595744235E-026 1.246431381834494E-026 1.343508631535292E-026 1.448146660387744E-026 1.560934333254910E-026 1.682506378239544E-026 1.813546958703591E-026 1.954793523491355E-026 2.107040957024012E-026 2.271146052620788E-026 2.448032334220801E-026 2.638695253640778E-026 2.844207792616680E-026 3.065726501155586E-026 3.304498006179581E-026 3.561866027089636E-026 3.839278937730931E-026 4.138297917315325E-026 4.460605736171481E-026 4.808016225765790E-026 5.182484486287616E-026 5.586117889243866E-026 6.021187936981151E-026 6.490143045876792E-026 6.995622325137899E-026 7.540470428750261E-026 8.127753564158866E-026 8.760776747770878E-026 9.443102404388652E-026 1.017857041524413E-025 1.097131972745677E-025 1.182581164652639E-025 1.274685494294152E-025 1.373963291419488E-025 1.480973255450108E-025 1.596317599637237E-025 1.720645440099548E-025 1.854656448813127E-025 1.999104791111467E-025 2.154803369854326E-025 2.322628400150009E-025 2.503524340376054E-025 2.698509207248270E-025 2.908680304849377E-025 3.135220399858270E-025 3.379404377731572E-025 3.642606417296410E-025 3.926307724130198E-025 4.232104866248056E-025 4.561718759008334E-025 4.917004349799587E-025 5.299961057011426E-025 5.712744022035613E-025 6.157676237619655E-025 6.637261620827086E-025 7.154199104173862E-025 7.711397824241156E-025 8.311993493240291E-025 8.959366045662976E-025 9.657158659326204E-025 1.040929825785446E-024 1.122001760998099E-024 1.209387915003383E-024 1.303580065366045E-024 1.405108291328436E-024 1.514543956904067E-024 1.632502926306926E-024 1.759649029811744E-024 1.896697799549829E-024 2.044420496264224E-024 2.203648449685187E-024 2.375277736952186E-024 2.560274225410810E-024 2.759679008163549E-024 2.974614262963975E-024 3.206289567425646E-024 3.456008706086046E-024 3.725177007632519E-024 4.015309253582061E-024 4.328038202921894E-024 4.665123780684110E-024 5.028462982165154E-024 5.420100548526479E-024 5.842240473855554E-024 6.297258408444606E-024 6.787715028087640E-024 7.316370444634626E-024 7.886199738898554E-024 8.500409703330187E-024 9.162456888681947E-024 9.876067056219970E-024 1.064525614495650E-023 1.147435287189583E-023 1.236802309248220E-023 1.333129605834013E-023 1.436959272007576E-023 1.548875623441928E-023 1.669508484738840E-023 1.799536733853005E-023 1.939692122570676E-023 2.090763394542860E-023 2.253600724048291E-023 2.429120500465386E-023 2.618310485378879E-023 2.822235371343331E-023 3.042042773585962E-023 3.278969688368528E-023 3.534349454352781E-023 3.809619256146199E-023 4.106328212254990E-023 4.426146092960062E-023 4.770872717177883E-023 5.142448081187232E-023 5.542963276223546E-023 5.974672256380772E-023 6.440004523045793E-023 6.941578797249861E-023 7.482217756878731E-023 8.064963921678223E-023 8.693096775449924E-023 9.370151221793759E-023 1.009993747726145E-022 1.088656251387004E-022 1.173445317164780E-022 1.264838107128130E-022 1.363348946706139E-022 1.469532219124985E-022 1.583985485275111E-022 1.707352846566731E-022 1.840328569698414E-022 1.983660993737566E-022 2.138156741500720E-022 2.304685258933355E-022 2.484183708035540E-022 2.677662240868926E-022 2.886209684325020E-022 3.110999667647120E-022 3.353297227188666E-022 3.614465925577708E-022 3.895975525351457E-022 4.199410260244908E-022 4.526477750682208E-022 4.879018613642851E-022 5.259016820984357E-022 5.668610864514015E-022 6.110105790642203E-022 6.585986172345019E-022 7.098930091436309E-022 7.651824209837341E-022 8.247780014659364E-022 8.890151328519724E-022 9.582553183635024E-022 1.032888216590544E-021 1.113333834348134E-021 1.200044890321709E-021 1.293509362802941E-021 1.394253235853817E-021 1.502843459353286E-021 1.619891139584584E-021 1.746054978318747E-021 1.882044979748045E-021 2.028626446130843E-021 2.186624284633675E-021 2.356927649608039E-021 2.540494946426905E-021 2.738359225040586E-021 2.951633993605137E-021 3.181519484900020E-021 3.429309410800326E-021 3.696398242815205E-021 3.984289059664552E-021 4.294602006057513E-021 4.629083410275428E-021 4.989615611869838E-021 5.378227554782173E-021 5.797106205499159E-021 6.248608860501438E-021 6.735276412266889E-021 7.259847648485020E-021 7.825274664953231E-021 8.434739478892652E-021 9.091671936177948E-021 9.799769013255414E-021 1.056301562237436E-020 1.138570703721545E-020 1.227247306511918E-020 1.322830410194736E-020 1.425857921620396E-020 1.536909642046314E-020 1.656610530046082E-020 1.785634218547346E-020 1.924706805791128E-020 2.074610941546577E-020 2.236190231576969E-020 2.410353985143607E-020 2.598082332264780E-020 2.800431739527935E-020 3.018540955495879E-020 3.253637419165661E-020 3.507044167544528E-020 3.780187281216162E-020 4.074603909798277E-020 4.391950922455587E-020 4.734014232150317E-020 5.102718846103491E-020 5.500139699027234E-020 5.928513330093735E-020 6.390250469354067E-020 6.887949604439102E-020 7.424411603890366E-020 8.002655479415700E-020 8.625935375773925E-020 9.297758883900954E-020 1.002190678033704E-019 1.080245430404124E-019 1.164379409033075E-019 1.255066089100932E-019 1.352815821979958E-019 1.458178707303056E-019 1.571747688720928E-019 1.694161890769355E-019 1.826110215625352E-019 1.968335219993240E-019 2.121637293938410E-019 2.286879165185618E-019 2.464990754230297E-019 2.656974407585689E-019 2.863910538616389E-019 3.086963707702947E-019 3.327389175954315E-019 3.586539969349834E-019 3.865874493065319E-019 4.166964738833510E-019 4.491505131526958E-019 4.841322064748488E-019 5.218384179091988E-019 5.624813440915322E-019 6.062897083972996E-019 6.535100481111030E-019 7.044081018461229E-019 7.592703050213612E-019 8.184054018126142E-019 8.821461826486932E-019 9.508513570307991E-019 1.024907572214550E-018 1.104731589115090E-018 1.190772627680303E-018 1.283514894931129E-018 1.383480309895706E-018 1.491231440772236E-018 1.607374670849831E-018 1.732563611003764E-018 1.867502777969501E-018 2.012951559095247E-018 2.169728485885129E-018 2.338715840382899E-018 2.520864620318874E-018 2.717199890962231E-018 2.928826553796616E-018 3.156935564482890E-018 3.402810635101354E-018 3.667835458390724E-018 3.953501494639346E-018 4.261416365049874E-018 4.593312898811980E-018 4.951058884796517E-018 5.336667582749373E-018 5.752309053138188E-018 6.200322369411441E-018 6.683228781395555E-018 7.203745903908522E-018 7.764803010437103E-018 8.369557517944999E-018 9.021412755581037E-018 9.724037117282600E-018 1.048138470605743E-017 1.129771758612042E-017 1.217762976811242E-017 1.312607306237864E-017 1.414838494579872E-017 1.525031859899147E-017 1.643807528292967E-017 1.771833923716880E-017 1.909831529608020E-017 2.058576943477796E-017 2.218907247291446E-017 2.391724718228957E-017 2.578001906337672E-017 2.778787107651238E-017 2.995210263575334E-017 3.228489319739299E-017 3.479937080098429E-017 3.750968594858909E-017 4.043109123801302E-017 4.358002719816600E-017 4.697421480959143E-017 5.063275523082986E-017 5.457623729182705E-017 5.882685335931745E-017 6.340852422621487E-017 6.834703372783316E-017 7.367017384249563E-017 7.940790109308829E-017 8.559250512971716E-017 9.225879044217023E-017 9.944427222477633E-017 1.071893874958995E-016 1.155377226601401E-016 1.245362587938628E-016 1.342356360343956E-016 1.446904385607521E-016 1.559595017696139E-016 1.681062433752026E-016 1.811990202963124E-016 1.953115133388824E-016 2.105231418389095E-016 2.269195105991091E-016 2.445928916344334E-016 2.636427434374986E-016 2.841762706860442E-016 3.063090275421886E-016 3.301655679385295E-016 3.558801465105341E-016 3.835974741197281E-016 4.134735322193322E-016 4.456764506451702E-016 4.803874537715724E-016 5.178018803567089E-016 5.581302828164914E-016 6.015996121131310E-016 6.484544949262299E-016 6.989586102936210E-016 7.533961734688459E-016 8.120735353456161E-016 8.753209064498422E-016 9.434942152008476E-016 1.016977110898962E-015 1.096183122711036E-015 1.181557986803433E-015 1.273582154718068E-015 1.372773497107118E-015 1.479690218041338E-015 1.594933996291766E-015 1.719153371262040E-015 1.853047392625078E-015 1.997369554201873E-015 2.152932034219740E-015 2.320610265811147E-015 2.501347863473002E-015 2.696161933208977E-015 2.906148796236653E-015 3.132490158468576E-015 3.376459760484417E-015 3.639430545415776E-015 3.922882385078980E-015 4.228410407832917E-015 4.557733975024923E-015 4.912706356537003E-015 5.295325159879297E-015 5.707743571517324E-015 6.152282473690252E-015 6.631443504904211E-015 7.147923137593892E-015 7.704627852170530E-015 8.304690492842701E-015 8.951487897246583E-015 9.648659899090354E-015 1.040012981074239E-014 1.121012650102179E-014 1.208320819242469E-014 1.302428811169519E-014 1.403866213807944E-014 1.513203860483958E-014 1.631057042172346E-014 1.758088969914347E-014 1.895014506889463E-014 2.042604191141702E-014 2.201688571595791E-014 2.373162881762273E-014 2.557992077429929E-014 2.757216266692347E-014 2.971956562862983E-014 3.203421393212226E-014 3.452913299025189E-014 3.721836265242933E-014 4.011703620929937E-014 4.324146555022275E-014 4.660923295272587E-014 5.023929002040134E-014 5.415206432595342E-014 5.836957435944289E-014 6.291555342850991E-014 6.781558320772015E-014 7.309723768847352E-014 7.879023833942665E-014 8.492662135045449E-014 9.154091790116745E-014 9.867034846826452E-014 1.063550322650096E-013 1.146382129912326E-013 1.235665021640341E-013 1.331901413982803E-013 1.435632851125788E-013 1.547443052513537E-013 1.667961197374874E-013 1.797865465035054E-013 1.937886850931877E-013 2.088813279805776E-013 2.251494039205735E-013 2.426844558254561E-013 2.615851558559528E-013 2.819578606248012E-013 3.039172096363975E-013 3.275867703293909E-013 3.530997333511985E-013 3.805996619760153E-013 4.102412998824809E-013 4.421914418353985E-013 4.766298721698399E-013 5.137503763572840E-013 5.537618313445782E-013 5.968893807996110E-013 6.433757018751332E-013 6.934823706170351E-013 7.474913336981499E-013 8.057064947567682E-013 8.684554242636732E-013 9.360912025362072E-013 1.008994406266938E-012 1.087575249741523E-012 1.172275892790505E-012 1.263572928457489E-012 1.361980064376878E-012 1.468051012943917E-012 1.582382606533907E-012 1.705618155293164E-012 1.838451066370377E-012 1.981628745513675E-012 2.135956800235370E-012 2.302303573155668E-012 2.481605029781961E-012 2.674870017334009E-012 2.883185948287399E-012 3.107724910113441E-012 3.349750266845276E-012 3.610623757499185E-012 3.891813163349467E-012 4.194900565217278E-012 4.521591235107832E-012 4.873723237368590E-012 5.253277767086878E-012 5.662390291728981E-012 6.103362563167854E-012 6.578675569519141E-012 7.091003489226065E-012 7.643228726978006E-012 8.238458138057253E-012 8.880040495243645E-012 9.571585328549268E-012 1.031698322681836E-011 1.112042772064963E-011 1.198643886965110E-011 1.291988868647227E-011 1.392602853014341E-011 1.501051866055072E-011 1.617946006396050E-011 1.743942873359857E-011 1.879751269943475E-011 2.026135188560462E-011 2.183918106042574E-011 2.353987611137120E-011 2.537300409590801E-011 2.734887687122465E-011 2.947860913896238E-011 3.177418098139091E-011 3.424850527856817E-011 3.691550013950229E-011 3.979016741750991E-011 4.288867676760156E-011 4.622845687144361E-011 4.982829314697032E-011 5.370843356423641E-011 5.789070251799780E-011 6.239862330437071E-011 6.725755050282593E-011 7.249481265861856E-011 7.813986570843608E-011 8.422445867173460E-011 9.078281203311018E-011 9.785181023623963E-011 1.054712089904389E-010 1.136838586709208E-010 1.225359454510447E-010 1.320772502412112E-010 1.423614292424103E-010 1.534463152692857E-010 1.653942423087781E-010 1.782723966454725E-010 1.921531938022364E-010 2.071146858806350E-010 2.232409996900328E-010 2.406228102222858E-010 2.593578494389761E-010 2.795514557013921E-010 3.013171656955958E-010 3.247773520109153E-010 3.500639113056698E-010 3.773190043461397E-010 4.066958555460075E-010 4.383596127046739E-010 4.724882756895443E-010 5.092736958635399E-010 5.489226517675078E-010 5.916580157969350E-010 6.377199982573250E-010 6.873675025127117E-010 7.408795762318000E-010 7.985569779653539E-010 8.607238685475688E-010 9.277296248563419E-010 9.999508107482729E-010 1.077793280621856E-009 1.161694466766552E-009 1.252125828161797E-009 1.349595499245523E-009 1.454651142706835E-009 1.567883020018585E-009 1.689927307502512E-009 1.821469661525389E-009 1.963249070713342E-009 2.116061996252859E-009 2.280766843500533E-009 2.458288777623792E-009 2.649624908078287E-009 2.855849888868905E-009 3.078121935211771E-009 3.317689328035608E-009 3.575897404984160E-009 3.854196105835991E-009 4.154148103977271E-009 4.477437560858349E-009 4.825879566053469E-009 5.201430312574257E-009 5.606198055762568E-009 6.042454925961234E-009 6.512649657847678E-009 7.019421307478931E-009 7.565614034668958E-009 8.154293033111721E-009 8.788761686143357E-009 9.472580075108284E-009 1.020958489408149E-008 1.100391094426324E-008 1.186001425751439E-008 1.278269704459882E-008 1.377713455519962E-008 1.484890403910120E-008 1.600401593251144E-008 1.724894748072836E-008 1.859067895432951E-008 2.003673267402285E-008 2.159521505161729E-008 2.327486191045502E-008 2.508508729673467E-008 2.703603606746527E-008 2.913864056796112E-008 3.140468167701120E-008 3.384685459929734E-008 3.647883973816770E-008 3.931537903866612E-008 4.237235827283157E-008 4.566689565327745E-008 4.921743732370822E-008 5.304386022600139E-008 5.716758292486771E-008 6.161168499076928E-008 6.640103561750291E-008 7.156243217598671E-008 7.712474947002286E-008 8.311910052796570E-008 8.957900980206215E-008 9.654059974802028E-008 1.040427917973772E-007 1.121275228480412E-007 1.208399784574395E-007 1.302288440166327E-007 1.403465753049534E-007 1.512496898893222E-007 1.629990809923350E-007 1.756603555521403E-007 1.893041983074161E-007 2.040067639492561E-007 2.198500994245262E-007 2.369225987819753E-007 2.553194930081544E-007 2.751433775164943E-007 2.965047802362181E-007 3.195227733433462E-007 3.443256320036007E-007 3.710515437463023E-007 3.998493722529655E-007 4.308794798788339E-007 4.643146131588170E-007 5.003408563231698E-007 5.391586579636365E-007 5.809839362427044E-007 6.260492689044750E-007 6.746051744108328E-007 7.269214910364456E-007 7.832888616006782E-007 8.440203316941423E-007 9.094530700693220E-007 9.799502205005192E-007 1.055902895032862E-006 1.137732319409407E-006 1.225892142084972E-006 1.320870919447691E-006 1.423194790221939E-006 1.533430353716348E-006 1.652187767057269E-006 1.780124078100253E-006 1.917946811629791E-006 2.066417828125566E-006 2.226357475391318E-006 2.398649055346667E-006 2.584243629313650E-006 2.784165187589493E-006 2.999516210268442E-006 3.231483648943167E-006 3.481345360508524E-006 3.750477027068755E-006 4.040359598135963E-006 4.352587294121472E-006 4.688876212958072E-006 5.051073584657527E-006 5.441167722104383E-006 5.861298719551466E-006 6.313769954519798E-006 6.801060452390128E-006 7.325838177428476E-006 7.890974318911195E-006 8.499558645422988E-006 9.154916006031759E-006 9.860624062800431E-006 1.062053234470817E-005 1.143878272015507E-005 1.231983139125298E-005 1.326847252165696E-005 1.428986361651491E-005 1.538955278201466E-005 1.657350800143759E-005 1.784814857308311E-005 1.922037886726302E-005 2.069762456885066E-005 2.228787158515779E-005 2.399970781002777E-005 2.584236794919167E-005 2.782578162572168E-005 2.996062499974006E-005 3.225837615206026E-005 3.473137449924297E-005 3.739288452557110E-005 4.025716413599470E-005 4.333953795608449E-005 4.665647592545772E-005 5.022567755581449E-005 5.406616224744986E-005 5.819836608689582E-005 6.264424557311045E-005 6.742738875183742E-005 7.257313426674468E-005 7.810869887025278E-005 8.406331397170562E-005 9.046837183656886E-005 9.735758209060466E-005 1.047671392234860E-004 1.127359018298690E-004 1.213055843715533E-004 1.305209622934907E-004 1.404300913762791E-004 1.510845422619853E-004 1.625396511455134E-004 1.748547876836804E-004 1.880936412353670E-004 2.023245266106100E-004 2.176207105750989E-004 2.340607604259874E-004 2.517289160306867E-004 2.707154867939959E-004 2.911172751031179E-004 3.130380278783054E-004 3.365889179476416E-004 3.618890570486005E-004 3.890660423555537E-004 4.182565385226003E-004 4.496068973315847E-004 4.832738171316639E-004 5.194250443607783E-004 5.582401195400430E-004 5.999111702397609E-004 6.446437536170075E-004 6.926577512360767E-004 7.441883189831272E-004 7.994868949966827E-004 8.588222686343949E-004 9.224817136006483E-004 9.907721884547559E-004 1.064021607812955E-003 1.142580187643537E-003 1.226821868133782E-003 1.317145817677808E-003 1.413978021591517E-003 1.517772959210830E-003 1.629015373057374E-003 1.748222133770018E-003 1.875944204496898E-003 2.012768708408459E-003 2.159321102939678E-003 2.316267464281984E-003 2.484316885525405E-003 2.664223991693080E-003 2.856791574713128E-003 3.062873351118374E-003 3.283376844970785E-003 3.519266398142884E-003 3.771566309666814E-003 4.041364105364925E-003 4.329813938403647E-003 4.638140120751874E-003 4.967640784771304E-003 5.319691673312950E-003 5.695750055727158E-003 6.097358766107052E-003 6.526150358872529E-003 6.983851375444108E-003 7.472286714250676E-003 7.993384094651950E-003 8.549178603514052E-003 9.141817311161328E-003 9.773563941210248E-003 1.044680357637616E-002 1.116404737970633E-002 1.192793730783792E-002 1.274125078978101E-002 1.360690534138818E-002 1.452796308207949E-002 1.550763511653715E-002 1.654928573996608E-002 1.765643642112852E-002 1.883276951269897E-002 2.008213163356090E-002 2.140853666246535E-002 2.281616827702781E-002 2.430938196633371E-002 2.589270643949628E-002 2.757084434638122E-002 2.934867222038888E-002 3.123123954672665E-002 3.322376685304572E-002 3.533164271268609E-002 3.756041954417349E-002 3.991580808406367E-002 4.240367040384538E-002 4.503001133548092E-002 4.780096816434889E-002 5.072279844304810E-002 5.380186577475957E-002 5.704462341087648E-002 6.045759550451073E-002 6.404735585943305E-002 6.782050401325945E-002 7.178363849436377E-002 7.594332709439981E-002 8.030607400262178E-002 8.487828365465730E-002 8.966622115733491E-002 9.467596916277166E-002 9.991338107956389E-002 1.053840305268367E-001 1.110931569583634E-001 1.170456074093416E-001 1.232457743478652E-001 1.296975296470557E-001 1.364041547323885E-001 1.433682670021790E-001 1.505917426677852E-001 1.580756362137950E-001 1.658200967375906E-001 1.738242814921052E-001 1.820862670252621E-001 1.906029583845039E-001 1.993699969345117E-001 2.083816674205242E-001 2.176308049979841E-001 2.271087030408741E-001 2.368050226354506E-001 2.467077047618725E-001 2.568028862625711E-001 2.670748207916031E-001 2.775058060320823E-001 2.880761185575512E-001 2.987639577955415E-001 3.095454006257378E-001 3.203943682085276E-001 3.312826066897725E-001 3.421796834618734E-001 3.530530006764686E-001 3.638678276978618E-001 3.745873541553260E-001 3.851727651938874E-001 3.955833404344027E-001 4.057765780316701E-001 4.157083450618907E-001 4.253330552756438E-001 4.346038750180405E-001 4.434729578428657E-001 4.518917080316194E-001 4.598110728718621E-001 4.671818631532301E-001 4.739551009059985E-001 4.800823929394435E-001 4.855163282396570E-001 4.902108967645782E-001 4.941219266345834E-001 4.972075361679322E-001 4.994285966612164E-001 5.007492012758199E-001 5.011371348739415E-001 5.005643391641937E-001 4.990073670801457E-001 4.964478199388676E-001 4.928727606240633E-001 4.882750958228693E-001 4.826539202295613E-001 4.760148156246222E-001 4.683700978538287E-001 4.597390049772525E-001 4.501478202377545E-001 4.396299240153920E-001 4.282257695876995E-001 4.159827783017824E-001 4.029551506751335E-001 3.892035909661218E-001 3.747949438770912E-001 3.598017432539884E-001 3.443016739038717E-001 3.283769489409635E-001 3.121136063653509E-001 2.956007298477146E-001 2.789295999094243E-001 2.621927828210969E-001 2.454831655677895E-001 2.288929461208480E-001 2.125125889952330E-001 1.964297566422888E-001 1.807282276229227E-001 1.654868127254726E-001 1.507782802447521E-001 1.366683015442141E-001 1.232144278139999E-001 1.104651086599994E-001 9.845876287555955E-002 8.722291153841499E-002 7.677338354210134E-002 6.711360393818777E-002 5.823397618292581E-002 5.011137072812488E-002 4.271555360196461E-002 3.603199222474612E-002 3.004596379348506E-002 2.473664763637251E-002 2.007749449306567E-002 1.603668791837354E-002 1.257769394109098E-002 9.659893066762293E-003 7.239286633787645E-003 5.269267544297407E-003 3.701443578512820E-003 2.486499949117871E-003 1.575086542048687E-003 9.187144939058478E-004 4.706464276105771E-004 1.867648359050178E-004 2.640376098844710E-005 -4.686997965291928E-005 -6.453832357258826E-005 -5.248691091833124E-005 -3.044248411943062E-005 -1.150042735162393E-005 -1.749375867055036E-006 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 8.677115883487859E-030 9.352925686121807E-030 1.008137036138511E-029 1.086654933163848E-029 1.171288129927239E-029 1.262512911356079E-029 1.360842657424898E-029 1.466830732271619E-029 1.581073598330151E-029 1.704214173004609E-029 1.836945446775187E-029 1.980014383097175E-029 2.134226122040310E-029 2.300448511324961E-029 2.479616990254315E-029 2.672739854027322E-029 2.880903928058329E-029 3.105280684236201E-029 3.347132833543096E-029 3.607821432133844E-029 3.888813540866116E-029 4.191690481386721E-029 4.518156735236162E-029 4.870049536052338E-029 5.249349208855033E-029 5.658190314596480E-029 6.098873662696168E-029 6.573879259161472E-029 7.085880263161695E-029 7.637758030598216E-029 8.232618329329969E-029 8.873808817308316E-029 9.564937881981442E-029 1.030989494698984E-028 1.111287236043155E-028 1.197838898787620E-028 1.291131564290098E-028 1.391690249826246E-028 1.500080863196401E-028 1.616913387449402E-028 1.742845313645840E-028 1.878585340979245E-028 2.024897365078030E-028 2.182604776932931E-028 2.352595096642833E-028 2.535824968055818E-028 2.733325542413734E-028 2.946208281297258E-028 3.175671211528431E-028 3.423005667231038E-028 3.689603556990448E-028 3.976965197010245E-028 4.286707754347455E-028 4.620574347742048E-028 4.980443857256875E-028 5.368341497932881E-028 5.786450216964679E-028 6.237122978535387E-028 6.722896005445339E-028 7.246503052054023E-028 7.810890788857568E-028 8.419235385281412E-028 9.074960384009439E-028 9.781755967440093E-028 1.054359972469434E-027 1.136477903604382E-027 1.224991520073173E-027 1.320398944396836E-027 1.423237094945917E-027 1.534084707522311E-027 1.653565592274341E-027 1.782352144273979E-027 1.921169127512351E-027 2.070797753608521E-027 2.232080078185101E-027 2.405923739651721E-027 2.593307067064741E-027 2.795284585808225E-027 3.012992952080207E-027 3.247657349581415E-027 3.500598384404566E-027 3.773239516926374E-027 4.067115072526081E-027 4.383878876212005E-027 4.725313559748753E-027 5.093340593661860E-027 5.490031100576909E-027 5.917617510746168E-027 6.378506125356071E-027 6.875290658317383E-027 7.410766832745859E-027 7.987948114277676E-027 8.610082669760738E-027 9.280671646759078E-027 1.000348887674129E-026 1.078260211283451E-026 1.162239592166332E-026 1.252759635809985E-026 1.350329756178580E-026 1.455499042510238E-026 1.568859349391984E-026 1.691048627502668E-026 1.822754513767892E-026 1.964718201131141E-026 2.117738609718774E-026 2.282676882872551E-026 2.460461233351968E-026 2.652092166978856E-026 2.858648113121120E-026 3.081291493701982E-026 3.321275264888711E-026 3.579949968275369E-026 3.858771331240846E-026 4.159308459254352E-026 4.483252666231708E-026 4.832426992636301E-026 5.208796464889361E-026 5.614479153825674E-026 6.051758094427647E-026 6.523094133917920E-026 7.031139780514424E-026 7.578754130784305E-026 8.169018959601864E-026 8.805256063259347E-026 9.491045953331263E-026 1.023024800649403E-025 1.102702218369769E-025 1.188585244091654E-025 1.281157196322630E-025 1.380939036421603E-025 1.488492300380276E-025 1.604422258943959E-025 1.729381323855680E-025 1.864072719392725E-025 2.009254439857723E-025 2.165743515295458E-025 2.334420609441504E-025 2.516234975778157E-025 2.712209799588529E-025 2.923447956072080E-025 3.151138216925924E-025 3.396561940320594E-025 3.661100281918816E-025 3.946241967518325E-025 4.253591671060458E-025 4.584879045152644E-025 4.941968454925632E-025 5.326869470003836E-025 5.741748173633814E-025 6.188939352614819E-025 6.670959636631322E-025 7.190521660931693E-025 7.750549332054796E-025 8.354194282514808E-025 9.004853607045261E-025 9.706188980215053E-025 1.046214726300406E-024 1.127698271430417E-024 1.215528093234419E-024 1.310198466077248E-024 1.412242160462383E-024 1.522233441270982E-024 1.640791299516195E-024 1.768582935799874E-024 1.906327515075444E-024 2.054800213847101E-024 2.214836582581935E-024 2.387337247884528E-024 2.573272980896615E-024 2.773690160444705E-024 2.989716661680138E-024 3.222568203351166E-024 3.473555189426588E-024 3.744090083573616E-024 4.035695357990698E-024 4.350012061328094E-024 4.688809053914195E-024 5.053992962259025E-024 5.447618908856048E-024 5.871902077665584E-024 6.329230180365461E-024 6.822176893525881E-024 7.353516342326237E-024 7.926238712324559E-024 8.543567077136138E-024 9.208975536721060E-024 9.926208768357845E-024 1.069930310032684E-023 1.153260922690018E-023 1.243081669246943E-023 1.339898028259770E-023 1.444254847051784E-023 1.556739407916043E-023 1.677984733126833E-023 1.808673147359166E-023 1.949540117564108E-023 2.101378391909787E-023 2.265042461080005E-023 2.441453367037461E-023 2.631603886313398E-023 2.836564116993122E-023 3.057487500839482E-023 3.295617314443895E-023 3.552293665935379E-023 3.828961036622291E-023 4.127176410008092E-023 4.448618033929039E-023 4.795094865122984E-023 5.168556749380634E-023 5.571105394569223E-023 6.005006198280279E-023 6.472700996664405E-023 6.976821806197345E-023 7.520205635712162E-023 8.105910452054009E-023 8.737232389205455E-023 9.417724297731062E-023 1.015121573892821E-022 1.094183453620615E-022 1.179403000497553E-022 1.271259799177732E-022 1.370270786356408E-022 1.476993159901686E-022 1.592027514561514E-022 1.716021221892552E-022 1.849672073431749E-022 1.993732207613440E-022 2.149012342530781E-022 2.316386338362300E-022 2.496796115139130E-022 2.691256953528139E-022 2.900863208462295E-022 3.126794467771897E-022 3.370322190475682E-022 3.632816862089568E-022 3.915755707220133E-022 4.220731002847298E-022 4.549459039079362E-022 4.903789777809006E-022 5.285717263625435E-022 5.697390845570953E-022 6.141127272895178E-022 6.619423732875753E-022 7.134971904079011E-022 7.690673104146588E-022 8.289654617354070E-022 8.935287293827773E-022 9.631204519460914E-022 1.038132266328543E-021 1.118986311736988E-021 1.206137605327503E-021 1.300076602876118E-021 1.401331958885094E-021 1.510473501657713E-021 1.628115440084207E-021 1.754919820185346E-021 1.891600250866013E-021 2.038925919845750E-021 2.197725922366632E-021 2.368893927038766E-021 2.553393205081040E-021 2.752262051259984E-021 2.966619627033630E-021 3.197672258783586E-021 3.446720226579404E-021 3.715165081679845E-021 4.004517533951414E-021 4.316405953591498E-021 4.652585535000763E-021 5.014948174375778E-021 5.405533116609074E-021 5.826538431413910E-021 6.280333383256646E-021 6.769471764710547E-021 7.296706268266086E-021 7.865003977476876E-021 8.477563064620030E-021 9.137830788838723E-021 9.849522896054362E-021 1.061664452982379E-020 1.144351277081966E-020 1.233478093177871E-020 1.329546474463997E-020 1.433097058724530E-020 1.544712590845121E-020 1.665021202287308E-020 1.794699945981926E-020 1.934478606534467E-020 2.085143807184910E-020 2.247543436634428E-020 2.422591420651474E-020 2.611272865310194E-020 2.814649600805223E-020 3.033866157041583E-020 3.270156204627972E-020 3.524849497520933E-020 3.799379356390680E-020 4.095290734821927E-020 4.414248913743574E-020 4.758048873016064E-020 5.128625392916207E-020 5.528063942367062E-020 5.958612415187460E-020 6.422693780408664E-020 6.922919717849326E-020 7.462105315684479E-020 8.043284912721358E-020 8.669729174535998E-020 9.344963499569025E-020 1.007278785876320E-019 1.085729818039234E-019 1.170290940042820E-019 1.261438030816305E-019 1.359684032691079E-019 1.465581838049748E-019 1.579727400799142E-019 1.702763090177473E-019 1.835381305769548E-019 1.978328374074060E-019 2.132408748551308E-019 2.298489536787572E-019 2.477505380253442E-019 2.670463714117357E-019 2.878450436714715E-019 3.102636020578087E-019 3.344282099419170E-019 3.604748568131276E-019 3.885501235768775E-019 4.188120074571256E-019 4.514308111454867E-019 4.865901012008811E-019 5.244877410931704E-019 5.653370047043979E-019 6.093677765539570E-019 6.568278455020905E-019 7.079842992122169E-019 7.631250272195101E-019 8.225603410644989E-019 8.866247206091069E-019 9.556786963627424E-019 1.030110878411457E-018 1.110340143368112E-018 1.196817991650962E-018 1.290031088356408E-018 1.390504002024986E-018 1.498802156713321E-018 1.615535013985008E-018 1.741359502727606E-018 1.876983716097220E-018 2.023170896395695E-018 2.180743730305735E-018 2.350588978655685E-018 2.533662466768636E-018 2.730994463479394E-018 2.943695479090270E-018 3.172962514894374E-018 3.420085799435944E-018 3.686456049416966E-018 3.973572296111288E-018 4.283050321330170E-018 4.616631750413580E-018 4.976193853418442E-018 5.363760109661475E-018 5.781511595069069E-018 6.231799256417634E-018 6.717157141538988E-018 7.240316659944244E-018 7.804221954119903E-018 8.412046467998589E-018 9.067210805845304E-018 9.773401982061474E-018 1.053459417023589E-017 1.135507106821053E-017 1.223945000502119E-017 1.319270792537723E-017 1.422020939790982E-017 1.532773680480627E-017 1.652152288272599E-017 1.780828579812291E-017 1.919526695436388E-017 2.069027174340463E-017 2.230171347135522E-017 2.403866070512973E-017 2.591088830662531E-017 2.792893244162848E-017 3.010414987301372E-017 3.244878187191122E-017 3.497602310650376E-017 3.770009589613164E-017 4.063633024857052E-017 4.380125013089657E-017 4.721266645943209E-017 5.088977733207321E-017 5.485327606706392E-017 5.912546765620534E-017 6.373039428784427E-017 6.869397064602680E-017 7.404412974721127E-017 7.981098013524464E-017 8.602697531921658E-017 9.272709640770509E-017 9.994904896719129E-017 1.077334752124620E-016 1.161241827231062E-016 1.251683909732051E-016 1.349169970615597E-016 1.454248621378575E-016 1.567511201366228E-016 1.689595105563680E-016 1.821187371566350E-016 1.963028545914968E-016 2.115916851552911E-016 2.280712679857928E-016 2.458343432527249E-016 2.649808740563401E-016 2.856186089730451E-016 3.078636884137621E-016 3.318412982072725E-016 3.576863740865548E-016 3.855443610425614E-016 4.155720318186493E-016 4.479383691516876E-016 4.828255167245641E-016 5.204298041815212E-016 5.609628519744913E-016 6.046527622578463E-016 6.517454025332161E-016 7.025057892679116E-016 7.572195792731635E-016 8.161946772346846E-016 8.797629684417431E-016 9.482821864654761E-016 1.022137926296475E-015 1.101745814270362E-015 1.187553846992217E-015 1.280044912421800E-015 1.379739507306577E-015 1.487198666254322E-015 1.603027118928252E-015 1.727876693131101E-015 1.862449982928324E-015 2.007504302452083E-015 2.163855947635046E-015 2.332384789856111E-015 2.514039227347577E-015 2.709841522226631E-015 2.920893553183989E-015 3.148383016201232E-015 3.393590108189911E-015 3.657894731162504E-015 3.942784257474585E-015 4.249861899834864E-015 4.580855733182301E-015 4.937628419198349E-015 5.322187688175411E-015 5.736697637224521E-015 6.183490908398950E-015 6.665081815261102E-015 7.184180491757799E-015 7.743708143020616E-015 8.346813483908746E-015 8.996890457795595E-015 9.697597335302727E-015 1.045287730045139E-014 1.126698064006977E-014 1.214448866131582E-014 1.309033947189996E-014 1.410985576807091E-014 1.520877478672818E-014 1.639328059019850E-014 1.767003886534054E-014 1.904623443278965E-014 2.052961167740139E-014 2.212851812739224E-014 2.385195142738903E-014 2.570960996969738E-014 2.771194746868106E-014 2.987023178532933E-014 3.219660833300663E-014 3.470416842114958E-014 3.740702292146395E-014 4.032038167111801E-014 4.346063905970681E-014 4.684546628155690E-014 5.049391077243896E-014 5.442650339017801E-014 5.866537394222282E-014 6.323437571018959E-014 6.815921967202626E-014 7.346761917699061E-014 7.918944588745184E-014 8.535689786491260E-014 9.200468074596356E-014 9.917020302754003E-014 1.068937865602158E-013 1.152188934338327E-013 1.241923705319874E-013 1.338647131312878E-013 1.442903490284504E-013 1.555279447937743E-013 1.676407358740121E-013 1.806968824018305E-013 1.947698527136443E-013 2.099388367335148E-013 2.262891915487809E-013 2.439129216841984E-013 2.629091967765584E-013 2.833849095621111E-013 3.054552773159438E-013 3.292444901268267E-013 3.548864096545328E-013 3.825253223005918E-013 4.123167510294860E-013 4.444283304072524E-013 4.790407497799803E-013 5.163487698979963E-013 5.565623187046489E-013 5.999076724538009E-013 6.466287288001835E-013 6.969883790239486E-013 7.512699871084003E-013 8.097789839908139E-013 8.728445859539889E-013 9.408216468244544E-013 1.014092654395637E-012 1.093069882305519E-012 1.178197709511426E-012 1.269955120210220E-012 1.368858399013264E-012 1.475464033535784E-012 1.590371849634539E-012 1.714228379396180E-012 1.847730504459255E-012 1.991629372331161E-012 2.146734624811008E-012 2.313918948932448E-012 2.494122990769213E-012 2.688360645589061E-012 2.897724756858561E-012 3.123393271174821E-012 3.366635859636671E-012 3.628821062428707E-012 3.911423983587946E-012 4.216034592906095E-012 4.544366667913724E-012 4.898267431192243E-012 5.279727945380799E-012 5.690894308768806E-012 6.134079727849488E-012 6.611777529818685E-012 7.126675183186786E-012 7.681669416224300E-012 8.279882509749606E-012 8.924679853647287E-012 9.619688883292551E-012 1.036881946369120E-011 1.117628591353134E-011 1.204663064980926E-011 1.298474978907753E-011 1.399592067252485E-011 1.508583149937802E-011 1.626061338095383E-011 1.752687478955036E-011 1.889173867559533E-011 2.036288258451384E-011 2.194858183201969E-011 2.365775598693937E-011 2.550001907099248E-011 2.748573357383342E-011 2.962606877996847E-011 3.193306348797551E-011 3.441969375755668E-011 3.709994589950349E-011 3.998889499606106E-011 4.310278971995917E-011 4.645914372034248E-011 5.007683406047763E-011 5.397620725030620E-011 5.817919372483058E-011 6.270943111522918E-011 6.759239707118104E-011 7.285555249620886E-011 7.852849597206227E-011 8.464312989767057E-011 9.123384006373930E-011 9.833768886932184E-011 1.059946233149063E-010 1.142476999816499E-010 1.231433265888880E-010 1.327315230402785E-010 1.430662022914721E-010 1.542054735455403E-010 1.662119685889009E-010 1.791531937130623E-010 1.931019089992141E-010 2.081365371476474E-010 2.243416041254290E-010 2.418082137305215E-010 2.606345598555923E-010 2.809264773259093E-010 3.027980372806260E-010 3.263721871790364E-010 3.517814412919614E-010 3.791686260695638E-010 4.086876801765660E-010 4.405045213255157E-010 4.747979755627166E-010 5.117607833438243E-010 5.516006811618467E-010 5.945415659575521E-010 6.408247562481175E-010 6.907103417012449E-010 7.444786474533134E-010 8.024318053219208E-010 8.648954486421636E-010 9.322205425890239E-010 1.004785351448532E-009 1.082997562105146E-009 1.167296571314367E-009 1.258155950860732E-009 1.356086104645023E-009 1.461637131079118E-009 1.575401910274351E-009 1.698019426576498E-009 1.830178355775915E-009 1.972620923765811E-009 2.126147070523562E-009 2.291618934056995E-009 2.469965683103663E-009 2.662188727817131E-009 2.869367330837182E-009 3.092664656354779E-009 3.333334289642229E-009 3.592727260567800E-009 3.872299610784573E-009 4.173620555039375E-009 4.498381266890372E-009 4.848404352936854E-009 5.225654059114858E-009 5.632247268504764E-009 6.070465354498777E-009 6.542766948832816E-009 7.051801707903467E-009 7.600425136297122E-009 8.191714567998473E-009 8.828986383259016E-009 9.515814558762275E-009 1.025605065876407E-008 1.105384537393557E-008 1.191367172923070E-008 1.284035009154768E-008 1.383907510595816E-008 1.491544473693670E-008 1.607549153990950E-008 1.732571636582659E-008 1.867312466741297E-008 2.012526562414133E-008 2.169027429007265E-008 2.337691700770335E-008 2.519464032907768E-008 2.715362373008075E-008 2.926483639547633E-008 3.154009840052975E-008 3.399214661902308E-008 3.663470573366256E-008 3.948256472655222E-008 4.255165928554090E-008 4.585916057671748E-008 4.942357088155858E-008 5.326482660398810E-008 5.740440925078847E-008 6.186546496722385E-008 6.667293329850395E-008 7.185368589579831E-008 7.743667591683231E-008 8.345309894723250E-008 8.993656634224464E-008 9.692329191166594E-008 1.044522930073392E-007 1.125656071072798E-007 1.213085250586948E-007 1.307298423211885E-007 1.408821295047254E-007 1.518220237679540E-007 1.636105426110170E-007 1.763134218126255E-007 1.900014793467520E-007 2.047510072768974E-007 2.206441937444673E-007 2.377695773915227E-007 2.562225366484941E-007 2.761058166175721E-007 2.975300963195409E-007 3.206145994925387E-007 3.454877522189914E-007 3.722878908937461E-007 4.011640244837284E-007 4.322766551239656E-007 4.657986615103885E-007 5.019162498753655E-007 5.408299776846034E-007 5.827558555674824E-007 6.279265334076459E-007 6.765925770095546E-007 7.290238421915514E-007 7.855109536407418E-007 8.463668965680594E-007 9.119287295461197E-007 9.825594278315265E-007 1.058649866905401E-006 1.140620956925463E-006 1.228925939320776E-006 1.324052857911155E-006 1.426527217531069E-006 1.536914844370309E-006 1.655824963082643E-006 1.783913507029390E-006 1.921886679048877E-006 2.070504781552770E-006 2.230586336114221E-006 2.403012514123612E-006 2.588731901783585E-006 2.788765624353957E-006 3.004212856396225E-006 3.236256746722404E-006 3.486170788874630E-006 3.755325670169795E-006 4.045196634783692E-006 4.357371398921108E-006 4.693558658811901E-006 5.055597235350139E-006 5.445465902222999E-006 5.865293947840060E-006 6.317372524965103E-006 6.804166845729190E-006 7.328329284121479E-006 7.892713451951577E-006 8.500389319671106E-006 9.154659457848203E-006 9.859076480871491E-006 1.061746178016118E-005 1.143392564006218E-005 1.231288883656778E-005 1.325910582551008E-005 1.427768963478346E-005 1.537413858286770E-005 1.655436495429152E-005 1.782472577206203E-005 1.919205581634987E-005 2.066370304913608E-005 2.224756661539507E-005 2.395213760299834E-005 2.578654275582070E-005 2.776059134764908E-005 2.988482543833422E-005 3.217057374883099E-005 3.463000940659880E-005 3.727621183067740E-005 4.012323304216089E-005 4.318616870565913E-005 4.648123422625306E-005 5.002584624795979E-005 5.383870992188814E-005 5.793991233534975E-005 6.235102251853708E-005 6.709519847112526E-005 7.219730167906334E-005 7.768401962051913E-005 8.358399679123811E-005 8.992797481111329E-005 9.674894220827535E-005 1.040822945121094E-004 1.119660053243953E-004 1.204408090765827E-004 1.295503962223708E-004 1.393416216575542E-004 1.498647272036657E-004 1.611735790389327E-004 1.733259210078828E-004 1.863836447924510E-004 2.004130779783877E-004 2.154852911063324E-004 2.316764248514432E-004 2.490680385346499E-004 2.677474812266234E-004 2.878082867673140E-004 3.093505940856601E-004 3.324815942676905E-004 3.573160058857921E-004 3.839765801669753E-004 4.125946376433755E-004 4.433106379948915E-004 4.762747848578210E-004 5.116476674399326E-004 5.496009408442284E-004 5.903180470665170E-004 6.339949786902300E-004 6.808410873586704E-004 7.310799391556074E-004 7.849502190728338E-004 8.427066867838083E-004 9.046211859746638E-004 9.709837095108935E-004 1.042103522730917E-003 1.118310347161423E-003 1.199955606940057E-003 1.287413740204481E-003 1.381083577664726E-003 1.481389790513608E-003 1.588784409744558E-003 1.703748418837962E-003 1.826793421639294E-003 1.958463387084382E-003 2.099336472225116E-003 2.250026924768045E-003 2.411187066056193E-003 2.583509355095944E-003 2.767728533851209E-003 2.964623853593525E-003 3.175021381599930E-003 3.399796386931953E-003 3.639875803394474E-003 3.896240767065587E-003 4.169929224995129E-003 4.462038610786924E-003 4.773728581801987E-003 5.106223811637929E-003 5.460816830348750E-003 5.838870903562884E-003 6.241822940224171E-003 6.671186417121983E-003 7.128554306676240E-003 7.615601992604055E-003 8.134090156102844E-003 8.685867613040008E-003 9.272874080334779E-003 9.897142847248802E-003 1.056080332466723E-002 1.126608344264973E-002 1.201531186355606E-002 1.281091997491545E-002 1.365544362290198E-002 1.455152454382145E-002 1.550191144740302E-002 1.650946070194051E-002 1.757713656746256E-002 1.870801091913197E-002 1.990526239902351E-002 2.117217493032615E-002 2.251213552388466E-002 2.392863130289996E-002 2.542524566756365E-002 2.700565351748552E-002 2.867361544603763E-002 3.043297081723316E-002 3.228762963260132E-002 3.424156309274154E-002 3.629879275598408E-002 3.846337819492733E-002 4.073940305066895E-002 4.313095938446419E-002 4.564213022739928E-002 4.827697023066753E-002 5.103948432228860E-002 5.393360428078214E-002 5.696316314259844E-002 6.013186736813490E-002 6.344326670116440E-002 6.690072166862278E-002 7.050736868211299E-002 7.426608271942418E-002 7.817943758392061E-002 8.224966376208144E-002 8.647860392486517E-002 9.086766614705603E-002 9.541777495050845E-002 1.001293203121949E-001 1.050021048163512E-001 1.100352891717161E-001 1.152273363598161E-001 1.205759547284375E-001 1.260780403955073E-001 1.317296193824787E-001 1.375257899525203E-001 1.434606656869118E-001 1.495273198925947E-001 1.557177319939941E-001 1.620227366223974E-001 1.684319761753565E-001 1.749338576757132E-001 1.815155148139082E-001 1.881627761067340E-001 1.948601401494119E-001 2.015907589741500E-001 2.083364305555410E-001 2.150776015196745E-001 2.217933811176570E-001 2.284615675137302E-001 2.350586874113368E-001 2.415600499955031E-001 2.479398161051251E-001 2.541710834623226E-001 2.602259886766984E-001 2.660758266087253E-001 2.716911875176871E-001 2.770421122351150E-001 2.820982653942410E-001 2.868291265101426E-001 2.912041984448555E-001 2.951932325083981E-001 2.987664691427599E-001 3.018948928143802E-001 3.045504994054625E-001 3.067065740501690E-001 3.083379770137663E-001 3.094214348674270E-001 3.099358338754350E-001 3.098625121926569E-001 3.091855471763620E-001 3.078920338562572E-001 3.059723503886483E-001 3.034204061535704E-001 3.002338680459810E-001 2.964143604715973E-001 2.919676345918187E-001 2.869037024764493E-001 2.812369320223947E-001 2.749860987841559E-001 2.681743912390006E-001 2.608293664752538E-001 2.529828538428969E-001 2.446708047361167E-001 2.359330873794011E-001 2.268132262518524E-001 2.173580865959267E-001 2.076175053018585E-001 1.976438703215073E-001 1.874916516271921E-001 1.772168875741310E-001 1.668766313306546E-001 1.565283627902785E-001 1.462293720573060E-001 1.360361211877621E-001 1.260035913580544E-001 1.161846230160391E-001 1.066292568383851E-001 9.738408347489130E-002 8.849161011038348E-002 7.998965183052123E-002 7.191075565866173E-002 6.428166496410276E-002 5.712283176380556E-002 5.044798429574521E-002 4.426375718887607E-002 3.856939166057327E-002 3.335651351772270E-002 2.860899741631004E-002 2.430664817300593E-002 2.043768929376963E-002 1.698996723338705E-002 1.394777810163672E-002 1.129215824407931E-002 9.001229318307324E-003 7.050593783306247E-003 5.413775317771097E-003 4.062697292012613E-003 2.968191098268985E-003 2.100524945121196E-003 1.429942691742708E-003 9.272014817001684E-004 5.640963718787639E-004 3.139598665654331E-004 1.521242725023991E-004 5.633508228052031E-005 7.104144787162259E-006 -1.200785554061889E-005 -1.418918462320340E-005 -9.263728118505399E-006 -3.674260355635006E-006 -5.692910784449445E-007 -1.387778780781446E-017 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 5.560372642792259E-030 5.993437544627092E-030 6.460231338613895E-030 6.963380970877588E-030 7.505717985011513E-030 8.090294456977310E-030 8.720400171081251E-030 9.399581133686879E-030 1.013165952885219E-029 1.092075522819512E-029 1.177130897603615E-029 1.268810738029626E-029 1.367630984978994E-029 1.474147762950597E-029 1.588960509727707E-029 1.712715349796309E-029 1.846108730499335E-029 1.989891341389636E-029 2.144872338838425E-029 2.311923899673830E-029 2.491986129475600E-029 2.686072353148274E-029 2.895274817546119E-029 3.120770838242153E-029 3.363829425033128E-029 3.625818423466163E-029 3.908212212577332E-029 4.212600002161968E-029 4.540694776270781E-029 4.894342933262759E-029 5.275534676665122E-029 5.686415215316831E-029 6.129296835825628E-029 6.606671915278196E-029 7.121226947434220E-029 7.675857661338564E-029 8.273685317433743E-029 8.918074272881416E-029 9.612650914943819E-029 1.036132406897585E-028 1.116830699587571E-028 1.203814110278899E-028 1.297572150050030E-028 1.398632455134088E-028 1.507563756264178E-028 1.624979079283576E-028 1.751539195032802E-028 1.887956337928172E-028 2.034998214158688E-028 2.193492322057997E-028 2.364330608964719E-028 2.548474490778531E-028 2.746960262460022E-028 2.960904929922763E-028 3.191512496137393E-028 3.440080736823442E-028 3.708008503860288E-028 3.996803597518048E-028 4.308091251810412E-028 4.643623280722143E-028 5.005287936782485E-028 5.395120537465422E-028 5.815314919217986E-028 6.268235783575804E-028 6.756432004845578E-028 7.282650974244722E-028 7.849854061222508E-028 8.461233278972921E-028 9.120229247926713E-028 9.830550558315181E-028 1.059619464077019E-027 1.142147026241365E-027 1.231102177503557E-027 1.326985525182089E-027 1.430336665971337E-027 1.541737222595947E-027 1.661814116972535E-027 1.791243098298772E-027 1.930752545924705E-027 2.081127568407491E-027 2.243214421817470E-027 2.417925272160330E-027 2.606243328716429E-027 2.809228377185899E-027 3.028022743778109E-027 3.263857723809032E-027 3.518060510984627E-027 3.792061666365445E-027 4.087403169045250E-027 4.405747093849971E-027 4.748884964891691E-027 5.118747837616385E-027 5.517417166083381E-027 5.947136516633544E-027 6.410324193866763E-027 6.909586849982648E-027 7.447734154073458E-027 8.027794603922328E-027 8.653032569289917E-027 9.326966662603228E-027 1.005338954042938E-026 1.083638924717093E-026 1.168037222109639E-026 1.259008809217604E-026 1.357065641127628E-026 1.462759546113397E-026 1.576685331124978E-026 1.699484129146503E-026 1.831847007259979E-026 1.974518855720104E-026 2.128302579926302E-026 2.294063618883019E-026 2.472734815576404E-026 2.665321666676169E-026 2.872907981106033E-026 3.096661979327040E-026 3.337842867658454E-026 3.597807924634030E-026 3.878020139273085E-026 4.180056444251926E-026 4.505616590308654E-026 4.856532711823633E-026 5.234779637406926E-026 5.642486003517153E-026 6.081946233655176E-026 6.555633450546815E-026 7.066213393980279E-026 7.616559422622344E-026 8.209768684238283E-026 8.849179545315702E-026 9.538390378179599E-026 1.028127981132613E-025 1.108202855693632E-025 1.194514293840706E-025 1.287548025030419E-025 1.387827609345330E-025 1.495917383900147E-025 1.612425638726218E-025 1.738008040007069E-025 1.873371319929791E-025 2.019277253917258E-025 2.176546947623798E-025 2.346065457819829E-025 2.528786773170161E-025 2.725739182936030E-025 2.938031063813821E-025 3.166857117476915E-025 3.413505093923127E-025 3.679363038464299E-025 3.965927103141670E-025 4.274809966526430E-025 4.607749909289520E-025 4.966620596614338E-025 5.353441622504360E-025 5.770389875325269E-025 6.219811788542457E-025 6.704236545597028E-025 7.226390313232194E-025 7.789211583370195E-025 8.395867709878432E-025 9.049772733287144E-025 9.754606593770451E-025 1.051433584051399E-024 1.133323595401372E-024 1.221591540692865E-024 1.316734159889141E-024 1.419286881123118E-024 1.529826833892454E-024 1.648976096934903E-024 1.777405199061644E-024 1.915836892649942E-024 2.065050221031256E-024 2.225884902664209E-024 2.399246056765250E-024 2.586109296991063E-024 2.787526221837890E-024 3.004630332656266E-024 3.238643412584951E-024 3.490882402302857E-024 3.762766811293179E-024 4.055826706327093E-024 4.371711322124318E-024 4.712198342647014E-024 5.079203905259767E-024 5.474793384054958E-024 5.901193013027902E-024 6.360802414513740E-024 6.856208103390228E-024 7.390198043044300E-024 7.965777335017673E-024 8.586185130626578E-024 9.254912859729488E-024 9.975723879225948E-024 1.075267465186243E-023 1.159013757453164E-023 1.249282558453342E-023 1.346581868227489E-023 1.451459251966672E-023 1.564504921510331E-023 1.686355056844149E-023 1.817695386289801E-023 1.959265045534967E-023 2.111860737220338E-023 2.276341214492666E-023 2.453632113755526E-023 2.644731163814531E-023 2.850713800732691E-023 3.072739219993664E-023 3.312056900032750E-023 3.570013633847547E-023 3.848061108259280E-023 4.147764073478926E-023 4.470809148952481E-023 4.819014315042243E-023 5.194339143959619E-023 5.598895827524909E-023 6.034961063815480E-023 6.504988869594524E-023 7.011624390625417E-023 7.557718787590436E-023 8.146345281386096E-023 8.780816448093370E-023 9.464702860950903E-023 1.020185318424287E-022 1.099641583218217E-022 1.185286231467617E-022 1.277601240135889E-022 1.377106124550073E-022 1.484360862044140E-022 1.599969043307745E-022 1.724581269174943E-022 1.858898811969075E-022 2.003677562008142E-022 2.159732281480466E-022 2.327941189629836E-022 2.509250905053626E-022 2.704681772927887E-022 2.915333607138427E-022 3.142391879633030E-022 3.387134391826043E-022 3.650938465599240E-022 3.935288694368139E-022 4.241785297832824E-022 4.572153127431685E-022 4.928251373177071E-022 5.312084026499285E-022 5.725811157980371E-022 6.171761073444170E-022 6.652443416813055E-022 7.170563293469417E-022 7.729036493602548E-022 8.331005901213151E-022 8.979859181118508E-022 9.679247843494819E-022 1.043310779324509E-021 1.124568147983612E-021 1.212154177225689E-021 1.306561769345672E-021 1.408322215908808E-021 1.518008187665721E-021 1.636236957334355E-021 1.763673873385541E-021 1.901036104381245E-021 2.049096674937387E-021 2.208688816024064E-021 2.380710654085084E-021 2.566130265365493E-021 2.765991123890939E-021 2.981417973758135E-021 3.213623158783549E-021 3.463913445131096E-021 3.733697375314350E-021 4.024493194958591E-021 4.337937396931782E-021 4.675793930927687E-021 5.039964130329141E-021 5.432497412216400E-021 5.855602810736030E-021 6.311661408736112E-021 6.803239737628383E-021 7.333104220886496E-021 7.904236742463658E-021 8.519851427742206E-021 9.183412731452850E-021 9.898654934355245E-021 1.066960315839989E-020 1.150059601863758E-020 1.239631003935204E-020 1.336178597182148E-020 1.440245716181535E-020 1.552418012646782E-020 1.673326751260397E-020 1.803652362199488E-020 1.944128270346575E-020 2.095545022734994E-020 2.258754737456619E-020 2.434675899068805E-020 2.624298527487142E-020 2.828689749452789E-020 3.048999803928462E-020 3.286468515219127E-020 3.542432270245881E-020 3.818331539238322E-020 4.115718982169185E-020 4.436268186551200E-020 4.781783085769108E-020 5.154208110949901E-020 5.555639133501952E-020 5.988335259903714E-020 6.454731545118645E-020 6.957452696182357E-020 7.499327843081265E-020 8.083406460046825E-020 8.712975526865207E-020 9.391578026779289E-020 1.012303288508224E-019 1.091145646060985E-019 1.176128571107701E-019 1.267730316262477E-019 1.366466382409677E-019 1.472892419750794E-019 1.587607354796642E-019 1.711256760902278E-019 1.844536491312812E-019 1.988196595165477E-019 2.143045538485755E-019 2.309954753931594E-019 2.489863544890114E-019 2.683784371525030E-019 2.892808548522701E-019 3.118112386601562E-019 3.360963812346825E-019 3.622729503624559E-019 3.904882580730352E-019 4.209010896555353E-019 4.536825972423712E-019 4.890172629888483E-019 5.271039372690452E-019 5.681569577305146E-019 6.124073555054203E-019 6.601041553662101E-019 7.115157771425381E-019 7.669315462861384E-019 8.266633220844498E-019 8.910472526859704E-019 9.604456668139430E-019 1.035249112814117E-018 1.115878556511650E-018 1.202787750245721E-018 1.296465786413887E-018 1.397439849896517E-018 1.506278184850778E-018 1.623593292570217E-018 1.750045378406108E-018 1.886346067148487E-018 2.033262407775592E-018 2.191621190108659E-018 2.362313597664671E-018 2.546300222891248E-018 2.744616473007455E-018 2.958378396872437E-018 3.188788965672889E-018 3.437144842774795E-018 3.704843680837160E-018 3.993391987252861E-018 4.304413602180304E-018 4.639658836876228E-018 5.001014323756991E-018 5.390513633619787E-018 5.810348719773453E-018 6.262882253481484E-018 6.750660920135591E-018 7.276429750985631E-018 7.843147571078206E-018 8.454003650338576E-018 9.112435651501143E-018 9.822148975891138E-018 1.058713761592797E-017 1.141170663169846E-017 1.230049637808847E-017 1.325850861881286E-017 1.429113467430125E-017 1.540418576184440E-017 1.660392569874136E-017 1.789710615248634E-017 1.929100463636734E-017 2.079346546429934E-017 2.241294389536548E-017 2.415855371649408E-017 2.604011853104290E-017 2.806822704192016E-017 3.025429264035036E-017 3.261061763562119E-017 3.515046248726865E-017 3.788812042930489E-017 4.083899790643901E-017 4.401970127494844E-017 4.744813025610937E-017 5.114357866810015E-017 5.512684300324588E-017 5.942033946162437E-017 6.404823009964194E-017 6.903655880347817E-017 7.441339785259410E-017 8.020900589808679E-017 8.645599824491351E-017 9.318953039625014E-017 1.004474958928685E-016 1.082707395608835E-016 1.167032873679060E-016 1.257925941811169E-016 1.355898108215164E-016 1.461500719171762E-016 1.575328061753943E-016 1.698020708197825E-016 1.830269120743242E-016 1.972817537230064E-016 2.126468159316178E-016 2.292085666886183E-016 2.470602084055249E-016 2.663022024151290E-016 2.870428343191194E-016 3.093988233665501E-016 3.334959792923887E-016 3.594699103124428E-016 3.874667862588269E-016 4.176441611504529E-016 4.501718598274399E-016 4.852329336389156E-016 5.230246905621887E-016 5.637598055501744E-016 6.076675173554110E-016 6.549949185655821E-016 7.060083461100825E-016 7.609948800624481E-016 8.202639591729136E-016 8.841491222222730E-016 9.530098849961083E-016 1.027233763441813E-015 1.107238454393260E-015 1.193474186134703E-015 1.286426252031258E-015 1.386617741483309E-015 1.494612483572765E-015 1.611018219965752E-015 1.736490024926480E-015 1.871733991687565E-015 2.017511205920727E-015 2.174642028667642E-015 2.344010712831759E-015 2.526570379209022E-015 2.723348380058652E-015 2.935452080395517E-015 3.164075089536641E-015 3.410503977967562E-015 3.676125517325236E-015 3.962434484238011E-015 4.271042071935404E-015 4.603684956961094E-015 4.962235072007989E-015 5.348710139867908E-015 5.765285027771277E-015 6.214303986007654E-015 6.698293839694833E-015 7.219978207926380E-015 7.782292830308694E-015 8.388402087130249E-015 9.041716806120477E-015 9.745913455997200E-015 1.050495483480245E-014 1.132311236943851E-014 1.220499015188159E-014 1.315555084732109E-014 1.418014362000705E-014 1.528453423393884E-014 1.647493749776696E-014 1.775805223646861E-014 1.914109898657401E-014 2.063186062704678E-014 2.223872617443575E-014 2.397073798872189E-014 2.583764265547242E-014 2.784994583059800E-014 3.001897135630556E-014 3.235692498086875E-014 3.487696304073995E-014 3.759326649144989E-014 4.052112070382766E-014 4.367700147452026E-014 4.707866773474310E-014 5.074526147888393E-014 5.469741547520100E-014 5.895736936463289E-014 6.354909480093786E-014 6.849843033623774E-014 7.383322681087113E-014 7.958350406555849E-014 8.578161985756889E-014 9.246245193124965E-014 9.966359426726812E-014 1.074255686146843E-013 1.157920524959533E-013 1.248101249676093E-013 1.345305315192895E-013 1.450079696013956E-013 1.563013963877467E-013 1.684743605046564E-013 1.815953595926659E-013 1.957382257125102E-013 2.109825407634883E-013 2.274140842512494E-013 2.451253159239708E-013 2.642158959920146E-013 2.847932458575904E-013 3.069731525087698E-013 3.308804199778184E-013 3.566495715285441E-013 3.844256065226347E-013 4.143648162225786E-013 4.466356631201683E-013 4.814197287369249E-013 5.189127352278633E-013 5.593256465350755E-013 6.028858552850757E-013 6.498384621059680E-013 7.004476545603419E-013 7.549981935074760E-013 8.137970147661122E-013 8.771749571802856E-013 9.454886209019359E-013 1.019122378301227E-012 1.098490530778938E-012 1.184039644042287E-012 1.276251058227867E-012 1.375643596035939E-012 1.482776480180450E-012 1.598252482272861E-012 1.722721311732276E-012 1.856883268184224E-012 2.001493186807517E-012 2.157364678694027E-012 2.325374711926373E-012 2.506468540309707E-012 2.701665024282321E-012 2.912062360563192E-012 3.138844258671460E-012 3.383286600454165E-012 3.646764615388267E-012 3.930760616019206E-012 4.236872337712618E-012 4.566821920998871E-012 4.922465601017215E-012 5.305804147694934E-012 5.718994116811524E-012 6.164359982040435E-012 6.644407189725327E-012 7.161836307393779E-012 7.719558119738150E-012 8.320710071484756E-012 8.968673905643719E-012 9.667094638278534E-012 1.041990108498917E-011 1.123132798723976E-011 1.210593974472417E-011 1.304865614811616E-011 1.406478002683386E-011 1.516002707699089E-011 1.634055795386302E-011 1.761301297896248E-011 1.898454942884781E-011 2.046288179088717E-011 2.205632513323421E-011 2.377384188579808E-011 2.562509217568735E-011 2.762048816699891E-011 2.977125258701892E-011 3.208948187796992E-011 3.458821404553771E-011 3.728150211950037E-011 4.018449308888228E-011 4.331351299318117E-011 4.668615875183679E-011 5.032139705095847E-011 5.423967093030538E-011 5.846301471504960E-011 6.301517789816344E-011 6.792175842378130E-011 7.321034682485055E-011 7.891068100905015E-011 8.505481353699257E-011 9.167729165989108E-011 9.881535145650210E-011 1.065091271271912E-010 1.148018763863895E-010 1.237402234744397E-010 1.333744212838651E-010 1.437586334906003E-010 1.549512388502932E-010 1.670151593771372E-010 1.800182132358984E-010 1.940334964080230E-010 2.091397924996979E-010 2.254220159345787E-010 2.429716881056533E-010 2.618874518207987E-010 2.822756257270207E-010 3.042507993082988E-010 3.279364789506068E-010 3.534657795539609E-010 3.809821720056017E-010 4.106402900551722E-010 4.426067960773729E-010 4.770613184157390E-010 5.141974594329801E-010 5.542238798425513E-010 5.973654729485123E-010 6.438646249360842E-010 6.939825745542628E-010 7.480008804078057E-010 8.062229983348814E-010 8.689759864867888E-010 9.366123374432335E-010 1.009511957167275E-009 1.088084294098113E-009 1.172770636706449E-009 1.264046587964441E-009 1.362424730728792E-009 1.468457503459710E-009 1.582740295191431E-009 1.705914784255524E-009 1.838672534334172E-009 1.981758870274414E-009 2.135977054901137E-009 2.302192789989228E-009 2.481339063329553E-009 2.674421380858111E-009 2.882523393381990E-009 3.106812968162830E-009 3.348548727463834E-009 3.609087098136127E-009 3.889889901948369E-009 4.192532540946505E-009 4.518712813384220E-009 4.870260415685942E-009 5.249147178671907E-009 5.657498102355007E-009 6.097603236561029E-009 6.571930494606503E-009 7.083139449952606E-009 7.634096206830967E-009 8.227889424100890E-009 8.867847572064287E-009 9.557557540487344E-009 1.030088467118582E-008 1.110199435808735E-008 1.196537530201959E-008 1.289586458443508E-008 1.389867466571117E-008 1.497942248281570E-008 1.614416079555468E-008 1.739941195380024E-008 1.875220428307383E-008 2.021011128067410E-008 2.178129383993452E-008 2.347454574570734E-008 2.529934267873556E-008 2.726589500934640E-008 2.938520466965346E-008 3.166912642863233E-008 3.413043387506639E-008 3.678289052381051E-008 3.964132639175478E-008 4.272172048692300E-008 4.604128966994209E-008 4.961858436244363E-008 5.347359163651704E-008 5.762784626311329E-008 6.210455030119829E-008 6.692870191806816E-008 7.212723413550596E-008 7.772916423859738E-008 8.376575472740326E-008 9.027068661502593E-008 9.728024609602822E-008 1.048335255467798E-007 1.129726400063996E-007 1.217429602804040E-007 1.311933639782714E-007 1.413765058138246E-007 1.523491086809355E-007 1.641722770666808E-007 1.769118345274142E-007 1.906386870294102E-007 2.054292141770080E-007 2.213656904152760E-007 2.385367384956313E-007 2.570378176967186E-007 2.769717493873962E-007 2.984492828424447E-007 3.215897042910566E-007 3.465214925575069E-007 3.733830247974479E-007 4.023233361048206E-007 4.335029371379804E-007 4.670946941138236E-007 5.032847758862268E-007 5.422736732270527E-007 5.842772957263335E-007 6.295281522093221E-007 6.782766209288947E-007 7.307923163822158E-007 7.873655599137627E-007 8.483089620568496E-007 9.139591249136576E-007 9.846784736298355E-007 1.060857226673042E-006 1.142915515298388E-006 1.231305663417695E-006 1.326514639798435E-006 1.429066695615374E-006 1.539526201042026E-006 1.658500695847163E-006 1.786644169904352E-006 1.924660590716306E-006 2.073307696343236E-006 2.233401073405148E-006 2.405818541361950E-006 2.591504865659561E-006 2.791476824155482E-006 3.006828652859847E-006 3.238737898949787E-006 3.488471711087002E-006 3.757393599197148E-006 4.046970698105946E-006 4.358781571965324E-006 4.694524599146137E-006 5.056026979793933E-006 5.445254411645510E-006 5.864321482547341E-006 6.315502831875511E-006 6.801245136486569E-006 7.324179980919638E-006 7.887137675642756E-006 8.493162091639971E-006 9.145526584343353E-006 9.847751085214462E-006 1.060362044420171E-005 1.141720411266240E-005 1.229287726192149E-005 1.323534343961324E-005 1.424965887257008E-005 1.534125853250072E-005 1.651598408884628E-005 1.778011388098110E-005 1.914039505128121E-005 2.060407798993105E-005 2.217895325201340E-005 2.387339111846902E-005 2.569638398337285E-005 2.765759176221086E-005 2.976739052817922E-005 3.203692459701004E-005 3.447816229496924E-005 3.710395565945455E-005 3.992810433757993E-005 4.296542396447958E-005 4.623181932095876E-005 4.974436258815934E-005 5.352137703684629E-005 5.758252650885574E-005 6.194891107021640E-005 6.664316923770117E-005 7.168958720437372E-005 7.711421551431955E-005 8.294499366299708E-005 8.921188312633546E-005 9.594700935029267E-005 1.031848132617106E-004 1.109622128923157E-004 1.193187757391806E-004 1.282969025181316E-004 1.379420230005470E-004 1.483028046593063E-004 1.594313748858718E-004 1.713835575778037E-004 1.842191249338932E-004 1.980020653336303E-004 2.128008682165457E-004 2.286888269183733E-004 2.457443604601427E-004 2.640513553285683E-004 2.836995283258263E-004 3.047848116077064E-004 3.274097610691666E-004 3.516839892750025E-004 3.777246241711508E-004 4.056567948478190E-004 4.356141456600134E-004 4.677393800407114E-004 5.021848353704967E-004 5.391130902905023E-004 5.786976058633222E-004 6.211234020006907E-004 6.665877705818145E-004 7.153010266851837E-004 7.674872993463181E-004 8.233853632339979E-004 8.832495126050829E-004 9.473504788545016E-004 1.015976392916848E-003 1.089433793702434E-003 1.168048683655072E-003 1.252167632408326E-003 1.342158929378670E-003 1.438413785975252E-003 1.541347587917668E-003 1.651401197936364E-003 1.769042308878898E-003 1.894766846961108E-003 2.029100424575326E-003 2.172599841702664E-003 2.325854634560443E-003 2.489488669655879E-003 2.664161780898596E-003 2.850571446851404E-003 3.049454504564202E-003 3.261588895732672E-003 3.487795440154083E-003 3.728939630606538E-003 3.985933442352372E-003 4.259737149461532E-003 4.551361139055243E-003 4.861867713386544E-003 5.192372868394684E-003 5.544048035993794E-003 5.918121775879016E-003 6.315881401052966E-003 6.738674519591175E-003 7.187910473376484E-003 7.665061652635924E-003 8.171664663119313E-003 8.709321320657406E-003 9.279699445644943E-003 9.884533427709204E-003 1.052562452845624E-002 1.120484088775174E-002 1.192411719649264E-002 1.268545399628808E-002 1.349091656390451E-002 1.434263333576024E-002 1.524279382521835E-002 1.619364598293531E-002 1.719749294812625E-002 1.825668913634129E-002 1.937363560724420E-002 2.055077465401871E-002 2.179058355442435E-002 2.309556742227063E-002 2.446825109722868E-002 2.591117001052076E-002 2.742685996422508E-002 2.901784576275421E-002 3.068662863663782E-002 3.243567240113929E-002 3.426738829556118E-002 3.618411845347858E-002 3.818811795965276E-002 4.028153545617029E-002 4.246639226852088E-002 4.474456003197110E-002 4.711773680986640E-002 4.958742170844492E-002 5.215488800753570E-002 5.482115484319192E-002 5.758695749695385E-002 6.045271636714995E-002 6.341850472039584E-002 6.648401534632919E-002 6.964852626556411E-002 7.291086566980218E-002 7.626937630397516E-002 7.972187953297956E-002 8.326563936991258E-002 8.689732677842031E-002 9.061298459852615E-002 9.440799348279932E-002 9.827703926741653E-002 1.022140822401327E-001 1.062123288037570E-001 1.102642060687356E-001 1.143613399411831E-001 1.184945373022255E-001 1.226537729000067E-001 1.268281815961037E-001 1.310060566223344E-001 1.351748545109913E-001 1.393212073601156E-001 1.434309430845060E-001 1.474891142814675E-001 1.514800363067250E-001 1.553873351094232E-001 1.591940053146021E-001 1.628824789662107E-001 1.664347052528108E-001 1.698322414311495E-001 1.730563550395152E-001 1.760881373532161E-001 1.789086278790936E-001 1.814989495154087E-001 1.838404538189292E-001 1.859148756242801E-001 1.877044960536610E-001 1.891923127406140E-001 1.903622158727203E-001 1.911991684386014E-001 1.916893888485753E-001 1.918205338902818E-001 1.915818797855989E-001 1.909644989384534E-001 1.899614298101821E-001 1.885678372355373E-001 1.867811604037214E-001 1.846012456803732E-001 1.820304614430988E-001 1.790737921493726E-001 1.757389089550488E-001 1.720362143570579E-001 1.679788585467044E-001 1.635827254306989E-001 1.588663866045908E-001 1.538510219450521E-001 1.485603059194166E-001 1.430202591872749E-001 1.372590655825725E-001 1.313068551069566E-001 1.251954541260426E-001 1.189581045291278E-001 1.126291541777284E-001 1.062437215173491E-001 9.983733774790668E-002 9.344557042960344E-002 8.710363283207992E-002 8.084598370583621E-002 7.470592245864918E-002 6.871518495063975E-002 6.290354527697156E-002 5.729842898745749E-002 5.192454320132506E-002 4.680352902088283E-002 4.195364154174330E-002 3.738946261601081E-002 3.312165136986767E-002 2.915673733480736E-002 2.549696095451101E-002 2.214016621501347E-002 1.907975025805581E-002 1.630467512604672E-002 1.380157799743695E-002 1.156161521604002E-002 9.575600270086679E-003 7.832305754435137E-003 6.318675895921513E-003 5.020070004384924E-003 3.920533312606972E-003 3.003090777397521E-003 2.250058561858462E-003 1.643367136236945E-003 1.164889253305754E-003 7.967655043583793E-004 5.217197715579186E-004 3.233566851019998E-004 1.864331865757130E-004 9.709650247965301E-005 4.308124442814476E-005 1.385896530672198E-005 7.342944721364097E-007 -3.117278259870404E-006 -2.673834770604983E-006 -1.156394837116548E-006 -1.847397750470714E-007 -1.040834085586084E-017 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 2.721530313368659E-012 2.790426181283072E-012 2.861066156398924E-012 2.933494391000304E-012 3.007756155091677E-012 3.083897864693139E-012 3.161967110851921E-012 3.242012689388367E-012 3.324084631394890E-012 3.408234234507038E-012 3.494514094966200E-012 3.582978140493950E-012 3.673681663998643E-012 3.766681358135270E-012 3.862035350740229E-012 3.959803241163100E-012 4.060046137518198E-012 4.162826694879115E-012 4.268209154440188E-012 4.376259383669343E-012 4.487044917477391E-012 4.600635000429558E-012 4.717100630025600E-012 4.836514601075544E-012 4.958951551198810E-012 5.084488007475159E-012 5.213202434276603E-012 5.345175282310205E-012 5.480489038902381E-012 5.619228279556172E-012 5.761479720813666E-012 5.907332274456689E-012 6.056877103079550E-012 6.210207677068636E-012 6.367419833024436E-012 6.528611833662554E-012 6.693884429231087E-012 6.863340920482823E-012 7.037087223241581E-012 7.215231934603039E-012 7.397886400811451E-012 7.585164786854677E-012 7.777184147821041E-012 7.974064502062555E-012 8.175928906210290E-012 8.382903532088772E-012 8.595117745577517E-012 8.812704187468891E-012 9.035798856372932E-012 9.264541193720920E-012 9.499074170920784E-012 9.739544378718908E-012 9.986102118824131E-012 1.023890149785118E-011 1.049810052364235E-011 1.076386120402755E-011 1.103634964808447E-011 1.131573616996214E-011 1.160219539533286E-011 1.189590637053894E-011 1.219705267450245E-011 1.250582253346803E-011 1.282240893865046E-011 1.314700976686042E-011 1.347982790418397E-011 1.382107137279294E-011 1.417095346096561E-011 1.452969285639877E-011 1.489751378289466E-011 1.527464614050820E-011 1.566132564924197E-011 1.605779399637891E-011 1.646429898754477E-011 1.688109470159460E-011 1.730844164942048E-011 1.774660693677913E-011 1.819586443124185E-011 1.865649493337057E-011 1.912878635222748E-011 1.961303388532745E-011 2.010954020314615E-011 2.061861563829896E-011 2.114057837950892E-011 2.167575467048514E-011 2.222447901383569E-011 2.278709438014262E-011 2.336395242232977E-011 2.395541369545730E-011 2.456184788208042E-011 2.518363402331293E-011 2.582116075574029E-011 2.647482655433027E-011 2.714503998149261E-011 2.783221994244396E-011 2.853679594703732E-011 2.925920837821959E-011 2.999990876728531E-011 3.075936007609852E-011 3.153803698645892E-011 3.233642619679353E-011 3.315502672635898E-011 3.399435022714497E-011 3.485492130367330E-011 3.573727784089286E-011 3.664197134037529E-011 3.756956726502140E-011 3.852064539249397E-011 3.949580017759765E-011 4.049564112383263E-011 4.152079316435426E-011 4.257189705257655E-011 4.364960976266396E-011 4.475460490016173E-011 4.588757312302139E-011 4.704922257328436E-011 4.824027931969391E-011 4.946148781151176E-011 5.071361134382340E-011 5.199743253462207E-011 5.331375381397073E-011 5.466339792554713E-011 5.604720844088518E-011 5.746605028663496E-011 5.892081028516991E-011 6.041239770888004E-011 6.194174484849659E-011 6.350980759580428E-011 6.511756604110485E-011 6.676602508580549E-011 6.845621507051516E-011 7.018919241904095E-011 7.196604029868768E-011 7.378786929727260E-011 7.565581811727904E-011 7.757105428758317E-011 7.953477489319694E-011 8.154820732348587E-011 8.361261003932739E-011 8.572927335968988E-011 8.789952026812439E-011 9.012470723967251E-011 9.240622508870748E-011 9.474549983823889E-011 9.714399361122357E-011 9.960320554444047E-011 1.021246727254997E-010 1.047099711535729E-010 1.073607167244445E-010 1.100785662404988E-010 1.128652184462765E-010 1.157224150902446E-010 1.186519420134475E-010 1.216556302657150E-010 1.247353572501288E-010 1.278930478964612E-010 1.311306758643186E-010 1.344502647767441E-010 1.378538894850476E-010 1.413436773656562E-010 1.449218096497942E-010 1.485905227868240E-010 1.523521098421001E-010 1.562089219302106E-010 1.601633696845004E-010 1.642179247637970E-010 1.683751213972767E-010 1.726375579684426E-010 1.770078986391991E-010 1.814888750150400E-010 1.860832878523922E-010 1.907940088091805E-010 1.956239822397076E-010 2.005762270349729E-010 2.056538385095781E-010 2.108599903364011E-010 2.161979365302450E-010 2.216710134817054E-010 2.272826420425237E-010 2.330363296637319E-010 2.389356725879253E-010 2.449843580970322E-010 2.511861668169869E-010 2.575449750807453E-010 2.640647573511205E-010 2.707495887049537E-010 2.776036473801706E-010 2.846312173873188E-010 2.918366911872152E-010 2.992245724363793E-010 3.067994788019676E-010 3.145661448479663E-010 3.225294249944526E-010 3.306942965517660E-010 3.390658628314928E-010 3.476493563362046E-010 3.564501420299439E-010 3.654737206915076E-010 3.747257323526127E-010 3.842119598231040E-010 3.939383323054030E-010 4.039109291004538E-010 4.141359834074906E-010 4.246198862199922E-010 4.353691903202659E-010 4.463906143751549E-010 4.576910471354263E-010 4.692775517414720E-010 4.811573701380042E-010 4.933379276005130E-010 5.058268373763129E-010 5.186319054430713E-010 5.317611353878105E-010 5.452227334094130E-010 5.590251134477710E-010 5.731769024427806E-010 5.876869457264662E-010 6.025643125516110E-010 6.178183017603417E-010 6.334584475962175E-010 6.494945256634531E-010 6.659365590369970E-010 6.827948245272922E-010 7.000798591036263E-010 7.178024664800916E-010 7.359737238682737E-010 7.546049889008763E-010 7.737079067306306E-010 7.932944173089037E-010 8.133767628485744E-010 8.339674954758309E-010 8.550794850756692E-010 8.767259273360158E-010 8.989203519954727E-010 9.216766312998659E-010 9.450089886728738E-010 9.689320076061442E-010 9.934606407744774E-010 1.018610219381756E-009 1.044396462743474E-009 1.070835488111844E-009 1.097943820749627E-009 1.125738404258995E-009 1.154236611171857E-009 1.183456253808293E-009 1.213415595409865E-009 1.244133361554772E-009 1.275628751861960E-009 1.307921451991397E-009 1.341031645948624E-009 1.374980028700314E-009 1.409787819109327E-009 1.445476773197250E-009 1.482069197742621E-009 1.519587964223502E-009 1.558056523112911E-009 1.597498918536203E-009 1.637939803299488E-009 1.679404454298493E-009 1.721918788317526E-009 1.765509378228371E-009 1.810203469599253E-009 1.856028997724319E-009 1.903014605084157E-009 1.951189659248360E-009 2.000584271231331E-009 2.051229314312718E-009 2.103156443334308E-009 2.156398114485474E-009 2.210987605589410E-009 2.266959036903014E-009 2.324347392443242E-009 2.383188541853410E-009 2.443519262822999E-009 2.505377264075067E-009 2.568801208935557E-009 2.633830739499300E-009 2.700506501407802E-009 2.768870169254178E-009 2.838964472631410E-009 2.910833222839866E-009 2.984521340270981E-009 3.060074882484203E-009 3.137541072994681E-009 3.216968330789668E-009 3.298406300592322E-009 3.381905883891400E-009 3.467519270756723E-009 3.555299972459849E-009 3.645302854920750E-009 3.737584173001028E-009 3.832201605665401E-009 3.929214292033288E-009 4.028682868342999E-009 4.130669505851770E-009 4.235237949695219E-009 4.342453558730531E-009 4.452383346388338E-009 4.565096022558716E-009 4.680662036537631E-009 4.799153621060536E-009 4.920644837450716E-009 5.045211621910581E-009 5.172931832984887E-009 5.303885300225450E-009 5.438153874087902E-009 5.575821477091555E-009 5.716974156274464E-009 5.861700136976333E-009 6.010089877983080E-009 6.162236128067347E-009 6.318233983960359E-009 6.478180949791503E-009 6.642176998032398E-009 6.810324631984116E-009 6.982728949846114E-009 7.159497710407154E-009 7.340741400399269E-009 7.526573303556805E-009 7.717109571423779E-009 7.912469295953782E-009 8.112774583947689E-009 8.318150633376060E-009 8.528725811633475E-009 8.744631735774056E-009 8.966003354778099E-009 9.192979033901690E-009 9.425700641161199E-009 9.664313636007618E-009 9.908967160245603E-009 1.015981413125424E-008 1.041701133756785E-008 1.068071953687636E-008 1.095110355650678E-008 1.122833239644852E-008 1.151257933498669E-008 1.180402203700990E-008 1.210284266505977E-008 1.240922799319184E-008 1.272336952371903E-008 1.304546360691071E-008 1.337571156372187E-008 1.371431981162934E-008 1.406149999365417E-008 1.441746911064949E-008 1.478244965693847E-008 1.515666975938532E-008 1.554036331998739E-008 1.593377016207724E-008 1.633713618022590E-008 1.675071349394118E-008 1.717476060525719E-008 1.760954256031333E-008 1.805533111502394E-008 1.851240490494241E-008 1.898104961942518E-008 1.946155818020544E-008 1.995423092448756E-008 2.045937579267704E-008 2.097730852086261E-008 2.150835283817228E-008 2.205284066912529E-008 2.261111234110684E-008 2.318351679709591E-008 2.377041181377841E-008 2.437216422518248E-008 2.498915015197562E-008 2.562175523656663E-008 2.627037488416044E-008 2.693541450991473E-008 2.761728979235508E-008 2.831642693320497E-008 2.903326292379462E-008 2.976824581821438E-008 3.052183501338383E-008 3.129450153621131E-008 3.208672833802428E-008 3.289901059645336E-008 3.373185602495972E-008 3.458578519019899E-008 3.546133183742058E-008 3.635904322410477E-008 3.727948046204726E-008 3.822321886810524E-008 3.919084832382239E-008 4.018297364416067E-008 4.120021495556612E-008 4.224320808360889E-008 4.331260495043494E-008 4.440907398228384E-008 4.553330052732181E-008 4.668598728405546E-008 4.786785474059216E-008 4.907964162502156E-008 5.032210536720121E-008 5.159602257223360E-008 5.290218950593191E-008 5.424142259257743E-008 5.561455892527944E-008 5.702245678925813E-008 5.846599619837657E-008 5.994607944525736E-008 6.146363166532950E-008 6.301960141515493E-008 6.461496126540108E-008 6.625070840882579E-008 6.792786528365758E-008 6.964748021276103E-008 7.141062805898496E-008 7.321841089710610E-008 7.507195870278640E-008 7.697243005897576E-008 7.892101288020342E-008 8.091892515520688E-008 8.296741570836751E-008 8.506776498042789E-008 8.722128582897602E-008 8.942932434920348E-008 9.169326071544291E-008 9.401451004401946E-008 9.639452327795000E-008 9.883478809404614E-008 1.013368298329896E-007 1.039022124529573E-007 1.065325395073991E-007 1.092294551475750E-007 1.119946451504814E-007 1.148298379728092E-007 1.177368058315926E-007 1.207173658122254E-007 1.237733810045393E-007 1.269067616676499E-007 1.301194664243113E-007 1.334135034855083E-007 1.367909319060725E-007 1.402538628720925E-007 1.438044610209329E-007 1.474449457946877E-007 1.511775928279059E-007 1.550047353704739E-007 1.589287657465309E-007 1.629521368503383E-007 1.670773636800390E-007 1.713070249102606E-007 1.756437645045581E-007 1.800902933686951E-007 1.846493910458037E-007 1.893239074544858E-007 1.941167646709381E-007 1.990309587562257E-007 2.040695616298386E-007 2.092357229907158E-007 2.145326722869257E-007 2.199637207352530E-007 2.255322633919415E-007 2.312417812759035E-007 2.370958435457136E-007 2.430981097317625E-007 2.492523320249565E-007 2.555623576234098E-007 2.620321311385897E-007 2.686656970624279E-007 2.754672022969429E-007 2.824408987479569E-007 2.895911459845337E-007 2.969224139658083E-007 3.044392858369095E-007 3.121464607957375E-007 3.200487570323856E-007 3.281511147430530E-007 3.364585992203385E-007 3.449764040218516E-007 3.537098542191320E-007 3.626644097289033E-007 3.718456687287691E-007 3.812593711594788E-007 3.909114023159597E-007 4.008077965293905E-007 4.109547409425872E-007 4.213585793811144E-007 4.320258163225154E-007 4.429631209661765E-007 4.541773314063650E-007 4.656754589110685E-007 4.774646923093224E-007 4.895524024897716E-007 5.019461470133052E-007 5.146536748426497E-007 5.276829311918978E-007 5.410420624990109E-007 5.547394215244358E-007 5.687835725790201E-007 5.831832968845327E-007 5.979475980701308E-007 6.130857078082606E-007 6.286070915935094E-007 6.445214546680616E-007 6.608387480974734E-007 6.775691750005866E-007 6.947231969375069E-007 7.123115404596784E-007 7.303452038261426E-007 7.488354638902510E-007 7.677938831611207E-007 7.872323170443251E-007 8.071629212663555E-007 8.275981594875177E-007 8.485508111081042E-007 8.700339792726993E-007 8.920610990777218E-007 9.146459459873379E-007 9.378026444630734E-007 9.615456768125599E-007 9.858898922629884E-007 1.010850516265013E-006 1.036443160032968E-006 1.062683830327415E-006 1.089588939486207E-006 1.117175315710402E-006 1.145460213611511E-006 1.174461325026780E-006 1.204196790109290E-006 1.234685208699955E-006 1.265945651988532E-006 1.297997674471087E-006 1.330861326211445E-006 1.364557165414406E-006 1.399106271318694E-006 1.434530257417749E-006 1.470851285016834E-006 1.508092077134973E-006 1.546275932760570E-006 1.585426741469746E-006 1.625568998416665E-006 1.666727819705362E-006 1.708928958152863E-006 1.752198819453555E-006 1.796564478755155E-006 1.842053697656746E-006 1.888694941639729E-006 1.936517397942769E-006 1.985550993892157E-006 2.035826415699198E-006 2.087375127736618E-006 2.140229392306358E-006 2.194422289911252E-006 2.249987740043568E-006 2.306960522503770E-006 2.365376299262954E-006 2.425271636883075E-006 2.486684029509253E-006 2.549651922448846E-006 2.614214736352466E-006 2.680412892012295E-006 2.748287835793776E-006 2.817882065716806E-006 2.889239158203344E-006 2.962403795508511E-006 3.037421793852796E-006 3.114340132273550E-006 3.193206982214292E-006 3.274071737870843E-006 3.356985047313963E-006 3.441998844408410E-006 3.529166381549200E-006 3.618542263236034E-006 3.710182480507809E-006 3.804144446259311E-006 3.900487031463053E-006 3.999270602319764E-006 4.100557058361569E-006 4.204409871532640E-006 4.310894126272739E-006 4.420076560629676E-006 4.532025608427559E-006 4.646811442518213E-006 4.764506019144056E-006 4.885183123441484E-006 5.008918416114342E-006 5.135789481308258E-006 5.265875875717026E-006 5.399259178953442E-006 5.536023045217584E-006 5.676253256296434E-006 5.820037775930022E-006 5.967466805579704E-006 6.118632841635458E-006 6.273630734100137E-006 6.432557746789282E-006 6.595513619086274E-006 6.762600629296266E-006 6.933923659635122E-006 7.109590262902244E-006 7.289710730881955E-006 7.474398164513522E-006 7.663768545884700E-006 7.857940812085473E-006 8.057036930985953E-006 8.261181978979819E-006 8.470504220746844E-006 8.685135191090402E-006 8.905209778905774E-006 9.130866313329914E-006 9.362246652142693E-006 9.599496272465243E-006 9.842764363837578E-006 1.009220392370596E-005 1.034797185542631E-005 1.061022906882169E-005 1.087914058336293E-005 1.115487563407156E-005 1.143760778017459E-005 1.172751501663484E-005 1.202477988859166E-005 1.232958960880992E-005 1.264213617822711E-005 1.296261650967893E-005 1.329123255485854E-005 1.362819143465920E-005 1.397370557293051E-005 1.432799283378606E-005 1.469127666253464E-005 1.506378623035108E-005 1.544575658278314E-005 1.583742879217828E-005 1.623905011419959E-005 1.665087414846451E-005 1.707316100349393E-005 1.750617746602892E-005 1.795019717490136E-005 1.840550079952730E-005 1.887237622316791E-005 1.935111873113638E-005 1.984203120402560E-005 2.034542431613198E-005 2.086161673923182E-005 2.139093535181852E-005 2.193371545401840E-005 2.249030098828609E-005 2.306104476609652E-005 2.364630870074678E-005 2.424646404650564E-005 2.486189164425280E-005 2.549298217381075E-005 2.614013641313503E-005 2.680376550462663E-005 2.748429122869148E-005 2.818214628482281E-005 2.889777458038437E-005 2.963163152736045E-005 3.038418434724515E-005 3.115591238440377E-005 3.194730742804922E-005 3.275887404316919E-005 3.359112991064775E-005 3.444460617683364E-005 3.531984781286683E-005 3.621741398404275E-005 3.713787842951271E-005 3.808182985264738E-005 3.904987232237798E-005 4.004262568583292E-005 4.106072599265468E-005 4.210482593130789E-005 4.317559527778048E-005 4.427372135705400E-005 4.539990951772223E-005 4.655488362016923E-005 4.773938653876880E-005 4.895418067847794E-005 5.020004850632802E-005 5.147779309825256E-005 5.278823870175978E-005 5.413223131494865E-005 5.551063928233807E-005 5.692435390815877E-005 5.837429008753735E-005 5.986138695624091E-005 6.138660855955332E-005 6.295094454088562E-005 6.455541085080185E-005 6.620105047709063E-005 6.788893419660217E-005 6.962016134954241E-005 7.139586063700160E-005 7.321719094244920E-005 7.508534217803747E-005 7.700153615649102E-005 7.896702748951571E-005 8.098310451355977E-005 8.305109024382218E-005 8.517234335763921E-005 8.734825920818616E-005 8.958027086908363E-005 9.186985021196226E-005 9.421850901712250E-005 9.662780011909470E-005 9.909931858778551E-005 1.016347029473090E-004 1.042356364325198E-004 1.069038482859791E-004 1.096411150959040E-004 1.124492621767693E-004 1.153301649940653E-004 1.182857506351717E-004 1.213179993272604E-004 1.244289460045880E-004 1.276206819268666E-004 1.308953563502719E-004 1.342551782531661E-004 1.377024181189219E-004 1.412394097771174E-004 1.448685523062414E-004 1.485923119994852E-004 1.524132243964249E-004 1.563338963826007E-004 1.603570083601337E-004 1.644853164914614E-004 1.687216550196231E-004 1.730689386673621E-004 1.775301651184328E-004 1.821084175844821E-004 1.868068674600422E-004 1.916287770699042E-004 1.965775025120927E-004 2.016564965998830E-004 2.068693119071803E-004 2.122196039214302E-004 2.177111343075135E-004 2.233477742878762E-004 2.291335081432792E-004 2.350724368383988E-004 2.411687817781042E-004 2.474268886992523E-004 2.538512317033805E-004 2.604464174359661E-004 2.672171894184531E-004 2.741684325391879E-004 2.813051777092920E-004 2.886326066909004E-004 2.961560571043259E-004 3.038810276216480E-004 3.118131833544401E-004 3.199583614436883E-004 3.283225768602184E-004 3.369120284241451E-004 3.457331050532189E-004 3.547923922485883E-004 3.640966788288029E-004 3.736529639218740E-004 3.834684642268304E-004 3.935506215553198E-004 4.039071106660084E-004 4.145458474036706E-004 4.254749971555583E-004 4.367029836396359E-004 4.482384980376041E-004 4.600905084881568E-004 4.722682699558187E-004 4.847813344913125E-004 4.976395619000164E-004 5.108531308367916E-004 5.244325503448250E-004 5.383886718580273E-004 5.527327016866684E-004 5.674762140078320E-004 5.826311643816759E-004 5.982099038170516E-004 6.142251934098820E-004 6.306902195792759E-004 6.476186099276886E-004 6.650244497518525E-004 6.829222992331709E-004 7.013272113371218E-004 7.202547504526229E-004 7.397210118035164E-004 7.597426416664722E-004 7.803368584296611E-004 8.015214745297682E-004 8.233149193058368E-004 8.457362628088572E-004 8.688052406108350E-004 8.925422796552157E-004 9.169685251955039E-004 9.421058688693954E-004 9.679769779573499E-004 9.946053258787951E-004 1.022015223978755E-003 1.050231854662009E-003 1.079281305933248E-003 1.109190607404937E-003 1.139987767836567E-003 1.171701814271829E-003 1.204362832843620E-003 1.238002011319144E-003 1.272651683460520E-003 1.308345375279484E-003 1.345117853268490E-003 1.383005174693056E-003 1.422044740034452E-003 1.462275347675344E-003 1.503737250924211E-003 1.546472217479230E-003 1.590523591435434E-003 1.635936357943883E-003 1.682757210634756E-003 1.731034621922958E-003 1.780818916316180E-003 1.832162346853325E-003 1.885119174803799E-003 1.939745752764178E-003 1.996100611294166E-003 2.054244549237783E-003 2.114240727882949E-003 2.176154769116606E-003 2.240054857739158E-003 2.306011848107554E-003 2.374099375282324E-003 2.444393970860017E-003 2.516975183678780E-003 2.591925705590747E-003 2.669331502502031E-003 2.749281950886638E-003 2.831869979988615E-003 2.917192219931871E-003 3.005349155964565E-003 3.096445289072164E-003 3.190589303199230E-003 3.287894239326444E-003 3.388477676658056E-003 3.492461921178887E-003 3.599974201848502E-003 3.711146874706364E-003 3.826117635167050E-003 3.945029738792107E-003 4.068032230830035E-003 4.195280184821728E-003 4.326934950574166E-003 4.463164411809423E-003 4.604143253801421E-003 4.750053241315541E-003 4.901083507170554E-003 5.057430851744119E-003 5.219300053744827E-003 5.386904192576423E-003 5.560464982616699E-003 5.740213119735758E-003 5.926388640373713E-003 6.119241293495352E-003 6.319030925734519E-003 6.526027880032539E-003 6.740513408069514E-003 6.962780096773562E-003 7.193132309183562E-003 7.431886639924166E-003 7.679372385535161E-003 7.935932029877491E-003 8.201921744814881E-003 8.477711906342599E-003 8.763687626308357E-003 9.060249299831513E-003 9.367813168494783E-003 9.686811899335949E-003 1.001769517962205E-002 1.036093032733758E-002 1.071700291725776E-002 1.108641742241814E-002 1.146969787071964E-002 1.186738851632837E-002 1.228005452545950E-002 1.270828267602321E-002 1.315268207052780E-002 1.361388486151787E-002 1.409254698871221E-002 1.458934892687734E-002 1.510499644333519E-002 1.564022136385519E-002 1.619578234552177E-002 1.677246565499400E-002 1.737108595039355E-002 1.799248706485278E-002 1.863754278954998E-002 1.930715765382427E-002 2.000226769972711E-002 2.072384124810570E-002 2.147287965303943E-002 2.225041804116180E-002 2.305752603208694E-002 2.389530843583672E-002 2.476490592281799E-002 2.566749566153161E-002 2.660429191881901E-002 2.757654661703973E-002 2.858554984215814E-002 2.963263029627349E-002 3.071915568766369E-002 3.184653305093732E-002 3.301620898938497E-002 3.422966983110745E-002 3.548844168996481E-002 3.679409042183594E-002 3.814822146612315E-002 3.955247956185005E-002 4.100854832712168E-002 4.251814969012018E-002 4.408304315920312E-002 4.570502491908346E-002 4.738592673945738E-002 4.912761468186438E-002 5.093198758998459E-002 5.280097534800766E-002 5.473653689118495E-002 5.674065795215691E-002 5.881534852619022E-002 6.096264003804623E-002 6.318458219282558E-002 6.548323949287067E-002 6.786068740257548E-002 7.031900814285109E-002 7.286028609699094E-002 7.548660280978269E-002 7.820003156198986E-002 8.100263150272256E-002 8.389644132281381E-002 8.688347245310857E-002 8.996570177255588E-002 9.314506381225925E-002 9.642344244311980E-002 9.980266203651024E-002 1.032844780895167E-001 1.068705673087110E-001 1.105625171492376E-001 1.143618148091685E-001 1.182698356827013E-001 1.222878312798327E-001 1.264169166246341E-001 1.306580571493045E-001 1.350120551066734E-001 1.394795355299099E-001 1.440609317748178E-001 1.487564706872569E-001 1.535661574460362E-001 1.584897601399241E-001 1.635267941463731E-001 1.686765063890383E-001 1.739378595611728E-001 1.793095164125845E-001 1.847898242088005E-001 1.903767994825571E-001 1.960681132095111E-001 2.018610765520731E-001 2.077526273274930E-001 2.137393173684836E-001 2.198173009567603E-001 2.259823245216402E-001 2.322297178070536E-001 2.385543867208790E-001 2.449508080899453E-001 2.514130265522890E-001 2.579346538248178E-001 2.645088705890853E-001 2.711284312401479E-001 2.777856717428260E-001 2.844725208358662E-001 2.911805148168945E-001 2.979008161291404E-001 3.046242359542718E-001 3.113412609935757E-001 3.180420845917688E-001 3.247166423232252E-001 3.313546521188089E-001 3.379456589623864E-001 3.444790841287730E-001 3.509442788690675E-001 3.573305823745654E-001 3.636273837664855E-001 3.698241877654840E-001 3.759106835922894E-001 3.818768165390730E-001 3.877128615307403E-001 3.934094978668378E-001 3.989578841993325E-001 4.043497326602986E-001 4.095773809084079E-001 4.146338607161151E-001 4.195129615731667E-001 4.242092876397762E-001 4.287183062479833E-001 4.330363860267547E-001 4.371608226200029E-001 4.410898498822822E-001 4.448226343805829E-001 4.483592510087641E-001 4.517006375409236E-001 4.548485260188018E-001 4.578053489939125E-001 4.605741188355537E-001 4.631582785789729E-001 4.655615231315688E-001 4.677875900862288E-001 4.698400199160445E-001 4.717218859489416E-001 4.734354952474953E-001 4.749820623498857E-001 4.763613587610861E-001 4.775713421144347E-001 4.786077700443048E-001 4.794638050076778E-001 4.801317685331828E-001 4.806104436850792E-001 4.809005819287859E-001 4.810030443270641E-001 4.809188028336769E-001 4.806489415810568E-001 4.801946581449063E-001 4.795572647684279E-001 4.787381895286975E-001 4.777389774276265E-001 4.765612914046237E-001 4.752069133381172E-001 4.736777445032355E-001 4.719758063440848E-001 4.701032409478612E-001 4.680623113225679E-001 4.658554014828380E-001 4.634850163289278E-001 4.609537813051816E-001 4.582644418250855E-001 4.554198624510589E-001 4.524230258182213E-001 4.492770312925250E-001 4.459850933549361E-001 4.425505397046374E-001 4.389768090756238E-001 4.352674487625123E-001 4.314261118528540E-001 4.274565541647944E-001 4.233626308904543E-001 4.191482929470026E-001 4.148175830389675E-001 4.103746314369126E-001 4.058236514791985E-001 4.011689348050778E-001 3.964148463289061E-001 3.915658189667357E-001 3.866263481279701E-001 3.816009859861351E-001 3.764943355441132E-001 3.713110445103974E-001 3.660557990040558E-001 3.607333171071177E-001 3.553483422840328E-001 3.499056366886595E-001 3.444099743799517E-001 3.388661344681005E-001 3.332788942133530E-001 3.276530220999797E-001 3.219932709082851E-001 3.163043708074157E-001 3.105910224917354E-001 3.048578903834580E-001 2.991095959238069E-001 2.933507109745974E-001 2.875857513515966E-001 2.818191705103595E-001 2.760553534044554E-001 2.702986105351572E-001 2.645531722106739E-001 2.588231830319684E-001 2.531126966210634E-001 2.474256706065185E-001 2.417659618795069E-001 2.361373221325743E-001 2.305433936917983E-001 2.249877056516577E-001 2.194736703204744E-001 2.140045799828527E-001 2.085836039840669E-001 2.032137861398945E-001 1.978980424739530E-001 1.926391592831590E-001 1.874397915305443E-001 1.823024615632972E-001 1.772295581525833E-001 1.722233358504451E-001 1.672859146578695E-001 1.624192799969825E-001 1.576252829792570E-001 1.529056409606368E-001 1.482619383735649E-001 1.436956278250733E-001 1.392080314493565E-001 1.348003425025886E-001 1.304736271871825E-001 1.262288266922093E-001 1.220667594363078E-001 1.179881234991172E-001 1.139934992270448E-001 1.100833519990551E-001 1.062580351381196E-001 1.025177929539862E-001 9.886276390304202E-002 9.529298385120669E-002 9.180838942603585E-002 8.840882144451268E-002 8.509402840334558E-002 8.186367001895334E-002 7.871732080511661E-002 7.565447367596573E-002 7.267454356329878E-002 6.977687103735247E-002 6.696072592098441E-002 6.422531088731864E-002 6.156976503199366E-002 5.899316741149784E-002 5.649454053965686E-002 5.407285383520546E-002 5.172702701331908E-002 4.945593341516711E-002 4.725840326978108E-002 4.513322688307564E-002 4.307915774933817E-002 4.109491558096322E-002 3.917918925271047E-002 3.733063964934574E-002 3.554805924214122E-002 3.383162451237322E-002 3.217992890509699E-002 3.059139478067670E-002 2.906444975266456E-002 2.759752768667086E-002 2.618906970811301E-002 2.483752521008469E-002 2.354135285905786E-002 2.229902159605691E-002 2.110901163092401E-002 1.996981542729433E-002 1.887993867590631E-002 1.783790125388790E-002 1.684223816768299E-002 1.589150047731426E-002 1.498425619971923E-002 1.411909118893966E-002 1.329460999097601E-002 1.250943667139060E-002 1.176221561335678E-002 1.105161228440352E-002 1.037631396997266E-002 9.735030472032662E-003 9.126494771102833E-003 8.549463650152260E-003 8.002718278955901E-003 7.485064757613106E-003 6.995334618063216E-003 6.532385282566766E-003 6.095100478259348E-003 5.682390607027789E-003 5.293193070103710E-003 4.926472546918246E-003 4.581221227911967E-003 4.256459001145524E-003 3.951233592709145E-003 3.664620661080940E-003 3.395723845735437E-003 3.143674770453534E-003 2.907633001932366E-003 2.686785964438188E-003 2.480348811385980E-003 2.287564254865905E-003 2.107702354268009E-003 1.940060265282104E-003 1.783961950669163E-003 1.638757854312859E-003 1.503824540165068E-003 1.378564297796273E-003 1.262404716350751E-003 1.154798228786812E-003 1.055221628353641E-003 9.631755593186047E-004 8.781839840118212E-004 7.997936282982925E-004 7.275734076221264E-004 6.611138357922133E-004 6.000264186945240E-004 5.439430351231123E-004 4.925153069203900E-004 4.454139606077765E-004 4.023281826709694E-004 3.629649706406427E-004 3.270484820801750E-004 2.943193835580941E-004 2.645342016455223E-004 2.374646779393851E-004 2.128971300721693E-004 1.906318206304770E-004 1.704823358697147E-004 1.522749760836093E-004 1.358481594678378E-004 1.210518413105239E-004 1.077469503529079E-004 9.580484419619418E-005 8.510678569150474E-005 7.554344234628714E-005 6.701441092132223E-005 5.942776958838850E-005 5.269966028284137E-005 4.666065119854486E-005 4.124864544557127E-005 3.640623072743666E-005 3.208041502301796E-005 2.822236926688254E-005 2.478717752360131E-005 2.173359508689664E-005 1.902381487057080E-005 1.662324239548729E-005 1.450027961583337E-005 1.262611776884201E-005 1.097453937542308E-005 9.521729465050568E-006 8.246096047024509E-006 7.128099802103438E-006 6.150092923664761E-006 5.296166996141543E-006 4.552009760612487E-006 3.904770583155783E-006 3.342934410949256E-006 2.856203974108575E-006 2.435389967863455E-006 2.072308929817007E-006 1.759688510617428E-006 1.491079823275997E-006 1.260776546446867E-006 1.063740450079116E-006 8.955330077799379E-007 7.522527587954945E-007 6.304780835178375E-007 5.272150596499708E-007 4.398500713884276E-007 3.661068509945083E-007 3.040076407019367E-007 2.518381728340819E-007 2.081161770672229E-007 1.715631357734691E-007 1.410790211135144E-007 1.157197608407990E-007 9.467719345249790E-008 7.726128721919279E-008 6.288441159773271E-008 5.104746344833847E-008 4.132766421924382E-008 3.336785772621769E-008 2.686715125041817E-008 2.157275533012690E-008 1.727288976730298E-008 1.379063495843391E-008 1.097861865263529E-008 8.714438611173895E-009 6.896731374505350E-009 5.441806427658561E-009 4.280773492673034E-009 3.357098475318202E-009 2.624530766222046E-009 2.045351162788389E-009 1.588895661201878E-009 1.230315794177182E-009 9.495410893167094E-010 7.304136263041961E-010 5.599686111912911E-010 4.278383958440601E-010 3.257604833798646E-010 2.471728089187944E-010 1.868820011819065E-010 1.407924452628088E-010 1.056858097807916E-010 7.904230052609928E-011 5.889628385476849E-011 4.372011090297161E-011 3.233099073906894E-011 2.381662756372467E-011 1.747607287191976E-011 1.019595777716384E-015 1.058556568597211E-015 1.099006129107600E-015 1.141001348110279E-015 1.184601288303093E-015 1.229867269287536E-015 1.276862953809534E-015 1.325654437295681E-015 1.376310340810820E-015 1.428901907567734E-015 1.483503103124644E-015 1.540190719411477E-015 1.599044482731163E-015 1.660147165887893E-015 1.723584704600016E-015 1.789446318361303E-015 1.857824635920565E-015 1.928815825556104E-015 2.002519730328190E-015 2.079040008499835E-015 2.158484279323293E-015 2.240964274397379E-015 2.326595994808446E-015 2.415499874276020E-015 2.507800948532583E-015 2.603629031175656E-015 2.703118896239584E-015 2.806410467743726E-015 2.913649016483664E-015 3.024985364342210E-015 3.140576096407525E-015 3.260583781196711E-015 3.385177199294578E-015 3.514531580729157E-015 3.648828851417817E-015 3.788257889030548E-015 3.933014788630329E-015 4.083303138464112E-015 4.239334306292371E-015 4.401327736659829E-015 4.569511259525522E-015 4.744121410686230E-015 4.925403764443919E-015 5.113613278985071E-015 5.309014654957655E-015 5.511882707750038E-015 5.722502753995422E-015 5.941171012845368E-015 6.168195022576815E-015 6.403894073118452E-015 6.648599655104792E-015 6.902655926089532E-015 7.166420194573806E-015 7.440263422530162E-015 7.724570747128982E-015 8.019742022401098E-015 8.326192381598403E-015 8.644352821043419E-015 8.974670806288888E-015 9.317610901439978E-015 9.673655422524100E-015 1.004330511582729E-014 1.042707986215123E-014 1.082551940798129E-014 1.123918412459399E-014 1.166865579617144E-014 1.211453843803123E-014 1.257745914612250E-014 1.305806897898300E-014 1.355704387339742E-014 1.407508559504493E-014 1.461292272547280E-014 1.517131168678421E-014 1.575103780548165E-014 1.635291641696156E-014 1.697779401221422E-014 1.762654942834113E-014 1.830009508456455E-014 1.899937826546744E-014 1.972538245326851E-014 2.047912871100612E-014 2.126167711857648E-014 2.207412826364564E-014 2.291762478953243E-014 2.379335300223880E-014 2.470254453888817E-014 2.564647809991811E-014 2.662648124746358E-014 2.764393227245995E-014 2.870026213309182E-014 2.979695646731370E-014 3.093555768227327E-014 3.211766712357561E-014 3.334494732743935E-014 3.461912435891229E-014 3.594199023943464E-014 3.731540546716465E-014 3.874130163361078E-014 4.022168414025040E-014 4.175863501895636E-014 4.335431586019712E-014 4.501097085312984E-014 4.673092994186114E-014 4.851661210231485E-014 5.037052874431570E-014 5.229528724367318E-014 5.429359460923346E-014 5.636826129005673E-014 5.852220512807423E-014 6.075845546178449E-014 6.308015738675968E-014 6.549057617895450E-014 6.799310188703880E-014 7.059125410021189E-014 7.328868689820530E-014 7.608919399043411E-014 7.899671405152610E-014 8.201533626073227E-014 8.514930605300866E-014 8.840303108985929E-014 9.178108745833611E-014 9.528822610691575E-014 9.892937952730360E-014 1.027096686915631E-013 1.066344102543268E-013 1.107091240302178E-013 1.149395407569988E-013 1.193316101553665E-013 1.238915092967264E-013 1.286256512907181E-013 1.335406943047068E-013 1.386435509279286E-013 1.439413978934583E-013 1.494416861716728E-013 1.551521514494063E-013 1.610808250095340E-013 1.672360450262878E-013 1.736264682921871E-013 1.802610823930802E-013 1.871492183484184E-013 1.943005637345384E-013 2.017251763094136E-013 2.094334981580340E-013 2.174363703783078E-013 2.257450483281434E-013 2.343712174551486E-013 2.433270097312189E-013 2.526250207151214E-013 2.622783272670746E-013 2.723005059402376E-013 2.827056520749763E-013 2.935083996227565E-013 3.047239417275504E-013 3.163680520936988E-013 3.284571071702821E-013 3.410081091831992E-013 3.540387100473496E-013 3.675672361925480E-013 3.816127143380840E-013 3.961948982521835E-013 4.113342965339981E-013 4.270522014572022E-013 4.433707189157609E-013 4.603127995139855E-013 4.779022708446042E-013 4.961638710002356E-013 5.151232833654126E-013 5.348071727380696E-013 5.552432228313092E-013 5.764601752081864E-013 5.984878697042622E-013 6.213572863947940E-013 6.451005891655671E-013 6.697511709486576E-013 6.953437006867476E-013 7.219141720920335E-013 7.494999542683170E-013 7.781398442674614E-013 8.078741216541385E-013 8.387446051556017E-013 8.707947114761589E-013 9.040695163590682E-013 9.386158179817242E-013 9.744822027733065E-013 1.011719113747449E-012 1.050378921446032E-012 1.090515997593896E-012 1.132186791568021E-012 1.175449909788772E-012 1.220366198144827E-012 1.266998827567732E-012 1.315413382876429E-012 1.365677955016704E-012 1.417863236825307E-012 1.472042622453386E-012 1.528292310589105E-012 1.586691411624599E-012 1.647322058917995E-012 1.710269524306969E-012 1.775622338036320E-012 1.843472413268192E-012 1.913915175350114E-012 1.987049696022592E-012 2.062978832755071E-012 2.141809373406194E-012 2.223652186411797E-012 2.308622376711921E-012 2.396839447636076E-012 2.488427468974485E-012 2.583515251471654E-012 2.682236527987687E-012 2.784730141582145E-012 2.891140240784957E-012 3.001616482329026E-012 3.116314241629652E-012 3.235394831306776E-012 3.359025728057434E-012 3.487380808197413E-012 3.620640592203453E-012 3.758992498599892E-012 3.902631107546793E-012 4.051758434500364E-012 4.206584214330408E-012 4.367326196294528E-012 4.534210450283864E-012 4.707471684771065E-012 4.887353576907736E-012 5.074109115235510E-012 5.268000955492851E-012 5.469301790017897E-012 5.678294731266900E-012 5.895273709987774E-012 6.120543888608532E-012 6.354422090422159E-012 6.597237245171546E-012 6.849330851660982E-012 7.111057458045091E-012 7.382785160470486E-012 7.664896120771537E-012 7.957787103948314E-012 8.261870036182613E-012 8.577572584176943E-012 8.905338756631142E-012 9.245629528702630E-012 9.598923490328574E-012 9.965717519321653E-012 1.034652748018621E-011 1.074188894963753E-011 1.115235796984468E-011 1.157851183045616E-011 1.202094988050849E-011 1.248029437135924E-011 1.295719133183033E-011 1.345231147679222E-011 1.396635115046694E-011 1.450003330577663E-011 1.505410852111490E-011 1.562935605597096E-011 1.622658494689142E-011 1.684663514532080E-011 1.749037869892126E-011 1.815872097803289E-011 1.885260194899946E-011 1.957299749615051E-011 2.032092079429893E-011 2.109742373368443E-011 2.190359839936693E-011 2.274057860715050E-011 2.360954149819791E-011 2.451170919457877E-011 2.544835051807911E-011 2.642078277469041E-011 2.743037360728731E-011 2.847854291909974E-011 2.956676487068496E-011 3.069656995320746E-011 3.186954714094348E-011 3.308734612603650E-011 3.435167963864745E-011 3.566432585576238E-011 3.702713090204535E-011 3.844201144625382E-011 3.991095739686831E-011 4.143603470072737E-011 4.301938824860377E-011 4.466324489180860E-011 4.636991657406584E-011 4.814180358306173E-011 4.998139792624253E-011 5.189128683560801E-011 5.387415640643000E-011 5.593279537501354E-011 5.807009904081367E-011 6.028907333842419E-011 6.259283906516480E-011 6.498463627021287E-011 6.746782881145246E-011 7.004590908644932E-011 7.272250294420615E-011 7.550137478460522E-011 7.838643285271075E-011 8.138173473537717E-011 8.449149306789314E-011 8.772008145868801E-011 9.107204064043277E-011 9.455208485618621E-011 9.816510848956877E-011 1.019161929482877E-010 1.058106138106953E-010 1.098538482454317E-010 1.140515827145855E-010 1.184097209712083E-010 1.229343923624285E-010 1.276319604498446E-010 1.325090319593193E-010 1.375724660727636E-010 1.428293840749769E-010 1.482871793691123E-010 1.539535278748521E-010 1.598363988239177E-010 1.659440659680960E-010 1.722851192155476E-010 1.788684767117597E-010 1.857033973821350E-010 1.927994939538593E-010 2.001667464753567E-010 2.078155163523512E-010 2.157565609202724E-010 2.240010485735009E-010 2.325605744727320E-010 2.414471768525461E-010 2.506733539521232E-010 2.602520815929130E-010 2.701968314279805E-010 2.805215898886938E-010 2.912408778554024E-010 3.023697710797669E-010 3.139239213874664E-010 3.259195786911015E-010 3.383736138442509E-010 3.513035423688256E-010 3.647275490890896E-010 3.786645137069936E-010 3.931340373547885E-010 4.081564701622666E-010 4.237529398773970E-010 4.399453815806096E-010 4.567565685345168E-010 4.742101442124617E-010 4.923306555509360E-010 5.111435874726353E-010 5.306753987287022E-010 5.509535591105704E-010 5.720065880837408E-010 5.938640948978258E-010 6.165568202292720E-010 6.401166794153271E-010 6.645768073400574E-010 6.899716050355414E-010 7.163367880637774E-010 7.437094367473564E-010 7.721280483195365E-010 8.016325910670677E-010 8.322645605419101E-010 8.640670379209039E-010 8.970847505954711E-010 9.313641350765482E-010 9.669534023032409E-010 1.003902605447026E-009 1.042263710306883E-009 1.082090668394343E-009 1.123439492811245E-009 1.166368337026914E-009 1.210937576665560E-009 1.257209894418909E-009 1.305250368203493E-009 1.355126562686588E-009 1.406908624309509E-009 1.460669379941911E-009 1.516484439305840E-009 1.574432301313590E-009 1.634594464468890E-009 1.697055541486720E-009 1.761903378292942E-009 1.829229177571104E-009 1.899127627030172E-009 1.971697032573587E-009 2.047039456556923E-009 2.125260861327920E-009 2.206471258246549E-009 2.290784862417272E-009 2.378320253316098E-009 2.469200541560162E-009 2.563553542050572E-009 2.661511953731288E-009 2.763213546216878E-009 2.868801353551629E-009 2.978423875372446E-009 3.092235285758542E-009 3.210395650061566E-009 3.333071150021143E-009 3.460434317482442E-009 3.592664277044379E-009 3.729946997979826E-009 3.872475555782023E-009 4.020450403705068E-009 4.174079654680391E-009 4.333579374005563E-009 4.499173883217253E-009 4.671096075575543E-009 4.849587743603338E-009 5.034899919141543E-009 5.227293226398096E-009 5.427038248487599E-009 5.634415907976809E-009 5.849717861971337E-009 6.073246912299072E-009 6.305317431367219E-009 6.546255804291869E-009 6.796400887921891E-009 7.056104487402672E-009 7.325731850949928E-009 7.605662183529307E-009 7.896289180164387E-009 8.198021579622922E-009 8.511283739260014E-009 8.836516231826723E-009 9.174176465083241E-009 9.524739325088198E-009 9.888697844068745E-009 1.026656389381036E-008 1.065886890554216E-008 1.106616461732916E-008 1.148902385002346E-008 1.192804131286504E-008 1.238383443986518E-008 1.285704425814899E-008 1.334833628947749E-008 1.385840148621812E-008 1.438795720307889E-008 1.493774820597338E-008 1.550854771943509E-008 1.610115851405398E-008 1.671641403546466E-008 1.735517957647394E-008 1.801835349397583E-008 1.870686847236551E-008 1.942169283522861E-008 2.016383190715106E-008 2.093432942756384E-008 2.173426901861127E-008 2.256477570910702E-008 2.342701751672049E-008 2.432220709061905E-008 2.525160341687591E-008 2.621651358904140E-008 2.721829464636837E-008 2.825835548227540E-008 2.933815882573275E-008 3.045922329835682E-008 3.162312555010542E-008 3.283150247657818E-008 3.408605352103819E-008 3.538854306439425E-008 3.674080290650267E-008 3.814473484227847E-008 3.960231333623904E-008 4.111558829923909E-008 4.268668797130445E-008 4.431782191461596E-008 4.601128412085252E-008 4.776945623726404E-008 4.959481091600850E-008 5.148991529146446E-008 5.345743459040741E-008 5.550013588012711E-008 5.762089195975594E-008 5.982268540027830E-008 6.210861273890507E-008 6.448188883370704E-008 6.694585138463299E-008 6.950396562726772E-008 7.215982920593023E-008 7.491717723296371E-008 7.777988754133156E-008 8.075198613790338E-008 8.383765286510034E-008 8.704122727885646E-008 9.036721475116629E-008 9.382029280579257E-008 9.740531769604593E-008 1.011273312338848E-007 1.049915678799326E-007 1.090034621043855E-007 1.131686560291579E-007 1.174930073620080E-007 1.219825976338013E-007 1.266437407504882E-007 1.314829918718251E-007 1.365071566293152E-007 1.417233006963313E-007 1.471387597238754E-007 1.527611496559377E-007 1.585983774389638E-007 1.646586521404807E-007 1.709504964925111E-007 1.774827588760101E-007 1.842646257631585E-007 1.913056346350181E-007 1.986156873926973E-007 2.062050642808815E-007 2.140844383433025E-007 2.222648904304612E-007 2.307579247807066E-007 2.395754851965643E-007 2.487299718390544E-007 2.582342586636119E-007 2.681017115220997E-007 2.783462069563763E-007 2.889821517098180E-007 3.000245029842280E-007 3.114887894706003E-007 3.233911331832874E-007 3.357482721282739E-007 3.485775838374002E-007 3.618971098016141E-007 3.757255808375937E-007 3.900824434233744E-007 4.049878870400091E-007 4.204628725576623E-007 4.365291617060460E-007 4.532093476705973E-007 4.705268868573851E-007 4.885061318713996E-007 5.071723657545419E-007 5.265518375314303E-007 5.466717991129702E-007 5.675605436095160E-007 5.892474451074823E-007 6.117629999652626E-007 6.351388696864878E-007 6.594079254308515E-007 6.846042942250135E-007 7.107634069385240E-007 7.379220480921446E-007 7.661184075685289E-007 7.953921342979167E-007 8.257843919942103E-007 8.573379170197635E-007 8.900970784601133E-007 9.241079404930514E-007 9.594183271396215E-007 9.960778894879526E-007 1.034138175484366E-006 1.073652702389736E-006 1.114677032002851E-006 1.157268848756408E-006 1.201488040795257E-006 1.247396784150788E-006 1.295059630129583E-006 1.344543596039043E-006 1.395918259377363E-006 1.449255855620027E-006 1.504631379740146E-006 1.562122691605096E-006 1.621810625397372E-006 1.683779103213319E-006 1.748115252998980E-006 1.814909530988788E-006 1.884255848818747E-006 1.956251705492523E-006 2.030998324385618E-006 2.108600795479804E-006 2.189168223027395E-006 2.272813878852480E-006 2.359655361504171E-006 2.449814761485108E-006 2.543418832786920E-006 2.640599170565134E-006 2.741492398457227E-006 2.846240354169103E-006 2.954990298571688E-006 3.067895112204248E-006 3.185113516974865E-006 3.306810299805939E-006 3.433156533233765E-006 3.564329834050732E-006 3.700514595368301E-006 3.841902255647288E-006 3.988691564326471E-006 4.141088859297611E-006 4.299308361696968E-006 4.463572471074710E-006 4.634112081999583E-006 4.811166907812700E-006 4.994985814352849E-006 5.185827172666445E-006 5.383959215723776E-006 5.589660423553169E-006 5.803219912531530E-006 6.024937832796336E-006 6.255125801728736E-006 6.494107327633880E-006 6.742218279658475E-006 6.999807347628810E-006 7.267236535994815E-006 7.544881666463195E-006 7.833132916064512E-006 8.132395358881658E-006 8.443089525711997E-006 8.765652009774613E-006 9.100536071651385E-006 9.448212269124712E-006 9.809169134003226E-006 1.018391383907559E-005 1.057297291841984E-005 1.097689300915012E-005 1.139624160961089E-005 1.183160788494586E-005 1.228360348263982E-005 1.275286339723857E-005 1.324004686163694E-005 1.374583826780430E-005 1.427094812729677E-005 1.481611405860676E-005 1.538210184073838E-005 1.596970647440687E-005 1.657975329059903E-005 1.721309912145622E-005 1.787063349072257E-005 1.855327984898390E-005 1.926199690647288E-005 1.999777992681752E-005 2.076166216624097E-005 2.155471626632855E-005 2.237805581318091E-005 2.323283687823840E-005 2.412025961045262E-005 2.504156994659740E-005 2.599806134401798E-005 2.699107657869385E-005 2.802200967637424E-005 2.909230777092455E-005 3.020347322022464E-005 3.135706564881058E-005 3.255470417104518E-005 3.379806960740829E-005 3.508890688305059E-005 3.642902742586250E-005 3.782031173905529E-005 3.926471199241400E-005 4.076425475780475E-005 4.232104388043670E-005 4.393726335421076E-005 4.561518041012286E-005 4.735714869148288E-005 4.916561149505409E-005 5.104310524267345E-005 5.299226295651114E-005 5.501581798739606E-005 5.711660780342364E-005 5.929757793124854E-005 6.156178609600669E-005 6.391240648185616E-005 6.635273410973970E-005 6.888618949689039E-005 7.151632336606233E-005 7.424682162902455E-005 7.708151049500334E-005 8.002436181174821E-005 8.307949858013370E-005 8.625120070430814E-005 8.954391093837857E-005 9.296224107040582E-005 9.651097831866829E-005 1.001950920102199E-004 1.040197404530251E-004 1.079902781355292E-004 1.121122631341363E-004 1.163914648430946E-004 1.208338719797623E-004 1.254457008698534E-004 1.302334041088751E-004 1.352036794686023E-004 1.403634791960703E-004 1.457200196392902E-004 1.512807912374557E-004 1.570535688790054E-004 1.630464226959101E-004 1.692677291611272E-004 1.757261827245505E-004 1.824308077934480E-004 1.893909712024339E-004 1.966163951476740E-004 2.041171705970475E-004 2.119037712040483E-004 2.199870677564695E-004 2.283783431318664E-004 2.370893078497801E-004 2.461321161721155E-004 2.555193828416446E-004 2.652642003971843E-004 2.753801571732507E-004 2.858813559643730E-004 2.967824333506764E-004 3.080985797968536E-004 3.198455604370279E-004 3.320397366988037E-004 3.446980886569847E-004 3.578382382875742E-004 3.714784735230394E-004 3.856377732342205E-004 4.003358331303277E-004 4.155930926071826E-004 4.314307625838544E-004 4.478708543955323E-004 4.649362096993805E-004 4.826505315477065E-004 5.010384165333897E-004 5.201253881767212E-004 5.399379314973896E-004 5.605035288881062E-004 5.818506972635081E-004 6.040090265873870E-004 6.270092198390212E-004 6.508831343725218E-004 6.756638248396510E-004 7.013855876482414E-004 7.280840070557609E-004 7.557960029086583E-004 7.845598801446242E-004 8.144153800592482E-004 8.454037334532681E-004 8.775677156773857E-004 9.109517036679827E-004 9.456017350427324E-004 9.815655693063805E-004 1.018892751267253E-003 1.057634676704679E-003 1.097844660411658E-003 1.139578006627625E-003 1.182892082022457E-003 1.227846391240283E-003 1.274502655128985E-003 1.322924891755284E-003 1.373179500262325E-003 1.425335347696258E-003 1.479463858864469E-003 1.535639109376619E-003 1.593937921907643E-003 1.654439965851520E-003 1.717227860417234E-003 1.782387281319472E-003 1.850007071154860E-003 1.920179353602622E-003 1.992999651536377E-003 2.068567009196745E-003 2.146984118554058E-003 2.228357449956642E-003 2.312797387241780E-003 2.400418367409417E-003 2.491339025002393E-003 2.585682341357416E-003 2.683575798831307E-003 2.785151540199217E-003 2.890546533313335E-003 2.999902741230822E-003 3.113367297936762E-003 3.231092689822706E-003 3.353236943083268E-003 3.479963817196411E-003 3.611443004652853E-003 3.747850337091314E-003 3.889367998028131E-003 4.036184742330894E-003 4.188496122621422E-003 4.346504722777497E-003 4.510420398724298E-003 4.680460526653645E-003 4.856850258895113E-003 5.039822787572242E-003 5.229619616257689E-003 5.426490839771517E-003 5.630695432319148E-003 5.842501544138176E-003 6.062186806810283E-003 6.290038647425420E-003 6.526354611755007E-003 6.771442696595936E-003 7.025621691440089E-003 7.289221529622269E-003 7.562583649088404E-003 7.846061362922587E-003 8.140020239764329E-003 8.444838494222524E-003 8.760907387416087E-003 9.088631637708384E-003 9.428429841743143E-003 9.780734905845169E-003 1.014599448781936E-002 1.052467144920631E-002 1.091724431799373E-002 1.132420776177995E-002 1.174607307135764E-002 1.218336865466201E-002 1.263664054099529E-002 1.310645289541701E-002 1.359338854313833E-002 1.409804950375689E-002 1.462105753508194E-002 1.516305468631288E-002 1.572470386022790E-002 1.630668938404707E-002 1.690971758855593E-002 1.753451739499610E-002 1.818184090922701E-002 1.885246402253597E-002 1.954718701845144E-002 2.026683518480234E-002 2.101225943022308E-002 2.178433690418962E-002 2.258397161958525E-002 2.341209507672198E-002 2.426966688761279E-002 2.515767539918102E-002 2.607713831400600E-002 2.702910330704405E-002 2.801464863665145E-002 2.903488374809846E-002 3.009094986760555E-002 3.118402058478252E-002 3.231530242119162E-002 3.348603538256395E-002 3.469749349203598E-002 3.595098530156149E-002 3.724785437846390E-002 3.858947976386202E-002 3.997727639949712E-002 4.141269551923006E-002 4.289722500124399E-002 4.443238967672346E-002 4.601975159050394E-002 4.766091020889628E-002 4.935750256961349E-002 5.111120336838424E-002 5.292372497654984E-002 5.479681738356599E-002 5.673226805802081E-002 5.873190172038776E-002 6.079758002037434E-002 6.293120111133273E-002 6.513469911380151E-002 6.741004345983699E-002 6.975923810937415E-002 7.218432062941127E-002 7.468736112639501E-002 7.727046102170136E-002 7.993575165967752E-002 8.268539273723585E-002 8.552157054351130E-002 8.844649599764987E-002 9.146240247229775E-002 9.457154338991146E-002 9.777618957853640E-002 1.010786263732468E-001 1.044811504490037E-001 1.079860663702463E-001 1.115956828420964E-001 1.153123086477805E-001 1.191382482563494E-001 1.230757970845858E-001 1.271272363966487E-001 1.312948278247882E-001 1.355808074942839E-001 1.399873797356314E-001 1.445167103669872E-001 1.491709195298852E-001 1.539520740613964E-001 1.588621793861267E-001 1.639031709117876E-001 1.690769049125695E-001 1.743851488851412E-001 1.798295713628834E-001 1.854117311749209E-001 1.911330661376111E-001 1.969948811675293E-001 2.029983358065099E-001 2.091444311511265E-001 2.154339961810610E-001 2.218676734831310E-001 2.284459043704389E-001 2.351689133990443E-001 2.420366922879161E-001 2.490489832516354E-001 2.562052617593790E-001 2.635047187383014E-001 2.709462422443431E-001 2.785283986289840E-001 2.862494132363807E-001 2.941071506717599E-001 3.020990946889804E-001 3.102223277526713E-001 3.184735103385146E-001 3.268488600439651E-001 3.353441305909645E-001 3.439545908122139E-001 3.526750037230362E-001 3.614996057920600E-001 3.704220865357056E-001 3.794355685737595E-001 3.885325882962817E-001 3.977050773054628E-001 4.069443448099839E-001 4.162410611637771E-001 4.255852427557066E-001 4.349662384717160E-001 4.443727179660036E-001 4.537926619929828E-001 4.632133550667890E-001 4.726213807298112E-001 4.820026197260656E-001 4.913422513887432E-001 5.006247585639640E-001 5.098339364042032E-001 5.189529053747318E-001 5.279641288245231E-001 5.368494354788147E-001 5.455900472136971E-001 5.541666124731146E-001 5.625592456850347E-001 5.707475730258702E-001 5.787107848697406E-001 5.864276952414127E-001 5.938768085680630E-001 6.010363939945722E-001 6.078845674894666E-001 6.143993819227633E-001 6.205589252424955E-001 6.263414268125796E-001 6.317253719002787E-001 6.366896242161890E-001 6.412135563125314E-001 6.452771875361600E-001 6.488613291103874E-001 6.519477357839393E-001 6.545192633360933E-001 6.565600310635351E-001 6.580555881972905E-001 6.589930830070664E-001 6.593614331460886E-001 6.591514955728578E-001 6.583562341583087E-001 6.569708828491798E-001 6.549931020130987E-001 6.524231253404559E-001 6.492638944258298E-001 6.455211779012452E-001 6.412036717494828E-001 6.363230771932656E-001 6.308941523415613E-001 6.249347335843310E-001 6.184657225698391E-001 6.115110344828024E-001 6.040975032769577E-001 5.962547395128366E-001 5.880149365220432E-001 5.794126207757631E-001 5.704843425904825E-001 5.612683036719294E-001 5.518039184930629E-001 5.421313071378241E-001 5.322907180336834E-001 5.223218799561704E-001 5.122632838305263E-001 5.021513961905094E-001 4.920198076913547E-001 4.818983218195192E-001 4.718119908987229E-001 4.617801086585852E-001 4.518151710017334E-001 4.419218191642180E-001 4.320985286509898E-001 4.223482535956552E-001 4.126756581404888E-001 4.030851847235713E-001 3.935810584295034E-001 3.841672914347134E-001 3.748476875274949E-001 3.656258466841479E-001 3.565051696837331E-001 3.474888627450977E-001 3.385799418545369E-001 3.297812348595482E-001 3.210953918938311E-001 3.125248873409286E-001 3.040720240481731E-001 2.957389378178564E-001 2.875276018378900E-001 2.794398310443515E-001 2.714772864093004E-001 2.636414791482162E-001 2.559337748423268E-001 2.483553974719850E-001 2.409074333581169E-001 2.335908350095803E-001 2.264064248750717E-001 2.193548989989620E-001 2.124368305811602E-001 2.056526734417828E-001 1.990027653920343E-001 1.924873315133099E-001 1.861064873470744E-001 1.798602419985862E-001 1.737485011580031E-001 1.677710700428197E-001 1.619276562659720E-001 1.562178726342621E-001 1.506412398820465E-001 1.451971893453604E-001 1.398850655818343E-001 1.347041289419030E-001 1.296535580968876E-001 1.247324525295784E-001 1.199398349929368E-001 1.152746539424797E-001 1.107357859478132E-001 1.063220380886332E-001 1.020321503403233E-001 9.786479795405365E-002 9.381859383600720E-002 8.989209093005732E-002 8.608378460787539E-002 8.239211507006973E-002 7.881546976155629E-002 7.535218580392412E-002 7.200055244710923E-002 6.875881354221325E-002 6.562517003681465E-002 6.259778249362054E-002 5.967477363279467E-002 5.685423089778798E-002 5.413420904398250E-002 5.151273274895270E-002 4.898779924264939E-002 4.655738095532137E-002 4.421942818052201E-002 4.197187175009434E-002 3.981262571760272E-002 3.773959004627781E-002 3.575065329717098E-002 3.384369531287851E-002 3.201658989189260E-002 3.026720744837303E-002 2.859341765191070E-002 2.699309204167105E-002 2.546410660915902E-002 2.400434434376940E-002 2.261169773521529E-002 2.128407122692625E-002 2.001938361455124E-002 1.881557038377219E-002 1.767058598176097E-002 1.658240601677609E-002 1.554902938059903E-002 1.456848028875069E-002 1.363881023370587E-002 1.275809984663290E-002 1.192446066352564E-002 1.113603679196244E-002 1.039100647511773E-002 9.687583550064924E-003 9.024018797838736E-003 8.398601183169430E-003 7.809658982256268E-003 7.255560797409013E-003 6.734716457851923E-003 6.245577806450024E-003 5.786639372579764E-003 5.356438931821817E-003 4.953557953599631E-003 4.576621938320861E-003 4.224300645996253E-003 3.895308218710494E-003 3.588403199698478E-003 3.302388452136918E-003 3.036110981093134E-003 2.788461662378277E-003 2.558374882330202E-003 2.344828092800240E-003 2.146841285837400E-003 1.963476392752577E-003 1.793836612403654E-003 1.637065673669923E-003 1.492347037181196E-003 1.358903041433543E-003 1.235993998460668E-003 1.122917244237980E-003 1.019006148976705E-003 9.236290924190064E-004 8.361884091731926E-004 7.561193090325519E-004 6.828887771032711E-004 6.159944584283916E-004 5.549635316373101E-004 4.993515759758374E-004 4.487414358820377E-004 4.027420870723639E-004 3.609875078837152E-004 3.231355593984223E-004 2.888668776455333E-004 2.578837809362384E-004 2.299091951482716E-004 2.046855995333589E-004 1.819739953769161E-004 1.615528995964019E-004 1.432173651251050E-004 1.267780296892875E-004 1.120601943565794E-004 9.890293300637933E-005 8.715823365381942E-005 7.669017234717210E-005 6.737412015516420E-005 5.909598356630605E-005 5.175147842435931E-005 4.524563724366401E-005 3.949373126250120E-005 3.441676219900103E-005 2.994283833398299E-005 2.600684319229480E-005 2.254989510862814E-005 1.951883999379856E-005 1.686577615861811E-005 1.454761002270830E-005 1.252564150497955E-005 1.076517786917427E-005 9.235174781591017E-006 7.907903328605752E-006 6.758641738591414E-006 5.765390555974556E-006 4.908610024093870E-006 4.170978447849838E-006 3.537170326442411E-006 2.993653070351649E-006 2.528501144746776E-006 2.131226513033937E-006 1.792624289235074E-006 1.504632545454271E-006 1.260205260644438E-006 1.053197438729309E-006 8.782614674508777E-007 7.307538337021712E-007 6.066513561888631E-007 5.024761416831330E-007 4.152285165558818E-007 3.423272303915461E-007 2.815562730234056E-007 2.310176900242677E-007 1.890898243242666E-007 1.543904530089964E-007 1.257443283103111E-007 1.021546701993523E-007 8.277819471376588E-008 6.690329711118653E-008 5.393104207551144E-008 4.335864447044322E-008 3.476515351636368E-008 2.779908076107174E-008 2.216773783894365E-008 1.762807379888850E-008 1.397882377514701E-008 1.105380103473522E-008 8.716183030005150E-009 6.853659092492067E-009 5.374322911262053E-009 4.203207039183851E-009 3.279369465038019E-009 2.553453887000846E-009 1.985655841775671E-009 1.544036413221283E-009 1.196804936573147E-009 9.246636215058301E-010 7.120669203645313E-010 5.465329360720652E-010 4.180728666989693E-010 3.187198680554504E-010 2.421413552081863E-010 1.833210809276113E-010 1.382993545986528E-010 1.039615283382060E-010 7.786640546941886E-011 5.810754578271211E-011 4.320157595714915E-011 3.199858401454973E-011 2.361050374233576E-011 1.735409682187414E-011 1.270573333746526E-011 9.265670128045952E-012 6.729944195705234E-012 4.868346728536488E-012 3.507232475881213E-012 2.516158209152862E-012 1.797540632970733E-012 1.278685156011197E-012 9.056682274333254E-013 6.386624955508363E-013 4.483801132779945E-013 3.133787120355115E-013 2.180299365987794E-013 1.509945294640101E-013 1.040829017174594E-013 7.140769145928175E-014 4.875644438592391E-014 3.312944623292373E-014 2.240086545990172E-014 1.507151506255680E-014 1.008935037194298E-014 6.719794887398040E-015 4.452535062837133E-015 2.934869833437308E-015 1.924295648324659E-015 1.254952076380718E-015 8.140019491606027E-016 5.250938222263706E-016 3.368459743200992E-016 2.148712216449727E-016 1.362845584479678E-016 8.594195668211238E-017 5.387934393494170E-017 3.357884296974808E-017 2.080190038380752E-017 1.280858737004114E-017 7.838393558497477E-018 4.767017592887862E-018 2.880886394496145E-018 1.729938243083828E-018 1.032107949209160E-018 6.117503562003567E-019 3.601985887191928E-019 2.106648528149893E-019 1.223735729482902E-019 7.059783630172049E-020 4.044506932455398E-020 2.300763584533375E-020 1.299486938769811E-020 7.286620740427670E-021 4.055972989171349E-021 2.240982190366037E-021 1.228897145137711E-021 6.687830401916670E-022 3.611651543644988E-022 1.935241084112533E-022 1.028798177410943E-022 5.425601280875899E-023 2.838208510859850E-023 1.472566992656004E-023 7.576963842757739E-024 3.865976791413103E-024 1.955784763010313E-024 9.809209214540065E-025 4.876978142061692E-025 2.403386678791730E-025 1.173826945431850E-025 5.681238628290216E-026 2.724525337897760E-026 1.294485655133862E-026 6.092720851193719E-027 2.840412423125520E-027 1.311461060345454E-027 5.996259290908056E-028 2.714581506697442E-028 1.216658354950551E-028 5.397874603622152E-029 2.370335163505426E-029 1.030085504857932E-029 4.429516910871111E-030 1.884522515767029E-030 7.931398264479622E-031 3.301737135074533E-031 1.359313547014949E-031 1.286689490478864E-006 1.302874051885625E-006 1.319262190013860E-006 1.335856465543499E-006 1.352659471363860E-006 1.369673832978795E-006 1.386902208916929E-006 1.404347291147062E-006 1.422011805498786E-006 1.439898512088419E-006 1.458010205750262E-006 1.476349716473306E-006 1.494919909843423E-006 1.513723687491115E-006 1.532763987544908E-006 1.552043785090429E-006 1.571566092635280E-006 1.591333960579741E-006 1.611350477693405E-006 1.631618771597811E-006 1.652142009255125E-006 1.672923397462998E-006 1.693966183355627E-006 1.715273654911132E-006 1.736849141465310E-006 1.758696014231842E-006 1.780817686829057E-006 1.803217615813320E-006 1.825899301219122E-006 1.848866287105971E-006 1.872122162112152E-006 1.895670560015466E-006 1.919515160301012E-006 1.943659688736112E-006 1.968107917952479E-006 1.992863668035688E-006 2.017930807122070E-006 2.043313252003130E-006 2.069014968737540E-006 2.095039973270858E-006 2.121392332063009E-006 2.148076162723693E-006 2.175095634655761E-006 2.202454969706702E-006 2.230158442828308E-006 2.258210382744646E-006 2.286615172628427E-006 2.315377250785886E-006 2.344501111350282E-006 2.373991304984116E-006 2.403852439590174E-006 2.434089181031524E-006 2.464706253860571E-006 2.495708442057269E-006 2.527100589776641E-006 2.558887602105675E-006 2.591074445829762E-006 2.623666150208756E-006 2.656667807762823E-006 2.690084575068142E-006 2.723921673562641E-006 2.758184390361850E-006 2.792878079085033E-006 2.828008160691688E-006 2.863580124328595E-006 2.899599528187507E-006 2.936072000373611E-006 2.973003239784954E-006 3.010399017002899E-006 3.048265175193785E-006 3.086607631021943E-006 3.125432375574174E-006 3.164745475295880E-006 3.204553072938947E-006 3.244861388521587E-006 3.285676720300200E-006 3.327005445753501E-006 3.368854022579020E-006 3.411228989702119E-006 3.454136968297724E-006 3.497584662824888E-006 3.541578862074382E-006 3.586126440229453E-006 3.631234357939936E-006 3.676909663409871E-006 3.723159493498777E-006 3.769991074836831E-006 3.817411724954033E-006 3.865428853423575E-006 3.914049963019617E-006 3.963282650889602E-006 4.013134609741329E-006 4.063613629044948E-006 4.114727596250093E-006 4.166484498018308E-006 4.218892421470971E-006 4.271959555452927E-006 4.325694191812024E-006 4.380104726694715E-006 4.435199661857986E-006 4.490987605997764E-006 4.547477276094041E-006 4.604677498772930E-006 4.662597211685834E-006 4.721245464905994E-006 4.780631422342554E-006 4.840764363172460E-006 4.901653683290332E-006 4.963308896776608E-006 5.025739637384144E-006 5.088955660043482E-006 5.152966842387110E-006 5.217783186292824E-006 5.283414819446592E-006 5.349871996924985E-006 5.417165102797576E-006 5.485304651749453E-006 5.554301290724176E-006 5.624165800587380E-006 5.694909097811310E-006 5.766542236180539E-006 5.839076408519158E-006 5.912522948439660E-006 5.986893332113838E-006 6.062199180065986E-006 6.138452258988600E-006 6.215664483580982E-006 6.293847918410903E-006 6.373014779799731E-006 6.453177437731259E-006 6.534348417784557E-006 6.616540403091087E-006 6.699766236316486E-006 6.784038921667265E-006 6.869371626922736E-006 6.955777685492497E-006 7.043270598499834E-006 7.131864036891272E-006 7.221571843572693E-006 7.312408035572342E-006 7.404386806230989E-006 7.497522527419687E-006 7.591829751785382E-006 7.687323215024843E-006 7.784017838187108E-006 7.881928730004939E-006 7.981071189255581E-006 8.081460707151261E-006 8.183112969759703E-006 8.286043860455097E-006 8.390269462399929E-006 8.495806061058027E-006 8.602670146739145E-006 8.710878417175656E-006 8.820447780131615E-006 8.931395356044591E-006 9.043738480700810E-006 9.157494707943878E-006 9.272681812417640E-006 9.389317792343492E-006 9.507420872332630E-006 9.627009506233707E-006 9.748102380016283E-006 9.870718414690524E-006 9.994876769263706E-006 1.012059684373377E-005 1.024789828212072E-005 1.037680097553595E-005 1.050732506529032E-005 1.063949094604127E-005 1.077331926897954E-005 1.090883094505595E-005 1.104604714824879E-005 1.118498931887230E-005 1.132567916692678E-005 1.146813867549080E-005 1.161239010415613E-005 1.175845599250587E-005 1.190635916363624E-005 1.205612272772283E-005 1.220777008563152E-005 1.236132493257502E-005 1.251681126181523E-005 1.267425336841229E-005 1.283367585302068E-005 1.299510362573318E-005 1.315856190997314E-005 1.332407624643566E-005 1.349167249707838E-005 1.366137684916250E-005 1.383321581934460E-005 1.400721625781990E-005 1.418340535251774E-005 1.436181063334963E-005 1.454245997651102E-005 1.472538160883686E-005 1.491060411221226E-005 1.509815642803839E-005 1.528806786175468E-005 1.548036808741785E-005 1.567508715233856E-005 1.587225548177637E-005 1.607190388369377E-005 1.627406355356998E-005 1.647876607927537E-005 1.668604344600709E-005 1.689592804128688E-005 1.710845266002167E-005 1.732365050962785E-005 1.754155521522014E-005 1.776220082486541E-005 1.798562181490294E-005 1.821185309533130E-005 1.844093001526323E-005 1.867288836844903E-005 1.890776439886935E-005 1.914559480639853E-005 1.938641675253892E-005 1.963026786622755E-005 1.987718624971575E-005 2.012721048452267E-005 2.038037963746381E-005 2.063673326675529E-005 2.089631142819493E-005 2.115915468142110E-005 2.142530409625024E-005 2.169480125909422E-005 2.196768827945823E-005 2.224400779652050E-005 2.252380298579497E-005 2.280711756587738E-005 2.309399580527657E-005 2.338448252933152E-005 2.367862312721543E-005 2.397646355902799E-005 2.427805036297661E-005 2.458343066264833E-005 2.489265217437293E-005 2.520576321467882E-005 2.552281270784262E-005 2.584385019353365E-005 2.616892583455491E-005 2.649809042468084E-005 2.683139539659432E-005 2.716889282992301E-005 2.751063545937700E-005 2.785667668298882E-005 2.820707057045707E-005 2.856187187159490E-005 2.892113602488497E-005 2.928491916614191E-005 2.965327813728364E-005 3.002627049521324E-005 3.040395452081229E-005 3.078638922804763E-005 3.117363437319232E-005 3.156575046416295E-005 3.196279876997412E-005 3.236484133031197E-005 3.277194096522829E-005 3.318416128495618E-005 3.360156669984944E-005 3.402422243044705E-005 3.445219451766399E-005 3.488554983311055E-005 3.532435608954121E-005 3.576868185143515E-005 3.621859654570964E-005 3.667417047256828E-005 3.713547481648577E-005 3.760258165733080E-005 3.807556398162888E-005 3.855449569396671E-005 3.903945162854018E-005 3.953050756084763E-005 4.002774021953006E-005 4.053122729836032E-005 4.104104746838319E-005 4.155728039020808E-005 4.208000672645650E-005 4.260930815436592E-005 4.314526737855228E-005 4.368796814393305E-005 4.423749524881281E-005 4.479393455813343E-005 4.535737301689087E-005 4.592789866372100E-005 4.650560064465607E-005 4.709056922705422E-005 4.768289581370437E-005 4.828267295710838E-005 4.888999437394299E-005 4.950495495970373E-005 5.012765080353276E-005 5.075817920323354E-005 5.139663868047406E-005 5.204312899618178E-005 5.269775116613179E-005 5.336060747673123E-005 5.403180150100235E-005 5.471143811476638E-005 5.539962351303119E-005 5.609646522658507E-005 5.680207213879936E-005 5.751655450264200E-005 5.824002395790564E-005 5.897259354865225E-005 5.971437774087706E-005 6.046549244039498E-005 6.122605501095160E-005 6.199618429256262E-005 6.277600062008323E-005 6.356562584201187E-005 6.436518333953001E-005 6.517479804578165E-005 6.599459646539519E-005 6.682470669425105E-005 6.766525843949804E-005 6.851638303982123E-005 6.937821348596512E-005 7.025088444151461E-005 7.113453226393785E-005 7.202929502589344E-005 7.293531253680578E-005 7.385272636471199E-005 7.478167985838365E-005 7.572231816972646E-005 7.667478827646211E-005 7.763923900509530E-005 7.861582105416989E-005 7.960468701781736E-005 8.060599140960162E-005 8.161989068666389E-005 8.264654327417128E-005 8.368610959007276E-005 8.473875207016706E-005 8.580463519348536E-005 8.688392550799362E-005 8.797679165661846E-005 8.908340440359990E-005 9.020393666117630E-005 9.133856351660442E-005 9.248746225951986E-005 9.365081240964155E-005 9.482879574482493E-005 9.602159632946775E-005 9.722940054327372E-005 9.845239711037750E-005 9.969077712883664E-005 1.009447341004941E-004 1.022144639612173E-004 1.035001651115162E-004 1.048020384475484E-004 1.061202873925126E-004 1.074551179284389E-004 1.088067386283771E-004 1.101753606889913E-004 1.115611979635642E-004 1.129644669954172E-004 1.143853870517496E-004 1.158241801579059E-004 1.172810711320716E-004 1.187562876204079E-004 1.202500601326267E-004 1.217626220780145E-004 1.232942098019090E-004 1.248450626226349E-004 1.264154228689040E-004 1.280055359176868E-004 1.296156502325599E-004 1.312460174025362E-004 1.328968921813837E-004 1.345685325274395E-004 1.362611996439242E-004 1.379751580197640E-004 1.397106754709261E-004 1.414680231822750E-004 1.432474757499550E-004 1.450493112243060E-004 1.468738111533203E-004 1.487212606266450E-004 1.505919483201389E-004 1.524861665409905E-004 1.544042112734031E-004 1.563463822248551E-004 1.583129828729434E-004 1.603043205128152E-004 1.623207063051971E-004 1.643624553250287E-004 1.664298866107094E-004 1.685233232139635E-004 1.706430922503341E-004 1.727895249503120E-004 1.749629567111083E-004 1.771637271490789E-004 1.793921801528089E-004 1.816486639368652E-004 1.839335310962256E-004 1.862471386613932E-004 1.885898481542056E-004 1.909620256443447E-004 1.933640418065597E-004 1.957962719786099E-004 1.982590962199372E-004 2.007528993710770E-004 2.032780711138175E-004 2.058350060321166E-004 2.084241036737851E-004 2.110457686129471E-004 2.137004105132877E-004 2.163884441920956E-004 2.191102896851139E-004 2.218663723122055E-004 2.246571227438483E-004 2.274829770684646E-004 2.303443768606013E-004 2.332417692499675E-004 2.361756069913413E-004 2.391463485353581E-004 2.421544581001905E-004 2.452004057441301E-004 2.482846674390856E-004 2.514077251450038E-004 2.545700668852314E-004 2.577721868228238E-004 2.610145853378173E-004 2.642977691054734E-004 2.676222511755099E-004 2.709885510523297E-004 2.743971947762611E-004 2.778487150058215E-004 2.813436511010186E-004 2.848825492077013E-004 2.884659623429722E-004 2.920944504816788E-004 2.957685806439938E-004 2.994889269840999E-004 3.032560708799919E-004 3.070706010244123E-004 3.109331135169310E-004 3.148442119571899E-004 3.188045075393183E-004 3.228146191475442E-004 3.268751734530064E-004 3.309868050117917E-004 3.351501563642062E-004 3.393658781352985E-004 3.436346291366534E-004 3.479570764694675E-004 3.523338956289263E-004 3.567657706098973E-004 3.612533940139583E-004 3.657974671577743E-004 3.703987001828448E-004 3.750578121666338E-004 3.797755312351031E-004 3.845525946766684E-004 3.893897490575904E-004 3.942877503388263E-004 3.992473639943547E-004 4.042693651309938E-004 4.093545386097371E-004 4.145036791686161E-004 4.197175915471196E-004 4.249970906121830E-004 4.303430014857693E-004 4.357561596740626E-004 4.412374111982940E-004 4.467876127272232E-004 4.524076317112904E-004 4.580983465184676E-004 4.638606465718288E-004 4.696954324888552E-004 4.756036162225066E-004 4.815861212040758E-004 4.876438824878490E-004 4.937778468975990E-004 4.999889731749294E-004 5.062782321294987E-004 5.126466067911467E-004 5.190950925639427E-004 5.256246973821899E-004 5.322364418684004E-004 5.389313594932743E-004 5.457104967377066E-004 5.525749132568435E-004 5.595256820462225E-004 5.665638896100120E-004 5.736906361313917E-004 5.809070356450877E-004 5.882142162120985E-004 5.956133200966384E-004 6.031055039453244E-004 6.106919389686374E-004 6.183738111246894E-004 6.261523213053216E-004 6.340286855245678E-004 6.420041351095122E-004 6.500799168935690E-004 6.582572934122233E-004 6.665375431012581E-004 6.749219604975050E-004 6.834118564421417E-004 6.920085582865845E-004 7.007134101009967E-004 7.095277728854526E-004 7.184530247837938E-004 7.274905613002029E-004 7.366417955185440E-004 7.459081583244942E-004 7.552910986305142E-004 7.647920836036826E-004 7.744125988964384E-004 7.841541488802727E-004 7.940182568823999E-004 8.040064654254565E-004 8.141203364702619E-004 8.243614516616798E-004 8.347314125776290E-004 8.452318409812776E-004 8.558643790764670E-004 8.666306897664047E-004 8.775324569156744E-004 8.885713856156023E-004 8.997492024530259E-004 9.110676557825151E-004 9.225285160020856E-004 9.341335758324499E-004 9.458846505998588E-004 9.577835785225851E-004 9.698322210010821E-004 9.820324629118843E-004 9.943862129052896E-004 1.006895403706879E-003 1.019561992422922E-003 1.032387960849720E-003 1.045375315786952E-003 1.058526089355054E-003 1.071842339316718E-003 1.085326149402530E-003 1.098979629640838E-003 1.112804916691887E-003 1.126804174186281E-003 1.140979593067842E-003 1.155333391940917E-003 1.169867817422196E-003 1.184585144497108E-003 1.199487676880848E-003 1.214577747384108E-003 1.229857718283573E-003 1.245329981697262E-003 1.260996959964753E-003 1.276861106032384E-003 1.292924903843497E-003 1.309190868733784E-003 1.325661547831818E-003 1.342339520464840E-003 1.359227398569875E-003 1.376327827110245E-003 1.393643484497573E-003 1.411177083019339E-003 1.428931369272089E-003 1.446909124600340E-003 1.465113165541313E-003 1.483546344275536E-003 1.502211549083420E-003 1.521111704807901E-003 1.540249773323222E-003 1.559628754009952E-003 1.579251684236336E-003 1.599121639846058E-003 1.619241735652527E-003 1.639615125939772E-003 1.660245004970051E-003 1.681134607498261E-003 1.702287209293264E-003 1.723706127666240E-003 1.745394722006143E-003 1.767356394322398E-003 1.789594589794943E-003 1.812112797331707E-003 1.834914550133665E-003 1.858003426267564E-003 1.881383049246469E-003 1.905057088618203E-003 1.929029260561857E-003 1.953303328492457E-003 1.977883103673927E-003 2.002772445840490E-003 2.027975263826633E-003 2.053495516205758E-003 2.079337211937693E-003 2.105504411025159E-003 2.132001225179377E-003 2.158831818494957E-003 2.186000408134180E-003 2.213511265020898E-003 2.241368714544137E-003 2.269577137271622E-003 2.298140969673347E-003 2.327064704855387E-003 2.356352893304109E-003 2.386010143640949E-003 2.416041123387965E-003 2.446450559744322E-003 2.477243240373904E-003 2.508424014204251E-003 2.539997792237011E-003 2.571969548370114E-003 2.604344320231862E-003 2.637127210027170E-003 2.670323385396139E-003 2.703938080285210E-003 2.737976595831124E-003 2.772444301257875E-003 2.807346634786983E-003 2.842689104561225E-003 2.878477289582154E-003 2.914716840661623E-003 2.951413481387567E-003 2.988573009104347E-003 3.026201295907902E-003 3.064304289655984E-003 3.102888014993809E-003 3.141958574395362E-003 3.181522149220698E-003 3.221585000789547E-003 3.262153471471524E-003 3.303233985793289E-003 3.344833051562996E-003 3.386957261012362E-003 3.429613291956729E-003 3.472807908973459E-003 3.516547964599071E-003 3.560840400545485E-003 3.605692248935742E-003 3.651110633559681E-003 3.697102771149912E-003 3.743675972678555E-003 3.790837644675171E-003 3.838595290566375E-003 3.886956512037556E-003 3.935929010417167E-003 3.985520588084168E-003 4.035739149899030E-003 4.086592704658885E-003 4.138089366577357E-003 4.190237356789571E-003 4.243045004883007E-003 4.296520750454701E-003 4.350673144695417E-003 4.405510852001495E-003 4.461042651614866E-003 4.517277439292047E-003 4.574224229002702E-003 4.631892154658480E-003 4.690290471872929E-003 4.749428559753120E-003 4.809315922723867E-003 4.869962192385243E-003 4.931377129404231E-003 4.993570625441445E-003 5.056552705113613E-003 5.120333527992915E-003 5.184923390643975E-003 5.250332728699491E-003 5.316572118975525E-003 5.383652281627422E-003 5.451584082347487E-003 5.520378534605404E-003 5.590046801932566E-003 5.660600200251572E-003 5.732050200251851E-003 5.804408429812935E-003 5.877686676476416E-003 5.951896889968036E-003 6.027051184771283E-003 6.103161842753800E-003 6.180241315848181E-003 6.258302228788547E-003 6.337357381904561E-003 6.417419753974449E-003 6.498502505138626E-003 6.580618979875774E-003 6.663782710043061E-003 6.748007417982334E-003 6.833307019694272E-003 6.919695628082364E-003 7.007187556268862E-003 7.095797320984695E-003 7.185539646035606E-003 7.276429465846783E-003 7.368481929088231E-003 7.461712402383410E-003 7.556136474103609E-003 7.651769958250527E-003 7.748628898430026E-003 7.846729571919484E-003 7.946088493831981E-003 8.046722421379958E-003 8.148648358241743E-003 8.251883559033939E-003 8.356445533893034E-003 8.462352053169787E-003 8.569621152239750E-003 8.678271136433739E-003 8.788320586092125E-003 8.899788361746708E-003 9.012693609434517E-003 9.127055766147642E-003 9.242894565423468E-003 9.360230043080111E-003 9.479082543101513E-003 9.599472723677338E-003 9.721421563402657E-003 9.844950367642651E-003 9.970080775068091E-003 1.009683476436688E-002 1.022523466113793E-002 1.035530314497325E-002 1.048706325673470E-002 1.062053840603202E-002 1.075575237890890E-002 1.089272934574425E-002 1.103149386937601E-002 1.117207091345507E-002 1.131448585103745E-002 1.145876447342268E-002 1.160493299924720E-002 1.175301808384147E-002 1.190304682886006E-002 1.205504679219437E-002 1.220904599817769E-002 1.236507294809325E-002 1.252315663099570E-002 1.268332653485719E-002 1.284561265804981E-002 1.301004552117604E-002 1.317665617926012E-002 1.334547623431290E-002 1.351653784828386E-002 1.368987375641429E-002 1.386551728100597E-002 1.404350234562079E-002 1.422386348972669E-002 1.440663588380643E-002 1.459185534494610E-002 1.477955835292099E-002 1.496978206679719E-002 1.516256434206800E-002 1.535794374834476E-002 1.555595958762318E-002 1.575665191314596E-002 1.596006154888466E-002 1.616623010966341E-002 1.637520002194892E-002 1.658701454533184E-002 1.680171779472537E-002 1.701935476330858E-002 1.723997134624235E-002 1.746361436518749E-002 1.769033159365565E-002 1.792017178322470E-002 1.815318469065194E-002 1.838942110591930E-002 1.862893288124661E-002 1.887177296111040E-002 1.911799541330674E-002 1.936765546109919E-002 1.962080951649324E-002 1.987751521468199E-002 2.013783144970808E-002 2.040181841138990E-002 2.066953762356159E-002 2.094105198367821E-002 2.121642580384049E-002 2.149572485329444E-002 2.177901640246476E-002 2.206636926858287E-002 2.235785386297257E-002 2.265354224005991E-002 2.295350814817570E-002 2.325782708222255E-002 2.356657633828154E-002 2.387983507023583E-002 2.419768434849312E-002 2.452020722089122E-002 2.484748877587527E-002 2.517961620803881E-002 2.551667888612422E-002 2.585876842358337E-002 2.620597875180218E-002 2.655840619609837E-002 2.691614955460599E-002 2.727931018016472E-002 2.764799206533817E-002 2.802230193068918E-002 2.840234931644713E-002 2.878824667770735E-002 2.918010948330842E-002 2.957805631854071E-002 2.998220899184448E-002 3.039269264566400E-002 3.080963587163110E-002 3.123317083025827E-002 3.166343337533052E-002 3.210056318319218E-002 3.254470388713393E-002 3.299600321709480E-002 3.345461314490118E-002 3.392069003527737E-002 3.439439480286961E-002 3.487589307553748E-002 3.536535536417772E-002 3.586295723935504E-002 3.636887951502934E-002 3.688330843967778E-002 3.740643589512550E-002 3.793845960341111E-002 3.847958334202674E-002 3.903001716788736E-002 3.958997765039905E-002 4.015968811401034E-002 4.073937889064916E-002 4.132928758246174E-002 4.192965933528987E-002 4.254074712333820E-002 4.316281204550416E-002 4.379612363386070E-002 4.444096017480200E-002 4.509760904338332E-002 4.576636705140557E-002 4.644754080981857E-002 4.714144710603792E-002 4.784841329679231E-002 4.856877771714323E-002 4.930289010634022E-002 5.005111205120019E-002 5.081381744772406E-002 5.159139298168616E-002 5.238423862895990E-002 5.319276817636486E-002 5.401740976384726E-002 5.485860644883068E-002 5.571681679359589E-002 5.659251547657530E-002 5.748619392846836E-002 5.839836099410771E-002 5.932954362102642E-002 6.028028757569566E-002 6.125115818842043E-002 6.224274112789487E-002 6.325564320643244E-002 6.429049321689474E-002 6.534794280234740E-002 6.642866735947472E-002 6.753336697677702E-002 6.866276740856664E-002 6.981762108576203E-002 7.099870816445066E-002 7.220683761316145E-002 7.344284833974005E-002 7.470761035866431E-002 7.600202599957059E-002 7.732703115767157E-002 7.868359658665196E-002 8.007272923450512E-002 8.149547362260474E-002 8.295291326822406E-002 8.444617215040444E-002 8.597641621894049E-002 8.754485494595858E-002 8.915274291927620E-002 9.080138147639742E-002 9.249212037761374E-002 9.422635951625168E-002 9.600555066361663E-002 9.783119924563098E-002 9.970486614754749E-002 1.016281695424154E-001 1.036027867382044E-001 1.056304560376131E-001 1.077129786036179E-001 1.098522203227370E-001 1.120501136567782E-001 1.143086594725045E-001 1.166299288371785E-001 1.190160647663099E-001 1.214692839081362E-001 1.239918781473855E-001 1.265862161086985E-001 1.292547445377052E-001 1.319999895351505E-001 1.348245576166235E-001 1.377311365673553E-001 1.407224960582011E-001 1.438014879852890E-001 1.469710464919070E-001 1.502341876269852E-001 1.535940085900154E-001 1.570536865074257E-001 1.606164766803004E-001 1.642857102379004E-001 1.680647911257206E-001 1.719571923508257E-001 1.759664514009700E-001 1.800961647475679E-001 1.843499813359863E-001 1.887315949599556E-001 1.932447354102093E-001 1.978931582808859E-001 2.026806333108701E-001 2.076109311312766E-001 2.126878082848668E-001 2.179149903785374E-001 2.232961532264041E-001 2.288349018386773E-001 2.345347471108436E-001 2.403990800689924E-001 2.464311435308592E-001 2.526340010488077E-001 2.590105030109972E-001 2.655632497909844E-001 2.722945518545923E-001 2.792063867566271E-001 2.863003529897046E-001 2.935776206836493E-001 3.010388791974095E-001 3.086842816968288E-001 3.165133868715604E-001 3.245250980134636E-001 3.327175997573878E-001 3.410882928736428E-001 3.496337275996978E-001 3.583495361065434E-001 3.672303648121871E-001 3.762698073798849E-001 3.854603393706260E-001 3.947932556559919E-001 4.042586118362378E-001 4.138451710459707E-001 4.235403576620361E-001 4.333302195503413E-001 4.431994005946382E-001 4.531311253343093E-001 4.631071975928596E-001 4.731080149961094E-001 4.831126012509718E-001 4.930986579736126E-001 5.030426377112952E-001 5.129198395875110E-001 5.227045287079051E-001 5.323700800895678E-001 5.418891474147367E-001 5.512338563608433E-001 5.603760216242816E-001 5.692873860411121E-001 5.779398794243680E-001 5.863058938994935E-001 5.943585716465196E-001 6.020721000746851E-001 6.094220085919626E-001 6.163854603226069E-001 6.229415314084540E-001 6.290714699455490E-001 6.347589262003824E-001 6.399901455645517E-001 6.447541157888548E-001 6.490426604339968E-001 6.528504712321503E-001 6.561750732206174E-001 6.590167181384941E-001 6.613782037301604E-001 6.632646193480638E-001 6.646830216827354E-001 6.656420486869086E-001 6.661514849529151E-001 6.662217981393237E-001 6.658636737622035E-001 6.650875850572868E-001 6.639034460200344E-001 6.623204095226315E-001 6.603468890035704E-001 6.579908854593511E-001 6.552605058383351E-001 6.521641230599405E-001 6.487103739091201E-001 6.449081444621703E-001 6.407665556636605E-001 6.362949490523723E-001 6.315028726330085E-001 6.264000668894392E-001 6.209964509344164E-001 6.153021087900229E-001 6.093272757925994E-001 6.030823251155312E-001 5.965777544030562E-001 5.898241725082034E-001 5.828322863280486E-001 5.756128877296974E-001 5.681768405607782E-001 5.605350677387306E-001 5.526985384137938E-001 5.446782552013741E-001 5.364852414803256E-001 5.281305287546830E-001 5.196251440774551E-001 5.109800975362870E-001 5.022063698020749E-001 4.933148997429357E-001 4.843165721073903E-001 4.752222052820503E-001 4.660425391306276E-001 4.567882229226300E-001 4.474698033616470E-001 4.380977127247203E-001 4.286822571258121E-001 4.192336049179384E-001 4.097617752500138E-001 4.002766267958756E-001 3.907878466743454E-001 3.813049395804400E-001 3.718372171490490E-001 3.623937875734642E-001 3.529835455020781E-001 3.436151622374095E-001 3.342970762622478E-001 3.250374841182169E-001 3.158443316624014E-001 3.067253057278067E-001 2.976878262134129E-001 2.887390386293401E-001 2.798858071222231E-001 2.711347080052755E-001 2.624920238166913E-001 2.539637379290217E-001 2.455555297309270E-001 2.372727704013108E-001 2.291205192942307E-001 2.211035209511988E-001 2.132262027555489E-001 2.054926732414246E-001 1.979067210676980E-001 1.904718146647435E-001 1.831911025594790E-001 1.760674143815010E-001 1.691032625504436E-001 1.623008446419521E-001 1.556620464268735E-001 1.491884455754487E-001 1.428813160154827E-001 1.367416329306661E-001 1.307700783824660E-001 1.249670475363089E-001 1.193326554701534E-001 1.138667445410037E-001 1.085688922825846E-001 1.034384198050550E-001 9.847440066553453E-002 9.367567017631251E-002 8.904083511579006E-002 8.456828380565341E-002 8.025619651640689E-002 7.610255616223580E-002 7.210515924523263E-002 6.826162700831714E-002 6.456941675569634E-002 6.102583329946883E-002 5.762804049096226E-002 5.437307279560702E-002 5.125784687059251E-002 4.827917310521066E-002 4.543376708466886E-002 4.271826093923152E-002 4.012921454182070E-002 3.766312651866294E-002 3.531644503919059E-002 3.308557835318590E-002 3.096690504507449E-002 2.895678397731746E-002 2.705156389700423E-002 2.524759268198919E-002 2.354122620523267E-002 2.192883679838129E-002 2.040682129803431E-002 1.897160866058041E-002 1.761966713392948E-002 1.634751097689604E-002 1.515170671939556E-002 1.402887895897786E-002 1.297571569153052E-002 1.198897317622303E-002 1.106548033692076E-002 1.020214270436212E-002 9.395945905354166E-003 8.643958707092430E-003 7.943335626440545E-003 7.291319115609341E-003 6.685241337147356E-003 6.122525542490370E-003 5.600687069515263E-003 5.117333975599193E-003 4.670167323600094E-003 4.256981138947916E-003 3.875662056669070E-003 3.524188677660921E-003 3.200630653911374E-003 2.903147522553425E-003 2.629987308789130E-003 2.379484917684486E-003 2.150060334720056E-003 1.940216654729716E-003 1.748537958543482E-003 1.573687056212936E-003 1.414403115183824E-003 1.269499191196018E-003 1.137859679011268E-003 1.018437699361088E-003 9.102524377176881E-004 8.123864496628101E-004 7.239829467591723E-004 6.442430759245131E-004 5.724232043776141E-004 5.078322211504281E-004 4.498308519574945E-004 3.978447547813691E-004 3.513234631594704E-004 3.097571609914023E-004 2.726764881910693E-004 2.396500441839210E-004 2.102819802012960E-004 1.842096828063238E-004 1.611015505834441E-004 1.406548653619820E-004 1.225937588085661E-004 1.066672747154483E-004 9.264752683376708E-005 8.032795165417746E-005 6.952165512332356E-005 6.005985190432219E-005 5.179039544342458E-005 4.457639679360599E-005 3.829492986899942E-005 3.283582056235227E-005 2.810051694762683E-005 2.400103761587127E-005 2.045899504818643E-005 1.740469081692240E-005 1.477627932279283E-005 1.251899671987813E-005 1.058445165080461E-005 8.929974408904965E-006 7.518021160983899E-006 6.315629901460804E-006 5.293924864141491E-006 4.427666189674167E-006 3.694841732870862E-006 3.076297992559710E-006 2.555407255557849E-006 2.117768163870352E-006 1.750937038558389E-006 1.444187423205010E-006 1.188295442968914E-006 9.753487103972431E-007 7.985766451281667E-007 6.522002101368789E-007 5.312992011732072E-007 4.316953575406795E-007 3.498496905351527E-007 2.827725499780698E-007 2.279450687452976E-007 1.832507395205286E-007 1.469159868127358E-007 1.174587002903679E-007 9.364379251354501E-008 7.444493508657813E-008 5.901171207982961E-008 4.664150832305760E-008 3.675552295191141E-008 2.887836554603820E-008 2.262075352506212E-008 1.766488539646795E-008 1.375211523417292E-008 1.067259968671758E-008 8.256630163369644E-009 6.367399928909954E-009 4.894988962861465E-009 3.751378917620457E-009 2.866336652520179E-009 2.184027934727743E-009 1.660243287283075E-009 1.260135931726533E-009 9.563876209937462E-010 7.232865953987054E-010 5.450388064052332E-010 4.092280051714915E-010 3.061288853504640E-010 2.281519547719393E-010 1.693965745405534E-010 1.252924695169212E-010 9.231331353812162E-011 6.774879632328568E-011 4.952395057139813E-011 3.605651479436836E-011 2.614478144779129E-011 1.887977676822144E-011 1.357677894479964E-011 9.722140484021801E-012 6.932170006425825E-012 4.921475284446048E-012 3.478696437666893E-012 2.447985883155273E-012 1.714936993523167E-012 1.195940951095679E-012 8.301732408527979E-013 5.735878622014775E-013 3.944372205627369E-013 2.699458829338345E-013 1.838528001516844E-013 1.246040112555616E-013 8.403016398625126E-014 5.638358079970142E-014 3.764062714983915E-014 2.499884577599847E-014 1.651633857401751E-014 1.085449841709115E-014 7.095434504683765E-015 4.613093018732594E-015 2.982770005428507E-015 1.917925121597742E-015 1.226302071818652E-015 7.796262195703814E-016 4.927962682061532E-016 3.096769146417508E-016 1.934544615559696E-016 1.201281573482438E-016 7.414370248896496E-017 4.548141231071363E-017 2.772619328326885E-017 1.679612789080827E-017 1.011011938736661E-017 6.046397706642991E-018 3.592486470775849E-018 2.120390380829377E-018 1.243147209886421E-018 7.239001822318711E-019 4.186461344784800E-019 2.404308393578415E-019 1.371102392106202E-019 7.763323724068739E-020 4.363998311694076E-020 2.435235739573162E-020 1.348891417879713E-020 7.415697557761650E-021 4.045992184598883E-021 2.190556929099922E-021 1.176788627684924E-021 6.272117783651742E-022 3.316336925907938E-022 1.739354555078822E-022 9.048121112523845E-023 4.667934273436866E-023 2.388040919751671E-023 1.211333127579062E-023 6.091773385407799E-024 3.036932434504843E-024 1.500686950731585E-024 7.349544233513689E-025 3.566951208462223E-025 1.715342731901000E-025 8.172812171857529E-026 3.857520730934766E-026 1.803473588438751E-026 8.350722522654682E-027 3.829114880463227E-027 1.738519155997545E-027 7.814717802957882E-028 3.477324091958398E-028 1.531509574753076E-028 2.966624902809167E-007 3.024630044591705E-007 3.083769335983123E-007 3.144064952523304E-007 3.205589574116098E-007 3.268472960520471E-007 3.332713965304811E-007 3.398344856985319E-007 3.465393022763021E-007 3.533886443613408E-007 3.603853703506508E-007 3.675324001867056E-007 3.748327165720100E-007 3.822893662164832E-007 3.899054611112027E-007 3.976841798294887E-007 4.056287688558725E-007 4.137425439435028E-007 4.220288915005647E-007 4.304912700062915E-007 4.391332114571635E-007 4.479583228439037E-007 4.569702876598892E-007 4.661728674416127E-007 4.755699033418420E-007 4.851653177361384E-007 4.949631158634090E-007 5.049673875011823E-007 5.151823086763136E-007 5.256121434118360E-007 5.362612455106950E-007 5.471340603771140E-007 5.582351268763596E-007 5.695690792336860E-007 5.811406489732598E-007 5.929546668978797E-007 6.050160651103238E-007 6.173298790771777E-007 6.299012497360073E-007 6.427354256467680E-007 6.558377651883522E-007 6.692137388012038E-007 6.828689312769388E-007 6.968090440959418E-007 7.110398978139169E-007 7.255674344984046E-007 7.403977202162853E-007 7.555369475733210E-007 7.709914383068032E-007 7.867676459324016E-007 8.028721584463257E-007 8.193117010839429E-007 8.360931391360106E-007 8.532234808237152E-007 8.707098802337245E-007 8.885596403144965E-007 9.067802159351052E-007 9.253792170078730E-007 9.443644116761308E-007 9.637437295684460E-007 9.835252651206961E-007 1.003717280967386E-006 1.024328211403642E-006 1.045366665919347E-006 1.066841432806903E-006 1.088761482844151E-006 1.111135973053993E-006 1.133974250542322E-006 1.157285856415862E-006 1.181080529781585E-006 1.205368211829394E-006 1.230159049999792E-006 1.255463402238303E-006 1.281291841338445E-006 1.307655159375086E-006 1.334564372230065E-006 1.362030724211979E-006 1.390065692772114E-006 1.418680993318485E-006 1.447888584130048E-006 1.477700671373148E-006 1.508129714222338E-006 1.539188430087719E-006 1.570889799951042E-006 1.603247073812801E-006 1.636273776252649E-006 1.669983712105481E-006 1.704390972255586E-006 1.739509939551336E-006 1.775355294842905E-006 1.811942023145586E-006 1.849285419931320E-006 1.887401097551099E-006 1.926304991790972E-006 1.966013368564433E-006 2.006542830744036E-006 2.047910325135120E-006 2.090133149594633E-006 2.133228960298046E-006 2.177215779157463E-006 2.222112001394073E-006 2.267936403268154E-006 2.314708149969924E-006 2.362446803674579E-006 2.411172331764963E-006 2.460905115225335E-006 2.511665957209830E-006 2.563476091789246E-006 2.616357192879873E-006 2.670331383358172E-006 2.725421244365184E-006 2.781649824804612E-006 2.839040651038643E-006 2.897617736785617E-006 2.957405593223781E-006 3.018429239305407E-006 3.080714212285688E-006 3.144286578470884E-006 3.209172944190320E-006 3.275400466996887E-006 3.342996867100843E-006 3.411990439041780E-006 3.482410063603746E-006 3.554285219978591E-006 3.627645998182745E-006 3.702523111732712E-006 3.778947910584711E-006 3.856952394343974E-006 3.936569225749347E-006 4.017831744438967E-006 4.100773981002874E-006 4.185430671328599E-006 4.271837271245820E-006 4.360029971476390E-006 4.450045712896104E-006 4.541922202114734E-006 4.635697927381027E-006 4.731412174819439E-006 4.829105045005576E-006 4.928817469887444E-006 5.030591230059736E-006 5.134468972398576E-006 5.240494228064269E-006 5.348711430879769E-006 5.459165936092758E-006 5.571904039529359E-006 5.686972997147724E-006 5.804421044999869E-006 5.924297419610323E-006 6.046652378780345E-006 6.171537222826635E-006 6.299004316263658E-006 6.429107109938907E-006 6.561900163630583E-006 6.697439169117447E-006 6.835780973730717E-006 6.976983604398163E-006 7.121106292190729E-006 7.268209497382233E-006 7.418354935032944E-006 7.571605601108022E-006 7.728025799142078E-006 7.887681167461333E-006 8.050638706975080E-006 8.216966809548439E-006 8.386735286968618E-006 8.560015400517165E-006 8.736879891160936E-006 8.917403010374834E-006 9.101660551609553E-006 9.289729882417955E-006 9.481689977253888E-006 9.677621450957642E-006 9.877606592942429E-006 1.008172940209671E-005 1.029007562241741E-005 1.050273277938935E-005 1.071979021712674E-005 1.094133913629265E-005 1.116747263281283E-005 1.139828573740079E-005 1.163387545591101E-005 1.187434081053779E-005 1.211978288187766E-005 1.237030485187335E-005 1.262601204765809E-005 1.288701198631902E-005 1.315341442059924E-005 1.342533138555812E-005 1.370287724621025E-005 1.398616874616346E-005 1.427532505727707E-005 1.457046783036188E-005 1.487172124694378E-005 1.517921207211350E-005 1.549306970848528E-005 1.581342625128793E-005 1.614041654461209E-005 1.647417823883807E-005 1.681485184926918E-005 1.716258081599595E-005 1.751751156501716E-005 1.787979357064419E-005 1.824957941921578E-005 1.862702487415074E-005 1.901228894236691E-005 1.940553394209504E-005 1.980692557211717E-005 2.021663298245929E-005 2.063482884656924E-005 2.106168943501082E-005 2.149739469070635E-005 2.194212830576007E-005 2.239607779989590E-005 2.285943460054339E-005 2.333239412460675E-005 2.381515586195223E-005 2.430792346065025E-005 2.481090481400907E-005 2.532431214943777E-005 2.584836211917712E-005 2.638327589293763E-005 2.692927925248484E-005 2.748660268821302E-005 2.805548149774887E-005 2.863615588662821E-005 2.922887107108905E-005 2.983387738302562E-005 3.045143037714884E-005 3.108179094039959E-005 3.172522540366208E-005 3.238200565582572E-005 3.305240926024477E-005 3.373671957364624E-005 3.443522586753725E-005 3.514822345216449E-005 3.587601380307926E-005 3.661890469036275E-005 3.737721031056739E-005 3.815125142143111E-005 3.894135547942273E-005 3.974785678017772E-005 4.057109660188486E-005 4.141142335168565E-005 4.226919271514934E-005 4.314476780888806E-005 4.403851933637764E-005 4.495082574705102E-005 4.588207339873282E-005 4.683265672348451E-005 4.780297839693157E-005 4.879344951114522E-005 4.980448975115264E-005 5.083652757515150E-005 5.189000039850562E-005 5.296535478160080E-005 5.406304662164064E-005 5.518354134846457E-005 5.632731412447145E-005 5.749485004873380E-005 5.868664436538988E-005 5.990320267640192E-005 6.114504115877100E-005 6.241268678630091E-005 6.370667755600467E-005 6.502756271925010E-005 6.637590301774160E-005 6.775227092443833E-005 6.915725088951033E-005 7.059143959143605E-005 7.205544619334723E-005 7.354989260472875E-005 7.507541374858332E-005 7.663265783417298E-005 7.822228663545169E-005 7.984497577530512E-005 8.150141501571655E-005 8.319230855397951E-005 8.491837532508036E-005 8.668034931037670E-005 8.847897985269899E-005 9.031503197800623E-005 9.218928672372813E-005 9.410254147392951E-005 9.605561030143440E-005 9.804932431705040E-005 1.000845320260364E-004 1.021620996919597E-004 1.042829117080896E-004 1.064478709764809E-004 1.086578992948986E-004 1.109139377517426E-004 1.132169471291306E-004 1.155679083143021E-004 1.179678227195091E-004 1.204177127105616E-004 1.229186220441982E-004 1.254716163144587E-004 1.280777834082326E-004 1.307382339701672E-004 1.334541018771170E-004 1.362265447223213E-004 1.390567443095019E-004 1.419459071570711E-004 1.448952650126493E-004 1.479060753780911E-004 1.509796220452217E-004 1.541172156424933E-004 1.573201941927684E-004 1.605899236824450E-004 1.639277986421408E-004 1.673352427391556E-004 1.708137093819373E-004 1.743646823367777E-004 1.779896763569695E-004 1.816902378246601E-004 1.854679454056383E-004 1.893244107172983E-004 1.932612790100242E-004 1.972802298622460E-004 2.013829778894185E-004 2.055712734671804E-004 2.098469034689537E-004 2.142116920182475E-004 2.186675012559322E-004 2.232162321227588E-004 2.278598251573935E-004 2.326002613102513E-004 2.374395627734069E-004 2.423797938268709E-004 2.474230617015208E-004 2.525715174589789E-004 2.578273568887362E-004 2.631928214228196E-004 2.686701990683090E-004 2.742618253580103E-004 2.799700843195964E-004 2.857974094635283E-004 2.917462847900759E-004 2.978192458157598E-004 3.040188806195351E-004 3.103478309090482E-004 3.168087931072943E-004 3.234045194600107E-004 3.301378191641393E-004 3.370115595177018E-004 3.440286670914241E-004 3.511921289224573E-004 3.585049937305418E-004 3.659703731569611E-004 3.735914430266392E-004 3.813714446337322E-004 3.893136860510704E-004 3.974215434638069E-004 4.056984625276303E-004 4.141479597519017E-004 4.227736239080744E-004 4.315791174637600E-004 4.405681780427994E-004 4.497446199117037E-004 4.591123354928260E-004 4.686752969046239E-004 4.784375575293779E-004 4.884032536087239E-004 4.985766058673585E-004 5.089619211652783E-004 5.195635941789061E-004 5.303861091114589E-004 5.414340414329108E-004 5.527120596498967E-004 5.642249271059028E-004 5.759775038120850E-004 5.879747483090517E-004 6.002217195599415E-004 6.127235788751241E-004 6.254855918688424E-004 6.385131304481114E-004 6.518116748341785E-004 6.653868156168462E-004 6.792442558419443E-004 6.933898131322355E-004 7.078294218420254E-004 7.225691352457343E-004 7.376151277606846E-004 7.529736972043372E-004 7.686512670862030E-004 7.846543889346372E-004 8.009897446587148E-004 8.176641489453639E-004 8.346845516919189E-004 8.520580404742411E-004 8.697918430505301E-004 8.878933299009311E-004 9.063700168030248E-004 9.252295674432597E-004 9.444797960643647E-004 9.641286701487594E-004 9.841843131379413E-004 1.004655007187817E-003 1.025549195959901E-003 1.046875487448284E-003 1.068642656842241E-003 1.090859649424298E-003 1.113535583503575E-003 1.136679753384148E-003 1.160301632368157E-003 1.184410875793339E-003 1.209017324104626E-003 1.234131005959385E-003 1.259762141365866E-003 1.285921144854334E-003 1.312618628680332E-003 1.339865406059479E-003 1.367672494433112E-003 1.396051118764065E-003 1.425012714861793E-003 1.454568932735986E-003 1.484731639977762E-003 1.515512925167448E-003 1.546925101307897E-003 1.578980709282194E-003 1.611692521334554E-003 1.645073544573107E-003 1.679137024493200E-003 1.713896448519738E-003 1.749365549567022E-003 1.785558309614412E-003 1.822488963296083E-003 1.860172001503001E-003 1.898622174995169E-003 1.937854498022070E-003 1.977884251949114E-003 2.018726988887796E-003 2.060398535327124E-003 2.102914995763769E-003 2.146292756328247E-003 2.190548488404307E-003 2.235699152238556E-003 2.281762000537213E-003 2.328754582046723E-003 2.376694745114801E-003 2.425600641228338E-003 2.475490728524395E-003 2.526383775270376E-003 2.578298863309261E-003 2.631255391465617E-003 2.685273078907895E-003 2.740371968462340E-003 2.796572429873631E-003 2.853895163007148E-003 2.912361200987563E-003 2.971991913268219E-003 3.032809008625537E-003 3.094834538072434E-003 3.158090897684525E-003 3.222600831332599E-003 3.288387433314615E-003 3.355474150880197E-003 3.423884786640323E-003 3.493643500854644E-003 3.564774813588544E-003 3.637303606731784E-003 3.711255125870262E-003 3.786654982002090E-003 3.863529153088886E-003 3.941903985432833E-003 4.021806194869734E-003 4.103262867767928E-003 4.186301461822576E-003 4.270949806634478E-003 4.357236104062189E-003 4.445188928335816E-003 4.534837225920510E-003 4.626210315117242E-003 4.719337885388037E-003 4.814249996392458E-003 4.910977076721658E-003 5.009549922315899E-003 5.109999694551010E-003 5.212357917978762E-003 5.316656477705698E-003 5.422927616394491E-003 5.531203930871383E-003 5.641518368322811E-003 5.753904222063806E-003 5.868395126860223E-003 5.985025053786394E-003 6.103828304599226E-003 6.224839505609243E-003 6.348093601028571E-003 6.473625845775252E-003 6.601471797712778E-003 6.731667309303141E-003 6.864248518651164E-003 6.999251839917239E-003 7.136713953075124E-003 7.276671792990763E-003 7.419162537797576E-003 7.564223596543068E-003 7.711892596080970E-003 7.862207367182595E-003 8.015205929840443E-003 8.170926477736516E-003 8.329407361847216E-003 8.490687073156061E-003 8.654804224444935E-003 8.821797531133897E-003 8.991705791139093E-003 9.164567863717657E-003 9.340422647267931E-003 9.519309056052798E-003 9.701265995813325E-003 9.886332338239363E-003 1.007454689426329E-002 1.026594838614242E-002 1.046057541829527E-002 1.065846644685627E-002 1.085965974791293E-002 1.106419338438946E-002 1.127210517153980E-002 1.148343264101311E-002 1.169821300345416E-002 1.191648310960086E-002 1.213827940984066E-002 1.236363791218748E-002 1.259259413864052E-002 1.282518307988608E-002 1.306143914830342E-002 1.330139612923544E-002 1.354508713048531E-002 1.379254452999958E-002 1.404379992169886E-002 1.429888405941715E-002 1.455782679891088E-002 1.482065703789924E-002 1.508740265409764E-002 1.535809044120640E-002 1.563274604281742E-002 1.591139388420210E-002 1.619405710194448E-002 1.648075747138417E-002 1.677151533183473E-002 1.706634950954395E-002 1.736527723836370E-002 1.766831407809795E-002 1.797547383049926E-002 1.828676845288514E-002 1.860220796934740E-002 1.892180037952937E-002 1.924555156494754E-002 1.957346519283646E-002 1.990554261749760E-002 2.024178277913543E-002 2.058218210016639E-002 2.092673437898911E-002 2.127543068120702E-002 2.162825922829780E-002 2.198520528372697E-002 2.234625103650681E-002 2.271137548220518E-002 2.308055430141265E-002 2.345375973568091E-002 2.383096046094911E-002 2.421212145848004E-002 2.459720388333235E-002 2.498616493040052E-002 2.537895769805937E-002 2.577553104945574E-002 2.617582947149566E-002 2.657979293158185E-002 2.698735673216241E-002 2.739845136315895E-002 2.781300235234895E-002 2.823093011378492E-002 2.865214979434057E-002 2.907657111848217E-002 2.950409823137184E-002 2.993462954041823E-002 3.036805755539905E-002 3.080426872728952E-002 3.124314328594040E-002 3.168455507675981E-002 3.212837139656323E-002 3.257445282876721E-002 3.302265307811367E-002 3.347281880512320E-002 3.392478946048803E-002 3.437839711962781E-002 3.483346631764400E-002 3.528981388492233E-002 3.574724878364602E-002 3.620557194549676E-002 3.666457611083491E-002 3.712404566966510E-002 3.758375650470835E-002 3.804347583691818E-002 3.850296207379304E-002 3.896196466085454E-002 3.942022393667714E-002 3.987747099187183E-002 4.033342753244382E-002 4.078780574796143E-002 4.124030818499140E-002 4.169062762627335E-002 4.213844697612498E-002 4.258343915258687E-002 4.302526698683526E-002 4.346358313040882E-002 4.389802997081428E-002 4.432823955609441E-002 4.475383352895997E-002 4.517442307110578E-002 4.558960885834923E-002 4.599898102724725E-002 4.640211915386571E-002 4.679859224539216E-002 4.718795874529991E-002 4.756976655278768E-002 4.794355305723492E-002 4.830884518842802E-002 4.866515948332711E-002 4.901200217015685E-002 4.934886927061746E-002 4.967524672102393E-002 4.999061051319273E-002 5.029442685590420E-002 5.058615235777855E-002 5.086523423240952E-002 5.113111052660652E-002 5.138321037260019E-002 5.162095426506917E-002 5.184375436384734E-002 5.205101482316997E-002 5.224213214831528E-002 5.241649558049306E-002 5.257348751082598E-002 5.271248392426044E-002 5.283285487423275E-002 5.293396498890330E-002 5.301517400975533E-002 5.307583736333617E-002 5.311530676689767E-002 5.313293086866795E-002 5.312805592345906E-002 5.310002650428486E-002 5.304818625062890E-002 5.297187865396485E-002 5.287044788109085E-002 5.274323963579386E-002 5.258960205931179E-002 5.240888667000752E-002 5.220044934261227E-002 5.196365132733403E-002 5.169786030906063E-002 5.140245150681647E-002 5.107680881355645E-002 5.072032597630020E-002 5.033240781652438E-002 4.991247149064002E-002 4.945994779028661E-002 4.897428248207265E-002 4.845493768628641E-002 4.790139329398797E-002 4.731314842177602E-002 4.668972290339903E-002 4.603065881725172E-002 4.533552204866211E-002 4.460390388573396E-002 4.383542264736324E-002 4.302972534189431E-002 4.218648935472454E-002 4.130542416300220E-002 4.038627307539400E-002 3.942881499472469E-002 3.843286620111216E-002 3.739828215303767E-002 3.632495930360278E-002 3.521283692903181E-002 3.406189896628287E-002 3.287217585643024E-002 3.164374639027896E-002 3.037673955246698E-002 2.907133636010353E-002 2.772777169178446E-002 2.634633610261622E-002 2.492737762067208E-002 2.347130352009620E-002 2.197858206586536E-002 2.044974422501499E-002 1.888538533893603E-002 1.728616675115376E-002 1.565281738480961E-002 1.398613526388311E-002 1.228698897201450E-002 1.055631904262048E-002 8.795139273836327E-003 7.004537961669178E-003 5.185679044609533E-003 3.339803152822807E-003 1.468228554930413E-003 -4.276480047085248E-004 -2.346350585387493E-003 -4.286323453355658E-003 -6.245930616326362E-003 -8.223455496518617E-003 -1.021710074957629E-002 -1.222498823670842E-002 -1.424515915737357E-002 -1.627557434979060E-002 -1.831411476649679E-002 -2.035858213209056E-002 -2.240669979018986E-002 -2.445611374650597E-002 -2.650439391477566E-002 -2.854903557211027E-002 -3.058746103010613E-002 -3.261702152781554E-002 -3.463499935239862E-002 -3.663861019296175E-002 -3.862500573273554E-002 -4.059127648435350E-002 -4.253445487255760E-002 -4.445151856817934E-002 -4.633939407672266E-002 -4.819496058430610E-002 -5.001505406310783E-002 -5.179647163779709E-002 -5.353597621372989E-002 -5.523030136693891E-002 -5.687615649515582E-002 -5.847023222827551E-002 -6.000920609580443E-002 -6.148974844793637E-002 -6.290852862596982E-002 -6.426222137682647E-002 -6.554751350545393E-002 -6.676111075790142E-002 -6.789974492684950E-002 -6.896018117035611E-002 -6.993922553355791E-002 -7.083373266203737E-002 -7.164061369454056E-002 -7.235684432170644E-002 -7.297947299645126E-002 -7.350562928064369E-002 -7.393253231170781E-002 -7.425749937180652E-002 -7.447795454128776E-002 -7.459143741712153E-002 -7.459561187611911E-002 -7.448827486180933E-002 -7.426736517294864E-002 -7.393097223076761E-002 -7.347734480120381E-002 -7.290489964754464E-002 -7.221223008810286E-002 -7.139811443277673E-002 -7.046152427160629E-002 -6.940163258773273E-002 -6.821782166649970E-002 -6.690969077181161E-002 -6.547706356028582E-002 -6.391999520321187E-002 -6.223877918586585E-002 -6.043395375333066E-002 -5.850630797165108E-002 -5.645688737291465E-002 -5.428699915270735E-002 -5.199821688835603E-002 -4.959238474644997E-002 -4.707162114834410E-002 -4.443832186269880E-002 -4.169516249461851E-002 -3.884510034162586E-002 -3.589137558756375E-002 -3.283751180656317E-002 -2.968731575046293E-002 -2.644487639452487E-002 -2.311456321796177E-002 -1.970102369768837E-002 -1.620917999581762E-002 -1.264422482375145E-002 -9.011616468248981E-003 -5.317072967580844E-003 -1.566565428779879E-003 2.233689519950089E-003 6.077238144430608E-003 9.957398886807921E-003 1.386727251113215E-002 1.779975310505342E-002 2.174753992714929E-002 2.570315008612557E-002 2.965893203493768E-002 3.360707985978230E-002 3.753964834091764E-002 4.144856875938292E-002 4.532566542088572E-002 4.916267286538209E-002 5.295125372814983E-002 5.668301721540300E-002 6.034953815466830E-002 6.394237657719633E-002 6.745309778657951E-002 7.087329286447781E-002 7.419459956090914E-002 7.740872351297862E-002 8.050745973224260E-002 8.348271429720562E-002 8.632652618381897E-002 8.903108916339288E-002 9.158877369415575E-002 9.399214872990196E-002 9.623400336686198E-002 9.830736824819135E-002 1.002055366443757E-001 1.019220851274395E-001 1.034508937571530E-001 1.047861656984646E-001 1.059224461911389E-001 1.068546407950225E-001 1.075780328374515E-001 1.080882999930109E-001 1.083815299300807E-001 1.084542349633039E-001 1.083033656561997E-001 1.079263233235510E-001 1.073209713888410E-001 1.064856455578096E-001 1.054191627750863E-001 1.041208289367368E-001 1.025904453373859E-001 1.008283138362613E-001 9.883524073200224E-002 9.661253934132311E-002 9.416203128157750E-002 9.148604646189513E-002 8.858742179182623E-002 8.546949862031321E-002 8.213611892129885E-002 7.859162024537676E-002 7.484082945959644E-002 7.088905529986930E-002 6.674207976240568E-002 6.240614836227690E-002 5.788795928857965E-002 5.319465148682229E-002 4.833379170010545E-002 4.331336050147928E-002 3.814173735058188E-002 3.282768470834956E-002 2.738033124429087E-002 2.180915417158328E-002 1.612396074612650E-002 1.033486896671154E-002 4.452287514669446E-003 -1.513105027226089E-003 -7.550381635199592E-003 -1.364838894100380E-002 -1.979576991921771E-002 -2.598098711772849E-002 -3.219234638138446E-002 -3.841802101625420E-002 -4.464607633930497E-002 -5.086449455568456E-002 -5.706119990322452E-002 -6.322408400135685E-002 -6.934103133942995E-002 -7.539994483750245E-002 -8.138877141116198E-002 -8.729552747082517E-002 -9.310832428538433E-002 -9.881539314000987E-002 -1.044051102184229E-001 -1.098660211410149E-001 -1.151868650917720E-001 -1.203565984690254E-001 -1.253644179975115E-001 -1.301997832419844E-001 -1.348524384655789E-001 -1.393124337791412E-001 -1.435701455307138E-001 -1.476162958871669E-001 -1.514419715625135E-001 -1.550386416496700E-001 -1.583981745142815E-001 -1.615128537107405E-001 -1.643753928817085E-001 -1.669789496034034E-001 -1.693171381397185E-001 -1.713840410690496E-001 -1.731742197486350E-001 -1.746827235824277E-001 -1.759050980601284E-001 -1.768373915371420E-001 -1.774761607279592E-001 -1.778184748888614E-001 -1.778619186699356E-001 -1.776045936211426E-001 -1.770451183425715E-001 -1.761826272749691E-001 -1.750167681330516E-001 -1.735476979908921E-001 -1.717760780357022E-001 -1.697030670134672E-001 -1.673303133970283E-001 -1.646599463142083E-001 -1.616945652803415E-001 -1.584372287859823E-001 -1.548914417965546E-001 -1.510611422261711E-001 -1.469506864527567E-001 -1.425648339458838E-001 -1.379087310823580E-001 -1.329878942275403E-001 -1.278081921626621E-001 -1.223758279399809E-001 -1.166973202485456E-001 -1.107794843736269E-001 -1.046294128325314E-001 -9.825445576861112E-002 -9.166220118383428E-002 -8.486045508834267E-002 -7.785722164304132E-002 -7.066068336848710E-002 -6.327918149021958E-002 -5.572119648726104E-002 -4.799532890684457E-002 -4.011028050456061E-002 -3.207483576509726E-002 -2.389784385461210E-002 -1.558820105156896E-002 -7.154833698629928E-003 1.393318286052661E-003 1.004731730401913E-002 1.879824334820112E-002 2.763720862526770E-002 3.655537150674524E-002 4.554394979091980E-002 5.459423326128438E-002 6.369759553091127E-002 7.284550516559819E-002 8.202953608195121E-002 9.124137721972096E-002 1.004728414906989E-001 1.097158740093024E-001 1.189625596126322E-001 1.282051296802694E-001 1.374359682662700E-001 1.466476175589899E-001 1.558327816612246E-001 1.649843275118082E-001 1.740952894277554E-001 1.831588771806348E-001 1.921684747191700E-001 2.011176433699029E-001 2.100001229165076E-001 2.188098324985905E-001 2.275408710151686E-001 2.361875170960535E-001 2.447442286679332E-001 2.532056421434680E-001 2.615665712620165E-001 2.698220056106159E-001 2.779671088537681E-001 2.859972167003705E-001 2.939078346358234E-001 3.016946354469268E-001 3.093534565666770E-001 3.168802972654717E-001 3.242713157145582E-001 3.315228259468069E-001 3.386312947390773E-001 3.455933384395667E-001 3.524057197626046E-001 3.590653445723798E-001 3.655692586760753E-001 3.719146446458364E-001 3.780988186879219E-001 3.841192275762845E-001 3.899734456667093E-001 3.956591720065005E-001 4.011742275535576E-001 4.065165525175265E-001 4.116842038345406E-001 4.166753527859055E-001 4.214882827698997E-001 4.261213872346996E-001 4.305731677792546E-001 4.348422324277790E-001 4.389272940823483E-001 4.428271691569334E-001 4.465407763950434E-001 4.500671358719983E-001 4.534053681817106E-001 4.565546938067222E-001 4.595144326691218E-001 4.622840038588596E-001 4.648629255348877E-001 4.672508149934783E-001 4.694473888970212E-001 4.714524636555756E-001 4.732659559524507E-001 4.748878834041197E-001 4.763183653438422E-001 4.775576237174697E-001 4.786059840790659E-001 4.794638766731631E-001 4.801318375897315E-001 4.806105099772428E-001 4.809006452985777E-001 4.810031046139661E-001 4.809188598746493E-001 4.806489952105454E-001 4.801947081948516E-001 4.795573110682714E-001 4.787382319053869E-001 4.777390157056214E-001 4.765613253912608E-001 4.752069426951200E-001 4.736777689206527E-001 4.719758255576275E-001 4.701032547369071E-001 4.680623195083864E-001 4.658554039267729E-001 4.634850129306061E-001 4.609537720007384E-001 4.582644265854101E-001 4.554198412800577E-001 4.524229987510907E-001 4.492769983940439E-001 4.459850547177692E-001 4.425504954476508E-001 4.389767593422153E-001 4.352673937189498E-001 4.314260516866325E-001 4.274564890830014E-001 4.233625611181536E-001 4.191482187256316E-001 4.148175046247514E-001 4.103745490992999E-001 4.058235654993142E-001 4.011688454741986E-001 3.964147539469635E-001 3.915657238408429E-001 3.866262505709797E-001 3.816008863152288E-001 3.764942340794242E-001 3.713109415736709E-001 3.660556949173476E-001 3.607332121915365E-001 3.553482368554765E-001 3.499055310645893E-001 3.444098688734175E-001 3.388660293866839E-001 3.332787898581273E-001 3.276529187645442E-001 3.219931688778652E-001 3.163042703580007E-001 3.105909238892932E-001 3.048577938832068E-001 2.991095017695489E-001 2.933506193981174E-001 2.875856625721262E-001 2.818190847341024E-001 2.760552708241818E-001 2.702985313298590E-001 2.645530965452856E-001 2.588231110571524E-001 2.531126284730541E-001 2.474256064070303E-001 2.417659017357002E-001 2.361372661370794E-001 2.305433419227962E-001 2.249876581730126E-001 2.194736271819197E-001 2.140045412202244E-001 2.085835696195828E-001 2.032137561824784E-001 1.978980169195977E-001 1.926391381153285E-001 1.874397747206086E-001 1.823024490709994E-001 1.772295499265344E-001 1.722233318286447E-001 1.672859147682469E-001 1.624192841579567E-001 1.576252911003125E-001 1.529056529429119E-001 1.482619541104477E-001 1.436956472028057E-001 1.392080543476409E-001 1.348003687951952E-001 1.304736567425548E-001 1.262288593740648E-001 1.220667951042328E-001 1.179881620091507E-001 1.139935404322526E-001 1.100833957500909E-001 1.062580812837693E-001 1.025178413416975E-001 9.886281437943473E-002 9.529303626256579E-002 9.180844361876846E-002 8.840887726564198E-002 8.509408570085963E-002 8.186372864228104E-002 7.871738060546321E-002 7.565453450670222E-002 7.267460528024365E-002 6.977693349912056E-002 6.696078898924616E-002 6.422537442704765E-002 6.156982891173103E-002 5.899323150349531E-002 5.649460472011174E-002 5.407291798439795E-002 5.172709101558253E-002 4.945599716048060E-002 4.725846664677965E-002 4.513328978462981E-002 4.307922350963152E-002 4.109495351956944E-002 3.917938083825371E-002 3.733058180911757E-002 3.554811965453955E-002 3.383168384143215E-002 3.217998708145719E-002 3.059145174319447E-002 2.906450544491822E-002 2.759758205631595E-002 2.618912270670767E-002 2.483757679289577E-002 2.354140298485859E-002 2.229907022691588E-002 2.110905873198503E-002 1.996986096654685E-002 1.887998262394584E-002 1.783794358366577E-002 1.684227885424618E-002 1.589153949752389E-002 1.498429353199045E-002 1.411912681289645E-002 1.329464388717715E-002 1.250946882097723E-002 1.176224599770581E-002 1.105164088475687E-002 1.037634076704419E-002 9.735055445590550E-003 9.126517899524299E-003 8.549484909947749E-003 8.002737644258908E-003 7.485082199631655E-003 6.995350104488213E-003 6.532398776931890E-003 6.095111939246431E-003 5.682399987710625E-003 5.293200317122517E-003 4.926477599575725E-003 4.581224017180641E-003 4.256459448574747E-003 3.951231609218344E-003 3.664616145623900E-003 3.395716683818250E-003 3.143664832486296E-003 2.907620141391924E-003 2.686770015815895E-003 2.480329587890683E-003 2.287541545848003E-003 2.107675922325366E-003 1.940029843002829E-003 1.783927236959444E-003 1.638718510250322E-003 1.503780184308988E-003 1.378514500875469E-003 1.262348995237772E-003 1.154736039652708E-003 1.055152358881045E-003 9.630985198314366E-004 8.780983973572178E-004 7.996986182898931E-004 7.274679858227088E-004 6.609968863772489E-004 5.998966810953660E-004 5.437990840981679E-004 4.923555296433099E-004 4.452365302917339E-004 4.021310281655134E-004 3.627457413399470E-004 3.268045073658791E-004 2.940476258628584E-004 2.642312020606632E-004 2.371264930964705E-004 2.125192587980865E-004 1.902091186008185E-004 1.700089161573798E-004 1.517440931073552E-004 1.352520733758969E-004 1.203816592711693E-004 1.069924405473165E-004 9.495421749510562E-005 8.414643901658936E-005 7.445765653383740E-005 6.578499447567334E-005 5.803363798108252E-005 5.111633835414898E-005 4.495293670363490E-005 3.946990610119441E-005 3.459991249623459E-005 3.028139453308082E-005 2.645816232780208E-005 2.307901517819019E-005 2.009737810130022E-005 1.747095701892979E-005 1.516141234267643E-005 1.313405064694319E-005 1.135753406059120E-005 9.803606955943205E-006 8.446839467549764E-006 7.264387332523258E-006 6.235767509257893E-006 5.342649001880759E-006 4.568658293673408E-006 3.899198773783153E-006 3.321283527594049E-006 2.823380851905829E-006 2.395271851307031E-006 2.027919471537132E-006 1.713348328905019E-006 1.444534701659512E-006 1.215306059140308E-006 1.020249518397216E-006 8.546286276495769E-007 7.143080016122620E-007 5.956845961026123E-007 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 7.261387187761866E-011 7.494932415307209E-011 7.735989068961487E-011 7.984798735858712E-011 8.241734808881016E-011 8.507320651733448E-011 8.781766227258925E-011 9.065371295085478E-011 9.358431794280790E-011 9.661253549289785E-011 9.974152573609543E-011 1.029745540327151E-010 1.063149943771166E-010 1.097663329242352E-010 1.133321716331658E-010 1.170162320319277E-010 1.208223591073487E-010 1.247545253241456E-010 1.288168347774157E-010 1.330135274828912E-010 1.373489838094560E-010 1.418277290585722E-010 1.464544381954177E-010 1.512339407366975E-010 1.561712258002545E-010 1.612714473217756E-010 1.665399294440666E-010 1.719821720845482E-010 1.776038566868138E-010 1.834108521622860E-010 1.894092210282031E-010 1.956052257483791E-010 2.020053352833908E-010 2.086162318570672E-010 2.154448179463829E-010 2.224982235020944E-010 2.297838134076988E-010 2.373091951845466E-010 2.450822269512002E-010 2.531110256453950E-010 2.614039755172388E-010 2.699697369025715E-010 2.788172552856982E-010 2.879557706610190E-010 2.973948272033901E-010 3.071442832573778E-010 3.172143216559014E-010 3.276154603791118E-010 3.383585635647071E-010 3.494548528812604E-010 3.609159192765148E-010 3.727537351130001E-010 3.849806667037306E-010 3.976094872611672E-010 4.106533902730634E-010 4.241260033192645E-010 4.380414023439955E-010 4.524141263986531E-010 4.672591928706161E-010 4.825921132140991E-010 4.984289091996057E-010 5.147861296990882E-010 5.316808680244805E-010 5.491307798378625E-010 5.671541016521135E-010 5.857696699415402E-010 6.049969408826052E-010 6.248560107455548E-010 6.453676369584245E-010 6.665532598656226E-010 6.884350252040177E-010 7.110358073202188E-010 7.343792331535253E-010 7.584897070098270E-010 7.833924361525781E-010 8.091134572378301E-010 8.356796636212077E-010 8.631188335656281E-010 8.914596593795283E-010 9.207317775163404E-010 9.509657996669835E-010 9.821933448781875E-010 1.014447072730555E-009 1.047760717611391E-009 1.082169124118486E-009 1.117708283632255E-009 1.154415372094852E-009 1.192328789036175E-009 1.231488197888006E-009 1.271934567628875E-009 1.313710215803685E-009 1.356858852963557E-009 1.401425628572901E-009 1.447457178432248E-009 1.495001673667008E-009 1.544108871333978E-009 1.594830166699150E-009 1.647218647242129E-009 1.701329148444342E-009 1.757218311420086E-009 1.814944642451433E-009 1.874568574490059E-009 1.936152530691125E-009 1.999760990046533E-009 2.065460555187100E-009 2.133320022425507E-009 2.203410454114283E-009 2.275805253395533E-009 2.350580241421687E-009 2.427813737129179E-009 2.507586639649678E-009 2.589982513446347E-009 2.675087676265451E-009 2.762991289996725E-009 2.853785454538938E-009 2.947565304770375E-009 3.044429110727228E-009 3.144478381096331E-009 3.247817970132246E-009 3.354556188112329E-009 3.464804915447220E-009 3.578679720568118E-009 3.696299981716225E-009 3.817789012763942E-009 3.943274193201723E-009 4.072887102428940E-009 4.206763658491745E-009 4.345044261415693E-009 4.487873941285783E-009 4.635402511231710E-009 4.787784725481386E-009 4.945180442651189E-009 5.107754794447076E-009 5.275678359956497E-009 5.449127345717033E-009 5.628283771753924E-009 5.813335663785074E-009 6.004477251798736E-009 6.201909175215954E-009 6.405838694856937E-009 6.616479911937867E-009 6.834053994332203E-009 7.058789410338402E-009 7.290922170204061E-009 7.530696075664845E-009 7.778362977765228E-009 8.034183043237020E-009 8.298425029720866E-009 8.571366570125516E-009 8.853294466429465E-009 9.144504993239849E-009 9.445304211433981E-009 9.756008292219841E-009 1.007694385196313E-008 1.040844829814016E-008 1.075087018678777E-008 1.110456959183430E-008 1.146991848670788E-008 1.184730113863246E-008 1.223711451603487E-008 1.263976870950128E-008 1.305568736673538E-008 1.348530814198650E-008 1.392908316043104E-008 1.438747949800723E-008 1.486097967721989E-008 1.535008217944921E-008 1.585530197431569E-008 1.637717106667172E-008 1.691623906180973E-008 1.747307374949663E-008 1.804826170746454E-008 1.864240892500959E-008 1.925614144737179E-008 1.989010604159245E-008 2.054497088456838E-008 2.122142627404686E-008 2.192018536333028E-008 2.264198492048513E-008 2.338758611287727E-008 2.415777531788251E-008 2.495336496065097E-008 2.577519437983263E-008 2.662413072220248E-008 2.750106986715566E-008 2.840693738207494E-008 2.934268950960780E-008 3.030931418792465E-008 3.130783210506632E-008 3.233929778852640E-008 3.340480073125284E-008 3.450546655529298E-008 3.564245821434819E-008 3.681697723654663E-008 3.803026500878722E-008 3.928360410405392E-008 4.057831965314640E-008 4.191578076232272E-008 4.329740197839980E-008 4.472464480291058E-008 4.619901925697021E-008 4.772208549856055E-008 4.929545549399939E-008 5.092079474542168E-008 5.259982407616145E-008 5.433432147598745E-008 5.612612400821223E-008 5.797712978076257E-008 5.988929998337044E-008 6.186466099311707E-008 6.390530655063860E-008 6.601340000938059E-008 6.819117666036927E-008 7.044094613505262E-008 7.276509488884981E-008 7.516608876813883E-008 7.764647566350441E-008 8.020888825216447E-008 8.285604683259328E-008 8.559076225446229E-008 8.841593894712562E-008 9.133457804998816E-008 9.434978064820741E-008 9.746475111729834E-008 1.006828005803326E-007 1.040073504815492E-007 1.074419362803241E-007 1.109902112695822E-007 1.146559505228726E-007 1.184430549744752E-007 1.223555556370531E-007 1.263976179615227E-007 1.305735463439711E-007 1.348877887846160E-007 1.393449417039762E-007 1.439497549215952E-007 1.487071368028452E-007 1.536221595795280E-007 1.587000648501842E-007 1.639462692662266E-007 1.693663704102209E-007 1.749661528728569E-007 1.807515945353753E-007 1.867288730644476E-007 1.929043726267496E-007 1.992846908307129E-007 2.058766459032008E-007 2.126872841091172E-007 2.197238874222348E-007 2.269939814558128E-007 2.345053436618675E-007 2.422660118082679E-007 2.502842927431387E-007 2.585687714563838E-007 2.671283204484784E-007 2.759721094170276E-007 2.851096152719518E-007 2.945506324905311E-007 3.043052838239304E-007 3.143840313672245E-007 3.247976880053578E-007 3.355574292479026E-007 3.466748054659210E-007 3.581617545446971E-007 3.700306149665765E-007 3.822941393386472E-007 3.949655083804965E-007 4.080583453878116E-007 4.215867311881300E-007 4.355652196056111E-007 4.500088534522816E-007 4.649331810638119E-007 4.803542733984992E-007 4.962887417187841E-007 5.127537558752886E-007 5.297670632140602E-007 5.473470081284138E-007 5.655125522775094E-007 5.842832954945631E-007 6.036794974083822E-007 6.237220998027349E-007 6.444327497389082E-007 6.658338234676885E-007 6.879484511579048E-007 7.108005424696092E-007 7.344148130009447E-007 7.588168116387519E-007 7.840329488440060E-007 8.100905259042498E-007 8.370177651863019E-007 8.648438414236686E-007 8.935989140742793E-007 9.233141607853972E-007 9.540218120038312E-007 9.857551867708930E-007 1.018548729742906E-006 1.052438049479491E-006 1.087459958043299E-006 1.123652511956393E-006 1.161055054560019E-006 1.199708259826147E-006 1.239654177670809E-006 1.280936280821026E-006 1.323599513288868E-006 1.367690340508062E-006 1.413256801190495E-006 1.460348560961893E-006 1.509016967838061E-006 1.559315109605155E-006 1.611297873169650E-006 1.665022005945970E-006 1.720546179352044E-006 1.777931054485524E-006 1.837239350055883E-006 1.898535912650223E-006 1.961887789413305E-006 2.027364303225090E-006 2.095037130461959E-006 2.164980381430748E-006 2.237270683567813E-006 2.311987267498512E-006 2.389212056055788E-006 2.469029756359942E-006 2.551527955065183E-006 2.636797216882198E-006 2.724931186489747E-006 2.816026693952162E-006 2.910183863763668E-006 3.007506227644602E-006 3.108100841218894E-006 3.212078404706638E-006 3.319553387770176E-006 3.430644158656866E-006 3.545473117786630E-006 3.664166835937458E-006 3.786856197187304E-006 3.913676546776236E-006 4.044767844058327E-006 4.180274820718579E-006 4.320347144436168E-006 4.465139588181538E-006 4.614812205341217E-006 4.769530510870948E-006 4.929465668684514E-006 5.094794685492745E-006 5.265700611314534E-006 5.442372746889218E-006 5.625006858227550E-006 5.813805398546522E-006 6.008977737841689E-006 6.210740400359274E-006 6.419317310239213E-006 6.634940045609583E-006 6.857848101422314E-006 7.088289161329982E-006 7.326519378913587E-006 7.572803668581794E-006 7.827416006472888E-006 8.090639741701985E-006 8.362767918307524E-006 8.644103608263137E-006 8.934960255933228E-006 9.235662034363461E-006 9.546544213810448E-006 9.867953542928594E-006 1.020024864304607E-005 1.054380041597645E-005 1.089899246582739E-005 1.126622153528351E-005 1.164589795685616E-005 1.203844611960970E-005 1.244430495189057E-005 1.286392842060335E-005 1.329778604759576E-005 1.374636344373368E-005 1.421016286126626E-005 1.468970376510134E-005 1.518552342363187E-005 1.569817751977530E-005 1.622824078290990E-005 1.677630764241433E-005 1.734299290354044E-005 1.792893244637305E-005 1.853478394865546E-005 1.916122763328498E-005 1.980896704130913E-005 2.047872983128042E-005 2.117126860585584E-005 2.188736176655582E-005 2.262781439762757E-005 2.339345917998840E-005 2.418515733625623E-005 2.500379960790741E-005 2.585030726563542E-005 2.672563315401898E-005 2.763076277164385E-005 2.856671538785935E-005 2.953454519738873E-005 3.053534251405173E-005 3.157023500489786E-005 3.264038896609066E-005 3.374701064192554E-005 3.489134758840865E-005 3.607469008286859E-005 3.729837258112038E-005 3.856377522374855E-005 3.987232539312593E-005 4.122549932283586E-005 4.262482376121741E-005 4.407187769080762E-005 4.556829410551015E-005 4.711576184737641E-005 4.871602750494458E-005 5.037089737514171E-005 5.208223949081647E-005 5.385198571603402E-005 5.568213391132951E-005 5.757475017118514E-005 5.953197113606381E-005 6.155600638140459E-005 6.364914088605787E-005 6.581373758271325E-005 6.805223999295034E-005 7.036717494962236E-005 7.276115540936271E-005 7.523688335808959E-005 7.779715281246814E-005 8.044485292037821E-005 8.318297116352613E-005 8.601459666543082E-005 8.894292360811005E-005 9.197125476088972E-005 9.510300512485834E-005 9.834170569659223E-005 1.016910073548800E-004 1.051546848742839E-004 1.087366410694840E-004 1.124409110744647E-004 1.162716667607177E-004 1.202332212987532E-004 1.243300338673319E-004 1.285667145149552E-004 1.329480291782724E-004 1.374789048621991E-004 1.421644349866675E-004 1.470098849050660E-004 1.520206975995625E-004 1.572024995586474E-004 1.625611068423726E-004 1.681025313409117E-004 1.738329872322143E-004 1.797588976446792E-004 1.858869015309269E-004 1.922238607589079E-004 1.987768674267460E-004 2.055532514078775E-004 2.125605881332136E-004 2.198067066172247E-004 2.272996977350134E-004 2.350479227576202E-004 2.430600221529832E-004 2.513449246601516E-004 2.599118566445364E-004 2.687703517421646E-004 2.779302608010959E-004 2.874017621283421E-004 2.971953720508293E-004 3.073219557991316E-004 3.177927387229048E-004 3.286193178471412E-004 3.398136737785720E-004 3.513881829717403E-004 3.633556303644711E-004 3.757292223926689E-004 3.885226003945771E-004 4.017498544148367E-004 4.154255374188916E-004 4.295646799284875E-004 4.441828050892225E-004 4.592959441813074E-004 4.749206525849035E-004 4.910740262116036E-004 5.077737184138269E-004 5.250379573841000E-004 5.428855640563871E-004 5.613359705218381E-004 5.804092389715041E-004 6.001260811787666E-004 6.205078785344057E-004 6.415767026474140E-004 6.633553365248373E-004 6.858672963440859E-004 7.091368538313309E-004 7.331890592597445E-004 7.580497650814927E-004 7.837456502075271E-004 8.103042449493456E-004 8.377539566370115E-004 8.661240959278228E-004 8.954449038201173E-004 9.257475793867752E-004 9.570643082430491E-004 9.894282917633954E-004 1.022873777062015E-003 1.057436087751819E-003 1.093151655496546E-003 1.130058052370694E-003 1.168194024041933E-003 1.207599523790538E-003 1.248315747380324E-003 1.290385168795408E-003 1.333851576857006E-003 1.378760112734246E-003 1.425157308362791E-003 1.473091125784816E-003 1.522610997423568E-003 1.573767867305456E-003 1.626614233242209E-003 1.681204189985262E-003 1.737593473364073E-003 1.795839505419555E-003 1.856001440543283E-003 1.918140212632514E-003 1.982318583270407E-003 2.048601190940118E-003 2.117054601280661E-003 2.187747358391584E-003 2.260750037192614E-003 2.336135296843430E-003 2.413977935227679E-003 2.494354944504223E-003 2.577345567727392E-003 2.663031356536721E-003 2.751496229915266E-003 2.842826534014142E-003 2.937111103039315E-003 3.034441321195039E-003 3.134911185676560E-003 3.238617370702797E-003 3.345659292577742E-003 3.456139175767189E-003 3.570162119975177E-003 3.687836168202173E-003 3.809272375764494E-003 3.934584880251898E-003 4.063890972397424E-003 4.197311167830715E-003 4.334969279682920E-003 4.476992492008094E-003 4.623511433982578E-003 4.774660254840330E-003 4.930576699498362E-003 5.091402184822623E-003 5.257281876480481E-003 5.428364766321701E-003 5.604803750225340E-003 5.786755706345236E-003 5.974381573681938E-003 6.167846430903721E-003 6.367319575334081E-003 6.572974602017470E-003 6.784989482769269E-003 7.003546645109967E-003 7.228833050977200E-003 7.461040275102832E-003 7.700364582935415E-003 7.947007007981361E-003 8.201173428430868E-003 8.463074642926977E-003 8.732926445328401E-003 9.010949698308551E-003 9.297370405624750E-003 9.592419782883015E-003 9.896334326614700E-003 1.020935588147200E-002 1.053173170533982E-002 1.086371453215146E-002 1.120556263218562E-002 1.155753986961136E-002 1.191991575703736E-002 1.229296550681020E-002 1.267697007879532E-002 1.307221622436268E-002 1.347899652628668E-002 1.389760943425833E-002 1.432835929569433E-002 1.477155638151555E-002 1.522751690655388E-002 1.569656304423309E-002 1.617902293515592E-002 1.667523068921552E-002 1.718552638083549E-002 1.771025603692823E-002 1.824977161714718E-002 1.880443098599354E-002 1.937459787632343E-002 1.996064184378665E-002 2.056293821171287E-002 2.118186800594639E-002 2.181781787911510E-002 2.247118002380441E-002 2.314235207409173E-002 2.383173699488194E-002 2.453974295846951E-002 2.526678320773788E-002 2.601327590539235E-002 2.677964396860811E-002 2.756631488846089E-002 2.837372053349412E-002 2.920229693676258E-002 3.005248406568008E-002 3.092472557398548E-002 3.181946853512987E-002 3.273716315637585E-002 3.367826247288921E-002 3.464322202109341E-002 3.563249949054736E-002 3.664655435359927E-002 3.768584747206100E-002 3.875084068014139E-002 3.984199634287115E-002 4.095977688924780E-002 4.210464431932581E-002 4.327705968447562E-002 4.447748254003450E-002 4.570637036957394E-002 4.696417798001046E-002 4.825135686679198E-002 4.956835454839785E-002 5.091561386939922E-002 5.229357227133728E-002 5.370266103068926E-002 5.514330446320756E-002 5.661591909393487E-002 5.812091279221897E-002 5.965868387107331E-002 6.122962015025652E-002 6.283409798247255E-002 6.447248124212623E-002 6.614512027610479E-002 6.785235081609575E-002 6.959449285199507E-002 7.137184946600651E-002 7.318470562708572E-002 7.503332694543724E-002 7.691795838683445E-002 7.883882294659639E-002 8.079612028312666E-002 8.279002531099373E-002 8.482068675361290E-002 8.688822565567603E-002 8.899273385556607E-002 9.113427241809099E-002 9.331287002797470E-002 9.552852134465142E-002 9.778118531902574E-002 1.000707834729819E-001 1.023971981425546E-001 1.047602706858075E-001 1.071597996566083E-001 1.095955389456358E-001 1.120671958901120E-001 1.145744293539105E-001 1.171168477798645E-001 1.196940072162724E-001 1.223054093197789E-001 1.249504993370018E-001 1.276286640674695E-001 1.303392298106333E-001 1.330814602999304E-001 1.358545546270868E-001 1.386576451600663E-001 1.414897954583004E-001 1.443499981890632E-001 1.472371730490874E-001 1.501501646957595E-001 1.530877406924727E-001 1.560485894729608E-001 1.590313183296832E-001 1.620344514315822E-001 1.650564278767795E-001 1.680955997860321E-001 1.711502304430119E-001 1.742184924877260E-001 1.772984661696318E-001 1.803881376672481E-001 1.834853974812941E-001 1.865880389086231E-001 1.896937566044367E-001 1.928001452404876E-001 1.959046982671806E-001 1.990048067876869E-001 2.020977585523704E-001 2.051807370820043E-001 2.082508209284244E-001 2.113049830814147E-001 2.143400905307668E-001 2.173529039925781E-001 2.203400778089698E-001 2.232981600305030E-001 2.262235926906550E-001 2.291127122817891E-001 2.319617504421002E-001 2.347668348630584E-001 2.375239904268891E-001 2.402291405836301E-001 2.428781089772880E-001 2.454666213305729E-001 2.479903075976327E-001 2.504447043941133E-001 2.528252577137572E-001 2.551273259406037E-001 2.573461831656638E-001 2.594770228167254E-001 2.615149616096636E-001 2.634550438293203E-001 2.652922459476358E-001 2.670214815862854E-001 2.686376068305731E-001 2.701354259007712E-001 2.715096971864605E-001 2.727551396487142E-001 2.738664395941880E-001 2.748382578243250E-001 2.756652371619558E-001 2.763420103565761E-001 2.768632083685261E-001 2.772234690311747E-001 2.774174460890309E-001 2.774398186084919E-001 2.772853007566670E-001 2.769486519424257E-001 2.764246873124984E-001 2.757082885941167E-001 2.747944152743340E-001 2.736781161048065E-001 2.723545409194602E-001 2.708189527511141E-001 2.690667402317815E-001 2.670934302600324E-001 2.648947009174722E-001 2.624663946150714E-001 2.598045314487759E-001 2.569053227425286E-001 2.537651847555467E-001 2.503807525294105E-001 2.467488938492526E-001 2.428667232920508E-001 2.387316163337601E-001 2.343412234857385E-001 2.296934844296398E-001 2.247866421186597E-001 2.196192568117244E-001 2.141902200059065E-001 2.084987682310437E-001 2.025444966692150E-001 1.963273725604084E-001 1.898477483543895E-001 1.831063745674654E-001 1.761044123015299E-001 1.688434453814946E-001 1.613254920659556E-001 1.535530162847409E-001 1.455289383558355E-001 1.372566451331138E-001 1.287399995353382E-001 1.199833494060323E-001 1.109915356531305E-001 1.017698996167693E-001 9.232428961324650E-002 8.266106660306077E-002 7.278710893108679E-002 6.270981608736827E-002 5.243711143775107E-002 4.197744387466056E-002 3.133978833977289E-002 2.053364517216335E-002 9.569038237748280E-003 -1.543488201515473E-003 -1.279287391715056E-002 -2.416754847740774E-002 -3.565543837539557E-002 -4.724397554902439E-002 -5.892010731515721E-002 -7.067030773554919E-002 -8.248059042714041E-002 -9.433652282411578E-002 -1.062232418939443E-001 -1.181254713044395E-001 -1.300275400338304E-001 -1.419134024109734E-001 -1.537666595682351E-001 -1.655705822852755E-001 -1.773081351979728E-001 -1.889620023430462E-001 -2.005146140054869E-001 -2.119481748326055E-001 -2.232446931752251E-001 -2.343860116131352E-001 -2.453538386182039E-001 -2.561297813043552E-001 -2.666953792088058E-001 -2.770321390434167E-001 -2.871215703486851E-001 -2.969452219757806E-001 -3.064847193142186E-001 -3.157218021743846E-001 -3.246383632254051E-001 -3.332164868800579E-001 -3.414384885098107E-001 -3.492869538649809E-001 -3.567447785677057E-001 -3.637952075391676E-001 -3.704218742175554E-001 -3.766088394197382E-001 -3.823406296976967E-001 -3.876022750404736E-001 -3.923793457737758E-001 -3.966579885123531E-001 -4.004249610248305E-001 -4.036676658766553E-001 -4.063741827241275E-001 -4.085332991409373E-001 -4.101345398680818E-001 -4.111681943882967E-001 -4.116253427370235E-001 -4.114978794732735E-001 -4.107785357453452E-001 -4.094608993980380E-001 -4.075394330796023E-001 -4.050094903180189E-001 -4.018673295471477E-001 -3.981101260737024E-001 -3.937359819857573E-001 -3.887439340124730E-001 -3.831339593528527E-001 -3.769069794985285E-001 -3.700648620817893E-001 -3.626104207852529E-001 -3.545474133537596E-001 -3.458805377522193E-001 -3.366154265153218E-001 -3.267586393362600E-001 -3.163176539420035E-001 -3.053008553022646E-001 -2.937175232182373E-001 -2.815778183355775E-001 -2.688927666240478E-001 -2.556742423639241E-001 -2.419349496767853E-001 -2.276884026358326E-001 -2.129489039885542E-001 -1.977315225225010E-001 -1.820520691033103E-001 -1.659270714130136E-001 -1.493737474162094E-001 -1.324099775819527E-001 -1.150542758902683E-001 -9.732575965408462E-002 -7.924411819011000E-002 -6.082958037571524E-002 -4.210288113319829E-002 -2.308522688780113E-002 -3.798260051411294E-003 1.573597741013822E-002 3.549508126202326E-002 5.545632306720645E-002 7.559668895848358E-002 9.589291903350117E-002 1.163215472853074E-001 1.368589419766678E-001 1.574813463630363E-001 1.781649196668791E-001 1.988857782050938E-001 2.196200365715847E-001 2.403438487786271E-001 2.610334492633716E-001 2.816651936695304E-001 3.022155993187042E-001 3.226613852906642E-001 3.429795120368483E-001 3.631472204560166E-001 3.831420703651022E-001 4.029419783014640E-001 4.225252545947625E-001 4.418706396473771E-001 4.609573393615813E-001 4.797650596496563E-001 4.982740399598689E-001 5.164650857470470E-001 5.343195998116351E-001 5.518196124260133E-001 5.689478101618890E-001 5.856875633281553E-001 6.020229519250982E-001 6.179387900185915E-001 6.334206484371754E-001 6.484548756958975E-001 6.630286170535818E-001 6.771298316148427E-001 6.907473073946141E-001 7.038706742711179E-001 7.164904147628967E-001 7.285978725765656E-001 7.401852588840705E-001 7.512456563012282E-001 7.617730205528971E-001 7.717621798240368E-001 7.812088318099153E-001 7.901095384925663E-001 7.984617186840997E-001 8.062636383904057E-001 8.135143990610313E-001 8.202139238023861E-001 8.263629416418573E-001 8.319629699397794E-001 8.370162950544595E-001 8.415259513725609E-001 8.454956988230747E-001 8.489299989978650E-001 8.518339900053725E-001 8.542134601865339E-001 8.560748208233783E-001 8.574250779711251E-001 8.582718035440324E-001 8.586231057837864E-001 8.584875992369354E-001 8.578743743648266E-001 8.567929669059089E-001 8.552533271059973E-001 8.532657889274067E-001 8.508410393427336E-001 8.479900878136269E-001 8.447242360491735E-001 8.410550481326229E-001 8.369943210991461E-001 8.325540560412354E-001 8.277464298122107E-001 8.225837673921454E-001 8.170785149745635E-001 8.112432138262557E-001 8.050904749667656E-001 7.986329547084212E-001 7.918833310922953E-001 7.848542812501641E-001 7.775584597174358E-001 7.700084777171066E-001 7.622168834304649E-001 7.541961432633537E-001 7.459586191977903E-001 7.375165371778054E-001 7.288819787824491E-001 7.200668928179470E-001 7.110830625157268E-001 7.019420999261606E-001 6.926554328079207E-001 6.832342940983255E-001 6.736897121312209E-001 6.640325018067237E-001 6.542732565075531E-001 6.444223410880440E-001 6.344898855524950E-001 6.244857795747181E-001 6.144196677926371E-001 6.043009458472085E-001 5.941387571340534E-001 5.839419902355099E-001 5.737192770002861E-001 5.634789912375405E-001 5.532292479920126E-001 5.429779033667841E-001 5.327325548603368E-001 5.225005421848021E-001 5.122889485326484E-001 5.021046022595178E-001 4.919540789514948E-001 4.818437038457630E-001 4.717795545743591E-001 4.617674642015700E-001 4.518130245264244E-001 4.419215896226917E-001 4.320982795898194E-001 4.223479844892963E-001 4.126753684420267E-001 4.030848738634188E-001 3.935807258140357E-001 3.841669364448176E-001 3.748473095170463E-001 3.656254449783969E-001 3.565047435775922E-001 3.474884115013342E-001 3.385794650183495E-001 3.297807351165187E-001 3.210948721201937E-001 3.125243502759099E-001 3.040714722957867E-001 2.957383738489768E-001 2.875270279925612E-001 2.794392495342969E-001 2.714766993206129E-001 2.636408884442014E-001 2.559331823664750E-001 2.483548049510530E-001 2.409068424052991E-001 2.335902471277544E-001 2.264058414601009E-001 2.193543213430405E-001 2.124362598761908E-001 2.056521107827729E-001 1.990022117805030E-001 1.924867878606946E-001 1.861059544781297E-001 1.798597206547692E-001 1.737479920008362E-001 1.677705736572280E-001 1.619271731635878E-001 1.562174032566936E-001 1.506407846041067E-001 1.451967484782512E-001 1.398846393762853E-001 1.347037175912593E-001 1.296531617401467E-001 1.247320712543726E-001 1.199394688384599E-001 1.152743029023562E-001 1.107354499729081E-001 1.063217170898011E-001 1.020318441910966E-001 9.786450649326681E-002 9.381831687035737E-002 8.989182823659972E-002 8.608353593645224E-002 8.239188014567282E-002 7.881524828662083E-002 7.535197746055415E-002 7.200035689923309E-002 6.875863043766854E-002 6.562499900936232E-002 6.259762316488650E-002 5.967462561413909E-002 5.685409379210104E-002 5.413408244740626E-002 5.151261625252901E-002 4.898769243389245E-002 4.655728341971556E-002 4.421933950294394E-002 4.197179151615948E-002 3.981255351493634E-002 3.773952546571007E-002 3.575059593385690E-002 3.384364476734245E-002 3.201654577099826E-002 3.026716936621820E-002 2.859338523065107E-002 2.699306491226826E-002 2.546408441205893E-002 2.400432672951023E-002 2.261168436496514E-002 2.128406177295419E-002 2.001937776063193E-002 1.881556782552623E-002 1.767058642693298E-002 1.658240918545252E-002 1.554903500536774E-002 1.456848811480481E-002 1.363882001889424E-002 1.275811136145969E-002 1.192447369110172E-002 1.113605112791114E-002 1.039102192743800E-002 9.687599938954386E-003 9.024035955479804E-003 8.398618953481256E-003 7.809677220615479E-003 7.255579370342171E-003 6.734735242702628E-003 6.245596691023571E-003 5.786658254768227E-003 5.356457719212345E-003 4.953576563068780E-003 4.576640295617554E-003 4.224318685316069E-003 3.895325882263731E-003 3.588420437274416E-003 3.302405220666595E-003 3.036127244212768E-003 2.788477389995418E-003 2.558390050194533E-003 2.344842682080786E-003 2.146855282707802E-003 1.963489787985925E-003 1.793849400978233E-003 1.637077854387087E-003 1.492358612296414E-003 1.358914016301570E-003 1.236004381195586E-003 1.122927045388766E-003 1.019015381218844E-003 9.236377702624846E-004 8.361965486871644E-004 7.561269275867666E-004 6.828958931263110E-004 6.160010911825049E-004 5.549697010100859E-004 4.993573022873363E-004 4.487467397086382E-004 4.027469890852412E-004 3.609920287025274E-004 3.231397194587651E-004 2.888706970802837E-004 2.578872794693084E-004 2.299123920003404E-004 2.046885133387532E-004 1.819766441102804E-004 1.615553005088410E-004 1.432195346881811E-004 1.267799835455710E-004 1.120619472777691E-004 9.890449886434270E-005 8.715962523675906E-005 7.669140647516199E-005 6.737516726036133E-005 5.909708871916777E-005 5.175212489491995E-005 4.524632358517591E-005 3.949429834773559E-005 3.441721550089331E-005 2.994318197728280E-005 2.600707986226048E-005 2.255002593344403E-005 1.951886439916057E-005 1.686569168616628E-005 1.454741210406394E-005 1.252532318133456E-005 1.076472944413694E-005 9.234583392193820E-006 7.907152415918664E-006 6.757710393970805E-006 5.764252724519579E-006 4.907233475163023E-006 4.169325240749100E-006 3.535188322188942E-006 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 4.572493202973320E-011 4.719556558489981E-011 4.871349856638761E-011 5.028025224761126E-011 5.189817788240546E-011 5.357057109045020E-011 5.529875400708246E-011 5.708461421773761E-011 5.893001524979045E-011 6.083688287880528E-011 6.280720704077584E-011 6.484304393206183E-011 6.694651815584713E-011 6.911982494279489E-011 7.136523244541131E-011 7.368508410871684E-011 7.608180111970493E-011 7.855788493815588E-011 8.111591991145920E-011 8.375857597618580E-011 8.648861144924236E-011 8.930887591153450E-011 9.222231318716306E-011 9.523196442127706E-011 9.834097125981211E-011 1.015525791344488E-010 1.048701406562373E-010 1.082971191214477E-010 1.118370921333247E-010 1.154937553435462E-010 1.192709263173118E-010 1.231725485261178E-010 1.272026954724073E-010 1.313655749504268E-010 1.356655334477603E-010 1.401070606921609E-010 1.446947943484555E-010 1.494335248704518E-010 1.543282005129436E-010 1.593839325090775E-010 1.646060004185181E-010 1.699998576520291E-010 1.755711371782745E-010 1.813256574188334E-010 1.872694283376238E-010 1.934086577311323E-010 1.997497577260608E-010 2.062993514912188E-010 2.130642801707163E-010 2.200516100457438E-010 2.272686399324709E-010 2.347229088238405E-010 2.424222037832932E-010 2.503745680987253E-010 2.585883097052547E-010 2.670720098856551E-010 2.758345322576116E-010 2.848850320572520E-010 2.942329657287245E-010 3.038881008299109E-010 3.138605262647026E-010 3.241606628526109E-010 3.347992742468352E-010 3.457874782122885E-010 3.571367582754535E-010 3.688589757583383E-010 3.809663822092085E-010 3.934716322431875E-010 4.063877968062557E-010 4.197283768766233E-010 4.335073176179158E-010 4.477390229990885E-010 4.624383708964829E-010 4.776207286939438E-010 4.933019693974479E-010 5.094984882812361E-010 5.262272200830082E-010 5.435056567663152E-010 5.613518658688917E-010 5.797845094562870E-010 5.988228637007980E-010 6.184868391063678E-010 6.387970014008009E-010 6.597745931173537E-010 6.814415558884882E-010 7.038205534753342E-010 7.269349955571875E-010 7.508090623061744E-010 7.754677297730518E-010 8.009367961109677E-010 8.272429086649040E-010 8.544135919554361E-010 8.824772765863991E-010 9.114633291070336E-010 9.414020828601902E-010 9.723248698492339E-010 1.004264053657362E-009 1.037253063454175E-009 1.071326429125489E-009 1.106519817563591E-009 1.142870070156358E-009 1.180415241514929E-009 1.219194639480982E-009 1.259248866455968E-009 1.300619862096123E-009 1.343350947418495E-009 1.387486870364741E-009 1.433073852871009E-009 1.480159639493824E-009 1.528793547643547E-009 1.579026519478708E-009 1.630911175516277E-009 1.684501870014770E-009 1.739854748188992E-009 1.797027805317164E-009 1.856080947803196E-009 1.917076056259000E-009 1.980077050673828E-009 2.045149957739937E-009 2.112362980406103E-009 2.181786569732975E-009 2.253493499126645E-009 2.327558941029439E-009 2.404060546149475E-009 2.483078525313356E-009 2.564695734029087E-009 2.648997759849268E-009 2.736073012627597E-009 2.826012817764841E-009 2.918911512543602E-009 3.014866545654569E-009 3.113978580020341E-009 3.216351599026482E-009 3.322093016273070E-009 3.431313788963884E-009 3.544128535054173E-009 3.660655654282097E-009 3.781017453213037E-009 3.905340274430325E-009 4.033754630010415E-009 4.166395339425106E-009 4.303401672018222E-009 4.444917494209084E-009 4.591091421580189E-009 4.742076976011805E-009 4.898032748031618E-009 5.059122564553217E-009 5.225515662182998E-009 5.397386866281108E-009 5.574916775968267E-009 5.758291955276708E-009 5.947705130650175E-009 6.143355395004717E-009 6.345448418569199E-009 6.554196666731721E-009 6.769819625125772E-009 6.992544032197778E-009 7.222604119505815E-009 7.460241860007635E-009 7.705707224604840E-009 7.959258447219001E-009 8.221162298684748E-009 8.491694369754499E-009 8.771139363519334E-009 9.059791397560819E-009 9.357954316159116E-009 9.665942012893701E-009 9.984078763984284E-009 1.031269957273130E-008 1.065215052542733E-008 1.100278915912338E-008 1.136498484164689E-008 1.173911916428167E-008 1.212558634753381E-008 1.252479366042185E-008 1.293716185374434E-008 1.336312560779321E-008 1.380313399499706E-008 1.425765095799488E-008 1.472715580365766E-008 1.521214371359268E-008 1.571312627168347E-008 1.623063200923696E-008 1.676520696832875E-008 1.731741528395736E-008 1.788783978563897E-008 1.847708261909553E-008 1.908576588871102E-008 1.971453232145387E-008 2.036404595298663E-008 2.103499283670892E-008 2.172808177650437E-008 2.244404508398897E-008 2.318363936108476E-008 2.394764630877091E-008 2.473687356289315E-008 2.555215555794226E-008 2.639435441974325E-008 2.726436088802881E-008 2.816309526990363E-008 2.909150842524028E-008 3.005058278508281E-008 3.104133340417053E-008 3.206480904873250E-008 3.312209332074203E-008 3.421430581986116E-008 3.534260334434668E-008 3.650818113223279E-008 3.771227414414964E-008 3.895615838918394E-008 4.024115229523515E-008 4.156861812537040E-008 4.293996344173246E-008 4.435664261860808E-008 4.582015840631852E-008 4.733206354765101E-008 4.889396244860827E-008 5.050751290531381E-008 5.217442788897344E-008 5.389647739085822E-008 5.567549032934115E-008 5.751335652108908E-008 5.941202871858338E-008 6.137352471621691E-008 6.339992952729140E-008 6.549339763431922E-008 6.765615531511530E-008 6.989050304724998E-008 7.219881799352157E-008 7.458355657119831E-008 7.704725710787324E-008 7.959254258687330E-008 8.222212348526393E-008 8.493880070759534E-008 8.774546861864364E-008 9.064511817851201E-008 9.364084018357206E-008 9.673582861684466E-008 9.993338411154363E-008 1.032369175316323E-007 1.066499536733757E-007 1.101761350920080E-007 1.138192260577747E-007 1.175831166457574E-007 1.214718269640390E-007 1.254895115249227E-007 1.296404637640837E-007 1.339291207126948E-007 1.383600678277452E-007 1.429380439859482E-007 1.476679466468210E-007 1.525548371907085E-007 1.576039464377267E-007 1.628206803538019E-007 1.682106259501963E-007 1.737795573831322E-007 1.795334422603518E-007 1.854784481616859E-007 1.916209493809510E-007 1.979675338967404E-007 2.045250105799435E-007 2.113004166460894E-007 2.183010253608968E-007 2.255343540076956E-007 2.330081721256887E-007 2.407305100283290E-007 2.487096676114067E-007 2.569542234607755E-007 2.654730442699845E-007 2.742752945784419E-007 2.833704468410984E-007 2.927682918410211E-007 3.024789494566198E-007 3.125128797956934E-007 3.228808947088847E-007 3.335941696955669E-007 3.446642562156347E-007 3.561030944211373E-007 3.679230263221738E-007 3.801368094019691E-007 3.927576306965631E-007 4.057991213550806E-007 4.192753716970995E-007 4.332009467842079E-007 4.475909025234306E-007 4.624608023208149E-007 4.778267343041007E-007 4.937053291340541E-007 5.101137784247167E-007 5.270698537935284E-007 5.445919265630039E-007 5.626989881363895E-007 5.814106710705100E-007 6.007472708698103E-007 6.207297685264302E-007 6.413798538320108E-007 6.627199494878174E-007 6.847732360406820E-007 7.075636776732258E-007 7.311160488777964E-007 7.554559620445829E-007 7.806098959954161E-007 8.066052254958570E-007 8.334702517793003E-007 8.612342341179859E-007 8.899274224770208E-007 9.195810912887555E-007 9.502275743861565E-007 9.819003011351450E-007 1.014633833807262E-006 1.048463906235435E-006 1.083427463797117E-006 1.119562704770580E-006 1.156909123111740E-006 1.195507552700516E-006 1.235400213107420E-006 1.276630756932842E-006 1.319244318773256E-006 1.363287565870521E-006 1.408808750502295E-006 1.455857764173674E-006 1.504486193672164E-006 1.554747379050287E-006 1.606696473602301E-006 1.660390505903836E-006 1.715888443985590E-006 1.773251261714698E-006 1.832542007459904E-006 1.893825875119302E-006 1.957170277592111E-006 2.022644922778745E-006 2.090321892196351E-006 2.160275722299965E-006 2.232583488602547E-006 2.307324892690345E-006 2.384582352233352E-006 2.464441094094057E-006 2.546989250641191E-006 2.632317959378863E-006 2.720521466005256E-006 2.811697231018929E-006 2.905946039994860E-006 3.003372117656496E-006 3.104083245874424E-006 3.208190885726719E-006 3.315810303760649E-006 3.427060702600167E-006 3.542065356048570E-006 3.660951748840762E-006 3.783851721204857E-006 3.910901618398248E-006 4.042242445388938E-006 4.178020026858679E-006 4.318385172710508E-006 4.463493849269434E-006 4.613507356371443E-006 4.768592510542610E-006 4.928921834476921E-006 5.094673753028479E-006 5.266032795941065E-006 5.443189807545531E-006 5.626342163663314E-006 5.815693995962361E-006 6.011456424020091E-006 6.213847795356531E-006 6.423093933709691E-006 6.639428395834316E-006 6.863092737114600E-006 7.094336786291221E-006 7.333418929613097E-006 7.580606404734614E-006 7.836175604689856E-006 8.100412392286407E-006 8.373612425272685E-006 8.656081492644626E-006 8.948135862469641E-006 9.250102641618357E-006 9.562320147807633E-006 9.885138294371649E-006 1.021891898819173E-005 1.056403654122980E-005 1.092087809612492E-005 1.128984406632784E-005 1.167134859126360E-005 1.206582000702893E-005 1.247370133314734E-005 1.289545077592220E-005 1.333154224894575E-005 1.378246591134014E-005 1.424872872432539E-005 1.473085502672876E-005 1.522938713006960E-005 1.574488593387476E-005 1.627793156190056E-005 1.682912401995934E-005 1.739908387607108E-005 1.798845296368398E-005 1.859789510873140E-005 1.922809688131783E-005 1.987976837285131E-005 2.055364399946639E-005 2.125048333260835E-005 2.197107195767726E-005 2.271622236165892E-005 2.348677485069938E-005 2.428359849860966E-005 2.510759212731870E-005 2.595968532032448E-005 2.684083947022651E-005 2.775204886145644E-005 2.869434178935885E-005 2.966878171680996E-005 3.067646846959923E-005 3.171853947183636E-005 3.279617102268597E-005 3.391057961577168E-005 3.506302330263329E-005 3.625480310166259E-005 3.748726445398763E-005 3.876179872781946E-005 4.007984477282181E-005 4.144289052611151E-005 4.285247467154568E-005 4.431018835400206E-005 4.581767695040970E-005 4.737664189934009E-005 4.898884259102253E-005 5.065609831970312E-005 5.238029030032335E-005 5.416336375155275E-005 5.600733004726959E-005 5.791426893864501E-005 5.988633084904886E-005 6.192573924405941E-005 6.403479307892574E-005 6.621586932589855E-005 6.847142558391466E-005 7.080400277319095E-005 7.321622791735674E-005 7.571081701582651E-005 7.829057800919231E-005 8.095841384049149E-005 8.371732561528586E-005 8.657041586356845E-005 8.952089190659818E-005 9.257206933184651E-005 9.572737557932697E-005 9.899035364266727E-005 1.023646658883729E-004 1.058540979968242E-004 1.094625630286418E-004 1.131941056201514E-004 1.170529063117766E-004 1.210432860132873E-004 1.251697106099321E-004 1.294367957135871E-004 1.338493115631571E-004 1.384121880785721E-004 1.431305200728303E-004 1.480095726266490E-004 1.530547866303955E-004 1.582717844980840E-004 1.636663760583400E-004 1.692445646273485E-004 1.750125532689221E-004 1.809767512469432E-004 1.871437806755558E-004 1.935204833726041E-004 2.001139279219398E-004 2.069314169503421E-004 2.139804946249219E-004 2.212689543770083E-004 2.288048468586405E-004 2.365964881379185E-004 2.446524681395953E-004 2.529816593374176E-004 2.615932257048584E-004 2.704966319310078E-004 2.797016529085218E-004 2.892183835006558E-004 2.990572485945406E-004 3.092290134479825E-004 3.197447943372017E-004 3.306160695130439E-004 3.418546904733284E-004 3.534728935591163E-004 3.654833118828042E-004 3.778989875960685E-004 3.907333845057975E-004 4.040004010462667E-004 4.177143836159171E-004 4.318901402872050E-004 4.465429548980918E-004 4.616886015338410E-004 4.773433594078775E-004 4.935240281505549E-004 5.102479435147527E-004 5.275329935073010E-004 5.453976349552943E-004 5.638609105164140E-004 5.829424661424330E-004 6.026625690051069E-004 6.230421258936975E-004 6.441027020933851E-004 6.658665407538398E-004 6.883565827572150E-004 7.115964870948111E-004 7.356106517616234E-004 7.604242351779474E-004 7.860631781471456E-004 8.125542263586063E-004 8.399249534448284E-004 8.682037846014430E-004 8.974200207788554E-004 9.276038634540292E-004 9.587864399907489E-004 9.909998295965035E-004 1.024277089883892E-003 1.058652284044205E-003 1.094160508640541E-003 1.130837922027511E-003 1.168721773404231E-003 1.207850432506931E-003 1.248263419947072E-003 1.290001438200460E-003 1.333106403252284E-003 1.377621476902556E-003 1.423591099735791E-003 1.471061024758187E-003 1.520078351704904E-003 1.570691562019289E-003 1.622950554505196E-003 1.676906681652673E-003 1.732612786636457E-003 1.790123240985773E-003 1.849493982922956E-003 1.910782556367337E-003 1.974048150599754E-003 2.039351640581833E-003 2.106755627922940E-003 2.176324482486368E-003 2.248124384624920E-003 2.322223368034567E-003 2.398691363213259E-003 2.477600241510358E-003 2.559023859750363E-003 2.643038105412809E-003 2.729720942348236E-003 2.819152457008125E-003 2.911414905164564E-003 3.006592759093122E-003 3.104772755190102E-003 3.206043941992858E-003 3.310497728569270E-003 3.418227933239783E-003 3.529330832592581E-003 3.643905210749497E-003 3.762052408837208E-003 3.883876374615001E-003 4.009483712207061E-003 4.138983731883718E-003 4.272488499832434E-003 4.410112887855523E-003 4.551974622927643E-003 4.698194336541952E-003 4.848895613769620E-003 5.004205041952868E-003 5.164252258947163E-003 5.329170000823418E-003 5.499094148936041E-003 5.674163776257657E-003 5.854521192875911E-003 6.040311990542373E-003 6.231685086157825E-003 6.428792764072407E-003 6.631790717073024E-003 6.840838085924225E-003 7.056097497322299E-003 7.277735100115753E-003 7.505920599638554E-003 7.740827289995465E-003 7.982632084131715E-003 8.231515541511783E-003 8.487661893224613E-003 8.751259064324749E-003 9.022498693211090E-003 9.301576147836688E-003 9.588690538535019E-003 9.884044727239404E-003 1.018784533286403E-002 1.050030273260598E-002 1.082163105891901E-002 1.115204819190079E-002 1.149177574682605E-002 1.184103905654913E-002 1.220006714848979E-002 1.256909271590703E-002 1.294835208315607E-002 1.333808516461407E-002 1.373853541695085E-002 1.414994978441117E-002 1.457257863676564E-002 1.500667569957791E-002 1.545249797642632E-002 1.591030566270888E-002 1.638036205065119E-002 1.686293342512789E-002 1.735828894989937E-002 1.786670054385645E-002 1.838844274685777E-002 1.892379257473592E-002 1.947302936304077E-002 2.003643459908066E-002 2.061429174181485E-002 2.120688602914418E-002 2.181450427214004E-002 2.243743463574617E-002 2.307596640548243E-002 2.373038973967481E-002 2.440099540673192E-002 2.508807450698464E-002 2.579191817860299E-002 2.651281728710213E-002 2.725106209794857E-002 2.800694193177716E-002 2.878074480173045E-002 2.957275703243360E-002 3.038326286012101E-002 3.121254401343490E-002 3.206087927442142E-002 3.292854401925641E-002 3.381580973824106E-002 3.472294353461747E-002 3.565020760176477E-002 3.659785867834991E-002 3.756614748102134E-002 3.855531811425057E-002 3.956560745694491E-002 4.059724452547529E-002 4.165044981278570E-002 4.272543460327586E-002 4.382240026317614E-002 4.494153750616341E-002 4.608302563399951E-002 4.724703175200859E-002 4.843370995924853E-002 4.964320051327174E-002 5.087562896941571E-002 5.213110529461027E-002 5.340972295573971E-002 5.471155798265144E-002 5.603666800596094E-002 5.738509126986358E-002 5.875684562022893E-002 6.015192746832204E-002 6.157031073056869E-002 6.301194574485830E-002 6.447675816395913E-002 6.596464782670508E-002 6.747548760770258E-002 6.900912224639959E-002 7.056536715645621E-002 7.214400721645833E-002 7.374479554312240E-002 7.536745224824931E-002 7.701166318080105E-002 7.867707865559213E-002 8.036331217021148E-002 8.206993911191721E-002 8.379649545637867E-002 8.554247646027388E-002 8.730733534989014E-002 8.909048200801647E-002 9.089128166156217E-002 9.270905357248314E-002 9.454306973474817E-002 9.639255358022979E-002 9.825667869655871E-002 1.001345675601368E-001 1.020252902876591E-001 1.039278634096554E-001 1.058412486697145E-001 1.077643518532162E-001 1.096960216495470E-001 1.116350485519327E-001 1.135801637991700E-001 1.155300383636903E-001 1.174832819905324E-001 1.194384422919427E-001 1.213940039024574E-001 1.233483876994544E-001 1.252999500942837E-001 1.272469823992096E-001 1.291877102755057E-001 1.311202932681495E-001 1.330428244326637E-001 1.349533300597341E-001 1.368497695033199E-001 1.387300351180415E-001 1.405919523116924E-001 1.424332797187770E-001 1.442517095010178E-001 1.460448677808107E-001 1.478103152136269E-001 1.495455477053766E-001 1.512479972807468E-001 1.529150331085137E-001 1.545439626898086E-001 1.561320332152723E-001 1.576764330969793E-001 1.591742936809405E-001 1.606226911458942E-001 1.620186485939851E-001 1.633591383387834E-001 1.646410843959287E-001 1.658613651814805E-001 1.670168164228223E-001 1.681042342866930E-001 1.691203787286034E-001 1.700619770675438E-001 1.709257277894856E-001 1.717083045827339E-001 1.724063606076977E-001 1.730165330031025E-001 1.735354476300879E-001 1.739597240550061E-001 1.742859807710670E-001 1.745108406582688E-001 1.746309366803169E-001 1.746429178164582E-001 1.745434552253668E-001 1.743292486374012E-001 1.739970329707181E-001 1.735435851658893E-001 1.729657312328122E-001 1.722603535028544E-001 1.714243980783141E-001 1.704548824704251E-001 1.693489034162876E-001 1.681036448642581E-001 1.667163861164983E-001 1.651845101165481E-001 1.635055118689658E-001 1.616770069772591E-001 1.596967402855188E-001 1.575625946083561E-001 1.552725995329430E-001 1.528249402761451E-001 1.502179665789364E-001 1.474502016194762E-001 1.445203509254225E-001 1.414273112652380E-001 1.381701794974331E-001 1.347482613558618E-001 1.311610801483608E-001 1.274083853451893E-001 1.234901610328912E-001 1.194066342083663E-001 1.151582828871055E-001 1.107458439987179E-001 1.061703210420707E-001 1.014329914715658E-001 9.653541378531984E-002 9.147943428528553E-002 8.626719347867937E-002 8.090113208946519E-002 7.538399664810584E-002 6.971884462734747E-002 6.390904909145981E-002 5.795830282614086E-002 5.187062191621970E-002 4.565034873837897E-002 3.930215433638542E-002 3.283104014678100E-002 2.624233904366633E-002 1.954171567211728E-002 1.273516604092817E-002 5.829016346780729E-003 -1.170078996396460E-003 -8.255140147187614E-003 -1.541886546769510E-002 -2.265363601548909E-002 -2.995152091354383E-002 -3.730428361234365E-002 -4.470338905531274E-002 -5.214001175556384E-002 -5.960504478871734E-002 -6.708910970326681E-002 -7.458256734671143E-002 -8.207552960249380E-002 -8.955787202972224E-002 -9.701924739475809E-002 -1.044491000810415E-001 -1.118366813610153E-001 -1.191710655116857E-001 -1.264411667531847E-001 -1.336357569876195E-001 -1.407434843134230E-001 -1.477528922882670E-001 -1.546524399112514E-001 -1.614305222924388E-001 -1.680754919747660E-001 -1.745756808698648E-001 -1.809194227653347E-001 -1.870950763565120E-001 -1.930910487508549E-001 -1.988958193877752E-001 -2.044979643112535E-001 -2.098861807270187E-001 -2.150493117706506E-001 -2.199763714078588E-001 -2.246565693835877E-001 -2.290793361326604E-001 -2.332343475615487E-001 -2.371115496086436E-001 -2.407011824891899E-001 -2.439938045308670E-001 -2.469803155068615E-001 -2.496519793751699E-001 -2.520004463357290E-001 -2.540177741207522E-001 -2.556964484382465E-001 -2.570294024940156E-001 -2.580100355234043E-001 -2.586322302705044E-001 -2.588903693593970E-001 -2.587793505091453E-001 -2.582946005515555E-001 -2.574320882180735E-001 -2.561883356694912E-001 -2.545604287492710E-001 -2.525460259481903E-001 -2.501433660745525E-001 -2.473512746303440E-001 -2.441691688993564E-001 -2.405970617583962E-001 -2.366355642272171E-001 -2.322858867767007E-001 -2.275498394180675E-001 -2.224298305985047E-001 -2.169288649305681E-001 -2.110505397840630E-001 -2.047990407698727E-001 -1.981791361454225E-001 -1.911961701712025E-001 -1.838560554470816E-001 -1.761652642561137E-001 -1.681308189422311E-001 -1.597602813467431E-001 -1.510617413269846E-001 -1.420438043788934E-001 -1.327155783838186E-001 -1.230866594985718E-001 -1.131671172067029E-001 -1.029674785482979E-001 -9.249871154531544E-002 -8.177220783965745E-002 -7.079976456185597E-002 -5.959356544946016E-002 -4.816616123594853E-002 -3.653044933324592E-002 -2.469965283366598E-002 -1.268729886027378E-002 -5.071962981950040E-004 1.182658705680496E-002 2.429974789219405E-002 3.689777127073510E-002 4.960595497258800E-002 6.240943423566335E-002 7.529320683917809E-002 8.824215847261464E-002 1.012410883301634E-001 1.142747348693283E-001 1.273278016717601E-001 1.403849833445625E-001 1.534309914012914E-001 1.664505800635581E-001 1.794285719264451E-001 1.923498834336975E-001 2.051995501116698E-001 2.179627515140768E-001 2.306248358324940E-001 2.431713441300626E-001 2.555880341577753E-001 2.678609037139085E-001 2.799762135075110E-001 2.919205094863246E-001 3.036806445881292E-001 3.152437998723614E-001 3.265975049861143E-001 3.377296579154867E-001 3.486285439699537E-001 3.592828539442333E-001 3.696817013992788E-001 3.798146390017773E-001 3.896716738600925E-001 3.992432817941065E-001 4.085204204770396E-001 4.174945413890957E-001 4.261576005257409E-001 4.345020678075256E-001 4.425209351435483E-001 4.502077231068242E-001 4.575564861868347E-001 4.645618165922434E-001 4.712188465850123E-001 4.775232493357764E-001 4.834712382991619E-001 4.890595651166212E-001 4.942855160631449E-001 4.991469070627653E-001 5.036420773059819E-001 5.077698815099836E-001 5.115296808697607E-001 5.149213327547905E-001 5.179451792119134E-001 5.206020343402297E-001 5.228931706083354E-001 5.248203041879498E-001 5.263855793809797E-001 5.275915522193207E-001 5.284411733182338E-001 5.289377700649935E-001 5.290850282247013E-001 5.288869730447521E-001 5.283479499384851E-001 5.274726048270479E-001 5.262658642165369E-001 5.247329150851451E-001 5.228791846522947E-001 5.207103200987010E-001 5.182321683030151E-001 5.154507556571725E-001 5.123722680188938E-001 5.090030308559709E-001 5.053494896330687E-001 5.014181904878371E-001 4.972157612391415E-001 4.927488927662256E-001 4.880243207937358E-001 4.830488081136172E-001 4.778291272710901E-001 4.723720437381886E-001 4.666842995947061E-001 4.607725977328747E-001 4.546435865986892E-001 4.483038454794929E-001 4.417598703444959E-001 4.350180602401469E-001 4.280847014186108E-001 4.209659463265988E-001 4.136678060197446E-001 4.061961539450346E-001 3.985567040659932E-001 3.907550046419201E-001 3.827964276163039E-001 3.746861594334887E-001 3.664291922165053E-001 3.580303153958759E-001 3.494941077620962E-001 3.408249299170824E-001 3.320269170985770E-001 3.231039723499094E-001 3.140597600060557E-001 3.048976994655332E-001 2.956209592163304E-001 2.862324510827994E-001 2.767348246592133E-001 2.671304618945031E-001 2.574214717915475E-001 2.476096851832575E-001 2.376966495465911E-001 2.276836238145197E-001 2.175715731448554E-001 2.073611636037030E-001 1.970527567201278E-001 1.866464038674066E-001 1.761418404249401E-001 1.655384796735409E-001 1.548354063753483E-001 1.440313699880540E-001 1.331247774614197E-001 1.221136855622288E-001 1.109957926718013E-001 9.976842999801484E-002 8.842855214137628E-002 7.697272695207329E-002 6.539712461206648E-002 5.369750587314811E-002 4.186920937846125E-002 2.990713799121970E-002 1.780574405026398E-002 5.559013467603936E-003 -6.839551421801771E-003 -1.939695035312754E-002 -3.212070506855921E-002 -4.501888080527008E-002 -5.810010944873645E-002 -7.137361447319887E-002 -8.484923779931675E-002 -9.853746870804203E-002 -1.124494749595151E-001 -1.265971362764337E-001 -1.409930803629398E-001 -1.556507216426967E-001 -1.705843029135723E-001 -1.858089401313241E-001 -2.013406705509822E-001 -2.171965044723969E-001 -2.333944808557710E-001 -2.499537270940942E-001 -2.668945232523885E-001 -2.842383711087509E-001 -3.020080683595271E-001 -3.202277883807845E-001 -3.389231659708228E-001 -3.581213895340138E-001 -3.778513002050913E-001 -3.981434984554454E-001 -4.190304587693430E-001 -4.405466530287055E-001 -4.627286833005416E-001 -4.856154247818282E-001 -5.092481797230841E-001 -5.336708432246644E-001 -5.589300818795442E-001 -5.850755263237868E-001 -6.121599788517618E-001 -6.402396373583700E-001 -6.693743369860133E-001 -6.996278109808555E-001 -7.310679724022714E-001 -7.637672184825584E-001 -7.978027596024645E-001 -8.332569750334782E-001 -8.702177978019404E-001 -9.087791312548742E-001 -9.490413001552372E-001 -9.911115394075400E-001 -1.035104523816273E+000 -1.081142942612381E+000 -1.129358122850643E+000 -1.179890706187047E+000 -1.232891383994518E+000 -1.288521696272367E+000 -1.346954900355128E+000 -1.408376916035976E+000 -1.472987354395571E+000 -1.541000638376474E+000 -1.612647223974854E+000 -1.688174931844621E+000 -1.767850400135144E+000 -1.851960670524534E+000 -1.940814920679703E+000 -2.034746357787404E+000 -2.134114289374379E+000 -2.239306389389843E+000 -2.350741179481117E+000 -2.468870747577148E+000 -2.594183728336617E+000 -2.727208572745007E+000 -2.868517137196121E+000 -3.018728625810158E+000 -3.178513923566192E+000 -3.348600362116118E+000 -3.529776964958304E+000 -3.722900224050212E+000 -3.928900466006784E+000 -4.148788872852788E+000 -4.383665229971975E+000 -4.634726482537195E+000 -4.903276191442620E+000 -5.190734990739532E+000 -5.498652160968985E+000 -5.828718446780762E+000 -6.182780263048516E+000 -6.562855451588123E+000 -6.971150770849073E+000 -7.410081323908800E+000 -7.882292156137673E+000 -8.390682283455373E+000 -8.938431445670464E+000 -9.529029917562893E+000 -1.016631175380099E+001 -1.085449189324918E+001 -1.159820760460771E+001 -1.240256481965644E+001 -1.327318997383728E+001 -1.421628805787548E+001 -1.523870768019976E+001 -1.634801404991761E+001 -1.755257091617560E+001 -1.886163264437152E+001 -2.028544777577659E+001 -2.183537560804005E+001 -2.352401755370622E+001 -2.536536528685455E+001 -2.737496797961984E+001 -2.957012126691036E+001 -3.197008096642907E+001 -3.459630503067992E+001 -3.747272772805474E+001 -4.062607065313617E+001 -4.408619586587832E+001 -4.788650727163726E+001 -5.206440729834761E+001 -5.666181702617356E+001 -6.172576920520288E+001 -6.730908509002009E+001 -7.347114776405874E+001 -8.027878666476136E+001 -8.780729040631229E+001 -9.614156779187515E+001 -1.053774801867159E+002 -1.156233722745358E+002 -1.270018327484088E+002 -1.396517218191565E+002 -1.537305087087917E+002 -1.694169697151969E+002 -1.869143061990226E+002 -2.064537522159093E+002 -2.282987538055537E+002 -2.527498165239025E+002 -2.801501350590902E+002 -3.108944673821078E+002 -3.454420854899834E+002 -3.843166550391915E+002 -4.281059328822062E+002 -4.774926753060270E+002 -5.332604087826811E+002 -5.963124122053811E+002 -6.676909671771197E+002 -7.486004010025761E+002 -8.404341727393430E+002 -9.448067994977922E+002 -1.063591540457465E+003 -1.198964942211488E+003 -1.353459572273199E+003 -1.530026539013328E+003 -1.732109726121134E+003 -1.963734071220480E+003 -2.229610707876327E+003 -2.535262388183804E+003 -2.887173334618043E+003 -3.292968566091840E+003 -3.761628843221986E+003 -4.303748730310860E+003 -4.931846937082760E+003 -5.660740158008578E+003 -6.507994166343517E+003 -7.494469063642934E+003 -8.644979484277643E+003 -9.989095398462678E+003 -1.156211518670723E+004 -1.340625017734275E+004 -1.557206923231047E+004 -1.812026372434251E+004 -2.112380799434250E+004 -2.467060890610984E+004 -2.886676144246172E+004 -3.384055671315875E+004 -3.974742593999776E+004 -4.677605109410887E+004 -5.515593264995985E+004 -6.516678095985979E+004 -7.715019466097560E+004 -9.152421329332187E+004 -1.088014897146407E+005 -1.296120310820881E+005 -1.547317183600335E+005 -1.851181508130463E+005 -2.219557964418144E+005 -2.667129916325021E+005 -3.212140626883726E+005 -3.877307902448442E+005 -4.690986734516172E+005 -5.688650652627583E+005 -6.914783642527175E+005 -8.425302234354907E+005 -1.029066388249091E+006 -1.259986593088214E+006 -1.546560316579465E+006 -1.903093642761437E+006 -2.347793703991539E+006 -2.903892146832370E+006 -3.601109060706622E+006 -4.477565605016896E+006 -5.582289571362874E+006 -6.978506618203086E+006 -8.747975437083595E+006 -1.099671387433222E+007 -1.386258362666561E+007 -1.752536543817358E+007 -2.222018124701531E+007 -2.825542743102858E+007 -3.603680625501545E+007 -4.609962575074200E+007 -5.915234467576671E+007 -7.613545784196523E+007 -9.830137371831246E+007 -1.273231091183341E+008 -1.654426686911500E+008 -2.156742519883151E+008 -2.820834566933305E+008 -3.701721683504922E+008 -4.874109189245692E+008 -6.439777128660409E+008 -8.537869159811325E+008 -1.135927065452726E+009 -1.516677192552075E+009 -2.032344500180591E+009 -2.733272381412015E+009 -3.689522135750781E+009 -4.998957079190313E+009 -6.798787910674609E+009 -9.282123790247311E+009 -1.272179051036456E+010 -1.750473971861270E+010 -2.418195421731870E+010 -3.354111628675026E+010 -4.671284861565376E+010 -6.532667268225817E+010 -9.174089757499017E+010 -1.293829041384912E+011 -1.832549731864662E+011 -2.606894210078220E+011 -3.724808187472926E+011 -5.345910685479987E+011 -7.707286238036687E+011 -1.116267611464968E+012 -1.624230150561035E+012 -2.374460283784590E+012 -3.487758201107771E+012 -5.147760097703889E+012 -7.634971080116060E+012 -1.137995906695417E+013 -1.704690730163854E+013 -2.566550652833641E+013 -3.884020607572532E+013 -5.908389621921531E+013 -9.035277258508928E+013 -1.389081778066207E+014 -2.147126915312888E+014 -3.337038175554103E+014 -5.215171200509819E+014 -8.196164719530928E+014 -1.295444113031565E+015 -2.059321598853383E+015 -3.292753094252078E+015 -5.296098958601395E+015 -8.569348645066112E+015 -1.394978871361708E+016 -2.284805764957040E+016 -3.765537471120481E+016 -6.245041697900641E+016 -1.042340243674797E+017 -1.750995572260561E+017 -2.960724733873864E+017 -5.039471649877043E+017 -8.635411031344641E+017 -1.489805588023521E+018 -2.587991312498890E+018 -4.527111912573809E+018 -7.975243374483559E+018 -1.415046097790704E+019 -2.528956350560969E+019 -4.552992204654514E+019 -8.258070638405914E+019 -1.509135548138976E+020 -2.778998473953248E+020 -5.157055361793603E+020 -9.645224177107033E+020 -1.818294120108746E+021 -3.455429725236589E+021 -6.620207356100413E+021 -1.278847709583922E+022 -2.491096430201959E+022 -4.893663943038959E+022 -9.696114396478818E+022 2.721531219750934E-012 2.790427110610525E-012 2.861067109251917E-012 2.933495367973872E-012 3.007757156795918E-012 3.083898891753582E-012 3.161968163909928E-012 3.242013769101524E-012 3.324085738437407E-012 3.408235369570219E-012 3.494515258758821E-012 3.582979333742715E-012 3.673682887448654E-012 3.766682612550480E-012 3.862036636903924E-012 3.959804559878388E-012 4.060047489608508E-012 4.162828081188699E-012 4.268210575834656E-012 4.376260841036214E-012 4.487046411726649E-012 4.600636532494208E-012 4.717102200862258E-012 4.836516211665016E-012 4.958953202546726E-012 5.084489700612588E-012 5.213204170260714E-012 5.345177062224908E-012 5.480490863858998E-012 5.619230150694146E-012 5.761481639301296E-012 5.907334241491814E-012 6.056879119890318E-012 6.210209744914261E-012 6.367421953196002E-012 6.528614007483826E-012 6.693886658059290E-012 6.863343205709543E-012 7.037089566293601E-012 7.215234336943247E-012 7.397888863939751E-012 7.585167312308927E-012 7.777186737177997E-012 7.974067156938850E-012 8.175931628263490E-012 8.382906323018386E-012 8.595120607126034E-012 8.812707121422888E-012 9.035801864564192E-012 9.264544278027551E-012 9.499077333268435E-012 9.739547621081962E-012 9.986105443226875E-012 1.023890490636915E-011 1.049810401840361E-011 1.076386478721401E-011 1.103635332193320E-011 1.131573993676688E-011 1.160219925744530E-011 1.189591033037036E-011 1.219705673452506E-011 1.250582669621661E-011 1.282241320672391E-011 1.314701414292339E-011 1.347983239096857E-011 1.382107597310038E-011 1.417095817766799E-011 1.452969769244081E-011 1.489751874129556E-011 1.527465122436363E-011 1.566133086172588E-011 1.605779934074559E-011 1.646430446713079E-011 1.688110031982097E-011 1.730844740979476E-011 1.774661284289764E-011 1.819587048679192E-011 1.865650114213272E-011 1.912879271807790E-011 1.961304041224054E-011 2.010954689519674E-011 2.061862249966500E-011 2.114058541447406E-011 2.167576188344135E-011 2.222448640928622E-011 2.278710196270448E-011 2.336396019673694E-011 2.395542166656341E-011 2.456185605486197E-011 2.518364240287226E-011 2.582116934730892E-011 2.647483536327206E-011 2.714504901330704E-011 2.783222920276969E-011 2.853680544165568E-011 2.925921811305820E-011 2.999991874842178E-011 3.075937030976416E-011 3.153804747904268E-011 3.233643695484605E-011 3.315503775659665E-011 3.399436153645407E-011 3.485493289911435E-011 3.573728972970495E-011 3.664198352998086E-011 3.756957976303057E-011 3.852065820670930E-011 3.949581331601929E-011 4.049565459466284E-011 4.152080697600314E-011 4.257191121366692E-011 4.364962428203658E-011 4.475461978688126E-011 4.588758838638169E-011 4.704923822281441E-011 4.824029536516392E-011 4.946150426293920E-011 5.071362821147880E-011 5.199744982903621E-011 5.331377154594071E-011 5.466341610614291E-011 5.604722708145729E-011 5.746606939882085E-011 5.892082988090141E-011 6.041241780039094E-011 6.194176544833016E-011 6.350982871682123E-011 6.511758769649108E-011 6.676604728908046E-011 6.845623783554078E-011 7.018921576002969E-011 7.196606423021128E-011 7.378789383427183E-011 7.565584327507223E-011 7.757108008187669E-011 7.953480134009431E-011 8.154823443949819E-011 8.361263784138343E-011 8.572930186514634E-011 8.789954949477782E-011 9.012473720576897E-011 9.240625581295524E-011 9.474553133981918E-011 9.714402590980311E-011 9.960323866018357E-011 1.021247066790806E-010 1.047100059661891E-010 1.073607524178299E-010 1.100786028369366E-010 1.128652559686143E-010 1.157224535619079E-010 1.186519814584544E-010 1.216556707086911E-010 1.247353987163228E-010 1.278930904117607E-010 1.311307194552659E-010 1.344503094705535E-010 1.378539353096215E-010 1.413437243496030E-010 1.449218578224464E-010 1.485905721782560E-010 1.523521604831477E-010 1.562089738524892E-010 1.601634229204252E-010 1.642179793466034E-010 1.683751773610413E-010 1.726376153481036E-010 1.770079574705793E-010 1.814889353348676E-010 1.860833496983261E-010 1.907940722198303E-010 1.956240472546621E-010 2.005762936948209E-010 2.056539068559354E-010 2.108600604119374E-010 2.161980083787086E-010 2.216710871479515E-010 2.272827175725422E-010 2.330364071046769E-010 2.389357519881446E-010 2.449844395060943E-010 2.511862502857176E-010 2.575450606612534E-010 2.640648450968354E-010 2.707496786706562E-010 2.776037396220259E-010 2.846313119629143E-010 2.918367881555951E-010 2.992246718580813E-010 3.067995807390620E-010 3.145662493640917E-010 3.225295321548599E-010 3.306944064233562E-010 3.390659754828577E-010 3.476494718376753E-010 3.564502604536280E-010 3.654738421113373E-010 3.747258568443911E-010 3.842120874645511E-010 3.939384631762077E-010 4.039110632823175E-010 4.141361209841851E-010 4.246200272774079E-010 4.353693349464644E-010 4.463907626604300E-010 4.576911991723502E-010 4.692777076249645E-010 4.811575299653843E-010 4.933380914715606E-010 5.058270053933350E-010 5.186320777109609E-010 5.317613120141152E-010 5.452229145044015E-010 5.590252991245024E-010 5.731770928171740E-010 5.876871409173720E-010 6.025645126808897E-010 6.178185069529359E-010 6.334586579802285E-010 6.494947413702253E-010 6.659367802011966E-010 6.827950512869948E-010 7.000800916003973E-010 7.178027048590804E-010 7.359739682783021E-010 7.546052394945298E-010 7.737081636643579E-010 7.932946807431093E-010 8.133770329477182E-010 8.339677724085427E-010 8.550797690148357E-010 8.767262184589045E-010 8.989206504838318E-010 9.216769373400424E-010 9.450093024559340E-010 9.689323293279796E-010 9.934609706359431E-010 1.018610557588787E-009 1.044396809507214E-009 1.070835843648779E-009 1.097944185281720E-009 1.125738778013824E-009 1.154236994382762E-009 1.183456646714514E-009 1.213415998256697E-009 1.244133774593714E-009 1.275629175350891E-009 1.307921886194918E-009 1.341032091138052E-009 1.374980485153833E-009 1.409788287112162E-009 1.445477253041847E-009 1.482069689728828E-009 1.519588468658756E-009 1.558057040312432E-009 1.597499448823189E-009 1.637940347005317E-009 1.679405011762934E-009 1.721919359888946E-009 1.765509964263957E-009 1.810204070465232E-009 1.856029613796188E-009 1.903015236746918E-009 1.951190306896763E-009 2.000584935270116E-009 2.051229995156872E-009 2.103157141409322E-009 2.156398830227608E-009 2.210988339445967E-009 2.266959789332622E-009 2.324348163916137E-009 2.383189332851732E-009 2.443520073841092E-009 2.505378095619791E-009 2.568802061526602E-009 2.633831613669510E-009 2.700507397703509E-009 2.768871088235545E-009 2.838965414872777E-009 2.910834188930115E-009 2.984522330813900E-009 3.060075898098866E-009 3.137542114315831E-009 3.216969398468118E-009 3.298407395295359E-009 3.381907006303203E-009 3.467520421578789E-009 3.555301152411435E-009 3.645304064739317E-009 3.737585413442709E-009 3.832202877505469E-009 3.929215596066645E-009 4.028684205384661E-009 4.130670876737392E-009 4.235239355281608E-009 4.342454999896183E-009 4.452384824033990E-009 4.565097537607905E-009 4.680663589937273E-009 4.799155213781518E-009 4.920646470488500E-009 5.045213296285837E-009 5.172933549744116E-009 5.303887060441645E-009 5.438155678861221E-009 5.575823327550006E-009 5.716976053574609E-009 5.861702082304012E-009 6.010091872554154E-009 6.162238173128454E-009 6.318236080789698E-009 6.478183099699628E-009 6.642179202363038E-009 6.810326892115019E-009 6.982731267189910E-009 7.159500086412225E-009 7.340743836550667E-009 7.526575801377175E-009 7.717112132474310E-009 7.912471921835187E-009 8.112777276301201E-009 8.318153393884463E-009 8.528728642022148E-009 8.744634637812056E-009 8.966006330279270E-009 9.192982084725793E-009 9.425703769215073E-009 9.664316843246370E-009 9.908970448673845E-009 1.015981750292732E-008 1.041701479459316E-008 1.068072308141463E-008 1.095110719077344E-008 1.122833612271508E-008 1.151258315558217E-008 1.180402595432229E-008 1.210284668153749E-008 1.240923211134530E-008 1.272337374612221E-008 1.304546793620273E-008 1.337571600260866E-008 1.371432436288534E-008 1.406150466012404E-008 1.441747389524993E-008 1.478245456265999E-008 1.515667478929416E-008 1.554036847722738E-008 1.593377544987182E-008 1.633714160188011E-008 1.675071905284371E-008 1.717476630488255E-008 1.760954840422397E-008 1.805533710687247E-008 1.851241104847394E-008 1.898105591847964E-008 1.946156463871992E-008 1.995423754649886E-008 2.045938258232411E-008 2.097731548238924E-008 2.150835997592966E-008 2.205284798757475E-008 2.261111984482267E-008 2.318352449076817E-008 2.377041970221594E-008 2.437217231331580E-008 2.498915844486011E-008 2.562176373938561E-008 2.627038360222847E-008 2.693542344868090E-008 2.761729895740645E-008 2.831643633027000E-008 2.903327255874681E-008 2.976825569707592E-008 3.052184514232936E-008 3.129451192157178E-008 3.208673898629092E-008 3.289902151428172E-008 3.373186721917385E-008 3.458579666779568E-008 3.546134360557375E-008 3.635905529016996E-008 3.727949283356621E-008 3.822323155281060E-008 3.919086132964259E-008 4.018298697922481E-008 4.120022862820912E-008 4.224322210237669E-008 4.331261932408979E-008 4.440908871980983E-008 4.553331563793047E-008 4.668600277719151E-008 4.786787062593942E-008 4.907965791250900E-008 5.032212206700913E-008 5.159603969480007E-008 5.290220706195923E-008 5.424144059303884E-008 5.561457738142596E-008 5.702247571262562E-008 5.846601560079289E-008 5.994609933884983E-008 6.146365206253245E-008 6.301962232871747E-008 6.461498270839506E-008 6.625073039465399E-008 6.792788782606206E-008 6.964750332583178E-008 7.141065175716866E-008 7.321843519521516E-008 7.507198361600820E-008 7.697245560288218E-008 7.892103907076053E-008 8.091895200878497E-008 8.296744324175127E-008 8.506779321082695E-008 8.722131477403566E-008 8.942935402701571E-008 9.169329114455779E-008 9.401454124345658E-008 9.639455526721050E-008 9.883482089312483E-008 1.013368634623875E-007 1.039022469336944E-007 1.065325748610276E-007 1.092294913961927E-007 1.119946823167455E-007 1.148298760799504E-007 1.177368449034299E-007 1.207174058731806E-007 1.237734220796527E-007 1.269068037825957E-007 1.301195096054135E-007 1.334135477597575E-007 1.367909773011424E-007 1.402539094163576E-007 1.438045087434858E-007 1.474449947253577E-007 1.511776429972776E-007 1.550047868099058E-007 1.589288184881757E-007 1.629521909271627E-007 1.670774191258441E-007 1.713070817597033E-007 1.756438227931729E-007 1.800903531329158E-007 1.846494523229866E-007 1.893239702829330E-007 1.941168290899213E-007 1.990310248060108E-007 2.040696293517112E-007 2.092357924270064E-007 2.145327434810366E-007 2.199637937316852E-007 2.255323382363228E-007 2.312418580150168E-007 2.370959222275262E-007 2.430981904054563E-007 2.492524147409581E-007 2.555624424334228E-007 2.620322180956267E-007 2.686657862208435E-007 2.754672937124681E-007 2.824409924777333E-007 2.895912420871499E-007 2.969225125013362E-007 3.044393868669419E-007 3.121465643834265E-007 3.200488632424820E-007 3.281512236419472E-007 3.364587108761019E-007 3.449765185042786E-007 3.537099715997844E-007 3.626645300811547E-007 3.718457921278506E-007 3.812594976825262E-007 3.909115320420612E-007 4.008079295396374E-007 4.109548773201239E-007 4.213587192111905E-007 4.320259596925387E-007 4.429632679657680E-007 4.541774821274148E-007 4.656756134477933E-007 4.774648507583241E-007 4.895525649500985E-007 5.019463135865131E-007 5.146538456328658E-007 5.276831063058860E-007 5.410422420462380E-007 5.547396056171403E-007 5.687837613322824E-007 5.831834904163474E-007 5.979477965014797E-007 6.130859112631894E-007 6.286073001992040E-007 6.445216685549287E-007 6.608389673992213E-007 6.775693998543100E-007 6.947234274837713E-007 7.123117768426088E-007 7.303454461935135E-007 7.488357123935788E-007 7.677941379557584E-007 7.872325782895600E-007 8.071631891255077E-007 8.275984341280434E-007 8.485510927016997E-007 8.700342679954086E-007 8.920613951100467E-007 9.146462495143511E-007 9.378029556745347E-007 9.615459959030342E-007 9.858902194319681E-007 1.010850851717041E-006 1.036443503977769E-006 1.062684182980023E-006 1.089589301067103E-006 1.117175686445650E-006 1.145460593732900E-006 1.174461714771968E-006 1.204197189721956E-006 1.234685618429948E-006 1.265946072092029E-006 1.297998105210754E-006 1.330861767856597E-006 1.364557618241184E-006 1.399106735610229E-006 1.434530733464343E-006 1.470851773116145E-006 1.508092577592195E-006 1.546276445888629E-006 1.585427267589493E-006 1.625569537857076E-006 1.666728372803749E-006 1.708929525255081E-006 1.752199400914217E-006 1.796565074937859E-006 1.842054308934301E-006 1.888695568394387E-006 1.936518040566463E-006 1.985551652786751E-006 2.035827091276735E-006 2.087375820419578E-006 2.140230102527927E-006 2.194423018115589E-006 2.249988486686084E-006 2.306961288051413E-006 2.365377084194504E-006 2.425272441689443E-006 2.486684854693786E-006 2.549652768527646E-006 2.614215603854711E-006 2.680413781480569E-006 2.748288747784414E-006 2.817883000800240E-006 2.889240116964461E-006 2.962404778547018E-006 3.037422801783598E-006 3.114341165727133E-006 3.193208041837123E-006 3.274072824325771E-006 3.356986161280637E-006 3.441999986583703E-006 3.529167552647647E-006 3.618543463990281E-006 3.710183711669073E-006 3.804145708597851E-006 3.900488325768651E-006 3.999271929402227E-006 4.100558419051229E-006 4.204411266680880E-006 4.310895556752528E-006 4.420078027336111E-006 4.532027112278438E-006 4.646812984454597E-006 4.764507600130870E-006 4.885184744468123E-006 5.008920078195287E-006 5.135791185483717E-006 5.265877623053587E-006 5.399260970544744E-006 5.536024882185002E-006 5.676255139789786E-006 5.820039707128290E-006 5.967468785691779E-006 6.118634871900895E-006 6.273632815789938E-006 6.432559881206696E-006 6.595515807567611E-006 6.762602873211745E-006 6.933925960389730E-006 7.109592621936620E-006 7.289713149673298E-006 7.474400644576522E-006 7.663771088772488E-006 7.857943419390606E-006 8.057039604341410E-006 8.261184720060036E-006 8.470507031268765E-006 8.685138072814564E-006 8.905212733637415E-006 9.130869342920109E-006 9.362249758489531E-006 9.599499457515020E-006 9.842767629586020E-006 1.009220727219949E-005 1.034797528876332E-005 1.061023258915388E-005 1.087914419289671E-005 1.115487933506936E-005 1.143761157495635E-005 1.172751890757948E-005 1.202478387813854E-005 1.232959369946043E-005 1.264214037254623E-005 1.296262081029686E-005 1.329123696447233E-005 1.362819595603451E-005 1.397371020890334E-005 1.432799758726457E-005 1.469128153650095E-005 1.506379122786320E-005 1.544576170697688E-005 1.583743404626927E-005 1.623905550148532E-005 1.665087967232641E-005 1.707316666739950E-005 1.750618327353397E-005 1.795020312965225E-005 1.840550690526329E-005 1.887238248372350E-005 1.935112515044379E-005 1.984203778611722E-005 2.034543106514297E-005 2.086162365940278E-005 2.139094244749814E-005 2.193372272966629E-005 2.249030844847562E-005 2.306105241551774E-005 2.364631654420939E-005 2.424647208894210E-005 2.486189989072146E-005 2.549299062949908E-005 2.614014508336294E-005 2.680377439484997E-005 2.748430034450549E-005 2.818215563196571E-005 2.889778416474104E-005 2.963164135496623E-005 3.038419442428972E-005 3.115592271723511E-005 3.194731802317774E-005 3.275888490727189E-005 3.359114105057260E-005 3.444461759960389E-005 3.531985952568564E-005 3.621742599429784E-005 3.713789074478106E-005 3.808184248070026E-005 3.904988527118596E-005 4.004263896357101E-005 4.106073960770761E-005 4.210483989227563E-005 4.317560959348387E-005 4.427373603654047E-005 4.539992457027169E-005 4.655489905530013E-005 4.773940236624437E-005 4.895419690831255E-005 5.020006514879378E-005 5.147781016388595E-005 5.278825620136875E-005 5.413224925961965E-005 5.551065768344323E-005 5.692437277736358E-005 5.837430943680832E-005 5.986140679785346E-005 6.138662890609988E-005 6.295096540528388E-005 6.455543224630341E-005 6.620107241728977E-005 6.788895669544517E-005 6.962018442133668E-005 7.139588429642518E-005 7.321721520456065E-005 7.508536705828569E-005 7.700156167072587E-005 7.896705365399861E-005 8.098313134497463E-005 8.305111775928659E-005 8.517237157471618E-005 8.734828814489591E-005 8.958030054391573E-005 9.186988064388839E-005 9.421854022560906E-005 9.662783212411647E-005 9.909935140983912E-005 1.016347366074267E-004 1.042356709522843E-004 1.069038836875381E-004 1.096411514019857E-004 1.124492994106979E-004 1.153302031797771E-004 1.182857897972320E-004 1.213180394908806E-004 1.244289871956429E-004 1.276207241719124E-004 1.308953996765652E-004 1.342552226886827E-004 1.377024636923767E-004 1.412394565179847E-004 1.448686002447760E-004 1.485923611667432E-004 1.524132748242864E-004 1.563339481037926E-004 1.603570614082529E-004 1.644853709009987E-004 1.687217108259886E-004 1.730689959069104E-004 1.775302238284896E-004 1.821084778033714E-004 1.868069292271143E-004 1.916288404255643E-004 1.965775674978308E-004 2.016565632583046E-004 2.068693802820372E-004 2.122196740576539E-004 2.177112062512482E-004 2.233478480865134E-004 2.291335838454936E-004 2.350725144941849E-004 2.411688614388139E-004 2.474269704176342E-004 2.538513155336201E-004 2.604465034337270E-004 2.672172776409204E-004 2.741685230451117E-004 2.813052705590332E-004 2.886327019464785E-004 2.961561548294666E-004 3.038811278818337E-004 3.118132862169618E-004 3.199584669776988E-004 3.283226851367882E-004 3.369121395163176E-004 3.457332190360711E-004 3.547925091992901E-004 3.640967988266804E-004 3.736530870484748E-004 3.834685905659896E-004 3.935507511932301E-004 4.039072436912911E-004 4.145459839074491E-004 4.254751372315352E-004 4.367031273841714E-004 4.482386455497986E-004 4.600906598699345E-004 4.722684253120170E-004 4.847814939297704E-004 4.976397255316686E-004 5.108532987757662E-004 5.244327227085415E-004 5.383888487673007E-004 5.527328832658175E-004 5.674764003847895E-004 5.826313556881045E-004 5.982101001884624E-004 6.142253949857574E-004 6.306904265031979E-004 6.476188223474700E-004 6.650246678196747E-004 6.829225231057259E-004 7.013274411757583E-004 7.202549864235004E-004 7.397212540777619E-004 7.597428904203443E-004 7.803371138447204E-004 8.015217367930544E-004 8.233151886100488E-004 8.457365393525450E-004 8.688055245985927E-004 8.925425712978867E-004 9.169688247103931E-004 9.421061764804889E-004 9.679772938955425E-004 9.946056503821244E-004 1.022015557292650E-003 1.050232197039543E-003 1.079281657635402E-003 1.109190968700878E-003 1.139988139003928E-003 1.171702195597008E-003 1.204363224622086E-003 1.238002413855760E-003 1.272652097069868E-003 1.308345800286217E-003 1.345118290007689E-003 1.383005623510599E-003 1.422045201287403E-003 1.462275821732354E-003 1.503737738165935E-003 1.546472718298765E-003 1.590524106238769E-003 1.635936887150371E-003 1.682757754677597E-003 1.731035181249715E-003 1.780819491389299E-003 1.832162938150692E-003 1.885119782819305E-003 1.939746378008316E-003 1.996101254294646E-003 2.054245210540180E-003 2.114241408051369E-003 2.176155468734384E-003 2.240055577409584E-003 2.306012588454625E-003 2.374100136951530E-003 2.444394754519151E-003 2.516975990018797E-003 2.591926535326644E-003 2.669332356373756E-003 2.749282829660049E-003 2.831870884456481E-003 2.917193150914915E-003 3.005350114312529E-003 3.096446275664938E-003 3.190590318948015E-003 3.287895285174962E-003 3.388478753583828E-003 3.492463030194541E-003 3.599975344003138E-003 3.711148051086988E-003 3.826118846900045E-003 3.945030987044769E-003 4.068033516812197E-003 4.195281509787417E-003 4.326936315823336E-003 4.463165818689765E-003 4.604144703710235E-003 4.750054735701682E-003 4.901085047536481E-003 5.057432439647994E-003 5.219301690802714E-003 5.386905880464558E-003 5.560466723073870E-003 5.740214914565759E-003 5.926390491447910E-003 6.119243202755354E-003 6.319032895194913E-003 6.526029911783783E-003 6.740515504280903E-003 6.962782259696329E-003 7.193134541154084E-003 7.431888943367293E-003 7.679374762967678E-003 7.935934483911708E-003 8.201924278162329E-003 8.477714521817907E-003 8.763690326833251E-003 9.060252088438936E-003 9.367816048333208E-003 9.686814873673786E-003 1.001769825185226E-002 1.036093350098241E-002 1.071700619597371E-002 1.108642081000091E-002 1.146970137110865E-002 1.186739213361387E-002 1.228005826388744E-002 1.270828654000096E-002 1.315268606463004E-002 1.361388899049282E-002 1.409255125748793E-002 1.458935334056827E-002 1.510500100724887E-002 1.564022608349920E-002 1.619578722661079E-002 1.677247070345711E-002 1.737109117238170E-002 1.799249246674653E-002 1.863754837796728E-002 1.930716343562856E-002 2.000227368203546E-002 2.072384743829726E-002 2.147288605876400E-002 2.225042467034850E-002 2.305753289295316E-002 2.389531553689705E-002 2.476491327289339E-002 2.566750326975872E-002 2.660429979465945E-002 2.757655477028950E-002 2.858555828295722E-002 2.963263903511534E-002 3.071916473540471E-002 3.184654241880652E-002 3.301621868899344E-002 3.422967987445774E-002 3.548845208946032E-002 3.679410119029013E-002 3.814823261676840E-002 3.955249110834653E-002 4.100856028356567E-002 4.251816207105216E-002 4.408305597961561E-002 4.570503819442815E-002 4.738594048565180E-002 4.912762891529813E-002 5.093200232752458E-002 5.280099060700277E-002 5.473655268946981E-002 5.674067430805451E-002 5.881536545851396E-002 6.096265756610010E-002 6.318460033640355E-002 6.548325827225476E-002 6.786070683853183E-002 7.031902825662482E-002 7.286030691029877E-002 7.548662434480390E-002 7.820005384135527E-002 8.100265454950104E-002 8.389646516049652E-002 8.688349710559065E-002 8.996572726411535E-002 9.314509016753308E-002 9.642346968707718E-002 9.980269019442228E-002 1.032845071869233E-001 1.068705973713837E-001 1.105625482031387E-001 1.143618468804067E-001 1.182698687974835E-001 1.222878654644117E-001 1.264169519052515E-001 1.306580935521302E-001 1.350120926577404E-001 1.394795742550446E-001 1.440609716995657E-001 1.487565118368044E-001 1.535661998451272E-001 1.584898038127728E-001 1.635268391165717E-001 1.686765526794597E-001 1.739379071938716E-001 1.793095654086931E-001 1.847898745884202E-001 1.903768512646470E-001 1.960681664117724E-001 2.018611311908313E-001 2.077526834175772E-001 2.137393749231027E-001 2.198173599873776E-001 2.259823850378461E-001 2.322297798164384E-001 2.385544502289028E-001 2.449508730998088E-001 2.514130930648045E-001 2.579347218382800E-001 2.645089400991436E-001 2.711285022396799E-001 2.777857442218121E-001 2.844725947812673E-001 2.911805902125331E-001 2.979008929555841E-001 3.046243141887196E-001 3.113413406097507E-001 3.180421655598155E-001 3.247167246096118E-001 3.313547356862348E-001 3.379457437696995E-001 3.444791701308955E-001 3.509443660169294E-001 3.573306706150516E-001 3.636274730423936E-001 3.698242780154983E-001 3.759107747509713E-001 3.818769085368709E-001 3.877129542940201E-001 3.934095913179358E-001 3.989579782566327E-001 4.043498272383347E-001 4.095774759179858E-001 4.146339560644513E-001 4.195130571640405E-001 4.242093833736925E-001 4.287184020223476E-001 4.330364817360617E-001 4.371609181560289E-001 4.410899451342833E-001 4.448227292354927E-001 4.483593453513843E-001 4.517007312541069E-001 4.548486189836148E-001 4.578054410897775E-001 4.605742099403592E-001 4.631583685691472E-001 4.655616118821087E-001 4.677876774706744E-001 4.698401058063955E-001 4.717219702155019E-001 4.734355777586444E-001 4.749821429717669E-001 4.763614373572063E-001 4.775714185451682E-001 4.786078441662988E-001 4.794638766731631E-001 4.801318375897315E-001 4.806105099772428E-001 4.809006452985777E-001 4.810031046139661E-001 4.809188598746493E-001 4.806489952105454E-001 4.801947081948516E-001 4.795573110682714E-001 4.787382319053869E-001 4.777390157056214E-001 4.765613253912608E-001 4.752069426951200E-001 4.736777689206527E-001 4.719758255576275E-001 4.701032547369071E-001 4.680623195083864E-001 4.658554039267729E-001 4.634850129306061E-001 4.609537720007384E-001 4.582644265854101E-001 4.554198412800577E-001 4.524229987510907E-001 4.492769983940439E-001 4.459850547177692E-001 4.425504954476508E-001 4.389767593422153E-001 4.352673937189498E-001 4.314260516866325E-001 4.274564890830014E-001 4.233625611181536E-001 4.191482187256316E-001 4.148175046247514E-001 4.103745490992999E-001 4.058235654993142E-001 4.011688454741986E-001 3.964147539469635E-001 3.915657238408429E-001 3.866262505709797E-001 3.816008863152288E-001 3.764942340794242E-001 3.713109415736709E-001 3.660556949173476E-001 3.607332121915365E-001 3.553482368554765E-001 3.499055310645893E-001 3.444098688734175E-001 3.388660293866839E-001 3.332787898581273E-001 3.276529187645442E-001 3.219931688778652E-001 3.163042703580007E-001 3.105909238892932E-001 3.048577938832068E-001 2.991095017695489E-001 2.933506193981174E-001 2.875856625721262E-001 2.818190847341024E-001 2.760552708241818E-001 2.702985313298590E-001 2.645530965452856E-001 2.588231110571524E-001 2.531126284730541E-001 2.474256064070303E-001 2.417659017357002E-001 2.361372661370794E-001 2.305433419227962E-001 2.249876581730126E-001 2.194736271819197E-001 2.140045412202244E-001 2.085835696195828E-001 2.032137561824784E-001 1.978980169195977E-001 1.926391381153285E-001 1.874397747206086E-001 1.823024490709994E-001 1.772295499265344E-001 1.722233318286447E-001 1.672859147682469E-001 1.624192841579567E-001 1.576252911003125E-001 1.529056529429119E-001 1.482619541104477E-001 1.436956472028057E-001 1.392080543476409E-001 1.348003687951952E-001 1.304736567425548E-001 1.262288593740648E-001 1.220667951042328E-001 1.179881620091507E-001 1.139935404322526E-001 1.100833957500909E-001 1.062580812837693E-001 1.025178413416975E-001 9.886281437943473E-002 9.529303626256579E-002 9.180844361876846E-002 8.840887726564198E-002 8.509408570085963E-002 8.186372864228104E-002 7.871738060546321E-002 7.565453450670222E-002 7.267460528024365E-002 6.977693349912056E-002 6.696078898924616E-002 6.422537442704765E-002 6.156982891173103E-002 5.899323150349531E-002 5.649460472011174E-002 5.407291798439795E-002 5.172709101558253E-002 4.945599716048060E-002 4.725846664677965E-002 4.513328978462981E-002 4.307922350963152E-002 4.109495351956944E-002 3.917938083825371E-002 3.733058180911757E-002 3.554811965453955E-002 3.383168384143215E-002 3.217998708145719E-002 3.059145174319447E-002 2.906450544491822E-002 2.759758205631595E-002 2.618912270670767E-002 2.483757679289577E-002 2.354140298485859E-002 2.229907022691588E-002 2.110905873198503E-002 1.996986096654685E-002 1.887998262394584E-002 1.783794358366577E-002 1.684227885424618E-002 1.589153949752389E-002 1.498429353199045E-002 1.411912681289645E-002 1.329464388717715E-002 1.250946882097723E-002 1.176224599770581E-002 1.105164088475687E-002 1.037634076704419E-002 9.735055445590550E-003 9.126517899524299E-003 8.549484909947749E-003 8.002737644258908E-003 7.485082199631655E-003 6.995350104488213E-003 6.532398776931890E-003 6.095111939246431E-003 5.682399987710625E-003 5.293200317122517E-003 4.926477599575725E-003 4.581224017180641E-003 4.256459448574747E-003 3.951231609218344E-003 3.664616145623900E-003 3.395716683818250E-003 3.143664832486296E-003 2.907620141391924E-003 2.686770015815895E-003 2.480329587890683E-003 2.287541545848003E-003 2.107675922325366E-003 1.940029843002829E-003 1.783927236959444E-003 1.638718510250322E-003 1.503780184308988E-003 1.378514500875469E-003 1.262348995237772E-003 1.154736039652708E-003 1.055152358881045E-003 9.630985198314366E-004 8.780983973572178E-004 7.996986182898931E-004 7.274679858227088E-004 6.609968863772489E-004 5.998966810953660E-004 5.437990840981679E-004 4.923555296433099E-004 4.452365302917339E-004 4.021310281655134E-004 3.627457413399470E-004 3.268045073658791E-004 2.940476258628584E-004 2.642312020606632E-004 2.371264930964705E-004 2.125192587980865E-004 1.902091186008185E-004 1.700089161573798E-004 1.517440931073552E-004 1.352520733758969E-004 1.203816592711693E-004 1.069924405473165E-004 9.495421749510562E-005 8.414643901658936E-005 7.445765653383740E-005 6.578499447567334E-005 5.803363798108252E-005 5.111633835414898E-005 4.495293670363490E-005 3.946990610119441E-005 3.459991249623459E-005 3.028139453308082E-005 2.645816232780208E-005 2.307901517819019E-005 2.009737810130022E-005 1.747095701892979E-005 1.516141234267643E-005 1.313405064694319E-005 1.135753406059120E-005 9.803606955943205E-006 8.446839467549764E-006 7.264387332523258E-006 6.235767509257893E-006 5.342649001880759E-006 4.568658293673408E-006 3.899198773783153E-006 3.321283527594049E-006 2.823380851905829E-006 2.395271851307031E-006 2.027919471537132E-006 1.713348328905019E-006 1.444534701659512E-006 1.215306059140308E-006 1.020249518397216E-006 8.546286276495769E-007 7.143080016122620E-007 5.956845961026123E-007 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.019596330108608E-015 1.058557142097445E-015 1.099006724520183E-015 1.141001966268285E-015 1.184601930071379E-015 1.229867935563937E-015 1.276863645526123E-015 1.325655155420074E-015 1.376311086347528E-015 1.428902681559570E-015 1.483503906654182E-015 1.540191553602556E-015 1.599045348750467E-015 1.660148064946573E-015 1.723585637955400E-015 1.789447287318642E-015 1.857825641834860E-015 1.928816869833997E-015 2.002520814429930E-015 2.079041133941331E-015 2.158485447678223E-015 2.240965487299392E-015 2.326597253953442E-015 2.415501181424525E-015 2.507802305512216E-015 2.603630439883673E-015 2.703120358645538E-015 2.806411985892214E-015 2.913650592497182E-015 3.024987000424139E-015 3.140577794845193E-015 3.260585544364595E-015 3.385179029657621E-015 3.514533480846220E-015 3.648830823945249E-015 3.788259936725913E-015 3.933016914356235E-015 4.083305345192243E-015 4.239336597107606E-015 4.401330114764599E-015 4.569513728244252E-015 4.744123973469987E-015 4.925406424875244E-015 5.113616040782970E-015 5.309017521982845E-015 5.511885684010300E-015 5.722505843651217E-015 5.941174220215650E-015 6.168198352145050E-015 6.403897529538931E-015 6.648603243209097E-015 6.902659650893298E-015 7.166424061283738E-015 7.440267436551298E-015 7.724574914072299E-015 8.019746348091288E-015 8.326196872082046E-015 8.644357482597425E-015 8.974675645429262E-015 9.317615924930979E-015 9.673660637387629E-015 1.004331052935275E-014 1.042708548190569E-014 1.082552524182004E-014 1.123919018067162E-014 1.166866208295312E-014 1.211454496430459E-014 1.257746592100994E-014 1.305807601195436E-014 1.355705117428336E-014 1.407509317405053E-014 1.461293059319186E-014 1.517131985421412E-014 1.575104628403861E-014 1.635292521849676E-014 1.697780314903022E-014 1.762655891320914E-014 1.830010493074227E-014 1.899938848671758E-014 1.972539306387804E-014 2.047913972580620E-014 2.126168855296320E-014 2.207414013360161E-014 2.291763711164894E-014 2.379336579373929E-014 2.470255781765204E-014 2.564649188450587E-014 2.662649555714274E-014 2.764394712723188E-014 2.870027755371989E-014 2.979697247535213E-014 3.093557430009730E-014 3.211768437441280E-014 3.334496523540196E-014 3.461914294903115E-014 3.594200953769402E-014 3.731542550053861E-014 3.874132243010081E-014 4.022170572892455E-014 4.175865742999009E-014 4.335433912491526E-014 4.501099500405044E-014 4.673095501274082E-014 4.851663812819597E-014 5.037055576157575E-014 5.229531529007508E-014 5.429362372397862E-014 5.636829151383972E-014 5.852223650313970E-014 6.075848803198638E-014 6.308019119762227E-014 6.549061127773619E-014 6.799313832279798E-014 7.059129192387572E-014 7.328872616264081E-014 7.608923475052211E-014 7.899675636423788E-014 8.201538018520915E-014 8.514935165064464E-014 8.840307842438719E-014 9.178113659591627E-014 9.528827711622866E-014 9.892943247964570E-014 1.027097236609465E-013 1.066344673175832E-013 1.107091832671053E-013 1.149396022503135E-013 1.193316739910580E-013 1.238915755640185E-013 1.286257200822330E-013 1.335407657165950E-013 1.386436250600030E-013 1.439414748493336E-013 1.494417660589101E-013 1.551522343796645E-013 1.610809110987251E-013 1.672361343947384E-013 1.736265610648077E-013 1.802611786995385E-013 1.871493183233221E-013 1.943006675176219E-013 2.017252840457343E-013 2.094336099981743E-013 2.174364864785857E-013 2.257451688508314E-013 2.343713425687004E-013 2.433271396105044E-013 2.526251555416716E-013 2.622784672293343E-013 2.723006512338311E-013 2.827058029029779E-013 2.935085561959762E-013 3.047241042648281E-013 3.163682208222095E-013 3.284572823258554E-013 3.410082910106463E-013 3.540388988008075E-013 3.675674321358332E-013 3.816129177450617E-013 3.961951094071518E-013 4.113345157320830E-013 4.270524290047710E-013 4.433709551308510E-013 4.603130447267475E-013 4.779025253977667E-013 4.961641352495780E-013 5.151235576802698E-013 5.348074575018427E-013 5.552435184420032E-013 5.764604820789679E-013 5.984881882640322E-013 6.213576170887929E-013 6.451009324559937E-013 6.697515273153144E-013 6.953440706277174E-013 7.219145561243650E-013 7.495003529287583E-013 7.781402581132043E-013 8.078745512635952E-013 8.387450511292233E-013 8.707951744372588E-013 9.040699969547087E-013 9.386163168836111E-013 9.744827206787298E-013 1.011719651380264E-012 1.050379479557659E-012 1.090516576964380E-012 1.132187393007121E-012 1.175450534137085E-012 1.220366846274978E-012 1.266999500385572E-012 1.315414081322320E-012 1.365678680066827E-012 1.417863989493018E-012 1.472043403790652E-012 1.528293121687947E-012 1.586692253618646E-012 1.647322932984050E-012 1.710270431666655E-012 1.775623279957801E-012 1.843473391067922E-012 1.913916190394701E-012 1.987050749730697E-012 2.062979926599385E-012 2.141810508915516E-012 2.223653365173139E-012 2.308623600372759E-012 2.396840717906634E-012 2.488428787630121E-012 2.583516620355371E-012 2.682237949012657E-012 2.784731616734434E-012 2.891141772126274E-012 3.001618071999597E-012 3.116315891851250E-012 3.235396544385769E-012 3.359027506388059E-012 3.487382654265094E-012 3.620642508588277E-012 3.758994487980237E-012 3.902633172703032E-012 4.051760578318789E-012 4.206586439807248E-012 4.367328506540122E-012 4.534212848527051E-012 4.707474174363635E-012 4.887356161329172E-012 5.074111798097827E-012 5.268003740545619E-012 5.469304681153541E-012 5.678297732526064E-012 5.895276825565048E-012 6.120547122858254E-012 6.354425447864510E-012 6.597240730498913E-012 6.849334469744424E-012 7.111061213941248E-012 7.382789059428593E-012 7.664900168240742E-012 7.957791305585381E-012 8.261874397859679E-012 8.577577111989879E-012 8.905343456907976E-012 9.245634408012423E-012 9.598928555490602E-012 9.965722777414911E-012 1.034653293855936E-011 1.074189461591913E-011 1.115236385195381E-011 1.157851793661360E-011 1.202095621924808E-011 1.248030095153991E-011 1.295719816264842E-011 1.345231856779431E-011 1.396635851156330E-011 1.450004094725496E-011 1.505411645365476E-011 1.562936429065869E-011 1.622659349523558E-011 1.684664401926835E-011 1.749038791087420E-011 1.815873054086561E-011 1.885261187607671E-011 1.957300780134603E-011 2.032093149201497E-011 2.109743483887175E-011 2.190360992754580E-011 2.274059057443228E-011 2.360955392130764E-011 2.451172209087855E-011 2.544836390559229E-011 2.642079667212689E-011 2.743038803406961E-011 2.847855789539015E-011 2.956678041741369E-011 3.069658609210196E-011 3.186956389455882E-011 3.308736351778679E-011 3.435169769283857E-011 3.566434459762607E-011 3.702715035777425E-011 3.844203164303833E-011 3.991097836293444E-011 4.143605646537614E-011 4.301941084225237E-011 4.466326834603270E-011 4.636994092164385E-011 4.814182885802052E-011 4.998142416390492E-011 5.189131407264235E-011 5.387418468090108E-011 5.593282472643620E-011 5.807012951020771E-011 6.028910496837172E-011 6.259287189986993E-011 6.498467035556318E-011 6.746786419508347E-011 7.004594581781084E-011 7.272254107463140E-011 7.550141436738265E-011 7.838647394315842E-011 8.138177739092011E-011 8.449153734814368E-011 8.772012742552894E-011 9.107208835810395E-011 9.455213439137420E-011 9.816515991150016E-011 1.019162463288258E-010 1.058106692244405E-010 1.098539057698262E-010 1.140516424300208E-010 1.184097829611379E-010 1.229344567134845E-010 1.276320272519585E-010 1.325091013058484E-010 1.375725380606204E-010 1.428294588047655E-010 1.482872569452687E-010 1.539536084057897E-010 1.598364824221794E-010 1.659441527505112E-010 1.722852093033958E-010 1.788685702309393E-010 1.857034944633399E-010 1.927995947327605E-010 2.001668510927935E-010 2.078156249545266E-010 2.157566736589583E-010 2.240011656062499E-010 2.325606959630967E-010 2.414473029703096E-010 2.506734848735347E-010 2.602522175009344E-010 2.701969725125425E-010 2.805217363469609E-010 2.912410298920500E-010 3.023699289072647E-010 3.139240852263775E-010 3.259197487703889E-010 3.383737904015974E-010 3.513037256509691E-010 3.647277393521645E-010 3.786647112168895E-010 3.931342423875228E-010 4.081566830043678E-010 4.237531608263095E-010 4.399456109451053E-010 4.567568066351285E-010 4.742103913819304E-010 4.923309121346749E-010 5.111438538292158E-010 5.306756752303513E-010 5.509538461436927E-010 5.720068860494577E-010 5.938644042125357E-010 6.165571413252348E-010 6.401170127412656E-010 6.645771533617854E-010 6.899719642366127E-010 7.163371609461622E-010 7.437098238321479E-010 7.721284501476722E-010 8.016330082000881E-010 8.322649935627435E-010 8.640674874346799E-010 8.970852172303702E-010 9.313646194846755E-010 9.669539051615378E-010 1.003903127458217E-009 1.042264252200454E-009 1.082091230927571E-009 1.123440076770245E-009 1.166368943227745E-009 1.210938205955360E-009 1.257210547677079E-009 1.305251046342935E-009 1.355127266654967E-009 1.406909355090586E-009 1.460670138556915E-009 1.516485226814895E-009 1.574433118817202E-009 1.634595313109475E-009 1.697056422450208E-009 1.761904292810432E-009 1.829230126920584E-009 1.899128612538300E-009 1.971698055617560E-009 2.047040518566385E-009 2.125261963787653E-009 2.206472402704806E-009 2.290786050482074E-009 2.378321486656833E-009 2.469201821909931E-009 2.563554871208628E-009 2.661513333565564E-009 2.763214978666610E-009 2.868802840630091E-009 2.978425419169772E-009 3.092236888444664E-009 3.210397313889275E-009 3.333072877329247E-009 3.460436110699062E-009 3.592666138690358E-009 3.729948930672275E-009 3.872477562238003E-009 4.020452486745406E-009 4.174081817233652E-009 4.333581619112163E-009 4.499176214033738E-009 4.671098495379025E-009 4.849590255796105E-009 5.034902527255845E-009 5.227295934101108E-009 5.427041059586579E-009 5.634418826424456E-009 5.849720891871342E-009 6.073250057911902E-009 6.305320697116091E-009 6.546259194768983E-009 6.796404407894886E-009 7.056108141821314E-009 7.325735644953086E-009 7.605666122452193E-009 7.896293269546045E-009 8.198025825214020E-009 8.511288147030925E-009 8.836520807975935E-009 9.174181216046053E-009 9.524744257545793E-009 9.888702964957550E-009 1.026656921033186E-008 1.065887442517296E-008 1.106617034783155E-008 1.148902979945631E-008 1.192804748959515E-008 1.238384085257899E-008 1.285705091586484E-008 1.334834320155834E-008 1.385840866238465E-008 1.438796465342323E-008 1.493775594097327E-008 1.550855574996861E-008 1.610116685141482E-008 1.671642269137809E-008 1.735518856311324E-008 1.801836282397938E-008 1.870687815885460E-008 1.942170289182595E-008 2.016384234799985E-008 2.093434026734770E-008 2.173428027257488E-008 2.256478739307758E-008 2.342702964712994E-008 2.432221968452725E-008 2.525161649199457E-008 2.621652716375902E-008 2.721830873977608E-008 2.825837011419377E-008 2.933817401673975E-008 3.045923906981672E-008 3.162314192419884E-008 3.283151947633327E-008 3.408607117036305E-008 3.538856138811049E-008 3.674082193038036E-008 3.814475459307232E-008 3.960233384172606E-008 4.111560958825776E-008 4.268671007379520E-008 4.431784486166316E-008 4.601130794472833E-008 4.776948097147385E-008 4.959483659533788E-008 5.148994195202824E-008 5.345746226970042E-008 5.550016461707690E-008 5.762092179477749E-008 5.982271637533095E-008 6.210864489755139E-008 6.448192222117418E-008 6.694588604787613E-008 6.950400161503642E-008 7.215986656883672E-008 7.491721602355421E-008 7.777992781416013E-008 8.075202794960844E-008 8.383769627448458E-008 8.704127234696956E-008 9.036726154139050E-008 9.382034138393208E-008 9.740536813041947E-008 1.011273835954216E-007 1.049916222422720E-007 1.090035185439808E-007 1.131687146253837E-007 1.174930681972714E-007 1.219826607936586E-007 1.266438063237646E-007 1.314830599507401E-007 1.365072273096119E-007 1.417233740774112E-007 1.471388359089382E-007 1.527612287521262E-007 1.585984595575149E-007 1.646587373968815E-007 1.709505850066618E-007 1.774828507723919E-007 1.842647211710092E-007 1.913057336885138E-007 1.986157902311407E-007 2.062051710488978E-007 2.140845491910436E-007 2.222650055138159E-007 2.307580442615204E-007 2.395756092428660E-007 2.487301006252941E-007 2.582343923709049E-007 2.681018503384818E-007 2.783463510770676E-007 2.889823013374981E-007 3.000246583293210E-007 3.114889507515702E-007 3.233913006269456E-007 3.357484459700983E-007 3.485777643218651E-007 3.618972971825350E-007 3.757257753784848E-007 3.900826453978183E-007 4.049880967320410E-007 4.204630902621712E-007 4.365293877291870E-007 4.532095823302232E-007 4.705271304834932E-007 4.885063848065959E-007 5.071726283545232E-007 5.265521101654841E-007 5.466720821644933E-007 5.675608374765541E-007 5.892477502032878E-007 6.117633167188788E-007 6.351391985433507E-007 6.594082668534159E-007 6.846046486934022E-007 7.107637749512050E-007 7.379224301666296E-007 7.661188042421021E-007 7.953925461283908E-007 8.257848195607112E-007 8.573383609235417E-007 8.900975393253927E-007 9.241084189679041E-007 9.594188238968792E-007 9.960784052261531E-007 1.034138710928735E-006 1.073653258293209E-006 1.114677609147127E-006 1.157269447953052E-006 1.201488662886840E-006 1.247397430012070E-006 1.295060300668743E-006 1.344544292198958E-006 1.395918982136933E-006 1.449256605995548E-006 1.504632158786742E-006 1.562123500418198E-006 1.621811465114266E-006 1.683779975014731E-006 1.748116158110748E-006 1.814910470683581E-006 1.884256824417850E-006 1.956252718367696E-006 2.030999375961031E-006 2.108601887234028E-006 2.189169356495486E-006 2.272815055628135E-006 2.359656583241968E-006 2.449816029902835E-006 2.543420149667981E-006 2.640600537761070E-006 2.741493817890291E-006 2.846241827834984E-006 2.954991828542311E-006 3.067896700630678E-006 3.185115166090344E-006 3.306812011929002E-006 3.433158310771526E-006 3.564331679502232E-006 3.700516511328043E-006 3.841904244808875E-006 3.988693629486399E-006 4.141091003359181E-006 4.299310587674376E-006 4.463574782097279E-006 4.634114481316174E-006 4.811169398796253E-006 4.994988400505127E-006 5.185829857622951E-006 5.383962003258870E-006 5.589663317585360E-006 5.803222917128968E-006 6.024940952182564E-006 6.255129040288576E-006 6.494110689919630E-006 6.742221770396277E-006 6.999810971725287E-006 7.267240298543967E-006 7.544885572753555E-006 7.833136971586574E-006 8.132399569335580E-006 8.443093897015607E-006 8.765656548071712E-006 9.100540783320384E-006 9.448217160787548E-006 9.809174212534674E-006 1.018391911161298E-005 1.057297839237297E-005 1.097689869221171E-005 1.139624750976739E-005 1.183161401048864E-005 1.228360984217681E-005 1.275286999970633E-005 1.324005371631319E-005 1.374584538432095E-005 1.427095551565342E-005 1.481612172918480E-005 1.538210980431542E-005 1.596971474217198E-005 1.657976187416835E-005 1.721310803288931E-005 1.787064274253930E-005 1.855328945418196E-005 1.926200687854605E-005 1.999779027977459E-005 2.076167291462538E-005 2.155472742523877E-005 2.237806739829161E-005 2.323284890582239E-005 2.412027209740370E-005 2.504158291045398E-005 2.599807480298773E-005 2.699109055167915E-005 2.802202418299862E-005 2.909232283156032E-005 3.020348885602137E-005 3.135708188172463E-005 3.255472102387054E-005 3.379808710380843E-005 3.508892504759172E-005 3.642904628404781E-005 3.782033131736071E-005 3.926473231832523E-005 4.076427585985573E-005 4.232106578824959E-005 4.393728609853733E-005 4.561520402288751E-005 4.735717320582731E-005 4.916563694538356E-005 5.104313166470494E-005 5.299229038732329E-005 5.501584646548115E-005 5.711663736874119E-005 5.929760862528127E-005 6.156181796181844E-005 6.391243956415198E-005 6.635276845492844E-005 6.888622515314922E-005 7.151636038340413E-005 7.424686005936798E-005 7.708155039224491E-005 8.002440323183774E-005 8.307954158115206E-005 8.625124534654873E-005 8.954395728443123E-005 9.296228918524397E-005 9.651102826973966E-005 1.001951438675404E-004 1.040197942892762E-004 1.079903340261596E-004 1.121123211574667E-004 1.163915250804270E-004 1.208339345154927E-004 1.254457657915900E-004 1.302334715075593E-004 1.352037494386359E-004 1.403635518354459E-004 1.457200950497281E-004 1.512808695245448E-004 1.570536501523505E-004 1.630465070692840E-004 1.692678167526284E-004 1.757262736567666E-004 1.824309021936268E-004 1.893910692026587E-004 1.966164968850474E-004 2.041172762138816E-004 2.119038808480613E-004 2.199871815809907E-004 2.283784612960476E-004 2.370894305188167E-004 2.461322435174745E-004 2.555195150413017E-004 2.652643376358702E-004 2.753802996427059E-004 2.858815038636124E-004 2.967825868862644E-004 3.080987391831885E-004 3.198457258966379E-004 3.320399084626530E-004 3.446982669647917E-004 3.578384233881420E-004 3.714786656745973E-004 3.856379727047786E-004 4.003360401980464E-004 4.155933075607531E-004 4.314309857228963E-004 4.478710860310036E-004 4.649364501540039E-004 4.826507811564111E-004 5.010386756437705E-004 5.201256571495135E-004 5.399382107069617E-004 5.605038187229709E-004 5.818509981268525E-004 6.040093388976249E-004 6.270095440303607E-004 6.508834708955562E-004 6.756641741619727E-004 7.013859502550770E-004 7.280843834506308E-004 7.557963936140595E-004 7.845602857027361E-004 8.144158010326700E-004 8.454041704257763E-004 8.775681692547254E-004 9.109521744786854E-004 9.456022237389625E-004 9.815660765648147E-004 1.018893277789989E-003 1.057635223220179E-003 1.097845227675729E-003 1.139578595424429E-003 1.182892693165563E-003 1.227847025573753E-003 1.274503313528503E-003 1.322925575129319E-003 1.373180209553350E-003 1.425336083881994E-003 1.479464622959187E-003 1.535639902432485E-003 1.593938745016111E-003 1.654440820144771E-003 1.717228747069674E-003 1.782388201549277E-003 1.850008026225574E-003 1.920180344824817E-003 1.993000680269375E-003 2.068568076850396E-003 2.146985226590568E-003 2.228358599892484E-003 2.312798580649668E-003 2.400419605920341E-003 2.491340310307733E-003 2.585683675211120E-003 2.683577183052159E-003 2.785152976673168E-003 2.890548023995923E-003 2.999904288149669E-003 3.113368903194163E-003 3.231094355598301E-003 3.353238671636812E-003 3.479965610870626E-003 3.611444865876395E-003 3.747852268381822E-003 3.889370001995377E-003 4.036186821680049E-003 4.188498280156427E-003 4.346506961404544E-003 4.510422721455432E-003 4.680462936610468E-003 4.856852759312618E-003 5.039825381802781E-003 5.229622307775058E-003 5.426493632175160E-003 5.630698329338527E-003 5.842504549637253E-003 6.062189924792160E-003 6.290041882037115E-003 6.526357967292361E-003 6.771446177508707E-003 7.025625302337191E-003 7.289225275277172E-003 7.562587534444680E-003 7.846065393099637E-003 8.140024420063280E-003 8.444842830132278E-003 8.760911884619613E-003 9.088636302089104E-003 9.428434679391570E-003 9.780739923065685E-003 1.014599969113725E-002 1.052467684537490E-002 1.091724991400176E-002 1.132421356485923E-002 1.174607908899077E-002 1.218337489459038E-002 1.263664701122729E-002 1.310645960423643E-002 1.359339549911297E-002 1.409805671574741E-002 1.462106501225091E-002 1.516306243813402E-002 1.572471189649556E-002 1.630669771488593E-002 1.690972622443088E-002 1.753452634672237E-002 1.818185018798055E-002 1.885247363986393E-002 1.954719698628298E-002 2.026684551545955E-002 2.101227013643217E-002 2.178434799909222E-002 2.258398311674999E-002 2.341210699015618E-002 2.426967923177443E-002 2.515768818899072E-002 2.607715156485930E-002 2.702911703482379E-002 2.801466285774025E-002 2.903489847939132E-002 3.009096512652257E-002 3.118403638928176E-002 3.231531878978192E-002 3.348605233431787E-002 3.469751104660279E-002 3.595100347918003E-002 3.724787319997559E-002 3.858949925072359E-002 3.997729657379348E-002 4.141271640368693E-002 4.289724661924035E-002 4.443241205230394E-002 4.601977474839081E-002 4.766093417450112E-002 4.935752736904864E-002 5.111122902847386E-002 5.292375152484047E-002 5.479684484833659E-002 5.673229646829220E-002 5.873193110593152E-002 6.079761041172097E-002 6.293123253977895E-002 6.513473161141661E-002 6.741007705946833E-002 6.975927284465155E-002 7.218435653475039E-002 7.468739823699923E-002 7.727049937356222E-002 7.993579128957409E-002 8.268543368273190E-002 8.552161284295137E-002 8.844653969015270E-002 9.146244759774846E-002 9.457158998895082E-002 9.777623769254822E-002 1.010786760443427E-001 1.044812017200046E-001 1.079861192846540E-001 1.115957374440859E-001 1.153123649821661E-001 1.191383063685532E-001 1.230758570206033E-001 1.271272982030114E-001 1.312948915485206E-001 1.355808731828577E-001 1.399874474369143E-001 1.445167801291873E-001 1.491709914014896E-001 1.539521480911054E-001 1.588622556227819E-001 1.639032494042946E-001 1.690769857098138E-001 1.743852320358981E-001 1.798296569157218E-001 1.854118191780991E-001 1.911331566389659E-001 1.969949742143581E-001 2.029984314454440E-001 2.091445294279973E-001 2.154340971407580E-001 2.218677771694506E-001 2.284460108259249E-001 2.351690226648193E-001 2.420368044035046E-001 2.490490982547761E-001 2.562053796858285E-001 2.635048396216273E-001 2.709463661157091E-001 2.785285255169234E-001 2.862495431665614E-001 2.941072836667386E-001 3.020992307679474E-001 3.102224669311852E-001 3.184736526282284E-001 3.268490054523417E-001 3.353442791209836E-001 3.439547424620709E-001 3.526751584858320E-001 3.614997636554831E-001 3.704222474817074E-001 3.794357325782225E-001 3.885327553286826E-001 3.977052473285310E-001 4.069445177793544E-001 4.162412370276429E-001 4.255854214544685E-001 4.349664199376317E-001 4.443729021228401E-001 4.537928487556693E-001 4.632135443410751E-001 4.726215724119330E-001 4.820028137024192E-001 4.913424475355692E-001 5.006249567470440E-001 5.098341364785736E-001 5.189531071844120E-001 5.279643322022668E-001 5.368496402458838E-001 5.455902531796611E-001 5.541668194356775E-001 5.625594534298924E-001 5.707477813266050E-001 5.787109934877495E-001 5.864279039258785E-001 5.938770170559646E-001 6.010366020107433E-001 6.078847747466987E-001 6.143995881219584E-001 6.205591300728719E-001 6.263416299519304E-001 6.317255730152848E-001 6.366898229627848E-001 6.412137523363266E-001 6.452773804729197E-001 6.488615185865522E-001 6.519479214172209E-001 6.545194447361051E-001 6.565602078324707E-001 6.580557599306475E-001 6.589932492944055E-001 6.593615935718217E-001 6.591516497170633E-001 6.583563815975612E-001 6.569710231573860E-001 6.549932347623247E-001 6.524232501017433E-001 6.492640107699820E-001 6.455212853995695E-001 6.412037699744775E-001 6.363231657192361E-001 6.308942307451489E-001 6.249348014449370E-001 6.184657794699335E-001 6.115110800080975E-001 6.040975370164354E-001 5.962547610586171E-001 5.880149454690842E-001 5.794126167213749E-001 5.704843251336694E-001 5.612682724125411E-001 5.518038730307708E-001 5.421312470709311E-001 5.322906429577841E-001 5.223217894626905E-001 5.122631775051746E-001 5.021512736116891E-001 4.920196684285967E-001 4.818981654319943E-001 4.718118169339341E-001 4.617799166513198E-001 4.518149604734026E-001 4.419215896226917E-001 4.320982795898194E-001 4.223479844892963E-001 4.126753684420267E-001 4.030848738634188E-001 3.935807258140357E-001 3.841669364448176E-001 3.748473095170463E-001 3.656254449783969E-001 3.565047435775922E-001 3.474884115013342E-001 3.385794650183495E-001 3.297807351165187E-001 3.210948721201937E-001 3.125243502759099E-001 3.040714722957867E-001 2.957383738489768E-001 2.875270279925612E-001 2.794392495342969E-001 2.714766993206129E-001 2.636408884442014E-001 2.559331823664750E-001 2.483548049510530E-001 2.409068424052991E-001 2.335902471277544E-001 2.264058414601009E-001 2.193543213430405E-001 2.124362598761908E-001 2.056521107827729E-001 1.990022117805030E-001 1.924867878606946E-001 1.861059544781297E-001 1.798597206547692E-001 1.737479920008362E-001 1.677705736572280E-001 1.619271731635878E-001 1.562174032566936E-001 1.506407846041067E-001 1.451967484782512E-001 1.398846393762853E-001 1.347037175912593E-001 1.296531617401467E-001 1.247320712543726E-001 1.199394688384599E-001 1.152743029023562E-001 1.107354499729081E-001 1.063217170898011E-001 1.020318441910966E-001 9.786450649326681E-002 9.381831687035737E-002 8.989182823659972E-002 8.608353593645224E-002 8.239188014567282E-002 7.881524828662083E-002 7.535197746055415E-002 7.200035689923309E-002 6.875863043766854E-002 6.562499900936232E-002 6.259762316488650E-002 5.967462561413909E-002 5.685409379210104E-002 5.413408244740626E-002 5.151261625252901E-002 4.898769243389245E-002 4.655728341971556E-002 4.421933950294394E-002 4.197179151615948E-002 3.981255351493634E-002 3.773952546571007E-002 3.575059593385690E-002 3.384364476734245E-002 3.201654577099826E-002 3.026716936621820E-002 2.859338523065107E-002 2.699306491226826E-002 2.546408441205893E-002 2.400432672951023E-002 2.261168436496514E-002 2.128406177295419E-002 2.001937776063193E-002 1.881556782552623E-002 1.767058642693298E-002 1.658240918545252E-002 1.554903500536774E-002 1.456848811480481E-002 1.363882001889424E-002 1.275811136145969E-002 1.192447369110172E-002 1.113605112791114E-002 1.039102192743800E-002 9.687599938954386E-003 9.024035955479804E-003 8.398618953481256E-003 7.809677220615479E-003 7.255579370342171E-003 6.734735242702628E-003 6.245596691023571E-003 5.786658254768227E-003 5.356457719212345E-003 4.953576563068780E-003 4.576640295617554E-003 4.224318685316069E-003 3.895325882263731E-003 3.588420437274416E-003 3.302405220666595E-003 3.036127244212768E-003 2.788477389995418E-003 2.558390050194533E-003 2.344842682080786E-003 2.146855282707802E-003 1.963489787985925E-003 1.793849400978233E-003 1.637077854387087E-003 1.492358612296414E-003 1.358914016301570E-003 1.236004381195586E-003 1.122927045388766E-003 1.019015381218844E-003 9.236377702624846E-004 8.361965486871644E-004 7.561269275867666E-004 6.828958931263110E-004 6.160010911825049E-004 5.549697010100859E-004 4.993573022873363E-004 4.487467397086382E-004 4.027469890852412E-004 3.609920287025274E-004 3.231397194587651E-004 2.888706970802837E-004 2.578872794693084E-004 2.299123920003404E-004 2.046885133387532E-004 1.819766441102804E-004 1.615553005088410E-004 1.432195346881811E-004 1.267799835455710E-004 1.120619472777691E-004 9.890449886434270E-005 8.715962523675906E-005 7.669140647516199E-005 6.737516726036133E-005 5.909708871916777E-005 5.175212489491995E-005 4.524632358517591E-005 3.949429834773559E-005 3.441721550089331E-005 2.994318197728280E-005 2.600707986226048E-005 2.255002593344403E-005 1.951886439916057E-005 1.686569168616628E-005 1.454741210406394E-005 1.252532318133456E-005 1.076472944413694E-005 9.234583392193820E-006 7.907152415918664E-006 6.757710393970805E-006 5.764252724519579E-006 4.907233475163023E-006 4.169325240749100E-006 3.535188322188942E-006 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 6.764211176492685E-016 7.022685194215987E-016 7.291036020349380E-016 7.569641067466929E-016 7.858892169830932E-016 8.159196134473325E-016 8.470975313335153E-016 8.794668197268623E-016 9.130730032737056E-016 9.479633462080371E-016 9.841869188246147E-016 1.021794666492156E-015 1.060839481303657E-015 1.101376276464617E-015 1.143462063523791E-015 1.187156032555057E-015 1.232519635403228E-015 1.279616672110829E-015 1.328513380647420E-015 1.379278530067669E-015 1.431983517229153E-015 1.486702467205959E-015 1.543512337539290E-015 1.602493026471686E-015 1.663727485317108E-015 1.727301835124864E-015 1.793305487801558E-015 1.861831271861303E-015 1.932975562981116E-015 2.006838419545114E-015 2.083523723368085E-015 2.163139325796417E-015 2.245797199391830E-015 2.331613595411246E-015 2.420709207304279E-015 2.513209340458281E-015 2.609244088429691E-015 2.708948515909553E-015 2.812462848680474E-015 2.919932670832281E-015 3.031509129513590E-015 3.147349147507418E-015 3.267615643929711E-015 3.392477763361179E-015 3.522111113734783E-015 3.656698013313273E-015 3.796427747104330E-015 3.941496833073783E-015 4.092109298531389E-015 4.248476967077894E-015 4.410819756516816E-015 4.579365988150148E-015 4.754352707892795E-015 4.936026019657455E-015 5.124641431478848E-015 5.320464214863925E-015 5.523769777873688E-015 5.734844052461153E-015 5.953983896610263E-015 6.181497511841416E-015 6.417704876670546E-015 6.662938196631706E-015 6.917542371495835E-015 7.181875480342879E-015 7.456309285169580E-015 7.741229753740947E-015 8.037037602421096E-015 8.344148859746662E-015 8.662995451535469E-015 8.994025808353467E-015 9.337705496193999E-015 9.694517871256791E-015 1.006496475974723E-014 1.044956716365215E-014 1.084886599348483E-014 1.126342282902939E-014 1.169382070915503E-014 1.214066495181046E-014 1.260458400535205E-014 1.308623033240294E-014 1.358628132748601E-014 1.410544026972165E-014 1.464443731192990E-014 1.520403050752814E-014 1.578500687666881E-014 1.638818351311586E-014 1.701440873341784E-014 1.766456326999266E-014 1.833956150980270E-014 1.904035278036237E-014 1.976792268488604E-014 2.052329448845518E-014 2.130753055715354E-014 2.212173385219435E-014 2.296704948114160E-014 2.384466630840588E-014 2.475581862728111E-014 2.570178789587286E-014 2.668390453935984E-014 2.770354982112396E-014 2.876215778537896E-014 2.986121727403195E-014 3.100227402061236E-014 3.218693282421451E-014 3.341685980651118E-014 3.469378475501108E-014 3.601950355585803E-014 3.739588071959178E-014 3.882485200342302E-014 4.030842713371127E-014 4.184869263247340E-014 4.344781475189922E-014 4.510804252100059E-014 4.683171090867900E-014 4.862124410766070E-014 5.047915894391672E-014 5.240806841636433E-014 5.441068537182747E-014 5.648982632042434E-014 5.864841539674954E-014 6.088948847241928E-014 6.321619742576684E-014 6.563181457469028E-014 6.813973727888918E-014 7.074349271796173E-014 7.344674285208140E-014 7.625328957223259E-014 7.916708004724603E-014 8.219221227515540E-014 8.533294084668268E-014 8.859368292895697E-014 9.197902447788361E-014 9.549372668790067E-014 9.914273268819269E-014 1.029311744947819E-013 1.068643802282696E-013 1.109478816073846E-013 1.151874217288745E-013 1.195889631446809E-013 1.241586962477622E-013 1.289030479783516E-013 1.338286908629021E-013 1.389425523984261E-013 1.442518247954293E-013 1.497639750931425E-013 1.554867556612746E-013 1.614282151030608E-013 1.675967095749370E-013 1.740009145387610E-013 1.806498369631118E-013 1.875528279908207E-013 1.947195960905587E-013 2.021602207109692E-013 2.098851664565538E-013 2.179052978052472E-013 2.262318943883774E-013 2.348766668545075E-013 2.438517733394639E-013 2.531698365657180E-013 2.628439615951707E-013 2.728877542603024E-013 2.833153402996181E-013 2.941413852242947E-013 3.053811149439702E-013 3.170503371806931E-013 3.291654637011258E-013 3.417435333983079E-013 3.548022362553962E-013 3.683599382251226E-013 3.824357070599428E-013 3.970493391291965E-013 4.122213872610240E-013 4.279731896481581E-013 4.443268998582755E-013 4.613055179911053E-013 4.789329230260965E-013 4.972339064061822E-013 5.162342069048180E-013 5.359605468253750E-013 5.564406695837887E-013 5.777033787272908E-013 5.997785784441634E-013 6.226973156214109E-013 6.464918235095700E-013 6.711955670560294E-013 6.968432899706072E-013 7.234710635896406E-013 7.511163376072253E-013 7.798179927450206E-013 8.096163954346788E-013 8.405534545897651E-013 8.726726805470985E-013 9.060192462603065E-013 9.406400508317389E-013 9.765837854720646E-013 1.013901001980278E-012 1.052644183840531E-012 1.092867820035641E-012 1.134628481681208E-012 1.177984901588082E-012 1.222998056865007E-012 1.269731254677773E-012 1.318250221285298E-012 1.368623194478027E-012 1.420921019548569E-012 1.475217248929515E-012 1.531588245638712E-012 1.590113290677286E-012 1.650874694531623E-012 1.713957912936054E-012 1.779451667059009E-012 1.847448068281824E-012 1.918042747745491E-012 1.991334990847706E-012 2.067427876879336E-012 2.146428423996567E-012 2.228447739732893E-012 2.313601177262307E-012 2.402008497633714E-012 2.493794038204644E-012 2.589086887511055E-012 2.688021066819428E-012 2.790735718616159E-012 2.897375302299598E-012 3.008089797349897E-012 3.123034914262240E-012 3.242372313540467E-012 3.366269833058672E-012 3.494901724110861E-012 3.628448896480545E-012 3.767099172874789E-012 3.911047553080927E-012 4.060496488216991E-012 4.215656165461937E-012 4.376744803665999E-012 4.543988960256711E-012 4.717623849872720E-012 4.897893675172936E-012 5.085051970286734E-012 5.279361957388084E-012 5.481096916894850E-012 5.690540571814548E-012 5.907987486776305E-012 6.133743482310874E-012 6.368126064961059E-012 6.611464873827447E-012 6.864102144177649E-012 7.126393188770850E-012 7.398706897574794E-012 7.681426256578007E-012 7.974948886426688E-012 8.279687601644202E-012 8.596070991219263E-012 8.924544021379658E-012 9.265568661399173E-012 9.619624533317692E-012 9.987209586488606E-012 1.036884079790180E-011 1.076505489926748E-011 1.117640913188342E-011 1.160348203034691E-011 1.204687423621412E-011 1.250720934275094E-011 1.298513477196332E-011 1.348132268514090E-011 1.399647092819405E-011 1.453130401311431E-011 1.508657413693826E-011 1.566306223964805E-011 1.626157910249647E-011 1.688296648830100E-011 1.752809832531109E-011 1.819788193631287E-011 1.889325931470081E-011 1.961520844931045E-011 2.036474469987543E-011 2.114292222504384E-011 2.195083546496139E-011 2.278962068050740E-011 2.366045755134799E-011 2.456457083505375E-011 2.550323208961599E-011 2.647776146178320E-011 2.748952954373394E-011 2.853995930069650E-011 2.963052807222667E-011 3.076276964995856E-011 3.193827643475004E-011 3.315870167625707E-011 3.442576179808683E-011 3.574123881179889E-011 3.710698282315090E-011 3.852491463411204E-011 3.999702844430509E-011 4.152539465567582E-011 4.311216278433385E-011 4.475956448366135E-011 4.646991668293986E-011 4.824562484591089E-011 5.008918635385215E-011 5.200319401792755E-011 5.399033972575151E-011 5.605341822729494E-011 5.819533106545848E-011 6.041909065684084E-011 6.272782452844036E-011 6.512477971625042E-011 6.761332733193248E-011 7.019696730399147E-011 7.287933330012068E-011 7.566419783763791E-011 7.855547758920324E-011 8.155723889127643E-011 8.467370346306476E-011 8.790925434400224E-011 9.126844205811135E-011 9.475599101391745E-011 9.837680614891534E-011 1.021359798279346E-010 1.060387990051050E-010 1.100907526594927E-010 1.142975395148690E-010 1.186650760544635E-010 1.231995048419786E-010 1.279072031605644E-010 1.327947919819078E-010 1.378691452780433E-010 1.431373996889904E-010 1.486069645598073E-010 1.542855323611803E-010 1.601810895082051E-010 1.663019275925706E-010 1.726566550439496E-010 1.792542092369923E-010 1.861038690609491E-010 1.932152679696074E-010 2.005984075298832E-010 2.082636714881380E-010 2.162218403739911E-010 2.244841066621731E-010 2.330620905137442E-010 2.419678561188073E-010 2.512139286637144E-010 2.608133119466180E-010 2.707795066661453E-010 2.811265294089198E-010 2.918689323626261E-010 3.030218237823529E-010 3.146008892389895E-010 3.266224136795640E-010 3.391033043305508E-010 3.520611144763472E-010 3.655140681463787E-010 3.794810857455389E-010 3.939818106640154E-010 4.090366369039308E-010 4.246667377616382E-010 4.408940956060295E-010 4.577415327947201E-010 4.752327437716001E-010 4.933923283908943E-010 5.122458265145812E-010 5.318197539318588E-010 5.521416396511441E-010 5.732400646170736E-010 5.951447019069505E-010 6.178863584631571E-010 6.414970184202550E-010 6.660098880876724E-010 6.914594426512702E-010 7.178814746594600E-010 7.453131443620403E-010 7.737930319725928E-010 8.033611919278970E-010 8.340592092206999E-010 8.659302578850595E-010 8.990191617164966E-010 9.333724573123893E-010 9.690384595212315E-010 1.006067329392824E-009 1.044511144724965E-009 1.084423973305823E-009 1.125861948955048E-009 1.168883350470531E-009 1.213548683591840E-009 1.259920766095620E-009 1.308064816142648E-009 1.358048544000717E-009 1.409942247272457E-009 1.463818909761931E-009 1.519754304119087E-009 1.577827098406430E-009 1.638118966737744E-009 1.700714704144519E-009 1.765702345831591E-009 1.833173290989721E-009 1.903222431339257E-009 1.975948284585610E-009 2.051453132974293E-009 2.129843167140347E-009 2.211228635454462E-009 2.295723999075833E-009 2.383448092929805E-009 2.474524292836706E-009 2.569080689026916E-009 2.667250266286177E-009 2.769171090984543E-009 2.874986505251883E-009 2.984845328573184E-009 3.098902067087018E-009 3.217317130881605E-009 3.340257059594073E-009 3.467894756630055E-009 3.600409732333240E-009 3.737988356446647E-009 3.880824120220797E-009 4.029117908537363E-009 4.183078282430944E-009 4.342921772406364E-009 4.508873182963961E-009 4.681165908761118E-009 4.860042262854714E-009 5.045753817486004E-009 5.238561757887309E-009 5.438737249608017E-009 5.646561819876465E-009 5.862327753534107E-009 6.086338504098557E-009 6.318909120533903E-009 6.560366690328206E-009 6.811050799501394E-009 7.071314010190543E-009 7.341522356483906E-009 7.622055859201316E-009 7.913309060344689E-009 8.215691577970238E-009 8.529628682262882E-009 8.855561893622601E-009 9.193949603604282E-009 9.545267719583962E-009 9.910010334058095E-009 1.028869041951725E-008 1.068184054987103E-008 1.109001364943918E-008 1.151378377056190E-008 1.195374690092289E-008 1.241052180172063E-008 1.288475087786613E-008 1.337710108143153E-008 1.388826484961938E-008 1.441896107857198E-008 1.496993613439022E-008 1.554196490278320E-008 1.613585187882523E-008 1.675243229835247E-008 1.739257331258980E-008 1.805717520766060E-008 1.874717267069302E-008 1.946353610430453E-008 2.020727299131222E-008 2.097942931158812E-008 2.178109101305240E-008 2.261338553887178E-008 2.347748341301210E-008 2.437459988637354E-008 2.530599664582339E-008 2.627298358853043E-008 2.727692066409401E-008 2.831921978706043E-008 2.940134682251410E-008 3.052482364753612E-008 3.169123029142945E-008 3.290220715771865E-008 3.415945733105029E-008 3.546474897223641E-008 3.681991780480933E-008 3.822686969658426E-008 3.968758333985836E-008 4.120411303401681E-008 4.277859157445638E-008 4.441323325188979E-008 4.611033696624774E-008 4.787228945955576E-008 4.970156867233308E-008 5.160074722823155E-008 5.357249605181393E-008 5.561958812455942E-008 5.774490238437443E-008 5.995142777409475E-008 6.224226744466861E-008 6.462064311893061E-008 6.708989962210290E-008 6.965350958539039E-008 7.231507832928582E-008 7.507834893344854E-008 7.794720750028427E-008 8.092568861962766E-008 8.401798104220618E-008 8.722843356986692E-008 9.056156117084182E-008 9.402205132865105E-008 9.761477063356972E-008 1.013447716259211E-007 1.052172999008209E-007 1.092378014843567E-007 1.134119304915720E-007 1.177455570770222E-007 1.222447756890729E-007 1.269159136395506E-007 1.317655400007861E-007 1.368004748425591E-007 1.420277988219280E-007 1.474548631394205E-007 1.530892998755856E-007 1.589390327224291E-007 1.650122881248201E-007 1.713176068475278E-007 1.778638559841406E-007 1.846602414247533E-007 1.917163207999392E-007 1.990420169192013E-007 2.066476317227897E-007 2.145438607664856E-007 2.227418082597198E-007 2.312530026781482E-007 2.400894129726282E-007 2.492634653973783E-007 2.587880609809554E-007 2.686765936646156E-007 2.789429691335341E-007 2.896016243673493E-007 3.006675479375028E-007 3.121563010798865E-007 3.240840395724154E-007 3.364675364482556E-007 3.493242055766217E-007 3.626721261442747E-007 3.765300680721057E-007 3.909175184025225E-007 4.058547086947014E-007 4.213626434661877E-007 4.374631297208063E-007 4.541788076043384E-007 4.715331822310523E-007 4.895506567257684E-007 5.082565665278778E-007 5.276772150054983E-007 5.478399104297673E-007 5.687730043612209E-007 5.905059315021534E-007 6.130692510709216E-007 6.364946897563039E-007 6.608151863122082E-007 6.860649378553701E-007 7.122794479310308E-007 7.394955764140815E-007 7.677515913157427E-007 7.970872225684832E-007 8.275437178647173E-007 8.591639006276396E-007 8.919922301955748E-007 9.260748643043322E-007 9.614597239552278E-007 9.981965607598604E-007 1.036337026856116E-006 1.075934747493527E-006 1.117045396389860E-006 1.159726773964618E-006 1.204038888559294E-006 1.250044040758272E-006 1.297806910928690E-006 1.347394650102088E-006 1.398876974325265E-006 1.452326262323419E-006 1.507817658436606E-006 1.565429175386795E-006 1.625241808858398E-006 1.687339644492626E-006 1.751809983089553E-006 1.818743456119558E-006 1.888234158759518E-006 1.960379782874426E-006 2.035281744810797E-006 2.113045342363721E-006 2.193779887218588E-006 2.277598872209126E-006 2.364620120474528E-006 2.454965955676466E-006 2.548763375378962E-006 2.646144225859676E-006 2.747245387181420E-006 2.852208968789168E-006 2.961182505077687E-006 3.074319167659568E-006 3.191777972978585E-006 3.313724012945199E-006 3.440328682960234E-006 3.571769923421121E-006 3.708232468085937E-006 3.849908104894239E-006 3.996995947402347E-006 4.149702707785251E-006 4.308242994526702E-006 4.472839606519547E-006 4.643723852529063E-006 4.821135869923177E-006 5.005324966393498E-006 5.196549965114787E-006 5.395079572472367E-006 5.601192753342563E-006 5.815179118539509E-006 6.037339341069482E-006 6.267985564804170E-006 6.507441843337978E-006 6.756044623380945E-006 7.014143167717920E-006 7.282100084164730E-006 7.560291817108606E-006 7.849109178314954E-006 8.148957895772844E-006 8.460259179058793E-006 8.783450318853154E-006 9.118985286804157E-006 9.467335384135282E-006 9.828989895469205E-006 1.020445676817455E-005 1.059426334454412E-005 1.099895707744959E-005 1.141910630678517E-005 1.185530106876453E-005 1.230815389283944E-005 1.277830068978729E-005 1.326640162344634E-005 1.377314203725562E-005 1.429923341826504E-005 1.484541440301836E-005 1.541245178097844E-005 1.600114160454058E-005 1.661231027557633E-005 1.724681571285893E-005 1.790554854795658E-005 1.858943338079400E-005 1.929943005797706E-005 2.003653503673252E-005 2.080178274655063E-005 2.159624706273364E-005 2.242104279156909E-005 2.327732724901650E-005 2.416630184597762E-005 2.508921379803096E-005 2.604735783443440E-005 2.704207804995857E-005 2.807476974039968E-005 2.914688137630533E-005 3.025991660462026E-005 3.141543637342562E-005 3.261506108236121E-005 3.386047286524778E-005 3.515341791742534E-005 3.649570894705155E-005 3.788922769541744E-005 3.933592755061044E-005 4.083783629083646E-005 4.239705888870141E-005 4.401578045063935E-005 4.569626926750520E-005 4.744087995581215E-005 4.925205675431648E-005 5.113233690785868E-005 5.308435420326036E-005 5.511084263892999E-005 5.721464020961176E-005 5.939869286884527E-005 6.166605860906053E-005 6.401991171474738E-005 6.646354716598081E-005 6.900038521876877E-005 7.163397614706063E-005 7.436800515927747E-005 7.720629752854398E-005 8.015282387187623E-005 8.321170566999328E-005 8.638722096723583E-005 8.968381029396380E-005 9.310608281444049E-005 9.665882270772810E-005 1.003469957749363E-004 1.041757563080763E-004 1.081504542113744E-004 1.122766423879943E-004 1.165600844074176E-004 1.210067624486595E-004 1.256228855695607E-004 1.304148982396183E-004 1.353894892343608E-004 1.405536008406583E-004 1.459144384129542E-004 1.514794802753239E-004 1.572564880096593E-004 1.632535171132111E-004 1.694789280580467E-004 1.759413977636303E-004 1.826499314937352E-004 1.896138751996341E-004 1.968429283109211E-004 2.043471570145747E-004 2.121370080208298E-004 2.202233228333118E-004 2.286173525529175E-004 2.373307732373494E-004 2.463757018087932E-004 2.557647125678502E-004 2.655108543070115E-004 2.756276680497990E-004 2.861292054599698E-004 2.970300479167211E-004 3.083453262827397E-004 3.200907414185564E-004 3.322825854303533E-004 3.449377637066094E-004 3.580738177559667E-004 3.717089488833013E-004 3.858620427265872E-004 4.005526946921755E-004 4.158012363111714E-004 4.316287625551637E-004 4.480571601538713E-004 4.651091369195177E-004 4.828082521547660E-004 5.011789481429655E-004 5.202465827852487E-004 5.400374634119022E-004 5.605788818071338E-004 5.818991504992475E-004 6.040276403417621E-004 6.269948194505728E-004 6.508322935282233E-004 6.755728476256296E-004 7.012504893933063E-004 7.279004938682905E-004 7.555594498464102E-004 7.842653079053730E-004 8.140574301072079E-004 8.449766414724020E-004 8.770652832430628E-004 9.103672680303664E-004 9.449281368800977E-004 9.807951183368959E-004 1.018017189561841E-003 1.056645139566074E-003 1.096731634643591E-003 1.138331286055382E-003 1.181500720041221E-003 1.226298650243170E-003 1.272785952593439E-003 1.321025742765396E-003 1.371083456248648E-003 1.423026931139643E-003 1.476926493724403E-003 1.532855046933586E-003 1.590888161763507E-003 1.651104171743817E-003 1.713584270538288E-003 1.778412612780313E-003 1.845676418217672E-003 1.915466079277510E-003 1.987875272132930E-003 2.063001071377545E-003 2.140944068395940E-003 2.221808493537379E-003 2.305702342192819E-003 2.392737504863437E-003 2.483029901347618E-003 2.576699619118460E-003 2.673871056024333E-003 2.774673067397529E-003 2.879239117683273E-003 2.987707436690947E-003 3.100221180575255E-003 3.216928597646516E-003 3.337983199119088E-003 3.463543934889534E-003 3.593775374464354E-003 3.728847893115916E-003 3.868937863376756E-003 4.014227851965262E-003 4.164906822230980E-003 4.321170342212362E-003 4.483220798390469E-003 4.651267615217779E-003 4.825527480497127E-003 5.006224576687270E-003 5.193590818185857E-003 5.387866094659422E-003 5.589298520457307E-003 5.798144690156508E-003 6.014669940263090E-003 6.239148617091709E-003 6.471864350827080E-003 6.713110335763784E-003 6.963189616703108E-003 7.222415381477301E-003 7.491111259535585E-003 7.769611626535670E-003 8.058261914844787E-003 8.357418929834498E-003 8.667451171841756E-003 8.988739163630499E-003 9.321675783168844E-003 9.666666601505869E-003 1.002413022549924E-002 1.039449864511217E-002 1.077821758496385E-002 1.117574685977225E-002 1.158756073329956E-002 1.201414828034700E-002 1.245601375131888E-002 1.291367693880401E-002 1.338767354559079E-002 1.387855555345447E-002 1.438689159200173E-002 1.491326730679799E-002 1.545828572591868E-002 1.602256762400978E-002 1.660675188284411E-002 1.721149584729611E-002 1.783747567555396E-002 1.848538668230273E-002 1.915594367351524E-002 1.984988127136976E-002 2.056795422772279E-002 2.131093772443225E-002 2.207962765871047E-002 2.287484091156142E-002 2.369741559721145E-002 2.454821129130940E-002 2.542810923551609E-002 2.633801251595047E-002 2.727884621279442E-002 2.825155751818289E-002 2.925711581933636E-002 3.029651274369178E-002 3.137076216260642E-002 3.248090014999917E-002 3.362798489208157E-002 3.481309654412006E-002 3.603733702993504E-002 3.730182977961378E-002 3.860771940067436E-002 3.995617127765930E-002 4.134837109489409E-002 4.278552427687143E-002 4.426885534045990E-002 4.579960715286172E-002 4.737904008895497E-002 4.900843108138843E-002 5.068907255649145E-002 5.242227124878513E-002 5.420934688658750E-002 5.605163074090599E-002 5.795046402954150E-002 5.990719616801767E-002 6.192318285869119E-002 6.399978400911879E-002 6.613836147048507E-002 6.834027658666619E-002 7.060688754424807E-002 7.293954651361703E-002 7.533959657104514E-002 7.780836839151675E-002 8.034717670192013E-002 8.295731648411167E-002 8.564005891730755E-002 8.839664704924183E-002 9.122829118555331E-002 9.413616398697253E-002 9.712139526401972E-002 1.001850664591635E-001 1.033282048066974E-001 1.065517771609735E-001 1.098566834841457E-001 1.132437499851489E-001 1.167137219023689E-001 1.202672559232974E-001 1.239049122354267E-001 1.276271462037896E-001 1.314342996718097E-001 1.353265918836032E-001 1.393041100275183E-001 1.433667994025258E-001 1.475144532111586E-001 1.517467019849534E-001 1.560630026508906E-001 1.604626272501071E-001 1.649446513231829E-001 1.695079419796652E-001 1.741511456730795E-001 1.788726757066336E-001 1.836706994990675E-001 1.885431256446556E-001 1.934875908063257E-001 1.985014464860751E-001 2.035817457225070E-001 2.087252297712676E-001 2.139283148304569E-001 2.191870788797886E-001 2.244972487092318E-001 2.298541872202223E-001 2.352528810901642E-001 2.406879288988334E-001 2.461535298235020E-001 2.516434730179450E-001 2.571511277990572E-001 2.626694347734706E-001 2.681908980452172E-001 2.737075786541986E-001 2.792110894036944E-001 2.846925912434783E-001 2.901427913830518E-001 2.955519433169476E-001 3.009098489509230E-001 3.062058630238599E-001 3.114289000252574E-001 3.165674438120666E-001 3.216095601310369E-001 3.265429122535900E-001 3.313547799290739E-001 3.360320818589730E-001 3.405614018888426E-001 3.449290191061005E-001 3.491209420200837E-001 3.531229469854867E-001 3.569206210112118E-001 3.604994090733284E-001 3.638446660228853E-001 3.669417131464626E-001 3.697758993990795E-001 3.723326672852018E-001 3.745976233136643E-001 3.765566128961172E-001 3.781957994958703E-001 3.795017477645264E-001 3.804615103274998E-001 3.810627177963511E-001 3.812936714959353E-001 3.811434382978910E-001 3.806019468493446E-001 3.796600843774187E-001 3.783097931369739E-001 3.765441654519513E-001 3.743575361809349E-001 3.717455713166717E-001 3.687053513090603E-001 3.652354475837324E-001 3.613359906163691E-001 3.570087278191654E-001 3.522570694038247E-001 3.470861203087839E-001 3.415026962213188E-001 3.355153216923737E-001 3.291342083384056E-001 3.223712111558099E-001 3.152397610453131E-001 3.077547717622821E-001 2.999325196806393E-001 2.917904949893413E-001 2.833472232379033E-001 2.746220565174250E-001 2.656349340120990E-001 2.564061121887865E-001 2.469558655133542E-001 2.373041592958270E-001 2.274702970737763E-001 2.174725458449848E-001 2.073277434541142E-001 1.970508935187297E-001 1.866547544395666E-001 1.761494302660547E-001 1.655419724645820E-001 1.548360029424498E-001 1.440313699880540E-001 1.331247774614197E-001 1.221136855622288E-001 1.109957926718013E-001 9.976842999801484E-002 8.842855214137628E-002 7.697272695207329E-002 6.539712461206648E-002 5.369750587314811E-002 4.186920937846125E-002 2.990713799121970E-002 1.780574405026398E-002 5.559013467603936E-003 -6.839551421801771E-003 -1.939695035312754E-002 -3.212070506855921E-002 -4.501888080527008E-002 -5.810010944873645E-002 -7.137361447319887E-002 -8.484923779931675E-002 -9.853746870804203E-002 -1.124494749595151E-001 -1.265971362764337E-001 -1.409930803629398E-001 -1.556507216426967E-001 -1.705843029135723E-001 -1.858089401313241E-001 -2.013406705509822E-001 -2.171965044723969E-001 -2.333944808557710E-001 -2.499537270940942E-001 -2.668945232523885E-001 -2.842383711087509E-001 -3.020080683595271E-001 -3.202277883807845E-001 -3.389231659708228E-001 -3.581213895340138E-001 -3.778513002050913E-001 -3.981434984554454E-001 -4.190304587693430E-001 -4.405466530287055E-001 -4.627286833005416E-001 -4.856154247818282E-001 -5.092481797230841E-001 -5.336708432246644E-001 -5.589300818795442E-001 -5.850755263237868E-001 -6.121599788517618E-001 -6.402396373583700E-001 -6.693743369860133E-001 -6.996278109808555E-001 -7.310679724022714E-001 -7.637672184825584E-001 -7.978027596024645E-001 -8.332569750334782E-001 -8.702177978019404E-001 -9.087791312548742E-001 -9.490413001552372E-001 -9.911115394075400E-001 -1.035104523816273E+000 -1.081142942612381E+000 -1.129358122850643E+000 -1.179890706187047E+000 -1.232891383994518E+000 -1.288521696272367E+000 -1.346954900355128E+000 -1.408376916035976E+000 -1.472987354395571E+000 -1.541000638376474E+000 -1.612647223974854E+000 -1.688174931844621E+000 -1.767850400135144E+000 -1.851960670524534E+000 -1.940814920679703E+000 -2.034746357787404E+000 -2.134114289374379E+000 -2.239306389389843E+000 -2.350741179481117E+000 -2.468870747577148E+000 -2.594183728336617E+000 -2.727208572745007E+000 -2.868517137196121E+000 -3.018728625810158E+000 -3.178513923566192E+000 -3.348600362116118E+000 -3.529776964958304E+000 -3.722900224050212E+000 -3.928900466006784E+000 -4.148788872852788E+000 -4.383665229971975E+000 -4.634726482537195E+000 -4.903276191442620E+000 -5.190734990739532E+000 -5.498652160968985E+000 -5.828718446780762E+000 -6.182780263048516E+000 -6.562855451588123E+000 -6.971150770849073E+000 -7.410081323908800E+000 -7.882292156137673E+000 -8.390682283455373E+000 -8.938431445670464E+000 -9.529029917562893E+000 -1.016631175380099E+001 -1.085449189324918E+001 -1.159820760460771E+001 -1.240256481965644E+001 -1.327318997383728E+001 -1.421628805787548E+001 -1.523870768019976E+001 -1.634801404991761E+001 -1.755257091617560E+001 -1.886163264437152E+001 -2.028544777577659E+001 -2.183537560804005E+001 -2.352401755370622E+001 -2.536536528685455E+001 -2.737496797961984E+001 -2.957012126691036E+001 -3.197008096642907E+001 -3.459630503067992E+001 -3.747272772805474E+001 -4.062607065313617E+001 -4.408619586587832E+001 -4.788650727163726E+001 -5.206440729834761E+001 -5.666181702617356E+001 -6.172576920520288E+001 -6.730908509002009E+001 -7.347114776405874E+001 -8.027878666476136E+001 -8.780729040631229E+001 -9.614156779187515E+001 -1.053774801867159E+002 -1.156233722745358E+002 -1.270018327484088E+002 -1.396517218191565E+002 -1.537305087087917E+002 -1.694169697151969E+002 -1.869143061990226E+002 -2.064537522159093E+002 -2.282987538055537E+002 -2.527498165239025E+002 -2.801501350590902E+002 -3.108944673821078E+002 -3.454420854899834E+002 -3.843166550391915E+002 -4.281059328822062E+002 -4.774926753060270E+002 -5.332604087826811E+002 -5.963124122053811E+002 -6.676909671771197E+002 -7.486004010025761E+002 -8.404341727393430E+002 -9.448067994977922E+002 -1.063591540457465E+003 -1.198964942211488E+003 -1.353459572273199E+003 -1.530026539013328E+003 -1.732109726121134E+003 -1.963734071220480E+003 -2.229610707876327E+003 -2.535262388183804E+003 -2.887173334618043E+003 -3.292968566091840E+003 -3.761628843221986E+003 -4.303748730310860E+003 -4.931846937082760E+003 -5.660740158008578E+003 -6.507994166343517E+003 -7.494469063642934E+003 -8.644979484277643E+003 -9.989095398462678E+003 -1.156211518670723E+004 -1.340625017734275E+004 -1.557206923231047E+004 -1.812026372434251E+004 -2.112380799434250E+004 -2.467060890610984E+004 -2.886676144246172E+004 -3.384055671315875E+004 -3.974742593999776E+004 -4.677605109410887E+004 -5.515593264995985E+004 -6.516678095985979E+004 -7.715019466097560E+004 -9.152421329332187E+004 -1.088014897146407E+005 -1.296120310820881E+005 -1.547317183600335E+005 -1.851181508130463E+005 -2.219557964418144E+005 -2.667129916325021E+005 -3.212140626883726E+005 -3.877307902448442E+005 -4.690986734516172E+005 -5.688650652627583E+005 -6.914783642527175E+005 -8.425302234354907E+005 -1.029066388249091E+006 -1.259986593088214E+006 -1.546560316579465E+006 -1.903093642761437E+006 -2.347793703991539E+006 -2.903892146832370E+006 -3.601109060706622E+006 -4.477565605016896E+006 -5.582289571362874E+006 -6.978506618203086E+006 -8.747975437083595E+006 -1.099671387433222E+007 -1.386258362666561E+007 -1.752536543817358E+007 -2.222018124701531E+007 -2.825542743102858E+007 -3.603680625501545E+007 -4.609962575074200E+007 -5.915234467576671E+007 -7.613545784196523E+007 -9.830137371831246E+007 -1.273231091183341E+008 -1.654426686911500E+008 -2.156742519883151E+008 -2.820834566933305E+008 -3.701721683504922E+008 -4.874109189245692E+008 -6.439777128660409E+008 -8.537869159811325E+008 -1.135927065452726E+009 -1.516677192552075E+009 -2.032344500180591E+009 -2.733272381412015E+009 -3.689522135750781E+009 -4.998957079190313E+009 -6.798787910674609E+009 -9.282123790247311E+009 -1.272179051036456E+010 -1.750473971861270E+010 -2.418195421731870E+010 -3.354111628675026E+010 -4.671284861565376E+010 -6.532667268225817E+010 -9.174089757499017E+010 -1.293829041384912E+011 -1.832549731864662E+011 -2.606894210078220E+011 -3.724808187472926E+011 -5.345910685479987E+011 -7.707286238036687E+011 -1.116267611464968E+012 -1.624230150561035E+012 -2.374460283784590E+012 -3.487758201107771E+012 -5.147760097703889E+012 -7.634971080116060E+012 -1.137995906695417E+013 -1.704690730163854E+013 -2.566550652833641E+013 -3.884020607572532E+013 -5.908389621921531E+013 -9.035277258508928E+013 -1.389081778066207E+014 -2.147126915312888E+014 -3.337038175554103E+014 -5.215171200509819E+014 -8.196164719530928E+014 -1.295444113031565E+015 -2.059321598853383E+015 -3.292753094252078E+015 -5.296098958601395E+015 -8.569348645066112E+015 -1.394978871361708E+016 -2.284805764957040E+016 -3.765537471120481E+016 -6.245041697900641E+016 -1.042340243674797E+017 -1.750995572260561E+017 -2.960724733873864E+017 -5.039471649877043E+017 -8.635411031344641E+017 -1.489805588023521E+018 -2.587991312498890E+018 -4.527111912573809E+018 -7.975243374483559E+018 -1.415046097790704E+019 -2.528956350560969E+019 -4.552992204654514E+019 -8.258070638405914E+019 -1.509135548138976E+020 -2.778998473953248E+020 -5.157055361793603E+020 -9.645224177107033E+020 -1.818294120108746E+021 -3.455429725236589E+021 -6.620207356100413E+021 -1.278847709583922E+022 -2.491096430201959E+022 -4.893663943038959E+022 -9.696114396478818E+022 1.655569844908758E-012 1.697480795076867E-012 1.740452726000165E-012 1.784512496534370E-012 1.829687645470358E-012 1.876006408746824E-012 1.923497737098658E-012 1.972191314152090E-012 2.022117574977917E-012 2.073307725114443E-012 2.125793760071922E-012 2.179608485330812E-012 2.234785536846268E-012 2.291359402071699E-012 2.349365441514566E-012 2.408839910837827E-012 2.469819983520922E-012 2.532343774094403E-012 2.596450361962766E-012 2.662179815830350E-012 2.729573218745562E-012 2.798672693779140E-012 2.869521430352431E-012 2.942163711232195E-012 3.016644940208785E-012 3.093011670474968E-012 3.171311633723195E-012 3.251593769979475E-012 3.333908258192479E-012 3.418306547597018E-012 3.504841389871480E-012 3.593566872109352E-012 3.684538450625420E-012 3.777812985617761E-012 3.873448776707245E-012 3.971505599376657E-012 4.072044742332332E-012 4.175129045811607E-012 4.280822940860006E-012 4.389192489602760E-012 4.500305426535736E-012 4.614231200861747E-012 4.731041019898552E-012 4.850807893585752E-012 4.973606680118388E-012 5.099514132735723E-012 5.228608947694534E-012 5.360971813456812E-012 5.496685461122711E-012 5.635834716140193E-012 5.778506551323639E-012 5.924790141214723E-012 6.074776917819417E-012 6.228560627755930E-012 6.386237390849455E-012 6.547905760210142E-012 6.713666783832016E-012 6.883624067751244E-012 7.057883840803336E-012 7.236555021019561E-012 7.419749283704312E-012 7.607581131235787E-012 7.800167964633722E-012 7.997630156938798E-012 8.200091128449791E-012 8.407677423865232E-012 8.620518791377919E-012 8.838748263771856E-012 9.062502241572043E-012 9.291920578299223E-012 9.527146667882920E-012 9.768327534287253E-012 1.001561392340578E-011 1.026916039728249E-011 1.052912543071828E-011 1.079567151032272E-011 1.106896523607349E-011 1.134917742544689E-011 1.163648322018419E-011 1.193106219576105E-011 1.223309847362795E-011 1.254278083629214E-011 1.286030284531284E-011 1.318586296228353E-011 1.351966467287697E-011 1.386191661403016E-011 1.421283270434946E-011 1.457263227781663E-011 1.494154022087960E-011 1.531978711301398E-011 1.570760937084264E-011 1.610524939590382E-011 1.651295572616000E-011 1.693098319134222E-011 1.735959307222704E-011 1.779905326394537E-011 1.824963844342576E-011 1.871163024107649E-011 1.918531741681361E-011 1.967099604054543E-011 2.016896967722579E-011 2.067954957659197E-011 2.120305486770603E-011 2.173981275842084E-011 2.229015873989578E-011 2.285443679628937E-011 2.343299961976089E-011 2.402620883091413E-011 2.463443520482231E-011 2.525805890277462E-011 2.589746970988915E-011 2.655306727874158E-011 2.722526137916075E-011 2.791447215434856E-011 2.862113038348289E-011 2.934567775096868E-011 3.008856712250506E-011 3.085026282814119E-011 3.163124095249770E-011 3.243198963233513E-011 3.325300936165524E-011 3.409481330452626E-011 3.495792761582698E-011 3.584289177011061E-011 3.675025889879431E-011 3.768059613588397E-011 3.863448497245188E-011 3.961252162008725E-011 4.061531738354796E-011 4.164349904284610E-011 4.269770924500604E-011 4.377860690573945E-011 4.488686762128928E-011 4.602318409069948E-011 4.718826654877448E-011 4.838284320999900E-011 4.960766072369614E-011 5.086348464070731E-011 5.215109989188646E-011 5.347131127870787E-011 5.482494397629284E-011 5.621284404917140E-011 5.763587898009985E-011 5.909493821226652E-011 6.059093370522225E-011 6.212480050488497E-011 6.369749732797381E-011 6.531000716123870E-011 6.696333787585909E-011 6.865852285739599E-011 7.039662165169200E-011 7.217872062712239E-011 7.400593365360994E-011 7.587940279883069E-011 7.780029904204385E-011 7.976982300599119E-011 8.178920570732617E-011 8.385970932603908E-011 8.598262799436132E-011 8.815928860564008E-011 9.039105164368988E-011 9.267931203313975E-011 9.502550001130669E-011 9.743108202214031E-011 9.989756163279933E-011 1.024264804734286E-010 1.050194192007301E-010 1.076779984859240E-010 1.104038800277214E-010 1.131987675909408E-010 1.160644080714161E-010 1.190025925878645E-010 1.220151576013937E-010 1.251039860633504E-010 1.282710085922270E-010 1.315182046803609E-010 1.348476039311821E-010 1.382612873277821E-010 1.417613885335963E-010 1.453500952260136E-010 1.490296504637462E-010 1.528023540888153E-010 1.566705641640282E-010 1.606366984468434E-010 1.647032359005497E-010 1.688727182436984E-010 1.731477515387628E-010 1.775310078210108E-010 1.820252267686149E-010 1.866332174150420E-010 1.913578599047907E-010 1.962021072935769E-010 2.011689873940903E-010 2.062616046684765E-010 2.114831421687288E-010 2.168368635261984E-010 2.223261149914741E-010 2.279543275258975E-010 2.337250189460265E-010 2.396417961223873E-010 2.457083572338859E-010 2.519284940792937E-010 2.583060944472447E-010 2.648451445462317E-010 2.715497314961199E-010 2.784240458827295E-010 2.854723843770918E-010 2.926991524210082E-010 3.001088669805977E-010 3.077061593695531E-010 3.154957781438586E-010 3.234825920698000E-010 3.316715931671004E-010 3.400678998290997E-010 3.486767600219210E-010 3.575035545646191E-010 3.665538004923765E-010 3.758331545048274E-010 3.853474165016844E-010 3.951025332078706E-010 4.051046018904151E-010 4.153598741694518E-010 4.258747599256862E-010 4.366558313067850E-010 4.477098268351877E-010 4.590436556199052E-010 4.706644016749462E-010 4.825793283470572E-010 4.947958828555567E-010 5.073217009471017E-010 5.201646116682744E-010 5.333326422590059E-010 5.468340231698647E-010 5.606771932063643E-010 5.748708048035009E-010 5.894237294338078E-010 6.043450631523297E-010 6.196441322819575E-010 6.353304992426953E-010 6.514139685284939E-010 6.679045928353823E-010 6.848126793447537E-010 7.021487961656846E-010 7.199237789403711E-010 7.381487376167638E-010 7.568350633926592E-010 7.759944358355860E-010 7.956388301829278E-010 8.157805248268465E-010 8.364321089887006E-010 8.576064905877313E-010 8.793169043089478E-010 9.015769198752584E-010 9.244004505290012E-010 9.478017617282024E-010 9.717954800629640E-010 9.963966023975865E-010 1.021620505244117E-009 1.047482954373196E-009 1.074000114668210E-009 1.101188560228887E-009 1.129065284730674E-009 1.157647712046381E-009 1.186953707136684E-009 1.217001587216351E-009 1.247810133203129E-009 1.279398601456470E-009 1.311786735813415E-009 1.344994779929172E-009 1.379043489930109E-009 1.413954147387054E-009 1.449748572617012E-009 1.486449138321620E-009 1.524078783570869E-009 1.562661028140830E-009 1.602219987214332E-009 1.642780386453788E-009 1.684367577455616E-009 1.727007553595864E-009 1.770726966277004E-009 1.815553141585987E-009 1.861514097374016E-009 1.908638560768699E-009 1.956955986129524E-009 2.006496573457882E-009 2.057291287273136E-009 2.109371875966570E-009 2.162770891645265E-009 2.217521710478330E-009 2.273658553558217E-009 2.331216508290127E-009 2.390231550322923E-009 2.450740566035211E-009 2.512781375590668E-009 2.576392756577019E-009 2.641614468243446E-009 2.708487276351587E-009 2.777052978655633E-009 2.847354431027465E-009 2.919435574243165E-009 2.993341461447620E-009 3.069118286314421E-009 3.146813411918632E-009 3.226475400340504E-009 3.308154043018573E-009 3.391900391871203E-009 3.477766791205969E-009 3.565806910436838E-009 3.656075777629598E-009 3.748629813896497E-009 3.843526868661627E-009 3.940826255819008E-009 4.040588790806108E-009 4.142876828615847E-009 4.247754302770887E-009 4.355286765284602E-009 4.465541427633655E-009 4.578587202767860E-009 4.694494748183481E-009 4.813336510087015E-009 4.935186768676951E-009 5.060121684571908E-009 5.188219346414098E-009 5.319559819677897E-009 5.454225196714059E-009 5.592299648060830E-009 5.733869475053967E-009 5.879023163768692E-009 6.027851440327172E-009 6.180447327606181E-009 6.336906203380322E-009 6.497325859937188E-009 6.661806565201728E-009 6.830451125408033E-009 7.003364949357657E-009 7.180656114304761E-009 7.362435433509095E-009 7.548816525499204E-009 7.739915885089078E-009 7.935852956192589E-009 8.136750206481379E-009 8.342733203932661E-009 8.553930695314987E-009 8.770474686660914E-009 8.992500525776908E-009 9.220146986842056E-009 9.453556357148500E-009 9.692874526037709E-009 9.938251076088371E-009 1.018983937661267E-008 1.044779667951974E-008 1.071228421760561E-008 1.098346730533188E-008 1.126151544215552E-008 1.154660241847454E-008 1.183890642425593E-008 1.213861016041345E-008 1.244590095300523E-008 1.276097087032248E-008 1.308401684294218E-008 1.341524078681946E-008 1.375484972949583E-008 1.410305593950269E-008 1.446007705904102E-008 1.482613624001978E-008 1.520146228353851E-008 1.558628978290109E-008 1.598085927024999E-008 1.638541736691304E-008 1.680021693755615E-008 1.722551724823909E-008 1.766158412847210E-008 1.810869013737593E-008 1.856711473404805E-008 1.903714445224212E-008 1.951907307946974E-008 2.001320184063663E-008 2.051983958632782E-008 2.103930298585960E-008 2.157191672521920E-008 2.211801371001547E-008 2.267793527356778E-008 2.325203139026319E-008 2.384066089431528E-008 2.444419170406116E-008 2.506300105193745E-008 2.569747572027838E-008 2.634801228308364E-008 2.701501735390740E-008 2.769890784002341E-008 2.840011120302468E-008 2.911906572602117E-008 2.985622078760229E-008 3.061203714273552E-008 3.138698721077682E-008 3.218155537077315E-008 3.299623826424130E-008 3.383154510561244E-008 3.468799800053690E-008 3.556613227224787E-008 3.646649679618809E-008 3.738965434310865E-008 3.833618193085507E-008 3.930667118505992E-008 4.030172870896781E-008 4.132197646262397E-008 4.236805215166396E-008 4.344060962594654E-008 4.454031928828033E-008 4.566786851349921E-008 4.682396207814820E-008 4.800932260104938E-008 4.922469099502241E-008 5.047082693004325E-008 5.174850930812960E-008 5.305853675025116E-008 5.440172809556855E-008 5.577892291331292E-008 5.719098202762740E-008 5.863878805569826E-008 6.012324595951124E-008 6.164528361158058E-008 6.320585237500167E-008 6.480592769819304E-008 6.644650972469755E-008 6.812862391842586E-008 6.985332170473224E-008 7.162168112772419E-008 7.343480752421691E-008 7.529383421475486E-008 7.719992321213210E-008 7.915426594785535E-008 8.115808401700387E-008 8.321262994195196E-008 8.531918795543277E-008 8.747907480343372E-008 8.969364056842426E-008 9.196426951343319E-008 9.429238094750271E-008 9.667943011306082E-008 9.912690909576881E-008 1.016363477574111E-007 1.042093146924142E-007 1.068474182085906E-007 1.095523073327248E-007 1.123256728416283E-007 1.151692483193101E-007 1.180848112409260E-007 1.210741840841837E-007 1.241392354689008E-007 1.272818813254275E-007 1.305040860926703E-007 1.338078639464613E-007 1.371952800590474E-007 1.406684518904866E-007 1.442295505127587E-007 1.478808019674254E-007 1.516244886576839E-007 1.554629507756920E-007 1.593985877660563E-007 1.634338598264009E-007 1.675712894459608E-007 1.718134629831588E-007 1.761630322831614E-007 1.806227163364242E-007 1.851953029792682E-007 1.898836506375539E-007 1.946906901145466E-007 1.996194264240982E-007 2.046729406702886E-007 2.098543919747142E-007 2.151670194526323E-007 2.206141442391952E-007 2.261991715670570E-007 2.319255928966501E-007 2.377969881004735E-007 2.438170277027653E-007 2.499894751759654E-007 2.563181892954145E-007 2.628071265537704E-007 2.694603436366546E-007 2.762819999610968E-007 2.832763602783640E-007 2.904477973428197E-007 2.978007946484949E-007 3.053399492350869E-007 3.130699745651627E-007 3.209957034743713E-007 3.291220911965375E-007 3.374542184655306E-007 3.459972946958776E-007 3.547566612441222E-007 3.637377947529907E-007 3.729463105804757E-007 3.823879663160103E-007 3.920686653859508E-007 4.019944607506523E-007 4.121715586954757E-007 4.226063227181258E-007 4.333052775147892E-007 4.442751130675959E-007 4.555226888360001E-007 4.670550380547329E-007 4.788793721410736E-007 4.910030852142277E-007 5.034337587296936E-007 5.161791662315714E-007 5.292472782258298E-007 5.426462671776574E-007 5.563845126360727E-007 5.704706064890840E-007 5.849133583527439E-007 5.997218010975562E-007 6.149051965157830E-007 6.304730411332782E-007 6.464350721695917E-007 6.628012736501709E-007 6.795818826745956E-007 6.967873958448981E-007 7.144285758581093E-007 7.325164582673051E-007 7.510623584155204E-007 7.700778785470465E-007 7.895749151007175E-007 8.095656661899423E-007 8.300626392743686E-007 8.510786590281822E-007 8.726268754101946E-007 8.947207719410045E-007 9.173741741927282E-007 9.406012584968553E-007 9.644165608759114E-007 9.888349862050661E-007 1.013871817609467E-006 1.039542726103883E-006 1.065863780480767E-006 1.092851457453694E-006 1.120522652062757E-006 1.148894688348943E-006 1.177985330304938E-006 1.207812793109552E-006 1.238395754653509E-006 1.269753367364504E-006 1.301905270339713E-006 1.334871601794011E-006 1.368673011832519E-006 1.403330675556643E-006 1.438866306512345E-006 1.475302170490486E-006 1.512661099688808E-006 1.550966507245679E-006 1.590242402155997E-006 1.630513404579980E-006 1.671804761555838E-006 1.714142363128140E-006 1.757552758903145E-006 1.802063175043407E-006 1.847701531715285E-006 1.894496461001149E-006 1.942477325290252E-006 1.991674236162189E-006 2.042118073779356E-006 2.093840506798651E-006 2.146874012823390E-006 2.201251899409038E-006 2.257008325639963E-006 2.314178324292101E-006 2.372797824606233E-006 2.432903675680815E-006 2.494533670515324E-006 2.557726570712506E-006 2.622522131871263E-006 2.688961129685707E-006 2.757085386772288E-006 2.826937800254885E-006 2.898562370129206E-006 2.972004228428795E-006 3.047309669226138E-006 3.124526179492062E-006 3.203702470847192E-006 3.284888512231730E-006 3.368135563528319E-006 3.453496210173457E-006 3.541024398782041E-006 3.630775473844077E-006 3.722806215507770E-006 3.817174878499931E-006 3.913941232237071E-006 4.013166602149020E-006 4.114913912283949E-006 4.219247729226227E-006 4.326234307400637E-006 4.435941635789252E-006 4.548439486145212E-006 4.663799462750619E-006 4.782095053781054E-006 4.903401684358922E-006 5.027796771339592E-006 5.155359779943095E-006 5.286172282270697E-006 5.420318017830059E-006 5.557882956127432E-006 5.698955361414940E-006 5.843625859786839E-006 5.991987508522497E-006 6.144135868060999E-006 6.300169076497940E-006 6.460187926845637E-006 6.624295947193934E-006 6.792599483797029E-006 6.965207787489274E-006 7.142233103228810E-006 7.323790763338035E-006 7.509999284277569E-006 7.700980467385807E-006 7.896859503696225E-006 8.097765083025531E-006 8.303829507673660E-006 8.515188810844760E-006 8.731982880229151E-006 8.954355586837632E-006 9.182454919590265E-006 9.416433125864768E-006 9.656446858336331E-006 9.902657328658682E-006 1.015523046809156E-005 1.041433709586391E-005 1.068015309536491E-005 1.095285959894690E-005 1.123264318174651E-005 1.151969606500841E-005 1.181421632967072E-005 1.211640814077685E-005 1.242648198338789E-005 1.274465491075346E-005 1.307115080558899E-005 1.340620065523821E-005 1.375004284166968E-005 1.410292344731890E-005 1.446509657767507E-005 1.483682470207072E-005 1.521837901342877E-005 1.561003980877763E-005 1.601209689140600E-005 1.642484999664099E-005 1.684860924248162E-005 1.728369560710215E-005 1.773044143482511E-005 1.818919097281710E-005 1.866030094046484E-005 1.914414113376159E-005 1.964109506716767E-005 2.015156065589724E-005 2.067595094097506E-005 2.121469486044331E-005 2.176823807012768E-005 2.233704381711655E-005 2.292159387032449E-005 2.352238951170681E-005 2.413995259273860E-005 2.477482666119464E-005 2.542757816271269E-005 2.609879772325044E-005 2.678910151795281E-005 2.749913273286316E-005 2.822956312637767E-005 2.898109469763915E-005 2.975446146994520E-005 3.055043139745326E-005 3.136980840454347E-005 3.221343456740462E-005 3.308219244865701E-005 3.397700759613417E-005 3.489885121827491E-005 3.584874304912731E-005 3.682775441716364E-005 3.783701153310813E-005 3.887769901314029E-005 3.995106365504775E-005 4.105841848645974E-005 4.220114710519096E-005 4.338070833402548E-005 4.459864121306214E-005 4.585657035540740E-005 4.715621169338061E-005 4.849937864421232E-005 4.988798872747766E-005 5.132407066756342E-005 5.280977201815241E-005 5.434736734779021E-005 5.593926702863248E-005 5.758802667472544E-005 5.929635727684325E-005 6.106713608840643E-005 6.290341831857884E-005 6.480844969155696E-005 6.678567994011980E-005 6.883877730228641E-005 7.097164409595427E-005 7.318843345469017E-005 7.549356731074632E-005 7.789175571930411E-005 8.038801762567173E-005 8.298770318331406E-005 8.569651773995684E-005 8.852054761656425E-005 9.146628781573509E-005 9.454067180177987E-005 9.775110351093879E-005 1.011054917576220E-004 1.046122872173596E-004 1.082805221788596E-004 1.121198532745280E-004 1.161406074104610E-004 1.203538311383656E-004 1.247713437238666E-004 1.294057941908569E-004 1.342707226365853E-004 1.393806261384721E-004 1.447510295938204E-004 1.503985618613798E-004 1.563410375994240E-004 1.625975452240766E-004 1.691885414438610E-004 1.761359528585028E-004 1.834632851465846E-004 1.911957404040238E-004 1.993603432387756E-004 2.079860762681987E-004 2.171040257128266E-004 2.267475378351973E-004 2.369523870193760E-004 2.477569563496251E-004 2.592024316079825E-004 2.713330096733827E-004 2.841961223816604E-004 2.978426769721755E-004 3.123273143401487E-004 3.277086863883748E-004 3.440497538706206E-004 3.614181062197142E-004 3.798863049501284E-004 3.995322523498951E-004 4.204395872826370E-004 4.426981100643448E-004 4.664042385018450E-004 4.916614973362991E-004 5.185810434854011E-004 5.472822296487117E-004 5.778932090088234E-004 6.105515839601995E-004 6.454051019929519E-004 6.826124020672927E-004 7.223438150538478E-004 7.647822220438165E-004 8.101239746024829E-004 8.585798812954629E-004 9.103762651326309E-004 9.657560968511464E-004 1.024980209316809E-003 1.088328598644478E-003 1.156101818020215E-003 1.228622470596151E-003 1.306236808229230E-003 1.389316443287715E-003 1.478260181197896E-003 1.573495981897422E-003 1.675483058869397E-003 1.784714124984270E-003 1.901717794939265E-003 2.027061154695758E-003 2.161352508941760E-003 2.305244318283378E-003 2.459436338566788E-003 2.624678975463384E-003 2.801776868234223E-003 2.991592717384574E-003 3.195051371786884E-003 3.413144191698155E-003 3.646933705069977E-003 3.897558575454619E-003 4.166238900865099E-003 4.454281863930876E-003 4.763087754819455E-003 5.094156389462371E-003 5.449093946806796E-003 5.829620249973170E-003 6.237576517438864E-003 6.674933611590613E-003 7.143800813293407E-003 7.646435152378991E-003 8.185251325327056E-003 8.762832232685935E-003 9.381940170171877E-003 1.004552870867706E-002 1.075675529978735E-002 1.151899464469668E-002 1.233585286571024E-002 1.321118252076761E-002 1.414909850261071E-002 1.515399486535935E-002 1.623056262226889E-002 1.738380855941994E-002 1.861907511086546E-002 1.994206134142482E-002 2.135884508382380E-002 2.287590627711409E-002 2.450015155337966E-002 2.623894011949872E-002 2.810011098017486E-002 3.009201154756847E-002 3.222352768158533E-002 3.450411520309360E-002 3.694383292016974E-002 3.955337720461932E-002 4.234411815265018E-002 4.532813735944120E-002 4.851826733252439E-002 5.192813256318420E-002 5.557219226847803E-002 5.946578480888495E-002 6.362517377788404E-002 6.806759574987339E-002 7.281130966168743E-002 7.787564779037859E-002 8.328106827587733E-002 8.904920912147510E-002 9.520294358762217E-002 1.017664368753217E-001 1.087652039741285E-001 1.162261685264763E-001 1.241777225344942E-001 1.326497867076493E-001 1.416738712192321E-001 1.512831366068517E-001 1.615124545166187E-001 1.723984679524187E-001 1.839796506506327E-001 1.962963651566942E-001 2.093909191329667E-001 2.233076193776375E-001 2.380928229814765E-001 2.537949849937188E-001 2.704647019097760E-001 2.881547502322738E-001 3.069201192932798E-001 3.268180374594409E-001 3.479079907737747E-001 3.702517330181961E-001 3.939132861098404E-001 4.189589296727538E-001 4.454571785547399E-001 4.734787469881125E-001 5.030964980235973E-001 5.343853767992285E-001 5.674223261426581E-001 6.022861829459868E-001 6.390575536994005E-001 6.778186675244300E-001 7.186532050111273E-001 7.616461011384013E-001 8.068833205439770E-001 8.544516034132280E-001 9.044381802758977E-001 9.569304540390515E-001 1.012015647646544E+000 1.069780415841487E+000 1.130310419622326E+000 1.193689862127844E+000 1.260000984863438E+000 1.329323523395304E+000 1.401734121891206E+000 1.477305706180780E+000 1.556106815346534E+000 1.638200892240693E+000 1.723645533756573E+000 1.812491702165075E+000 1.904782899361186E+000 2.000554306450452E+000 2.099831891741376E+000 2.202631490896980E+000 2.308957863732690E+000 2.418803732927747E+000 2.532148810737648E+000 2.648958820649550E+000 2.769184521806212E+000 2.892760744924684E+000 3.019605449346369E+000 3.149618811760992E+000 3.282682358034021E+000 3.418658150421552E+000 3.557388043256775E+000 3.698693020922076E+000 3.842372632556361E+000 3.988204538465275E+000 4.135944183580751E+000 4.285324613525646E+000 4.436056448857464E+000 4.587828032862542E+000 4.740305767822721E+000 4.893134653957444E+000 5.045939044227381E+000 5.198323626854196E+000 5.349874645744026E+000 5.500161366985860E+000 5.648737797224421E+000 5.795144656974133E+000 5.938911608854725E+000 6.079559737301261E+000 6.216604272554150E+000 6.349557547702461E+000 6.477932173276239E+000 6.601244409417901E+000 6.719017711072845E+000 6.830786417000533E+000 6.936099548810582E+000 7.034524681765588E+000 7.125651844873820E+000 7.209097403929988E+000 7.284507877768077E+000 7.351563635186545E+000 7.409982417907790E+000 7.459522633653908E+000 7.499986363061132E+000 7.531222024804822E+000 7.553126645037088E+000 7.565647680098648E+000 7.568784345478169E+000 7.562588409148487E+000 7.547164413669037E+000 7.522669298730933E+000 7.489311404023006E+000 7.447348841261674E+000 7.397087233771026E+000 7.338876831901834E+000 7.273109022593380E+000 7.200212261241530E+000 7.120647463457531E+000 7.034902902997665E+000 6.943488669833937E+000 6.846930748756259E+000 6.745764783817137E+000 6.640529597162458E+000 6.531760532206835E+000 6.419982690652732E+000 6.305704130546772E+000 6.189409088539951E+000 6.071551284011807E+000 5.952547356095787E+000 5.832770477409861E+000 5.712544181110733E+000 5.592136431585162E+000 5.471753964683404E+000 5.351536922115193E+000 5.231553807920516E+000 5.111796804486522E+000 4.992177503361968E+000 4.872591324538930E+000 4.753144942395283E+000 4.633995928291402E+000 4.515291392941585E+000 4.397168542249016E+000 4.279755299285093E+000 4.163170972410954E+000 4.047526948089788E+000 3.932927385558036E+000 3.819469889850442E+000 3.707246139828306E+000 3.596342448942596E+000 3.486840238539034E+000 3.378816406619744E+000 3.272343579118823E+000 3.167490235909040E+000 3.064320709899635E+000 2.962895064678152E+000 2.863268864177196E+000 2.765492856830815E+000 2.669612606694843E+000 2.575668115172648E+000 2.483693489494700E+000 2.393716728171394E+000 2.305759709493729E+000 2.219838486969692E+000 2.135963993564437E+000 2.054142991947867E+000 1.974378538951423E+000 1.896670227300151E+000 1.821014403240744E+000 1.747404376492071E+000 1.675830622301834E+000 1.606280975462555E+000 1.538740814061310E+000 1.473193220728026E+000 1.409619192035979E+000 1.347997781099431E+000 1.288306248954283E+000 1.230520210464932E+000 1.174613772661469E+000 1.120559665727338E+000 1.068329366882095E+000 1.017893217424221E+000 9.692205332152916E-001 9.222797088994202E-001 8.770383161611686E-001 8.334631963309331E-001 7.915205476498161E-001 7.511760075059644E-001 7.123947299518791E-001 6.751414588073039E-001 6.393805966451532E-001 6.050762699490018E-001 5.721923907198029E-001 5.406927147972225E-001 5.105408971473403E-001 4.817005443536382E-001 4.541352645325395E-001 4.278087148782262E-001 4.026846470244929E-001 3.787269503939671E-001 3.558996936874254E-001 3.341671646483399E-001 3.134939082202731E-001 2.938447631975843E-001 2.751848974531701E-001 2.574798418108022E-001 2.406955226142404E-001 2.247982930306947E-001 2.097549631126034E-001 1.955328286291464E-001 1.820996986674734E-001 1.694239219934441E-001 1.574744121527464E-001 1.462206712856544E-001 1.356328126224540E-001 1.256815816216735E-001 1.163383757097701E-001 1.075752625787647E-001 9.936499699752152E-002 9.168103609284420E-002 8.449755305827006E-002 7.778944925134035E-002 7.153236464408286E-002 6.570268659641784E-002 6.027755692806159E-002 5.523487727114675E-002 5.055331269311063E-002 4.621229358726794E-002 4.219201583679029E-002 3.847343926641324E-002 3.503828440496384E-002 3.186902759062579E-002 2.894889445960141E-002 2.626185186738476E-002 2.379259830010807E-002 2.152655284125959E-002 1.944984276639234E-002 1.754928984521000E-002 1.581239543645420E-002 1.422732446636493E-002 1.278288838604691E-002 1.146852720678416E-002 1.027429071522161E-002 9.190818972332239E-003 8.209322201213572E-003 7.321560169017530E-003 6.519821167733012E-003 5.796900697137343E-003 5.146079951054263E-003 4.561104205147397E-003 4.036161200895766E-003 3.565859616203996E-003 3.145207708360365E-003 2.769592209843289E-003 2.434757551863633E-003 2.136785484592459E-003 1.872075156837427E-003 1.637323711570381E-003 1.429507447247707E-003 1.245863588374024E-003 1.083872702305731E-003 9.412417929369008E-004 8.158880957132778E-004 7.059235924334685E-004 6.096402585661042E-004 5.254960503779794E-004 4.521016340653527E-004 3.882078543360091E-004 3.326939355251172E-004 2.845564043584286E-004 2.428987199114116E-004 2.069215931563980E-004 1.759139757401935E-004 1.492446952858635E-004 1.263547125540043E-004 1.067499742165151E-004 8.999483377222693E-005 7.570601224834978E-005 6.354706976217353E-005 5.322335873953134E-005 4.447742957480294E-005 3.708485974555411E-005 3.085047783675786E-005 2.560495455856694E-005 2.120173363183185E-005 1.751427634179985E-005 1.443359459852816E-005 1.186604846975119E-005 9.731385346189046E-006 7.960999141869204E-006 6.496389203494738E-006 5.287799887636217E-006 4.293023047427830E-006 3.476346939030714E-006 2.807636300826514E-006 2.261529565921758E-006 1.816740333181120E-006 1.455451337238604E-006 1.162790219072250E-006 9.263774019436373E-007 7.359373205322834E-007 5.829651325444841E-007 4.604418615435029E-007 3.625916776466269E-007 2.846757200296466E-007 2.228194722686577E-007 1.738779969973943E-007 1.352733109689896E-007 1.049152344604039E-007 8.111602614050046E-008 6.251712137145658E-008 4.802836234441336E-008 3.677775129393252E-008 2.807003917411803E-008 2.135270810110995E-008 1.618812024436247E-008 1.223079202768627E-008 9.208913578959330E-009 6.909372198462172E-009 5.165657813715547E-009 3.848130334455462E-009 2.856215672310572E-009 2.112170890283654E-009 1.556121240727842E-009 1.142124292392854E-009 8.350603172224508E-010 6.081848250620234E-010 4.412096693501188E-010 3.188044354222219E-010 2.294306790746546E-010 1.644387109244091E-010 1.173706284029247E-010 8.342470162335545E-011 5.904546490660937E-011 4.161132826183778E-011 2.919751979385097E-011 2.039696723597206E-011 1.418554716200564E-011 9.821158955656720E-012 6.768470361560931E-012 4.643058356924915E-012 3.170136279431006E-012 2.154199608544228E-012 1.456806571424165E-012 9.803906798670712E-013 6.565243786473010E-013 4.374512730927524E-013 2.900067300788940E-013 1.912749677311364E-013 1.255022958261327E-013 8.191439016246615E-014 5.318081953845360E-014 3.434055200094614E-014 2.205403361072096E-014 1.408537974144763E-014 8.945829370462316E-015 5.649591000927069E-015 3.547583430123105E-015 2.214858589869630E-015 1.374808951922019E-015 8.482834171726646E-016 5.202485181709730E-016 3.171185690611211E-016 1.921076559160865E-016 1.156522332916230E-016 6.918776519759827E-017 4.113010621370306E-017 2.429698313366024E-017 1.426411089839127E-017 8.323965799324740E-018 4.830609790678408E-018 2.790172641737410E-018 1.606606328080110E-018 9.249163753794397E-019 5.287180579531192E-019 3.000789472526711E-019 1.690819168130661E-019 9.457342087513515E-020 5.250623595503012E-020 2.893220746476577E-020 1.582120971404739E-020 8.585058377722422E-021 4.622210926525856E-021 2.468972037480319E-021 1.308274608498327E-021 6.876284947850041E-022 3.584564180777060E-022 1.853109886875252E-022 9.499538612358834E-023 4.828297447727041E-023 2.432925147971257E-023 1.215231948943177E-023 6.016406792819077E-024 2.951984493831280E-024 1.435292746241163E-024 6.914591154908464E-025 3.300209855741394E-025 1.560322773985442E-025 7.306903039778542E-026 3.388798673300742E-026 1.556318875839774E-026 7.076817506696401E-027 3.185734175528831E-027 1.419574047454612E-027 6.260769422363128E-028 2.732511363104907E-028 1.180058706953480E-028 5.041905100944044E-029 2.130965703650800E-029 8.908192292235844E-030 3.682763962651491E-030 1.505457370450878E-030 6.084314463773836E-031 2.430754065252199E-031 9.598278652621413E-032 3.745455555915895E-032 1.444142665607264E-032 5.501031003755262E-033 2.069856296010286E-033 7.691855907832981E-034 2.822596650379488E-034 1.022643545717110E-034 3.657528326322430E-035 1.291125255577943E-035 4.497744033417785E-036 1.545945933866541E-036 5.241959830042250E-037 1.753148059255490E-037 5.782209039624944E-038 1.880369040394197E-038 6.028223927156122E-039 1.904822642252238E-039 5.931431532984290E-040 1.819802428722132E-040 5.500062569574323E-041 1.637222121138310E-041 4.799113763438424E-042 1.384980932014085E-042 3.934328658603966E-043 1.099905281199466E-043 3.025592117431429E-044 8.187427193442752E-045 2.179098825082438E-045 5.703062199131922E-046 1.467402176353640E-046 3.711137867227415E-047 9.223329824221218E-048 2.252142003523397E-048 5.401752037048712E-049 1.272350047480495E-049 2.942474377413152E-050 6.679633905401524E-051 1.488075756009386E-051 3.252573169084019E-052 6.973562772651949E-053 1.466231697398555E-053 3.022484370021539E-054 6.107044341065116E-055 1.209189185519539E-055 2.345540054893537E-056 espresso-5.1/pseudo/Si.bhs0000644000175000017500000004510512341373031013654 0ustar mbamba'PZ' 'Si',4.0,2,2,3,.f.,2,.t. ! pseudo BHS 2.16 0.86 1.6054 -0.6054 2.48 2.81 3.09 -3.0575 0.8096 0.0012 0.0511 -0.0217 -0.0128 1.24 1.60 2.12 -1.7966 -0.0986 0.0424 0.0284 -0.0030 -0.0039 1.89 2.22 2.48 -0.1817 -0.5634 -0.0944 -0.2168 0.0215 0.0588 14.00000 -4.00000 .02500 431 3 Wavefunction 3s 0 2.00 2.4897020E-04 2.5527295E-04 2.6173525E-04 2.6836115E-04 2.7515478E-04 2.8212040E-04 2.8926236E-04 2.9658512E-04 3.0409327E-04 3.1179148E-04 3.1968459E-04 3.2777751E-04 3.3607531E-04 3.4458318E-04 3.5330643E-04 3.6225052E-04 3.7142103E-04 3.8082371E-04 3.9046442E-04 4.0034920E-04 4.1048423E-04 4.2087583E-04 4.3153051E-04 4.4245493E-04 4.5365591E-04 4.6514046E-04 4.7691576E-04 4.8898917E-04 5.0136824E-04 5.1406070E-04 5.2707450E-04 5.4041776E-04 5.5409883E-04 5.6812627E-04 5.8250884E-04 5.9725554E-04 6.1237559E-04 6.2787844E-04 6.4377378E-04 6.6007155E-04 6.7678195E-04 6.9391542E-04 7.1148268E-04 7.2949471E-04 7.4796277E-04 7.6689843E-04 7.8631350E-04 8.0622015E-04 8.2663082E-04 8.4755827E-04 8.6901560E-04 8.9101622E-04 9.1357389E-04 9.3670274E-04 9.6041721E-04 9.8473216E-04 1.0096628E-03 1.0352247E-03 1.0614339E-03 1.0883067E-03 1.1158601E-03 1.1441111E-03 1.1730776E-03 1.2027776E-03 1.2332298E-03 1.2644531E-03 1.2964671E-03 1.3292919E-03 1.3629481E-03 1.3974566E-03 1.4328392E-03 1.4691179E-03 1.5063155E-03 1.5444552E-03 1.5835611E-03 1.6236575E-03 1.6647696E-03 1.7069232E-03 1.7501447E-03 1.7944611E-03 1.8399003E-03 1.8864908E-03 1.9342617E-03 1.9832430E-03 2.0334655E-03 2.0849607E-03 2.1377609E-03 2.1918992E-03 2.2474096E-03 2.3043270E-03 2.3626871E-03 2.4225267E-03 2.4838832E-03 2.5467954E-03 2.6113027E-03 2.6774457E-03 2.7452660E-03 2.8148064E-03 2.8861107E-03 2.9592236E-03 3.0341914E-03 3.1110612E-03 3.1898816E-03 3.2707023E-03 3.3535744E-03 3.4385501E-03 3.5256831E-03 3.6150286E-03 3.7066431E-03 3.8005846E-03 3.8969126E-03 3.9956882E-03 4.0969740E-03 4.2008343E-03 4.3073352E-03 4.4165443E-03 4.5285312E-03 4.6433671E-03 4.7611254E-03 4.8818812E-03 5.0057117E-03 5.1326960E-03 5.2629155E-03 5.3964537E-03 5.5333964E-03 5.6738315E-03 5.8178496E-03 5.9655434E-03 6.1170083E-03 6.2723424E-03 6.4316463E-03 6.5950235E-03 6.7625800E-03 6.9344253E-03 7.1106714E-03 7.2914338E-03 7.4768310E-03 7.6669850E-03 7.8620211E-03 8.0620682E-03 8.2672588E-03 8.4777295E-03 8.6936205E-03 8.9150763E-03 9.1422454E-03 9.3752809E-03 9.6143402E-03 9.8595856E-03 1.0111184E-02 1.0369308E-02 1.0634134E-02 1.0905846E-02 1.1184631E-02 1.1470685E-02 1.1764207E-02 1.2065404E-02 1.2374490E-02 1.2691685E-02 1.3017216E-02 1.3351319E-02 1.3694235E-02 1.4046217E-02 1.4407522E-02 1.4778421E-02 1.5159190E-02 1.5550116E-02 1.5951498E-02 1.6363644E-02 1.6786872E-02 1.7221515E-02 1.7667916E-02 1.8126431E-02 1.8597431E-02 1.9081300E-02 1.9578437E-02 2.0089260E-02 2.0614198E-02 2.1153703E-02 2.1708243E-02 2.2278306E-02 2.2864401E-02 2.3467059E-02 2.4086834E-02 2.4724304E-02 2.5380075E-02 2.6054779E-02 2.6749077E-02 2.7463662E-02 2.8199260E-02 2.8956630E-02 2.9736571E-02 3.0539920E-02 3.1367555E-02 3.2220402E-02 3.3099431E-02 3.4005664E-02 3.4940178E-02 3.5904108E-02 3.6898648E-02 3.7925059E-02 3.8984674E-02 4.0078897E-02 4.1209215E-02 4.2377200E-02 4.3584514E-02 4.4832917E-02 4.6124276E-02 4.7460567E-02 4.8843886E-02 5.0276459E-02 5.1760648E-02 5.3298961E-02 5.4894066E-02 5.6548797E-02 5.8266171E-02 6.0049397E-02 6.1901891E-02 6.3827292E-02 6.5829477E-02 6.7912577E-02 7.0080996E-02 7.2339430E-02 7.4692887E-02 7.7146710E-02 7.9706597E-02 8.2378628E-02 8.5169290E-02 8.8085505E-02 9.1134654E-02 9.4324614E-02 9.7663779E-02 1.0116110E-01 1.0482611E-01 1.0866898E-01 1.1270049E-01 1.1693215E-01 1.2137617E-01 1.2604549E-01 1.3095384E-01 1.3611575E-01 1.4154656E-01 1.4726242E-01 1.5328034E-01 1.5961814E-01 1.6629444E-01 1.7332862E-01 1.8074077E-01 1.8855160E-01 1.9678231E-01 2.0545448E-01 2.1458986E-01 2.2421012E-01 2.3433660E-01 2.4498990E-01 2.5618956E-01 2.6795349E-01 2.8029744E-01 2.9323436E-01 3.0677368E-01 3.2092052E-01 3.3567479E-01 3.5103030E-01 3.6697376E-01 3.8348383E-01 4.0053015E-01 4.1807246E-01 4.3605978E-01 4.5442984E-01 4.7310869E-01 4.9201059E-01 5.1103827E-01 5.3008358E-01 5.4902856E-01 5.6774695E-01 5.8610611E-01 6.0396934E-01 6.2119843E-01 6.3765645E-01 6.5321061E-01 6.6773493E-01 6.8111275E-01 6.9323882E-01 7.0402094E-01 7.1338102E-01 7.2125557E-01 7.2759567E-01 7.3236652E-01 7.3554657E-01 7.3712649E-01 7.3710808E-01 7.3550315E-01 7.3233261E-01 7.2762562E-01 7.2141903E-01 7.1375684E-01 7.0468992E-01 6.9427558E-01 6.8257730E-01 6.6966432E-01 6.5561114E-01 6.4049703E-01 6.2440535E-01 6.0742296E-01 5.8963943E-01 5.7114639E-01 5.5203686E-01 5.3240450E-01 5.1234300E-01 4.9194547E-01 4.7130382E-01 4.5050819E-01 4.2964643E-01 4.0880361E-01 3.8806150E-01 3.6749819E-01 3.4718766E-01 3.2719945E-01 3.0759832E-01 2.8844400E-01 2.6979097E-01 2.5168827E-01 2.3417939E-01 2.1730220E-01 2.0108888E-01 1.8556600E-01 1.7075451E-01 1.5666991E-01 1.4332237E-01 1.3071693E-01 1.1885374E-01 1.0772830E-01 9.7331793E-02 8.7651375E-02 7.8670545E-02 7.0369503E-02 6.2725533E-02 5.5713393E-02 4.9305709E-02 4.3473370E-02 3.8185916E-02 3.3411913E-02 2.9119326E-02 2.5275854E-02 2.1849260E-02 1.8807669E-02 1.6119833E-02 1.3755378E-02 1.1685011E-02 9.8806932E-03 8.3157912E-03 6.9651860E-03 5.8053563E-03 4.8144311E-03 3.9722156E-03 3.2601905E-03 2.6614900E-03 2.1608594E-03 1.7445955E-03 1.4004736E-03 1.1176634E-03 8.8663644E-04 6.9906806E-04 5.4773694E-04 4.2642336E-04 3.2980884E-04 2.5337871E-04 1.9332891E-04 1.4647814E-04 1.1018604E-04 8.2278144E-05 6.0977677E-05 4.4844359E-05 3.2720134E-05 2.3681540E-05 1.6998355E-05 1.2098100E-05 8.5358657E-06 5.9689528E-06 4.1357760E-06 2.8385607E-06 1.9296997E-06 1.2990856E-06 8.6583439E-07 5.7117693E-07 3.7284835E-07 2.4077070E-07 1.5376803E-07 9.7095161E-08 6.0600098E-08 3.7373628E-08 2.2768916E-08 1.3698440E-08 8.1361146E-09 4.7692472E-09 2.7584157E-09 1.5740249E-09 8.8659882E-10 4.9420764E-10 2.7523044E-10 1.5097793E-10 8.1544383E-11 4.3347856E-11 2.2670404E-11 1.1659760E-11 5.8948779E-12 2.9283724E-12 1.4287321E-12 6.8430559E-13 3.2160364E-13 1.4823646E-13 6.6979006E-14 2.9651926E-14 1.2855029E-14 5.4546758E-15 2.2641459E-15 9.1883472E-16 3.6435079E-16 1.4109021E-16 5.3322193E-17 1.9655564E-17 7.0624458E-18 2.4719268E-18 8.4224533E-19 2.7916982E-19 8.9954323E-20 2.8157138E-20 8.5555751E-21 2.5216069E-21 7.2034079E-22 1.9929096E-22 5.3354856E-23 Wavefunction 3p 1 2.00 6.2940012E-07 6.6167015E-07 6.9559470E-07 7.3125859E-07 7.6875101E-07 8.0816571E-07 8.4960124E-07 8.9316122E-07 9.3895456E-07 9.8709577E-07 1.0377052E-06 1.0909095E-06 1.1468416E-06 1.2056414E-06 1.2674559E-06 1.3324398E-06 1.4007554E-06 1.4725736E-06 1.5480740E-06 1.6274455E-06 1.7108863E-06 1.7986053E-06 1.8908217E-06 1.9877661E-06 2.0896810E-06 2.1968212E-06 2.3094545E-06 2.4278627E-06 2.5523418E-06 2.6832030E-06 2.8207737E-06 2.9653977E-06 3.1174367E-06 3.2772709E-06 3.4453000E-06 3.6219441E-06 3.8076449E-06 4.0028668E-06 4.2080979E-06 4.4238514E-06 4.6506667E-06 4.8891111E-06 5.1397808E-06 5.4033026E-06 5.6803353E-06 5.9715717E-06 6.2777401E-06 6.5996061E-06 6.9379743E-06 7.2936910E-06 7.6676456E-06 8.0607732E-06 8.4740568E-06 8.9085297E-06 9.3652784E-06 9.8454449E-06 1.0350230E-05 1.0880896E-05 1.1438769E-05 1.2025245E-05 1.2641790E-05 1.3289946E-05 1.3971333E-05 1.4687655E-05 1.5440703E-05 1.6232361E-05 1.7064607E-05 1.7939523E-05 1.8859296E-05 1.9826227E-05 2.0842732E-05 2.1911354E-05 2.3034765E-05 2.4215773E-05 2.5457332E-05 2.6762546E-05 2.8134679E-05 2.9577161E-05 3.1093599E-05 3.2687785E-05 3.4363704E-05 3.6125548E-05 3.7977722E-05 3.9924856E-05 4.1971819E-05 4.4123729E-05 4.6385967E-05 4.8764189E-05 5.1264340E-05 5.3892673E-05 5.6655758E-05 5.9560504E-05 6.2614174E-05 6.5824403E-05 6.9199216E-05 7.2747051E-05 7.6476779E-05 8.0397725E-05 8.4519690E-05 8.8852982E-05 9.3408433E-05 9.8197432E-05 1.0323195E-04 1.0852458E-04 1.1408855E-04 1.1993776E-04 1.2608685E-04 1.3255118E-04 1.3934692E-04 1.4649104E-04 1.5400142E-04 1.6189683E-04 1.7019699E-04 1.7892267E-04 1.8809567E-04 1.9773892E-04 2.0787652E-04 2.1853382E-04 2.2973744E-04 2.4151540E-04 2.5389714E-04 2.6691359E-04 2.8059728E-04 2.9498243E-04 3.1010497E-04 3.2600270E-04 3.4271534E-04 3.6028466E-04 3.7875456E-04 3.9817120E-04 4.1858308E-04 4.4004121E-04 4.6259919E-04 4.8631339E-04 5.1124304E-04 5.3745042E-04 5.6500100E-04 5.9396360E-04 6.2441054E-04 6.5641788E-04 6.9006555E-04 7.2543757E-04 7.6262226E-04 8.0171248E-04 8.4280582E-04 8.8600486E-04 9.3141745E-04 9.7915693E-04 1.0293425E-03 1.0820993E-03 1.1375590E-03 1.1958600E-03 1.2571478E-03 1.3215752E-03 1.3893030E-03 1.4604999E-03 1.5353436E-03 1.6140207E-03 1.6967272E-03 1.7836693E-03 1.8750637E-03 1.9711380E-03 2.0721315E-03 2.1782959E-03 2.2898954E-03 2.4072078E-03 2.5305252E-03 2.6601543E-03 2.7964176E-03 2.9396541E-03 3.0902197E-03 3.2484888E-03 3.4148546E-03 3.5897303E-03 3.7735501E-03 3.9667702E-03 4.1698701E-03 4.3833535E-03 4.6077495E-03 4.8436142E-03 5.0915317E-03 5.3521157E-03 5.6260110E-03 5.9138947E-03 6.2164783E-03 6.5345089E-03 6.8687716E-03 7.2200907E-03 7.5893319E-03 7.9774046E-03 8.3852634E-03 8.8139111E-03 9.2644003E-03 9.7378365E-03 1.0235380E-02 1.0758249E-02 1.1307722E-02 1.1885141E-02 1.2491915E-02 1.3129522E-02 1.3799513E-02 1.4503515E-02 1.5243235E-02 1.6020464E-02 1.6837079E-02 1.7695049E-02 1.8596440E-02 1.9543415E-02 2.0538244E-02 2.1583302E-02 2.2681081E-02 2.3834190E-02 2.5045361E-02 2.6317454E-02 2.7653464E-02 2.9056524E-02 3.0529912E-02 3.2077056E-02 3.3701540E-02 3.5407109E-02 3.7197676E-02 3.9077325E-02 4.1050322E-02 4.3121112E-02 4.5294335E-02 4.7574822E-02 4.9967606E-02 5.2477922E-02 5.5111217E-02 5.7873147E-02 6.0769587E-02 6.3806626E-02 6.6990576E-02 7.0327967E-02 7.3825547E-02 7.7490284E-02 8.1329354E-02 8.5350145E-02 8.9560240E-02 9.3967412E-02 9.8579610E-02 1.0340494E-01 1.0845164E-01 1.1372808E-01 1.1924269E-01 1.2500398E-01 1.3102044E-01 1.3730055E-01 1.4385270E-01 1.5068511E-01 1.5780582E-01 1.6522256E-01 1.7294267E-01 1.8097303E-01 1.8931994E-01 1.9798899E-01 2.0698493E-01 2.1631155E-01 2.2597149E-01 2.3596611E-01 2.4629528E-01 2.5695718E-01 2.6794813E-01 2.7926235E-01 2.9089175E-01 3.0282568E-01 3.1505074E-01 3.2755050E-01 3.4030530E-01 3.5329205E-01 3.6648399E-01 3.7985057E-01 3.9335727E-01 4.0696553E-01 4.2063268E-01 4.3431200E-01 4.4795279E-01 4.6150057E-01 4.7489734E-01 4.8808198E-01 5.0099075E-01 5.1355784E-01 5.2571615E-01 5.3739805E-01 5.4853625E-01 5.5906479E-01 5.6892001E-01 5.7804151E-01 5.8637308E-01 5.9386360E-01 6.0046776E-01 6.0614663E-01 6.1086814E-01 6.1460726E-01 6.1734602E-01 6.1907342E-01 6.1978504E-01 6.1948266E-01 6.1817367E-01 6.1587053E-01 6.1259019E-01 6.0835353E-01 6.0318487E-01 5.9711161E-01 5.9016382E-01 5.8237409E-01 5.7377726E-01 5.6441031E-01 5.5431223E-01 5.4352388E-01 5.3208793E-01 5.2004863E-01 5.0745173E-01 4.9434427E-01 4.8077438E-01 4.6679108E-01 4.5244409E-01 4.3778358E-01 4.2285997E-01 4.0772369E-01 3.9242498E-01 3.7701366E-01 3.6153889E-01 3.4604900E-01 3.3059124E-01 3.1521157E-01 2.9995447E-01 2.8486274E-01 2.6997730E-01 2.5533701E-01 2.4097850E-01 2.2693600E-01 2.1324120E-01 1.9992312E-01 1.8700801E-01 1.7451923E-01 1.6247721E-01 1.5089936E-01 1.3980009E-01 1.2919076E-01 1.1907973E-01 1.0947240E-01 1.0037129E-01 9.1776102E-02 8.3683866E-02 7.6089065E-02 6.8983795E-02 6.2357934E-02 5.6199337E-02 5.0494032E-02 4.5226435E-02 4.0379566E-02 3.5935271E-02 3.1874442E-02 2.8177241E-02 2.4823311E-02 2.1791984E-02 1.9062481E-02 1.6614092E-02 1.4426352E-02 1.2479190E-02 1.0753075E-02 9.2291281E-03 7.8892335E-03 6.7161186E-03 5.6934232E-03 4.8057490E-03 4.0386935E-03 3.3788681E-03 2.8139025E-03 2.3324358E-03 1.9240970E-03 1.5794751E-03 1.2900811E-03 1.0483035E-03 8.4735852E-04 6.8123615E-04 5.4464424E-04 4.3295085E-04 3.4213403E-04 2.6878477E-04 2.0989847E-04 1.6290828E-04 1.2564282E-04 9.6276982E-05 7.3286736E-05 5.5408002E-05 4.1599490E-05 3.1009462E-05 2.2946240E-05 1.6852263E-05 1.2281479E-05 8.8797970E-06 6.3683565E-06 4.5293253E-06 3.1939570E-06 2.2326432E-06 1.5467042E-06 1.0616800E-06 7.2190017E-07 4.8613278E-07 3.2413354E-07 2.1393646E-07 1.3974953E-07 9.0337842E-08 5.7794927E-08 3.6620188E-08 2.3034752E-08 1.4481670E-08 8.9959234E-09 5.5199124E-09 3.3445832E-09 2.0004873E-09 1.1807846E-09 6.8754348E-10 3.9479718E-10 2.2347983E-10 1.2466231E-10 6.8501922E-11 3.7065950E-11 1.9741594E-11 1.0345455E-11 5.3321022E-12 2.7017524E-12 1.3452497E-12 6.5792720E-13 3.1591687E-13 1.4886250E-13 6.8803049E-14 3.1176476E-14 1.3842837E-14 Wavefunction 3d 2 .00 1.2953704E-09 1.3962591E-09 1.5050055E-09 1.6222215E-09 1.7485668E-09 1.8847523E-09 2.0315446E-09 2.1897696E-09 2.3603178E-09 2.5441490E-09 2.7422977E-09 2.9558790E-09 3.1860949E-09 3.4342409E-09 3.7017136E-09 3.9900180E-09 4.3007768E-09 4.6357388E-09 4.9967889E-09 5.3859590E-09 5.8054392E-09 6.2575902E-09 6.7449565E-09 7.2702808E-09 7.8365194E-09 8.4468589E-09 9.1047340E-09 9.8138470E-09 1.0578188E-08 1.1402060E-08 1.2290097E-08 1.3247299E-08 1.4279050E-08 1.5391159E-08 1.6589883E-08 1.7881968E-08 1.9274685E-08 2.0775872E-08 2.2393977E-08 2.4138106E-08 2.6018075E-08 2.8044462E-08 3.0228671E-08 3.2582994E-08 3.5120681E-08 3.7856011E-08 4.0804378E-08 4.3982374E-08 4.7407883E-08 5.1100182E-08 5.5080049E-08 5.9369882E-08 6.3993820E-08 6.8977886E-08 7.4350126E-08 8.0140772E-08 8.6382412E-08 9.3110168E-08 1.0036190E-07 1.0817842E-07 1.1660371E-07 1.2568519E-07 1.3547395E-07 1.4602509E-07 1.5739798E-07 1.6965661E-07 1.8286997E-07 1.9711242E-07 2.1246410E-07 2.2901140E-07 2.4684743E-07 2.6607256E-07 2.8679498E-07 3.0913129E-07 3.3320718E-07 3.5915812E-07 3.8713016E-07 4.1728068E-07 4.4977934E-07 4.8480902E-07 5.2256682E-07 5.6326520E-07 6.0713317E-07 6.5441756E-07 7.0538444E-07 7.6032058E-07 8.1953508E-07 8.8336114E-07 9.5215788E-07 1.0263124E-06 1.1062419E-06 1.1923961E-06 1.2852597E-06 1.3853553E-06 1.4932459E-06 1.6095387E-06 1.7348878E-06 1.8699985E-06 2.0156310E-06 2.1726044E-06 2.3418020E-06 2.5241755E-06 2.7207509E-06 2.9326340E-06 3.1610168E-06 3.4071840E-06 3.6725202E-06 3.9585180E-06 4.2667860E-06 4.5990582E-06 4.9572034E-06 5.3432360E-06 5.7593271E-06 6.2078169E-06 6.6912274E-06 7.2122773E-06 7.7738967E-06 8.3792437E-06 9.0317220E-06 9.7350006E-06 1.0493033E-05 1.1310083E-05 1.2190741E-05 1.3139960E-05 1.4163076E-05 1.5265838E-05 1.6454446E-05 1.7735581E-05 1.9116441E-05 2.0604786E-05 2.2208981E-05 2.3938039E-05 2.5801673E-05 2.7810354E-05 2.9975364E-05 3.2308864E-05 3.4823960E-05 3.7534775E-05 4.0456531E-05 4.3605631E-05 4.6999752E-05 5.0657947E-05 5.4600745E-05 5.8850271E-05 6.3430367E-05 6.8366726E-05 7.3687035E-05 7.9421128E-05 8.5601155E-05 9.2261759E-05 9.9440269E-05 1.0717691E-04 1.1551502E-04 1.2450130E-04 1.3418607E-04 1.4462355E-04 1.5587213E-04 1.6799476E-04 1.8105925E-04 1.9513862E-04 2.1031159E-04 2.2666292E-04 2.4428395E-04 2.6327305E-04 2.8373619E-04 3.0578753E-04 3.2955002E-04 3.5515609E-04 3.8274836E-04 4.1248046E-04 4.4451780E-04 4.7903855E-04 5.1623454E-04 5.5631234E-04 5.9949437E-04 6.4602010E-04 6.9614734E-04 7.5015363E-04 8.0833774E-04 8.7102124E-04 9.3855024E-04 1.0112972E-03 1.0896631E-03 1.1740791E-03 1.2650093E-03 1.3629530E-03 1.4684472E-03 1.5820695E-03 1.7044411E-03 1.8362301E-03 1.9781547E-03 2.1309869E-03 2.2955566E-03 2.4727557E-03 2.6635427E-03 2.8689469E-03 3.0900744E-03 3.3281127E-03 3.5843370E-03 3.8601159E-03 4.1569184E-03 4.4763205E-03 4.8200126E-03 5.1898073E-03 5.5876479E-03 6.0156165E-03 6.4759439E-03 6.9710186E-03 7.5033977E-03 8.0758169E-03 8.6912023E-03 9.3526814E-03 1.0063596E-02 1.0827515E-02 1.1648246E-02 1.2529851E-02 1.3476658E-02 1.4493279E-02 1.5584618E-02 1.6755893E-02 1.8012645E-02 1.9360755E-02 2.0806460E-02 2.2356361E-02 2.4017442E-02 2.5797078E-02 2.7703050E-02 2.9743549E-02 3.1927186E-02 3.4262997E-02 3.6760442E-02 3.9429405E-02 4.2280184E-02 4.5323482E-02 4.8570388E-02 5.2032349E-02 5.5721139E-02 5.9648815E-02 6.3827664E-02 6.8270134E-02 7.2988759E-02 7.7996059E-02 8.3304436E-02 8.8926035E-02 9.4872603E-02 1.0115532E-01 1.0778458E-01 1.1476983E-01 1.2211928E-01 1.2983967E-01 1.3793596E-01 1.4641108E-01 1.5526555E-01 1.6449722E-01 1.7410089E-01 1.8406805E-01 1.9438653E-01 2.0504026E-01 2.1600912E-01 2.2726872E-01 2.3879042E-01 2.5054143E-01 2.6248499E-01 2.7458074E-01 2.8678535E-01 2.9905317E-01 3.1133719E-01 3.2359012E-01 3.3576561E-01 3.4781960E-01 3.5971164E-01 3.7140630E-01 3.8287435E-01 3.9409377E-01 4.0505053E-01 4.1573882E-01 4.2616099E-01 4.3632685E-01 4.4625250E-01 4.5595864E-01 4.6546840E-01 4.7480491E-01 4.8398857E-01 4.9303448E-01 5.0194990E-01 5.1073218E-01 5.1936732E-01 5.2782922E-01 5.3607975E-01 5.4406970E-01 5.5174051E-01 5.5902663E-01 5.6585830E-01 5.7216453E-01 5.7787586E-01 5.8292686E-01 5.8725799E-01 5.9081682E-01 5.9355855E-01 5.9544597E-01 5.9644888E-01 5.9654340E-01 5.9571103E-01 5.9393797E-01 5.9121453E-01 5.8753485E-01 5.8289678E-01 5.7730208E-01 5.7075666E-01 5.6327087E-01 5.5485986E-01 5.4554381E-01 5.3534815E-01 5.2430365E-01 5.1244639E-01 4.9981773E-01 4.8646411E-01 4.7243684E-01 4.5779172E-01 4.4258874E-01 4.2689160E-01 4.1076722E-01 3.9428520E-01 3.7751725E-01 3.6053657E-01 3.4341719E-01 3.2623332E-01 3.0905871E-01 2.9196593E-01 2.7502573E-01 2.5830644E-01 2.4187329E-01 2.2578791E-01 2.1010773E-01 1.9488560E-01 1.8016927E-01 1.6600114E-01 1.5241793E-01 1.3945051E-01 1.2712376E-01 1.1545656E-01 1.0446180E-01 9.4146502E-02 8.4512043E-02 7.5554384E-02 6.7264412E-02 5.9628322E-02 5.2628052E-02 4.6241755E-02 4.0444304E-02 3.5207814E-02 3.0502174E-02 2.6295580E-02 2.2555052E-02 1.9246935E-02 1.6337371E-02 1.3792734E-02 1.1580021E-02 9.6672020E-03 8.0235153E-03 6.6197149E-03 5.4282647E-03 4.4234828E-03 3.5816368E-03 2.8809950E-03 2.3018351E-03 1.8264176E-03 1.4389269E-03 1.1253868E-03 8.7356737E-04 6.7296675E-04 5.1441665E-04 3.9009718E-04 2.9341140E-04 2.1884434E-04 1.6182789E-04 1.1861355E-04 8.6154689E-05 6.1999124E-05 4.4192649E-05 3.1193606E-05 2.1798308E-05 1.5076811E-05 1.0318362E-05 6.9856811E-06 4.6771654E-06 3.0960566E-06 2.0256311E-06 1.3095046E-06 8.3621039E-07 5.2728966E-07 3.2822220E-07 2.0161737E-07 1.2217488E-07 7.3009403E-08 4.3009428E-08 2.4967652E-08 1.4277691E-08 8.0396558E-09 4.4559961E-09 2.4299888E-09 1.3032736E-09 6.8715365E-10 3.5601586E-10 1.8117047E-10 9.0512449E-11 4.4373850E-11 2.1337007E-11 1.0058004E-11 4.6456015E-12 2.1013775E-12 9.3047685E-13 4.0330390E-13 1.7152658E-13 7.2805446E-14 3.0189522E-14 1.2222260E-14 4.8282096E-15 1.8599012E-15 6.9820954E-16 2.5526411E-16 9.0826093E-17 3.1430392E-17 1.0570637E-17 3.4526359E-18 1.0944021E-18 3.3639505E-19 1.0019142E-19 2.8891685E-20 8.0597391E-21 2.1732529E-21 espresso-5.1/pseudo/Ni.rel-pbe-nd-rrkjus.UPF0000644000175000017500000616425712341373031017007 0ustar mbamba Generated using "atomic" code by A. Dal Corso (espresso distribution) Author: anonymous Generation date: 2Sep2007 Ni 2 The Pseudo was generated with a Fully-Relativistic Calculation -1 1.7000000E+00 L component and cutoff radius for Local Potential nl pn l occ Rcut Rcut US E pseu 4S 1 0 1.00 2.00000000000 2.50000000000 -0.33011621065 4S 1 0 0.00 2.00000000000 2.50000000000 0.10000000000 4P 2 1 0.00 2.40000000000 2.60000000000 -0.05696910468 4P 2 1 0.00 2.40000000000 2.60000000000 0.30000000000 4P 2 1 0.00 2.40000000000 2.60000000000 -0.05454257888 4P 2 1 0.00 2.40000000000 2.60000000000 0.30000000000 3D 3 2 4.00 1.60000000000 2.50000000000 -0.35045629533 3D 3 2 0.00 1.60000000000 2.50000000000 -0.25000000000 3D 3 2 5.00 1.60000000000 2.50000000000 -0.33442538620 3D 3 2 0.00 1.60000000000 2.50000000000 -0.25000000000 0 Version Number Ni Element US Ultrasoft pseudopotential T Nonlinear Core Correction SLA PW PBX PBC PBE Exchange-Correlation functional 10.00000000000 Z valence -90.30524855311 Total energy 23.557 371.902 Suggested cutoff for wfc and rho 2 Max angular momentum component 1195 Number of points in mesh 3 10 Number of Wavefunctions, Number of Projectors Wavefunctions nl l occ 3D 2 4.00 3D 2 5.00 4S 0 1.00 3.25672130555E-05 3.29768581668E-05 3.33916559792E-05 3.38116713058E-05 3.42369697748E-05 3.46676178400E-05 3.51036827910E-05 3.55452327639E-05 3.59923367517E-05 3.64450646154E-05 3.69034870946E-05 3.73676758187E-05 3.78377033181E-05 3.83136430357E-05 3.87955693380E-05 3.92835575269E-05 3.97776838516E-05 4.02780255203E-05 4.07846607125E-05 4.12976685909E-05 4.18171293140E-05 4.23431240486E-05 4.28757349825E-05 4.34150453373E-05 4.39611393812E-05 4.45141024426E-05 4.50740209230E-05 4.56409823109E-05 4.62150751952E-05 4.67963892790E-05 4.73850153938E-05 4.79810455137E-05 4.85845727696E-05 4.91956914638E-05 4.98144970849E-05 5.04410863225E-05 5.10755570824E-05 5.17180085021E-05 5.23685409658E-05 5.30272561206E-05 5.36942568921E-05 5.43696475004E-05 5.50535334767E-05 5.57460216797E-05 5.64472203120E-05 5.71572389373E-05 5.78761884975E-05 5.86041813298E-05 5.93413311848E-05 6.00877532434E-05 6.08435641358E-05 6.16088819588E-05 6.23838262950E-05 6.31685182310E-05 6.39630803765E-05 6.47676368834E-05 6.55823134653E-05 6.64072374172E-05 6.72425376350E-05 6.80883446361E-05 6.89447905796E-05 6.98120092868E-05 7.06901362626E-05 7.15793087160E-05 7.24796655820E-05 7.33913475432E-05 7.43144970518E-05 7.52492583517E-05 7.61957775013E-05 7.71542023962E-05 7.81246827922E-05 7.91073703289E-05 8.01024185531E-05 8.11099829431E-05 8.21302209330E-05 8.31632919371E-05 8.42093573747E-05 8.52685806957E-05 8.63411274059E-05 8.74271650929E-05 8.85268634524E-05 8.96403943143E-05 9.07679316703E-05 9.19096517003E-05 9.30657328003E-05 9.42363556104E-05 9.54217030428E-05 9.66219603105E-05 9.78373149560E-05 9.90679568811E-05 1.00314078376E-04 1.01575874150E-04 1.02853541360E-04 1.04147279646E-04 1.05457291156E-04 1.06783780583E-04 1.08126955192E-04 1.09487024858E-04 1.10864202095E-04 1.12258702088E-04 1.13670742732E-04 1.15100544662E-04 1.16548331285E-04 1.18014328822E-04 1.19498766338E-04 1.21001875780E-04 1.22523892011E-04 1.24065052849E-04 1.25625599104E-04 1.27205774615E-04 1.28805826286E-04 1.30426004130E-04 1.32066561303E-04 1.33727754144E-04 1.35409842220E-04 1.37113088358E-04 1.38837758696E-04 1.40584122715E-04 1.42352453290E-04 1.44143026726E-04 1.45956122802E-04 1.47792024820E-04 1.49651019642E-04 1.51533397741E-04 1.53439453241E-04 1.55369483968E-04 1.57323791493E-04 1.59302681181E-04 1.61306462236E-04 1.63335447755E-04 1.65389954769E-04 1.67470304300E-04 1.69576821408E-04 1.71709835238E-04 1.73869679080E-04 1.76056690412E-04 1.78271210961E-04 1.80513586749E-04 1.82784168153E-04 1.85083309954E-04 1.87411371399E-04 1.89768716253E-04 1.92155712854E-04 1.94572734176E-04 1.97020157884E-04 1.99498366393E-04 2.02007746927E-04 2.04548691582E-04 2.07121597387E-04 2.09726866363E-04 2.12364905588E-04 2.15036127262E-04 2.17740948768E-04 2.20479792741E-04 2.23253087130E-04 2.26061265267E-04 2.28904765938E-04 2.31784033443E-04 2.34699517676E-04 2.37651674186E-04 2.40640964253E-04 2.43667854961E-04 2.46732819266E-04 2.49836336077E-04 2.52978890323E-04 2.56160973036E-04 2.59383081422E-04 2.62645718942E-04 2.65949395390E-04 2.69294626972E-04 2.72681936388E-04 2.76111852911E-04 2.79584912472E-04 2.83101657745E-04 2.86662638228E-04 2.90268410332E-04 2.93919537465E-04 2.97616590124E-04 3.01360145980E-04 3.05150789973E-04 3.08989114397E-04 3.12875718999E-04 3.16811211069E-04 3.20796205535E-04 3.24831325061E-04 3.28917200142E-04 3.33054469205E-04 3.37243778706E-04 3.41485783234E-04 3.45781145610E-04 3.50130536994E-04 3.54534636986E-04 3.58994133737E-04 3.63509724051E-04 3.68082113500E-04 3.72712016528E-04 3.77400156566E-04 3.82147266147E-04 3.86954087016E-04 3.91821370248E-04 3.96749876366E-04 4.01740375459E-04 4.06793647304E-04 4.11910481484E-04 4.17091677514E-04 4.22338044968E-04 4.27650403600E-04 4.33029583478E-04 4.38476425110E-04 4.43991779575E-04 4.49576508658E-04 4.55231484986E-04 4.60957592160E-04 4.66755724895E-04 4.72626789162E-04 4.78571702326E-04 4.84591393293E-04 4.90686802650E-04 4.96858882819E-04 5.03108598199E-04 5.09436925321E-04 5.15844853000E-04 5.22333382486E-04 5.28903527625E-04 5.35556315017E-04 5.42292784173E-04 5.49113987679E-04 5.56020991364E-04 5.63014874459E-04 5.70096729774E-04 5.77267663863E-04 5.84528797199E-04 5.91881264349E-04 5.99326214150E-04 6.06864809892E-04 6.14498229495E-04 6.22227665696E-04 6.30054326236E-04 6.37979434047E-04 6.46004227442E-04 6.54129960312E-04 6.62357902319E-04 6.70689339096E-04 6.79125572447E-04 6.87667920550E-04 6.96317718164E-04 7.05076316839E-04 7.13945085123E-04 7.22925408779E-04 7.32018691001E-04 7.41226352632E-04 7.50549832389E-04 7.59990587085E-04 7.69550091856E-04 7.79229840394E-04 7.89031345181E-04 7.98956137720E-04 8.09005768782E-04 8.19181808640E-04 8.29485847323E-04 8.39919494857E-04 8.50484381522E-04 8.61182158101E-04 8.72014496144E-04 8.82983088226E-04 8.94089648213E-04 9.05335911526E-04 9.16723635417E-04 9.28254599241E-04 9.39930604735E-04 9.51753476298E-04 9.63725061279E-04 9.75847230260E-04 9.88121877357E-04 1.00055092051E-03 1.01313630178E-03 1.02587998765E-03 1.03878396936E-03 1.05185026318E-03 1.06508091075E-03 1.07847797937E-03 1.09204356237E-03 1.10577977940E-03 1.11968877677E-03 1.13377272779E-03 1.14803383310E-03 1.16247432104E-03 1.17709644795E-03 1.19190249858E-03 1.20689478640E-03 1.22207565399E-03 1.23744747338E-03 1.25301264646E-03 1.26877360531E-03 1.28473281262E-03 1.30089276205E-03 1.31725597862E-03 1.33382501911E-03 1.35060247248E-03 1.36759096023E-03 1.38479313685E-03 1.40221169021E-03 1.41984934201E-03 1.43770884815E-03 1.45579299923E-03 1.47410462092E-03 1.49264657446E-03 1.51142175707E-03 1.53043310239E-03 1.54968358101E-03 1.56917620084E-03 1.58891400764E-03 1.60890008548E-03 1.62913755724E-03 1.64962958506E-03 1.67037937086E-03 1.69139015683E-03 1.71266522595E-03 1.73420790250E-03 1.75602155256E-03 1.77810958457E-03 1.80047544981E-03 1.82312264301E-03 1.84605470282E-03 1.86927521244E-03 1.89278780012E-03 1.91659613974E-03 1.94070395141E-03 1.96511500201E-03 1.98983310584E-03 2.01486212513E-03 2.04020597074E-03 2.06586860267E-03 2.09185403078E-03 2.11816631534E-03 2.14480956769E-03 2.17178795090E-03 2.19910568040E-03 2.22676702463E-03 2.25477630574E-03 2.28313790024E-03 2.31185623968E-03 2.34093581136E-03 2.37038115902E-03 2.40019688356E-03 2.43038764375E-03 2.46095815695E-03 2.49191319987E-03 2.52325760930E-03 2.55499628286E-03 2.58713417979E-03 2.61967632170E-03 2.65262779337E-03 2.68599374352E-03 2.71977938566E-03 2.75398999887E-03 2.78863092861E-03 2.82370758761E-03 2.85922545667E-03 2.89519008552E-03 2.93160709371E-03 2.96848217148E-03 3.00582108062E-03 3.04362965542E-03 3.08191380355E-03 3.12067950698E-03 3.15993282293E-03 3.19967988482E-03 3.23992690319E-03 3.28068016674E-03 3.32194604324E-03 3.36373098056E-03 3.40604150770E-03 3.44888423575E-03 3.49226585898E-03 3.53619315585E-03 3.58067299010E-03 3.62571231179E-03 3.67131815840E-03 3.71749765595E-03 3.76425802007E-03 3.81160655716E-03 3.85955066553E-03 3.90809783654E-03 3.95725565580E-03 4.00703180430E-03 4.05743405967E-03 4.10847029737E-03 4.16014849191E-03 4.21247671812E-03 4.26546315238E-03 4.31911607394E-03 4.37344386618E-03 4.42845501791E-03 4.48415812476E-03 4.54056189043E-03 4.59767512814E-03 4.65550676193E-03 4.71406582814E-03 4.77336147672E-03 4.83340297274E-03 4.89419969781E-03 4.95576115153E-03 5.01809695303E-03 5.08121684238E-03 5.14513068219E-03 5.20984845915E-03 5.27538028553E-03 5.34173640081E-03 5.40892717327E-03 5.47696310160E-03 5.54585481657E-03 5.61561308263E-03 5.68624879966E-03 5.75777300463E-03 5.83019687336E-03 5.90353172220E-03 5.97778900989E-03 6.05298033927E-03 6.12911745914E-03 6.20621226609E-03 6.28427680633E-03 6.36332327760E-03 6.44336403109E-03 6.52441157331E-03 6.60647856812E-03 6.68957783864E-03 6.77372236931E-03 6.85892530788E-03 6.94519996749E-03 7.03255982872E-03 7.12101854173E-03 7.21058992838E-03 7.30128798437E-03 7.39312688147E-03 7.48612096968E-03 7.58028477953E-03 7.67563302429E-03 7.77218060233E-03 7.86994259940E-03 7.96893429102E-03 8.06917114483E-03 8.17066882304E-03 8.27344318489E-03 8.37751028906E-03 8.48288639627E-03 8.58958797173E-03 8.69763168778E-03 8.80703442649E-03 8.91781328224E-03 9.02998556446E-03 9.14356880029E-03 9.25858073735E-03 9.37503934649E-03 9.49296282460E-03 9.61236959747E-03 9.73327832264E-03 9.85570789236E-03 9.97967743648E-03 1.01052063255E-02 1.02323141736E-02 1.03610208416E-02 1.04913464401E-02 1.06233113329E-02 1.07569361397E-02 1.08922417397E-02 1.10292492746E-02 1.11679801521E-02 1.13084560493E-02 1.14506989157E-02 1.15947309771E-02 1.17405747388E-02 1.18882529892E-02 1.20377888033E-02 1.21892055465E-02 1.23425268777E-02 1.24977767540E-02 1.26549794332E-02 1.28141594788E-02 1.29753417628E-02 1.31385514704E-02 1.33038141034E-02 1.34711554844E-02 1.36406017609E-02 1.38121794091E-02 1.39859152385E-02 1.41618363955E-02 1.43399703684E-02 1.45203449907E-02 1.47029884466E-02 1.48879292742E-02 1.50751963711E-02 1.52648189982E-02 1.54568267842E-02 1.56512497309E-02 1.58481182172E-02 1.60474630042E-02 1.62493152399E-02 1.64537064642E-02 1.66606686137E-02 1.68702340265E-02 1.70824354476E-02 1.72973060341E-02 1.75148793599E-02 1.77351894211E-02 1.79582706418E-02 1.81841578788E-02 1.84128864275E-02 1.86444920272E-02 1.88790108666E-02 1.91164795900E-02 1.93569353021E-02 1.96004155748E-02 1.98469584523E-02 2.00966024574E-02 2.03493865975E-02 2.06053503707E-02 2.08645337718E-02 2.11269772988E-02 2.13927219590E-02 2.16618092755E-02 2.19342812937E-02 2.22101805880E-02 2.24895502683E-02 2.27724339865E-02 2.30588759439E-02 2.33489208975E-02 2.36426141675E-02 2.39400016441E-02 2.42411297947E-02 2.45460456711E-02 2.48547969171E-02 2.51674317757E-02 2.54839990967E-02 2.58045483444E-02 2.61291296052E-02 2.64577935958E-02 2.67905916704E-02 2.71275758295E-02 2.74687987274E-02 2.78143136811E-02 2.81641746779E-02 2.85184363843E-02 2.88771541543E-02 2.92403840385E-02 2.96081827922E-02 2.99806078846E-02 3.03577175080E-02 3.07395705866E-02 3.11262267856E-02 3.15177465209E-02 3.19141909682E-02 3.23156220727E-02 3.27221025590E-02 3.31336959403E-02 3.35504665291E-02 3.39724794465E-02 3.43998006329E-02 3.48324968582E-02 3.52706357319E-02 3.57142857143E-02 3.61635161265E-02 3.66183971616E-02 3.70789998958E-02 3.75453962991E-02 3.80176592471E-02 3.84958625316E-02 3.89800808730E-02 3.94703899313E-02 3.99668663183E-02 4.04695876095E-02 4.09786323561E-02 4.14940800974E-02 4.20160113732E-02 4.25445077362E-02 4.30796517650E-02 4.36215270771E-02 4.41702183416E-02 4.47258112926E-02 4.52883927425E-02 4.58580505960E-02 4.64348738632E-02 4.70189526738E-02 4.76103782915E-02 4.82092431277E-02 4.88156407562E-02 4.94296659279E-02 5.00514145854E-02 5.06809838783E-02 5.13184721781E-02 5.19639790935E-02 5.26176054864E-02 5.32794534872E-02 5.39496265110E-02 5.46282292737E-02 5.53153678084E-02 5.60111494818E-02 5.67156830113E-02 5.74290784816E-02 5.81514473623E-02 5.88829025250E-02 5.96235582610E-02 6.03735302993E-02 6.11329358245E-02 6.19018934953E-02 6.26805234629E-02 6.34689473898E-02 6.42672884689E-02 6.50756714425E-02 6.58942226222E-02 6.67230699083E-02 6.75623428098E-02 6.84121724648E-02 6.92726916609E-02 7.01440348561E-02 7.10263381994E-02 7.19197395525E-02 7.28243785113E-02 7.37403964274E-02 7.46679364304E-02 7.56071434505E-02 7.65581642405E-02 7.75211473994E-02 7.84962433953E-02 7.94836045890E-02 8.04833852576E-02 8.14957416189E-02 8.25208318556E-02 8.35588161402E-02 8.46098566598E-02 8.56741176417E-02 8.67517653787E-02 8.78429682556E-02 8.89478967750E-02 9.00667235842E-02 9.11996235022E-02 9.23467735470E-02 9.35083529630E-02 9.46845432494E-02 9.58755281883E-02 9.70814938735E-02 9.83026287397E-02 9.95391235916E-02 1.00791171634E-01 1.02058968502E-01 1.03342712292E-01 1.04642603590E-01 1.05958845509E-01 1.07291643712E-01 1.08641206454E-01 1.10007744604E-01 1.11391471689E-01 1.12792603917E-01 1.14211360220E-01 1.15647962280E-01 1.17102634569E-01 1.18575604383E-01 1.20067101877E-01 1.21577360100E-01 1.23106615032E-01 1.24655105624E-01 1.26223073829E-01 1.27810764646E-01 1.29418426156E-01 1.31046309558E-01 1.32694669212E-01 1.34363762679E-01 1.36053850756E-01 1.37765197525E-01 1.39498070386E-01 1.41252740104E-01 1.43029480851E-01 1.44828570244E-01 1.46650289397E-01 1.48494922956E-01 1.50362759148E-01 1.52254089827E-01 1.54169210518E-01 1.56108420462E-01 1.58072022664E-01 1.60060323941E-01 1.62073634969E-01 1.64112270332E-01 1.66176548572E-01 1.68266792235E-01 1.70383327927E-01 1.72526486361E-01 1.74696602409E-01 1.76894015157E-01 1.79119067954E-01 1.81372108471E-01 1.83653488748E-01 1.85963565256E-01 1.88302698950E-01 1.90671255324E-01 1.93069604469E-01 1.95498121133E-01 1.97957184776E-01 2.00447179632E-01 2.02968494767E-01 2.05521524143E-01 2.08106666675E-01 2.10724326297E-01 2.13374912024E-01 2.16058838015E-01 2.18776523639E-01 2.21528393539E-01 2.24314877702E-01 2.27136411521E-01 2.29993435867E-01 2.32886397155E-01 2.35815747416E-01 2.38781944367E-01 2.41785451483E-01 2.44826738068E-01 2.47906279328E-01 2.51024556450E-01 2.54182056668E-01 2.57379273351E-01 2.60616706068E-01 2.63894860676E-01 2.67214249393E-01 2.70575390880E-01 2.73978810322E-01 2.77425039511E-01 2.80914616927E-01 2.84448087823E-01 2.88026004311E-01 2.91648925449E-01 2.95317417324E-01 2.99032053147E-01 3.02793413337E-01 3.06602085613E-01 3.10458665090E-01 3.14363754364E-01 3.18317963614E-01 3.22321910694E-01 3.26376221228E-01 3.30481528711E-01 3.34638474605E-01 3.38847708441E-01 3.43109887922E-01 3.47425679020E-01 3.51795756088E-01 3.56220801958E-01 3.60701508053E-01 3.65238574493E-01 3.69832710203E-01 3.74484633026E-01 3.79195069835E-01 3.83964756646E-01 3.88794438730E-01 3.93684870737E-01 3.98636816806E-01 4.03651050689E-01 4.08728355869E-01 4.13869525687E-01 4.19075363460E-01 4.24346682611E-01 4.29684306794E-01 4.35089070025E-01 4.40561816808E-01 4.46103402272E-01 4.51714692299E-01 4.57396563667E-01 4.63149904177E-01 4.68975612803E-01 4.74874599823E-01 4.80847786964E-01 4.86896107551E-01 4.93020506645E-01 4.99221941197E-01 5.05501380192E-01 5.11859804806E-01 5.18298208557E-01 5.24817597457E-01 5.31418990174E-01 5.38103418190E-01 5.44871925959E-01 5.51725571076E-01 5.58665424435E-01 5.65692570404E-01 5.72808106988E-01 5.80013146004E-01 5.87308813253E-01 5.94696248700E-01 6.02176606646E-01 6.09751055912E-01 6.17420780020E-01 6.25186977382E-01 6.33050861481E-01 6.41013661065E-01 6.49076620337E-01 6.57240999152E-01 6.65508073211E-01 6.73879134259E-01 6.82355490294E-01 6.90938465762E-01 6.99629401771E-01 7.08429656298E-01 7.17340604400E-01 7.26363638430E-01 7.35500168257E-01 7.44751621482E-01 7.54119443662E-01 7.63605098540E-01 7.73210068268E-01 7.82935853643E-01 7.92783974337E-01 8.02755969141E-01 8.12853396197E-01 8.23077833251E-01 8.33430877891E-01 8.43914147801E-01 8.54529281013E-01 8.65277936165E-01 8.76161792754E-01 8.87182551406E-01 8.98341934136E-01 9.09641684622E-01 9.21083568471E-01 9.32669373502E-01 9.44400910020E-01 9.56280011102E-01 9.68308532881E-01 9.80488354838E-01 9.92821380095E-01 1.00530953571E+00 1.01795477299E+00 1.03075906777E+00 1.04372442076E+00 1.05685285781E+00 1.07014643026E+00 1.08360721528E+00 1.09723731613E+00 1.11103886253E+00 1.12501401103E+00 1.13916494525E+00 1.15349387631E+00 1.16800304313E+00 1.18269471281E+00 1.19757118094E+00 1.21263477201E+00 1.22788783973E+00 1.24333276741E+00 1.25897196838E+00 1.27480788627E+00 1.29084299549E+00 1.30707980156E+00 1.32352084150E+00 1.34016868427E+00 1.35702593112E+00 1.37409521604E+00 1.39137920612E+00 1.40888060204E+00 1.42660213842E+00 1.44454658429E+00 1.46271674350E+00 1.48111545517E+00 1.49974559415E+00 1.51861007143E+00 1.53771183462E+00 1.55705386842E+00 1.57663919505E+00 1.59647087476E+00 1.61655200629E+00 1.63688572737E+00 1.65747521517E+00 1.67832368684E+00 1.69943440001E+00 1.72081065325E+00 1.74245578667E+00 1.76437318234E+00 1.78656626491E+00 1.80903850210E+00 1.83179340524E+00 1.85483452982E+00 1.87816547606E+00 1.90178988949E+00 1.92571146146E+00 1.94993392976E+00 1.97446107920E+00 1.99929674220E+00 2.02444479939E+00 2.04990918019E+00 2.07569386348E+00 2.10180287816E+00 2.12824030381E+00 2.15501027133E+00 2.18211696360E+00 2.20956461608E+00 2.23735751753E+00 2.26550001065E+00 2.29399649275E+00 2.32285141646E+00 2.35206929044E+00 2.38165468003E+00 2.41161220801E+00 2.44194655531E+00 2.47266246172E+00 2.50376472667E+00 2.53525820995E+00 2.56714783249E+00 2.59943857710E+00 2.63213548927E+00 2.66524367797E+00 2.69876831642E+00 2.73271464291E+00 2.76708796162E+00 2.80189364345E+00 2.83713712687E+00 2.87282391873E+00 2.90895959518E+00 2.94554980248E+00 2.98260025793E+00 3.02011675074E+00 3.05810514294E+00 3.09657137028E+00 3.13552144321E+00 3.17496144773E+00 3.21489754645E+00 3.25533597944E+00 3.29628306531E+00 3.33774520211E+00 3.37972886839E+00 3.42224062418E+00 3.46528711203E+00 3.50887505805E+00 3.55301127293E+00 3.59770265305E+00 3.64295618152E+00 3.68877892932E+00 3.73517805633E+00 3.78216081250E+00 3.82973453900E+00 3.87790666931E+00 3.92668473043E+00 3.97607634403E+00 4.02608922765E+00 4.07673119589E+00 4.12801016169E+00 4.17993413746E+00 4.23251123645E+00 4.28574967394E+00 4.33965776853E+00 4.39424394347E+00 4.44951672797E+00 4.50548475851E+00 4.56215678022E+00 4.61954164820E+00 4.67764832896E+00 4.73648590179E+00 4.79606356018E+00 4.85639061325E+00 4.91747648724E+00 4.97933072694E+00 5.04196299720E+00 5.10538308443E+00 5.16960089815E+00 5.23462647253E+00 5.30046996795E+00 5.36714167258E+00 5.43465200402E+00 5.50301151090E+00 5.57223087451E+00 5.64232091054E+00 5.71329257069E+00 5.78515694443E+00 5.85792526071E+00 5.93160888973E+00 6.00621934471E+00 6.08176828368E+00 6.15826751132E+00 6.23572898078E+00 6.31416479559E+00 6.39358721149E+00 6.47400863840E+00 6.55544164233E+00 6.63789894736E+00 6.72139343760E+00 6.80593815924E+00 6.89154632256E+00 6.97823130402E+00 7.06600664832E+00 7.15488607053E+00 7.24488345825E+00 7.33601287374E+00 7.42828855618E+00 7.52172492381E+00 7.61633657627E+00 7.71213829681E+00 7.80914505465E+00 7.90737200729E+00 8.00683450290E+00 8.10754808269E+00 8.20952848336E+00 8.31279163956E+00 8.41735368636E+00 8.52323096181E+00 8.63044000943E+00 8.73899758087E+00 8.84892063845E+00 8.96022635789E+00 9.07293213092E+00 9.18705556806E+00 9.30261450133E+00 9.41962698703E+00 9.53811130862E+00 9.65808597951E+00 9.77956974597E+00 9.90258159011E+00 1.00271407328E+01 1.01532666366E+01 1.02809790089E+01 1.04102978052E+01 1.05412432317E+01 1.06738357488E+01 1.08080960745E+01 1.09440451873E+01 1.10817043293E+01 1.12210950102E+01 1.13622390100E+01 1.15051583828E+01 1.16498754600E+01 1.17964128539E+01 1.19447934614E+01 1.20950404671E+01 1.22471773475E+01 1.24012278742E+01 1.25572161181E+01 1.27151664525E+01 1.28751035576E+01 1.30370524238E+01 1.32010383559E+01 1.33670869772E+01 1.35352242329E+01 1.37054763950E+01 1.38778700657E+01 1.40524321818E+01 1.42291900191E+01 1.44081711962E+01 1.45894036793E+01 1.47729157865E+01 1.49587361919E+01 1.51468939302E+01 1.53374184015E+01 1.55303393756E+01 1.57256869968E+01 1.59234917887E+01 1.61237846585E+01 1.63265969025E+01 1.65319602104E+01 1.67399066708E+01 1.69504687757E+01 1.71636794257E+01 1.73795719357E+01 1.75981800390E+01 1.78195378939E+01 1.80436800877E+01 1.82706416433E+01 1.85004580239E+01 1.87331651386E+01 1.89687993485E+01 1.92073974719E+01 1.94489967902E+01 1.96936350539E+01 1.99413504880E+01 2.01921817988E+01 2.04461681791E+01 2.07033493147E+01 2.09637653908E+01 2.12274570979E+01 2.14944656383E+01 2.17648327327E+01 2.20386006265E+01 2.23158120965E+01 2.25965104576E+01 2.28807395694E+01 2.31685438432E+01 2.34599682492E+01 2.37550583230E+01 2.40538601730E+01 2.43564204875E+01 2.46627865423E+01 2.49730062077E+01 2.52871279561E+01 2.56052008697E+01 2.59272746480E+01 2.62533996158E+01 2.65836267306E+01 2.69180075912E+01 2.72565944453E+01 2.75994401977E+01 2.79465984188E+01 2.82981233527E+01 2.86540699260E+01 2.90144937560E+01 2.93794511597E+01 2.97489991624E+01 3.01231955067E+01 3.05020986616E+01 3.08857678316E+01 3.12742629655E+01 3.16676447667E+01 3.20659747018E+01 3.24693150107E+01 3.28777287161E+01 3.32912796335E+01 3.37100323811E+01 3.41340523899E+01 3.45634059137E+01 3.49981600401E+01 3.54383827002E+01 3.58841426797E+01 3.63355096294E+01 3.67925540765E+01 3.72553474350E+01 3.77239620174E+01 3.81984710455E+01 3.86789486625E+01 3.91654699439E+01 3.96581109096E+01 4.01569485359E+01 4.06620607671E+01 4.11735265280E+01 4.16914257362E+01 4.22158393144E+01 4.27468492035E+01 4.32845383747E+01 4.38289908431E+01 4.43802916805E+01 4.49385270288E+01 4.55037841133E+01 4.60761512567E+01 4.66557178925E+01 4.72425745791E+01 4.78368130141E+01 4.84385260484E+01 4.90478077010E+01 4.96647531734E+01 5.02894588645E+01 5.09220223858E+01 5.15625425767E+01 5.22111195198E+01 5.28678545566E+01 5.35328503032E+01 5.42062106666E+01 5.48880408606E+01 5.55784474228E+01 5.62775382304E+01 5.69854225178E+01 5.77022108935E+01 5.84280153570E+01 5.91629493168E+01 5.99071276078E+01 6.06606665093E+01 6.14236837634E+01 6.21962985931E+01 6.29786317210E+01 6.37708053881E+01 6.45729433734E+01 6.53851710125E+01 6.62076152175E+01 6.70404044972E+01 6.78836689764E+01 6.87375404170E+01 6.96021522382E+01 7.04776395372E+01 7.13641391109E+01 7.22617894764E+01 7.31707308936E+01 7.40911053863E+01 7.50230567650E+01 7.59667306490E+01 7.69222744891E+01 7.78898375912E+01 7.88695711388E+01 7.98616282174E+01 8.08661638379E+01 8.18833349610E+01 8.29133005218E+01 8.39562214545E+01 8.50122607176E+01 8.60815833194E+01 8.71643563437E+01 8.82607489761E+01 8.93709325300E+01 9.04950804740E+01 9.16333684584E+01 9.27859743430E+01 9.39530782250E+01 9.51348624665E+01 9.63315117239E+01 9.75432129759E+01 9.87701555535E+01 4.07090163194E-07 4.12210727084E-07 4.17395699740E-07 4.22645891322E-07 4.27962122185E-07 4.33345223000E-07 4.38796034888E-07 4.44315409549E-07 4.49904209397E-07 4.55563307692E-07 4.61293588682E-07 4.67095947733E-07 4.72971291477E-07 4.78920537947E-07 4.84944616725E-07 4.91044469086E-07 4.97221048145E-07 5.03475319004E-07 5.09808258906E-07 5.16220857386E-07 5.22714116425E-07 5.29289050608E-07 5.35946687282E-07 5.42688066716E-07 5.49514242265E-07 5.56426280532E-07 5.63425261538E-07 5.70512278887E-07 5.77688439940E-07 5.84954865987E-07 5.92312692423E-07 5.99763068921E-07 6.07307159620E-07 6.14946143297E-07 6.22681213561E-07 6.30513579031E-07 6.38444463530E-07 6.46475106276E-07 6.54606762073E-07 6.62840701508E-07 6.71178211151E-07 6.79620593755E-07 6.88169168459E-07 6.96825270997E-07 7.05590253900E-07 7.14465486716E-07 7.23452356218E-07 7.32552266623E-07 7.41766639810E-07 7.51096915543E-07 7.60544551698E-07 7.70111024486E-07 7.79797828688E-07 7.89606477888E-07 7.99538504706E-07 8.09595461042E-07 8.19778918316E-07 8.30090467715E-07 8.40531720437E-07 8.51104307951E-07 8.61809882245E-07 8.72650116086E-07 8.83626703283E-07 8.94741358950E-07 9.05995819775E-07 9.17391844290E-07 9.28931213147E-07 9.40615729396E-07 9.52447218767E-07 9.64427529953E-07 9.76558534903E-07 9.88842129111E-07 1.00128023191E-06 1.01387478679E-06 1.02662776166E-06 1.03954114921E-06 1.05261696718E-06 1.06585725870E-06 1.07926409257E-06 1.09283956366E-06 1.10658579315E-06 1.12050492893E-06 1.13459914588E-06 1.14887064625E-06 1.16332166000E-06 1.17795444513E-06 1.19277128804E-06 1.20777450388E-06 1.22296643695E-06 1.23834946101E-06 1.25392597970E-06 1.26969842687E-06 1.28566926700E-06 1.30184099558E-06 1.31821613945E-06 1.33479725728E-06 1.35158693990E-06 1.36858781073E-06 1.38580252618E-06 1.40323377610E-06 1.42088428416E-06 1.43875680827E-06 1.45685414106E-06 1.47517911028E-06 1.49373457923E-06 1.51252344725E-06 1.53154865013E-06 1.55081316061E-06 1.57031998880E-06 1.59007218268E-06 1.61007282858E-06 1.63032505163E-06 1.65083201629E-06 1.67159692681E-06 1.69262302774E-06 1.71391360448E-06 1.73547198369E-06 1.75730153394E-06 1.77940566613E-06 1.80178783407E-06 1.82445153503E-06 1.84740031025E-06 1.87063774553E-06 1.89416747176E-06 1.91799316551E-06 1.94211854960E-06 1.96654739366E-06 1.99128351476E-06 2.01633077795E-06 2.04169309693E-06 2.06737443461E-06 2.09337880376E-06 2.11971026759E-06 2.14637294048E-06 2.17337098850E-06 2.20070863015E-06 2.22839013701E-06 2.25641983437E-06 2.28480210191E-06 2.31354137443E-06 2.34264214249E-06 2.37210895316E-06 2.40194641067E-06 2.43215917720E-06 2.46275197355E-06 2.49372957991E-06 2.52509683659E-06 2.55685864478E-06 2.58901996734E-06 2.62158582954E-06 2.65456131985E-06 2.68795159078E-06 2.72176185961E-06 2.75599740926E-06 2.79066358912E-06 2.82576581584E-06 2.86130957422E-06 2.89730041804E-06 2.93374397095E-06 2.97064592732E-06 3.00801205316E-06 3.04584818701E-06 3.08416024083E-06 3.12295420096E-06 3.16223612904E-06 3.20201216295E-06 3.24228851777E-06 3.28307148678E-06 3.32436744238E-06 3.36618283715E-06 3.40852420485E-06 3.45139816138E-06 3.49481140590E-06 3.53877072182E-06 3.58328297785E-06 3.62835512915E-06 3.67399421831E-06 3.72020737655E-06 3.76700182476E-06 3.81438487466E-06 3.86236392996E-06 3.91094648749E-06 3.96014013836E-06 4.00995256919E-06 4.06039156326E-06 4.11146500177E-06 4.16318086506E-06 4.21554723382E-06 4.26857229042E-06 4.32226432012E-06 4.37663171242E-06 4.43168296233E-06 4.48742667171E-06 4.54387155064E-06 4.60102641875E-06 4.65890020660E-06 4.71750195708E-06 4.77684082684E-06 4.83692608769E-06 4.89776712809E-06 4.95937345457E-06 5.02175469324E-06 5.08492059130E-06 5.14888101855E-06 5.21364596893E-06 5.27922556210E-06 5.34563004500E-06 5.41286979348E-06 5.48095531387E-06 5.54989724468E-06 5.61970635823E-06 5.69039356233E-06 5.76196990200E-06 5.83444656119E-06 5.90783486453E-06 5.98214627908E-06 6.05739241616E-06 6.13358503313E-06 6.21073603524E-06 6.28885747749E-06 6.36796156652E-06 6.44806066249E-06 6.52916728107E-06 6.61129409531E-06 6.69445393771E-06 6.77865980216E-06 6.86392484599E-06 6.95026239205E-06 7.03768593074E-06 7.12620912218E-06 7.21584579829E-06 7.30660996499E-06 7.39851580436E-06 7.49157767688E-06 7.58581012365E-06 7.68122786868E-06 7.77784582120E-06 7.87567907795E-06 7.97474292559E-06 8.07505284303E-06 8.17662450390E-06 8.27947377899E-06 8.38361673870E-06 8.48906965558E-06 8.59584900687E-06 8.70397147705E-06 8.81345396049E-06 8.92431356404E-06 9.03656760973E-06 9.15023363751E-06 9.26532940790E-06 9.38187290487E-06 9.49988233856E-06 9.61937614820E-06 9.74037300493E-06 9.86289181476E-06 9.98695172150E-06 1.01125721098E-05 1.02397726080E-05 1.03685730915E-05 1.04989936857E-05 1.06310547690E-05 1.07647769763E-05 1.09001812018E-05 1.10372886028E-05 1.11761206027E-05 1.13166988941E-05 1.14590454427E-05 1.16031824905E-05 1.17491325592E-05 1.18969184537E-05 1.20465632660E-05 1.21980903783E-05 1.23515234670E-05 1.25068865063E-05 1.26642037722E-05 1.28234998456E-05 1.29847996170E-05 1.31481282898E-05 1.33135113843E-05 1.34809747421E-05 1.36505445296E-05 1.38222472425E-05 1.39961097096E-05 1.41721590974E-05 1.43504229138E-05 1.45309290130E-05 1.47137055994E-05 1.48987812323E-05 1.50861848300E-05 1.52759456749E-05 1.54680934173E-05 1.56626580807E-05 1.58596700664E-05 1.60591601578E-05 1.62611595256E-05 1.64656997327E-05 1.66728127389E-05 1.68825309059E-05 1.70948870028E-05 1.73099142106E-05 1.75276461277E-05 1.77481167751E-05 1.79713606019E-05 1.81974124903E-05 1.84263077615E-05 1.86580821808E-05 1.88927719633E-05 1.91304137799E-05 1.93710447626E-05 1.96147025104E-05 1.98614250955E-05 2.01112510686E-05 2.03642194655E-05 2.06203698133E-05 2.08797421357E-05 2.11423769603E-05 2.14083153244E-05 2.16775987813E-05 2.19502694070E-05 2.22263698071E-05 2.25059431226E-05 2.27890330376E-05 2.30756837853E-05 2.33659401556E-05 2.36598475015E-05 2.39574517468E-05 2.42587993926E-05 2.45639375252E-05 2.48729138230E-05 2.51857765642E-05 2.55025746342E-05 2.58233575334E-05 2.61481753848E-05 2.64770789417E-05 2.68101195961E-05 2.71473493863E-05 2.74888210050E-05 2.78345878079E-05 2.81847038218E-05 2.85392237530E-05 2.88982029960E-05 2.92616976420E-05 2.96297644878E-05 3.00024610445E-05 3.03798455469E-05 3.07619769619E-05 3.11489149984E-05 3.15407201163E-05 3.19374535358E-05 3.23391772474E-05 3.27459540213E-05 3.31578474171E-05 3.35749217940E-05 3.39972423208E-05 3.44248749859E-05 3.48578866077E-05 3.52963448452E-05 3.57403182084E-05 3.61898760690E-05 3.66450886714E-05 3.71060271434E-05 3.75727635077E-05 3.80453706928E-05 3.85239225444E-05 3.90084938372E-05 3.94991602866E-05 3.99959985602E-05 4.04990862899E-05 4.10085020843E-05 4.15243255405E-05 4.20466372570E-05 4.25755188462E-05 4.31110529469E-05 4.36533232372E-05 4.42024144481E-05 4.47584123763E-05 4.53214038974E-05 4.58914769800E-05 4.64687206994E-05 4.70532252508E-05 4.76450819645E-05 4.82443833191E-05 4.88512229568E-05 4.94656956975E-05 5.00878975537E-05 5.07179257459E-05 5.13558787171E-05 5.20018561489E-05 5.26559589765E-05 5.33182894048E-05 5.39889509243E-05 5.46680483272E-05 5.53556877239E-05 5.60519765595E-05 5.67570236304E-05 5.74709391017E-05 5.81938345242E-05 5.89258228517E-05 5.96670184589E-05 6.04175371592E-05 6.11774962226E-05 6.19470143942E-05 6.27262119128E-05 6.35152105297E-05 6.43141335274E-05 6.51231057394E-05 6.59422535691E-05 6.67717050101E-05 6.76115896659E-05 6.84620387701E-05 6.93231852071E-05 7.01951635329E-05 7.10781099958E-05 7.19721625579E-05 7.28774609169E-05 7.37941465275E-05 7.47223626236E-05 7.56622542408E-05 7.66139682393E-05 7.75776533261E-05 7.85534600791E-05 7.95415409700E-05 8.05420503886E-05 8.15551446664E-05 8.25809821015E-05 8.36197229830E-05 8.46715296164E-05 8.57365663486E-05 8.68149995936E-05 8.79069978590E-05 8.90127317717E-05 9.01323741048E-05 9.12660998047E-05 9.24140860184E-05 9.35765121210E-05 9.47535597441E-05 9.59454128036E-05 9.71522575291E-05 9.83742824925E-05 9.96116786377E-05 1.00864639310E-04 1.02133360288E-04 1.03418039811E-04 1.04718878613E-04 1.06036079953E-04 1.07369849647E-04 1.08720396097E-04 1.10087930331E-04 1.11472666028E-04 1.12874819556E-04 1.14294610004E-04 1.15732259217E-04 1.17187991831E-04 1.18662035308E-04 1.20154619968E-04 1.21665979033E-04 1.23196348654E-04 1.24745967956E-04 1.26315079069E-04 1.27903927170E-04 1.29512760519E-04 1.31141830502E-04 1.32791391661E-04 1.34461701747E-04 1.36153021746E-04 1.37865615932E-04 1.39599751901E-04 1.41355700616E-04 1.43133736446E-04 1.44934137214E-04 1.46757184235E-04 1.48603162365E-04 1.50472360042E-04 1.52365069331E-04 1.54281585972E-04 1.56222209425E-04 1.58187242915E-04 1.60176993485E-04 1.62191772035E-04 1.64231893380E-04 1.66297676292E-04 1.68389443555E-04 1.70507522011E-04 1.72652242614E-04 1.74823940481E-04 1.77022954944E-04 1.79249629605E-04 1.81504312384E-04 1.83787355582E-04 1.86099115928E-04 1.88439954639E-04 1.90810237477E-04 1.93210334803E-04 1.95640621636E-04 1.98101477715E-04 2.00593287552E-04 2.03116440499E-04 2.05671330803E-04 2.08258357671E-04 2.10877925331E-04 2.13530443096E-04 2.16216325427E-04 2.18935991998E-04 2.21689867764E-04 2.24478383023E-04 2.27301973486E-04 2.30161080344E-04 2.33056150340E-04 2.35987635833E-04 2.38955994875E-04 2.41961691276E-04 2.45005194685E-04 2.48086980653E-04 2.51207530717E-04 2.54367332469E-04 2.57566879634E-04 2.60806672148E-04 2.64087216235E-04 2.67409024487E-04 2.70772615943E-04 2.74178516171E-04 2.77627257350E-04 2.81119378353E-04 2.84655424831E-04 2.88235949298E-04 2.91861511219E-04 2.95532677094E-04 2.99250020552E-04 3.03014122434E-04 3.06825570889E-04 3.10684961464E-04 3.14592897196E-04 3.18549988708E-04 3.22556854304E-04 3.26614120065E-04 3.30722419947E-04 3.34882395880E-04 3.39094697868E-04 3.43359984093E-04 3.47678921014E-04 3.52052183474E-04 3.56480454803E-04 3.60964426929E-04 3.65504800481E-04 3.70102284902E-04 3.74757598558E-04 3.79471468851E-04 3.84244632333E-04 3.89077834820E-04 3.93971831511E-04 3.98927387102E-04 4.03945275909E-04 4.09026281987E-04 4.14171199254E-04 4.19380831613E-04 4.24655993081E-04 4.29997507911E-04 4.35406210727E-04 4.40882946649E-04 4.46428571429E-04 4.52043951581E-04 4.57729964520E-04 4.63487498697E-04 4.69317453739E-04 4.75220740588E-04 4.81198281645E-04 4.87251010912E-04 4.93379874141E-04 4.99585828979E-04 5.05869845119E-04 5.12232904452E-04 5.18676001218E-04 5.25200142165E-04 5.31806346702E-04 5.38495647063E-04 5.45269088464E-04 5.52127729270E-04 5.59072641157E-04 5.66104909282E-04 5.73225632450E-04 5.80435923290E-04 5.87736908423E-04 5.95129728644E-04 6.02615539096E-04 6.10195509453E-04 6.17870824099E-04 6.25642682318E-04 6.33512298479E-04 6.41480902226E-04 6.49549738669E-04 6.57720068580E-04 6.65993168590E-04 6.74370331387E-04 6.82852865921E-04 6.91442097605E-04 7.00139368522E-04 7.08946037641E-04 7.17863481020E-04 7.26893092029E-04 7.36036281563E-04 7.45294478262E-04 7.54669128741E-04 7.64161697806E-04 7.73773668691E-04 7.83506543286E-04 7.93361842372E-04 8.03341105861E-04 8.13445893031E-04 8.23677782778E-04 8.34038373854E-04 8.44529285122E-04 8.55152155810E-04 8.65908645761E-04 8.76800435701E-04 8.87829227492E-04 8.98996744406E-04 9.10304731391E-04 9.21754955342E-04 9.33349205380E-04 9.45089293131E-04 9.56977053006E-04 9.69014342493E-04 9.81203042442E-04 9.93545057363E-04 1.00604231572E-03 1.01869677024E-03 1.03151039820E-03 1.04448520175E-03 1.05762320825E-03 1.07092647052E-03 1.08439706723E-03 1.09803710320E-03 1.11184870969E-03 1.12583404480E-03 1.13999529378E-03 1.15433466934E-03 1.16885441204E-03 1.18355679062E-03 1.19844410235E-03 1.21351867342E-03 1.22878285925E-03 1.24423904490E-03 1.25988964543E-03 1.27573710628E-03 1.29178390365E-03 1.30803254488E-03 1.32448556886E-03 1.34114554640E-03 1.35801508067E-03 1.37509680755E-03 1.39239339611E-03 1.40990754897E-03 1.42764200275E-03 1.44559952850E-03 1.46378293212E-03 1.48219505479E-03 1.50083877346E-03 1.51971700125E-03 1.53883268790E-03 1.55818882030E-03 1.57778842286E-03 1.59763455808E-03 1.61773032695E-03 1.63807886947E-03 1.65868336515E-03 1.67954703348E-03 1.70067313445E-03 1.72206496906E-03 1.74372587982E-03 1.76565925130E-03 1.78786851063E-03 1.81035712806E-03 1.83312861746E-03 1.85618653694E-03 1.87953448935E-03 1.90317612284E-03 1.92711513148E-03 1.95135525577E-03 1.97590028330E-03 2.00075404926E-03 2.02592043711E-03 2.05140337915E-03 2.07720685715E-03 2.10333490294E-03 2.12979159909E-03 2.15658107951E-03 2.18370753012E-03 2.21117518946E-03 2.23898834943E-03 2.26715135588E-03 2.29566860935E-03 2.32454456571E-03 2.35378373688E-03 2.38339069155E-03 2.41337005587E-03 2.44372651416E-03 2.47446480970E-03 2.50558974540E-03 2.53710618459E-03 2.56901905179E-03 2.60133333344E-03 2.63405407871E-03 2.66718640030E-03 2.70073547518E-03 2.73470654548E-03 2.76910491924E-03 2.80393597128E-03 2.83920514402E-03 2.87491794834E-03 2.91107996443E-03 2.94769684270E-03 2.98477430459E-03 3.02231814354E-03 3.06033422585E-03 3.09882849161E-03 3.13780695562E-03 3.17727570836E-03 3.21724091688E-03 3.25770882585E-03 3.29868575845E-03 3.34017811741E-03 3.38219238600E-03 3.42473512903E-03 3.46781299389E-03 3.51143271158E-03 3.55560109778E-03 3.60032505389E-03 3.64561156811E-03 3.69146771656E-03 3.73790066434E-03 3.78491766671E-03 3.83252607017E-03 3.88073331362E-03 3.92954692955E-03 3.97897454518E-03 4.02902388368E-03 4.07970276535E-03 4.13101910889E-03 4.18298093256E-03 4.23559635552E-03 4.28887359902E-03 4.34282098775E-03 4.39744695109E-03 4.45276002447E-03 4.50876885066E-03 4.56548218116E-03 4.62290887753E-03 4.68105791282E-03 4.73993837294E-03 4.79955945807E-03 4.85993048413E-03 4.92106088422E-03 4.98296021008E-03 5.04563813361E-03 5.10910444836E-03 5.17336907108E-03 5.23844204324E-03 5.30433353263E-03 5.37105383493E-03 5.43861337531E-03 5.50702271010E-03 5.57629252840E-03 5.64643365374E-03 5.71745704583E-03 5.78937380222E-03 5.86219516004E-03 5.93593249778E-03 6.01059733705E-03 6.08620134439E-03 6.16275633307E-03 6.24027426496E-03 6.31876725240E-03 6.39824756008E-03 6.47872760696E-03 6.56021996821E-03 6.64273737718E-03 6.72629272737E-03 6.81089907449E-03 6.89656963845E-03 6.98331780544E-03 7.07115713005E-03 7.16010133735E-03 7.25016432504E-03 7.34136016567E-03 7.43370310875E-03 7.52720758308E-03 7.62188819890E-03 7.71775975025E-03 7.81483721727E-03 7.91313576851E-03 8.01267076331E-03 8.11345775422E-03 8.21551248940E-03 8.31885091513E-03 8.42348917824E-03 8.52944362867E-03 8.63673082203E-03 8.74536752214E-03 8.85537070372E-03 8.96675755499E-03 9.07954548038E-03 9.19375210321E-03 9.30939526852E-03 9.42649304578E-03 9.54506373175E-03 9.66512585335E-03 9.78669817053E-03 9.90979967922E-03 1.00344496143E-02 1.01606674525E-02 1.02884729156E-02 1.04178859736E-02 1.05489268475E-02 1.06816160127E-02 1.08159742021E-02 1.09520224094E-02 1.10897818926E-02 1.12292741767E-02 1.13705210578E-02 1.15135446059E-02 1.16583671688E-02 1.18050113753E-02 1.19535001388E-02 1.21038566610E-02 1.22561044355E-02 1.24102672512E-02 1.25663691964E-02 1.27244346624E-02 1.28844883472E-02 1.30465552595E-02 1.32106607226E-02 1.33768303783E-02 1.35450901910E-02 1.37154664516E-02 1.38879857817E-02 1.40626751378E-02 1.42395618156E-02 1.44186734538E-02 1.46000380392E-02 1.47836839101E-02 1.49696397618E-02 1.51579346501E-02 1.53485979966E-02 1.55416595927E-02 1.57371496047E-02 1.59350985784E-02 1.61355374437E-02 1.63384975195E-02 1.65440105188E-02 1.67521085534E-02 1.69628241390E-02 1.71761902005E-02 1.73922400766E-02 1.76110075255E-02 1.78325267303E-02 1.80568323036E-02 1.82839592937E-02 1.85139431897E-02 1.87468199269E-02 1.89826258929E-02 1.92213979328E-02 1.94631733552E-02 1.97079899381E-02 1.99558859345E-02 2.02069000787E-02 2.04610715921E-02 2.07184401896E-02 2.09790460855E-02 2.12429300001E-02 2.15101331657E-02 2.17806973333E-02 2.20546647793E-02 2.23320783114E-02 2.26129812763E-02 2.28974175654E-02 2.31854316227E-02 2.34770684508E-02 2.37723736186E-02 2.40713932682E-02 2.43741741219E-02 2.46807634900E-02 2.49912092775E-02 2.53055599924E-02 2.56238647524E-02 2.59461732935E-02 2.62725359769E-02 2.66030037976E-02 2.69376283917E-02 2.72764620450E-02 2.76195577011E-02 2.79669689692E-02 2.83187501331E-02 2.86749561593E-02 2.90356427058E-02 2.94008661305E-02 2.97706835004E-02 3.01451526002E-02 3.05243319413E-02 3.09082807715E-02 3.12970590833E-02 3.16907276244E-02 3.20893479061E-02 3.24929822137E-02 3.29016936159E-02 3.33155459746E-02 3.37346039552E-02 3.41589330363E-02 3.45885995202E-02 3.50236705431E-02 3.54642140858E-02 3.59102989841E-02 3.63619949397E-02 3.68193725310E-02 3.72825032241E-02 3.77514593842E-02 3.82263142867E-02 3.87071421285E-02 3.91940180401E-02 3.96870180967E-02 4.01862193306E-02 4.06916997430E-02 4.12035383164E-02 4.17218150264E-02 4.22466108549E-02 4.27780078023E-02 4.33160889004E-02 4.38609382256E-02 4.44126409116E-02 4.49712831631E-02 4.55369522691E-02 4.61097366165E-02 4.66897257041E-02 4.72770101563E-02 4.78716817375E-02 4.84738333664E-02 4.90835591304E-02 4.97009543004E-02 5.03261153456E-02 5.09591399487E-02 5.16001270211E-02 5.22491767183E-02 5.29063904557E-02 5.35718709242E-02 5.42457221066E-02 5.49280492934E-02 5.56189590996E-02 5.63185594814E-02 5.70269597527E-02 5.77442706025E-02 5.84706041120E-02 5.92060737723E-02 5.99507945022E-02 6.07048826657E-02 6.14684560906E-02 6.22416340868E-02 6.30245374649E-02 6.38172885553E-02 6.46200112269E-02 6.54328309066E-02 6.62558745994E-02 6.70892709073E-02 6.79331500503E-02 6.87876438862E-02 6.96528859314E-02 7.05290113818E-02 7.14161571337E-02 7.23144618054E-02 7.32240657589E-02 7.41451111216E-02 7.50777418089E-02 7.60221035460E-02 7.69783438915E-02 7.79466122598E-02 7.89270599448E-02 7.99198401436E-02 8.09251079800E-02 8.19430205291E-02 8.29737368419E-02 8.40174179700E-02 8.50742269905E-02 8.61443290320E-02 8.72278913002E-02 8.83250831040E-02 8.94360758816E-02 9.05610432281E-02 9.17001609218E-02 9.28536069522E-02 9.40215615476E-02 9.52042072033E-02 9.64017287101E-02 9.76143131831E-02 9.88421500912E-02 1.00085431286E-01 1.01344351034E-01 1.02619106042E-01 1.03909895494E-01 1.05216921080E-01 1.06540387023E-01 1.07880500118E-01 1.09237469761E-01 1.10611507981E-01 1.12002829474E-01 1.13411651637E-01 1.14838194601E-01 1.16282681267E-01 1.17745337338E-01 1.19226391358E-01 1.20726074744E-01 1.22244621825E-01 1.23782269876E-01 1.25339259160E-01 1.26915832957E-01 1.28512237612E-01 1.30128722565E-01 1.31765540396E-01 1.33422946860E-01 1.35101200932E-01 1.36800564841E-01 1.38521304116E-01 1.40263687628E-01 1.42027987625E-01 1.43814479785E-01 1.45623443250E-01 1.47455160674E-01 1.49309918267E-01 1.51188005838E-01 1.53089716843E-01 1.55015348428E-01 1.56965201476E-01 1.58939580657E-01 1.60938794470E-01 1.62963155297E-01 1.65012979449E-01 1.67088587214E-01 1.69190302912E-01 1.71318454938E-01 1.73473375821E-01 1.75655402273E-01 1.77864875238E-01 1.80102139952E-01 1.82367545992E-01 1.84661447332E-01 1.86984202398E-01 1.89336174127E-01 1.91717730018E-01 1.94129242195E-01 1.96571087460E-01 1.99043647358E-01 2.01547308231E-01 2.04082461281E-01 2.06649502630E-01 2.09248833385E-01 2.11880859696E-01 2.14545992822E-01 2.17244649196E-01 2.19977250488E-01 2.22744223673E-01 2.25546001097E-01 2.28383020542E-01 2.31255725298E-01 2.34164564233E-01 2.37109991856E-01 2.40092468399E-01 2.43112459878E-01 2.46170438173E-01 2.49266881100E-01 2.52402272485E-01 2.55577102238E-01 2.58791866434E-01 2.62047067385E-01 2.65343213723E-01 2.68680820479E-01 2.72060409159E-01 2.75482507832E-01 2.78947651207E-01 2.82456380720E-01 2.86009244617E-01 2.89606798041E-01 2.93249603116E-01 2.96938229038E-01 3.00673252162E-01 3.04455256094E-01 3.08284831779E-01 3.12162577596E-01 3.16089099451E-01 3.20065010871E-01 3.24090933101E-01 3.28167495197E-01 3.32295334133E-01 3.36475094890E-01 3.40707430566E-01 3.44993002471E-01 3.49332480234E-01 3.53726541909E-01 3.58175874075E-01 3.62681171950E-01 3.67243139496E-01 3.71862489530E-01 3.76539943834E-01 3.81276233271E-01 3.86072097894E-01 3.90928287069E-01 3.95845559584E-01 4.00824683773E-01 4.05866437634E-01 4.10971608951E-01 4.16140995419E-01 4.21375404764E-01 4.26675654873E-01 4.32042573922E-01 4.37477000501E-01 4.42979783752E-01 4.48551783496E-01 4.54193870368E-01 4.59906925956E-01 4.65691842938E-01 4.71549525217E-01 4.77480888069E-01 4.83486858281E-01 4.89568374298E-01 4.95726386370E-01 5.01961856699E-01 5.08275759588E-01 5.14669081600E-01 5.21142821702E-01 5.27697991431E-01 5.34335615044E-01 5.41056729684E-01 5.47862385539E-01 5.54753646007E-01 5.61731587860E-01 5.68797301417E-01 5.75951890709E-01 5.83196473656E-01 5.90532182239E-01 5.97960162676E-01 6.05481575606E-01 6.13097596263E-01 6.20809414667E-01 6.28618235806E-01 6.36525279822E-01 6.44531782209E-01 6.52638993998E-01 6.60848181957E-01 6.69160628790E-01 6.77577633332E-01 6.86100510758E-01 6.94730592784E-01 7.03469227880E-01 7.12317781473E-01 7.21277636169E-01 7.30350191962E-01 7.39536866460E-01 7.48839095097E-01 7.58258331366E-01 7.67796047043E-01 7.77453732414E-01 7.87232896512E-01 7.97135067352E-01 8.07161792168E-01 8.17314637656E-01 8.27595190219E-01 8.38005056215E-01 8.48545862205E-01 8.59219255213E-01 8.70026902977E-01 8.80970494216E-01 8.92051738886E-01 9.03272368455E-01 9.14634136170E-01 9.26138817329E-01 9.37788209563E-01 9.49584133112E-01 9.61528431114E-01 9.73622969890E-01 9.85869639235E-01 9.98270352718E-01 1.01082704797E+00 1.02354168701E+00 1.03641625652E+00 1.04945276818E+00 1.06265325897E+00 1.07601979149E+00 1.08955445430E+00 1.10325936220E+00 1.11713665663E+00 1.13118850592E+00 1.14541710573E+00 1.15982467929E+00 1.17441347781E+00 1.18918578083E+00 1.20414389655E+00 1.21929016220E+00 1.23462694442E+00 4.68109337779E+00 4.68109337778E+00 4.68109337777E+00 4.68109337776E+00 4.68109337775E+00 4.68109337774E+00 4.68109337773E+00 4.68109337772E+00 4.68109337770E+00 4.68109337769E+00 4.68109337768E+00 4.68109337767E+00 4.68109337765E+00 4.68109337764E+00 4.68109337762E+00 4.68109337761E+00 4.68109337760E+00 4.68109337758E+00 4.68109337756E+00 4.68109337755E+00 4.68109337753E+00 4.68109337751E+00 4.68109337750E+00 4.68109337748E+00 4.68109337746E+00 4.68109337744E+00 4.68109337742E+00 4.68109337740E+00 4.68109337738E+00 4.68109337736E+00 4.68109337734E+00 4.68109337732E+00 4.68109337730E+00 4.68109337728E+00 4.68109337725E+00 4.68109337723E+00 4.68109337720E+00 4.68109337718E+00 4.68109337715E+00 4.68109337713E+00 4.68109337710E+00 4.68109337707E+00 4.68109337704E+00 4.68109337701E+00 4.68109337698E+00 4.68109337695E+00 4.68109337692E+00 4.68109337689E+00 4.68109337686E+00 4.68109337682E+00 4.68109337679E+00 4.68109337675E+00 4.68109337672E+00 4.68109337668E+00 4.68109337664E+00 4.68109337660E+00 4.68109337656E+00 4.68109337652E+00 4.68109337648E+00 4.68109337643E+00 4.68109337639E+00 4.68109337634E+00 4.68109337630E+00 4.68109337625E+00 4.68109337620E+00 4.68109337615E+00 4.68109337610E+00 4.68109337604E+00 4.68109337599E+00 4.68109337593E+00 4.68109337587E+00 4.68109337582E+00 4.68109337576E+00 4.68109337569E+00 4.68109337563E+00 4.68109337557E+00 4.68109337550E+00 4.68109337543E+00 4.68109337536E+00 4.68109337529E+00 4.68109337522E+00 4.68109337514E+00 4.68109337506E+00 4.68109337498E+00 4.68109337490E+00 4.68109337482E+00 4.68109337473E+00 4.68109337464E+00 4.68109337455E+00 4.68109337446E+00 4.68109337437E+00 4.68109337427E+00 4.68109337417E+00 4.68109337407E+00 4.68109337397E+00 4.68109337386E+00 4.68109337375E+00 4.68109337364E+00 4.68109337352E+00 4.68109337340E+00 4.68109337328E+00 4.68109337316E+00 4.68109337303E+00 4.68109337290E+00 4.68109337276E+00 4.68109337263E+00 4.68109337248E+00 4.68109337234E+00 4.68109337219E+00 4.68109337204E+00 4.68109337188E+00 4.68109337172E+00 4.68109337156E+00 4.68109337139E+00 4.68109337122E+00 4.68109337104E+00 4.68109337086E+00 4.68109337068E+00 4.68109337049E+00 4.68109337029E+00 4.68109337009E+00 4.68109336989E+00 4.68109336968E+00 4.68109336946E+00 4.68109336924E+00 4.68109336901E+00 4.68109336878E+00 4.68109336854E+00 4.68109336830E+00 4.68109336805E+00 4.68109336779E+00 4.68109336753E+00 4.68109336726E+00 4.68109336698E+00 4.68109336669E+00 4.68109336640E+00 4.68109336610E+00 4.68109336580E+00 4.68109336548E+00 4.68109336516E+00 4.68109336483E+00 4.68109336449E+00 4.68109336415E+00 4.68109336379E+00 4.68109336343E+00 4.68109336305E+00 4.68109336267E+00 4.68109336228E+00 4.68109336187E+00 4.68109336146E+00 4.68109336104E+00 4.68109336060E+00 4.68109336016E+00 4.68109335970E+00 4.68109335923E+00 4.68109335875E+00 4.68109335826E+00 4.68109335775E+00 4.68109335724E+00 4.68109335671E+00 4.68109335616E+00 4.68109335560E+00 4.68109335503E+00 4.68109335445E+00 4.68109335385E+00 4.68109335323E+00 4.68109335260E+00 4.68109335195E+00 4.68109335128E+00 4.68109335060E+00 4.68109334990E+00 4.68109334919E+00 4.68109334845E+00 4.68109334770E+00 4.68109334693E+00 4.68109334614E+00 4.68109334533E+00 4.68109334449E+00 4.68109334364E+00 4.68109334277E+00 4.68109334187E+00 4.68109334095E+00 4.68109334001E+00 4.68109333904E+00 4.68109333805E+00 4.68109333703E+00 4.68109333599E+00 4.68109333492E+00 4.68109333382E+00 4.68109333270E+00 4.68109333155E+00 4.68109333037E+00 4.68109332916E+00 4.68109332792E+00 4.68109332664E+00 4.68109332534E+00 4.68109332400E+00 4.68109332263E+00 4.68109332122E+00 4.68109331978E+00 4.68109331830E+00 4.68109331678E+00 4.68109331523E+00 4.68109331364E+00 4.68109331200E+00 4.68109331033E+00 4.68109330861E+00 4.68109330685E+00 4.68109330504E+00 4.68109330319E+00 4.68109330129E+00 4.68109329934E+00 4.68109329734E+00 4.68109329530E+00 4.68109329320E+00 4.68109329105E+00 4.68109328884E+00 4.68109328658E+00 4.68109328426E+00 4.68109328188E+00 4.68109327944E+00 4.68109327694E+00 4.68109327438E+00 4.68109327175E+00 4.68109326906E+00 4.68109326629E+00 4.68109326346E+00 4.68109326056E+00 4.68109325758E+00 4.68109325453E+00 4.68109325139E+00 4.68109324818E+00 4.68109324489E+00 4.68109324152E+00 4.68109323806E+00 4.68109323451E+00 4.68109323087E+00 4.68109322714E+00 4.68109322332E+00 4.68109321940E+00 4.68109321538E+00 4.68109321126E+00 4.68109320703E+00 4.68109320270E+00 4.68109319825E+00 4.68109319370E+00 4.68109318903E+00 4.68109318424E+00 4.68109317933E+00 4.68109317429E+00 4.68109316913E+00 4.68109316384E+00 4.68109315841E+00 4.68109315285E+00 4.68109314714E+00 4.68109314129E+00 4.68109313530E+00 4.68109312915E+00 4.68109312284E+00 4.68109311638E+00 4.68109310975E+00 4.68109310295E+00 4.68109309598E+00 4.68109308884E+00 4.68109308151E+00 4.68109307400E+00 4.68109306630E+00 4.68109305840E+00 4.68109305031E+00 4.68109304201E+00 4.68109303350E+00 4.68109302477E+00 4.68109301582E+00 4.68109300665E+00 4.68109299724E+00 4.68109298760E+00 4.68109297771E+00 4.68109296757E+00 4.68109295717E+00 4.68109294651E+00 4.68109293558E+00 4.68109292438E+00 4.68109291289E+00 4.68109290111E+00 4.68109288903E+00 4.68109287664E+00 4.68109286395E+00 4.68109285093E+00 4.68109283758E+00 4.68109282389E+00 4.68109280985E+00 4.68109279547E+00 4.68109278071E+00 4.68109276558E+00 4.68109275007E+00 4.68109273417E+00 4.68109271786E+00 4.68109270115E+00 4.68109268400E+00 4.68109266643E+00 4.68109264841E+00 4.68109262993E+00 4.68109261098E+00 4.68109259156E+00 4.68109257164E+00 4.68109255122E+00 4.68109253028E+00 4.68109250881E+00 4.68109248680E+00 4.68109246423E+00 4.68109244109E+00 4.68109241736E+00 4.68109239303E+00 4.68109236808E+00 4.68109234251E+00 4.68109231628E+00 4.68109228939E+00 4.68109226183E+00 4.68109223356E+00 4.68109220457E+00 4.68109217486E+00 4.68109214439E+00 4.68109211314E+00 4.68109208111E+00 4.68109204826E+00 4.68109201459E+00 4.68109198006E+00 4.68109194465E+00 4.68109190835E+00 4.68109187113E+00 4.68109183297E+00 4.68109179383E+00 4.68109175371E+00 4.68109171257E+00 4.68109167039E+00 4.68109162714E+00 4.68109158280E+00 4.68109153733E+00 4.68109149071E+00 4.68109144291E+00 4.68109139390E+00 4.68109134364E+00 4.68109129212E+00 4.68109123928E+00 4.68109118511E+00 4.68109112957E+00 4.68109107261E+00 4.68109101422E+00 4.68109095434E+00 4.68109089295E+00 4.68109083000E+00 4.68109076546E+00 4.68109069928E+00 4.68109063143E+00 4.68109056185E+00 4.68109049051E+00 4.68109041736E+00 4.68109034236E+00 4.68109026546E+00 4.68109018661E+00 4.68109010576E+00 4.68109002286E+00 4.68108993785E+00 4.68108985070E+00 4.68108976133E+00 4.68108966970E+00 4.68108957574E+00 4.68108947940E+00 4.68108938062E+00 4.68108927933E+00 4.68108917548E+00 4.68108906899E+00 4.68108895980E+00 4.68108884784E+00 4.68108873305E+00 4.68108861534E+00 4.68108849464E+00 4.68108837088E+00 4.68108824399E+00 4.68108811387E+00 4.68108798045E+00 4.68108784365E+00 4.68108770337E+00 4.68108755954E+00 4.68108741206E+00 4.68108726083E+00 4.68108710576E+00 4.68108694676E+00 4.68108678372E+00 4.68108661655E+00 4.68108644513E+00 4.68108626935E+00 4.68108608912E+00 4.68108590431E+00 4.68108571480E+00 4.68108552048E+00 4.68108532123E+00 4.68108511691E+00 4.68108490740E+00 4.68108469257E+00 4.68108447229E+00 4.68108424640E+00 4.68108401478E+00 4.68108377727E+00 4.68108353372E+00 4.68108328398E+00 4.68108302789E+00 4.68108276528E+00 4.68108249601E+00 4.68108221988E+00 4.68108193673E+00 4.68108164638E+00 4.68108134864E+00 4.68108104332E+00 4.68108073024E+00 4.68108040919E+00 4.68108007996E+00 4.68107974236E+00 4.68107939616E+00 4.68107904114E+00 4.68107867708E+00 4.68107830375E+00 4.68107792091E+00 4.68107752831E+00 4.68107712571E+00 4.68107671285E+00 4.68107628946E+00 4.68107585527E+00 4.68107541002E+00 4.68107495340E+00 4.68107448514E+00 4.68107400493E+00 4.68107351246E+00 4.68107300743E+00 4.68107248949E+00 4.68107195834E+00 4.68107141361E+00 4.68107085497E+00 4.68107028205E+00 4.68106969449E+00 4.68106909191E+00 4.68106847391E+00 4.68106784011E+00 4.68106719010E+00 4.68106652344E+00 4.68106583972E+00 4.68106513850E+00 4.68106441931E+00 4.68106368170E+00 4.68106292518E+00 4.68106214927E+00 4.68106135345E+00 4.68106053723E+00 4.68105970006E+00 4.68105884139E+00 4.68105796068E+00 4.68105705735E+00 4.68105613080E+00 4.68105518043E+00 4.68105420562E+00 4.68105320574E+00 4.68105218012E+00 4.68105112809E+00 4.68105004896E+00 4.68104894203E+00 4.68104780656E+00 4.68104664180E+00 4.68104544699E+00 4.68104422133E+00 4.68104296401E+00 4.68104167421E+00 4.68104035106E+00 4.68103899368E+00 4.68103760117E+00 4.68103617260E+00 4.68103470702E+00 4.68103320344E+00 4.68103166086E+00 4.68103007825E+00 4.68102845453E+00 4.68102678862E+00 4.68102507940E+00 4.68102332569E+00 4.68102152633E+00 4.68101968008E+00 4.68101778570E+00 4.68101584189E+00 4.68101384732E+00 4.68101180063E+00 4.68100970043E+00 4.68100754526E+00 4.68100533364E+00 4.68100306405E+00 4.68100073492E+00 4.68099834463E+00 4.68099589153E+00 4.68099337390E+00 4.68099078998E+00 4.68098813798E+00 4.68098541602E+00 4.68098262219E+00 4.68097975453E+00 4.68097681100E+00 4.68097378951E+00 4.68097068792E+00 4.68096750401E+00 4.68096423550E+00 4.68096088005E+00 4.68095743525E+00 4.68095389859E+00 4.68095026752E+00 4.68094653941E+00 4.68094271152E+00 4.68093878106E+00 4.68093474515E+00 4.68093060080E+00 4.68092634495E+00 4.68092197445E+00 4.68091748603E+00 4.68091287634E+00 4.68090814191E+00 4.68090327918E+00 4.68089828447E+00 4.68089315398E+00 4.68088788379E+00 4.68088246987E+00 4.68087690805E+00 4.68087119403E+00 4.68086532338E+00 4.68085929151E+00 4.68085309370E+00 4.68084672507E+00 4.68084018059E+00 4.68083345505E+00 4.68082654308E+00 4.68081943915E+00 4.68081213751E+00 4.68080463226E+00 4.68079691727E+00 4.68078898622E+00 4.68078083259E+00 4.68077244963E+00 4.68076383036E+00 4.68075496756E+00 4.68074585377E+00 4.68073648129E+00 4.68072684212E+00 4.68071692803E+00 4.68070673045E+00 4.68069624057E+00 4.68068544922E+00 4.68067434696E+00 4.68066292397E+00 4.68065117012E+00 4.68063907489E+00 4.68062662741E+00 4.68061381640E+00 4.68060063020E+00 4.68058705670E+00 4.68057308337E+00 4.68055869721E+00 4.68054388477E+00 4.68052863208E+00 4.68051292466E+00 4.68049674750E+00 4.68048008503E+00 4.68046292110E+00 4.68044523895E+00 4.68042702119E+00 4.68040824978E+00 4.68038890598E+00 4.68036897036E+00 4.68034842272E+00 4.68032724210E+00 4.68030540672E+00 4.68028289397E+00 4.68025968035E+00 4.68023574145E+00 4.68021105190E+00 4.68018558533E+00 4.68015931434E+00 4.68013221042E+00 4.68010424396E+00 4.68007538413E+00 4.68004559890E+00 4.68001485492E+00 4.67998311752E+00 4.67995035060E+00 4.67991651662E+00 4.67988157649E+00 4.67984548952E+00 4.67980821335E+00 4.67976970389E+00 4.67972991520E+00 4.67968879946E+00 4.67964630684E+00 4.67960238543E+00 4.67955698116E+00 4.67951003769E+00 4.67946149627E+00 4.67941129572E+00 4.67935937223E+00 4.67930565929E+00 4.67925008754E+00 4.67919258468E+00 4.67913307529E+00 4.67907148071E+00 4.67900771890E+00 4.67894170427E+00 4.67887334751E+00 4.67880255546E+00 4.67872923088E+00 4.67865327229E+00 4.67857457377E+00 4.67849302478E+00 4.67840850988E+00 4.67832090859E+00 4.67823009510E+00 4.67813593801E+00 4.67803830015E+00 4.67793703821E+00 4.67783200255E+00 4.67772303683E+00 4.67760997774E+00 4.67749265468E+00 4.67737088940E+00 4.67724449566E+00 4.67711327885E+00 4.67697703559E+00 4.67683555336E+00 4.67668861003E+00 4.67653597343E+00 4.67637740092E+00 4.67621263882E+00 4.67604142199E+00 4.67586347323E+00 4.67567850273E+00 4.67548620752E+00 4.67528627082E+00 4.67507836142E+00 4.67486213298E+00 4.67463722338E+00 4.67440325395E+00 4.67415982869E+00 4.67390653350E+00 4.67364293534E+00 4.67336858133E+00 4.67308299785E+00 4.67278568959E+00 4.67247613851E+00 4.67215380286E+00 4.67181811602E+00 4.67146848541E+00 4.67110429125E+00 4.67072488537E+00 4.67032958987E+00 4.66991769576E+00 4.66948846157E+00 4.66904111186E+00 4.66857483565E+00 4.66808878486E+00 4.66758207257E+00 4.66705377133E+00 4.66650291127E+00 4.66592847826E+00 4.66532941184E+00 4.66470460324E+00 4.66405289316E+00 4.66337306955E+00 4.66266386525E+00 4.66192395557E+00 4.66115195578E+00 4.66034641838E+00 4.65950583047E+00 4.65862861081E+00 4.65771310687E+00 4.65675759179E+00 4.65576026108E+00 4.65471922938E+00 4.65363252697E+00 4.65249809613E+00 4.65131378750E+00 4.65007735616E+00 4.64878645762E+00 4.64743864371E+00 4.64603135822E+00 4.64456193253E+00 4.64302758089E+00 4.64142539578E+00 4.63975234286E+00 4.63800525598E+00 4.63618083184E+00 4.63427562464E+00 4.63228604041E+00 4.63020833130E+00 4.62803858959E+00 4.62577274161E+00 4.62340654145E+00 4.62093556446E+00 4.61835520066E+00 4.61566064789E+00 4.61284690487E+00 4.60990876402E+00 4.60684080418E+00 4.60363738314E+00 4.60029263001E+00 4.59680043747E+00 4.59315445386E+00 4.58934807515E+00 4.58537443681E+00 4.58122640552E+00 4.57689657086E+00 4.57237723685E+00 4.56766041352E+00 4.56273780831E+00 4.55760081758E+00 4.55224051805E+00 4.54664765829E+00 4.54081265024E+00 4.53472556088E+00 4.52837610397E+00 4.52175363194E+00 4.51484712804E+00 4.50764519867E+00 4.50013606602E+00 4.49230756106E+00 4.48414711693E+00 4.47564176275E+00 4.46677811795E+00 4.45754238722E+00 4.44792035608E+00 4.43789738718E+00 4.42745841741E+00 4.41658795590E+00 4.40527008305E+00 4.39348845057E+00 4.38122628276E+00 4.36846637906E+00 4.35519111798E+00 4.34138246258E+00 4.32702196759E+00 4.31209078823E+00 4.29656969106E+00 4.28043906674E+00 4.26367894500E+00 4.24626901199E+00 4.22818863005E+00 4.20941686008E+00 4.18993248680E+00 4.16971404679E+00 4.14873985981E+00 4.12698806321E+00 4.10443664986E+00 4.08106350968E+00 4.05684647478E+00 4.03176336861E+00 4.00579205908E+00 3.97891051585E+00 3.95109687195E+00 3.92232948980E+00 3.89258703173E+00 3.86184853516E+00 3.83009349243E+00 3.79730193540E+00 3.76345452478E+00 3.72853264426E+00 3.69251849934E+00 3.65539522087E+00 3.61714697316E+00 3.57775906650E+00 3.53721807395E+00 3.49551195219E+00 3.45263016603E+00 3.40856381636E+00 3.36330577112E+00 3.31685079879E+00 3.26919570382E+00 3.22033946363E+00 3.17028336615E+00 3.11903114749E+00 3.06658912873E+00 3.01296635090E+00 2.95817470737E+00 2.90222907224E+00 2.84514742400E+00 2.78695096280E+00 2.72766422043E+00 2.66731904824E+00 2.60596996344E+00 2.54368801178E+00 2.48055609996E+00 2.41666728319E+00 2.35212312177E+00 2.28703211217E+00 2.22150819708E+00 2.15566935845E+00 2.08963629641E+00 2.02353119646E+00 1.95747658658E+00 1.89159428489E+00 1.82600443833E+00 1.76082465169E+00 1.69616920600E+00 1.63214836486E+00 1.56886776627E+00 1.50642789782E+00 1.44492365195E+00 1.38444395822E+00 1.32507148887E+00 1.26688243387E+00 1.20994634143E+00 1.15432601973E+00 1.10007749552E+00 1.04725002530E+00 9.95886154598E-01 9.46021820916E-01 8.97686496015E-01 8.50903363219E-01 8.05689525535E-01 7.62056240503E-01 7.20009177861E-01 6.79548696210E-01 6.40670135211E-01 6.03364119695E-01 5.67616872701E-01 5.33410534365E-01 5.00723483880E-01 4.69530662008E-01 4.39803891784E-01 4.11512195308E-01 3.84622104717E-01 3.59097965649E-01 3.34902231711E-01 3.11995748656E-01 2.90338027174E-01 2.69887503378E-01 2.50601786228E-01 2.32437891325E-01 2.15352460655E-01 1.99301967892E-01 1.84242909227E-01 1.70131979612E-01 1.56926234486E-01 1.44583237156E-01 1.33061192080E-01 1.22319064389E-01 1.12316686031E-01 1.03014849017E-01 9.43753862496E-02 8.63612405122E-02 7.89365221781E-02 7.20665562645E-02 6.57179194566E-02 5.98584677440E-02 5.44573553201E-02 4.94850453960E-02 4.49133135767E-02 4.07152444387E-02 3.68652219392E-02 3.33389142667E-02 3.01132537287E-02 2.71664122474E-02 2.44777730139E-02 2.20278988217E-02 1.97984975776E-02 1.77723854568E-02 1.59334481422E-02 1.42666005561E-02 1.27577454658E-02 1.13937313120E-02 1.01623095825E-02 9.05209202199E-03 8.05250794379E-03 7.15376187911E-03 6.34679177571E-03 5.62322793114E-03 4.97535282261E-03 4.39606197255E-03 3.87882596778E-03 3.41765373021E-03 3.00705711837E-03 2.64201692178E-03 2.31795029466E-03 2.03067966040E-03 1.77640310563E-03 1.55166627045E-03 1.35333573078E-03 1.17857385952E-03 1.02481514450E-03 8.89743934410E-04 7.71273577130E-04 6.67526910198E-04 5.76818058222E-04 4.97635488879E-04 4.28626276177E-04 3.68581517678E-04 3.16422850895E-04 2.71190013276E-04 2.32029389843E-04 1.98183492702E-04 1.68981317200E-04 1.43829520390E-04 1.22204368705E-04 1.03644403174E-04 8.77437722214E-05 7.41461839484E-05 6.25394317519E-05 5.26504492680E-05 4.42408527635E-05 3.71029313135E-05 3.10560473269E-05 2.59434121998E-05 2.16292040813E-05 1.79959968933E-05 1.49424718609E-05 1.23813848546E-05 1.02377648239E-05 8.44732049906E-06 6.95503434608E-06 5.71392448774E-06 4.68395693040E-06 3.83109197622E-06 3.12645014411E-06 2.54558427368E-06 2.06784574645E-06 1.67583392801E-06 1.35491901805E-06 1.09282949408E-06 8.79296253066E-07 7.05746397035E-07 5.65040377819E-07 4.51246916022E-07 3.59450745157E-07 2.85588806983E-07 2.26311042955E-07 1.78862393361E-07 1.40983034124E-07 1.10824255163E-07 8.68777175136E-08 6.79161223973E-08 5.29435876328E-08 4.11542582758E-08 3.18978821093E-08 2.46512594002E-08 1.89946327136E-08 1.45922189395E-08 1.11762042069E-08 8.53362505162E-09 6.49564789050E-09 4.92883519540E-09 3.72805226360E-09 2.81072449107E-09 2.11220279433E-09 1.58203537385E-09 1.18097833467E-09 8.78606633004E-10 6.51411155340E-10 4.81288122255E-10 3.54344024416E-10 2.59953447882E-10 1.90018870450E-10 1.38391189768E-10 1.00417704571E-10 7.25907930962E-11 5.22758569512E-11 3.75014279703E-11 2.67978421699E-11 1.90737140628E-11 1.35217181196E-11 9.54700391818E-12 6.71302219105E-12 4.70069070879E-12 3.27773957000E-12 2.27579247681E-12 1.57330276002E-12 1.08290183856E-12 7.42059011202E-13 5.06215583881E-13 3.43759863694E-13 2.32365698371E-13 1.56336501988E-13 1.04687383200E-13 6.97666175132E-14 4.62694010309E-14 3.05355831054E-14 2.00519982354E-14 1.31014960539E-14 8.51664075872E-15 5.50772315224E-15 3.54326841940E-15 2.26743963093E-15 1.44323946111E-15 9.13656588505E-16 5.75228192455E-16 3.60147365744E-16 2.24219426627E-16 1.38799796784E-16 8.54272386508E-17 5.22714874412E-17 3.17953022956E-17 1.92246737696E-17 1.15536935954E-17 6.90106382565E-18 4.09648996663E-18 2.41643552500E-18 1.41635598221E-18 8.24819560764E-19 4.77224916476E-19 2.74295063424E-19 1.56606064433E-19 8.88095290901E-20 5.00190584365E-20 2.79769931057E-20 1.55389309966E-20 8.56963345464E-21 4.69239849239E-21 2.55087004916E-21 1.37665421129E-21 7.37645397412E-22 3.92027916268E-22 2.06115668455E-22 1.07547014315E-22 5.56848309041E-23 2.34094398404E-23 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -2.60680786686E+01 -2.60680786682E+01 -2.60680786679E+01 -2.60680786675E+01 -2.60680786671E+01 -2.60680786668E+01 -2.60680786664E+01 -2.60680786661E+01 -2.60680786657E+01 -2.60680786653E+01 -2.60680786650E+01 -2.60680786646E+01 -2.60680786643E+01 -2.60680786639E+01 -2.60680786635E+01 -2.60680786631E+01 -2.60680786628E+01 -2.60680786624E+01 -2.60680786620E+01 -2.60680786616E+01 -2.60680786612E+01 -2.60680786608E+01 -2.60680786604E+01 -2.60680786600E+01 -2.60680786596E+01 -2.60680786593E+01 -2.60680786590E+01 -2.60680786583E+01 -2.60680786579E+01 -2.60680786576E+01 -2.60680786571E+01 -2.60680786567E+01 -2.60680786561E+01 -2.60680786557E+01 -2.60680786551E+01 -2.60680786547E+01 -2.60680786543E+01 -2.60680786538E+01 -2.60680786531E+01 -2.60680786526E+01 -2.60680786521E+01 -2.60680786516E+01 -2.60680786511E+01 -2.60680786505E+01 -2.60680786500E+01 -2.60680786493E+01 -2.60680786487E+01 -2.60680786480E+01 -2.60680786474E+01 -2.60680786468E+01 -2.60680786462E+01 -2.60680786456E+01 -2.60680786447E+01 -2.60680786440E+01 -2.60680786433E+01 -2.60680786426E+01 -2.60680786419E+01 -2.60680786412E+01 -2.60680786403E+01 -2.60680786394E+01 -2.60680786386E+01 -2.60680786378E+01 -2.60680786370E+01 -2.60680786361E+01 -2.60680786352E+01 -2.60680786343E+01 -2.60680786333E+01 -2.60680786323E+01 -2.60680786313E+01 -2.60680786303E+01 -2.60680786292E+01 -2.60680786282E+01 -2.60680786271E+01 -2.60680786260E+01 -2.60680786249E+01 -2.60680786237E+01 -2.60680786224E+01 -2.60680786211E+01 -2.60680786199E+01 -2.60680786186E+01 -2.60680786173E+01 -2.60680786160E+01 -2.60680786146E+01 -2.60680786132E+01 -2.60680786117E+01 -2.60680786102E+01 -2.60680786086E+01 -2.60680786070E+01 -2.60680786054E+01 -2.60680786038E+01 -2.60680786021E+01 -2.60680786004E+01 -2.60680785986E+01 -2.60680785968E+01 -2.60680785949E+01 -2.60680785930E+01 -2.60680785910E+01 -2.60680785889E+01 -2.60680785869E+01 -2.60680785848E+01 -2.60680785826E+01 -2.60680785804E+01 -2.60680785781E+01 -2.60680785758E+01 -2.60680785734E+01 -2.60680785709E+01 -2.60680785684E+01 -2.60680785659E+01 -2.60680785632E+01 -2.60680785605E+01 -2.60680785577E+01 -2.60680785548E+01 -2.60680785519E+01 -2.60680785489E+01 -2.60680785459E+01 -2.60680785427E+01 -2.60680785395E+01 -2.60680785362E+01 -2.60680785328E+01 -2.60680785293E+01 -2.60680785258E+01 -2.60680785221E+01 -2.60680785184E+01 -2.60680785146E+01 -2.60680785106E+01 -2.60680785065E+01 -2.60680785024E+01 -2.60680784982E+01 -2.60680784938E+01 -2.60680784894E+01 -2.60680784848E+01 -2.60680784801E+01 -2.60680784753E+01 -2.60680784704E+01 -2.60680784653E+01 -2.60680784602E+01 -2.60680784549E+01 -2.60680784494E+01 -2.60680784438E+01 -2.60680784381E+01 -2.60680784323E+01 -2.60680784263E+01 -2.60680784201E+01 -2.60680784138E+01 -2.60680784072E+01 -2.60680784006E+01 -2.60680783938E+01 -2.60680783868E+01 -2.60680783796E+01 -2.60680783723E+01 -2.60680783648E+01 -2.60680783570E+01 -2.60680783491E+01 -2.60680783410E+01 -2.60680783327E+01 -2.60680783242E+01 -2.60680783154E+01 -2.60680783065E+01 -2.60680782973E+01 -2.60680782878E+01 -2.60680782782E+01 -2.60680782683E+01 -2.60680782581E+01 -2.60680782477E+01 -2.60680782370E+01 -2.60680782261E+01 -2.60680782148E+01 -2.60680782033E+01 -2.60680781915E+01 -2.60680781794E+01 -2.60680781669E+01 -2.60680781542E+01 -2.60680781412E+01 -2.60680781278E+01 -2.60680781141E+01 -2.60680781000E+01 -2.60680780856E+01 -2.60680780708E+01 -2.60680780557E+01 -2.60680780401E+01 -2.60680780242E+01 -2.60680780078E+01 -2.60680779911E+01 -2.60680779739E+01 -2.60680779563E+01 -2.60680779383E+01 -2.60680779197E+01 -2.60680779008E+01 -2.60680778813E+01 -2.60680778614E+01 -2.60680778409E+01 -2.60680778199E+01 -2.60680777984E+01 -2.60680777764E+01 -2.60680777537E+01 -2.60680777306E+01 -2.60680777068E+01 -2.60680776824E+01 -2.60680776574E+01 -2.60680776318E+01 -2.60680776055E+01 -2.60680775786E+01 -2.60680775509E+01 -2.60680775226E+01 -2.60680774936E+01 -2.60680774638E+01 -2.60680774333E+01 -2.60680774020E+01 -2.60680773699E+01 -2.60680773370E+01 -2.60680773033E+01 -2.60680772687E+01 -2.60680772333E+01 -2.60680771969E+01 -2.60680771596E+01 -2.60680771214E+01 -2.60680770822E+01 -2.60680770420E+01 -2.60680770008E+01 -2.60680769586E+01 -2.60680769153E+01 -2.60680768709E+01 -2.60680768253E+01 -2.60680767786E+01 -2.60680767308E+01 -2.60680766817E+01 -2.60680766314E+01 -2.60680765798E+01 -2.60680765269E+01 -2.60680764726E+01 -2.60680764170E+01 -2.60680763600E+01 -2.60680763015E+01 -2.60680762416E+01 -2.60680761801E+01 -2.60680761171E+01 -2.60680760525E+01 -2.60680759863E+01 -2.60680759183E+01 -2.60680758487E+01 -2.60680757773E+01 -2.60680757041E+01 -2.60680756290E+01 -2.60680755520E+01 -2.60680754731E+01 -2.60680753922E+01 -2.60680753092E+01 -2.60680752242E+01 -2.60680751369E+01 -2.60680750475E+01 -2.60680749558E+01 -2.60680748618E+01 -2.60680747654E+01 -2.60680746666E+01 -2.60680745653E+01 -2.60680744614E+01 -2.60680743548E+01 -2.60680742456E+01 -2.60680741336E+01 -2.60680740188E+01 -2.60680739010E+01 -2.60680737803E+01 -2.60680736565E+01 -2.60680735296E+01 -2.60680733995E+01 -2.60680732661E+01 -2.60680731293E+01 -2.60680729891E+01 -2.60680728453E+01 -2.60680726978E+01 -2.60680725467E+01 -2.60680723917E+01 -2.60680722328E+01 -2.60680720698E+01 -2.60680719027E+01 -2.60680717314E+01 -2.60680715558E+01 -2.60680713757E+01 -2.60680711911E+01 -2.60680710018E+01 -2.60680708077E+01 -2.60680706086E+01 -2.60680704046E+01 -2.60680701953E+01 -2.60680699808E+01 -2.60680697609E+01 -2.60680695353E+01 -2.60680693041E+01 -2.60680690670E+01 -2.60680688239E+01 -2.60680685747E+01 -2.60680683192E+01 -2.60680680571E+01 -2.60680677885E+01 -2.60680675130E+01 -2.60680672306E+01 -2.60680669410E+01 -2.60680666441E+01 -2.60680663397E+01 -2.60680660276E+01 -2.60680657075E+01 -2.60680653794E+01 -2.60680650430E+01 -2.60680646980E+01 -2.60680643443E+01 -2.60680639817E+01 -2.60680636099E+01 -2.60680632286E+01 -2.60680628377E+01 -2.60680624370E+01 -2.60680620260E+01 -2.60680616047E+01 -2.60680611727E+01 -2.60680607298E+01 -2.60680602756E+01 -2.60680598100E+01 -2.60680593325E+01 -2.60680588430E+01 -2.60680583411E+01 -2.60680578265E+01 -2.60680572989E+01 -2.60680567579E+01 -2.60680562032E+01 -2.60680556344E+01 -2.60680550513E+01 -2.60680544534E+01 -2.60680538404E+01 -2.60680532118E+01 -2.60680525674E+01 -2.60680519066E+01 -2.60680512291E+01 -2.60680505344E+01 -2.60680498222E+01 -2.60680490919E+01 -2.60680483431E+01 -2.60680475754E+01 -2.60680467883E+01 -2.60680459812E+01 -2.60680451537E+01 -2.60680443052E+01 -2.60680434353E+01 -2.60680425433E+01 -2.60680416288E+01 -2.60680406911E+01 -2.60680397297E+01 -2.60680387439E+01 -2.60680377332E+01 -2.60680366969E+01 -2.60680356343E+01 -2.60680345449E+01 -2.60680334279E+01 -2.60680322826E+01 -2.60680311083E+01 -2.60680299043E+01 -2.60680286698E+01 -2.60680274040E+01 -2.60680261062E+01 -2.60680247756E+01 -2.60680234112E+01 -2.60680220124E+01 -2.60680205781E+01 -2.60680191075E+01 -2.60680175997E+01 -2.60680160537E+01 -2.60680144685E+01 -2.60680128433E+01 -2.60680111769E+01 -2.60680094683E+01 -2.60680077164E+01 -2.60680059203E+01 -2.60680040786E+01 -2.60680021903E+01 -2.60680002542E+01 -2.60679982691E+01 -2.60679962338E+01 -2.60679941469E+01 -2.60679920072E+01 -2.60679898133E+01 -2.60679875639E+01 -2.60679852575E+01 -2.60679828928E+01 -2.60679804682E+01 -2.60679779822E+01 -2.60679754333E+01 -2.60679728198E+01 -2.60679701402E+01 -2.60679673928E+01 -2.60679645758E+01 -2.60679616875E+01 -2.60679587260E+01 -2.60679556896E+01 -2.60679525764E+01 -2.60679493843E+01 -2.60679461114E+01 -2.60679427557E+01 -2.60679393150E+01 -2.60679357872E+01 -2.60679321701E+01 -2.60679284614E+01 -2.60679246588E+01 -2.60679207600E+01 -2.60679167625E+01 -2.60679126638E+01 -2.60679084613E+01 -2.60679041524E+01 -2.60678997344E+01 -2.60678952046E+01 -2.60678905602E+01 -2.60678857981E+01 -2.60678809155E+01 -2.60678759093E+01 -2.60678707763E+01 -2.60678655135E+01 -2.60678601173E+01 -2.60678545846E+01 -2.60678489118E+01 -2.60678430954E+01 -2.60678371318E+01 -2.60678310171E+01 -2.60678247477E+01 -2.60678183196E+01 -2.60678117287E+01 -2.60678049710E+01 -2.60677980422E+01 -2.60677909380E+01 -2.60677836539E+01 -2.60677761855E+01 -2.60677685280E+01 -2.60677606766E+01 -2.60677526264E+01 -2.60677443725E+01 -2.60677359096E+01 -2.60677272324E+01 -2.60677183356E+01 -2.60677092136E+01 -2.60676998606E+01 -2.60676902708E+01 -2.60676804383E+01 -2.60676703569E+01 -2.60676600202E+01 -2.60676494218E+01 -2.60676385552E+01 -2.60676274134E+01 -2.60676159895E+01 -2.60676042765E+01 -2.60675922669E+01 -2.60675799533E+01 -2.60675673280E+01 -2.60675543830E+01 -2.60675411103E+01 -2.60675275016E+01 -2.60675135483E+01 -2.60674992418E+01 -2.60674845732E+01 -2.60674695331E+01 -2.60674541124E+01 -2.60674383012E+01 -2.60674220897E+01 -2.60674054678E+01 -2.60673884251E+01 -2.60673709509E+01 -2.60673530343E+01 -2.60673346642E+01 -2.60673158289E+01 -2.60672965169E+01 -2.60672767159E+01 -2.60672564136E+01 -2.60672355973E+01 -2.60672142540E+01 -2.60671923703E+01 -2.60671699326E+01 -2.60671469269E+01 -2.60671233387E+01 -2.60670991533E+01 -2.60670743556E+01 -2.60670489301E+01 -2.60670228609E+01 -2.60669961317E+01 -2.60669687258E+01 -2.60669406260E+01 -2.60669118147E+01 -2.60668822741E+01 -2.60668519855E+01 -2.60668209301E+01 -2.60667890885E+01 -2.60667564406E+01 -2.60667229662E+01 -2.60666886443E+01 -2.60666534534E+01 -2.60666173715E+01 -2.60665803760E+01 -2.60665424439E+01 -2.60665035515E+01 -2.60664636743E+01 -2.60664227874E+01 -2.60663808654E+01 -2.60663378819E+01 -2.60662938101E+01 -2.60662486225E+01 -2.60662022907E+01 -2.60661547859E+01 -2.60661060782E+01 -2.60660561373E+01 -2.60660049319E+01 -2.60659524299E+01 -2.60658985987E+01 -2.60658434044E+01 -2.60657868125E+01 -2.60657287878E+01 -2.60656692938E+01 -2.60656082934E+01 -2.60655457484E+01 -2.60654816197E+01 -2.60654158672E+01 -2.60653484498E+01 -2.60652793253E+01 -2.60652084504E+01 -2.60651357809E+01 -2.60650612712E+01 -2.60649848748E+01 -2.60649065439E+01 -2.60648262294E+01 -2.60647438812E+01 -2.60646594476E+01 -2.60645728760E+01 -2.60644841121E+01 -2.60643931004E+01 -2.60642997839E+01 -2.60642041043E+01 -2.60641060018E+01 -2.60640054148E+01 -2.60639022806E+01 -2.60637965345E+01 -2.60636881103E+01 -2.60635769403E+01 -2.60634629549E+01 -2.60633460827E+01 -2.60632262506E+01 -2.60631033837E+01 -2.60629774049E+01 -2.60628482354E+01 -2.60627157945E+01 -2.60625799992E+01 -2.60624407645E+01 -2.60622980032E+01 -2.60621516260E+01 -2.60620015413E+01 -2.60618476551E+01 -2.60616898710E+01 -2.60615280903E+01 -2.60613622116E+01 -2.60611921312E+01 -2.60610177424E+01 -2.60608389362E+01 -2.60606556005E+01 -2.60604676204E+01 -2.60602748784E+01 -2.60600772536E+01 -2.60598746223E+01 -2.60596668576E+01 -2.60594538292E+01 -2.60592354038E+01 -2.60590114445E+01 -2.60587818110E+01 -2.60585463594E+01 -2.60583049421E+01 -2.60580574079E+01 -2.60578036017E+01 -2.60575433644E+01 -2.60572765328E+01 -2.60570029397E+01 -2.60567224137E+01 -2.60564347788E+01 -2.60561398548E+01 -2.60558374566E+01 -2.60555273947E+01 -2.60552094746E+01 -2.60548834970E+01 -2.60545492574E+01 -2.60542065460E+01 -2.60538551481E+01 -2.60534948430E+01 -2.60531254047E+01 -2.60527466014E+01 -2.60523581954E+01 -2.60519599429E+01 -2.60515515939E+01 -2.60511328920E+01 -2.60507035745E+01 -2.60502633717E+01 -2.60498120072E+01 -2.60493491975E+01 -2.60488746519E+01 -2.60483880724E+01 -2.60478891531E+01 -2.60473775807E+01 -2.60468530337E+01 -2.60463151823E+01 -2.60457636884E+01 -2.60451982053E+01 -2.60446183776E+01 -2.60440238404E+01 -2.60434142199E+01 -2.60427891326E+01 -2.60421481851E+01 -2.60414909742E+01 -2.60408170862E+01 -2.60401260970E+01 -2.60394175713E+01 -2.60386910632E+01 -2.60379461150E+01 -2.60371822574E+01 -2.60363990092E+01 -2.60355958768E+01 -2.60347723538E+01 -2.60339279212E+01 -2.60330620464E+01 -2.60321741834E+01 -2.60312637719E+01 -2.60303302376E+01 -2.60293729912E+01 -2.60283914284E+01 -2.60273849294E+01 -2.60263528584E+01 -2.60252945635E+01 -2.60242093759E+01 -2.60230966095E+01 -2.60219555609E+01 -2.60207855083E+01 -2.60195857116E+01 -2.60183554115E+01 -2.60170938291E+01 -2.60158001657E+01 -2.60144736019E+01 -2.60131132970E+01 -2.60117183890E+01 -2.60102879934E+01 -2.60088212031E+01 -2.60073170873E+01 -2.60057746915E+01 -2.60041930364E+01 -2.60025711173E+01 -2.60009079038E+01 -2.59992023385E+01 -2.59974533370E+01 -2.59956597865E+01 -2.59938205457E+01 -2.59919344436E+01 -2.59900002786E+01 -2.59880168184E+01 -2.59859827984E+01 -2.59838969212E+01 -2.59817578558E+01 -2.59795642365E+01 -2.59773146622E+01 -2.59750076953E+01 -2.59726418606E+01 -2.59702156447E+01 -2.59677274946E+01 -2.59651758170E+01 -2.59625589767E+01 -2.59598752960E+01 -2.59571230533E+01 -2.59543004820E+01 -2.59514057692E+01 -2.59484370546E+01 -2.59453924292E+01 -2.59422699337E+01 -2.59390675576E+01 -2.59357832375E+01 -2.59324148558E+01 -2.59289602392E+01 -2.59254171570E+01 -2.59217833201E+01 -2.59180563787E+01 -2.59142339211E+01 -2.59103134719E+01 -2.59062924903E+01 -2.59021683682E+01 -2.58979384283E+01 -2.58935999227E+01 -2.58891500302E+01 -2.58845858548E+01 -2.58799044235E+01 -2.58751026842E+01 -2.58701775036E+01 -2.58651256645E+01 -2.58599438641E+01 -2.58546287113E+01 -2.58491767242E+01 -2.58435843276E+01 -2.58378478504E+01 -2.58319635232E+01 -2.58259274750E+01 -2.58197357308E+01 -2.58133842085E+01 -2.58068687157E+01 -2.58001849470E+01 -2.57933284807E+01 -2.57862947750E+01 -2.57790791654E+01 -2.57716768607E+01 -2.57640829393E+01 -2.57562923461E+01 -2.57482998881E+01 -2.57401002307E+01 -2.57316878938E+01 -2.57230572474E+01 -2.57142025075E+01 -2.57051177317E+01 -2.56957968145E+01 -2.56862334830E+01 -2.56764212916E+01 -2.56663536175E+01 -2.56560236556E+01 -2.56454244129E+01 -2.56345487035E+01 -2.56233891428E+01 -2.56119381421E+01 -2.56001879023E+01 -2.55881304079E+01 -2.55757574211E+01 -2.55630604746E+01 -2.55500308655E+01 -2.55366596477E+01 -2.55229376253E+01 -2.55088553443E+01 -2.54944030852E+01 -2.54795708545E+01 -2.54643483762E+01 -2.54487250825E+01 -2.54326901042E+01 -2.54162322610E+01 -2.53993400501E+01 -2.53820016355E+01 -2.53642048352E+01 -2.53459371089E+01 -2.53271855438E+01 -2.53079368396E+01 -2.52881772932E+01 -2.52678927809E+01 -2.52470687401E+01 -2.52256901496E+01 -2.52037415082E+01 -2.51812068111E+01 -2.51580695252E+01 -2.51343125626E+01 -2.51099182508E+01 -2.50848683026E+01 -2.50591437820E+01 -2.50327250691E+01 -2.50055918221E+01 -2.49777229371E+01 -2.49490965057E+01 -2.49196897704E+01 -2.48894790782E+01 -2.48584398324E+01 -2.48265464434E+01 -2.47937722783E+01 -2.47600896107E+01 -2.47254695713E+01 -2.46898820995E+01 -2.46532958980E+01 -2.46156783920E+01 -2.45769956928E+01 -2.45372125698E+01 -2.44962924313E+01 -2.44541973162E+01 -2.44108879008E+01 -2.43663235203E+01 -2.43204622106E+01 -2.42732607705E+01 -2.42246748490E+01 -2.41746590590E+01 -2.41231671202E+01 -2.40701520332E+01 -2.40155662862E+01 -2.39593620954E+01 -2.39014916788E+01 -2.38419075630E+01 -2.37805629210E+01 -2.37174119377E+01 -2.36524101998E+01 -2.35855151031E+01 -2.35166862725E+01 -2.34459028345E+01 -2.33732405161E+01 -2.32988363904E+01 -2.32227198770E+01 -2.31448412768E+01 -2.30651693074E+01 -2.29836788498E+01 -2.29003395080E+01 -2.28151166451E+01 -2.27279725731E+01 -2.26388678142E+01 -2.25477623670E+01 -2.24546169243E+01 -2.23593940076E+01 -2.22620589935E+01 -2.21625810174E+01 -2.20609337477E+01 -2.19570960304E+01 -2.18510524047E+01 -2.17427934948E+01 -2.16323162838E+01 -2.15196242732E+01 -2.14047275364E+01 -2.12876426694E+01 -2.11683926433E+01 -2.10470065642E+01 -2.09235193427E+01 -2.07979712765E+01 -2.06704075501E+01 -2.05408776529E+01 -2.04094347211E+01 -2.02761348047E+01 -2.01410360668E+01 -2.00041979195E+01 -1.98656801064E+01 -1.97255417428E+01 -1.95838403277E+01 -1.94406307478E+01 -1.92959643012E+01 -1.91498877701E+01 -1.90024425799E+01 -1.88536640922E+01 -1.87035810797E+01 -1.85522154382E+01 -1.83995821912E+01 -1.82456898366E+01 -1.80905410812E+01 -1.79341339884E+01 -1.77764635450E+01 -1.76175236240E+01 -1.74573092862E+01 -1.72958193268E+01 -1.71330589333E+01 -1.69690422957E+01 -1.68037949838E+01 -1.66373558918E+01 -1.64697785618E+01 -1.63011317162E+01 -1.61314988745E+01 -1.59609769860E+01 -1.57896740940E+01 -1.56177061463E+01 -1.54451931878E+01 -1.52722553067E+01 -1.50990088495E+01 -1.49255635397E+01 -1.47520212084E+01 -1.45784768065E+01 -1.44050221709E+01 -1.42317526389E+01 -1.40587760342E+01 -1.38862228854E+01 -1.37142561246E+01 -1.35430781342E+01 -1.33729330525E+01 -1.32041028013E+01 -1.30368963314E+01 -1.28716329375E+01 -1.27086537531E+01 -1.25483163901E+01 -1.23906583412E+01 -1.22352686322E+01 -1.20818417660E+01 -1.19303534633E+01 -1.17808250393E+01 -1.16332680024E+01 -1.14876784687E+01 -1.13440273856E+01 -1.12022803482E+01 -1.10624022116E+01 -1.09243567663E+01 -1.07881064598E+01 -1.06536121895E+01 -1.05208331991E+01 -1.03897271176E+01 -1.02602501897E+01 -1.01323673995E+01 -1.00060927809E+01 -9.88146317357E+00 -9.75845291611E+00 -9.63700772237E+00 -9.51709720927E+00 -9.39869955372E+00 -9.28179346386E+00 -9.16635815151E+00 -9.05237330622E+00 -8.93981907097E+00 -8.82867601939E+00 -8.71892513441E+00 -8.61054778839E+00 -8.50352572443E+00 -8.39784103908E+00 -8.29347616613E+00 -8.19041386153E+00 -8.08863718945E+00 -7.98812950913E+00 -7.88887446286E+00 -7.79085596467E+00 -7.69405818997E+00 -7.59846556587E+00 -7.50406276215E+00 -7.41083468300E+00 -7.31876645923E+00 -7.22784344111E+00 -7.13805626479E+00 -7.04938551791E+00 -6.96180647825E+00 -6.87531627243E+00 -6.78990651072E+00 -6.70555832151E+00 -6.62225842809E+00 -6.53999373127E+00 -6.45875130549E+00 -6.37851839527E+00 -6.29928241183E+00 -6.22103092989E+00 -6.14375168469E+00 -6.06743256908E+00 -5.99206163085E+00 -5.91762707011E+00 -5.84411723686E+00 -5.77152062859E+00 -5.69982588802E+00 -5.62902180097E+00 -5.55909674928E+00 -5.49003947105E+00 -5.42184101436E+00 -5.35449045708E+00 -5.28797599393E+00 -5.22228779852E+00 -5.15741560434E+00 -5.09334927283E+00 -5.03007879176E+00 -4.96759427355E+00 -4.90588595365E+00 -4.84494418897E+00 -4.78475945635E+00 -4.72532235102E+00 -4.66662358507E+00 -4.60865398606E+00 -4.55140449548E+00 -4.49486616740E+00 -4.43903016705E+00 -4.38388776938E+00 -4.32943035779E+00 -4.27564942273E+00 -4.22253656037E+00 -4.17008347132E+00 -4.11828195934E+00 -4.06712393004E+00 -4.01660138962E+00 -3.96670644367E+00 -3.91743129588E+00 -3.86876824689E+00 -3.82070969301E+00 -3.77324812512E+00 -3.72637612742E+00 -3.68008637631E+00 -3.63437163923E+00 -3.58922477355E+00 -3.54463872538E+00 -3.50060652855E+00 -3.45712130343E+00 -3.41417625592E+00 -3.37176467631E+00 -3.32987993829E+00 -3.28851549785E+00 -3.24766489227E+00 -3.20732173911E+00 -3.16747973521E+00 -3.12813265566E+00 -3.08927435288E+00 -3.05089875560E+00 -3.01299986794E+00 -2.97557176846E+00 -2.93860860925E+00 -2.90210461499E+00 -2.86605408205E+00 -2.83045137764E+00 -2.79529093888E+00 -2.76056727196E+00 -2.72627495129E+00 -2.69240861863E+00 -2.65896298228E+00 -2.62593281626E+00 -2.59331295946E+00 -2.56109831489E+00 -2.52928384885E+00 -2.49786459016E+00 -2.46683562936E+00 -2.43619211799E+00 -2.40592926782E+00 -2.37604235008E+00 -2.34652669475E+00 -2.31737768981E+00 -2.28859078055E+00 -2.26016146882E+00 -2.23208531237E+00 -2.20435792413E+00 -2.17697497153E+00 -2.14993217582E+00 -2.12322531142E+00 -2.09685020523E+00 -2.07080273601E+00 -2.04507883371E+00 -2.01967447885E+00 -1.99458570189E+00 -1.96980858260E+00 -1.94533924944E+00 -1.92117387899E+00 -1.89730869533E+00 -1.87373996943E+00 -1.85046401861E+00 -1.82747720591E+00 -1.80477593958E+00 -1.78235667249E+00 -1.76021590157E+00 -1.73835016725E+00 -1.71675605298E+00 -1.69543018461E+00 -1.67436922994E+00 -1.65356989814E+00 -1.63302893929E+00 -1.61274314381E+00 -1.59270934201E+00 -1.57292440359E+00 -1.55338523710E+00 -1.53408878954E+00 -1.51503204578E+00 -1.49621202820E+00 -1.47762579614E+00 -1.45927044548E+00 -1.44114310816E+00 -1.42324095178E+00 -1.40556117909E+00 -1.38810102761E+00 -1.37085776918E+00 -1.35382870950E+00 -1.33701118776E+00 -1.32040257640E+00 -1.30400027939E+00 -1.28780172951E+00 -1.27180443262E+00 -1.25600579041E+00 -1.24040348373E+00 -1.22499502193E+00 -1.20977789175E+00 -1.19474978958E+00 -1.17990837006E+00 -1.16525131299E+00 -1.15077632880E+00 -1.13648115575E+00 -1.12236356019E+00 -1.10842133621E+00 -1.09465230532E+00 -1.08105431607E+00 -1.06762524375E+00 -1.05436299004E+00 -1.04126548269E+00 -1.02833067519E+00 -1.01555654644E+00 -1.00294110047E+00 -9.90482366079E-01 -9.78178396570E-01 -9.66027269423E-01 -9.54027085999E-01 -9.42175971245E-01 -9.30472073400E-01 -9.18913563707E-01 -9.07498636735E-01 -8.96225507618E-01 -8.85092415560E-01 -8.74097620992E-01 -8.63239405956E-01 -8.52516073834E-01 -8.41925949083E-01 -8.31467376974E-01 -8.21138723334E-01 -8.10938374291E-01 -8.00864736018E-01 -7.90916234490E-01 -7.81091315233E-01 -7.71388443082E-01 -7.61806101946E-01 -7.52342794562E-01 -7.42997042271E-01 -7.33767384780E-01 -7.24652379935E-01 -7.15650603499E-01 -7.06760648925E-01 -6.97981127141E-01 -6.89310666328E-01 -6.80747911710E-01 -6.72291525337E-01 -6.63940185883E-01 -6.55692588434E-01 -6.47547444286E-01 -6.39503480743E-01 -6.31559440920E-01 -6.23714083545E-01 -6.15966182765E-01 -6.08314527953E-01 -6.00757923525E-01 -5.93295188744E-01 -5.85925157543E-01 -5.78646678341E-01 -5.71458613859E-01 -5.64359840948E-01 -5.57349250410E-01 -5.50425746827E-01 -5.43588248387E-01 -5.36835686716E-01 -5.30167006714E-01 -5.23581166385E-01 -5.17077136678E-01 -5.10653901326E-01 -5.04310456686E-01 -4.98045811580E-01 -4.91858987145E-01 -4.85749016678E-01 -4.79714945483E-01 -4.73755830724E-01 -4.67870741277E-01 -4.62058757586E-01 -4.56318971516E-01 -4.50650486213E-01 -4.45052415966E-01 -4.39523886064E-01 -4.34064032664E-01 -4.28672002652E-01 -4.23346953512E-01 -4.18088053195E-01 -4.12894479987E-01 -4.07765422382E-01 -4.02700078953E-01 -3.97697658232E-01 -3.92757378578E-01 -3.87878468064E-01 -3.83060164349E-01 -3.78301714565E-01 -3.73602375193E-01 -3.68961411952E-01 -3.64378099683E-01 -3.59851722233E-01 -3.55381572347E-01 -3.50966951554E-01 -3.46607170062E-01 -3.42301546645E-01 -3.38049408542E-01 -3.33850091346E-01 -3.29702938906E-01 -3.25607303221E-01 -3.21562544340E-01 -3.17568030261E-01 -3.13623136832E-01 -3.09727247656E-01 -3.05879753994E-01 -3.02080054665E-01 -2.98327555959E-01 -2.94621671540E-01 -2.90961822358E-01 -2.87347436552E-01 -2.83777949367E-01 -2.80252803065E-01 -2.76771446833E-01 -2.73333336703E-01 -2.69937935463E-01 -2.66584712574E-01 -2.63273144089E-01 -2.60002712569E-01 -2.56772907001E-01 -2.53583222722E-01 -2.50433161338E-01 -2.47322230645E-01 -2.44249944554E-01 -2.41215823013E-01 -2.38219391936E-01 -2.35260183123E-01 -2.32337734192E-01 -2.29451588505E-01 -2.26601295096E-01 -2.23786408600E-01 -2.21006489186E-01 -2.18261102485E-01 -2.15549819525E-01 -2.12872216664E-01 -2.10227875519E-01 -2.07616382908E-01 -2.05037330778E-01 -2.02490316149E-01 1 0 Beta L 911 1.41855474689E-03 1.43639796904E-03 1.45446563131E-03 1.47276055678E-03 1.49671518763E-03 1.55595464490E-03 1.58215910682E-03 1.52872306741E-03 1.62035697285E-03 1.61983366676E-03 1.61225084803E-03 1.63708189157E-03 1.63449628566E-03 1.74581483991E-03 1.69668407686E-03 1.63529683523E-03 1.66590214591E-03 1.72303876937E-03 1.75030205703E-03 1.82415225286E-03 1.78677075860E-03 1.89028798852E-03 1.88368787245E-03 1.86020905722E-03 1.90472456983E-03 2.01132544540E-03 1.86187310510E-03 1.98477729431E-03 2.01418911168E-03 2.10564036524E-03 2.00853846453E-03 2.10024482722E-03 2.17617412484E-03 2.10257261099E-03 2.12856054723E-03 2.29929737514E-03 2.18004007897E-03 2.24834038096E-03 2.30127944359E-03 2.33122328186E-03 2.37508264631E-03 2.32034398678E-03 2.44064817417E-03 2.42366570435E-03 2.42034207422E-03 2.50313944537E-03 2.48344102382E-03 2.49956813747E-03 2.69317021930E-03 2.51852252491E-03 2.70616916775E-03 2.68569618823E-03 2.75666750160E-03 2.70593877574E-03 2.83097474442E-03 2.80551878736E-03 2.83075030864E-03 2.90052527527E-03 2.86433384061E-03 3.00964153397E-03 2.96568010574E-03 3.03433560977E-03 3.09394585954E-03 3.15025583780E-03 3.17908208962E-03 3.20430806188E-03 3.23377391808E-03 3.24870943209E-03 3.32369145560E-03 3.30998805297E-03 3.44871161628E-03 3.42285992652E-03 3.47017895159E-03 3.56542263512E-03 3.61110959193E-03 3.59224825972E-03 3.71095889707E-03 3.68029143815E-03 3.76806786739E-03 3.82064475951E-03 3.85790875474E-03 3.87191933862E-03 3.96488975495E-03 4.03859496026E-03 4.03435781712E-03 4.12647916975E-03 4.09972727528E-03 4.22448104000E-03 4.28082208266E-03 4.28913596814E-03 4.39675145843E-03 4.41589611599E-03 4.49245130861E-03 4.55166077114E-03 4.59720505022E-03 4.62846829311E-03 4.74038204400E-03 4.77366519575E-03 4.84294276678E-03 4.91065073044E-03 4.94980020740E-03 5.03138501545E-03 5.05556432136E-03 5.14387402679E-03 5.18949741927E-03 5.28615371891E-03 5.32073570565E-03 5.40538481456E-03 5.44085819542E-03 5.55038975944E-03 5.60069127396E-03 5.70485897498E-03 5.76807031024E-03 5.79887355695E-03 5.88325049204E-03 6.02524188003E-03 6.04173610564E-03 6.12814026295E-03 6.22467833255E-03 6.28251226520E-03 6.35948849076E-03 6.41895651811E-03 6.54603134791E-03 6.57249609364E-03 6.67906347791E-03 6.77255382697E-03 6.86566634554E-03 6.94255745329E-03 7.01573991873E-03 7.10862023353E-03 7.20378685852E-03 7.26130350623E-03 7.36872737678E-03 7.46926730724E-03 7.57497340223E-03 7.68370056810E-03 7.75781210580E-03 7.87853265584E-03 7.95421335520E-03 8.06057522974E-03 8.17905715248E-03 8.25743531547E-03 8.35994472564E-03 8.48831593424E-03 8.58308886657E-03 8.69453512820E-03 8.78897869656E-03 8.91368320911E-03 9.00220696902E-03 9.14805624753E-03 9.25077944148E-03 9.38907419357E-03 9.46705026081E-03 9.59326202944E-03 9.72234082459E-03 9.84449392989E-03 9.96588440119E-03 1.00895309344E-02 1.02268221362E-02 1.03564076106E-02 1.04697577285E-02 1.06149304001E-02 1.07461746909E-02 1.08783427985E-02 1.10106630266E-02 1.11601343963E-02 1.12953999100E-02 1.14421866548E-02 1.15867504789E-02 1.17186092105E-02 1.18918366610E-02 1.20290508265E-02 1.21854282858E-02 1.23359195703E-02 1.24722457895E-02 1.26389037912E-02 1.28079426706E-02 1.29645199052E-02 1.31409658006E-02 1.32908563298E-02 1.34546545775E-02 1.36308439489E-02 1.37972410825E-02 1.39629211541E-02 1.41518779248E-02 1.43282285906E-02 1.45059931184E-02 1.46906665002E-02 1.48795931242E-02 1.50669191874E-02 1.52500284075E-02 1.54426519767E-02 1.56378647056E-02 1.58291548799E-02 1.60311593837E-02 1.62381168453E-02 1.64331524326E-02 1.66323996833E-02 1.68631419651E-02 1.70566043223E-02 1.72878309745E-02 1.74925823703E-02 1.77189233723E-02 1.79490508741E-02 1.81705169187E-02 1.83865896076E-02 1.86426571079E-02 1.88578010286E-02 1.90949416694E-02 1.93398500491E-02 1.95788696245E-02 1.98352707565E-02 2.00678358889E-02 2.03284008845E-02 2.05896787478E-02 2.08467489884E-02 2.11130844987E-02 2.13781010791E-02 2.16404689068E-02 2.19129933722E-02 2.21849798975E-02 2.24693256106E-02 2.27559784519E-02 2.30289044428E-02 2.33374233141E-02 2.36159658515E-02 2.39154205977E-02 2.42227734357E-02 2.45255514732E-02 2.48315598454E-02 2.51422530405E-02 2.54672163182E-02 2.57870629013E-02 2.61039139225E-02 2.64307217660E-02 2.67742940381E-02 2.70968466553E-02 2.74411265788E-02 2.77858825937E-02 2.81310084908E-02 2.84915275402E-02 2.88510603426E-02 2.92136413006E-02 2.95810319246E-02 2.99536681976E-02 3.03297155358E-02 3.07126916459E-02 3.10938336419E-02 3.14886618299E-02 3.18896170178E-02 3.22870340435E-02 3.26874670856E-02 3.31063363035E-02 3.35173352821E-02 3.39450157791E-02 3.43709392004E-02 3.48004105725E-02 3.52350313419E-02 3.56757498768E-02 3.61342765494E-02 3.65851365046E-02 3.70445420932E-02 3.75117135385E-02 3.79783268237E-02 3.84612292883E-02 3.89419379754E-02 3.94354602524E-02 3.99279877080E-02 4.04330097247E-02 4.09381025971E-02 4.14566083064E-02 4.19765972226E-02 4.25054612678E-02 4.30385142090E-02 4.35828668758E-02 4.41321900337E-02 4.46820507215E-02 4.52472542837E-02 4.58154984629E-02 4.63928448587E-02 4.69736872617E-02 4.75692071981E-02 4.81645931798E-02 4.87744729427E-02 4.93863307280E-02 5.00067126988E-02 5.06311774163E-02 5.12680674641E-02 5.19192640970E-02 5.25690613539E-02 5.32301286656E-02 5.39029658569E-02 5.45763037407E-02 5.52644131367E-02 5.59604162389E-02 5.66658362874E-02 5.73796497509E-02 5.80989112053E-02 5.88289468504E-02 5.95679491094E-02 6.03162286608E-02 6.10776439121E-02 6.18461823595E-02 6.26229084145E-02 6.34112919988E-02 6.42073606348E-02 6.50162999348E-02 6.58346098306E-02 6.66631832258E-02 6.75016476674E-02 6.83512103060E-02 6.92092450073E-02 7.00785422571E-02 7.09616820185E-02 7.18567286439E-02 7.27576880968E-02 7.36730955172E-02 7.45995231802E-02 7.55399292999E-02 7.64888418205E-02 7.74512566278E-02 7.84240684485E-02 7.94123461966E-02 8.04078380678E-02 8.14213352987E-02 8.24452869906E-02 8.34835534552E-02 8.45330665160E-02 8.55961460787E-02 8.66709331998E-02 8.77634781411E-02 8.88672475067E-02 8.99842086690E-02 9.11162384190E-02 9.22633736074E-02 9.34230299948E-02 9.45977766824E-02 9.57862155977E-02 9.69937858316E-02 9.82121405661E-02 9.94483291290E-02 1.00698432301E-01 1.01965842591E-01 1.03248705092E-01 1.04545816066E-01 1.05862068587E-01 1.07191562050E-01 1.08542418545E-01 1.09905825696E-01 1.11289583841E-01 1.12688064328E-01 1.14105723587E-01 1.15543278447E-01 1.16995971236E-01 1.18466957408E-01 1.19955988177E-01 1.21466472651E-01 1.22993696108E-01 1.24539720088E-01 1.26107261860E-01 1.27693136887E-01 1.29299783207E-01 1.30925542496E-01 1.32571647061E-01 1.34239810882E-01 1.35929600764E-01 1.37639027662E-01 1.39370067742E-01 1.41123669227E-01 1.42897799230E-01 1.44695998350E-01 1.46515697227E-01 1.48359552761E-01 1.50224842422E-01 1.52114108484E-01 1.54027661447E-01 1.55965666581E-01 1.57926761325E-01 1.59914303885E-01 1.61924113909E-01 1.63960995889E-01 1.66024475667E-01 1.68111812793E-01 1.70226503161E-01 1.72367436710E-01 1.74537290992E-01 1.76731161127E-01 1.78954753270E-01 1.81204896041E-01 1.83483710104E-01 1.85792853874E-01 1.88129399087E-01 1.90496021271E-01 1.92890749915E-01 1.95318041072E-01 1.97775100662E-01 2.00261898088E-01 2.02781277936E-01 2.05331560124E-01 2.07914962033E-01 2.10528680162E-01 2.13177219506E-01 2.15858728160E-01 2.18573882527E-01 2.21323247235E-01 2.24107178625E-01 2.26926078848E-01 2.29780108033E-01 2.32670508059E-01 2.35597295061E-01 2.38560394560E-01 2.41561356454E-01 2.44599402495E-01 2.47675622276E-01 2.50791431588E-01 2.53946016936E-01 2.57139173924E-01 2.60374813033E-01 2.63649488915E-01 2.66965205099E-01 2.70322731230E-01 2.73723215132E-01 2.77166127216E-01 2.80652264833E-01 2.84182481970E-01 2.87756626638E-01 2.91375781616E-01 2.95040755646E-01 2.98751863283E-01 3.02509402664E-01 3.06314621224E-01 3.10167279295E-01 3.14068287643E-01 3.18018556299E-01 3.22018627710E-01 3.26068885319E-01 3.30169977414E-01 3.34322739382E-01 3.38527617547E-01 3.42785658796E-01 3.47097088660E-01 3.51462565488E-01 3.55882647050E-01 3.60358939195E-01 3.64891734545E-01 3.69481292309E-01 3.74128264541E-01 3.78834409844E-01 3.83598788548E-01 3.88423843707E-01 3.93309086152E-01 3.98255253776E-01 4.03264095682E-01 4.08337057466E-01 4.13471744016E-01 4.18672346681E-01 4.23937953829E-01 4.29269996101E-01 4.34669341711E-01 4.40135875998E-01 4.45671790900E-01 4.51276883489E-01 4.56952328165E-01 4.62699685296E-01 4.68519096175E-01 4.74411249766E-01 4.80377766795E-01 4.86419399537E-01 4.92537281820E-01 4.98731631424E-01 5.05003838717E-01 5.11355101072E-01 5.17786006774E-01 5.24298303549E-01 5.30892401670E-01 5.37568779835E-01 5.44329686553E-01 5.51174959884E-01 5.58106973826E-01 5.65125572935E-01 5.72232609352E-01 5.79429216467E-01 5.86716104137E-01 5.94094739962E-01 6.01565885909E-01 6.09131314959E-01 6.16791522966E-01 6.24548103444E-01 6.32402127277E-01 6.40354963492E-01 6.48407604528E-01 6.56561572484E-01 6.64818153644E-01 6.73178524801E-01 6.81643787559E-01 6.90215279070E-01 6.98894889613E-01 7.07683504966E-01 7.16582184612E-01 7.25593206570E-01 7.34717288292E-01 7.43956074824E-01 7.53311038086E-01 7.62782988545E-01 7.72374679928E-01 7.82086357203E-01 7.91920528380E-01 8.01877856379E-01 8.11960770455E-01 8.22169986252E-01 8.32507524072E-01 8.42974982180E-01 8.53573972432E-01 8.64306228932E-01 8.75173117215E-01 8.86176541501E-01 8.97318191440E-01 9.08599892040E-01 9.20023118714E-01 9.31590056714E-01 9.43302044337E-01 9.55161217414E-01 9.67169435245E-01 9.79328335568E-01 9.91639887012E-01 1.00410609714E+00 1.01672894872E+00 1.02951013154E+00 1.04245189796E+00 1.05555616050E+00 1.06882473998E+00 1.08226015325E+00 1.09586409255E+00 1.10963881226E+00 1.12358633736E+00 1.13770900867E+00 1.15200914545E+00 1.16648833198E+00 1.18114935390E+00 1.19599450045E+00 1.21102589516E+00 1.22624571942E+00 1.24165663168E+00 1.25726089220E+00 1.27306074249E+00 1.28905883543E+00 1.30525772497E+00 1.32165957105E+00 1.33826722749E+00 1.35508322728E+00 1.37210999310E+00 1.38935034542E+00 1.40680643961E+00 1.42448187150E+00 1.44237843831E+00 1.46049956980E+00 1.47884785541E+00 1.49742578317E+00 1.51623676893E+00 1.53528324951E+00 1.55456848504E+00 1.57409524960E+00 1.59386641289E+00 1.61388527976E+00 1.63415497107E+00 1.65467833536E+00 1.67545863861E+00 1.69649905296E+00 1.71780285403E+00 1.73937327711E+00 1.76121360860E+00 1.78332715577E+00 1.80571722321E+00 1.82838754240E+00 1.85134130301E+00 1.87458209948E+00 1.89811339668E+00 1.92193897073E+00 1.94606228010E+00 1.97048687355E+00 1.99521694337E+00 2.02025568706E+00 2.04560726443E+00 2.07127539054E+00 2.09726409489E+00 2.12357701615E+00 2.15021854123E+00 2.17719237400E+00 2.20450274840E+00 2.23215380798E+00 2.26014956160E+00 2.28849452038E+00 2.31719272329E+00 2.34624860588E+00 2.37566633368E+00 2.40545062760E+00 2.43560571037E+00 2.46613628373E+00 2.49704678974E+00 2.52834194292E+00 2.56002624251E+00 2.59210474376E+00 2.62458203072E+00 2.65746279368E+00 2.69075227608E+00 2.72445502231E+00 2.75857644032E+00 2.79312123215E+00 2.82809467143E+00 2.86350202503E+00 2.89934824139E+00 2.93563887752E+00 2.97237901961E+00 3.00957426967E+00 3.04722992193E+00 3.08535168757E+00 3.12394488247E+00 3.16301532935E+00 3.20256860450E+00 3.24261042361E+00 3.28314672277E+00 3.32418333924E+00 3.36572607050E+00 3.40778105501E+00 3.45035416747E+00 3.49345163167E+00 3.53707967525E+00 3.58124429125E+00 3.62595205045E+00 3.67120907544E+00 3.71702192945E+00 3.76339695816E+00 3.81034081445E+00 3.85785994913E+00 3.90596124160E+00 3.95465111937E+00 4.00393659682E+00 4.05382440651E+00 4.10432149492E+00 4.15543477423E+00 4.20717124159E+00 4.25953804923E+00 4.31254232592E+00 4.36619120288E+00 4.42049206095E+00 4.47545211665E+00 4.53107875939E+00 4.58737943663E+00 4.64436160033E+00 4.70203287305E+00 4.76040078315E+00 4.81947295894E+00 4.87925720349E+00 4.93976122416E+00 5.00099282990E+00 5.06295982332E+00 5.12567019778E+00 5.18913188161E+00 5.25335278996E+00 5.31834113719E+00 5.38410481817E+00 5.45065210370E+00 5.51799112619E+00 5.58612994570E+00 5.65507701868E+00 5.72484051463E+00 5.79542867904E+00 5.86684990785E+00 5.93911253834E+00 6.01222486911E+00 6.08619543961E+00 6.16103247774E+00 6.23674452003E+00 6.31333996415E+00 6.39082722182E+00 6.46921472668E+00 6.54851094744E+00 6.62872422915E+00 6.70986302766E+00 6.79193571704E+00 6.87495067306E+00 6.95891622744E+00 7.04384065604E+00 7.12973224182E+00 7.21659927169E+00 7.30444976743E+00 7.39329199146E+00 7.48313381122E+00 7.57398335010E+00 7.66584840360E+00 7.75873679162E+00 7.85265616736E+00 7.94761415812E+00 8.04361822718E+00 8.14067568936E+00 8.23879371267E+00 8.33797940844E+00 8.43823957743E+00 8.53958102616E+00 8.64201017786E+00 8.74553341290E+00 8.85015684552E+00 8.95588634622E+00 9.06272746579E+00 9.17068568879E+00 9.27976607716E+00 9.38997340410E+00 9.50131223037E+00 9.61378662477E+00 9.72740042996E+00 9.84215710755E+00 9.95805967229E+00 1.00751107781E+01 1.01933125371E+01 1.03126667594E+01 1.04331745850E+01 1.05548368127E+01 1.06776535185E+01 1.08016243089E+01 1.09267482051E+01 1.10530235087E+01 1.11804479181E+01 1.13090183599E+01 1.14387310921E+01 1.15695815371E+01 1.17015643342E+01 1.18346731918E+01 1.19689010036E+01 1.21042396467E+01 1.22406800850E+01 1.23782121457E+01 1.25168245828E+01 1.26565050821E+01 1.27972400257E+01 1.29390146145E+01 1.30818126781E+01 1.32256167020E+01 1.33704077359E+01 1.35161653176E+01 1.36628673865E+01 1.38104902473E+01 1.39590085137E+01 1.41083949319E+01 1.42586204886E+01 1.44096540852E+01 1.45614626735E+01 1.47140109980E+01 1.48672616244E+01 1.50211748112E+01 1.51757083706E+01 1.53308175877E+01 1.54864551708E+01 1.56425710466E+01 1.57991122858E+01 1.59560231158E+01 1.61132445463E+01 1.62707144987E+01 1.64283674908E+01 1.65861346388E+01 1.67439434460E+01 1.69017177277E+01 1.70593774075E+01 1.72168384340E+01 1.73740126199E+01 1.75308074269E+01 1.76871259107E+01 1.78428665505E+01 1.79979230090E+01 1.81521840654E+01 1.83055334590E+01 1.84578495801E+01 1.86090055480E+01 1.87588688009E+01 1.89073010986E+01 1.90541582801E+01 1.91992900974E+01 1.93425401230E+01 1.94837454800E+01 1.96227367152E+01 1.97593377046E+01 1.98933654416E+01 2.00246298765E+01 2.01529338051E+01 2.02780726853E+01 2.03998346048E+01 2.05180000248E+01 2.06323418100E+01 2.07426249927E+01 2.08486068285E+01 2.09500365912E+01 2.10466556264E+01 2.11381972662E+01 2.12243868132E+01 2.13049415866E+01 2.13795708899E+01 2.14479761567E+01 2.15098509832E+01 2.15648812453E+01 2.16127452780E+01 2.16531140771E+01 2.16856514892E+01 2.17100145252E+01 2.17258536757E+01 2.17328132389E+01 2.17305317612E+01 2.17186425292E+01 2.16967740484E+01 2.16645506528E+01 2.16215931393E+01 2.15675194768E+01 2.15019455651E+01 2.14244861016E+01 2.13347554406E+01 2.12323685920E+01 2.11169422867E+01 2.09880960529E+01 2.08454534299E+01 2.06886432184E+01 2.05173007845E+01 2.03310694744E+01 2.01296020675E+01 1.99125622695E+01 1.96796262853E+01 1.94304844470E+01 1.91648428412E+01 1.88824250066E+01 1.85829736729E+01 1.82662524251E+01 1.79320474787E+01 1.75801693357E+01 1.72104545176E+01 1.68227671421E+01 1.64170005406E+01 1.59930787066E+01 1.55509577395E+01 1.50906270416E+01 1.46121105355E+01 1.41154675391E+01 1.36007936591E+01 1.30682213247E+01 1.25179201706E+01 1.19500972284E+01 1.13649968253E+01 1.07629002606E+01 1.01441252585E+01 9.50902517440E+00 8.85798794960E+00 8.19143498027E+00 7.50981971565E+00 6.81362628024E+00 6.10336800213E+00 5.37958605065E+00 4.64284829861E+00 3.89374847688E+00 3.13290588612E+00 2.36096579992E+00 1.57860086442E+00 7.86513700127E-01 -1.45588842092E-02 -8.23839785356E-01 -1.64050309403E+00 -2.46366280744E+00 -3.29235815808E+00 -4.12553503657E+00 -4.96202287876E+00 -5.80050623934E+00 -6.63949052012E+00 -7.47726081484E+00 -8.31183325996E+00 -9.14089793904E+00 -9.96175246296E+00 -1.07710070680E+01 -1.15640311045E+01 -1.23357286252E+01 -1.30807435795E+01 -1.37934570348E+01 -1.44679854028E+01 -1.50981798212E+01 -1.56776268707E+01 -1.61996509685E+01 -1.66573185183E+01 -1.70434442234E+01 -1.73505997277E+01 -1.75711248711E+01 -1.76971418288E+01 -1.77205723703E+01 -1.76331584625E+01 -1.74264864784E+01 -1.70920151687E+01 -1.66211076151E+01 -1.60050673449E+01 -1.52351786993E+01 -1.43027516701E+01 -1.31991711605E+01 -1.19159514912E+01 -1.04447899407E+01 -8.77767944034E+00 -6.90649761662E+00 -4.82773398316E+00 -2.49735035981E+00 -2.70152459480E-01 2.57547703116E-02 -3.51435124502E-03 -5.45507449669E-04 -7.74235917077E-04 -6.87358435618E-04 -6.33223861021E-04 -5.77331254462E-04 -5.23137449484E-04 -4.70330008200E-04 -4.18969696085E-04 2.00 2.50 4S 2 0 Beta L 911 1.66487771463E-03 1.68581929829E-03 1.70702429465E-03 1.72849601704E-03 1.75599183192E-03 1.82069747478E-03 1.85059101549E-03 1.79639364545E-03 1.89543050307E-03 1.89719383527E-03 1.89158803861E-03 1.92017171067E-03 1.91982015178E-03 2.03976975759E-03 1.99055285596E-03 1.92832612192E-03 1.96306459040E-03 2.02593956184E-03 2.05738489598E-03 2.13780541438E-03 2.10124994012E-03 2.21292617127E-03 2.20866895417E-03 2.18704576774E-03 2.23670365301E-03 2.35190962791E-03 2.19731798127E-03 2.32967509719E-03 2.36389713262E-03 2.46324071685E-03 2.36392955696E-03 2.46371734517E-03 2.54685620464E-03 2.47246401889E-03 2.50299442324E-03 2.68641002717E-03 2.56392207927E-03 2.63922473871E-03 2.69844812181E-03 2.73343765227E-03 2.78316029241E-03 2.72885013857E-03 2.85936270922E-03 2.84509592521E-03 2.84514113579E-03 2.93618495987E-03 2.91913759874E-03 2.93994829176E-03 3.14794500562E-03 2.96752682502E-03 3.16940310991E-03 3.15180931354E-03 3.23056554922E-03 3.18123967860E-03 3.31720612303E-03 3.29448814929E-03 3.32534252046E-03 3.40314520833E-03 3.36947574517E-03 3.52695205181E-03 3.48507456552E-03 3.56196836772E-03 3.62934908611E-03 3.69342188284E-03 3.72842842829E-03 3.75982487135E-03 3.79572082835E-03 3.81619795721E-03 3.90035593248E-03 3.89078018313E-03 4.04204689575E-03 4.01996156151E-03 4.07491331047E-03 4.18067872426E-03 4.23413690004E-03 4.21959280008E-03 4.35021940707E-03 4.32335550267E-03 4.42148333467E-03 4.48258057793E-03 4.52762872569E-03 4.54811795183E-03 4.65200178044E-03 4.73569251978E-03 4.73724492794E-03 4.84037453510E-03 4.81838147866E-03 4.95612198008E-03 5.02190938703E-03 5.03694263137E-03 5.15695786823E-03 5.18370762875E-03 5.27105155427E-03 5.34021295630E-03 5.39505812249E-03 5.43488993724E-03 5.55986586855E-03 5.60201503435E-03 5.68222179264E-03 5.76084948152E-03 5.80948699009E-03 5.90289535297E-03 5.93593014598E-03 6.03665756564E-03 6.09247866232E-03 6.20215704721E-03 6.24656802820E-03 6.34381589670E-03 6.38937252991E-03 6.51302744399E-03 6.57439665905E-03 6.69262356911E-03 6.76779947609E-03 6.80891180788E-03 6.90662209909E-03 7.06517053462E-03 7.09153672395E-03 7.19165014223E-03 7.30266844556E-03 7.37296031130E-03 7.46351105459E-03 7.53578080715E-03 7.67939314265E-03 7.71712612471E-03 7.83937489373E-03 7.94794890114E-03 8.05631361906E-03 8.14761126617E-03 8.23522195810E-03 8.34368345393E-03 8.45469421539E-03 8.52616881782E-03 8.65033819361E-03 8.76745168786E-03 8.89012039129E-03 9.01612782371E-03 9.10575187600E-03 9.24469756895E-03 9.33631530265E-03 9.46040684840E-03 9.59741063688E-03 9.69228830867E-03 9.81278248546E-03 9.96068209889E-03 1.00733277202E-02 1.02037007910E-02 1.03163309983E-02 1.04609913348E-02 1.05677238415E-02 1.07350211632E-02 1.08570320082E-02 1.10167297606E-02 1.11129767369E-02 1.12603216774E-02 1.14108067761E-02 1.15542017332E-02 1.16969557336E-02 1.18422712828E-02 1.20021978277E-02 1.21541278004E-02 1.22892107713E-02 1.24579913756E-02 1.26122661055E-02 1.27677767905E-02 1.29235919486E-02 1.30977226862E-02 1.32571084485E-02 1.34288052901E-02 1.35984191628E-02 1.37548098446E-02 1.39550589512E-02 1.41175541239E-02 1.43004513199E-02 1.44774436937E-02 1.46396406376E-02 1.48341030573E-02 1.50313108351E-02 1.52155823537E-02 1.54211201229E-02 1.55988007953E-02 1.57914851784E-02 1.59974338920E-02 1.61933098382E-02 1.63887247326E-02 1.66088894533E-02 1.68160833819E-02 1.70249978966E-02 1.72414698703E-02 1.74627274078E-02 1.76825225622E-02 1.78981873306E-02 1.81241957539E-02 1.83531497579E-02 1.85783448326E-02 1.88150413511E-02 1.90573355736E-02 1.92873326560E-02 1.95220592107E-02 1.97903405114E-02 2.00195832257E-02 2.02890076063E-02 2.05308119716E-02 2.07957022611E-02 2.10649479866E-02 2.13253444985E-02 2.15804371796E-02 2.18780286250E-02 2.21328019242E-02 2.24111598942E-02 2.26980081494E-02 2.29790520554E-02 2.32787799072E-02 2.35537161116E-02 2.38586007227E-02 2.41645511847E-02 2.44665140489E-02 2.47785944713E-02 2.50896807655E-02 2.53983875258E-02 2.57181961768E-02 2.60378487135E-02 2.63709389619E-02 2.67068845401E-02 2.70287990939E-02 2.73886374165E-02 2.77173328246E-02 2.80685084676E-02 2.84284516170E-02 2.87840388244E-02 2.91434688868E-02 2.95083117577E-02 2.98886626568E-02 3.02640964693E-02 3.06368527198E-02 3.10205948128E-02 3.14225071951E-02 3.18027581319E-02 3.22064052046E-02 3.26110925381E-02 3.30166619759E-02 3.34390145687E-02 3.38608258726E-02 3.42864099726E-02 3.47176090778E-02 3.51548750233E-02 3.55963159172E-02 3.60456130903E-02 3.64935552715E-02 3.69565036784E-02 3.74265027154E-02 3.78933620291E-02 3.83640084312E-02 3.88546944459E-02 3.93377058807E-02 3.98389313704E-02 4.03389308162E-02 4.08433161328E-02 4.13537741766E-02 4.18713253006E-02 4.24083119529E-02 4.29378959920E-02 4.34771655667E-02 4.40253088588E-02 4.45735728798E-02 4.51397142104E-02 4.57042607951E-02 4.62830443846E-02 4.68615139361E-02 4.74539003176E-02 4.80471154974E-02 4.86552376845E-02 4.92656937098E-02 4.98862852604E-02 5.05120993355E-02 5.11506112058E-02 5.17951875642E-02 5.24411565438E-02 5.31041237773E-02 5.37711495961E-02 5.44486199998E-02 5.51306490426E-02 5.58290240121E-02 5.65281389918E-02 5.72434422840E-02 5.79617390807E-02 5.86899373998E-02 5.94233769745E-02 6.01708637736E-02 6.09343879471E-02 6.16974037574E-02 6.24732791296E-02 6.32625610973E-02 6.40533727338E-02 6.48607773188E-02 6.56775358926E-02 6.65052651940E-02 6.73429002279E-02 6.81873449587E-02 6.90442367083E-02 6.99116792214E-02 7.07900158863E-02 7.16833200565E-02 7.25852767836E-02 7.34970184759E-02 7.44222180918E-02 7.53567022419E-02 7.63059574353E-02 7.72662969592E-02 7.82386896242E-02 7.92227519585E-02 8.02197742030E-02 8.12270061221E-02 8.22473964551E-02 8.32836935551E-02 8.43338643443E-02 8.53916110136E-02 8.64659459293E-02 8.75532687707E-02 8.86567283611E-02 8.97705588651E-02 9.09000536606E-02 9.20419546641E-02 9.32016207569E-02 9.43703764967E-02 9.55596137366E-02 9.67613874280E-02 9.79797975237E-02 9.92116195063E-02 1.00459317992E-01 1.01720961655E-01 1.03002937854E-01 1.04298386204E-01 1.05609401577E-01 1.06937976602E-01 1.08284183616E-01 1.09645304672E-01 1.11024082670E-01 1.12419061099E-01 1.13835990466E-01 1.15266103659E-01 1.16716846916E-01 1.18184118102E-01 1.19671511179E-01 1.21177098160E-01 1.22699634493E-01 1.24244298178E-01 1.25804894459E-01 1.27390015693E-01 1.28990391328E-01 1.30614277098E-01 1.32255753570E-01 1.33919553638E-01 1.35606459476E-01 1.37311475886E-01 1.39037964451E-01 1.40785683127E-01 1.42558260227E-01 1.44350748048E-01 1.46165349982E-01 1.48004964639E-01 1.49866254330E-01 1.51751827048E-01 1.53659961587E-01 1.55591986612E-01 1.57549741971E-01 1.59532799659E-01 1.61539094558E-01 1.63570744710E-01 1.65628778520E-01 1.67711087462E-01 1.69821438265E-01 1.71957151549E-01 1.74121067013E-01 1.76310346518E-01 1.78527706317E-01 1.80773505322E-01 1.83047959648E-01 1.85349663374E-01 1.87682195088E-01 1.90041188448E-01 1.92431738485E-01 1.94853391069E-01 1.97303292093E-01 1.99785164387E-01 2.02297880202E-01 2.04844301802E-01 2.07419295204E-01 2.10028921479E-01 2.12669876559E-01 2.15344436873E-01 2.18054397818E-01 2.20796710875E-01 2.23574241915E-01 2.26384956896E-01 2.29233599363E-01 2.32117267845E-01 2.35035977500E-01 2.37992770920E-01 2.40985927184E-01 2.44017828368E-01 2.47085571129E-01 2.50193949327E-01 2.53341061493E-01 2.56527671162E-01 2.59754424207E-01 2.63021747911E-01 2.66330116763E-01 2.69679752705E-01 2.73072018703E-01 2.76506984834E-01 2.79984629031E-01 2.83506638767E-01 2.87072249455E-01 2.90682667176E-01 2.94339440564E-01 2.98041773106E-01 3.01789505323E-01 3.05586820058E-01 3.09430145925E-01 3.13321654861E-01 3.17262221963E-01 3.21253118668E-01 3.25293851074E-01 3.29385321369E-01 3.33528497529E-01 3.37723285580E-01 3.41970890166E-01 3.46272235632E-01 3.50627718528E-01 3.55037723629E-01 3.59503636511E-01 3.64025274720E-01 3.68603670972E-01 3.73239856102E-01 3.77934477220E-01 3.82688012206E-01 3.87501219782E-01 3.92375056473E-01 3.97310072192E-01 4.02307447196E-01 4.07367500381E-01 4.12491003601E-01 4.17678628334E-01 4.22932148806E-01 4.28251956978E-01 4.33638411967E-01 4.39092284906E-01 4.44615516877E-01 4.50207205332E-01 4.55870013801E-01 4.61603517974E-01 4.67408584573E-01 4.73287151499E-01 4.79240835341E-01 4.85267204783E-01 4.91370776407E-01 4.97550683624E-01 5.03808534025E-01 5.10145341258E-01 5.16561085933E-01 5.23058180353E-01 5.29636513209E-01 5.36297427420E-01 5.43042673476E-01 5.49872506978E-01 5.56787763392E-01 5.63790260417E-01 5.70880902131E-01 5.78060996253E-01 5.85330887147E-01 5.92692154418E-01 6.00146178213E-01 6.07693696145E-01 6.15336671134E-01 6.23075655359E-01 6.30911278264E-01 6.38846032456E-01 6.46879874932E-01 6.55015433537E-01 6.63252675358E-01 6.71593682068E-01 6.80039781164E-01 6.88591854884E-01 6.97251585734E-01 7.06019913886E-01 7.14898848573E-01 7.23889051005E-01 7.32992345167E-01 7.42210003427E-01 7.51543615166E-01 7.60994374550E-01 7.70564035096E-01 7.80254105149E-01 7.90065977902E-01 8.00000970203E-01 8.10060649602E-01 8.20247166305E-01 8.30561616745E-01 8.41005280674E-01 8.51580723572E-01 8.62288870915E-01 8.73131624660E-01 8.84110708759E-01 8.95227150154E-01 9.06484028553E-01 9.17881779742E-01 9.29423227506E-01 9.41109252732E-01 9.52942601808E-01 9.64924214595E-01 9.77056411909E-01 9.89341068282E-01 1.00178007753E+00 1.01437546448E+00 1.02712886622E+00 1.04004249298E+00 1.05311832754E+00 1.06635850165E+00 1.07976477850E+00 1.09333967308E+00 1.10708481080E+00 1.12100265816E+00 1.13509539601E+00 1.14936497188E+00 1.16381368547E+00 1.17844388139E+00 1.19325787909E+00 1.20825769312E+00 1.22344593382E+00 1.23882485598E+00 1.25439662095E+00 1.27016412595E+00 1.28612940334E+00 1.30229507954E+00 1.31866354317E+00 1.33523751916E+00 1.35201971133E+00 1.36901205362E+00 1.38621774884E+00 1.40363947927E+00 1.42127975704E+00 1.43914115729E+00 1.45722676177E+00 1.47553923700E+00 1.49408123120E+00 1.51285583128E+00 1.53186602262E+00 1.55111437886E+00 1.57060420904E+00 1.59033848725E+00 1.61032007502E+00 1.63055225685E+00 1.65103762004E+00 1.67178027428E+00 1.69278243663E+00 1.71404804925E+00 1.73558017217E+00 1.75738176277E+00 1.77945676020E+00 1.80180807554E+00 1.82443949226E+00 1.84735428487E+00 1.87055583372E+00 1.89404798111E+00 1.91783438036E+00 1.94191840183E+00 1.96630385967E+00 1.99099447456E+00 2.01599407968E+00 2.04130647049E+00 2.06693550102E+00 2.09288505162E+00 2.11915900415E+00 2.14576169586E+00 2.17269689668E+00 2.19996880851E+00 2.22758150083E+00 2.25553937693E+00 2.28384650909E+00 2.31250707022E+00 2.34152591658E+00 2.37090686012E+00 2.40065473317E+00 2.43077390347E+00 2.46126907552E+00 2.49214454736E+00 2.52340541045E+00 2.55505604163E+00 2.58710138174E+00 2.61954628184E+00 2.65239545587E+00 2.68565415320E+00 2.71932713024E+00 2.75341956764E+00 2.78793636607E+00 2.82288301801E+00 2.85826449567E+00 2.89408628209E+00 2.93035359234E+00 2.96707193390E+00 3.00424659374E+00 3.04188344977E+00 3.07998788966E+00 3.11856541843E+00 3.15762213032E+00 3.19716338826E+00 3.23719547146E+00 3.27772392079E+00 3.31875488582E+00 3.36029451439E+00 3.40234862538E+00 3.44492368429E+00 3.48802566696E+00 3.53166109853E+00 3.57583618591E+00 3.62055758161E+00 3.66583152691E+00 3.71166480417E+00 3.75806394133E+00 3.80503561948E+00 3.85258675829E+00 3.90072417867E+00 3.94945466628E+00 3.99878537143E+00 4.04872317285E+00 4.09927532305E+00 4.15044908429E+00 4.20225147751E+00 4.25469013864E+00 4.30777223659E+00 4.36150541076E+00 4.41589707666E+00 4.47095497968E+00 4.52668665705E+00 4.58310010395E+00 4.64020284437E+00 4.69800302613E+00 4.75650850550E+00 4.81572736914E+00 4.87566767283E+00 4.93633756673E+00 4.99774536932E+00 5.05989937927E+00 5.12280790214E+00 5.18647951113E+00 5.25092261076E+00 5.31614579155E+00 5.38215770961E+00 5.44896702925E+00 5.51658259818E+00 5.58501316893E+00 5.65426760133E+00 5.72435494374E+00 5.79528414544E+00 5.86706426575E+00 5.93970435936E+00 6.01321368403E+00 6.08760143081E+00 6.16287677804E+00 6.23904922036E+00 6.31612791693E+00 6.39412242283E+00 6.47304214795E+00 6.55289642495E+00 6.63369500376E+00 6.71544733096E+00 6.79816293081E+00 6.88185148480E+00 6.96652260962E+00 7.05218587784E+00 7.13885111286E+00 7.22652780484E+00 7.31522576479E+00 7.40495465216E+00 7.49572413450E+00 7.58754389657E+00 7.68042365209E+00 7.77437297671E+00 7.86940155381E+00 7.96551897094E+00 8.06273480721E+00 8.16105858357E+00 8.26049975043E+00 8.36106775219E+00 8.46277202335E+00 8.56562170422E+00 8.66962617226E+00 8.77479437167E+00 8.88113549814E+00 8.98865838202E+00 9.09737185911E+00 9.20728456715E+00 9.31840509370E+00 9.43074182867E+00 9.54430297941E+00 9.65909657128E+00 9.77513054062E+00 9.89241246626E+00 1.00109499007E+01 1.01307499583E+01 1.02518196733E+01 1.03741657613E+01 1.04977946422E+01 1.06227123573E+01 1.07489248350E+01 1.08764375131E+01 1.10052554769E+01 1.11353835389E+01 1.12668259403E+01 1.13995866298E+01 1.15336690977E+01 1.16690763036E+01 1.18058107647E+01 1.19438743627E+01 1.20832685928E+01 1.22239941740E+01 1.23660513917E+01 1.25094396932E+01 1.26541579511E+01 1.28002043382E+01 1.29475761823E+01 1.30962700855E+01 1.32462817433E+01 1.33976060492E+01 1.35502369150E+01 1.37041673228E+01 1.38593891641E+01 1.40158933593E+01 1.41736696402E+01 1.43327066543E+01 1.44929917257E+01 1.46545109167E+01 1.48172490284E+01 1.49811893485E+01 1.51463137746E+01 1.53126026092E+01 1.54800345835E+01 1.56485867552E+01 1.58182344229E+01 1.59889510299E+01 1.61607081200E+01 1.63334752726E+01 1.65072199109E+01 1.66819074101E+01 1.68575007475E+01 1.70339606403E+01 1.72112452670E+01 1.73893102921E+01 1.75681087235E+01 1.77475907602E+01 1.79277037008E+01 1.81083918841E+01 1.82895964674E+01 1.84712553408E+01 1.86533031344E+01 1.88356708176E+01 1.90182858277E+01 1.92010717324E+01 1.93839482240E+01 1.95668308915E+01 1.97496311339E+01 1.99322559399E+01 2.01146077940E+01 2.02965844997E+01 2.04780789480E+01 2.06589790534E+01 2.08391675679E+01 2.10185218235E+01 2.11969136563E+01 2.13742092365E+01 2.15502687385E+01 2.17249464189E+01 2.18980901803E+01 2.20695415715E+01 2.22391355285E+01 2.24067001975E+01 2.25720568358E+01 2.27350195259E+01 2.28953950417E+01 2.30529827492E+01 2.32075743845E+01 2.33589538865E+01 2.35068972829E+01 2.36511724998E+01 2.37915393340E+01 2.39277491878E+01 2.40595451087E+01 2.41866615492E+01 2.43088244349E+01 2.44257509605E+01 2.45371496587E+01 2.46427203248E+01 2.47421540162E+01 2.48351331186E+01 2.49213313324E+01 2.50004138472E+01 2.50720374010E+01 2.51358504282E+01 2.51914932782E+01 2.52385984576E+01 2.52767908634E+01 2.53056881494E+01 2.53249010957E+01 2.53340339958E+01 2.53326851631E+01 2.53204474973E+01 2.52969090361E+01 2.52616536509E+01 2.52142617697E+01 2.51543111826E+01 2.50813779024E+01 2.49950371421E+01 2.48948642881E+01 2.47804360215E+01 2.46513315158E+01 2.45071336457E+01 2.43474303465E+01 2.41718160125E+01 2.39798929567E+01 2.37712729873E+01 2.35455790297E+01 2.33024467904E+01 2.30415265080E+01 2.27624847640E+01 2.24650062930E+01 2.21487958689E+01 2.18135802352E+01 2.14591099549E+01 2.10851613790E+01 2.06915384863E+01 2.02780748042E+01 1.98446351607E+01 1.93911174778E+01 1.89174543814E+01 1.84236148021E+01 1.79096053099E+01 1.73754714638E+01 1.68212987928E+01 1.62472137867E+01 1.56533844987E+01 1.50400209773E+01 1.44073754834E+01 1.37557423857E+01 1.30854578066E+01 1.23968990152E+01 1.16904835433E+01 1.09666680164E+01 1.02259468744E+01 9.46885078354E+00 8.69594505185E+00 7.90782792010E+00 7.10512894262E+00 6.28850757796E+00 5.45865206008E+00 4.61627882828E+00 3.76213265695E+00 2.89698780635E+00 2.02165041107E+00 1.13696253872E+00 2.43808214588E-01 -6.56878045816E-01 -1.56409980446E+00 -2.47678372602E+00 -3.39376050784E+00 -4.31374104778E+00 -5.23528702654E+00 -6.15677533960E+00 -7.07635527972E+00 -7.99189782052E+00 -8.90093599112E+00 -9.80059540926E+00 -1.06872873481E+01 -1.15561322103E+01 -1.24017630942E+01 -1.32185386297E+01 -1.40005400619E+01 -1.47415693949E+01 -1.54351487490E+01 -1.60745211248E+01 -1.66526529294E+01 -1.71622383507E+01 -1.75957060079E+01 -1.79452280512E+01 -1.82027320149E+01 -1.83599157054E+01 -1.84082653778E+01 -1.83390774341E+01 -1.81434839232E+01 -1.78124820085E+01 -1.73369676343E+01 -1.67077735822E+01 -1.59157120157E+01 -1.49516217408E+01 -1.38064201360E+01 -1.24711606151E+01 -1.09370891065E+01 -9.19576263168E+00 -7.23861846611E+00 -5.06193458112E+00 -2.61946694851E+00 -2.83464644371E-01 2.70192066905E-02 -3.69123472595E-03 -5.75714930591E-04 -8.15296279554E-04 -7.23743570987E-04 -6.66564371517E-04 -6.07557639121E-04 -5.50349927381E-04 -4.94612880768E-04 -4.40409772981E-04 2.00 2.50 4S 3 1 Beta L 915 -1.93018017706E-07 -1.97904292082E-07 -2.02914263082E-07 -2.08051062101E-07 -2.13317899807E-07 -2.18718068143E-07 -2.24254942391E-07 -2.29931983278E-07 -2.35752739139E-07 -2.41720848135E-07 -2.47840040530E-07 -2.54114141017E-07 -2.60547071113E-07 -2.67142851610E-07 -2.73905605084E-07 -2.80839558477E-07 -2.87949045736E-07 -2.95238510520E-07 -3.02712508983E-07 -3.10375712618E-07 -3.18232911175E-07 -3.26289015660E-07 -3.34549061401E-07 -3.43018211193E-07 -3.51701758533E-07 -3.60605130919E-07 -3.69733893249E-07 -3.79093751297E-07 -3.88690555278E-07 -3.98530303508E-07 -4.08619146148E-07 -4.18963389055E-07 -4.29569497716E-07 -4.40444101295E-07 -4.51593996772E-07 -4.63026153196E-07 -4.74747716036E-07 -4.86766011650E-07 -4.99088551864E-07 -5.11723038667E-07 -5.24677369024E-07 -5.37959639813E-07 -5.51578152886E-07 -5.65541420257E-07 -5.79858169421E-07 -5.94537348813E-07 -6.09588133398E-07 -6.25019930406E-07 -6.40842385212E-07 -6.57065387365E-07 -6.73699076769E-07 -6.90753850022E-07 -7.08240366912E-07 -7.26169557080E-07 -7.44552626855E-07 -7.63401066252E-07 -7.82726656159E-07 -8.02541475699E-07 -8.22857909779E-07 -8.43688656832E-07 -8.65046736750E-07 -8.86945499031E-07 -9.09398631111E-07 -9.32420166930E-07 -9.56024495697E-07 -9.80226370883E-07 -1.00504091945E-06 -1.03048365130E-06 -1.05657046896E-06 -1.08331767754E-06 -1.11074199493E-06 -1.13886056220E-06 -1.16769095439E-06 -1.19725119142E-06 -1.22755974940E-06 -1.25863557216E-06 -1.29049808311E-06 -1.32316719736E-06 -1.35666333415E-06 -1.39100742967E-06 -1.42622095009E-06 -1.46232590502E-06 -1.49934486120E-06 -1.53730095671E-06 -1.57621791534E-06 -1.61612006144E-06 -1.65703233516E-06 -1.69898030800E-06 -1.74199019880E-06 -1.78608889015E-06 -1.83130394516E-06 -1.87766362471E-06 -1.92519690511E-06 -1.97393349620E-06 -2.02390385994E-06 -2.07513922943E-06 -2.12767162844E-06 -2.18153389142E-06 -2.23675968405E-06 -2.29338352424E-06 -2.35144080372E-06 -2.41096781019E-06 -2.47200174995E-06 -2.53458077121E-06 -2.59874398788E-06 -2.66453150407E-06 -2.73198443909E-06 -2.80114495325E-06 -2.87205627409E-06 -2.94476272350E-06 -3.01930974537E-06 -3.09574393401E-06 -3.17411306328E-06 -3.25446611642E-06 -3.33685331671E-06 -3.42132615881E-06 -3.50793744100E-06 -3.59674129814E-06 -3.68779323552E-06 -3.78115016357E-06 -3.87687043339E-06 -3.97501387326E-06 -4.07564182602E-06 -4.17881718740E-06 -4.28460444535E-06 -4.39306972034E-06 -4.50428080670E-06 -4.61830721494E-06 -4.73522021529E-06 -4.85509288216E-06 -4.97800013985E-06 -5.10401880939E-06 -5.23322765654E-06 -5.36570744101E-06 -5.50154096697E-06 -5.64081313477E-06 -5.78361099403E-06 -5.93002379805E-06 -6.08014305958E-06 -6.23406260802E-06 -6.39187864807E-06 -6.55368981988E-06 -6.71959726066E-06 -6.88970466796E-06 -7.06411836440E-06 -7.24294736420E-06 -7.42630344127E-06 -7.61430119910E-06 -7.80705814238E-06 -8.00469475043E-06 -8.20733455253E-06 -8.41510420512E-06 -8.62813357095E-06 -8.84655580028E-06 -9.07050741405E-06 -9.30012838927E-06 -9.53556224648E-06 -9.77695613945E-06 -1.00244609472E-05 -1.02782313681E-05 -1.05384260171E-05 -1.08052075240E-05 -1.10787426361E-05 -1.13592023215E-05 -1.16467618767E-05 -1.19416010356E-05 -1.22439040822E-05 -1.25538599657E-05 -1.28716624185E-05 -1.31975100774E-05 -1.35316066078E-05 -1.38741608306E-05 -1.42253868533E-05 -1.45855042036E-05 -1.49547379663E-05 -1.53333189245E-05 -1.57214837035E-05 -1.61194749186E-05 -1.65275413274E-05 -1.69459379843E-05 -1.73749264007E-05 -1.78147747083E-05 -1.82657578263E-05 -1.87281576336E-05 -1.92022631451E-05 -1.96883706919E-05 -2.01867841068E-05 -2.06978149141E-05 -2.12217825246E-05 -2.17590144348E-05 -2.23098464318E-05 -2.28746228034E-05 -2.34536965527E-05 -2.40474296196E-05 -2.46561931060E-05 -2.52803675087E-05 -2.51008260138E-05 -2.65645269991E-05 -2.72495209223E-05 -2.79273263952E-05 -2.86434797589E-05 -2.93648017763E-05 -3.01086135845E-05 -3.08758184468E-05 -3.16543965335E-05 -3.24510951601E-05 -3.32748558737E-05 -3.41224901436E-05 -3.49819913897E-05 -3.58692007161E-05 -3.67743304278E-05 -3.77125154853E-05 -3.86662026452E-05 -3.96450233442E-05 -4.06434724342E-05 -4.16802460084E-05 -4.27219665382E-05 -4.38119260853E-05 -4.49170684120E-05 -4.60563247490E-05 -4.72230352238E-05 -4.84253456446E-05 -4.96565557469E-05 -5.09071908912E-05 -5.21869617332E-05 -5.35192826055E-05 -5.48546182027E-05 -5.62705731235E-05 -5.76607362472E-05 -5.91438763450E-05 -6.06389770373E-05 -6.21843707139E-05 -6.37414528521E-05 -6.53519178155E-05 -6.70132421040E-05 -6.87070951105E-05 -7.04502195982E-05 -7.22318028461E-05 -7.40682317422E-05 -7.59380952070E-05 -7.78761477170E-05 -7.98375332806E-05 -8.18523667126E-05 -8.39279156473E-05 -8.60561476260E-05 -8.82225496883E-05 -9.04639610945E-05 -9.27545926893E-05 -9.51024045598E-05 -9.75120342018E-05 -9.99760565358E-05 -1.02511882077E-04 -1.05106127713E-04 -1.07768483642E-04 -1.10495429419E-04 -1.13296086474E-04 -1.16158874371E-04 -1.19096955326E-04 -1.22124546624E-04 -1.25214418834E-04 -1.28383311993E-04 -1.31629820519E-04 -1.34967761851E-04 -1.38384861778E-04 -1.41883503430E-04 -1.45469292768E-04 -1.49152228346E-04 -1.52933921739E-04 -1.56802313867E-04 -1.60770006071E-04 -1.64842082080E-04 -1.69013716367E-04 -1.73292554977E-04 -1.77678656907E-04 -1.82181819033E-04 -1.86793112813E-04 -1.91520090773E-04 -1.96365804072E-04 -2.01344177518E-04 -2.06428899878E-04 -2.11671822686E-04 -2.17018673697E-04 -2.22517530866E-04 -2.28154890287E-04 -2.33926991160E-04 -2.39844889980E-04 -2.45919928297E-04 -2.52142483493E-04 -2.58531981992E-04 -2.65078714659E-04 -2.71779626759E-04 -2.78660539044E-04 -2.85718037439E-04 -2.92953016904E-04 -3.00375752230E-04 -3.07966117677E-04 -3.15765183110E-04 -3.23761576015E-04 -3.31956673458E-04 -3.40364674197E-04 -3.48980587799E-04 -3.57819947242E-04 -3.66866892691E-04 -3.76160511303E-04 -3.85681035739E-04 -3.95454856334E-04 -4.05452309039E-04 -4.15723196812E-04 -4.26243805040E-04 -4.37033915130E-04 -4.48092392886E-04 -4.59444206303E-04 -4.71068422759E-04 -4.82991512992E-04 -4.95226089714E-04 -5.07764131326E-04 -5.20602660469E-04 -5.33799804302E-04 -5.47313820409E-04 -5.61167544805E-04 -5.75372210536E-04 -5.89935556972E-04 -6.04877910025E-04 -6.20182106640E-04 -6.35889538518E-04 -6.51981580254E-04 -6.68483384639E-04 -6.85407480313E-04 -7.02756805452E-04 -7.20552355219E-04 -7.38792711331E-04 -7.57495254056E-04 -7.76670179840E-04 -7.96339708376E-04 -8.16495059508E-04 -8.37164844172E-04 -8.58350110882E-04 -8.80098475302E-04 -9.02364172259E-04 -9.25209159921E-04 -9.48630661176E-04 -9.72647105563E-04 -9.97265770250E-04 -1.02250268690E-03 -1.04839172826E-03 -1.07493353330E-03 -1.10214332266E-03 -1.13005204714E-03 -1.15865190192E-03 -1.18799581174E-03 -1.21806131774E-03 -1.24889517494E-03 -1.28051426658E-03 -1.31294235786E-03 -1.34616431472E-03 -1.38024586172E-03 -1.41518736342E-03 -1.45100939354E-03 -1.48774918419E-03 -1.52540773523E-03 -1.56402201999E-03 -1.60360725216E-03 -1.64419774860E-03 -1.68583201591E-03 -1.72850889177E-03 -1.77226281557E-03 -1.81712974804E-03 -1.86313113984E-03 -1.91029349552E-03 -1.95865189804E-03 -2.00823119802E-03 -2.05908684691E-03 -2.11120844107E-03 -2.16464690339E-03 -2.21944569336E-03 -2.27562896422E-03 -2.33322975738E-03 -2.39230509719E-03 -2.45285908469E-03 -2.51495429920E-03 -2.57862988875E-03 -2.64390276280E-03 -2.71082977108E-03 -2.77945397419E-03 -2.84981349906E-03 -2.92195743345E-03 -2.99591617664E-03 -3.07176706414E-03 -3.14953409058E-03 -3.22924769285E-03 -3.31100510303E-03 -3.39483162949E-03 -3.48076257090E-03 -3.56887129088E-03 -3.65921078896E-03 -3.75185033298E-03 -3.84683079630E-03 -3.94420999270E-03 -4.04404943297E-03 -4.14642161127E-03 -4.25139248870E-03 -4.35901268922E-03 -4.46936218636E-03 -4.58249914012E-03 -4.69850635739E-03 -4.81743006987E-03 -4.93938884583E-03 -5.06442651164E-03 -5.19262852448E-03 -5.32408694597E-03 -5.45885201545E-03 -5.59703762297E-03 -5.73872688286E-03 -5.88399621831E-03 -6.03295054731E-03 -6.18566373344E-03 -6.34224613354E-03 -6.50280220441E-03 -6.66741464287E-03 -6.83619503739E-03 -7.00923809752E-03 -7.18667625615E-03 -7.36859736597E-03 -7.55513192921E-03 -7.74638333331E-03 -7.94246535802E-03 -8.14353485350E-03 -8.34966818539E-03 -8.56103117463E-03 -8.77773750960E-03 -8.99994616683E-03 -9.22776457197E-03 -9.46135733865E-03 -9.70085830691E-03 -9.94641843703E-03 -1.01981947691E-02 -1.04563416800E-02 -1.07210341391E-02 -1.09924207512E-02 -1.12706774966E-02 -1.15559722667E-02 -1.18485009146E-02 -1.21484199176E-02 -1.24559396136E-02 -1.27712355089E-02 -1.30945114756E-02 -1.34259811133E-02 -1.37658293735E-02 -1.41142931122E-02 -1.44715593446E-02 -1.48378813363E-02 -1.52134653844E-02 -1.55985603353E-02 -1.59933991579E-02 -1.63982313100E-02 -1.68133121966E-02 -1.72389029241E-02 -1.76752632068E-02 -1.81226649742E-02 -1.85813827498E-02 -1.90517325936E-02 -1.95339685305E-02 -2.00284240241E-02 -2.05353707939E-02 -2.10551601983E-02 -2.15881086090E-02 -2.21345341836E-02 -2.26947942041E-02 -2.32692421730E-02 -2.38582114870E-02 -2.44621024380E-02 -2.50812769538E-02 -2.57161141771E-02 -2.63670104038E-02 -2.70343802773E-02 -2.77186499781E-02 -2.84202341617E-02 -2.91395670771E-02 -2.98771092795E-02 -3.06333057066E-02 -3.14086455352E-02 -3.22035980595E-02 -3.30186913801E-02 -3.38543819546E-02 -3.47112331605E-02 -3.55897631710E-02 -3.64905293906E-02 -3.74140786809E-02 -3.83609985362E-02 -3.93318792073E-02 -4.03273446436E-02 -4.13479673340E-02 -4.23944332672E-02 -4.34673760614E-02 -4.45674555279E-02 -4.56953805397E-02 -4.68518302700E-02 -4.80375536104E-02 -4.92532563704E-02 -5.04997375292E-02 -5.17777438746E-02 -5.30880851335E-02 -5.44315731768E-02 -5.58090593581E-02 -5.72213662593E-02 -5.86694308267E-02 -6.01541180240E-02 -6.16763468770E-02 -6.32371103039E-02 -6.48373357990E-02 -6.64780330042E-02 -6.81602533437E-02 -6.98850085705E-02 -7.16533869293E-02 -7.34664913054E-02 -7.53254717868E-02 -7.72314463497E-02 -7.91856283074E-02 -8.11894185247E-02 -8.32432691853E-02 -8.53499320873E-02 -8.75089006145E-02 -8.97237485948E-02 -9.19937709141E-02 -9.43201712080E-02 -9.67079738832E-02 -9.91538680021E-02 -1.01662217062E-01 -1.04234790936E-01 -1.06871896355E-01 -1.09574747788E-01 -1.12347671681E-01 -1.15188968710E-01 -1.18103484814E-01 -1.21091031965E-01 -1.24154111732E-01 -1.27294498452E-01 -1.30514799912E-01 -1.33815727335E-01 -1.37200654503E-01 -1.40670684789E-01 -1.44229055518E-01 -1.47877455440E-01 -1.51616371407E-01 -1.55451717092E-01 -1.59383198122E-01 -1.63413570986E-01 -1.67546696287E-01 -1.71783799910E-01 -1.76127336222E-01 -1.80581507762E-01 -1.85147909402E-01 -1.89829591097E-01 -1.94629385785E-01 -1.99550666552E-01 -2.04595700905E-01 -2.09768774778E-01 -2.15072463650E-01 -2.20509029246E-01 -2.26084410560E-01 -2.31799391376E-01 -2.37658986908E-01 -2.43666558719E-01 -2.49825807650E-01 -2.56139933645E-01 -2.62614285081E-01 -2.69251650334E-01 -2.76056074229E-01 -2.83032661329E-01 -2.90185190284E-01 -2.97517821883E-01 -3.05035942374E-01 -3.12743210387E-01 -3.20644997216E-01 -3.28745930301E-01 -3.37051403431E-01 -3.45565936237E-01 -3.54295398154E-01 -3.63244465768E-01 -3.72419538743E-01 -3.81825533661E-01 -3.91467982061E-01 -4.01355783746E-01 -4.11489708897E-01 -4.21879198575E-01 -4.32532180552E-01 -4.43452384035E-01 -4.54647524632E-01 -4.66125152926E-01 -4.77888340069E-01 -4.89953355361E-01 -5.02318367371E-01 -5.14992761478E-01 -5.27990168808E-01 -5.41312181137E-01 -5.54969726722E-01 -5.68971581400E-01 -5.83321860235E-01 -5.98035053326E-01 -6.13122038445E-01 -6.28577356759E-01 -6.44435732351E-01 -6.60677943177E-01 -6.77339507364E-01 -6.94410108444E-01 -7.11915553375E-01 -7.29858397835E-01 -7.48248352193E-01 -7.67106488952E-01 -7.86428870220E-01 -8.06243308480E-01 -8.26549649339E-01 -8.47364404233E-01 -8.68708289847E-01 -8.90575186755E-01 -9.12998130474E-01 -9.35978532627E-01 -9.59534429612E-01 -9.83682223454E-01 -1.00842966388E+00 -1.03379734108E+00 -1.05980251583E+00 -1.08645220915E+00 -1.11377071491E+00 -1.14176889517E+00 -1.17046906074E+00 -1.19988293462E+00 -1.23002943247E+00 -1.26093089477E+00 -1.29259937421E+00 -1.32505913120E+00 -1.35832425821E+00 -1.39241976213E+00 -1.42736289196E+00 -1.46317391384E+00 -1.49987688358E+00 -1.53749034899E+00 -1.57603866058E+00 -1.61554236553E+00 -1.65602773039E+00 -1.69751595689E+00 -1.74003267960E+00 -1.78360279912E+00 -1.82825021400E+00 -1.87400260182E+00 -1.92088808109E+00 -1.96892918655E+00 -2.01815903365E+00 -2.06860251137E+00 -2.12028992001E+00 -2.17325158480E+00 -2.22751830415E+00 -2.28311910983E+00 -2.34008911277E+00 -2.39845713044E+00 -2.45826025241E+00 -2.51952928709E+00 -2.58230157830E+00 -2.64661065623E+00 -2.71249442639E+00 -2.77998820231E+00 -2.84913255924E+00 -2.91996342233E+00 -2.99252190802E+00 -3.06684793249E+00 -3.14298369766E+00 -3.22096907752E+00 -3.30084992018E+00 -3.38266740085E+00 -3.46646928297E+00 -3.55229789849E+00 -3.64020264033E+00 -3.73023004594E+00 -3.82242854955E+00 -3.91684762413E+00 -4.01353940258E+00 -4.11255208275E+00 -4.21394140415E+00 -4.31775963012E+00 -4.42406079389E+00 -4.53290169529E+00 -4.64433749989E+00 -4.75842784100E+00 -4.87522939947E+00 -4.99480318263E+00 -5.11721027750E+00 -5.24251205050E+00 -5.37077172836E+00 -5.50205379667E+00 -5.63642295435E+00 -5.77394637019E+00 -5.91469057094E+00 -6.05872491842E+00 -6.20611871059E+00 -6.35694252204E+00 -6.51126882462E+00 -6.66916985059E+00 -6.83071969752E+00 -6.99599408195E+00 -7.16506841113E+00 -7.33802004763E+00 -7.51492734020E+00 -7.69586939396E+00 -7.88092664882E+00 -8.07017929720E+00 -8.26371101482E+00 -8.46160339023E+00 -8.66394112510E+00 -8.87080854265E+00 -9.08229131899E+00 -9.29847607880E+00 -9.51944902706E+00 -9.74529871090E+00 -9.97611337596E+00 -1.02119809156E+01 -1.04529920979E+01 -1.06992356729E+01 -1.09508025522E+01 -1.12077824878E+01 -1.14702666273E+01 -1.17383456992E+01 -1.20121101924E+01 -1.22916509415E+01 -1.25770587752E+01 -1.28684231852E+01 -1.31658347289E+01 -1.34693819971E+01 -1.37791538740E+01 -1.40952379054E+01 -1.44177208843E+01 -1.47466879615E+01 -1.50822240522E+01 -1.54244111434E+01 -1.57733308286E+01 -1.61290616328E+01 -1.64916811662E+01 -1.68612636827E+01 -1.72378813808E+01 -1.76216037114E+01 -1.80124966579E+01 -1.84106234648E+01 -1.88160428852E+01 -1.92288108865E+01 -1.96489781200E+01 -2.00765914531E+01 -2.05116925553E+01 -2.09543177371E+01 -2.14044981418E+01 -2.18622584575E+01 -2.23276173154E+01 -2.28005864138E+01 -2.32811702098E+01 -2.37693656435E+01 -2.42651614154E+01 -2.47685377008E+01 -2.52794653823E+01 -2.57979061541E+01 -2.63238111824E+01 -2.68571211009E+01 -2.73977655369E+01 -2.79456618046E+01 -2.85007155329E+01 -2.90628187840E+01 -2.96318501209E+01 -3.02076742684E+01 -3.07901404448E+01 -3.13790828482E+01 -3.19743191171E+01 -3.25756501544E+01 -3.31828593028E+01 -3.37957114424E+01 -3.44139526020E+01 -3.50373090523E+01 -3.56654867042E+01 -3.62981701245E+01 -3.69350223152E+01 -3.75756834529E+01 -3.82197706235E+01 -3.88668768394E+01 -3.95165704599E+01 -4.01683945627E+01 -4.08218662254E+01 -4.14764759617E+01 -4.21316869866E+01 -4.27869349194E+01 -4.34416267581E+01 -4.40951411980E+01 -4.47468272195E+01 -4.53960044145E+01 -4.60419624178E+01 -4.66839605761E+01 -4.73212278391E+01 -4.79529625797E+01 -4.85783326653E+01 -4.91964754039E+01 -4.98064977396E+01 -5.04074765789E+01 -5.09984590527E+01 -5.15784630660E+01 -5.21464780607E+01 -5.27014656321E+01 -5.32423604321E+01 -5.37680714546E+01 -5.42774830101E+01 -5.47694563175E+01 -5.52428310550E+01 -5.56964270558E+01 -5.61290463901E+01 -5.65394753606E+01 -5.69264870109E+01 -5.72888435867E+01 -5.76252992938E+01 -5.79346032165E+01 -5.82155027015E+01 -5.84667463171E+01 -5.86870878083E+01 -5.88752895225E+01 -5.90301265416E+01 -5.91503905822E+01 -5.92348943355E+01 -5.92824757508E+01 -5.92920024545E+01 -5.92623764000E+01 -5.91925382273E+01 -5.90814720579E+01 -5.89282098432E+01 -5.87318360060E+01 -5.84914916587E+01 -5.82063787665E+01 -5.78757642121E+01 -5.74989832092E+01 -5.70754427453E+01 -5.66046241577E+01 -5.60860856858E+01 -5.55194638439E+01 -5.49044746281E+01 -5.42409136322E+01 -5.35286553444E+01 -5.27676516858E+01 -5.19579292079E+01 -5.10995855658E+01 -5.01927844223E+01 -4.92377495067E+01 -4.82347571228E+01 -4.71841274182E+01 -4.60862145273E+01 -4.49413951895E+01 -4.37500562594E+01 -4.25125812175E+01 -4.12293355064E+01 -3.99006511244E+01 -3.85268109405E+01 -3.71080325495E+01 -3.56444525764E+01 -3.41361115544E+01 -3.25829405730E+01 -3.09847495709E+01 -2.93412190225E+01 -2.76518954610E+01 -2.59161922975E+01 -2.41333970510E+01 -2.23026868036E+01 -2.04231532936E+01 -1.84938397926E+01 -1.65137918507E+01 -1.44821240635E+01 -1.23981058918E+01 -1.02612687428E+01 -8.07153782990E+00 -5.82939169109E+00 -3.53605294734E+00 -1.19415067629E+00 1.19103822524E+00 3.61298737569E+00 6.06426126605E+00 8.53644725323E+00 1.10200848586E+01 1.35045928105E+01 1.59781942605E+01 1.84278404884E+01 2.08391338887E+01 2.31962508507E+01 2.54818652323E+01 2.76770734232E+01 2.97613218169E+01 3.17123376696E+01 3.35060645161E+01 3.51166032736E+01 3.65161600690E+01 3.76750023329E+01 3.85614243093E+01 3.91417235093E+01 3.93801897728E+01 3.92391082352E+01 3.86787784165E+01 3.76575509132E+01 3.61318839448E+01 3.40564216957E+01 3.13840984164E+01 2.80662527845E+01 2.40529316137E+01 1.92916675433E+01 1.37414267796E+01 7.23955026825E+00 7.97281934389E-01 -7.51973710434E-02 1.11193300240E-02 2.37654446955E-03 3.05790953889E-03 2.80465055003E-03 2.64395986281E-03 2.47415551537E-03 2.30552104470E-03 2.13721738831E-03 1.96953033060E-03 2.40 2.60 4P 4 1 Beta L 915 1.35341066724E-07 1.38767242136E-07 1.42280151591E-07 1.45881990772E-07 1.49575010946E-07 1.53361520370E-07 1.57243885737E-07 1.61224533650E-07 1.65305952145E-07 1.69490692241E-07 1.73781369537E-07 1.78180665844E-07 1.82691330868E-07 1.87316183920E-07 1.92058115684E-07 1.96920090022E-07 2.01905145826E-07 2.07016398918E-07 2.12257043997E-07 2.17630356638E-07 2.23139695335E-07 2.28788503605E-07 2.34580312137E-07 2.40518740998E-07 2.46607501902E-07 2.52850400521E-07 2.59251338870E-07 2.65814317745E-07 2.72543439219E-07 2.79442909214E-07 2.86517040123E-07 2.93770253508E-07 3.01207082862E-07 3.08832176447E-07 3.16650300194E-07 3.24666340684E-07 3.32885308205E-07 3.41312339878E-07 3.49952702872E-07 3.58811797695E-07 3.67895161570E-07 3.77208471894E-07 3.86757549791E-07 3.96548363743E-07 4.06587033330E-07 4.16879833044E-07 4.27433196223E-07 4.38253719059E-07 4.49348164734E-07 4.60723467636E-07 4.72386737699E-07 4.84345264847E-07 4.96606523549E-07 5.09178177489E-07 5.22068084362E-07 5.35284300777E-07 5.48835087301E-07 5.62728913616E-07 5.76974463814E-07 5.91580641829E-07 6.06556576997E-07 6.21911629765E-07 6.37655397540E-07 6.53797720689E-07 6.70348688690E-07 6.87318646435E-07 7.04718200701E-07 7.22558226774E-07 7.40849875252E-07 7.59604579009E-07 7.78834060346E-07 7.98550338314E-07 8.18765736228E-07 8.39492889369E-07 8.60744752882E-07 8.82534609873E-07 9.04876079712E-07 9.27783126543E-07 9.51270068015E-07 9.75351584232E-07 1.00004272692E-06 1.02535892886E-06 1.05131601348E-06 1.07793020482E-06 1.10521813761E-06 1.13319686769E-06 1.16188388268E-06 1.19129711290E-06 1.22145494257E-06 1.25237622131E-06 1.28408027594E-06 1.31658692251E-06 1.34991647874E-06 1.38408977668E-06 1.41912817576E-06 1.45505357611E-06 1.49188843228E-06 1.52965576724E-06 1.56837918682E-06 1.60808289440E-06 1.64879170609E-06 1.69053106623E-06 1.73332706327E-06 1.77720644610E-06 1.82219664076E-06 1.86832576759E-06 1.91562265877E-06 1.96411687642E-06 2.01383873099E-06 2.06481930026E-06 2.11709044874E-06 2.17068484759E-06 2.22563599505E-06 2.28197823738E-06 2.33974679030E-06 2.39897776105E-06 2.45970817089E-06 2.52197597831E-06 2.58582010271E-06 2.65128044874E-06 2.71839793124E-06 2.78721450082E-06 2.85777317006E-06 2.93011804043E-06 3.00429432982E-06 3.08034840081E-06 3.15832778967E-06 3.23828123604E-06 3.32025871343E-06 3.40431146042E-06 3.49049201270E-06 3.57885423591E-06 3.66945335931E-06 3.76234601029E-06 3.85759024976E-06 3.95524560848E-06 4.05537312419E-06 4.15803537985E-06 4.26329654269E-06 4.37122240435E-06 4.48188042200E-06 4.59533976047E-06 4.71167133554E-06 4.83094785821E-06 4.95324388016E-06 5.07863584038E-06 5.20720211289E-06 5.33902305579E-06 5.47418106142E-06 5.61276060793E-06 5.75484831200E-06 5.90053298306E-06 6.04990567874E-06 6.20305976181E-06 6.36009095852E-06 6.52109741845E-06 6.68617977585E-06 6.85544121252E-06 7.02898752234E-06 7.20692717736E-06 7.38937139561E-06 7.57643421063E-06 7.76823254272E-06 7.96488627203E-06 8.16651831349E-06 8.37325469364E-06 8.58522462939E-06 8.80256060879E-06 9.02539847385E-06 9.25387750540E-06 9.48814051023E-06 9.72833391025E-06 9.97460783409E-06 1.02271162109E-05 1.04860168665E-05 1.07514716222E-05 1.10236463958E-05 1.13027113052E-05 1.15888407749E-05 1.18822136452E-05 1.21830132836E-05 1.24914276993E-05 1.28076496614E-05 1.31318768188E-05 1.34643118238E-05 1.38051624590E-05 1.41546417670E-05 1.45129681836E-05 1.48803656743E-05 1.52570638742E-05 1.56432982319E-05 1.60393101562E-05 1.64453471672E-05 1.68616630511E-05 1.72885180186E-05 1.77261788677E-05 1.76416647667E-05 1.86258794618E-05 1.91056041851E-05 1.95814428107E-05 2.00831690530E-05 2.05891378351E-05 2.11106559281E-05 2.16484089845E-05 2.21944220107E-05 2.27533529094E-05 2.33308386419E-05 2.39249133998E-05 2.45278500311E-05 2.51498138305E-05 2.57846772789E-05 2.64421387777E-05 2.71108917489E-05 2.77972645788E-05 2.84975795004E-05 2.92241907159E-05 2.99553056779E-05 3.07191281369E-05 3.14942945326E-05 3.22929775772E-05 3.31110565917E-05 3.39537533108E-05 3.48167470648E-05 3.56940642193E-05 3.65917960269E-05 3.75254968133E-05 3.84627921376E-05 3.94542464434E-05 4.04307961124E-05 4.14695329627E-05 4.25180224982E-05 4.36010940123E-05 4.46937573790E-05 4.58231910932E-05 4.69877093507E-05 4.81755869682E-05 4.93976600707E-05 5.06469586706E-05 5.19342748653E-05 5.32456089972E-05 5.46038004128E-05 5.59795739729E-05 5.73926663774E-05 5.88478589037E-05 6.03399412131E-05 6.18596254316E-05 6.34308702895E-05 6.50369945501E-05 6.66832860457E-05 6.83727612298E-05 7.01007507605E-05 7.18785769669E-05 7.36976733823E-05 7.55644034825E-05 7.74765523394E-05 7.94401650808E-05 8.14477879247E-05 8.35080456767E-05 8.56303122391E-05 8.77969690797E-05 9.00189977489E-05 9.22955685622E-05 9.46357913339E-05 9.70317927106E-05 9.94852047439E-05 1.01999828511E-04 1.04582227063E-04 1.07233587466E-04 1.09946222563E-04 1.12728389045E-04 1.15583571441E-04 1.18508721597E-04 1.21508976703E-04 1.24584511240E-04 1.27741767926E-04 1.30975187684E-04 1.34289762476E-04 1.37687620747E-04 1.41178033252E-04 1.44743969277E-04 1.48419381212E-04 1.52169079187E-04 1.56024554803E-04 1.59977173666E-04 1.64024646704E-04 1.68174407248E-04 1.72433952127E-04 1.76797255818E-04 1.81277163023E-04 1.85867501973E-04 1.90566580559E-04 1.95391328388E-04 2.00339775475E-04 2.05412748063E-04 2.10617088898E-04 2.15940053942E-04 2.21408494364E-04 2.27015286880E-04 2.32761622703E-04 2.38656940132E-04 2.44698323439E-04 2.50896078212E-04 2.57240227050E-04 2.63756463236E-04 2.70432180148E-04 2.77284927926E-04 2.84295654505E-04 2.91497073928E-04 2.98874161747E-04 3.06440002483E-04 3.14194328860E-04 3.22153601049E-04 3.30304659713E-04 3.38665052846E-04 3.47243353157E-04 3.56034779449E-04 3.65037735108E-04 3.74290458229E-04 3.83766231910E-04 3.93480308592E-04 4.03440475986E-04 4.13652163801E-04 4.24129088122E-04 4.34860540276E-04 4.45874000153E-04 4.57157732287E-04 4.68728719431E-04 4.80595525878E-04 4.92760694786E-04 5.05238405981E-04 5.18028251071E-04 5.31142187487E-04 5.44587400807E-04 5.58378908192E-04 5.72511758159E-04 5.87005033181E-04 6.01860195015E-04 6.17108816251E-04 6.32721847365E-04 6.48740330762E-04 6.65163098162E-04 6.82002953552E-04 6.99265352739E-04 7.16961501258E-04 7.35114305091E-04 7.53724885951E-04 7.72804062298E-04 7.92372821645E-04 8.12426921722E-04 8.33001781306E-04 8.54083648261E-04 8.75703917765E-04 8.97874544841E-04 9.20611981653E-04 9.43907452278E-04 9.67804697826E-04 9.92305078590E-04 1.01742307294E-03 1.04318401389E-03 1.06958979300E-03 1.09666556340E-03 1.12442246961E-03 1.15288412720E-03 1.18207680590E-03 1.21200116045E-03 1.24268083098E-03 1.27414069198E-03 1.30639608017E-03 1.33946566848E-03 1.37337385444E-03 1.40813824210E-03 1.44379648889E-03 1.48034351101E-03 1.51781399003E-03 1.55623798673E-03 1.59563284366E-03 1.63602191469E-03 1.67744407989E-03 1.71990388032E-03 1.76344398349E-03 1.80809174363E-03 1.85386024806E-03 1.90078851273E-03 1.94890668287E-03 1.99824170741E-03 2.04882780684E-03 2.10068695820E-03 2.15387185932E-03 2.20840052762E-03 2.26429519576E-03 2.32162168373E-03 2.38039899224E-03 2.44065274951E-03 2.50243344863E-03 2.56577829339E-03 2.63073525948E-03 2.69733381658E-03 2.76561458041E-03 2.83562073664E-03 2.90740248039E-03 2.98100607085E-03 3.05646770035E-03 3.13384280394E-03 3.21317273883E-03 3.29451491576E-03 3.37790316274E-03 3.46341824894E-03 3.55109265335E-03 3.64098587909E-03 3.73316187183E-03 3.82765751408E-03 3.92455110673E-03 4.02390112506E-03 4.12576177468E-03 4.23020586176E-03 4.33728624936E-03 4.44707944279E-03 4.55965841064E-03 4.67508202747E-03 4.79342809665E-03 4.91476358957E-03 5.03918009253E-03 5.16674040547E-03 5.29753516563E-03 5.43163752534E-03 5.56912762257E-03 5.71011358909E-03 5.85465156438E-03 6.00285589225E-03 6.15480722849E-03 6.31061588185E-03 6.47035870138E-03 6.63415007212E-03 6.80208437859E-03 6.97426743798E-03 7.15080921859E-03 7.33181802683E-03 7.51741593000E-03 7.70770794316E-03 7.90281714444E-03 8.10286160134E-03 8.30797764331E-03 8.51827644707E-03 8.73390424271E-03 8.95498496169E-03 9.18166127117E-03 9.41408225692E-03 9.65237877423E-03 9.89671563922E-03 1.01472255526E-02 1.04040846241E-02 1.06674385561E-02 1.09374611707E-02 1.12143162089E-02 1.14981784294E-02 1.17892268099E-02 1.20876443140E-02 1.23936133770E-02 1.27073247111E-02 1.30289710334E-02 1.33587725213E-02 1.36969092264E-02 1.40436134106E-02 1.43990774376E-02 1.47635459326E-02 1.51372411547E-02 1.55203869319E-02 1.59132329480E-02 1.63160269338E-02 1.67290039206E-02 1.71524429747E-02 1.75865985923E-02 1.80317370551E-02 1.84881362528E-02 1.89560864406E-02 1.94358860893E-02 1.99278264650E-02 2.04322123516E-02 2.09493660624E-02 2.14796003535E-02 2.20232574478E-02 2.25806670688E-02 2.31521979252E-02 2.37381727760E-02 2.43389845137E-02 2.49549973562E-02 2.55866016300E-02 2.62341816412E-02 2.68981487539E-02 2.75789168413E-02 2.82769226169E-02 2.89925698506E-02 2.97263371488E-02 3.04786697704E-02 3.12500308439E-02 3.20409163505E-02 3.28518036958E-02 3.36832166688E-02 3.45356519006E-02 3.54096675357E-02 3.63057888743E-02 3.72245829693E-02 3.81666194609E-02 3.91324945742E-02 4.01227870163E-02 4.11381509218E-02 4.21791947354E-02 4.32465631907E-02 4.43409503728E-02 4.54630089126E-02 4.66134462434E-02 4.77929981082E-02 4.90023758592E-02 5.02423419460E-02 5.15136696549E-02 5.28171644691E-02 5.41536123318E-02 5.55238627485E-02 5.69288888288E-02 5.83690478183E-02 5.98461949732E-02 6.13600672825E-02 6.29130567117E-02 6.45047765799E-02 6.61360799149E-02 6.78103086205E-02 6.95253856630E-02 7.12842254370E-02 7.30880583486E-02 7.49371664546E-02 7.68324221328E-02 7.87767250636E-02 8.07690580980E-02 8.28126614455E-02 8.49075067935E-02 8.70553155269E-02 8.92573363559E-02 9.15153672467E-02 9.38299714501E-02 9.62034478606E-02 9.86366202102E-02 1.01131705662E-01 1.03689911919E-01 1.06311675442E-01 1.09000955365E-01 1.11757686109E-01 1.14583781208E-01 1.17481880976E-01 1.20452911637E-01 1.23498605746E-01 1.26621830299E-01 1.29823766382E-01 1.33106540058E-01 1.36472141636E-01 1.39922917631E-01 1.43460496857E-01 1.47087825948E-01 1.50806744208E-01 1.54618889379E-01 1.58528294711E-01 1.62535647001E-01 1.66644387824E-01 1.70856887702E-01 1.75175743479E-01 1.79603230278E-01 1.84143025330E-01 1.88797145838E-01 1.93568432289E-01 1.98460418260E-01 2.03475780548E-01 2.08617451184E-01 2.13889163277E-01 2.19293533135E-01 2.24834296659E-01 2.30514711441E-01 2.36338540408E-01 2.42308983915E-01 2.48430126980E-01 2.54705285092E-01 2.61138901606E-01 2.67734462091E-01 2.74495858898E-01 2.81429184638E-01 2.88535246877E-01 2.95820506455E-01 3.03290444763E-01 3.10947819432E-01 3.18797991848E-01 3.26846223188E-01 3.35094868299E-01 3.43554880021E-01 3.52225441189E-01 3.61113042959E-01 3.70226948790E-01 3.79568599700E-01 3.89145513378E-01 3.98963830642E-01 4.09026666802E-01 4.19343881955E-01 4.29923020880E-01 4.40760996788E-01 4.51880875964E-01 4.63270654661E-01 4.74953927927E-01 4.86924518675E-01 4.99199726569E-01 5.11781770484E-01 5.24677514149E-01 5.37901234555E-01 5.51450959113E-01 5.65345369969E-01 5.79584985695E-01 5.94181168055E-01 6.09148033436E-01 6.24482271876E-01 6.40206031243E-01 6.56320927355E-01 6.72839402235E-01 6.89772841111E-01 7.07127036963E-01 7.24916135378E-01 7.43152142376E-01 7.61840430069E-01 7.80997608429E-01 8.00631582255E-01 8.20757719680E-01 8.41384523864E-01 8.62525195502E-01 8.84195184871E-01 9.06403274240E-01 9.29166205126E-01 9.52494137921E-01 9.76404337806E-01 1.00090906692E+00 1.02602256407E+00 1.05176155810E+00 1.07813922636E+00 1.10517253879E+00 1.13287602929E+00 1.16126796488E+00 1.19036335828E+00 1.22018012803E+00 1.25073574721E+00 1.28204706257E+00 1.31413341487E+00 1.34701445652E+00 1.38070624615E+00 1.41523174960E+00 1.45060862144E+00 1.48685806552E+00 1.52400133722E+00 1.56206003224E+00 1.60105463901E+00 1.64100962891E+00 1.68194542213E+00 1.72388785384E+00 1.76685871444E+00 1.81088408198E+00 1.85598759718E+00 1.90219578242E+00 1.94953352142E+00 1.99802915566E+00 2.04770805182E+00 2.09859899197E+00 2.15073002222E+00 2.20413072353E+00 2.25882920555E+00 2.31485751150E+00 2.37224469285E+00 2.43102413273E+00 2.49122573441E+00 2.55288403783E+00 2.61603178091E+00 2.68070298378E+00 2.74693239567E+00 2.81475654546E+00 2.88420946218E+00 2.95533012651E+00 3.02815531798E+00 3.10272302242E+00 3.17907307769E+00 3.25724432061E+00 3.33727854595E+00 3.41921569060E+00 3.50309856147E+00 3.58897007592E+00 3.67687339521E+00 3.76685294814E+00 3.85895404407E+00 3.95322219134E+00 4.04970456653E+00 4.14844799029E+00 4.24950118816E+00 4.35291290718E+00 4.45873278651E+00 4.56701176149E+00 4.67780067419E+00 4.79115164222E+00 4.90711789749E+00 5.02575253383E+00 5.14710997768E+00 5.27124535801E+00 5.39821435731E+00 5.52807358512E+00 5.66087955083E+00 5.79669108642E+00 5.93556572537E+00 6.07756308184E+00 6.22274257914E+00 6.37116457445E+00 6.52289009464E+00 6.67797994390E+00 6.83649649863E+00 6.99850198597E+00 7.16405844853E+00 7.33322984045E+00 7.50607884231E+00 7.68266957779E+00 7.86306544905E+00 8.04733079558E+00 8.23552971076E+00 8.42772615439E+00 8.62398432865E+00 8.82436844555E+00 9.02894185594E+00 9.23776860703E+00 9.45091146469E+00 9.66843337740E+00 9.89039640860E+00 1.01168621108E+01 1.03478909406E+01 1.05835431639E+01 1.08238771005E+01 1.10689507595E+01 1.13188200945E+01 1.15735403921E+01 1.18331646756E+01 1.20977445400E+01 1.23673296900E+01 1.26419674618E+01 1.29217032821E+01 1.32065795184E+01 1.34966365713E+01 1.37919112177E+01 1.40924375900E+01 1.43982462423E+01 1.47093640280E+01 1.50258142081E+01 1.53476155955E+01 1.56747827944E+01 1.60073256129E+01 1.63452488396E+01 1.66885520451E+01 1.70372290888E+01 1.73912679100E+01 1.77506500063E+01 1.81153504744E+01 1.84853371152E+01 1.88605704029E+01 1.92410031499E+01 1.96265796286E+01 2.00172359492E+01 2.04128988073E+01 2.08134854954E+01 2.12189036505E+01 2.16290501365E+01 2.20438113257E+01 2.24630620637E+01 2.28866655187E+01 2.33144726088E+01 2.37463213789E+01 2.41820367082E+01 2.46214296841E+01 2.50642971703E+01 2.55104211278E+01 2.59595684310E+01 2.64114900078E+01 2.68659206266E+01 2.73225782160E+01 2.77811634477E+01 2.82413592869E+01 2.87028304852E+01 2.91652231737E+01 2.96281643462E+01 3.00912616279E+01 3.05541025709E+01 3.10162548252E+01 3.14772651866E+01 3.19366597751E+01 3.23939436353E+01 3.28486004922E+01 3.33000926547E+01 3.37478608763E+01 3.41913243813E+01 3.46298808149E+01 3.50629063580E+01 3.54897559325E+01 3.59097633698E+01 3.63222417712E+01 3.67264840136E+01 3.71217631651E+01 3.75073330958E+01 3.78824293430E+01 3.82462697830E+01 3.85980557127E+01 3.89369729134E+01 3.92621928189E+01 3.95728739449E+01 3.98681632724E+01 4.01471979776E+01 4.04091071413E+01 4.06530136649E+01 4.08780363042E+01 4.10832920183E+01 4.12678980580E+01 4.14309747155E+01 4.15716477450E+01 4.16890512589E+01 4.17823304879E+01 4.18506448439E+01 4.18931709622E+01 4.19091058478E+01 4.18976701885E+01 4.18581114952E+01 4.17897075405E+01 4.16917695236E+01 4.15636454390E+01 4.14047231854E+01 4.12144336505E+01 4.09922537448E+01 4.07377090214E+01 4.04503763243E+01 4.01298858798E+01 3.97759233763E+01 3.93882312810E+01 3.89666100464E+01 3.85109186043E+01 3.80210743205E+01 3.74970524440E+01 3.69388846709E+01 3.63466572158E+01 3.57205078395E+01 3.50606222973E+01 3.43672297423E+01 3.36405972833E+01 3.28810237613E+01 3.20888324820E+01 3.12643631649E+01 3.04079631753E+01 2.95199779170E+01 2.86007406589E+01 2.76505620899E+01 2.66697194769E+01 2.56584460089E+01 2.46169204018E+01 2.35452575334E+01 2.24435000217E+01 2.13116118771E+01 2.01494745100E+01 1.89568860401E+01 1.77335646265E+01 1.64791569964E+01 1.51932530910E+01 1.38754082214E+01 1.25251740948E+01 1.11421401127E+01 9.72598691887E+00 8.27655364224E+00 6.79392113100E+00 5.27851306569E+00 3.73121729554E+00 2.15380362422E+00 5.49708213915E-01 -1.07683608523E+00 -2.72101127158E+00 -4.37737034451E+00 -6.03979169316E+00 -7.70143200064E+00 -9.35467793565E+00 -1.09910968297E+01 -1.26013868483E+01 -1.41753270463E+01 -1.57017277588E+01 -1.71683819656E+01 -1.85620181594E+01 -1.98682553460E+01 -2.10715609346E+01 -2.21552122472E+01 -2.31012623169E+01 -2.38905109729E+01 -2.45024819560E+01 -2.49154070527E+01 -2.51062183235E+01 -2.50505492670E+01 -2.47227463510E+01 -2.40958918709E+01 -2.31418395927E+01 -2.18312644359E+01 -2.01337287589E+01 -1.80177552806E+01 -1.54510219194E+01 -1.23995744719E+01 -8.83680354745E+00 -4.65780104387E+00 -5.13224595614E-01 4.83483388218E-02 -7.20663121642E-03 -1.57675228623E-03 -2.01278228363E-03 -1.84730664312E-03 -1.74147434263E-03 -1.62983584938E-03 -1.51900857812E-03 -1.40845083652E-03 -1.29834528990E-03 2.40 2.60 4P 5 1 Beta L 915 -2.09029881309E-07 -2.14321497941E-07 -2.19747072486E-07 -2.25309996104E-07 -2.31013745803E-07 -2.36861886613E-07 -2.42858073812E-07 -2.49006055213E-07 -2.55309673503E-07 -2.61772868649E-07 -2.68399680359E-07 -2.75194250606E-07 -2.82160826216E-07 -2.89303761528E-07 -2.96627521107E-07 -3.04136682542E-07 -3.11835939303E-07 -3.19730103676E-07 -3.27824109771E-07 -3.36123016605E-07 -3.44632011265E-07 -3.53356412149E-07 -3.62301672293E-07 -3.71473382774E-07 -3.80877276211E-07 -3.90519230342E-07 -4.00405271703E-07 -4.10541579391E-07 -4.20934488929E-07 -4.31590496224E-07 -4.42516261626E-07 -4.53718614095E-07 -4.65204555465E-07 -4.76981264823E-07 -4.89056102997E-07 -5.01436617153E-07 -5.14130545515E-07 -5.27145822201E-07 -5.40490582184E-07 -5.54173166372E-07 -5.68202126825E-07 -5.82586232101E-07 -5.97334472733E-07 -6.12456066852E-07 -6.27960465946E-07 -6.43857360769E-07 -6.60156687397E-07 -6.76868633440E-07 -6.94003644408E-07 -7.11572430240E-07 -7.29585972000E-07 -7.48055528737E-07 -7.66992644524E-07 -7.86409155676E-07 -8.06317198144E-07 -8.26729215101E-07 -8.47657964723E-07 -8.69116528159E-07 -8.91118317709E-07 -9.13677085208E-07 -9.36806930619E-07 -9.60522310848E-07 -9.84838048780E-07 -1.00976934254E-06 -1.03533177500E-06 -1.06154132351E-06 -1.08841436989E-06 -1.11596771068E-06 -1.14421856759E-06 -1.17318459835E-06 -1.20288390765E-06 -1.23333505854E-06 -1.26455708397E-06 -1.29656949873E-06 -1.32939231161E-06 -1.36304603795E-06 -1.39755171241E-06 -1.43293090216E-06 -1.46920572036E-06 -1.50639883993E-06 -1.54453350779E-06 -1.58363355935E-06 -1.62372343340E-06 -1.66482818743E-06 -1.70697351325E-06 -1.75018575304E-06 -1.79449191587E-06 -1.83991969454E-06 -1.88649748287E-06 -1.93425439350E-06 -1.98322027605E-06 -2.03342573579E-06 -2.08490215277E-06 -2.13768170141E-06 -2.19179737066E-06 -2.24728298457E-06 -2.30417322344E-06 -2.36250364552E-06 -2.42231070924E-06 -2.48363179593E-06 -2.54650523329E-06 -2.61097031924E-06 -2.67706734657E-06 -2.74483762805E-06 -2.81432352233E-06 -2.88556846034E-06 -2.95861697248E-06 -3.03351471645E-06 -3.11030850577E-06 -3.18904633905E-06 -3.26977743000E-06 -3.35255223817E-06 -3.43742250051E-06 -3.52444126368E-06 -3.61366291725E-06 -3.70514322763E-06 -3.79893937300E-06 -3.89510997899E-06 -3.99371515535E-06 -4.09481653353E-06 -4.19847730516E-06 -4.30476226159E-06 -4.41373783437E-06 -4.52547213677E-06 -4.64003500636E-06 -4.75749804865E-06 -4.87793468185E-06 -5.00142018276E-06 -5.12803173384E-06 -5.25784847140E-06 -5.39095153513E-06 -5.52742411875E-06 -5.66735152206E-06 -5.81082120421E-06 -5.95792283842E-06 -6.10874836798E-06 -6.26339206373E-06 -6.42195058300E-06 -6.58452303001E-06 -6.75121101779E-06 -6.92211873175E-06 -7.09735299475E-06 -7.27702333388E-06 -7.46124204892E-06 -7.65012428254E-06 -7.84378809225E-06 -8.04235452421E-06 -8.24594768886E-06 -8.45469483854E-06 -8.66872644696E-06 -8.88817629081E-06 -9.11318153334E-06 -9.34388281012E-06 -9.58042431690E-06 -9.82295389978E-06 -1.00716231476E-05 -1.03265874867E-05 -1.05880062780E-05 -1.08560429167E-05 -1.11308649344E-05 -1.14126441037E-05 -1.17015565457E-05 -1.19977828400E-05 -1.23015081376E-05 -1.26129222767E-05 -1.29322199011E-05 -1.32596005822E-05 -1.35952689434E-05 -1.39394347884E-05 -1.42923132318E-05 -1.46541248340E-05 -1.50250957391E-05 -1.54054578157E-05 -1.57954488025E-05 -1.61953124563E-05 -1.66052987048E-05 -1.70256638027E-05 -1.74566704916E-05 -1.78985881646E-05 -1.83516930346E-05 -1.88162683065E-05 -1.92926043549E-05 -1.97809989051E-05 -2.02817572194E-05 -2.07951922880E-05 -2.13216250240E-05 -2.18613844650E-05 -2.24148079779E-05 -2.29822414702E-05 -2.35640396060E-05 -2.41605660277E-05 -2.47721935835E-05 -2.53993045603E-05 -2.60422909225E-05 -2.67015545571E-05 -2.65438710221E-05 -2.72422552484E-05 -2.87644363752E-05 -2.95056362456E-05 -3.02488821474E-05 -3.10196487716E-05 -3.17951061930E-05 -3.26100942547E-05 -3.34376436180E-05 -3.42707254939E-05 -3.51480057612E-05 -3.60270106583E-05 -3.69405631567E-05 -3.78944107998E-05 -3.88377400460E-05 -3.98241323525E-05 -4.08361914840E-05 -4.18671101203E-05 -4.29333067213E-05 -4.40135576940E-05 -4.51274886155E-05 -4.62662327206E-05 -4.74379393762E-05 -4.86436742057E-05 -4.98730520579E-05 -5.11439675187E-05 -5.24400922118E-05 -5.37696338436E-05 -5.51192813134E-05 -5.65211156888E-05 -5.79579820515E-05 -5.94111683455E-05 -6.09258460008E-05 -6.24581154790E-05 -6.40410749488E-05 -6.56777482545E-05 -6.73323386468E-05 -6.90377029678E-05 -7.07716164576E-05 -7.25751834041E-05 -7.44099679327E-05 -7.62954942941E-05 -7.82321467059E-05 -8.02024526798E-05 -8.22360734170E-05 -8.43219806164E-05 -8.64576488019E-05 -8.86443017814E-05 -9.08876092627E-05 -9.32012737556E-05 -9.55394414144E-05 -9.79646443620E-05 -1.00442259251E-04 -1.02991947889E-04 -1.05599655305E-04 -1.08278303558E-04 -1.11018130726E-04 -1.13828940259E-04 -1.16701837322E-04 -1.19659629012E-04 -1.22699865574E-04 -1.25792860242E-04 -1.28981604945E-04 -1.32249230470E-04 -1.35599959621E-04 -1.39031051535E-04 -1.42543637712E-04 -1.46159073630E-04 -1.49857034265E-04 -1.53647844081E-04 -1.57544001258E-04 -1.61515006077E-04 -1.65619572811E-04 -1.69809212772E-04 -1.74108251692E-04 -1.78507279372E-04 -1.83038569209E-04 -1.87664199614E-04 -1.92427926669E-04 -1.97291439076E-04 -2.02282395986E-04 -2.07409127764E-04 -2.12655678941E-04 -2.18041096772E-04 -2.23545335104E-04 -2.29233142957E-04 -2.35011994629E-04 -2.40977536589E-04 -2.47079848158E-04 -2.53327509723E-04 -2.59741279904E-04 -2.66324893071E-04 -2.73058231758E-04 -2.79978232854E-04 -2.87066944662E-04 -2.94317881335E-04 -3.01780818281E-04 -3.09409848100E-04 -3.17255407215E-04 -3.25289483530E-04 -3.33514618586E-04 -3.41960742048E-04 -3.50624117315E-04 -3.59495252929E-04 -3.68584883211E-04 -3.77934158965E-04 -3.87488391350E-04 -3.97301052918E-04 -4.07371110015E-04 -4.17676851399E-04 -4.28254377404E-04 -4.39095653098E-04 -4.50199872019E-04 -4.61599741340E-04 -4.73285873367E-04 -4.85275747233E-04 -4.97552684776E-04 -5.10147885337E-04 -5.23065393148E-04 -5.36299606365E-04 -5.49888743288E-04 -5.63797334909E-04 -5.78081579810E-04 -5.92718328936E-04 -6.07718638298E-04 -6.23108723356E-04 -6.38875905051E-04 -6.55046388152E-04 -6.71628444452E-04 -6.88636133224E-04 -7.06067830835E-04 -7.23936976680E-04 -7.42266221916E-04 -7.61061670184E-04 -7.80326656572E-04 -8.00076836365E-04 -8.20336486690E-04 -8.41105194952E-04 -8.62390080873E-04 -8.84229064228E-04 -9.06600947406E-04 -9.29560828785E-04 -9.53097770366E-04 -9.77222082295E-04 -1.00196043744E-03 -1.02732246300E-03 -1.05333961075E-03 -1.07999336405E-03 -1.10732537273E-03 -1.13536530254E-03 -1.16410876030E-03 -1.19357557555E-03 -1.22379157973E-03 -1.25477681607E-03 -1.28653481077E-03 -1.31910014383E-03 -1.35249507646E-03 -1.38673940970E-03 -1.42184634722E-03 -1.45783788033E-03 -1.49474666280E-03 -1.53258390104E-03 -1.57137762131E-03 -1.61116537587E-03 -1.65194505800E-03 -1.69376891306E-03 -1.73663853541E-03 -1.78058802938E-03 -1.82568787445E-03 -1.87190283708E-03 -1.91928374565E-03 -1.96786719273E-03 -2.01768405483E-03 -2.06876364321E-03 -2.12113617637E-03 -2.17483187641E-03 -2.22988556613E-03 -2.28634381973E-03 -2.34420782877E-03 -2.40356399110E-03 -2.46440065320E-03 -2.52678192457E-03 -2.59075410923E-03 -2.65633540408E-03 -2.72358375929E-03 -2.79253752413E-03 -2.86322490587E-03 -2.93570164149E-03 -3.01001941721E-03 -3.08621912178E-03 -3.16434756303E-03 -3.24444752043E-03 -3.32657704176E-03 -3.41080466092E-03 -3.49713401335E-03 -3.58566609199E-03 -3.67645520321E-03 -3.76950348389E-03 -3.86493077976E-03 -3.96276556944E-03 -4.06308504197E-03 -4.16593971159E-03 -4.27140324250E-03 -4.37952022976E-03 -4.49038698604E-03 -4.60405562673E-03 -4.72062483701E-03 -4.84010576651E-03 -4.96265020612E-03 -5.08825436867E-03 -5.21707318191E-03 -5.34913107544E-03 -5.48454684563E-03 -5.62338297136E-03 -5.76574249344E-03 -5.91169010032E-03 -6.06134104460E-03 -6.21478113117E-03 -6.37210853248E-03 -6.53341311635E-03 -6.69880453759E-03 -6.86838345103E-03 -7.04223841202E-03 -7.22051527879E-03 -7.40329067276E-03 -7.59070223309E-03 -7.78284545867E-03 -7.97987551161E-03 -8.18186776774E-03 -8.38897625021E-03 -8.60133886756E-03 -8.81907940629E-03 -9.04231382301E-03 -9.27121845917E-03 -9.50590926785E-03 -9.74653400493E-03 -9.99325560791E-03 -1.02462279616E-02 -1.05055970725E-02 -1.07715304650E-02 -1.10441880500E-02 -1.13237619875E-02 -1.16104007153E-02 -1.19043124818E-02 -1.22056452368E-02 -1.25146084508E-02 -1.28313957023E-02 -1.31562000195E-02 -1.34892320440E-02 -1.38306772451E-02 -1.41807730939E-02 -1.45397514052E-02 -1.49077887247E-02 -1.52851546233E-02 -1.56720518488E-02 -1.60687665919E-02 -1.64755060283E-02 -1.68925400521E-02 -1.73201434270E-02 -1.77585756093E-02 -1.82080788520E-02 -1.86689733444E-02 -1.91415375612E-02 -1.96260412023E-02 -2.01228351384E-02 -2.06321807883E-02 -2.11544382473E-02 -2.16898916554E-02 -2.22389003864E-02 -2.28018209023E-02 -2.33789747978E-02 -2.39707356316E-02 -2.45774728889E-02 -2.51995671444E-02 -2.58374097213E-02 -2.64913901505E-02 -2.71619197915E-02 -2.78494206675E-02 -2.85543273082E-02 -2.92770568054E-02 -3.00180989902E-02 -3.07778763690E-02 -3.15568882374E-02 -3.23556152300E-02 -3.31745371191E-02 -3.40142094589E-02 -3.48751125912E-02 -3.57578148811E-02 -3.66628280977E-02 -3.75907781282E-02 -3.85421785813E-02 -3.95176611027E-02 -4.05178336496E-02 -4.15433207043E-02 -4.25947364580E-02 -4.36727747593E-02 -4.47780731976E-02 -4.59113507178E-02 -4.70733145687E-02 -4.82646429962E-02 -4.94861454326E-02 -5.07385406084E-02 -5.20226241588E-02 -5.33391933913E-02 -5.46890710509E-02 -5.60730997262E-02 -5.74921538572E-02 -5.89470989994E-02 -6.04388482635E-02 -6.19683362974E-02 -6.35365294713E-02 -6.51443812244E-02 -6.67929148664E-02 -6.84831338845E-02 -7.02161356984E-02 -7.19929330917E-02 -7.38147195472E-02 -7.56825612463E-02 -7.75976540974E-02 -7.95611785930E-02 -8.15743794073E-02 -8.36384758709E-02 -8.57547944798E-02 -8.79246127840E-02 -9.01495254863E-02 -9.24301876632E-02 -9.47688458626E-02 -9.71668943895E-02 -9.96251037685E-02 -1.02145718622E-01 -1.04730534366E-01 -1.07379564850E-01 -1.10096499017E-01 -1.12881849035E-01 -1.15737700815E-01 -1.18665386490E-01 -1.21668134040E-01 -1.24745164075E-01 -1.27901675869E-01 -1.31136347862E-01 -1.34454447534E-01 -1.37854440618E-01 -1.41343162239E-01 -1.44916610041E-01 -1.48583472634E-01 -1.52341506417E-01 -1.56194115133E-01 -1.60145009929E-01 -1.64195735239E-01 -1.68347723308E-01 -1.72606489876E-01 -1.76971001115E-01 -1.81446415576E-01 -1.86035713821E-01 -1.90739465677E-01 -1.95563375753E-01 -2.00508507299E-01 -2.05578520596E-01 -2.10776679745E-01 -2.16106010964E-01 -2.21570423851E-01 -2.27172006061E-01 -2.32915955463E-01 -2.38804069115E-01 -2.44841176338E-01 -2.51031226221E-01 -2.57376631310E-01 -2.63882535363E-01 -2.70553105777E-01 -2.77391459482E-01 -2.84402664696E-01 -2.91590759037E-01 -2.98959890466E-01 -3.06515635005E-01 -3.14261366091E-01 -3.22202722583E-01 -3.30344494400E-01 -3.38691579649E-01 -3.47248867095E-01 -3.56022289011E-01 -3.65016826884E-01 -3.74238043353E-01 -3.83691831606E-01 -3.93383767849E-01 -4.03320201603E-01 -4.13506735887E-01 -4.23950377073E-01 -4.34655564413E-01 -4.45634044778E-01 -4.56886184196E-01 -4.68420145658E-01 -4.80248188366E-01 -4.92372470794E-01 -5.04802898046E-01 -5.17544030250E-01 -5.30606759482E-01 -5.44000103733E-01 -5.57728188634E-01 -5.71802048356E-01 -5.86231597285E-01 -6.01020030143E-01 -6.16184304549E-01 -6.31729627556E-01 -6.47662984009E-01 -6.63998489638E-01 -6.80742961374E-01 -6.97910808225E-01 -7.15507531369E-01 -7.33549253817E-01 -7.52036714854E-01 -7.70996783470E-01 -7.90429207641E-01 -8.10345925077E-01 -8.30768466892E-01 -8.51697989521E-01 -8.73153915778E-01 -8.95149180256E-01 -9.17692936749E-01 -9.40804037138E-01 -9.64492023859E-01 -9.88774547939E-01 -1.01366349731E+00 -1.03917787419E+00 -1.06532649894E+00 -1.09213332423E+00 -1.11960681259E+00 -1.14776966338E+00 -1.17663475521E+00 -1.20622185220E+00 -1.23654646009E+00 -1.26762793859E+00 -1.29948765604E+00 -1.33213863054E+00 -1.36560496194E+00 -1.39990621344E+00 -1.43506101775E+00 -1.47109092925E+00 -1.50801975862E+00 -1.54586475681E+00 -1.58465299697E+00 -1.62440368476E+00 -1.66514442447E+00 -1.70689490755E+00 -1.74968316826E+00 -1.79353197877E+00 -1.83846922641E+00 -1.88451898033E+00 -1.93171045391E+00 -1.98007034459E+00 -2.02962547891E+00 -2.08040880442E+00 -2.13244395534E+00 -2.18576623425E+00 -2.24040440350E+00 -2.29638994471E+00 -2.35375595164E+00 -2.41253520150E+00 -2.47276011211E+00 -2.53446840346E+00 -2.59769214519E+00 -2.66246869287E+00 -2.72883563316E+00 -2.79683009734E+00 -2.86648927798E+00 -2.93785580021E+00 -3.01096516061E+00 -3.08586487634E+00 -3.16258971155E+00 -3.24118805898E+00 -3.32170108013E+00 -3.40417434269E+00 -3.48865373833E+00 -3.57518439909E+00 -3.66381607888E+00 -3.75459547809E+00 -3.84757348906E+00 -3.94280008433E+00 -4.04032684166E+00 -4.14020686231E+00 -4.24249338927E+00 -4.34724120978E+00 -4.45450738142E+00 -4.56434633661E+00 -4.67681902564E+00 -4.79198269885E+00 -4.90989833960E+00 -5.03062765394E+00 -5.15423205109E+00 -5.28077723399E+00 -5.41032594791E+00 -5.54294670619E+00 -5.67870387914E+00 -5.81766872609E+00 -5.95990883672E+00 -6.10549603907E+00 -6.25450259421E+00 -6.40700059963E+00 -6.56306565843E+00 -6.72277274394E+00 -6.88619875099E+00 -7.05342165788E+00 -7.22452134935E+00 -7.39957688486E+00 -7.57867070533E+00 -7.76188561081E+00 -7.94930444843E+00 -8.14101328148E+00 -8.33709753883E+00 -8.53764440745E+00 -8.74274201299E+00 -8.95248002737E+00 -9.16694789372E+00 -9.38623724738E+00 -9.61044070916E+00 -9.83964986992E+00 -1.00739602464E+01 -1.03134651967E+01 -1.05582604588E+01 -1.08084425332E+01 -1.10641076555E+01 -1.13253533873E+01 -1.15922767979E+01 -1.18649770359E+01 -1.21435518336E+01 -1.24281002722E+01 -1.27187207673E+01 -1.30155128822E+01 -1.33185746569E+01 -1.36280054102E+01 -1.39439030053E+01 -1.42663656507E+01 -1.45954901893E+01 -1.49313739981E+01 -1.52741117772E+01 -1.56237991050E+01 -1.59805285476E+01 -1.63443929664E+01 -1.67154821053E+01 -1.70938849444E+01 -1.74796877848E+01 -1.78729752588E+01 -1.82738287990E+01 -1.86823278693E+01 -1.90985481413E+01 -1.95225627325E+01 -1.99544405055E+01 -2.03942468534E+01 -2.08420428297E+01 -2.12978850663E+01 -2.17618247801E+01 -2.22339088686E+01 -2.27141776220E+01 -2.32026655925E+01 -2.36994014881E+01 -2.42044060377E+01 -2.47176935049E+01 -2.52392699525E+01 -2.57691331979E+01 -2.63072723700E+01 -2.68536671243E+01 -2.74082874044E+01 -2.79710927109E+01 -2.85420315321E+01 -2.91210407493E+01 -2.97080451847E+01 -3.03029568453E+01 -3.09056739600E+01 -3.15160812105E+01 -3.21340478852E+01 -3.27594282818E+01 -3.33920600128E+01 -3.40317642932E+01 -3.46783442033E+01 -3.53315845363E+01 -3.59912511185E+01 -3.66570895554E+01 -3.73288247274E+01 -3.80061601426E+01 -3.86887768657E+01 -3.93763328657E+01 -4.00684621638E+01 -4.07647741611E+01 -4.14648526322E+01 -4.21682552062E+01 -4.28745122557E+01 -4.35831266251E+01 -4.42935723238E+01 -4.50052943579E+01 -4.57177076247E+01 -4.64301965240E+01 -4.71421141669E+01 -4.78527819477E+01 -4.85614890078E+01 -4.92674915890E+01 -4.99700129373E+01 -5.06682425624E+01 -5.13613364977E+01 -5.20484165731E+01 -5.27285707238E+01 -5.34008528765E+01 -5.40642830069E+01 -5.47178474060E+01 -5.53604991428E+01 -5.59911584325E+01 -5.66087132807E+01 -5.72120204274E+01 -5.77999059796E+01 -5.83711669694E+01 -5.89245721873E+01 -5.94588639864E+01 -5.99727598662E+01 -6.04649543010E+01 -6.09341209657E+01 -6.13789148574E+01 -6.17979749985E+01 -6.21899271052E+01 -6.25533866407E+01 -6.28869619235E+01 -6.31892577271E+01 -6.34588788714E+01 -6.36944341349E+01 -6.38945404456E+01 -6.40578270934E+01 -6.41829404954E+01 -6.42685486583E+01 -6.43133462653E+01 -6.43160595821E+01 -6.42754517008E+01 -6.41903277259E+01 -6.40595399910E+01 -6.38819935066E+01 -6.36566510359E+01 -6.33825384099E+01 -6.30587494551E+01 -6.26844508291E+01 -6.22588865933E+01 -6.17813823501E+01 -6.12513490733E+01 -6.06682863358E+01 -6.00317850114E+01 -5.93415292462E+01 -5.85972976889E+01 -5.77989638028E+01 -5.69464953604E+01 -5.60399526410E+01 -5.50794857416E+01 -5.40653304606E+01 -5.29978031357E+01 -5.18772937945E+01 -5.07042582613E+01 -4.94792086677E+01 -4.82027025851E+01 -4.68753308452E+01 -4.54977041508E+01 -4.40704383870E+01 -4.25941391510E+01 -4.10693854565E+01 -3.94967132384E+01 -3.78765986149E+01 -3.62094419948E+01 -3.44955532174E+01 -3.27351385128E+01 -3.09282904495E+01 -2.90749814374E+01 -2.71750624857E+01 -2.52282680498E+01 -2.32342289664E+01 -2.11924950128E+01 -1.91025689741E+01 -1.69639547406E+01 -1.47762214355E+01 -1.25390865982E+01 -1.02525210906E+01 -7.91687894762E+00 -5.53305542895E+00 -3.10267690656E+00 -6.28759160066E-01 1.88305459271E+00 4.42586942390E+00 6.99187504928E+00 9.57227926973E+00 1.21572386633E+01 1.47357872966E+01 1.72957636589E+01 1.98237363927E+01 2.23049293621E+01 2.47231469009E+01 2.70606997311E+01 2.92983328208E+01 3.14151557209E+01 3.33885765838E+01 3.51942409415E+01 3.68059763801E+01 3.81957440846E+01 3.93335990086E+01 4.01876593870E+01 4.07240876172E+01 4.09070835585E+01 4.06988920660E+01 4.00598265021E+01 3.89483097867E+01 3.73209352440E+01 3.51325488861E+01 3.23363573057E+01 2.88840448061E+01 2.47260833479E+01 1.98104777651E+01 1.40970482594E+01 7.42112955427E+00 8.20594425887E-01 -7.31329084250E-02 1.52494949369E-02 6.26064132076E-03 6.92478791090E-03 6.63127545824E-03 6.43224861245E-03 6.22355087590E-03 6.01568047294E-03 5.80774340349E-03 5.60000401715E-03 2.40 2.60 4P 6 1 Beta L 915 1.43053493563E-07 1.46674909990E-07 1.50388003010E-07 1.54195093427E-07 1.58098560796E-07 1.62100844912E-07 1.66204447333E-07 1.70411932943E-07 1.74725931558E-07 1.79149139567E-07 1.83684321621E-07 1.88334312354E-07 1.93102018162E-07 1.97990419018E-07 2.03002570330E-07 2.08141604856E-07 2.13410734659E-07 2.18813253119E-07 2.24352536984E-07 2.30032048487E-07 2.35855337508E-07 2.41826043791E-07 2.47947899223E-07 2.54224730163E-07 2.60660459834E-07 2.67259110776E-07 2.74024807361E-07 2.80961778370E-07 2.88074359636E-07 2.95366996752E-07 3.02844247856E-07 3.10510786471E-07 3.18371404434E-07 3.26431014887E-07 3.34694655349E-07 3.43167490865E-07 3.51854817231E-07 3.60762064310E-07 3.69894799421E-07 3.79258730821E-07 3.88859711271E-07 3.98703741697E-07 4.08796974938E-07 4.19145719593E-07 4.29756443965E-07 4.40635780101E-07 4.51790527940E-07 4.63227659563E-07 4.74954323550E-07 4.86977849446E-07 4.99305752347E-07 5.11945737594E-07 5.24905705587E-07 5.38193756730E-07 5.51818196485E-07 5.65787540572E-07 5.80110520285E-07 5.94796087952E-07 6.09853422531E-07 6.25291935346E-07 6.41121275969E-07 6.57351338254E-07 6.73992266517E-07 6.91054461880E-07 7.08548588770E-07 7.26485581586E-07 7.44876651531E-07 7.63733293623E-07 7.83067293875E-07 8.02890736668E-07 8.23216012298E-07 8.44055824723E-07 8.65423199504E-07 8.87331491945E-07 9.09794395442E-07 9.32825950039E-07 9.56440551208E-07 9.80652958842E-07 1.00547830648E-06 1.03093211078E-06 1.05703028119E-06 1.08378912992E-06 1.11122538212E-06 1.13935618634E-06 1.16819912524E-06 1.19777222660E-06 1.22809397457E-06 1.25918332123E-06 1.29105969844E-06 1.32374302995E-06 1.35725374393E-06 1.39161278565E-06 1.42684163063E-06 1.46296229804E-06 1.49999736449E-06 1.53796997808E-06 1.57690387293E-06 1.61682338400E-06 1.65775346228E-06 1.69971969039E-06 1.74274829860E-06 1.78686618118E-06 1.83210091324E-06 1.87848076796E-06 1.92603473425E-06 1.97479253489E-06 2.02478464510E-06 2.07604231155E-06 2.12859757197E-06 2.18248327509E-06 2.23773310123E-06 2.29438158332E-06 2.35246412851E-06 2.41201704028E-06 2.47307754113E-06 2.53568379585E-06 2.59987493538E-06 2.66569108129E-06 2.73317337078E-06 2.80236398249E-06 2.87330616279E-06 2.94604425285E-06 3.02062371634E-06 3.09709116783E-06 3.17549440199E-06 3.25588242335E-06 3.33830547706E-06 3.42281508019E-06 3.50946405399E-06 3.59830655688E-06 3.68939811829E-06 3.78279567343E-06 3.87855759878E-06 3.97674374866E-06 4.07741549259E-06 4.18063575368E-06 4.28646904793E-06 4.39498152460E-06 4.50624100749E-06 4.62031703739E-06 4.73728091552E-06 4.85720574808E-06 4.98016649199E-06 5.10624000170E-06 5.23550507723E-06 5.36804251344E-06 5.50393515052E-06 5.64326792577E-06 5.78612792669E-06 5.93260444541E-06 6.08278903449E-06 6.23677556416E-06 6.39466028098E-06 6.55654186801E-06 6.72252150648E-06 6.89270293904E-06 7.06719253458E-06 7.24609935474E-06 7.42953522208E-06 7.61761478993E-06 7.81045561411E-06 8.00817822636E-06 8.21090620971E-06 8.41876627569E-06 8.63188834355E-06 8.85040562148E-06 9.07445468983E-06 9.30417558648E-06 9.53971189443E-06 9.78121083146E-06 1.00288233422E-05 1.02827041924E-05 1.05430120659E-05 1.08099096634E-05 1.10835638045E-05 1.13641455320E-05 1.16518302183E-05 1.19467976757E-05 1.22492322684E-05 1.25593230277E-05 1.28772637703E-05 1.32032532195E-05 1.35374951290E-05 1.38801984108E-05 1.42315772655E-05 1.45918513161E-05 1.49612457456E-05 1.53399914372E-05 1.57283251193E-05 1.61264895127E-05 1.65347334831E-05 1.69533121959E-05 1.73824872763E-05 1.78225269724E-05 1.82737063232E-05 1.82040513651E-05 1.86817594929E-05 1.96849432397E-05 2.01916573398E-05 2.07004420543E-05 2.12277292407E-05 2.17588912711E-05 2.23161630133E-05 2.28824680234E-05 2.34531697266E-05 2.40531600164E-05 2.46552280739E-05 2.52803621007E-05 2.59323435350E-05 2.65785999948E-05 2.72535716577E-05 2.79460060754E-05 2.86516588891E-05 2.93810881355E-05 3.01206402865E-05 3.08830390524E-05 3.16625359910E-05 3.24643827632E-05 3.32893907189E-05 3.41307986626E-05 3.50002303660E-05 3.58871843765E-05 3.67969686029E-05 3.77212256528E-05 3.86802300669E-05 3.96633539101E-05 4.06585040017E-05 4.16946152028E-05 4.27437562364E-05 4.38269753643E-05 4.49463900853E-05 4.60791021081E-05 4.72461531683E-05 4.84334731968E-05 4.96671894166E-05 5.09230175072E-05 5.22133366048E-05 5.35384577588E-05 5.48874018968E-05 5.62789497415E-05 5.77063595457E-05 5.91678712928E-05 6.06644480467E-05 6.21997520686E-05 6.37825507319E-05 6.53837112421E-05 6.70431627559E-05 6.87388722311E-05 7.04835151221E-05 7.22681088200E-05 7.41010721881E-05 7.59761687677E-05 7.78997868106E-05 7.98663314077E-05 8.18903843623E-05 8.39705364552E-05 8.60878920770E-05 8.82699686276E-05 9.05061400766E-05 9.27991330872E-05 9.51473655714E-05 9.75515804952E-05 1.00025562490E-04 1.02556442733E-04 1.05150882691E-04 1.07817000428E-04 1.10535440104E-04 1.13343750300E-04 1.16211170657E-04 1.19153277512E-04 1.22164258423E-04 1.25264757661E-04 1.28430777739E-04 1.31690348828E-04 1.35019117295E-04 1.38434973203E-04 1.41943274140E-04 1.45534036281E-04 1.49219575690E-04 1.52987225616E-04 1.56878479882E-04 1.60834459398E-04 1.64916365013E-04 1.69092513459E-04 1.73368548917E-04 1.77757908463E-04 1.82263153328E-04 1.86871631955E-04 1.91607144929E-04 1.96458374855E-04 2.01421454899E-04 2.06528297713E-04 2.11749872560E-04 2.17118553766E-04 2.22616688089E-04 2.28246178591E-04 2.34026302264E-04 2.39954929061E-04 2.46026298606E-04 2.52247485468E-04 2.58644992285E-04 2.65184220230E-04 2.71899558229E-04 2.78790632725E-04 2.85843860886E-04 2.93082624095E-04 3.00502042320E-04 3.08101955750E-04 3.15903559123E-04 3.23901140816E-04 3.32106258135E-04 3.40508575361E-04 3.49128347205E-04 3.57968573533E-04 3.67025975988E-04 3.76325400605E-04 3.85844545927E-04 3.95619707728E-04 4.05636535408E-04 4.15902462227E-04 4.26434721885E-04 4.37225586790E-04 4.48292293607E-04 4.59640541468E-04 4.71279871737E-04 4.83209606677E-04 4.95438949074E-04 5.07982770782E-04 5.20845555218E-04 5.34030002902E-04 5.47546567815E-04 5.61411392326E-04 5.75624757168E-04 5.90191813248E-04 6.05137415591E-04 6.20448593208E-04 6.36161191136E-04 6.52268910491E-04 6.68778970322E-04 6.85709162867E-04 7.03066244745E-04 7.20871082300E-04 7.39112612199E-04 7.57818139917E-04 7.77007461030E-04 7.96678497776E-04 8.16844786553E-04 8.37523667470E-04 8.58728733730E-04 8.80463259178E-04 9.02750106256E-04 9.25604464545E-04 9.49039951513E-04 9.73065965753E-04 9.97697565485E-04 1.02295661277E-03 1.04885132756E-03 1.07540071101E-03 1.10262980568E-03 1.13053848831E-03 1.15916118875E-03 1.18850017829E-03 1.21857847735E-03 1.24944227273E-03 1.28107046527E-03 1.31349674303E-03 1.34674588469E-03 1.38083897974E-03 1.41579613852E-03 1.45163820135E-03 1.48838588381E-03 1.52606299217E-03 1.56470085469E-03 1.60430181971E-03 1.64492276049E-03 1.68655787119E-03 1.72924990056E-03 1.77303013752E-03 1.81791207365E-03 1.86393459135E-03 1.91112407245E-03 1.95950054401E-03 2.00910160238E-03 2.05996231272E-03 2.11211092505E-03 2.16557954302E-03 2.22039764994E-03 2.27660467365E-03 2.33424667855E-03 2.39332842646E-03 2.45391689671E-03 2.51604923969E-03 2.57972947423E-03 2.64503678008E-03 2.71199206023E-03 2.78064744316E-03 2.85103799817E-03 2.92321371765E-03 2.99720618131E-03 3.07307986543E-03 3.15087133070E-03 3.23064675017E-03 3.31241667131E-03 3.39628135835E-03 3.48224197757E-03 3.57040101317E-03 3.66077774751E-03 3.75345183624E-03 3.84846705823E-03 3.94589315225E-03 4.04577555850E-03 4.14819198596E-03 4.25320155129E-03 4.36087132771E-03 4.47126320025E-03 4.58445182248E-03 4.70050617643E-03 4.81948769628E-03 4.94149445926E-03 5.06658052804E-03 5.19483901477E-03 5.32633628449E-03 5.46117685930E-03 5.59941459047E-03 5.74115355816E-03 5.88648778255E-03 6.03550234877E-03 6.18827759049E-03 6.34493244744E-03 6.50554753382E-03 6.67022398310E-03 6.83907260903E-03 7.01219883226E-03 7.18970307635E-03 7.37169975926E-03 7.55829864538E-03 7.74963014339E-03 7.94579714466E-03 8.14694076924E-03 8.35316392162E-03 8.56460904161E-03 8.78140847562E-03 9.00369463095E-03 9.23161127504E-03 9.46528639193E-03 9.70488141551E-03 9.95055431977E-03 1.02024281847E-02 1.04606856426E-02 1.07254669789E-02 1.09969660363E-02 1.12753264032E-02 1.15607321125E-02 1.18533705227E-02 1.21534195468E-02 1.24610464961E-02 1.27764686036E-02 1.30998769174E-02 1.34314572060E-02 1.37714473017E-02 1.41200284893E-02 1.44774451250E-02 1.48438937528E-02 1.52196190651E-02 1.56048644058E-02 1.59998513027E-02 1.64048347592E-02 1.68200676345E-02 1.72458103604E-02 1.76823305443E-02 1.81298952803E-02 1.85887858438E-02 1.90592909879E-02 1.95417078070E-02 2.00363228179E-02 2.05434695094E-02 2.10634388448E-02 2.15965714037E-02 2.21431963870E-02 2.27036429911E-02 2.32782894257E-02 2.38674663993E-02 2.44715614977E-02 2.50909267561E-02 2.57259877115E-02 2.63770989496E-02 2.70446909157E-02 2.77291797874E-02 2.84309929283E-02 2.91505518475E-02 2.98883297553E-02 3.06447644989E-02 3.14203468511E-02 3.22155608168E-02 3.30308727345E-02 3.38668335436E-02 3.47239370838E-02 3.56027272627E-02 3.65037499141E-02 3.74275680266E-02 3.83747582942E-02 3.93459185722E-02 4.03416422196E-02 4.13625538569E-02 4.24092929381E-02 4.34825203357E-02 4.45828896350E-02 4.57111002017E-02 4.68678400669E-02 4.80538581294E-02 4.92698508087E-02 5.05166308298E-02 5.17949311557E-02 5.31055688015E-02 5.44493522682E-02 5.58271325116E-02 5.72397455729E-02 5.86880975052E-02 6.01730645697E-02 6.16957269702E-02 6.32565666910E-02 6.48570833556E-02 6.64982338226E-02 6.81805796008E-02 6.99056224288E-02 7.16745819258E-02 7.34875421344E-02 7.53469301294E-02 7.72531558078E-02 7.92076253573E-02 8.12112757986E-02 8.32662478219E-02 8.53721331449E-02 8.75323355864E-02 8.97461053530E-02 9.20168950458E-02 9.43438224145E-02 9.67313451261E-02 9.91770128200E-02 1.01686469066E-01 1.04258390402E-01 1.06895056454E-01 1.09598945044E-01 1.12371156429E-01 1.15212721706E-01 1.18127278138E-01 1.21114290603E-01 1.24177175513E-01 1.27317962489E-01 1.30537149249E-01 1.33838509616E-01 1.37222861186E-01 1.40692682220E-01 1.44250201153E-01 1.47897497760E-01 1.51637220628E-01 1.55470859378E-01 1.59401890008E-01 1.63431626721E-01 1.67563318129E-01 1.71799658361E-01 1.76142364661E-01 1.80594901627E-01 1.85160114466E-01 1.89840184567E-01 1.94638541217E-01 1.99557962636E-01 2.04601301668E-01 2.09772327250E-01 2.15073409241E-01 2.20508367532E-01 2.26080486041E-01 2.31793123665E-01 2.37649639172E-01 2.43654062661E-01 2.49809824269E-01 2.56120730864E-01 2.62590806881E-01 2.69223880568E-01 2.76024281455E-01 2.82995868217E-01 2.90143403231E-01 2.97470017021E-01 3.04983512772E-01 3.12684435240E-01 3.20578314892E-01 3.28673305716E-01 3.36971120132E-01 3.45478425604E-01 3.54198484938E-01 3.63138612909E-01 3.72304936200E-01 3.81700467180E-01 3.91332638972E-01 4.01208178116E-01 4.11329531848E-01 4.21707945817E-01 4.32347168335E-01 4.43252100411E-01 4.54432201319E-01 4.65892286736E-01 4.77642023005E-01 4.89685407478E-01 5.02033225853E-01 5.14686469010E-01 5.27662793010E-01 5.40962580808E-01 5.54593999181E-01 5.68571348666E-01 5.82895943145E-01 5.97580768994E-01 6.12634682298E-01 6.28064150125E-01 6.43881827618E-01 6.60094462215E-01 6.76713981338E-01 6.93748651287E-01 7.11211299126E-01 7.29108267203E-01 7.47455577692E-01 7.66259373514E-01 7.85534918433E-01 8.05291211663E-01 8.25541670890E-01 8.46297025795E-01 8.67570464233E-01 8.89376496036E-01 9.11724315306E-01 9.34630202536E-01 9.58107579991E-01 9.82169282321E-01 1.00683004663E+00 1.03210605516E+00 1.05800934888E+00 1.08455824189E+00 1.11176606462E+00 1.13965152529E+00 1.16822831512E+00 1.19751546983E+00 1.22752869493E+00 1.25828699217E+00 1.28980694985E+00 1.32210847039E+00 1.35520987747E+00 1.38912961298E+00 1.42389004567E+00 1.45950764510E+00 1.49600634565E+00 1.53340594962E+00 1.57172802448E+00 1.61099520041E+00 1.65122994035E+00 1.69245451410E+00 1.73469460794E+00 1.77797234265E+00 1.82231324778E+00 1.86774303740E+00 1.91428717507E+00 1.96197120471E+00 2.01082417060E+00 2.06087061856E+00 2.11214279729E+00 2.16466486758E+00 2.21846972530E+00 2.27358569771E+00 2.33004396774E+00 2.38787597249E+00 2.44711270776E+00 2.50778816717E+00 2.56993444382E+00 2.63358635421E+00 2.69877817524E+00 2.76554526271E+00 2.83392398864E+00 2.90395087496E+00 2.97566347357E+00 3.04910084363E+00 3.12430042116E+00 3.20130385374E+00 3.28015048628E+00 3.36088209937E+00 3.44354099152E+00 3.52816933062E+00 3.61481207823E+00 3.70351237150E+00 3.79431708307E+00 3.88727050444E+00 3.98242137996E+00 4.07981617525E+00 4.17950411874E+00 4.28153477868E+00 4.38595767855E+00 4.49282464166E+00 4.60218715003E+00 4.71409797645E+00 4.82861064433E+00 4.94577995814E+00 5.06566025706E+00 5.18830810113E+00 5.31378033957E+00 5.44213391677E+00 5.57342788721E+00 5.70772096423E+00 5.84507304313E+00 5.98554467611E+00 6.12919746403E+00 6.27609291763E+00 6.42629400547E+00 6.57986437897E+00 6.73686708957E+00 6.89736774491E+00 7.06143062832E+00 7.22912159118E+00 7.40050701883E+00 7.57565317475E+00 7.75462721046E+00 7.93749600541E+00 8.12432780299E+00 8.31518997874E+00 8.51015080012E+00 8.70927813871E+00 8.91264062204E+00 9.12030592699E+00 9.33234256182E+00 9.54881811725E+00 9.76980041120E+00 9.99535639045E+00 1.02255533380E+01 1.04604568183E+01 1.07001329379E+01 1.09446458580E+01 1.11940598958E+01 1.14484373405E+01 1.17078399455E+01 1.19723276997E+01 1.22419594605E+01 1.25167919692E+01 1.27968806250E+01 1.30822783112E+01 1.33730361734E+01 1.36692025234E+01 1.39708233255E+01 1.42779416311E+01 1.45905975092E+01 1.49088274011E+01 1.52326648015E+01 1.55621387842E+01 1.58972745402E+01 1.62380932907E+01 1.65846109087E+01 1.69368388643E+01 1.72947830981E+01 1.76584439719E+01 1.80278159641E+01 1.84028871465E+01 1.87836390094E+01 1.91700459695E+01 1.95620749827E+01 1.99596851384E+01 2.03628273428E+01 2.07714438106E+01 2.11854674201E+01 2.16048218312E+01 2.20294202773E+01 2.24591657895E+01 2.28939500843E+01 2.33336537124E+01 2.37781449172E+01 2.42272795015E+01 2.46809003584E+01 2.51388366346E+01 2.56009033709E+01 2.60669010518E+01 2.65366148830E+01 2.70098143360E+01 2.74862525651E+01 2.79656659383E+01 2.84477733550E+01 2.89322758738E+01 2.94188559644E+01 2.99071772922E+01 3.03968838457E+01 3.08875997885E+01 3.13789287151E+01 3.18704533639E+01 3.23617350750E+01 3.28523134809E+01 3.33417061287E+01 3.38294080344E+01 3.43148915899E+01 3.47976060614E+01 3.52769777274E+01 3.57524093919E+01 3.62232805596E+01 3.66889473462E+01 3.71487425014E+01 3.76019755694E+01 3.80479331803E+01 3.84858792846E+01 3.89150555716E+01 3.93346820832E+01 3.97439576373E+01 4.01420608472E+01 4.05281506881E+01 4.09013676894E+01 4.12608349966E+01 4.16056595979E+01 4.19349338142E+01 4.22477367335E+01 4.25431360272E+01 4.28201897563E+01 4.30779484346E+01 4.33154571405E+01 4.35317579555E+01 4.37258924110E+01 4.38969041545E+01 4.40438418083E+01 4.41657618566E+01 4.42617319015E+01 4.43308337419E+01 4.43721668651E+01 4.43848518412E+01 4.43680339479E+01 4.43208867743E+01 4.42426158612E+01 4.41324625028E+01 4.39897073265E+01 4.38136740403E+01 4.36037329448E+01 4.33593044000E+01 4.30798621341E+01 4.27649362843E+01 4.24141162498E+01 4.20270531648E+01 4.16034620394E+01 4.11431234345E+01 4.06458846627E+01 4.01116603953E+01 3.95404327392E+01 3.89322504734E+01 3.82872277006E+01 3.76055415660E+01 3.68874292810E+01 3.61331840376E+01 3.53431502168E+01 3.45177175341E+01 3.36573142535E+01 3.27623995069E+01 3.18334547749E+01 3.08709744665E+01 2.98754559200E+01 2.88473887889E+01 2.77872442063E+01 2.66954636898E+01 2.55724484773E+01 2.44185494026E+01 2.32340578084E+01 2.20191982349E+01 2.07741232388E+01 1.94989114251E+01 1.81935692159E+01 1.68580376310E+01 1.54922050593E+01 1.40959272192E+01 1.26690559215E+01 1.12114779124E+01 9.72316573360E+00 8.20424230650E+00 6.65506130834E+00 5.07630542919E+00 3.46910484571E+00 1.83544437493E+00 1.78930656704E-01 -1.49604622878E+00 -3.18451760879E+00 -4.88089409528E+00 -6.57892169793E+00 -8.27163665706E+00 -9.95131911932E+00 -1.16094460162E+01 -1.32366434825E+01 -1.48226393483E+01 -1.63562160080E+01 -1.78251644740E+01 -1.92162399508E+01 -2.05151196955E+01 -2.17063638452E+01 -2.27733799338E+01 -2.36983917158E+01 -2.44624134118E+01 -2.50452298312E+01 -2.54253836581E+01 -2.55801705684E+01 -2.54856433296E+01 -2.51166259924E+01 -2.44467391635E+01 -2.34484377959E+01 -2.20930625376E+01 -2.03509072849E+01 -1.81912926089E+01 -1.55827610036E+01 -1.24922840371E+01 -8.89428171845E+00 -4.68454525043E+00 -5.18281623446E-01 4.61290953956E-02 -9.68449965679E-03 -4.00598733286E-03 -4.42358201200E-03 -4.23641432500E-03 -4.10893683277E-03 -3.97537211023E-03 -3.84234999276E-03 -3.70930575147E-03 -3.57640650138E-03 2.40 2.60 4P 7 2 Beta L 911 -1.38384662953E-12 -1.43672617295E-12 -1.49162634933E-12 -1.54862437110E-12 -1.60780040111E-12 -1.66923766541E-12 -1.73302257027E-12 -1.79924482374E-12 -1.86799756177E-12 -1.93937747924E-12 -2.01348496590E-12 -2.09042424763E-12 -2.17030353298E-12 -2.25323516536E-12 -2.33933578103E-12 -2.42872647319E-12 -2.52153296222E-12 -2.61788577255E-12 -2.71792041619E-12 -2.82177758336E-12 -2.92960334030E-12 -3.04154933477E-12 -3.15777300925E-12 -3.27843782246E-12 -3.40371347918E-12 -3.53377616893E-12 -3.66880881383E-12 -3.80900132577E-12 -3.95455087358E-12 -4.10566216030E-12 -4.26254771110E-12 -4.42542817212E-12 -4.59453262086E-12 -4.77009888833E-12 -4.95237389352E-12 -5.14161399070E-12 -5.33808532995E-12 -5.54206423147E-12 -5.75383757421E-12 -5.97370319934E-12 -6.20197032913E-12 -6.43896000185E-12 -6.68500552330E-12 -6.94045293553E-12 -7.20566150358E-12 -7.48100422070E-12 -7.76686833298E-12 -8.06365588393E-12 -8.37178427997E-12 -8.69168687745E-12 -9.02381359210E-12 -9.36863153188E-12 -9.72662565384E-12 -1.00982994462E-11 -1.04841756366E-11 -1.08847969268E-11 -1.13007267568E-11 -1.17325500963E-11 -1.21808742681E-11 -1.26463298019E-11 -1.31295713214E-11 -1.36312784645E-11 -1.41521568397E-11 -1.46929390179E-11 -1.52543855633E-11 -1.58372861027E-11 -1.64424604359E-11 -1.70707596892E-11 -1.77230675119E-11 -1.84003013194E-11 -1.91034135834E-11 -1.98333931715E-11 -2.05912667377E-11 -2.13781001666E-11 -2.21950000725E-11 -2.30431153556E-11 -2.39236388177E-11 -2.48378088402E-11 -2.57869111252E-11 -2.67722805044E-11 -2.77953028158E-11 -2.88574168532E-11 -2.99601163897E-11 -3.11049522781E-11 -3.22935346326E-11 -3.35275350932E-11 -3.48086891765E-11 -3.61387987164E-11 -3.75197343989E-11 -3.89534383924E-11 -4.04419270796E-11 -4.19872938929E-11 -4.35917122592E-11 -4.52574386565E-11 -4.69868157870E-11 -4.87822758724E-11 -5.06463440745E-11 -5.25816420465E-11 -5.45908916203E-11 -5.66769186343E-11 -5.88426569079E-11 -6.10911523677E-11 -6.34255673311E-11 -6.58491849540E-11 -6.83654138483E-11 -7.09777928758E-11 -7.36899961252E-11 -7.65058380796E-11 -7.94292789809E-11 -8.24644303999E-11 -8.56155610189E-11 -8.88871026348E-11 -9.22836563924E-11 -9.58099992557E-11 -9.94710907256E-11 -1.03272079816E-10 -1.07218312294E-10 -1.11315338201E-10 -1.15568919654E-10 -1.19985038953E-10 -1.24569906996E-10 -1.29329972009E-10 -1.34271928617E-10 -1.39402727263E-10 -1.44729583979E-10 -1.50259990535E-10 -1.56001724978E-10 -1.61962862568E-10 -1.68151787139E-10 -1.74577202887E-10 -1.81248146612E-10 -1.88174000429E-10 -1.95364504963E-10 -2.02829773047E-10 -2.10580303945E-10 -2.18626998120E-10 -2.26981172564E-10 -2.35654576712E-10 -2.44659408969E-10 -2.54008333868E-10 -2.63714499875E-10 -2.73791557888E-10 -2.84253680433E-10 -2.95115581595E-10 -3.06392537716E-10 -3.18100408876E-10 -3.30255661200E-10 -3.42875390019E-10 -3.55977343907E-10 -3.69579949651E-10 -3.83702338159E-10 -3.98364371371E-10 -4.13586670191E-10 -4.29390643489E-10 -4.45798518212E-10 -4.62833370642E-10 -4.80519158851E-10 -4.98880756399E-10 -5.17943987314E-10 -5.37735662412E-10 -5.58283617004E-10 -5.79616750042E-10 -6.01765064769E-10 -6.24759710908E-10 -6.48633028479E-10 -6.73418593276E-10 -6.99151264093E-10 -7.25867231750E-10 -7.53604069987E-10 -7.82400788315E-10 -8.12297886876E-10 -8.43337413405E-10 -8.75563022362E-10 -9.09020036335E-10 -9.43755509778E-10 -9.79818295190E-10 -1.01725911182E-09 -1.05613061701E-09 -1.09648748023E-09 -1.13838646000E-09 -1.18188648368E-09 -1.22704873037E-09 -1.27393671694E-09 -1.32261638738E-09 -1.37315620552E-09 -1.42562725135E-09 -1.48010332094E-09 -1.53666103028E-09 -1.59537992301E-09 -1.65634258227E-09 -1.71963474690E-09 -1.78534543197E-09 -1.85356705400E-09 -1.92439556095E-09 -1.99793056713E-09 -2.07427549329E-09 -2.15353771215E-09 -2.23582869931E-09 -2.32126419010E-09 -2.40996434234E-09 -2.50205390528E-09 -2.59766239515E-09 -2.69692427721E-09 -2.79997915494E-09 -2.90697196633E-09 -3.01805318775E-09 -3.13337904559E-09 -3.25311173595E-09 -3.37741965277E-09 -3.50647762468E-09 -3.64046716085E-09 -3.77957670630E-09 -3.92400190691E-09 -4.07394588457E-09 -4.22961952288E-09 -4.39124176375E-09 -4.55903991528E-09 -4.73324997148E-09 -4.91411694418E-09 -5.10189520761E-09 -5.29684885613E-09 -5.49925207573E-09 -5.70938952957E-09 -5.92755675838E-09 -6.15406059610E-09 -6.38921960143E-09 -6.63336450584E-09 -6.88683867873E-09 -7.14999861035E-09 -7.42321441316E-09 -7.70687034238E-09 -8.00136533641E-09 -8.30711357790E-09 -8.62454507628E-09 -8.95410627251E-09 -9.29626066697E-09 -9.65148947136E-09 -1.00202922855E-08 -1.04031877998E-08 -1.08007145251E-08 -1.12134315497E-08 -1.16419193258E-08 -1.20867804862E-08 -1.25486406910E-08 -1.30281495085E-08 -1.35259813282E-08 -1.40428363095E-08 -1.45794413660E-08 -1.51365511887E-08 -1.57149493065E-08 -1.63154491888E-08 -1.69388953893E-08 -1.75861647337E-08 -1.82581675533E-08 -1.89558489649E-08 -1.96801902001E-08 -2.04322099857E-08 -2.12129659759E-08 -2.20235562402E-08 -2.28651208076E-08 -2.37388432702E-08 -2.46459524473E-08 -2.55877241142E-08 -2.65654827963E-08 -2.75806036317E-08 -2.86345143057E-08 -2.97286970582E-08 -3.08646907689E-08 -3.20440931212E-08 -3.32685628495E-08 -3.45398220717E-08 -3.58596587119E-08 -3.72299290142E-08 -3.86525601541E-08 -4.01295529485E-08 -4.16629846697E-08 -4.32550119671E-08 -4.49078739004E-08 -4.66238950885E-08 -4.84054889791E-08 -5.02551612430E-08 -5.21755132981E-08 -5.41692459679E-08 -5.62391632807E-08 -5.83881764126E-08 -6.06193077820E-08 -6.29356953008E-08 -6.53405967873E-08 -6.78373945482E-08 -7.04296001356E-08 -7.31208592860E-08 -7.59149570473E-08 -7.88158231028E-08 -8.18275372975E-08 -8.49543353766E-08 -8.82006149427E-08 -9.15709416404E-08 -9.50700555782E-08 -9.87028779947E-08 -1.02474518180E-07 -1.06390280663E-07 -1.10455672670E-07 -1.14676411869E-07 -1.19058434417E-07 -1.23607903303E-07 -1.28331217019E-07 -1.33235018557E-07 -1.38326204754E-07 -1.43611935992E-07 -1.49099646267E-07 -1.54797053646E-07 -1.60712171122E-07 -1.66853317882E-07 -1.73229131011E-07 -1.79848577637E-07 -1.86720967542E-07 -1.93855966260E-07 -2.01263608666E-07 -2.08954313094E-07 -2.16938895987E-07 -2.25228587111E-07 -2.33835045351E-07 -2.42770375103E-07 -2.52047143306E-07 -2.61678397112E-07 -2.71677682238E-07 -2.82059062015E-07 -2.92837137173E-07 -3.04027066371E-07 -3.15644587521E-07 -3.27706039921E-07 -3.40228387235E-07 -3.53229241356E-07 -3.66726887171E-07 -3.80740308283E-07 -3.95289213707E-07 -4.10394065596E-07 -4.26076108015E-07 -4.42357396823E-07 -4.59260830694E-07 -4.76810183323E-07 -4.95030136866E-07 -5.13946316651E-07 -5.33585327225E-07 -5.53974789767E-07 -5.75143380944E-07 -5.97120873239E-07 -6.19938176829E-07 -6.43627383059E-07 -6.68221809580E-07 -6.93756047210E-07 -7.20266008586E-07 -7.47788978676E-07 -7.76363667219E-07 -8.06030263175E-07 -8.36830491248E-07 -8.68807670575E-07 -9.02006775655E-07 -9.36474499604E-07 -9.72259319835E-07 -1.00941156624E-06 -1.04798349199E-06 -1.08802934701E-06 -1.12960545430E-06 -1.17277028916E-06 -1.21466600990E-06 -1.26115709436E-06 -1.30942882627E-06 -1.35954205722E-06 -1.41157971563E-06 -1.46559827628E-06 -1.52168395693E-06 -1.57991692145E-06 -1.64037093388E-06 -1.70314612688E-06 -1.76831136068E-06 -1.83597239087E-06 -1.90621819369E-06 -1.97914792094E-06 -2.05487575018E-06 -2.13348822015E-06 -2.21510759994E-06 -2.29985126655E-06 -2.38783072523E-06 -2.47917291418E-06 -2.57771836793E-06 -2.67621410843E-06 -2.77847601297E-06 -2.88464066724E-06 -2.99486584571E-06 -3.10929876509E-06 -3.22811023296E-06 -3.35145618898E-06 -3.47951861767E-06 -3.61247240047E-06 -3.75050648529E-06 -3.89381770340E-06 -4.04260241025E-06 -4.19707279117E-06 -4.35744653969E-06 -4.52394636066E-06 -4.69681178519E-06 -4.87627849374E-06 -5.06260916923E-06 -5.25605258819E-06 -5.45689257244E-06 -5.66540418753E-06 -5.88188038968E-06 -6.10663825549E-06 -6.33997701987E-06 -6.58223411815E-06 -6.83374565249E-06 -7.09487063174E-06 -7.36597209981E-06 -7.64743209694E-06 -7.93964959542E-06 -8.24303307506E-06 -8.55800725028E-06 -8.88501564895E-06 -9.22452129472E-06 -9.57700222834E-06 -9.94294783077E-06 -1.03228791924E-05 -1.07173216180E-05 -1.11268462421E-05 -1.15520165393E-05 -1.19934273174E-05 -1.24517103449E-05 -1.29275038006E-05 -1.34214748550E-05 -1.39343257797E-05 -1.44667722199E-05 -1.50195631085E-05 -1.55934748839E-05 -1.61893177037E-05 -1.68079247106E-05 -1.74501800728E-05 -1.81169640438E-05 -1.88092323003E-05 -1.95279542175E-05 -2.02741401936E-05 -2.10488318657E-05 -2.18531291555E-05 -2.26881579869E-05 -2.35550958477E-05 -2.44551584700E-05 -2.53896133462E-05 -2.63597758743E-05 -2.73670040245E-05 -2.84127262561E-05 -2.94984042174E-05 -3.06255668245E-05 -3.17957878646E-05 -3.30107405531E-05 -3.42721075111E-05 -3.55816749218E-05 -3.69412783668E-05 -3.83528404511E-05 -3.98183313450E-05 -4.13398150844E-05 -4.29194479546E-05 -4.45594249016E-05 -4.62620745388E-05 -4.80297836238E-05 -4.98650277058E-05 -5.17704095206E-05 -5.37485822077E-05 -5.58023480763E-05 -5.79345934400E-05 -6.01482954920E-05 -6.24466018425E-05 -6.48327116887E-05 -6.73100044064E-05 -6.98819448883E-05 -7.25521624548E-05 -7.53244022935E-05 -7.82025827625E-05 -8.11907158689E-05 -8.42930414197E-05 -8.75139028244E-05 -9.08578164308E-05 -9.43294983182E-05 -9.79338481055E-05 -1.01675860226E-04 -1.05561369032E-04 -1.09590259178E-04 -1.13822484953E-04 -1.17736480443E-04 -1.26462704684E-04 -1.18344040131E-04 -1.40034313320E-04 -1.33538097932E-04 -1.46669127255E-04 -1.42523103584E-04 -1.57847464766E-04 -1.59129597698E-04 -1.62984816107E-04 -1.73685779059E-04 -1.77867596806E-04 -1.81712566728E-04 -1.96661410190E-04 -1.96858897966E-04 -2.13113886367E-04 -2.15902536896E-04 -2.13184248171E-04 -2.38179110736E-04 -2.42323311202E-04 -2.48654386215E-04 -2.56163721132E-04 -2.75175032765E-04 -2.77337905528E-04 -2.93198322969E-04 -2.96099926329E-04 -3.19287243978E-04 -3.16710676218E-04 -3.41857148282E-04 -3.56660808569E-04 -3.56017921054E-04 -3.79626392311E-04 -3.90827008066E-04 -4.12449606216E-04 -4.18213309394E-04 -4.39808828511E-04 -4.57716161544E-04 -4.64921998511E-04 -5.04461078003E-04 -4.99564928546E-04 -5.33132205865E-04 -5.48901714030E-04 -5.70110857741E-04 -5.91564834671E-04 -6.15997018170E-04 -6.39820378247E-04 -6.58559504590E-04 -6.95349475927E-04 -7.10398188928E-04 -7.42417811110E-04 -7.68446163433E-04 -8.02916825156E-04 -8.25248869840E-04 -8.65247983602E-04 -8.98191036840E-04 -9.19622809823E-04 -9.73531346394E-04 -9.95078082026E-04 -1.03862901163E-03 -1.08350472170E-03 -1.11832472405E-03 -1.16851145362E-03 -1.20555072951E-03 -1.25010454121E-03 -1.30184408060E-03 -1.35364528312E-03 -1.40293059343E-03 -1.45709658410E-03 -1.51302771689E-03 -1.56580432050E-03 -1.63626219167E-03 -1.68869599696E-03 -1.75467730869E-03 -1.83283951099E-03 -1.88599720738E-03 -1.96787169636E-03 -2.04002505050E-03 -2.12277377767E-03 -2.19737048217E-03 -2.28464274333E-03 -2.37294512341E-03 -2.46378602396E-03 -2.54941127191E-03 -2.66074132886E-03 -2.75117741819E-03 -2.86154125591E-03 -2.96855277533E-03 -3.08747413546E-03 -3.19507478965E-03 -3.32477748205E-03 -3.45147628800E-03 -3.57950172376E-03 -3.72226477040E-03 -3.85537278940E-03 -4.01153560767E-03 -4.15954965306E-03 -4.32094829676E-03 -4.48431685448E-03 -4.65609262516E-03 -4.83354457965E-03 -5.01912541301E-03 -5.20919659817E-03 -5.41077422016E-03 -5.61707909198E-03 -5.82643228660E-03 -6.05434454052E-03 -6.28404151900E-03 -6.52535485489E-03 -6.77024079600E-03 -7.03272027610E-03 -7.29986097101E-03 -7.57904653503E-03 -7.86769129012E-03 -8.16933113033E-03 -8.47897065557E-03 -8.80438873816E-03 -9.14030384759E-03 -9.48862811816E-03 -9.85229824190E-03 -1.02258352569E-02 -1.06189365032E-02 -1.10219646300E-02 -1.14447809212E-02 -1.18789100512E-02 -1.23359110777E-02 -1.28029334036E-02 -1.32944570427E-02 -1.38003741721E-02 -1.43266142684E-02 -1.48748473749E-02 -1.54411224580E-02 -1.60318030581E-02 -1.66420596180E-02 -1.72770498508E-02 -1.79375045462E-02 -1.86206087205E-02 -1.93316286514E-02 -2.00693290744E-02 -2.08339068396E-02 -2.16298466368E-02 -2.24543518308E-02 -2.33107769441E-02 -2.41993950622E-02 -2.51234353002E-02 -2.60806776951E-02 -2.70755510030E-02 -2.81084205067E-02 -2.91795054030E-02 -3.02922749527E-02 -3.14478341121E-02 -3.26461476118E-02 -3.38907803768E-02 -3.51823768196E-02 -3.65243943631E-02 -3.79156858509E-02 -3.93609494254E-02 -4.08610652574E-02 -4.24181164107E-02 -4.40344651475E-02 -4.57121974870E-02 -4.74538641425E-02 -4.92615298721E-02 -5.11382671913E-02 -5.30859309921E-02 -5.51076508294E-02 -5.72064681603E-02 -5.93847746951E-02 -6.16462917445E-02 -6.39928753409E-02 -6.64291382112E-02 -6.89580307854E-02 -7.15823145896E-02 -7.43065889447E-02 -7.71344793913E-02 -8.00690667461E-02 -8.31153515230E-02 -8.62771238117E-02 -8.95586234759E-02 -9.29648654183E-02 -9.64997003069E-02 -1.00168775270E-01 -1.03977010270E-01 -1.07928951877E-01 -1.12030901548E-01 -1.16288260092E-01 -1.20706454019E-01 -1.25291803049E-01 -1.30050633820E-01 -1.34989622629E-01 -1.40115055223E-01 -1.45434242925E-01 -1.50954403943E-01 -1.56683120726E-01 -1.62628029514E-01 -1.68797324407E-01 -1.75199310680E-01 -1.81842911717E-01 -1.88736885055E-01 -1.95890619275E-01 -2.03313948422E-01 -2.11016767501E-01 -2.19009538022E-01 -2.27302994944E-01 -2.35908423906E-01 -2.44837308139E-01 -2.54101579179E-01 -2.63713937498E-01 -2.73686957980E-01 -2.84034239339E-01 -2.94769385877E-01 -3.05906927997E-01 -3.17461598543E-01 -3.29448727886E-01 -3.41884354437E-01 -3.54784861526E-01 -3.68167337711E-01 -3.82049471646E-01 -3.96449597009E-01 -4.11386531451E-01 -4.26880015003E-01 -4.42950297134E-01 -4.59618323436E-01 -4.76905901957E-01 -4.94835445834E-01 -5.13430319579E-01 -5.32714440222E-01 -5.52712803256E-01 -5.73451149292E-01 -5.94955990843E-01 -6.17254969392E-01 -6.40376418912E-01 -6.64349802093E-01 -6.89205437177E-01 -7.14974799533E-01 -7.41690199504E-01 -7.69385189690E-01 -7.98094357538E-01 -8.27853361849E-01 -8.58699065025E-01 -8.90669530937E-01 -9.23803936831E-01 -9.58142811347E-01 -9.93727862480E-01 -1.03060212385E+00 -1.06880996111E+00 -1.10839707390E+00 -1.14941052477E+00 -1.19189881148E+00 -1.23591185171E+00 -1.28150097089E+00 -1.32871905884E+00 -1.37762038242E+00 -1.42826087014E+00 -1.48069784891E+00 -1.53499028908E+00 -1.59119870516E+00 -1.64938514975E+00 -1.70961333980E+00 -1.77194851204E+00 -1.83645754178E+00 -1.90320885763E+00 -1.97227252494E+00 -2.04372012909E+00 -2.11762484157E+00 -2.19406136497E+00 -2.27310589040E+00 -2.35483608342E+00 -2.43933105349E+00 -2.52667121951E+00 -2.61693840202E+00 -2.71021555243E+00 -2.80658686285E+00 -2.90613753823E+00 -3.00895374379E+00 -3.11512249423E+00 -3.22473147866E+00 -3.33786895341E+00 -3.45462354723E+00 -3.57508407857E+00 -3.69933935879E+00 -3.82747796988E+00 -3.95958799812E+00 -4.09575677281E+00 -4.23607057792E+00 -4.38061430929E+00 -4.52947113123E+00 -4.68272209407E+00 -4.84044571082E+00 -5.00271751754E+00 -5.16960956485E+00 -5.34118992699E+00 -5.51752209159E+00 -5.69866439474E+00 -5.88466933947E+00 -6.07558289981E+00 -6.27144378888E+00 -6.47228263173E+00 -6.67812113883E+00 -6.88897117562E+00 -7.10483381218E+00 -7.32569828823E+00 -7.55154093416E+00 -7.78232401309E+00 -8.01799452275E+00 -8.25848290090E+00 -8.50370169398E+00 -8.75354414167E+00 -9.00788270059E+00 -9.26656750124E+00 -9.52942473824E+00 -9.79625499483E+00 -1.00668315132E+01 -1.03408983922E+01 -1.06181687385E+01 -1.08983227695E+01 -1.11810058546E+01 -1.14658265401E+01 -1.17523545204E+01 -1.20401186062E+01 -1.23286046699E+01 -1.26172535968E+01 -1.29054592546E+01 -1.31925664894E+01 -1.34778691783E+01 -1.37606083461E+01 -1.40399703817E+01 -1.43150853675E+01 -1.45850255588E+01 -1.48488040359E+01 -1.51053735709E+01 -1.53536257360E+01 -1.55923902947E+01 -1.58204349294E+01 -1.60364653260E+01 -1.62391256931E+01 -1.64269997388E+01 -1.65986121822E+01 -1.67524308387E+01 -1.68868693447E+01 -1.70002905891E+01 -1.70910109014E+01 -1.71573050639E+01 -1.71974122265E+01 -1.72095427645E+01 -1.71918861601E+01 -1.71426199721E+01 -1.70599199309E+01 -1.69419712454E+01 -1.67869811440E+01 -1.65931927051E+01 -1.63589000171E+01 -1.60824646764E+01 -1.57623336495E+01 -1.53970584862E+01 -1.49853158727E+01 -1.45259294805E+01 -1.40178930473E+01 -1.34603946202E+01 -1.28528418235E+01 -1.21948880366E+01 -1.14864592908E+01 -1.07277816748E+01 -9.91940901055E+00 -9.06225050567E+00 -8.15759805110E+00 -7.20715278864E+00 -6.21305053421E+00 -5.17788558250E+00 -4.10473237720E+00 -2.99716449601E+00 -1.85927033096E+00 -6.95664821818E-01 4.88503454013E-01 1.68755055835E+00 2.89526160123E+00 4.10490205735E+00 5.30923680789E+00 6.50055769396E+00 7.67072041669E+00 8.81119155315E+00 9.91310647032E+00 1.09673388583E+01 1.19645825422E+01 1.28954461822E+01 1.37506130056E+01 1.45210705527E+01 1.51980360487E+01 1.57730331001E+01 1.62380317537E+01 1.65856020575E+01 1.68090809390E+01 1.69027519759E+01 1.68620373236E+01 1.66837007616E+01 1.63660604270E+01 1.59092094028E+01 1.53152418665E+01 1.45884819903E+01 1.37357122582E+01 1.27663972578E+01 1.16928983862E+01 1.05306742698E+01 9.29846099407E+00 8.01842558795E+00 6.71628549274E+00 5.42138611363E+00 4.16672792393E+00 2.98893394204E+00 1.92814903566E+00 1.02785152703E+00 3.34660939667E-01 -1.02780113793E-01 -2.26999263042E-01 -4.30513158570E-02 4.61960258215E-03 -1.15490878537E-04 3.45499741886E-04 2.91654794409E-04 2.89162311377E-04 2.81873629262E-04 2.75342060812E-04 2.69003589622E-04 2.62901966430E-04 2.57020757630E-04 1.60 2.50 3D 8 2 Beta L 911 1.34057371033E-12 1.39179970910E-12 1.44498315559E-12 1.50019884779E-12 1.55752444186E-12 1.61704056137E-12 1.67883091067E-12 1.74298239262E-12 1.80958523082E-12 1.87873309648E-12 1.95052324019E-12 2.02505662867E-12 2.10243808678E-12 2.18277644496E-12 2.26618469224E-12 2.35278013524E-12 2.44268456307E-12 2.53602441864E-12 2.63293097651E-12 2.73354052749E-12 2.83799457036E-12 2.94644001082E-12 3.05902936816E-12 3.17592098970E-12 3.29727927355E-12 3.42327489982E-12 3.55408507061E-12 3.68989375927E-12 3.83089196918E-12 3.97727800229E-12 4.12925773810E-12 4.28704492315E-12 4.45086147169E-12 4.62093777773E-12 4.79751303911E-12 4.98083559389E-12 5.17116326964E-12 5.36876374601E-12 5.57391493125E-12 5.78690535302E-12 6.00803456421E-12 6.23761356422E-12 6.47596523636E-12 6.72342480196E-12 6.98034029180E-12 7.24707303566E-12 7.52399817041E-12 7.81150516767E-12 8.10999838155E-12 8.41989761732E-12 8.74163872186E-12 9.07567419664E-12 9.42247383410E-12 9.78252537840E-12 1.01563352114E-11 1.05444290647E-11 1.09473527593E-11 1.13656729731E-11 1.17999780378E-11 1.22508787666E-11 1.27190093128E-11 1.32050280623E-11 1.37096185589E-11 1.42334904664E-11 1.47773805658E-11 1.53420537923E-11 1.59283043108E-11 1.65369566326E-11 1.71688667754E-11 1.78249234670E-11 1.85060493952E-11 1.92132025058E-11 1.99473773492E-11 2.07096064800E-11 2.15009619085E-11 2.23225566088E-11 2.31755460837E-11 2.40611299904E-11 2.49805538272E-11 2.59351106855E-11 2.69261430682E-11 2.79550447780E-11 2.90232628776E-11 3.01322997247E-11 3.12837150853E-11 3.24791283270E-11 3.37202206968E-11 3.50087376854E-11 3.63464914823E-11 3.77353635244E-11 3.91773071419E-11 4.06743503058E-11 4.22285984798E-11 4.38422375817E-11 4.55175370576E-11 4.72568530736E-11 4.90626318295E-11 5.09374129995E-11 5.28838333038E-11 5.49046302169E-11 5.70026458176E-11 5.91808307863E-11 6.14422485548E-11 6.37900796147E-11 6.62276259907E-11 6.87583158842E-11 7.13857084953E-11 7.41134990281E-11 7.69455238879E-11 7.98857660767E-11 8.29383607950E-11 8.61076012574E-11 8.93979447311E-11 9.28140188043E-11 9.63606278946E-11 1.00042760006E-10 1.03865593744E-10 1.07834505599E-10 1.11955077508E-10 1.16233104704E-10 1.20674603871E-10 1.25285821597E-10 1.30073243169E-10 1.35043601688E-10 1.40203887541E-10 1.45561358231E-10 1.51123548585E-10 1.56898281350E-10 1.62893678198E-10 1.69118171145E-10 1.75580514410E-10 1.82289796729E-10 1.89255454140E-10 1.96487283245E-10 2.03995455000E-10 2.11790529008E-10 2.19883468379E-10 2.28285655145E-10 2.37008906267E-10 2.46065490258E-10 2.55468144432E-10 2.65230092825E-10 2.75365064787E-10 2.85887314295E-10 2.96811640001E-10 3.08153406040E-10 3.19928563644E-10 3.32153673570E-10 3.44845929400E-10 3.58023181712E-10 3.71703963195E-10 3.85907514705E-10 4.00653812332E-10 4.15963595493E-10 4.31858396099E-10 4.48360568837E-10 4.65493322615E-10 4.83280753196E-10 5.01747877093E-10 5.20920666750E-10 5.40826087070E-10 5.61492133338E-10 5.82947870596E-10 6.05223474521E-10 6.28350273860E-10 6.52360794498E-10 6.77288805197E-10 7.03169365092E-10 7.30038872999E-10 7.57935118603E-10 7.86897335614E-10 8.16966256935E-10 8.48184171959E-10 8.80594986042E-10 9.14244282251E-10 9.49179385472E-10 9.85449428973E-10 1.02310542350E-09 1.06220032903E-09 1.10278912924E-09 1.14492890884E-09 1.18867893388E-09 1.23410073506E-09 1.28125819431E-09 1.33021763462E-09 1.38104791330E-09 1.43382051885E-09 1.48860967148E-09 1.54549242751E-09 1.60454878774E-09 1.66586180996E-09 1.72951772575E-09 1.79560606181E-09 1.86421976581E-09 1.93545533713E-09 2.00941296261E-09 2.08619665742E-09 2.16591441136E-09 2.24867834074E-09 2.33460484607E-09 2.42381477574E-09 2.51643359602E-09 2.61259156751E-09 2.71242392829E-09 2.81607108421E-09 2.92367880628E-09 3.03539843573E-09 3.15138709685E-09 3.27180791796E-09 3.39683026084E-09 3.52662995895E-09 3.66138956469E-09 3.80129860616E-09 3.94655385371E-09 4.09735959670E-09 4.25392793079E-09 4.41647905625E-09 4.58524158768E-09 4.76045287547E-09 4.94235933968E-09 5.13121681658E-09 5.32729091846E-09 5.53085740721E-09 5.74220258214E-09 5.96162368265E-09 6.18942930628E-09 6.42593984269E-09 6.67148792430E-09 6.92641889410E-09 7.19109129137E-09 7.46587735586E-09 7.75116355143E-09 8.04735110949E-09 8.35485659333E-09 8.67411248399E-09 9.00556778852E-09 9.34968867143E-09 9.70695911038E-09 1.00778815768E-08 1.04629777426E-08 1.08627892138E-08 1.12778782925E-08 1.17088287673E-08 1.21562467348E-08 1.26207614516E-08 1.31030262196E-08 1.36037193049E-08 1.41235448913E-08 1.46632340711E-08 1.52235458731E-08 1.58052683303E-08 1.64092195880E-08 1.70362490546E-08 1.76872385961E-08 1.83631037766E-08 1.90647951458E-08 1.97932995758E-08 2.05496416494E-08 2.13348851008E-08 2.21501343117E-08 2.29965358645E-08 2.38752801551E-08 2.47876030671E-08 2.57347877096E-08 2.67181662223E-08 2.77391216485E-08 2.87990898808E-08 2.98995616805E-08 3.10420847738E-08 3.22282660291E-08 3.34597737166E-08 3.47383398548E-08 3.60657626465E-08 3.74439090075E-08 3.88747171929E-08 4.03601995224E-08 4.19024452113E-08 4.35036233081E-08 4.51659857454E-08 4.68918705075E-08 4.86837049180E-08 5.05440090540E-08 5.24753992904E-08 5.44805919797E-08 5.65624072722E-08 5.87237730827E-08 6.09677292080E-08 6.32974316027E-08 6.57161568174E-08 6.82273066072E-08 7.08344127162E-08 7.35411418444E-08 7.63513008049E-08 7.92688418779E-08 8.22978683695E-08 8.54426403826E-08 8.87075808086E-08 9.20972815479E-08 9.56165099682E-08 9.92702156098E-08 1.03063537147E-07 1.07001809613E-07 1.11090571909E-07 1.15335574587E-07 1.19742787946E-07 1.24318410419E-07 1.29068877301E-07 1.34000869792E-07 1.39121324401E-07 1.44437442693E-07 1.49956701428E-07 1.55686863066E-07 1.61635986695E-07 1.67812439359E-07 1.74224907827E-07 1.80882410814E-07 1.87794311659E-07 1.94970331503E-07 2.02420562955E-07 2.10155484287E-07 2.18185974176E-07 2.26523327000E-07 2.35179268726E-07 2.44165973402E-07 2.53496080278E-07 2.63182711583E-07 2.73239490984E-07 2.83680562744E-07 2.94520611618E-07 3.05774883507E-07 3.17459206898E-07 3.29590015132E-07 3.42184369512E-07 3.55259983302E-07 3.68835246644E-07 3.82929252417E-07 3.97561823096E-07 4.12753538631E-07 4.28525765394E-07 4.44900686228E-07 4.61901331651E-07 4.79551612247E-07 4.97876352295E-07 5.16901324690E-07 5.36653287185E-07 5.57160020036E-07 5.78450365069E-07 6.00554266247E-07 6.23502811791E-07 6.47328277906E-07 6.72064174173E-07 6.97745290691E-07 7.24407747003E-07 7.52089042903E-07 7.80828111184E-07 8.10665372392E-07 8.41642791688E-07 8.73803937870E-07 9.07194044655E-07 9.41860074308E-07 9.77850783691E-07 1.01521679285E-06 1.05401065621E-06 1.09428693651E-06 1.13610228153E-06 1.17656952843E-06 1.22160569789E-06 1.26836696555E-06 1.31691199326E-06 1.36732162163E-06 1.41964987955E-06 1.47398070467E-06 1.53039180577E-06 1.58895430918E-06 1.64976583030E-06 1.71289228623E-06 1.77843669891E-06 1.84648501093E-06 1.91713328820E-06 1.99049261015E-06 2.06664599832E-06 2.14571237497E-06 2.22780555254E-06 2.31303323832E-06 2.40151853239E-06 2.49723700444E-06 2.59265477162E-06 2.69172107626E-06 2.79456785721E-06 2.90134857066E-06 3.01220503208E-06 3.12730361927E-06 3.24679476856E-06 3.37085504215E-06 3.49965376603E-06 3.63337377459E-06 3.77220634581E-06 3.91634119836E-06 4.06598374862E-06 4.22134558897E-06 4.38264154202E-06 4.55010463417E-06 4.72396226116E-06 4.90446977028E-06 5.09186738037E-06 5.28643039061E-06 5.48842537451E-06 5.69813572439E-06 5.91586952064E-06 6.14191570726E-06 6.37660126456E-06 6.62025223682E-06 6.87321626864E-06 7.13584488803E-06 7.40850842732E-06 7.69159309415E-06 7.98549511798E-06 8.29062528294E-06 8.60741371392E-06 8.93630891069E-06 9.27777384465E-06 9.63228268467E-06 1.00003403187E-05 1.03824551749E-05 1.07791817627E-05 1.11910643541E-05 1.16186802460E-05 1.20626411445E-05 1.25235655154E-05 1.30020993541E-05 1.34989229475E-05 1.40147303668E-05 1.45502460874E-05 1.51062230495E-05 1.56834458812E-05 1.62827210194E-05 1.69049069114E-05 1.75508541344E-05 1.82214898415E-05 1.89177530332E-05 1.96406220934E-05 2.03911062989E-05 2.11702714462E-05 2.19792080595E-05 2.28190573249E-05 2.36909961133E-05 2.45962533269E-05 2.55361029778E-05 2.65118602646E-05 2.75249100290E-05 2.85766669110E-05 2.96686135383E-05 3.08022731110E-05 3.19792683519E-05 3.32012280884E-05 3.44698830288E-05 3.57870117482E-05 3.71544771337E-05 3.85741870596E-05 4.00481419133E-05 4.15784300843E-05 4.31671787424E-05 4.48166434695E-05 4.65291370018E-05 4.83070572557E-05 5.01529259472E-05 5.20693132397E-05 5.40589347734E-05 5.61245865239E-05 5.82691525510E-05 6.04956828619E-05 6.28072768426E-05 6.52072085178E-05 6.76988344237E-05 7.02856720000E-05 7.29713474252E-05 7.57596603558E-05 7.86544947130E-05 8.16599600648E-05 8.47802646237E-05 8.80197819504E-05 9.13830833595E-05 9.48749168172E-05 9.85001156780E-05 1.02264372914E-04 1.06167192423E-04 1.10270391467E-04 1.14032424795E-04 1.22775864608E-04 1.14030427831E-04 1.36200272749E-04 1.29113102287E-04 1.42376476146E-04 1.37700658136E-04 1.53211781723E-04 1.54137173257E-04 1.57733378300E-04 1.68255309990E-04 1.72472600035E-04 1.75812355410E-04 1.90699249938E-04 1.90599454310E-04 2.06679831171E-04 2.09254149624E-04 2.06070321073E-04 2.30956145439E-04 2.34889727695E-04 2.40770467977E-04 2.48070211476E-04 2.66799185624E-04 2.68610056803E-04 2.84215585243E-04 2.86464105910E-04 3.09771954173E-04 3.06282813794E-04 3.31513415461E-04 3.45744212467E-04 3.44573841555E-04 3.67926923879E-04 3.78495927495E-04 3.99880179614E-04 4.04975762775E-04 4.26070662411E-04 4.43626270143E-04 4.49904564460E-04 4.89588911585E-04 4.83373478061E-04 5.16662808560E-04 5.31793570780E-04 5.52296276453E-04 5.73106718096E-04 5.96847306046E-04 6.20004219183E-04 6.37695344970E-04 6.74183621872E-04 6.88045527913E-04 7.19244231962E-04 7.44460510737E-04 7.78109386333E-04 7.99260961380E-04 8.38523901490E-04 8.70351363259E-04 8.90569640888E-04 9.43698255242E-04 9.63730734737E-04 1.00631925196E-03 1.05006023595E-03 1.08335376098E-03 1.13241212616E-03 1.16797088023E-03 1.21101968732E-03 1.26140652795E-03 1.31160516144E-03 1.35938203117E-03 1.41181102188E-03 1.46607061616E-03 1.51688407080E-03 1.58575594449E-03 1.63606885750E-03 1.70000532641E-03 1.77647949229E-03 1.82698665766E-03 1.90687723329E-03 1.97664599791E-03 2.05713576418E-03 2.12907889508E-03 2.21373708183E-03 2.29953665491E-03 2.38735978521E-03 2.47017310465E-03 2.57860324141E-03 2.66571293354E-03 2.77303890389E-03 2.87652582928E-03 2.99213236659E-03 3.09590292541E-03 3.22201204705E-03 3.34475766591E-03 3.46871125733E-03 3.60736144822E-03 3.73599392712E-03 3.88773832705E-03 4.03101621128E-03 4.18755834352E-03 4.34588055793E-03 4.51240319544E-03 4.68440728228E-03 4.86436639207E-03 5.04857554149E-03 5.24412033519E-03 5.44411547886E-03 5.64684302763E-03 5.86805753240E-03 6.09070321190E-03 6.32475213862E-03 6.56196783071E-03 6.81667405282E-03 7.07563819091E-03 7.34637161418E-03 7.62624637754E-03 7.91880255275E-03 8.21896961087E-03 8.53462482199E-03 8.86037811152E-03 9.19817601734E-03 9.55093305188E-03 9.91310394345E-03 1.02945022802E-02 1.06852980827E-02 1.10955288024E-02 1.15164822437E-02 1.19599570897E-02 1.24128367735E-02 1.28897742758E-02 1.33805192467E-02 1.38910361569E-02 1.44229830144E-02 1.49723598336E-02 1.55455455914E-02 1.61376014937E-02 1.67537803546E-02 1.73947152706E-02 1.80575802649E-02 1.87476295962E-02 1.94635952182E-02 2.02056045856E-02 2.09782109226E-02 2.17785094877E-02 2.26098278909E-02 2.34724405164E-02 2.43695569569E-02 2.52988521408E-02 2.62648046230E-02 2.72677005147E-02 2.83077139929E-02 2.93883113594E-02 3.05105415127E-02 3.16743161608E-02 3.28831786298E-02 3.41377275485E-02 3.54413901911E-02 3.67929254171E-02 3.81970468307E-02 3.96545526237E-02 4.11674796264E-02 4.27381553548E-02 4.43685946890E-02 4.60613112312E-02 4.78183037232E-02 4.96426016235E-02 5.15359902655E-02 5.35015348722E-02 5.55422474467E-02 5.76604172331E-02 5.98597365537E-02 6.21419662828E-02 6.45116745599E-02 6.69717398369E-02 6.95248344913E-02 7.21755099736E-02 7.49273172358E-02 7.77832363159E-02 8.07482197148E-02 8.38259708519E-02 8.70206353859E-02 9.03371772333E-02 9.37793276554E-02 9.73526814686E-02 1.01062057968E-01 1.04911913221E-01 1.08908469451E-01 1.13057042908E-01 1.17362953279E-01 1.21832439149E-01 1.26471736111E-01 1.31287427126E-01 1.36285698779E-01 1.41473774670E-01 1.46858775732E-01 1.52448193432E-01 1.58249564857E-01 1.64270993984E-01 1.70520691578E-01 1.77007493090E-01 1.83740056173E-01 1.90727688665E-01 1.97980134266E-01 2.05507200231E-01 2.13319270212E-01 2.21426996000E-01 2.29841591224E-01 2.38574464759E-01 2.47637482332E-01 2.57043286949E-01 2.66804393533E-01 2.76934357429E-01 2.87446739205E-01 2.98356040698E-01 3.09676971034E-01 3.21424848325E-01 3.33615712584E-01 3.46265958707E-01 3.59392701309E-01 3.73013671128E-01 3.87147260860E-01 4.01812361319E-01 4.17028812131E-01 4.32816979168E-01 4.49197946327E-01 4.66193689885E-01 4.83826814568E-01 5.02120908898E-01 5.21100141575E-01 5.40789798801E-01 5.61215947314E-01 5.82405462153E-01 6.04386397066E-01 6.27187537987E-01 6.50838853017E-01 6.75371217022E-01 7.00816721228E-01 7.27208350239E-01 7.54580398424E-01 7.82968265161E-01 8.12408494576E-01 8.42938915988E-01 8.74598645820E-01 9.07428004096E-01 9.41468760693E-01 9.76763968898E-01 1.01335811727E+00 1.05129714566E+00 1.09062845233E+00 1.13140093226E+00 1.17366505756E+00 1.21747287106E+00 1.26287798270E+00 1.30993573731E+00 1.35870303553E+00 1.40923863242E+00 1.46160288095E+00 1.51585799346E+00 1.57206795165E+00 1.63029851444E+00 1.69061735874E+00 1.75309394719E+00 1.81779966321E+00 1.88480774027E+00 1.95419336232E+00 2.02603356244E+00 2.10040730758E+00 2.17739546072E+00 2.25708075717E+00 2.33954781006E+00 2.42488310011E+00 2.51317486015E+00 2.60451319154E+00 2.69898981221E+00 2.79669819155E+00 2.89773334437E+00 3.00219180210E+00 3.11017152703E+00 3.22177176096E+00 3.33709294374E+00 3.45623654403E+00 3.57930490169E+00 3.70640105771E+00 3.83762855775E+00 3.97309121174E+00 4.11289285878E+00 4.25713710472E+00 4.40592700446E+00 4.55936474342E+00 4.71755127951E+00 4.88058594257E+00 5.04856601706E+00 5.22158625424E+00 5.39973840008E+00 5.58311060222E+00 5.77178685998E+00 5.96584635507E+00 6.16536276502E+00 6.37040353726E+00 6.58102906442E+00 6.79729185574E+00 7.01923560025E+00 7.24689420462E+00 7.48029074065E+00 7.71943634274E+00 7.96432901898E+00 8.21495241511E+00 8.47127447334E+00 8.73324604541E+00 9.00079941253E+00 9.27384673302E+00 9.55227841282E+00 9.83596139683E+00 1.01247373813E+01 1.04184209593E+01 1.07167976775E+01 1.10196220321E+01 1.13266153992E+01 1.16374638873E+01 1.19518161538E+01 1.22692811503E+01 1.25894258440E+01 1.29117728966E+01 1.32357983270E+01 1.35609291708E+01 1.38865411443E+01 1.42119563419E+01 1.45364409740E+01 1.48592031828E+01 1.51793909465E+01 1.54960901118E+01 1.58083225756E+01 1.61150446610E+01 1.64151457125E+01 1.67074469566E+01 1.69907006798E+01 1.72635897486E+01 1.75247275508E+01 1.77726583845E+01 1.80058583750E+01 1.82227369624E+01 1.84216390302E+01 1.86008477479E+01 1.87585881823E+01 1.88930317508E+01 1.90023016037E+01 1.90844789823E+01 1.91376106417E+01 1.91597174116E+01 1.91488039436E+01 1.91028697380E+01 1.90199214870E+01 1.88979867983E+01 1.87351293525E+01 1.85294655128E+01 1.82791824290E+01 1.79825576316E+01 1.76379801198E+01 1.72439729119E+01 1.67992170050E+01 1.63025766875E+01 1.57531260759E+01 1.51501767750E+01 1.44933064724E+01 1.37823882724E+01 1.30176205281E+01 1.21995568861E+01 1.13291362102E+01 1.04077120063E+01 9.43708092794E+00 8.41950987831E+00 7.35776117794E+00 6.25511522914E+00 5.11539003341E+00 3.94295689099E+00 2.74275155136E+00 1.52028005153E+00 2.81618430836E-01 -9.66594504572E-01 -2.21717224328E+00 -3.46240430501E+00 -4.69408955594E+00 -5.90357994507E+00 -7.08183552198E+00 -8.21949153889E+00 -9.30693838047E+00 -1.03344150177E+01 -1.12921644671E+01 -1.21706573256E+01 -1.29605348619E+01 -1.36526913287E+01 -1.42384164154E+01 -1.47095520458E+01 -1.50586634024E+01 -1.52792238118E+01 -1.53658128060E+01 -1.53143263675E+01 -1.51221979579E+01 -1.47886285183E+01 -1.43148231495E+01 -1.37042316508E+01 -1.29627895450E+01 -1.20991555894E+01 -1.11249411234E+01 -1.00549259384E+01 -8.90725461305E+00 -7.70360657554E+00 -6.46933239543E+00 -5.23354814027E+00 -4.02917895782E+00 -2.89294235162E+00 -1.86526221070E+00 -9.90093610321E-01 -3.14741902695E-01 1.11247973002E-01 2.29266806660E-01 4.31164176317E-02 -4.63704812132E-03 1.06285826009E-04 -3.55450601432E-04 -3.01447603416E-04 -2.98875435148E-04 -2.91489564663E-04 -2.84854178257E-04 -2.78405407338E-04 -2.72188096424E-04 -2.66186691798E-04 1.60 2.50 3D 9 2 Beta L 911 -1.94188534402E-12 -2.01608866117E-12 -2.09312743527E-12 -2.17311001478E-12 -2.25614888839E-12 -2.34236084320E-12 -2.43186712898E-12 -2.52479362869E-12 -2.62127103555E-12 -2.72143503680E-12 -2.82542650459E-12 -2.93339169404E-12 -3.04548244900E-12 -3.16185641557E-12 -3.28267726382E-12 -3.40811491798E-12 -3.53834579542E-12 -3.67355305478E-12 -3.81392685355E-12 -3.95966461552E-12 -4.11097130843E-12 -4.26805973227E-12 -4.43115081851E-12 -4.60047394087E-12 -4.77626723791E-12 -4.95877794791E-12 -5.14826275665E-12 -5.34498815837E-12 -5.54923083058E-12 -5.76127802320E-12 -5.98142796255E-12 -6.20999027076E-12 -6.44728640125E-12 -6.69365009081E-12 -6.94942782898E-12 -7.21497934537E-12 -7.49067811555E-12 -7.77691188637E-12 -8.07408322123E-12 -8.38261006632E-12 -8.70292633834E-12 -9.03548253486E-12 -9.38074636784E-12 -9.73920342143E-12 -1.01113578350E-11 -1.04977330119E-11 -1.08988723561E-11 -1.13153400357E-11 -1.17477217772E-11 -1.21966256886E-11 -1.26626831150E-11 -1.31465495265E-11 -1.36489054399E-11 -1.41704573762E-11 -1.47119388536E-11 -1.52741114198E-11 -1.58577657225E-11 -1.64637226219E-11 -1.70928343446E-11 -1.77459856828E-11 -1.84240952381E-11 -1.91281167139E-11 -1.98590402565E-11 -2.06178938475E-11 -2.14057447499E-11 -2.22237010088E-11 -2.30729130101E-11 -2.39545750982E-11 -2.48699272556E-11 -2.58202568472E-11 -2.68069004306E-11 -2.78312456360E-11 -2.88947331177E-11 -2.99988585803E-11 -3.11451748822E-11 -3.23352942195E-11 -3.35708903939E-11 -3.48537011661E-11 -3.61855307001E-11 -3.75682521009E-11 -3.90038100483E-11 -4.04942235322E-11 -4.20415886924E-11 -4.36480817662E-11 -4.53159621492E-11 -4.70475755732E-11 -4.88453574049E-11 -5.07118360715E-11 -5.26496366162E-11 -5.46614843905E-11 -5.67502088870E-11 -5.89187477187E-11 -6.11701507509E-11 -6.35075843903E-11 -6.59343360383E-11 -6.84538187143E-11 -7.10695758563E-11 -7.37852863038E-11 -7.66047694726E-11 -7.95319907254E-11 -8.25710669499E-11 -8.57262723480E-11 -8.90020444473E-11 -9.24029903426E-11 -9.59338931745E-11 -9.95997188574E-11 -1.03405623063E-10 -1.07356958471E-10 -1.11459282300E-10 -1.15718364117E-10 -1.20140193959E-10 -1.24730990754E-10 -1.29497211066E-10 -1.34445558178E-10 -1.39582991519E-10 -1.44916736453E-10 -1.50454294437E-10 -1.56203453575E-10 -1.62172299570E-10 -1.68369227096E-10 -1.74802951605E-10 -1.81482521582E-10 -1.88417331274E-10 -1.95617133900E-10 -2.03092055371E-10 -2.10852608526E-10 -2.18909707925E-10 -2.27274685191E-10 -2.35959304954E-10 -2.44975781392E-10 -2.54336795411E-10 -2.64055512482E-10 -2.74145601154E-10 -2.84621252278E-10 -2.95497198965E-10 -3.06788737310E-10 -3.18511747901E-10 -3.30682718155E-10 -3.43318765506E-10 -3.56437661480E-10 -3.70057856689E-10 -3.84198506779E-10 -3.98879499371E-10 -4.14121482033E-10 -4.29945891318E-10 -4.46374982912E-10 -4.63431862935E-10 -4.81140520438E-10 -4.99525861143E-10 -5.18613742468E-10 -5.38431009896E-10 -5.59005534728E-10 -5.80366253286E-10 -6.02543207603E-10 -6.25567587682E-10 -6.49471775357E-10 -6.74289389835E-10 -7.00055334982E-10 -7.26805848412E-10 -7.54578552449E-10 -7.83412507040E-10 -8.13348264694E-10 -8.44427927511E-10 -8.76695206397E-10 -9.10195482538E-10 -9.44975871229E-10 -9.81085288132E-10 -1.01857451808E-09 -1.05749628648E-09 -1.09790533351E-09 -1.13985849105E-09 -1.18341476266E-09 -1.22863540655E-09 -1.27558402171E-09 -1.32432663737E-09 -1.37493180591E-09 -1.42747069918E-09 -1.48201720869E-09 -1.53864804948E-09 -1.59744286802E-09 -1.65848435423E-09 -1.72185835780E-09 -1.78765400888E-09 -1.85596384348E-09 -1.92688393359E-09 -2.00051402232E-09 -2.07695766412E-09 -2.15632237053E-09 -2.23871976126E-09 -2.32426572127E-09 -2.41308056371E-09 -2.50528919914E-09 -2.60102131118E-09 -2.70041153896E-09 -2.80359966641E-09 -2.91073081891E-09 -3.02195566735E-09 -3.13743064008E-09 -3.25731814288E-09 -3.38178678738E-09 -3.51101162821E-09 -3.64517440918E-09 -3.78446381890E-09 -3.92907575617E-09 -4.07921360544E-09 -4.23508852294E-09 -4.39691973355E-09 -4.56493483923E-09 -4.73937013903E-09 -4.92047096149E-09 -5.10849200962E-09 -5.30369771919E-09 -5.50636263055E-09 -5.71677177482E-09 -5.93522107472E-09 -6.16201776080E-09 -6.39748080350E-09 -6.64194136174E-09 -6.89574324872E-09 -7.15924341545E-09 -7.43281245274E-09 -7.71683511243E-09 -8.01171084851E-09 -8.31785437893E-09 -8.63569626883E-09 -8.96568353614E-09 -9.30828028025E-09 -9.66396833472E-09 -1.00332479450E-08 -1.04166384718E-08 -1.08146791218E-08 -1.12279297059E-08 -1.16569714263E-08 -1.21024076944E-08 -1.25648649790E-08 -1.30449936875E-08 -1.35434690808E-08 -1.40609922230E-08 -1.45982909670E-08 -1.51561209789E-08 -1.57352667998E-08 -1.63365429501E-08 -1.69607950746E-08 -1.76089011319E-08 -1.82817726292E-08 -1.89803559044E-08 -1.97056334566E-08 -2.04586253285E-08 -2.12403905406E-08 -2.20520285808E-08 -2.28946809507E-08 -2.37695327711E-08 -2.46778144485E-08 -2.56208034060E-08 -2.65998258795E-08 -2.76162587832E-08 -2.86715316462E-08 -2.97671286226E-08 -3.09045905792E-08 -3.20855172626E-08 -3.33115695490E-08 -3.45844717801E-08 -3.59060141884E-08 -3.72780554148E-08 -3.87025251227E-08 -4.01814267122E-08 -4.17168401374E-08 -4.33109248316E-08 -4.49659227449E-08 -4.66841614968E-08 -4.84680576502E-08 -5.03201201098E-08 -5.22429536510E-08 -5.42392625829E-08 -5.63118545524E-08 -5.84636444921E-08 -6.06976587206E-08 -6.30170391985E-08 -6.54250479474E-08 -6.79250716376E-08 -7.05206263515E-08 -7.32153625284E-08 -7.60130700986E-08 -7.89176838140E-08 -8.19332887816E-08 -8.50641262092E-08 -8.83145993704E-08 -9.16892797972E-08 -9.51929137099E-08 -9.88304286920E-08 -1.02606940621E-07 -1.06527760863E-07 -1.10598403742E-07 -1.14824594298E-07 -1.19212276338E-07 -1.23767620791E-07 -1.28497034396E-07 -1.33407168702E-07 -1.38504929434E-07 -1.43797486196E-07 -1.49292282561E-07 -1.54997046535E-07 -1.60919801430E-07 -1.67068877148E-07 -1.73452921893E-07 -1.80080914336E-07 -1.86962176245E-07 -1.94106385594E-07 -2.01523590174E-07 -2.09224221723E-07 -2.17219110602E-07 -2.25519501024E-07 -2.34137066869E-07 -2.43083928104E-07 -2.52372667827E-07 -2.62016349966E-07 -2.72028537651E-07 -2.82423312292E-07 -2.93215293383E-07 -3.04419659063E-07 -3.16052167462E-07 -3.28129178869E-07 -3.40667678736E-07 -3.53685301570E-07 -3.67200355736E-07 -3.81231849206E-07 -3.95799516292E-07 -4.10923845401E-07 -4.26626107855E-07 -4.42928387804E-07 -4.59853613288E-07 -4.77425588485E-07 -4.95669027188E-07 -5.14609587568E-07 -5.34273908261E-07 -5.54689645828E-07 -5.75885513663E-07 -5.97891322369E-07 -6.20738021691E-07 -6.44457744041E-07 -6.69083849698E-07 -6.94650973722E-07 -7.21195074671E-07 -7.48753485176E-07 -7.77364964446E-07 -8.07069752784E-07 -8.37909628185E-07 -8.69927965093E-07 -9.03169795411E-07 -9.37681871832E-07 -9.73512733604E-07 -1.01071277479E-06 -1.04933431516E-06 -1.08943167376E-06 -1.13106124533E-06 -1.17428157962E-06 -1.21915346373E-06 -1.26574000761E-06 -1.31410673283E-06 -1.36432166474E-06 -1.41645542814E-06 -1.47058134661E-06 -1.52677554567E-06 -1.58511705979E-06 -1.64000510862E-06 -1.70281804996E-06 -1.76803744549E-06 -1.83575789759E-06 -1.90605592315E-06 -1.97905927822E-06 -2.05483976638E-06 -2.13352295541E-06 -2.21522066164E-06 -2.30002623780E-06 -2.38809690761E-06 -2.47951943543E-06 -2.57444421606E-06 -2.67960702397E-06 -2.78199950264E-06 -2.88829895648E-06 -2.99866571963E-06 -3.11324973649E-06 -3.23221085716E-06 -3.35571440785E-06 -3.48394493930E-06 -3.61706710808E-06 -3.75528092732E-06 -3.89878057264E-06 -4.04775311903E-06 -4.20242589497E-06 -4.36300471980E-06 -4.52971738529E-06 -4.70280512212E-06 -4.88251054838E-06 -5.06907170802E-06 -5.26276868853E-06 -5.46386700205E-06 -5.67264571221E-06 -5.88940135264E-06 -6.11444640828E-06 -6.34808811662E-06 -6.59065637732E-06 -6.84249919471E-06 -7.10395595353E-06 -7.37540584927E-06 -7.65723143472E-06 -7.94982686457E-06 -8.25359352337E-06 -8.56898152456E-06 -8.89641304186E-06 -9.23635693955E-06 -9.58929129340E-06 -9.95570331028E-06 -1.03361350023E-05 -1.07310814639E-05 -1.11411395672E-05 -1.15668570592E-05 -1.20088382769E-05 -1.24677082663E-05 -1.29441191469E-05 -1.34387308176E-05 -1.39522428112E-05 -1.44853754946E-05 -1.50388801748E-05 -1.56135387720E-05 -1.62101468325E-05 -1.68295626754E-05 -1.74726318107E-05 -1.81402903073E-05 -1.88334526393E-05 -1.95530990839E-05 -2.03002523755E-05 -2.10759560743E-05 -2.18812827993E-05 -2.27174019879E-05 -2.35854521920E-05 -2.44866826825E-05 -2.54223452285E-05 -2.63937600157E-05 -2.74023008223E-05 -2.84493764361E-05 -2.95364627604E-05 -3.06650736670E-05 -3.18368247406E-05 -3.30533421329E-05 -3.43163428256E-05 -3.56276054273E-05 -3.69889765005E-05 -3.84023559675E-05 -3.98697535547E-05 -4.13932132646E-05 -4.29748939639E-05 -4.46169987847E-05 -4.63218481354E-05 -4.80918556505E-05 -4.99294784045E-05 -5.18373256776E-05 -5.38180781405E-05 -5.58745006671E-05 -5.80095113713E-05 -6.02260937873E-05 -6.25273674116E-05 -6.49165835793E-05 -6.73971007930E-05 -6.99723731226E-05 -7.26460615328E-05 -7.54219059870E-05 -7.83038137435E-05 -8.12958350880E-05 -8.44021889471E-05 -8.76272194539E-05 -9.09755013260E-05 -9.44517055105E-05 -9.80607258377E-05 -1.01807649932E-04 -1.05697731347E-04 -1.09736479418E-04 -1.13929517026E-04 -1.18282769379E-04 -1.22802364533E-04 -1.27494630450E-04 -1.32366172575E-04 -1.37423888049E-04 -1.42674824724E-04 -1.48126396215E-04 -1.53786308459E-04 -1.59661884294E-04 -1.65768029780E-04 -1.72048176228E-04 -1.79144641708E-04 -1.80912542679E-04 -1.91271062254E-04 -2.11408905631E-04 -1.99603194377E-04 -2.24805633933E-04 -2.14445450526E-04 -2.27207780283E-04 -2.42144603453E-04 -2.75795559380E-04 -2.36269557434E-04 -2.69795121869E-04 -2.87352241932E-04 -2.94193536116E-04 -3.00126439773E-04 -2.97923399956E-04 -3.40522568051E-04 -3.37928243966E-04 -3.52251966244E-04 -3.57698909351E-04 -3.74124257159E-04 -4.03999248490E-04 -3.95054283100E-04 -4.32603193089E-04 -4.41272041827E-04 -4.54040045106E-04 -4.65042144015E-04 -5.03727048805E-04 -4.99872449858E-04 -5.35996027255E-04 -5.47713451449E-04 -5.79880451048E-04 -5.78858796997E-04 -6.36506948230E-04 -6.17663793341E-04 -6.76501585081E-04 -6.83039258582E-04 -7.18503385167E-04 -7.43353677867E-04 -7.60514588373E-04 -8.05103965851E-04 -8.48946183564E-04 -8.50222136092E-04 -8.96087740348E-04 -9.26176289058E-04 -9.62312613983E-04 -1.02090993407E-03 -1.02557926500E-03 -1.08667865626E-03 -1.12172835065E-03 -1.16092509919E-03 -1.20798726779E-03 -1.26626724563E-03 -1.29245683826E-03 -1.35062894639E-03 -1.42861231880E-03 -1.44146010162E-03 -1.50824716045E-03 -1.57128002728E-03 -1.64273334552E-03 -1.69321251499E-03 -1.75828198447E-03 -1.81593629407E-03 -1.90945021518E-03 -1.96840253465E-03 -2.04440858279E-03 -2.11384817025E-03 -2.21017286428E-03 -2.29397718149E-03 -2.36026489835E-03 -2.46388038172E-03 -2.56968066720E-03 -2.65106653075E-03 -2.76281968457E-03 -2.86367739195E-03 -2.98110269411E-03 -3.07160877395E-03 -3.21522011641E-03 -3.32401225920E-03 -3.45762811912E-03 -3.57850458495E-03 -3.72942774568E-03 -3.86457376125E-03 -4.02182639166E-03 -4.15090965880E-03 -4.34210593524E-03 -4.47718152800E-03 -4.66867021641E-03 -4.83787462183E-03 -5.02897821395E-03 -5.21656880599E-03 -5.41706444565E-03 -5.62221075416E-03 -5.83712932453E-03 -6.06361845399E-03 -6.29026644980E-03 -6.53354466402E-03 -6.78560422484E-03 -7.03317853070E-03 -7.31657779909E-03 -7.58908822378E-03 -7.87421008765E-03 -8.18369920402E-03 -8.49132293183E-03 -8.81587903226E-03 -9.15318063261E-03 -9.50133719715E-03 -9.86532254980E-03 -1.02419734610E-02 -1.06336215894E-02 -1.10366503204E-02 -1.14611249201E-02 -1.18969728656E-02 -1.23525406085E-02 -1.28207008962E-02 -1.33138730730E-02 -1.38183295354E-02 -1.43514957995E-02 -1.48915561139E-02 -1.54669783195E-02 -1.60517834688E-02 -1.66686012015E-02 -1.73011109723E-02 -1.79622632712E-02 -1.86492178298E-02 -1.93599235384E-02 -2.00984560753E-02 -2.08654426904E-02 -2.16606061196E-02 -2.24884856817E-02 -2.33455796893E-02 -2.42348203223E-02 -2.51606716549E-02 -2.61207445179E-02 -2.71174247480E-02 -2.81496173776E-02 -2.92239070001E-02 -3.03406132015E-02 -3.14929753734E-02 -3.26979061143E-02 -3.39437815595E-02 -3.52365192198E-02 -3.65818770196E-02 -3.79751301607E-02 -3.94227536785E-02 -4.09264704276E-02 -4.24853566109E-02 -4.41051650033E-02 -4.57860342171E-02 -4.75302433174E-02 -4.93422717056E-02 -5.12214523466E-02 -5.31738888575E-02 -5.51989737748E-02 -5.73021587356E-02 -5.94840939138E-02 -6.17505225925E-02 -6.41020676770E-02 -6.65427575350E-02 -6.90768816020E-02 -7.17069860309E-02 -7.44365954044E-02 -7.72705297072E-02 -8.02109219877E-02 -8.32647027377E-02 -8.64327936340E-02 -8.97217732490E-02 -9.31350093013E-02 -9.66788946169E-02 -1.00355764707E-01 -1.04172871612E-01 -1.08134417592E-01 -1.12246149856E-01 -1.16513482306E-01 -1.20942908100E-01 -1.25539694436E-01 -1.30310865032E-01 -1.35261910508E-01 -1.40401057947E-01 -1.45734602754E-01 -1.51269639195E-01 -1.57013911528E-01 -1.62975508312E-01 -1.69162361158E-01 -1.75582952420E-01 -1.82245959051E-01 -1.89160786895E-01 -1.96336212403E-01 -2.03782747732E-01 -2.11510038953E-01 -2.19528407996E-01 -2.27849463172E-01 -2.36483824100E-01 -2.45443302271E-01 -2.54740088927E-01 -2.64386921212E-01 -2.74396267925E-01 -2.84782340418E-01 -2.95558552270E-01 -3.06739559623E-01 -3.18340366718E-01 -3.30376686046E-01 -3.42864291865E-01 -3.55820091523E-01 -3.69261514920E-01 -3.83205976962E-01 -3.97672627330E-01 -4.12680296190E-01 -4.28248946667E-01 -4.44399294938E-01 -4.61152566174E-01 -4.78530906042E-01 -4.96557098345E-01 -5.15255053770E-01 -5.34649062035E-01 -5.54764541416E-01 -5.75627761468E-01 -5.97265980237E-01 -6.19707125103E-01 -6.42980475815E-01 -6.67116007134E-01 -6.92144914215E-01 -7.18099278321E-01 -7.45012482180E-01 -7.72918948827E-01 -8.01854149291E-01 -8.31855019316E-01 -8.62959432078E-01 -8.95206715131E-01 -9.28637541384E-01 -9.63293603388E-01 -9.99218448826E-01 -1.03645663401E+00 -1.07505439328E+00 -1.11505932158E+00 -1.15652065578E+00 -1.19948902664E+00 -1.24401690865E+00 -1.29015816047E+00 -1.33796852974E+00 -1.38750534361E+00 -1.43882769832E+00 -1.49199654658E+00 -1.54707458799E+00 -1.60412645554E+00 -1.66321858131E+00 -1.72441936854E+00 -1.78779926427E+00 -1.85343049602E+00 -1.92138749477E+00 -1.99174662551E+00 -2.06458635718E+00 -2.13998718933E+00 -2.21803180411E+00 -2.29880482886E+00 -2.38239322311E+00 -2.46888582868E+00 -2.55837383535E+00 -2.65095033697E+00 -2.74671064655E+00 -2.84575214258E+00 -2.94817415791E+00 -3.05407818350E+00 -3.16356755023E+00 -3.27674755379E+00 -3.39372536234E+00 -3.51460984299E+00 -3.63951161852E+00 -3.76854285026E+00 -3.90181717984E+00 -4.03944954527E+00 -4.18155611532E+00 -4.32825403387E+00 -4.47966126376E+00 -4.63589640742E+00 -4.79707842921E+00 -4.96332642681E+00 -5.13475931961E+00 -5.31149558202E+00 -5.49365287647E+00 -5.68134766026E+00 -5.87469481396E+00 -6.07380718906E+00 -6.27879511903E+00 -6.48976588898E+00 -6.70682320601E+00 -6.93006653712E+00 -7.15959048532E+00 -7.39548408765E+00 -7.63783000585E+00 -7.88670375104E+00 -8.14217278159E+00 -8.40429557503E+00 -8.67312060123E+00 -8.94868527115E+00 -9.23101478895E+00 -9.52012091932E+00 -9.81600071756E+00 -1.01186351389E+01 -1.04279876271E+01 -1.07440025161E+01 -1.10666034986E+01 -1.13956918510E+01 -1.17311446979E+01 -1.20728131094E+01 -1.24205201655E+01 -1.27740588803E+01 -1.31331900969E+01 -1.34976402647E+01 -1.38670991278E+01 -1.42412173821E+01 -1.46196042064E+01 -1.50018247660E+01 -1.53873976423E+01 -1.57757922123E+01 -1.61664260025E+01 -1.65586619969E+01 -1.69518059482E+01 -1.73451036949E+01 -1.77377384847E+01 -1.81288283653E+01 -1.85174236276E+01 -1.89025043515E+01 -1.92829780770E+01 -1.96576776299E+01 -2.00253591476E+01 -2.03847003376E+01 -2.07342990117E+01 -2.10726719523E+01 -2.13982541439E+01 -2.17093984539E+01 -2.20043757883E+01 -2.22813758066E+01 -2.25385082656E+01 -2.27738050368E+01 -2.29852229108E+01 -2.31706472240E+01 -2.33278964203E+01 -2.34547276124E+01 -2.35488432321E+01 -2.36078988562E+01 -2.36295122871E+01 -2.36112739758E+01 -2.35507588769E+01 -2.34455397932E+01 -2.32932023107E+01 -2.30913613600E+01 -2.28376794930E+01 -2.25298868947E+01 -2.21658031806E+01 -2.17433609901E+01 -2.12606313728E+01 -2.07158509479E+01 -2.01074507930E+01 -1.94340869702E+01 -1.86946725983E+01 -1.78884113182E+01 -1.70148319649E+01 -1.60738242331E+01 -1.50656750496E+01 -1.39911053369E+01 -1.28513067926E+01 -1.16479782499E+01 -1.03833611283E+01 -9.06027342044E+00 -7.68214160160E+00 -6.25302978141E+00 -4.77766535012E+00 -3.26146032273E+00 -1.71052749682E+00 -1.31690526338E-01 1.46751310592E+00 3.07883719913E+00 4.69334111797E+00 6.30141434685E+00 7.89281240148E+00 9.45670523990E+00 1.09817392740E+01 1.24561140574E+01 1.38676747097E+01 1.52040210314E+01 1.64526342232E+01 1.76011047440E+01 1.86374692402E+01 1.95500572034E+01 2.03275773812E+01 2.09593027418E+01 2.14352742300E+01 2.17465233079E+01 2.18853129302E+01 2.18453962527E+01 2.16222919698E+01 2.12135746778E+01 2.06191781522E+01 1.98417088252E+01 1.88867660618E+01 1.77632651571E+01 1.64837581307E+01 1.50647465879E+01 1.35269799952E+01 1.18957317646E+01 1.02010445864E+01 8.47793541244E+00 6.76654954487E+00 5.11225229765E+00 3.56564563460E+00 2.18249818304E+00 1.02355865704E+00 1.54394104340E-01 -3.56275670390E-01 -4.25053805722E-01 -7.20597036261E-02 7.09075077777E-03 -7.53842362291E-04 2.63597322542E-05 -4.87618028685E-05 -3.92934359350E-05 -3.84067499700E-05 -3.68487906130E-05 -3.55232284251E-05 -3.43264123265E-05 -3.32553779588E-05 1.60 2.50 3D 10 2 Beta L 911 1.95118775467E-12 2.02574653553E-12 2.10315435631E-12 2.18352008451E-12 2.26695674770E-12 2.35358169242E-12 2.44351674927E-12 2.53688840427E-12 2.63382797668E-12 2.73447180376E-12 2.83896143247E-12 2.94744381857E-12 3.06007153331E-12 3.17700297796E-12 3.29840260664E-12 3.42444115759E-12 3.55529589329E-12 3.69115084978E-12 3.83219709549E-12 3.97863299994E-12 4.13066451275E-12 4.28850545331E-12 4.45237781144E-12 4.62251205965E-12 4.79914747729E-12 4.98253248700E-12 5.17292500419E-12 5.37059279972E-12 5.57581387649E-12 5.78887686048E-12 6.01008140661E-12 6.23973862024E-12 6.47817149468E-12 6.72571536546E-12 6.98271838193E-12 7.24954199696E-12 7.52656147522E-12 7.81416642102E-12 8.11276132621E-12 8.42276613910E-12 8.74461685504E-12 9.07876612965E-12 9.42568391542E-12 9.78585812267E-12 1.01597953057E-11 1.05480213754E-11 1.09510823386E-11 1.13695450662E-11 1.18039980905E-11 1.22550524325E-11 1.27233424618E-11 1.32095267884E-11 1.37142891892E-11 1.42383395695E-11 1.47824149616E-11 1.53472805610E-11 1.59337308032E-11 1.65425904805E-11 1.71747159022E-11 1.78309960988E-11 1.85123540725E-11 1.92197480953E-11 1.99541730567E-11 2.07166618627E-11 2.15082868890E-11 2.23301614887E-11 2.31834415585E-11 2.40693271640E-11 2.49890642281E-11 2.59439462824E-11 2.69353162873E-11 2.79645685203E-11 2.90331505370E-11 3.01425652070E-11 3.12943728275E-11 3.24901933179E-11 3.37317084979E-11 3.50206644528E-11 3.63588739894E-11 3.77482191854E-11 3.91906540367E-11 4.06882072049E-11 4.22429848711E-11 4.38571736976E-11 4.55330439037E-11 4.72729524580E-11 4.90793463938E-11 5.09547662503E-11 5.29018496458E-11 5.49233349875E-11 5.70220653222E-11 5.92009923356E-11 6.14631805029E-11 6.38118113992E-11 6.62501881739E-11 6.87817401964E-11 7.14100278789E-11 7.41387476845E-11 7.69717373251E-11 7.99129811596E-11 8.29666157971E-11 8.61369359146E-11 8.94284002975E-11 9.28456381104E-11 9.63934554072E-11 1.00076841891E-10 1.03900977932E-10 1.07871241851E-10 1.11993217487E-10 1.16272702047E-10 1.20715714263E-10 1.25328502853E-10 1.30117555311E-10 1.35089607033E-10 1.40251650785E-10 1.45610946544E-10 1.51175031702E-10 1.56951731673E-10 1.62949170892E-10 1.69175784248E-10 1.75640328942E-10 1.82351896807E-10 1.89319927093E-10 1.96554219740E-10 2.04064949166E-10 2.11862678573E-10 2.19958374804E-10 2.28363423766E-10 2.37089646448E-10 2.46149315538E-10 2.55555172690E-10 2.65320446443E-10 2.75458870823E-10 2.85984704663E-10 2.96912751653E-10 3.08258381160E-10 3.20037549850E-10 3.32266824119E-10 3.44963403405E-10 3.58145144364E-10 3.71830585997E-10 3.86038975712E-10 4.00790296402E-10 4.16105294546E-10 4.32005509388E-10 4.48513303227E-10 4.65651892874E-10 4.83445382298E-10 5.01918796530E-10 5.21098116857E-10 5.41010317364E-10 5.61683402870E-10 5.83146448312E-10 6.05429639642E-10 6.28564316275E-10 6.52583015170E-10 6.77519516586E-10 7.03408891595E-10 7.30287551404E-10 7.58193298568E-10 7.87165380150E-10 8.17244542924E-10 8.48473090678E-10 8.80894943716E-10 9.14555700622E-10 9.49502702394E-10 9.85785099025E-10 1.02345391863E-09 1.06256213920E-09 1.10316476315E-09 1.14531889460E-09 1.18908381978E-09 1.23452109035E-09 1.28169460996E-09 1.33067072418E-09 1.38151831376E-09 1.43430889153E-09 1.48911670296E-09 1.54601883060E-09 1.60509530246E-09 1.66642920460E-09 1.73010679797E-09 1.79621763970E-09 1.86485470909E-09 1.93611453838E-09 2.01009734848E-09 2.08690718996E-09 2.16665208936E-09 2.24944420113E-09 2.33539996539E-09 2.42464027164E-09 2.51729062882E-09 2.61348134185E-09 2.71334769482E-09 2.81703014132E-09 2.92467450196E-09 3.03643216944E-09 3.15246032148E-09 3.27292214189E-09 3.39798705005E-09 3.52783093920E-09 3.66263642381E-09 3.80259309644E-09 3.94789779435E-09 4.09875487634E-09 4.25537651019E-09 4.41798297103E-09 4.58680295117E-09 4.76207388168E-09 4.94404226638E-09 5.13296402849E-09 5.32910487058E-09 5.53274064826E-09 5.74415775812E-09 5.96365354057E-09 6.19153669799E-09 6.42812772891E-09 6.67375937874E-09 6.92877710781E-09 7.19353957716E-09 7.46841915300E-09 7.75380243041E-09 8.05009077709E-09 8.35770089777E-09 8.67706542035E-09 9.00863350431E-09 9.35287147244E-09 9.71026346667E-09 1.00813121290E-08 1.04665393083E-08 1.08664867946E-08 1.12817170806E-08 1.17128141531E-08 1.21603843142E-08 1.26250570341E-08 1.31074858363E-08 1.36083492167E-08 1.41283515982E-08 1.46682243208E-08 1.52287266707E-08 1.58106469480E-08 1.64148035753E-08 1.70420462488E-08 1.76932571335E-08 1.83693521036E-08 1.90712820309E-08 1.98000341216E-08 2.05566333056E-08 2.13421436773E-08 2.21576699921E-08 2.30043592208E-08 2.38834021622E-08 2.47960351178E-08 2.57435416311E-08 2.67272542922E-08 2.77485566124E-08 2.88088849698E-08 2.99097306296E-08 3.10526418412E-08 3.22392260161E-08 3.34711519881E-08 3.47501523609E-08 3.60780259445E-08 3.74566402852E-08 3.88879342924E-08 4.03739209651E-08 4.19166902233E-08 4.35184118474E-08 4.51813385295E-08 4.69078090422E-08 4.87002515273E-08 5.05611869112E-08 5.24932324502E-08 5.44991054117E-08 5.65816268956E-08 5.87437258023E-08 6.09884429515E-08 6.33189353593E-08 6.57384806784E-08 6.82504818075E-08 7.08584716774E-08 7.35661182201E-08 7.63772295271E-08 7.92957592054E-08 8.23258119381E-08 8.54716492571E-08 8.87376955369E-08 9.21285442171E-08 9.56489642627E-08 9.93039068715E-08 1.03098512437E-07 1.07038117781E-07 1.11128263653E-07 1.15374702530E-07 1.19783406703E-07 1.24360576679E-07 1.29112649898E-07 1.34046309791E-07 1.39168495178E-07 1.44486410026E-07 1.50007533583E-07 1.55739630896E-07 1.61690763731E-07 1.67869301915E-07 1.74283935104E-07 1.80943685006E-07 1.87857918070E-07 1.95036358658E-07 2.02489102724E-07 2.10226632011E-07 2.18259828794E-07 2.26599991188E-07 2.35258849033E-07 2.44248580396E-07 2.53581828696E-07 2.63271720488E-07 2.73331883925E-07 2.83776467925E-07 2.94620162070E-07 3.05878217267E-07 3.17566467199E-07 3.29701350592E-07 3.42299934337E-07 3.55379937494E-07 3.68959756214E-07 3.83058489608E-07 3.97695966617E-07 4.12892773894E-07 4.28670284761E-07 4.45050689272E-07 4.62057025417E-07 4.79713211532E-07 4.98044079934E-07 5.17075411847E-07 5.36833973667E-07 5.57347554604E-07 5.78645005770E-07 6.00756280756E-07 6.23712477761E-07 6.47545883333E-07 6.72290017778E-07 6.97979682307E-07 7.24651007983E-07 7.52341506539E-07 7.81090123139E-07 8.10937291154E-07 8.41924989031E-07 8.74096799337E-07 9.07497970056E-07 9.42175478234E-07 9.78178096048E-07 1.01555645941E-06 1.05436313918E-06 1.09465271512E-06 1.13648185265E-06 1.17990938255E-06 1.22499638372E-06 1.27180626906E-06 1.32040487469E-06 1.37086055256E-06 1.42324426655E-06 1.47762969232E-06 1.53409332090E-06 1.59271456633E-06 1.64766187979E-06 1.71077340403E-06 1.77630305253E-06 1.84434598169E-06 1.91497840090E-06 1.98832971237E-06 2.06447095413E-06 2.14352897461E-06 2.22561616521E-06 2.31082555088E-06 2.39931646806E-06 2.49117476413E-06 2.58655233539E-06 2.69255009010E-06 2.79543474054E-06 2.90224469786E-06 3.01314193780E-06 3.12827661826E-06 3.24780926972E-06 3.37190611935E-06 3.50075295716E-06 3.63451436399E-06 3.77339226629E-06 3.91758152678E-06 4.06726947142E-06 4.22268544863E-06 4.38403542873E-06 4.55154869904E-06 4.72546793901E-06 4.90603664243E-06 5.09349373464E-06 5.28812081972E-06 5.49018508327E-06 5.69996647260E-06 5.91776273578E-06 6.14388884038E-06 6.37865243947E-06 6.62238562806E-06 6.87543804514E-06 7.13815020208E-06 7.41090365814E-06 7.69408249161E-06 7.98808318174E-06 8.29330821755E-06 8.61021106832E-06 8.93921503437E-06 9.28079111667E-06 9.63542042966E-06 1.00035916783E-05 1.03858506837E-05 1.07826934107E-05 1.11947208645E-05 1.16224828611E-05 1.20665864411E-05 1.25276599817E-05 1.30063589900E-05 1.35033458984E-05 1.40193242164E-05 1.45550172950E-05 1.51111803430E-05 1.56885993188E-05 1.62880723483E-05 1.69104638012E-05 1.75566212322E-05 1.82274872459E-05 1.89239792437E-05 1.96470823128E-05 2.03978252639E-05 2.11772556773E-05 2.19864510395E-05 2.28265878559E-05 2.36988079860E-05 2.46043691618E-05 2.55445275148E-05 2.65206101446E-05 2.75339979174E-05 2.85861054305E-05 2.96784167204E-05 3.08124516720E-05 3.19898350722E-05 3.32122003645E-05 3.44812720397E-05 3.57988387077E-05 3.71667552251E-05 3.85869301211E-05 4.00613842404E-05 4.15921695221E-05 4.31814574091E-05 4.48314597728E-05 4.65445092804E-05 4.83230315807E-05 5.01694943592E-05 5.20865206944E-05 5.40768041423E-05 5.61431221624E-05 5.82884081021E-05 6.05156584323E-05 6.28280094186E-05 6.52287271912E-05 6.77211877878E-05 7.03088599170E-05 7.29954238824E-05 7.57846373813E-05 7.86804267227E-05 8.16868615776E-05 8.48081823767E-05 8.80487523651E-05 9.14131715596E-05 9.49061307956E-05 9.85325487522E-05 1.02297538533E-04 1.06206377340E-04 1.10264604900E-04 1.14477867857E-04 1.18852121852E-04 1.23393525724E-04 1.28108435745E-04 1.33003491609E-04 1.38085625608E-04 1.43361917030E-04 1.48839817434E-04 1.54527071855E-04 1.60431008498E-04 1.66566939235E-04 1.72874742782E-04 1.80031736240E-04 1.81553469022E-04 1.92126762144E-04 2.13005412149E-04 2.00163612939E-04 2.26357289188E-04 2.15013021392E-04 2.28027971315E-04 2.43548911207E-04 2.77974122697E-04 2.36586065774E-04 2.70990536404E-04 2.89057995862E-04 2.95760495855E-04 3.01525123006E-04 2.98648178916E-04 3.42893270525E-04 3.39426182577E-04 3.54140198738E-04 3.59062998255E-04 3.75804845213E-04 4.06423301004E-04 3.96399403412E-04 4.35088510002E-04 4.43566867442E-04 4.56055708194E-04 4.67016703571E-04 5.06560083598E-04 5.01941454668E-04 5.38794582519E-04 5.50295199277E-04 5.82991281608E-04 5.81136457938E-04 6.40426153751E-04 6.19774447848E-04 6.80292348075E-04 6.86105621976E-04 7.22137283092E-04 7.46999858698E-04 7.63713938093E-04 8.09204918163E-04 8.53925790215E-04 8.53715661874E-04 9.00550785345E-04 9.30409708215E-04 9.66880754024E-04 1.02676128678E-03 1.02987318835E-03 1.09220486373E-03 1.12726773143E-03 1.16633437780E-03 1.21388949904E-03 1.27284841970E-03 1.29833485652E-03 1.35719460319E-03 1.43650075127E-03 1.44799245042E-03 1.51524517944E-03 1.57895301251E-03 1.65113519682E-03 1.70154368472E-03 1.76690487959E-03 1.82443095111E-03 1.91933348172E-03 1.97812227253E-03 2.05444654606E-03 2.12391449647E-03 2.22142156156E-03 2.30553201531E-03 2.37132005229E-03 2.47604121165E-03 2.58277992242E-03 2.66388162696E-03 2.77677713639E-03 2.87779602806E-03 2.99623569631E-03 3.08617152096E-03 3.23169519669E-03 3.34039406688E-03 3.47492372767E-03 3.59603930801E-03 3.74827013229E-03 3.88386051127E-03 4.04227756318E-03 4.17108057264E-03 4.36445893370E-03 4.49912389517E-03 4.69236385880E-03 4.86210820596E-03 5.05439309620E-03 5.24287831192E-03 5.44441292284E-03 5.65055354064E-03 5.86665021733E-03 6.09444416893E-03 6.32207994491E-03 6.56677268112E-03 6.82026627138E-03 7.06870625726E-03 7.35418738231E-03 7.62785583008E-03 7.91432091917E-03 8.22585712004E-03 8.53489667817E-03 8.86120174749E-03 9.20038462311E-03 9.55036742752E-03 9.91635067329E-03 1.02950664079E-02 1.06888630436E-02 1.10940071209E-02 1.15209195593E-02 1.19590904463E-02 1.24172551110E-02 1.28878580113E-02 1.33839237845E-02 1.38910602643E-02 1.44274245968E-02 1.49702333294E-02 1.55491644270E-02 1.61370686691E-02 1.67575681449E-02 1.73935337366E-02 1.80585136403E-02 1.87494846017E-02 1.94642633642E-02 2.02070682200E-02 2.09785275458E-02 2.17783179153E-02 2.26111175646E-02 2.34732415052E-02 2.43677154758E-02 2.52991292986E-02 2.62649822645E-02 2.72676801346E-02 2.83060334006E-02 2.93868933733E-02 3.05105204666E-02 3.16697924526E-02 3.28823222377E-02 3.41359293688E-02 3.54366847919E-02 3.67905983983E-02 3.81926100883E-02 3.96494641953E-02 4.11628499382E-02 4.27317562940E-02 4.43621010523E-02 4.60539487991E-02 4.78096188972E-02 4.96336765023E-02 5.15253642412E-02 5.34909386946E-02 5.55297111035E-02 5.76472401481E-02 5.98441277214E-02 6.21262704412E-02 6.44941985799E-02 6.69520261004E-02 6.95041059626E-02 7.21529968008E-02 7.49022391454E-02 7.77567597966E-02 8.07186516300E-02 8.37950197528E-02 8.69866902497E-02 9.03003958415E-02 9.37395005125E-02 9.73105418549E-02 1.01015797379E-01 1.04862683266E-01 1.08855420516E-01 1.12999853230E-01 1.17301445980E-01 1.21766812705E-01 1.26401266790E-01 1.31211944900E-01 1.36204400652E-01 1.41387011603E-01 1.46766153511E-01 1.52349015397E-01 1.58143477574E-01 1.64157748957E-01 1.70399891835E-01 1.76878524450E-01 1.83602466884E-01 1.90581292258E-01 1.97823907178E-01 2.05341032292E-01 2.13142472908E-01 2.21238729837E-01 2.29641647106E-01 2.38362029199E-01 2.47411912197E-01 2.56803730610E-01 2.66550480298E-01 2.76664865695E-01 2.87161410252E-01 2.98053797408E-01 3.09357002216E-01 3.21086351733E-01 3.33257919177E-01 3.45887824233E-01 3.58993371375E-01 3.72592406719E-01 3.86702753203E-01 4.01344042446E-01 4.16535568091E-01 4.32297806181E-01 4.48652013863E-01 4.65619978114E-01 4.83224448239E-01 5.01488835154E-01 5.20437731040E-01 5.40096121138E-01 5.60490174029E-01 5.81646947819E-01 6.03594540122E-01 6.26361747858E-01 6.49978792686E-01 6.74476625799E-01 6.99887483890E-01 7.26244541035E-01 7.53582342435E-01 7.81936536077E-01 8.11343878885E-01 8.41842680997E-01 8.73472249564E-01 9.06273437506E-01 9.40288530134E-01 9.75560905291E-01 1.01213591592E+00 1.05006000258E+00 1.08938139956E+00 1.13014980861E+00 1.17241669226E+00 1.21623502573E+00 1.26165976578E+00 1.30874737916E+00 1.35755637473E+00 1.40814698515E+00 1.46058137263E+00 1.51492372438E+00 1.57124014940E+00 1.62959887429E+00 1.69007011772E+00 1.75272627376E+00 1.81764199766E+00 1.88489394213E+00 1.95456120537E+00 2.02672506414E+00 2.10146915828E+00 2.17887942899E+00 2.25904428738E+00 2.34205438100E+00 2.42800301041E+00 2.51698567427E+00 2.60910057000E+00 2.70444814630E+00 2.80313144851E+00 2.90525597490E+00 3.01092957941E+00 3.12026270223E+00 3.23336805788E+00 3.35036078578E+00 3.47135837538E+00 3.59648050634E+00 3.72584913225E+00 3.85958827627E+00 3.99782399614E+00 4.14068421764E+00 4.28829869188E+00 4.44079875707E+00 4.59831720212E+00 4.76098810970E+00 4.92894659532E+00 5.10232859905E+00 5.28127059217E+00 5.46590932920E+00 5.65638149832E+00 5.85282334251E+00 6.05537030552E+00 6.26415659259E+00 6.47931469319E+00 6.70097486153E+00 6.92926459597E+00 7.16430798140E+00 7.40622507003E+00 7.65513117997E+00 7.91113608135E+00 8.17434321567E+00 8.44484878236E+00 8.72274079539E+00 9.00809803511E+00 9.30098897207E+00 9.60147058648E+00 9.90958709631E+00 1.02253686423E+01 1.05488298422E+01 1.08799683195E+01 1.12187630297E+01 1.15651726522E+01 1.19191337198E+01 1.22805587823E+01 1.26493343876E+01 1.30253190188E+01 1.34083408756E+01 1.37981956151E+01 1.41946439561E+01 1.45974091806E+01 1.50061745877E+01 1.54205808019E+01 1.58402230374E+01 1.62646482682E+01 1.66933523294E+01 1.71257769721E+01 1.75613068521E+01 1.79992664999E+01 1.84389172765E+01 1.88794543132E+01 1.93200034970E+01 1.97596184885E+01 2.01972778200E+01 2.06318820998E+01 2.10622513514E+01 2.14871225348E+01 2.19051472838E+01 2.23148899047E+01 2.27148256945E+01 2.31033396142E+01 2.34787254055E+01 2.38391851791E+01 2.41828295633E+01 2.45076784876E+01 2.48116626514E+01 2.50926257955E+01 2.53483278216E+01 2.55764488760E+01 2.57745944720E+01 2.59403017491E+01 2.60710469633E+01 2.61642542997E+01 2.62173061028E+01 2.62275546289E+01 2.61923353855E+01 2.61089821755E+01 2.59748438902E+01 2.57873031572E+01 2.55437968725E+01 2.52418386836E+01 2.48790434450E+01 2.44531536567E+01 2.39620678785E+01 2.34038710870E+01 2.27768668944E+01 2.20796115475E+01 2.13109495593E+01 2.04700507954E+01 1.95564488014E+01 1.85700800879E+01 1.75113240513E+01 1.63810431513E+01 1.51806228959E+01 1.39120111298E+01 1.25777560506E+01 1.11810423115E+01 9.72572449995E+00 8.21635720458E+00 6.65822082802E+00 5.05734220990E+00 3.42050910279E+00 1.75527741600E+00 6.99701726909E-02 -1.62633299089E+00 -3.32381697075E+00 -5.01196416457E+00 -6.67960050896E+00 -8.31495579032E+00 -9.90573941475E+00 -1.14392328098E+01 -1.29023995260E+01 -1.42820140671E+01 -1.55648918556E+01 -1.67382296189E+01 -1.77894645307E+01 -1.87063681937E+01 -1.94772388956E+01 -2.00911140335E+01 -2.05380027723E+01 -2.08091386442E+01 -2.08972514282E+01 -2.07968572316E+01 -2.05045651658E+01 -2.00193984812E+01 -1.93431273862E+01 -1.84806100550E+01 -1.74401376119E+01 -1.62337779861E+01 -1.48777126762E+01 -1.33925594859E+01 -1.18036732744E+01 -1.01414157580E+01 -8.44138427579E+00 -6.74458843279E+00 -5.09756245981E+00 -3.55239999364E+00 -2.16669896223E+00 -1.00338524197E+00 -1.30560740357E-01 3.80203637029E-01 4.41952270985E-01 7.44282978033E-02 -7.33387634766E-03 7.70201147450E-04 -3.52096978513E-05 4.29002956195E-05 3.35982051915E-05 3.31326923246E-05 3.19472468199E-05 3.09770771198E-05 3.01166932431E-05 2.93645028397E-05 1.60 2.50 3D 15 Number of nonzero Dij 1 1 3.29618166167E-01 1 2 -3.03805162315E-01 2 2 2.80458726174E-01 3 3 4.32548359392E-02 3 4 6.45149604853E-02 4 4 9.63167798653E-02 5 5 4.28615146570E-02 5 6 6.50910333788E-02 6 6 9.88863495494E-02 7 7 3.70139988037E+00 7 8 4.12413793960E+00 8 8 4.58989063133E+00 9 9 3.67374243695E+00 9 10 3.98431632453E+00 10 10 4.31951278681E+00 0 nqf. If not zero, Qij's inside rinner are computed using qfcoef's 1 1 0 i j (l(j)) -1.19402001602E-01 Q_int 7.27289262262E-11 7.45700677261E-11 7.64578179433E-11 7.83933567829E-11 8.03778940197E-11 8.24126700538E-11 8.44989566864E-11 8.66380579144E-11 8.88313107455E-11 9.10800860339E-11 9.33857893373E-11 9.57498617950E-11 9.81737810291E-11 1.00659062068E-10 1.03207258292E-10 1.05819962408E-10 1.08498807440E-10 1.11245467754E-10 1.14061660100E-10 1.16949144691E-10 1.19909726299E-10 1.22945255382E-10 1.26057629245E-10 1.29248793223E-10 1.32520741896E-10 1.35875520340E-10 1.39315225398E-10 1.42842006998E-10 1.46458069493E-10 1.50165673040E-10 1.53967135010E-10 1.57864831441E-10 1.61861198520E-10 1.65958734104E-10 1.70159999288E-10 1.74467619997E-10 1.78884288634E-10 1.83412765760E-10 1.88055881820E-10 1.92816538912E-10 1.97697712601E-10 2.02702453778E-10 2.07833890568E-10 2.13095230287E-10 2.18489761440E-10 2.24020855785E-10 2.29691970435E-10 2.35506650019E-10 2.41468528902E-10 2.47581333448E-10 2.53848884360E-10 2.60275099059E-10 2.66863994137E-10 2.73619687866E-10 2.80546402773E-10 2.87648468279E-10 2.94930323403E-10 3.02396519542E-10 3.10051723307E-10 3.17900719449E-10 3.25948413844E-10 3.34199836559E-10 3.42660145001E-10 3.51334627135E-10 3.60228704793E-10 3.69347937058E-10 3.78698023745E-10 3.88284808960E-10 3.98114284752E-10 4.08192594860E-10 4.18526038552E-10 4.29121074564E-10 4.39984325132E-10 4.51122580139E-10 4.62542801351E-10 4.74252126775E-10 4.86257875114E-10 4.98567550347E-10 5.11188846417E-10 5.24129652037E-10 5.37398055628E-10 5.51002350367E-10 5.64951039373E-10 5.79252841026E-10 5.93916694409E-10 6.08951764899E-10 6.24367449898E-10 6.40173384701E-10 6.56379448524E-10 6.72995770674E-10 6.90032736884E-10 7.07500995801E-10 7.25411465644E-10 7.43775341030E-10 7.62604099966E-10 7.81909511025E-10 8.01703640706E-10 8.21998860969E-10 8.42807856972E-10 8.64143635000E-10 8.86019530592E-10 9.08449216878E-10 9.31446713123E-10 9.55026393493E-10 9.79202996034E-10 1.00399163189E-09 1.02940779474E-09 1.05546737049E-09 1.08218664721E-09 1.10958232528E-09 1.13767152786E-09 1.16647181160E-09 1.19600117757E-09 1.22627808257E-09 1.25732145060E-09 1.28915068476E-09 1.32178567930E-09 1.35524683214E-09 1.38955505753E-09 1.42473179919E-09 1.46079904368E-09 1.49777933417E-09 1.53569578447E-09 1.57457209357E-09 1.61443256036E-09 1.65530209888E-09 1.69720625385E-09 1.74017121668E-09 1.78422384179E-09 1.82939166344E-09 1.87570291292E-09 1.92318653619E-09 1.97187221197E-09 2.02179037031E-09 2.07297221161E-09 2.12544972606E-09 2.17925571375E-09 2.23442380504E-09 2.29098848169E-09 2.34898509834E-09 2.40844990465E-09 2.46942006792E-09 2.53193369636E-09 2.59602986288E-09 2.66174862952E-09 2.72913107250E-09 2.79821930786E-09 2.86905651784E-09 2.94168697781E-09 3.01615608399E-09 3.09251038178E-09 3.17079759490E-09 3.25106665519E-09 3.33336773318E-09 3.41775226949E-09 3.50427300693E-09 3.59298402352E-09 3.68394076624E-09 3.77720008572E-09 3.87282027175E-09 3.97086108973E-09 4.07138381802E-09 4.17445128623E-09 4.28012791449E-09 4.38847975373E-09 4.49957452696E-09 4.61348167158E-09 4.73027238279E-09 4.85001965809E-09 4.97279834292E-09 5.09868517739E-09 5.22775884430E-09 5.36010001830E-09 5.49579141629E-09 5.63491784915E-09 5.77756627472E-09 5.92382585218E-09 6.07378799774E-09 6.22754644183E-09 6.38519728760E-09 6.54683907108E-09 6.71257282270E-09 6.88250213045E-09 7.05673320463E-09 7.23537494423E-09 7.41853900501E-09 7.60633986925E-09 7.79889491732E-09 7.99632450106E-09 8.19875201897E-09 8.40630399335E-09 8.61911014939E-09 8.83730349622E-09 9.06102041006E-09 9.29040071945E-09 9.52558779265E-09 9.76672862722E-09 1.00139739419E-08 1.02674782710E-08 1.05274000604E-08 1.07939017674E-08 1.10671499617E-08 1.13473154295E-08 1.16345732805E-08 1.19291030573E-08 1.22310888475E-08 1.25407193985E-08 1.28581882363E-08 1.31836937854E-08 1.35174394936E-08 1.38596339589E-08 1.42104910595E-08 1.45702300883E-08 1.49390758890E-08 1.53172589975E-08 1.57050157852E-08 1.61025886074E-08 1.65102259543E-08 1.69281826065E-08 1.73567197941E-08 1.77961053603E-08 1.82466139282E-08 1.87085270731E-08 1.91821334980E-08 1.96677292142E-08 2.01656177263E-08 2.06761102218E-08 2.11995257658E-08 2.17361915000E-08 2.22864428476E-08 2.28506237226E-08 2.34290867450E-08 2.40221934607E-08 2.46303145681E-08 2.52538301493E-08 2.58931299077E-08 2.65486134117E-08 2.72206903442E-08 2.79097807589E-08 2.86163153425E-08 2.93407356840E-08 3.00834945507E-08 3.08450561711E-08 3.16258965250E-08 3.24265036410E-08 3.32473779013E-08 3.40890323548E-08 3.49519930371E-08 3.58367992998E-08 3.67440041473E-08 3.76741745823E-08 3.86278919603E-08 3.96057523527E-08 4.06083669196E-08 4.16363622912E-08 4.26903809598E-08 4.37710816812E-08 4.48791398862E-08 4.60152481029E-08 4.71801163889E-08 4.83744727759E-08 4.95990637238E-08 5.08546545874E-08 5.21420300949E-08 5.34619948378E-08 5.48153737739E-08 5.62030127428E-08 5.76257789942E-08 5.90845617302E-08 6.05802726602E-08 6.21138465714E-08 6.36862419121E-08 6.52984413911E-08 6.69514525913E-08 6.86463085997E-08 7.03840686524E-08 7.21658187965E-08 7.39926725690E-08 7.58657716921E-08 7.77862867866E-08 7.97554181033E-08 8.17743962731E-08 8.38444830753E-08 8.59669722264E-08 8.81431901881E-08 9.03744969958E-08 9.26622871087E-08 9.50079902804E-08 9.74130724525E-08 9.98790366702E-08 1.02407424021E-07 1.04999814598E-07 1.07657828486E-07 1.10383126775E-07 1.13177412595E-07 1.16042432184E-07 1.18979975974E-07 1.21991879714E-07 1.25080025612E-07 1.28246343516E-07 1.31492812114E-07 1.34821460172E-07 1.38234367803E-07 1.41733667763E-07 1.45321546785E-07 1.49000246944E-07 1.52772067057E-07 1.56639364120E-07 1.60604554776E-07 1.64670116830E-07 1.68838590792E-07 1.73112581464E-07 1.77494759568E-07 1.81987863412E-07 1.86594700601E-07 1.91318149790E-07 1.96161162480E-07 2.01126764862E-07 2.06218059706E-07 2.11438228298E-07 2.16790532427E-07 2.22278316418E-07 2.27905009225E-07 2.33674126567E-07 2.39589273125E-07 2.45654144790E-07 2.51872530972E-07 2.58248316965E-07 2.64785486369E-07 2.71488123580E-07 2.78360416337E-07 2.85406658337E-07 2.92631251910E-07 3.00038710773E-07 3.07633662841E-07 3.15420853116E-07 3.23405146650E-07 3.31591531576E-07 3.39985122223E-07 3.48591162307E-07 3.57415028199E-07 3.66462232283E-07 3.75738426391E-07 3.85249405327E-07 3.95001110488E-07 4.04999633560E-07 4.15251220325E-07 4.25762274550E-07 4.36539361983E-07 4.47589214448E-07 4.58918734039E-07 4.70534997423E-07 4.82445260254E-07 4.94656961695E-07 5.07177729054E-07 5.20015382538E-07 5.33177940128E-07 5.46673622573E-07 5.60510858514E-07 5.74698289737E-07 5.89244776556E-07 6.04159403331E-07 6.19451484129E-07 6.35130568525E-07 6.51206447550E-07 6.67689159787E-07 6.84588997623E-07 7.01916513657E-07 7.19682527271E-07 7.37898131364E-07 7.56574699258E-07 7.75723891776E-07 7.95357664496E-07 8.15488275197E-07 8.36128291480E-07 8.57290598587E-07 8.78988407419E-07 9.01235262750E-07 9.24045051652E-07 9.47432012127E-07 9.71410741965E-07 9.95996207812E-07 1.02120375448E-06 1.04704911446E-06 1.07354841775E-06 1.10071820181E-06 1.12857542189E-06 1.15713746152E-06 1.18642214334E-06 1.21644774014E-06 1.24723298620E-06 1.27879708896E-06 1.31115974089E-06 1.34434113172E-06 1.37836196098E-06 1.41324345085E-06 1.44900735927E-06 1.48567599346E-06 1.52327222377E-06 1.56181949781E-06 1.60134185500E-06 1.64186394145E-06 1.68341102524E-06 1.72600901205E-06 1.76968446120E-06 1.81446460208E-06 1.86037735101E-06 1.90745132849E-06 1.95571587692E-06 2.00520107870E-06 2.05593777487E-06 2.10795758414E-06 2.16129292240E-06 2.21597702278E-06 2.27204395613E-06 2.32952865204E-06 2.38846692043E-06 2.44889547358E-06 2.51085194878E-06 2.57437493157E-06 2.63950397941E-06 2.70627964614E-06 2.77474350688E-06 2.84493818363E-06 2.91690737150E-06 2.99069586553E-06 3.06634958827E-06 3.14391561797E-06 3.22344221747E-06 3.30497886383E-06 3.38857627869E-06 3.47428645937E-06 3.56216271071E-06 3.65225967776E-06 3.74463337919E-06 3.83934124161E-06 3.93644213466E-06 4.03599640700E-06 4.13806592318E-06 4.24271410138E-06 4.35000595216E-06 4.46000811803E-06 4.57278891411E-06 4.68841836971E-06 4.80696827094E-06 4.92851220437E-06 5.05312560176E-06 5.18088578586E-06 5.31187201729E-06 5.44616554267E-06 5.58384964378E-06 5.72500968800E-06 5.86973317995E-06 6.01810981437E-06 6.17023153025E-06 6.32619256635E-06 6.48608951794E-06 6.65002139499E-06 6.81808968175E-06 6.99039839770E-06 7.16705416001E-06 7.34816624749E-06 7.53384666604E-06 7.72421021569E-06 7.91937455919E-06 8.11946029227E-06 8.32459101556E-06 8.53489340820E-06 8.75049730315E-06 8.97153576436E-06 9.19814516570E-06 9.43046527170E-06 9.66863932031E-06 9.91281410744E-06 1.01631400736E-05 1.04197713924E-05 1.06828660614E-05 1.09525859945E-05 1.12290971174E-05 1.15125694641E-05 1.18031772765E-05 1.21010991058E-05 1.24065179168E-05 1.27196211936E-05 1.30406010487E-05 1.33696543338E-05 1.37069827539E-05 1.40527929830E-05 1.44072967829E-05 1.47707111252E-05 1.51432583147E-05 1.55251661167E-05 1.59166678867E-05 1.63180027026E-05 1.67294155005E-05 1.71511572128E-05 1.75834849095E-05 1.80266619428E-05 1.84809580946E-05 1.89466497269E-05 1.94240199358E-05 1.99133587084E-05 2.04149630835E-05 2.09291373149E-05 2.14561930389E-05 2.19964494443E-05 2.25502334470E-05 2.31178798669E-05 2.36997316097E-05 2.42961398510E-05 2.49074642249E-05 2.55340730163E-05 2.61763433564E-05 2.68346614223E-05 2.75094226406E-05 2.82010318945E-05 2.89099037349E-05 2.96364625955E-05 3.03811430115E-05 3.11443898428E-05 3.19266585007E-05 3.27284151788E-05 3.35501370876E-05 3.43923126938E-05 3.52554419626E-05 3.61400366050E-05 3.70466203283E-05 3.79757290912E-05 3.89279113625E-05 3.99037283836E-05 4.09037544354E-05 4.19285771088E-05 4.29787975787E-05 4.40550308825E-05 4.51579062014E-05 4.62880671463E-05 4.74461720461E-05 4.86328942404E-05 4.98489223754E-05 5.10949607020E-05 5.23717293785E-05 5.36799647750E-05 5.50204197811E-05 5.63938641161E-05 5.78010846414E-05 5.92428856755E-05 6.07200893102E-05 6.22335357289E-05 6.37840835267E-05 6.53726100308E-05 6.70000116216E-05 6.86672040556E-05 7.03751227864E-05 7.21247232865E-05 7.39169813684E-05 7.57528935036E-05 7.76334771405E-05 7.95597710195E-05 8.15328354858E-05 8.35537527976E-05 8.56236274316E-05 8.77435863823E-05 8.99147794562E-05 9.21383795594E-05 9.44155829781E-05 9.67476096508E-05 9.91357034310E-05 1.01581132340E-04 1.04085188808E-04 1.06649189903E-04 1.09274477547E-04 1.11962418714E-04 1.14714405615E-04 1.17531855863E-04 1.20416212620E-04 1.23368944720E-04 1.26391546772E-04 1.29485539238E-04 1.32652468481E-04 1.35893906791E-04 1.39211452367E-04 1.42606729282E-04 1.46081387400E-04 1.49637102257E-04 1.53275574905E-04 1.56998531707E-04 1.60807724085E-04 1.64704928220E-04 1.68691944699E-04 1.72770598094E-04 1.76942736497E-04 1.81210230973E-04 1.85574974953E-04 1.90038883547E-04 1.94603892783E-04 1.99271958760E-04 2.04045056709E-04 2.08925179961E-04 2.13914338819E-04 2.19014559315E-04 2.24227881860E-04 2.29556359771E-04 2.35002057674E-04 2.40567049769E-04 2.46253417954E-04 2.52063249799E-04 2.57998636361E-04 2.64061669827E-04 2.70254440987E-04 2.76579036505E-04 2.83037536007E-04 2.89632008951E-04 2.96364511271E-04 3.03237081800E-04 3.10251738434E-04 3.17410474046E-04 3.24715252117E-04 3.32168002086E-04 3.39770614393E-04 3.47524935200E-04 3.55432760775E-04 3.63495831525E-04 3.71715825652E-04 3.80094352414E-04 3.88632944979E-04 3.97333052836E-04 4.06196033757E-04 4.15223145276E-04 4.24415535657E-04 4.33774234347E-04 4.43300141857E-04 4.52994019068E-04 4.62856475924E-04 4.72887959476E-04 4.83088741258E-04 4.93458903955E-04 5.03998327322E-04 5.14706673338E-04 5.25583370537E-04 5.36627597490E-04 5.47838265390E-04 5.59213999711E-04 5.70753120879E-04 5.82453623926E-04 5.94313157070E-04 6.06328999182E-04 6.18498036072E-04 6.30816735567E-04 6.43281121301E-04 6.55886745179E-04 6.68628658444E-04 6.81501381297E-04 6.94498870997E-04 7.07614488390E-04 7.20840962782E-04 7.34170355104E-04 7.47594019285E-04 7.61102561770E-04 7.74685799098E-04 7.88332713472E-04 8.02031406226E-04 8.15769049125E-04 8.29531833400E-04 8.43304916437E-04 8.57072366029E-04 8.70817102100E-04 8.84520835813E-04 8.98164005961E-04 9.11725712546E-04 9.25183647453E-04 9.38514022111E-04 9.51691492044E-04 9.64689078213E-04 9.77478085039E-04 9.90028015005E-04 1.00230647974E-03 1.01427910745E-03 1.02590944665E-03 1.03715886603E-03 1.04798645038E-03 1.05834889244E-03 1.06820038069E-03 1.07749248278E-03 1.08617402468E-03 1.09419096538E-03 1.10148626703E-03 1.10799976055E-03 1.11366800641E-03 1.11842415078E-03 1.12219777674E-03 1.12491475064E-03 1.12649706356E-03 1.12686266763E-03 1.12592530754E-03 1.12359434684E-03 1.11977458930E-03 1.11436609523E-03 1.10726399274E-03 1.09835828415E-03 1.08753364743E-03 1.07466923283E-03 1.05963845491E-03 1.04230877993E-03 1.02254150885E-03 1.00019155616E-03 9.75107224713E-04 9.47129976816E-04 9.16094201921E-04 8.81826981178E-04 8.44147849285E-04 8.02868554000E-04 7.57792813818E-04 7.08716074296E-04 6.55425263602E-04 5.97698547896E-04 5.35305087236E-04 4.68004792720E-04 3.95548085684E-04 3.17675659808E-04 2.34118247063E-04 1.44596388517E-04 4.88202110588E-05 -5.35107887937E-05 -1.62707952767E-04 -2.79093659086E-04 -4.03001509698E-04 -5.34776505003E-04 -6.74775204520E-04 -8.23365871843E-04 -9.80928602158E-04 -1.14785543050E-03 -1.32455041886E-03 -1.51142972013E-03 -1.70892161690E-03 -1.91746653287E-03 -2.13751701474E-03 -2.36953768230E-03 -2.61400514435E-03 -2.87140787812E-03 -3.14224606967E-03 -3.42703141298E-03 -3.72628686500E-03 -4.04054635442E-03 -4.37035444149E-03 -4.71626592648E-03 -5.07884540448E-03 -5.45866676389E-03 -5.85631262664E-03 -6.27237372770E-03 -6.70744823194E-03 -7.16214098650E-03 -7.63706270675E-03 -8.13282909450E-03 -8.65005988717E-03 -9.18937783680E-03 -9.75140761833E-03 -1.03367746667E-02 -1.09461039429E-02 -1.15800186291E-02 -1.22391387539E-02 -1.29240797493E-02 -1.36354509403E-02 -1.43738539700E-02 -1.51398811635E-02 -1.59341138326E-02 -1.67571205266E-02 -1.76094552324E-02 -1.84916555305E-02 -1.94042407101E-02 -2.03477098519E-02 -2.13225398829E-02 -2.23291836114E-02 -2.33680677490E-02 -2.44395909261E-02 -2.55441217104E-02 -2.66819966333E-02 -2.78535182343E-02 -2.90589531275E-02 -3.02985300986E-02 -3.15724382376E-02 -3.28808251103E-02 -3.42237949743E-02 -3.56014070377E-02 -3.70136737631E-02 -3.84605592121E-02 -3.99419774251E-02 -4.14577908276E-02 -4.30078086512E-02 -4.45917853516E-02 -4.62094190053E-02 -4.78603496565E-02 -4.95441575868E-02 -5.12603614696E-02 -5.30084163683E-02 -5.47877115312E-02 -5.65975679292E-02 -5.84372354765E-02 -6.03058898709E-02 -6.22026289801E-02 -6.41264687024E-02 -6.60763382190E-02 -6.80510745569E-02 -7.00494163781E-02 -7.20699969098E-02 -7.41113359338E-02 -7.61718307560E-02 -7.82497460847E-02 -8.03432027562E-02 -8.24501652604E-02 -8.45684280343E-02 -8.66956005178E-02 -8.88290909870E-02 -9.09660892180E-02 -9.31035480651E-02 -9.52381640851E-02 -9.73663573835E-02 -9.94842509143E-02 -1.01587649521E-01 -1.03672019072E-01 -1.05732466112E-01 -1.07763718516E-01 -1.09760107707E-01 -1.11715553083E-01 -1.13623549346E-01 -1.15477157514E-01 -1.17269000456E-01 -1.18991263827E-01 -1.20635703341E-01 -1.22193659332E-01 -1.23656079556E-01 -1.25013551183E-01 -1.26256342854E-01 -1.27374457647E-01 -1.28357697628E-01 -1.29195740562E-01 -1.29878229140E-01 -1.30394872847E-01 -1.30735562348E-01 -1.30890495894E-01 -1.30850316958E-01 -1.30606261851E-01 -1.30150315694E-01 -1.29475374623E-01 -1.28575411689E-01 -1.27445643418E-01 -1.26082693573E-01 -1.24484750238E-01 -1.22651711992E-01 -1.20585318676E-01 -1.18289262034E-01 -1.15769271499E-01 -1.13033170414E-01 -1.10090898282E-01 -1.06954494995E-01 -1.03638043653E-01 -1.00157569355E-01 -9.65308923820E-02 -9.27774353621E-02 -8.89179853996E-02 -8.49744136652E-02 -8.09693565730E-02 -7.69258643754E-02 -7.28670247148E-02 -6.88155703300E-02 -6.47934816622E-02 -6.08215964530E-02 -5.69192395255E-02 -5.31038867031E-02 -4.93908771955E-02 -4.57931887190E-02 -4.23212890641E-02 -3.89830767647E-02 -3.57839219316E-02 -3.27268161942E-02 -2.98126380515E-02 -2.70405367794E-02 -2.44084343987E-02 -2.19136410821E-02 -1.95535747911E-02 -1.73265708842E-02 -1.52327619386E-02 -1.32750020898E-02 -1.14598038616E-02 -9.79550293927E-03 -8.28261405376E-03 -6.91856222346E-03 -5.69990451176E-03 -4.62233311340E-03 -3.68068158201E-03 -2.86893431043E-03 -2.18023938399E-03 -1.60692493702E-03 -1.14051915117E-03 -7.71774043393E-04 -4.90693199211E-04 -2.86563614405E-04 -1.47991815116E-04 -6.29444322447E-05 -1.87934111779E-05 -2.36604217729E-06 1.11022302463E-16 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 2 0 i j (l(j)) 1.13791138321E-01 Q_int -7.52815117747E-11 -7.71872722850E-11 -7.91412773507E-11 -8.11447482883E-11 -8.31989373323E-11 -8.53051284175E-11 -8.74646379817E-11 -8.96788157887E-11 -9.19490457714E-11 -9.42767468973E-11 -9.66633740551E-11 -9.91104189644E-11 -1.01619411108E-10 -1.04191918687E-10 -1.06829549602E-10 -1.09533952458E-10 -1.12306817595E-10 -1.15149878144E-10 -1.18064911109E-10 -1.21053738481E-10 -1.24118228374E-10 -1.27260296194E-10 -1.30481905834E-10 -1.33785070906E-10 -1.37171855995E-10 -1.40644377951E-10 -1.44204807213E-10 -1.47855369165E-10 -1.51598345527E-10 -1.55436075779E-10 -1.59370958629E-10 -1.63405453504E-10 -1.67542082097E-10 -1.71783429932E-10 -1.76132147991E-10 -1.80590954362E-10 -1.85162635945E-10 -1.89850050188E-10 -1.94656126877E-10 -1.99583869966E-10 -2.04636359454E-10 -2.09816753310E-10 -2.15128289448E-10 -2.20574287750E-10 -2.26158152142E-10 -2.31883372719E-10 -2.37753527929E-10 -2.43772286810E-10 -2.49943411280E-10 -2.56270758492E-10 -2.62758283243E-10 -2.69410040444E-10 -2.76230187660E-10 -2.83222987702E-10 -2.90392811297E-10 -2.97744139817E-10 -3.05281568078E-10 -3.13009807218E-10 -3.20933687634E-10 -3.29058162009E-10 -3.37388308400E-10 -3.45929333419E-10 -3.54686575480E-10 -3.63665508144E-10 -3.72871743532E-10 -3.82311035839E-10 -3.91989284926E-10 -4.01912540011E-10 -4.12087003448E-10 -4.22519034604E-10 -4.33215153834E-10 -4.44182046558E-10 -4.55426567437E-10 -4.66955744657E-10 -4.78776784325E-10 -4.90897074970E-10 -5.03324192165E-10 -5.16065903257E-10 -5.29130172224E-10 -5.42525164653E-10 -5.56259252846E-10 -5.70341021047E-10 -5.84779270814E-10 -5.99583026516E-10 -6.14761540974E-10 -6.30324301245E-10 -6.46281034555E-10 -6.62641714371E-10 -6.79416566642E-10 -6.96616076186E-10 -7.14250993249E-10 -7.32332340215E-10 -7.50871418504E-10 -7.69879815633E-10 -7.89369412455E-10 -8.09352390590E-10 -8.29841240036E-10 -8.50848766977E-10 -8.72388101786E-10 -8.94472707233E-10 -9.17116386898E-10 -9.40333293800E-10 -9.64137939244E-10 -9.88545201889E-10 -1.01357033705E-09 -1.03922898622E-09 -1.06553718689E-09 -1.09251138249E-09 -1.12016843276E-09 -1.14852562424E-09 -1.17760068105E-09 -1.20741177603E-09 -1.23797754206E-09 -1.26931708369E-09 -1.30144998913E-09 -1.33439634246E-09 -1.36817673618E-09 -1.40281228410E-09 -1.43832463453E-09 -1.47473598379E-09 -1.51206909012E-09 -1.55034728787E-09 -1.58959450213E-09 -1.62983526361E-09 -1.67109472406E-09 -1.71339867192E-09 -1.75677354847E-09 -1.80124646436E-09 -1.84684521654E-09 -1.89359830564E-09 -1.94153495380E-09 -1.99068512290E-09 -2.04107953331E-09 -2.09274968309E-09 -2.14572786768E-09 -2.20004720008E-09 -2.25574163153E-09 -2.31284597275E-09 -2.37139591572E-09 -2.43142805593E-09 -2.49297991530E-09 -2.55608996562E-09 -2.62079765259E-09 -2.68714342047E-09 -2.75516873739E-09 -2.82491612122E-09 -2.89642916617E-09 -2.96975257006E-09 -3.04493216222E-09 -3.12201493215E-09 -3.20104905888E-09 -3.28208394110E-09 -3.36517022803E-09 -3.45035985106E-09 -3.53770605624E-09 -3.62726343753E-09 -3.71908797093E-09 -3.81323704948E-09 -3.90976951911E-09 -4.00874571544E-09 -4.11022750148E-09 -4.21427830630E-09 -4.32096316467E-09 -4.43034875771E-09 -4.54250345457E-09 -4.65749735516E-09 -4.77540233395E-09 -4.89629208492E-09 -5.02024216760E-09 -5.14733005431E-09 -5.27763517856E-09 -5.41123898470E-09 -5.54822497888E-09 -5.68867878113E-09 -5.83268817901E-09 -5.98034318234E-09 -6.13173607958E-09 -6.28696149544E-09 -6.44611645002E-09 -6.60930041949E-09 -6.77661539824E-09 -6.94816596261E-09 -7.12405933629E-09 -7.30440545731E-09 -7.48931704675E-09 -7.67890967922E-09 -7.87330185504E-09 -8.07261507437E-09 -8.27697391310E-09 -8.48650610073E-09 -8.70134260020E-09 -8.92161768975E-09 -9.14746904681E-09 -9.37903783410E-09 -9.61646878782E-09 -9.85991030811E-09 -1.01095145518E-08 -1.03654375276E-08 -1.06278391935E-08 -1.08968835566E-08 -1.11727387759E-08 -1.14555772675E-08 -1.17455758117E-08 -1.20429156644E-08 -1.23477826694E-08 -1.26603673756E-08 -1.29808651551E-08 -1.33094763259E-08 -1.36464062772E-08 -1.39918655971E-08 -1.43460702050E-08 -1.47092414859E-08 -1.50816064293E-08 -1.54633977706E-08 -1.58548541368E-08 -1.62562201958E-08 -1.66677468088E-08 -1.70896911875E-08 -1.75223170550E-08 -1.79658948100E-08 -1.84207016964E-08 -1.88870219763E-08 -1.93651471074E-08 -1.98553759259E-08 -2.03580148325E-08 -2.08733779842E-08 -2.14017874907E-08 -2.19435736157E-08 -2.24990749830E-08 -2.30686387886E-08 -2.36526210173E-08 -2.42513866654E-08 -2.48653099687E-08 -2.54947746363E-08 -2.61401740907E-08 -2.68019117132E-08 -2.74804010966E-08 -2.81760663029E-08 -2.88893421291E-08 -2.96206743785E-08 -3.03705201393E-08 -3.11393480702E-08 -3.19276386935E-08 -3.27358846955E-08 -3.35645912337E-08 -3.44142762534E-08 -3.52854708106E-08 -3.61787194045E-08 -3.70945803173E-08 -3.80336259631E-08 -3.89964432461E-08 -3.99836339266E-08 -4.09958149978E-08 -4.20336190707E-08 -4.30976947700E-08 -4.41887071388E-08 -4.53073380550E-08 -4.64542866564E-08 -4.76302697784E-08 -4.88360224014E-08 -5.00722981106E-08 -5.13398695662E-08 -5.26395289869E-08 -5.39720886445E-08 -5.53383813714E-08 -5.67392610814E-08 -5.81756033029E-08 -5.96483057262E-08 -6.11582887641E-08 -6.27064961274E-08 -6.42938954141E-08 -6.59214787147E-08 -6.75902632310E-08 -6.93012919128E-08 -7.10556341087E-08 -7.28543862346E-08 -7.46986724587E-08 -7.65896454038E-08 -7.85284868675E-08 -8.05164085604E-08 -8.25546528635E-08 -8.46444936039E-08 -8.67872368511E-08 -8.89842217325E-08 -9.12368212705E-08 -9.35464432399E-08 -9.59145310474E-08 -9.83425646336E-08 -1.00832061397E-07 -1.03384577143E-07 -1.06001707055E-07 -1.08685086689E-07 -1.11436393001E-07 -1.14257345386E-07 -1.17149706761E-07 -1.20115284661E-07 -1.23155932367E-07 -1.26273550068E-07 -1.29470086044E-07 -1.32747537886E-07 -1.36107953741E-07 -1.39553433593E-07 -1.43086130574E-07 -1.46708252307E-07 -1.50422062290E-07 -1.54229881304E-07 -1.58134088863E-07 -1.62137124706E-07 -1.66241490312E-07 -1.70449750468E-07 -1.74764534869E-07 -1.79188539761E-07 -1.83724529622E-07 -1.88375338891E-07 -1.93143873737E-07 -1.98033113872E-07 -2.03046114416E-07 -2.08186007799E-07 -2.13456005718E-07 -2.18859401147E-07 -2.24399570387E-07 -2.30079975175E-07 -2.35904164848E-07 -2.41875778556E-07 -2.47998547534E-07 -2.54276297432E-07 -2.60712950703E-07 -2.67312529050E-07 -2.74079155937E-07 -2.81017059163E-07 -2.88130573499E-07 -2.95424143397E-07 -3.02902325757E-07 -3.10569792779E-07 -3.18431334871E-07 -3.26491863643E-07 -3.34756414968E-07 -3.43230152130E-07 -3.51918369036E-07 -3.60826493528E-07 -3.69960090765E-07 -3.79324866693E-07 -3.88926671607E-07 -3.98771503800E-07 -4.08865513303E-07 -4.19215005722E-07 -4.29826446167E-07 -4.40706463291E-07 -4.51861853414E-07 -4.63299584771E-07 -4.75026801848E-07 -4.87050829840E-07 -4.99379179220E-07 -5.12019550417E-07 -5.24979838618E-07 -5.38268138689E-07 -5.51892750219E-07 -5.65862182695E-07 -5.80185160802E-07 -5.94870629862E-07 -6.09927761406E-07 -6.25365958888E-07 -6.41194863544E-07 -6.57424360397E-07 -6.74064584416E-07 -6.91125926824E-07 -7.08619041575E-07 -7.26554851982E-07 -7.44944557524E-07 -7.63799640813E-07 -7.83131874748E-07 -8.02953329839E-07 -8.23276381720E-07 -8.44113718852E-07 -8.65478350417E-07 -8.87383614413E-07 -9.09843185954E-07 -9.32871085769E-07 -9.56481688932E-07 -9.80689733795E-07 -1.00551033115E-06 -1.03095897364E-06 -1.05705154536E-06 -1.08380433177E-06 -1.11123402976E-06 -1.13935775810E-06 -1.16819306800E-06 -1.19775795406E-06 -1.22807086543E-06 -1.25915071727E-06 -1.29101690250E-06 -1.32368930382E-06 -1.35718830606E-06 -1.39153480885E-06 -1.42675023956E-06 -1.46285656659E-06 -1.49987631303E-06 -1.53783257058E-06 -1.57674901391E-06 -1.61664991529E-06 -1.65756015967E-06 -1.69950526009E-06 -1.74251137345E-06 -1.78660531677E-06 -1.83181458372E-06 -1.87816736170E-06 -1.92569254927E-06 -1.97441977398E-06 -2.02437941078E-06 -2.07560260072E-06 -2.12812127025E-06 -2.18196815095E-06 -2.23717679973E-06 -2.29378161956E-06 -2.35181788074E-06 -2.41132174262E-06 -2.47233027597E-06 -2.53488148581E-06 -2.59901433487E-06 -2.66476876757E-06 -2.73218573469E-06 -2.80130721855E-06 -2.87217625888E-06 -2.94483697932E-06 -3.01933461456E-06 -3.09571553814E-06 -3.17402729102E-06 -3.25431861072E-06 -3.33663946133E-06 -3.42104106413E-06 -3.50757592907E-06 -3.59629788695E-06 -3.68726212243E-06 -3.78052520787E-06 -3.87614513796E-06 -3.97418136523E-06 -4.07469483643E-06 -4.17774802981E-06 -4.28340499328E-06 -4.39173138356E-06 -4.50279450626E-06 -4.61666335692E-06 -4.73340866311E-06 -4.85310292751E-06 -4.97582047206E-06 -5.10163748319E-06 -5.23063205815E-06 -5.36288425246E-06 -5.49847612856E-06 -5.63749180553E-06 -5.78001751017E-06 -5.92614162920E-06 -6.07595476278E-06 -6.22954977926E-06 -6.38702187141E-06 -6.54846861377E-06 -6.71399002161E-06 -6.88368861116E-06 -7.05766946137E-06 -7.23604027707E-06 -7.41891145375E-06 -7.60639614381E-06 -7.79861032440E-06 -7.99567286692E-06 -8.19770560817E-06 -8.40483342309E-06 -8.61718429942E-06 -8.83488941392E-06 -9.05808321056E-06 -9.28690348044E-06 -9.52149144368E-06 -9.76199183313E-06 -1.00085529802E-05 -1.02613269025E-05 -1.05204693938E-05 -1.07861401157E-05 -1.10585026917E-05 -1.13377248037E-05 -1.16239782901E-05 -1.19174392466E-05 -1.22182881292E-05 -1.25267098597E-05 -1.28428939335E-05 -1.31670345295E-05 -1.34993306235E-05 -1.38399861029E-05 -1.41892098853E-05 -1.45472160383E-05 -1.49142239034E-05 -1.52904582221E-05 -1.56761492641E-05 -1.60715329600E-05 -1.64768510350E-05 -1.68923511472E-05 -1.73182870280E-05 -1.77549186256E-05 -1.82025122524E-05 -1.86613407343E-05 -1.91316835644E-05 -1.96138270595E-05 -2.01080645197E-05 -2.06146963921E-05 -2.11340304369E-05 -2.16663818981E-05 -2.22120736770E-05 -2.27714365095E-05 -2.33448091471E-05 -2.39325385418E-05 -2.45349800341E-05 -2.51524975453E-05 -2.57854637740E-05 -2.64342603953E-05 -2.70992782652E-05 -2.77809176280E-05 -2.84795883284E-05 -2.91957100274E-05 -2.99297124219E-05 -3.06820354689E-05 -3.14531296138E-05 -3.22434560229E-05 -3.30534868192E-05 -3.38837053242E-05 -3.47346063019E-05 -3.56066962088E-05 -3.65004934470E-05 -3.74165286217E-05 -3.83553448039E-05 -3.93174977958E-05 -4.03035564018E-05 -4.13141027027E-05 -4.23497323352E-05 -4.34110547740E-05 -4.44986936195E-05 -4.56132868889E-05 -4.67554873110E-05 -4.79259626254E-05 -4.91253958853E-05 -5.03544857644E-05 -5.16139468667E-05 -5.29045100407E-05 -5.42269226965E-05 -5.55819491261E-05 -5.69703708270E-05 -5.83929868289E-05 -5.98506140224E-05 -6.13440874915E-05 -6.28742608467E-05 -6.44420065617E-05 -6.60482163113E-05 -6.76938013099E-05 -6.93796926530E-05 -7.11068416577E-05 -7.28762202048E-05 -7.46888210805E-05 -7.65456583175E-05 -7.84477675359E-05 -8.03962062823E-05 -8.23920543666E-05 -8.44364141974E-05 -8.65304111134E-05 -8.86751937115E-05 -9.08719341705E-05 -9.31218285692E-05 -9.54260971990E-05 -9.77859848694E-05 -1.00202761206E-04 -1.02677720940E-04 -1.05212184187E-04 -1.07807496714E-04 -1.10465030201E-04 -1.13186182478E-04 -1.15972377759E-04 -1.18825066852E-04 -1.21745727356E-04 -1.24735863834E-04 -1.27797007974E-04 -1.30930718720E-04 -1.34138582378E-04 -1.37422212706E-04 -1.40783250959E-04 -1.44223365922E-04 -1.47744253895E-04 -1.51347638650E-04 -1.55035271350E-04 -1.58808930422E-04 -1.62670421394E-04 -1.66621576678E-04 -1.70664255309E-04 -1.74800342624E-04 -1.79031749888E-04 -1.83360413861E-04 -1.87788296293E-04 -1.92317383358E-04 -1.96949685005E-04 -2.01687234239E-04 -2.06532086316E-04 -2.11486317844E-04 -2.16552025795E-04 -2.21731326417E-04 -2.27026354036E-04 -2.32439259750E-04 -2.37972209997E-04 -2.43627385002E-04 -2.49406977088E-04 -2.55313188846E-04 -2.61348231148E-04 -2.67514321011E-04 -2.73813679285E-04 -2.80248528167E-04 -2.86821088526E-04 -2.93533577025E-04 -3.00388203043E-04 -3.07387165363E-04 -3.14532648641E-04 -3.21826819610E-04 -3.29271823044E-04 -3.36869777430E-04 -3.44622770364E-04 -3.52532853635E-04 -3.60602037989E-04 -3.68832287559E-04 -3.77225513937E-04 -3.85783569868E-04 -3.94508242557E-04 -4.03401246557E-04 -4.12464216222E-04 -4.21698697704E-04 -4.31106140466E-04 -4.40687888290E-04 -4.50445169756E-04 -4.60379088159E-04 -4.70490610845E-04 -4.80780557927E-04 -4.91249590362E-04 -5.01898197346E-04 -5.12726683002E-04 -5.23735152328E-04 -5.34923496356E-04 -5.46291376503E-04 -5.57838208064E-04 -5.69563142807E-04 -5.81465050632E-04 -5.93542500250E-04 -6.05793738834E-04 -6.18216670592E-04 -6.30808834224E-04 -6.43567379203E-04 -6.56489040829E-04 -6.69570113998E-04 -6.82806425646E-04 -6.96193305781E-04 -7.09725557070E-04 -7.23397422905E-04 -7.37202553874E-04 -7.51133972601E-04 -7.65184036840E-04 -7.79344400804E-04 -7.93605974603E-04 -8.07958881761E-04 -8.22392414701E-04 -8.36894988140E-04 -8.51454090289E-04 -8.66056231806E-04 -8.80686892375E-04 -8.95330464862E-04 -9.09970196925E-04 -9.24588130008E-04 -9.39165035609E-04 -9.53680348740E-04 -9.68112098465E-04 -9.82436835429E-04 -9.96629556277E-04 -1.01066362485E-03 -1.02451069007E-03 -1.03814060038E-03 -1.05152131473E-03 -1.06461880979E-03 -1.07739698362E-03 -1.08981755531E-03 -1.10183996083E-03 -1.11342124472E-03 -1.12451594776E-03 -1.13507599025E-03 -1.14505055111E-03 -1.15438594242E-03 -1.16302547952E-03 -1.17090934654E-03 -1.17797445714E-03 -1.18415431060E-03 -1.18937884311E-03 -1.19357427412E-03 -1.19666294783E-03 -1.19856316970E-03 -1.19918903807E-03 -1.19845027064E-03 -1.19625202613E-03 -1.19249472088E-03 -1.18707384052E-03 -1.17987974681E-03 -1.17079747961E-03 -1.15970655421E-03 -1.14648075399E-03 -1.13098791866E-03 -1.11308972827E-03 -1.09264148306E-03 -1.06949187951E-03 -1.04348278283E-03 -1.01444899616E-03 -9.82218026810E-04 -9.46609850037E-04 -9.07436670654E-04 -8.64502683024E-04 -8.17603829960E-04 -7.66527561092E-04 -7.11052591351E-04 -6.50948660264E-04 -5.85976292816E-04 -5.15886562685E-04 -4.40420858768E-04 -3.59310655917E-04 -2.72277290945E-04 -1.79031744987E-04 -7.92744334073E-05 2.73049954963E-05 1.41027851643E-04 2.62226582755E-04 3.91244940870E-04 5.28438134183E-04 6.74172962558E-04 8.28827934916E-04 9.92793366684E-04 1.16647145535E-03 1.35027633213E-03 1.54463408763E-03 1.74998276938E-03 1.96677234895E-03 2.19546465639E-03 2.43653327962E-03 2.69046342633E-03 2.95775174599E-03 3.23890610945E-03 3.53444534365E-03 3.84489891888E-03 4.17080658618E-03 4.51271796233E-03 4.87119206004E-03 5.24679676090E-03 5.64010822902E-03 6.05171026287E-03 6.48219358356E-03 6.93215505755E-03 7.40219685218E-03 7.89292552238E-03 8.40495102763E-03 8.93888567792E-03 9.49534300836E-03 1.00749365819E-02 1.06782787206E-02 1.13059791654E-02 1.19586436662E-02 1.26368725025E-02 1.33412589380E-02 1.40723876101E-02 1.48308328584E-02 1.56171569949E-02 1.64319085212E-02 1.72756202954E-02 1.81488076563E-02 1.90519665086E-02 1.99855713767E-02 2.09500734329E-02 2.19458985079E-02 2.29734450902E-02 2.40330823230E-02 2.51251480054E-02 2.62499466062E-02 2.74077472980E-02 2.85987820178E-02 2.98232435621E-02 3.10812837214E-02 3.23730114578E-02 3.36984911318E-02 3.50577407770E-02 3.64507304233E-02 3.78773804666E-02 3.93375600779E-02 4.08310856443E-02 4.23577192278E-02 4.39171670281E-02 4.55090778251E-02 4.71330413795E-02 4.87885867564E-02 5.04751805399E-02 5.21922248939E-02 5.39390554220E-02 5.57149387741E-02 5.75190699378E-02 5.93505691520E-02 6.12084783691E-02 6.30917571936E-02 6.49992782153E-02 6.69298216558E-02 6.88820692461E-02 7.08545972490E-02 7.28458685481E-02 7.48542237245E-02 7.68778710541E-02 7.89148753652E-02 8.09631457136E-02 8.30204218486E-02 8.50842594673E-02 8.71520142808E-02 8.92208249492E-02 9.12875949810E-02 9.33489737339E-02 9.54013367037E-02 9.74407653429E-02 9.94630267089E-02 1.01463553305E-01 1.03437423547E-01 1.05379343356E-01 1.07283629452E-01 1.09144194998E-01 1.10954538304E-01 1.12707735381E-01 1.14396437183E-01 1.16012872427E-01 1.17548856928E-01 1.18995810381E-01 1.20344781554E-01 1.21586482804E-01 1.22711334796E-01 1.23709522198E-01 1.24571061028E-01 1.25285878152E-01 1.25843903253E-01 1.26235173307E-01 1.26449949373E-01 1.26478845123E-01 1.26312966205E-01 1.25944059100E-01 1.25364667732E-01 1.24568295599E-01 1.23549570773E-01 1.22304410619E-01 1.20830182672E-01 1.19125857709E-01 1.17192150705E-01 1.15031645113E-01 1.12648895752E-01 1.10050505563E-01 1.07245171592E-01 1.04243695881E-01 1.01058957378E-01 9.77058416690E-02 9.42011261751E-02 9.05633195401E-02 8.68124551590E-02 8.29698402296E-02 7.90577632517E-02 7.50991645551E-02 7.11172761319E-02 6.71352387392E-02 6.31757058486E-02 5.92604454813E-02 5.54099522129E-02 5.16430825748E-02 4.79767276674E-02 4.44255369573E-02 4.10017069160E-02 3.77148473318E-02 3.45719367646E-02 3.15773767171E-02 2.87331516630E-02 2.60390991416E-02 2.34932907136E-02 2.10925207265E-02 1.88328955908E-02 1.67105116647E-02 1.47222049205E-02 1.28663503546E-02 1.11436836703E-02 9.55811215638E-03 8.11514574482E-03 6.81364812844E-03 5.64978908623E-03 4.61894144614E-03 3.71570761391E-03 2.93395161791E-03 2.26683684561E-03 1.70686963817E-03 1.24594889641E-03 8.75421834832E-04 5.86145998885E-04 3.68557634256E-04 2.12746465805E-04 1.08536906569E-04 4.55756745271E-05 1.34257459736E-05 1.66651912759E-06 -5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 3 1 i j (l(j)) 0.00000000000E+00 Q_int 1.48662132455E-15 1.54342809426E-15 1.60240556408E-15 1.66363668081E-15 1.72720756080E-15 1.79320761106E-15 1.86172965505E-15 1.93287006318E-15 2.00672888839E-15 2.08341000680E-15 2.16302126389E-15 2.24567462610E-15 2.33148633834E-15 2.42057708748E-15 2.51307217207E-15 2.60910167855E-15 2.70880066426E-15 2.81230934732E-15 2.91977330387E-15 3.03134367281E-15 3.14717736836E-15 3.26743730075E-15 3.39229260533E-15 3.52191888043E-15 3.65649843438E-15 3.79622054185E-15 3.94128171008E-15 4.09188595524E-15 4.24824508938E-15 4.41057901830E-15 4.57911605083E-15 4.75409321995E-15 4.93575661614E-15 5.12436173350E-15 5.32017382904E-15 5.52346829581E-15 5.73453105014E-15 5.95365893382E-15 6.18116013155E-15 6.41735460437E-15 6.66257453970E-15 6.91716481847E-15 7.18148350023E-15 7.45590232668E-15 7.74080724451E-15 8.03659894823E-15 8.34369344366E-15 8.66252263304E-15 8.99353492247E-15 9.33719585253E-15 9.69398875303E-15 1.00644154228E-14 1.04489968354E-14 1.08482738718E-14 1.12628080811E-14 1.16931824704E-14 1.21400023246E-14 1.26038960577E-14 1.30855160968E-14 1.35855397994E-14 1.41046704063E-14 1.46436380304E-14 1.52032006837E-14 1.57841453435E-14 1.63872890589E-14 1.70134801002E-14 1.76635991517E-14 1.83385605504E-14 1.90393135722E-14 1.97668437663E-14 2.05221743420E-14 2.13063676075E-14 2.21205264636E-14 2.29657959556E-14 2.38433648829E-14 2.47544674715E-14 2.57003851094E-14 2.66824481493E-14 2.77020377792E-14 2.87605879649E-14 2.98595874672E-14 3.10005819353E-14 3.21851760805E-14 3.34150359336E-14 3.46918911878E-14 3.60175376312E-14 3.73938396725E-14 3.88227329632E-14 4.03062271202E-14 4.18464085514E-14 4.34454433908E-14 4.51055805447E-14 4.68291548546E-14 4.86185903808E-14 5.04764038120E-14 5.24052080044E-14 5.44077156568E-14 5.64867431256E-14 5.86452143857E-14 6.08861651431E-14 6.32127471041E-14 6.56282324080E-14 6.81360182290E-14 7.07396315542E-14 7.34427341439E-14 7.62491276815E-14 7.91627591205E-14 8.21877262351E-14 8.53282833840E-14 8.85888474930E-14 9.19740042679E-14 9.54885146431E-14 9.91373214780E-14 1.02925556508E-13 1.06858547564E-13 1.10941826062E-13 1.15181134786E-13 1.19582435961E-13 1.24151919644E-13 1.28896012423E-13 1.33821386460E-13 1.38934968875E-13 1.44243951485E-13 1.49755800923E-13 1.55478269133E-13 1.61419404282E-13 1.67587562068E-13 1.73991417480E-13 1.80639976996E-13 1.87542591247E-13 1.94708968171E-13 2.02149186669E-13 2.09873710772E-13 2.17893404366E-13 2.26219546466E-13 2.34863847082E-13 2.43838463686E-13 2.53156018310E-13 2.62829615303E-13 2.72872859753E-13 2.83299876627E-13 2.94125330637E-13 3.05364446861E-13 3.17033032158E-13 3.29147497399E-13 3.41724880546E-13 3.54782870618E-13 3.68339832563E-13 3.82414833095E-13 3.97027667500E-13 4.12198887487E-13 4.27949830081E-13 4.44302647642E-13 4.61280339014E-13 4.78906781872E-13 4.97206766306E-13 5.16206029684E-13 5.35931292851E-13 5.56410297709E-13 5.77671846230E-13 5.99745840973E-13 6.22663327127E-13 6.46456536185E-13 6.71158931266E-13 6.96805254183E-13 7.23431574303E-13 7.51075339276E-13 7.79775427701E-13 8.09572203804E-13 8.40507574212E-13 8.72625046886E-13 9.05969792312E-13 9.40588707033E-13 9.76530479600E-13 1.01384565905E-12 1.05258672601E-12 1.09280816648E-12 1.13456654848E-12 1.17792060163E-12 1.22293129969E-12 1.26966194639E-12 1.31817826438E-12 1.36854848774E-12 1.42084345789E-12 1.47513672324E-12 1.53150464263E-12 1.59002649276E-12 1.65078457959E-12 1.71386435421E-12 1.77935453293E-12 1.84734722210E-12 1.91793804765E-12 1.99122628955E-12 2.06731502145E-12 2.14631125568E-12 2.22832609369E-12 2.31347488236E-12 2.40187737619E-12 2.49365790576E-12 2.58894555254E-12 2.68787433049E-12 2.79058337448E-12 2.89721713603E-12 3.00792558643E-12 3.12286442765E-12 3.24219531138E-12 3.36608606631E-12 3.49471093423E-12 3.62825081504E-12 3.76689352117E-12 3.91083404176E-12 4.06027481687E-12 4.21542602219E-12 4.37650586465E-12 4.54374088929E-12 4.71736629791E-12 4.89762627981E-12 5.08477435528E-12 5.27907373209E-12 5.48079767573E-12 5.69022989371E-12 5.90766493455E-12 6.13340860207E-12 6.36777838545E-12 6.61110390579E-12 6.86372737963E-12 7.12600410032E-12 7.39830293765E-12 7.68100685668E-12 7.97451345631E-12 8.27923552851E-12 8.59560163881E-12 8.92405672913E-12 9.26506274346E-12 9.61909927763E-12 9.98666425376E-12 1.03682746206E-11 1.07644670804E-11 1.11757988441E-11 1.16028484145E-11 1.20462164005E-11 1.25065263611E-11 1.29844256830E-11 1.34805864906E-11 1.39957065917E-11 1.45305104587E-11 1.50857502473E-11 1.56622068549E-11 1.62606910183E-11 1.68820444543E-11 1.75271410433E-11 1.81968880584E-11 1.88922274415E-11 1.96141371277E-11 2.03636324214E-11 2.11417674233E-11 2.19496365137E-11 2.27883758913E-11 2.36591651711E-11 2.45632290436E-11 2.55018389972E-11 2.64763151062E-11 2.74880278877E-11 2.85384002290E-11 2.96289093887E-11 3.07610890743E-11 3.19365315995E-11 3.31568901232E-11 3.44238809750E-11 3.57392860686E-11 3.71049554085E-11 3.85228096912E-11 3.99948430070E-11 4.15231256442E-11 4.31098070010E-11 4.47571186084E-11 4.64673772684E-11 4.82429883128E-11 5.00864489858E-11 5.20003519561E-11 5.39873889636E-11 5.60503546047E-11 5.81921502630E-11 6.04157881895E-11 6.27243957395E-11 6.51212197705E-11 6.76096312088E-11 7.01931297905E-11 7.28753489835E-11 7.56600610977E-11 7.85511825904E-11 8.15527795741E-11 8.46690735358E-11 8.79044472738E-11 9.12634510615E-11 9.47508090473E-11 9.83714258986E-11 1.02130393700E-10 1.06032999113E-10 1.10084730816E-10 1.14291287217E-10 1.18658584475E-10 1.23192764812E-10 1.27900205162E-10 1.32787526130E-10 1.37861601309E-10 1.43129566945E-10 1.48598831973E-10 1.54277088439E-10 1.60172322318E-10 1.66292824742E-10 1.72647203664E-10 1.79244395966E-10 1.86093680023E-10 1.93204688755E-10 2.00587423176E-10 2.08252266456E-10 2.16209998528E-10 2.24471811246E-10 2.33049324127E-10 2.41954600691E-10 2.51200165429E-10 2.60799021418E-10 2.70764668607E-10 2.81111122801E-10 2.91852935381E-10 3.03005213761E-10 3.14583642639E-10 3.26604506054E-10 3.39084710292E-10 3.52041807658E-10 3.65494021166E-10 3.79460270164E-10 3.93960196947E-10 4.09014194377E-10 4.24643434566E-10 4.40869898654E-10 4.57716407723E-10 4.75206654887E-10 4.93365238625E-10 5.12217697365E-10 5.31790545409E-10 5.52111310219E-10 5.73208571135E-10 5.95111999565E-10 6.17852400718E-10 6.41461756928E-10 6.65973272632E-10 6.91421421072E-10 7.17841992777E-10 7.45272145896E-10 7.73750458462E-10 8.03316982645E-10 8.34013301081E-10 8.65882585358E-10 8.98969656727E-10 9.33321049141E-10 9.68985074703E-10 1.00601189161E-09 1.04445357468E-09 1.08436418864E-09 1.12579986408E-09 1.16881887648E-09 1.21348172812E-09 1.25985123317E-09 1.30799260604E-09 1.35797355313E-09 1.40986436799E-09 1.46373803022E-09 1.51967030811E-09 1.57773986516E-09 1.63802837078E-09 1.70062061509E-09 1.76560462818E-09 1.83307180395E-09 1.90311702858E-09 1.97583881406E-09 2.05133943665E-09 2.12972508079E-09 2.21110598840E-09 2.29559661392E-09 2.38331578530E-09 2.47438687109E-09 2.56893795399E-09 2.66710201092E-09 2.76901710007E-09 2.87482655510E-09 2.98467918662E-09 3.09872949160E-09 3.21713787054E-09 3.34007085313E-09 3.46770133241E-09 3.60020880795E-09 3.73777963828E-09 3.88060730297E-09 4.02889267475E-09 4.18284430201E-09 4.34267870210E-09 4.50862066583E-09 4.68090357358E-09 4.85976972358E-09 5.04547067261E-09 5.23826758981E-09 5.43843162398E-09 5.64624428491E-09 5.86199783926E-09 6.08599572165E-09 6.31855296133E-09 6.55999662527E-09 6.81066627812E-09 7.07091445974E-09 7.34110718104E-09 7.62162443866E-09 7.91286074942E-09 8.21522570514E-09 8.52914454867E-09 8.85505877191E-09 9.19342673671E-09 9.54472431949E-09 9.90944558048E-09 1.02881034585E-08 1.06812304925E-08 1.10893795700E-08 1.15131247054E-08 1.19530618465E-08 1.24098097131E-08 1.28840106667E-08 1.33763316144E-08 1.38874649462E-08 1.44181295090E-08 1.49690716179E-08 1.55410661048E-08 1.61349174091E-08 1.67514607083E-08 1.73915630927E-08 1.80561247850E-08 1.87460804058E-08 1.94624002886E-08 2.02060918438E-08 2.09782009756E-08 2.17798135531E-08 2.26120569369E-08 2.34761015648E-08 2.43731625976E-08 2.53045016281E-08 2.62714284550E-08 2.72753029251E-08 2.83175368454E-08 2.93995959686E-08 3.05230020541E-08 3.16893350082E-08 3.29002351058E-08 3.41574052971E-08 3.54626136019E-08 3.68176955965E-08 3.82245569944E-08 3.96851763266E-08 4.12016077233E-08 4.27759838031E-08 4.44105186714E-08 4.61075110340E-08 4.78693474297E-08 4.96985055860E-08 5.15975579037E-08 5.35691750733E-08 5.56161298313E-08 5.77413008589E-08 5.99476768295E-08 6.22383606118E-08 6.46165736326E-08 6.70856604065E-08 6.96490932392E-08 7.23104771092E-08 7.50735547377E-08 7.79422118508E-08 8.09204826434E-08 8.40125554516E-08 8.72227786418E-08 9.05556667253E-08 9.40159067055E-08 9.76083646684E-08 1.01338092624E-07 1.05210335612E-07 1.09230539073E-07 1.13404356507E-07 1.17737657422E-07 1.22236535588E-07 1.26907317601E-07 1.31756571784E-07 1.36791117414E-07 1.42018034319E-07 1.47444672823E-07 1.53078664087E-07 1.58927930835E-07 1.65000698491E-07 1.71305506748E-07 1.77851221567E-07 1.84647047650E-07 1.91702541372E-07 1.99027624224E-07 2.06632596755E-07 2.14528153054E-07 2.22725395787E-07 2.31235851800E-07 2.40071488330E-07 2.49244729821E-07 2.58768475393E-07 2.68656116978E-07 2.78921558138E-07 2.89579233615E-07 3.00644129620E-07 3.12131804898E-07 3.24058412598E-07 3.36440722980E-07 3.49296146984E-07 3.62642760707E-07 3.76499330806E-07 3.90885340879E-07 4.05821018845E-07 4.21327365381E-07 4.37426183429E-07 4.54140108850E-07 4.71492642226E-07 4.89508181896E-07 5.08212058242E-07 5.27630569285E-07 5.47791017648E-07 5.68721748917E-07 5.90452191481E-07 6.13012897883E-07 6.36435587754E-07 6.60753192381E-07 6.85999900988E-07 7.12211208769E-07 7.39423966769E-07 7.67676433654E-07 7.97008329472E-07 8.27460891456E-07 8.59076931964E-07 8.91900898621E-07 9.25978936770E-07 9.61358954294E-07 9.98090688920E-07 1.03622577809E-06 1.07581783149E-06 1.11692250637E-06 1.15959758570E-06 1.20390305937E-06 1.24990120840E-06 1.29765669246E-06 1.34723664065E-06 1.39871074578E-06 1.45215136229E-06 1.50763360779E-06 1.56523546858E-06 1.62503790920E-06 1.68712498601E-06 1.75158396535E-06 1.81850544595E-06 1.88798348620E-06 1.96011573617E-06 2.03500357472E-06 2.11275225181E-06 2.19347103624E-06 2.27727336903E-06 2.36427702266E-06 2.45460426636E-06 2.54838203771E-06 2.64574212082E-06 2.74682133123E-06 2.85176170793E-06 2.96071071262E-06 3.07382143671E-06 3.19125281603E-06 3.31316985384E-06 3.43974385233E-06 3.57115265291E-06 3.70758088568E-06 3.84922022838E-06 3.99626967525E-06 4.14893581611E-06 4.30743312607E-06 4.47198426628E-06 4.64282039614E-06 4.82018149743E-06 5.00431671073E-06 5.19548468470E-06 5.39395393867E-06 5.60000323895E-06 5.81392198962E-06 6.03601063809E-06 6.26658109608E-06 6.50595717676E-06 6.75447504841E-06 7.01248370537E-06 7.28034545700E-06 7.55843643511E-06 7.84714712083E-06 8.14688289148E-06 8.45806458823E-06 8.78112910538E-06 9.11653000205E-06 9.46473813719E-06 9.82624232864E-06 1.02015500374E-05 1.05911880777E-05 1.09957033544E-05 1.14156636282E-05 1.18516583098E-05 1.23042992849E-05 1.27742217695E-05 1.32620851988E-05 1.37685741492E-05 1.42943992958E-05 1.48402984055E-05 1.54070373689E-05 1.59954112708E-05 1.66062455011E-05 1.72403969086E-05 1.78987549982E-05 1.85822431735E-05 1.92918200271E-05 2.00284806789E-05 2.07932581667E-05 2.15872248878E-05 2.24114940971E-05 2.32672214609E-05 2.41556066699E-05 2.50778951138E-05 2.60353796191E-05 2.70294022528E-05 2.80613561951E-05 2.91326876822E-05 3.02448980240E-05 3.13995456971E-05 3.25982485182E-05 3.38426858993E-05 3.51346011889E-05 3.64758041019E-05 3.78681732412E-05 3.93136587155E-05 4.08142848564E-05 4.23721530378E-05 4.39894446032E-05 4.56684239036E-05 4.74114414502E-05 4.92209371872E-05 5.10994438887E-05 5.30495906842E-05 5.50741067177E-05 5.71758249461E-05 5.93576860810E-05 6.16227426807E-05 6.39741633967E-05 6.64152373822E-05 6.89493788667E-05 7.15801319057E-05 7.43111753090E-05 7.71463277573E-05 8.00895531126E-05 8.31449659302E-05 8.63168371802E-05 8.96096001858E-05 9.30278567884E-05 9.65763837455E-05 1.00260139373E-04 1.04084270440E-04 1.08054119324E-04 1.12175231441E-04 1.16453362959E-04 1.20894488801E-04 1.25504810954E-04 1.30290767102E-04 1.35259039576E-04 1.40416564655E-04 1.45770542219E-04 1.51328445769E-04 1.57098032832E-04 1.63087355764E-04 1.69304772962E-04 1.75758960514E-04 1.82458924289E-04 1.89414012486E-04 1.96633928678E-04 2.04128745347E-04 2.11908917938E-04 2.19985299460E-04 2.28369155647E-04 2.37072180701E-04 2.46106513645E-04 2.55484755302E-04 2.65219985942E-04 2.75325783598E-04 2.85816243100E-04 2.96705995844E-04 3.08010230327E-04 3.19744713486E-04 3.31925812859E-04 3.44570519610E-04 3.57696472461E-04 3.71321982544E-04 3.85466059234E-04 4.00148436987E-04 4.15389603231E-04 4.31210827349E-04 4.47634190798E-04 4.64682618411E-04 4.82379910929E-04 5.00750778811E-04 5.19820877376E-04 5.39616843325E-04 5.60166332706E-04 5.81498060371E-04 6.03641840988E-04 6.26628631672E-04 6.50490576293E-04 6.75261051527E-04 7.00974714726E-04 7.27667553668E-04 7.55376938253E-04 7.84141674244E-04 8.14002059097E-04 8.44999939978E-04 8.77178774047E-04 9.10583691075E-04 9.45261558493E-04 9.81261048943E-04 1.01863271043E-03 1.05742903915E-03 1.09770455507E-03 1.13951588039E-03 1.18292182087E-03 1.22798345029E-03 1.27476419785E-03 1.32332993890E-03 1.37374908883E-03 1.42609270029E-03 1.48043456379E-03 1.53685131178E-03 1.59542252620E-03 1.65623084948E-03 1.71936209920E-03 1.78490538623E-03 1.85295323646E-03 1.92360171601E-03 1.99695055999E-03 2.07310330453E-03 2.15216742227E-03 2.23425446086E-03 2.31948018449E-03 2.40796471826E-03 2.49983269489E-03 2.59521340373E-03 2.69424094150E-03 2.79705436441E-03 2.90379784105E-03 3.01462080554E-03 3.12967811018E-03 3.24913017677E-03 3.37314314583E-03 3.50188902243E-03 3.63554581780E-03 3.77429768499E-03 3.91833504753E-03 4.06785471904E-03 4.22306001222E-03 4.38416083502E-03 4.55137377173E-03 4.72492214645E-03 4.90503606624E-03 5.09195244073E-03 5.28591497493E-03 5.48717413155E-03 5.69598705872E-03 5.91261747883E-03 6.13733553362E-03 6.37041758047E-03 6.61214593422E-03 6.86280854855E-03 7.12269863052E-03 7.39211418130E-03 7.67135745571E-03 7.96073433283E-03 8.26055358930E-03 8.57112606662E-03 8.89276372308E-03 9.22577856094E-03 9.57048141864E-03 9.92718061767E-03 1.02961804536E-02 1.06777795198E-02 1.10722688540E-02 1.14799298948E-02 1.19010322383E-02 1.23358311842E-02 1.27845650594E-02 1.32474523106E-02 1.37246883559E-02 1.42164421871E-02 1.47228527167E-02 1.52440248621E-02 1.57800253658E-02 1.63308783491E-02 1.68965606000E-02 1.74769966013E-02 1.80720533055E-02 1.86815346693E-02 1.93051759642E-02 1.99426378837E-02 2.05935004764E-02 2.12572569367E-02 2.19333072951E-02 2.26209520540E-02 2.33193858272E-02 2.40276910443E-02 2.47448317968E-02 2.54696479047E-02 2.62008492989E-02 2.69370108197E-02 2.76765675439E-02 2.84178107630E-02 2.91588847426E-02 2.98977844047E-02 3.06323540802E-02 3.13602874877E-02 3.20791290991E-02 3.27862770572E-02 3.34789878103E-02 3.41543826293E-02 3.48094561670E-02 3.54410872112E-02 3.60460517723E-02 3.66210386265E-02 3.71626674167E-02 3.76675093826E-02 3.81321107611E-02 3.85530188550E-02 3.89268107257E-02 3.92501244088E-02 3.95196924970E-02 3.97323778662E-02 3.98852112525E-02 3.99754303119E-02 4.00005197154E-02 3.99582517528E-02 3.98467268343E-02 3.96644132037E-02 3.94101850967E-02 3.90833585134E-02 3.86837237131E-02 3.82115734980E-02 3.76677263224E-02 3.70535432631E-02 3.63709379022E-02 3.56223782294E-02 3.48108797492E-02 3.39399891038E-02 3.30137576785E-02 3.20367048624E-02 3.10137708786E-02 2.99502593864E-02 2.88517703869E-02 2.77241243215E-02 2.65732786532E-02 2.54052386325E-02 2.42259643769E-02 2.30412768237E-02 2.18567655181E-02 2.06777015795E-02 1.95089595028E-02 1.83549516963E-02 1.72195798003E-02 1.61062068486E-02 1.50176542094E-02 1.39562269441E-02 1.29237707396E-02 1.19217628766E-02 1.09514387895E-02 1.00139546371E-02 9.11058494663E-03 8.24295281501E-03 7.41328837574E-03 6.62470928937E-03 5.88078121452E-03 5.18295657206E-03 4.53179087895E-03 3.92753993852E-03 3.37017991646E-03 2.85943386877E-03 2.39480455408E-03 1.97561317060E-03 1.60104344474E-03 1.27019026807E-03 9.82111834510E-04 7.35883975673E-04 5.30655135680E-04 3.65700174846E-04 2.39692834714E-04 1.48127607875E-04 8.51607730495E-05 4.42990378791E-05 1.91493754381E-05 5.81221987014E-06 7.44032829819E-07 2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 4 1 i j (l(j)) 0.00000000000E+00 Q_int 2.48076685152E-15 2.57556190720E-15 2.67397927126E-15 2.77615735935E-15 2.88223987624E-15 2.99237601796E-15 3.10672068160E-15 3.22543468319E-15 3.34868498386E-15 3.47664492466E-15 3.60949447034E-15 3.74742046248E-15 3.89061688222E-15 4.03928512313E-15 4.19363427442E-15 4.35388141504E-15 4.52025191891E-15 4.69297977200E-15 4.87230790130E-15 5.05848851654E-15 5.25178346492E-15 5.45246459929E-15 5.66081416057E-15 5.87712517469E-15 6.10170186463E-15 6.33486007839E-15 6.57692773313E-15 6.82824527639E-15 7.08916616486E-15 7.36005736156E-15 7.64129985186E-15 7.93328917938E-15 8.23643600223E-15 8.55116667057E-15 8.87792382629E-15 9.21716702547E-15 9.56937338479E-15 9.93503825246E-15 1.03146759050E-14 1.07088202704E-14 1.11180256791E-14 1.15428676437E-14 1.19839436681E-14 1.24418740883E-14 1.29173029444E-14 1.34108988866E-14 1.39233561154E-14 1.44553953583E-14 1.50077648832E-14 1.55812415507E-14 1.61766319070E-14 1.67947733178E-14 1.74365351463E-14 1.81028199760E-14 1.87945648796E-14 1.95127427374E-14 2.02583636053E-14 2.10324761357E-14 2.18361690517E-14 2.26705726791E-14 2.35368605354E-14 2.44362509807E-14 2.53700089311E-14 2.63394476374E-14 2.73459305327E-14 2.83908731494E-14 2.94757451103E-14 3.06020721952E-14 3.17714384874E-14 3.29854886009E-14 3.42459299937E-14 3.55545353692E-14 3.69131451694E-14 3.83236701632E-14 3.97880941338E-14 4.13084766689E-14 4.28869560568E-14 4.45257522943E-14 4.62271702088E-14 4.79936026994E-14 4.98275341031E-14 5.17315436881E-14 5.37083092816E-14 5.57606110360E-14 5.78913353389E-14 6.01034788724E-14 6.24001528279E-14 6.47845872816E-14 6.72601357375E-14 6.98302798434E-14 7.24986342882E-14 7.52689518849E-14 7.81451288491E-14 8.11312102788E-14 8.42313958430E-14 8.74500456885E-14 9.07916865721E-14 9.42610182270E-14 9.78629199724E-14 1.01602457576E-13 1.05484890380E-13 1.09515678693E-13 1.13700491478E-13 1.18045214315E-13 1.22555957689E-13 1.27239065574E-13 1.32101124363E-13 1.37148972128E-13 1.42389708235E-13 1.47830703335E-13 1.53479609723E-13 1.59344372103E-13 1.65433238766E-13 1.71754773182E-13 1.78317866052E-13 1.85131747806E-13 1.92206001589E-13 1.99550576734E-13 2.07175802762E-13 2.15092403903E-13 2.23311514182E-13 2.31844693076E-13 2.40703941776E-13 2.49901720058E-13 2.59450963815E-13 2.69365103244E-13 2.79658081737E-13 2.90344375491E-13 3.01439013868E-13 3.12957600531E-13 3.24916335390E-13 3.37332037387E-13 3.50222168148E-13 3.63604856544E-13 3.77498924185E-13 3.91923911894E-13 4.06900107185E-13 4.22448572802E-13 4.38591176336E-13 4.55350620982E-13 4.72750477472E-13 4.90815217220E-13 5.09570246743E-13 5.29041943391E-13 5.49257692446E-13 5.70245925636E-13 5.92036161122E-13 6.14659045012E-13 6.38146394464E-13 6.62531242433E-13 6.87847884129E-13 7.14131925251E-13 7.41420332061E-13 7.69751483377E-13 7.99165224548E-13 8.29702923495E-13 8.61407528886E-13 8.94323630546E-13 9.28497522167E-13 9.63977266412E-13 1.00081276252E-12 1.03905581647E-12 1.07876021386E-12 1.11998179554E-12 1.16277853614E-12 1.20721062565E-12 1.25334055399E-12 1.30123319898E-12 1.35095591755E-12 1.40257864045E-12 1.45617397065E-12 1.51181728540E-12 1.56958684228E-12 1.62956388925E-12 1.69183277891E-12 1.75648108713E-12 1.82359973626E-12 1.89328312294E-12 1.96562925093E-12 2.04073986886E-12 2.11872061343E-12 2.19968115789E-12 2.28373536636E-12 2.37100145389E-12 2.46160215280E-12 2.55566488524E-12 2.65332194241E-12 2.75471067065E-12 2.85997366454E-12 2.96925896750E-12 3.08272027999E-12 3.20051717566E-12 3.32281532578E-12 3.44978673228E-12 3.58160996960E-12 3.71847043587E-12 3.86056061366E-12 4.00808034067E-12 4.16123709080E-12 4.32024626596E-12 4.48533149897E-12 4.65672496812E-12 4.83466772369E-12 5.01941002698E-12 5.21121170225E-12 5.41034250219E-12 5.61708248726E-12 5.83172241959E-12 6.05456417193E-12 6.28592115216E-12 6.52611874410E-12 6.77549476517E-12 7.03439994142E-12 7.30319840087E-12 7.58226818558E-12 7.87200178337E-12 8.17280667977E-12 8.48510593118E-12 8.80933875979E-12 9.14596117137E-12 9.49544659657E-12 9.85828655676E-12 1.02349913553E-11 1.06260907953E-11 1.10321349248E-11 1.14536948099E-11 1.18913633387E-11 1.23457560545E-11 1.28175120218E-11 1.33072947250E-11 1.38157930016E-11 1.43437220108E-11 1.48918242397E-11 1.54608705472E-11 1.60516612481E-11 1.66650272390E-11 1.73018311667E-11 1.79629686413E-11 1.86493694961E-11 1.93619990951E-11 2.01018596908E-11 2.08699918337E-11 2.16674758359E-11 2.24954332903E-11 2.33550286481E-11 2.42474708564E-11 2.51740150587E-11 2.61359643601E-11 2.71346716596E-11 2.81715415534E-11 2.92480323102E-11 3.03656579216E-11 3.15259902324E-11 3.27306611502E-11 3.39813649413E-11 3.52798606131E-11 3.66279743884E-11 3.80276022733E-11 3.94807127241E-11 4.09893494159E-11 4.25556341164E-11 4.41817696705E-11 4.58700430979E-11 4.76228288100E-11 4.94425919490E-11 5.13318918553E-11 5.32933856665E-11 5.53298320547E-11 5.74440951065E-11 5.96391483505E-11 6.19180789401E-11 6.42840919947E-11 6.67405151076E-11 6.92908030260E-11 7.19385425099E-11 7.46874573764E-11 7.75414137368E-11 8.05044254343E-11 8.35806596889E-11 8.67744429581E-11 9.00902670221E-11 9.35327953006E-11 9.71068694117E-11 1.00817515981E-10 1.04669953713E-10 1.08669600726E-10 1.12822082177E-10 1.17133238173E-10 1.21609131979E-10 1.26256058551E-10 1.31080553390E-10 1.36089401727E-10 1.41289648073E-10 1.46688606122E-10 1.52293869039E-10 1.58113320138E-10 1.64155143971E-10 1.70427837836E-10 1.76940223731E-10 1.83701460758E-10 1.90721058007E-10 1.98008887929E-10 2.05575200220E-10 2.13430636236E-10 2.21586243961E-10 2.30053493543E-10 2.38844293426E-10 2.47971007101E-10 2.57446470490E-10 2.67284009998E-10 2.77497461263E-10 2.88101188604E-10 2.99110105231E-10 3.10539694216E-10 3.22406030269E-10 3.34725802344E-10 3.47516337112E-10 3.60795623331E-10 3.74582337143E-10 3.88895868339E-10 4.03756347632E-10 4.19184674970E-10 4.35202548923E-10 4.51832497209E-10 4.69097908370E-10 4.87023064668E-10 5.05633176238E-10 5.24954416539E-10 5.45013959171E-10 5.65840016084E-10 5.87461877261E-10 6.09909951912E-10 6.33215811237E-10 6.57412232830E-10 6.82533246781E-10 7.08614183529E-10 7.35691723558E-10 7.63803948979E-10 7.92990397091E-10 8.23292115985E-10 8.54751722278E-10 8.87413461043E-10 9.21323268040E-10 9.56528834316E-10 9.93079673283E-10 1.03102719035E-09 1.07042475521E-09 1.11132777692E-09 1.15379378182E-09 1.19788249443E-09 1.24365592143E-09 1.29117843893E-09 1.34051688292E-09 1.39174064334E-09 1.44492176164E-09 1.50013503209E-09 1.55745810699E-09 1.61697160587E-09 1.67875922885E-09 1.74290787442E-09 1.80950776158E-09 1.87865255676E-09 1.95043950555E-09 2.02496956946E-09 2.10234756790E-09 2.18268232563E-09 2.26608682576E-09 2.35267836871E-09 2.44257873711E-09 2.53591436712E-09 2.63281652624E-09 2.73342149792E-09 2.83787077322E-09 2.94631124980E-09 3.05889543852E-09 3.17578167792E-09 3.29713435692E-09 3.42312414601E-09 3.55392823724E-09 3.68973059348E-09 3.83072220708E-09 3.97710136853E-09 4.12907394527E-09 4.28685367129E-09 4.45066244765E-09 4.62073065460E-09 4.79729747555E-09 4.98061123347E-09 5.17092974010E-09 5.36852065856E-09 5.57366187976E-09 5.78664191320E-09 6.00776029275E-09 6.23732799789E-09 6.47566789103E-09 6.72311517161E-09 6.98001784750E-09 7.24673722440E-09 7.52364841398E-09 7.81114086141E-09 8.10961889306E-09 8.41950228512E-09 8.74122685395E-09 9.07524506897E-09 9.42202668903E-09 9.78205942300E-09 1.01558496157E-08 1.05439229599E-08 1.09468252357E-08 1.13651230781E-08 1.17994047739E-08 1.22502810887E-08 1.27183861264E-08 1.32043782204E-08 1.37089408597E-08 1.42327836502E-08 1.47766433124E-08 1.53412847176E-08 1.59275019633E-08 1.65361194905E-08 1.71679932424E-08 1.78240118687E-08 1.85050979750E-08 1.92122094202E-08 1.99463406639E-08 2.07085241643E-08 2.14998318309E-08 2.23213765310E-08 2.31743136557E-08 2.40598427438E-08 2.49792091692E-08 2.59337058920E-08 2.69246752768E-08 2.79535109806E-08 2.90216599124E-08 3.01306242679E-08 3.12819636421E-08 3.24772972223E-08 3.37183060655E-08 3.50067354616E-08 3.63443973885E-08 3.77331730595E-08 3.91750155690E-08 4.06719526391E-08 4.22260894706E-08 4.38396117037E-08 4.55147884913E-08 4.72539756898E-08 4.90596191721E-08 5.09342582667E-08 5.28805293286E-08 5.49011694463E-08 5.69990202909E-08 5.91770321116E-08 6.14382678844E-08 6.37859076189E-08 6.62232528302E-08 6.87537311808E-08 7.13809013006E-08 7.41084577907E-08 7.69402364186E-08 7.98802195110E-08 8.29325415542E-08 8.61014950070E-08 8.93915363364E-08 9.28072922836E-08 9.63535663695E-08 1.00035345649E-07 1.03857807722E-07 1.07826328015E-07 1.11946487337E-07 1.16224079728E-07 1.20665120605E-07 1.25275855218E-07 1.30062767433E-07 1.35032588848E-07 1.40192308254E-07 1.45549181465E-07 1.51110741518E-07 1.56884809262E-07 1.62879504356E-07 1.69103256682E-07 1.75564818201E-07 1.82273275248E-07 1.89238061318E-07 1.96468970319E-07 2.03976170343E-07 2.11770217962E-07 2.19862073068E-07 2.28263114278E-07 2.36985154934E-07 2.46040459704E-07 2.55441761828E-07 2.65202281014E-07 2.75335742024E-07 2.85856393963E-07 2.96779030311E-07 3.08119009717E-07 3.19892277588E-07 3.32115388499E-07 3.44805529467E-07 3.57980544104E-07 3.71658957698E-07 3.85860003253E-07 4.00603648519E-07 4.15910624057E-07 4.31802452371E-07 4.48301478166E-07 4.65430899739E-07 4.83214801591E-07 5.01678188271E-07 5.20847019514E-07 5.40748246725E-07 5.61409850850E-07 5.82860881699E-07 6.05131498766E-07 6.28253013609E-07 6.52257933845E-07 6.77180008831E-07 7.03054277085E-07 7.29917115512E-07 7.57806290519E-07 7.86761011075E-07 8.16821983799E-07 8.48031470146E-07 8.80433345783E-07 9.14073162225E-07 9.48998210827E-07 9.85257589215E-07 1.02290227026E-06 1.06198517367E-06 1.10256124032E-06 1.14468750945E-06 1.18842319873E-06 1.23382978749E-06 1.28097110301E-06 1.32991341019E-06 1.38072550459E-06 1.43347880908E-06 1.48824747408E-06 1.54510848171E-06 1.60414175391E-06 1.66543026459E-06 1.72906015620E-06 1.79512086061E-06 1.86370522471E-06 1.93490964072E-06 2.00883418155E-06 2.08558274119E-06 2.16526318063E-06 2.24798747921E-06 2.33387189177E-06 2.42303711184E-06 2.51560844101E-06 2.61171596472E-06 2.71149473488E-06 2.81508495928E-06 2.92263219839E-06 3.03428756951E-06 3.15020795880E-06 3.27055624137E-06 3.39550150973E-06 3.52521931098E-06 3.65989189300E-06 3.79970846006E-06 3.94486543813E-06 4.09556675035E-06 4.25202410291E-06 4.41445728194E-06 4.58309446155E-06 4.75817252375E-06 4.93993739050E-06 5.12864436834E-06 5.32455850624E-06 5.52795496701E-06 5.73911941290E-06 5.95834840580E-06 6.18594982278E-06 6.42224328733E-06 6.66756061710E-06 6.92224628863E-06 7.18665791978E-06 7.46116677052E-06 7.74615826274E-06 8.04203251983E-06 8.34920492688E-06 8.66810671201E-06 8.99918554996E-06 9.34290618856E-06 9.69975109901E-06 1.00702211509E-05 1.04548363128E-05 1.08541363797E-05 1.12686817279E-05 1.16990540985E-05 1.21458574109E-05 1.26097186069E-05 1.30912885274E-05 1.35912428216E-05 1.41102828914E-05 1.46491368712E-05 1.52085606453E-05 1.57893389036E-05 1.63922862375E-05 1.70182482770E-05 1.76681028719E-05 1.83427613165E-05 1.90431696221E-05 1.97703098365E-05 2.05252014142E-05 2.13089026387E-05 2.21225120983E-05 2.29671702177E-05 2.38440608483E-05 2.47544129180E-05 2.56995021442E-05 2.66806528107E-05 2.76992396130E-05 2.87566895725E-05 2.98544840240E-05 3.09941606774E-05 3.21773157584E-05 3.34056062299E-05 3.46807520965E-05 3.60045387976E-05 3.73788196902E-05 3.88055186253E-05 4.02866326222E-05 4.18242346436E-05 4.34204764759E-05 4.50775917173E-05 4.67978988801E-05 4.85838046091E-05 5.04378070220E-05 5.23624991757E-05 5.43605726634E-05 5.64348213477E-05 5.85881452340E-05 6.08235544904E-05 6.31441736193E-05 6.55532457857E-05 6.80541373095E-05 7.06503423261E-05 7.33454876240E-05 7.61433376629E-05 7.90477997828E-05 8.20629296077E-05 8.51929366538E-05 8.84421901487E-05 9.18152250691E-05 9.53167484070E-05 9.89516456706E-05 1.02724987631E-04 1.06642037321E-04 1.10708257300E-04 1.14929317192E-04 1.19311101501E-04 1.23859717732E-04 1.28581504808E-04 1.33483041806E-04 1.38571157025E-04 1.43852937390E-04 1.49335738218E-04 1.55027193339E-04 1.60935225610E-04 1.67068057820E-04 1.73434224002E-04 1.80042581176E-04 1.86902321534E-04 1.94022985079E-04 2.01414472744E-04 2.09087060007E-04 2.17051411011E-04 2.25318593229E-04 2.33900092667E-04 2.42807829654E-04 2.52054175218E-04 2.61651968085E-04 2.71614532319E-04 2.81955695629E-04 2.92689808364E-04 3.03831763233E-04 3.15397015764E-04 3.27401605543E-04 3.39862178257E-04 3.52796008565E-04 3.66221023851E-04 3.80155828862E-04 3.94619731296E-04 4.09632768355E-04 4.25215734307E-04 4.41390209106E-04 4.58178588092E-04 4.75604112834E-04 4.93690903140E-04 5.12463990304E-04 5.31949351607E-04 5.52173946157E-04 5.73165752092E-04 5.94953805210E-04 6.17568239088E-04 6.41040326741E-04 6.65402523878E-04 6.90688513838E-04 7.16933254241E-04 7.44173025452E-04 7.72445480912E-04 8.01789699413E-04 8.32246239398E-04 8.63857195358E-04 8.96666256418E-04 9.30718767193E-04 9.66061790994E-04 1.00274417550E-03 1.04081662095E-03 1.08033175102E-03 1.12134418640E-03 1.16391062125E-03 1.20808990261E-03 1.25394311289E-03 1.30153365550E-03 1.35092734384E-03 1.40219249366E-03 1.45540001905E-03 1.51062353195E-03 1.56793944562E-03 1.62742708192E-03 1.68916878273E-03 1.75325002546E-03 1.81975954296E-03 1.88878944788E-03 1.96043536149E-03 2.03479654739E-03 2.11197604987E-03 2.19208083732E-03 2.27522195063E-03 2.36151465682E-03 2.45107860784E-03 2.54403800476E-03 2.64052176732E-03 2.74066370895E-03 2.84460271727E-03 2.95248294004E-03 3.06445397657E-03 3.18067107457E-03 3.30129533228E-03 3.42649390573E-03 3.55644022108E-03 3.69131419161E-03 3.83130243926E-03 3.97659852015E-03 4.12740315385E-03 4.28392445558E-03 4.44637817105E-03 4.61498791288E-03 4.78998539792E-03 4.97161068440E-03 5.16011240778E-03 5.35574801393E-03 5.55878398817E-03 5.76949607852E-03 5.98816951112E-03 6.21509919570E-03 6.45058991870E-03 6.69495652128E-03 6.94852405919E-03 7.21162794111E-03 7.48461404176E-03 7.76783878560E-03 8.06166919659E-03 8.36648290895E-03 8.68266813343E-03 9.01062357313E-03 9.35075828216E-03 9.70349146009E-03 1.00692521744E-02 1.04484790025E-02 1.08416195840E-02 1.12491300744E-02 1.16714744877E-02 1.21091239196E-02 1.25625556362E-02 1.30322520179E-02 1.35186993440E-02 1.40223864033E-02 1.45438029169E-02 1.50834377574E-02 1.56417769466E-02 1.62193014183E-02 1.68164845252E-02 1.74337892748E-02 1.80716652763E-02 1.87305453795E-02 1.94108419891E-02 2.01129430366E-02 2.08372075933E-02 2.15839611092E-02 2.23534902620E-02 2.31460374054E-02 2.39617946047E-02 2.48008972525E-02 2.56634172597E-02 2.65493558210E-02 2.74586357577E-02 2.83910934481E-02 2.93464703584E-02 3.03244041965E-02 3.13244197174E-02 3.23459192176E-02 3.33881727654E-02 3.44503082239E-02 3.55313011357E-02 3.66299645496E-02 3.77449388827E-02 3.88746819262E-02 4.00174591156E-02 4.11713342053E-02 4.23341604980E-02 4.35035727992E-02 4.46769802831E-02 4.58515604680E-02 4.70242545193E-02 4.81917641091E-02 4.93505500753E-02 5.04968331322E-02 5.16265968952E-02 5.27355934848E-02 5.38193519763E-02 5.48731899591E-02 5.58922284598E-02 5.68714104673E-02 5.78055232783E-02 5.86892248487E-02 5.95170743009E-02 6.02835666889E-02 6.09831720640E-02 6.16103788213E-02 6.21597412240E-02 6.26259309208E-02 6.30037921692E-02 6.32884003719E-02 6.34751234198E-02 6.35596852084E-02 6.35382305717E-02 6.34073907419E-02 6.31643483192E-02 6.28069006062E-02 6.23335200448E-02 6.17434103917E-02 6.10365571791E-02 6.02137709491E-02 5.92767217169E-02 5.82279631250E-02 5.70709447981E-02 5.58100115090E-02 5.44503879175E-02 5.29981478574E-02 5.14601674267E-02 4.98440614775E-02 4.81581035128E-02 4.64111294711E-02 4.46124264153E-02 4.27716077252E-02 4.08984770195E-02 3.90028836818E-02 3.70945735200E-02 3.51830387259E-02 3.32773718913E-02 3.13861293569E-02 2.95172095748E-02 2.76777524325E-02 2.58740655702E-02 2.41115835933E-02 2.23948657033E-02 2.07276366124E-02 1.91128746468E-02 1.75529496644E-02 1.60498118056E-02 1.46052301702E-02 1.32210782817E-02 1.18996607034E-02 1.06440724505E-02 9.45857997615E-03 8.34794629312E-03 7.31371017219E-03 6.35599321060E-03 5.47437964375E-03 4.66795475456E-03 3.93535490119E-03 3.27482893193E-03 2.68431043749E-03 2.16149994024E-03 1.70395574109E-03 1.30919174409E-03 9.74780166218E-04 6.98456623952E-04 4.78224683982E-04 3.11411383004E-04 1.91231686509E-04 1.09288796941E-04 5.65406612513E-05 2.43104704207E-05 7.33866456032E-06 9.34297452015E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 5 1 i j (l(j)) 0.00000000000E+00 Q_int 1.37375344874E-15 1.42624731151E-15 1.48074706961E-15 1.53732937231E-15 1.59607379779E-15 1.65706296509E-15 1.72038265027E-15 1.78612190708E-15 1.85437319217E-15 1.92523249518E-15 1.99879947366E-15 2.07517759330E-15 2.15447427344E-15 2.23680103808E-15 2.32227367281E-15 2.41101238761E-15 2.50314198592E-15 2.59879204017E-15 2.69809707401E-15 2.80119675152E-15 2.90823607360E-15 3.01936558194E-15 3.13474157073E-15 3.25452630647E-15 3.37888825618E-15 3.50800232435E-15 3.64205009891E-15 3.78122010664E-15 3.92570807830E-15 4.07571722391E-15 4.23145851855E-15 4.39315099909E-15 4.56102207222E-15 4.73530783430E-15 4.91625340342E-15 5.10411326409E-15 5.29915162521E-15 5.50164279161E-15 5.71187154986E-15 5.93013356882E-15 6.15673581540E-15 6.39199698636E-15 6.63624795650E-15 6.88983224399E-15 7.15310649354E-15 7.42644097793E-15 7.71022011884E-15 8.00484302746E-15 8.31072406579E-15 8.62829342946E-15 8.95799775272E-15 9.30030073662E-15 9.65568380113E-15 1.00246467623E-14 1.04077085350E-14 1.08054078630E-14 1.12183040766E-14 1.16469778791E-14 1.20920321637E-14 1.25540928613E-14 1.30338098210E-14 1.35318577236E-14 1.40489370313E-14 1.45857749720E-14 1.51431265624E-14 1.57217756702E-14 1.63225361160E-14 1.69462528182E-14 1.75938029812E-14 1.82660973291E-14 1.89640813866E-14 1.96887368089E-14 2.04410827621E-14 2.12221773566E-14 2.20331191354E-14 2.28750486191E-14 2.37491499098E-14 2.46566523564E-14 2.55988322838E-14 2.65770147878E-14 2.75925755987E-14 2.86469430164E-14 2.97415999187E-14 3.08780858474E-14 3.20579991729E-14 3.32829993430E-14 3.45548092160E-14 3.58752174841E-14 3.72460811890E-14 3.86693283337E-14 4.01469605941E-14 4.16810561341E-14 4.32737725283E-14 4.49273497966E-14 4.66441135546E-14 4.84264782843E-14 5.02769507296E-14 5.21981334226E-14 5.41927283429E-14 5.62635407184E-14 5.84134829702E-14 6.06455788090E-14 6.29629674873E-14 6.53689082149E-14 6.78667847423E-14 7.04601101202E-14 7.31525316397E-14 7.59478359623E-14 7.88499544453E-14 8.18629686711E-14 8.49911161875E-14 8.82387964674E-14 9.16105770964E-14 9.51112001968E-14 9.87455890965E-14 1.02518855254E-13 1.06436305447E-13 1.10503449234E-13 1.14726006708E-13 1.19109916535E-13 1.23661344311E-13 1.28386691232E-13 1.33292603095E-13 1.38385979648E-13 1.43673984290E-13 1.49164054149E-13 1.54863910541E-13 1.60781569828E-13 1.66925354694E-13 1.73303905849E-13 1.79926194181E-13 1.86801533375E-13 1.93939593009E-13 2.01350412156E-13 2.09044413501E-13 2.17032418003E-13 2.25325660108E-13 2.33935803555E-13 2.42874957777E-13 2.52155694933E-13 2.61791067588E-13 2.71794627074E-13 2.82180442544E-13 2.92963120763E-13 3.04157826649E-13 3.15780304601E-13 3.27846900645E-13 3.40374585419E-13 3.53380978045E-13 3.66884370906E-13 3.80903755373E-13 3.95458848515E-13 4.10570120831E-13 4.26258825037E-13 4.42547025959E-13 4.59457631564E-13 4.77014425177E-13 4.95242098932E-13 5.14166288499E-13 5.33813609138E-13 5.54211693131E-13 5.75389228644E-13 5.97376000077E-13 6.20202929950E-13 6.43902122395E-13 6.68506908305E-13 6.94051892215E-13 7.20573000969E-13 7.48107534244E-13 7.76694217016E-13 8.06373254017E-13 8.37186386284E-13 8.69176949861E-13 9.02389936748E-13 9.36872058182E-13 9.72671810326E-13 1.00983954248E-12 1.04842752790E-12 1.08849003728E-12 1.13008341514E-12 1.17326615902E-12 1.21809900176E-12 1.26464499693E-12 1.31296960752E-12 1.36314079797E-12 1.41522912977E-12 1.46930786073E-12 1.52545304798E-12 1.58374365492E-12 1.64426166234E-12 1.70709218365E-12 1.77232358463E-12 1.84004760767E-12 1.91035950084E-12 1.98335815182E-12 2.05914622700E-12 2.13783031585E-12 2.21952108081E-12 2.30433341300E-12 2.39238659371E-12 2.48380446225E-12 2.57871559006E-12 2.67725346153E-12 2.77955666179E-12 2.88576907156E-12 2.99604006954E-12 3.11052474248E-12 3.22938410332E-12 3.35278531761E-12 3.48090193864E-12 3.61391415150E-12 3.75200902653E-12 3.89538078239E-12 4.04423105924E-12 4.19876920228E-12 4.35921255624E-12 4.52578677101E-12 4.69872611902E-12 4.87827382470E-12 5.06468240658E-12 5.25821403245E-12 5.45914088801E-12 5.66774555975E-12 5.88432143235E-12 6.10917310128E-12 6.34261680125E-12 6.58498085089E-12 6.83660611457E-12 7.09784648173E-12 7.36906936468E-12 7.65065621524E-12 7.94300306130E-12 8.24652106374E-12 8.56163709472E-12 8.88879433806E-12 9.22845291249E-12 9.58109051880E-12 9.94720311169E-12 1.03273055973E-11 1.07219325572E-11 1.11316390007E-11 1.15570011447E-11 1.19986172250E-11 1.24571083368E-11 1.29331193086E-11 1.34273196093E-11 1.39404042894E-11 1.44730949586E-11 1.50261408009E-11 1.56003196280E-11 1.61964389735E-11 1.68153372281E-11 1.74578848195E-11 1.81249854360E-11 1.88175772974E-11 1.95366344752E-11 2.02831682618E-11 2.10582285931E-11 2.18629055253E-11 2.26983307676E-11 2.35656792743E-11 2.44661708969E-11 2.54010720998E-11 2.63716977417E-11 2.73794129244E-11 2.84256349133E-11 2.95118351300E-11 3.06395412223E-11 3.18103392122E-11 3.30258757271E-11 3.42878603148E-11 3.55980678489E-11 3.69583410240E-11 3.83705929479E-11 3.98368098321E-11 4.13590537849E-11 4.29394657123E-11 4.45802683283E-11 4.62837692811E-11 4.80523643989E-11 4.98885410593E-11 5.17948816873E-11 5.37740673876E-11 5.58288817154E-11 5.79622145908E-11 6.01770663635E-11 6.24765520327E-11 6.48639056277E-11 6.73424847565E-11 6.99157753281E-11 7.25873964547E-11 7.53611055422E-11 7.82408035743E-11 8.12305405990E-11 8.43345214247E-11 8.75571115337E-11 9.09028432223E-11 9.43764219745E-11 9.79827330802E-11 1.01726848506E-10 1.05614034028E-10 1.09649756639E-10 1.13839692235E-10 1.18189733600E-10 1.22705998693E-10 1.27394839252E-10 1.32262849727E-10 1.37316876555E-10 1.42564027791E-10 1.48011683099E-10 1.53667504138E-10 1.59539445332E-10 1.65635765059E-10 1.71965037267E-10 1.78536163531E-10 1.85358385574E-10 1.92441298260E-10 1.99794863094E-10 2.07429422230E-10 2.15355713016E-10 2.23584883092E-10 2.32128506075E-10 2.40998597831E-10 2.50207633376E-10 2.59768564420E-10 2.69694837584E-10 2.80000413310E-10 2.90699785497E-10 3.01808001883E-10 3.13340685210E-10 3.25314055194E-10 3.37744951341E-10 3.50650856623E-10 3.64049922075E-10 3.77960992315E-10 3.92403632051E-10 4.07398153599E-10 4.22965645444E-10 4.39128001907E-10 4.55907953929E-10 4.73329101049E-10 4.91415944586E-10 5.10193922104E-10 5.29689443185E-10 5.49929926571E-10 5.70943838729E-10 5.92760733883E-10 6.15411295582E-10 6.38927379850E-10 6.63342059993E-10 6.88689673111E-10 7.15005868390E-10 7.42327657240E-10 7.70693465348E-10 8.00143186719E-10 8.30718239785E-10 8.62461625654E-10 8.95417988590E-10 9.29633678797E-10 9.65156817610E-10 1.00203736517E-09 1.04032719069E-09 1.08008014541E-09 1.12135213831E-09 1.16420121478E-09 1.20868763822E-09 1.25487397480E-09 1.30282518149E-09 1.35260869736E-09 1.40429453845E-09 1.45795539628E-09 1.51366674000E-09 1.57150692261E-09 1.63155729112E-09 1.69390230094E-09 1.75862963471E-09 1.82583032555E-09 1.89559888515E-09 1.96803343665E-09 2.04323585267E-09 2.12131189854E-09 2.20237138112E-09 2.28652830316E-09 2.37390102365E-09 2.46461242434E-09 2.55879008246E-09 2.65656645023E-09 2.75807904110E-09 2.86347062315E-09 2.97288941989E-09 3.08648931870E-09 3.20443008729E-09 3.32687759837E-09 3.45400406294E-09 3.58598827247E-09 3.72301585039E-09 3.86527951311E-09 4.01297934108E-09 4.16632306016E-09 4.32552633378E-09 4.49081306624E-09 4.66241571762E-09 4.84057563067E-09 5.02554337027E-09 5.21757907582E-09 5.41695282707E-09 5.62394502397E-09 5.83884678104E-09 6.06196033673E-09 6.29359947857E-09 6.53408998438E-09 6.78377008052E-09 7.04299091750E-09 7.31211706389E-09 7.59152701899E-09 7.88161374515E-09 8.18278522047E-09 8.49546501250E-09 8.82009287400E-09 9.15712536134E-09 9.50703647664E-09 9.87031833435E-09 1.02474818534E-08 1.06390574756E-08 1.10455959118E-08 1.14676689164E-08 1.19058700912E-08 1.23608157206E-08 1.28331456381E-08 1.33235241258E-08 1.38326408494E-08 1.43612118276E-08 1.49099804389E-08 1.54797184675E-08 1.60712271887E-08 1.66853384952E-08 1.73229160678E-08 1.79848565894E-08 1.86720910064E-08 1.93855858380E-08 2.01263445350E-08 2.08954088915E-08 2.16938605097E-08 2.25228223213E-08 2.33834601664E-08 2.42769844332E-08 2.52046517601E-08 2.61677668032E-08 2.71676840709E-08 2.82058098287E-08 2.92836040772E-08 3.04025826049E-08 3.15643191200E-08 3.27704474639E-08 3.40226639083E-08 3.53227295413E-08 3.66724727435E-08 3.80737917595E-08 3.95286573675E-08 4.10391156507E-08 4.26072908747E-08 4.42353884747E-08 4.59256981574E-08 4.76805971206E-08 4.95025533962E-08 5.13941293214E-08 5.33579851415E-08 5.53968827514E-08 5.75136895793E-08 5.97113826189E-08 6.19930526166E-08 6.43619084170E-08 6.68212814758E-08 6.93746305447E-08 7.20255465352E-08 7.47777575683E-08 7.76351342171E-08 8.06016949496E-08 8.36816117801E-08 8.68792161355E-08 9.01990049464E-08 9.36456469708E-08 9.72239893594E-08 1.00939064472E-07 1.04796096952E-07 1.08800511078E-07 1.12957938386E-07 1.17274225591E-07 1.21755442809E-07 1.26407892091E-07 1.31238116288E-07 1.36252908245E-07 1.41459320360E-07 1.46864674497E-07 1.52476572281E-07 1.58302905788E-07 1.64351868645E-07 1.70631967546E-07 1.77152034215E-07 1.83921237829E-07 1.90949097904E-07 1.98245497685E-07 2.05820698040E-07 2.13685351890E-07 2.21850519185E-07 2.30327682458E-07 2.39128762968E-07 2.48266137460E-07 2.57752655573E-07 2.67601657900E-07 2.77826994750E-07 2.88443045619E-07 2.99464739409E-07 3.10907575417E-07 3.22787645126E-07 3.35121654831E-07 3.47926949124E-07 3.61221535283E-07 3.75024108586E-07 3.89354078597E-07 4.04231596454E-07 4.19677583197E-07 4.35713759182E-07 4.52362674618E-07 4.69647741267E-07 4.87593265358E-07 5.06224481758E-07 5.25567589447E-07 5.45649788346E-07 5.66499317559E-07 5.88145495066E-07 6.10618758939E-07 6.33950710129E-07 6.58174156886E-07 6.83323160883E-07 7.09433085090E-07 7.36540643484E-07 7.64683952658E-07 7.93902585395E-07 8.24237626297E-07 8.55731729526E-07 8.88429178763E-07 9.22375949449E-07 9.57619773403E-07 9.94210205911E-07 1.03219869538E-06 1.07163865562E-06 1.11258554098E-06 1.15509692418E-06 1.19923257734E-06 1.24505455588E-06 1.29262728579E-06 1.34201765417E-06 1.39329510318E-06 1.44653172767E-06 1.50180237646E-06 1.55918475754E-06 1.61875954724E-06 1.68061050364E-06 1.74482458420E-06 1.81149206797E-06 1.88070668245E-06 1.95256573526E-06 2.02717025087E-06 2.10462511253E-06 2.18503920962E-06 2.26852559064E-06 2.35520162203E-06 2.44518915301E-06 2.53861468681E-06 2.63560955834E-06 2.73631011870E-06 2.84085792668E-06 2.94939994761E-06 3.06208875984E-06 3.17908276894E-06 3.30054643029E-06 3.42665047998E-06 3.55757217464E-06 3.69349554036E-06 3.83461163113E-06 3.98111879714E-06 4.13322296330E-06 4.29113791844E-06 4.45508561545E-06 4.62529648297E-06 4.80200974893E-06 4.98547377639E-06 5.17594641226E-06 5.37369534931E-06 5.57899850195E-06 5.79214439638E-06 6.01343257561E-06 6.24317401993E-06 6.48169158341E-06 6.72932044708E-06 6.98640858935E-06 7.25331727441E-06 7.53042155919E-06 7.81811081978E-06 8.11678929778E-06 8.42687666761E-06 8.74880862531E-06 9.08303750000E-06 9.43003288840E-06 9.79028231379E-06 1.01642919099E-05 1.05525871311E-05 1.09557134892E-05 1.13742373191E-05 1.18087465729E-05 1.22598516447E-05 1.27281862268E-05 1.32144081980E-05 1.37192005472E-05 1.42432723300E-05 1.47873596642E-05 1.53522267612E-05 1.59386669980E-05 1.65475040296E-05 1.71795929436E-05 1.78358214594E-05 1.85171111725E-05 1.92244188467E-05 1.99587377553E-05 2.07210990735E-05 2.15125733235E-05 2.23342718759E-05 2.31873485065E-05 2.40730010144E-05 2.49924728999E-05 2.59470551080E-05 2.69380878374E-05 2.79669624187E-05 2.90351232644E-05 3.01440698929E-05 3.12953590302E-05 3.24906067910E-05 3.37314909441E-05 3.50197532628E-05 3.63572019661E-05 3.77457142526E-05 3.91872389310E-05 4.06837991511E-05 4.22374952390E-05 4.38505076403E-05 4.55250999762E-05 4.72636222155E-05 4.90685139685E-05 5.09423079061E-05 5.28876333095E-05 5.49072197562E-05 5.70039009462E-05 5.91806186742E-05 6.14404269547E-05 6.37864963039E-05 6.62221181856E-05 6.87507096276E-05 7.13758180141E-05 7.41011260623E-05 7.69304569889E-05 7.98677798754E-05 8.29172152378E-05 8.60830408111E-05 8.93696975550E-05 9.27817958898E-05 9.63241221727E-05 1.00001645422E-04 1.03819524299E-04 1.07783114362E-04 1.11897975592E-04 1.16169880218E-04 1.20604820836E-04 1.25209018840E-04 1.29988933188E-04 1.34951269496E-04 1.40102989486E-04 1.45451320803E-04 1.51003767207E-04 1.56768119160E-04 1.62752464829E-04 1.68965201505E-04 1.75415047476E-04 1.82111054354E-04 1.89062619884E-04 1.96279501249E-04 2.03771828901E-04 2.11550120916E-04 2.19625297929E-04 2.28008698632E-04 2.36712095898E-04 2.45747713518E-04 2.55128243608E-04 2.64866864692E-04 2.74977260494E-04 2.85473639476E-04 2.96370755139E-04 3.07683927125E-04 3.19429063153E-04 3.31622681821E-04 3.44281936311E-04 3.57424639027E-04 3.71069287214E-04 3.85235089595E-04 3.99941994057E-04 4.15210716445E-04 4.31062770495E-04 4.47520498967E-04 4.64607106003E-04 4.82346690787E-04 5.00764282544E-04 5.19885876926E-04 5.39738473860E-04 5.60350116898E-04 5.81749934140E-04 6.03968180780E-04 6.27036283358E-04 6.50986885767E-04 6.75853897086E-04 7.01672541316E-04 7.28479409087E-04 7.56312511410E-04 7.85211335548E-04 8.15216903088E-04 8.46371830282E-04 8.78720390762E-04 9.12308580671E-04 9.47184186338E-04 9.83396854536E-04 1.02099816544E-03 1.06004170835E-03 1.10058316027E-03 1.14268036739E-03 1.18639342962E-03 1.23178478818E-03 1.27891931636E-03 1.32786441348E-03 1.37869010217E-03 1.43146912895E-03 1.48627706825E-03 1.54319242973E-03 1.60229676924E-03 1.66367480299E-03 1.72741452538E-03 1.79360733008E-03 1.86234813460E-03 1.93373550807E-03 2.00787180225E-03 2.08486328560E-03 2.16482028024E-03 2.24785730153E-03 2.33409320021E-03 2.42365130645E-03 2.51665957583E-03 2.61325073652E-03 2.71356243734E-03 2.81773739594E-03 2.92592354666E-03 3.03827418712E-03 3.15494812270E-03 3.27610980797E-03 3.40192948394E-03 3.53258330977E-03 3.66825348771E-03 3.80912837945E-03 3.95540261234E-03 4.10727717337E-03 4.26495948874E-03 4.42866348674E-03 4.59860964108E-03 4.77502499194E-03 4.95814314139E-03 5.14820421984E-03 5.34545481946E-03 5.55014789062E-03 5.76254259672E-03 5.98290412255E-03 6.21150343082E-03 6.44861696132E-03 6.69452626638E-03 6.94951757633E-03 7.21388128774E-03 7.48791136726E-03 7.77190466300E-03 8.06616011524E-03 8.37097785783E-03 8.68665820098E-03 9.01350048618E-03 9.35180180322E-03 9.70185555933E-03 1.00639498901E-02 1.04383659015E-02 1.08253757331E-02 1.12252404308E-02 1.16382076202E-02 1.20645089696E-02 1.25043574337E-02 1.29579442691E-02 1.34254358133E-02 1.39069700217E-02 1.44026527560E-02 1.49125538219E-02 1.54367027534E-02 1.59750843462E-02 1.65276339434E-02 1.70942324807E-02 1.76747013037E-02 1.82687967702E-02 1.88762046607E-02 1.94965344200E-02 2.01293132631E-02 2.07739801822E-02 2.14298799004E-02 2.20962568236E-02 2.27722490511E-02 2.34568825142E-02 2.41490653190E-02 2.48475823817E-02 2.55510904505E-02 2.62581136212E-02 2.69670394599E-02 2.76761158570E-02 2.83834487444E-02 2.90870008157E-02 2.97845913968E-02 3.04738976177E-02 3.11524570414E-02 3.18176719073E-02 3.24668151448E-02 3.30970383090E-02 3.37053815827E-02 3.42887859796E-02 3.48441078635E-02 3.53681358839E-02 3.58576103964E-02 3.63092454114E-02 3.67197530714E-02 3.70858706197E-02 3.74043897696E-02 3.76721883312E-02 3.78862638904E-02 3.80437692679E-02 3.81420494174E-02 3.81786793450E-02 3.81515025579E-02 3.80586694710E-02 3.78986751259E-02 3.76703955038E-02 3.73731216476E-02 3.70065907540E-02 3.65710133505E-02 3.60670956466E-02 3.54960561417E-02 3.48596355870E-02 3.41600994468E-02 3.34002320780E-02 3.25833219605E-02 3.17131374582E-02 3.07938927814E-02 2.98302040495E-02 2.88270356246E-02 2.77896371961E-02 2.67234724422E-02 2.56341404689E-02 2.45272916281E-02 2.34085397242E-02 2.22833730358E-02 2.11570669733E-02 2.00346015614E-02 1.89205872548E-02 1.78192028371E-02 1.67341493080E-02 1.56686236980E-02 1.46253166424E-02 1.36064372838E-02 1.26137686149E-02 1.16487557276E-02 1.07126285627E-02 9.80655966920E-03 8.93185616279E-03 8.09018354346E-03 7.28381729032E-03 6.51591623597E-03 5.79009726566E-03 5.10794701545E-03 4.47019673342E-03 3.87729808917E-03 3.32943862501E-03 2.82656287347E-03 2.36839900230E-03 1.95449067699E-03 1.58423364268E-03 1.25691632232E-03 9.71763510593E-04 7.27982017926E-04 5.24806890665E-04 3.61546609956E-04 2.36867325171E-04 1.46294220913E-04 8.40370112255E-05 4.36670980760E-05 1.88541719622E-05 5.71587466047E-06 7.30825774786E-07 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 6 1 i j (l(j)) 0.00000000000E+00 Q_int 2.37574732945E-15 2.46652937945E-15 2.56078039289E-15 2.65863292577E-15 2.76022459935E-15 2.86569829367E-15 2.97520234848E-15 3.08889077192E-15 3.20692345705E-15 3.32946640681E-15 3.45669196740E-15 3.58877907074E-15 3.72591348609E-15 3.86828808132E-15 4.01610309415E-15 4.16956641383E-15 4.32889387343E-15 4.49430955344E-15 4.66604609694E-15 4.84434503673E-15 5.02945713508E-15 5.22164273640E-15 5.42117213335E-15 5.62832594702E-15 5.84339552162E-15 6.06668333417E-15 6.29850341995E-15 6.53918181418E-15 6.78905701049E-15 7.04848043707E-15 7.31781695087E-15 7.59744535074E-15 7.88775891020E-15 8.18916593054E-15 8.50209031506E-15 8.82697216523E-15 9.16426839971E-15 9.51445339691E-15 9.87801966218E-15 1.02554785205E-14 1.06473608356E-14 1.10542177566E-14 1.14766214931E-14 1.19151661199E-14 1.23704684126E-14 1.28431687153E-14 1.33339318405E-14 1.38434480048E-14 1.43724337992E-14 1.49216331973E-14 1.54918186012E-14 1.60837919280E-14 1.66983857378E-14 1.73364644045E-14 1.79989253313E-14 1.86867002130E-14 1.94007563466E-14 2.01420979909E-14 2.09117677800E-14 2.17108481888E-14 2.25404630558E-14 2.34017791637E-14 2.42960078801E-14 2.52244068615E-14 2.61882818221E-14 2.71889883698E-14 2.82279339131E-14 2.93065796404E-14 3.04264425751E-14 3.15890977089E-14 3.27961802171E-14 3.40493877586E-14 3.53504828630E-14 3.67012954095E-14 3.81037252011E-14 3.95597446357E-14 4.10714014805E-14 4.26408217522E-14 4.42702127066E-14 4.59618659433E-14 4.77181606284E-14 4.95415668407E-14 5.14346490458E-14 5.34000697024E-14 5.54405930072E-14 5.75590887823E-14 5.97585365117E-14 6.20420295311E-14 6.44127793788E-14 6.68741203126E-14 6.94295139987E-14 7.20825543806E-14 7.48369727336E-14 7.76966429123E-14 8.06655867992E-14 8.37479799610E-14 8.69481575208E-14 9.02706202559E-14 9.37200409269E-14 9.73012708500E-14 1.01019346720E-13 1.04879497694E-13 1.08887152745E-13 1.13047948299E-13 1.17367736159E-13 1.21852591740E-13 1.26508822609E-13 1.31342977358E-13 1.36361854812E-13 1.41572513597E-13 1.46982282059E-13 1.52598768577E-13 1.58429872260E-13 1.64483794059E-13 1.70769048299E-13 1.77294474655E-13 1.84069250582E-13 1.91102904226E-13 1.98405327820E-13 2.05986791603E-13 2.13857958255E-13 2.22029897904E-13 2.30514103684E-13 2.39322507909E-13 2.48467498848E-13 2.57961938152E-13 2.67819178941E-13 2.78053084583E-13 2.88678048195E-13 2.99709012883E-13 3.11161492759E-13 3.23051594758E-13 3.35396041297E-13 3.48212193788E-13 3.61518077056E-13 3.75332404693E-13 3.89674605373E-13 4.04564850178E-13 4.20024080970E-13 4.36074039838E-13 4.52737299681E-13 4.70037295956E-13 4.87998359630E-13 5.06645751411E-13 5.26005697265E-13 5.46105425305E-13 5.66973204087E-13 5.88638382361E-13 6.11131430355E-13 6.34483982624E-13 6.58728882540E-13 6.83900228491E-13 7.10033421827E-13 7.37165216658E-13 7.65333771540E-13 7.94578703145E-13 8.24941141975E-13 8.56463790213E-13 8.89190981776E-13 9.23168744668E-13 9.58444865718E-13 9.95068957780E-13 1.03309252952E-12 1.07256905785E-12 1.11355406313E-12 1.15610518730E-12 1.20028227486E-12 1.24614745714E-12 1.29376523959E-12 1.34320259258E-12 1.39452904551E-12 1.44781678468E-12 1.50314075473E-12 1.56057876413E-12 1.62021159452E-12 1.68212311441E-12 1.74640039705E-12 1.81313384298E-12 1.88241730709E-12 1.95434823065E-12 2.02902777840E-12 2.10656098072E-12 2.18705688147E-12 2.27062869127E-12 2.35739394672E-12 2.44747467577E-12 2.54099756927E-12 2.63809415920E-12 2.73890100362E-12 2.84355987877E-12 2.95221797842E-12 3.06502812092E-12 3.18214896411E-12 3.30374522846E-12 3.42998792874E-12 3.56105461454E-12 3.69712961996E-12 3.83840432290E-12 3.98507741415E-12 4.13735517692E-12 4.29545177687E-12 4.45958956338E-12 4.62999938223E-12 4.80692090029E-12 4.99060294257E-12 5.18130384219E-12 5.37929180367E-12 5.58484528018E-12 5.79825336514E-12 6.01981619879E-12 6.24984539035E-12 6.48866445622E-12 6.73660927502E-12 6.99402855997E-12 7.26128434930E-12 7.53875251546E-12 7.82682329372E-12 8.12590183101E-12 8.43640875575E-12 8.75878076940E-12 9.09347126065E-12 9.44095094308E-12 9.80170851715E-12 1.01762513576E-11 1.05651062268E-11 1.09688200161E-11 1.13879605142E-11 1.18231172066E-11 1.22749021037E-11 1.27439506026E-11 1.32309223798E-11 1.37365023194E-11 1.42614014764E-11 1.48063580766E-11 1.53721385547E-11 1.59595386327E-11 1.65693844384E-11 1.72025336679E-11 1.78598767912E-11 1.85423383053E-11 1.92508780338E-11 1.99864924772E-11 2.07502162143E-11 2.15431233570E-11 2.23663290613E-11 2.32209910955E-11 2.41083114687E-11 2.50295381207E-11 2.59859666781E-11 2.69789422755E-11 2.80098614480E-11 2.90801740951E-11 3.01913855196E-11 3.13450585453E-11 3.25428157141E-11 3.37863415689E-11 3.50773850219E-11 3.64177618151E-11 3.78093570733E-11 3.92541279558E-11 4.07541064088E-11 4.23114020230E-11 4.39282050010E-11 4.56067892373E-11 4.73495155163E-11 4.91588348327E-11 5.10372918386E-11 5.29875284222E-11 5.50122874234E-11 5.71144164916E-11 5.92968720903E-11 6.15627236556E-11 6.39151579124E-11 6.63574833570E-11 6.88931349097E-11 7.15256787458E-11 7.42588173113E-11 7.70963945299E-11 8.00424012092E-11 8.31009806533E-11 8.62764344903E-11 8.95732287217E-11 9.29960000040E-11 9.65495621692E-11 1.00238912995E-10 1.04069241235E-10 1.08045933915E-10 1.12174583907E-10 1.16460997802E-10 1.20911204069E-10 1.25531461538E-10 1.30328268200E-10 1.35308370348E-10 1.40478772064E-10 1.45846745069E-10 1.51419838951E-10 1.57205891783E-10 1.63213041144E-10 1.69449735569E-10 1.75924746425E-10 1.82647180251E-10 1.89626491566E-10 1.96872496162E-10 2.04395384913E-10 2.12205738106E-10 2.20314540321E-10 2.28733195881E-10 2.37473544887E-10 2.46547879878E-10 2.55968963110E-10 2.65750044513E-10 2.75904880321E-10 2.86447752419E-10 2.97393488432E-10 3.08757482577E-10 3.20555717313E-10 3.32804785819E-10 3.45521915332E-10 3.58724991375E-10 3.72432582909E-10 3.86663968454E-10 4.01439163195E-10 4.16778947138E-10 4.32704894332E-10 4.49239403212E-10 4.66405728099E-10 4.84228011905E-10 5.02731320089E-10 5.21941675910E-10 5.41886097023E-10 5.62592633479E-10 5.84090407176E-10 6.06409652811E-10 6.29581760408E-10 6.53639319463E-10 6.78616164777E-10 7.04547424040E-10 7.31469567240E-10 7.59420457948E-10 7.88439406575E-10 8.18567225654E-10 8.49846287241E-10 8.82320582506E-10 9.16035783604E-10 9.51039307905E-10 9.87380384686E-10 1.02511012436E-09 1.06428159038E-09 1.10494987382E-09 1.14717217090E-09 1.19100786342E-09 1.23651860226E-09 1.28376839408E-09 1.33282369137E-09 1.38375348586E-09 1.43662940562E-09 1.49152581571E-09 1.54851992284E-09 1.60769188392E-09 1.66912491879E-09 1.73290542728E-09 1.79912311069E-09 1.86787109799E-09 1.93924607674E-09 2.01334842912E-09 2.09028237308E-09 2.17015610893E-09 2.25308197148E-09 2.33917658805E-09 2.42856104250E-09 2.52136104549E-09 2.61770711132E-09 2.71773474145E-09 2.82158461507E-09 2.92940278696E-09 3.04134089290E-09 3.15755636292E-09 3.27821264271E-09 3.40347942348E-09 3.53353288063E-09 3.66855592148E-09 3.80873844256E-09 3.95427759664E-09 4.10537806999E-09 4.26225237028E-09 4.42512112544E-09 4.59421339391E-09 4.76976698682E-09 4.95202880241E-09 5.14125517331E-09 5.33771222696E-09 5.54167625995E-09 5.75343412656E-09 5.97328364222E-09 6.20153400226E-09 6.43850621687E-09 6.68453356246E-09 6.93996205039E-09 7.20515091363E-09 7.48047311191E-09 7.76631585625E-09 8.06308115355E-09 8.37118637191E-09 8.69106482762E-09 9.02316639452E-09 9.36795813674E-09 9.72592496548E-09 1.00975703210E-08 1.04834168807E-08 1.08840072940E-08 1.12999049456E-08 1.17316947479E-08 1.21799839633E-08 1.26454030585E-08 1.31286065910E-08 1.36302741296E-08 1.41511112102E-08 1.46918503278E-08 1.52532519669E-08 1.58361056709E-08 1.64412311521E-08 1.70694794452E-08 1.77217341033E-08 1.83989124410E-08 1.91019668243E-08 1.98318860099E-08 2.05896965353E-08 2.13764641633E-08 2.21932953798E-08 2.30413389505E-08 2.39217875362E-08 2.48358793699E-08 2.57848999982E-08 2.67701840892E-08 2.77931173093E-08 2.88551382718E-08 2.99577405601E-08 3.11024748280E-08 3.22909509803E-08 3.35248404368E-08 3.48058784825E-08 3.61358667082E-08 3.75166755438E-08 3.89502468885E-08 4.04385968417E-08 4.19838185378E-08 4.35880850900E-08 4.52536526461E-08 4.69828635608E-08 4.87781496899E-08 5.06420358099E-08 5.25771431680E-08 5.45861931688E-08 5.66720112003E-08 5.88375306074E-08 6.10857968166E-08 6.34199716182E-08 6.58433376126E-08 6.83593028259E-08 7.09714055022E-08 7.36833190788E-08 7.64988573518E-08 7.94219798384E-08 8.24567973447E-08 8.56075777459E-08 8.88787519876E-08 9.22749203157E-08 9.58008587453E-08 9.94615257756E-08 1.03262069362E-07 1.07207834156E-07 1.11304369017E-07 1.15557434818E-07 1.19973012541E-07 1.24557311691E-07 1.29316779025E-07 1.34258107615E-07 1.39388246259E-07 1.44714409253E-07 1.50244086532E-07 1.55985054199E-07 1.61945385464E-07 1.68133461986E-07 1.74557985665E-07 1.81227990871E-07 1.88152857148E-07 1.95342322398E-07 2.02806496576E-07 2.10555875898E-07 2.18601357602E-07 2.26954255262E-07 2.35626314699E-07 2.44629730491E-07 2.53977163115E-07 2.63681756744E-07 2.73757157730E-07 2.84217533779E-07 2.95077593877E-07 3.06352608957E-07 3.18058433372E-07 3.30211527178E-07 3.42828979271E-07 3.55928531411E-07 3.69528603157E-07 3.83648317759E-07 3.98307529036E-07 4.13526849285E-07 4.29327678247E-07 4.45732233192E-07 4.62763580137E-07 4.80445666273E-07 4.98803353614E-07 5.17862453945E-07 5.37649765092E-07 5.58193108589E-07 5.79521368773E-07 6.01664533376E-07 6.24653735669E-07 6.48521298210E-07 6.73300778267E-07 6.99027014970E-07 7.25736178271E-07 7.53465819763E-07 7.82254925449E-07 8.12143970515E-07 8.43174976206E-07 8.75391568863E-07 9.08839041217E-07 9.43564416027E-07 9.79616512135E-07 1.01704601306E-06 1.05590553819E-06 1.09624971670E-06 1.13813526432E-06 1.18162106297E-06 1.22676824349E-06 1.27364027147E-06 1.32230303647E-06 1.37282494449E-06 1.42527701406E-06 1.47973297602E-06 1.53626937704E-06 1.59496568709E-06 1.65590441111E-06 1.71917120479E-06 1.78485499491E-06 1.85304810417E-06 1.92384638082E-06 1.99734933324E-06 2.07366026965E-06 2.15288644315E-06 2.23513920227E-06 2.32053414728E-06 2.40919129246E-06 2.50123523459E-06 2.59679532778E-06 2.69600586506E-06 2.79900626683E-06 2.90594127653E-06 3.01696116374E-06 3.13222193507E-06 3.25188555304E-06 3.37612016333E-06 3.50510033066E-06 3.63900728374E-06 3.77802916944E-06 3.92236131675E-06 4.07220651074E-06 4.22777527697E-06 4.38928617675E-06 4.55696611364E-06 4.73105065162E-06 4.91178434540E-06 5.09942108328E-06 5.29422444313E-06 5.49646806183E-06 5.70643601888E-06 5.92442323455E-06 6.15073588322E-06 6.38569182246E-06 6.62962103843E-06 6.88286610824E-06 7.14578267991E-06 7.41873997061E-06 7.70212128385E-06 7.99632454632E-06 8.30176286522E-06 8.61886510678E-06 8.94807649673E-06 9.28985924367E-06 9.64469318614E-06 1.00130764643E-05 1.03955262171E-05 1.07925793062E-05 1.12047930667E-05 1.16327460877E-05 1.20770390211E-05 1.25382954221E-05 1.30171626212E-05 1.35143126298E-05 1.40304430794E-05 1.45662781972E-05 1.51225698187E-05 1.57000984383E-05 1.62996743001E-05 1.69221385302E-05 1.75683643120E-05 1.82392581056E-05 1.89357609143E-05 1.96588495986E-05 2.04095382400E-05 2.11888795571E-05 2.19979663748E-05 2.28379331498E-05 2.37099575531E-05 2.46152621138E-05 2.55551159238E-05 2.65308364082E-05 2.75437911625E-05 2.85953998589E-05 2.96871362256E-05 3.08205301008E-05 3.19971695642E-05 3.32187031497E-05 3.44868421418E-05 3.58033629586E-05 3.71701096252E-05 3.85889963412E-05 4.00620101447E-05 4.15912136773E-05 4.31787480540E-05 4.48268358414E-05 4.65377841484E-05 4.83139878345E-05 5.01579328385E-05 5.20721996338E-05 5.40594668136E-05 5.61225148128E-05 5.82642297691E-05 6.04876075309E-05 6.27957578168E-05 6.51919085317E-05 6.76794102462E-05 7.02617408452E-05 7.29425103521E-05 7.57254659350E-05 7.86144971025E-05 8.16136410948E-05 8.47270884792E-05 8.79591889567E-05 9.13144573868E-05 9.47975800415E-05 9.84134210941E-05 1.02167029353E-04 1.06063645250E-04 1.10108708094E-04 1.14307863593E-04 1.18666971670E-04 1.23192114559E-04 1.27889605227E-04 1.32765996092E-04 1.37828088085E-04 1.43082940053E-04 1.48537878508E-04 1.54200507753E-04 1.60078720390E-04 1.66180708217E-04 1.72514973550E-04 1.79090340960E-04 1.85915969459E-04 1.93001365152E-04 2.00356394359E-04 2.07991297238E-04 2.15916701925E-04 2.24143639205E-04 2.32683557743E-04 2.41548339891E-04 2.50750318094E-04 2.60302291917E-04 2.70217545723E-04 2.80509867016E-04 2.91193565487E-04 3.02283492781E-04 3.13795063017E-04 3.25744274087E-04 3.38147729774E-04 3.51022662703E-04 3.64386958175E-04 3.78259178911E-04 3.92658590740E-04 4.07605189267E-04 4.23119727572E-04 4.39223744958E-04 4.55939596810E-04 4.73290485602E-04 4.91300493089E-04 5.09994613746E-04 5.29398789485E-04 5.49539945724E-04 5.70446028834E-04 5.92146045045E-04 6.14670100848E-04 6.38049444969E-04 6.62316511963E-04 6.87504967502E-04 7.13649755424E-04 7.40787146607E-04 7.68954789745E-04 7.98191764102E-04 8.28538634318E-04 8.60037507357E-04 8.92732091667E-04 9.26667758656E-04 9.61891606563E-04 9.98452526821E-04 1.03640127301E-03 1.07579053249E-03 1.11667500087E-03 1.15911145928E-03 1.20315885480E-03 1.24887838384E-03 1.29633357891E-03 1.34559039863E-03 1.39671732131E-03 1.44978544208E-03 1.50486857371E-03 1.56204335142E-03 1.62138934149E-03 1.68298915414E-03 1.74692856057E-03 1.81329661439E-03 1.88218577754E-03 1.95369205087E-03 2.02791510943E-03 2.10495844263E-03 2.18492949938E-03 2.26793983836E-03 2.35410528336E-03 2.44354608396E-03 2.53638708153E-03 2.63275788055E-03 2.73279302542E-03 2.83663218259E-03 2.94442032821E-03 3.05630794103E-03 3.17245120060E-03 3.29301219064E-03 3.41815910734E-03 3.54806647243E-03 3.68291535069E-03 3.82289357159E-03 3.96819595463E-03 4.11902453776E-03 4.27558880847E-03 4.43810593667E-03 4.60680100856E-03 4.78190726059E-03 4.96366631237E-03 5.15232839718E-03 5.34815258875E-03 5.55140702263E-03 5.76236911023E-03 5.98132574357E-03 6.20857348818E-03 6.44441876184E-03 6.68917799590E-03 6.94317777613E-03 7.20675495947E-03 7.48025676262E-03 7.76404081808E-03 8.05847519282E-03 8.36393836431E-03 8.68081914794E-03 9.00951656962E-03 9.35043967659E-03 9.70400727892E-03 1.00706476135E-02 1.04507979220E-02 1.08449039329E-02 1.12534192377E-02 1.16768045508E-02 1.21155268404E-02 1.25700583193E-02 1.30408752821E-02 1.35284567740E-02 1.40332830790E-02 1.45558340102E-02 1.50965869871E-02 1.56560148850E-02 1.62345836369E-02 1.68327495742E-02 1.74509564859E-02 1.80896323811E-02 1.87491859359E-02 1.94300026091E-02 2.01324404100E-02 2.08568253017E-02 2.16034462283E-02 2.23725497505E-02 2.31643342814E-02 2.39789439130E-02 2.48164618290E-02 2.56769033030E-02 2.65602082838E-02 2.74662335769E-02 2.83947446349E-02 2.93454069771E-02 3.03177772654E-02 3.13112940719E-02 3.23252683829E-02 3.33588738932E-02 3.44111371565E-02 3.54809276676E-02 3.65669479685E-02 3.76677238777E-02 3.87815949639E-02 3.99067053925E-02 4.10409952950E-02 4.21821928211E-02 4.33278070540E-02 4.44751219817E-02 4.56211917319E-02 4.67628372931E-02 4.78966449572E-02 4.90189667267E-02 5.01259229418E-02 5.12134073842E-02 5.22770951181E-02 5.33124533244E-02 5.43147553773E-02 5.52790983977E-02 5.62004244965E-02 5.70735458953E-02 5.78931740725E-02 5.86539530404E-02 5.93504968030E-02 5.99774309819E-02 6.05294385202E-02 6.10013092949E-02 6.13879933694E-02 6.16846575174E-02 6.18867445376E-02 6.19900347580E-02 6.19907090072E-02 6.18854122021E-02 6.16713165739E-02 6.13461834345E-02 6.09084222658E-02 6.03571458141E-02 5.96922197843E-02 5.89143056674E-02 5.80248951986E-02 5.70263349464E-02 5.59218395748E-02 5.47154924135E-02 5.34122321102E-02 5.20178243475E-02 5.05388178652E-02 4.89824843639E-02 4.73567422550E-02 4.56700646860E-02 4.39313727819E-02 4.21499156194E-02 4.03351390562E-02 3.84965461787E-02 3.66435527742E-02 3.47853418687E-02 3.29307219589E-02 3.10879940908E-02 2.92648333558E-02 2.74681906562E-02 2.57042207011E-02 2.39782420943E-02 2.22947350288E-02 2.06573814882E-02 1.90691519342E-02 1.75324412213E-02 1.60492549161E-02 1.46214453045E-02 1.32509941669E-02 1.19403369183E-02 1.06927199923E-02 9.51258046358E-03 8.40487969749E-03 7.37141200673E-03 6.41258627429E-03 5.52829219619E-03 4.71793253802E-03 3.98046615063E-03 3.31446156147E-03 2.71816066517E-03 2.18955171366E-03 1.72645045598E-03 1.32658790836E-03 9.87702852418E-04 7.07636774958E-04 4.84428587316E-04 3.15364195220E-04 1.93569075903E-04 1.10542588732E-04 5.71293341454E-05 2.45351616487E-05 7.39769454861E-06 9.40603652411E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 7 2 i j (l(j)) 0.00000000000E+00 Q_int -4.51138142766E-18 -4.74268489904E-18 -4.98584755295E-18 -5.24147742268E-18 -5.51021371604E-18 -5.79272841374E-18 -6.08972794968E-18 -6.40195497738E-18 -6.73019022703E-18 -7.07525445773E-18 -7.43801050978E-18 -7.81936546224E-18 -8.22027290112E-18 -8.64173530384E-18 -9.08480654592E-18 -9.55059453622E-18 -1.00402639873E-17 -1.05550393279E-17 -1.10962077645E-17 -1.16651225000E-17 -1.22632061175E-17 -1.28919541376E-17 -1.35529387578E-17 -1.42478127840E-17 -1.49783137632E-17 -1.57462683282E-17 -1.65535967654E-17 -1.74023178164E-17 -1.82945537259E-17 -1.92325355484E-17 -2.02186087269E-17 -2.12552389581E-17 -2.23450183572E-17 -2.34906719405E-17 -2.46950644386E-17 -2.59612074600E-17 -2.72922670217E-17 -2.86915714658E-17 -3.01626197823E-17 -3.17090903580E-17 -3.33348501749E-17 -3.50439644792E-17 -3.68407069468E-17 -3.87295703696E-17 -4.07152778900E-17 -4.28027948109E-17 -4.49973410118E-17 -4.73044040012E-17 -4.97297526379E-17 -5.22794515569E-17 -5.49598763332E-17 -5.77777294247E-17 -6.07400569318E-17 -6.38542662158E-17 -6.71281444220E-17 -7.05698779508E-17 -7.41880729284E-17 -7.79917767267E-17 -8.19905005859E-17 -8.61942433983E-17 -9.06135167100E-17 -9.52593710058E-17 -1.00143423341E-16 -1.05277886390E-16 -1.10675598983E-16 -1.16350058214E-16 -1.22315453186E-16 -1.28586700493E-16 -1.35179481518E-16 -1.42110281647E-16 -1.49396431491E-16 -1.57056150217E-16 -1.65108591111E-16 -1.73573889470E-16 -1.82473212946E-16 -1.91828814484E-16 -2.01664087957E-16 -2.12003626673E-16 -2.22873284860E-16 -2.34300242326E-16 -2.46313072413E-16 -2.58941813453E-16 -2.72218043873E-16 -2.86174961163E-16 -3.00847464883E-16 -3.16272243932E-16 -3.32487868290E-16 -3.49534885461E-16 -3.67455921863E-16 -3.86295789419E-16 -4.06101597606E-16 -4.26922871258E-16 -4.48811674400E-16 -4.71822740435E-16 -4.96013609010E-16 -5.21444769890E-16 -5.48179814218E-16 -5.76285593525E-16 -6.05832386890E-16 -6.36894076680E-16 -6.69548333290E-16 -7.03876809362E-16 -7.39965343957E-16 -7.77904177199E-16 -8.17788175921E-16 -8.59717070883E-16 -9.03795706149E-16 -9.50134301253E-16 -9.98848726803E-16 -1.05006079422E-15 -1.10389856034E-15 -1.16049664758E-15 -1.21999658064E-15 -1.28254714032E-15 -1.34830473557E-15 -1.41743379460E-15 -1.49010717605E-15 -1.56650660119E-15 -1.64682310834E-15 -1.73125753059E-15 -1.82002099791E-15 -1.91333546518E-15 -2.01143426713E-15 -2.11456270182E-15 -2.22297864399E-15 -2.33695318992E-15 -2.45677133528E-15 -2.58273268779E-15 -2.71515221636E-15 -2.85436103873E-15 -3.00070724937E-15 -3.15455678996E-15 -3.31629436440E-15 -3.48632440077E-15 -3.66507206261E-15 -3.85298431208E-15 -4.05053102754E-15 -4.25820617857E-15 -4.47652906106E-15 -4.70604559578E-15 -4.94732969346E-15 -5.20098468983E-15 -5.46764485433E-15 -5.74797697604E-15 -6.04268203107E-15 -6.35249693531E-15 -6.67819638715E-15 -7.02059480458E-15 -7.38054836168E-15 -7.75895712952E-15 -8.15676732676E-15 -8.57497368573E-15 -9.01462193975E-15 -9.47681143802E-15 -9.96269789454E-15 -1.04734962780E-14 -1.10104838500E-14 -1.15750033584E-14 -1.21684663955E-14 -1.27923569272E-14 -1.34482350042E-14 -1.41377406625E-14 -1.48625980244E-14 -1.56246196100E-14 -1.64257108692E-14 -1.72678749463E-14 -1.81532176891E-14 -1.90839529141E-14 -2.00624079430E-14 -2.10910294216E-14 -2.21723894376E-14 -2.33091919528E-14 -2.45042795636E-14 -2.57606406097E-14 -2.70814166459E-14 -2.84699102980E-14 -2.99295935209E-14 -3.14641162802E-14 -3.30773156793E-14 -3.47732255538E-14 -3.65560865585E-14 -3.84303567710E-14 -4.04007228390E-14 -4.24721117000E-14 -4.46497029005E-14 -4.69389415478E-14 -4.93455519259E-14 -5.18755518084E-14 -5.45352675069E-14 -5.73313496894E-14 -6.02707900106E-14 -6.33609385949E-14 -6.66095224151E-14 -7.00246646140E-14 -7.36149048163E-14 -7.73892204823E-14 -8.13570493562E-14 -8.55283130647E-14 -8.99134419270E-14 -9.45234010355E-14 -9.93697176742E-14 -1.04464510143E-13 -1.09820518059E-13 -1.15451134213E-13 -1.21370438059E-13 -1.27593230917E-13 -1.34135072987E-13 -1.41012322257E-13 -1.48242175404E-13 -1.55842710799E-13 -1.63832933706E-13 -1.72232823810E-13 -1.81063385176E-13 -1.90346698767E-13 -2.00105977659E-13 -2.10365625086E-13 -2.21151295462E-13 -2.32489958527E-13 -2.44409966786E-13 -2.56941126407E-13 -2.70114771749E-13 -2.83963843715E-13 -2.98522972120E-13 -3.13828562284E-13 -3.29918886066E-13 -3.46834177556E-13 -3.64616733690E-13 -3.83311020007E-13 -4.02963781837E-13 -4.23624161191E-13 -4.45343819635E-13 -4.68177067475E-13 -4.92180999560E-13 -5.17415638044E-13 -5.43944082476E-13 -5.71832667579E-13 -6.01151129117E-13 -6.31972778277E-13 -6.64374684975E-13 -6.98437870577E-13 -7.34247510489E-13 -7.71893147138E-13 -8.11468913874E-13 -8.53073770352E-13 -8.96811749977E-13 -9.42792220042E-13 -9.91130155201E-13 -1.04194642496E-12 -1.09536809591E-12 -1.15152874948E-12 -1.21056881589E-12 -1.27263592540E-12 -1.33788527736E-12 -1.40648002833E-12 -1.47859170008E-12 -1.55440060840E-12 -1.63409631405E-12 -1.71787809675E-12 -1.80595545341E-12 -1.89854862206E-12 -1.99588913250E-12 -2.09822038526E-12 -2.20579826019E-12 -2.31889175634E-12 -2.43778366452E-12 -2.56277127448E-12 -2.69416711822E-12 -2.83229975152E-12 -2.97751457545E-12 -3.13017470005E-12 -3.29066185230E-12 -3.45937733060E-12 -3.63674300820E-12 -3.82320238811E-12 -4.01922171203E-12 -4.22529112623E-12 -4.44192590710E-12 -4.66966774959E-12 -4.90908612175E-12 -5.16077968858E-12 -5.42537780907E-12 -5.70354210982E-12 -5.99596813945E-12 -6.30338710777E-12 -6.62656771416E-12 -6.96631806969E-12 -7.32348771772E-12 -7.69896975820E-12 -8.09370308078E-12 -8.50867471249E-12 -8.94492228578E-12 -9.40353663299E-12 -9.88566451401E-12 -1.03925114836E-11 -1.09253449060E-11 -1.14854971236E-11 -1.20743687886E-11 -1.26934323654E-11 -1.33442358119E-11 -1.40284064506E-11 -1.47476550375E-11 -1.55037800393E-11 -1.62986721310E-11 -1.71343189229E-11 -1.80128099306E-11 -1.89363417998E-11 -1.99072237987E-11 -2.09278835922E-11 -2.20008733121E-11 -2.31288759383E-11 -2.43147120076E-11 -2.55613466659E-11 -2.68718970825E-11 -2.82496402444E-11 -2.96980211495E-11 -3.12206614212E-11 -3.28213683631E-11 -3.45041444794E-11 -3.62731974824E-11 -3.81329508134E-11 -4.00880547029E-11 -4.21433977981E-11 -4.43041193861E-11 -4.65756222444E-11 -4.89635861491E-11 -5.14739820773E-11 -5.41130871359E-11 -5.68875002567E-11 -5.98041586964E-11 -6.28703553817E-11 -6.60937571444E-11 -6.94824238906E-11 -7.30448287536E-11 -7.67898792790E-11 -8.07269396967E-11 -8.48658543344E-11 -8.92169722312E-11 -9.37911730136E-11 -9.85998940976E-11 -1.03655159286E-10 -1.08969608829E-10 -1.14556531034E-10 -1.20429895483E-10 -1.26604387965E-10 -1.33095447192E-10 -1.39919303401E-10 -1.47093018934E-10 -1.54634530896E-10 -1.62562696003E-10 -1.70897337728E-10 -1.79659295864E-10 -1.88870478629E-10 -1.98553917438E-10 -2.08733824490E-10 -2.19435653297E-10 -2.30686162331E-10 -2.42513481916E-10 -2.54947184564E-10 -2.68018358908E-10 -2.81759687429E-10 -2.96205528166E-10 -3.11392000616E-10 -3.27357076035E-10 -3.44140672374E-10 -3.61784754071E-10 -3.80333436971E-10 -3.99833098619E-10 -4.20332494199E-10 -4.41882878434E-10 -4.64538133718E-10 -4.88354904824E-10 -5.13392740520E-10 -5.39714242436E-10 -5.67385221568E-10 -5.96474862807E-10 -6.27055897893E-10 -6.59204787243E-10 -6.93001911095E-10 -7.28531770453E-10 -7.65883198328E-10 -8.05149581812E-10 -8.46429095532E-10 -8.89824947070E-10 -9.35445634969E-10 -9.83405219950E-10 -1.03382361005E-09 -1.08682686036E-09 -1.14254748813E-09 -1.20112480404E-09 -1.26270526040E-09 -1.32744281730E-09 -1.39549932740E-09 -1.46704494052E-09 -1.54225852899E-09 -1.62132813471E-09 -1.70445143921E-09 -1.79183625773E-09 -1.88370105873E-09 -1.98027550988E-09 -2.08180105216E-09 -2.18853150331E-09 -2.30073369223E-09 -2.41868812591E-09 -2.54268969053E-09 -2.67304838843E-09 -2.81009011299E-09 -2.95415746305E-09 -3.10561059921E-09 -3.26482814391E-09 -3.43220812773E-09 -3.60816898409E-09 -3.79315059497E-09 -3.98761539027E-09 -4.19204950335E-09 -4.40696398600E-09 -4.63289608544E-09 -4.87041058694E-09 -5.12010122515E-09 -5.38259216773E-09 -5.65853957506E-09 -5.94863323983E-09 -6.25359831064E-09 -6.57419710392E-09 -6.91123100869E-09 -7.26554248887E-09 -7.63801718828E-09 -8.02958614334E-09 -8.44122810925E-09 -8.87397200528E-09 -9.32889948538E-09 -9.80714764042E-09 -1.03099118389E-08 -1.08384487133E-08 -1.13940792989E-08 -1.19781923338E-08 -1.25922477315E-08 -1.32377802165E-08 -1.39164031723E-08 -1.46298126632E-08 -1.53797916836E-08 -1.61682145642E-08 -1.69970517287E-08 -1.78683745519E-08 -1.87843605642E-08 -1.97472988903E-08 -2.07595959268E-08 -2.18237814146E-08 -2.29425147090E-08 -2.41185914180E-08 -2.53549504363E-08 -2.66546812147E-08 -2.80210314963E-08 -2.94574154796E-08 -3.09674222336E-08 -3.25548247641E-08 -3.42235893776E-08 -3.59778856007E-08 -3.78220965349E-08 -3.97608299017E-08 -4.17989294317E-08 -4.39414870568E-08 -4.61938555119E-08 -4.85616617655E-08 -5.10508211022E-08 -5.36675516489E-08 -5.64183903432E-08 -5.93102086751E-08 -6.23502302916E-08 -6.55460487981E-08 -6.89056467497E-08 -7.24374155085E-08 -7.61501763994E-08 -8.00532023271E-08 -8.41562412110E-08 -8.84695402086E-08 -9.30038712643E-08 -9.77705578751E-08 -1.02781503553E-07 -1.08049221240E-07 -1.13586864654E-07 -1.19408261023E-07 -1.25527945519E-07 -1.31961197789E-07 -1.38724079464E-07 -1.45833474599E-07 -1.53307131698E-07 -1.61163707908E-07 -1.69422815234E-07 -1.78105069854E-07 -1.87232143218E-07 -1.96826815855E-07 -2.06913034501E-07 -2.17515971407E-07 -2.28662087033E-07 -2.40379196134E-07 -2.52696536797E-07 -2.65644843203E-07 -2.79256422343E-07 -2.93565234072E-07 -3.08606975896E-07 -3.24419171525E-07 -3.41041264313E-07 -3.58514715528E-07 -3.76883107159E-07 -3.96192250327E-07 -4.16490299555E-07 -4.37827871601E-07 -4.60258172224E-07 -4.83837127825E-07 -5.08623524496E-07 -5.34679154029E-07 -5.62068967420E-07 -5.90861236118E-07 -6.21127721435E-07 -6.52943853054E-07 -6.86388915733E-07 -7.21546246138E-07 -7.58503439930E-07 -7.97352568290E-07 -8.38190407444E-07 -8.81118677251E-07 -9.26244294499E-07 -9.73679636411E-07 -1.02354282111E-06 -1.07595799802E-06 -1.13105565705E-06 -1.18897295043E-06 -1.24985403328E-06 -1.31385041875E-06 -1.38112135502E-06 -1.45183421728E-06 -1.52616492217E-06 -1.60429836266E-06 -1.68642886550E-06 -1.77276066992E-06 -1.86350843329E-06 -1.95889776012E-06 -2.05916575980E-06 -2.16456163042E-06 -2.27534727439E-06 -2.39179794346E-06 -2.51420291734E-06 -2.64286621634E-06 -2.77810735013E-06 -2.92026210385E-06 -3.06968336514E-06 -3.22674199132E-06 -3.39182772213E-06 -3.56535013605E-06 -3.74773965816E-06 -3.93944861595E-06 -4.14095234949E-06 -4.35275037805E-06 -4.57536762390E-06 -4.80935569990E-06 -5.05529425933E-06 -5.31379241566E-06 -5.58549023273E-06 -5.87106029023E-06 -6.17120932661E-06 -6.48667996599E-06 -6.81825253100E-06 -7.16674694582E-06 -7.53302473582E-06 -7.91799112562E-06 -8.32259724432E-06 -8.74784243903E-06 -9.19477670397E-06 -9.66450323296E-06 -1.01581810967E-05 -1.06770280554E-05 -1.12223235097E-05 -1.17954116008E-05 -1.23977044626E-05 -1.30306856364E-05 -1.36959136554E-05 -1.43950258070E-05 -1.51297420809E-05 -1.59018693129E-05 -1.67133055353E-05 -1.75660445394E-05 -1.84621806674E-05 -1.94039138351E-05 -2.03935548082E-05 -2.14335307349E-05 -2.25263909505E-05 -2.36748130681E-05 -2.48816093694E-05 -2.61497335055E-05 -2.74822875288E-05 -2.88825292669E-05 -3.03538800574E-05 -3.18999328604E-05 -3.35244607631E-05 -3.52314259025E-05 -3.70249888181E-05 -3.89095182595E-05 -4.08896014678E-05 -4.29700549544E-05 -4.51559358019E-05 -4.74525535057E-05 -4.98654823888E-05 -5.24005746105E-05 -5.50639737992E-05 -5.78621293368E-05 -6.08018113271E-05 -6.38901262748E-05 -6.71345335111E-05 -7.05428623997E-05 -7.41233303563E-05 -7.78845617191E-05 -8.18356075099E-05 -8.59859661233E-05 -9.03456049876E-05 -9.49249832375E-05 -9.97350754453E-05 -1.04787396457E-04 -1.10094027382E-04 -1.15667642779E-04 -1.21521539109E-04 -1.27669664480E-04 -1.34126649772E-04 -1.40907841172E-04 -1.48029334194E-04 -1.55508009247E-04 -1.63361568808E-04 -1.71608576265E-04 -1.80268496510E-04 -1.89361738343E-04 -1.98909698762E-04 -2.08934809213E-04 -2.19460583887E-04 -2.30511670131E-04 -2.42113901061E-04 -2.54294350470E-04 -2.67081390095E-04 -2.80504749366E-04 -2.94595577694E-04 -3.09386509416E-04 -3.24911731480E-04 -3.41207053976E-04 -3.58309983606E-04 -3.76259800197E-04 -3.95097636365E-04 -4.14866560425E-04 -4.35611662665E-04 -4.57380145079E-04 -4.80221414686E-04 -5.04187180517E-04 -5.29331554410E-04 -5.55711155698E-04 -5.83385219915E-04 -6.12415711623E-04 -6.42867441466E-04 -6.74808187567E-04 -7.08308821355E-04 -7.43443437943E-04 -7.80289491145E-04 -8.18927933222E-04 -8.59443359457E-04 -9.01924157639E-04 -9.46462662527E-04 -9.93155315374E-04 -1.04210282856E-03 -1.09341035542E-03 -1.14718766521E-03 -1.20354932340E-03 -1.26261487715E-03 -1.32450904606E-03 -1.38936191814E-03 -1.45730915098E-03 -1.52849217801E-03 -1.60305841990E-03 -1.68116150078E-03 -1.76296146940E-03 -1.84862502479E-03 -1.93832574647E-03 -2.03224432880E-03 -2.13056881930E-03 -2.23349486060E-03 -2.34122593552E-03 -2.45397361520E-03 -2.57195780937E-03 -2.69540701866E-03 -2.82455858808E-03 -2.95965896111E-03 -3.10096393372E-03 -3.24873890748E-03 -3.40325914085E-03 -3.56480999774E-03 -3.73368719229E-03 -3.91019702858E-03 -4.09465663429E-03 -4.28739418658E-03 -4.48874912902E-03 -4.69907237779E-03 -4.91872651546E-03 -5.14808597049E-03 -5.38753718043E-03 -5.63747873664E-03 -5.89832150823E-03 -6.17048874279E-03 -6.45441614113E-03 -6.75055190340E-03 -7.05935674341E-03 -7.38130386807E-03 -7.71687891859E-03 -8.06657986977E-03 -8.43091688373E-03 -8.81041211400E-03 -9.20559945596E-03 -9.61702423904E-03 -1.00452428563E-02 -1.04908223264E-02 -1.09543397835E-02 -1.14363818889E-02 -1.19375441601E-02 -1.24584302117E-02 -1.29996509010E-02 -1.35618233749E-02 -1.41455700100E-02 -1.47515172406E-02 -1.53802942688E-02 -1.60325316502E-02 -1.67088597485E-02 -1.74099070541E-02 -1.81362983585E-02 -1.88886527813E-02 -1.96675816409E-02 -2.04736861659E-02 -2.13075550404E-02 -2.21697617786E-02 -2.30608619250E-02 -2.39813900751E-02 -2.49318567143E-02 -2.59127448725E-02 -2.69245065925E-02 -2.79675592121E-02 -2.90422814594E-02 -3.01490093655E-02 -3.12880319951E-02 -3.24595870024E-02 -3.36638560171E-02 -3.49009598710E-02 -3.61709536743E-02 -3.74738217553E-02 -3.88094724798E-02 -4.01777329675E-02 -4.15783437263E-02 -4.30109532305E-02 -4.44751124675E-02 -4.59702694871E-02 -4.74957639842E-02 -4.90508219570E-02 -5.06345504792E-02 -5.22459326343E-02 -5.38838226614E-02 -5.55469413659E-02 -5.72338718547E-02 -5.89430556567E-02 -6.06727892947E-02 -6.24212213794E-02 -6.41863502979E-02 -6.59660225731E-02 -6.77579319732E-02 -6.95596194530E-02 -7.13684740083E-02 -7.31817345295E-02 -7.49964927354E-02 -7.68096972718E-02 -7.86181590543E-02 -8.04185579319E-02 -8.22074507452E-02 -8.39812808422E-02 -8.57363891121E-02 -8.74690265813E-02 -8.91753686100E-02 -9.08515307085E-02 -9.24935859785E-02 -9.40975841660E-02 -9.56595722902E-02 -9.71756167899E-02 -9.86418271032E-02 -1.00054380568E-01 -1.01409548498E-01 -1.02703723268E-01 -1.03933446179E-01 -1.05095435885E-01 -1.06186617076E-01 -1.07204149115E-01 -1.08145454262E-01 -1.09008245103E-01 -1.09790550754E-01 -1.10490741387E-01 -1.11107550590E-01 -1.11640095062E-01 -1.12087891111E-01 -1.12450867439E-01 -1.12729373676E-01 -1.12924184141E-01 -1.13036496352E-01 -1.13067923820E-01 -1.13020482715E-01 -1.12896572090E-01 -1.12698947396E-01 -1.12430687148E-01 -1.12095152723E-01 -1.11695941401E-01 -1.11236832929E-01 -1.10721730058E-01 -1.10154593681E-01 -1.09539373433E-01 -1.08879934780E-01 -1.08179983875E-01 -1.07442991638E-01 -1.06672118751E-01 -1.05870143414E-01 -1.05039393888E-01 -1.04181687976E-01 -1.03298281664E-01 -1.02389829197E-01 -1.01456356794E-01 -1.00497252130E-01 -9.95112714945E-02 -9.84965662568E-02 -9.74507298741E-02 -9.63708661998E-02 -9.52536792475E-02 -9.40955838783E-02 -9.28928361000E-02 -9.16416808068E-02 -9.03385138754E-02 -8.89800545951E-02 -8.75635234677E-02 -8.60868195228E-02 -8.45486904937E-02 -8.29488885382E-02 -8.12883037288E-02 -7.95690673346E-02 -7.77946170251E-02 -7.59697166048E-02 -7.41004237796E-02 -7.21940008020E-02 -7.02587646551E-02 -6.83038757263E-02 -6.63390666576E-02 -6.43743161937E-02 -6.24194762918E-02 -6.04838643964E-02 -5.85758364557E-02 -5.67023597797E-02 -5.48686079938E-02 -5.30776028839E-02 -5.13299295955E-02 -4.96235521858E-02 -4.79537556829E-02 -4.63132383535E-02 -4.46923736626E-02 -4.30796553035E-02 -4.14623306857E-02 -3.98272184612E-02 -3.81616942649E-02 -3.64548161550E-02 -3.46985477184E-02 -3.28890230230E-02 -3.10285661256E-02 -2.91271442880E-02 -2.71969801091E-02 -2.52511602167E-02 -2.33034475671E-02 -2.13680656789E-02 -1.94594563977E-02 -1.75920135975E-02 -1.57797960883E-02 -1.40362239169E-02 -1.23737631948E-02 -1.08036055448E-02 -9.33534920666E-03 -7.97668974053E-03 -6.73312910145E-03 -5.60771256899E-03 -4.60080358397E-03 -3.70990691082E-03 -2.93040950970E-03 -2.25862925365E-03 -1.69017924247E-03 -1.21931931409E-03 -8.39067924732E-04 -5.41345825749E-04 -3.17152738732E-04 -1.56777750447E-04 -5.00435685710E-05 1.34159081090E-05 4.38460489997E-05 5.10322344759E-05 4.39341571704E-05 3.02980848427E-05 1.62527141835E-05 5.89555635824E-06 8.78172927293E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 8 2 i j (l(j)) 0.00000000000E+00 Q_int -5.06714188577E-18 -5.32693980509E-18 -5.60005784851E-18 -5.88717895341E-18 -6.18902107209E-18 -6.50633896706E-18 -6.83992609834E-18 -7.19061660749E-18 -7.55928740347E-18 -7.94686035526E-18 -8.35430459713E-18 -8.78263895189E-18 -9.23293447852E-18 -9.70631715038E-18 -1.02039706707E-17 -1.07271394325E-17 -1.12771316302E-17 -1.18553225306E-17 -1.24631579123E-17 -1.31021576802E-17 -1.37739196666E-17 -1.44801236264E-17 -1.52225354372E-17 -1.60030115153E-17 -1.68235034573E-17 -1.76860629204E-17 -1.85928467526E-17 -1.95461223857E-17 -2.05482735054E-17 -2.16018060112E-17 -2.27093542833E-17 -2.38736877692E-17 -2.50977179089E-17 -2.63845054154E-17 -2.77372679275E-17 -2.91593880562E-17 -3.06544218424E-17 -3.22261076492E-17 -3.38783755098E-17 -3.56153569542E-17 -3.74413953408E-17 -3.93610567165E-17 -4.13791412346E-17 -4.35006951575E-17 -4.57310234747E-17 -4.80757031688E-17 -5.05405971600E-17 -5.31318689672E-17 -5.58559981193E-17 -5.87197963579E-17 -6.17304246701E-17 -6.48954111947E-17 -6.82226700462E-17 -7.17205211047E-17 -7.53977108193E-17 -7.92634340794E-17 -8.33273572064E-17 -8.75996421245E-17 -9.20909717710E-17 -9.68125768090E-17 -1.01776263710E-16 -1.06994444276E-16 -1.12480166676E-16 -1.18247148073E-16 -1.24309808924E-16 -1.30683309038E-16 -1.37383585484E-16 -1.44427392443E-16 -1.51832343100E-16 -1.59616953688E-16 -1.67800689787E-16 -1.76404015000E-16 -1.85448442118E-16 -1.94956586921E-16 -2.04952224721E-16 -2.15460349818E-16 -2.26507237996E-16 -2.38120512228E-16 -2.50329211747E-16 -2.63163864659E-16 -2.76656564280E-16 -2.90841049385E-16 -3.05752788571E-16 -3.21429068952E-16 -3.37909089392E-16 -3.55234058521E-16 -3.73447297785E-16 -3.92594349764E-16 -4.12723092058E-16 -4.33883857003E-16 -4.56129557530E-16 -4.79515819471E-16 -5.04101120658E-16 -5.29946937145E-16 -5.57117896928E-16 -5.85681941555E-16 -6.15710496007E-16 -6.47278647305E-16 -6.80465332261E-16 -7.15353534867E-16 -7.52030493790E-16 -7.90587920524E-16 -8.31122228706E-16 -8.73734775210E-16 -9.18532113585E-16 -9.65626260496E-16 -1.01513497583E-15 -1.06718205714E-15 -1.12189764923E-15 -1.17941856955E-15 -1.23988865036E-15 -1.30345909833E-15 -1.37028887266E-15 -1.44054508258E-15 -1.51440340519E-15 -1.59204852472E-15 -1.67367459440E-15 -1.75948572187E-15 -1.84969647963E-15 -1.94453244150E-15 -2.04423074676E-15 -2.14904069306E-15 -2.25922435979E-15 -2.37505726347E-15 -2.49682904664E-15 -2.62484420211E-15 -2.75942283440E-15 -2.90090146011E-15 -3.04963384942E-15 -3.20599191070E-15 -3.37036662044E-15 -3.54316900096E-15 -3.72483114810E-15 -3.91580731174E-15 -4.11657503165E-15 -4.32763633158E-15 -4.54951897457E-15 -4.78277778265E-15 -5.02799602418E-15 -5.28578687231E-15 -5.55679493826E-15 -5.84169788315E-15 -6.14120811252E-15 -6.45607455772E-15 -6.78708454860E-15 -7.13506578230E-15 -7.50088839285E-15 -7.88546712701E-15 -8.28976363160E-15 -8.71478885808E-15 -9.16160559051E-15 -9.63133110304E-15 -1.01251399536E-14 -1.06442669212E-14 -1.11900100929E-14 -1.17637341104E-14 -1.23668735820E-14 -1.30009366698E-14 -1.36675088612E-14 -1.43682569329E-14 -1.51049331193E-14 -1.58793794938E-14 -1.66935325746E-14 -1.75494281675E-14 -1.84492064561E-14 -1.93951173535E-14 -2.03895261285E-14 -2.14349193195E-14 -2.25339109524E-14 -2.36892490772E-14 -2.49038226390E-14 -2.61806687026E-14 -2.75229800461E-14 -2.89341131448E-14 -3.04175965640E-14 -3.19771397825E-14 -3.36166424677E-14 -3.53402042274E-14 -3.71521348604E-14 -3.90569651337E-14 -4.10594581112E-14 -4.31646210645E-14 -4.53777179930E-14 -4.77042827870E-14 -5.01501330653E-14 -5.27213847221E-14 -5.54244672199E-14 -5.82661396664E-14 -6.12535077161E-14 -6.43940413376E-14 -6.76955934930E-14 -7.11664197735E-14 -7.48151990436E-14 -7.86510551418E-14 -8.26835796956E-14 -8.69228561052E-14 -9.13794847572E-14 -9.60646095310E-14 -1.00989945664E-13 -1.06167809047E-13 -1.11611147018E-13 -1.17333570739E-13 -1.23349389230E-13 -1.29673645151E-13 -1.36322152411E-13 -1.43311535717E-13 -1.50659272142E-13 -1.58383734825E-13 -1.66504238916E-13 -1.75041089871E-13 -1.84015634228E-13 -1.93450312984E-13 -2.03368717709E-13 -2.13795649536E-13 -2.24757181177E-13 -2.36280722117E-13 -2.48395087157E-13 -2.61130568457E-13 -2.74519011289E-13 -2.88593893664E-13 -3.03390410042E-13 -3.18945559340E-13 -3.35298237444E-13 -3.52489334473E-13 -3.70561837021E-13 -3.89560935647E-13 -4.09534137874E-13 -4.30531386984E-13 -4.52605186898E-13 -4.75810733462E-13 -5.00206052471E-13 -5.25852144755E-13 -5.52813138716E-13 -5.81156450682E-13 -6.10952953476E-13 -6.42277153644E-13 -6.75207377749E-13 -7.09825968230E-13 -7.46219489305E-13 -7.84478943414E-13 -8.24699998782E-13 -8.66983228629E-13 -9.11434362659E-13 -9.58164551433E-13 -1.00729064430E-12 -1.05893548160E-12 -1.11322820177E-12 -1.17030456433E-12 -1.23030728928E-12 -1.29338641404E-12 -1.35969966854E-12 -1.42941286968E-12 -1.50270033594E-12 -1.57974532326E-12 -1.66074048326E-12 -1.74588834497E-12 -1.83540182129E-12 -1.92950474129E-12 -2.02843240998E-12 -2.13243219665E-12 -2.24176415340E-12 -2.35670166543E-12 -2.47753213461E-12 -2.60455769815E-12 -2.73809598404E-12 -2.87848090535E-12 -3.02606349510E-12 -3.18121278405E-12 -3.34431672347E-12 -3.51578315515E-12 -3.69604083125E-12 -3.88554048637E-12 -4.08475596459E-12 -4.29418540433E-12 -4.51435248392E-12 -4.74580773101E-12 -4.98912989923E-12 -5.24492741525E-12 -5.51383990023E-12 -5.79653976909E-12 -6.09373391191E-12 -6.40616546146E-12 -6.73461565141E-12 -7.07990576975E-12 -7.44289921237E-12 -7.82450364200E-12 -8.22567325774E-12 -8.64741118103E-12 -9.09077196387E-12 -9.55686422570E-12 -1.00468534255E-11 -1.05619647758E-11 -1.11034863065E-11 -1.16727720853E-11 -1.22712456036E-11 -1.29004033360E-11 -1.35618184816E-11 -1.42571448984E-11 -1.49881212381E-11 -1.57565752940E-11 -1.65644285708E-11 -1.74137010893E-11 -1.83065164376E-11 -1.92451070806E-11 -2.02318199425E-11 -2.12691222747E-11 -2.23596078253E-11 -2.35060033242E-11 -2.47111753015E-11 -2.59781372545E-11 -2.73100571831E-11 -2.87102655109E-11 -3.01822634127E-11 -3.17297315684E-11 -3.33565393669E-11 -3.50667545806E-11 -3.68646535364E-11 -3.87547318084E-11 -4.07417154584E-11 -4.28305728530E-11 -4.50265270861E-11 -4.73350690390E-11 -4.97619711093E-11 -5.23133016440E-11 -5.49954401128E-11 -5.78150930589E-11 -6.07793108676E-11 -6.38955053951E-11 -6.71714685003E-11 -7.06153915272E-11 -7.42358857862E-11 -7.80420040850E-11 -8.20432633637E-11 -8.62496684900E-11 -9.06717372749E-11 -9.53205267701E-11 -1.00207660914E-10 -1.05345359596E-10 -1.10746469209E-10 -1.16424494767E-10 -1.22393633677E-10 -1.28668811230E-10 -1.35265717922E-10 -1.42200848686E-10 -1.49491544128E-10 -1.57156033888E-10 -1.65213482216E-10 -1.73684035889E-10 -1.82588874579E-10 -1.91950263812E-10 -2.01791610631E-10 -2.12137522125E-10 -2.23013866945E-10 -2.34447839984E-10 -2.46468030370E-10 -2.59104492942E-10 -2.72388823392E-10 -2.86354237261E-10 -3.01035652980E-10 -3.16469779174E-10 -3.32695206436E-10 -3.49752503809E-10 -3.67684320211E-10 -3.86535491067E-10 -4.06353150393E-10 -4.27186848643E-10 -4.49088676583E-10 -4.72113395523E-10 -4.96318574220E-10 -5.21764732805E-10 -5.48515494083E-10 -5.76637742589E-10 -6.06201791799E-10 -6.37281559914E-10 -6.69954754651E-10 -7.04303067510E-10 -7.40412377994E-10 -7.78372968306E-10 -8.18279749040E-10 -8.60232496454E-10 -9.04336101890E-10 -9.50700833994E-10 -9.99442614368E-10 -1.05068330735E-09 -1.10455102466E-09 -1.16118044563E-09 -1.22071315392E-09 -1.28329799137E-09 -1.34909143012E-09 -1.41825796374E-09 -1.49097051839E-09 -1.56741088509E-09 -1.64777017412E-09 -1.73224929276E-09 -1.82105944744E-09 -1.91442267168E-09 -2.01257238108E-09 -2.11575395676E-09 -2.22422535865E-09 -2.33825777031E-09 -2.45813627669E-09 -2.58416057671E-09 -2.71664573234E-09 -2.85592295600E-09 -3.00234043844E-09 -3.15626421892E-09 -3.31807910008E-09 -3.48818960967E-09 -3.66702101149E-09 -3.85502036828E-09 -4.05265765892E-09 -4.26042695304E-09 -4.47884764568E-09 -4.70846575529E-09 -4.94985528828E-09 -5.20361967337E-09 -5.47039326957E-09 -5.75084295134E-09 -6.04566977505E-09 -6.35561073073E-09 -6.68144058365E-09 -7.02397381025E-09 -7.38406663325E-09 -7.76261916102E-09 -8.16057763654E-09 -8.57893680167E-09 -9.01874238244E-09 -9.48109370175E-09 -9.96714642586E-09 -1.04781154516E-08 -1.10152779416E-08 -1.15799765147E-08 -1.21736226003E-08 -1.27976999638E-08 -1.34537684183E-08 -1.41434676995E-08 -1.48685215970E-08 -1.56307422309E-08 -1.64320346039E-08 -1.72744013112E-08 -1.81599476104E-08 -1.90908866200E-08 -2.00695448777E-08 -2.10983681569E-08 -2.21799275256E-08 -2.33169258487E-08 -2.45122044546E-08 -2.57687502710E-08 -2.70897033074E-08 -2.84783644464E-08 -2.99382036901E-08 -3.14728688646E-08 -3.30861946981E-08 -3.47822123931E-08 -3.65651596833E-08 -3.84394914355E-08 -4.04098907774E-08 -4.24812807406E-08 -4.46588365761E-08 -4.69479986914E-08 -4.93544861863E-08 -5.18843111468E-08 -5.45437936480E-08 -5.73395775616E-08 -6.02786470774E-08 -6.33683440702E-08 -6.66163867107E-08 -7.00308881679E-08 -7.36203774470E-08 -7.73938205260E-08 -8.13606422164E-08 -8.55307502352E-08 -8.99145598655E-08 -9.45230196527E-08 -9.93676388872E-08 -1.04460516290E-07 -1.09814370098E-07 -1.15442569949E-07 -1.21359170015E-07 -1.27578944065E-07 -1.34117422549E-07 -1.40990930931E-07 -1.48216630524E-07 -1.55812561419E-07 -1.63797687195E-07 -1.72191942409E-07 -1.81016281843E-07 -1.90292733230E-07 -2.00044451891E-07 -2.10295778346E-07 -2.21072298698E-07 -2.32400909135E-07 -2.44309882006E-07 -2.56828936834E-07 -2.69989313717E-07 -2.83823851843E-07 -2.98367070531E-07 -3.13655255368E-07 -3.29726548753E-07 -3.46621044307E-07 -3.64380887064E-07 -3.83050377878E-07 -4.02676084061E-07 -4.23306954671E-07 -4.44994442448E-07 -4.67792632142E-07 -4.91758373673E-07 -5.16951425125E-07 -5.43434599956E-07 -5.71273923078E-07 -6.00538795493E-07 -6.31302166786E-07 -6.63640715041E-07 -6.97635038374E-07 -7.33369854645E-07 -7.70934211080E-07 -8.10421706709E-07 -8.51930722588E-07 -8.95564666939E-07 -9.41432232240E-07 -9.89647662914E-07 -1.04033103990E-06 -1.09360857758E-06 -1.14961293661E-06 -1.20848355240E-06 -1.27036698052E-06 -1.33541725987E-06 -1.40379629272E-06 -1.47567424665E-06 -1.55122997466E-06 -1.63065145821E-06 -1.71413627072E-06 -1.80189206702E-06 -1.89413709636E-06 -1.99110074025E-06 -2.09302408077E-06 -2.20016049437E-06 -2.31277627701E-06 -2.43115130204E-06 -2.55557970920E-06 -2.68637063106E-06 -2.82384895371E-06 -2.96835611706E-06 -3.12025095619E-06 -3.27991058451E-06 -3.44773132098E-06 -3.62412966513E-06 -3.80954332154E-06 -4.00443227400E-06 -4.20927991713E-06 -4.42459424123E-06 -4.65090908011E-06 -4.88878542055E-06 -5.13881277568E-06 -5.40161063218E-06 -5.67782996485E-06 -5.96815483163E-06 -6.27330404607E-06 -6.59403293533E-06 -6.93113518537E-06 -7.28544477938E-06 -7.65783803363E-06 -8.04923573354E-06 -8.46060537990E-06 -8.89296354339E-06 -9.34737834186E-06 -9.82497203562E-06 -1.03269237578E-05 -1.08544723774E-05 -1.14089195065E-05 -1.19916326574E-05 -1.26040485562E-05 -1.32476766226E-05 -1.39241026216E-05 -1.46349924963E-05 -1.53820963929E-05 -1.61672528831E-05 -1.69923933977E-05 -1.78595468771E-05 -1.87708446560E-05 -1.97285255850E-05 -2.07349414076E-05 -2.17925624026E-05 -2.29039833023E-05 -2.40719295055E-05 -2.52992635919E-05 -2.65889921602E-05 -2.79442729980E-05 -2.93684226074E-05 -3.08649240931E-05 -3.24374354425E-05 -3.40897982039E-05 -3.58260465925E-05 -3.76504170366E-05 -3.95673581886E-05 -4.15815414231E-05 -4.36978718426E-05 -4.59214998151E-05 -4.82578330720E-05 -5.07125493851E-05 -5.32916098586E-05 -5.60012728575E-05 -5.88481086044E-05 -6.18390144764E-05 -6.49812310327E-05 -6.82823588071E-05 -7.17503759003E-05 -7.53936564075E-05 -7.92209897205E-05 -8.32416007432E-05 -8.74651710610E-05 -9.19018611063E-05 -9.65623333678E-05 -1.01457776685E-04 -1.06599931678E-04 -1.12001117370E-04 -1.17674259033E-04 -1.23632917341E-04 -1.29891318859E-04 -1.36464387944E-04 -1.43367780105E-04 -1.50617916899E-04 -1.58232022413E-04 -1.66228161406E-04 -1.74625279189E-04 -1.83443243289E-04 -1.92702887001E-04 -2.02426054889E-04 -2.12635650311E-04 -2.23355685065E-04 -2.34611331222E-04 -2.46428975247E-04 -2.58836274492E-04 -2.71862216155E-04 -2.85537178786E-04 -2.99892996463E-04 -3.14963025718E-04 -3.30782215307E-04 -3.47387178964E-04 -3.64816271199E-04 -3.83109666289E-04 -4.02309440546E-04 -4.22459657988E-04 -4.43606459530E-04 -4.65798155796E-04 -4.89085323688E-04 -5.13520906821E-04 -5.39160319946E-04 -5.66061557482E-04 -5.94285306278E-04 -6.23895062733E-04 -6.54957254377E-04 -6.87541366054E-04 -7.21720070815E-04 -7.57569365632E-04 -7.95168712064E-04 -8.34601181968E-04 -8.75953608372E-04 -9.19316741613E-04 -9.64785410829E-04 -1.01245869090E-03 -1.06244007494E-03 -1.11483765234E-03 -1.16976429255E-03 -1.22733783452E-03 -1.28768128197E-03 -1.35092300435E-03 -1.41719694367E-03 -1.48664282711E-03 -1.55940638533E-03 -1.63563957657E-03 -1.71550081630E-03 -1.79915521246E-03 -1.88677480607E-03 -1.97853881708E-03 -2.07463389529E-03 -2.17525437602E-03 -2.28060254039E-03 -2.39088887972E-03 -2.50633236386E-03 -2.62716071287E-03 -2.75361067169E-03 -2.88592828720E-03 -3.02436918706E-03 -3.16919885972E-03 -3.32069293476E-03 -3.47913746284E-03 -3.64482919418E-03 -3.81807585478E-03 -3.99919641910E-03 -4.18852137799E-03 -4.38639300072E-03 -4.59316558948E-03 -4.80920572485E-03 -5.03489250063E-03 -5.27061774604E-03 -5.51678623345E-03 -5.77381586944E-03 -6.04213786694E-03 -6.32219689589E-03 -6.61445120993E-03 -6.91937274622E-03 -7.23744719535E-03 -7.56917403826E-03 -7.91506654658E-03 -8.27565174302E-03 -8.65147031771E-03 -9.04307649664E-03 -9.45103785791E-03 -9.87593509119E-03 -1.03183616957E-02 -1.07789236120E-02 -1.12582387817E-02 -1.17569366311E-02 -1.22756574709E-02 -1.28150518089E-02 -1.33757795670E-02 -1.39585091984E-02 -1.45639166967E-02 -1.51926844925E-02 -1.58455002281E-02 -1.65230554062E-02 -1.72260439037E-02 -1.79551603443E-02 -1.87110983236E-02 -1.94945484783E-02 -2.03061963940E-02 -2.11467203441E-02 -2.20167888538E-02 -2.29170580824E-02 -2.38481690185E-02 -2.48107444829E-02 -2.58053859330E-02 -2.68326700670E-02 -2.78931452213E-02 -2.89873275611E-02 -3.01156970615E-02 -3.12786932789E-02 -3.24767109131E-02 -3.37100951639E-02 -3.49791368846E-02 -3.62840675395E-02 -3.76250539725E-02 -3.90021929976E-02 -4.04155058229E-02 -4.18649323245E-02 -4.33503251870E-02 -4.48714439324E-02 -4.64279488619E-02 -4.80193949371E-02 -4.96452256341E-02 -5.13047668036E-02 -5.29972205781E-02 -5.47216593690E-02 -5.64770200015E-02 -5.82620980404E-02 -6.00755423628E-02 -6.19158500400E-02 -6.37813615951E-02 -6.56702567053E-02 -6.75805504261E-02 -6.95100900148E-02 -7.14565524377E-02 -7.34174426462E-02 -7.53900927128E-02 -7.73716619183E-02 -7.93591378830E-02 -8.13493388387E-02 -8.33389171332E-02 -8.53243640627E-02 -8.73020161207E-02 -8.92680627516E-02 -9.12185556887E-02 -9.31494199494E-02 -9.50564665542E-02 -9.69354070182E-02 -9.87818696570E-02 -1.00591417728E-01 -1.02359569410E-01 -1.04081819606E-01 -1.05753663526E-01 -1.07370621981E-01 -1.08928268290E-01 -1.10422256678E-01 -1.11848351987E-01 -1.13202460511E-01 -1.14480661717E-01 -1.15679240557E-01 -1.16794720071E-01 -1.17823893909E-01 -1.18763858368E-01 -1.19612043499E-01 -1.20366242820E-01 -1.21024641089E-01 -1.21585839628E-01 -1.22048878592E-01 -1.22413255622E-01 -1.22678940278E-01 -1.22846383653E-01 -1.22916522600E-01 -1.22890778012E-01 -1.22771046656E-01 -1.22559686111E-01 -1.22259492436E-01 -1.21873670319E-01 -1.21405795525E-01 -1.20859769664E-01 -1.20239767397E-01 -1.19550176431E-01 -1.18795530805E-01 -1.17980438219E-01 -1.17109502360E-01 -1.16187241427E-01 -1.15218004278E-01 -1.14205885893E-01 -1.13154644007E-01 -1.12067619057E-01 -1.10947659672E-01 -1.09797056154E-01 -1.08617484418E-01 -1.07409962932E-01 -1.06174825113E-01 -1.04911709522E-01 -1.03619569963E-01 -1.02296707251E-01 -1.00940823974E-01 -9.95491030196E-02 -9.81183099440E-02 -9.66449184989E-02 -9.51252577344E-02 -9.35556781386E-02 -9.19327332492E-02 -9.02533721226E-02 -8.85151370045E-02 -8.67163595617E-02 -8.48563481612E-02 -8.29355579697E-02 -8.09557351707E-02 -7.89200264069E-02 -7.68330447288E-02 -7.47008839139E-02 -7.25310740787E-02 -7.03324730625E-02 -6.81150901445E-02 -6.58898412654E-02 -6.36682380189E-02 -6.14620162029E-02 -5.92827135760E-02 -5.71412105032E-02 -5.50472512355E-02 -5.30089674179E-02 -5.10324288303E-02 -4.91212490497E-02 -4.72762753984E-02 -4.54953929282E-02 -4.37734710033E-02 -4.21024780626E-02 -4.04717851772E-02 -3.88686719821E-02 -3.72790394496E-02 -3.56883229100E-02 -3.40825859614E-02 -3.24497618410E-02 -3.07809939725E-02 -2.90720124243E-02 -2.73251910652E-02 -2.55506304210E-02 -2.37604983808E-02 -2.19676024577E-02 -2.01851710319E-02 -1.84266108775E-02 -1.67052445561E-02 -1.50340322789E-02 -1.34252838794E-02 -1.18903675843E-02 -1.04394232762E-02 -9.08108887106E-03 -7.82224924560E-03 -6.66781777786E-03 -5.62056097079E-03 -4.68097673438E-03 -3.84723665817E-03 -3.11520194243E-03 -2.47917153720E-03 -1.93427824937E-03 -1.47518066873E-03 -1.09561878874E-03 -7.88567846744E-04 -5.46411292626E-04 -3.61130423875E-04 -2.24507440816E-04 -1.28337841293E-04 -6.46472035777E-05 -2.59065183938E-05 -5.23934906671E-06 3.38674840829E-06 4.99289243407E-06 3.45464804180E-06 1.41044079818E-06 2.22465190443E-07 -1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 9 2 i j (l(j)) 0.00000000000E+00 Q_int -4.47509496102E-18 -4.70453798548E-18 -4.94574480532E-18 -5.19931856321E-18 -5.46589332563E-18 -5.74613566834E-18 -6.04074634314E-18 -6.35046203017E-18 -6.67605717998E-18 -7.01834595001E-18 -7.37818424048E-18 -7.75647183453E-18 -8.15415464818E-18 -8.57222709559E-18 -9.01173457564E-18 -9.47377608593E-18 -9.95950697090E-18 -1.04701418107E-17 -1.10069574585E-17 -1.15712962330E-17 -1.21645692749E-17 -1.27882600760E-17 -1.34439281880E-17 -1.41332131228E-17 -1.48578384517E-17 -1.56196161154E-17 -1.64204509549E-17 -1.72623454743E-17 -1.81474048484E-17 -1.90778421866E-17 -2.00559840669E-17 -2.10842763535E-17 -2.21652903125E-17 -2.33017290419E-17 -2.44964342305E-17 -2.57523932634E-17 -2.70727466924E-17 -2.84607960886E-17 -2.99200122986E-17 -3.14540441227E-17 -3.30667274396E-17 -3.47620947974E-17 -3.65443854975E-17 -3.84180561948E-17 -4.03877920421E-17 -4.24585184046E-17 -4.46354131768E-17 -4.69239197294E-17 -4.93297605206E-17 -5.18589514053E-17 -5.45178166780E-17 -5.73130048866E-17 -6.02515054572E-17 -6.33406661718E-17 -6.65882115409E-17 -7.00022621192E-17 -7.35913548111E-17 -7.73644642176E-17 -8.13310250770E-17 -8.55009558574E-17 -8.98846835572E-17 -9.44931697786E-17 -9.93379381372E-17 -1.04431103077E-16 -1.09785400162E-16 -1.15414217924E-16 -1.21331631339E-16 -1.27552437022E-16 -1.34092190225E-16 -1.40967243739E-16 -1.48194788776E-16 -1.55792897964E-16 -1.63780570532E-16 -1.72177779820E-16 -1.81005523225E-16 -1.90285874703E-16 -2.00042039963E-16 -2.10298414501E-16 -2.21080644593E-16 -2.32415691428E-16 -2.44331898526E-16 -2.56859062610E-16 -2.70028508114E-16 -2.83873165507E-16 -2.98427653642E-16 -3.13728366319E-16 -3.29813563285E-16 -3.46723465910E-16 -3.64500357752E-16 -3.83188690299E-16 -4.02835194112E-16 -4.23488995680E-16 -4.45201740260E-16 -4.68027721019E-16 -4.92024014792E-16 -5.17250624809E-16 -5.43770630726E-16 -5.71650346367E-16 -6.00959485536E-16 -6.31771336338E-16 -6.64162944442E-16 -6.98215305732E-16 -7.34013568839E-16 -7.71647248055E-16 -8.11210447171E-16 -8.52802094780E-16 -8.96526191652E-16 -9.42492070791E-16 -9.90814670821E-16 -1.04161482340E-15 -1.09501955534E-15 -1.15116240629E-15 -1.21018376258E-15 -1.27223120834E-15 -1.33745989447E-15 -1.40603292663E-15 -1.47812177311E-15 -1.55390669353E-15 -1.63357718963E-15 -1.71733247913E-15 -1.80538199384E-15 -1.89794590336E-15 -1.99525566565E-15 -2.09755460574E-15 -2.20509852423E-15 -2.31815633687E-15 -2.43701074702E-15 -2.56195895256E-15 -2.69331338902E-15 -2.83140251084E-15 -2.97657161266E-15 -3.12918369278E-15 -3.28962036079E-15 -3.45828279184E-15 -3.63559272976E-15 -3.82199354162E-15 -4.01795132643E-15 -4.22395608058E-15 -4.44052292314E-15 -4.66819338384E-15 -4.90753675727E-15 -5.15915152636E-15 -5.42366685888E-15 -5.70174418075E-15 -5.99407882990E-15 -6.30140179497E-15 -6.62448154319E-15 -6.96412594195E-15 -7.32118427885E-15 -7.69654938539E-15 -8.09115986951E-15 -8.50600246258E-15 -8.94211448677E-15 -9.40058644885E-15 -9.88256476707E-15 -1.03892546378E-14 -1.09219230490E-14 -1.14819019486E-14 -1.20705915750E-14 -1.26894639580E-14 -1.33400666004E-14 -1.40240263468E-14 -1.47430534519E-14 -1.54989458571E-14 -1.62935936862E-14 -1.71289839715E-14 -1.80072056228E-14 -1.89304546504E-14 -1.99010396564E-14 -2.09213876074E-14 -2.19940499031E-14 -2.31217087565E-14 -2.43071839001E-14 -2.55534396373E-14 -2.68635922545E-14 -2.82409178135E-14 -2.96888603430E-14 -3.12110404509E-14 -3.28112643776E-14 -3.44935335132E-14 -3.62620544036E-14 -3.81212492686E-14 -4.00757670598E-14 -4.21304950858E-14 -4.42905712323E-14 -4.65613968100E-14 -4.89486500604E-14 -5.14583003546E-14 -5.40966231195E-14 -5.68702155297E-14 -5.97860130039E-14 -6.28513065469E-14 -6.60737609812E-14 -6.94614341126E-14 -7.30227968788E-14 -7.67667545317E-14 -8.07026689045E-14 -8.48403818214E-14 -8.91902397072E-14 -9.37631194584E-14 -9.85704556416E-14 -1.03624269085E-13 -1.08937196938E-13 -1.14522524268E-13 -1.20394217283E-13 -1.26566958253E-13 -1.33056182221E-13 -1.39878115603E-13 -1.47049816758E-13 -1.54589218646E-13 -1.62515173667E-13 -1.70847500803E-13 -1.79607035175E-13 -1.88815680143E-13 -1.98496462072E-13 -2.08673587916E-13 -2.19372505739E-13 -2.30619968356E-13 -2.42444100225E-13 -2.54874467773E-13 -2.67942153326E-13 -2.81679832833E-13 -2.96121857571E-13 -3.11304340042E-13 -3.27265244269E-13 -3.44044480730E-13 -3.61684006151E-13 -3.80227928421E-13 -3.99722616884E-13 -4.20216818284E-13 -4.41761778659E-13 -4.64411371480E-13 -4.88222232363E-13 -5.13253900685E-13 -5.39568968466E-13 -5.67233236876E-13 -5.96315880775E-13 -6.26889621684E-13 -6.59030909621E-13 -6.92820114273E-13 -7.28341725951E-13 -7.65684566865E-13 -8.04942013223E-13 -8.46212228713E-13 -8.89598409969E-13 -9.35209044607E-13 -9.83158182504E-13 -1.03356572098E-12 -1.08655770458E-12 -1.14226664029E-12 -1.20083182883E-12 -1.26239971300E-12 -1.32712424384E-12 -1.39516726560E-12 -1.46669892043E-12 -1.54189807380E-12 -1.62095276177E-12 -1.70406066116E-12 -1.79142958388E-12 -1.88327799649E-12 -1.97983556652E-12 -2.08134373675E-12 -2.18805632893E-12 -2.30024017844E-12 -2.41817580154E-12 -2.54215809677E-12 -2.67249708234E-12 -2.80951867134E-12 -2.95356548669E-12 -3.10499771782E-12 -3.26419402136E-12 -3.43155246792E-12 -3.60749153752E-12 -3.79245116591E-12 -3.98689384469E-12 -4.19130577771E-12 -4.40619809683E-12 -4.63210814000E-12 -4.86960079482E-12 -5.11926991108E-12 -5.38173978562E-12 -5.65766672338E-12 -5.94774067844E-12 -6.25268697928E-12 -6.57326814241E-12 -6.91028577897E-12 -7.26458259920E-12 -7.63704451955E-12 -8.02860287792E-12 -8.44023676235E-12 -8.87297545929E-12 -9.32790102718E-12 -9.80615100215E-12 -1.03089212424E-11 -1.08374689181E-11 -1.13931156555E-11 -1.19772508408E-11 -1.25913350948E-11 -1.32369039249E-11 -1.39155715645E-11 -1.46290350092E-11 -1.53790782604E-11 -1.61675767857E-11 -1.69965022083E-11 -1.78679272373E-11 -1.87840308502E-11 -1.97471037408E-11 -2.07595540478E-11 -2.18239133752E-11 -2.29428431229E-11 -2.41191411412E-11 -2.53557487266E-11 -2.66557579760E-11 -2.80224195185E-11 -2.94591506428E-11 -3.09695438425E-11 -3.25573757979E-11 -3.42266168198E-11 -3.59814407766E-11 -3.78262355304E-11 -3.97656139086E-11 -4.18044252374E-11 -4.39477674672E-11 -4.62009999190E-11 -4.85697566851E-11 -5.10599607159E-11 -5.36778386296E-11 -5.64299362810E-11 -5.93231351282E-11 -6.23646694386E-11 -6.55621443774E-11 -6.89235550224E-11 -7.24573063548E-11 -7.61722342743E-11 -8.00776276913E-11 -8.41832517525E-11 -8.84993722568E-11 -9.30367813224E-11 -9.78068243706E-11 -1.02821428493E-10 -1.08093132271E-10 -1.13635117130E-10 -1.19461240290E-10 -1.25586069417E-10 -1.32024919047E-10 -1.38793888871E-10 -1.45909903993E-10 -1.53390757246E-10 -1.61255153673E-10 -1.69522757304E-10 -1.78214240310E-10 -1.87351334694E-10 -1.96956886624E-10 -2.07054913551E-10 -2.17670664259E-10 -2.28830681992E-10 -2.40562870815E-10 -2.52896565378E-10 -2.65862604259E-10 -2.79493407066E-10 -2.93823055485E-10 -3.08887378493E-10 -3.24724041932E-10 -3.41372642682E-10 -3.58874807648E-10 -3.77274297840E-10 -3.96617117772E-10 -4.16951630479E-10 -4.38328678426E-10 -4.60801710614E-10 -4.84426916209E-10 -5.09263365009E-10 -5.35373155120E-10 -5.62821568205E-10 -5.91677232678E-10 -6.22012295278E-10 -6.53902601429E-10 -6.87427884849E-10 -7.22671966876E-10 -7.59722966012E-10 -7.98673518210E-10 -8.39621008452E-10 -8.82667814193E-10 -9.27921561290E-10 -9.75495393045E-10 -1.02550825304E-09 -1.07808518247E-09 -1.13335763272E-09 -1.19146379394E-09 -1.25254894050E-09 -1.31676579414E-09 -1.38427490569E-09 -1.45524505642E-09 -1.52985367995E-09 -1.60828730568E-09 -1.69074202516E-09 -1.77742398212E-09 -1.86854988781E-09 -1.96434756262E-09 -2.06505650556E-09 -2.17092849286E-09 -2.28222820723E-09 -2.39923389950E-09 -2.52223808397E-09 -2.65154826958E-09 -2.78748772845E-09 -2.93039630383E-09 -3.08063125944E-09 -3.23856817239E-09 -3.40460187179E-09 -3.57914742551E-09 -3.76264117745E-09 -3.95554183806E-09 -4.15833163065E-09 -4.37151749646E-09 -4.59563236155E-09 -4.83123646847E-09 -5.07891877633E-09 -5.33929843248E-09 -5.61302631965E-09 -5.90078668238E-09 -6.20329883674E-09 -6.52131896769E-09 -6.85564201850E-09 -7.20710367700E-09 -7.57658246358E-09 -7.96500192614E-09 -8.37333294757E-09 -8.80259617134E-09 -9.25386455145E-09 -9.72826603292E-09 -1.02269863697E-08 -1.07512720869E-08 -1.13024335945E-08 -1.18818484635E-08 -1.24909648610E-08 -1.31313051593E-08 -1.38044697820E-08 -1.45121411495E-08 -1.52560879044E-08 -1.60381693083E-08 -1.68603399364E-08 -1.77246545084E-08 -1.86332730267E-08 -1.95884662030E-08 -2.05926211155E-08 -2.16482471121E-08 -2.27579821729E-08 -2.39245994434E-08 -2.51510141348E-08 -2.64402908892E-08 -2.77956513273E-08 -2.92204821628E-08 -3.07183436062E-08 -3.22929783253E-08 -3.39483207171E-08 -3.56885067639E-08 -3.75178843327E-08 -3.94410240841E-08 -4.14627307781E-08 -4.35880553954E-08 -4.58223076217E-08 -4.81710691807E-08 -5.06402076878E-08 -5.32358914413E-08 -5.59646046053E-08 -5.88331635301E-08 -6.18487337542E-08 -6.50188478064E-08 -6.83514238942E-08 -7.18547861405E-08 -7.55376846949E-08 -7.94093179985E-08 -8.34793555212E-08 -8.77579620550E-08 -9.22558228372E-08 -9.69841704117E-08 -1.01954812355E-07 -1.07180161087E-07 -1.12673264581E-07 -1.18447838774E-07 -1.24518302023E-07 -1.30899810931E-07 -1.37608298101E-07 -1.44660511704E-07 -1.52074057528E-07 -1.59867442582E-07 -1.68060121303E-07 -1.76672543968E-07 -1.85726207635E-07 -1.95243709828E-07 -2.05248804492E-07 -2.15766461438E-07 -2.26822928400E-07 -2.38445796475E-07 -2.50664068452E-07 -2.63508231434E-07 -2.77010332496E-07 -2.91204058453E-07 -3.06124819556E-07 -3.21809837923E-07 -3.38298239687E-07 -3.55631152447E-07 -3.73851807785E-07 -3.93005648566E-07 -4.13140441657E-07 -4.34306397113E-07 -4.56556292595E-07 -4.79945604745E-07 -5.04532646886E-07 -5.30378713665E-07 -5.57548234194E-07 -5.86108930357E-07 -6.16131986612E-07 -6.47692226007E-07 -6.80868295468E-07 -7.15742861686E-07 -7.52402815611E-07 -7.90939488566E-07 -8.31448877792E-07 -8.74031885426E-07 -9.18794568075E-07 -9.65848399852E-07 -1.01531054831E-06 -1.06730416500E-06 -1.12195869016E-06 -1.17941017315E-06 -1.23980160957E-06 -1.30328329466E-06 -1.37001319531E-06 -1.44015734109E-06 -1.51389023387E-06 -1.59139527990E-06 -1.67286524293E-06 -1.75850272011E-06 -1.84852064235E-06 -1.94314280041E-06 -2.04260439627E-06 -2.14715262448E-06 -2.25704728180E-06 -2.37256140571E-06 -2.49398195021E-06 -2.62161049107E-06 -2.75576396837E-06 -2.89677546759E-06 -3.04499503825E-06 -3.20079055605E-06 -3.36454862646E-06 -3.53667553497E-06 -3.71759824532E-06 -3.90776544827E-06 -4.10764866168E-06 -4.31774338794E-06 -4.53857032945E-06 -4.77067666302E-06 -5.01463738189E-06 -5.27105670157E-06 -5.54056953992E-06 -5.82384306844E-06 -6.12157834394E-06 -6.43451201951E-06 -6.76341814389E-06 -7.10911004923E-06 -7.47244233444E-06 -7.85431294662E-06 -8.25566536759E-06 -8.67749091046E-06 -9.12083112822E-06 -9.58678034537E-06 -1.00764883149E-05 -1.05911630072E-05 -1.11320735377E-05 -1.17005532421E-05 -1.22980029021E-05 -1.29258941339E-05 -1.35857729417E-05 -1.42792634521E-05 -1.50080718287E-05 -1.57739903835E-05 -1.65789018920E-05 -1.74247841203E-05 -1.83137145754E-05 -1.92478754917E-05 -2.02295590622E-05 -2.12611729263E-05 -2.23452459300E-05 -2.34844341668E-05 -2.46815273151E-05 -2.59394552891E-05 -2.72612952106E-05 -2.86502787260E-05 -3.01097996784E-05 -3.16434221537E-05 -3.32548889196E-05 -3.49481302741E-05 -3.67272733250E-05 -3.85966517168E-05 -4.05608158314E-05 -4.26245434805E-05 -4.47928511140E-05 -4.70710055681E-05 -4.94645363803E-05 -5.19792486927E-05 -5.46212367771E-05 -5.73968982043E-05 -6.03129486907E-05 -6.33764376540E-05 -6.65947645059E-05 -6.99756957203E-05 -7.35273827074E-05 -7.72583805352E-05 -8.11776675294E-05 -8.52946657994E-05 -8.96192627229E-05 -9.41618334387E-05 -9.89332643879E-05 -1.03944977950E-04 -1.09208958223E-04 -1.14737777996E-04 -1.20544626969E-04 -1.26643341264E-04 -1.33048434296E-04 -1.39775129050E-04 -1.46839391832E-04 -1.54257967545E-04 -1.62048416568E-04 -1.70229153290E-04 -1.78819486375E-04 -1.87839660830E-04 -1.97310901935E-04 -2.07255461129E-04 -2.17696663917E-04 -2.28658959878E-04 -2.40167974863E-04 -2.52250565450E-04 -2.64934875772E-04 -2.78250396772E-04 -2.92228028003E-04 -3.06900142047E-04 -3.22300651670E-04 -3.38465079776E-04 -3.55430632299E-04 -3.73236274106E-04 -3.91922808016E-04 -4.11532957060E-04 -4.32111450056E-04 -4.53705110635E-04 -4.76362949808E-04 -5.00136262186E-04 -5.25078725966E-04 -5.51246506785E-04 -5.78698365567E-04 -6.07495770441E-04 -6.37703012869E-04 -6.69387328073E-04 -7.02619019865E-04 -7.37471589983E-04 -7.74021872033E-04 -8.12350170126E-04 -8.52540402307E-04 -8.94680248842E-04 -9.38861305463E-04 -9.85179241619E-04 -1.03373396381E-03 -1.08462978404E-03 -1.13797559345E-03 -1.19388504112E-03 -1.25247671812E-03 -1.31387434672E-03 -1.37820697480E-03 -1.44560917547E-03 -1.51622125168E-03 -1.59018944591E-03 -1.66766615474E-03 -1.74881014820E-03 -1.83378679371E-03 -1.92276828444E-03 -2.01593387180E-03 -2.11347010193E-03 -2.21557105564E-03 -2.32243859174E-03 -2.43428259299E-03 -2.55132121461E-03 -2.67378113449E-03 -2.80189780469E-03 -2.93591570357E-03 -3.07608858784E-03 -3.22267974361E-03 -3.37596223578E-03 -3.53621915465E-03 -3.70374385875E-03 -3.87884021276E-03 -4.06182281927E-03 -4.25301724294E-03 -4.45276022579E-03 -4.66139989173E-03 -4.87929593891E-03 -5.10681981778E-03 -5.34435489310E-03 -5.59229658751E-03 -5.85105250457E-03 -6.12104252868E-03 -6.40269889934E-03 -6.69646625690E-03 -7.00280165679E-03 -7.32217454923E-03 -7.65506672084E-03 -8.00197219481E-03 -8.36339708579E-03 -8.73985940557E-03 -9.13188881543E-03 -9.54002632086E-03 -9.96482390395E-03 -1.04068440890E-02 -1.08666594359E-02 -1.13448519571E-02 -1.18420124513E-02 -1.23587397503E-02 -1.28956398716E-02 -1.34533250722E-02 -1.40324127968E-02 -1.46335245153E-02 -1.52572844424E-02 -1.59043181342E-02 -1.65752509545E-02 -1.72707064061E-02 -1.79913043195E-02 -1.87376588940E-02 -1.95103765852E-02 -2.03100538334E-02 -2.11372746269E-02 -2.19926078969E-02 -2.28766047376E-02 -2.37897954499E-02 -2.47326864033E-02 -2.57057567152E-02 -2.67094547450E-02 -2.77441944033E-02 -2.88103512763E-02 -2.99082585670E-02 -3.10382028574E-02 -3.22004196956E-02 -3.33950890154E-02 -3.46223303956E-02 -3.58821981718E-02 -3.71746764107E-02 -3.84996737660E-02 -3.98570182302E-02 -4.12464518059E-02 -4.26676251201E-02 -4.41200920072E-02 -4.56033040933E-02 -4.71166054149E-02 -4.86592271095E-02 -5.02302822208E-02 -5.18287606633E-02 -5.34535243958E-02 -5.51033028587E-02 -5.67766887307E-02 -5.84721340685E-02 -6.01879468939E-02 -6.19222882980E-02 -6.36731701349E-02 -6.54384533808E-02 -6.72158472373E-02 -6.90029090589E-02 -7.07970451879E-02 -7.25955127793E-02 -7.43954226983E-02 -7.61937435739E-02 -7.79873070874E-02 -7.97728145724E-02 -8.15468449990E-02 -8.33058644065E-02 -8.50462368428E-02 -8.67642368569E-02 -8.84560635809E-02 -9.01178564227E-02 -9.17457123737E-02 -9.33357049199E-02 -9.48839045199E-02 -9.63864005944E-02 -9.78393249432E-02 -9.92388764775E-02 -1.00581347128E-01 -1.01863148756E-01 -1.03080840853E-01 -1.04231158803E-01 -1.05311042406E-01 -1.06317664368E-01 -1.07248458391E-01 -1.08101146486E-01 -1.08873765082E-01 -1.09564689472E-01 -1.10172656139E-01 -1.10696782433E-01 -1.11136583094E-01 -1.11491983107E-01 -1.11763326332E-01 -1.11951379430E-01 -1.12057330570E-01 -1.12082782476E-01 -1.12029739402E-01 -1.11900587711E-01 -1.11698069800E-01 -1.11425251223E-01 -1.11085481000E-01 -1.10682345195E-01 -1.10219614069E-01 -1.09701183213E-01 -1.09131009319E-01 -1.08513041396E-01 -1.07851148480E-01 -1.07149045074E-01 -1.06410215775E-01 -1.05637840753E-01 -1.04834723900E-01 -1.04003225672E-01 -1.03145202737E-01 -1.02261956642E-01 -1.01354193734E-01 -1.00421998557E-01 -9.94648227914E-02 -9.84814916697E-02 -9.74702294654E-02 -9.64287053052E-02 -9.53541000537E-02 -9.42431944414E-02 -9.30924779217E-02 -9.18982769722E-02 -9.06569007059E-02 -8.93648007564E-02 -8.80187414687E-02 -8.66159754978E-02 -8.51544190351E-02 -8.36328200873E-02 -8.20509125761E-02 -8.04095485741E-02 -7.87108007819E-02 -7.69580274612E-02 -7.51558925042E-02 -7.33103342017E-02 -7.14284775966E-02 -6.95184871024E-02 -6.75893583272E-02 -6.56506507493E-02 -6.37121659852E-02 -6.17835798019E-02 -5.98740396172E-02 -5.79917428722E-02 -5.61435151454E-02 -5.43344100015E-02 -5.25673550842E-02 -5.08428706209E-02 -4.91588870387E-02 -4.75106875639E-02 -4.58909992570E-02 -4.42902517650E-02 -4.26970170426E-02 -4.10986353845E-02 -3.94820234151E-02 -3.78346483941E-02 -3.61456406341E-02 -3.44070024459E-02 -3.26148583716E-02 -3.07714690748E-02 -2.88867280814E-02 -2.69727939808E-02 -2.50426980958E-02 -2.31101575565E-02 -2.11893600424E-02 -1.92947217474E-02 -1.74406209302E-02 -1.56411102874E-02 -1.39096123073E-02 -1.22586027215E-02 -1.06992881415E-02 -9.24128492724E-03 -7.89230725769E-03 -6.65787321607E-03 -5.54103844450E-03 -4.54216750543E-03 -3.65875348069E-03 -2.88616413176E-03 -2.22072126038E-03 -1.65805001585E-03 -1.19242320977E-03 -8.16873130567E-04 -5.23335238782E-04 -3.02824959300E-04 -1.45648307503E-04 -4.16465052015E-05 1.95259454774E-05 4.80910608700E-05 5.38072893957E-05 4.56028056283E-05 3.11865814811E-05 1.66428613979E-05 6.01598473979E-06 8.93882290243E-07 -5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 10 2 i j (l(j)) 0.00000000000E+00 Q_int -4.88105746905E-18 -5.13131463633E-18 -5.39440276291E-18 -5.67097970612E-18 -5.96173705238E-18 -6.26740184651E-18 -6.58873840969E-18 -6.92655025070E-18 -7.28168207508E-18 -7.65502189738E-18 -8.04750326160E-18 -8.46010757557E-18 -8.89386656498E-18 -9.34986485324E-18 -9.82924267355E-18 -1.03331987202E-17 -1.08629931457E-17 -1.14199507121E-17 -1.20054641034E-17 -1.26209974080E-17 -1.32680897798E-17 -1.39483592868E-17 -1.46635069571E-17 -1.54153210322E-17 -1.62056814389E-17 -1.70365644900E-17 -1.79100478257E-17 -1.88283156095E-17 -1.97936639889E-17 -2.08085068377E-17 -2.18753817917E-17 -2.29969565938E-17 -2.41760357652E-17 -2.54155676179E-17 -2.67186516272E-17 -2.80885461817E-17 -2.95286767313E-17 -3.10426443524E-17 -3.26342347526E-17 -3.43074277368E-17 -3.60664071589E-17 -3.79155713836E-17 -3.98595442844E-17 -4.19031868062E-17 -4.40516091195E-17 -4.63101833990E-17 -4.86845572567E-17 -5.11806678639E-17 -5.38047567971E-17 -5.65633856451E-17 -5.94634524169E-17 -6.25122087897E-17 -6.57172782422E-17 -6.90866751173E-17 -7.26288246618E-17 -7.63525840944E-17 -8.02672647529E-17 -8.43826553777E-17 -8.87090465885E-17 -9.32572566165E-17 -9.80386583554E-17 -1.03065207800E-16 -1.08349473940E-16 -1.13904670195E-16 -1.19744687447E-16 -1.25884128780E-16 -1.32338345996E-16 -1.39123477999E-16 -1.46256491151E-16 -1.53755221701E-16 -1.61638420379E-16 -1.69925799287E-16 -1.78638081189E-16 -1.87797051326E-16 -1.97425611893E-16 -2.07547839305E-16 -2.18189044401E-16 -2.29375835735E-16 -2.41136186112E-16 -2.53499502530E-16 -2.66496699718E-16 -2.80160277438E-16 -2.94524401748E-16 -3.09624990438E-16 -3.25499802844E-16 -3.42188534261E-16 -3.59732915208E-16 -3.78176815773E-16 -3.97566355310E-16 -4.17950017763E-16 -4.39378772903E-16 -4.61906203773E-16 -4.85588640681E-16 -5.10485302048E-16 -5.36658442491E-16 -5.64173508487E-16 -5.93099302027E-16 -6.23508152654E-16 -6.55476098326E-16 -6.89083075550E-16 -7.24413119266E-16 -7.61554572975E-16 -8.00600309648E-16 -8.41647963953E-16 -8.84800176394E-16 -9.30164849966E-16 -9.77855419969E-16 -1.02799113765E-15 -1.08069736841E-15 -1.13610590525E-15 -1.19435529837E-15 -1.25559120155E-15 -1.31996673645E-15 -1.38764287539E-15 -1.45878884395E-15 -1.53358254409E-15 -1.61221099899E-15 -1.69487082069E-15 -1.78176870179E-15 -1.87312193221E-15 -1.96915894256E-15 -2.07011987535E-15 -2.17625718546E-15 -2.28783627140E-15 -2.40513613893E-15 -2.52845009879E-15 -2.65808650002E-15 -2.79436950109E-15 -2.93763988042E-15 -3.08825588850E-15 -3.24659414372E-15 -3.41305057410E-15 -3.58804140732E-15 -3.77200421149E-15 -3.96539898935E-15 -4.16870932845E-15 -4.38244361039E-15 -4.60713628207E-15 -4.84334919205E-15 -5.09167299547E-15 -5.35272863101E-15 -5.62716887353E-15 -5.91567996639E-15 -6.21898333737E-15 -6.53783740263E-15 -6.87303946316E-15 -7.22542769842E-15 -7.59588326225E-15 -7.98533248619E-15 -8.39474919579E-15 -8.82515714571E-15 -9.27763257959E-15 -9.75330692126E-15 -1.02533696039E-14 -1.07790710441E-14 -1.13317257687E-14 -1.19127157019E-14 -1.25234936204E-14 -1.31655867865E-14 -1.38406007668E-14 -1.45502234470E-14 -1.52962292527E-14 -1.60804835858E-14 -1.69049474898E-14 -1.77716825527E-14 -1.86828560626E-14 -1.96407464265E-14 -2.06477488678E-14 -2.17063814158E-14 -2.28192912016E-14 -2.39892610777E-14 -2.52192165762E-14 -2.65122332247E-14 -2.78715442361E-14 -2.93005485937E-14 -3.08028195500E-14 -3.23821135625E-14 -3.40423796857E-14 -3.57877694468E-14 -3.76226472257E-14 -3.95516011692E-14 -4.15794546628E-14 -4.37112783923E-14 -4.59524030230E-14 -4.83084325289E-14 -5.07852582055E-14 -5.33890734016E-14 -5.61263890052E-14 -5.90040497246E-14 -6.20292512032E-14 -6.52095580129E-14 -6.85529225689E-14 -7.20677050151E-14 -7.57626941288E-14 -7.96471292970E-14 -8.37307236197E-14 -8.80236881978E-14 -9.25367576656E-14 -9.72812170338E-14 -1.02268929907E-13 -1.07512368148E-13 -1.13024643068E-13 -1.18819538205E-13 -1.24911543795E-13 -1.31315893004E-13 -1.38048600016E-13 -1.45126500081E-13 -1.52567291608E-13 -1.60389580422E-13 -1.68612926287E-13 -1.77257891816E-13 -1.86346093890E-13 -1.95900257707E-13 -2.05944273610E-13 -2.16503256824E-13 -2.27603610256E-13 -2.39273090519E-13 -2.51540877332E-13 -2.64437646491E-13 -2.77995646567E-13 -2.92248779549E-13 -3.07232685617E-13 -3.22984832254E-13 -3.39544607941E-13 -3.56953420644E-13 -3.75254801356E-13 -3.94494512948E-13 -4.14720664596E-13 -4.35983832081E-13 -4.58337184255E-13 -4.81836615986E-13 -5.06540887927E-13 -5.32511773447E-13 -5.59814213093E-13 -5.88516476977E-13 -6.18690335483E-13 -6.50411238733E-13 -6.83758505246E-13 -7.18815520275E-13 -7.55669944316E-13 -7.94413932297E-13 -8.35144364016E-13 -8.77963086389E-13 -9.22977168113E-13 -9.70299167399E-13 -1.02004741342E-12 -1.07234630218E-12 -1.12732660760E-12 -1.18512580848E-12 -1.24588843229E-12 -1.30976641654E-12 -1.37691948871E-12 -1.44751556567E-12 -1.52173117351E-12 -1.59975188897E-12 -1.68177280347E-12 -1.76799901093E-12 -1.85864612060E-12 -1.95394079623E-12 -2.05412132277E-12 -2.15943820226E-12 -2.27015478016E-12 -2.38654790389E-12 -2.50890861504E-12 -2.63754287715E-12 -2.77277234075E-12 -2.91493514762E-12 -3.06438677635E-12 -3.22150093119E-12 -3.38667047647E-12 -3.56030841900E-12 -3.74284894072E-12 -3.93474848440E-12 -4.13648689497E-12 -4.34856861935E-12 -4.57152396780E-12 -4.80591043994E-12 -5.05231411880E-12 -5.31135113625E-12 -5.58366921367E-12 -5.86994928151E-12 -6.17090718198E-12 -6.48729545895E-12 -6.81990523967E-12 -7.16956821296E-12 -7.53715870883E-12 -7.92359588467E-12 -8.32984602359E-12 -8.75692495056E-12 -9.20590057244E-12 -9.67789554821E-12 -1.01740900962E-11 -1.06957249450E-11 -1.12441044360E-11 -1.18205997848E-11 -1.24266525099E-11 -1.30637780368E-11 -1.37335694877E-11 -1.44377016648E-11 -1.51779352378E-11 -1.59561211470E-11 -1.67742052305E-11 -1.76342330905E-11 -1.85383552077E-11 -1.94888323185E-11 -2.04880410679E-11 -2.15384799521E-11 -2.26427755655E-11 -2.38036891687E-11 -2.50241235926E-11 -2.63071304964E-11 -2.76559179985E-11 -2.90738586978E-11 -3.05644981063E-11 -3.21315635148E-11 -3.37789733123E-11 -3.55108467836E-11 -3.73315144090E-11 -3.92455286921E-11 -4.12576755431E-11 -4.33729862452E-11 -4.55967500345E-11 -4.79345273254E-11 -5.03921636134E-11 -5.29758040909E-11 -5.56919090129E-11 -5.85472698492E-11 -6.15490262659E-11 -6.47046839769E-11 -6.80221335108E-11 -7.15096699398E-11 -7.51760136202E-11 -7.90303319959E-11 -8.30822625205E-11 -8.73419367533E-11 -9.18200056918E-11 -9.65276664023E-11 -1.01476690016E-10 -1.06679451161E-10 -1.12148958899E-10 -1.17898889259E-10 -1.23943619422E-10 -1.30298263675E-10 -1.36978711196E-10 -1.44001665787E-10 -1.51384687629E-10 -1.59146237194E-10 -1.67305721400E-10 -1.75883542127E-10 -1.84901147234E-10 -1.94381084176E-10 -2.04347056383E-10 -2.14823982521E-10 -2.25838058793E-10 -2.37416824435E-10 -2.49589230569E-10 -2.62385712586E-10 -2.75838266237E-10 -2.89980527630E-10 -3.04847857325E-10 -3.20477428736E-10 -3.36908321073E-10 -3.54181617045E-10 -3.72340505565E-10 -3.91430389733E-10 -4.11499000342E-10 -4.32596515212E-10 -4.54775684636E-10 -4.78091963254E-10 -5.02603648699E-10 -5.28372027336E-10 -5.55461527480E-10 -5.83939880466E-10 -6.13878289979E-10 -6.45351610055E-10 -6.78438532217E-10 -7.13221782197E-10 -7.49788326745E-10 -7.88229591035E-10 -8.28641687221E-10 -8.71125654706E-10 -9.15787712721E-10 -9.62739525863E-10 -1.01209848323E-09 -1.06398799188E-09 -1.11853778532E-09 -1.17588424779E-09 -1.23617075523E-09 -1.29954803364E-09 -1.36617453588E-09 -1.43621683775E-09 -1.50985005435E-09 -1.58725827784E-09 -1.66863503758E-09 -1.75418378389E-09 -1.84411839656E-09 -1.93866371951E-09 -2.03805612275E-09 -2.14254409320E-09 -2.25238885578E-09 -2.36786502633E-09 -2.48926129800E-09 -2.61688116281E-09 -2.75104367017E-09 -2.89208422430E-09 -3.04035542255E-09 -3.19622793659E-09 -3.36009143882E-09 -3.53235557629E-09 -3.71345099442E-09 -3.90383041330E-09 -4.10396975908E-09 -4.31436935333E-09 -4.53555516339E-09 -4.76808011675E-09 -5.01252548283E-09 -5.26950232547E-09 -5.53965302999E-09 -5.82365290836E-09 -6.12221188672E-09 -6.43607627926E-09 -6.76603065311E-09 -7.11289978867E-09 -7.47755074049E-09 -7.86089500359E-09 -8.26389079094E-09 -8.68754542750E-09 -9.13291786696E-09 -9.60112133738E-09 -1.00933261224E-08 -1.06107624851E-08 -1.11547237409E-08 -1.17265694894E-08 -1.23277290096E-08 -1.29597048332E-08 -1.36240764894E-08 -1.43225044690E-08 -1.50567343344E-08 -1.58286011371E-08 -1.66400339523E-08 -1.74930607129E-08 -1.83898132833E-08 -1.93325327384E-08 -2.03235750806E-08 -2.13654169395E-08 -2.24606619348E-08 -2.36120470613E-08 -2.48224495695E-08 -2.60948941640E-08 -2.74325604896E-08 -2.88387911721E-08 -3.03171000655E-08 -3.18711810893E-08 -3.35049174025E-08 -3.52223911637E-08 -3.70278936467E-08 -3.89259359824E-08 -4.09212604606E-08 -4.30188523034E-08 -4.52239521220E-08 -4.75420690290E-08 -4.99789943628E-08 -5.25408161456E-08 -5.52339342377E-08 -5.80650763463E-08 -6.10413148829E-08 -6.41700844482E-08 -6.74592005137E-08 -7.09168788501E-08 -7.45517560577E-08 -7.83729109749E-08 -8.23898876667E-08 -8.66127188848E-08 -9.10519510490E-08 -9.57186709950E-08 -1.00624533213E-07 -1.05781788951E-07 -1.11203316849E-07 -1.16902655057E-07 -1.22894035122E-07 -1.29192417008E-07 -1.35813526833E-07 -1.42773895878E-07 -1.50090901834E-07 -1.57782812040E-07 -1.65868828967E-07 -1.74369138310E-07 -1.83304958937E-07 -1.92698595871E-07 -2.02573496130E-07 -2.12954306431E-07 -2.23866935381E-07 -2.35338617388E-07 -2.47397980807E-07 -2.60075118904E-07 -2.73401665122E-07 -2.87410871415E-07 -3.02137691389E-07 -3.17618867020E-07 -3.33893019955E-07 -3.51000748049E-07 -3.68984725858E-07 -3.87889810955E-07 -4.07763155546E-07 -4.28654323560E-07 -4.50615413876E-07 -4.73701190028E-07 -4.97969215962E-07 -5.23479999372E-07 -5.50297141328E-07 -5.78487495592E-07 -6.08121333403E-07 -6.39272518421E-07 -6.72018690134E-07 -7.06441456530E-07 -7.42626596409E-07 -7.80664272773E-07 -8.20649255604E-07 -8.62681157802E-07 -9.06864681825E-07 -9.53309879127E-07 -1.00213242289E-06 -1.05345389506E-06 -1.10740208726E-06 -1.16411131734E-06 -1.22372276182E-06 -1.28638480621E-06 -1.35225341057E-06 -1.42149249771E-06 -1.49427435648E-06 -1.57078006925E-06 -1.65119995921E-06 -1.73573406076E-06 -1.82459261336E-06 -1.91799658191E-06 -2.01617820084E-06 -2.11938154954E-06 -2.22786315174E-06 -2.34189261184E-06 -2.46175327638E-06 -2.58774293515E-06 -2.72017455348E-06 -2.85937704417E-06 -3.00569607652E-06 -3.15949492759E-06 -3.32115537667E-06 -3.49107864307E-06 -3.66968637337E-06 -3.85742167721E-06 -4.05475021552E-06 -4.26216134455E-06 -4.48016931602E-06 -4.70931453815E-06 -4.95016490169E-06 -5.20331717042E-06 -5.46939844331E-06 -5.74906768901E-06 -6.04301735863E-06 -6.35197507793E-06 -6.67670542630E-06 -7.01801180353E-06 -7.37673839076E-06 -7.75377220934E-06 -8.15004528405E-06 -8.56653691239E-06 -9.00427604937E-06 -9.46434380998E-06 -9.94787609854E-06 -1.04560663673E-05 -1.09901685131E-05 -1.15514999199E-05 -1.21414446507E-05 -1.27614568004E-05 -1.34130640130E-05 -1.40978711759E-05 -1.48175642964E-05 -1.55739145710E-05 -1.63687826549E-05 -1.72041231460E-05 -1.80819892873E-05 -1.90045379040E-05 -1.99740345830E-05 -2.09928591099E-05 -2.20635111712E-05 -2.31886163388E-05 -2.43709323494E-05 -2.56133556899E-05 -2.69189285091E-05 -2.82908458647E-05 -2.97324633285E-05 -3.12473049596E-05 -3.28390716697E-05 -3.45116499961E-05 -3.62691212982E-05 -3.81157714072E-05 -4.00561007387E-05 -4.20948348977E-05 -4.42369357991E-05 -4.64876133201E-05 -4.88523375208E-05 -5.13368514488E-05 -5.39471845624E-05 -5.66896667961E-05 -5.95709433019E-05 -6.25979898927E-05 -6.57781292259E-05 -6.91190477557E-05 -7.26288134920E-05 -7.63158946007E-05 -8.01891788858E-05 -8.42579941901E-05 -8.85321297584E-05 -9.30218586014E-05 -9.77379609132E-05 -1.02691748579E-04 -1.07895090829E-04 -1.13360441083E-04 -1.19100865039E-04 -1.25130070070E-04 -1.31462435960E-04 -1.38113047068E-04 -1.45097725954E-04 -1.52433068551E-04 -1.60136480926E-04 -1.68226217721E-04 -1.76721422313E-04 -1.85642168803E-04 -1.95009505870E-04 -2.04845502587E-04 -2.15173296283E-04 -2.26017142509E-04 -2.37402467217E-04 -2.49355921221E-04 -2.61905437039E-04 -2.75080288198E-04 -2.88911151108E-04 -3.03430169584E-04 -3.18671022132E-04 -3.34668992089E-04 -3.51461040723E-04 -3.69085883395E-04 -3.87584068902E-04 -4.06998062092E-04 -4.27372329874E-04 -4.48753430741E-04 -4.71190107898E-04 -4.94733386142E-04 -5.19436672576E-04 -5.45355861305E-04 -5.72549442209E-04 -6.01078613925E-04 -6.31007401145E-04 -6.62402776352E-04 -6.95334786111E-04 -7.29876682023E-04 -7.66105056451E-04 -8.04099983142E-04 -8.43945162824E-04 -8.85728073902E-04 -9.29540128331E-04 -9.75476832763E-04 -1.02363795504E-03 -1.07412769613E-03 -1.12705486751E-03 -1.18253307416E-03 -1.24068090302E-03 -1.30162211722E-03 -1.36548585576E-03 -1.43240683887E-03 -1.50252557903E-03 -1.57598859739E-03 -1.65294864575E-03 -1.73356493392E-03 -1.81800336227E-03 -1.90643675948E-03 -1.99904512510E-03 -2.09601587688E-03 -2.19754410251E-03 -2.30383281546E-03 -2.41509321466E-03 -2.53154494752E-03 -2.65341637583E-03 -2.78094484416E-03 -2.91437695003E-03 -3.05396881526E-03 -3.19998635789E-03 -3.35270556362E-03 -3.51241275624E-03 -3.67940486574E-03 -3.85398969332E-03 -4.03648617195E-03 -4.22722462135E-03 -4.42654699592E-03 -4.63480712414E-03 -4.85237093791E-03 -5.07961668992E-03 -5.31693515730E-03 -5.56472982938E-03 -5.82341707749E-03 -6.09342630436E-03 -6.37520007057E-03 -6.66919419549E-03 -6.97587782966E-03 -7.29573349558E-03 -7.62925709381E-03 -7.97695787061E-03 -8.33935834374E-03 -8.71699418237E-03 -9.11041403700E-03 -9.52017931522E-03 -9.94686389858E-03 -1.03910537960E-02 -1.08533467284E-02 -1.13343516402E-02 -1.18346881309E-02 -1.23549858029E-02 -1.28958835175E-02 -1.34580285558E-02 -1.40420756759E-02 -1.46486860613E-02 -1.52785261542E-02 -1.59322663662E-02 -1.66105796605E-02 -1.73141399989E-02 -1.80436206463E-02 -1.87996923265E-02 -1.95830212230E-02 -2.03942668168E-02 -2.12340795575E-02 -2.21030983589E-02 -2.30019479156E-02 -2.39312358343E-02 -2.48915495750E-02 -2.58834531988E-02 -2.69074839179E-02 -2.79641484466E-02 -2.90539191499E-02 -3.01772299916E-02 -3.13344722799E-02 -3.25259902158E-02 -3.37520762458E-02 -3.50129662251E-02 -3.63088343993E-02 -3.76397882142E-02 -3.90058629642E-02 -4.04070162960E-02 -4.18431225829E-02 -4.33139671908E-02 -4.48192406585E-02 -4.63585328195E-02 -4.79313268951E-02 -4.95369935919E-02 -5.11747852432E-02 -5.28438300336E-02 -5.45431263549E-02 -5.62715373427E-02 -5.80277856477E-02 -5.98104485018E-02 -6.16179531417E-02 -6.34485726582E-02 -6.53004223427E-02 -6.71714566070E-02 -6.90594665568E-02 -7.09620783008E-02 -7.28767520826E-02 -7.48007823225E-02 -7.67312986602E-02 -7.86652680893E-02 -8.05994982730E-02 -8.25306421324E-02 -8.44552037925E-02 -8.63695459711E-02 -8.82698988867E-02 -9.01523707578E-02 -9.20129599531E-02 -9.38475688465E-02 -9.56520194108E-02 -9.74220705754E-02 -9.91534373500E-02 -1.00841811698E-01 -1.02482885124E-01 -1.04072372902E-01 -1.05606039862E-01 -1.07079727602E-01 -1.08489382977E-01 -1.09831087659E-01 -1.11101088563E-01 -1.12295828841E-01 -1.13411979164E-01 -1.14446468927E-01 -1.15396517002E-01 -1.16259661601E-01 -1.17033788803E-01 -1.17717159233E-01 -1.18308432377E-01 -1.18806687991E-01 -1.19211444021E-01 -1.19522670477E-01 -1.19740798681E-01 -1.19866725331E-01 -1.19901810856E-01 -1.19847871563E-01 -1.19707165145E-01 -1.19482369199E-01 -1.19176552481E-01 -1.18793138757E-01 -1.18335863219E-01 -1.17808721620E-01 -1.17215912412E-01 -1.16561772405E-01 -1.15850706629E-01 -1.15087113332E-01 -1.14275305243E-01 -1.13419428486E-01 -1.12523380732E-01 -1.11590730411E-01 -1.10624638992E-01 -1.09627788524E-01 -1.08602316741E-01 -1.07549762149E-01 -1.06471021515E-01 -1.05366322143E-01 -1.04235211197E-01 -1.03076564113E-01 -1.01888613820E-01 -1.00669002063E-01 -9.94148536063E-02 -9.81228734219E-02 -9.67894662452E-02 -9.54108770160E-02 -9.39833498095E-02 -9.25033018769E-02 -9.09675084023E-02 -8.93732925867E-02 -8.77187147159E-02 -8.60027530246E-02 -8.42254684821E-02 -8.23881451503E-02 -8.04933975801E-02 -7.85452368593E-02 -7.65490874756E-02 -7.45117481583E-02 -7.24412913390E-02 -7.03468978646E-02 -6.82386260796E-02 -6.61271173614E-02 -6.40232435681E-02 -6.19377055537E-02 -5.98805957928E-02 -5.78609420561E-02 -5.58862527967E-02 -5.39620882014E-02 -5.20916834667E-02 -5.02756525084E-02 -4.85118007224E-02 -4.67950743217E-02 -4.51176709570E-02 -4.34693316071E-02 -4.18378270049E-02 -4.02096431480E-02 -3.85708598308E-02 -3.69082038753E-02 -3.52102451934E-02 -3.34686894882E-02 -3.16797069177E-02 -2.98459565197E-02 -2.79777683805E-02 -2.60876117048E-02 -2.41886859130E-02 -2.22947079928E-02 -2.04196744458E-02 -1.85776009277E-02 -1.67822436582E-02 -1.50468077044E-02 -1.33836482705E-02 -1.18039721498E-02 -1.03175474540E-02 -8.93243060694E-03 -7.65472031141E-03 -6.48834872980E-03 -5.43492039347E-03 -4.49360932396E-03 -3.66112444417E-03 -2.93244174045E-03 -2.30331058305E-03 -1.76887525751E-03 -1.32318247682E-03 -9.59318806202E-04 -6.69571797446E-04 -4.45613607037E-04 -2.78705167320E-04 -1.59918201325E-04 -8.03715273777E-05 -3.14771998305E-05 -5.19109220935E-06 5.73843167712E-06 7.53107011933E-06 5.15259387195E-06 2.11940243623E-06 3.39456456819E-07 -1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 2 0 i j (l(j)) -1.08577119111E-01 Q_int 7.78004826517E-11 7.97700112131E-11 8.17893986257E-11 8.38599070722E-11 8.59828306876E-11 8.81594963682E-11 9.03912646007E-11 9.26795303129E-11 9.50257237449E-11 9.74313113440E-11 9.98977966805E-11 1.02426721388E-10 1.05019666126E-10 1.07678251570E-10 1.10404139422E-10 1.13199033449E-10 1.16064680553E-10 1.19002871855E-10 1.22015443819E-10 1.25104279402E-10 1.28271309226E-10 1.31518512787E-10 1.34847919693E-10 1.38261610931E-10 1.41761720169E-10 1.45350435088E-10 1.49029998753E-10 1.52802711009E-10 1.56670929924E-10 1.60637073261E-10 1.64703619987E-10 1.68873111827E-10 1.73148154847E-10 1.77531421088E-10 1.82025650233E-10 1.86633651323E-10 1.91358304505E-10 1.96202562843E-10 2.01169454153E-10 2.06262082905E-10 2.11483632156E-10 2.16837365543E-10 2.22326629324E-10 2.27954854465E-10 2.33725558790E-10 2.39642349175E-10 2.45708923806E-10 2.51929074489E-10 2.58306689019E-10 2.64845753612E-10 2.71550355393E-10 2.78424684957E-10 2.85473038980E-10 2.92699822914E-10 3.00109553730E-10 3.07706862750E-10 3.15496498538E-10 3.23483329868E-10 3.31672348767E-10 3.40068673636E-10 3.48677552450E-10 3.57504366036E-10 3.66554631437E-10 3.75834005360E-10 3.85348287714E-10 3.95103425232E-10 4.05105515190E-10 4.15360809216E-10 4.25875717199E-10 4.36656811296E-10 4.47710830037E-10 4.59044682540E-10 4.70665452829E-10 4.82580404257E-10 4.94796984053E-10 5.07322827972E-10 5.20165765070E-10 5.33333822595E-10 5.46835231006E-10 5.60678429116E-10 5.74872069369E-10 5.89425023246E-10 6.04346386810E-10 6.19645486391E-10 6.35331884418E-10 6.51415385391E-10 6.67906042015E-10 6.84814161477E-10 7.02150311893E-10 7.19925328912E-10 7.38150322488E-10 7.56836683825E-10 7.75996092495E-10 7.95640523741E-10 8.15782255959E-10 8.36433878374E-10 8.57608298910E-10 8.79318752253E-10 9.01578808128E-10 9.24402379780E-10 9.47803732666E-10 9.71797493376E-10 9.96398658774E-10 1.02162260537E-09 1.04748509893E-09 1.07400230433E-09 1.10119079566E-09 1.12906756661E-09 1.15765004102E-09 1.18695608385E-09 1.21700401230E-09 1.24781260728E-09 1.27940112513E-09 1.31178930968E-09 1.34499740454E-09 1.37904616585E-09 1.41395687512E-09 1.44975135267E-09 1.48645197116E-09 1.52408166963E-09 1.56266396781E-09 1.60222298086E-09 1.64278343440E-09 1.68437067997E-09 1.72701071090E-09 1.77073017854E-09 1.81555640892E-09 1.86151741982E-09 1.90864193832E-09 1.95695941868E-09 2.00650006085E-09 2.05729482924E-09 2.10937547216E-09 2.16277454163E-09 2.21752541370E-09 2.27366230936E-09 2.33122031589E-09 2.39023540881E-09 2.45074447437E-09 2.51278533258E-09 2.57639676087E-09 2.64161851833E-09 2.70849137054E-09 2.77705711506E-09 2.84735860757E-09 2.91943978863E-09 2.99334571116E-09 3.06912256858E-09 3.14681772371E-09 3.22647973837E-09 3.30815840369E-09 3.39190477129E-09 3.47777118515E-09 3.56581131432E-09 3.65608018652E-09 3.74863422246E-09 3.84353127114E-09 3.94083064603E-09 4.04059316209E-09 4.14288117382E-09 4.24775861422E-09 4.35529103475E-09 4.46554564631E-09 4.57859136121E-09 4.69449883631E-09 4.81334051710E-09 4.93519068306E-09 5.06012549402E-09 5.18822303781E-09 5.31956337903E-09 5.45422860911E-09 5.59230289761E-09 5.73387254486E-09 5.87902603584E-09 6.02785409552E-09 6.18044974558E-09 6.33690836251E-09 6.49732773725E-09 6.66180813630E-09 6.83045236439E-09 7.00336582874E-09 7.18065660492E-09 7.36243550443E-09 7.54881614392E-09 7.73991501625E-09 7.93585156326E-09 8.13674825042E-09 8.34273064339E-09 8.55392748652E-09 8.77047078326E-09 8.99249587871E-09 9.22014154420E-09 9.45355006399E-09 9.69286732425E-09 9.93824290422E-09 1.01898301697E-08 1.04477863688E-08 1.07122727305E-08 1.09834545650E-08 1.12615013676E-08 1.15465869239E-08 1.18388894191E-08 1.21385915490E-08 1.24458806344E-08 1.27609487378E-08 1.30839927839E-08 1.34152146824E-08 1.37548214541E-08 1.41030253606E-08 1.44600440368E-08 1.48261006270E-08 1.52014239239E-08 1.55862485125E-08 1.59808149157E-08 1.63853697454E-08 1.68001658564E-08 1.72254625039E-08 1.76615255066E-08 1.81086274118E-08 1.85670476664E-08 1.90370727910E-08 1.95189965596E-08 2.00131201828E-08 2.05197524960E-08 2.10392101526E-08 2.15718178219E-08 2.21179083917E-08 2.26778231770E-08 2.32519121325E-08 2.38405340718E-08 2.44440568918E-08 2.50628578019E-08 2.56973235606E-08 2.63478507167E-08 2.70148458571E-08 2.76987258611E-08 2.83999181609E-08 2.91188610086E-08 2.98560037503E-08 3.06118071067E-08 3.13867434609E-08 3.21812971541E-08 3.29959647877E-08 3.38312555342E-08 3.46876914550E-08 3.55658078267E-08 3.64661534757E-08 3.73892911212E-08 3.83357977268E-08 3.93062648609E-08 4.03012990669E-08 4.13215222414E-08 4.23675720236E-08 4.34401021933E-08 4.45397830796E-08 4.56673019799E-08 4.68233635892E-08 4.80086904404E-08 4.92240233561E-08 5.04701219112E-08 5.17477649078E-08 5.30577508617E-08 5.44008985012E-08 5.57780472793E-08 5.71900578974E-08 5.86378128439E-08 6.01222169450E-08 6.16441979305E-08 6.32047070133E-08 6.48047194838E-08 6.64452353192E-08 6.81272798085E-08 6.98519041928E-08 7.16201863226E-08 7.34332313309E-08 7.52921723236E-08 7.71981710879E-08 7.91524188177E-08 8.11561368583E-08 8.32105774691E-08 8.53170246060E-08 8.74767947239E-08 8.96912375989E-08 9.19617371715E-08 9.42897124115E-08 9.66766182043E-08 9.91239462597E-08 1.01633226044E-07 1.04206025736E-07 1.06843953205E-07 1.09548657017E-07 1.12321827465E-07 1.15165197620E-07 1.18080544422E-07 1.21069689783E-07 1.24134501728E-07 1.27276895560E-07 1.30498835059E-07 1.33802333707E-07 1.37189455947E-07 1.40662318469E-07 1.44223091536E-07 1.47874000338E-07 1.51617326382E-07 1.55455408916E-07 1.59390646391E-07 1.63425497958E-07 1.67562485006E-07 1.71804192734E-07 1.76153271766E-07 1.80612439808E-07 1.85184483343E-07 1.89872259372E-07 1.94678697199E-07 1.99606800258E-07 2.04659647989E-07 2.09840397764E-07 2.15152286852E-07 2.20598634446E-07 2.26182843734E-07 2.31908404021E-07 2.37778892911E-07 2.43797978538E-07 2.49969421856E-07 2.56297078990E-07 2.62784903637E-07 2.69436949542E-07 2.76257373020E-07 2.83250435557E-07 2.90420506466E-07 2.97772065614E-07 3.05309706221E-07 3.13038137723E-07 3.20962188714E-07 3.29086809955E-07 3.37417077469E-07 3.45958195704E-07 3.54715500781E-07 3.63694463825E-07 3.72900694378E-07 3.82339943897E-07 3.92018109344E-07 4.01941236862E-07 4.12115525551E-07 4.22547331330E-07 4.33243170904E-07 4.44209725827E-07 4.55453846670E-07 4.66982557292E-07 4.78803059222E-07 4.90922736146E-07 5.03349158515E-07 5.16090088261E-07 5.29153483639E-07 5.42547504186E-07 5.56280515807E-07 5.70361095994E-07 5.84798039164E-07 5.99600362147E-07 6.14777309803E-07 6.30338360779E-07 6.46293233419E-07 6.62651891818E-07 6.79424552030E-07 6.96621688427E-07 7.14254040230E-07 7.32332618193E-07 7.50868711461E-07 7.69873894599E-07 7.89360034802E-07 8.09339299278E-07 8.29824162828E-07 8.50827415604E-07 8.72362171078E-07 8.94441874194E-07 9.17080309741E-07 9.40291610925E-07 9.64090268164E-07 9.88491138100E-07 1.01350945284E-06 1.03916082943E-06 1.06546127956E-06 1.09242721952E-06 1.12007548042E-06 1.14842331862E-06 1.17748842650E-06 1.20728894339E-06 1.23784346691E-06 1.26917106446E-06 1.30129128511E-06 1.33422417171E-06 1.36799027335E-06 1.40261065810E-06 1.43810692611E-06 1.47450122299E-06 1.51181625357E-06 1.55007529595E-06 1.58930221600E-06 1.62952148209E-06 1.67075818030E-06 1.71303802996E-06 1.75638739959E-06 1.80083332322E-06 1.84640351715E-06 1.89312639714E-06 1.94103109594E-06 1.99014748138E-06 2.04050617481E-06 2.09213857010E-06 2.14507685300E-06 2.19935402106E-06 2.25500390404E-06 2.31206118482E-06 2.37056142080E-06 2.43054106588E-06 2.49203749299E-06 2.55508901710E-06 2.61973491892E-06 2.68601546911E-06 2.75397195311E-06 2.82364669657E-06 2.89508309148E-06 2.96832562285E-06 3.04341989615E-06 3.12041266532E-06 3.19935186160E-06 3.28028662296E-06 3.36326732435E-06 3.44834560863E-06 3.53557441828E-06 3.62500802794E-06 3.71670207771E-06 3.81071360726E-06 3.90710109080E-06 4.00592447296E-06 4.10724520544E-06 4.21112628469E-06 4.31763229040E-06 4.42682942504E-06 4.53878555429E-06 4.65357024850E-06 4.77125482517E-06 4.89191239245E-06 5.01561789371E-06 5.14244815323E-06 5.27248192292E-06 5.40579993033E-06 5.54248492765E-06 5.68262174205E-06 5.82629732718E-06 5.97360081589E-06 6.12462357434E-06 6.27945925726E-06 6.43820386475E-06 6.60095580022E-06 6.76781592996E-06 6.93888764397E-06 7.11427691837E-06 7.29409237923E-06 7.47844536801E-06 7.66745000851E-06 7.86122327543E-06 8.05988506465E-06 8.26355826506E-06 8.47236883218E-06 8.68644586357E-06 8.90592167594E-06 9.13093188414E-06 9.36161548204E-06 9.59811492528E-06 9.84057621600E-06 1.00891489896E-05 1.03439866033E-05 1.06052462273E-05 1.08730889376E-05 1.11476798110E-05 1.14291880226E-05 1.17177869453E-05 1.20136542521E-05 1.23169720198E-05 1.26279268362E-05 1.29467099088E-05 1.32735171771E-05 1.36085494259E-05 1.39520124031E-05 1.43041169383E-05 1.46650790658E-05 1.50351201486E-05 1.54144670072E-05 1.58033520494E-05 1.62020134041E-05 1.66106950582E-05 1.70296469956E-05 1.74591253402E-05 1.78993925015E-05 1.83507173237E-05 1.88133752380E-05 1.92876484179E-05 1.97738259385E-05 2.02722039383E-05 2.07830857855E-05 2.13067822472E-05 2.18436116623E-05 2.23939001181E-05 2.29579816303E-05 2.35361983276E-05 2.41289006393E-05 2.47364474865E-05 2.53592064786E-05 2.59975541121E-05 2.66518759747E-05 2.73225669527E-05 2.80100314428E-05 2.87146835679E-05 2.94369473976E-05 3.01772571721E-05 3.09360575310E-05 3.17138037462E-05 3.25109619596E-05 3.33280094241E-05 3.41654347501E-05 3.50237381561E-05 3.59034317235E-05 3.68050396560E-05 3.77290985438E-05 3.86761576319E-05 3.96467790929E-05 4.06415383049E-05 4.16610241329E-05 4.27058392154E-05 4.37766002554E-05 4.48739383154E-05 4.59984991173E-05 4.71509433462E-05 4.83319469588E-05 4.95422014959E-05 5.07824143988E-05 5.20533093303E-05 5.33556264991E-05 5.46901229888E-05 5.60575730893E-05 5.74587686334E-05 5.88945193356E-05 6.03656531350E-05 6.18730165405E-05 6.34174749796E-05 6.49999131495E-05 6.66212353708E-05 6.82823659427E-05 6.99842495013E-05 7.17278513781E-05 7.35141579610E-05 7.53441770548E-05 7.72189382432E-05 7.91394932506E-05 8.11069163029E-05 8.31223044884E-05 8.51867781159E-05 8.73014810723E-05 8.94675811763E-05 9.16862705297E-05 9.39587658639E-05 9.62863088827E-05 9.86701665987E-05 1.01111631664E-04 1.03612022692E-04 1.06172684575E-04 1.08794988788E-04 1.11480333684E-04 1.14230144777E-04 1.17045875017E-04 1.19929005042E-04 1.22881043423E-04 1.25903526889E-04 1.28998020530E-04 1.32166117985E-04 1.35409441610E-04 1.38729642611E-04 1.42128401163E-04 1.45607426499E-04 1.49168456962E-04 1.52813260032E-04 1.56543632315E-04 1.60361399496E-04 1.64268416248E-04 1.68266566104E-04 1.72357761276E-04 1.76543942430E-04 1.80827078401E-04 1.85209165863E-04 1.89692228926E-04 1.94278318673E-04 1.98969512634E-04 2.03767914174E-04 2.08675651818E-04 2.13694878478E-04 2.18827770606E-04 2.24076527237E-04 2.29443368950E-04 2.34930536707E-04 2.40540290589E-04 2.46274908412E-04 2.52136684209E-04 2.58127926591E-04 2.64250956953E-04 2.70508107539E-04 2.76901719342E-04 2.83434139840E-04 2.90107720552E-04 2.96924814404E-04 3.03887772903E-04 3.10998943094E-04 3.18260664296E-04 3.25675264612E-04 3.33245057180E-04 3.40972336176E-04 3.48859372530E-04 3.56908409365E-04 3.65121657120E-04 3.73501288359E-04 3.82049432239E-04 3.90768168621E-04 3.99659521805E-04 4.08725453876E-04 4.17967857624E-04 4.27388549039E-04 4.36989259339E-04 4.46771626519E-04 4.56737186389E-04 4.66887363085E-04 4.77223459017E-04 4.87746644227E-04 4.98457945136E-04 5.09358232640E-04 5.20448209532E-04 5.31728397205E-04 5.43199121612E-04 5.54860498451E-04 5.66712417518E-04 5.78754526212E-04 5.90986212135E-04 6.03406584753E-04 6.16014456075E-04 6.28808320299E-04 6.41786332376E-04 6.54946285458E-04 6.68285587160E-04 6.81801234594E-04 6.95489788119E-04 7.09347343748E-04 7.23369504154E-04 7.37551348214E-04 7.51887399034E-04 7.66371590375E-04 7.80997231429E-04 7.95756969874E-04 8.10642753115E-04 8.25645787674E-04 8.40756496619E-04 8.55964474976E-04 8.71258443029E-04 8.86626197443E-04 9.02054560101E-04 9.17529324599E-04 9.33035200277E-04 9.48555753729E-04 9.64073347668E-04 9.79569077077E-04 9.95022702536E-04 1.01041258063E-03 1.02571559134E-03 1.04090706233E-03 1.05596068997E-03 1.07084845712E-03 1.08554054740E-03 1.10000525599E-03 1.11420889680E-03 1.12811570587E-03 1.14168774094E-03 1.15488477713E-03 1.16766419856E-03 1.17998088575E-03 1.19178709894E-03 1.20303235697E-03 1.21366331176E-03 1.22362361838E-03 1.23285380037E-03 1.24129111061E-03 1.24886938730E-03 1.25551890523E-03 1.26116622225E-03 1.26573402076E-03 1.26914094442E-03 1.27130142981E-03 1.27212553323E-03 1.27151875255E-03 1.26938184419E-03 1.26561063513E-03 1.26009583025E-03 1.25272281485E-03 1.24337145260E-03 1.23191587895E-03 1.21822429026E-03 1.20215872870E-03 1.18357486326E-03 1.16232176701E-03 1.13824169098E-03 1.11116983492E-03 1.08093411528E-03 1.04735493092E-03 1.01024492683E-03 9.69408756505E-04 9.24642843442E-04 8.75735142370E-04 8.22464900876E-04 7.64602422135E-04 7.01908829526E-04 6.34135833974E-04 5.61025504922E-04 4.82310045923E-04 3.97711575898E-04 3.06941917190E-04 2.09702391623E-04 1.05683625851E-04 -5.43463263217E-06 -1.23983687376E-04 -2.50306051206E-04 -3.84755589183E-04 -5.27697644596E-04 -6.79509146171E-04 -8.40578694640E-04 -1.01130662670E-03 -1.19210505429E-03 -1.38339787718E-03 -1.58562076646E-03 -1.79922111688E-03 -2.02465796565E-03 -2.26240187517E-03 -2.51293477750E-03 -2.77674977789E-03 -3.05435091499E-03 -3.34625287509E-03 -3.65298065811E-03 -3.97506919247E-03 -4.31306289674E-03 -4.66751518539E-03 -5.03898791632E-03 -5.42805077800E-03 -5.83528061396E-03 -6.26126068269E-03 -6.70657985104E-03 -7.17183171955E-03 -7.65761367817E-03 -8.16452589145E-03 -8.69317021199E-03 -9.24414902192E-03 -9.81806400202E-03 -1.04155148288E-02 -1.10370978003E-02 -1.16834043908E-02 -1.23550197381E-02 -1.30525210624E-02 -1.37764760227E-02 -1.45274410107E-02 -1.53059593891E-02 -1.61125596755E-02 -1.69477536797E-02 -1.78120345970E-02 -1.87058750664E-02 -1.96297251978E-02 -2.05840105761E-02 -2.15691302506E-02 -2.25854547151E-02 -2.36333238889E-02 -2.47130451052E-02 -2.58248911160E-02 -2.69690981201E-02 -2.81458638227E-02 -2.93553455329E-02 -3.05976583055E-02 -3.18728731308E-02 -3.31810151771E-02 -3.45220620879E-02 -3.58959423309E-02 -3.73025336000E-02 -3.87416612607E-02 -4.02130968329E-02 -4.17165564967E-02 -4.32516996064E-02 -4.48181271900E-02 -4.64153804094E-02 -4.80429389503E-02 -4.97002193049E-02 -5.13865729054E-02 -5.31012840602E-02 -5.48435676394E-02 -5.66125664483E-02 -5.84073482256E-02 -6.02269021934E-02 -6.20701350851E-02 -6.39358665725E-02 -6.58228240088E-02 -6.77296364064E-02 -6.96548275658E-02 -7.15968082772E-02 -7.35538675188E-02 -7.55241625860E-02 -7.75057080963E-02 -7.94963638287E-02 -8.14938213761E-02 -8.34955896136E-02 -8.54989790118E-02 -8.75010848598E-02 -8.94987694992E-02 -9.14886437164E-02 -9.34670474892E-02 -9.54300303380E-02 -9.73733315933E-02 -9.92923609539E-02 -1.01182179779E-01 -1.03037483630E-01 -1.04852586638E-01 -1.06621408373E-01 -1.08337463918E-01 -1.09993857951E-01 -1.11583283684E-01 -1.13098027544E-01 -1.14529980526E-01 -1.15870657163E-01 -1.17111223044E-01 -1.18242531784E-01 -1.19255172300E-01 -1.20139527132E-01 -1.20885842442E-01 -1.21484310146E-01 -1.21925162414E-01 -1.22198778547E-01 -1.22295803904E-01 -1.22207280268E-01 -1.21924786592E-01 -1.21440588738E-01 -1.20747796299E-01 -1.19840524211E-01 -1.18714056353E-01 -1.17365007893E-01 -1.15791482717E-01 -1.13993221895E-01 -1.11971738794E-01 -1.09730436252E-01 -1.07274701072E-01 -1.04611971125E-01 -1.01751770499E-01 -9.87057084771E-02 -9.54874386256E-02 -9.21125750277E-02 -8.85985635745E-02 -8.49645073678E-02 -8.12309465744E-02 -7.74195945293E-02 -7.35530334711E-02 -6.96543749577E-02 -6.57468917054E-02 -6.18536292605E-02 -5.79970074645E-02 -5.41984230627E-02 -5.04778659262E-02 -4.68535621579E-02 -4.33416577535E-02 -3.99559564269E-02 -3.67077246494E-02 -3.36055758488E-02 -3.06554440660E-02 -2.78606551678E-02 -2.52221009974E-02 -2.27385186358E-02 -2.04068733142E-02 -1.82228394994E-02 -1.61813703613E-02 -1.42773412607E-02 -1.25062481640E-02 -1.08649370426E-02 -9.35233544866E-03 -7.97015266956E-03 -6.72153282586E-03 -5.60399388722E-03 -4.61272973172E-03 -3.74223387480E-03 -2.98634605318E-03 -2.33830522436E-03 -1.79080895581E-03 -1.33607912080E-03 -9.65933753535E-04 -6.71864843855E-04 -4.45121770524E-04 -2.76799983354E-04 -1.57934446998E-04 -7.95972544033E-05 -3.29987057826E-05 -9.59103058221E-06 -1.17380626216E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 3 1 i j (l(j)) 0.00000000000E+00 Q_int -1.45823135368E-15 -1.51395328590E-15 -1.57180446444E-15 -1.63186625204E-15 -1.69422312049E-15 -1.75896276941E-15 -1.82617624962E-15 -1.89595809113E-15 -1.96840643616E-15 -2.04362317714E-15 -2.12171410001E-15 -2.20278903300E-15 -2.28696200108E-15 -2.37435138638E-15 -2.46508009461E-15 -2.55927572798E-15 -2.65707076461E-15 -2.75860274489E-15 -2.86401446491E-15 -2.97345417726E-15 -3.08707579958E-15 -3.20503913100E-15 -3.32751007690E-15 -3.45466088222E-15 -3.58667037374E-15 -3.72372421156E-15 -3.86601515023E-15 -4.01374330983E-15 -4.16711645744E-15 -4.32635029931E-15 -4.49166878428E-15 -4.66330441871E-15 -4.84149859350E-15 -5.02650192357E-15 -5.21857460035E-15 -5.41798675769E-15 -5.62501885180E-15 -5.83996205568E-15 -6.06311866864E-15 -6.29480254143E-15 -6.53533951769E-15 -6.78506789218E-15 -7.04433888659E-15 -7.31351714347E-15 -7.59298123911E-15 -7.88312421594E-15 -8.18435413536E-15 -8.49709465157E-15 -8.82178560746E-15 -9.15888365321E-15 -9.50886288849E-15 -9.87221552927E-15 -1.02494526001E-14 -1.06411046528E-14 -1.10477225125E-14 -1.14698780527E-14 -1.19081649991E-14 -1.23631997651E-14 -1.28356223182E-14 -1.33260970805E-14 -1.38353138630E-14 -1.43639888356E-14 -1.49128655348E-14 -1.54827159087E-14 -1.60743414035E-14 -1.66885740899E-14 -1.73262778339E-14 -1.79883495115E-14 -1.86757202700E-14 -1.93893568380E-14 -2.01302628844E-14 -2.08994804304E-14 -2.16980913150E-14 -2.25272187164E-14 -2.33880287315E-14 -2.42817320164E-14 -2.52095854886E-14 -2.61728940949E-14 -2.71730126468E-14 -2.82113477258E-14 -2.92893596618E-14 -3.04085645867E-14 -3.15705365668E-14 -3.27769098167E-14 -3.40293809977E-14 -3.53297116037E-14 -3.66797304390E-14 -3.80813361899E-14 -3.95365000956E-14 -4.10472687202E-14 -4.26157668308E-14 -4.42442003866E-14 -4.59348596406E-14 -4.76901223609E-14 -4.95124571749E-14 -5.14044270415E-14 -5.33686928549E-14 -5.54080171876E-14 -5.75252681756E-14 -5.97234235520E-14 -6.20055748350E-14 -6.43749316759E-14 -6.68348263733E-14 -6.93887185594E-14 -7.20402000661E-14 -7.47929999760E-14 -7.76509898677E-14 -8.06181892605E-14 -8.36987712676E-14 -8.68970684649E-14 -9.02175789849E-14 -9.36649728429E-14 -9.72440985045E-14 -1.00959989705E-13 -1.04817872528E-13 -1.08823172759E-13 -1.12981523509E-13 -1.17298773146E-13 -1.21780993512E-13 -1.26434488469E-13 -1.31265802762E-13 -1.36281731221E-13 -1.41489328323E-13 -1.46895918109E-13 -1.52509104487E-13 -1.58336781926E-13 -1.64387146557E-13 -1.70668707703E-13 -1.77190299844E-13 -1.83961095043E-13 -1.90990615847E-13 -1.98288748678E-13 -2.05865757738E-13 -2.13732299445E-13 -2.21899437418E-13 -2.30378658042E-13 -2.39181886618E-13 -2.48321504136E-13 -2.57810364690E-13 -2.67661813553E-13 -2.77889705949E-13 -2.88508426537E-13 -2.99532909642E-13 -3.10978660259E-13 -3.22861775863E-13 -3.35198969042E-13 -3.48007591007E-13 -3.61305655993E-13 -3.75111866596E-13 -3.89445640073E-13 -4.04327135655E-13 -4.19777282899E-13 -4.35817811118E-13 -4.52471279949E-13 -4.69761111076E-13 -4.87711621173E-13 -5.06348056102E-13 -5.25696626421E-13 -5.45784544245E-13 -5.66640061518E-13 -5.88292509746E-13 -6.10772341254E-13 -6.34111172007E-13 -6.58341826083E-13 -6.83498381829E-13 -7.09616219798E-13 -7.36732072503E-13 -7.64884076077E-13 -7.94111823916E-13 -8.24456422353E-13 -8.55960548481E-13 -8.88668510167E-13 -9.22626308370E-13 -9.57881701838E-13 -9.94484274278E-13 -1.03248550409E-12 -1.07193883675E-12 -1.11289976002E-12 -1.15542588195E-12 -1.19957701189E-12 -1.24541524465E-12 -1.29300504779E-12 -1.34241335232E-12 -1.39370964680E-12 -1.44696607509E-12 -1.50225753782E-12 -1.55966179772E-12 -1.61925958898E-12 -1.68113473081E-12 -1.74537424533E-12 -1.81206847993E-12 -1.88131123437E-12 -1.95319989267E-12 -2.02783556010E-12 -2.10532320536E-12 -2.18577180822E-12 -2.26929451277E-12 -2.35600878657E-12 -2.44603658585E-12 -2.53950452704E-12 -2.63654406480E-12 -2.73729167699E-12 -2.84188905651E-12 -2.95048331067E-12 -3.06322716800E-12 -3.18027919314E-12 -3.30180400975E-12 -3.42797253214E-12 -3.55896220555E-12 -3.69495725579E-12 -3.83614894829E-12 -3.98273585711E-12 -4.13492414424E-12 -4.29292784950E-12 -4.45696919162E-12 -4.62727888074E-12 -4.80409644292E-12 -4.98767055694E-12 -5.17825940414E-12 -5.37613103145E-12 -5.58156372843E-12 -5.79484641861E-12 -6.01627906590E-12 -6.24617309640E-12 -6.48485183643E-12 -6.73265096725E-12 -6.98991899718E-12 -7.25701775173E-12 -7.53432288248E-12 -7.82222439541E-12 -8.12112719939E-12 -8.43145167568E-12 -8.75363426915E-12 -9.08812810208E-12 -9.43540361145E-12 -9.79594921061E-12 -1.01702719761E-11 -1.05588983609E-11 -1.09623749348E-11 -1.13812691532E-11 -1.18161701548E-11 -1.22676895908E-11 -1.27364624847E-11 -1.32231481255E-11 -1.37284309948E-11 -1.42530217298E-11 -1.47976581225E-11 -1.53631061573E-11 -1.59501610887E-11 -1.65596485590E-11 -1.71924257603E-11 -1.78493826394E-11 -1.85314431501E-11 -1.92395665521E-11 -1.99747487602E-11 -2.07380237453E-11 -2.15304649883E-11 -2.23531869898E-11 -2.32073468380E-11 -2.40941458354E-11 -2.50148311889E-11 -2.59706977635E-11 -2.69630899035E-11 -2.79934033235E-11 -2.90630870709E-11 -3.01736455642E-11 -3.13266407086E-11 -3.25236940928E-11 -3.37664892699E-11 -3.50567741244E-11 -3.63963633313E-11 -3.77871409078E-11 -3.92310628632E-11 -4.07301599496E-11 -4.22865405183E-11 -4.39023934849E-11 -4.55799914076E-11 -4.73216936839E-11 -4.91299498680E-11 -5.10073031169E-11 -5.29563937665E-11 -5.49799630449E-11 -5.70808569283E-11 -5.92620301430E-11 -6.15265503214E-11 -6.38776023160E-11 -6.63184926789E-11 -6.88526543120E-11 -7.14836512953E-11 -7.42151838991E-11 -7.70510937884E-11 -7.99953694257E-11 -8.30521516808E-11 -8.62257396538E-11 -8.95205967221E-11 -9.29413568177E-11 -9.64928309438E-11 -1.00180013942E-10 -1.04008091516E-10 -1.07982447526E-10 -1.12108671559E-10 -1.16392566792E-10 -1.20840158154E-10 -1.25457700795E-10 -1.30251688889E-10 -1.35228864765E-10 -1.40396228388E-10 -1.45761047207E-10 -1.51330866373E-10 -1.57113519354E-10 -1.63117138947E-10 -1.69350168722E-10 -1.75821374893E-10 -1.82539858646E-10 -1.89515068946E-10 -1.96756815816E-10 -2.04275284142E-10 -2.12081047994E-10 -2.20185085496E-10 -2.28598794270E-10 -2.37334007461E-10 -2.46403010382E-10 -2.55818557791E-10 -2.65593891832E-10 -2.75742760655E-10 -2.86279437753E-10 -2.97218742037E-10 -3.08576058678E-10 -3.20367360742E-10 -3.32609231659E-10 -3.45318888542E-10 -3.58514206403E-10 -3.72213743292E-10 -3.86436766399E-10 -4.01203279147E-10 -4.16534049333E-10 -4.32450638325E-10 -4.48975431397E-10 -4.66131669203E-10 -4.83943480469E-10 -5.02435915924E-10 -5.21634983532E-10 -5.41567685073E-10 -5.62262054114E-10 -5.83747195436E-10 -6.06053325971E-10 -6.29211817295E-10 -6.53255239751E-10 -6.78217408257E-10 -7.04133429860E-10 -7.31039753113E-10 -7.58974219338E-10 -7.87976115841E-10 -8.18086231171E-10 -8.49346912482E-10 -8.81802125091E-10 -9.15497514311E-10 -9.50480469645E-10 -9.86800191438E-10 -1.02450776007E-09 -1.06365620779E-09 -1.10430059331E-09 -1.14649807924E-09 -1.19030801247E-09 -1.23579200764E-09 -1.28301403380E-09 -1.33204050439E-09 -1.38294037058E-09 -1.43578521834E-09 -1.49064936903E-09 -1.54760998398E-09 -1.60674717299E-09 -1.66814410698E-09 -1.73188713500E-09 -1.79806590564E-09 -1.86677349310E-09 -1.93810652814E-09 -2.01216533393E-09 -2.08905406715E-09 -2.16888086452E-09 -2.25175799482E-09 -2.33780201681E-09 -2.42713394318E-09 -2.51987941071E-09 -2.61616885696E-09 -2.71613770374E-09 -2.81992654756E-09 -2.92768135733E-09 -3.03955367970E-09 -3.15570085215E-09 -3.27628622429E-09 -3.40147938757E-09 -3.53145641382E-09 -3.66640010285E-09 -3.80650023953E-09 -3.95195386073E-09 -4.10296553240E-09 -4.25974763727E-09 -4.42252067354E-09 -4.59151356499E-09 -4.76696398294E-09 -4.94911868048E-09 -5.13823383949E-09 -5.33457543096E-09 -5.53841958904E-09 -5.75005299932E-09 -5.96977330212E-09 -6.19788951098E-09 -6.43472244732E-09 -6.68060519156E-09 -6.93588355163E-09 -7.20091654922E-09 -7.47607692475E-09 -7.76175166155E-09 -8.05834253009E-09 -8.36626665301E-09 -8.68595709177E-09 -9.01786345565E-09 -9.36245253405E-09 -9.72020895300E-09 -1.00916358567E-08 -1.04772556149E-08 -1.08776105581E-08 -1.12932637396E-08 -1.17247997276E-08 -1.21728254273E-08 -1.26379709347E-08 -1.31208904220E-08 -1.36222630584E-08 -1.41427939646E-08 -1.46832152047E-08 -1.52442868159E-08 -1.58267978768E-08 -1.64315676177E-08 -1.70594465724E-08 -1.77113177740E-08 -1.83880979976E-08 -1.90907390484E-08 -1.98202291015E-08 -2.05775940902E-08 -2.13638991500E-08 -2.21802501157E-08 -2.30277950769E-08 -2.39077259922E-08 -2.48212803658E-08 -2.57697429877E-08 -2.67544477401E-08 -2.77767794738E-08 -2.88381759552E-08 -2.99401298882E-08 -3.10841910136E-08 -3.22719682883E-08 -3.35051321478E-08 -3.47854168554E-08 -3.61146229409E-08 -3.74946197325E-08 -3.89273479856E-08 -4.04148226122E-08 -4.19591355138E-08 -4.35624585235E-08 -4.52270464598E-08 -4.69552402974E-08 -4.87494704594E-08 -5.06122602344E-08 -5.25462293253E-08 -5.45540975326E-08 -5.66386885793E-08 -5.88029340814E-08 -6.10498776702E-08 -6.33826792723E-08 -6.58046195528E-08 -6.83191045286E-08 -7.09296703576E-08 -7.36399883108E-08 -7.64538699352E-08 -7.93752724129E-08 -8.24083041253E-08 -8.55572304302E-08 -8.88264796589E-08 -9.22206493435E-08 -9.57445126808E-08 -9.94030252441E-08 -1.03201331951E-07 -1.07144774298E-07 -1.11238897869E-07 -1.15489460135E-07 -1.19902438550E-07 -1.24484038950E-07 -1.29240704285E-07 -1.34179123674E-07 -1.39306241811E-07 -1.44629268731E-07 -1.50155689941E-07 -1.55893276952E-07 -1.61850098201E-07 -1.68034530395E-07 -1.74455270287E-07 -1.81121346909E-07 -1.88042134256E-07 -1.95227364475E-07 -2.02687141537E-07 -2.10431955453E-07 -2.18472697010E-07 -2.26820673092E-07 -2.35487622566E-07 -2.44485732792E-07 -2.53827656751E-07 -2.63526530837E-07 -2.73595993318E-07 -2.84050203510E-07 -2.94903861685E-07 -3.06172229728E-07 -3.17871152598E-07 -3.30017080594E-07 -3.42627092483E-07 -3.55718919505E-07 -3.69310970297E-07 -3.83422356765E-07 -3.98072920952E-07 -4.13283262922E-07 -4.29074769720E-07 -4.45469645426E-07 -4.62490942364E-07 -4.80162593503E-07 -4.98509446094E-07 -5.17557296586E-07 -5.37332926885E-07 -5.57864141989E-07 -5.79179809068E-07 -6.01309898024E-07 -6.24285523615E-07 -6.48138989175E-07 -6.72903832008E-07 -6.98614870515E-07 -7.25308253120E-07 -7.53021509065E-07 -7.81793601139E-07 -8.11664980427E-07 -8.42677643142E-07 -8.74875189637E-07 -9.08302885653E-07 -9.43007725922E-07 -9.79038500188E-07 -1.01644586175E-06 -1.05528239861E-06 -1.09560270738E-06 -1.13746346994E-06 -1.18092353308E-06 -1.22604399114E-06 -1.27288827188E-06 -1.32152222548E-06 -1.37201421712E-06 -1.42443522293E-06 -1.47885892971E-06 -1.53536183841E-06 -1.59402337154E-06 -1.65492598475E-06 -1.71815528256E-06 -1.78380013862E-06 -1.85195282047E-06 -1.92270911908E-06 -1.99616848340E-06 -2.07243415991E-06 -2.15161333764E-06 -2.23381729858E-06 -2.31916157396E-06 -2.40776610639E-06 -2.49975541821E-06 -2.59525878631E-06 -2.69441042354E-06 -2.79734966710E-06 -2.90422117407E-06 -3.01517512440E-06 -3.13036743168E-06 -3.24995996191E-06 -3.37412076059E-06 -3.50302428854E-06 -3.63685166660E-06 -3.77579092979E-06 -3.92003729101E-06 -4.06979341493E-06 -4.22526970223E-06 -4.38668458466E-06 -4.55426483146E-06 -4.72824586727E-06 -4.90887210235E-06 -5.09639727524E-06 -5.29108480850E-06 -5.49320817809E-06 -5.70305129666E-06 -5.92090891162E-06 -6.14708701823E-06 -6.38190328847E-06 -6.62568751626E-06 -6.87878207963E-06 -7.14154242042E-06 -7.41433754238E-06 -7.69755052807E-06 -7.99157907556E-06 -8.29683605549E-06 -8.61375008940E-06 -8.94276614997E-06 -9.28434618419E-06 -9.63896976024E-06 -1.00071347389E-05 -1.03893579705E-05 -1.07861760188E-05 -1.11981459115E-05 -1.16258459202E-05 -1.20698763697E-05 -1.25308604778E-05 -1.30094452278E-05 -1.35063022729E-05 -1.40221288764E-05 -1.45576488867E-05 -1.51136137497E-05 -1.56908035599E-05 -1.62900281508E-05 -1.69121282274E-05 -1.75579765413E-05 -1.82284791111E-05 -1.89245764880E-05 -1.96472450710E-05 -2.03974984704E-05 -2.11763889249E-05 -2.19850087707E-05 -2.28244919683E-05 -2.36960156852E-05 -2.46008019408E-05 -2.55401193121E-05 -2.65152847052E-05 -2.75276651937E-05 -2.85786799269E-05 -2.96698021104E-05 -3.08025610622E-05 -3.19785443464E-05 -3.31993999883E-05 -3.44668387737E-05 -3.57826366348E-05 -3.71486371275E-05 -3.85667540020E-05 -4.00389738720E-05 -4.15673589837E-05 -4.31540500916E-05 -4.48012694423E-05 -4.65113238721E-05 -4.82866080219E-05 -5.01296076744E-05 -5.20429032181E-05 -5.40291732425E-05 -5.60911982700E-05 -5.82318646296E-05 -6.04541684778E-05 -6.27612199716E-05 -6.51562476011E-05 -6.76426026860E-05 -7.02237640427E-05 -7.29033428299E-05 -7.56850875774E-05 -7.85728894062E-05 -8.15707874478E-05 -8.46829744690E-05 -8.79138027109E-05 -9.12677899504E-05 -9.47496257922E-05 -9.83641782003E-05 -1.02116500279E-04 -1.06011837311E-04 -1.10055634066E-04 -1.14253542385E-04 -1.18611429060E-04 -1.23135384003E-04 -1.27831728741E-04 -1.32707025228E-04 -1.37768084992E-04 -1.43021978638E-04 -1.48476045708E-04 -1.54137904929E-04 -1.60015464841E-04 -1.66116934842E-04 -1.72450836654E-04 -1.79026016230E-04 -1.85851656116E-04 -1.92937288296E-04 -2.00292807521E-04 -2.07928485161E-04 -2.15854983590E-04 -2.24083371120E-04 -2.32625137520E-04 -2.41492210134E-04 -2.50696970616E-04 -2.60252272327E-04 -2.70171458398E-04 -2.80468380492E-04 -2.91157418308E-04 -3.02253499835E-04 -3.13772122396E-04 -3.25729374520E-04 -3.38141958659E-04 -3.51027214806E-04 -3.64403145025E-04 -3.78288438952E-04 -3.92702500294E-04 -4.07665474366E-04 -4.23198276718E-04 -4.39322622883E-04 -4.56061059300E-04 -4.73436995453E-04 -4.91474737284E-04 -5.10199521922E-04 -5.29637553782E-04 -5.49816042098E-04 -5.70763239933E-04 -5.92508484734E-04 -6.15082240494E-04 -6.38516141575E-04 -6.62843038268E-04 -6.88097044150E-04 -7.14313585311E-04 -7.41529451518E-04 -7.69782849392E-04 -7.99113457681E-04 -8.29562484686E-04 -8.61172727940E-04 -8.93988636208E-04 -9.28056373895E-04 -9.63423887936E-04 -1.00014097726E-03 -1.03825936493E-03 -1.07783277296E-03 -1.11891700005E-03 -1.16157000213E-03 -1.20585197595E-03 -1.25182544571E-03 -1.29955535286E-03 -1.34910914903E-03 -1.40055689234E-03 -1.45397134700E-03 -1.50942808624E-03 -1.56700559878E-03 -1.62678539869E-03 -1.68885213873E-03 -1.75329372719E-03 -1.82020144823E-03 -1.88967008555E-03 -1.96179804958E-03 -2.03668750782E-03 -2.11444451843E-03 -2.19517916684E-03 -2.27900570516E-03 -2.36604269421E-03 -2.45641314786E-03 -2.55024467934E-03 -2.64766964913E-03 -2.74882531398E-03 -2.85385397641E-03 -2.96290313420E-03 -3.07612562908E-03 -3.19367979374E-03 -3.31572959624E-03 -3.44244478088E-03 -3.57400100404E-03 -3.71057996389E-03 -3.85236952233E-03 -3.99956381743E-03 -4.15236336450E-03 -4.31097514368E-03 -4.47561267167E-03 -4.64649605511E-03 -4.82385202251E-03 -5.00791393195E-03 -5.19892175076E-03 -5.39712200365E-03 -5.60276768503E-03 -5.81611813115E-03 -6.03743884720E-03 -6.26700128401E-03 -6.50508255888E-03 -6.75196511421E-03 -7.00793630766E-03 -7.27328792656E-03 -7.54831561936E-03 -7.83331823613E-03 -8.12859706960E-03 -8.43445498817E-03 -8.75119545142E-03 -9.07912139849E-03 -9.41853399940E-03 -9.76973125876E-03 -1.01330064613E-02 -1.05086464484E-02 -1.08969297144E-02 -1.12981243119E-02 -1.17124855555E-02 -1.21402535120E-02 -1.25816502687E-02 -1.30368769688E-02 -1.35061106052E-02 -1.39895005659E-02 -1.44871649235E-02 -1.49991864648E-02 -1.55256084575E-02 -1.60664301534E-02 -1.66216020314E-02 -1.71910207844E-02 -1.77745240617E-02 -1.83718849776E-02 -1.89828064071E-02 -1.96069150908E-02 -2.02437555782E-02 -2.08927840465E-02 -2.15533620363E-02 -2.22247501559E-02 -2.29061018108E-02 -2.35964570287E-02 -2.42947364529E-02 -2.49997355923E-02 -2.57101194222E-02 -2.64244174423E-02 -2.71410193065E-02 -2.78581711505E-02 -2.85739727509E-02 -2.92863756604E-02 -2.99931824689E-02 -3.06920473497E-02 -3.13804780525E-02 -3.20558395101E-02 -3.27153592249E-02 -3.33561345998E-02 -3.39751423719E-02 -3.45692502991E-02 -3.51352312353E-02 -3.56697797109E-02 -3.61695311134E-02 -3.66310835313E-02 -3.70510222899E-02 -3.74259471671E-02 -3.77525022260E-02 -3.80274081499E-02 -3.82474969007E-02 -3.84097484565E-02 -3.85113293113E-02 -3.85496323423E-02 -3.85223175691E-02 -3.84273532481E-02 -3.82630566607E-02 -3.80281338767E-02 -3.77217176962E-02 -3.73434029055E-02 -3.68932779299E-02 -3.63719519181E-02 -3.57805762760E-02 -3.51208596638E-02 -3.43950754957E-02 -3.36060610432E-02 -3.27572073295E-02 -3.18524391355E-02 -3.08961846073E-02 -2.98933341679E-02 -2.88491886908E-02 -2.77693971943E-02 -2.66598846490E-02 -2.55267708688E-02 -2.43762818570E-02 -2.32146554006E-02 -2.20480431409E-02 -2.08824117722E-02 -1.97234464292E-02 -1.85764596859E-02 -1.74463098971E-02 -1.63373328335E-02 -1.52532906761E-02 -1.41973424232E-02 -1.31720395908E-02 -1.21793507437E-02 -1.12207178551E-02 -1.02971467374E-02 -9.40933281576E-03 -8.55782231111E-03 -7.74320747509E-03 -6.96635287694E-03 -6.22864790946E-03 -5.53227868549E-03 -4.87988212301E-03 -4.27232904239E-03 -3.70969197404E-03 -3.19174987709E-03 -2.71801048296E-03 -2.28773774996E-03 -1.89998387596E-03 -1.55362510099E-03 -1.24740030833E-03 -9.79951204548E-04 -7.49862636540E-04 -5.55701393035E-04 -3.96051651984E-04 -2.69545083767E-04 -1.74317151222E-04 -1.06181410265E-04 -6.00995380536E-05 -3.07425271610E-05 -1.30544120581E-05 -3.88798812104E-06 -4.87795722592E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 4 1 i j (l(j)) 0.00000000000E+00 Q_int -2.43441166210E-15 -2.52743539341E-15 -2.62401374727E-15 -2.72428255290E-15 -2.82838282984E-15 -2.93646098626E-15 -3.04866902487E-15 -3.16516475673E-15 -3.28611202315E-15 -3.41168092616E-15 -3.54204806772E-15 -3.67739679811E-15 -3.81791747380E-15 -3.96380772513E-15 -4.11527273431E-15 -4.27252552398E-15 -4.43578725679E-15 -4.60528754646E-15 -4.78126478069E-15 -4.96396645649E-15 -5.15364952818E-15 -5.35058076885E-15 -5.55503714551E-15 -5.76730620863E-15 -5.98768649657E-15 -6.21648795542E-15 -6.45403237495E-15 -6.70065384114E-15 -6.95669920606E-15 -7.22252857572E-15 -7.49851581647E-15 -7.78504908086E-15 -8.08253135349E-15 -8.39138101785E-15 -8.71203244468E-15 -9.04493660289E-15 -9.39056169380E-15 -9.74939380967E-15 -1.01219376173E-14 -1.05087170678E-14 -1.09102761335E-14 -1.13271795731E-14 -1.17600137257E-14 -1.22093873356E-14 -1.26759324085E-14 -1.31603051005E-14 -1.36631866403E-14 -1.41852842880E-14 -1.47273323295E-14 -1.52900931091E-14 -1.58743581020E-14 -1.64809490271E-14 -1.71107190028E-14 -1.77645537469E-14 -1.84433728224E-14 -1.91481309303E-14 -1.98798192530E-14 -2.06394668477E-14 -2.14281420940E-14 -2.22469541965E-14 -2.30970547446E-14 -2.39796393324E-14 -2.48959492398E-14 -2.58472731786E-14 -2.68349491050E-14 -2.78603661009E-14 -2.89249663280E-14 -3.00302470558E-14 -3.11777627675E-14 -3.23691273462E-14 -3.36060163445E-14 -3.48901693416E-14 -3.62233923892E-14 -3.76075605518E-14 -3.90446205442E-14 -4.05365934687E-14 -4.20855776581E-14 -4.36937516267E-14 -4.53633771342E-14 -4.70968023665E-14 -4.88964652386E-14 -5.07648968230E-14 -5.27047249095E-14 -5.47186777009E-14 -5.68095876504E-14 -5.89803954445E-14 -6.12341541395E-14 -6.35740334550E-14 -6.60033242317E-14 -6.85254430603E-14 -7.11439370860E-14 -7.38624889974E-14 -7.66849222061E-14 -7.96152062241E-14 -8.26574622461E-14 -8.58159689459E-14 -8.90951684941E-14 -9.24996728055E-14 -9.60342700251E-14 -9.97039312630E-14 -1.03513817585E-13 -1.07469287271E-13 -1.11575903353E-13 -1.15839441436E-13 -1.20265897823E-13 -1.24861497948E-13 -1.29632705130E-13 -1.34586229667E-13 -1.39729038268E-13 -1.45068363855E-13 -1.50611715736E-13 -1.56366890161E-13 -1.62341981293E-13 -1.68545392589E-13 -1.74985848618E-13 -1.81672407333E-13 -1.88614472808E-13 -1.95821808467E-13 -2.03304550815E-13 -2.11073223689E-13 -2.19138753066E-13 -2.27512482427E-13 -2.36206188707E-13 -2.45232098864E-13 -2.54602907072E-13 -2.64331792573E-13 -2.74432438215E-13 -2.84919049697E-13 -2.95806375543E-13 -3.07109727849E-13 -3.18845003817E-13 -3.31028708112E-13 -3.43677976077E-13 -3.56810597828E-13 -3.70445043278E-13 -3.84600488114E-13 -3.99296840761E-13 -4.14554770388E-13 -4.30395735972E-13 -4.46842016480E-13 -4.63916742204E-13 -4.81643927292E-13 -5.00048503516E-13 -5.19156355347E-13 -5.38994356347E-13 -5.59590406975E-13 -5.80973473820E-13 -6.03173630343E-13 -6.26222099172E-13 -6.50151296014E-13 -6.74994875243E-13 -7.00787777237E-13 -7.27566277513E-13 -7.55368037749E-13 -7.84232158751E-13 -8.14199235443E-13 -8.45311413966E-13 -8.77612450945E-13 -9.11147775036E-13 -9.45964550811E-13 -9.82111745099E-13 -1.01964019585E-12 -1.05860268362E-12 -1.09905400583E-12 -1.14105105382E-12 -1.18465289286E-12 -1.22992084521E-12 -1.27691857639E-12 -1.32571218470E-12 -1.37637029419E-12 -1.42896415117E-12 -1.48356772441E-12 -1.54025780919E-12 -1.59911413527E-12 -1.66021947906E-12 -1.72365978001E-12 -1.78952426150E-12 -1.85790555629E-12 -1.92889983685E-12 -2.00260695059E-12 -2.07913056026E-12 -2.15857828979E-12 -2.24106187565E-12 -2.32669732396E-12 -2.41560507366E-12 -2.50791016594E-12 -2.60374242001E-12 -2.70323661578E-12 -2.80653268334E-12 -2.91377589980E-12 -3.02511709358E-12 -3.14071285659E-12 -3.26072576438E-12 -3.38532460489E-12 -3.51468461573E-12 -3.64898773074E-12 -3.78842283577E-12 -3.93318603441E-12 -4.08348092373E-12 -4.23951888066E-12 -4.40151935929E-12 -4.56971019943E-12 -4.74432794717E-12 -4.92561818744E-12 -5.11383588950E-12 -5.30924576547E-12 -5.51212264266E-12 -5.72275185006E-12 -5.94142961968E-12 -6.16846350311E-12 -6.40417280413E-12 -6.64888902773E-12 -6.90295634638E-12 -7.16673208406E-12 -7.44058721881E-12 -7.72490690447E-12 -8.02009101240E-12 -8.32655469381E-12 -8.64472896369E-12 -8.97506130695E-12 -9.31801630780E-12 -9.67407630314E-12 -1.00437420609E-11 -1.04275334844E-11 -1.08259903434E-11 -1.12396730335E-11 -1.16691633639E-11 -1.21150653761E-11 -1.25780061931E-11 -1.30586369017E-11 -1.35576334677E-11 -1.40756976871E-11 -1.46135581730E-11 -1.51719713801E-11 -1.57517226687E-11 -1.63536274094E-11 -1.69785321298E-11 -1.76273157048E-11 -1.83008905930E-11 -1.90002041197E-11 -1.97262398096E-11 -2.04800187696E-11 -2.12626011253E-11 -2.20750875116E-11 -2.29186206212E-11 -2.37943868110E-11 -2.47036177711E-11 -2.56475922568E-11 -2.66276378874E-11 -2.76451330129E-11 -2.87015086531E-11 -2.97982505096E-11 -3.09369010557E-11 -3.21190617057E-11 -3.33463950671E-11 -3.46206272788E-11 -3.59435504392E-11 -3.73170251259E-11 -3.87429830132E-11 -4.02234295883E-11 -4.17604469720E-11 -4.33561968473E-11 -4.50129234991E-11 -4.67329569709E-11 -4.85187163420E-11 -5.03727131292E-11 -5.22975548194E-11 -5.42959485368E-11 -5.63707048501E-11 -5.85247417254E-11 -6.07610886299E-11 -6.30828907929E-11 -6.54934136289E-11 -6.79960473306E-11 -7.05943116362E-11 -7.32918607806E-11 -7.60924886336E-11 -7.90001340366E-11 -8.20188863417E-11 -8.51529911633E-11 -8.84068563490E-11 -9.17850581788E-11 -9.52923478014E-11 -9.89336579164E-11 -1.02714109711E-10 -1.06639020064E-10 -1.10713909021E-10 -1.14944507561E-10 -1.19336765653E-10 -1.23896860628E-10 -1.28631205864E-10 -1.33546459807E-10 -1.38649535333E-10 -1.43947609476E-10 -1.49448133516E-10 -1.55158843461E-10 -1.61087770930E-10 -1.67243254440E-10 -1.73633951145E-10 -1.80268849002E-10 -1.87157279416E-10 -1.94308930363E-10 -2.01733860016E-10 -2.09442510890E-10 -2.17445724528E-10 -2.25754756751E-10 -2.34381293484E-10 -2.43337467196E-10 -2.52635873961E-10 -2.62289591171E-10 -2.72312195932E-10 -2.82717784158E-10 -2.93520990394E-10 -3.04737008398E-10 -3.16381612513E-10 -3.28471179847E-10 -3.41022713312E-10 -3.54053865530E-10 -3.67582963666E-10 -3.81629035200E-10 -3.96211834688E-10 -4.11351871546E-10 -4.27070438892E-10 -4.43389643497E-10 -4.60332436871E-10 -4.77922647547E-10 -4.96185014587E-10 -5.15145222385E-10 -5.34829936779E-10 -5.55266842563E-10 -5.76484682414E-10 -5.98513297325E-10 -6.21383668567E-10 -6.45127961263E-10 -6.69779569627E-10 -6.95373163926E-10 -7.21944739243E-10 -7.49531666100E-10 -7.78172743015E-10 -8.07908251071E-10 -8.38780010563E-10 -8.70831439817E-10 -9.04107616253E-10 -9.38655339783E-10 -9.74523198626E-10 -1.01176163765E-09 -1.05042302930E-09 -1.09056174729E-09 -1.13223424304E-09 -1.17549912507E-09 -1.22041724145E-09 -1.26705176535E-09 -1.31546828393E-09 -1.36573489051E-09 -1.41792228042E-09 -1.47210385035E-09 -1.52835580162E-09 -1.58675724734E-09 -1.64739032366E-09 -1.71034030530E-09 -1.77569572549E-09 -1.84354850045E-09 -1.91399405868E-09 -1.98713147517E-09 -2.06306361074E-09 -2.14189725669E-09 -2.22374328501E-09 -2.30871680426E-09 -2.39693732155E-09 -2.48852891050E-09 -2.58362038582E-09 -2.68234548445E-09 -2.78484305361E-09 -2.89125724614E-09 -3.00173772315E-09 -3.11643986458E-09 -3.23552498767E-09 -3.35916057386E-09 -3.48752050431E-09 -3.62078530448E-09 -3.75914239795E-09 -3.90278637010E-09 -4.05191924167E-09 -4.20675075295E-09 -4.36749865874E-09 -4.53438903454E-09 -4.70765659457E-09 -4.88754502182E-09 -5.07430731077E-09 -5.26820612318E-09 -5.46951415752E-09 -5.67851453242E-09 -5.89550118492E-09 -6.12077928380E-09 -6.35466565873E-09 -6.59748924593E-09 -6.84959155068E-09 -7.11132712766E-09 -7.38306407956E-09 -7.66518457474E-09 -7.95808538473E-09 -8.26217844218E-09 -8.57789142024E-09 -8.90566833397E-09 -9.24597016477E-09 -9.59927550872E-09 -9.96608124962E-09 -1.03469032578E-08 -1.07422771155E-08 -1.11527588702E-08 -1.15789258167E-08 -1.20213773087E-08 -1.24807356018E-08 -1.29576467288E-08 -1.34527814079E-08 -1.39668359862E-08 -1.45005334189E-08 -1.50546242859E-08 -1.56298878475E-08 -1.62271331401E-08 -1.68472001143E-08 -1.74909608158E-08 -1.81593206116E-08 -1.88532194639E-08 -1.95736332512E-08 -2.03215751411E-08 -2.10980970151E-08 -2.19042909475E-08 -2.27412907417E-08 -2.36102735242E-08 -2.45124614001E-08 -2.54491231717E-08 -2.64215761230E-08 -2.74311878717E-08 -2.84793782929E-08 -2.95676215153E-08 -3.06974479948E-08 -3.18704466662E-08 -3.30882671777E-08 -3.43526222111E-08 -3.56652898896E-08 -3.70281162790E-08 -3.84430179827E-08 -3.99119848381E-08 -4.14370827135E-08 -4.30204564141E-08 -4.46643326974E-08 -4.63710234050E-08 -4.81429287130E-08 -4.99825405074E-08 -5.18924458881E-08 -5.38753308068E-08 -5.59339838437E-08 -5.80713001293E-08 -6.02902854147E-08 -6.25940602986E-08 -6.49858646151E-08 -6.74690619896E-08 -7.00471445682E-08 -7.27237379282E-08 -7.55026061762E-08 -7.83876572409E-08 -8.13829483677E-08 -8.44926918239E-08 -8.77212608214E-08 -9.10731956658E-08 -9.45532101402E-08 -9.81661981335E-08 -1.01917240521E-07 -1.05811612309E-07 -1.09854790050E-07 -1.14052459545E-07 -1.18410523838E-07 -1.22935111511E-07 -1.27632585307E-07 -1.32509551074E-07 -1.37572867050E-07 -1.42829653507E-07 -1.48287302763E-07 -1.53953489575E-07 -1.59836181926E-07 -1.65943652231E-07 -1.72284488966E-07 -1.78867608741E-07 -1.85702268839E-07 -1.92798080225E-07 -2.00165021065E-07 -2.07813450745E-07 -2.15754124442E-07 -2.23998208240E-07 -2.32557294827E-07 -2.41443419793E-07 -2.50669078548E-07 -2.60247243889E-07 -2.70191384232E-07 -2.80515482551E-07 -2.91234056028E-07 -3.02362176463E-07 -3.13915491456E-07 -3.25910246408E-07 -3.38363307347E-07 -3.51292184643E-07 -3.64715057615E-07 -3.78650800084E-07 -3.93119006904E-07 -4.08140021495E-07 -4.23734964444E-07 -4.39925763185E-07 -4.56735182814E-07 -4.74186858089E-07 -4.92305326642E-07 -5.11116063464E-07 -5.30645516707E-07 -5.50921144850E-07 -5.71971455287E-07 -5.93826044387E-07 -6.16515639084E-07 -6.40072140050E-07 -6.64528666527E-07 -6.89919602861E-07 -7.16280646814E-07 -7.43648859721E-07 -7.72062718567E-07 -8.01562170044E-07 -8.32188686671E-07 -8.63985325067E-07 -8.96996786436E-07 -9.31269479366E-07 -9.66851585025E-07 -1.00379312484E-06 -1.04214603078E-06 -1.08196421828E-06 -1.12330366199E-06 -1.16622247439E-06 -1.21078098741E-06 -1.25704183718E-06 -1.30507005199E-06 -1.35493314361E-06 -1.40670120211E-06 -1.46044699430E-06 -1.51624606589E-06 -1.57417684758E-06 -1.63432076519E-06 -1.69676235401E-06 -1.76158937745E-06 -1.82889295029E-06 -1.89876766658E-06 -1.97131173248E-06 -2.04662710403E-06 -2.12481963037E-06 -2.20599920226E-06 -2.29027990634E-06 -2.37778018523E-06 -2.46862300380E-06 -2.56293602172E-06 -2.66085177259E-06 -2.76250784992E-06 -2.86804710023E-06 -2.97761782345E-06 -3.09137398095E-06 -3.20947541161E-06 -3.33208805599E-06 -3.45938418911E-06 -3.59154266212E-06 -3.72874915312E-06 -3.87119642758E-06 -4.01908460867E-06 -4.17262145788E-06 -4.33202266637E-06 -4.49751215732E-06 -4.66932239995E-06 -4.84769473532E-06 -5.03287971469E-06 -5.22513745071E-06 -5.42473798193E-06 -5.63196165125E-06 -5.84709949878E-06 -6.07045366964E-06 -6.30233783724E-06 -6.54307764275E-06 -6.79301115123E-06 -7.05248932514E-06 -7.32187651591E-06 -7.60155097410E-06 -7.89190537910E-06 -8.19334738887E-06 -8.50630021069E-06 -8.83120319351E-06 -9.16851244289E-06 -9.51870145934E-06 -9.88226180084E-06 -1.02597037707E-05 -1.06515571312E-05 -1.10583718452E-05 -1.14807188446E-05 -1.19191908293E-05 -1.23744030957E-05 -1.28469943971E-05 -1.33376278365E-05 -1.38469917935E-05 -1.43758008861E-05 -1.49247969695E-05 -1.54947501725E-05 -1.60864599732E-05 -1.67007563156E-05 -1.73385007687E-05 -1.80005877293E-05 -1.86879456707E-05 -1.94015384386E-05 -2.01423665962E-05 -2.09114688206E-05 -2.17099233510E-05 -2.25388494936E-05 -2.33994091821E-05 -2.42928085977E-05 -2.52202998509E-05 -2.61831827265E-05 -2.71828064948E-05 -2.82205717918E-05 -2.92979325701E-05 -3.04163981235E-05 -3.15775351893E-05 -3.27829701288E-05 -3.40343911910E-05 -3.53335508622E-05 -3.66822683038E-05 -3.80824318831E-05 -3.95360017986E-05 -4.10450128061E-05 -4.26115770465E-05 -4.42378869812E-05 -4.59262184385E-05 -4.76789337742E-05 -4.94984851528E-05 -5.13874179520E-05 -5.33483742954E-05 -5.53840967196E-05 -5.74974319786E-05 -5.96913349928E-05 -6.19688729463E-05 -6.43332295389E-05 -6.67877093993E-05 -6.93357426637E-05 -7.19808897276E-05 -7.47268461771E-05 -7.75774479056E-05 -8.05366764235E-05 -8.36086643686E-05 -8.67977012238E-05 -9.01082392502E-05 -9.35448996440E-05 -9.71124789257E-05 -1.00815955569E-04 -1.04660496882E-04 -1.08651466145E-04 -1.12794430015E-04 -1.17095166220E-04 -1.21559671528E-04 -1.26194170028E-04 -1.31005121718E-04 -1.35999231418E-04 -1.41183458016E-04 -1.46565024067E-04 -1.52151425753E-04 -1.57950443213E-04 -1.63970151270E-04 -1.70218930556E-04 -1.76705479062E-04 -1.83438824120E-04 -1.90428334835E-04 -1.97683734996E-04 -2.05215116462E-04 -2.13032953060E-04 -2.21148115008E-04 -2.29571883880E-04 -2.38315968142E-04 -2.47392519266E-04 -2.56814148467E-04 -2.66593944057E-04 -2.76745489475E-04 -2.87282881981E-04 -2.98220752074E-04 -3.09574283638E-04 -3.21359234854E-04 -3.33591959911E-04 -3.46289431534E-04 -3.59469264378E-04 -3.73149739304E-04 -3.87349828588E-04 -4.02089222082E-04 -4.17388354383E-04 -4.33268433033E-04 -4.49751467801E-04 -4.66860301082E-04 -4.84618639462E-04 -5.03051086496E-04 -5.22183176743E-04 -5.42041411101E-04 -5.62653293514E-04 -5.84047369084E-04 -6.06253263652E-04 -6.29301724909E-04 -6.53224665091E-04 -6.78055205332E-04 -7.03827721722E-04 -7.30577893157E-04 -7.58342751043E-04 -7.87160730923E-04 -8.17071726118E-04 -8.48117143439E-04 -8.80339961077E-04 -9.13784788740E-04 -9.48497930121E-04 -9.84527447813E-04 -1.02192323073E-03 -1.06073706419E-03 -1.10102270264E-03 -1.14283594533E-03 -1.18623471480E-03 -1.23127913851E-03 -1.27803163358E-03 -1.32655699478E-03 -1.37692248603E-03 -1.42919793525E-03 -1.48345583299E-03 -1.53977143478E-03 -1.59822286733E-03 -1.65889123883E-03 -1.72186075331E-03 -1.78721882938E-03 -1.85505622329E-03 -1.92546715655E-03 -1.99854944824E-03 -2.07440465201E-03 -2.15313819808E-03 -2.23485954010E-03 -2.31968230724E-03 -2.40772446134E-03 -2.49910845936E-03 -2.59396142117E-03 -2.69241530263E-03 -2.79460707410E-03 -2.90067890425E-03 -3.01077834924E-03 -3.12505854716E-03 -3.24367841762E-03 -3.36680286632E-03 -3.49460299443E-03 -3.62725631251E-03 -3.76494695872E-03 -3.90786592069E-03 -4.05621126094E-03 -4.21018834494E-03 -4.37001007136E-03 -4.53589710365E-03 -4.70807810201E-03 -4.88678995481E-03 -5.07227800816E-03 -5.26479629229E-03 -5.46460774323E-03 -5.67198441793E-03 -5.88720770092E-03 -6.11056850026E-03 -6.34236743018E-03 -6.58291497776E-03 -6.83253165043E-03 -7.09154810077E-03 -7.36030522502E-03 -7.63915423073E-03 -7.92845666911E-03 -8.22858442691E-03 -8.53991967217E-03 -8.86285474763E-03 -9.19779200527E-03 -9.54514357449E-03 -9.90533105621E-03 -1.02787851342E-02 -1.06659450943E-02 -1.10672582422E-02 -1.14831792083E-02 -1.19141691286E-02 -1.23606946901E-02 -1.28232270273E-02 -1.33022404554E-02 -1.37982110281E-02 -1.43116149028E-02 -1.48429264988E-02 -1.53926164314E-02 -1.59611492066E-02 -1.65489806576E-02 -1.71565551059E-02 -1.77843022315E-02 -1.84326336306E-02 -1.91019390478E-02 -1.97925822627E-02 -2.05048966161E-02 -2.12391801608E-02 -2.19956904228E-02 -2.27746387615E-02 -2.35761843192E-02 -2.44004275530E-02 -2.52474033467E-02 -2.61170737022E-02 -2.70093200161E-02 -2.79239349530E-02 -2.88606139314E-02 -2.98189462466E-02 -3.07984058622E-02 -3.17983419108E-02 -3.28179689542E-02 -3.38563570634E-02 -3.49124217918E-02 -3.59849141249E-02 -3.70724105061E-02 -3.81733030506E-02 -3.92857900735E-02 -4.04078670762E-02 -4.15373183486E-02 -4.26717093618E-02 -4.38083801417E-02 -4.49444398294E-02 -4.60767626494E-02 -4.72019855203E-02 -4.83165075539E-02 -4.94164917009E-02 -5.04978688048E-02 -5.15563443337E-02 -5.25874080556E-02 -5.35863469208E-02 -5.45482614011E-02 -5.54680855218E-02 -5.63406107951E-02 -5.71605142328E-02 -5.79223905751E-02 -5.86207888215E-02 -5.92502530891E-02 -5.98053677545E-02 -6.02808067531E-02 -6.06713868183E-02 -6.09721243424E-02 -6.11782954290E-02 -6.12854985891E-02 -6.12897194051E-02 -6.11873963581E-02 -6.09754868812E-02 -6.06515325696E-02 -6.02137223524E-02 -5.96609523137E-02 -5.89928807493E-02 -5.82099769599E-02 -5.73135622291E-02 -5.63058414051E-02 -5.51899235225E-02 -5.39698299581E-02 -5.26504887251E-02 -5.12377136777E-02 -4.97381676269E-02 -4.81593086633E-02 -4.65093193436E-02 -4.47970188275E-02 -4.30317585429E-02 -4.12233025122E-02 -3.93816940716E-02 -3.75171113576E-02 -3.56397145926E-02 -3.37594888669E-02 -3.18860867484E-02 -3.00286756394E-02 -2.81957953049E-02 -2.63952313787E-02 -2.46339108909E-02 -2.29178259006E-02 -2.12519911372E-02 -1.96404411117E-02 -1.80862714298E-02 -1.65917279997E-02 -1.51583464598E-02 -1.37871424573E-02 -1.24788513907E-02 -1.12342139143E-02 -1.00543009271E-02 -8.94086898909E-03 -7.89673419970E-03 -6.92523917231E-03 -6.02703258196E-03 -5.20151138988E-03 -4.44756807444E-03 -3.76363469076E-03 -3.14773623484E-03 -2.59755239715E-03 -2.11048643096E-03 -1.68373948591E-03 -1.31438837872E-03 -9.99464403137E-04 -7.36030434724E-04 -5.21253280994E-04 -3.52467982165E-04 -2.26469836955E-04 -1.37078515772E-04 -7.71270771465E-05 -3.92379360239E-05 -1.65728067333E-05 -4.90907798953E-06 -6.12535203309E-07 2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 5 1 i j (l(j)) 0.00000000000E+00 Q_int -1.34689559922E-15 -1.39836316992E-15 -1.45179741929E-15 -1.50727349803E-15 -1.56486942854E-15 -1.62466621457E-15 -1.68674795522E-15 -1.75120196315E-15 -1.81811888745E-15 -1.88759284107E-15 -1.95972153320E-15 -2.03460640670E-15 -2.11235278077E-15 -2.19306999906E-15 -2.27687158345E-15 -2.36387539375E-15 -2.45420379339E-15 -2.54798382157E-15 -2.64534737191E-15 -2.74643137796E-15 -2.85137800575E-15 -2.96033485377E-15 -3.07345516055E-15 -3.19089802016E-15 -3.31282860598E-15 -3.43941840299E-15 -3.57084544896E-15 -3.70729458481E-15 -3.84895771465E-15 -3.99603407559E-15 -4.14873051801E-15 -4.30726179643E-15 -4.47185087161E-15 -4.64272922404E-15 -4.82013717957E-15 -5.00432424738E-15 -5.19554947089E-15 -5.39408179208E-15 -5.60020042974E-15 -5.81419527219E-15 -6.03636728492E-15 -6.26702893396E-15 -6.50650462525E-15 -6.75513116095E-15 -7.01325821311E-15 -7.28124881544E-15 -7.55947987387E-15 -7.84834269669E-15 -8.14824354485E-15 -8.45960420334E-15 -8.78286257440E-15 -9.11847329338E-15 -9.46690836818E-15 -9.82865784303E-15 -1.02042304878E-14 -1.05941545133E-14 -1.09989783145E-14 -1.14192712417E-14 -1.18556244009E-14 -1.23086514858E-14 -1.27789896403E-14 -1.32673003550E-14 -1.37742703973E-14 -1.43006127774E-14 -1.48470677509E-14 -1.54144038603E-14 -1.60034190154E-14 -1.66149416159E-14 -1.72498317163E-14 -1.79089822352E-14 -1.85933202119E-14 -1.93038081093E-14 -2.00414451682E-14 -2.08072688121E-14 -2.16023561069E-14 -2.24278252751E-14 -2.32848372687E-14 -2.41745974021E-14 -2.50983570471E-14 -2.60574153929E-14 -2.70531212733E-14 -2.80868750640E-14 -2.91601306514E-14 -3.02743974782E-14 -3.14312426657E-14 -3.26322932181E-14 -3.38792383106E-14 -3.51738316654E-14 -3.65178940176E-14 -3.79133156764E-14 -3.93620591835E-14 -4.08661620732E-14 -4.24277397381E-14 -4.40489884041E-14 -4.57321882193E-14 -4.74797064609E-14 -4.92940008643E-14 -5.11776230802E-14 -5.31332222625E-14 -5.51635487950E-14 -5.72714581590E-14 -5.94599149492E-14 -6.17319970439E-14 -6.40908999328E-14 -6.65399412119E-14 -6.90825652491E-14 -7.17223480284E-14 -7.44630021794E-14 -7.73083821987E-14 -8.02624898708E-14 -8.33294798965E-14 -8.65136657359E-14 -8.98195256750E-14 -9.32517091243E-14 -9.68150431573E-14 -1.00514539300E-13 -1.04355400578E-13 -1.08343028835E-13 -1.12483032332E-13 -1.16781233630E-13 -1.21243677783E-13 -1.25876640838E-13 -1.30686638664E-13 -1.35680436112E-13 -1.40865056534E-13 -1.46247791655E-13 -1.51836211835E-13 -1.57638176710E-13 -1.63661846249E-13 -1.69915692230E-13 -1.76408510155E-13 -1.83149431619E-13 -1.90147937153E-13 -1.97413869560E-13 -2.04957447754E-13 -2.12789281134E-13 -2.20920384509E-13 -2.29362193580E-13 -2.38126581034E-13 -2.47225873235E-13 -2.56672867562E-13 -2.66480850407E-13 -2.76663615862E-13 -2.87235485120E-13 -2.98211326614E-13 -3.09606576929E-13 -3.21437262514E-13 -3.33720022220E-13 -3.46472130702E-13 -3.59711522714E-13 -3.73456818333E-13 -3.87727349146E-13 -4.02543185438E-13 -4.17925164420E-13 -4.33894919535E-13 -4.50474910883E-13 -4.67688456809E-13 -4.85559766698E-13 -5.04113975025E-13 -5.23377176702E-13 -5.43376463781E-13 -5.64139963555E-13 -5.85696878117E-13 -6.08077525430E-13 -6.31313381968E-13 -6.55437126982E-13 -6.80482688464E-13 -7.06485290862E-13 -7.33481504620E-13 -7.61509297611E-13 -7.90608088539E-13 -8.20818802372E-13 -8.52183927906E-13 -8.84747577515E-13 -9.18555549198E-13 -9.53655390985E-13 -9.90096467813E-13 -1.02793003095E-12 -1.06720929008E-12 -1.10798948813E-12 -1.15032797897E-12 -1.19428430809E-12 -1.23992029631E-12 -1.28730012676E-12 -1.33649043513E-12 -1.38756040341E-12 -1.44058185714E-12 -1.49562936648E-12 -1.55278035107E-12 -1.61211518889E-12 -1.67371732932E-12 -1.73767341054E-12 -1.80407338132E-12 -1.87301062755E-12 -1.94458210360E-12 -2.01888846865E-12 -2.09603422826E-12 -2.17612788137E-12 -2.25928207287E-12 -2.34561375205E-12 -2.43524433705E-12 -2.52829988565E-12 -2.62491127254E-12 -2.72521437340E-12 -2.82935025599E-12 -2.93746537856E-12 -3.04971179579E-12 -3.16624737272E-12 -3.28723600668E-12 -3.41284785789E-12 -3.54325958869E-12 -3.67865461206E-12 -3.81922334956E-12 -3.96516349913E-12 -4.11668031315E-12 -4.27398688710E-12 -4.43730445925E-12 -4.60686272183E-12 -4.78290014410E-12 -4.96566430766E-12 -5.15541225473E-12 -5.35241084961E-12 -5.55693715401E-12 -5.76927881675E-12 -5.98973447825E-12 -6.21861419060E-12 -6.45623985359E-12 -6.70294566744E-12 -6.95907860284E-12 -7.22499888890E-12 -7.50108051981E-12 -7.78771178085E-12 -8.08529579442E-12 -8.39425108703E-12 -8.71501217796E-12 -9.04803019030E-12 -9.39377348547E-12 -9.75272832190E-12 -1.01253995389E-11 -1.05123112669E-11 -1.09140076640E-11 -1.13310536819E-11 -1.17640358604E-11 -1.22135631519E-11 -1.26802677782E-11 -1.31648061193E-11 -1.36678596373E-11 -1.41901358338E-11 -1.47323692458E-11 -1.52953224783E-11 -1.58797872769E-11 -1.64865856414E-11 -1.71165709819E-11 -1.77706293190E-11 -1.84496805298E-11 -1.91546796419E-11 -1.98866181764E-11 -2.06465255422E-11 -2.14354704840E-11 -2.22545625857E-11 -2.31049538301E-11 -2.39878402200E-11 -2.49044634596E-11 -2.58561127010E-11 -2.68441263577E-11 -2.78698939864E-11 -2.89348582415E-11 -3.00405169042E-11 -3.11884249889E-11 -3.23801969302E-11 -3.36175088533E-11 -3.49021009316E-11 -3.62357798341E-11 -3.76204212660E-11 -3.90579726069E-11 -4.05504556500E-11 -4.20999694447E-11 -4.37086932497E-11 -4.53788895974E-11 -4.71129074758E-11 -4.89131856327E-11 -5.07822560051E-11 -5.27227472805E-11 -5.47373885936E-11 -5.68290133649E-11 -5.90005632854E-11 -6.12550924540E-11 -6.35957716728E-11 -6.60258929065E-11 -6.85488739122E-11 -7.11682630465E-11 -7.38877442556E-11 -7.67111422565E-11 -7.96424279164E-11 -8.26857238370E-11 -8.58453101530E-11 -8.91256305513E-11 -9.25312985210E-11 -9.60671038416E-11 -9.97380193198E-11 -1.03549207783E-10 -1.07506029340E-10 -1.11614048921E-10 -1.15879044101E-10 -1.20307013231E-10 -1.24904183868E-10 -1.29677021537E-10 -1.34632238824E-10 -1.39776804816E-10 -1.45117954901E-10 -1.50663200948E-10 -1.56420341868E-10 -1.62397474583E-10 -1.68603005416E-10 -1.75045661911E-10 -1.81734505109E-10 -1.88678942292E-10 -1.95888740211E-10 -2.03374038824E-10 -2.11145365559E-10 -2.19213650116E-10 -2.27590239839E-10 -2.36286915679E-10 -2.45315908758E-10 -2.54689917576E-10 -2.64422125863E-10 -2.74526221130E-10 -2.85016413911E-10 -2.95907457755E-10 -3.07214669972E-10 -3.18953953174E-10 -3.31141817647E-10 -3.43795404565E-10 -3.56932510099E-10 -3.70571610449E-10 -3.84731887823E-10 -3.99433257422E-10 -4.14696395444E-10 -4.30542768166E-10 -4.46994662130E-10 -4.64075215493E-10 -4.81808450566E-10 -5.00219307598E-10 -5.19333679853E-10 -5.39178450028E-10 -5.59781528059E-10 -5.81171890375E-10 -6.03379620650E-10 -6.26435952114E-10 -6.50373311479E-10 -6.75225364543E-10 -7.01027063540E-10 -7.27814696297E-10 -7.55625937266E-10 -7.84499900515E-10 -8.14477194734E-10 -8.45599980350E-10 -8.77912028818E-10 -9.11458784188E-10 -9.46287427011E-10 -9.82446940699E-10 -1.01998818041E-09 -1.05896394458E-09 -1.09942904917E-09 -1.14144040476E-09 -1.18505709660E-09 -1.23034046770E-09 -1.27735420508E-09 -1.32616442938E-09 -1.37683978785E-09 -1.42945155085E-09 -1.48407371213E-09 -1.54078309288E-09 -1.59965944976E-09 -1.66078558710E-09 -1.72424747333E-09 -1.79013436189E-09 -1.85853891676E-09 -1.92955734280E-09 -2.00328952100E-09 -2.07983914903E-09 -2.15931388701E-09 -2.24182550896E-09 -2.32749006000E-09 -2.41642801953E-09 -2.50876447071E-09 -2.60462927633E-09 -2.70415726150E-09 -2.80748840323E-09 -2.91476802730E-09 -3.02614701266E-09 -3.14178200362E-09 -3.26183563014E-09 -3.38647673658E-09 -3.51588061912E-09 -3.65022927234E-09 -3.78971164516E-09 -3.93452390656E-09 -4.08486972148E-09 -4.24096053728E-09 -4.40301588107E-09 -4.57126366849E-09 -4.74594052423E-09 -4.92729211482E-09 -5.11557349414E-09 -5.31104946211E-09 -5.51399493712E-09 -5.72469534264E-09 -5.94344700869E-09 -6.17055758855E-09 -6.40634649143E-09 -6.65114533174E-09 -6.90529839540E-09 -7.16916312409E-09 -7.44311061792E-09 -7.72752615735E-09 -8.02280974502E-09 -8.32937666836E-09 -8.64765808358E-09 -8.97810162206E-09 -9.32117201991E-09 -9.67735177154E-09 -1.00471418082E-08 -1.04310622026E-08 -1.08296529002E-08 -1.12434744785E-08 -1.16731089357E-08 -1.21191605090E-08 -1.25822565243E-08 -1.30630482787E-08 -1.35622119563E-08 -1.40804495791E-08 -1.46184899945E-08 -1.51770899002E-08 -1.57570349085E-08 -1.63591406507E-08 -1.69842539250E-08 -1.76332538867E-08 -1.83070532848E-08 -1.90065997456E-08 -1.97328771059E-08 -2.04869067957E-08 -2.12697492756E-08 -2.20825055274E-08 -2.29263186031E-08 -2.38023752320E-08 -2.47119074900E-08 -2.56561945320E-08 -2.66365643908E-08 -2.76543958452E-08 -2.87111203585E-08 -2.98082240919E-08 -3.09472499947E-08 -3.21297999738E-08 -3.33575371466E-08 -3.46321881801E-08 -3.59555457190E-08 -3.73294709068E-08 -3.87558960031E-08 -4.02368271009E-08 -4.17743469480E-08 -4.33706178757E-08 -4.50278848401E-08 -4.67484785788E-08 -4.85348188888E-08 -5.03894180296E-08 -5.23148842558E-08 -5.43139254855E-08 -5.63893531082E-08 -5.85440859383E-08 -6.07811543201E-08 -6.31037043890E-08 -6.55150024963E-08 -6.80184398019E-08 -7.06175370437E-08 -7.33159494888E-08 -7.61174720732E-08 -7.90260447389E-08 -8.20457579746E-08 -8.51808585674E-08 -8.84357555755E-08 -9.18150265277E-08 -9.53234238614E-08 -9.89658816045E-08 -1.02747522315E-07 -1.06673664284E-07 -1.10749829013E-07 -1.14981748981E-07 -1.19375375704E-07 -1.23936888104E-07 -1.28672701197E-07 -1.33589475118E-07 -1.38694124479E-07 -1.43993828100E-07 -1.49496039099E-07 -1.55208495373E-07 -1.61139230479E-07 -1.67296584933E-07 -1.73689217934E-07 -1.80326119542E-07 -1.87216623321E-07 -1.94370419459E-07 -2.01797568400E-07 -2.09508514982E-07 -2.17514103132E-07 -2.25825591106E-07 -2.34454667327E-07 -2.43413466814E-07 -2.52714588246E-07 -2.62371111679E-07 -2.72396616935E-07 -2.82805202699E-07 -2.93611506338E-07 -3.04830724485E-07 -3.16478634407E-07 -3.28571616183E-07 -3.41126675740E-07 -3.54161468763E-07 -3.67694325513E-07 -3.81744276605E-07 -3.96331079765E-07 -4.11475247602E-07 -4.27198076454E-07 -4.43521676329E-07 -4.60469001984E-07 -4.78063885206E-07 -4.96331068309E-07 -5.15296238927E-07 -5.34986066120E-07 -5.55428237872E-07 -5.76651500015E-07 -5.98685696641E-07 -6.21561812057E-07 -6.45312014342E-07 -6.69969700572E-07 -6.95569543766E-07 -7.22147541629E-07 -7.49741067157E-07 -7.78388921171E-07 -8.08131386862E-07 -8.39010286415E-07 -8.71069039801E-07 -9.04352725808E-07 -9.38908145407E-07 -9.74783887537E-07 -1.01203039740E-06 -1.05070004738E-06 -1.09084721062E-06 -1.13252833749E-06 -1.17580203491E-06 -1.22072914872E-06 -1.26737284920E-06 -1.31579871986E-06 -1.36607484960E-06 -1.41827192842E-06 -1.47246334677E-06 -1.52872529867E-06 -1.58713688881E-06 -1.64778024370E-06 -1.71074062711E-06 -1.77610655986E-06 -1.84396994423E-06 -1.91442619310E-06 -1.98757436404E-06 -2.06351729846E-06 -2.14236176617E-06 -2.22421861536E-06 -2.30920292839E-06 -2.39743418346E-06 -2.48903642248E-06 -2.58413842537E-06 -2.68287389097E-06 -2.78538162489E-06 -2.89180573451E-06 -3.00229583145E-06 -3.11700724172E-06 -3.23610122394E-06 -3.35974519589E-06 -3.48811296965E-06 -3.62138499577E-06 -3.75974861674E-06 -3.90339833015E-06 -4.05253606186E-06 -4.20737144962E-06 -4.36812213749E-06 -4.53501408157E-06 -4.70828186728E-06 -4.88816903884E-06 -5.07492844127E-06 -5.26882257550E-06 -5.47012396695E-06 -5.67911554826E-06 -5.89609105652E-06 -6.12135544578E-06 -6.35522531521E-06 -6.59802935360E-06 -6.85010880090E-06 -7.11181792723E-06 -7.38352453031E-06 -7.66561045180E-06 -7.95847211330E-06 -8.26252107288E-06 -8.57818460277E-06 -8.90590628916E-06 -9.24614665478E-06 -9.59938380537E-06 -9.96611410066E-06 -1.03468528510E-05 -1.07421350408E-05 -1.11525160789E-05 -1.15785725784E-05 -1.20209031659E-05 -1.24801293211E-05 -1.29568962492E-05 -1.34518737864E-05 -1.39657573395E-05 -1.44992688615E-05 -1.50531578652E-05 -1.56282024740E-05 -1.62252105144E-05 -1.68450206487E-05 -1.74885035517E-05 -1.81565631327E-05 -1.88501378028E-05 -1.95702017920E-05 -2.03177665152E-05 -2.10938819917E-05 -2.18996383176E-05 -2.27361671952E-05 -2.36046435201E-05 -2.45062870298E-05 -2.54423640141E-05 -2.64141890916E-05 -2.74231270536E-05 -2.84705947785E-05 -2.95580632192E-05 -3.06870594664E-05 -3.18591688907E-05 -3.30760373665E-05 -3.43393735807E-05 -3.56509514295E-05 -3.70126125073E-05 -3.84262686897E-05 -3.98939048162E-05 -4.14175814745E-05 -4.29994378918E-05 -4.46416949366E-05 -4.63466582348E-05 -4.81167214054E-05 -4.99543694195E-05 -5.18621820885E-05 -5.38428376849E-05 -5.58991167024E-05 -5.80339057593E-05 -6.02502016520E-05 -6.25511155633E-05 -6.49398774318E-05 -6.74198404897E-05 -6.99944859734E-05 -7.26674280155E-05 -7.54424187239E-05 -7.83233534571E-05 -8.13142763003E-05 -8.44193857534E-05 -8.76430406365E-05 -9.09897662236E-05 -9.44642606111E-05 -9.80714013325E-05 -1.01816252227E-04 -1.05704070573E-04 -1.09740314498E-04 -1.13930650672E-04 -1.18280962300E-04 -1.22797357421E-04 -1.27486177531E-04 -1.32354006540E-04 -1.37407680067E-04 -1.42654295110E-04 -1.48101220079E-04 -1.53756105221E-04 -1.59626893457E-04 -1.65721831629E-04 -1.72049482194E-04 -1.78618735371E-04 -1.85438821758E-04 -1.92519325447E-04 -1.99870197649E-04 -2.07501770849E-04 -2.15424773523E-04 -2.23650345423E-04 -2.32190053468E-04 -2.41055908255E-04 -2.50260381227E-04 -2.59816422505E-04 -2.69737479435E-04 -2.80037515859E-04 -2.90731032149E-04 -3.01833086040E-04 -3.13359314275E-04 -3.25325955122E-04 -3.37749871776E-04 -3.50648576692E-04 -3.64040256888E-04 -3.77943800257E-04 -3.92378822919E-04 -4.07365697674E-04 -4.22925583584E-04 -4.39080456741E-04 -4.55853142260E-04 -4.73267347555E-04 -4.91347696946E-04 -5.10119767647E-04 -5.29610127200E-04 -5.49846372401E-04 -5.70857169790E-04 -5.92672297751E-04 -6.15322690306E-04 -6.38840482647E-04 -6.63259058488E-04 -6.88613099305E-04 -7.14938635529E-04 -7.42273099768E-04 -7.70655382142E-04 -8.00125887788E-04 -8.30726596637E-04 -8.62501125519E-04 -8.95494792693E-04 -9.29754684879E-04 -9.65329726863E-04 -1.00227075378E-03 -1.04063058611E-03 -1.08046410753E-03 -1.12182834568E-03 -1.16478255582E-03 -1.20938830765E-03 -1.25570957515E-03 -1.30381282970E-03 -1.35376713634E-03 -1.40564425337E-03 -1.45951873527E-03 -1.51546803900E-03 -1.57357263363E-03 -1.63391611337E-03 -1.69658531399E-03 -1.76167043250E-03 -1.82926515017E-03 -1.89946675870E-03 -1.97237628946E-03 -2.04809864569E-03 -2.12674273740E-03 -2.20842161882E-03 -2.29325262809E-03 -2.38135752886E-03 -2.47286265343E-03 -2.56789904693E-03 -2.66660261215E-03 -2.76911425418E-03 -2.87558002439E-03 -2.98615126285E-03 -3.10098473823E-03 -3.22024278430E-03 -3.34409343170E-03 -3.47271053382E-03 -3.60627388524E-03 -3.74496933110E-03 -3.88898886570E-03 -4.03853071811E-03 -4.19379942273E-03 -4.35500587225E-03 -4.52236735032E-03 -4.69610754086E-03 -4.87645651091E-03 -5.06365066322E-03 -5.25793265486E-03 -5.45955127746E-03 -5.66876129461E-03 -5.88582323131E-03 -6.11100311019E-03 -6.34457212866E-03 -6.58680627084E-03 -6.83798584759E-03 -7.09839495764E-03 -7.36832086227E-03 -7.64805326561E-03 -7.93788349233E-03 -8.23810355372E-03 -8.54900509322E-03 -8.87087820180E-03 -9.20401009337E-03 -9.54868363011E-03 -9.90517568751E-03 -1.02737553487E-02 -1.06546819175E-02 -1.10482027402E-02 -1.14545508256E-02 -1.18739422542E-02 -1.23065733663E-02 -1.27526177223E-02 -1.32122228260E-02 -1.36855066067E-02 -1.41725536540E-02 -1.46734112031E-02 -1.51880848715E-02 -1.57165341464E-02 -1.62586676316E-02 -1.68143380589E-02 -1.73833370803E-02 -1.79653898543E-02 -1.85601494517E-02 -1.91671911060E-02 -1.97860063432E-02 -2.04159970307E-02 -2.10564693924E-02 -2.17066280456E-02 -2.23655701218E-02 -2.30322795439E-02 -2.37056215400E-02 -2.43843374830E-02 -2.50670401569E-02 -2.57522095559E-02 -2.64381893366E-02 -2.71231840484E-02 -2.78052572776E-02 -2.84823308485E-02 -2.91521852295E-02 -2.98124612983E-02 -3.04606636240E-02 -3.10941654223E-02 -3.17102153415E-02 -3.23059462280E-02 -3.28783860164E-02 -3.34244708721E-02 -3.39410606992E-02 -3.44249571068E-02 -3.48729238934E-02 -3.52817100840E-02 -3.56480755072E-02 -3.59688188621E-02 -3.62408081673E-02 -3.64610134298E-02 -3.66265413097E-02 -3.67346714841E-02 -3.67828943448E-02 -3.67689495862E-02 -3.66908651616E-02 -3.65469960090E-02 -3.63360618696E-02 -3.60571834508E-02 -3.57099161198E-02 -3.52942802592E-02 -3.48107873755E-02 -3.42604610243E-02 -3.36448516182E-02 -3.29660441999E-02 -3.22266583199E-02 -3.14298392365E-02 -3.05792397804E-02 -2.96789923819E-02 -2.87336709589E-02 -2.77482426020E-02 -2.67280092801E-02 -2.56785401010E-02 -2.46055950267E-02 -2.35150413187E-02 -2.24127644002E-02 -2.13045752334E-02 -2.01961167265E-02 -1.90927720780E-02 -1.79995783254E-02 -1.69211486707E-02 -1.58616073800E-02 -1.48245411797E-02 -1.38129710775E-02 -1.28293483865E-02 -1.18755784227E-02 -1.09530748350E-02 -1.00628468240E-02 -9.20562057115E-03 -8.38199504867E-03 -7.59263100079E-03 -6.83847029094E-03 -6.12098101862E-03 -5.44242184867E-03 -4.80550690608E-03 -4.21125157620E-03 -3.65990638230E-03 -3.15144293423E-03 -2.68557157298E-03 -2.26176358517E-03 -1.87927751722E-03 -1.53718892909E-03 -1.23442272931E-03 -9.69787031732E-04 -7.42007276757E-04 -5.49759173706E-04 -3.91698855960E-04 -2.66488506428E-04 -1.72263799432E-04 -1.04867478524E-04 -5.93064948652E-05 -3.03039752761E-05 -1.28531674886E-05 -3.82353959030E-06 -4.79137038878E-07 2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 6 1 i j (l(j)) 0.00000000000E+00 Q_int -2.33103846516E-15 -2.42011210018E-15 -2.51258941667E-15 -2.60860047611E-15 -2.70828030987E-15 -2.81176910915E-15 -2.91921242213E-15 -3.03076135866E-15 -3.14657280283E-15 -3.26680963356E-15 -3.39164095372E-15 -3.52124232792E-15 -3.65579602945E-15 -3.79549129663E-15 -3.94052459894E-15 -4.09109991338E-15 -4.24742901130E-15 -4.40973175624E-15 -4.57823641320E-15 -4.75317996961E-15 -4.93480846869E-15 -5.12337735545E-15 -5.31915183594E-15 -5.52240725032E-15 -5.73342945999E-15 -5.95251524972E-15 -6.17997274500E-15 -6.41612184542E-15 -6.66129467457E-15 -6.91583604715E-15 -7.18010395391E-15 -7.45447006515E-15 -7.73932025342E-15 -8.03505513625E-15 -8.34209063955E-15 -8.66085858260E-15 -8.99180728535E-15 -9.33540219895E-15 -9.69212656038E-15 -1.00624820721E-14 -1.04469896075E-14 -1.08461899437E-14 -1.12606445220E-14 -1.16909362374E-14 -1.21376702585E-14 -1.26014748788E-14 -1.30830023998E-14 -1.35829300491E-14 -1.41019609322E-14 -1.46408250219E-14 -1.52002801846E-14 -1.57811132463E-14 -1.63841410993E-14 -1.70102118508E-14 -1.76602060159E-14 -1.83350377563E-14 -1.90356561650E-14 -1.97630466024E-14 -2.05182320809E-14 -2.13022747048E-14 -2.21162771630E-14 -2.29613842808E-14 -2.38387846292E-14 -2.47497121972E-14 -2.56954481267E-14 -2.66773225147E-14 -2.76967162839E-14 -2.87550631248E-14 -2.98538515120E-14 -3.09946267978E-14 -3.21789933855E-14 -3.34086169856E-14 -3.46852269591E-14 -3.60106187491E-14 -3.73866564062E-14 -3.88152752102E-14 -4.02984843916E-14 -4.18383699579E-14 -4.34370976268E-14 -4.50969158726E-14 -4.68201590882E-14 -4.86092508684E-14 -5.04667074184E-14 -5.23951410925E-14 -5.43972640683E-14 -5.64758921613E-14 -5.86339487847E-14 -6.08744690613E-14 -6.32006040920E-14 -6.56156253875E-14 -6.81229294694E-14 -7.07260426473E-14 -7.34286259782E-14 -7.62344804150E-14 -7.91475521532E-14 -8.21719381798E-14 -8.53118920360E-14 -8.85718297995E-14 -9.19563362949E-14 -9.54701715422E-14 -9.91182774512E-14 -1.02905784772E-13 -1.06838020311E-13 -1.10920514423E-13 -1.15159008787E-13 -1.19559464485E-13 -1.24128070382E-13 -1.28871251834E-13 -1.33795679721E-13 -1.38908279831E-13 -1.44216242601E-13 -1.49727033228E-13 -1.55448402169E-13 -1.61388396043E-13 -1.67555368944E-13 -1.73957994195E-13 -1.80605276541E-13 -1.87506564820E-13 -1.94671565106E-13 -2.02110354360E-13 -2.09833394605E-13 -2.17851547640E-13 -2.26176090314E-13 -2.34818730386E-13 -2.43791622994E-13 -2.53107387746E-13 -2.62779126470E-13 -2.72820441645E-13 -2.83245455523E-13 -2.94068829998E-13 -3.05305787224E-13 -3.16972131024E-13 -3.29084269116E-13 -3.41659236190E-13 -3.54714717865E-13 -3.68269075564E-13 -3.82341372335E-13 -3.96951399665E-13 -4.12119705313E-13 -4.27867622206E-13 -4.44217298448E-13 -4.61191728466E-13 -4.78814785347E-13 -4.97111254420E-13 -5.16106868109E-13 -5.35828342126E-13 -5.56303413042E-13 -5.77560877300E-13 -5.99630631712E-13 -6.22543715505E-13 -6.46332353979E-13 -6.71030003826E-13 -6.96671400186E-13 -7.23292605497E-13 -7.50931060214E-13 -7.79625635469E-13 -8.09416687735E-13 -8.40346115587E-13 -8.72457418630E-13 -9.05795758673E-13 -9.40408023250E-13 -9.76342891560E-13 -1.01365090293E-12 -1.05238452790E-12 -1.09259824201E-12 -1.13434860242E-12 -1.17769432746E-12 -1.22269637918E-12 -1.26941804914E-12 -1.31792504739E-12 -1.36828559487E-12 -1.42057051941E-12 -1.47485335530E-12 -1.53121044671E-12 -1.58972105509E-12 -1.65046747061E-12 -1.71353512794E-12 -1.77901272635E-12 -1.84699235450E-12 -1.91756961995E-12 -1.99084378358E-12 -2.06691789928E-12 -2.14589895879E-12 -2.22789804223E-12 -2.31303047433E-12 -2.40141598659E-12 -2.49317888568E-12 -2.58844822831E-12 -2.68735800267E-12 -2.79004731693E-12 -2.89666059484E-12 -3.00734777888E-12 -3.12226454114E-12 -3.24157250223E-12 -3.36543945863E-12 -3.49403961864E-12 -3.62755384740E-12 -3.76616992130E-12 -3.91008279201E-12 -4.05949486070E-12 -4.21461626269E-12 -4.37566516299E-12 -4.54286806315E-12 -4.71646011976E-12 -4.89668547524E-12 -5.08379760117E-12 -5.27805965477E-12 -5.47974484904E-12 -5.68913683699E-12 -5.90653011057E-12 -6.13223041485E-12 -6.36655517805E-12 -6.60983395794E-12 -6.86240890533E-12 -7.12463524533E-12 -7.39688177688E-12 -7.67953139148E-12 -7.97298161166E-12 -8.27764515010E-12 -8.59395049003E-12 -8.92234248788E-12 -9.26328299894E-12 -9.61725152692E-12 -9.98474589829E-12 -1.03662829625E-11 -1.07623993188E-11 -1.11736520709E-11 -1.16006196108E-11 -1.20439024318E-11 -1.25041239732E-11 -1.29819314973E-11 -1.34779969996E-11 -1.39930181537E-11 -1.45277192928E-11 -1.50828524284E-11 -1.56591983077E-11 -1.62575675118E-11 -1.68788015960E-11 -1.75237742727E-11 -1.81933926408E-11 -1.88885984612E-11 -1.96103694815E-11 -2.03597208107E-11 -2.11377063474E-11 -2.19454202615E-11 -2.27839985336E-11 -2.36546205521E-11 -2.45585107722E-11 -2.54969404383E-11 -2.64712293711E-11 -2.74827478246E-11 -2.85329184127E-11 -2.96232181103E-11 -3.07551803305E-11 -3.19303970811E-11 -3.31505212036E-11 -3.44172686979E-11 -3.57324211357E-11 -3.70978281660E-11 -3.85154101167E-11 -3.99871606949E-11 -4.15151497916E-11 -4.31015263922E-11 -4.47485215991E-11 -4.64584517695E-11 -4.82337217732E-11 -5.00768283750E-11 -5.19903637458E-11 -5.39770191086E-11 -5.60395885232E-11 -5.81809728160E-11 -6.04041836599E-11 -6.27123478094E-11 -6.51087114987E-11 -6.75966450069E-11 -7.01796473982E-11 -7.28613514430E-11 -7.56455287266E-11 -7.85360949545E-11 -8.15371154588E-11 -8.46528109158E-11 -8.78875632823E-11 -9.12459219583E-11 -9.47326101853E-11 -9.83525316889E-11 -1.02110777576E-10 -1.06012633495E-10 -1.10063587068E-10 -1.14269335610E-10 -1.18635794145E-10 -1.23169103717E-10 -1.27875640033E-10 -1.32762022429E-10 -1.37835123178E-10 -1.43102077157E-10 -1.48570291880E-10 -1.54247457915E-10 -1.60141559703E-10 -1.66260886787E-10 -1.72614045469E-10 -1.79209970912E-10 -1.86057939714E-10 -1.93167582945E-10 -2.00548899699E-10 -2.08212271155E-10 -2.16168475176E-10 -2.24428701470E-10 -2.33004567323E-10 -2.41908133942E-10 -2.51151923414E-10 -2.60748936320E-10 -2.70712670020E-10 -2.81057137632E-10 -2.91796887743E-10 -3.02947024869E-10 -3.14523230699E-10 -3.26541786151E-10 -3.39019594265E-10 -3.51974203981E-10 -3.65423834816E-10 -3.79387402492E-10 -3.93884545535E-10 -4.08935652895E-10 -4.24561892627E-10 -4.40785241655E-10 -4.57628516682E-10 -4.75115406283E-10 -4.93270504217E-10 -5.12119344018E-10 -5.31688434903E-10 -5.52005299059E-10 -5.73098510345E-10 -5.94997734483E-10 -6.17733770777E-10 -6.41338595430E-10 -6.65845406517E-10 -6.91288670671E-10 -7.17704171564E-10 -7.45129060224E-10 -7.73601907292E-10 -8.03162757264E-10 -8.33853184811E-10 -8.65716353248E-10 -8.98797075241E-10 -9.33141875831E-10 -9.68799057866E-10 -1.00581876993E-09 -1.04425307689E-09 -1.08415603310E-09 -1.12558375841E-09 -1.16859451714E-09 -1.21324879998E-09 -1.25960940909E-09 -1.30774154641E-09 -1.35771290535E-09 -1.40959376602E-09 -1.46345709406E-09 -1.51937864325E-09 -1.57743706207E-09 -1.63771400427E-09 -1.70029424378E-09 -1.76526579384E-09 -1.83272003087E-09 -1.90275182293E-09 -1.97545966314E-09 -2.05094580824E-09 -2.12931642235E-09 -2.21068172634E-09 -2.29515615276E-09 -2.38285850687E-09 -2.47391213366E-09 -2.56844509133E-09 -2.66659033144E-09 -2.76848588581E-09 -2.87427506070E-09 -2.98410663836E-09 -3.09813508623E-09 -3.21652077423E-09 -3.33943020026E-09 -3.46703622438E-09 -3.59951831192E-09 -3.73706278586E-09 -3.87986308890E-09 -4.02812005547E-09 -4.18204219420E-09 -4.34184598120E-09 -4.50775616443E-09 -4.68000607983E-09 -4.85883797948E-09 -5.04450337226E-09 -5.23726337760E-09 -5.43738909271E-09 -5.64516197379E-09 -5.86087423193E-09 -6.08482924403E-09 -6.31734197945E-09 -6.55873944300E-09 -6.80936113479E-09 -7.06955952772E-09 -7.33970056317E-09 -7.62016416566E-09 -7.91134477710E-09 -8.21365191162E-09 -8.52751073138E-09 -8.85336264456E-09 -9.19166592614E-09 -9.54289636236E-09 -9.90754791983E-09 -1.02861334403E-08 -1.06791853617E-08 -1.10872564673E-08 -1.15109206626E-08 -1.19507737829E-08 -1.24074344309E-08 -1.28815448469E-08 -1.33737718118E-08 -1.38848075852E-08 -1.44153708783E-08 -1.49662078653E-08 -1.55380932322E-08 -1.61318312667E-08 -1.67482569891E-08 -1.73882373264E-08 -1.80526723320E-08 -1.87424964508E-08 -1.94586798339E-08 -2.02022297024E-08 -2.09741917643E-08 -2.17756516849E-08 -2.26077366135E-08 -2.34716167685E-08 -2.43685070832E-08 -2.52996689143E-08 -2.62664118155E-08 -2.72700953796E-08 -2.83121311497E-08 -2.93939846052E-08 -3.05171772216E-08 -3.16832886108E-08 -3.28939587424E-08 -3.41508902496E-08 -3.54558508237E-08 -3.68106756999E-08 -3.82172702382E-08 -3.96776126026E-08 -4.11937565429E-08 -4.27678342829E-08 -4.44020595186E-08 -4.60987305314E-08 -4.78602334195E-08 -4.96890454538E-08 -5.15877385612E-08 -5.35589829411E-08 -5.56055508205E-08 -5.77303203521E-08 -5.99362796617E-08 -6.22265310497E-08 -6.46042953537E-08 -6.70729164777E-08 -6.96358660937E-08 -7.22967485238E-08 -7.50593058083E-08 -7.79274229673E-08 -8.09051334640E-08 -8.39966248758E-08 -8.72062447828E-08 -9.05385068810E-08 -9.39980973288E-08 -9.75898813363E-08 -1.01318910006E-07 -1.05190427437E-07 -1.09209878093E-07 -1.13382914465E-07 -1.17715405015E-07 -1.22213442426E-07 -1.26883352171E-07 -1.31731701406E-07 -1.36765308204E-07 -1.41991251140E-07 -1.47416879246E-07 -1.53049822338E-07 -1.58898001751E-07 -1.64969641470E-07 -1.71273279696E-07 -1.77817780849E-07 -1.84612348028E-07 -1.91666535956E-07 -1.98990264408E-07 -2.06593832158E-07 -2.14487931458E-07 -2.22683663072E-07 -2.31192551878E-07 -2.40026563074E-07 -2.49198118996E-07 -2.58720116583E-07 -2.68605945507E-07 -2.78869506994E-07 -2.89525233370E-07 -3.00588108346E-07 -3.12073688080E-07 -3.23998123047E-07 -3.36378180741E-07 -3.49231269243E-07 -3.62575461692E-07 -3.76429521690E-07 -3.90812929675E-07 -4.05745910301E-07 -4.21249460869E-07 -4.37345380838E-07 -4.54056302464E-07 -4.71405722610E-07 -4.89418035773E-07 -5.08118568366E-07 -5.27533614315E-07 -5.47690472010E-07 -5.68617482676E-07 -5.90344070194E-07 -6.12900782461E-07 -6.36319334309E-07 -6.60632652084E-07 -6.85874919908E-07 -7.12081627717E-07 -7.39289621135E-07 -7.67537153243E-07 -7.96863938333E-07 -8.27311207710E-07 -8.58921767626E-07 -8.91740059421E-07 -9.25812221965E-07 -9.61186156484E-07 -9.97911593854E-07 -1.03604016447E-06 -1.07562547078E-06 -1.11672316258E-06 -1.15939101520E-06 -1.20368901066E-06 -1.24967942192E-06 -1.29742690035E-06 -1.34699856657E-06 -1.39846410467E-06 -1.45189586014E-06 -1.50736894145E-06 -1.56496132551E-06 -1.62475396724E-06 -1.68683091320E-06 -1.75127941964E-06 -1.81819007504E-06 -1.88765692726E-06 -1.95977761567E-06 -2.03465350818E-06 -2.11238984357E-06 -2.19309587928E-06 -2.27688504473E-06 -2.36387510061E-06 -2.45418830416E-06 -2.54795158080E-06 -2.64529670224E-06 -2.74636047148E-06 -2.85128491481E-06 -2.96021748108E-06 -3.07331124866E-06 -3.19072514028E-06 -3.31262414595E-06 -3.43917955452E-06 -3.57056919399E-06 -3.70697768099E-06 -3.84859667977E-06 -3.99562517107E-06 -4.14826973122E-06 -4.30674482189E-06 -4.47127309090E-06 -4.64208568442E-06 -4.81942257115E-06 -5.00353287877E-06 -5.19467524332E-06 -5.39311817172E-06 -5.59914041830E-06 -5.81303137547E-06 -6.03509147942E-06 -6.26563263119E-06 -6.50497863379E-06 -6.75346564600E-06 -7.01144265335E-06 -7.27927195717E-06 -7.55732968210E-06 -7.84600630306E-06 -8.14570719216E-06 -8.45685318651E-06 -8.77988117755E-06 -9.11524472291E-06 -9.46341468141E-06 -9.82487987238E-06 -1.02001477599E-05 -1.05897451631E-05 -1.09942189937E-05 -1.14141370211E-05 -1.18500886671E-05 -1.23026858305E-05 -1.27725637432E-05 -1.32603818586E-05 -1.37668247742E-05 -1.42926031886E-05 -1.48384548958E-05 -1.54051458164E-05 -1.59934710682E-05 -1.66042560778E-05 -1.72383577342E-05 -1.78966655860E-05 -1.85801030844E-05 -1.92896288732E-05 -2.00262381277E-05 -2.07909639448E-05 -2.15848787852E-05 -2.24090959712E-05 -2.32647712401E-05 -2.41531043581E-05 -2.50753407938E-05 -2.60327734567E-05 -2.70267445000E-05 -2.80586471936E-05 -2.91299278662E-05 -3.02420879224E-05 -3.13966859360E-05 -3.25953398220E-05 -3.38397290912E-05 -3.51315971911E-05 -3.64727539338E-05 -3.78650780173E-05 -3.93105196417E-05 -4.08111032240E-05 -4.23689302172E-05 -4.39861820340E-05 -4.56651230829E-05 -4.74081039186E-05 -4.92175645112E-05 -5.10960376401E-05 -5.30461524150E-05 -5.50706379314E-05 -5.71723270633E-05 -5.93541604003E-05 -6.16191903325E-05 -6.39705852911E-05 -6.64116341483E-05 -6.89457507843E-05 -7.15764788260E-05 -7.43074965664E-05 -7.71426220681E-05 -8.00858184613E-05 -8.31411994410E-05 -8.63130349724E-05 -8.96057572120E-05 -9.30239666522E-05 -9.65724384983E-05 -1.00256129287E-04 -1.04080183753E-04 -1.08049941959E-04 -1.12170946690E-04 -1.16448951135E-04 -1.20889926846E-04 -1.25500072015E-04 -1.30285820047E-04 -1.35253848470E-04 -1.40411088177E-04 -1.45764733016E-04 -1.51322249743E-04 -1.57091388357E-04 -1.63080192821E-04 -1.69297012187E-04 -1.75750512151E-04 -1.82449687038E-04 -1.89403872239E-04 -1.96622757131E-04 -2.04116398477E-04 -2.11895234334E-04 -2.19970098497E-04 -2.28352235483E-04 -2.37053316089E-04 -2.46085453541E-04 -2.55461220254E-04 -2.65193665231E-04 -2.75296332131E-04 -2.85783278014E-04 -2.96669092807E-04 -3.07968919517E-04 -3.19698475206E-04 -3.31874072775E-04 -3.44512643576E-04 -3.57631760895E-04 -3.71249664332E-04 -3.85385285112E-04 -4.00058272374E-04 -4.15289020466E-04 -4.31098697290E-04 -4.47509273740E-04 -4.64543554271E-04 -4.82225208652E-04 -5.00578804939E-04 -5.19629843727E-04 -5.39404793727E-04 -5.59931128722E-04 -5.81237365951E-04 -6.03353105987E-04 -6.26309074168E-04 -6.50137163635E-04 -6.74870480044E-04 -7.00543388029E-04 -7.27191559467E-04 -7.54852023637E-04 -7.83563219334E-04 -8.13365049021E-04 -8.44298935100E-04 -8.76407878386E-04 -9.09736518869E-04 -9.44331198860E-04 -9.80240028601E-04 -1.01751295446E-03 -1.05620182976E-03 -1.09636048844E-03 -1.13804482152E-03 -1.18131285663E-03 -1.22622484055E-03 -1.27284332504E-03 -1.32123325596E-03 -1.37146206587E-03 -1.42359977013E-03 -1.47771906682E-03 -1.53389544035E-03 -1.59220726912E-03 -1.65273593721E-03 -1.71556595026E-03 -1.78078505575E-03 -1.84848436762E-03 -1.91875849561E-03 -1.99170567916E-03 -2.06742792622E-03 -2.14603115690E-03 -2.22762535222E-03 -2.31232470787E-03 -2.40024779319E-03 -2.49151771543E-03 -2.58626228920E-03 -2.68461421133E-03 -2.78671124095E-03 -2.89269638487E-03 -3.00271808820E-03 -3.11693043006E-03 -3.23549332427E-03 -3.35857272481E-03 -3.48634083582E-03 -3.61897632591E-03 -3.75666454618E-03 -3.89959775180E-03 -4.04797532636E-03 -4.20200400847E-03 -4.36189811987E-03 -4.52787979407E-03 -4.70017920469E-03 -4.87903479218E-03 -5.06469348768E-03 -5.25741093255E-03 -5.45745169178E-03 -5.66508945947E-03 -5.88060725412E-03 -6.10429760138E-03 -6.33646270159E-03 -6.57741457896E-03 -6.82747520923E-03 -7.08697662195E-03 -7.35626097343E-03 -7.63568058571E-03 -7.92559794668E-03 -8.22638566594E-03 -8.53842638036E-03 -8.86211260295E-03 -9.19784650796E-03 -9.54603964454E-03 -9.90711257077E-03 -1.02814943990E-02 -1.06696222430E-02 -1.10719405567E-02 -1.14889003532E-02 -1.19209582930E-02 -1.23685756277E-02 -1.28322169880E-02 -1.33123490000E-02 -1.38094387166E-02 -1.43239518487E-02 -1.48563507800E-02 -1.54070923489E-02 -1.59766253823E-02 -1.65653879620E-02 -1.71738044087E-02 -1.78022819652E-02 -1.84512071620E-02 -1.91209418494E-02 -1.98118188789E-02 -2.05241374213E-02 -2.12581579054E-02 -2.20140965673E-02 -2.27921196007E-02 -2.35923369003E-02 -2.44147953955E-02 -2.52594719742E-02 -2.61262660019E-02 -2.70149914447E-02 -2.79253686131E-02 -2.88570155484E-02 -2.98094390822E-02 -3.07820256061E-02 -3.17740316009E-02 -3.27845739822E-02 -3.38126203317E-02 -3.48569790953E-02 -3.59162898418E-02 -3.69890136903E-02 -3.80734240274E-02 -3.91675976524E-02 -4.02694065013E-02 -4.13765101190E-02 -4.24863490618E-02 -4.35961394303E-02 -4.47028687438E-02 -4.58032933857E-02 -4.68939378561E-02 -4.79710960816E-02 -4.90308350378E-02 -5.00690009449E-02 -5.10812282962E-02 -5.20629519759E-02 -5.30094227123E-02 -5.39157260959E-02 -5.47768053705E-02 -5.55874881744E-02 -5.63425173684E-02 -5.70365860424E-02 -5.76643767319E-02 -5.82206048096E-02 -5.87000659404E-02 -5.90976873979E-02 -5.94085829464E-02 -5.96281108803E-02 -5.97519347040E-02 -5.97760858074E-02 -5.96970273703E-02 -5.95117185960E-02 -5.92176782500E-02 -5.88130463528E-02 -5.82966427622E-02 -5.76680212773E-02 -5.69275178160E-02 -5.60762911555E-02 -5.51163546999E-02 -5.40505977480E-02 -5.28827947844E-02 -5.16176014220E-02 -5.02605357791E-02 -4.88179442914E-02 -4.72969512402E-02 -4.57053916258E-02 -4.40517274258E-02 -4.23449477563E-02 -4.05944539887E-02 -3.88099314610E-02 -3.70012100485E-02 -3.51781165046E-02 -3.33503221401E-02 -3.15271900356E-02 -2.97176265740E-02 -2.79299425858E-02 -2.61717297971E-02 -2.44497585255E-02 -2.27699026316E-02 -2.11370975894E-02 -1.95553371286E-02 -1.80277132185E-02 -1.65565031639E-02 -1.51433062620E-02 -1.37892308186E-02 -1.24951303373E-02 -1.12618854126E-02 -1.00907252968E-02 -8.98358033462E-03 -7.94345353714E-03 -6.97389387653E-03 -6.07580084909E-03 -5.24884509866E-03 -4.49220320297E-03 -3.80459559229E-03 -3.18433321931E-03 -2.62937217462E-03 -2.13737510965E-03 -1.70577798231E-03 -1.33186028994E-03 -1.01281661041E-03 -7.45826950298E-04 -5.28123113702E-04 -3.57048075898E-04 -2.29346816706E-04 -1.38754443151E-04 -7.80119261251E-05 -3.96464616556E-05 -1.67259820619E-05 -4.94856512151E-06 -6.16669614456E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 7 2 i j (l(j)) 0.00000000000E+00 Q_int 4.51367614370E-18 4.74509726769E-18 4.98838360638E-18 5.24414350234E-18 5.51301648852E-18 5.79567488743E-18 6.09282549229E-18 6.40521133438E-18 6.73361354102E-18 7.07885328877E-18 7.44179385681E-18 7.82334278561E-18 8.22445414621E-18 8.64613092593E-18 9.08942753636E-18 9.55545244989E-18 1.00453709716E-17 1.05604081528E-17 1.11018518549E-17 1.16710559690E-17 1.22694438020E-17 1.28985116350E-17 1.35598324653E-17 1.42550599394E-17 1.49859324881E-17 1.57542776734E-17 1.65620167585E-17 1.74111695117E-17 1.83038592573E-17 1.92423181846E-17 2.02288929295E-17 2.12660504429E-17 2.23563841587E-17 2.35026204790E-17 2.47076255917E-17 2.59744126371E-17 2.73061492426E-17 2.87061654433E-17 3.01779620089E-17 3.17252191973E-17 3.33518059573E-17 3.50617896031E-17 3.68594459842E-17 3.87492701779E-17 4.07359877288E-17 4.28245664657E-17 4.50202289230E-17 4.73284654004E-17 4.97550476913E-17 5.23060435152E-17 5.49878316900E-17 5.78071180831E-17 6.07709523786E-17 6.38867457057E-17 6.71622891706E-17 7.06057733377E-17 7.42258087108E-17 7.80314472635E-17 8.20322050742E-17 8.62380861209E-17 9.06596072965E-17 9.53078247066E-17 1.00194361315E-16 1.05331436009E-16 1.10731894150E-16 1.16409239695E-16 1.22377668966E-16 1.28652106142E-16 1.35248240586E-16 1.42182566067E-16 1.49472422011E-16 1.57136036853E-16 1.65192573621E-16 1.73662177854E-16 1.82566027971E-16 1.91926388235E-16 2.01766664420E-16 2.12111462341E-16 2.22986649379E-16 2.34419419166E-16 2.46438359578E-16 2.59073524225E-16 2.72356507598E-16 2.86320524071E-16 3.01000490958E-16 3.16433115819E-16 3.32656988251E-16 3.49712676383E-16 3.67642828316E-16 3.86492278766E-16 4.06308161173E-16 4.27140025560E-16 4.49039962434E-16 4.72062733040E-16 4.96265906292E-16 5.21710002723E-16 5.48458645821E-16 5.76578721121E-16 6.06140543450E-16 6.37218032754E-16 6.69888898936E-16 7.04234836170E-16 7.40341727180E-16 7.78299857988E-16 8.18204143683E-16 8.60154365752E-16 9.04255421588E-16 9.50617586788E-16 9.99356790897E-16 1.05059490730E-15 1.10446005795E-15 1.16108693377E-15 1.22061713143E-15 1.28319950739E-15 1.34899055018E-15 1.41815477165E-15 1.49086511834E-15 1.56730340397E-15 1.64766076404E-15 1.73213813376E-15 1.82094675053E-15 1.91430868210E-15 2.01245738189E-15 2.11563827273E-15 2.22410936053E-15 2.33814187946E-15 2.45802097017E-15 2.58404639274E-15 2.71653327632E-15 2.85581290704E-15 3.00223355646E-15 3.15616135238E-15 3.31798119437E-15 3.48809771622E-15 3.66693629775E-15 3.85494412845E-15 4.05259132568E-15 4.26037211028E-15 4.47880604227E-15 4.70843932011E-15 4.94984614643E-15 5.20363016387E-15 5.47042596446E-15 5.75090067646E-15 6.04575563252E-15 6.35572812335E-15 6.68159324140E-15 7.02416581889E-15 7.38430246541E-15 7.76290370982E-15 8.16091625209E-15 8.57933533050E-15 9.01920721028E-15 9.48163179981E-15 9.96776540093E-15 1.04788236004E-14 1.10160843092E-14 1.15808909585E-14 1.21746558585E-14 1.27988637299E-14 1.34550754168E-14 1.41449317894E-14 1.48701578471E-14 1.56325670319E-14 1.64340657627E-14 1.72766582030E-14 1.81624512713E-14 1.90936599106E-14 2.00726126261E-14 2.11017573079E-14 2.21836673524E-14 2.33210480963E-14 2.45167435822E-14 2.57737436695E-14 2.70951915111E-14 2.84843914126E-14 2.99448170947E-14 3.14801203798E-14 3.30941403228E-14 3.47909128111E-14 3.65746806564E-14 3.84499042038E-14 4.04212724850E-14 4.24937149433E-14 4.46724137597E-14 4.69628168112E-14 4.93706512932E-14 5.19019380402E-14 5.45630065816E-14 5.73605109681E-14 6.03014464106E-14 6.33931667720E-14 6.66434029552E-14 7.00602822346E-14 7.36523485787E-14 7.74285840137E-14 8.13984310841E-14 8.55718164632E-14 8.99591757753E-14 9.45714796897E-14 9.94202613537E-14 1.04517645231E-13 1.09876377418E-13 1.15509857517E-13 1.21432172144E-13 1.27658130147E-13 1.34203299641E-13 1.41084046932E-13 1.48317577446E-13 1.55921978746E-13 1.63916265766E-13 1.72320428351E-13 1.81155481248E-13 1.90443516653E-13 2.00207759446E-13 2.10472625276E-13 2.21263781603E-13 2.32608211883E-13 2.44534283045E-13 2.57071816414E-13 2.70252162286E-13 2.84108278318E-13 2.98674811940E-13 3.13988186986E-13 3.30086694779E-13 3.47010589876E-13 3.64802190722E-13 3.83505985473E-13 4.03168743233E-13 4.23839631006E-13 4.45570336634E-13 4.68415198044E-13 4.92431339124E-13 5.17678812555E-13 5.44220749976E-13 5.72123519848E-13 6.01456893404E-13 6.32294219112E-13 6.64712606089E-13 6.98793116904E-13 7.34620970283E-13 7.72285754192E-13 8.11881649855E-13 8.53507667256E-13 8.97267892708E-13 9.43271749127E-13 9.91634269637E-13 1.04247638522E-12 1.09592522708E-12 1.15211444458E-12 1.21118453938E-12 1.27328321679E-12 1.33856575509E-12 1.40719539384E-12 1.47934374201E-12 1.55519120711E-12 1.63492744629E-12 1.71875184061E-12 1.80687399353E-12 1.89951425507E-12 1.99690427277E-12 2.09928757094E-12 2.20692015956E-12 2.32007117446E-12 2.43902355027E-12 2.56407472791E-12 2.69553739832E-12 2.83374028433E-12 2.97902896267E-12 3.13176672803E-12 3.29233550149E-12 3.46113678551E-12 3.63859266786E-12 3.82514687707E-12 4.02126589193E-12 4.22744010793E-12 4.44418506346E-12 4.67204272893E-12 4.91158286193E-12 5.16340443189E-12 5.42813711777E-12 5.70644288260E-12 5.99901762865E-12 6.30659293751E-12 6.62993789942E-12 6.96986103630E-12 7.32721232345E-12 7.70288531490E-12 8.09781937765E-12 8.51300204057E-12 8.94947146362E-12 9.40831903375E-12 9.89069209384E-12 1.03977968116E-11 1.09309011955E-11 1.14913382652E-11 1.20805093852E-11 1.26998877682E-11 1.33510221591E-11 1.40355407078E-11 1.47551550396E-11 1.55116645358E-11 1.63069608322E-11 1.71430325496E-11 1.80219702657E-11 1.89459717426E-11 1.99173474226E-11 2.09385262042E-11 2.20120615166E-11 2.31406377033E-11 2.43270767345E-11 2.55743452633E-11 2.68855620434E-11 2.82640057268E-11 2.97131230626E-11 3.12365375145E-11 3.28380583210E-11 3.45216900203E-11 3.62916424629E-11 3.81523413378E-11 4.01084392386E-11 4.21648272965E-11 4.43266474101E-11 4.65993051018E-11 4.89884830338E-11 5.15001552166E-11 5.41406019464E-11 5.69164255077E-11 5.98345666813E-11 6.29023220989E-11 6.61273624870E-11 6.95177518460E-11 7.30819676132E-11 7.68289218587E-11 8.07679835690E-11 8.49090020716E-11 8.92623316619E-11 9.38388574918E-11 9.86500227859E-11 1.03707857453E-10 1.09025008162E-10 1.14614769969E-10 1.20491119547E-10 1.26668750144E-10 1.33163108310E-10 1.39990432522E-10 1.47167793783E-10 1.54713138305E-10 1.62645332376E-10 1.70984209531E-10 1.79750620142E-10 1.88966483545E-10 1.98654842844E-10 2.08839922525E-10 2.19547189019E-10 2.30803414373E-10 2.42636743186E-10 2.55076762975E-10 2.68154578143E-10 2.81902887752E-10 2.96356067270E-10 3.11550254515E-10 3.27523440002E-10 3.44315561925E-10 3.61968606006E-10 3.80526710459E-10 4.00036276342E-10 4.20546083563E-10 4.42107412825E-10 4.64774173837E-10 4.88603040086E-10 5.13653590518E-10 5.39988458490E-10 5.67673488347E-10 5.96777900034E-10 6.27374462140E-10 6.59539673817E-10 6.93353956018E-10 7.28901852543E-10 7.66272241394E-10 8.05558556949E-10 8.46859023542E-10 8.90276901005E-10 9.35920742801E-10 9.83904667383E-10 1.03434864347E-09 1.08737878993E-09 1.14312769107E-09 1.20173472802E-09 1.26334642720E-09 1.32811682652E-09 1.39620786051E-09 1.46778976501E-09 1.54304150276E-09 1.62215121070E-09 1.70531667026E-09 1.79274580168E-09 1.88465718377E-09 1.98128060021E-09 2.08285761389E-09 2.18964217071E-09 2.30190123428E-09 2.41991545314E-09 2.54397986226E-09 2.67440462041E-09 2.81151578532E-09 2.95565612860E-09 3.10718599242E-09 3.26648419010E-09 3.43394895278E-09 3.60999892470E-09 3.79507420942E-09 3.98963746968E-09 4.19417508362E-09 4.40919836022E-09 4.63524481704E-09 4.87287952347E-09 5.12269651274E-09 5.38532026631E-09 5.66140727435E-09 5.95164767613E-09 6.25676698450E-09 6.57752789867E-09 6.91473220992E-09 7.26922280493E-09 7.64188577178E-09 8.03365261375E-09 8.44550257665E-09 8.87846509533E-09 9.33362236552E-09 9.81211204742E-09 1.03151301078E-08 1.08439338078E-08 1.13998448433E-08 1.19842526465E-08 1.25986178606E-08 1.32444759762E-08 1.39234411822E-08 1.46372103893E-08 1.53875674809E-08 1.61763877219E-08 1.70056425176E-08 1.78774042743E-08 1.87938516059E-08 1.97572747755E-08 2.07700813760E-08 2.18348024049E-08 2.29540985377E-08 2.41307667698E-08 2.53677474528E-08 2.66681315685E-08 2.80351684684E-08 2.94722740402E-08 3.09830391280E-08 3.25712386018E-08 3.42408407266E-08 3.59960170861E-08 3.78411529430E-08 3.97808582883E-08 4.18199792371E-08 4.39636102250E-08 4.62171066175E-08 4.85860981451E-08 5.10765029939E-08 5.36945423379E-08 5.64467563145E-08 5.93400197745E-08 6.23815598940E-08 6.55789739845E-08 6.89402484929E-08 7.24737788680E-08 7.61883907255E-08 8.00933614759E-08 8.41984437691E-08 8.85138897300E-08 9.30504765174E-08 9.78195331033E-08 1.02832968747E-07 1.08103302425E-07 1.13643694188E-07 1.19467977913E-07 1.25590695752E-07 1.32027134677E-07 1.38793364005E-07 1.45906275862E-07 1.53383627220E-07 1.61244084113E-07 1.69507267872E-07 1.78193804461E-07 1.87325375598E-07 1.96924772586E-07 2.07015953463E-07 2.17624102340E-07 2.28775692117E-07 2.40498550599E-07 2.52821929559E-07 2.65776577538E-07 2.79394816584E-07 2.93710622343E-07 3.08759708882E-07 3.24579617274E-07 3.41209809082E-07 3.58691764662E-07 3.77069086016E-07 3.96387605243E-07 4.16695498854E-07 4.38043406657E-07 4.60484558562E-07 4.84074906283E-07 5.08873262433E-07 5.34941446593E-07 5.62344438869E-07 5.91150541208E-07 6.21431546859E-07 6.53262918960E-07 6.86723977297E-07 7.21898095219E-07 7.58872906785E-07 7.97740523379E-07 8.38597763301E-07 8.81546390447E-07 9.26693367685E-07 9.74151120448E-07 1.02403781730E-06 1.07647766041E-06 1.13160119485E-06 1.18954563055E-06 1.25045518295E-06 1.31448142823E-06 1.38178368044E-06 1.45252938365E-06 1.52689452638E-06 1.60506407675E-06 1.68723243995E-06 1.77360393713E-06 1.86439331114E-06 1.95982625572E-06 2.06013997335E-06 2.16558375924E-06 2.27641961703E-06 2.39292290406E-06 2.51538301007E-06 2.64410406999E-06 2.77940571292E-06 2.92162384833E-06 3.07111149330E-06 3.22823963983E-06 3.39339816775E-06 3.56699680122E-06 3.74946611672E-06 3.94125859904E-06 4.14284975162E-06 4.35473926330E-06 4.57745223226E-06 4.81154045381E-06 5.05758377030E-06 5.31619149105E-06 5.58800388265E-06 5.87369373456E-06 6.17396800207E-06 6.48956953334E-06 6.82127888233E-06 7.16991621179E-06 7.53634329300E-06 7.92146560380E-06 8.32623453379E-06 8.75164969778E-06 9.19876136482E-06 9.66867301048E-06 1.01625439940E-05 1.06815923706E-05 1.12270978424E-05 1.18004048574E-05 1.24029258623E-05 1.30361447156E-05 1.37016202722E-05 1.44009901449E-05 1.51359746513E-05 1.59083809572E-05 1.67201074253E-05 1.75731481772E-05 1.84695978835E-05 1.94116567851E-05 2.04016359676E-05 2.14419628923E-05 2.25351871986E-05 2.36839867919E-05 2.48911742322E-05 2.61597034315E-05 2.74926766829E-05 2.88933520305E-05 3.03651510004E-05 3.19116667085E-05 3.35366723600E-05 3.52441301678E-05 3.70382006978E-05 3.89232526710E-05 4.09038732370E-05 4.29848787459E-05 4.51713260395E-05 4.74685242839E-05 4.98820473744E-05 5.24177469318E-05 5.50817659242E-05 5.78805529367E-05 6.08208771257E-05 6.39098438816E-05 6.71549112369E-05 7.05639070531E-05 7.41450470193E-05 7.79069534999E-05 8.18586752715E-05 8.60097081846E-05 9.03700167957E-05 9.49500570081E-05 9.97607997689E-05 1.04813755867E-04 1.10121001883E-04 1.15695207331E-04 1.21549663060E-04 1.27698310957E-04 1.34155775001E-04 1.40937393747E-04 1.48059254281E-04 1.55538227710E-04 1.63392006259E-04 1.71639142034E-04 1.80299087521E-04 1.89392237891E-04 1.98939975186E-04 2.08964714454E-04 2.19489951919E-04 2.30540315260E-04 2.42141616078E-04 2.54320904645E-04 2.67106527009E-04 2.80528184550E-04 2.94616996078E-04 3.09405562560E-04 3.24928034581E-04 3.41220182618E-04 3.58319470251E-04 3.76265130383E-04 3.95098244592E-04 4.14861825707E-04 4.35600903721E-04 4.57362615138E-04 4.80196295860E-04 5.04153577739E-04 5.29288488871E-04 5.55657557769E-04 5.83319921502E-04 6.12337437915E-04 6.42774802036E-04 6.74699666760E-04 7.08182767932E-04 7.43298053910E-04 7.80122819705E-04 8.18737845800E-04 8.59227541708E-04 9.01680094380E-04 9.46187621507E-04 9.92846329796E-04 1.04175667827E-03 1.09302354663E-03 1.14675640875E-03 1.20306951123E-03 1.26208205716E-03 1.32391839495E-03 1.38870821227E-03 1.45658673502E-03 1.52769493129E-03 1.60217972020E-03 1.68019418552E-03 1.76189779386E-03 1.84745661737E-03 1.93704356058E-03 2.03083859131E-03 2.12902897518E-03 2.23180951357E-03 2.33938278445E-03 2.45195938589E-03 2.56975818146E-03 2.69300654737E-03 2.82194062031E-03 2.95680554569E-03 3.09785572530E-03 3.24535506369E-03 3.39957721232E-03 3.56080581043E-03 3.72933472172E-03 3.90546826547E-03 4.08952144090E-03 4.28182014339E-03 4.48270137096E-03 4.69251341951E-03 4.91161606489E-03 5.14038073000E-03 5.37919063487E-03 5.62844092743E-03 5.88853879278E-03 6.15990353830E-03 6.44296665189E-03 6.73817183072E-03 7.04597497712E-03 7.36684415871E-03 7.70125952904E-03 8.04971320543E-03 8.41270910000E-03 8.79076269993E-03 9.18440079284E-03 9.59416113271E-03 1.00205920419E-02 1.04642519443E-02 1.09257088249E-02 1.14055396099E-02 1.19043294631E-02 1.24226709919E-02 1.29611633576E-02 1.35204112852E-02 1.41010239642E-02 1.47036138378E-02 1.53287952707E-02 1.59771830925E-02 1.66493910085E-02 1.73460298728E-02 1.80677058166E-02 1.88150182278E-02 1.95885575732E-02 2.03889030612E-02 2.12166201364E-02 2.20722578050E-02 2.29563457836E-02 2.38693914696E-02 2.48118767298E-02 2.57842545049E-02 2.67869452293E-02 2.78203330646E-02 2.88847619498E-02 2.99805314693E-02 3.11078925424E-02 3.22670429407E-02 3.34581226400E-02 3.46812090168E-02 3.59363118993E-02 3.72233684890E-02 3.85422381671E-02 3.98926972069E-02 4.12744334123E-02 4.26870407093E-02 4.41300137177E-02 4.56027423359E-02 4.71045063744E-02 4.86344702760E-02 5.01916779688E-02 5.17750478959E-02 5.33833682763E-02 5.50152926504E-02 5.66693357704E-02 5.83438698999E-02 6.00371215887E-02 6.17471689954E-02 6.34719398317E-02 6.52092100059E-02 6.69566030475E-02 6.87115903927E-02 7.04714926180E-02 7.22334817034E-02 7.39945844120E-02 7.57516868681E-02 7.75015404139E-02 7.92407688238E-02 8.09658769456E-02 8.26732608355E-02 8.43592194425E-02 8.60199678881E-02 8.76516523740E-02 8.92503667380E-02 9.08121706581E-02 9.23331094878E-02 9.38092356827E-02 9.52366317552E-02 9.66114346663E-02 9.79298615355E-02 9.91882365188E-02 1.00383018670E-01 1.01510830567E-01 1.02568487452E-01 1.03553026585E-01 1.04461736489E-01 1.05292185720E-01 1.06042250753E-01 1.06710142546E-01 1.07294431327E-01 1.07794069087E-01 1.08208409275E-01 1.08537223162E-01 1.08780712321E-01 1.08939516695E-01 1.09014717721E-01 1.09007836012E-01 1.08920823131E-01 1.08756047052E-01 1.08516270971E-01 1.08204625223E-01 1.07824572154E-01 1.07379863943E-01 1.06874493496E-01 1.06312638700E-01 1.05698600508E-01 1.05036735520E-01 1.04331383908E-01 1.03586793780E-01 1.02807043262E-01 1.01995961810E-01 1.01157052449E-01 1.00293416851E-01 9.94076852846E-02 9.85019536300E-02 9.75777297204E-02 9.66358912859E-02 9.56766577526E-02 9.46995780175E-02 9.37035361266E-02 9.26867764808E-02 9.16469498011E-02 9.05811805883E-02 8.94861562066E-02 8.83582370289E-02 8.71935862899E-02 8.59883174348E-02 8.47386558404E-02 8.34411108436E-02 8.20926530903E-02 8.06908913331E-02 7.92342420308E-02 7.77220844684E-02 7.61548936879E-02 7.45343433578E-02 7.28633708598E-02 7.11461973942E-02 6.93882968473E-02 6.75963085453E-02 6.57778908767E-02 6.39415150712E-02 6.20962011675E-02 6.02512013181E-02 5.84156389705E-02 5.65981160175E-02 5.48063035514E-02 5.30465352050E-02 5.13234249872E-02 4.96395337831E-02 4.79951100316E-02 4.63879302660E-02 4.48132639659E-02 4.32639843277E-02 4.17308419643E-02 4.02029121303E-02 3.86682178609E-02 3.71145215405E-02 3.55302661517E-02 3.39056351695E-02 3.22336872791E-02 3.05115094304E-02 2.87420372119E-02 2.69353152261E-02 2.51034816065E-02 2.32594650844E-02 2.14167912340E-02 1.95893620781E-02 1.77912110442E-02 1.60362360839E-02 1.43379146481E-02 1.27090051194E-02 1.11612402395E-02 9.70501899004E-03 8.34910427875E-03 7.10033460758E-03 5.96335862283E-03 4.94040203011E-03 4.03107675467E-03 3.23224239591E-03 2.53866531476E-03 1.94572385639E-03 1.44815224931E-03 1.03954303708E-03 7.12487321469E-04 4.58742301832E-04 2.69425316935E-04 1.35232830173E-04 4.66819383283E-05 -5.62896739228E-06 -3.07447910206E-05 -3.70690723238E-05 -3.20767202144E-05 -2.20319412895E-05 -1.17203103385E-05 -4.20501812441E-06 -6.18315868867E-07 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 8 2 i j (l(j)) 0.00000000000E+00 Q_int 5.07008535288E-18 5.33003418698E-18 5.60331088275E-18 5.89059877427E-18 6.19261623090E-18 6.51011845360E-18 6.84389936328E-18 7.19479358608E-18 7.56367854031E-18 7.95147663049E-18 8.35915755384E-18 8.78774072499E-18 9.23829782511E-18 9.71195548161E-18 1.02098980853E-17 1.07333707522E-17 1.12836824364E-17 1.18622092038E-17 1.24703976728E-17 1.31097686311E-17 1.37819208393E-17 1.44885350279E-17 1.52313781005E-17 1.60123075515E-17 1.68332761115E-17 1.76963366293E-17 1.86036472057E-17 1.95574765899E-17 2.05602098520E-17 2.16143543473E-17 2.27225459863E-17 2.38875558252E-17 2.51122969953E-17 2.63998319874E-17 2.77533803096E-17 2.91763265377E-17 3.06722287783E-17 3.22448275661E-17 3.38980552172E-17 3.56360456617E-17 3.74631447809E-17 3.93839212741E-17 4.14031780830E-17 4.35259644012E-17 4.57575883001E-17 4.81036300017E-17 5.05699558320E-17 5.31627328902E-17 5.58884444692E-17 5.87539062675E-17 6.17662834320E-17 6.49331084743E-17 6.82623001063E-17 7.17621830410E-17 7.54415088083E-17 7.93094776389E-17 8.33757614692E-17 8.76505281265E-17 9.21444667536E-17 9.68688145374E-17 1.01835384808E-16 1.07056596577E-16 1.12545505593E-16 1.18315836987E-16 1.24382019593E-16 1.30759222026E-16 1.37463390613E-16 1.44511289267E-16 1.51920541405E-16 1.59709674016E-16 1.67898163987E-16 1.76506486807E-16 1.85556167766E-16 1.95069835779E-16 2.05071279970E-16 2.15585509158E-16 2.26638814391E-16 2.38258834687E-16 2.50474626148E-16 2.63316734613E-16 2.76817272042E-16 2.91009996806E-16 3.05930398109E-16 3.21615784722E-16 3.38105378280E-16 3.55440411352E-16 3.73664230547E-16 3.92822404902E-16 4.12962839828E-16 4.34135896899E-16 4.56394519781E-16 4.79794366621E-16 5.04393949219E-16 5.30254779340E-16 5.57441522522E-16 5.86022159779E-16 6.16068157583E-16 6.47654646572E-16 6.80860609413E-16 7.15769078300E-16 7.52467342578E-16 7.91047167014E-16 8.31605021253E-16 8.74242321045E-16 9.19065681834E-16 9.66187185357E-16 1.01572465990E-15 1.06780197494E-15 1.12254935087E-15 1.18010368463E-15 1.24060889201E-15 1.30421626753E-15 1.37108486273E-15 1.44138188390E-15 1.51528311019E-15 1.59297333312E-15 1.67464681870E-15 1.76050779314E-15 1.85077095356E-15 1.94566200484E-15 2.04541822399E-15 2.15028905348E-15 2.26053672496E-15 2.37643691497E-15 2.49827943431E-15 2.62636895267E-15 2.76102576050E-15 2.90258656990E-15 3.05140535653E-15 3.20785424481E-15 3.37232443835E-15 3.54522719820E-15 3.72699487123E-15 3.91808197119E-15 4.11896631522E-15 4.33015021871E-15 4.55216175126E-15 4.78555605720E-15 5.03091674369E-15 5.28885734008E-15 5.56002283203E-15 5.84509127430E-15 6.14477548626E-15 6.45982483431E-15 6.79102710565E-15 7.13921047820E-15 7.50524559147E-15 7.89004772355E-15 8.29457907988E-15 8.71985119918E-15 9.16692748286E-15 9.63692585407E-15 1.01310215531E-14 1.06504500760E-14 1.11965102641E-14 1.17705675518E-14 1.23740573806E-14 1.30084887887E-14 1.36754481845E-14 1.43766033130E-14 1.51137074264E-14 1.58886036680E-14 1.67032296810E-14 1.75596224537E-14 1.84599234130E-14 1.94063837790E-14 2.04013701942E-14 2.14473706415E-14 2.25470006653E-14 2.37030099118E-14 2.49182890043E-14 2.61958767717E-14 2.75389678468E-14 2.89509206546E-14 3.04352658101E-14 3.19957149467E-14 3.36361699972E-14 3.53607329507E-14 3.71737161096E-14 3.90796528725E-14 4.10833090702E-14 4.31896948828E-14 4.54040773676E-14 4.77319936294E-14 5.01792646662E-14 5.27520099247E-14 5.54566626023E-14 5.82999857328E-14 6.12890890982E-14 6.44314470064E-14 6.77349169807E-14 7.12077594081E-14 7.48586581941E-14 7.86967424772E-14 8.27316094564E-14 8.69733483889E-14 9.14325658189E-14 9.61204120989E-14 1.01048609272E-13 1.06229480381E-13 1.11675980286E-13 1.17401728056E-13 1.23421041021E-13 1.29748970579E-13 1.36401339825E-13 1.43394783124E-13 1.50746787700E-13 1.58475737363E-13 1.66600958484E-13 1.75142768313E-13 1.84122525787E-13 1.93562684940E-13 2.03486851042E-13 2.13919839634E-13 2.24887738573E-13 2.36417973265E-13 2.48539375246E-13 2.61282254274E-13 2.74678474117E-13 2.88761532232E-13 3.03566643522E-13 3.19130828394E-13 3.35493005328E-13 3.52694088193E-13 3.70777088552E-13 3.89787223212E-13 4.09772027292E-13 4.30781473082E-13 4.52868094999E-13 4.76087120952E-13 5.00496610436E-13 5.26157599714E-13 5.53134254436E-13 5.81494030088E-13 6.11307840659E-13 6.42650235970E-13 6.75599588078E-13 7.10238287251E-13 7.46652947982E-13 7.84934625572E-13 8.25179043810E-13 8.67486834331E-13 9.11963788249E-13 9.58721120685E-13 1.00787574886E-12 1.05955058444E-12 1.11387484090E-12 1.17098435659E-12 1.23102193441E-12 1.29413769891E-12 1.36048947165E-12 1.43024316583E-12 1.50357320117E-12 1.58066294004E-12 1.66170514596E-12 1.74690246559E-12 1.83646793547E-12 1.93062551469E-12 2.02961064491E-12 2.13367083908E-12 2.24306630036E-12 2.35807057270E-12 2.47897122489E-12 2.60607056961E-12 2.73968641934E-12 2.88015288105E-12 3.02782119163E-12 3.18306059617E-12 3.34625927123E-12 3.51782529547E-12 3.69818767003E-12 3.88779739128E-12 4.08712857849E-12 4.29667965936E-12 4.51697461631E-12 4.74856429674E-12 4.99202779034E-12 5.24797387714E-12 5.51704254971E-12 5.79990661345E-12 6.09727336895E-12 6.40988638052E-12 6.73852733547E-12 7.08401799871E-12 7.44722226751E-12 7.82904833164E-12 8.23045094430E-12 8.65243380940E-12 9.09605209128E-12 9.56241505312E-12 1.00526888306E-11 1.05680993477E-11 1.11099353822E-11 1.16795517880E-11 1.22783728831E-11 1.29078960107E-11 1.35696952837E-11 1.42654255201E-11 1.49968263813E-11 1.57657267215E-11 1.65740491611E-11 1.74238148937E-11 1.83171487403E-11 1.92562844620E-11 2.02435703453E-11 2.12814750741E-11 2.23725939021E-11 2.35196551423E-11 2.47255269888E-11 2.59932246882E-11 2.73259180796E-11 2.87269395197E-11 3.01997922156E-11 3.17481589839E-11 3.33759114594E-11 3.50871197756E-11 3.68860627415E-11 3.87772385406E-11 4.07653759778E-11 4.28554463032E-11 4.50526756421E-11 4.73625580627E-11 4.97908693125E-11 5.23436812603E-11 5.50273770780E-11 5.78486672008E-11 6.08146061052E-11 6.39326099486E-11 6.72104751110E-11 7.06563976898E-11 7.42789939919E-11 7.80873220776E-11 8.20909044088E-11 8.62997516580E-11 9.07243877382E-11 9.53758761161E-11 1.00265847474E-10 1.05406528789E-10 1.10810773906E-10 1.16492095675E-10 1.22464699736E-10 1.28743520039E-10 1.35344256180E-10 1.42283412658E-10 1.49578340137E-10 1.57247278829E-10 1.65309404098E-10 1.73784874402E-10 1.82694881698E-10 1.92061704419E-10 2.01908763182E-10 2.12260679342E-10 2.23143336548E-10 2.34583945459E-10 2.46611111775E-10 2.59254907759E-10 2.72546947415E-10 2.86520465538E-10 3.01210400796E-10 3.16653483088E-10 3.32888325371E-10 3.49955520197E-10 3.67897741197E-10 3.86759849772E-10 4.06589007248E-10 4.27434792784E-10 4.49349327321E-10 4.72387403889E-10 4.96606624591E-10 5.22067544608E-10 5.48833823588E-10 5.76972384800E-10 6.06553582433E-10 6.37651377484E-10 6.70343522658E-10 7.04711756745E-10 7.40842008957E-10 7.78824613751E-10 8.18754536649E-10 8.60731611644E-10 9.04860790773E-10 9.51252406476E-10 1.00002244742E-09 1.05129284842E-09 1.10519179531E-09 1.16185404530E-09 1.22142126392E-09 1.28404237907E-09 1.34987395335E-09 1.41908057541E-09 1.49183527135E-09 1.56831993725E-09 1.64872579382E-09 1.73325386441E-09 1.82211547745E-09 1.91553279472E-09 2.01373936660E-09 2.11698071589E-09 2.22551495146E-09 2.33961341339E-09 2.45956135117E-09 2.58565863667E-09 2.71822051361E-09 2.85757838549E-09 3.00408064386E-09 3.15809353905E-09 3.32000209557E-09 3.49021107432E-09 3.66914598420E-09 3.85725414552E-09 4.05500580793E-09 4.26289532559E-09 4.48144239264E-09 4.71119334186E-09 4.95272251003E-09 5.20663367310E-09 5.47356155503E-09 5.75417341383E-09 6.04917070895E-09 6.35929085410E-09 6.68530905981E-09 7.02804027047E-09 7.38834120059E-09 7.76711247538E-09 8.16530088103E-09 8.58390173025E-09 9.02396134900E-09 9.48657969065E-09 9.97291308403E-09 1.04841771223E-08 1.10216496998E-08 1.15866742043E-08 1.21806628733E-08 1.28051003214E-08 1.34615472541E-08 1.41516443447E-08 1.48771163684E-08 1.56397764807E-08 1.64415307723E-08 1.72843829819E-08 1.81704395684E-08 1.91019149127E-08 2.00811368790E-08 2.11105526345E-08 2.21927347117E-08 2.33303875143E-08 2.45263539874E-08 2.57836227576E-08 2.71053356191E-08 2.84947953297E-08 2.99554738617E-08 3.14910211112E-08 3.31052739809E-08 3.48022659583E-08 3.65862371770E-08 3.84616450254E-08 4.04331752804E-08 4.25057537564E-08 4.46845586275E-08 4.69750333724E-08 4.93829003165E-08 5.19141749344E-08 5.45751808605E-08 5.73725657052E-08 6.03133175855E-08 6.34047825006E-08 6.66546829536E-08 7.00711366638E-08 7.36626774150E-08 7.74382762042E-08 8.14073631140E-08 8.55798513969E-08 8.99661621491E-08 9.45772500207E-08 9.94246307124E-08 1.04520409676E-07 1.09877312218E-07 1.15508715398E-07 1.21428681178E-07 1.27651991511E-07 1.34194185435E-07 1.41071597434E-07 1.48301398287E-07 1.55901638025E-07 1.63891290660E-07 1.72290301701E-07 1.81119637426E-07 1.90401337633E-07 2.00158570309E-07 2.10415689267E-07 2.21198294557E-07 2.32533297008E-07 2.44448984330E-07 2.56975092167E-07 2.70142877532E-07 2.83985197360E-07 2.98536589590E-07 3.13833359345E-07 3.29913669516E-07 3.46817635221E-07 3.64587424043E-07 3.83267360490E-07 4.02904036676E-07 4.23546427676E-07 4.45246013511E-07 4.68056907537E-07 4.92035989668E-07 5.17243049436E-07 5.43740933267E-07 5.71595700636E-07 6.00876788769E-07 6.31657185222E-07 6.64013607871E-07 6.98026696533E-07 7.33781212764E-07 7.71366249571E-07 8.10875453946E-07 8.52407257189E-07 8.96065120145E-07 9.41957790410E-07 9.90199570123E-07 1.04091060066E-06 1.09421715967E-06 1.15025197405E-06 1.20915454854E-06 1.27107151127E-06 1.33615697707E-06 1.40457292765E-06 1.47648961369E-06 1.55208597513E-06 1.63155008434E-06 1.71507960979E-06 1.80288230572E-06 1.89517652526E-06 1.99219175848E-06 2.09416920096E-06 2.20136234764E-06 2.31403761832E-06 2.43247501564E-06 2.55696881433E-06 2.68782828789E-06 2.82537846948E-06 2.96996095245E-06 3.12193473197E-06 3.28167708834E-06 3.44958451457E-06 3.62607369159E-06 3.81158251296E-06 4.00657115937E-06 4.21152323043E-06 4.42694692988E-06 4.65337631360E-06 4.89137259941E-06 5.14152554066E-06 5.40445487375E-06 5.68081183294E-06 5.97128074560E-06 6.27658070501E-06 6.59746732855E-06 6.93473460318E-06 7.28921682407E-06 7.66179063064E-06 8.05337714294E-06 8.46494420795E-06 8.89750875429E-06 9.35213926970E-06 9.82995839638E-06 1.03321456614E-05 1.08599403400E-05 1.14146444624E-05 1.19976259714E-05 1.26103220353E-05 1.32542425281E-05 1.39309736807E-05 1.46421819131E-05 1.53896178596E-05 1.61751205903E-05 1.70006220443E-05 1.78681516794E-05 1.87798413559E-05 1.97379304574E-05 2.07447712667E-05 2.18028346064E-05 2.29147157564E-05 2.40831406645E-05 2.53109724592E-05 2.66012182853E-05 2.79570364720E-05 2.93817440546E-05 3.08788246608E-05 3.24519367861E-05 3.41049224691E-05 3.58418163922E-05 3.76668554238E-05 3.95844886239E-05 4.15993877357E-05 4.37164581850E-05 4.59408506112E-05 4.82779729564E-05 5.07335031341E-05 5.33134023114E-05 5.60239288269E-05 5.88716527758E-05 6.18634712939E-05 6.50066245716E-05 6.83087126305E-05 7.17777128996E-05 7.54219986238E-05 7.92503581463E-05 8.32720151026E-05 8.74966495652E-05 9.19344201834E-05 9.65959873643E-05 1.01492537536E-04 1.06635808544E-04 1.12038116236E-04 1.17712382269E-04 1.23672163219E-04 1.29931681019E-04 1.36505854815E-04 1.43410334266E-04 1.50661534378E-04 1.58276671923E-04 1.66273803514E-04 1.74671865393E-04 1.83490715028E-04 1.92751174564E-04 2.02475076229E-04 2.12685309750E-04 2.23405871882E-04 2.34661918123E-04 2.46479816690E-04 2.58887204875E-04 2.71913047835E-04 2.85587699936E-04 2.99942968739E-04 3.15012181722E-04 3.30830255844E-04 3.47433770055E-04 3.64861040845E-04 3.83152200965E-04 4.02349281399E-04 4.22496296714E-04 4.43639333915E-04 4.65826644881E-04 4.89108742542E-04 5.13538500879E-04 5.39171258887E-04 5.66064928607E-04 5.94280107354E-04 6.23880194252E-04 6.54931511197E-04 6.87503428369E-04 7.21668494399E-04 7.57502571311E-04 7.95084974349E-04 8.34498616789E-04 8.75830159847E-04 9.19170167777E-04 9.64613268247E-04 1.01225831808E-03 1.06220857445E-03 1.11457187156E-03 1.16946080291E-03 1.22699290917E-03 1.28729087171E-03 1.35048271175E-03 1.41670199520E-03 1.48608804316E-03 1.55878614800E-03 1.63494779494E-03 1.71473088923E-03 1.79829998848E-03 1.88582654036E-03 1.97748912526E-03 2.07347370372E-03 2.17397386855E-03 2.27919110110E-03 2.38933503155E-03 2.50462370272E-03 2.62528383702E-03 2.75155110601E-03 2.88367040197E-03 3.02189611100E-03 3.16649238679E-03 3.31773342435E-03 3.47590373292E-03 3.64129840694E-03 3.81422339426E-03 3.99499576032E-03 4.18394394699E-03 4.38140802498E-03 4.58773993806E-03 4.80330373768E-03 5.02847580615E-03 5.26364506662E-03 5.50921317775E-03 5.76559471091E-03 6.03321730769E-03 6.31252181504E-03 6.60396239552E-03 6.90800660971E-03 7.22513546777E-03 7.55584344688E-03 7.90063847119E-03 8.26004185042E-03 8.63458817351E-03 9.02482515306E-03 9.43131341622E-03 9.85462623761E-03 1.02953492095E-02 1.07540798439E-02 1.12314271024E-02 1.17280108465E-02 1.22444612048E-02 1.27814178498E-02 1.33395291786E-02 1.39194513916E-02 1.45218474624E-02 1.51473859922E-02 1.57967399424E-02 1.64705852387E-02 1.71695992388E-02 1.78944590580E-02 1.86458397453E-02 1.94244123026E-02 2.02308415413E-02 2.10657837685E-02 2.19298842979E-02 2.28237747776E-02 2.37480703303E-02 2.47033665008E-02 2.56902360053E-02 2.67092252788E-02 2.77608508184E-02 2.88455953187E-02 2.99639035996E-02 3.11161783257E-02 3.23027755185E-02 3.35239998652E-02 3.47800998280E-02 3.60712625608E-02 3.73976086418E-02 3.87591866321E-02 4.01559674755E-02 4.15878387531E-02 4.30545988139E-02 4.45559508022E-02 4.60914966063E-02 4.76607307607E-02 4.92630343300E-02 5.08976688153E-02 5.25637701204E-02 5.42603426260E-02 5.59862534183E-02 5.77402267281E-02 5.95208386382E-02 6.13265121223E-02 6.31555124833E-02 6.50059432629E-02 6.68757427004E-02 6.87626808194E-02 7.06643572295E-02 7.25781997295E-02 7.45014638035E-02 7.64312331036E-02 7.83644210137E-02 8.02977733904E-02 8.22278725755E-02 8.41511427748E-02 8.60638568932E-02 8.79621449132E-02 8.98420038960E-02 9.16993096802E-02 9.35298303374E-02 9.53292414388E-02 9.70931431663E-02 9.88170792888E-02 1.00496558004E-01 1.02127074625E-01 1.03704136058E-01 1.05223287008E-01 1.06680137801E-01 1.08070393685E-01 1.09389885440E-01 1.10634601084E-01 1.11800718434E-01 1.12884638217E-01 1.13883017415E-01 1.14792802455E-01 1.15611261838E-01 1.16336017749E-01 1.16965076146E-01 1.17496854803E-01 1.17930208755E-01 1.18264452540E-01 1.18499378658E-01 1.18635271630E-01 1.18672917049E-01 1.18613605042E-01 1.18459127575E-01 1.18211769094E-01 1.17874290047E-01 1.17449902923E-01 1.16942240534E-01 1.16355316398E-01 1.15693477216E-01 1.14961347609E-01 1.14163767448E-01 1.13305722327E-01 1.12392267939E-01 1.11428449343E-01 1.10419216351E-01 1.09369336504E-01 1.08283307336E-01 1.07165269871E-01 1.06018925473E-01 1.04847458371E-01 1.03653466300E-01 1.02438901791E-01 1.01205026654E-01 9.99523821569E-02 9.86807772363E-02 9.73892968680E-02 9.60763323553E-02 9.47396348528E-02 9.33763928688E-02 9.19833338046E-02 9.05568488021E-02 8.90931392783E-02 8.75883825600E-02 8.60389130107E-02 8.44414139931E-02 8.27931149832E-02 8.10919871848E-02 7.93369301373E-02 7.75279411369E-02 7.56662588431E-02 7.37544723027E-02 7.17965868394E-02 6.97980388973E-02 6.77656530276E-02 6.57075358149E-02 6.36329036604E-02 6.15518439687E-02 5.94750123823E-02 5.74132722105E-02 5.53772859911E-02 5.33770730630E-02 5.14215509379E-02 4.95180819084E-02 4.76720494812E-02 4.58864915947E-02 4.41618188982E-02 4.24956463459E-02 4.08827647509E-02 3.93152755288E-02 3.77829065003E-02 3.62735192557E-02 3.47738092602E-02 3.32701887757E-02 3.17498301042E-02 3.02018330792E-02 2.86184667285E-02 2.69964213338E-02 2.53386572313E-02 2.36553184279E-02 2.19584654803E-02 2.02607385936E-02 1.85751352173E-02 1.69147654513E-02 1.52925891488E-02 1.37211396056E-02 1.22122397433E-02 1.07767176929E-02 9.42412963282E-03 8.16249858191E-03 6.99807855323E-03 5.93515397840E-03 4.97588456211E-03 4.12020565941E-03 3.36579382511E-03 2.70810630604E-03 2.14105847076E-03 1.65916544431E-03 1.25654164460E-03 9.26566146468E-04 6.62047203770E-04 4.55400476729E-04 2.98837445981E-04 1.84559776598E-04 1.04954693983E-04 5.27857773789E-05 2.13729986927E-05 4.75537233097E-06 -2.17072220658E-06 -3.54458349807E-06 -2.47248384216E-06 -1.00365077402E-06 -1.56564297464E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 9 2 i j (l(j)) 0.00000000000E+00 Q_int 4.47739961243E-18 4.70696079889E-18 4.94829183901E-18 5.20199618611E-18 5.46870823319E-18 5.74909489927E-18 6.04385729708E-18 6.35373248612E-18 6.67949531578E-18 7.02196036280E-18 7.38198396816E-18 7.76046637840E-18 8.15835399668E-18 8.57664174927E-18 9.01637557344E-18 9.47865503276E-18 9.96463606666E-18 1.04755338808E-17 1.10126259859E-17 1.15772553920E-17 1.21708339665E-17 1.27948459652E-17 1.34508517430E-17 1.41404916560E-17 1.48654901632E-17 1.56276601385E-17 1.64289074038E-17 1.72712354945E-17 1.81567506697E-17 1.90876671784E-17 2.00663127967E-17 2.10951346485E-17 2.21767053241E-17 2.33137293137E-17 2.45090497693E-17 2.57656556146E-17 2.70866890187E-17 2.84754532532E-17 2.99354209520E-17 3.14702427946E-17 3.30837566350E-17 3.47799970982E-17 3.65632056687E-17 3.84378412967E-17 4.04085915476E-17 4.24803843235E-17 4.46584001851E-17 4.69480853066E-17 4.93551650932E-17 5.18856584980E-17 5.45458930724E-17 5.73425207882E-17 6.02825346712E-17 6.33732862873E-17 6.66225041251E-17 7.00383129213E-17 7.36292539770E-17 7.74043065148E-17 8.13729101321E-17 8.55449884046E-17 8.99309737009E-17 9.45418332681E-17 9.93890966565E-17 1.04484884549E-16 1.09841939069E-16 1.15473655642E-16 1.21394116493E-16 1.27618125856E-16 1.34161246997E-16 1.41039841126E-16 1.48271108310E-16 1.55873130483E-16 1.63864916659E-16 1.72266450464E-16 1.81098740109E-16 1.90383870916E-16 2.00145060548E-16 2.10406717063E-16 2.21194499943E-16 2.32535384265E-16 2.44457728144E-16 2.56991343648E-16 2.70167571342E-16 2.84019358656E-16 2.98581342271E-16 3.13889934729E-16 3.29983415481E-16 3.46902026609E-16 3.64688073450E-16 3.83386030382E-16 4.03042652032E-16 4.23707090190E-16 4.45431016708E-16 4.68268752715E-16 4.92277404441E-16 5.17517006015E-16 5.44050669581E-16 5.71944743112E-16 6.01268976315E-16 6.32096695039E-16 6.64504984630E-16 6.98574882683E-16 7.34391581681E-16 7.72044642017E-16 8.11628215942E-16 8.53241282998E-16 8.96987897514E-16 9.42977448800E-16 9.91324934673E-16 1.04215124901E-15 1.09558348407E-15 1.15175524823E-15 1.21080700016E-15 1.27288639996E-15 1.33814867845E-15 1.40675702529E-15 1.47888299706E-15 1.55470694622E-15 1.63441847212E-15 1.71821689505E-15 1.80631175468E-15 1.89892333401E-15 1.99628321018E-15 2.09863483354E-15 2.20623413643E-15 2.31935017308E-15 2.43826579245E-15 2.56327834546E-15 2.69470042855E-15 2.83286066530E-15 2.97810452820E-15 3.13079520247E-15 3.29131449423E-15 3.46006378523E-15 3.63746503649E-15 3.82396184341E-15 4.02002054505E-15 4.22613139014E-15 4.44280976301E-15 4.67059747230E-15 4.91006410576E-15 5.16180845453E-15 5.42646001042E-15 5.70468053996E-15 5.99716573916E-15 6.30464697313E-15 6.62789310485E-15 6.96771241774E-15 7.32495463678E-15 7.70051305328E-15 8.09532675853E-15 8.51038299207E-15 8.94671961026E-15 9.40542768149E-15 9.88765421438E-15 1.03946050259E-14 1.09275477567E-14 1.14878150405E-14 1.20768078367E-14 1.26959989334E-14 1.33469366301E-14 1.40312486094E-14 1.47506460067E-14 1.55069276893E-14 1.63019847543E-14 1.71378052575E-14 1.80164791842E-14 1.89402036758E-14 1.99112885231E-14 2.09321619428E-14 2.20053766485E-14 2.31336162342E-14 2.43197018848E-14 2.55665994302E-14 2.68774267617E-14 2.82554616279E-14 2.97041498315E-14 3.12271138447E-14 3.28281618681E-14 3.45112973524E-14 3.62807290099E-14 3.81408813376E-14 4.00964056814E-14 4.21521918666E-14 4.43133804248E-14 4.65853754484E-14 4.89738581030E-14 5.14848008337E-14 5.41244822991E-14 5.68995030713E-14 5.98168021405E-14 6.28836742662E-14 6.61077882181E-14 6.94972059514E-14 7.30604027663E-14 7.68062885007E-14 8.07442298087E-14 8.48840735829E-14 8.92361715761E-14 9.38114062862E-14 9.86212181681E-14 1.03677634241E-13 1.08993298160E-13 1.14581501837E-13 1.20456218670E-13 1.26632138489E-13 1.33124704289E-13 1.39950150839E-13 1.47125545283E-13 1.54668829817E-13 1.62598866547E-13 1.70935484664E-13 1.79699530016E-13 1.88912917243E-13 1.98598684569E-13 2.08781051410E-13 2.19485478939E-13 2.30738733745E-13 2.42568954769E-13 2.55005723664E-13 2.68080138761E-13 2.81824892837E-13 2.96274354857E-13 3.11464655919E-13 3.27433779597E-13 3.44221656919E-13 3.61870266218E-13 3.80423738096E-13 3.99928465774E-13 4.20433221097E-13 4.41989276493E-13 4.64650533175E-13 4.88473655920E-13 5.13518214768E-13 5.39846833967E-13 5.67525348572E-13 5.96622969063E-13 6.27212454406E-13 6.59370293988E-13 6.93176898878E-13 7.28716802896E-13 7.66078873986E-13 8.05356536439E-13 8.46648004489E-13 8.90056527908E-13 9.35690650176E-13 9.83664479893E-13 1.03409797611E-12 1.08711724829E-12 1.14285487164E-12 1.20145021860E-12 1.26304980738E-12 1.32780766830E-12 1.39588572892E-12 1.46745421901E-12 1.54269209614E-12 1.62178749318E-12 1.70493818874E-12 1.79235210172E-12 1.88424781117E-12 1.98085510287E-12 2.08241554393E-12 2.18918308676E-12 2.30142470414E-12 2.41942105676E-12 2.54346719498E-12 2.67387329665E-12 2.81096544265E-12 2.95508643230E-12 3.10659664046E-12 3.26587491873E-12 3.43331954267E-12 3.60934920773E-12 3.79440407617E-12 3.98894687769E-12 4.19346406646E-12 4.40846703748E-12 4.63449340532E-12 4.87210834842E-12 5.12190602227E-12 5.38451104511E-12 5.66058005974E-12 5.95080337545E-12 6.25590669409E-12 6.57665292471E-12 6.91384409111E-12 7.26832333735E-12 7.64097703591E-12 8.03273700410E-12 8.44458283398E-12 8.87754434181E-12 9.33270414304E-12 9.81120035933E-12 1.03142294644E-11 1.08430492756E-11 1.13989820994E-11 1.19834180371E-11 1.25978184614E-11 1.32437196699E-11 1.39227367268E-11 1.46365675014E-11 1.53869969130E-11 1.61759013945E-11 1.70052535840E-11 1.78771272572E-11 1.87937025129E-11 1.97572712241E-11 2.07702427683E-11 2.18351500527E-11 2.29546558467E-11 2.41315594403E-11 2.53688036436E-11 2.66694821446E-11 2.80368472451E-11 2.94743179922E-11 3.09854887278E-11 3.25741380758E-11 3.42442383896E-11 3.59999656851E-11 3.78457100821E-11 3.97860867810E-11 4.18259476030E-11 4.39703931211E-11 4.62247854135E-11 4.85947614708E-11 5.10862472902E-11 5.37054726931E-11 5.64589869012E-11 5.93536749123E-11 6.23967747150E-11 6.55958953858E-11 6.89590361149E-11 7.24946062061E-11 7.62114461032E-11 8.01188494939E-11 8.42265865466E-11 8.85449283390E-11 9.30846725390E-11 9.78571704018E-11 1.02874355151E-10 1.08148771817E-10 1.13693608598E-10 1.19522729842E-10 1.25650710703E-10 1.32092873589E-10 1.38865326468E-10 1.45985003143E-10 1.53469705592E-10 1.61338148475E-10 1.69610005923E-10 1.78305960735E-10 1.87447756081E-10 1.97058249867E-10 2.07161471887E-10 2.17782683897E-10 2.28948442779E-10 2.40686666932E-10 2.53026706077E-10 2.65999414633E-10 2.79637228860E-10 2.93974247948E-10 3.09046319276E-10 3.24891128029E-10 3.41548291419E-10 3.59059457726E-10 3.77468410428E-10 3.96821177657E-10 4.17166147275E-10 4.38554187844E-10 4.61038775801E-10 4.84676129147E-10 5.09525347993E-10 5.35648562311E-10 5.63111087257E-10 5.91981586454E-10 6.22332243652E-10 6.54238943178E-10 6.87781459644E-10 7.23043657372E-10 7.60113700051E-10 7.99084271129E-10 8.40052805512E-10 8.83121733136E-10 9.28398735018E-10 9.75997012443E-10 1.02603556994E-09 1.07863951278E-09 1.13394035966E-09 1.19207637154E-09 1.25319289719E-09 1.31744273653E-09 1.38498652261E-09 1.45599312311E-09 1.53064006244E-09 1.60911396548E-09 1.69161102411E-09 1.77833748751E-09 1.86951017780E-09 1.96535703187E-09 2.06611767119E-09 2.17204400071E-09 2.28340083844E-09 2.40046657738E-09 2.52353388132E-09 2.65291041627E-09 2.78891961947E-09 2.93190150769E-09 3.08221352704E-09 3.24023144633E-09 3.40635029614E-09 3.58098535609E-09 3.76457319266E-09 3.95757275018E-09 4.16046649780E-09 4.37376163514E-09 4.59799135978E-09 4.83371619966E-09 5.08152541381E-09 5.34203846479E-09 5.61590656659E-09 5.90381431190E-09 6.20648138265E-09 6.52466434831E-09 6.85915855623E-09 7.21080011889E-09 7.58046800294E-09 7.96908622526E-09 8.37762616155E-09 8.80710897319E-09 9.25860815841E-09 9.73325223414E-09 1.02322275553E-08 1.07567812785E-08 1.13082244775E-08 1.18879354204E-08 1.24973630071E-08 1.31380303798E-08 1.38115387713E-08 1.45195714519E-08 1.52638979575E-08 1.60463784881E-08 1.68689686052E-08 1.77337240643E-08 1.86428059568E-08 1.95984861377E-08 2.06031528872E-08 2.16593168155E-08 2.27696172292E-08 2.39368286675E-08 2.51638678053E-08 2.64538008229E-08 2.78098509567E-08 2.92354066179E-08 3.07340298000E-08 3.23094650439E-08 3.39656487145E-08 3.57067188609E-08 3.75370255211E-08 3.94611416363E-08 4.14838743621E-08 4.36102771953E-08 4.58456624640E-08 4.81956146678E-08 5.06660043371E-08 5.32630028320E-08 5.59930975319E-08 5.88631081642E-08 6.18802038134E-08 6.50519207326E-08 6.83861810398E-08 7.18913129648E-08 7.55760709689E-08 7.94496580212E-08 8.35217483455E-08 8.78025117255E-08 9.23026386391E-08 9.70333671323E-08 1.02006510558E-07 1.07234487399E-07 1.12730351997E-07 1.18507826969E-07 1.24581337687E-07 1.30966048116E-07 1.37677898587E-07 1.44733645382E-07 1.52150902800E-07 1.59948186783E-07 1.68144961144E-07 1.76761685996E-07 1.85819868718E-07 1.95342117665E-07 2.05352198147E-07 2.15875091895E-07 2.26937059150E-07 2.38565704129E-07 2.50790043384E-07 2.63640578453E-07 2.77149371550E-07 2.91350125370E-07 3.06278266816E-07 3.21971035466E-07 3.38467575762E-07 3.55809034502E-07 3.74038663391E-07 3.93201926395E-07 4.13346612493E-07 4.34522954925E-07 4.56783755644E-07 4.80184516753E-07 5.04783578254E-07 5.30642262748E-07 5.57825028632E-07 5.86399628472E-07 6.16437278861E-07 6.48012836507E-07 6.81204983582E-07 7.16096423689E-07 7.52774086421E-07 7.91329343558E-07 8.31858234690E-07 8.74461706276E-07 9.19245861306E-07 9.66322222425E-07 1.01580800796E-06 1.06782642258E-06 1.12250696206E-06 1.17998573384E-06 1.24040579428E-06 1.30391750211E-06 1.37067889055E-06 1.44085605854E-06 1.51462358039E-06 1.59216493804E-06 1.67367297429E-06 1.75935036881E-06 1.84941013869E-06 1.94407616461E-06 2.04358374239E-06 2.14818016448E-06 2.25812532973E-06 2.37369238208E-06 2.49516838650E-06 2.62285503439E-06 2.75706938630E-06 2.89814465317E-06 3.04643101514E-06 3.20229648384E-06 3.36612780617E-06 3.53833141471E-06 3.71933442613E-06 3.90958569003E-06 4.10955688937E-06 4.31974369786E-06 4.54066699575E-06 4.77287414429E-06 5.01694032794E-06 5.27346996033E-06 5.54309816449E-06 5.82649232422E-06 6.12435371593E-06 6.43741921964E-06 6.76646311844E-06 7.11229898637E-06 7.47578167168E-06 7.85780937840E-06 8.25932585275E-06 8.68132267973E-06 9.12484169155E-06 9.59097749921E-06 1.00808801492E-05 1.05957579124E-05 1.11368802110E-05 1.17055806941E-05 1.23032604621E-05 1.29313914556E-05 1.35915200077E-05 1.42852705779E-05 1.50143496662E-05 1.57805499233E-05 1.65857544645E-05 1.74319413962E-05 1.83211885642E-05 1.92556785396E-05 2.02377038474E-05 2.12696724529E-05 2.23541135196E-05 2.34936834484E-05 2.46911722111E-05 2.59495099999E-05 2.72717741948E-05 2.86611966777E-05 3.01211715003E-05 3.16552629258E-05 3.32672138633E-05 3.49609547107E-05 3.67406126287E-05 3.86105212611E-05 4.05752309285E-05 4.26395193127E-05 4.48084026571E-05 4.70871475051E-05 4.94812830051E-05 5.19966138027E-05 5.46392335533E-05 5.74155390787E-05 6.03322451984E-05 6.33964002701E-05 6.66154024649E-05 6.99970168161E-05 7.35493930738E-05 7.72810844030E-05 8.12010669598E-05 8.53187603907E-05 8.96440492882E-05 9.41873056525E-05 9.89594123985E-05 1.03971787955E-04 1.09236412004E-04 1.14765852413E-04 1.20573293400E-04 1.26672565002E-04 1.33078173886E-04 1.39805335564E-04 1.46870008083E-04 1.54288927226E-04 1.62079643319E-04 1.70260559676E-04 1.78850972782E-04 1.87871114253E-04 1.97342194672E-04 2.07286449354E-04 2.17727186134E-04 2.28688835239E-04 2.40197001341E-04 2.52278517867E-04 2.64961503643E-04 2.78275421981E-04 2.92251142279E-04 3.06921004231E-04 3.22318884745E-04 3.38480267667E-04 3.55442316396E-04 3.73243949503E-04 3.91925919447E-04 4.11530894496E-04 4.32103543949E-04 4.53690626777E-04 4.76341083766E-04 5.00106133300E-04 5.25039370858E-04 5.51196872355E-04 5.78637301421E-04 6.07422020730E-04 6.37615207473E-04 6.69283973091E-04 7.02498487361E-04 7.37332106923E-04 7.73861508360E-04 8.12166825910E-04 8.52331793887E-04 8.94443893909E-04 9.38594506981E-04 9.84879070516E-04 1.03339724034E-03 1.08425305772E-03 1.13755512149E-03 1.19341676516E-03 1.25195623927E-03 1.31329689870E-03 1.37756739505E-03 1.44490187409E-03 1.51544017806E-03 1.58932805290E-03 1.66671736015E-03 1.74776629343E-03 1.83263959939E-03 1.92150880274E-03 2.01455243536E-03 2.11195626897E-03 2.21391355119E-03 2.32062524450E-03 2.43230026781E-03 2.54915573998E-03 2.67141722495E-03 2.79931897772E-03 2.93310419056E-03 3.07302523881E-03 3.21934392529E-03 3.37233172252E-03 3.53227001179E-03 3.69945031793E-03 3.87417453864E-03 4.05675516713E-03 4.24751550664E-03 4.44678987536E-03 4.65492380012E-03 4.87227419707E-03 5.09920953752E-03 5.33610999683E-03 5.58336758425E-03 5.84138625133E-03 6.11058197633E-03 6.39138282219E-03 6.68422896495E-03 6.98957268981E-03 7.30787835151E-03 7.63962229572E-03 7.98529273781E-03 8.34538959523E-03 8.72042426958E-03 9.11091937406E-03 9.51740840210E-03 9.94043533246E-03 1.03805541661E-02 1.08383283896E-02 1.13143303609E-02 1.18091406102E-02 1.23233470525E-02 1.28575441052E-02 1.34123317045E-02 1.39883142159E-02 1.45860992314E-02 1.52062962484E-02 1.58495152237E-02 1.65163649969E-02 1.72074515757E-02 1.79233762795E-02 1.86647337330E-02 1.94321097061E-02 2.02260787927E-02 2.10472019254E-02 2.18960237198E-02 2.27730696450E-02 2.36788430161E-02 2.46138218067E-02 2.55784552787E-02 2.65731604270E-02 2.75983182420E-02 2.86542697876E-02 2.97413120986E-02 3.08596939021E-02 3.20096111663E-02 3.31912024853E-02 3.44045443094E-02 3.56496460313E-02 3.69264449420E-02 3.82348010738E-02 3.95744919480E-02 4.09452072499E-02 4.23465434563E-02 4.37779984430E-02 4.52389661045E-02 4.67287310215E-02 4.82464632146E-02 4.97912130278E-02 5.13619061885E-02 5.29573390946E-02 5.45761743848E-02 5.62169368497E-02 5.78780097485E-02 5.95576315973E-02 6.12538934994E-02 6.29647370929E-02 6.46879531916E-02 6.64211811996E-02 6.81619093817E-02 6.99074760728E-02 7.16550719096E-02 7.34017431705E-02 7.51443963042E-02 7.68798037285E-02 7.86046109762E-02 8.03153452583E-02 8.20084255107E-02 8.36801739793E-02 8.53268293912E-02 8.69445617429E-02 8.85294887266E-02 9.00776937961E-02 9.15852458538E-02 9.30482205222E-02 9.44627229358E-02 9.58249119647E-02 9.71310257524E-02 9.83774084187E-02 9.95605377464E-02 1.00677053636E-01 1.01723787073E-01 1.02697789329E-01 1.03596361052E-01 1.04417080899E-01 1.05157833309E-01 1.05816834970E-01 1.06392659531E-01 1.06884260057E-01 1.07290988718E-01 1.07612613177E-01 1.07849329145E-01 1.08001768562E-01 1.08071002884E-01 1.08058540978E-01 1.07966321161E-01 1.07796696983E-01 1.07552416407E-01 1.07236594151E-01 1.06852677039E-01 1.06404402344E-01 1.05895749244E-01 1.05330883680E-01 1.04714097068E-01 1.04049739516E-01 1.03342148397E-01 1.02595573350E-01 1.01814098966E-01 1.01001566663E-01 1.00161497426E-01 9.92970172962E-02 9.84107876257E-02 9.75049422787E-02 9.65810339988E-02 9.56399922165E-02 9.46820945201E-02 9.37069539006E-02 9.27135236795E-02 9.17001217407E-02 9.06644752930E-02 8.96037869004E-02 8.85148219246E-02 8.73940168320E-02 8.62376070430E-02 8.50417721471E-02 8.38027954072E-02 8.25172335481E-02 8.11820919025E-02 7.97949991223E-02 7.83543748837E-02 7.68595833925E-02 7.53110650656E-02 7.37104386008E-02 7.20605657949E-02 7.03655719818E-02 6.86308158908E-02 6.68628040884E-02 6.50690469993E-02 6.32578557828E-02 6.14380820515E-02 5.96188054981E-02 5.78089778532E-02 5.60170351085E-02 5.42504934483E-02 5.25155476428E-02 5.08166935559E-02 4.91563986617E-02 4.75348457988E-02 4.59497755652E-02 4.43964515430E-02 4.28677697336E-02 4.13545290442E-02 3.98458733276E-02 3.83299073524E-02 3.67944793235E-02 3.52281114179E-02 3.36210476448E-02 3.19663756798E-02 3.02611667765E-02 2.85082916561E-02 2.67177215469E-02 2.49015313439E-02 2.30725958201E-02 2.12443966484E-02 1.94308025137E-02 1.76458242600E-02 1.59033478479E-02 1.42168487808E-02 1.25990925777E-02 1.10618268150E-02 9.61547119464E-03 8.26881300373E-03 7.02871617325E-03 5.89985288528E-03 4.88446728249E-03 3.98218125263E-03 3.18985245216E-03 2.50223758477E-03 1.91472420027E-03 1.42206268042E-03 1.01786263283E-03 6.94733059952E-04 4.44449893945E-04 2.58150111529E-04 1.26550876864E-04 4.01912972890E-05 -1.03065770547E-05 -3.39619137155E-05 -3.91499236226E-05 -3.33140037757E-05 -2.26830143693E-05 -1.20026587254E-05 -4.29102994129E-06 -6.29380054212E-07 1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 10 2 i j (l(j)) 0.00000000000E+00 Q_int 4.88375519887E-18 5.13415068171E-18 5.39738421543E-18 5.67411402097E-18 5.96503206699E-18 6.27086580012E-18 6.59237996398E-18 6.93037851146E-18 7.28570661496E-18 7.65925277982E-18 8.05195106600E-18 8.46478342377E-18 8.89878214903E-18 9.35503246465E-18 9.83467523405E-18 1.03389098140E-17 1.08689970535E-17 1.14262624468E-17 1.20120994476E-17 1.26279729536E-17 1.32754229693E-17 1.39560684569E-17 1.46716113847E-17 1.54238409827E-17 1.62146382166E-17 1.70459804914E-17 1.79199465959E-17 1.88387219003E-17 1.98046038216E-17 2.08200075676E-17 2.18874721766E-17 2.30096668659E-17 2.41893977068E-17 2.54296146408E-17 2.67334188563E-17 2.81040705427E-17 2.95449970432E-17 3.10598014245E-17 3.26522714865E-17 3.43263892338E-17 3.60863408325E-17 3.79365270783E-17 3.98815744004E-17 4.19263464302E-17 4.40759561626E-17 4.63357787415E-17 4.87114649003E-17 5.12089550917E-17 5.38344943418E-17 5.65946478661E-17 5.94963174860E-17 6.25467588866E-17 6.57535997601E-17 6.91248588789E-17 7.26689661463E-17 7.63947836764E-17 8.03116279533E-17 8.44292931275E-17 8.87580755064E-17 9.33087993002E-17 9.80928436884E-17 1.03122171273E-16 1.08409357993E-16 1.13967624568E-16 1.19810869559E-16 1.25953704121E-16 1.32411488540E-16 1.39200370640E-16 1.46337326161E-16 1.53840201209E-16 1.61727756879E-16 1.70019716166E-16 1.78736813288E-16 1.87900845526E-16 1.97534727734E-16 2.07662549632E-16 2.18309636051E-16 2.29502610249E-16 2.41269460491E-16 2.53639610030E-16 2.66643990682E-16 2.80315120168E-16 2.94687183431E-16 3.09796118113E-16 3.25679704419E-16 3.42377659583E-16 3.59931737189E-16 3.78385831570E-16 3.97786087571E-16 4.18181015933E-16 4.39621614596E-16 4.62161496220E-16 4.85857022245E-16 5.10767443822E-16 5.36955049976E-16 5.64485323354E-16 5.93427103975E-16 6.23852761358E-16 6.55838375486E-16 6.89463927046E-16 7.24813497423E-16 7.61975478947E-16 8.01042795917E-16 8.42113136962E-16 8.85289199318E-16 9.30678945614E-16 9.78395873845E-16 1.02855930117E-15 1.08129466227E-15 1.13673382301E-15 1.19501541012E-15 1.25628515794E-15 1.32069627270E-15 1.38840981574E-15 1.45959510614E-15 1.53443014419E-15 1.61310205643E-15 1.69580756359E-15 1.78275347247E-15 1.87415719311E-15 1.97024728237E-15 2.07126401548E-15 2.17745998685E-15 2.28910074166E-15 2.40646543990E-15 2.52984755440E-15 2.65955560463E-15 2.79591392821E-15 2.93926349191E-15 3.08996274423E-15 3.24838851170E-15 3.41493694117E-15 3.59002449036E-15 3.77408896924E-15 3.96759063476E-15 4.17101334175E-15 4.38486575280E-15 4.60968261018E-15 4.84602607299E-15 5.09448712280E-15 5.35568704149E-15 5.63027896471E-15 5.91894951507E-15 6.22242051909E-15 6.54145081210E-15 6.87683813575E-15 7.22942113274E-15 7.60008144391E-15 7.98974591279E-15 8.39938890314E-15 8.83003473543E-15 9.28276024813E-15 9.75869749040E-15 1.02590365527E-14 1.07850285429E-14 1.13379887143E-14 1.19192997548E-14 1.25304152441E-14 1.31728632885E-14 1.38482503420E-14 1.45582652233E-14 1.53046833384E-14 1.60893711205E-14 1.69142906968E-14 1.77815047948E-14 1.86931819002E-14 1.96516016794E-14 2.06591606796E-14 2.17183783217E-14 2.28319031999E-14 2.40025197047E-14 2.52331549851E-14 2.65268862685E-14 2.78869485546E-14 2.93167427053E-14 3.08198439483E-14 3.24000108167E-14 3.40611945479E-14 3.58075489633E-14 3.76434408553E-14 3.95734609061E-14 4.16024351671E-14 4.37354371267E-14 4.59778003961E-14 4.83351320466E-14 5.08133266298E-14 5.34185809171E-14 5.61574093952E-14 5.90366605552E-14 6.20635340173E-14 6.52455985342E-14 6.85908109161E-14 7.21075359275E-14 7.58045672029E-14 7.96911492357E-14 8.37770004940E-14 8.80723377220E-14 9.25879014870E-14 9.73349830362E-14 1.02325452531E-13 1.07571788728E-13 1.13087110182E-13 1.18885208051E-13 1.24980580579E-13 1.31388469350E-13 1.38124897400E-13 1.45206709282E-13 1.52651613185E-13 1.60478225219E-13 1.68706115957E-13 1.77355859377E-13 1.86449084305E-13 1.96008528500E-13 2.06058095508E-13 2.16622914433E-13 2.27729402776E-13 2.39405332487E-13 2.51679899413E-13 2.64583796302E-13 2.78149289549E-13 2.92410299878E-13 3.07402487165E-13 3.23163339601E-13 3.39732267433E-13 3.57150701513E-13 3.75462196890E-13 3.94712541725E-13 4.14949871783E-13 4.36224790794E-13 4.58590496994E-13 4.82102916141E-13 5.06820841361E-13 5.32806080161E-13 5.60123608976E-13 5.88841735648E-13 6.19032270223E-13 6.50770704519E-13 6.84136400888E-13 7.19212790665E-13 7.56087582790E-13 7.94852983117E-13 8.35605924983E-13 8.78448311585E-13 9.23487270791E-13 9.70835423011E-13 1.02061116281E-12 1.07293895493E-12 1.12794964557E-12 1.18578078950E-12 1.24657699404E-12 1.31049028068E-12 1.37768046517E-12 1.44831555716E-12 1.52257218028E-12 1.60063601383E-12 1.68270225703E-12 1.76897611715E-12 1.85967332257E-12 1.95502066228E-12 2.05525655293E-12 2.16063163495E-12 2.27140939935E-12 2.38786684650E-12 2.51029517884E-12 2.63900052896E-12 2.77430472511E-12 2.91654609594E-12 3.06608031645E-12 3.22328129739E-12 3.38854212016E-12 3.56227601977E-12 3.74491741807E-12 3.93692301004E-12 4.13877290574E-12 4.35097183081E-12 4.57405038852E-12 4.80856638653E-12 5.05510623168E-12 5.31428639627E-12 5.58675495956E-12 5.87319322821E-12 6.17431743993E-12 6.49088055438E-12 6.82367413589E-12 7.17353033280E-12 7.54132395814E-12 7.92797467713E-12 8.33444930672E-12 8.76176423308E-12 9.21098795306E-12 9.68324374586E-12 1.01797124818E-11 1.07016355749E-11 1.12503180871E-11 1.18271319916E-11 1.24335196031E-11 1.30709971843E-11 1.37411587374E-11 1.44456799898E-11 1.51863225839E-11 1.59649384822E-11 1.67834745978E-11 1.76439776628E-11 1.85485993457E-11 1.94996016316E-11 2.04993624784E-11 2.15503817621E-11 2.26552875279E-11 2.38168425616E-11 2.50379512972E-11 2.63216670794E-11 2.76711997984E-11 2.90899239157E-11 3.05813869013E-11 3.21493181046E-11 3.37976380784E-11 3.55304683823E-11 3.73521418879E-11 3.92672136130E-11 4.12804721103E-11 4.33969514413E-11 4.56219437627E-11 4.79610125591E-11 5.04200065535E-11 5.30050743315E-11 5.57226797146E-11 5.85796179223E-11 6.15830325625E-11 6.47404334928E-11 6.80597155978E-11 7.15491785288E-11 7.52175474561E-11 7.90739948841E-11 8.31281635860E-11 8.73901907136E-11 9.18707331431E-11 9.65809941212E-11 1.01532751275E-10 1.06738386063E-10 1.12210914727E-10 1.17964020840E-10 1.24012089520E-10 1.30370243393E-10 1.37054380406E-10 1.44081213574E-10 1.51468312770E-10 1.59234148651E-10 1.67398138840E-10 1.75980696473E-10 1.85003281239E-10 1.94488453033E-10 2.04459928358E-10 2.14942639626E-10 2.25962797485E-10 2.37547956362E-10 2.49727083343E-10 2.62530630603E-10 2.75990611536E-10 2.90140680796E-10 3.05016218438E-10 3.20654418371E-10 3.37094381349E-10 3.54377212726E-10 3.72546125222E-10 3.91646546962E-10 4.11726235044E-10 4.32835394940E-10 4.55026806011E-10 4.78355953454E-10 5.02881167020E-10 5.28663766839E-10 5.55768216717E-10 5.84262285299E-10 6.14217215485E-10 6.45707902538E-10 6.78813081313E-10 7.13615523095E-10 7.50202242514E-10 7.88664715078E-10 8.29099105848E-10 8.71606509838E-10 9.16293204741E-10 9.63270916599E-10 1.01265709911E-09 1.06457522721E-09 1.11915510579E-09 1.17653319410E-09 1.23685294694E-09 1.30026517319E-09 1.36692841283E-09 1.43700933325E-09 1.51068314580E-09 1.58813404382E-09 1.66955566303E-09 1.75515156552E-09 1.84513574860E-09 1.93973317969E-09 2.03918035861E-09 2.14372590873E-09 2.25363119840E-09 2.36917099419E-09 2.49063414771E-09 2.61832431751E-09 2.75256072805E-09 2.89367896753E-09 3.04203182668E-09 3.19799018041E-09 3.36194391476E-09 3.53430290128E-09 3.71549802141E-09 3.90598224326E-09 4.10623175366E-09 4.31674714817E-09 4.53805468210E-09 4.77070758557E-09 5.01528744610E-09 5.27240566183E-09 5.54270496944E-09 5.82686105015E-09 6.12558421818E-09 6.43962119557E-09 6.76975697811E-09 7.11681679666E-09 7.48166817919E-09 7.86522311828E-09 8.26844034975E-09 8.69232774805E-09 9.13794484432E-09 9.60640547348E-09 1.00988805569E-08 1.06166010278E-08 1.11608609059E-08 1.17330205308E-08 1.23345099593E-08 1.29668325402E-08 1.36315686615E-08 1.43303797165E-08 1.50650122155E-08 1.58373022067E-08 1.66491798122E-08 1.75026740649E-08 1.83999179852E-08 1.93431538625E-08 2.03347389755E-08 2.13771512945E-08 2.24729958481E-08 2.36250111114E-08 2.48360758901E-08 2.61092165226E-08 2.74476143705E-08 2.88546138632E-08 3.03337307495E-08 3.18886609396E-08 3.35232896836E-08 3.52417013371E-08 3.70481894818E-08 3.89472676734E-08 4.09436807482E-08 4.30424166039E-08 4.52487186619E-08 4.75680989869E-08 5.00063520181E-08 5.25695690344E-08 5.52641533172E-08 5.80968361666E-08 6.10746937681E-08 6.42051646857E-08 6.74960685535E-08 7.09556255139E-08 7.45924767584E-08 7.84157059466E-08 8.24348622065E-08 8.66599836067E-08 9.11016221499E-08 9.57708705340E-08 1.00679389405E-07 1.05839436474E-07 1.11263897166E-07 1.16966316756E-07 1.22960934271E-07 1.29262717527E-07 1.35887400886E-07 1.42851524283E-07 1.50172474491E-07 1.57868528385E-07 1.65958898445E-07 1.74463780869E-07 1.83404405551E-07 1.92803089082E-07 2.02683290625E-07 2.13069669637E-07 2.23988148099E-07 2.35465974446E-07 2.47531791754E-07 2.60215708735E-07 2.73549375035E-07 2.87566059606E-07 3.02300733885E-07 3.17790158553E-07 3.34072974875E-07 3.51189801282E-07 3.69183333909E-07 3.88098452959E-07 4.07982334366E-07 4.28884566941E-07 4.50857275649E-07 4.73955251370E-07 4.98236086723E-07 5.23760319449E-07 5.50591582118E-07 5.78796761500E-07 6.08446163430E-07 6.39613687812E-07 6.72377012114E-07 7.06817784114E-07 7.43021824291E-07 7.81079339304E-07 8.21085144858E-07 8.63138901738E-07 9.07345362536E-07 9.53814631202E-07 1.00266243586E-06 1.05401041600E-06 1.10798642341E-06 1.16472483896E-06 1.22436690507E-06 1.28706107620E-06 1.35296338454E-06 1.42223782833E-06 1.49505677528E-06 1.57160139025E-06 1.65206208261E-06 1.73663897686E-06 1.82554240661E-06 1.91899343510E-06 2.01722439950E-06 2.12047948651E-06 2.22901533186E-06 2.34310165690E-06 2.46302193022E-06 2.58907406894E-06 2.72157117123E-06 2.86084228842E-06 3.00723323425E-06 3.16110743629E-06 3.32284683073E-06 3.49285280025E-06 3.67154716161E-06 3.85937320158E-06 4.05679676543E-06 4.26430740117E-06 4.48241955993E-06 4.71167385721E-06 4.95263839916E-06 5.20591017322E-06 5.47211651059E-06 5.75191662086E-06 6.04600320503E-06 6.35510414788E-06 6.67998429715E-06 7.02144733045E-06 7.38033771638E-06 7.75754277355E-06 8.15399483389E-06 8.57067351207E-06 9.00860809029E-06 9.46888002086E-06 9.95262555555E-06 1.04610385041E-05 1.09953731307E-05 1.15569471969E-05 1.21471451525E-05 1.27674214889E-05 1.34193042555E-05 1.41043987542E-05 1.48243914143E-05 1.55810538626E-05 1.63762471913E-05 1.72119264415E-05 1.80901453042E-05 1.90130610573E-05 1.99829397429E-05 2.10021616034E-05 2.20732267817E-05 2.31987613045E-05 2.43815233589E-05 2.56244098763E-05 2.69304634407E-05 2.83028795332E-05 2.97450141343E-05 3.12603916930E-05 3.28527134882E-05 3.45258663973E-05 3.62839320882E-05 3.81311966632E-05 4.00721607654E-05 4.21115501776E-05 4.42543269353E-05 4.65057009711E-05 4.88711423265E-05 5.13563939468E-05 5.39674850940E-05 5.67107454004E-05 5.95928195970E-05 6.26206829435E-05 6.58016573962E-05 6.91434285439E-05 7.26540633486E-05 7.63420287256E-05 8.02162110046E-05 8.42859363060E-05 8.85609918789E-05 9.30516484368E-05 9.77686835445E-05 1.02723406093E-04 1.07927681915E-04 1.13393960594E-04 1.19135303510E-04 1.25165413182E-04 1.31498663966E-04 1.38150134154E-04 1.45135639546E-04 1.52471768557E-04 1.60175918907E-04 1.68266335982E-04 1.76762152926E-04 1.85683432523E-04 1.95051210966E-04 2.04887543569E-04 2.15215552508E-04 2.26059476674E-04 2.37444723716E-04 2.49397924356E-04 2.61946989084E-04 2.75121167289E-04 2.88951108955E-04 3.03468928990E-04 3.18708274299E-04 3.34704393698E-04 3.51494210766E-04 3.69116399750E-04 3.87611464610E-04 4.07021821333E-04 4.27391883614E-04 4.48768152010E-04 4.71199306692E-04 4.94736303899E-04 5.19432476210E-04 5.45343636754E-04 5.72528187461E-04 6.01047231482E-04 6.30964689886E-04 6.62347422746E-04 6.95265354726E-04 7.29791605286E-04 7.66002623598E-04 8.03978328297E-04 8.43802252142E-04 8.85561691705E-04 9.29347862164E-04 9.75256057290E-04 1.02338581469E-03 1.07384108640E-03 1.12673041485E-03 1.18216711427E-03 1.24026945756E-03 1.30116086865E-03 1.36497012036E-03 1.43183153770E-03 1.50188520665E-03 1.57527718827E-03 1.65215973818E-03 1.73269153120E-03 1.81703789103E-03 1.90537102489E-03 1.99787026282E-03 2.09472230144E-03 2.19612145194E-03 2.30226989184E-03 2.41337792042E-03 2.52966421703E-03 2.65135610217E-03 2.77868980056E-03 2.91191070572E-03 3.05127364534E-03 3.19704314678E-03 3.34949370178E-03 3.50891002954E-03 3.67558733715E-03 3.84983157639E-03 4.03195969553E-03 4.22229988494E-03 4.42119181520E-03 4.62898686594E-03 4.84604834399E-03 5.07275168890E-03 5.30948466399E-03 5.55664753077E-03 5.81465320456E-03 6.08392738893E-03 6.36490868628E-03 6.65804868194E-03 6.96381199882E-03 7.28267631952E-03 7.61513237248E-03 7.96168387888E-03 8.32284745633E-03 8.69915247559E-03 9.09114086611E-03 9.49936686613E-03 9.92439671252E-03 1.03668082659E-02 1.08271905659E-02 1.13061433110E-02 1.18042762583E-02 1.23222085364E-02 1.28605678673E-02 1.34199896893E-02 1.40011161762E-02 1.46045951455E-02 1.52310788506E-02 1.58812226483E-02 1.65556835368E-02 1.72551185567E-02 1.79801830487E-02 1.87315287606E-02 1.95098017981E-02 2.03156404129E-02 2.11496726210E-02 2.20125136461E-02 2.29047631829E-02 2.38270024747E-02 2.47797912004E-02 2.57636641684E-02 2.67791278132E-02 2.78266564927E-02 2.89066885856E-02 3.00196223877E-02 3.11658118099E-02 3.23455618795E-02 3.35591240492E-02 3.48066913209E-02 3.60883931915E-02 3.74042904310E-02 3.87543697068E-02 4.01385380681E-02 4.15566173088E-02 4.30083382312E-02 4.44933348323E-02 4.60111384434E-02 4.75611718516E-02 4.91427434394E-02 5.07550413821E-02 5.23971279443E-02 5.40679339247E-02 5.57662533000E-02 5.74907381236E-02 5.92398937408E-02 6.10120743846E-02 6.28054792221E-02 6.46181489243E-02 6.64479628375E-02 6.82926368373E-02 7.01497219504E-02 7.20166038298E-02 7.38905031756E-02 7.57684771909E-02 7.76474221646E-02 7.95240772739E-02 8.13950296950E-02 8.32567211114E-02 8.51054557002E-02 8.69374096776E-02 8.87486424695E-02 9.05351095718E-02 9.22926771454E-02 9.40171383849E-02 9.57042316774E-02 9.73496605534E-02 9.89491154086E-02 1.00498296953E-01 1.01992941317E-01 1.03428846711E-01 1.04801901515E-01 1.06108113624E-01 1.07343640860E-01 1.08504822193E-01 1.09588209516E-01 1.10590599636E-01 1.11509066133E-01 1.12340990682E-01 1.13084093405E-01 1.13736461765E-01 1.14296577512E-01 1.14763341127E-01 1.15136093199E-01 1.15414632183E-01 1.15599227914E-01 1.15690630325E-01 1.15690072793E-01 1.15599269558E-01 1.15420406740E-01 1.15156126504E-01 1.14809504013E-01 1.14384016912E-01 1.13883507199E-01 1.13312135462E-01 1.12674327643E-01 1.11974714641E-01 1.11218065271E-01 1.10409213309E-01 1.09552979560E-01 1.08654090122E-01 1.07717092257E-01 1.06746269505E-01 1.05745557869E-01 1.04718465159E-01 1.03667995680E-01 1.02596582639E-01 1.01506030692E-01 1.00397471102E-01 9.92713318945E-02 9.81273253089E-02 9.69644545688E-02 9.57810417123E-02 9.45747777605E-02 9.33427959727E-02 9.20817682812E-02 9.07880242388E-02 8.94576909663E-02 8.80868516555E-02 8.66717192045E-02 8.52088205550E-02 8.36951863110E-02 8.21285392868E-02 8.05074748032E-02 7.88316248973E-02 7.71017981718E-02 7.53200868643E-02 7.34899329109E-02 7.16161453794E-02 6.97048626908E-02 6.77634545755E-02 6.58003607332E-02 6.38248656757E-02 6.18468122020E-02 5.98762593024E-02 5.79230939339E-02 5.59966098941E-02 5.41050707799E-02 5.22552775433E-02 5.04521642011E-02 4.86984475646E-02 4.69943581525E-02 4.53374794750E-02 4.37227213684E-02 4.21424498328E-02 4.05867907138E-02 3.90441175330E-02 3.75017248439E-02 3.59466778317E-02 3.43668167987E-02 3.27518820928E-02 3.10947115301E-02 2.93924491057E-02 2.76483652648E-02 2.58728636731E-02 2.40783315399E-02 2.22778194748E-02 2.04848239382E-02 1.87130457753E-02 1.69761282696E-02 1.52873791278E-02 1.36594818182E-02 1.21042026879E-02 1.06321012534E-02 9.25225195416E-03 7.97198643370E-03 6.79666602493E-03 5.72949449870E-03 4.77138124669E-03 3.92086483939E-03 3.17410627795E-03 2.52555034056E-03 1.97016286936E-03 1.50237577123E-03 1.11571517936E-03 8.02956489765E-04 5.56298127092E-04 3.67551445089E-04 2.28343413164E-04 1.30327961045E-04 6.54010713032E-05 2.59139497791E-05 4.87789832035E-06 -3.84610093038E-06 -5.38056377936E-06 -3.69522418948E-06 -1.50915351801E-06 -2.38933329143E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 3 1 i j (l(j)) -1.20454377485E-02 Q_int -2.22972450665E-20 -2.34404492668E-20 -2.46422667998E-20 -2.59057028353E-20 -2.72339166215E-20 -2.86302293848E-20 -3.00981326342E-20 -3.16412968926E-20 -3.32635808743E-20 -3.49690411343E-20 -3.67619422117E-20 -3.86467672929E-20 -4.06282294224E-20 -4.27112832877E-20 -4.49011376084E-20 -4.72032681609E-20 -4.96234314707E-20 -5.21676792068E-20 -5.48423733136E-20 -5.76542019196E-20 -6.06101960609E-20 -6.37177472627E-20 -6.69846260214E-20 -7.04190012356E-20 -7.40294606323E-20 -7.78250322405E-20 -8.18152069662E-20 -8.60099623247E-20 -9.04197873891E-20 -9.50557090192E-20 -9.99293194337E-20 -1.05052805197E-19 -1.10438977693E-19 -1.16101305157E-19 -1.22053946358E-19 -1.28311785999E-19 -1.34890471940E-19 -1.41806454321E-19 -1.49077026700E-19 -1.56720369296E-19 -1.64755594447E-19 -1.73202794399E-19 -1.82083091554E-19 -1.91418691280E-19 -2.01232937438E-19 -2.11550370756E-19 -2.22396790191E-19 -2.33799317442E-19 -2.45786464765E-19 -2.58388206272E-19 -2.71636052882E-19 -2.85563131110E-19 -3.00204265908E-19 -3.15596067737E-19 -3.31777024119E-19 -3.48787595874E-19 -3.66670318290E-19 -3.85469907489E-19 -4.05233372236E-19 -4.26010131486E-19 -4.47852137959E-19 -4.70814008049E-19 -4.94953158390E-19 -5.20329949431E-19 -5.47007836368E-19 -5.75053527814E-19 -6.04537152605E-19 -6.35532435159E-19 -6.68116879828E-19 -7.02371964695E-19 -7.38383345314E-19 -7.76241068894E-19 -8.16039799461E-19 -8.57879054573E-19 -9.01863454158E-19 -9.48102982126E-19 -9.96713261380E-19 -1.04781584294E-18 -1.10153850987E-18 -1.15801559682E-18 -1.21738832594E-18 -1.27980515995E-18 -1.34542217347E-18 -1.41440344319E-18 -1.48692145823E-18 -1.56315755139E-18 -1.64330235261E-18 -1.72755626564E-18 -1.81612996914E-18 -1.90924494351E-18 -2.00713402468E-18 -2.11004198634E-18 -2.21822615199E-18 -2.33195703839E-18 -2.45151903200E-18 -2.57721110007E-18 -2.70934753824E-18 -2.84825875642E-18 -2.99429210502E-18 -3.14781274346E-18 -3.30920455329E-18 -3.47887109811E-18 -3.65723663264E-18 -3.84474716361E-18 -4.04187156502E-18 -4.24910275054E-18 -4.46695890607E-18 -4.69598478545E-18 -4.93675307268E-18 -5.18986581386E-18 -5.45595592269E-18 -5.73568876301E-18 -6.02976381262E-18 -6.33891641230E-18 -6.66391960458E-18 -7.00558606668E-18 -7.36477014273E-18 -7.74236997997E-18 -8.13932977467E-18 -8.55664213304E-18 -8.99535055332E-18 -9.45655203506E-18 -9.94139982215E-18 -1.04511062866E-17 -1.09869459599E-17 -1.15502587205E-17 -1.21424531436E-17 -1.27650100236E-17 -1.34194860770E-17 -1.41075178347E-17 -1.48308257345E-17 -1.55912184228E-17 -1.63905972774E-17 -1.72309611617E-17 -1.81144114230E-17 -1.90431571471E-17 -2.00195206820E-17 -2.10459434449E-17 -2.21249920273E-17 -2.32593646127E-17 -2.44518977232E-17 -2.57055733126E-17 -2.70235262228E-17 -2.84090520224E-17 -2.98656152474E-17 -3.13968580644E-17 -3.30066093779E-17 -3.46988944043E-17 -3.64779447375E-17 -3.83482089298E-17 -4.03143636156E-17 -4.23813252055E-17 -4.45542621797E-17 -4.68386080122E-17 -4.92400747571E-17 -5.17646673317E-17 -5.44186985322E-17 -5.72088048184E-17 -6.01419629090E-17 -6.32255072264E-17 -6.64671482372E-17 -6.98749917316E-17 -7.34575590929E-17 -7.72238086050E-17 -8.11831578525E-17 -8.53455072702E-17 -8.97212648988E-17 -9.43213724107E-17 -9.91573324698E-17 -1.04241237494E-16 -1.09585799893E-16 -1.15204383856E-16 -1.21111038767E-16 -1.27320534338E-16 -1.33848397543E-16 -1.40710951437E-16 -1.47925355978E-16 -1.55509650933E-16 -1.63482800987E-16 -1.71864743168E-16 -1.80676436693E-16 -1.89939915384E-16 -1.99678342759E-16 -2.09916069958E-16 -2.20678696626E-16 -2.31993134933E-16 -2.43887676865E-16 -2.56392064968E-16 -2.69537566721E-16 -2.83357052721E-16 -2.97885078875E-16 -3.13157972812E-16 -3.29213924715E-16 -3.46093082820E-16 -3.63837653809E-16 -3.82492008343E-16 -4.02102792018E-16 -4.22719041999E-16 -4.44392309640E-16 -4.67176789389E-16 -4.91129454303E-16 -5.16310198509E-16 -5.42781986970E-16 -5.70611012933E-16 -5.99866863443E-16 -6.30622693350E-16 -6.62955408231E-16 -6.96945856696E-16 -7.32679032552E-16 -7.70244287330E-16 -8.09735553710E-16 -8.51251580404E-16 -8.94896179076E-16 -9.40778483928E-16 -9.89013224590E-16 -1.03972101300E-15 -1.09302864502E-15 -1.14906941744E-15 -1.20798346135E-15 -1.26991809250E-15 -1.33502817967E-15 -1.40347653196E-15 -1.47543430582E-15 -1.55108143313E-15 -1.63060707104E-15 -1.71421007499E-15 -1.80209949596E-15 -1.89449510320E-15 -1.99162793377E-15 -2.09374087025E-15 -2.20108924805E-15 -2.31394149394E-15 -2.43257979718E-15 -2.55730081520E-15 -2.68841641537E-15 -2.82625445484E-15 -2.97115960034E-15 -3.12349419004E-15 -3.28363913956E-15 -3.45199489451E-15 -3.62898243174E-15 -3.81504431204E-15 -4.01064578679E-15 -4.21627596127E-15 -4.43244901774E-15 -4.65970550111E-15 -4.89861367064E-15 -5.14977092081E-15 -5.41380527518E-15 -5.69137695674E-15 -5.98318003879E-15 -6.28994418056E-15 -6.61243645163E-15 -6.95146325009E-15 -7.30787231890E-15 -7.68255486571E-15 -8.07644779132E-15 -8.49053603243E-15 -8.92585502451E-15 -9.38349329085E-15 -9.86459516454E-15 -1.03703636498E-14 -1.09020634301E-14 -1.14610240307E-14 -1.20486431429E-14 -1.26663901191E-14 -1.33158096470E-14 -1.39985256120E-14 -1.47162451579E-14 -1.54707629555E-14 -1.62639656902E-14 -1.70978367797E-14 -1.79744613338E-14 -1.88960313678E-14 -1.98648512841E-14 -2.08833436340E-14 -2.19540551757E-14 -2.30796632423E-14 -2.42629824365E-14 -2.55069716685E-14 -2.68147415550E-14 -2.81895621971E-14 -2.96348713576E-14 -3.11542830567E-14 -3.27515966091E-14 -3.44308061242E-14 -3.61961104938E-14 -3.80519238908E-14 -4.00028868074E-14 -4.20538776584E-14 -4.42100249801E-14 -4.64767202538E-14 -4.88596313876E-14 -5.13647168889E-14 -5.39982407638E-14 -5.67667881802E-14 -5.96772819342E-14 -6.27369997604E-14 -6.59535925304E-14 -6.93351033832E-14 -7.28899878376E-14 -7.66271349354E-14 -8.05558894680E-14 -8.46860753435E-14 -8.90280201515E-14 -9.35925809870E-14 -9.83911715988E-14 -1.03435790930E-13 -1.08739053120E-13 -1.14314219049E-13 -1.20175229494E-13 -1.26336739988E-13 -1.32814157470E-13 -1.39623678805E-13 -1.46782331287E-13 -1.54308015215E-13 -1.62219548654E-13 -1.70536714488E-13 -1.79280309889E-13 -1.88472198317E-13 -1.98135364194E-13 -2.08293970372E-13 -2.18973418556E-13 -2.30200412819E-13 -2.42003026375E-13 -2.54410771779E-13 -2.67454674718E-13 -2.81167351596E-13 -2.95583091086E-13 -3.10737939874E-13 -3.26669792789E-13 -3.43418487560E-13 -3.61025904433E-13 -3.79536070887E-13 -3.98995271729E-13 -4.19452164824E-13 -4.40957902770E-13 -4.63566260798E-13 -4.87333771240E-13 -5.12319864885E-13 -5.38587019589E-13 -5.66200916494E-13 -5.95230604267E-13 -6.25748671756E-13 -6.57831429492E-13 -6.91559100508E-13 -7.27016020929E-13 -7.64290850858E-13 -8.03476796068E-13 -8.44671841057E-13 -8.87978994061E-13 -9.33506544618E-13 -9.81368334351E-13 -1.03168404162E-12 -1.08457948076E-12 -1.14018691673E-12 -1.19864539576E-12 -1.26010109308E-12 -1.32470767843E-12 -1.39262670029E-12 -1.46402798982E-12 -1.53909008552E-12 -1.61800067969E-12 -1.70095708769E-12 -1.78816674137E-12 -1.87984770772E-12 -1.97622923413E-12 -2.07755232163E-12 -2.18407032750E-12 -2.29604959877E-12 -2.41377013819E-12 -2.53752630439E-12 -2.66762754791E-12 -2.80439918494E-12 -2.94818321075E-12 -3.09933915486E-12 -3.25824497999E-12 -3.42529802715E-12 -3.60091600915E-12 -3.78553805506E-12 -3.97962580825E-12 -4.18366458066E-12 -4.39816456628E-12 -4.62366211688E-12 -4.86072108311E-12 -5.10993422433E-12 -5.37192469076E-12 -5.64734758166E-12 -5.93689158327E-12 -6.24128069084E-12 -6.56127601893E-12 -6.89767770444E-12 -7.25132690733E-12 -7.62310791381E-12 -8.01395034740E-12 -8.42483149335E-12 -8.85677874224E-12 -9.31087215883E-12 -9.78824718263E-12 -1.02900974669E-11 -1.08176778632E-11 -1.13723075591E-11 -1.19553733765E-11 -1.25683332392E-11 -1.32127198180E-11 -1.38901443635E-11 -1.46023007342E-11 -1.53509696319E-11 -1.61380230542E-11 -1.69654289747E-11 -1.78352562642E-11 -1.87496798628E-11 -1.97109862185E-11 -2.07215790037E-11 -2.17839851254E-11 -2.29008610429E-11 -2.40749994098E-11 -2.53093360564E-11 -2.66069573305E-11 -2.79711078133E-11 -2.94051984326E-11 -3.09128149902E-11 -3.24977271280E-11 -3.41638977526E-11 -3.59154929435E-11 -3.77568923695E-11 -3.96927002387E-11 -4.17277568101E-11 -4.38671504951E-11 -4.61162305797E-11 -4.84806205986E-11 -5.09662323954E-11 -5.35792809027E-11 -5.63262996810E-11 -5.92141572531E-11 -6.22500742772E-11 -6.54416415986E-11 -6.87968392284E-11 -7.23240562946E-11 -7.60321120152E-11 -7.99302777478E-11 -8.40283001682E-11 -8.83364256384E-11 -9.28654258228E-11 -9.76266246181E-11 -1.02631926463E-10 -1.07893846102E-10 -1.13425539868E-10 -1.19240838577E-10 -1.25354282105E-10 -1.31781155733E-10 -1.38537528368E-10 -1.45640292704E-10 -1.53107207462E-10 -1.60956941779E-10 -1.69209121883E-10 -1.77884380154E-10 -1.87004406704E-10 -1.96592003599E-10 -2.06671141858E-10 -2.17267021381E-10 -2.28406133940E-10 -2.40116329405E-10 -2.52426885360E-10 -2.65368580292E-10 -2.78973770529E-10 -2.93276471119E-10 -3.08312440860E-10 -3.24119271684E-10 -3.40736482621E-10 -3.58205618588E-10 -3.76570354230E-10 -3.95876603087E-10 -4.16172632365E-10 -4.37509183572E-10 -4.59939599353E-10 -4.83519956818E-10 -5.08309207703E-10 -5.34369325716E-10 -5.61765461434E-10 -5.90566105141E-10 -6.20843258003E-10 -6.52672612030E-10 -6.86133739242E-10 -7.21310290548E-10 -7.58290204803E-10 -7.97165928586E-10 -8.38034647237E-10 -8.80998527735E-10 -9.26164974021E-10 -9.73646895407E-10 -1.02356298874E-09 -1.07603803500E-09 -1.13120321118E-09 -1.18919641798E-09 -1.25016262452E-09 -1.31425423050E-09 -1.38163144704E-09 -1.45246269701E-09 -1.52692503587E-09 -1.60520459403E-09 -1.68749704196E-09 -1.77400807903E-09 -1.86495394750E-09 -1.96056197274E-09 -2.06107113117E-09 -2.16673264735E-09 -2.27781062156E-09 -2.39458268959E-09 -2.51734071634E-09 -2.64639152487E-09 -2.78205766290E-09 -2.92467820853E-09 -3.07460961715E-09 -3.23222661191E-09 -3.39792311960E-09 -3.57211325462E-09 -3.75523235324E-09 -3.94773806090E-09 -4.15011147517E-09 -4.36285834721E-09 -4.58651034484E-09 -4.82162638021E-09 -5.06879400546E-09 -5.32863087997E-09 -5.60178631253E-09 -5.88894288271E-09 -6.19081814500E-09 -6.50816642046E-09 -6.84178067985E-09 -7.19249452337E-09 -7.56118426163E-09 -7.94877110319E-09 -8.35622345409E-09 -8.78455933505E-09 -9.23484892247E-09 -9.70821721937E-09 -1.02058468632E-08 -1.07289810771E-08 -1.12789267726E-08 -1.18570578106E-08 -1.24648184296E-08 -1.31037268492E-08 -1.37753790581E-08 -1.44814527956E-08 -1.52237117372E-08 -1.60040098940E-08 -1.68242962376E-08 -1.76866195610E-08 -1.85931335884E-08 -1.95461023465E-08 -2.05479058105E-08 -2.16010458383E-08 -2.27081524092E-08 -2.38719901802E-08 -2.50954653792E-08 -2.63816330490E-08 -2.77337046628E-08 -2.91550561283E-08 -3.06492362017E-08 -3.22199753307E-08 -3.38711949503E-08 -3.56070172533E-08 -3.74317754602E-08 -3.93500246137E-08 -4.13665529249E-08 -4.34863936986E-08 -4.57148378685E-08 -4.80574471723E-08 -5.05200679995E-08 -5.31088459464E-08 -5.58302411149E-08 -5.86910441911E-08 -6.16983933464E-08 -6.48597919995E-08 -6.81831274867E-08 -7.16766906835E-08 -7.53491966283E-08 -7.92098061980E-08 -8.32681488897E-08 -8.75343467638E-08 -9.20190396088E-08 -9.67334113890E-08 -1.01689218041E-07 -1.06898816687E-07 -1.12375196335E-07 -1.18132010152E-07 -1.24183609368E-07 -1.30545078918E-07 -1.37232274899E-07 -1.44261863927E-07 -1.51651364507E-07 -1.59419190506E-07 -1.67584696835E-07 -1.76168227462E-07 -1.85191165867E-07 -1.94675988059E-07 -2.04646318296E-07 -2.15126987635E-07 -2.26144095461E-07 -2.37725074141E-07 -2.49898756964E-07 -2.62695449540E-07 -2.76147004814E-07 -2.90286901899E-07 -3.05150328908E-07 -3.20774269994E-07 -3.37197596798E-07 -3.54461164550E-07 -3.72607913031E-07 -3.91682972664E-07 -4.11733775978E-07 -4.32810174722E-07 -4.54964562911E-07 -4.78252006106E-07 -5.02730377237E-07 -5.28460499300E-07 -5.55506295276E-07 -5.83934945631E-07 -6.13817053778E-07 -6.45226819905E-07 -6.78242223580E-07 -7.12945215582E-07 -7.49421919414E-07 -7.87762842988E-07 -8.28063100979E-07 -8.70422648400E-07 -9.14946525944E-07 -9.61745117678E-07 -1.01093442173E-06 -1.06263633456E-06 -1.11697894960E-06 -1.17409687081E-06 -1.23413154211E-06 -1.29723159321E-06 -1.36355320295E-06 -1.43326048077E-06 -1.50652586732E-06 -1.58353055517E-06 -1.66446493056E-06 -1.74952903729E-06 -1.83893306378E-06 -1.93289785446E-06 -2.03165544674E-06 -2.13544963478E-06 -2.24453656131E-06 -2.35918533903E-06 -2.47967870290E-06 -2.60631369488E-06 -2.73940238274E-06 -2.87927261461E-06 -3.02626881086E-06 -3.18075279537E-06 -3.34310466791E-06 -3.51372371975E-06 -3.69302939450E-06 -3.88146229639E-06 -4.07948524843E-06 -4.28758440255E-06 -4.50627040455E-06 -4.73607961626E-06 -4.97757539781E-06 -5.23134945274E-06 -5.49802323913E-06 -5.77824944965E-06 -6.07271356414E-06 -6.38213547783E-06 -6.70727120901E-06 -7.04891468981E-06 -7.40789964396E-06 -7.78510155582E-06 -8.18143973465E-06 -8.59787947884E-06 -9.03543434467E-06 -9.49516852435E-06 -9.97819933863E-06 -1.04856998490E-05 -1.10189015953E-05 -1.15790974640E-05 -1.21676446939E-05 -1.27859680248E-05 -1.34355629955E-05 -1.41179993990E-05 -1.48349249008E-05 -1.55880688280E-05 -1.63792461366E-05 -1.72103615661E-05 -1.80834139876E-05 -1.90005009554E-05 -1.99638234713E-05 -2.09756909690E-05 -2.20385265300E-05 -2.31548723404E-05 -2.43273953977E-05 -2.55588934803E-05 -2.68523013890E-05 -2.82106974726E-05 -2.96373104493E-05 -3.11355265361E-05 -3.27088968988E-05 -3.43611454348E-05 -3.60961769036E-05 -3.79180854169E-05 -3.98311633045E-05 -4.18399103678E-05 -4.39490435388E-05 -4.61635069579E-05 -4.84884824865E-05 -5.09294006711E-05 -5.34919521744E-05 -5.61820996908E-05 -5.90060903627E-05 -6.19704687151E-05 -6.50820901264E-05 -6.83481348521E-05 -7.17761226201E-05 -7.53739278159E-05 -7.91497952742E-05 -8.31123566966E-05 -8.72706477136E-05 -9.16341256059E-05 -9.62126877076E-05 -1.01016690503E-04 -1.06056969440E-04 -1.11344859469E-04 -1.16892216333E-04 -1.22711438614E-04 -1.28815490555E-04 -1.35217925672E-04 -1.41932911163E-04 -1.48975253126E-04 -1.56360422596E-04 -1.64104582408E-04 -1.72224614884E-04 -1.80738150357E-04 -1.89663596514E-04 -1.99020168575E-04 -2.08827920281E-04 -2.19107775690E-04 -2.29881561759E-04 -2.41172041700E-04 -2.53002949069E-04 -2.65399022570E-04 -2.78386041529E-04 -2.91990861986E-04 -3.06241453366E-04 -3.21166935651E-04 -3.36797616993E-04 -3.53165031684E-04 -3.70301978381E-04 -3.88242558498E-04 -4.07022214630E-04 -4.26677768898E-04 -4.47247461043E-04 -4.68770986130E-04 -4.91289531670E-04 -5.14845813959E-04 -5.39484113426E-04 -5.65250308731E-04 -5.92191909372E-04 -6.20358086491E-04 -6.49799701575E-04 -6.80569332708E-04 -7.12721298001E-04 -7.46311675787E-04 -7.81398321160E-04 -8.18040878369E-04 -8.56300788563E-04 -8.96241292335E-04 -9.37927426485E-04 -9.81426014353E-04 -1.02680564905E-03 -1.07413666888E-03 -1.12349112414E-03 -1.17494273452E-03 -1.22856683622E-03 -1.28444031783E-03 -1.34264154401E-03 -1.40325026598E-03 -1.46634751769E-03 -1.53201549650E-03 -1.60033742725E-03 -1.67139740844E-03 -1.74528023921E-03 -1.82207122583E-03 -1.90185596617E-03 -1.98472011095E-03 -2.07074910009E-03 -2.16002787275E-03 -2.25264054956E-03 -2.34867008551E-03 -2.44819789188E-03 -2.55130342580E-03 -2.65806374586E-03 -2.76855303234E-03 -2.88284207064E-03 -3.00099769656E-03 -3.12308220229E-03 -3.24915270183E-03 -3.37926045508E-03 -3.51345014967E-03 -3.65175914010E-03 -3.79421664377E-03 -3.94084289401E-03 -4.09164825033E-03 -4.24663226669E-03 -4.40578271886E-03 -4.56907459257E-03 -4.73646903457E-03 -4.90791226934E-03 -5.08333448498E-03 -5.26264869230E-03 -5.44574956213E-03 -5.63251224656E-03 -5.82279119084E-03 -6.01641894357E-03 -6.21320497394E-03 -6.41293450565E-03 -6.61536737864E-03 -6.82023695057E-03 -7.02724905145E-03 -7.23608100609E-03 -7.44638073999E-03 -7.65776598603E-03 -7.86982361009E-03 -8.08210907521E-03 -8.29414606490E-03 -8.50542628734E-03 -8.71540948288E-03 -8.92352365825E-03 -9.12916557132E-03 -9.33170149043E-03 -9.53046825252E-03 -9.72477464375E-03 -9.91390312583E-03 -1.00971119299E-02 -1.02736375384E-02 -1.04426975729E-02 -1.06034941036E-02 -1.07552173922E-02 -1.08970500763E-02 -1.10281717992E-02 -1.11477642810E-02 -1.12550168246E-02 -1.13491322395E-02 -1.14293331610E-02 -1.14948687319E-02 -1.15450216061E-02 -1.15791152241E-02 -1.15965212970E-02 -1.15966674297E-02 -1.15790447980E-02 -1.15432157886E-02 -1.14888214951E-02 -1.14155889573E-02 -1.13233380195E-02 -1.12119876753E-02 -1.10815617600E-02 -1.09321938483E-02 -1.07641312095E-02 -1.05777376756E-02 -1.03734952798E-02 -1.01520045310E-02 -9.91398319989E-03 -9.66026351074E-03 -9.39178765064E-03 -9.10960153677E-03 -8.81484681211E-03 -8.50875107748E-03 -8.19261641028E-03 -7.86780626826E-03 -7.53573092929E-03 -7.19783167622E-03 -6.85556399685E-03 -6.51038013436E-03 -6.16371138969E-03 -5.81695064525E-03 -5.47143564600E-03 -5.12843363812E-03 -4.78912802569E-03 -4.45460775894E-03 -4.12586021206E-03 -3.80376834154E-03 -3.48911293393E-03 -3.18258075310E-03 -2.88477937635E-03 -2.59625946402E-03 -2.31754513358E-03 -2.04917300246E-03 -1.79174032015E-03 -1.54596242338E-03 -1.31273951464E-03 -1.09323247818E-03 -8.88947104447E-04 -7.01825689310E-04 -5.34344505750E-04 -3.89615110815E-04 -2.70532052900E-04 -1.76567215313E-04 -1.05892455225E-04 -5.61815833053E-05 -2.45578118221E-05 -7.53828612898E-06 -9.76058964736E-07 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 4 1 i j (l(j)) -1.87535507948E-02 Q_int -3.65410628159E-20 -3.84145631685E-20 -4.03841199382E-20 -4.24546580428E-20 -4.46313549060E-20 -4.69196534038E-20 -4.93252754744E-20 -5.18542364259E-20 -5.45128599781E-20 -5.73077940745E-20 -6.02460275062E-20 -6.33349073872E-20 -6.65821575262E-20 -6.99958977400E-20 -7.35846641571E-20 -7.73574305628E-20 -8.13236308385E-20 -8.54931825505E-20 -8.98765117500E-20 -9.44845790432E-20 -9.93289069985E-20 -1.04421608959E-19 -1.09775419332E-19 -1.15403725433E-19 -1.21320600958E-19 -1.27540841178E-19 -1.34079999933E-19 -1.40954428527E-19 -1.48181316611E-19 -1.55778735170E-19 -1.63765681708E-19 -1.72162127752E-19 -1.80989068789E-19 -1.90268576770E-19 -2.00023855299E-19 -2.10279297652E-19 -2.21060547778E-19 -2.32394564418E-19 -2.44309688516E-19 -2.56835714089E-19 -2.70003962726E-19 -2.83847361907E-19 -2.98400527340E-19 -3.13699849520E-19 -3.29783584720E-19 -3.46691950656E-19 -3.64467227051E-19 -3.83153861353E-19 -4.02798579881E-19 -4.23450504665E-19 -4.45161276272E-19 -4.67985182941E-19 -4.91979296326E-19 -5.17203614208E-19 -5.43721210521E-19 -5.71598393067E-19 -6.00904869323E-19 -6.31713920744E-19 -6.64102586006E-19 -6.98151853642E-19 -7.33946864557E-19 -7.71577124921E-19 -8.11136729987E-19 -8.52724599370E-19 -8.96444724408E-19 -9.42406428183E-19 -9.90724638896E-19 -1.04152017724E-18 -1.09492005852E-18 -1.15105781025E-18 -1.21007380605E-18 -1.27211561665E-18 -1.33733837888E-18 -1.40590518364E-18 -1.47798748364E-18 -1.55376552217E-18 -1.63342878381E-18 -1.71717646820E-18 -1.80521798817E-18 -1.89777349338E-18 -1.99507442079E-18 -2.09736407342E-18 -2.20489822866E-18 -2.31794577791E-18 -2.43678939893E-18 -2.56172626266E-18 -2.69306877635E-18 -2.83114536469E-18 -2.97630129106E-18 -3.12889952088E-18 -3.28932162921E-18 -3.45796875488E-18 -3.63526260353E-18 -3.82164650213E-18 -4.01758650750E-18 -4.22357257172E-18 -4.44011976722E-18 -4.66776957479E-18 -4.90709123751E-18 -5.15868318418E-18 -5.42317452571E-18 -5.70122662821E-18 -5.99353476676E-18 -6.30082986395E-18 -6.62388031756E-18 -6.96349392200E-18 -7.32051988814E-18 -7.69585096686E-18 -8.09042568133E-18 -8.50523067385E-18 -8.94130317294E-18 -9.39973358696E-18 -9.88166823071E-18 -1.03883121918E-17 -1.09209323440E-17 -1.14808605151E-17 -1.20694968171E-17 -1.26883131475E-17 -1.33388568692E-17 -1.40227546803E-17 -1.47417166817E-17 -1.54975406528E-17 -1.62921165471E-17 -1.71274312181E-17 -1.80055733876E-17 -1.89287388684E-17 -1.98992360550E-17 -2.09194916956E-17 -2.19920569609E-17 -2.31196138225E-17 -2.43049817598E-17 -2.55511248100E-17 -2.68611589796E-17 -2.82383600365E-17 -2.96861717003E-17 -3.12082142544E-17 -3.28082935976E-17 -3.44904107617E-17 -3.62587719156E-17 -3.81177988830E-17 -4.00721401995E-17 -4.21266827362E-17 -4.42865639193E-17 -4.65571845766E-17 -4.89442224421E-17 -5.14536463536E-17 -5.40917311776E-17 -5.68650735000E-17 -5.97806081207E-17 -6.28456253947E-17 -6.60677894611E-17 -6.94551574079E-17 -7.30161994190E-17 -7.67598199538E-17 -8.06953800129E-17 -8.48327205458E-17 -8.91821870583E-17 -9.37546554814E-17 -9.85615593671E-17 -1.03614918478E-16 -1.08927368843E-16 -1.14512194355E-16 -1.20383359985E-16 -1.26555546704E-16 -1.33044188193E-16 -1.39865509434E-16 -1.47036567282E-16 -1.54575293115E-16 -1.62500537672E-16 -1.70832118192E-16 -1.79590867964E-16 -1.88798688422E-16 -1.98478603911E-16 -2.08654819260E-16 -2.19352780305E-16 -2.30599237518E-16 -2.42422312897E-16 -2.54851570286E-16 -2.67918089299E-16 -2.81654543036E-16 -2.96095279782E-16 -3.11276408896E-16 -3.27235891104E-16 -3.44013633420E-16 -3.61651588933E-16 -3.80193861713E-16 -3.99686817094E-16 -4.20179197611E-16 -4.41722244881E-16 -4.64369827737E-16 -4.88178576924E-16 -5.13208026707E-16 -5.39520763737E-16 -5.67182583553E-16 -5.96262655100E-16 -6.26833693692E-16 -6.58972142837E-16 -6.92758365382E-16 -7.28276844467E-16 -7.65616394774E-16 -8.04870384610E-16 -8.46136969375E-16 -8.89519337007E-16 -9.35125965998E-16 -9.83070896652E-16 -1.03347401624E-15 -1.08646135879E-15 -1.14216542023E-15 -1.20072548969E-15 -1.26228799782E-15 -1.32700688290E-15 -1.39504397583E-15 -1.46656940473E-15 -1.54176202038E-15 -1.62080984343E-15 -1.70391053457E-15 -1.79127188874E-15 -1.88311235477E-15 -1.97966158159E-15 -2.08116099248E-15 -2.18786438876E-15 -2.30003858441E-15 -2.41796407326E-15 -2.54193573035E-15 -2.67226354929E-15 -2.80927341739E-15 -2.95330793057E-15 -3.10472724998E-15 -3.26391000266E-15 -3.43125422823E-15 -3.60717837427E-15 -3.79212234258E-15 -3.98654858922E-15 -4.19094328086E-15 -4.40581751046E-15 -4.63170857528E-15 -4.86918132037E-15 -5.11882955098E-15 -5.38127751743E-15 -5.65718147600E-15 -5.94723132993E-15 -6.25215235455E-15 -6.57270701081E-15 -6.90969685189E-15 -7.26396452741E-15 -7.63639589058E-15 -8.02792221322E-15 -8.43952251445E-15 -8.87222600878E-15 -9.32711467960E-15 -9.80532598476E-15 -1.03080557008E-14 -1.08365609129E-14 -1.13921631586E-14 -1.19762517317E-14 -1.25902871568E-14 -1.32358048411E-14 -1.39144189137E-14 -1.46278262620E-14 -1.53778107743E-14 -1.61662478010E-14 -1.69951088436E-14 -1.78664664845E-14 -1.87824995696E-14 -1.97454986566E-14 -2.07578717425E-14 -2.18221502848E-14 -2.29409955313E-14 -2.41172051751E-14 -2.53537203497E-14 -2.66536329837E-14 -2.80201935321E-14 -2.94568191040E-14 -3.09671020073E-14 -3.25548187314E-14 -3.42239393901E-14 -3.59786376489E-14 -3.78233011617E-14 -3.97625425419E-14 -4.18012108963E-14 -4.39444039502E-14 -4.61974807950E-14 -4.85660752877E-14 -5.10561101392E-14 -5.36738117239E-14 -5.64257256485E-14 -5.93187331199E-14 -6.23600681513E-14 -6.55573356512E-14 -6.89185304393E-14 -7.24520572381E-14 -7.61667516884E-14 -8.00719024432E-14 -8.41772743943E-14 -8.84931330891E-14 -9.30302703999E-14 -9.78000315091E-14 -1.02814343278E-13 -1.08085744069E-13 -1.13627415101E-13 -1.19453213404E-13 -1.25577706473E-13 -1.32016208694E-13 -1.38784819635E-13 -1.45900464304E-13 -1.53380935473E-13 -1.61244938163E-13 -1.69512136424E-13 -1.78203202496E-13 -1.87339868509E-13 -1.96944980817E-13 -2.07042557130E-13 -2.17657846567E-13 -2.28817392794E-13 -2.40549100398E-13 -2.52882304656E-13 -2.65847844895E-13 -2.79478141602E-13 -2.93807277494E-13 -3.08871082736E-13 -3.24707224543E-13 -3.41355301360E-13 -3.58856941880E-13 -3.77255909137E-13 -3.96598209937E-13 -4.16932209891E-13 -4.38308754363E-13 -4.60781295601E-13 -4.84406026395E-13 -5.09242020592E-13 -5.35351380804E-13 -5.62799393696E-13 -5.91654693237E-13 -6.21989432319E-13 -6.53879463172E-13 -6.87404527032E-13 -7.22648453535E-13 -7.59699370332E-13 -7.98649923448E-13 -8.39597508947E-13 -8.82644516464E-13 -9.27898585233E-13 -9.75472873235E-13 -1.02548634015E-12 -1.07806404481E-12 -1.13333745791E-12 -1.19144479074E-12 -1.25253134079E-12 -1.31674985506E-12 -1.38426091200E-12 -1.45523332302E-12 -1.52984455463E-12 -1.60828117215E-12 -1.69073930624E-12 -1.77742514331E-12 -1.86855544109E-12 -1.96435807061E-12 -2.06507258600E-12 -2.17095082348E-12 -2.28225753105E-12 -2.39927103053E-12 -2.52228391344E-12 -2.65160377265E-12 -2.78755397149E-12 -2.93047445229E-12 -3.08072258642E-12 -3.23867406787E-12 -3.40472385264E-12 -3.57928714633E-12 -3.76280044232E-12 -3.95572261322E-12 -4.15853605822E-12 -4.37174790936E-12 -4.59589129952E-12 -4.83152669552E-12 -5.07924329953E-12 -5.33966052233E-12 -5.61342953210E-12 -5.90123488262E-12 -6.20379622494E-12 -6.52187010685E-12 -6.85625186451E-12 -7.20777761119E-12 -7.57732632785E-12 -7.96582206097E-12 -8.37423623308E-12 -8.80359007167E-12 -9.25495716269E-12 -9.72946613497E-12 -1.02283034822E-11 -1.07527165297E-11 -1.13040165532E-11 -1.18835820574E-11 -1.24928622231E-11 -1.31333805304E-11 -1.38067385681E-11 -1.45146200383E-11 -1.52587949661E-11 -1.60411241257E-11 -1.68635636928E-11 -1.77281701355E-11 -1.86371053566E-11 -1.95926420990E-11 -2.05971696283E-11 -2.16531997069E-11 -2.27633728741E-11 -2.39304650483E-11 -2.51573944682E-11 -2.64472289887E-11 -2.78031937519E-11 -2.92286792511E-11 -3.07272498076E-11 -3.23026524832E-11 -3.39588264486E-11 -3.56999128326E-11 -3.75302650760E-11 -3.94544598168E-11 -4.14773083327E-11 -4.36038685708E-11 -4.58394577938E-11 -4.81896658746E-11 -5.06603692721E-11 -5.32577457242E-11 -5.59882896936E-11 -5.88588286050E-11 -6.18765399158E-11 -6.50489690609E-11 -6.83840483183E-11 -7.18901166408E-11 -7.55759405057E-11 -7.94507358319E-11 -8.35241910222E-11 -8.78064911852E-11 -9.23083436000E-11 -9.70410044861E-11 -1.02016307146E-10 -1.07246691548E-10 -1.12745235430E-10 -1.18525686996E-10 -1.24602499285E-10 -1.30990866306E-10 -1.37706761025E-10 -1.44766975300E-10 -1.52189161857E-10 -1.59991878428E-10 -1.68194634142E-10 -1.76817938300E-10 -1.85883351650E-10 -1.95413540284E-10 -2.05432332309E-10 -2.15964777412E-10 -2.27037209483E-10 -2.38677312454E-10 -2.50914189498E-10 -2.63778435793E-10 -2.77302215001E-10 -2.91519339674E-10 -3.06465355785E-10 -3.22177631583E-10 -3.38695451008E-10 -3.56060111895E-10 -3.74315029212E-10 -3.93505843582E-10 -4.13680535379E-10 -4.34889544664E-10 -4.57185897271E-10 -4.80625337357E-10 -5.05266466743E-10 -5.31170891400E-10 -5.58403375439E-10 -5.87032003001E-10 -6.17128348432E-10 -6.48767655195E-10 -6.82029023943E-10 -7.16995610226E-10 -7.53754832348E-10 -7.92398589858E-10 -8.33023493251E-10 -8.75731105435E-10 -9.20628195580E-10 -9.67827005968E-10 -1.01744553253E-09 -1.06960781973E-09 -1.12444427062E-09 -1.18209197273E-09 -1.24269504067E-09 -1.30640497630E-09 -1.37338104737E-09 -1.44379068552E-09 -1.51780990472E-09 -1.59562374112E-09 -1.67742671548E-09 -1.76342331923E-09 -1.85382852549E-09 -1.94886832628E-09 -2.04878029721E-09 -2.15381419112E-09 -2.26423256219E-09 -2.38031142193E-09 -2.50234092889E-09 -2.63062611359E-09 -2.76548764071E-09 -2.90726261022E-09 -3.05630539967E-09 -3.21298854949E-09 -3.37770369379E-09 -3.55086253873E-09 -3.73289789109E-09 -3.92426473947E-09 -4.12544139092E-09 -4.33693066576E-09 -4.55926115365E-09 -4.79298853394E-09 -5.03869696368E-09 -5.29700053674E-09 -5.56854481764E-09 -5.85400845395E-09 -6.15410487124E-09 -6.46958405492E-09 -6.80123442322E-09 -7.14988479617E-09 -7.51640646539E-09 -7.90171536987E-09 -8.30677438316E-09 -8.73259571769E-09 -9.18024345218E-09 -9.65083618848E-09 -1.01455498444E-08 -1.06656205897E-08 -1.12123479319E-08 -1.17870979611E-08 -1.23913067593E-08 -1.30264839860E-08 -1.36942166462E-08 -1.43961730515E-08 -1.51341069842E-08 -1.59098620743E-08 -1.67253764008E-08 -1.75826873277E-08 -1.84839365889E-08 -1.94313756316E-08 -2.04273712348E-08 -2.14744114139E-08 -2.25751116283E-08 -2.37322213060E-08 -2.49486307027E-08 -2.62273781111E-08 -2.75716574394E-08 -2.89848261772E-08 -3.04704137691E-08 -3.20321304165E-08 -3.36738763292E-08 -3.53997514505E-08 -3.72140656799E-08 -3.91213496175E-08 -4.11263658585E-08 -4.32341208654E-08 -4.54498774461E-08 -4.77791678708E-08 -5.02278076589E-08 -5.28019100706E-08 -5.55079013392E-08 -5.83525366815E-08 -6.13429171266E-08 -6.44865072046E-08 -6.77911535384E-08 -7.12651043859E-08 -7.49170301800E-08 -7.87560451174E-08 -8.27917298508E-08 -8.70341553387E-08 -9.14939079138E-08 -9.61821156308E-08 -1.01110475959E-07 -1.06291284889E-07 -1.11737467524E-07 -1.17462610232E-07 -1.23480994442E-07 -1.29807632156E-07 -1.36458303284E-07 -1.43449594873E-07 -1.50798942342E-07 -1.58524672818E-07 -1.66646050681E-07 -1.75183325433E-07 -1.84157782002E-07 -1.93591793614E-07 -2.03508877360E-07 -2.13933752584E-07 -2.24892402260E-07 -2.36412137481E-07 -2.48521665239E-07 -2.61251159655E-07 -2.74632336832E-07 -2.88698533517E-07 -3.03484789772E-07 -3.19027935840E-07 -3.35366683436E-07 -3.52541721678E-07 -3.70595817896E-07 -3.89573923564E-07 -4.09523285610E-07 -4.30493563394E-07 -4.52536951610E-07 -4.75708309444E-07 -5.00065296281E-07 -5.25668514300E-07 -5.52581658307E-07 -5.80871673165E-07 -6.10608919209E-07 -6.41867346049E-07 -6.74724675179E-07 -7.09262591842E-07 -7.45566946602E-07 -7.83727967143E-07 -8.23840480765E-07 -8.66004148162E-07 -9.10323709005E-07 -9.56909239957E-07 -1.00587642573E-06 -1.05734684381E-06 -1.11144826363E-06 -1.16831496077E-06 -1.22808804707E-06 -1.29091581734E-06 -1.35695411367E-06 -1.42636670792E-06 -1.49932570367E-06 -1.57601195828E-06 -1.65661552626E-06 -1.74133612493E-06 -1.83038362346E-06 -1.92397855657E-06 -2.02235266395E-06 -2.12574945680E-06 -2.23442481282E-06 -2.34864760100E-06 -2.46870033773E-06 -2.59487987578E-06 -2.72749812779E-06 -2.86688282590E-06 -3.01337831940E-06 -3.16734641222E-06 -3.32916724222E-06 -3.49924020434E-06 -3.67798491979E-06 -3.86584225350E-06 -4.06327538220E-06 -4.27077091564E-06 -4.48884007355E-06 -4.71801992095E-06 -4.95887466481E-06 -5.21199701496E-06 -5.47800961236E-06 -5.75756652806E-06 -6.05135483616E-06 -6.36009626453E-06 -6.68454892683E-06 -7.02550913992E-06 -7.38381333067E-06 -7.76034003652E-06 -8.15601200419E-06 -8.57179839138E-06 -9.00871707619E-06 -9.46783707960E-06 -9.95028110619E-06 -1.04572282088E-05 -1.09899165829E-05 -1.15496464972E-05 -1.21377833659E-05 -1.27557609708E-05 -1.34050848385E-05 -1.40873357814E-05 -1.48041736093E-05 -1.55573410197E-05 -1.63486676756E-05 -1.71800744777E-05 -1.80535780430E-05 -1.89712953958E-05 -1.99354488833E-05 -2.09483713249E-05 -2.20125114059E-05 -2.31304393269E-05 -2.43048527199E-05 -2.55385828436E-05 -2.68346010698E-05 -2.81960256741E-05 -2.96261289444E-05 -3.11283446201E-05 -3.27062756782E-05 -3.43637024798E-05 -3.61045912932E-05 -3.79331032095E-05 -3.98536034671E-05 -4.18706712036E-05 -4.39891096512E-05 -4.62139567951E-05 -4.85504965142E-05 -5.10042702235E-05 -5.35810890376E-05 -5.62870464784E-05 -5.91285317465E-05 -6.21122435798E-05 -6.52452047212E-05 -6.85347770206E-05 -7.19886771924E-05 -7.56149932564E-05 -7.94222016849E-05 -8.34191852828E-05 -8.76152518275E-05 -9.20201534936E-05 -9.66441070927E-05 -1.01497815152E-04 -1.06592487864E-04 -1.11939865931E-04 -1.17552244340E-04 -1.23442497086E-04 -1.29624102882E-04 -1.36111171883E-04 -1.42918473446E-04 -1.50061464962E-04 -1.57556321784E-04 -1.65419968279E-04 -1.73670110026E-04 -1.82325267199E-04 -1.91404809143E-04 -2.00928990174E-04 -2.10918986626E-04 -2.21396935160E-04 -2.32385972353E-04 -2.43910275589E-04 -2.55995105243E-04 -2.68666848196E-04 -2.81953062657E-04 -2.95882524310E-04 -3.10485273776E-04 -3.25792665372E-04 -3.41837417168E-04 -3.58653662298E-04 -3.76277001510E-04 -3.94744556912E-04 -4.14095026867E-04 -4.34368741966E-04 -4.55607722041E-04 -4.77855734099E-04 -5.01158351119E-04 -5.25563011573E-04 -5.51119079574E-04 -5.77877905491E-04 -6.05892886881E-04 -6.35219529556E-04 -6.65915508591E-04 -6.98040729034E-04 -7.31657386089E-04 -7.66830024477E-04 -8.03625596681E-04 -8.42113519735E-04 -8.82365730188E-04 -9.24456736827E-04 -9.68463670731E-04 -1.01446633215E-03 -1.06254723372E-03 -1.11279163933E-03 -1.16528759820E-03 -1.22012597330E-03 -1.27740046351E-03 -1.33720761863E-03 -1.39964684650E-03 -1.46482041120E-03 -1.53283342142E-03 -1.60379380793E-03 -1.67781228896E-03 -1.75500232244E-03 -1.83548004360E-03 -1.91936418674E-03 -2.00677598971E-03 -2.09783907943E-03 -2.19267933698E-03 -2.29142474051E-03 -2.39420518418E-03 -2.50115227116E-03 -2.61239907893E-03 -2.72807989462E-03 -2.84832991844E-03 -2.97328493281E-03 -3.10308093512E-03 -3.23785373168E-03 -3.37773849043E-03 -3.52286925008E-03 -3.67337838319E-03 -3.82939601072E-03 -3.99104936550E-03 -4.15846210240E-03 -4.33175355248E-03 -4.51103791918E-03 -4.69642341404E-03 -4.88801133002E-03 -5.08589505055E-03 -5.29015899258E-03 -5.50087748230E-03 -5.71811356240E-03 -5.94191773029E-03 -6.17232660687E-03 -6.40936153627E-03 -6.65302711731E-03 -6.90330966825E-03 -7.16017562701E-03 -7.42356988994E-03 -7.69341409325E-03 -7.96960484195E-03 -8.25201189256E-03 -8.54047629687E-03 -8.83480851548E-03 -9.13478651117E-03 -9.44015383382E-03 -9.75061770999E-03 -1.00658471524E-02 -1.03854711059E-02 -1.07090766486E-02 -1.10362072696E-02 -1.13663612441E-02 -1.16989901337E-02 -1.20334974352E-02 -1.23692374097E-02 -1.27055141209E-02 -1.30415807166E-02 -1.33766389870E-02 -1.37098392362E-02 -1.40402805051E-02 -1.43670111826E-02 -1.46890300463E-02 -1.50052877707E-02 -1.53146889429E-02 -1.56160946247E-02 -1.59083254971E-02 -1.61901656232E-02 -1.64603668607E-02 -1.67176539523E-02 -1.69607303168E-02 -1.71882845579E-02 -1.73989977005E-02 -1.75915511558E-02 -1.77646354082E-02 -1.79169594030E-02 -1.80472606060E-02 -1.81543156890E-02 -1.82369517835E-02 -1.82940582270E-02 -1.83245987117E-02 -1.83276237273E-02 -1.83022831707E-02 -1.82478389801E-02 -1.81636776303E-02 -1.80493223098E-02 -1.79044445851E-02 -1.77288753400E-02 -1.75226147674E-02 -1.72858411806E-02 -1.70189184030E-02 -1.67224014949E-02 -1.63970405772E-02 -1.60437825198E-02 -1.56637702775E-02 -1.52583396768E-02 -1.48290134867E-02 -1.43774926434E-02 -1.39056445437E-02 -1.34154883769E-02 -1.29091775290E-02 -1.23889791622E-02 -1.18572511546E-02 -1.13164166721E-02 -1.07689367372E-02 -1.02172812579E-02 -9.66389908354E-03 -9.11118775526E-03 -8.56146372115E-03 -8.01693388433E-03 -7.47966944149E-03 -6.95158304887E-03 -6.43441041767E-03 -5.92969748613E-03 -5.43879433838E-03 -4.96285703502E-03 -4.50285848212E-03 -4.05960939015E-03 -3.63379025570E-03 -3.22599513236E-03 -2.83678773720E-03 -2.46677016013E-03 -2.11666410094E-03 -1.78740414671E-03 -1.48024211751E-03 -1.19686094777E-03 -9.39495931456E-04 -7.11060444909E-04 -5.15272473678E-04 -3.55500346010E-04 -2.30494570821E-04 -1.37293746936E-04 -7.23297588713E-05 -3.13869105243E-05 -9.56231124988E-06 -1.22856410306E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 5 1 i j (l(j)) 0.00000000000E+00 Q_int -2.10119874124E-20 -2.20892950436E-20 -2.32218374183E-20 -2.44124464821E-20 -2.56640993780E-20 -2.69799258901E-20 -2.83632162700E-20 -2.98174294643E-20 -3.13462017634E-20 -3.29533558943E-20 -3.46429105795E-20 -3.64190905857E-20 -3.82863372881E-20 -4.02493197761E-20 -4.23129465284E-20 -4.44823776867E-20 -4.67630379589E-20 -4.91606301836E-20 -5.16811495902E-20 -5.43308987902E-20 -5.71165035366E-20 -6.00449292923E-20 -6.31234986470E-20 -6.63599096277E-20 -6.97622549475E-20 -7.33390422419E-20 -7.70992153422E-20 -8.10521766397E-20 -8.52078105967E-20 -8.95765084626E-20 -9.41691942575E-20 -9.89973520882E-20 -1.04073054864E-19 -1.09408994486E-19 -1.15018513582E-19 -1.20915638871E-19 -1.27115116240E-19 -1.33632447610E-19 -1.40483929704E-19 -1.47686694796E-19 -1.55258753551E-19 -1.63219040059E-19 -1.71587459184E-19 -1.80384936332E-19 -1.89633469777E-19 -1.99356185671E-19 -2.09577395869E-19 -2.20322658718E-19 -2.31618842973E-19 -2.43494194979E-19 -2.55978409302E-19 -2.69102702978E-19 -2.82899893579E-19 -2.97404481268E-19 -3.12652735069E-19 -3.28682783558E-19 -3.45534710207E-19 -3.63250653609E-19 -3.81874912850E-19 -4.01454058279E-19 -4.22037047959E-19 -4.43675350083E-19 -4.66423071679E-19 -4.90337093897E-19 -5.15477214251E-19 -5.41906296134E-19 -5.69690426018E-19 -5.98899078699E-19 -6.29605291022E-19 -6.61885844512E-19 -6.95821457365E-19 -7.31496986291E-19 -7.69001638693E-19 -8.08429195735E-19 -8.49878246849E-19 -8.93452436249E-19 -9.39260722105E-19 -9.87417648992E-19 -1.03804363431E-18 -1.09126526939E-18 -1.14721563604E-18 -1.20603463932E-18 -1.26786935737E-18 -1.33287440920E-18 -1.40121234129E-18 -1.47305403407E-18 -1.54857912918E-18 -1.62797647871E-18 -1.71144461738E-18 -1.79919225901E-18 -1.89143881840E-18 -1.98841496001E-18 -2.09036317470E-18 -2.19753838609E-18 -2.31020858805E-18 -2.42865551476E-18 -2.55317534523E-18 -2.68407944389E-18 -2.82169513917E-18 -2.96636654198E-18 -3.11845540617E-18 -3.27834203313E-18 -3.44642622269E-18 -3.62312827287E-18 -3.80889003084E-18 -4.00417599773E-18 -4.20947449017E-18 -4.42529886132E-18 -4.65218878452E-18 -4.89071160275E-18 -5.14146374727E-18 -5.40507222906E-18 -5.68219620660E-18 -5.97352863417E-18 -6.27979799458E-18 -6.60177012073E-18 -6.94025011064E-18 -7.29608434055E-18 -7.67016258138E-18 -8.06342022354E-18 -8.47684061597E-18 -8.91145752494E-18 -9.36835771909E-18 -9.84868368686E-18 -1.03536364933E-17 -1.08844787835E-17 -1.14425379395E-17 -1.20292094000E-17 -1.26459601490E-17 -1.32943323847E-17 -1.39759473754E-17 -1.46925095134E-17 -1.54458105773E-17 -1.62377342121E-17 -1.70702606393E-17 -1.79454716086E-17 -1.88655556030E-17 -1.98328133119E-17 -2.08496633831E-17 -2.19186484714E-17 -2.30424415963E-17 -2.42238528257E-17 -2.54658363030E-17 -2.67714976337E-17 -2.81441016510E-17 -2.95870805797E-17 -3.11040426186E-17 -3.26987809628E-17 -3.43752832886E-17 -3.61377417248E-17 -3.79905633354E-17 -3.99383811390E-17 -4.19860656947E-17 -4.41387372799E-17 -4.64017786948E-17 -4.87808487211E-17 -5.12818962728E-17 -5.39111752712E-17 -5.66752602827E-17 -5.95810629593E-17 -6.26358493206E-17 -6.58472579232E-17 -6.92233189608E-17 -7.27724743437E-17 -7.65035988085E-17 -8.04260221090E-17 -8.45495523459E-17 -8.88845004916E-17 -9.34417061735E-17 -9.82325647787E-17 -1.03269055948E-16 -1.08563773532E-16 -1.14129957080E-16 -1.19981524950E-16 -1.26133109108E-16 -1.32600091717E-16 -1.39398643600E-16 -1.46545764677E-16 -1.54059326470E-16 -1.61958116796E-16 -1.70261886743E-16 -1.78991400059E-16 -1.88168485070E-16 -1.97816089267E-16 -2.07958336682E-16 -2.18620588214E-16 -2.29829505042E-16 -2.41613115291E-16 -2.54000884122E-16 -2.67023787405E-16 -2.80714389176E-16 -2.95106923065E-16 -3.10237377899E-16 -3.26143587689E-16 -3.42865326240E-16 -3.60444406599E-16 -3.78924785617E-16 -3.98352673860E-16 -4.18776651158E-16 -4.40247788084E-16 -4.62819773654E-16 -4.86549049578E-16 -5.11494951394E-16 -5.37719856837E-16 -5.65289341818E-16 -5.94272344393E-16 -6.24741337151E-16 -6.56772508425E-16 -6.90445952811E-16 -7.25845871439E-16 -7.63060782523E-16 -8.02183742701E-16 -8.43312579727E-16 -8.86550137090E-16 -9.32004531176E-16 -9.79789421613E-16 -1.03002429549E-15 -1.08283476611E-15 -1.13835288712E-15 -1.19671748271E-15 -1.25807449471E-15 -1.32257734757E-15 -1.39038733196E-15 -1.46167400811E-15 -1.53661562978E-15 -1.61539958999E-15 -1.69822288960E-15 -1.78529262993E-15 -1.87682653060E-15 -1.97305347395E-15 -2.07421407736E-15 -2.18056129493E-15 -2.29236104999E-15 -2.40989290003E-15 -2.53345073576E-15 -2.66334351600E-15 -2.79989604021E-15 -2.94344976064E-15 -3.09436363622E-15 -3.25301503003E-15 -3.41980065300E-15 -3.59513755584E-15 -3.77946417189E-15 -3.97324141346E-15 -4.17695382430E-15 -4.39111079125E-15 -4.61624781795E-15 -4.85292786390E-15 -5.10174275212E-15 -5.36331464902E-15 -5.63829762016E-15 -5.92737926574E-15 -6.23128243994E-15 -6.55076705845E-15 -6.88663199863E-15 -7.23971709716E-15 -7.61090525001E-15 -8.00112462018E-15 -8.41135095855E-15 -8.84261004379E-15 -9.29598024734E-15 -9.77259522986E-15 -1.02736467760E-14 -1.08003877745E-14 -1.13541353509E-14 -1.19362741612E-14 -1.25482598544E-14 -1.31916227118E-14 -1.38679714740E-14 -1.45789973635E-14 -1.53264783132E-14 -1.61122834130E-14 -1.69383775825E-14 -1.78068264851E-14 -1.87198016927E-14 -1.96795861161E-14 -2.06885797132E-14 -2.17493054902E-14 -2.28644158107E-14 -2.40366990273E-14 -2.52690864547E-14 -2.65646596989E-14 -2.79266583630E-14 -2.93584881480E-14 -3.08637293685E-14 -3.24461459058E-14 -3.41096946189E-14 -3.58585352392E-14 -3.76970407716E-14 -3.96298084295E-14 -4.16616711301E-14 -4.37977095790E-14 -4.60432649750E-14 -4.84039523651E-14 -5.08856746858E-14 -5.34946375228E-14 -5.62373646285E-14 -5.91207142346E-14 -6.21518962011E-14 -6.53384900445E-14 -6.86884638910E-14 -7.22101944000E-14 -7.59124877110E-14 -7.98046014624E-14 -8.38962679411E-14 -8.81977184176E-14 -9.27197087297E-14 -9.74735461774E-14 -1.02471117797E-13 -1.07724920084E-13 -1.13248090242E-13 -1.19054439031E-13 -1.25158485302E-13 -1.31575492302E-13 -1.38321505836E-13 -1.45413394398E-13 -1.52868891339E-13 -1.60706639221E-13 -1.68946236424E-13 -1.77608286156E-13 -1.86714447971E-13 -1.96287491927E-13 -2.06351355525E-13 -2.16931203561E-13 -2.28053491056E-13 -2.39746029401E-13 -2.52038055902E-13 -2.64960306888E-13 -2.78545094568E-13 -2.92826387823E-13 -3.07839897151E-13 -3.23623163957E-13 -3.40215654425E-13 -3.57658858204E-13 -3.75996392154E-13 -3.95274109407E-13 -4.15540214021E-13 -4.36845381519E-13 -4.59242885598E-13 -4.82788731341E-13 -5.07541795255E-13 -5.33563972494E-13 -5.60920331625E-13 -5.89679277331E-13 -6.19912721456E-13 -6.51696262818E-13 -6.85109376245E-13 -7.20235611297E-13 -7.57162801184E-13 -7.95983282387E-13 -8.36794125544E-13 -8.79697378176E-13 -9.24800319848E-13 -9.72215730427E-13 -1.02206217208E-12 -1.07446428572E-12 -1.12955310271E-12 -1.18746637246E-12 -1.24834890687E-12 -1.31235294245E-12 -1.37963852097E-12 -1.45037388964E-12 -1.52473592178E-12 -1.60291055913E-12 -1.68509327677E-12 -1.77148957186E-12 -1.86231547756E-12 -1.95779810312E-12 -2.05817620182E-12 -2.16370076792E-12 -2.27463566429E-12 -2.39125828216E-12 -2.51386023474E-12 -2.64274808636E-12 -2.77824411903E-12 -2.92068713831E-12 -3.07043332042E-12 -3.22785710287E-12 -3.39335212069E-12 -3.56733219075E-12 -3.75023234637E-12 -3.94250992521E-12 -4.14464571270E-12 -4.35714514428E-12 -4.58053956917E-12 -4.81538757895E-12 -5.06227640430E-12 -5.32182338329E-12 -5.59467750500E-12 -5.88152103223E-12 -6.18307120746E-12 -6.50008204618E-12 -6.83334622233E-12 -7.18369705017E-12 -7.55201056801E-12 -7.93920772854E-12 -8.34625670163E-12 -8.77417529509E-12 -9.22403349957E-12 -9.69695616395E-12 -1.01941258079E-11 -1.07167855784E-11 -1.12662423585E-11 -1.18438700344E-11 -1.24511129313E-11 -1.30894894241E-11 -1.37605957342E-11 -1.44661099206E-11 -1.52077960753E-11 -1.59875087347E-11 -1.68071975157E-11 -1.76689119913E-11 -1.85748068143E-11 -1.95271471052E-11 -2.05283141154E-11 -2.15808111812E-11 -2.26872699827E-11 -2.38504571237E-11 -2.50732810493E-11 -2.63587993175E-11 -2.77102262441E-11 -2.91309409390E-11 -3.06244957553E-11 -3.21946251706E-11 -3.38452551246E-11 -3.55805128343E-11 -3.74047371132E-11 -3.93224892196E-11 -4.13385642599E-11 -4.34580031784E-11 -4.56861053596E-11 -4.80284418782E-11 -5.04908694280E-11 -5.30795449638E-11 -5.58009410956E-11 -5.86618622705E-11 -6.16694617851E-11 -6.48312596698E-11 -6.81551614891E-11 -7.16494781072E-11 -7.53229464656E-11 -7.91847514260E-11 -8.32445487339E-11 -8.75124891577E-11 -9.19992438669E-11 -9.67160311101E-11 -1.01674644261E-10 -1.06887481303E-10 -1.12367575822E-10 -1.18128629592E-10 -1.24185046831E-10 -1.30551970206E-10 -1.37245318694E-10 -1.44281827375E-10 -1.51679089271E-10 -1.59455599325E-10 -1.67630800639E-10 -1.76225133074E-10 -1.85260084354E-10 -1.94758243776E-10 -2.04743358681E-10 -2.15240393822E-10 -2.26275593762E-10 -2.37876548489E-10 -2.50072262378E-10 -2.62893226694E-10 -2.76371495817E-10 -2.90540767361E-10 -3.05436466414E-10 -3.21095834081E-10 -3.37558020580E-10 -3.54864183098E-10 -3.73057588666E-10 -3.92183722313E-10 -4.12290400751E-10 -4.33427891897E-10 -4.55649040515E-10 -4.79009400303E-10 -5.03567372741E-10 -5.29384353063E-10 -5.56524883704E-10 -5.85056815618E-10 -6.15051477856E-10 -6.46583855838E-10 -6.79732778761E-10 -7.14581116614E-10 -7.51215987278E-10 -7.89728974256E-10 -8.30216355548E-10 -8.72779344254E-10 -9.17524341518E-10 -9.64563202421E-10 -1.01401351550E-09 -1.06599889662E-09 -1.12064929783E-09 -1.17810133213E-09 -1.23849861484E-09 -1.30199212246E-09 -1.36874056988E-09 -1.43891080704E-09 -1.51267823572E-09 -1.59022724791E-09 -1.67175168642E-09 -1.75745532926E-09 -1.84755239873E-09 -1.94226809666E-09 -2.04183916701E-09 -2.14651448731E-09 -2.25655569047E-09 -2.37223781830E-09 -2.49385000867E-09 -2.62169621771E-09 -2.75609597914E-09 -2.89738520242E-09 -3.04591701179E-09 -3.20206262829E-09 -3.36621229698E-09 -3.53877626163E-09 -3.72018578928E-09 -3.91089424740E-09 -4.11137823605E-09 -4.32213877819E-09 -4.54370257078E-09 -4.77662330009E-09 -5.02148302425E-09 -5.27889362669E-09 -5.54949834392E-09 -5.83397337158E-09 -6.13302955270E-09 -6.44741415244E-09 -6.77791272359E-09 -7.12535106771E-09 -7.49059729654E-09 -7.87456399902E-09 -8.27821051916E-09 -8.70254535062E-09 -9.14862865370E-09 -9.61757490133E-09 -1.01105556603E-08 -1.06288025150E-08 -1.11736101405E-08 -1.17463395335E-08 -1.23484214077E-08 -1.29813597638E-08 -1.36467356414E-08 -1.43462110635E-08 -1.50815331823E-08 -1.58545386374E-08 -1.66671581370E-08 -1.75214212727E-08 -1.84194615817E-08 -1.93635218671E-08 -2.03559597905E-08 -2.13992537506E-08 -2.24960090625E-08 -2.36489644526E-08 -2.48609988862E-08 -2.61351387436E-08 -2.74745653629E-08 -2.88826229694E-08 -3.03628270088E-08 -3.19188729075E-08 -3.35546452802E-08 -3.52742276075E-08 -3.70819124089E-08 -3.89822119349E-08 -4.09798694055E-08 -4.30798708226E-08 -4.52874573864E-08 -4.76081385447E-08 -5.00477057101E-08 -5.26122466764E-08 -5.53081607714E-08 -5.81421747838E-08 -6.11213597020E-08 -6.42531483086E-08 -6.75453536715E-08 -7.10061885792E-08 -7.46442859679E-08 -7.84687203904E-08 -8.24890305796E-08 -8.67152431637E-08 -9.11578975903E-08 -9.58280723211E-08 -1.00737412362E-07 -1.05898158198E-07 -1.11323176200E-07 -1.17025990581E-07 -1.23020816987E-07 -1.29322597789E-07 -1.35947039179E-07 -1.42910650156E-07 -1.50230783489E-07 -1.57925678776E-07 -1.66014507688E-07 -1.74517421515E-07 -1.83455601132E-07 -1.92851309510E-07 -2.02727946893E-07 -2.13110108782E-07 -2.24023646866E-07 -2.35495733053E-07 -2.47554926748E-07 -2.60231245557E-07 -2.73556239574E-07 -2.87563069443E-07 -3.02286588388E-07 -3.17763428393E-07 -3.34032090772E-07 -3.51133041314E-07 -3.69108810267E-07 -3.88004097383E-07 -4.07865882291E-07 -4.28743540459E-07 -4.50688965024E-07 -4.73756694805E-07 -4.98004048780E-07 -5.23491267374E-07 -5.50281660896E-07 -5.78441765470E-07 -6.08041506864E-07 -6.39154372583E-07 -6.71857592653E-07 -7.06232329545E-07 -7.42363877669E-07 -7.80341872938E-07 -8.20260512896E-07 -8.62218787945E-07 -9.06320724212E-07 -9.52675638650E-07 -1.00139840698E-06 -1.05260974512E-06 -1.10643650471E-06 -1.16301198359E-06 -1.22247625178E-06 -1.28497649383E-06 -1.35066736844E-06 -1.41971138597E-06 -1.49227930499E-06 -1.56855054861E-06 -1.64871364170E-06 -1.73296666993E-06 -1.82151776178E-06 -1.91458559463E-06 -2.01239992612E-06 -2.11520215195E-06 -2.22324589158E-06 -2.33679760299E-06 -2.45613722812E-06 -2.58155887037E-06 -2.71337150573E-06 -2.85189972926E-06 -2.99748453855E-06 -3.15048415599E-06 -3.31127489183E-06 -3.48025204978E-06 -3.65783087749E-06 -3.84444756384E-06 -4.04056028542E-06 -4.24665030462E-06 -4.46322312160E-06 -4.69080968301E-06 -4.92996764991E-06 -5.18128272790E-06 -5.44537006239E-06 -5.72287570198E-06 -6.01447813345E-06 -6.32088989141E-06 -6.64285924649E-06 -6.98117197547E-06 -7.33665321744E-06 -7.71016941981E-06 -8.10263037861E-06 -8.51499137723E-06 -8.94825542836E-06 -9.40347562388E-06 -9.88175759754E-06 -1.03842621059E-05 -1.09122077326E-05 -1.14668737221E-05 -1.20496029481E-05 -1.26618050234E-05 -1.33049595577E-05 -1.39806195683E-05 -1.46904150539E-05 -1.54360567347E-05 -1.62193399701E-05 -1.70421488586E-05 -1.79064605299E-05 -1.88143496372E-05 -1.97679930582E-05 -2.07696748130E-05 -2.18217912105E-05 -2.29268562305E-05 -2.40875071534E-05 -2.53065104464E-05 -2.65867679184E-05 -2.79313231540E-05 -2.93433682378E-05 -3.08262507810E-05 -3.23834812639E-05 -3.40187407044E-05 -3.57358886678E-05 -3.75389716299E-05 -3.94322317080E-05 -4.14201157726E-05 -4.35072849567E-05 -4.56986245746E-05 -4.79992544671E-05 -5.04145397892E-05 -5.29501022540E-05 -5.56118318506E-05 -5.84058990520E-05 -6.13387675291E-05 -6.44172073887E-05 -6.76483089504E-05 -7.10394970827E-05 -7.45985461120E-05 -7.83335953242E-05 -8.22531650757E-05 -8.63661735291E-05 -9.06819540332E-05 -9.52102731617E-05 -9.99613494278E-05 -1.04945872691E-04 -1.10175024270E-04 -1.15660497775E-04 -1.21414520682E-04 -1.27449876644E-04 -1.33779928569E-04 -1.40418642463E-04 -1.47380612054E-04 -1.54681084195E-04 -1.62335985057E-04 -1.70361947117E-04 -1.78776336930E-04 -1.87597283692E-04 -1.96843708579E-04 -2.06535354862E-04 -2.16692818772E-04 -2.27337581103E-04 -2.38492039533E-04 -2.50179541617E-04 -2.62424418442E-04 -2.75252018877E-04 -2.88688744384E-04 -3.02762084330E-04 -3.17500651734E-04 -3.32934219367E-04 -3.49093756130E-04 -3.66011463609E-04 -3.83720812699E-04 -4.02256580168E-04 -4.21654885044E-04 -4.41953224650E-04 -4.63190510143E-04 -4.85407101351E-04 -5.08644840728E-04 -5.32947086175E-04 -5.58358742510E-04 -5.84926291297E-04 -6.12697818755E-04 -6.41723041414E-04 -6.72053329187E-04 -7.03741725466E-04 -7.36842963844E-04 -7.71413481019E-04 -8.07511425402E-04 -8.45196660913E-04 -8.84530765431E-04 -9.25577023283E-04 -9.68400411156E-04 -1.01306757675E-03 -1.05964680944E-03 -1.10820800223E-03 -1.15882260406E-03 -1.21156356177E-03 -1.26650525067E-03 -1.32372339278E-03 -1.38329496180E-03 -1.44529807360E-03 -1.50981186127E-03 -1.57691633342E-03 -1.64669221458E-03 -1.71922076644E-03 -1.79458358865E-03 -1.87286239767E-03 -1.95413878255E-03 -2.03849393598E-03 -2.12600835935E-03 -2.21676154022E-03 -2.31083160091E-03 -2.40829491661E-03 -2.50922570169E-03 -2.61369556268E-03 -2.72177301677E-03 -2.83352297433E-03 -2.94900618439E-03 -3.06827864200E-03 -3.19139095641E-03 -3.31838767947E-03 -3.44930659347E-03 -3.58417795825E-03 -3.72302371736E-03 -3.86585666360E-03 -4.01267956441E-03 -4.16348424821E-03 -4.31825065295E-03 -4.47694583897E-03 -4.63952296849E-03 -4.80592025486E-03 -4.97605988533E-03 -5.14984692174E-03 -5.32716818448E-03 -5.50789112573E-03 -5.69186269903E-03 -5.87890823307E-03 -6.06883031884E-03 -6.26140771996E-03 -6.45639431753E-03 -6.65351810175E-03 -6.85248022373E-03 -7.05295412217E-03 -7.25458474084E-03 -7.45698785372E-03 -7.65974951605E-03 -7.86242566055E-03 -8.06454185883E-03 -8.26559326931E-03 -8.46504479327E-03 -8.66233146147E-03 -8.85685907410E-03 -9.04800511670E-03 -9.23511997467E-03 -9.41752846834E-03 -9.59453172956E-03 -9.76540943943E-03 -9.92942244476E-03 -1.00858157686E-02 -1.02338220270E-02 -1.03726652604E-02 -1.05015651842E-02 -1.06197418573E-02 -1.07264207625E-02 -1.08208382858E-02 -1.09022475737E-02 -1.09699247424E-02 -1.10231754006E-02 -1.10613414413E-02 -1.10838080477E-02 -1.10900108485E-02 -1.10794431462E-02 -1.10516631353E-02 -1.10063010128E-02 -1.09430658776E-02 -1.08617523047E-02 -1.07622464713E-02 -1.06445317083E-02 -1.05086933416E-02 -1.03549226895E-02 -1.01835200783E-02 -9.99489674325E-03 -9.78957548748E-03 -9.56818998185E-03 -9.33148260165E-03 -9.08030071631E-03 -8.81559137063E-03 -8.53839432516E-03 -8.24983345691E-03 -7.95110656057E-03 -7.64347363473E-03 -7.32824378618E-03 -7.00676093926E-03 -6.68038859442E-03 -6.35049394049E-03 -6.01843168827E-03 -5.68552805618E-03 -5.35306540262E-03 -5.02226806036E-03 -4.69428998623E-03 -4.37020489078E-03 -4.05099955583E-03 -3.73757108095E-03 -3.43072881868E-03 -3.13120176147E-03 -2.83965212600E-03 -2.55669584060E-03 -2.28293057345E-03 -2.01897184112E-03 -1.76549760190E-03 -1.52330156413E-03 -1.29335521957E-03 -1.07687834264E-03 -8.75417372403E-04 -6.90930712825E-04 -5.25879544268E-04 -3.83322235319E-04 -2.66077865583E-04 -1.73602949875E-04 -1.04079381867E-04 -5.52004210130E-05 -2.41203337014E-05 -7.40130506144E-06 -9.57965279130E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 6 1 i j (l(j)) 0.00000000000E+00 Q_int -3.52008275623E-20 -3.70056125841E-20 -3.89029309126E-20 -4.08975268320E-20 -4.29943878709E-20 -4.51987572742E-20 -4.75161471135E-20 -4.99523520705E-20 -5.25134639266E-20 -5.52058867954E-20 -5.80363531365E-20 -6.10119405900E-20 -6.41400896746E-20 -6.74286223922E-20 -7.08857617876E-20 -7.45201525100E-20 -7.83408824292E-20 -8.23575053602E-20 -8.65800649524E-20 -9.10191198042E-20 -9.56857698650E-20 -1.00591684191E-19 -1.05749130122E-19 -1.11171003961E-19 -1.16870863215E-19 -1.22862960503E-19 -1.29162279187E-19 -1.35784570847E-19 -1.42746394660E-19 -1.50065158813E-19 -1.57759164027E-19 -1.65847649324E-19 -1.74350840129E-19 -1.83289998849E-19 -1.92687478037E-19 -2.02566776285E-19 -2.12952596985E-19 -2.23870910099E-19 -2.35349017096E-19 -2.47415619222E-19 -2.60100889267E-19 -2.73436547015E-19 -2.87455938555E-19 -3.02194119669E-19 -3.17687943486E-19 -3.33976152636E-19 -3.51099476125E-19 -3.69100731182E-19 -3.88024930320E-19 -4.07919393894E-19 -4.28833868426E-19 -4.50820650995E-19 -4.73934720010E-19 -4.98233872682E-19 -5.23778869551E-19 -5.50633586413E-19 -5.78865174048E-19 -6.08544226131E-19 -6.39744955749E-19 -6.72545380980E-19 -7.07027519969E-19 -7.43277596026E-19 -7.81386253221E-19 -8.21448783047E-19 -8.63565362695E-19 -9.07841305551E-19 -9.54387324534E-19 -1.00331980894E-18 -1.05476111545E-18 -1.10883987415E-18 -1.16569131008E-18 -1.22545758146E-18 -1.28828813508E-18 -1.35434008007E-18 -1.42377858068E-18 -1.49677726934E-18 -1.57351868078E-18 -1.65419470851E-18 -1.73900708462E-18 -1.82816788422E-18 -1.92190005576E-18 -2.02043797847E-18 -2.12402804850E-18 -2.23292929496E-18 -2.34741402771E-18 -2.46776851819E-18 -2.59429371533E-18 -2.72730599801E-18 -2.86713796622E-18 -3.01413927272E-18 -3.16867749733E-18 -3.33113906611E-18 -3.50193021759E-18 -3.68147801862E-18 -3.87023143220E-18 -4.06866244018E-18 -4.27726722344E-18 -4.49656740258E-18 -4.72711134228E-18 -4.96947552244E-18 -5.22426597977E-18 -5.49211982310E-18 -5.77370682655E-18 -6.06973110430E-18 -6.38093287121E-18 -6.70809029378E-18 -7.05202143597E-18 -7.41358630476E-18 -7.79368900063E-18 -8.19327997830E-18 -8.61335842333E-18 -9.05497475061E-18 -9.51923323096E-18 -1.00072947524E-17 -1.05203797229E-17 -1.10597711221E-17 -1.16268177095E-17 -1.22229373968E-17 -1.28496207937E-17 -1.35084349352E-17 -1.42010271996E-17 -1.49291294283E-17 -1.56945622562E-17 -1.64992396639E-17 -1.73451737641E-17 -1.82344798325E-17 -1.91693815974E-17 -2.01522168003E-17 -2.11854430408E-17 -2.22716439229E-17 -2.34135355142E-17 -2.46139731386E-17 -2.58759585152E-17 -2.72026472647E-17 -2.85973567999E-17 -3.00635746209E-17 -3.16049670360E-17 -3.32253883289E-17 -3.49288903966E-17 -3.67197328815E-17 -3.86023938224E-17 -4.05815808520E-17 -4.26622429688E-17 -4.48495829114E-17 -4.71490701688E-17 -4.95664546566E-17 -5.21077810949E-17 -5.47794041232E-17 -5.75880041903E-17 -6.05406042589E-17 -6.36445873667E-17 -6.69077150879E-17 -7.03381469410E-17 -7.39444607919E-17 -7.77356743031E-17 -8.17212674826E-17 -8.59112063887E-17 -9.03159680505E-17 -9.49465666656E-17 -9.98145811419E-17 -1.04932184050E-16 -1.10312172063E-16 -1.15967997950E-16 -1.21913804223E-16 -1.28164458492E-16 -1.34735590648E-16 -1.41643631943E-16 -1.48905856077E-16 -1.56540422390E-16 -1.64566421275E-16 -1.73003921906E-16 -1.81874022428E-16 -1.91198902712E-16 -2.01001879812E-16 -2.11307466274E-16 -2.22141431431E-16 -2.33530865835E-16 -2.45504249002E-16 -2.58091520623E-16 -2.71324155430E-16 -2.85235241899E-16 -2.99859564988E-16 -3.15233693117E-16 -3.31396069609E-16 -3.48387108821E-16 -3.66249297194E-16 -3.85027299497E-16 -4.04768070510E-16 -4.25520972437E-16 -4.47337898335E-16 -4.70273401873E-16 -4.94384833749E-16 -5.19732485092E-16 -5.46379738223E-16 -5.74393225144E-16 -6.03842994151E-16 -6.34802684995E-16 -6.67349713015E-16 -7.01565462719E-16 -7.37535491287E-16 -7.75349742509E-16 -8.15102771692E-16 -8.56893982095E-16 -9.00827873491E-16 -9.47014303468E-16 -9.95568762134E-16 -1.04661266090E-15 -1.10027363607E-15 -1.15668586800E-15 -1.21599041663E-15 -1.27833557417E-15 -1.34387723596E-15 -1.41277929024E-15 -1.48521402800E-15 -1.56136257377E-15 -1.64141533850E-15 -1.72557249577E-15 -1.81404448223E-15 -1.90705252388E-15 -2.00482918917E-15 -2.10761897064E-15 -2.21567889619E-15 -2.32927917184E-15 -2.44870385734E-15 -2.57425157652E-15 -2.70623626394E-15 -2.84498794996E-15 -2.99085358594E-15 -3.14419791180E-15 -3.30540436808E-15 -3.47487605472E-15 -3.65303673903E-15 -3.84033191535E-15 -4.03722991895E-15 -4.24422309720E-15 -4.46182904061E-15 -4.69059187713E-15 -4.93108363273E-15 -5.18390566177E-15 -5.44969015070E-15 -5.72910169883E-15 -6.02283898018E-15 -6.33163649058E-15 -6.65626638419E-15 -6.99754040439E-15 -7.35631191348E-15 -7.73347802656E-15 -8.12998185480E-15 -8.54681486365E-15 -8.98501935207E-15 -9.44569105881E-15 -9.92998190230E-15 -1.04391028610E-14 -1.09743270017E-14 -1.15369926625E-14 -1.21285067994E-14 -1.27503485049E-14 -1.34040727059E-14 -1.40913140520E-14 -1.48137910032E-14 -1.55733101265E-14 -1.63717706137E-14 -1.72111690302E-14 -1.80936043072E-14 -1.90212829906E-14 -1.99965247578E-14 -2.10217682190E-14 -2.20995770142E-14 -2.32326462239E-14 -2.44238091083E-14 -2.56760441917E-14 -2.69924827107E-14 -2.83764164433E-14 -2.98313059406E-14 -3.13607891799E-14 -3.29686906609E-14 -3.46590309699E-14 -3.64360368325E-14 -3.83041516830E-14 -4.02680467750E-14 -4.23326328624E-14 -4.45030724782E-14 -4.67847928438E-14 -4.91834994401E-14 -5.17051902735E-14 -5.43561708745E-14 -5.71430700644E-14 -6.00728565312E-14 -6.31528562544E-14 -6.63907708239E-14 -6.97946966979E-14 -7.33731454483E-14 -7.71350650438E-14 -8.10898622244E-14 -8.52474260232E-14 -8.96181524937E-14 -9.42129707057E-14 -9.90433700730E-14 -1.04121429083E-13 -1.09459845501E-13 -1.15071968115E-13 -1.20971830122E-13 -1.27174184215E-13 -1.33694539470E-13 -1.40549200129E-13 -1.47755306369E-13 -1.55330877160E-13 -1.63294855323E-13 -1.71667154894E-13 -1.80468710922E-13 -1.89721531815E-13 -1.99448754374E-13 -2.09674701646E-13 -2.20424943742E-13 -2.31726361778E-13 -2.43607215089E-13 -2.56097211895E-13 -2.69227583580E-13 -2.83031162794E-13 -2.97542465544E-13 -3.12797777506E-13 -3.28835244756E-13 -3.45694969153E-13 -3.63419108614E-13 -3.82051982532E-13 -4.01640182593E-13 -4.22232689282E-13 -4.43880994354E-13 -4.66639229595E-13 -4.90564302171E-13 -5.15716036931E-13 -5.42157325993E-13 -5.69954286009E-13 -5.99176423486E-13 -6.29896808591E-13 -6.62192257857E-13 -6.96143526265E-13 -7.31835509169E-13 -7.69357454581E-13 -8.08803186325E-13 -8.50271338651E-13 -8.93865602864E-13 -9.39694986605E-13 -9.87874086420E-13 -1.03852337431E-12 -1.09176949896E-12 -1.14774560243E-12 -1.20659165309E-12 -1.26845479557E-12 -1.33348971872E-12 -1.40185904240E-12 -1.47373372409E-12 -1.54929348639E-12 -1.62872726642E-12 -1.71223368821E-12 -1.80002155937E-12 -1.89231039323E-12 -1.98933095770E-12 -2.09132585232E-12 -2.19855011485E-12 -2.31127185897E-12 -2.42977294475E-12 -2.55434968335E-12 -2.68531357800E-12 -2.82299210286E-12 -2.96772952187E-12 -3.11988774956E-12 -3.27984725602E-12 -3.44800801821E-12 -3.62479052011E-12 -3.81063680411E-12 -4.00601157633E-12 -4.21140336856E-12 -4.42732575980E-12 -4.65431866050E-12 -4.89294966248E-12 -5.14381545822E-12 -5.40754333284E-12 -5.68479273257E-12 -5.97625691363E-12 -6.28266467572E-12 -6.60478218428E-12 -6.94341488625E-12 -7.29940952400E-12 -7.67365625257E-12 -8.06709086542E-12 -8.48069713426E-12 -8.91550926895E-12 -9.37261450336E-12 -9.85315581398E-12 -1.03583347777E-11 -1.08894145764E-11 -1.14477231553E-11 -1.20346565432E-11 -1.26516823434E-11 -1.33003434029E-11 -1.39822616706E-11 -1.46991422523E-11 -1.54527776743E-11 -1.62450523654E-11 -1.70779473686E-11 -1.79535452944E-11 -1.88740355282E-11 -1.98417197045E-11 -2.08590174615E-11 -2.19284724916E-11 -2.30527589009E-11 -2.42346878958E-11 -2.54772148114E-11 -2.67834465017E-11 -2.81566491069E-11 -2.96002562199E-11 -3.11178774719E-11 -3.27133075569E-11 -3.43905357201E-11 -3.61537557317E-11 -3.80073763729E-11 -3.99560324591E-11 -4.20045964279E-11 -4.41581905218E-11 -4.64221995951E-11 -4.88022845773E-11 -5.13043966269E-11 -5.39347920108E-11 -5.67000477463E-11 -5.96070780456E-11 -6.26631516020E-11 -6.58759097642E-11 -6.92533856403E-11 -7.28040241830E-11 -7.65367033029E-11 -8.04607560654E-11 -8.45859940248E-11 -8.89227317544E-11 -9.34818126354E-11 -9.82746359661E-11 -1.03313185462E-10 -1.08610059217E-10 -1.14178501200E-10 -1.20032434364E-10 -1.26186495460E-10 -1.32656071625E-10 -1.39457338852E-10 -1.46607302435E-10 -1.54123839476E-10 -1.62025743587E-10 -1.70332771866E-10 -1.79065694296E-10 -1.88246345668E-10 -1.97897680168E-10 -2.08043828761E-10 -2.18710159519E-10 -2.29923341039E-10 -2.41711409111E-10 -2.54103836810E-10 -2.67131608169E-10 -2.80827295643E-10 -2.95225141531E-10 -3.10361143576E-10 -3.26273144959E-10 -3.43000928894E-10 -3.60586318082E-10 -3.79073279258E-10 -3.98508033096E-10 -4.18939169753E-10 -4.40417770324E-10 -4.62997534537E-10 -4.86734914982E-10 -5.11689258225E-10 -5.37922953150E-10 -5.65501586913E-10 -5.94494108878E-10 -6.24973002965E-10 -6.57014468827E-10 -6.90698612310E-10 -7.26109645681E-10 -7.63336098113E-10 -8.02471036960E-10 -8.43612300370E-10 -8.86862741823E-10 -9.32330487199E-10 -9.80129205021E-10 -1.03037839055E-09 -1.08320366442E-09 -1.13873708662E-09 -1.19711748654E-09 -1.25849080990E-09 -1.32301048351E-09 -1.39083779871E-09 -1.46214231443E-09 -1.53710228093E-09 -1.61590508525E-09 -1.69874771949E-09 -1.78583727308E-09 -1.87739145022E-09 -1.97363911398E-09 -2.07482085811E-09 -2.18118960824E-09 -2.29301125390E-09 -2.41056531283E-09 -2.53414562945E-09 -2.66406110900E-09 -2.80063648939E-09 -2.94421315251E-09 -3.09514997714E-09 -3.25382423562E-09 -3.42063253630E-09 -3.59599181447E-09 -3.78034037384E-09 -3.97413898156E-09 -4.17787201923E-09 -4.39204869288E-09 -4.61720430493E-09 -4.85390159137E-09 -5.10273212728E-09 -5.36431780454E-09 -5.63931238502E-09 -5.92840313350E-09 -6.23231253406E-09 -6.55180009453E-09 -6.88766424322E-09 -7.24074432283E-09 -7.61192268650E-09 -8.00212690116E-09 -8.41233206369E-09 -8.84356323571E-09 -9.29689800303E-09 -9.77346916613E-09 -1.02744675684E-08 -1.08011450693E-08 -1.13548176693E-08 -1.19368687954E-08 -1.25487527547E-08 -1.31919983639E-08 -1.38682127663E-08 -1.45790854423E-08 -1.53263924265E-08 -1.61120007401E-08 -1.69378730501E-08 -1.78060725672E-08 -1.87187681941E-08 -1.96782399375E-08 -2.06868845969E-08 -2.17472217440E-08 -2.28619000092E-08 -2.40337036886E-08 -2.52655596892E-08 -2.65605448301E-08 -2.79218935165E-08 -2.93530058062E-08 -3.08574558891E-08 -3.24390009998E-08 -3.41015907869E-08 -3.58493771603E-08 -3.76867246429E-08 -3.96182212508E-08 -4.16486899309E-08 -4.37832005819E-08 -4.60270826907E-08 -4.83859386145E-08 -5.08656575412E-08 -5.34724301645E-08 -5.62127641075E-08 -5.90935001356E-08 -6.21218291969E-08 -6.53053103338E-08 -6.86518895091E-08 -7.21699193944E-08 -7.58681801686E-08 -7.97559013784E-08 -8.38427849161E-08 -8.81390291696E-08 -9.26553544058E-08 -9.74030294499E-08 -1.02393899726E-07 -1.07640416730E-07 -1.13155669004E-07 -1.18953414694E-07 -1.25048115770E-07 -1.31454973982E-07 -1.38189968665E-07 -1.45269896461E-07 -1.52712413068E-07 -1.60536077122E-07 -1.68760396313E-07 -1.77405875848E-07 -1.86494069394E-07 -1.96047632604E-07 -2.06090379380E-07 -2.16647340998E-07 -2.27744828241E-07 -2.39410496704E-07 -2.51673415415E-07 -2.64564138954E-07 -2.78114783242E-07 -2.92359105185E-07 -3.07332586371E-07 -3.23072521019E-07 -3.39618108413E-07 -3.57010550019E-07 -3.75293151550E-07 -3.94511430216E-07 -4.14713227419E-07 -4.35948827176E-07 -4.58271080554E-07 -4.81735536424E-07 -5.06400578851E-07 -5.32327571458E-07 -5.59581009105E-07 -5.88228677277E-07 -6.18341819533E-07 -6.49995313460E-07 -6.83267855535E-07 -7.18242155350E-07 -7.55005139678E-07 -7.93648166864E-07 -8.34267252072E-07 -8.76963303922E-07 -9.21842373098E-07 -9.69015913520E-07 -1.01860105672E-06 -1.07072090008E-06 -1.12550480961E-06 -1.18308873802E-06 -1.24361555887E-06 -1.30723541750E-06 -1.37410609972E-06 -1.44439341905E-06 -1.51827162349E-06 -1.59592382268E-06 -1.67754243671E-06 -1.76332966733E-06 -1.85349799298E-06 -1.94827068865E-06 -2.04788237177E-06 -2.15257957565E-06 -2.26262135152E-06 -2.37827990086E-06 -2.49984123941E-06 -2.62760589429E-06 -2.76188963621E-06 -2.90302424810E-06 -3.05135833230E-06 -3.20725815791E-06 -3.37110855059E-06 -3.54331382654E-06 -3.72429877321E-06 -3.91450967864E-06 -4.11441541219E-06 -4.32450855884E-06 -4.54530660993E-06 -4.77735321290E-06 -5.02121948304E-06 -5.27750538019E-06 -5.54684115359E-06 -5.82988885810E-06 -6.12734394534E-06 -6.43993693334E-06 -6.76843515838E-06 -7.11364461320E-06 -7.47641187548E-06 -7.85762613111E-06 -8.25822129661E-06 -8.67917824567E-06 -9.12152714451E-06 -9.58634990141E-06 -1.00747827358E-05 -1.05880188724E-05 -1.11273113667E-05 -1.16939760675E-05 -1.22893947231E-05 -1.29150182386E-05 -1.35723700893E-05 -1.42630499006E-05 -1.49887371991E-05 -1.57511953448E-05 -1.65522756514E-05 -1.73939217053E-05 -1.82781738896E-05 -1.92071741253E-05 -2.01831708372E-05 -2.12085241568E-05 -2.22857113710E-05 -2.34173326290E-05 -2.46061169182E-05 -2.58549283215E-05 -2.71667725684E-05 -2.85448038922E-05 -2.99923322080E-05 -3.15128306246E-05 -3.31099433043E-05 -3.47874936873E-05 -3.65494930948E-05 -3.84001497272E-05 -4.03438780748E-05 -4.23853087575E-05 -4.45292988122E-05 -4.67809424451E-05 -4.91455822700E-05 -5.16288210503E-05 -5.42365339661E-05 -5.69748814272E-05 -5.98503224535E-05 -6.28696286451E-05 -6.60398987643E-05 -6.93685739539E-05 -7.28634536148E-05 -7.65327119677E-05 -8.03849153247E-05 -8.44290400951E-05 -8.86744915524E-05 -9.31311233892E-05 -9.78092580858E-05 -1.02719708121E-04 -1.07873798054E-04 -1.13283387499E-04 -1.18960895030E-04 -1.24919323037E-04 -1.31172283563E-04 -1.37734025154E-04 -1.44619460740E-04 -1.51844196585E-04 -1.59424562330E-04 -1.67377642151E-04 -1.75721307056E-04 -1.84474248359E-04 -1.93656012335E-04 -2.03287036089E-04 -2.13388684658E-04 -2.23983289359E-04 -2.35094187399E-04 -2.46745762763E-04 -2.58963488386E-04 -2.71773969611E-04 -2.85204988941E-04 -2.99285552078E-04 -3.14045935238E-04 -3.29517733738E-04 -3.45733911814E-04 -3.62728853672E-04 -3.80538415703E-04 -3.99199979850E-04 -4.18752508046E-04 -4.39236597681E-04 -4.60694538007E-04 -4.83170367400E-04 -5.06709931379E-04 -5.31360941263E-04 -5.57173033329E-04 -5.84197828333E-04 -6.12488991210E-04 -6.42102290779E-04 -6.73095659219E-04 -7.05529251109E-04 -7.39465501739E-04 -7.74969184428E-04 -8.12107466504E-04 -8.50949963623E-04 -8.91568792002E-04 -9.34038618184E-04 -9.78436705833E-04 -1.02484295908E-03 -1.07333996187E-03 -1.12401301266E-03 -1.17695015392E-03 -1.23224219567E-03 -1.28998273223E-03 -1.35026815155E-03 -1.41319763606E-03 -1.47887315419E-03 -1.54739944154E-03 -1.61888397057E-03 -1.69343690776E-03 -1.77117105683E-03 -1.85220178696E-03 -1.93664694435E-03 -2.02462674584E-03 -2.11626365297E-03 -2.21168222484E-03 -2.31100894799E-03 -2.41437204162E-03 -2.52190123614E-03 -2.63372752308E-03 -2.74998287442E-03 -2.87079992904E-03 -2.99631164421E-03 -3.12665090990E-03 -3.26195012336E-03 -3.40234072196E-03 -3.54795267158E-03 -3.69891390830E-03 -3.85534973102E-03 -4.01738214249E-03 -4.18512913648E-03 -4.35870392885E-03 -4.53821413022E-03 -4.72376085832E-03 -4.91543778805E-03 -5.11333013755E-03 -5.31751358896E-03 -5.52805314262E-03 -5.74500190404E-03 -5.96839980316E-03 -6.19827224620E-03 -6.43462870058E-03 -6.67746121437E-03 -6.92674287209E-03 -7.18242618987E-03 -7.44444145343E-03 -7.71269500352E-03 -7.98706747471E-03 -8.26741199408E-03 -8.55355234821E-03 -8.84528112769E-03 -9.14235786030E-03 -9.44450714526E-03 -9.75141680273E-03 -1.00627360545E-02 -1.03780737535E-02 -1.06969966819E-02 -1.10190279396E-02 -1.13436454458E-02 -1.16702805802E-02 -1.19983169915E-02 -1.23270896009E-02 -1.26558838347E-02 -1.29839351168E-02 -1.33104286570E-02 -1.36344995710E-02 -1.39552333689E-02 -1.42716668507E-02 -1.45827894467E-02 -1.48875450414E-02 -1.51848343185E-02 -1.54735176625E-02 -1.57524186532E-02 -1.60203281824E-02 -1.62760092226E-02 -1.65182022708E-02 -1.67456314844E-02 -1.69570115218E-02 -1.71510550894E-02 -1.73264811916E-02 -1.74820240657E-02 -1.76164427758E-02 -1.77285314254E-02 -1.78171299349E-02 -1.78811353154E-02 -1.79195133550E-02 -1.79313106155E-02 -1.79156666230E-02 -1.78718261160E-02 -1.77991511983E-02 -1.76971332283E-02 -1.75654042577E-02 -1.74037478204E-02 -1.72121088586E-02 -1.69906025625E-02 -1.67395218944E-02 -1.64593435638E-02 -1.61507322222E-02 -1.58145426515E-02 -1.54518197357E-02 -1.50637960222E-02 -1.46518867063E-02 -1.42176819078E-02 -1.37629361509E-02 -1.32895550082E-02 -1.27995789313E-02 -1.22951643571E-02 -1.17785622549E-02 -1.12520943630E-02 -1.07181274529E-02 -1.01790460540E-02 -9.63722417016E-03 -9.09499661788E-03 -8.55463071723E-03 -8.01829915897E-03 -7.48805496197E-03 -6.96580951295E-03 -6.45331474505E-03 -5.95215055941E-03 -5.46371861819E-03 -4.98924363601E-03 -4.52978326339E-03 -4.08624758595E-03 -3.65942915171E-03 -3.25004428062E-03 -2.85878619979E-03 -2.48639027992E-03 -2.13371131769E-03 -1.80181241080E-03 -1.49206450302E-03 -1.20625513266E-03 -9.46704298845E-04 -7.16384666264E-04 -5.19042566311E-04 -3.58039937455E-04 -2.32098692152E-04 -1.38222508117E-04 -7.28042589586E-05 -3.15860873468E-05 -9.62081887315E-06 -1.23574606217E-06 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 7 2 i j (l(j)) 0.00000000000E+00 Q_int 9.82540637497E-24 1.04590906427E-23 1.11336440345E-23 1.18517023822E-23 1.26160715145E-23 1.34297382205E-23 1.42958819204E-23 1.52178870895E-23 1.61993564831E-23 1.72441252143E-23 1.83562757394E-23 1.95401538108E-23 2.08003854579E-23 2.21418950632E-23 2.35699246046E-23 2.50900541386E-23 2.67082236043E-23 2.84307560341E-23 3.02643822610E-23 3.22162672192E-23 3.42940379417E-23 3.65058133626E-23 3.88602360425E-23 4.13665059392E-23 4.40344163568E-23 4.68743922131E-23 4.98975307757E-23 5.31156450240E-23 5.65413098095E-23 6.01879109917E-23 6.40696977439E-23 6.82018382324E-23 7.26004788858E-23 7.72828074880E-23 8.22671203399E-23 8.75728937522E-23 9.32208601497E-23 9.92330890840E-23 1.05633073470E-22 1.12445821386E-22 1.19697953793E-22 1.27417808555E-22 1.35635551173E-22 1.44383292654E-22 1.53695214989E-22 1.63607704716E-22 1.74159495104E-22 1.85391817504E-22 1.97348562459E-22 2.10076451211E-22 2.23625218260E-22 2.38047805709E-22 2.53400570131E-22 2.69743502787E-22 2.87140464042E-22 3.05659432899E-22 3.25372772632E-22 3.46357513544E-22 3.68695653967E-22 3.92474480668E-22 4.17786909931E-22 4.44731850622E-22 4.73414590683E-22 5.03947208543E-22 5.36449011072E-22 5.71046999767E-22 6.07876367021E-22 6.47081024388E-22 6.88814164918E-22 7.33238861764E-22 7.80528705393E-22 8.30868481899E-22 8.84454895051E-22 9.41497334922E-22 1.00221869609E-21 1.06685624858E-21 1.13566256505E-21 1.20890650766E-21 1.28687427872E-21 1.36987053899E-21 1.45821959815E-21 1.55226668207E-21 1.65237928177E-21 1.75894858943E-21 1.87239102691E-21 1.99314987301E-21 2.12169699554E-21 2.25853469518E-21 2.40419766821E-21 2.55925509586E-21 2.72431286840E-21 2.90001595267E-21 3.08705091227E-21 3.28614859038E-21 3.49808696550E-21 3.72369419144E-21 3.96385183333E-21 4.21949831237E-21 4.49163257273E-21 4.78131798495E-21 5.08968650107E-21 5.41794307776E-21 5.76737038473E-21 6.13933381677E-21 6.53528682906E-21 6.95677661661E-21 7.40545015991E-21 7.88306066059E-21 8.39147439203E-21 8.93267799195E-21 9.50878622517E-21 1.01220502471E-20 1.07748664003E-20 1.14697855779E-20 1.22095231919E-20 1.29969697829E-20 1.38352023157E-20 1.47274962020E-20 1.56773380996E-20 1.66884395364E-20 1.77647514131E-20 1.89104794419E-20 2.01301005797E-20 2.14283805228E-20 2.28103923282E-20 2.42815362370E-20 2.58475607760E-20 2.75145852201E-20 2.92891235035E-20 3.11781096731E-20 3.31889249833E-20 3.53294267386E-20 3.76079789961E-20 4.00334852482E-20 4.26154232133E-20 4.53638818700E-20 4.82896008801E-20 5.14040125543E-20 5.47192865236E-20 5.82483772932E-20 6.20050748618E-20 6.60040586066E-20 7.02609546436E-20 7.47923968862E-20 7.96160920435E-20 8.47508888090E-20 9.02168515124E-20 9.60353385215E-20 1.02229085701E-19 1.08822295252E-19 1.15840730283E-19 1.23311815483E-19 1.31264744279E-19 1.39730592912E-19 1.48742441869E-19 1.58335505147E-19 1.68547267847E-19 1.79417632655E-19 1.90989075755E-19 2.03306812814E-19 2.16418975656E-19 2.30376800342E-19 2.45234827374E-19 2.61051114815E-19 2.77887465151E-19 2.95809666787E-19 3.14887751113E-19 3.35196266158E-19 3.56814567885E-19 3.79827130277E-19 4.04323875419E-19 4.30400524874E-19 4.58158973716E-19 4.87707688684E-19 5.19162132023E-19 5.52645212652E-19 5.88287766434E-19 6.26229067420E-19 6.66617372065E-19 7.09610498545E-19 7.55376443433E-19 8.04094038150E-19 8.55953647753E-19 9.11157914788E-19 9.69922551125E-19 1.03247718085E-18 1.09906623754E-18 1.16994991937E-18 1.24540520586E-18 1.32572694018E-18 1.41122898124E-18 1.50224543012E-18 1.59913193556E-18 1.70226708368E-18 1.81205387730E-18 1.92892131068E-18 2.05332604587E-18 2.18575419703E-18 2.32672323005E-18 2.47678398447E-18 2.63652282592E-18 2.80656393738E-18 2.98757175817E-18 3.18025358026E-18 3.38536231204E-18 3.60369942030E-18 3.83611806200E-18 4.08352641802E-18 4.34689124183E-18 4.62724163719E-18 4.92567307930E-18 5.24335169547E-18 5.58151882175E-18 5.94149585347E-18 6.32468940864E-18 6.73259682436E-18 7.16681200765E-18 7.62903166368E-18 8.12106192572E-18 8.64482541263E-18 9.20236874152E-18 9.79587052495E-18 1.04276498839E-17 1.11001755098E-17 1.18160753111E-17 1.25781466816E-17 1.33893674316E-17 1.42529074236E-17 1.51721409587E-17 1.61506599617E-17 1.71922880166E-17 1.83010953074E-17 1.94814145225E-17 2.07378577844E-17 2.20753346723E-17 2.34990714056E-17 2.50146312664E-17 2.66279363371E-17 2.83452906420E-17 3.01734047798E-17 3.21194221457E-17 3.41909468441E-17 3.63960734021E-17 3.87434183990E-17 4.12421541355E-17 4.39020444750E-17 4.67334829957E-17 4.97475336042E-17 5.29559737675E-17 5.63713405341E-17 6.00069795224E-17 6.38770970693E-17 6.79968157416E-17 7.23822334277E-17 7.70504862405E-17 8.20198154774E-17 8.73096388978E-17 9.29406265993E-17 9.89347817859E-17 1.05315526746E-16 1.12107794376E-16 1.19338125607E-16 1.27034773109E-16 1.35227811697E-16 1.43949255841E-16 1.53233184770E-16 1.63115875632E-16 1.73635945250E-16 1.84834501018E-16 1.96755301529E-16 2.09444927562E-16 2.22952964097E-16 2.37332194073E-16 2.52638804631E-16 2.68932606674E-16 2.86277268576E-16 3.04740564967E-16 3.24394641563E-16 3.45316297080E-16 3.67587283324E-16 3.91294624640E-16 4.16530957957E-16 4.43394894774E-16 4.71991406483E-16 5.02432234548E-16 5.34836327137E-16 5.69330303914E-16 6.06048950807E-16 6.45135746689E-16 6.86743424023E-16 7.31034565666E-16 7.78182240167E-16 8.28370678035E-16 8.81795991622E-16 9.38666941436E-16 9.99205751881E-16 1.06364897960E-15 1.13224843781E-15 1.20527218030E-15 1.28300554884E-15 1.36575228813E-15 1.45383573275E-15 1.54760007053E-15 1.64741168752E-15 1.75366059963E-15 1.86676197662E-15 1.98715776439E-15 2.11531841191E-15 2.25174470946E-15 2.39696974553E-15 2.55156098984E-15 2.71612251075E-15 2.89129733567E-15 3.07776996369E-15 3.27626904028E-15 3.48757020450E-15 3.71249911979E-15 3.95193470029E-15 4.20681254522E-15 4.47812859470E-15 4.76694302147E-15 5.07438437350E-15 5.40165398380E-15 5.75003066465E-15 6.12087570463E-15 6.51563818781E-15 6.93586065611E-15 7.38318513680E-15 7.85935955873E-15 8.36624458243E-15 8.90582087062E-15 9.48019682775E-15 1.00916168385E-14 1.07424700380E-14 1.14352996470E-14 1.21728129100E-14 1.29578916736E-14 1.37936036471E-14 1.46832143905E-14 1.56302000735E-14 1.66382610598E-14 1.77113363656E-14 1.88536190516E-14 2.00695726076E-14 2.13639483934E-14 2.27418042049E-14 2.42085240374E-14 2.57698391240E-14 2.74318503299E-14 2.92010519921E-14 3.10843572959E-14 3.30891252882E-14 3.52231896331E-14 3.74948892221E-14 3.99131007585E-14 4.24872734428E-14 4.52274658962E-14 4.81443854641E-14 5.12494300557E-14 5.45547326810E-14 5.80732088611E-14 6.18186070953E-14 6.58055625839E-14 7.00496544149E-14 7.45674664398E-14 7.93766520750E-14 8.44960032827E-14 8.99455240004E-14 9.57465083069E-14 1.01921623629E-13 1.08494999313E-13 1.15492320913E-13 1.22940930556E-13 1.30869933781E-13 1.39310313270E-13 1.48295049910E-13 1.57859251672E-13 1.68040290789E-13 1.78877949793E-13 1.90414576960E-13 2.02695251793E-13 2.15767961165E-13 2.29683786828E-13 2.44497105018E-13 2.60265798927E-13 2.77051484884E-13 2.94919753117E-13 3.13940424053E-13 3.34187821135E-13 3.55741061242E-13 3.78684363842E-13 4.03107380073E-13 4.29105543059E-13 4.56780440813E-13 4.86240213190E-13 5.17599974445E-13 5.50982263041E-13 5.86517520463E-13 6.24344600922E-13 6.64611313925E-13 7.07475001837E-13 7.53103154696E-13 8.01674064677E-13 8.53377522768E-13 9.08415560375E-13 9.67003238756E-13 1.02936948937E-12 1.09575800842E-12 1.16642820909E-12 1.24165623522E-12 1.32173604028E-12 1.40698053606E-12 1.49772281529E-12 1.59431745324E-12 1.69714189321E-12 1.80659792137E-12 1.92311323672E-12 2.04714312232E-12 2.17917222430E-12 2.31971644562E-12 2.46932496188E-12 2.62858236727E-12 2.79811095883E-12 2.97857316803E-12 3.17067414922E-12 3.37516453500E-12 3.59284336927E-12 3.82456122945E-12 4.07122355011E-12 4.33379416085E-12 4.61329905251E-12 4.91083038609E-12 5.22755076035E-12 5.56469775462E-12 5.92358876423E-12 6.30562615055E-12 6.71230271386E-12 7.14520753501E-12 7.60603217989E-12 8.09657731702E-12 8.61875972488E-12 9.17461982738E-12 9.76632962857E-12 1.03962012184E-11 1.10666958079E-11 1.17804333213E-11 1.25402026736E-11 1.33489726381E-11 1.42099034443E-11 1.51263591626E-11 1.61019208033E-11 1.71404003233E-11 1.82458555595E-11 1.94226060087E-11 2.06752497799E-11 2.20086815229E-11 2.34281115668E-11 2.49390862391E-11 2.65475096158E-11 2.82596665074E-11 3.00822470946E-11 3.20223729876E-11 3.40876251087E-11 3.62860733484E-11 3.86263079063E-11 4.11174732277E-11 4.37693032657E-11 4.65921598971E-11 4.95970732275E-11 5.27957847296E-11 5.62007930730E-11 5.98254031611E-11 6.36837777753E-11 6.77909931877E-11 7.21630979945E-11 7.68171758188E-11 8.17714119730E-11 8.70451647325E-11 9.26590407247E-11 9.86349755916E-11 1.04996319644E-10 1.11767929067E-10 1.18976263352E-10 1.26649488098E-10 1.34817585488E-10 1.43512471395E-10 1.52768120057E-10 1.62620696539E-10 1.73108698536E-10 1.84273106526E-10 1.96157543701E-10 2.08808446853E-10 2.22275247467E-10 2.36610564869E-10 2.51870412075E-10 2.68114414409E-10 2.85406042464E-10 3.03812860368E-10 3.23406789319E-10 3.44264389146E-10 3.66467156814E-10 3.90101845141E-10 4.15260802091E-10 4.42042330939E-10 4.70551074761E-10 5.00898425615E-10 5.33202958286E-10 5.67590895511E-10 6.04196599944E-10 6.43163099464E-10 6.84642645621E-10 7.28797309108E-10 7.75799612400E-10 8.25833203913E-10 8.79093576088E-10 9.35788828344E-10 9.96140480257E-10 1.06038433742E-09 1.12877141223E-09 1.20156890549E-09 1.27906124870E-09 1.36155121718E-09 1.44936111068E-09 1.54283401538E-09 1.64233514127E-09 1.74825325143E-09 1.86100217879E-09 1.98102244511E-09 2.10878297835E-09 2.24478294959E-09 2.38955371896E-09 2.54366091278E-09 2.70770663327E-09 2.88233181199E-09 3.06821871068E-09 3.26609358955E-09 3.47672954222E-09 3.70094951736E-09 3.93962953215E-09 4.19370209528E-09 4.46415984917E-09 4.75205944742E-09 5.05852568260E-09 5.38475588132E-09 5.73202457720E-09 6.10168849478E-09 6.49519184515E-09 6.91407196921E-09 7.35996534001E-09 7.83461395833E-09 8.33987215575E-09 8.87771383595E-09 9.45024018649E-09 1.00596878830E-08 1.07084378303E-08 1.13990244557E-08 1.21341456114E-08 1.29166731102E-08 1.37496639420E-08 1.46363722133E-08 1.55802618541E-08 1.65850201488E-08 1.76545721354E-08 1.87930959326E-08 2.00050390573E-08 2.12951357939E-08 2.26684256825E-08 2.41302731934E-08 2.56863886835E-08 2.73428506860E-08 2.91061296572E-08 3.09831132256E-08 3.29811331024E-08 3.51079936995E-08 3.73720026011E-08 3.97820030031E-08 4.23474082434E-08 4.50782385435E-08 4.79851601334E-08 5.10795268979E-08 5.43734246902E-08 5.78797185284E-08 6.16121027934E-08 6.55851547079E-08 6.98143912265E-08 7.43163296068E-08 7.91085518736E-08 8.42097734530E-08 8.96399162060E-08 9.54201861880E-08 1.01573156401E-07 1.08122854890E-07 1.15094858509E-07 1.22516392712E-07 1.30416437807E-07 1.38825842015E-07 1.47777441842E-07 1.57306190175E-07 1.67449292650E-07 1.78246352794E-07 1.89739526508E-07 2.01973686502E-07 2.14996597321E-07 2.28859101630E-07 2.43615318494E-07 2.59322854435E-07 2.76043028056E-07 2.93841109136E-07 3.12786573104E-07 3.32953371905E-07 3.54420222271E-07 3.77270912575E-07 4.01594629391E-07 4.27486305107E-07 4.55046987848E-07 4.84384235246E-07 5.15612533496E-07 5.48853743379E-07 5.84237574980E-07 6.21902092899E-07 6.61994253968E-07 7.04670479523E-07 7.50097264444E-07 7.98451825384E-07 8.49922790596E-07 9.04710934114E-07 9.63029957092E-07 1.02510731932E-06 1.09118512416E-06 1.16152106030E-06 1.23638940392E-06 1.31608208527E-06 1.40090982364E-06 1.49120333515E-06 1.58731461809E-06 1.68961832059E-06 1.79851319609E-06 1.91442365206E-06 2.03780139802E-06 2.16912719914E-06 2.30891274222E-06 2.45770262107E-06 2.61607644919E-06 2.78465110748E-06 2.96408313595E-06 3.15507127832E-06 3.35835918935E-06 3.57473831531E-06 3.80505095845E-06 4.05019353723E-06 4.31112005478E-06 4.58884578869E-06 4.88445121620E-06 5.19908618978E-06 5.53397437876E-06 5.89041799405E-06 6.26980281364E-06 6.67360352796E-06 7.10338942525E-06 7.56083043840E-06 8.04770357590E-06 8.56589976110E-06 9.11743110550E-06 9.70443864312E-06 1.03292005550E-05 1.09941409142E-05 1.17018389845E-05 1.24550391061E-05 1.32566612066E-05 1.41098119740E-05 1.50177967354E-05 1.59841320825E-05 1.70125592917E-05 1.81070585885E-05 1.92718643054E-05 2.05114809920E-05 2.18307005321E-05 2.32346203328E-05 2.47286626485E-05 2.63185951097E-05 2.80105525311E-05 2.98110600743E-05 3.17270578491E-05 3.37659270382E-05 3.59355176381E-05 3.82441779124E-05 4.07007856600E-05 4.33147814045E-05 4.60962036213E-05 4.90557261194E-05 5.22046977066E-05 5.55551842701E-05 5.91200134142E-05 6.29128218008E-05 6.69481053504E-05 7.12412724662E-05 7.58087004526E-05 8.06677953095E-05 8.58370550910E-05 9.13361370271E-05 9.71859286171E-05 1.03408622911E-04 1.10027798209E-04 1.17068502413E-04 1.24557342282E-04 1.32522577852E-04 1.40994222280E-04 1.50004147407E-04 1.59586195318E-04 1.69776296208E-04 1.80612592865E-04 1.92135572093E-04 2.04388203400E-04 2.17416085317E-04 2.31267599662E-04 2.45994074148E-04 2.61649953679E-04 2.78292980712E-04 2.95984385071E-04 3.14789083594E-04 3.34775889993E-04 3.56017735325E-04 3.78591899444E-04 4.02580253823E-04 4.28069516116E-04 4.55151516813E-04 4.83923478340E-04 5.14488306929E-04 5.46954897553E-04 5.81438452201E-04 6.18060811718E-04 6.56950801416E-04 6.98244590578E-04 7.42086065939E-04 7.88627219155E-04 8.38028548185E-04 8.90459472427E-04 9.46098761328E-04 1.00513497610E-03 1.06776692400E-03 1.13420412450E-03 1.20466728659E-03 1.27938879598E-03 1.35861321122E-03 1.44259776709E-03 1.53161288356E-03 1.62594267837E-03 1.72588548084E-03 1.83175434425E-03 1.94387755379E-03 2.06259912657E-03 2.18827929983E-03 2.32129500300E-03 2.46204030859E-03 2.61092685661E-03 2.76838424638E-03 2.93486038899E-03 3.11082181304E-03 3.29675391558E-03 3.49316114924E-03 3.70056713590E-03 3.91951469631E-03 4.15056578402E-03 4.39430131146E-03 4.65132085450E-03 4.92224222125E-03 5.20770086963E-03 5.50834915723E-03 5.82485540614E-03 6.15790276402E-03 6.50818784212E-03 6.87641910971E-03 7.26331502357E-03 7.66960187048E-03 8.09601129968E-03 8.54327752210E-03 9.01213415233E-03 9.50331066932E-03 1.00175284719E-02 1.05554965057E-02 1.11179064372E-02 1.17054273554E-02 1.23186999777E-02 1.29583303437E-02 1.36248829801E-02 1.43188735231E-02 1.50407607915E-02 1.57909383034E-02 1.65697252403E-02 1.73773568635E-02 1.82139744000E-02 1.90796144193E-02 1.99741977348E-02 2.08975178722E-02 2.18492291604E-02 2.28288345136E-02 2.38356729852E-02 2.48689071924E-02 2.59275107257E-02 2.70102556741E-02 2.81157004177E-02 2.92421778565E-02 3.03877842660E-02 3.15503689884E-02 3.27275251920E-02 3.39165819472E-02 3.51145978892E-02 3.63183567559E-02 3.75243651023E-02 3.87288525088E-02 3.99277746088E-02 4.11168192660E-02 4.22914162339E-02 4.34467506204E-02 4.45777804697E-02 4.56792587498E-02 4.67457600029E-02 4.77717118734E-02 4.87514316741E-02 4.96791680845E-02 5.05491479939E-02 5.13556284096E-02 5.20929532381E-02 5.27556146282E-02 5.33383184219E-02 5.38360531144E-02 5.42441615567E-02 5.45584144651E-02 5.47750846253E-02 5.48910204943E-02 5.49037177281E-02 5.48113869912E-02 5.46130162496E-02 5.43084256150E-02 5.38983127067E-02 5.33842864391E-02 5.27688871316E-02 5.20555908915E-02 5.12487963500E-02 5.03537920375E-02 4.93767029915E-02 4.83244155980E-02 4.72044801793E-02 4.60249914740E-02 4.47944478903E-02 4.35215912665E-02 4.22152298121E-02 4.08840479302E-02 3.95364076974E-02 3.81801478779E-02 3.68223874211E-02 3.54693414004E-02 3.41261582114E-02 3.27967875131E-02 3.14838887685E-02 3.01887902529E-02 2.89115079447E-02 2.76508327265E-02 2.64044926999E-02 2.51693951043E-02 2.39419492470E-02 2.27184679904E-02 2.14956406807E-02 2.02710649829E-02 1.90438190056E-02 1.78154169053E-02 1.65905410832E-02 1.53745657095E-02 1.41729391167E-02 1.29911380019E-02 1.18346175198E-02 1.07087575043E-02 9.61880515443E-03 8.56981461996E-03 7.56658403557E-03 6.61359067193E-03 5.71492499930E-03 4.87422459281E-03 4.09460894723E-03 3.37861641090E-03 2.72814459155E-03 2.14439572849E-03 1.62782866339E-03 1.17811917173E-03 7.94130535209E-04 4.73896337654E-04 2.14617547170E-04 1.26760007222E-05 -1.36333573769E-04 -2.37550884959E-04 -2.96774714216E-04 -3.20362949570E-04 -3.15106304885E-04 -2.88074288048E-04 -2.46432347355E-04 -1.97229590611E-04 -1.47157048064E-04 -1.01921295492E-04 -6.48071322113E-05 -3.72969880562E-05 -1.90697343823E-05 -8.08251185586E-06 -2.40586907856E-06 -3.02103237579E-07 -1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 8 2 i j (l(j)) 0.00000000000E+00 Q_int 1.07964261210E-23 1.14927357819E-23 1.22339535576E-23 1.30229757727E-23 1.38628855486E-23 1.47569648510E-23 1.57087073143E-23 1.67218318928E-23 1.78002973927E-23 1.89483179416E-23 2.01703794545E-23 2.14712571635E-23 2.28560342765E-23 2.43301218400E-23 2.58992798834E-23 2.75696399257E-23 2.93477289351E-23 3.12404948331E-23 3.32553336435E-23 3.54001183927E-23 3.76832298739E-23 4.01135893947E-23 4.27006936377E-23 4.54546517690E-23 4.83862249398E-23 5.15068683360E-23 5.48287759396E-23 5.83649281765E-23 6.21291426386E-23 6.61361280756E-23 7.04015418703E-23 7.49420512196E-23 7.97753982626E-23 8.49204694078E-23 9.03973691326E-23 9.62274985416E-23 1.02433638992E-22 1.09040041113E-22 1.16072519564E-22 1.23558553907E-22 1.31527395985E-22 1.40010184221E-22 1.49040065293E-22 1.58652323660E-22 1.68884519429E-22 1.79776635127E-22 1.91371231934E-22 2.03713615987E-22 2.16852015422E-22 2.30837768819E-22 2.45725525814E-22 2.61573460640E-22 2.78443499448E-22 2.96401562280E-22 3.15517820658E-22 3.35866971776E-22 3.57528530384E-22 3.80587139493E-22 4.05132901120E-22 4.31261728361E-22 4.59075720176E-22 4.88683560343E-22 5.20200942141E-22 5.53751020424E-22 5.89464892851E-22 6.27482112156E-22 6.67951231448E-22 7.11030384690E-22 7.56887904611E-22 8.05702980465E-22 8.57666358221E-22 9.12981085908E-22 9.71863307025E-22 1.03454310513E-21 1.10126540290E-21 1.17229091916E-21 1.24789718766E-21 1.32837964153E-21 1.41405276771E-21 1.50525133581E-21 1.60233170620E-21 1.70567322256E-21 1.81567969409E-21 1.93278097347E-21 2.05743463651E-21 2.19012777008E-21 2.33137887551E-21 2.48173989454E-21 2.64179836613E-21 2.81217972223E-21 2.99354973170E-21 3.18661710178E-21 3.39213624742E-21 3.61091023915E-21 3.84379394108E-21 4.09169735135E-21 4.35558915792E-21 4.63650052375E-21 4.93552911610E-21 5.25384339570E-21 5.59268718251E-21 5.95338451598E-21 6.33734482879E-21 6.74606845419E-21 7.18115248863E-21 7.64429703243E-21 8.13731183294E-21 8.66212335622E-21 9.22078231468E-21 9.81547168035E-21 1.04485152148E-20 1.11223865495E-20 1.18397188512E-20 1.26033151115E-20 1.34161590994E-20 1.42814270204E-20 1.52024999277E-20 1.61829769337E-20 1.72266892735E-20 1.83377152759E-20 1.95203962991E-20 2.07793536948E-20 2.21195068664E-20 2.35460924915E-20 2.50646849844E-20 2.66812182783E-20 2.84020090122E-20 3.02337812131E-20 3.21836925707E-20 3.42593624061E-20 3.64689014441E-20 3.88209435065E-20 4.13246792487E-20 4.39898920726E-20 4.68269963550E-20 4.98470781427E-20 5.30619384706E-20 5.64841394754E-20 6.01270534817E-20 6.40049152552E-20 6.81328776248E-20 7.25270706932E-20 7.72046648652E-20 8.21839379414E-20 8.74843465396E-20 9.31266021214E-20 9.91327519228E-20 1.05526265105E-19 1.12332124459E-19 1.19576924027E-19 1.27288973023E-19 1.35498406444E-19 1.44237302829E-19 1.53539809606E-19 1.63442276523E-19 1.73983397682E-19 1.85204362745E-19 1.97149017875E-19 2.09864037071E-19 2.23399104547E-19 2.37807108873E-19 2.53144349637E-19 2.69470757441E-19 2.86850128078E-19 3.05350371815E-19 3.25043778756E-19 3.46007301316E-19 3.68322854913E-19 3.92077638057E-19 4.17364473078E-19 4.44282168833E-19 4.72935906801E-19 5.03437652084E-19 5.35906590914E-19 5.70469596372E-19 6.07261724152E-19 6.46426740291E-19 6.88117682937E-19 7.32497460352E-19 7.79739487479E-19 8.30028363562E-19 8.83560593474E-19 9.40545355562E-19 1.00120531902E-18 1.06577751397E-18 1.13451425766E-18 1.20768414040E-18 1.28557307510E-18 1.36848541446E-18 1.45674514023E-18 1.55069712921E-18 1.65070850083E-18 1.75717005168E-18 1.87049778259E-18 1.99113452410E-18 2.11955166690E-18 2.25625100376E-18 2.40176669028E-18 2.55666733217E-18 2.72155820702E-18 2.89708362951E-18 3.08392946901E-18 3.28282582968E-18 3.49454990335E-18 3.71992900641E-18 3.95984381259E-18 4.21523179416E-18 4.48709088519E-18 4.77648338094E-18 5.08454008885E-18 5.41246474716E-18 5.76153872853E-18 6.13312604711E-18 6.52867868835E-18 6.94974228273E-18 7.39796214533E-18 7.87508970495E-18 8.38298934781E-18 8.92364570271E-18 9.49917139603E-18 1.01118153068E-17 1.07639713543E-17 1.14581878524E-17 1.21971774670E-17 1.29838278159E-17 1.38212127523E-17 1.47126043758E-17 1.56614858185E-17 1.66715648550E-17 1.77467883908E-17 1.88913578850E-17 2.01097457676E-17 2.14067129153E-17 2.27873272553E-17 2.42569835676E-17 2.58214245659E-17 2.74867633370E-17 2.92595072279E-17 3.11465832733E-17 3.31553652635E-17 3.52937025570E-17 3.75699507528E-17 3.99930043394E-17 4.25723314506E-17 4.53180108624E-17 4.82407713758E-17 5.13520337401E-17 5.46639552794E-17 5.81894773981E-17 6.19423761492E-17 6.59373160647E-17 7.01899074576E-17 7.47167674196E-17 7.95355847525E-17 8.46651890879E-17 9.01256244640E-17 9.59382276483E-17 1.02125711512E-16 1.08712253779E-16 1.15723591504E-16 1.23187121638E-16 1.31132008084E-16 1.39589295654E-16 1.48592031379E-16 1.58175393639E-16 1.68376829626E-16 1.79236201667E-16 1.90795942989E-16 2.03101223524E-16 2.16200126416E-16 2.30143835906E-16 2.44986837333E-16 2.60787130037E-16 2.77606453996E-16 2.95510531073E-16 3.14569321824E-16 3.34857298876E-16 3.56453737925E-16 3.79443027510E-16 4.03914998762E-16 4.29965276422E-16 4.57695652495E-16 4.87214484006E-16 5.18637116404E-16 5.52086334283E-16 5.87692841158E-16 6.25595770196E-16 6.65943227882E-16 7.08892872744E-16 7.54612531411E-16 8.03280854397E-16 8.55088014183E-16 9.10236448316E-16 9.68941650441E-16 1.03143301235E-15 1.09795472032E-15 1.16876670929E-15 1.24414567858E-15 1.32438617304E-15 1.40980173406E-15 1.50072612467E-15 1.59751463381E-15 1.70054546453E-15 1.81022121190E-15 1.92697043614E-15 2.05124933721E-15 2.18354353742E-15 2.32436997904E-15 2.47427894423E-15 2.63385620528E-15 2.80372531355E-15 2.98455003599E-15 3.17703694880E-15 3.38193819845E-15 3.60005444064E-15 3.83223796893E-15 4.07939604505E-15 4.34249444407E-15 4.62256122816E-15 4.92069076381E-15 5.23804799801E-15 5.57587301037E-15 5.93548585871E-15 6.31829173723E-15 6.72578646731E-15 7.15956234251E-15 7.62131435040E-15 8.11284679583E-15 8.63608035124E-15 9.19305956173E-15 9.78596083415E-15 1.04171009415E-14 1.10889460755E-14 1.18041214838E-14 1.25654217277E-14 1.33758216021E-14 1.42384877594E-14 1.51567910838E-14 1.61343198622E-14 1.71748938064E-14 1.82825789780E-14 1.94617036769E-14 2.07168753542E-14 2.20529986157E-14 2.34752943870E-14 2.49893203140E-14 2.66009924799E-14 2.83166085220E-14 3.01428722398E-14 3.20869197906E-14 3.41563475737E-14 3.63592419137E-14 3.87042106575E-14 4.12004168103E-14 4.38576143394E-14 4.66861862884E-14 4.96971853490E-14 5.29023770492E-14 5.63142857278E-14 5.99462434729E-14 6.38124422174E-14 6.79279891941E-14 7.23089659672E-14 7.69724912716E-14 8.19367879040E-14 8.72212539290E-14 9.28465384770E-14 9.88346224310E-14 1.05208904317E-13 1.11994291734E-13 1.19217298681E-13 1.26906149160E-13 1.35090887460E-13 1.43803495560E-13 1.53078018094E-13 1.62950695382E-13 1.73460105040E-13 1.84647312723E-13 1.96556032587E-13 2.09232798103E-13 2.22727143886E-13 2.37091799256E-13 2.52382894271E-13 2.68660179062E-13 2.85987257300E-13 3.04431834735E-13 3.24065983750E-13 3.44966424986E-13 3.67214827129E-13 3.90898126030E-13 4.16108864404E-13 4.42945553443E-13 4.71513057750E-13 5.01923005092E-13 5.34294222590E-13 5.68753201030E-13 6.05434589132E-13 6.44481719684E-13 6.86047169613E-13 7.30293356185E-13 7.77393171639E-13 8.27530658773E-13 8.80901730080E-13 9.37714933279E-13 9.98192266211E-13 1.06257004430E-12 1.13109982392E-12 1.20404938542E-12 1.28170377939E-12 1.36436644053E-12 1.45236037333E-12 1.54602941417E-12 1.64573957488E-12 1.75188047291E-12 1.86486685378E-12 1.98514021163E-12 2.11317051442E-12 2.24945804026E-12 2.39453533226E-12 2.54896927944E-12 2.71336333180E-12 2.88835985831E-12 3.07464265695E-12 3.27293962659E-12 3.48402561129E-12 3.70872542793E-12 3.94791708916E-12 4.20253523422E-12 4.47357478099E-12 4.76209481360E-12 5.06922272076E-12 5.39615860096E-12 5.74417995182E-12 6.11464666187E-12 6.50900632690E-12 6.92879989434E-12 7.37566770461E-12 7.85135588390E-12 8.35772318232E-12 8.89674820824E-12 9.47053720002E-12 1.00813322207E-11 1.07315199369E-11 1.14236409496E-11 1.21603996893E-11 1.29446750362E-11 1.37795315159E-11 1.46682312997E-11 1.56142469678E-11 1.66212750460E-11 1.76932504517E-11 1.88343618975E-11 2.00490682385E-11 2.13421158943E-11 2.27185573893E-11 2.41837711125E-11 2.57434823387E-11 2.74037855651E-11 2.91711683451E-11 3.10525366537E-11 3.30552418392E-11 3.51871093646E-11 3.74564693832E-11 3.98721893190E-11 4.24437084691E-11 4.51810748359E-11 4.80949846335E-11 5.11968236169E-11 5.44987120735E-11 5.80135520724E-11 6.17550774334E-11 6.57379078794E-11 6.99776061254E-11 7.44907384356E-11 7.92949395143E-11 8.44089813993E-11 8.98528467333E-11 9.56478070096E-11 1.01816505498E-10 1.08383045743E-10 1.15373086001E-10 1.22813939124E-10 1.30734679416E-10 1.39166256413E-10 1.48141615553E-10 1.57695827163E-10 1.67866223037E-10 1.78692542862E-10 1.90217089253E-10 2.02484892990E-10 2.15543888561E-10 2.29445102669E-10 2.44242852181E-10 2.59994957412E-10 2.76762967090E-10 2.94612400027E-10 3.13613000017E-10 3.33839008748E-10 3.55369456212E-10 3.78288468975E-10 4.02685599129E-10 4.28656173994E-10 4.56301669026E-10 4.85730103658E-10 5.17056463699E-10 5.50403151055E-10 5.85900460375E-10 6.23687090508E-10 6.63910684454E-10 7.06728406520E-10 7.52307557040E-10 8.00826226436E-10 8.52473989127E-10 9.07452645764E-10 9.65977011834E-10 1.02827575490E-09 1.09459229158E-09 1.16518573439E-09 1.24033190652E-09 1.32032442046E-09 1.40547582189E-09 1.49611881374E-09 1.59260755423E-09 1.69531904121E-09 1.80465458495E-09 1.92104137552E-09 2.04493415395E-09 2.17681698404E-09 2.31720514849E-09 2.46664715923E-09 2.62572690169E-09 2.79506591381E-09 2.97532581617E-09 3.16721089670E-09 3.37147085892E-09 3.58890375652E-09 3.82035910541E-09 4.06674120425E-09 4.32901266888E-09 4.60819818987E-09 4.90538853775E-09 5.22174482341E-09 5.55850303192E-09 5.91697885310E-09 6.29857282135E-09 6.70477578310E-09 7.13717472417E-09 7.59745896809E-09 8.08742677115E-09 8.60899235335E-09 9.16419336902E-09 9.75519886950E-09 1.03843177770E-08 1.10540078967E-08 1.17668855257E-08 1.25257356637E-08 1.33335228961E-08 1.41934029696E-08 1.51087351220E-08 1.60830951973E-08 1.71202896141E-08 1.82243702359E-08 1.93996501842E-08 2.06507206972E-08 2.19824690494E-08 2.34000976480E-08 2.49091443378E-08 2.65155040371E-08 2.82254517578E-08 3.00456671011E-08 3.19832603538E-08 3.40458002435E-08 3.62413434966E-08 3.85784663029E-08 4.10662977913E-08 4.37145556893E-08 4.65335842527E-08 4.95343946671E-08 5.27287080262E-08 5.61290011042E-08 5.97485550627E-08 6.36015072973E-08 6.77029066357E-08 7.20687720790E-08 7.67161553405E-08 8.16632074040E-08 8.69292493785E-08 9.25348479108E-08 9.85018954686E-08 1.04853695779E-07 1.11615054789E-07 1.18812377470E-07 1.26473770873E-07 1.34629153812E-07 1.43310373617E-07 1.52551330408E-07 1.62388109366E-07 1.72859121539E-07 1.84005253702E-07 1.95870027867E-07 2.08499771080E-07 2.21943796139E-07 2.36254593950E-07 2.51488038274E-07 2.67703603651E-07 2.84964597356E-07 3.03338406287E-07 3.22896759741E-07 3.43716009115E-07 3.65877425598E-07 3.89467517029E-07 4.14578365131E-07 4.41307984475E-07 4.69760704507E-07 5.00047576168E-07 5.32286804681E-07 5.66604210156E-07 6.03133717837E-07 6.42017879875E-07 6.83408430643E-07 7.27466877759E-07 7.74365131121E-07 8.24286172359E-07 8.77424767322E-07 9.33988224359E-07 9.94197201313E-07 1.05828656436E-06 1.12650630207E-06 1.19912249806E-06 1.27641836625E-06 1.35869535248E-06 1.44627430693E-06 1.53949673167E-06 1.63872610846E-06 1.74434931152E-06 1.85677811108E-06 1.97645077332E-06 2.10383376284E-06 2.23942355434E-06 2.38374856033E-06 2.53737118241E-06 2.70088999395E-06 2.87494206242E-06 3.06020542054E-06 3.25740169550E-06 3.46729890637E-06 3.69071444051E-06 3.92851822011E-06 4.18163607133E-06 4.45105330844E-06 4.73781854704E-06 5.04304776057E-06 5.36792859574E-06 5.71372496312E-06 6.08178192039E-06 6.47353086681E-06 6.89049506837E-06 7.33429553469E-06 7.80665726977E-06 8.30941592013E-06 8.84452484535E-06 9.41406263760E-06 1.00202411183E-05 1.06654138416E-05 1.13520851375E-05 1.20829197261E-05 1.28607529418E-05 1.36886016022E-05 1.45696755643E-05 1.55073900100E-05 1.65053785053E-05 1.75675068825E-05 1.86978879955E-05 1.99008974020E-05 2.11811900305E-05 2.25437178918E-05 2.39937488995E-05 2.55368868670E-05 2.71790927539E-05 2.89267072360E-05 3.07864746815E-05 3.27655686166E-05 3.48716187716E-05 3.71127398025E-05 3.94975617884E-05 4.20352626105E-05 4.47356023258E-05 4.76089596531E-05 5.06663706963E-05 5.39195700366E-05 5.73810343334E-05 6.10640285780E-05 6.49826551569E-05 6.91519058841E-05 7.35877171755E-05 7.83070285420E-05 8.33278445924E-05 8.86693007412E-05 9.43517328308E-05 1.00396750884E-04 1.06827317216E-04 1.13667829142E-04 1.20944206533E-04 1.28683984472E-04 1.36916411301E-04 1.45672552309E-04 1.54985399392E-04 1.64889986967E-04 1.75423514459E-04 1.86625475707E-04 1.98537795603E-04 2.11204974342E-04 2.24674239628E-04 2.38995707207E-04 2.54222550126E-04 2.70411177087E-04 2.87621420308E-04 3.05916733291E-04 3.25364398910E-04 3.46035748223E-04 3.68006390437E-04 3.91356454425E-04 4.16170842213E-04 4.42539494846E-04 4.70557671009E-04 5.00326238803E-04 5.31951981021E-04 5.65547914269E-04 6.01233622244E-04 6.39135603427E-04 6.79387633442E-04 7.22131142235E-04 7.67515606220E-04 8.15698955415E-04 8.66847995565E-04 9.21138845103E-04 9.78757386744E-04 1.03989973336E-03 1.10477270763E-03 1.17359433489E-03 1.24659434829E-03 1.32401470534E-03 1.40611011463E-03 1.49314857114E-03 1.58541189866E-03 1.68319629715E-03 1.78681289268E-03 1.89658828749E-03 2.01286510683E-03 2.13600253937E-03 2.26637686696E-03 2.40438197958E-03 2.55042987027E-03 2.70495110457E-03 2.86839525833E-03 3.04123131691E-03 3.22394802821E-03 3.41705420128E-03 3.62107894113E-03 3.83657180991E-03 4.06410290333E-03 4.30426283054E-03 4.55766258444E-03 4.82493328858E-03 5.10672580558E-03 5.40371019097E-03 5.71657497510E-03 6.04602625506E-03 6.39278657672E-03 6.75759358666E-03 7.14119843210E-03 7.54436388621E-03 7.96786217519E-03 8.41247248255E-03 8.87897810542E-03 9.36816323708E-03 9.88080934959E-03 1.04176911502E-02 1.09795720852E-02 1.15671993662E-02 1.21812984927E-02 1.28225672495E-02 1.34916691546E-02 1.41892263407E-02 1.49158118523E-02 1.56719413466E-02 1.64580641900E-02 1.72745539466E-02 1.81216982637E-02 1.89996881643E-02 1.99086067654E-02 2.08484174527E-02 2.18189515502E-02 2.28198955359E-02 2.38507778716E-02 2.49109555231E-02 2.59996002708E-02 2.71156849207E-02 2.82579695506E-02 2.94249879430E-02 3.06150343759E-02 3.18261509691E-02 3.30561158002E-02 3.43024320314E-02 3.55623183084E-02 3.68327007153E-02 3.81102065915E-02 3.93911605326E-02 4.06715829181E-02 4.19471913198E-02 4.32134051542E-02 4.44653539490E-02 4.56978895897E-02 4.69056029040E-02 4.80828449256E-02 4.92237531511E-02 5.03222830643E-02 5.13722451551E-02 5.23673475941E-02 5.33012446471E-02 5.41675908214E-02 5.49601006255E-02 5.56726137002E-02 5.62991649360E-02 5.68340590381E-02 5.72719488246E-02 5.76079163657E-02 5.78375558728E-02 5.79570570500E-02 5.79632874175E-02 5.78538719181E-02 5.76272679315E-02 5.72828336498E-02 5.68208876263E-02 5.62427572033E-02 5.55508134667E-02 5.47484903773E-02 5.38402858003E-02 5.28317423130E-02 5.17294059204E-02 5.05407611681E-02 4.92741416132E-02 4.79386152106E-02 4.65438448917E-02 4.50999254537E-02 4.36171988428E-02 4.21060509770E-02 4.05766944020E-02 3.90389422792E-02 3.75019804179E-02 3.59741452495E-02 3.44627167305E-02 3.29737360862E-02 3.15118589909E-02 3.00802551356E-02 2.86805650631E-02 2.73129245602E-02 2.59760656977E-02 2.46675016978E-02 2.33838001269E-02 2.21209453903E-02 2.08747871230E-02 1.96415658308E-02 1.84185010971E-02 1.72044209372E-02 1.60007440179E-02 1.48120490227E-02 1.36434803257E-02 1.25001226658E-02 1.13869504118E-02 1.03087744912E-02 9.27018752793E-03 8.27550782693E-03 7.32872294852E-03 6.43343371719E-03 5.59279961024E-03 4.80948657019E-03 4.08561837725E-03 3.42273280084E-03 2.82174382071E-03 2.28291126216E-03 1.80581922468E-03 1.38936469243E-03 1.03175769461E-03 7.30534327942E-04 4.82583857565E-04 2.84190969656E-04 1.31094054599E-04 1.85601466441E-05 -5.85231701950E-05 -1.05538965119E-04 -1.28015805481E-04 -1.31487311129E-04 -1.21338098307E-04 -1.02638484301E-04 -7.99710906077E-05 -5.72533189013E-05 -3.74239335836E-05 -2.19500649650E-05 -1.12750546334E-05 -4.93889187627E-06 -1.71631107720E-06 -3.92020118048E-07 -3.34108211791E-08 -8.67361737988E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 9 2 i j (l(j)) 0.00000000000E+00 Q_int 9.72781085425E-24 1.03552007517E-23 1.10230538211E-23 1.17339797129E-23 1.24907563854E-23 1.32963409599E-23 1.41538812756E-23 1.50667281900E-23 1.60384486722E-23 1.70728397411E-23 1.81739433023E-23 1.93460619419E-23 2.05937757390E-23 2.19219601622E-23 2.33358051212E-23 2.48408352458E-23 2.64429314739E-23 2.81483540313E-23 2.99637668938E-23 3.18962638266E-23 3.39533961034E-23 3.61432020133E-23 3.84742382704E-23 4.09556134497E-23 4.35970235785E-23 4.64087900243E-23 4.94018998256E-23 5.25880486239E-23 5.59796863651E-23 5.95900659471E-23 6.34332950068E-23 6.75243910451E-23 7.18793401087E-23 7.65151592557E-23 8.14499630502E-23 8.67030343453E-23 9.22948996311E-23 9.82474092428E-23 1.04583822741E-22 1.11328899799E-22 1.18508996952E-22 1.26152170586E-22 1.34288286568E-22 1.42949136948E-22 1.52168564187E-22 1.61982593396E-22 1.72429573109E-22 1.83550325126E-22 1.95388304027E-22 2.07989766972E-22 2.21403954450E-22 2.35683282692E-22 2.50883548481E-22 2.67064147188E-22 2.84288304854E-22 3.02623325247E-22 3.22140852860E-22 3.42917152856E-22 3.65033409077E-22 3.88576041276E-22 4.13637042800E-22 4.40314340056E-22 4.68712175164E-22 4.98941513280E-22 5.31120476201E-22 5.65374803923E-22 6.01838345977E-22 6.40653584444E-22 6.81972190713E-22 7.25955618135E-22 7.72775732908E-22 8.22615485649E-22 8.75669626274E-22 9.32145464990E-22 9.92263682364E-22 1.05625919164E-21 1.12438205665E-21 1.19689846898E-21 1.27409178808E-21 1.35626364853E-21 1.44373513866E-21 1.53684805520E-21 1.63596623891E-21 1.74147699625E-21 1.85379261278E-21 1.97335196423E-21 2.10062223135E-21 2.23610072548E-21 2.38031683178E-21 2.53383407781E-21 2.69725233555E-21 2.87121016539E-21 3.05638731134E-21 3.25350735710E-21 3.46334055355E-21 3.68670682846E-21 3.92447899039E-21 4.17758613923E-21 4.44701729668E-21 4.73382527082E-21 5.03913077004E-21 5.36412678223E-21 5.71008323634E-21 6.07835196475E-21 6.47037198551E-21 6.88767512536E-21 7.33189200539E-21 7.80475841271E-21 8.30812208307E-21 8.84394992094E-21 9.41433568525E-21 1.00215081707E-20 1.06678399171E-20 1.13558564797E-20 1.20882462981E-20 1.28678712015E-20 1.36977775912E-20 1.45812083443E-20 1.55216154858E-20 1.65226736768E-20 1.75882945742E-20 1.87226421146E-20 1.99301487858E-20 2.12155329462E-20 2.25838172624E-20 2.40403483350E-20 2.55908175908E-20 2.72412835222E-20 2.89981953606E-20 3.08684182771E-20 3.28592602084E-20 3.49785004126E-20 3.72344198668E-20 3.96358336251E-20 4.21921252641E-20 4.49132835488E-20 4.78099414642E-20 5.08934177641E-20 5.41757611990E-20 5.76697975971E-20 6.13891799815E-20 6.53484419197E-20 6.95630543135E-20 7.40494858524E-20 7.88252673650E-20 8.39090603211E-20 8.93207297522E-20 9.50814218739E-20 1.01213646716E-19 1.07741366079E-19 1.14690087170E-19 1.22086962265E-19 1.29960894816E-19 1.38342652384E-19 1.47264986870E-19 1.56762762488E-19 1.66873092002E-19 1.77635481746E-19 1.89091985989E-19 2.01287371272E-19 2.14269291326E-19 2.28088473286E-19 2.42798915905E-19 2.58458100556E-19 2.75127215843E-19 2.92871396695E-19 3.11759978885E-19 3.31866769956E-19 3.53270337630E-19 3.76054316813E-19 4.00307736396E-19 4.26125367143E-19 4.53608092005E-19 4.82863300325E-19 5.14005307464E-19 5.47155801489E-19 5.82444318676E-19 6.20008749668E-19 6.59995878294E-19 7.02561955125E-19 7.47873308029E-19 7.96106992099E-19 8.47451481500E-19 9.02107405936E-19 9.60288334615E-19 1.02222161078E-18 1.08814924004E-18 1.15832883604E-18 1.23303462707E-18 1.31255852762E-18 1.39721127907E-18 1.48732366386E-18 1.58324779808E-18 1.68535850738E-18 1.79405479155E-18 1.90976138368E-18 2.03293040978E-18 2.16404315548E-18 2.30361194667E-18 2.45218215142E-18 2.61033431101E-18 2.77868640844E-18 2.95789628315E-18 3.14866420161E-18 3.35173559359E-18 3.56790396492E-18 3.79801399820E-18 4.04296485334E-18 4.30371368111E-18 4.58127936317E-18 4.87674649343E-18 5.19126961606E-18 5.52607773697E-18 5.88247912610E-18 6.26186642958E-18 6.66572211147E-18 7.09562424656E-18 7.55325268671E-18 8.04039562491E-18 8.55895658271E-18 9.11096184820E-18 9.69856839386E-18 1.03240723049E-17 1.09899177514E-17 1.16987065386E-17 1.24532082742E-17 1.32563711897E-17 1.41113336617E-17 1.50214364743E-17 1.59902358738E-17 1.70215174647E-17 1.81193110021E-17 1.92879061377E-17 2.05318691820E-17 2.18560609476E-17 2.32656557419E-17 2.47661615871E-17 2.63634417418E-17 2.80637376125E-17 2.98736931417E-17 3.18003807695E-17 3.38513290690E-17 3.60345521647E-17 3.83585810474E-17 4.08324969099E-17 4.34659666312E-17 4.62692805505E-17 4.92533926769E-17 5.24299634924E-17 5.58114055150E-17 5.94109318018E-17 6.32426075784E-17 6.73214051997E-17 7.16632626543E-17 7.62851458426E-17 8.12051148716E-17 8.64423946249E-17 9.20174498847E-17 9.79520652977E-17 1.04269430500E-16 1.10994230730E-16 1.18152743287E-16 1.25772940211E-16 1.33884597583E-16 1.42519411875E-16 1.51711123808E-16 1.61495650190E-16 1.71911224265E-16 1.82998545108E-16 1.94800936660E-16 2.07364517015E-16 2.20738378626E-16 2.34974780141E-16 2.50129350597E-16 2.66261306798E-16 2.83433684700E-16 3.01713585731E-16 3.21172438987E-16 3.41886280345E-16 3.63936049574E-16 3.87407906607E-16 4.12393568216E-16 4.38990666395E-16 4.67303129859E-16 4.97441590150E-16 5.29523813926E-16 5.63675163143E-16 6.00029084908E-16 6.38727632923E-16 6.79922022565E-16 7.23773221762E-16 7.70452579982E-16 8.20142497777E-16 8.73037139526E-16 9.29343192127E-16 9.89280672638E-16 1.05308378799E-15 1.12100185017E-15 1.19330025038E-15 1.27026149610E-15 1.35218631497E-15 1.43939482988E-15 1.53222780988E-15 1.63104800170E-15 1.73624154726E-15 1.84821949245E-15 1.96741939336E-15 2.09430702598E-15 2.22937820629E-15 2.37316072764E-15 2.52621642308E-15 2.68914336082E-15 2.86257818109E-15 3.04719858390E-15 3.24372597713E-15 3.45292829544E-15 3.67562300101E-15 3.91268027778E-15 4.16502643171E-15 4.43364751032E-15 4.71959315570E-15 5.02398070602E-15 5.34799956153E-15 5.69291583215E-15 6.06007728486E-15 6.45091861007E-15 6.86696702774E-15 7.30984825497E-15 7.78129285857E-15 8.28314301725E-15 8.81735971995E-15 9.38603042846E-15 9.99137723422E-15 1.06357655411E-14 1.13217133084E-14 1.20519008897E-14 1.28291815063E-14 1.36565923965E-14 1.45373666834E-14 1.54749460084E-14 1.64729939798E-14 1.75354104877E-14 1.86663469436E-14 1.98702225019E-14 2.11517413275E-14 2.25159109775E-14 2.39680619688E-14 2.55138686064E-14 2.71593711564E-14 2.89109994481E-14 3.07755979986E-14 3.27604527584E-14 3.48733195805E-14 3.71224545271E-14 3.95166461300E-14 4.20652497320E-14 4.47782240430E-14 4.76661700536E-14 5.07403724587E-14 5.40128437528E-14 5.74963711685E-14 6.12045666429E-14 6.51519200067E-14 6.93538556028E-14 7.38267925575E-14 7.85882089380E-14 8.36567100484E-14 8.90521011300E-14 9.47954647504E-14 1.00909243184E-13 1.07417326104E-13 1.14345143934E-13 1.21719767215E-13 1.29570012386E-13 1.37926554381E-13 1.46822046497E-13 1.56291247979E-13 1.66371159851E-13 1.77101169490E-13 1.88523204536E-13 2.00681896724E-13 2.13624756282E-13 2.27402357578E-13 2.42068536738E-13 2.57680602011E-13 2.74299557705E-13 2.91990342553E-13 3.10822083470E-13 3.30868365661E-13 3.52207520154E-13 3.74922929882E-13 3.99103355502E-13 4.24843282221E-13 4.52243289004E-13 4.81410441577E-13 5.12458710797E-13 5.45509417981E-13 5.80691708974E-13 6.18143058787E-13 6.58009808773E-13 7.00447738460E-13 7.45622674257E-13 7.93711137413E-13 8.44901033782E-13 8.99392388052E-13 9.57398125345E-13 1.01914490322E-12 1.08487399732E-12 1.15484224417E-12 1.22932304477E-12 1.30860743286E-12 1.39300521217E-12 1.48284616695E-12 1.57848135063E-12 1.68028445749E-12 1.78865328292E-12 1.90401127776E-12 2.02680920293E-12 2.15752689080E-12 2.29667512006E-12 2.44479761161E-12 2.60247315313E-12 2.77031786067E-12 2.94898758609E-12 3.13918047979E-12 3.34163971872E-12 3.55715641027E-12 3.78657268354E-12 4.03078497989E-12 4.29074755576E-12 4.56747621137E-12 4.86205225994E-12 5.17562675282E-12 5.50942497723E-12 5.86475124522E-12 6.24299398702E-12 6.64563117119E-12 7.07423610509E-12 7.53048355219E-12 8.01615628983E-12 8.53315206226E-12 9.08349102750E-12 9.66932361980E-12 1.02929389564E-11 1.09567738020E-11 1.16634220831E-11 1.24156449848E-11 1.32163818032E-11 1.40687613955E-11 1.49761143892E-11 1.59419862544E-11 1.69701510877E-11 1.80646264067E-11 1.92296888127E-11 2.04698907526E-11 2.17900782569E-11 2.31954098995E-11 2.46913769364E-11 2.62838248049E-11 2.79789758862E-11 2.97834539180E-11 3.17043097823E-11 3.37490491202E-11 3.59256615991E-11 3.82426522531E-11 4.07090745461E-11 4.33345658627E-11 4.61293851632E-11 4.91044530068E-11 5.22713941290E-11 5.56425832904E-11 5.92311930576E-11 6.30512456603E-11 6.71176675993E-11 7.14463481343E-11 7.60542011614E-11 8.09592315046E-11 8.61806049995E-11 9.17387237373E-11 9.76553055649E-11 1.03953468820E-10 1.10657822928E-10 1.17794564459E-10 1.25391579458E-10 1.33478552268E-10 1.42087081840E-10 1.51250804936E-10 1.61005527656E-10 1.71389365292E-10 1.82442891254E-10 1.94209295769E-10 2.06734554276E-10 2.20067607395E-10 2.34260552022E-10 2.49368845007E-10 2.65451519410E-10 2.82571415677E-10 3.00795426916E-10 3.20194760346E-10 3.40845215074E-10 3.62827479370E-10 3.86227444532E-10 4.11136541200E-10 4.37652096774E-10 4.65877715455E-10 4.95923682652E-10 5.27907396460E-10 5.61953825897E-10 5.98195999680E-10 6.36775525428E-10 6.77843142923E-10 7.21559314134E-10 7.68094848005E-10 8.17631569896E-10 8.70363031336E-10 9.26495265236E-10 9.86247592391E-10 1.04985347679E-09 1.11756143968E-09 1.18963602790E-09 1.26635884987E-09 1.34802967433E-09 1.43496760253E-09 1.52751231340E-09 1.62602539257E-09 1.73089174301E-09 1.84252108995E-09 1.96134958150E-09 2.08784149201E-09 2.22249103612E-09 2.36582430010E-09 2.51840129552E-09 2.68081814850E-09 2.85370942834E-09 3.03775062534E-09 3.23366079075E-09 3.44220534566E-09 3.66419906996E-09 3.90050928656E-09 4.15205925062E-09 4.41983175079E-09 4.70487295554E-09 5.00829649491E-09 5.33128781249E-09 5.67510879585E-09 6.04110270327E-09 6.43069941760E-09 6.84542102307E-09 7.28688775569E-09 7.75682433021E-09 8.25706668041E-09 8.78956912484E-09 9.35641200322E-09 9.95980980193E-09 1.06021198030E-08 1.12858512920E-08 1.20136753567E-08 1.27884353218E-08 1.36131578514E-08 1.44910647754E-08 1.54255856644E-08 1.64203712281E-08 1.74793075749E-08 1.86065313865E-08 1.98064460703E-08 2.10837389587E-08 2.24433996168E-08 2.38907393195E-08 2.54314117977E-08 2.70714353146E-08 2.88172161690E-08 3.06755737028E-08 3.26537669382E-08 3.47595229133E-08 3.70010668637E-08 3.93871543181E-08 4.19271053110E-08 4.46308407440E-08 4.75089211344E-08 5.05725878379E-08 5.38338069428E-08 5.73053159721E-08 6.10006736171E-08 6.49343126644E-08 6.91215963278E-08 7.35788782276E-08 7.83235662177E-08 8.33741903271E-08 8.87504750983E-08 9.44734165467E-08 1.00565364122E-07 1.07050107923E-07 1.13952971532E-07 1.21300910839E-07 1.29122619226E-07 1.37448639529E-07 1.46311483201E-07 1.55745757163E-07 1.65788298819E-07 1.76478319766E-07 1.87857558757E-07 1.99970444509E-07 2.12864269005E-07 2.26589371949E-07 2.41199337092E-07 2.56751201193E-07 2.73305676455E-07 2.90927387243E-07 3.09685122076E-07 3.29652101793E-07 3.50906265032E-07 3.73530572016E-07 3.97613327946E-07 4.23248527155E-07 4.50536219425E-07 4.79582899866E-07 5.10501923867E-07 5.43413948731E-07 5.78447403729E-07 6.15738990351E-07 6.55434214744E-07 6.97687954374E-07 7.42665061088E-07 7.90541002973E-07 8.41502547437E-07 8.95748488192E-07 9.53490418921E-07 1.01495355667E-06 1.08037761811E-06 1.15001775205E-06 1.22414553184E-06 1.30305001152E-06 1.38703884961E-06 1.47643950521E-06 1.57160051071E-06 1.67289282610E-06 1.78071128028E-06 1.89547610464E-06 2.01763456501E-06 2.14766269817E-06 2.28606715960E-06 2.43338718964E-06 2.59019670544E-06 2.75710652698E-06 2.93476674536E-06 3.12386924275E-06 3.32515037343E-06 3.53939381622E-06 3.76743360930E-06 4.01015737873E-06 4.26850977337E-06 4.54349611884E-06 4.83618630482E-06 5.14771892010E-06 5.47930565139E-06 5.83223596226E-06 6.20788207021E-06 6.60770424038E-06 7.03325641616E-06 7.48619220768E-06 7.96827126089E-06 8.48136603101E-06 9.02746898587E-06 9.60870026597E-06 1.02273158300E-05 1.08857161162E-05 1.15864552515E-05 1.23322508429E-05 1.31259943878E-05 1.39707623403E-05 1.48698278763E-05 1.58266733985E-05 1.68450038291E-05 1.79287607375E-05 1.90821373550E-05 2.03095945309E-05 2.16158776881E-05 2.30060348387E-05 2.44854357258E-05 2.60597921576E-05 2.77351796098E-05 2.95180601695E-05 3.14153069045E-05 3.34342297421E-05 3.55826029496E-05 3.78686943105E-05 4.03012960993E-05 4.28897579612E-05 4.56440218085E-05 4.85746588540E-05 5.16929089066E-05 5.50107220596E-05 5.85408029138E-05 6.22966574784E-05 6.62926429077E-05 7.05440202319E-05 7.50670102553E-05 7.98788527992E-05 8.49978694779E-05 9.04435302042E-05 9.62365236305E-05 1.02398831743E-04 1.08953808831E-04 1.15926265073E-04 1.23342554981E-04 1.31230670958E-04 1.39620342248E-04 1.48543139538E-04 1.58032585516E-04 1.68124271680E-04 1.78855981702E-04 1.90267821676E-04 2.02402357579E-04 2.15304760273E-04 2.29022958417E-04 2.43607799631E-04 2.59113220282E-04 2.75596424268E-04 2.93118071165E-04 3.11742474136E-04 3.31537807970E-04 3.52576327637E-04 3.74934597753E-04 3.98693733310E-04 4.23939652063E-04 4.50763338920E-04 4.79261122668E-04 5.09534965393E-04 5.41692764844E-04 5.75848670063E-04 6.12123410471E-04 6.50644638624E-04 6.91547286775E-04 7.34973937317E-04 7.81075207121E-04 8.30010145702E-04 8.81946647051E-04 9.37061874875E-04 9.95542700861E-04 1.05758615545E-03 1.12339989049E-03 1.19320265282E-03 1.26722476803E-03 1.34570863280E-03 1.42890921476E-03 1.51709455781E-03 1.61054629122E-03 1.70956013992E-03 1.81444643362E-03 1.92553061148E-03 2.04315371920E-03 2.16767289439E-03 2.29946183611E-03 2.43891125362E-03 2.58642928897E-03 2.74244190744E-03 2.90739324915E-03 3.08174593452E-03 3.26598131563E-03 3.46059966448E-03 3.66612028864E-03 3.88308156381E-03 4.11204087179E-03 4.35357443164E-03 4.60827701080E-03 4.87676150170E-03 5.15965834881E-03 5.45761480975E-03 5.77129403303E-03 6.10137393433E-03 6.44854585169E-03 6.81351295965E-03 7.19698842096E-03 7.59969325390E-03 8.02235389272E-03 8.46569941772E-03 8.93045843147E-03 9.41735555720E-03 9.92710753570E-03 1.04604188970E-02 1.10179771843E-02 1.16004477074E-02 1.22084678074E-02 1.28426406106E-02 1.35035282599E-02 1.41916446076E-02 1.49074473620E-02 1.56513296833E-02 1.64236112296E-02 1.72245286600E-02 1.80542256100E-02 1.89127421609E-02 1.98000038364E-02 2.07158101686E-02 2.16598228869E-02 2.26315537988E-02 2.36303524421E-02 2.46553936057E-02 2.57056648320E-02 2.67799540310E-02 2.78768373550E-02 2.89946675020E-02 3.01315626351E-02 3.12853961267E-02 3.24537873550E-02 3.36340938009E-02 3.48234047126E-02 3.60185366216E-02 3.72160310121E-02 3.84121544549E-02 3.96029015307E-02 4.07840008695E-02 4.19509246357E-02 4.30989017798E-02 4.42229353664E-02 4.53178242650E-02 4.63781894594E-02 4.73985051895E-02 4.83731350858E-02 4.92963733916E-02 5.01624912870E-02 5.09657882367E-02 5.17006481755E-02 5.23616002228E-02 5.29433834817E-02 5.34410153290E-02 5.38498624423E-02 5.41657136388E-02 5.43848534258E-02 5.45041349826E-02 5.45210511174E-02 5.44338015733E-02 5.42413549037E-02 5.39435030054E-02 5.35409062957E-02 5.30351274617E-02 5.24286516987E-02 5.17248914060E-02 5.09281734365E-02 5.00437071986E-02 4.90775322139E-02 4.80364441325E-02 4.69278987192E-02 4.57598939425E-02 4.45408310324E-02 4.32793562083E-02 4.19841857156E-02 4.06639178189E-02 3.93268364684E-02 3.79807124425E-02 3.66326088345E-02 3.52886987463E-02 3.39541039086E-02 3.26327636037E-02 3.13273436417E-02 3.00391951498E-02 2.87683724945E-02 2.75137186761E-02 2.62730249356E-02 2.50432690228E-02 2.38209335307E-02 2.26024018774E-02 2.13844249063E-02 2.01646457157E-02 1.89421643005E-02 1.77184896911E-02 1.64982917409E-02 1.52869335727E-02 1.40898531288E-02 1.29125174647E-02 1.17603729257E-02 1.06387914418E-02 9.55301327311E-03 8.50808664021E-03 7.50880478365E-03 6.55964112034E-03 5.66468328885E-03 4.82756701102E-03 4.05141083569E-03 3.33875297280E-03 2.69149156964E-03 2.11082992359E-03 1.59722826427E-03 1.15036386872E-03 7.69101393106E-04 4.51475407423E-04 1.94687202279E-04 -4.88200867829E-06 -1.51639345771E-04 -2.50727855122E-04 -3.07951380185E-04 -3.29674785738E-04 -3.22697802827E-04 -2.94101037194E-04 -2.51063046706E-04 -2.00647856644E-04 -1.49562856470E-04 -1.03526579771E-04 -6.58126075048E-05 -3.78798342357E-05 -1.93742990985E-05 -8.21469795588E-06 -2.44615240157E-06 -3.07280910758E-07 -1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 10 2 i j (l(j)) 0.00000000000E+00 Q_int 1.04899491579E-23 1.11664927529E-23 1.18866696610E-23 1.26532939890E-23 1.34693613383E-23 1.43380605098E-23 1.52627859642E-23 1.62471510865E-23 1.72950023047E-23 1.84104341202E-23 1.95978051072E-23 2.08617549434E-23 2.22072225405E-23 2.36394653422E-23 2.51640798684E-23 2.67870235835E-23 2.85146381754E-23 3.03536743356E-23 3.23113181379E-23 3.43952191179E-23 3.66135201640E-23 3.89748893359E-23 4.14885537347E-23 4.41643355588E-23 4.70126904838E-23 5.00447485185E-23 5.32723574955E-23 5.67081293671E-23 6.03654894864E-23 6.42587290677E-23 6.84030610291E-23 7.28146794380E-23 7.75108227890E-23 8.25098413643E-23 8.78312689378E-23 9.34958991032E-23 9.95258665260E-23 1.05944733435E-22 1.12777581692E-22 1.20051110800E-22 1.27793742232E-22 1.36035730489E-22 1.44809281319E-22 1.54148677563E-22 1.64090413113E-22 1.74673335519E-22 1.85938797778E-22 1.97930819930E-22 2.10696261062E-22 2.24285002413E-22 2.38750142284E-22 2.54148203524E-22 2.70539354391E-22 2.87987643665E-22 3.06561250914E-22 3.26332752912E-22 3.47379407233E-22 3.69783454137E-22 3.93632437922E-22 4.19019549011E-22 4.46043988094E-22 4.74811353752E-22 5.05434055091E-22 5.38031750984E-22 5.72731817634E-22 6.09669846306E-22 6.48990173150E-22 6.90846443197E-22 7.35402210732E-22 7.82831578384E-22 8.33319877438E-22 8.87064392020E-22 9.44275129988E-22 1.00517564354E-21 1.07000390277E-21 1.13901322549E-21 1.21247326714E-21 1.29067107442E-21 1.37391220697E-21 1.46252193133E-21 1.55684649190E-21 1.65725446397E-21 1.76413819386E-21 1.87791533208E-21 1.99903046525E-21 2.12795685341E-21 2.26519827920E-21 2.41129101648E-21 2.56680592580E-21 2.73235068504E-21 2.90857216394E-21 3.09615895177E-21 3.29584404797E-21 3.50840772639E-21 3.73468058423E-21 3.97554678759E-21 4.23194752639E-21 4.50488469208E-21 4.79542479259E-21 5.10470311965E-21 5.43392818505E-21 5.78438644288E-21 6.15744731640E-21 6.55456854908E-21 6.97730190075E-21 7.42729921118E-21 7.90631885462E-21 8.41623261074E-21 8.95903297861E-21 9.53684096247E-21 1.01519143596E-20 1.08066565825E-20 1.15036260509E-20 1.22455461879E-20 1.30353160626E-20 1.38760217180E-20 1.47709482296E-20 1.57235925424E-20 1.67376771345E-20 1.78171645635E-20 1.89662729501E-20 2.01894924602E-20 2.14916028507E-20 2.28776921460E-20 2.43531765203E-20 2.59238214608E-20 2.75957642966E-20 2.93755381808E-20 3.12700976185E-20 3.32868456417E-20 3.54336627371E-20 3.77189376392E-20 4.01516001093E-20 4.27411558287E-20 4.54977235428E-20 4.84320745995E-20 5.15556750395E-20 5.48807303993E-20 5.84202334048E-20 6.21880147408E-20 6.61987970948E-20 7.04682526858E-20 7.50130645042E-20 7.98509915009E-20 8.50009379806E-20 9.04830274709E-20 9.63186813556E-20 1.02530702579E-19 1.09143364748E-19 1.16182506985E-19 1.23675634889E-19 1.31652028022E-19 1.40142854312E-19 1.49181291848E-19 1.58802658519E-19 1.69044550026E-19 1.79946986780E-19 1.91552570292E-19 2.03906649629E-19 2.17057498625E-19 2.31056504507E-19 2.45958368695E-19 2.61821320546E-19 2.78707344889E-19 2.96682424229E-19 3.15816796580E-19 3.36185229916E-19 3.57867314331E-19 3.80947773042E-19 4.05516793440E-19 4.31670379506E-19 4.59510726944E-19 4.89146622515E-19 5.20693869124E-19 5.54275738320E-19 5.90023451985E-19 6.28076695085E-19 6.68584161492E-19 7.11704135009E-19 7.57605107866E-19 8.06466439109E-19 8.58479055449E-19 9.13846197310E-19 9.72784213000E-19 1.03552340409E-18 1.10230892533E-18 1.17340174258E-18 1.24907965258E-18 1.32963836839E-18 1.41539267494E-18 1.50667765904E-18 1.60385001874E-18 1.70728945714E-18 1.81740016607E-18 1.93461240553E-18 2.05938418487E-18 2.19220305251E-18 2.33358800106E-18 2.48409149526E-18 2.64430163077E-18 2.81484443216E-18 2.99638629910E-18 3.18963661038E-18 3.39535049575E-18 3.61433178667E-18 3.84743615727E-18 4.09557446791E-18 4.35971632439E-18 4.64089386673E-18 4.94020580225E-18 5.25882169880E-18 5.59798655486E-18 5.95902566444E-18 6.34334979564E-18 6.75246070331E-18 7.18795699714E-18 7.65154038828E-18 8.14502233884E-18 8.67033114018E-18 9.22951944776E-18 9.82477230194E-18 1.04584156661E-17 1.11329255153E-17 1.18509375113E-17 1.26152573014E-17 1.34288714818E-17 1.42949592672E-17 1.52169049144E-17 1.61983109458E-17 1.72430122266E-17 1.83550909494E-17 1.95388925859E-17 2.07990428663E-17 2.21404658549E-17 2.35684031909E-17 2.50884345700E-17 2.67064995476E-17 2.84289207471E-17 3.02624285664E-17 3.22141874766E-17 3.42918240175E-17 3.65034565983E-17 3.88577272208E-17 4.13638352478E-17 4.40315733501E-17 4.68713657713E-17 4.98943090611E-17 5.31122154350E-17 5.65376589310E-17 6.01840245425E-17 6.40655605212E-17 6.81974340516E-17 7.25957905178E-17 7.72778165913E-17 8.22618073888E-17 8.75672379605E-17 9.32148393894E-17 9.92266797980E-17 1.05626250581E-16 1.12438558196E-16 1.19690221882E-16 1.27409577666E-16 1.35626789097E-16 1.44373965101E-16 1.53685285454E-16 1.63597134338E-16 1.74148242513E-16 1.85379838655E-16 1.97335810465E-16 2.10062876155E-16 2.23610767003E-16 2.38032421677E-16 2.53384193097E-16 2.69726068633E-16 2.87121904508E-16 3.05639675316E-16 3.25351739635E-16 3.46335122770E-16 3.68671817730E-16 3.92449105618E-16 4.17759896685E-16 4.44703093376E-16 4.73383976794E-16 5.03914618089E-16 5.36414316378E-16 5.71010064909E-16 6.07837047288E-16 6.47039165714E-16 6.88769603278E-16 7.33191422528E-16 7.80478202642E-16 8.30814717692E-16 8.84397658648E-16 9.41436401956E-16 1.00215382768E-15 1.06678719041E-15 1.13558904633E-15 1.20882824011E-15 1.28679095540E-15 1.36978183310E-15 1.45812516175E-15 1.55216614471E-15 1.65227224903E-15 1.75883464135E-15 1.87226971638E-15 1.99302072395E-15 2.12155950108E-15 2.25838831562E-15 2.40404182891E-15 2.55908918498E-15 2.72413623447E-15 2.89982790203E-15 3.08685070635E-15 3.28593544275E-15 3.49786003879E-15 3.72345259403E-15 3.96359461582E-15 4.21922446384E-15 4.49134101674E-15 4.78100757529E-15 5.08935601720E-15 5.41759122004E-15 5.76699576921E-15 6.13893496977E-15 6.53486218131E-15 6.95632449702E-15 7.40496878899E-15 7.88254814335E-15 8.39092871053E-15 8.93209699723E-15 9.50816762877E-15 1.01213916120E-14 1.07741651311E-14 1.14690389108E-14 1.22087281833E-14 1.29961232982E-14 1.38343010164E-14 1.47265365327E-14 1.56763162737E-14 1.66873515210E-14 1.77635929131E-14 1.89092458827E-14 2.01287870892E-14 2.14269819116E-14 2.28089030692E-14 2.42799504433E-14 2.58458721772E-14 2.75127871373E-14 2.92872088227E-14 3.11760708166E-14 3.31867538794E-14 3.53271147893E-14 3.76055170425E-14 4.00308635340E-14 4.26126313452E-14 4.53609087764E-14 4.82864347665E-14 5.14006408554E-14 5.47156958536E-14 5.82445533909E-14 6.20010025338E-14 6.59997216658E-14 7.02563358437E-14 7.47874778522E-14 7.96108531973E-14 8.47453092901E-14 9.02109090937E-14 9.60290095189E-14 1.02222344877E-13 1.08815115714E-13 1.15833083375E-13 1.23303670664E-13 1.31256069005E-13 1.39721352499E-13 1.48732599355E-13 1.58325021137E-13 1.68536100355E-13 1.79405736929E-13 1.90976404099E-13 2.03293314387E-13 2.16404596264E-13 2.30361482217E-13 2.45218508936E-13 2.61033730417E-13 2.77868944810E-13 2.95789935891E-13 3.14866730116E-13 3.35173870249E-13 3.56790706636E-13 3.79801707267E-13 4.04296787834E-13 4.30371663078E-13 4.58128220793E-13 4.87674919950E-13 5.19127214505E-13 5.52608004528E-13 5.88248116440E-13 6.26186814213E-13 6.66572343545E-13 7.09562511126E-13 7.55325301268E-13 8.04039532304E-13 8.55895555313E-13 9.11095997920E-13 9.69856556058E-13 1.03240683680E-12 1.09899125554E-12 1.16986999104E-12 1.24532000210E-12 1.32563610973E-12 1.41113214917E-12 1.50214219623E-12 1.59902187263E-12 1.70214973563E-12 1.81192875720E-12 1.92878789865E-12 2.05318378676E-12 2.18560249807E-12 2.32656145816E-12 2.47661146355E-12 2.63633883383E-12 2.80636770279E-12 2.98736245709E-12 3.18003033242E-12 3.38512417695E-12 3.60344539308E-12 3.83584706886E-12 4.08323731144E-12 4.34658279542E-12 4.62691254011E-12 4.92532193037E-12 5.24297699681E-12 5.58111897192E-12 5.94106914021E-12 6.32423400199E-12 6.73211076486E-12 7.16629320456E-12 7.62847787039E-12 8.12047074838E-12 8.64419428933E-12 9.20169492993E-12 9.79515109451E-12 1.04268816790E-11 1.10993551870E-11 1.18151992597E-11 1.25772110556E-11 1.33883681063E-11 1.42518399800E-11 1.51710006764E-11 1.61494417651E-11 1.71909864891E-11 1.82997046360E-11 1.94799284851E-11 2.07362697017E-11 2.20736374038E-11 2.34972572904E-11 2.50126920816E-11 2.66258632855E-11 2.83430742889E-11 3.01710349972E-11 3.21168880781E-11 3.41882368521E-11 3.63931750059E-11 3.87403181875E-11 4.12388377009E-11 4.38984964020E-11 4.67296867131E-11 4.97434713398E-11 5.29516264400E-11 5.63666876675E-11 6.00019990342E-11 6.38717653534E-11 6.79911074411E-11 7.23761211545E-11 7.70439406950E-11 8.20128051872E-11 8.73021299778E-11 9.29325825837E-11 9.89261634549E-11 1.05306292079E-10 1.12097898035E-10 1.19327518848E-10 1.27023403493E-10 1.35215622825E-10 1.43936187007E-10 1.53219170548E-10 1.63100845705E-10 1.73619823854E-10 1.84817206480E-10 1.96736746100E-10 2.09425016434E-10 2.22931595282E-10 2.37309257607E-10 2.52614182140E-10 2.68906170354E-10 2.86248880822E-10 3.04710077174E-10 3.24361893585E-10 3.45281116312E-10 3.67549483263E-10 3.91254004268E-10 4.16487300233E-10 4.43347965453E-10 4.71940952736E-10 5.02377983345E-10 5.34777983475E-10 5.69267549511E-10 6.05981441620E-10 6.45063111307E-10 6.86665260320E-10 7.30950439703E-10 7.78091682823E-10 8.28273181949E-10 8.81691008360E-10 9.38553877990E-10 9.99083966440E-10 1.06351777833E-09 1.13210706950E-09 1.20511983226E-09 1.28284134165E-09 1.36557526989E-09 1.45364487256E-09 1.54739425235E-09 1.64718970286E-09 1.75342113931E-09 1.86650362229E-09 1.98687898007E-09 2.11501753210E-09 2.25141993025E-09 2.39661911066E-09 2.55118237898E-09 2.71571362545E-09 2.89085568293E-09 3.07729283967E-09 3.27575351243E-09 3.48701309074E-09 3.71189696969E-09 3.95128376669E-09 4.20610876364E-09 4.47736755211E-09 4.76611992727E-09 5.07349402653E-09 5.40069073669E-09 5.74898838369E-09 6.11974772744E-09 6.51441727798E-09 6.93453895118E-09 7.38175409260E-09 7.85780989085E-09 8.36456619946E-09 8.90400280459E-09 9.47822715513E-09 1.00894825939E-08 1.07401571241E-08 1.14327927324E-08 1.21700953191E-08 1.29549452665E-08 1.37904086913E-08 1.46797494143E-08 1.56264417124E-08 1.66341838873E-08 1.77069127072E-08 1.88488187809E-08 2.00643629301E-08 2.13582936010E-08 2.27356654160E-08 2.42018589062E-08 2.57626015333E-08 2.74239900448E-08 2.91925142860E-08 3.10750825453E-08 3.30790485262E-08 3.52122400642E-08 3.74829896887E-08 3.99001671606E-08 4.24732141042E-08 4.52121808726E-08 4.81277657843E-08 5.12313568956E-08 5.45350764564E-08 5.80518282425E-08 6.17953479225E-08 6.57802566871E-08 7.00221183234E-08 7.45374999658E-08 7.93440367700E-08 8.44605007463E-08 8.99068740334E-08 9.57044268832E-08 1.01875800691E-07 1.08445096342E-07 1.15437968281E-07 1.22881724633E-07 1.30805433749E-07 1.39240037653E-07 1.48218472774E-07 1.57775798450E-07 1.67949333731E-07 1.78778802961E-07 1.90306490764E-07 2.02577406993E-07 2.15639462309E-07 2.29543655056E-07 2.44344270185E-07 2.60099090957E-07 2.76869624310E-07 2.94721340704E-07 3.13723929418E-07 3.33951570275E-07 3.55483222861E-07 3.78402934344E-07 4.02800167127E-07 4.28770147537E-07 4.56414237005E-07 4.85840327085E-07 5.17163259893E-07 5.50505275598E-07 5.85996488680E-07 6.23775394837E-07 6.63989410457E-07 7.06795446795E-07 7.52360521063E-07 8.00862406789E-07 8.52490325985E-07 9.07445685786E-07 9.65942862422E-07 1.02821003558E-06 1.09449007631E-06 1.16504149201E-06 1.24013943206E-06 1.32007675805E-06 1.40516518266E-06 1.49573648168E-06 1.59214378379E-06 1.69476294307E-06 1.80399399960E-06 1.92026273361E-06 2.04402231945E-06 2.17575508537E-06 2.31597438627E-06 2.46522659629E-06 2.62409322907E-06 2.79319319381E-06 2.97318519569E-06 3.16477028993E-06 3.36869459923E-06 3.58575220503E-06 3.81678822354E-06 4.06270207843E-06 4.32445098249E-06 4.60305364173E-06 4.89959419583E-06 5.21522641004E-06 5.55117813441E-06 5.90875604725E-06 6.28935070089E-06 6.69444188865E-06 7.12560435346E-06 7.58451385963E-06 8.07295365054E-06 8.59282131674E-06 9.14613609999E-06 9.73504666088E-06 1.03618393389E-05 1.10289469359E-05 1.17389580555E-05 1.24946270339E-05 1.32988844973E-05 1.41548485873E-05 1.50658368938E-05 1.60353791401E-05 1.70672306672E-05 1.81653867661E-05 1.93340979108E-05 2.05778859471E-05 2.19015612966E-05 2.33102412377E-05 2.48093693298E-05 2.64047360501E-05 2.81025007173E-05 2.99092147806E-05 3.18318465555E-05 3.38778074950E-05 3.60549800887E-05 3.83717474861E-05 4.08370249490E-05 4.34602932408E-05 4.62516340677E-05 4.92217676942E-05 5.23820928599E-05 5.57447291327E-05 5.93225618405E-05 6.31292897321E-05 6.71794755230E-05 7.14885994944E-05 7.60731163165E-05 8.09505152829E-05 8.61393841451E-05 9.16594767507E-05 9.75317846966E-05 1.03778613218E-04 1.10423661544E-04 1.17492107969E-04 1.25010699879E-04 1.33007849013E-04 1.41513732225E-04 1.50560398035E-04 1.60181879268E-04 1.70414312092E-04 1.81296061768E-04 1.92867855457E-04 2.05172922411E-04 2.18257141913E-04 2.32169199325E-04 2.46960750610E-04 2.62686595729E-04 2.79404861272E-04 2.97177192747E-04 3.16068956913E-04 3.36149454561E-04 3.57492144158E-04 3.80174876748E-04 4.04280142529E-04 4.29895329478E-04 4.57112994445E-04 4.86031147056E-04 5.16753546809E-04 5.49390013683E-04 5.84056752575E-04 6.20876691835E-04 6.59979836132E-04 7.01503633846E-04 7.45593359090E-04 7.92402508459E-04 8.42093212459E-04 8.94836661539E-04 9.50813546503E-04 1.01021451300E-03 1.07324062965E-03 1.14010386917E-03 1.21102760182E-03 1.28624710015E-03 1.36601005398E-03 1.45057709411E-03 1.54022232334E-03 1.63523385266E-03 1.73591434057E-03 1.84258153292E-03 1.95556880030E-03 2.07522566974E-03 2.20191834686E-03 2.33603022428E-03 2.47796237153E-03 2.62813400101E-03 2.78698290425E-03 2.95496585170E-03 3.13255894885E-03 3.32025794069E-03 3.51857845558E-03 3.72805617900E-03 3.94924694652E-03 4.18272674469E-03 4.42909160723E-03 4.68895739328E-03 4.96295943312E-03 5.25175202590E-03 5.55600777267E-03 5.87641672721E-03 6.21368534556E-03 6.56853521467E-03 6.94170153903E-03 7.33393136347E-03 7.74598150922E-03 8.17861619951E-03 8.63260435034E-03 9.10871650133E-03 9.60772136147E-03 1.01303819439E-02 1.06774512646E-02 1.12496675800E-02 1.18477491386E-02 1.24723884247E-02 1.31242458722E-02 1.38039430289E-02 1.45120551564E-02 1.52491032513E-02 1.60155454805E-02 1.68117680263E-02 1.76380753444E-02 1.84946798446E-02 1.93816910112E-02 2.02991039906E-02 2.12467876831E-02 2.22244723875E-02 2.32317370596E-02 2.42679962623E-02 2.53324868955E-02 2.64242548162E-02 2.75421414732E-02 2.86847707020E-02 2.98505358439E-02 3.10375873761E-02 3.22438212590E-02 3.34668682306E-02 3.47040842983E-02 3.59525426997E-02 3.72090276254E-02 3.84700300146E-02 3.97317457494E-02 4.09900765913E-02 4.22406342071E-02 4.34787476419E-02 4.46994745912E-02 4.58976168192E-02 4.70677400520E-02 4.82041986519E-02 4.93011653395E-02 5.03526661859E-02 5.13526210368E-02 5.22948894534E-02 5.31733221718E-02 5.39818179725E-02 5.47143857392E-02 5.53652113435E-02 5.59287288510E-02 5.63996953719E-02 5.67732687111E-02 5.70450867813E-02 5.72113475553E-02 5.72688881365E-02 5.72152613379E-02 5.70488079797E-02 5.67687229482E-02 5.63751129250E-02 5.58690435874E-02 5.52525740283E-02 5.45287761364E-02 5.37017367506E-02 5.27765405456E-02 5.17592318445E-02 5.06567538941E-02 4.94768645899E-02 4.82280282020E-02 4.69192833439E-02 4.55600882292E-02 4.41601451844E-02 4.27292074041E-02 4.12768720365E-02 3.98123648445E-02 3.83443228546E-02 3.68805825478E-02 3.54279821995E-02 3.39921878707E-02 3.25775532208E-02 3.11870236666E-02 2.98220953556E-02 2.84828388776E-02 2.71679964955E-02 2.58751598670E-02 2.46010326629E-02 2.33417791213E-02 2.20934553780E-02 2.08525153794E-02 1.96163773793E-02 1.83840305311E-02 1.71570001241E-02 1.59399611348E-02 1.47382018675E-02 1.35570060012E-02 1.24016032037E-02 1.12771166512E-02 1.01885078832E-02 9.14051952476E-03 8.13761651416E-03 7.18392658054E-03 6.28318083272E-03 5.43865543108E-03 4.65311542816E-03 3.92876197256E-03 3.26718417293E-03 2.66931701207E-03 2.13540677975E-03 1.66498555474E-03 1.25685630498E-03 9.09090186030E-04 6.19037595506E-04 3.83354479562E-04 1.98045279487E-04 5.85237460618E-05 -4.03073710790E-05 -1.03957039007E-04 -1.38226702968E-04 -1.49071176121E-04 -1.42440267612E-04 -1.24102377720E-04 -9.94520016546E-05 -7.33038915413E-05 -4.94981929827E-05 -3.01978882983E-05 -1.63392235599E-05 -7.69267592605E-06 -2.95681679437E-06 -7.84349473718E-07 -8.57393631370E-08 -3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 4 1 i j (l(j)) -2.92456326189E-02 Q_int -5.98725395111E-20 -6.29422702535E-20 -6.61693894565E-20 -6.95619665991E-20 -7.31284848913E-20 -7.68778624864E-20 -8.08194747814E-20 -8.49631778601E-20 -8.93193331387E-20 -9.38988332741E-20 -9.87131294022E-20 -1.03774259771E-19 -1.09094879842E-19 -1.14688293938E-19 -1.20568488507E-19 -1.26750167097E-19 -1.33248787127E-19 -1.40080598530E-19 -1.47262684393E-19 -1.54813003673E-19 -1.62750436099E-19 -1.71094829389E-19 -1.79867048870E-19 -1.89089029661E-19 -1.98783831518E-19 -2.08975696495E-19 -2.19690109563E-19 -2.30953862335E-19 -2.42795120060E-19 -2.55243492051E-19 -2.68330105721E-19 -2.82087684421E-19 -2.96550629263E-19 -3.11755105144E-19 -3.27739131171E-19 -3.44542675737E-19 -3.62207756454E-19 -3.80778545226E-19 -4.00301478698E-19 -4.20825374371E-19 -4.42401552676E-19 -4.65083965297E-19 -4.88929330080E-19 -5.13997272856E-19 -5.40350476540E-19 -5.68054837868E-19 -5.97179632173E-19 -6.27797686611E-19 -6.59985562267E-19 -6.93823745594E-19 -7.29396849676E-19 -7.66793825803E-19 -8.06108185893E-19 -8.47438236323E-19 -8.90887323748E-19 -9.36564093518E-19 -9.84582761346E-19 -1.03506339892E-18 -1.08813223411E-18 -1.14392196667E-18 -1.20257209997E-18 -1.26422928990E-18 -1.32904771155E-18 -1.39718944474E-18 -1.46882487928E-18 -1.54413314109E-18 -1.62330254003E-18 -1.70653104084E-18 -1.79402675813E-18 -1.88600847675E-18 -1.98270619892E-18 -2.08436171931E-18 -2.19122922967E-18 -2.30357595442E-18 -2.42168281891E-18 -2.54584515182E-18 -2.67637342363E-18 -2.81359402302E-18 -2.95785007296E-18 -3.10950228871E-18 -3.26892987980E-18 -3.43653149825E-18 -3.61272623539E-18 -3.79795466983E-18 -3.99267996915E-18 -4.19738904802E-18 -4.41259378574E-18 -4.63883230626E-18 -4.87667032371E-18 -5.12670255701E-18 -5.38955421698E-18 -5.66588256967E-18 -5.95637857988E-18 -6.26176863894E-18 -6.58281638107E-18 -6.92032459282E-18 -7.27513722053E-18 -7.64814148055E-18 -8.04027007781E-18 -8.45250353804E-18 -8.88587265960E-18 -9.34146109101E-18 -9.82040804063E-18 -1.03239111253E-17 -1.08532293649E-17 -1.14096863308E-17 -1.19946734553E-17 -1.26096535107E-17 -1.32561642675E-17 -1.39358223394E-17 -1.46503272255E-17 -1.54014655602E-17 -1.61911155804E-17 -1.70212518226E-17 -1.78939500596E-17 -1.88113924917E-17 -1.97758732026E-17 -2.07898038965E-17 -2.18557199281E-17 -2.29762866428E-17 -2.41543060409E-17 -2.53927237843E-17 -2.66946365626E-17 -2.80632998355E-17 -2.95021359742E-17 -3.10147428182E-17 -3.26049026726E-17 -3.42765917650E-17 -3.60339901889E-17 -3.78814923554E-17 -3.98237179823E-17 -4.18655236450E-17 -4.40120149211E-17 -4.62685591566E-17 -4.86407988872E-17 -5.11346659478E-17 -5.37563963046E-17 -5.65125456490E-17 -5.94100057896E-17 -6.24560218857E-17 -6.56582105638E-17 -6.90245789631E-17 -7.25635447578E-17 -7.62839572052E-17 -8.01951192740E-17 -8.43068109060E-17 -8.86293134715E-17 -9.31734354778E-17 -9.79505395963E-17 -1.02972571075E-16 -1.08252087607E-16 -1.13802290734E-16 -1.19637058854E-16 -1.25770981924E-16 -1.32219397947E-16 -1.38998431321E-16 -1.46125033159E-16 -1.53617023677E-16 -1.61493136751E-16 -1.69773066766E-16 -1.78477517858E-16 -1.87628255688E-16 -1.97248161863E-16 -2.07361291159E-16 -2.17992931665E-16 -2.29169668018E-16 -2.40919447877E-16 -2.53271651810E-16 -2.66257166759E-16 -2.79908463271E-16 -2.94259676695E-16 -3.09346692536E-16 -3.25207236190E-16 -3.41880967272E-16 -3.59409578791E-16 -3.77836901401E-16 -3.97209013002E-16 -4.17574353959E-16 -4.38983848226E-16 -4.61491030684E-16 -4.85152181005E-16 -5.10026464384E-16 -5.36176079477E-16 -5.63666413934E-16 -5.92566207901E-16 -6.22947725907E-16 -6.54886937562E-16 -6.88463707519E-16 -7.23761995180E-16 -7.60870064638E-16 -7.99880705381E-16 -8.40891464315E-16 -8.84004889683E-16 -9.29328787486E-16 -9.76976491059E-16 -1.02706714446E-15 -1.07972600039E-15 -1.13508473339E-15 -1.19328176910E-15 -1.25446263041E-15 -1.31878030130E-15 -1.38639560941E-15 -1.45747762821E-15 -1.53220409972E-15 -1.61076187901E-15 -1.69334740140E-15 -1.78016717367E-15 -1.87143829041E-15 -1.96738897692E-15 -2.06825915982E-15 -2.17430106704E-15 -2.28577985853E-15 -2.40297428925E-15 -2.52617740625E-15 -2.65569728140E-15 -2.79185778176E-15 -2.93499937942E-15 -3.08548000281E-15 -3.24367593175E-15 -3.40998273835E-15 -3.58481627612E-15 -3.76861371982E-15 -3.96183465863E-15 -4.16496224539E-15 -4.37850440468E-15 -4.60299510293E-15 -4.83899568361E-15 -5.08709627087E-15 -5.34791724516E-15 -5.62211079452E-15 -5.91036254534E-15 -6.21339327685E-15 -6.53196072338E-15 -6.86686146912E-15 -7.21893294001E-15 -7.58905549768E-15 -7.97815464087E-15 -8.38720331964E-15 -8.81722436822E-15 -9.26929306266E-15 -9.74453980957E-15 -1.02441529727E-14 -1.07693818445E-14 -1.13215397700E-14 -1.19020074308E-14 -1.25122362975E-14 -1.31537522591E-14 -1.38281594388E-14 -1.45371442047E-14 -1.52824793867E-14 -1.60660287098E-14 -1.68897514540E-14 -1.77557073539E-14 -1.86660617485E-14 -1.96230909963E-14 -2.06291881672E-14 -2.16868690260E-14 -2.27987783237E-14 -2.39676964103E-14 -2.51965461875E-14 -2.64884004170E-14 -2.78464894044E-14 -2.92742090765E-14 -3.07751294727E-14 -3.23530036720E-14 -3.40117771781E-14 -3.57555977844E-14 -3.75888259461E-14 -3.95160456837E-14 -4.15420760450E-14 -4.36719831555E-14 -4.59110928863E-14 -4.82650041713E-14 -5.07396030076E-14 -5.33410771736E-14 -5.60759317015E-14 -5.89510051430E-14 -6.19734866697E-14 -6.51509340493E-14 -6.84912925441E-14 -7.20029147781E-14 -7.56945816230E-14 -7.95755241546E-14 -8.36554467357E-14 -8.79445512815E-14 -9.24535627698E-14 -9.71937560590E-14 -1.02176984081E-13 -1.07415707479E-13 -1.12923025767E-13 -1.18712710083E-13 -1.24799237627E-13 -1.31197827857E-13 -1.37924480550E-13 -1.44996015808E-13 -1.52430116113E-13 -1.60245370549E-13 -1.68461321280E-13 -1.77098512414E-13 -1.86178541379E-13 -1.95724112922E-13 -2.05759095886E-13 -2.16308582891E-13 -2.27398953083E-13 -2.39057938090E-13 -2.51314691368E-13 -2.64199861100E-13 -2.77745666830E-13 -2.91985980030E-13 -3.06956408792E-13 -3.22694386872E-13 -3.39239267288E-13 -3.56632420727E-13 -3.74917338986E-13 -3.94139743731E-13 -4.14347700819E-13 -4.35591740488E-13 -4.57924983709E-13 -4.81403275013E-13 -5.06085322132E-13 -5.32032842796E-13 -5.59310719061E-13 -5.87987159543E-13 -6.18133869975E-13 -6.49826232507E-13 -6.83143494200E-13 -7.18168965181E-13 -7.54990226958E-13 -7.93699351424E-13 -8.34393131073E-13 -8.77173321036E-13 -9.22146893516E-13 -9.69426305272E-13 -1.01912977881E-12 -1.07138159802E-12 -1.12631241890E-12 -1.18405959633E-12 -1.24476752743E-12 -1.30858801274E-12 -1.37568063569E-12 -1.44621316170E-12 -1.52036195764E-12 -1.59831243285E-12 -1.68025950278E-12 -1.76640807629E-12 -1.85697356812E-12 -1.95218243745E-12 -2.05227275420E-12 -2.15749479432E-12 -2.26811166557E-12 -2.38439996544E-12 -2.50665047276E-12 -2.63516887479E-12 -2.77027653160E-12 -2.91231127957E-12 -3.06162827621E-12 -3.21860088816E-12 -3.38362162481E-12 -3.55710311975E-12 -3.73947916254E-12 -3.93120578341E-12 -4.13276239349E-12 -4.34465298363E-12 -4.56740738455E-12 -4.80158259167E-12 -5.04776415789E-12 -5.30656765768E-12 -5.57864022633E-12 -5.86466217808E-12 -6.16534870718E-12 -6.48145167624E-12 -6.81376149617E-12 -7.16310910260E-12 -7.53036803354E-12 -7.91645661366E-12 -8.32234025046E-12 -8.74903384821E-12 -9.19760434568E-12 -9.66917338390E-12 -1.01649201108E-11 -1.06860841294E-11 -1.12339685978E-11 -1.18099434869E-11 -1.24154490067E-11 -1.30519992066E-11 -1.37211857620E-11 -1.44246819534E-11 -1.51642468506E-11 -1.59417297113E-11 -1.67590746046E-11 -1.76183252720E-11 -1.85216302377E-11 -1.94712481809E-11 -2.04695535830E-11 -2.15190426648E-11 -2.26223396283E-11 -2.37822032177E-11 -2.50015336179E-11 -2.62833797055E-11 -2.76309466722E-11 -2.90476040393E-11 -3.05368940822E-11 -3.21025406878E-11 -3.37484586651E-11 -3.54787635338E-11 -3.72977818146E-11 -3.92100618466E-11 -4.12203851602E-11 -4.33337784318E-11 -4.55555260525E-11 -4.78911833409E-11 -5.03465904328E-11 -5.29278868834E-11 -5.56415270180E-11 -5.84942960701E-11 -6.14933271456E-11 -6.46461190586E-11 -6.79605550796E-11 -7.14449226465E-11 -7.51079340849E-11 -7.89587483914E-11 -8.30069941333E-11 -8.72627935225E-11 -9.17367877232E-11 -9.64401634573E-11 -1.01384680974E-10 -1.06582703452E-10 -1.12047227912E-10 -1.17791917710E-10 -1.23831136698E-10 -1.30179985138E-10 -1.36854337453E-10 -1.43870881920E-10 -1.51247162388E-10 -1.59001622142E-10 -1.67153650016E-10 -1.75723628865E-10 -1.84732986525E-10 -1.94204249387E-10 -2.04161098711E-10 -2.14628429835E-10 -2.25632414413E-10 -2.37200565849E-10 -2.49361808076E-10 -2.62146547874E-10 -2.75586750881E-10 -2.89716021513E-10 -3.04569686974E-10 -3.20184885572E-10 -3.36600659562E-10 -3.53858052757E-10 -3.72000213129E-10 -3.91072500678E-10 -4.11122600831E-10 -4.32200643646E-10 -4.54359329136E-10 -4.77654059009E-10 -5.02143075168E-10 -5.27887605302E-10 -5.54952015947E-10 -5.83403973390E-10 -6.13314612820E-10 -6.44758716147E-10 -6.77814898940E-10 -7.12565806947E-10 -7.49098322679E-10 -7.87503782596E-10 -8.27878205412E-10 -8.70322532113E-10 -9.14942878266E-10 -9.61850799270E-10 -1.01116356920E-09 -1.06300447392E-09 -1.11750311927E-09 -1.17479575500E-09 -1.23502561532E-09 -1.29834327691E-09 -1.36490703527E-09 -1.43488330040E-09 -1.50844701265E-09 -1.58578208002E-09 -1.66708183776E-09 -1.75254953161E-09 -1.84239882571E-09 -1.93685433664E-09 -2.03615219475E-09 -2.14054063429E-09 -2.25028061377E-09 -2.36564646815E-09 -2.48692659436E-09 -2.61442417205E-09 -2.74845792118E-09 -2.88936289853E-09 -3.03749133493E-09 -3.19321351546E-09 -3.35691870467E-09 -3.52901611932E-09 -3.70993595083E-09 -3.90013044025E-09 -4.10007500819E-09 -4.31026944270E-09 -4.53123914803E-09 -4.76353645731E-09 -5.00774201252E-09 -5.26446621513E-09 -5.53435075110E-09 -5.81807019397E-09 -6.11633369006E-09 -6.42988673002E-09 -6.75951301115E-09 -7.10603639506E-09 -7.47032296566E-09 -7.85328319253E-09 -8.25587420510E-09 -8.67910218334E-09 -9.12402487089E-09 -9.59175421686E-09 -1.00834591530E-08 -1.06003685130E-08 -1.11437741016E-08 -1.17150339200E-08 -1.23155755581E-08 -1.29468997582E-08 -1.36105841636E-08 -1.43082872571E-08 -1.50417525022E-08 -1.58128126965E-08 -1.66233945472E-08 -1.74755234816E-08 -1.83713287033E-08 -1.93130485078E-08 -2.03030358698E-08 -2.13437643165E-08 -2.24378341020E-08 -2.35879786973E-08 -2.47970716122E-08 -2.60681335675E-08 -2.74043400331E-08 -2.88090291522E-08 -3.02857100714E-08 -3.18380716967E-08 -3.34699918974E-08 -3.51855471815E-08 -3.69890228656E-08 -3.88849237652E-08 -4.08779854321E-08 -4.29731859668E-08 -4.51757584344E-08 -4.74912039163E-08 -4.99253052293E-08 -5.24841413461E-08 -5.51741025533E-08 -5.80019063849E-08 -6.09746143704E-08 -6.40996496384E-08 -6.73848154219E-08 -7.08383145077E-08 -7.44687696817E-08 -7.82852452182E-08 -8.22972694680E-08 -8.65148586008E-08 -9.09485415606E-08 -9.56093862973E-08 -1.00509027337E-07 -1.05659694762E-07 -1.11074244672E-07 -1.16766191198E-07 -1.22749740156E-07 -1.29039824414E-07 -1.35652141072E-07 -1.42603190532E-07 -1.49910317571E-07 -1.57591754503E-07 -1.65666666552E-07 -1.74155199533E-07 -1.83078529972E-07 -1.92458917779E-07 -2.02319761616E-07 -2.12685657078E-07 -2.23582457848E-07 -2.35037339978E-07 -2.47078869430E-07 -2.59737073078E-07 -2.73043513320E-07 -2.87031366496E-07 -3.01735505301E-07 -3.17192585401E-07 -3.33441136455E-07 -3.50521657778E-07 -3.68476718881E-07 -3.87351065117E-07 -4.07191728721E-07 -4.28048145490E-07 -4.49972277410E-07 -4.73018741515E-07 -4.97244945311E-07 -5.22711229076E-07 -5.49481015409E-07 -5.77620966373E-07 -6.07201148629E-07 -6.38295206967E-07 -6.70980546639E-07 -7.05338524976E-07 -7.41454652716E-07 -7.79418805561E-07 -8.19325446480E-07 -8.61273859276E-07 -9.05368394021E-07 -9.51718724925E-07 -1.00044012128E-06 -1.05165373216E-06 -1.10548688551E-06 -1.16207340240E-06 -1.22155392725E-06 -1.28407627464E-06 -1.34979579385E-06 -1.41887575166E-06 -1.49148773465E-06 -1.56781207177E-06 -1.64803827828E-06 -1.73236552213E-06 -1.82100311386E-06 -1.91417102125E-06 -2.01210040997E-06 -2.11503421142E-06 -2.22322771927E-06 -2.33694921605E-06 -2.45648063122E-06 -2.58211823253E-06 -2.71417335198E-06 -2.85297314846E-06 -2.99886140864E-06 -3.15219938807E-06 -3.31336669463E-06 -3.48276221623E-06 -3.66080509506E-06 -3.84793575069E-06 -4.04461695445E-06 -4.25133495753E-06 -4.46860067566E-06 -4.69695093288E-06 -4.93694976758E-06 -5.18918980368E-06 -5.45429369031E-06 -5.73291561320E-06 -6.02574288146E-06 -6.33349759328E-06 -6.65693838459E-06 -6.99686226454E-06 -7.35410654224E-06 -7.72955084907E-06 -8.12411926121E-06 -8.53878252741E-06 -8.97456040689E-06 -9.43252412291E-06 -9.91379893744E-06 -1.04195668530E-05 -1.09510694474E-05 -1.15096108483E-05 -1.20965608539E-05 -1.27133582072E-05 -1.33615140299E-05 -1.40426154264E-05 -1.47583292619E-05 -1.55104061271E-05 -1.63006844952E-05 -1.71310950820E-05 -1.80036654181E-05 -1.89205246430E-05 -1.98839085322E-05 -2.08961647677E-05 -2.19597584631E-05 -2.30772779560E-05 -2.42514408790E-05 -2.54851005231E-05 -2.67812525066E-05 -2.81430417633E-05 -2.95737698657E-05 -3.10769026971E-05 -3.26560784893E-05 -3.43151162420E-05 -3.60580245424E-05 -3.78890108010E-05 -3.98124909235E-05 -4.18330994385E-05 -4.39557001000E-05 -4.61853969866E-05 -4.85275461193E-05 -5.09877676197E-05 -5.35719584327E-05 -5.62863056379E-05 -5.91373003749E-05 -6.21317524090E-05 -6.52768053639E-05 -6.85799526491E-05 -7.20490541129E-05 -7.56923534480E-05 -7.95184963838E-05 -8.35365496946E-05 -8.77560210585E-05 -9.21868798006E-05 -9.68395785544E-05 -1.01725075879E-04 -1.06854859867E-04 -1.12240972786E-04 -1.17896036780E-04 -1.23833280692E-04 -1.30066568023E-04 -1.36610426092E-04 -1.43480076421E-04 -1.50691466404E-04 -1.58261302286E-04 -1.66207083518E-04 -1.74547138511E-04 -1.83300661851E-04 -1.92487753009E-04 -2.02129456603E-04 -2.12247804245E-04 -2.22865858031E-04 -2.34007755705E-04 -2.45698757561E-04 -2.57965295104E-04 -2.70835021535E-04 -2.84336864078E-04 -2.98501078214E-04 -3.13359303838E-04 -3.28944623384E-04 -3.45291621948E-04 -3.62436449443E-04 -3.80416884800E-04 -3.99272402240E-04 -4.19044239641E-04 -4.39775468995E-04 -4.61511068964E-04 -4.84297999533E-04 -5.08185278745E-04 -5.33224061495E-04 -5.59467720344E-04 -5.86971928332E-04 -6.15794743699E-04 -6.45996696478E-04 -6.77640876852E-04 -7.10793025180E-04 -7.45521623574E-04 -7.81897988879E-04 -8.19996366902E-04 -8.59894027700E-04 -9.01671361701E-04 -9.45411976444E-04 -9.91202793639E-04 -1.03913414625E-03 -1.08929987528E-03 -1.14179742582E-03 -1.19672794203E-03 -1.25419636049E-03 -1.31431150144E-03 -1.37718615740E-03 -1.44293717842E-03 -1.51168555341E-03 -1.58355648668E-03 -1.65867946894E-03 -1.73718834193E-03 -1.81922135551E-03 -1.90492121646E-03 -1.99443512750E-03 -2.08791481567E-03 -2.18551654848E-03 -2.28740113647E-03 -2.39373392079E-03 -2.50468474392E-03 -2.62042790201E-03 -2.74114207680E-03 -2.86701024520E-03 -2.99821956433E-03 -3.13496122996E-03 -3.27743030558E-03 -3.42582552001E-03 -3.58034903051E-03 -3.74120614884E-03 -3.90860502709E-03 -4.08275630045E-03 -4.26387268343E-03 -4.45216851634E-03 -4.64785925855E-03 -4.85116092482E-03 -5.06228946105E-03 -5.28146005576E-03 -5.50888638319E-03 -5.74477977435E-03 -5.98934831184E-03 -6.24279584459E-03 -6.50532091853E-03 -6.77711561930E-03 -7.05836432322E-03 -7.34924235285E-03 -7.64991453375E-03 -7.96053364918E-03 -8.28123879002E-03 -8.61215359725E-03 -8.95338439518E-03 -9.30501821397E-03 -9.66712070065E-03 -1.00397339186E-02 -1.04228740368E-02 -1.08165289098E-02 -1.12206555528E-02 -1.16351775148E-02 -1.20599821565E-02 -1.24949178399E-02 -1.29397910382E-02 -1.33943633780E-02 -1.38583486256E-02 -1.43314096331E-02 -1.48131552624E-02 -1.53031373062E-02 -1.58008474301E-02 -1.63057141602E-02 -1.68170999469E-02 -1.73342983352E-02 -1.78565312769E-02 -1.83829466246E-02 -1.89126158475E-02 -1.94445320160E-02 -1.99776081025E-02 -2.05106756498E-02 -2.10424838642E-02 -2.15716991872E-02 -2.20969054094E-02 -2.26166043863E-02 -2.31292174202E-02 -2.36330873728E-02 -2.41264815734E-02 -2.46075955850E-02 -2.50745578923E-02 -2.55254355696E-02 -2.59582409836E-02 -2.63709395810E-02 -2.67614588029E-02 -2.71276981593E-02 -2.74675404866E-02 -2.77788643978E-02 -2.80595579224E-02 -2.83075333124E-02 -2.85207429774E-02 -2.86971964861E-02 -2.88349785517E-02 -2.89322678935E-02 -2.89873568389E-02 -2.89986715052E-02 -2.89647923687E-02 -2.88844750003E-02 -2.87566707188E-02 -2.85805468792E-02 -2.83555064908E-02 -2.80812068287E-02 -2.77575766832E-02 -2.73848318685E-02 -2.69634886013E-02 -2.64943743482E-02 -2.59786357425E-02 -2.54177431769E-02 -2.48134916962E-02 -2.41679978424E-02 -2.34836921439E-02 -2.27633069938E-02 -2.20098597280E-02 -2.12266307942E-02 -2.04171369976E-02 -1.95850999160E-02 -1.87344097015E-02 -1.78690846171E-02 -1.69932268031E-02 -1.61109749205E-02 -1.52264544782E-02 -1.43437268126E-02 -1.34667378464E-02 -1.25992679084E-02 -1.17448840385E-02 -1.09068963255E-02 -1.00883199280E-02 -9.29184450088E-03 -8.51981278233E-03 -7.77421008960E-03 -7.05666640849E-03 -6.36847264359E-03 -5.71061241009E-03 -5.08381049048E-03 -4.48859874215E-03 -3.92539981940E-03 -3.39462856165E-03 -2.89681029257E-03 -2.43271457249E-03 -2.00350214617E-03 -1.61088193394E-03 -1.25727393136E-03 -9.45972822124E-04 -6.81305988692E-04 -4.67070352944E-04 -3.00849173341E-04 -1.77987602798E-04 -9.31124699314E-05 -4.01132608541E-05 -1.21295258783E-05 -1.54638332456E-06 5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 5 1 i j (l(j)) 0.00000000000E+00 Q_int -3.44417955664E-20 -3.62076641856E-20 -3.80640708249E-20 -4.00156574678E-20 -4.20673040976E-20 -4.42241408993E-20 -4.64915610886E-20 -4.88752343968E-20 -5.13811212488E-20 -5.40154876671E-20 -5.67849209398E-20 -5.96963460926E-20 -6.27570432049E-20 -6.59746656137E-20 -6.93572590510E-20 -7.29132817623E-20 -7.66516256566E-20 -8.05816385408E-20 -8.47131474942E-20 -8.90564834412E-20 -9.36225069839E-20 -9.84226355594E-20 -1.03468871990E-19 -1.08773834494E-19 -1.14350788242E-19 -1.20213678522E-19 -1.26377165615E-19 -1.32856661449E-19 -1.39668368137E-19 -1.46829318495E-19 -1.54357418629E-19 -1.62271492709E-19 -1.70591330044E-19 -1.79337734560E-19 -1.88532576825E-19 -1.98198848733E-19 -2.08360720999E-19 -2.19043603597E-19 -2.30274209297E-19 -2.42080620463E-19 -2.54492359273E-19 -2.67540461539E-19 -2.81257554313E-19 -2.95677937471E-19 -3.10837669483E-19 -3.26774657574E-19 -3.43528752517E-19 -3.61141848274E-19 -3.79657986760E-19 -3.99123467965E-19 -4.19586965731E-19 -4.41099649461E-19 -4.63715312070E-19 -4.87490504493E-19 -5.12484677097E-19 -5.38760328329E-19 -5.66383161006E-19 -5.95422246596E-19 -6.25950197938E-19 -6.58043350812E-19 -6.91781954816E-19 -7.27250374033E-19 -7.64537297985E-19 -8.03735963404E-19 -8.44944387371E-19 -8.88265612408E-19 -9.33807964143E-19 -9.81685322176E-19 -1.03201740484E-18 -1.08493006856E-18 -1.14055562255E-18 -1.19903315967E-18 -1.26050890422E-18 -1.32513657758E-18 -1.39307778261E-18 -1.46450240769E-18 -1.53958905159E-18 -1.61852547004E-18 -1.70150904519E-18 -1.78874727920E-18 -1.88045831310E-18 -1.97687147223E-18 -2.07822783972E-18 -2.18478085927E-18 -2.29679696894E-18 -2.41455626733E-18 -2.53835321403E-18 -2.66849736588E-18 -2.80531415106E-18 -2.94914568278E-18 -3.10035161478E-18 -3.25931004066E-18 -3.42641843927E-18 -3.60209466864E-18 -3.78677801084E-18 -3.98093027043E-18 -4.18503692917E-18 -4.39960836002E-18 -4.62518110331E-18 -4.86231920839E-18 -5.11161564403E-18 -5.37369378116E-18 -5.64920895162E-18 -5.93885008684E-18 -6.24334144052E-18 -6.56344439961E-18 -6.89995938825E-18 -7.25372786916E-18 -7.62563444781E-18 -8.01660908434E-18 -8.42762941897E-18 -8.85972321661E-18 -9.31397093679E-18 -9.79150843540E-18 -1.02935298049E-17 -1.08212903602E-17 -1.13761097775E-17 -1.19593753943E-17 -1.25725456784E-17 -1.32171538750E-17 -1.38948118402E-17 -1.46072140718E-17 -1.53561419465E-17 -1.61434681740E-17 -1.69711614799E-17 -1.78412915286E-17 -1.87560340982E-17 -1.97176765217E-17 -2.07286234059E-17 -2.17914026446E-17 -2.29086717393E-17 -2.40832244445E-17 -2.53179977539E-17 -2.66160792436E-17 -2.79807147935E-17 -2.94153167031E-17 -3.09234722242E-17 -3.25089525312E-17 -3.41757221503E-17 -3.59279488738E-17 -3.77700141809E-17 -3.97065241941E-17 -4.17423211970E-17 -4.38824957422E-17 -4.61323993806E-17 -4.84976580430E-17 -5.09841861077E-17 -5.35982011897E-17 -5.63462396880E-17 -5.92351731298E-17 -6.22722253531E-17 -6.54649905700E-17 -6.88214523561E-17 -7.23500036137E-17 -7.60594675583E-17 -7.99591197813E-17 -8.40587114440E-17 -8.83684936601E-17 -9.28992431294E-17 -9.76622890847E-17 -1.02669541621E-16 -1.07933521477E-16 -1.13467391343E-16 -1.19284988776E-16 -1.25400860797E-16 -1.31830300271E-16 -1.38589384146E-16 -1.45695013649E-16 -1.53164956553E-16 -1.61017891607E-16 -1.69273455235E-16 -1.77952290644E-16 -1.87076099443E-16 -1.96667695904E-16 -2.06751064010E-16 -2.17351417431E-16 -2.28495262571E-16 -2.40210464844E-16 -2.52526318353E-16 -2.65473619145E-16 -2.79084742211E-16 -2.93393722444E-16 -3.08436339745E-16 -3.24250208487E-16 -3.40874871574E-16 -3.58351899317E-16 -3.76724993383E-16 -3.96040096071E-16 -4.16345505193E-16 -4.37691994838E-16 -4.60132942343E-16 -4.83724461757E-16 -5.08525544158E-16 -5.34598205158E-16 -5.62007639982E-16 -5.90822386480E-16 -6.21114496516E-16 -6.52959716130E-16 -6.86437674943E-16 -7.21632085276E-16 -7.58630951467E-16 -7.97526789937E-16 -8.38416860522E-16 -8.81403409675E-16 -9.26593926138E-16 -9.74101409716E-16 -1.02404465384E-15 -1.07654854259E-15 -1.13174436303E-15 -1.18977013341E-15 -1.25077094835E-15 -1.31489934162E-15 -1.38231566757E-15 -1.45318850208E-15 -1.52769506410E-15 -1.60602165881E-15 -1.68836414341E-15 -1.77492841697E-15 -1.86593093518E-15 -1.96159925167E-15 -2.06217258698E-15 -2.16790242677E-15 -2.27905315061E-15 -2.39590269311E-15 -2.51874323889E-15 -2.64788195320E-15 -2.78364174995E-15 -2.92636209923E-15 -3.07639987611E-15 -3.23413025304E-15 -3.39994763795E-15 -3.57426666051E-15 -3.75752320888E-15 -3.95017551969E-15 -4.15270532384E-15 -4.36561905110E-15 -4.58944909644E-15 -4.82475515128E-15 -5.07212560305E-15 -5.33217900639E-15 -5.60556562994E-15 -5.89296908227E-15 -6.19510802134E-15 -6.51273795144E-15 -6.84665311238E-15 -7.19768846548E-15 -7.56672178146E-15 -7.95467583524E-15 -8.36252071340E-15 -8.79127623992E-15 -9.24201452621E-15 -9.71586265199E-15 -1.02140054836E-14 -1.07376886366E-14 -1.12882215907E-14 -1.18669809640E-14 -1.24754139552E-14 -1.31150419627E-14 -1.37874643881E-14 -1.44943626364E-14 -1.52375043200E-14 -1.60187476784E-14 -1.68400462252E-14 -1.77034536326E-14 -1.86111288669E-14 -1.95653415866E-14 -2.05684778183E-14 -2.16230459224E-14 -2.27316828657E-14 -2.38971608149E-14 -2.51223940689E-14 -2.64104463454E-14 -2.77645384424E-14 -2.91880562912E-14 -3.06845594237E-14 -3.22577898724E-14 -3.39116815279E-14 -3.56503699753E-14 -3.74782028354E-14 -3.93997506361E-14 -4.14198182411E-14 -4.35434568640E-14 -4.57759766996E-14 -4.81229602019E-14 -5.05902760427E-14 -5.31840937870E-14 -5.59108993194E-14 -5.87775110624E-14 -6.17910970261E-14 -6.49591927316E-14 -6.82897200540E-14 -7.17910070305E-14 -7.54718086856E-14 -7.93413289226E-14 -8.34092435378E-14 -8.76857244157E-14 -9.21814649632E-14 -9.69077068488E-14 -1.01876268113E-13 -1.07099572718E-13 -1.12590681615E-13 -1.18363325404E-13 -1.24431938665E-13 -1.30811696055E-13 -1.37518550247E-13 -1.44569271827E-13 -1.51981491223E-13 -1.59773742792E-13 -1.67965511165E-13 -1.76577279971E-13 -1.85630583053E-13 -1.95148058312E-13 -2.05153504320E-13 -2.15671939822E-13 -2.26729666297E-13 -2.38354333726E-13 -2.50575009732E-13 -2.63422252260E-13 -2.76928185990E-13 -2.91126582662E-13 -3.06052945527E-13 -3.21744598119E-13 -3.38240777582E-13 -3.55582732785E-13 -3.73813827463E-13 -3.92979648650E-13 -4.13128120664E-13 -4.34309624948E-13 -4.56577126046E-13 -4.79986304037E-13 -5.04595693770E-13 -5.30466831222E-13 -5.57664407375E-13 -5.86256429970E-13 -6.16314393564E-13 -6.47913458298E-13 -6.81132637836E-13 -7.16054996937E-13 -7.52767859159E-13 -7.91363025207E-13 -8.31937002484E-13 -8.74591246401E-13 -9.19432414069E-13 -9.66572630992E-13 -1.01612977143E-12 -1.06822775316E-12 -1.12299684729E-12 -1.18057400406E-12 -1.24110319521E-12 -1.30473577404E-12 -1.37163085384E-12 -1.44195570575E-12 -1.51588617700E-12 -1.59360713065E-12 -1.67531290780E-12 -1.76120781355E-12 -1.85150662787E-12 -1.94643514261E-12 -2.04623072613E-12 -2.15114291680E-12 -2.26143404697E-12 -2.37737989896E-12 -2.49927039455E-12 -2.62741032003E-12 -2.76212008822E-12 -2.90373653968E-12 -3.05261378497E-12 -3.20912409008E-12 -3.37365880725E-12 -3.54662935356E-12 -3.72846823960E-12 -3.91963015100E-12 -4.12059308532E-12 -4.33185954723E-12 -4.55395780504E-12 -4.78744321155E-12 -5.03289959272E-12 -5.29094070747E-12 -5.56221178232E-12 -5.84739112476E-12 -6.14719181930E-12 -6.46236351049E-12 -6.79369427732E-12 -7.14201260377E-12 -7.50818945037E-12 -7.89314043193E-12 -8.29782810699E-12 -8.72326438459E-12 -9.17051305443E-12 -9.64069244683E-12 -1.01349782289E-11 -1.06546063444E-11 -1.12008761037E-11 -1.17751534329E-11 -1.23788742890E-11 -1.30135482506E-11 -1.36807622919E-11 -1.43821847512E-11 -1.51195695023E-11 -1.58947603396E-11 -1.67096955885E-11 -1.75664129516E-11 -1.84670546042E-11 -1.94138725498E-11 -2.04092342518E-11 -2.14556285518E-11 -2.25556718937E-11 -2.37121148649E-11 -2.49278490740E-11 -2.62059143808E-11 -2.75495064965E-11 -2.89619849748E-11 -3.04468816109E-11 -3.20079092726E-11 -3.36489711835E-11 -3.53741706821E-11 -3.71878214815E-11 -3.90944584545E-11 -4.10988489725E-11 -4.32060048250E-11 -4.54211947503E-11 -4.77499576088E-11 -5.01981162316E-11 -5.27717919786E-11 -5.54774200438E-11 -5.83217655447E-11 -6.13119404362E-11 -6.44554212924E-11 -6.77600679993E-11 -7.12341434062E-11 -7.48863339843E-11 -7.87257715445E-11 -8.27620560684E-11 -8.70052797100E-11 -9.14660520274E-11 -9.61555265083E-11 -1.01085428455E-10 -1.06268084300E-10 -1.11716452423E-10 -1.17444155546E-10 -1.23465514796E-10 -1.29795585505E-10 -1.36450194851E-10 -1.43445981426E-10 -1.50800436836E-10 -1.58531949428E-10 -1.66659850259E-10 -1.75204461432E-10 -1.84187146891E-10 -1.93630365839E-10 -2.03557728881E-10 -2.13994057050E-10 -2.24965443860E-10 -2.36499320534E-10 -2.48624524585E-10 -2.61371371904E-10 -2.74771732545E-10 -2.88859110398E-10 -3.03668726943E-10 -3.19237609298E-10 -3.35604682779E-10 -3.52810868207E-10 -3.70899184201E-10 -3.89914854711E-10 -4.09905422073E-10 -4.30920865843E-10 -4.53013727738E-10 -4.76239242970E-10 -5.00655478316E-10 -5.26323477265E-10 -5.53307412601E-10 -5.81674746813E-10 -6.11496400716E-10 -6.42846930726E-10 -6.75804715212E-10 -7.10452150406E-10 -7.46875856347E-10 -7.85166893382E-10 -8.25420989766E-10 -8.67738780924E-10 -9.12226060972E-10 -9.58994047136E-10 -1.00815965771E-09 -1.05984580428E-09 -1.11418169889E-09 -1.17130317698E-09 -1.23135303687E-09 -1.29448139661E-09 -1.36084606917E-09 -1.43061295678E-09 -1.50395646559E-09 -1.58105994145E-09 -1.66211612810E-09 -1.74732764884E-09 -1.83690751284E-09 -1.93107964740E-09 -2.03007945754E-09 -2.13415441416E-09 -2.24356467247E-09 -2.35858372193E-09 -2.47949906969E-09 -2.60661295886E-09 -2.74024312373E-09 -2.88072358357E-09 -3.02840547718E-09 -3.18365794012E-09 -3.34686902696E-09 -3.51844668069E-09 -3.69881975186E-09 -3.88843906992E-09 -4.08777856935E-09 -4.29733647364E-09 -4.51763653972E-09 -4.74922936634E-09 -4.99269376925E-09 -5.24863822702E-09 -5.51770240073E-09 -5.80055873165E-09 -6.09791412062E-09 -6.41051169354E-09 -6.73913265716E-09 -7.08459825003E-09 -7.44777179325E-09 -7.82956084632E-09 -8.23091947330E-09 -8.65285062508E-09 -9.09640864359E-09 -9.56270189419E-09 -1.00528955330E-08 -1.05682144155E-08 -1.11099461548E-08 -1.16794443356E-08 -1.22781318930E-08 -1.29075046649E-08 -1.35691351250E-08 -1.42646763079E-08 -1.49958659350E-08 -1.57645307506E-08 -1.65725910813E-08 -1.74220656279E-08 -1.83150765022E-08 -1.92538545228E-08 -2.02407447806E-08 -2.12782124895E-08 -2.23688491368E-08 -2.35153789477E-08 -2.47206656810E-08 -2.59877197719E-08 -2.73197058408E-08 -2.87199505854E-08 -3.01919510773E-08 -3.17393834822E-08 -3.33661122266E-08 -3.50761996326E-08 -3.68739160458E-08 -3.87637504814E-08 -4.07504218135E-08 -4.28388905374E-08 -4.50343711326E-08 -4.73423450584E-08 -4.97685744125E-08 -5.23191162888E-08 -5.50003378684E-08 -5.78189322819E-08 -6.07819352815E-08 -6.38967427661E-08 -6.71711292002E-08 -7.06132669746E-08 -7.42317467557E-08 -7.80355988740E-08 -8.20343158044E-08 -8.62378757948E-08 -9.06567677008E-08 -9.53020170883E-08 -1.00185213668E-07 -1.05318540130E-07 -1.10714802452E-07 -1.16387461750E-07 -1.22350667754E-07 -1.28619294001E-07 -1.35208974805E-07 -1.42136144132E-07 -1.49418076441E-07 -1.57072929618E-07 -1.65119790093E-07 -1.73578720258E-07 -1.82470808304E-07 -1.91818220591E-07 -2.01644256692E-07 -2.11973407240E-07 -2.22831414716E-07 -2.34245337339E-07 -2.46243616204E-07 -2.58856145837E-07 -2.72114348344E-07 -2.86051251332E-07 -3.00701569789E-07 -3.16101792136E-07 -3.32290270650E-07 -3.49307316480E-07 -3.67195299508E-07 -3.85998753261E-07 -4.05764485176E-07 -4.26541692451E-07 -4.48382083782E-07 -4.71340007285E-07 -4.95472584906E-07 -5.20839853650E-07 -5.47504913981E-07 -5.75534085739E-07 -6.04997071966E-07 -6.35967131041E-07 -6.68521257523E-07 -7.02740372169E-07 -7.38709521565E-07 -7.76518087863E-07 -8.16260009137E-07 -8.58034010880E-07 -9.01943849208E-07 -9.48098566366E-07 -9.96612759130E-07 -1.04760686078E-06 -1.10120743731E-06 -1.15754749858E-06 -1.21676682517E-06 -1.27901231170E-06 -1.34443832752E-06 -1.41320709547E-06 -1.48548908981E-06 -1.56146345414E-06 -1.64131844034E-06 -1.72525186956E-06 -1.81347161650E-06 -1.90619611784E-06 -2.00365490635E-06 -2.10608917171E-06 -2.21375234950E-06 -2.32691073971E-06 -2.44584415619E-06 -2.57084660869E-06 -2.70222701891E-06 -2.84030997248E-06 -2.98543650841E-06 -3.13796494799E-06 -3.29827176506E-06 -3.46675249962E-06 -3.64382271700E-06 -3.82991901479E-06 -4.02550007975E-06 -4.23104779737E-06 -4.44706841644E-06 -4.67409377146E-06 -4.91268256552E-06 -5.16342171690E-06 -5.42692777207E-06 -5.70384838873E-06 -5.99486389190E-06 -6.30068890687E-06 -6.62207407257E-06 -6.95980783927E-06 -7.31471835461E-06 -7.68767544229E-06 -8.07959267775E-06 -8.49142956559E-06 -8.92419382338E-06 -9.37894377715E-06 -9.85679087368E-06 -1.03589023152E-05 -1.08865038222E-05 -1.14408825307E-05 -1.20233900294E-05 -1.26354455447E-05 -1.32785392789E-05 -1.39542359103E-05 -1.46641782611E-05 -1.54100911420E-05 -1.61937853816E-05 -1.70171620485E-05 -1.78822168751E-05 -1.87910448926E-05 -1.97458452870E-05 -2.07489264848E-05 -2.18027114811E-05 -2.29097434180E-05 -2.40726914273E-05 -2.52943567476E-05 -2.65776791281E-05 -2.79257435326E-05 -2.93417871559E-05 -3.08292067669E-05 -3.23915663915E-05 -3.40326053519E-05 -3.57562466754E-05 -3.75666058899E-05 -3.94680002216E-05 -4.14649582122E-05 -4.35622297732E-05 -4.57647966949E-05 -4.80778836290E-05 -5.05069695639E-05 -5.30577998125E-05 -5.57363985337E-05 -5.85490818073E-05 -6.15024712844E-05 -6.46035084369E-05 -6.78594694263E-05 -7.12779806171E-05 -7.48670347588E-05 -7.86350078592E-05 -8.25906767758E-05 -8.67432375499E-05 -9.11023245086E-05 -9.56780301630E-05 -1.00480925927E-04 -1.05522083683E-04 -1.10813098229E-04 -1.16366110620E-04 -1.22193832444E-04 -1.28309571060E-04 -1.34727255810E-04 -1.41461465253E-04 -1.48527455432E-04 -1.55941189204E-04 -1.63719366667E-04 -1.71879456690E-04 -1.80439729595E-04 -1.89419290981E-04 -1.98838116748E-04 -2.08717089304E-04 -2.19078034998E-04 -2.29943762779E-04 -2.41338104099E-04 -2.53285954067E-04 -2.65813313857E-04 -2.78947334369E-04 -2.92716361154E-04 -3.07149980570E-04 -3.22279067179E-04 -3.38135832345E-04 -3.54753874020E-04 -3.72168227678E-04 -3.90415418347E-04 -4.09533513699E-04 -4.29562178126E-04 -4.50542727731E-04 -4.72518186147E-04 -4.95533341085E-04 -5.19634801501E-04 -5.44871055241E-04 -5.71292527033E-04 -5.98951636643E-04 -6.27902857029E-04 -6.58202772261E-04 -6.89910135004E-04 -7.23085923284E-04 -7.57793396264E-04 -7.94098148718E-04 -8.32068163855E-04 -8.71773864117E-04 -9.13288159538E-04 -9.56686493201E-04 -1.00204688332E-03 -1.04944996141E-03 -1.09897900588E-03 -1.15071997062E-03 -1.20476150762E-03 -1.26119498314E-03 -1.32011448646E-03 -1.38161683043E-03 -1.44580154291E-03 -1.51277084808E-03 -1.58262963655E-03 -1.65548542323E-03 -1.73144829164E-03 -1.81063082349E-03 -1.89314801213E-03 -1.97911715838E-03 -2.06865774739E-03 -2.16189130473E-03 -2.25894123014E-03 -2.35993260721E-03 -2.46499198704E-03 -2.57424714407E-03 -2.68782680198E-03 -2.80586032764E-03 -2.92847739099E-03 -3.05580758861E-03 -3.18798002874E-03 -3.32512287545E-03 -3.46736284967E-03 -3.61482468468E-03 -3.76763053380E-03 -3.92589932782E-03 -4.08974608010E-03 -4.25928113687E-03 -4.43460937089E-03 -4.61582931618E-03 -4.80303224223E-03 -4.99630116598E-03 -5.19570980005E-03 -5.40132143641E-03 -5.61318776439E-03 -5.83134762308E-03 -6.05582568784E-03 -6.28663109188E-03 -6.52375598405E-03 -6.76717402478E-03 -7.01683882286E-03 -7.27268231672E-03 -7.53461310456E-03 -7.80251472900E-03 -8.07624392280E-03 -8.35562882358E-03 -8.64046716684E-03 -8.93052446768E-03 -9.22553220366E-03 -9.52518601234E-03 -9.82914391912E-03 -1.01370246125E-02 -1.04484057858E-02 -1.07628225667E-02 -1.10797660568E-02 -1.13986820068E-02 -1.17189696535E-02 -1.20399807475E-02 -1.23610188023E-02 -1.26813385966E-02 -1.30001459641E-02 -1.33165979045E-02 -1.36298030544E-02 -1.39388225522E-02 -1.42426713360E-02 -1.45403199119E-02 -1.48306966273E-02 -1.51126904876E-02 -1.53851545473E-02 -1.56469099073E-02 -1.58967503459E-02 -1.61334476066E-02 -1.63557573594E-02 -1.65624258475E-02 -1.67521972228E-02 -1.69238215642E-02 -1.70760635652E-02 -1.72077118625E-02 -1.73175889692E-02 -1.74045617592E-02 -1.74675524372E-02 -1.75055499128E-02 -1.75176214813E-02 -1.75029246957E-02 -1.74607193009E-02 -1.73903790802E-02 -1.72914034505E-02 -1.71634286273E-02 -1.70062381630E-02 -1.68197726539E-02 -1.66041383983E-02 -1.63596147831E-02 -1.60866601701E-02 -1.57859160601E-02 -1.54582093118E-02 -1.51045522118E-02 -1.47261402055E-02 -1.43243471270E-02 -1.39007177981E-02 -1.34569579076E-02 -1.29949211331E-02 -1.25165935216E-02 -1.20240752143E-02 -1.15195596732E-02 -1.10053106474E-02 -1.04836372037E-02 -9.95686724087E-03 -9.42731999814E-03 -8.89727816897E-03 -8.36896032647E-03 -7.84449445945E-03 -7.32589350573E-03 -6.81503384614E-03 -6.31363778706E-03 -5.82326110635E-03 -5.34528676315E-03 -4.88092587228E-03 -4.43122701335E-03 -3.99709487921E-03 -3.57931916207E-03 -3.17861442401E-03 -2.79567149627E-03 -2.43122069303E-03 -2.08610680574E-03 -1.76137545859E-03 -1.45836995041E-03 -1.17883717989E-03 -9.25040648751E-04 -6.99877862000E-04 -5.06998700548E-04 -3.49673928633E-04 -2.26638196329E-04 -1.34948716928E-04 -7.10685754042E-05 -3.08282818399E-05 -9.38862146327E-06 -1.20579189247E-06 5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 6 1 i j (l(j)) 0.00000000000E+00 Q_int -5.76801946510E-20 -6.06375214688E-20 -6.37464736748E-20 -6.70148252690E-20 -7.04507488326E-20 -7.40628359642E-20 -7.78601187632E-20 -8.18520924144E-20 -8.60487389313E-20 -9.04605521160E-20 -9.50985637996E-20 -9.99743714271E-20 -1.05100167057E-19 -1.10488767849E-19 -1.16153648111E-19 -1.22108972994E-19 -1.28369633913E-19 -1.34951285782E-19 -1.41870386157E-19 -1.49144236394E-19 -1.56791024908E-19 -1.64829872652E-19 -1.73280880933E-19 -1.82165181674E-19 -1.91504990253E-19 -2.01323661058E-19 -2.11645745880E-19 -2.22497055307E-19 -2.33904723264E-19 -2.45897274864E-19 -2.58504697733E-19 -2.71758516993E-19 -2.85691874098E-19 -3.00339609696E-19 -3.15738350757E-19 -3.31926602154E-19 -3.48944842948E-19 -3.66835627604E-19 -3.85643692403E-19 -4.05416067304E-19 -4.26202193542E-19 -4.48054047260E-19 -4.71026269475E-19 -4.95176302707E-19 -5.20564534618E-19 -5.47254449012E-19 -5.75312784577E-19 -6.04809701767E-19 -6.35818958237E-19 -6.68418093282E-19 -7.02688621718E-19 -7.38716237717E-19 -7.76591029085E-19 -8.16407702527E-19 -8.58265820466E-19 -9.02270049999E-19 -9.48530424621E-19 -9.97162619363E-19 -1.04828824004E-18 -1.10203512734E-18 -1.15853767647E-18 -1.21793717324E-18 -1.28038214732E-18 -1.34602874368E-18 -1.41504111299E-18 -1.48759182214E-18 -1.56386228567E-18 -1.64404321948E-18 -1.72833511766E-18 -1.81694875387E-18 -1.91010570834E-18 -2.00803892199E-18 -2.11099327886E-18 -2.21922621846E-18 -2.33300837952E-18 -2.45262427671E-18 -2.57837301207E-18 -2.71056902293E-18 -2.84954286818E-18 -2.99564205481E-18 -3.14923190690E-18 -3.31069647906E-18 -3.48043951682E-18 -3.65888546620E-18 -3.84648053500E-18 -4.04369380861E-18 -4.25101842293E-18 -4.46897279749E-18 -4.69810193173E-18 -4.93897876784E-18 -5.19220562336E-18 -5.45841569733E-18 -5.73827465358E-18 -6.03248228527E-18 -6.34177426471E-18 -6.66692398295E-18 -7.00874448363E-18 -7.36809049603E-18 -7.74586057235E-18 -8.14299933454E-18 -8.56049983634E-18 -8.99940604646E-18 -9.46081545903E-18 -9.94588183788E-18 -1.04558181016E-17 -1.09918993565E-17 -1.15554660848E-17 -1.21479274970E-17 -1.27707650550E-17 -1.34255361773E-17 -1.41138781326E-17 -1.48375121343E-17 -1.55982476443E-17 -1.63979868976E-17 -1.72387296589E-17 -1.81225782229E-17 -1.90517426713E-17 -2.00285463992E-17 -2.10554319247E-17 -2.21349669964E-17 -2.32698510142E-17 -2.44629217792E-17 -2.57171625896E-17 -2.70357097008E-17 -2.84218601672E-17 -2.98790800868E-17 -3.14110132684E-17 -3.30214903428E-17 -3.47145383414E-17 -3.64943907659E-17 -3.83654981743E-17 -4.03325393096E-17 -4.24004327991E-17 -4.45743494533E-17 -4.68597251961E-17 -4.92622746570E-17 -5.17880054608E-17 -5.44432332500E-17 -5.72345974766E-17 -6.01690780051E-17 -6.32540125648E-17 -6.64971150987E-17 -6.99064950521E-17 -7.34906776502E-17 -7.72586252161E-17 -8.12197595808E-17 -8.53839856431E-17 -8.97617161365E-17 -9.43638976671E-17 -9.92020380851E-17 -1.04288235261E-16 -1.09635207336E-16 -1.15256324526E-16 -1.21165642549E-16 -1.27377937778E-16 -1.33908744186E-16 -1.40774392191E-16 -1.47992049486E-16 -1.55579763973E-16 -1.63556508890E-16 -1.71942230252E-16 -1.80757896729E-16 -1.90025552077E-16 -1.99768370261E-16 -2.10010713399E-16 -2.20778192681E-16 -2.32097732411E-16 -2.43997637334E-16 -2.56507663407E-16 -2.69659092208E-16 -2.83484809158E-16 -2.98019385745E-16 -3.13299165980E-16 -3.29362357268E-16 -3.46249125949E-16 -3.64001697738E-16 -3.82664463305E-16 -4.02284089281E-16 -4.22909634944E-16 -4.44592674897E-16 -4.67387428026E-16 -4.91350893080E-16 -5.16542991198E-16 -5.43026715738E-16 -5.70868289798E-16 -6.00137331806E-16 -6.30907029601E-16 -6.63254323446E-16 -6.97260098412E-16 -7.33009386636E-16 -7.70591579947E-16 -8.10100653389E-16 -8.51635400209E-16 -8.95299678892E-16 -9.41202672860E-16 -9.89459163488E-16 -1.04018981712E-15 -1.09352148678E-15 -1.14958752941E-15 -1.20852813929E-15 -1.27049069862E-15 -1.33563014603E-15 -1.40410936404E-15 -1.47609958634E-15 -1.55178082593E-15 -1.63134232530E-15 -1.71498302958E-15 -1.80291208406E-15 -1.89534935713E-15 -1.99252599005E-15 -2.09468497496E-15 -2.20208176248E-15 -2.31498490045E-15 -2.43367670543E-15 -2.55845396869E-15 -2.68962869829E-15 -2.82752889928E-15 -2.97249939389E-15 -3.12490268376E-15 -3.28511985638E-15 -3.45355153800E-15 -3.63061889542E-15 -3.81676468913E-15 -4.01245438039E-15 -4.21817729519E-15 -4.43444784780E-15 -4.66180682703E-15 -4.90082274855E-15 -5.15209327643E-15 -5.41624671761E-15 -5.69394359301E-15 -5.98587828918E-15 -6.29278079460E-15 -6.61541852505E-15 -6.95459824256E-15 -7.31116807267E-15 -7.68601962528E-15 -8.08009022405E-15 -8.49436525026E-15 -8.92988060671E-15 -9.38772530807E-15 -9.86904420395E-15 -1.03750408416E-14 -1.09069804756E-14 -1.14661932311E-14 -1.20540774306E-14 -1.26721030899E-14 -1.33218155940E-14 -1.40048395615E-14 -1.47228829072E-14 -1.54777411120E-14 -1.62713017134E-14 -1.71055490248E-14 -1.79825690975E-14 -1.89045549369E-14 -1.98738119860E-14 -2.08927638905E-14 -2.19639585586E-14 -2.30900745329E-14 -2.42739276875E-14 -2.55184782693E-14 -2.68268383003E-14 -2.82022793589E-14 -2.96482407611E-14 -3.11683381601E-14 -3.27663725873E-14 -3.44463399572E-14 -3.62124410589E-14 -3.80690920604E-14 -4.00209355511E-14 -4.20728521510E-14 -4.42299727145E-14 -4.64976911604E-14 -4.88816779589E-14 -5.13878943115E-14 -5.40226070567E-14 -5.67924043399E-14 -5.97042120880E-14 -6.27653113270E-14 -6.59833563887E-14 -6.93663940505E-14 -7.29228836561E-14 -7.66617182687E-14 -8.05922469076E-14 -8.47242979263E-14 -8.90682035877E-14 -9.36348259005E-14 -9.84355837796E-14 -1.03482481599E-13 -1.08788139210E-13 -1.14365823495E-13 -1.20229481543E-13 -1.26393775526E-13 -1.32874119360E-13 -1.39686717245E-13 -1.46848604189E-13 -1.54377688602E-13 -1.62292797076E-13 -1.70613721459E-13 -1.79361268348E-13 -1.88557311116E-13 -1.98224844603E-13 -2.08388042618E-13 -2.19072318386E-13 -2.30304388090E-13 -2.42112337681E-13 -2.54525693101E-13 -2.67575494117E-13 -2.81294371934E-13 -2.95716630791E-13 -3.10878333738E-13 -3.26817392811E-13 -3.43573663832E-13 -3.61189046070E-13 -3.79707587006E-13 -3.99175592481E-13 -4.19641742475E-13 -4.41157212838E-13 -4.63775803254E-13 -4.87554071764E-13 -5.12551476192E-13 -5.38830522820E-13 -5.66456922682E-13 -5.95499755877E-13 -6.26031644302E-13 -6.58128933242E-13 -6.91871882276E-13 -7.27344865958E-13 -7.64636584801E-13 -8.03840287070E-13 -8.45054001949E-13 -8.88380784662E-13 -9.33928974163E-13 -9.81812464033E-13 -1.03215098727E-12 -1.08507041570E-12 -1.14070307468E-12 -1.19918807399E-12 -1.26067165571E-12 -1.32530755986E-12 -1.39325740880E-12 -1.46469111145E-12 -1.53978728805E-12 -1.61873371686E-12 -1.70172780367E-12 -1.78897707539E-12 -1.88069969904E-12 -1.97712502718E-12 -2.07849417145E-12 -2.18506060549E-12 -2.29709079866E-12 -2.41486488244E-12 -2.53867735082E-12 -2.66883779670E-12 -2.80567168600E-12 -2.94952117153E-12 -3.10074594847E-12 -3.25972415379E-12 -3.42685331181E-12 -3.60255132814E-12 -3.78725753466E-12 -3.98143378809E-12 -4.18556562476E-12 -4.40016347474E-12 -4.62576393815E-12 -4.86293112686E-12 -5.11225807505E-12 -5.37436822207E-12 -5.64991697132E-12 -5.93959332901E-12 -6.24412162706E-12 -6.56426333416E-12 -6.90081895988E-12 -7.25463005619E-12 -7.62658132179E-12 -8.01760281420E-12 -8.42867227534E-12 -8.86081757626E-12 -9.31511928730E-12 -9.79271337997E-12 -1.02947940674E-11 -1.08226167901E-11 -1.13775013557E-11 -1.19608352384E-11 -1.25740770485E-11 -1.32187601794E-11 -1.38964966420E-11 -1.46089810952E-11 -1.53579950830E-11 -1.61454114894E-11 -1.69731992214E-11 -1.78434281317E-11 -1.87582741944E-11 -1.97200249457E-11 -2.07310852036E-11 -2.17939830811E-11 -2.29113763069E-11 -2.40860588714E-11 -2.53209680120E-11 -2.66191915578E-11 -2.79839756502E-11 -2.94187328593E-11 -3.09270507164E-11 -3.25127006845E-11 -3.41796475877E-11 -3.59320595253E-11 -3.77743182927E-11 -3.97110303380E-11 -4.17470382793E-11 -4.38874330128E-11 -4.61375664417E-11 -4.85030648576E-11 -5.09898430081E-11 -5.36041188853E-11 -5.63524292727E-11 -5.92416460889E-11 -6.22789935697E-11 -6.54720663302E-11 -6.88288483539E-11 -7.23577329544E-11 -7.60675437612E-11 -7.99675567807E-11 -8.40675235887E-11 -8.83776957114E-11 -9.29088502570E-11 -9.76723168608E-11 -1.02680006011E-10 -1.07944438829E-10 -1.13478778373E-10 -1.19296862550E-10 -1.25413238710E-10 -1.31843200022E-10 -1.38602823703E-10 -1.45709011221E-10 -1.53179530544E-10 -1.61033060567E-10 -1.69289237812E-10 -1.77968705519E-10 -1.87093165255E-10 -1.96685431177E-10 -2.06769487061E-10 -2.17370546271E-10 -2.28515114788E-10 -2.40231057480E-10 -2.52547667765E-10 -2.65495740842E-10 -2.79107650686E-10 -2.93417430977E-10 -3.08460860189E-10 -3.24275551031E-10 -3.40901044481E-10 -3.58378908636E-10 -3.76752842626E-10 -3.96068785866E-10 -4.16375032892E-10 -4.37722354098E-10 -4.60164122653E-10 -4.83756447929E-10 -5.08558315763E-10 -5.34631735913E-10 -5.62041897070E-10 -5.90857329816E-10 -6.21150077937E-10 -6.52995878510E-10 -6.86474351233E-10 -7.21669197445E-10 -7.58668409355E-10 -7.97564489999E-10 -8.38454684457E-10 -8.81441222939E-10 -9.26631576312E-10 -9.74138724739E-10 -1.02408144008E-09 -1.07658458275E-09 -1.13177941384E-09 -1.18980392318E-09 -1.25080317425E-09 -1.31492966673E-09 -1.38234371771E-09 -1.45321386233E-09 -1.52771727504E-09 -1.60604021241E-09 -1.68837847862E-09 -1.77493791486E-09 -1.86593491374E-09 -1.96159696012E-09 -2.06216319962E-09 -2.16788503628E-09 -2.27902676083E-09 -2.39586621117E-09 -2.51869546671E-09 -2.64782157825E-09 -2.78356733528E-09 -2.92627207263E-09 -3.07629251836E-09 -3.23400368521E-09 -3.39979980765E-09 -3.57409532698E-09 -3.75732592687E-09 -3.94994962196E-09 -4.15244790231E-09 -4.36532693634E-09 -4.58911883555E-09 -4.82438298396E-09 -5.07170743563E-09 -5.33171038384E-09 -5.60504170551E-09 -5.89238458473E-09 -6.19445721944E-09 -6.51201461562E-09 -6.84585047324E-09 -7.19679916899E-09 -7.56573784040E-09 -7.95358857687E-09 -8.36132072279E-09 -8.78995329867E-09 -9.24055754635E-09 -9.71425960444E-09 -1.02122433208E-08 -1.07357532093E-08 -1.12860975574E-08 -1.18646516938E-08 -1.24728614222E-08 -1.31122466324E-08 -1.37844050946E-08 -1.44910164497E-08 -1.52338464024E-08 -1.60147511301E-08 -1.68356819169E-08 -1.76986900250E-08 -1.86059318156E-08 -1.95596741319E-08 -2.05622999577E-08 -2.16163143651E-08 -2.27243507680E-08 -2.38891774940E-08 -2.51137046939E-08 -2.64009916043E-08 -2.77542541818E-08 -2.91768731285E-08 -3.06724023273E-08 -3.22445777096E-08 -3.38973265761E-08 -3.56347773952E-08 -3.74612701021E-08 -3.93813669249E-08 -4.13998637649E-08 -4.35218021589E-08 -4.57524818528E-08 -4.80974740193E-08 -5.05626351506E-08 -5.31541216626E-08 -5.58784052451E-08 -5.87422889973E-08 -6.17529243884E-08 -6.49178290851E-08 -6.82449056905E-08 -7.17424614415E-08 -7.54192289121E-08 -7.92843877760E-08 -8.33475876805E-08 -8.76189722896E-08 -9.21092045563E-08 -9.68294932855E-08 -1.01791621054E-07 -1.07007973558E-07 -1.12491570457E-07 -1.18256097797E-07 -1.24315942086E-07 -1.30686226114E-07 -1.37382846593E-07 -1.44422513734E-07 -1.51822792825E-07 -1.59602147953E-07 -1.67779987935E-07 -1.76376714615E-07 -1.85413773606E-07 -1.94913707635E-07 -2.04900212602E-07 -2.15398196503E-07 -2.26433841352E-07 -2.38034668268E-07 -2.50229605873E-07 -2.63049062188E-07 -2.76525000179E-07 -2.90691017165E-07 -3.05582428270E-07 -3.21236354122E-07 -3.37691813023E-07 -3.54989817816E-07 -3.73173477680E-07 -3.92288105111E-07 -4.12381328347E-07 -4.33503209515E-07 -4.55706368796E-07 -4.79046114896E-07 -5.03580582164E-07 -5.29370874679E-07 -5.56481217662E-07 -5.84979116587E-07 -6.14935524380E-07 -6.46425017109E-07 -6.79525978605E-07 -7.14320794453E-07 -7.50896055841E-07 -7.89342773747E-07 -8.29756604008E-07 -8.72238083796E-07 -9.16892880097E-07 -9.63832050788E-07 -1.01317231894E-06 -1.06503636106E-06 -1.11955310984E-06 -1.17685807240E-06 -1.23709366448E-06 -1.30040956161E-06 -1.36696306814E-06 -1.43691950474E-06 -1.51045261570E-06 -1.58774499666E-06 -1.66898854403E-06 -1.75438492710E-06 -1.84414608397E-06 -1.93849474249E-06 -2.03766496754E-06 -2.14190273581E-06 -2.25146653966E-06 -2.36662802131E-06 -2.48767263900E-06 -2.61490036670E-06 -2.74862642894E-06 -2.88918207272E-06 -3.03691537806E-06 -3.19219210935E-06 -3.35539660945E-06 -3.52693273860E-06 -3.70722486039E-06 -3.89671887724E-06 -4.09588331760E-06 -4.30521047770E-06 -4.52521762030E-06 -4.75644823340E-06 -4.99947335184E-06 -5.25489294484E-06 -5.52333737273E-06 -5.80546891636E-06 -6.10198338256E-06 -6.41361178963E-06 -6.74112213650E-06 -7.08532125989E-06 -7.44705678358E-06 -7.82721916443E-06 -8.22674383971E-06 -8.64661348072E-06 -9.08786035796E-06 -9.55156882302E-06 -1.00388779131E-05 -1.05509840837E-05 -1.10891440762E-05 -1.16546779266E-05 -1.22489721212E-05 -1.28734829083E-05 -1.35297397718E-05 -1.42193490746E-05 -1.49439978802E-05 -1.57054579612E-05 -1.65055900034E-05 -1.73463480134E-05 -1.82297839422E-05 -1.91580525318E-05 -2.01334163977E-05 -2.11582513566E-05 -2.22350520118E-05 -2.33664376081E-05 -2.45551581680E-05 -2.58041009236E-05 -2.71162970558E-05 -2.84949287571E-05 -2.99433366314E-05 -3.14650274460E-05 -3.30636822530E-05 -3.47431648959E-05 -3.65075309184E-05 -3.83610368951E-05 -4.03081502003E-05 -4.23535592369E-05 -4.45021841447E-05 -4.67591880082E-05 -4.91299885876E-05 -5.16202705945E-05 -5.42359985361E-05 -5.69834301528E-05 -5.98691304734E-05 -6.28999865159E-05 -6.60832226588E-05 -6.94264167134E-05 -7.29375167242E-05 -7.66248585284E-05 -8.04971841048E-05 -8.45636607451E-05 -8.88339010796E-05 -9.33179839909E-05 -9.80264764519E-05 -1.02970456323E-04 -1.08161536144E-04 -1.13611887962E-04 -1.19334269230E-04 -1.25342049820E-04 -1.31649240184E-04 -1.38270520711E-04 -1.45221272326E-04 -1.52517608353E-04 -1.60176407711E-04 -1.68215349474E-04 -1.76652948834E-04 -1.85508594522E-04 -1.94802587733E-04 -2.04556182579E-04 -2.14791628149E-04 -2.25532212183E-04 -2.36802306440E-04 -2.48627413765E-04 -2.61034216935E-04 -2.74050629298E-04 -2.87705847249E-04 -3.02030404597E-04 -3.17056228833E-04 -3.32816699349E-04 -3.49346707631E-04 -3.66682719448E-04 -3.84862839070E-04 -4.03926875516E-04 -4.23916410851E-04 -4.44874870536E-04 -4.66847595833E-04 -4.89881918238E-04 -5.14027235952E-04 -5.39335092323E-04 -5.65859256262E-04 -5.93655804544E-04 -6.22783205955E-04 -6.53302407192E-04 -6.85276920424E-04 -7.18772912409E-04 -7.53859295020E-04 -7.90607817042E-04 -8.29093157052E-04 -8.69393017194E-04 -9.11588217603E-04 -9.55762791244E-04 -1.00200407885E-03 -1.05040282367E-03 -1.10105326560E-03 -1.15405323442E-03 -1.20950424150E-03 -1.26751156972E-03 -1.32818436083E-03 -1.39163569982E-03 -1.45798269561E-03 -1.52734655721E-03 -1.59985266488E-03 -1.67563063504E-03 -1.75481437835E-03 -1.83754214978E-03 -1.92395658961E-03 -2.01420475422E-03 -2.10843813539E-03 -2.20681266675E-03 -2.30948871585E-03 -2.41663106047E-03 -2.52840884718E-03 -2.64499553066E-03 -2.76656879169E-03 -2.89331043175E-03 -3.02540624217E-03 -3.16304584544E-03 -3.30642250625E-03 -3.45573290976E-03 -3.61117690428E-03 -3.77295720557E-03 -3.94127905987E-03 -4.11634986233E-03 -4.29837872782E-03 -4.48757601059E-03 -4.68415276944E-03 -4.88832017464E-03 -5.10028885309E-03 -5.32026816781E-03 -5.54846542804E-03 -5.78508502607E-03 -6.03032749682E-03 -6.28438849647E-03 -6.54745769618E-03 -6.81971758732E-03 -7.10134219443E-03 -7.39249569267E-03 -7.69333092652E-03 -8.00398782684E-03 -8.32459172379E-03 -8.65525155359E-03 -8.99605795756E-03 -9.34708127255E-03 -9.70836941253E-03 -1.00799456421E-02 -1.04618062434E-02 -1.08539180792E-02 -1.12562160556E-02 -1.16686004908E-02 -1.20909343945E-02 -1.25230406691E-02 -1.29646992396E-02 -1.34156441275E-02 -1.38755604809E-02 -1.43440815774E-02 -1.48207858205E-02 -1.53051937490E-02 -1.57967650855E-02 -1.62948958496E-02 -1.67989155685E-02 -1.73080846159E-02 -1.78215917179E-02 -1.83385516645E-02 -1.88580032708E-02 -1.93789076339E-02 -1.99001467350E-02 -2.04205224398E-02 -2.09387559514E-02 -2.14534877750E-02 -2.19632782528E-02 -2.24666087311E-02 -2.29618834223E-02 -2.34474320240E-02 -2.39215131581E-02 -2.43823186889E-02 -2.48279789814E-02 -2.52565691509E-02 -2.56661163558E-02 -2.60546081748E-02 -2.64200021036E-02 -2.67602361957E-02 -2.70732408603E-02 -2.73569518160E-02 -2.76093241837E-02 -2.78283476850E-02 -2.80120628926E-02 -2.81585784551E-02 -2.82660891998E-02 -2.83328949874E-02 -2.83574201686E-02 -2.83382334633E-02 -2.82740680568E-02 -2.81638416751E-02 -2.80066763768E-02 -2.78019177688E-02 -2.75491533294E-02 -2.72482294967E-02 -2.68992671648E-02 -2.65026752102E-02 -2.60591616666E-02 -2.55697421596E-02 -2.50357452224E-02 -2.44588141240E-02 -2.38409048708E-02 -2.31842800750E-02 -2.24914984346E-02 -2.17653996284E-02 -2.10090845082E-02 -2.02258905545E-02 -1.94193626675E-02 -1.85932194800E-02 -1.77513155052E-02 -1.68975995711E-02 -1.60360701408E-02 -1.51707282709E-02 -1.43055291147E-02 -1.34443330347E-02 -1.25908575378E-02 -1.17486313855E-02 -1.09209523585E-02 -1.01108502546E-02 -9.32105677712E-03 -8.55398400630E-03 -7.81171314913E-03 -7.09599520690E-03 -6.40826509548E-03 -5.74967058021E-03 -5.12111714624E-03 -4.52332960584E-03 -3.95693084247E-03 -3.42253760045E-03 -2.92087264686E-03 -2.45289195372E-03 -2.01992477542E-03 -1.62382362927E-03 -1.26712023293E-03 -9.53182421686E-04 -6.86365977842E-04 -4.70448185630E-04 -3.02963320611E-04 -1.79200405996E-04 -9.37263714396E-05 -4.03685873321E-05 -1.22038487773E-05 -1.55542649516E-06 5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 7 2 i j (l(j)) 0.00000000000E+00 Q_int 1.51041167632E-23 1.60782486013E-23 1.71152065452E-23 1.82190425306E-23 1.93940698207E-23 2.06448798600E-23 2.19763602160E-23 2.33937136771E-23 2.49024785828E-23 2.65085504648E-23 2.82182050837E-23 3.00381229522E-23 3.19754154390E-23 3.40376525564E-23 3.62328925409E-23 3.85697133404E-23 4.10572461329E-23 4.37052110069E-23 4.65239549428E-23 4.95244922436E-23 5.27185475740E-23 5.61186017748E-23 5.97379406316E-23 6.35907067895E-23 6.76919550162E-23 7.20577110281E-23 7.67050341118E-23 8.16520837832E-23 8.69181907465E-23 9.25239324289E-23 9.84912133879E-23 1.04843350904E-22 1.11605166091E-22 1.18803080891E-22 1.26465221311E-22 1.34621527332E-22 1.43303869896E-22 1.52546175446E-22 1.62384558491E-22 1.72857462728E-22 1.84005811257E-22 1.95873166492E-22 2.08505900382E-22 2.21953375609E-22 2.36268138474E-22 2.51506124225E-22 2.67726875622E-22 2.84993775603E-22 3.03374294956E-22 3.22940255959E-22 3.43768113031E-22 3.65939251475E-22 3.89540305496E-22 4.14663496727E-22 4.41406994582E-22 4.69875299861E-22 5.00179653086E-22 5.32438469175E-22 5.66777800153E-22 6.03331827702E-22 6.42243387479E-22 6.83664527249E-22 7.27757101018E-22 7.74693401473E-22 8.24656833231E-22 8.77842629486E-22 9.34458614892E-22 9.94726017644E-22 1.05888033393E-21 1.12717224813E-21 1.19986861238E-21 1.27725348931E-21 1.35962926201E-21 1.44731781560E-21 1.54066179500E-21 1.64002594385E-21 1.74579852972E-21 1.85839286128E-21 1.97824890333E-21 2.10583499596E-21 2.24164968461E-21 2.38622366811E-21 2.54012187245E-21 2.70394565822E-21 2.87833517040E-21 3.06397183981E-21 3.26158104578E-21 3.47193495056E-21 3.69585551661E-21 3.93421771841E-21 4.18795296145E-21 4.45805272169E-21 4.74557241983E-21 5.05163554533E-21 5.37743804651E-21 5.72425300372E-21 6.09343560394E-21 6.48642843621E-21 6.90476712855E-21 7.35008634851E-21 7.82412619061E-21 8.32873897584E-21 8.86589648962E-21 9.43769768661E-21 1.00463768924E-20 1.06943125343E-20 1.13840364347E-20 1.21182437050E-20 1.28998032759E-20 1.37317691084E-20 1.46173921272E-20 1.55601329234E-20 1.65636752771E-20 1.76319405519E-20 1.87691030177E-20 1.99796061614E-20 2.12681800504E-20 2.26398598151E-20 2.41000053241E-20 2.56543221277E-20 2.73088837525E-20 2.90701554341E-20 3.09450193799E-20 3.29408016614E-20 3.50653008413E-20 3.73268184463E-20 3.97341914057E-20 4.22968265815E-20 4.50247375264E-20 4.79285836117E-20 5.10197116792E-20 5.43102003789E-20 5.78129073669E-20 6.15415195470E-20 6.55106065522E-20 6.97356776763E-20 7.42332424765E-20 7.90208752851E-20 8.41172838813E-20 8.95423825924E-20 9.53173701097E-20 1.01464812322E-19 1.08008730494E-19 1.14974695128E-19 1.22389925882E-19 1.30283397932E-19 1.38685955190E-19 1.47630430833E-19 1.57151775593E-19 1.67287194332E-19 1.78076291418E-19 1.89561225484E-19 2.01786874158E-19 2.14801009429E-19 2.28654484313E-19 2.43401431565E-19 2.59099475200E-19 2.75809955667E-19 2.93598169530E-19 3.12533624623E-19 3.32690311647E-19 3.54146993294E-19 3.76987512016E-19 4.01301117636E-19 4.27182816095E-19 4.54733740694E-19 4.84061547268E-19 5.15280834861E-19 5.48513593516E-19 5.83889680961E-19 6.21547330027E-19 6.61633688795E-19 7.04305395585E-19 7.49729191017E-19 7.98082569561E-19 8.49554473094E-19 9.04346029198E-19 9.62671337070E-19 1.02475830412E-18 1.09084953652E-18 1.16120328719E-18 1.23609446496E-18 1.31581570872E-18 1.40067853096E-18 1.49101453502E-18 1.58717671078E-18 1.68954081405E-18 1.79850683477E-18 1.91450056006E-18 2.03797523791E-18 2.16941334830E-18 2.30932848852E-18 2.45826738002E-18 2.61681200475E-18 2.78558187928E-18 2.96523647557E-18 3.15647779786E-18 3.36005312578E-18 3.57675793434E-18 3.80743900230E-18 4.05299772095E-18 4.31439361632E-18 4.59264809856E-18 4.88884845311E-18 5.20415208930E-18 5.53979106294E-18 5.89707689063E-18 6.27740567450E-18 6.68226355756E-18 7.11323253078E-18 7.57199661481E-18 8.06034844029E-18 8.58019625258E-18 9.13357136834E-18 9.72263611287E-18 1.03496922695E-17 1.10171900737E-17 1.17277377878E-17 1.24841118923E-17 1.32892679357E-17 1.41463520825E-17 1.50587134078E-17 1.60299169833E-17 1.70637578082E-17 1.81642756378E-17 1.93357707697E-17 2.05828208465E-17 2.19102987435E-17 2.33233916096E-17 2.48276211358E-17 2.64288651318E-17 2.81333804933E-17 2.99478276512E-17 3.18792965973E-17 3.39353345885E-17 3.61239756382E-17 3.84537719087E-17 4.09338271298E-17 4.35738321712E-17 4.63841029102E-17 4.93756205408E-17 5.25600744833E-17 5.59499080610E-17 5.95583671222E-17 6.33995517995E-17 6.74884716055E-17 7.18411040835E-17 7.64744572398E-17 8.14066360028E-17 8.66569129683E-17 9.22458037082E-17 9.81951469347E-17 1.04528189836E-16 1.11269678916E-16 1.18445956689E-16 1.26085064618E-16 1.34216852682E-16 1.42873096023E-16 1.52087619098E-16 1.61896427858E-16 1.72337850437E-16 1.83452686921E-16 1.95284368777E-16 2.07879128559E-16 2.21286180566E-16 2.35557913145E-16 2.50750093405E-16 2.66922085120E-16 2.84137080701E-16 3.02462348119E-16 3.21969493756E-16 3.42734742210E-16 3.64839234142E-16 3.88369343339E-16 4.13417014214E-16 4.40080121089E-16 4.68462850636E-16 4.98676108992E-16 5.30837955123E-16 5.65074062147E-16 6.01518208399E-16 6.40312800178E-16 6.81609428199E-16 7.25569459939E-16 7.72364670183E-16 8.22177912240E-16 8.75203832441E-16 9.31649630731E-16 9.91735870302E-16 1.05569733945E-15 1.12378396901E-15 1.19626180899E-15 1.27341406813E-15 1.35554222057E-15 1.44296718387E-15 1.53603057299E-15 1.63509603516E-15 1.74055067084E-15 1.85280654634E-15 1.97230230395E-15 2.09950487597E-15 2.23491130924E-15 2.37905070736E-15 2.53248629820E-15 2.69581763470E-15 2.86968293765E-15 3.05476158953E-15 3.25177678925E-15 3.46149837802E-15 3.68474584758E-15 3.92239154231E-15 4.17536406800E-15 4.44465192035E-15 4.73130734759E-15 5.03645046210E-15 5.36127361732E-15 5.70704606690E-15 6.07511892431E-15 6.46693044234E-15 6.88401163316E-15 7.32799225071E-15 7.80060715907E-15 8.30370311143E-15 8.83924596633E-15 9.40932836932E-15 1.00161779300E-14 1.06621659265E-14 1.13498165711E-14 1.20818168740E-14 1.28610271426E-14 1.36904921583E-14 1.45734530740E-14 1.55133600791E-14 1.65138858811E-14 1.75789400567E-14 1.87126843289E-14 1.99195488286E-14 2.12042494057E-14 2.25718060563E-14 2.40275625384E-14 2.55772072529E-14 2.72267954712E-14 2.89827729960E-14 3.08520013487E-14 3.28417845808E-14 3.49598978149E-14 3.72146176258E-14 3.96147543816E-14 4.21696866705E-14 4.48893979478E-14 4.77845155463E-14 5.08663522030E-14 5.41469502640E-14 5.76391287400E-14 6.13565333971E-14 6.53136900777E-14 6.95260614608E-14 7.40101074828E-14 7.87833496548E-14 8.38644395287E-14 8.92732315781E-14 9.50308607807E-14 1.01159825203E-13 1.07684073913E-13 1.14629100561E-13 1.22022042997E-13 1.29891789311E-13 1.38269090717E-13 1.47186681712E-13 1.56679407987E-13 1.66784362586E-13 1.77541030852E-13 1.88991444713E-13 2.01180346925E-13 2.14155365903E-13 2.27967201834E-13 2.42669824785E-13 2.58320685596E-13 2.74980940367E-13 2.92715689432E-13 3.11594231733E-13 3.31690335615E-13 3.53082527071E-13 3.75854396590E-13 4.00094925785E-13 4.25898835091E-13 4.53366953890E-13 4.82606614502E-13 5.13732071590E-13 5.46864948613E-13 5.82134713071E-13 6.19679182406E-13 6.59645062524E-13 7.02188521052E-13 7.47475797570E-13 7.95683853194E-13 8.47001062057E-13 9.01627947386E-13 9.59777965051E-13 1.02167833765E-12 1.08757094238E-12 1.15771325621E-12 1.23237936192E-12 1.31186101915E-12 1.39646880441E-12 1.48653332471E-12 1.58240650937E-12 1.68446298522E-12 1.79310154047E-12 1.90874668297E-12 2.03185029900E-12 2.16289341900E-12 2.30238809725E-12 2.45087941271E-12 2.60894759895E-12 2.77721031140E-12 2.95632504088E-12 3.14699168276E-12 3.34995527182E-12 3.56600889351E-12 3.79599678291E-12 4.04081762365E-12 4.30142805952E-12 4.57884643261E-12 4.87415676246E-12 5.18851298197E-12 5.52314344635E-12 5.87935573303E-12 6.25854175101E-12 6.66218317980E-12 7.09185725913E-12 7.54924295209E-12 8.03612750568E-12 8.55441343457E-12 9.10612595478E-12 9.69342090088E-12 1.03185931396E-11 1.09840855503E-11 1.16924985635E-11 1.24466003342E-11 1.32493375142E-11 1.41038468370E-11 1.50134673160E-11 1.59817533208E-11 1.70124884675E-11 1.81097003643E-11 1.92776764130E-11 2.05209805148E-11 2.18444709013E-11 2.32533191742E-11 2.47530304422E-11 2.63494648549E-11 2.80488605619E-11 2.98578579698E-11 3.17835258064E-11 3.38333886825E-11 3.60154565153E-11 3.83382557658E-11 4.08108628782E-11 4.34429396169E-11 4.62447709422E-11 4.92273050726E-11 5.24021963515E-11 5.57818508424E-11 5.93794745074E-11 6.32091253889E-11 6.72857678137E-11 7.16253314604E-11 7.62447733220E-11 8.11621440286E-11 8.63966583057E-11 9.19687703691E-11 9.79002533181E-11 1.04214284642E-10 1.10935536670E-10 1.18090272977E-10 1.25706450866E-10 1.33813830961E-10 1.42444093101E-10 1.51630960367E-10 1.61410330766E-10 1.71820417460E-10 1.82901898572E-10 1.94698075230E-10 2.07255041434E-10 2.20621864101E-10 2.34850774760E-10 2.49997373208E-10 2.66120845539E-10 2.83284195013E-10 3.01554487938E-10 3.21003116443E-10 3.41706076890E-10 3.63744266869E-10 3.87203801694E-10 4.12176350555E-10 4.38759494697E-10 4.67057109175E-10 4.97179768041E-10 5.29245177308E-10 5.63378633892E-10 5.99713515703E-10 6.38391803373E-10 6.79564634021E-10 7.23392892511E-10 7.70047840616E-10 8.19711783932E-10 8.72578787332E-10 9.28855431410E-10 9.88761620267E-10 1.05253144021E-09 1.12041407549E-09 1.19267478110E-09 1.26959591947E-09 1.35147806472E-09 1.43864117592E-09 1.53142584760E-09 1.63019464123E-09 1.73533350134E-09 1.84725326495E-09 1.96639126451E-09 2.09321303972E-09 2.22821415322E-09 2.37192213135E-09 2.52489852100E-09 2.68774108772E-09 2.86108614836E-09 3.04561106113E-09 3.24203686678E-09 3.45113111390E-09 3.67371085168E-09 3.91064582479E-09 4.16286187190E-09 4.43134454561E-09 4.71714295889E-09 5.02137388932E-09 5.34522613966E-09 5.68996518552E-09 6.05693811851E-09 6.44757891133E-09 6.86341402057E-09 7.30606835108E-09 7.77727160588E-09 8.27886504725E-09 8.81280868496E-09 9.38118894393E-09 9.98622681068E-09 1.06302865152E-08 1.13158847651E-08 1.20457005857E-08 1.28225857861E-08 1.36495761007E-08 1.45299030541E-08 1.54670065844E-08 1.64645484932E-08 1.75264267440E-08 1.86567907003E-08 1.98600573372E-08 2.11409285012E-08 2.25044092832E-08 2.39558275733E-08 2.55008548829E-08 2.71455285053E-08 2.88962751040E-08 3.07599358253E-08 3.27437930326E-08 3.48555987615E-08 3.71036050019E-08 3.94965959562E-08 4.20439223481E-08 4.47555379784E-08 4.76420385907E-08 5.07147033010E-08 5.39855386534E-08 5.74673255329E-08 6.11736691093E-08 6.51190520028E-08 6.93188908550E-08 7.37895965734E-08 7.85486384609E-08 8.36146124533E-08 8.90073138032E-08 9.47478143850E-08 1.00858545060E-07 1.07363383298E-07 1.14287746472E-07 1.21658691154E-07 1.29505018840E-07 1.37857388461E-07 1.46748436170E-07 1.56212902841E-07 1.66287769797E-07 1.77012403293E-07 1.88428708277E-07 2.00581292130E-07 2.13517638907E-07 2.27288294844E-07 2.41947065793E-07 2.57551227418E-07 2.74161748929E-07 2.91843531229E-07 3.10665660429E-07 3.30701677694E-07 3.52029866483E-07 3.74733558303E-07 3.98901458192E-07 4.24627991140E-07 4.52013670876E-07 4.81165492389E-07 5.12197349780E-07 5.45230481004E-07 5.80393941304E-07 6.17825107115E-07 6.57670212496E-07 7.00084920038E-07 7.45234928634E-07 7.93296620357E-07 8.44457749005E-07 8.98918173045E-07 9.56890635701E-07 1.01860159534E-06 1.08429210928E-06 1.15421877456E-06 1.22865472926E-06 1.30789071828E-06 1.39223622776E-06 1.48202069250E-06 1.57759478107E-06 1.67933176370E-06 1.78762896813E-06 1.90290932913E-06 2.02562303774E-06 2.15624929658E-06 2.29529818806E-06 2.44331266271E-06 2.60087065537E-06 2.76858733740E-06 2.94711751368E-06 3.13715817363E-06 3.33945120614E-06 3.55478628887E-06 3.78400396317E-06 4.02799890642E-06 4.28772341440E-06 4.56419110721E-06 4.85848087297E-06 5.17174106445E-06 5.50519396490E-06 5.86014054008E-06 6.23796549493E-06 6.64014265420E-06 7.06824068766E-06 7.52392920186E-06 8.00898522181E-06 8.52530008725E-06 9.07488678999E-06 9.65988778021E-06 1.02825832715E-05 1.09454000762E-05 1.16509210049E-05 1.24018948653E-05 1.32012470988E-05 1.40520910945E-05 1.49577402241E-05 1.59217206427E-05 1.69477849031E-05 1.80399264364E-05 1.92023949508E-05 2.04397128089E-05 2.17566924422E-05 2.31584548701E-05 2.46504493893E-05 2.62384745097E-05 2.79287002118E-05 2.97276916096E-05 3.16424341034E-05 3.36803601182E-05 3.58493775219E-05 3.81578998289E-05 4.06148782985E-05 4.32298360430E-05 4.60129042692E-05 4.89748607832E-05 5.21271708952E-05 5.54820308707E-05 5.90524140807E-05 6.28521200139E-05 6.68958263219E-05 7.11991440789E-05 7.57786764471E-05 8.06520809483E-05 8.58381355558E-05 9.13568088298E-05 9.72293343325E-05 1.03478289572E-04 1.10127679733E-04 1.17203026480E-04 1.24731462101E-04 1.32741829324E-04 1.41264787097E-04 1.50332922681E-04 1.59980870404E-04 1.70245437441E-04 1.81165736997E-04 1.92783329301E-04 2.05142370830E-04 2.18289772181E-04 2.32275365070E-04 2.47152078901E-04 2.62976127417E-04 2.79807205922E-04 2.97708699602E-04 3.16747903499E-04 3.36996254664E-04 3.58529577098E-04 3.81428340039E-04 4.05777930208E-04 4.31668938629E-04 4.59197462629E-04 4.88465423668E-04 5.19580901616E-04 5.52658486114E-04 5.87819645666E-04 6.25193115072E-04 6.64915301829E-04 7.07130712090E-04 7.51992396774E-04 7.99662418352E-04 8.50312338833E-04 9.04123729408E-04 9.61288702155E-04 1.02201046414E-03 1.08650389418E-03 1.15499614240E-03 1.22772725266E-03 1.30495080780E-03 1.38693459739E-03 1.47396130772E-03 1.56632923329E-03 1.66435300918E-03 1.76836436316E-03 1.87871288622E-03 1.99576681993E-03 2.11991385881E-03 2.25156196508E-03 2.39114019340E-03 2.53909952218E-03 2.69591368778E-03 2.86208001746E-03 3.03812025606E-03 3.22458138103E-03 3.42203639945E-03 3.63108512010E-03 3.85235489257E-03 4.08650130487E-03 4.33420882949E-03 4.59619140732E-03 4.87319295731E-03 5.16598779890E-03 5.47538097269E-03 5.80220844368E-03 6.14733716992E-03 6.51166501794E-03 6.89612050480E-03 7.30166234509E-03 7.72927877943E-03 8.17998665960E-03 8.65483026332E-03 9.15487981066E-03 9.68122965166E-03 1.02349960938E-02 1.08173148357E-02 1.14293379729E-02 1.20722305389E-02 1.27471665450E-02 1.34553244805E-02 1.41978822339E-02 1.49760113975E-02 1.57908709149E-02 1.66436000326E-02 1.75353105203E-02 1.84670781224E-02 1.94399332070E-02 2.04548505846E-02 2.15127384680E-02 2.26144265543E-02 2.37606532143E-02 2.49520517819E-02 2.61891359459E-02 2.74722842575E-02 2.88017237762E-02 3.01775128948E-02 3.15995233941E-02 3.30674218020E-02 3.45806501440E-02 3.61384061986E-02 3.77396233920E-02 3.93829504919E-02 4.10667312874E-02 4.27889844702E-02 4.45473839640E-02 4.63392399789E-02 4.81614811007E-02 5.00106377579E-02 5.18828274431E-02 5.37737420949E-02 5.56786380815E-02 5.75923292507E-02 5.95091835400E-02 6.14231236600E-02 6.33276323758E-02 6.52157629259E-02 6.70801551072E-02 6.89130575531E-02 7.07063566990E-02 7.24516128986E-02 7.41401040967E-02 7.57628773953E-02 7.73108087601E-02 7.87746710005E-02 8.01452100296E-02 8.14132292477E-02 8.25696817205E-02 8.36057696178E-02 8.45130501529E-02 8.52835470229E-02 8.59098660790E-02 8.63853136876E-02 8.67040159471E-02 8.68610366444E-02 8.68524915439E-02 8.66756563391E-02 8.63290653479E-02 8.58125978350E-02 8.51275486886E-02 8.42766801009E-02 8.32642509031E-02 8.20960203139E-02 8.07792230863E-02 7.93225134003E-02 7.77358753668E-02 7.60304986845E-02 7.42186188483E-02 7.23133223374E-02 7.03283184185E-02 6.82776805702E-02 6.61755620518E-02 6.40358917704E-02 6.18720583003E-02 5.96965916252E-02 5.75208538283E-02 5.53547514716E-02 5.32064836716E-02 5.10823407918E-02 4.89865690985E-02 4.69213165437E-02 4.48866739016E-02 4.28808236726E-02 4.09003063528E-02 3.89404097563E-02 3.69956819931E-02 3.50605624310E-02 3.31301175298E-02 3.12008599250E-02 2.92716197377E-02 2.73449918972E-02 2.54284206158E-02 2.35303663536E-02 2.16593491657E-02 1.98238724935E-02 1.80323411557E-02 1.62929740961E-02 1.46137126040E-02 1.30021248947E-02 1.14653081185E-02 1.00097890526E-02 8.64142492718E-03 7.36530602796E-03 6.18566191453E-03 5.10577327861E-03 4.12789164362E-03 3.25316926555E-03 2.48160173070E-03 1.81198585045E-03 1.24189551936E-03 7.67678221108E-04 3.84474829174E-04 8.62652441219E-05 -1.34057771302E-04 -2.84584466546E-04 -3.74251959827E-04 -4.12674822971E-04 -4.09941731061E-04 -3.76378229803E-04 -3.22276522786E-04 -2.57594168069E-04 -1.91624701104E-04 -1.32166469627E-04 -8.36184001296E-05 -4.78614001525E-05 -2.43394765097E-05 -1.02608915905E-05 -3.03771476959E-06 -3.79357299560E-07 1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 8 2 i j (l(j)) 0.00000000000E+00 Q_int 1.65683755344E-23 1.76369439497E-23 1.87744291067E-23 1.99852757535E-23 2.12742152995E-23 2.26462843042E-23 2.41068441569E-23 2.56616020271E-23 2.73166331648E-23 2.90784046403E-23 3.09538006138E-23 3.29501492359E-23 3.50752512822E-23 3.73374106351E-23 3.97454667315E-23 4.23088291028E-23 4.50375141433E-23 4.79421842491E-23 5.10341894816E-23 5.43256119187E-23 5.78293128648E-23 6.15589831078E-23 6.55291964149E-23 6.97554664812E-23 7.42543075486E-23 7.90432989364E-23 8.41411537326E-23 8.95677919155E-23 9.53444181917E-23 1.01493604854E-22 1.08039379983E-22 1.15007321337E-22 1.22424656299E-22 1.30320368265E-22 1.38725309903E-22 1.47672323703E-22 1.57196370318E-22 1.67334665166E-22 1.78126823855E-22 1.89615016979E-22 2.01844134902E-22 2.14861963169E-22 2.28719369226E-22 2.43470501189E-22 2.59172999427E-22 2.75888221792E-22 2.93681483379E-22 3.12622311745E-22 3.32784718588E-22 3.54247488950E-22 3.77094489075E-22 4.01414994110E-22 4.27304036958E-22 4.54862779617E-22 4.84198908473E-22 5.15427055085E-22 5.48669244117E-22 5.84055370144E-22 6.21723705222E-22 6.61821439190E-22 7.04505254814E-22 7.49941940032E-22 7.98309039678E-22 8.49795549246E-22 9.04602653390E-22 9.62944512061E-22 1.02504909734E-21 1.09115908424E-21 1.16153279898E-21 1.23644522838E-21 1.31618909437E-21 1.40107599785E-21 1.49143763625E-21 1.58762709962E-21 1.69002025038E-21 1.79901719200E-21 1.91504383240E-21 2.03855354819E-21 2.17002895627E-21 2.30998379966E-21 2.45896495495E-21 2.61755456923E-21 2.78637233489E-21 2.96607791100E-21 3.15737350100E-21 3.36100659658E-21 3.57777289848E-21 3.80851942573E-21 4.05414782541E-21 4.31561789583E-21 4.59395133696E-21 4.89023574279E-21 5.20562885106E-21 5.54136306719E-21 5.89875027994E-21 6.27918698761E-21 6.68415975490E-21 7.11525102170E-21 7.57414528651E-21 8.06263568863E-21 8.58263101493E-21 9.13616315845E-21 9.72539505807E-21 1.03526291503E-20 1.10203163658E-20 1.17310657071E-20 1.24876544426E-20 1.32930389593E-20 1.41503663145E-20 1.50629865337E-20 1.60344657002E-20 1.70685998898E-20 1.81694300045E-20 1.93412575619E-20 2.05886615035E-20 2.19165160874E-20 2.33300099343E-20 2.48346663021E-20 2.64363646682E-20 2.81413637038E-20 2.99563257297E-20 3.18883427495E-20 3.39449641617E-20 3.61342262592E-20 3.84646836311E-20 4.09454425903E-20 4.35861967564E-20 4.63972649337E-20 4.93896314322E-20 5.25749889890E-20 5.59657844580E-20 5.95752674462E-20 6.34175420869E-20 6.75076221517E-20 7.18614897174E-20 7.64961576161E-20 8.14297359135E-20 8.66815026739E-20 9.22719792902E-20 9.82230106712E-20 1.04557850601E-19 1.11301252606E-19 1.18479566674E-19 1.26120842224E-19 1.34254937707E-19 1.42913637277E-19 1.52130774991E-19 1.61942367016E-19 1.72386752360E-19 1.83504742686E-19 1.95339781784E-19 2.07938115325E-19 2.21348971572E-19 2.35624753737E-19 2.50821244749E-19 2.66997825228E-19 2.84217705514E-19 3.02548172662E-19 3.22060853372E-19 3.42831993869E-19 3.64942757835E-19 3.88479543560E-19 4.13534321548E-19 4.40204993888E-19 4.68595776813E-19 4.98817607922E-19 5.30988579680E-19 5.65234400858E-19 6.01688887746E-19 6.40494487045E-19 6.81802832478E-19 7.25775337303E-19 7.72583825040E-19 8.22411200871E-19 8.75452166352E-19 9.31913980209E-19 9.92017268207E-19 1.05599688525E-18 1.12410283309E-18 1.19660123719E-18 1.27377538664E-18 1.35592684112E-18 1.44337660922E-18 1.53646640281E-18 1.63555997228E-18 1.74104452791E-18 1.85333225289E-18 1.97286191397E-18 2.10010057587E-18 2.23554542646E-18 2.37972571942E-18 2.53320484239E-18 2.69658251838E-18 2.87049714921E-18 3.05562831009E-18 3.25269940506E-18 3.46248049371E-18 3.68579130021E-18 3.92350441640E-18 4.17654871145E-18 4.44591296144E-18 4.73264971306E-18 5.03787939639E-18 5.36279470308E-18 5.70866524674E-18 6.07684252407E-18 6.46876519579E-18 6.88596470826E-18 7.33007127768E-18 7.80282026011E-18 8.30605893252E-18 8.84175371097E-18 9.41199783446E-18 1.00190195443E-17 1.06651907911E-17 1.13530365031E-17 1.20852444523E-17 1.28646757573E-17 1.36943760628E-17 1.45775874410E-17 1.55177610594E-17 1.65185706669E-17 1.75839269491E-17 1.87179928086E-17 1.99251996326E-17 2.12102646080E-17 2.25782091543E-17 2.40343785446E-17 2.55844627924E-17 2.72345188859E-17 2.89909944551E-17 3.08607529666E-17 3.28511005426E-17 3.49698145097E-17 3.72251737888E-17 3.96259912456E-17 4.21816481266E-17 4.49021307168E-17 4.77980693613E-17 5.08807800035E-17 5.41623084026E-17 5.76554772024E-17 6.13739360361E-17 6.53322148629E-17 6.95457807436E-17 7.40310982790E-17 7.88056939452E-17 8.38882245791E-17 8.92985502801E-17 9.50578120141E-17 1.01188514222E-16 1.07714612757E-16 1.14661608491E-16 1.22056646963E-16 1.29928624446E-16 1.38308300864E-16 1.47228419987E-16 1.56723837375E-16 1.66831656580E-16 1.77591374125E-16 1.89045033842E-16 2.01237391158E-16 2.14216087976E-16 2.28031838836E-16 2.42738629090E-16 2.58393925840E-16 2.75058902503E-16 2.92798677839E-16 3.11682570410E-16 3.31784369439E-16 3.53182623147E-16 3.75960945679E-16 4.00208343830E-16 4.26019564840E-16 4.53495466622E-16 4.82743411865E-16 5.13877687556E-16 5.47019951562E-16 5.82299708006E-16 6.19854813313E-16 6.59832014881E-16 7.02387524505E-16 7.47687628773E-16 7.95909338839E-16 8.47241082096E-16 9.01883438461E-16 9.60049924143E-16 1.02196782597E-15 1.08787908950E-15 1.15804126445E-15 1.23272851106E-15 1.31223267141E-15 1.39686440974E-15 1.48695442645E-15 1.58285475026E-15 1.68494011381E-15 1.79360941790E-15 1.90928729026E-15 2.03242574471E-15 2.16350594749E-15 2.30304009741E-15 2.45157342723E-15 2.60968633423E-15 2.77799664811E-15 2.95716204514E-15 3.14788261809E-15 3.35090361183E-15 3.56701833540E-15 3.79707126188E-15 4.04196132820E-15 4.30264544774E-15 4.58014224949E-15 4.87553605840E-15 5.18998113234E-15 5.52470617247E-15 5.88101912433E-15 6.26031228874E-15 6.66406776221E-15 7.09386322829E-15 7.55137812238E-15 8.03840019415E-15 8.55683249327E-15 9.10870080558E-15 9.69616156887E-15 1.03215102993E-14 1.09871905610E-14 1.16958035147E-14 1.24501180814E-14 1.32530817622E-14 1.41078321559E-14 1.50177092190E-14 1.59862683165E-14 1.70172941150E-14 1.81148153713E-14 1.92831206745E-14 2.05267752041E-14 2.18506385683E-14 2.32598837935E-14 2.47600175373E-14 2.63569016065E-14 2.80567758621E-14 2.98662826016E-14 3.17924925139E-14 3.38429323084E-14 3.60256141254E-14 3.83490668445E-14 4.08223694103E-14 4.34551863098E-14 4.62578053355E-14 4.92411777860E-14 5.24169612582E-14 5.57975651994E-14 5.93961993980E-14 6.32269256006E-14 6.73047124590E-14 7.16454940205E-14 7.62662319901E-14 8.11849820097E-14 8.64209642100E-14 9.19946383145E-14 9.79277835857E-14 1.04243583928E-13 1.10966718482E-13 1.18123458053E-13 1.25741767771E-13 1.33851416363E-13 1.42484092473E-13 1.51673528488E-13 1.61455632351E-13 1.71868627865E-13 1.82953204062E-13 1.94752674189E-13 2.07313144960E-13 2.20683696720E-13 2.34916575223E-13 2.50067395787E-13 2.66195360615E-13 2.83363490121E-13 3.01638869195E-13 3.21092909328E-13 3.41801627662E-13 3.63845944026E-13 3.87311997134E-13 4.12291481171E-13 4.38882004095E-13 4.67187469041E-13 4.97318480324E-13 5.29392775630E-13 5.63535686079E-13 5.99880625963E-13 6.38569614058E-13 6.79753828576E-13 7.23594197893E-13 7.70262029381E-13 8.19939678800E-13 8.72821262855E-13 9.29113417716E-13 9.89036106453E-13 1.05282347855E-12 1.12072478485E-12 1.19300535150E-12 1.26994761675E-12 1.35185223456E-12 1.43903924944E-12 1.53184934699E-12 1.63064518520E-12 1.73581281151E-12 1.84776317129E-12 1.96693371368E-12 2.09379010087E-12 2.22882802774E-12 2.37257515876E-12 2.52559318993E-12 2.68848004352E-12 2.86187220457E-12 3.04644720793E-12 3.24292628576E-12 3.45207718576E-12 3.67471717119E-12 3.91171621436E-12 4.16400039603E-12 4.43255552419E-12 4.71843098605E-12 5.02274384863E-12 5.34668322370E-12 5.69151491432E-12 6.05858636096E-12 6.44933190672E-12 6.86527840208E-12 7.30805117111E-12 7.77938036250E-12 8.28110771020E-12 8.81519373005E-12 9.38372538060E-12 9.98892422215E-12 1.06331550789E-11 1.13189353110E-11 1.20489446250E-11 1.28260355688E-11 1.36532446339E-11 1.45338041830E-11 1.54711550257E-11 1.64689598927E-11 1.75311177546E-11 1.86617790090E-11 1.98653617793E-11 2.11465690962E-11 2.25104073155E-11 2.39622057065E-11 2.55076372255E-11 2.71527406879E-11 2.89039444081E-11 3.07680912881E-11 3.27524655558E-11 3.48648212193E-11 3.71134123929E-11 3.95070255606E-11 4.20550138551E-11 4.47673336380E-11 4.76545834294E-11 5.07280452719E-11 5.39997288414E-11 5.74824183745E-11 6.11897226713E-11 6.51361282024E-11 6.93370556360E-11 7.38089204774E-11 7.85691964907E-11 8.36364847610E-11 8.90305862102E-11 9.47725782812E-11 1.00884898060E-10 1.07391429896E-10 1.14317598339E-10 1.21690467743E-10 1.29538847997E-10 1.37893406992E-10 1.46786790709E-10 1.56253750498E-10 1.66331278912E-10 1.77058754652E-10 1.88478095868E-10 2.00633924180E-10 2.13573739306E-10 2.27348104278E-10 2.42010843426E-10 2.57619251998E-10 2.74234320919E-10 2.91920974755E-10 3.10748325331E-10 3.30789941156E-10 3.52124136821E-10 3.74834276774E-10 3.99009102742E-10 4.24743079000E-10 4.52136763380E-10 4.81297198475E-10 5.12338330572E-10 5.45381455439E-10 5.80555691511E-10 6.17998484799E-10 6.57856145729E-10 7.00284421540E-10 7.45449103910E-10 7.93526677367E-10 8.44705009622E-10 8.99184083239E-10 9.57176780802E-10 1.01890971373E-09 1.08462410828E-09 1.15457674924E-09 1.22904098397E-09 1.30830778763E-09 1.39268690260E-09 1.48250804920E-09 1.57812221088E-09 1.67990301136E-09 1.78824816813E-09 1.90358105037E-09 2.02635233497E-09 2.15704176256E-09 2.29616001686E-09 2.44425071745E-09 2.60189254521E-09 2.76970150347E-09 2.94833332441E-09 3.13848603504E-09 3.34090267731E-09 3.55637421961E-09 3.78574264340E-09 4.02990423546E-09 4.28981308729E-09 4.56648482646E-09 4.86100058539E-09 5.17451122120E-09 5.50824182208E-09 5.86349648567E-09 6.24166341825E-09 6.64422036216E-09 7.07274036587E-09 7.52889793471E-09 8.01447557349E-09 8.53137074894E-09 9.08160330834E-09 9.66732337296E-09 1.02908197348E-08 1.09545288067E-08 1.16610441415E-08 1.24131265614E-08 1.32137149573E-08 1.40659377624E-08 1.49731251833E-08 1.59388222158E-08 1.69668024875E-08 1.80610830188E-08 1.92259399060E-08 2.04659250414E-08 2.17858838942E-08 2.31909744527E-08 2.46866873718E-08 2.62788674337E-08 2.79737363940E-08 2.97779172752E-08 3.16984602718E-08 3.37428702812E-08 3.59191362475E-08 3.82357623606E-08 4.07018013032E-08 4.33268896257E-08 4.61212853880E-08 4.90959082663E-08 5.22623822062E-08 5.56330808512E-08 5.92211759027E-08 6.30406885717E-08 6.71065443902E-08 7.14346315142E-08 7.60418628290E-08 8.09462420168E-08 8.61669339249E-08 9.17243394464E-08 9.76401752323E-08 1.03937558561E-07 1.10641097658E-07 1.17776987860E-07 1.25373113967E-07 1.33459159204E-07 1.42066721195E-07 1.51229435443E-07 1.60983106738E-07 1.71365849070E-07 1.82418234538E-07 1.94183451876E-07 2.06707475209E-07 2.20039243664E-07 2.34230852589E-07 2.49337757079E-07 2.65418988649E-07 2.82537385855E-07 3.00759839789E-07 3.20157555416E-07 3.40806329742E-07 3.62786847921E-07 3.86184998458E-07 4.11092208717E-07 4.37605802078E-07 4.65829378093E-07 4.95873217159E-07 5.27854711282E-07 5.61898822590E-07 5.98138571414E-07 6.36715555793E-07 6.77780504515E-07 7.21493865738E-07 7.68026433579E-07 8.17560015063E-07 8.70288140052E-07 9.26416816901E-07 9.86165336822E-07 1.04976713003E-06 1.11747067707E-06 1.18954047881E-06 1.26625808895E-06 1.34792321299E-06 1.43485487800E-06 1.52739267763E-06 1.62589809739E-06 1.73075592518E-06 1.84237575262E-06 1.96119357299E-06 2.08767348209E-06 2.22230948842E-06 2.36562743993E-06 2.51818707468E-06 2.68058420335E-06 2.85345303218E-06 3.03746863525E-06 3.23334958570E-06 3.44186075605E-06 3.66381629849E-06 3.90008281677E-06 4.15158274167E-06 4.41929792337E-06 4.70427345451E-06 5.00762173862E-06 5.33052681964E-06 5.67424898931E-06 6.04012969003E-06 6.42959673214E-06 6.84416984565E-06 7.28546658779E-06 7.75520862895E-06 8.25522844117E-06 8.78747641491E-06 9.35402843106E-06 9.95709391744E-06 1.05990244203E-05 1.12823227234E-05 1.20096525504E-05 1.27838488851E-05 1.36079289523E-05 1.44851038968E-05 1.54187912085E-05 1.64126279377E-05 1.74704847526E-05 1.85964808902E-05 1.97950000581E-05 2.10707073462E-05 2.24285672116E-05 2.38738626044E-05 2.54122153049E-05 2.70496075483E-05 2.87924050175E-05 3.06473812876E-05 3.26217438139E-05 3.47231615582E-05 3.69597943540E-05 3.93403241191E-05 4.18739880286E-05 4.45706137687E-05 4.74406569982E-05 5.04952411533E-05 5.37461997384E-05 5.72061212528E-05 6.08883969137E-05 6.48072713437E-05 6.89778964012E-05 7.34163883423E-05 7.81398885116E-05 8.31666277731E-05 8.85159949014E-05 9.42086091667E-05 1.00266397360E-04 1.06712675515E-04 1.13572235603E-04 1.20871437486E-04 1.28638306424E-04 1.36902636464E-04 1.45696100034E-04 1.55052364090E-04 1.65007213195E-04 1.75598679893E-04 1.86867182795E-04 1.98855672784E-04 2.11609787791E-04 2.25178016576E-04 2.39611872008E-04 2.54966074339E-04 2.71298744959E-04 2.88671611205E-04 3.07150222738E-04 3.26804180084E-04 3.47707375907E-04 3.69938249640E-04 3.93580056075E-04 4.18721148567E-04 4.45455277483E-04 4.73881904578E-04 5.04106533957E-04 5.36241060294E-04 5.70404135020E-04 6.06721551119E-04 6.45326647250E-04 6.86360731839E-04 7.29973527802E-04 7.76323638542E-04 8.25579035812E-04 8.77917570025E-04 9.33527503530E-04 9.92608067329E-04 1.05537004163E-03 1.12203636058E-03 1.19284274137E-03 1.26803833790E-03 1.34788641887E-03 1.43266507036E-03 1.52266792232E-03 1.61820489867E-03 1.71960299018E-03 1.82720704916E-03 1.94138060481E-03 2.06250669748E-03 2.19098873021E-03 2.32725133505E-03 2.47174125152E-03 2.62492821415E-03 2.78730584519E-03 2.95939254849E-03 3.14173239946E-03 3.33489602559E-03 3.53948147137E-03 3.75611504027E-03 3.98545210597E-03 4.22817788373E-03 4.48500815215E-03 4.75668991402E-03 5.04400198425E-03 5.34775549124E-03 5.66879427690E-03 6.00799517916E-03 6.36626817921E-03 6.74455639419E-03 7.14383589439E-03 7.56511532247E-03 8.00943529026E-03 8.47786752702E-03 8.97151375122E-03 9.49150423597E-03 1.00389960366E-02 1.06151708468E-02 1.12212324479E-02 1.18584037151E-02 1.25279231414E-02 1.32310408395E-02 1.39690139815E-02 1.47431016333E-02 1.55545589414E-02 1.64046306301E-02 1.72945437653E-02 1.82254997444E-02 1.91986654709E-02 2.02151636756E-02 2.12760623495E-02 2.23823632575E-02 2.35349895039E-02 2.47347721329E-02 2.59824357481E-02 2.72785831481E-02 2.86236789842E-02 3.00180324581E-02 3.14617790914E-02 3.29548616154E-02 3.44970100448E-02 3.60877210226E-02 3.77262365408E-02 3.94115221713E-02 4.11422449601E-02 4.29167511753E-02 4.47330441218E-02 4.65887622724E-02 4.84811579988E-02 5.04070772185E-02 5.23629403133E-02 5.43447247081E-02 5.63479495393E-02 5.83676628721E-02 6.03984319661E-02 6.24343371117E-02 6.44689695948E-02 6.64954343608E-02 6.85063579689E-02 7.04939024316E-02 7.24497855304E-02 7.43653081823E-02 7.62313894036E-02 7.80386093688E-02 7.97772610008E-02 8.14374104441E-02 8.30089666665E-02 8.44817603079E-02 8.58456317387E-02 8.70905281144E-02 8.82066090039E-02 8.91843599424E-02 9.00147130006E-02 9.06891731872E-02 9.11999491994E-02 9.15400867304E-02 9.17036022148E-02 9.16856145744E-02 9.14824722109E-02 9.10918721953E-02 9.05129683409E-02 8.97464646255E-02 8.87946902788E-02 8.76616527671E-02 8.63530649392E-02 8.48763427293E-02 8.32405700996E-02 8.14564283296E-02 7.95360873705E-02 7.74930577695E-02 7.53420026517E-02 7.30985104318E-02 7.07788302976E-02 6.83995740640E-02 6.59773897034E-02 6.35286136880E-02 6.10689111732E-02 5.86129149499E-02 5.61738759128E-02 5.37633394293E-02 5.13908633430E-02 4.90637942762E-02 4.67871192671E-02 4.45634094440E-02 4.23928712611E-02 4.02735186440E-02 3.82014761019E-02 3.61714183528E-02 3.41771462098E-02 3.22122913820E-02 3.02711344963E-02 2.83495111771E-02 2.64457706483E-02 2.45622622068E-02 2.27061682348E-02 2.08854912887E-02 1.91080877214E-02 1.73815863357E-02 1.57133042567E-02 1.41101610124E-02 1.25785919647E-02 1.11244623808E-02 9.75298358432E-03 8.46863276084E-03 7.27507812144E-03 6.17511123321E-03 5.17058841327E-03 4.26238313855E-03 3.45035144607E-03 2.73331227850E-03 2.10904466266E-03 1.57430348611E-03 1.12485545351E-03 7.55536553297E-04 4.60332041142E-04 2.32479544384E-04 6.45954084017E-05 -5.11761610756E-05 -1.22992255555E-04 -1.59120547724E-04 -1.67731333609E-04 -1.56675835899E-04 -1.33255194624E-04 -1.03985528311E-04 -7.43654157493E-05 -4.84695588415E-05 -2.83095277224E-05 -1.44679939070E-05 -6.30370829487E-06 -2.17888723368E-06 -4.94975106163E-07 -4.19546609311E-08 8.67361737988E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 9 2 i j (l(j)) 0.00000000000E+00 Q_int 1.49518819009E-23 1.59161954340E-23 1.69427018465E-23 1.80354122347E-23 1.91985963882E-23 2.04367994742E-23 2.17548597984E-23 2.31579277099E-23 2.46514857272E-23 2.62413699608E-23 2.79337929177E-23 2.97353677774E-23 3.16531342330E-23 3.36945859984E-23 3.58677000909E-23 3.81809680009E-23 4.06434288731E-23 4.32647048269E-23 4.60550385550E-23 4.90253333471E-23 5.21871956947E-23 5.55529806435E-23 5.91358400715E-23 6.29497740796E-23 6.70096856980E-23 7.13314391194E-23 7.59319216893E-23 8.08291098934E-23 8.60421396009E-23 9.15913808387E-23 9.74985173876E-23 1.03786631512E-22 1.10480294154E-22 1.17605660947E-22 1.25190574416E-22 1.33264672775E-22 1.41859505738E-22 1.51008657803E-22 1.60747879481E-22 1.71115226990E-22 1.82151210968E-22 1.93898954761E-22 2.06404362933E-22 2.19716300640E-22 2.33886784565E-22 2.48971186184E-22 2.65028448124E-22 2.82121314484E-22 3.00316576012E-22 3.19685331086E-22 3.40303263540E-22 3.62250938390E-22 3.85614116655E-22 4.10484090461E-22 4.36958039771E-22 4.65139412117E-22 4.95138326824E-22 5.27072005304E-22 5.61065229098E-22 5.97250827468E-22 6.35770196426E-22 6.76773851243E-22 7.20422014591E-22 7.66885242617E-22 8.16345091394E-22 8.68994826357E-22 9.25040177488E-22 9.84700143216E-22 1.04820784615E-21 1.11581144403E-21 1.18777509937E-21 1.26438001173E-21 1.34592551645E-21 1.43273025439E-21 1.52513341693E-21 1.62349607144E-21 1.72820257213E-21 1.83966206192E-21 1.95831007121E-21 2.08461021965E-21 2.21905602784E-21 2.36217284567E-21 2.51451990524E-21 2.67669250598E-21 2.84932434086E-21 3.03308997252E-21 3.22870746917E-21 3.43694121041E-21 3.65860487413E-21 3.89456461591E-21 4.14574245356E-21 4.41311986995E-21 4.69774164813E-21 5.00071995390E-21 5.32323868156E-21 5.66655808006E-21 6.03201967740E-21 6.42105152273E-21 6.83517376643E-21 7.27600460016E-21 7.74526657999E-21 8.24479335732E-21 8.77653684386E-21 9.34257483886E-21 9.94511914808E-21 1.05865242265E-20 1.12692963784E-20 1.19961035509E-20 1.27697857586E-20 1.35933661818E-20 1.44700629787E-20 1.54033018612E-20 1.63967294804E-20 1.74542276765E-20 1.85799286465E-20 1.97782310916E-20 2.10538174044E-20 2.24116719664E-20 2.38571006236E-20 2.53957514200E-20 2.70336366670E-20 2.87771564368E-20 3.06331235709E-20 3.26087903010E-20 3.47118765880E-20 3.69506002871E-20 3.93337092599E-20 4.18705155566E-20 4.45709318027E-20 4.74455099336E-20 5.05054824258E-20 5.37628061882E-20 5.72302092842E-20 6.09212406669E-20 6.48503231216E-20 6.90328096233E-20 7.34850433291E-20 7.82244214388E-20 8.32694631754E-20 8.86398821492E-20 9.43566633891E-20 1.00442145342E-19 1.06920107161E-19 1.13815861622E-19 1.21156354037E-19 1.28970267538E-19 1.37288135163E-19 1.46142459160E-19 1.55567837993E-19 1.65601101534E-19 1.76281454979E-19 1.87650632041E-19 1.99753058026E-19 2.12636023427E-19 2.26349868712E-19 2.40948181028E-19 2.56488003599E-19 2.73030058620E-19 2.90638984529E-19 3.09383588588E-19 3.29337115744E-19 3.50577534839E-19 3.73187843272E-19 3.97256391314E-19 4.22877227341E-19 4.50150465326E-19 4.79182676039E-19 5.10087303475E-19 5.42985108139E-19 5.78004638915E-19 6.15282735383E-19 6.54965062515E-19 6.97206679867E-19 7.42172647477E-19 7.90038670841E-19 8.40991787487E-19 8.95231097825E-19 9.52968543139E-19 1.01442973375E-18 1.07985483061E-18 1.14949948369E-18 1.22363583099E-18 1.30255356191E-18 1.38656104918E-18 1.47598655391E-18 1.57117950818E-18 1.67251188054E-18 1.78037962944E-18 1.89520425045E-18 2.01743442328E-18 2.14754776498E-18 2.28605269626E-18 2.43349042817E-18 2.59043707683E-18 2.75750591470E-18 2.93534976689E-18 3.12466356213E-18 3.32618704818E-18 3.54070768245E-18 3.76906370899E-18 4.01214743393E-18 4.27090871222E-18 4.54635865918E-18 4.83957360148E-18 5.15169928287E-18 5.48395534125E-18 5.83764007440E-18 6.21413551310E-18 6.61491282147E-18 7.04153804557E-18 7.49567823274E-18 7.97910794564E-18 8.49371619639E-18 9.04151382794E-18 9.62464137145E-18 1.02453774105E-17 1.09061474846E-17 1.16095335673E-17 1.23582841550E-17 1.31553250068E-17 1.40037705773E-17 1.49069361861E-17 1.58683509723E-17 1.68917716852E-17 1.79811973635E-17 1.91408849617E-17 2.03753659845E-17 2.16894641932E-17 2.30883144552E-17 2.45773828085E-17 2.61624878199E-17 2.78498233219E-17 2.96459826146E-17 3.15579842297E-17 3.35932993550E-17 3.57598810288E-17 3.80661952162E-17 4.05212538900E-17 4.31346502455E-17 4.59165961860E-17 4.88779622257E-17 5.20303199670E-17 5.53859873166E-17 5.89580766176E-17 6.27605458868E-17 6.68082533559E-17 7.11170155300E-17 7.57036689911E-17 8.05861361877E-17 8.57834954668E-17 9.13160556231E-17 9.72054352560E-17 1.03474647245E-16 1.10148188672E-16 1.17252136547E-16 1.24814249700E-16 1.32864077254E-16 1.41433074086E-16 1.50554723737E-16 1.60264669252E-16 1.70600852456E-16 1.81603662210E-16 1.93316092233E-16 2.05783909102E-16 2.19055831083E-16 2.33183718501E-16 2.48222776384E-16 2.64231770180E-16 2.81273255381E-16 2.99413821964E-16 3.18724354589E-16 3.39280309584E-16 3.61162009792E-16 3.84454958435E-16 4.09250173220E-16 4.35644541989E-16 4.63741201317E-16 4.93649939515E-16 5.25487625630E-16 5.59378666119E-16 5.95455490963E-16 6.33859071146E-16 6.74739469497E-16 7.18256427069E-16 7.64579987325E-16 8.13891160593E-16 8.66382631362E-16 9.22259511204E-16 9.81740140253E-16 1.04505694037E-15 1.11245732334E-15 1.18420465764E-15 1.26057929754E-15 1.34187967864E-15 1.42842348396E-15 1.52054888530E-15 1.61861586472E-15 1.72300762107E-15 1.83413206744E-15 1.95242342504E-15 2.07834391997E-15 2.21238558931E-15 2.35507220385E-15 2.50696131466E-15 2.66864643179E-15 2.84075934340E-15 3.02397258447E-15 3.21900206479E-15 3.42660986634E-15 3.64760722119E-15 3.88285768138E-15 4.13328049326E-15 4.39985418951E-15 4.68362041272E-15 4.98568798569E-15 5.30723724412E-15 5.64952464886E-15 6.01388769550E-15 6.40175014072E-15 6.81462756560E-15 7.25413329782E-15 7.72198471578E-15 8.22000995925E-15 8.75015507292E-15 9.31449161059E-15 9.91522472980E-15 1.05547018086E-14 1.12354216178E-14 1.19600440852E-14 1.27314006894E-14 1.35525055232E-14 1.44265670723E-14 1.53570007515E-14 1.63474422513E-14 1.74017617438E-14 1.85240790061E-14 1.97187795180E-14 2.09905315984E-14 2.23443046469E-14 2.37853885623E-14 2.53194144120E-14 2.69523764366E-14 2.86906554718E-14 3.05410438821E-14 3.25107721016E-14 3.46075368878E-14 3.68395313963E-14 3.92154771959E-14 4.17446583485E-14 4.44369576866E-14 4.73028954306E-14 5.03536702972E-14 5.36012032583E-14 5.70581841225E-14 6.07381211210E-14 6.46553936913E-14 6.88253086650E-14 7.32641600800E-14 7.79892928492E-14 8.30191705368E-14 8.83734475049E-14 9.40730457132E-14 1.00140236472E-13 1.06598727469E-13 1.13473755406E-13 1.20792184613E-13 1.28582612019E-13 1.36875478901E-13 1.45703189827E-13 1.55100239282E-13 1.65103346454E-13 1.75751598716E-13 1.87086604363E-13 1.99152655192E-13 2.11996899578E-13 2.25669526706E-13 2.40223962688E-13 2.55717079322E-13 2.72209416326E-13 2.89765417895E-13 3.08453684519E-13 3.28347241040E-13 3.49523822004E-13 3.72066175400E-13 3.96062386013E-13 4.21606219605E-13 4.48797489317E-13 4.77742445686E-13 5.08554191822E-13 5.41353125365E-13 5.76267408938E-13 6.13433470948E-13 6.52996538681E-13 6.95111205786E-13 7.39942036349E-13 7.87664207936E-13 8.38464196100E-13 8.92540503042E-13 9.50104433262E-13 1.01138091924E-12 1.07660940036E-12 1.14604475853E-12 1.21995831415E-12 1.29863888628E-12 1.38239392123E-12 1.47155069391E-12 1.56645758666E-12 1.66748545056E-12 1.77502905456E-12 1.88950862805E-12 2.01137150288E-12 2.14109386137E-12 2.27918259699E-12 2.42617729504E-12 2.58265234114E-12 2.74921916562E-12 2.92652863271E-12 3.11527358382E-12 3.31619154485E-12 3.53006760806E-12 3.75773749989E-12 4.00009084655E-12 4.25807465026E-12 4.53269698973E-12 4.82503095921E-12 5.13621886170E-12 5.46747667246E-12 5.82009879055E-12 6.19546309670E-12 6.59503633740E-12 7.02037985631E-12 7.47315569524E-12 7.95513308865E-12 8.46819537695E-12 9.01434736779E-12 9.59572316485E-12 1.02145944991E-11 1.08733796451E-11 1.15746528235E-11 1.23211542812E-11 1.31158009786E-11 1.39616980369E-11 1.48621508229E-11 1.58206778715E-11 1.68410246652E-11 1.79271782584E-11 1.90833827975E-11 2.03141562025E-11 2.16243077675E-11 2.30189569267E-11 2.45035533502E-11 2.60838981292E-11 2.77661665193E-11 2.95569320147E-11 3.14631921150E-11 3.34923955895E-11 3.56524716229E-11 3.79518607696E-11 4.03995480032E-11 4.30050977045E-11 4.57786911889E-11 4.87311663454E-11 5.18740600861E-11 5.52196533333E-11 5.87810191982E-11 6.25720738011E-11 6.66076308295E-11 7.09034594211E-11 7.54763456856E-11 8.03441581532E-11 8.55259182603E-11 9.10418737885E-11 9.69135785870E-11 1.03163976513E-10 1.09817491342E-10 1.16900121888E-10 1.24439543903E-10 1.32465217820E-10 1.41008504414E-10 1.50102787019E-10 1.59783601777E-10 1.70088776924E-10 1.81058580436E-10 1.92735877356E-10 2.05166297064E-10 2.18398412101E-10 2.32483927547E-10 2.47477883229E-10 2.63438868710E-10 2.80429252239E-10 2.98515424719E-10 3.17768058579E-10 3.38262384451E-10 3.60078484948E-10 3.83301607783E-10 4.08022498224E-10 4.34337754502E-10 4.62350204893E-10 4.92169309660E-10 5.23911588070E-10 5.57701075509E-10 5.93669805911E-10 6.31958328882E-10 6.72716259177E-10 7.16102861003E-10 7.62287669747E-10 8.11451155357E-10 8.63785426876E-10 9.19494983932E-10 9.78797514970E-10 1.04192474791E-09 1.10912335733E-09 1.18065592503E-09 1.25680196940E-09 1.33785903664E-09 1.42414386196E-09 1.51599360966E-09 1.61376718817E-09 1.71784665561E-09 1.82863870864E-09 1.94657627546E-09 2.07212020526E-09 2.20576107073E-09 2.34802108255E-09 2.49945613324E-09 2.66065796612E-09 2.83225648957E-09 3.01492223835E-09 3.20936899297E-09 3.41635656929E-09 3.63669378853E-09 3.87124163543E-09 4.12091662504E-09 4.38669438377E-09 4.66961345992E-09 4.97077938380E-09 5.29136898749E-09 5.63263500176E-09 5.99591095325E-09 6.38261637716E-09 6.79426235594E-09 7.23245743519E-09 7.69891390162E-09 8.19545447688E-09 8.72401943966E-09 9.28667420362E-09 9.88561739929E-09 1.05231894515E-08 1.12018817333E-08 1.19243462980E-08 1.26934062482E-08 1.35120667586E-08 1.43835268238E-08 1.53111917585E-08 1.62986865034E-08 1.73498697913E-08 1.84688492221E-08 1.96599973174E-08 2.09279686021E-08 2.22777178010E-08 2.37145191875E-08 2.52439871989E-08 2.68720983786E-08 2.86052147272E-08 3.04501085569E-08 3.24139889599E-08 3.45045299827E-08 3.67299005993E-08 3.90987966412E-08 4.16204747739E-08 4.43047886709E-08 4.71622275040E-08 5.02039569447E-08 5.34418627797E-08 5.68885973710E-08 6.05576290619E-08 6.44632948482E-08 6.86208563540E-08 7.30465594889E-08 7.77576979160E-08 8.27726806355E-08 8.81111038939E-08 9.37938277665E-08 9.98430576587E-08 1.06282431056E-07 1.13137109894E-07 1.20433878860E-07 1.28201250038E-07 1.36469574326E-07 1.45271159983E-07 1.54640398884E-07 1.64613900879E-07 1.75230636810E-07 1.86532090772E-07 1.98562422176E-07 2.11368638273E-07 2.25000777780E-07 2.39512106361E-07 2.54959324718E-07 2.71402790073E-07 2.88906751952E-07 3.07539603152E-07 3.27374146890E-07 3.48487881190E-07 3.70963301571E-07 3.94888223262E-07 4.20356124201E-07 4.47466510100E-07 4.76325303091E-07 5.07045255358E-07 5.39746389495E-07 5.74556467171E-07 6.11611488057E-07 6.51056220856E-07 6.93044768569E-07 7.37741170186E-07 7.85320041124E-07 8.35967254928E-07 8.89880668900E-07 9.47270896437E-07 1.00836212915E-06 1.07339301189E-06 1.14261757418E-06 1.21630622152E-06 1.29474679067E-06 1.37824567273E-06 1.46712900861E-06 1.56174396137E-06 1.66246007059E-06 1.76967069367E-06 1.88379454012E-06 2.00527730437E-06 2.13459340376E-06 2.27224782819E-06 2.41877810883E-06 2.57475641332E-06 2.74079177582E-06 2.91753247019E-06 3.10566853590E-06 3.30593446614E-06 3.51911206860E-06 3.74603351007E-06 3.98758455652E-06 4.24470802118E-06 4.51840743396E-06 4.80975094635E-06 5.11987548674E-06 5.44999118241E-06 5.80138606485E-06 6.17543107681E-06 6.57358540008E-06 6.99740212466E-06 7.44853428076E-06 7.92874125707E-06 8.43989562953E-06 8.98399042690E-06 9.56314686084E-06 1.01796225498E-05 1.08358202684E-05 1.15342972549E-05 1.22777751129E-05 1.30691503445E-05 1.39115055542E-05 1.48081213667E-05 1.57624891038E-05 1.67783242663E-05 1.78595808744E-05 1.90104667175E-05 2.02354595732E-05 2.15393244533E-05 2.29271319440E-05 2.44042777058E-05 2.59765032074E-05 2.76499177694E-05 2.94310219988E-05 3.13267327014E-05 3.33444093631E-05 3.54918822962E-05 3.77774825539E-05 4.02100737221E-05 4.27990857016E-05 4.55545506047E-05 4.84871408931E-05 5.16082098941E-05 5.49298348391E-05 5.84648625765E-05 6.22269581196E-05 6.62306562004E-05 7.04914160074E-05 7.50256792980E-05 7.98509320845E-05 8.49857701052E-05 9.04499683019E-05 9.62645545384E-05 1.02451887806E-04 1.09035741176E-04 1.16041389769E-04 1.23495704034E-04 1.31427248629E-04 1.39866387225E-04 1.48845393567E-04 1.58398569129E-04 1.68562367736E-04 1.79375527526E-04 1.90879210655E-04 2.03117151150E-04 2.16135811347E-04 2.29984547370E-04 2.44715784099E-04 2.60385200126E-04 2.77051923205E-04 2.94778736692E-04 3.13632297545E-04 3.33683366404E-04 3.55007050338E-04 3.77683058843E-04 4.01795973667E-04 4.27435533099E-04 4.54696931308E-04 4.83681133382E-04 5.14495206684E-04 5.47252669153E-04 5.82073855192E-04 6.19086299751E-04 6.58425141239E-04 7.00233543829E-04 7.44663139767E-04 7.91874492201E-04 8.42037579048E-04 8.95332298364E-04 9.51948995610E-04 1.01208901316E-03 1.07596526231E-03 1.14380281792E-03 1.21583953583E-03 1.29232669285E-03 1.37352964920E-03 1.45972853299E-03 1.55121894623E-03 1.64831269141E-03 1.75133851790E-03 1.86064288659E-03 1.97659075145E-03 2.09956635587E-03 2.22997404165E-03 2.36823906779E-03 2.51480843604E-03 2.67015171951E-03 2.83476189009E-03 3.00915613993E-03 3.19387669147E-03 3.38949158988E-03 3.59659547095E-03 3.81581029661E-03 4.04778604938E-03 4.29320137618E-03 4.55276417067E-03 4.82721208236E-03 5.11731293948E-03 5.42386507135E-03 5.74769751465E-03 6.08967008664E-03 6.45067330682E-03 6.83162814721E-03 7.23348558950E-03 7.65722596622E-03 8.10385806081E-03 8.57441794036E-03 9.06996749289E-03 9.59159263911E-03 1.01404011876E-02 1.07175203002E-02 1.13240935334E-02 1.19612774194E-02 1.26302375511E-02 1.33321441318E-02 1.40681669522E-02 1.48394697552E-02 1.56472039503E-02 1.64925016382E-02 1.73764679106E-02 1.83001723865E-02 1.92646399552E-02 2.02708406934E-02 2.13196789321E-02 2.24119814522E-02 2.35484847935E-02 2.47298216717E-02 2.59565065038E-02 2.72289200549E-02 2.85472932295E-02 2.99116900461E-02 3.13219898471E-02 3.27778688143E-02 3.42787808787E-02 3.58239381362E-02 3.74122909002E-02 3.90425075515E-02 4.07129543679E-02 4.24216755490E-02 4.41663736779E-02 4.59443908955E-02 4.77526910922E-02 4.95878434593E-02 5.14460077692E-02 5.33229217900E-02 5.52138912689E-02 5.71137829463E-02 5.90170210899E-02 6.09175880547E-02 6.28090293938E-02 6.46844640498E-02 6.65366001554E-02 6.83577569628E-02 7.01398933957E-02 7.18746436812E-02 7.35533604686E-02 7.51671657667E-02 7.67070099502E-02 7.81637389671E-02 7.95281697572E-02 8.07911737303E-02 8.19437679805E-02 8.29772137113E-02 8.38831211253E-02 8.46535597866E-02 8.52811732085E-02 8.57592961390E-02 8.60820727363E-02 8.62445735385E-02 8.62429088499E-02 8.60743359000E-02 8.57373568903E-02 8.52318048408E-02 8.45589139986E-02 8.37213714885E-02 8.27233468883E-02 8.15704965157E-02 8.02699394366E-02 7.88302025610E-02 7.72611327053E-02 7.55737741651E-02 7.37802111919E-02 7.18933757820E-02 6.99268223796E-02 6.78944724545E-02 6.58103334102E-02 6.36881978965E-02 6.15413312795E-02 5.93821567223E-02 5.72219489701E-02 5.50705494305E-02 5.29361164004E-02 5.08249251934E-02 4.87412333492E-02 4.66872259271E-02 4.46630549655E-02 4.26669853971E-02 4.06956569315E-02 3.87444675461E-02 3.68080792030E-02 3.48810402027E-02 3.29585112213E-02 3.10370736613E-02 2.91155896360E-02 2.71966442868E-02 2.52876606408E-02 2.33970803313E-02 2.15334056580E-02 1.97051235317E-02 1.79206236059E-02 1.61881111497E-02 1.45155153730E-02 1.29103940885E-02 1.13798357741E-02 9.93036028843E-03 8.56781968450E-03 7.29730076360E-03 6.12303120401E-03 5.04829128818E-03 4.07533342806E-03 3.20531184893E-03 2.43822492843E-03 1.77287279378E-03 1.20683284767E-03 7.36455913905E-04 3.56885657675E-04 6.21038330745E-05 -1.54996268229E-04 -3.02506059030E-04 -3.89365844309E-04 -4.25195680516E-04 -4.20092220486E-04 -3.84391572429E-04 -3.28399049182E-04 -2.62087670125E-04 -1.94768405532E-04 -1.34251322303E-04 -8.49163169066E-05 -4.86093719463E-05 -2.47282048270E-05 -1.04287041798E-05 -3.08857757270E-06 -3.85859011132E-07 1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4 10 2 i j (l(j)) 0.00000000000E+00 Q_int 1.61089825246E-23 1.71479226362E-23 1.82538686282E-23 1.94311420086E-23 2.06843429986E-23 2.20183685084E-23 2.34384312716E-23 2.49500802144E-23 2.65592221378E-23 2.82721447989E-23 3.00955414802E-23 3.20365371438E-23 3.41027162726E-23 3.63021525063E-23 3.86434401897E-23 4.11357279556E-23 4.37887544723E-23 4.66128864987E-23 4.96191593921E-23 5.28193202292E-23 5.62258737078E-23 5.98521310099E-23 6.37122618146E-23 6.78213496668E-23 7.21954509168E-23 7.68516574601E-23 8.18081635251E-23 8.70843367668E-23 9.27007939470E-23 9.86794814940E-23 1.05043761259E-22 1.11818501805E-22 1.19030175576E-22 1.26706962345E-22 1.34878859323E-22 1.43577798374E-22 1.52837770794E-22 1.62694960123E-22 1.73187883546E-22 1.84357542386E-22 1.96247582331E-22 2.08904463967E-22 2.22377644337E-22 2.36719770185E-22 2.51986883678E-22 2.68238641396E-22 2.85538547435E-22 3.03954201553E-22 3.23557563319E-22 3.44425233295E-22 3.66638752355E-22 3.90284920307E-22 4.15456135068E-22 4.42250753704E-22 4.70773476772E-22 5.01135757431E-22 5.33456236953E-22 5.67861208314E-22 6.04485109686E-22 6.43471049762E-22 6.84971366948E-22 7.29148224637E-22 7.76174244859E-22 8.26233182810E-22 8.79520644879E-22 9.36244852982E-22 9.96627458194E-22 1.06090440686E-21 1.12932686255E-21 1.20216218749E-21 1.27969498731E-21 1.36222822311E-21 1.45008439529E-21 1.54360680376E-21 1.64316088935E-21 1.74913566184E-21 1.86194521993E-21 1.98203036944E-21 2.10986034569E-21 2.24593464709E-21 2.39078498693E-21 2.54497737107E-21 2.70911430959E-21 2.88383717116E-21 3.06982868914E-21 3.26781562944E-21 3.47857163033E-21 3.70292022546E-21 3.94173806185E-21 4.19595832538E-21 4.46657438725E-21 4.75464368561E-21 5.06129185751E-21 5.38771713733E-21 5.73519503895E-21 6.10508333984E-21 6.49882738655E-21 6.91796574251E-21 7.36413619996E-21 7.83908217965E-21 8.34465954333E-21 8.88284384553E-21 9.45573805310E-21 1.00655807626E-20 1.07147549477E-20 1.14057972706E-20 1.21414079943E-20 1.29244615335E-20 1.37580176871E-20 1.46453335938E-20 1.55898764598E-20 1.65953371069E-20 1.76656443945E-20 1.88049805714E-20 2.00177976186E-20 2.13088346451E-20 2.26831364060E-20 2.41460730155E-20 2.57033609300E-20 2.73610852860E-20 2.91257236775E-20 3.10041714672E-20 3.30037687307E-20 3.51323289379E-20 3.73981694840E-20 3.98101441902E-20 4.23776779000E-20 4.51108033073E-20 4.80202001590E-20 5.11172369865E-20 5.44140155285E-20 5.79234180188E-20 6.16591575241E-20 6.56358315275E-20 6.98689789692E-20 7.43751409648E-20 7.91719254403E-20 8.42780759353E-20 8.97135448438E-20 9.54995713787E-20 1.01658764565E-19 1.08215191583E-19 1.15194471814E-19 1.22623876947E-19 1.30532437546E-19 1.38951056481E-19 1.47912629690E-19 1.57452174714E-19 1.67606967533E-19 1.78416688222E-19 1.89923575997E-19 2.02172594274E-19 2.15211606358E-19 2.29091562472E-19 2.43866698846E-19 2.59594749647E-19 2.76337172575E-19 2.94159389012E-19 3.13131039656E-19 3.33326256645E-19 3.54823953226E-19 3.77708132119E-19 4.02068213749E-19 4.27999385664E-19 4.55602974483E-19 4.84986841830E-19 5.16265805804E-19 5.49562089637E-19 5.85005799284E-19 6.22735431809E-19 6.62898416572E-19 7.05651691310E-19 7.51162315373E-19 7.99608122514E-19 8.51178415778E-19 9.06074707208E-19 9.64511505256E-19 1.02671715298E-18 1.09293472030E-18 1.16342295381E-18 1.23845728780E-18 1.31833092058E-18 1.40335596009E-18 1.49386464353E-18 1.59021063554E-18 1.69277041020E-18 1.80194472204E-18 1.91816017206E-18 2.04187087467E-18 2.17356023212E-18 2.31374282344E-18 2.46296641517E-18 2.62181410172E-18 2.79090658389E-18 2.97090459423E-18 3.16251147889E-18 3.36647594593E-18 3.58359499094E-18 3.81471701133E-18 4.06074512140E-18 4.32264068136E-18 4.60142705380E-18 4.89819360254E-18 5.21409994932E-18 5.55038050508E-18 5.90834929339E-18 6.28940508509E-18 6.69503686399E-18 7.12682964507E-18 7.58647066803E-18 8.07575599018E-18 8.59659750456E-18 9.15103041072E-18 9.74122116732E-18 1.03694759576E-17 1.10382497008E-17 1.17501556448E-17 1.25079755778E-17 1.33146706975E-17 1.41733931827E-17 1.50874985102E-17 1.60605585665E-17 1.70963756049E-17 1.81989971031E-17 1.93727315786E-17 2.06221654244E-17 2.19521808305E-17 2.33679748611E-17 2.48750797621E-17 2.64793845789E-17 2.81871581674E-17 3.00050736901E-17 3.19402346915E-17 3.40002028555E-17 3.61930275526E-17 3.85272772929E-17 4.10120732083E-17 4.36571246930E-17 4.64727673432E-17 4.94700033441E-17 5.26605444606E-17 5.60568578018E-17 5.96722145360E-17 6.35207417486E-17 6.76174776435E-17 7.19784303057E-17 7.66206402528E-17 8.15622470214E-17 8.68225600478E-17 9.24221341199E-17 9.83828496956E-17 1.04727998401E-16 1.11482374044E-16 1.18672369493E-16 1.26326079814E-16 1.34473412046E-16 1.43146202069E-16 1.52378338998E-16 1.62205897610E-16 1.72667279306E-16 1.83803362162E-16 1.95657660666E-16 2.08276495749E-16 2.21709175784E-16 2.36008189261E-16 2.51229409890E-16 2.67432314922E-16 2.84680217563E-16 3.03040514370E-16 3.22584948605E-16 3.43389890571E-16 3.65536636036E-16 3.89111723890E-16 4.14207274308E-16 4.40921348700E-16 4.69358332899E-16 4.99629345042E-16 5.31852669773E-16 5.66154220440E-16 6.02668031103E-16 6.41536780278E-16 6.82912348455E-16 7.26956411575E-16 7.73841072779E-16 8.23749534911E-16 8.76876816382E-16 9.33430513210E-16 9.93631610208E-16 1.05771534448E-15 1.12593212464E-15 1.19854850924E-15 1.27584824841E-15 1.35813339257E-15 1.44572547274E-15 1.53896675690E-15 1.63822158742E-15 1.74387780472E-15 1.85634826282E-15 1.97607244251E-15 2.10351816864E-15 2.23918343822E-15 2.38359836627E-15 2.53732725730E-15 2.70097081037E-15 2.87516846625E-15 3.06060090615E-15 3.25799271141E-15 3.46811519488E-15 3.69178941482E-15 3.92988938318E-15 4.18334548086E-15 4.45314809319E-15 4.74035147984E-15 5.04607789442E-15 5.37152196967E-15 5.71795538554E-15 6.08673183829E-15 6.47929233011E-15 6.89717079985E-15 7.34200011691E-15 7.81551846176E-15 8.31957611787E-15 8.85614270176E-15 9.42731485933E-15 1.00353244585E-14 1.06825473104E-14 1.13715124527E-14 1.21049120322E-14 1.28856118241E-14 1.37166624304E-14 1.46013111998E-14 1.55430149173E-14 1.65454533113E-14 1.76125434323E-14 1.87484549589E-14 1.99576264911E-14 2.12447828937E-14 2.26149537595E-14 2.40734930619E-14 2.56261000762E-14 2.72788416495E-14 2.90381759067E-14 3.09109774863E-14 3.29045644030E-14 3.50267266427E-14 3.72857566028E-14 3.96904814940E-14 4.22502978336E-14 4.49752081623E-14 4.78758601294E-14 5.09635880986E-14 5.42504574376E-14 5.77493116635E-14 6.14738226296E-14 6.54385439478E-14 6.96589678578E-14 7.41515857632E-14 7.89339526720E-14 8.40247557933E-14 8.94438875579E-14 9.52125233487E-14 1.01353204244E-13 1.07889925096E-13 1.14848228295E-13 1.22255303572E-13 1.30140094246E-13 1.38533410322E-13 1.47468048879E-13 1.56978922226E-13 1.67103194325E-13 1.77880426007E-13 1.89352729559E-13 2.01564933279E-13 2.14564756642E-13 2.28402996767E-13 2.43133726905E-13 2.58814507737E-13 2.75506612289E-13 2.93275265357E-13 3.12189898382E-13 3.32324420746E-13 3.53757508582E-13 3.76572912198E-13 4.00859783338E-13 4.26713023541E-13 4.54233654972E-13 4.83529215173E-13 5.14714177262E-13 5.47910397245E-13 5.83247590171E-13 6.20863836993E-13 6.60906124130E-13 7.03530917815E-13 7.48904775492E-13 7.97204996647E-13 8.48620315607E-13 9.03351639026E-13 9.61612830935E-13 1.02363154842E-12 1.08965013120E-12 1.15992654858E-12 1.23473540745E-12 1.31436902537E-12 1.39913857275E-12 1.48937528880E-12 1.58543177584E-12 1.68768337711E-12 1.79652964344E-12 1.91239589447E-12 2.03573488067E-12 2.16702855239E-12 2.30678994319E-12 2.45556517446E-12 2.61393558942E-12 2.78252002478E-12 2.96197722883E-12 3.15300843549E-12 3.35636010450E-12 3.57282683812E-12 3.80325448615E-12 4.04854345108E-12 4.30965220646E-12 4.58760104215E-12 4.88347605113E-12 5.19843337351E-12 5.53370371409E-12 5.89059715146E-12 6.27050825715E-12 6.67492154498E-12 7.10541727182E-12 7.56367761256E-12 8.05149323320E-12 8.57077028800E-12 9.12353786785E-12 9.71195593049E-12 1.03383237339E-11 1.10050888373E-11 1.17148566305E-11 1.24704005674E-11 1.32746729588E-11 1.41308165230E-11 1.50421766748E-11 1.60123145537E-11 1.70450210566E-11 1.81443314706E-11 1.93145414164E-11 2.05602235184E-11 2.18862453177E-11 2.32977883075E-11 2.48003681109E-11 2.63998561402E-11 2.81025024359E-11 2.99149601578E-11 3.18443115301E-11 3.38980955893E-11 3.60843375600E-11 3.84115802464E-11 4.08889174626E-11 4.35260294940E-11 4.63332209396E-11 4.93214610171E-11 5.25024263968E-11 5.58885468364E-11 5.94930537033E-11 6.33300317246E-11 6.74144741177E-11 7.17623409710E-11 7.63906217802E-11 8.13174017467E-11 8.65619324947E-11 9.21447071118E-11 9.80875407005E-11 1.04413655152E-10 1.11147769823E-10 1.18316198760E-10 1.25946952959E-10 1.34069849862E-10 1.42716630012E-10 1.51921081090E-10 1.61719170168E-10 1.72149183543E-10 1.83251877049E-10 1.95070635015E-10 2.07651639884E-10 2.21044052564E-10 2.35300204481E-10 2.50475802476E-10 2.66630145934E-10 2.83826358703E-10 3.02131636259E-10 3.21617507076E-10 3.42360113525E-10 3.64440508444E-10 3.87944972475E-10 4.12965350391E-10 4.39599411096E-10 4.67951228453E-10 4.98131589105E-10 5.30258424919E-10 5.64457273096E-10 6.00861768160E-10 6.39614162888E-10 6.80865884863E-10 7.24778128028E-10 7.71522482397E-10 8.21281604511E-10 8.74249932156E-10 9.30634442509E-10 9.90655462591E-10 1.05454752775E-09 1.12256030196E-09 1.19495955021E-09 1.27202817784E-09 1.35406733675E-09 1.44139760163E-09 1.53436022188E-09 1.63331845724E-09 1.73865899443E-09 1.85079346078E-09 1.97016003152E-09 2.09722514190E-09 2.23248530957E-09 2.37646907594E-09 2.52973907087E-09 2.69289421061E-09 2.86657203887E-09 3.05145121928E-09 3.24825418342E-09 3.45774995968E-09 3.68075717206E-09 3.91814724424E-09 4.17084780291E-09 4.43984630067E-09 4.72619387726E-09 5.03100946659E-09 5.35548416742E-09 5.70088590329E-09 6.06856436525E-09 6.45995630157E-09 6.87659111884E-09 7.32009686569E-09 7.79220659276E-09 8.29476512523E-09 8.82973626973E-09 9.39921049046E-09 1.00054130790E-08 1.06507128463E-08 1.13376313801E-08 1.20688529027E-08 1.28472347544E-08 1.36758185647E-08 1.45578421328E-08 1.54967520794E-08 1.64962173213E-08 1.75601434021E-08 1.86926877555E-08 1.98982759514E-08 2.11816189929E-08 2.25477317168E-08 2.40019523964E-08 2.55499636025E-08 2.71978144040E-08 2.89519440052E-08 3.08192069174E-08 3.28068997286E-08 3.49227896287E-08 3.71751447485E-08 3.95727664859E-08 4.21250238794E-08 4.48418902257E-08 4.77339820557E-08 5.08126006132E-08 5.40897760181E-08 5.75783142701E-08 6.12918472909E-08 6.52448861927E-08 6.94528779796E-08 7.39322659029E-08 7.87005537172E-08 8.37763740675E-08 8.91795613057E-08 9.49312289767E-08 1.01053852329E-07 1.07571356129E-07 1.14509208138E-07 1.21894518625E-07 1.29756146293E-07 1.38124811040E-07 1.47033213971E-07 1.56516165192E-07 1.66610719789E-07 1.77356322614E-07 1.88794962414E-07 2.00971335839E-07 2.13933022105E-07 2.27730668860E-07 2.42418190052E-07 2.58052976565E-07 2.74696120415E-07 2.92412653417E-07 3.11271801227E-07 3.31347253772E-07 3.52717453099E-07 3.75465899804E-07 3.99681479172E-07 4.25458808397E-07 4.52898606130E-07 4.82108085885E-07 5.13201374762E-07 5.46299959204E-07 5.81533159436E-07 6.19038634528E-07 6.58962919935E-07 7.01461999757E-07 7.46701915821E-07 7.94859416003E-07 8.46122644357E-07 9.00691875666E-07 9.58780297348E-07 1.02061484170E-06 1.08643707174E-06 1.15650412416E-06 1.23108971295E-06 1.31048519765E-06 1.39500072040E-06 1.48496641625E-06 1.58073370127E-06 1.68267664371E-06 1.79119342328E-06 1.90670788448E-06 2.02967118976E-06 2.16056357913E-06 2.29989624294E-06 2.44821331514E-06 2.60609399467E-06 2.77415480339E-06 2.95305198903E-06 3.14348408274E-06 3.34619462092E-06 3.56197504202E-06 3.79166776942E-06 4.03616949232E-06 4.29643465733E-06 4.57347918430E-06 4.86838442053E-06 5.18230134888E-06 5.51645506573E-06 5.87214954624E-06 6.25077271508E-06 6.65380184222E-06 7.08280928447E-06 7.53946859475E-06 8.02556102268E-06 8.54298243110E-06 9.09375065521E-06 9.68001333243E-06 1.03040562327E-05 1.09683121211E-05 1.16753701867E-05 1.24279860728E-05 1.32290925481E-05 1.40818108568E-05 1.49894627938E-05 1.59555835476E-05 1.69839353610E-05 1.80785220614E-05 1.92436045133E-05 2.04837170535E-05 2.18036849685E-05 2.32086430806E-05 2.47040555110E-05 2.62957366945E-05 2.79898737226E-05 2.97930500982E-05 3.17122709892E-05 3.37549900747E-05 3.59291380808E-05 3.82431531107E-05 4.07060128810E-05 4.33272689783E-05 4.61170832626E-05 4.90862665470E-05 5.22463196924E-05 5.56094772643E-05 5.91887539069E-05 6.29979935976E-05 6.70519219553E-05 7.13662017865E-05 7.59574920605E-05 8.08435105191E-05 8.60431001347E-05 9.15762996445E-05 9.74644183990E-05 1.03730115776E-04 1.10397485428E-04 1.17492144636E-04 1.25041329069E-04 1.33073993252E-04 1.41620917071E-04 1.50714818651E-04 1.60390473959E-04 1.70684843510E-04 1.81637206571E-04 1.93289303253E-04 2.05685484933E-04 2.18872873444E-04 2.32901529496E-04 2.47824630803E-04 2.63698660433E-04 2.80583605874E-04 2.98543169383E-04 3.17644990147E-04 3.37960878847E-04 3.59567065205E-04 3.82544459131E-04 4.06978926078E-04 4.32961577253E-04 4.60589075319E-04 4.89963956261E-04 5.21194968054E-04 5.54397426831E-04 5.89693591193E-04 6.27213055349E-04 6.67093161719E-04 7.09479433669E-04 7.54526028990E-04 8.02396214713E-04 8.53262863850E-04 9.07308974553E-04 9.64728212186E-04 1.02572547471E-03 1.09051748170E-03 1.15933338726E-03 1.23241541697E-03 1.31001952885E-03 1.39241609824E-03 1.47989062638E-03 1.57274447208E-03 1.67129560594E-03 1.77587938618E-03 1.88684935480E-03 2.00457805285E-03 2.12945785277E-03 2.26190180574E-03 2.40234450152E-03 2.55124293768E-03 2.70907739476E-03 2.87635231323E-03 3.05359716772E-03 3.24136733299E-03 3.44024493586E-03 3.65083968606E-03 3.87378967847E-03 4.10976215816E-03 4.35945423864E-03 4.62359356275E-03 4.90293889439E-03 5.19828062823E-03 5.51044120308E-03 5.84027540328E-03 6.18867053127E-03 6.55654643256E-03 6.94485535315E-03 7.35458160752E-03 7.78674103385E-03 8.24238021121E-03 8.72257541178E-03 9.22843125932E-03 9.76107906341E-03 1.03216747971E-02 1.09113966842E-02 1.15314423597E-02 1.21830255678E-02 1.28673723567E-02 1.35857167328E-02 1.43392957320E-02 1.51293438669E-02 1.59570869093E-02 1.68237349658E-02 1.77304748061E-02 1.86784614038E-02 1.96688086541E-02 2.07025792312E-02 2.17807735567E-02 2.29043178509E-02 2.40740512473E-02 2.52907119564E-02 2.65549224737E-02 2.78671738358E-02 2.92278089419E-02 3.06370049686E-02 3.20947549232E-02 3.36008483959E-02 3.51548515916E-02 3.67560867412E-02 3.84036110183E-02 4.00961951090E-02 4.18323016123E-02 4.36100634763E-02 4.54272627079E-02 4.72813096242E-02 4.91692229506E-02 5.10876111022E-02 5.30326550230E-02 5.50000929919E-02 5.69852078367E-02 5.89828170336E-02 6.09872661961E-02 6.29924264853E-02 6.49916964932E-02 6.69780091676E-02 6.89438443494E-02 7.08812474958E-02 7.27818551425E-02 7.46369276350E-02 7.64373896123E-02 7.81738786692E-02 7.98368025423E-02 8.14164050643E-02 8.29028410118E-02 8.42862598218E-02 8.55568979840E-02 8.67051797208E-02 8.77218253427E-02 8.85979664274E-02 8.93252667017E-02 8.98960472201E-02 9.03034141367E-02 9.05413870571E-02 9.06050256463E-02 9.04905518671E-02 9.01954649370E-02 8.97186458356E-02 8.90604479847E-02 8.82227705675E-02 8.72091108802E-02 8.60245921238E-02 8.46759631786E-02 8.31715671576E-02 8.15212759539E-02 7.97363885630E-02 7.78294917174E-02 7.58142823068E-02 7.37053521856E-02 7.15179372819E-02 6.92676344109E-02 6.69700908312E-02 6.46406733391E-02 6.22941255129E-02 5.99442235499E-02 5.76034428862E-02 5.52826493768E-02 5.29908301215E-02 5.07348799294E-02 4.85194597960E-02 4.63469434673E-02 4.42174670608E-02 4.21290946478E-02 4.00781095714E-02 3.80594369592E-02 3.60671973469E-02 3.40953845206E-02 3.21386526714E-02 3.01931888444E-02 2.82576366681E-02 2.63345572642E-02 2.44313306859E-02 2.25562316979E-02 2.07174738583E-02 1.89231292370E-02 1.71810440657E-02 1.54987511512E-02 1.38833800428E-02 1.23415661106E-02 1.08793598524E-02 9.50213791456E-03 8.21451746662E-03 7.02027571986E-03 5.92227651135E-03 4.92240598948E-03 4.02151952248E-03 3.21940200565E-03 2.51474375637E-03 1.90513415275E-03 1.38707508288E-03 9.56016121068E-04 6.06413125621E-04 3.31811654113E-04 1.24956208556E-04 -2.20741506194E-05 -1.17703851292E-04 -1.70673212767E-04 -1.89826665375E-04 -1.83879107301E-04 -1.61163670567E-04 -1.29365199964E-04 -9.52448467895E-05 -6.41214333530E-05 -3.89505709120E-05 -2.09665559021E-05 -9.81847472258E-06 -3.75373115701E-06 -9.90340664031E-07 -1.07664696103E-07 3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 5 1 i j (l(j)) -1.10932516964E-02 Q_int -1.97965169028E-20 -2.08115060285E-20 -2.18785347594E-20 -2.30002712232E-20 -2.41795203453E-20 -2.54192308627E-20 -2.67225026976E-20 -2.80925947082E-20 -2.95329328383E-20 -3.10471186835E-20 -3.26389384969E-20 -3.43123726574E-20 -3.60716056220E-20 -3.79210363894E-20 -3.98652894998E-20 -4.19092265987E-20 -4.40579585936E-20 -4.63168584335E-20 -4.86915745448E-20 -5.11880449545E-20 -5.38125121391E-20 -5.65715386336E-20 -5.94720234412E-20 -6.25212192848E-20 -6.57267507422E-20 -6.90966333117E-20 -7.26392934551E-20 -7.63635896679E-20 -8.02788346306E-20 -8.43948184948E-20 -8.87218333642E-20 -9.32706990298E-20 -9.80527900250E-20 -1.03080064068E-19 -1.08365091963E-19 -1.13921089032E-19 -1.19761948162E-19 -1.25902274543E-19 -1.32357422189E-19 -1.39143532332E-19 -1.46277573781E-19 -1.53777385356E-19 -1.61661720493E-19 -1.69950294136E-19 -1.78663832037E-19 -1.87824122578E-19 -1.97454071258E-19 -2.07577757963E-19 -2.18220497185E-19 -2.29408901313E-19 -2.41170947187E-19 -2.53536046048E-19 -2.66535117083E-19 -2.80200664740E-19 -2.94566860007E-19 -3.09669625854E-19 -3.25546727063E-19 -3.42237864656E-19 -3.59784775171E-19 -3.78231335025E-19 -3.97623670224E-19 -4.18010271708E-19 -4.39442116599E-19 -4.61972795672E-19 -4.85658647360E-19 -5.10558898630E-19 -5.36735813078E-19 -5.64254846626E-19 -5.93184811192E-19 -6.23598046754E-19 -6.55570602243E-19 -6.89182425701E-19 -7.24517564193E-19 -7.61664373971E-19 -8.00715741406E-19 -8.41769315258E-19 -8.84927750844E-19 -9.30298966732E-19 -9.77996414594E-19 -1.02813936289E-18 -1.08085319512E-18 -1.13626972330E-18 -1.19452751763E-18 -1.25577225294E-18 -1.32015707296E-18 -1.38784297327E-18 -1.45899920389E-18 -1.53380369245E-18 -1.61244348913E-18 -1.69511523439E-18 -1.78202565065E-18 -1.87339205921E-18 -1.96944292369E-18 -2.07041842126E-18 -2.17657104328E-18 -2.28816622658E-18 -2.40548301725E-18 -2.52881476835E-18 -2.65846987352E-18 -2.79477253804E-18 -2.93806358956E-18 -3.08870133035E-18 -3.24706243321E-18 -3.41354288338E-18 -3.58855896869E-18 -3.77254832052E-18 -3.96597100807E-18 -4.16931068879E-18 -4.38307581780E-18 -4.60780091925E-18 -4.84404792294E-18 -5.09240756942E-18 -5.35350088717E-18 -5.62798074544E-18 -5.91653348686E-18 -6.21988064356E-18 -6.53878074141E-18 -6.87403119675E-18 -7.22647031032E-18 -7.59697936346E-18 -7.98648482177E-18 -8.39596065176E-18 -8.82643075625E-18 -9.27897153471E-18 -9.75471457476E-18 -1.02548494818E-17 -1.07806268535E-17 -1.13333614071E-17 -1.19144352670E-17 -1.25253014204E-17 -1.31674873507E-17 -1.38425988573E-17 -1.45523240705E-17 -1.52984376730E-17 -1.60828053374E-17 -1.69073883912E-17 -1.77742487216E-17 -1.86855539308E-17 -1.96435827564E-17 -2.06507307694E-17 -2.17095163644E-17 -2.28225870567E-17 -2.39927261027E-17 -2.52228594593E-17 -2.65160631006E-17 -2.78755707091E-17 -2.93047817618E-17 -3.08072700305E-17 -3.23867925185E-17 -3.40472988544E-17 -3.57929411687E-17 -3.76280844764E-17 -3.95573175912E-17 -4.15854646005E-17 -4.37175969280E-17 -4.59590460148E-17 -4.83154166508E-17 -5.07926009894E-17 -5.33967932816E-17 -5.61345053639E-17 -5.90125829423E-17 -6.20382227091E-17 -6.52189903393E-17 -6.85628394081E-17 -7.20781312794E-17 -7.57736560130E-17 -7.96586543451E-17 -8.37428407942E-17 -8.80364279529E-17 -9.25501520247E-17 -9.72952996698E-17 -1.02283736228E-16 -1.07527935387E-16 -1.13041010377E-16 -1.18836746754E-16 -1.24929636876E-16 -1.31334916142E-16 -1.38068601084E-16 -1.45147529420E-16 -1.52589402156E-16 -1.60412827848E-16 -1.68637369133E-16 -1.77283591646E-16 -1.86373115443E-16 -1.95928669067E-16 -2.05974146375E-16 -2.16534666290E-16 -2.27636635608E-16 -2.39307815032E-16 -2.51577388585E-16 -2.64476036588E-16 -2.78036012374E-16 -2.92291222941E-16 -3.07277313735E-16 -3.23031757781E-16 -3.39593949391E-16 -3.57005302663E-16 -3.75309355041E-16 -3.94551876182E-16 -4.14780982404E-16 -4.36047256999E-16 -4.58403876720E-16 -4.81906744750E-16 -5.06614630491E-16 -5.32589316512E-16 -5.59895753045E-16 -5.88602220390E-16 -6.18780499650E-16 -6.50506052226E-16 -6.83858208505E-16 -7.18920366231E-16 -7.55780199039E-16 -7.94529875686E-16 -8.35266290523E-16 -8.78091305777E-16 -9.23112006265E-16 -9.70440967156E-16 -1.02019653547E-15 -1.07250312601E-15 -1.12749153245E-15 -1.18529925441E-15 -1.24607084127E-15 -1.30995825358E-15 -1.37712124311E-15 -1.44772775226E-15 -1.52195433401E-15 -1.59998659342E-15 -1.68201965169E-15 -1.76825863414E-15 -1.85891918305E-15 -1.95422799693E-15 -2.05442339736E-15 -2.15975592492E-15 -2.27048896568E-15 -2.38689940980E-15 -2.50927834389E-15 -2.63793177890E-15 -2.77318141526E-15 -2.91536544735E-15 -3.06483940914E-15 -3.22197706318E-15 -3.38717133527E-15 -3.56083529689E-15 -3.74340319818E-15 -3.93533155372E-15 -4.13710028409E-15 -4.34921391591E-15 -4.57220284342E-15 -4.80662465473E-15 -5.05306552611E-15 -5.31214168769E-15 -5.58450096438E-15 -5.87082439576E-15 -6.17182793904E-15 -6.48826425932E-15 -6.82092461163E-15 -7.17064081947E-15 -7.53828735486E-15 -7.92478352486E-15 -8.33109577044E-15 -8.75824008298E-15 -9.20728454481E-15 -9.67935200000E-15 -1.01756228620E-14 -1.06973380652E-14 -1.12458021683E-14 -1.18223866157E-14 -1.24285331675E-14 -1.30657575041E-14 -1.37356530167E-14 -1.44398947912E-14 -1.51802437968E-14 -1.59585512895E-14 -1.67767634413E-14 -1.76369262062E-14 -1.85411904364E-14 -1.94918172608E-14 -2.04911837384E-14 -2.15417888027E-14 -2.26462595099E-14 -2.38073576084E-14 -2.50279864438E-14 -2.63111982197E-14 -2.76602016290E-14 -2.90783698777E-14 -3.05692491195E-14 -3.21365673229E-14 -3.37842435933E-14 -3.55163979727E-14 -3.73373617415E-14 -3.92516882496E-14 -4.12641643014E-14 -4.33798221259E-14 -4.56039519594E-14 -4.79421152739E-14 -5.04001586836E-14 -5.29842285647E-14 -5.57007864238E-14 -5.85566250559E-14 -6.15588855288E-14 -6.47150750403E-14 -6.80330856894E-14 -7.15212142109E-14 -7.51881827214E-14 -7.90431605286E-14 -8.30957870599E-14 -8.73561959654E-14 -9.18350404571E-14 -9.65435199476E-14 -1.01493408054E-13 -1.06697082039E-13 -1.12167553757E-13 -1.17918502195E-13 -1.23964307674E-13 -1.30320087807E-13 -1.37001735301E-13 -1.44025957698E-13 -1.51410319151E-13 -1.59173284342E-13 -1.67334264657E-13 -1.75913666719E-13 -1.84932943419E-13 -1.94414647555E-13 -2.04382488230E-13 -2.14861390133E-13 -2.25877555863E-13 -2.37458531451E-13 -2.49633275238E-13 -2.62432230282E-13 -2.75887400485E-13 -2.90032430618E-13 -3.04902690445E-13 -3.20535363171E-13 -3.36969538414E-13 -3.54246309951E-13 -3.72408878471E-13 -3.91502659597E-13 -4.11575397449E-13 -4.32677284029E-13 -4.54861084721E-13 -4.78182270234E-13 -5.02699155303E-13 -5.28473044508E-13 -5.55568385560E-13 -5.84052930455E-13 -6.13997904887E-13 -6.45478186343E-13 -6.78572491335E-13 -7.13363572230E-13 -7.49938424167E-13 -7.88388502592E-13 -8.28809951934E-13 -8.71303846014E-13 -9.15976440778E-13 -9.62939439988E-13 -1.01231027453E-12 -1.06421239606E-12 -1.11877558565E-12 -1.17613627837E-12 -1.23643790438E-12 -1.29983124759E-12 -1.36647482270E-12 -1.43653527154E-12 -1.51018777979E-12 -1.58761651496E-12 -1.66901508695E-12 -1.75458703215E-12 -1.84454632236E-12 -1.93911789981E-12 -2.03853823965E-12 -2.14305594120E-12 -2.25293234961E-12 -2.36844220929E-12 -2.48987435091E-12 -2.61753241363E-12 -2.75173560430E-12 -2.89281949560E-12 -3.04113686517E-12 -3.19705857769E-12 -3.36097451214E-12 -3.53329453677E-12 -3.71444953384E-12 -3.90489247710E-12 -4.10509956434E-12 -4.31557140812E-12 -4.53683428752E-12 -4.76944146400E-12 -5.01397456486E-12 -5.27104503748E-12 -5.54129567821E-12 -5.82540223962E-12 -6.12407512014E-12 -6.43806114035E-12 -6.76814541030E-12 -7.11515329263E-12 -7.47995246626E-12 -7.86345509591E-12 -8.26662011291E-12 -8.69045561281E-12 -9.13602137608E-12 -9.60443151785E-12 -1.00968572737E-11 -1.06145299281E-11 -1.11587438931E-11 -1.17308599448E-11 -1.23323086256E-11 -1.29645938216E-11 -1.36292965219E-11 -1.43280787726E-11 -1.50626878315E-11 -1.58349605378E-11 -1.66468279040E-11 -1.75003199441E-11 -1.83975707500E-11 -1.93408238263E-11 -2.03324377005E-11 -2.13748918199E-11 -2.24707927505E-11 -2.36228806947E-11 -2.48340363421E-11 -2.61072880723E-11 -2.74458195264E-11 -2.88529775670E-11 -3.03322806465E-11 -3.18874276034E-11 -3.35223069109E-11 -3.52410063986E-11 -3.70478234729E-11 -3.89472758618E-11 -4.09441129099E-11 -4.30433274526E-11 -4.52501682992E-11 -4.75701533559E-11 -5.00090834215E-11 -5.25730566901E-11 -5.52684839979E-11 -5.81021048509E-11 -6.10810042747E-11 -6.42126305276E-11 -6.75048137226E-11 -7.09657854031E-11 -7.46041991227E-11 -7.84291520796E-11 -8.24502078602E-11 -8.66774203490E-11 -9.11213588632E-11 -9.57931345769E-11 -1.00704428299E-10 -1.05867519674E-10 -1.11295317885E-10 -1.17001393922E-10 -1.23000014511E-10 -1.29306177779E-10 -1.35935650751E-10 -1.42905008765E-10 -1.50231676906E-10 -1.57933973572E-10 -1.66031156263E-10 -1.74543469727E-10 -1.83492196564E-10 -1.92899710431E-10 -2.02789531973E-10 -2.13186387618E-10 -2.24116271388E-10 -2.35606509878E-10 -2.47685830565E-10 -2.60384433618E-10 -2.73734067392E-10 -2.87768107785E-10 -3.02521641667E-10 -3.18031554587E-10 -3.34336622968E-10 -3.51477611038E-10 -3.69497372716E-10 -3.88440958732E-10 -4.08355729229E-10 -4.29291472141E-10 -4.51300527637E-10 -4.74437918939E-10 -4.98761489847E-10 -5.24332049317E-10 -5.51213523440E-10 -5.79473115216E-10 -6.09181472513E-10 -6.40412864633E-10 -6.73245367931E-10 -7.07761060941E-10 -7.44046229503E-10 -7.82191582403E-10 -8.22292478065E-10 -8.64449162851E-10 -9.08767021586E-10 -9.55356840906E-10 -1.00433508611E-09 -1.05582419220E-09 -1.10995286982E-09 -1.16685642689E-09 -1.22667710669E-09 -1.28956444332E-09 -1.35567563531E-09 -1.42517593843E-09 -1.49823907856E-09 -1.57504768579E-09 -1.65579375068E-09 -1.74067910398E-09 -1.82991592085E-09 -1.92372725096E-09 -2.02234757572E-09 -2.12602339407E-09 -2.23501383829E-09 -2.34959132131E-09 -2.47004221723E-09 -2.59666757669E-09 -2.72978387882E-09 -2.86972382181E-09 -3.01683715390E-09 -3.17149154692E-09 -3.33407351466E-09 -3.50498937816E-09 -3.68466628054E-09 -3.87355325372E-09 -4.07212233981E-09 -4.28086976995E-09 -4.50031720344E-09 -4.73101303041E-09 -4.97353374113E-09 -5.22848536547E-09 -5.49650498604E-09 -5.77826232880E-09 -6.07446143516E-09 -6.38584241961E-09 -6.71318331735E-09 -7.05730202658E-09 -7.41905835011E-09 -7.79935614154E-09 -8.19914556127E-09 -8.61942544803E-09 -9.06124581171E-09 -9.52571045383E-09 -1.00139797221E-08 -1.05272734060E-08 -1.10668737805E-08 -1.16341288052E-08 -1.22304554880E-08 -1.28573434202E-08 -1.35163584920E-08 -1.42091467997E-08 -1.49374387511E-08 -1.57030533817E-08 -1.65079028917E-08 -1.73539974148E-08 -1.82434500310E-08 -1.91784820361E-08 -2.01614284799E-08 -2.11947439882E-08 -2.22810088825E-08 -2.34229356122E-08 -2.46233755163E-08 -2.58853259295E-08 -2.72119376533E-08 -2.86065228073E-08 -3.00725630830E-08 -3.16137184186E-08 -3.32338361177E-08 -3.49369604330E-08 -3.67273426413E-08 -3.86094516310E-08 -4.05879850325E-08 -4.26678809156E-08 -4.48543300856E-08 -4.71527890059E-08 -4.95689933815E-08 -5.21089724362E-08 -5.47790639174E-08 -5.75859298681E-08 -6.05365732036E-08 -6.36383551337E-08 -6.68990134740E-08 -7.03266818926E-08 -7.39299101368E-08 -7.77176852930E-08 -8.16994541306E-08 -8.58851465847E-08 -9.02852004369E-08 -9.49105872542E-08 -9.97728396494E-08 -1.04884079932E-07 -1.10257050218E-07 -1.15905144075E-07 -1.21842439777E-07 -1.28083735257E-07 -1.34644584836E-07 -1.41541337823E-07 -1.48791179079E-07 -1.56412171651E-07 -1.64423301566E-07 -1.72844524915E-07 -1.81696817322E-07 -1.91002225934E-07 -2.00783924058E-07 -2.11066268565E-07 -2.21874860224E-07 -2.33236607090E-07 -2.45179791125E-07 -2.57734138185E-07 -2.70930891585E-07 -2.84802889370E-07 -2.99384645535E-07 -3.14712435344E-07 -3.30824384991E-07 -3.47760565800E-07 -3.65563093205E-07 -3.84276230740E-07 -4.03946499309E-07 -4.24622791976E-07 -4.46356494579E-07 -4.69201612443E-07 -4.93214903506E-07 -5.18456018178E-07 -5.44987646274E-07 -5.72875671373E-07 -6.02189332975E-07 -6.33001396845E-07 -6.65388333967E-07 -6.99430508520E-07 -7.35212375341E-07 -7.72822687342E-07 -8.12354713382E-07 -8.53906467122E-07 -8.97580947391E-07 -9.43486390662E-07 -9.91736536225E-07 -1.04245090469E-06 -1.09575509050E-06 -1.15178106909E-06 -1.21066751958E-06 -1.27256016348E-06 -1.33761212056E-06 -1.40598428244E-06 -1.47784570494E-06 -1.55337402003E-06 -1.63275586844E-06 -1.71618735383E-06 -1.80387451972E-06 -1.89603385017E-06 -1.99289279544E-06 -2.09469032390E-06 -2.20167750136E-06 -2.31411809929E-06 -2.43228923325E-06 -2.55648203307E-06 -2.68700234625E-06 -2.82417147631E-06 -2.96832695768E-06 -3.11982336901E-06 -3.27903318661E-06 -3.44634768018E-06 -3.62217785265E-06 -3.80695542644E-06 -4.00113387824E-06 -4.20518952474E-06 -4.41962266171E-06 -4.64495875899E-06 -4.88174971405E-06 -5.13057516694E-06 -5.39204387959E-06 -5.66679518240E-06 -5.95550049137E-06 -6.25886489921E-06 -6.57762884374E-06 -6.91256985727E-06 -7.26450440093E-06 -7.63428978757E-06 -8.02282619781E-06 -8.43105879313E-06 -8.85997993083E-06 -9.31063148542E-06 -9.78410728136E-06 -1.02815556423E-05 -1.08041820621E-05 -1.13532520031E-05 -1.19300938281E-05 -1.25361018704E-05 -1.31727396504E-05 -1.38415432437E-05 -1.45441248079E-05 -1.52821762751E-05 -1.60574732180E-05 -1.68718788963E-05 -1.77273484922E-05 -1.86259335424E-05 -1.95697865755E-05 -2.05611659644E-05 -2.16024410011E-05 -2.26960972053E-05 -2.38447418750E-05 -2.50511098909E-05 -2.63180697832E-05 -2.76486300735E-05 -2.90459459020E-05 -3.05133259518E-05 -3.20542396819E-05 -3.36723248823E-05 -3.53713955622E-05 -3.71554501858E-05 -3.90286802683E-05 -4.09954793457E-05 -4.30604523331E-05 -4.52284252853E-05 -4.75044555746E-05 -4.98938425003E-05 -5.24021383465E-05 -5.50351599022E-05 -5.77990004602E-05 -6.07000423110E-05 -6.37449697471E-05 -6.69407825947E-05 -7.02948102887E-05 -7.38147265079E-05 -7.75085643857E-05 -8.13847323142E-05 -8.54520303562E-05 -8.97196672824E-05 -9.41972782480E-05 -9.88949431253E-05 -1.03823205506E-04 -1.08993092385E-04 -1.14416134549E-04 -1.20104387662E-04 -1.26070454082E-04 -1.32327505404E-04 -1.38889305739E-04 -1.45770235744E-04 -1.52985317400E-04 -1.60550239538E-04 -1.68481384128E-04 -1.76795853311E-04 -1.85511497176E-04 -1.94646942282E-04 -2.04221620895E-04 -2.14255800931E-04 -2.24770616595E-04 -2.35788099667E-04 -2.47331211420E-04 -2.59423875128E-04 -2.72091009113E-04 -2.85358560286E-04 -2.99253538118E-04 -3.13804048974E-04 -3.29039330724E-04 -3.44989787553E-04 -3.61687024863E-04 -3.79163884157E-04 -3.97454477774E-04 -4.16594223347E-04 -4.36619877812E-04 -4.57569570820E-04 -4.79482837334E-04 -5.02400649235E-04 -5.26365445679E-04 -5.51421161978E-04 -5.77613256722E-04 -6.04988736845E-04 -6.33596180314E-04 -6.63485756092E-04 -6.94709240991E-04 -7.27320033002E-04 -7.61373160669E-04 -7.96925288017E-04 -8.34034714526E-04 -8.72761369596E-04 -9.13166800919E-04 -9.55314156115E-04 -9.99268156971E-04 -1.04509506554E-03 -1.09286264139E-03 -1.14264008910E-03 -1.19449799526E-03 -1.24850825396E-03 -1.30474397993E-03 -1.36327940816E-03 -1.42418977919E-03 -1.48755120872E-03 -1.55344054054E-03 -1.62193518160E-03 -1.69311291793E-03 -1.76705171011E-03 -1.84382946713E-03 -1.92352379709E-03 -2.00621173367E-03 -2.09196943664E-03 -2.18087186537E-03 -2.27299242375E-03 -2.36840257524E-03 -2.46717142663E-03 -2.56936527941E-03 -2.67504714724E-03 -2.78427623861E-03 -2.89710740346E-03 -3.01359054300E-03 -3.13376998173E-03 -3.25768380129E-03 -3.38536313551E-03 -3.51683142677E-03 -3.65210364357E-03 -3.79118545990E-03 -3.93407239716E-03 -4.08074892995E-03 -4.23118755728E-03 -4.38534784152E-03 -4.54317541775E-03 -4.70460097695E-03 -4.86953922703E-03 -5.03788783642E-03 -5.20952636595E-03 -5.38431519513E-03 -5.56209445036E-03 -5.74268294323E-03 -5.92587712802E-03 -6.11145008887E-03 -6.29915056774E-03 -6.48870204576E-03 -6.67980189146E-03 -6.87212059051E-03 -7.06530107279E-03 -7.25895815368E-03 -7.45267810731E-03 -7.64601839081E-03 -7.83850753900E-03 -8.02964525015E-03 -8.21890268366E-03 -8.40572299096E-03 -8.58952210125E-03 -8.76968978326E-03 -8.94559100391E-03 -9.11656760405E-03 -9.28194030989E-03 -9.44101109752E-03 -9.59306592521E-03 -9.73737784598E-03 -9.87321050937E-03 -9.99982205735E-03 -1.01164694151E-02 -1.02224129719E-02 -1.03169216414E-02 -1.03992782848E-02 -1.04687854718E-02 -1.05247715481E-02 -1.05665969682E-02 -1.05936608451E-02 -1.06054076577E-02 -1.06013340483E-02 -1.05809956328E-02 -1.05440137362E-02 -1.04900819584E-02 -1.04189724646E-02 -1.03305418892E-02 -1.02247367341E-02 -1.01015981384E-02 -9.96126589235E-03 -9.80398157008E-03 -9.63009065401E-03 -9.44004353294E-03 -9.23439526145E-03 -9.01380398229E-03 -8.77902792951E-03 -8.53092095147E-03 -8.27042651870E-03 -7.99857021235E-03 -7.71645072463E-03 -7.42522944335E-03 -7.12611873754E-03 -6.82036911100E-03 -6.50925544374E-03 -6.19406259777E-03 -5.87607072237E-03 -5.55654065378E-03 -5.23669986414E-03 -4.91772947238E-03 -4.60075288486E-03 -4.28682668265E-03 -3.97693441504E-03 -3.67198399040E-03 -3.37280937585E-03 -3.08017732111E-03 -2.79479980797E-03 -2.51735289048E-03 -2.24850252903E-03 -1.98893793031E-03 -1.73941277936E-03 -1.50079458675E-03 -1.27412216767E-03 -1.06067101626E-03 -8.62026034383E-04 -6.80160714622E-04 -5.17521461462E-04 -3.77115260524E-04 -2.61688605713E-04 -1.70684401443E-04 -1.02295661021E-04 -5.42358189917E-05 -2.36905076469E-05 -7.26679394997E-06 -9.40206400762E-07 5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 6 1 i j (l(j)) -1.76573173350E-02 Q_int -3.31763372987E-20 -3.48773244851E-20 -3.66655231495E-20 -3.85454047198E-20 -4.05216698793E-20 -4.25992603201E-20 -4.47833711006E-20 -4.70794636354E-20 -4.94932793517E-20 -5.20308540462E-20 -5.46985329773E-20 -5.75029867318E-20 -6.04512279050E-20 -6.35506286354E-20 -6.68089390393E-20 -7.02343065898E-20 -7.38352964899E-20 -7.76209130901E-20 -8.16006224037E-20 -8.57843757768E-20 -9.01826347722E-20 -9.48063973283E-20 -9.96672252597E-20 -1.04777273168E-19 -1.10149318835E-19 -1.15796795173E-19 -1.21733823815E-19 -1.27975250423E-19 -1.34536681817E-19 -1.41434524991E-19 -1.48686028147E-19 -1.56309323820E-19 -1.64323474220E-19 -1.72748518896E-19 -1.81605524850E-19 -1.90916639209E-19 -2.00705144609E-19 -2.10995517412E-19 -2.21813488910E-19 -2.33186109666E-19 -2.45141817157E-19 -2.57710506877E-19 -2.70923607099E-19 -2.84814157455E-19 -2.99416891555E-19 -3.14768323841E-19 -3.30906840891E-19 -3.47872797402E-19 -3.65708617102E-19 -3.84458898832E-19 -4.04170528062E-19 -4.24892794132E-19 -4.46677513500E-19 -4.69579159313E-19 -4.93654997613E-19 -5.18965230536E-19 -5.45573146847E-19 -5.73545280198E-19 -6.02951575489E-19 -6.33865563778E-19 -6.66364546135E-19 -7.00529786945E-19 -7.36446717104E-19 -7.74205147647E-19 -8.13899494316E-19 -8.55629013653E-19 -8.99498051191E-19 -9.45616302375E-19 -9.94099086853E-19 -1.04506763684E-18 -1.09864940026E-18 -1.15497835942E-18 -1.21419536607E-18 -1.27644849356E-18 -1.34189340714E-18 -1.41069375319E-18 -1.48302156839E-18 -1.55905770996E-18 -1.63899230786E-18 -1.72302524022E-18 -1.81136663313E-18 -1.90423738610E-18 -2.00186972437E-18 -2.10450777964E-18 -2.21240820052E-18 -2.32584079425E-18 -2.44508920140E-18 -2.57045160509E-18 -2.70224147664E-18 -2.84078835935E-18 -2.98643869261E-18 -3.13955667810E-18 -3.30052519054E-18 -3.46974673505E-18 -3.64764445363E-18 -3.83466318324E-18 -4.03127056809E-18 -4.23795822906E-18 -4.45524299295E-18 -4.68366818484E-18 -4.92380498668E-18 -5.17625386555E-18 -5.44164607513E-18 -5.72064523417E-18 -6.01394898588E-18 -6.32229074240E-18 -6.64644151872E-18 -6.98721186059E-18 -7.34545387137E-18 -7.72206334266E-18 -8.11798199429E-18 -8.53419982909E-18 -8.97175760842E-18 -9.43174945462E-18 -9.91532558689E-18 -1.04236951974E-17 -1.09581294750E-17 -1.15199647836E-17 -1.21106060042E-17 -1.27315300474E-17 -1.33842895467E-17 -1.40705167409E-17 -1.47919275553E-17 -1.55503258926E-17 -1.63476081438E-17 -1.71857679295E-17 -1.80669010859E-17 -1.89932109047E-17 -1.99670136429E-17 -2.09907443144E-17 -2.20669627791E-17 -2.31983601437E-17 -2.43877654907E-17 -2.56381529531E-17 -2.69526491505E-17 -2.83345410081E-17 -2.97872839752E-17 -3.13145106657E-17 -3.29200399417E-17 -3.46078864626E-17 -3.63822707236E-17 -3.82476296094E-17 -4.02086274886E-17 -4.22701678771E-17 -4.44374056995E-17 -4.67157601790E-17 -4.91109283881E-17 -5.16288994948E-17 -5.42759697379E-17 -5.70587581716E-17 -5.99842232159E-17 -6.30596800571E-17 -6.62928189385E-17 -6.96917243911E-17 -7.32648954484E-17 -7.70212668985E-17 -8.09702316262E-17 -8.51216640996E-17 -8.94859450615E-17 -9.40739874868E-17 -9.88972638706E-17 -1.03967834915E-16 -1.09298379689E-16 -1.14902227329E-16 -1.20793390371E-16 -1.26986599792E-16 -1.33497341840E-16 -1.40341896758E-16 -1.47537379499E-16 -1.55101782516E-16 -1.63054020754E-16 -1.71413978950E-16 -1.80202561351E-16 -1.89441743989E-16 -1.99154629631E-16 -2.09365505547E-16 -2.20099904244E-16 -2.31384667307E-16 -2.43248012518E-16 -2.55719604415E-16 -2.68830628472E-16 -2.82613869074E-16 -2.97103791498E-16 -3.12336628092E-16 -3.28350468877E-16 -3.45185356792E-16 -3.62883387819E-16 -3.81488816249E-16 -4.01048165337E-16 -4.21610343636E-16 -4.43226767296E-16 -4.65951488625E-16 -4.89841331257E-16 -5.14956032231E-16 -5.41358391371E-16 -5.69114428317E-16 -5.98293547605E-16 -6.28968712220E-16 -6.61216626038E-16 -6.95117925625E-16 -7.30757381873E-16 -7.68224111967E-16 -8.07611802232E-16 -8.49018942386E-16 -8.92549071828E-16 -9.38311038531E-16 -9.86419271223E-16 -1.03699406552E-15 -1.09016188471E-15 -1.14605567602E-15 -1.20481520299E-15 -1.26658739502E-15 -1.33152671472E-15 -1.39979554418E-15 -1.47156459097E-15 -1.54701331505E-15 -1.62633037748E-15 -1.70971411217E-15 -1.79737302183E-15 -1.88952629931E-15 -1.98640437575E-15 -2.08824949671E-15 -2.19531632797E-15 -2.30787259228E-15 -2.42619973882E-15 -2.55059364701E-15 -2.68136536627E-15 -2.81884189392E-15 -2.96336699273E-15 -3.11530205060E-15 -3.27502698416E-15 -3.44294118877E-15 -3.61946453722E-15 -3.80503842964E-15 -4.00012689722E-15 -4.20521776252E-15 -4.42082385929E-15 -4.64748431481E-15 -4.88576589800E-15 -5.13626443664E-15 -5.39960630722E-15 -5.67645000124E-15 -5.96748777175E-15 -6.27344736438E-15 -6.59509383703E-15 -6.93323147294E-15 -7.28870579182E-15 -7.66240566408E-15 -8.05526553346E-15 -8.46826775361E-15 -8.90244504453E-15 -9.35888307486E-15 -9.83872317661E-15 -1.03431651991E-14 -1.08734705092E-14 -1.14309651455E-14 -1.20170431338E-14 -1.26331699732E-14 -1.32808863004E-14 -1.39618117424E-14 -1.46776489659E-14 -1.54301879353E-14 -1.62213103882E-14 -1.70529945412E-14 -1.79273200357E-14 -1.88464731389E-14 -1.98127522099E-14 -2.08285734473E-14 -2.18964769306E-14 -2.30191329720E-14 -2.41993487931E-14 -2.54400755450E-14 -2.67444156872E-14 -2.81156307456E-14 -2.95571494680E-14 -3.10725763974E-14 -3.26657008857E-14 -3.43405065687E-14 -3.61011813274E-14 -3.79521277597E-14 -3.98979741892E-14 -4.19435862385E-14 -4.40940789957E-14 -4.63548298046E-14 -4.87314917109E-14 -5.12300075979E-14 -5.38566250463E-14 -5.66179119570E-14 -5.95207729736E-14 -6.25724667478E-14 -6.57806240897E-14 -6.91532670489E-14 -7.26988289733E-14 -7.64261755972E-14 -8.03446272101E-14 -8.44639819617E-14 -8.87945403629E-14 -9.33471310421E-14 -9.81331378219E-14 -1.03164528185E-13 -1.08453883199E-13 -1.14014428975E-13 -1.19860069739E-13 -1.26005422602E-13 -1.32465854106E-13 -1.39257518654E-13 -1.46397398899E-13 -1.53903348209E-13 -1.61794135316E-13 -1.70089491238E-13 -1.78810158626E-13 -1.87977943622E-13 -1.97615770392E-13 -2.07747738446E-13 -2.18399182898E-13 -2.29596737816E-13 -2.41368402823E-13 -2.53743613108E-13 -2.66753313030E-13 -2.80430033493E-13 -2.94807973291E-13 -3.09923084620E-13 -3.25813162980E-13 -3.42517941679E-13 -3.60079191186E-13 -3.78540823583E-13 -3.97949002359E-13 -4.18352257850E-13 -4.39801608582E-13 -4.62350688846E-13 -4.86055882810E-13 -5.10976465506E-13 -5.37174751050E-13 -5.64716248451E-13 -5.93669825425E-13 -6.24107880590E-13 -6.56106524501E-13 -6.89745769967E-13 -7.25109732115E-13 -7.62286838726E-13 -8.01370051340E-13 -8.42457097713E-13 -8.85650716178E-13 -9.31058912542E-13 -9.78795230153E-13 -1.02897903381E-12 -1.08173580825E-12 -1.13719747187E-12 -1.19550270667E-12 -1.25679730494E-12 -1.32123453385E-12 -1.38897551870E-12 -1.46018964578E-12 -1.53505498596E-12 -1.61375873988E-12 -1.69649770611E-12 -1.78347877322E-12 -1.87491943707E-12 -1.97104834467E-12 -2.07210586593E-12 -2.17834469463E-12 -2.29003048035E-12 -2.40744249266E-12 -2.53087431943E-12 -2.66063460098E-12 -2.79704780174E-12 -2.94045502164E-12 -3.09121484897E-12 -3.24970425701E-12 -3.41631954664E-12 -3.59147733730E-12 -3.77561560867E-12 -3.96919479586E-12 -4.17269894066E-12 -4.38663690189E-12 -4.61154362777E-12 -4.84798149349E-12 -5.09654170744E-12 -5.35784578943E-12 -5.63254712480E-12 -5.92133259814E-12 -6.22492431082E-12 -6.54408138651E-12 -6.87960186932E-12 -7.23232471926E-12 -7.60313190997E-12 -7.99295063402E-12 -8.40275562127E-12 -8.83357157610E-12 -9.28647573957E-12 -9.76260058294E-12 -1.02631366394E-11 -1.07893354806E-11 -1.13425128464E-11 -1.19240519346E-11 -1.25354068594E-11 -1.31781062872E-11 -1.38537572591E-11 -1.45640492088E-11 -1.53107581870E-11 -1.60957513020E-11 -1.69209913884E-11 -1.77885419146E-11 -1.87005721425E-11 -1.96593625512E-11 -2.06673105388E-11 -2.17269364174E-11 -2.28408897139E-11 -2.40119557952E-11 -2.52430628323E-11 -2.65372891219E-11 -2.78978707829E-11 -2.93282098478E-11 -3.08318827686E-11 -3.24126493595E-11 -3.40744621970E-11 -3.58214765028E-11 -3.76580605330E-11 -3.95888064997E-11 -4.16185420532E-11 -4.37523423520E-11 -4.59955427522E-11 -4.83537521472E-11 -5.08328669914E-11 -5.34390860424E-11 -5.61789258598E-11 -5.90592370975E-11 -6.20872216325E-11 -6.52704505702E-11 -6.86168831746E-11 -7.21348867672E-11 -7.58332576474E-11 -7.97212430845E-11 -8.38085644372E-11 -8.81054414591E-11 -9.26226178492E-11 -9.73713881123E-11 -1.02363625798E-10 -1.07611813183E-10 -1.13129072483E-10 -1.18929198655E-10 -1.25026693888E-10 -1.31436803859E-10 -1.38175555848E-10 -1.45259798808E-10 -1.52707245487E-10 -1.60536516711E-10 -1.68767187937E-10 -1.77419838190E-10 -1.86516101510E-10 -1.96078721041E-10 -2.06131605883E-10 -2.16699890864E-10 -2.27809999380E-10 -2.39489709445E-10 -2.51768223140E-10 -2.64676239609E-10 -2.78246031806E-10 -2.92511527172E-10 -3.07508392450E-10 -3.23274122842E-10 -3.39848135743E-10 -3.57271869274E-10 -3.75588885868E-10 -3.94844981166E-10 -4.15088298494E-10 -4.36369449206E-10 -4.58741639196E-10 -4.82260801897E-10 -5.06985738094E-10 -5.32978262905E-10 -5.60303360292E-10 -5.89029345494E-10 -6.19228035785E-10 -6.50974929985E-10 -6.84349397166E-10 -7.19434875038E-10 -7.56319078493E-10 -7.95094218845E-10 -8.35857234299E-10 -8.78710032242E-10 -9.23759743936E-10 -9.71118992280E-10 -1.02090617328E-09 -1.07324575195E-09 -1.12826857339E-09 -1.18611218976E-09 -1.24692120409E-09 -1.31084763162E-09 -1.37805127971E-09 -1.44870014720E-09 -1.52297084427E-09 -1.60104903375E-09 -1.68312989507E-09 -1.76941861202E-09 -1.86013088548E-09 -1.95549347237E-09 -2.05574475229E-09 -2.16113532316E-09 -2.27192862739E-09 -2.38840161009E-09 -2.51084541107E-09 -2.63956609227E-09 -2.77488540239E-09 -2.91714158081E-09 -3.06669020262E-09 -3.22390506694E-09 -3.38917913080E-09 -3.56292549081E-09 -3.74557841510E-09 -3.93759442821E-09 -4.13945345148E-09 -4.35166000186E-09 -4.57474445214E-09 -4.80926435575E-09 -5.05580583936E-09 -5.31498506686E-09 -5.58744977830E-09 -5.87388090766E-09 -6.17499428340E-09 -6.49154241626E-09 -6.82431637840E-09 -7.17414777898E-09 -7.54191084075E-09 -7.92852458305E-09 -8.33495511661E-09 -8.76221805572E-09 -9.21138105413E-09 -9.68356647053E-09 -1.01799541707E-08 -1.07017844731E-08 -1.12503612449E-08 -1.18270551573E-08 -1.24333071065E-08 -1.30706318106E-08 -1.37406215901E-08 -1.44449503421E-08 -1.51853777181E-08 -1.59637535151E-08 -1.67820222918E-08 -1.76422282211E-08 -1.85465201906E-08 -1.94971571645E-08 -2.04965138191E-08 -2.15470864679E-08 -2.26514992884E-08 -2.38125108683E-08 -2.50330210867E-08 -2.63160783467E-08 -2.76648871783E-08 -2.90828162303E-08 -3.05734066705E-08 -3.21403810157E-08 -3.37876524136E-08 -3.55193343986E-08 -3.73397511473E-08 -3.92534482571E-08 -4.12652040774E-08 -4.33800416184E-08 -4.56032410701E-08 -4.79403529600E-08 -5.03972119841E-08 -5.29799515440E-08 -5.56950190273E-08 -5.85491918688E-08 -6.15495944318E-08 -6.47037157521E-08 -6.80194281883E-08 -7.15050070249E-08 -7.51691510762E-08 -7.90210043421E-08 -8.30701787709E-08 -8.73267781823E-08 -9.18014234136E-08 -9.65052787481E-08 -1.01450079693E-07 -1.06648162174E-07 -1.12112493223E-07 -1.17856703223E-07 -1.23895119811E-07 -1.30242803495E-07 -1.36915585103E-07 -1.43930105127E-07 -1.51303855085E-07 -1.59055220982E-07 -1.67203528995E-07 -1.75769093479E-07 -1.84773267421E-07 -1.94238495469E-07 -2.04188369656E-07 -2.14647687966E-07 -2.25642515880E-07 -2.37200251056E-07 -2.49349691305E-07 -2.62121106019E-07 -2.75546311241E-07 -2.89658748550E-07 -3.04493567959E-07 -3.20087715030E-07 -3.36480022416E-07 -3.53711306060E-07 -3.71824466277E-07 -3.90864593976E-07 -4.10879082278E-07 -4.31917743801E-07 -4.54032933900E-07 -4.77279680161E-07 -5.01715818470E-07 -5.27402135981E-07 -5.54402521339E-07 -5.82784122517E-07 -6.12617512654E-07 -6.43976864296E-07 -6.76940132469E-07 -7.11589247015E-07 -7.48010314673E-07 -7.86293831380E-07 -8.26534905321E-07 -8.68833491251E-07 -9.13294636673E-07 -9.60028740446E-07 -1.00915182447E-06 -1.06078581908E-06 -1.11505886286E-06 -1.17210561756E-06 -1.23206759894E-06 -1.29509352421E-06 -1.36133967713E-06 -1.43097029132E-06 -1.50415795297E-06 -1.58108402385E-06 -1.66193908547E-06 -1.74692340572E-06 -1.83624742882E-06 -1.93013228996E-06 -2.02881035574E-06 -2.13252579174E-06 -2.24153515850E-06 -2.35610803742E-06 -2.47652768792E-06 -2.60309173761E-06 -2.73611290682E-06 -2.87591976945E-06 -3.02285755176E-06 -3.17728897109E-06 -3.33959511628E-06 -3.51017637210E-06 -3.68945338963E-06 -3.87786810490E-06 -4.07588480825E-06 -4.28399126673E-06 -4.50269990219E-06 -4.73254902790E-06 -4.97410414626E-06 -5.22795931084E-06 -5.49473855575E-06 -5.77509739556E-06 -6.06972439930E-06 -6.37934284194E-06 -6.70471243727E-06 -7.04663115596E-06 -7.40593713290E-06 -7.78351066815E-06 -8.18027632595E-06 -8.59720513639E-06 -9.03531690475E-06 -9.49568263352E-06 -9.97942706245E-06 -1.04877313323E-05 -1.10218357778E-05 -1.15830428567E-05 -1.21727202200E-05 -1.27923039308E-05 -1.34433018395E-05 -1.41272971201E-05 -1.48459519783E-05 -1.56010115362E-05 -1.63943079043E-05 -1.72277644475E-05 -1.81034002556E-05 -1.90233348260E-05 -1.99897929691E-05 -2.10051099467E-05 -2.20717368535E-05 -2.31922462518E-05 -2.43693380728E-05 -2.56058457940E-05 -2.69047429058E-05 -2.82691496814E-05 -2.97023402601E-05 -3.12077500609E-05 -3.27889835388E-05 -3.44498222984E-05 -3.61942335810E-05 -3.80263791412E-05 -3.99506245270E-05 -4.19715487841E-05 -4.40939545979E-05 -4.63228788949E-05 -4.86636039188E-05 -5.11216688036E-05 -5.37028816609E-05 -5.64133322034E-05 -5.92594049256E-05 -6.22477928616E-05 -6.53855119446E-05 -6.86799159887E-05 -7.21387123170E-05 -7.57699780604E-05 -7.95821771502E-05 -8.35841780299E-05 -8.77852721113E-05 -9.21951930005E-05 -9.68241365197E-05 -1.01682781551E-04 -1.06782311727E-04 -1.12134438001E-04 -1.17751422115E-04 -1.23646100996E-04 -1.29831912112E-04 -1.36322919805E-04 -1.43133842635E-04 -1.50280081755E-04 -1.57777750351E-04 -1.65643704154E-04 -1.73895573069E-04 -1.82551793924E-04 -1.91631644376E-04 -2.01155277979E-04 -2.11143760436E-04 -2.21619107058E-04 -2.32604321429E-04 -2.44123435290E-04 -2.56201549662E-04 -2.68864877182E-04 -2.82140785679E-04 -2.96057842966E-04 -3.10645862838E-04 -3.25935952264E-04 -3.41960559738E-04 -3.58753524776E-04 -3.76350128489E-04 -3.94787145217E-04 -4.14102895141E-04 -4.34337297813E-04 -4.55531926528E-04 -4.77730063431E-04 -5.00976755269E-04 -5.25318869651E-04 -5.50805151690E-04 -5.77486280853E-04 -6.05414927868E-04 -6.34645811468E-04 -6.65235754763E-04 -6.97243741007E-04 -7.30730968464E-04 -7.65760904106E-04 -8.02399335792E-04 -8.40714422582E-04 -8.80776742781E-04 -9.22659339299E-04 -9.66437761828E-04 -1.01219010536E-03 -1.05999704444E-03 -1.10994186264E-03 -1.16211047645E-03 -1.21659145306E-03 -1.27347602112E-03 -1.33285807374E-03 -1.39483416286E-03 -1.45950348396E-03 -1.52696785018E-03 -1.59733165476E-03 -1.67070182059E-03 -1.74718773574E-03 -1.82690117357E-03 -1.90995619612E-03 -1.99646903924E-03 -2.08655797804E-03 -2.18034317092E-03 -2.27794648051E-03 -2.37949126987E-03 -2.48510217186E-03 -2.59490482995E-03 -2.70902560836E-03 -2.82759126956E-03 -2.95072861680E-03 -3.07856409973E-03 -3.21122338073E-03 -3.34883085969E-03 -3.49150915506E-03 -3.63937853873E-03 -3.79255632265E-03 -3.95115619476E-03 -4.11528750223E-03 -4.28505447980E-03 -4.46055542123E-03 -4.64188179214E-03 -4.82911728249E-03 -5.02233679727E-03 -5.22160538440E-03 -5.42697709881E-03 -5.63849380241E-03 -5.85618389990E-03 -6.08006101092E-03 -6.31012257957E-03 -6.54634842305E-03 -6.78869922190E-03 -7.03711495496E-03 -7.29151328335E-03 -7.55178788842E-03 -7.81780676996E-03 -8.08941051210E-03 -8.36641052531E-03 -8.64858727470E-03 -8.93568850602E-03 -9.22742748225E-03 -9.52348124546E-03 -9.82348892032E-03 -1.01270500773E-02 -1.04337231753E-02 -1.07430241062E-02 -1.10544248637E-02 -1.13673523636E-02 -1.16811874419E-02 -1.19952640594E-02 -1.23088687457E-02 -1.26212403129E-02 -1.29315698733E-02 -1.32390011974E-02 -1.35426314452E-02 -1.38415123098E-02 -1.41346516072E-02 -1.44210153495E-02 -1.46995303351E-02 -1.49690872895E-02 -1.52285445872E-02 -1.54767325820E-02 -1.57124585691E-02 -1.59345123966E-02 -1.61416727406E-02 -1.63327140462E-02 -1.65064141344E-02 -1.66615624607E-02 -1.67969690025E-02 -1.69114737429E-02 -1.70039567010E-02 -1.70733484502E-02 -1.71186410487E-02 -1.71388992896E-02 -1.71332721668E-02 -1.71010044322E-02 -1.70414481044E-02 -1.69540737759E-02 -1.68384815465E-02 -1.66944114003E-02 -1.65217528283E-02 -1.63205534910E-02 -1.60910267068E-02 -1.58335575486E-02 -1.55487073311E-02 -1.52372162784E-02 -1.49000041684E-02 -1.45381687716E-02 -1.41529819225E-02 -1.37458830934E-02 -1.33184703797E-02 -1.28724888500E-02 -1.24098162697E-02 -1.19324462700E-02 -1.14424691011E-02 -1.09420501892E-02 -1.04334067950E-02 -9.91878316496E-03 -9.40042465422E-03 -8.88055139632E-03 -8.36133218675E-03 -7.84485933892E-03 -7.33312535584E-03 -6.82800233674E-03 -6.33122510198E-03 -5.84437906724E-03 -5.36889392518E-03 -4.90604419575E-03 -4.45695767958E-03 -4.02263278853E-03 -3.60396562729E-03 -3.20178755626E-03 -2.81691377227E-03 -2.45020319557E-03 -2.10262964385E-03 -1.77536390212E-03 -1.46986585736E-03 -1.18798535593E-03 -9.32069859036E-04 -7.05076318100E-04 -5.10683972207E-04 -3.52158933731E-04 -2.28209243887E-04 -1.35859013041E-04 -7.15339184443E-05 -3.10236970878E-05 -9.44603712721E-06 -1.21283985774E-06 5.55111512313E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 7 2 i j (l(j)) 0.00000000000E+00 Q_int 9.86889122704E-24 1.05053800268E-23 1.11829188272E-23 1.19041551260E-23 1.26719071696E-23 1.34891749658E-23 1.43591520064E-23 1.52852377454E-23 1.62710508831E-23 1.73204435056E-23 1.84375161375E-23 1.96266337644E-23 2.08924428892E-23 2.22398896885E-23 2.36742393401E-23 2.52010965963E-23 2.68264276851E-23 2.85565836230E-23 3.03983250320E-23 3.23588485565E-23 3.44458149849E-23 3.66673791838E-23 3.90322219636E-23 4.15495839989E-23 4.42293019365E-23 4.70818468325E-23 5.01183650681E-23 5.33507219041E-23 5.67915478453E-23 6.04542879936E-23 6.43532545859E-23 6.85036829188E-23 7.29217908812E-23 7.76248423260E-23 8.26312145288E-23 8.79604699978E-23 9.36334329146E-23 9.96722705050E-23 1.06100579658E-22 1.12943479132E-22 1.20227707704E-22 1.27981728656E-22 1.36235840994E-22 1.45022297841E-22 1.54375432467E-22 1.64331792450E-22 1.74930282483E-22 1.86212316395E-22 1.98221978979E-22 2.11006198253E-22 2.24614928831E-22 2.39101347124E-22 2.54522059126E-22 2.70937321604E-22 2.88411277552E-22 3.07012206834E-22 3.26812792984E-22 3.47890407223E-22 3.70327410786E-22 3.94211476753E-22 4.19635932630E-22 4.46700125031E-22 4.75509807875E-22 5.06177555624E-22 5.38823203169E-22 5.73574314086E-22 6.10566679096E-22 6.49944846669E-22 6.91862687850E-22 7.36483997515E-22 7.83983134399E-22 8.34545702413E-22 8.88369275888E-22 9.45664171607E-22 1.00665427062E-21 1.07157789306E-21 1.14068872940E-21 1.21425683173E-21 1.29256966901E-21 1.37593325034E-21 1.46467332074E-21 1.55913663396E-21 1.65969230744E-21 1.76673326466E-21 1.88067777049E-21 2.00197106556E-21 2.13108710606E-21 2.26853041570E-21 2.41483805722E-21 2.57058173091E-21 2.73637000853E-21 2.91285071140E-21 3.10071344169E-21 3.30069227709E-21 3.51356863925E-21 3.74017434718E-21 3.98139486760E-21 4.23817277494E-21 4.51151143443E-21 4.80247892283E-21 5.11221220191E-21 5.44192156119E-21 5.79289534714E-21 6.16650499746E-21 6.56421039996E-21 6.98756559714E-21 7.43822485862E-21 7.91794914525E-21 8.42861299008E-21 8.97221182319E-21 9.55086976880E-21 1.01668479454E-20 1.08225533011E-20 1.15205480187E-20 1.22635595279E-20 1.30544911622E-20 1.38964335041E-20 1.47926764615E-20 1.57467221234E-20 1.67622984438E-20 1.78433738092E-20 1.89941725451E-20 2.02191914225E-20 2.15232172293E-20 2.29113454745E-20 2.43890002994E-20 2.59619556723E-20 2.76363579504E-20 2.94187498969E-20 3.13160962471E-20 3.33358109230E-20 3.54857860034E-20 3.77744225625E-20 4.02106634975E-20 4.28040284725E-20 4.55646511174E-20 4.85033186251E-20 5.16315139026E-20 5.49614604407E-20 5.85061700777E-20 6.22794938433E-20 6.62961760820E-20 7.05719120666E-20 7.51234093282E-20 7.99684529409E-20 8.51259750177E-20 9.06161286878E-20 9.64603668455E-20 1.02681525978E-19 1.09303915400E-19 1.16353412241E-19 1.23857562562E-19 1.31845688994E-19 1.40349005314E-19 1.49400738414E-19 1.59036258137E-19 1.69293215486E-19 1.80211689742E-19 1.91834345081E-19 2.04206597280E-19 2.17376791182E-19 2.31396389604E-19 2.46320174432E-19 2.62206460676E-19 2.79117324344E-19 2.97118845002E-19 3.16281363980E-19 3.36679759237E-19 3.58393737941E-19 3.81508147936E-19 4.06113309277E-19 4.32305367164E-19 4.60186667628E-19 4.89866157455E-19 5.21459809892E-19 5.55091077817E-19 5.90891376137E-19 6.29000595290E-19 6.69567647873E-19 7.12751050519E-19 7.58719543306E-19 8.07652749112E-19 8.59741875493E-19 9.15190461835E-19 9.74215174685E-19 1.03704665438E-18 1.10393041628E-18 1.17512781013E-18 1.25091704128E-18 1.33159425778E-18 1.41747470759E-18 1.50889397042E-18 1.60620926901E-18 1.70980086498E-18 1.82007354472E-18 1.93745820110E-18 2.06241351719E-18 2.19542775857E-18 2.33702068125E-18 2.48774556262E-18 2.64819136339E-18 2.81898502897E-18 3.00079393928E-18 3.19432851653E-18 3.40034500125E-18 3.61964840725E-18 3.85309566731E-18 4.10159898160E-18 4.36612938213E-18 4.64772052713E-18 4.94747274001E-18 5.26655730896E-18 5.60622106377E-18 5.96779124781E-18 6.35268070432E-18 6.76239339707E-18 7.19853028715E-18 7.66279558879E-18 8.15700342854E-18 8.68308493409E-18 9.24309578013E-18 9.83922422099E-18 1.04737996412E-17 1.11493016578E-17 1.18683698093E-17 1.26338138697E-17 1.34486248280E-17 1.43159865753E-17 1.52392883461E-17 1.62221379615E-17 1.72683759274E-17 1.83820904408E-17 1.95676333646E-17 2.08296372330E-17 2.21730333528E-17 2.36030710727E-17 2.51253382952E-17 2.67457833117E-17 2.84707380453E-17 3.03069427929E-17 3.22615725632E-17 3.43422651132E-17 3.65571507928E-17 3.89148843142E-17 4.14246785707E-17 4.40963406359E-17 4.69403100854E-17 4.99676997892E-17 5.31903393359E-17 5.66208212568E-17 6.02725502316E-17 6.41597954674E-17 6.82977464559E-17 7.27025723265E-17 7.73914850279E-17 8.23828065837E-17 8.76960406864E-17 9.33519489081E-17 9.93726318271E-17 1.05781615386E-16 1.12603942821E-16 1.19866272516E-16 1.27596982174E-16 1.35826279701E-16 1.44586321247E-16 1.53911336853E-16 1.63837764208E-16 1.74404391030E-16 1.85652506628E-16 1.97626063242E-16 2.10371847787E-16 2.23939664677E-16 2.38382530428E-16 2.53756880831E-16 2.70122791469E-16 2.87544212468E-16 3.06089218380E-16 3.25830274186E-16 3.46844518456E-16 3.69214064769E-16 3.93026322573E-16 4.18374338736E-16 4.45357161135E-16 4.74080225679E-16 5.04655768311E-16 5.37203263562E-16 5.71849891410E-16 6.08731034228E-16 6.47990805801E-16 6.89782614449E-16 7.34269762474E-16 7.81626084265E-16 8.32036625562E-16 8.85698366522E-16 9.42820991423E-16 1.00362770801E-15 1.06835611968E-15 1.13725915394E-15 1.21060605067E-15 1.28868341427E-15 1.37179633348E-15 1.46026957359E-15 1.55444884542E-15 1.65470215622E-15 1.76142124764E-15 1.87502312648E-15 1.99595169416E-15 2.12467948123E-15 2.26170949386E-15 2.40757717926E-15 2.56285251803E-15 2.72814225129E-15 2.90409225161E-15 3.09139004669E-15 3.29076750593E-15 3.50300370020E-15 3.72892794608E-15 3.96942304643E-15 4.22542873993E-15 4.49794537314E-15 4.78803780936E-15 5.09683958961E-15 5.42555736193E-15 5.77547559638E-15 6.14796160413E-15 6.54447088024E-15 6.96655279102E-15 7.41585662819E-15 7.89413805351E-15 8.40326595904E-15 8.94522976988E-15 9.52214721782E-15 1.01362726164E-14 1.07900056698E-14 1.14859008494E-14 1.22266773756E-14 1.30152298434E-14 1.38546395326E-14 1.47481864483E-14 1.56993621371E-14 1.67118833310E-14 1.77897064699E-14 1.89370431619E-14 2.01583766398E-14 2.14584792795E-14 2.28424312482E-14 2.43156403551E-14 2.58838631822E-14 2.75532275786E-14 2.93302566046E-14 3.12218940209E-14 3.32355314214E-14 3.53790371154E-14 3.76607868737E-14 4.00896966561E-14 4.26752574514E-14 4.54275723626E-14 4.83573960855E-14 5.14761769318E-14 5.47961015643E-14 5.83301426153E-14 6.20921093777E-14 6.60967017647E-14 7.03595677493E-14 7.48973645088E-14 7.97278235127E-14 8.48698198083E-14 9.03434457744E-14 9.61700896325E-14 1.02372519021E-13 1.08974969958E-13 1.16003241548E-13 1.23484796784E-13 1.31448869865E-13 1.39926580427E-13 1.48951055139E-13 1.58557557150E-13 1.68783623875E-13 1.79669213673E-13 1.91256861986E-13 2.03591847540E-13 2.16722369276E-13 2.30699734684E-13 2.45578560285E-13 2.61416985043E-13 2.78276897546E-13 2.96224177828E-13 3.15328954798E-13 3.35665880262E-13 3.57314420628E-13 3.80359167414E-13 4.04890167788E-13 4.31003276424E-13 4.58800530051E-13 4.88390546155E-13 5.19888947403E-13 5.53418813427E-13 5.89111161756E-13 6.27105459761E-13 6.67550169616E-13 7.10603328408E-13 7.56433165656E-13 8.05218760663E-13 8.57150742256E-13 9.12432033658E-13 9.71278645399E-13 1.03392051936E-12 1.10060242727E-12 1.17158492712E-12 1.24714538127E-12 1.32757904026E-12 1.41320019643E-12 1.50434341204E-12 1.60136482651E-12 1.70464354804E-12 1.81458313491E-12 1.93161317238E-12 2.05619095123E-12 2.18880325462E-12 2.32996826010E-12 2.48023756439E-12 2.64019833866E-12 2.81047562285E-12 2.99173476795E-12 3.18468403577E-12 3.39007736643E-12 3.60871732427E-12 3.84145823378E-12 4.08920951776E-12 4.35293925081E-12 4.63367794191E-12 4.93252256105E-12 5.25064082543E-12 5.58927576220E-12 5.94975056511E-12 6.33347376699E-12 6.74194473670E-12 7.17675954628E-12 7.63961720253E-12 8.13232629353E-12 8.65681202690E-12 9.21512379767E-12 9.80944315807E-12 1.04420923603E-11 1.11155434311E-11 1.18324278060E-11 1.25955466514E-11 1.34078817793E-11 1.42726072968E-11 1.51931020435E-11 1.61729627483E-11 1.72160180970E-11 1.83263437305E-11 1.95082780936E-11 2.07664394608E-11 2.21057439429E-11 2.35314247087E-11 2.50490523928E-11 2.66645569390E-11 2.83842506872E-11 3.02148531150E-11 3.21635170106E-11 3.42378564762E-11 3.64459767117E-11 3.87965054929E-11 4.12986272518E-11 4.39621184952E-11 4.67973863832E-11 4.98155092097E-11 5.30282797268E-11 5.64482511724E-11 6.00887865162E-11 6.39641103302E-11 6.80893646376E-11 7.24806679998E-11 7.71551784887E-11 8.21311606364E-11 8.74280570120E-11 9.30665639366E-11 9.90687124896E-11 1.05457954530E-10 1.12259254293E-10 1.19499186233E-10 1.27206038271E-10 1.35409922739E-10 1.44142893980E-10 1.53439073560E-10 1.63334783295E-10 1.73868687645E-10 1.85081944516E-10 1.97018365860E-10 2.09724589291E-10 2.23250259937E-10 2.37648224412E-10 2.52974737523E-10 2.69289681817E-10 2.86656801519E-10 3.05143951838E-10 3.24823363619E-10 3.45771926059E-10 3.68071486494E-10 3.91809170428E-10 4.17077722237E-10 4.43975866851E-10 4.72608695821E-10 5.03088078209E-10 5.35533096159E-10 5.70070511993E-10 6.06835262248E-10 6.45970985127E-10 6.87630581274E-10 7.31976811649E-10 7.79182932797E-10 8.29433373748E-10 8.82924457032E-10 9.39865164744E-10 1.00047795504E-09 1.06499963149E-09 1.13368226760E-09 1.20679419236E-09 1.28462103679E-09 1.36746685147E-09 1.45565529187E-09 1.54953088550E-09 1.64946037448E-09 1.75583415063E-09 1.86906777815E-09 1.98960361900E-09 2.11791255715E-09 2.25449584255E-09 2.39988704478E-09 2.55465413828E-09 2.71940172066E-09 2.89477337521E-09 3.08145418149E-09 3.28017339375E-09 3.49170728689E-09 3.71688218953E-09 3.95657770971E-09 4.21173017087E-09 4.48333626782E-09 4.77245695870E-09 5.08022160824E-09 5.40783239911E-09 5.75656902233E-09 6.12779367939E-09 6.52295639735E-09 6.94360069275E-09 7.39136959561E-09 7.86801206817E-09 8.37538983221E-09 8.91548463632E-09 9.49040599498E-09 1.01023994217E-08 1.07538552004E-08 1.14473177115E-08 1.21854953681E-08 1.29712711880E-08 1.38077140485E-08 1.46980906656E-08 1.56458783443E-08 1.66547785540E-08 1.77287313750E-08 1.88719308762E-08 2.00888414851E-08 2.13842154128E-08 2.27631112012E-08 2.42309134593E-08 2.57933538847E-08 2.74565336226E-08 2.92269470840E-08 3.11115072722E-08 3.31175727723E-08 3.52529764543E-08 3.75260560328E-08 3.99456865997E-08 4.25213152518E-08 4.52629979355E-08 4.81814386791E-08 5.12880313517E-08 5.45949040950E-08 5.81149666430E-08 6.18619606508E-08 6.58505133069E-08 7.00961943663E-08 7.46155768677E-08 7.94263017527E-08 8.45471466595E-08 8.99980991236E-08 9.58004345103E-08 1.01976798948E-07 1.08551297609E-07 1.15549588673E-07 1.22998983316E-07 1.30928552167E-07 1.39369238589E-07 1.48353979263E-07 1.57917832511E-07 1.68098114896E-07 1.78934546597E-07 1.90469406138E-07 2.02747695059E-07 2.15817313198E-07 2.29729245216E-07 2.44537759136E-07 2.60300617648E-07 2.77079302976E-07 2.94939256226E-07 3.13950132093E-07 3.34186069965E-07 3.55725982414E-07 3.78653862253E-07 4.03059109299E-07 4.29036878149E-07 4.56688448260E-07 4.86121617826E-07 5.17451122936E-07 5.50799083625E-07 5.86295478602E-07 6.24078650398E-07 6.64295842966E-07 7.07103773766E-07 7.52669242527E-07 8.01169779115E-07 8.52794332881E-07 9.07744006255E-07 9.66232835353E-07 1.02848862062E-06 1.09475381068E-06 1.16528644289E-06 1.24036114399E-06 1.32027019499E-06 1.40532466418E-06 1.49585561261E-06 1.59221537675E-06 1.69477893328E-06 1.80394535100E-06 1.92013933575E-06 2.04381287399E-06 2.17544698140E-06 2.31555356322E-06 2.46467739337E-06 2.62339821991E-06 2.79233300488E-06 2.97213830699E-06 3.16351281628E-06 3.36720005030E-06 3.58399122211E-06 3.81472829093E-06 4.06030720700E-06 4.32168136284E-06 4.59986526408E-06 4.89593843361E-06 5.21104956372E-06 5.54642093194E-06 5.90335309712E-06 6.28322989329E-06 6.68752374011E-06 7.11780128966E-06 7.57572943075E-06 8.06308167292E-06 8.58174493408E-06 9.13372675687E-06 9.72116298041E-06 1.03463258959E-05 1.10116329160E-05 1.17196557901E-05 1.24731303991E-05 1.32749671655E-05 1.41282621171E-05 1.50363086441E-05 1.60026099932E-05 1.70308925427E-05 1.81251199074E-05 1.92895079238E-05 2.05285405691E-05 2.18469868713E-05 2.32499188701E-05 2.47427306925E-05 2.63311588107E-05 2.80213035527E-05 2.98196519421E-05 3.17331019454E-05 3.37689882117E-05 3.59351093934E-05 3.82397571409E-05 4.06917468719E-05 4.33004504170E-05 4.60758306547E-05 4.90284782486E-05 5.21696506115E-05 5.55113132237E-05 5.90661834404E-05 6.28477769323E-05 6.68704569072E-05 7.11494862702E-05 7.57010828889E-05 8.05424781348E-05 8.56919788835E-05 9.11690331633E-05 9.69942996525E-05 1.03189721231E-04 1.09778602805E-04 1.16785693634E-04 1.24237274393E-04 1.32161249213E-04 1.40587242968E-04 1.49546704064E-04 1.59073013004E-04 1.69201597026E-04 1.79970051096E-04 1.91418265576E-04 2.03588560859E-04 2.16525829317E-04 2.30277684874E-04 2.44894620549E-04 2.60430174316E-04 2.76941103621E-04 2.94487568912E-04 3.13133326550E-04 3.32945931435E-04 3.53996949723E-04 3.76362181978E-04 4.00121897098E-04 4.25361077371E-04 4.52169674960E-04 4.80642880155E-04 5.10881401651E-04 5.42991759137E-04 5.77086588411E-04 6.13284959226E-04 6.51712706017E-04 6.92502771596E-04 7.35795563871E-04 7.81739325550E-04 8.30490516720E-04 8.82214210109E-04 9.37084498724E-04 9.95284915453E-04 1.05700886407E-03 1.12246006098E-03 1.19185298679E-03 1.26541334675E-03 1.34337853872E-03 1.42599812729E-03 1.51353432229E-03 1.60626245965E-03 1.70447148251E-03 1.80846441970E-03 1.91855885886E-03 2.03508741065E-03 2.15839816043E-03 2.28885510298E-03 2.42683855577E-03 2.57274554517E-03 2.72699016014E-03 2.89000386658E-03 3.06223577552E-03 3.24415285719E-03 3.43624009244E-03 3.63900055227E-03 3.85295539533E-03 4.07864377236E-03 4.31662262585E-03 4.56746637199E-03 4.83176645140E-03 5.11013073391E-03 5.40318276178E-03 5.71156081489E-03 6.03591678027E-03 6.37691480773E-03 6.73522973212E-03 7.11154524219E-03 7.50655177520E-03 7.92094411575E-03 8.35541867683E-03 8.81067044076E-03 9.28738953761E-03 9.78625743849E-03 1.03079427418E-02 1.08530965311E-02 1.14223472841E-02 1.20162953138E-02 1.26355067250E-02 1.32805068719E-02 1.39517733039E-02 1.46497281945E-02 1.53747302465E-02 1.61270660784E-02 1.69069410981E-02 1.77144698792E-02 1.85496660629E-02 1.94124318176E-02 2.03025468963E-02 2.12196573480E-02 2.21632639450E-02 2.31327104072E-02 2.41271715157E-02 2.51456412243E-02 2.61869208963E-02 2.72496078063E-02 2.83320840724E-02 2.94325061954E-02 3.05487954065E-02 3.16786290410E-02 3.28194331755E-02 3.39683767833E-02 3.51223676798E-02 3.62780505456E-02 3.74318073238E-02 3.85797603014E-02 3.97177781851E-02 4.08414854862E-02 4.19462755184E-02 4.30273273026E-02 4.40796266515E-02 4.50979916739E-02 4.60771029025E-02 4.70115381949E-02 4.78958124938E-02 4.87244224602E-02 4.94918958994E-02 5.01928457991E-02 5.08220286823E-02 5.13744068462E-02 5.18452139168E-02 5.22300229953E-02 5.25248165089E-02 5.27260567114E-02 5.28307556055E-02 5.28365428932E-02 5.27417303941E-02 5.25453712272E-02 5.22473119251E-02 5.18482355477E-02 5.13496938113E-02 5.07541262326E-02 5.00648643384E-02 4.92861191106E-02 4.84229500310E-02 4.74812143782E-02 4.64674958121E-02 4.53890117671E-02 4.42534997716E-02 4.30690835107E-02 4.18441202543E-02 4.05870321717E-02 3.93061250261E-02 3.80093987752E-02 3.67043556506E-02 3.53978123275E-02 3.40957237575E-02 3.28030270835E-02 3.15235147002E-02 3.02597459096E-02 2.90130066513E-02 2.77833263907E-02 2.65695603303E-02 2.53695435960E-02 2.41803218611E-02 2.29984599568E-02 2.18204263348E-02 2.06430467968E-02 1.94640157054E-02 1.82824470327E-02 1.70997960049E-02 1.59205677914E-02 1.47499360184E-02 1.35931485264E-02 1.24554833473E-02 1.13422006452E-02 1.02584908417E-02 9.20941923905E-03 8.19986755211E-03 7.23447287372E-03 6.31756471317E-03 5.45310087476E-03 4.64460307551E-03 3.89509333918E-03 3.20703234557E-03 2.58226105764E-03 2.02194709177E-03 1.52653743604E-03 1.09571925328E-03 7.28390626931E-04 4.22643213189E-04 1.75758846959E-04 -1.57777932708E-05 -1.56248333198E-04 -2.50649552295E-04 -3.04619891600E-04 -3.24341701673E-04 -3.16417506378E-04 -2.87718830177E-04 -2.45206497701E-04 -1.95721775563E-04 -1.45748298548E-04 -1.00798701764E-04 -6.40194234751E-05 -3.68056248712E-05 -1.87976985827E-05 -7.95791324418E-06 -2.36598862566E-06 -2.96740713335E-07 1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 8 2 i j (l(j)) 0.00000000000E+00 Q_int 1.08615901717E-23 1.15621025527E-23 1.23077941007E-23 1.31015786216E-23 1.39465578457E-23 1.48460335476E-23 1.58035204481E-23 1.68227599483E-23 1.79077347485E-23 1.90626844113E-23 2.02921219277E-23 2.16008513515E-23 2.29939865714E-23 2.44769712934E-23 2.60556003126E-23 2.77360421562E-23 2.95248631873E-23 3.14290532628E-23 3.34560530468E-23 3.56137830851E-23 3.79106747547E-23 4.03557032097E-23 4.29584224519E-23 4.57290026632E-23 4.86782699461E-23 5.18177486266E-23 5.51597062857E-23 5.87172016958E-23 6.25041358473E-23 6.65353062678E-23 7.08264648433E-23 7.53943793691E-23 8.02568990705E-23 8.54330243489E-23 9.09429810263E-23 9.68082993781E-23 1.03051898263E-22 1.09698174680E-22 1.16773099098E-22 1.24304316938E-22 1.32321256597E-22 1.40855244441E-22 1.49939627214E-22 1.59609902337E-22 1.69903856623E-22 1.80861713919E-22 1.92526292292E-22 2.04943171336E-22 2.18160870274E-22 2.32231037553E-22 2.47208652657E-22 2.63152240943E-22 2.80124102327E-22 2.98190554727E-22 3.17422193199E-22 3.37894165787E-22 3.59686467170E-22 3.82884251237E-22 4.07578163835E-22 4.33864696963E-22 4.61846565820E-22 4.91633110168E-22 5.23340721575E-22 5.57093298221E-22 5.93022729032E-22 6.31269409042E-22 6.71982787981E-22 7.15321954263E-22 7.61456256622E-22 8.10565965846E-22 8.62842979191E-22 9.18491570221E-22 9.77729187016E-22 1.04078730185E-21 1.10791231567E-21 1.17936652094E-21 1.25542912651E-21 1.33639734866E-21 1.42258757248E-21 1.51433658814E-21 1.61200290692E-21 1.71596816207E-21 1.82663860009E-21 1.94444666811E-21 2.06985270373E-21 2.20334673375E-21 2.34545038899E-21 2.49671894257E-21 2.65774347965E-21 2.82915320710E-21 3.01161791216E-21 3.20585057962E-21 3.41261017785E-21 3.63270462447E-21 3.86699394331E-21 4.11639362497E-21 4.38187820412E-21 4.66448506751E-21 4.96531850761E-21 5.28555403761E-21 5.62644298479E-21 5.98931738013E-21 6.37559516319E-21 6.78678572281E-21 7.22449579501E-21 7.69043574141E-21 8.18642623247E-21 8.71440536179E-21 9.27643621928E-21 9.87471495272E-21 1.05115793492E-20 1.11895179703E-20 1.19111798758E-20 1.26793849752E-20 1.34971350467E-20 1.43676254665E-20 1.52942576946E-20 1.62806525668E-20 1.73306644422E-20 1.84483962652E-20 1.96382155971E-20 2.09047716827E-20 2.22530136174E-20 2.36882096858E-20 2.52159679477E-20 2.68422581517E-20 2.85734350620E-20 3.04162632899E-20 3.23779437267E-20 3.44661416813E-20 3.66890168324E-20 3.90552551130E-20 4.15741026503E-20 4.42554018959E-20 4.71096300846E-20 5.01479401749E-20 5.33822044295E-20 5.68250608060E-20 6.04899623404E-20 6.43912297148E-20 6.85441072161E-20 7.29648223031E-20 7.76706490159E-20 8.26799754743E-20 8.80123757300E-20 9.36886862526E-20 9.97310873484E-20 1.06163189831E-19 1.13010127279E-19 1.20298654250E-19 1.28057250821E-19 1.36316233875E-19 1.45107875569E-19 1.54466529431E-19 1.64428764606E-19 1.75033508742E-19 1.86322200107E-19 1.98338949507E-19 2.11130712650E-19 2.24747473627E-19 2.39242440227E-19 2.54672251845E-19 2.71097200804E-19 2.88581467948E-19 3.07193373428E-19 3.27005643668E-19 3.48095695542E-19 3.70545938885E-19 3.94444098506E-19 4.19883556982E-19 4.46963719547E-19 4.75790402520E-19 5.06476246790E-19 5.39141157954E-19 5.73912774860E-19 6.10926968351E-19 6.50328372188E-19 6.92270948207E-19 7.36918587930E-19 7.84445752972E-19 8.35038156757E-19 8.88893490195E-19 9.46222194162E-19 1.00724828181E-18 1.07221021388E-18 1.14136183054E-18 1.21497334321E-18 1.29333239046E-18 1.37674516197E-18 1.46553759494E-18 1.56005664770E-18 1.66067165549E-18 1.76777577363E-18 1.88178751376E-18 2.00315237920E-18 2.13234460579E-18 2.26986901492E-18 2.41626298618E-18 2.57209855716E-18 2.73798465871E-18 2.91456949433E-18 3.10254307305E-18 3.30263990568E-18 3.51564187489E-18 3.74238129043E-18 3.98374414144E-18 4.24067355845E-18 4.51417349864E-18 4.80531266890E-18 5.11522870179E-18 5.44513260082E-18 5.79631347256E-18 6.17014356377E-18 6.56808362353E-18 6.99168861114E-18 7.44261377214E-18 7.92262110623E-18 8.43358625233E-18 8.97750581764E-18 9.55650517947E-18 1.01728467902E-17 1.08289390178E-17 1.15273455566E-17 1.22707954450E-17 1.30621937294E-17 1.39046328153E-17 1.48014045514E-17 1.57560130923E-17 1.67721885912E-17 1.78539017754E-17 1.90053794620E-17 2.02311210746E-17 2.15359162246E-17 2.29248634264E-17 2.44033900209E-17 2.59772733818E-17 2.76526634917E-17 2.94361069729E-17 3.13345726682E-17 3.33554788725E-17 3.55067223194E-17 3.77967090379E-17 4.02343871992E-17 4.28292820820E-17 4.55915332926E-17 4.85319343855E-17 5.16619750396E-17 5.49938859543E-17 5.85406866412E-17 6.23162362981E-17 6.63352879642E-17 7.06135461676E-17 7.51677282914E-17 8.00156298971E-17 8.51761942610E-17 9.06695863954E-17 9.65172718440E-17 1.02742100559E-16 1.09368396187E-16 1.16422051116E-16 1.23930627647E-16 1.31923465699E-16 1.40431797449E-16 1.49488869381E-16 1.59130072187E-16 1.69393079065E-16 1.80317992926E-16 1.91947503092E-16 2.04327052112E-16 2.17505013327E-16 2.31532879886E-16 2.46465465964E-16 2.62361120943E-16 2.79281957415E-16 2.97294093892E-16 3.16467913159E-16 3.36878337301E-16 3.58605120458E-16 3.81733160471E-16 4.06352830619E-16 4.32560332752E-16 4.60458073207E-16 4.90155062958E-16 5.21767343579E-16 5.55418440682E-16 5.91239846590E-16 6.29371534151E-16 6.69962503680E-16 7.13171365184E-16 7.59166958129E-16 8.08129011189E-16 8.60248844534E-16 9.15730117418E-16 9.74789623981E-16 1.03765814038E-15 1.10458132654E-15 1.17582068609E-15 1.25165458817E-15 1.33237935519E-15 1.41831042071E-15 1.50978356196E-15 1.60715621196E-15 1.71080885615E-15 1.82114651915E-15 1.93860034743E-15 2.06362929396E-15 2.19672191164E-15 2.33839826231E-15 2.48921194885E-15 2.64975227847E-15 2.82064656538E-15 3.00256258205E-15 3.19621116854E-15 3.40234901011E-15 3.62178159398E-15 3.85536635680E-15 4.10401603507E-15 4.36870223167E-15 4.65045921244E-15 4.95038794756E-15 5.26966041359E-15 5.60952417304E-15 5.97130724917E-15 6.35642331532E-15 6.76637721878E-15 7.20277086106E-15 7.66730945733E-15 8.16180819951E-15 8.68819934924E-15 9.24853978813E-15 9.84501905509E-15 1.04799679020E-14 1.11558674010E-14 1.18753586395E-14 1.26412530403E-14 1.34565433467E-14 1.43244153175E-14 1.52482601746E-14 1.62316878550E-14 1.72785411157E-14 1.83929105503E-14 1.95791505723E-14 2.08418964302E-14 2.21860823199E-14 2.36169606650E-14 2.51401226406E-14 2.67615200209E-14 2.84874884358E-14 3.03247721272E-14 3.22805503027E-14 3.43624651874E-14 3.65786518871E-14 3.89377701750E-14 4.14490383308E-14 4.41222691606E-14 4.69679083405E-14 4.99970752330E-14 5.32216063361E-14 5.66541015343E-14 6.03079733326E-14 6.41974992655E-14 6.83378776871E-14 7.27452871580E-14 7.74369496630E-14 8.24311979063E-14 8.77475469458E-14 9.34067704487E-14 9.94309818637E-14 1.05843720830E-13 1.12670045157E-13 1.19936628738E-13 1.27671865780E-13 1.35905981750E-13 1.44671151482E-13 1.54001624903E-13 1.63933860858E-13 1.74506669578E-13 1.85761364327E-13 1.97741922834E-13 2.10495159135E-13 2.24070906497E-13 2.38522212142E-13 2.53905544527E-13 2.70281013991E-13 2.87712607642E-13 3.06268439373E-13 3.26021016029E-13 3.47047520712E-13 3.69430114384E-13 3.93256256897E-13 4.18619048749E-13 4.45617594866E-13 4.74357391851E-13 5.04950740212E-13 5.37517183166E-13 5.72183973755E-13 6.09086572079E-13 6.48369174601E-13 6.90185277588E-13 7.34698276894E-13 7.82082106415E-13 8.32521917733E-13 8.86214803583E-13 9.43370567984E-13 1.00421254604E-12 1.06897847659E-12 1.13792143120E-12 1.21131080298E-12 1.28943335924E-12 1.37259436202E-12 1.46111876086E-12 1.55535246257E-12 1.65566368275E-12 1.76244438464E-12 1.87611181066E-12 1.99711011275E-12 2.12591208785E-12 2.26302102533E-12 2.40897267354E-12 2.56433733321E-12 2.72972208581E-12 2.90577316573E-12 3.09317848530E-12 3.29267032281E-12 3.50502818375E-12 3.73108184667E-12 3.97171460547E-12 4.22786672073E-12 4.50053909368E-12 4.79079717710E-12 5.09977513848E-12 5.42868029155E-12 5.77879781378E-12 6.15149576799E-12 6.54823045058E-12 6.97055206975E-12 7.42011082283E-12 7.89866332750E-12 8.40807950065E-12 8.95034983631E-12 9.52759322345E-12 1.01420651899E-11 1.07961667340E-11 1.14924537100E-11 1.22336467841E-11 1.30226421164E-11 1.38625226244E-11 1.47565700548E-11 1.57082778223E-11 1.67213646278E-11 1.77997889901E-11 1.89477647415E-11 2.01697774725E-11 2.14706020573E-11 2.28553213054E-11 2.43293458377E-11 2.58984352340E-11 2.75687205021E-11 2.93467280530E-11 3.12394052177E-11 3.32541473588E-11 3.53988267824E-11 3.76818234958E-11 4.01120579806E-11 4.26990260009E-11 4.54528356545E-11 4.83842471111E-11 5.15047141911E-11 5.48264296182E-11 5.83623725497E-11 6.21263588458E-11 6.61330955372E-11 7.03982382512E-11 7.49384521305E-11 7.97714771044E-11 8.49161971891E-11 9.03927141926E-11 9.62224264190E-11 1.02428112085E-10 1.09034018341E-10 1.16065956256E-10 1.23551401298E-10 1.31519600814E-10 1.40001688475E-10 1.49030805661E-10 1.58642231198E-10 1.68873518738E-10 1.79764644045E-10 1.91358160931E-10 2.03699367462E-10 2.16836482538E-10 2.30820835465E-10 2.45707065103E-10 2.61553334356E-10 2.78421556473E-10 2.96377638099E-10 3.15491735674E-10 3.35838529921E-10 3.57497517936E-10 3.80553323238E-10 4.05096026647E-10 4.31221517984E-10 4.59031871134E-10 4.88635742178E-10 5.20148794219E-10 5.53694149687E-10 5.89402869735E-10 6.27414468601E-10 6.67877456688E-10 7.10949920998E-10 7.56800143376E-10 8.05607258285E-10 8.57561950691E-10 9.12867202520E-10 9.71739085691E-10 1.03440760420E-09 1.10111759604E-09 1.17212968557E-09 1.24772130384E-09 1.32818777339E-09 1.41384345859E-09 1.50502299649E-09 1.60208260217E-09 1.70540146086E-09 1.81538320886E-09 1.93245750972E-09 2.05708173458E-09 2.18974274401E-09 2.33095879437E-09 2.48128155940E-09 2.64129828625E-09 2.81163408697E-09 2.99295438201E-09 3.18596749901E-09 3.39142743610E-09 3.61013681220E-09 3.84294999623E-09 4.09077644543E-09 4.35458425880E-09 4.63540395489E-09 4.93433249854E-09 5.25253758383E-09 5.59126219225E-09 5.95182944877E-09 6.33564778873E-09 6.74421645434E-09 7.17913135229E-09 7.64209128468E-09 8.13490457842E-09 8.65949615241E-09 9.21791502698E-09 9.81234232737E-09 1.04450998009E-08 1.11186588754E-08 1.18356503161E-08 1.25988744887E-08 1.34113122968E-08 1.42761368152E-08 1.51967256812E-08 1.61766742743E-08 1.72198097540E-08 1.83302060019E-08 1.95121995120E-08 2.07704063316E-08 2.21097400654E-08 2.35354310646E-08 2.50530468270E-08 2.66685137353E-08 2.83881401845E-08 3.02186411914E-08 3.21671646109E-08 3.42413190181E-08 3.64492034006E-08 3.87994387637E-08 4.13012017568E-08 4.39642604884E-08 4.67990126237E-08 4.98165259603E-08 5.30285815910E-08 5.64477198713E-08 6.00872893305E-08 6.39614987346E-08 6.80854725114E-08 7.24753097299E-08 7.71481468915E-08 8.21222247514E-08 8.74169594514E-08 9.30530182233E-08 9.90523999782E-08 1.05438521066E-07 1.12236306571E-07 1.19472287473E-07 1.27174704062E-07 1.35373616021E-07 1.44101019571E-07 1.53390972175E-07 1.63279725244E-07 1.73805865405E-07 1.85010464839E-07 1.96937241293E-07 2.09632728387E-07 2.23146456881E-07 2.37531147581E-07 2.52842916670E-07 2.69141494230E-07 2.86490456817E-07 3.04957474989E-07 3.24614576737E-07 3.45538427863E-07 3.67810630366E-07 3.91518040008E-07 4.16753104272E-07 4.43614222060E-07 4.72206126468E-07 5.02640292162E-07 5.35035368918E-07 5.69517642991E-07 6.06221528120E-07 6.45290088040E-07 6.86875592542E-07 7.31140109205E-07 7.78256133121E-07 8.28407256994E-07 8.81788884242E-07 9.38608987820E-07 9.99088917707E-07 1.06346426015E-06 1.13198575199E-06 1.20492025362E-06 1.28255178416E-06 1.36518262310E-06 1.45313448239E-06 1.54674975355E-06 1.64639283475E-06 1.75245154264E-06 1.86533861463E-06 1.98549330718E-06 2.11338309635E-06 2.24950548700E-06 2.39438993758E-06 2.54859990802E-06 2.71273503819E-06 2.88743346558E-06 3.07337429088E-06 3.27128020075E-06 3.48192025789E-06 3.70611286900E-06 3.94472894176E-06 4.19869524289E-06 4.46899797003E-06 4.75668655081E-06 5.06287768363E-06 5.38875963511E-06 5.73559681082E-06 6.10473461595E-06 6.49760462469E-06 6.91573007721E-06 7.36073172527E-06 7.83433404790E-06 8.33837186067E-06 8.87479734287E-06 9.44568750901E-06 1.00532521520E-05 1.06998422879E-05 1.13879591326E-05 1.21202636449E-05 1.28995866693E-05 1.37289397174E-05 1.46115264261E-05 1.55507547349E-05 1.65502498274E-05 1.76138678819E-05 1.87457106829E-05 1.99501411456E-05 2.12317998084E-05 2.25956223535E-05 2.40468582172E-05 2.55910903574E-05 2.72342562464E-05 2.89826701652E-05 3.08430468756E-05 3.28225267542E-05 3.49287024748E-05 3.71696473326E-05 3.95539453069E-05 4.20907229650E-05 4.47896833173E-05 4.76611417361E-05 5.07160640613E-05 5.39661070183E-05 5.74236610826E-05 6.11018959334E-05 6.50148086428E-05 6.91772747585E-05 7.36051024434E-05 7.83150898432E-05 8.33250858658E-05 8.86540545594E-05 9.43221432894E-05 1.00350754923E-04 1.06762624236E-04 1.13581898776E-04 1.20834224413E-04 1.28546835829E-04 1.36748652203E-04 1.45470378363E-04 1.54744611685E-04 1.64605955025E-04 1.75091135986E-04 1.86239132837E-04 1.98091307394E-04 2.10691545210E-04 2.24086403394E-04 2.38325266432E-04 2.53460510349E-04 2.69547675583E-04 2.86645648952E-04 3.04816855074E-04 3.24127457634E-04 3.44647570877E-04 3.66451481701E-04 3.89617882747E-04 4.14230116843E-04 4.40376433183E-04 4.68150255587E-04 4.97650463196E-04 5.28981683902E-04 5.62254600837E-04 5.97586272156E-04 6.35100464376E-04 6.74927999434E-04 7.17207115608E-04 7.62083842388E-04 8.09712389284E-04 8.60255548515E-04 9.13885111419E-04 9.70782298308E-04 1.03113820138E-03 1.09515424023E-03 1.16304262915E-03 1.23502685564E-03 1.31134216882E-03 1.39223607675E-03 1.47796885112E-03 1.56881403756E-03 1.66505896970E-03 1.76700528457E-03 1.87496943679E-03 1.98928320849E-03 2.11029421169E-03 2.23836637904E-03 2.37388043892E-03 2.51723436983E-03 2.66884382877E-03 2.82914254771E-03 2.99858269135E-03 3.17763516899E-03 3.36678989255E-03 3.56655597165E-03 3.77746183653E-03 4.00005527794E-03 4.23490339292E-03 4.48259242397E-03 4.74372747837E-03 5.01893211348E-03 5.30884777243E-03 5.61413305409E-03 5.93546279986E-03 6.27352697868E-03 6.62902935100E-03 7.00268589103E-03 7.39522294602E-03 7.80737511022E-03 8.23988279040E-03 8.69348943943E-03 9.16893843339E-03 9.66696956812E-03 1.01883151502E-02 1.07336956583E-02 1.13038149507E-02 1.18993549963E-02 1.25209701069E-02 1.31692806514E-02 1.38448662332E-02 1.45482583173E-02 1.52799322946E-02 1.60402989778E-02 1.68296955260E-02 1.76483758025E-02 1.84965001782E-02 1.93741247978E-02 2.02811903394E-02 2.12175103046E-02 2.21827588900E-02 2.31764585026E-02 2.41979669964E-02 2.52464647213E-02 2.63209414943E-02 2.74201836174E-02 2.85427610883E-02 2.96870151678E-02 3.08510464892E-02 3.20327039148E-02 3.32295743678E-02 3.44389738874E-02 3.56579401750E-02 3.68832269223E-02 3.81113002258E-02 3.93383374108E-02 4.05602285998E-02 4.17725813697E-02 4.29707288447E-02 4.41497415718E-02 4.53044435166E-02 4.64294324997E-02 4.75191053702E-02 4.85676881741E-02 4.95692715314E-02 5.05178513710E-02 5.14073751042E-02 5.22317932247E-02 5.29851162233E-02 5.36614765860E-02 5.42551955102E-02 5.47608538270E-02 5.51733664538E-02 5.54880595295E-02 5.57007491999E-02 5.58078208337E-02 5.58063072546E-02 5.56939643912E-02 5.54693425662E-02 5.51318514831E-02 5.46818168363E-02 5.41205263655E-02 5.34502631210E-02 5.26743237041E-02 5.17970193165E-02 5.08236575941E-02 4.97605034411E-02 4.86147174150E-02 4.73942706573E-02 4.61078359306E-02 4.47646550004E-02 4.33743834014E-02 4.19469145388E-02 4.04921860910E-02 3.90199727702E-02 3.75396706471E-02 3.60600794142E-02 3.45891900917E-02 3.31339867390E-02 3.17002716287E-02 3.02925240172E-02 2.89138030073E-02 2.75657049619E-02 2.62483853985E-02 2.49606541783E-02 2.37001510211E-02 2.24636058376E-02 2.12471850382E-02 2.00469207990E-02 1.88592152576E-02 1.76814058152E-02 1.65123712343E-02 1.53534790054E-02 1.42091373659E-02 1.30843002137E-02 1.19838652172E-02 1.09126248317E-02 9.87521500578E-03 8.87606209923E-03 7.91932862964E-03 7.00885856643E-03 6.14812299118E-03 5.34016704427E-03 4.58755917552E-03 3.89234380842E-03 3.25599861110E-03 2.67939763866E-03 2.16278166673E-03 1.70573707189E-03 1.30718462474E-03 9.65379542693E-04 6.77924095086E-04 4.41793958403E-04 2.53379378009E-04 1.08541999054E-04 2.68797736748E-06 -6.91423345332E-05 -1.12168215533E-04 -1.31746464930E-04 -1.33234433002E-04 -1.21839885554E-04 -1.02460084180E-04 -7.95132276830E-05 -5.67662318911E-05 -3.70305866755E-05 -2.16869019809E-05 -1.11267307193E-05 -4.86843701971E-06 -1.68985272103E-06 -3.85521867582E-07 -3.28177578932E-08 8.67361737988E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 9 2 i j (l(j)) 0.00000000000E+00 Q_int 9.77221192647E-24 1.04024654470E-23 1.10733668273E-23 1.17875376292E-23 1.25477684904E-23 1.33570300297E-23 1.42184844541E-23 1.51354979154E-23 1.61116536638E-23 1.71507660489E-23 1.82568954251E-23 1.94343640169E-23 2.06877728083E-23 2.20220195216E-23 2.34423177546E-23 2.49542173537E-23 2.65636260993E-23 2.82768327911E-23 3.01005318215E-23 3.20418493341E-23 3.41083710691E-23 3.63081720053E-23 3.86498479125E-23 4.11425489403E-23 4.37960153721E-23 4.66206156856E-23 4.96273870679E-23 5.28280785435E-23 5.62351968839E-23 5.98620554780E-23 6.37228263547E-23 6.78325955600E-23 7.22074221063E-23 7.68644007235E-23 8.18217286567E-23 8.70987767724E-23 9.27161652509E-23 9.86958441597E-23 1.05061179224E-22 1.11837043129E-22 1.19049912710E-22 1.26727972412E-22 1.34901224419E-22 1.43601605892E-22 1.52863113760E-22 1.62721937566E-22 1.73216600879E-22 1.84388111823E-22 1.96280123321E-22 2.08939103665E-22 2.22414518097E-22 2.36759022090E-22 2.52028667106E-22 2.68283119615E-22 2.85585894242E-22 3.04004601956E-22 3.23611214257E-22 3.44482344409E-22 3.66699546806E-22 3.90349635649E-22 4.15525024173E-22 4.42324085758E-22 4.70851538317E-22 5.01218853492E-22 5.33544692226E-22 5.67955368436E-22 6.04585342588E-22 6.43577747100E-22 6.85084945640E-22 7.29269128489E-22 7.76302946300E-22 8.26370184739E-22 8.79666482626E-22 9.36400096404E-22 9.96792713901E-22 1.06108032058E-21 1.12951412166E-21 1.20236152371E-21 1.27990717954E-21 1.36245410047E-21 1.45032484039E-21 1.54386275613E-21 1.64343334913E-21 1.74942569364E-21 1.86225395704E-21 1.98235901823E-21 2.11021019035E-21 2.24630705462E-21 2.39118141250E-21 2.54539936368E-21 2.70956351816E-21 2.88431535094E-21 3.07033770860E-21 3.26835747754E-21 3.47914842431E-21 3.70353421911E-21 3.94239165430E-21 4.19665407051E-21 4.46731500363E-21 4.75543206715E-21 5.06213108474E-21 5.38861048948E-21 5.73614600672E-21 6.10609563905E-21 6.49990497268E-21 6.91911282614E-21 7.36535726321E-21 7.84038199372E-21 8.34604318711E-21 8.88431672547E-21 9.45730592434E-21 1.00672497514E-20 1.07165315755E-20 1.14076884794E-20 1.21434211737E-20 1.29266045498E-20 1.37602989139E-20 1.46477619447E-20 1.55924614233E-20 1.65980887833E-20 1.76685735356E-20 1.88080986225E-20 2.00211167630E-20 2.13123678519E-20 2.26868974806E-20 2.41500766537E-20 2.57076227755E-20 2.73656219912E-20 2.91305529687E-20 3.10093122140E-20 3.30092410198E-20 3.51381541512E-20 3.74043703823E-20 3.98167450023E-20 4.23847044173E-20 4.51182829845E-20 4.80281622212E-20 5.11257125438E-20 5.44230376972E-20 5.79330220510E-20 6.16693809452E-20 6.56467142830E-20 6.98805635807E-20 7.43874726962E-20 7.91850524746E-20 8.42920495628E-20 8.97284196625E-20 9.55154055077E-20 1.01675619871E-19 1.08233133923E-19 1.15213571293E-19 1.22644208190E-19 1.30554079990E-19 1.38974094687E-19 1.47937153671E-19 1.57478280289E-19 1.67634756701E-19 1.78446269557E-19 1.89955065078E-19 2.02206114132E-19 2.15247287958E-19 2.29129545224E-19 2.43907131152E-19 2.59637789479E-19 2.76382988091E-19 2.94208159215E-19 3.13182955092E-19 3.33381520147E-19 3.54882780711E-19 3.77770753423E-19 4.02134873532E-19 4.28070344364E-19 4.55678509330E-19 4.85067247934E-19 5.16351397304E-19 5.49653200932E-19 5.85102786333E-19 6.22838673528E-19 6.63008316311E-19 7.05768678428E-19 7.51286846917E-19 7.99740685004E-19 8.51319527106E-19 9.06224918662E-19 9.64671403672E-19 1.02688736304E-18 1.09311590696E-18 1.16361582491E-18 1.23866259682E-18 1.31854946958E-18 1.40358860287E-18 1.49411228892E-18 1.59047425099E-18 1.69305102553E-18 1.80224343348E-18 1.91847814652E-18 2.04220935431E-18 2.17392053919E-18 2.31412636545E-18 2.46337469038E-18 2.62224870500E-18 2.79136921294E-18 2.97139705621E-18 3.16303569749E-18 3.36703396887E-18 3.58418899797E-18 3.81534932274E-18 4.06141820708E-18 4.32335717044E-18 4.60218974494E-18 4.89900547483E-18 5.21496417392E-18 5.55130045759E-18 5.90932856707E-18 6.29044750486E-18 6.69614650134E-18 7.12801083401E-18 7.58772802197E-18 8.07709441996E-18 8.59802223760E-18 9.15254701146E-18 9.74283555891E-18 1.03711944450E-17 1.10400789955E-17 1.17521028910E-17 1.25100483801E-17 1.33168771508E-17 1.41757419037E-17 1.50899986710E-17 1.60632199305E-17 1.70992085650E-17 1.82020127219E-17 1.93759416318E-17 2.06255824469E-17 2.19558181650E-17 2.33718467103E-17 2.48792012443E-17 2.64837717867E-17 2.81918282306E-17 3.00100448427E-17 3.19455263427E-17 3.40058356652E-17 3.61990235123E-17 3.85336598115E-17 4.10188672032E-17 4.36643566874E-17 4.64804655697E-17 4.94781978545E-17 5.26692672434E-17 5.60661429068E-17 5.96820982070E-17 6.35312625650E-17 6.76286766705E-17 7.19903512545E-17 7.66333296511E-17 8.15757543946E-17 8.68369381123E-17 9.24374389884E-17 9.83991410961E-17 1.04745339909E-16 1.11500833331E-16 1.18692018591E-16 1.26346995393E-16 1.34495675716E-16 1.43169900697E-16 1.52403565047E-16 1.62232749497E-16 1.72695861788E-16 1.83833786743E-16 1.95690046031E-16 2.08310968226E-16 2.21745869837E-16 2.36047248015E-16 2.51270985684E-16 2.67476569905E-16 2.84727324324E-16 3.03090656613E-16 3.22638321858E-16 3.43446702954E-16 3.65597109065E-16 3.89176093343E-16 4.14275791139E-16 4.40994280018E-16 4.69435963004E-16 4.99711976535E-16 5.31940624729E-16 5.66247841660E-16 6.02767683451E-16 6.41642852095E-16 6.83025253071E-16 7.27076588912E-16 7.73968991066E-16 8.23885692497E-16 8.77021743675E-16 9.33584774739E-16 9.93795806811E-16 1.05789011564E-15 1.12611815096E-15 1.19874651511E-15 1.27605900478E-15 1.35835771997E-15 1.44596424445E-15 1.53922090234E-15 1.63849209575E-15 1.74416572871E-15 1.85665472288E-15 1.97639863104E-15 2.10386535469E-15 2.23955297236E-15 2.38399168586E-15 2.53774589204E-15 2.70141638820E-15 2.87564271968E-15 3.06110567896E-15 3.25852996577E-15 3.46868701895E-15 3.69239803082E-15 3.93053715598E-15 4.18403492713E-15 4.45388189108E-15 4.74113247939E-15 5.04690912850E-15 5.37240666574E-15 5.71889697806E-15 6.08773398201E-15 6.48035891411E-15 6.89830596257E-15 7.34320826211E-15 7.81680427543E-15 8.32094458632E-15 8.85759913079E-15 9.42886489466E-15 1.00369741075E-14 1.06843029651E-14 1.13733809145E-14 1.21069005378E-14 1.28877280734E-14 1.37189146161E-14 1.46037080388E-14 1.55455656840E-14 1.65481678734E-14 1.76154322882E-14 1.87515292784E-14 1.99608981575E-14 2.12482645499E-14 2.26186588558E-14 2.40774359078E-14 2.56302958946E-14 2.72833066351E-14 2.90429272877E-14 3.09160335900E-14 3.29099447253E-14 3.50324519229E-14 3.72918489017E-14 3.96969642786E-14 4.22571960654E-14 4.49825483924E-14 4.78836705991E-14 5.09718988465E-14 5.42593004129E-14 5.77587208473E-14 6.14838341629E-14 6.54491962682E-14 6.96703018443E-14 7.41636448904E-14 7.89467831735E-14 8.40384068357E-14 8.94584114256E-14 9.52279756399E-14 1.01369644079E-13 1.07907415340E-13 1.14866835790E-13 1.22275099389E-13 1.30161153951E-13 1.38555814255E-13 1.47491882454E-13 1.57004276250E-13 1.67130165331E-13 1.77909116618E-13 1.89383248862E-13 2.01597397231E-13 2.14599288497E-13 2.28439727529E-13 2.43172795814E-13 2.58856062774E-13 2.75550810723E-13 2.93322274321E-13 3.12239895477E-13 3.32377594697E-13 3.53814059918E-13 3.76633053983E-13 4.00923741941E-13 4.26781039458E-13 4.54305983690E-13 4.83606128090E-13 5.14795962664E-13 5.47997361335E-13 5.83340058166E-13 6.20962154282E-13 6.61010657500E-13 7.03642056753E-13 7.49022933561E-13 7.97330612943E-13 8.48753856302E-13 9.03493599000E-13 9.61763735504E-13 1.02379195516E-12 1.08982063189E-12 1.16010777123E-12 1.23492801849E-12 1.31457373188E-12 1.39935612495E-12 1.48960648254E-12 1.58567745532E-12 1.68794443771E-12 1.79680703474E-12 1.91269062343E-12 2.03604801493E-12 2.16736122385E-12 2.30714335170E-12 2.45594059175E-12 2.61433436323E-12 2.78294358322E-12 2.96242708495E-12 3.15348619213E-12 3.35686745932E-12 3.57336558900E-12 3.80382653674E-12 4.04915081674E-12 4.31029702042E-12 4.58828556201E-12 4.88420266571E-12 5.19920460993E-12 5.53452224532E-12 5.89146580539E-12 6.27143002289E-12 6.67589957445E-12 7.10645490702E-12 7.56477838308E-12 8.05266086781E-12 8.57200871370E-12 9.12485124058E-12 9.71334863386E-12 1.03398003891E-11 1.10066543170E-11 1.17165160998E-11 1.24721594351E-11 1.32765369352E-11 1.41327916302E-11 1.50442692314E-11 1.60145312625E-11 1.70473689052E-11 1.81468178606E-11 1.93171740822E-11 2.05630106124E-11 2.18891954005E-11 2.33009103476E-11 2.48036715356E-11 2.64033508219E-11 2.81061987052E-11 2.99188688463E-11 3.18484439718E-11 3.39024636119E-11 3.60889534992E-11 3.84164570474E-11 4.08940685641E-11 4.35314688985E-11 4.63389632646E-11 4.93275214427E-11 5.25088205481E-11 5.58952910793E-11 5.95001649168E-11 6.33375274073E-11 6.74223722154E-11 7.17706600700E-11 7.63993809176E-11 8.13266205056E-11 8.65716307796E-11 9.21549054559E-11 9.80982598757E-11 1.04424916115E-10 1.11159593981E-10 1.18328607489E-10 1.25959967651E-10 1.34083491768E-10 1.42730920262E-10 1.51936040410E-10 1.61734818457E-10 1.72165540078E-10 1.83268959959E-10 1.95088461187E-10 2.07670224383E-10 2.21063408459E-10 2.35320342542E-10 2.50496730541E-10 2.66651868346E-10 2.83848876004E-10 3.02154944062E-10 3.21641596145E-10 3.42384967956E-10 3.64466105786E-10 3.87971281793E-10 4.12992331734E-10 4.39627013915E-10 4.67979390879E-10 4.98160235545E-10 5.30287464532E-10 5.64486598363E-10 6.00891252300E-10 6.39643657795E-10 6.80895218082E-10 7.24807100713E-10 7.71550864990E-10 8.21309134244E-10 8.74276308564E-10 9.30659323221E-10 9.90678458525E-10 1.05456819877E-09 1.12257815005E-09 1.19497401272E-09 1.27203862162E-09 1.35407304946E-09 1.44139778379E-09 1.53435397736E-09 1.63330478261E-09 1.73863676813E-09 1.85076142971E-09 1.97011679755E-09 2.09716914652E-09 2.23241481762E-09 2.37638215713E-09 2.52963357859E-09 2.69276776082E-09 2.86642198591E-09 3.05127462704E-09 3.24804779878E-09 3.45751017727E-09 3.68048000092E-09 3.91782826725E-09 4.17048213527E-09 4.43942854103E-09 4.72571805864E-09 5.03046899810E-09 5.35487177380E-09 5.70019355291E-09 6.06778320102E-09 6.45907655554E-09 6.87560202416E-09 7.31898655730E-09 7.79096199888E-09 8.29337185154E-09 8.82817846908E-09 9.39747072089E-09 1.00034721473E-08 1.06485496396E-08 1.13352226817E-08 1.20661731835E-08 1.28442559532E-08 1.36725098389E-08 1.45541695958E-08 1.54926785066E-08 1.64917018247E-08 1.75551410832E-08 1.86871493216E-08 1.98921472920E-08 2.11748407164E-08 2.25402386548E-08 2.39936730462E-08 2.55408195226E-08 2.71877195561E-08 2.89408040366E-08 3.08069183589E-08 3.27933491421E-08 3.49078526529E-08 3.71586850785E-08 3.95546347194E-08 4.21050563023E-08 4.48199074490E-08 4.77097875354E-08 5.07859790328E-08 5.40604915235E-08 5.75461085326E-08 6.12564373958E-08 6.52059623274E-08 6.94101009001E-08 7.38852641774E-08 7.86489207026E-08 8.37196646069E-08 8.91172881229E-08 9.48628587264E-08 1.00978801286E-07 1.07488985475E-07 1.14418818811E-07 1.21795345687E-07 1.29647352777E-07 1.38005481226E-07 1.46902346040E-07 1.56372663183E-07 1.66453384833E-07 1.77183843344E-07 1.88605904471E-07 2.00764130438E-07 2.13705953509E-07 2.27481860709E-07 2.42145590429E-07 2.57754341663E-07 2.74368996712E-07 2.92054358178E-07 3.10879401226E-07 3.30917542021E-07 3.52246923446E-07 3.74950719153E-07 3.99117457175E-07 4.24841364298E-07 4.52222732574E-07 4.81368309364E-07 5.12391712424E-07 5.45413871648E-07 5.80563499170E-07 6.17977589624E-07 6.57801952537E-07 7.00191778866E-07 7.45312243867E-07 7.93339148674E-07 8.44459602992E-07 8.98872751582E-07 9.56790547310E-07 1.01843857375E-06 1.08405692054E-06 1.15390111472E-06 1.22824311185E-06 1.30737235055E-06 1.39159687454E-06 1.48124452650E-06 1.57666421842E-06 1.67822728308E-06 1.78632891213E-06 1.90138968597E-06 2.02385720157E-06 2.15420780422E-06 2.29294842993E-06 2.44061856554E-06 2.59779233390E-06 2.76508071219E-06 2.94313389171E-06 3.13264378815E-06 3.33434671195E-06 3.54902620875E-06 3.77751608074E-06 4.02070360046E-06 4.27953292896E-06 4.55500875152E-06 4.84820014436E-06 5.16024468713E-06 5.49235283650E-06 5.84581257736E-06 6.22199436903E-06 6.62235640500E-06 7.04845020589E-06 7.50192656653E-06 7.98454187915E-06 8.49816485645E-06 9.04478367930E-06 9.62651359558E-06 1.02456049983E-05 1.09044520129E-05 1.16056016249E-05 1.23517633818E-05 1.31458197051E-05 1.39908368488E-05 1.48900765459E-05 1.58470083839E-05 1.68653229554E-05 1.79489458293E-05 1.91020523957E-05 2.03290836343E-05 2.16347628664E-05 2.30241135465E-05 2.45024781595E-05 2.60755382884E-05 2.77493359239E-05 2.95302960906E-05 3.14252508679E-05 3.34414648897E-05 3.55866624102E-05 3.78690560299E-05 4.02973771776E-05 4.28809084543E-05 4.56295179463E-05 4.85536956232E-05 5.16645919414E-05 5.49740587811E-05 5.84946928506E-05 6.22398816988E-05 6.62238524851E-05 7.04617236616E-05 7.49695597313E-05 7.97644292552E-05 8.48644662862E-05 9.02889354204E-05 9.60583006615E-05 1.02194298306E-04 1.08720014062E-04 1.15659964633E-04 1.23040183993E-04 1.30888314602E-04 1.39233703815E-04 1.48107505751E-04 1.57542788889E-04 1.67574649683E-04 1.78240332478E-04 1.89579356041E-04 2.01633647012E-04 2.14447680594E-04 2.28068628809E-04 2.42546516661E-04 2.57934386542E-04 2.74288471228E-04 2.91668375815E-04 3.10137268953E-04 3.29762083730E-04 3.50613728555E-04 3.72767308395E-04 3.96302356712E-04 4.21303078429E-04 4.47858604250E-04 4.76063256649E-04 5.06016827802E-04 5.37824869733E-04 5.71598996900E-04 6.07457201423E-04 6.45524181095E-04 6.85931680280E-04 7.28818843748E-04 7.74332583409E-04 8.22627957845E-04 8.73868564450E-04 9.28226943875E-04 9.85884996377E-04 1.04703440953E-03 1.11187709659E-03 1.18062564474E-03 1.25350377209E-03 1.33074679227E-03 1.41260208514E-03 1.49932957201E-03 1.59120219320E-03 1.68850638589E-03 1.79154255963E-03 1.90062556645E-03 2.01608516234E-03 2.13826645645E-03 2.26753034353E-03 2.40425391523E-03 2.54883084488E-03 2.70167173989E-03 2.86320445563E-03 3.03387436349E-03 3.21414456554E-03 3.40449604727E-03 3.60542775932E-03 3.81745661794E-03 4.04111741356E-03 4.27696261562E-03 4.52556206098E-03 4.78750251247E-03 5.06338707297E-03 5.35383443958E-03 5.65947798160E-03 5.98096462470E-03 6.31895352336E-03 6.67411450216E-03 7.04712624614E-03 7.43867421944E-03 7.84944829098E-03 8.28014004529E-03 8.73143975639E-03 9.20403300225E-03 9.69859689777E-03 1.02157959242E-02 1.07562773338E-02 1.13206661096E-02 1.19095594613E-02 1.25235208402E-02 1.31630734593E-02 1.38286933067E-02 1.45208016437E-02 1.52397569858E-02 1.59858465665E-02 1.67592772934E-02 1.75601662088E-02 1.83885304799E-02 1.92442769476E-02 2.01271912769E-02 2.10369267598E-02 2.19729928366E-02 2.29347434118E-02 2.39213650584E-02 2.49318652170E-02 2.59650605148E-02 2.70195653452E-02 2.80937808683E-02 2.91858846102E-02 3.02938208585E-02 3.14152920699E-02 3.25477515254E-02 3.36883974853E-02 3.48341691128E-02 3.59817444510E-02 3.71275407487E-02 3.82677174402E-02 3.93981820885E-02 4.05145996024E-02 4.16124050304E-02 4.26868202227E-02 4.37328746325E-02 4.47454304948E-02 4.57192125864E-02 4.66488427153E-02 4.75288790291E-02 4.83538601531E-02 4.91183540847E-02 4.98170116651E-02 5.04446243355E-02 5.09961857570E-02 5.14669567300E-02 5.18525326993E-02 5.21489129688E-02 5.23525705823E-02 5.24605216590E-02 5.24703928021E-02 5.23804850408E-02 5.21898326173E-02 5.18982548057E-02 5.15063988536E-02 5.10157720752E-02 5.04287611197E-02 4.97486364799E-02 4.89795404270E-02 4.81264567490E-02 4.71951609513E-02 4.61921499609E-02 4.51245508520E-02 4.40000086995E-02 4.28265543617E-02 4.16124537865E-02 4.03660413249E-02 3.90955404999E-02 3.78088766963E-02 3.65134872775E-02 3.52161356597E-02 3.39227368298E-02 3.26382026276E-02 3.13663157562E-02 3.01096418658E-02 2.88694890882E-02 2.76459240108E-02 2.64378521721E-02 2.52431696648E-02 2.40589902703E-02 2.28819496661E-02 2.17085846049E-02 2.05357805591E-02 1.93612761812E-02 1.81842071289E-02 1.70060243332E-02 1.58312215117E-02 1.46649622599E-02 1.35124849894E-02 1.23790589843E-02 1.12699364151E-02 1.01903005254E-02 9.14521030402E-03 8.13954205116E-03 7.17792836050E-03 6.26469515452E-03 5.40379753824E-03 4.59875536833E-03 3.85258957325E-03 3.16776040201E-03 2.54610892381E-03 1.98880324372E-03 1.49629104025E-03 1.06826016372E-03 7.03609156243E-04 4.00429661636E-04 1.56002778541E-04 -3.31885302606E-05 -1.71428834325E-04 -2.63719315349E-04 -3.15704472865E-04 -3.33574521724E-04 -3.23941738719E-04 -2.93689285402E-04 -2.49791393168E-04 -1.99104255897E-04 -1.48127546076E-04 -1.02385298491E-04 -6.50124981513E-05 -3.73807823950E-05 -1.90979185868E-05 -8.08806158605E-06 -2.40560419945E-06 -3.01826479518E-07 1.38777878078E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5 10 2 i j (l(j)) 0.00000000000E+00 Q_int 1.05465828625E-23 1.12267790176E-23 1.19508440556E-23 1.27216072765E-23 1.35420804542E-23 1.44154696056E-23 1.53451875177E-23 1.63348670835E-23 1.73883754974E-23 1.85098293664E-23 1.97036107958E-23 2.09743845126E-23 2.23271160926E-23 2.37670913640E-23 2.52999370612E-23 2.69316428124E-23 2.86685845430E-23 3.05175493906E-23 3.24857622257E-23 3.45809138825E-23 3.68111912117E-23 3.91853090705E-23 4.17125443760E-23 4.44027723549E-23 4.72665051317E-23 5.03149328044E-23 5.35599671702E-23 5.70142882716E-23 6.06913939433E-23 6.46056525556E-23 6.87723591590E-23 7.32077952502E-23 7.79292923920E-23 8.29552999371E-23 8.83054571193E-23 9.40006697939E-23 1.00063192128E-22 1.06516713560E-22 1.13386451364E-22 1.20699249191E-22 1.28483681957E-22 1.36770167501E-22 1.45591085447E-22 1.54980903722E-22 1.64976313246E-22 1.75616371299E-22 1.86942654138E-22 1.98999419460E-22 2.11833779338E-22 2.25495884310E-22 2.40039119350E-22 2.55520312465E-22 2.71999956752E-22 2.89542446779E-22 3.08216330208E-22 3.28094575644E-22 3.49254857763E-22 3.71779860826E-22 3.95757601773E-22 4.21281774147E-22 4.48452114206E-22 4.77374790645E-22 5.08162819449E-22 5.40936505510E-22 5.75823912719E-22 6.12961364377E-22 6.52493975882E-22 6.94576221774E-22 7.39372539341E-22 7.87057971169E-22 8.37818849118E-22 8.91853522420E-22 9.49373132736E-22 1.01060243919E-21 1.07578069663E-21 1.14516259052E-21 1.21901923210E-21 1.29763921781E-21 1.38132975696E-21 1.47041787213E-21 1.56525167708E-21 1.66620173697E-21 1.77366251633E-21 1.88805392050E-21 2.00982293638E-21 2.13944537903E-21 2.27742775098E-21 2.42430922133E-21 2.58066373262E-21 2.74710224350E-21 2.92427511606E-21 3.11287465716E-21 3.31363782358E-21 3.52734910177E-21 3.75484357318E-21 3.99701017741E-21 4.25479518571E-21 4.52920589860E-21 4.82131458191E-21 5.13226265665E-21 5.46326515917E-21 5.81561548895E-21 6.19069046254E-21 6.58995569355E-21 7.01497131953E-21 7.46739809828E-21 7.94900389724E-21 8.46167060153E-21 9.00740146743E-21 9.58832895014E-21 1.02067230364E-20 1.08650001146E-20 1.15657324166E-20 1.23116580691E-20 1.31056917928E-20 1.39509362917E-20 1.48506943770E-20 1.58084818730E-20 1.68280413552E-20 1.79133567742E-20 1.90686690236E-20 2.02984925112E-20 2.16076327988E-20 2.30012053807E-20 2.44846556718E-20 2.60637802863E-20 2.77447496880E-20 2.95341323012E-20 3.14389201773E-20 3.34665563163E-20 3.56249637503E-20 3.79225765032E-20 4.03683725467E-20 4.29719088818E-20 4.57433588832E-20 4.86935520519E-20 5.18340163317E-20 5.51770231549E-20 5.87356353929E-20 6.25237584004E-20 6.65561943501E-20 7.08487000729E-20 7.54180486278E-20 8.02820948435E-20 8.54598450859E-20 9.09715315263E-20 9.68386911988E-20 1.03084250157E-19 1.09732613058E-19 1.16809758523E-19 1.24343340653E-19 1.32362797082E-19 1.40899464009E-19 1.49986698647E-19 1.59660009560E-19 1.69957195421E-19 1.80918492706E-19 1.92586732923E-19 2.05007509971E-19 2.18229358306E-19 2.32303942588E-19 2.47286259557E-19 2.63234852943E-19 2.80212042218E-19 2.98284166117E-19 3.17521841856E-19 3.38000241067E-19 3.59799383539E-19 3.83004449892E-19 4.07706114425E-19 4.34000899426E-19 4.61991552335E-19 4.91787447234E-19 5.23505012226E-19 5.57268184380E-19 5.93208894022E-19 6.31467580250E-19 6.72193739708E-19 7.15546510742E-19 7.61695295241E-19 8.10820420576E-19 8.63113844236E-19 9.18779903900E-19 9.78036115897E-19 1.04111402515E-18 1.10826010996E-18 1.17973674510E-18 1.25582322704E-18 1.33681686538E-18 1.42303414448E-18 1.51481196024E-18 1.61250893642E-18 1.71650682609E-18 1.82721200322E-18 1.94505705068E-18 2.07050245054E-18 2.20403838337E-18 2.34618664373E-18 2.49750267898E-18 2.65857775978E-18 2.83004129049E-18 3.01256326852E-18 3.20685690242E-18 3.41368139875E-18 3.63384492865E-18 3.86820778584E-18 4.11768574822E-18 4.38325365626E-18 4.66594922227E-18 4.96687708522E-18 5.28721312718E-18 5.62820906809E-18 5.99119735689E-18 6.37759637807E-18 6.78891599409E-18 7.22676344512E-18 7.69284962944E-18 8.18899578876E-18 8.71714062480E-18 9.27934787476E-18 9.87781437547E-18 1.05148786475E-17 1.11930300332E-17 1.19149184233E-17 1.26833646123E-17 1.35013713199E-17 1.43721349247E-17 1.52990579541E-17 1.62857623793E-17 1.73361037690E-17 1.84541863543E-17 1.96443790667E-17 2.09113326095E-17 2.22599976303E-17 2.36956440663E-17 2.52238817363E-17 2.68506822613E-17 2.85824023986E-17 3.04258088812E-17 3.23881048589E-17 3.44769580445E-17 3.67005306757E-17 3.90675114093E-17 4.15871492724E-17 4.42692898027E-17 4.71244135207E-17 5.01636768820E-17 5.33989558719E-17 5.68428924107E-17 6.05089437523E-17 6.44114350690E-17 6.85656154268E-17 7.29877173720E-17 7.76950203601E-17 8.27059182751E-17 8.80399913048E-17 9.37180824501E-17 9.97623789697E-17 1.06196499077E-16 1.13045584230E-16 1.20336397369E-16 1.28097427498E-16 1.36359001001E-16 1.45153400146E-16 1.54514989228E-16 1.64480348848E-16 1.75088418853E-16 1.86380650493E-16 1.98401168394E-16 2.11196942972E-16 2.24817973979E-16 2.39317485867E-16 2.54752135775E-16 2.71182234907E-16 2.88671984207E-16 3.07289725224E-16 3.27108207153E-16 3.48204871110E-16 3.70662152732E-16 3.94567804294E-16 4.20015237606E-16 4.47103889019E-16 4.75939607976E-16 5.06635070617E-16 5.39310220069E-16 5.74092735120E-16 6.11118529131E-16 6.50532281116E-16 6.92488001079E-16 7.37149631813E-16 7.84691689505E-16 8.35299945665E-16 8.89172153029E-16 9.46518818282E-16 1.00756402462E-15 1.07254630734E-15 1.14171958596E-15 1.21535415638E-15 1.29373774706E-15 1.37717664336E-15 1.46599688433E-15 1.56054553671E-15 1.66119205113E-15 1.76832970571E-15 1.88237714278E-15 2.00378000482E-15 2.13301267571E-15 2.27058013447E-15 2.41701992842E-15 2.57290427369E-15 2.73884229115E-15 2.91548238654E-15 3.10351478417E-15 3.30367422393E-15 3.51674283232E-15 3.74355317865E-15 3.98499152823E-15 4.24200130557E-15 4.51558678075E-15 4.80681699362E-15 5.11682993114E-15 5.44683697402E-15 5.79812763024E-15 6.17207457378E-15 6.57013900842E-15 6.99387637735E-15 7.44494244110E-15 7.92509974746E-15 8.43622451864E-15 8.98031398261E-15 9.55949417732E-15 1.01760282582E-14 1.08323253414E-14 1.15309499176E-14 1.22746318726E-14 1.30662771544E-14 1.39089791283E-14 1.48060306642E-14 1.57609370035E-14 1.67774294559E-14 1.78594799794E-14 1.90113167008E-14 2.02374404374E-14 2.15426422835E-14 2.29320223319E-14 2.44110096023E-14 2.59853832558E-14 2.76612951763E-14 2.94452940092E-14 3.13443507506E-14 3.33658859860E-14 3.55177988866E-14 3.78084980750E-14 4.02469344823E-14 4.28426363233E-14 4.56057463287E-14 4.85470613771E-14 5.16780746843E-14 5.50110207126E-14 5.85589229775E-14 6.23356449362E-14 6.63559441598E-14 7.06355299979E-14 7.51911249631E-14 8.00405300740E-14 8.52026944123E-14 9.06977891666E-14 9.65472864510E-14 1.02774043207E-13 1.09402390517E-13 1.16458228677E-13 1.23969128404E-13 1.31964438564E-13 1.40475400858E-13 1.49535271891E-13 1.59179453131E-13 1.69445629230E-13 1.80373915283E-13 1.92007013576E-13 2.04390380440E-13 2.17572403875E-13 2.31604592625E-13 2.46541777444E-13 2.62442325349E-13 2.79368367687E-13 2.97386042910E-13 3.16565755009E-13 3.36982448621E-13 3.58715901864E-13 3.81851038076E-13 4.06478257645E-13 4.32693791245E-13 4.60600075858E-13 4.90306155041E-13 5.21928105006E-13 5.55589488189E-13 5.91421836061E-13 6.29565163082E-13 6.70168513803E-13 7.13390545249E-13 7.59400146866E-13 8.08377100442E-13 8.60512782603E-13 9.16010912603E-13 9.75088348344E-13 1.03797593374E-12 1.10491940072E-12 1.17618032941E-12 1.25203717026E-12 1.33278633204E-12 1.41874334006E-12 1.51024406904E-12 1.60764605556E-12 1.71132989505E-12 1.82170072898E-12 1.93918982790E-12 2.06425627660E-12 2.19738876793E-12 2.33910751235E-12 2.48996627059E-12 2.65055451740E-12 2.82149974491E-12 3.00346991446E-12 3.19717606658E-12 3.40337509935E-12 3.62287272585E-12 3.85652662241E-12 4.10524977992E-12 4.37001407114E-12 4.65185404828E-12 4.95187098530E-12 5.27123718104E-12 5.61120053981E-12 5.97308944737E-12 6.35831796244E-12 6.76839133758E-12 7.20491191124E-12 7.66958534667E-12 8.16422733025E-12 8.69077063750E-12 9.25127269427E-12 9.84792362110E-12 1.04830547629E-11 1.11591478729E-11 1.18788446946E-11 1.26449573962E-11 1.34604794842E-11 1.43285975296E-11 1.52527036281E-11 1.62364086098E-11 1.72835562162E-11 1.83982380521E-11 1.95848096168E-11 2.08479072882E-11 2.21924664860E-11 2.36237409020E-11 2.51473230482E-11 2.67691661394E-11 2.84956073072E-11 3.03333923705E-11 3.22897022178E-11 3.43721808464E-11 3.65889652335E-11 3.89487170982E-11 4.14606567752E-11 4.41345992999E-11 4.69809926254E-11 5.00109585538E-11 5.32363361337E-11 5.66697279475E-11 6.03245492319E-11 6.42150805960E-11 6.83565235163E-11 7.27650596866E-11 7.74579146514E-11 8.24534247381E-11 8.77711087319E-11 9.34317442213E-11 9.94574487865E-11 1.05871766554E-10 1.12699759733E-10 1.19968106978E-10 1.27705207440E-10 1.35941291770E-10 1.44708540165E-10 1.54041208059E-10 1.63975760220E-10 1.74551012861E-10 1.85808285420E-10 1.97791562312E-10 2.10547663997E-10 2.24126430804E-10 2.38580917015E-10 2.53967598536E-10 2.70346593031E-10 2.87781895461E-10 3.06341627358E-10 3.26098303656E-10 3.47129115684E-10 3.69516232315E-10 3.93347121839E-10 4.18714892899E-10 4.45718658639E-10 4.74463923820E-10 5.05062996863E-10 5.37635428560E-10 5.72308479684E-10 6.09217617151E-10 6.48507044209E-10 6.90330262248E-10 7.34850672827E-10 7.82242213964E-10 8.32690040134E-10 8.86391245989E-10 9.43555635901E-10 1.00440654308E-09 1.06918170325E-09 1.13813418157E-09 1.21153336273E-09 1.28966600246E-09 1.37283734761E-09 1.46137232817E-09 1.55561682733E-09 1.65593903190E-09 1.76273087020E-09 1.87640954322E-09 1.99741915495E-09 2.12623244444E-09 2.26335263594E-09 2.40931540034E-09 2.56469095059E-09 2.73008626752E-09 2.90614746938E-09 3.09356233666E-09 3.29306299814E-09 3.50542878887E-09 3.73148929732E-09 3.97212759781E-09 4.22828370874E-09 4.50095825527E-09 4.79121638162E-09 5.10019190913E-09 5.42909176419E-09 5.77920068989E-09 6.15188626410E-09 6.54860424029E-09 6.97090422941E-09 7.42043575150E-09 7.89895467823E-09 8.40833008609E-09 8.95055155694E-09 9.52773694316E-09 1.01421406359E-08 1.07961623703E-08 1.14923565908E-08 1.22334424247E-08 1.30223142971E-08 1.38620532327E-08 1.47559388777E-08 1.57074623065E-08 1.67203396490E-08 1.77985265943E-08 1.89462338292E-08 2.01679434802E-08 2.14684265977E-08 2.28527617847E-08 2.43263550106E-08 2.58949607190E-08 2.75647042740E-08 2.93421058676E-08 3.12341059664E-08 3.32480923898E-08 3.53919291399E-08 3.76739870819E-08 4.01031766064E-08 4.26889823938E-08 4.54415004177E-08 4.83714773278E-08 5.14903523767E-08 5.48103020368E-08 5.83442875032E-08 6.21061052394E-08 6.61104407945E-08 7.03729260746E-08 7.49102003017E-08 7.97399749045E-08 8.48811025793E-08 9.03536508028E-08 9.61789800675E-08 1.02379827172E-07 1.08980393844E-07 1.16006441091E-07 1.23485389624E-07 1.31446426710E-07 1.39920619952E-07 1.48941038345E-07 1.58542881144E-07 1.68763615024E-07 1.79643120043E-07 1.91223845023E-07 2.03550972899E-07 2.16672596720E-07 2.30639906959E-07 2.45507390879E-07 2.61333044694E-07 2.78178599407E-07 2.96109761130E-07 3.15196466879E-07 3.35513156786E-07 3.57139063832E-07 3.80158522173E-07 4.04661295301E-07 4.30742925253E-07 4.58505104297E-07 4.88056070459E-07 5.19511028456E-07 5.52992597666E-07 5.88631288854E-07 6.26566011512E-07 6.66944613739E-07 7.09924456791E-07 7.55673026486E-07 8.04368583835E-07 8.56200857412E-07 9.11371780110E-07 9.70096273152E-07 1.03260308037E-06 1.09913565595E-06 1.16995310904E-06 1.24533120891E-06 1.32556345452E-06 1.41096221250E-06 1.50185992807E-06 1.59861041342E-06 1.70159021859E-06 1.81120008996E-06 1.92786652213E-06 2.05204340895E-06 2.18421380013E-06 2.32489177005E-06 2.47462440600E-06 2.63399392339E-06 2.80361991591E-06 2.98416174940E-06 3.17632110833E-06 3.38084470469E-06 3.59852715962E-06 3.83021406845E-06 4.07680526119E-06 4.33925827034E-06 4.61859201952E-06 4.91589074658E-06 5.23230817613E-06 5.56907195709E-06 5.92748838213E-06 6.30894740640E-06 6.71492798475E-06 7.14700374713E-06 7.60684903346E-06 8.09624531051E-06 8.61708799471E-06 9.17139370616E-06 9.76130798079E-06 1.03891134692E-05 1.10572386527E-05 1.17682671080E-05 1.25249473557E-05 1.33302033274E-05 1.41871454912E-05 1.50990826748E-05 1.60695346300E-05 1.71022453842E-05 1.82011974270E-05 1.93706267831E-05 2.06150390254E-05 2.19392262869E-05 2.33482853298E-05 2.48476367390E-05 2.64430453050E-05 2.81406416711E-05 2.99469453178E-05 3.18688889675E-05 3.39138444931E-05 3.60896504202E-05 3.84046411177E-05 4.08676777776E-05 4.34881812888E-05 4.62761671153E-05 4.92422822990E-05 5.23978447074E-05 5.57548846589E-05 5.93261890618E-05 6.31253482118E-05 6.71668053990E-05 7.14659094852E-05 7.60389706177E-05 8.09033192565E-05 8.60773686992E-05 9.15806812961E-05 9.74340385599E-05 1.03659515379E-04 1.10280558561E-04 1.17322069928E-04 1.24810494221E-04 1.32773912047E-04 1.41242138144E-04 1.50246825230E-04 1.59821573719E-04 1.70002047602E-04 1.80826096790E-04 1.92333886231E-04 2.04568032134E-04 2.17573745623E-04 2.31398984165E-04 2.46094611122E-04 2.61714563784E-04 2.78316030248E-04 2.95959635503E-04 3.14709637108E-04 3.34634130822E-04 3.55805266575E-04 3.78299475141E-04 4.02197705892E-04 4.27585675989E-04 4.54554131359E-04 4.83199119805E-04 5.13622276557E-04 5.45931122564E-04 5.80239375793E-04 6.16667275774E-04 6.55341921564E-04 6.96397623305E-04 7.39976267422E-04 7.86227695527E-04 8.35310096932E-04 8.87390414659E-04 9.42644764699E-04 1.00125886816E-03 1.06342849584E-03 1.12935992458E-03 1.19927040467E-03 1.27338863727E-03 1.35195526076E-03 1.43522334460E-03 1.52345888915E-03 1.61694132938E-03 1.71596404058E-03 1.82083484325E-03 1.93187650454E-03 2.04942723286E-03 2.17384116200E-03 2.30548882074E-03 2.44475758311E-03 2.59205209440E-03 2.74779466695E-03 2.91242563952E-03 3.08640369317E-03 3.27020611591E-03 3.46432900777E-03 3.66928741686E-03 3.88561539660E-03 4.11386597287E-03 4.35461100949E-03 4.60844095912E-03 4.87596448572E-03 5.15780794411E-03 5.45461470042E-03 5.76704427708E-03 6.09577130428E-03 6.44148425909E-03 6.80488397266E-03 7.18668188459E-03 7.58759802307E-03 8.00835868841E-03 8.44969381700E-03 8.91233400224E-03 9.39700714878E-03 9.90443473590E-03 1.04353276666E-02 1.09903816790E-02 1.15702722973E-02 1.21756493013E-02 1.28071306949E-02 1.34652961557E-02 1.41506799511E-02 1.48637633098E-02 1.56049662406E-02 1.63746387979E-02 1.71730517948E-02 1.80003869757E-02 1.88567266657E-02 1.97420429221E-02 2.06561862260E-02 2.15988737594E-02 2.25696773283E-02 2.35680110037E-02 2.45931185686E-02 2.56440608734E-02 2.67197032197E-02 2.78187029107E-02 2.89394971252E-02 3.00802912912E-02 3.12390481562E-02 3.24134777709E-02 3.36010286248E-02 3.47988801904E-02 3.60039371532E-02 3.72128256209E-02 3.84218916219E-02 3.96272022149E-02 4.08245495400E-02 4.20094581473E-02 4.31771959355E-02 4.43227890282E-02 4.54410408975E-02 4.65265560225E-02 4.75737683343E-02 4.85769746568E-02 4.95303732926E-02 5.04281078360E-02 5.12643162097E-02 5.20331848245E-02 5.27290076477E-02 5.33462498398E-02 5.38796154749E-02 5.43241187098E-02 5.46751575942E-02 5.49285895452E-02 5.50808073228E-02 5.51288141627E-02 5.50702965390E-02 5.49036928604E-02 5.46282562452E-02 5.42441093889E-02 5.37522894408E-02 5.31547807457E-02 5.24545333091E-02 5.16554648997E-02 5.07624448449E-02 4.97812577963E-02 4.87185460588E-02 4.75817295070E-02 4.63789026436E-02 4.51187090053E-02 4.38101938893E-02 4.24626372418E-02 4.10853695248E-02 3.96875744233E-02 3.82780833603E-02 3.68651679067E-02 3.54563372663E-02 3.40581490354E-02 3.26760423036E-02 3.13142028227E-02 2.99754703297E-02 2.86612980882E-02 2.73717742209E-02 2.61057133514E-02 2.48608253733E-02 2.36339657485E-02 2.24214685420E-02 2.12195593994E-02 2.00248408650E-02 1.88348368633E-02 1.76485769184E-02 1.64675271498E-02 1.52961847985E-02 1.41396389999E-02 1.30029760919E-02 1.18912320348E-02 1.08093417875E-02 9.76208605192E-03 8.75403589372E-03 7.78949585381E-03 6.87244627016E-03 6.00648564241E-03 5.19477398366E-03 4.43997821550E-03 3.74422077103E-03 3.10903267289E-03 2.53531244641E-03 2.02329230742E-03 1.57251312689E-03 1.18180971396E-03 8.49307971644E-04 5.72435458556E-04 3.47946829787E-04 1.71965523845E-04 4.00429038837E-05 -5.27641573230E-05 -1.11796544526E-04 -1.42676674296E-04 -1.51172870669E-04 -1.43044961336E-04 -1.23872328789E-04 -9.88663590196E-05 -7.26700320522E-05 -4.89735626084E-05 -2.98347319777E-05 -1.61241939252E-05 -7.58293746800E-06 -2.91123501558E-06 -7.71347846769E-07 -8.42174350153E-08 3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6 6 1 i j (l(j)) -2.81519024405E-02 Q_int -5.55669807340E-20 -5.84159607575E-20 -6.14110111103E-20 -6.45596209782E-20 -6.78696635261E-20 -7.13494155843E-20 -7.50075783455E-20 -7.88532991221E-20 -8.28961942192E-20 -8.71463729803E-20 -9.16144630661E-20 -9.63116370291E-20 -1.01249640251E-19 -1.06440820312E-19 -1.11898157865E-19 -1.17635299099E-19 -1.23666589853E-19 -1.30007111496E-19 -1.36672718635E-19 -1.43680078760E-19 -1.51046713921E-19 -1.58791044543E-19 -1.66932435486E-19 -1.75491244469E-19 -1.84488872971E-19 -1.93947819751E-19 -2.03891737103E-19 -2.14345489999E-19 -2.25335218266E-19 -2.36888401950E-19 -2.49033930027E-19 -2.61802172645E-19 -2.75225057059E-19 -2.89336147473E-19 -3.04170728962E-19 -3.19765895708E-19 -3.36160643750E-19 -3.53395968498E-19 -3.71514967240E-19 -3.90562946912E-19 -4.10587537385E-19 -4.31638810563E-19 -4.53769405596E-19 -4.77034660498E-19 -5.01492750525E-19 -5.27204833640E-19 -5.54235203444E-19 -5.82651449941E-19 -6.12524628549E-19 -6.43929437773E-19 -6.76944405994E-19 -7.11652087830E-19 -7.48139270563E-19 -7.86497191154E-19 -8.26821764384E-19 -8.69213822691E-19 -9.13779368300E-19 -9.60629838287E-19 -1.00988238323E-18 -1.06166016015E-18 -1.11609264045E-18 -1.17331593369E-18 -1.23347312790E-18 -1.29671464740E-18 -1.36319862894E-18 -1.43309131710E-18 -1.50656747999E-18 -1.58381084631E-18 -1.66501456469E-18 -1.75038168673E-18 -1.84012567469E-18 -1.93447093530E-18 -2.03365338085E-18 -2.13792101909E-18 -2.24753457346E-18 -2.36276813491E-18 -2.48390984737E-18 -2.61126262823E-18 -2.74514492576E-18 -2.88589151544E-18 -3.03385433706E-18 -3.18940337474E-18 -3.35292758209E-18 -3.52483585479E-18 -3.70555805307E-18 -3.89554607656E-18 -4.09527499427E-18 -4.30524423251E-18 -4.52597882375E-18 -4.75803071944E-18 -5.00198017017E-18 -5.25843717664E-18 -5.52804301493E-18 -5.81147184006E-18 -6.10943237173E-18 -6.42266966643E-18 -6.75196698057E-18 -7.09814772893E-18 -7.46207754370E-18 -7.84466643895E-18 -8.24687108620E-18 -8.66969720654E-18 -9.11420208549E-18 -9.58149721677E-18 -1.00727510816E-17 -1.05891920705E-17 -1.11321115549E-17 -1.17028671162E-17 -1.23028859408E-17 -1.29336683881E-17 -1.35967917427E-17 -1.42939141585E-17 -1.50267788045E-17 -1.57972182241E-17 -1.66071589170E-17 -1.74586261569E-17 -1.83537490552E-17 -1.92947658855E-17 -2.02840296799E-17 -2.13240141131E-17 -2.24173196878E-17 -2.35666802374E-17 -2.47749697618E-17 -2.60452096142E-17 -2.73805760557E-17 -2.87844081978E-17 -3.02602163521E-17 -3.18116908075E-17 -3.34427110582E-17 -3.51573555043E-17 -3.69599116497E-17 -3.88548868237E-17 -4.08470194511E-17 -4.29412909008E-17 -4.51429379423E-17 -4.74574658396E-17 -4.98906621178E-17 -5.24486110349E-17 -5.51377087952E-17 -5.79646795436E-17 -6.09365921790E-17 -6.40608780308E-17 -6.73453494407E-17 -7.07982192974E-17 -7.44281215739E-17 -7.82441329161E-17 -8.22557953394E-17 -8.64731400892E-17 -9.09067127233E-17 -9.55675994822E-17 -1.00467455010E-16 -1.05618531497E-16 -1.11033709316E-16 -1.16726529232E-16 -1.22711226260E-16 -1.29002765257E-16 -1.35616878348E-16 -1.42570104260E-16 -1.49879829678E-16 -1.57564332721E-16 -1.65642828649E-16 -1.74135517907E-16 -1.83063636642E-16 -1.92449509798E-16 -2.02316606946E-16 -2.12689600965E-16 -2.23594429742E-16 -2.35058361027E-16 -2.47110060617E-16 -2.59779664035E-16 -2.73098851886E-16 -2.87100929075E-16 -3.01820908084E-16 -3.17295596525E-16 -3.33563689175E-16 -3.50665864735E-16 -3.68644887549E-16 -3.87545714532E-16 -4.07415607592E-16 -4.28304251807E-16 -4.50263879659E-16 -4.73349401652E-16 -4.97618543608E-16 -5.23131991014E-16 -5.49953540771E-16 -5.78150260715E-16 -6.07792657323E-16 -6.38954852016E-16 -6.71714766502E-16 -7.06154317619E-16 -7.42359622170E-16 -7.80421212261E-16 -8.20434261679E-16 -8.62498823871E-16 -9.06720082137E-16 -9.53208612637E-16 -1.00208066089E-15 -1.05345843246E-15 -1.10747039850E-15 -1.16425161704E-15 -1.22394407068E-15 -1.28669702161E-15 -1.35266738486E-15 -1.42202012068E-15 -1.49492864698E-15 -1.57157527302E-15 -1.65215165524E-15 -1.73685927653E-15 -1.82590995001E-15 -1.91952634870E-15 -2.01794256229E-15 -2.12140468252E-15 -2.23017141852E-15 -2.34451474370E-15 -2.46472057586E-15 -2.59108949210E-15 -2.72393748046E-15 -2.86359673000E-15 -3.01041646148E-15 -3.16476380060E-15 -3.32702469597E-15 -3.49760488422E-15 -3.67693090452E-15 -3.86545116519E-15 -4.06363706490E-15 -4.27198417145E-15 -4.49101346095E-15 -4.72127262049E-15 -4.96333741769E-15 -5.21781314038E-15 -5.48533611017E-15 -5.76657527354E-15 -6.06223387459E-15 -6.37305121349E-15 -6.69980449515E-15 -7.04331077259E-15 -7.40442899002E-15 -7.78406213063E-15 -8.18315947456E-15 -8.60271897252E-15 -9.04378974126E-15 -9.50747468685E-15 -9.99493326253E-15 -1.05073843680E-14 -1.10461093971E-14 -1.16124554423E-14 -1.22078386628E-14 -1.28337478259E-14 -1.34917480295E-14 -1.41834846157E-14 -1.49106872852E-14 -1.56751744222E-14 -1.64788576413E-14 -1.73237465678E-14 -1.82119538625E-14 -1.91457005046E-14 -2.01273213453E-14 -2.11592709459E-14 -2.22441297158E-14 -2.33846103649E-14 -2.45835646862E-14 -2.58439906875E-14 -2.71690400874E-14 -2.85620261964E-14 -3.00264322023E-14 -3.15659198790E-14 -3.31843387439E-14 -3.48857356829E-14 -3.66743650701E-14 -3.85546994058E-14 -4.05314405000E-14 -4.26095312295E-14 -4.47941678974E-14 -4.70908132269E-14 -4.95052100204E-14 -5.20433955200E-14 -5.47117165033E-14 -5.75168451538E-14 -6.04657957447E-14 -6.35659421783E-14 -6.68250364245E-14 -7.02512279045E-14 -7.38530838689E-14 -7.76396108197E-14 -8.16202770318E-14 -8.58050362281E-14 -9.02043524690E-14 -9.48292263179E-14 -9.96912223483E-14 -1.04802498061E-13 -1.10175834284E-13 -1.15824667132E-13 -1.21763121603E-13 -1.28006046895E-13 -1.34569053543E-13 -1.41468552447E-13 -1.48721795913E-13 -1.56346920787E-13 -1.64362993810E-13 -1.72790059295E-13 -1.81649189245E-13 -1.90962536047E-13 -2.00753387860E-13 -2.11046226852E-13 -2.21866790415E-13 -2.33242135523E-13 -2.45200706384E-13 -2.57772405573E-13 -2.70988668794E-13 -2.84882543493E-13 -2.99488771488E-13 -3.14843875844E-13 -3.30986252200E-13 -3.47956264772E-13 -3.65796347290E-13 -3.84551109099E-13 -4.04267446710E-13 -4.24994661058E-13 -4.46784580784E-13 -4.69691691833E-13 -4.93773273691E-13 -5.19089542618E-13 -5.45703802214E-13 -5.73682601713E-13 -6.03095902389E-13 -6.34017252489E-13 -6.66523971149E-13 -7.00697341720E-13 -7.36622815027E-13 -7.74390223027E-13 -8.14094003445E-13 -8.55833435904E-13 -8.99712890182E-13 -9.45842087182E-13 -9.94336373289E-13 -1.04531700879E-12 -1.09891147111E-12 -1.15525377350E-12 -1.21448480022E-12 -1.27675265877E-12 -1.34221305023E-12 -1.41102965861E-12 -1.48337456011E-12 -1.55942865343E-12 -1.63938211207E-12 -1.72343485987E-12 -1.81179707093E-12 -1.90468969513E-12 -2.00234501058E-12 -2.10500720450E-12 -2.21293298374E-12 -2.32639221669E-12 -2.44566860808E-12 -2.57106040839E-12 -2.70288115959E-12 -2.84146047915E-12 -2.98714488426E-12 -3.14029865825E-12 -3.30130476149E-12 -3.47056578897E-12 -3.64850497696E-12 -3.83556726131E-12 -4.03222039000E-12 -4.23895609269E-12 -4.45629131031E-12 -4.68476948761E-12 -4.92496193206E-12 -5.17746924235E-12 -5.44292281015E-12 -5.72198639889E-12 -6.01535780348E-12 -6.32377059505E-12 -6.64799595526E-12 -6.98884460459E-12 -7.34716882945E-12 -7.72386461332E-12 -8.11987387707E-12 -8.53618683417E-12 -8.97384446668E-12 -9.43394112810E-12 -9.91762727976E-12 -1.04261123674E-11 -1.09606678455E-11 -1.15226303561E-11 -1.21134050712E-11 -1.27344692063E-11 -1.33873757138E-11 -1.40737571664E-11 -1.47953298388E-11 -1.55538979992E-11 -1.63513584210E-11 -1.71897051250E-11 -1.80710343653E-11 -1.89975498714E-11 -1.99715683573E-11 -2.09955253152E-11 -2.20719811045E-11 -2.32036273537E-11 -2.43932936911E-11 -2.56439548189E-11 -2.69587379518E-11 -2.83409306362E-11 -2.97939889696E-11 -3.13215462425E-11 -3.29274220229E-11 -3.46156317066E-11 -3.63903965565E-11 -3.82561542580E-11 -4.02175700138E-11 -4.22795482094E-11 -4.44472446745E-11 -4.67260795751E-11 -4.91217509654E-11 -5.16402490341E-11 -5.42878710824E-11 -5.70712372688E-11 -5.99973071612E-11 -6.30733971380E-11 -6.63071986810E-11 -6.97067976062E-11 -7.32806942805E-11 -7.70378248744E-11 -8.09875837053E-11 -8.51398467251E-11 -8.95049962124E-11 -9.40939467307E-11 -9.89181724174E-11 -1.03989735671E-10 -1.09321317310E-10 -1.14926248278E-10 -1.20818542972E-10 -1.27012934282E-10 -1.33524910426E-10 -1.40370753672E-10 -1.47567581048E-10 -1.55133387135E-10 -1.63087089056E-10 -1.71448573773E-10 -1.80238747805E-10 -1.89479589497E-10 -1.99194203969E-10 -2.09406880878E-10 -2.20143155147E-10 -2.31429870800E-10 -2.43295248079E-10 -2.55768953991E-10 -2.68882176477E-10 -2.82667702383E-10 -2.97159999428E-10 -3.12395302370E-10 -3.28411703596E-10 -3.45249248347E-10 -3.62950034832E-10 -3.81558319469E-10 -4.01120627523E-10 -4.21685869414E-10 -4.43305462987E-10 -4.66033462051E-10 -4.89926691505E-10 -5.15044889391E-10 -5.41450856225E-10 -5.69210611993E-10 -5.98393561177E-10 -6.29072666258E-10 -6.61324630098E-10 -6.95230087678E-10 -7.30873807663E-10 -7.68344904293E-10 -8.07737060139E-10 -8.49148760281E-10 -8.92683538475E-10 -9.38450235950E-10 -9.86563273465E-10 -1.03714293730E-09 -1.09031567994E-09 -1.14621443610E-09 -1.20497895502E-09 -1.26675614978E-09 -1.33170046444E-09 -1.39997426010E-09 -1.47174822069E-09 -1.54720177957E-09 -1.62652356795E-09 -1.70991188640E-09 -1.79757520037E-09 -1.88973266127E-09 -1.98661465407E-09 -2.08846337318E-09 -2.19553342761E-09 -2.30809247732E-09 -2.42642190209E-09 -2.55081750469E-09 -2.68159025007E-09 -2.81906704244E-09 -2.96359154215E-09 -3.11552502446E-09 -3.27524728229E-09 -3.44315757520E-09 -3.61967562702E-09 -3.80524267465E-09 -4.00032257044E-09 -4.20540294126E-09 -4.42099640674E-09 -4.64764186011E-09 -4.88590581450E-09 -5.13638381836E-09 -5.39970194324E-09 -5.67651834794E-09 -5.96752492264E-09 -6.27344901740E-09 -6.59505525905E-09 -6.93314746128E-09 -7.28857063248E-09 -7.66221308650E-09 -8.05500866142E-09 -8.46793905210E-09 -8.90203626206E-09 -9.35838518104E-09 -9.83812629452E-09 -1.03424585320E-08 -1.08726422612E-08 -1.14300024354E-08 -1.20159319024E-08 -1.26318948823E-08 -1.32794306241E-08 -1.39601572485E-08 -1.46757757888E-08 -1.54280744374E-08 -1.62189330106E-08 -1.70503276417E-08 -1.79243357143E-08 -1.88431410479E-08 -1.98090393497E-08 -2.08244439450E-08 -2.18918918004E-08 -2.30140498566E-08 -2.41937216841E-08 -2.54338544801E-08 -2.67375464234E-08 -2.81080544059E-08 -2.95488021595E-08 -3.10633887984E-08 -3.26555978000E-08 -3.43294064433E-08 -3.60889957319E-08 -3.79387608237E-08 -3.98833219947E-08 -4.19275361630E-08 -4.40765090030E-08 -4.63356076788E-08 -4.87104742290E-08 -5.12070396357E-08 -5.38315386138E-08 -5.65905251555E-08 -5.94908888707E-08 -6.25398721615E-08 -6.57450882766E-08 -6.91145402868E-08 -7.26566410316E-08 -7.63802340854E-08 -8.02946157943E-08 -8.44095584402E-08 -8.87353345883E-08 -9.32827426779E-08 -9.80631339222E-08 -1.03088440581E-07 -1.08371205677E-07 -1.13924614236E-07 -1.19762526109E-07 -1.25899510490E-07 -1.32350882176E-07 -1.39132739694E-07 -1.46262005367E-07 -1.53756467427E-07 -1.61634824275E-07 -1.69916731007E-07 -1.78622848305E-07 -1.87774893828E-07 -1.97395696225E-07 -2.07509251902E-07 -2.18140784681E-07 -2.29316808511E-07 -2.41065193365E-07 -2.53415234504E-07 -2.66397725269E-07 -2.80045033586E-07 -2.94391182367E-07 -3.09471934005E-07 -3.25324879182E-07 -3.41989530190E-07 -3.59507419014E-07 -3.77922200402E-07 -3.97279760188E-07 -4.17628329122E-07 -4.39018602501E-07 -4.61503865880E-07 -4.85140127180E-07 -5.09986255518E-07 -5.36104127093E-07 -5.63558778487E-07 -5.92418567764E-07 -6.22755343752E-07 -6.54644623923E-07 -6.88165781313E-07 -7.23402240927E-07 -7.60441686124E-07 -7.99376275468E-07 -8.40302870589E-07 -8.83323275595E-07 -9.28544488640E-07 -9.76078966224E-07 -1.02604490091E-06 -1.07856651310E-06 -1.13377435760E-06 -1.19180564570E-06 -1.25280458354E-06 -1.31692272765E-06 -1.38431935845E-06 -1.45516187257E-06 -1.52962619515E-06 -1.60789721282E-06 -1.69016922866E-06 -1.77664644005E-06 -1.86754344072E-06 -1.96308574806E-06 -2.06351035708E-06 -2.16906632220E-06 -2.28001536850E-06 -2.39663253360E-06 -2.51920684197E-06 -2.64804201306E-06 -2.78345720518E-06 -2.92578779661E-06 -3.07538620606E-06 -3.23262275430E-06 -3.39788656900E-06 -3.57158653498E-06 -3.75415229204E-06 -3.94603528286E-06 -4.14770985326E-06 -4.35967440759E-06 -4.58245262180E-06 -4.81659471718E-06 -5.06267879766E-06 -5.32131225388E-06 -5.59313323715E-06 -5.87881220696E-06 -6.17905355541E-06 -6.49459731254E-06 -6.82622093632E-06 -7.17474119154E-06 -7.54101612193E-06 -7.92594712002E-06 -8.33048109948E-06 -8.75561277495E-06 -9.20238705451E-06 -9.67190155029E-06 -1.01653092129E-05 -1.06838210958E-05 -1.12287092551E-05 -1.18013097931E-05 -1.24030260498E-05 -1.30353319519E-05 -1.36997755260E-05 -1.43979825824E-05 -1.51316605802E-05 -1.59026026802E-05 -1.67126919955E-05 -1.75639060487E-05 -1.84583214455E-05 -1.93981187754E-05 -2.03855877491E-05 -2.14231325843E-05 -2.25132776519E-05 -2.36586733933E-05 -2.48621025230E-05 -2.61264865283E-05 -2.74548924805E-05 -2.88505401715E-05 -3.03168095913E-05 -3.18572487606E-05 -3.34755819357E-05 -3.51757182029E-05 -3.69617604775E-05 -3.88380149286E-05 -4.08090008464E-05 -4.28794609727E-05 -4.50543723139E-05 -4.73389574593E-05 -4.97386964253E-05 -5.22593390486E-05 -5.49069179525E-05 -5.76877621102E-05 -6.06085110314E-05 -6.36761295970E-05 -6.68979235705E-05 -7.02815558138E-05 -7.38350632360E-05 -7.75668745058E-05 -8.14858285580E-05 -8.56011939268E-05 -8.99226889372E-05 -9.44605027903E-05 -9.92253175758E-05 -1.04228331248E-04 -1.09481281603E-04 -1.14996471291E-04 -1.20786793907E-04 -1.26865761197E-04 -1.33247531414E-04 -1.39946938884E-04 -1.46979524790E-04 -1.54361569255E-04 -1.62110124732E-04 -1.70243050771E-04 -1.78779050189E-04 -1.87737706694E-04 -1.97139524006E-04 -2.07005966516E-04 -2.17359501534E-04 -2.28223643154E-04 -2.39622997800E-04 -2.51583311472E-04 -2.64131518747E-04 -2.77295793569E-04 -2.91105601868E-04 -3.05591756033E-04 -3.20786471286E-04 -3.36723423977E-04 -3.53437811826E-04 -3.70966416135E-04 -3.89347665993E-04 -4.08621704476E-04 -4.28830456858E-04 -4.50017700822E-04 -4.72229138678E-04 -4.95512471557E-04 -5.19917475562E-04 -5.45496079850E-04 -5.72302446573E-04 -6.00393052651E-04 -6.29826773280E-04 -6.60664967087E-04 -6.92971562851E-04 -7.26813147632E-04 -7.62259056190E-04 -7.99381461524E-04 -8.38255466327E-04 -8.78959195163E-04 -9.21573887109E-04 -9.66183988591E-04 -1.01287724611E-03 -1.06174479851E-03 -1.11288126841E-03 -1.16638485239E-03 -1.22235740943E-03 -1.28090454713E-03 -1.34213570510E-03 -1.40616423492E-03 -1.47310747604E-03 -1.54308682675E-03 -1.61622780950E-03 -1.69266012977E-03 -1.77251772727E-03 -1.85593881874E-03 -1.94306593102E-03 -2.03404592325E-03 -2.12902999690E-03 -2.22817369221E-03 -2.33163686957E-03 -2.43958367414E-03 -2.55218248207E-03 -2.66960582647E-03 -2.79203030110E-03 -2.91963643973E-03 -3.05260856906E-03 -3.19113463258E-03 -3.33540598328E-03 -3.48561714219E-03 -3.64196552039E-03 -3.80465110128E-03 -3.97387608039E-03 -4.14984445936E-03 -4.33276159102E-03 -4.52283367207E-03 -4.72026717994E-03 -4.92526825029E-03 -5.13804199139E-03 -5.35879173178E-03 -5.58771819741E-03 -5.82501861437E-03 -6.07088573366E-03 -6.32550677401E-03 -6.58906227934E-03 -6.86172488705E-03 -7.14365800402E-03 -7.43501438700E-03 -7.73593462451E-03 -8.04654551779E-03 -8.36695835867E-03 -8.69726710258E-03 -9.03754643589E-03 -9.38784973702E-03 -9.74820693181E-03 -1.01186222445E-02 -1.04990718464E-02 -1.08895014064E-02 -1.12898235469E-02 -1.16999152125E-02 -1.21196149582E-02 -1.25487201676E-02 -1.29869842112E-02 -1.34341135591E-02 -1.38897648628E-02 -1.43535420254E-02 -1.48249932786E-02 -1.53036082914E-02 -1.57888153356E-02 -1.62799785358E-02 -1.67763952388E-02 -1.72772935332E-02 -1.77818299607E-02 -1.82890874587E-02 -1.87980735785E-02 -1.93077190276E-02 -1.98168765853E-02 -2.03243204451E-02 -2.08287460405E-02 -2.13287704098E-02 -2.18229331611E-02 -2.23096980970E-02 -2.27874555602E-02 -2.32545255602E-02 -2.37091617413E-02 -2.41495562474E-02 -2.45738455400E-02 -2.49801172155E-02 -2.53664178670E-02 -2.57307620258E-02 -2.60711422079E-02 -2.63855400813E-02 -2.66719387574E-02 -2.69283361923E-02 -2.71527596709E-02 -2.73432813246E-02 -2.74980346160E-02 -2.76152316986E-02 -2.76931815377E-02 -2.77303086531E-02 -2.77251723160E-02 -2.76764860069E-02 -2.75831369129E-02 -2.74442052142E-02 -2.72589828860E-02 -2.70269917121E-02 -2.67480001882E-02 -2.64220389710E-02 -2.60494145136E-02 -2.56307205199E-02 -2.51668468436E-02 -2.46589854653E-02 -2.41086331895E-02 -2.35175907298E-02 -2.28879578789E-02 -2.22221245088E-02 -2.15227572008E-02 -2.07927813754E-02 -2.00353588771E-02 -1.92538610615E-02 -1.84518375462E-02 -1.76329809037E-02 -1.68010877094E-02 -1.59600164964E-02 -1.51136433166E-02 -1.42658157586E-02 -1.34203064230E-02 -1.25807670017E-02 -1.17506842461E-02 -1.09333392305E-02 -1.01317714240E-02 -9.34874915549E-03 -8.58674810536E-03 -7.84793945932E-03 -7.13418931696E-03 -6.44707085166E-03 -5.78789055965E-03 -5.15772970984E-03 -4.55750180439E-03 -3.98802647791E-03 -3.45011979402E-03 -2.94470033892E-03 -2.47290985881E-03 -2.03624644142E-03 -1.63670740359E-03 -1.27693812229E-03 -9.60382046546E-04 -6.91426069127E-04 -4.73830455663E-04 -3.05082718306E-04 -1.80417469754E-04 -9.43429628918E-05 -4.06252068763E-05 -1.22785825449E-05 -1.56452129246E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6 7 2 i j (l(j)) 0.00000000000E+00 Q_int 1.48649999505E-23 1.58237100791E-23 1.68442516987E-23 1.79306125979E-23 1.90870377554E-23 2.03180459278E-23 2.16284473061E-23 2.30233623123E-23 2.45082416071E-23 2.60888873886E-23 2.77714760644E-23 2.95625823865E-23 3.14692051417E-23 3.34987944999E-23 3.56592811255E-23 3.79591071670E-23 4.04072592447E-23 4.30133035660E-23 4.57874233057E-23 4.87404583970E-23 5.18839478886E-23 5.52301750341E-23 5.87922152888E-23 6.25839874023E-23 6.66203078067E-23 7.09169485115E-23 7.54906987337E-23 8.03594305017E-23 8.55421684907E-23 9.10591643620E-23 9.69319758969E-23 1.03183551234E-22 1.09838318540E-22 1.16922281462E-22 1.24463120740E-22 1.32490302367E-22 1.41035192730E-22 1.50131181173E-22 1.59813810469E-22 1.70120915703E-22 1.81092772111E-22 1.92772252462E-22 2.05204994578E-22 2.18439579670E-22 2.32527722167E-22 2.47524471791E-22 2.63488428667E-22 2.80481972304E-22 2.98571505343E-22 3.17827713028E-22 3.38325839407E-22 3.60145981357E-22 3.83373401554E-22 4.08098861650E-22 4.34418976915E-22 4.62436593773E-22 4.92261191671E-22 5.24009310872E-22 5.57805007842E-22 5.93780340002E-22 6.32075881744E-22 6.72841273730E-22 7.16235807613E-22 7.62429048480E-22 8.11601497421E-22 8.63945296850E-22 9.19664981301E-22 9.78978276651E-22 1.04211695089E-21 1.10932771976E-21 1.18087321080E-21 1.25703298958E-21 1.33810465208E-21 1.42440498758E-21 1.51627121652E-21 1.61406230820E-21 1.71816038341E-21 1.82897220766E-21 1.94693078056E-21 2.07249702779E-21 2.20616160219E-21 2.34844680099E-21 2.49990860670E-21 2.66113885962E-21 2.83276757045E-21 3.01546538213E-21 3.20994619031E-21 3.41696993298E-21 3.63734555991E-21 3.87193419367E-21 4.12165249442E-21 4.38747624185E-21 4.67044414804E-21 4.97166191623E-21 5.29230656139E-21 5.63363100944E-21 5.99696899308E-21 6.38374026337E-21 6.79545613745E-21 7.23372540406E-21 7.70026060987E-21 8.19688475133E-21 8.72553839808E-21 9.28828727572E-21 9.88733033772E-21 1.05250083579E-20 1.12038130769E-20 1.19263969389E-20 1.26955834562E-20 1.35143782416E-20 1.43859807537E-20 1.53137967982E-20 1.63014518364E-20 1.73528051519E-20 1.84719649306E-20 1.96633043137E-20 2.09314784856E-20 2.22814428645E-20 2.37184724655E-20 2.52481825131E-20 2.68765503824E-20 2.86099389564E-20 3.04551214885E-20 3.24193080695E-20 3.45101738012E-20 3.67358887869E-20 3.91051500563E-20 4.16272155492E-20 4.43119402913E-20 4.71698149029E-20 5.02120065911E-20 5.34504027861E-20 5.68976575913E-20 6.05672412298E-20 6.44734926794E-20 6.86316757025E-20 7.30580384896E-20 7.77698771494E-20 8.27856032939E-20 8.81248159819E-20 9.38083783030E-20 9.98584989006E-20 1.06298818752E-19 1.13154503547E-19 1.20452342024E-19 1.28220850644E-19 1.36490385023E-19 1.45293258548E-19 1.54663868636E-19 1.64638831152E-19 1.75257123477E-19 1.86560236820E-19 1.98592338341E-19 2.11400443739E-19 2.25034600963E-19 2.39548085779E-19 2.54997609945E-19 2.71443542811E-19 2.88950147218E-19 3.07585830602E-19 3.27423412301E-19 3.48540408097E-19 3.71019333109E-19 3.94948024224E-19 4.20419983324E-19 4.47534742642E-19 4.76398253688E-19 5.07123301259E-19 5.39829944145E-19 5.74645984265E-19 6.11707466050E-19 6.51159208046E-19 6.93155368792E-19 7.37860049197E-19 7.85447933772E-19 8.36104973208E-19 8.90029110988E-19 9.47431056850E-19 1.00853511014E-18 1.07358003629E-18 1.14281999974E-18 1.21652555716E-18 1.29498471462E-18 1.37850405297E-18 1.46740992585E-18 1.56204973488E-18 1.66279328718E-18 1.77003424036E-18 1.88419164076E-18 2.00571156093E-18 2.13506884257E-18 2.27276895208E-18 2.41934995562E-18 2.57538462165E-18 2.74148265901E-18 2.91829309938E-18 3.10650683341E-18 3.30685931034E-18 3.52013341183E-18 3.74716251105E-18 3.98883372913E-18 4.24609140162E-18 4.51994076844E-18 4.81145190194E-18 5.12176388820E-18 5.45208927803E-18 5.80371882508E-18 6.17802652942E-18 6.57647500653E-18 7.00062120247E-18 7.45212247772E-18 7.93274308330E-18 8.44436105465E-18 8.98897555009E-18 9.56871466258E-18 1.01858437353E-17 1.08427742134E-17 1.15420730671E-17 1.22864728217E-17 1.30788822355E-17 1.39223976655E-17 1.48203151663E-17 1.57761433703E-17 1.67936171967E-17 1.78767124467E-17 1.90296613384E-17 2.02569690445E-17 2.15634312966E-17 2.29541531243E-17 2.44345688031E-17 2.60104630895E-17 2.76879938245E-17 2.94737159959E-17 3.13746073517E-17 3.33980956660E-17 3.55520877633E-17 3.78450004144E-17 4.02857932251E-17 4.28840036463E-17 4.56497842413E-17 4.85939423578E-17 5.17279823573E-17 5.50641505691E-17 5.86154831425E-17 6.23958569867E-17 6.64200439941E-17 7.07037687625E-17 7.52637700393E-17 8.01178661281E-17 8.52850245144E-17 9.07854359814E-17 9.66405935059E-17 1.02873376242E-16 1.09508138924E-16 1.16570807031E-16 1.24088978089E-16 1.32092029516E-16 1.40611233408E-16 1.49679878738E-16 1.59333401434E-16 1.69609522844E-16 1.80548397135E-16 1.92192768194E-16 2.04588136653E-16 2.17782937682E-16 2.31828730250E-16 2.46780398595E-16 2.62696366684E-16 2.79638826506E-16 2.97673981088E-16 3.16872303185E-16 3.37308810656E-16 3.59063359593E-16 3.82220956366E-16 4.06872089784E-16 4.33113084681E-16 4.61046478311E-16 4.90781421010E-16 5.22434102708E-16 5.56128206940E-16 5.91995394144E-16 6.30175816125E-16 6.70818663703E-16 7.14082749681E-16 7.60137129404E-16 8.09161761352E-16 8.61348210326E-16 9.16900395998E-16 9.76035389728E-16 1.03898426277E-15 1.10599298920E-15 1.17732340706E-15 1.25325424148E-15 1.33408219382E-15 1.42012310105E-15 1.51171316984E-15 1.60921029037E-15 1.71299543471E-15 1.82347414554E-15 1.94107812079E-15 2.06626690050E-15 2.19952966251E-15 2.34138713391E-15 2.49239362579E-15 2.65313919926E-15 2.82425197108E-15 3.00640056804E-15 3.20029673968E-15 3.40669813941E-15 3.62641128512E-15 3.86029471060E-15 4.10926232030E-15 4.37428696046E-15 4.65640422049E-15 4.95671647959E-15 5.27639721429E-15 5.61669558384E-15 5.97894131134E-15 6.36454987965E-15 6.77502806243E-15 7.21197981185E-15 7.67711252614E-15 8.17224372119E-15 8.69930813263E-15 9.26036527577E-15 9.85760749323E-15 1.04933685216E-14 1.11701326104E-14 1.18905442296E-14 1.26574184029E-14 1.34737517070E-14 1.43427339816E-14 1.52677607930E-14 1.62524467031E-14 1.73006393925E-14 1.84164346962E-14 1.96041926075E-14 2.08685543154E-14 2.22144603396E-14 2.36471698359E-14 2.51722811465E-14 2.67957536755E-14 2.85239311756E-14 3.03635665361E-14 3.23218481704E-14 3.44064281045E-14 3.66254518774E-14 3.89875903705E-14 4.15020736885E-14 4.41787272268E-14 4.70280100640E-14 5.00610558313E-14 5.32897162171E-14 5.67266072781E-14 6.03851587362E-14 6.42796664558E-14 6.84253483051E-14 7.28384036202E-14 7.75360765043E-14 8.25367232093E-14 8.78598838632E-14 9.35263588238E-14 9.95582899560E-14 1.05979247152E-13 1.12814320431E-13 1.20090217977E-13 1.27835370508E-13 1.36080042359E-13 1.44856449750E-13 1.54198886668E-13 1.64143858868E-13 1.74730226527E-13 1.85999356084E-13 1.97995281884E-13 2.10764878242E-13 2.24358042606E-13 2.38827890528E-13 2.54230963221E-13 2.70627448490E-13 2.88081415916E-13 3.06661067213E-13 3.26439002725E-13 3.47492505111E-13 3.69903841334E-13 3.93760584115E-13 4.19155954125E-13 4.46189184252E-13 4.74965907349E-13 5.05598568999E-13 5.38206866895E-13 5.72918218567E-13 6.09868259259E-13 6.49201371933E-13 6.91071251446E-13 7.35641505113E-13 7.83086292003E-13 8.33591003477E-13 8.87352987597E-13 9.44582320272E-13 1.00550262613E-12 1.07035195234E-12 1.13938369878E-12 1.21286760820E-12 1.29109082023E-12 1.37435899342E-12 1.46299749958E-12 1.55735269517E-12 1.65779327470E-12 1.76471171140E-12 1.87852579084E-12 1.99968024339E-12 2.12864848205E-12 2.26593445229E-12 2.41207460123E-12 2.56763997382E-12 2.73323844419E-12 2.90951709094E-12 3.09716472557E-12 3.29691458408E-12 3.50954719205E-12 3.73589341455E-12 3.97683770276E-12 4.23332154999E-12 4.50634717054E-12 4.79698141589E-12 5.10635994339E-12 5.43569165390E-12 5.78626341552E-12 6.15944509209E-12 6.55669489590E-12 6.97956508567E-12 7.42970803201E-12 7.90888267409E-12 8.41896139265E-12 8.96193732591E-12 9.53993216132E-12 1.01552044158E-11 1.08101582741E-11 1.15073529758E-11 1.22495128274E-11 1.30395378045E-11 1.38805149526E-11 1.47757303917E-11 1.57286821861E-11 1.67430940139E-11 1.78229296790E-11 1.89724086623E-11 2.01960225625E-11 2.14985526448E-11 2.28850885778E-11 2.43610482524E-11 2.59321989735E-11 2.76046800551E-11 2.93850266930E-11 3.12801956157E-11 3.32975922089E-11 3.54450994721E-11 3.77311087618E-11 4.01645526992E-11 4.27549399472E-11 4.55123924858E-11 4.84476850386E-11 5.15722872598E-11 5.48984086053E-11 5.84390457489E-11 6.22080339331E-11 6.62201003167E-11 7.04909221023E-11 7.50371875172E-11 7.98766610832E-11 8.50282529574E-11 9.05120931290E-11 9.63496095550E-11 1.02563612307E-10 1.09178382589E-10 1.16219767606E-10 1.23715281430E-10 1.31694212841E-10 1.40187739393E-10 1.49229049460E-10 1.58853471838E-10 1.69098613746E-10 1.80004508246E-10 1.91613769783E-10 2.03971761353E-10 2.17126771686E-10 2.31130203899E-10 2.46036775912E-10 2.61904735015E-10 2.78796085064E-10 2.96776828467E-10 3.15917224763E-10 3.36292064624E-10 3.57980962120E-10 3.81068666185E-10 4.05645391423E-10 4.31807170595E-10 4.59656230294E-10 4.89301389698E-10 5.20858486633E-10 5.54450829227E-10 5.90209678195E-10 6.28274760262E-10 6.68794813123E-10 7.11928167273E-10 7.57843365168E-10 8.06719817528E-10 8.58748507368E-10 9.14132734421E-10 9.73088910038E-10 1.03584740222E-09 1.10265343677E-09 1.17376805453E-09 1.24946913163E-09 1.33005246610E-09 1.41583293242E-09 1.50714571206E-09 1.60434760377E-09 1.70781841708E-09 1.81796245765E-09 1.93521010458E-09 2.06001949501E-09 2.19287831069E-09 2.33430568783E-09 2.48485424105E-09 2.64511222637E-09 2.81570583664E-09 2.99730165164E-09 3.19060923721E-09 3.39638392522E-09 3.61542975851E-09 3.84860263466E-09 4.09681365008E-09 4.36103266200E-09 4.64229207328E-09 4.94169087094E-09 5.26039891682E-09 5.59966152079E-09 5.96080430456E-09 6.34523838241E-09 6.75446587402E-09 7.19008577317E-09 7.65380019566E-09 8.14742103176E-09 8.67287701911E-09 9.23222128690E-09 9.82763937149E-09 1.04614577586E-08 1.11361529690E-08 1.18543612397E-08 1.26188888222E-08 1.34327229437E-08 1.42990434815E-08 1.52212353822E-08 1.62029018948E-08 1.72478786387E-08 1.83602485952E-08 1.95443580573E-08 2.08048336107E-08 2.21466002095E-08 2.35749004145E-08 2.50953148785E-08 2.67137841472E-08 2.84366318661E-08 3.02705894850E-08 3.22228225591E-08 3.43009587412E-08 3.65131175729E-08 3.88679422172E-08 4.13746332101E-08 4.40429844205E-08 4.68834212833E-08 4.99070415531E-08 5.31256586415E-08 5.65518477640E-08 6.01989950677E-08 6.40813499273E-08 6.82140805911E-08 7.26133334384E-08 7.72962960576E-08 8.22812643649E-08 8.75877140940E-08 9.32363768318E-08 9.92493210276E-08 1.05650038172E-07 1.12463534556E-07 1.19716428927E-07 1.27437056468E-07 1.35655579450E-07 1.44404105038E-07 1.53716810675E-07 1.63630077560E-07 1.74182632737E-07 1.85415700295E-07 1.97373162388E-07 2.10101730570E-07 2.23651128209E-07 2.38074284626E-07 2.53427541778E-07 2.69770874241E-07 2.87168123371E-07 3.05687246555E-07 3.25400582531E-07 3.46385133782E-07 3.68722867145E-07 3.92501033790E-07 4.17812509789E-07 4.44756158653E-07 4.73437217199E-07 5.03967706299E-07 5.36466868056E-07 5.71061631164E-07 6.07887106210E-07 6.47087112930E-07 6.88814741329E-07 7.33232949022E-07 7.80515196979E-07 8.30846126210E-07 8.84422278047E-07 9.41452860741E-07 1.00216056544E-06 1.06678243467E-06 1.13557078667E-06 1.20879419933E-06 1.28673855723E-06 1.36970816626E-06 1.45802693978E-06 1.55203966116E-06 1.65211332746E-06 1.75863857956E-06 1.87203122420E-06 1.99273385389E-06 2.12121757094E-06 2.25798382225E-06 2.40356635202E-06 2.55853327994E-06 2.72348931279E-06 2.89907809811E-06 3.08598472903E-06 3.28493840982E-06 3.49671529254E-06 3.72214149571E-06 3.96209631666E-06 4.21751564978E-06 4.48939562411E-06 4.77879647393E-06 5.08684665745E-06 5.41474723938E-06 5.76377655411E-06 6.13529516739E-06 6.53075115563E-06 6.95168572290E-06 7.39973917706E-06 7.87665728802E-06 8.38429805219E-06 8.92463888894E-06 9.49978429664E-06 1.01119739970E-05 1.07635915988E-05 1.14571738143E-05 1.21954202622E-05 1.29812038949E-05 1.38175820900E-05 1.47078084454E-05 1.56553453261E-05 1.66638772060E-05 1.77373248568E-05 1.88798604375E-05 2.00959235384E-05 2.13902382413E-05 2.27678312595E-05 2.42340512227E-05 2.57945891796E-05 2.74555003941E-05 2.92232275134E-05 3.11046251945E-05 3.31069862782E-05 3.52380696060E-05 3.75061295804E-05 3.99199475762E-05 4.24888653149E-05 4.52228203225E-05 4.81323835969E-05 5.12287996184E-05 5.45240288460E-05 5.80307928474E-05 6.17626222219E-05 6.57339074825E-05 6.99599530737E-05 7.44570347107E-05 7.92424602353E-05 8.43346341968E-05 8.97531263746E-05 9.55187444717E-05 1.01653611221E-04 1.08181246160E-04 1.15126652334E-04 1.22516408222E-04 1.30378765165E-04 1.38743750612E-04 1.47643277513E-04 1.57111260187E-04 1.67183737031E-04 1.77899000430E-04 1.89297734271E-04 2.01423159444E-04 2.14321187772E-04 2.28040584796E-04 2.42633141875E-04 2.58153858067E-04 2.74661132293E-04 2.92216966277E-04 3.10887178794E-04 3.30741631755E-04 3.51854468690E-04 3.74304366196E-04 3.98174798914E-04 4.23554318647E-04 4.50536848208E-04 4.79221990591E-04 5.09715354105E-04 5.42128894048E-04 5.76581271564E-04 6.13198230255E-04 6.52112991160E-04 6.93466666666E-04 7.37408693907E-04 7.84097288171E-04 8.33699916799E-04 8.86393794025E-04 9.42366397118E-04 1.00181600417E-03 1.06495225374E-03 1.13199672653E-03 1.20318354909E-03 1.27876001948E-03 1.35898725472E-03 1.44414085952E-03 1.53451161577E-03 1.63040619211E-03 1.73214787231E-03 1.84007730146E-03 1.95455324821E-03 2.07595338118E-03 2.20467505737E-03 2.34113611977E-03 2.48577570113E-03 2.63905503033E-03 2.80145823704E-03 2.97349315021E-03 3.15569208472E-03 3.34861261036E-03 3.55283829624E-03 3.76897942295E-03 3.99767365401E-03 4.23958665714E-03 4.49541266479E-03 4.76587496252E-03 5.05172629227E-03 5.35374915686E-03 5.67275601024E-03 6.00958931698E-03 6.36512146307E-03 6.74025449838E-03 7.13591968986E-03 7.55307686288E-03 7.99271350643E-03 8.45584361647E-03 8.94350624988E-03 9.45676376000E-03 9.99669968314E-03 1.05644162439E-02 1.11610314456E-02 1.17876757113E-02 1.24454880394E-02 1.31356116363E-02 1.38591889896E-02 1.46173563435E-02 1.54112375387E-02 1.62419371793E-02 1.71105330913E-02 1.80180680370E-02 1.89655406538E-02 1.99538955885E-02 2.09840128013E-02 2.20566960198E-02 2.31726603286E-02 2.43325188889E-02 2.55367687880E-02 2.67857760331E-02 2.80797597105E-02 2.94187753491E-02 3.08026975376E-02 3.22312018666E-02 3.37037462794E-02 3.52195519422E-02 3.67775837612E-02 3.83765307020E-02 4.00147860915E-02 4.16904281102E-02 4.34012007124E-02 4.51444952414E-02 4.69173330408E-02 4.87163493907E-02 5.05377791338E-02 5.23774443843E-02 5.42307447457E-02 5.60926504864E-02 5.79576991529E-02 5.98199961141E-02 6.16732195497E-02 6.35106304001E-02 6.53250877967E-02 6.71090704789E-02 6.88547046826E-02 7.05537989499E-02 7.21978862560E-02 7.37782737850E-02 7.52861005967E-02 7.67124033221E-02 7.80481898958E-02 7.92845211872E-02 8.04126002139E-02 8.14238684323E-02 8.23101083784E-02 8.30635516975E-02 8.36769913449E-02 8.41438964714E-02 8.44585282291E-02 8.46160544511E-02 8.46126608821E-02 8.44456563741E-02 8.41135692225E-02 8.36162316184E-02 8.29548490402E-02 8.21320513250E-02 8.11519221592E-02 8.00200038215E-02 7.87432742285E-02 7.73300936758E-02 7.57901191616E-02 7.41341848327E-02 7.23741479136E-02 7.05227004772E-02 6.85931485824E-02 6.65991616330E-02 6.45544962897E-02 6.24727008527E-02 6.03668076961E-02 5.82490230177E-02 5.61304247959E-02 5.40206813443E-02 5.19278041206E-02 4.98579493720E-02 4.78152836572E-02 4.58019281580E-02 4.38179958313E-02 4.18617337402E-02 3.99297802109E-02 3.80175426912E-02 3.61196972670E-02 3.42308046849E-02 3.23460304649E-02 3.04619483430E-02 2.85773970263E-02 2.66949049821E-02 2.48217629052E-02 2.29662666274E-02 2.11367788245E-02 1.93416544208E-02 1.75891601344E-02 1.58873886891E-02 1.42441683797E-02 1.26669688456E-02 1.11628040906E-02 9.73813397491E-03 8.39876560227E-03 7.14975622361E-03 5.99531947585E-03 4.93873696930E-03 3.98227741910E-03 3.12712568444E-03 2.37332422385E-03 1.71972959064E-03 1.16398666989E-03 7.02523388989E-04 3.30568608432E-04 4.21958073296E-05 -1.69604991014E-04 -3.12824865160E-04 -3.96301381053E-04 -4.29550350595E-04 -4.22563182574E-04 -3.85569759967E-04 -3.28767629146E-04 -2.62019280224E-04 -1.94520436462E-04 -1.33967059054E-04 -8.46629036505E-05 -4.84117220613E-05 -2.45928868830E-05 -1.03557286008E-05 -3.06214922435E-06 -3.81917836551E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6 8 2 i j (l(j)) 0.00000000000E+00 Q_int 1.63156448962E-23 1.73679135857E-23 1.84880477749E-23 1.96804244126E-23 2.09497027363E-23 2.23008424788E-23 2.37391232479E-23 2.52701651569E-23 2.68999507855E-23 2.86348485563E-23 3.04816376201E-23 3.24475343453E-23 3.45402205161E-23 3.67678733492E-23 3.91391974464E-23 4.16634588081E-23 4.43505210405E-23 4.72108838978E-23 5.02557243097E-23 5.34969400566E-23 5.69471962592E-23 6.06199748688E-23 6.45296273476E-23 6.86914307474E-23 7.31216474057E-23 7.78375884903E-23 8.28576816434E-23 8.82015429881E-23 9.38900537787E-23 9.99454419948E-23 1.06391369197E-22 1.13253022987E-22 1.20557215426E-22 1.28332487803E-22 1.36609222165E-22 1.45419760032E-22 1.54798528771E-22 1.64782176125E-22 1.75409713413E-22 1.86722667969E-22 1.98765245407E-22 2.11584502361E-22 2.25230530355E-22 2.39756651542E-22 2.55219627055E-22 2.71679878807E-22 2.89201725589E-22 3.07853634398E-22 3.27708487974E-22 3.48843869588E-22 3.71342366204E-22 3.95291891185E-22 4.20786027820E-22 4.47924395004E-22 4.76813036495E-22 5.07564835288E-22 5.40299954705E-22 5.75146307936E-22 6.12240057863E-22 6.51726149122E-22 6.93758874470E-22 7.38502477697E-22 7.86131795404E-22 8.36832940185E-22 8.90804027865E-22 9.48255951642E-22 1.00941320616E-21 1.07451476471E-21 1.14381501306E-21 1.21758474342E-21 1.29611221263E-21 1.37970426848E-21 1.46868754874E-21 1.56340975751E-21 1.66424102388E-21 1.77157534822E-21 1.88583214173E-21 2.00745786531E-21 2.13692777413E-21 2.27474777466E-21 2.42145640155E-21 2.57762692196E-21 2.74386957557E-21 2.92083395918E-21 3.10921156495E-21 3.30973848248E-21 3.52319827505E-21 3.75042504145E-21 3.99230667519E-21 4.24978833402E-21 4.52387613312E-21 4.81564107652E-21 5.12622324207E-21 5.45683623633E-21 5.80877193677E-21 6.18340553978E-21 6.58220093430E-21 7.00671642201E-21 7.45861080640E-21 7.93964987459E-21 8.45171329720E-21 8.99680197319E-21 9.57704584838E-21 1.01947122383E-20 1.08522146879E-20 1.15521224022E-20 1.22971702858E-20 1.30902696295E-20 1.39345194863E-20 1.48332187807E-20 1.57898791999E-20 1.68082389151E-20 1.78922771892E-20 1.90462299251E-20 2.02746062184E-20 2.15822059761E-20 2.29741386726E-20 2.44558433151E-20 2.60331096969E-20 2.77121010205E-20 2.94993779810E-20 3.14019244020E-20 3.34271745250E-20 3.55830420588E-20 3.78779511026E-20 4.03208690635E-20 4.29213416964E-20 4.56895304046E-20 4.86362519457E-20 5.17730206981E-20 5.51120936539E-20 5.86665183133E-20 6.24501836677E-20 6.64778744718E-20 7.07653290150E-20 7.53293006189E-20 8.01876231019E-20 8.53592804645E-20 9.08644810704E-20 9.67247366104E-20 1.02962946161E-19 1.09603485660E-19 1.16672303161E-19 1.24197020222E-19 1.32207039839E-19 1.40733661336E-19 1.49810202672E-19 1.59472130631E-19 1.69757199406E-19 1.80705598125E-19 1.92360107896E-19 2.04766268968E-19 2.17972558685E-19 2.32030580912E-19 2.46995267674E-19 2.62925093813E-19 2.79882305468E-19 2.97933163312E-19 3.17148201466E-19 3.37602503108E-19 3.59375993867E-19 3.82553754129E-19 4.07226351498E-19 4.33490194683E-19 4.61447910223E-19 4.91208743497E-19 5.22888985609E-19 5.56612427794E-19 5.92510845133E-19 6.30724511473E-19 6.71402747545E-19 7.14704504440E-19 7.60798984714E-19 8.09866303550E-19 8.62098192563E-19 9.17698748992E-19 9.76885233222E-19 1.03988891772E-18 1.10695599076E-18 1.17834851838E-18 1.25434546844E-18 1.33524380067E-18 1.42135962705E-18 1.51302944706E-18 1.61061146250E-18 1.71448697722E-18 1.82506188705E-18 1.94276826585E-18 2.06806605386E-18 2.20144485489E-18 2.34342584952E-18 2.49456383156E-18 2.65544937597E-18 2.82671114649E-18 3.00901835223E-18 3.20308336253E-18 3.40966449066E-18 3.62956895684E-18 3.86365604257E-18 4.11284044820E-18 4.37809586722E-18 4.66045879094E-18 4.96103255862E-18 5.28099166877E-18 5.62158636857E-18 5.98414753921E-18 6.37009189633E-18 6.78092752588E-18 7.21825977702E-18 7.68379753501E-18 8.17935989875E-18 8.70688328893E-18 9.26842901465E-18 9.86619132803E-18 1.05025059983E-17 1.11798594388E-17 1.19008984229E-17 1.26684404260E-17 1.34854846351E-17 1.43552236684E-17 1.52810560498E-17 1.62665994895E-17 1.73157050200E-17 1.84324720438E-17 1.96212643523E-17 2.08867271773E-17 2.22338053422E-17 2.36677625843E-17 2.51942021225E-17 2.68190885525E-17 2.85487711532E-17 3.03900086969E-17 3.23499958594E-17 3.44363913330E-17 3.66573477532E-17 3.90215435555E-17 4.15382168863E-17 4.42172017011E-17 4.70689661914E-17 5.01046536886E-17 5.33361262076E-17 5.67760107973E-17 6.04377488814E-17 6.43356487808E-17 6.84849416239E-17 7.29018408626E-17 7.76036056263E-17 8.26086081630E-17 8.79364056284E-17 9.36078165067E-17 9.96450019590E-17 1.06071552418E-16 1.12912579770E-16 1.20194815476E-16 1.27946715031E-16 1.36198569150E-16 1.44982622133E-16 1.54333197856E-16 1.64286833897E-16 1.74882424304E-16 1.86161371576E-16 1.98167748445E-16 2.10948470088E-16 2.24553477451E-16 2.39035932397E-16 2.54452425430E-16 2.70863196832E-16 2.88332372047E-16 3.06928212255E-16 3.26723381106E-16 3.47795228649E-16 3.70226093585E-16 3.94103625005E-16 4.19521124879E-16 4.46577912638E-16 4.75379713266E-16 5.06039070421E-16 5.38675786207E-16 5.73417389294E-16 6.10399633249E-16 6.49767026990E-16 6.91673399460E-16 7.36282500714E-16 7.83768641780E-16 8.34317375782E-16 8.88126222989E-16 9.45405442635E-16 1.00637885451E-15 1.07128471353E-15 1.14037664076E-15 1.21392461438E-15 1.29221602469E-15 1.37555679706E-15 1.46427258737E-15 1.55871005449E-15 1.65923821484E-15 1.76624988438E-15 1.88016321353E-15 2.00142332108E-15 2.13050403350E-15 2.26790973647E-15 2.41417734573E-15 2.56987840512E-15 2.73562131988E-15 2.91205373402E-15 3.09986506101E-15 3.29978917763E-15 3.51260729169E-15 3.73915099455E-15 3.98030551059E-15 4.23701315628E-15 4.51027702226E-15 4.80116489297E-15 5.11081341901E-15 5.44043255865E-15 5.79131030576E-15 6.16481772267E-15 6.56241429764E-15 6.98565364781E-15 7.43618959002E-15 7.91578260313E-15 8.42630670713E-15 8.96975678590E-15 9.54825638225E-15 1.01640659958E-14 1.08195919157E-14 1.15173956235E-14 1.22602038023E-14 1.30509189908E-14 1.38926309255E-14 1.47886286138E-14 1.57424131859E-14 1.67577115752E-14 1.78384910819E-14 1.89889748750E-14 2.02136584944E-14 2.15173274175E-14 2.29050757584E-14 2.43823261732E-14 2.59548510493E-14 2.76287950612E-14 2.94106991807E-14 3.13075262360E-14 3.33266881189E-14 3.54760747476E-14 3.77640848956E-14 4.01996590113E-14 4.27923141520E-14 4.55521811725E-14 4.84900443117E-14 5.16173833317E-14 5.49464183759E-14 5.84901577189E-14 6.22624485970E-14 6.62780313162E-14 7.05525968505E-14 7.51028481546E-14 7.99465654313E-14 8.51026756073E-14 9.05913262915E-14 9.64339645014E-14 1.02653420468E-13 1.09273996846E-13 1.16321563676E-13 1.23823659472E-13 1.31809598830E-13 1.40310586974E-13 1.49359841693E-13 1.58992723138E-13 1.69246871993E-13 1.80162356556E-13 1.91781829311E-13 2.04150693587E-13 2.17317280977E-13 2.31333040193E-13 2.46252738103E-13 2.62134673734E-13 2.79040906075E-13 2.97037496576E-13 3.16194767284E-13 3.36587575625E-13 3.58295606914E-13 3.81403685727E-13 4.06002107352E-13 4.32186990620E-13 4.60060653496E-13 4.89732012879E-13 5.21317010208E-13 5.54939064497E-13 5.90729554598E-13 6.28828332572E-13 6.69384270157E-13 7.12555840490E-13 7.58511737344E-13 8.07431534302E-13 8.59506386442E-13 9.14939777280E-13 9.73948313888E-13 1.03676257329E-12 1.10362800343E-12 1.17480588229E-12 1.25057433884E-12 1.33122943978E-12 1.41708634650E-12 1.50848054653E-12 1.60576916446E-12 1.70933235744E-12 1.81957480065E-12 1.93692726854E-12 2.06184831811E-12 2.19482608074E-12 2.33638016956E-12 2.48706370983E-12 2.64746550033E-12 2.81821231404E-12 2.99997134734E-12 3.19345282700E-12 3.39941278549E-12 3.61865601513E-12 3.85203921286E-12 4.10047432776E-12 4.36493212456E-12 4.64644597686E-12 4.94611590508E-12 5.26511287482E-12 5.60468337239E-12 5.96615427549E-12 6.35093803802E-12 6.76053820921E-12 7.19655530883E-12 7.66069308119E-12 8.15476515254E-12 8.68070211788E-12 9.24055908474E-12 9.83652370768E-12 1.04709247182E-11 1.11462410549E-11 1.18651115248E-11 1.26303451373E-11 1.34449320371E-11 1.43120552496E-11 1.52351030653E-11 1.62176823067E-11 1.72636324298E-11 1.83770404783E-11 1.95622571340E-11 2.08239136357E-11 2.21669399156E-11 2.35965838881E-11 2.51184319069E-11 2.67384305971E-11 2.84629101353E-11 3.02986089537E-11 3.22527000704E-11 3.43328191090E-11 3.65470941610E-11 3.89041775560E-11 4.14132796176E-11 4.40842046838E-11 4.69273894421E-11 4.99539436612E-11 5.31756936270E-11 5.66052283538E-11 6.02559488215E-11 6.41421202712E-11 6.82789278691E-11 7.26825364166E-11 7.73701528053E-11 8.23600940201E-11 8.76718585472E-11 9.33262018874E-11 9.93452184049E-11 1.05752427606E-10 1.12572865661E-10 1.19833183474E-10 1.27561750806E-10 1.35788767017E-10 1.44546379314E-10 1.53868808090E-10 1.63792480671E-10 1.74356174046E-10 1.85601165825E-10 1.97571395746E-10 2.10313637627E-10 2.23877681754E-10 2.38316529827E-10 2.53686601371E-10 2.70047955062E-10 2.87464523030E-10 3.06004360606E-10 3.25739911622E-10 3.46748293355E-10 3.69111595676E-10 3.92917203429E-10 4.18258136430E-10 4.45233414774E-10 4.73948444048E-10 5.04515427848E-10 5.37053806719E-10 5.71690724086E-10 6.08561523437E-10 6.47810276905E-10 6.89590348896E-10 7.34064994393E-10 7.81407997414E-10 8.31804350749E-10 8.85450976407E-10 9.42557498710E-10 1.00334706040E-09 1.06805719505E-09 1.13694075621E-09 1.21026690607E-09 1.28832216428E-09 1.37141152995E-09 1.45985967363E-09 1.55401220282E-09 1.65423701792E-09 1.76092574340E-09 1.87449526171E-09 1.99538934380E-09 2.12408037823E-09 2.26107122147E-09 2.40689716005E-09 2.56212800329E-09 2.72737030953E-09 2.90326975555E-09 3.09051366294E-09 3.28983367632E-09 3.50200862989E-09 3.72786758649E-09 3.96829307907E-09 4.22422455607E-09 4.49666205510E-09 4.78667011056E-09 5.09538190822E-09 5.42400372196E-09 5.77381961834E-09 6.14619647695E-09 6.54258933379E-09 6.96454706217E-09 7.41371842823E-09 7.89185853214E-09 8.40083566289E-09 8.94263860182E-09 9.51938439376E-09 1.01333266136E-08 1.07868641773E-08 1.14825507137E-08 1.22231045366E-08 1.30114192757E-08 1.38505751727E-08 1.47438511218E-08 1.56947374830E-08 1.67069497097E-08 1.77844428792E-08 1.89314271321E-08 2.01523841316E-08 2.14520845667E-08 2.28356067994E-08 2.43083566974E-08 2.58760887598E-08 2.75449286055E-08 2.93213968874E-08 3.12124347920E-08 3.32254311389E-08 3.53682512647E-08 3.76492677338E-08 4.00773930625E-08 4.26621145394E-08 4.54135312755E-08 4.83423936801E-08 5.14601454431E-08 5.47789682480E-08 5.83118293696E-08 6.20725323147E-08 6.60757707674E-08 7.03371859721E-08 7.48734278558E-08 7.97022200508E-08 8.48424291480E-08 9.03141383906E-08 9.61387261211E-08 1.02338949303E-07 1.08939032402E-07 1.15964762026E-07 1.23443587638E-07 1.31404728786E-07 1.39879289223E-07 1.48900378414E-07 1.58503240840E-07 1.68725393674E-07 1.79606773291E-07 1.91189891263E-07 2.03520000389E-07 2.16645271423E-07 2.30616981205E-07 2.45489712905E-07 2.61321569192E-07 2.78174399127E-07 2.96114039674E-07 3.15210572795E-07 3.35538599104E-07 3.57177529145E-07 3.80211893458E-07 4.04731672616E-07 4.30832648526E-07 4.58616778372E-07 4.88192592638E-07 5.19675618793E-07 5.53188832257E-07 5.88863136425E-07 6.26837873592E-07 6.67261368835E-07 7.10291508870E-07 7.56096358223E-07 8.04854815082E-07 8.56757309367E-07 9.12006545762E-07 9.70818294589E-07 1.03342223359E-06 1.10006284390E-06 1.17100036369E-06 1.24651180324E-06 1.32689202524E-06 1.41245489471E-06 1.50353450286E-06 1.60048646965E-06 1.70368933028E-06 1.81354601071E-06 1.93048539815E-06 2.05496401253E-06 2.18746778547E-06 2.32851395350E-06 2.47865307317E-06 2.63847116543E-06 2.80859199797E-06 2.98967951412E-06 3.18244041777E-06 3.38762692425E-06 3.60603968792E-06 3.83853091760E-06 4.08600769201E-06 4.34943548783E-06 4.62984193421E-06 4.92832080797E-06 5.24603628487E-06 5.58422746354E-06 5.94421317911E-06 6.32739712520E-06 6.73527330394E-06 7.16943182484E-06 7.63156507458E-06 8.12347428161E-06 8.64707650035E-06 9.20441204173E-06 9.79765237852E-06 1.04291085553E-05 1.11012401352E-05 1.18166647172E-05 1.25781680608E-05 1.33887148548E-05 1.42514601724E-05 1.51697616559E-05 1.61471924751E-05 1.71875551102E-05 1.82948960099E-05 1.94735211797E-05 2.07280127587E-05 2.20632466466E-05 2.34844112475E-05 2.49970273978E-05 2.66069695550E-05 2.83204883229E-05 3.01442343980E-05 3.20852840244E-05 3.41511660497E-05 3.63498906828E-05 3.86899800549E-05 4.11805006980E-05 4.38310980554E-05 4.66520331499E-05 4.96542215404E-05 5.28492747067E-05 5.62495440073E-05 5.98681673693E-05 6.37191188697E-05 6.78172613866E-05 7.21784024991E-05 7.68193538325E-05 8.17579940502E-05 8.70133357098E-05 9.26055962074E-05 9.85562730524E-05 1.04888223721E-04 1.11625750354E-04 1.18794689582E-04 1.26422507761E-04 1.34538401935E-04 1.43173406844E-04 1.52360508316E-04 1.62134763401E-04 1.72533427607E-04 1.83596089646E-04 1.95364814080E-04 2.07884292288E-04 2.21202002216E-04 2.35368377349E-04 2.50436985392E-04 2.66464717157E-04 2.83511986172E-04 3.01642939544E-04 3.20925680621E-04 3.41432504037E-04 3.63240143703E-04 3.86430034366E-04 4.11088587335E-04 4.37307481007E-04 4.65183966832E-04 4.94821191362E-04 5.26328535037E-04 5.59821968368E-04 5.95424426164E-04 6.33266200472E-04 6.73485352847E-04 7.16228146606E-04 7.61649499653E-04 8.09913458466E-04 8.61193693788E-04 9.15674018518E-04 9.73548928252E-04 1.03502416485E-03 1.10031730335E-03 1.16965836238E-03 1.24329043829E-03 1.32147036284E-03 1.40446938437E-03 1.49257387219E-03 1.58608604345E-03 1.68532471210E-03 1.79062605863E-03 1.90234441968E-03 2.02085309580E-03 2.14654517552E-03 2.27983437367E-03 2.42115588104E-03 2.57096722258E-03 2.72974912028E-03 2.89800635680E-03 3.07626863498E-03 3.26509142782E-03 3.46505681291E-03 3.67677428426E-03 3.90088153386E-03 4.13804519426E-03 4.38896153252E-03 4.65435708484E-03 4.93498921988E-03 5.23164661795E-03 5.54514965139E-03 5.87635065078E-03 6.22613403946E-03 6.59541631809E-03 6.98514587860E-03 7.39630262609E-03 7.82989738473E-03 8.28697106268E-03 8.76859354877E-03 9.27586231227E-03 9.80990067503E-03 1.03718557237E-02 1.09628958278E-02 1.15842077288E-02 1.22369931612E-02 1.29224649693E-02 1.36418426787E-02 1.43963474819E-02 1.51871965974E-02 1.60155969608E-02 1.68827382065E-02 1.77897848995E-02 1.87378679795E-02 1.97280753778E-02 2.07614417756E-02 2.18389374715E-02 2.29614563332E-02 2.41298028128E-02 2.53446780149E-02 2.66066648108E-02 2.79162120063E-02 2.92736175804E-02 3.06790110240E-02 3.21323348268E-02 3.36333251730E-02 3.51814919297E-02 3.67760980294E-02 3.84161383748E-02 4.01003184165E-02 4.18270325831E-02 4.35943427731E-02 4.53999571474E-02 4.72412094967E-02 4.91150394885E-02 5.10179741379E-02 5.29461108782E-02 5.48951026432E-02 5.68601454107E-02 5.88359686841E-02 6.08168294223E-02 6.27965099549E-02 6.47683204369E-02 6.67251064155E-02 6.86592620852E-02 7.05627498059E-02 7.24271264410E-02 7.42435770494E-02 7.60029564135E-02 7.76958388330E-02 7.93125765276E-02 8.08433668931E-02 8.22783287315E-02 8.36075874277E-02 8.48213688726E-02 8.59101017341E-02 8.68645274559E-02 8.76758171156E-02 8.83356940048E-02 8.88365605068E-02 8.91716275415E-02 8.93350445394E-02 8.93220275879E-02 8.91289830887E-02 8.87536239763E-02 8.81950752846E-02 8.74539656368E-02 8.65325010764E-02 8.54345175768E-02 8.41655085859E-02 8.27326240879E-02 8.11446379298E-02 7.94118805691E-02 7.75461349807E-02 7.55604942163E-02 7.34691800612E-02 7.12873233700E-02 6.90307079962E-02 6.67154817367E-02 6.43578393731E-02 6.19736846766E-02 5.95782800930E-02 5.71858946883E-02 5.48094627237E-02 5.24602668533E-02 5.01476612869E-02 4.78788512083E-02 4.56587451479E-02 4.34898967449E-02 4.13725512386E-02 3.93048099695E-02 3.72829230210E-02 3.53017157796E-02 3.33551495761E-02 3.14370096631E-02 2.95417056296E-02 2.76651600651E-02 2.58057510668E-02 2.39657757791E-02 2.21522762865E-02 2.03731057276E-02 1.86359800736E-02 1.69483981084E-02 1.53175585274E-02 1.37502751241E-02 1.22528911809E-02 1.08311943362E-02 9.49033334717E-03 8.23473830950E-03 7.06804602595E-03 5.99303232691E-03 5.01155323800E-03 4.12449695184E-03 3.33174858852E-03 2.63216971611E-03 2.02359454013E-03 1.50284455420E-03 1.06576326409E-03 7.07272349583E-04 4.21450305311E-04 2.01634198566E-04 4.05446955209E-05 -6.95660660006E-05 -1.36744838165E-04 -1.69147683323E-04 -1.74833098127E-04 -1.61541377055E-04 -1.36464695803E-04 -1.06013376143E-04 -7.55847863095E-05 -4.91593448160E-05 -2.86688121695E-05 -1.46346885063E-05 -6.36933933142E-06 -2.19902575176E-06 -4.98956535543E-07 -4.22378410928E-08 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6 9 2 i j (l(j)) 0.00000000000E+00 Q_int 1.47159172020E-23 1.56650123194E-23 1.66753188129E-23 1.77507844770E-23 1.88956117172E-23 2.01142739708E-23 2.14115331870E-23 2.27924584345E-23 2.42624457086E-23 2.58272390166E-23 2.74929528223E-23 2.92660959386E-23 3.11535969608E-23 3.31628313401E-23 3.53016502035E-23 3.75784110322E-23 4.00020103187E-23 4.25819183298E-23 4.53282161121E-23 4.82516348839E-23 5.13635979676E-23 5.46762654265E-23 5.82025815807E-23 6.19563255873E-23 6.59521652825E-23 7.02057144968E-23 7.47335940660E-23 7.95534967782E-23 8.46842565078E-23 9.01459218100E-23 9.59598342606E-23 1.02148711849E-22 1.08736737749E-22 1.15749654814E-22 1.23214866171E-22 1.31161542295E-22 1.39620734996E-22 1.48625498753E-22 1.58211019876E-22 1.68414753997E-22 1.79276572430E-22 1.90838917965E-22 2.03146970719E-22 2.16248824676E-22 2.30195675614E-22 2.45042021158E-22 2.60845873724E-22 2.77668987210E-22 2.95577098297E-22 3.14640183320E-22 3.34932731696E-22 3.56534037000E-22 3.79528506801E-22 4.04005992489E-22 4.30062140373E-22 4.57798765416E-22 4.87324249083E-22 5.18753962844E-22 5.52210718987E-22 5.87825250515E-22 6.25736721983E-22 6.66093273290E-22 7.09052598537E-22 7.54782562221E-22 8.03461855169E-22 8.55280692775E-22 9.10441558275E-22 9.69159993948E-22 1.03166544336E-21 1.09820214791E-21 1.16903010121E-21 1.24442606504E-21 1.32468465077E-21 1.41011947055E-21 1.50106436280E-21 1.59787469667E-21 1.70092876064E-21 1.81062924071E-21 1.92740479388E-21 2.05171172317E-21 2.18403576059E-21 2.32489396522E-21 2.47483674353E-21 2.63445000020E-21 2.80435742749E-21 2.98522294237E-21 3.17775328076E-21 3.38270075915E-21 3.60086621427E-21 3.83310213237E-21 4.08031598034E-21 4.34347375167E-21 4.62360374108E-21 4.92180056257E-21 5.23922942671E-21 5.57713069368E-21 5.93682472003E-21 6.31971701799E-21 6.72730374751E-21 7.16117756262E-21 7.62303383466E-21 8.11467727706E-21 8.63802899725E-21 9.19513400345E-21 9.78816919557E-21 1.04194518715E-20 1.10914487821E-20 1.18067857698E-20 1.25682580294E-20 1.33788410304E-20 1.42417021434E-20 1.51602130170E-20 1.61379627524E-20 1.71787719279E-20 1.82867075280E-20 1.94660988352E-20 2.07215543465E-20 2.20579797817E-20 2.34805972522E-20 2.49949656666E-20 2.66070024525E-20 2.83230066787E-20 3.01496836689E-20 3.20941712031E-20 3.41640674086E-20 3.63674604499E-20 3.87129601331E-20 4.12097315493E-20 4.38675308868E-20 4.66967435545E-20 4.97084247623E-20 5.29143427199E-20 5.63270246214E-20 5.99598055954E-20 6.38268808127E-20 6.79433609535E-20 7.23253312536E-20 7.69899143570E-20 8.19553372235E-20 8.72410023509E-20 9.28675635906E-20 9.88570068527E-20 1.05232736017E-19 1.12019664384E-19 1.19244312023E-19 1.26934909402E-19 1.35121507698E-19 1.43836096220E-19 1.53112727414E-19 1.62987649916E-19 1.73499450202E-19 1.84689203359E-19 1.96600633591E-19 2.09280285070E-19 2.22777703809E-19 2.37145631266E-19 2.52440210429E-19 2.68721205199E-19 2.86052233917E-19 3.04501017953E-19 3.24139646331E-19 3.45044857420E-19 3.67298338785E-19 3.90987046388E-19 4.16203544369E-19 4.43046366741E-19 4.71620402416E-19 5.02037305058E-19 5.34415929376E-19 5.68882795548E-19 6.05572583601E-19 6.44628659679E-19 6.86203636248E-19 7.30459968431E-19 7.77570588808E-19 8.27719583152E-19 8.81102909746E-19 9.37929165099E-19 9.98420399038E-19 1.06281298237E-18 1.13135853052E-18 1.20432488670E-18 1.28199716853E-18 1.36467888215E-18 1.45269310813E-18 1.54638376399E-18 1.64611694799E-18 1.75228236972E-18 1.86529487286E-18 1.98559605623E-18 2.11365599932E-18 2.24997509912E-18 2.39508602548E-18 2.54955580251E-18 2.71398802420E-18 2.88902521303E-18 3.07535133061E-18 3.27369445031E-18 3.48482960215E-18 3.70958180134E-18 3.94882927196E-18 4.20350687871E-18 4.47460977985E-18 4.76319731587E-18 5.07039714882E-18 5.39740966871E-18 5.74551268407E-18 6.11606641497E-18 6.51051880818E-18 6.93041119496E-18 7.37738431395E-18 7.85318472229E-18 8.35967162040E-18 8.89882411684E-18 9.47274896168E-18 1.00836887787E-17 1.07340308285E-17 1.14263163367E-17 1.21632504241E-17 1.29477126764E-17 1.37827683970E-17 1.46716805842E-17 1.56179226817E-17 1.66251921510E-17 1.76974249194E-17 1.88388107597E-17 2.00538096618E-17 2.13471692602E-17 2.27239433857E-17 2.41895118130E-17 2.57496012825E-17 2.74103078775E-17 2.91781208452E-17 3.10599479530E-17 3.30631424812E-17 3.51955319557E-17 3.74654487346E-17 3.98817625671E-17 4.24539152516E-17 4.51919575306E-17 4.81065883636E-17 5.12091967337E-17 5.45119061503E-17 5.80276220220E-17 6.17700820848E-17 6.57539100823E-17 6.99946729088E-17 7.45089414368E-17 7.93143552683E-17 8.44296916620E-17 8.98749389054E-17 9.56713744201E-17 1.01841647903E-16 1.08409869832E-16 1.15401705676E-16 1.22844476184E-16 1.30767264145E-16 1.39201028022E-16 1.48178722930E-16 1.57735429408E-16 1.67908490491E-16 1.78737657636E-16 1.90265246048E-16 2.02536300028E-16 2.15598768984E-16 2.29503694796E-16 2.44305411262E-16 2.60061756408E-16 2.76834298495E-16 2.94688576591E-16 3.13694356675E-16 3.33925904243E-16 3.55462274503E-16 3.78387621286E-16 4.02791525881E-16 4.28769347070E-16 4.56422593751E-16 4.85859321580E-16 5.17194555208E-16 5.50550737735E-16 5.86058209162E-16 6.23855715700E-16 6.64090951920E-16 7.06921137873E-16 7.52513633435E-16 8.01046592262E-16 8.52709657937E-16 9.07704704999E-16 9.66246627779E-16 1.02856418010E-15 1.09490086913E-15 1.16551590692E-15 1.24068522324E-15 1.32070254381E-15 1.40588053803E-15 1.49655204074E-15 1.59307135279E-15 1.69581562544E-15 1.80518633417E-15 1.92161084735E-15 2.04554409627E-15 2.17747035275E-15 2.31790512146E-15 2.46739715428E-15 2.62653059452E-15 2.79592725950E-15 2.97624907031E-15 3.16820063830E-15 3.37253201830E-15 3.59004163955E-15 3.82157942555E-15 4.06805011513E-15 4.33041679778E-15 4.60970467689E-15 4.90700507581E-15 5.22347970218E-15 5.56036518734E-15 5.91897791849E-15 6.30071918252E-15 6.70708064152E-15 7.13965016153E-15 7.60011801713E-15 8.09028349624E-15 8.61206193086E-15 9.16749218130E-15 9.75874460301E-15 1.03881295273E-14 1.10581062892E-14 1.17712928370E-14 1.25304759622E-14 1.33386221888E-14 1.41988893654E-14 1.51146390039E-14 1.60894494156E-14 1.71271296924E-14 1.82317345920E-14 1.94075803811E-14 2.06592617019E-14 2.19916695254E-14 2.34100102631E-14 2.49198261111E-14 2.65270167063E-14 2.82378621797E-14 3.00590476955E-14 3.19976895743E-14 3.40613630994E-14 3.62581321181E-14 3.85965805510E-14 4.10858459339E-14 4.37356551228E-14 4.65563623021E-14 4.95589894433E-14 5.27552693740E-14 5.61576916240E-14 5.97795512282E-14 6.36350006776E-14 6.77391052201E-14 7.21079017283E-14 7.67584613639E-14 8.17089562840E-14 8.69787306483E-14 9.25883762077E-14 9.85598127662E-14 1.04916373834E-13 1.11682897801E-13 1.18885824997E-13 1.26553301007E-13 1.34715286646E-13 1.43403675038E-13 1.52652416235E-13 1.62497649879E-13 1.72977846416E-13 1.84133957424E-13 1.96009575629E-13 2.08651105244E-13 2.22107943297E-13 2.36432672649E-13 2.51681267461E-13 2.67913311917E-13 2.85192233050E-13 3.03585548582E-13 3.23165130751E-13 3.44007487156E-13 3.66194059708E-13 3.89811542867E-13 4.14952222405E-13 4.41714336009E-13 4.70202457149E-13 5.00527903702E-13 5.32809172927E-13 5.67172404494E-13 6.03751873378E-13 6.42690514541E-13 6.84140481452E-13 7.28263740627E-13 7.75232704522E-13 8.25230905229E-13 8.78453711638E-13 9.35109092838E-13 9.95418430762E-13 1.05961738524E-12 1.12795681485E-12 1.20070375713E-12 1.27814247207E-12 1.36057555280E-12 1.44832510805E-12 1.54173402075E-12 1.64116728784E-12 1.74701344654E-12 1.85968609254E-12 1.97962549612E-12 2.10730032255E-12 2.24320946335E-12 2.38788398576E-12 2.54188920788E-12 2.70582690766E-12 2.88033767432E-12 3.06610341152E-12 3.26385000185E-12 3.47435014326E-12 3.69842636836E-12 3.93695425850E-12 4.19086586510E-12 4.46115335162E-12 4.74887287052E-12 5.05514869010E-12 5.38117758766E-12 5.72823352586E-12 6.09767263079E-12 6.49093849100E-12 6.90956779834E-12 7.35519635262E-12 7.82956545348E-12 8.33452870455E-12 8.87205925836E-12 9.44425752153E-12 1.00533593544E-11 1.07017448465E-11 1.13919475703E-11 1.21266645025E-11 1.29087665421E-11 1.37413097769E-11 1.46275473776E-11 1.55709423155E-11 1.65751809253E-11 1.76441872970E-11 1.87821385521E-11 1.99934812605E-11 2.12829487634E-11 2.26555796426E-11 2.41167374988E-11 2.56721318017E-11 2.73278402742E-11 2.90903325858E-11 3.09664957120E-11 3.29636607682E-11 3.50896316940E-11 3.73527157185E-11 3.97617558872E-11 4.23261654970E-11 4.50559650300E-11 4.79618211660E-11 5.10550885605E-11 5.43478541209E-11 5.78529844222E-11 6.15841757252E-11 6.55560076702E-11 6.97840002453E-11 7.42846743347E-11 7.90756161329E-11 8.41755465130E-11 8.96043933071E-11 9.53833697648E-11 1.01535057167E-10 1.08083493313E-10 1.15054266133E-10 1.22474613984E-10 1.30373531673E-10 1.38781884303E-10 1.47732527541E-10 1.57260435819E-10 1.67402839402E-10 1.78199369708E-10 1.89692214134E-10 2.01926280686E-10 2.14949373964E-10 2.28812381544E-10 2.43569472984E-10 2.59278311407E-10 2.76000278821E-10 2.93800716227E-10 3.12749178383E-10 3.32919706103E-10 3.54391115374E-10 3.77247305514E-10 4.01577586360E-10 4.27477028037E-10 4.55046832061E-10 4.84394726909E-10 5.15635388274E-10 5.48890888904E-10 5.84291173408E-10 6.21974567156E-10 6.62088317045E-10 7.04789166526E-10 7.50243967466E-10 7.98630333004E-10 8.50137330894E-10 9.04966223055E-10 9.63331251145E-10 1.02546047369E-09 1.09159665886E-09 1.16199822980E-09 1.23694027757E-09 1.31671563511E-09 1.40163601990E-09 1.49203325436E-09 1.58826056001E-09 1.69069394060E-09 1.79973364734E-09 1.91580574652E-09 2.03936378206E-09 2.17089054935E-09 2.31089997927E-09 2.45993914943E-09 2.61859041865E-09 2.78747370432E-09 2.96724890448E-09 3.15861847542E-09 3.36233017685E-09 3.57917999452E-09 3.81001524799E-09 4.05573790369E-09 4.31730809879E-09 4.59574789098E-09 4.89214525363E-09 5.20765832660E-09 5.54351993969E-09 5.90104243153E-09 6.28162277890E-09 6.68674804687E-09 7.11800120997E-09 7.57706732971E-09 8.06574014118E-09 8.58592906110E-09 9.13966664435E-09 9.72911653615E-09 1.03565819122E-08 1.10245144854E-08 1.17355240822E-08 1.24923888444E-08 1.32980660757E-08 1.41557038001E-08 1.50686530614E-08 1.60404810151E-08 1.70749848663E-08 1.81762067024E-08 1.93484492884E-08 2.05962928741E-08 2.19246130965E-08 2.33386000165E-08 2.48437784019E-08 2.64460293148E-08 2.81516130851E-08 2.99671937635E-08 3.18998651614E-08 3.39571785690E-08 3.61471722431E-08 3.84784028195E-08 4.09599787380E-08 4.36015958298E-08 4.64135751823E-08 4.94069034737E-08 5.25932758798E-08 5.59851417769E-08 5.95957533438E-08 6.34392173736E-08 6.75305503364E-08 7.18857370625E-08 7.65217931729E-08 8.14568315573E-08 8.67101331064E-08 9.23022220391E-08 9.82549460673E-08 1.04591561722E-07 1.11336825204E-07 1.18517089073E-07 1.26160405162E-07 1.34296634166E-07 1.42957562229E-07 1.52177025113E-07 1.61991040339E-07 1.72437947833E-07 1.83558559667E-07 1.95396319430E-07 2.07997471888E-07 2.21411243554E-07 2.35690034919E-07 2.50889625064E-07 2.67069389453E-07 2.84292531773E-07 3.02626330694E-07 3.22142402547E-07 3.42916980931E-07 3.65031214316E-07 3.88571482829E-07 4.13629735470E-07 4.40303849011E-07 4.68698010068E-07 4.98923121724E-07 5.31097236409E-07 5.65346016604E-07 6.01803225265E-07 6.40611247793E-07 6.81921647642E-07 7.25895757705E-07 7.72705309759E-07 8.22533104460E-07 8.75573724465E-07 9.32034293441E-07 9.92135283970E-07 1.05611137743E-06 1.12421237918E-06 1.19670419275E-06 1.27386985655E-06 1.35601064746E-06 1.44344725525E-06 1.53652103266E-06 1.63559532582E-06 1.74105689022E-06 1.85331739781E-06 1.97281504083E-06 2.10001623890E-06 2.23541745571E-06 2.37954713252E-06 2.53296774581E-06 2.69627799719E-06 2.87011514386E-06 3.05515747882E-06 3.25212697021E-06 3.46179207009E-06 3.68497070352E-06 3.92253344924E-06 4.17540692455E-06 4.44457738713E-06 4.73109456771E-06 5.03607574846E-06 5.36071010263E-06 5.70626331208E-06 6.07408248053E-06 6.46560136122E-06 6.88234591905E-06 7.32594024841E-06 7.79811286948E-06 8.30070342664E-06 8.83566981498E-06 9.40509576173E-06 1.00111988914E-05 1.06563393054E-05 1.13430287090E-05 1.20739401188E-05 1.28519181895E-05 1.36799901971E-05 1.45613777212E-05 1.54995090689E-05 1.64980324884E-05 1.75608302215E-05 1.86920334463E-05 1.98960381676E-05 2.11775221126E-05 2.25414626960E-05 2.39931561201E-05 2.55382376807E-05 2.71827033536E-05 2.89329327416E-05 3.07957134648E-05 3.27782670848E-05 3.48882766557E-05 3.71339160028E-05 3.95238808349E-05 4.20674218008E-05 4.47743796104E-05 4.76552223449E-05 5.07210850879E-05 5.39838120197E-05 5.74560011208E-05 6.11510516425E-05 6.50832145096E-05 6.92676458300E-05 7.37204636947E-05 7.84588084635E-05 8.35009067408E-05 8.88661392572E-05 9.45751128846E-05 1.00649737024E-04 1.07113304619E-04 1.13990578055E-04 1.21307880232E-04 1.29093191090E-04 1.37376249906E-04 1.46188663674E-04 1.55564021910E-04 1.65538018234E-04 1.76148579092E-04 1.87436000010E-04 1.99443089769E-04 2.12215322940E-04 2.25801001185E-04 2.40251423801E-04 2.55621067962E-04 2.71967779147E-04 2.89352972263E-04 3.07841843970E-04 3.27503596746E-04 3.48411675253E-04 3.70644015543E-04 3.94283307699E-04 4.19417272487E-04 4.46138952619E-04 4.74547019220E-04 5.04746094121E-04 5.36847088566E-04 5.70967558958E-04 6.07232080222E-04 6.45772637395E-04 6.86729036000E-04 7.30249331751E-04 7.76490280126E-04 8.25617806275E-04 8.77807495710E-04 9.33245106152E-04 9.92127100863E-04 1.05466120369E-03 1.12106697599E-03 1.19157641541E-03 1.26643457659E-03 1.34590021336E-03 1.43024644220E-03 1.51976142638E-03 1.61474907997E-03 1.71552979067E-03 1.82244116036E-03 1.93583876158E-03 2.05609690836E-03 2.18360943880E-03 2.31879050711E-03 2.46207538182E-03 2.61392124662E-03 2.77480799982E-03 2.94523904776E-03 3.12574208664E-03 3.31686986717E-03 3.51920093489E-03 3.73334033886E-03 3.95992030018E-03 4.19960083104E-03 4.45307029380E-03 4.72104588885E-03 5.00427405838E-03 5.30353079254E-03 5.61962182267E-03 5.95338268531E-03 6.30567863904E-03 6.67740441496E-03 7.06948377979E-03 7.48286888946E-03 7.91853940896E-03 8.37750137301E-03 8.86078576030E-03 9.36944675246E-03 9.90455964749E-03 1.04672183956E-02 1.10585327245E-02 1.16796248191E-02 1.23316255203E-02 1.30156700066E-02 1.37328929205E-02 1.44844229026E-02 1.52713764962E-02 1.60948513851E-02 1.69559189282E-02 1.78556159573E-02 1.87949358057E-02 1.97748185388E-02 2.07961403606E-02 2.18597021779E-02 2.29662173067E-02 2.41162983138E-02 2.53104429966E-02 2.65490195109E-02 2.78322506719E-02 2.91601974614E-02 3.05327417957E-02 3.19495686192E-02 3.34101474094E-02 3.49137132020E-02 3.64592472609E-02 3.80454575493E-02 3.96707591765E-02 4.13332550288E-02 4.30307168188E-02 4.47605668162E-02 4.65198605595E-02 4.83052708733E-02 5.01130735526E-02 5.19391351037E-02 5.37789029621E-02 5.56273986352E-02 5.74792142407E-02 5.93285129350E-02 6.11690337351E-02 6.29941012507E-02 6.47966408397E-02 6.65691996888E-02 6.83039743031E-02 6.99928448475E-02 7.16274167386E-02 7.31990698124E-02 7.46990153142E-02 7.61183608467E-02 7.74481832883E-02 7.86796095466E-02 7.98039048390E-02 8.08125680015E-02 8.16974331100E-02 8.24507764660E-02 8.30654277445E-02 8.35348838362E-02 8.38534236393E-02 8.40162217796E-02 8.40194589599E-02 8.38604263824E-02 8.35376214488E-02 8.30508317439E-02 8.24012041584E-02 8.15912959238E-02 8.06251043254E-02 7.95080719591E-02 7.82470646029E-02 7.68503191172E-02 7.53273592721E-02 7.36888780461E-02 7.19465857522E-02 7.01130243299E-02 6.82013492993E-02 6.62250821848E-02 6.41978376775E-02 6.21330313753E-02 6.00435755862E-02 5.79415723417E-02 5.58380143861E-02 5.37425063854E-02 5.16630198600E-02 4.96056962591E-02 4.75747130566E-02 4.55722276203E-02 4.35984127626E-02 4.16515961870E-02 3.97285133884E-02 3.78246798350E-02 3.59348833964E-02 3.40537919434E-02 3.21766638528E-02 3.03001408980E-02 2.84230938420E-02 2.65480422379E-02 2.46822566506E-02 2.28340150515E-02 2.10116632543E-02 1.92235404612E-02 1.74778989364E-02 1.57828183315E-02 1.41461153450E-02 1.25752495658E-02 1.10772265379E-02 9.65849926602E-03 8.32486958435E-03 7.08139100486E-03 5.93227486341E-03 4.88080177443E-03 3.92924058938E-03 3.07877722289E-03 2.32945585666E-03 1.68013514812E-03 1.12846214994E-03 6.70866679053E-04 3.02578850304E-04 1.76723999889E-05 -1.90863742281E-04 -3.31023429723E-04 -4.11648972490E-04 -4.42263123211E-04 -4.32866570919E-04 -3.93700853216E-04 -3.34977446549E-04 -2.66574787368E-04 -1.97706115518E-04 -1.36078742622E-04 -8.59767535137E-05 -4.91682786022E-05 -2.49856624438E-05 -1.05250922096E-05 -3.11342115239E-06 -3.88463432532E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6 10 2 i j (l(j)) 0.00000000000E+00 Q_int 1.58595759729E-23 1.68824307439E-23 1.79712539799E-23 1.91303002814E-23 2.03640986470E-23 2.16774701706E-23 2.30755468799E-23 2.45637917901E-23 2.61480202506E-23 2.78344226684E-23 2.96295886977E-23 3.15405329887E-23 3.35747225977E-23 3.57401061649E-23 3.80451449737E-23 4.04988460132E-23 4.31107971735E-23 4.58912047107E-23 4.88509331276E-23 5.20015476272E-23 5.53553593043E-23 5.89254732507E-23 6.27258397644E-23 6.67713088601E-23 7.10776882962E-23 7.56618053439E-23 8.05415725402E-23 8.57360576815E-23 9.12655583313E-23 9.71516811336E-23 1.03417426241E-22 1.10087277189E-22 1.17187296565E-22 1.24745227849E-22 1.32790603821E-22 1.41354861964E-22 1.50471467301E-22 1.60176043167E-22 1.70506510403E-22 1.81503235533E-22 1.93209188500E-22 2.05670110570E-22 2.18934693066E-22 2.33054767633E-22 2.48085508770E-22 2.64085649423E-22 2.81117710490E-22 2.99248245119E-22 3.18548098770E-22 3.39092686038E-22 3.60962285346E-22 3.84242352629E-22 4.09023855254E-22 4.35403627482E-22 4.63484748846E-22 4.93376946938E-22 5.25197026172E-22 5.59069324199E-22 5.95126197759E-22 6.33508539870E-22 6.74366330366E-22 7.17859221954E-22 7.64157164050E-22 8.13441066871E-22 8.65903508338E-22 9.21749486580E-22 9.81197220972E-22 1.04447900483E-21 1.11184211309E-21 1.18354976857E-21 1.25988217049E-21 1.34113758937E-21 1.42763353253E-21 1.51970798474E-21 1.61772072892E-21 1.72205475200E-21 1.83311774145E-21 1.95134367831E-21 2.07719453300E-21 2.21116207046E-21 2.35376977176E-21 2.50557487960E-21 2.66717057572E-21 2.83918829883E-21 3.02230021191E-21 3.21722182875E-21 3.42471480980E-21 3.64558993838E-21 3.88071028887E-21 4.13099459914E-21 4.39742086058E-21 4.68103013959E-21 4.98293064558E-21 5.30430206136E-21 5.64640015271E-21 6.01056167535E-21 6.39820959835E-21 6.81085866438E-21 7.25012130866E-21 7.71771395949E-21 8.21546374532E-21 8.74531563426E-21 9.30934003408E-21 9.90974088238E-21 1.05488642585E-20 1.12292075510E-20 1.19534292159E-20 1.27243591653E-20 1.35450098246E-20 1.44185879041E-20 1.53485069292E-20 1.63384005787E-20 1.73921368834E-20 1.85138333409E-20 1.97078730045E-20 2.09789216101E-20 2.23319458077E-20 2.37722325689E-20 2.53054098454E-20 2.69374685607E-20 2.86747860198E-20 3.05241508283E-20 3.24927894195E-20 3.45883942913E-20 3.68191540654E-20 3.91937854841E-20 4.17215674712E-20 4.44123773898E-20 4.72767296381E-20 5.03258167346E-20 5.35715530536E-20 5.70266213802E-20 6.07045224690E-20 6.46196277983E-20 6.87872357274E-20 7.32236312747E-20 7.79461497522E-20 8.29732445036E-20 8.83245590107E-20 9.40210036512E-20 1.00084837406E-19 1.06539754839E-19 1.13410978678E-19 1.20725358380E-19 1.28511475043E-19 1.36799753087E-19 1.45622579139E-19 1.55014428583E-19 1.65012000275E-19 1.75654359943E-19 1.86983092839E-19 1.99042466232E-19 2.11879602387E-19 2.25544662692E-19 2.40091043667E-19 2.55575585612E-19 2.72058794709E-19 2.89605079459E-19 3.08283002348E-19 3.28165547766E-19 3.49330407193E-19 3.71860282774E-19 3.95843210490E-19 4.21372904151E-19 4.48549121589E-19 4.77478054465E-19 5.08272743212E-19 5.41053518745E-19 5.75948472657E-19 6.13093957738E-19 6.52635120779E-19 6.94726469732E-19 7.39532477457E-19 7.87228224404E-19 8.38000082740E-19 8.92046444603E-19 9.49578497327E-19 1.01082104866E-18 1.07601340519E-18 1.14541030748E-18 1.21928292543E-18 1.29791991790E-18 1.38162856064E-18 1.47073594699E-18 1.56559026600E-18 1.66656216298E-18 1.77404618781E-18 1.88846233666E-18 2.01025769311E-18 2.13990817515E-18 2.27792039487E-18 2.42483363801E-18 2.58122197125E-18 2.74769648541E-18 2.92490768327E-18 3.11354802142E-18 3.31435461608E-18 3.52811212339E-18 3.75565580545E-18 3.99787479412E-18 4.25571556538E-18 4.53018563763E-18 4.82235750864E-18 5.13337284633E-18 5.46444694989E-18 5.81687349858E-18 6.19202960677E-18 6.59138120510E-18 7.01648876861E-18 7.46901341434E-18 7.95072339217E-18 8.46350099427E-18 9.00934991027E-18 9.59040305666E-18 1.02089309112E-17 1.08673503849E-17 1.15682342662E-17 1.23143212740E-17 1.31085267595E-17 1.39539540979E-17 1.48539068149E-17 1.58119014951E-17 1.68316815237E-17 1.79172317132E-17 1.90727938745E-17 2.03028833918E-17 2.16123068666E-17 2.30061808996E-17 2.44899520837E-17 2.60694182870E-17 2.77507513081E-17 2.95405209921E-17 3.14457209028E-17 3.34737956504E-17 3.56326699807E-17 3.79307797421E-17 4.03771048483E-17 4.29812043677E-17 4.57532538756E-17 4.87040852155E-17 5.18452288250E-17 5.51889587907E-17 5.87483408099E-17 6.25372832450E-17 6.65705914708E-17 7.08640257264E-17 7.54343626994E-17 8.02994610803E-17 8.54783313467E-17 9.09912100461E-17 9.68596388717E-17 1.03106548836E-16 1.09756349875E-16 1.16835026231E-16 1.24370237984E-16 1.32391429137E-16 1.40929942670E-16 1.50019143007E-16 1.59694546397E-16 1.69993959687E-16 1.80957628058E-16 1.92628392281E-16 2.05051856120E-16 2.18276564529E-16 2.32354193341E-16 2.47339751197E-16 2.63291794486E-16 2.80272656165E-16 2.98348689315E-16 3.17590526429E-16 3.38073355401E-16 3.59877213327E-16 3.83087299253E-16 4.07794307092E-16 4.34094780011E-16 4.62091487675E-16 4.91893827826E-16 5.23618253749E-16 5.57388729325E-16 5.93337213417E-16 6.31604175501E-16 6.72339144557E-16 7.15701293357E-16 7.61860060433E-16 8.10995812161E-16 8.63300547552E-16 9.18978648487E-16 9.78247678346E-16 1.04133923214E-15 1.10849984147E-15 1.17999193788E-15 1.25609487826E-15 1.33710603649E-15 1.42334196542E-15 1.51513963380E-15 1.61285774299E-15 1.71687812861E-15 1.82760725254E-15 1.94547779123E-15 2.07095032633E-15 2.20451514448E-15 2.34669415306E-15 2.49804291962E-15 2.65915284269E-15 2.83065346278E-15 3.01321492222E-15 3.20755058384E-15 3.41441981840E-15 3.63463097188E-15 3.86904452407E-15 4.11857645095E-15 4.38420180386E-15 4.66695851956E-15 4.96795147597E-15 5.28835680950E-15 5.62942651084E-15 5.99249331714E-15 6.37897591970E-15 6.79038450754E-15 7.22832666850E-15 7.69451367092E-15 8.19076715044E-15 8.71902622812E-15 9.28135508755E-15 9.87995104073E-15 1.05171531141E-14 1.11954511882E-14 1.19174957274E-14 1.26861081359E-14 1.35042917830E-14 1.43752437387E-14 1.53023672663E-14 1.62892851206E-14 1.73398537039E-14 1.84581781354E-14 1.96486282912E-14 2.09158558807E-14 2.22648126223E-14 2.37007695931E-14 2.52293378250E-14 2.68564902308E-14 2.85885849427E-14 3.04323901572E-14 3.23951105821E-14 3.44844155885E-14 3.67084691796E-14 3.90759618914E-14 4.15961447514E-14 4.42788654268E-14 4.71346067047E-14 5.01745274538E-14 5.34105062279E-14 5.68551876814E-14 6.05220319789E-14 6.44253673908E-14 6.85804462811E-14 7.30035047070E-14 7.77118258608E-14 8.27238076049E-14 8.80590343617E-14 9.37383536398E-14 9.97839574963E-14 1.06219469253E-13 1.13070035804E-13 1.20362425879E-13 1.28125134642E-13 1.36388495035E-13 1.45184796310E-13 1.54548410192E-13 1.64515925193E-13 1.75126289581E-13 1.86420963571E-13 1.98444081328E-13 2.11242623431E-13 2.24866600439E-13 2.39369248319E-13 2.54807236457E-13 2.71240889102E-13 2.88734421082E-13 3.07356188722E-13 3.27178956950E-13 3.48280183628E-13 3.70742322216E-13 3.94653143968E-13 4.20106080889E-13 4.47200590834E-13 4.76042546132E-13 5.06744647288E-13 5.39426863363E-13 5.74216900751E-13 6.11250702201E-13 6.50672978007E-13 6.92637771475E-13 7.37309060842E-13 7.84861400027E-13 8.35480600706E-13 8.89364458368E-13 9.46723525210E-13 1.00778193287E-12 1.07277826823E-12 1.14196650568E-12 1.21561699956E-12 1.29401754054E-12 1.37747448019E-12 1.46631392803E-12 1.56088302585E-12 1.66155130412E-12 1.76871212597E-12 1.88278422424E-12 2.00421333772E-12 2.13347395284E-12 2.27107115776E-12 2.41754261599E-12 2.57346066733E-12 2.73943456430E-12 2.91611285278E-12 3.10418590623E-12 3.30438862336E-12 3.51750329967E-12 3.74436268438E-12 3.98585323434E-12 4.24291857790E-12 4.51656320215E-12 4.80785637795E-12 5.11793633812E-12 5.44801472510E-12 5.79938132547E-12 6.17340910979E-12 6.57155959748E-12 6.99538856777E-12 7.44655213887E-12 7.92681323928E-12 8.43804849649E-12 8.98225556986E-12 9.56156095801E-12 1.01782283015E-11 1.08346672442E-11 1.15334428151E-11 1.22772855032E-11 1.30691018828E-11 1.39119859855E-11 1.48092313981E-11 1.57643440894E-11 1.67810562248E-11 1.78633405731E-11 1.90154262020E-11 2.02418148897E-11 2.15472987608E-11 2.29369790261E-11 2.44162858476E-11 2.59909996620E-11 2.76672736656E-11 2.94516579255E-11 3.13511249227E-11 3.33730968689E-11 3.55254746275E-11 3.78166686182E-11 4.02556317279E-11 4.28518942233E-11 4.56156010053E-11 4.85575512892E-11 5.16892407741E-11 5.50229065696E-11 5.85715749655E-11 6.23491123790E-11 6.63702796291E-11 7.06507894122E-11 7.52073678675E-11 8.00578198470E-11 8.52210985344E-11 9.07173793221E-11 9.65681391104E-11 1.02796239768E-10 1.09426017397E-10 1.16483378056E-10 1.23995898420E-10 1.31992933589E-10 1.40505731922E-10 1.49567557155E-10 1.59213818592E-10 1.69482208778E-10 1.80412851465E-10 1.92048458108E-10 2.04434494848E-10 2.17619360056E-10 2.31654573407E-10 2.46594977592E-10 2.62498952072E-10 2.79428641388E-10 2.97450198495E-10 3.16634042056E-10 3.37055132984E-10 3.58793266392E-10 3.81933384000E-10 4.06565905236E-10 4.32787081624E-10 4.60699371703E-10 4.90411842489E-10 5.22040595193E-10 5.55709218186E-10 5.91549271308E-10 6.29700798708E-10 6.70312876721E-10 7.13544196213E-10 7.59563682494E-10 8.08551155328E-10 8.60698032504E-10 9.16208076197E-10 9.75298190767E-10 1.03819926789E-09 1.10515709248E-09 1.17643329995E-09 1.25230639931E-09 1.33307286218E-09 1.41904828059E-09 1.51056859946E-09 1.60799143131E-09 1.71169745086E-09 1.82209188498E-09 1.93960609489E-09 2.06469926159E-09 2.19786017972E-09 2.33960916863E-09 2.49050010477E-09 2.65112258532E-09 2.82210423261E-09 3.00411314763E-09 3.19786051665E-09 3.40410339578E-09 3.62364766292E-09 3.85735117158E-09 4.10612710094E-09 4.37094752209E-09 4.65284719864E-09 4.95292762948E-09 5.27236135089E-09 5.61239652339E-09 5.97436179704E-09 6.35967151795E-09 6.76983124163E-09 7.20644362272E-09 7.67121467496E-09 8.16596043742E-09 8.69261406805E-09 9.25323339911E-09 9.85000897847E-09 1.04852726247E-08 1.11615065392E-08 1.18813530077E-08 1.26476247198E-08 1.34633157629E-08 1.43316133163E-08 1.52559101025E-08 1.62398176497E-08 1.72871803960E-08 1.84020907114E-08 1.95889048873E-08 2.08522601595E-08 2.21970928179E-08 2.36286574990E-08 2.51525477155E-08 2.67747177062E-08 2.85015056975E-08 3.03396586759E-08 3.22963587323E-08 3.43792511344E-08 3.65964741827E-08 3.89566910226E-08 4.14691234707E-08 4.41435880490E-08 4.69905343393E-08 5.00210857998E-08 5.32470832240E-08 5.66811309925E-08 6.03366463153E-08 6.42279116474E-08 6.83701304827E-08 7.27794867412E-08 7.74732079939E-08 8.24696327527E-08 8.77882821156E-08 9.34499360066E-08 9.94767143580E-08 1.05892163509E-07 1.12721348174E-07 1.19990949351E-07 1.27729368532E-07 1.35966838640E-07 1.44735542100E-07 1.54069736557E-07 1.64005888648E-07 1.74582816436E-07 1.85841841028E-07 1.97826947917E-07 2.10584958785E-07 2.24165714348E-07 2.38622268971E-07 2.54011097873E-07 2.70392317629E-07 2.87829920933E-07 3.06392026455E-07 3.26151144818E-07 3.47184461705E-07 3.69574139223E-07 3.93407636654E-07 4.18778051915E-07 4.45784484985E-07 4.74532424763E-07 5.05134160829E-07 5.37709221762E-07 5.72384841661E-07 6.09296456750E-07 6.48588233912E-07 6.90413633338E-07 7.34936007356E-07 7.82329237835E-07 8.32778414640E-07 8.86480557768E-07 9.43645385985E-07 1.00449613492E-06 1.06927042784E-06 1.13822120250E-06 1.21161769756E-06 1.28974650259E-06 1.37291267556E-06 1.46144093225E-06 1.55567691220E-06 1.65598852608E-06 1.76276738967E-06 1.87643035017E-06 1.99742111054E-06 2.12621195830E-06 2.26330560553E-06 2.40923714704E-06 2.56457614437E-06 2.72992884382E-06 2.90594053676E-06 3.09329807170E-06 3.29273252761E-06 3.50502205883E-06 3.73099492263E-06 3.97153270107E-06 4.22757372950E-06 4.50011674499E-06 4.79022476876E-06 5.09902923739E-06 5.42773439890E-06 5.77762199041E-06 6.15005621539E-06 6.54648903960E-06 6.96846582601E-06 7.41763133019E-06 7.89573607921E-06 8.40464315828E-06 8.94633543113E-06 9.52292322150E-06 1.01366524852E-05 1.07899135036E-05 1.14852501315E-05 1.22253696346E-05 1.30131531542E-05 1.38516668370E-05 1.47441736747E-05 1.56941460956E-05 1.67052793564E-05 1.77815057850E-05 1.89270099266E-05 2.01462446505E-05 2.14439482778E-05 2.28251627923E-05 2.42952532041E-05 2.58599281367E-05 2.75252617133E-05 2.92977168232E-05 3.11841698545E-05 3.31919369822E-05 3.53288021089E-05 3.76030465590E-05 4.00234806345E-05 4.25994771457E-05 4.53410070385E-05 4.82586772447E-05 5.13637708911E-05 5.46682900104E-05 5.81850009040E-05 6.19274823168E-05 6.59101765925E-05 7.01484439878E-05 7.46586203324E-05 7.94580782338E-05 8.45652920356E-05 8.99999067507E-05 9.57828111998E-05 1.01936215602E-04 1.08483733871E-04 1.15450470897E-04 1.22863115081E-04 1.30750036446E-04 1.39141390611E-04 1.48069228979E-04 1.57567615473E-04 1.67672750186E-04 1.78423100316E-04 1.89859538787E-04 2.02025490975E-04 2.14967089948E-04 2.28733340691E-04 2.43376293769E-04 2.58951228911E-04 2.75516849028E-04 2.93135485173E-04 3.11873312984E-04 3.31800581169E-04 3.52991852595E-04 3.75526258573E-04 3.99487766936E-04 4.24965464528E-04 4.52053854715E-04 4.80853170567E-04 5.11469704338E-04 5.44016153892E-04 5.78611986720E-04 6.15383822182E-04 6.54465832607E-04 6.96000163877E-04 7.40137376082E-04 7.87036904823E-04 8.36867543712E-04 8.89807948550E-04 9.46047163649E-04 1.00578517066E-03 1.06923346026E-03 1.13661562683E-03 1.20816798641E-03 1.28414021771E-03 1.36479602629E-03 1.45041383141E-03 1.54128747520E-03 1.63772695352E-03 1.74005916745E-03 1.84862869443E-03 1.96379857758E-03 2.08595113132E-03 2.21548876138E-03 2.35283479653E-03 2.49843432917E-03 2.65275506130E-03 2.81628815200E-03 2.98954906183E-03 3.17307838892E-03 3.36744269106E-03 3.57323528694E-03 3.79107702939E-03 4.02161704198E-03 4.26553341003E-03 4.52353381551E-03 4.79635610456E-03 5.08476877506E-03 5.38957137043E-03 5.71159476459E-03 6.05170132160E-03 6.41078491191E-03 6.78977076594E-03 7.18961514377E-03 7.61130479832E-03 8.05585620769E-03 8.52431455048E-03 9.01775239636E-03 9.53726808239E-03 1.00839837438E-02 1.06590429662E-02 1.12636080254E-02 1.18988566777E-02 1.25659784644E-02 1.32661704921E-02 1.40006326487E-02 1.47705622158E-02 1.55771478370E-02 1.64215628023E-02 1.73049576095E-02 1.82284517634E-02 1.91931247781E-02 2.02000063471E-02 2.12500656530E-02 2.23441997898E-02 2.34832212786E-02 2.46678446624E-02 2.58986721768E-02 2.71761784986E-02 2.85006945892E-02 2.98723906602E-02 3.12912583037E-02 3.27570918471E-02 3.42694690072E-02 3.58277309437E-02 3.74309618304E-02 3.90779680871E-02 4.07672574450E-02 4.24970180420E-02 4.42650977773E-02 4.60689841854E-02 4.79057851223E-02 4.97722105908E-02 5.16645560657E-02 5.35786877127E-02 5.55100299315E-02 5.74535556806E-02 5.94037800737E-02 6.13547577615E-02 6.33000846350E-02 6.52329043976E-02 6.71459205640E-02 6.90314144382E-02 7.08812696116E-02 7.26870034940E-02 7.44398063506E-02 7.61305882601E-02 7.77500343334E-02 7.92886684356E-02 8.07369255372E-02 8.20852326795E-02 8.33240983741E-02 8.44442100690E-02 8.54365390995E-02 8.62924523062E-02 8.70038292462E-02 8.75631836453E-02 8.79637874505E-02 8.81997955414E-02 8.82663688569E-02 8.81597934004E-02 8.78775923037E-02 8.74186278832E-02 8.67831904087E-02 8.59730701558E-02 8.49916092320E-02 8.38437296767E-02 8.25359344568E-02 8.10762782234E-02 7.94743050870E-02 7.77409512156E-02 7.58884107840E-02 7.39299647046E-02 7.18797726605E-02 6.97526302314E-02 6.75636943481E-02 6.53281819018E-02 6.30610480448E-02 6.07766524990E-02 5.84884239800E-02 5.62085345664E-02 5.39475974184E-02 5.17144025513E-02 4.95157063007E-02 4.73560905287E-02 4.52379073858E-02 4.31613244188E-02 4.11244828649E-02 3.91237789679E-02 3.71542740011E-02 3.52102333026E-02 3.32857880074E-02 3.13757053306E-02 2.94762443174E-02 2.75860641311E-02 2.57076624138E-02 2.38482682494E-02 2.20159954205E-02 2.02189046286E-02 1.84649247039E-02 1.67617696711E-02 1.51168524765E-02 1.35371963434E-02 1.20293448860E-02 1.05992722768E-02 9.25229493237E-03 7.99298633780E-03 6.82509678767E-03 5.75147995448E-03 4.77402831665E-03 3.89361956950E-03 3.11007620251E-03 2.42214044678E-03 1.82746676932E-03 1.32263400852E-03 9.03179099885E-04 5.63654124177E-04 2.97708114508E-04 9.81946772248E-05 -4.26939929042E-05 -1.33266694005E-04 -1.82147057741E-04 -1.98063085283E-04 -1.89614687076E-04 -1.65022500919E-04 -1.31862312441E-04 -9.67905201126E-05 -6.50271207647E-05 -3.94431751680E-05 -2.12079901946E-05 -9.92069973733E-06 -3.78842528051E-06 -9.98306663468E-07 -1.08391397385E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7 7 2 i j (l(j)) 7.64381749930E-01 Q_int 8.22070354174E-26 8.86096605576E-26 9.55109487193E-26 1.02949737848E-25 1.10967890751E-25 1.19610530682E-25 1.28926295285E-25 1.38967610302E-25 1.49790984610E-25 1.61457328235E-25 1.74032295124E-25 1.87586652629E-25 2.02196679756E-25 2.17944596437E-25 2.34919026234E-25 2.53215495078E-25 2.72936968858E-25 2.94194432873E-25 3.17107516418E-25 3.41805166012E-25 3.68426371068E-25 3.97120946069E-25 4.28050373670E-25 4.61388713469E-25 4.97323581545E-25 5.36057206298E-25 5.77807566514E-25 6.22809618072E-25 6.71316616190E-25 7.23601540652E-25 7.79958632042E-25 8.40705047623E-25 9.06182646179E-25 9.76759911878E-25 1.05283402796E-24 1.13483311195E-24 1.22321862494E-24 1.31848796852E-24 1.42117728400E-24 1.53186446957E-24 1.65117243256E-24 1.77977259489E-24 1.91838867160E-24 2.06780074369E-24 2.22884964807E-24 2.40244170955E-24 2.58955384125E-24 2.79123904234E-24 3.00863232397E-24 3.24295709663E-24 3.49553205512E-24 3.76777859963E-24 4.06122883494E-24 4.37753419249E-24 4.71847472403E-24 5.08596911917E-24 5.48208550299E-24 5.90905307476E-24 6.36927465303E-24 6.86534019782E-24 7.40004138601E-24 7.97638732183E-24 8.59762147106E-24 9.26723991402E-24 9.98901102032E-24 1.07669966558E-23 1.16055750412E-23 1.25094653915E-23 1.34837544734E-23 1.45339252323E-23 1.56658876481E-23 1.68860119945E-23 1.82011646884E-23 1.96187469318E-23 2.11467363632E-23 2.27937319524E-23 2.45690023930E-23 2.64825382624E-23 2.85451082461E-23 3.07683197394E-23 3.31646841694E-23 3.57476874055E-23 3.85318656521E-23 4.15328872540E-23 4.47676408713E-23 4.82543305232E-23 5.20125780333E-23 5.60635334543E-23 6.04299940929E-23 6.51365328044E-23 7.02096362800E-23 7.56778541045E-23 8.15719594225E-23 8.79251221191E-23 9.47730954872E-23 1.02154417435E-22 1.10110627362E-22 1.18686499930E-22 1.27930297035E-22 1.37894039412E-22 1.48633799384E-22 1.60210016421E-22 1.72687837269E-22 1.86137482574E-22 2.00634642054E-22 2.16260900460E-22 2.33104196698E-22 2.51259318724E-22 2.70828436970E-22 2.91921679328E-22 3.14657750905E-22 3.39164602054E-22 3.65580148433E-22 3.94053047142E-22 4.24743533313E-22 4.57824321855E-22 4.93481579429E-22 5.31915972127E-22 5.73343794751E-22 6.17998188037E-22 6.66130450686E-22 7.18011453587E-22 7.73933164174E-22 8.34210289517E-22 8.99182047376E-22 9.69214075196E-22 1.04470048778E-21 1.12606609523E-21 1.21376879362E-21 1.30830214185E-21 1.41019813926E-21 1.52003021949E-21 1.63841647756E-21 1.76602314830E-21 1.90356835567E-21 2.05182615410E-21 2.21163088457E-21 2.38388187001E-21 2.56954847635E-21 2.76967556773E-21 2.98538938666E-21 3.21790389206E-21 3.46852759101E-21 3.73867090255E-21 4.02985409498E-21 4.34371584140E-21 4.68202244154E-21 5.04667776189E-21 5.43973394992E-21 5.86340298285E-21 6.32006911585E-21 6.81230229975E-21 7.34287264376E-21 7.91476600471E-21 8.53120079026E-21 9.19564607101E-21 9.91184110313E-21 1.06838163715E-20 1.15159162719E-20 1.24128235596E-20 1.33795857021E-20 1.44216432848E-20 1.55448606280E-20 1.67555587900E-20 1.80605511389E-20 1.94671816961E-20 2.09833664660E-20 2.26176379838E-20 2.43791933340E-20 2.62779459081E-20 2.83245811934E-20 3.05306169070E-20 3.29084678135E-20 3.54715155907E-20 3.82341841367E-20 4.12120207422E-20 4.44217835853E-20 4.78815360400E-20 5.16107483305E-20 5.56304071026E-20 5.99631335284E-20 6.46333106103E-20 6.96672203996E-20 7.50931919021E-20 8.09417605033E-20 8.72458398106E-20 9.40409068788E-20 1.01365201862E-19 1.09259943214E-19 1.17769559654E-19 1.26941940191E-19 1.36828703628E-19 1.47485489052E-19 1.58972268952E-19 1.71353686722E-19 1.84699420448E-19 1.99084575032E-19 2.14590104857E-19 2.31303269364E-19 2.49318124119E-19 2.68736050121E-19 2.89666324340E-19 3.12226734683E-19 3.36544242865E-19 3.62755698900E-19 3.91008611241E-19 4.21461976909E-19 4.54287176260E-19 4.89668937460E-19 5.27806376060E-19 5.68914115544E-19 6.13223495157E-19 6.60983871789E-19 7.12464023266E-19 7.67953660932E-19 8.27765060037E-19 8.92234817102E-19 9.61725744165E-19 1.03662891055E-18 1.11736584364E-18 1.20439090113E-18 1.29819382791E-18 1.39930251222E-18 1.50828595638E-18 1.62575747894E-18 1.75237816619E-18 1.88886059252E-18 2.03597283052E-18 2.19454277338E-18 2.36546279399E-18 2.54969476688E-18 2.74827548126E-18 2.96232247570E-18 3.19304032721E-18 3.44172743015E-18 3.70978330309E-18 3.99871646478E-18 4.31015292351E-18 4.64584532769E-18 5.00768282906E-18 5.39770171416E-18 5.81809686371E-18 6.27123410464E-18 6.75966352398E-18 7.28613381986E-18 7.85360777004E-18 8.46527890538E-18 9.12458948174E-18 9.83524985169E-18 1.06012593450E-17 1.14269287751E-17 1.23169046991E-17 1.32761955665E-17 1.43101999048E-17 1.54247367003E-17 1.66260781455E-17 1.79209849359E-17 1.93167443172E-17 2.08212110946E-17 2.24428518369E-17 2.41907925226E-17 2.60748698980E-17 2.81056868340E-17 3.02946719948E-17 3.26541441545E-17 3.51973815217E-17 3.79386964643E-17 4.08935160538E-17 4.40784688825E-17 4.75114786429E-17 5.12118649949E-17 5.52004522889E-17 5.94996867574E-17 6.41337628329E-17 6.91287593044E-17 7.45127860786E-17 8.03161423708E-17 8.65714872166E-17 9.33140232635E-17 1.00581694877E-16 1.08415401677E-16 1.16859228701E-16 1.25960694500E-16 1.35771018552E-16 1.46345409503E-16 1.57743375859E-16 1.70029060875E-16 1.83271603525E-16 1.97545527591E-16 2.12931161047E-16 2.29515088111E-16 2.47390636507E-16 2.66658402673E-16 2.87426817872E-16 3.09812758398E-16 3.33942203306E-16 3.59950943368E-16 3.87985345241E-16 4.18203175157E-16 4.50774486763E-16 4.85882578104E-16 5.23725023149E-16 5.64514783641E-16 6.08481407560E-16 6.55872320908E-16 7.06954220114E-16 7.62014572880E-16 8.21363235919E-16 8.85334198683E-16 9.54287462907E-16 1.02861106852E-15 1.10872327738E-15 1.19507492702E-15 1.28815196777E-15 1.38847819744E-15 1.49661820904E-15 1.61318056800E-15 1.73882123688E-15 1.87424726685E-15 2.02022077659E-15 2.17756324111E-15 2.34716011466E-15 2.52996581356E-15 2.72700908721E-15 2.93939880738E-15 3.16833020835E-15 3.41509161306E-15 3.68107168318E-15 3.96776723373E-15 4.27679165639E-15 4.60988399879E-15 4.96891875096E-15 5.35591639395E-15 5.77305477002E-15 6.22268133828E-15 6.70732638498E-15 7.22971726250E-15 7.79279373736E-15 8.39972453357E-15 9.05392516441E-15 9.75907715296E-15 1.05191487496E-14 1.13384172628E-14 1.22214931296E-14 1.31733458602E-14 1.41993320032E-14 1.53052252895E-14 1.64972491225E-14 1.77821116003E-14 1.91670432642E-14 2.06598377876E-14 2.22688958340E-14 2.40032723303E-14 2.58727274219E-14 2.78877813965E-14 3.00597738849E-14 3.24009276729E-14 3.49244174828E-14 3.76444441112E-14 4.05763143415E-14 4.37365270790E-14 4.71428661952E-14 5.08145006021E-14 5.47720921209E-14 5.90379117508E-14 6.36359649936E-14 6.85921269376E-14 7.39342878630E-14 7.96925101854E-14 8.58991976239E-14 9.25892775419E-14 9.98003974898E-14 1.07573137054E-13 1.15951236203E-13 1.24981841422E-13 1.34715771005E-13 1.45207801023E-13 1.56516973548E-13 1.68706928892E-13 1.81846263711E-13 1.96008917008E-13 2.11274586185E-13 2.27729175507E-13 2.45465279481E-13 2.64582703892E-13 2.85189027398E-13 3.07400206883E-13 3.31341229928E-13 3.57146818117E-13 3.84962185094E-13 4.14943853673E-13 4.47260536563E-13 4.82094085698E-13 5.19640515480E-13 5.60111105719E-13 6.03733590460E-13 6.50753439387E-13 7.01435239024E-13 7.56064181485E-13 8.14947669169E-13 8.78417044412E-13 9.46829453835E-13 1.02056985788E-12 1.10005319682E-12 1.18572672546E-12 1.27807252965E-12 1.37761023872E-12 1.48489994919E-12 1.60054537616E-12 1.72519725002E-12 1.85955697777E-12 2.00438058935E-12 2.16048299139E-12 2.32874255207E-12 2.51010604308E-12 2.70559396639E-12 2.91630629580E-12 3.14342866557E-12 3.38823904098E-12 3.65211490827E-12 3.93654102443E-12 4.24311777052E-12 4.57357015531E-12 4.92975752011E-12 5.31368399920E-12 5.72750979477E-12 6.17356332980E-12 6.65435434719E-12 7.17258802881E-12 7.73118021395E-12 8.33327380269E-12 8.98225643642E-12 9.68177955505E-12 1.04357789380E-11 1.12484968435E-11 1.21245058802E-11 1.30687347080E-11 1.40864957902E-11 1.51835152616E-11 1.63659651654E-11 1.76404980747E-11 1.90142846664E-11 2.04950539278E-11 2.20911366940E-11 2.38115125118E-11 2.56658600565E-11 2.76646117164E-11 2.98190121618E-11 3.21411815820E-11 3.46441839878E-11 3.73421005171E-11 4.02501086806E-11 4.33845678750E-11 4.67631110901E-11 5.04047443692E-11 5.43299535469E-11 5.85608195085E-11 6.31211422012E-11 6.80365747999E-11 7.33347676166E-11 7.90455239231E-11 8.52009671886E-11 9.18357219540E-11 9.89871086894E-11 1.06695352771E-10 1.15003812360E-10 1.23959220036E-10 1.33611947316E-10 1.44016287015E-10 1.55230758685E-10 1.67318437375E-10 1.80347309236E-10 1.94390652027E-10 2.09527448421E-10 2.25842829643E-10 2.43428554009E-10 2.62383522248E-10 2.82814334592E-10 3.04835888631E-10 3.28572025906E-10 3.54156227668E-10 3.81732364915E-10 4.11455508758E-10 4.43492798601E-10 4.78024383851E-10 5.15244436053E-10 5.55362239907E-10 5.98603367526E-10 6.45210948932E-10 6.95447036581E-10 7.49594076471E-10 8.07956497846E-10 8.70862421275E-10 9.38665502048E-10 1.01174691853E-09 1.09051751183E-09 1.17542009346E-09 1.26693193447E-09 1.36556744323E-09 1.47188105679E-09 1.58647035287E-09 1.70997940630E-09 1.84310240717E-09 1.98658755663E-09 2.14124126745E-09 2.30793269601E-09 2.48759861351E-09 2.68124867368E-09 2.88997107532E-09 3.11493867106E-09 3.35741555071E-09 3.61876413495E-09 3.90045282176E-09 4.20406422461E-09 4.53130405767E-09 4.88401069962E-09 5.26416550873E-09 5.67390394275E-09 6.11552752545E-09 6.59151677525E-09 7.10454509619E-09 7.65749378736E-09 8.25346817647E-09 8.89581506506E-09 9.58814145464E-09 1.03343347967E-08 1.11385847626E-08 1.20054067427E-08 1.29396671247E-08 1.39466106001E-08 1.50318895180E-08 1.62015955590E-08 1.74622938622E-08 1.88210598068E-08 2.02855186085E-08 2.18638880448E-08 2.35650244445E-08 2.53984722907E-08 2.73745176150E-08 2.95042455923E-08 3.17996025532E-08 3.42734628333E-08 3.69397007927E-08 3.98132684195E-08 4.29102789461E-08 4.62480969592E-08 4.98454354626E-08 5.37224605068E-08 5.79009038460E-08 6.24041844241E-08 6.72575391764E-08 7.24881640055E-08 7.81253656796E-08 8.42007254396E-08 9.07482753381E-08 9.78046881477E-08 1.05409482025E-07 1.13605240977E-07 1.22437852403E-07 1.31956762938E-07 1.42215254172E-07 1.53270739627E-07 1.65185084672E-07 1.78024951218E-07 1.91862168954E-07 2.06774135369E-07 2.22844246568E-07 2.40162361365E-07 2.58825301264E-07 2.78937388954E-07 3.00611028359E-07 3.23967329485E-07 3.49136781367E-07 3.76259976966E-07 4.05488393892E-07 4.36985235310E-07 4.70926335630E-07 5.07501135924E-07 5.46913734408E-07 5.89384017874E-07 6.35148880053E-07 6.84463533832E-07 7.37602924190E-07 7.94863249892E-07 8.56563602143E-07 9.23047728911E-07 9.94685934869E-07 1.07187712731E-06 1.15505101871E-06 1.24467049848E-06 1.34123418660E-06 1.44527918268E-06 1.55738402601E-06 1.67817188183E-06 1.80831397194E-06 1.94853326741E-06 2.09960846392E-06 2.26237826078E-06 2.43774596691E-06 2.62668445871E-06 2.83024151594E-06 3.04954556507E-06 3.28581186007E-06 3.54034913452E-06 3.81456675994E-06 4.10998244931E-06 4.42823054627E-06 4.77107094439E-06 5.14039868434E-06 5.53825427926E-06 5.96683482372E-06 6.42850594480E-06 6.92581465870E-06 7.46150320045E-06 8.03852390028E-06 8.66005518378E-06 9.32951878137E-06 1.00505982361E-05 1.08272588071E-05 1.16637688729E-05 1.25647229459E-05 1.35350664171E-05 1.45801221613E-05 1.57056191385E-05 1.69177231407E-05 1.82230698423E-05 1.96288003237E-05 2.11425992511E-05 2.27727359072E-05 2.45281082834E-05 2.64182904559E-05 2.84535834890E-05 3.06450701216E-05 3.30046735130E-05 3.55452203447E-05 3.82805085942E-05 4.12253803197E-05 4.43957998196E-05 4.78089375541E-05 5.14832602451E-05 5.54386275988E-05 5.96963961272E-05 6.42795305761E-05 6.92127235036E-05 7.45225235906E-05 8.02374733039E-05 8.63882565742E-05 9.30078572003E-05 1.00131728732E-04 1.07797976641E-04 1.16047553647E-04 1.24924469100E-04 1.34476013426E-04 1.44752998660E-04 1.55810016182E-04 1.67705712858E-04 1.80503086831E-04 1.94269804317E-04 2.09078538839E-04 2.25007334418E-04 2.42139994338E-04 2.60566497219E-04 2.80383442210E-04 3.01694525258E-04 3.24611048506E-04 3.49252465009E-04 3.75746961091E-04 4.04232078798E-04 4.34855381040E-04 4.67775162194E-04 5.03161207070E-04 5.41195601325E-04 5.82073596577E-04 6.26004533660E-04 6.73212827635E-04 7.23939018390E-04 7.78440890840E-04 8.36994668967E-04 8.99896288155E-04 9.67462750482E-04 1.04003356789E-03 1.11797229835E-03 1.20166818046E-03 1.29153787200E-03 1.38802729844E-03 1.49161361747E-03 1.60280730590E-03 1.72215437563E-03 1.85023872558E-03 1.98768463662E-03 2.13515941706E-03 2.29337620605E-03 2.46309694307E-03 2.64513551120E-03 2.84036106273E-03 3.04970153533E-03 3.27414736742E-03 3.51475542147E-03 3.77265312389E-03 4.04904283046E-03 4.34520642606E-03 4.66251016741E-03 5.00240977756E-03 5.36645580047E-03 5.75629922403E-03 6.17369737912E-03 6.62052012230E-03 7.09875630878E-03 7.61052056188E-03 8.15806034414E-03 8.74376333447E-03 9.37016511444E-03 1.00399571654E-02 1.07559951770E-02 1.15213076649E-02 1.23391048948E-02 1.32127881071E-02 1.41459590326E-02 1.51424296895E-02 1.62062324461E-02 1.73416303316E-02 1.85531275728E-02 1.98454803307E-02 2.12237076048E-02 2.26931022697E-02 2.42592422008E-02 2.59280014408E-02 2.77055613514E-02 2.95984216871E-02 3.16134115205E-02 3.37576999389E-02 3.60388064228E-02 3.84646108085E-02 4.10433627244E-02 4.37836903794E-02 4.66946085717E-02 4.97855257713E-02 5.30662501186E-02 5.65469941639E-02 6.02383781634E-02 6.41514317269E-02 6.82975936005E-02 7.26887093502E-02 7.73370266970E-02 8.22551882359E-02 8.74562212582E-02 9.29535243774E-02 9.87608506437E-02 1.04892286819E-01 1.11362228469E-01 1.18185350509E-01 1.25376572851E-01 1.32951020748E-01 1.40923979479E-01 1.49310842959E-01 1.58127055898E-01 1.67388049112E-01 1.77109167603E-01 1.87305591042E-01 1.97992246291E-01 2.09183711640E-01 2.20894112462E-01 2.33137008017E-01 2.45925269188E-01 2.59270947011E-01 2.73185131880E-01 2.87677803442E-01 3.02757671231E-01 3.18432006250E-01 3.34706463766E-01 3.51584897762E-01 3.69069167598E-01 3.87158937614E-01 4.05851470556E-01 4.25141415915E-01 4.45020594452E-01 4.65477780401E-01 4.86498483055E-01 5.08064729700E-01 5.30154852070E-01 5.52743278775E-01 5.75800336384E-01 5.99292062108E-01 6.23180031279E-01 6.47421203038E-01 6.71967787884E-01 6.96767140940E-01 7.21761684952E-01 7.46888867177E-01 7.72081154427E-01 7.97266070564E-01 8.22366280722E-01 8.47299726467E-01 8.71979815909E-01 8.96315672564E-01 9.20212446370E-01 9.43571689862E-01 9.66291801873E-01 9.88268540521E-01 1.00939560636E+00 1.02956529572E+00 1.04866922307E+00 1.06659911030E+00 1.08324763921E+00 1.09850936240E+00 1.11228166608E+00 1.12446577685E+00 1.13496780292E+00 1.14369979865E+00 1.15058083952E+00 1.15553809365E+00 1.15850787383E+00 1.15943665350E+00 1.15828202875E+00 1.15501360752E+00 1.14961380718E+00 1.14207854120E+00 1.13241777613E+00 1.12065594116E+00 1.10683217351E+00 1.09100038497E+00 1.07322913755E+00 1.05360131870E+00 1.03221361050E+00 1.00917575084E+00 9.84609589253E-01 9.58647944451E-01 9.31433275678E-01 9.03116184791E-01 8.73853770811E-01 8.43807863206E-01 8.13143164202E-01 7.82025333853E-01 7.50619054144E-01 7.19086110001E-01 6.87583525563E-01 6.56261793280E-01 6.25263231440E-01 5.94720502444E-01 5.64755319763E-01 5.35477366111E-01 5.06983439181E-01 4.79356834670E-01 4.52666969511E-01 4.26969241731E-01 4.02305117443E-01 3.78702430644E-01 3.56175877914E-01 3.34727688189E-01 3.14348447417E-01 2.95018059204E-01 2.76706825222E-01 2.59376632724E-01 2.42982240451E-01 2.27472657782E-01 2.12792614353E-01 1.98884117689E-01 1.85688094064E-01 1.73146102188E-01 1.61202100363E-01 1.49804235684E-01 1.38906609391E-01 1.28470957007E-01 1.18468167060E-01 1.08879550032E-01 9.96993771499E-02 9.09357575755E-02 8.25980277137E-02 7.46938914873E-02 6.72292867539E-02 6.02082617603E-02 5.36328646109E-02 4.75030487830E-02 4.18165977110E-02 3.65690713802E-02 3.17537777071E-02 2.73617712292E-02 2.33818812872E-02 1.98007714464E-02 1.66030313808E-02 1.37713018327E-02 1.12864325833E-02 9.12767262350E-03 7.27289094075E-03 5.69882553684E-03 4.38135751347E-03 3.29580632107E-03 2.41724160660E-03 1.72080654529E-03 1.18204713530E-03 7.77241699275E-04 4.83724795187E-04 2.80199900271E-04 1.47035594682E-04 6.65405146822E-05 2.32130299410E-05 3.96236356270E-06 -1.70136760040E-06 -1.51006822940E-06 -3.15003403417E-07 -2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7 8 2 i j (l(j)) 8.32146576965E-01 Q_int 9.27978164657E-26 1.00025295594E-25 1.07815680796E-25 1.16212813532E-25 1.25263949821E-25 1.35020026172E-25 1.45535946245E-25 1.56870889820E-25 1.69088645850E-25 1.82257971431E-25 1.96452978749E-25 2.11753552157E-25 2.28245797730E-25 2.46022527841E-25 2.65183783479E-25 2.85837397238E-25 3.08099600162E-25 3.32095675852E-25 3.57960665516E-25 3.85840127931E-25 4.15890958596E-25 4.48282272683E-25 4.83196356755E-25 5.20829694609E-25 5.61394073016E-25 6.05117773580E-25 6.52246857422E-25 7.03046549926E-25 7.57802733331E-25 8.16823555568E-25 8.80441164409E-25 9.49013576675E-25 1.02292669302E-24 1.10259646965E-24 1.18847125914E-24 1.28103433367E-24 1.38080660463E-24 1.48834955415E-24 1.60426839494E-24 1.72921547616E-24 1.86389395466E-24 2.00906175204E-24 2.16553581998E-24 2.33419673778E-24 2.51599366786E-24 2.71194969739E-24 2.92316759579E-24 3.15083602075E-24 3.39623620755E-24 3.66074917940E-24 3.94586351932E-24 4.25318374734E-24 4.58443935020E-24 4.94149451421E-24 5.32635861628E-24 5.74119753190E-24 6.18834582396E-24 6.67031988077E-24 7.18983207742E-24 7.74980604002E-24 8.35339309883E-24 9.00399002276E-24 9.70525813519E-24 1.04611439186E-23 1.12759012238E-23 1.21541152092E-23 1.31007281445E-23 1.41210672236E-23 1.52208745447E-23 1.64063394242E-23 1.76841332281E-23 1.90614469162E-23 2.05460315102E-23 2.21462417132E-23 2.38710829275E-23 2.57302619335E-23 2.77342415157E-23 2.98942993439E-23 3.22225914395E-23 3.47322205853E-23 3.74373100634E-23 4.03530831352E-23 4.34959487134E-23 4.68835937045E-23 5.05350825449E-23 5.44709644884E-23 5.87133892496E-23 6.32862316552E-23 6.82152260023E-23 7.35281108815E-23 7.92547852805E-23 8.54274768436E-23 9.20809232382E-23 9.92525676449E-23 1.06982769475E-22 1.15315031498E-22 1.24296244658E-22 1.33976951964E-22 1.44411632921E-22 1.55659010124E-22 1.67782379729E-22 1.80849967657E-22 1.94935313549E-22 2.10117684617E-22 2.26482521732E-22 2.44121920254E-22 2.63135148314E-22 2.83629205452E-22 3.05719424782E-22 3.29530122033E-22 3.55195295164E-22 3.82859378446E-22 4.12678055294E-22 4.44819134389E-22 4.79463494051E-22 5.16806100151E-22 5.57057103313E-22 6.00443021560E-22 6.47208015081E-22 6.97615260268E-22 7.51948430787E-22 8.10513293981E-22 8.73639431621E-22 9.41682094676E-22 1.01502420253E-21 1.09407849791E-21 1.17928986968E-21 1.27113785646E-21 1.37013934535E-21 1.47685148074E-21 1.59187479976E-21 1.71585661183E-21 1.84949464154E-21 1.99354095512E-21 2.14880619289E-21 2.31616413115E-21 2.49655659953E-21 2.69099878127E-21 2.90058492627E-21 3.12649450914E-21 3.36999886688E-21 3.63246835346E-21 3.91538005170E-21 4.22032608575E-21 4.54902258097E-21 4.90331932168E-21 5.28521016106E-21 5.69684424182E-21 6.14053809083E-21 6.61878865563E-21 7.13428735639E-21 7.68993523220E-21 8.28885926711E-21 8.93442998761E-21 9.63028043075E-21 1.03803265895E-20 1.11887894507E-20 1.20602187489E-20 1.29995185709E-20 1.40119749541E-20 1.51032856344E-20 1.62795921107E-20 1.75475142075E-20 1.89141873285E-20 2.03873026121E-20 2.19751502144E-20 2.36866659631E-20 2.55314816452E-20 2.75199792108E-20 2.96633491996E-20 3.19736537163E-20 3.44638943125E-20 3.71480851542E-20 4.00413318885E-20 4.31599166529E-20 4.65213897046E-20 5.01446681877E-20 5.40501425913E-20 5.82597915001E-20 6.27973052817E-20 6.76882194070E-20 7.29600581551E-20 7.86424895094E-20 8.47674921180E-20 9.13695352582E-20 9.84857728167E-20 1.06156252378E-19 1.14424140598E-19 1.23335966128E-19 1.32941881465E-19 1.43295945187E-19 1.54456426177E-19 1.66486131539E-19 1.79452760054E-19 1.93429283160E-19 2.08494355613E-19 2.24732758124E-19 2.42235874475E-19 2.61102205793E-19 2.81437924876E-19 3.03357473699E-19 3.26984207446E-19 3.52451088709E-19 3.79901435756E-19 4.09489729066E-19 4.41382480695E-19 4.75759171340E-19 5.12813260391E-19 5.52753274650E-19 5.95803981839E-19 6.42207655513E-19 6.92225438485E-19 7.46138812439E-19 8.04251182005E-19 8.66889582207E-19 9.34406518896E-19 1.00718195252E-18 1.08562543640E-18 1.17017842155E-18 1.26131674098E-18 1.35955328753E-18 1.46544090023E-18 1.57957547544E-18 1.70259932040E-18 1.83520476784E-18 1.97813807218E-18 2.13220360918E-18 2.29826840265E-18 2.47726700376E-18 2.67020675030E-18 2.87817343565E-18 3.10233741918E-18 3.34396021259E-18 3.60440157924E-18 3.88512718638E-18 4.18771685336E-18 4.51387344227E-18 4.86543244098E-18 5.24437229260E-18 5.65282552937E-18 6.09309077377E-18 6.56764567428E-18 7.07916084865E-18 7.63051491309E-18 8.22481068205E-18 8.86539262967E-18 9.55586571118E-18 1.03001156502E-17 1.11023308062E-17 1.19670257447E-17 1.28990666440E-17 1.39036986794E-17 1.49865755420E-17 1.61537912545E-17 1.74119144667E-17 1.87680254210E-17 2.02297557972E-17 2.18053316608E-17 2.35036197562E-17 2.53341774047E-17 2.73073062900E-17 2.94341104317E-17 3.17265586745E-17 3.41975520438E-17 3.68609963482E-17 3.97318804353E-17 4.28263605432E-17 4.61618512216E-17 4.97571233334E-17 5.36324096904E-17 5.78095189147E-17 6.23119581694E-17 6.71650654473E-17 7.23961521627E-17 7.80346568495E-17 8.41123108286E-17 9.06633167799E-17 9.77245412199E-17 1.05335721972E-16 1.13539691796E-16 1.22382619430E-16 1.31914269411E-16 1.42188282132E-16 1.53262475701E-16 1.65199171325E-16 1.78065544021E-16 1.91934000654E-16 2.06882587410E-16 2.22995429006E-16 2.40363202112E-16 2.59083645636E-16 2.79262110762E-16 3.01012153818E-16 3.24456175322E-16 3.49726108802E-16 3.76964163260E-16 4.06323623460E-16 4.37969712550E-16 4.72080521867E-16 5.08848013153E-16 5.48479098833E-16 5.91196806428E-16 6.37241533650E-16 6.86872401255E-16 7.40368711261E-16 7.98031518727E-16 8.60185325959E-16 9.27179908660E-16 9.99392284303E-16 1.07722883382E-15 1.16112758851E-15 1.25156069509E-15 1.34903707272E-15 1.45410527692E-15 1.56735658665E-15 1.68942833165E-15 1.82100747914E-15 1.96283449962E-15 2.11570753399E-15 2.28048688500E-15 2.45809985867E-15 2.64954598270E-15 2.85590263127E-15 3.07833108803E-15 3.31808308114E-15 3.57650782742E-15 3.85505962501E-15 4.15530603743E-15 4.47893671499E-15 4.82777290325E-15 5.20377769205E-15 5.60906706272E-15 6.04592179566E-15 6.51680030536E-15 7.02435247501E-15 7.57143456856E-15 8.16112530418E-15 8.79674317960E-15 9.48186514666E-15 1.02203467404E-14 1.10163437758E-14 1.18743357342E-14 1.27991509712E-14 1.37959938880E-14 1.48704742182E-14 1.60286385965E-14 1.72770045849E-14 1.86225973500E-14 2.00729891959E-14 2.16363421767E-14 2.33214540269E-14 2.51378076697E-14 2.70956245803E-14 2.92059223064E-14 3.14805764665E-14 3.39323875789E-14 3.65751530935E-14 3.94237450348E-14 4.24941936911E-14 4.58037778213E-14 4.93711218879E-14 5.32163008614E-14 5.73609531881E-14 6.18284025544E-14 6.66437891356E-14 7.18342110651E-14 7.74288769220E-14 8.34592700940E-14 8.99593259407E-14 9.69656227544E-14 1.04517587593E-13 1.12657718143E-13 1.21431821861E-13 1.30889273736E-13 1.41083294134E-13 1.52071248272E-13 1.63914969019E-13 1.76681104836E-13 1.90441494812E-13 2.05273572908E-13 2.21260803680E-13 2.38493151939E-13 2.57067588986E-13 2.77088638265E-13 2.98668963524E-13 3.21930002764E-13 3.47002651567E-13 3.74027999641E-13 4.03158124717E-13 4.34556948278E-13 4.68401157925E-13 5.04881201580E-13 5.44202359098E-13 5.86585897350E-13 6.32270315247E-13 6.81512685720E-13 7.34590102210E-13 7.91801237805E-13 8.53468025785E-13 9.19937471046E-13 9.91583602583E-13 1.06880957802E-12 1.15204995203E-12 1.24177312138E-12 1.33848396043E-12 1.44272666182E-12 1.55508779837E-12 1.67619962341E-12 1.80674362819E-12 1.94745437618E-12 2.09912363603E-12 2.26260483639E-12 2.43881786753E-12 2.62875425698E-12 2.83348274807E-12 3.05415531300E-12 3.29201363401E-12 3.54839608930E-12 3.82474528292E-12 4.12261616100E-12 4.44368475994E-12 4.78975763579E-12 5.16278202789E-12 5.56485681390E-12 5.99824431783E-12 6.46538303747E-12 6.96890136293E-12 7.51163236326E-12 8.09662972444E-12 8.72718492833E-12 9.40684576923E-12 1.01394363122E-11 1.09290784051E-11 1.17802148663E-11 1.26976344803E-11 1.36864989217E-11 1.47523718109E-11 1.59012499992E-11 1.71395973187E-11 1.84743809090E-11 1.99131104206E-11 2.14638802843E-11 2.31354151990E-11 2.49371192518E-11 2.68791287604E-11 2.89723693282E-11 3.12286172841E-11 3.36605659035E-11 3.62818968275E-11 3.91073570294E-11 4.21528416625E-11 4.54354835409E-11 4.89737495440E-11 5.27875443052E-11 5.68983223078E-11 6.13292084907E-11 6.61051283413E-11 7.12529479021E-11 7.68016250780E-11 8.27823723162E-11 8.92288322439E-11 9.61772666827E-11 1.03666760687E-10 1.11739442479E-10 1.20440719740E-10 1.29819535763E-10 1.39928643999E-10 1.50824904566E-10 1.62569604647E-10 1.75228802927E-10 1.88873699756E-10 2.03581039180E-10 2.19433539357E-10 2.36520357708E-10 2.54937592306E-10 2.74788822048E-10 2.96185688418E-10 3.19248524133E-10 3.44107028259E-10 3.70900995712E-10 3.99781103519E-10 4.30909756554E-10 4.64462001660E-10 5.00626510033E-10 5.39606638150E-10 5.81621571171E-10 6.26907553211E-10 6.75719215519E-10 7.28331008242E-10 7.85038741355E-10 8.46161245206E-10 9.12042165973E-10 9.83051892145E-10 1.05958963735E-09 1.14208568188E-09 1.23100379156E-09 1.32684382020E-09 1.43014451906E-09 1.54148656230E-09 1.66149580719E-09 1.79084681036E-09 1.93026661390E-09 2.08053883110E-09 2.24250804285E-09 2.41708454051E-09 2.60524944154E-09 2.80806018603E-09 3.02665648695E-09 3.26226671839E-09 3.51621481044E-09 3.78992768397E-09 4.08494325938E-09 4.40291908016E-09 4.74564162038E-09 5.11503630874E-09 5.51317832483E-09 5.94230425066E-09 6.40482460782E-09 6.90333737886E-09 7.44064259528E-09 8.01975801661E-09 8.64393607286E-09 9.31668208481E-09 1.00417739379E-08 1.08232832394E-08 1.16655981620E-08 1.25734480296E-08 1.35519298262E-08 1.46065367523E-08 1.57431890220E-08 1.69682670208E-08 1.82886470421E-08 1.97117398182E-08 2.12455320317E-08 2.28986310149E-08 2.46803129788E-08 2.66005749263E-08 2.86701906256E-08 3.09007709075E-08 3.33048286480E-08 3.58958487939E-08 3.86883637993E-08 4.16980349218E-08 4.49417398259E-08 4.84376669653E-08 5.22054172843E-08 5.62661137873E-08 6.06425196350E-08 6.53591653150E-08 7.04424857611E-08 7.59209679912E-08 8.18253102470E-08 8.81885934406E-08 9.50464658127E-08 1.02437341997E-07 1.10402617360E-07 1.18986899021E-07 1.28238254692E-07 1.38208480794E-07 1.48953391258E-07 1.60533128708E-07 1.73012499681E-07 1.86461335716E-07 2.00954882423E-07 2.16574218484E-07 2.33406707193E-07 2.51546482674E-07 2.71094973763E-07 2.92161468288E-07 3.14863720888E-07 3.39328607716E-07 3.65692831669E-07 3.94103681978E-07 4.24719852355E-07 4.57712322181E-07 4.93265305635E-07 5.31577273888E-07 5.72862056059E-07 6.17350024822E-07 6.65289373438E-07 7.16947490856E-07 7.72612442703E-07 8.32594566067E-07 8.97228186879E-07 9.66873469366E-07 1.04191840732E-06 1.12278096850E-06 1.20991140351E-06 1.30379473182E-06 1.40495341849E-06 1.51395025615E-06 1.63139146768E-06 1.75793004679E-06 1.89426935413E-06 2.04116698884E-06 2.19943895620E-06 2.36996415395E-06 2.55368920144E-06 2.75163363780E-06 2.96489551696E-06 3.19465742955E-06 3.44219298428E-06 3.70887378327E-06 3.99617692890E-06 4.30569310213E-06 4.63913525581E-06 4.99834796902E-06 5.38531751226E-06 5.80218267750E-06 6.25124643011E-06 6.73498844467E-06 7.25607859110E-06 7.81739144246E-06 8.42202188073E-06 9.07330188328E-06 9.77481857777E-06 1.05304336608E-05 1.13443042819E-05 1.22209055018E-05 1.31650544429E-05 1.41819362572E-05 1.52771320473E-05 1.64566488841E-05 1.77269520791E-05 1.90949998747E-05 2.05682807344E-05 2.21548534226E-05 2.38633900806E-05 2.57032225186E-05 2.76843919608E-05 2.98177024952E-05 3.21147785016E-05 3.45881263461E-05 3.72512006557E-05 4.01184755042E-05 4.32055208686E-05 4.65290847368E-05 5.01071812759E-05 5.39591855005E-05 5.81059349071E-05 6.25698385780E-05 6.73749942894E-05 7.25473141982E-05 7.81146597185E-05 8.41069862444E-05 9.05564984183E-05 9.74978166913E-05 1.04968155977E-04 1.13007517245E-04 1.21658892973E-04 1.30968487422E-04 1.40985952764E-04 1.51764642186E-04 1.63361881128E-04 1.75839257918E-04 1.89262935142E-04 2.03703983165E-04 2.19238737333E-04 2.35949180450E-04 2.53923352258E-04 2.73255787740E-04 2.94047986182E-04 3.16408913060E-04 3.40455536929E-04 3.66313403641E-04 3.94117250351E-04 4.24011661922E-04 4.56151772492E-04 4.90704015132E-04 5.27846922701E-04 5.67771983162E-04 6.10684552836E-04 6.56804831255E-04 7.06368901464E-04 7.59629839866E-04 8.16858899886E-04 8.78346773991E-04 9.44404938817E-04 1.01536708840E-03 1.09159066077E-03 1.17345846342E-03 1.26138040341E-03 1.35579532817E-03 1.45717298328E-03 1.56601609385E-03 1.68286257642E-03 1.80828788843E-03 1.94290752279E-03 2.08737965521E-03 2.24240795240E-03 2.40874454919E-03 2.58719320336E-03 2.77861263672E-03 2.98392007162E-03 3.20409497197E-03 3.44018299829E-03 3.69330018627E-03 3.96463735865E-03 4.25546478000E-03 4.56713706445E-03 4.90109834603E-03 5.25888772135E-03 5.64214497436E-03 6.05261659223E-03 6.49216208183E-03 6.96276059497E-03 7.46651787087E-03 8.00567350302E-03 8.58260853725E-03 9.19985340653E-03 9.86009620711E-03 1.05661913192E-02 1.13211683739E-02 1.21282415660E-02 1.29908193110E-02 1.39125142418E-02 1.48971535372E-02 1.59487895739E-02 1.70717108872E-02 1.82704534241E-02 1.95498120685E-02 2.09148524115E-02 2.23709227381E-02 2.39236661927E-02 2.55790330831E-02 2.73432932727E-02 2.92230486073E-02 3.12252453109E-02 3.33571862804E-02 3.56265431966E-02 3.80413683628E-02 4.06101061670E-02 4.33416040571E-02 4.62451229041E-02 4.93303466151E-02 5.26073908458E-02 5.60868106474E-02 5.97796068676E-02 6.36972311093E-02 6.78515890356E-02 7.22550417927E-02 7.69204053014E-02 8.18609471574E-02 8.70903808535E-02 9.26228570271E-02 9.84729514115E-02 1.04655649155E-01 1.11186325157E-01 1.18080720042E-01 1.25354911394E-01 1.33025279843E-01 1.41108469597E-01 1.49621342983E-01 1.58580928584E-01 1.68004362506E-01 1.77908822374E-01 1.88311453586E-01 1.99229287421E-01 2.10679150588E-01 2.22677565802E-01 2.35240643057E-01 2.48383961231E-01 2.62122439770E-01 2.76470200199E-01 2.91440417306E-01 3.07045159910E-01 3.23295221212E-01 3.40199938836E-01 3.57767004774E-01 3.76002265597E-01 3.94909513418E-01 4.14490268280E-01 4.34743552792E-01 4.55665660065E-01 4.77249916168E-01 4.99486438600E-01 5.22361892457E-01 5.45859246276E-01 5.69957529767E-01 5.94631595941E-01 6.19851890405E-01 6.45584230885E-01 6.71789600313E-01 6.98423957107E-01 7.25438066506E-01 7.52777357101E-01 7.80381806900E-01 8.08185863466E-01 8.36118402817E-01 8.64102731869E-01 8.92056639248E-01 9.19892499269E-01 9.47517433766E-01 9.74833536261E-01 1.00173816267E+00 1.02812429230E+00 1.05388096247E+00 1.07889377918E+00 1.10304550589E+00 1.12621673109E+00 1.14828661449E+00 1.16913371062E+00 1.18863686690E+00 1.20667619209E+00 1.22313408938E+00 1.23789634657E+00 1.25085327427E+00 1.26190088099E+00 1.27094207255E+00 1.27788786106E+00 1.28265856736E+00 1.28518499922E+00 1.28540958594E+00 1.28328744934E+00 1.27878738994E+00 1.27189276682E+00 1.26260224976E+00 1.25093042249E+00 1.23690821712E+00 1.22058316131E+00 1.20201942199E+00 1.18129763206E+00 1.15851449027E+00 1.13378212818E+00 1.10722724261E+00 1.07898999725E+00 1.04922270197E+00 1.01808828427E+00 9.85758572464E-01 9.52412415966E-01 9.18233672747E-01 8.83409098831E-01 8.48126178305E-01 8.12570935182E-01 7.76925770152E-01 7.41367365635E-01 7.06064701605E-01 6.71177222234E-01 6.36853189653E-01 6.03228255987E-01 5.70424278675E-01 5.38548396985E-01 5.07692380059E-01 4.77932249124E-01 4.49328169061E-01 4.21924597832E-01 3.95750676729E-01 3.70820840345E-01 3.47135622814E-01 3.24682636439E-01 3.03437700022E-01 2.83366097028E-01 2.64423947456E-01 2.46559681407E-01 2.29715606046E-01 2.13829559912E-01 1.98836648719E-01 1.84671053879E-01 1.71267898736E-01 1.58565147634E-01 1.46505499953E-01 1.35038226000E-01 1.24120875700E-01 1.13720776354E-01 1.03816224638E-01 9.43987991661E-02 8.54735668653E-02 7.70462565102E-02 6.91204415879E-02 6.16974332864E-02 5.47761925627E-02 4.83532644473E-02 4.24227376111E-02 3.69762320038E-02 3.20029170555E-02 2.74895625250E-02 2.34206235640E-02 1.97783609627E-02 1.65429968408E-02 1.36929052728E-02 1.12048364920E-02 9.05417242304E-03 7.21521037880E-03 5.66147083855E-03 4.36602433647E-03 3.30183166157E-03 2.44209083163E-03 1.76058368502E-03 1.23201446172E-03 8.32332439327E-04 5.39030565079E-04 3.31412086218E-04 1.90817421626E-04 1.00803920736E-04 4.72716915934E-05 1.85293092448E-05 5.29389093860E-06 6.20695324065E-07 -2.41978633242E-07 -7.62872809715E-08 -3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7 9 2 i j (l(j)) 0.00000000000E+00 Q_int 8.15817785442E-26 8.79357060839E-26 9.47845038737E-26 1.02166714463E-25 1.10123882254E-25 1.18700787301E-25 1.27945697312E-25 1.37910639289E-25 1.48651692308E-25 1.60229303119E-25 1.72708626315E-25 1.86159890999E-25 2.00658796008E-25 2.16286935920E-25 2.33132260235E-25 2.51289568327E-25 2.70861042937E-25 2.91956825225E-25 3.14695634598E-25 3.39205436826E-25 3.65624164182E-25 3.94100491679E-25 4.24794673756E-25 4.57879446132E-25 4.93540997903E-25 5.31980019341E-25 5.73412831315E-25 6.18072602654E-25 6.66210662349E-25 7.18097913933E-25 7.74026360032E-25 8.34310745645E-25 8.99290329424E-25 9.69330792886E-25 1.04482629835E-24 1.12620170712E-24 1.21391497047E-24 1.30845970683E-24 1.41036797966E-24 1.52021329175E-24 1.63861381265E-24 1.76623585753E-24 1.90379763696E-24 2.05207329871E-24 2.21189728440E-24 2.38416902543E-24 2.56985800465E-24 2.77000921225E-24 2.98574902660E-24 3.21829155308E-24 3.46894545666E-24 3.73912132654E-24 4.03033961449E-24 4.34423919134E-24 4.68258657000E-24 5.04728584675E-24 5.44038941677E-24 5.86410952429E-24 6.32083071232E-24 6.81312324195E-24 7.34375755690E-24 7.91571987452E-24 8.53222899116E-24 9.19675439640E-24 9.91303579805E-24 1.06851041679E-23 1.15173044265E-23 1.24143198950E-23 1.33811986507E-23 1.44233819365E-23 1.55467347817E-23 1.67575790083E-23 1.80627288082E-23 1.94695290908E-23 2.09858968175E-23 2.26203655554E-23 2.43821335014E-23 2.62811152461E-23 2.83279975694E-23 3.05342995822E-23 3.29124375512E-23 3.54757947738E-23 3.82387968940E-23 4.12169930848E-23 4.44271435533E-23 4.78873138610E-23 5.16169765904E-23 5.56371209295E-23 5.99703707911E-23 6.46411121325E-23 6.96756301904E-23 7.51022574047E-23 8.09515328633E-23 8.72563741649E-23 9.40522626674E-23 1.01377443164E-22 1.09273139111E-22 1.17783784619E-22 1.26957274510E-22 1.36845233854E-22 1.47503308498E-22 1.58991478214E-22 1.71374394251E-22 1.84721743163E-22 1.99108638984E-22 2.14616045939E-22 2.31331234083E-22 2.49348270424E-22 2.68768548300E-22 2.89701357982E-22 3.12264501721E-22 3.36584956694E-22 3.62799589590E-22 3.91055926841E-22 4.21512984848E-22 4.54342164873E-22 4.89728217616E-22 5.27870282926E-22 5.68983010491E-22 6.13297767808E-22 6.61063942231E-22 7.12550344436E-22 7.68046721189E-22 8.27865385935E-22 8.92342976384E-22 9.61842348987E-22 1.03675462096E-21 1.11750137134E-21 1.20453701351E-21 1.29835135242E-21 1.39947234108E-21 1.50846905165E-21 1.62595487802E-21 1.75259098771E-21 1.88909004271E-21 2.03622021007E-21 2.19480948491E-21 2.36575034999E-21 2.55000479836E-21 2.74860974705E-21 2.96268287251E-21 3.19342890044E-21 3.44214638556E-21 3.71023501944E-21 3.99920350739E-21 4.31067805897E-21 4.64641153964E-21 5.00829333531E-21 5.39835998506E-21 5.81880664209E-21 6.27199942721E-21 6.76048874449E-21 7.28702363404E-21 7.85456724261E-21 8.46631349906E-21 9.12570508863E-21 9.83645282717E-21 1.06025565442E-20 1.14283275925E-20 1.23184131108E-20 1.32778221764E-20 1.43119539939E-20 1.54266282807E-20 1.66281180176E-20 1.79231847512E-20 1.93191166450E-20 2.08237694953E-20 2.24456109399E-20 2.41937681114E-20 2.60780790011E-20 2.81091478237E-20 3.02984046943E-20 3.26581699520E-20 3.52017234952E-20 3.79433795156E-20 4.08985670530E-20 4.40839168249E-20 4.75173548175E-20 5.12182031668E-20 5.52072888965E-20 5.95070611250E-20 6.41417174004E-20 6.91373398759E-20 7.45220420903E-20 8.03261271807E-20 8.65822584174E-20 9.33256430211E-20 1.00594230296E-19 1.08428925193E-19 1.16873818512E-19 1.25976435024E-19 1.35788000926E-19 1.46363732120E-19 1.57763144951E-19 1.70050391145E-19 1.83294618823E-19 1.97570361650E-19 2.12957958278E-19 2.29544004464E-19 2.47421840398E-19 2.66692075989E-19 2.87463157058E-19 3.09851975633E-19 3.33984527771E-19 3.59996622623E-19 3.88034646711E-19 4.18256387741E-19 4.50831922575E-19 4.85944574356E-19 5.23791944186E-19 5.64587023151E-19 6.08559390955E-19 6.55956507911E-19 7.07045107553E-19 7.62112697716E-19 8.21469178522E-19 8.85448586380E-19 9.54410973823E-19 1.02874443574E-18 1.10886729346E-18 1.19523044885E-18 1.28831992187E-18 1.38865958572E-18 1.49681411494E-18 1.61339216327E-18 1.73904978885E-18 1.87449414632E-18 2.02048746638E-18 2.17785134540E-18 2.34747136897E-18 2.53030209572E-18 2.72737242917E-18 2.93979140803E-18 3.16875444745E-18 3.41555006634E-18 3.68156713872E-18 3.96830270973E-18 4.27737042043E-18 4.61050958880E-18 4.96959499794E-18 5.35664744661E-18 5.77384512157E-18 6.22353585554E-18 6.70825033991E-18 7.23071636653E-18 7.79387417866E-18 8.40089301754E-18 9.05518895766E-18 9.76044413109E-18 1.05206274492E-17 1.13400169379E-17 1.22232238132E-17 1.31752184309E-17 1.42013582579E-17 1.53074180221E-17 1.64996222105E-17 1.77846800975E-17 1.91698235030E-17 2.06628474895E-17 2.22721542299E-17 2.40068002921E-17 2.58765476049E-17 2.78919183951E-17 3.00642544023E-17 3.24057807051E-17 3.49296745199E-17 3.76501393564E-17 4.05824849498E-17 4.37432134175E-17 4.71501121264E-17 5.08223537935E-17 5.47806043821E-17 5.90471394011E-17 6.36459692633E-17 6.86029744058E-17 7.39460509348E-17 7.97052676135E-17 8.59130350770E-17 9.26042882260E-17 9.98166828260E-17 1.07590807419E-16 1.15970411738E-16 1.25002652914E-16 1.34738360856E-16 1.45232324299E-16 1.56543599136E-16 1.68735840756E-16 1.81877662272E-16 1.96043020646E-16 2.11311632888E-16 2.27769424668E-16 2.45509013872E-16 2.64630231813E-16 2.85240685041E-16 3.07456360903E-16 3.31402280275E-16 3.57213201120E-16 3.85034376850E-16 4.15022373748E-16 4.47345952055E-16 4.82187015675E-16 5.19741635855E-16 5.60221154579E-16 6.03853373916E-16 6.50883837976E-16 7.01577214733E-16 7.56218785446E-16 8.15116050099E-16 8.78600457867E-16 9.47029272355E-16 1.02078758212E-15 1.10029046777E-15 1.18598533782E-15 1.27835444654E-15 1.37791760782E-15 1.48523512042E-15 1.60091092111E-15 1.72559598331E-15 1.85999198043E-15 2.00485523459E-15 2.16100097278E-15 2.32930791460E-15 2.51072321722E-15 2.70626780552E-15 2.91704211732E-15 3.14423229612E-15 3.38911686609E-15 3.65307392690E-15 3.93758890903E-15 4.24426293291E-15 4.57482181923E-15 4.93112580093E-15 5.31517999156E-15 5.72914566903E-15 6.17535243802E-15 6.65631133978E-15 7.17472898286E-15 7.73352277433E-15 8.33583733738E-15 8.98506220739E-15 9.68485090632E-15 1.04391415026E-14 1.12521787722E-14 1.21285380859E-14 1.30731511565E-14 1.40913337915E-14 1.51888158077E-14 1.63717732743E-14 1.76468632686E-14 1.90212613375E-14 2.05027018771E-14 2.20995216566E-14 2.38207067328E-14 2.56759430168E-14 2.76756707807E-14 2.98311434080E-14 3.21544907200E-14 3.46587872342E-14 3.73581257383E-14 4.02676965948E-14 4.34038732212E-14 4.67843042279E-14 5.04280127314E-14 5.43555034025E-14 5.85888778514E-14 6.31519589978E-14 6.80704251290E-14 7.33719543965E-14 7.90863805667E-14 8.52458609017E-14 9.18850571138E-14 9.90413304131E-14 1.06754951745E-13 1.15069328401E-13 1.24031248277E-13 1.33691143154E-13 1.44103372487E-13 1.55326529286E-13 1.67423769825E-13 1.80463169030E-13 1.94518103537E-13 2.09667664587E-13 2.25997103072E-13 2.43598309248E-13 2.62570329795E-13 2.83019925153E-13 3.05062170260E-13 3.28821102070E-13 3.54430417503E-13 3.82034225742E-13 4.11787859121E-13 4.43858747160E-13 4.78427358667E-13 5.15688217204E-13 5.55850995638E-13 5.99141695920E-13 6.45803920754E-13 6.96100244279E-13 7.50313689511E-13 8.08749320820E-13 8.71735960438E-13 9.39628038620E-13 1.01280758790E-12 1.09168639262E-12 1.17670830589E-12 1.26835174693E-12 1.36713239293E-12 1.47360608047E-12 1.58837193295E-12 1.71207573150E-12 1.84541354841E-12 1.98913566350E-12 2.14405078545E-12 2.31103060183E-12 2.49101468349E-12 2.68501577077E-12 2.89412547143E-12 3.11952040217E-12 3.36246880849E-12 3.62433769992E-12 3.90660054090E-12 4.21084554053E-12 4.53878458778E-12 4.89226288246E-12 5.27326931612E-12 5.68394766127E-12 6.12660863176E-12 6.60374288233E-12 7.11803502030E-12 7.67237870823E-12 8.26989294254E-12 8.91393959962E-12 9.60814234803E-12 1.03564070333E-11 1.11629436514E-11 1.20322900301E-11 1.29693373363E-11 1.39793576449E-11 1.50680335385E-11 1.62414901081E-11 1.75063293366E-11 1.88696673646E-11 2.03391744020E-11 2.19231179089E-11 2.36304091361E-11 2.54706531909E-11 2.74542030645E-11 2.95922179228E-11 3.18967258047E-11 3.43806913056E-11 3.70580885214E-11 3.99439795325E-11 4.30545992834E-11 4.64074466694E-11 5.00213831986E-11 5.39167388914E-11 5.81154266874E-11 6.26410655560E-11 6.75191135718E-11 7.27770107381E-11 7.84443336700E-11 8.45529615338E-11 9.11372555666E-11 9.82342522361E-11 1.05883871337E-10 1.14129140913E-10 1.23016438376E-10 1.32595752146E-10 1.42920962135E-10 1.54050142538E-10 1.66045889253E-10 1.78975670897E-10 1.92912208207E-10 2.07933883079E-10 2.24125179435E-10 2.41577157601E-10 2.60387966470E-10 2.80663395078E-10 3.02517467522E-10 3.26073083678E-10 3.51462709469E-10 3.78829122022E-10 4.08326212715E-10 4.40119850345E-10 4.74388814046E-10 5.11325798834E-10 5.51138497583E-10 5.94050767543E-10 6.40303889525E-10 6.90157922827E-10 7.43893166308E-10 8.01811733466E-10 8.64239249688E-10 9.31526681208E-10 1.00405230792E-09 1.08222384615E-09 1.16648074051E-09 1.25729663233E-09 1.35518201857E-09 1.46068711972E-09 1.57440496997E-09 1.69697474659E-09 1.82908535997E-09 1.97147932217E-09 2.12495691494E-09 2.29038068368E-09 2.46868027825E-09 2.66085767412E-09 2.86799279553E-09 3.09124957715E-09 3.33188249550E-09 3.59124361486E-09 3.87079016474E-09 4.17209272676E-09 4.49684404544E-09 4.84686852006E-09 5.22413244504E-09 5.63075503978E-09 6.06902033308E-09 6.54138997835E-09 7.05051705530E-09 7.59926095350E-09 8.19070339549E-09 8.82816573194E-09 9.51522754462E-09 1.02557467275E-08 1.10538810991E-08 1.19141117187E-08 1.28412679814E-08 1.38405546998E-08 1.49175812548E-08 1.60783930152E-08 1.73295052110E-08 1.86779394300E-08 2.01312629239E-08 2.16976309955E-08 2.33858326543E-08 2.52053398193E-08 2.71663603361E-08 2.92798951185E-08 3.15577996777E-08 3.40128504914E-08 3.66588164600E-08 3.95105359146E-08 4.25839996156E-08 4.58964401584E-08 4.94664283170E-08 5.33139768628E-08 5.74606523830E-08 6.19296958245E-08 6.67461523204E-08 7.19370110803E-08 7.75313561346E-08 8.35605287291E-08 9.00583022702E-08 9.70610708488E-08 1.04608052301E-07 1.12741507038E-07 1.21506973753E-07 1.30953523356E-07 1.41134032565E-07 1.52105478649E-07 1.63929256911E-07 1.76671522758E-07 1.90403560137E-07 2.05202178484E-07 2.21150140312E-07 2.38336621759E-07 2.56857708770E-07 2.76816931522E-07 2.98325840063E-07 3.21504624398E-07 3.46482782363E-07 3.73399838992E-07 4.02406121347E-07 4.33663593010E-07 4.67346752928E-07 5.03643603410E-07 5.42756692651E-07 5.84904237579E-07 6.30321333000E-07 6.79261253792E-07 7.31996857215E-07 7.88822093035E-07 8.50053629680E-07 9.16032605297E-07 9.87126513271E-07 1.06373123250E-06 1.14627321344E-06 1.23521183182E-06 1.33104192281E-06 1.43429650944E-06 1.54554974005E-06 1.66542005056E-06 1.79457356895E-06 1.93372778016E-06 2.08365547113E-06 2.24518897755E-06 2.41922475495E-06 2.60672829896E-06 2.80873944086E-06 3.02637804739E-06 3.26085015482E-06 3.51345457066E-06 3.78558997788E-06 4.07876258008E-06 4.39459432800E-06 4.73483177139E-06 5.10135558346E-06 5.49619080828E-06 5.92151788574E-06 6.37968451221E-06 6.87321840004E-06 7.40484100278E-06 7.97748227898E-06 8.59429657174E-06 9.25867968796E-06 9.97428726644E-06 1.07450545311E-05 1.15752175328E-05 1.24693359896E-05 1.34323178458E-05 1.44694456751E-05 1.55864050673E-05 1.67893151429E-05 1.80847613541E-05 1.94798307409E-05 2.09821498232E-05 2.25999253221E-05 2.43419879201E-05 2.62178392807E-05 2.82377025682E-05 3.04125767226E-05 3.27542947637E-05 3.52755864177E-05 3.79901453821E-05 4.09127015625E-05 4.40590986455E-05 4.74463773892E-05 5.10928650464E-05 5.50182713619E-05 5.92437916139E-05 6.37922172066E-05 6.86880543516E-05 7.39576514169E-05 7.96293355582E-05 8.57335592908E-05 9.23030577078E-05 9.93730170914E-05 1.06981255723E-04 1.15168417742E-04 1.23978180974E-04 1.33457479693E-04 1.43656743357E-04 1.54630152426E-04 1.66435912439E-04 1.79136547603E-04 1.92799215228E-04 2.07496042434E-04 2.23304486640E-04 2.40307721440E-04 2.58595049580E-04 2.78262344849E-04 2.99412524807E-04 3.22156056412E-04 3.46611496694E-04 3.72906070804E-04 4.01176289854E-04 4.31568611147E-04 4.64240143529E-04 4.99359400750E-04 5.37107105906E-04 5.77677050174E-04 6.21277009273E-04 6.68129721232E-04 7.18473929272E-04 7.72565493783E-04 8.30678577615E-04 8.93106909091E-04 9.60165127392E-04 1.03219021518E-03 1.10954302358E-03 1.19260989480E-03 1.28180438814E-03 1.37756911499E-03 1.48037768912E-03 1.59073679847E-03 1.70918840513E-03 1.83631208023E-03 1.97272748093E-03 2.11909697683E-03 2.27612843333E-03 2.44457815969E-03 2.62525402997E-03 2.81901878482E-03 3.02679352261E-03 3.24956138847E-03 3.48837146969E-03 3.74434290642E-03 4.01866922634E-03 4.31262291196E-03 4.62756020952E-03 4.96492618785E-03 5.32626005569E-03 5.71320074562E-03 6.12749277247E-03 6.57099237332E-03 7.04567393618E-03 7.55363672316E-03 8.09711189362E-03 8.67846983141E-03 9.30022777947E-03 9.96505778361E-03 1.06757949456E-02 1.14354459842E-02 1.22471981009E-02 1.31144281443E-02 1.40407120647E-02 1.50298346482E-02 1.60857995164E-02 1.72128393724E-02 1.84154264727E-02 1.96982832980E-02 2.10663933930E-02 2.25250123371E-02 2.40796788069E-02 2.57362256789E-02 2.75007911207E-02 2.93798296059E-02 3.13801227832E-02 3.35087901214E-02 3.57732992400E-02 3.81814758300E-02 4.07415130536E-02 4.34619803045E-02 4.63518311964E-02 4.94204106355E-02 5.26774608185E-02 5.61331259864E-02 5.97979557464E-02 6.36829067624E-02 6.77993425972E-02 7.21590314750E-02 7.67741417163E-02 8.16572345796E-02 8.68212542323E-02 9.22795145515E-02 9.80456824446E-02 1.04133757362E-01 1.10558046659E-01 1.17333136457E-01 1.24473857631E-01 1.31995246554E-01 1.39912500213E-01 1.48240925304E-01 1.56995880925E-01 1.66192714470E-01 1.75846690354E-01 1.85972911186E-01 1.96586231047E-01 2.07701160544E-01 2.19331763332E-01 2.31491543854E-01 2.44193326080E-01 2.57449123081E-01 2.71269997357E-01 2.85665911899E-01 3.00645572056E-01 3.16216258387E-01 3.32383650780E-01 3.49151644269E-01 3.66522157083E-01 3.84494931671E-01 4.03067329552E-01 4.22234121091E-01 4.41987271440E-01 4.62315724126E-01 4.83205183997E-01 5.04637901428E-01 5.26592459980E-01 5.49043569921E-01 5.71961870275E-01 5.95313742312E-01 6.19061137649E-01 6.43161424353E-01 6.67567254658E-01 6.92226458135E-01 7.17081964276E-01 7.42071758647E-01 7.67128876828E-01 7.92181440395E-01 8.17152739225E-01 8.41961364270E-01 8.66521394822E-01 8.90742644026E-01 9.14530966045E-01 9.37788627860E-01 9.60414748094E-01 9.82305804581E-01 1.00335621163E+00 1.02345896697E+00 1.04250636732E+00 1.06039079044E+00 1.07700554005E+00 1.09224574893E+00 1.10600933370E+00 1.11819799353E+00 1.12871824326E+00 1.13748246997E+00 1.14441000038E+00 1.14942816501E+00 1.15247334357E+00 1.15349197503E+00 1.15244151438E+00 1.14929131795E+00 1.14402343801E+00 1.13663330794E+00 1.12713029922E+00 1.11553813247E+00 1.10189512605E+00 1.08625426767E+00 1.06868309671E+00 1.04926338805E+00 1.02809063154E+00 1.00527330515E+00 9.80931944277E-01 9.55198014184E-01 9.28212597286E-01 9.00124912110E-01 8.71090685255E-01 8.41270402309E-01 8.10827467658E-01 7.79926306508E-01 7.48730445032E-01 7.17400606126E-01 6.86092858744E-01 6.54956858084E-01 6.24134211914E-01 5.93757005145E-01 5.63946510444E-01 5.34812107333E-01 5.06450426147E-01 4.78944726671E-01 4.52364514568E-01 4.26765392266E-01 4.02189135155E-01 3.78663979132E-01 3.56205102015E-01 3.34815279394E-01 3.14485695152E-01 2.95196888136E-01 2.76919819057E-01 2.59617045220E-01 2.43243994563E-01 2.27750333941E-01 2.13081428938E-01 1.99179892734E-01 1.85987219217E-01 1.73445489900E-01 1.61499135289E-01 1.50096719310E-01 1.39192701040E-01 1.28749112530E-01 1.18737076755E-01 1.09138077568E-01 9.99465152400E-02 9.11706464352E-02 8.28199644501E-02 7.49023291918E-02 6.74238324644E-02 6.03886732489E-02 5.37990459623E-02 4.76550447424E-02 4.19545867953E-02 3.66933577647E-02 3.18647819172E-02 2.74600196876E-02 2.34679947911E-02 1.98754526705E-02 1.66670515269E-02 1.38254865727E-02 1.13316474650E-02 9.16480813610E-03 7.30284745735E-03 5.72249837516E-03 4.39962237489E-03 3.30950538531E-03 2.42717057307E-03 1.72770292194E-03 1.18658008174E-03 7.80003731668E-04 4.85225656552E-04 2.80862890696E-04 1.47196641081E-04 6.64502394695E-05 2.30420516831E-05 3.81003021103E-06 -1.79465150615E-06 -1.54680563021E-06 -3.20800553219E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7 10 2 i j (l(j)) 0.00000000000E+00 Q_int 8.92156036204E-26 9.61640851431E-26 1.03653743248E-25 1.11726727014E-25 1.20428468263E-25 1.29807937240E-25 1.39917918192E-25 1.50815306424E-25 1.62561428484E-25 1.75222387284E-25 1.88869434106E-25 2.03579369580E-25 2.19434975885E-25 2.36525482620E-25 2.54947068956E-25 2.74803404898E-25 2.96206234700E-25 3.19276005722E-25 3.44142546266E-25 3.70945796200E-25 3.99836594488E-25 4.30977528062E-25 4.64543846796E-25 5.00724449754E-25 5.39722948242E-25 5.81758811659E-25 6.27068602591E-25 6.75907308104E-25 7.28549774710E-25 7.85292255112E-25 8.46454075399E-25 9.12379432106E-25 9.83439329218E-25 1.06003366605E-24 1.14259348775E-24 1.23158341102E-24 1.32750423887E-24 1.43089577891E-24 1.54233988122E-24 1.66246371275E-24 1.79194328686E-24 1.93150726759E-24 2.08194107040E-24 2.24409128213E-24 2.41887042535E-24 2.60726209364E-24 2.81032648695E-24 3.02920637802E-24 3.26513354342E-24 3.51943569565E-24 3.79354395494E-24 4.08900090310E-24 4.40746926461E-24 4.75074126386E-24 5.12074871109E-24 5.51957387393E-24 5.94946119568E-24 6.41282992618E-24 6.91228773649E-24 7.45064539392E-24 8.03093257999E-24 8.65641494040E-24 9.33061246288E-24 1.00573192864E-23 1.08406250533E-23 1.16849379241E-23 1.25950093852E-23 1.35759609885E-23 1.46333131737E-23 1.57730163351E-23 1.70014843084E-23 1.83256304656E-23 1.97529066206E-23 2.12913449657E-23 2.29496032734E-23 2.47370136196E-23 2.66636349011E-23 2.87403094431E-23 3.09787240162E-23 3.33914756051E-23 3.59921423000E-23 3.87953597090E-23 4.18169033223E-23 4.50737772905E-23 4.85843101181E-23 5.23682578095E-23 5.64469150488E-23 6.08432350382E-23 6.55819586708E-23 7.06897537630E-23 7.61953651312E-23 8.21297763574E-23 8.85263841538E-23 9.54211863067E-23 1.02852984259E-22 1.10863601473E-22 1.19498118792E-22 1.28805128145E-22 1.38837006003E-22 1.49650208130E-22 1.61305587303E-22 1.73868735763E-22 1.87410354348E-22 2.02006650370E-22 2.17739766483E-22 2.34698242951E-22 2.52977515922E-22 2.72680454505E-22 2.93917939684E-22 3.16809488312E-22 3.41483925711E-22 3.68080110653E-22 3.96747716808E-22 4.27648075050E-22 4.60955081372E-22 4.96856175507E-22 5.35553395772E-22 5.77264516067E-22 6.22224271422E-22 6.70685679010E-22 7.22921462025E-22 7.79225584478E-22 8.39914905513E-22 9.05330962578E-22 9.75841893473E-22 1.05184450810E-21 1.13376652155E-21 1.22206896115E-21 1.31724876094E-21 1.41984155824E-21 1.53042470804E-21 1.64962053209E-21 1.77809982119E-21 1.91658561006E-21 2.06585724639E-21 2.22675477669E-21 2.40018367375E-21 2.58711993236E-21 2.78861556182E-21 3.00580450627E-21 3.23990902611E-21 3.49224657644E-21 3.76423722125E-21 4.05741162494E-21 4.37341966645E-21 4.71403972409E-21 5.08118868363E-21 5.47693272586E-21 5.90349895428E-21 6.36328792841E-21 6.85888717332E-21 7.39308574120E-21 7.96888990721E-21 8.58954008761E-21 9.25852907574E-21 9.97962169810E-21 1.07568760015E-20 1.15946660901E-20 1.24977067416E-20 1.34710799399E-20 1.45202634749E-20 1.56511617694E-20 1.68701391072E-20 1.81840554486E-20 1.96003050361E-20 2.11268580065E-20 2.27723052435E-20 2.45459067247E-20 2.64576436326E-20 2.85182745259E-20 3.07393958839E-20 3.31335073678E-20 3.57140821640E-20 3.84956428065E-20 4.14938429039E-20 4.47255552328E-20 4.82089666910E-20 5.19636806471E-20 5.60108272611E-20 6.03731823969E-20 6.50752957967E-20 7.01436292379E-20 7.56067054503E-20 8.14952686316E-20 8.78424574643E-20 9.46839916081E-20 1.02058372717E-19 1.10007101113E-19 1.18574909334E-19 1.27810013871E-19 1.37764386516E-19 1.48494046837E-19 1.60059377437E-19 1.72525463765E-19 1.85962460391E-19 2.00445985813E-19 2.16057548010E-19 2.32885003135E-19 2.51023049941E-19 2.70573762710E-19 2.91647165687E-19 3.14361852257E-19 3.38845652348E-19 3.65236351805E-19 3.93682467801E-19 4.24344084637E-19 4.57393754635E-19 4.93017469201E-19 5.31415705515E-19 5.72804554740E-19 6.17416938105E-19 6.65503917700E-19 7.17336109359E-19 7.73205205582E-19 8.33425617080E-19 8.98336242152E-19 9.68302373887E-19 1.04371775589E-18 1.12500679813E-18 1.21262696536E-18 1.30707135155E-18 1.40887145485E-18 1.51860016864E-18 1.63687500560E-18 1.76436157278E-18 1.90177731745E-18 2.04989556459E-18 2.20954986886E-18 2.38163870556E-18 2.56713052692E-18 2.76706921214E-18 2.98257994198E-18 3.21487553085E-18 3.46526325207E-18 3.73515219471E-18 4.02606119340E-18 4.33962737579E-18 4.67761537562E-18 5.04192726348E-18 5.43461325089E-18 5.85788322814E-18 6.31411920070E-18 6.80588869422E-18 7.33595920363E-18 7.90731376749E-18 8.52316775544E-18 9.18698696302E-18 9.90250711587E-18 1.06737548929E-17 1.15050705871E-17 1.24011325307E-17 1.33669834233E-17 1.44080587099E-17 1.55302171701E-17 1.67397738883E-17 1.80435357931E-17 1.94488399636E-17 2.09635949202E-17 2.25963251300E-17 2.43562189796E-17 2.62531804837E-17 2.82978850209E-17 3.05018394104E-17 3.28774466683E-17 3.54380758063E-17 3.81981370676E-17 4.11731630220E-17 4.43798959769E-17 4.78363821964E-17 5.15620734585E-17 5.55779365217E-17 5.99065711179E-17 6.45723371345E-17 6.96014917016E-17 7.50223369570E-17 8.08653793192E-17 8.71635011647E-17 9.39521458771E-17 1.01269517307E-16 1.09156794771E-16 1.17658364785E-16 1.26822070861E-16 1.36699482746E-16 1.47346186637E-16 1.58822097996E-16 1.71191798730E-16 1.84524900629E-16 1.98896437115E-16 2.14387285498E-16 2.31084622116E-16 2.49082412929E-16 2.68481942322E-16 2.89392383083E-16 3.11931410788E-16 3.36225866024E-16 3.62412468197E-16 3.90638584923E-16 4.21063061354E-16 4.53857114089E-16 4.89205294703E-16 5.27306528322E-16 5.68375233088E-16 6.12642526805E-16 6.60357527571E-16 7.11788755697E-16 7.67225644823E-16 8.26980170715E-16 8.91388606927E-16 9.60813417188E-16 1.03564529518E-15 1.11630536320E-15 1.20324754200E-15 1.29696110528E-15 1.39797343308E-15 1.50685297959E-15 1.62421247219E-15 1.75071235956E-15 1.88706452836E-15 2.03403630938E-15 2.19245479573E-15 2.36321149729E-15 2.54726735768E-15 2.74565816198E-15 2.95950036560E-15 3.18999737714E-15 3.43844633056E-15 3.70624538475E-15 3.99490159169E-15 4.30603937732E-15 4.64140968296E-15 5.00289981869E-15 5.39254408411E-15 5.81253521632E-15 6.26523672938E-15 6.75319621494E-15 7.27915967865E-15 7.84608699318E-15 8.45716855464E-15 9.11584323643E-15 9.82581774118E-15 1.05910874599E-14 1.14159589559E-14 1.23050741993E-14 1.32634366894E-14 1.42964396117E-14 1.54098961868E-14 1.66100723844E-14 1.79037221836E-14 1.92981255805E-14 2.08011295556E-14 2.24211922309E-14 2.41674304675E-14 2.60496711688E-14 2.80785065801E-14 3.02653538948E-14 3.26225195022E-14 3.51632682400E-14 3.79018980392E-14 4.08538203831E-14 4.40356470321E-14 4.74652835029E-14 5.11620298276E-14 5.51466891603E-14 5.94416848414E-14 6.40711865797E-14 6.90612464608E-14 7.44399455482E-14 8.02375519012E-14 8.64866908998E-14 9.32225288340E-14 1.00482970791E-13 1.08308873953E-13 1.16744277507E-13 1.25836650463E-13 1.35637158763E-13 1.46200953202E-13 1.57587479766E-13 1.69860814141E-13 1.83090022272E-13 1.97349549001E-13 2.12719636973E-13 2.29286778164E-13 2.47144200575E-13 2.66392392822E-13 2.87139669591E-13 3.09502781117E-13 3.33607570136E-13 3.59589679994E-13 3.87595317900E-13 4.17782077623E-13 4.50319826252E-13 4.85391660017E-13 5.23194934545E-13 5.63942375345E-13 6.07863274774E-13 6.55204782215E-13 7.06233294733E-13 7.61235956020E-13 8.20522272071E-13 8.84425852686E-13 9.53306288581E-13 1.02755117468E-12 1.10757829096E-12 1.19383795315E-12 1.28681554643E-12 1.38703425654E-12 1.49505801340E-12 1.61149466414E-12 1.73699939309E-12 1.87227840814E-12 2.01809291413E-12 2.17526339571E-12 2.34467423362E-12 2.52727868052E-12 2.72410422423E-12 2.93625836862E-12 3.16493486466E-12 3.41142042666E-12 3.67710197147E-12 3.96347442142E-12 4.27214911484E-12 4.60486287143E-12 4.96348776356E-12 5.35004164845E-12 5.76669952037E-12 6.21580574679E-12 6.69988725738E-12 7.22166775977E-12 7.78408306241E-12 8.39029759036E-12 9.04372218705E-12 9.74803330220E-12 1.05071936737E-11 1.13254746195E-11 1.22074800669E-11 1.31581724480E-11 1.41829006200E-11 1.52874299329E-11 1.64779747071E-11 1.77612331579E-11 1.91444250350E-11 2.06353323266E-11 2.22423429132E-11 2.39744979146E-11 2.58415423428E-11 2.78539800645E-11 3.00231328290E-11 3.23612039400E-11 3.48813469073E-11 3.75977394161E-11 4.05256631033E-11 4.36815894055E-11 4.70832723634E-11 5.07498482428E-11 5.47019434097E-11 5.89617901408E-11 6.35533517218E-11 6.85024571843E-11 7.38369466371E-11 7.95868276519E-11 8.57844442429E-11 9.24646585138E-11 9.96650468313E-11 1.07426111136E-10 1.15791506274E-10 1.24808286522E-10 1.34527168680E-10 1.45002818440E-10 1.56294157144E-10 1.68464693229E-10 1.81582878851E-10 1.95722496014E-10 2.10963069695E-10 2.27390315516E-10 2.45096622455E-10 2.64181571246E-10 2.84752493966E-10 3.06925078196E-10 3.30824016601E-10 3.56583708610E-10 3.84349014398E-10 4.14276070194E-10 4.46533166241E-10 4.81301690943E-10 5.18777151338E-10 5.59170271541E-10 6.02708177607E-10 6.49635671784E-10 7.00216610053E-10 7.54735384840E-10 8.13498519767E-10 8.76836396249E-10 9.45105106176E-10 1.01868845368E-09 1.09800011105E-09 1.18348594280E-09 1.27562650876E-09 1.37493976568E-09 1.48198397384E-09 1.59736083326E-09 1.72171886375E-09 1.85575704509E-09 2.00022874343E-09 2.15594594088E-09 2.32378379363E-09 2.50468554789E-09 2.69966783163E-09 2.90982636533E-09 3.13634211084E-09 3.38048789720E-09 3.64363557186E-09 3.92726369267E-09 4.23296582830E-09 4.56245949936E-09 4.91759581832E-09 5.30036987061E-09 5.71293191135E-09 6.15759942474E-09 6.63687012280E-09 7.15343596298E-09 7.71019823318E-09 8.31028383061E-09 8.95706278605E-09 9.65416717460E-09 1.04055114593E-08 1.12153144477E-08 1.20881229366E-08 1.30288371886E-08 1.40427383999E-08 1.51355182941E-08 1.63133110060E-08 1.75827274477E-08 1.89508923436E-08 2.04254841330E-08 2.20147779701E-08 2.37276920567E-08 2.55738375859E-08 2.75635725288E-08 2.97080596312E-08 3.20193288632E-08 3.45103447584E-08 3.71950789331E-08 4.00885882581E-08 4.32070990633E-08 4.65680978842E-08 5.01904292544E-08 5.40944010308E-08 5.83018979375E-08 6.28365038374E-08 6.77236335412E-08 7.29906747833E-08 7.86671411953E-08 8.47848371296E-08 9.13780352403E-08 9.84836678093E-08 1.06141532867E-07 1.14394516266E-07 1.23288830947E-07 1.32874274690E-07 1.43204507796E-07 1.54337352256E-07 1.66335114038E-07 1.79264930253E-07 1.93199143212E-07 2.08215703294E-07 2.24398603012E-07 2.41838344540E-07 2.60632443351E-07 2.80885970762E-07 3.02712138276E-07 3.26232927079E-07 3.51579766044E-07 3.78894262038E-07 4.08328986509E-07 4.40048322732E-07 4.74229378285E-07 5.11062967894E-07 5.50754671849E-07 5.93525976020E-07 6.39615499526E-07 6.89280316904E-07 7.42797381974E-07 8.00465061152E-07 8.62604784630E-07 9.29562824486E-07 1.00171220930E-06 1.07945478575E-06 1.16322343865E-06 1.25348448104E-06 1.35074022783E-06 1.45553176660E-06 1.56844194083E-06 1.69009856166E-06 1.82117786545E-06 1.96240823621E-06 2.11457421252E-06 2.27852080110E-06 2.45515811996E-06 2.64546639612E-06 2.85050134528E-06 3.07139996164E-06 3.30938674965E-06 3.56578043064E-06 3.84200116061E-06 4.13957829734E-06 4.46015875899E-06 4.80551601817E-06 5.17755977962E-06 5.57834639320E-06 6.01009005723E-06 6.47517487169E-06 6.97616780530E-06 7.51583264465E-06 8.09714499955E-06 8.72330844335E-06 9.39777187295E-06 1.01242481803E-05 1.09067343328E-05 1.17495329675E-05 1.26572756124E-05 1.36349476558E-05 1.46879151925E-05 1.58219538885E-05 1.70432800103E-05 1.83585837831E-05 1.97750652458E-05 2.13004727911E-05 2.29431445846E-05 2.47120530784E-05 2.66168528435E-05 2.86679319667E-05 3.08764672710E-05 3.32544836410E-05 3.58149177506E-05 3.85716865155E-05 4.15397606135E-05 4.47352434387E-05 4.81754558860E-05 5.18790273844E-05 5.58659936309E-05 6.01579015079E-05 6.47779216980E-05 6.97509695486E-05 7.51038347756E-05 8.08653206363E-05 8.70663932439E-05 9.37403417434E-05 1.00922950117E-04 1.08652681437E-04 1.16970875446E-04 1.25921960393E-04 1.35553680120E-04 1.45917337477E-04 1.57068055171E-04 1.69065055284E-04 1.81971958726E-04 1.95857106002E-04 2.10793900752E-04 2.26861177600E-04 2.44143595991E-04 2.62732061743E-04 2.82724178188E-04 3.04224728898E-04 3.27346194070E-04 3.52209302836E-04 3.78943623839E-04 4.07688196603E-04 4.38592206357E-04 4.71815705113E-04 5.07530382018E-04 5.45920386089E-04 5.87183204709E-04 6.31530601374E-04 6.79189616435E-04 7.30403634737E-04 7.85433524311E-04 8.44558850447E-04 9.08079169753E-04 9.76315409003E-04 1.04961133383E-03 1.12833511257E-03 1.21288098084E-03 1.30367101261E-03 1.40115700393E-03 1.50582247558E-03 1.61818480139E-03 1.73879746897E-03 1.86825248012E-03 2.00718289837E-03 2.15626555130E-03 2.31622389560E-03 2.48783105319E-03 2.67191302672E-03 2.86935210324E-03 3.08109045487E-03 3.30813394561E-03 3.55155615342E-03 3.81250261706E-03 4.09219531696E-03 4.39193739983E-03 4.71311815623E-03 5.05721826072E-03 5.42581528371E-03 5.82058948417E-03 6.24332989188E-03 6.69594068756E-03 7.18044788890E-03 7.69900634940E-03 8.25390707686E-03 8.84758487668E-03 9.48262632468E-03 1.01617780726E-02 1.08879554878E-02 1.16642516275E-02 1.24939465452E-02 1.33805169258E-02 1.43276460420E-02 1.53392340234E-02 1.64194084250E-02 1.75725350796E-02 1.88032292138E-02 2.01163668032E-02 2.15170961383E-02 2.30108495660E-02 2.46033553674E-02 2.63006497244E-02 2.81090887232E-02 3.00353603331E-02 3.20864962912E-02 3.42698838168E-02 3.65932770678E-02 3.90648082411E-02 4.16929982105E-02 4.44867665812E-02 4.74554410308E-02 5.06087657893E-02 5.39569091028E-02 5.75104695050E-02 6.12804807106E-02 6.52784149260E-02 6.95161843567E-02 7.40061406762E-02 7.87610722013E-02 8.37941985027E-02 8.91191621628E-02 9.47500173727E-02 1.00701215047E-01 1.06987584113E-01 1.13624308619E-01 1.20626900290E-01 1.28011166144E-01 1.35793170768E-01 1.43989192846E-01 1.52615675531E-01 1.61689170222E-01 1.71226273340E-01 1.81243555675E-01 1.91757483890E-01 2.02784333797E-01 2.14340095000E-01 2.26440366586E-01 2.39100243510E-01 2.52334193420E-01 2.66155923693E-01 2.80578238515E-01 2.95612885914E-01 3.11270394755E-01 3.27559901777E-01 3.44488968884E-01 3.62063391023E-01 3.80286995120E-01 3.99161430696E-01 4.18685952972E-01 4.38857199442E-01 4.59668961096E-01 4.81111949705E-01 5.03173562799E-01 5.25837648203E-01 5.49084270281E-01 5.72889480265E-01 5.97225093329E-01 6.22058475356E-01 6.47352342592E-01 6.73064577652E-01 6.99148065618E-01 7.25550554175E-01 7.52214541976E-01 7.79077199585E-01 8.06070327514E-01 8.33120355956E-01 8.60148390854E-01 8.87070310945E-01 9.13796920268E-01 9.40234160510E-01 9.66283387200E-01 9.91841713444E-01 1.01680242434E+00 1.04105546465E+00 1.06448800138E+00 1.08698506242E+00 1.10843025082E+00 1.12870653362E+00 1.14769710265E+00 1.16528630326E+00 1.18136062557E+00 1.19580975109E+00 1.20852764602E+00 1.21941369069E+00 1.22837383295E+00 1.23532175153E+00 1.24018001403E+00 1.24288121227E+00 1.24336905676E+00 1.24159941097E+00 1.23754124485E+00 1.23117748734E+00 1.22250575681E+00 1.21153894938E+00 1.19830566582E+00 1.18285045910E+00 1.16523388703E+00 1.14553235686E+00 1.12383775215E+00 1.10025683585E+00 1.07491042806E+00 1.04793236156E+00 1.01946822315E+00 9.89673894556E-01 9.58713911336E-01 9.26759663986E-01 8.93987469984E-01 8.60576549987E-01 8.26706945017E-01 7.92557414236E-01 7.58303354530E-01 7.24114783592E-01 6.90154427311E-01 6.56575949993E-01 6.23522362422E-01 5.91124637857E-01 5.59500560231E-01 5.28753822017E-01 4.98973382044E-01 4.70233086109E-01 4.42591546170E-01 4.16092267477E-01 3.90764007660E-01 3.66621347930E-01 3.43665454277E-01 3.21885006100E-01 3.01257270894E-01 2.81749306290E-01 2.63319274332E-01 2.45917856869E-01 2.29489764424E-01 2.13975333192E-01 1.99312204851E-01 1.85437081168E-01 1.72287539251E-01 1.59803883760E-01 1.47930999727E-01 1.36620154789E-01 1.25830683970E-01 1.15531475668E-01 1.05702166324E-01 9.63354856642E-02 8.74376424663E-02 7.90156587427E-02 7.10745593441E-02 6.36172541573E-02 5.66444364791E-02 5.01545007255E-02 4.41434825758E-02 3.86050245038E-02 3.35303694163E-02 2.89083847891E-02 2.47256192656E-02 2.09663931552E-02 1.76129236532E-02 1.46454848940E-02 1.20426021660E-02 9.78127877044E-03 7.83725312080E-03 6.18528277179E-03 4.79945117139E-03 3.65349207217E-03 2.72112575080E-03 1.97640049990E-03 1.39403230369E-03 9.49735214384E-04 6.20534729816E-04 3.85056446609E-04 2.23782428568E-04 1.19268075681E-04 5.63127813309E-05 2.20782859887E-05 6.14932442253E-06 5.31860354036E-07 -4.15157938256E-07 -1.18068983687E-07 -6.93889390391E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8 8 2 i j (l(j)) 9.07271437760E-01 Q_int 1.04749311629E-25 1.12907622808E-25 1.21701337125E-25 1.31179942413E-25 1.41396780823E-25 1.52409349016E-25 1.64279621730E-25 1.77074400553E-25 1.90865689857E-25 2.05731102016E-25 2.21754294176E-25 2.39025439047E-25 2.57641732369E-25 2.77707939884E-25 2.99336986929E-25 3.22650593932E-25 3.47779961415E-25 3.74866508341E-25 4.04062667967E-25 4.35532745688E-25 4.69453843683E-25 5.06016857582E-25 5.45427550763E-25 5.87907712307E-25 6.33696405151E-25 6.83051311443E-25 7.36250182688E-25 7.93592402832E-25 8.55400673084E-25 9.22022827962E-25 9.93833792780E-25 1.07123769359E-24 1.15467013147E-24 1.24460063389E-24 1.34153529711E-24 1.44601963422E-24 1.55864164516E-24 1.68003512576E-24 1.81088323447E-24 1.95192233696E-24 2.10394615013E-24 2.26781020884E-24 2.44443668054E-24 2.63481955494E-24 2.84003023776E-24 3.06122358027E-24 3.29964437833E-24 3.55663437767E-24 3.83363982477E-24 4.13221960576E-24 4.45405401929E-24 4.80095423267E-24 5.17487247441E-24 5.57791302068E-24 6.01234403743E-24 6.48061034476E-24 6.98534717552E-24 7.52939500544E-24 8.11581553827E-24 8.74790893596E-24 9.42923239075E-24 1.01636201438E-23 1.09552050629E-23 1.18084419006E-23 1.27281323643E-23 1.37194521381E-23 1.47879800099E-23 1.59397292669E-23 1.71811815357E-23 1.85193232592E-23 1.99616850135E-23 2.15163838869E-23 2.31921691604E-23 2.49984715454E-23 2.69454562561E-23 2.90440802157E-23 3.13061537183E-23 3.37444068924E-23 3.63725613419E-23 3.92054073661E-23 4.22588871941E-23 4.55501847022E-23 4.90978221180E-23 5.29217642571E-23 5.70435308778E-23 6.14863177864E-23 6.62751273750E-23 7.14369093255E-23 7.70007122729E-23 8.29978472804E-23 8.94620640467E-23 9.64297408371E-23 1.03940089207E-22 1.12035374670E-22 1.20761154555E-22 1.30166534382E-22 1.40304444214E-22 1.51231936527E-22 1.63010507280E-22 1.75706441992E-22 1.89391188775E-22 2.04141760415E-22 2.20041167771E-22 2.37178886937E-22 2.55651362771E-22 2.75562551660E-22 2.97024506544E-22 3.20158007512E-22 3.45093241505E-22 3.71970534965E-22 4.00941143537E-22 4.32168103286E-22 4.65827148198E-22 5.02107699154E-22 5.41213929915E-22 5.83365916144E-22 6.28800873907E-22 6.77774494643E-22 7.30562384098E-22 7.87461613337E-22 8.48792390551E-22 9.14899863072E-22 9.86156059737E-22 1.06296198453E-21 1.14574987329E-21 1.23498562617E-21 1.33117142957E-21 1.43484858223E-21 1.54660054149E-21 1.66705620676E-21 1.79689345874E-21 1.93684297432E-21 2.08769233847E-21 2.25029047661E-21 2.42555243194E-21 2.61446451503E-21 2.81808985442E-21 3.03757437947E-21 3.27415326930E-21 3.52915790388E-21 3.80402335656E-21 4.10029647015E-21 4.41964456200E-21 4.76386480702E-21 5.13489435155E-21 5.53482121492E-21 5.96589604003E-21 6.43054475917E-21 6.93138224630E-21 7.47122703257E-21 8.05311716800E-21 8.68032731853E-21 9.35638719465E-21 1.00851014153E-20 1.08705709188E-20 1.17172160417E-20 1.26298013945E-20 1.36134626753E-20 1.46737355716E-20 1.58165869133E-20 1.70484482514E-20 1.83762520530E-20 1.98074707143E-20 2.13501586123E-20 2.30129974327E-20 2.48053450265E-20 2.67372880728E-20 2.88196988429E-20 3.10642963858E-20 3.34837124781E-20 3.60915627116E-20 3.89025231167E-20 4.19324127534E-20 4.51982827355E-20 4.87185121882E-20 5.25129116787E-20 5.66028347027E-20 6.10112978548E-20 6.57631103567E-20 7.08850136745E-20 7.64058320104E-20 8.23566345142E-20 8.87709101293E-20 9.56847560559E-20 1.03137080893E-19 1.11169823603E-19 1.19828189525E-19 1.29160904779E-19 1.39220490473E-19 1.50063558279E-19 1.61751129016E-19 1.74348976057E-19 1.87927995477E-19 2.02564605026E-19 2.18341174188E-19 2.35346487716E-19 2.53676245289E-19 2.73433600067E-19 2.94729739207E-19 3.17684509573E-19 3.42427092201E-19 3.69096729274E-19 3.97843507728E-19 4.28829203886E-19 4.62228193877E-19 4.98228434958E-19 5.37032523268E-19 5.78858833964E-19 6.23942750156E-19 6.72537987557E-19 7.24918022300E-19 7.81377629956E-19 8.42234544429E-19 9.07831246038E-19 9.78536888873E-19 1.05474937825E-18 1.13689760999E-18 1.22544388407E-18 1.32088650626E-18 1.42376259244E-18 1.53465109127E-18 1.65417604229E-18 1.78301008777E-18 1.92187825812E-18 2.07156205209E-18 2.23290383470E-18 2.40681157781E-18 2.59426396982E-18 2.79631592338E-18 3.01410451201E-18 3.24885536913E-18 3.50188958550E-18 3.77463114377E-18 4.06861493213E-18 4.38549538212E-18 4.72705577909E-18 5.09521829787E-18 5.49205482007E-18 5.91979859381E-18 6.38085680161E-18 6.87782410707E-18 7.41349725670E-18 7.99089081889E-18 8.61325414878E-18 9.28408967436E-18 1.00071726069E-17 1.07865721861E-17 1.16266745806E-17 1.25322075715E-17 1.35082671582E-17 1.45603462374E-17 1.56943655140E-17 1.69167068217E-17 1.82342490365E-17 1.96544067889E-17 2.11851721905E-17 2.28351598101E-17 2.46136551538E-17 2.65306669197E-17 2.85969833229E-17 3.08242328078E-17 3.32249494879E-17 3.58126436832E-17 3.86018779510E-17 4.16083490377E-17 4.48489762146E-17 4.83419964923E-17 5.21070672517E-17 5.61653768674E-17 6.05397639481E-17 6.52548458628E-17 7.03371572771E-17 7.58152994804E-17 8.17201013417E-17 8.80847928027E-17 9.49451918818E-17 1.02339906244E-16 1.10310550467E-16 1.18901980236E-16 1.28162544768E-16 1.38144358902E-16 1.48903596383E-16 1.60500805982E-16 1.73001252240E-16 1.86475282750E-16 2.00998724042E-16 2.16653308308E-16 2.33527133350E-16 2.51715158360E-16 2.71319738313E-16 2.92451199973E-16 3.15228462767E-16 3.39779708012E-16 3.66243100266E-16 3.94767564857E-16 4.25513625969E-16 4.58654310007E-16 4.94376119308E-16 5.32880081700E-16 5.74382881793E-16 6.19118080390E-16 6.67337428858E-16 7.19312285873E-16 7.75335144511E-16 8.35721278258E-16 9.00810515234E-16 9.70969150587E-16 1.04659200784E-15 1.12810466076E-15 1.21596582831E-15 1.31066995611E-15 1.41274999891E-15 1.52278041985E-15 1.64138042325E-15 1.76921743919E-15 1.90701087949E-15 2.05553618625E-15 2.21562919558E-15 2.38819084137E-15 2.57419222525E-15 2.77468008148E-15 2.99078266746E-15 3.22371611298E-15 3.47479126401E-15 3.74542105946E-15 4.03712848247E-15 4.35155513100E-15 4.69047045587E-15 5.05578171831E-15 5.44954472303E-15 5.87397538719E-15 6.33146221038E-15 6.82457971583E-15 7.35610293843E-15 7.92902304109E-15 8.54656414734E-15 9.21220148491E-15 9.92968094237E-15 1.07030401488E-14 1.15366311954E-14 1.24351451264E-14 1.34036383374E-14 1.44475610301E-14 1.55727878826E-14 1.67856511086E-14 1.80929760912E-14 1.95021197920E-14 2.10210121515E-14 2.26582007139E-14 2.44228987271E-14 2.63250369893E-14 2.83753197327E-14 3.05852848601E-14 3.29673688728E-14 3.55349768544E-14 3.83025579061E-14 4.12856864558E-14 4.45011499006E-14 4.79670430745E-14 5.17028700728E-14 5.57296540077E-14 6.00700553108E-14 6.47484992492E-14 6.97913133728E-14 7.52268756662E-14 8.10857742373E-14 8.74009794446E-14 9.42080294274E-14 1.01545230087E-13 1.09453870640E-13 1.17978455962E-13 1.27166957023E-13 1.37071080827E-13 1.47746561375E-13 1.59253473290E-13 1.71656569860E-13 1.85025647414E-13 1.99435938073E-13 2.14968533085E-13 2.31710839134E-13 2.49757070175E-13 2.69208777590E-13 2.90175421608E-13 3.12774987247E-13 3.37134648210E-13 3.63391482489E-13 3.91693243697E-13 4.22199192467E-13 4.55080992601E-13 4.90523677003E-13 5.28726688841E-13 5.69905003782E-13 6.14290339631E-13 6.62132460163E-13 7.13700580499E-13 7.69284881915E-13 8.29198144630E-13 8.93777507734E-13 9.63386366173E-13 1.03841641547E-12 1.11928985564E-12 1.20646176681E-12 1.30042266972E-12 1.40170128574E-12 1.51086751171E-12 1.62853562651E-12 1.75536774733E-12 1.89207755502E-12 2.03943430959E-12 2.19826717844E-12 2.36946990150E-12 2.55400581984E-12 2.75291329563E-12 2.96731155439E-12 3.19840698194E-12 3.44749991190E-12 3.71599194153E-12 4.00539381740E-12 4.31733393501E-12 4.65356750027E-12 5.01598640437E-12 5.40662986752E-12 5.82769591161E-12 6.28155372600E-12 6.77075699635E-12 7.29805827118E-12 7.86642444714E-12 8.47905345994E-12 9.13939227500E-12 9.85115627879E-12 1.06183501801E-11 1.14452905386E-11 1.23366300476E-11 1.32973837076E-11 1.43329570470E-11 1.54491764867E-11 1.66523221876E-11 1.79491633174E-11 1.93469961847E-11 2.08536851737E-11 2.24777071336E-11 2.42281989268E-11 2.61150088919E-11 2.81487522586E-11 3.03408707289E-11 3.27036970436E-11 3.52505241338E-11 3.79956799908E-11 4.09546083249E-11 4.41439552893E-11 4.75816631110E-11 5.12870711228E-11 5.52810244444E-11 5.95859912124E-11 6.42261889119E-11 6.92277206482E-11 7.46187219755E-11 8.04295189579E-11 8.66927988008E-11 9.34437937436E-11 1.00720479024E-10 1.08563786499E-10 1.17017834801E-10 1.26130177576E-10 1.35952070641E-10 1.46538759910E-10 1.57949793306E-10 1.70249353113E-10 1.83506619492E-10 1.97796158900E-10 2.13198340840E-10 2.29799792375E-10 2.47693884968E-10 2.66981257962E-10 2.87770385227E-10 3.10178184862E-10 3.34330675965E-10 3.60363687980E-10 3.88423623046E-10 4.18668278996E-10 4.51267737874E-10 4.86405319530E-10 5.24278612753E-10 5.65100586838E-10 6.09100786776E-10 6.56526624899E-10 7.07644768130E-10 7.62742640205E-10 8.22130035106E-10 8.86140857150E-10 9.55134995285E-10 1.02950035087E-09 1.10965501040E-09 1.19604959879E-09 1.28916980617E-09 1.38953912235E-09 1.49772177157E-09 1.61432588345E-09 1.74000691099E-09 1.87547130682E-09 2.02148049575E-09 2.17885514563E-09 2.34847978082E-09 2.53130774341E-09 2.72836654814E-09 2.94076365673E-09 3.16969267967E-09 3.41644009731E-09 3.68239246651E-09 3.96904420245E-09 4.27800597480E-09 4.61101374913E-09 4.96993851218E-09 5.35679678700E-09 5.77376194152E-09 6.22317637550E-09 6.70756468125E-09 7.22964777828E-09 7.79235819082E-09 8.39885650765E-09 9.05254907880E-09 9.75710713934E-09 1.05164873855E-08 1.13349541613E-08 1.22171033609E-08 1.31678881981E-08 1.41926469704E-08 1.52971329619E-08 1.64875467030E-08 1.77705707010E-08 1.91534068960E-08 2.06438169775E-08 2.22501658870E-08 2.39814686666E-08 2.58474409155E-08 2.78585532309E-08 3.00260898061E-08 3.23622115892E-08 3.48800243738E-08 3.75936521153E-08 4.05183160012E-08 4.36704195754E-08 4.70676405026E-08 5.07290294568E-08 5.46751166519E-08 5.89280266216E-08 6.35116019020E-08 6.84515363246E-08 7.37755185628E-08 7.95133868929E-08 8.56972958281E-08 9.23618957562E-08 9.95445264431E-08 1.07285425444E-07 1.15627952815E-07 1.24618833012E-07 1.34308415661E-07 1.44750956412E-07 1.56004919543E-07 1.68133303964E-07 1.81203994414E-07 1.95290139821E-07 2.10470560868E-07 2.26830189114E-07 2.44460539909E-07 2.63460222050E-07 2.83935486516E-07 3.06000817822E-07 3.29779570839E-07 3.55404656834E-07 3.83019282418E-07 4.12777745463E-07 4.44846292461E-07 4.79404041886E-07 5.16643978737E-07 5.56774025782E-07 6.00018197197E-07 6.46617841177E-07 6.96832978004E-07 7.50943741356E-07 8.09251930261E-07 8.72082680498E-07 9.39786264582E-07 1.01274002991E-06 1.09135048607E-06 1.17605555219E-06 1.26732697705E-06 1.36567294481E-06 1.47164088078E-06 1.58582047212E-06 1.70884692044E-06 1.84140444335E-06 1.98423004440E-06 2.13811757158E-06 2.30392208636E-06 2.48256456709E-06 2.67503697191E-06 2.88240768854E-06 3.10582740055E-06 3.34653540110E-06 3.60586638894E-06 3.88525778240E-06 4.18625759097E-06 4.51053288647E-06 4.85987891936E-06 5.23622892854E-06 5.64166469734E-06 6.07842791147E-06 6.54893237985E-06 7.05577718307E-06 7.60176081875E-06 8.18989641941E-06 8.82342812283E-06 9.50584868142E-06 1.02409184033E-05 1.10326855252E-05 1.18855081227E-05 1.28040776749E-05 1.37934444046E-05 1.48590445272E-05 1.60067295509E-05 1.72427977783E-05 1.85740281763E-05 2.00077167860E-05 2.15517158629E-05 2.32144759482E-05 2.50050910878E-05 2.69333474305E-05 2.90097754540E-05 3.12457060857E-05 3.36533310024E-05 3.62457674162E-05 3.90371276744E-05 4.20425940226E-05 4.52784989090E-05 4.87624112316E-05 5.25132289597E-05 5.65512785894E-05 6.08984219300E-05 6.55781707454E-05 7.06158098194E-05 7.60385290464E-05 8.18755651947E-05 8.81583540334E-05 9.49206935602E-05 1.02198919119E-04 1.10032091251E-04 1.18462197177E-04 1.27534366870E-04 1.37297104751E-04 1.47802538092E-04 1.59106683300E-04 1.71269731318E-04 1.84356353483E-04 1.98436029240E-04 2.13583397223E-04 2.29878631315E-04 2.47407843372E-04 2.66263514454E-04 2.86544956470E-04 3.08358806308E-04 3.31819554620E-04 3.57050111594E-04 3.84182412152E-04 4.13358063215E-04 4.44729035777E-04 4.78458404747E-04 5.14721139654E-04 5.53704949521E-04 5.95611185391E-04 6.40655804189E-04 6.89070397827E-04 7.41103291651E-04 7.97020716599E-04 8.57108059626E-04 9.21671197240E-04 9.91037917226E-04 1.06555943390E-03 1.14561200254E-03 1.23159863882E-03 1.32395094955E-03 1.42313108107E-03 1.52963379221E-03 1.64398865883E-03 1.76676241731E-03 1.89856145481E-03 2.04003445421E-03 2.19187520221E-03 2.35482556903E-03 2.52967866893E-03 2.71728221055E-03 2.91854204684E-03 3.13442593423E-03 3.36596751115E-03 3.61427050629E-03 3.88051318699E-03 4.16595305852E-03 4.47193182500E-03 4.79988062289E-03 5.15132553806E-03 5.52789341710E-03 5.93131798401E-03 6.36344627262E-03 6.82624538519E-03 7.32180958723E-03 7.85236774796E-03 8.42029113524E-03 9.02810157320E-03 9.67847996967E-03 1.03742752195E-02 1.11185134883E-02 1.19144078809E-02 1.27653684937E-02 1.36750128538E-02 1.46471767382E-02 1.56859253714E-02 1.67955649893E-02 1.79806547610E-02 1.92460190504E-02 2.05967599991E-02 2.20382704071E-02 2.35762468791E-02 2.52167032051E-02 2.69659839309E-02 2.88307780717E-02 3.08181329134E-02 3.29354678376E-02 3.51905880974E-02 3.75916984632E-02 4.01474166449E-02 4.28667863871E-02 4.57592901236E-02 4.88348610610E-02 5.21038945508E-02 5.55772585947E-02 5.92663033099E-02 6.31828691692E-02 6.73392938099E-02 7.17484171912E-02 7.64235848584E-02 8.13786490562E-02 8.66279674113E-02 9.21863988870E-02 9.80692966889E-02 1.04292497785E-01 1.10872308680E-01 1.17825487059E-01 1.25169218916E-01 1.32921090731E-01 1.41099056271E-01 1.49721397569E-01 1.58806679601E-01 1.68373698205E-01 1.78441420733E-01 1.89028918975E-01 2.00155293842E-01 2.11839591334E-01 2.24100709324E-01 2.36957294680E-01 2.50427630319E-01 2.64529511764E-01 2.79280112868E-01 2.94695840375E-01 3.10792177092E-01 3.27583513488E-01 3.45082967640E-01 3.63302193554E-01 3.82251177985E-01 4.01938026035E-01 4.22368735942E-01 4.43546963655E-01 4.65473777952E-01 4.88147407090E-01 5.11562978162E-01 5.35712250614E-01 5.60583345582E-01 5.86160473037E-01 6.12423658946E-01 6.39348475020E-01 6.66905773878E-01 6.95061432790E-01 7.23776109486E-01 7.53005013812E-01 7.82697699339E-01 8.12797879323E-01 8.43243271665E-01 8.73965477799E-01 9.04889900612E-01 9.35935706676E-01 9.67015838174E-01 9.98037079918E-01 1.02890018685E+00 1.05950007724E+00 1.08972609656E+00 1.11946235677E+00 1.14858815501E+00 1.17697847540E+00 1.20450457677E+00 1.23103466798E+00 1.25643467199E+00 1.28056907799E+00 1.30330188007E+00 1.32449759895E+00 1.34402238195E+00 1.36174517437E+00 1.37753895370E+00 1.39128201604E+00 1.40285930207E+00 1.41216374800E+00 1.41909764481E+00 1.42357398733E+00 1.42551779298E+00 1.42486736839E+00 1.42157550099E+00 1.41561055179E+00 1.40695742504E+00 1.39561839069E+00 1.38161373604E+00 1.36498222410E+00 1.34578133839E+00 1.32408729607E+00 1.29999481483E+00 1.27361662267E+00 1.24508270451E+00 1.21453928453E+00 1.18214754882E+00 1.14808211903E+00 1.11252929380E+00 1.07568508104E+00 1.03775305019E+00 9.98942039311E-01 9.59463756770E-01 9.19530321585E-01 8.79351789462E-01 8.39133713400E-01 7.99074788040E-01 7.59364625704E-01 7.20181709233E-01 6.81691562314E-01 6.44045172107E-01 6.07377691867E-01 5.71807443197E-01 5.37435228879E-01 5.04343958510E-01 4.72598580670E-01 4.42246307778E-01 4.13317113444E-01 3.85824477499E-01 3.59766351118E-01 3.35126313788E-01 3.11874895112E-01 2.89971037286E-01 2.69363678053E-01 2.49993438252E-01 2.31794401842E-01 2.14695978548E-01 1.98624839144E-01 1.83506910006E-01 1.69269406563E-01 1.55842874506E-01 1.43163193735E-01 1.31173484019E-01 1.19825835100E-01 1.09082769754E-01 9.89183386036E-02 8.93201846407E-02 8.02890887865E-02 7.18259557182E-02 6.39290611265E-02 5.65939936267E-02 4.98136249988E-02 4.35781115621E-02 3.78749291094E-02 3.26889433419E-02 2.80025171574E-02 2.37956554560E-02 2.00461873478E-02 1.67299847863E-02 1.38212157276E-02 1.12926289472E-02 9.11586666428E-03 7.26180014667E-03 5.70088254542E-03 4.40351235287E-03 3.34040014487E-03 2.48293067996E-03 1.80351202576E-03 1.27590319365E-03 8.75511812085E-04 5.79653675910E-04 3.67766584017E-04 2.21571722532E-04 1.25176960164E-04 6.51177814902E-05 3.03331733643E-05 1.20755758407E-05 3.75598898985E-06 7.27472249345E-07 1.25741491767E-08 -1.73084575292E-08 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8 9 2 i j (l(j)) 0.00000000000E+00 Q_int 9.20917202089E-26 9.92642056296E-26 1.06995313986E-25 1.15328553151E-25 1.24310819570E-25 1.33992662181E-25 1.44428566882E-25 1.55677263156E-25 1.67802054586E-25 1.80871175100E-25 1.94958172964E-25 2.10142324693E-25 2.26509081183E-25 2.44150548601E-25 2.63166006725E-25 2.83662467655E-25 3.05755278036E-25 3.29568768188E-25 3.55236951795E-25 3.82904280080E-25 4.12726454729E-25 4.44871304120E-25 4.79519727803E-25 5.16866714534E-25 5.57122439603E-25 6.00513447626E-25 6.47283927453E-25 6.97697086372E-25 7.52036631351E-25 8.10608365633E-25 8.73741909686E-25 9.41792556188E-25 1.01514326949E-24 1.09420684078E-24 1.17942821116E-24 1.27128697558E-24 1.37030008183E-24 1.47702473975E-24 1.59206155698E-24 1.71605791900E-24 1.84971163234E-24 1.99377485159E-24 2.14905831228E-24 2.31643589338E-24 2.49684953519E-24 2.69131454021E-24 2.90092528692E-24 3.12686138855E-24 3.37039433150E-24 3.63289463078E-24 3.91583954284E-24 4.22082137897E-24 4.54955646626E-24 4.90389480649E-24 5.28583048727E-24 5.69751290400E-24 6.14125885592E-24 6.61956558424E-24 7.13512482562E-24 7.69083796041E-24 8.28983234043E-24 8.93547888870E-24 9.63141106968E-24 1.03815453371E-23 1.11901031744E-23 1.20616348517E-23 1.30010450329E-23 1.40136203777E-23 1.51050592924E-23 1.62815039994E-23 1.75495751023E-23 1.89164088452E-23 2.03896972723E-23 2.19777315160E-23 2.36894484569E-23 2.55344810164E-23 2.75232123683E-23 2.96668343708E-23 3.19774105503E-23 3.44679439910E-23 3.71524505112E-23 4.00460375389E-23 4.31649891319E-23 4.65268576174E-23 5.01505623709E-23 5.40564962875E-23 5.82666405453E-23 6.28046883079E-23 6.76961780608E-23 7.29686373325E-23 7.86517376098E-23 8.47774613180E-23 9.13802818061E-23 9.84973573507E-23 1.06168740269E-22 1.14437602319E-22 1.23350477655E-22 1.32957524702E-22 1.43312808434E-22 1.54474604626E-22 1.66505727817E-22 1.79473884797E-22 1.93452055646E-22 2.08518904434E-22 2.24759221915E-22 2.42264402697E-22 2.61132959582E-22 2.81471077955E-22 3.03393213361E-22 3.27022735616E-22 3.52492623090E-22 3.79946211058E-22 4.09537998343E-22 4.41434516776E-22 4.75815268376E-22 5.12873735526E-22 5.52818469817E-22 5.95874265704E-22 6.42283425565E-22 6.92307123293E-22 7.46226874084E-22 8.04346118707E-22 8.66991931155E-22 9.34516859299E-22 1.00730090890E-21 1.08575368214E-21 1.17031668272E-21 1.26146580049E-21 1.35971398954E-21 1.46561415498E-21 1.57976226446E-21 1.70280070205E-21 1.83542188335E-21 1.97837215216E-21 2.13245598064E-21 2.29854049657E-21 2.47756036320E-21 2.67052303928E-21 2.87851444858E-21 3.10270509114E-21 3.34435663036E-21 3.60482899323E-21 3.88558802349E-21 4.18821373085E-21 4.51440918272E-21 4.86601008847E-21 5.24499513009E-21 5.65349709752E-21 6.09381489122E-21 6.56842645954E-21 7.08000274370E-21 7.63142270885E-21 8.22578954590E-21 8.86644813509E-21 9.55700386977E-21 1.03013429463E-20 1.11036542339E-20 1.19684528486E-20 1.29006055620E-20 1.39053581902E-20 1.49883651151E-20 1.61557211052E-20 1.74139956148E-20 1.87702697546E-20 2.02321761413E-20 2.18079418514E-20 2.35064347201E-20 2.53372132463E-20 2.73105803843E-20 2.94376415251E-20 3.17303669933E-20 3.42016594119E-20 3.68654263135E-20 3.97366584068E-20 4.28315139388E-20 4.61674096273E-20 4.97631186764E-20 5.36388764244E-20 5.78164942215E-20 6.23194821759E-20 6.71731814599E-20 7.24049069210E-20 7.80441007995E-20 8.41224984190E-20 9.06743067809E-20 9.77363970688E-20 1.05348512146E-19 1.13553490215E-19 1.22397505892E-19 1.31930330064E-19 1.42205609979E-19 1.53281171153E-19 1.65219342795E-19 1.78087308564E-19 1.91957484663E-19 2.06907927364E-19 2.23022772285E-19 2.40392707872E-19 2.59115485757E-19 2.79296470874E-19 3.01049234412E-19 3.24496192946E-19 3.49769297363E-19 3.77010775423E-19 4.06373932168E-19 4.38024012669E-19 4.72139131958E-19 5.08911277398E-19 5.48547389115E-19 5.91270524581E-19 6.37321113897E-19 6.86958312848E-19 7.40461461329E-19 7.98131655374E-19 8.60293441606E-19 9.27296643669E-19 9.99518330901E-19 1.07736494034E-18 1.16127456402E-18 1.25171941434E-18 1.34920848156E-18 1.45429039815E-18 1.56755652635E-18 1.68964428607E-18 1.82124074212E-18 1.96308647067E-18 2.11597972701E-18 2.28078093780E-18 2.45841754323E-18 2.64988921629E-18 2.85627348857E-18 3.07873181422E-18 3.31851610613E-18 3.57697578127E-18 3.85556535464E-18 4.15585262481E-18 4.47952749683E-18 4.82841149240E-18 5.20446800069E-18 5.60981332759E-18 6.04672860540E-18 6.51767263026E-18 7.02529569925E-18 7.57245452528E-18 8.16222831357E-18 8.79793609023E-18 9.48315538051E-18 1.02217423417E-17 1.10178534640E-17 1.18759689620E-17 1.28009179870E-17 1.37979058044E-17 1.48725430861E-17 1.60308774858E-17 1.72794276726E-17 1.86252200154E-17 2.00758281249E-17 2.16394154747E-17 2.33247813422E-17 2.51414103276E-17 2.70995257293E-17 2.92101470767E-17 3.14851521438E-17 3.39373437927E-17 3.65805220230E-17 3.94295616326E-17 4.25004959273E-17 4.58106069499E-17 4.93785227365E-17 5.32243221480E-17 5.73696478654E-17 6.18378281864E-17 6.66540083078E-17 7.18452918323E-17 7.74408932968E-17 8.34723025797E-17 8.99734621134E-17 9.69809578987E-17 1.04534225395E-16 1.12675771449E-16 1.21451413501E-16 1.30910537435E-16 1.41106375491E-16 1.52096305845E-16 1.63942175501E-16 1.76710648345E-16 1.90473580301E-16 2.05308423702E-16 2.21298663166E-16 2.38534285404E-16 2.57112285635E-16 2.77137213426E-16 2.98721761062E-16 3.21987397717E-16 3.47065053044E-16 3.74095853979E-16 4.03231918948E-16 4.34637213924E-16 4.68488475152E-16 5.04976203743E-16 5.44305737735E-16 5.86698407638E-16 6.32392781988E-16 6.81646009902E-16 7.34735268197E-16 7.91959321216E-16 8.53640202140E-16 9.20125025240E-16 9.91787939281E-16 1.06903223305E-15 1.15229260490E-15 1.24203760899E-15 1.33877229212E-15 1.44304103591E-15 1.55543062026E-15 1.67657352553E-15 1.80715149181E-15 1.94789935541E-15 2.09960918419E-15 2.26313473491E-15 2.43939625776E-15 2.62938567505E-15 2.83417216330E-15 3.05490816998E-15 3.29283589892E-15 3.54929430081E-15 3.82572660810E-15 4.12368845679E-15 4.44485664071E-15 4.79103854767E-15 5.16418233044E-15 5.56638786995E-15 5.99991859227E-15 6.46721420592E-15 6.97090443127E-15 7.51382379909E-15 8.09902760177E-15 8.72980908674E-15 9.40971798902E-15 1.01425805071E-14 1.09325208345E-14 1.17839843686E-14 1.27017627262E-14 1.36910207085E-14 1.47573253650E-14 1.59066773219E-14 1.71455445494E-14 1.84808987602E-14 1.99202546411E-14 2.14717121415E-14 2.31440020547E-14 2.49465351488E-14 2.68894551246E-14 2.89836956978E-14 3.12410421263E-14 3.36741975301E-14 3.62968543752E-14 3.91237715259E-14 4.21708572972E-14 4.54552589752E-14 4.89954593102E-14 5.28113805239E-14 5.69244964170E-14 6.13579532081E-14 6.61366997827E-14 7.12876280867E-14 7.68397244536E-14 8.28242327165E-14 8.92748300236E-14 9.62278163465E-14 1.03722318746E-13 1.11800511547E-13 1.20507853661E-13 1.29893344389E-13 1.40009799147E-13 1.50914146665E-13 1.62667749333E-13 1.75336748490E-13 1.88992436609E-13 2.03711658463E-13 2.19577243535E-13 2.36678472105E-13 2.55111577627E-13 2.74980288242E-13 2.96396410449E-13 3.19480458242E-13 3.44362331235E-13 3.71182045600E-13 4.00090521928E-13 4.31250434444E-13 4.64837126357E-13 5.01039596492E-13 5.40061562761E-13 5.82122608443E-13 6.27459417745E-13 6.76327107565E-13 7.29000662982E-13 7.85776484523E-13 8.46974055926E-13 9.12937741782E-13 9.84038725158E-13 1.06067709611E-12 1.14328410287E-12 1.23232457824E-12 1.32829955508E-12 1.43174908537E-12 1.54325527878E-12 1.66344557797E-12 1.79299628884E-12 1.93263638569E-12 2.08315161278E-12 2.24538890517E-12 2.42026115389E-12 2.60875234213E-12 2.81192308140E-12 3.03091657877E-12 3.26696506880E-12 3.52139674627E-12 3.79564323882E-12 4.09124766133E-12 4.40987329766E-12 4.75331295823E-12 5.12349906632E-12 5.52251452978E-12 5.95260445919E-12 6.41618879848E-12 6.91587593908E-12 7.45447739402E-12 8.03502361465E-12 8.66078103894E-12 9.33527046712E-12 1.00622868681E-11 1.08459207280E-11 1.16905810611E-11 1.26010202185E-11 1.35823605974E-11 1.46401234776E-11 1.57802601004E-11 1.70091851150E-11 1.83338126385E-11 1.97615951905E-11 2.13005656145E-11 2.29593822332E-11 2.47473775648E-11 2.66746108015E-11 2.87519244671E-11 3.09910052287E-11 3.34044498027E-11 3.60058357657E-11 3.88097978226E-11 4.18321102462E-11 4.50897754961E-11 4.86011199099E-11 5.23858966899E-11 5.64653970977E-11 6.08625701140E-11 6.56021515668E-11 7.07108031233E-11 7.62172623647E-11 8.21525042392E-11 8.85499154143E-11 9.54454818241E-11 1.02877991178E-10 1.10889250979E-10 1.19524323818E-10 1.28831780193E-10 1.38863972467E-10 1.49677328139E-10 1.61332668103E-10 1.73895548107E-10 1.87436627406E-10 2.02032065606E-10 2.17763951826E-10 2.34720765039E-10 2.52997872332E-10 2.72698064370E-10 2.93932133606E-10 3.16819496685E-10 3.41488866253E-10 3.68078973823E-10 3.96739349824E-10 4.27631163845E-10 4.60928130480E-10 4.96817486049E-10 5.35501039606E-10 5.77196308894E-10 6.22137740412E-10 6.70578028846E-10 7.22789536064E-10 7.79065821207E-10 8.39723289907E-10 9.05102973211E-10 9.75572441855E-10 1.05152787277E-09 1.13339627307E-09 1.22163787981E-09 1.31674874465E-09 1.41926351991E-09 1.52975846262E-09 1.64885466846E-09 1.77722156309E-09 1.91558065793E-09 2.06470960402E-09 2.22544655771E-09 2.39869488674E-09 2.58542824296E-09 2.78669602449E-09 3.00362927344E-09 3.23744701967E-09 3.48946312244E-09 3.76109364659E-09 4.05386481731E-09 4.36942156586E-09 4.70953677904E-09 5.07612123932E-09 5.47123433977E-09 5.89709565119E-09 6.35609735770E-09 6.85081768532E-09 7.38403536189E-09 7.95874519525E-09 8.57817487376E-09 9.24580306157E-09 9.96537890340E-09 1.07409430421E-08 1.15768502723E-08 1.24777939475E-08 1.34488322828E-08 1.44954167044E-08 1.56234223923E-08 1.68391812100E-08 1.81495171526E-08 1.95617845918E-08 2.10839094660E-08 2.27244336508E-08 2.44925628072E-08 2.63982179172E-08 2.84520908055E-08 3.06657040106E-08 3.30514752565E-08 3.56227869314E-08 3.83940609832E-08 4.13808395787E-08 4.45998720350E-08 4.80692085039E-08 5.18083008788E-08 5.58381115508E-08 6.01812305909E-08 6.48620019720E-08 6.99066596254E-08 7.53434739774E-08 8.12029098629E-08 8.75177966688E-08 9.43235116233E-08 1.01658177287E-07 1.09562874327E-07 1.18081870729E-07 1.27262868791E-07 1.37157271160E-07 1.47820467488E-07 1.59312143204E-07 1.71696612214E-07 1.85043175244E-07 1.99426505946E-07 2.14927066736E-07 2.31631556863E-07 2.49633394985E-07 2.69033239047E-07 2.89939546268E-07 3.12469176368E-07 3.36748041290E-07 3.62911805052E-07 3.91106637612E-07 4.21490026768E-07 4.54231652691E-07 4.89514329816E-07 5.27535021304E-07 5.68505931621E-07 6.12655683157E-07 6.60230583567E-07 7.11495990463E-07 7.66737781085E-07 8.26263935092E-07 8.90406238872E-07 9.59522120887E-07 1.03399662797E-06 1.11424455343E-06 1.20071272826E-06 1.29388248859E-06 1.39427233186E-06 1.50244077708E-06 1.61898944397E-06 1.74456636815E-06 1.87986957012E-06 2.02565089733E-06 2.18272016034E-06 2.35194958508E-06 2.53427860545E-06 2.73071902216E-06 2.94236055520E-06 3.17037682031E-06 3.41603176121E-06 3.68068657205E-06 3.96580714747E-06 4.27297209984E-06 4.60388138662E-06 4.96036559398E-06 5.34439592587E-06 5.75809495200E-06 6.20374817173E-06 6.68381645502E-06 7.20094942655E-06 7.75799986385E-06 8.35803918508E-06 9.00437410854E-06 9.70056457127E-06 1.04504430008E-05 1.12581350414E-05 1.21280818428E-05 1.30650640282E-05 1.40742274660E-05 1.51611109800E-05 1.63316761413E-05 1.75923392956E-05 1.89500059931E-05 2.04121079969E-05 2.19866430604E-05 2.36822176787E-05 2.55080930321E-05 2.74742343555E-05 2.95913639861E-05 3.18710183589E-05 3.43256092363E-05 3.69684894842E-05 3.98140237221E-05 4.28776642041E-05 4.61760323092E-05 4.97270060471E-05 5.35498140145E-05 5.76651362659E-05 6.20952125984E-05 6.68639587802E-05 7.19970912941E-05 7.75222612022E-05 8.34691977835E-05 8.98698626374E-05 9.67586149971E-05 1.04172389043E-04 1.12150884067E-04 1.20736768378E-04 1.29975897938E-04 1.39917550719E-04 1.50614677918E-04 1.62124173170E-04 1.74507161006E-04 1.87829305908E-04 2.02161143342E-04 2.17578434291E-04 2.34162544886E-04 2.52000852843E-04 2.71187182495E-04 2.91822270376E-04 3.14014263372E-04 3.37879251626E-04 3.63541838494E-04 3.91135750001E-04 4.20804486378E-04 4.52702018438E-04 4.86993531692E-04 5.23856221275E-04 5.63480140952E-04 6.06069109634E-04 6.51841679042E-04 7.01032166348E-04 7.53891755852E-04 8.10689673954E-04 8.71714441897E-04 9.37275211035E-04 1.00770318556E-03 1.08335313794E-03 1.16460502247E-03 1.25186569281E-03 1.34557072929E-03 1.44618638251E-03 1.55421163956E-03 1.67018041984E-03 1.79466390755E-03 1.92827302816E-03 2.07166107666E-03 2.22552650547E-03 2.39061588016E-03 2.56772701159E-03 2.75771227304E-03 2.96148211141E-03 3.18000876150E-03 3.41433017293E-03 3.66555415899E-03 3.93486277717E-03 4.22351695108E-03 4.53286134357E-03 4.86432949065E-03 5.21944920609E-03 5.59984826604E-03 6.00726038314E-03 6.44353147902E-03 6.91062626382E-03 7.41063513076E-03 7.94578137318E-03 8.51842873072E-03 9.13108927016E-03 9.78643160560E-03 1.04872894612E-02 1.12366705779E-02 1.20377659649E-02 1.28939594922E-02 1.38088378222E-02 1.47862006712E-02 1.58300713922E-02 1.69447078660E-02 1.81346136834E-02 1.94045495976E-02 2.07595452227E-02 2.22049109469E-02 2.37462500254E-02 2.53894708121E-02 2.71407990802E-02 2.90067903792E-02 3.09943423626E-02 3.31107070179E-02 3.53635027156E-02 3.77607259905E-02 4.03107629518E-02 4.30224002121E-02 4.59048352118E-02 4.89676858016E-02 5.22209989343E-02 5.56752583017E-02 5.93413907384E-02 6.32307711975E-02 6.73552260883E-02 7.17270347487E-02 7.63589288079E-02 8.12640891773E-02 8.64561403884E-02 9.19491419821E-02 9.77575766295E-02 1.03896334654E-01 1.10380694598E-01 1.17226299474E-01 1.24449128306E-01 1.32065462569E-01 1.40091847117E-01 1.48545045173E-01 1.57441986954E-01 1.66799711496E-01 1.76635301245E-01 1.86965808984E-01 1.97808176659E-01 2.09179145714E-01 2.21095158527E-01 2.33572250591E-01 2.46625933116E-01 2.60271065761E-01 2.74521719266E-01 2.89391027832E-01 3.04891031140E-01 3.21032506019E-01 3.37824787872E-01 3.55275582048E-01 3.73390765544E-01 3.92174179491E-01 4.11627413100E-01 4.31749579890E-01 4.52537087217E-01 4.73983400331E-01 4.96078802422E-01 5.18810152337E-01 5.42160641922E-01 5.66109555166E-01 5.90632031659E-01 6.15698837083E-01 6.41276143780E-01 6.67325324722E-01 6.93802764437E-01 7.20659690774E-01 7.47842031568E-01 7.75290300541E-01 8.02939516927E-01 8.30719163474E-01 8.58553187582E-01 8.86360050356E-01 9.14052828349E-01 9.41539372643E-01 9.68722529742E-01 9.95500428439E-01 1.02176683642E+00 1.04741158986E+00 1.07232109861E+00 1.09637892874E+00 1.11946646345E+00 1.14146364210E+00 1.16224977600E+00 1.18170443841E+00 1.19970842444E+00 1.21614477537E+00 1.23089985980E+00 1.24386450281E+00 1.25493515203E+00 1.26401506814E+00 1.27101552538E+00 1.27585700596E+00 1.27847037083E+00 1.27879798781E+00 1.27679479699E+00 1.27242929265E+00 1.26568440008E+00 1.25655822634E+00 1.24506466369E+00 1.23123382612E+00 1.21511230048E+00 1.19676319602E+00 1.17626597920E+00 1.15371608341E+00 1.12922428788E+00 1.10291586390E+00 1.07492949190E+00 1.04541595773E+00 1.01453664230E+00 9.82461823937E-01 9.49368818334E-01 9.15439985977E-01 8.80860641301E-01 8.45816901727E-01 8.10493517463E-01 7.75071724635E-01 7.39727164799E-01 7.04627912894E-01 6.69932653404E-01 6.35789040751E-01 6.02332274938E-01 5.69683917364E-01 5.37950964744E-01 5.07225191604E-01 4.77582764200E-01 4.49084121339E-01 4.21774111028E-01 3.95682366296E-01 3.70823899597E-01 3.47199892826E-01 3.24798659493E-01 3.03596756861E-01 2.83560228506E-01 2.64645961495E-01 2.46803146397E-01 2.29974831946E-01 2.14099568411E-01 1.99113133806E-01 1.84950334191E-01 1.71546863018E-01 1.58841194699E-01 1.46776474580E-01 1.35302352359E-01 1.24376690091E-01 1.13967061288E-01 1.04051946501E-01 9.46230649874E-02 8.56856420102E-02 7.72455714087E-02 6.93065880399E-02 6.18701595137E-02 5.49353970033E-02 4.84989883047E-02 4.25551561905E-02 3.70956448867E-02 3.21097371860E-02 2.75843043037E-02 2.35038900681E-02 1.98508304340E-02 1.66054086061E-02 1.37460452826E-02 1.12495226820E-02 9.09124012270E-03 7.24549800242E-03 5.68580610610E-03 4.38521127607E-03 3.31663864556E-03 2.45323989169E-03 1.76874133884E-03 1.23778426329E-03 8.36249436612E-04 5.41557812777E-04 3.32939316418E-04 1.91661922289E-04 1.01213610324E-04 4.74303083048E-05 1.85635552836E-05 5.28228629159E-06 6.03802005169E-07 -2.50401589560E-07 -7.77451041878E-08 3.46944695195E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8 10 2 i j (l(j)) 0.00000000000E+00 Q_int 1.00707128307E-25 1.08550617470E-25 1.17004990126E-25 1.26117824417E-25 1.35940404066E-25 1.46528006989E-25 1.57940216374E-25 1.70241255994E-25 1.83500351638E-25 1.97792120685E-25 2.13196992026E-25 2.29801658687E-25 2.47699565709E-25 2.66991436018E-25 2.87785837260E-25 3.10199792781E-25 3.34359440191E-25 3.60400741220E-25 3.88470246860E-25 4.18725922106E-25 4.51338034920E-25 4.86490114441E-25 5.24379983817E-25 5.65220873486E-25 6.09242621156E-25 6.56692965251E-25 7.07838939091E-25 7.62968373659E-25 8.22391517410E-25 8.86442782235E-25 9.55482625412E-25 1.02989957813E-24 1.11011243199E-24 1.19657259584E-24 1.28976663611E-24 1.39021901503E-24 1.49849504215E-24 1.61520405566E-24 1.74100285154E-24 1.87659937977E-24 2.02275672840E-24 2.18029741797E-24 2.35010803029E-24 2.53314419790E-24 2.73043598191E-24 2.94309366890E-24 3.17231401916E-24 3.41938700165E-24 3.68570305347E-24 3.97276090470E-24 4.28217601277E-24 4.61568965363E-24 4.97517872102E-24 5.36266628897E-24 5.78033299689E-24 6.23052932144E-24 6.71578880418E-24 7.23884230938E-24 7.80263339234E-24 8.41033486468E-24 9.06536664976E-24 9.77141502875E-24 1.05324533857E-23 1.13527645683E-23 1.22369649902E-23 1.31900306104E-23 1.42173249364E-23 1.53246292078E-23 1.65181749313E-23 1.78046789489E-23 1.91913812383E-23 2.06860856568E-23 2.22972038584E-23 2.40338026314E-23 2.59056549236E-23 2.79232948402E-23 3.00980769264E-23 3.24422400664E-23 3.49689763595E-23 3.76925053604E-23 4.06281541018E-23 4.37924433492E-23 4.72031805739E-23 5.08795601670E-23 5.48422714582E-23 5.91136151484E-23 6.37176288092E-23 6.86802221583E-23 7.40293228695E-23 7.97950337398E-23 8.60098020969E-23 9.27086024008E-23 9.99291330679E-23 1.07712028623E-22 1.16101088377E-22 1.25143522913E-22 1.34890219769E-22 1.45396029816E-22 1.56720075939E-22 1.68926085757E-22 1.82082750262E-22 1.96264110385E-22 2.11549973670E-22 2.28026363407E-22 2.45786002733E-22 2.64928836449E-22 2.85562593472E-22 3.07803393093E-22 3.31776398456E-22 3.57616520927E-22 3.85469179333E-22 4.15491118318E-22 4.47851290450E-22 4.82731807026E-22 5.20328962923E-22 5.60854341277E-22 6.04536004198E-22 6.51619776216E-22 7.02370627697E-22 7.57074165995E-22 8.16038242751E-22 8.79594686366E-22 9.48101169414E-22 1.02194322149E-21 1.10153639883E-21 1.18732862293E-21 1.27980270123E-21 1.37947904425E-21 1.48691859423E-21 1.60272598190E-21 1.72755292915E-21 1.86210191668E-21 2.00713013728E-21 2.16345375706E-21 2.33195250853E-21 2.51357464141E-21 2.70934225903E-21 2.92035707037E-21 3.14780659007E-21 3.39297082132E-21 3.65722945927E-21 3.94206965544E-21 4.24909438686E-21 4.58003147706E-21 4.93674331962E-21 5.32123735904E-21 5.73567738790E-21 6.18239572394E-21 6.66390633541E-21 7.18291898885E-21 7.74235449863E-21 8.34536116421E-21 8.99533248768E-21 9.69592627107E-21 1.04510852012E-20 1.12650590377E-20 1.21424285289E-20 1.30881311910E-20 1.41074890941E-20 1.52062388134E-20 1.63905637122E-20 1.76671287397E-20 1.90431179388E-20 2.05262748756E-20 2.21249462169E-20 2.38481287026E-20 2.57055197758E-20 2.77075721565E-20 2.98655526660E-20 3.21916056317E-20 3.46988212319E-20 3.74013091618E-20 4.03142780381E-20 4.34541209871E-20 4.68385078998E-20 5.04864848710E-20 5.44185813844E-20 5.86569258441E-20 6.32253701060E-20 6.81496237069E-20 7.34573985484E-20 7.91785648493E-20 8.53453192443E-20 9.19923659748E-20 9.91571121916E-20 1.06879878469E-19 1.15204125712E-19 1.24176699744E-19 1.33848094929E-19 1.44272738345E-19 1.55509296072E-19 1.67621003346E-19 1.80676020425E-19 1.94747816168E-19 2.09915581490E-19 2.26264675022E-19 2.43887103476E-19 2.62882039424E-19 2.83356379406E-19 3.05425345507E-19 3.29213133777E-19 3.54853613167E-19 3.82491078892E-19 4.12281064471E-19 4.44391217012E-19 4.79002240668E-19 5.16308913572E-19 5.56521183977E-19 5.99865351770E-19 6.46585341998E-19 6.96944077591E-19 7.51224958995E-19 8.09733459042E-19 8.72798842041E-19 9.40776016753E-19 1.01404753368E-18 1.09302573794E-18 1.17815508974E-18 1.26991466571E-18 1.36882085488E-18 1.47543026480E-18 1.59034285387E-18 1.71420530771E-18 1.84771467845E-18 1.99162230747E-18 2.14673805370E-18 2.31393485116E-18 2.49415362154E-18 2.68840856934E-18 2.89779288942E-18 3.12348491912E-18 3.36675476945E-18 3.62897147285E-18 3.91161068755E-18 4.21626300203E-18 4.54464288624E-18 4.89859834001E-18 5.28012129288E-18 5.69135881390E-18 6.13462519456E-18 6.61241497271E-18 7.12741697089E-18 7.68252942798E-18 8.28087630941E-18 8.92582488759E-18 9.62100469168E-18 1.03703279332E-17 1.11780115223E-17 1.20486007993E-17 1.29869951136E-17 1.39984753956E-17 1.50887338759E-17 1.62639061185E-17 1.75306055501E-17 1.88959606770E-17 2.03676552024E-17 2.19539712666E-17 2.36638360563E-17 2.55068720428E-17 2.74934511338E-17 2.96347530422E-17 3.19428282013E-17 3.44306655802E-17 3.71122657797E-17 4.00027198232E-17 4.31182940822E-17 4.64765218175E-17 5.00963018491E-17 5.39980049115E-17 5.82035882917E-17 6.27367193965E-17 6.76229089428E-17 7.28896545215E-17 7.85665953436E-17 8.46856790368E-17 9.12813414345E-17 9.83907003663E-17 1.06053764542E-16 1.14313658705E-16 1.23216866318E-16 1.32813491158E-16 1.43157539275E-16 1.54307222917E-16 1.66325288126E-16 1.79279367843E-16 1.93242362522E-16 2.08292850383E-16 2.24515529613E-16 2.42001695016E-16 2.60849751779E-16 2.81165769256E-16 3.03064077882E-16 3.26667912574E-16 3.52110106242E-16 3.79533837322E-16 4.09093435515E-16 4.40955250294E-16 4.75298587041E-16 5.12316716101E-16 5.52217960424E-16 5.95226867912E-16 6.41585475076E-16 6.91554669110E-16 7.45415656045E-16 8.03471543255E-16 8.66049045200E-16 9.33500322034E-16 1.00620496140E-15 1.08457211456E-15 1.16904279895E-15 1.26009237996E-15 1.35823324612E-15 1.46401769257E-15 1.57804102909E-15 1.70094493025E-15 1.83342104645E-15 1.97621489617E-15 2.13013006139E-15 2.29603270979E-15 2.47485646908E-15 2.66760768102E-15 2.87537106460E-15 3.09931582029E-15 3.34070220974E-15 3.60088864785E-15 3.88133934727E-15 4.18363255822E-15 4.50946945006E-15 4.86068368461E-15 5.23925173498E-15 5.64730400817E-15 6.08713683382E-15 6.56122538674E-15 7.07223761582E-15 7.62304925781E-15 8.21676002038E-15 8.85671102550E-15 9.54650361145E-15 1.02900195991E-14 1.10914431364E-14 1.19552842448E-14 1.28864041985E-14 1.38900428810E-14 1.49718482723E-14 1.61379082319E-14 1.73947847580E-14 1.87495509142E-14 2.02098306322E-14 2.17838416148E-14 2.34804415796E-14 2.53091781049E-14 2.72803423570E-14 2.94050270024E-14 3.16951886299E-14 3.41637150342E-14 3.68244977397E-14 3.96925101727E-14 4.27838919212E-14 4.61160395574E-14 4.97077045331E-14 5.35790986996E-14 5.77520080449E-14 6.22499152897E-14 6.70981320304E-14 7.23239411735E-14 7.79567504631E-14 8.40282579647E-14 9.05726304374E-14 9.76266955965E-14 1.05230149351E-13 1.13425779178E-13 1.22259704898E-13 1.31781638195E-13 1.42045162354E-13 1.53108033780E-13 1.65032506999E-13 1.77885684975E-13 1.91739896700E-13 2.06673104197E-13 2.22769341218E-13 2.40119186105E-13 2.58820271479E-13 2.78977833618E-13 3.00705304627E-13 3.24124950714E-13 3.49368560181E-13 3.76578184992E-13 4.05906940089E-13 4.37519864958E-13 4.71594852292E-13 5.08323648969E-13 5.47912934989E-13 5.90585486431E-13 6.36581428970E-13 6.86159589026E-13 7.39598950116E-13 7.97200222632E-13 8.59287535862E-13 9.26210261769E-13 9.98344980806E-13 1.07609760081E-12 1.15990564088E-12 1.25024069319E-12 1.34761107636E-12 1.45256469564E-12 1.56569212564E-12 1.68762993325E-12 1.81906425928E-12 1.96073467897E-12 2.11343836320E-12 2.27803456363E-12 2.45544944722E-12 2.64668130713E-12 2.85280617939E-12 3.07498389701E-12 3.31446461547E-12 3.57259584627E-12 3.85083003832E-12 4.15073274957E-12 4.47399145494E-12 4.82242504019E-12 5.19799403488E-12 5.60281164236E-12 6.03915562836E-12 6.50948113551E-12 7.01643449549E-12 7.56286811679E-12 8.15185653155E-12 8.78671369198E-12 9.47101161344E-12 1.02086004691E-11 1.10036302494E-11 1.18605741076E-11 1.27842535230E-11 1.37798654307E-11 1.48530114265E-11 1.60097293320E-11 1.72565270887E-11 1.86004194555E-11 2.00489673635E-11 2.16103205357E-11 2.32932632753E-11 2.51072638545E-11 2.70625279298E-11 2.91700556556E-11 3.14417038826E-11 3.38902525952E-11 3.65294769015E-11 3.93742245660E-11 4.24404993588E-11 4.57455512154E-11 4.93079731691E-11 5.31478059739E-11 5.72866507390E-11 6.17477905037E-11 6.65563210943E-11 7.17392923169E-11 7.73258600713E-11 8.33474502458E-11 8.98379354968E-11 9.68338257119E-11 1.04374473306E-10 1.12502294512E-10 1.21263007883E-10 1.30705891332E-10 1.40884059228E-10 1.51854761320E-10 1.63679703725E-10 1.76425396991E-10 1.90163529863E-10 2.04971370806E-10 2.20932204534E-10 2.38135799315E-10 2.56678910783E-10 2.76665827477E-10 2.98208955989E-10 3.21429452692E-10 3.46457905482E-10 3.73435067293E-10 4.02512647727E-10 4.33854165096E-10 4.67635865739E-10 5.04047714368E-10 5.43294462388E-10 5.85596797528E-10 6.31192584715E-10 6.80338202149E-10 7.33309982547E-10 7.90405765505E-10 8.51946571861E-10 9.18278403757E-10 9.89774194671E-10 1.06683589894E-09 1.14989675349E-09 1.23942370818E-09 1.33592005308E-09 1.43992824129E-09 1.55203293811E-09 1.67286430493E-09 1.80310153557E-09 1.94347667516E-09 2.09477872633E-09 2.25785808290E-09 2.43363130290E-09 2.62308625493E-09 2.82728766723E-09 3.04738309847E-09 3.28460938836E-09 3.54029959444E-09 3.81589047026E-09 4.11293054142E-09 4.43308878955E-09 4.77816401328E-09 5.15009492960E-09 5.55097104923E-09 5.98304439512E-09 6.44874214962E-09 6.95068025065E-09 7.49167807898E-09 8.07477427463E-09 8.70324376337E-09 9.38061613166E-09 1.01106954171E-08 1.08975814345E-08 1.17456927601E-08 1.26597914998E-08 1.36450099915E-08 1.47068795442E-08 1.58513614673E-08 1.70848804457E-08 1.84143605563E-08 1.98472640396E-08 2.13916331139E-08 2.30561350082E-08 2.48501105017E-08 2.67836262250E-08 2.88675310352E-08 3.11135167088E-08 3.35341834345E-08 3.61431102737E-08 3.89549311972E-08 4.19854169196E-08 4.52515631381E-08 4.87716855854E-08 5.25655224577E-08 5.66543447854E-08 6.10610753259E-08 6.58104167197E-08 7.09289895100E-08 7.64454809117E-08 8.23908050569E-08 8.87982756751E-08 9.57037921243E-08 1.03146039816E-07 1.11166706196E-07 1.19810713370E-07 1.29126468782E-07 1.39166135257E-07 1.49985921922E-07 1.61646397658E-07 1.74212828740E-07 1.87755542607E-07 2.02350319720E-07 2.18078815748E-07 2.35029016269E-07 2.53295726724E-07 2.72981100056E-07 2.94195205223E-07 3.17056639498E-07 3.41693188022E-07 3.68242534306E-07 3.96853025438E-07 4.27684496402E-07 4.60909157825E-07 4.96712552238E-07 5.35294583952E-07 5.76870628313E-07 6.21672726317E-07 6.69950871232E-07 7.21974394226E-07 7.78033456592E-07 8.38440656711E-07 9.03532760674E-07 9.73672565750E-07 1.04925090719E-06 1.13068881910E-06 1.21843986120E-06 1.31299262418E-06 1.41487342735E-06 1.52464922304E-06 1.64293072377E-06 1.77037576898E-06 1.90769294976E-06 2.05564551086E-06 2.21505555170E-06 2.38680854835E-06 2.57185822155E-06 2.77123177669E-06 2.98603554392E-06 3.21746104903E-06 3.46679154756E-06 3.73540905719E-06 4.02480192626E-06 4.33657297885E-06 4.67244827995E-06 5.03428656779E-06 5.42408940333E-06 5.84401209119E-06 6.29637542997E-06 6.78367835463E-06 7.30861153761E-06 7.87407202108E-06 8.48317895719E-06 9.13929054017E-06 9.84602221858E-06 1.06072662842E-05 1.14272129402E-05 1.23103729584E-05 1.32616020456E-05 1.42861270446E-05 1.53895741068E-05 1.65779989841E-05 1.78579195950E-05 1.92363510358E-05 2.07208432161E-05 2.23195213131E-05 2.40411292527E-05 2.58950764402E-05 2.78914879800E-05 3.00412586396E-05 3.23561108340E-05 3.48486569228E-05 3.75324661367E-05 4.04221364708E-05 4.35333719047E-05 4.68830653396E-05 5.04893876641E-05 5.43718833934E-05 5.85515733572E-05 6.30510649439E-05 6.78946704442E-05 7.31085340757E-05 7.87207683105E-05 8.47616001686E-05 9.12635281890E-05 9.82614908352E-05 1.05793047147E-04 1.13898570506E-04 1.22621456427E-04 1.32008345386E-04 1.42109361707E-04 1.52978369653E-04 1.64673247907E-04 1.77256183722E-04 1.90793988101E-04 2.05358433453E-04 2.21026615265E-04 2.37881339441E-04 2.56011537044E-04 2.75512708312E-04 2.96487397906E-04 3.19045703511E-04 3.43305820002E-04 3.69394621556E-04 3.97448284218E-04 4.27612951585E-04 4.60045446439E-04 4.94914031321E-04 5.32399221220E-04 5.72694651721E-04 6.16008006185E-04 6.62562005684E-04 7.12595465677E-04 7.66364423594E-04 8.24143341744E-04 8.86226390195E-04 9.52928814519E-04 1.02458839354E-03 1.10156699253E-03 1.18425221746E-03 1.27305917636E-03 1.36843235397E-03 1.47084760622E-03 1.58081428136E-03 1.69887747492E-03 1.82562042588E-03 1.96166706177E-03 2.10768470083E-03 2.26438691943E-03 2.43253659351E-03 2.61294912287E-03 2.80649584758E-03 3.01410766592E-03 3.23677886359E-03 3.47557116414E-03 3.73161801072E-03 4.00612908946E-03 4.30039510495E-03 4.61579281835E-03 4.95379035861E-03 5.31595281736E-03 5.70394813807E-03 6.11955330943E-03 6.56466087333E-03 7.04128575685E-03 7.55157243756E-03 8.09780245077E-03 8.68240224651E-03 9.30795140338E-03 9.97719120503E-03 1.06930335842E-02 1.14585704372E-02 1.22770833112E-02 1.31520534622E-02 1.40871722838E-02 1.50863520987E-02 1.61537373076E-02 1.72937158817E-02 1.85109311873E-02 1.98102941205E-02 2.11969955309E-02 2.26765189061E-02 2.42546532822E-02 2.59375063426E-02 2.77315176573E-02 2.96434720114E-02 3.16805127604E-02 3.38501551434E-02 3.61602994755E-02 3.86192441320E-02 4.12356982230E-02 4.40187938497E-02 4.69780978199E-02 5.01236226843E-02 5.34658369470E-02 5.70156742840E-02 6.07845415904E-02 6.47843256595E-02 6.90273982832E-02 7.35266195392E-02 7.82953390202E-02 8.33473947343E-02 8.86971093910E-02 9.43592837666E-02 1.00349186822E-01 1.06682542229E-01 1.13375510936E-01 1.20444669398E-01 1.27906983054E-01 1.35779774653E-01 1.44080686977E-01 1.52827639523E-01 1.62038778681E-01 1.71732420948E-01 1.81926988696E-01 1.92640938033E-01 2.03892678280E-01 2.15700482611E-01 2.28082389414E-01 2.41056093946E-01 2.54638829904E-01 2.68847240551E-01 2.83697239105E-01 2.99203858145E-01 3.15381087874E-01 3.32241703141E-01 3.49797079245E-01 3.68056996644E-01 3.87029434823E-01 4.06720355706E-01 4.27133477193E-01 4.48270037516E-01 4.70128551386E-01 4.92704559025E-01 5.15990369486E-01 5.39974799849E-01 5.64642912176E-01 5.89975750362E-01 6.15950079328E-01 6.42538129268E-01 6.69707347987E-01 6.97420164672E-01 7.25633768713E-01 7.54299907536E-01 7.83364707645E-01 8.12768523358E-01 8.42445817958E-01 8.72325082185E-01 9.02328795125E-01 9.32373432682E-01 9.62369528855E-01 9.92221794976E-01 1.02182930196E+00 1.05108573043E+00 1.07987969307E+00 1.10809513352E+00 1.13561180489E+00 1.16230583096E+00 1.18805035176E+00 1.21271625442E+00 1.23617298896E+00 1.25828946743E+00 1.27893504329E+00 1.29798056630E+00 1.31529950658E+00 1.33076913960E+00 1.34427178191E+00 1.35569606569E+00 1.36493823800E+00 1.37190346889E+00 1.37650715071E+00 1.37867616909E+00 1.37835012500E+00 1.37548248562E+00 1.37004164135E+00 1.36201184562E+00 1.35139401411E+00 1.33820636086E+00 1.32248484955E+00 1.30428344029E+00 1.28367411444E+00 1.26074666330E+00 1.23560823010E+00 1.20838259909E+00 1.17920923070E+00 1.14824204666E+00 1.11564797533E+00 1.08160527295E+00 1.04630164271E+00 1.00993217952E+00 9.72697173548E-01 9.34799810609E-01 8.96443811527E-01 8.57831055528E-01 8.19159234497E-01 7.80619585316E-01 7.42394746359E-01 7.04656781539E-01 6.67565411156E-01 6.31266483169E-01 5.95890711770E-01 5.61552702411E-01 5.28350274199E-01 4.96364082138E-01 4.65657533656E-01 4.36276986535E-01 4.08252209298E-01 3.81597080665E-01 3.56310502007E-01 3.32377496122E-01 3.09770466775E-01 2.88450596240E-01 2.68369361829E-01 2.49470156576E-01 2.31690002824E-01 2.14961349668E-01 1.99213945040E-01 1.84376769956E-01 1.70380015625E-01 1.57157073693E-01 1.44646496341E-01 1.32793867336E-01 1.21553509194E-01 1.10889937449E-01 1.00778963217E-01 9.12097968939E-02 8.21847738630E-02 7.37064934011E-02 6.57750653247E-02 5.83880338682E-02 5.15403270031E-02 4.52242341821E-02 3.94294152034E-02 3.41429424891E-02 2.93493785757E-02 2.50308900137E-02 2.11673981713E-02 1.77367666538E-02 1.47150241821E-02 1.20766208537E-02 9.79471474628E-03 7.84148485353E-03 6.18846538812E-03 4.80689558170E-03 3.66807829366E-03 2.74374003992E-03 2.00638450830E-03 1.42963126716E-03 9.88531228466E-04 6.59850515772E-04 4.22314727154E-04 2.56806177427E-04 1.46507550966E-04 7.69864828235E-05 3.62168917228E-05 1.45343880181E-05 4.52474417588E-06 8.46218416284E-07 -1.15556807768E-08 -2.73661730950E-08 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 9 9 2 i j (l(j)) 7.58445792022E-01 Q_int 8.09612550265E-26 8.72668536190E-26 9.40635584026E-26 1.01389618766E-25 1.09286263119E-25 1.17797930910E-25 1.26972522719E-25 1.36861669819E-25 1.47521024741E-25 1.59010574469E-25 1.71394978019E-25 1.84743930321E-25 1.99132554436E-25 2.14641824319E-25 2.31359020514E-25 2.49378221337E-25 2.68800832310E-25 2.89736156843E-25 3.12302011345E-25 3.36625388259E-25 3.62843170724E-25 3.91102902907E-25 4.21563620328E-25 4.54396744853E-25 4.89787049392E-25 5.27933697740E-25 5.69051365392E-25 6.13371447662E-25 6.61143361894E-25 7.12635951086E-25 7.68138996847E-25 8.27964850180E-25 8.92450189280E-25 9.61957914238E-25 1.03687918931E-24 1.11763564424E-24 1.20468174707E-24 1.29850736166E-24 1.39964050454E-24 1.50865031634E-24 1.62615026473E-24 1.75280159677E-24 1.88931706021E-24 2.03646491454E-24 2.19507325449E-24 2.36603467024E-24 2.55031127061E-24 2.74894009743E-24 2.96303896167E-24 3.19381273404E-24 3.44256012560E-24 3.71068099639E-24 3.99968423338E-24 4.31119624192E-24 4.64697009854E-24 5.00889541667E-24 5.39900898066E-24 5.81950620807E-24 6.27275350472E-24 6.76130158189E-24 7.28789981087E-24 7.85551169540E-24 8.46733154917E-24 9.12680247228E-24 9.83763572777E-24 1.06038316272E-23 1.14297020431E-23 1.23198946743E-23 1.32794192020E-23 1.43136754820E-23 1.54284839331E-23 1.66301182929E-23 1.79253409233E-23 1.93214408673E-23 2.08262748685E-23 2.24483115866E-23 2.41966792555E-23 2.60812170539E-23 2.81125304764E-23 3.03020510178E-23 3.26621005048E-23 3.52059604394E-23 3.79479467418E-23 4.09034903158E-23 4.40892238876E-23 4.75230756095E-23 5.12243699524E-23 5.52139364572E-23 5.95142269561E-23 6.41494419228E-23 6.91456666644E-23 7.45310181201E-23 8.03358030928E-23 8.65926888049E-23 9.33368867375E-23 1.00606350788E-22 1.08441990861E-22 1.16887903095E-22 1.25991618015E-22 1.35804368025E-22 1.46381375719E-22 1.57782164655E-22 1.70070894334E-22 1.83316721265E-22 1.97594188151E-22 2.12983643391E-22 2.29571693251E-22 2.47451689252E-22 2.66724253518E-22 2.87497845040E-22 3.09889370049E-22 3.34024839914E-22 3.60040080293E-22 3.88081495511E-22 4.18306892467E-22 4.50886368717E-22 4.86003269718E-22 5.23855220632E-22 5.64655238491E-22 6.08632930971E-22 6.56035788550E-22 7.07130577288E-22 7.62204840093E-22 8.21568514907E-22 8.85555678920E-22 9.54526428643E-22 1.02886890639E-21 1.10900148462E-21 1.19537512035E-21 1.28847589302E-21 1.38882773994E-21 1.49699540483E-21 1.61358761600E-21 1.73926051203E-21 1.87472133430E-21 2.02073240707E-21 2.17811542757E-21 2.34775609024E-21 2.53060907104E-21 2.72770340006E-21 2.94014825252E-21 3.16913919080E-21 3.41596489263E-21 3.68201440328E-21 3.96878495263E-21 4.27789038105E-21 4.61107022143E-21 4.97019948871E-21 5.35729923177E-21 5.77454790712E-21 6.22429363848E-21 6.70906743117E-21 7.23159741570E-21 7.79482420064E-21 8.40191742135E-21 9.05629357749E-21 9.76163525986E-21 1.05219118747E-20 1.13414019819E-20 1.22247173734E-20 1.31768290267E-20 1.42030950793E-20 1.53092909828E-20 1.65016420047E-20 1.77868582623E-20 1.91721724845E-20 2.06653807147E-20 2.22748861850E-20 2.40097466053E-20 2.58797251379E-20 2.78953453401E-20 3.00679503877E-20 3.24097669096E-20 3.49339737952E-20 3.76547763602E-20 4.05874862889E-20 4.37486078029E-20 4.71559305406E-20 5.08286296709E-20 5.47873738041E-20 5.90544413070E-20 6.36538456775E-20 6.86114706841E-20 7.39552160295E-20 7.97151543607E-20 8.59237005061E-20 9.26157938948E-20 9.98290951827E-20 1.07604198192E-19 1.15984858361E-19 1.25018238980E-19 1.34755176610E-19 1.45250467175E-19 1.56563174330E-19 1.68756961850E-19 1.81900451908E-19 1.96067611252E-19 2.11338167468E-19 2.27798057652E-19 2.45539912033E-19 2.64663575267E-19 2.85276668319E-19 3.07495194118E-19 3.31444190378E-19 3.57258433262E-19 3.85083195856E-19 4.15075065708E-19 4.47402826048E-19 4.82248405637E-19 5.19807902593E-19 5.60292687958E-19 6.03930595220E-19 6.50967202469E-19 7.01667214424E-19 7.56315952093E-19 8.15220958448E-19 8.78713729168E-19 9.47151578171E-19 1.02091964844E-18 1.10043307948E-18 1.18613934354E-18 1.27852076384E-18 1.37809722890E-18 1.48542911829E-18 1.60112045622E-18 1.72582231075E-18 1.86023645779E-18 2.00511933043E-18 2.16128627581E-18 2.32961614365E-18 2.51105623206E-18 2.70662761856E-18 2.91743090633E-18 3.14465241803E-18 3.38957087190E-18 3.65356457796E-18 3.93811919460E-18 4.24483608930E-18 4.57544135052E-18 4.93179550146E-18 5.31590397040E-18 5.72992837647E-18 6.17619869441E-18 6.65722636681E-18 7.17571843753E-18 7.73459278587E-18 8.33699454737E-18 8.98631381332E-18 9.68620470896E-18 1.04406059575E-17 1.12537630456E-17 1.21302521156E-17 1.30750057180E-17 1.40933405701E-17 1.51909874764E-17 1.63741235793E-17 1.76494071217E-17 1.90240149169E-17 2.05056827373E-17 2.21027488475E-17 2.38242009297E-17 2.56797266622E-17 2.76797682380E-17 2.98355811298E-17 3.21592974304E-17 3.46639941284E-17 3.73637666996E-17 4.02738084308E-17 4.34104959219E-17 4.67914812466E-17 5.04357912914E-17 5.43639348310E-17 5.85980179437E-17 6.31618684154E-17 6.80811698329E-17 7.33836061203E-17 7.90990173337E-17 8.52595675878E-17 9.18999260634E-17 9.90574621109E-17 1.06772455550E-16 1.15088323346E-16 1.24051863947E-16 1.33713520640E-16 1.44127665433E-16 1.55352905027E-16 1.67452410642E-16 1.80494273508E-16 1.94551888060E-16 2.09704364968E-16 2.26036976341E-16 2.43641635598E-16 2.62617414721E-16 2.83071101789E-16 3.05117801934E-16 3.28881585104E-16 3.54496184273E-16 3.82105748036E-16 4.11865651810E-16 4.43943372221E-16 4.78519429587E-16 5.15788403808E-16 5.55960029372E-16 5.99260375652E-16 6.45933119117E-16 6.96240914636E-16 7.50466873582E-16 8.08916157048E-16 8.71917693161E-16 9.39826028130E-16 1.01302332148E-15 1.09192149664E-15 1.17696455910E-15 1.26863109501E-15 1.36743696450E-15 1.47393820462E-15 1.58873415852E-15 1.71247084821E-15 1.84584461009E-15 1.98960601358E-15 2.14456408496E-15 2.31159086015E-15 2.49162629213E-15 2.68568354048E-15 2.89485467295E-15 3.12031681108E-15 3.36333875439E-15 3.62528812057E-15 3.90763904170E-15 4.21198045990E-15 4.54002506903E-15 4.89361895285E-15 5.27475197378E-15 5.68556897074E-15 6.12838182916E-15 6.60568249100E-15 7.12015697797E-15 7.67470050701E-15 8.27243378289E-15 8.91672055977E-15 9.61118657047E-15 1.03597399300E-14 1.11665931280E-14 1.20362867345E-14 1.29737149509E-14 1.39841531524E-14 1.50732875738E-14 1.62472473085E-14 1.75126387993E-14 1.88765830150E-14 2.03467555231E-14 2.19314296824E-14 2.36395232005E-14 2.54806483166E-14 2.74651658928E-14 2.96042437182E-14 3.19099193534E-14 3.43951678695E-14 3.70739748631E-14 3.99614151573E-14 4.30737376314E-14 4.64284566588E-14 5.00444506642E-14 5.39420683580E-14 5.81432432430E-14 6.26716170398E-14 6.75526727239E-14 7.28138779241E-14 7.84848394887E-14 8.45974700884E-14 9.11861677955E-14 9.82880096473E-14 1.05942960285E-13 1.14194096840E-13 1.23087851336E-13 1.32674271967E-13 1.43007304724E-13 1.54145096952E-13 1.66150324558E-13 1.79090544682E-13 1.93038575853E-13 2.08072907737E-13 2.24278142805E-13 2.41745472386E-13 2.60573189806E-13 2.80867243479E-13 3.02741833076E-13 3.26320052118E-13 3.51734580620E-13 3.79128431661E-13 4.08655756111E-13 4.40482710013E-13 4.74788389521E-13 5.11765838643E-13 5.51623135464E-13 5.94584562959E-13 6.40891870979E-13 6.90805636517E-13 7.44606729909E-13 8.02597895197E-13 8.65105453585E-13 9.32481139524E-13 1.00510407980E-12 1.08338292673E-12 1.16775815746E-12 1.25870455237E-12 1.35673386639E-12 1.46239770842E-12 1.57629064493E-12 1.69905354525E-12 1.83137718735E-12 1.97400614444E-12 2.12774297418E-12 2.29345273412E-12 2.47206784876E-12 2.66459335558E-12 2.87211255960E-12 3.09579312826E-12 3.33689366084E-12 3.59677076948E-12 3.87688671154E-12 4.17881761632E-12 4.50426235228E-12 4.85505208482E-12 5.23316057813E-12 5.64071529940E-12 6.08000938741E-12 6.55351455326E-12 7.06389498544E-12 7.61402233767E-12 8.20699188368E-12 8.84613992986E-12 9.53506258369E-12 1.02776359834E-11 1.10780381069E-11 1.19407722644E-11 1.28706924135E-11 1.38730305465E-11 1.49534260236E-11 1.61179573389E-11 1.73731762682E-11 1.87261448286E-11 2.01844748973E-11 2.17563710394E-11 2.34506767267E-11 2.52769240549E-11 2.72453872198E-11 2.93671405301E-11 3.16541205713E-11 3.41191932764E-11 3.67762265094E-11 3.96401677943E-11 4.27271285655E-11 4.60544746386E-11 4.96409240810E-11 5.35066522780E-11 5.76734054950E-11 6.21646230935E-11 6.70055695245E-11 7.22234760749E-11 7.78476944183E-11 8.39098612679E-11 9.04440765497E-11 9.74870948800E-11 1.05078532784E-10 1.13261090685E-10 1.22080793518E-10 1.31587249505E-10 1.41833928782E-10 1.52878463557E-10 1.64782974203E-10 1.77614415722E-10 1.91444956045E-10 2.06352380838E-10 2.22420531619E-10 2.39739776007E-10 2.58407516752E-10 2.78528737834E-10 3.00216596469E-10 3.23593057994E-10 3.48789580688E-10 3.75947856090E-10 4.05220604774E-10 4.36772434545E-10 4.70780764638E-10 5.07436824716E-10 5.46946727875E-10 5.89532629480E-10 6.35433975132E-10 6.84908846054E-10 7.38235410217E-10 7.95713482904E-10 8.57666213205E-10 9.24441898648E-10 9.96415942601E-10 1.07399296025E-09 1.15760905478E-09 1.24773426531E-09 1.34487520694E-09 1.44957791557E-09 1.56243091621E-09 1.68406852564E-09 1.81517441452E-09 1.95648544889E-09 2.10879582585E-09 2.27296152990E-09 2.44990514340E-09 2.64062102171E-09 2.84618087713E-09 3.06773979384E-09 3.30654270784E-09 3.56393140539E-09 3.84135203206E-09 4.14036322866E-09 4.46264486821E-09 4.81000747639E-09 5.18440239779E-09 5.58793273630E-09 6.02286515816E-09 6.49164259458E-09 6.99689795468E-09 7.54146888437E-09 8.12841367957E-09 8.76102843276E-09 9.44286551339E-09 1.01777534816E-08 1.09698185440E-08 1.18235076888E-08 1.27436135983E-08 1.37353015079E-08 1.48041381555E-08 1.59561229485E-08 1.71977215855E-08 1.85359022696E-08 1.99781747276E-08 2.15326322599E-08 2.32079970660E-08 2.50136690502E-08 2.69597784632E-08 2.90572425955E-08 3.13178268259E-08 3.37542105146E-08 3.63800579001E-08 3.92100945165E-08 4.22601895783E-08 4.55474446887E-08 4.90902894673E-08 5.29085845664E-08 5.70237326554E-08 6.14587980306E-08 6.62386354738E-08 7.13900290651E-08 7.69418417821E-08 8.29251766901E-08 8.93735505066E-08 9.63230807478E-08 1.03812687200E-07 1.11884309130E-07 1.20583139156E-07 1.29957875310E-07 1.40060992497E-07 1.50949035034E-07 1.62682931711E-07 1.75328335262E-07 1.88955988018E-07 2.03642115808E-07 2.19468852347E-07 2.36524696258E-07 2.54905003486E-07 2.74712517690E-07 2.96057941497E-07 3.19060551866E-07 3.43848862928E-07 3.70561339866E-07 3.99347167886E-07 4.30367080361E-07 4.63794250869E-07 4.99815253833E-07 5.38631099137E-07 5.80458346473E-07 6.25530305310E-07 6.74098327168E-07 7.26433197366E-07 7.82826633663E-07 8.43592900018E-07 9.09070544478E-07 9.79624270381E-07 1.05564695110E-06 1.13756179975E-06 1.22582470487E-06 1.32092674545E-06 1.42339689873E-06 1.53380495525E-06 1.65276465733E-06 1.78093707763E-06 1.91903425635E-06 2.06782311631E-06 2.22812967768E-06 2.40084359431E-06 2.58692303680E-06 2.78739994792E-06 3.00338569935E-06 3.23607717920E-06 3.48676334384E-06 3.75683226838E-06 4.04777873387E-06 4.36121239168E-06 4.69886654842E-06 5.06260761824E-06 5.45444529286E-06 5.87654348309E-06 6.33123208986E-06 6.82101966727E-06 7.34860704408E-06 7.91690197589E-06 8.52903490487E-06 9.18837590984E-06 9.89855293571E-06 1.06634713976E-05 1.14873352622E-05 1.23746697158E-05 1.33303455375E-05 1.43596053042E-05 1.54680915620E-05 1.66618771112E-05 1.79474975603E-05 1.93319863157E-05 2.08229121887E-05 2.24284198100E-05 2.41572730597E-05 2.60189017335E-05 2.80234516819E-05 3.01818386766E-05 3.25058062755E-05 3.50079879794E-05 3.77019739892E-05 4.06023829018E-05 4.37249386982E-05 4.70865534090E-05 5.07054158666E-05 5.46010869805E-05 5.87946020063E-05 6.33085803082E-05 6.81673431505E-05 7.33970400922E-05 7.90257845934E-05 8.50837994906E-05 9.16035730366E-05 9.86200262507E-05 1.06170692375E-04 1.14295909287E-04 1.23039025769E-04 1.32446622609E-04 1.42568749556E-04 1.53459179227E-04 1.65175679137E-04 1.77780303104E-04 1.91339703338E-04 2.05925464643E-04 2.21614462222E-04 2.38489244685E-04 2.56638443953E-04 2.76157213870E-04 2.97147699424E-04 3.19719538619E-04 3.43990399147E-04 3.70086552149E-04 3.98143485490E-04 4.28306559105E-04 4.60731705136E-04 4.95586175739E-04 5.33049341583E-04 5.73313544269E-04 6.16585006036E-04 6.63084800343E-04 7.13049887083E-04 7.66734216409E-04 8.24409905328E-04 8.86368491466E-04 9.52922268619E-04 1.02440570890E-03 1.10117697661E-03 1.18361953902E-03 1.27214387982E-03 1.36718932080E-03 1.46922595798E-03 1.57875671841E-03 1.69631954418E-03 1.82248971052E-03 1.95788228491E-03 2.10315473456E-03 2.25900968984E-03 2.42619787116E-03 2.60552118763E-03 2.79783601522E-03 3.00405666312E-03 3.22515903645E-03 3.46218450417E-03 3.71624398066E-03 3.98852222981E-03 4.28028240030E-03 4.59287080068E-03 4.92772192298E-03 5.28636372295E-03 5.67042316528E-03 6.08163204146E-03 6.52183306757E-03 6.99298626879E-03 7.49717565676E-03 8.03661620496E-03 8.61366112642E-03 9.23080945702E-03 9.89071394608E-03 1.05961892547E-02 1.13502204604E-02 1.21559718645E-02 1.30167960971E-02 1.39362435106E-02 1.49180718520E-02 1.59662561991E-02 1.70849991424E-02 1.82787411924E-02 1.95521713859E-02 2.09102380601E-02 2.23581597594E-02 2.39014362335E-02 2.55458594780E-02 2.72975247644E-02 2.91628415966E-02 3.11485445247E-02 3.32617037374E-02 3.55097353460E-02 3.79004112622E-02 4.04418685628E-02 4.31426182205E-02 4.60115530729E-02 4.90579548834E-02 5.22915003406E-02 5.57222658235E-02 5.93607307503E-02 6.32177793105E-02 6.73047003657E-02 7.16331852905E-02 7.62153235049E-02 8.10635954389E-02 8.61908626487E-02 9.16103547922E-02 9.73356531526E-02 1.03380670386E-01 1.09759626155E-01 1.16487018292E-01 1.23577589139E-01 1.31046286674E-01 1.38908220062E-01 1.47178609233E-01 1.55872728094E-01 1.65005841018E-01 1.74593132188E-01 1.84649627471E-01 1.95190108442E-01 2.06229018240E-01 2.17780358962E-01 2.29857580327E-01 2.42473459405E-01 2.55639971235E-01 2.69368150267E-01 2.83667942580E-01 2.98548048968E-01 3.14015759064E-01 3.30076776770E-01 3.46735037420E-01 3.63992517228E-01 3.81849035703E-01 4.00302051933E-01 4.19346455780E-01 4.38974355226E-01 4.59174861355E-01 4.79933872625E-01 5.01233860366E-01 5.23053657626E-01 5.45368253785E-01 5.68148597563E-01 5.91361411322E-01 6.14969019790E-01 6.38929196577E-01 6.63195032078E-01 6.87714826540E-01 7.12432012256E-01 7.37285108993E-01 7.62207716837E-01 7.87128550700E-01 8.11971520714E-01 8.36655862662E-01 8.61096322419E-01 8.85203398149E-01 9.08883643671E-01 9.32040035915E-01 9.54572408913E-01 9.76377956012E-01 9.97351801290E-01 1.01738764017E+00 1.03637844826E+00 1.05421725617E+00 1.07079798704E+00 1.08601635180E+00 1.09977079604E+00 1.11196349063E+00 1.12250135687E+00 1.13129711514E+00 1.13827034468E+00 1.14334854054E+00 1.14646815231E+00 1.14757558820E+00 1.14662816678E+00 1.14359499820E+00 1.13845777590E+00 1.13121146029E+00 1.12186483557E+00 1.11044092229E+00 1.09697722909E+00 1.08152582921E+00 1.06415324945E+00 1.04494016245E+00 1.02398087631E+00 1.00138261959E+00 9.77264623964E-01 9.51757011320E-01 9.24999496915E-01 8.97139925011E-01 8.68332658110E-01 8.38736845362E-01 8.08514599733E-01 7.77829116883E-01 7.46842771255E-01 7.15715226509E-01 6.84601597884E-01 6.53650703456E-01 6.23003439276E-01 5.92791310299E-01 5.63135144724E-01 5.34144014129E-01 5.05914375788E-01 4.78529447077E-01 4.52058815270E-01 4.26558279653E-01 4.02069917116E-01 3.78622357652E-01 3.56231252670E-01 3.34899917113E-01 3.14620126006E-01 2.95373047290E-01 2.77130295329E-01 2.59855092937E-01 2.43503533593E-01 2.28025938879E-01 2.13368308459E-01 1.99473860129E-01 1.86284655096E-01 1.73743298005E-01 1.61794692384E-01 1.50387820134E-01 1.39477499452E-01 1.29026060143E-01 1.19004860583E-01 1.09395558472E-01 1.00192682993E-01 9.14046380458E-02 8.30410736276E-02 7.51100054875E-02 6.76176792845E-02 6.05684446893E-02 5.39646424318E-02 4.78065073523E-02 4.20920905093E-02 3.68172033192E-02 3.19753865423E-02 2.75579066791E-02 2.35537820065E-02 1.99498400450E-02 1.67308077308E-02 1.38794349552E-02 1.13766514561E-02 9.20175630169E-03 7.33263842576E-03 5.74602587761E-03 4.41776065980E-03 3.32309528510E-03 2.43700651544E-03 1.73452118802E-03 1.19104861920E-03 7.82713832271E-04 4.86685803828E-04 2.81495074364E-04 1.47335420438E-04 6.63448177561E-05 2.28615973388E-05 3.65244860211E-06 -1.89033138021E-06 -1.58431154196E-06 -3.26701902947E-07 2.77555756156E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 9 10 2 i j (l(j)) 8.06622422380E-01 Q_int 8.85368717696E-26 9.54324908386E-26 1.02865169342E-25 1.10876735699E-25 1.19512276097E-25 1.28820388225E-25 1.38853454761E-25 1.49667938163E-25 1.61324698419E-25 1.73889335549E-25 1.87432558769E-25 2.02030584428E-25 2.17765564916E-25 2.34726050995E-25 2.53007490128E-25 2.72712763620E-25 2.93952765602E-25 3.16847027097E-25 3.41524388704E-25 3.68123725659E-25 3.96794729380E-25 4.27698749874E-25 4.61009703754E-25 4.96915052983E-25 5.35616859838E-25 5.77332924047E-25 6.22298008483E-25 6.70765160325E-25 7.23007135119E-25 7.79317931744E-25 8.40014446930E-25 9.05438258643E-25 9.75957548356E-25 1.05196917304E-24 1.13390089855E-24 1.22221380690E-24 1.31740489109E-24 1.42000985201E-24 1.53060611314E-24 1.64981607012E-24 1.77831059332E-24 1.91681280330E-24 2.06610214024E-24 2.22701875035E-24 2.40046821393E-24 2.58742664162E-24 2.78894616761E-24 3.00616087066E-24 3.24029315630E-24 3.49266063609E-24 3.76468354261E-24 4.05789272207E-24 4.37393824933E-24 4.71459871394E-24 5.08179122938E-24 5.47758222186E-24 5.90419905946E-24 6.36404258694E-24 6.85970063679E-24 7.39396259264E-24 7.96983508689E-24 8.59055892096E-24 9.25962730333E-24 9.98080550803E-24 1.07581520643E-23 1.15960415964E-23 1.24991894426E-23 1.34726781911E-23 1.45219862834E-23 1.56530188445E-23 1.68721409153E-23 1.81862132722E-23 1.96026310376E-23 2.11293652966E-23 2.27750079555E-23 2.45488200938E-23 2.64607840825E-23 2.85216597609E-23 3.07430449893E-23 3.31374409176E-23 3.57183223368E-23 3.85002135108E-23 4.14987699133E-23 4.47308663314E-23 4.82146918305E-23 5.19698521158E-23 5.60174798663E-23 6.03803536617E-23 6.50830261719E-23 7.01519623306E-23 7.56156882704E-23 8.15049518573E-23 8.78528957288E-23 9.46952438084E-23 1.02070502347E-22 1.10020176622E-22 1.18589004514E-22 1.27825208275E-22 1.37780765907E-22 1.48511703673E-22 1.60078411395E-22 1.72545982303E-22 1.85984579360E-22 2.00469830111E-22 2.16083252285E-22 2.32912712555E-22 2.51052921010E-22 2.70605964156E-22 2.91681879420E-22 3.14399274397E-22 3.38885994336E-22 3.65279841605E-22 3.93729351188E-22 4.24394626594E-22 4.57448240852E-22 4.93076207700E-22 5.31479028391E-22 5.72872820051E-22 6.17490531902E-22 6.65583256219E-22 7.17421641381E-22 7.73297414987E-22 8.33525025591E-22 8.98443412301E-22 9.68417912212E-22 1.04384231638E-21 1.12514108595E-21 1.21277174085E-21 1.30722743456E-21 1.40903972940E-21 1.51878158796E-21 1.63707059754E-21 1.76457244568E-21 1.90200466645E-21 2.05014067842E-21 2.20981413722E-21 2.38192362702E-21 2.56743771747E-21 2.76740041442E-21 2.98293703521E-21 3.21526054158E-21 3.46567836574E-21 3.73559976813E-21 4.02654376824E-21 4.34014769308E-21 4.67817639149E-21 5.04253216600E-21 5.43526547837E-21 5.85858648881E-21 6.31487749395E-21 6.80670633354E-21 7.33684084132E-21 7.90826442137E-21 8.52419283765E-21 9.18809231110E-21 9.90369902629E-21 1.06750401573E-20 1.15064565313E-20 1.24026270567E-20 1.33685950552E-20 1.44097966427E-20 1.55320913226E-20 1.67417949605E-20 1.80457153280E-20 1.94511904138E-20 2.09661297196E-20 2.25990587718E-20 2.43591671001E-20 2.62563599525E-20 2.83013140390E-20 3.05055376156E-20 3.28814352491E-20 3.54423776248E-20 3.82027767926E-20 4.11781672721E-20 4.43852934756E-20 4.78422039393E-20 5.15683528939E-20 5.55847097459E-20 5.99138770856E-20 6.45802178865E-20 6.96099926109E-20 7.50315069943E-20 8.08752713394E-20 8.71741722173E-20 9.39636575409E-20 1.01281936052E-19 1.09170192349E-19 1.17672818653E-19 1.26837664637E-19 1.36716306702E-19 1.47364338232E-19 1.58841682454E-19 1.71212929661E-19 1.84547700704E-19 1.98921038794E-19 2.14413831813E-19 2.31113267527E-19 2.49113324242E-19 2.68515299682E-19 2.89428381052E-19 3.11970259509E-19 3.36267792477E-19 3.62457717560E-19 3.90687422046E-19 4.21115772350E-19 4.53914008059E-19 4.89266705597E-19 5.27372816960E-19 5.68446789339E-19 6.12719771953E-19 6.60440916868E-19 7.11878781136E-19 7.67322838128E-19 8.27085106590E-19 8.91501906563E-19 9.60935752068E-19 1.03577739120E-18 1.11644800512E-18 1.20340157828E-18 1.29712745332E-18 1.39815308487E-18 1.50704700787E-18 1.62442203710E-18 1.75093871584E-18 1.88730903318E-18 2.03430043080E-18 2.19274012190E-18 2.36351974639E-18 2.54760038871E-18 2.74601798648E-18 2.95988916035E-18 3.19041749792E-18 3.43890032708E-18 3.70673601687E-18 3.99543184698E-18 4.30661249016E-18 4.64202915524E-18 5.00356944230E-18 5.39326796531E-18 5.81331780224E-18 6.26608283681E-18 6.75411106154E-18 7.28014891688E-18 7.84715674714E-18 8.45832546016E-18 9.11709448453E-18 9.82717112535E-18 1.05925514275E-17 1.14175426640E-17 1.23067875755E-17 1.32652904977E-17 1.42984455243E-17 1.54120668625E-17 1.66124215530E-17 1.79062647388E-17 1.93008776805E-17 2.08041087320E-17 2.24244175084E-17 2.41709224932E-17 2.60534523536E-17 2.80826012524E-17 3.02697884678E-17 3.26273226563E-17 3.51684711216E-17 3.79075344771E-17 4.08599271243E-17 4.40422639992E-17 4.74724540740E-17 5.11698011421E-17 5.51551124520E-17 5.94508158022E-17 6.40810857554E-17 6.90719796840E-17 7.44515844097E-17 8.02501742653E-17 8.65003814659E-17 9.32373797501E-17 1.00499082323E-16 1.08326355218E-16 1.16763247269E-16 1.25857238007E-16 1.35659504847E-16 1.46225211100E-16 1.57613816406E-16 1.69889411346E-16 1.83121078123E-16 1.97383279321E-16 2.12756276954E-16 2.29326584144E-16 2.47187451980E-16 2.66439394299E-16 2.87190753329E-16 3.09558309399E-16 3.33667938123E-16 3.59655318777E-16 3.87666697840E-16 4.17859712009E-16 4.50404275308E-16 4.85483535286E-16 5.23294903697E-16 5.64051167439E-16 6.07981686030E-16 6.55333682334E-16 7.06373633828E-16 7.61388772209E-16 8.20688699808E-16 8.84607131889E-16 9.53503774646E-16 1.02776634946E-15 1.10781277483E-15 1.19409351819E-15 1.28709413097E-15 1.38733798101E-15 1.49538919787E-15 1.61185584744E-15 1.73739335386E-15 1.87270818793E-15 2.01856184280E-15 2.17577511923E-15 2.34523274473E-15 2.52788835229E-15 2.72476984700E-15 2.93698519056E-15 3.16572863633E-15 3.41228745000E-15 3.67804915362E-15 3.96450933389E-15 4.27328005852E-15 4.60609894812E-15 4.96483895459E-15 5.35151890111E-15 5.76831484295E-15 6.21757231319E-15 6.70181952204E-15 7.22378158425E-15 7.78639585451E-15 8.39282845725E-15 9.04649210379E-15 9.75106529711E-15 1.05105130324E-14 1.13291091096E-14 1.22114601840E-14 1.31625316897E-14 1.41876757821E-14 1.52926614564E-14 1.64837070124E-14 1.77675150468E-14 1.91513101715E-14 2.06428796691E-14 2.22506173145E-14 2.39835706102E-14 2.58514916991E-14 2.78648922437E-14 3.00351025784E-14 3.23743354688E-14 3.48957548374E-14 3.76135498404E-14 4.05430147149E-14 4.37006348436E-14 4.71041795228E-14 5.07728019557E-14 5.47271470314E-14 5.89894675003E-14 6.35837491947E-14 6.85358460033E-14 7.38736253568E-14 7.96271250440E-14 8.58287222404E-14 9.25133157011E-14 9.97185221421E-14 1.07484887917E-13 1.15856117175E-13 1.24879317796E-13 1.34605266466E-13 1.45088694410E-13 1.56388595368E-13 1.68568557557E-13 1.81697121488E-13 1.95848165651E-13 2.11101322230E-13 2.27542425196E-13 2.45263993301E-13 2.64365750675E-13 2.84955187981E-13 3.07148167255E-13 3.31069573863E-13 3.56854019220E-13 3.84646598237E-13 4.14603705763E-13 4.46893916595E-13 4.81698934027E-13 5.19214612273E-13 5.59652058496E-13 6.03238820677E-13 6.50220167972E-13 7.00860470791E-13 7.55444688335E-13 8.14279971990E-13 8.77697393572E-13 9.46053808159E-13 1.01973386199E-12 1.09915215674E-12 1.18475558229E-12 1.27702583121E-12 1.37648210901E-12 1.48368405547E-12 1.59923489345E-12 1.72378482290E-12 1.85803467914E-12 2.00273987609E-12 2.15871465646E-12 2.32683667301E-12 2.50805192642E-12 2.70338008783E-12 2.91392023568E-12 3.14085703939E-12 3.38546742451E-12 3.64912775682E-12 3.93332158597E-12 4.23964799191E-12 4.56983058142E-12 4.92572718501E-12 5.30934030898E-12 5.72282840124E-12 6.16851799447E-12 6.64891679464E-12 7.16672778877E-12 7.72486445112E-12 8.32646713340E-12 8.97492073108E-12 9.67387372536E-12 1.04272587076E-11 1.12393145020E-11 1.21146100144E-11 1.30580699212E-11 1.40750023803E-11 1.51711288991E-11 1.63526165212E-11 1.76261124940E-11 1.89987816506E-11 2.04783467784E-11 2.20731319544E-11 2.37921095025E-11 2.56449502986E-11 2.76420783493E-11 2.97947292166E-11 3.21150133874E-11 3.46159843398E-11 3.73117118416E-11 4.02173613333E-11 4.33492789492E-11 4.67250836344E-11 5.03637660921E-11 5.42857957921E-11 5.85132358714E-11 6.30698673071E-11 6.79813226751E-11 7.32752302987E-11 7.89813694550E-11 8.51318381174E-11 9.17612331934E-11 9.89068452275E-11 1.06608867871E-10 1.14910624253E-10 1.23858810301E-10 1.33503757273E-10 1.43899715002E-10 1.55105156615E-10 1.67183107103E-10 1.80201498495E-10 1.94233551002E-10 2.09358184939E-10 2.25660463775E-10 2.43232073826E-10 2.62171838144E-10 2.82586272671E-10 3.04590184423E-10 3.28307317870E-10 3.53871050242E-10 3.81425139555E-10 4.11124534622E-10 4.43136245063E-10 4.77640280012E-10 5.14830659050E-10 5.54916503492E-10 5.98123211436E-10 6.44693723612E-10 6.94889888651E-10 7.48993935366E-10 8.07310056624E-10 8.70166120054E-10 9.37915508982E-10 1.01093910852E-09 1.08964744462E-09 1.17448298978E-09 1.26592264901E-09 1.36448043895E-09 1.47071037394E-09 1.58520957690E-09 1.70862163553E-09 1.84164021324E-09 1.98501294497E-09 2.13954563728E-09 2.30610679098E-09 2.48563247601E-09 2.67913158997E-09 2.88769151851E-09 3.11248424132E-09 3.35477290687E-09 3.61591892723E-09 3.89738961825E-09 4.20076642508E-09 4.52775380758E-09 4.88018879951E-09 5.26005131148E-09 5.66947524663E-09 6.11076046221E-09 6.58638567925E-09 7.09902237706E-09 7.65154978120E-09 8.24707100592E-09 8.88893045828E-09 9.58073258629E-09 1.03263620885E-08 1.11300056877E-08 1.19961756037E-08 1.29297348330E-08 1.39359244158E-08 1.50203927867E-08 1.61892274384E-08 1.74489890111E-08 1.88067480528E-08 2.02701246117E-08 2.18473309220E-08 2.35472173687E-08 2.53793220695E-08 2.73539242273E-08 2.94821017160E-08 3.17757930409E-08 3.42478641505E-08 3.69121804363E-08 3.97836842924E-08 4.28784786744E-08 4.62139171739E-08 4.98087010486E-08 5.36829837648E-08 5.78584836630E-08 6.23586053174E-08 6.72085703238E-08 7.24355582160E-08 7.80688582616E-08 8.41400330327E-08 9.06830946698E-08 9.77346946968E-08 1.05334328637E-07 1.13524556348E-07 1.22351239511E-07 1.31863797389E-07 1.42115482439E-07 1.53163677168E-07 1.65070213996E-07 1.77901719786E-07 1.91729987046E-07 2.06632373761E-07 2.22692234124E-07 2.39999382557E-07 2.58650593503E-07 2.78750139842E-07 3.00410372826E-07 3.23752346777E-07 3.48906491929E-07 3.76013339231E-07 4.05224300925E-07 4.36702511398E-07 4.70623732699E-07 5.07177329949E-07 5.46567321713E-07 5.89013511360E-07 6.34752705437E-07 6.84040025812E-07 7.37150322672E-07 7.94379696301E-07 8.56047135697E-07 9.22496283118E-07 9.94097334304E-07 1.07124908442E-06 1.15438113109E-06 1.24395624663E-06 1.34047293199E-06 1.44446816659E-06 1.55652036900E-06 1.67725258424E-06 1.80733591529E-06 1.94749321714E-06 2.09850307354E-06 2.26120407766E-06 2.43649944028E-06 2.62536194955E-06 2.82883930992E-06 3.04805988809E-06 3.28423889766E-06 3.53868505490E-06 3.81280774191E-06 4.10812471503E-06 4.42627040002E-06 4.76900481817E-06 5.13822319083E-06 5.53596627343E-06 5.96443147424E-06 6.42598481637E-06 6.92317380672E-06 7.45874127982E-06 8.03564028958E-06 8.65705012767E-06 9.32639355244E-06 1.00473553193E-05 1.08239021091E-05 1.16603039600E-05 1.25611573128E-05 1.35314097917E-05 1.45763868486E-05 1.57018204089E-05 1.69138796679E-05 1.82192041962E-05 1.96249395254E-05 2.11387753964E-05 2.27689868675E-05 2.45244784916E-05 2.64148317890E-05 2.84503562564E-05 3.06421441721E-05 3.30021294741E-05 3.55431510092E-05 3.82790204695E-05 4.12245953601E-05 4.43958573596E-05 4.78099964673E-05 5.14855013524E-05 5.54422563537E-05 5.97016456089E-05 6.42866648245E-05 6.92220412330E-05 7.45343623238E-05 8.02522139726E-05 8.64063286365E-05 9.30297443299E-05 1.00157975143E-04 1.07829194117E-04 1.16084429343E-04 1.24967774214E-04 1.34526612818E-04 1.44811861528E-04 1.55878227910E-04 1.67784488147E-04 1.80593784263E-04 1.94373942498E-04 2.09197814281E-04 2.25143641354E-04 2.42295446661E-04 2.60743452772E-04 2.80584529676E-04 3.01922673906E-04 3.24869521106E-04 3.49544894232E-04 3.76077389755E-04 4.04605004357E-04 4.35275804748E-04 4.68248643429E-04 5.03693923331E-04 5.41794414493E-04 5.82746126063E-04 6.26759237146E-04 6.74059090166E-04 7.24887250660E-04 7.79502637596E-04 8.38182728537E-04 9.01224844211E-04 9.68947517257E-04 1.04169195018E-03 1.11982356775E-03 1.20373366946E-03 1.29384118767E-03 1.39059455762E-03 1.49447370555E-03 1.60599216154E-03 1.72569930389E-03 1.85418274214E-03 1.99207084623E-03 2.14003542931E-03 2.29879459222E-03 2.46911573775E-03 2.65181876313E-03 2.84777943931E-03 3.05793298597E-03 3.28327785117E-03 3.52487970487E-03 3.78387565561E-03 4.06147869982E-03 4.35898241295E-03 4.67776589219E-03 5.01929895978E-03 5.38514763639E-03 5.77697989346E-03 6.19657169325E-03 6.64581332487E-03 7.12671604419E-03 7.64141902479E-03 8.19219662635E-03 8.78146598611E-03 9.41179493775E-03 1.00859102610E-02 1.08067062636E-02 1.15772536960E-02 1.24008089961E-02 1.32808238616E-02 1.42209551415E-02 1.52250750388E-02 1.62972816119E-02 1.74419095583E-02 1.86635412609E-02 1.99670180736E-02 2.13574518165E-02 2.28402364470E-02 2.44210598681E-02 2.61059158258E-02 2.79011158451E-02 2.98133011429E-02 3.18494544504E-02 3.40169116673E-02 3.63233732624E-02 3.87769153239E-02 4.13860001522E-02 4.41594862767E-02 4.71066377664E-02 5.02371326901E-02 5.35610705695E-02 5.70889786528E-02 6.08318168238E-02 6.48009809426E-02 6.90083044017E-02 7.34660576601E-02 7.81869455066E-02 8.31841017805E-02 8.84710812637E-02 9.40618484419E-02 9.99707628104E-02 1.06212560389E-01 1.12802331090E-01 1.19755491572E-01 1.27087753192E-01 1.34815084663E-01 1.42953669013E-01 1.51519854424E-01 1.60530098545E-01 1.70000905840E-01 1.79948757577E-01 1.90390034028E-01 2.01340928495E-01 2.12817352784E-01 2.24834833765E-01 2.37408400713E-01 2.50552463147E-01 2.64280678944E-01 2.78605812560E-01 2.93539583276E-01 3.09092503461E-01 3.25273706932E-01 3.42090767632E-01 3.59549508935E-01 3.77653804048E-01 3.96405368142E-01 4.15803542976E-01 4.35845075016E-01 4.56523888196E-01 4.77830852733E-01 4.99753551592E-01 5.22276046479E-01 5.45378645448E-01 5.69037674512E-01 5.93225255892E-01 6.17909095795E-01 6.43052284921E-01 6.68613115123E-01 6.94544915916E-01 7.20795914770E-01 7.47309125327E-01 7.74022267875E-01 8.00867726536E-01 8.27772547769E-01 8.54658484765E-01 8.81442092358E-01 9.08034876921E-01 9.34343505573E-01 9.60270078707E-01 9.85712469513E-01 1.01056473362E+00 1.03471759140E+00 1.05805898475E+00 1.08047470920E+00 1.10184912131E+00 1.12206592011E+00 1.14100900003E+00 1.15856337148E+00 1.17461614361E+00 1.18905756227E+00 1.20178209459E+00 1.21268954970E+00 1.22168622353E+00 1.22868605405E+00 1.23361177134E+00 1.23639602588E+00 1.23698247670E+00 1.23532682013E+00 1.23139773924E+00 1.22517775327E+00 1.21666394665E+00 1.20586855749E+00 1.19281940622E+00 1.17756014696E+00 1.16015032564E+00 1.14066523223E+00 1.11919553697E+00 1.09584670490E+00 1.07073818668E+00 1.04400238893E+00 1.01578343183E+00 9.86235707427E-01 9.55522256910E-01 9.23812990651E-01 8.91282779381E-01 8.58109449329E-01 8.24471717753E-01 7.90547107999E-01 7.56509884948E-01 7.22529052105E-01 6.88766450786E-01 6.55374999664E-01 6.22497109380E-01 5.90263302222E-01 5.58791061000E-01 5.28183924664E-01 4.98530841003E-01 4.69905779523E-01 4.42367600552E-01 4.15960170286E-01 3.90712706238E-01 3.66640333658E-01 3.43744831291E-01 3.22015544351E-01 3.01430443735E-01 2.81957313146E-01 2.63555049277E-01 2.46175064156E-01 2.29762782158E-01 2.14259226358E-01 1.99602688988E-01 1.85730477917E-01 1.72580725022E-01 1.60094232780E-01 1.48216322807E-01 1.36898635272E-01 1.26100812534E-01 1.15791985885E-01 1.05951973118E-01 9.65736421423E-02 8.76633578631E-02 7.92283060692E-02 7.12736727279E-02 6.38025249583E-02 5.68157081614E-02 5.03117624816E-02 4.42868617139E-02 3.87347776309E-02 3.36468724673E-02 2.90121219752E-02 2.48171710376E-02 2.10464232999E-02 1.76821656659E-02 1.47047277911E-02 1.20926759247E-02 9.82303960382E-03 7.87156881214E-03 6.21301830942E-03 4.82145493508E-03 3.67058282956E-03 2.73408072358E-03 1.98594475534E-03 1.40082971653E-03 9.54381226260E-04 6.23551108484E-04 3.86888214588E-04 2.24797090010E-04 1.19757221596E-04 5.64960963126E-05 2.21099144416E-05 6.12648091666E-06 5.05487160005E-07 -4.27972886824E-07 -1.20298548567E-07 6.93889390391E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 10 10 2 i j (l(j)) 8.58613719791E-01 Q_int 9.68204110041E-26 1.04361186492E-25 1.12489268874E-25 1.21250400049E-25 1.30693884485E-25 1.40872866687E-25 1.51844630272E-25 1.63670920345E-25 1.76418290977E-25 1.90158479744E-25 2.04968811443E-25 2.20932633248E-25 2.38139783755E-25 2.56687098565E-25 2.76678955237E-25 2.98227860685E-25 3.21455084331E-25 3.46491340563E-25 3.73477524347E-25 4.02565504133E-25 4.33918976519E-25 4.67714387470E-25 5.04141925298E-25 5.43406590968E-25 5.85729351772E-25 6.31348384853E-25 6.80520417575E-25 7.33522172298E-25 7.90651923666E-25 8.52231177190E-25 9.18606478568E-25 9.90151363910E-25 1.06726846187E-24 1.15039175950E-24 1.23998904455E-24 1.33656453804E-24 1.44066173179E-24 1.55286644705E-24 1.67381013124E-24 1.80417341152E-24 1.94468992514E-24 2.09615044804E-24 2.25940734510E-24 2.43537936689E-24 2.62505682008E-24 2.82950714057E-24 3.04988090057E-24 3.28741828363E-24 3.54345606395E-24 3.81943512925E-24 4.11690858956E-24 4.43755051756E-24 4.78316536968E-24 5.15569814089E-24 5.55724531044E-24 5.99006664007E-24 6.45659789118E-24 6.95946453233E-24 7.50149651449E-24 8.08574419697E-24 8.71549551369E-24 9.39429447653E-24 1.01259611197E-23 1.09146129976E-23 1.17646883566E-23 1.26809711126E-23 1.36686177722E-23 1.47331864524E-23 1.58806681595E-23 1.71175205039E-23 1.84507040418E-23 1.98877214463E-23 2.14366597298E-23 2.31062357548E-23 2.49058452892E-23 2.68456158822E-23 2.89364638587E-23 3.11901557522E-23 3.36193745228E-23 3.62377909318E-23 3.90601404764E-23 4.21023063155E-23 4.53814086541E-23 4.89159010899E-23 5.27256744633E-23 5.68321687960E-23 6.12584939473E-23 6.60295596684E-23 7.11722157853E-23 7.67154032996E-23 8.26903172584E-23 8.91305823083E-23 9.60724419231E-23 1.03554962368E-22 1.11620252552E-22 1.20313701001E-22 1.29684231284E-22 1.39784577346E-22 1.50671580266E-22 1.62406508143E-22 1.75055400892E-22 1.88689441887E-22 2.03385358560E-22 2.19225854195E-22 2.36300073348E-22 2.54704103525E-22 2.74541515925E-22 2.95923948299E-22 3.18971733212E-22 3.43814575228E-22 3.70592280839E-22 3.99455545247E-22 4.30566800419E-22 4.64101129202E-22 5.00247250616E-22 5.39208581903E-22 5.81204383283E-22 6.26470991872E-22 6.75263151697E-22 7.27855447310E-22 7.84543849044E-22 8.45647378628E-22 9.11509904527E-22 9.82502077106E-22 1.05902341452E-21 1.14150455105E-21 1.23040966055E-21 1.32623906869E-21 1.42953206853E-21 1.54086995556E-21 1.66087929892E-21 1.79023546759E-21 1.92966643107E-21 2.07995685613E-21 2.24195252267E-21 2.41656508339E-21 2.60477719432E-21 2.80764804478E-21 3.02631931816E-21 3.26202161688E-21 3.51608138778E-21 3.78992838684E-21 4.08510372540E-21 4.40326854290E-21 4.74621335523E-21 5.11586813104E-21 5.51431315295E-21 5.94379072458E-21 6.40671778948E-21 6.90569953273E-21 7.44354404201E-21 8.02327811052E-21 8.64816427062E-21 9.32171915419E-21 1.00477332830E-20 1.08302924002E-20 1.16738004637E-20 1.25830044297E-20 1.35630209672E-20 1.46193652524E-20 1.57579820062E-20 1.69852789490E-20 1.83081628610E-20 1.97340784509E-20 2.12710502523E-20 2.29277277824E-20 2.47134342187E-20 2.66382188662E-20 2.87129137114E-20 3.09491943807E-20 3.33596458463E-20 3.59578332504E-20 3.87583782441E-20 4.17770412734E-20 4.50308102727E-20 4.85379962670E-20 5.23183364196E-20 5.63931051053E-20 6.07852336352E-20 6.55194393055E-20 7.06223644976E-20 7.61227266112E-20 8.20514796756E-20 8.84419885477E-20 9.53302166771E-20 1.02754928495E-19 1.10757907566E-19 1.19384191731E-19 1.28682326565E-19 1.38704638570E-19 1.49507529653E-19 1.61151794534E-19 1.73702962875E-19 1.87231668059E-19 2.01814044687E-19 2.17532157036E-19 2.34474460887E-19 2.52736301320E-19 2.72420449283E-19 2.93637679947E-19 3.16507396111E-19 3.41158300151E-19 3.67729118316E-19 3.96369381422E-19 4.27240266363E-19 4.60515503148E-19 4.96382352592E-19 5.35042660152E-19 5.76713991837E-19 6.21630858588E-19 6.70046036018E-19 7.22231986945E-19 7.78482394702E-19 8.39113815886E-19 9.04467461817E-19 9.74911118747E-19 1.05084121763E-18 1.13268506508E-18 1.22090324809E-18 1.31599222606E-18 1.41848712469E-18 1.52896474741E-18 1.64804682151E-18 1.77640349688E-18 1.91475711747E-18 2.06388628628E-18 2.22463024710E-18 2.39789360745E-18 2.58465142936E-18 2.78595471663E-18 3.00293632955E-18 3.23681736016E-18 3.48891400408E-18 3.76064496763E-18 4.05353945169E-18 4.36924575753E-18 4.70954056280E-18 5.07633891998E-18 5.47170503361E-18 5.89786387680E-18 6.35721371259E-18 6.85233959040E-18 7.38602789374E-18 7.96128202090E-18 8.58133928694E-18 9.24968914205E-18 9.97009280881E-18 1.07466044490E-17 1.15835939787E-17 1.24857716607E-17 1.34582146118E-17 1.45063953752E-17 1.56362127175E-17 1.68540248250E-17 1.81666850846E-17 1.95815806527E-17 2.11066740267E-17 2.27505478551E-17 2.45224532371E-17 2.64323617843E-17 2.84910217372E-17 3.07100184514E-17 3.31018395965E-17 3.56799454306E-17 3.84588445503E-17 4.14541755388E-17 4.46827949736E-17 4.81628722891E-17 5.19139920265E-17 5.59572640478E-17 6.03154423339E-17 6.50130530347E-17 7.00765324923E-17 7.55343760146E-17 8.14172982347E-17 8.77584059606E-17 9.45933844874E-17 1.01960698419E-16 1.09901808131E-16 1.18461403093E-16 1.27687653364E-16 1.37632480670E-16 1.48351850603E-16 1.59906087568E-16 1.72360214264E-16 1.85784317607E-16 2.00253943149E-16 2.15850520216E-16 2.32661820157E-16 2.50782450286E-16 2.70314386291E-16 2.91367546110E-16 3.14060408501E-16 3.38520679790E-16 3.64886012549E-16 3.93304780243E-16 4.23936912212E-16 4.56954793683E-16 4.92544235882E-16 5.30905521691E-16 5.72254532758E-16 6.16823964379E-16 6.64864635008E-16 7.16646897743E-16 7.72462161761E-16 8.32624532228E-16 8.97472577948E-16 9.67371236667E-16 1.04271386878E-15 1.12392447097E-15 1.21146006229E-15 1.30581325603E-15 1.40751503190E-15 1.51713772419E-15 1.63529824253E-15 1.76266154358E-15 1.89994437314E-15 2.04791929957E-15 2.20741906146E-15 2.37934125391E-15 2.56465337969E-15 2.76439829391E-15 2.97970007266E-15 3.21177033878E-15 3.46191508021E-15 3.73154199947E-15 4.02216843544E-15 4.33542990221E-15 4.67308929284E-15 5.03704680005E-15 5.42935060944E-15 5.85220842566E-15 6.30799989608E-15 6.79929000225E-15 7.32884349414E-15 7.89964044868E-15 8.51489303992E-15 9.17806361536E-15 9.89288418009E-15 1.06633773984E-14 1.14938792308E-14 1.23890633347E-14 1.33539673647E-14 1.43940213213E-14 1.55150781083E-14 1.67234464688E-14 1.80259264872E-14 1.94298478559E-14 2.09431111222E-14 2.25742321475E-14 2.43323900290E-14 2.62274787541E-14 2.82701628770E-14 3.04719375319E-14 3.28451931198E-14 3.54032850335E-14 3.81606088124E-14 4.11326811508E-14 4.43362272147E-14 4.77892747597E-14 5.15112555778E-14 5.55231148455E-14 5.98474289879E-14 6.45085327222E-14 6.95326559946E-14 7.49480715828E-14 8.07852541931E-14 8.70770519483E-14 9.38588712303E-14 1.01168875919E-13 1.09048202148E-13 1.17541189782E-13 1.26695631929E-13 1.36563043874E-13 1.47198952965E-13 1.58663211073E-13 1.71020331381E-13 1.84339851411E-13 1.98696724312E-13 2.14171740633E-13 2.30851982926E-13 2.48831315773E-13 2.68210913957E-13 2.89099831776E-13 3.11615616689E-13 3.35884970755E-13 3.62044463577E-13 3.90241300773E-13 4.20634152290E-13 4.53394045224E-13 4.88705326172E-13 5.26766698521E-13 5.67792340527E-13 6.12013110456E-13 6.59677845581E-13 7.11054762331E-13 7.66432965487E-13 8.26124074898E-13 8.90463978877E-13 9.59814724145E-13 1.03456655295E-12 1.11514009881E-12 1.20198875328E-12 1.29560121699E-12 1.39650424936E-12 1.50526563241E-12 1.62249736546E-12 1.74885910844E-12 1.88506189353E-12 2.03187212568E-12 2.19011589471E-12 2.36068362323E-12 2.54453507642E-12 2.74270476195E-12 2.95630775046E-12 3.18654594912E-12 3.43471486388E-12 3.70221088811E-12 3.99053915898E-12 4.30132202539E-12 4.63630817545E-12 4.99738247458E-12 5.38657656971E-12 5.80608031915E-12 6.25825411246E-12 6.74564214966E-12 7.27098675428E-12 7.83724380105E-12 8.44759934468E-12 9.10548754351E-12 9.81460997865E-12 1.05789564774E-11 1.14028275581E-11 1.22908586221E-11 1.32480460334E-11 1.42797752095E-11 1.53918509529E-11 1.65905300262E-11 1.78825564671E-11 1.92751994235E-11 2.07762940742E-11 2.23942857221E-11 2.41382771919E-11 2.60180803168E-11 2.80442706870E-11 3.02282475654E-11 3.25822977175E-11 3.51196646315E-11 3.78546230467E-11 4.08025590571E-11 4.39800569299E-11 4.74049921023E-11 5.10966318985E-11 5.50757437465E-11 5.93647121767E-11 6.39876644759E-11 6.89706064619E-11 7.43415688727E-11 8.01307647880E-11 8.63707595722E-11 9.30966541181E-11 1.00346282143E-10 1.08160422950E-10 1.16583030585E-10 1.25661481120E-10 1.35446839354E-10 1.45994145259E-10 1.57362723998E-10 1.69616519183E-10 1.82824452538E-10 1.97060810740E-10 2.12405664689E-10 2.28945318039E-10 2.46772792091E-10 2.65988351003E-10 2.86700063365E-10 3.09024409839E-10 3.33086938372E-10 3.59022969949E-10 3.86978360058E-10 4.17110315745E-10 4.49588281863E-10 4.84594892251E-10 5.22326996471E-10 5.62996765625E-10 6.06832884431E-10 6.54081838014E-10 7.05009294626E-10 7.59901599238E-10 8.19067384656E-10 8.82839300277E-10 9.51575887337E-10 1.02566358842E-09 1.10551892116E-09 1.19159081583E-09 1.28436313964E-09 1.38435741175E-09 1.49213573556E-09 1.60830395345E-09 1.73351504876E-09 1.86847281678E-09 2.01393581264E-09 2.17072161223E-09 2.33971140405E-09 2.52185493522E-09 2.71817584396E-09 2.92977740795E-09 3.15784873537E-09 3.40367144179E-09 3.66862683656E-09 3.95420369095E-09 4.26200657867E-09 4.59376488618E-09 4.95134251652E-09 5.33674834795E-09 5.75214750203E-09 6.19987349713E-09 6.68244132660E-09 7.20256157853E-09 7.76315563384E-09 8.36737204773E-09 9.01860420513E-09 9.72050935526E-09 1.04770291108E-08 1.12924115481E-08 1.21712350143E-08 1.31184338074E-08 1.41393257969E-08 1.52396422700E-08 1.64255600031E-08 1.77037358946E-08 1.90813442505E-08 2.05661169750E-08 2.21663868583E-08 2.38911342721E-08 2.57500374133E-08 2.77535265420E-08 2.99128423033E-08 3.22400987217E-08 3.47483509159E-08 3.74516682188E-08 4.03652128479E-08 4.35053247538E-08 4.68896129862E-08 5.05370541763E-08 5.44680986666E-08 5.87047847999E-08 6.32708621354E-08 6.81919241530E-08 7.34955512618E-08 7.92114649015E-08 8.53716935334E-08 9.20107514863E-08 9.91658317016E-08 1.06877013318E-07 1.15187485387E-07 1.24143787831E-07 1.33796071110E-07 1.44198375900E-07 1.55408934471E-07 1.67490495291E-07 1.80510672781E-07 1.94542324051E-07 2.09663954809E-07 2.25960156552E-07 2.43522077568E-07 2.62447930295E-07 2.82843537864E-07 3.04822922829E-07 3.28508941246E-07 3.54033965823E-07 3.81540621598E-07 4.11182578483E-07 4.43125404774E-07 4.77547486583E-07 5.14641017959E-07 5.54613067444E-07 5.97686726543E-07 6.44102346877E-07 6.94118872269E-07 7.48015273536E-07 8.06092093479E-07 8.68673110816E-07 9.36107131837E-07 1.00876991981E-06 1.08706627265E-06 1.17143225995E-06 1.26233763186E-06 1.36028841266E-06 1.46582969344E-06 1.57954863856E-06 1.70207772280E-06 1.83409821639E-06 1.97634393669E-06 2.12960528738E-06 2.29473360622E-06 2.47264584549E-06 2.66432961030E-06 2.87084858120E-06 3.09334835155E-06 3.33306270966E-06 3.59132040061E-06 3.86955240317E-06 4.16929976127E-06 4.49222201169E-06 4.84010625322E-06 5.21487690536E-06 5.61860620888E-06 6.05352552377E-06 6.52203748498E-06 7.02672908005E-06 7.57038571824E-06 8.15600636493E-06 8.78681982229E-06 9.46630224068E-06 1.01981959538E-05 1.09865297363E-05 1.18356405897E-05 1.27501971711E-05 1.37352249866E-05 1.47961334806E-05 1.59387451621E-05 1.71693269198E-05 1.84946236860E-05 1.99218946260E-05 2.14589520366E-05 2.31142031568E-05 2.48966951021E-05 2.68161631542E-05 2.88830826519E-05 3.11087247477E-05 3.35052163115E-05 3.60856042871E-05 3.88639248236E-05 4.18552775315E-05 4.50759052345E-05 4.85432796163E-05 5.22761931894E-05 5.62948580417E-05 6.06210118501E-05 6.52780316844E-05 7.02910561590E-05 7.56871165319E-05 8.14952773879E-05 8.77467875917E-05 9.44752422380E-05 1.01716756380E-04 1.09510151366E-04 1.17897154680E-04 1.26922614223E-04 1.36634728056E-04 1.47085290690E-04 1.58329957053E-04 1.70428525389E-04 1.83445240375E-04 1.97449117861E-04 2.12514292712E-04 2.28720391340E-04 2.46152930587E-04 2.64903744780E-04 2.85071442823E-04 3.06761897368E-04 3.30088768216E-04 3.55174062202E-04 3.82148732009E-04 4.11153316464E-04 4.42338625035E-04 4.75866469411E-04 5.11910445229E-04 5.50656767157E-04 5.92305160767E-04 6.37069814799E-04 6.85180397638E-04 7.36883142014E-04 7.92442002195E-04 8.52139888122E-04 9.16279981214E-04 9.85187136793E-04 1.05920937834E-03 1.13871948904E-03 1.22411670638E-03 1.31582852583E-03 1.41431261974E-03 1.52005887834E-03 1.63359157938E-03 1.75547169378E-03 1.88629933466E-03 2.02671635752E-03 2.17740911957E-03 2.33911140661E-03 2.51260753593E-03 2.69873564422E-03 2.89839116960E-03 3.11253053700E-03 3.34217505673E-03 3.58841504572E-03 3.85241418164E-03 4.13541409980E-03 4.43873924306E-03 4.76380197491E-03 5.11210796598E-03 5.48526186394E-03 5.88497325685E-03 6.31306293960E-03 6.77146949280E-03 7.26225618309E-03 7.78761819310E-03 8.34989018893E-03 8.95155423174E-03 9.59524803946E-03 1.02837736031E-02 1.10201061609E-02 1.18074035321E-02 1.26490158100E-02 1.35484954116E-02 1.45096074797E-02 1.55363406297E-02 1.66329180302E-02 1.78038088040E-02 1.90537397310E-02 2.03877072320E-02 2.18109896054E-02 2.33291594857E-02 2.49480964852E-02 2.66739999763E-02 2.85134019624E-02 3.04731799788E-02 3.25605699590E-02 3.47831789882E-02 3.71489978628E-02 3.96664133572E-02 4.23442200950E-02 4.51916319046E-02 4.82182925303E-02 5.14342855547E-02 5.48501433749E-02 5.84768550591E-02 6.23258728973E-02 6.64091174396E-02 7.07389808010E-02 7.53283279955E-02 8.01904960392E-02 8.53392905495E-02 9.07889795442E-02 9.65542841276E-02 1.02650365732E-01 1.09092809560E-01 1.15897603868E-01 1.23081114690E-01 1.30660055608E-01 1.38651452155E-01 1.47072600409E-01 1.55941019343E-01 1.65274396477E-01 1.75090526389E-01 1.85407241610E-01 1.96242335471E-01 2.07613476446E-01 2.19538113567E-01 2.32033372510E-01 2.45115941970E-01 2.58801949978E-01 2.73106829886E-01 2.88045175770E-01 3.03630587085E-01 3.19875502497E-01 3.36791022881E-01 3.54386723618E-01 3.72670456416E-01 3.91648141028E-01 4.11323547402E-01 4.31698068949E-01 4.52770487827E-01 4.74536733303E-01 4.96989634523E-01 5.20118669212E-01 5.43909710106E-01 5.68344771157E-01 5.93401755850E-01 6.19054210243E-01 6.45271083629E-01 6.72016500019E-01 6.99249543943E-01 7.26924064335E-01 7.54988500554E-01 7.83385734849E-01 8.12052975797E-01 8.40921677443E-01 8.69917499022E-01 8.98960310249E-01 9.27964247193E-01 9.56837823715E-01 9.85484103354E-01 1.01380093630E+00 1.04168126580E+00 1.06901350793E+00 1.09568200804E+00 1.12156757660E+00 1.14654810621E+00 1.17049927075E+00 1.19329530633E+00 1.21480987253E+00 1.23491699120E+00 1.25349205803E+00 1.27041292128E+00 1.28556101933E+00 1.29882256786E+00 1.31008978480E+00 1.31926213990E+00 1.32624761359E+00 1.33096394820E+00 1.33333987301E+00 1.33331628310E+00 1.33084735091E+00 1.32590154856E+00 1.31846255846E+00 1.30853004992E+00 1.29612029989E+00 1.28126663685E+00 1.26401968908E+00 1.24444742015E+00 1.22263493798E+00 1.19868406723E+00 1.17271267867E+00 1.14485377445E+00 1.11525433281E+00 1.08407392168E+00 1.05148309617E+00 1.01766160063E+00 9.82796401918E-01 9.47079585286E-01 9.10706149386E-01 8.73871740630E-01 8.36770370040E-01 7.99592157525E-01 7.62521148866E-01 7.25733249713E-01 6.89394318339E-01 6.53658454997E-01 6.18666520362E-01 5.84544909141E-01 5.51404597536E-01 5.19340475389E-01 4.88430965784E-01 4.58737927148E-01 4.30306825921E-01 4.03167162020E-01 3.77333125063E-01 3.52804456742E-01 3.29567494142E-01 3.07596369868E-01 2.86854347516E-01 2.67295274638E-01 2.48865139330E-01 2.31503720056E-01 2.15146320401E-01 1.99725580283E-01 1.85173351990E-01 1.71422622783E-01 1.58409455669E-01 1.46074906764E-01 1.34366862413E-01 1.23241723547E-01 1.12665850756E-01 1.02616673574E-01 9.30848317816E-02 8.40740801681E-02 7.55885817285E-02 6.76301559185E-02 6.01981867808E-02 5.32895535905E-02 4.68985871299E-02 4.10170544910E-02 3.56341749897E-02 3.07366693701E-02 2.63088439580E-02 2.23327108133E-02 1.87881442175E-02 1.56530730386E-02 1.29037076456E-02 1.05147991218E-02 8.45992756960E-03 6.71181533746E-03 5.24266006384E-03 4.02448154880E-03 3.02947567744E-03 2.23036795396E-03 1.60075870175E-03 1.11545166971E-03 7.50757685849E-04 4.84765132562E-04 2.97569396147E-04 1.71454065514E-04 9.10175133573E-05 4.32395683263E-05 1.74842518968E-05 5.43597581317E-06 9.68140408206E-07 -5.52909056144E-08 -4.29625839748E-08 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3D 2 4.00 Wavefunction 1.25174178928E-14 1.29957334286E-14 1.34923263563E-14 1.40078950915E-14 1.45431647377E-14 1.50988881062E-14 1.56758467744E-14 1.62748521856E-14 1.68967467899E-14 1.75424052291E-14 1.82127355666E-14 1.89086805651E-14 1.96312190119E-14 2.03813670958E-14 2.11601798361E-14 2.19687525666E-14 2.28082224759E-14 2.36797702071E-14 2.45846215176E-14 2.55240490038E-14 2.64993738904E-14 2.75119678887E-14 2.85632551260E-14 2.96547141482E-14 3.07878799994E-14 3.19643463808E-14 3.31857678922E-14 3.44538623589E-14 3.57704132476E-14 3.71372721752E-14 3.85563615121E-14 4.00296770866E-14 4.15592909916E-14 4.31473544987E-14 4.47961010839E-14 4.65078495689E-14 4.82850073820E-14 5.01300739442E-14 5.20456441846E-14 5.40344121895E-14 5.60991749916E-14 5.82428365038E-14 6.04684116035E-14 6.27790303724E-14 6.51779424990E-14 6.76685218488E-14 7.02542712094E-14 7.29388272170E-14 7.57259654709E-14 7.86196058436E-14 8.16238179938E-14 8.47428270898E-14 8.79810197523E-14 9.13429502232E-14 9.48333467715E-14 9.84571183423E-14 1.02219361462E-13 1.06125367404E-13 1.10180629634E-13 1.14390851533E-13 1.18761954418E-13 1.23300085874E-13 1.28011628395E-13 1.32903208365E-13 1.37981705375E-13 1.43254261897E-13 1.48728293334E-13 1.54411498443E-13 1.60311870170E-13 1.66437706883E-13 1.72797624050E-13 1.79400566353E-13 1.86255820268E-13 1.93373027124E-13 2.00762196668E-13 2.08433721136E-13 2.16398389874E-13 2.24667404511E-13 2.33252394709E-13 2.42165434527E-13 2.51419059396E-13 2.61026283750E-13 2.71000619332E-13 2.81356094195E-13 2.92107272432E-13 3.03269274659E-13 3.14857799282E-13 3.26889144571E-13 3.39380231591E-13 3.52348627989E-13 3.65812572711E-13 3.79791001647E-13 3.94303574266E-13 4.09370701266E-13 4.25013573276E-13 4.41254190663E-13 4.58115394471E-13 4.75620898547E-13 4.93795322890E-13 5.12664228279E-13 5.32254152222E-13 5.52592646277E-13 5.73708314803E-13 5.95630855189E-13 6.18391099619E-13 6.42021058436E-13 6.66553965166E-13 6.92024323249E-13 7.18467954574E-13 7.45922049855E-13 7.74425220936E-13 8.04017555100E-13 8.34740671441E-13 8.66637779404E-13 8.99753739554E-13 9.34135126665E-13 9.69830295229E-13 1.00688944746E-12 1.04536470389E-12 1.08531017669E-12 1.12678204577E-12 1.16983863777E-12 1.21454050812E-12 1.26095052620E-12 1.30913396372E-12 1.35915858660E-12 1.41109475021E-12 1.46501549831E-12 1.52099666587E-12 1.57911698560E-12 1.63945819880E-12 1.70210517022E-12 1.76714600750E-12 1.83467218503E-12 1.90477867261E-12 1.97756406906E-12 2.05313074082E-12 2.13158496597E-12 2.21303708369E-12 2.29760164945E-12 2.38539759608E-12 2.47654840112E-12 2.57118226038E-12 2.66943226833E-12 2.77143660522E-12 2.87733873146E-12 2.98728758935E-12 3.10143781258E-12 3.21994994372E-12 3.34299065996E-12 3.47073300759E-12 3.60335664531E-12 3.74104809697E-12 3.88400101385E-12 4.03241644702E-12 4.18650313014E-12 4.34647777299E-12 4.51256536626E-12 4.68499949797E-12 4.86402268202E-12 5.04988669926E-12 5.24285295155E-12 5.44319282948E-12 5.65118809399E-12 5.86713127268E-12 6.09132607119E-12 6.32408780039E-12 6.56574381977E-12 6.81663399792E-12 7.07711119046E-12 7.34754173633E-12 7.62830597301E-12 7.91979877143E-12 8.22243009135E-12 8.53662555787E-12 8.86282706011E-12 9.20149337262E-12 9.55310080066E-12 9.91814385007E-12 1.02971359227E-11 1.06906100386E-11 1.10991195855E-11 1.15232390971E-11 1.19635650614E-11 1.24207167592E-11 1.28953371354E-11 1.33880937028E-11 1.38996794817E-11 1.44308139736E-11 1.49822441738E-11 1.55547456219E-11 1.61491234921E-11 1.67662137263E-11 1.74068842089E-11 1.80720359884E-11 1.87626045438E-11 1.94795611008E-11 2.02239139976E-11 2.09967101027E-11 2.17990362879E-11 2.26320209563E-11 2.34968356297E-11 2.43946965959E-11 2.53268666195E-11 2.62946567180E-11 2.72994280053E-11 2.83425936064E-11 2.94256206442E-11 3.05500323038E-11 3.17174099738E-11 3.29293954710E-11 3.41876933492E-11 3.54940732968E-11 3.68503726252E-11 3.82584988532E-11 3.97204323899E-11 4.12382293194E-11 4.28140242932E-11 4.44500335318E-11 4.61485579420E-11 4.79119863528E-11 4.97427988752E-11 5.16435703898E-11 5.36169741690E-11 5.56657856357E-11 5.77928862677E-11 6.00012676494E-11 6.22940356798E-11 6.46744149402E-11 6.71457532298E-11 6.97115262738E-11 7.23753426114E-11 7.51409486716E-11 7.80122340418E-11 8.09932369380E-11 8.40881498846E-11 8.73013256106E-11 9.06372831714E-11 9.41007143043E-11 9.76964900273E-11 1.01429667489E-10 1.05305497084E-10 1.09329429830E-10 1.13507125044E-10 1.17844458294E-10 1.22347529666E-10 1.27022672341E-10 1.31876461503E-10 1.36915723590E-10 1.42147545889E-10 1.47579286505E-10 1.53218584714E-10 1.59073371701E-10 1.65151881719E-10 1.71462663666E-10 1.78014593112E-10 1.84816884779E-10 1.91879105502E-10 1.99211187683E-10 2.06823443261E-10 2.14726578214E-10 2.22931707617E-10 2.31450371272E-10 2.40294549942E-10 2.49476682197E-10 2.59009681908E-10 2.68906956412E-10 2.79182425365E-10 2.89850540323E-10 3.00926305059E-10 3.12425296674E-10 3.24363687499E-10 3.36758267839E-10 3.49626469593E-10 3.62986390764E-10 3.76856820915E-10 3.91257267595E-10 4.06207983775E-10 4.21729996329E-10 4.37845135612E-10 4.54576066155E-10 4.71946318547E-10 4.89980322525E-10 5.08703441335E-10 5.28142007400E-10 5.48323359355E-10 5.69275880497E-10 5.91029038705E-10 6.13613427880E-10 6.37060810975E-10 6.61404164668E-10 6.86677725735E-10 7.12917039208E-10 7.40159008362E-10 7.68441946614E-10 7.97805631411E-10 8.28291360173E-10 8.59942008370E-10 8.92802089828E-10 9.26917819327E-10 9.62337177604E-10 9.99109978828E-10 1.03728794066E-09 1.07692475700E-09 1.11807617348E-09 1.16080006588E-09 1.20515652152E-09 1.25120792379E-09 1.29901903983E-09 1.34865711167E-09 1.40019195080E-09 1.45369603630E-09 1.50924461684E-09 1.56691581648E-09 1.62679074451E-09 1.68895360960E-09 1.75349183816E-09 1.82049619733E-09 1.89006092263E-09 1.96228385049E-09 2.03726655584E-09 2.11511449498E-09 2.19593715389E-09 2.27984820220E-09 2.36696565305E-09 2.45741202911E-09 2.55131453481E-09 2.64880523533E-09 2.75002124228E-09 2.85510490653E-09 2.96420401846E-09 3.07747201576E-09 3.19506819925E-09 3.31715795690E-09 3.44391299647E-09 3.57551158693E-09 3.71213880926E-09 3.85398681667E-09 4.00125510490E-09 4.15415079273E-09 4.31288891332E-09 4.47769271662E-09 4.64879398332E-09 4.82643335085E-09 5.01086065178E-09 5.20233526521E-09 5.40112648155E-09 5.60751388123E-09 5.82178772791E-09 6.04424937668E-09 6.27521169791E-09 6.51499951724E-09 6.76395007244E-09 7.02241348763E-09 7.29075326575E-09 7.56934679975E-09 7.85858590335E-09 8.15887736208E-09 8.47064350536E-09 8.79432280047E-09 9.13037046916E-09 9.47925912791E-09 9.84147945256E-09 1.02175408684E-08 1.06079722666E-08 1.10133227480E-08 1.14341623954E-08 1.18710830752E-08 1.23246992700E-08 1.27956489424E-08 1.32845944326E-08 1.37922233897E-08 1.43192497386E-08 1.48664146846E-08 1.54344877551E-08 1.60242678821E-08 1.66365845259E-08 1.72722988417E-08 1.79323048903E-08 1.86175308955E-08 1.93289405498E-08 2.00675343697E-08 2.08343511022E-08 2.16304691863E-08 2.24570082691E-08 2.33151307808E-08 2.42060435693E-08 2.51309995973E-08 2.60912997044E-08 2.70882944367E-08 2.81233859460E-08 2.91980299615E-08 3.03137378371E-08 3.14720786770E-08 3.26746815421E-08 3.39232377411E-08 3.52195032088E-08 3.65653009759E-08 3.79625237320E-08 3.94131364882E-08 4.09191793394E-08 4.24827703343E-08 4.41061084533E-08 4.57914767009E-08 4.75412453167E-08 4.93578751081E-08 5.12439209110E-08 5.32020351829E-08 5.52349717324E-08 5.73455895921E-08 5.95368570389E-08 6.18118557686E-08 6.41737852289E-08 6.66259671191E-08 6.91718500606E-08 7.18150144472E-08 7.45591774794E-08 7.74081983918E-08 8.03660838797E-08 8.34369937341E-08 8.66252466905E-08 8.99353265020E-08 9.33718882447E-08 9.69397648634E-08 1.00643973968E-07 1.04489724887E-07 1.08482425997E-07 1.12627692323E-07 1.16931353439E-07 1.21399461659E-07 1.26038300553E-07 1.30854393781E-07 1.35854514264E-07 1.41045693710E-07 1.46435232502E-07 1.52030709960E-07 1.57839995000E-07 1.63871257199E-07 1.70132978282E-07 1.76633964047E-07 1.83383356748E-07 1.90390647948E-07 1.97665691866E-07 2.05218719230E-07 2.13060351665E-07 2.21201616627E-07 2.29653962903E-07 2.38429276716E-07 2.47539898428E-07 2.56998639898E-07 2.66818802492E-07 2.77014195781E-07 2.87599156963E-07 2.98588571015E-07 3.09997891623E-07 3.21843162906E-07 3.34141041977E-07 3.46908822354E-07 3.60164458279E-07 3.73926589956E-07 3.88214569757E-07 4.03048489427E-07 4.18449208331E-07 4.34438382777E-07 4.51038496461E-07 4.68272892073E-07 4.86165804111E-07 5.04742392950E-07 5.24028780207E-07 5.44052085465E-07 5.64840464388E-07 5.86423148306E-07 6.08830485299E-07 6.32093982855E-07 6.56246352159E-07 6.81321554072E-07 7.07354846862E-07 7.34382835763E-07 7.62443524425E-07 7.91576368329E-07 8.21822330235E-07 8.53223937760E-07 8.85825343145E-07 9.19672385305E-07 9.54812654253E-07 9.91295557976E-07 1.02917239187E-06 1.06849641085E-06 1.10932290412E-06 1.15170927295E-06 1.19571511129E-06 1.24140228951E-06 1.28883504135E-06 1.33808005419E-06 1.38920656269E-06 1.44228644616E-06 1.49739432947E-06 1.55460768793E-06 1.61400695745E-06 1.67567564142E-06 1.73970043824E-06 1.80617135749E-06 1.87518184289E-06 1.94682891213E-06 2.02121328256E-06 2.09843951879E-06 2.17861618746E-06 2.26185599292E-06 2.34827594697E-06 2.43799752810E-06 2.53114686040E-06 2.62785487671E-06 2.72825751542E-06 2.83249590497E-06 2.94071656249E-06 3.05307160092E-06 3.16971894277E-06 3.29082254434E-06 3.41655261196E-06 3.54708586154E-06 3.68260575557E-06 3.82330276049E-06 3.96937461190E-06 4.12102660266E-06 4.27847185809E-06 4.44193164337E-06 4.61163567367E-06 4.78782242985E-06 4.97073950485E-06 5.16064393683E-06 5.35780258142E-06 5.56249247988E-06 5.77500125191E-06 5.99562749476E-06 6.22468120725E-06 6.46248421832E-06 6.70937064199E-06 6.96568735102E-06 7.23179445011E-06 7.50806579530E-06 7.79488950742E-06 8.09266852477E-06 8.40182116410E-06 8.72278169460E-06 9.05600098012E-06 9.40194707227E-06 9.76110588881E-06 1.01339818948E-05 1.05210988021E-05 1.09230003067E-05 1.13402508403E-05 1.17734363765E-05 1.22231652464E-05 1.26900689937E-05 1.31748032423E-05 1.36780486371E-05 1.42005117818E-05 1.47429262344E-05 1.53060535382E-05 1.58906842687E-05 1.64976391658E-05 1.71277702670E-05 1.77819620947E-05 1.84611329127E-05 1.91662359920E-05 1.98982609541E-05 2.06582351468E-05 2.14472250975E-05 2.22663379770E-05 2.31167231820E-05 2.39995738862E-05 2.49161287905E-05 2.58676737696E-05 2.68555437150E-05 2.78811243963E-05 2.89458543843E-05 3.00512270492E-05 3.11987926801E-05 3.23901606237E-05 3.36270015212E-05 3.49110496690E-05 3.62441053941E-05 3.76280376241E-05 3.90647864301E-05 4.05563657758E-05 4.21048662961E-05 4.37124582282E-05 4.53813944245E-05 4.71140134924E-05 4.89127430432E-05 5.07801030871E-05 5.27187095219E-05 5.47312777679E-05 5.68206265774E-05 5.89896819143E-05 6.12414810404E-05 6.35791767223E-05 6.60060416334E-05 6.85254728730E-05 7.11409966954E-05 7.38562733933E-05 7.66751023872E-05 7.96014274760E-05 8.26393423243E-05 8.57930961187E-05 8.90670994531E-05 9.24659304486E-05 9.59943410655E-05 9.96572637066E-05 1.03459818008E-04 1.07407317937E-04 1.11505279117E-04 1.15759426468E-04 1.20175702063E-04 1.24760273384E-04 1.29519541776E-04 1.34460151294E-04 1.39588997863E-04 1.44913238738E-04 1.50440302389E-04 1.56177898691E-04 1.62134029529E-04 1.68316999804E-04 1.74735428800E-04 1.81398262041E-04 1.88314783538E-04 1.95494628513E-04 2.02947796596E-04 2.10684665494E-04 2.18716005196E-04 2.27052992674E-04 2.35707227159E-04 2.44690745943E-04 2.54016040803E-04 2.63696075014E-04 2.73744300978E-04 2.84174678532E-04 2.95001693907E-04 3.06240379382E-04 3.17906333681E-04 3.30015743095E-04 3.42585403407E-04 3.55632742581E-04 3.69175844312E-04 3.83233472432E-04 3.97825096193E-04 4.12970916481E-04 4.28691892988E-04 4.45009772361E-04 4.61947117380E-04 4.79527337195E-04 4.97774718646E-04 5.16714458737E-04 5.36372698255E-04 5.56776556626E-04 5.77954168010E-04 5.99934718683E-04 6.22748485789E-04 6.46426877458E-04 6.71002474350E-04 6.96509072703E-04 7.22981728901E-04 7.50456805618E-04 7.78972019614E-04 8.08566491205E-04 8.39280795498E-04 8.71157015410E-04 9.04238796563E-04 9.38571404097E-04 9.74201781484E-04 1.01117861136E-03 1.04955237851E-03 1.08937543504E-03 1.13070206774E-03 1.17358856785E-03 1.21809330319E-03 1.26427679277E-03 1.31220178392E-03 1.36193333210E-03 1.41353888338E-03 1.46708835973E-03 1.52265424717E-03 1.58031168690E-03 1.64013856945E-03 1.70221563200E-03 1.76662655888E-03 1.83345808547E-03 1.90280010545E-03 1.97474578153E-03 2.04939165992E-03 2.12683778835E-03 2.20718783802E-03 2.29054922940E-03 2.37703326201E-03 2.46675524844E-03 2.55983465243E-03 2.65639523139E-03 2.75656518333E-03 2.86047729829E-03 2.96826911444E-03 3.08008307896E-03 3.19606671373E-03 3.31637278601E-03 3.44115948422E-03 3.57059059882E-03 3.70483570854E-03 3.84407037198E-03 3.98847632464E-03 4.13824168159E-03 4.29356114577E-03 4.45463622207E-03 4.62167543723E-03 4.79489456572E-03 4.97451686155E-03 5.16077329622E-03 5.35390280278E-03 5.55415252608E-03 5.76177807928E-03 5.97704380661E-03 6.20022305247E-03 6.43159843685E-03 6.67146213705E-03 6.92011617578E-03 7.17787271550E-03 7.44505435907E-03 7.72199445656E-03 8.00903741823E-03 8.30653903351E-03 8.61486679591E-03 8.93440023372E-03 9.26553124626E-03 9.60866444560E-03 9.96421750343E-03 1.03326215028E-02 1.07143212947E-02 1.11097758585E-02 1.15194586669E-02 1.19438580540E-02 1.23834775862E-02 1.28388364365E-02 1.33104697598E-02 1.37989290700E-02 1.43047826181E-02 1.48286157697E-02 1.53710313815E-02 1.59326501772E-02 1.65141111190E-02 1.71160717770E-02 1.77392086925E-02 1.83842177357E-02 1.90518144563E-02 1.97427344247E-02 2.04577335633E-02 2.11975884657E-02 2.19630967021E-02 2.27550771091E-02 2.35743700625E-02 2.44218377290E-02 2.52983642974E-02 2.62048561841E-02 2.71422422125E-02 2.81114737613E-02 2.91135248812E-02 3.01493923747E-02 3.12200958373E-02 3.23266776553E-02 3.34702029574E-02 3.46517595155E-02 3.58724575912E-02 3.71334297229E-02 3.84358304495E-02 3.97808359649E-02 4.11696437000E-02 4.26034718239E-02 4.40835586618E-02 4.56111620215E-02 4.71875584232E-02 4.88140422258E-02 5.04919246432E-02 5.22225326431E-02 5.40072077220E-02 5.58473045472E-02 5.77441894592E-02 5.96992388259E-02 6.17138372395E-02 6.37893755490E-02 6.59272487171E-02 6.81288534943E-02 7.03955858989E-02 7.27288384953E-02 7.51299974584E-02 7.76004394156E-02 8.01415280563E-02 8.27546104972E-02 8.54410133945E-02 8.82020387918E-02 9.10389596940E-02 9.39530153559E-02 9.69454062768E-02 1.00017288890E-01 1.03169769937E-01 1.06403900524E-01 1.09720669834E-01 1.13120998515E-01 1.16605731708E-01 1.20175631725E-01 1.23831370368E-01 1.27573520887E-01 1.31402549561E-01 1.35318806922E-01 1.39322518602E-01 1.43413775815E-01 1.47592525477E-01 1.51858559969E-01 1.56211506548E-01 1.60650816429E-01 1.65175753535E-01 1.69785382953E-01 1.74478559100E-01 1.79253913638E-01 1.84109843160E-01 1.89044496685E-01 1.94055762999E-01 1.99141257898E-01 2.04298311363E-01 2.09523954745E-01 2.14814908016E-01 2.20167567151E-01 2.25577991726E-01 2.31041892820E-01 2.36554621300E-01 2.42111156611E-01 2.47706096167E-01 2.53333645463E-01 2.58987609048E-01 2.64661382481E-01 2.70347945431E-01 2.76039856063E-01 2.81729246893E-01 2.87407822272E-01 2.93066857684E-01 2.98697201064E-01 3.04289276314E-01 3.09833089245E-01 3.15318236139E-01 3.20733915165E-01 3.26068940856E-01 3.31311761885E-01 3.36450482347E-01 3.41472886781E-01 3.46366469136E-01 3.51118465907E-01 3.55715893614E-01 3.60145590823E-01 3.64394264872E-01 3.68448543427E-01 3.72295030999E-01 3.75920370480E-01 3.79311309752E-01 3.82454773343E-01 3.85337939085E-01 3.87948319636E-01 3.90273848686E-01 3.92302971570E-01 3.94024739949E-01 3.95428910100E-01 3.96506044287E-01 3.97247614535E-01 3.97646108053E-01 3.97695133383E-01 3.97389526266E-01 3.96725454008E-01 3.95700517061E-01 3.94313846299E-01 3.92566194393E-01 3.90460019455E-01 3.87999559028E-01 3.85190892314E-01 3.82041988384E-01 3.78562738006E-01 3.74764966574E-01 3.70662425557E-01 3.66270759780E-01 3.61607447840E-01 3.56691712922E-01 3.51544401358E-01 3.46187826339E-01 3.40645574356E-01 3.34942272182E-01 3.29103312484E-01 3.23154536593E-01 3.17121873384E-01 3.11030933875E-01 3.04906561824E-01 2.98772341423E-01 2.92650064172E-01 2.86559158059E-01 2.80516083421E-01 2.74533701162E-01 2.68620620519E-01 2.62780535113E-01 2.57012662107E-01 2.51316600156E-01 2.45692512413E-01 2.40140541519E-01 2.34660810952E-01 2.29253426275E-01 2.23918476283E-01 2.18656034050E-01 2.13466157874E-01 2.08348892123E-01 2.03304574649E-01 1.98332921663E-01 1.93433940023E-01 1.88607625001E-01 1.83853960587E-01 1.79172919693E-01 1.74564464247E-01 1.70028545164E-01 1.65565102214E-01 1.61174063773E-01 1.56855346464E-01 1.52608854695E-01 1.48434480095E-01 1.44332100850E-01 1.40301580953E-01 1.36342769374E-01 1.32455499168E-01 1.28639586512E-01 1.24894829717E-01 1.21221008200E-01 1.17617881451E-01 1.14085188014E-01 1.10622644480E-01 1.07229944533E-01 1.03906758046E-01 1.00652730267E-01 9.74674810875E-02 9.43506044263E-02 9.13016677328E-02 8.83202116233E-02 8.54057496604E-02 8.25577682803E-02 7.97757268756E-02 7.70590580323E-02 7.44071679225E-02 7.18194368496E-02 6.92952199395E-02 6.68338479724E-02 6.44346283431E-02 6.20968461405E-02 5.98197653326E-02 5.76026300414E-02 5.54446658945E-02 5.33450814349E-02 5.13030695736E-02 4.93178090664E-02 4.73884659994E-02 4.55141952646E-02 4.36941420103E-02 4.19274430502E-02 4.02132282174E-02 3.85506216493E-02 3.69387429933E-02 3.53767085220E-02 3.38636321519E-02 3.23986263586E-02 3.09808029865E-02 2.96092739509E-02 2.82831518351E-02 2.70015503841E-02 2.57635849029E-02 2.45683725639E-02 2.34150326362E-02 2.23026866434E-02 2.12304584654E-02 2.01974743928E-02 1.92028631503E-02 1.82457558992E-02 1.73252862327E-02 1.64405901761E-02 1.55908062026E-02 1.47750752740E-02 1.39925409167E-02 1.32423493386E-02 1.25236495930E-02 1.18355937940E-02 1.11773373855E-02 1.05480394656E-02 9.94686316425E-03 9.37297607557E-03 8.82555073846E-03 8.30376516445E-03 7.80680340661E-03 7.33385616466E-03 6.88412142024E-03 6.45680509605E-03 6.05112173239E-03 5.66629517446E-03 5.30155926388E-03 4.95615852798E-03 4.62934886063E-03 4.32039818885E-03 4.02858711957E-03 3.75320956150E-03 3.49357331756E-03 3.24900064358E-03 3.01882876992E-03 2.80241038262E-03 2.59911406166E-03 2.40832467420E-03 2.22944372115E-03 2.06188963601E-03 1.90509803519E-03 1.75852191959E-03 1.62163182759E-03 1.49391593980E-03 1.37488013651E-03 1.26404800889E-03 1.16096082526E-03 1.06517745411E-03 9.76274245615E-04 8.93844873742E-04 8.17500140916E-04 7.46867747652E-04 6.81592029440E-04 6.21333663304E-04 5.65769346526E-04 5.14591450030E-04 4.67507648929E-04 4.24240532733E-04 3.84527197695E-04 3.48118823728E-04 3.14780238253E-04 2.84289469305E-04 2.56437290121E-04 2.31026757352E-04 2.07872744959E-04 1.86801475739E-04 1.67650052324E-04 1.50265989392E-04 1.34506748707E-04 1.20239278484E-04 1.07339558476E-04 9.56921520425E-05 8.51897663429E-05 7.57328216863E-05 6.72290309475E-05 5.95929897738E-05 5.27457785665E-05 4.66148420206E-05 4.11357212179E-05 3.62465457475E-05 3.18902723730E-05 2.80146568247E-05 2.45719223957E-05 2.15184448645E-05 1.88144534681E-05 1.64237476156E-05 1.43134289995E-05 1.24536487314E-05 1.08173690986E-05 9.38013951561E-06 8.11988621890E-06 7.01671523866E-06 6.05272816151E-06 5.21185018783E-06 4.47966997675E-06 3.84329076495E-06 3.29119224173E-06 2.81310266104E-06 2.39988067263E-06 2.04340635818E-06 1.73648096364E-06 1.47273482751E-06 1.24654301409E-06 1.05294817283E-06 8.87590157004E-07 7.46641950450E-07 6.26751465801E-07 5.24988794588E-07 4.38798506738E-07 3.65956615007E-07 3.04531838265E-07 2.52850816313E-07 2.09466947786E-07 1.73132541694E-07 1.42773991976E-07 1.17469703212E-07 9.64305140520E-08 7.89823830977E-08 6.45511197355E-08 5.26489598441E-08 4.28628033393E-08 3.48439472545E-08 2.82991645710E-08 2.29829954488E-08 1.86163085134E-08 1.50390259038E-08 1.21163037408E-08 9.73486244099E-09 7.79979951612E-09 6.23182941773E-09 4.96490018850E-09 3.94414155453E-09 3.12410363871E-09 2.46724969491E-09 1.94267016179E-09 1.52498892315E-09 1.19343594781E-09 9.31063479566E-10 7.24085669494E-10 5.61324004516E-10 4.33743102078E-10 3.34063428132E-10 2.56439269778E-10 1.96191871398E-10 1.49589039821E-10 1.13663755498E-10 8.60654078594E-11 6.49382183252E-11 4.88222374996E-11 3.65730165944E-11 2.72966691840E-11 2.02975689594E-11 1.50363824809E-11 1.10965223232E-11 8.15743394272E-12 5.97340670686E-12 4.35683268439E-12 3.16503210211E-12 2.28992726570E-12 1.64998199117E-12 1.18393539209E-12 8.45950866578E-13 6.01876490918E-13 4.26374479980E-13 3.00727255586E-13 2.11167963491E-13 1.47615686370E-13 1.02721536647E-13 7.11524724106E-14 4.90560565375E-14 3.36622983396E-14 2.29888586923E-14 1.56238215314E-14 1.05663917816E-14 7.11064123009E-15 4.76108724599E-15 3.17169331163E-15 2.10201551723E-15 1.38583649958E-15 9.08846892271E-16 5.92847590384E-16 3.84626831622E-16 2.48170695603E-16 1.59237615036E-16 1.01600195254E-16 6.44564253288E-17 4.06564432575E-17 2.54948432375E-17 1.58928949982E-17 9.84801934354E-18 6.06536696261E-18 3.71273768287E-18 2.25853443278E-18 1.36527544145E-18 8.20050072161E-19 4.89386494652E-19 2.90148047031E-19 1.70886394895E-19 9.99721749384E-20 5.80895224479E-20 3.35217142596E-20 1.92099683411E-20 1.09310250276E-20 6.17575777613E-21 3.46398158903E-21 1.92875556129E-21 1.06599445119E-21 5.84747227311E-22 3.18328630163E-22 1.71963328562E-22 9.21735653385E-23 4.90167587825E-23 2.58587290703E-23 1.35316364961E-23 7.02311305764E-24 3.61493305730E-24 1.84508606896E-24 9.33754501903E-25 4.68491650446E-25 2.33011225019E-25 1.14870854927E-25 5.61244975982E-26 3D 2 5.00 Wavefunction 1.25715806928E-14 1.30519658974E-14 1.35507075800E-14 1.40685071783E-14 1.46060929335E-14 1.51642209140E-14 1.57436760793E-14 1.63452733837E-14 1.69698589226E-14 1.76183111223E-14 1.82915419757E-14 1.89904983245E-14 1.97161631913E-14 2.04695571619E-14 2.12517398207E-14 2.20638112411E-14 2.29069135322E-14 2.37822324457E-14 2.46909990430E-14 2.56344914268E-14 2.66140365390E-14 2.76310120261E-14 2.86868481777E-14 2.97830299372E-14 3.09210989909E-14 3.21026559361E-14 3.33293625318E-14 3.46029440364E-14 3.59251916338E-14 3.72979649526E-14 3.87231946814E-14 4.02028852845E-14 4.17391178207E-14 4.33340528701E-14 4.49899335729E-14 4.67090887844E-14 4.84939363498E-14 5.03469865052E-14 5.22708454078E-14 5.42682188011E-14 5.63419158208E-14 5.84948529449E-14 6.07300580961E-14 6.30506749000E-14 6.54599671065E-14 6.79613231798E-14 7.05582610640E-14 7.32544331310E-14 7.60536313172E-14 7.89597924563E-14 8.19770038163E-14 8.51095088480E-14 8.83617131527E-14 9.17381906788E-14 9.52436901542E-14 9.88831417653E-14 1.02661664091E-13 1.06584571300E-13 1.10657380628E-13 1.14885820134E-13 1.19275836758E-13 1.23833604684E-13 1.28565534025E-13 1.33478279835E-13 1.38578751474E-13 1.43874122320E-13 1.49371839862E-13 1.55079636169E-13 1.61005538772E-13 1.67157881948E-13 1.73545318443E-13 1.80176831642E-13 1.87061748203E-13 1.94209751176E-13 2.01630893617E-13 2.09335612730E-13 2.17334744547E-13 2.25639539165E-13 2.34261676570E-13 2.43213283064E-13 2.52506948318E-13 2.62155743080E-13 2.72173237559E-13 2.82573520506E-13 2.93371219034E-13 3.04581519185E-13 3.16220187291E-13 3.28303592148E-13 3.40848728034E-13 3.53873238614E-13 3.67395441752E-13 3.81434355275E-13 3.96009723719E-13 4.11142046096E-13 4.26852604730E-13 4.43163495181E-13 4.60097657328E-13 4.77678907626E-13 4.95931972606E-13 5.14882523648E-13 5.34557213087E-13 5.54983711698E-13 5.76190747609E-13 5.98208146709E-13 6.21066874595E-13 6.44799080118E-13 6.69438140603E-13 6.95018708790E-13 7.21576761566E-13 7.49149650571E-13 7.77776154721E-13 8.07496534756E-13 8.38352589858E-13 8.70387716437E-13 9.03646969170E-13 9.38177124359E-13 9.74026745726E-13 1.01124625271E-12 1.04988799137E-12 1.09000630802E-12 1.13165762565E-12 1.17490052330E-12 1.21979581841E-12 1.26640665238E-12 1.31479857938E-12 1.36503965854E-12 1.41720054965E-12 1.47135461254E-12 1.52757801031E-12 1.58594981636E-12 1.64655212566E-12 1.70947017020E-12 1.77479243883E-12 1.84261080177E-12 1.91302063976E-12 1.98612097822E-12 2.06201462657E-12 2.14080832273E-12 2.22261288334E-12 2.30754335952E-12 2.39571919875E-12 2.48726441283E-12 2.58230775230E-12 2.68098288751E-12 2.78342859663E-12 2.88978896080E-12 3.00021356681E-12 3.11485771746E-12 3.23388264996E-12 3.35745576273E-12 3.48575085082E-12 3.61894835032E-12 3.75723559216E-12 3.90080706555E-12 4.04986469152E-12 4.20461810690E-12 4.36528495918E-12 4.53209121258E-12 4.70527146587E-12 4.88506928230E-12 5.07173753215E-12 5.26553874840E-12 5.46674549593E-12 5.67564075485E-12 5.89251831853E-12 6.11768320675E-12 6.35145209472E-12 6.59415375843E-12 6.84612953706E-12 7.10773381304E-12 7.37933451045E-12 7.66131361251E-12 7.95406769874E-12 8.25800850279E-12 8.57356349145E-12 8.90117646587E-12 9.24130818574E-12 9.59443701728E-12 9.96105960605E-12 1.03416915754E-11 1.07368682518E-11 1.11471454173E-11 1.15731000919E-11 1.20153313443E-11 1.24744611351E-11 1.29511351911E-11 1.34460239137E-11 1.39598233216E-11 1.44932560296E-11 1.50470722655E-11 1.56220509244E-11 1.62190006646E-11 1.68387610449E-11 1.74822037054E-11 1.81502335932E-11 1.88437902352E-11 1.95638490596E-11 2.03114227674E-11 2.10875627573E-11 2.18933606038E-11 2.27299495926E-11 2.35985063146E-11 2.45002523206E-11 2.54364558392E-11 2.64084335605E-11 2.74175524880E-11 2.84652318613E-11 2.95529451516E-11 3.06822221347E-11 3.18546510419E-11 3.30718807942E-11 3.43356233210E-11 3.56476559680E-11 3.70098239967E-11 3.84240431798E-11 3.98923024955E-11 4.14166669248E-11 4.29992803555E-11 4.46423685978E-11 4.63482425147E-11 4.81193012714E-11 4.99580357104E-11 5.18670318539E-11 5.38489745414E-11 5.59066512053E-11 5.80429557911E-11 6.02608928282E-11 6.25635816545E-11 6.49542608043E-11 6.74362925626E-11 7.00131676939E-11 7.26885103519E-11 7.54660831761E-11 7.83497925841E-11 8.13436942654E-11 8.44519988854E-11 8.76790780073E-11 9.10294702405E-11 9.45078876233E-11 9.81192222507E-11 1.01868553154E-10 1.05761153444E-10 1.09802497729E-10 1.13998269811E-10 1.18354370681E-10 1.22876926822E-10 1.27572298817E-10 1.32447090303E-10 1.37508157254E-10 1.42762617623E-10 1.48217861356E-10 1.53881560783E-10 1.59761681407E-10 1.65866493110E-10 1.72204581782E-10 1.78784861398E-10 1.85616586550E-10 1.92709365471E-10 2.00073173539E-10 2.07718367314E-10 2.15655699097E-10 2.23896332059E-10 2.32451855936E-10 2.41334303329E-10 2.50556166631E-10 2.60130415591E-10 2.70070515561E-10 2.80390446426E-10 2.91104722272E-10 3.02228411797E-10 3.13777159502E-10 3.25767207696E-10 3.38215419336E-10 3.51139301748E-10 3.64557031245E-10 3.78487478693E-10 3.92950236050E-10 4.07965643922E-10 4.23554820166E-10 4.39739689596E-10 4.56543014813E-10 4.73988428224E-10 4.92100465272E-10 5.10904598951E-10 5.30427275622E-10 5.50695952216E-10 5.71739134846E-10 5.93586418896E-10 6.16268530648E-10 6.39817370493E-10 6.64266057798E-10 6.89648977484E-10 7.16001828385E-10 7.43361673455E-10 7.71766991896E-10 8.01257733271E-10 8.31875373694E-10 8.63662974157E-10 8.96665241096E-10 9.30928589265E-10 9.66501207012E-10 1.00343312405E-09 1.04177628184E-09 1.08158460658E-09 1.12291408514E-09 1.16582284373E-09 1.21037122966E-09 1.25662189625E-09 1.30463989089E-09 1.35449274657E-09 1.40625057685E-09 1.45998617444E-09 1.51577511360E-09 1.57369585643E-09 1.63382986319E-09 1.69626170691E-09 1.76107919230E-09 1.82837347926E-09 1.89823921105E-09 1.97077464745E-09 2.04608180290E-09 2.12426659002E-09 2.20543896852E-09 2.28971309990E-09 2.37720750793E-09 2.46804524543E-09 2.56235406727E-09 2.66026661006E-09 2.76192057868E-09 2.86745893998E-09 2.97703012382E-09 3.09078823181E-09 3.20889325407E-09 3.33151129422E-09 3.45881480297E-09 3.59098282070E-09 3.72820122921E-09 3.87066301317E-09 4.01856853154E-09 4.17212579930E-09 4.33155078008E-09 4.49706768981E-09 4.66890931212E-09 4.84731732567E-09 5.03254264406E-09 5.22484576874E-09 5.42449715534E-09 5.63177759402E-09 5.84697860444E-09 6.07040284565E-09 6.30236454182E-09 6.54318992412E-09 6.79321768954E-09 7.05279947722E-09 7.32230036297E-09 7.60209937272E-09 7.89259001560E-09 8.19418083729E-09 8.50729599466E-09 8.83237585222E-09 9.16987760151E-09 9.52027590402E-09 9.88406355876E-09 1.02617521953E-08 1.06538729934E-08 1.10609774298E-08 1.14836380541E-08 1.19224492937E-08 1.23780282901E-08 1.28510157664E-08 1.33420769288E-08 1.38519024019E-08 1.43812091997E-08 1.49307417348E-08 1.55012728642E-08 1.60936049772E-08 1.67085711231E-08 1.73470361833E-08 1.80098980871E-08 1.86980890751E-08 1.94125770096E-08 2.01543667363E-08 2.09245014970E-08 2.17240643971E-08 2.25541799287E-08 2.34160155516E-08 2.43107833359E-08 2.52397416659E-08 2.62041970102E-08 2.72055057587E-08 2.82450761303E-08 2.93243701534E-08 3.04449057215E-08 3.16082587285E-08 3.28160652843E-08 3.40700240161E-08 3.53718984567E-08 3.67235195252E-08 3.81267881012E-08 3.95836776982E-08 4.10962372391E-08 4.26665939375E-08 4.42969562888E-08 4.59896171766E-08 4.77469570964E-08 4.95714475040E-08 5.14656542903E-08 5.34322413901E-08 5.54739745282E-08 5.75937251084E-08 5.97944742518E-08 6.20793169890E-08 6.44514666121E-08 6.69142591936E-08 6.94711582778E-08 7.21257597512E-08 7.48817968991E-08 7.77431456554E-08 8.07138300532E-08 8.37980278832E-08 8.70000765689E-08 9.03244792652E-08 9.37759111914E-08 9.73592262053E-08 1.01079463628E-07 1.04941855332E-07 1.08951833094E-07 1.13115036238E-07 1.17437319562E-07 1.21924761571E-07 1.26583673025E-07 1.31420605812E-07 1.36442362162E-07 1.41656004210E-07 1.47068863930E-07 1.52688553437E-07 1.58522975701E-07 1.64580335648E-07 1.70869151707E-07 1.77398267780E-07 1.84176865681E-07 1.91214478046E-07 1.98521001735E-07 2.06106711749E-07 2.13982275674E-07 2.22158768685E-07 2.30647689112E-07 2.39460974612E-07 2.48611018948E-07 2.58110689420E-07 2.67973344952E-07 2.78212854874E-07 2.88843618427E-07 2.99880584999E-07 3.11339275149E-07 3.23235802427E-07 3.35586896023E-07 3.48409924295E-07 3.61722919178E-07 3.75544601539E-07 3.89894407496E-07 4.04792515739E-07 4.20259875900E-07 4.36318238005E-07 4.52990183045E-07 4.70299154725E-07 4.88269492417E-07 5.06926465377E-07 5.26296308264E-07 5.46406258019E-07 5.67284592152E-07 5.88960668492E-07 6.11464966451E-07 6.34829129868E-07 6.59086011489E-07 6.84269719141E-07 7.10415663678E-07 7.37560608747E-07 7.65742722463E-07 7.95001631056E-07 8.25378474562E-07 8.56915964642E-07 8.89658444614E-07 9.23651951772E-07 9.58944282085E-07 9.95585057367E-07 1.03362579501E-06 1.07311998040E-06 1.11412314202E-06 1.15669292958E-06 1.20088919493E-06 1.24677407621E-06 1.29441208516E-06 1.34387019777E-06 1.39521794836E-06 1.44852752731E-06 1.50387388248E-06 1.56133482450E-06 1.62099113447E-06 1.68292668674E-06 1.74722854485E-06 1.81398711090E-06 1.88329623492E-06 1.95525335120E-06 2.02995961503E-06 2.10752004572E-06 2.18804367549E-06 2.27164370052E-06 2.35843763561E-06 2.44854748869E-06 2.54209992435E-06 2.63922644820E-06 2.74006358343E-06 2.84475307113E-06 2.95344206145E-06 3.06628332770E-06 3.18343547226E-06 3.30506316292E-06 3.43133734370E-06 3.56243549692E-06 3.69854187553E-06 3.83984777311E-06 3.98655177920E-06 4.13886007860E-06 4.29698671422E-06 4.46115391527E-06 4.63159238610E-06 4.80854164393E-06 4.99225034917E-06 5.18297665534E-06 5.38098857424E-06 5.58656434769E-06 5.79999283815E-06 6.02157393443E-06 6.25161897970E-06 6.49045119497E-06 6.73840614432E-06 6.99583219584E-06 7.26309102104E-06 7.54055808842E-06 7.82862320496E-06 8.12769104839E-06 8.43818175050E-06 8.76053146267E-06 9.09519299080E-06 9.44263643149E-06 9.80334978756E-06 1.01778397183E-05 1.05666322010E-05 1.09702732903E-05 1.13893298591E-05 1.18243904194E-05 1.22760659344E-05 1.27449906884E-05 1.32318231437E-05 1.37372468932E-05 1.42619715981E-05 1.48067339973E-05 1.53722989314E-05 1.59594603981E-05 1.65690426911E-05 1.72019015471E-05 1.78589253202E-05 1.85410362437E-05 1.92491917272E-05 1.99843856780E-05 2.07476498918E-05 2.15400555150E-05 2.23627145225E-05 2.32167812841E-05 2.41034541572E-05 2.50239771955E-05 2.59796418530E-05 2.69717888143E-05 2.80018098327E-05 2.90711497385E-05 3.01813083609E-05 3.13338427156E-05 3.25303691155E-05 3.37725654608E-05 3.50621735469E-05 3.64010015271E-05 3.77909264136E-05 3.92338966965E-05 4.07319350711E-05 4.22871412402E-05 4.39016948516E-05 4.55778585289E-05 4.73179810095E-05 4.91245004528E-05 5.09999477904E-05 5.29469502615E-05 5.49682350810E-05 5.70666332181E-05 5.92450833359E-05 6.15066358699E-05 6.38544572737E-05 6.62918344192E-05 6.88221791499E-05 7.14490330248E-05 7.41760722208E-05 7.70071126530E-05 7.99461152473E-05 8.29971914347E-05 8.61646088494E-05 8.94527972458E-05 9.28663546144E-05 9.64100535717E-05 1.00088847924E-04 1.03907879564E-04 1.07872485535E-04 1.11988205432E-04 1.16260789037E-04 1.20696204264E-04 1.25300645388E-04 1.30080541584E-04 1.35042565794E-04 1.40193643914E-04 1.45540964327E-04 1.51091987808E-04 1.56854457765E-04 1.62836410891E-04 1.69046188212E-04 1.75492446525E-04 1.82184170278E-04 1.89130683888E-04 1.96341664520E-04 2.03827155340E-04 2.11597579237E-04 2.19663753115E-04 2.28036902628E-04 2.36728677531E-04 2.45751167574E-04 2.55116918971E-04 2.64838951496E-04 2.74930776210E-04 2.85406413813E-04 2.96280413715E-04 3.07567873775E-04 3.19284460769E-04 3.31446431635E-04 3.44070655457E-04 3.57174636300E-04 3.70776536825E-04 3.84895202826E-04 3.99550188613E-04 4.14761783356E-04 4.30551038367E-04 4.46939795374E-04 4.63950715839E-04 4.81607311317E-04 4.99933974931E-04 5.18956013974E-04 5.38699683692E-04 5.59192222291E-04 5.80461887186E-04 6.02537992570E-04 6.25450948320E-04 6.49232300308E-04 6.73914772122E-04 6.99532308321E-04 7.26120119188E-04 7.53714727093E-04 7.82354014503E-04 8.12077273677E-04 8.42925258124E-04 8.74940235875E-04 9.08166044615E-04 9.42648148767E-04 9.78433698561E-04 1.01557159116E-03 1.05411253391E-03 1.09410910981E-03 1.13561584521E-03 1.17868927991E-03 1.22338803953E-03 1.26977291056E-03 1.31790691782E-03 1.36785540461E-03 1.41968611560E-03 1.47346928248E-03 1.52927771259E-03 1.58718688038E-03 1.64727502206E-03 1.70962323338E-03 1.77431557055E-03 1.84143915468E-03 1.91108427947E-03 1.98334452256E-03 2.05831686043E-03 2.13610178704E-03 2.21680343637E-03 2.30052970875E-03 2.38739240136E-03 2.47750734278E-03 2.57099453181E-03 2.66797828067E-03 2.76858736256E-03 2.87295516394E-03 2.98121984131E-03 3.09352448287E-03 3.21001727507E-03 3.33085167409E-03 3.45618658247E-03 3.58618653093E-03 3.72102186550E-03 3.86086894005E-03 4.00591031436E-03 4.15633495775E-03 4.31233845848E-03 4.47412323888E-03 4.64189877637E-03 4.81588183052E-03 4.99629667606E-03 5.18337534202E-03 5.37735785708E-03 5.57849250115E-03 5.78703606320E-03 6.00325410543E-03 6.22742123381E-03 6.45982137495E-03 6.70074805939E-03 6.95050471123E-03 7.20940494411E-03 7.47777286350E-03 7.75594337526E-03 8.04426250034E-03 8.34308769563E-03 8.65278818069E-03 8.97374527036E-03 9.30635271303E-03 9.65101703434E-03 1.00081578861E-02 1.03782084004E-02 1.07616155480E-02 1.11588405012E-02 1.15703590013E-02 1.19966617286E-02 1.24382546763E-02 1.28956595266E-02 1.33694140291E-02 1.38600723803E-02 1.43682056042E-02 1.48944019328E-02 1.54392671853E-02 1.60034251466E-02 1.65875179420E-02 1.71922064093E-02 1.78181704653E-02 1.84661094666E-02 1.91367425630E-02 1.98308090421E-02 2.05490686638E-02 2.12923019827E-02 2.20613106569E-02 2.28569177411E-02 2.36799679623E-02 2.45313279761E-02 2.54118866000E-02 2.63225550234E-02 2.72642669897E-02 2.82379789489E-02 2.92446701770E-02 3.02853428601E-02 3.13610221386E-02 3.24727561084E-02 3.36216157765E-02 3.48086949650E-02 3.60351101608E-02 3.73020003063E-02 3.86105265264E-02 3.99618717863E-02 4.13572404760E-02 4.27978579155E-02 4.42849697749E-02 4.58198414039E-02 4.74037570642E-02 4.90380190582E-02 5.07239467475E-02 5.24628754542E-02 5.42561552367E-02 5.61051495344E-02 5.80112336701E-02 5.99757932063E-02 6.20002221418E-02 6.40859209448E-02 6.62342944095E-02 6.84467493291E-02 7.07246919756E-02 7.30695253752E-02 7.54826463715E-02 7.79654424639E-02 8.05192884140E-02 8.31455426063E-02 8.58455431559E-02 8.86206037501E-02 9.14720092160E-02 9.44010108015E-02 9.74088211613E-02 1.00496609037E-01 1.03665493620E-01 1.06916538597E-01 1.10250745849E-01 1.13669048825E-01 1.17172305553E-01 1.20761291302E-01 1.24436690886E-01 1.28199090591E-01 1.32048969748E-01 1.35986691923E-01 1.40012495741E-01 1.44126485344E-01 1.48328620478E-01 1.52618706223E-01 1.56996382379E-01 1.61461112498E-01 1.66012172611E-01 1.70648639632E-01 1.75369379487E-01 1.80173034983E-01 1.85058013444E-01 1.90022474155E-01 1.95064315657E-01 2.00181162922E-01 2.05370354479E-01 2.10628929536E-01 2.15953615165E-01 2.21340813618E-01 2.26786589858E-01 2.32286659384E-01 2.37836376449E-01 2.43430722767E-01 2.49064296829E-01 2.54731303932E-01 2.60425547068E-01 2.66140418801E-01 2.71868894271E-01 2.77603525502E-01 2.83336437166E-01 2.89059323971E-01 2.94763449885E-01 3.00439649351E-01 3.06078330725E-01 3.11669482126E-01 3.17202679923E-01 3.22667100059E-01 3.28051532462E-01 3.33344398739E-01 3.38533773396E-01 3.43607408798E-01 3.48552764084E-01 3.53357038251E-01 3.58007207602E-01 3.62490067743E-01 3.66792280294E-01 3.70900424444E-01 3.74801053487E-01 3.78480756385E-01 3.81926224426E-01 3.85124322950E-01 3.88062168090E-01 3.90727208406E-01 3.93107311217E-01 3.95190853376E-01 3.96966816126E-01 3.98424883599E-01 3.99555544417E-01 4.00350195726E-01 4.00801248905E-01 4.00902236035E-01 4.00647916095E-01 4.00034379704E-01 3.99059151085E-01 3.97721285759E-01 3.96021462345E-01 3.93962066657E-01 3.91547266151E-01 3.88783072612E-01 3.85677390835E-01 3.82240050901E-01 3.78482821553E-01 3.74419402049E-01 3.70065389828E-01 3.65438221237E-01 3.60557082621E-01 3.55442789049E-01 3.50117628116E-01 3.44605166348E-01 3.38930016009E-01 3.33117560396E-01 3.27193636092E-01 3.21184171141E-01 3.15114778712E-01 3.09010306500E-01 3.02894342959E-01 2.96788682411E-01 2.90712752138E-01 2.84683005808E-01 2.78712288907E-01 2.72809183334E-01 2.66977339902E-01 2.61215928040E-01 2.55524541681E-01 2.49903352527E-01 2.44352512634E-01 2.38872155783E-01 2.33462398763E-01 2.28123342546E-01 2.22855073360E-01 2.17657663667E-01 2.12531173032E-01 2.07475957692E-01 2.02491746606E-01 1.97578565166E-01 1.92736428291E-01 1.87965340764E-01 1.83265297440E-01 1.78636283359E-01 1.74078273726E-01 1.69591233778E-01 1.65175118545E-01 1.60829872481E-01 1.56555428999E-01 1.52351709890E-01 1.48218624643E-01 1.44156069673E-01 1.40163927461E-01 1.36242065624E-01 1.32390335920E-01 1.28608573208E-01 1.24896594374E-01 1.21254197243E-01 1.17681159494E-01 1.14177237601E-01 1.10742165800E-01 1.07375655128E-01 1.04077392523E-01 1.00847040032E-01 9.76842341105E-02 9.45885850580E-02 9.15596765773E-02 8.85970654826E-02 8.57002815569E-02 8.28688275669E-02 8.01021794368E-02 7.73997865801E-02 7.47610723900E-02 7.21854348795E-02 6.96722474672E-02 6.72208598980E-02 6.48305992868E-02 6.25007712735E-02 6.02306612746E-02 5.80195358139E-02 5.58666439184E-02 5.37712185597E-02 5.17324781243E-02 4.97496278948E-02 4.78218615248E-02 4.59483624892E-02 4.41283054947E-02 4.23608578354E-02 4.06451806786E-02 3.89804302694E-02 3.73657590434E-02 3.58003166385E-02 3.42832508016E-02 3.28137081831E-02 3.13908350210E-02 3.00137777133E-02 2.86816832829E-02 2.73936997398E-02 2.61489763493E-02 2.49466638145E-02 2.37859143838E-02 2.26658818964E-02 2.15857217784E-02 2.05445910029E-02 1.95416480270E-02 1.85760527209E-02 1.76469663000E-02 1.67535512729E-02 1.58949714166E-02 1.50703917874E-02 1.42789787765E-02 1.35199002159E-02 1.27923255412E-02 1.20954260118E-02 1.14283749931E-02 1.07903482989E-02 1.01805245935E-02 9.59808585065E-03 9.04221786603E-03 8.51211081889E-03 8.00695987665E-03 7.52596583732E-03 7.06833580295E-03 6.63328387743E-03 6.22003188184E-03 5.82781008037E-03 5.45585791008E-03 5.10342470790E-03 4.76977042851E-03 4.45416634717E-03 4.15589574185E-03 3.87425454980E-03 3.60855199360E-03 3.35811117284E-03 3.12226961776E-03 2.90037980169E-03 2.69180960986E-03 2.49594276243E-03 2.31217919016E-03 2.13993536168E-03 1.97864456158E-03 1.82775711923E-03 1.68674058821E-03 1.55507987710E-03 1.43227733221E-03 1.31785277352E-03 1.21134348505E-03 1.11230416137E-03 1.02030681193E-03 9.34940625310E-04 8.55811795365E-04 7.82543311588E-04 7.14774715994E-04 6.52161828919E-04 5.94376446173E-04 5.41106010047E-04 4.92053256629E-04 4.46935841932E-04 4.05485949265E-04 3.67449880276E-04 3.32587632028E-04 3.00672462391E-04 2.71490445999E-04 2.44840022897E-04 2.20531541935E-04 1.98386800867E-04 1.78238584998E-04 1.59930206135E-04 1.43315043463E-04 1.28256087870E-04 1.14625491130E-04 1.02304121215E-04 9.11811249319E-05 8.11534988982E-05 7.21256697496E-05 6.40090847369E-05 5.67221361392E-05 5.01923364209E-05 4.43496839641E-05 3.91294375430E-05 3.44721375816E-05 3.03232557106E-05 2.66328604945E-05 2.33552991308E-05 2.04488948937E-05 1.78756600546E-05 1.56010239766E-05 1.35935760480E-05 1.18248230892E-05 1.02689608418E-05 8.90265912238E-06 7.70486020508E-06 6.65658997735E-06 5.74078139948E-06 4.94210978565E-06 4.24683941588E-06 3.64268098160E-06 3.11865936409E-06 2.66499124419E-06 2.27297204283E-06 1.93487169613E-06 1.64383877426E-06 1.39381246178E-06 1.17944192604E-06 9.96012612309E-07 8.39379016743E-07 7.05903502554E-07 5.92400739724E-07 4.96087364905E-07 4.14536474964E-07 3.45636585093E-07 2.87554700399E-07 2.38703168112E-07 1.97709996007E-07 1.63392341165E-07 1.34732891708E-07 1.10858882555E-07 9.10235045403E-08 7.45894843397E-08 6.10146306340E-08 4.98391597962E-08 4.06746322841E-08 3.31943489767E-08 2.70200207459E-08 2.19368275153E-08 1.77629061947E-08 1.43447024361E-08 1.15529119410E-08 9.27894657644E-09 7.43186624544E-09 5.93572283099E-09 4.72726759317E-09 3.75397813385E-09 2.97236545869E-09 2.34652576217E-09 1.84690534445E-09 1.44925054730E-09 1.13371778148E-09 8.84121620645E-10 6.87301572024E-10 5.32590515175E-10 4.11369943458E-10 3.16699063120E-10 2.43006518791E-10 1.85835037082E-10 1.41630627688E-10 1.07569168956E-10 8.14142470490E-11 6.14010285038E-11 4.61417384203E-11 3.45490032182E-11 2.57739093838E-11 1.91561387149E-11 1.41839761200E-11 1.04623570590E-11 7.68743643961E-12 5.62642658944E-12 4.10167543755E-12 2.97814317326E-12 2.15359162928E-12 1.55093007682E-12 1.11226805507E-12 7.94313803913E-13 5.64828869370E-13 3.99908129872E-13 2.81902091038E-13 1.97836730979E-13 1.38217066041E-13 9.61253130204E-14 6.65441912441E-14 4.58514887784E-14 3.14443006883E-14 2.14609839279E-14 1.45763961798E-14 9.85182912233E-15 6.62556231357E-15 4.43343592814E-15 2.95149644713E-15 1.95479038968E-15 1.28791097638E-15 8.44054470218E-16 5.50205574935E-16 3.56713806775E-16 2.29998731920E-16 1.47472604178E-16 9.40258050325E-17 5.96075963735E-17 3.75702118562E-17 2.35418949935E-17 1.46643490432E-17 9.07977760682E-18 5.58786276328E-18 3.41775543953E-18 2.07743374847E-18 1.25478732216E-18 7.53069685648E-19 4.49042289081E-19 2.66005639850E-19 1.56534480195E-19 9.14973150202E-20 5.31188893856E-20 3.06263047785E-20 1.75350657860E-20 9.96894313172E-21 5.62705307142E-21 3.15328950764E-21 1.75411433702E-21 9.68552009628E-22 5.30784539117E-22 2.88670638744E-22 1.55788085018E-22 8.34201300200E-23 4.43169306973E-23 2.33554010027E-23 1.22089955051E-23 6.32999037476E-24 3.25470534203E-24 1.65943502134E-24 8.38885403619E-25 4.20428473983E-25 2.08872565430E-25 4S 0 1.00 Wavefunction -1.39227959157E-05 -1.40979231294E-05 -1.42752531723E-05 -1.44548137525E-05 -1.46366329268E-05 -1.48207391047E-05 -1.50071610533E-05 -1.51959279013E-05 -1.53870691440E-05 -1.55806146475E-05 -1.57765946538E-05 -1.59750397851E-05 -1.61759810488E-05 -1.63794498425E-05 -1.65854779586E-05 -1.67940975893E-05 -1.70053413319E-05 -1.72192421937E-05 -1.74358335972E-05 -1.76551493851E-05 -1.78772238260E-05 -1.81020916195E-05 -1.83297879017E-05 -1.85603482504E-05 -1.87938086914E-05 -1.90302057032E-05 -1.92695762234E-05 -1.95119576540E-05 -1.97573878677E-05 -2.00059052135E-05 -2.02575485227E-05 -2.05123571150E-05 -2.07703708048E-05 -2.10316299074E-05 -2.12961752449E-05 -2.15640481531E-05 -2.18352904877E-05 -2.21099446308E-05 -2.23880534978E-05 -2.26696605436E-05 -2.29548097701E-05 -2.32435457322E-05 -2.35359135457E-05 -2.38319588935E-05 -2.41317280334E-05 -2.44352678049E-05 -2.47426256367E-05 -2.50538495541E-05 -2.53689881864E-05 -2.56880907747E-05 -2.60112071795E-05 -2.63383878883E-05 -2.66696840238E-05 -2.70051473516E-05 -2.73448302887E-05 -2.76887859111E-05 -2.80370679627E-05 -2.83897308631E-05 -2.87468297167E-05 -2.91084203210E-05 -2.94745591751E-05 -2.98453034890E-05 -3.02207111924E-05 -3.06008409433E-05 -3.09857521378E-05 -3.13755049192E-05 -3.17701601870E-05 -3.21697796069E-05 -3.25744256203E-05 -3.29841614540E-05 -3.33990511301E-05 -3.38191594757E-05 -3.42445521339E-05 -3.46752955729E-05 -3.51114570974E-05 -3.55531048585E-05 -3.60003078645E-05 -3.64531359918E-05 -3.69116599958E-05 -3.73759515217E-05 -3.78460831161E-05 -3.83221282379E-05 -3.88041612701E-05 -3.92922575315E-05 -3.97864932880E-05 -4.02869457650E-05 -4.07936931592E-05 -4.13068146510E-05 -4.18263904165E-05 -4.23525016405E-05 -4.28852305291E-05 -4.34246603221E-05 -4.39708753066E-05 -4.45239608298E-05 -4.50840033124E-05 -4.56510902621E-05 -4.62253102876E-05 -4.68067531118E-05 -4.73955095863E-05 -4.79916717055E-05 -4.85953326210E-05 -4.92065866561E-05 -4.98255293203E-05 -5.04522573248E-05 -5.10868685971E-05 -5.17294622964E-05 -5.23801388294E-05 -5.30389998655E-05 -5.37061483532E-05 -5.43816885358E-05 -5.50657259677E-05 -5.57583675313E-05 -5.64597214531E-05 -5.71698973211E-05 -5.78890061018E-05 -5.86171601574E-05 -5.93544732633E-05 -6.01010606264E-05 -6.08570389023E-05 -6.16225262142E-05 -6.23976421710E-05 -6.31825078863E-05 -6.39772459968E-05 -6.47819806820E-05 -6.55968376833E-05 -6.64219443238E-05 -6.72574295280E-05 -6.81034238423E-05 -6.89600594549E-05 -6.98274702168E-05 -7.07057916629E-05 -7.15951610326E-05 -7.24957172915E-05 -7.34076011536E-05 -7.43309551025E-05 -7.52659234141E-05 -7.62126521790E-05 -7.71712893257E-05 -7.81419846431E-05 -7.91248898042E-05 -8.01201583901E-05 -8.11279459134E-05 -8.21484098429E-05 -8.31817096283E-05 -8.42280067247E-05 -8.52874646182E-05 -8.63602488512E-05 -8.74465270483E-05 -8.85464689428E-05 -8.96602464028E-05 -9.07880334582E-05 -9.19300063282E-05 -9.30863434482E-05 -9.42572254982E-05 -9.54428354310E-05 -9.66433585005E-05 -9.78589822908E-05 -9.90898967456E-05 -1.00336294198E-04 -1.01598369399E-04 -1.02876319552E-04 -1.04170344339E-04 -1.05480645953E-04 -1.06807429132E-04 -1.08150901188E-04 -1.09511272042E-04 -1.10888754254E-04 -1.12283563059E-04 -1.13695916398E-04 -1.15126034954E-04 -1.16574142187E-04 -1.18040464365E-04 -1.19525230605E-04 -1.21028672905E-04 -1.22551026180E-04 -1.24092528301E-04 -1.25653420131E-04 -1.27233945562E-04 -1.28834351555E-04 -1.30454888176E-04 -1.32095808637E-04 -1.33757369336E-04 -1.35439829894E-04 -1.37143453200E-04 -1.38868505448E-04 -1.40615256181E-04 -1.42383978332E-04 -1.44174948267E-04 -1.45988445830E-04 -1.47824754382E-04 -1.49684160851E-04 -1.51566955773E-04 -1.53473433337E-04 -1.55403891436E-04 -1.57358631707E-04 -1.59337959581E-04 -1.61342184334E-04 -1.63371619128E-04 -1.65426581068E-04 -1.67507391245E-04 -1.69614374789E-04 -1.71747860922E-04 -1.73908183004E-04 -1.76095678591E-04 -1.78310689482E-04 -1.80553561778E-04 -1.82824645931E-04 -1.85124296804E-04 -1.87452873721E-04 -1.89810740527E-04 -1.92198265643E-04 -1.94615822124E-04 -1.97063787719E-04 -1.99542544928E-04 -2.02052481060E-04 -2.04593988298E-04 -2.07167463758E-04 -2.09773309550E-04 -2.12411932843E-04 -2.15083745927E-04 -2.17789166278E-04 -2.20528616622E-04 -2.23302525005E-04 -2.26111324856E-04 -2.28955455053E-04 -2.31835359999E-04 -2.34751489684E-04 -2.37704299759E-04 -2.40694251606E-04 -2.43721812411E-04 -2.46787455237E-04 -2.49891659095E-04 -2.53034909024E-04 -2.56217696162E-04 -2.59440517826E-04 -2.62703877588E-04 -2.66008285355E-04 -2.69354257446E-04 -2.72742316675E-04 -2.76172992434E-04 -2.79646820773E-04 -2.83164344482E-04 -2.86726113183E-04 -2.90332683407E-04 -2.93984618689E-04 -2.97682489651E-04 -3.01426874091E-04 -3.05218357076E-04 -3.09057531034E-04 -3.12944995841E-04 -3.16881358922E-04 -3.20867235341E-04 -3.24903247897E-04 -3.28990027227E-04 -3.33128211895E-04 -3.37318448502E-04 -3.41561391779E-04 -3.45857704694E-04 -3.50208058554E-04 -3.54613133110E-04 -3.59073616661E-04 -3.63590206168E-04 -3.68163607354E-04 -3.72794534823E-04 -3.77483712164E-04 -3.82231872071E-04 -3.87039756451E-04 -3.91908116545E-04 -3.96837713043E-04 -4.01829316203E-04 -4.06883705971E-04 -4.12001672105E-04 -4.17184014296E-04 -4.22431542293E-04 -4.27745076033E-04 -4.33125445762E-04 -4.38573492174E-04 -4.44090066535E-04 -4.49676030819E-04 -4.55332257842E-04 -4.61059631399E-04 -4.66859046402E-04 -4.72731409018E-04 -4.78677636814E-04 -4.84698658898E-04 -4.90795416063E-04 -4.96968860939E-04 -5.03219958135E-04 -5.09549684395E-04 -5.15959028750E-04 -5.22448992669E-04 -5.29020590218E-04 -5.35674848220E-04 -5.42412806414E-04 -5.49235517614E-04 -5.56144047880E-04 -5.63139476680E-04 -5.70222897060E-04 -5.77395415814E-04 -5.84658153659E-04 -5.92012245408E-04 -5.99458840148E-04 -6.06999101420E-04 -6.14634207399E-04 -6.22365351082E-04 -6.30193740470E-04 -6.38120598758E-04 -6.46147164530E-04 -6.54274691946E-04 -6.62504450943E-04 -6.70837727430E-04 -6.79275823493E-04 -6.87820057593E-04 -6.96471764777E-04 -7.05232296886E-04 -7.14103022761E-04 -7.23085328464E-04 -7.32180617489E-04 -7.41390310986E-04 -7.50715847978E-04 -7.60158685590E-04 -7.69720299274E-04 -7.79402183043E-04 -7.89205849699E-04 -7.99132831074E-04 -8.09184678268E-04 -8.19362961891E-04 -8.29669272307E-04 -8.40105219885E-04 -8.50672435251E-04 -8.61372569540E-04 -8.72207294654E-04 -8.83178303527E-04 -8.94287310386E-04 -9.05536051019E-04 -9.16926283049E-04 -9.28459786204E-04 -9.40138362601E-04 -9.51963837022E-04 -9.63938057202E-04 -9.76062894117E-04 -9.88340242276E-04 -1.00077202002E-03 -1.01336016981E-03 -1.02610665856E-03 -1.03901347790E-03 -1.05208264452E-03 -1.06531620049E-03 -1.07871621354E-03 -1.09228477743E-03 -1.10602401223E-03 -1.11993606472E-03 -1.13402310863E-03 -1.14828734507E-03 -1.16273100282E-03 -1.17735633869E-03 -1.19216563789E-03 -1.20716121436E-03 -1.22234541115E-03 -1.23772060078E-03 -1.25328918561E-03 -1.26905359822E-03 -1.28501630180E-03 -1.30117979048E-03 -1.31754658981E-03 -1.33411925708E-03 -1.35090038174E-03 -1.36789258583E-03 -1.38509852436E-03 -1.40252088572E-03 -1.42016239214E-03 -1.43802580007E-03 -1.45611390064E-03 -1.47442952008E-03 -1.49297552017E-03 -1.51175479870E-03 -1.53077028987E-03 -1.55002496483E-03 -1.56952183206E-03 -1.58926393791E-03 -1.60925436702E-03 -1.62949624286E-03 -1.64999272816E-03 -1.67074702544E-03 -1.69176237748E-03 -1.71304206788E-03 -1.73458942151E-03 -1.75640780508E-03 -1.77850062763E-03 -1.80087134108E-03 -1.82352344078E-03 -1.84646046601E-03 -1.86968600061E-03 -1.89320367344E-03 -1.91701715906E-03 -1.94113017820E-03 -1.96554649841E-03 -1.99026993462E-03 -2.01530434973E-03 -2.04065365525E-03 -2.06632181186E-03 -2.09231283006E-03 -2.11863077080E-03 -2.14527974609E-03 -2.17226391968E-03 -2.19958750765E-03 -2.22725477915E-03 -2.25527005698E-03 -2.28363771833E-03 -2.31236219545E-03 -2.34144797630E-03 -2.37089960532E-03 -2.40072168408E-03 -2.43091887203E-03 -2.46149588722E-03 -2.49245750703E-03 -2.52380856893E-03 -2.55555397123E-03 -2.58769867383E-03 -2.62024769903E-03 -2.65320613226E-03 -2.68657912294E-03 -2.72037188521E-03 -2.75458969882E-03 -2.78923790990E-03 -2.82432193181E-03 -2.85984724600E-03 -2.89581940284E-03 -2.93224402252E-03 -2.96912679587E-03 -3.00647348533E-03 -3.04428992578E-03 -3.08258202547E-03 -3.12135576698E-03 -3.16061720808E-03 -3.20037248275E-03 -3.24062780210E-03 -3.28138945533E-03 -3.32266381075E-03 -3.36445731672E-03 -3.40677650271E-03 -3.44962798030E-03 -3.49301844418E-03 -3.53695467325E-03 -3.58144353163E-03 -3.62649196978E-03 -3.67210702552E-03 -3.71829582518E-03 -3.76506558471E-03 -3.81242361078E-03 -3.86037730191E-03 -3.90893414969E-03 -3.95810173988E-03 -4.00788775361E-03 -4.05829996860E-03 -4.10934626036E-03 -4.16103460342E-03 -4.21337307256E-03 -4.26636984410E-03 -4.32003319714E-03 -4.37437151487E-03 -4.42939328588E-03 -4.48510710549E-03 -4.54152167705E-03 -4.59864581336E-03 -4.65648843799E-03 -4.71505858670E-03 -4.77436540882E-03 -4.83441816873E-03 -4.89522624725E-03 -4.95679914313E-03 -5.01914647451E-03 -5.08227798045E-03 -5.14620352243E-03 -5.21093308586E-03 -5.27647678170E-03 -5.34284484797E-03 -5.41004765140E-03 -5.47809568898E-03 -5.54699958967E-03 -5.61677011601E-03 -5.68741816578E-03 -5.75895477377E-03 -5.83139111339E-03 -5.90473849854E-03 -5.97900838524E-03 -6.05421237351E-03 -6.13036220914E-03 -6.20746978551E-03 -6.28554714545E-03 -6.36460648312E-03 -6.44466014591E-03 -6.52572063633E-03 -6.60780061402E-03 -6.69091289762E-03 -6.77507046689E-03 -6.86028646459E-03 -6.94657419866E-03 -7.03394714417E-03 -7.12241894550E-03 -7.21200341843E-03 -7.30271455225E-03 -7.39456651203E-03 -7.48757364070E-03 -7.58175046139E-03 -7.67711167961E-03 -7.77367218555E-03 -7.87144705644E-03 -7.97045155881E-03 -8.07070115094E-03 -8.17221148519E-03 -8.27499841049E-03 -8.37907797475E-03 -8.48446642739E-03 -8.59118022181E-03 -8.69923601801E-03 -8.80865068511E-03 -8.91944130399E-03 -9.03162516996E-03 -9.14521979540E-03 -9.26024291248E-03 -9.37671247594E-03 -9.49464666584E-03 -9.61406389038E-03 -9.73498278875E-03 -9.85742223403E-03 -9.98140133606E-03 -1.01069394445E-02 -1.02340561516E-02 -1.03627712956E-02 -1.04931049635E-02 -1.06250774940E-02 -1.07587094813E-02 -1.08940217776E-02 -1.10310354966E-02 -1.11697720168E-02 -1.13102529847E-02 -1.14525003182E-02 -1.15965362099E-02 -1.17423831307E-02 -1.18900638329E-02 -1.20396013543E-02 -1.21910190210E-02 -1.23443404516E-02 -1.24995895607E-02 -1.26567905621E-02 -1.28159679734E-02 -1.29771466189E-02 -1.31403516340E-02 -1.33056084687E-02 -1.34729428918E-02 -1.36423809945E-02 -1.38139491948E-02 -1.39876742413E-02 -1.41635832173E-02 -1.43417035451E-02 -1.45220629898E-02 -1.47046896641E-02 -1.48896120324E-02 -1.50768589147E-02 -1.52664594918E-02 -1.54584433090E-02 -1.56528402812E-02 -1.58496806968E-02 -1.60489952232E-02 -1.62508149105E-02 -1.64551711970E-02 -1.66620959135E-02 -1.68716212883E-02 -1.70837799522E-02 -1.72986049432E-02 -1.75161297117E-02 -1.77363881254E-02 -1.79594144747E-02 -1.81852434776E-02 -1.84139102849E-02 -1.86454504860E-02 -1.88799001135E-02 -1.91172956493E-02 -1.93576740297E-02 -1.96010726512E-02 -1.98475293758E-02 -2.00970825371E-02 -2.03497709456E-02 -2.06056338947E-02 -2.08647111668E-02 -2.11270430388E-02 -2.13926702884E-02 -2.16616342003E-02 -2.19339765718E-02 -2.22097397196E-02 -2.24889664859E-02 -2.27717002443E-02 -2.30579849071E-02 -2.33478649309E-02 -2.36413853237E-02 -2.39385916515E-02 -2.42395300446E-02 -2.45442472049E-02 -2.48527904124E-02 -2.51652075322E-02 -2.54815470215E-02 -2.58018579370E-02 -2.61261899411E-02 -2.64545933104E-02 -2.67871189419E-02 -2.71238183611E-02 -2.74647437288E-02 -2.78099478493E-02 -2.81594841776E-02 -2.85134068269E-02 -2.88717705769E-02 -2.92346308811E-02 -2.96020438751E-02 -2.99740663843E-02 -3.03507559320E-02 -3.07321707477E-02 -3.11183697752E-02 -3.15094126809E-02 -3.19053598622E-02 -3.23062724560E-02 -3.27122123469E-02 -3.31232421763E-02 -3.35394253508E-02 -3.39608260511E-02 -3.43875092406E-02 -3.48195406744E-02 -3.52569869086E-02 -3.56999153090E-02 -3.61483940602E-02 -3.66024921752E-02 -3.70622795045E-02 -3.75278267452E-02 -3.79992054510E-02 -3.84764880412E-02 -3.89597478104E-02 -3.94490589386E-02 -3.99444965001E-02 -4.04461364741E-02 -4.09540557541E-02 -4.14683321580E-02 -4.19890444381E-02 -4.25162722909E-02 -4.30500963676E-02 -4.35905982842E-02 -4.41378606315E-02 -4.46919669854E-02 -4.52530019178E-02 -4.58210510062E-02 -4.63962008448E-02 -4.69785390546E-02 -4.75681542943E-02 -4.81651362705E-02 -4.87695757487E-02 -4.93815645636E-02 -5.00011956300E-02 -5.06285629538E-02 -5.12637616421E-02 -5.19068879146E-02 -5.25580391141E-02 -5.32173137173E-02 -5.38848113458E-02 -5.45606327768E-02 -5.52448799539E-02 -5.59376559980E-02 -5.66390652181E-02 -5.73492131221E-02 -5.80682064276E-02 -5.87961530726E-02 -5.95331622263E-02 -6.02793442997E-02 -6.10348109563E-02 -6.17996751227E-02 -6.25740509988E-02 -6.33580540689E-02 -6.41518011113E-02 -6.49554102092E-02 -6.57690007606E-02 -6.65926934882E-02 -6.74266104498E-02 -6.82708750479E-02 -6.91256120391E-02 -6.99909475441E-02 -7.08670090569E-02 -7.17539254539E-02 -7.26518270032E-02 -7.35608453729E-02 -7.44811136403E-02 -7.54127662997E-02 -7.63559392711E-02 -7.73107699074E-02 -7.82773970026E-02 -7.92559607986E-02 -8.02466029924E-02 -8.12494667428E-02 -8.22646966763E-02 -8.32924388934E-02 -8.43328409740E-02 -8.53860519824E-02 -8.64522224718E-02 -8.75315044888E-02 -8.86240515770E-02 -8.97300187798E-02 -9.08495626437E-02 -9.19828412195E-02 -9.31300140645E-02 -9.42912422429E-02 -9.54666883261E-02 -9.66565163920E-02 -9.78608920239E-02 -9.90799823082E-02 -1.00313955832E-01 -1.01562982678E-01 -1.02827234423E-01 -1.04106884129E-01 -1.05402106338E-01 -1.06713077064E-01 -1.08039973787E-01 -1.09382975441E-01 -1.10742262401E-01 -1.12118016477E-01 -1.13510420894E-01 -1.14919660284E-01 -1.16345920664E-01 -1.17789389422E-01 -1.19250255297E-01 -1.20728708359E-01 -1.22224939988E-01 -1.23739142847E-01 -1.25271510858E-01 -1.26822239177E-01 -1.28391524161E-01 -1.29979563338E-01 -1.31586555373E-01 -1.33212700036E-01 -1.34858198158E-01 -1.36523251596E-01 -1.38208063186E-01 -1.39912836704E-01 -1.41637776810E-01 -1.43383089005E-01 -1.45148979572E-01 -1.46935655524E-01 -1.48743324540E-01 -1.50572194906E-01 -1.52422475448E-01 -1.54294375461E-01 -1.56188104638E-01 -1.58103872991E-01 -1.60041890774E-01 -1.62002368394E-01 -1.63985516324E-01 -1.65991545013E-01 -1.68020664781E-01 -1.70073085725E-01 -1.72149017606E-01 -1.74248669742E-01 -1.76372250884E-01 -1.78519969100E-01 -1.80692031646E-01 -1.82888644827E-01 -1.85110013863E-01 -1.87356342743E-01 -1.89627834067E-01 -1.91924688893E-01 -1.94247106571E-01 -1.96595284567E-01 -1.98969418285E-01 -2.01369700881E-01 -2.03796323065E-01 -2.06249472898E-01 -2.08729335585E-01 -2.11236093248E-01 -2.13769924701E-01 -2.16331005213E-01 -2.18919506257E-01 -2.21535595254E-01 -2.24179435307E-01 -2.26851184922E-01 -2.29550997720E-01 -2.32279022136E-01 -2.35035401110E-01 -2.37820271766E-01 -2.40633765073E-01 -2.43476005502E-01 -2.46347110664E-01 -2.49247190938E-01 -2.52176349086E-01 -2.55134679849E-01 -2.58122269536E-01 -2.61139195593E-01 -2.64185526159E-01 -2.67261319607E-01 -2.70366624065E-01 -2.73501476927E-01 -2.76665904343E-01 -2.79859920693E-01 -2.83083528043E-01 -2.86336715583E-01 -2.89619459044E-01 -2.92931720106E-01 -2.96273445771E-01 -2.99644567729E-01 -3.03045001698E-01 -3.06474646742E-01 -3.09933384576E-01 -3.13421078836E-01 -3.16937574341E-01 -3.20482696321E-01 -3.24056249629E-01 -3.27658017928E-01 -3.31287762851E-01 -3.34945223143E-01 -3.38630113772E-01 -3.42342125017E-01 -3.46080921534E-01 -3.49846141391E-01 -3.53637395079E-01 -3.57454264496E-01 -3.61296301908E-01 -3.65163028873E-01 -3.69053935150E-01 -3.72968477569E-01 -3.76906078879E-01 -3.80866126566E-01 -3.84847971644E-01 -3.88850927414E-01 -3.92874268194E-01 -3.96917228026E-01 -4.00978999344E-01 -4.05058731622E-01 -4.09155529986E-01 -4.13268453798E-01 -4.17396515214E-01 -4.21538677707E-01 -4.25693854567E-01 -4.29860907362E-01 -4.34038644383E-01 -4.38225819047E-01 -4.42421128282E-01 -4.46623210873E-01 -4.50830645791E-01 -4.55041950483E-01 -4.59255579145E-01 -4.63469920956E-01 -4.67683298296E-01 -4.71893964929E-01 -4.76100104170E-01 -4.80299827011E-01 -4.84491170238E-01 -4.88672094515E-01 -4.92840482443E-01 -4.96994136599E-01 -5.01130777549E-01 -5.05248041844E-01 -5.09343479984E-01 -5.13414554370E-01 -5.17458637229E-01 -5.21473008519E-01 -5.25454853819E-01 -5.29401262189E-01 -5.33309224019E-01 -5.37175628851E-01 -5.40997263194E-01 -5.44770808300E-01 -5.48492837941E-01 -5.52159816155E-01 -5.55768094971E-01 -5.59313912125E-01 -5.62793388745E-01 -5.66202527021E-01 -5.69537207855E-01 -5.72793188485E-01 -5.75966100094E-01 -5.79051445391E-01 -5.82044596173E-01 -5.84940790863E-01 -5.87735132021E-01 -5.90422583842E-01 -5.92997969613E-01 -5.95455969167E-01 -5.97791116299E-01 -5.99997796170E-01 -6.02070242687E-01 -6.04002535865E-01 -6.05788599186E-01 -6.07422196932E-01 -6.08896931534E-01 -6.10206240909E-01 -6.11343395823E-01 -6.12301497270E-01 -6.13073473893E-01 -6.13652079459E-01 -6.14029890408E-01 -6.14199303494E-01 -6.14152533554E-01 -6.13881611426E-01 -6.13378382064E-01 -6.12634502872E-01 -6.11641442329E-01 -6.10390478940E-01 -6.08874668564E-01 -6.07094882888E-01 -6.05054141432E-01 -6.02755676820E-01 -6.00202934092E-01 -5.97399569773E-01 -5.94349450689E-01 -5.91056652495E-01 -5.87525457894E-01 -5.83760354555E-01 -5.79766032678E-01 -5.75547382152E-01 -5.71109489329E-01 -5.66457633332E-01 -5.61597281909E-01 -5.56534086818E-01 -5.51273878687E-01 -5.45822661321E-01 -5.40186605440E-01 -5.34372041819E-01 -5.28385453817E-01 -5.22233469274E-01 -5.15922851777E-01 -5.09460491284E-01 -5.02853394115E-01 -4.96108672332E-01 -4.89233532519E-01 -4.82235264006E-01 -4.75121226580E-01 -4.67898837595E-01 -4.60576444264E-01 -4.53160664243E-01 -4.45659008241E-01 -4.38078990522E-01 -4.30428114991E-01 -4.22713861323E-01 -4.14943671230E-01 -4.07124934980E-01 -3.99264978254E-01 -3.91371049450E-01 -3.83450307518E-01 -3.75509810412E-01 -3.67556504239E-01 -3.59597213161E-01 -3.51638630121E-01 -3.43687308419E-01 -3.35749654178E-01 -3.27831919719E-01 -3.19940197845E-01 -3.12080417023E-01 -3.04258337456E-01 -2.96479547993E-01 -2.88749463846E-01 -2.81073325050E-01 -2.73456195612E-01 -2.65902963253E-01 -2.58418339692E-01 -2.51006861356E-01 -2.43672890449E-01 -2.36420616275E-01 -2.29254056722E-01 -2.22177059832E-01 -2.15193305347E-01 -2.08306306174E-01 -2.01519409677E-01 -1.94835798746E-01 -1.88258492589E-01 -1.81790347201E-01 -1.75434055491E-01 -1.69192147059E-01 -1.63066987612E-01 -1.57060778057E-01 -1.51175553283E-01 -1.45413180690E-01 -1.39775358512E-01 -1.34263614005E-01 -1.28879301569E-01 -1.23623600877E-01 -1.18497515107E-01 -1.13501869341E-01 -1.08637309221E-01 -1.03904299940E-01 -9.93031256269E-02 -9.48338892076E-02 -9.04965127813E-02 -8.62907385662E-02 -8.22161304500E-02 -7.82720761689E-02 -7.44577901316E-02 -7.07723168918E-02 -6.72145352651E-02 -6.37831630752E-02 -6.04767625063E-02 -5.72937460307E-02 -5.42323828755E-02 -5.12908059832E-02 -4.84670194208E-02 -4.57589061840E-02 -4.31642363439E-02 -4.06806754789E-02 -3.83057933367E-02 -3.60370726685E-02 -3.38719181787E-02 -3.18076655367E-02 -2.98415903958E-02 -2.79709173689E-02 -2.61928289131E-02 -2.45044740763E-02 -2.29029770651E-02 -2.13854455943E-02 -1.99489789822E-02 -1.85906759609E-02 -1.73076421727E-02 -1.60969973279E-02 -1.49558820040E-02 -1.38814640671E-02 -1.28709447032E-02 -1.19215640470E-02 -1.10306064011E-02 -1.01954050411E-02 -9.41334660395E-03 -8.68187506046E-03 -7.99849527519E-03 -7.36077615877E-03 -6.76635342009E-03 -6.21293192775E-03 -5.69828769139E-03 -5.22026947565E-03 -4.77680006025E-03 -4.36587716114E-03 -3.98557402858E-03 -3.63403973875E-03 -3.30949919613E-03 -3.01025286442E-03 -2.73467624416E-03 -2.48121911523E-03 -2.24840456272E-03 -2.03482780438E-03 -1.83915483802E-03 -1.66012092652E-03 -1.49652893831E-03 -1.34724756021E-03 -1.21120939937E-03 -1.08740899033E-03 -9.74900722515E-04 -8.72796702916E-04 -7.80264567786E-04 -6.96525255747E-04 -6.20850758078E-04 -5.52565001091E-04 -4.91066545287E-04 -4.35765420357E-04 -3.86111302498E-04 -3.41594909188E-04 -3.01745690662E-04 -2.66129585548E-04 -2.34346844378E-04 -2.06029924180E-04 -1.80841456894E-04 -1.58472293807E-04 -1.38639627717E-04 -1.21085194072E-04 -1.05573551881E-04 -9.18904447344E-05 -7.98412419036E-05 -6.92494590863E-05 -5.99553580172E-05 -5.18146238418E-05 -4.46971188552E-05 -3.84857109375E-05 -3.30751747847E-05 -2.83711638215E-05 -2.42892505040E-05 -2.07540325661E-05 -1.76983026402E-05 -1.50622785831E-05 -1.27928917577E-05 -1.08431304787E-05 -9.17143579374E-06 -7.74114676897E-06 -6.51999245275E-06 -5.47962772348E-06 -4.59521026873E-06 -3.84501600099E-06 -3.21009028520E-06 -2.67393243373E-06 -2.22221101404E-06 -1.84250761121E-06 -1.52408679094E-06 -1.25769011594E-06 -1.03535217981E-06 -8.50236735337E-07 -6.96491107987E-07 -5.69117199081E-07 -4.63857495541E-07 -3.77094613858E-07 -3.05763013810E-07 -2.47271622145E-07 -1.99436207348E-07 -1.60420443232E-07 -1.28684691197E-07 -1.02941618298E-07 -8.21178505275E-08 -6.53209379610E-08 -5.18109805266E-08 -4.09763301582E-08 -3.23128471309E-08 -2.54062455001E-08 -1.99171149885E-08 -1.55682545647E-08 -1.21339965715E-08 -9.43123983997E-09 -7.31194605453E-09 -5.65688601287E-09 -4.37045168777E-09 -3.37637651018E-09 -2.59975451443E-09 -1.99504444272E-09 -1.52578443887E-09 -1.16288170935E-09 -8.83203526721E-10 -6.68420642780E-10 -5.04061334364E-10 -3.78740555983E-10 -2.83534111133E-10 -2.11472462287E-10 -1.57132858233E-10 -1.16311940508E-10 -8.57639663769E-11 -6.29923166402E-11 -4.60840993948E-11 -3.35794669016E-11 -2.43687780639E-11 -1.76120046186E-11 -1.26758313273E-11 -9.08477118489E-12 -6.48333388866E-12 -4.60687383213E-12 -3.25922372907E-12 -2.29560967260E-12 -1.60965842653E-12 -1.12356112782E-12 -7.80660416396E-13 -5.39889591823E-13 -3.71620484227E-13 -2.54577759087E-13 -1.73556668579E-13 -1.17743180136E-13 -7.94835168341E-14 -5.33873242613E-14 -3.56772664153E-14 -2.37197195010E-14 -1.56878693057E-14 -1.03211082706E-14 -6.75410528495E-15 -4.39601575648E-15 -2.84558137617E-15 -1.83177950785E-15 -1.17256110717E-15 -7.46323608289E-16 -4.72299187835E-16 -2.97148860325E-16 -1.85851436173E-16 -1.15547482279E-16 -7.14044189907E-17 -4.38557602157E-17 -2.67689690960E-17 -1.62370143274E-17 -9.78624030820E-18 -5.86038259851E-18 -3.48659286001E-18 -2.06065843993E-18 -1.20977383111E-18 -7.05438555609E-19 -4.08539455499E-19 -2.34958486146E-19 -1.34181492586E-19 -7.60851699838E-20 -4.28325965033E-20 -2.39373663184E-20 -1.32790191810E-20 -7.31143945912E-21 -3.99526984296E-21 -2.16647784106E-21 -1.16569608078E-21 -6.22295828350E-22 -3.29568651296E-22 -1.73136563797E-22 -9.02155667435E-23 -4.66207545240E-23 -2.38911481142E-23 -1.21397252920E-23 -6.11573201726E-24 -3.05427989989E-24 2.66576884431E-10 2.73325310356E-10 2.80244573494E-10 2.87338998610E-10 2.94613019952E-10 3.02071184019E-10 3.09718152405E-10 3.17558704716E-10 3.25597741551E-10 3.33840287570E-10 3.42291494632E-10 3.50956645017E-10 3.59841154725E-10 3.68950576865E-10 3.78290605120E-10 3.87867077314E-10 3.97685979051E-10 4.07753447466E-10 4.18075775053E-10 4.28659413603E-10 4.39510978234E-10 4.50637251527E-10 4.62045187765E-10 4.73741917278E-10 4.85734750904E-10 4.98031184553E-10 5.10638903896E-10 5.23565789167E-10 5.36819920091E-10 5.50409580930E-10 5.64343265664E-10 5.78629683298E-10 5.93277763309E-10 6.08296661223E-10 6.23695764339E-10 6.39484697597E-10 6.55673329594E-10 6.72271778751E-10 6.89290419639E-10 7.06739889460E-10 7.24631094702E-10 7.42975217948E-10 7.61783724872E-10 7.81068371402E-10 8.00841211070E-10 8.21114602541E-10 8.41901217345E-10 8.63214047792E-10 8.85066415093E-10 9.07471977687E-10 9.30444739780E-10 9.53999060093E-10 9.78149660843E-10 1.00291163694E-09 1.02830046542E-09 1.05433201513E-09 1.08102255663E-09 1.10838877238E-09 1.13644776716E-09 1.16521707873E-09 1.19471468886E-09 1.22495903452E-09 1.25596901940E-09 1.28776402574E-09 1.32036392646E-09 1.35378909756E-09 1.38806043085E-09 1.42319934703E-09 1.45922780906E-09 1.49616833590E-09 1.53404401657E-09 1.57287852461E-09 1.61269613285E-09 1.65352172857E-09 1.69538082911E-09 1.73829959775E-09 1.78230486013E-09 1.82742412095E-09 1.87368558122E-09 1.92111815585E-09 1.96975149173E-09 2.01961598629E-09 2.07074280644E-09 2.12316390810E-09 2.17691205616E-09 2.23202084496E-09 2.28852471928E-09 2.34645899585E-09 2.40585988550E-09 2.46676451569E-09 2.52921095379E-09 2.59323823085E-09 2.65888636598E-09 2.72619639141E-09 2.79521037806E-09 2.86597146193E-09 2.93852387096E-09 3.01291295278E-09 3.08918520295E-09 3.16738829411E-09 3.24757110571E-09 3.32978375460E-09 3.41407762635E-09 3.50050540735E-09 3.58912111775E-09 3.67998014525E-09 3.77313927965E-09 3.86865674844E-09 3.96659225312E-09 4.06700700653E-09 4.16996377114E-09 4.27552689824E-09 4.38376236821E-09 4.49473783169E-09 4.60852265193E-09 4.72518794812E-09 4.84480663981E-09 4.96745349255E-09 5.09320516458E-09 5.22214025473E-09 5.35433935159E-09 5.48988508385E-09 5.62886217196E-09 5.77135748105E-09 5.91746007530E-09 6.06726127350E-09 6.22085470623E-09 6.37833637432E-09 6.53980470886E-09 6.70536063276E-09 6.87510762377E-09 7.04915177920E-09 7.22760188225E-09 7.41056946994E-09 7.59816890288E-09 7.79051743672E-09 7.98773529547E-09 8.18994574658E-09 8.39727517806E-09 8.60985317744E-09 8.82781261276E-09 9.05128971563E-09 9.28042416638E-09 9.51535918136E-09 9.75624160243E-09 1.00032219888E-08 1.02564547111E-08 1.05160980478E-08 1.07823142842E-08 1.10552698141E-08 1.13351352432E-08 1.16220854964E-08 1.19162999267E-08 1.22179624275E-08 1.25272615473E-08 1.28443906079E-08 1.31695478250E-08 1.35029364323E-08 1.38447648080E-08 1.41952466058E-08 1.45546008878E-08 1.49230522619E-08 1.53008310216E-08 1.56881732908E-08 1.60853211704E-08 1.64925228903E-08 1.69100329646E-08 1.73381123500E-08 1.77770286096E-08 1.82270560798E-08 1.86884760419E-08 1.91615768977E-08 1.96466543502E-08 2.01440115878E-08 2.06539594743E-08 2.11768167431E-08 2.17129101961E-08 2.22625749085E-08 2.28261544377E-08 2.34040010385E-08 2.39964758828E-08 2.46039492857E-08 2.52268009368E-08 2.58654201377E-08 2.65202060450E-08 2.71915679199E-08 2.78799253844E-08 2.85857086828E-08 2.93093589514E-08 3.00513284937E-08 3.08120810632E-08 3.15920921535E-08 3.23918492952E-08 3.32118523608E-08 3.40526138771E-08 3.49146593453E-08 3.57985275699E-08 3.67047709952E-08 3.76339560505E-08 3.85866635043E-08 3.95634888274E-08 4.05650425646E-08 4.15919507168E-08 4.26448551323E-08 4.37244139074E-08 4.48313017982E-08 4.59662106425E-08 4.71298497914E-08 4.83229465537E-08 4.95462466498E-08 5.08005146778E-08 5.20865345917E-08 5.34051101912E-08 5.47570656243E-08 5.61432459020E-08 5.75645174267E-08 5.90217685339E-08 6.05159100471E-08 6.20478758470E-08 6.36186234558E-08 6.52291346349E-08 6.68804159991E-08 6.85734996455E-08 7.03094437985E-08 7.20893334712E-08 7.39142811441E-08 7.57854274594E-08 7.77039419349E-08 7.96710236944E-08 8.16879022173E-08 8.37558381070E-08 8.58761238789E-08 8.80500847682E-08 9.02790795582E-08 9.25645014293E-08 9.49077788301E-08 9.73103763702E-08 9.97737957351E-08 1.02299576625E-07 1.04889297719E-07 1.07544577656E-07 1.10267076055E-07 1.13058494544E-07 1.15920577831E-07 1.18855114786E-07 1.21863939568E-07 1.24948932764E-07 1.28112022570E-07 1.31355185992E-07 1.34680450084E-07 1.38089893213E-07 1.41585646359E-07 1.45169894450E-07 1.48844877720E-07 1.52612893116E-07 1.56476295732E-07 1.60437500279E-07 1.64498982594E-07 1.68663281191E-07 1.72932998844E-07 1.77310804215E-07 1.81799433522E-07 1.86401692249E-07 1.91120456897E-07 1.95958676788E-07 2.00919375901E-07 2.06005654767E-07 2.11220692403E-07 2.16567748303E-07 2.22050164472E-07 2.27671367515E-07 2.33434870780E-07 2.39344276551E-07 2.45403278302E-07 2.51615663007E-07 2.57985313500E-07 2.64516210908E-07 2.71212437137E-07 2.78078177422E-07 2.85117722943E-07 2.92335473509E-07 2.99735940304E-07 3.07323748711E-07 3.15103641195E-07 3.23080480278E-07 3.31259251565E-07 3.39645066871E-07 3.48243167409E-07 3.57058927067E-07 3.66097855767E-07 3.75365602907E-07 3.84867960894E-07 3.94610868762E-07 4.04600415881E-07 4.14842845770E-07 4.25344559989E-07 4.36112122148E-07 4.47152262003E-07 4.58471879663E-07 4.70078049905E-07 4.81978026590E-07 4.94179247200E-07 5.06689337483E-07 5.19516116222E-07 5.32667600117E-07 5.46152008794E-07 5.59977769947E-07 5.74153524599E-07 5.88688132502E-07 6.03590677678E-07 6.18870474089E-07 6.34537071461E-07 6.50600261250E-07 6.67070082761E-07 6.83956829420E-07 7.01271055208E-07 7.19023581252E-07 7.37225502591E-07 7.55888195104E-07 7.75023322622E-07 7.94642844213E-07 8.14759021656E-07 8.35384427103E-07 8.56531950932E-07 8.78214809801E-07 9.00446554910E-07 9.23241080461E-07 9.46612632346E-07 9.70575817042E-07 9.95145610739E-07 1.02033736870E-06 1.04616683484E-06 1.07265015160E-06 1.09980386997E-06 1.12764495988E-06 1.15619082080E-06 1.18545929258E-06 1.21546866661E-06 1.24623769726E-06 1.27778561358E-06 1.31013213130E-06 1.34329746519E-06 1.37730234163E-06 1.41216801162E-06 1.44791626400E-06 1.48456943909E-06 1.52215044264E-06 1.56068276014E-06 1.60019047145E-06 1.64069826594E-06 1.68223145778E-06 1.72481600187E-06 1.76847850997E-06 1.81324626736E-06 1.85914724988E-06 1.90621014137E-06 1.95446435162E-06 2.00394003475E-06 2.05466810797E-06 2.10668027099E-06 2.16000902571E-06 2.21468769660E-06 2.27075045146E-06 2.32823232280E-06 2.38716922966E-06 2.44759800009E-06 2.50955639411E-06 2.57308312731E-06 2.63821789501E-06 2.70500139705E-06 2.77347536320E-06 2.84368257922E-06 2.91566691354E-06 2.98947334470E-06 3.06514798939E-06 3.14273813123E-06 3.22229225034E-06 3.30386005353E-06 3.38749250541E-06 3.47324186010E-06 3.56116169395E-06 3.65130693890E-06 3.74373391682E-06 3.83850037460E-06 3.93566552027E-06 4.03529005985E-06 4.13743623532E-06 4.24216786343E-06 4.34955037549E-06 4.45965085824E-06 4.57253809568E-06 4.68828261200E-06 4.80695671558E-06 4.92863454409E-06 5.05339211075E-06 5.18130735173E-06 5.31246017478E-06 5.44693250908E-06 5.58480835632E-06 5.72617384310E-06 5.87111727466E-06 6.01972918991E-06 6.17210241795E-06 6.32833213589E-06 6.48851592823E-06 6.65275384773E-06 6.82114847772E-06 6.99380499612E-06 7.17083124099E-06 7.35233777772E-06 7.53843796799E-06 7.72924804042E-06 7.92488716298E-06 8.12547751731E-06 8.33114437480E-06 8.54201617470E-06 8.75822460415E-06 8.97990468018E-06 9.20719483389E-06 9.44023699666E-06 9.67917668856E-06 9.92416310900E-06 1.01753492297E-05 1.04328918898E-05 1.06969518939E-05 1.09676941118E-05 1.12452875813E-05 1.15299056134E-05 1.18217259006E-05 1.21209306269E-05 1.24277065816E-05 1.27422452754E-05 1.30647430599E-05 1.33954012493E-05 1.37344262462E-05 1.40820296696E-05 1.44384284870E-05 1.48038451490E-05 1.51785077278E-05 1.55626500595E-05 1.59565118889E-05 1.63603390190E-05 1.67743834639E-05 1.71989036052E-05 1.76341643534E-05 1.80804373117E-05 1.85380009454E-05 1.90071407553E-05 1.94881494546E-05 1.99813271511E-05 2.04869815339E-05 2.10054280645E-05 2.15369901732E-05 2.20819994595E-05 2.26407958987E-05 2.32137280530E-05 2.38011532883E-05 2.44034379959E-05 2.50209578206E-05 2.56540978938E-05 2.63032530731E-05 2.69688281873E-05 2.76512382882E-05 2.83509089085E-05 2.90682763262E-05 2.98037878355E-05 3.05579020250E-05 3.13310890624E-05 3.21238309870E-05 3.29366220092E-05 3.37699688173E-05 3.46243908929E-05 3.55004208335E-05 3.63986046840E-05 3.73195022756E-05 3.82636875745E-05 3.92317490385E-05 4.02242899833E-05 4.12419289577E-05 4.22853001286E-05 4.33550536757E-05 4.44518561961E-05 4.55763911201E-05 4.67293591361E-05 4.79114786278E-05 4.91234861220E-05 5.03661367479E-05 5.16402047080E-05 5.29464837618E-05 5.42857877213E-05 5.56589509596E-05 5.70668289325E-05 5.85102987141E-05 5.99902595452E-05 6.15076333976E-05 6.30633655516E-05 6.46584251893E-05 6.62938060038E-05 6.79705268233E-05 6.96896322531E-05 7.14521933333E-05 7.32593082145E-05 7.51121028517E-05 7.70117317162E-05 7.89593785268E-05 8.09562570009E-05 8.30036116256E-05 8.51027184493E-05 8.72548858963E-05 8.94614556016E-05 9.17238032704E-05 9.40433395608E-05 9.64215109901E-05 9.88598008683E-05 1.01359730256E-04 1.03922858950E-04 1.06550786497E-04 1.09245153238E-04 1.12007641377E-04 1.14839976091E-04 1.17743926659E-04 1.20721307639E-04 1.23773980066E-04 1.26903852695E-04 1.30112883281E-04 1.33403079892E-04 1.36776502268E-04 1.40235263221E-04 1.43781530077E-04 1.47417526166E-04 1.51145532357E-04 1.54967888647E-04 1.58886995794E-04 1.62905317016E-04 1.67025379734E-04 1.71249777383E-04 1.75581171279E-04 1.80022292558E-04 1.84575944174E-04 1.89245002979E-04 1.94032421863E-04 1.98941231988E-04 2.03974545096E-04 2.09135555906E-04 2.14427544596E-04 2.19853879395E-04 2.25418019263E-04 2.31123516684E-04 2.36974020567E-04 2.42973279274E-04 2.49125143766E-04 2.55433570884E-04 2.61902626770E-04 2.68536490442E-04 2.75339457515E-04 2.82315944099E-04 2.89470490870E-04 2.96807767331E-04 3.04332576265E-04 3.12049858409E-04 3.19964697348E-04 3.28082324646E-04 3.36408125237E-04 3.44947643083E-04 3.53706587120E-04 3.62690837512E-04 3.71906452236E-04 3.81359674008E-04 3.91056937591E-04 4.01004877491E-04 4.11210336088E-04 4.21680372211E-04 4.32422270202E-04 4.43443549497E-04 4.54751974763E-04 4.66355566622E-04 4.78262613012E-04 4.90481681228E-04 5.03021630686E-04 5.15891626461E-04 5.29101153669E-04 5.42660032725E-04 5.56578435574E-04 5.70866902930E-04 5.85536362629E-04 6.00598149146E-04 6.16064024383E-04 6.31946199811E-04 6.48257360064E-04 6.65010688091E-04 6.82219891987E-04 6.99899233612E-04 7.18063559147E-04 7.36728331711E-04 7.55909666210E-04 7.75624366563E-04 7.95889965492E-04 8.16724767073E-04 8.38147892229E-04 8.60179327405E-04 8.82839976652E-04 9.06151717373E-04 9.30137460003E-04 9.54821211917E-04 9.80228145877E-04 1.00638467336E-03 1.03331852313E-03 1.06105882544E-03 1.08963620226E-03 1.11908286408E-03 1.14943271358E-03 1.18072145693E-03 1.21298672305E-03 1.24626819161E-03 1.28060773027E-03 1.31604954195E-03 1.35264032287E-03 1.39042943206E-03 1.42946907331E-03 1.46981449043E-03 1.51152417677E-03 1.55466010016E-03 1.59928794429E-03 1.64547736785E-03 1.69330228262E-03 1.74284115206E-03 1.79417731176E-03 1.84739931353E-03 1.90260129463E-03 1.95988337424E-03 2.01935207899E-03 2.08112079974E-03 2.14531028195E-03 2.21204915192E-03 2.28147448175E-03 2.35373239564E-03 2.42897872061E-03 2.50737968491E-03 2.58911266743E-03 2.67436700196E-03 2.76334484011E-03 2.85626207724E-03 2.95334934577E-03 3.05485308080E-03 3.16103666324E-03 3.27218164581E-03 3.38858906798E-03 3.51058086599E-03 3.63850138484E-03 3.77271899927E-03 3.91362785153E-03 4.06164971399E-03 4.21723598540E-03 4.38086983014E-03 4.55306847019E-03 4.73438564059E-03 4.92541421957E-03 5.12678904525E-03 5.33918993180E-03 5.56334489855E-03 5.80003362651E-03 6.05009115762E-03 6.31441185307E-03 6.59395362799E-03 6.88974248091E-03 7.20287733748E-03 7.53453522912E-03 7.88597682861E-03 8.25855236577E-03 8.65370794782E-03 9.07299231058E-03 9.51806402776E-03 9.99069920775E-03 1.04927997083E-02 1.10264019017E-02 1.15936860244E-02 1.21969861475E-02 1.28388008052E-02 1.35218043214E-02 1.42488588774E-02 1.50230273619E-02 1.58475870524E-02 1.67260441739E-02 1.76621493865E-02 1.86599142539E-02 1.97236287488E-02 2.08578798505E-02 2.20675712966E-02 2.33579445481E-02 2.47346010343E-02 2.62035257417E-02 2.77711122171E-02 2.94441890538E-02 3.12300479341E-02 3.31364733024E-02 3.51717737441E-02 3.73448151476E-02 3.96650557289E-02 4.21425829950E-02 4.47881527298E-02 4.76132300781E-02 5.06300328098E-02 5.38515768411E-02 5.72917240899E-02 6.09652327397E-02 6.48878099833E-02 6.90761673131E-02 7.35480784218E-02 7.83224397679E-02 8.34193338566E-02 8.88600952755E-02 9.46673795157E-02 1.00865234596E-01 1.07479175499E-01 1.14536261395E-01 1.22065175649E-01 1.30096308535E-01 1.38661842608E-01 1.47795840617E-01 1.57534335856E-01 1.67915424776E-01 1.78979361673E-01 1.90768655226E-01 2.03328166600E-01 2.16705208805E-01 2.30949646928E-01 2.46113998816E-01 2.62253535717E-01 2.79426382328E-01 2.97693615611E-01 3.17119361694E-01 3.37770890041E-01 3.59718704042E-01 3.83036627036E-01 4.07801882697E-01 4.34095168619E-01 4.62000721781E-01 4.91606374517E-01 5.23003599432E-01 5.56287541608E-01 5.91557036315E-01 6.28914610272E-01 6.68466464406E-01 7.10322435866E-01 7.54595936939E-01 8.01403868364E-01 8.50866504369E-01 9.03107346651E-01 9.58252944369E-01 1.01643267708E+00 1.07777849745E+00 1.14242463046E+00 1.21050722571E+00 1.28216395947E+00 1.35753358286E+00 1.43675541281E+00 1.51996876220E+00 1.60731230588E+00 1.69892337916E+00 1.79493720564E+00 1.89548605141E+00 2.00069830303E+00 2.11069746679E+00 2.22560108748E+00 2.34551958509E+00 2.47055500885E+00 2.60079970818E+00 2.73633492150E+00 2.87722928423E+00 3.02353725879E+00 3.17529749006E+00 3.33253109170E+00 3.49523986926E+00 3.66340448845E+00 3.83698259785E+00 4.01590691749E+00 4.20008330660E+00 4.38938882573E+00 4.58366981040E+00 4.78273997606E+00 4.98637857577E+00 5.19432863465E+00 5.40629528732E+00 5.62194424656E+00 5.84090043387E+00 6.06274680413E+00 6.28702339894E+00 6.51322666413E+00 6.74080906877E+00 6.96917906331E+00 7.19770141540E+00 7.42569796134E+00 7.65244881066E+00 7.87719403965E+00 8.09913590761E+00 8.31744162626E+00 8.53124670897E+00 8.73965892096E+00 8.94176284618E+00 9.13662507865E+00 9.32330003834E+00 9.50083640181E+00 9.66828412762E+00 9.82470204478E+00 9.96916596025E+00 1.01007772283E+01 1.02186717103E+01 1.03220290405E+01 1.04100820967E+01 1.04821265643E+01 1.05375304647E+01 1.05757435090E+01 1.05963061269E+01 1.05988580098E+01 1.05831460019E+01 1.05490311681E+01 1.04964948678E+01 1.04256436654E+01 1.03367129182E+01 1.02300688909E+01 1.01062092661E+01 9.96576193919E+00 9.80948201335E+00 9.63824694226E+00 9.45304980133E+00 9.25499070891E+00 9.04526645978E+00 8.82515847651E+00 8.59601922843E+00 8.35925731087E+00 8.11632141784E+00 7.86868347782E+00 7.61782125335E+00 7.36520072832E+00 7.11225862187E+00 6.86038537270E+00 6.61090893148E+00 6.36507968248E+00 6.12405678713E+00 5.88889620420E+00 5.66054059435E+00 5.43981126238E+00 5.22740223296E+00 5.02387649541E+00 4.82966439654E+00 4.64506410833E+00 4.47024405477E+00 4.30524715097E+00 4.14999669022E+00 4.00430371176E+00 3.86787569306E+00 3.74032643340E+00 3.62118702627E+00 3.50991785188E+00 3.40592155119E+00 3.30855696125E+00 3.21715399264E+00 3.13102940534E+00 3.04950338643E+00 2.97191674926E+00 2.89764846198E+00 2.82613308038E+00 2.75687751727E+00 2.68947644353E+00 2.62362550332E+00 2.55914613422E+00 2.49599587751E+00 2.43415650017E+00 2.37360979403E+00 2.31433788075E+00 2.25632344050E+00 2.19954985138E+00 2.14400122864E+00 2.08966235443E+00 2.03651849185E+00 1.98455508006E+00 1.93375731083E+00 1.88410959115E+00 1.83559490110E+00 1.78819406105E+00 1.74188492805E+00 1.69664154705E+00 1.65243328880E+00 1.60922675928E+00 1.56699551742E+00 1.52571541620E+00 1.48536245234E+00 1.44591283402E+00 1.40734304468E+00 1.36962990267E+00 1.33275061690E+00 1.29668283832E+00 1.26140470719E+00 1.22689489612E+00 1.19313264893E+00 1.16009781522E+00 1.12777088083E+00 1.09613299404E+00 1.06516598771E+00 1.03485239738E+00 1.00517547542E+00 9.76119201263E-01 9.47668287893E-01 9.19808184709E-01 8.92525076815E-01 8.65805880922E-01 8.39638237983E-01 8.14010502689E-01 7.88911729977E-01 7.64331658668E-01 7.40260692499E-01 7.16691018041E-01 6.93613117582E-01 6.71019252478E-01 6.48902249148E-01 6.27255468984E-01 6.06072776625E-01 5.85348506696E-01 5.65077429210E-01 5.45254713854E-01 5.25875893342E-01 5.06936826074E-01 4.88433658301E-01 4.70362786043E-01 4.52720816978E-01 4.35504532561E-01 4.18710850612E-01 4.02336788607E-01 3.86379427948E-01 3.70835879421E-01 3.55703249970E-01 3.40979426904E-01 3.26660584613E-01 3.12743637444E-01 2.99225382386E-01 2.86102476216E-01 2.73371415168E-01 2.61028517188E-01 2.49069906874E-01 2.37491503100E-01 2.26289009347E-01 2.15457906696E-01 2.04993449424E-01 1.94890663114E-01 1.85144345165E-01 1.75749067560E-01 1.66699181730E-01 1.57988825350E-01 1.49611930862E-01 1.41562235543E-01 1.33833292911E-01 1.26418485259E-01 1.19311037117E-01 1.12504029456E-01 1.05990414422E-01 9.97630304361E-02 9.38146174956E-02 8.81378325066E-02 8.27252645287E-02 7.75694498012E-02 7.26628864517E-02 6.79980488008E-02 6.35674011955E-02 5.93634113218E-02 5.53785629597E-02 5.16053681636E-02 4.80363788603E-02 4.46641978703E-02 4.14814893676E-02 3.84809888001E-02 3.56555122987E-02 3.29979656042E-02 3.05013525462E-02 2.81587831012E-02 2.59634810597E-02 2.39087913244E-02 2.19881868567E-02 2.01952752830E-02 1.85238051652E-02 1.69676719322E-02 1.55209234632E-02 1.41777653083E-02 1.29325655251E-02 1.17798591076E-02 1.07143519808E-02 9.73092453133E-03 8.82463464788E-03 7.99072024232E-03 7.22460122897E-03 6.52188094058E-03 5.87834696528E-03 5.28997139423E-03 4.75291047519E-03 4.26350367393E-03 3.81827215154E-03 3.41391667219E-03 3.04731496171E-03 2.71551854341E-03 2.41574908223E-03 2.14539427333E-03 1.90200331451E-03 1.68328200540E-03 1.48708751826E-03 1.31142288706E-03 1.15443126203E-03 1.01438997703E-03 8.89704476640E-04 7.78902148285E-04 6.80626103395E-04 5.93628949037E-04 5.16766589091E-04 4.48992091023E-04 3.89349651206E-04 3.36968688433E-04 2.91058091847E-04 2.50900646088E-04 2.15847653046E-04 1.85313766233E-04 1.58772050583E-04 1.35749277390E-04 1.15821461181E-04 9.86096426336E-05 8.37759191510E-05 7.10197224531E-05 6.00743405348E-05 5.07036795565E-05 4.26992596966E-05 3.58774376832E-05 3.00768476390E-05 2.51560509934E-05 2.09913855414E-05 1.74750032344E-05 1.45130859598E-05 1.20242283953E-05 9.93797698205E-06 8.19351414361E-06 6.73847705957E-06 5.52790057409E-06 4.52327416378E-06 3.69170329217E-06 3.00516592685E-06 2.43985547916E-06 1.97560193326E-06 1.59536345275E-06 1.28478128018E-06 1.03179127001E-06 8.26285913463E-07 6.59821218067E-07 5.25363290798E-07 4.17069947076E-07 3.30106858058E-07 2.60511295318E-07 2.04981222232E-07 1.60805460217E-07 1.25768007319E-07 9.80630784982E-08 7.62236764723E-08 5.90617280947E-08 4.56180741123E-08 3.51208256424E-08 2.69508011171E-08 2.06129348191E-08 1.57127044982E-08 1.19367628495E-08 9.03707770169E-09 6.81799033539E-09 5.12569206390E-09 3.83969758275E-09 2.86596102515E-09 2.13133844456E-09 1.57914975636E-09 1.16563507715E-09 8.57135866425E-10 6.27861164131E-10 4.58124301644E-10 3.32956423867E-10 2.41020601426E-10 1.73764760957E-10 1.24763581006E-10 8.92092897869E-11 6.35193050112E-11 4.50351712841E-11 3.17925303323E-11 2.23461184213E-11 1.56372054339E-11 1.08936237766E-11 7.55471018046E-12 5.21520565465E-12 3.58351610780E-12 2.45080068301E-12 1.66818575430E-12 1.13004791637E-12 7.61808113877E-13 5.11062668902E-13 3.41170498177E-13 2.26639275588E-13 1.49822544140E-13 9.85276959904E-14 6.44540663259E-14 4.19396242493E-14 2.71426412335E-14 1.74704461099E-14 1.11828138173E-14 7.11810549023E-15 4.50521397415E-15 2.83515309180E-15 1.77387067661E-15 1.10339074123E-15 6.82310591036E-16 4.19443923666E-16 2.56339702747E-16 1.55757653064E-16 9.41169786716E-17 5.65790046732E-17 3.38650161429E-17 2.02100185034E-17 1.20553748230E-17 7.14349189952E-18 4.20455343071E-18 2.45794334511E-18 1.42701738930E-18 8.22724311223E-19 4.70986929373E-19 2.67703561518E-19 1.51060542086E-19 8.46174353931E-20 4.70479217888E-20 2.59628359434E-20 1.42184984317E-20 7.72686928792E-21 4.16638504936E-21 2.22883799154E-21 1.18281704348E-21 6.22633940904E-22 3.25072158677E-22 1.68311422210E-22 8.64149203659E-23 4.39905240993E-23 2.22012867021E-23 1.11070448242E-23 5.50772748593E-24 2.70677073413E-24 1.31821597369E-24 6.36103933987E-25 3.04106516971E-25 1.44021919723E-25 6.75592991186E-26 3.13865187110E-26 1.44394209609E-26 6.57735838202E-27 2.96615703936E-27 1.32410616647E-27 5.85035131239E-28 2.55808689829E-28 1.10679166875E-28 4.73779238503E-29 2.00626047031E-29 8.40312085055E-30 3.48077553337E-30 1.42571559562E-30 5.77364204143E-31 2.31134463370E-31 9.14564832316E-32 3.57631266974E-32 1.38185701523E-32 5.27511601384E-33 1.98918887344E-33 7.40846289840E-34 2.72471086951E-34 9.89428126838E-35 3.54690877277E-35 1.25501025167E-35 4.38232599398E-36 1.50990633703E-36 5.13227729322E-37 1.72072288654E-37 5.68954428089E-38 1.85495687621E-38 5.96215211487E-39 1.88889287349E-39 5.89749809075E-40 1.81428147855E-40 5.49840936446E-41 1.64128186710E-41 4.82458644356E-42 1.39631663869E-42 3.97804470459E-43 1.11540166165E-43 3.07738385438E-44 8.35280974397E-45 2.22994787659E-45 5.85433518869E-46 1.51108750691E-46 3.83387598689E-47 9.55936428673E-48 3D 3 2 1.50 4.00 3D 3 2 2.50 5.00 4S 1 0 0.50 1.00 0 0.50 0 0.50 1 0.50 1 0.50 1 1.50 1 1.50 2 1.50 2 1.50 2 2.50 2 2.50 -7.00000000 100.00000000 28.00000000 0.01250000 espresso-5.1/pseudo/Rh.pbe-rrkjus_lb.UPF0000644000175000017500000145227512341373031016303 0ustar mbamba Generated using Andrea Dal Corso code (rrkj3) Author: Laura Biancchettin Generation date: before Mar 13 2001 Info: Rh 1 The Pseudo was generated with a Scalar-Relativistic Calculation 2.40000000000E+00 Local Potential cutoff radius nl pn l occ Rcut Rcut US E pseu 5P 2 1 0.00 2.50000000000 2.50000000000 0.00000000000 4D 3 2 8.00 1.80000000000 2.20000000000 0.00000000000 4D 3 2 0.00 1.80000000000 2.20000000000 0.00000000000 5S 1 0 1.00 2.40000000000 2.40000000000 0.00000000000 0 Version Number Rh Element US Ultrasoft pseudopotential F Nonlinear Core Correction SLA PW PBE PBE PBE Exchange-Correlation functional 9.00000000000 Z valence -43.22148820500 Total energy 0.0000000 0.0000000 Suggested cutoff for wfc and rho 2 Max angular momentum component 1491 Number of points in mesh 2 3 Number of Wavefunctions, Number of Projectors Wavefunctions nl l occ 4D 2 8.00 5S 0 1.00 2.02640436790E-05 2.04677007038E-05 2.06734045157E-05 2.08811756852E-05 2.10910349898E-05 2.13030034154E-05 2.15171021591E-05 2.17333526310E-05 2.19517764562E-05 2.21723954774E-05 2.23952317566E-05 2.26203075777E-05 2.28476454483E-05 2.30772681026E-05 2.33091985028E-05 2.35434598424E-05 2.37800755475E-05 2.40190692801E-05 2.42604649395E-05 2.45042866657E-05 2.47505588410E-05 2.49993060928E-05 2.52505532960E-05 2.55043255756E-05 2.57606483090E-05 2.60195471287E-05 2.62810479248E-05 2.65451768476E-05 2.68119603102E-05 2.70814249912E-05 2.73535978372E-05 2.76285060658E-05 2.79061771681E-05 2.81866389113E-05 2.84699193419E-05 2.87560467881E-05 2.90450498630E-05 2.93369574671E-05 2.96317987914E-05 2.99296033203E-05 3.02304008344E-05 3.05342214138E-05 3.08410954408E-05 3.11510536030E-05 3.14641268966E-05 3.17803466291E-05 3.20997444227E-05 3.24223522175E-05 3.27482022745E-05 3.30773271791E-05 3.34097598439E-05 3.37455335126E-05 3.40846817628E-05 3.44272385095E-05 3.47732380088E-05 3.51227148608E-05 3.54757040136E-05 3.58322407664E-05 3.61923607731E-05 3.65561000460E-05 3.69234949594E-05 3.72945822531E-05 3.76693990361E-05 3.80479827903E-05 3.84303713746E-05 3.88166030280E-05 3.92067163741E-05 3.96007504245E-05 3.99987445829E-05 4.04007386491E-05 4.08067728229E-05 4.12168877079E-05 4.16311243161E-05 4.20495240713E-05 4.24721288141E-05 4.28989808051E-05 4.33301227299E-05 4.37655977031E-05 4.42054492726E-05 4.46497214238E-05 4.50984585843E-05 4.55517056284E-05 4.60095078809E-05 4.64719111226E-05 4.69389615941E-05 4.74107060008E-05 4.78871915177E-05 4.83684657937E-05 4.88545769565E-05 4.93455736177E-05 4.98415048775E-05 5.03424203292E-05 5.08483700649E-05 5.13594046800E-05 5.18755752784E-05 5.23969334776E-05 5.29235314137E-05 5.34554217471E-05 5.39926576672E-05 5.45352928981E-05 5.50833817037E-05 5.56369788934E-05 5.61961398273E-05 5.67609204221E-05 5.73313771562E-05 5.79075670757E-05 5.84895478003E-05 5.90773775284E-05 5.96711150434E-05 6.02708197197E-05 6.08765515282E-05 6.14883710426E-05 6.21063394453E-05 6.27305185337E-05 6.33609707262E-05 6.39977590686E-05 6.46409472403E-05 6.52905995605E-05 6.59467809951E-05 6.66095571628E-05 6.72789943417E-05 6.79551594761E-05 6.86381201830E-05 6.93279447592E-05 7.00247021877E-05 7.07284621447E-05 7.14392950068E-05 7.21572718580E-05 7.28824644965E-05 7.36149454422E-05 7.43547879438E-05 7.51020659861E-05 7.58568542977E-05 7.66192283578E-05 7.73892644047E-05 7.81670394425E-05 7.89526312494E-05 7.97461183852E-05 8.05475801992E-05 8.13570968385E-05 8.21747492552E-05 8.30006192153E-05 8.38347893065E-05 8.46773429465E-05 8.55283643913E-05 8.63879387439E-05 8.72561519623E-05 8.81330908687E-05 8.90188431576E-05 8.99134974049E-05 9.08171430770E-05 9.17298705390E-05 9.26517710645E-05 9.35829368444E-05 9.45234609959E-05 9.54734375723E-05 9.64329615720E-05 9.74021289482E-05 9.83810366185E-05 9.93697824744E-05 1.00368465391E-04 1.01377185239E-04 1.02396042889E-04 1.03425140229E-04 1.04464580169E-04 1.05514466654E-04 1.06574904673E-04 1.07646000272E-04 1.08727860561E-04 1.09820593726E-04 1.10924309042E-04 1.12039116882E-04 1.13165128727E-04 1.14302457178E-04 1.15451215971E-04 1.16611519982E-04 1.17783485242E-04 1.18967228948E-04 1.20162869476E-04 1.21370526392E-04 1.22590320461E-04 1.23822373665E-04 1.25066809209E-04 1.26323751538E-04 1.27593326348E-04 1.28875660596E-04 1.30170882519E-04 1.31479121637E-04 1.32800508778E-04 1.34135176080E-04 1.35483257011E-04 1.36844886382E-04 1.38220200354E-04 1.39609336462E-04 1.41012433620E-04 1.42429632139E-04 1.43861073740E-04 1.45306901568E-04 1.46767260207E-04 1.48242295695E-04 1.49732155535E-04 1.51236988716E-04 1.52756945722E-04 1.54292178550E-04 1.55842840724E-04 1.57409087312E-04 1.58991074940E-04 1.60588961808E-04 1.62202907706E-04 1.63833074030E-04 1.65479623798E-04 1.67142721667E-04 1.68822533946E-04 1.70519228620E-04 1.72232975359E-04 1.73963945538E-04 1.75712312258E-04 1.77478250355E-04 1.79261936424E-04 1.81063548837E-04 1.82883267756E-04 1.84721275154E-04 1.86577754833E-04 1.88452892443E-04 1.90346875500E-04 1.92259893403E-04 1.94192137455E-04 1.96143800883E-04 1.98115078854E-04 2.00106168499E-04 2.02117268927E-04 2.04148581250E-04 2.06200308601E-04 2.08272656156E-04 2.10365831149E-04 2.12480042901E-04 2.14615502834E-04 2.16772424497E-04 2.18951023582E-04 2.21151517952E-04 2.23374127659E-04 2.25619074964E-04 2.27886584365E-04 2.30176882614E-04 2.32490198743E-04 2.34826764086E-04 2.37186812301E-04 2.39570579394E-04 2.41978303746E-04 2.44410226129E-04 2.46866589739E-04 2.49347640213E-04 2.51853625659E-04 2.54384796678E-04 2.56941406388E-04 2.59523710453E-04 2.62131967106E-04 2.64766437173E-04 2.67427384105E-04 2.70115073998E-04 2.72829775624E-04 2.75571760454E-04 2.78341302691E-04 2.81138679289E-04 2.83964169990E-04 2.86818057344E-04 2.89700626743E-04 2.92612166446E-04 2.95552967610E-04 2.98523324317E-04 3.01523533604E-04 3.04553895497E-04 3.07614713033E-04 3.10706292296E-04 3.13828942448E-04 3.16982975756E-04 3.20168707625E-04 3.23386456631E-04 3.26636544553E-04 3.29919296402E-04 3.33235040455E-04 3.36584108290E-04 3.39966834816E-04 3.43383558309E-04 3.46834620444E-04 3.50320366330E-04 3.53841144545E-04 3.57397307169E-04 3.60989209821E-04 3.64617211695E-04 3.68281675595E-04 3.71982967968E-04 3.75721458949E-04 3.79497522389E-04 3.83311535897E-04 3.87163880878E-04 3.91054942569E-04 3.94985110081E-04 3.98954776433E-04 4.02964338596E-04 4.07014197527E-04 4.11104758218E-04 4.15236429727E-04 4.19409625226E-04 4.23624762036E-04 4.27882261675E-04 4.32182549897E-04 4.36526056735E-04 4.40913216542E-04 4.45344468037E-04 4.49820254351E-04 4.54341023065E-04 4.58907226260E-04 4.63519320560E-04 4.68177767179E-04 4.72883031964E-04 4.77635585446E-04 4.82435902886E-04 4.87284464317E-04 4.92181754601E-04 4.97128263470E-04 5.02124485580E-04 5.07170920558E-04 5.12268073049E-04 5.17416452775E-04 5.22616574578E-04 5.27868958473E-04 5.33174129705E-04 5.38532618793E-04 5.43944961592E-04 5.49411699341E-04 5.54933378717E-04 5.60510551894E-04 5.66143776593E-04 5.71833616141E-04 5.77580639528E-04 5.83385421460E-04 5.89248542420E-04 5.95170588725E-04 6.01152152586E-04 6.07193832162E-04 6.13296231628E-04 6.19459961228E-04 6.25685637340E-04 6.31973882537E-04 6.38325325650E-04 6.44740601827E-04 6.51220352601E-04 6.57765225953E-04 6.64375876376E-04 6.71052964940E-04 6.77797159360E-04 6.84609134061E-04 6.91489570246E-04 6.98439155964E-04 7.05458586179E-04 7.12548562841E-04 7.19709794953E-04 7.26942998645E-04 7.34248897242E-04 7.41628221341E-04 7.49081708879E-04 7.56610105213E-04 7.64214163188E-04 7.71894643216E-04 7.79652313352E-04 7.87487949369E-04 7.95402334837E-04 8.03396261201E-04 8.11470527861E-04 8.19625942250E-04 8.27863319916E-04 8.36183484604E-04 8.44587268337E-04 8.53075511501E-04 8.61649062927E-04 8.70308779977E-04 8.79055528631E-04 8.87890183570E-04 8.96813628267E-04 9.05826755075E-04 9.14930465313E-04 9.24125669359E-04 9.33413286743E-04 9.42794246234E-04 9.52269485934E-04 9.61839953377E-04 9.71506605617E-04 9.81270409327E-04 9.91132340895E-04 1.00109338652E-03 1.01115454232E-03 1.02131681442E-03 1.03158121905E-03 1.04194878267E-03 1.05242054203E-03 1.06299754432E-03 1.07368084725E-03 1.08447151916E-03 1.09537063912E-03 1.10637929706E-03 1.11749859386E-03 1.12872964144E-03 1.14007356293E-03 1.15153149273E-03 1.16310457663E-03 1.17479397196E-03 1.18660084767E-03 1.19852638445E-03 1.21057177487E-03 1.22273822348E-03 1.23502694692E-03 1.24743917409E-03 1.25997614622E-03 1.27263911701E-03 1.28542935277E-03 1.29834813254E-03 1.31139674821E-03 1.32457650464E-03 1.33788871983E-03 1.35133472500E-03 1.36491586478E-03 1.37863349727E-03 1.39248899427E-03 1.40648374133E-03 1.42061913793E-03 1.43489659763E-03 1.44931754818E-03 1.46388343170E-03 1.47859570478E-03 1.49345583866E-03 1.50846531937E-03 1.52362564787E-03 1.53893834021E-03 1.55440492766E-03 1.57002695690E-03 1.58580599014E-03 1.60174360531E-03 1.61784139617E-03 1.63410097251E-03 1.65052396032E-03 1.66711200190E-03 1.68386675606E-03 1.70078989831E-03 1.71788312096E-03 1.73514813336E-03 1.75258666201E-03 1.77020045080E-03 1.78799126110E-03 1.80596087202E-03 1.82411108053E-03 1.84244370167E-03 1.86096056872E-03 1.87966353337E-03 1.89855446594E-03 1.91763525554E-03 1.93690781027E-03 1.95637405739E-03 1.97603594354E-03 1.99589543494E-03 2.01595451754E-03 2.03621519728E-03 2.05667950023E-03 2.07734947285E-03 2.09822718214E-03 2.11931471590E-03 2.14061418290E-03 2.16212771310E-03 2.18385745787E-03 2.20580559021E-03 2.22797430495E-03 2.25036581898E-03 2.27298237146E-03 2.29582622407E-03 2.31889966122E-03 2.34220499026E-03 2.36574454176E-03 2.38952066968E-03 2.41353575167E-03 2.43779218923E-03 2.46229240805E-03 2.48703885816E-03 2.51203401423E-03 2.53728037580E-03 2.56278046751E-03 2.58853683941E-03 2.61455206715E-03 2.64082875228E-03 2.66736952248E-03 2.69417703185E-03 2.72125396118E-03 2.74860301817E-03 2.77622693775E-03 2.80412848233E-03 2.83231044211E-03 2.86077563528E-03 2.88952690841E-03 2.91856713663E-03 2.94789922400E-03 2.97752610375E-03 3.00745073859E-03 3.03767612101E-03 3.06820527358E-03 3.09904124922E-03 3.13018713158E-03 3.16164603526E-03 3.19342110617E-03 3.22551552186E-03 3.25793249179E-03 3.29067525768E-03 3.32374709384E-03 3.35715130747E-03 3.39089123904E-03 3.42497026256E-03 3.45939178596E-03 3.49415925141E-03 3.52927613571E-03 3.56474595056E-03 3.60057224298E-03 3.63675859562E-03 3.67330862715E-03 3.71022599260E-03 3.74751438375E-03 3.78517752945E-03 3.82321919607E-03 3.86164318779E-03 3.90045334704E-03 3.93965355489E-03 3.97924773137E-03 4.01923983594E-03 4.05963386784E-03 4.10043386651E-03 4.14164391199E-03 4.18326812531E-03 4.22531066892E-03 4.26777574713E-03 4.31066760646E-03 4.35399053615E-03 4.39774886852E-03 4.44194697945E-03 4.48658928877E-03 4.53168026076E-03 4.57722440455E-03 4.62322627460E-03 4.66969047113E-03 4.71662164059E-03 4.76402447616E-03 4.81190371813E-03 4.86026415449E-03 4.90911062132E-03 4.95844800330E-03 5.00828123421E-03 5.05861529742E-03 5.10945522637E-03 5.16080610511E-03 5.21267306875E-03 5.26506130405E-03 5.31797604986E-03 5.37142259771E-03 5.42540629230E-03 5.47993253204E-03 5.53500676959E-03 5.59063451244E-03 5.64682132340E-03 5.70357282119E-03 5.76089468102E-03 5.81879263512E-03 5.87727247333E-03 5.93634004369E-03 5.99600125299E-03 6.05626206742E-03 6.11712851311E-03 6.17860667674E-03 6.24070270619E-03 6.30342281111E-03 6.36677326356E-03 6.43076039865E-03 6.49539061513E-03 6.56067037609E-03 6.62660620955E-03 6.69320470916E-03 6.76047253482E-03 6.82841641336E-03 6.89704313923E-03 6.96635957517E-03 7.03637265287E-03 7.10708937370E-03 7.17851680938E-03 7.25066210273E-03 7.32353246834E-03 7.39713519329E-03 7.47147763793E-03 7.54656723655E-03 7.62241149819E-03 7.69901800733E-03 7.77639442469E-03 7.85454848797E-03 7.93348801265E-03 8.01322089274E-03 8.09375510159E-03 8.17509869270E-03 8.25725980049E-03 8.34024664114E-03 8.42406751341E-03 8.50873079945E-03 8.59424496566E-03 8.68061856352E-03 8.76786023048E-03 8.85597869077E-03 8.94498275630E-03 9.03488132757E-03 9.12568339450E-03 9.21739803737E-03 9.31003442773E-03 9.40360182928E-03 9.49810959886E-03 9.59356718731E-03 9.68998414048E-03 9.78737010013E-03 9.88573480495E-03 9.98508809149E-03 1.00854398952E-02 1.01868002512E-02 1.02891792958E-02 1.03925872669E-02 1.04970345054E-02 1.06025314560E-02 1.07090886687E-02 1.08167167991E-02 1.09254266102E-02 1.10352289731E-02 1.11461348681E-02 1.12581553859E-02 1.13713017286E-02 1.14855852109E-02 1.16010172614E-02 1.17176094232E-02 1.18353733557E-02 1.19543208354E-02 1.20744637572E-02 1.21958141354E-02 1.23183841052E-02 1.24421859237E-02 1.25672319711E-02 1.26935347522E-02 1.28211068973E-02 1.29499611639E-02 1.30801104373E-02 1.32115677327E-02 1.33443461958E-02 1.34784591047E-02 1.36139198708E-02 1.37507420401E-02 1.38889392952E-02 1.40285254557E-02 1.41695144805E-02 1.43119204685E-02 1.44557576605E-02 1.46010404403E-02 1.47477833364E-02 1.48960010230E-02 1.50457083222E-02 1.51969202047E-02 1.53496517919E-02 1.55039183571E-02 1.56597353271E-02 1.58171182836E-02 1.59760829652E-02 1.61366452683E-02 1.62988212494E-02 1.64626271263E-02 1.66280792795E-02 1.67951942546E-02 1.69639887630E-02 1.71344796845E-02 1.73066840683E-02 1.74806191348E-02 1.76563022779E-02 1.78337510658E-02 1.80129832438E-02 1.81940167351E-02 1.83768696432E-02 1.85615602536E-02 1.87481070355E-02 1.89365286437E-02 1.91268439206E-02 1.93190718978E-02 1.95132317982E-02 1.97093430382E-02 1.99074252288E-02 2.01074981786E-02 2.03095818949E-02 2.05136965864E-02 2.07198626646E-02 2.09281007463E-02 2.11384316556E-02 2.13508764256E-02 2.15654563011E-02 2.17821927402E-02 2.20011074166E-02 2.22222222222E-02 2.24455592685E-02 2.26711408895E-02 2.28989896434E-02 2.31291283154E-02 2.33615799195E-02 2.35963677010E-02 2.38335151390E-02 2.40730459483E-02 2.43149840823E-02 2.45593537350E-02 2.48061793435E-02 2.50554855907E-02 2.53072974072E-02 2.55616399746E-02 2.58185387273E-02 2.60780193554E-02 2.63401078071E-02 2.66048302916E-02 2.68722132813E-02 2.71422835147E-02 2.74150679990E-02 2.76905940131E-02 2.79688891095E-02 2.82499811183E-02 2.85338981486E-02 2.88206685926E-02 2.91103211274E-02 2.94028847186E-02 2.96983886228E-02 2.99968623906E-02 3.02983358696E-02 3.06028392075E-02 3.09104028548E-02 3.12210575681E-02 3.15348344132E-02 3.18517647680E-02 3.21718803259E-02 3.24952130985E-02 3.28217954196E-02 3.31516599476E-02 3.34848396692E-02 3.38213679026E-02 3.41612783011E-02 3.45046048558E-02 3.48513818998E-02 3.52016441110E-02 3.55554265159E-02 3.59127644932E-02 3.62736937768E-02 3.66382504600E-02 3.70064709988E-02 3.73783922155E-02 3.77540513026E-02 3.81334858263E-02 3.85167337304E-02 3.89038333399E-02 3.92948233652E-02 3.96897429056E-02 4.00886314533E-02 4.04915288976E-02 4.08984755285E-02 4.13095120410E-02 4.17246795392E-02 4.21440195401E-02 4.25675739781E-02 4.29953852089E-02 4.34274960141E-02 4.38639496051E-02 4.43047896276E-02 4.47500601660E-02 4.51998057477E-02 4.56540713476E-02 4.61129023928E-02 4.65763447665E-02 4.70444448136E-02 4.75172493444E-02 4.79948056397E-02 4.84771614555E-02 4.89643650279E-02 4.94564650776E-02 4.99535108150E-02 5.04555519452E-02 5.09626386725E-02 5.14748217062E-02 5.19921522650E-02 5.25146820824E-02 5.30424634117E-02 5.35755490315E-02 5.41139922509E-02 5.46578469146E-02 5.52071674086E-02 5.57620086653E-02 5.63224261693E-02 5.68884759629E-02 5.74602146515E-02 5.80376994094E-02 5.86209879856E-02 5.92101387095E-02 5.98052104967E-02 6.04062628546E-02 6.10133558893E-02 6.16265503103E-02 6.22459074378E-02 6.28714892078E-02 6.35033581792E-02 6.41415775393E-02 6.47862111106E-02 6.54373233570E-02 6.60949793903E-02 6.67592449766E-02 6.74301865430E-02 6.81078711843E-02 6.87923666694E-02 6.94837414486E-02 7.01820646598E-02 7.08874061359E-02 7.15998364117E-02 7.23194267309E-02 7.30462490530E-02 7.37803760608E-02 7.45218811678E-02 7.52708385249E-02 7.60273230287E-02 7.67914103281E-02 7.75631768325E-02 7.83426997192E-02 7.91300569412E-02 7.99253272349E-02 8.07285901278E-02 8.15399259471E-02 8.23594158269E-02 8.31871417169E-02 8.40231863904E-02 8.48676334526E-02 8.57205673488E-02 8.65820733732E-02 8.74522376771E-02 8.83311472777E-02 8.92188900665E-02 9.01155548188E-02 9.10212312016E-02 9.19360097834E-02 9.28599820427E-02 9.37932403777E-02 9.47358781149E-02 9.56879895188E-02 9.66496698014E-02 9.76210151315E-02 9.86021226445E-02 9.95930904520E-02 1.00594017651E-01 1.01605004336E-01 1.02626151607E-01 1.03657561578E-01 1.04699337391E-01 1.05751583225E-01 1.06814404306E-01 1.07887906916E-01 1.08972198407E-01 1.10067387209E-01 1.11173582841E-01 1.12290895924E-01 1.13419438190E-01 1.14559322494E-01 1.15710662826E-01 1.16873574321E-01 1.18048173271E-01 1.19234577136E-01 1.20432904558E-01 1.21643275372E-01 1.22865810614E-01 1.24100632539E-01 1.25347864632E-01 1.26607631615E-01 1.27880059467E-01 1.29165275431E-01 1.30463408031E-01 1.31774587080E-01 1.33098943697E-01 1.34436610320E-01 1.35787720716E-01 1.37152409997E-01 1.38530814634E-01 1.39923072467E-01 1.41329322724E-01 1.42749706032E-01 1.44184364429E-01 1.45633441382E-01 1.47097081801E-01 1.48575432051E-01 1.50068639967E-01 1.51576854873E-01 1.53100227591E-01 1.54638910459E-01 1.56193057346E-01 1.57762823670E-01 1.59348366408E-01 1.60949844115E-01 1.62567416940E-01 1.64201246643E-01 1.65851496607E-01 1.67518331859E-01 1.69201919084E-01 1.70902426642E-01 1.72620024585E-01 1.74354884674E-01 1.76107180397E-01 1.77877086984E-01 1.79664781429E-01 1.81470442502E-01 1.83294250769E-01 1.85136388615E-01 1.86997040254E-01 1.88876391753E-01 1.90774631048E-01 1.92691947966E-01 1.94628534239E-01 1.96584583527E-01 1.98560291438E-01 2.00555855543E-01 2.02571475401E-01 2.04607352575E-01 2.06663690655E-01 2.08740695277E-01 2.10838574141E-01 2.12957537039E-01 2.15097795868E-01 2.17259564656E-01 2.19443059582E-01 2.21648498996E-01 2.23876103445E-01 2.26126095691E-01 2.28398700734E-01 2.30694145838E-01 2.33012660550E-01 2.35354476721E-01 2.37719828536E-01 2.40108952532E-01 2.42522087623E-01 2.44959475125E-01 2.47421358779E-01 2.49907984775E-01 2.52419601778E-01 2.54956460951E-01 2.57518815983E-01 2.60106923111E-01 2.62721041148E-01 2.65361431508E-01 2.68028358232E-01 2.70722088016E-01 2.73442890234E-01 2.76191036968E-01 2.78966803037E-01 2.81770466019E-01 2.84602306281E-01 2.87462607012E-01 2.90351654243E-01 2.93269736881E-01 2.96217146738E-01 2.99194178556E-01 3.02201130041E-01 3.05238301891E-01 3.08305997825E-01 3.11404524616E-01 3.14534192119E-01 3.17695313304E-01 3.20888204285E-01 3.24113184353E-01 3.27370576010E-01 3.30660704997E-01 3.33983900331E-01 3.37340494332E-01 3.40730822665E-01 3.44155224363E-01 3.47614041871E-01 3.51107621072E-01 3.54636311329E-01 3.58200465512E-01 3.61800440040E-01 3.65436594913E-01 3.69109293751E-01 3.72818903825E-01 3.76565796101E-01 3.80350345270E-01 3.84172929790E-01 3.88033931924E-01 3.91933737774E-01 3.95872737325E-01 3.99851324479E-01 4.03869897099E-01 4.07928857045E-01 4.12028610217E-01 4.16169566593E-01 4.20352140272E-01 4.24576749516E-01 4.28843816789E-01 4.33153768801E-01 4.37507036550E-01 4.41904055368E-01 4.46345264960E-01 4.50831109450E-01 4.55362037427E-01 4.59938501986E-01 4.64560960780E-01 4.69229876056E-01 4.73945714712E-01 4.78708948333E-01 4.83520053249E-01 4.88379510573E-01 4.93287806254E-01 4.98245431128E-01 5.03252880959E-01 5.08310656499E-01 5.13419263527E-01 5.18579212910E-01 5.23791020646E-01 5.29055207921E-01 5.34372301157E-01 5.39742832069E-01 5.45167337714E-01 5.50646360546E-01 5.56180448474E-01 5.61770154910E-01 5.67416038830E-01 5.73118664827E-01 5.78878603167E-01 5.84696429850E-01 5.90572726664E-01 5.96508081242E-01 6.02503087126E-01 6.08558343820E-01 6.14674456856E-01 6.20852037850E-01 6.27091704565E-01 6.33394080973E-01 6.39759797317E-01 6.46189490173E-01 6.52683802518E-01 6.59243383786E-01 6.65868889942E-01 6.72560983542E-01 6.79320333801E-01 6.86147616659E-01 6.93043514851E-01 7.00008717972E-01 7.07043922548E-01 7.14149832106E-01 7.21327157241E-01 7.28576615694E-01 7.35898932415E-01 7.43294839643E-01 7.50765076974E-01 7.58310391439E-01 7.65931537575E-01 7.73629277502E-01 7.81404381002E-01 7.89257625592E-01 7.97189796601E-01 8.05201687255E-01 8.13294098748E-01 8.21467840329E-01 8.29723729379E-01 8.38062591493E-01 8.46485260564E-01 8.54992578867E-01 8.63585397141E-01 8.72264574673E-01 8.81030979391E-01 8.89885487940E-01 8.98828985779E-01 9.07862367266E-01 9.16986535747E-01 9.26202403645E-01 9.35510892555E-01 9.44912933335E-01 9.54409466195E-01 9.64001440797E-01 9.73689816346E-01 9.83475561689E-01 9.93359655407E-01 1.00334308592E+00 1.01342685157E+00 1.02361196076E+00 1.03389943200E+00 1.04429029404E+00 1.05478558597E+00 1.06538635735E+00 1.07609366825E+00 1.08690858942E+00 1.09783220235E+00 1.10886559941E+00 1.12000988396E+00 1.13126617043E+00 1.14263558446E+00 1.15411926300E+00 1.16571835442E+00 1.17743401866E+00 1.18926742728E+00 1.20121976363E+00 1.21329222296E+00 1.22548601252E+00 1.23780235171E+00 1.25024247216E+00 1.26280761790E+00 1.27549904545E+00 1.28831802398E+00 1.30126583538E+00 1.31434377444E+00 1.32755314898E+00 1.34089527994E+00 1.35437150155E+00 1.36798316143E+00 1.38173162077E+00 1.39561825443E+00 1.40964445107E+00 1.42381161333E+00 1.43812115794E+00 1.45257451587E+00 1.46717313245E+00 1.48191846758E+00 1.49681199578E+00 1.51185520643E+00 1.52704960386E+00 1.54239670753E+00 1.55789805215E+00 1.57355518787E+00 1.58936968043E+00 1.60534311127E+00 1.62147707777E+00 1.63777319332E+00 1.65423308756E+00 1.67085840649E+00 1.68765081265E+00 1.70461198530E+00 1.72174362056E+00 1.73904743162E+00 1.75652514888E+00 1.77417852011E+00 1.79200931068E+00 1.81001930367E+00 1.82821030009E+00 1.84658411907E+00 1.86514259801E+00 1.88388759275E+00 1.90282097783E+00 1.92194464659E+00 1.94126051141E+00 1.96077050390E+00 1.98047657508E+00 2.00038069557E+00 2.02048485579E+00 2.04079106618E+00 2.06130135738E+00 2.08201778043E+00 2.10294240700E+00 2.12407732956E+00 2.14542466162E+00 2.16698653793E+00 2.18876511471E+00 2.21076256982E+00 2.23298110303E+00 2.25542293621E+00 2.27809031357E+00 2.30098550185E+00 2.32411079060E+00 2.34746849237E+00 2.37106094294E+00 2.39489050159E+00 2.41895955128E+00 2.44327049894E+00 2.46782577568E+00 2.49262783706E+00 2.51767916330E+00 2.54298225956E+00 2.56853965616E+00 2.59435390887E+00 2.62042759913E+00 2.64676333433E+00 2.67336374807E+00 2.70023150042E+00 2.72736927816E+00 2.75477979511E+00 2.78246579233E+00 2.81043003845E+00 2.83867532991E+00 2.86720449128E+00 2.89602037548E+00 2.92512586413E+00 2.95452386781E+00 2.98421732633E+00 3.01420920908E+00 3.04450251525E+00 3.07510027422E+00 3.10600554578E+00 3.13722142048E+00 3.16875101993E+00 3.20059749713E+00 3.23276403675E+00 3.26525385546E+00 3.29807020228E+00 3.33121635887E+00 3.36469563987E+00 3.39851139324E+00 3.43266700058E+00 3.46716587748E+00 3.50201147385E+00 3.53720727430E+00 3.57275679841E+00 3.60866360119E+00 3.64493127333E+00 3.68156344164E+00 3.71856376936E+00 3.75593595655E+00 3.79368374047E+00 3.83181089593E+00 3.87032123567E+00 3.90921861076E+00 3.94850691096E+00 3.98819006515E+00 4.02827204167E+00 4.06875684875E+00 4.10964853490E+00 4.15095118934E+00 4.19266894235E+00 4.23480596575E+00 4.27736647327E+00 4.32035472101E+00 4.36377500782E+00 4.40763167576E+00 4.45192911055E+00 4.49667174196E+00 4.54186404429E+00 4.58751053681E+00 4.63361578420E+00 4.68018439704E+00 4.72722103221E+00 4.77473039343E+00 4.82271723167E+00 4.87118634564E+00 4.92014258232E+00 4.96959083735E+00 5.01953605560E+00 5.06998323164E+00 5.12093741024E+00 5.17240368684E+00 5.22438720812E+00 5.27689317247E+00 5.32992683054E+00 5.38349348573E+00 5.43759849476E+00 5.49224726817E+00 5.54744527088E+00 5.60319802274E+00 5.65951109908E+00 5.71639013124E+00 5.77384080718E+00 5.83186887201E+00 5.89048012858E+00 5.94968043808E+00 6.00947572058E+00 6.06987195566E+00 6.13087518300E+00 6.19249150296E+00 6.25472707723E+00 6.31758812942E+00 6.38108094569E+00 6.44521187537E+00 6.50998733161E+00 6.57541379201E+00 6.64149779927E+00 6.70824596184E+00 6.77566495460E+00 6.84376151950E+00 6.91254246625E+00 6.98201467302E+00 7.05218508706E+00 7.12306072550E+00 7.19464867594E+00 7.26695609724E+00 7.33999022021E+00 7.41375834832E+00 7.48826785845E+00 7.56352620159E+00 7.63954090367E+00 7.71631956619E+00 7.79386986711E+00 7.87219956151E+00 7.95131648242E+00 8.03122854161E+00 8.11194373034E+00 8.19347012021E+00 8.27581586392E+00 8.35898919611E+00 8.44299843418E+00 8.52785197914E+00 8.61355831640E+00 8.70012601666E+00 8.78756373678E+00 8.87588022060E+00 8.96508429984E+00 9.05518489498E+00 9.14619101615E+00 9.23811176404E+00 9.33095633082E+00 9.42473400099E+00 9.51945415243E+00 9.61512625721E+00 9.71175988263E+00 9.80936469213E+00 9.90795044628E+00 1.00075270037E+01 1.01081043222E+01 1.02096924596E+01 1.03123015747E+01 1.04159419285E+01 1.05206238852E+01 1.06263579131E+01 1.07331545856E+01 1.08410245825E+01 1.09499786910E+01 1.10600278064E+01 1.11711829338E+01 1.12834551888E+01 1.13968557987E+01 1.15113961037E+01 1.16270875580E+01 1.17439417306E+01 1.18619703072E+01 1.19811850908E+01 1.21015980028E+01 1.22232210847E+01 1.23460664989E+01 1.24701465301E+01 1.25954735863E+01 1.27220602003E+01 1.28499190310E+01 1.29790628643E+01 1.31095046146E+01 1.32412573264E+01 1.33743341749E+01 1.35087484680E+01 1.36445136472E+01 1.37816432892E+01 1.39201511069E+01 1.40600509514E+01 1.42013568127E+01 1.43440828214E+01 1.44882432505E+01 1.46338525159E+01 1.47809251788E+01 1.49294759465E+01 1.50795196742E+01 1.52310713665E+01 1.53841461786E+01 1.55387594181E+01 1.56949265466E+01 1.58526631807E+01 1.60119850944E+01 1.61729082200E+01 1.63354486498E+01 1.64996226381E+01 1.66654466025E+01 1.68329371254E+01 1.70021109560E+01 1.71729850119E+01 1.73455763806E+01 1.75199023214E+01 1.76959802670E+01 1.78738278254E+01 1.80534627815E+01 1.82349030989E+01 1.84181669218E+01 1.86032725768E+01 1.87902385745E+01 1.89790836117E+01 1.91698265731E+01 1.93624865331E+01 1.95570827580E+01 1.97536347073E+01 1.99521620367E+01 2.01526845988E+01 2.03552224462E+01 2.05597958329E+01 2.07664252162E+01 2.09751312594E+01 2.11859348331E+01 2.13988570180E+01 2.16139191065E+01 2.18311426049E+01 2.20505492357E+01 2.22721609398E+01 2.24959998786E+01 2.27220884361E+01 2.29504492213E+01 2.31811050707E+01 2.34140790498E+01 2.36493944564E+01 2.38870748221E+01 2.41271439152E+01 2.43696257429E+01 2.46145445533E+01 2.48619248388E+01 2.51117913375E+01 2.53641690362E+01 2.56190831730E+01 2.58765592394E+01 2.61366229833E+01 2.63993004113E+01 2.66646177914E+01 2.69326016554E+01 2.72032788020E+01 2.74766762992E+01 2.77528214870E+01 2.80317419800E+01 2.83134656705E+01 2.85980207312E+01 2.88854356179E+01 2.91757390721E+01 2.94689601246E+01 2.97651280977E+01 3.00642726083E+01 3.03664235713E+01 3.06716112019E+01 3.09798660193E+01 3.12912188490E+01 3.16057008267E+01 3.19233434008E+01 3.22441783359E+01 3.25682377156E+01 3.28955539463E+01 3.32261597598E+01 3.35600882170E+01 3.38973727109E+01 3.42380469704E+01 3.45821450630E+01 3.49297013991E+01 3.52807507343E+01 3.56353281741E+01 3.59934691763E+01 3.63552095555E+01 3.67205854859E+01 3.70896335054E+01 3.74623905193E+01 3.78388938034E+01 3.82191810084E+01 3.86032901633E+01 3.89912596794E+01 3.93831283540E+01 3.97789353743E+01 4.01787203212E+01 4.05825231737E+01 4.09903843123E+01 4.14023445235E+01 4.18184450036E+01 4.22387273631E+01 4.26632336305E+01 4.30920062569E+01 4.35250881197E+01 4.39625225277E+01 4.44043532245E+01 4.48506243937E+01 4.53013806627E+01 4.57566671075E+01 4.62165292571E+01 4.66810130982E+01 4.71501650795E+01 4.76240321166E+01 4.81026615966E+01 4.85861013828E+01 4.90743998197E+01 4.95676057375E+01 5.00657684571E+01 5.05689377953E+01 5.10771640694E+01 5.15904981025E+01 5.21089912284E+01 5.26326952968E+01 5.31616626786E+01 5.36959462710E+01 5.42355995028E+01 5.47806763397E+01 5.53312312899E+01 5.58873194093E+01 5.64489963073E+01 5.70163181519E+01 5.75893416758E+01 5.81681241819E+01 5.87527235489E+01 5.93431982373E+01 5.99396072949E+01 2.02640436790E-07 2.04677007038E-07 2.06734045157E-07 2.08811756852E-07 2.10910349898E-07 2.13030034154E-07 2.15171021591E-07 2.17333526310E-07 2.19517764562E-07 2.21723954774E-07 2.23952317566E-07 2.26203075777E-07 2.28476454483E-07 2.30772681026E-07 2.33091985028E-07 2.35434598424E-07 2.37800755475E-07 2.40190692801E-07 2.42604649395E-07 2.45042866657E-07 2.47505588410E-07 2.49993060928E-07 2.52505532960E-07 2.55043255756E-07 2.57606483090E-07 2.60195471287E-07 2.62810479248E-07 2.65451768476E-07 2.68119603102E-07 2.70814249912E-07 2.73535978372E-07 2.76285060658E-07 2.79061771681E-07 2.81866389113E-07 2.84699193419E-07 2.87560467881E-07 2.90450498630E-07 2.93369574671E-07 2.96317987914E-07 2.99296033203E-07 3.02304008344E-07 3.05342214138E-07 3.08410954408E-07 3.11510536030E-07 3.14641268966E-07 3.17803466291E-07 3.20997444227E-07 3.24223522175E-07 3.27482022745E-07 3.30773271791E-07 3.34097598439E-07 3.37455335126E-07 3.40846817628E-07 3.44272385095E-07 3.47732380088E-07 3.51227148608E-07 3.54757040136E-07 3.58322407664E-07 3.61923607731E-07 3.65561000460E-07 3.69234949594E-07 3.72945822531E-07 3.76693990361E-07 3.80479827903E-07 3.84303713746E-07 3.88166030280E-07 3.92067163741E-07 3.96007504245E-07 3.99987445829E-07 4.04007386491E-07 4.08067728229E-07 4.12168877079E-07 4.16311243161E-07 4.20495240713E-07 4.24721288141E-07 4.28989808051E-07 4.33301227299E-07 4.37655977031E-07 4.42054492726E-07 4.46497214238E-07 4.50984585843E-07 4.55517056284E-07 4.60095078809E-07 4.64719111226E-07 4.69389615941E-07 4.74107060008E-07 4.78871915177E-07 4.83684657937E-07 4.88545769565E-07 4.93455736177E-07 4.98415048775E-07 5.03424203292E-07 5.08483700649E-07 5.13594046800E-07 5.18755752784E-07 5.23969334776E-07 5.29235314137E-07 5.34554217471E-07 5.39926576672E-07 5.45352928981E-07 5.50833817037E-07 5.56369788934E-07 5.61961398273E-07 5.67609204221E-07 5.73313771562E-07 5.79075670757E-07 5.84895478003E-07 5.90773775284E-07 5.96711150434E-07 6.02708197197E-07 6.08765515282E-07 6.14883710426E-07 6.21063394453E-07 6.27305185337E-07 6.33609707262E-07 6.39977590686E-07 6.46409472403E-07 6.52905995605E-07 6.59467809951E-07 6.66095571628E-07 6.72789943417E-07 6.79551594761E-07 6.86381201830E-07 6.93279447592E-07 7.00247021877E-07 7.07284621447E-07 7.14392950068E-07 7.21572718580E-07 7.28824644965E-07 7.36149454422E-07 7.43547879438E-07 7.51020659861E-07 7.58568542977E-07 7.66192283578E-07 7.73892644047E-07 7.81670394425E-07 7.89526312494E-07 7.97461183852E-07 8.05475801992E-07 8.13570968385E-07 8.21747492552E-07 8.30006192153E-07 8.38347893065E-07 8.46773429465E-07 8.55283643913E-07 8.63879387439E-07 8.72561519623E-07 8.81330908687E-07 8.90188431576E-07 8.99134974049E-07 9.08171430770E-07 9.17298705390E-07 9.26517710645E-07 9.35829368444E-07 9.45234609959E-07 9.54734375723E-07 9.64329615720E-07 9.74021289482E-07 9.83810366185E-07 9.93697824744E-07 1.00368465391E-06 1.01377185239E-06 1.02396042889E-06 1.03425140229E-06 1.04464580169E-06 1.05514466654E-06 1.06574904673E-06 1.07646000272E-06 1.08727860561E-06 1.09820593726E-06 1.10924309042E-06 1.12039116882E-06 1.13165128727E-06 1.14302457178E-06 1.15451215971E-06 1.16611519982E-06 1.17783485242E-06 1.18967228948E-06 1.20162869476E-06 1.21370526392E-06 1.22590320461E-06 1.23822373665E-06 1.25066809209E-06 1.26323751538E-06 1.27593326348E-06 1.28875660596E-06 1.30170882519E-06 1.31479121637E-06 1.32800508778E-06 1.34135176080E-06 1.35483257011E-06 1.36844886382E-06 1.38220200354E-06 1.39609336462E-06 1.41012433620E-06 1.42429632139E-06 1.43861073740E-06 1.45306901568E-06 1.46767260207E-06 1.48242295695E-06 1.49732155535E-06 1.51236988716E-06 1.52756945722E-06 1.54292178550E-06 1.55842840724E-06 1.57409087312E-06 1.58991074940E-06 1.60588961808E-06 1.62202907706E-06 1.63833074030E-06 1.65479623798E-06 1.67142721667E-06 1.68822533946E-06 1.70519228620E-06 1.72232975359E-06 1.73963945538E-06 1.75712312258E-06 1.77478250355E-06 1.79261936424E-06 1.81063548837E-06 1.82883267756E-06 1.84721275154E-06 1.86577754833E-06 1.88452892443E-06 1.90346875500E-06 1.92259893403E-06 1.94192137455E-06 1.96143800883E-06 1.98115078854E-06 2.00106168499E-06 2.02117268927E-06 2.04148581250E-06 2.06200308601E-06 2.08272656156E-06 2.10365831149E-06 2.12480042901E-06 2.14615502834E-06 2.16772424497E-06 2.18951023582E-06 2.21151517952E-06 2.23374127659E-06 2.25619074964E-06 2.27886584365E-06 2.30176882614E-06 2.32490198743E-06 2.34826764086E-06 2.37186812301E-06 2.39570579394E-06 2.41978303746E-06 2.44410226129E-06 2.46866589739E-06 2.49347640213E-06 2.51853625659E-06 2.54384796678E-06 2.56941406388E-06 2.59523710453E-06 2.62131967106E-06 2.64766437173E-06 2.67427384105E-06 2.70115073998E-06 2.72829775624E-06 2.75571760454E-06 2.78341302691E-06 2.81138679289E-06 2.83964169990E-06 2.86818057344E-06 2.89700626743E-06 2.92612166446E-06 2.95552967610E-06 2.98523324317E-06 3.01523533604E-06 3.04553895497E-06 3.07614713033E-06 3.10706292296E-06 3.13828942448E-06 3.16982975756E-06 3.20168707625E-06 3.23386456631E-06 3.26636544553E-06 3.29919296402E-06 3.33235040455E-06 3.36584108290E-06 3.39966834816E-06 3.43383558309E-06 3.46834620444E-06 3.50320366330E-06 3.53841144545E-06 3.57397307169E-06 3.60989209821E-06 3.64617211695E-06 3.68281675595E-06 3.71982967968E-06 3.75721458949E-06 3.79497522389E-06 3.83311535897E-06 3.87163880878E-06 3.91054942569E-06 3.94985110081E-06 3.98954776433E-06 4.02964338596E-06 4.07014197527E-06 4.11104758218E-06 4.15236429727E-06 4.19409625226E-06 4.23624762036E-06 4.27882261675E-06 4.32182549897E-06 4.36526056735E-06 4.40913216542E-06 4.45344468037E-06 4.49820254351E-06 4.54341023065E-06 4.58907226260E-06 4.63519320560E-06 4.68177767179E-06 4.72883031964E-06 4.77635585446E-06 4.82435902886E-06 4.87284464317E-06 4.92181754601E-06 4.97128263470E-06 5.02124485580E-06 5.07170920558E-06 5.12268073049E-06 5.17416452775E-06 5.22616574578E-06 5.27868958473E-06 5.33174129705E-06 5.38532618793E-06 5.43944961592E-06 5.49411699341E-06 5.54933378717E-06 5.60510551894E-06 5.66143776593E-06 5.71833616141E-06 5.77580639528E-06 5.83385421460E-06 5.89248542420E-06 5.95170588725E-06 6.01152152586E-06 6.07193832162E-06 6.13296231628E-06 6.19459961228E-06 6.25685637340E-06 6.31973882537E-06 6.38325325650E-06 6.44740601827E-06 6.51220352601E-06 6.57765225953E-06 6.64375876376E-06 6.71052964940E-06 6.77797159360E-06 6.84609134061E-06 6.91489570246E-06 6.98439155964E-06 7.05458586179E-06 7.12548562841E-06 7.19709794953E-06 7.26942998645E-06 7.34248897242E-06 7.41628221341E-06 7.49081708879E-06 7.56610105213E-06 7.64214163188E-06 7.71894643216E-06 7.79652313352E-06 7.87487949369E-06 7.95402334837E-06 8.03396261201E-06 8.11470527861E-06 8.19625942250E-06 8.27863319916E-06 8.36183484604E-06 8.44587268337E-06 8.53075511501E-06 8.61649062927E-06 8.70308779977E-06 8.79055528631E-06 8.87890183570E-06 8.96813628267E-06 9.05826755075E-06 9.14930465313E-06 9.24125669359E-06 9.33413286743E-06 9.42794246234E-06 9.52269485934E-06 9.61839953377E-06 9.71506605617E-06 9.81270409327E-06 9.91132340895E-06 1.00109338652E-05 1.01115454232E-05 1.02131681442E-05 1.03158121905E-05 1.04194878267E-05 1.05242054203E-05 1.06299754432E-05 1.07368084725E-05 1.08447151916E-05 1.09537063912E-05 1.10637929706E-05 1.11749859386E-05 1.12872964144E-05 1.14007356293E-05 1.15153149273E-05 1.16310457663E-05 1.17479397196E-05 1.18660084767E-05 1.19852638445E-05 1.21057177487E-05 1.22273822348E-05 1.23502694692E-05 1.24743917409E-05 1.25997614622E-05 1.27263911701E-05 1.28542935277E-05 1.29834813254E-05 1.31139674821E-05 1.32457650464E-05 1.33788871983E-05 1.35133472500E-05 1.36491586478E-05 1.37863349727E-05 1.39248899427E-05 1.40648374133E-05 1.42061913793E-05 1.43489659763E-05 1.44931754818E-05 1.46388343170E-05 1.47859570478E-05 1.49345583866E-05 1.50846531937E-05 1.52362564787E-05 1.53893834021E-05 1.55440492766E-05 1.57002695690E-05 1.58580599014E-05 1.60174360531E-05 1.61784139617E-05 1.63410097251E-05 1.65052396032E-05 1.66711200190E-05 1.68386675606E-05 1.70078989831E-05 1.71788312096E-05 1.73514813336E-05 1.75258666201E-05 1.77020045080E-05 1.78799126110E-05 1.80596087202E-05 1.82411108053E-05 1.84244370167E-05 1.86096056872E-05 1.87966353337E-05 1.89855446594E-05 1.91763525554E-05 1.93690781027E-05 1.95637405739E-05 1.97603594354E-05 1.99589543494E-05 2.01595451754E-05 2.03621519728E-05 2.05667950023E-05 2.07734947285E-05 2.09822718214E-05 2.11931471590E-05 2.14061418290E-05 2.16212771310E-05 2.18385745787E-05 2.20580559021E-05 2.22797430495E-05 2.25036581898E-05 2.27298237146E-05 2.29582622407E-05 2.31889966122E-05 2.34220499026E-05 2.36574454176E-05 2.38952066968E-05 2.41353575167E-05 2.43779218923E-05 2.46229240805E-05 2.48703885816E-05 2.51203401423E-05 2.53728037580E-05 2.56278046751E-05 2.58853683941E-05 2.61455206715E-05 2.64082875228E-05 2.66736952248E-05 2.69417703185E-05 2.72125396118E-05 2.74860301817E-05 2.77622693775E-05 2.80412848233E-05 2.83231044211E-05 2.86077563528E-05 2.88952690841E-05 2.91856713663E-05 2.94789922400E-05 2.97752610375E-05 3.00745073859E-05 3.03767612101E-05 3.06820527358E-05 3.09904124922E-05 3.13018713158E-05 3.16164603526E-05 3.19342110617E-05 3.22551552186E-05 3.25793249179E-05 3.29067525768E-05 3.32374709384E-05 3.35715130747E-05 3.39089123904E-05 3.42497026256E-05 3.45939178596E-05 3.49415925141E-05 3.52927613571E-05 3.56474595056E-05 3.60057224298E-05 3.63675859562E-05 3.67330862715E-05 3.71022599260E-05 3.74751438375E-05 3.78517752945E-05 3.82321919607E-05 3.86164318779E-05 3.90045334704E-05 3.93965355489E-05 3.97924773137E-05 4.01923983594E-05 4.05963386784E-05 4.10043386651E-05 4.14164391199E-05 4.18326812531E-05 4.22531066892E-05 4.26777574713E-05 4.31066760646E-05 4.35399053615E-05 4.39774886852E-05 4.44194697945E-05 4.48658928877E-05 4.53168026076E-05 4.57722440455E-05 4.62322627460E-05 4.66969047113E-05 4.71662164059E-05 4.76402447616E-05 4.81190371813E-05 4.86026415449E-05 4.90911062132E-05 4.95844800330E-05 5.00828123421E-05 5.05861529742E-05 5.10945522637E-05 5.16080610511E-05 5.21267306875E-05 5.26506130405E-05 5.31797604986E-05 5.37142259771E-05 5.42540629230E-05 5.47993253204E-05 5.53500676959E-05 5.59063451244E-05 5.64682132340E-05 5.70357282119E-05 5.76089468102E-05 5.81879263512E-05 5.87727247333E-05 5.93634004369E-05 5.99600125299E-05 6.05626206742E-05 6.11712851311E-05 6.17860667674E-05 6.24070270619E-05 6.30342281111E-05 6.36677326356E-05 6.43076039865E-05 6.49539061513E-05 6.56067037609E-05 6.62660620955E-05 6.69320470916E-05 6.76047253482E-05 6.82841641336E-05 6.89704313923E-05 6.96635957517E-05 7.03637265287E-05 7.10708937370E-05 7.17851680938E-05 7.25066210273E-05 7.32353246834E-05 7.39713519329E-05 7.47147763793E-05 7.54656723655E-05 7.62241149819E-05 7.69901800733E-05 7.77639442469E-05 7.85454848797E-05 7.93348801265E-05 8.01322089274E-05 8.09375510159E-05 8.17509869270E-05 8.25725980049E-05 8.34024664114E-05 8.42406751341E-05 8.50873079945E-05 8.59424496566E-05 8.68061856352E-05 8.76786023048E-05 8.85597869077E-05 8.94498275630E-05 9.03488132757E-05 9.12568339450E-05 9.21739803737E-05 9.31003442773E-05 9.40360182928E-05 9.49810959886E-05 9.59356718731E-05 9.68998414048E-05 9.78737010013E-05 9.88573480495E-05 9.98508809149E-05 1.00854398952E-04 1.01868002512E-04 1.02891792958E-04 1.03925872669E-04 1.04970345054E-04 1.06025314560E-04 1.07090886687E-04 1.08167167991E-04 1.09254266102E-04 1.10352289731E-04 1.11461348681E-04 1.12581553859E-04 1.13713017286E-04 1.14855852109E-04 1.16010172614E-04 1.17176094232E-04 1.18353733557E-04 1.19543208354E-04 1.20744637572E-04 1.21958141354E-04 1.23183841052E-04 1.24421859237E-04 1.25672319711E-04 1.26935347522E-04 1.28211068973E-04 1.29499611639E-04 1.30801104373E-04 1.32115677327E-04 1.33443461958E-04 1.34784591047E-04 1.36139198708E-04 1.37507420401E-04 1.38889392952E-04 1.40285254557E-04 1.41695144805E-04 1.43119204685E-04 1.44557576605E-04 1.46010404403E-04 1.47477833364E-04 1.48960010230E-04 1.50457083222E-04 1.51969202047E-04 1.53496517919E-04 1.55039183571E-04 1.56597353271E-04 1.58171182836E-04 1.59760829652E-04 1.61366452683E-04 1.62988212494E-04 1.64626271263E-04 1.66280792795E-04 1.67951942546E-04 1.69639887630E-04 1.71344796845E-04 1.73066840683E-04 1.74806191348E-04 1.76563022779E-04 1.78337510658E-04 1.80129832438E-04 1.81940167351E-04 1.83768696432E-04 1.85615602536E-04 1.87481070355E-04 1.89365286437E-04 1.91268439206E-04 1.93190718978E-04 1.95132317982E-04 1.97093430382E-04 1.99074252288E-04 2.01074981786E-04 2.03095818949E-04 2.05136965864E-04 2.07198626646E-04 2.09281007463E-04 2.11384316556E-04 2.13508764256E-04 2.15654563011E-04 2.17821927402E-04 2.20011074166E-04 2.22222222222E-04 2.24455592685E-04 2.26711408895E-04 2.28989896434E-04 2.31291283154E-04 2.33615799195E-04 2.35963677010E-04 2.38335151390E-04 2.40730459483E-04 2.43149840823E-04 2.45593537350E-04 2.48061793435E-04 2.50554855907E-04 2.53072974072E-04 2.55616399746E-04 2.58185387273E-04 2.60780193554E-04 2.63401078071E-04 2.66048302916E-04 2.68722132813E-04 2.71422835147E-04 2.74150679990E-04 2.76905940131E-04 2.79688891095E-04 2.82499811183E-04 2.85338981486E-04 2.88206685926E-04 2.91103211274E-04 2.94028847186E-04 2.96983886228E-04 2.99968623906E-04 3.02983358696E-04 3.06028392075E-04 3.09104028548E-04 3.12210575681E-04 3.15348344132E-04 3.18517647680E-04 3.21718803259E-04 3.24952130985E-04 3.28217954196E-04 3.31516599476E-04 3.34848396692E-04 3.38213679026E-04 3.41612783011E-04 3.45046048558E-04 3.48513818998E-04 3.52016441110E-04 3.55554265159E-04 3.59127644932E-04 3.62736937768E-04 3.66382504600E-04 3.70064709988E-04 3.73783922155E-04 3.77540513026E-04 3.81334858263E-04 3.85167337304E-04 3.89038333399E-04 3.92948233652E-04 3.96897429056E-04 4.00886314533E-04 4.04915288976E-04 4.08984755285E-04 4.13095120410E-04 4.17246795392E-04 4.21440195401E-04 4.25675739781E-04 4.29953852089E-04 4.34274960141E-04 4.38639496051E-04 4.43047896276E-04 4.47500601660E-04 4.51998057477E-04 4.56540713476E-04 4.61129023928E-04 4.65763447665E-04 4.70444448136E-04 4.75172493444E-04 4.79948056397E-04 4.84771614555E-04 4.89643650279E-04 4.94564650776E-04 4.99535108150E-04 5.04555519452E-04 5.09626386725E-04 5.14748217062E-04 5.19921522650E-04 5.25146820824E-04 5.30424634117E-04 5.35755490315E-04 5.41139922509E-04 5.46578469146E-04 5.52071674086E-04 5.57620086653E-04 5.63224261693E-04 5.68884759629E-04 5.74602146515E-04 5.80376994094E-04 5.86209879856E-04 5.92101387095E-04 5.98052104967E-04 6.04062628546E-04 6.10133558893E-04 6.16265503103E-04 6.22459074378E-04 6.28714892078E-04 6.35033581792E-04 6.41415775393E-04 6.47862111106E-04 6.54373233570E-04 6.60949793903E-04 6.67592449766E-04 6.74301865430E-04 6.81078711843E-04 6.87923666694E-04 6.94837414486E-04 7.01820646598E-04 7.08874061359E-04 7.15998364117E-04 7.23194267309E-04 7.30462490530E-04 7.37803760608E-04 7.45218811678E-04 7.52708385249E-04 7.60273230287E-04 7.67914103281E-04 7.75631768325E-04 7.83426997192E-04 7.91300569412E-04 7.99253272349E-04 8.07285901278E-04 8.15399259471E-04 8.23594158269E-04 8.31871417169E-04 8.40231863904E-04 8.48676334526E-04 8.57205673488E-04 8.65820733732E-04 8.74522376771E-04 8.83311472777E-04 8.92188900665E-04 9.01155548188E-04 9.10212312016E-04 9.19360097834E-04 9.28599820427E-04 9.37932403777E-04 9.47358781149E-04 9.56879895188E-04 9.66496698014E-04 9.76210151315E-04 9.86021226445E-04 9.95930904520E-04 1.00594017651E-03 1.01605004336E-03 1.02626151607E-03 1.03657561578E-03 1.04699337391E-03 1.05751583225E-03 1.06814404306E-03 1.07887906916E-03 1.08972198407E-03 1.10067387209E-03 1.11173582841E-03 1.12290895924E-03 1.13419438190E-03 1.14559322494E-03 1.15710662826E-03 1.16873574321E-03 1.18048173271E-03 1.19234577136E-03 1.20432904558E-03 1.21643275372E-03 1.22865810614E-03 1.24100632539E-03 1.25347864632E-03 1.26607631615E-03 1.27880059467E-03 1.29165275431E-03 1.30463408031E-03 1.31774587080E-03 1.33098943697E-03 1.34436610320E-03 1.35787720716E-03 1.37152409997E-03 1.38530814634E-03 1.39923072467E-03 1.41329322724E-03 1.42749706032E-03 1.44184364429E-03 1.45633441382E-03 1.47097081801E-03 1.48575432051E-03 1.50068639967E-03 1.51576854873E-03 1.53100227591E-03 1.54638910459E-03 1.56193057346E-03 1.57762823670E-03 1.59348366408E-03 1.60949844115E-03 1.62567416940E-03 1.64201246643E-03 1.65851496607E-03 1.67518331859E-03 1.69201919084E-03 1.70902426642E-03 1.72620024585E-03 1.74354884674E-03 1.76107180397E-03 1.77877086984E-03 1.79664781429E-03 1.81470442502E-03 1.83294250769E-03 1.85136388615E-03 1.86997040254E-03 1.88876391753E-03 1.90774631048E-03 1.92691947966E-03 1.94628534239E-03 1.96584583527E-03 1.98560291438E-03 2.00555855543E-03 2.02571475401E-03 2.04607352575E-03 2.06663690655E-03 2.08740695277E-03 2.10838574141E-03 2.12957537039E-03 2.15097795868E-03 2.17259564656E-03 2.19443059582E-03 2.21648498996E-03 2.23876103445E-03 2.26126095691E-03 2.28398700734E-03 2.30694145838E-03 2.33012660550E-03 2.35354476721E-03 2.37719828536E-03 2.40108952532E-03 2.42522087623E-03 2.44959475125E-03 2.47421358779E-03 2.49907984775E-03 2.52419601778E-03 2.54956460951E-03 2.57518815983E-03 2.60106923111E-03 2.62721041148E-03 2.65361431508E-03 2.68028358232E-03 2.70722088016E-03 2.73442890234E-03 2.76191036968E-03 2.78966803037E-03 2.81770466019E-03 2.84602306281E-03 2.87462607012E-03 2.90351654243E-03 2.93269736881E-03 2.96217146738E-03 2.99194178556E-03 3.02201130041E-03 3.05238301891E-03 3.08305997825E-03 3.11404524616E-03 3.14534192119E-03 3.17695313304E-03 3.20888204285E-03 3.24113184353E-03 3.27370576010E-03 3.30660704997E-03 3.33983900331E-03 3.37340494332E-03 3.40730822665E-03 3.44155224363E-03 3.47614041871E-03 3.51107621072E-03 3.54636311329E-03 3.58200465512E-03 3.61800440040E-03 3.65436594913E-03 3.69109293751E-03 3.72818903825E-03 3.76565796101E-03 3.80350345270E-03 3.84172929790E-03 3.88033931924E-03 3.91933737774E-03 3.95872737325E-03 3.99851324479E-03 4.03869897099E-03 4.07928857045E-03 4.12028610217E-03 4.16169566593E-03 4.20352140272E-03 4.24576749516E-03 4.28843816789E-03 4.33153768801E-03 4.37507036550E-03 4.41904055368E-03 4.46345264960E-03 4.50831109450E-03 4.55362037427E-03 4.59938501986E-03 4.64560960780E-03 4.69229876056E-03 4.73945714712E-03 4.78708948333E-03 4.83520053249E-03 4.88379510573E-03 4.93287806254E-03 4.98245431128E-03 5.03252880959E-03 5.08310656499E-03 5.13419263527E-03 5.18579212910E-03 5.23791020646E-03 5.29055207921E-03 5.34372301157E-03 5.39742832069E-03 5.45167337714E-03 5.50646360546E-03 5.56180448474E-03 5.61770154910E-03 5.67416038830E-03 5.73118664827E-03 5.78878603167E-03 5.84696429850E-03 5.90572726664E-03 5.96508081242E-03 6.02503087126E-03 6.08558343820E-03 6.14674456856E-03 6.20852037850E-03 6.27091704565E-03 6.33394080973E-03 6.39759797317E-03 6.46189490173E-03 6.52683802518E-03 6.59243383786E-03 6.65868889942E-03 6.72560983542E-03 6.79320333801E-03 6.86147616659E-03 6.93043514851E-03 7.00008717972E-03 7.07043922548E-03 7.14149832106E-03 7.21327157241E-03 7.28576615694E-03 7.35898932415E-03 7.43294839643E-03 7.50765076974E-03 7.58310391439E-03 7.65931537575E-03 7.73629277502E-03 7.81404381002E-03 7.89257625592E-03 7.97189796601E-03 8.05201687255E-03 8.13294098748E-03 8.21467840329E-03 8.29723729379E-03 8.38062591493E-03 8.46485260564E-03 8.54992578867E-03 8.63585397141E-03 8.72264574673E-03 8.81030979391E-03 8.89885487940E-03 8.98828985779E-03 9.07862367266E-03 9.16986535747E-03 9.26202403645E-03 9.35510892555E-03 9.44912933335E-03 9.54409466195E-03 9.64001440797E-03 9.73689816346E-03 9.83475561689E-03 9.93359655407E-03 1.00334308592E-02 1.01342685157E-02 1.02361196076E-02 1.03389943200E-02 1.04429029404E-02 1.05478558597E-02 1.06538635735E-02 1.07609366825E-02 1.08690858942E-02 1.09783220235E-02 1.10886559941E-02 1.12000988396E-02 1.13126617043E-02 1.14263558446E-02 1.15411926300E-02 1.16571835442E-02 1.17743401866E-02 1.18926742728E-02 1.20121976363E-02 1.21329222296E-02 1.22548601252E-02 1.23780235171E-02 1.25024247216E-02 1.26280761790E-02 1.27549904545E-02 1.28831802398E-02 1.30126583538E-02 1.31434377444E-02 1.32755314898E-02 1.34089527994E-02 1.35437150155E-02 1.36798316143E-02 1.38173162077E-02 1.39561825443E-02 1.40964445107E-02 1.42381161333E-02 1.43812115794E-02 1.45257451587E-02 1.46717313245E-02 1.48191846758E-02 1.49681199578E-02 1.51185520643E-02 1.52704960386E-02 1.54239670753E-02 1.55789805215E-02 1.57355518787E-02 1.58936968043E-02 1.60534311127E-02 1.62147707777E-02 1.63777319332E-02 1.65423308756E-02 1.67085840649E-02 1.68765081265E-02 1.70461198530E-02 1.72174362056E-02 1.73904743162E-02 1.75652514888E-02 1.77417852011E-02 1.79200931068E-02 1.81001930367E-02 1.82821030009E-02 1.84658411907E-02 1.86514259801E-02 1.88388759275E-02 1.90282097783E-02 1.92194464659E-02 1.94126051141E-02 1.96077050390E-02 1.98047657508E-02 2.00038069557E-02 2.02048485579E-02 2.04079106618E-02 2.06130135738E-02 2.08201778043E-02 2.10294240700E-02 2.12407732956E-02 2.14542466162E-02 2.16698653793E-02 2.18876511471E-02 2.21076256982E-02 2.23298110303E-02 2.25542293621E-02 2.27809031357E-02 2.30098550185E-02 2.32411079060E-02 2.34746849237E-02 2.37106094294E-02 2.39489050159E-02 2.41895955128E-02 2.44327049894E-02 2.46782577568E-02 2.49262783706E-02 2.51767916330E-02 2.54298225956E-02 2.56853965616E-02 2.59435390887E-02 2.62042759913E-02 2.64676333433E-02 2.67336374807E-02 2.70023150042E-02 2.72736927816E-02 2.75477979511E-02 2.78246579233E-02 2.81043003845E-02 2.83867532991E-02 2.86720449128E-02 2.89602037548E-02 2.92512586413E-02 2.95452386781E-02 2.98421732633E-02 3.01420920908E-02 3.04450251525E-02 3.07510027422E-02 3.10600554578E-02 3.13722142048E-02 3.16875101993E-02 3.20059749713E-02 3.23276403675E-02 3.26525385546E-02 3.29807020228E-02 3.33121635887E-02 3.36469563987E-02 3.39851139324E-02 3.43266700058E-02 3.46716587748E-02 3.50201147385E-02 3.53720727430E-02 3.57275679841E-02 3.60866360119E-02 3.64493127333E-02 3.68156344164E-02 3.71856376936E-02 3.75593595655E-02 3.79368374047E-02 3.83181089593E-02 3.87032123567E-02 3.90921861076E-02 3.94850691096E-02 3.98819006515E-02 4.02827204167E-02 4.06875684875E-02 4.10964853490E-02 4.15095118934E-02 4.19266894235E-02 4.23480596575E-02 4.27736647327E-02 4.32035472101E-02 4.36377500782E-02 4.40763167576E-02 4.45192911055E-02 4.49667174196E-02 4.54186404429E-02 4.58751053681E-02 4.63361578420E-02 4.68018439704E-02 4.72722103221E-02 4.77473039343E-02 4.82271723167E-02 4.87118634564E-02 4.92014258232E-02 4.96959083735E-02 5.01953605560E-02 5.06998323164E-02 5.12093741024E-02 5.17240368684E-02 5.22438720812E-02 5.27689317247E-02 5.32992683054E-02 5.38349348573E-02 5.43759849476E-02 5.49224726817E-02 5.54744527088E-02 5.60319802274E-02 5.65951109908E-02 5.71639013124E-02 5.77384080718E-02 5.83186887201E-02 5.89048012858E-02 5.94968043808E-02 6.00947572058E-02 6.06987195566E-02 6.13087518300E-02 6.19249150296E-02 6.25472707723E-02 6.31758812942E-02 6.38108094569E-02 6.44521187537E-02 6.50998733161E-02 6.57541379201E-02 6.64149779927E-02 6.70824596184E-02 6.77566495460E-02 6.84376151950E-02 6.91254246625E-02 6.98201467302E-02 7.05218508706E-02 7.12306072550E-02 7.19464867594E-02 7.26695609724E-02 7.33999022021E-02 7.41375834832E-02 7.48826785845E-02 7.56352620159E-02 7.63954090367E-02 7.71631956619E-02 7.79386986711E-02 7.87219956151E-02 7.95131648242E-02 8.03122854161E-02 8.11194373034E-02 8.19347012021E-02 8.27581586392E-02 8.35898919611E-02 8.44299843418E-02 8.52785197914E-02 8.61355831640E-02 8.70012601666E-02 8.78756373678E-02 8.87588022060E-02 8.96508429984E-02 9.05518489498E-02 9.14619101615E-02 9.23811176404E-02 9.33095633082E-02 9.42473400099E-02 9.51945415243E-02 9.61512625721E-02 9.71175988263E-02 9.80936469213E-02 9.90795044628E-02 1.00075270037E-01 1.01081043222E-01 1.02096924596E-01 1.03123015747E-01 1.04159419285E-01 1.05206238852E-01 1.06263579131E-01 1.07331545856E-01 1.08410245825E-01 1.09499786910E-01 1.10600278064E-01 1.11711829338E-01 1.12834551888E-01 1.13968557987E-01 1.15113961037E-01 1.16270875580E-01 1.17439417306E-01 1.18619703072E-01 1.19811850908E-01 1.21015980028E-01 1.22232210847E-01 1.23460664989E-01 1.24701465301E-01 1.25954735863E-01 1.27220602003E-01 1.28499190310E-01 1.29790628643E-01 1.31095046146E-01 1.32412573264E-01 1.33743341749E-01 1.35087484680E-01 1.36445136472E-01 1.37816432892E-01 1.39201511069E-01 1.40600509514E-01 1.42013568127E-01 1.43440828214E-01 1.44882432505E-01 1.46338525159E-01 1.47809251788E-01 1.49294759465E-01 1.50795196742E-01 1.52310713665E-01 1.53841461786E-01 1.55387594181E-01 1.56949265466E-01 1.58526631807E-01 1.60119850944E-01 1.61729082200E-01 1.63354486498E-01 1.64996226381E-01 1.66654466025E-01 1.68329371254E-01 1.70021109560E-01 1.71729850119E-01 1.73455763806E-01 1.75199023214E-01 1.76959802670E-01 1.78738278254E-01 1.80534627815E-01 1.82349030989E-01 1.84181669218E-01 1.86032725768E-01 1.87902385745E-01 1.89790836117E-01 1.91698265731E-01 1.93624865331E-01 1.95570827580E-01 1.97536347073E-01 1.99521620367E-01 2.01526845988E-01 2.03552224462E-01 2.05597958329E-01 2.07664252162E-01 2.09751312594E-01 2.11859348331E-01 2.13988570180E-01 2.16139191065E-01 2.18311426049E-01 2.20505492357E-01 2.22721609398E-01 2.24959998786E-01 2.27220884361E-01 2.29504492213E-01 2.31811050707E-01 2.34140790498E-01 2.36493944564E-01 2.38870748221E-01 2.41271439152E-01 2.43696257429E-01 2.46145445533E-01 2.48619248388E-01 2.51117913375E-01 2.53641690362E-01 2.56190831730E-01 2.58765592394E-01 2.61366229833E-01 2.63993004113E-01 2.66646177914E-01 2.69326016554E-01 2.72032788020E-01 2.74766762992E-01 2.77528214870E-01 2.80317419800E-01 2.83134656705E-01 2.85980207312E-01 2.88854356179E-01 2.91757390721E-01 2.94689601246E-01 2.97651280977E-01 3.00642726083E-01 3.03664235713E-01 3.06716112019E-01 3.09798660193E-01 3.12912188490E-01 3.16057008267E-01 3.19233434008E-01 3.22441783359E-01 3.25682377156E-01 3.28955539463E-01 3.32261597598E-01 3.35600882170E-01 3.38973727109E-01 3.42380469704E-01 3.45821450630E-01 3.49297013991E-01 3.52807507343E-01 3.56353281741E-01 3.59934691763E-01 3.63552095555E-01 3.67205854859E-01 3.70896335054E-01 3.74623905193E-01 3.78388938034E-01 3.82191810084E-01 3.86032901633E-01 3.89912596794E-01 3.93831283540E-01 3.97789353743E-01 4.01787203212E-01 4.05825231737E-01 4.09903843123E-01 4.14023445235E-01 4.18184450036E-01 4.22387273631E-01 4.26632336305E-01 4.30920062569E-01 4.35250881197E-01 4.39625225277E-01 4.44043532245E-01 4.48506243937E-01 4.53013806627E-01 4.57566671075E-01 4.62165292571E-01 4.66810130982E-01 4.71501650795E-01 4.76240321166E-01 4.81026615966E-01 4.85861013828E-01 4.90743998197E-01 4.95676057375E-01 5.00657684571E-01 5.05689377953E-01 5.10771640694E-01 5.15904981025E-01 5.21089912284E-01 5.26326952968E-01 5.31616626786E-01 5.36959462710E-01 5.42355995028E-01 5.47806763397E-01 5.53312312899E-01 5.58873194093E-01 5.64489963073E-01 5.70163181519E-01 5.75893416758E-01 5.81681241819E-01 5.87527235489E-01 5.93431982373E-01 5.99396072949E-01 -9.16873229362E+00 -9.16873230284E+00 -9.16873232050E+00 -9.16873232208E+00 -9.16873231479E+00 -9.16873234504E+00 -9.16873233686E+00 -9.16873231469E+00 -9.16873229382E+00 -9.16873232460E+00 -9.16873241401E+00 -9.16873237187E+00 -9.16873230657E+00 -9.16873236415E+00 -9.16873236966E+00 -9.16873227034E+00 -9.16873227595E+00 -9.16873241495E+00 -9.16873244543E+00 -9.16873233054E+00 -9.16873231381E+00 -9.16873235805E+00 -9.16873234812E+00 -9.16873234116E+00 -9.16873232437E+00 -9.16873227276E+00 -9.16873229955E+00 -9.16873241291E+00 -9.16873242668E+00 -9.16873240617E+00 -9.16873239148E+00 -9.16873231627E+00 -9.16873227621E+00 -9.16873228978E+00 -9.16873229685E+00 -9.16873227345E+00 -9.16873226831E+00 -9.16873232570E+00 -9.16873236098E+00 -9.16873232565E+00 -9.16873229265E+00 -9.16873233412E+00 -9.16873234813E+00 -9.16873229155E+00 -9.16873229719E+00 -9.16873233842E+00 -9.16873235317E+00 -9.16873231635E+00 -9.16873224800E+00 -9.16873224057E+00 -9.16873227166E+00 -9.16873232066E+00 -9.16873232871E+00 -9.16873229308E+00 -9.16873230594E+00 -9.16873231678E+00 -9.16873230837E+00 -9.16873230749E+00 -9.16873230925E+00 -9.16873230546E+00 -9.16873230031E+00 -9.16873231114E+00 -9.16873231515E+00 -9.16873232022E+00 -9.16873232538E+00 -9.16873230160E+00 -9.16873228207E+00 -9.16873230242E+00 -9.16873231636E+00 -9.16873229679E+00 -9.16873229074E+00 -9.16873230866E+00 -9.16873231452E+00 -9.16873230209E+00 -9.16873230930E+00 -9.16873232527E+00 -9.16873232138E+00 -9.16873231989E+00 -9.16873232720E+00 -9.16873232851E+00 -9.16873231998E+00 -9.16873230510E+00 -9.16873230336E+00 -9.16873231752E+00 -9.16873232714E+00 -9.16873231980E+00 -9.16873228886E+00 -9.16873227114E+00 -9.16873229122E+00 -9.16873230844E+00 -9.16873230968E+00 -9.16873231892E+00 -9.16873232076E+00 -9.16873230860E+00 -9.16873230190E+00 -9.16873229652E+00 -9.16873230061E+00 -9.16873230835E+00 -9.16873230352E+00 -9.16873229957E+00 -9.16873229789E+00 -9.16873229282E+00 -9.16873229750E+00 -9.16873231555E+00 -9.16873230980E+00 -9.16873229696E+00 -9.16873231152E+00 -9.16873230864E+00 -9.16873228685E+00 -9.16873228830E+00 -9.16873229931E+00 -9.16873230306E+00 -9.16873230702E+00 -9.16873230049E+00 -9.16873229031E+00 -9.16873228647E+00 -9.16873228730E+00 -9.16873230102E+00 -9.16873230824E+00 -9.16873228888E+00 -9.16873227546E+00 -9.16873229047E+00 -9.16873229796E+00 -9.16873228758E+00 -9.16873228483E+00 -9.16873228980E+00 -9.16873229148E+00 -9.16873228576E+00 -9.16873228612E+00 -9.16873229027E+00 -9.16873228587E+00 -9.16873228332E+00 -9.16873227896E+00 -9.16873227622E+00 -9.16873228186E+00 -9.16873227911E+00 -9.16873227520E+00 -9.16873227811E+00 -9.16873227643E+00 -9.16873227273E+00 -9.16873226999E+00 -9.16873227417E+00 -9.16873227926E+00 -9.16873227629E+00 -9.16873227419E+00 -9.16873227330E+00 -9.16873227214E+00 -9.16873227068E+00 -9.16873226943E+00 -9.16873227011E+00 -9.16873226797E+00 -9.16873226428E+00 -9.16873225781E+00 -9.16873225366E+00 -9.16873225898E+00 -9.16873226340E+00 -9.16873225958E+00 -9.16873225268E+00 -9.16873225267E+00 -9.16873225641E+00 -9.16873225490E+00 -9.16873225109E+00 -9.16873225117E+00 -9.16873225096E+00 -9.16873224447E+00 -9.16873223585E+00 -9.16873223361E+00 -9.16873223731E+00 -9.16873223801E+00 -9.16873223408E+00 -9.16873223161E+00 -9.16873223498E+00 -9.16873223475E+00 -9.16873222796E+00 -9.16873222588E+00 -9.16873222590E+00 -9.16873222216E+00 -9.16873221712E+00 -9.16873221429E+00 -9.16873221287E+00 -9.16873221275E+00 -9.16873221062E+00 -9.16873220588E+00 -9.16873220337E+00 -9.16873220141E+00 -9.16873220000E+00 -9.16873219515E+00 -9.16873219074E+00 -9.16873219212E+00 -9.16873219132E+00 -9.16873218728E+00 -9.16873218402E+00 -9.16873218218E+00 -9.16873217809E+00 -9.16873217212E+00 -9.16873216825E+00 -9.16873216605E+00 -9.16873216360E+00 -9.16873215936E+00 -9.16873215640E+00 -9.16873215483E+00 -9.16873215108E+00 -9.16873214583E+00 -9.16873214208E+00 -9.16873213966E+00 -9.16873213707E+00 -9.16873213203E+00 -9.16873212572E+00 -9.16873212311E+00 -9.16873212054E+00 -9.16873211451E+00 -9.16873210947E+00 -9.16873210670E+00 -9.16873210219E+00 -9.16873209572E+00 -9.16873209003E+00 -9.16873208561E+00 -9.16873208152E+00 -9.16873207634E+00 -9.16873207049E+00 -9.16873206598E+00 -9.16873206182E+00 -9.16873205684E+00 -9.16873205091E+00 -9.16873204499E+00 -9.16873204038E+00 -9.16873203415E+00 -9.16873202654E+00 -9.16873202011E+00 -9.16873201389E+00 -9.16873200799E+00 -9.16873200187E+00 -9.16873199486E+00 -9.16873198789E+00 -9.16873198094E+00 -9.16873197378E+00 -9.16873196669E+00 -9.16873196034E+00 -9.16873195360E+00 -9.16873194554E+00 -9.16873193668E+00 -9.16873192765E+00 -9.16873191962E+00 -9.16873191191E+00 -9.16873190347E+00 -9.16873189482E+00 -9.16873188671E+00 -9.16873187840E+00 -9.16873186858E+00 -9.16873185839E+00 -9.16873184889E+00 -9.16873183949E+00 -9.16873182961E+00 -9.16873181952E+00 -9.16873180944E+00 -9.16873179900E+00 -9.16873178765E+00 -9.16873177638E+00 -9.16873176561E+00 -9.16873175399E+00 -9.16873174161E+00 -9.16873172940E+00 -9.16873171776E+00 -9.16873170631E+00 -9.16873169404E+00 -9.16873168010E+00 -9.16873166645E+00 -9.16873165372E+00 -9.16873163978E+00 -9.16873162564E+00 -9.16873161161E+00 -9.16873159684E+00 -9.16873158174E+00 -9.16873156632E+00 -9.16873155078E+00 -9.16873153530E+00 -9.16873151954E+00 -9.16873150297E+00 -9.16873148590E+00 -9.16873146871E+00 -9.16873145122E+00 -9.16873143317E+00 -9.16873141475E+00 -9.16873139605E+00 -9.16873137719E+00 -9.16873135795E+00 -9.16873133800E+00 -9.16873131791E+00 -9.16873129746E+00 -9.16873127640E+00 -9.16873125494E+00 -9.16873123303E+00 -9.16873121092E+00 -9.16873118843E+00 -9.16873116481E+00 -9.16873114073E+00 -9.16873111680E+00 -9.16873109202E+00 -9.16873106638E+00 -9.16873104078E+00 -9.16873101476E+00 -9.16873098797E+00 -9.16873096077E+00 -9.16873093284E+00 -9.16873090400E+00 -9.16873087479E+00 -9.16873084530E+00 -9.16873081486E+00 -9.16873078392E+00 -9.16873075256E+00 -9.16873072019E+00 -9.16873068703E+00 -9.16873065341E+00 -9.16873061928E+00 -9.16873058424E+00 -9.16873054845E+00 -9.16873051203E+00 -9.16873047477E+00 -9.16873043679E+00 -9.16873039804E+00 -9.16873035847E+00 -9.16873031803E+00 -9.16873027663E+00 -9.16873023438E+00 -9.16873019121E+00 -9.16873014720E+00 -9.16873010252E+00 -9.16873005690E+00 -9.16873001017E+00 -9.16872996253E+00 -9.16872991407E+00 -9.16872986443E+00 -9.16872981341E+00 -9.16872976156E+00 -9.16872970891E+00 -9.16872965493E+00 -9.16872959981E+00 -9.16872954353E+00 -9.16872948589E+00 -9.16872942717E+00 -9.16872936737E+00 -9.16872930637E+00 -9.16872924392E+00 -9.16872918004E+00 -9.16872911496E+00 -9.16872904850E+00 -9.16872898052E+00 -9.16872891114E+00 -9.16872884031E+00 -9.16872876802E+00 -9.16872869418E+00 -9.16872861873E+00 -9.16872854179E+00 -9.16872846318E+00 -9.16872838290E+00 -9.16872830099E+00 -9.16872821723E+00 -9.16872813156E+00 -9.16872804406E+00 -9.16872795471E+00 -9.16872786352E+00 -9.16872777040E+00 -9.16872767523E+00 -9.16872757806E+00 -9.16872747883E+00 -9.16872737732E+00 -9.16872727363E+00 -9.16872716777E+00 -9.16872705959E+00 -9.16872694903E+00 -9.16872683603E+00 -9.16872672065E+00 -9.16872660281E+00 -9.16872648235E+00 -9.16872635922E+00 -9.16872623343E+00 -9.16872610490E+00 -9.16872597357E+00 -9.16872583937E+00 -9.16872570220E+00 -9.16872556194E+00 -9.16872541858E+00 -9.16872527208E+00 -9.16872512234E+00 -9.16872496927E+00 -9.16872481284E+00 -9.16872465295E+00 -9.16872448943E+00 -9.16872432228E+00 -9.16872415140E+00 -9.16872397664E+00 -9.16872379796E+00 -9.16872361529E+00 -9.16872342854E+00 -9.16872323756E+00 -9.16872304219E+00 -9.16872284237E+00 -9.16872263806E+00 -9.16872242909E+00 -9.16872221533E+00 -9.16872199673E+00 -9.16872177310E+00 -9.16872154431E+00 -9.16872131025E+00 -9.16872107078E+00 -9.16872082574E+00 -9.16872057503E+00 -9.16872031852E+00 -9.16872005600E+00 -9.16871978734E+00 -9.16871951238E+00 -9.16871923097E+00 -9.16871894295E+00 -9.16871864811E+00 -9.16871834627E+00 -9.16871803723E+00 -9.16871772086E+00 -9.16871739693E+00 -9.16871706523E+00 -9.16871672559E+00 -9.16871637777E+00 -9.16871602154E+00 -9.16871565665E+00 -9.16871528287E+00 -9.16871489999E+00 -9.16871450776E+00 -9.16871410588E+00 -9.16871369408E+00 -9.16871327212E+00 -9.16871283973E+00 -9.16871239659E+00 -9.16871194236E+00 -9.16871147672E+00 -9.16871099943E+00 -9.16871051010E+00 -9.16871000838E+00 -9.16870949392E+00 -9.16870896631E+00 -9.16870842520E+00 -9.16870787016E+00 -9.16870730083E+00 -9.16870671680E+00 -9.16870611759E+00 -9.16870550273E+00 -9.16870487176E+00 -9.16870422417E+00 -9.16870355947E+00 -9.16870287715E+00 -9.16870217668E+00 -9.16870145747E+00 -9.16870071895E+00 -9.16869996054E+00 -9.16869918156E+00 -9.16869838138E+00 -9.16869755932E+00 -9.16869671467E+00 -9.16869584676E+00 -9.16869495482E+00 -9.16869403804E+00 -9.16869309565E+00 -9.16869212682E+00 -9.16869113062E+00 -9.16869010612E+00 -9.16868905245E+00 -9.16868796863E+00 -9.16868685362E+00 -9.16868570636E+00 -9.16868452579E+00 -9.16868331073E+00 -9.16868205995E+00 -9.16868077227E+00 -9.16867944645E+00 -9.16867808113E+00 -9.16867667487E+00 -9.16867522624E+00 -9.16867373377E+00 -9.16867219586E+00 -9.16867061085E+00 -9.16866897706E+00 -9.16866729273E+00 -9.16866555602E+00 -9.16866376499E+00 -9.16866191760E+00 -9.16866001177E+00 -9.16865804533E+00 -9.16865601600E+00 -9.16865392140E+00 -9.16865175906E+00 -9.16864952638E+00 -9.16864722060E+00 -9.16864483895E+00 -9.16864237848E+00 -9.16863983607E+00 -9.16863720851E+00 -9.16863449243E+00 -9.16863168432E+00 -9.16862878051E+00 -9.16862577711E+00 -9.16862267013E+00 -9.16861945534E+00 -9.16861612834E+00 -9.16861268451E+00 -9.16860911900E+00 -9.16860542675E+00 -9.16860160248E+00 -9.16859764062E+00 -9.16859353535E+00 -9.16858928057E+00 -9.16858486990E+00 -9.16858029665E+00 -9.16857555376E+00 -9.16857063386E+00 -9.16856552927E+00 -9.16856023179E+00 -9.16855473290E+00 -9.16854902371E+00 -9.16854309483E+00 -9.16853693636E+00 -9.16853053793E+00 -9.16852388867E+00 -9.16851697715E+00 -9.16850979130E+00 -9.16850231850E+00 -9.16849454545E+00 -9.16848645814E+00 -9.16847804185E+00 -9.16846928110E+00 -9.16846015959E+00 -9.16845066018E+00 -9.16844076475E+00 -9.16843045431E+00 -9.16841970881E+00 -9.16840850708E+00 -9.16839682686E+00 -9.16838464475E+00 -9.16837193600E+00 -9.16835867449E+00 -9.16834483272E+00 -9.16833038169E+00 -9.16831529078E+00 -9.16829952765E+00 -9.16828305823E+00 -9.16826584650E+00 -9.16824785444E+00 -9.16822904187E+00 -9.16820936638E+00 -9.16818878318E+00 -9.16816724490E+00 -9.16814470148E+00 -9.16812110001E+00 -9.16809638455E+00 -9.16807049591E+00 -9.16804337153E+00 -9.16801494524E+00 -9.16798514696E+00 -9.16795390258E+00 -9.16792113366E+00 -9.16788675714E+00 -9.16785068509E+00 -9.16781282441E+00 -9.16777307653E+00 -9.16773133698E+00 -9.16768749514E+00 -9.16764143377E+00 -9.16759302862E+00 -9.16754214808E+00 -9.16748865261E+00 -9.16743239428E+00 -9.16737321627E+00 -9.16731095230E+00 -9.16724542606E+00 -9.16717645057E+00 -9.16710382749E+00 -9.16702734645E+00 -9.16694678434E+00 -9.16686190450E+00 -9.16677245578E+00 -9.16667817178E+00 -9.16657876984E+00 -9.16647395002E+00 -9.16636339412E+00 -9.16624676453E+00 -9.16612370300E+00 -9.16599382946E+00 -9.16585674070E+00 -9.16571200884E+00 -9.16555917999E+00 -9.16539777269E+00 -9.16522727632E+00 -9.16504714927E+00 -9.16485681720E+00 -9.16465567116E+00 -9.16444306560E+00 -9.16421831643E+00 -9.16398069872E+00 -9.16372944448E+00 -9.16346374035E+00 -9.16318272519E+00 -9.16288548764E+00 -9.16257106357E+00 -9.16223843335E+00 -9.16188651922E+00 -9.16151418261E+00 -9.16112022135E+00 -9.16070336682E+00 -9.16026228137E+00 -9.15979555563E+00 -9.15930170572E+00 -9.15877917084E+00 -9.15822631088E+00 -9.15764140445E+00 -9.15702264705E+00 -9.15636814946E+00 -9.15567593687E+00 -9.15494394828E+00 -9.15417003679E+00 -9.15335197077E+00 -9.15248743571E+00 -9.15157403736E+00 -9.15060930611E+00 -9.14959070471E+00 -9.14851563400E+00 -9.14738144140E+00 -9.14618544104E+00 -9.14492492529E+00 -9.14359717612E+00 -9.14219950376E+00 -9.14072926482E+00 -9.13918388528E+00 -9.13756092467E+00 -9.13585810909E+00 -9.13407336885E+00 -9.13220492060E+00 -9.13025134606E+00 -9.12821164985E+00 -9.12608536677E+00 -9.12387269135E+00 -9.12157459023E+00 -9.11919294146E+00 -9.11673070609E+00 -9.11419213098E+00 -9.11158296350E+00 -9.10891068754E+00 -9.10618479567E+00 -9.10341712360E+00 -9.10062220621E+00 -9.09781766082E+00 -9.09502463589E+00 -9.09226832731E+00 -9.08957853522E+00 -9.08699028047E+00 -9.08454450913E+00 -9.08228884796E+00 -9.08027846628E+00 -9.07857701697E+00 -9.07725762964E+00 -9.07640407185E+00 -9.07611197059E+00 -9.07649005870E+00 -9.07766168002E+00 -9.07976632164E+00 -9.08296116355E+00 -9.08742284201E+00 -9.09334921830E+00 -9.10096126220E+00 -9.11050495768E+00 -9.12225317259E+00 -9.13650759697E+00 -9.15360056112E+00 -9.17389669909E+00 -9.19779451227E+00 -9.22572757992E+00 -9.25816534422E+00 -9.29561352486E+00 -9.33861385863E+00 -9.38774302802E+00 -9.44361063707E+00 -9.50685607069E+00 -9.57814414740E+00 -9.65815898604E+00 -9.74759606196E+00 -9.84715275012E+00 -9.95751601142E+00 -1.00793481008E+01 -1.02132698566E+01 -1.03598404654E+01 -1.05195353429E+01 -1.06927214623E+01 -1.08796298041E+01 -1.10803257538E+01 -1.12946776049E+01 -1.15223247179E+01 -1.17626464644E+01 -1.20147305413E+01 -1.22773434846E+01 -1.25489086201E+01 -1.28274871601E+01 -1.31107664864E+01 -1.33960603130E+01 -1.36803183523E+01 -1.39601505531E+01 -1.42318649284E+01 -1.44915203323E+01 -1.47349958838E+01 -1.49580747928E+01 -1.51565411220E+01 -1.53262880334E+01 -1.54634349815E+01 -1.55644474731E+01 -1.56262554725E+01 -1.56463662917E+01 -1.56229643416E+01 -1.55549948693E+01 -1.54422233436E+01 -1.52852719915E+01 -1.50856235535E+01 -1.48455947237E+01 -1.45682875813E+01 -1.42575046054E+01 -1.39176415899E+01 -1.35535659135E+01 -1.31704786076E+01 -1.27737673068E+01 -1.23688630799E+01 -1.19611026031E+01 -1.15555980287E+01 -1.11571260404E+01 -1.07700352897E+01 -1.03981742631E+01 -1.00448407962E+01 -9.71275444303E+00 -9.40404840110E+00 -9.12027791269E+00 -8.86244726050E+00 -8.63104746987E+00 -8.42610234340E+00 -8.24722323933E+00 -8.09366707491E+00 -7.96439478578E+00 -7.85812917650E+00 -7.77341113048E+00 -7.70865165904E+00 -7.66217867617E+00 -7.63227885190E+00 -7.61723442729E+00 -7.61535453770E+00 -7.62499949651E+00 -7.64460101104E+00 -7.67267876374E+00 -7.70785030079E+00 -7.74883857883E+00 -7.79447640932E+00 -7.84370694634E+00 -7.89558311462E+00 -7.94926452607E+00 -8.00401279835E+00 -8.05918635315E+00 -8.11423398380E+00 -8.16868804769E+00 -8.22215778453E+00 -8.27432192887E+00 -8.32492164643E+00 -8.37375409294E+00 -8.42066570528E+00 -8.46554607055E+00 -8.50832223126E+00 -8.54895356419E+00 -8.58742691041E+00 -8.62375193128E+00 -8.65795743381E+00 -8.69008795870E+00 -8.72020046001E+00 -8.74836159044E+00 -8.77464546586E+00 -8.79913152708E+00 -8.82190275281E+00 -8.84304423753E+00 -8.86264190660E+00 -8.88078144800E+00 -8.89754748387E+00 -8.91302288717E+00 -8.92728821600E+00 -8.94042129133E+00 -8.95249687995E+00 -8.96358648630E+00 -8.97375818926E+00 -8.98307655267E+00 -8.99160261488E+00 -8.99939388172E+00 -9.00650438864E+00 -9.01298478424E+00 -9.01888241379E+00 -9.02424144549E+00 -9.02910300010E+00 -9.03350528894E+00 -9.03748375579E+00 -9.04107121957E+00 -9.04429802445E+00 -9.04719218382E+00 -9.04977952204E+00 -9.05208381362E+00 -9.05412691529E+00 -9.05592889597E+00 -9.05750816047E+00 -9.05888156529E+00 -9.06006453043E+00 -9.06107114401E+00 -9.06191426053E+00 -9.06260559446E+00 -9.06315580727E+00 -9.06357458779E+00 -9.06387072857E+00 -9.06405219652E+00 -9.06412619823E+00 -9.06409924100E+00 -9.06397718924E+00 -9.06376531666E+00 -9.06346835469E+00 -9.06309053698E+00 -9.06263564075E+00 -9.06210702486E+00 -9.06150766443E+00 -9.06084018358E+00 -9.06010688498E+00 -9.05930977719E+00 -9.05845059982E+00 -9.05753084680E+00 -9.05655178756E+00 -9.05551448674E+00 -9.05441982222E+00 -9.05326850170E+00 -9.05206107793E+00 -9.05079796283E+00 -9.04947944050E+00 -9.04810567905E+00 -9.04667674163E+00 -9.04519259663E+00 -9.04365312694E+00 -9.04205813869E+00 -9.04040736922E+00 -9.03870049440E+00 -9.03693713555E+00 -9.03511686570E+00 -9.03323921549E+00 -9.03130367860E+00 -9.02930971675E+00 -9.02725676446E+00 -9.02514423334E+00 -9.02297151614E+00 -9.02073799054E+00 -9.01844302266E+00 -9.01608597026E+00 -9.01366618587E+00 -9.01118301956E+00 -9.00863582162E+00 -9.00602394503E+00 -9.00334674780E+00 -9.00060359512E+00 -8.99779386137E+00 -8.99491693210E+00 -8.99197220578E+00 -8.98895909553E+00 -8.98587703070E+00 -8.98272545846E+00 -8.97950384519E+00 -8.97621167796E+00 -8.97284846583E+00 -8.96941374115E+00 -8.96590706091E+00 -8.96232800795E+00 -8.95867619220E+00 -8.95495125195E+00 -8.95115285512E+00 -8.94728070047E+00 -8.94333451897E+00 -8.93931407506E+00 -8.93521916810E+00 -8.93104963375E+00 -8.92680534550E+00 -8.92248621622E+00 -8.91809219986E+00 -8.91362329317E+00 -8.90907953755E+00 -8.90446102110E+00 -8.89976788064E+00 -8.89500030400E+00 -8.89015853239E+00 -8.88524286295E+00 -8.88025365145E+00 -8.87519131521E+00 -8.87005633616E+00 -8.86484926411E+00 -8.85957072028E+00 -8.85422140099E+00 -8.84880208163E+00 -8.84331362084E+00 -8.83775696498E+00 -8.83213315283E+00 -8.82644332062E+00 -8.82068870731E+00 -8.81487066017E+00 -8.80899064072E+00 -8.80305023094E+00 -8.79705113984E+00 -8.79099521037E+00 -8.78488442668E+00 -8.77872092179E+00 -8.77250698551E+00 -8.76624507288E+00 -8.75993781293E+00 -8.75358801778E+00 -8.74719869226E+00 -8.74077304377E+00 -8.73431449265E+00 -8.72782668289E+00 -8.72131349324E+00 -8.71477904864E+00 -8.70822773210E+00 -8.70166419684E+00 -8.69509337879E+00 -8.68852050934E+00 -8.68195112842E+00 -8.67539109766E+00 -8.66884661389E+00 -8.66232422255E+00 -8.65583083130E+00 -8.64937372347E+00 -8.64296057143E+00 -8.63659944969E+00 -8.63029884767E+00 -8.62406768195E+00 -8.61791530787E+00 -8.61185153033E+00 -8.60588661353E+00 -8.60003128956E+00 -8.59429676548E+00 -8.58869472864E+00 -8.58323735008E+00 -8.57793728550E+00 -8.57280767361E+00 -8.56786213139E+00 -8.56311474592E+00 -8.55858006220E+00 -8.55427306671E+00 -8.55020916592E+00 -8.54640415948E+00 -8.54287420724E+00 -8.53963578973E+00 -8.53670566131E+00 -8.53410079536E+00 -8.53183832085E+00 -8.52993544954E+00 -8.52840939315E+00 -8.52727726977E+00 -8.52655599878E+00 -8.52626218368E+00 -8.52641198214E+00 -8.52702096265E+00 -8.52810394743E+00 -8.52967484098E+00 -8.53174644420E+00 -8.53433025378E+00 -8.53743624704E+00 -8.54107265235E+00 -8.54524570586E+00 -8.54995939500E+00 -8.55521519021E+00 -8.56101176620E+00 -8.56734471448E+00 -8.57420624977E+00 -8.58158491276E+00 -8.58946527263E+00 -8.59782763298E+00 -8.60664774557E+00 -8.61589653663E+00 -8.62553985113E+00 -8.63553822078E+00 -8.64584666233E+00 -8.65641451266E+00 -8.66718530800E+00 -8.67809671464E+00 -8.68908051849E+00 -8.70006268139E+00 -8.71096347120E+00 -8.72169767311E+00 -8.73217488851E+00 -8.74229992740E+00 -8.75197329918E+00 -8.76109180544E+00 -8.76954923706E+00 -8.77723717603E+00 -8.78404590058E+00 -8.78986539002E+00 -8.79458642316E+00 -8.79810176180E+00 -8.80030740786E+00 -8.80110391996E+00 -8.80039777245E+00 -8.79810273679E+00 -8.79414126259E+00 -8.78844583311E+00 -8.78096026733E+00 -8.77164093939E+00 -8.76045788442E+00 -8.74739575956E+00 -8.73245462899E+00 -8.71565054335E+00 -8.69701588643E+00 -8.67659946570E+00 -8.65446632869E+00 -8.63069729369E+00 -8.60538819117E+00 -8.57864882130E+00 -8.55060164267E+00 -8.52138021761E+00 -8.49112744900E+00 -8.45999365319E+00 -8.42813452080E+00 -8.39570902317E+00 -8.36287732533E+00 -8.32979876642E+00 -8.29662996577E+00 -8.26352310699E+00 -8.23062444362E+00 -8.19807305950E+00 -8.16599990437E+00 -8.13452711273E+00 -8.10376760092E+00 -8.07382492569E+00 -8.04479337739E+00 -8.01675827256E+00 -7.98979640496E+00 -7.96397661040E+00 -7.93936039975E+00 -7.91600261481E+00 -7.89395206435E+00 -7.87325210091E+00 -7.85394110340E+00 -7.83605283531E+00 -7.81961665353E+00 -7.80465754817E+00 -7.79119599906E+00 -7.77924764089E+00 -7.76882273494E+00 -7.75992545278E+00 -7.75255298558E+00 -7.74669450213E+00 -7.74232998992E+00 -7.73942902597E+00 -7.73794953775E+00 -7.73783662859E+00 -7.73902155566E+00 -7.74142096009E+00 -7.74493645709E+00 -7.74945469575E+00 -7.75484799252E+00 -7.76097562694E+00 -7.76768586076E+00 -7.77481870352E+00 -7.78220939826E+00 -7.78969254430E+00 -7.79710671386E+00 -7.80429936216E+00 -7.81113178297E+00 -7.81748383069E+00 -7.82325812201E+00 -7.82838344737E+00 -7.83281716698E+00 -7.83654643267E+00 -7.83958816105E+00 -7.84198777438E+00 -7.84381681403E+00 -7.84516960794E+00 -7.84615922928E+00 -7.84691301535E+00 -7.84756792077E+00 -7.84826596116E+00 -7.84914996581E+00 -7.85035980831E+00 -7.85202922821E+00 -7.85428330166E+00 -7.85723656968E+00 -7.86099179151E+00 -7.86563926093E+00 -7.87125660362E+00 -7.87790896463E+00 -7.88564949361E+00 -7.89452004038E+00 -7.90455198295E+00 -7.91576712171E+00 -7.92817858595E+00 -7.94179171166E+00 -7.95660486074E+00 -7.97261016182E+00 -7.98979416142E+00 -8.00813838069E+00 -8.02761977819E+00 -8.04821112294E+00 -8.06988128439E+00 -8.09259544769E+00 -8.11631526328E+00 -8.14099894009E+00 -8.16660129156E+00 -8.19307374288E+00 -8.22036430740E+00 -8.24841753928E+00 -8.27717446845E+00 -8.30657252339E+00 -8.33654544609E+00 -8.36702320313E+00 -8.39793189610E+00 -8.42919367411E+00 -8.46072665081E+00 -8.49244482823E+00 -8.52425802958E+00 -8.55607184354E+00 -8.58778758234E+00 -8.61930225681E+00 -8.65050857140E+00 -8.68129494294E+00 -8.71154554703E+00 -8.74114039604E+00 -8.76995545304E+00 -8.79786278547E+00 -8.82473076207E+00 -8.85042429598E+00 -8.87480513598E+00 -8.89773220676E+00 -8.91906199819E+00 -8.93864900242E+00 -8.95634619700E+00 -8.97200557182E+00 -8.98547869796E+00 -8.99661733788E+00 -9.00527409833E+00 -9.01130313096E+00 -9.01456089093E+00 -9.01490697027E+00 -9.01220503287E+00 -9.00642049621E+00 -8.99793118816E+00 -8.98708147770E+00 -8.97345077267E+00 -8.95648153499E+00 -8.93599250918E+00 -8.91191255335E+00 -8.88418696824E+00 -8.85277907844E+00 -8.81767177194E+00 -8.77886897328E+00 -8.73639702339E+00 -8.69030593621E+00 -8.64067049930E+00 -8.58759118275E+00 -8.53119481720E+00 -8.47163499831E+00 -8.40909217080E+00 -8.34377334050E+00 -8.27591135769E+00 -8.20576370839E+00 -8.13361074338E+00 -8.05975326364E+00 -7.98450937094E+00 -7.90821048285E+00 -7.83119639245E+00 -7.75380923472E+00 -7.67638620254E+00 -7.59925083749E+00 -7.52270277955E+00 -7.44696500874E+00 -7.37206723179E+00 -7.29799496639E+00 -7.22462038619E+00 -7.15204094410E+00 -7.08048342984E+00 -7.00969960329E+00 -6.93955645017E+00 -6.87016089903E+00 -6.80150126244E+00 -6.73356620267E+00 -6.66634472339E+00 -6.59982616123E+00 -6.53400017705E+00 -6.46885674694E+00 -6.40438615300E+00 -6.34057897397E+00 -6.27742607557E+00 -6.21491860082E+00 -6.15304796018E+00 -6.09180582163E+00 -6.03118410072E+00 -5.97117495068E+00 -5.91177075246E+00 -5.85296410500E+00 -5.79474781548E+00 -5.73711488984E+00 -5.68005852337E+00 -5.62357209156E+00 -5.56764914118E+00 -5.51228338158E+00 -5.45746867624E+00 -5.40319903459E+00 -5.34946860415E+00 -5.29627166287E+00 -5.24360261183E+00 -5.19145596817E+00 -5.13982635837E+00 -5.08870851176E+00 -5.03809725433E+00 -4.98798750288E+00 -4.93837425937E+00 -4.88925260563E+00 -4.84061769831E+00 -4.79246476415E+00 -4.74478909549E+00 -4.69758604614E+00 -4.65085102746E+00 -4.60457950479E+00 -4.55876699415E+00 -4.51340905948E+00 -4.46850130923E+00 -4.42403939387E+00 -4.38001900527E+00 -4.33643587368E+00 -4.29328576547E+00 -4.25056448278E+00 -4.20826786200E+00 -4.16639177292E+00 -4.12493211798E+00 -4.08388483176E+00 -4.04324588064E+00 -4.00301126256E+00 -3.96317700697E+00 -3.92373917485E+00 -3.88469385882E+00 -3.84603718333E+00 -3.80776530489E+00 -3.76987441235E+00 -3.73236072713E+00 -3.69522050358E+00 -3.65845002918E+00 -3.62204562486E+00 -3.58600364517E+00 -3.55032047849E+00 -3.51499254720E+00 -3.48001630777E+00 -3.44538825079E+00 -3.41110490106E+00 -3.37716281750E+00 -3.34355859307E+00 -3.31028885470E+00 -3.27735026312E+00 -3.24473951265E+00 -3.21245333100E+00 -3.18048847901E+00 -3.14884175040E+00 -3.11750997146E+00 -3.08649000072E+00 -3.05577872868E+00 -3.02537307743E+00 -2.99527000035E+00 -2.96546648174E+00 -2.93595953649E+00 -2.90674620973E+00 -2.87782357646E+00 -2.84918874128E+00 -2.82083883798E+00 -2.79277102924E+00 -2.76498250630E+00 -2.73747048862E+00 -2.71023222362E+00 -2.68326498629E+00 -2.65656607894E+00 -2.63013283090E+00 -2.60396259820E+00 -2.57805276332E+00 -2.55240073486E+00 -2.52700394731E+00 -2.50185986076E+00 -2.47696596063E+00 -2.45231975742E+00 -2.42791878642E+00 -2.40376060750E+00 -2.37984280484E+00 -2.35616298666E+00 -2.33271878500E+00 -2.30950785550E+00 -2.28652787711E+00 -2.26377655190E+00 -2.24125160479E+00 -2.21895078336E+00 -2.19687185760E+00 -2.17501261968E+00 -2.15337088376E+00 -2.13194448573E+00 -2.11073128302E+00 -2.08972915436E+00 -2.06893599962E+00 -2.04834973953E+00 -2.02796831552E+00 -2.00778968950E+00 -1.98781184366E+00 -1.96803278026E+00 -1.94845052142E+00 -1.92906310898E+00 -1.90986860421E+00 -1.89086508769E+00 -1.87205065912E+00 -1.85342343705E+00 -1.83498155880E+00 -1.81672318020E+00 -1.79864647542E+00 -1.78074963681E+00 -1.76303087469E+00 -1.74548841719E+00 -1.72812051009E+00 -1.71092541658E+00 -1.69390141717E+00 -1.67704680945E+00 -1.66035990796E+00 -1.64383904401E+00 -1.62748256551E+00 -1.61128883681E+00 -1.59525623853E+00 -1.57938316739E+00 -1.56366803609E+00 -1.54810927310E+00 -1.53270532253E+00 -1.51745464398E+00 -1.50235571237E+00 -1.48740701780E+00 -1.47260706537E+00 -1.45795437509E+00 -1.44344748167E+00 -1.42908493440E+00 -1.41486529702E+00 -1.40078714754E+00 -1.38684907815E+00 -1.37304969501E+00 -1.35938761817E+00 -1.34586148141E+00 -1.33246993209E+00 -1.31921163106E+00 -1.30608525245E+00 -1.29308948363E+00 -1.28022302499E+00 -1.26748458987E+00 -1.25487290441E+00 -1.24238670743E+00 -1.23002475029E+00 -1.21778579678E+00 -1.20566862299E+00 -1.19367201718E+00 -1.18179477967E+00 -1.17003572273E+00 -1.15839367044E+00 -1.14686745855E+00 -1.13545593445E+00 -1.12415795689E+00 -1.11297239628E+00 -1.10189813313E+00 -1.09093406547E+00 -1.08007908177E+00 -1.06933207523E+00 -1.05869206252E+00 -1.04815790057E+00 -1.03772855639E+00 -1.02740298473E+00 -1.01718015423E+00 -1.00705904259E+00 -9.97038637689E-01 -9.87117937486E-01 -9.77295949900E-01 -9.67571692722E-01 -9.57944193520E-01 -9.48412489536E-01 -9.38975627591E-01 -9.29632664195E-01 -9.20382664632E-01 -9.11224704103E-01 -9.02157866803E-01 -8.93181245309E-01 -8.84293943432E-01 -8.75495128288E-01 -8.66783754058E-01 -8.58159111568E-01 -8.49620282467E-01 -8.41166419407E-01 -8.32796673689E-01 -8.24510208333E-01 -8.16306194684E-01 -8.08183812335E-01 -8.00142249041E-01 -7.92180700639E-01 -7.84298370967E-01 -7.76494471786E-01 -7.68768222698E-01 -7.61118851074E-01 -7.53545591969E-01 -7.46047688052E-01 -7.38624389524E-01 -7.31274954052E-01 -7.23998646684E-01 -7.16794739784E-01 -7.09662512955E-01 -7.02601252969E-01 -6.95610253694E-01 -6.88688816024E-01 -6.81836247810E-01 -6.75051863788E-01 -6.68334985515E-01 -6.61684941298E-01 -6.55101066127E-01 -6.48582701607E-01 -6.42129195899E-01 -6.35739903645E-01 -6.29414185912E-01 -6.23151410121E-01 -6.16950949991E-01 -6.10812185470E-01 -6.04734502676E-01 -5.98717293837E-01 -5.92759957226E-01 -5.86861897105E-01 -5.81022523662E-01 -5.75241252956E-01 -5.69517506855E-01 -5.63850712979E-01 -5.58240304644E-01 -5.52685720805E-01 -5.47186405999E-01 -5.41741810289E-01 -5.36351389211E-01 -5.31014603720E-01 -5.25730920131E-01 -5.20499810073E-01 -5.15320750429E-01 -5.10193223290E-01 -5.05116715898E-01 -5.00090720598E-01 -4.95114734788E-01 -4.90188260864E-01 -4.85310806174E-01 -4.80481882969E-01 -4.75701008353E-01 -4.70967704234E-01 -4.66281497278E-01 -4.61641918861E-01 -4.57048505020E-01 -4.52500796410E-01 -4.47998338257E-01 -4.43540680311E-01 -4.39127376803E-01 -4.34757986399E-01 -4.30432072155E-01 -4.26149201477E-01 -4.21908946075E-01 -4.17710881919E-01 -4.13554589199E-01 -4.09439652283E-01 -4.05365659673E-01 -4.01332203967E-01 -3.97338881815E-01 -3.93385293883E-01 -3.89471044809E-01 -3.85595743163E-01 -3.81759001413E-01 -3.77960435881E-01 -3.74199666708E-01 -3.70476317813E-01 -3.66790016859E-01 -3.63140395212E-01 -3.59527087907E-01 -3.55949733611E-01 -3.52407974584E-01 -3.48901456649E-01 -3.45429829150E-01 -3.41992744922E-01 -3.38589860254E-01 -3.35220834853E-01 -3.31885331816E-01 -3.28583017588E-01 -3.25313561936E-01 -3.22076637911E-01 -3.18871921818E-01 -3.15699093183E-01 -3.12557834721E-01 -3.09447832302E-01 -3.06368774925E-01 -3.03320354680E-01 -3.00302266724E-01 1 1 Beta L 1183 1.45105478232E-08 1.48036803337E-08 1.51027345138E-08 1.54078299890E-08 1.57190888017E-08 1.60366354595E-08 1.63605969853E-08 1.66911029680E-08 1.70282856144E-08 1.73722798022E-08 1.77232231335E-08 1.80812559904E-08 1.84465215907E-08 1.88191660457E-08 1.91993384180E-08 1.95871907816E-08 1.99828782827E-08 2.03865592016E-08 2.07983950160E-08 2.12185504657E-08 2.16471936185E-08 2.20844959374E-08 2.25306323491E-08 2.29857813142E-08 2.34501248983E-08 2.39238488450E-08 2.44071426502E-08 2.49001996380E-08 2.54032170375E-08 2.59163960627E-08 2.64399419918E-08 2.69740642502E-08 2.75189764940E-08 2.80748966953E-08 2.86420472296E-08 2.92206549647E-08 2.98109513514E-08 3.04131725161E-08 3.10275593554E-08 3.16543576321E-08 3.22938180739E-08 3.29461964735E-08 3.36117537910E-08 3.42907562582E-08 3.49834754851E-08 3.56901885686E-08 3.64111782034E-08 3.71467327950E-08 3.78971465751E-08 3.86627197190E-08 3.94437584663E-08 4.02405752430E-08 4.10534887863E-08 4.18828242724E-08 4.27289134468E-08 4.35920947562E-08 4.44727134848E-08 4.53711218917E-08 4.62876793523E-08 4.72227525019E-08 4.81767153821E-08 4.91499495908E-08 5.01428444347E-08 5.11557970849E-08 5.21892127360E-08 5.32435047681E-08 5.43190949121E-08 5.54164134182E-08 5.65358992286E-08 5.76780001525E-08 5.88431730455E-08 6.00318839923E-08 6.12446084932E-08 6.24818316540E-08 6.37440483806E-08 6.50317635764E-08 6.63454923448E-08 6.76857601947E-08 6.90531032512E-08 7.04480684697E-08 7.18712138549E-08 7.33231086839E-08 7.48043337341E-08 7.63154815151E-08 7.78571565063E-08 7.94299753982E-08 8.10345673393E-08 8.26715741878E-08 8.43416507682E-08 8.60454651336E-08 8.77836988322E-08 8.95570471808E-08 9.13662195424E-08 9.32119396101E-08 9.50949456964E-08 9.70159910289E-08 9.89758440514E-08 1.00975288731E-07 1.03015124873E-07 1.05096168438E-07 1.07219251872E-07 1.09385224436E-07 1.11594952548E-07 1.13849320129E-07 1.16149228957E-07 1.18495599024E-07 1.20889368911E-07 1.23331496158E-07 1.25822957647E-07 1.28364749997E-07 1.30957889959E-07 1.33603414822E-07 1.36302382833E-07 1.39055873615E-07 1.41864988600E-07 1.44730851472E-07 1.47654608614E-07 1.50637429568E-07 1.53680507503E-07 1.56785059690E-07 1.59952327991E-07 1.63183579356E-07 1.66480106329E-07 1.69843227563E-07 1.73274288354E-07 1.76774661170E-07 1.80345746207E-07 1.83988971948E-07 1.87705795730E-07 1.91497704334E-07 1.95366214572E-07 1.99312873901E-07 2.03339261037E-07 2.07446986589E-07 2.11637693701E-07 2.15913058713E-07 2.20274791827E-07 2.24724637794E-07 2.29264376613E-07 2.33895824240E-07 2.38620833315E-07 2.43441293904E-07 2.48359134257E-07 2.53376321575E-07 2.58494862800E-07 2.63716805417E-07 2.69044238272E-07 2.74479292409E-07 2.80024141923E-07 2.85681004828E-07 2.91452143943E-07 2.97339867802E-07 3.03346531573E-07 3.09474538000E-07 3.15726338369E-07 3.22104433483E-07 3.28611374665E-07 3.35249764779E-07 3.42022259268E-07 3.48931567221E-07 3.55980452453E-07 3.63171734612E-07 3.70508290307E-07 3.77993054259E-07 3.85629020472E-07 3.93419243435E-07 4.01366839340E-07 4.09474987333E-07 4.17746930780E-07 4.26185978569E-07 4.34795506432E-07 4.43578958294E-07 4.52539847654E-07 4.61681758987E-07 4.71008349179E-07 4.80523348990E-07 4.90230564548E-07 5.00133878867E-07 5.10237253407E-07 5.20544729650E-07 5.31060430726E-07 5.41788563054E-07 5.52733418032E-07 5.63899373746E-07 5.75290896727E-07 5.86912543738E-07 5.98768963591E-07 6.10864899013E-07 6.23205188539E-07 6.35794768449E-07 6.48638674743E-07 6.61742045156E-07 6.75110121209E-07 6.88748250311E-07 7.02661887897E-07 7.16856599606E-07 7.31338063512E-07 7.46112072394E-07 7.61184536053E-07 7.76561483674E-07 7.92249066243E-07 8.08253559000E-07 8.24581363957E-07 8.41239012454E-07 8.58233167771E-07 8.75570627797E-07 8.93258327748E-07 9.11303342939E-07 9.29712891617E-07 9.48494337847E-07 9.67655194457E-07 9.87203126046E-07 1.00714595205E-06 1.02749164986E-06 1.04824835803E-06 1.06942437951E-06 1.09102818501E-06 1.11306841632E-06 1.13555388985E-06 1.15849360006E-06 1.18189672316E-06 1.20577262071E-06 1.23013084338E-06 1.25498113479E-06 1.28033343539E-06 1.30619788642E-06 1.33258483403E-06 1.35950483333E-06 1.38696865270E-06 1.41498727801E-06 1.44357191710E-06 1.47273400420E-06 1.50248520454E-06 1.53283741899E-06 1.56380278884E-06 1.59539370066E-06 1.62762279123E-06 1.66050295261E-06 1.69404733730E-06 1.72826936352E-06 1.76318272052E-06 1.79880137412E-06 1.83513957224E-06 1.87221185066E-06 1.91003303878E-06 1.94861826558E-06 1.98798296566E-06 2.02814288542E-06 2.06911408938E-06 2.11091296656E-06 2.15355623706E-06 2.19923637966E-06 2.24391104696E-06 2.28908477762E-06 2.33533891888E-06 2.38227981835E-06 2.43060996648E-06 2.47948839594E-06 2.52958205902E-06 2.58061851734E-06 2.63262514561E-06 2.68590708066E-06 2.74010634505E-06 2.79538132983E-06 2.85170336796E-06 2.90944126311E-06 2.96808591546E-06 3.02799723389E-06 3.08903506127E-06 3.15155838738E-06 3.21509183146E-06 3.28003878404E-06 3.34612218358E-06 3.41386889992E-06 3.48261191770E-06 3.55306977789E-06 3.62463546628E-06 3.69793764310E-06 3.77252552836E-06 3.84873624461E-06 3.92630259753E-06 4.00574923377E-06 4.08649583375E-06 4.16908065436E-06 4.25315352498E-06 4.33901899372E-06 4.42680084451E-06 4.51610110864E-06 4.60718385278E-06 4.70021269060E-06 4.79525997837E-06 4.89197174880E-06 4.99081423262E-06 5.09147328674E-06 5.19445665851E-06 5.29918966786E-06 5.40629652592E-06 5.51531408520E-06 5.62690602261E-06 5.74040818808E-06 5.85630106651E-06 5.97461059550E-06 6.09517715620E-06 6.21833563214E-06 6.34383689227E-06 6.47206946517E-06 6.60264852872E-06 6.73601959376E-06 6.87213034318E-06 7.01075579000E-06 7.15249664078E-06 7.29677642969E-06 7.44428192750E-06 7.59449343907E-06 7.74792322946E-06 7.90439826654E-06 8.06406478522E-06 8.22685491713E-06 8.39304338823E-06 8.56251391870E-06 8.73552029679E-06 8.91182016963E-06 9.09190323005E-06 9.27546041220E-06 9.46286890780E-06 9.65385319687E-06 9.84893519785E-06 1.00477455241E-05 1.02507895789E-05 1.04576959568E-05 1.06690170124E-05 1.08844062831E-05 1.11043799092E-05 1.13285930446E-05 1.15573085533E-05 1.17909290599E-05 1.20289146931E-05 1.22719139095E-05 1.25197395374E-05 1.27727223377E-05 1.30305479604E-05 1.32938696915E-05 1.35622676330E-05 1.38362384748E-05 1.41157141445E-05 1.44008282230E-05 1.46915832212E-05 1.49884943134E-05 1.52910886722E-05 1.56000553764E-05 1.59150365428E-05 1.62366196653E-05 1.65644407596E-05 1.68991695207E-05 1.72403691687E-05 1.75887273912E-05 1.79438780507E-05 1.83064345238E-05 1.86760822594E-05 1.90532896547E-05 1.94382794060E-05 1.98307821335E-05 2.02315033532E-05 2.06400414969E-05 2.10569908196E-05 2.14822799339E-05 2.19162333903E-05 2.23588622079E-05 2.28106111335E-05 2.32712919897E-05 2.37414628206E-05 2.42208466300E-05 2.47102634345E-05 2.52092593075E-05 2.57185871300E-05 2.62379916292E-05 2.67680771577E-05 2.73087208898E-05 2.78603516109E-05 2.84230514227E-05 2.89973270083E-05 2.95829198493E-05 3.01806406796E-05 3.07901908902E-05 3.14120456093E-05 3.20467329259E-05 3.26939960302E-05 3.33543758962E-05 3.40281607906E-05 3.47156328416E-05 3.54167757097E-05 3.61322491659E-05 3.68620650420E-05 3.76067846534E-05 3.83663247753E-05 3.91414135209E-05 3.99319911175E-05 4.07387383500E-05 4.15615261321E-05 4.24011801817E-05 4.32575882682E-05 4.41314890552E-05 4.50228762687E-05 4.59324490109E-05 4.68601769440E-05 4.78068828370E-05 4.87725255178E-05 4.97578139828E-05 5.07627804715E-05 5.17884122386E-05 5.28344294691E-05 5.39016748904E-05 5.49906653586E-05 5.61013649183E-05 5.72347672993E-05 5.83908032654E-05 5.95704022509E-05 6.07736799159E-05 6.20014729297E-05 6.32537944909E-05 6.45316850792E-05 6.58351901797E-05 6.71651758219E-05 6.85218092261E-05 6.99061493031E-05 7.13181275034E-05 7.27589507614E-05 7.42287102000E-05 7.57281227858E-05 7.72578333022E-05 7.88186344919E-05 8.04106842557E-05 8.20351202553E-05 8.36922105103E-05 8.53829458895E-05 8.71077003700E-05 8.88673294361E-05 9.06625685040E-05 9.24939698536E-05 9.43624674945E-05 9.62685849813E-05 9.82134582972E-05 1.00197239836E-04 1.02221474418E-04 1.04286304748E-04 1.06393037304E-04 1.08542237301E-04 1.10734967221E-04 1.12971802793E-04 1.15253967323E-04 1.17582218995E-04 1.19957500675E-04 1.22380631920E-04 1.24852986543E-04 1.27375019148E-04 1.29948201693E-04 1.32573137233E-04 1.35251414302E-04 1.37983445790E-04 1.40770958434E-04 1.43614588718E-04 1.46515705561E-04 1.49475589518E-04 1.52494978299E-04 1.55575598503E-04 1.58718294590E-04 1.61924728252E-04 1.65195588850E-04 1.68532789398E-04 1.71937267270E-04 1.75410644009E-04 1.78953952942E-04 1.82569184338E-04 1.86257145429E-04 1.90019874131E-04 1.93858332970E-04 1.97774483398E-04 2.01769741400E-04 2.05845704942E-04 2.10003883223E-04 2.14246296302E-04 2.18574177132E-04 2.22989691948E-04 2.27494260479E-04 2.32089955085E-04 2.36778316653E-04 2.41561552047E-04 2.46441271443E-04 2.51419606377E-04 2.56498680902E-04 2.61680100706E-04 2.66966364338E-04 2.72359273158E-04 2.77861314417E-04 2.83474363017E-04 2.89200886750E-04 2.95042948480E-04 3.01003228198E-04 3.07083677570E-04 3.13287146964E-04 3.19615890296E-04 3.26072385702E-04 3.32659428019E-04 3.39379477023E-04 3.46235271020E-04 3.53229634893E-04 3.60365152367E-04 3.67644989886E-04 3.75071686745E-04 3.82648596123E-04 3.90378449867E-04 3.98264492401E-04 4.06309841959E-04 4.14517660885E-04 4.22891391742E-04 4.31434228133E-04 4.40149613601E-04 4.49041093536E-04 4.58112125761E-04 4.67366442619E-04 4.76807790114E-04 4.86439736843E-04 4.96266339951E-04 5.06291365158E-04 5.16518949264E-04 5.26953163419E-04 5.37598130316E-04 5.48458140332E-04 5.59537446497E-04 5.70840685905E-04 5.82372269368E-04 5.94136686854E-04 6.06138831695E-04 6.18383426209E-04 6.30875309597E-04 6.43619598522E-04 6.56621336169E-04 6.69885617318E-04 6.83418029697E-04 6.97223550337E-04 7.11308238186E-04 7.25677264019E-04 7.40336540648E-04 7.55292044269E-04 7.70549678165E-04 7.86115376201E-04 8.01995617302E-04 8.18196568960E-04 8.34724915597E-04 8.51587060912E-04 8.68789710605E-04 8.86340050510E-04 9.04244845540E-04 9.22511340629E-04 9.41146837144E-04 9.60158706906E-04 9.79554610962E-04 9.99342594389E-04 1.01952991714E-03 1.04012526205E-03 1.06113654466E-03 1.08257228711E-03 1.10444099207E-03 1.12675157449E-03 1.14951270650E-03 1.17273363655E-03 1.19642367876E-03 1.22059235293E-03 1.24524895535E-03 1.27040399558E-03 1.29606676568E-03 1.32224818052E-03 1.34895845449E-03 1.37620814908E-03 1.40400840039E-03 1.43237011545E-03 1.46130498213E-03 1.49082395399E-03 1.52093942696E-03 1.55166318803E-03 1.58300757161E-03 1.61498506927E-03 1.64760842669E-03 1.68089102488E-03 1.71484565409E-03 1.74948624802E-03 1.78482665172E-03 1.82088075415E-03 1.85766318696E-03 1.89518863201E-03 1.93347211526E-03 1.97252872283E-03 2.01237441935E-03 2.05302486038E-03 2.09449657686E-03 2.13680580964E-03 2.17996969686E-03 2.22400544077E-03 2.26893080532E-03 2.31476340981E-03 2.36152190217E-03 2.40922485715E-03 2.45789134769E-03 2.50754086320E-03 2.55819308879E-03 2.60986864995E-03 2.66258789720E-03 2.71637188491E-03 2.77124234309E-03 2.82722117823E-03 2.88433059125E-03 2.94259342279E-03 3.00203331554E-03 3.06267355250E-03 3.12453879798E-03 3.18765341245E-03 3.25204295354E-03 3.31773301665E-03 3.38474983301E-03 3.45312030053E-03 3.52287161125E-03 3.59403187069E-03 3.66662926449E-03 3.74069299417E-03 3.81625267583E-03 3.89333837444E-03 3.97198112725E-03 4.05221208779E-03 4.13406364333E-03 4.21756821349E-03 4.30275940314E-03 4.38967122509E-03 4.47833825036E-03 4.56879614193E-03 4.66108102092E-03 4.75522961062E-03 4.85127979446E-03 4.94926977392E-03 5.04923879558E-03 5.15122676209E-03 5.25527458625E-03 5.36142358345E-03 5.46971645180E-03 5.58019637149E-03 5.69290742693E-03 5.80789480966E-03 5.92520433709E-03 6.04488300705E-03 6.16697857208E-03 6.29153984377E-03 6.41861661577E-03 6.54825962939E-03 6.68052087079E-03 6.81545282179E-03 6.95310978999E-03 7.09354654832E-03 7.23681928624E-03 7.38298533077E-03 7.53210284895E-03 7.68423173342E-03 7.83943257416E-03 7.99776742104E-03 8.15929941882E-03 8.32409341587E-03 8.49221492993E-03 8.66373121178E-03 8.83871079141E-03 9.01722386731E-03 9.19933985260E-03 9.38513826314E-03 9.57467924491E-03 9.76805776363E-03 9.96533195826E-03 1.01665955170E-02 1.03719143536E-02 1.05813916226E-02 1.07950912878E-02 1.10131005624E-02 1.12355193503E-02 1.14624265495E-02 1.16939096038E-02 1.19300746386E-02 1.21710050184E-02 1.24167941195E-02 1.26675489828E-02 1.29233706003E-02 1.31843501111E-02 1.34505983965E-02 1.37222280426E-02 1.39993345382E-02 1.42820377398E-02 1.45704451066E-02 1.48646799796E-02 1.51648475632E-02 1.54710799938E-02 1.57834888547E-02 1.61022067094E-02 1.64273571130E-02 1.67590730981E-02 1.70974775391E-02 1.74427174504E-02 1.77949259096E-02 1.81542388397E-02 1.85208101439E-02 1.88947719112E-02 1.92762874319E-02 1.96654963256E-02 2.00625666266E-02 2.04676437863E-02 2.08808997546E-02 2.13024935891E-02 2.17325937283E-02 2.21713749466E-02 2.26190081989E-02 2.30756753487E-02 2.35415554529E-02 2.40168351302E-02 2.45017085143E-02 2.49963565005E-02 2.55009928176E-02 2.60158040242E-02 2.65410052740E-02 2.70768020846E-02 2.76234009311E-02 2.81810326934E-02 2.87499139138E-02 2.93302643106E-02 2.99223258380E-02 3.05263274189E-02 3.11425132308E-02 3.17711233978E-02 3.24124153733E-02 3.30666383917E-02 3.37340564657E-02 3.44149333176E-02 3.51095408587E-02 3.58181535939E-02 3.65410576278E-02 3.72785335389E-02 3.80308847479E-02 3.87984008817E-02 3.95813913768E-02 4.03801666832E-02 4.11950468121E-02 4.20263515788E-02 4.28744159103E-02 4.37395732823E-02 4.46221670684E-02 4.55225515982E-02 4.64410817560E-02 4.73781243689E-02 4.83340498874E-02 4.93092353751E-02 5.03040756266E-02 5.13189576920E-02 5.23542893388E-02 5.34104796147E-02 5.44879462819E-02 5.55871200162E-02 5.67084340210E-02 5.78523341852E-02 5.90192735998E-02 6.02097164259E-02 6.14241320722E-02 6.26630026923E-02 6.39268209605E-02 6.52160848098E-02 6.65313061274E-02 6.78730065623E-02 6.92417165260E-02 7.06379755872E-02 7.20623410865E-02 7.35153728538E-02 7.49976465984E-02 7.65097479269E-02 7.80522767634E-02 7.96258412121E-02 8.12310623524E-02 8.28685762727E-02 8.45390293276E-02 8.62430803864E-02 8.79814018404E-02 8.97546822489E-02 9.15636175039E-02 9.34089252436E-02 9.52913306583E-02 9.72115751890E-02 9.91704187666E-02 1.01168629114E-01 1.03206998192E-01 1.05286323315E-01 1.07407426969E-01 1.09571141983E-01 1.11778320549E-01 1.14029828610E-01 1.16326554254E-01 1.18669396880E-01 1.21059279255E-01 1.23497138505E-01 1.25983931893E-01 1.28520635033E-01 1.31108242904E-01 1.33747770233E-01 1.36440251779E-01 1.39186740431E-01 1.41988314251E-01 1.44846067841E-01 1.47761119978E-01 1.50734610160E-01 1.53767701145E-01 1.56861577832E-01 1.60017447767E-01 1.63236542742E-01 1.66520119722E-01 1.69869457044E-01 1.73285861343E-01 1.76770662445E-01 1.80325217844E-01 1.83950909336E-01 1.87649146776E-01 1.91421368603E-01 1.95269038111E-01 1.99193649968E-01 2.03196725603E-01 2.07279817904E-01 2.11444507162E-01 2.15692407091E-01 2.20025159682E-01 2.24444448501E-01 2.28951947823E-01 2.33549460999E-01 2.38238698018E-01 2.43021501821E-01 2.47899693861E-01 2.52875186788E-01 2.57949840679E-01 2.63125661947E-01 2.68404596949E-01 2.73788688274E-01 2.79280006763E-01 2.84880624377E-01 2.90592727031E-01 2.96418450165E-01 3.02360080817E-01 3.08419822364E-01 3.14600022193E-01 3.20903015486E-01 3.27331221351E-01 3.33887052634E-01 3.40573032827E-01 3.47391656998E-01 3.54345551247E-01 3.61437304405E-01 3.68669629571E-01 3.76045231317E-01 3.83566919115E-01 3.91237480421E-01 3.99059852152E-01 4.07036928867E-01 4.15171723526E-01 4.23467285604E-01 4.31926705343E-01 4.40553133564E-01 4.49349829775E-01 4.58320007151E-01 4.67467065655E-01 4.76794354043E-01 4.86305342819E-01 4.96003564049E-01 5.05892589244E-01 5.15976058631E-01 5.26257708403E-01 5.36741286828E-01 5.47430673960E-01 5.58329753936E-01 5.69442530342E-01 5.80773043231E-01 5.92325436903E-01 6.04103884299E-01 6.16112680864E-01 6.28356156194E-01 6.40838733719E-01 6.53564918857E-01 6.66539273131E-01 6.79766466447E-01 6.93251212430E-01 7.06998337539E-01 7.21012738770E-01 7.35299377629E-01 7.49863331217E-01 7.64709737370E-01 7.79843827937E-01 7.95270923980E-01 8.10996423990E-01 8.27025830778E-01 8.43364718472E-01 8.60018769987E-01 8.76993743820E-01 8.94295504146E-01 9.11929990706E-01 9.29903262563E-01 9.48221455072E-01 9.66890795955E-01 9.85917635900E-01 1.00530837992E+00 1.02506958891E+00 1.04520785360E+00 1.06572994023E+00 1.08664264466E+00 1.10795291164E+00 1.12966776845E+00 1.15179434923E+00 1.17433988414E+00 1.19731171422E+00 1.22071728875E+00 1.24456413418E+00 1.26885992241E+00 1.29361239151E+00 1.31882940837E+00 1.34451893001E+00 1.37068902567E+00 1.39734787034E+00 1.42450373704E+00 1.45216500199E+00 1.48034015766E+00 1.50903778047E+00 1.53826656910E+00 1.56803530574E+00 1.59835288915E+00 1.62922830800E+00 1.66067065466E+00 1.69268912073E+00 1.72529298646E+00 1.75849164045E+00 1.79229455086E+00 1.82671128780E+00 1.86175150779E+00 1.89742494944E+00 1.93374144799E+00 1.97071091315E+00 2.00834333266E+00 2.04664878044E+00 2.08563739868E+00 2.12531939286E+00 2.16570505381E+00 2.20680471557E+00 2.24862878121E+00 2.29118770626E+00 2.33449199686E+00 2.37855219648E+00 2.42337889887E+00 2.46898271946E+00 2.51537430737E+00 2.56256433382E+00 2.61056347607E+00 2.65938242390E+00 2.70903186688E+00 2.75952248213E+00 2.81086492888E+00 2.86306984387E+00 2.91614782601E+00 2.97010942395E+00 3.02496514055E+00 3.08072539917E+00 3.13740055597E+00 3.19500086810E+00 3.25353649439E+00 3.31301747529E+00 3.37345372134E+00 3.43485499879E+00 3.49723091034E+00 3.56059089079E+00 3.62494417272E+00 3.69029978509E+00 3.75666652605E+00 3.82405294970E+00 3.89246733849E+00 3.96191769067E+00 4.03241169677E+00 4.10395671084E+00 4.17655973958E+00 4.25022740197E+00 4.32496592064E+00 4.40078108345E+00 4.47767821997E+00 4.55566217593E+00 4.63473727860E+00 4.71490730998E+00 4.79617547425E+00 4.87854436090E+00 4.96201591902E+00 5.04659141026E+00 5.13227138369E+00 5.21905562917E+00 5.30694314084E+00 5.39593207860E+00 5.48601972095E+00 5.57720242622E+00 5.66947558536E+00 5.76283357226E+00 5.85726970322E+00 5.95277618016E+00 6.04934404163E+00 6.14696311354E+00 6.24562194802E+00 6.34530777530E+00 6.44600643861E+00 6.54770234239E+00 6.65037838367E+00 6.75401589708E+00 6.85859458487E+00 6.96409245482E+00 7.07048575079E+00 7.17774888387E+00 7.28585436316E+00 7.39477272029E+00 7.50447243908E+00 7.61491987670E+00 7.72607918804E+00 7.83791224799E+00 7.95037856814E+00 8.06343521850E+00 8.17703674264E+00 8.29113507357E+00 8.40567944833E+00 8.52061632059E+00 8.63588927535E+00 8.75143893519E+00 8.86720287562E+00 8.98311553118E+00 9.09910810619E+00 9.21510848148E+00 9.33104112331E+00 9.44682699178E+00 9.56238344706E+00 9.67762415795E+00 9.79245901066E+00 9.90679401784E+00 1.00205312269E+01 1.01335686326E+01 1.02458000881E+01 1.03571152198E+01 1.04673993415E+01 1.05765333745E+01 1.06843937670E+01 1.07908524172E+01 1.08957766027E+01 1.09990289079E+01 1.11004671617E+01 1.11999443760E+01 1.12973086886E+01 1.13924033180E+01 1.14850665134E+01 1.15751315234E+01 1.16624265618E+01 1.17467747882E+01 1.18279942921E+01 1.19058980896E+01 1.19802941270E+01 1.20509852973E+01 1.21177694650E+01 1.21804395048E+01 1.22387833515E+01 1.22925840656E+01 1.23416199085E+01 1.23856644382E+01 1.24244866162E+01 1.24578509352E+01 1.24855175608E+01 1.25072424948E+01 1.25227777574E+01 1.25318715899E+01 1.25342686797E+01 1.25297104085E+01 1.25179351252E+01 1.24986784437E+01 1.24716735693E+01 1.24366516507E+01 1.23933421663E+01 1.23414733377E+01 1.22807725797E+01 1.22109669835E+01 1.21317838393E+01 1.20429511945E+01 1.19441984573E+01 1.18352570415E+01 1.17158610586E+01 1.15857480586E+01 1.14446598255E+01 1.12923432230E+01 1.11285511062E+01 1.09530432893E+01 1.07655875856E+01 1.05659609150E+01 1.03539504896E+01 1.01293550787E+01 9.89198636263E+00 9.64167037461E+00 9.37824904448E+00 9.10158184476E+00 8.81154754703E+00 8.50804609806E+00 8.19100061845E+00 7.86035953378E+00 7.51609884502E+00 7.15822454331E+00 6.78677517835E+00 6.40182458293E+00 6.00348476450E+00 5.59190896153E+00 5.16729487332E+00 4.72988806167E+00 4.27998552573E+00 3.81793944504E+00 3.34416108741E+00 2.85912486759E+00 2.36337254953E+00 1.85751756570E+00 1.34224943524E+00 8.18338244753E-01 2.86639159389E-01 -2.51903090184E-01 -7.96249792915E-01 -1.34526398745E+00 -1.89770640681E+00 -2.45223173427E+00 -3.00738526326E+00 -3.56160008371E+00 -4.11319491508E+00 -4.66037273465E+00 -5.20122035293E+00 -5.73370910779E+00 -6.25569686001E+00 -6.76493148393E+00 -7.25905605969E+00 -7.73561598008E+00 -8.19206818909E+00 -8.62579277269E+00 -9.03410711964E+00 -9.41428285775E+00 -9.76356576436E+00 -1.00791988169E+01 -1.03584485302E+01 -1.05986346819E+01 -1.07971634777E+01 -1.09515641514E+01 -1.10595289184E+01 -1.11189561195E+01 -1.11279962902E+01 -1.10851007810E+01 -1.09890724262E+01 -1.08391176173E+01 -1.06348989827E+01 -1.03765876992E+01 -1.00649142839E+01 -9.70121650282E+00 -9.28748282363E+00 -8.82638960371E+00 -8.32132995168E+00 -7.77643193689E+00 -7.19656352568E+00 -6.58732131266E+00 -5.95499977027E+00 -5.30653737218E+00 -4.64943552876E+00 -3.99164581773E+00 -3.34142059964E+00 -2.70712043680E+00 -2.09698212784E+00 -1.51798625708E+00 -9.74308940195E-01 -4.62263897243E-01 -4.53738759670E-02 4.75160351498E-03 -2.49564863525E-04 2.35912877423E-04 1.75983399898E-04 1.70907382962E-04 1.60921646834E-04 1.51947544206E-04 1.43370791352E-04 1.35228558706E-04 1.27494373136E-04 2 2 Beta L 1174 8.92065584701E-13 9.19233026338E-13 9.47227839749E-13 9.76075222156E-13 1.00580113815E-12 1.03643234306E-12 1.06799640704E-12 1.10052173988E-12 1.13403761657E-12 1.16857420367E-12 1.20416258643E-12 1.24083479681E-12 1.27862384226E-12 1.31756373547E-12 1.35768952499E-12 1.39903732672E-12 1.44164435649E-12 1.48554896349E-12 1.53079066484E-12 1.57741018112E-12 1.62544947303E-12 1.67495177920E-12 1.72596165503E-12 1.77852501285E-12 1.83268916324E-12 1.88850285758E-12 1.94601633198E-12 2.00528135243E-12 2.06635126147E-12 2.12928102611E-12 2.19412728742E-12 2.26094841139E-12 2.32980454155E-12 2.40075765306E-12 2.47387160852E-12 2.54921221541E-12 2.62684728537E-12 2.70684669521E-12 2.78928244980E-12 2.87422874687E-12 2.96176204382E-12 3.05196112654E-12 3.14490718029E-12 3.24068386279E-12 3.33937737951E-12 3.44107656130E-12 3.54587294426E-12 3.65386085223E-12 3.76513748161E-12 3.87980298888E-12 3.99796058073E-12 4.11971660697E-12 4.24518065625E-12 4.37446565467E-12 4.50768796747E-12 4.64496750372E-12 4.78642782427E-12 4.93219625295E-12 5.08240399119E-12 5.23718623609E-12 5.39668230213E-12 5.56103574652E-12 5.73039449847E-12 5.90491099227E-12 6.08474230456E-12 6.27005029566E-12 6.46100175527E-12 6.65776855258E-12 6.86052779100E-12 7.06946196753E-12 7.28475913703E-12 7.50661308150E-12 7.73522348444E-12 7.97079611066E-12 8.21354299143E-12 8.46368261531E-12 8.72144012487E-12 8.98704751925E-12 9.26074386303E-12 9.54277550142E-12 9.83339628190E-12 1.01328677828E-11 1.04414595487E-11 1.07594493330E-11 1.10871233480E-11 1.14247765224E-11 1.17727127669E-11 1.21312452475E-11 1.25006966678E-11 1.28813995589E-11 1.32736965790E-11 1.36779408221E-11 1.40944961353E-11 1.45237374463E-11 1.49660511014E-11 1.54218352128E-11 1.58915000168E-11 1.63754682436E-11 1.68741754972E-11 1.73880706477E-11 1.79176162355E-11 1.84632888875E-11 1.90255797457E-11 1.96049949099E-11 2.02020558930E-11 2.08173000900E-11 2.14512812623E-11 2.21045700357E-11 2.27777544143E-11 2.34714403093E-11 2.41862520850E-11 2.49228331202E-11 2.56818463876E-11 2.64639750502E-11 2.72699230767E-11 2.81004158748E-11 2.89562009440E-11 2.98380485486E-11 3.07467524111E-11 3.16831304261E-11 3.26480253972E-11 3.36423057949E-11 3.46668665388E-11 3.57226298026E-11 3.68105458446E-11 3.79315938626E-11 3.90867828755E-11 4.02771526314E-11 4.15037745434E-11 4.27677526541E-11 4.40702246291E-11 4.54123627810E-11 4.67953751248E-11 4.82205064650E-11 4.96890395159E-11 5.12022960565E-11 5.27616381198E-11 5.43684692188E-11 5.60242356101E-11 5.77304275952E-11 5.94885808619E-11 6.13002778670E-11 6.31671492600E-11 6.50908753512E-11 6.70731876240E-11 6.91158702931E-11 7.12207619108E-11 7.33897570218E-11 7.56248078680E-11 7.79279261460E-11 8.03011848178E-11 8.27467199763E-11 8.52667327683E-11 8.78634913754E-11 9.05393330556E-11 9.32966662470E-11 9.61379727357E-11 9.90658098892E-11 1.02082812959E-10 1.05191697450E-10 1.08395261571E-10 1.11696388743E-10 1.15098050204E-10 1.18603307681E-10 1.22215316139E-10 1.25937326632E-10 1.29772689220E-10 1.33724855988E-10 1.37797384153E-10 1.41993939265E-10 1.46318298507E-10 1.50774354094E-10 1.55366116777E-10 1.60097719453E-10 1.64973420883E-10 1.69997609527E-10 1.75174807495E-10 1.80509674614E-10 1.86007012624E-10 1.91671769502E-10 1.97509043910E-10 2.03524089789E-10 2.09722321087E-10 2.16109316631E-10 2.22690825147E-10 2.29472770437E-10 2.36461256710E-10 2.43662574075E-10 2.51083204204E-10 2.58729826165E-10 2.66609322434E-10 2.74728785089E-10 2.83095522195E-10 2.91717064380E-10 3.00601171613E-10 3.09755840191E-10 3.19189309935E-10 3.28910071602E-10 3.38926874535E-10 3.49248734532E-10 3.59884941965E-10 3.70845070137E-10 3.82138983905E-10 3.93776848552E-10 4.05769138942E-10 4.18126648947E-10 4.30860501159E-10 4.43982156904E-10 4.57503426559E-10 4.71436480180E-10 4.85793858454E-10 5.00588483991E-10 5.15833672952E-10 5.31543147038E-10 5.47731045834E-10 5.64411939543E-10 5.81600842095E-10 5.99313224661E-10 6.17565029583E-10 6.36372684715E-10 6.55753118218E-10 6.75723773790E-10 6.96302626368E-10 7.17508198309E-10 7.39359576059E-10 7.61876427333E-10 7.85079018816E-10 8.08988234408E-10 8.33625594015E-10 8.59013272924E-10 8.85174121761E-10 9.12131687054E-10 9.39910232431E-10 9.68534760460E-10 9.98031035146E-10 1.02842560513E-09 1.05974582757E-09 1.09201989279E-09 1.12527684961E-09 1.15954663156E-09 1.19486008374E-09 1.23124899064E-09 1.26874610474E-09 1.30738517597E-09 1.34720098210E-09 1.38822936005E-09 1.43050723812E-09 1.47407266925E-09 1.51896486529E-09 1.56522423222E-09 1.61289240661E-09 1.66201229303E-09 1.71262810269E-09 1.76478539323E-09 1.81853110974E-09 1.87391362700E-09 1.93098279299E-09 1.98978997383E-09 2.05038809995E-09 2.11283171375E-09 2.17717701869E-09 2.24348192989E-09 2.31180612625E-09 2.38221110416E-09 2.45476023284E-09 2.52951881141E-09 2.60655412764E-09 2.68593551851E-09 2.76773443262E-09 2.85202449452E-09 2.93888157096E-09 3.02838383916E-09 3.12061185721E-09 3.21564863654E-09 3.31357971668E-09 3.41449324220E-09 3.51848004208E-09 3.62563371147E-09 3.73605069589E-09 3.84983037809E-09 3.96707516745E-09 4.08789059220E-09 4.21238539437E-09 4.34067162768E-09 4.47286475841E-09 4.60908376929E-09 4.74945126662E-09 4.89409359063E-09 5.04314092916E-09 5.19672743487E-09 5.35499134599E-09 5.51807511071E-09 5.68612551543E-09 5.85929381685E-09 6.03773587813E-09 6.22161230916E-09 6.41108861113E-09 6.60633532551E-09 6.80752818751E-09 7.01484828428E-09 7.22848221790E-09 7.44862227332E-09 7.67546659145E-09 7.90921934747E-09 8.15009093464E-09 8.39829815363E-09 8.65406440770E-09 8.91761990372E-09 9.18920185943E-09 9.46905471691E-09 9.75743036260E-09 1.00545883541E-08 1.03607961535E-08 1.06763293686E-08 1.10014720006E-08 1.13365166997E-08 1.16817650288E-08 1.20375277347E-08 1.24041250278E-08 1.27818868705E-08 1.31711532737E-08 1.35722746036E-08 1.39856118965E-08 1.44115371837E-08 1.48504338268E-08 1.53026968623E-08 1.57687333575E-08 1.62489627767E-08 1.67438173587E-08 1.72537425060E-08 1.77791971857E-08 1.83206543424E-08 1.88786013241E-08 1.94535403206E-08 2.00459888159E-08 2.06564800536E-08 2.12855635169E-08 2.19338054235E-08 2.26017892346E-08 2.32901161808E-08 2.39994058029E-08 2.47302965091E-08 2.54834461506E-08 2.62595326127E-08 2.70592544256E-08 2.78833313929E-08 2.87325052394E-08 2.96075402787E-08 3.05092241016E-08 3.14383682841E-08 3.23958091187E-08 3.33824083666E-08 3.43990540339E-08 3.54466611700E-08 3.65261726920E-08 3.76385602331E-08 3.87848250170E-08 3.99659987594E-08 4.11831445961E-08 4.24373580406E-08 4.37297679694E-08 4.50615376386E-08 4.64338657307E-08 4.78479874334E-08 4.93051755516E-08 5.08067416528E-08 5.23540372476E-08 5.39484550065E-08 5.55914300127E-08 5.72844410546E-08 5.90290119561E-08 6.08267129487E-08 6.26791620842E-08 6.45880266919E-08 6.65550248783E-08 6.85819270745E-08 7.06705576289E-08 7.28227964498E-08 7.56860013943E-08 7.79761386003E-08 7.97336748333E-08 8.21613021016E-08 8.46615765449E-08 8.72397687630E-08 8.98944891566E-08 9.26322503761E-08 9.54513010220E-08 9.83571820306E-08 1.01352153339E-07 1.04436209729E-07 1.07616260406E-07 1.10891712674E-07 1.14268789675E-07 1.17746257302E-07 1.21332409956E-07 1.25026442608E-07 1.28831598119E-07 1.32754936443E-07 1.36795995379E-07 1.40961313611E-07 1.45251691354E-07 1.49675124747E-07 1.54232322624E-07 1.58926621146E-07 1.63765771286E-07 1.68751061403E-07 1.73889435874E-07 1.79185164891E-07 1.84640667003E-07 1.90261222303E-07 1.96054750518E-07 2.02022984240E-07 2.08174023431E-07 2.14512715195E-07 2.21044113691E-07 2.27775378853E-07 2.34710837236E-07 2.41856579046E-07 2.49220297679E-07 2.56808238532E-07 2.64628601694E-07 2.72685312923E-07 2.80988278574E-07 2.89545265489E-07 2.98358595542E-07 3.07445637711E-07 3.16805381461E-07 3.26453691532E-07 3.36393931738E-07 3.46634643744E-07 3.57189946813E-07 3.68068715392E-07 3.79273318833E-07 3.90822079360E-07 4.02724233489E-07 4.14987278885E-07 4.27623148142E-07 4.40644413465E-07 4.54062039379E-07 4.67887384139E-07 4.82136595744E-07 4.96815157402E-07 5.11944109213E-07 5.27535930754E-07 5.43598406066E-07 5.60151678481E-07 5.77205602605E-07 5.94786684650E-07 6.12894644818E-07 6.31559963202E-07 6.50790277516E-07 6.70610021026E-07 6.91028194067E-07 7.12073047272E-07 7.33753228794E-07 7.56101050699E-07 7.79122610394E-07 8.02848397795E-07 8.27296439774E-07 8.52490360055E-07 8.78448320708E-07 9.05198006911E-07 9.32765033969E-07 9.61170806727E-07 9.90437946184E-07 1.02059785292E-06 1.05167638721E-06 1.08370154864E-06 1.11670515296E-06 1.15071177001E-06 1.18575285135E-06 1.22186086865E-06 1.25906784574E-06 1.29740938855E-06 1.33691884841E-06 1.37763167305E-06 1.41958515273E-06 1.46281436410E-06 1.50736235093E-06 1.55326486405E-06 1.60056510274E-06 1.64930340127E-06 1.69953224816E-06 1.75128324862E-06 1.80461659201E-06 1.85956943514E-06 1.91620197147E-06 1.97455473607E-06 2.03468387465E-06 2.09664975443E-06 2.16049471427E-06 2.22629080999E-06 2.29408591514E-06 2.36394843456E-06 2.43593726668E-06 2.51011808892E-06 2.58655697385E-06 2.66532888758E-06 2.74649419857E-06 2.83013055629E-06 2.91631856634E-06 3.00513304221E-06 3.09664869305E-06 3.19094572025E-06 3.28812263054E-06 3.38825651579E-06 3.49143819580E-06 3.59776652162E-06 3.70732861809E-06 3.82022664796E-06 3.93656650173E-06 4.05644916343E-06 4.17997832799E-06 4.30727411413E-06 4.43844774885E-06 4.57360672888E-06 4.71289282645E-06 4.85641178338E-06 5.00430701879E-06 5.15670375634E-06 5.31374465606E-06 5.47556649941E-06 5.64231726484E-06 5.81414502798E-06 5.99120739310E-06 6.17365433316E-06 6.36166493289E-06 6.55539737057E-06 6.75503360300E-06 6.96074707608E-06 7.17272514764E-06 7.39115790327E-06 7.61624363124E-06 7.84818696032E-06 8.08718734859E-06 8.33346947044E-06 8.58725682114E-06 8.84876247886E-06 9.11824945587E-06 9.39591703136E-06 9.68207029079E-06 9.97691021810E-06 1.02807526976E-05 1.05938278683E-05 1.09164451428E-05 1.12488968321E-05 1.15914580624E-05 1.19444587865E-05 1.23082125001E-05 1.26830329028E-05 1.30692802663E-05 1.34672842097E-05 1.38774061843E-05 1.43000236784E-05 1.47355043388E-05 1.51842520389E-05 1.56466634225E-05 1.61231608322E-05 1.66141607714E-05 1.71201252398E-05 1.76414796098E-05 1.81787289792E-05 1.87323329279E-05 1.93027887552E-05 1.98906282158E-05 2.04963617444E-05 2.11205417164E-05 2.17637382374E-05 2.24265081758E-05 2.31094770226E-05 2.38132267891E-05 2.45384197705E-05 2.52857021385E-05 2.60557266943E-05 2.68492071589E-05 2.76668525177E-05 2.85093977229E-05 2.93775899445E-05 3.02722365598E-05 3.11941176828E-05 3.21440731994E-05 3.31229568541E-05 3.41316570303E-05 3.51710723750E-05 3.62421362214E-05 3.73458136097E-05 3.84831126498E-05 3.96550327242E-05 4.08626477002E-05 4.21070366246E-05 4.33893125535E-05 4.47106499892E-05 4.60722115511E-05 4.74752342796E-05 4.89209902536E-05 5.04107731120E-05 5.19459176374E-05 5.35278054886E-05 5.51578741830E-05 5.68375666516E-05 5.85684304413E-05 6.03519821310E-05 6.21898558155E-05 6.40836914051E-05 6.60351990536E-05 6.80461269746E-05 7.01183082557E-05 7.22535626171E-05 7.44538602625E-05 7.67211459807E-05 7.90574804514E-05 8.14649554271E-05 8.39457447869E-05 8.65020628129E-05 8.91362392811E-05 9.18505980315E-05 9.46476412231E-05 9.75298485425E-05 1.00499815246E-04 1.03560213157E-04 1.06713823032E-04 1.09963446242E-04 1.13312007436E-04 1.16762547130E-04 1.20318151794E-04 1.23982022639E-04 1.27757462092E-04 1.31647856063E-04 1.35656715753E-04 1.39787630029E-04 1.44044351490E-04 1.48430663351E-04 1.52950546474E-04 1.57608040365E-04 1.62407365814E-04 1.67352808755E-04 1.72448837782E-04 1.77700037472E-04 1.83111126506E-04 1.88686989397E-04 1.94432598062E-04 2.00353168765E-04 2.06453996944E-04 2.12740580767E-04 2.19218567319E-04 2.25893813493E-04 2.32772299942E-04 2.39860199292E-04 2.47163916694E-04 2.54689989830E-04 2.62445227917E-04 2.70436591168E-04 2.78671247050E-04 2.87156610600E-04 2.95900346416E-04 3.04910245617E-04 3.14194481007E-04 3.23761398728E-04 3.33619556063E-04 3.43777860252E-04 3.54245442614E-04 3.65031668807E-04 3.76146303593E-04 3.87599348656E-04 3.99400992962E-04 4.11562134268E-04 4.24091709329E-04 4.37020278437E-04 4.50171351564E-04 4.63660831084E-04 4.82140811367E-04 4.83193995796E-04 5.19472266160E-04 5.13553690969E-04 5.37763866531E-04 5.69680655231E-04 5.51158045429E-04 6.11972734299E-04 5.92413581912E-04 6.41923704976E-04 6.23735940108E-04 6.85446394595E-04 6.72992560321E-04 7.07730497609E-04 7.32660479918E-04 7.46480769170E-04 7.71331350312E-04 7.98955081960E-04 8.20761757894E-04 8.40181484000E-04 8.75413038129E-04 8.98143809722E-04 9.24322900003E-04 9.51103100344E-04 9.82926978794E-04 1.01680329935E-03 1.03173127488E-03 1.08564259137E-03 1.10361629451E-03 1.13744400991E-03 1.17850466773E-03 1.21169552239E-03 1.25316982944E-03 1.27934437773E-03 1.32503539402E-03 1.37339995760E-03 1.40043094978E-03 1.45136673087E-03 1.49505093695E-03 1.53978010931E-03 1.59085386901E-03 1.62887194931E-03 1.68980770382E-03 1.73260479166E-03 1.79406848814E-03 1.83694853533E-03 1.90488716363E-03 1.95480635136E-03 2.01912930780E-03 2.07249105206E-03 2.14371728810E-03 2.21337819376E-03 2.27588460688E-03 2.32785752756E-03 2.42576040285E-03 2.48404461992E-03 2.56506737126E-03 2.64843901364E-03 2.70421118631E-03 2.82094887978E-03 2.89315177330E-03 2.96415255755E-03 3.08318763451E-03 3.15099351538E-03 3.25891930948E-03 3.36506792750E-03 3.45268300705E-03 3.56332322499E-03 3.68517582832E-03 3.77294290387E-03 3.90689251803E-03 4.02531024792E-03 4.13694150929E-03 4.25279235090E-03 4.41211991308E-03 4.53488349707E-03 4.65287122077E-03 4.82840981276E-03 4.94454901842E-03 5.11652833994E-03 5.25878983081E-03 5.42514207576E-03 5.58636094562E-03 5.75888384517E-03 5.93752475283E-03 6.10457283668E-03 6.31329805611E-03 6.48496979512E-03 6.68356383629E-03 6.90547327366E-03 7.09408876278E-03 7.31993420274E-03 7.53712338223E-03 7.77258387787E-03 8.00729588250E-03 8.24906968293E-03 8.49726346081E-03 8.76613346219E-03 9.02050970996E-03 9.30089245600E-03 9.58309761364E-03 9.87185698355E-03 1.01742779426E-02 1.04850505168E-02 1.08041888613E-02 1.11226022986E-02 1.14740563591E-02 1.18153706215E-02 1.21764600431E-02 1.25445423391E-02 1.29312764812E-02 1.33198276324E-02 1.37239872797E-02 1.41412534226E-02 1.45719247812E-02 1.50166081992E-02 1.54708019885E-02 1.59399893397E-02 1.64247828042E-02 1.69251399518E-02 1.74385315815E-02 1.79653663270E-02 1.85150229817E-02 1.90762082703E-02 1.96548017429E-02 2.02516248636E-02 2.08686193459E-02 2.14997674225E-02 2.21537205633E-02 2.28254748061E-02 2.35187930229E-02 2.42325212013E-02 2.49704738191E-02 2.57245784552E-02 2.65077789961E-02 2.73116191637E-02 2.81416072405E-02 2.89909195033E-02 2.98772007996E-02 3.07791367886E-02 3.17147336176E-02 3.26757359313E-02 3.36676231614E-02 3.46881006205E-02 3.57415082596E-02 3.68241990095E-02 3.79396906552E-02 3.90918262530E-02 4.02758478806E-02 4.14985201843E-02 4.27541717956E-02 4.40515646893E-02 4.53851393614E-02 4.67612555316E-02 4.81786734932E-02 4.96367385532E-02 5.11417762585E-02 5.26899235530E-02 5.42861419216E-02 5.59299557644E-02 5.76236458953E-02 5.93674650082E-02 6.11663102604E-02 6.30155459084E-02 6.49241483465E-02 6.68877093276E-02 6.89129611614E-02 7.09967066955E-02 7.31440307289E-02 7.53571767249E-02 7.76351981951E-02 7.99831510974E-02 8.24004790798E-02 8.48915965108E-02 8.74571272483E-02 9.00999697054E-02 9.28221115617E-02 9.56257908112E-02 9.85142844488E-02 1.01488755874E-01 1.04553092459E-01 1.07709530253E-01 1.10960320916E-01 1.14308141595E-01 1.17757640698E-01 1.21309117420E-01 1.24968103453E-01 1.28735663445E-01 1.32617471987E-01 1.36613692858E-01 1.40731260889E-01 1.44970474995E-01 1.49337465436E-01 1.53834592499E-01 1.58465917362E-01 1.63235995335E-01 1.68148045249E-01 1.73207097262E-01 1.78416621032E-01 1.83781779299E-01 1.89306812379E-01 1.94996270960E-01 2.00855152023E-01 2.06888633316E-01 2.13101381420E-01 2.19498909929E-01 2.26086547253E-01 2.32869960909E-01 2.39854602802E-01 2.47046681234E-01 2.54451759751E-01 2.62076776405E-01 2.69927045016E-01 2.78010458577E-01 2.86332469499E-01 2.94900851101E-01 3.03722321070E-01 3.12804444511E-01 3.22154343644E-01 3.31780469105E-01 3.41690095792E-01 3.51891489479E-01 3.62393286905E-01 3.73204054664E-01 3.84332494611E-01 3.95787807307E-01 4.07579199802E-01 4.19716646357E-01 4.32209402333E-01 4.45068157155E-01 4.58302934667E-01 4.71924771213E-01 4.85944066498E-01 5.00372790221E-01 5.15221711691E-01 5.30503425964E-01 5.46229568141E-01 5.62412964124E-01 5.79066282826E-01 5.96202585310E-01 6.13835571204E-01 6.31979138827E-01 6.50647010443E-01 6.69854527342E-01 6.89615829693E-01 7.09946910679E-01 7.30863077725E-01 7.52380631675E-01 7.74515886157E-01 7.97286095112E-01 8.20708353521E-01 8.44800593216E-01 8.69580852564E-01 8.95068055501E-01 9.21281038862E-01 9.48239683501E-01 9.75963828248E-01 1.00447404825E+00 1.03379149911E+00 1.06393762114E+00 1.09493426013E+00 1.12680430760E+00 1.15957051871E+00 1.19325662423E+00 1.22788672927E+00 1.26348540425E+00 1.30007800574E+00 1.33769012600E+00 1.37634832033E+00 1.41607923366E+00 1.45691052007E+00 1.49887020878E+00 1.54198687849E+00 1.58628979389E+00 1.63180882121E+00 1.67857437641E+00 1.72661749362E+00 1.77596980450E+00 1.82666359187E+00 1.87873169898E+00 1.93220765372E+00 1.98712548476E+00 2.04351992965E+00 2.10142635026E+00 2.16088056219E+00 2.22191924109E+00 2.28457940885E+00 2.34889881885E+00 2.41491582448E+00 2.48266928635E+00 2.55219870355E+00 2.62354407139E+00 2.69674599590E+00 2.77184552802E+00 2.84888440025E+00 2.92790461195E+00 3.00894884299E+00 3.09206013896E+00 3.17728197121E+00 3.26465824945E+00 3.35423323763E+00 3.44605158767E+00 3.54015816642E+00 3.63659822389E+00 3.73541717622E+00 3.83666064678E+00 3.94037437566E+00 4.04660426370E+00 4.15539616607E+00 4.26679594074E+00 4.38084941234E+00 4.49760215208E+00 4.61709965074E+00 4.73938693294E+00 4.86450879391E+00 4.99250947604E+00 5.12343268470E+00 5.25732149452E+00 5.39421819115E+00 5.53416423583E+00 5.67720004395E+00 5.82336501504E+00 5.97269725618E+00 6.12523351025E+00 6.28100907001E+00 6.44005748411E+00 6.60241055997E+00 6.76809806827E+00 6.93714765349E+00 7.10958459348E+00 7.28543165606E+00 7.46470884001E+00 7.64743323326E+00 7.83361870507E+00 8.02327577689E+00 8.21641129003E+00 8.41302820056E+00 8.61312531197E+00 8.81669698929E+00 9.02373288187E+00 9.23421763316E+00 9.44813055152E+00 9.66544531986E+00 9.88612963615E+00 1.01101448866E+01 1.03374457929E+01 1.05679800267E+01 1.08016878465E+01 1.10385017159E+01 1.12783458546E+01 1.15211358893E+01 1.17667783709E+01 1.20151703722E+01 1.22661990249E+01 1.25197410572E+01 1.27756623460E+01 1.30338174172E+01 1.32940489658E+01 1.35561873757E+01 1.38200501979E+01 1.40854416619E+01 1.43521521528E+01 1.46199577059E+01 1.48886194858E+01 1.51578832685E+01 1.54274789338E+01 1.56971199461E+01 1.59665028581E+01 1.62353067998E+01 1.65031930093E+01 1.67698043424E+01 1.70347648272E+01 1.72976792225E+01 1.75581326037E+01 1.78156899767E+01 1.80698959184E+01 1.83202742628E+01 1.85663278149E+01 1.88075381155E+01 1.90433652586E+01 1.92732477617E+01 1.94966024951E+01 1.97128246866E+01 1.99212879944E+01 2.01213446662E+01 2.03123257821E+01 2.04935415989E+01 2.06642819967E+01 2.08238170378E+01 2.09713976475E+01 2.11062564235E+01 2.12276085861E+01 2.13346530723E+01 2.14265737976E+01 2.15025410683E+01 2.15617131906E+01 2.16032382469E+01 2.16262560803E+01 2.16299004908E+01 2.16133016177E+01 2.15755885867E+01 2.15158923628E+01 2.14333488433E+01 2.13271022237E+01 2.11963085926E+01 2.10401398038E+01 2.08577876181E+01 2.06484681007E+01 2.04114263112E+01 2.01459412533E+01 1.98513311039E+01 1.95269587163E+01 1.91722373811E+01 1.87866368483E+01 1.83696895998E+01 1.79209973521E+01 1.74402377714E+01 1.69271714016E+01 1.63816487454E+01 1.58036175074E+01 1.51931299363E+01 1.45503502584E+01 1.38755621266E+01 1.31691760761E+01 1.24317369029E+01 1.16639309219E+01 1.08665930510E+01 1.00407136271E+01 9.18744491140E+00 8.30810717087E+00 7.40419428696E+00 6.47737876467E+00 5.52951607321E+00 4.56264820733E+00 3.57900635691E+00 2.58101259086E+00 1.57128042994E+00 5.52614195476E-01 -4.71992978746E-01 -1.49936259349E+00 -2.52613581558E+00 -3.54878018991E+00 -4.56359818615E+00 -5.56673763738E+00 -6.55420424055E+00 -7.52187615730E+00 -8.46552086258E+00 -9.38081427312E+00 -1.02633622742E+01 -1.11087246638E+01 -1.19124415798E+01 -1.26700624372E+01 -1.33771773713E+01 -1.40294511895E+01 -1.46226598033E+01 -1.51527290712E+01 -1.56157760035E+01 -1.60081521964E+01 -1.63264894094E+01 -1.65677470950E+01 -1.67292617307E+01 -1.68087977326E+01 -1.68045997186E+01 -1.67154458558E+01 -1.65407019873E+01 -1.62803762191E+01 -1.59351735872E+01 -1.55065504107E+01 -1.49967678817E+01 -1.44089443993E+01 -1.37471061224E+01 -1.30162351268E+01 -1.22223145482E+01 -1.13723699629E+01 -1.04745062493E+01 -9.53793905032E+00 -8.57301991004E+00 -7.59125404694E+00 -6.60530966746E+00 -5.62901762307E+00 -4.67736015197E+00 -3.76644738672E+00 -2.91348026836E+00 -2.13669853315E+00 -1.45531230395E+00 -8.89417571417E-01 -4.59880090356E-01 -1.88327970248E-01 -9.58776050307E-02 -2.14001988000E-01 -4.76785145033E-01 -3.76504510229E-01 -2.35625564986E-01 -1.38318801175E-01 -7.13666818070E-02 -3.03466556588E-02 -9.19263399136E-03 -1.42959599758E-03 -3.29511417085E-04 -3.24950060530E-04 -3.20364486157E-04 -3.15762395968E-04 -3.11149487019E-04 -3.06531886932E-04 3 2 Beta L 1174 9.84547075439E-13 1.01453099778E-12 1.04542806649E-12 1.07726609104E-12 1.11007372779E-12 1.14388050582E-12 1.17871685352E-12 1.21461412596E-12 1.25160463309E-12 1.28972166889E-12 1.32899954124E-12 1.36947360289E-12 1.41118028323E-12 1.45415712108E-12 1.49844279850E-12 1.54407717558E-12 1.59110132635E-12 1.63955757571E-12 1.68948953757E-12 1.74094215405E-12 1.79396173599E-12 1.84859600459E-12 1.90489413438E-12 1.96290679747E-12 2.02268620918E-12 2.08428617501E-12 2.14776213909E-12 2.21317123408E-12 2.28057233257E-12 2.35002610010E-12 2.42159504975E-12 2.49534359841E-12 2.57133812475E-12 2.64964702898E-12 2.73034079438E-12 2.81349205081E-12 2.89917563999E-12 2.98746868295E-12 3.07845064939E-12 3.17220342921E-12 3.26881140624E-12 3.36836153420E-12 3.47094341490E-12 3.57664937898E-12 3.68557456892E-12 3.79781702476E-12 3.91347777229E-12 4.03266091397E-12 4.15547372269E-12 4.28202673826E-12 4.41243386695E-12 4.54681248396E-12 4.68528353912E-12 4.82797166573E-12 4.97500529274E-12 5.12651676034E-12 5.28264243907E-12 5.44352285258E-12 5.60930280411E-12 5.78013150680E-12 5.95616271802E-12 6.13755487773E-12 6.32447125113E-12 6.51708007557E-12 6.71555471200E-12 6.92007380097E-12 7.13082142349E-12 7.34798726662E-12 7.57176679431E-12 7.80236142321E-12 8.03997870407E-12 8.28483250847E-12 8.53714322138E-12 8.79713793945E-12 9.06505067550E-12 9.34112256906E-12 9.62560210347E-12 9.91874532952E-12 1.02208160959E-11 1.05320862867E-11 1.08528360661E-11 1.11833541305E-11 1.15239379686E-11 1.18748941287E-11 1.22365384950E-11 1.26091965721E-11 1.29932037772E-11 1.33889057427E-11 1.37966586272E-11 1.42168294357E-11 1.46497963504E-11 1.50959490707E-11 1.55556891642E-11 1.60294304280E-11 1.65175992611E-11 1.70206350486E-11 1.75389905565E-11 1.80731323398E-11 1.86235411622E-11 1.91907124288E-11 1.97751566320E-11 2.03773998110E-11 2.09979840253E-11 2.16374678426E-11 2.22964268416E-11 2.29754541298E-11 2.36751608775E-11 2.43961768682E-11 2.51391510648E-11 2.59047521943E-11 2.66936693494E-11 2.75066126088E-11 2.83443136763E-11 2.92075265394E-11 3.00970281479E-11 3.10136191133E-11 3.19581244294E-11 3.29313942147E-11 3.39343044777E-11 3.49677579054E-11 3.60326846756E-11 3.71300432942E-11 3.82608214581E-11 3.94260369440E-11 4.06267385245E-11 4.18640069120E-11 4.31389557315E-11 4.44527325232E-11 4.58065197748E-11 4.72015359862E-11 4.86390367662E-11 5.01203159624E-11 5.16467068262E-11 5.32195832123E-11 5.48403608158E-11 5.65104984457E-11 5.82314993388E-11 6.00049125120E-11 6.18323341569E-11 6.37154090763E-11 6.56558321647E-11 6.76553499339E-11 6.97157620848E-11 7.18389231276E-11 7.40267440503E-11 7.62811940396E-11 7.86043022526E-11 8.09981596435E-11 8.34649208456E-11 8.60068061103E-11 8.86261033062E-11 9.13251699773E-11 9.41064354660E-11 9.69724030989E-11 9.99256524403E-11 1.02968841614E-10 1.06104709696E-10 1.09336079178E-10 1.12665858512E-10 1.16097044724E-10 1.19632726113E-10 1.23276085030E-10 1.27030400745E-10 1.30899052396E-10 1.34885522029E-10 1.38993397738E-10 1.43226376886E-10 1.47588269441E-10 1.52083001401E-10 1.56714618329E-10 1.61487288991E-10 1.66405309113E-10 1.71473105246E-10 1.76695238749E-10 1.82076409893E-10 1.87621462097E-10 1.93335386280E-10 1.99223325362E-10 2.05290578884E-10 2.11542607785E-10 2.17985039312E-10 2.24623672088E-10 2.31464481331E-10 2.38513624231E-10 2.45777445492E-10 2.53262483045E-10 2.60975473928E-10 2.68923360353E-10 2.77113295954E-10 2.85552652228E-10 2.94249025162E-10 3.03210242082E-10 3.12444368686E-10 3.21959716311E-10 3.31764849414E-10 3.41868593275E-10 3.52280041946E-10 3.63008566433E-10 3.74063823134E-10 3.85455762524E-10 3.97194638118E-10 4.09291015697E-10 4.21755782818E-10 4.34600158611E-10 4.47835703882E-10 4.61474331515E-10 4.75528317195E-10 4.90010310459E-10 5.04933346077E-10 5.20310855789E-10 5.36156680392E-10 5.52485082198E-10 5.69310757869E-10 5.86648851650E-10 6.04514968996E-10 6.22925190617E-10 6.41896086957E-10 6.61444733102E-10 6.81588724153E-10 7.02346191062E-10 7.23735816951E-10 7.45776853925E-10 7.68489140406E-10 7.91893118986E-10 8.16009854823E-10 8.40861054609E-10 8.66469086100E-10 8.92856998253E-10 9.20048541971E-10 9.48068191477E-10 9.76941166348E-10 1.00669345421E-09 1.03735183413E-09 1.06894390072E-09 1.10149808897E-09 1.13504369984E-09 1.16961092666E-09 1.20523088226E-09 1.24193562700E-09 1.27975819763E-09 1.31873263702E-09 1.35889402479E-09 1.40027850891E-09 1.44292333819E-09 1.48686689587E-09 1.53214873412E-09 1.57880960964E-09 1.62689152037E-09 1.67643774328E-09 1.72749287330E-09 1.78010286352E-09 1.83431506645E-09 1.89017827676E-09 1.94774277509E-09 2.00706037337E-09 2.06818446147E-09 2.13117005516E-09 2.19607384575E-09 2.26295425102E-09 2.33187146786E-09 2.40288752640E-09 2.47606634589E-09 2.55147379221E-09 2.62917773716E-09 2.70924811952E-09 2.79175700804E-09 2.87677866629E-09 2.96438961950E-09 3.05466872345E-09 3.14769723541E-09 3.24355888732E-09 3.34233996115E-09 3.44412936652E-09 3.54901872078E-09 3.65710243140E-09 3.76847778104E-09 3.88324501502E-09 4.00150743159E-09 4.12337147491E-09 4.24894683085E-09 4.37834652570E-09 4.51168702791E-09 4.64908835293E-09 4.79067417124E-09 4.93657191962E-09 5.08691291588E-09 5.24183247708E-09 5.40147004126E-09 5.56596929302E-09 5.73547829277E-09 5.91014961006E-09 6.09014046085E-09 6.27561284906E-09 6.46673371235E-09 6.66367507239E-09 6.86661418970E-09 7.07573372317E-09 7.29122189450E-09 7.51327265758E-09 7.74208587308E-09 7.97786748832E-09 8.22082972269E-09 8.47119125856E-09 8.72917743823E-09 8.99502046666E-09 9.26895962051E-09 9.55124146350E-09 9.84212006833E-09 1.01418572454E-08 1.04507227783E-08 1.07689946670E-08 1.10969593775E-08 1.14349121003E-08 1.17831570156E-08 1.21420075673E-08 1.25117867451E-08 1.28928273753E-08 1.32854724200E-08 1.36900752864E-08 1.41070001443E-08 1.45366222542E-08 1.49793283049E-08 1.54355167619E-08 1.59055982254E-08 1.63899958005E-08 1.68891454777E-08 1.74034965254E-08 1.79335118941E-08 1.84796686336E-08 1.90424583216E-08 1.96223875069E-08 2.02199781648E-08 2.08357681673E-08 2.14703117668E-08 2.21241800955E-08 2.27979616789E-08 2.34922629658E-08 2.42077088743E-08 2.49449433539E-08 2.57046299653E-08 2.64874524778E-08 2.72941154844E-08 2.81253450362E-08 2.89818892958E-08 2.98645192109E-08 3.07740292078E-08 3.17112379070E-08 3.26769888593E-08 3.36721513059E-08 3.46976209599E-08 3.57543208132E-08 3.68432019670E-08 3.79652444876E-08 3.91214582890E-08 4.03128840416E-08 4.15405941088E-08 4.28056935124E-08 4.41093209273E-08 4.54526497059E-08 4.68368889347E-08 4.82632845224E-08 4.97331203210E-08 5.12477192818E-08 5.28084446461E-08 5.44167011718E-08 5.60739363981E-08 5.77816419485E-08 5.95413548731E-08 6.13546590320E-08 6.32231865212E-08 6.51486191412E-08 6.71326899113E-08 6.91771846288E-08 7.12839434767E-08 7.34548626798E-08 7.56918962117E-08 7.79970575533E-08 8.03724215051E-08 8.35048142080E-08 8.60321665560E-08 8.80008670991E-08 9.06801507890E-08 9.34396939398E-08 9.62851270439E-08 9.92151165993E-08 1.02236679434E-07 1.05348019184E-07 1.08555175594E-07 1.11860608085E-07 1.15264472340E-07 1.18774184400E-07 1.22389254082E-07 1.26116397246E-07 1.29954460290E-07 1.33912324477E-07 1.37989342469E-07 1.42189032659E-07 1.46519091087E-07 1.50979114559E-07 1.55576254805E-07 1.60311482795E-07 1.65193467241E-07 1.70223107348E-07 1.75404162638E-07 1.80744967994E-07 1.86247153308E-07 1.91918209509E-07 1.97762916695E-07 2.03783994666E-07 2.09987332479E-07 2.16381447623E-07 2.22968474345E-07 2.29757233521E-07 2.36753045253E-07 2.43961598559E-07 2.51390654871E-07 2.59045143361E-07 2.66931718303E-07 2.75058899334E-07 2.83433503186E-07 2.92064594969E-07 3.00956599183E-07 3.10120370383E-07 3.19564412529E-07 3.29291602067E-07 3.39320599445E-07 3.49650794675E-07 3.60299264811E-07 3.71270058153E-07 3.82572544526E-07 3.94222146345E-07 4.06228617608E-07 4.18594980882E-07 4.31341021032E-07 4.44477041296E-07 4.58011420253E-07 4.71957298285E-07 4.86328526873E-07 5.01137175558E-07 5.16395899965E-07 5.32122258078E-07 5.48322724984E-07 5.65020087699E-07 5.82228244471E-07 5.99955993087E-07 6.18225391735E-07 6.37047462121E-07 6.56451023348E-07 6.76436441360E-07 6.97036756529E-07 7.18260773520E-07 7.40135189002E-07 7.62670253476E-07 7.85896814015E-07 8.09824744602E-07 8.34489274139E-07 8.59897619268E-07 8.86083135983E-07 9.13065728840E-07 9.40871527872E-07 9.69520667367E-07 9.99043566903E-07 1.02946847761E-06 1.06081903081E-06 1.09312048533E-06 1.12640716162E-06 1.16070772002E-06 1.19605300073E-06 1.23247805945E-06 1.27001017648E-06 1.30868407691E-06 1.34853550426E-06 1.38959989663E-06 1.43191634945E-06 1.47552185918E-06 1.52045540255E-06 1.56675826572E-06 1.61446913070E-06 1.66363544878E-06 1.71429675715E-06 1.76650075718E-06 1.82029197008E-06 1.87572800964E-06 1.93284431140E-06 1.99170676416E-06 2.05235674855E-06 2.11486039281E-06 2.17926269890E-06 2.24562561677E-06 2.31401546671E-06 2.38447950437E-06 2.45709670991E-06 2.53192031242E-06 2.60902562230E-06 2.68847764146E-06 2.77034899972E-06 2.85471249607E-06 2.94165073225E-06 3.03123064750E-06 3.12353790568E-06 3.21866110494E-06 3.31668298410E-06 3.41768624033E-06 3.52175947185E-06 3.62901077694E-06 3.73952574656E-06 3.85340452363E-06 3.97075598468E-06 4.09167666726E-06 4.21627915133E-06 4.34468010603E-06 4.47699116487E-06 4.61332698957E-06 4.75381967291E-06 4.89859224095E-06 5.04776366134E-06 5.20148963690E-06 5.35988767551E-06 5.52311545322E-06 5.69131151124E-06 5.86463307309E-06 6.04323127643E-06 6.22726937976E-06 6.41691086050E-06 6.61232954013E-06 6.81369136891E-06 7.02119331578E-06 7.23501050783E-06 7.45534331505E-06 7.68238358030E-06 7.91633787340E-06 8.15741601698E-06 8.40583691371E-06 8.66182615206E-06 8.92560442365E-06 9.19741914507E-06 9.47751696930E-06 9.76613373134E-06 1.00635585047E-05 1.03700131088E-05 1.06858318173E-05 1.10112390203E-05 1.13465809827E-05 1.16921137918E-05 1.20481775442E-05 1.24150949108E-05 1.27931704895E-05 1.31827675806E-05 1.35842322922E-05 1.39979115231E-05 1.44242017720E-05 1.48634677304E-05 1.53161081620E-05 1.57825392684E-05 1.62631674433E-05 1.67584378220E-05 1.72687885483E-05 1.77946854675E-05 1.83365887944E-05 1.88950075493E-05 1.94704125547E-05 2.00633596124E-05 2.06743570519E-05 2.13039537892E-05 2.19527358907E-05 2.26212674990E-05 2.33101579514E-05 2.40200361550E-05 2.47515174903E-05 2.55052913138E-05 2.62820011117E-05 2.70823767837E-05 2.79071316603E-05 2.87569871230E-05 2.96327300354E-05 3.05351429291E-05 3.14650373161E-05 3.24232379026E-05 3.34106349694E-05 3.44280904209E-05 3.54765309063E-05 3.65568985671E-05 3.76701736895E-05 3.88173484095E-05 3.99994529724E-05 4.12175524072E-05 4.24727586583E-05 4.37661757850E-05 4.50989881894E-05 4.64723870911E-05 4.78876011783E-05 4.93459259516E-05 5.08486456499E-05 5.23971250090E-05 5.39927676709E-05 5.56370016564E-05 5.73313003921E-05 5.90771887872E-05 6.08762528301E-05 6.27300859550E-05 6.46403947520E-05 6.66088546850E-05 6.86372681236E-05 7.07274455171E-05 7.28812740277E-05 7.51006835920E-05 7.73876961820E-05 7.97443222840E-05 8.21727340760E-05 8.46750796505E-05 8.72536324293E-05 8.99107013416E-05 9.26486855530E-05 9.54700295345E-05 9.83773033628E-05 1.01373073861E-04 1.04460099953E-04 1.07641120110E-04 1.10918998507E-04 1.14296684069E-04 1.17777244644E-04 1.21363773543E-04 1.25059498819E-04 1.28867774817E-04 1.32792008980E-04 1.36835734200E-04 1.41002595063E-04 1.45296329122E-04 1.49720811067E-04 1.54280002561E-04 1.58978043922E-04 1.63819112404E-04 1.68807600401E-04 1.73947967163E-04 1.79244869888E-04 1.84703040247E-04 1.90327409404E-04 1.96123037160E-04 2.02095131752E-04 2.08249083296E-04 2.14590381484E-04 2.21124781004E-04 2.27858127877E-04 2.34796489863E-04 2.41946099960E-04 2.49313421066E-04 2.56905054921E-04 2.64727814998E-04 2.72788769109E-04 2.81095134309E-04 2.89654424269E-04 2.98474321235E-04 3.07562737150E-04 3.16927855341E-04 3.26578133725E-04 3.36522174640E-04 3.46768995301E-04 3.57327807258E-04 3.68208057381E-04 3.79419574754E-04 3.90972437659E-04 4.02876985022E-04 4.15143991470E-04 4.27784495458E-04 4.40809747374E-04 4.54231762698E-04 4.68060490653E-04 4.82328833846E-04 4.96850062052E-04 5.11747642167E-04 5.31957230558E-04 5.33698205154E-04 5.72826350347E-04 5.67209994662E-04 5.93575239260E-04 6.28140169327E-04 6.09229127997E-04 6.74448239408E-04 6.54506454225E-04 7.07773618902E-04 6.89404212202E-04 7.55562004666E-04 7.43333071067E-04 7.81043185617E-04 8.08386360035E-04 8.24050624689E-04 8.51344701652E-04 8.81648118274E-04 9.05861568513E-04 9.27524592464E-04 9.65973223880E-04 9.91253335165E-04 1.02018059396E-03 1.04979798490E-03 1.08481978399E-03 1.12197641836E-03 1.13925202113E-03 1.19766912100E-03 1.21822327574E-03 1.25553332936E-03 1.30057900745E-03 1.33730127619E-03 1.38290402031E-03 1.41230664978E-03 1.46244232138E-03 1.51546224885E-03 1.54595083230E-03 1.60181992364E-03 1.65002110532E-03 1.69944011213E-03 1.75562412071E-03 1.79807125972E-03 1.86476468403E-03 1.91243917247E-03 1.97984070994E-03 2.02772873333E-03 2.10216419256E-03 2.15759650582E-03 2.22840907218E-03 2.28763883911E-03 2.36590585707E-03 2.44260402220E-03 2.51177493841E-03 2.56991284356E-03 2.67679750112E-03 2.74178460959E-03 2.83098623913E-03 2.92278124418E-03 2.98537044827E-03 3.11277559551E-03 3.19303036359E-03 3.27214847181E-03 3.40222217216E-03 3.47828195682E-03 3.59681693772E-03 3.71363537403E-03 3.81112407379E-03 3.93284965034E-03 4.06679806150E-03 4.16474994422E-03 4.31171174491E-03 4.44248749207E-03 4.56612855420E-03 4.69448153997E-03 4.86899291098E-03 5.00495127407E-03 5.13614569069E-03 5.32829603538E-03 5.45791808997E-03 5.64672006594E-03 5.80438718099E-03 5.98766749591E-03 6.16579736094E-03 6.35611316089E-03 6.55309958042E-03 6.73810809737E-03 6.96742834292E-03 7.15783792267E-03 7.37697573753E-03 7.62103437027E-03 7.83020851707E-03 8.07903186294E-03 8.31897066710E-03 8.57860585309E-03 8.83773179914E-03 9.10463172875E-03 9.37875739588E-03 9.67498306950E-03 9.95633765958E-03 1.02655179273E-02 1.05770367269E-02 1.08958682440E-02 1.12295614843E-02 1.15725201262E-02 1.19247369074E-02 1.22766471914E-02 1.26639759983E-02 1.30410329226E-02 1.34394879650E-02 1.38458915721E-02 1.42724746586E-02 1.47015580028E-02 1.51476885301E-02 1.56082421272E-02 1.60835660083E-02 1.65743056940E-02 1.70757413958E-02 1.75936507590E-02 1.81287367436E-02 1.86809614206E-02 1.92476774197E-02 1.98293175724E-02 2.04358518417E-02 2.10553408587E-02 2.16940181818E-02 2.23528031051E-02 2.30337539072E-02 2.37305366770E-02 2.44523225726E-02 2.51938611273E-02 2.59591363829E-02 2.67469794433E-02 2.75614395830E-02 2.83940143908E-02 2.92584315065E-02 3.01457587541E-02 3.10618837196E-02 3.19996004395E-02 3.29776123215E-02 3.39734225070E-02 3.50060986488E-02 3.60669537098E-02 3.71618250307E-02 3.82883283226E-02 3.94510812471E-02 4.06462850425E-02 4.18777041432E-02 4.31494407357E-02 4.44565106762E-02 4.58061297882E-02 4.71923350557E-02 4.86244463876E-02 5.00966530343E-02 5.16157191483E-02 5.31803936134E-02 5.47900475705E-02 5.64514278930E-02 5.81605139552E-02 5.99226050906E-02 6.17372802902E-02 6.36070092540E-02 6.55321329796E-02 6.75178958473E-02 6.95594794723E-02 7.16664416612E-02 7.38342107024E-02 7.60699751012E-02 7.83704447752E-02 8.07410836538E-02 8.31843447625E-02 8.56993261260E-02 8.82914624760E-02 9.09602691956E-02 9.37105001318E-02 9.65429341621E-02 9.94607296327E-02 1.02466103221E-01 1.05561528691E-01 1.08750589416E-01 1.12034635877E-01 1.15417895845E-01 1.18902862810E-01 1.22492048766E-01 1.26188414124E-01 1.29997013630E-01 1.33918308108E-01 1.37958285090E-01 1.42118227494E-01 1.46404286245E-01 1.50816794382E-01 1.55363250750E-01 1.60044136413E-01 1.64866107344E-01 1.69831843747E-01 1.74945815947E-01 1.80213034338E-01 1.85637098129E-01 1.91223525260E-01 1.96976191053E-01 2.02900767796E-01 2.09001959990E-01 2.15284802130E-01 2.21754809785E-01 2.28417700391E-01 2.35278650735E-01 2.42343745619E-01 2.49618877862E-01 2.57110311008E-01 2.64824084360E-01 2.72767045165E-01 2.80945371040E-01 2.89366697272E-01 2.98036951910E-01 3.06964801621E-01 3.16156335643E-01 3.25620115196E-01 3.35363586035E-01 3.45395108287E-01 3.55722577222E-01 3.66355308608E-01 3.77301382759E-01 3.88569939715E-01 4.00170523461E-01 4.12112616748E-01 4.24405854766E-01 4.37060415118E-01 4.50086494064E-01 4.63495111647E-01 4.77296542661E-01 4.91502591694E-01 5.06124371747E-01 5.21174086006E-01 5.36663273039E-01 5.52605152949E-01 5.69011688891E-01 5.85896791084E-01 6.03273373430E-01 6.21155623592E-01 6.39557582823E-01 6.58493724069E-01 6.77979214215E-01 6.98029449423E-01 7.18659658676E-01 7.39886804108E-01 7.61726597047E-01 7.84196729345E-01 8.07314191146E-01 8.31097042090E-01 8.55563380693E-01 8.80732321516E-01 9.06622835875E-01 9.33254803311E-01 9.60648241919E-01 9.88824131686E-01 1.01780338632E+00 1.04760805068E+00 1.07826015319E+00 1.10978252816E+00 1.14219865321E+00 1.17553233637E+00 1.20980784474E+00 1.24505058206E+00 1.28128583977E+00 1.31853997284E+00 1.35683976543E+00 1.39621252838E+00 1.43668643677E+00 1.47828995190E+00 1.52105258863E+00 1.56500399376E+00 1.61017491909E+00 1.65659655121E+00 1.70430069742E+00 1.75331993072E+00 1.80368750010E+00 1.85543727897E+00 1.90860383598E+00 1.96322241557E+00 2.01932899455E+00 2.07696018771E+00 2.13615337981E+00 2.19694653127E+00 2.25937840035E+00 2.32348845334E+00 2.38931668577E+00 2.45690405265E+00 2.52629192554E+00 2.59752250156E+00 2.67063866443E+00 2.74568388734E+00 2.82270237260E+00 2.90173890192E+00 2.98283895793E+00 3.06604855009E+00 3.15141446478E+00 3.23898382842E+00 3.32880454454E+00 3.42092496197E+00 3.51539393899E+00 3.61226085665E+00 3.71157553060E+00 3.81338824714E+00 3.91774958038E+00 4.02471057062E+00 4.13432249492E+00 4.24663691072E+00 4.36170556035E+00 4.47958041713E+00 4.60031346771E+00 4.72395676237E+00 4.85056237712E+00 4.98018218004E+00 5.11286801420E+00 5.24867128879E+00 5.38764322884E+00 5.52983453227E+00 5.67529538566E+00 5.82407536375E+00 5.97622326093E+00 6.13178705215E+00 6.29081365704E+00 6.45334896967E+00 6.61943756395E+00 6.78912261557E+00 6.96244580821E+00 7.13944702019E+00 7.32016432425E+00 7.50463367170E+00 7.69288879435E+00 7.88496094606E+00 8.08087874710E+00 8.28066790553E+00 8.48435106235E+00 8.69194746070E+00 8.90347280361E+00 9.11893889650E+00 9.33835342383E+00 9.56171965935E+00 9.78903615658E+00 1.00202964476E+01 1.02554887279E+01 1.04945954995E+01 1.07375932541E+01 1.09844520833E+01 1.12351353223E+01 1.14895991657E+01 1.17477922480E+01 1.20096552473E+01 1.22751204682E+01 1.25441113533E+01 1.28165420995E+01 1.30923171324E+01 1.33713306643E+01 1.36534661881E+01 1.39385959707E+01 1.42265805606E+01 1.45172682409E+01 1.48104945004E+01 1.51060815058E+01 1.54038375277E+01 1.57035564004E+01 1.60050169457E+01 1.63079824131E+01 1.66121999041E+01 1.69173997966E+01 1.72232951814E+01 1.75295812838E+01 1.78359349096E+01 1.81420138742E+01 1.84474564743E+01 1.87518809373E+01 1.90548849169E+01 1.93560449916E+01 1.96549161919E+01 1.99510315560E+01 2.02439017126E+01 2.05330145122E+01 2.08178346857E+01 2.10978035580E+01 2.13723388146E+01 2.16408343258E+01 2.19026600317E+01 2.21571619072E+01 2.24036619993E+01 2.26414585548E+01 2.28698262381E+01 2.30880164552E+01 2.32952577883E+01 2.34907565479E+01 2.36736974565E+01 2.38432444688E+01 2.39985417424E+01 2.41387147627E+01 2.42628716469E+01 2.43701046101E+01 2.44594916414E+01 2.45300983612E+01 2.45809801010E+01 2.46111842111E+01 2.46197525710E+01 2.46057243822E+01 2.45681391856E+01 2.45060401378E+01 2.44184775822E+01 2.43045128696E+01 2.41632224785E+01 2.39937024286E+01 2.37950729729E+01 2.35664836095E+01 2.33071183745E+01 2.30162014439E+01 2.26930030341E+01 2.23368455860E+01 2.19471102381E+01 2.15232435766E+01 2.10647646400E+01 2.05712721647E+01 2.00424520663E+01 1.94780850994E+01 1.88780547010E+01 1.82423549556E+01 1.75710986700E+01 1.68645254798E+01 1.61230099786E+01 1.53470697802E+01 1.45373734672E+01 1.36947483713E+01 1.28201880825E+01 1.19148596436E+01 1.09801103086E+01 1.00174738120E+01 9.02867601419E+00 8.01563984892E+00 6.98048945296E+00 5.92555335840E+00 4.85336664544E+00 3.76667192117E+00 2.66841900224E+00 1.56176317938E+00 4.50061932119E-01 -6.63130042567E-01 -1.77406759228E+00 -2.87882382844E+00 -3.97330086683E+00 -5.05324277289E+00 -6.11425075613E+00 -7.15180077354E+00 -8.16126357961E+00 -9.13792735207E+00 -1.00770229171E+01 -1.09737516471E+01 -1.18233160625E+01 -1.26209531369E+01 -1.33619703112E+01 -1.40417841871E+01 -1.46559618322E+01 -1.52002646418E+01 -1.56706946222E+01 -1.60635430017E+01 -1.63754409687E+01 -1.66034123757E+01 -1.67449281764E+01 -1.67979623455E+01 -1.67610489995E+01 -1.66333403918E+01 -1.64146654400E+01 -1.61055883804E+01 -1.57074671258E+01 -1.52225108492E+01 -1.46538362633E+01 -1.40055220398E+01 -1.32826607088E+01 -1.24914073828E+01 -1.16390245096E+01 -1.07339218473E+01 -9.78569073213E+00 -8.80513165326E+00 -7.80427403855E+00 -6.79638709010E+00 -5.79598040516E+00 -4.81879305147E+00 -3.88176970429E+00 -3.00302240873E+00 -2.20177655829E+00 -1.49829953841E+00 -9.13812325675E-01 -4.70367780233E-01 -1.90842949749E-01 -9.76009086920E-02 -2.23904971594E-01 -5.00758530057E-01 -3.95604340388E-01 -2.47685850276E-01 -1.45457888864E-01 -7.50811350954E-02 -3.19405534294E-02 -9.68217857294E-03 -1.51015985669E-03 -3.51585307078E-04 -3.46671029575E-04 -3.41732389256E-04 -3.36777684208E-04 -3.31813075053E-04 -3.26845152112E-04 4 Number of nonzero Dij 1 1 1.80377526959E-02 2 2 -3.30319748411E+00 2 3 3.17137654411E+00 3 3 -3.05393097845E+00 0 nqf. If not zero, Qij's inside rinner are computed using qfcoef's 1 1 1 i j (l(j)) -3.24607942830E-19 Q_int -7.64028712664E-39 7.64217509367E-38 -8.98113350966E-38 4.08947484075E-38 -8.40182478317E-38 -4.55636167320E-38 1.53605286782E-38 -1.07509744722E-37 6.42967270073E-38 -1.37052087599E-37 1.60160052563E-37 -1.10071358069E-37 7.53446441549E-38 -7.58546256619E-37 1.05922920905E-37 1.25024347089E-37 -7.96247061695E-38 -1.33869485085E-37 -6.62420811374E-37 8.61500172765E-37 5.91100562390E-37 -1.69149884779E-37 5.96249487514E-37 5.80730003208E-38 -1.15045180834E-37 2.29397601877E-37 -1.01622637119E-37 3.06980009154E-38 2.80234043666E-37 -2.98149781646E-37 3.16425117726E-38 -3.32431867395E-37 3.99670023969E-38 -3.03813152016E-37 -3.15660802988E-37 2.90603711968E-37 -3.51052727252E-37 4.15019509266E-38 1.58840823709E-37 3.11749727311E-37 9.30388113965E-38 -2.39851444473E-36 -2.81512061793E-36 3.36450049375E-38 4.46998439649E-38 2.48224531724E-36 1.92632113353E-36 -5.66561811687E-37 1.80315555750E-37 -5.86131980734E-37 -6.35305128287E-37 4.50176363061E-37 -5.82153888821E-37 5.84433597914E-37 -6.41631546311E-37 -3.98804638513E-38 7.35628389779E-37 -6.88130803938E-37 1.36185108670E-36 6.03276295416E-37 -1.21698044282E-36 8.26598833777E-37 1.03667634722E-36 2.73589523848E-37 2.04452483820E-37 5.01662365366E-37 -4.68978930525E-38 -4.57062488291E-37 -1.23435917559E-36 -2.70935107444E-37 -2.11750154588E-37 1.06046800810E-36 -2.75393636584E-37 1.02101261357E-36 1.35956333658E-37 1.81366330199E-36 -1.53484826637E-36 -7.09460292485E-37 8.45849586187E-37 1.62965225424E-37 -2.04989616680E-37 2.02334394671E-36 -1.17782408760E-36 1.42644392411E-36 2.78032816014E-36 -2.90850158127E-37 -1.94797735343E-36 1.80442244210E-36 1.03676519807E-35 -1.23840530853E-35 1.24649539193E-35 9.56590350636E-36 -4.96305483805E-37 3.51620138444E-36 -3.24111730283E-36 -5.35564350292E-37 5.12509815888E-37 -1.83522771719E-36 -2.43885832437E-36 5.92679450619E-36 5.82980607148E-36 2.13616521181E-36 5.57019116967E-36 -6.98970420800E-37 5.70142405484E-36 -4.19687220853E-36 -4.77240446332E-36 -1.68285537624E-36 -3.75284718158E-36 5.29420796241E-36 -4.37917022196E-36 1.05479921978E-35 2.69473473044E-36 1.03090387730E-35 -1.93621358604E-36 -2.21054531402E-36 -1.14394112703E-35 -7.68214583005E-36 -4.05714245803E-36 -9.02970558607E-36 1.20290546844E-35 -2.90034014300E-36 1.01000272974E-35 -7.26707242415E-36 -6.51898893001E-36 -7.03086578116E-36 5.52267522578E-35 -2.37087020624E-35 -1.39767308356E-35 1.29527454110E-35 -1.28885091860E-35 -1.65082407347E-35 1.17977784154E-35 -1.33733871585E-35 -7.95433968597E-36 -9.42424183321E-36 9.67950178851E-36 1.12329119388E-36 8.92144161389E-36 -1.88910292766E-35 -1.46519110745E-34 -2.52414532895E-36 -1.82677269298E-35 1.18271906515E-34 -4.00476195956E-36 1.16722611915E-34 -9.32996483753E-38 -3.13318867837E-35 1.23224057113E-34 -2.51351583776E-35 -3.37082078523E-35 3.21322018589E-35 1.90145014672E-35 -3.89977716183E-35 3.90900508033E-36 -1.41477449477E-34 3.38332508688E-35 -3.21226903910E-36 2.27424359966E-35 1.99525718985E-36 -2.01439460778E-35 -1.70532608692E-34 8.89034240769E-35 -8.53427421837E-36 1.62734258431E-35 4.54949121902E-35 8.94654627538E-35 7.79164190816E-35 -8.73378038536E-35 -3.94203354956E-35 9.22557570323E-35 -3.84725628680E-35 8.85009050067E-35 -1.25771686870E-35 1.99515785564E-36 -6.62021567685E-35 5.16440803075E-35 7.81056601136E-35 -5.50695660243E-35 1.14479774926E-34 -9.20808290115E-35 -7.09154254210E-35 -1.57582961563E-34 4.97554293646E-35 1.82794622281E-34 4.50730457242E-34 6.32151138777E-34 -1.07387607418E-34 9.77083976841E-35 8.59208323982E-35 6.76259731044E-35 1.86276249984E-34 -7.51426380302E-35 -9.30795754384E-35 4.14395332770E-35 7.35278535095E-34 1.34158044685E-34 4.90626217770E-35 1.75852472088E-34 -1.57015858363E-34 -3.13096694097E-34 1.54555521543E-35 2.85208953242E-35 -1.92482483651E-34 -3.08991570517E-34 -3.47644927857E-34 2.47629726698E-35 -9.03682641496E-35 2.67613292984E-34 2.12480585575E-36 -1.40958083149E-34 -2.82447197118E-34 1.39426746204E-34 1.88828151443E-34 5.47041744257E-34 -4.61139036927E-34 6.90501898813E-34 2.30573651312E-34 -6.52582174253E-34 2.13241731141E-34 3.98605221470E-34 1.99252595851E-34 -7.51754167613E-34 4.74180443400E-34 -3.55435556050E-34 -3.03824556060E-33 2.50989355493E-33 -3.55882148628E-33 2.40941200604E-33 -4.19653068167E-34 -3.78063229347E-33 4.75085338288E-34 1.19279397337E-33 -1.32431019263E-33 -6.80087024679E-35 8.73441735793E-34 8.41889502664E-34 5.11016600189E-35 1.37489132483E-33 -1.07452704398E-33 -3.18026987834E-34 -1.21550153420E-33 -1.52996082788E-33 -1.18080639489E-33 1.21451905010E-33 -1.28841172891E-33 6.74542989005E-34 6.02316243074E-34 -4.50977776875E-34 1.42321823367E-34 2.08184514294E-33 -2.54258099673E-33 1.03641019403E-33 -1.42883872654E-33 -7.53713403981E-33 2.66574189902E-33 -5.07466635565E-34 -2.21265107620E-33 7.45044982036E-35 1.13094151079E-33 2.84706142184E-33 2.81635480409E-33 -2.72452444994E-33 2.20673251454E-33 2.80600719365E-33 2.19935178043E-33 3.70949641746E-33 4.57954389311E-33 -1.60954886318E-33 -1.84866380956E-33 -1.55691869627E-33 4.07390158353E-33 1.11265855516E-33 -2.77964496799E-33 3.44114081815E-32 -1.37808105687E-33 3.70474601829E-33 -5.59087858693E-33 -6.97717899111E-34 3.06755094028E-33 -3.85306350147E-32 -3.05142721252E-32 2.47326882312E-33 -9.42618147020E-33 1.58474576968E-33 -9.74059251268E-33 2.96768718443E-33 -3.93133147560E-32 -5.20069239783E-33 -1.17109959301E-32 1.19215696186E-32 1.21309703551E-32 -7.02447279838E-33 3.05503773887E-32 6.78398869873E-33 5.44345944487E-33 4.44853390090E-33 -4.93607786560E-32 8.93932847113E-33 8.77612395213E-33 5.70645673946E-33 -1.43861103716E-32 2.45072292557E-32 -2.17865500367E-32 7.81507248796E-33 -2.36906999558E-32 8.32258127739E-33 9.74927864424E-33 3.01549556617E-33 -2.02285596835E-32 1.13872877200E-32 2.47559787475E-33 1.82396088107E-32 -5.89255336856E-33 1.89105806241E-32 -1.54796231802E-32 1.69096199976E-32 -5.12266880542E-33 1.50849877696E-33 1.52902222004E-32 -1.81141504016E-31 1.57814808547E-32 1.37083432510E-32 4.40186760474E-32 -3.27303841016E-32 1.71448839162E-31 -2.63483155535E-32 4.44279280527E-32 4.37856800081E-32 -1.81441097899E-31 6.70511093337E-33 9.93149370070E-33 -2.42576056744E-32 1.26062584980E-32 -1.22374022819E-32 6.34286477191E-33 -3.13164085372E-32 -8.59303227326E-32 -4.95612019793E-32 6.01215001058E-32 -1.20119283178E-32 -1.56927745031E-32 -1.17124153699E-32 -5.02041548937E-32 9.12247598129E-32 3.27421398044E-32 -3.37995420625E-32 3.94806844164E-32 6.00760476944E-32 -3.10519432834E-32 -8.38406181252E-32 -5.86888104918E-32 7.39500885791E-32 1.79486739004E-31 6.08492761828E-32 -7.40608376629E-32 -7.91769788213E-32 8.40692790303E-32 9.54884827115E-32 -1.75567068867E-31 -6.64300156320E-32 -1.14563782524E-31 6.09333961702E-32 -5.33231640812E-32 1.69507845913E-31 1.30977273020E-31 -1.61142641915E-31 5.41804771767E-32 1.21832333129E-31 -8.59702292545E-31 2.14073352898E-31 -3.79214736391E-31 2.81118407914E-31 -2.76997391596E-31 7.42616328645E-32 3.85908631189E-31 2.52636078055E-31 2.90543370451E-31 2.35998860587E-31 9.82346901053E-32 3.84352101459E-31 3.75352833148E-31 -3.40690255643E-31 -1.39652830366E-31 1.78143839028E-32 1.07877167842E-31 -1.12964777137E-31 1.77430832181E-32 -4.43085330185E-32 -4.57500432094E-31 -6.63252960080E-31 -6.96249710092E-31 6.52026192428E-31 1.87457313618E-32 8.94689315066E-32 -7.80928362677E-31 7.61200470317E-31 4.56703494448E-31 4.61662256689E-32 -1.96310803695E-31 7.06638070148E-31 -4.57493222446E-31 2.53745539210E-32 3.75743457194E-31 -6.44400514764E-31 -1.93701697416E-31 1.95871542287E-31 9.58644503621E-31 -3.58231698070E-31 -2.60839911293E-31 1.12985683214E-30 -1.26789499768E-30 -1.05270195159E-30 1.21892016454E-31 8.52065090024E-30 1.00082238241E-30 -1.43237193140E-30 -7.33898043633E-30 5.02996282608E-31 -1.20261050551E-30 1.41745252779E-30 -9.70975942196E-31 3.10232809217E-30 2.87269638392E-30 2.87578704676E-30 -8.03153141764E-31 -3.13593011746E-30 2.91390015109E-30 5.57142564318E-31 1.06119698722E-30 1.64881828598E-30 -2.08349780396E-30 -1.78826816279E-30 1.75785571986E-30 -6.59139818654E-31 -2.60668885443E-30 2.46644307400E-30 -1.32091606597E-30 1.23400203543E-30 1.70099161637E-30 3.30667630624E-30 3.31745408010E-30 -6.11156777517E-30 3.76461524384E-31 6.57102860466E-31 -5.12466444284E-30 5.11535908967E-30 -2.99346644910E-31 1.01031012576E-30 -5.66025092991E-30 1.94316193504E-30 -4.38995901539E-30 1.24783893557E-30 -3.66633465277E-30 5.76503874411E-30 2.28802575607E-30 3.95983887691E-29 -9.99344396006E-30 3.52810610130E-29 4.87222538415E-30 -1.12369496322E-29 4.70473467765E-29 -7.97586879111E-30 -7.92204372275E-30 -3.01896681603E-30 3.55480713823E-29 -9.24713026987E-30 1.09517451703E-29 1.39222120477E-30 6.00503618433E-30 -4.22634920322E-29 -4.72105318864E-29 1.01826679204E-29 4.99720208079E-30 -1.79189111183E-29 1.58836790196E-29 -1.37350222079E-29 -2.40221843156E-29 -1.11746238946E-29 4.45981210668E-30 2.92548683882E-30 -1.49631044117E-30 -8.23820632456E-30 -2.38716770350E-29 -1.73967288818E-29 2.07357241513E-29 -1.68016998724E-29 -5.44149820377E-30 -2.19823527804E-29 -9.45196862184E-30 -1.50890887008E-29 -3.19914293436E-29 -2.16792401950E-29 -2.03211755908E-29 -3.45104364261E-29 -1.49233913316E-29 3.13809360245E-29 1.64326601318E-29 2.49404558689E-30 -2.79533279768E-29 1.78065106541E-30 1.44390345182E-29 -5.03964995827E-29 -1.99269955302E-28 1.63302542163E-28 3.81202352228E-29 1.84332581472E-28 -1.71352521923E-28 -5.00370364127E-29 -2.73515793208E-29 2.89165786491E-29 9.23870617758E-29 -1.99267050657E-29 -4.78125989698E-30 5.32466736587E-29 9.69439003415E-29 6.83035728176E-29 -3.08605554357E-29 -8.14398453946E-29 6.67784297561E-29 2.30386056552E-29 9.07757823781E-29 -7.49828870824E-29 3.03267817947E-29 -3.88007753506E-29 -5.97581796242E-29 5.66293883008E-29 1.26534184243E-28 6.67774002158E-29 -7.13812570998E-29 -1.84154458039E-28 1.19481066328E-28 -4.51390833417E-29 -1.33323602772E-28 9.65202291287E-29 -1.23202650495E-29 -1.41360201147E-28 6.75885183055E-29 2.48660835128E-29 1.68312051516E-28 -6.53504193489E-29 -1.41217302513E-28 -1.26010132130E-28 -2.59701004739E-28 1.12311100624E-28 -1.30623886582E-28 1.68352713870E-28 -3.35931746981E-28 2.59749590726E-28 -4.01978916256E-28 -3.30542322242E-29 -2.21577055618E-28 -3.34100187795E-28 -3.36903658715E-29 -3.08454732051E-29 4.49528430510E-29 -2.32253264966E-28 7.27700877557E-30 -9.14523470607E-29 -1.85633782470E-27 -4.54748995299E-29 -2.31526766747E-28 2.81689012591E-27 -2.61101902465E-28 -3.38535108775E-28 -3.74360018204E-28 2.43537480607E-28 -8.26429897880E-29 -3.15372554434E-28 9.75289817398E-29 -1.76320517511E-28 -1.82018401736E-28 8.77183379907E-30 -2.72837501016E-28 2.61671064948E-27 3.32890329025E-27 1.70330895306E-28 5.34269136785E-28 -1.24856467882E-27 6.24812201818E-28 -1.26834058244E-27 -2.02407830632E-28 -5.06588804907E-28 2.10101752096E-28 -1.49182994336E-27 -1.56945163811E-27 -2.61450365908E-28 1.01587100682E-27 8.01918845334E-28 1.47624088683E-27 -1.21212950538E-27 1.30452555775E-27 -1.54646763895E-28 7.39326280832E-28 1.40526812400E-27 -9.13421308912E-27 5.67821168376E-28 3.08558638025E-27 8.18427648585E-27 -2.86682857944E-27 -6.59659792032E-28 3.14409171753E-27 1.44672213178E-27 -1.62951452257E-27 1.40797431614E-26 2.33278265127E-27 -1.40367527477E-26 -1.52664696714E-27 -5.92070162302E-28 -1.42288121179E-27 2.05859539823E-27 -1.44558805800E-26 -1.36340401170E-26 3.35930075034E-27 2.71970340057E-27 -2.06796664417E-27 -5.14217752877E-27 1.34467458426E-27 -2.58627087021E-28 3.16377358087E-27 -3.24455919223E-27 4.51224702868E-27 2.12525233990E-27 2.82489277559E-27 -6.19818290322E-27 -2.01442262439E-27 3.38634386294E-27 -7.56272510499E-29 3.77655409464E-27 3.64675907428E-27 1.26635530563E-26 -1.01622399200E-26 6.36369957167E-27 8.29119022022E-27 -4.25318483262E-27 -3.31157482136E-27 -5.41193228202E-27 -1.08695605015E-26 -4.13380885127E-27 -7.74238178656E-27 -1.26974003772E-26 3.47012190442E-26 -2.63154746097E-27 -3.94763392925E-27 -1.23684023515E-26 -5.56760826369E-27 6.27268338164E-26 -2.47888882405E-26 1.31443139827E-26 1.77576164883E-27 -5.71733195692E-27 -2.49077317952E-26 3.10530043848E-27 -1.15811545808E-26 2.18292221616E-26 1.90584354583E-26 7.54638651263E-27 8.94358008904E-27 -1.82635250835E-26 -2.76471629279E-27 -2.19410569421E-26 -1.05897230533E-26 -2.11374756147E-26 1.46778846112E-27 2.35760961329E-26 -2.63862351320E-26 4.07503442325E-26 4.70633024939E-27 2.35167911317E-26 -1.78437261142E-26 2.46948872368E-26 -6.69898795707E-27 -4.22980420099E-26 -2.26894034453E-26 2.18842589155E-26 1.66988570332E-26 2.58755523483E-30 3.74029933292E-26 -4.43155725940E-27 4.70659848460E-26 4.60899781969E-26 -9.27874791240E-27 7.35719637280E-26 4.54689377090E-28 5.00513599363E-26 -4.05682057726E-26 -1.01735578485E-25 5.69454633031E-26 -1.80478159022E-26 4.00339621854E-25 4.95888124672E-25 -8.64611034514E-26 3.45451395932E-26 -7.10015401205E-26 4.90945935626E-26 7.40752088103E-27 6.89077371486E-26 3.39732455466E-26 5.70789204806E-26 -8.63705143384E-26 1.34547364715E-25 1.49237419124E-25 -6.34326405427E-26 -4.77557782218E-26 1.95651889312E-25 7.29609838358E-25 -5.87040205446E-25 1.87469746626E-25 -8.45035284566E-26 -4.34025710771E-26 7.24193846159E-26 1.78329075644E-25 -1.34588463790E-25 -8.80213063265E-25 8.02330431689E-25 1.20098470916E-25 2.31684452974E-26 2.26731055639E-25 1.61631441469E-25 -2.11216798584E-25 -1.66450446987E-25 1.59647584047E-25 -4.12447231203E-25 2.21834844652E-25 -6.00051105991E-27 -2.46102909350E-25 -2.56301148535E-25 -1.76818088783E-25 2.42026586388E-25 -1.96959277600E-25 -2.22492051355E-26 1.87342449771E-25 5.68541949547E-26 3.32212479105E-25 4.65556700259E-25 -2.44409250026E-24 -1.14477826250E-25 -7.80331493379E-25 -4.37951913409E-25 6.40300806613E-25 -2.32335404612E-24 -8.05137997366E-26 6.86703456210E-25 -6.36109609996E-26 3.68868449400E-24 -1.49106911012E-25 6.22174954746E-25 -1.63163440437E-25 -3.06607522283E-24 5.71500008195E-25 5.80156677804E-26 -1.14644166147E-24 1.50045193432E-24 -1.69261148356E-25 1.32202314678E-24 1.14813862596E-24 1.02718415687E-24 -6.78089204956E-25 1.12162996230E-24 -1.35301831997E-24 -6.97860199493E-26 -1.34081852350E-24 -4.14657788020E-25 4.68022360765E-26 -6.29055542372E-25 1.19642785128E-24 1.16759282025E-24 1.51161042792E-24 1.62449568128E-24 3.05713739797E-24 1.38726733282E-25 -9.29338320108E-25 -2.30923891797E-24 1.11387875253E-24 -2.08790184345E-26 -2.56655060784E-24 1.96894852162E-24 2.74864043452E-24 -1.89995424451E-24 1.30432316669E-24 1.24261831224E-23 3.07153172394E-24 1.86848412605E-24 -1.49036955947E-23 1.03824040100E-23 1.75692671025E-24 -1.43001173305E-24 8.48323159468E-25 2.13564322597E-24 1.83503401315E-24 -4.93188689463E-24 5.69395807602E-24 -3.71996438455E-24 4.60449939411E-24 2.84838960425E-24 -2.99193204930E-24 3.36472241899E-24 3.55200910827E-24 -6.47440007362E-24 -1.50244956483E-24 -3.59835902584E-24 -6.03570242169E-24 2.20031636679E-24 -1.05901388592E-23 -4.65852096402E-24 -2.80574355065E-24 -1.12916637695E-23 3.56728946195E-24 -4.31635510149E-24 -1.99255440506E-24 1.21678188096E-23 4.14592137431E-24 9.22309195478E-25 -7.15606691861E-24 -7.75237216816E-24 4.17219707567E-24 -1.14453185279E-24 -9.72753437979E-24 1.80135115463E-24 1.31694289348E-23 7.56844273746E-25 4.22318412180E-24 1.94828856221E-23 1.42658450443E-23 -2.08712348140E-23 -2.05560871831E-23 1.63215518012E-24 -8.87602469006E-24 -9.43342109069E-24 -1.31667856692E-22 -1.01117139042E-23 -5.21235170693E-24 -1.37056255189E-23 -1.03324754446E-23 1.37671471129E-22 4.17297505142E-24 -1.01711735336E-23 5.90914806858E-24 4.14687600149E-23 -2.09415286068E-23 -2.30563550228E-25 -4.03914094234E-24 2.08794280272E-23 -3.61177269981E-23 1.35056607387E-22 -3.57806978957E-23 1.38501460749E-22 3.03806948912E-23 -1.41521501504E-22 4.37314499464E-23 -3.90774636524E-24 -3.58750549132E-23 -3.64442538031E-23 -2.41810957992E-22 6.15213930731E-24 -4.28253795488E-23 2.87600020545E-23 5.08561336305E-23 -8.80664136653E-23 -4.39463298875E-23 -7.19333827452E-23 -4.02957464643E-23 8.53934103365E-24 -1.38241765127E-23 -4.55219379311E-23 -8.11391846302E-23 2.58829454398E-23 -4.03050810501E-23 8.74234291032E-23 3.23648050884E-23 8.81367874190E-23 1.03173684678E-22 -8.08149002288E-23 -1.59990410047E-22 -5.72221492023E-22 -7.54705647665E-22 -1.14857312922E-23 -6.45855831300E-22 -7.66063523008E-22 -1.68017051306E-22 8.29334969380E-23 -1.26653540525E-22 7.95348389828E-22 7.78958692783E-22 2.01149478231E-22 9.69471120779E-22 8.51749875806E-22 -1.48431869282E-22 -5.21553099094E-23 9.77085663839E-22 -5.33368722291E-23 -1.65047516059E-22 1.44265647449E-22 -2.26137839254E-22 -6.40638102054E-23 7.18019958090E-24 -3.15250995380E-22 -8.67563709665E-24 6.58557143640E-23 1.15247459206E-23 9.53916072391E-23 -1.72863499298E-22 2.75402426022E-22 -4.18875912386E-22 -2.08371958948E-22 3.88989433852E-22 -4.30831437623E-23 3.68144867323E-22 6.30214428907E-22 -4.87934763947E-22 1.35391828603E-23 -7.51488987929E-22 9.54405475823E-23 -5.36616604684E-23 -5.58297875854E-22 2.33503693753E-22 -2.90934918605E-22 -8.04803970676E-22 -6.80397473377E-22 -7.00186371214E-22 3.98289975372E-22 -2.94838877657E-22 3.58336429477E-21 7.82952819769E-22 -3.90850049864E-22 -8.05812934152E-22 -5.83928224046E-22 1.63795205894E-21 1.61850488590E-21 -1.59756707267E-21 3.88103396702E-23 -9.99863601822E-22 1.55746335409E-22 -1.58935546283E-21 -7.65158191890E-22 -1.29155165433E-21 -2.78494787630E-22 -6.68847275575E-22 -4.41541807385E-22 -4.33102986801E-22 -9.02060557241E-22 -5.27318317212E-22 2.80630483123E-23 -2.37453377191E-21 1.91088856150E-21 -4.93583289863E-22 -2.90159471242E-21 1.24515125922E-21 1.74487473425E-21 -3.18029889044E-21 2.38730996862E-21 -1.06029737312E-20 1.23548025305E-21 -1.69897588754E-21 2.01015968017E-21 3.08288475313E-21 1.57647466515E-20 1.41258199110E-21 1.46278402321E-20 1.41550221317E-21 2.25118380301E-21 5.32555368607E-21 5.15235613803E-21 2.76726842335E-21 -5.46459394576E-21 4.95880487763E-21 -1.96297382375E-21 2.20185713949E-21 5.69205152747E-21 -3.98151676428E-21 1.81498251229E-21 5.34252053121E-21 -4.48869597749E-21 5.77182774332E-21 -6.84543392971E-22 2.25722306894E-21 8.59015747662E-22 3.87053321268E-20 6.41718115676E-21 1.46913805561E-21 -1.32815860954E-20 -1.16648549357E-20 -9.18403127502E-21 -1.94468213329E-22 -1.62373233145E-21 5.35249828027E-20 -8.03219317827E-21 3.56654510871E-20 4.69853022475E-23 -6.47561243908E-21 -1.40035037835E-21 -1.28915031475E-20 1.04780099975E-20 4.11452551849E-21 9.35904918307E-21 -8.75266925096E-21 9.45810640839E-21 5.14393792790E-21 -2.69681056163E-20 -1.48911841375E-20 -1.02071150924E-20 -6.54674632542E-21 4.28027960179E-21 2.16127563660E-20 -1.84424661856E-20 -1.90221823957E-20 -2.49658120064E-20 2.07037198251E-20 -1.58989732526E-20 -1.68988006881E-20 6.07363996334E-22 1.72613568116E-20 2.36326002320E-20 -2.38317484586E-20 -2.14061293874E-20 -2.23347962096E-20 7.38546369177E-21 -4.85623200909E-20 -2.74493852597E-20 1.44007245810E-19 2.25703894076E-22 3.40081507299E-20 2.47827281842E-20 -9.22463852178E-21 -1.93680183629E-20 -4.27685179870E-20 -5.05117122678E-20 4.60245210828E-20 -4.20578304666E-21 1.59232135085E-20 2.22662906010E-19 4.91111715930E-20 2.35313246444E-19 -2.39920328614E-20 2.40971996430E-19 9.62792851259E-20 -2.45699831297E-20 -1.87221155717E-20 5.67646569891E-20 -1.70446526831E-20 6.39144016069E-20 3.14967309967E-20 9.44154608282E-20 -5.82002517577E-20 6.18928302478E-21 -7.67513473202E-20 1.00571380896E-20 9.31075240627E-20 -4.44997572712E-21 -6.95328870623E-20 1.07751471745E-20 9.51407356659E-20 5.82167240422E-20 2.05472773369E-20 6.15727246868E-20 -3.39870540107E-20 -1.35075358871E-19 1.09345773439E-19 -2.28915783601E-20 -2.08113535766E-19 -1.86631767396E-20 1.95862180528E-19 -1.24988557363E-19 -2.01974281439E-19 7.16323377542E-20 -1.57596269753E-19 -5.05257149901E-21 -8.45440788186E-20 -1.75791232714E-19 2.03611983485E-19 -1.54072690794E-19 -1.31770628360E-19 -7.81202750289E-19 -2.59733168065E-20 -7.10756776050E-19 1.45367269139E-19 2.16004849043E-19 -4.32033731667E-19 -9.93068728851E-21 -3.16956490526E-19 -1.11995760569E-19 -3.74059415718E-19 2.30831929378E-19 -3.68638752977E-19 3.96095296425E-19 -2.55106014326E-20 -3.72707314850E-19 -6.76629201489E-20 5.90316577107E-20 -2.42264726729E-19 -1.52692000574E-19 -2.29435303563E-19 3.56555529452E-19 2.49847494793E-18 -3.50652401798E-19 -3.97532774170E-20 3.01543020793E-19 2.41418489327E-19 4.59074183306E-19 -5.41043547859E-19 -2.77574228118E-18 -5.12698752417E-19 4.14450801574E-19 1.39293518654E-19 1.98634534717E-19 8.06209472784E-19 -5.81532071745E-19 -8.66174465882E-19 1.12677971761E-19 5.95515242142E-19 -7.17364077257E-19 1.78857900611E-19 -6.52853978326E-19 7.42832108680E-19 2.41016832919E-19 7.19628758370E-19 -1.19295278927E-18 -1.39481246517E-18 -1.70512230984E-18 1.95082254795E-19 -9.41395223084E-19 3.95494602801E-20 -7.66114519472E-19 -1.13995369216E-18 -9.65670539407E-19 2.57412408625E-20 1.60749283463E-18 1.16896252153E-18 1.51537480417E-18 -4.20857384968E-19 -8.76775917481E-18 7.85321351835E-19 -2.61154512099E-19 3.05926641837E-18 -3.47037218876E-20 -8.62946025246E-18 2.93361226123E-18 -9.25594276811E-18 -7.35745716264E-18 -8.25146212081E-18 -1.46854070623E-18 -1.22642934901E-17 1.09427656743E-18 2.09631487255E-18 -1.54711774375E-18 1.24223633364E-17 -9.31101422458E-18 1.10217896709E-17 1.15916001177E-17 1.07896532984E-17 -3.89639395402E-19 1.69933212183E-18 4.54368955118E-18 -4.90650186622E-18 -1.59397574764E-18 -3.10054568263E-18 -1.49156720216E-18 -2.98097020859E-18 -4.76529603395E-18 -7.38029382468E-19 5.83992826142E-18 -3.90850188472E-18 4.32664982801E-18 -1.89188456047E-18 4.12587273899E-18 3.10067164153E-18 -5.52806711673E-18 -3.57131912842E-18 1.36846196851E-18 2.23624613118E-18 -7.45446908834E-19 9.52721045657E-19 -2.50791233946E-18 2.44198884072E-18 1.19019300017E-17 -5.52579225419E-18 -7.81493680505E-18 -6.11232348260E-18 -4.84231836762E-19 5.76362182988E-18 1.19841552257E-18 5.21181259630E-18 -7.95023728584E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 2 2 i j (l(j)) 0.00000000000E+00 Q_int 6.58722361838E-25 6.92495779525E-25 7.28000797365E-25 7.65326196395E-25 8.04565309556E-25 8.45816255067E-25 8.89182181781E-25 9.34771527102E-25 9.82698288139E-25 1.03308230676E-24 1.08604956925E-24 1.14173252136E-24 1.20027039948E-24 1.26180957878E-24 1.32650393927E-24 1.39451525055E-24 1.46601357633E-24 1.54117769966E-24 1.62019556999E-24 1.70326477317E-24 1.79059302546E-24 1.88239869300E-24 1.97891133775E-24 2.08037229162E-24 2.18703525982E-24 2.29916695534E-24 2.41704776583E-24 2.54097245471E-24 2.67125089825E-24 2.80820886041E-24 2.95218880745E-24 3.10355076423E-24 3.26267321447E-24 3.42995404718E-24 3.60581155159E-24 3.79068546304E-24 3.98503806261E-24 4.18935533304E-24 4.40414817392E-24 4.62995367924E-24 4.86733648037E-24 5.11689015796E-24 5.37923872619E-24 5.65503819314E-24 5.94497820112E-24 6.24978375117E-24 6.57021701594E-24 6.90707924549E-24 7.26121277085E-24 7.63350311031E-24 8.02488118361E-24 8.43632563980E-24 8.86886530433E-24 9.32358175166E-24 9.80161200976E-24 1.03041514032E-23 1.08324565424E-23 1.13878484652E-23 1.19717159407E-23 1.25855189419E-23 1.32307922958E-23 1.39091495219E-23 1.46222868668E-23 1.53719875451E-23 1.61601261990E-23 1.69886735858E-23 1.78597015055E-23 1.87753879814E-23 1.97380227069E-23 2.07500127700E-23 2.18138886731E-23 2.29323106601E-23 2.41080753684E-23 2.53441228223E-23 2.66435437842E-23 2.80095874834E-23 2.94456697405E-23 3.09553815093E-23 3.25424978555E-23 3.42109873967E-23 3.59650222257E-23 3.78089883433E-23 3.97474966253E-23 4.17853943519E-23 4.39277773290E-23 4.61800026299E-23 4.85477019910E-23 5.10367958939E-23 5.36535083699E-23 5.64043825630E-23 5.92962970917E-23 6.23364832484E-23 6.55325430821E-23 6.88924684070E-23 7.24246607866E-23 7.61379525416E-23 8.00416288354E-23 8.41454508921E-23 8.84596804042E-23 9.29951051927E-23 9.77630661819E-23 1.02775485758E-22 1.08044897580E-22 1.13584477922E-22 1.19408078621E-22 1.25530261711E-22 1.31966335840E-22 1.38732394544E-22 1.45845356495E-22 1.53323007801E-22 1.61184046488E-22 1.69448129244E-22 1.78135920582E-22 1.87269144506E-22 1.96870638831E-22 2.06964412294E-22 2.17575704588E-22 2.28731049468E-22 2.40458341109E-22 2.52786903846E-22 2.65747565508E-22 2.79372734500E-22 2.93696480841E-22 3.08754621357E-22 3.24584809243E-22 3.41226628212E-22 3.58721691481E-22 3.77113745820E-22 3.96448780944E-22 4.16775144511E-22 4.38143663017E-22 4.60607768888E-22 4.84223634088E-22 5.09050310582E-22 5.35149877989E-22 5.62587598824E-22 5.91432081678E-22 6.21755452782E-22 6.53633536357E-22 6.87146044215E-22 7.22376775081E-22 7.59413824130E-22 7.98349803275E-22 8.39282072743E-22 8.82312984528E-22 9.27550138319E-22 9.75106650562E-22 1.02510143731E-21 1.07765951156E-21 1.13291229587E-21 1.19099795099E-21 1.25206172131E-21 1.31625629805E-21 1.38374220108E-21 1.45468818032E-21 1.52927163766E-21 1.60767907059E-21 1.69010653853E-21 1.77676015308E-21 1.86785659340E-21 1.96362364804E-21 2.06430078451E-21 2.17013974808E-21 2.28140519129E-21 2.39837533570E-21 2.52134266758E-21 2.65061466930E-21 2.78651458819E-21 2.92938224483E-21 3.07957488277E-21 3.23746806181E-21 3.40345659714E-21 3.57795554654E-21 3.76140124826E-21 3.95425241209E-21 4.15699126638E-21 4.37012476385E-21 4.59418584923E-21 4.82973479193E-21 5.07736058698E-21 5.33768242781E-21 5.61135125460E-21 5.89905138194E-21 6.20150220998E-21 6.51946002328E-21 6.85371988198E-21 7.20511760977E-21 7.57453188399E-21 7.96288643269E-21 8.37115234448E-21 8.80035049675E-21 9.25155410839E-21 9.72589142340E-21 1.02245485321E-20 1.07487723368E-20 1.12998736702E-20 1.18792305725E-20 1.24882917377E-20 1.31285801358E-20 1.38016968213E-20 1.45093249364E-20 1.52532339198E-20 1.60352839314E-20 1.68574305035E-20 1.77217294305E-20 1.86303419099E-20 1.95855399460E-20 2.05897120313E-20 2.16453691188E-20 2.27551509009E-20 2.39218324100E-20 2.51483309573E-20 2.64377134279E-20 2.77932039492E-20 2.92181919533E-20 3.07162406523E-20 3.22910959478E-20 3.39466957982E-20 3.56871800649E-20 3.75169008650E-20 3.94404334531E-20 4.14625876621E-20 4.35884199303E-20 4.58232459454E-20 4.81726539358E-20 5.06425186447E-20 5.32390160199E-20 5.59686386564E-20 5.88382120321E-20 6.18549115742E-20 6.50262806023E-20 6.83602491899E-20 7.18651539941E-20 7.55497591016E-20 7.94232779433E-20 8.34953963328E-20 8.77762966860E-20 9.22766834822E-20 9.70078100312E-20 1.01981506612E-19 1.07210210056E-19 1.12706994842E-19 1.18485605795E-19 1.24560492449E-19 1.30946845183E-19 1.37660633204E-19 1.44718644475E-19 1.52138527700E-19 1.59938836447E-19 1.68139075550E-19 1.76759749872E-19 1.85822415589E-19 1.95349734079E-19 2.05365528599E-19 2.15894843847E-19 2.26964008591E-19 2.38600701504E-19 2.50834020374E-19 2.63694554865E-19 2.77214463005E-19 2.91427551600E-19 3.06369360769E-19 3.22077252809E-19 3.38590505625E-19 3.55950410941E-19 3.74200377553E-19 3.93386039875E-19 4.13555372044E-19 4.34758807886E-19 4.57049367022E-19 4.80482787447E-19 5.05117664905E-19 5.31015599405E-19 5.58241349258E-19 5.86862993001E-19 6.16952099634E-19 6.48583907577E-19 6.81837512803E-19 7.16796066623E-19 7.53546983608E-19 7.92182160165E-19 8.32798204332E-19 8.75496677344E-19 9.20384347593E-19 9.67573457599E-19 1.01718200468E-18 1.06933403600E-18 1.12415995877E-18 1.18179686629E-18 1.24238888082E-18 1.30608751389E-18 1.37305204521E-18 1.44344992093E-18 1.51745717233E-18 1.59525885603E-18 1.67704951669E-18 1.76303367347E-18 1.85342633147E-18 1.94845351933E-18 2.04835285441E-18 2.15337413698E-18 2.26377997482E-18 2.37984643993E-18 2.50186375879E-18 2.63013703810E-18 2.76498702773E-18 2.90675092274E-18 3.05578320651E-18 3.21245653721E-18 3.37716267956E-18 3.55031348450E-18 3.73234191900E-18 3.92370314871E-18 4.12487567610E-18 4.33636253701E-18 4.55869255843E-18 4.79242168090E-18 5.03813434861E-18 5.29644497084E-18 5.56799945829E-18 5.85347683819E-18 6.15359095221E-18 6.46909224147E-18 6.80076962298E-18 7.14945246240E-18 7.51601264781E-18 7.90136676996E-18 8.30647841416E-18 8.73236056978E-18 9.18007816320E-18 9.65075072076E-18 1.01455551681E-17 1.06657287729E-17 1.12125722393E-17 1.17874529595E-17 1.23918084334E-17 1.30271498633E-17 1.36950659323E-17 1.43972267768E-17 1.51353881630E-17 1.59113958773E-17 1.67271903411E-17 1.75848114635E-17 1.84864037419E-17 1.94342216242E-17 2.04306351463E-17 2.14781358584E-17 2.25793430550E-17 2.37370103246E-17 2.49540324350E-17 2.62334525718E-17 2.75784699481E-17 2.89924478037E-17 3.04789218155E-17 3.20416089380E-17 3.36844166979E-17 3.54114529649E-17 3.72270362235E-17 3.91357063713E-17 4.11422360712E-17 4.32516426854E-17 4.54692008214E-17 4.78004555216E-17 5.02512361280E-17 5.28276708594E-17 5.55362021342E-17 5.83836026808E-17 6.13769924719E-17 6.45238565285E-17 6.78320636367E-17 7.13098860227E-17 7.49660200388E-17 7.88096079077E-17 8.28502605834E-17 8.70980817831E-17 9.15636932519E-17 9.62582613228E-17 1.01193524837E-16 1.06381824500E-16 1.11836133736E-16 1.17570091129E-16 1.23598034529E-16 1.29935036900E-16 1.36596944014E-16 1.43600414070E-16 1.50962959350E-16 1.58702990008E-16 1.66839860104E-16 1.75393916002E-16 1.84386547242E-16 1.93840240028E-16 2.03778633453E-16 2.14226578611E-16 2.25210200734E-16 2.36756964521E-16 2.48895742813E-16 2.61656888790E-16 2.75072311869E-16 2.89175557491E-16 3.04001891009E-16 3.19588385860E-16 3.35974016274E-16 3.53199754726E-16 3.71308674390E-16 3.90346056842E-16 4.10359505286E-16 4.31399063590E-16 4.53517341416E-16 4.76769645773E-16 5.01214119312E-16 5.26911885714E-16 5.53927202524E-16 5.82327621834E-16 6.12184159194E-16 6.43571471183E-16 6.76568042095E-16 7.11256380183E-16 7.47723223973E-16 7.86059759155E-16 8.26361846590E-16 8.68730262012E-16 9.13270948016E-16 9.60095278968E-16 1.00932033949E-15 1.06106921726E-15 1.11547131073E-15 1.17266265275E-15 1.23278625069E-15 1.29599244402E-15 1.36243928025E-15 1.43229291012E-15 1.50572800306E-15 1.58292818395E-15 1.66408649227E-15 1.74940586478E-15 1.83909964300E-15 1.93339210662E-15 2.03251903435E-15 2.13672829347E-15 2.24628045958E-15 2.36144946824E-15 2.48252329988E-15 2.60980469991E-15 2.74361193574E-15 2.88427959261E-15 3.03215941017E-15 3.18762116204E-15 3.35105358044E-15 3.52286532812E-15 3.70348602034E-15 3.89336729899E-15 4.09298396199E-15 4.30283515051E-15 4.52344559699E-15 4.75536693731E-15 4.99917909010E-15 5.25549170679E-15 5.52494569607E-15 5.80821482644E-15 6.10600741095E-15 6.41906807832E-15 6.74817963488E-15 7.09416502189E-15 7.45788937337E-15 7.84026217926E-15 8.24223955959E-15 8.66482665525E-15 9.10908014129E-15 9.57611086906E-15 1.00670866439E-14 1.05832351452E-14 1.11258469961E-14 1.16962789906E-14 1.22959574865E-14 1.29263819712E-14 1.35891288121E-14 1.42858551973E-14 1.50183032799E-14 1.57883045339E-14 1.65977843339E-14 1.74487667692E-14 1.83433797049E-14 1.92838601028E-14 2.02725596145E-14 2.13119504615E-14 2.24046316173E-14 2.35533353053E-14 2.47609338313E-14 2.60304467647E-14 2.73650484894E-14 2.87680761407E-14 3.02430379498E-14 3.17936220157E-14 3.34237055272E-14 3.51373644573E-14 3.69388837549E-14 3.88327680590E-14 4.08237529623E-14 4.29168168518E-14 4.51171933571E-14 4.74303844363E-14 4.98621741338E-14 5.24186430417E-14 5.51061835048E-14 5.79315156031E-14 6.09017039555E-14 6.40241753832E-14 6.73067374807E-14 7.07575981369E-14 7.43853860584E-14 7.81991723447E-14 8.22084931692E-14 8.64233736232E-14 9.08543527825E-14 9.55125100590E-14 1.00409492903E-13 1.05557545927E-13 1.10969541521E-13 1.16659012037E-13 1.22640183626E-13 1.28928011811E-13 1.35538218874E-13 1.42487333174E-13 1.49792730472E-13 1.57472677371E-13 1.65546376998E-13 1.74034017009E-13 1.82956820071E-13 1.92337096923E-13 2.02198302159E-13 2.12565092875E-13 2.23463390317E-13 2.34920444692E-13 2.46964903303E-13 2.59626882175E-13 2.72938041354E-13 2.86931664068E-13 3.01642739940E-13 3.17108052478E-13 3.33366271038E-13 3.50458047513E-13 3.68426117968E-13 3.87315409497E-13 4.07173152549E-13 4.28048999014E-13 4.49995146371E-13 4.73066468187E-13 4.97320651319E-13 5.22818340140E-13 5.49623288168E-13 5.77802517458E-13 6.07426486177E-13 6.38569264758E-13 6.71308721095E-13 7.05726715225E-13 7.41909303994E-13 7.79946956212E-13 8.19934778844E-13 8.61972754790E-13 9.06165992860E-13 9.52624990558E-13 1.00146591034E-12 1.05281087005E-12 1.10678824820E-12 1.16353300497E-12 1.22318701958E-12 1.28589944504E-12 1.35182708103E-12 1.42113476590E-12 1.49399578881E-12 1.57059232291E-12 1.65111588085E-12 1.73576779353E-12 1.82475971343E-12 1.91831414376E-12 2.01666499472E-12 2.12005816829E-12 2.22875217296E-12 2.34301877000E-12 2.46314365286E-12 2.58942716142E-12 2.72218503277E-12 2.86174919059E-12 3.00846857490E-12 3.16271001439E-12 3.32485914344E-12 3.49532136621E-12 3.67452287006E-12 3.86291169097E-12 4.06095883357E-12 4.26915944856E-12 4.48803407053E-12 4.71812991917E-12 4.96002226723E-12 5.21431587855E-12 5.48164651984E-12 5.76268254996E-12 6.05812659061E-12 6.36871728272E-12 6.69523113278E-12 7.03848445392E-12 7.39933540641E-12 7.77868614274E-12 8.17748506271E-12 8.59672918400E-12 9.03746663443E-12 9.50079927171E-12 9.98788543770E-12 1.04999428537E-11 1.10382516641E-11 1.16041576364E-11 1.21990755244E-11 1.28244926048E-11 1.34819723945E-11 1.41731585581E-11 1.48997790166E-11 1.56636502657E-11 1.64666819161E-11 1.73108814663E-11 1.81983593194E-11 1.91313340585E-11 2.01121379922E-11 2.11432229761E-11 2.22271665549E-11 2.33666783967E-11 2.45646070540E-11 2.58239470992E-11 2.71478466111E-11 2.85396150018E-11 3.00027313552E-11 3.15408530708E-11 3.31578250093E-11 3.48576891078E-11 3.66446944986E-11 3.85233080924E-11 4.04982257450E-11 4.25743840398E-11 4.47569725596E-11 4.70514469009E-11 4.94635422493E-11 5.19992877916E-11 5.46650217063E-11 5.74674070603E-11 6.04134483786E-11 6.35105092308E-11 6.67663305797E-11 7.01890501390E-11 7.37872226799E-11 7.75698414329E-11 8.15463605556E-11 8.57267187188E-11 9.01213639845E-11 9.47412798496E-11 9.95980127299E-11 1.04703700797E-10 1.10071104273E-10 1.15713637312E-10 1.21645401603E-10 1.27881221370E-10 1.34436680593E-10 1.41328161990E-10 1.48572887672E-10 1.56188962417E-10 1.64195418702E-10 1.72612264294E-10 1.81460532455E-10 1.90762333945E-10 2.00540912778E-10 2.10820703960E-10 2.21627394693E-10 2.32987988291E-10 2.44930871582E-10 2.57485886433E-10 2.70684403284E-10 2.84559400345E-10 2.99145545157E-10 3.14479281985E-10 3.30598921977E-10 3.47544739495E-10 3.65359072004E-10 3.84086426659E-10 4.03773590451E-10 4.24469747501E-10 4.46226601871E-10 4.69098506342E-10 4.93142598234E-10 5.18418942362E-10 5.44990680081E-10 5.72924187664E-10 6.02289241562E-10 6.33159192840E-10 6.65611149761E-10 6.99726170600E-10 7.35589465378E-10 7.73290609482E-10 8.12923766073E-10 8.54587921161E-10 8.98387131695E-10 9.44430783077E-10 9.92833864311E-10 1.04371725309E-09 1.09720801807E-09 1.15343973565E-09 1.21255282320E-09 1.27469488912E-09 1.34002110080E-09 1.40869457195E-09 1.48088676902E-09 1.55677793873E-09 1.63655755726E-09 1.72042480321E-09 1.80858905351E-09 1.90127040621E-09 1.99870022692E-09 2.10112172921E-09 2.20879057508E-09 2.32197552106E-09 2.44095907644E-09 2.56603821705E-09 2.69752511918E-09 2.83574794164E-09 2.98105163740E-09 3.13379881981E-09 3.29437066248E-09 3.46316784549E-09 3.64061155874E-09 3.82714454868E-09 4.02323221886E-09 4.22936379235E-09 4.44605352442E-09 4.67384198708E-09 4.91329741652E-09 5.16501711859E-09 5.42962896409E-09 5.70779294958E-09 6.00020283403E-09 6.30758786906E-09 6.63071461660E-09 6.97038884646E-09 7.32745754752E-09 7.70281103312E-09 8.09738515187E-09 8.51216361840E-09 8.94818045437E-09 9.40652256260E-09 9.88833242508E-09 1.03948109460E-08 1.09272204322E-08 1.14868877304E-08 1.20752075259E-08 1.26936457997E-08 1.33437434798E-08 1.40271202551E-08 1.47454786068E-08 1.55006080311E-08 1.62943894769E-08 1.71288000220E-08 1.80059177680E-08 1.89279270072E-08 1.98971236326E-08 2.09159208339E-08 2.19868550823E-08 2.31125924218E-08 2.42959350684E-08 2.55398283669E-08 2.68473680780E-08 2.82218080558E-08 2.96665683132E-08 3.11852434674E-08 3.27816116674E-08 3.44596439338E-08 3.62235139913E-08 3.80776085890E-08 4.00265383636E-08 4.20751492380E-08 4.42285344017E-08 4.64920469132E-08 4.88713129200E-08 5.13722455692E-08 5.40010596103E-08 5.67642867588E-08 5.96687918046E-08 6.27217895805E-08 6.59308627534E-08 6.93039805438E-08 7.28495183808E-08 7.65762785507E-08 8.04935119148E-08 8.46109406889E-08 8.89387824108E-08 9.34877751126E-08 9.82692037491E-08 1.03294927990E-07 1.08577411395E-07 1.14129752087E-07 1.19965714956E-07 1.26099765503E-07 1.32547105387E-07 1.39323709778E-07 1.46446366582E-07 1.53932717664E-07 1.61801302129E-07 1.70071601809E-07 1.78764089033E-07 1.87900276810E-07 1.97502771535E-07 2.07595328356E-07 2.18202909328E-07 2.29351744502E-07 2.41069396068E-07 2.53384825758E-07 2.66328465607E-07 2.79932292292E-07 2.94229905194E-07 3.09256608394E-07 3.25049496769E-07 3.41647546427E-07 3.59091709671E-07 3.77425014715E-07 3.96692670410E-07 4.16942176231E-07 4.38223437720E-07 4.60588887771E-07 4.84093613933E-07 5.08795492110E-07 5.34755326906E-07 5.62036999027E-07 5.90707619997E-07 6.20837694614E-07 6.52501291506E-07 6.85776222174E-07 7.20744228972E-07 7.57491182412E-07 7.96107288317E-07 8.36687305252E-07 8.79330772739E-07 9.24142250852E-07 9.71231571629E-07 1.02071410302E-06 1.07271102584E-06 1.12734962450E-06 1.18476359207E-06 1.24509335039E-06 1.30848638615E-06 1.37509760329E-06 1.44508969307E-06 1.51863352213E-06 1.59590853980E-06 1.67710320540E-06 1.76241543651E-06 1.85205307928E-06 1.94623440180E-06 2.04518861168E-06 2.14915639886E-06 2.25839050515E-06 2.37315632137E-06 2.49373251387E-06 2.62041168139E-06 2.75350104406E-06 2.89332316582E-06 3.04021671200E-06 3.19453724367E-06 3.35665805044E-06 3.52697102368E-06 3.70588757185E-06 3.89383958016E-06 4.09128041641E-06 4.29868598534E-06 4.51655583373E-06 4.74541430845E-06 4.98581177023E-06 5.23832586546E-06 5.50356285878E-06 5.78215902942E-06 6.07478213403E-06 6.38213293912E-06 6.70494682639E-06 7.04399547411E-06 7.40008861828E-06 7.77407589684E-06 8.16684878108E-06 8.57934259787E-06 9.01253864706E-06 9.46746641811E-06 9.94520591056E-06 1.04468900629E-05 1.09737072948E-05 1.15269041670E-05 1.21077881659E-05 1.27177306156E-05 1.33581697257E-05 1.40306137789E-05 1.47366444650E-05 1.54779203689E-05 1.62561806164E-05 1.70732486880E-05 1.79310364049E-05 1.88315480965E-05 1.97768849562E-05 2.07692495933E-05 2.18109507904E-05 2.29044084727E-05 2.40521589003E-05 2.52568600911E-05 2.65212974846E-05 2.78483898556E-05 2.92411954884E-05 3.07029186229E-05 3.22369161805E-05 3.38467047848E-05 3.55359680854E-05 3.73085643981E-05 3.91685346738E-05 4.11201108079E-05 4.31677243040E-05 4.53160153043E-05 4.75698420016E-05 4.99342904451E-05 5.24146847563E-05 5.50165977689E-05 5.77458621072E-05 6.06085817192E-05 6.36111438812E-05 6.67602316867E-05 7.00628370407E-05 7.35262741710E-05 7.71581936788E-05 8.09665971408E-05 8.49598522846E-05 8.91467087518E-05 9.35363144694E-05 9.81382326454E-05 1.02962459408E-04 1.08019442107E-04 1.13320098293E-04 1.18875835398E-04 1.24698571128E-04 1.30800754594E-04 1.37195388194E-04 1.43896050261E-04 1.50916918501E-04 1.58272794238E-04 1.65979127469E-04 1.74052042763E-04 1.82508366007E-04 1.91365652014E-04 2.00642213009E-04 2.10357148005E-04 2.20530373071E-04 2.31182652518E-04 2.42335630989E-04 2.54011866476E-04 2.66234864256E-04 2.79029111757E-04 2.92420114338E-04 3.06434431996E-04 3.21099716982E-04 3.36444752315E-04 3.52499491186E-04 3.69295097231E-04 3.86863985647E-04 4.05239865137E-04 4.24457780629E-04 4.44554156760E-04 4.65566842060E-04 4.87535153796E-04 5.10499923423E-04 5.34503542572E-04 5.59590009506E-04 5.85804975976E-04 6.13195794368E-04 6.41811565064E-04 6.71703183905E-04 7.02923389632E-04 7.35526811182E-04 7.69570014696E-04 8.05111550098E-04 8.42211997053E-04 8.80934010150E-04 9.21342363106E-04 9.63503991768E-04 1.00748803571E-03 1.05336587816E-03 1.10121118401E-03 1.15109993561E-03 1.20311046606E-03 1.25732348971E-03 1.31382212942E-03 1.37269194038E-03 1.43402092993E-03 1.49789957310E-03 1.56442082337E-03 1.63368011821E-03 1.70577537893E-03 1.78080700424E-03 1.85887785716E-03 1.94009324450E-03 2.02456088846E-03 2.11239088974E-03 2.20369568131E-03 2.29858997247E-03 2.39719068223E-03 2.49961686138E-03 2.60598960249E-03 2.71643193705E-03 2.83106871884E-03 2.95002649292E-03 3.07343334900E-03 3.20141875869E-03 3.33411339544E-03 3.47164893641E-03 3.61415784517E-03 3.76177313441E-03 3.91462810759E-03 4.07285607868E-03 4.23659006876E-03 4.40596247881E-03 4.58110473752E-03 4.76214692317E-03 4.94921735875E-03 5.14244217931E-03 5.34194487068E-03 5.54784577876E-03 5.76026158853E-03 5.97930477215E-03 6.20508300532E-03 6.43769855154E-03 6.67724761366E-03 6.92381965224E-03 7.17749667073E-03 7.43835246711E-03 7.70645185202E-03 7.98184983373E-03 8.26459077009E-03 8.55470748817E-03 8.85222037224E-03 9.15713642112E-03 9.46944827619E-03 9.78913322148E-03 1.01161521576E-02 1.04504485519E-02 1.07919473664E-02 1.11405539681E-02 1.14961530219E-02 1.18586073729E-02 1.22277569195E-02 1.26034174825E-02 1.29853796754E-02 1.33734077805E-02 1.37672386363E-02 1.41665805431E-02 1.45711121927E-02 1.49804816299E-02 1.53943052530E-02 1.58121668614E-02 1.62336167594E-02 1.66581709249E-02 1.70853102528E-02 1.75144798831E-02 1.79450886239E-02 1.83765084816E-02 1.88080743081E-02 1.92390835773E-02 1.96687963034E-02 2.00964351137E-02 2.05211854866E-02 2.09421961700E-02 2.13585797917E-02 2.17694136745E-02 2.21737408695E-02 2.25705714200E-02 2.29588838683E-02 2.33376270173E-02 2.37057219594E-02 2.40620643814E-02 2.44055271588E-02 2.47349632451E-02 2.50492088673E-02 2.53470870326E-02 2.56274113526E-02 2.58889901886E-02 2.61306311205E-02 2.63511457392E-02 2.65493547603E-02 2.67240934560E-02 2.68742173955E-02 2.69986084882E-02 2.70961813130E-02 2.71658897206E-02 2.72067336882E-02 2.72177664039E-02 2.71981015544E-02 2.71469207843E-02 2.70634812934E-02 2.69471235317E-02 2.67972789481E-02 2.66134777454E-02 2.63953565872E-02 2.61426661994E-02 2.58552788028E-02 2.55331953097E-02 2.51765522116E-02 2.47856280796E-02 2.43608495979E-02 2.39027970422E-02 2.34122091142E-02 2.28899870368E-02 2.23371978158E-02 2.17550765662E-02 2.11450278039E-02 2.05086255997E-02 1.98476124947E-02 1.91638970757E-02 1.84595501121E-02 1.77367991596E-02 1.69980215410E-02 1.62457356198E-02 1.54825902915E-02 1.47113526262E-02 1.39348936071E-02 1.31561719204E-02 1.23782157680E-02 1.16041026850E-02 1.08369373611E-02 1.00798274770E-02 9.33585758284E-03 8.60806105529E-03 7.89939018105E-03 7.21268441997E-03 6.55063690250E-03 5.91575921169E-03 5.31034448819E-03 4.73642887608E-03 4.19575129701E-03 3.68971149815E-03 3.21932626558E-03 2.78518362735E-03 2.38739479026E-03 2.02554346097E-03 1.69863209739E-03 1.40502452160E-03 1.14281401607E-03 9.11213972114E-04 7.09520614190E-04 5.36717917921E-04 3.91478904867E-04 2.72173286428E-04 1.76882399386E-04 1.03422396897E-04 4.93766625942E-05 1.21383984025E-05 -1.10357046614E-05 -2.29598727309E-05 -2.64409928984E-05 -2.41870902042E-05 -1.87021058464E-05 -1.21667568630E-05 -6.30551118499E-06 -2.24000789203E-06 -3.29590529917E-07 -7.09430921833E-18 2.84257308358E-17 -2.48191456438E-18 2.73021655951E-18 9.78485521382E-18 -1.40384433665E-17 4.73809105544E-18 1.29021615271E-17 9.75575461644E-18 6.05635750875E-18 -1.05901349382E-17 -1.21794970631E-17 1.36541273156E-17 -1.80652835741E-18 -2.44426890757E-18 6.96237958256E-19 5.09003634801E-18 -2.05235778494E-18 -4.15193320066E-18 -1.16322473961E-17 -7.07033216605E-18 1.19597766742E-17 1.08316809959E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 3 2 i j (l(j)) 0.00000000000E+00 Q_int -6.92136024784E-25 -7.27622597604E-25 -7.64928605918E-25 -8.04147334179E-25 -8.45376849635E-25 -8.88720247550E-25 -9.34285908997E-25 -9.82187771861E-25 -1.03254561575E-24 -1.08548536151E-24 -1.14113938607E-24 -1.19964685349E-24 -1.26115406290E-24 -1.32581481438E-24 -1.39379079347E-24 -1.46525197554E-24 -1.54037705076E-24 -1.61935387095E-24 -1.70237991929E-24 -1.78966280416E-24 -1.88142077822E-24 -1.97788328422E-24 -2.07929152865E-24 -2.18589908495E-24 -2.29797252754E-24 -2.41579209841E-24 -2.53965240784E-24 -2.66986317113E-24 -2.80674998301E-24 -2.95065513180E-24 -3.10193845534E-24 -3.26097824074E-24 -3.42817217029E-24 -3.60393831592E-24 -3.78871618452E-24 -3.98296781703E-24 -4.18717894369E-24 -4.40186019871E-24 -4.62754839703E-24 -4.86480787670E-24 -5.11423191001E-24 -5.37644418696E-24 -5.65210037481E-24 -5.94188975762E-24 -6.24653695980E-24 -6.56680375801E-24 -6.90349098609E-24 -7.25744053746E-24 -7.62953747037E-24 -8.02071222097E-24 -8.43194292987E-24 -8.86425788806E-24 -9.31873810811E-24 -9.79652002729E-24 -1.02987983493E-23 -1.08268290314E-23 -1.13819324256E-23 -1.19654965793E-23 -1.25789807070E-23 -1.32239188384E-23 -1.39019236549E-23 -1.46146905216E-23 -1.53640017269E-23 -1.61517309393E-23 -1.69798478919E-23 -1.78504233085E-23 -1.87656340812E-23 -1.97277687134E-23 -2.07392330431E-23 -2.18025562578E-23 -2.29203972194E-23 -2.40955511126E-23 -2.53309564341E-23 -2.66297023409E-23 -2.79950363740E-23 -2.94303725799E-23 -3.09393000465E-23 -3.25255918784E-23 -3.41932146317E-23 -3.59463382316E-23 -3.77893464003E-23 -3.97268476183E-23 -4.17636866477E-23 -4.39049566470E-23 -4.61560119066E-23 -4.85224812370E-23 -5.10102820442E-23 -5.36256351261E-23 -5.63750802274E-23 -5.92654923932E-23 -6.23040991593E-23 -6.54984986252E-23 -6.88566784536E-23 -7.23870358431E-23 -7.60983985259E-23 -8.00000468420E-23 -8.41017369443E-23 -8.84137251944E-23 -9.29467938090E-23 -9.77122778205E-23 -1.02722093421E-22 -1.07988767760E-22 -1.13525470265E-22 -1.19346045576E-22 -1.25465048165E-22 -1.31897778723E-22 -1.38660322429E-22 -1.45769589163E-22 -1.53243355796E-22 -1.61100310637E-22 -1.69360100164E-22 -1.78043378155E-22 -1.87171857327E-22 -1.96768363631E-22 -2.06856893334E-22 -2.17462673012E-22 -2.28612222640E-22 -2.40333421899E-22 -2.52655579891E-22 -2.65609508430E-22 -2.79227599085E-22 -2.93543904174E-22 -3.08594221917E-22 -3.24416185948E-22 -3.41049359416E-22 -3.58535333920E-22 -3.76917833503E-22 -3.96242823987E-22 -4.16558627915E-22 -4.37916045378E-22 -4.60368481044E-22 -4.83972077694E-22 -5.08785856616E-22 -5.34871865179E-22 -5.62295331992E-22 -5.91124830006E-22 -6.21432447980E-22 -6.53293970745E-22 -6.86789068702E-22 -7.22001497042E-22 -7.59019305175E-22 -7.97935056902E-22 -8.38846061870E-22 -8.81854618899E-22 -9.27068271782E-22 -9.74600078201E-22 -1.02456889243E-21 -1.07709966252E-21 -1.13232374276E-21 -1.19037922212E-21 -1.25141126953E-21 -1.31557249689E-21 -1.38302334069E-21 -1.45393246317E-21 -1.52847717407E-21 -1.60684387398E-21 -1.68922852047E-21 -1.77583711807E-21 -1.86688623338E-21 -1.96260353660E-21 -2.06322837083E-21 -2.16901235059E-21 -2.28021999090E-21 -2.39712936878E-21 -2.52003281857E-21 -2.64923766290E-21 -2.78506698117E-21 -2.92786041742E-21 -3.07797502959E-21 -3.23578618241E-21 -3.40168848595E-21 -3.57609678235E-21 -3.75944718320E-21 -3.95219815998E-21 -4.15483169052E-21 -4.36785446417E-21 -4.59179914880E-21 -4.82722572276E-21 -5.07472287508E-21 -5.33490947754E-21 -5.60843613214E-21 -5.89598679797E-21 -6.19828050143E-21 -6.51607313422E-21 -6.85015934341E-21 -7.20137451850E-21 -7.57059688033E-21 -7.95874967709E-21 -8.36680349290E-21 -8.79577867480E-21 -9.24674788414E-21 -9.72083877877E-21 -1.02192368328E-20 -1.07431883010E-20 -1.12940033347E-20 -1.18730592585E-20 -1.24818040137E-20 -1.31217597791E-20 -1.37945267775E-20 -1.45017872766E-20 -1.52453097959E-20 -1.60269535291E-20 -1.68486729923E-20 -1.77125229122E-20 -1.86206633634E-20 -1.95753651698E-20 -2.05790155832E-20 -2.16341242521E-20 -2.27433294977E-20 -2.39094049105E-20 -2.51352662864E-20 -2.64239789170E-20 -2.77787652549E-20 -2.92030129715E-20 -3.07002834275E-20 -3.22743205787E-20 -3.39290603376E-20 -3.56686404151E-20 -3.74974106671E-20 -3.94199439715E-20 -4.14410476624E-20 -4.35657755514E-20 -4.57994405645E-20 -4.81476280271E-20 -5.06162096304E-20 -5.32113581137E-20 -5.59395626993E-20 -5.88076453190E-20 -6.18227776725E-20 -6.49924991605E-20 -6.83247357367E-20 -7.18278197276E-20 -7.55105106666E-20 -7.93820171983E-20 -8.34520201046E-20 -8.77306965113E-20 -9.22287453370E-20 -9.69574140452E-20 -1.01928526769E-19 -1.07154513878E-19 -1.12648443061E-19 -1.18424052000E-19 -1.24495782725E-19 -1.30878817721E-19 -1.37589117900E-19 -1.44643462504E-19 -1.52059491068E-19 -1.59855747521E-19 -1.68051726564E-19 -1.76667922410E-19 -1.85725880033E-19 -1.95248249041E-19 -2.05258840312E-19 -2.15782685536E-19 -2.26846099802E-19 -2.38476747404E-19 -2.50703711013E-19 -2.63557564401E-19 -2.77070448892E-19 -2.91276153728E-19 -3.06210200564E-19 -3.21909932289E-19 -3.38414606400E-19 -3.55765493173E-19 -3.74005978852E-19 -3.93181674142E-19 -4.13340528259E-19 -4.34532948828E-19 -4.56811927926E-19 -4.80233174593E-19 -5.04855254131E-19 -5.30739734548E-19 -5.57951340512E-19 -5.86558115194E-19 -6.16631590414E-19 -6.48246965503E-19 -6.81483295346E-19 -7.16423688057E-19 -7.53155512792E-19 -7.91770618219E-19 -8.32365562188E-19 -8.75041853173E-19 -9.19906204098E-19 -9.67070799174E-19 -1.01665357442E-18 -1.06877851255E-18 -1.12357595304E-18 -1.18118291796E-18 -1.24174345470E-18 -1.30540899608E-18 -1.37233873907E-18 -1.44270004282E-18 -1.51666884717E-18 -1.59443011260E-18 -1.67617828269E-18 -1.76211777038E-18 -1.85246346905E-18 -1.94744128993E-18 -2.04728872693E-18 -2.15225545054E-18 -2.26260393215E-18 -2.37861010030E-18 -2.50056403071E-18 -2.62877067158E-18 -2.76355060615E-18 -2.90524085430E-18 -3.05419571526E-18 -3.21078765360E-18 -3.37540823053E-18 -3.54846908301E-18 -3.73040295309E-18 -3.92166476997E-18 -4.12273278754E-18 -4.33410978029E-18 -4.55632430050E-18 -4.78993199989E-18 -5.03551701904E-18 -5.29369344803E-18 -5.56510686202E-18 -5.85043593547E-18 -6.15039413922E-18 -6.46573152453E-18 -6.79723659857E-18 -7.14573829613E-18 -7.51210805236E-18 -7.89726198183E-18 -8.30216316927E-18 -8.72782407778E-18 -9.17530908055E-18 -9.64573712228E-18 -1.01402845172E-17 -1.06601878903E-17 -1.12067472699E-17 -1.17813293379E-17 -1.23853708474E-17 -1.30203822157E-17 -1.36879513003E-17 -1.43897473703E-17 -1.51275252798E-17 -1.59031298559E-17 -1.67185005123E-17 -1.75756760983E-17 -1.84767999972E-17 -1.94241254857E-17 -2.04200213686E-17 -2.14669779015E-17 -2.25676130183E-17 -2.37246788770E-17 -2.49410687416E-17 -2.62198242168E-17 -2.75641428536E-17 -2.89773861446E-17 -3.04630879300E-17 -3.20249632333E-17 -3.36669175512E-17 -3.53930566196E-17 -3.72076966792E-17 -3.91153752693E-17 -4.11208625734E-17 -4.32291733471E-17 -4.54455794580E-17 -4.77756230675E-17 -5.02251304896E-17 -5.28002267592E-17 -5.55073509482E-17 -5.83532722662E-17 -6.13451069873E-17 -6.44903362442E-17 -6.77968247348E-17 -7.12728403883E-17 -7.49270750389E-17 -7.87686661602E-17 -8.28072197132E-17 -8.70528341663E-17 -9.15161257466E-17 -9.62082549862E-17 -1.01140954629E-16 -1.06326558967E-16 -1.11778034686E-16 -1.17509013287E-16 -1.23533825168E-16 -1.29867535466E-16 -1.36525981719E-16 -1.43525813472E-16 -1.50884533911E-16 -1.58620543624E-16 -1.66753186619E-16 -1.75302798688E-16 -1.84290758260E-16 -1.93739539859E-16 -2.03672770296E-16 -2.14115287754E-16 -2.25093203896E-16 -2.36633969151E-16 -2.48766441362E-16 -2.61520957940E-16 -2.74929411724E-16 -2.89025330732E-16 -3.03843961993E-16 -3.19422359688E-16 -3.35799477797E-16 -3.53016267513E-16 -3.71115779632E-16 -3.90143272207E-16 -4.10146323713E-16 -4.31174952021E-16 -4.53281739461E-16 -4.76521964312E-16 -5.00953739021E-16 -5.26638155514E-16 -5.53639437957E-16 -5.82025103348E-16 -6.11866130345E-16 -6.43237136745E-16 -6.76216566069E-16 -7.10886883709E-16 -7.47334783132E-16 -7.85651402656E-16 -8.25932553346E-16 -8.68278958583E-16 -9.12796505926E-16 -9.59596511884E-16 -1.00879600026E-15 -1.06051799477E-15 -1.11489182668E-15 -1.17205345814E-15 -1.23214582225E-15 -1.29531918038E-15 -1.36173149792E-15 -1.43154883932E-15 -1.50494578326E-15 -1.58210585923E-15 -1.66322200643E-15 -1.74849705621E-15 -1.83814423924E-15 -1.93238771872E-15 -2.03146315088E-15 -2.13561827422E-15 -2.24511352900E-15 -2.36022270845E-15 -2.48123364343E-15 -2.60844892206E-15 -2.74218664643E-15 -2.88278122795E-15 -3.03058422357E-15 -3.18596521483E-15 -3.34931273199E-15 -3.52103522553E-15 -3.70156208752E-15 -3.89134472525E-15 -4.09085769000E-15 -4.30059986362E-15 -4.52109570601E-15 -4.75289656646E-15 -4.99658206237E-15 -5.25276152846E-15 -5.52207554050E-15 -5.80519751699E-15 -6.10283540304E-15 -6.41573344056E-15 -6.74467402922E-15 -7.09047968283E-15 -7.45401508598E-15 -7.83618925617E-15 -8.23795781677E-15 -8.66032538654E-15 -9.10434809161E-15 -9.57113620632E-15 -1.00618569294E-14 -1.05777373025E-14 -1.11200672782E-14 -1.16902029460E-14 -1.22895699225E-14 -1.29196669164E-14 -1.35820694761E-14 -1.42784339290E-14 -1.50105015231E-14 -1.57801027813E-14 -1.65891620777E-14 -1.74397024505E-14 -1.83338506594E-14 -1.92738425042E-14 -2.02620284149E-14 -2.13008793290E-14 -2.23929928699E-14 -2.35410998418E-14 -2.47480710585E-14 -2.60169245209E-14 -2.73508329641E-14 -2.87531317900E-14 -3.02273274074E-14 -3.17771059998E-14 -3.34063427419E-14 -3.51191114896E-14 -3.69196949662E-14 -3.88125954707E-14 -4.08025461362E-14 -4.28945227637E-14 -4.50937562644E-14 -4.74057457388E-14 -4.98362722267E-14 -5.23914131621E-14 -5.50775575695E-14 -5.79014220384E-14 -6.08700675182E-14 -6.39909169729E-14 -6.72717739414E-14 -7.07208420496E-14 -7.43467455224E-14 -7.81585507478E-14 -8.21657889461E-14 -8.63784800017E-14 -9.08071575166E-14 -9.54628951481E-14 -1.00357334297E-13 -1.05502713217E-13 -1.10911897610E-13 -1.16598412803E-13 -1.22576477557E-13 -1.28861039626E-13 -1.35467813128E-13 -1.42413317838E-13 -1.49714920490E-13 -1.57390878205E-13 -1.65460384132E-13 -1.73943615444E-13 -1.82861783788E-13 -1.92237188313E-13 -2.02093271434E-13 -2.12454677441E-13 -2.23347314118E-13 -2.34798417520E-13 -2.46836620072E-13 -2.59492022161E-13 -2.72796267389E-13 -2.86782621700E-13 -3.01486056548E-13 -3.16943336336E-13 -3.33193110341E-13 -3.50276009343E-13 -3.68234747217E-13 -3.87114227725E-13 -4.06961656790E-13 -4.27826660519E-13 -4.49761409284E-13 -4.72820748158E-13 -4.97062334043E-13 -5.22546779822E-13 -5.49337805906E-13 -5.77502399551E-13 -6.07110982336E-13 -6.38237586235E-13 -6.70960038707E-13 -7.05360157286E-13 -7.41523954133E-13 -7.79541851085E-13 -8.19508905725E-13 -8.61525049042E-13 -9.05695335268E-13 -9.52130204540E-13 -1.00094575900E-12 -1.05226405309E-12 -1.10621339868E-12 -1.16292868586E-12 -1.22255172020E-12 -1.28523157729E-12 -1.35112497538E-12 -1.42039666726E-12 -1.49321985211E-12 -1.56977660853E-12 -1.65025834975E-12 -1.73486630213E-12 -1.82381200829E-12 -1.91731785595E-12 -2.01561763387E-12 -2.11895711639E-12 -2.22759467781E-12 -2.34180193834E-12 -2.46186444313E-12 -2.58808237617E-12 -2.72077131067E-12 -2.86026299803E-12 -3.00690619714E-12 -3.16106754631E-12 -3.32313247979E-12 -3.49350619132E-12 -3.67261464706E-12 -3.86090565048E-12 -4.05884996177E-12 -4.26694247468E-12 -4.48570345365E-12 -4.71567983441E-12 -4.95744659118E-12 -5.21160817398E-12 -5.47880001962E-12 -5.75969014016E-12 -6.05498079273E-12 -6.36541023499E-12 -6.69175457054E-12 -7.03482968900E-12 -7.39549330537E-12 -7.77464710412E-12 -8.17323899300E-12 -8.59226547248E-12 -9.03277412662E-12 -9.49586624156E-12 -9.98269955826E-12 -1.04944911664E-11 -1.10325205463E-11 -1.15981327674E-11 -1.21927418498E-11 -1.28178342988E-11 -1.34749728202E-11 -1.41658002265E-11 -1.48920435423E-11 -1.56555183214E-11 -1.64581331843E-11 -1.73018945883E-11 -1.81889118425E-11 -1.91214023794E-11 -2.01016972967E-11 -2.11322471839E-11 -2.22156282431E-11 -2.33545487380E-11 -2.45518557510E-11 -2.58105422990E-11 -2.71337548183E-11 -2.85248010286E-11 -2.99871581912E-11 -3.15244818213E-11 -3.31406147772E-11 -3.48395969082E-11 -3.66256751324E-11 -3.85033140564E-11 -4.04772071226E-11 -4.25522883170E-11 -4.47337445635E-11 -4.70270286020E-11 -4.94378726868E-11 -5.19723028520E-11 -5.46366540159E-11 -5.74375857600E-11 -6.03820990085E-11 -6.34775535120E-11 -6.67316862249E-11 -7.01526306376E-11 -7.37489370974E-11 -7.75295941949E-11 -8.15040511741E-11 -8.56822415608E-11 -9.00746080045E-11 -9.46921283318E-11 -9.95463429834E-11 -1.04649383836E-10 -1.10014004503E-10 -1.15653612238E-10 -1.21582301350E-10 -1.27814888491E-10 -1.34366949551E-10 -1.41254858672E-10 -1.48495829231E-10 -1.56107956470E-10 -1.64110263151E-10 -1.72522746646E-10 -1.81366429285E-10 -1.90663410521E-10 -2.00436922305E-10 -2.10711386982E-10 -2.21512478512E-10 -2.32867186030E-10 -2.44803882160E-10 -2.57352393023E-10 -2.70544072893E-10 -2.84411882911E-10 -2.98990472832E-10 -3.14316267935E-10 -3.30427559860E-10 -3.47364601703E-10 -3.65169709770E-10 -3.83887367537E-10 -4.03564338327E-10 -4.24249780549E-10 -4.45995371751E-10 -4.68855436642E-10 -4.92887083181E-10 -5.18150345083E-10 -5.44708331024E-10 -5.72627383301E-10 -6.01977242345E-10 -6.32831221270E-10 -6.65266388583E-10 -6.99363760797E-10 -7.35208504522E-10 -7.72890148265E-10 -8.12502806910E-10 -8.54145416045E-10 -8.97921978089E-10 -9.43941822808E-10 -9.92319880049E-10 -1.04317696476E-09 -1.09664008080E-09 -1.15284273561E-09 -1.21192527421E-09 -1.27403522936E-09 -1.33932768872E-09 -1.40796568192E-09 -1.48012058738E-09 -1.55597255940E-09 -1.63571097647E-09 -1.71953491525E-09 -1.80765364481E-09 -1.90028715003E-09 -1.99766667964E-09 -2.10003531990E-09 -2.20764860442E-09 -2.32077514866E-09 -2.43969731939E-09 -2.56471193960E-09 -2.69613102640E-09 -2.83428256825E-09 -2.97951134352E-09 -3.13217978092E-09 -3.29266885584E-09 -3.46137904654E-09 -3.63873132580E-09 -3.82516821400E-09 -4.02115487660E-09 -4.22718028687E-09 -4.44375843840E-09 -4.67142962567E-09 -4.91076179534E-09 -5.16235195028E-09 -5.42682763889E-09 -5.70484852186E-09 -5.99710800420E-09 -6.30433496667E-09 -6.62729558007E-09 -6.96679520625E-09 -7.32368040163E-09 -7.69884102659E-09 -8.09321245421E-09 -8.50777789775E-09 -8.94357085753E-09 -9.40167768161E-09 -9.88324027226E-09 -1.03894589259E-08 -1.09215953093E-08 -1.14809755965E-08 -1.20689937651E-08 -1.26871150578E-08 -1.33368796189E-08 -1.40199063217E-08 -1.47378967841E-08 -1.54926396012E-08 -1.62860147721E-08 -1.71199983743E-08 -1.79966674660E-08 -1.89182052372E-08 -1.98869064241E-08 -2.09051830023E-08 -2.19755701705E-08 -2.31007326274E-08 -2.42834711855E-08 -2.55267297094E-08 -2.68336024102E-08 -2.82073415132E-08 -2.96513653078E-08 -3.11692666254E-08 -3.27648217217E-08 -3.44419996319E-08 -3.62049719955E-08 -3.80581233780E-08 -4.00060621160E-08 -4.20536317176E-08 -4.42059228444E-08 -4.64682858876E-08 -4.88463442036E-08 -5.13460080051E-08 -5.39734889632E-08 -5.67353155552E-08 -5.96383491794E-08 -6.26898010991E-08 -6.58972502399E-08 -6.92686618912E-08 -7.28124073543E-08 -7.65372845905E-08 -8.04525399048E-08 -8.45678907437E-08 -8.88935496374E-08 -9.34402493540E-08 -9.82192693263E-08 -1.03242463432E-07 -1.08522289147E-07 -1.14071838213E-07 -1.19904868819E-07 -1.26035839433E-07 -1.32479944337E-07 -1.39253150959E-07 -1.46372239081E-07 -1.53854842033E-07 -1.61719489981E-07 -1.69985655371E-07 -1.78673800684E-07 -1.87805428592E-07 -1.97403134653E-07 -2.07490662644E-07 -2.18092962690E-07 -2.29236252331E-07 -2.40948080629E-07 -2.53257395555E-07 -2.66194614706E-07 -2.79791699613E-07 -2.94082233782E-07 -3.09101504641E-07 -3.24886589607E-07 -3.41476446484E-07 -3.58912008372E-07 -3.77236283366E-07 -3.96494459229E-07 -4.16734013302E-07 -4.38004827962E-07 -4.60359311799E-07 -4.83852526897E-07 -5.08542322467E-07 -5.34489475156E-07 -5.61757836355E-07 -5.90414486884E-07 -6.20529899367E-07 -6.52178108733E-07 -6.85436891174E-07 -7.20387952059E-07 -7.57117123172E-07 -7.95714569765E-07 -8.36275007919E-07 -8.78897932676E-07 -9.23687857530E-07 -9.70754565768E-07 -1.02021337429E-06 -1.07218541049E-06 -1.12679790285E-06 -1.18418448592E-06 -1.24448552032E-06 -1.30784842864E-06 -1.37442804782E-06 -1.44438699898E-06 -1.51789607544E-06 -1.59513464983E-06 -1.67629110125E-06 -1.76156326344E-06 -1.85115889487E-06 -1.94529617202E-06 -2.04420420670E-06 -2.14812358878E-06 -2.25730695549E-06 -2.37201958842E-06 -2.49254003980E-06 -2.61916078919E-06 -2.75218893228E-06 -2.89194690309E-06 -3.03877323134E-06 -3.19302333653E-06 -3.35507036060E-06 -3.52530604079E-06 -3.70414162485E-06 -3.89200883033E-06 -4.08936085027E-06 -4.29667340721E-06 -4.51444585798E-06 -4.74320235161E-06 -4.98349304266E-06 -5.23589536281E-06 -5.50101535315E-06 -5.77948906016E-06 -6.07198399827E-06 -6.37920068198E-06 -6.70187423085E-06 -7.04077605058E-06 -7.39671559378E-06 -7.77054220392E-06 -8.16314704634E-06 -8.57546513020E-06 -9.00847742546E-06 -9.46321307925E-06 -9.94075173598E-06 -1.04422259658E-05 -1.09688238066E-05 -1.15217914235E-05 -1.21024358932E-05 -1.27121281156E-05 -1.33523058613E-05 -1.40244769590E-05 -1.47302226294E-05 -1.54712009724E-05 -1.62491506133E-05 -1.70658945157E-05 -1.79233439681E-05 -1.88235027507E-05 -1.97684714912E-05 -2.07604522169E-05 -2.18017531114E-05 -2.28947934848E-05 -2.40421089655E-05 -2.52463569232E-05 -2.65103221333E-05 -2.78369226904E-05 -2.92292161835E-05 -3.06904061417E-05 -3.22238487617E-05 -3.38330599281E-05 -3.55217225387E-05 -3.72936941452E-05 -3.91530149235E-05 -4.11039159842E-05 -4.31508280375E-05 -4.52983904253E-05 -4.75514605349E-05 -4.99151236068E-05 -5.23947029530E-05 -5.49957705987E-05 -5.77241583641E-05 -6.05859694005E-05 -6.35875901974E-05 -6.67357030762E-05 -7.00372991873E-05 -7.34996920270E-05 -7.71305314919E-05 -8.09378184868E-05 -8.49299201056E-05 -8.91155854011E-05 -9.35039617622E-05 -9.81046119178E-05 -1.02927531584E-04 -1.07983167772E-04 -1.13282437781E-04 -1.18836748885E-04 -1.24658018737E-04 -1.30758696513E-04 -1.37151784805E-04 -1.43850862285E-04 -1.50870107155E-04 -1.58224321408E-04 -1.65928955901E-04 -1.74000136274E-04 -1.82454689707E-04 -1.91310172559E-04 -2.00584898870E-04 -2.10297969757E-04 -2.20469303719E-04 -2.31119667835E-04 -2.42270709893E-04 -2.53944991431E-04 -2.66166021710E-04 -2.78958292607E-04 -2.92347314436E-04 -3.06359652694E-04 -3.21022965711E-04 -3.36366043210E-04 -3.52418845760E-04 -3.69212545087E-04 -3.86779565250E-04 -4.05153624626E-04 -4.24369778697E-04 -4.44464463582E-04 -4.65475540285E-04 -4.87442339606E-04 -5.10405707649E-04 -5.34408051888E-04 -5.59493387692E-04 -5.85707385252E-04 -6.13097416813E-04 -6.41712604111E-04 -6.71603865924E-04 -7.02823965593E-04 -7.35427558415E-04 -7.69471238741E-04 -8.05013586645E-04 -8.42115213986E-04 -8.80838809690E-04 -9.21249184048E-04 -9.63413311832E-04 -1.00740037399E-03 -1.05328179768E-03 -1.10113129437E-03 -1.15102489579E-03 -1.20304098728E-03 -1.25726033839E-03 -1.31376613030E-03 -1.37264397968E-03 -1.43398195864E-03 -1.49787061038E-03 -1.56440296000E-03 -1.63367452016E-03 -1.70578329096E-03 -1.78082975364E-03 -1.85891685747E-03 -1.94014999936E-03 -2.02463699541E-03 -2.11248804409E-03 -2.20381568003E-03 -2.29873471802E-03 -2.39736218638E-03 -2.49981724896E-03 -2.60622111511E-03 -2.71669693662E-03 -2.83136969109E-03 -2.95036605057E-03 -3.07381423491E-03 -3.20184384864E-03 -3.33458570073E-03 -3.47217160602E-03 -3.61473416768E-03 -3.76240653942E-03 -3.91532216674E-03 -4.07361450606E-03 -4.23741672087E-03 -4.40686135379E-03 -4.58207997373E-03 -4.76320279703E-03 -4.95035828176E-03 -5.14367269417E-03 -5.34326964652E-03 -5.54926960535E-03 -5.76178936942E-03 -5.98094151670E-03 -6.20683381957E-03 -6.43956862786E-03 -6.67924221906E-03 -6.92594411553E-03 -7.17975636818E-03 -7.44075280687E-03 -7.70899825715E-03 -7.98454772392E-03 -8.26744554203E-03 -8.55772449470E-03 -8.85540490031E-03 -9.16049366868E-03 -9.47298332817E-03 -9.79285102493E-03 -1.01200574964E-02 -1.04545460210E-02 -1.07962413463E-02 -1.11450485994E-02 -1.15008521810E-02 -1.18635146487E-02 -1.22328755919E-02 -1.26087505037E-02 -1.29909296541E-02 -1.33791769698E-02 -1.37732289273E-02 -1.41727934637E-02 -1.45775489138E-02 -1.49871429795E-02 -1.54011917402E-02 -1.58192787113E-02 -1.62409539607E-02 -1.66657332919E-02 -1.70930975037E-02 -1.75224917363E-02 -1.79533249151E-02 -1.83849693034E-02 -1.88167601743E-02 -1.92479956151E-02 -1.96779364759E-02 -2.01058064746E-02 -2.05307924711E-02 -2.09520449242E-02 -2.13686785428E-02 -2.17797731455E-02 -2.21843747409E-02 -2.25814968410E-02 -2.29701220202E-02 -2.33492037321E-02 -2.37176683940E-02 -2.40744177518E-02 -2.44183315327E-02 -2.47482703967E-02 -2.50630791921E-02 -2.53615905228E-02 -2.56426286325E-02 -2.59050136063E-02 -2.61475658934E-02 -2.63691111487E-02 -2.65684853893E-02 -2.67445404617E-02 -2.68961498091E-02 -2.70222145283E-02 -2.71216697019E-02 -2.71934909860E-02 -2.72367014337E-02 -2.72503785268E-02 -2.72336613885E-02 -2.71857581412E-02 -2.71059533731E-02 -2.69936156709E-02 -2.68482051705E-02 -2.66692810760E-02 -2.64565090893E-02 -2.62096686894E-02 -2.59286601961E-02 -2.56135115477E-02 -2.52643847175E-02 -2.48815816899E-02 -2.44655499142E-02 -2.40168871477E-02 -2.35363456000E-02 -2.30248352851E-02 -2.24834264877E-02 -2.19133512492E-02 -2.13160037766E-02 -2.06929396822E-02 -2.00458739609E-02 -1.93766776181E-02 -1.86873728645E-02 -1.79801268023E-02 -1.72572435352E-02 -1.65211546459E-02 -1.57744079965E-02 -1.50196548210E-02 -1.42596350985E-02 -1.34971612092E-02 -1.27350998989E-02 -1.19763525981E-02 -1.12238341612E-02 -1.04804501180E-02 -9.74907254926E-03 -9.03251471909E-03 -8.33350461885E-03 -7.65465759015E-03 -6.99844820847E-03 -6.36718161361E-03 -5.76296447194E-03 -5.18767574436E-03 -4.64293741263E-03 -4.13008528267E-03 -3.65013993561E-03 -3.20377783445E-03 -2.79130251522E-03 -2.41261569632E-03 -2.06718802809E-03 -1.75402907909E-03 -1.47165601707E-03 -1.21839303543E-03 -9.93441165743E-04 -7.96047172913E-04 -6.25197445363E-04 -4.79624212610E-04 -3.57817054108E-04 -2.58040241249E-04 -1.78356414580E-04 -1.16657038290E-04 -7.06999915352E-05 -3.81545490906E-05 -1.66538701791E-05 -3.85495275736E-06 2.49417995591E-06 4.48051355060E-06 3.94599816843E-06 2.40240226674E-06 9.42340452623E-07 1.48071712812E-07 8.30028490081E-18 -2.06242313358E-18 1.16627739577E-18 -7.83287779750E-19 2.21953358099E-18 1.60441486636E-20 -5.86557097407E-20 -1.99660593475E-19 6.58625943375E-18 -4.46233432541E-19 -1.46155227480E-18 -1.76340411177E-18 1.77094322590E-19 1.63201480475E-18 -9.45746297575E-21 -1.59847705027E-19 -8.66115020128E-19 6.48207392416E-20 -1.26733801564E-19 -5.78860814243E-19 2.15180580117E-18 -1.20728940840E-18 -5.80404399493E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 2 2 i j (l(j)) 3.36454427925E-01 Q_int 5.74692190080E-28 6.10229170427E-28 6.47963634912E-28 6.88031468365E-28 7.30576958266E-28 7.75753314331E-28 8.23723220239E-28 8.74659419465E-28 9.28745337343E-28 9.86175741598E-28 1.04715744372E-27 1.11191004369E-27 1.18066672083E-27 1.25367507343E-27 1.33119801042E-27 1.41351469811E-27 1.50092156549E-27 1.59373337168E-27 1.69228433944E-27 1.79692935871E-27 1.90804526457E-27 2.02603219431E-27 2.15131502832E-27 2.28434492012E-27 2.42560092101E-27 2.57559170517E-27 2.73485740142E-27 2.90397153831E-27 3.08354310938E-27 3.27421876626E-27 3.47668514725E-27 3.69167135003E-27 3.91995155712E-27 4.16234782386E-27 4.41973303861E-27 4.69303406615E-27 4.98323508539E-27 5.29138113344E-27 5.61858186892E-27 5.96601556788E-27 6.33493336691E-27 6.72666376857E-27 7.14261742541E-27 7.58429221989E-27 8.05327865831E-27 8.55126559843E-27 9.08004633111E-27 9.64152503814E-27 1.02377236493E-26 1.08707891236E-26 1.15430011805E-26 1.22567805095E-26 1.30146974872E-26 1.38194814332E-26 1.46740304391E-26 1.55814218043E-26 1.65449231178E-26 1.75680040250E-26 1.86543487222E-26 1.98078692238E-26 2.10327194494E-26 2.23333101829E-26 2.37143249557E-26 2.51807369126E-26 2.67378267206E-26 2.83912015847E-26 3.01468154404E-26 3.20109903938E-26 3.39904394882E-26 3.60922908785E-26 3.83241134998E-26 4.06939443242E-26 4.32103173024E-26 4.58822940950E-26 4.87194967045E-26 5.17321421249E-26 5.49310791336E-26 5.83278273590E-26 6.19346187637E-26 6.57644416924E-26 6.98310876442E-26 7.41492009371E-26 7.87343314430E-26 8.36029905840E-26 8.87727107917E-26 9.42621086428E-26 1.00090951899E-25 1.06280230691E-25 1.12852233108E-25 1.19830625457E-25 1.27240537488E-25 1.35108652888E-25 1.43463305370E-25 1.52334580708E-25 1.61754425074E-25 1.71756760083E-25 1.82377604944E-25 1.93655206171E-25 2.05630175308E-25 2.18345635178E-25 2.31847375172E-25 2.46184016136E-25 2.61407185463E-25 2.77571703004E-25 2.94735778483E-25 3.12961221110E-25 3.32313662163E-25 3.52862791333E-25 3.74682607679E-25 3.97851686108E-25 4.22453460328E-25 4.48576523297E-25 4.76314946257E-25 5.05768617491E-25 5.37043602028E-25 5.70252523593E-25 6.05514970170E-25 6.42957924655E-25 6.82716222125E-25 7.24933035394E-25 7.69760390586E-25 8.17359714598E-25 8.67902416408E-25 9.21570504332E-25 9.78557241452E-25 1.03906784157E-24 1.10332020821E-24 1.17154571928E-24 1.24399006032E-24 1.32091410919E-24 1.40259487555E-24 1.48932649839E-24 1.58142130523E-24 1.67921093683E-24 1.78304754149E-24 1.89330504314E-24 2.01038048787E-24 2.13469547373E-24 2.26669766894E-24 2.40686242397E-24 2.55569448332E-24 2.71372980316E-24 2.88153748132E-24 3.05972180669E-24 3.24892443529E-24 3.44982670093E-24 3.66315206875E-24 3.88966874048E-24 4.13019242078E-24 4.38558925468E-24 4.65677894663E-24 4.94473807241E-24 5.25050359588E-24 5.57517660317E-24 5.91992626776E-24 6.28599406079E-24 6.67469822167E-24 7.08743850521E-24 7.52570122219E-24 7.99106459173E-24 8.48520442457E-24 9.00990015779E-24 9.56704126270E-24 1.01586340490E-23 1.07868088897E-23 1.14538278926E-23 1.21620930466E-23 1.29141548711E-23 1.37127216009E-23 1.45606689387E-23 1.54610504107E-23 1.64171083626E-23 1.74322856357E-23 1.85102379644E-23 1.96548471413E-23 2.08702349957E-23 2.21607782364E-23 2.35311242128E-23 2.49862076505E-23 2.65312684212E-23 2.81718704124E-23 2.99139215630E-23 3.17636951385E-23 3.37278523216E-23 3.58134661993E-23 3.80280472339E-23 4.03795703088E-23 4.28765034466E-23 4.55278383032E-23 4.83431225473E-23 5.13324942427E-23 5.45067183556E-23 5.78772255210E-23 6.14561532045E-23 6.52563894108E-23 6.92916190941E-23 7.35763734390E-23 7.81260821884E-23 8.29571292071E-23 8.80869114813E-23 9.35339017670E-23 9.93177151113E-23 1.05459179488E-22 1.11980410802E-22 1.18904892526E-22 1.26257560274E-22 1.34064891589E-22 1.42355001294E-22 1.51157742738E-22 1.60504815293E-22 1.70429878517E-22 1.80968673352E-22 1.92159150842E-22 2.04041608788E-22 2.16658836871E-22 2.30056270736E-22 2.44282155612E-22 2.59387720045E-22 2.75427360378E-22 2.92458836637E-22 3.10543480526E-22 3.29746416290E-22 3.50136795234E-22 3.71788044738E-22 3.94778132679E-22 4.19189848197E-22 4.45111099827E-22 4.72635232062E-22 5.01861361497E-22 5.32894733754E-22 5.65847102481E-22 6.00837131784E-22 6.37990823547E-22 6.77441971175E-22 7.19332641393E-22 7.63813685844E-22 8.11045284311E-22 8.61197521543E-22 9.14450999740E-22 9.70997488918E-22 1.03104061749E-21 1.09479660553E-21 1.16249504344E-21 1.23437971868E-21 1.31070949369E-21 1.39175923805E-21 1.47782081835E-21 1.56920414918E-21 1.66623830918E-21 1.76927272609E-21 1.87867843502E-21 1.99484941464E-21 2.11820400588E-21 2.24918641842E-21 2.38826833033E-21 2.53595058664E-21 2.69276500288E-21 2.85927628021E-21 3.03608403897E-21 3.22382497793E-21 3.42317516711E-21 3.63485248237E-21 3.85961919052E-21 4.09828469430E-21 4.35170844711E-21 4.62080304799E-21 4.90653752793E-21 5.20994083944E-21 5.53210556189E-21 5.87419183596E-21 6.23743154142E-21 6.62313273322E-21 7.03268435189E-21 7.46756122521E-21 7.92932937923E-21 8.41965167760E-21 8.94029380968E-21 9.49313064897E-21 1.00801530046E-20 1.07034747905E-20 1.13653406377E-20 1.20681339773E-20 1.28143856237E-20 1.36067828878E-20 1.44481792549E-20 1.53416046596E-20 1.62902763972E-20 1.72976107095E-20 1.83672350867E-20 1.95030013304E-20 2.07089994243E-20 2.19895722625E-20 2.33493312886E-20 2.47931731018E-20 2.63262970901E-20 2.79542241533E-20 2.96828165848E-20 3.15182991817E-20 3.34672816610E-20 3.55367824615E-20 3.77342540179E-20 4.00676095977E-20 4.25452517972E-20 4.51761027999E-20 4.79696365066E-20 5.09359126505E-20 5.40856130243E-20 5.74300799452E-20 6.09813571001E-20 6.47522329153E-20 6.87562866091E-20 7.30079370914E-20 7.75224948871E-20 8.23162172707E-20 8.74063668099E-20 9.28112735297E-20 9.85504009197E-20 1.04644416024E-19 1.11115263864E-19 1.17986246467E-19 1.25282106773E-19 1.33029117741E-19 1.41255176960E-19 1.49989907104E-19 1.59264762614E-19 1.69113142961E-19 1.79570512925E-19 1.90674530303E-19 2.02465181518E-19 2.14984925615E-19 2.28278847156E-19 2.42394818579E-19 2.57383672580E-19 2.73299385177E-19 2.90199270072E-19 3.08144185048E-19 3.27198751120E-19 3.47431585240E-19 3.68915547392E-19 3.91728002967E-19 4.15951101360E-19 4.41672071796E-19 4.68983537451E-19 4.97983848993E-19 5.28777438750E-19 5.61475196779E-19 5.96194870188E-19 6.33061487155E-19 6.72207807159E-19 7.13774799060E-19 7.57912148737E-19 8.04778798117E-19 8.54543517536E-19 9.07385513497E-19 9.63495073997E-19 1.02307425378E-18 1.08633760194E-18 1.15351293452E-18 1.22484215493E-18 1.30058212500E-18 1.38100559003E-18 1.46640216089E-18 1.55707935699E-18 1.65336371363E-18 1.75560195791E-18 1.86416225732E-18 1.97943554550E-18 2.10183693008E-18 2.23180718743E-18 2.36981435000E-18 2.51635539171E-18 2.67195801756E-18 2.83718256398E-18 3.01262401659E-18 3.19891415285E-18 3.39672381704E-18 3.60676533611E-18 3.82979508474E-18 4.06661620914E-18 4.31808151924E-18 4.58509655966E-18 4.86862287070E-18 5.16968145086E-18 5.48935643356E-18 5.82879899113E-18 6.18923148031E-18 6.57195184399E-18 6.97833828520E-18 7.40985423010E-18 7.86805359789E-18 8.35458639655E-18 8.87120466463E-18 9.41976878044E-18 1.00022541614E-17 1.06207583776E-17 1.12775087054E-17 1.19748701477E-17 1.27153539509E-17 1.35016266476E-17 1.43365196592E-17 1.52230394921E-17 1.61643785639E-17 1.71639266999E-17 1.82252833398E-17 1.93522704996E-17 2.05489465350E-17 2.18196207556E-17 2.31688689427E-17 2.46015498277E-17 2.61228225878E-17 2.77381654251E-17 2.94533952936E-17 3.12746888464E-17 3.32086046782E-17 3.52621069431E-17 3.74425904328E-17 3.97579072059E-17 4.22163948632E-17 4.48269065719E-17 4.75988429465E-17 5.05421859006E-17 5.36675345924E-17 5.69861435927E-17 6.05099634132E-17 6.42516835407E-17 6.82247781325E-17 7.24435545376E-17 7.69232048181E-17 8.16798604560E-17 8.67306504441E-17 9.20937629675E-17 9.77885109002E-17 1.03835401352E-16 1.10256209514E-16 1.17074057074E-16 1.24313495477E-16 1.32000594336E-16 1.40163035310E-16 1.48830211785E-16 1.58033334724E-16 1.67805545057E-16 1.78182033019E-16 1.89200164877E-16 2.00899617483E-16 2.13322521153E-16 2.26513611380E-16 2.40520389924E-16 2.55393295873E-16 2.71185887270E-16 2.87955033980E-16 3.05761122478E-16 3.24668273301E-16 3.44744571951E-16 3.66062314068E-16 3.88698265770E-16 4.12733940088E-16 4.38255890497E-16 4.65356022594E-16 4.94131925052E-16 5.24687221039E-16 5.57131941364E-16 5.91582920700E-16 6.28164218306E-16 6.67007564764E-16 7.08252836341E-16 7.52048558686E-16 7.98552441669E-16 8.47931947293E-16 9.00364892725E-16 9.56040090613E-16 1.01515802900E-15 1.07793159329E-15 1.14458683282E-15 1.21536377489E-15 1.29051728907E-15 1.37031800501E-15 1.45505328694E-15 1.54502826851E-15 1.64056695151E-15 1.74201337263E-15 1.84973284232E-15 1.96411326027E-15 2.08556651220E-15 2.21452995307E-15 2.35146798197E-15 2.49687371440E-15 2.65127075799E-15 2.81521509792E-15 2.98929709906E-15 3.17414363184E-15 3.37042032953E-15 3.57883398521E-15 3.80013509686E-15 4.03512056985E-15 4.28463658658E-15 4.54958165350E-15 4.83090983658E-15 5.12963419683E-15 5.44683043828E-15 5.78364078147E-15 6.14127807652E-15 6.52103017052E-15 6.92426454492E-15 7.35243323970E-15 7.80707808208E-15 8.28983623847E-15 8.80244610971E-15 9.34675359091E-15 9.92471871832E-15 1.05384227272E-14 1.11900755460E-14 1.18820237542E-14 1.26167590322E-14 1.33969271330E-14 1.42253374097E-14 1.51049729316E-14 1.60390012254E-14 1.70307856815E-14 1.80838976646E-14 1.92021293742E-14 2.03895074991E-14 2.16503077173E-14 2.29890700916E-14 2.44106154182E-14 2.59200625847E-14 2.75228470030E-14 2.92247401808E-14 3.10318705038E-14 3.29507453028E-14 3.49882742851E-14 3.71517944153E-14 3.94490963335E-14 4.18884524083E-14 4.44786465231E-14 4.72290057054E-14 5.01494337107E-14 5.32504466837E-14 5.65432110241E-14 6.00395835939E-14 6.37521544111E-14 6.76942919824E-14 7.18801914397E-14 7.63249256525E-14 8.10444995009E-14 8.60559075045E-14 9.13771950137E-14 9.70275231860E-14 1.03027237978E-13 1.09397943407E-13 1.16162579334E-13 1.23345504069E-13 1.30972582070E-13 1.39071277077E-13 1.47670750995E-13 1.56801968893E-13 1.66497810503E-13 1.76793188598E-13 1.87725174708E-13 1.99333132589E-13 2.11658859961E-13 2.24746739001E-13 2.38643896142E-13 2.53400371752E-13 2.69069300310E-13 2.85707101710E-13 3.03373684406E-13 3.22132661109E-13 3.42051577823E-13 3.63202157041E-13 3.85660555978E-13 4.09507640771E-13 4.34829277629E-13 4.61716641987E-13 4.90266546776E-13 5.20581790979E-13 5.52771529752E-13 5.86951667417E-13 6.23245274759E-13 6.61783032114E-13 7.02703699866E-13 7.46154618017E-13 7.92292236658E-13 8.41282679222E-13 8.93302340574E-13 9.48538522069E-13 1.00719010588E-12 1.06946827099E-12 1.13559725351E-12 1.20581515393E-12 1.28037479432E-12 1.35954462853E-12 1.44360970864E-12 1.53287271116E-12 1.62765502670E-12 1.72829791696E-12 1.83516374331E-12 1.94863727126E-12 2.06912705560E-12 2.19706691123E-12 2.33291747475E-12 2.47716786283E-12 2.63033743289E-12 2.79297765270E-12 2.96567408564E-12 3.14904849855E-12 3.34376109995E-12 3.55051291666E-12 3.77004831728E-12 4.00315769169E-12 4.25068029618E-12 4.51350727447E-12 4.79258486552E-12 5.08891780951E-12 5.40357296452E-12 5.73768314668E-12 6.09245120770E-12 6.46915436451E-12 6.86914879650E-12 7.29387452691E-12 7.74486060599E-12 8.22373061454E-12 8.73220850874E-12 9.27212481953E-12 9.84542325114E-12 1.04541676718E-11 1.11005495341E-11 1.17868957742E-11 1.25156771879E-11 1.32895172952E-11 1.41112018304E-11 1.49836887319E-11 1.59101187917E-11 1.68938269631E-11 1.79383543770E-11 1.90474610592E-11 2.02251394645E-11 2.14756288820E-11 2.28034306409E-11 2.42133243462E-11 2.57103850325E-11 2.73000014914E-11 2.89878956041E-11 3.07801429787E-11 3.26831947473E-11 3.47039008503E-11 3.68495346425E-11 3.91278190779E-11 4.15469544770E-11 4.41156480551E-11 4.68431452522E-11 4.97392629663E-11 5.28144249175E-11 5.60796990980E-11 5.95468376321E-11 6.32283190507E-11 6.71373931566E-11 7.12881286984E-11 7.56954640713E-11 8.03752608404E-11 8.53443609832E-11 9.06206475309E-11 9.62231086357E-11 1.02171906127E-10 1.08488447845E-10 1.15195464696E-10 1.22317092659E-10 1.29878959046E-10 1.37908275231E-10 1.46433934194E-10 1.55486614632E-10 1.65098891038E-10 1.75305350807E-10 1.86142719334E-10 1.97649990987E-10 2.09868570305E-10 2.22842419990E-10 2.36618219943E-10 2.51245534138E-10 2.66776989709E-10 2.83268465217E-10 3.00779292818E-10 3.19372470115E-10 3.39114887806E-10 3.60077569445E-10 3.82335927016E-10 4.05970031988E-10 4.31064903430E-10 4.57710812831E-10 4.86003609321E-10 5.16045063605E-10 5.47943234358E-10 5.81812855917E-10 6.17775750926E-10 6.55961267653E-10 6.96506746025E-10 7.39558009646E-10 7.85269890175E-10 8.33806784508E-10 8.85343243784E-10 9.40064602250E-10 9.98167641553E-10 1.05986129843E-09 1.12536741501E-09 1.19492153561E-09 1.26877375268E-09 1.34718960493E-09 1.43045103143E-09 1.51885738336E-09 1.61272649935E-09 1.71239584643E-09 1.81822373218E-09 1.93059059050E-09 2.04990034838E-09 2.17658187355E-09 2.31109051816E-09 2.45390974566E-09 2.60555287940E-09 2.76656492691E-09 2.93752455156E-09 3.11904613862E-09 3.31178200788E-09 3.51642474314E-09 3.73370968952E-09 3.96441758558E-09 4.20937735710E-09 4.46946910189E-09 4.74562724103E-09 5.03884386659E-09 5.35017230621E-09 5.68073089002E-09 6.03170696748E-09 6.40436116861E-09 6.80003190462E-09 7.22014018512E-09 7.66619470164E-09 8.13979723094E-09 8.64264837801E-09 9.17655367274E-09 9.74343003110E-09 1.03453126248E-08 1.09843621717E-08 1.16628726726E-08 1.23832796263E-08 1.31481687462E-08 1.39602852218E-08 1.48225435440E-08 1.57380379389E-08 1.67100534298E-08 1.77420776110E-08 1.88378131093E-08 2.00011908341E-08 2.12363840454E-08 2.25478232640E-08 2.39402121281E-08 2.54185442068E-08 2.69881208433E-08 2.86545701171E-08 3.04238669432E-08 3.23023544320E-08 3.42967665474E-08 3.64142521651E-08 3.86624005877E-08 4.10492686766E-08 4.35834095809E-08 4.62739033003E-08 4.91303890642E-08 5.21630997517E-08 5.53828984026E-08 5.88013169241E-08 6.24305972600E-08 6.62837350336E-08 7.03745258712E-08 7.47176145543E-08 7.93285472396E-08 8.42238268219E-08 8.94209717139E-08 9.49385782505E-08 1.00796386880E-07 1.07015352435E-07 1.13617718697E-07 1.20627097560E-07 1.28068552975E-07 1.35968690118E-07 1.44355749937E-07 1.53259709558E-07 1.62712388787E-07 1.72747563119E-07 1.83401083738E-07 1.94711004735E-07 2.06717718207E-07 2.19464097593E-07 2.32995649695E-07 2.47360676098E-07 2.62610444353E-07 2.78799369699E-07 2.95985207807E-07 3.14229259316E-07 3.33596586861E-07 3.54156245330E-07 3.75981526149E-07 3.99150216497E-07 4.23744874257E-07 4.49853119788E-07 4.77567945432E-07 5.06988043875E-07 5.38218156496E-07 5.71369442911E-07 6.06559872999E-07 6.43914642775E-07 6.83566615543E-07 7.25656789846E-07 7.70334795855E-07 8.17759421906E-07 8.68099172982E-07 9.21532863103E-07 9.78250243630E-07 1.03845266968E-06 1.10235380692E-06 1.17018038120E-06 1.24217297351E-06 1.31858686325E-06 1.39969292217E-06 1.48577856280E-06 1.57714874382E-06 1.67412703650E-06 1.77705675524E-06 1.88630215663E-06 2.00224971067E-06 2.12530944863E-06 2.25591639235E-06 2.39453206932E-06 2.54164611930E-06 2.69777799728E-06 2.86347877917E-06 3.03933307578E-06 3.22596106175E-06 3.42402062652E-06 3.63420965395E-06 3.85726843901E-06 4.09398224893E-06 4.34518403783E-06 4.61175732381E-06 4.89463923791E-06 5.19482375544E-06 5.51336511996E-06 5.85138147178E-06 6.21005869264E-06 6.59065447943E-06 6.99450266029E-06 7.42301776760E-06 7.87769988251E-06 8.36013976711E-06 8.87202430116E-06 9.41514224091E-06 9.99139031902E-06 1.06027797053E-05 1.12514428491E-05 1.19396407264E-05 1.26697705130E-05 1.34443737117E-05 1.42661447561E-05 1.51379401219E-05 1.60627879720E-05 1.70438983683E-05 1.80846740821E-05 1.91887220367E-05 2.03598654197E-05 2.16021565020E-05 2.29198902049E-05 2.43176184575E-05 2.58001653889E-05 2.73726434036E-05 2.90404701889E-05 3.08093867084E-05 3.26854762356E-05 3.46751844879E-05 3.67853409209E-05 3.90231812503E-05 4.13963712676E-05 4.39130320241E-05 4.65817664572E-05 4.94116875410E-05 5.24124480442E-05 5.55942719848E-05 5.89679878747E-05 6.25450638532E-05 6.63376448113E-05 7.03585916179E-05 7.46215225595E-05 7.91408571170E-05 8.39318622017E-05 8.90107009878E-05 9.43944844772E-05 1.00101325945E-04 1.06150398419E-04 1.12561995354E-04 1.19357594671E-04 1.26559926337E-04 1.34193043677E-04 1.42282398601E-04 1.50854920970E-04 1.59939102293E-04 1.69565083995E-04 1.79764750487E-04 1.90571827278E-04 2.02021984394E-04 2.14152945365E-04 2.27004602062E-04 2.40619135687E-04 2.55041144206E-04 2.70317776551E-04 2.86498873930E-04 3.03637118583E-04 3.21788190348E-04 3.41010931416E-04 3.61367519665E-04 3.82923650978E-04 4.05748730969E-04 4.29916076566E-04 4.55503127886E-04 4.82591670901E-04 5.11268071363E-04 5.41623520511E-04 5.73754293075E-04 6.07762018131E-04 6.43753963347E-04 6.81843333231E-04 7.22149581939E-04 7.64798741288E-04 8.09923764586E-04 8.57664886928E-04 9.08170002638E-04 9.61595060510E-04 1.01810447756E-03 1.07787157202E-03 1.14107901622E-03 1.20791931018E-03 1.27859527664E-03 1.35332057821E-03 1.43232025751E-03 1.51583130096E-03 1.60410322710E-03 1.69739870009E-03 1.79599416930E-03 1.90018053561E-03 2.01026384525E-03 2.12656601194E-03 2.24942556801E-03 2.37919844517E-03 2.51625878572E-03 2.66099978472E-03 2.81383456376E-03 2.97519707690E-03 3.14554304929E-03 3.32535094887E-03 3.51512299149E-03 3.71538617990E-03 3.92669337650E-03 4.14962441035E-03 4.38478721800E-03 4.63281901833E-03 4.89438752091E-03 5.17019216753E-03 5.46096540632E-03 5.76747399748E-03 6.09052034992E-03 6.43094388730E-03 6.78962244219E-03 7.16747367650E-03 7.56545652625E-03 7.98457266832E-03 8.42586800652E-03 8.89043417393E-03 9.37941004816E-03 9.89398327566E-03 1.04353918008E-02 1.10049253952E-02 1.16039271815E-02 1.22337951463E-02 1.28959836360E-02 1.35920048281E-02 1.43234301700E-02 1.50918917791E-02 1.58990837913E-02 1.67467636530E-02 1.76367533413E-02 1.85709405047E-02 1.95512795096E-02 2.05797923808E-02 2.16585696216E-02 2.27897708974E-02 2.39756255691E-02 2.52184330556E-02 2.65205630116E-02 2.78844552973E-02 2.93126197221E-02 3.08076355403E-02 3.23721506757E-02 3.40088806519E-02 3.57206072026E-02 3.75101765368E-02 3.93804972314E-02 4.13345377224E-02 4.33753233661E-02 4.55059330402E-02 4.77294952527E-02 5.00491837274E-02 5.24682124331E-02 5.49898300221E-02 5.76173136463E-02 6.03539621133E-02 6.32030883514E-02 6.61680111466E-02 6.92520461179E-02 7.24584958987E-02 7.57906394876E-02 7.92517207412E-02 8.28449359739E-02 8.65734206382E-02 9.04402350587E-02 9.44483491935E-02 9.86006264042E-02 1.02899806214E-01 1.07348486043E-01 1.11949101909E-01 1.16703908087E-01 1.21614955743E-01 1.26684070523E-01 1.31912829146E-01 1.37302534994E-01 1.42854192750E-01 1.48568482116E-01 1.54445730662E-01 1.60485885874E-01 1.66688486464E-01 1.73052633037E-01 1.79576958204E-01 1.86259596267E-01 1.93098152588E-01 2.00089672787E-01 2.07230611943E-01 2.14516803943E-01 2.21943431195E-01 2.29504994899E-01 2.37195286102E-01 2.45007357782E-01 2.52933498216E-01 2.60965205912E-01 2.69093166385E-01 2.77307231105E-01 2.85596398911E-01 2.93948800255E-01 3.02351684599E-01 3.10791411339E-01 3.19253444610E-01 3.27722352350E-01 3.36181809995E-01 3.44614609177E-01 3.53002671794E-01 3.61327069824E-01 3.69568051218E-01 3.77705072220E-01 3.85716836428E-01 3.93581340868E-01 4.01275929359E-01 4.08777353370E-01 4.16061840557E-01 4.23105171095E-01 4.29882761891E-01 4.36369758667E-01 4.42541135876E-01 4.48371804307E-01 4.53836726172E-01 4.58911037374E-01 4.63570176589E-01 4.67790020657E-01 4.71547025732E-01 4.74818373503E-01 4.77582121717E-01 4.79817358114E-01 4.81504356814E-01 4.82624736065E-01 4.83161616183E-01 4.83099776426E-01 4.82425809442E-01 4.81128271891E-01 4.79197829741E-01 4.76627396703E-01 4.73412264234E-01 4.69550221513E-01 4.65041663772E-01 4.59889687412E-01 4.54100170332E-01 4.47681835972E-01 4.40646299647E-01 4.33008095839E-01 4.24784685241E-01 4.15996440493E-01 4.06666609699E-01 3.96821257034E-01 3.86489179916E-01 3.75701802462E-01 3.64493045204E-01 3.52899171249E-01 3.40958609374E-01 3.28711754786E-01 3.16200748570E-01 3.03469237104E-01 2.90562112994E-01 2.77525239348E-01 2.64405159440E-01 2.51248794056E-01 2.38103129014E-01 2.25014895552E-01 2.12030246412E-01 1.99194430595E-01 1.86551469851E-01 1.74143840025E-01 1.62012160402E-01 1.50194894185E-01 1.38728063167E-01 1.27644979584E-01 1.16975997970E-01 1.06748289680E-01 9.69856424921E-02 8.77082874690E-02 7.89327549209E-02 7.06717609779E-02 6.29341258856E-02 5.57247247069E-02 4.90444706507E-02 4.28903307468E-02 3.72553730618E-02 3.21288441054E-02 2.74962745161E-02 2.33396105584E-02 1.96373684235E-02 1.63648078127E-02 1.34941208345E-02 1.09946318733E-02 8.83300383169E-03 6.97608122849E-03 5.39936343718E-03 4.07995907282E-03 2.99430440368E-03 2.11844064569E-03 1.42830021145E-03 8.99999018898E-04 5.10131880411E-04 2.36067966980E-04 5.62433729019E-05 -4.95521095024E-05 -9.98967654414E-05 -1.11469879504E-04 -9.87982178884E-05 -7.40183065242E-05 -4.66565914217E-05 -2.34294779083E-05 -8.06524904476E-06 -1.14999684089E-06 6.05789873355E-18 5.12125143744E-17 4.32483355812E-18 -7.95609522286E-19 4.45460600912E-19 -5.09592538210E-17 -1.49511596135E-18 -5.64309469476E-18 4.73747480680E-17 -1.25300014138E-17 -4.01514976987E-17 -3.48838800357E-17 4.99008047887E-18 6.85226991076E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 3 2 i j (l(j)) -3.36699458026E-01 Q_int -6.07630667268E-28 -6.45204449292E-28 -6.85101664236E-28 -7.27465985167E-28 -7.72449969399E-28 -8.20215607865E-28 -8.70934908455E-28 -9.24790515436E-28 -9.81976367162E-28 -1.04269839447E-27 -1.10717526224E-27 -1.17563915684E-27 -1.24833662225E-27 -1.32552944785E-27 -1.40749561121E-27 -1.49453027904E-27 -1.58694687015E-27 -1.68507818410E-27 -1.78927759960E-27 -1.89992034711E-27 -2.01740486002E-27 -2.14215420947E-27 -2.27461762787E-27 -2.41527212660E-27 -2.56462421378E-27 -2.72321171824E-27 -2.89160572630E-27 -3.07041263826E-27 -3.26027635215E-27 -3.46188058241E-27 -3.67595132202E-27 -3.90325945688E-27 -4.14462354178E-27 -4.40091274814E-27 -4.67304999392E-27 -4.96201526714E-27 -5.26884915492E-27 -5.59465659066E-27 -5.94061083304E-27 -6.30795769101E-27 -6.69802001003E-27 -7.11220243577E-27 -7.55199647232E-27 -8.01898585326E-27 -8.51485224475E-27 -9.04138130139E-27 -9.60046909651E-27 -1.01941289501E-26 -1.08244986787E-26 -1.14938482944E-26 -1.22045881787E-26 -1.29592777628E-26 -1.37606347445E-26 -1.46115448744E-26 -1.55150723481E-26 -1.64744708403E-26 -1.74931952220E-26 -1.85749140012E-26 -1.97235225340E-26 -2.09431570516E-26 -2.22382095558E-26 -2.36133436342E-26 -2.50735112549E-26 -2.66239705986E-26 -2.82703049933E-26 -3.00184430214E-26 -3.18746798677E-26 -3.38456999900E-26 -3.59386011896E-26 -3.81609201713E-26 -4.05206596839E-26 -4.30263173384E-26 -4.56869162087E-26 -4.85120373246E-26 -5.15118541734E-26 -5.46971693360E-26 -5.80794533874E-26 -6.16708862035E-26 -6.54844008215E-26 -6.95337300131E-26 -7.38334557371E-26 -7.83990616503E-26 -8.32469888652E-26 -8.83946951562E-26 -9.38607178260E-26 -9.96647404600E-26 -1.05827663809E-25 -1.12371681053E-25 -1.19320357723E-25 -1.26698716560E-25 -1.34533327625E-25 -1.42852403980E-25 -1.51685903286E-25 -1.61065635681E-25 -1.71025378332E-25 -1.81600997072E-25 -1.92830575550E-25 -2.04754552377E-25 -2.17415866750E-25 -2.30860113076E-25 -2.45135705161E-25 -2.60294050558E-25 -2.76389735682E-25 -2.93480722384E-25 -3.11628556677E-25 -3.30898590364E-25 -3.51360216381E-25 -3.73087118683E-25 -3.96157537583E-25 -4.20654551510E-25 -4.46666376171E-25 -4.74286682230E-25 -5.03614932623E-25 -5.34756740727E-25 -5.67824250687E-25 -6.02936541256E-25 -6.40220054603E-25 -6.79809051646E-25 -7.21846095533E-25 -7.66482565028E-25 -8.13879199629E-25 -8.64206678415E-25 -9.17646234667E-25 -9.74390308506E-25 -1.03464323989E-24 -1.09862200444E-24 -1.16655699482E-24 -1.23869285036E-24 -1.31528933807E-24 -1.39662228802E-24 -1.48298458668E-24 -1.57468723160E-24 -1.67206045135E-24 -1.77545489469E-24 -1.88524289329E-24 -2.00181980252E-24 -2.12560542517E-24 -2.25704552318E-24 -2.39661342285E-24 -2.54481171938E-24 -2.70217408669E-24 -2.86926719927E-24 -3.04669277278E-24 -3.23508973094E-24 -3.43513650625E-24 -3.64755348318E-24 -3.87310559226E-24 -4.11260506470E-24 -4.36691435726E-24 -4.63694925807E-24 -4.92368218441E-24 -5.22814568452E-24 -5.55143615581E-24 -5.89471779315E-24 -6.25922678120E-24 -6.64627574599E-24 -7.05725848182E-24 -7.49365497042E-24 -7.95703671047E-24 -8.44907237670E-24 -8.97153382891E-24 -9.52630249261E-24 -1.01153761341E-23 -1.07408760548E-23 -1.14050547299E-23 -1.21103039200E-23 -1.28591632839E-23 -1.36543295239E-23 -1.44986660974E-23 -1.53952135280E-23 -1.63472003546E-23 -1.73580547580E-23 -1.84314169057E-23 -1.95711520607E-23 -2.07813645005E-23 -2.20664122969E-23 -2.34309230097E-23 -2.48798103512E-23 -2.64182918806E-23 -2.80519077930E-23 -2.97865408697E-23 -3.16284376634E-23 -3.35842309917E-23 -3.56609638226E-23 -3.78661146373E-23 -4.02076243600E-23 -4.26939249546E-23 -4.53339697883E-23 -4.81372658735E-23 -5.11139081036E-23 -5.42746156052E-23 -5.76307703387E-23 -6.11944580856E-23 -6.49785119702E-23 -6.89965586730E-23 -7.32630675014E-23 -7.77934024946E-23 -8.26038777510E-23 -8.77118161762E-23 -9.31356118649E-23 -9.88947963385E-23 -1.05010108880E-22 -1.11503571220E-22 -1.18398566833E-22 -1.25719925151E-22 -1.33494010968E-22 -1.41748819390E-22 -1.50514076640E-22 -1.59821347110E-22 -1.69704147023E-22 -1.80198065133E-22 -1.91340890874E-22 -2.03172750454E-22 -2.15736251342E-22 -2.29076635708E-22 -2.43241943341E-22 -2.58283184644E-22 -2.74254524328E-22 -2.91213476461E-22 -3.09221111584E-22 -3.28342276627E-22 -3.48645828430E-22 -3.70204881704E-22 -3.93097072319E-22 -4.17404836879E-22 -4.43215709583E-22 -4.70622637441E-22 -4.99724314987E-22 -5.30625539681E-22 -5.63437589297E-22 -5.98278622640E-22 -6.35274105050E-22 -6.74557260205E-22 -7.16269549879E-22 -7.60561183349E-22 -8.07591658316E-22 -8.57530335267E-22 -9.10557047355E-22 -9.66862747993E-22 -1.02665019849E-21 -1.09013469822E-21 -1.15754485992E-21 -1.22912343295E-21 -1.30512817743E-21 -1.38583279252E-21 -1.47152790194E-21 -1.56252210061E-21 -1.65914306586E-21 -1.76173873749E-21 -1.87067857065E-21 -1.98635486636E-21 -2.10918418415E-21 -2.23960884214E-21 -2.37809850991E-21 -2.52515189975E-21 -2.68129856259E-21 -2.84710079497E-21 -3.02315566390E-21 -3.21009715693E-21 -3.40859846523E-21 -3.61937440775E-21 -3.84318400539E-21 -4.08083321427E-21 -4.33317782803E-21 -4.60112655965E-21 -4.88564431375E-21 -5.18775566131E-21 -5.50854852924E-21 -5.84917811808E-21 -6.21087106195E-21 -6.59492984579E-21 -7.00273749569E-21 -7.43576255927E-21 -7.89556439406E-21 -8.38379878285E-21 -8.90222389629E-21 -9.45270662419E-21 -1.00372292984E-20 -1.06578968312E-20 -1.13169442955E-20 -1.20167449733E-20 -1.27598189020E-20 -1.35488419495E-20 -1.43866554501E-20 -1.52762764363E-20 -1.62209085034E-20 -1.72239533459E-20 -1.82890230075E-20 -1.94199528879E-20 -2.06208155546E-20 -2.18959354087E-20 -2.32499042571E-20 -2.46875978482E-20 -2.62141934296E-20 -2.78351883921E-20 -2.95564200659E-20 -3.13840867415E-20 -3.33247699901E-20 -3.53854583645E-20 -3.75735725650E-20 -3.98969921627E-20 -4.23640839735E-20 -4.49837321885E-20 -4.77653703659E-20 -5.07190154027E-20 -5.38553036057E-20 -5.71855289940E-20 -6.07216839696E-20 -6.44765025028E-20 -6.84635059884E-20 -7.26970519371E-20 -7.71923856782E-20 -8.19656952588E-20 -8.70341697387E-20 -9.24160610893E-20 -9.81307499201E-20 -1.04198815270E-19 -1.10642108715E-19 -1.17483833053E-19 -1.24748625867E-19 -1.32462648239E-19 -1.40653678961E-19 -1.49351214570E-19 -1.58586575564E-19 -1.68393019194E-19 -1.78805859221E-19 -1.89862593086E-19 -2.01603036942E-19 -2.14069469034E-19 -2.27306781943E-19 -2.41362644253E-19 -2.56287672207E-19 -2.72135611977E-19 -2.88963533213E-19 -3.06832034551E-19 -3.25805461833E-19 -3.45952139827E-19 -3.67344618261E-19 -3.90059933088E-19 -4.14179883891E-19 -4.39791328454E-19 -4.66986495543E-19 -4.95863317025E-19 -5.26525780534E-19 -5.59084303930E-19 -5.93656132929E-19 -6.30365763311E-19 -6.69345389234E-19 -7.10735379283E-19 -7.54684781939E-19 -8.01351862321E-19 -8.50904672103E-19 -9.03521654685E-19 -9.59392287779E-19 -1.01871776573E-18 -1.08171172404E-18 -1.14860100866E-18 -1.21962649292E-18 -1.29504394489E-18 -1.37512494844E-18 -1.46015788122E-18 -1.55044895315E-18 -1.64632330908E-18 -1.74812619968E-18 -1.85622422469E-18 -1.97100665308E-18 -2.09288682484E-18 -2.22230363945E-18 -2.35972313636E-18 -2.50564017327E-18 -2.66058020810E-18 -2.82510119125E-18 -2.99979557477E-18 -3.18529244587E-18 -3.38225979224E-18 -3.59140690758E-18 -3.81348694578E-18 -4.04929963309E-18 -4.29969414798E-18 -4.56557217910E-18 -4.84789117228E-18 -5.14766777843E-18 -5.46598151448E-18 -5.80397865085E-18 -6.16287633923E-18 -6.54396699561E-18 -6.94862295434E-18 -7.37830141003E-18 -7.83454966497E-18 -8.31901070109E-18 -8.83342909640E-18 -9.37965730734E-18 -9.95966233963E-18 -1.05755328315E-17 -1.12294865751E-17 -1.19238785027E-17 -1.26612091674E-17 -1.34441337471E-17 -1.42754716065E-17 -1.51582164497E-17 -1.60955471003E-17 -1.70908389492E-17 -1.81476761091E-17 -1.92698643210E-17 -2.04614446594E-17 -2.17267080840E-17 -2.30702108917E-17 -2.44967911245E-17 -2.60115859908E-17 -2.76200503657E-17 -2.93279764335E-17 -3.11415145460E-17 -3.30671953702E-17 -3.51119534057E-17 -3.72831519559E-17 -3.95886096439E-17 -4.20366285676E-17 -4.46360241960E-17 -4.73961571142E-17 -5.03269667311E-17 -5.34390070719E-17 -5.67434847838E-17 -6.02522994911E-17 -6.39780866468E-17 -6.79342630331E-17 -7.21350750762E-17 -7.65956501478E-17 -8.13320510399E-17 -8.63613338072E-17 -9.17016091869E-17 -9.73721078160E-17 -1.03393249482E-16 -1.09786716654E-16 -1.16575532565E-16 -1.23784144115E-16 -1.31438509911E-16 -1.39566193738E-16 -1.48196463822E-16 -1.57360398226E-16 -1.67090996761E-16 -1.77423299817E-16 -1.88394514552E-16 -2.00044148869E-16 -2.12414153687E-16 -2.25549074011E-16 -2.39496209333E-16 -2.54305783966E-16 -2.70031127896E-16 -2.86728868831E-16 -3.04459136113E-16 -3.23285777250E-16 -3.43276587826E-16 -3.64503555640E-16 -3.87043119934E-16 -4.10976446650E-16 -4.36389720708E-16 -4.63374456365E-16 -4.92027826754E-16 -5.22453013808E-16 -5.54759579815E-16 -5.89063861960E-16 -6.25489391247E-16 -6.64167337343E-16 -7.05236980913E-16 -7.48846215176E-16 -7.95152078464E-16 -8.44321319719E-16 -8.96530998955E-16 -9.51969124850E-16 -1.01083533176E-15 -1.07334159862E-15 -1.13971301223E-15 -1.21018857786E-15 -1.28502207984E-15 -1.36448299547E-15 -1.44885746540E-15 -1.53844932399E-15 -1.63358119344E-15 -1.73459564554E-15 -1.84185643525E-15 -1.95574981059E-15 -2.07668590347E-15 -2.20510020661E-15 -2.34145514171E-15 -2.48624172460E-15 -2.63998133339E-15 -2.80322758593E-15 -2.97656833333E-15 -3.16062777685E-15 -3.35606871554E-15 -3.56359493300E-15 -3.78395373164E-15 -4.01793862370E-15 -4.26639218858E-15 -4.53020910700E-15 -4.81033938261E-15 -5.10779176292E-15 -5.42363737173E-15 -5.75901356617E-15 -6.11512803220E-15 -6.49326313343E-15 -6.89478052877E-15 -7.32112607566E-15 -7.77383503648E-15 -8.25453760684E-15 -8.76496478580E-15 -9.30695460900E-15 -9.88245876724E-15 -1.04935496343E-14 -1.11424277292E-14 -1.18314296404E-14 -1.25630364391E-14 -1.33398826134E-14 -1.41647655549E-14 -1.50406556317E-14 -1.59707068843E-14 -1.69582683824E-14 -1.80068962851E-14 -1.91203666459E-14 -2.03026890091E-14 -2.15581208482E-14 -2.28911828963E-14 -2.43066754240E-14 -2.58096955247E-14 -2.74056554684E-14 -2.91003021900E-14 -3.08997379828E-14 -3.28104424722E-14 -3.48392959470E-14 -3.69936041341E-14 -3.92811245047E-14 -4.17100942074E-14 -4.42892597283E-14 -4.70279083850E-14 -4.99359017678E-14 -5.30237112493E-14 -5.63024556886E-14 -5.97839414681E-14 -6.34807050045E-14 -6.74060578895E-14 -7.15741348207E-14 -7.59999444967E-14 -8.06994236594E-14 -8.56894944767E-14 -9.09881254744E-14 -9.66143962350E-14 -1.02588566097E-13 -1.08932147103E-13 -1.15667981454E-13 -1.22820323761E-13 -1.30414928373E-13 -1.38479142110E-13 -1.47042002731E-13 -1.56134343483E-13 -1.65788904124E-13 -1.76040448802E-13 -1.86925891228E-13 -1.98484427587E-13 -2.10757677665E-13 -2.23789834703E-13 -2.37627824519E-13 -2.52321474463E-13 -2.67923692823E-13 -2.84490659320E-13 -3.02082027386E-13 -3.20761138943E-13 -3.40595252465E-13 -3.61655785137E-13 -3.84018569992E-13 -4.07764128943E-13 -4.32977962693E-13 -4.59750858575E-13 -4.88179217421E-13 -5.18365400643E-13 -5.50418098770E-13 -5.84452722775E-13 -6.20591819592E-13 -6.58965513323E-13 -6.99711973729E-13 -7.42977913677E-13 -7.88919117350E-13 -8.37701001110E-13 -8.89499209038E-13 -9.44500245292E-13 -1.00290214556E-12 -1.06491519002E-12 -1.13076266042E-12 -1.20068164386E-12 -1.27492388641E-12 -1.35375669939E-12 -1.43746392170E-12 -1.52634694171E-12 -1.62072578224E-12 -1.72094025266E-12 -1.82735117222E-12 -1.94034166900E-12 -2.06031855912E-12 -2.18771381134E-12 -2.32298610203E-12 -2.46662246642E-12 -2.61914005185E-12 -2.78108797941E-12 -2.95304932073E-12 -3.13564319687E-12 -3.32952700706E-12 -3.53539879515E-12 -3.75399976244E-12 -3.98611693567E-12 -4.23258600019E-12 -4.49429430803E-12 -4.77218407207E-12 -5.06725575764E-12 -5.38057168371E-12 -5.71325984673E-12 -6.06651798090E-12 -6.44161786933E-12 -6.83990992173E-12 -7.26282803510E-12 -7.71189475482E-12 -8.18872675481E-12 -8.69504065639E-12 -9.23265920746E-12 -9.80351783906E-12 -1.04096716400E-11 -1.10533027472E-11 -1.17367281953E-11 -1.24624082639E-11 -1.32329553333E-11 -1.40511432687E-11 -1.49199174370E-11 -1.58424052713E-11 -1.68219275442E-11 -1.78620103149E-11 -1.89663976293E-11 -2.01390649760E-11 -2.13842335866E-11 -2.27063856717E-11 -2.41102804917E-11 -2.56009715321E-11 -2.71838246412E-11 -2.88645373920E-11 -3.06491595336E-11 -3.25441148013E-11 -3.45562239938E-11 -3.66927295488E-11 -3.89613215811E-11 -4.13701655605E-11 -4.39279316908E-11 -4.66438260973E-11 -4.95276239597E-11 -5.25897046769E-11 -5.58410892183E-11 -5.92934797522E-11 -6.29593017638E-11 -6.68517487529E-11 -7.09848297024E-11 -7.53734194454E-11 -8.00333122597E-11 -8.49812785180E-11 -9.02351251600E-11 -9.58137598239E-11 -1.01737258538E-10 -1.08026938298E-10 -1.14705433430E-10 -1.21796777240E-10 -1.29326488410E-10 -1.37321662583E-10 -1.45811070047E-10 -1.54825259165E-10 -1.64396666033E-10 -1.74559731500E-10 -1.85351024541E-10 -1.96809374281E-10 -2.08976009155E-10 -2.21894705572E-10 -2.35611944875E-10 -2.50177080982E-10 -2.65642517206E-10 -2.82063895508E-10 -2.99500295480E-10 -3.18014448003E-10 -3.37672959410E-10 -3.58546552106E-10 -3.80710318070E-10 -4.04243989033E-10 -4.29232223172E-10 -4.55764909118E-10 -4.83937489427E-10 -5.13851303244E-10 -5.45613950591E-10 -5.79339679335E-10 -6.15149795471E-10 -6.53173099271E-10 -6.93546347421E-10 -7.36414745773E-10 -7.81932469941E-10 -8.30263219151E-10 -8.81580805375E-10 -9.36069777097E-10 -9.93926081950E-10 -1.05535777167E-09 -1.12058574815E-09 -1.18984455785E-09 -1.26338323396E-09 -1.34146619065E-09 -1.42437417245E-09 -1.51240526313E-09 -1.60587595572E-09 -1.70512228811E-09 -1.81050105134E-09 -1.92239106884E-09 -2.04119455766E-09 -2.16733857280E-09 -2.30127653663E-09 -2.44348987174E-09 -2.59448972325E-09 -2.75481880026E-09 -2.92505331500E-09 -3.10580505791E-09 -3.29772358653E-09 -3.50149856249E-09 -3.71786222056E-09 -3.94759199678E-09 -4.19151332130E-09 -4.45050256979E-09 -4.72549021602E-09 -5.01746416421E-09 -5.32747329225E-09 -5.65663121247E-09 -6.00612026148E-09 -6.37719574473E-09 -6.77119043455E-09 -7.18951933912E-09 -7.63368478811E-09 -8.10528180432E-09 -8.60600382310E-09 -9.13764876256E-09 -9.70212546105E-09 -1.03014605150E-08 -1.09378055388E-08 -1.16134448716E-08 -1.23308037553E-08 -1.30924570225E-08 -1.39011383067E-08 -1.47597498335E-08 -1.56713728104E-08 -1.66392784523E-08 -1.76669396802E-08 -1.87580435599E-08 -1.99165044843E-08 -2.11464781734E-08 -2.24523765452E-08 -2.38388834816E-08 -2.53109715918E-08 -2.68739199722E-08 -2.85333330847E-08 -3.02951607912E-08 -3.21657196036E-08 -3.41517152601E-08 -3.62602666762E-08 -3.84989313777E-08 -4.08757324715E-08 -4.33991873162E-08 -4.60783379085E-08 -4.89227831651E-08 -5.19427131732E-08 -5.51489455490E-08 -5.85529640406E-08 -6.21669594528E-08 -6.60038731435E-08 -7.00774431613E-08 -7.44022532092E-08 -7.89937846042E-08 -8.38684714550E-08 -8.90437591967E-08 -9.45381667078E-08 -1.00371352272E-07 -1.06564183532E-07 -1.13138811773E-07 -1.20118750730E-07 -1.27528960234E-07 -1.35395934971E-07 -1.43747798692E-07 -1.52614404163E-07 -1.62027439261E-07 -1.72020539549E-07 -1.82629407707E-07 -1.93891940340E-07 -2.05848362463E-07 -2.18541370250E-07 -2.32016282502E-07 -2.46321201357E-07 -2.61507182823E-07 -2.77628417736E-07 -2.94742423747E-07 -3.12910249054E-07 -3.32196688528E-07 -3.52670513062E-07 -3.74404712895E-07 -3.97476755740E-07 -4.21968860729E-07 -4.47968288939E-07 -4.75567651705E-07 -5.04865237666E-07 -5.35965359754E-07 -5.68978723253E-07 -6.04022816286E-07 -6.41222324052E-07 -6.80709568210E-07 -7.22624973045E-07 -7.67117559865E-07 -8.14345471470E-07 -8.64476528485E-07 -9.17688819405E-07 -9.74171326463E-07 -1.03412458946E-06 -1.09776140979E-06 -1.16530759718E-06 -1.23700276164E-06 -1.31310115328E-06 -1.39387255309E-06 -1.47960321745E-06 -1.57059687988E-06 -1.66717581318E-06 -1.76968195588E-06 -1.87847810654E-06 -1.99394919022E-06 -2.11650360131E-06 -2.24657462724E-06 -2.38462195808E-06 -2.53113328687E-06 -2.68662600646E-06 -2.85164900819E-06 -3.02678458892E-06 -3.21265047238E-06 -3.40990195204E-06 -3.61923416255E-06 -3.84138448726E-06 -4.07713511016E-06 -4.32731572052E-06 -4.59280637942E-06 -4.87454055775E-06 -5.17350835572E-06 -5.49075991459E-06 -5.82740903203E-06 -6.18463699311E-06 -6.56369662944E-06 -6.96591661998E-06 -7.39270604777E-06 -7.84555922745E-06 -8.32606081947E-06 -8.83589124773E-06 -9.37683243847E-06 -9.95077389899E-06 -1.05597191562E-05 -1.12057925757E-05 -1.18912465836E-05 -1.26184693147E-05 -1.33899927111E-05 -1.42085010982E-05 -1.50768402645E-05 -1.59980270757E-05 -1.69752596524E-05 -1.80119281448E-05 -1.91116261386E-05 -2.02781627278E-05 -2.15155752922E-05 -2.28281430220E-05 -2.42204012287E-05 -2.56971564902E-05 -2.72635026758E-05 -2.89248379007E-05 -3.06868824644E-05 -3.25556978260E-05 -3.45377066774E-05 -3.66397141739E-05 -3.88689303888E-05 -4.12329940593E-05 -4.37399976969E-05 -4.63985141366E-05 -4.92176246072E-05 -5.22069484051E-05 -5.53766742606E-05 -5.87375934907E-05 -6.23011350364E-05 -6.60794024867E-05 -7.00852131997E-05 -7.43321396336E-05 -7.88345530088E-05 -8.36076694262E-05 -8.86675985755E-05 -9.40313951714E-05 -9.97171132660E-05 -1.05743863589E-04 -1.12131874078E-04 -1.18902553769E-04 -1.26078560219E-04 -1.33683870660E-04 -1.41743857061E-04 -1.50285365315E-04 -1.59336798770E-04 -1.68928206308E-04 -1.79091375225E-04 -1.89859929157E-04 -2.01269431292E-04 -2.13357493160E-04 -2.26163889258E-04 -2.39730677830E-04 -2.54102328076E-04 -2.69325854143E-04 -2.85450956202E-04 -3.02530168979E-04 -3.20619018093E-04 -3.39776184579E-04 -3.60063677985E-04 -3.81547018464E-04 -4.04295428269E-04 -4.28382033098E-04 -4.53884073757E-04 -4.80883128594E-04 -5.09465347215E-04 -5.39721695985E-04 -5.71748215838E-04 -6.05646292943E-04 -6.41522942790E-04 -6.79491108280E-04 -7.19669972408E-04 -7.62185286168E-04 -8.07169712299E-04 -8.54763185542E-04 -9.05113290060E-04 -9.58375654710E-04 -1.01471436687E-03 -1.07430240554E-03 -1.13732209442E-03 -1.20396557576E-03 -1.27443530563E-03 -1.34894457155E-03 -1.42771803304E-03 -1.51099228600E-03 -1.59901645171E-03 -1.69205279112E-03 -1.79037734532E-03 -1.89428060293E-03 -2.00406819513E-03 -2.12006161917E-03 -2.24259899101E-03 -2.37203582788E-03 -2.50874586140E-03 -2.65312188197E-03 -2.80557661493E-03 -2.96654362928E-03 -3.13647827924E-03 -3.31585867926E-03 -3.50518671290E-03 -3.70498907569E-03 -3.91581835249E-03 -4.13825412919E-03 -4.37290413899E-03 -4.62040544293E-03 -4.88142564469E-03 -5.15666413897E-03 -5.44685339310E-03 -5.75276026097E-03 -6.07518732849E-03 -6.41497428921E-03 -6.77299934881E-03 -7.15018065676E-03 -7.54747776316E-03 -7.96589309848E-03 -8.40647347361E-03 -8.87031159728E-03 -9.35854760745E-03 -9.87237061294E-03 -1.04130202411E-02 -1.09817881867E-02 -1.15800197574E-02 -1.22091154088E-02 -1.28705322647E-02 -1.35657856136E-02 -1.42964503756E-02 -1.50641625300E-02 -1.58706204963E-02 -1.67175864569E-02 -1.76068876126E-02 -1.85404173595E-02 -1.95201363733E-02 -2.05480735903E-02 -2.16263270694E-02 -2.27570647206E-02 -2.39425248840E-02 -2.51850167418E-02 -2.64869205459E-02 -2.78506876407E-02 -2.92788402619E-02 -3.07739710888E-02 -3.23387425279E-02 -3.39758857035E-02 -3.56881991317E-02 -3.74785470488E-02 -3.93498573704E-02 -4.13051192493E-02 -4.33473802054E-02 -4.54797427959E-02 -4.77053607937E-02 -5.00274348437E-02 -5.24492075609E-02 -5.49739580395E-02 -5.76049957367E-02 -6.03456536963E-02 -6.31992810779E-02 -6.61692349569E-02 -6.92588713582E-02 -7.24715354916E-02 -7.58105511533E-02 -7.92792092609E-02 -8.28807554909E-02 -8.66183769875E-02 -9.04951881156E-02 -9.45142152323E-02 -9.86783804538E-02 -1.02990484399E-01 -1.07453187895E-01 -1.12068992630E-01 -1.16840220757E-01 -1.21768993435E-01 -1.26857208325E-01 -1.32106516051E-01 -1.37518295645E-01 -1.43093629006E-01 -1.48833274417E-01 -1.54737639161E-01 -1.60806751302E-01 -1.67040230699E-01 -1.73437259341E-01 -1.79996551093E-01 -1.86716320967E-01 -1.93594254052E-01 -2.00627474228E-01 -2.07812512830E-01 -2.15145277438E-01 -2.22621020973E-01 -2.30234311316E-01 -2.37979001671E-01 -2.45848201911E-01 -2.53834251173E-01 -2.61928691974E-01 -2.70122246148E-01 -2.78404792908E-01 -2.86765349358E-01 -2.95192053810E-01 -3.03672152228E-01 -3.12191988202E-01 -3.20736996788E-01 -3.29291702615E-01 -3.37839722638E-01 -3.46363773916E-01 -3.54845686797E-01 -3.63266423891E-01 -3.71606105189E-01 -3.79844039672E-01 -3.87958763756E-01 -3.95928086853E-01 -4.03729144334E-01 -4.11338458137E-01 -4.18732005184E-01 -4.25885293781E-01 -4.32773448075E-01 -4.39371300584E-01 -4.45653492786E-01 -4.51594583614E-01 -4.57169165693E-01 -4.62351989011E-01 -4.67118091665E-01 -4.71442937204E-01 -4.75302558000E-01 -4.78673703972E-01 -4.81533995888E-01 -4.83862082359E-01 -4.85637799531E-01 -4.86842332388E-01 -4.87458376468E-01 -4.87470298695E-01 -4.86864295966E-01 -4.85628550005E-01 -4.83753376986E-01 -4.81231370302E-01 -4.78057534882E-01 -4.74229411360E-01 -4.69747188452E-01 -4.64613801867E-01 -4.58835018108E-01 -4.52419501604E-01 -4.45378863643E-01 -4.37727691707E-01 -4.29483557925E-01 -4.20667005493E-01 -4.11301512104E-01 -4.01413429597E-01 -3.91031899281E-01 -3.80188742591E-01 -3.68918327016E-01 -3.57257407485E-01 -3.45244943695E-01 -3.32921894138E-01 -3.20330987892E-01 -3.07516475527E-01 -2.94523860775E-01 -2.81399614891E-01 -2.68190875914E-01 -2.54945135269E-01 -2.41709914432E-01 -2.28532434525E-01 -2.15459281947E-01 -2.02536073265E-01 -1.89807122696E-01 -1.77315115609E-01 -1.65100791483E-01 -1.53202639762E-01 -1.41656611990E-01 -1.30495853497E-01 -1.19750457789E-01 -1.09447246560E-01 -9.96095780592E-02 -9.02571862015E-02 -8.14060525435E-02 -7.30683128220E-02 -6.52521993746E-02 -5.79620202924E-02 -5.11981756777E-02 -4.49572108562E-02 -3.92319058588E-02 -3.40113999250E-02 -2.92813492229E-02 -2.50241154173E-02 -2.12189821853E-02 -1.78423962775E-02 -1.48682292849E-02 -1.22680559136E-02 -1.00114443222E-02 -8.06625396653E-03 -6.40097139577E-03 -4.99121507156E-03 -3.81409053815E-03 -2.84645588256E-03 -2.06519936009E-03 -1.44751696817E-03 -9.71185996403E-04 -6.14830458877E-04 -3.58174249269E-04 -1.82277849444E-04 -6.97544661859E-05 -4.96156243981E-06 2.58361183243E-05 3.43357743340E-05 3.01015755052E-05 2.05088819169E-05 1.07308646399E-05 3.77060517198E-06 5.41655429633E-07 1.07216484025E-17 -1.54691427719E-17 -6.67290995624E-18 -4.69514851470E-19 -3.04490288212E-18 3.90106876009E-18 2.12525236816E-18 -2.16092400516E-18 3.19767307761E-19 -2.30402633047E-18 2.07784472441E-18 -2.14506648311E-19 -1.58558701221E-18 1.58059163577E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 3 2 i j (l(j)) 3.37174357487E-01 Q_int 6.42432054904E-28 6.82157834553E-28 7.24340119223E-28 7.69130810701E-28 8.16691203856E-28 8.67192567474E-28 9.20816761012E-28 9.77756889488E-28 1.03821799887E-27 1.10241781445E-27 1.17058752491E-27 1.24297261484E-27 1.31983374875E-27 1.40144770975E-27 1.48810839624E-27 1.58012788030E-27 1.67783753146E-27 1.78158921001E-27 1.89175653406E-27 2.00873622496E-27 2.13294953596E-27 2.26484376914E-27 2.40489388620E-27 2.55360421883E-27 2.71151028487E-27 2.87918071669E-27 3.05721930898E-27 3.24626719294E-27 3.44700514518E-27 3.66015603913E-27 3.88648744824E-27 4.12681441005E-27 4.38200236121E-27 4.65297025397E-27 4.94069386542E-27 5.24620931135E-27 5.57061677735E-27 5.91508448070E-27 6.28085287720E-27 6.66923912814E-27 7.08164184355E-27 7.51954611862E-27 7.98452888175E-27 8.47826457313E-27 9.00253117452E-27 9.55921661197E-27 1.01503255543E-26 1.07779866323E-26 1.14444601036E-26 1.21521459928E-26 1.29035927333E-26 1.37015063450E-26 1.45487601789E-26 1.54484052638E-26 1.64036812939E-26 1.74180282945E-26 1.84950990105E-26 1.96387720599E-26 2.08531659009E-26 2.21426536631E-26 2.35118788951E-26 2.49657722868E-26 2.65095694247E-26 2.81488296461E-26 2.98894560582E-26 3.17377167962E-26 3.37002675952E-26 3.57841757577E-26 3.79969456041E-26 4.03465454957E-26 4.28414365302E-26 4.54906030098E-26 4.83035847955E-26 5.12905116598E-26 5.44621397658E-26 5.78298904004E-26 6.14058911033E-26 6.52030193395E-26 6.92349488721E-26 7.35161990023E-26 7.80621868547E-26 8.28892828957E-26 8.80148698850E-26 9.34574054719E-26 9.92364886629E-26 1.05372930400E-25 1.11888828500E-25 1.18807647236E-25 1.26154301827E-25 1.33955248165E-25 1.42238578083E-25 1.51034120516E-25 1.60373548915E-25 1.70290495312E-25 1.80820671424E-25 1.92001997259E-25 2.03874737667E-25 2.16481647337E-25 2.29868124760E-25 2.44082375715E-25 2.59175586857E-25 2.75202110049E-25 2.92219658083E-25 3.10289512515E-25 3.29476744337E-25 3.49850448307E-25 3.71483991765E-25 3.94455278834E-25 4.18847030959E-25 4.44747084792E-25 4.72248708502E-25 5.01450937639E-25 5.32458931768E-25 5.65384353159E-25 6.00345768892E-25 6.37469077824E-25 6.76887963966E-25 7.18744377881E-25 7.63189047869E-25 8.10382022746E-25 8.60493248193E-25 9.13703178747E-25 9.70203427628E-25 1.03019745676E-24 1.09390130944E-24 1.16154438834E-24 1.23337028162E-24 1.30963764006E-24 1.39062110853E-24 1.47661231498E-24 1.56792092063E-24 1.66487573508E-24 1.76782590039E-24 1.87714214833E-24 1.99321813548E-24 2.11647186075E-24 2.24734717069E-24 2.38631535775E-24 2.53387685750E-24 2.69056305073E-24 2.85693817695E-24 3.03360136632E-24 3.22118879712E-24 3.42037598670E-24 3.63188022410E-24 3.85646315298E-24 4.09493351447E-24 4.34815005941E-24 4.61702464087E-24 4.90252549772E-24 5.20568074140E-24 5.52758205822E-24 5.86938864058E-24 6.23233136134E-24 6.61771720629E-24 7.02693398069E-24 7.46145530691E-24 7.92284593102E-24 8.41276735757E-24 8.93298383283E-24 9.48536869796E-24 1.00719111351E-23 1.06947233304E-23 1.13560480805E-23 1.20582668687E-23 1.28039084411E-23 1.35956579126E-23 1.44363664364E-23 1.53290614711E-23 1.62769576831E-23 1.72834685224E-23 1.83522185150E-23 1.94870563153E-23 2.06920685647E-23 2.19715946090E-23 2.33302421237E-23 2.47729037071E-23 2.63047744991E-23 2.79313708888E-23 2.96585503800E-23 3.14925326841E-23 3.34399221180E-23 3.55077313870E-23 3.77034068374E-23 4.00348552721E-23 4.25104724234E-23 4.51391731865E-23 4.79304237231E-23 5.08942755496E-23 5.40414017331E-23 5.73831353268E-23 6.09315101805E-23 6.46993042755E-23 6.87000857396E-23 7.29482617065E-23 7.74591301975E-23 8.22489352105E-23 8.73349252160E-23 9.27354152704E-23 9.84698529701E-23 1.04558888483E-22 1.11024448913E-22 1.17889817259E-22 1.25179716262E-22 1.32920397429E-22 1.41139735573E-22 1.49867329185E-22 1.59134607029E-22 1.68974941310E-22 1.79423767860E-22 1.90518713735E-22 2.02299732723E-22 2.14809249214E-22 2.28092310973E-22 2.42196751369E-22 2.57173361615E-22 2.73076073681E-22 2.89962154502E-22 3.07892412202E-22 3.26931415070E-22 3.47147724074E-22 3.68614139757E-22 3.91407964391E-22 4.15611280360E-22 4.41311245733E-22 4.68600408135E-22 4.97577038016E-22 5.28345482530E-22 5.61016541299E-22 5.95707865411E-22 6.32544381087E-22 6.71658739557E-22 7.13191794743E-22 7.57293110485E-22 8.04121499135E-22 8.53845593450E-22 9.06644453856E-22 9.62708213252E-22 1.02223876170E-21 1.08545047345E-21 1.15257097890E-21 1.22384198434E-21 1.29952014233E-21 1.37987797593E-21 1.46520486011E-21 1.55580806376E-21 1.65201385622E-21 1.75416868221E-21 1.86264040937E-21 1.97781965301E-21 2.10012118276E-21 2.22998541614E-21 2.36788000458E-21 2.51430151743E-21 2.66977723021E-21 2.83486702331E-21 3.01016539818E-21 3.19630361818E-21 3.39395198182E-21 3.60382223656E-21 3.82667014182E-21 4.06329819060E-21 4.31455849927E-21 4.58135587612E-21 4.86465107967E-21 5.16546427841E-21 5.48487872449E-21 5.82404465466E-21 6.18418343228E-21 6.56659194564E-21 6.97264727805E-21 7.40381166693E-21 7.86163776935E-21 8.34777425333E-21 8.86397173482E-21 9.41208908176E-21 9.99410010805E-21 1.06121006814E-20 1.12683162707E-20 1.19651099602E-20 1.27049909588E-20 1.34906236367E-20 1.43248371189E-20 1.52106354741E-20 1.61512085320E-20 1.71499433704E-20 1.82104365121E-20 1.93365068765E-20 2.05322095317E-20 2.18018502972E-20 2.31500012492E-20 2.45815171854E-20 2.61015531073E-20 2.77155827837E-20 2.94294184625E-20 3.12492318005E-20 3.31815760885E-20 3.52334098499E-20 3.74121218992E-20 3.97255579493E-20 4.21820488648E-20 4.47904406620E-20 4.75601263641E-20 5.05010798262E-20 5.36238916518E-20 5.69398073306E-20 6.04607677343E-20 6.41994521162E-20 6.81693237710E-20 7.23846785164E-20 7.68606961736E-20 8.16134952313E-20 8.66601908894E-20 9.20189566918E-20 9.77090899716E-20 1.03751081341E-19 1.10166688481E-19 1.16979014492E-19 1.24212591088E-19 1.31893466940E-19 1.40049301478E-19 1.48709464494E-19 1.57905141905E-19 1.67669448059E-19 1.78037544975E-19 1.89046768974E-19 2.00736765119E-19 2.13149629991E-19 2.26330063271E-19 2.40325528717E-19 2.55186425076E-19 2.70966267579E-19 2.87721880652E-19 3.05513602545E-19 3.24405502612E-19 3.44465612035E-19 3.65766168802E-19 3.88383877850E-19 4.12400187277E-19 4.37901581647E-19 4.64979893427E-19 4.93732633681E-19 5.24263343216E-19 5.56681965439E-19 5.91105242271E-19 6.27657134544E-19 6.66469268393E-19 7.07681409250E-19 7.51441965150E-19 7.97908521162E-19 8.47248406858E-19 8.99639298884E-19 9.55269860784E-19 1.01434042239E-18 1.07706370123E-18 1.14366556854E-18 1.21438586261E-18 1.28947925252E-18 1.36921615516E-18 1.45388370906E-18 1.54378680839E-18 1.63924920088E-18 1.74061465368E-18 1.84824819131E-18 1.96253741007E-18 2.08389387389E-18 2.21275459633E-18 2.34958361432E-18 2.49487365921E-18 2.64914793110E-18 2.81296198290E-18 2.98690572099E-18 3.17160552944E-18 3.36772652567E-18 3.57597495563E-18 3.79710073699E-18 4.03190015966E-18 4.28121875328E-18 4.54595433205E-18 4.82706022776E-18 5.12554872288E-18 5.44249469578E-18 5.77903949150E-18 6.13639503175E-18 6.51584817916E-18 6.91876537133E-18 7.34659754147E-18 7.80088534330E-18 8.28326469903E-18 8.79547269045E-18 9.33935381421E-18 9.91686662404E-18 1.05300907836E-17 1.11812345553E-17 1.18726427528E-17 1.26068051844E-17 1.33863656191E-17 1.42141313073E-17 1.50930830894E-17 1.60263861301E-17 1.70174013165E-17 1.80696973610E-17 1.91870636518E-17 2.03735238994E-17 2.16333506258E-17 2.29710805502E-17 2.43915309262E-17 2.58998168883E-17 2.75013698727E-17 2.92019571755E-17 3.10077027214E-17 3.29251091160E-17 3.49610810624E-17 3.71229502250E-17 3.94185016314E-17 4.18560017065E-17 4.44442280407E-17 4.71925009979E-17 5.01107172792E-17 5.32093855606E-17 5.64996643360E-17 5.99934020991E-17 6.37031800102E-17 6.76423572020E-17 7.18251188858E-17 7.62665274337E-17 8.09825766186E-17 8.59902492081E-17 9.13075781206E-17 9.69537113625E-17 1.02948980981E-16 1.09314976280E-16 1.16074621564E-16 1.23252258692E-16 1.30873734728E-16 1.38966495023E-16 1.47559682043E-16 1.56684240314E-16 1.66373027852E-16 1.76660934487E-16 1.87585007504E-16 1.99184585048E-16 2.11501437785E-16 2.24579919318E-16 2.38467125903E-16 2.53213066049E-16 2.68870840596E-16 2.85496833933E-16 3.03150917041E-16 3.21896663088E-16 3.41801576356E-16 3.62937335329E-16 3.85380050807E-16 4.09210539979E-16 4.34514617451E-16 4.61383404265E-16 4.89913656023E-16 5.20208111311E-16 5.52375861656E-16 5.86532744370E-16 6.22801759677E-16 6.61313513641E-16 7.02206688475E-16 7.45628541940E-16 7.91735437618E-16 8.40693407975E-16 8.92678752248E-16 9.47878671295E-16 1.00649194170E-15 1.06872963158E-15 1.13481586062E-15 1.20498860714E-15 1.27950056505E-15 1.35862005377E-15 1.44263198450E-15 1.53183888613E-15 1.62656199466E-15 1.72714240994E-15 1.83394232402E-15 1.94734632531E-15 2.06776278357E-15 2.19562532033E-15 2.33139437042E-15 2.47555883997E-15 2.62863786692E-15 2.79118269042E-15 2.96377863581E-15 3.14704722239E-15 3.34164840143E-15 3.54828293265E-15 3.76769490760E-15 4.00067442912E-15 4.24806045641E-15 4.51074382610E-15 4.78967046011E-15 5.08584477178E-15 5.40033328279E-15 5.73426846354E-15 6.08885281113E-15 6.46536317945E-15 6.86515537700E-15 7.28966904908E-15 7.74043286180E-15 8.21907000662E-15 8.72730404541E-15 9.26696511669E-15 9.83999652588E-15 1.04484617429E-14 1.10945518323E-14 1.17805933435E-14 1.25090566880E-14 1.32825650349E-14 1.41039037573E-14 1.49760304611E-14 1.59020856358E-14 1.68854039625E-14 1.79295263215E-14 1.90382125429E-14 2.02154549447E-14 2.14654927090E-14 2.27928271461E-14 2.42022379032E-14 2.56988001751E-14 2.72879029790E-14 2.89752685594E-14 3.07669729926E-14 3.26694680658E-14 3.46896045085E-14 3.68346566604E-14 3.91123486652E-14 4.15308822829E-14 4.40989664233E-14 4.68258485038E-14 4.97213477481E-14 5.27958905422E-14 5.60605479774E-14 5.95270757145E-14 6.32079563127E-14 6.71164441761E-14 7.12666132789E-14 7.56734078420E-14 8.03526961425E-14 8.53213276507E-14 9.05971937001E-14 9.61992919080E-14 1.02147794580E-13 1.08464121344E-13 1.15171016274E-13 1.22292629786E-13 1.29854605591E-13 1.37884173033E-13 1.46410245128E-13 1.55463522671E-13 1.65076604777E-13 1.75284106257E-13 1.86122782250E-13 1.97631660566E-13 2.09852182205E-13 2.22828350571E-13 2.36606889905E-13 2.51237413518E-13 2.66772602428E-13 2.83268395034E-13 3.00784188524E-13 3.19383052736E-13 3.39131957237E-13 3.60102012447E-13 3.82368725664E-13 4.06012272929E-13 4.31117787692E-13 4.57775667326E-13 4.86081898595E-13 5.16138403243E-13 5.48053404954E-13 5.81941818988E-13 6.17925665924E-13 6.56134510969E-13 6.96705930435E-13 7.39786007054E-13 7.85529855917E-13 8.34102182934E-13 8.85677877808E-13 9.40442643686E-13 9.98593665729E-13 1.06034032101E-12 1.12590493233E-12 1.19552356859E-12 1.26944689468E-12 1.34794107392E-12 1.43128872628E-12 1.51978994578E-12 1.61376338092E-12 1.71354738180E-12 1.81950121818E-12 1.93200637286E-12 2.05146791500E-12 2.17831595839E-12 2.31300720977E-12 2.45602661301E-12 2.60788909480E-12 2.76914141831E-12 2.94036415150E-12 3.12217375703E-12 3.31522481139E-12 3.52021236122E-12 3.73787442533E-12 3.96899465132E-12 4.21440513645E-12 4.47498942296E-12 4.75168567845E-12 5.04549007291E-12 5.35746036450E-12 5.68871970701E-12 6.04046069263E-12 6.41394964467E-12 6.81053117562E-12 7.23163302694E-12 7.67877120807E-12 8.15355545301E-12 8.65769501432E-12 9.19300481507E-12 9.76141198134E-12 1.03649627762E-11 1.10058299715E-11 1.16863206606E-11 1.24088845614E-11 1.31761228372E-11 1.39907974589E-11 1.48558411385E-11 1.57743679024E-11 1.67496842618E-11 1.77853011475E-11 1.88849465310E-11 2.00525788466E-11 2.12924012295E-11 2.26088766241E-11 2.40067438983E-11 2.54910348283E-11 2.70670922661E-11 2.87405893179E-11 3.05175497977E-11 3.24043698609E-11 3.44078410538E-11 3.65351747442E-11 3.87940280594E-11 4.11925314391E-11 4.37393178890E-11 4.64435540646E-11 4.93149732099E-11 5.23639101957E-11 5.56013387266E-11 5.90389107891E-11 6.26889985844E-11 6.65647390301E-11 7.06800810175E-11 7.50498356337E-11 7.96897293709E-11 8.46164607779E-11 8.98477604178E-11 9.54024547490E-11 1.01300533945E-10 1.07563223412E-10 1.14213060623E-10 1.21273975728E-10 1.28771378066E-10 1.36732247187E-10 1.45185230085E-10 1.54160744090E-10 1.63691086530E-10 1.73810550240E-10 1.84555547950E-10 1.95964742239E-10 2.08079184872E-10 2.20942464658E-10 2.34600863946E-10 2.49103525110E-10 2.64502627235E-10 2.80853573478E-10 2.98215191052E-10 3.16649941526E-10 3.36224146618E-10 3.57008225381E-10 3.79076948514E-10 4.02509706386E-10 4.27390794651E-10 4.53809717454E-10 4.81861508207E-10 5.11647072830E-10 5.43273550783E-10 5.76854700882E-10 6.12511309987E-10 6.50371627182E-10 6.90571824733E-10 7.33256486448E-10 7.78579128649E-10 8.26702750998E-10 8.77800421426E-10 9.32055899055E-10 9.89664294734E-10 1.05083276922E-09 1.11578128126E-09 1.18474337407E-09 1.25796701631E-09 1.33571549232E-09 1.41826834727E-09 1.50592239074E-09 1.59899276346E-09 1.69781406891E-09 1.80274157254E-09 1.91415248127E-09 2.03244729354E-09 2.15805124029E-09 2.29141581132E-09 2.43302037085E-09 2.58337388476E-09 2.74301674388E-09 2.91252270298E-09 3.09250094197E-09 3.28359824976E-09 3.48650134299E-09 3.70193933446E-09 3.93068634991E-09 4.17356429370E-09 4.43144581194E-09 4.70525741040E-09 4.99598278411E-09 5.30466634107E-09 5.63241695230E-09 5.98041191940E-09 6.34990120027E-09 6.74221189421E-09 7.15875298972E-09 7.60102041747E-09 8.07060241929E-09 8.56918522393E-09 9.09855910081E-09 9.66062477597E-09 1.02574002290E-08 1.08910279293E-08 1.15637825077E-08 1.22780789041E-08 1.30364810103E-08 1.38417108583E-08 1.46966583514E-08 1.56043916156E-08 1.65681679853E-08 1.75914456536E-08 1.86778960446E-08 1.98314169525E-08 2.10561464879E-08 2.23564778679E-08 2.37370751355E-08 2.52028898308E-08 2.67591787107E-08 2.84115225085E-08 3.01658459065E-08 3.20284387033E-08 3.40059782782E-08 3.61055534533E-08 3.83346898100E-08 4.07013765742E-08 4.32140951242E-08 4.58818492871E-08 4.87141974758E-08 5.17212867874E-08 5.49138892286E-08 5.83034401235E-08 6.19020789246E-08 6.57226924827E-08 6.97789609983E-08 7.40854067968E-08 7.86574460793E-08 8.35114438486E-08 8.86647722094E-08 9.41358722541E-08 9.99443197051E-08 1.06110894632E-07 1.12657655383E-07 1.19608017098E-07 1.26986835011E-07 1.34820492818E-07 1.43136996525E-07 1.51966073984E-07 1.61339280549E-07 1.71290111185E-07 1.81854119444E-07 1.93069043694E-07 2.04974941107E-07 2.17614329825E-07 2.31032339781E-07 2.45276872759E-07 2.60398772284E-07 2.76452003769E-07 2.93493845802E-07 3.11585092978E-07 3.30790271219E-07 3.51177866157E-07 3.72820565484E-07 3.95795516075E-07 4.20184596734E-07 4.46074707698E-07 4.73558077603E-07 5.02732589268E-07 5.33702125254E-07 5.66576934534E-07 6.01474021352E-07 6.38517557827E-07 6.77839321648E-07 7.19579160275E-07 7.63885483514E-07 8.10915785844E-07 8.60837200526E-07 9.13827087400E-07 9.70073656250E-07 1.02977662802E-06 1.09314793613E-06 1.16041247027E-06 1.23180886522E-06 1.30759033754E-06 1.38802557270E-06 1.47339966609E-06 1.56401512083E-06 1.66019290584E-06 1.76227357789E-06 1.87061847146E-06 1.98561096020E-06 2.10765779475E-06 2.23719052099E-06 2.37466698389E-06 2.52057292181E-06 2.67542365692E-06 2.83976588711E-06 3.01417958581E-06 3.19928001586E-06 3.39571986435E-06 3.60419150553E-06 3.82542939956E-06 4.06021263482E-06 4.30936762277E-06 4.57377095383E-06 4.85435242432E-06 5.15209824419E-06 5.46805443645E-06 5.80333043934E-06 6.15910292354E-06 6.53661983676E-06 6.93720468922E-06 7.36226109403E-06 7.81327757773E-06 8.29183267629E-06 8.79960033393E-06 9.33835562172E-06 9.90998079531E-06 1.05164717110E-05 1.11599446216E-05 1.18426433732E-05 1.25669470273E-05 1.33353779323E-05 1.41506102698E-05 1.50154791050E-05 1.59329899679E-05 1.69063289975E-05 1.79388736814E-05 1.90342042236E-05 2.01961155786E-05 2.14286301880E-05 2.27360114605E-05 2.41227780387E-05 2.55937188952E-05 2.71539093079E-05 2.88087277618E-05 3.05638738315E-05 3.24253870991E-05 3.43996671657E-05 3.64934948191E-05 3.87140544204E-05 4.10689575807E-05 4.35662681972E-05 4.62145289264E-05 4.90227891734E-05 5.20006346813E-05 5.51582188105E-05 5.85062955988E-05 6.20562547028E-05 6.58201583220E-05 6.98107802150E-05 7.40416469221E-05 7.85270813132E-05 8.32822485879E-05 8.83232048608E-05 9.36669484702E-05 9.93314741561E-05 1.05335830264E-04 1.11700179129E-04 1.18445860821E-04 1.25595460412E-04 1.33172878968E-04 1.41203408451E-04 1.49713810732E-04 1.58732400949E-04 1.68289135400E-04 1.78415704247E-04 1.89145629238E-04 2.00514366733E-04 2.12559416286E-04 2.25320435071E-04 2.38839358442E-04 2.53160526941E-04 2.68330820059E-04 2.84399797102E-04 3.01419845494E-04 3.19446336892E-04 3.38537791480E-04 3.58756050847E-04 3.80166459845E-04 4.02838057865E-04 4.26843779962E-04 4.52260668297E-04 4.79170094364E-04 5.07657992502E-04 5.37815105201E-04 5.69737240730E-04 6.03525543635E-04 6.39286778670E-04 6.77133628755E-04 7.17185007548E-04 7.59566387261E-04 8.04410142352E-04 8.51855909757E-04 9.02050966319E-04 9.55150624125E-04 1.01131864443E-03 1.07072767090E-03 1.13355968296E-03 1.20000646983E-03 1.27027012626E-03 1.34456357053E-03 1.42311108553E-03 1.50614888379E-03 1.59392569720E-03 1.68670339217E-03 1.78475761107E-03 1.88837844078E-03 1.99787110896E-03 2.11355670908E-03 2.23577295466E-03 2.36487496375E-03 2.50123607405E-03 2.64524868964E-03 2.79732515979E-03 2.95789869044E-03 3.12742428898E-03 3.30637974281E-03 3.49526663196E-03 3.69461137634E-03 3.90496631763E-03 4.12691083620E-03 4.36105250287E-03 4.60802826565E-03 4.86850567114E-03 5.14318412014E-03 5.43279615719E-03 5.73810879303E-03 6.05992485935E-03 6.39908439444E-03 6.75646605858E-03 7.13298857740E-03 7.52961221141E-03 7.94734024939E-03 8.38722052310E-03 8.85034694050E-03 9.33786103408E-03 9.85095352067E-03 1.03908658686E-02 1.09588918673E-02 1.15563791952E-02 1.21847309785E-02 1.28454073365E-02 1.35399269055E-02 1.42698683337E-02 1.50368717401E-02 1.58426401270E-02 1.66889407374E-02 1.75776063467E-02 1.85105364771E-02 1.94896985234E-02 2.05171287754E-02 2.15949333253E-02 2.27252888427E-02 2.39104432029E-02 2.51527159507E-02 2.64544985812E-02 2.78182546193E-02 2.92465194765E-02 3.07419000641E-02 3.23070741395E-02 3.39447893623E-02 3.56578620345E-02 3.74491754992E-02 3.93216781692E-02 4.12783811583E-02 4.33223554849E-02 4.54567288170E-02 4.76846817269E-02 5.00094434237E-02 5.24342869288E-02 5.49625236609E-02 5.75974973961E-02 6.03425775659E-02 6.32011518600E-02 6.61766180958E-02 6.92723753205E-02 7.24918141095E-02 7.58383060264E-02 7.93151922116E-02 8.29257710659E-02 8.66732849977E-02 9.05609062060E-02 9.45917214711E-02 9.87687159295E-02 1.03094755813E-01 1.07572570133E-01 1.12204731302E-01 1.16993634680E-01 1.21941477044E-01 1.27050233995E-01 1.32321636294E-01 1.37757145176E-01 1.43357926631E-01 1.49124824730E-01 1.55058334011E-01 1.61158570999E-01 1.67425244929E-01 1.73857627740E-01 1.80454523461E-01 1.87214237066E-01 1.94134542955E-01 2.01212653168E-01 2.08445185516E-01 2.15828131783E-01 2.23356826192E-01 2.31025914349E-01 2.38829322882E-01 2.46760230019E-01 2.54811037372E-01 2.62973343194E-01 2.71237917422E-01 2.79594678801E-01 2.88032674430E-01 2.96540062076E-01 3.05104095595E-01 3.13711113861E-01 3.22346533549E-01 3.30994846182E-01 3.39639619827E-01 3.48263505828E-01 3.56848250981E-01 3.65374715520E-01 3.73822897309E-01 3.82171962588E-01 3.90400283625E-01 3.98485483589E-01 4.06404488936E-01 4.14133589553E-01 4.21648506875E-01 4.28924470141E-01 4.35936300884E-01 4.42658505704E-01 4.49065377302E-01 4.55131103669E-01 4.60829885256E-01 4.66136059842E-01 4.71024234760E-01 4.75469425992E-01 4.79447203603E-01 4.82933842808E-01 4.85906479935E-01 4.88343272354E-01 4.90223561414E-01 4.91528037251E-01 4.92238904275E-01 4.92340046007E-01 4.91817187876E-01 4.90658056455E-01 4.88852533594E-01 4.86392803785E-01 4.83273493092E-01 4.79491797918E-01 4.75047601867E-01 4.69943578981E-01 4.64185281624E-01 4.57781211372E-01 4.50742871311E-01 4.43084798251E-01 4.34824573494E-01 4.25982810936E-01 4.16583121450E-01 4.06652052724E-01 3.96219003902E-01 3.85316114691E-01 3.73978128778E-01 3.62242231772E-01 3.50147864102E-01 3.37736509671E-01 3.25051461353E-01 3.12137564729E-01 2.99040941797E-01 2.85808696685E-01 2.72488605688E-01 2.59128794241E-01 2.45777403687E-01 2.32482250948E-01 2.19290484373E-01 2.06248239244E-01 1.93400296515E-01 1.80789748457E-01 1.68457674919E-01 1.56442833893E-01 1.44781370040E-01 1.33506544688E-01 1.22648490673E-01 1.12233995184E-01 1.02286313488E-01 9.28250161199E-02 8.38658717281E-02 7.54207673881E-02 6.74976677127E-02 6.01006136060E-02 5.32297609725E-02 4.68814591293E-02 4.10483680885E-02 3.57196132764E-02 3.08809756590E-02 2.65151146549E-02 2.26018206549E-02 1.91182934538E-02 1.60394424500E-02 1.33382041107E-02 1.09858719551E-02 8.95243420490E-03 7.20691432244E-03 5.71928132250E-03 4.46543716575E-03 3.42269920371E-03 2.56848614379E-03 1.88058404254E-03 1.33740446070E-03 9.18230437375E-04 6.03445919087E-04 3.74744331895E-04 2.15312109806E-04 1.09983192533E-04 4.53607763562E-05 9.90294021836E-06 -6.03083049502E-06 -1.01747443307E-05 -8.39544614419E-06 -4.77587384663E-06 -1.74512053477E-06 -2.54579124990E-07 -1.14444061034E-17 2.03987981112E-18 -1.79401320158E-19 -2.46529647633E-18 -1.47952386169E-18 9.18059833567E-19 -8.33493519034E-19 1.67814179957E-19 -2.72122812159E-18 2.88695413498E-19 -1.23008258513E-19 8.78111705054E-19 7.81025960927E-20 -1.83751477988E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4D 2 8.00 Wavefunction 9.55932527998E-15 9.85045007624E-15 1.01504409425E-14 1.04595678908E-14 1.07781091562E-14 1.11063514475E-14 1.14445902047E-14 1.17931298657E-14 1.21522841396E-14 1.25223762895E-14 1.29037394234E-14 1.32967167938E-14 1.37016621069E-14 1.41189398408E-14 1.45489255736E-14 1.49920063215E-14 1.54485808871E-14 1.59190602184E-14 1.64038677784E-14 1.69034399267E-14 1.74182263119E-14 1.79486902766E-14 1.84953092742E-14 1.90585752986E-14 1.96389953272E-14 2.02370917773E-14 2.08534029761E-14 2.14884836452E-14 2.21429054001E-14 2.28172572646E-14 2.35121462008E-14 2.42281976557E-14 2.49660561240E-14 2.57263857281E-14 2.65098708159E-14 2.73172165770E-14 2.81491496769E-14 2.90064189117E-14 2.98897958814E-14 3.08000756852E-14 3.17380776361E-14 3.27046459992E-14 3.37006507515E-14 3.47269883642E-14 3.57845826106E-14 3.68743853970E-14 3.79973776192E-14 3.91545700463E-14 4.03470042294E-14 4.15757534398E-14 4.28419236347E-14 4.41466544529E-14 4.54911202400E-14 4.68765311061E-14 4.83041340145E-14 4.97752139041E-14 5.12910948461E-14 5.28531412358E-14 5.44627590202E-14 5.61213969641E-14 5.78305479536E-14 5.95917503399E-14 6.14065893241E-14 6.32766983837E-14 6.52037607431E-14 6.71895108885E-14 6.92357361292E-14 7.13442782059E-14 7.35170349489E-14 7.57559619858E-14 7.80630745022E-14 8.04404490549E-14 8.28902254417E-14 8.54146086266E-14 8.80158707249E-14 9.06963530480E-14 9.34584682109E-14 9.63047023039E-14 9.92376171296E-14 1.02259852509E-13 1.05374128659E-13 1.08583248637E-13 1.11890100869E-13 1.15297661744E-13 1.18808998297E-13 1.22427270969E-13 1.26155736448E-13 1.29997750606E-13 1.33956771515E-13 1.38036362559E-13 1.42240195648E-13 1.46572054514E-13 1.51035838123E-13 1.55635564181E-13 1.60375372753E-13 1.65259529985E-13 1.70292431950E-13 1.75478608597E-13 1.80822727838E-13 1.86329599739E-13 1.92004180857E-13 1.97851578699E-13 2.03877056316E-13 2.10086037045E-13 2.16484109389E-13 2.23077032044E-13 2.29870739085E-13 2.36871345308E-13 2.44085151730E-13 2.51518651264E-13 2.59178534562E-13 2.67071696035E-13 2.75205240062E-13 2.83586487381E-13 2.92222981681E-13 3.01122496389E-13 3.10293041669E-13 3.19742871631E-13 3.29480491760E-13 3.39514666571E-13 3.49854427498E-13 3.60509081025E-13 3.71488217059E-13 3.82801717563E-13 3.94459765452E-13 4.06472853754E-13 4.18851795061E-13 4.31607731255E-13 4.44752143540E-13 4.58296862774E-13 4.72254080118E-13 4.86636358011E-13 5.01456641472E-13 5.16728269758E-13 5.32464988364E-13 5.48680961399E-13 5.65390784334E-13 5.82609497137E-13 6.00352597812E-13 6.18636056346E-13 6.37476329087E-13 6.56890373551E-13 6.76895663689E-13 6.97510205612E-13 7.18752553799E-13 7.40641827797E-13 7.63197729431E-13 7.86440560533E-13 8.10391241220E-13 8.35071328722E-13 8.60503036783E-13 8.86709255656E-13 9.13713572708E-13 9.41540293645E-13 9.70214464396E-13 9.99761893647E-13 1.03020917608E-12 1.06158371631E-12 1.09391375353E-12 1.12722838696E-12 1.16155760201E-12 1.19693229731E-12 1.23338431246E-12 1.27094645673E-12 1.30965253859E-12 1.34953739613E-12 1.39063692841E-12 1.43298812778E-12 1.47662911318E-12 1.52159916444E-12 1.56793875764E-12 1.61568960155E-12 1.66489467514E-12 1.71559826630E-12 1.76784601169E-12 1.82168493779E-12 1.87716350329E-12 1.93433164263E-12 1.99324081099E-12 2.05394403060E-12 2.11649593845E-12 2.18095283549E-12 2.24737273726E-12 2.31581542617E-12 2.38634250525E-12 2.45901745363E-12 2.53390568366E-12 2.61107459982E-12 2.69059365932E-12 2.77253443469E-12 2.85697067816E-12 2.94397838803E-12 3.03363587713E-12 3.12602384324E-12 3.22122544176E-12 3.31932636055E-12 3.42041489707E-12 3.52458203780E-12 3.63192154022E-12 3.74253001711E-12 3.85650702356E-12 3.97395514657E-12 4.09498009737E-12 4.21969080658E-12 4.34819952226E-12 4.48062191092E-12 4.61707716164E-12 4.75768809335E-12 4.90258126538E-12 5.05188709136E-12 5.20573995659E-12 5.36427833905E-12 5.52764493396E-12 5.69598678228E-12 5.86945540303E-12 6.04820692967E-12 6.23240225063E-12 6.42220715413E-12 6.61779247738E-12 6.81933426035E-12 7.02701390426E-12 7.24101833479E-12 7.46154017035E-12 7.68877789548E-12 7.92293603945E-12 8.16422536038E-12 8.41286303493E-12 8.66907285379E-12 8.93308542305E-12 9.20513837185E-12 9.48547656618E-12 9.77435232932E-12 1.00720256689E-11 1.03787645111E-11 1.06948449415E-11 1.10205514537E-11 1.13561772057E-11 1.17020242832E-11 1.20584039719E-11 1.24256370376E-11 1.28040540147E-11 1.31939955041E-11 1.35958124794E-11 1.40098666030E-11 1.44365305514E-11 1.48761883511E-11 1.53292357236E-11 1.57960804422E-11 1.62771426985E-11 1.67728554810E-11 1.72836649646E-11 1.78100309123E-11 1.83524270889E-11 1.89113416875E-11 1.94872777690E-11 2.00807537146E-11 2.06923036926E-11 2.13224781393E-11 2.19718442542E-11 2.26409865103E-11 2.33305071810E-11 2.40410268813E-11 2.47731851266E-11 2.55276409089E-11 2.63050732891E-11 2.71061820088E-11 2.79316881197E-11 2.87823346330E-11 2.96588871878E-11 3.05621347405E-11 3.14928902746E-11 3.24519915329E-11 3.34403017711E-11 3.44587105350E-11 3.55081344610E-11 3.65895181013E-11 3.77038347739E-11 3.88520874390E-11 4.00353096013E-11 4.12545662403E-11 4.25109547691E-11 4.38056060219E-11 4.51396852720E-11 4.65143932806E-11 4.79309673773E-11 4.93906825742E-11 5.08948527131E-11 5.24448316485E-11 5.40420144656E-11 5.56878387365E-11 5.73837858137E-11 5.91313821637E-11 6.09322007407E-11 6.27878624027E-11 6.47000373698E-11 6.66704467282E-11 6.87008639788E-11 7.07931166336E-11 7.29490878607E-11 7.51707181792E-11 7.74600072058E-11 7.98190154543E-11 8.22498661909E-11 8.47547473445E-11 8.73359134765E-11 8.99956878098E-11 9.27364643202E-11 9.55607098906E-11 9.84709665317E-11 1.01469853670E-10 1.04560070505E-10 1.07744398440E-10 1.11025703584E-10 1.14406939332E-10 1.17891149022E-10 1.21481468677E-10 1.25181129827E-10 1.28993462414E-10 1.32921897794E-10 1.36969971822E-10 1.41141328036E-10 1.45439720937E-10 1.49869019367E-10 1.54433209990E-10 1.59136400886E-10 1.63982825240E-10 1.68976845160E-10 1.74122955599E-10 1.79425788400E-10 1.84890116469E-10 1.90520858067E-10 1.96323081238E-10 2.02302008373E-10 2.08463020905E-10 2.14811664159E-10 2.21353652339E-10 2.28094873671E-10 2.35041395707E-10 2.42199470780E-10 2.49575541638E-10 2.57176247237E-10 2.65008428721E-10 2.73079135577E-10 2.81395631980E-10 2.89965403332E-10 2.98796163002E-10 3.07895859263E-10 3.17272682448E-10 3.26935072325E-10 3.36891725691E-10 3.47151604197E-10 3.57723942419E-10 3.68618256166E-10 3.79844351049E-10 3.91412331300E-10 4.03332608874E-10 4.15615912815E-10 4.28273298914E-10 4.41316159663E-10 4.54756234505E-10 4.68605620402E-10 4.82876782723E-10 4.97582566464E-10 5.12736207808E-10 5.28351346042E-10 5.44442035827E-10 5.61022759854E-10 5.78108441875E-10 5.95714460141E-10 6.13856661235E-10 6.32551374345E-10 6.51815425950E-10 6.71666154978E-10 6.92121428398E-10 7.13199657314E-10 7.34919813529E-10 7.57301446620E-10 7.80364701542E-10 8.04130336748E-10 8.28619742883E-10 8.53854962031E-10 8.79858707559E-10 9.06654384553E-10 9.34266110895E-10 9.62718738960E-10 9.92037877991E-10 1.02224991715E-09 1.05338204925E-09 1.08546229528E-09 1.11851952957E-09 1.15258350580E-09 1.18768488379E-09 1.22385525709E-09 1.26112718142E-09 1.29953420395E-09 1.33911089352E-09 1.37989287176E-09 1.42191684512E-09 1.46522063793E-09 1.50984322644E-09 1.55582477389E-09 1.60320666669E-09 1.65203155164E-09 1.70234337433E-09 1.75418741868E-09 1.80761034771E-09 1.86266024554E-09 1.91938666067E-09 1.97784065057E-09 2.03807482762E-09 2.10014340650E-09 2.16410225296E-09 2.23000893412E-09 2.29792277026E-09 2.36790488824E-09 2.44001827649E-09 2.51432784173E-09 2.59090046737E-09 2.66980507371E-09 2.75111267999E-09 2.83489646829E-09 2.92123184943E-09 3.01019653079E-09 3.10187058632E-09 3.19633652853E-09 3.29367938284E-09 3.39398676405E-09 3.49734895522E-09 3.60385898894E-09 3.71361273103E-09 3.82670896686E-09 3.94324949025E-09 4.06333919507E-09 4.18708616971E-09 4.31460179428E-09 4.44600084093E-09 4.58140157712E-09 4.72092587207E-09 4.86469930645E-09 5.01285128543E-09 5.16551515509E-09 5.32282832253E-09 5.48493237947E-09 5.65197322971E-09 5.82410122048E-09 6.00147127771E-09 6.18424304552E-09 6.37258102988E-09 6.56665474668E-09 6.76663887431E-09 6.97271341087E-09 7.18506383618E-09 7.40388127874E-09 7.62936268771E-09 7.86171101023E-09 8.10113537404E-09 8.34785127572E-09 8.60208077467E-09 8.86405269294E-09 9.13400282118E-09 9.41217413091E-09 9.69881699314E-09 9.99418940378E-09 1.02985572158E-08 1.06121943785E-08 1.09353831843E-08 1.12684145222E-08 1.16115881405E-08 1.19652129158E-08 1.23296071314E-08 1.27050987636E-08 1.30920257772E-08 1.34907364291E-08 1.39015895824E-08 1.43249550290E-08 1.47612138224E-08 1.52107586209E-08 1.56739940410E-08 1.61513370211E-08 1.66432171976E-08 1.71500772907E-08 1.76723735035E-08 1.82105759324E-08 1.87651689900E-08 1.93366518416E-08 1.99255388537E-08 2.05323600578E-08 2.11576616268E-08 2.18020063668E-08 2.24659742239E-08 2.31501628057E-08 2.38551879195E-08 2.45816841263E-08 2.53303053122E-08 2.61017252768E-08 2.68966383396E-08 2.77157599649E-08 2.85598274058E-08 2.94296003676E-08 3.03258616919E-08 3.12494180608E-08 3.22011007231E-08 3.31817662425E-08 3.41922972684E-08 3.52336033303E-08 3.63066216566E-08 3.74123180179E-08 3.85516875964E-08 3.97257558813E-08 4.09355795921E-08 4.21822476295E-08 4.34668820553E-08 4.47906391025E-08 4.61547102159E-08 4.75603231242E-08 4.90087429453E-08 5.05012733245E-08 5.20392576083E-08 5.36240800529E-08 5.52571670705E-08 5.69399885128E-08 5.86740589940E-08 6.04609392537E-08 6.23022375621E-08 6.41996111669E-08 6.61547677851E-08 6.81694671398E-08 7.02455225442E-08 7.23848025334E-08 7.45892325459E-08 7.68607966567E-08 7.92015393631E-08 8.16135674243E-08 8.40990517578E-08 8.66602293930E-08 8.92994054848E-08 9.20189553877E-08 9.48213267940E-08 9.77090419364E-08 1.00684699858E-07 1.03750978752E-07 1.06910638371E-07 1.10166522512E-07 1.13521561572E-07 1.16978775192E-07 1.20541274969E-07 1.24212267257E-07 1.27995056056E-07 1.31893045980E-07 1.35909745328E-07 1.40048769234E-07 1.44313842926E-07 1.48708805075E-07 1.53237611253E-07 1.57904337488E-07 1.62713183937E-07 1.67668478665E-07 1.72774681535E-07 1.78036388229E-07 1.83458334380E-07 1.89045399832E-07 1.94802613035E-07 2.00735155569E-07 2.06848366806E-07 2.13147748716E-07 2.19638970819E-07 2.26327875286E-07 2.33220482194E-07 2.40322994951E-07 2.47641805869E-07 2.55183501923E-07 2.62954870677E-07 2.70962906392E-07 2.79214816319E-07 2.87718027185E-07 2.96480191877E-07 3.05509196330E-07 3.14813166620E-07 3.24400476278E-07 3.34279753827E-07 3.44459890543E-07 3.54950048458E-07 3.65759668605E-07 3.76898479512E-07 3.88376505956E-07 4.00204077986E-07 4.12391840217E-07 4.24950761407E-07 4.37892144329E-07 4.51227635941E-07 4.64969237866E-07 4.79129317190E-07 4.93720617593E-07 5.08756270813E-07 5.24249808462E-07 5.40215174205E-07 5.56666736303E-07 5.73619300540E-07 5.91088123550E-07 6.09088926540E-07 6.27637909437E-07 6.46751765465E-07 6.66447696163E-07 6.86743426863E-07 7.07657222636E-07 7.29207904731E-07 7.51414867504E-07 7.74298095867E-07 7.97878183274E-07 8.22176350245E-07 8.47214463457E-07 8.73015055420E-07 8.99601344751E-07 9.26997257055E-07 9.55227446461E-07 9.84317317793E-07 1.01429304943E-06 1.04518161686E-06 1.07701081695E-06 1.10980929292E-06 1.14360656018E-06 1.17843303280E-06 1.21432005096E-06 1.25129990903E-06 1.28940588476E-06 1.32867226907E-06 1.36913439704E-06 1.41082867956E-06 1.45379263619E-06 1.49806492886E-06 1.54368539665E-06 1.59069509163E-06 1.63913631580E-06 1.68905265911E-06 1.74048903871E-06 1.79349173931E-06 1.84810845483E-06 1.90438833132E-06 1.96238201112E-06 2.02214167844E-06 2.08372110627E-06 2.14717570479E-06 2.21256257114E-06 2.27994054084E-06 2.34937024063E-06 2.42091414307E-06 2.49463662266E-06 2.57060401378E-06 2.64888467031E-06 2.72954902711E-06 2.81266966337E-06 2.89832136785E-06 2.98658120616E-06 3.07752859004E-06 3.17124534876E-06 3.26781580271E-06 3.36732683918E-06 3.46986799053E-06 3.57553151464E-06 3.68441247784E-06 3.79660884042E-06 3.91222154465E-06 4.03135460549E-06 4.15411520412E-06 4.28061378426E-06 4.41096415138E-06 4.54528357501E-06 4.68369289404E-06 4.82631662535E-06 4.97328307562E-06 5.12472445655E-06 5.28077700329E-06 5.44158109849E-06 5.60728139398E-06 5.77802694725E-06 5.95397134871E-06 6.13527286132E-06 6.32209456767E-06 6.51460450833E-06 6.71297583844E-06 6.91738697938E-06 7.12802177603E-06 7.34506967549E-06 7.56872587487E-06 7.79919151339E-06 8.03667384714E-06 8.28138642894E-06 8.53354931124E-06 8.79338923243E-06 9.06113981907E-06 9.33704180355E-06 9.62134323450E-06 9.91429969477E-06 1.02161745376E-05 1.05272391168E-05 1.08477730298E-05 1.11780643765E-05 1.15184099972E-05 1.18691157725E-05 1.22304968633E-05 1.26028780187E-05 1.29865938598E-05 1.33819891879E-05 1.37894192878E-05 1.42092502622E-05 1.46418593609E-05 1.50876353258E-05 1.55469787458E-05 1.60203024274E-05 1.65080317799E-05 1.70106051958E-05 1.75284744638E-05 1.80621051811E-05 1.86119771998E-05 1.91785850387E-05 1.97624383707E-05 2.03640624606E-05 2.09839986682E-05 2.16228049273E-05 2.22810562419E-05 2.29593452146E-05 2.36582825587E-05 2.43784976382E-05 2.51206390232E-05 2.58853750385E-05 2.66733943459E-05 2.74854065385E-05 2.83221427406E-05 2.91843562409E-05 3.00728231543E-05 3.09883430578E-05 3.19317397247E-05 3.29038618296E-05 3.39055837060E-05 3.49378060845E-05 3.60014569554E-05 3.70974923547E-05 3.82268971921E-05 3.93906862389E-05 4.05899049290E-05 4.18256303490E-05 4.30989722194E-05 4.44110738503E-05 4.57631132237E-05 4.71563040120E-05 4.85918967078E-05 5.00711797279E-05 5.15954805468E-05 5.31661669752E-05 5.47846482828E-05 5.64523765676E-05 5.81708479776E-05 5.99416041283E-05 6.17662334351E-05 6.36463725645E-05 6.55837079138E-05 6.75799770928E-05 6.96369705297E-05 7.17565330200E-05 7.39405654307E-05 7.61910264008E-05 7.85099340385E-05 8.08993677951E-05 8.33614703033E-05 8.58984492725E-05 8.85125794888E-05 9.12062048442E-05 9.39817403833E-05 9.68416745516E-05 9.97885713037E-05 1.02825072476E-04 1.05953900091E-04 1.09177858804E-04 1.12499838393E-04 1.15922816325E-04 1.19449860420E-04 1.23084131552E-04 1.26828886487E-04 1.30687480762E-04 1.34663371678E-04 1.38760121332E-04 1.42981399854E-04 1.47330988587E-04 1.51812783488E-04 1.56430798576E-04 1.61189169490E-04 1.66092157159E-04 1.71144151565E-04 1.76349675662E-04 1.81713389365E-04 1.87240093684E-04 1.92934734968E-04 1.98802409298E-04 2.04848366994E-04 2.11078017253E-04 2.17496932949E-04 2.24110855545E-04 2.30925700182E-04 2.37947560898E-04 2.45182716024E-04 2.52637633710E-04 2.60318977664E-04 2.68233613004E-04 2.76388612337E-04 2.84791261978E-04 2.93449068384E-04 3.02369764776E-04 3.11561317929E-04 3.21031935200E-04 3.30790071767E-04 3.40844438026E-04 3.51204007286E-04 3.61878023641E-04 3.72876010087E-04 3.84207776885E-04 3.95883430184E-04 4.07913380864E-04 4.20308353666E-04 4.33079396606E-04 4.46237890633E-04 4.59795559590E-04 4.73764480472E-04 4.88157093997E-04 5.02986215438E-04 5.18265045852E-04 5.34007183582E-04 5.50226636107E-04 5.66937832263E-04 5.84155634791E-04 6.01895353301E-04 6.20172757554E-04 6.39004091184E-04 6.58406085794E-04 6.78395975498E-04 6.98991511828E-04 7.20210979155E-04 7.42073210484E-04 7.64597603776E-04 7.87804138693E-04 8.11713393855E-04 8.36346564619E-04 8.61725481323E-04 8.87872628113E-04 9.14811162271E-04 9.42564934158E-04 9.71158507665E-04 1.00061718131E-03 1.03096700994E-03 1.06223482699E-03 1.09444826753E-03 1.12763579180E-03 1.16182670953E-03 1.19705120497E-03 1.23334036254E-03 1.27072619335E-03 1.30924166232E-03 1.34892071622E-03 1.38979831244E-03 1.43191044857E-03 1.47529419283E-03 1.51998771542E-03 1.56603032065E-03 1.61346248010E-03 1.66232586661E-03 1.71266338928E-03 1.76451922950E-03 1.81793887788E-03 1.87296917234E-03 1.92965833715E-03 1.98805602315E-03 2.04821334907E-03 2.11018294397E-03 2.17401899088E-03 2.23977727168E-03 2.30751521313E-03 2.37729193430E-03 2.44916829521E-03 2.52320694681E-03 2.59947238242E-03 2.67803099044E-03 2.75895110860E-03 2.84230307968E-03 2.92815930869E-03 3.01659432161E-03 3.10768482577E-03 3.20150977181E-03 3.29815041724E-03 3.39769039189E-03 3.50021576485E-03 3.60581511341E-03 3.71457959372E-03 3.82660301331E-03 3.94198190555E-03 4.06081560606E-03 4.18320633111E-03 4.30925925804E-03 4.43908260781E-03 4.57278772962E-03 4.71048918775E-03 4.85230485063E-03 4.99835598211E-03 5.14876733515E-03 5.30366724778E-03 5.46318774151E-03 5.62746462222E-03 5.79663758352E-03 5.97085031268E-03 6.15025059918E-03 6.33499044590E-03 6.52522618299E-03 6.72111858455E-03 6.92283298808E-03 7.13053941672E-03 7.34441270451E-03 7.56463262449E-03 7.79138401982E-03 8.02485693798E-03 8.26524676798E-03 8.51275438078E-03 8.76758627279E-03 9.02995471272E-03 9.30007789151E-03 9.57818007575E-03 9.86449176429E-03 1.01592498483E-02 1.04626977746E-02 1.07750857129E-02 1.10966707256E-02 1.14277169424E-02 1.17684957370E-02 1.21192859083E-02 1.24803738651E-02 1.28520538140E-02 1.32346279511E-02 1.36284066575E-02 1.40337086980E-02 1.44508614236E-02 1.48802009777E-02 1.53220725059E-02 1.57768303693E-02 1.62448383609E-02 1.67264699264E-02 1.72221083879E-02 1.77321471710E-02 1.82569900355E-02 1.87970513092E-02 1.93527561253E-02 1.99245406624E-02 2.05128523883E-02 2.11181503057E-02 2.17409052020E-02 2.23815999007E-02 2.30407295161E-02 2.37188017102E-02 2.44163369515E-02 2.51338687767E-02 2.58719440529E-02 2.66311232433E-02 2.74119806721E-02 2.82151047929E-02 2.90410984555E-02 2.98905791757E-02 3.07641794034E-02 3.16625467915E-02 3.25863444646E-02 3.35362512860E-02 3.45129621242E-02 3.55171881172E-02 3.65496569348E-02 3.76111130385E-02 3.87023179373E-02 3.98240504407E-02 4.09771069068E-02 4.21623014851E-02 4.33804663543E-02 4.46324519529E-02 4.59191272032E-02 4.72413797269E-02 4.86001160520E-02 4.99962618102E-02 5.14307619232E-02 5.29045807773E-02 5.44187023860E-02 5.59741305381E-02 5.75718889306E-02 5.92130212864E-02 6.08985914533E-02 6.26296834849E-02 6.44074017011E-02 6.62328707263E-02 6.81072355047E-02 7.00316612903E-02 7.20073336100E-02 7.40354581982E-02 7.61172609004E-02 7.82539875446E-02 8.04469037777E-02 8.26972948648E-02 8.50064654491E-02 8.73757392702E-02 8.98064588383E-02 9.22999850611E-02 9.48576968210E-02 9.74809905004E-02 1.00171279451E-01 1.02929993406E-01 1.05758577827E-01 1.08658493194E-01 1.11631214219E-01 1.14678228992E-01 1.17801038056E-01 1.21001153396E-01 1.24280097357E-01 1.27639401467E-01 1.31080605174E-01 1.34605254499E-01 1.38214900579E-01 1.41911098122E-01 1.45695403749E-01 1.49569374238E-01 1.53534564646E-01 1.57592526324E-01 1.61744804803E-01 1.65992937566E-01 1.70338451679E-01 1.74782861302E-01 1.79327665050E-01 1.83974343221E-01 1.88724354874E-01 1.93579134750E-01 1.98540090054E-01 2.03608597055E-01 2.08785997542E-01 2.14073595098E-01 2.19472651212E-01 2.24984381206E-01 2.30609949991E-01 2.36350467635E-01 2.42206984746E-01 2.48180487669E-01 2.54271893490E-01 2.60482044842E-01 2.66811704521E-01 2.73261549900E-01 2.79832167141E-01 2.86524045206E-01 2.93337569660E-01 3.00273016267E-01 3.07330544379E-01 3.14510190108E-01 3.21811859283E-01 3.29235320197E-01 3.36780196129E-01 3.44445957647E-01 3.52231914699E-01 3.60137208485E-01 3.68160803112E-01 3.76301477060E-01 3.84557814444E-01 3.92928196114E-01 4.01410790596E-01 4.10003544916E-01 4.18704175325E-01 4.27510157983E-01 4.36418719621E-01 4.45426828246E-01 4.54531183923E-01 4.63728209689E-01 4.73014042644E-01 4.82384525265E-01 4.91835196977E-01 5.01361286038E-01 5.10957701754E-01 5.20619027079E-01 5.30339511613E-01 5.40113065056E-01 5.49933251135E-01 5.59793282054E-01 5.69686013518E-01 5.79603940361E-01 5.89539192860E-01 5.99483533781E-01 6.09428356229E-01 6.19364682384E-01 6.29283163198E-01 6.39174079135E-01 6.49027342058E-01 6.58832498336E-01 6.68578733281E-01 6.78254877012E-01 6.87849411837E-01 6.97350481252E-01 7.06745900674E-01 7.16023169976E-01 7.25169487951E-01 7.34171768786E-01 7.43016660633E-01 7.51690566380E-01 7.60179666697E-01 7.68469945441E-01 7.76547217492E-01 7.84397159082E-01 7.92005340685E-01 7.99357262505E-01 8.06438392610E-01 8.13234207719E-01 8.19730236684E-01 8.25912106624E-01 8.31765591719E-01 8.37276664611E-01 8.42431550348E-01 8.47216782791E-01 8.51619263369E-01 8.55626322044E-01 8.59225780329E-01 8.62406016137E-01 8.65156030254E-01 8.67465514141E-01 8.69324918773E-01 8.70725524154E-01 8.71659509123E-01 8.72120021003E-01 8.72101244616E-01 8.71598470130E-01 8.70608159153E-01 8.69128008456E-01 8.67157010629E-01 8.64695510966E-01 8.61745259788E-01 8.58309459401E-01 8.54392804821E-01 8.50001517376E-01 8.45143370253E-01 8.39827705017E-01 8.34065438132E-01 8.27869056467E-01 8.21252600781E-01 8.14231636152E-01 8.06823208349E-01 7.99045784947E-01 7.90919177974E-01 7.82464441969E-01 7.73703753698E-01 7.64660285475E-01 7.55358063367E-01 7.45821800582E-01 7.36076708397E-01 7.26148286146E-01 7.16062090348E-01 7.05843483034E-01 6.95517359611E-01 6.85107856835E-01 6.74638041763E-01 6.64129582872E-01 6.53602404876E-01 6.43074329158E-01 6.32560702136E-01 6.22074014314E-01 6.11623513237E-01 6.01214814071E-01 5.90849512447E-01 5.80526485090E-01 5.70248188811E-01 5.60018274884E-01 5.49840299908E-01 5.39717725987E-01 5.29653919739E-01 5.19652149918E-01 5.09715583598E-01 4.99847281189E-01 4.90050192038E-01 4.80327154405E-01 4.70680898795E-01 4.61114054088E-01 4.51623987845E-01 4.42218273081E-01 4.32899266689E-01 4.23669219918E-01 4.14530283793E-01 4.05484510900E-01 3.96533856650E-01 3.87680180551E-01 3.78925247481E-01 3.70270728986E-01 3.61718204571E-01 3.53269163002E-01 3.44925003609E-01 3.36687037589E-01 3.28556489310E-01 3.20534497608E-01 3.12622117090E-01 3.04820319423E-01 2.97129994625E-01 2.89551952351E-01 2.82086923170E-01 2.74735559845E-01 2.67498438598E-01 2.60376060384E-01 2.53368852146E-01 2.46477168081E-01 2.39701290896E-01 2.33041433062E-01 2.26497738069E-01 2.20070281685E-01 2.13759073202E-01 2.07564056704E-01 2.01485112314E-01 1.95522057469E-01 1.89674648176E-01 1.83942580289E-01 1.78325490786E-01 1.72822959051E-01 1.67434508166E-01 1.62159606208E-01 1.56997667560E-01 1.51948054224E-01 1.47010077145E-01 1.42182997550E-01 1.37466028288E-01 1.32858335190E-01 1.28359038428E-01 1.23967213895E-01 1.19681894589E-01 1.15502072006E-01 1.11426697547E-01 1.07454683932E-01 1.03584906626E-01 9.98162052665E-02 9.61473851107E-02 9.25772184813E-02 8.91044462248E-02 8.57277791758E-02 8.24458996278E-02 7.92574628104E-02 7.61610983721E-02 7.31554118678E-02 7.02389862516E-02 6.74103833720E-02 6.46681454717E-02 6.20107966885E-02 5.94368445586E-02 5.69447815199E-02 5.45330864161E-02 5.22002259985E-02 4.99446564260E-02 4.77648247727E-02 4.56591706494E-02 4.36261278462E-02 4.16641253350E-02 3.97715886486E-02 3.79469416827E-02 3.61886080679E-02 3.44950125875E-02 3.28645825909E-02 3.12957493868E-02 2.97869496165E-02 2.83366266026E-02 2.69432316732E-02 2.56052254572E-02 2.43210791505E-02 2.30892757489E-02 2.19083112469E-02 2.07766957992E-02 1.96929548442E-02 1.86556301852E-02 1.76632810302E-02 1.67144849858E-02 1.58078390056E-02 1.49419602905E-02 1.41154871396E-02 1.33270797510E-02 1.25754209707E-02 1.18592169897E-02 1.11771979874E-02 1.05281187222E-02 9.91075906720E-03 9.32392449341E-03 8.76644649746E-03 8.23718297655E-03 7.73501854975E-03 7.25886482665E-03 6.80766062396E-03 6.38037213110E-03 5.97599302574E-03 5.59354454053E-03 5.23207548240E-03 4.89066220586E-03 4.56840854191E-03 4.26444568423E-03 3.97793203449E-03 3.70805300861E-03 3.45402080587E-03 3.21507414302E-03 2.99047795521E-03 2.77952306602E-03 2.58152582856E-03 2.39582773973E-03 2.22179502986E-03 2.05881822961E-03 1.90631171631E-03 1.76371324176E-03 1.63048344329E-03 1.50610534016E-03 1.39008381704E-03 1.28194509633E-03 1.18123620108E-03 1.08752441009E-03 1.00039670672E-03 9.19459222872E-04 8.44336679656E-04 7.74671825827E-04 7.10124875433E-04 6.50372945738E-04 5.95109496549E-04 5.44043771970E-04 4.96900245561E-04 4.53418069806E-04 4.13350530762E-04 3.76464508676E-04 3.42539945343E-04 3.11369318900E-04 2.82757126737E-04 2.56519377128E-04 2.32483090176E-04 2.10485808610E-04 1.90375118921E-04 1.72008183312E-04 1.55251282872E-04 1.39979372349E-04 1.26075646881E-04 1.13431120962E-04 1.01944219916E-04 9.15203840947E-05 8.20716859860E-05 7.35164603556E-05 6.57789475383E-05 5.87889499296E-05 5.24815017020E-05 4.67965517291E-05 4.16786596634E-05 3.70767050806E-05 3.29436095661E-05 2.92360715897E-05 2.59143139811E-05 2.29418437930E-05 2.02852243100E-05 1.79138589371E-05 1.57997866804E-05 1.39174889126E-05 1.22437070958E-05 1.07572711229E-05 9.43893792236E-06 8.27123996259E-06 7.23834328193E-06 6.32591466615E-06 5.52099758905E-06 4.81189653098E-06 4.18806928902E-06 3.64002689444E-06 3.15924075599E-06 2.73805665228E-06 2.36961520251E-06 2.04777845206E-06 1.76706221902E-06 1.52257385490E-06 1.30995508071E-06 1.12532958443E-06 9.65255057431E-07 8.26679373484E-07 7.06900621694E-07 6.03530718436E-07 5.14462335936E-07 4.37838898348E-07 3.72027409136E-07 3.15593886526E-07 2.67281196557E-07 2.25989085812E-07 1.90756228188E-07 1.60744112027E-07 1.35222605496E-07 1.13557049302E-07 9.51967365806E-08 7.96646501058E-08 6.65483367660E-08 5.54918085894E-08 4.61883690161E-08 3.83742698991E-08 3.18231147733E-08 2.63409297589E-08 2.17618309812E-08 1.79442237586E-08 1.47674748344E-08 1.21290840011E-08 9.94277456517E-09 8.13473418225E-09 6.64251840726E-09 5.41347930492E-09 4.40332050773E-09 3.57485171921E-09 2.89691757566E-09 2.34347867389E-09 1.89282519103E-09 1.52690589580E-09 1.23075750441E-09 9.92021292721E-10 7.97845429623E-10 6.40259630264E-10 5.12652755099E-10 4.09553291980E-10 3.26443126516E-10 2.59599918721E-10 2.05964003683E-10 1.63026265856E-10 1.28787344417E-10 1.01495236073E-10 7.97929334917E-11 6.25775915474E-11 4.89551205617E-11 3.82024656130E-11 2.97363502813E-11 2.30874431273E-11 1.78790611447E-11 1.38096590726E-11 1.06384693773E-11 8.17375723502E-12 6.26324002457E-12 4.78629354432E-12 3.64762902807E-12 2.77217752252E-12 2.10096258597E-12 1.58777971098E-12 1.19653235548E-12 8.99100856333E-13 6.73642552616E-13 5.03239818086E-13 3.74827960978E-13 2.78347581881E-13 2.06076406342E-13 1.52104185960E-13 1.11921295519E-13 8.20974031012E-14 6.00312745784E-14 4.37565779653E-14 3.17916322936E-14 2.30235296212E-14 1.66190559769E-14 1.19564373707E-14 8.57321498491E-15 6.12657071987E-15 4.36323087200E-15 3.09671318870E-15 2.19018456525E-15 1.54359060034E-15 1.08402626636E-15 7.58556943803E-16 5.28885367049E-16 3.67404113990E-16 2.54284296187E-16 1.75336336351E-16 1.20443901591E-16 8.24217207688E-17 5.61857033870E-17 3.81522707232E-17 2.58052669756E-17 1.73849129344E-17 1.16652892204E-17 7.79578375919E-18 5.18856926824E-18 3.43907080410E-18 2.26998088914E-18 1.49201301290E-18 9.76503726989E-19 6.36366715959E-19 4.12909097080E-19 2.66744753765E-19 1.71558630113E-19 1.09846219580E-19 7.00154593548E-20 4.44241652252E-20 2.80569940537E-20 1.76375947808E-20 1.10355392487E-20 6.87200007649E-21 4.25880112537E-21 2.62654699877E-21 1.61196421651E-21 9.84411324817E-22 5.98173479796E-22 3.61647281186E-22 2.17534768314E-22 1.30177308191E-22 5S 0 1.00 Wavefunction 1.70870641564E-06 1.72587920062E-06 1.74322457496E-06 1.76074427321E-06 1.77844004736E-06 1.79631366700E-06 1.81436691950E-06 1.83260161020E-06 1.85101956259E-06 1.86962261848E-06 1.88841263819E-06 1.90739150074E-06 1.92656110403E-06 1.94592336504E-06 1.96548022000E-06 1.98523362463E-06 2.00518555427E-06 2.02533800414E-06 2.04569298950E-06 2.06625254586E-06 2.08701872920E-06 2.10799361615E-06 2.12917930422E-06 2.15057791200E-06 2.17219157936E-06 2.19402246769E-06 2.21607276010E-06 2.23834466162E-06 2.26084039949E-06 2.28356222327E-06 2.30651240518E-06 2.32969324026E-06 2.35310704660E-06 2.37675616561E-06 2.40064296221E-06 2.42476982512E-06 2.44913916703E-06 2.47375342489E-06 2.49861506017E-06 2.52372655903E-06 2.54909043265E-06 2.57470921744E-06 2.60058547530E-06 2.62672179387E-06 2.65312078681E-06 2.67978509405E-06 2.70671738203E-06 2.73392034400E-06 2.76139670029E-06 2.78914919855E-06 2.81718061406E-06 2.84549374997E-06 2.87409143764E-06 2.90297653684E-06 2.93215193612E-06 2.96162055304E-06 2.99138533448E-06 3.02144925696E-06 3.05181532687E-06 3.08248658087E-06 3.11346608609E-06 3.14475694052E-06 3.17636227327E-06 3.20828524489E-06 3.24052904771E-06 3.27309690614E-06 3.30599207699E-06 3.33921784981E-06 3.37277754719E-06 3.40667452515E-06 3.44091217340E-06 3.47549391573E-06 3.51042321036E-06 3.54570355024E-06 3.58133846343E-06 3.61733151345E-06 3.65368629964E-06 3.69040645751E-06 3.72749565911E-06 3.76495761338E-06 3.80279606655E-06 3.84101480250E-06 3.87961764314E-06 3.91860844878E-06 3.95799111853E-06 3.99776959070E-06 4.03794784316E-06 4.07852989378E-06 4.11951980079E-06 4.16092166321E-06 4.20273962128E-06 4.24497785681E-06 4.28764059368E-06 4.33073209818E-06 4.37425667951E-06 4.41821869015E-06 4.46262252635E-06 4.50747262853E-06 4.55277348174E-06 4.59852961609E-06 4.64474560724E-06 4.69142607684E-06 4.73857569295E-06 4.78619917059E-06 4.83430127215E-06 4.88288680787E-06 4.93196063634E-06 4.98152766500E-06 5.03159285059E-06 5.08216119966E-06 5.13323776909E-06 5.18482766659E-06 5.23693605119E-06 5.28956813376E-06 5.34272917757E-06 5.39642449876E-06 5.45065946690E-06 5.50543950555E-06 5.56077009275E-06 5.61665676160E-06 5.67310510082E-06 5.73012075528E-06 5.78770942662E-06 5.84587687373E-06 5.90462891341E-06 5.96397142093E-06 6.02391033056E-06 6.08445163627E-06 6.14560139222E-06 6.20736571346E-06 6.26975077645E-06 6.33276281976E-06 6.39640814465E-06 6.46069311570E-06 6.52562416147E-06 6.59120777510E-06 6.65745051503E-06 6.72435900558E-06 6.79193993766E-06 6.86020006940E-06 6.92914622690E-06 6.99878530481E-06 7.06912426711E-06 7.14017014776E-06 7.21193005139E-06 7.28441115406E-06 7.35762070395E-06 7.43156602207E-06 7.50625450300E-06 7.58169361568E-06 7.65789090406E-06 7.73485398795E-06 7.81259056371E-06 7.89110840507E-06 7.97041536388E-06 8.05051937091E-06 8.13142843662E-06 8.21315065198E-06 8.29569418929E-06 8.37906730298E-06 8.46327833041E-06 8.54833569278E-06 8.63424789588E-06 8.72102353101E-06 8.80867127580E-06 8.89719989511E-06 8.98661824187E-06 9.07693525800E-06 9.16815997527E-06 9.26030151622E-06 9.35336909511E-06 9.44737201875E-06 9.54231968752E-06 9.63822159628E-06 9.73508733528E-06 9.83292659120E-06 9.93174914804E-06 1.00315648881E-05 1.01323837931E-05 1.02342159450E-05 1.03370715272E-05 1.04409608251E-05 1.05458942279E-05 1.06518822290E-05 1.07589354273E-05 1.08670645282E-05 1.09762803446E-05 1.10865937984E-05 1.11980159208E-05 1.13105578543E-05 1.14242308531E-05 1.15390462846E-05 1.16550156305E-05 1.17721504877E-05 1.18904625699E-05 1.20099637084E-05 1.21306658534E-05 1.22525810752E-05 1.23757215654E-05 1.25000996383E-05 1.26257277316E-05 1.27526184084E-05 1.28807843578E-05 1.30102383965E-05 1.31409934701E-05 1.32730626541E-05 1.34064591556E-05 1.35411963143E-05 1.36772876042E-05 1.38147466343E-05 1.39535871509E-05 1.40938230379E-05 1.42354683192E-05 1.43785371594E-05 1.45230438655E-05 1.46690028883E-05 1.48164288238E-05 1.49653364148E-05 1.51157405521E-05 1.52676562763E-05 1.54210987791E-05 1.55760834049E-05 1.57326256523E-05 1.58907411756E-05 1.60504457865E-05 1.62117554557E-05 1.63746863143E-05 1.65392546554E-05 1.67054769360E-05 1.68733697786E-05 1.70429499726E-05 1.72142344761E-05 1.73872404178E-05 1.75619850984E-05 1.77384859924E-05 1.79167607503E-05 1.80968271995E-05 1.82787033469E-05 1.84624073804E-05 1.86479576704E-05 1.88353727721E-05 1.90246714273E-05 1.92158725659E-05 1.94089953083E-05 1.96040589669E-05 1.98010830483E-05 2.00000872550E-05 2.02010914877E-05 2.04041158469E-05 2.06091806352E-05 2.08163063594E-05 2.10255137322E-05 2.12368236746E-05 2.14502573177E-05 2.16658360050E-05 2.18835812947E-05 2.21035149615E-05 2.23256589990E-05 2.25500356217E-05 2.27766672676E-05 2.30055766000E-05 2.32367865100E-05 2.34703201190E-05 2.37062007804E-05 2.39444520825E-05 2.41850978508E-05 2.44281621499E-05 2.46736692867E-05 2.49216438119E-05 2.51721105234E-05 2.54250944680E-05 2.56806209444E-05 2.59387155054E-05 2.61994039608E-05 2.64627123797E-05 2.67286670931E-05 2.69972946968E-05 2.72686220539E-05 2.75426762972E-05 2.78194848326E-05 2.80990753412E-05 2.83814757822E-05 2.86667143960E-05 2.89548197067E-05 2.92458205253E-05 2.95397459520E-05 2.98366253796E-05 3.01364884965E-05 3.04393652892E-05 3.07452860458E-05 3.10542813586E-05 3.13663821275E-05 3.16816195628E-05 3.20000251887E-05 3.23216308461E-05 3.26464686957E-05 3.29745712219E-05 3.33059712351E-05 3.36407018757E-05 3.39787966172E-05 3.43202892693E-05 3.46652139818E-05 3.50136052474E-05 3.53654979057E-05 3.57209271462E-05 3.60799285124E-05 3.64425379048E-05 3.68087915846E-05 3.71787261777E-05 3.75523786779E-05 3.79297864509E-05 3.83109872379E-05 3.86960191595E-05 3.90849207192E-05 3.94777308076E-05 3.98744887063E-05 4.02752340914E-05 4.06800070380E-05 4.10888480238E-05 4.15017979335E-05 4.19188980624E-05 4.23401901212E-05 4.27657162394E-05 4.31955189703E-05 4.36296412946E-05 4.40681266252E-05 4.45110188110E-05 4.49583621418E-05 4.54102013526E-05 4.58665816278E-05 4.63275486061E-05 4.67931483846E-05 4.72634275240E-05 4.77384330528E-05 4.82182124722E-05 4.87028137607E-05 4.91922853792E-05 4.96866762753E-05 5.01860358889E-05 5.06904141567E-05 5.11998615170E-05 5.17144289154E-05 5.22341678093E-05 5.27591301733E-05 5.32893685044E-05 5.38249358272E-05 5.43658856991E-05 5.49122722160E-05 5.54641500172E-05 5.60215742914E-05 5.65846007818E-05 5.71532857919E-05 5.77276861911E-05 5.83078594202E-05 5.88938634975E-05 5.94857570242E-05 6.00835991907E-05 6.06874497822E-05 6.12973691845E-05 6.19134183907E-05 6.25356590066E-05 6.31641532574E-05 6.37989639935E-05 6.44401546970E-05 6.50877894881E-05 6.57419331314E-05 6.64026510423E-05 6.70700092937E-05 6.77440746228E-05 6.84249144372E-05 6.91125968220E-05 6.98071905469E-05 7.05087650723E-05 7.12173905572E-05 7.19331378653E-05 7.26560785727E-05 7.33862849749E-05 7.41238300940E-05 7.48687876859E-05 7.56212322478E-05 7.63812390256E-05 7.71488840217E-05 7.79242440021E-05 7.87073965043E-05 7.94984198454E-05 8.02973931292E-05 8.11043962549E-05 8.19195099245E-05 8.27428156512E-05 8.35743957673E-05 8.44143334328E-05 8.52627126434E-05 8.61196182390E-05 8.69851359121E-05 8.78593522165E-05 8.87423545760E-05 8.96342312930E-05 9.05350715574E-05 9.14449654555E-05 9.23640039788E-05 9.32922790338E-05 9.42298834503E-05 9.51769109911E-05 9.61334563617E-05 9.70996152192E-05 9.80754841821E-05 9.90611608400E-05 1.00056743763E-04 1.01062332514E-04 1.02078027652E-04 1.03103930752E-04 1.04140144406E-04 1.05186772239E-04 1.06243918916E-04 1.07311690157E-04 1.08390192741E-04 1.09479534523E-04 1.10579824439E-04 1.11691172523E-04 1.12813689913E-04 1.13947488865E-04 1.15092682763E-04 1.16249386129E-04 1.17417714639E-04 1.18597785130E-04 1.19789715613E-04 1.20993625286E-04 1.22209634544E-04 1.23437864992E-04 1.24678439460E-04 1.25931482008E-04 1.27197117947E-04 1.28475473846E-04 1.29766677544E-04 1.31070858169E-04 1.32388146144E-04 1.33718673204E-04 1.35062572406E-04 1.36419978148E-04 1.37791026176E-04 1.39175853602E-04 1.40574598914E-04 1.41987401995E-04 1.43414404130E-04 1.44855748029E-04 1.46311577833E-04 1.47782039131E-04 1.49267278979E-04 1.50767445907E-04 1.52282689942E-04 1.53813162615E-04 1.55359016984E-04 1.56920407641E-04 1.58497490736E-04 1.60090423985E-04 1.61699366693E-04 1.63324479763E-04 1.64965925717E-04 1.66623868710E-04 1.68298474546E-04 1.69989910699E-04 1.71698346321E-04 1.73423952270E-04 1.75166901118E-04 1.76927367171E-04 1.78705526489E-04 1.80501556902E-04 1.82315638025E-04 1.84147951281E-04 1.85998679915E-04 1.87868009014E-04 1.89756125527E-04 1.91663218281E-04 1.93589478001E-04 1.95535097329E-04 1.97500270844E-04 1.99485195080E-04 2.01490068548E-04 2.03515091754E-04 2.05560467219E-04 2.07626399499E-04 2.09713095207E-04 2.11820763035E-04 2.13949613769E-04 2.16099860316E-04 2.18271717724E-04 2.20465403200E-04 2.22681136138E-04 2.24919138135E-04 2.27179633016E-04 2.29462846855E-04 2.31769008002E-04 2.34098347099E-04 2.36451097109E-04 2.38827493334E-04 2.41227773446E-04 2.43652177501E-04 2.46100947972E-04 2.48574329768E-04 2.51072570260E-04 2.53595919308E-04 2.56144629281E-04 2.58718955087E-04 2.61319154194E-04 2.63945486663E-04 2.66598215165E-04 2.69277605014E-04 2.71983924191E-04 2.74717443372E-04 2.77478435952E-04 2.80267178076E-04 2.83083948666E-04 2.85929029448E-04 2.88802704978E-04 2.91705262677E-04 2.94636992853E-04 2.97598188733E-04 3.00589146493E-04 3.03610165286E-04 3.06661547274E-04 3.09743597657E-04 3.12856624701E-04 3.16000939775E-04 3.19176857377E-04 3.22384695167E-04 3.25624774001E-04 3.28897417958E-04 3.32202954379E-04 3.35541713893E-04 3.38914030458E-04 3.42320241386E-04 3.45760687382E-04 3.49235712579E-04 3.52745664569E-04 3.56290894438E-04 3.59871756805E-04 3.63488609853E-04 3.67141815369E-04 3.70831738776E-04 3.74558749175E-04 3.78323219375E-04 3.82125525937E-04 3.85966049209E-04 3.89845173362E-04 3.93763286433E-04 3.97720780361E-04 4.01718051026E-04 4.05755498290E-04 4.09833526037E-04 4.13952542214E-04 4.18112958869E-04 4.22315192197E-04 4.26559662577E-04 4.30846794618E-04 4.35177017198E-04 4.39550763513E-04 4.43968471111E-04 4.48430581947E-04 4.52937542417E-04 4.57489803411E-04 4.62087820353E-04 4.66732053249E-04 4.71422966733E-04 4.76161030114E-04 4.80946717421E-04 4.85780507453E-04 4.90662883826E-04 4.95594335022E-04 5.00575354437E-04 5.05606440434E-04 5.10688096387E-04 5.15820830737E-04 5.21005157040E-04 5.26241594022E-04 5.31530665626E-04 5.36872901069E-04 5.42268834895E-04 5.47719007024E-04 5.53223962813E-04 5.58784253106E-04 5.64400434292E-04 5.70073068359E-04 5.75802722952E-04 5.81589971428E-04 5.87435392918E-04 5.93339572381E-04 5.99303100664E-04 6.05326574562E-04 6.11410596880E-04 6.17555776488E-04 6.23762728390E-04 6.30032073778E-04 6.36364440100E-04 6.42760461124E-04 6.49220776995E-04 6.55746034307E-04 6.62336886165E-04 6.68993992249E-04 6.75718018886E-04 6.82509639109E-04 6.89369532734E-04 6.96298386422E-04 7.03296893749E-04 7.10365755279E-04 7.17505678634E-04 7.24717378563E-04 7.32001577015E-04 7.39359003213E-04 7.46790393729E-04 7.54296492553E-04 7.61878051175E-04 7.69535828656E-04 7.77270591706E-04 7.85083114763E-04 7.92974180070E-04 8.00944577752E-04 8.08995105901E-04 8.17126570653E-04 8.25339786271E-04 8.33635575225E-04 8.42014768279E-04 8.50478204573E-04 8.59026731708E-04 8.67661205833E-04 8.76382491730E-04 8.85191462903E-04 8.94089001667E-04 9.03075999237E-04 9.12153355816E-04 9.21321980690E-04 9.30582792320E-04 9.39936718432E-04 9.49384696116E-04 9.58927671916E-04 9.68566601930E-04 9.78302451906E-04 9.88136197342E-04 9.98068823580E-04 1.00810132591E-03 1.01823470968E-03 1.02846999038E-03 1.03880819376E-03 1.04925035592E-03 1.05979752343E-03 1.07045075345E-03 1.08121111380E-03 1.09207968310E-03 1.10305755084E-03 1.11414581757E-03 1.12534559493E-03 1.13665800579E-03 1.14808418441E-03 1.15962527647E-03 1.17128243928E-03 1.18305684182E-03 1.19494966490E-03 1.20696210129E-03 1.21909535582E-03 1.23135064550E-03 1.24372919967E-03 1.25623226011E-03 1.26886108115E-03 1.28161692986E-03 1.29450108609E-03 1.30751484269E-03 1.32065950558E-03 1.33393639393E-03 1.34734684026E-03 1.36089219060E-03 1.37457380461E-03 1.38839305575E-03 1.40235133140E-03 1.41645003299E-03 1.43069057620E-03 1.44507439103E-03 1.45960292201E-03 1.47427762833E-03 1.48909998398E-03 1.50407147793E-03 1.51919361424E-03 1.53446791228E-03 1.54989590683E-03 1.56547914827E-03 1.58121920273E-03 1.59711765227E-03 1.61317609502E-03 1.62939614538E-03 1.64577943415E-03 1.66232760874E-03 1.67904233331E-03 1.69592528897E-03 1.71297817394E-03 1.73020270375E-03 1.74760061138E-03 1.76517364749E-03 1.78292358057E-03 1.80085219715E-03 1.81896130197E-03 1.83725271820E-03 1.85572828758E-03 1.87438987068E-03 1.89323934706E-03 1.91227861546E-03 1.93150959405E-03 1.95093422057E-03 1.97055445260E-03 1.99037226773E-03 2.01038966377E-03 2.03060865899E-03 2.05103129233E-03 2.07165962359E-03 2.09249573369E-03 2.11354172488E-03 2.13479972096E-03 2.15627186751E-03 2.17796033213E-03 2.19986730469E-03 2.22199499752E-03 2.24434564571E-03 2.26692150730E-03 2.28972486358E-03 2.31275801928E-03 2.33602330287E-03 2.35952306680E-03 2.38325968776E-03 2.40723556692E-03 2.43145313023E-03 2.45591482867E-03 2.48062313853E-03 2.50558056166E-03 2.53078962578E-03 2.55625288475E-03 2.58197291884E-03 2.60795233505E-03 2.63419376737E-03 2.66069987708E-03 2.68747335309E-03 2.71451691219E-03 2.74183329938E-03 2.76942528820E-03 2.79729568099E-03 2.82544730930E-03 2.85388303409E-03 2.88260574620E-03 2.91161836654E-03 2.94092384654E-03 2.97052516842E-03 3.00042534558E-03 3.03062742290E-03 3.06113447714E-03 3.09194961728E-03 3.12307598488E-03 3.15451675446E-03 3.18627513386E-03 3.21835436461E-03 3.25075772236E-03 3.28348851720E-03 3.31655009412E-03 3.34994583336E-03 3.38367915085E-03 3.41775349858E-03 3.45217236507E-03 3.48693927574E-03 3.52205779338E-03 3.55753151854E-03 3.59336409003E-03 3.62955918529E-03 3.66612052091E-03 3.70305185306E-03 3.74035697796E-03 3.77803973235E-03 3.81610399395E-03 3.85455368201E-03 3.89339275773E-03 3.93262522481E-03 3.97225512991E-03 4.01228656325E-03 4.05272365903E-03 4.09357059604E-03 4.13483159817E-03 4.17651093496E-03 4.21861292216E-03 4.26114192228E-03 4.30410234519E-03 4.34749864868E-03 4.39133533908E-03 4.43561697181E-03 4.48034815206E-03 4.52553353535E-03 4.57117782818E-03 4.61728578870E-03 4.66386222732E-03 4.71091200738E-03 4.75844004585E-03 4.80645131397E-03 4.85495083798E-03 4.90394369983E-03 4.95343503785E-03 5.00343004753E-03 5.05393398225E-03 5.10495215402E-03 5.15648993427E-03 5.20855275459E-03 5.26114610759E-03 5.31427554766E-03 5.36794669179E-03 5.42216522043E-03 5.47693687835E-03 5.53226747547E-03 5.58816288778E-03 5.64462905820E-03 5.70167199754E-03 5.75929778539E-03 5.81751257110E-03 5.87632257471E-03 5.93573408797E-03 5.99575347534E-03 6.05638717496E-03 6.11764169976E-03 6.17952363847E-03 6.24203965671E-03 6.30519649810E-03 6.36900098539E-03 6.43346002157E-03 6.49858059105E-03 6.56436976086E-03 6.63083468186E-03 6.69798258995E-03 6.76582080735E-03 6.83435674388E-03 6.90359789828E-03 6.97355185952E-03 7.04422630820E-03 7.11562901790E-03 7.18776785663E-03 7.26065078828E-03 7.33428587407E-03 7.40868127410E-03 7.48384524886E-03 7.55978616081E-03 7.63651247601E-03 7.71403276572E-03 7.79235570812E-03 7.87149008999E-03 7.95144480848E-03 8.03222887288E-03 8.11385140645E-03 8.19632164830E-03 8.27964895529E-03 8.36384280398E-03 8.44891279259E-03 8.53486864311E-03 8.62172020331E-03 8.70947744891E-03 8.79815048574E-03 8.88774955199E-03 8.97828502045E-03 9.06976740088E-03 9.16220734239E-03 9.25561563585E-03 9.35000321641E-03 9.44538116605E-03 9.54176071621E-03 9.63915325043E-03 9.73757030714E-03 9.83702358242E-03 9.93752493291E-03 1.00390863787E-02 1.01417201065E-02 1.02454384723E-02 1.03502540053E-02 1.04561794102E-02 1.05632275714E-02 1.06714115557E-02 1.07807446163E-02 1.08912401961E-02 1.10029119312E-02 1.11157736553E-02 1.12298394027E-02 1.13451234128E-02 1.14616401341E-02 1.15794042281E-02 1.16984305738E-02 1.18187342718E-02 1.19403306491E-02 1.20632352634E-02 1.21874639079E-02 1.23130326164E-02 1.24399576676E-02 1.25682555909E-02 1.26979431711E-02 1.28290374542E-02 1.29615557525E-02 1.30955156505E-02 1.32309350103E-02 1.33678319784E-02 1.35062249908E-02 1.36461327800E-02 1.37875743810E-02 1.39305691383E-02 1.40751367123E-02 1.42212970867E-02 1.43690705753E-02 1.45184778295E-02 1.46695398462E-02 1.48222779751E-02 1.49767139268E-02 1.51328697813E-02 1.52907679963E-02 1.54504314159E-02 1.56118832793E-02 1.57751472304E-02 1.59402473270E-02 1.61072080505E-02 1.62760543161E-02 1.64468114828E-02 1.66195053641E-02 1.67941622390E-02 1.69708088629E-02 1.71494724793E-02 1.73301808316E-02 1.75129621755E-02 1.76978452908E-02 1.78848594954E-02 1.80740346576E-02 1.82654012104E-02 1.84589901651E-02 1.86548331262E-02 1.88529623060E-02 1.90534105402E-02 1.92562113035E-02 1.94613987260E-02 1.96690076098E-02 1.98790734466E-02 2.00916324351E-02 2.03067214995E-02 2.05243783085E-02 2.07446412943E-02 2.09675496731E-02 2.11931434657E-02 2.14214635182E-02 2.16525515247E-02 2.18864500492E-02 2.21232025495E-02 2.23628534004E-02 2.26054479193E-02 2.28510323909E-02 2.30996540941E-02 2.33513613287E-02 2.36062034433E-02 2.38642308643E-02 2.41254951258E-02 2.43900488995E-02 2.46579460271E-02 2.49292415521E-02 2.52039917542E-02 2.54822541832E-02 2.57640876953E-02 2.60495524897E-02 2.63387101466E-02 2.66316236667E-02 2.69283575115E-02 2.72289776451E-02 2.75335515776E-02 2.78421484090E-02 2.81548388760E-02 2.84716953986E-02 2.87927921296E-02 2.91182050046E-02 2.94480117949E-02 2.97822921603E-02 3.01211277057E-02 3.04646020379E-02 3.08128008248E-02 3.11658118569E-02 3.15237251102E-02 3.18866328116E-02 3.22546295061E-02 3.26278121263E-02 3.30062800646E-02 3.33901352471E-02 3.37794822100E-02 3.41744281794E-02 3.45750831525E-02 3.49815599823E-02 3.53939744645E-02 3.58124454282E-02 3.62370948285E-02 3.66680478428E-02 3.71054329701E-02 3.75493821338E-02 3.80000307874E-02 3.84575180244E-02 3.89219866913E-02 3.93935835043E-02 3.98724591704E-02 4.03587685121E-02 4.08526705963E-02 4.13543288673E-02 4.18639112846E-02 4.23815904650E-02 4.29075438294E-02 4.34419537545E-02 4.39850077295E-02 4.45368985178E-02 4.50978243244E-02 4.56679889683E-02 4.62476020612E-02 4.68368791909E-02 4.74360421125E-02 4.80453189439E-02 4.86649443686E-02 4.92951598455E-02 4.99362138244E-02 5.05883619692E-02 5.12518673878E-02 5.19270008698E-02 5.26140411312E-02 5.33132750673E-02 5.40249980129E-02 5.47495140115E-02 5.54871360921E-02 5.62381865548E-02 5.70029972649E-02 5.77819099564E-02 5.85752765439E-02 5.93834594444E-02 6.02068319082E-02 6.10457783592E-02 6.19006947456E-02 6.27719888998E-02 6.36600809090E-02 6.45654034953E-02 6.54884024065E-02 6.64295368170E-02 6.73892797391E-02 6.83681184450E-02 6.93665548984E-02 7.03851061976E-02 7.14243050275E-02 7.24847001233E-02 7.35668567428E-02 7.46713571491E-02 7.57988011032E-02 7.69498063648E-02 7.81250092026E-02 7.93250649127E-02 8.05506483444E-02 8.18024544334E-02 8.30811987410E-02 8.43876179991E-02 8.57224706586E-02 8.70865374422E-02 8.84806218986E-02 8.99055509567E-02 9.13621754800E-02 9.28513708163E-02 9.43740373444E-02 9.59311010117E-02 9.75235138637E-02 9.91522545601E-02 1.00818328876E-01 1.02522770185E-01 1.04266639917E-01 1.06051027993E-01 1.07877053231E-01 1.09745863707E-01 1.11658637087E-01 1.13616580906E-01 1.15620932795E-01 1.17672960648E-01 1.19773962731E-01 1.21925267701E-01 1.24128234562E-01 1.26384252509E-01 1.28694740688E-01 1.31061147835E-01 1.33484951794E-01 1.35967658898E-01 1.38510803208E-01 1.41115945587E-01 1.43784672593E-01 1.46518595195E-01 1.49319347264E-01 1.52188583853E-01 1.55127979230E-01 1.58139224647E-01 1.61224025828E-01 1.64384100165E-01 1.67621173570E-01 1.70936977006E-01 1.74333242628E-01 1.77811699545E-01 1.81374069162E-01 1.85022060079E-01 1.88757362531E-01 1.92581642333E-01 1.96496534317E-01 2.00503635227E-01 2.04604496059E-01 2.08800613817E-01 2.13093422670E-01 2.17484284485E-01 2.21974478738E-01 2.26565191762E-01 2.31257505354E-01 2.36052384716E-01 2.40950665738E-01 2.45953041635E-01 2.51060048937E-01 2.56272052872E-01 2.61589232155E-01 2.67011563229E-01 2.72538804011E-01 2.78170477194E-01 2.83905853193E-01 2.89743932796E-01 2.95683429658E-01 3.01722752715E-01 3.07859988682E-01 3.14092884758E-01 3.20418831729E-01 3.26834847627E-01 3.33337562170E-01 3.39923202177E-01 3.46587578214E-01 3.53326072712E-01 3.60133629812E-01 3.67004747238E-01 3.73933470460E-01 3.80913389451E-01 3.87937638344E-01 3.94998898261E-01 4.02089403628E-01 4.09200952236E-01 4.16324919312E-01 4.23452275836E-01 4.30573611299E-01 4.37679161061E-01 4.44758838423E-01 4.51802271461E-01 4.58798844597E-01 4.65737744828E-01 4.72608012425E-01 4.79398595827E-01 4.86098410375E-01 4.92696400391E-01 4.99181604028E-01 5.05543220189E-01 5.11770676703E-01 5.17853698832E-01 5.23782377092E-01 5.29547233256E-01 5.35139283339E-01 5.40550096276E-01 5.45771846996E-01 5.50797362509E-01 5.55620159704E-01 5.60234473538E-01 5.64635274410E-01 5.68818273652E-01 5.72779916216E-01 5.76517359941E-01 5.80028441058E-01 5.83311626016E-01 5.86365950219E-01 5.89190944843E-01 5.91786553695E-01 5.94153042890E-01 5.96290907416E-01 5.98200799054E-01 5.99883504812E-01 6.01339943834E-01 6.02571165709E-01 6.03578348791E-01 6.04362798546E-01 6.04925945916E-01 6.05269345698E-01 6.05394674933E-01 6.05303731311E-01 6.04998431566E-01 6.04480809887E-01 6.03753016304E-01 6.02817315083E-01 6.01676083081E-01 6.00331808097E-01 5.98787087180E-01 5.97044624907E-01 5.95107231609E-01 5.92977821558E-01 5.90659411081E-01 5.88155116619E-01 5.85468152707E-01 5.82601829871E-01 5.79559552438E-01 5.76344816246E-01 5.72961206251E-01 5.69412394017E-01 5.65702135090E-01 5.61834266236E-01 5.57812702550E-01 5.53641434427E-01 5.49324524372E-01 5.44866103674E-01 5.40270368915E-01 5.35541578320E-01 5.30684047949E-01 5.25702147729E-01 5.20600297324E-01 5.15382961846E-01 5.10054647421E-01 5.04619896601E-01 4.99083283643E-01 4.93449409657E-01 4.87722897645E-01 4.81908387428E-01 4.76010530499E-01 4.70033984795E-01 4.63983409435E-01 4.57863459413E-01 4.51678780293E-01 4.45434002962E-01 4.39133738251E-01 4.32782571865E-01 4.26385059239E-01 4.19945720537E-01 4.13469035796E-01 4.06959440207E-01 4.00421319587E-01 3.93859006038E-01 3.87276773821E-01 3.80678835463E-01 3.74069338104E-01 3.67452360107E-01 3.60831907925E-01 3.54211913255E-01 3.47596230459E-01 3.40988634274E-01 3.34392817803E-01 3.27812390779E-01 3.21250878111E-01 3.14711718687E-01 3.08198264442E-01 3.01713779665E-01 2.95261440529E-01 2.88844334850E-01 2.82465462025E-01 2.76127733157E-01 2.69833971326E-01 2.63586912004E-01 2.57389203572E-01 2.51243407929E-01 2.45152001165E-01 2.39117374276E-01 2.33141833906E-01 2.27227603073E-01 2.21376821889E-01 2.15591548228E-01 2.09873758349E-01 2.04225347430E-01 1.98648130034E-01 1.93143840474E-01 1.87714133071E-01 1.82360582315E-01 1.77084682913E-01 1.71887849734E-01 1.66771417650E-01 1.61736641281E-01 1.56784694663E-01 1.51916670840E-01 1.47133581390E-01 1.42436355927E-01 1.37825841560E-01 1.33302802366E-01 1.28867918864E-01 1.24521787531E-01 1.20264920369E-01 1.16097744557E-01 1.12020602181E-01 1.08033750091E-01 1.04137359878E-01 1.00331517998E-01 9.66162260521E-02 9.29914012348E-02 8.94568769593E-02 8.60124036693E-02 8.26576498388E-02 7.93922031658E-02 7.62155719587E-02 7.31271867154E-02 7.01264018912E-02 6.72124978506E-02 6.43846829979E-02 6.16420960757E-02 5.89838086248E-02 5.64088275927E-02 5.39160980810E-02 5.15045062179E-02 4.91728821432E-02 4.69200030934E-02 4.47445965708E-02 4.26453435849E-02 4.06208819509E-02 3.86698096310E-02 3.67906881058E-02 3.49820457607E-02 3.32423812762E-02 3.15701670070E-02 2.99638523398E-02 2.84218670168E-02 2.69426244146E-02 2.55245247677E-02 2.41659583273E-02 2.28653084466E-02 2.16209545837E-02 2.04312752150E-02 1.92946506529E-02 1.82094657605E-02 1.71741125594E-02 1.61869927250E-02 1.52465199656E-02 1.43511222830E-02 1.34992441101E-02 1.26893483256E-02 1.19199181435E-02 1.11894588762E-02 1.04964995716E-02 9.83959452513E-03 9.21732466538E-03 8.62829881696E-03 8.07115484058E-03 7.54456065311E-03 7.04721512979E-03 6.57784889133E-03 6.13522497892E-03 5.71813942042E-03 5.32542169123E-03 4.95593507355E-03 4.60857691800E-03 4.28227881151E-03 3.97600665581E-03 3.68876066076E-03 3.41957525678E-03 3.16751893103E-03 2.93169399153E-03 2.71123626389E-03 2.50531472509E-03 2.31313107866E-03 2.13391927581E-03 1.96694498671E-03 1.81150502638E-03 1.66692673928E-03 1.53256734672E-03 1.40781326109E-03 1.29207937092E-03 1.18480830027E-03 1.08546964637E-03 9.93559198741E-04 9.08598142556E-04 8.30132302632E-04 7.57730744980E-04 6.90988930930E-04 6.29513290916E-04 5.72952782525E-04 5.20978536478E-04 4.73267759052E-04 4.29512897611E-04 3.89425012487E-04 3.52732930175E-04 3.19182415975E-04 2.88535366733E-04 2.60569024488E-04 2.35075211756E-04 2.11859589076E-04 1.90740935342E-04 1.71550451385E-04 1.54131087167E-04 1.38336892826E-04 1.24032394632E-04 1.11091964793E-04 9.93995646738E-05 8.88460375866E-05 7.93364409888E-05 7.07721928827E-05 6.30608119792E-05 5.61236911025E-05 4.98904689721E-05 4.42964090601E-05 3.92820241620E-05 3.47927194035E-05 3.07784533753E-05 2.71934169829E-05 2.39957295672E-05 2.11471518257E-05 1.86128150352E-05 1.63609660559E-05 1.43627275807E-05 1.25918730767E-05 1.10246158568E-05 9.63941171045E-06 8.41677451883E-06 7.33910427815E-06 6.39052695484E-06 5.55674560100E-06 4.82490216373E-06 4.18344943019E-06 3.62203255979E-06 3.13137966686E-06 2.70320092993E-06 2.33009571829E-06 2.00546724205E-06 1.72344424844E-06 1.47880930428E-06 1.26693322284E-06 1.08371521123E-06 9.25528333710E-07 7.89169904951E-07 6.71816446507E-07 5.70982858602E-07 4.84485478317E-07 4.10408713805E-07 3.47074962457E-07 2.93017538814E-07 2.46956355470E-07 2.07776117043E-07 1.74506803652E-07 1.46306236004E-07 1.22444529288E-07 1.02290257418E-07 8.52981629097E-08 7.09982606677E-08 5.89861962568E-08 4.89147308669E-08 4.04862360766E-08 3.34460917649E-08 2.75768900837E-08 2.26933573189E-08 1.86379137535E-08 1.52767993175E-08 1.24966999076E-08 1.02018157861E-08 8.31131947821E-09 6.75715608162E-09 5.48214393006E-09 4.43833813035E-09 3.58562365247E-09 2.89050842282E-09 2.32509027545E-09 1.86617469180E-09 1.49452289951E-09 1.19421344434E-09 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4.45323908780E-12 4.54320048492E-12 4.63497922283E-12 4.72861201423E-12 4.82413631349E-12 4.92159033161E-12 5.02101305149E-12 5.12244424354E-12 5.22592448160E-12 5.33149515913E-12 5.43919850583E-12 5.54907760446E-12 5.66117640813E-12 5.77553975786E-12 5.89221340051E-12 6.01124400709E-12 6.13267919143E-12 6.25656752924E-12 6.38295857748E-12 6.51190289428E-12 6.64345205907E-12 6.77765869328E-12 6.91457648135E-12 7.05426019222E-12 7.19676570124E-12 7.34215001251E-12 7.49047128170E-12 7.64178883929E-12 7.79616321433E-12 7.95365615862E-12 8.11433067144E-12 8.27825102474E-12 8.44548278885E-12 8.61609285870E-12 8.79014948060E-12 8.96772227951E-12 9.14888228693E-12 9.33370196928E-12 9.52225525689E-12 9.71461757359E-12 9.91086586688E-12 1.01110786387E-11 1.03153359768E-11 1.05237195869E-11 1.07363128251E-11 1.09532007317E-11 1.11744700646E-11 1.14002093346E-11 1.16305088404E-11 1.18654607048E-11 1.21051589118E-11 1.23496993437E-11 1.25991798201E-11 1.28537001365E-11 1.31133621043E-11 1.33782695919E-11 1.36485285658E-11 1.39242471331E-11 1.42055355850E-11 1.44925064406E-11 1.47852744920E-11 1.50839568505E-11 1.53886729929E-11 1.56995448097E-11 1.60166966538E-11 1.63402553903E-11 1.66703504468E-11 1.70071138659E-11 1.73506803574E-11 1.77011873524E-11 1.80587750585E-11 1.84235865155E-11 1.87957676528E-11 1.91754673480E-11 1.95628374858E-11 1.99580330196E-11 2.03612120328E-11 2.07725358024E-11 2.11921688635E-11 2.16202790747E-11 2.20570376860E-11 2.25026194067E-11 2.29572024752E-11 2.34209687310E-11 2.38941036867E-11 2.43767966027E-11 2.48692405625E-11 2.53716325503E-11 2.58841735295E-11 2.64070685236E-11 2.69405266973E-11 2.74847614411E-11 2.80399904561E-11 2.86064358414E-11 2.91843241828E-11 2.97738866431E-11 3.03753590554E-11 3.09889820165E-11 3.16150009840E-11 3.22536663736E-11 3.29052336601E-11 3.35699634791E-11 3.42481217315E-11 3.49399796895E-11 3.56458141056E-11 3.63659073230E-11 3.71005473886E-11 3.78500281682E-11 3.86146494641E-11 3.93947171351E-11 4.01905432187E-11 4.10024460558E-11 4.18307504186E-11 4.26757876398E-11 4.35378957456E-11 4.44174195907E-11 4.53147109965E-11 4.62301288914E-11 4.71640394549E-11 4.81168162636E-11 4.90888404411E-11 5.00805008100E-11 5.10921940476E-11 5.21243248448E-11 5.31773060677E-11 5.42515589229E-11 5.53475131258E-11 5.64656070729E-11 5.76062880165E-11 5.87700122443E-11 5.99572452617E-11 6.11684619775E-11 6.24041468948E-11 6.36647943041E-11 6.49509084810E-11 6.62630038886E-11 6.76016053824E-11 6.89672484211E-11 7.03604792800E-11 7.17818552702E-11 7.32319449610E-11 7.47113284078E-11 7.62205973836E-11 7.77603556164E-11 7.93312190298E-11 8.09338159904E-11 8.25687875584E-11 8.42367877443E-11 8.59384837704E-11 8.76745563379E-11 8.94456998991E-11 9.12526229352E-11 9.30960482394E-11 9.49767132067E-11 9.68953701282E-11 9.88527864923E-11 1.00849745292E-10 1.02887045337E-10 1.04965501575E-10 1.07085945416E-10 1.09249225067E-10 1.11456205868E-10 1.13707770640E-10 1.16004820041E-10 1.18348272920E-10 1.20739066690E-10 1.23178157701E-10 1.25666521621E-10 1.28205153830E-10 1.30795069815E-10 1.33437305577E-10 1.36132918044E-10 1.38882985500E-10 1.41688608006E-10 1.44550907851E-10 1.47471029992E-10 1.50450142518E-10 1.53489437113E-10 1.56590129536E-10 1.59753460105E-10 1.62980694196E-10 1.66273122745E-10 1.69632062768E-10 1.73058857885E-10 1.76554878862E-10 1.80121524153E-10 1.83760220465E-10 1.87472423324E-10 1.91259617662E-10 1.95123318408E-10 1.99065071093E-10 2.03086452472E-10 2.07189071152E-10 2.11374568234E-10 2.15644617975E-10 2.20000928451E-10 2.24445242246E-10 2.28979337144E-10 2.33605026845E-10 2.38324161686E-10 2.43138629386E-10 2.48050355796E-10 2.53061305673E-10 2.58173483465E-10 2.63388934110E-10 2.68709743861E-10 2.74138041113E-10 2.79675997257E-10 2.85325827551E-10 2.91089792003E-10 2.96970196277E-10 3.02969392613E-10 3.09089780773E-10 3.15333808992E-10 3.21703974968E-10 3.28202826851E-10 3.34832964272E-10 3.41597039375E-10 3.48497757880E-10 3.55537880170E-10 3.62720222387E-10 3.70047657567E-10 3.77523116782E-10 3.85149590317E-10 3.92930128865E-10 4.00867844748E-10 4.08965913158E-10 4.17227573433E-10 4.25656130349E-10 4.34254955444E-10 4.43027488364E-10 4.51977238241E-10 4.61107785097E-10 4.70422781275E-10 4.79925952900E-10 4.89621101370E-10 4.99512104876E-10 5.09602919953E-10 5.19897583067E-10 5.30400212221E-10 5.41115008611E-10 5.52046258301E-10 5.63198333941E-10 5.74575696513E-10 5.86182897116E-10 5.98024578791E-10 6.10105478371E-10 6.22430428382E-10 6.35004358971E-10 6.47832299884E-10 6.60919382472E-10 6.74270841748E-10 6.87892018479E-10 7.01788361321E-10 7.15965429003E-10 7.30428892547E-10 7.45184537536E-10 7.60238266432E-10 7.75596100933E-10 7.91264184384E-10 8.07248784234E-10 8.23556294544E-10 8.40193238543E-10 8.57166271238E-10 8.74482182076E-10 8.92147897661E-10 9.10170484523E-10 9.28557151947E-10 9.47315254854E-10 9.66452296746E-10 9.85975932704E-10 1.00589397245E-09 1.02621438349E-09 1.04694529425E-09 1.06809499740E-09 1.08967195311E-09 1.11168479247E-09 1.13414232091E-09 1.15705352176E-09 1.18042755982E-09 1.20427378503E-09 1.22860173622E-09 1.25342114491E-09 1.27874193922E-09 1.30457424780E-09 1.33092840396E-09 1.35781494972E-09 1.38524464008E-09 1.41322844730E-09 1.44177756531E-09 1.47090341415E-09 1.50061764457E-09 1.53093214269E-09 1.56185903474E-09 1.59341069191E-09 1.62559973531E-09 1.65843904102E-09 1.69194174524E-09 1.72612124951E-09 1.76099122613E-09 1.79656562359E-09 1.83285867217E-09 1.86988488958E-09 1.90765908687E-09 1.94619637425E-09 1.98551216719E-09 2.02562219257E-09 2.06654249499E-09 2.10828944316E-09 2.15087973647E-09 2.19433041164E-09 2.23865884959E-09 2.28388278233E-09 2.33002030010E-09 2.37708985857E-09 2.42511028627E-09 2.47410079207E-09 2.52408097289E-09 2.57507082154E-09 2.62709073471E-09 2.68016152114E-09 2.73430440993E-09 2.78954105904E-09 2.84589356395E-09 2.90338446650E-09 2.96203676391E-09 3.02187391798E-09 3.08291986448E-09 3.14519902269E-09 3.20873630522E-09 3.27355712795E-09 3.33968742018E-09 3.40715363504E-09 3.47598276003E-09 3.54620232787E-09 3.61784042745E-09 3.69092571511E-09 3.76548742610E-09 3.84155538624E-09 3.91916002390E-09 3.99833238213E-09 4.07910413112E-09 4.16150758081E-09 4.24557569389E-09 4.33134209891E-09 4.41884110379E-09 4.50810770951E-09 4.59917762413E-09 4.69208727706E-09 4.78687383364E-09 4.88357521002E-09 4.98223008829E-09 5.08287793200E-09 5.18555900191E-09 5.29031437212E-09 5.39718594647E-09 5.50621647535E-09 5.61744957275E-09 5.73092973374E-09 5.84670235227E-09 5.96481373930E-09 6.08531114136E-09 6.20824275942E-09 6.33365776819E-09 6.46160633579E-09 6.59213964382E-09 6.72530990782E-09 6.86117039817E-09 6.99977546139E-09 7.14118054191E-09 7.28544220421E-09 7.43261815545E-09 7.58276726859E-09 7.73594960592E-09 7.89222644307E-09 8.05166029356E-09 8.21431493376E-09 8.38025542844E-09 8.54954815680E-09 8.72226083899E-09 8.89846256323E-09 9.07822381343E-09 9.26161649740E-09 9.44871397561E-09 9.63959109054E-09 9.83432419661E-09 1.00329911907E-08 1.02356715434E-08 1.04424463308E-08 1.06533982666E-08 1.08686117358E-08 1.10881728278E-08 1.13121693716E-08 1.15406909699E-08 1.17738290361E-08 1.20116768300E-08 1.22543294955E-08 1.25018840985E-08 1.27544396659E-08 1.30120972252E-08 1.32749598447E-08 1.35431326748E-08 1.38167229904E-08 1.40958402333E-08 1.43805960564E-08 1.46711043680E-08 1.49674813778E-08 1.52698456431E-08 1.55783181161E-08 1.58930221927E-08 1.62140837614E-08 1.65416312543E-08 1.68757956975E-08 1.72167107647E-08 1.75645128296E-08 1.79193410211E-08 1.82813372789E-08 1.86506464100E-08 1.90274161469E-08 1.94117972064E-08 1.98039433505E-08 2.02040114472E-08 2.06121615335E-08 2.10285568798E-08 2.14533640546E-08 2.18867529917E-08 2.23288970577E-08 2.27799731219E-08 2.32401616264E-08 2.37096466588E-08 2.41886160258E-08 2.46772613280E-08 2.51757780369E-08 2.56843655729E-08 2.62032273853E-08 2.67325710334E-08 2.72726082698E-08 2.78235551250E-08 2.83856319937E-08 2.89590637233E-08 2.95440797036E-08 3.01409139586E-08 3.07498052402E-08 3.13709971238E-08 3.20047381054E-08 3.26512817016E-08 3.33108865505E-08 3.39838165152E-08 3.46703407900E-08 3.53707340072E-08 3.60852763477E-08 3.68142536527E-08 3.75579575383E-08 3.83166855119E-08 3.90907410916E-08 3.98804339273E-08 4.06860799247E-08 4.15080013720E-08 4.23465270682E-08 4.32019924553E-08 4.40747397521E-08 4.49651180915E-08 4.58734836598E-08 4.68001998394E-08 4.77456373542E-08 4.87101744180E-08 4.96941968858E-08 5.06980984079E-08 5.17222805880E-08 5.27671531433E-08 5.38331340689E-08 5.49206498049E-08 5.60301354067E-08 5.71620347198E-08 5.83168005568E-08 5.94948948786E-08 6.06967889799E-08 6.19229636770E-08 6.31739095006E-08 6.44501268923E-08 6.57521264043E-08 6.70804289042E-08 6.84355657832E-08 6.98180791688E-08 7.12285221419E-08 7.26674589579E-08 7.41354652725E-08 7.56331283725E-08 7.71610474102E-08 7.87198336439E-08 8.03101106817E-08 8.19325147319E-08 8.35876948571E-08 8.52763132340E-08 8.69990454189E-08 8.87565806174E-08 9.05496219608E-08 9.23788867870E-08 9.42451069283E-08 9.61490290038E-08 9.80914147182E-08 1.00073041167E-07 1.02094701148E-07 1.04157203477E-07 1.06261373313E-07 1.08408052489E-07 1.10598099847E-07 1.12832391583E-07 1.15111821599E-07 1.17437301858E-07 1.19809762752E-07 1.22230153471E-07 1.24699442387E-07 1.27218617439E-07 1.29788686530E-07 1.32410677928E-07 1.35085640683E-07 1.37814645041E-07 1.40598782874E-07 1.43439168122E-07 1.46336937232E-07 1.49293249618E-07 1.52309288123E-07 1.55386259495E-07 1.58525394866E-07 1.61727950249E-07 1.64995207040E-07 1.68328472531E-07 1.71729080432E-07 1.75198391408E-07 1.78737793622E-07 1.82348703291E-07 1.86032565255E-07 1.89790853555E-07 1.93625072022E-07 1.97536754880E-07 2.01527467364E-07 2.05598806340E-07 2.09752400954E-07 2.13989913275E-07 2.18313038971E-07 2.22723507978E-07 2.27223085202E-07 2.31813571222E-07 2.36496803012E-07 2.41274654676E-07 2.46149038205E-07 2.51121904234E-07 2.56195242833E-07 2.61371084298E-07 2.66651499969E-07 2.72038603059E-07 2.77534549501E-07 2.83141538814E-07 2.88861814982E-07 2.94697667355E-07 3.00651431572E-07 3.06725490488E-07 3.12922275140E-07 3.19244265715E-07 3.25693992548E-07 3.32274037136E-07 3.38987033176E-07 3.45835667620E-07 3.52822681751E-07 3.59950872288E-07 3.67223092506E-07 3.74642253382E-07 3.82211324763E-07 3.89933336557E-07 3.97811379953E-07 4.05848608660E-07 4.14048240175E-07 4.22413557075E-07 4.30947908334E-07 4.39654710671E-07 4.48537449922E-07 4.57599682441E-07 4.66845036529E-07 4.76277213894E-07 4.85899991137E-07 4.95717221274E-07 5.05732835282E-07 5.15950843683E-07 5.26375338156E-07 5.37010493185E-07 5.47860567738E-07 5.58929906981E-07 5.70222944029E-07 5.81744201730E-07 5.93498294490E-07 6.05489930124E-07 6.17723911765E-07 6.30205139789E-07 6.42938613798E-07 6.55929434632E-07 6.69182806429E-07 6.82704038724E-07 6.96498548591E-07 7.10571862832E-07 7.24929620206E-07 7.39577573711E-07 7.54521592904E-07 7.69767666276E-07 7.85321903676E-07 8.01190538776E-07 8.17379931599E-07 8.33896571093E-07 8.50747077755E-07 8.67938206317E-07 8.85476848482E-07 9.03370035720E-07 9.21624942117E-07 9.40248887291E-07 9.59249339360E-07 9.78633917978E-07 9.98410397432E-07 1.01858670981E-06 1.03917094820E-06 1.06017137004E-06 1.08159640042E-06 1.10345463557E-06 1.12575484633E-06 1.14850598173E-06 1.17171717268E-06 1.19539773566E-06 1.21955717658E-06 1.24420519462E-06 1.26935168622E-06 1.29500674916E-06 1.32118068669E-06 1.34788401176E-06 1.37512745132E-06 1.40292195080E-06 1.43127867855E-06 1.46020903047E-06 1.48972463474E-06 1.51983735657E-06 1.55055930318E-06 1.58190282875E-06 1.61388053959E-06 1.64650529933E-06 1.67979023432E-06 1.71374873907E-06 1.74839448182E-06 1.78374141027E-06 1.81980375741E-06 1.85659604748E-06 1.89413310204E-06 1.93243004625E-06 1.97150231516E-06 2.01136566030E-06 2.05203615628E-06 2.09353020759E-06 2.13586455558E-06 2.17905628558E-06 2.22312283411E-06 2.26808199638E-06 2.31395193388E-06 2.36075118212E-06 2.40849865862E-06 2.45721367103E-06 2.50691592545E-06 2.55762553494E-06 2.60936302824E-06 2.66214935864E-06 2.71600591311E-06 2.77095452163E-06 2.82701746669E-06 2.88421749305E-06 2.94257781771E-06 3.00212214012E-06 3.06287465260E-06 3.12486005101E-06 3.18810354567E-06 3.25263087252E-06 3.31846830452E-06 3.38564266334E-06 3.45418133129E-06 3.52411226354E-06 3.59546400060E-06 3.66826568108E-06 3.74254705478E-06 3.81833849605E-06 3.89567101747E-06 3.97457628391E-06 4.05508662683E-06 4.13723505903E-06 4.22105528981E-06 4.30658174042E-06 4.39384956010E-06 4.48289464248E-06 4.57375364262E-06 4.66646399452E-06 4.76106392933E-06 4.85759249425E-06 4.95608957218E-06 5.05659590224E-06 5.15915310123E-06 5.26380368614E-06 5.37059109776E-06 5.47955972553E-06 5.59075493380E-06 5.70422308941E-06 5.82001159087E-06 5.93816889916E-06 6.05874457014E-06 6.18178928866E-06 6.30735490450E-06 6.43549446983E-06 6.56626227846E-06 6.69971390654E-06 6.83590625465E-06 6.97489759102E-06 7.11674759576E-06 7.26151740553E-06 7.40926965867E-06 7.56006853992E-06 7.71397982493E-06 7.87107092364E-06 8.03141092268E-06 8.19507062637E-06 8.36212259647E-06 8.53264119081E-06 8.70670260122E-06 8.88438489160E-06 9.06576803675E-06 9.25093396302E-06 9.43996659188E-06 9.63295188712E-06 9.82997790668E-06 1.00311348596E-05 1.02365151682E-05 1.04462135365E-05 1.06603270236E-05 1.08789551231E-05 1.11021998477E-05 1.13301658194E-05 1.15629603641E-05 1.18006936124E-05 1.20434786040E-05 1.22914313984E-05 1.25446711902E-05 1.28033204299E-05 1.30675049500E-05 1.33373540976E-05 1.36130008725E-05 1.38945820719E-05 1.41822384421E-05 1.44761148368E-05 1.47763603841E-05 1.50831286598E-05 1.53965778707E-05 1.57168710458E-05 1.60441762369E-05 1.63786667296E-05 1.67205212642E-05 1.70699242678E-05 1.74270660976E-05 1.77921432973E-05 1.81653588658E-05 1.85469225393E-05 1.89370510888E-05 1.93359686324E-05 1.97439069637E-05 2.01611058975E-05 2.05878136341E-05 2.10242871424E-05 2.14707925637E-05 2.19276056370E-05 2.23950121477E-05 2.28733083999E-05 2.33628017157E-05 2.38638109604E-05 2.43766670983E-05 2.49017137777E-05 2.54393079500E-05 2.59898205222E-05 2.65536370468E-05 2.71311584496E-05 2.77228018001E-05 2.83290011241E-05 2.89502082628E-05 2.95868937816E-05 3.02395479297E-05 3.09086816553E-05 3.15948276786E-05 3.22985416272E-05 3.30204032355E-05 3.37610176145E-05 3.45210165948E-05 3.53010601464E-05 3.61018378819E-05 3.69240706465E-05 3.77685122001E-05 3.86359509981E-05 3.95272120752E-05 4.04431590396E-05 4.13846961840E-05 4.23527707192E-05 4.33483751398E-05 4.43725497274E-05 4.54263852016E-05 4.65110255261E-05 4.76276708809E-05 4.87775808081E-05 4.99620775439E-05 5.11825495472E-05 5.24404552354E-05 5.37373269425E-05 5.50747751090E-05 5.64544927217E-05 5.78782600143E-05 5.93479494476E-05 6.08655309841E-05 6.24330776752E-05 6.40527715796E-05 6.57269100330E-05 6.74579122892E-05 6.92483265562E-05 7.11008374495E-05 7.30182738874E-05 7.50036174571E-05 7.70600112756E-05 7.91907693790E-05 8.13993866684E-05 8.36895494478E-05 8.60651465884E-05 8.85302813556E-05 9.10892839406E-05 9.37467247350E-05 9.65074283963E-05 9.93764887480E-05 1.02359284567E-04 1.05461496305E-04 1.08689123812E-04 1.12048505100E-04 1.15546336232E-04 1.19189692391E-04 1.22986050189E-04 1.26943311316E-04 1.31069827577E-04 1.35374427425E-04 1.39866444062E-04 1.44555745203E-04 1.49452764610E-04 1.54568535486E-04 1.59914725853E-04 1.65503676012E-04 1.71348438229E-04 1.77462818760E-04 1.83861422359E-04 1.90559699413E-04 1.97573995856E-04 2.04921606028E-04 2.12620828646E-04 2.20691026070E-04 2.29152687054E-04 2.38027493188E-04 2.47338389240E-04 2.57109657624E-04 2.67366997240E-04 2.78137606928E-04 2.89450273806E-04 3.01335466780E-04 3.13825435504E-04 3.26954315133E-04 3.40758237162E-04 3.55275446743E-04 3.70546426807E-04 3.86614029411E-04 4.03523614705E-04 4.21323197953E-04 4.40063605073E-04 4.59798637169E-04 4.80585244562E-04 5.02483710866E-04 5.25557847663E-04 5.49875200376E-04 5.75507265969E-04 6.02529723128E-04 6.31022675632E-04 6.61070909626E-04 6.92764165592E-04 7.26197425815E-04 7.61471218202E-04 7.98691937356E-04 8.37972183859E-04 8.79431122744E-04 9.23194862221E-04 9.69396853752E-04 1.01817831463E-03 1.06968867428E-03 1.12408604560E-03 1.18153772256E-03 1.24222070570E-03 1.30632225673E-03 1.37404048403E-03 1.44558496051E-03 1.52117737566E-03 1.60105222350E-03 1.68545752838E-03 1.77465561053E-03 1.86892389352E-03 1.96855575565E-03 2.07386142774E-03 2.18516893944E-03 2.30282511681E-03 2.42719663348E-03 2.55867111835E-03 2.69765832252E-03 2.84459134836E-03 2.99992794402E-03 3.16415186632E-03 3.33777431556E-03 3.52133544574E-03 3.71540595370E-03 3.92058875111E-03 4.13752072317E-03 4.36687457820E-03 4.60936079221E-03 4.86572965311E-03 5.13677340896E-03 5.42332852509E-03 5.72627805499E-03 6.04655413015E-03 6.38514057399E-03 6.74307564544E-03 7.12145491779E-03 7.52143429853E-03 7.94423319625E-03 8.39113784071E-03 8.86350476240E-03 9.36276443813E-03 9.89042510914E-03 1.04480767789E-02 1.10373953969E-02 1.16601472365E-02 1.23181934732E-02 1.30134949710E-02 1.37481172840E-02 1.45242358824E-02 1.53441416073E-02 1.62102463654E-02 1.71250890697E-02 1.80913418326E-02 1.91118164225E-02 2.01894709884E-02 2.13274170607E-02 2.25289268378E-02 2.37974407621E-02 2.51365753956E-02 2.65501316002E-02 2.80421030296E-02 2.96166849386E-02 3.12782833155E-02 3.30315243433E-02 3.48812641930E-02 3.68325991529E-02 3.88908760989E-02 4.10617033042E-02 4.33509615935E-02 4.57648158389E-02 4.83097267975E-02 5.09924632876E-02 5.38201147008E-02 5.68001038421E-02 5.99402000927E-02 6.32485328849E-02 6.67336054777E-02 7.04043090196E-02 7.42699368819E-02 7.83401992431E-02 8.26252379040E-02 8.71356413050E-02 9.18824597211E-02 9.68772205987E-02 1.02131944000E-01 1.07659158114E-01 1.13471914791E-01 1.19583805046E-01 1.26008974482E-01 1.32762138571E-01 1.39858597728E-01 1.47314252102E-01 1.55145616012E-01 1.63369831943E-01 1.72004684001E-01 1.81068610749E-01 1.90580717289E-01 2.00560786504E-01 2.11029289320E-01 2.22007393865E-01 2.33516973377E-01 2.45580612728E-01 2.58221613391E-01 2.71463996693E-01 2.85332505167E-01 2.99852601833E-01 3.15050467196E-01 3.30952993766E-01 3.47587777879E-01 3.64983108595E-01 3.83167953445E-01 4.02171940778E-01 4.22025338448E-01 4.42759028607E-01 4.64404478308E-01 4.86993705657E-01 5.10559241238E-01 5.35134084516E-01 5.60751654935E-01 5.87445737418E-01 6.15250421981E-01 6.44200037160E-01 6.74329076980E-01 7.05672121160E-01 7.38263748299E-01 7.72138441768E-01 8.07330488052E-01 8.43873867310E-01 8.81802135934E-01 9.21148300909E-01 9.61944685811E-01 1.00422278829E+00 1.04801312897E+00 1.09334509164E+00 1.14024675479E+00 1.18874471449E+00 1.23886389864E+00 1.29062737289E+00 1.34405613823E+00 1.39916892077E+00 1.45598195380E+00 1.51450875289E+00 1.57475988425E+00 1.63674272722E+00 1.70046123143E+00 1.76591566966E+00 1.83310238715E+00 1.90201354854E+00 1.97263688354E+00 2.04495543275E+00 2.11894729488E+00 2.19458537701E+00 2.27183714965E+00 2.35066440815E+00 2.43102304269E+00 2.51286281856E+00 2.59612716916E+00 2.68075300382E+00 2.76667053281E+00 2.85380311200E+00 2.94206710968E+00 3.03137179815E+00 3.12161927258E+00 3.21270439995E+00 3.30451480063E+00 3.39693086522E+00 3.48982580935E+00 3.58306576895E+00 3.67650993845E+00 3.77001075421E+00 3.86341412548E+00 3.95655971476E+00 4.04928126940E+00 4.14140700590E+00 4.23276004797E+00 4.32315891935E+00 4.41241809141E+00 4.50034858568E+00 4.58675863052E+00 4.67145437074E+00 4.75424062841E+00 4.83492171228E+00 4.91330227300E+00 4.98918820003E+00 5.06238755617E+00 5.13271154433E+00 5.19997550094E+00 5.26399990952E+00 5.32461142736E+00 5.38164391773E+00 5.43493947935E+00 5.48434946446E+00 5.52973547654E+00 5.57097033794E+00 5.60793901804E+00 5.64053951178E+00 5.66868365888E+00 5.69229789376E+00 5.71132391660E+00 5.72571927626E+00 5.73545785615E+00 5.74053025506E+00 5.74094405532E+00 5.73672397205E+00 5.72791187784E+00 5.71456669889E+00 5.69676417945E+00 5.67459651322E+00 5.64817184172E+00 5.61761362110E+00 5.58305986079E+00 5.54466223865E+00 5.50258509933E+00 5.45700434375E+00 5.40810621951E+00 5.35608602324E+00 5.30114672736E+00 5.24349754479E+00 5.18335244641E+00 5.12092864638E+00 5.05644507163E+00 4.99012083165E+00 4.92217370520E+00 4.85281866001E+00 4.78226642160E+00 4.71072210625E+00 4.63838393237E+00 4.56544202356E+00 4.49207731475E+00 4.41846057171E+00 4.34475153206E+00 4.27109817406E+00 4.19763611717E+00 4.12448815635E+00 4.05176392930E+00 3.97955971372E+00 3.90795834892E+00 3.83702927368E+00 3.76682866958E+00 3.69739969673E+00 3.62877280621E+00 3.56096611154E+00 3.49398579932E+00 3.42782655754E+00 3.36247199903E+00 3.29789505638E+00 3.23405832375E+00 3.17091430546E+00 3.10842357909E+00 3.04661088670E+00 2.98551431169E+00 2.92516785028E+00 2.86560157285E+00 2.80684179662E+00 2.74891128128E+00 2.69182944493E+00 2.63561259533E+00 2.58027417100E+00 2.52582498549E+00 2.47227346740E+00 2.41962588820E+00 2.36788656905E+00 2.31705805740E+00 2.26714126368E+00 2.21813554834E+00 2.17003874925E+00 2.12284714005E+00 2.07655531272E+00 2.03115616218E+00 1.98664160110E+00 1.94300268279E+00 1.90022956646E+00 1.85831154132E+00 1.81723702940E+00 1.77699357008E+00 1.73756779196E+00 1.69894538196E+00 1.66111108922E+00 1.62404882923E+00 1.58774183551E+00 1.55217377552E+00 1.51731104214E+00 1.48316285260E+00 1.44971676702E+00 1.41696006098E+00 1.38487980393E+00 1.35346291006E+00 1.32269618306E+00 1.29256635821E+00 1.26306014208E+00 1.23416424970E+00 1.20586543927E+00 1.17815054443E+00 1.15100650423E+00 1.12442039063E+00 1.09837943386E+00 1.07287104537E+00 1.04788283878E+00 1.02340264857E+00 9.99418546794E-01 9.75918857803E-01 9.52892171056E-01 9.30327352100E-01 9.08213551790E-01 8.86540213841E-01 8.65297080778E-01 8.44474198369E-01 8.24061918625E-01 8.04050901446E-01 7.84432114992E-01 7.65196834863E-01 7.46336642176E-01 7.27843420596E-01 7.09709352429E-01 6.91926913832E-01 6.74488869226E-01 6.57388264979E-01 6.40618422449E-01 6.24172930427E-01 6.08045637076E-01 5.92230641421E-01 5.76722284446E-01 5.61515139873E-01 5.46604004666E-01 5.31983889333E-01 5.17650008056E-01 5.03597768719E-01 4.89822762866E-01 4.76320755651E-01 4.63087675794E-01 4.50119605609E-01 4.37412771122E-01 4.24963532320E-01 4.12768373557E-01 4.00823894152E-01 3.89126799195E-01 3.77673890595E-01 3.66462058385E-01 3.55488272300E-01 3.44749573658E-01 3.34243067551E-01 3.23965915356E-01 3.13915327589E-01 3.04088557108E-01 2.94482892671E-01 2.85095652862E-01 2.75924180395E-01 2.66965836782E-01 2.58217997402E-01 2.49678046937E-01 2.41343375202E-01 2.33211373360E-01 2.25279430619E-01 2.17544932417E-01 2.10002960328E-01 2.02653216437E-01 1.95493056396E-01 1.88519823014E-01 1.81730844298E-01 1.75123432452E-01 1.68694883297E-01 1.62442475993E-01 1.56363473053E-01 1.50455120626E-01 1.44714649034E-01 1.39139273547E-01 1.33726195380E-01 1.28472602883E-01 1.23375672914E-01 1.18432572372E-01 1.13640459869E-01 1.08996487529E-01 1.04497802874E-01 1.00141550812E-01 9.59248756709E-02 9.18449232869E-02 8.78988431204E-02 8.40837903812E-02 8.03969281497E-02 7.68354294797E-02 7.33964794675E-02 7.00772772749E-02 6.68750380949E-02 6.37869950487E-02 6.08104010059E-02 5.79425303175E-02 5.51806804579E-02 5.25221735667E-02 4.99643578889E-02 4.75046091079E-02 4.51403315709E-02 4.28689594053E-02 4.06879575258E-02 3.85948225353E-02 3.65870835206E-02 3.46623027480E-02 3.28180762627E-02 3.10520343976E-02 2.93618421985E-02 2.77451997726E-02 2.61998425680E-02 2.47235415921E-02 2.33141035787E-02 2.19693711114E-02 2.06872227126E-02 1.94655729069E-02 1.83023722672E-02 1.71956074517E-02 1.61433012389E-02 1.51435125676E-02 1.41943365878E-02 1.32939047271E-02 1.24403847770E-02 1.16319810010E-02 1.08669342677E-02 1.01435222073E-02 9.46005939295E-03 8.81489754381E-03 8.20642574802E-03 7.63307070115E-03 7.09329695639E-03 6.58560718069E-03 6.10854241158E-03 5.66068230812E-03 5.24064538979E-03 4.84708925656E-03 4.47871078365E-03 4.13424628450E-03 3.81247163579E-03 3.51220235881E-03 3.23229365172E-03 2.97164036825E-03 2.72917693854E-03 2.50387722894E-03 2.29475433814E-03 2.10086032760E-03 1.92128588554E-03 1.75515992380E-03 1.60164910830E-03 1.45995732405E-03 1.32932507653E-03 1.20902883196E-03 1.09838029924E-03 9.96725657245E-04 9.03444731198E-04 8.17950122436E-04 7.39686296154E-04 6.68128631865E-04 6.02782441520E-04 5.43181960329E-04 4.88889315345E-04 4.39493476854E-04 3.94609197554E-04 3.53875944351E-04 3.16956827489E-04 2.83537531475E-04 2.53325252061E-04 2.26047643294E-04 2.01451778328E-04 1.79303127438E-04 1.59384556348E-04 1.41495347666E-04 1.25450247926E-04 1.11078542393E-04 9.82231594992E-05 8.67398064612E-05 7.64961373362E-05 6.73709545008E-05 5.92534442588E-05 5.20424470261E-05 4.56457623748E-05 3.99794888650E-05 3.49673983062E-05 3.05403445850E-05 2.66357060040E-05 2.31968606603E-05 2.01726940246E-05 1.75171378001E-05 1.51887390497E-05 1.31502584996E-05 1.13682968711E-05 9.81294804231E-06 8.45747781013E-06 7.27802700136E-06 6.25333767002E-06 5.36450111984E-06 4.59472649887E-06 3.92912872976E-06 3.35453456381E-06 2.85930557646E-06 2.43317695552E-06 2.06711097075E-06 1.75316409373E-06 1.48436666944E-06 1.25461424775E-06 1.05856961143E-06 8.91574633153E-07 7.49571136361E-07 6.29029985008E-07 5.26894565483E-07 4.40571260526E-07 3.67745540310E-07 3.06415208435E-07 2.54857722463E-07 2.11593783172E-07 1.75355280756E-07 1.45057128747E-07 1.19772560630E-07 9.87115045451E-08 8.12016888142E-08 6.66721653573E-08 5.46389696493E-08 4.46926647708E-08 3.64875435454E-08 2.97322868581E-08 2.41818981792E-08 1.96307542138E-08 1.59066296154E-08 1.28655699688E-08 1.03871553202E-08 8.36844717674E-09 6.72744126450E-09 5.39637661940E-09 4.31909060848E-09 3.44913689751E-09 2.74819049951E-09 2.18469922022E-09 1.73274608024E-09 1.37109195277E-09 1.08237177022E-09 8.52421274359E-10 6.69714465191E-10 5.24894688006E-10 4.10384730135E-10 3.20063416347E-10 2.48998031035E-10 1.93223488003E-10 1.49560544199E-10 1.15466538305E-10 8.89131524417E-11 6.82865663552E-11 5.23061173703E-11 3.99582127627E-11 3.04427789366E-11 2.31299870044E-11 1.75253785830E-11 1.32418389661E-11 9.97713614151E-12 7.49597109512E-12 5.61567414569E-12 4.19483946981E-12 3.12432047125E-12 2.32011649565E-12 1.71777024774E-12 1.26796824656E-12 9.33096405289E-13 6.84551588356E-13 5.00649672320E-13 3.65002809683E-13 2.65264600203E-13 1.92162826039E-13 1.38756231493E-13 9.98652935387E-14 7.16376702445E-14 5.12175529345E-14 3.64949129586E-14 2.59159752151E-14 1.83404532145E-14 1.29343756267E-14 9.08990879697E-15 6.36558409203E-15 4.44189382908E-15 3.08842138509E-15 2.13959666192E-15 1.47687827507E-15 1.01570674376E-15 6.95986434782E-16 4.75167724535E-16 3.23237955270E-16 2.19108289326E-16 1.48017461793E-16 9.96734626912E-17 6.69286150830E-17 4.48386842984E-17 2.99973785266E-17 2.00675424336E-17 1.33692742930E-17 8.86964343527E-18 5.85963977467E-18 3.85463860533E-18 2.52479303390E-18 1.64656340088E-18 1.06911073727E-18 6.91097454645E-19 4.44742754572E-19 2.84912745849E-19 1.81688947560E-19 1.15329073149E-19 espresso-5.1/pseudo/Rhs.pbe-rrkjus_lb.UPF0000644000175000017500000145227412341373031016465 0ustar mbamba Generated using Andrea Dal Corso code (rrkj3) Author: Laura Bianchettin Generation date: before Mar 13 2001 Info: Rh 1 The Pseudo was generated with a Scalar-Relativistic Calculation 2.40000000000E+00 Local Potential cutoff radius nl pn l occ Rcut Rcut US E pseu 5P 2 1 0.00 2.50000000000 2.50000000000 0.00000000000 4D 3 2 9.00 1.80000000000 2.20000000000 0.00000000000 4D 3 2 0.00 1.80000000000 2.20000000000 0.00000000000 5S 1 0 1.00 2.40000000000 2.40000000000 0.00000000000 0 Version Number Rh Element US Ultrasoft pseudopotential F Nonlinear Core Correction SLA PW PBE PBE PBE Exchange-Correlation functional 10.00000000000 Z valence -56.77536160300 Total energy 0.0000000 0.0000000 Suggested cutoff for wfc and rho 2 Max angular momentum component 1491 Number of points in mesh 2 3 Number of Wavefunctions, Number of Projectors Wavefunctions nl l occ 4D 2 9.00 5S 0 1.00 2.02640436790E-05 2.04677007038E-05 2.06734045157E-05 2.08811756852E-05 2.10910349898E-05 2.13030034154E-05 2.15171021591E-05 2.17333526310E-05 2.19517764562E-05 2.21723954774E-05 2.23952317566E-05 2.26203075777E-05 2.28476454483E-05 2.30772681026E-05 2.33091985028E-05 2.35434598424E-05 2.37800755475E-05 2.40190692801E-05 2.42604649395E-05 2.45042866657E-05 2.47505588410E-05 2.49993060928E-05 2.52505532960E-05 2.55043255756E-05 2.57606483090E-05 2.60195471287E-05 2.62810479248E-05 2.65451768476E-05 2.68119603102E-05 2.70814249912E-05 2.73535978372E-05 2.76285060658E-05 2.79061771681E-05 2.81866389113E-05 2.84699193419E-05 2.87560467881E-05 2.90450498630E-05 2.93369574671E-05 2.96317987914E-05 2.99296033203E-05 3.02304008344E-05 3.05342214138E-05 3.08410954408E-05 3.11510536030E-05 3.14641268966E-05 3.17803466291E-05 3.20997444227E-05 3.24223522175E-05 3.27482022745E-05 3.30773271791E-05 3.34097598439E-05 3.37455335126E-05 3.40846817628E-05 3.44272385095E-05 3.47732380088E-05 3.51227148608E-05 3.54757040136E-05 3.58322407664E-05 3.61923607731E-05 3.65561000460E-05 3.69234949594E-05 3.72945822531E-05 3.76693990361E-05 3.80479827903E-05 3.84303713746E-05 3.88166030280E-05 3.92067163741E-05 3.96007504245E-05 3.99987445829E-05 4.04007386491E-05 4.08067728229E-05 4.12168877079E-05 4.16311243161E-05 4.20495240713E-05 4.24721288141E-05 4.28989808051E-05 4.33301227299E-05 4.37655977031E-05 4.42054492726E-05 4.46497214238E-05 4.50984585843E-05 4.55517056284E-05 4.60095078809E-05 4.64719111226E-05 4.69389615941E-05 4.74107060008E-05 4.78871915177E-05 4.83684657937E-05 4.88545769565E-05 4.93455736177E-05 4.98415048775E-05 5.03424203292E-05 5.08483700649E-05 5.13594046800E-05 5.18755752784E-05 5.23969334776E-05 5.29235314137E-05 5.34554217471E-05 5.39926576672E-05 5.45352928981E-05 5.50833817037E-05 5.56369788934E-05 5.61961398273E-05 5.67609204221E-05 5.73313771562E-05 5.79075670757E-05 5.84895478003E-05 5.90773775284E-05 5.96711150434E-05 6.02708197197E-05 6.08765515282E-05 6.14883710426E-05 6.21063394453E-05 6.27305185337E-05 6.33609707262E-05 6.39977590686E-05 6.46409472403E-05 6.52905995605E-05 6.59467809951E-05 6.66095571628E-05 6.72789943417E-05 6.79551594761E-05 6.86381201830E-05 6.93279447592E-05 7.00247021877E-05 7.07284621447E-05 7.14392950068E-05 7.21572718580E-05 7.28824644965E-05 7.36149454422E-05 7.43547879438E-05 7.51020659861E-05 7.58568542977E-05 7.66192283578E-05 7.73892644047E-05 7.81670394425E-05 7.89526312494E-05 7.97461183852E-05 8.05475801992E-05 8.13570968385E-05 8.21747492552E-05 8.30006192153E-05 8.38347893065E-05 8.46773429465E-05 8.55283643913E-05 8.63879387439E-05 8.72561519623E-05 8.81330908687E-05 8.90188431576E-05 8.99134974049E-05 9.08171430770E-05 9.17298705390E-05 9.26517710645E-05 9.35829368444E-05 9.45234609959E-05 9.54734375723E-05 9.64329615720E-05 9.74021289482E-05 9.83810366185E-05 9.93697824744E-05 1.00368465391E-04 1.01377185239E-04 1.02396042889E-04 1.03425140229E-04 1.04464580169E-04 1.05514466654E-04 1.06574904673E-04 1.07646000272E-04 1.08727860561E-04 1.09820593726E-04 1.10924309042E-04 1.12039116882E-04 1.13165128727E-04 1.14302457178E-04 1.15451215971E-04 1.16611519982E-04 1.17783485242E-04 1.18967228948E-04 1.20162869476E-04 1.21370526392E-04 1.22590320461E-04 1.23822373665E-04 1.25066809209E-04 1.26323751538E-04 1.27593326348E-04 1.28875660596E-04 1.30170882519E-04 1.31479121637E-04 1.32800508778E-04 1.34135176080E-04 1.35483257011E-04 1.36844886382E-04 1.38220200354E-04 1.39609336462E-04 1.41012433620E-04 1.42429632139E-04 1.43861073740E-04 1.45306901568E-04 1.46767260207E-04 1.48242295695E-04 1.49732155535E-04 1.51236988716E-04 1.52756945722E-04 1.54292178550E-04 1.55842840724E-04 1.57409087312E-04 1.58991074940E-04 1.60588961808E-04 1.62202907706E-04 1.63833074030E-04 1.65479623798E-04 1.67142721667E-04 1.68822533946E-04 1.70519228620E-04 1.72232975359E-04 1.73963945538E-04 1.75712312258E-04 1.77478250355E-04 1.79261936424E-04 1.81063548837E-04 1.82883267756E-04 1.84721275154E-04 1.86577754833E-04 1.88452892443E-04 1.90346875500E-04 1.92259893403E-04 1.94192137455E-04 1.96143800883E-04 1.98115078854E-04 2.00106168499E-04 2.02117268927E-04 2.04148581250E-04 2.06200308601E-04 2.08272656156E-04 2.10365831149E-04 2.12480042901E-04 2.14615502834E-04 2.16772424497E-04 2.18951023582E-04 2.21151517952E-04 2.23374127659E-04 2.25619074964E-04 2.27886584365E-04 2.30176882614E-04 2.32490198743E-04 2.34826764086E-04 2.37186812301E-04 2.39570579394E-04 2.41978303746E-04 2.44410226129E-04 2.46866589739E-04 2.49347640213E-04 2.51853625659E-04 2.54384796678E-04 2.56941406388E-04 2.59523710453E-04 2.62131967106E-04 2.64766437173E-04 2.67427384105E-04 2.70115073998E-04 2.72829775624E-04 2.75571760454E-04 2.78341302691E-04 2.81138679289E-04 2.83964169990E-04 2.86818057344E-04 2.89700626743E-04 2.92612166446E-04 2.95552967610E-04 2.98523324317E-04 3.01523533604E-04 3.04553895497E-04 3.07614713033E-04 3.10706292296E-04 3.13828942448E-04 3.16982975756E-04 3.20168707625E-04 3.23386456631E-04 3.26636544553E-04 3.29919296402E-04 3.33235040455E-04 3.36584108290E-04 3.39966834816E-04 3.43383558309E-04 3.46834620444E-04 3.50320366330E-04 3.53841144545E-04 3.57397307169E-04 3.60989209821E-04 3.64617211695E-04 3.68281675595E-04 3.71982967968E-04 3.75721458949E-04 3.79497522389E-04 3.83311535897E-04 3.87163880878E-04 3.91054942569E-04 3.94985110081E-04 3.98954776433E-04 4.02964338596E-04 4.07014197527E-04 4.11104758218E-04 4.15236429727E-04 4.19409625226E-04 4.23624762036E-04 4.27882261675E-04 4.32182549897E-04 4.36526056735E-04 4.40913216542E-04 4.45344468037E-04 4.49820254351E-04 4.54341023065E-04 4.58907226260E-04 4.63519320560E-04 4.68177767179E-04 4.72883031964E-04 4.77635585446E-04 4.82435902886E-04 4.87284464317E-04 4.92181754601E-04 4.97128263470E-04 5.02124485580E-04 5.07170920558E-04 5.12268073049E-04 5.17416452775E-04 5.22616574578E-04 5.27868958473E-04 5.33174129705E-04 5.38532618793E-04 5.43944961592E-04 5.49411699341E-04 5.54933378717E-04 5.60510551894E-04 5.66143776593E-04 5.71833616141E-04 5.77580639528E-04 5.83385421460E-04 5.89248542420E-04 5.95170588725E-04 6.01152152586E-04 6.07193832162E-04 6.13296231628E-04 6.19459961228E-04 6.25685637340E-04 6.31973882537E-04 6.38325325650E-04 6.44740601827E-04 6.51220352601E-04 6.57765225953E-04 6.64375876376E-04 6.71052964940E-04 6.77797159360E-04 6.84609134061E-04 6.91489570246E-04 6.98439155964E-04 7.05458586179E-04 7.12548562841E-04 7.19709794953E-04 7.26942998645E-04 7.34248897242E-04 7.41628221341E-04 7.49081708879E-04 7.56610105213E-04 7.64214163188E-04 7.71894643216E-04 7.79652313352E-04 7.87487949369E-04 7.95402334837E-04 8.03396261201E-04 8.11470527861E-04 8.19625942250E-04 8.27863319916E-04 8.36183484604E-04 8.44587268337E-04 8.53075511501E-04 8.61649062927E-04 8.70308779977E-04 8.79055528631E-04 8.87890183570E-04 8.96813628267E-04 9.05826755075E-04 9.14930465313E-04 9.24125669359E-04 9.33413286743E-04 9.42794246234E-04 9.52269485934E-04 9.61839953377E-04 9.71506605617E-04 9.81270409327E-04 9.91132340895E-04 1.00109338652E-03 1.01115454232E-03 1.02131681442E-03 1.03158121905E-03 1.04194878267E-03 1.05242054203E-03 1.06299754432E-03 1.07368084725E-03 1.08447151916E-03 1.09537063912E-03 1.10637929706E-03 1.11749859386E-03 1.12872964144E-03 1.14007356293E-03 1.15153149273E-03 1.16310457663E-03 1.17479397196E-03 1.18660084767E-03 1.19852638445E-03 1.21057177487E-03 1.22273822348E-03 1.23502694692E-03 1.24743917409E-03 1.25997614622E-03 1.27263911701E-03 1.28542935277E-03 1.29834813254E-03 1.31139674821E-03 1.32457650464E-03 1.33788871983E-03 1.35133472500E-03 1.36491586478E-03 1.37863349727E-03 1.39248899427E-03 1.40648374133E-03 1.42061913793E-03 1.43489659763E-03 1.44931754818E-03 1.46388343170E-03 1.47859570478E-03 1.49345583866E-03 1.50846531937E-03 1.52362564787E-03 1.53893834021E-03 1.55440492766E-03 1.57002695690E-03 1.58580599014E-03 1.60174360531E-03 1.61784139617E-03 1.63410097251E-03 1.65052396032E-03 1.66711200190E-03 1.68386675606E-03 1.70078989831E-03 1.71788312096E-03 1.73514813336E-03 1.75258666201E-03 1.77020045080E-03 1.78799126110E-03 1.80596087202E-03 1.82411108053E-03 1.84244370167E-03 1.86096056872E-03 1.87966353337E-03 1.89855446594E-03 1.91763525554E-03 1.93690781027E-03 1.95637405739E-03 1.97603594354E-03 1.99589543494E-03 2.01595451754E-03 2.03621519728E-03 2.05667950023E-03 2.07734947285E-03 2.09822718214E-03 2.11931471590E-03 2.14061418290E-03 2.16212771310E-03 2.18385745787E-03 2.20580559021E-03 2.22797430495E-03 2.25036581898E-03 2.27298237146E-03 2.29582622407E-03 2.31889966122E-03 2.34220499026E-03 2.36574454176E-03 2.38952066968E-03 2.41353575167E-03 2.43779218923E-03 2.46229240805E-03 2.48703885816E-03 2.51203401423E-03 2.53728037580E-03 2.56278046751E-03 2.58853683941E-03 2.61455206715E-03 2.64082875228E-03 2.66736952248E-03 2.69417703185E-03 2.72125396118E-03 2.74860301817E-03 2.77622693775E-03 2.80412848233E-03 2.83231044211E-03 2.86077563528E-03 2.88952690841E-03 2.91856713663E-03 2.94789922400E-03 2.97752610375E-03 3.00745073859E-03 3.03767612101E-03 3.06820527358E-03 3.09904124922E-03 3.13018713158E-03 3.16164603526E-03 3.19342110617E-03 3.22551552186E-03 3.25793249179E-03 3.29067525768E-03 3.32374709384E-03 3.35715130747E-03 3.39089123904E-03 3.42497026256E-03 3.45939178596E-03 3.49415925141E-03 3.52927613571E-03 3.56474595056E-03 3.60057224298E-03 3.63675859562E-03 3.67330862715E-03 3.71022599260E-03 3.74751438375E-03 3.78517752945E-03 3.82321919607E-03 3.86164318779E-03 3.90045334704E-03 3.93965355489E-03 3.97924773137E-03 4.01923983594E-03 4.05963386784E-03 4.10043386651E-03 4.14164391199E-03 4.18326812531E-03 4.22531066892E-03 4.26777574713E-03 4.31066760646E-03 4.35399053615E-03 4.39774886852E-03 4.44194697945E-03 4.48658928877E-03 4.53168026076E-03 4.57722440455E-03 4.62322627460E-03 4.66969047113E-03 4.71662164059E-03 4.76402447616E-03 4.81190371813E-03 4.86026415449E-03 4.90911062132E-03 4.95844800330E-03 5.00828123421E-03 5.05861529742E-03 5.10945522637E-03 5.16080610511E-03 5.21267306875E-03 5.26506130405E-03 5.31797604986E-03 5.37142259771E-03 5.42540629230E-03 5.47993253204E-03 5.53500676959E-03 5.59063451244E-03 5.64682132340E-03 5.70357282119E-03 5.76089468102E-03 5.81879263512E-03 5.87727247333E-03 5.93634004369E-03 5.99600125299E-03 6.05626206742E-03 6.11712851311E-03 6.17860667674E-03 6.24070270619E-03 6.30342281111E-03 6.36677326356E-03 6.43076039865E-03 6.49539061513E-03 6.56067037609E-03 6.62660620955E-03 6.69320470916E-03 6.76047253482E-03 6.82841641336E-03 6.89704313923E-03 6.96635957517E-03 7.03637265287E-03 7.10708937370E-03 7.17851680938E-03 7.25066210273E-03 7.32353246834E-03 7.39713519329E-03 7.47147763793E-03 7.54656723655E-03 7.62241149819E-03 7.69901800733E-03 7.77639442469E-03 7.85454848797E-03 7.93348801265E-03 8.01322089274E-03 8.09375510159E-03 8.17509869270E-03 8.25725980049E-03 8.34024664114E-03 8.42406751341E-03 8.50873079945E-03 8.59424496566E-03 8.68061856352E-03 8.76786023048E-03 8.85597869077E-03 8.94498275630E-03 9.03488132757E-03 9.12568339450E-03 9.21739803737E-03 9.31003442773E-03 9.40360182928E-03 9.49810959886E-03 9.59356718731E-03 9.68998414048E-03 9.78737010013E-03 9.88573480495E-03 9.98508809149E-03 1.00854398952E-02 1.01868002512E-02 1.02891792958E-02 1.03925872669E-02 1.04970345054E-02 1.06025314560E-02 1.07090886687E-02 1.08167167991E-02 1.09254266102E-02 1.10352289731E-02 1.11461348681E-02 1.12581553859E-02 1.13713017286E-02 1.14855852109E-02 1.16010172614E-02 1.17176094232E-02 1.18353733557E-02 1.19543208354E-02 1.20744637572E-02 1.21958141354E-02 1.23183841052E-02 1.24421859237E-02 1.25672319711E-02 1.26935347522E-02 1.28211068973E-02 1.29499611639E-02 1.30801104373E-02 1.32115677327E-02 1.33443461958E-02 1.34784591047E-02 1.36139198708E-02 1.37507420401E-02 1.38889392952E-02 1.40285254557E-02 1.41695144805E-02 1.43119204685E-02 1.44557576605E-02 1.46010404403E-02 1.47477833364E-02 1.48960010230E-02 1.50457083222E-02 1.51969202047E-02 1.53496517919E-02 1.55039183571E-02 1.56597353271E-02 1.58171182836E-02 1.59760829652E-02 1.61366452683E-02 1.62988212494E-02 1.64626271263E-02 1.66280792795E-02 1.67951942546E-02 1.69639887630E-02 1.71344796845E-02 1.73066840683E-02 1.74806191348E-02 1.76563022779E-02 1.78337510658E-02 1.80129832438E-02 1.81940167351E-02 1.83768696432E-02 1.85615602536E-02 1.87481070355E-02 1.89365286437E-02 1.91268439206E-02 1.93190718978E-02 1.95132317982E-02 1.97093430382E-02 1.99074252288E-02 2.01074981786E-02 2.03095818949E-02 2.05136965864E-02 2.07198626646E-02 2.09281007463E-02 2.11384316556E-02 2.13508764256E-02 2.15654563011E-02 2.17821927402E-02 2.20011074166E-02 2.22222222222E-02 2.24455592685E-02 2.26711408895E-02 2.28989896434E-02 2.31291283154E-02 2.33615799195E-02 2.35963677010E-02 2.38335151390E-02 2.40730459483E-02 2.43149840823E-02 2.45593537350E-02 2.48061793435E-02 2.50554855907E-02 2.53072974072E-02 2.55616399746E-02 2.58185387273E-02 2.60780193554E-02 2.63401078071E-02 2.66048302916E-02 2.68722132813E-02 2.71422835147E-02 2.74150679990E-02 2.76905940131E-02 2.79688891095E-02 2.82499811183E-02 2.85338981486E-02 2.88206685926E-02 2.91103211274E-02 2.94028847186E-02 2.96983886228E-02 2.99968623906E-02 3.02983358696E-02 3.06028392075E-02 3.09104028548E-02 3.12210575681E-02 3.15348344132E-02 3.18517647680E-02 3.21718803259E-02 3.24952130985E-02 3.28217954196E-02 3.31516599476E-02 3.34848396692E-02 3.38213679026E-02 3.41612783011E-02 3.45046048558E-02 3.48513818998E-02 3.52016441110E-02 3.55554265159E-02 3.59127644932E-02 3.62736937768E-02 3.66382504600E-02 3.70064709988E-02 3.73783922155E-02 3.77540513026E-02 3.81334858263E-02 3.85167337304E-02 3.89038333399E-02 3.92948233652E-02 3.96897429056E-02 4.00886314533E-02 4.04915288976E-02 4.08984755285E-02 4.13095120410E-02 4.17246795392E-02 4.21440195401E-02 4.25675739781E-02 4.29953852089E-02 4.34274960141E-02 4.38639496051E-02 4.43047896276E-02 4.47500601660E-02 4.51998057477E-02 4.56540713476E-02 4.61129023928E-02 4.65763447665E-02 4.70444448136E-02 4.75172493444E-02 4.79948056397E-02 4.84771614555E-02 4.89643650279E-02 4.94564650776E-02 4.99535108150E-02 5.04555519452E-02 5.09626386725E-02 5.14748217062E-02 5.19921522650E-02 5.25146820824E-02 5.30424634117E-02 5.35755490315E-02 5.41139922509E-02 5.46578469146E-02 5.52071674086E-02 5.57620086653E-02 5.63224261693E-02 5.68884759629E-02 5.74602146515E-02 5.80376994094E-02 5.86209879856E-02 5.92101387095E-02 5.98052104967E-02 6.04062628546E-02 6.10133558893E-02 6.16265503103E-02 6.22459074378E-02 6.28714892078E-02 6.35033581792E-02 6.41415775393E-02 6.47862111106E-02 6.54373233570E-02 6.60949793903E-02 6.67592449766E-02 6.74301865430E-02 6.81078711843E-02 6.87923666694E-02 6.94837414486E-02 7.01820646598E-02 7.08874061359E-02 7.15998364117E-02 7.23194267309E-02 7.30462490530E-02 7.37803760608E-02 7.45218811678E-02 7.52708385249E-02 7.60273230287E-02 7.67914103281E-02 7.75631768325E-02 7.83426997192E-02 7.91300569412E-02 7.99253272349E-02 8.07285901278E-02 8.15399259471E-02 8.23594158269E-02 8.31871417169E-02 8.40231863904E-02 8.48676334526E-02 8.57205673488E-02 8.65820733732E-02 8.74522376771E-02 8.83311472777E-02 8.92188900665E-02 9.01155548188E-02 9.10212312016E-02 9.19360097834E-02 9.28599820427E-02 9.37932403777E-02 9.47358781149E-02 9.56879895188E-02 9.66496698014E-02 9.76210151315E-02 9.86021226445E-02 9.95930904520E-02 1.00594017651E-01 1.01605004336E-01 1.02626151607E-01 1.03657561578E-01 1.04699337391E-01 1.05751583225E-01 1.06814404306E-01 1.07887906916E-01 1.08972198407E-01 1.10067387209E-01 1.11173582841E-01 1.12290895924E-01 1.13419438190E-01 1.14559322494E-01 1.15710662826E-01 1.16873574321E-01 1.18048173271E-01 1.19234577136E-01 1.20432904558E-01 1.21643275372E-01 1.22865810614E-01 1.24100632539E-01 1.25347864632E-01 1.26607631615E-01 1.27880059467E-01 1.29165275431E-01 1.30463408031E-01 1.31774587080E-01 1.33098943697E-01 1.34436610320E-01 1.35787720716E-01 1.37152409997E-01 1.38530814634E-01 1.39923072467E-01 1.41329322724E-01 1.42749706032E-01 1.44184364429E-01 1.45633441382E-01 1.47097081801E-01 1.48575432051E-01 1.50068639967E-01 1.51576854873E-01 1.53100227591E-01 1.54638910459E-01 1.56193057346E-01 1.57762823670E-01 1.59348366408E-01 1.60949844115E-01 1.62567416940E-01 1.64201246643E-01 1.65851496607E-01 1.67518331859E-01 1.69201919084E-01 1.70902426642E-01 1.72620024585E-01 1.74354884674E-01 1.76107180397E-01 1.77877086984E-01 1.79664781429E-01 1.81470442502E-01 1.83294250769E-01 1.85136388615E-01 1.86997040254E-01 1.88876391753E-01 1.90774631048E-01 1.92691947966E-01 1.94628534239E-01 1.96584583527E-01 1.98560291438E-01 2.00555855543E-01 2.02571475401E-01 2.04607352575E-01 2.06663690655E-01 2.08740695277E-01 2.10838574141E-01 2.12957537039E-01 2.15097795868E-01 2.17259564656E-01 2.19443059582E-01 2.21648498996E-01 2.23876103445E-01 2.26126095691E-01 2.28398700734E-01 2.30694145838E-01 2.33012660550E-01 2.35354476721E-01 2.37719828536E-01 2.40108952532E-01 2.42522087623E-01 2.44959475125E-01 2.47421358779E-01 2.49907984775E-01 2.52419601778E-01 2.54956460951E-01 2.57518815983E-01 2.60106923111E-01 2.62721041148E-01 2.65361431508E-01 2.68028358232E-01 2.70722088016E-01 2.73442890234E-01 2.76191036968E-01 2.78966803037E-01 2.81770466019E-01 2.84602306281E-01 2.87462607012E-01 2.90351654243E-01 2.93269736881E-01 2.96217146738E-01 2.99194178556E-01 3.02201130041E-01 3.05238301891E-01 3.08305997825E-01 3.11404524616E-01 3.14534192119E-01 3.17695313304E-01 3.20888204285E-01 3.24113184353E-01 3.27370576010E-01 3.30660704997E-01 3.33983900331E-01 3.37340494332E-01 3.40730822665E-01 3.44155224363E-01 3.47614041871E-01 3.51107621072E-01 3.54636311329E-01 3.58200465512E-01 3.61800440040E-01 3.65436594913E-01 3.69109293751E-01 3.72818903825E-01 3.76565796101E-01 3.80350345270E-01 3.84172929790E-01 3.88033931924E-01 3.91933737774E-01 3.95872737325E-01 3.99851324479E-01 4.03869897099E-01 4.07928857045E-01 4.12028610217E-01 4.16169566593E-01 4.20352140272E-01 4.24576749516E-01 4.28843816789E-01 4.33153768801E-01 4.37507036550E-01 4.41904055368E-01 4.46345264960E-01 4.50831109450E-01 4.55362037427E-01 4.59938501986E-01 4.64560960780E-01 4.69229876056E-01 4.73945714712E-01 4.78708948333E-01 4.83520053249E-01 4.88379510573E-01 4.93287806254E-01 4.98245431128E-01 5.03252880959E-01 5.08310656499E-01 5.13419263527E-01 5.18579212910E-01 5.23791020646E-01 5.29055207921E-01 5.34372301157E-01 5.39742832069E-01 5.45167337714E-01 5.50646360546E-01 5.56180448474E-01 5.61770154910E-01 5.67416038830E-01 5.73118664827E-01 5.78878603167E-01 5.84696429850E-01 5.90572726664E-01 5.96508081242E-01 6.02503087126E-01 6.08558343820E-01 6.14674456856E-01 6.20852037850E-01 6.27091704565E-01 6.33394080973E-01 6.39759797317E-01 6.46189490173E-01 6.52683802518E-01 6.59243383786E-01 6.65868889942E-01 6.72560983542E-01 6.79320333801E-01 6.86147616659E-01 6.93043514851E-01 7.00008717972E-01 7.07043922548E-01 7.14149832106E-01 7.21327157241E-01 7.28576615694E-01 7.35898932415E-01 7.43294839643E-01 7.50765076974E-01 7.58310391439E-01 7.65931537575E-01 7.73629277502E-01 7.81404381002E-01 7.89257625592E-01 7.97189796601E-01 8.05201687255E-01 8.13294098748E-01 8.21467840329E-01 8.29723729379E-01 8.38062591493E-01 8.46485260564E-01 8.54992578867E-01 8.63585397141E-01 8.72264574673E-01 8.81030979391E-01 8.89885487940E-01 8.98828985779E-01 9.07862367266E-01 9.16986535747E-01 9.26202403645E-01 9.35510892555E-01 9.44912933335E-01 9.54409466195E-01 9.64001440797E-01 9.73689816346E-01 9.83475561689E-01 9.93359655407E-01 1.00334308592E+00 1.01342685157E+00 1.02361196076E+00 1.03389943200E+00 1.04429029404E+00 1.05478558597E+00 1.06538635735E+00 1.07609366825E+00 1.08690858942E+00 1.09783220235E+00 1.10886559941E+00 1.12000988396E+00 1.13126617043E+00 1.14263558446E+00 1.15411926300E+00 1.16571835442E+00 1.17743401866E+00 1.18926742728E+00 1.20121976363E+00 1.21329222296E+00 1.22548601252E+00 1.23780235171E+00 1.25024247216E+00 1.26280761790E+00 1.27549904545E+00 1.28831802398E+00 1.30126583538E+00 1.31434377444E+00 1.32755314898E+00 1.34089527994E+00 1.35437150155E+00 1.36798316143E+00 1.38173162077E+00 1.39561825443E+00 1.40964445107E+00 1.42381161333E+00 1.43812115794E+00 1.45257451587E+00 1.46717313245E+00 1.48191846758E+00 1.49681199578E+00 1.51185520643E+00 1.52704960386E+00 1.54239670753E+00 1.55789805215E+00 1.57355518787E+00 1.58936968043E+00 1.60534311127E+00 1.62147707777E+00 1.63777319332E+00 1.65423308756E+00 1.67085840649E+00 1.68765081265E+00 1.70461198530E+00 1.72174362056E+00 1.73904743162E+00 1.75652514888E+00 1.77417852011E+00 1.79200931068E+00 1.81001930367E+00 1.82821030009E+00 1.84658411907E+00 1.86514259801E+00 1.88388759275E+00 1.90282097783E+00 1.92194464659E+00 1.94126051141E+00 1.96077050390E+00 1.98047657508E+00 2.00038069557E+00 2.02048485579E+00 2.04079106618E+00 2.06130135738E+00 2.08201778043E+00 2.10294240700E+00 2.12407732956E+00 2.14542466162E+00 2.16698653793E+00 2.18876511471E+00 2.21076256982E+00 2.23298110303E+00 2.25542293621E+00 2.27809031357E+00 2.30098550185E+00 2.32411079060E+00 2.34746849237E+00 2.37106094294E+00 2.39489050159E+00 2.41895955128E+00 2.44327049894E+00 2.46782577568E+00 2.49262783706E+00 2.51767916330E+00 2.54298225956E+00 2.56853965616E+00 2.59435390887E+00 2.62042759913E+00 2.64676333433E+00 2.67336374807E+00 2.70023150042E+00 2.72736927816E+00 2.75477979511E+00 2.78246579233E+00 2.81043003845E+00 2.83867532991E+00 2.86720449128E+00 2.89602037548E+00 2.92512586413E+00 2.95452386781E+00 2.98421732633E+00 3.01420920908E+00 3.04450251525E+00 3.07510027422E+00 3.10600554578E+00 3.13722142048E+00 3.16875101993E+00 3.20059749713E+00 3.23276403675E+00 3.26525385546E+00 3.29807020228E+00 3.33121635887E+00 3.36469563987E+00 3.39851139324E+00 3.43266700058E+00 3.46716587748E+00 3.50201147385E+00 3.53720727430E+00 3.57275679841E+00 3.60866360119E+00 3.64493127333E+00 3.68156344164E+00 3.71856376936E+00 3.75593595655E+00 3.79368374047E+00 3.83181089593E+00 3.87032123567E+00 3.90921861076E+00 3.94850691096E+00 3.98819006515E+00 4.02827204167E+00 4.06875684875E+00 4.10964853490E+00 4.15095118934E+00 4.19266894235E+00 4.23480596575E+00 4.27736647327E+00 4.32035472101E+00 4.36377500782E+00 4.40763167576E+00 4.45192911055E+00 4.49667174196E+00 4.54186404429E+00 4.58751053681E+00 4.63361578420E+00 4.68018439704E+00 4.72722103221E+00 4.77473039343E+00 4.82271723167E+00 4.87118634564E+00 4.92014258232E+00 4.96959083735E+00 5.01953605560E+00 5.06998323164E+00 5.12093741024E+00 5.17240368684E+00 5.22438720812E+00 5.27689317247E+00 5.32992683054E+00 5.38349348573E+00 5.43759849476E+00 5.49224726817E+00 5.54744527088E+00 5.60319802274E+00 5.65951109908E+00 5.71639013124E+00 5.77384080718E+00 5.83186887201E+00 5.89048012858E+00 5.94968043808E+00 6.00947572058E+00 6.06987195566E+00 6.13087518300E+00 6.19249150296E+00 6.25472707723E+00 6.31758812942E+00 6.38108094569E+00 6.44521187537E+00 6.50998733161E+00 6.57541379201E+00 6.64149779927E+00 6.70824596184E+00 6.77566495460E+00 6.84376151950E+00 6.91254246625E+00 6.98201467302E+00 7.05218508706E+00 7.12306072550E+00 7.19464867594E+00 7.26695609724E+00 7.33999022021E+00 7.41375834832E+00 7.48826785845E+00 7.56352620159E+00 7.63954090367E+00 7.71631956619E+00 7.79386986711E+00 7.87219956151E+00 7.95131648242E+00 8.03122854161E+00 8.11194373034E+00 8.19347012021E+00 8.27581586392E+00 8.35898919611E+00 8.44299843418E+00 8.52785197914E+00 8.61355831640E+00 8.70012601666E+00 8.78756373678E+00 8.87588022060E+00 8.96508429984E+00 9.05518489498E+00 9.14619101615E+00 9.23811176404E+00 9.33095633082E+00 9.42473400099E+00 9.51945415243E+00 9.61512625721E+00 9.71175988263E+00 9.80936469213E+00 9.90795044628E+00 1.00075270037E+01 1.01081043222E+01 1.02096924596E+01 1.03123015747E+01 1.04159419285E+01 1.05206238852E+01 1.06263579131E+01 1.07331545856E+01 1.08410245825E+01 1.09499786910E+01 1.10600278064E+01 1.11711829338E+01 1.12834551888E+01 1.13968557987E+01 1.15113961037E+01 1.16270875580E+01 1.17439417306E+01 1.18619703072E+01 1.19811850908E+01 1.21015980028E+01 1.22232210847E+01 1.23460664989E+01 1.24701465301E+01 1.25954735863E+01 1.27220602003E+01 1.28499190310E+01 1.29790628643E+01 1.31095046146E+01 1.32412573264E+01 1.33743341749E+01 1.35087484680E+01 1.36445136472E+01 1.37816432892E+01 1.39201511069E+01 1.40600509514E+01 1.42013568127E+01 1.43440828214E+01 1.44882432505E+01 1.46338525159E+01 1.47809251788E+01 1.49294759465E+01 1.50795196742E+01 1.52310713665E+01 1.53841461786E+01 1.55387594181E+01 1.56949265466E+01 1.58526631807E+01 1.60119850944E+01 1.61729082200E+01 1.63354486498E+01 1.64996226381E+01 1.66654466025E+01 1.68329371254E+01 1.70021109560E+01 1.71729850119E+01 1.73455763806E+01 1.75199023214E+01 1.76959802670E+01 1.78738278254E+01 1.80534627815E+01 1.82349030989E+01 1.84181669218E+01 1.86032725768E+01 1.87902385745E+01 1.89790836117E+01 1.91698265731E+01 1.93624865331E+01 1.95570827580E+01 1.97536347073E+01 1.99521620367E+01 2.01526845988E+01 2.03552224462E+01 2.05597958329E+01 2.07664252162E+01 2.09751312594E+01 2.11859348331E+01 2.13988570180E+01 2.16139191065E+01 2.18311426049E+01 2.20505492357E+01 2.22721609398E+01 2.24959998786E+01 2.27220884361E+01 2.29504492213E+01 2.31811050707E+01 2.34140790498E+01 2.36493944564E+01 2.38870748221E+01 2.41271439152E+01 2.43696257429E+01 2.46145445533E+01 2.48619248388E+01 2.51117913375E+01 2.53641690362E+01 2.56190831730E+01 2.58765592394E+01 2.61366229833E+01 2.63993004113E+01 2.66646177914E+01 2.69326016554E+01 2.72032788020E+01 2.74766762992E+01 2.77528214870E+01 2.80317419800E+01 2.83134656705E+01 2.85980207312E+01 2.88854356179E+01 2.91757390721E+01 2.94689601246E+01 2.97651280977E+01 3.00642726083E+01 3.03664235713E+01 3.06716112019E+01 3.09798660193E+01 3.12912188490E+01 3.16057008267E+01 3.19233434008E+01 3.22441783359E+01 3.25682377156E+01 3.28955539463E+01 3.32261597598E+01 3.35600882170E+01 3.38973727109E+01 3.42380469704E+01 3.45821450630E+01 3.49297013991E+01 3.52807507343E+01 3.56353281741E+01 3.59934691763E+01 3.63552095555E+01 3.67205854859E+01 3.70896335054E+01 3.74623905193E+01 3.78388938034E+01 3.82191810084E+01 3.86032901633E+01 3.89912596794E+01 3.93831283540E+01 3.97789353743E+01 4.01787203212E+01 4.05825231737E+01 4.09903843123E+01 4.14023445235E+01 4.18184450036E+01 4.22387273631E+01 4.26632336305E+01 4.30920062569E+01 4.35250881197E+01 4.39625225277E+01 4.44043532245E+01 4.48506243937E+01 4.53013806627E+01 4.57566671075E+01 4.62165292571E+01 4.66810130982E+01 4.71501650795E+01 4.76240321166E+01 4.81026615966E+01 4.85861013828E+01 4.90743998197E+01 4.95676057375E+01 5.00657684571E+01 5.05689377953E+01 5.10771640694E+01 5.15904981025E+01 5.21089912284E+01 5.26326952968E+01 5.31616626786E+01 5.36959462710E+01 5.42355995028E+01 5.47806763397E+01 5.53312312899E+01 5.58873194093E+01 5.64489963073E+01 5.70163181519E+01 5.75893416758E+01 5.81681241819E+01 5.87527235489E+01 5.93431982373E+01 5.99396072949E+01 2.02640436790E-07 2.04677007038E-07 2.06734045157E-07 2.08811756852E-07 2.10910349898E-07 2.13030034154E-07 2.15171021591E-07 2.17333526310E-07 2.19517764562E-07 2.21723954774E-07 2.23952317566E-07 2.26203075777E-07 2.28476454483E-07 2.30772681026E-07 2.33091985028E-07 2.35434598424E-07 2.37800755475E-07 2.40190692801E-07 2.42604649395E-07 2.45042866657E-07 2.47505588410E-07 2.49993060928E-07 2.52505532960E-07 2.55043255756E-07 2.57606483090E-07 2.60195471287E-07 2.62810479248E-07 2.65451768476E-07 2.68119603102E-07 2.70814249912E-07 2.73535978372E-07 2.76285060658E-07 2.79061771681E-07 2.81866389113E-07 2.84699193419E-07 2.87560467881E-07 2.90450498630E-07 2.93369574671E-07 2.96317987914E-07 2.99296033203E-07 3.02304008344E-07 3.05342214138E-07 3.08410954408E-07 3.11510536030E-07 3.14641268966E-07 3.17803466291E-07 3.20997444227E-07 3.24223522175E-07 3.27482022745E-07 3.30773271791E-07 3.34097598439E-07 3.37455335126E-07 3.40846817628E-07 3.44272385095E-07 3.47732380088E-07 3.51227148608E-07 3.54757040136E-07 3.58322407664E-07 3.61923607731E-07 3.65561000460E-07 3.69234949594E-07 3.72945822531E-07 3.76693990361E-07 3.80479827903E-07 3.84303713746E-07 3.88166030280E-07 3.92067163741E-07 3.96007504245E-07 3.99987445829E-07 4.04007386491E-07 4.08067728229E-07 4.12168877079E-07 4.16311243161E-07 4.20495240713E-07 4.24721288141E-07 4.28989808051E-07 4.33301227299E-07 4.37655977031E-07 4.42054492726E-07 4.46497214238E-07 4.50984585843E-07 4.55517056284E-07 4.60095078809E-07 4.64719111226E-07 4.69389615941E-07 4.74107060008E-07 4.78871915177E-07 4.83684657937E-07 4.88545769565E-07 4.93455736177E-07 4.98415048775E-07 5.03424203292E-07 5.08483700649E-07 5.13594046800E-07 5.18755752784E-07 5.23969334776E-07 5.29235314137E-07 5.34554217471E-07 5.39926576672E-07 5.45352928981E-07 5.50833817037E-07 5.56369788934E-07 5.61961398273E-07 5.67609204221E-07 5.73313771562E-07 5.79075670757E-07 5.84895478003E-07 5.90773775284E-07 5.96711150434E-07 6.02708197197E-07 6.08765515282E-07 6.14883710426E-07 6.21063394453E-07 6.27305185337E-07 6.33609707262E-07 6.39977590686E-07 6.46409472403E-07 6.52905995605E-07 6.59467809951E-07 6.66095571628E-07 6.72789943417E-07 6.79551594761E-07 6.86381201830E-07 6.93279447592E-07 7.00247021877E-07 7.07284621447E-07 7.14392950068E-07 7.21572718580E-07 7.28824644965E-07 7.36149454422E-07 7.43547879438E-07 7.51020659861E-07 7.58568542977E-07 7.66192283578E-07 7.73892644047E-07 7.81670394425E-07 7.89526312494E-07 7.97461183852E-07 8.05475801992E-07 8.13570968385E-07 8.21747492552E-07 8.30006192153E-07 8.38347893065E-07 8.46773429465E-07 8.55283643913E-07 8.63879387439E-07 8.72561519623E-07 8.81330908687E-07 8.90188431576E-07 8.99134974049E-07 9.08171430770E-07 9.17298705390E-07 9.26517710645E-07 9.35829368444E-07 9.45234609959E-07 9.54734375723E-07 9.64329615720E-07 9.74021289482E-07 9.83810366185E-07 9.93697824744E-07 1.00368465391E-06 1.01377185239E-06 1.02396042889E-06 1.03425140229E-06 1.04464580169E-06 1.05514466654E-06 1.06574904673E-06 1.07646000272E-06 1.08727860561E-06 1.09820593726E-06 1.10924309042E-06 1.12039116882E-06 1.13165128727E-06 1.14302457178E-06 1.15451215971E-06 1.16611519982E-06 1.17783485242E-06 1.18967228948E-06 1.20162869476E-06 1.21370526392E-06 1.22590320461E-06 1.23822373665E-06 1.25066809209E-06 1.26323751538E-06 1.27593326348E-06 1.28875660596E-06 1.30170882519E-06 1.31479121637E-06 1.32800508778E-06 1.34135176080E-06 1.35483257011E-06 1.36844886382E-06 1.38220200354E-06 1.39609336462E-06 1.41012433620E-06 1.42429632139E-06 1.43861073740E-06 1.45306901568E-06 1.46767260207E-06 1.48242295695E-06 1.49732155535E-06 1.51236988716E-06 1.52756945722E-06 1.54292178550E-06 1.55842840724E-06 1.57409087312E-06 1.58991074940E-06 1.60588961808E-06 1.62202907706E-06 1.63833074030E-06 1.65479623798E-06 1.67142721667E-06 1.68822533946E-06 1.70519228620E-06 1.72232975359E-06 1.73963945538E-06 1.75712312258E-06 1.77478250355E-06 1.79261936424E-06 1.81063548837E-06 1.82883267756E-06 1.84721275154E-06 1.86577754833E-06 1.88452892443E-06 1.90346875500E-06 1.92259893403E-06 1.94192137455E-06 1.96143800883E-06 1.98115078854E-06 2.00106168499E-06 2.02117268927E-06 2.04148581250E-06 2.06200308601E-06 2.08272656156E-06 2.10365831149E-06 2.12480042901E-06 2.14615502834E-06 2.16772424497E-06 2.18951023582E-06 2.21151517952E-06 2.23374127659E-06 2.25619074964E-06 2.27886584365E-06 2.30176882614E-06 2.32490198743E-06 2.34826764086E-06 2.37186812301E-06 2.39570579394E-06 2.41978303746E-06 2.44410226129E-06 2.46866589739E-06 2.49347640213E-06 2.51853625659E-06 2.54384796678E-06 2.56941406388E-06 2.59523710453E-06 2.62131967106E-06 2.64766437173E-06 2.67427384105E-06 2.70115073998E-06 2.72829775624E-06 2.75571760454E-06 2.78341302691E-06 2.81138679289E-06 2.83964169990E-06 2.86818057344E-06 2.89700626743E-06 2.92612166446E-06 2.95552967610E-06 2.98523324317E-06 3.01523533604E-06 3.04553895497E-06 3.07614713033E-06 3.10706292296E-06 3.13828942448E-06 3.16982975756E-06 3.20168707625E-06 3.23386456631E-06 3.26636544553E-06 3.29919296402E-06 3.33235040455E-06 3.36584108290E-06 3.39966834816E-06 3.43383558309E-06 3.46834620444E-06 3.50320366330E-06 3.53841144545E-06 3.57397307169E-06 3.60989209821E-06 3.64617211695E-06 3.68281675595E-06 3.71982967968E-06 3.75721458949E-06 3.79497522389E-06 3.83311535897E-06 3.87163880878E-06 3.91054942569E-06 3.94985110081E-06 3.98954776433E-06 4.02964338596E-06 4.07014197527E-06 4.11104758218E-06 4.15236429727E-06 4.19409625226E-06 4.23624762036E-06 4.27882261675E-06 4.32182549897E-06 4.36526056735E-06 4.40913216542E-06 4.45344468037E-06 4.49820254351E-06 4.54341023065E-06 4.58907226260E-06 4.63519320560E-06 4.68177767179E-06 4.72883031964E-06 4.77635585446E-06 4.82435902886E-06 4.87284464317E-06 4.92181754601E-06 4.97128263470E-06 5.02124485580E-06 5.07170920558E-06 5.12268073049E-06 5.17416452775E-06 5.22616574578E-06 5.27868958473E-06 5.33174129705E-06 5.38532618793E-06 5.43944961592E-06 5.49411699341E-06 5.54933378717E-06 5.60510551894E-06 5.66143776593E-06 5.71833616141E-06 5.77580639528E-06 5.83385421460E-06 5.89248542420E-06 5.95170588725E-06 6.01152152586E-06 6.07193832162E-06 6.13296231628E-06 6.19459961228E-06 6.25685637340E-06 6.31973882537E-06 6.38325325650E-06 6.44740601827E-06 6.51220352601E-06 6.57765225953E-06 6.64375876376E-06 6.71052964940E-06 6.77797159360E-06 6.84609134061E-06 6.91489570246E-06 6.98439155964E-06 7.05458586179E-06 7.12548562841E-06 7.19709794953E-06 7.26942998645E-06 7.34248897242E-06 7.41628221341E-06 7.49081708879E-06 7.56610105213E-06 7.64214163188E-06 7.71894643216E-06 7.79652313352E-06 7.87487949369E-06 7.95402334837E-06 8.03396261201E-06 8.11470527861E-06 8.19625942250E-06 8.27863319916E-06 8.36183484604E-06 8.44587268337E-06 8.53075511501E-06 8.61649062927E-06 8.70308779977E-06 8.79055528631E-06 8.87890183570E-06 8.96813628267E-06 9.05826755075E-06 9.14930465313E-06 9.24125669359E-06 9.33413286743E-06 9.42794246234E-06 9.52269485934E-06 9.61839953377E-06 9.71506605617E-06 9.81270409327E-06 9.91132340895E-06 1.00109338652E-05 1.01115454232E-05 1.02131681442E-05 1.03158121905E-05 1.04194878267E-05 1.05242054203E-05 1.06299754432E-05 1.07368084725E-05 1.08447151916E-05 1.09537063912E-05 1.10637929706E-05 1.11749859386E-05 1.12872964144E-05 1.14007356293E-05 1.15153149273E-05 1.16310457663E-05 1.17479397196E-05 1.18660084767E-05 1.19852638445E-05 1.21057177487E-05 1.22273822348E-05 1.23502694692E-05 1.24743917409E-05 1.25997614622E-05 1.27263911701E-05 1.28542935277E-05 1.29834813254E-05 1.31139674821E-05 1.32457650464E-05 1.33788871983E-05 1.35133472500E-05 1.36491586478E-05 1.37863349727E-05 1.39248899427E-05 1.40648374133E-05 1.42061913793E-05 1.43489659763E-05 1.44931754818E-05 1.46388343170E-05 1.47859570478E-05 1.49345583866E-05 1.50846531937E-05 1.52362564787E-05 1.53893834021E-05 1.55440492766E-05 1.57002695690E-05 1.58580599014E-05 1.60174360531E-05 1.61784139617E-05 1.63410097251E-05 1.65052396032E-05 1.66711200190E-05 1.68386675606E-05 1.70078989831E-05 1.71788312096E-05 1.73514813336E-05 1.75258666201E-05 1.77020045080E-05 1.78799126110E-05 1.80596087202E-05 1.82411108053E-05 1.84244370167E-05 1.86096056872E-05 1.87966353337E-05 1.89855446594E-05 1.91763525554E-05 1.93690781027E-05 1.95637405739E-05 1.97603594354E-05 1.99589543494E-05 2.01595451754E-05 2.03621519728E-05 2.05667950023E-05 2.07734947285E-05 2.09822718214E-05 2.11931471590E-05 2.14061418290E-05 2.16212771310E-05 2.18385745787E-05 2.20580559021E-05 2.22797430495E-05 2.25036581898E-05 2.27298237146E-05 2.29582622407E-05 2.31889966122E-05 2.34220499026E-05 2.36574454176E-05 2.38952066968E-05 2.41353575167E-05 2.43779218923E-05 2.46229240805E-05 2.48703885816E-05 2.51203401423E-05 2.53728037580E-05 2.56278046751E-05 2.58853683941E-05 2.61455206715E-05 2.64082875228E-05 2.66736952248E-05 2.69417703185E-05 2.72125396118E-05 2.74860301817E-05 2.77622693775E-05 2.80412848233E-05 2.83231044211E-05 2.86077563528E-05 2.88952690841E-05 2.91856713663E-05 2.94789922400E-05 2.97752610375E-05 3.00745073859E-05 3.03767612101E-05 3.06820527358E-05 3.09904124922E-05 3.13018713158E-05 3.16164603526E-05 3.19342110617E-05 3.22551552186E-05 3.25793249179E-05 3.29067525768E-05 3.32374709384E-05 3.35715130747E-05 3.39089123904E-05 3.42497026256E-05 3.45939178596E-05 3.49415925141E-05 3.52927613571E-05 3.56474595056E-05 3.60057224298E-05 3.63675859562E-05 3.67330862715E-05 3.71022599260E-05 3.74751438375E-05 3.78517752945E-05 3.82321919607E-05 3.86164318779E-05 3.90045334704E-05 3.93965355489E-05 3.97924773137E-05 4.01923983594E-05 4.05963386784E-05 4.10043386651E-05 4.14164391199E-05 4.18326812531E-05 4.22531066892E-05 4.26777574713E-05 4.31066760646E-05 4.35399053615E-05 4.39774886852E-05 4.44194697945E-05 4.48658928877E-05 4.53168026076E-05 4.57722440455E-05 4.62322627460E-05 4.66969047113E-05 4.71662164059E-05 4.76402447616E-05 4.81190371813E-05 4.86026415449E-05 4.90911062132E-05 4.95844800330E-05 5.00828123421E-05 5.05861529742E-05 5.10945522637E-05 5.16080610511E-05 5.21267306875E-05 5.26506130405E-05 5.31797604986E-05 5.37142259771E-05 5.42540629230E-05 5.47993253204E-05 5.53500676959E-05 5.59063451244E-05 5.64682132340E-05 5.70357282119E-05 5.76089468102E-05 5.81879263512E-05 5.87727247333E-05 5.93634004369E-05 5.99600125299E-05 6.05626206742E-05 6.11712851311E-05 6.17860667674E-05 6.24070270619E-05 6.30342281111E-05 6.36677326356E-05 6.43076039865E-05 6.49539061513E-05 6.56067037609E-05 6.62660620955E-05 6.69320470916E-05 6.76047253482E-05 6.82841641336E-05 6.89704313923E-05 6.96635957517E-05 7.03637265287E-05 7.10708937370E-05 7.17851680938E-05 7.25066210273E-05 7.32353246834E-05 7.39713519329E-05 7.47147763793E-05 7.54656723655E-05 7.62241149819E-05 7.69901800733E-05 7.77639442469E-05 7.85454848797E-05 7.93348801265E-05 8.01322089274E-05 8.09375510159E-05 8.17509869270E-05 8.25725980049E-05 8.34024664114E-05 8.42406751341E-05 8.50873079945E-05 8.59424496566E-05 8.68061856352E-05 8.76786023048E-05 8.85597869077E-05 8.94498275630E-05 9.03488132757E-05 9.12568339450E-05 9.21739803737E-05 9.31003442773E-05 9.40360182928E-05 9.49810959886E-05 9.59356718731E-05 9.68998414048E-05 9.78737010013E-05 9.88573480495E-05 9.98508809149E-05 1.00854398952E-04 1.01868002512E-04 1.02891792958E-04 1.03925872669E-04 1.04970345054E-04 1.06025314560E-04 1.07090886687E-04 1.08167167991E-04 1.09254266102E-04 1.10352289731E-04 1.11461348681E-04 1.12581553859E-04 1.13713017286E-04 1.14855852109E-04 1.16010172614E-04 1.17176094232E-04 1.18353733557E-04 1.19543208354E-04 1.20744637572E-04 1.21958141354E-04 1.23183841052E-04 1.24421859237E-04 1.25672319711E-04 1.26935347522E-04 1.28211068973E-04 1.29499611639E-04 1.30801104373E-04 1.32115677327E-04 1.33443461958E-04 1.34784591047E-04 1.36139198708E-04 1.37507420401E-04 1.38889392952E-04 1.40285254557E-04 1.41695144805E-04 1.43119204685E-04 1.44557576605E-04 1.46010404403E-04 1.47477833364E-04 1.48960010230E-04 1.50457083222E-04 1.51969202047E-04 1.53496517919E-04 1.55039183571E-04 1.56597353271E-04 1.58171182836E-04 1.59760829652E-04 1.61366452683E-04 1.62988212494E-04 1.64626271263E-04 1.66280792795E-04 1.67951942546E-04 1.69639887630E-04 1.71344796845E-04 1.73066840683E-04 1.74806191348E-04 1.76563022779E-04 1.78337510658E-04 1.80129832438E-04 1.81940167351E-04 1.83768696432E-04 1.85615602536E-04 1.87481070355E-04 1.89365286437E-04 1.91268439206E-04 1.93190718978E-04 1.95132317982E-04 1.97093430382E-04 1.99074252288E-04 2.01074981786E-04 2.03095818949E-04 2.05136965864E-04 2.07198626646E-04 2.09281007463E-04 2.11384316556E-04 2.13508764256E-04 2.15654563011E-04 2.17821927402E-04 2.20011074166E-04 2.22222222222E-04 2.24455592685E-04 2.26711408895E-04 2.28989896434E-04 2.31291283154E-04 2.33615799195E-04 2.35963677010E-04 2.38335151390E-04 2.40730459483E-04 2.43149840823E-04 2.45593537350E-04 2.48061793435E-04 2.50554855907E-04 2.53072974072E-04 2.55616399746E-04 2.58185387273E-04 2.60780193554E-04 2.63401078071E-04 2.66048302916E-04 2.68722132813E-04 2.71422835147E-04 2.74150679990E-04 2.76905940131E-04 2.79688891095E-04 2.82499811183E-04 2.85338981486E-04 2.88206685926E-04 2.91103211274E-04 2.94028847186E-04 2.96983886228E-04 2.99968623906E-04 3.02983358696E-04 3.06028392075E-04 3.09104028548E-04 3.12210575681E-04 3.15348344132E-04 3.18517647680E-04 3.21718803259E-04 3.24952130985E-04 3.28217954196E-04 3.31516599476E-04 3.34848396692E-04 3.38213679026E-04 3.41612783011E-04 3.45046048558E-04 3.48513818998E-04 3.52016441110E-04 3.55554265159E-04 3.59127644932E-04 3.62736937768E-04 3.66382504600E-04 3.70064709988E-04 3.73783922155E-04 3.77540513026E-04 3.81334858263E-04 3.85167337304E-04 3.89038333399E-04 3.92948233652E-04 3.96897429056E-04 4.00886314533E-04 4.04915288976E-04 4.08984755285E-04 4.13095120410E-04 4.17246795392E-04 4.21440195401E-04 4.25675739781E-04 4.29953852089E-04 4.34274960141E-04 4.38639496051E-04 4.43047896276E-04 4.47500601660E-04 4.51998057477E-04 4.56540713476E-04 4.61129023928E-04 4.65763447665E-04 4.70444448136E-04 4.75172493444E-04 4.79948056397E-04 4.84771614555E-04 4.89643650279E-04 4.94564650776E-04 4.99535108150E-04 5.04555519452E-04 5.09626386725E-04 5.14748217062E-04 5.19921522650E-04 5.25146820824E-04 5.30424634117E-04 5.35755490315E-04 5.41139922509E-04 5.46578469146E-04 5.52071674086E-04 5.57620086653E-04 5.63224261693E-04 5.68884759629E-04 5.74602146515E-04 5.80376994094E-04 5.86209879856E-04 5.92101387095E-04 5.98052104967E-04 6.04062628546E-04 6.10133558893E-04 6.16265503103E-04 6.22459074378E-04 6.28714892078E-04 6.35033581792E-04 6.41415775393E-04 6.47862111106E-04 6.54373233570E-04 6.60949793903E-04 6.67592449766E-04 6.74301865430E-04 6.81078711843E-04 6.87923666694E-04 6.94837414486E-04 7.01820646598E-04 7.08874061359E-04 7.15998364117E-04 7.23194267309E-04 7.30462490530E-04 7.37803760608E-04 7.45218811678E-04 7.52708385249E-04 7.60273230287E-04 7.67914103281E-04 7.75631768325E-04 7.83426997192E-04 7.91300569412E-04 7.99253272349E-04 8.07285901278E-04 8.15399259471E-04 8.23594158269E-04 8.31871417169E-04 8.40231863904E-04 8.48676334526E-04 8.57205673488E-04 8.65820733732E-04 8.74522376771E-04 8.83311472777E-04 8.92188900665E-04 9.01155548188E-04 9.10212312016E-04 9.19360097834E-04 9.28599820427E-04 9.37932403777E-04 9.47358781149E-04 9.56879895188E-04 9.66496698014E-04 9.76210151315E-04 9.86021226445E-04 9.95930904520E-04 1.00594017651E-03 1.01605004336E-03 1.02626151607E-03 1.03657561578E-03 1.04699337391E-03 1.05751583225E-03 1.06814404306E-03 1.07887906916E-03 1.08972198407E-03 1.10067387209E-03 1.11173582841E-03 1.12290895924E-03 1.13419438190E-03 1.14559322494E-03 1.15710662826E-03 1.16873574321E-03 1.18048173271E-03 1.19234577136E-03 1.20432904558E-03 1.21643275372E-03 1.22865810614E-03 1.24100632539E-03 1.25347864632E-03 1.26607631615E-03 1.27880059467E-03 1.29165275431E-03 1.30463408031E-03 1.31774587080E-03 1.33098943697E-03 1.34436610320E-03 1.35787720716E-03 1.37152409997E-03 1.38530814634E-03 1.39923072467E-03 1.41329322724E-03 1.42749706032E-03 1.44184364429E-03 1.45633441382E-03 1.47097081801E-03 1.48575432051E-03 1.50068639967E-03 1.51576854873E-03 1.53100227591E-03 1.54638910459E-03 1.56193057346E-03 1.57762823670E-03 1.59348366408E-03 1.60949844115E-03 1.62567416940E-03 1.64201246643E-03 1.65851496607E-03 1.67518331859E-03 1.69201919084E-03 1.70902426642E-03 1.72620024585E-03 1.74354884674E-03 1.76107180397E-03 1.77877086984E-03 1.79664781429E-03 1.81470442502E-03 1.83294250769E-03 1.85136388615E-03 1.86997040254E-03 1.88876391753E-03 1.90774631048E-03 1.92691947966E-03 1.94628534239E-03 1.96584583527E-03 1.98560291438E-03 2.00555855543E-03 2.02571475401E-03 2.04607352575E-03 2.06663690655E-03 2.08740695277E-03 2.10838574141E-03 2.12957537039E-03 2.15097795868E-03 2.17259564656E-03 2.19443059582E-03 2.21648498996E-03 2.23876103445E-03 2.26126095691E-03 2.28398700734E-03 2.30694145838E-03 2.33012660550E-03 2.35354476721E-03 2.37719828536E-03 2.40108952532E-03 2.42522087623E-03 2.44959475125E-03 2.47421358779E-03 2.49907984775E-03 2.52419601778E-03 2.54956460951E-03 2.57518815983E-03 2.60106923111E-03 2.62721041148E-03 2.65361431508E-03 2.68028358232E-03 2.70722088016E-03 2.73442890234E-03 2.76191036968E-03 2.78966803037E-03 2.81770466019E-03 2.84602306281E-03 2.87462607012E-03 2.90351654243E-03 2.93269736881E-03 2.96217146738E-03 2.99194178556E-03 3.02201130041E-03 3.05238301891E-03 3.08305997825E-03 3.11404524616E-03 3.14534192119E-03 3.17695313304E-03 3.20888204285E-03 3.24113184353E-03 3.27370576010E-03 3.30660704997E-03 3.33983900331E-03 3.37340494332E-03 3.40730822665E-03 3.44155224363E-03 3.47614041871E-03 3.51107621072E-03 3.54636311329E-03 3.58200465512E-03 3.61800440040E-03 3.65436594913E-03 3.69109293751E-03 3.72818903825E-03 3.76565796101E-03 3.80350345270E-03 3.84172929790E-03 3.88033931924E-03 3.91933737774E-03 3.95872737325E-03 3.99851324479E-03 4.03869897099E-03 4.07928857045E-03 4.12028610217E-03 4.16169566593E-03 4.20352140272E-03 4.24576749516E-03 4.28843816789E-03 4.33153768801E-03 4.37507036550E-03 4.41904055368E-03 4.46345264960E-03 4.50831109450E-03 4.55362037427E-03 4.59938501986E-03 4.64560960780E-03 4.69229876056E-03 4.73945714712E-03 4.78708948333E-03 4.83520053249E-03 4.88379510573E-03 4.93287806254E-03 4.98245431128E-03 5.03252880959E-03 5.08310656499E-03 5.13419263527E-03 5.18579212910E-03 5.23791020646E-03 5.29055207921E-03 5.34372301157E-03 5.39742832069E-03 5.45167337714E-03 5.50646360546E-03 5.56180448474E-03 5.61770154910E-03 5.67416038830E-03 5.73118664827E-03 5.78878603167E-03 5.84696429850E-03 5.90572726664E-03 5.96508081242E-03 6.02503087126E-03 6.08558343820E-03 6.14674456856E-03 6.20852037850E-03 6.27091704565E-03 6.33394080973E-03 6.39759797317E-03 6.46189490173E-03 6.52683802518E-03 6.59243383786E-03 6.65868889942E-03 6.72560983542E-03 6.79320333801E-03 6.86147616659E-03 6.93043514851E-03 7.00008717972E-03 7.07043922548E-03 7.14149832106E-03 7.21327157241E-03 7.28576615694E-03 7.35898932415E-03 7.43294839643E-03 7.50765076974E-03 7.58310391439E-03 7.65931537575E-03 7.73629277502E-03 7.81404381002E-03 7.89257625592E-03 7.97189796601E-03 8.05201687255E-03 8.13294098748E-03 8.21467840329E-03 8.29723729379E-03 8.38062591493E-03 8.46485260564E-03 8.54992578867E-03 8.63585397141E-03 8.72264574673E-03 8.81030979391E-03 8.89885487940E-03 8.98828985779E-03 9.07862367266E-03 9.16986535747E-03 9.26202403645E-03 9.35510892555E-03 9.44912933335E-03 9.54409466195E-03 9.64001440797E-03 9.73689816346E-03 9.83475561689E-03 9.93359655407E-03 1.00334308592E-02 1.01342685157E-02 1.02361196076E-02 1.03389943200E-02 1.04429029404E-02 1.05478558597E-02 1.06538635735E-02 1.07609366825E-02 1.08690858942E-02 1.09783220235E-02 1.10886559941E-02 1.12000988396E-02 1.13126617043E-02 1.14263558446E-02 1.15411926300E-02 1.16571835442E-02 1.17743401866E-02 1.18926742728E-02 1.20121976363E-02 1.21329222296E-02 1.22548601252E-02 1.23780235171E-02 1.25024247216E-02 1.26280761790E-02 1.27549904545E-02 1.28831802398E-02 1.30126583538E-02 1.31434377444E-02 1.32755314898E-02 1.34089527994E-02 1.35437150155E-02 1.36798316143E-02 1.38173162077E-02 1.39561825443E-02 1.40964445107E-02 1.42381161333E-02 1.43812115794E-02 1.45257451587E-02 1.46717313245E-02 1.48191846758E-02 1.49681199578E-02 1.51185520643E-02 1.52704960386E-02 1.54239670753E-02 1.55789805215E-02 1.57355518787E-02 1.58936968043E-02 1.60534311127E-02 1.62147707777E-02 1.63777319332E-02 1.65423308756E-02 1.67085840649E-02 1.68765081265E-02 1.70461198530E-02 1.72174362056E-02 1.73904743162E-02 1.75652514888E-02 1.77417852011E-02 1.79200931068E-02 1.81001930367E-02 1.82821030009E-02 1.84658411907E-02 1.86514259801E-02 1.88388759275E-02 1.90282097783E-02 1.92194464659E-02 1.94126051141E-02 1.96077050390E-02 1.98047657508E-02 2.00038069557E-02 2.02048485579E-02 2.04079106618E-02 2.06130135738E-02 2.08201778043E-02 2.10294240700E-02 2.12407732956E-02 2.14542466162E-02 2.16698653793E-02 2.18876511471E-02 2.21076256982E-02 2.23298110303E-02 2.25542293621E-02 2.27809031357E-02 2.30098550185E-02 2.32411079060E-02 2.34746849237E-02 2.37106094294E-02 2.39489050159E-02 2.41895955128E-02 2.44327049894E-02 2.46782577568E-02 2.49262783706E-02 2.51767916330E-02 2.54298225956E-02 2.56853965616E-02 2.59435390887E-02 2.62042759913E-02 2.64676333433E-02 2.67336374807E-02 2.70023150042E-02 2.72736927816E-02 2.75477979511E-02 2.78246579233E-02 2.81043003845E-02 2.83867532991E-02 2.86720449128E-02 2.89602037548E-02 2.92512586413E-02 2.95452386781E-02 2.98421732633E-02 3.01420920908E-02 3.04450251525E-02 3.07510027422E-02 3.10600554578E-02 3.13722142048E-02 3.16875101993E-02 3.20059749713E-02 3.23276403675E-02 3.26525385546E-02 3.29807020228E-02 3.33121635887E-02 3.36469563987E-02 3.39851139324E-02 3.43266700058E-02 3.46716587748E-02 3.50201147385E-02 3.53720727430E-02 3.57275679841E-02 3.60866360119E-02 3.64493127333E-02 3.68156344164E-02 3.71856376936E-02 3.75593595655E-02 3.79368374047E-02 3.83181089593E-02 3.87032123567E-02 3.90921861076E-02 3.94850691096E-02 3.98819006515E-02 4.02827204167E-02 4.06875684875E-02 4.10964853490E-02 4.15095118934E-02 4.19266894235E-02 4.23480596575E-02 4.27736647327E-02 4.32035472101E-02 4.36377500782E-02 4.40763167576E-02 4.45192911055E-02 4.49667174196E-02 4.54186404429E-02 4.58751053681E-02 4.63361578420E-02 4.68018439704E-02 4.72722103221E-02 4.77473039343E-02 4.82271723167E-02 4.87118634564E-02 4.92014258232E-02 4.96959083735E-02 5.01953605560E-02 5.06998323164E-02 5.12093741024E-02 5.17240368684E-02 5.22438720812E-02 5.27689317247E-02 5.32992683054E-02 5.38349348573E-02 5.43759849476E-02 5.49224726817E-02 5.54744527088E-02 5.60319802274E-02 5.65951109908E-02 5.71639013124E-02 5.77384080718E-02 5.83186887201E-02 5.89048012858E-02 5.94968043808E-02 6.00947572058E-02 6.06987195566E-02 6.13087518300E-02 6.19249150296E-02 6.25472707723E-02 6.31758812942E-02 6.38108094569E-02 6.44521187537E-02 6.50998733161E-02 6.57541379201E-02 6.64149779927E-02 6.70824596184E-02 6.77566495460E-02 6.84376151950E-02 6.91254246625E-02 6.98201467302E-02 7.05218508706E-02 7.12306072550E-02 7.19464867594E-02 7.26695609724E-02 7.33999022021E-02 7.41375834832E-02 7.48826785845E-02 7.56352620159E-02 7.63954090367E-02 7.71631956619E-02 7.79386986711E-02 7.87219956151E-02 7.95131648242E-02 8.03122854161E-02 8.11194373034E-02 8.19347012021E-02 8.27581586392E-02 8.35898919611E-02 8.44299843418E-02 8.52785197914E-02 8.61355831640E-02 8.70012601666E-02 8.78756373678E-02 8.87588022060E-02 8.96508429984E-02 9.05518489498E-02 9.14619101615E-02 9.23811176404E-02 9.33095633082E-02 9.42473400099E-02 9.51945415243E-02 9.61512625721E-02 9.71175988263E-02 9.80936469213E-02 9.90795044628E-02 1.00075270037E-01 1.01081043222E-01 1.02096924596E-01 1.03123015747E-01 1.04159419285E-01 1.05206238852E-01 1.06263579131E-01 1.07331545856E-01 1.08410245825E-01 1.09499786910E-01 1.10600278064E-01 1.11711829338E-01 1.12834551888E-01 1.13968557987E-01 1.15113961037E-01 1.16270875580E-01 1.17439417306E-01 1.18619703072E-01 1.19811850908E-01 1.21015980028E-01 1.22232210847E-01 1.23460664989E-01 1.24701465301E-01 1.25954735863E-01 1.27220602003E-01 1.28499190310E-01 1.29790628643E-01 1.31095046146E-01 1.32412573264E-01 1.33743341749E-01 1.35087484680E-01 1.36445136472E-01 1.37816432892E-01 1.39201511069E-01 1.40600509514E-01 1.42013568127E-01 1.43440828214E-01 1.44882432505E-01 1.46338525159E-01 1.47809251788E-01 1.49294759465E-01 1.50795196742E-01 1.52310713665E-01 1.53841461786E-01 1.55387594181E-01 1.56949265466E-01 1.58526631807E-01 1.60119850944E-01 1.61729082200E-01 1.63354486498E-01 1.64996226381E-01 1.66654466025E-01 1.68329371254E-01 1.70021109560E-01 1.71729850119E-01 1.73455763806E-01 1.75199023214E-01 1.76959802670E-01 1.78738278254E-01 1.80534627815E-01 1.82349030989E-01 1.84181669218E-01 1.86032725768E-01 1.87902385745E-01 1.89790836117E-01 1.91698265731E-01 1.93624865331E-01 1.95570827580E-01 1.97536347073E-01 1.99521620367E-01 2.01526845988E-01 2.03552224462E-01 2.05597958329E-01 2.07664252162E-01 2.09751312594E-01 2.11859348331E-01 2.13988570180E-01 2.16139191065E-01 2.18311426049E-01 2.20505492357E-01 2.22721609398E-01 2.24959998786E-01 2.27220884361E-01 2.29504492213E-01 2.31811050707E-01 2.34140790498E-01 2.36493944564E-01 2.38870748221E-01 2.41271439152E-01 2.43696257429E-01 2.46145445533E-01 2.48619248388E-01 2.51117913375E-01 2.53641690362E-01 2.56190831730E-01 2.58765592394E-01 2.61366229833E-01 2.63993004113E-01 2.66646177914E-01 2.69326016554E-01 2.72032788020E-01 2.74766762992E-01 2.77528214870E-01 2.80317419800E-01 2.83134656705E-01 2.85980207312E-01 2.88854356179E-01 2.91757390721E-01 2.94689601246E-01 2.97651280977E-01 3.00642726083E-01 3.03664235713E-01 3.06716112019E-01 3.09798660193E-01 3.12912188490E-01 3.16057008267E-01 3.19233434008E-01 3.22441783359E-01 3.25682377156E-01 3.28955539463E-01 3.32261597598E-01 3.35600882170E-01 3.38973727109E-01 3.42380469704E-01 3.45821450630E-01 3.49297013991E-01 3.52807507343E-01 3.56353281741E-01 3.59934691763E-01 3.63552095555E-01 3.67205854859E-01 3.70896335054E-01 3.74623905193E-01 3.78388938034E-01 3.82191810084E-01 3.86032901633E-01 3.89912596794E-01 3.93831283540E-01 3.97789353743E-01 4.01787203212E-01 4.05825231737E-01 4.09903843123E-01 4.14023445235E-01 4.18184450036E-01 4.22387273631E-01 4.26632336305E-01 4.30920062569E-01 4.35250881197E-01 4.39625225277E-01 4.44043532245E-01 4.48506243937E-01 4.53013806627E-01 4.57566671075E-01 4.62165292571E-01 4.66810130982E-01 4.71501650795E-01 4.76240321166E-01 4.81026615966E-01 4.85861013828E-01 4.90743998197E-01 4.95676057375E-01 5.00657684571E-01 5.05689377953E-01 5.10771640694E-01 5.15904981025E-01 5.21089912284E-01 5.26326952968E-01 5.31616626786E-01 5.36959462710E-01 5.42355995028E-01 5.47806763397E-01 5.53312312899E-01 5.58873194093E-01 5.64489963073E-01 5.70163181519E-01 5.75893416758E-01 5.81681241819E-01 5.87527235489E-01 5.93431982373E-01 5.99396072949E-01 -1.10906234580E+01 -1.10906233149E+01 -1.10906231855E+01 -1.10906230343E+01 -1.10906230965E+01 -1.10906232050E+01 -1.10906232377E+01 -1.10906231994E+01 -1.10906231423E+01 -1.10906231423E+01 -1.10906230904E+01 -1.10906230326E+01 -1.10906230989E+01 -1.10906231549E+01 -1.10906231488E+01 -1.10906231069E+01 -1.10906230881E+01 -1.10906231867E+01 -1.10906232209E+01 -1.10906231145E+01 -1.10906230956E+01 -1.10906231213E+01 -1.10906230682E+01 -1.10906230560E+01 -1.10906231430E+01 -1.10906232236E+01 -1.10906232525E+01 -1.10906232002E+01 -1.10906230974E+01 -1.10906230958E+01 -1.10906231364E+01 -1.10906231484E+01 -1.10906231572E+01 -1.10906231405E+01 -1.10906231544E+01 -1.10906231996E+01 -1.10906231743E+01 -1.10906231812E+01 -1.10906232162E+01 -1.10906231482E+01 -1.10906231288E+01 -1.10906231761E+01 -1.10906231554E+01 -1.10906231343E+01 -1.10906231632E+01 -1.10906231892E+01 -1.10906232119E+01 -1.10906231958E+01 -1.10906231163E+01 -1.10906231107E+01 -1.10906231626E+01 -1.10906231828E+01 -1.10906231585E+01 -1.10906230883E+01 -1.10906230913E+01 -1.10906231593E+01 -1.10906231713E+01 -1.10906231477E+01 -1.10906231487E+01 -1.10906231579E+01 -1.10906231529E+01 -1.10906231601E+01 -1.10906231675E+01 -1.10906231720E+01 -1.10906231872E+01 -1.10906231588E+01 -1.10906231368E+01 -1.10906231497E+01 -1.10906231299E+01 -1.10906231131E+01 -1.10906231117E+01 -1.10906231153E+01 -1.10906231368E+01 -1.10906231465E+01 -1.10906231629E+01 -1.10906231691E+01 -1.10906231550E+01 -1.10906231461E+01 -1.10906231420E+01 -1.10906231536E+01 -1.10906231657E+01 -1.10906231724E+01 -1.10906231645E+01 -1.10906231427E+01 -1.10906231297E+01 -1.10906231403E+01 -1.10906231465E+01 -1.10906231324E+01 -1.10906231386E+01 -1.10906231502E+01 -1.10906231446E+01 -1.10906231432E+01 -1.10906231406E+01 -1.10906231276E+01 -1.10906231272E+01 -1.10906231439E+01 -1.10906231534E+01 -1.10906231445E+01 -1.10906231367E+01 -1.10906231407E+01 -1.10906231443E+01 -1.10906231465E+01 -1.10906231432E+01 -1.10906231437E+01 -1.10906231442E+01 -1.10906231372E+01 -1.10906231349E+01 -1.10906231264E+01 -1.10906231176E+01 -1.10906231282E+01 -1.10906231383E+01 -1.10906231294E+01 -1.10906231259E+01 -1.10906231314E+01 -1.10906231238E+01 -1.10906231140E+01 -1.10906231148E+01 -1.10906231286E+01 -1.10906231355E+01 -1.10906231166E+01 -1.10906231089E+01 -1.10906231220E+01 -1.10906231244E+01 -1.10906231151E+01 -1.10906231178E+01 -1.10906231278E+01 -1.10906231263E+01 -1.10906231204E+01 -1.10906231147E+01 -1.10906231105E+01 -1.10906231123E+01 -1.10906231138E+01 -1.10906231124E+01 -1.10906231113E+01 -1.10906231106E+01 -1.10906231056E+01 -1.10906230987E+01 -1.10906230982E+01 -1.10906231019E+01 -1.10906231021E+01 -1.10906230928E+01 -1.10906230878E+01 -1.10906230951E+01 -1.10906230996E+01 -1.10906230961E+01 -1.10906230926E+01 -1.10906230926E+01 -1.10906230908E+01 -1.10906230843E+01 -1.10906230788E+01 -1.10906230815E+01 -1.10906230817E+01 -1.10906230750E+01 -1.10906230766E+01 -1.10906230777E+01 -1.10906230752E+01 -1.10906230726E+01 -1.10906230647E+01 -1.10906230626E+01 -1.10906230666E+01 -1.10906230659E+01 -1.10906230627E+01 -1.10906230608E+01 -1.10906230589E+01 -1.10906230563E+01 -1.10906230511E+01 -1.10906230477E+01 -1.10906230496E+01 -1.10906230499E+01 -1.10906230444E+01 -1.10906230405E+01 -1.10906230395E+01 -1.10906230327E+01 -1.10906230260E+01 -1.10906230277E+01 -1.10906230300E+01 -1.10906230269E+01 -1.10906230234E+01 -1.10906230217E+01 -1.10906230166E+01 -1.10906230114E+01 -1.10906230081E+01 -1.10906230039E+01 -1.10906230019E+01 -1.10906230011E+01 -1.10906229958E+01 -1.10906229881E+01 -1.10906229861E+01 -1.10906229843E+01 -1.10906229807E+01 -1.10906229789E+01 -1.10906229742E+01 -1.10906229689E+01 -1.10906229635E+01 -1.10906229570E+01 -1.10906229542E+01 -1.10906229538E+01 -1.10906229508E+01 -1.10906229455E+01 -1.10906229403E+01 -1.10906229351E+01 -1.10906229314E+01 -1.10906229266E+01 -1.10906229211E+01 -1.10906229165E+01 -1.10906229103E+01 -1.10906229034E+01 -1.10906228973E+01 -1.10906228928E+01 -1.10906228889E+01 -1.10906228842E+01 -1.10906228774E+01 -1.10906228707E+01 -1.10906228661E+01 -1.10906228610E+01 -1.10906228537E+01 -1.10906228462E+01 -1.10906228395E+01 -1.10906228332E+01 -1.10906228267E+01 -1.10906228205E+01 -1.10906228150E+01 -1.10906228072E+01 -1.10906227979E+01 -1.10906227908E+01 -1.10906227839E+01 -1.10906227764E+01 -1.10906227687E+01 -1.10906227601E+01 -1.10906227520E+01 -1.10906227448E+01 -1.10906227362E+01 -1.10906227257E+01 -1.10906227168E+01 -1.10906227087E+01 -1.10906226999E+01 -1.10906226898E+01 -1.10906226790E+01 -1.10906226696E+01 -1.10906226595E+01 -1.10906226483E+01 -1.10906226382E+01 -1.10906226283E+01 -1.10906226172E+01 -1.10906226052E+01 -1.10906225937E+01 -1.10906225828E+01 -1.10906225711E+01 -1.10906225587E+01 -1.10906225466E+01 -1.10906225340E+01 -1.10906225207E+01 -1.10906225071E+01 -1.10906224934E+01 -1.10906224798E+01 -1.10906224661E+01 -1.10906224516E+01 -1.10906224372E+01 -1.10906224230E+01 -1.10906224082E+01 -1.10906223921E+01 -1.10906223754E+01 -1.10906223592E+01 -1.10906223429E+01 -1.10906223262E+01 -1.10906223092E+01 -1.10906222920E+01 -1.10906222750E+01 -1.10906222567E+01 -1.10906222374E+01 -1.10906222184E+01 -1.10906221995E+01 -1.10906221802E+01 -1.10906221596E+01 -1.10906221390E+01 -1.10906221183E+01 -1.10906220967E+01 -1.10906220746E+01 -1.10906220521E+01 -1.10906220297E+01 -1.10906220069E+01 -1.10906219830E+01 -1.10906219586E+01 -1.10906219342E+01 -1.10906219093E+01 -1.10906218831E+01 -1.10906218565E+01 -1.10906218301E+01 -1.10906218031E+01 -1.10906217750E+01 -1.10906217465E+01 -1.10906217174E+01 -1.10906216877E+01 -1.10906216576E+01 -1.10906216268E+01 -1.10906215951E+01 -1.10906215632E+01 -1.10906215308E+01 -1.10906214972E+01 -1.10906214631E+01 -1.10906214281E+01 -1.10906213920E+01 -1.10906213555E+01 -1.10906213183E+01 -1.10906212805E+01 -1.10906212421E+01 -1.10906212026E+01 -1.10906211622E+01 -1.10906211212E+01 -1.10906210794E+01 -1.10906210364E+01 -1.10906209926E+01 -1.10906209479E+01 -1.10906209023E+01 -1.10906208556E+01 -1.10906208081E+01 -1.10906207599E+01 -1.10906207105E+01 -1.10906206598E+01 -1.10906206080E+01 -1.10906205552E+01 -1.10906205014E+01 -1.10906204463E+01 -1.10906203903E+01 -1.10906203332E+01 -1.10906202747E+01 -1.10906202150E+01 -1.10906201541E+01 -1.10906200918E+01 -1.10906200283E+01 -1.10906199633E+01 -1.10906198970E+01 -1.10906198293E+01 -1.10906197601E+01 -1.10906196895E+01 -1.10906196174E+01 -1.10906195440E+01 -1.10906194689E+01 -1.10906193921E+01 -1.10906193137E+01 -1.10906192337E+01 -1.10906191520E+01 -1.10906190684E+01 -1.10906189831E+01 -1.10906188958E+01 -1.10906188068E+01 -1.10906187158E+01 -1.10906186229E+01 -1.10906185280E+01 -1.10906184311E+01 -1.10906183321E+01 -1.10906182311E+01 -1.10906181278E+01 -1.10906180221E+01 -1.10906179143E+01 -1.10906178042E+01 -1.10906176917E+01 -1.10906175767E+01 -1.10906174592E+01 -1.10906173391E+01 -1.10906172162E+01 -1.10906170907E+01 -1.10906169627E+01 -1.10906168318E+01 -1.10906166979E+01 -1.10906165612E+01 -1.10906164215E+01 -1.10906162785E+01 -1.10906161324E+01 -1.10906159832E+01 -1.10906158306E+01 -1.10906156746E+01 -1.10906155151E+01 -1.10906153522E+01 -1.10906151855E+01 -1.10906150151E+01 -1.10906148409E+01 -1.10906146628E+01 -1.10906144806E+01 -1.10906142944E+01 -1.10906141041E+01 -1.10906139093E+01 -1.10906137100E+01 -1.10906135064E+01 -1.10906132980E+01 -1.10906130848E+01 -1.10906128669E+01 -1.10906126438E+01 -1.10906124157E+01 -1.10906121823E+01 -1.10906119435E+01 -1.10906116992E+01 -1.10906114492E+01 -1.10906111934E+01 -1.10906109316E+01 -1.10906106637E+01 -1.10906103895E+01 -1.10906101089E+01 -1.10906098217E+01 -1.10906095277E+01 -1.10906092267E+01 -1.10906089186E+01 -1.10906086031E+01 -1.10906082800E+01 -1.10906079492E+01 -1.10906076104E+01 -1.10906072635E+01 -1.10906069082E+01 -1.10906065444E+01 -1.10906061715E+01 -1.10906057897E+01 -1.10906053985E+01 -1.10906049976E+01 -1.10906045869E+01 -1.10906041661E+01 -1.10906037348E+01 -1.10906032928E+01 -1.10906028397E+01 -1.10906023752E+01 -1.10906018990E+01 -1.10906014109E+01 -1.10906009104E+01 -1.10906003972E+01 -1.10905998708E+01 -1.10905993310E+01 -1.10905987772E+01 -1.10905982092E+01 -1.10905976265E+01 -1.10905970286E+01 -1.10905964151E+01 -1.10905957855E+01 -1.10905951394E+01 -1.10905944761E+01 -1.10905937952E+01 -1.10905930962E+01 -1.10905923785E+01 -1.10905916415E+01 -1.10905908845E+01 -1.10905901071E+01 -1.10905893084E+01 -1.10905884879E+01 -1.10905876449E+01 -1.10905867786E+01 -1.10905858883E+01 -1.10905849731E+01 -1.10905840323E+01 -1.10905830650E+01 -1.10905820704E+01 -1.10905810476E+01 -1.10905799956E+01 -1.10905789134E+01 -1.10905778000E+01 -1.10905766544E+01 -1.10905754753E+01 -1.10905742618E+01 -1.10905730127E+01 -1.10905717266E+01 -1.10905704023E+01 -1.10905690385E+01 -1.10905676337E+01 -1.10905661865E+01 -1.10905646954E+01 -1.10905631588E+01 -1.10905615751E+01 -1.10905599426E+01 -1.10905582594E+01 -1.10905565238E+01 -1.10905547337E+01 -1.10905528872E+01 -1.10905509822E+01 -1.10905490165E+01 -1.10905469877E+01 -1.10905448936E+01 -1.10905427315E+01 -1.10905404989E+01 -1.10905381930E+01 -1.10905358111E+01 -1.10905333501E+01 -1.10905308070E+01 -1.10905281784E+01 -1.10905254611E+01 -1.10905226515E+01 -1.10905197458E+01 -1.10905167402E+01 -1.10905136305E+01 -1.10905104128E+01 -1.10905070823E+01 -1.10905036346E+01 -1.10905000646E+01 -1.10904963673E+01 -1.10904925375E+01 -1.10904885693E+01 -1.10904844571E+01 -1.10904801946E+01 -1.10904757754E+01 -1.10904711927E+01 -1.10904664395E+01 -1.10904615083E+01 -1.10904563912E+01 -1.10904510801E+01 -1.10904455664E+01 -1.10904398410E+01 -1.10904338945E+01 -1.10904277167E+01 -1.10904212974E+01 -1.10904146254E+01 -1.10904076892E+01 -1.10904004767E+01 -1.10903929749E+01 -1.10903851705E+01 -1.10903770492E+01 -1.10903685962E+01 -1.10903597958E+01 -1.10903506314E+01 -1.10903410856E+01 -1.10903311402E+01 -1.10903207758E+01 -1.10903099721E+01 -1.10902987076E+01 -1.10902869598E+01 -1.10902747048E+01 -1.10902619176E+01 -1.10902485714E+01 -1.10902346386E+01 -1.10902200895E+01 -1.10902048931E+01 -1.10901890163E+01 -1.10901724247E+01 -1.10901550814E+01 -1.10901369479E+01 -1.10901179831E+01 -1.10900981439E+01 -1.10900773846E+01 -1.10900556569E+01 -1.10900329099E+01 -1.10900090894E+01 -1.10899841385E+01 -1.10899579967E+01 -1.10899306001E+01 -1.10899018810E+01 -1.10898717680E+01 -1.10898401851E+01 -1.10898070523E+01 -1.10897722843E+01 -1.10897357914E+01 -1.10896974781E+01 -1.10896572434E+01 -1.10896149803E+01 -1.10895705753E+01 -1.10895239081E+01 -1.10894748513E+01 -1.10894232694E+01 -1.10893690194E+01 -1.10893119491E+01 -1.10892518971E+01 -1.10891886924E+01 -1.10891221534E+01 -1.10890520875E+01 -1.10889782902E+01 -1.10889005447E+01 -1.10888186205E+01 -1.10887322731E+01 -1.10886412431E+01 -1.10885452550E+01 -1.10884440162E+01 -1.10883372161E+01 -1.10882245249E+01 -1.10881055924E+01 -1.10879800467E+01 -1.10878474927E+01 -1.10877075112E+01 -1.10875596568E+01 -1.10874034567E+01 -1.10872384086E+01 -1.10870639793E+01 -1.10868796029E+01 -1.10866846784E+01 -1.10864785679E+01 -1.10862605942E+01 -1.10860300387E+01 -1.10857861391E+01 -1.10855280865E+01 -1.10852550229E+01 -1.10849660385E+01 -1.10846601689E+01 -1.10843363918E+01 -1.10839936241E+01 -1.10836307188E+01 -1.10832464616E+01 -1.10828395674E+01 -1.10824086769E+01 -1.10819523532E+01 -1.10814690781E+01 -1.10809572484E+01 -1.10804151729E+01 -1.10798410683E+01 -1.10792330561E+01 -1.10785891595E+01 -1.10779073001E+01 -1.10771852949E+01 -1.10764208548E+01 -1.10756115823E+01 -1.10747549698E+01 -1.10738483995E+01 -1.10728891437E+01 -1.10718743659E+01 -1.10708011239E+01 -1.10696663736E+01 -1.10684669751E+01 -1.10671997006E+01 -1.10658612453E+01 -1.10644482407E+01 -1.10629572710E+01 -1.10613848942E+01 -1.10597276673E+01 -1.10579821765E+01 -1.10561450732E+01 -1.10542131175E+01 -1.10521832296E+01 -1.10500525482E+01 -1.10478185058E+01 -1.10454789027E+01 -1.10430320035E+01 -1.10404766615E+01 -1.10378124236E+01 -1.10350396864E+01 -1.10321598726E+01 -1.10291756148E+01 -1.10260909804E+01 -1.10229117022E+01 -1.10196454978E+01 -1.10163023686E+01 -1.10128949494E+01 -1.10094389773E+01 -1.10059537099E+01 -1.10024624392E+01 -1.09989931169E+01 -1.09955789823E+01 -1.09922592963E+01 -1.09890801681E+01 -1.09860954298E+01 -1.09833676534E+01 -1.09809692441E+01 -1.09789836329E+01 -1.09775066142E+01 -1.09766477571E+01 -1.09765319842E+01 -1.09773012258E+01 -1.09791162281E+01 -1.09821584755E+01 -1.09866321768E+01 -1.09927664220E+01 -1.10008173513E+01 -1.10110703965E+01 -1.10238425492E+01 -1.10394845796E+01 -1.10583832093E+01 -1.10809630826E+01 -1.11076885466E+01 -1.11390650565E+01 -1.11756401358E+01 -1.12180039121E+01 -1.12667885072E+01 -1.13226668155E+01 -1.13863501353E+01 -1.14585843504E+01 -1.15401445711E+01 -1.16318275270E+01 -1.17344428209E+01 -1.18488005461E+01 -1.19756969509E+01 -1.21158980452E+01 -1.22701181156E+01 -1.24389965925E+01 -1.26230722999E+01 -1.28227527612E+01 -1.30382818946E+01 -1.32697055308E+01 -1.35168341000E+01 -1.37792063664E+01 -1.40560506105E+01 -1.43462492841E+01 -1.46483078926E+01 -1.49603268565E+01 -1.52799824108E+01 -1.56045144017E+01 -1.59307307609E+01 -1.62550217597E+01 -1.65733891035E+01 -1.68814979343E+01 -1.71747405455E+01 -1.74483215372E+01 -1.76973600422E+01 -1.79170066335E+01 -1.81025716805E+01 -1.82496626481E+01 -1.83543261908E+01 -1.84131821081E+01 -1.84235532868E+01 -1.83835771959E+01 -1.82922935838E+01 -1.81497097636E+01 -1.79568295273E+01 -1.77156482889E+01 -1.74291157221E+01 -1.71010622773E+01 -1.67360942720E+01 -1.63394639505E+01 -1.59169192667E+01 -1.54745399148E+01 -1.50185680157E+01 -1.45552414169E+01 -1.40906361991E+01 -1.36305235998E+01 -1.31802468689E+01 -1.27446222002E+01 -1.23278634509E+01 -1.19335337081E+01 -1.15645217953E+01 -1.12230382740E+01 -1.09106358464E+01 -1.06282454544E+01 -1.03762218564E+01 -1.01544036685E+01 -9.96217866087E+00 -9.79855104972E+00 -9.66220820713E+00 -9.55158910133E+00 -9.46494801997E+00 -9.40040911390E+00 -9.35602291184E+00 -9.32981150851E+00 -9.31980504641E+00 -9.32407848153E+00 -9.34077724048E+00 -9.36813693155E+00 -9.40450081246E+00 -9.44832948954E+00 -9.49820795550E+00 -9.55284906076E+00 -9.61109294576E+00 -9.67190516251E+00 -9.73437231956E+00 -9.79769633566E+00 -9.86118784387E+00 -9.92425814899E+00 -9.98641149270E+00 -1.00472372028E+01 -1.01064007509E+01 -1.01636362670E+01 -1.02187390540E+01 -1.02715576446E+01 -1.03219870762E+01 -1.03699630867E+01 -1.04154556569E+01 -1.04584636239E+01 -1.04990104787E+01 -1.05371395298E+01 -1.05729101445E+01 -1.06063945585E+01 -1.06376748097E+01 -1.06668401836E+01 -1.06939850244E+01 -1.07192068829E+01 -1.07426048858E+01 -1.07642784568E+01 -1.07843262109E+01 -1.08028450445E+01 -1.08199294683E+01 -1.08356710362E+01 -1.08501578882E+01 -1.08634744862E+01 -1.08757014100E+01 -1.08869152009E+01 -1.08971883032E+01 -1.09065890687E+01 -1.09151818045E+01 -1.09230268376E+01 -1.09301806231E+01 -1.09366958766E+01 -1.09426217172E+01 -1.09480038272E+01 -1.09528846109E+01 -1.09573033657E+01 -1.09612964523E+01 -1.09648974628E+01 -1.09681373890E+01 -1.09710447843E+01 -1.09736459208E+01 -1.09759649440E+01 -1.09780240147E+01 -1.09798434501E+01 -1.09814418560E+01 -1.09828362497E+01 -1.09840421799E+01 -1.09850738341E+01 -1.09859441445E+01 -1.09866648841E+01 -1.09872467563E+01 -1.09876994805E+01 -1.09880318692E+01 -1.09882519006E+01 -1.09883667864E+01 -1.09883830340E+01 -1.09883065038E+01 -1.09881424627E+01 -1.09878956327E+01 -1.09875702367E+01 -1.09871700400E+01 -1.09866983884E+01 -1.09861582438E+01 -1.09855522165E+01 -1.09848825951E+01 -1.09841513740E+01 -1.09833602782E+01 -1.09825107871E+01 -1.09816041553E+01 -1.09806414322E+01 -1.09796234798E+01 -1.09785509898E+01 -1.09774244980E+01 -1.09762443985E+01 -1.09750109569E+01 -1.09737243215E+01 -1.09723845343E+01 -1.09709915416E+01 -1.09695452024E+01 -1.09680452972E+01 -1.09664915362E+01 -1.09648835660E+01 -1.09632209768E+01 -1.09615033082E+01 -1.09597300552E+01 -1.09579006736E+01 -1.09560145846E+01 -1.09540711797E+01 -1.09520698248E+01 -1.09500098642E+01 -1.09478906243E+01 -1.09457114171E+01 -1.09434715430E+01 -1.09411702943E+01 -1.09388069576E+01 -1.09363808164E+01 -1.09338911538E+01 -1.09313372541E+01 -1.09287184056E+01 -1.09260339022E+01 -1.09232830449E+01 -1.09204651442E+01 -1.09175795210E+01 -1.09146255087E+01 -1.09116024539E+01 -1.09085097183E+01 -1.09053466796E+01 -1.09021127329E+01 -1.08988072917E+01 -1.08954297886E+01 -1.08919796771E+01 -1.08884564319E+01 -1.08848595502E+01 -1.08811885525E+01 -1.08774429835E+01 -1.08736224135E+01 -1.08697264385E+01 -1.08657546818E+01 -1.08617067951E+01 -1.08575824588E+01 -1.08533813839E+01 -1.08491033125E+01 -1.08447480193E+01 -1.08403153126E+01 -1.08358050362E+01 -1.08312170699E+01 -1.08265513318E+01 -1.08218077796E+01 -1.08169864123E+01 -1.08120872721E+01 -1.08071104464E+01 -1.08020560699E+01 -1.07969243271E+01 -1.07917154542E+01 -1.07864297424E+01 -1.07810675402E+01 -1.07756292565E+01 -1.07701153641E+01 -1.07645264026E+01 -1.07588629824E+01 -1.07531257885E+01 -1.07473155845E+01 -1.07414332172E+01 -1.07354796208E+01 -1.07294558223E+01 -1.07233629465E+01 -1.07172022215E+01 -1.07109749843E+01 -1.07046826876E+01 -1.06983269054E+01 -1.06919093405E+01 -1.06854318314E+01 -1.06788963599E+01 -1.06723050590E+01 -1.06656602210E+01 -1.06589643067E+01 -1.06522199539E+01 -1.06454299873E+01 -1.06385974280E+01 -1.06317255042E+01 -1.06248176616E+01 -1.06178775748E+01 -1.06109091584E+01 -1.06039165792E+01 -1.05969042681E+01 -1.05898769332E+01 -1.05828395725E+01 -1.05757974868E+01 -1.05687562939E+01 -1.05617219417E+01 -1.05547007225E+01 -1.05476992868E+01 -1.05407246577E+01 -1.05337842444E+01 -1.05268858570E+01 -1.05200377190E+01 -1.05132484820E+01 -1.05065272375E+01 -1.04998835297E+01 -1.04933273669E+01 -1.04868692315E+01 -1.04805200900E+01 -1.04742914001E+01 -1.04681951172E+01 -1.04622436980E+01 -1.04564501028E+01 -1.04508277941E+01 -1.04453907331E+01 -1.04401533716E+01 -1.04351306412E+01 -1.04303379374E+01 -1.04257910988E+01 -1.04215063812E+01 -1.04175004253E+01 -1.04137902181E+01 -1.04103930465E+01 -1.04073264435E+01 -1.04046081257E+01 -1.04022559207E+01 -1.04002876857E+01 -1.03987212139E+01 -1.03975741306E+01 -1.03968637768E+01 -1.03966070794E+01 -1.03968204088E+01 -1.03975194221E+01 -1.03987188927E+01 -1.04004325241E+01 -1.04026727500E+01 -1.04054505197E+01 -1.04087750677E+01 -1.04126536712E+01 -1.04170913931E+01 -1.04220908129E+01 -1.04276517475E+01 -1.04337709626E+01 -1.04404418773E+01 -1.04476542652E+01 -1.04553939540E+01 -1.04636425284E+01 -1.04723770396E+01 -1.04815697272E+01 -1.04911877567E+01 -1.05011929811E+01 -1.05115417306E+01 -1.05221846372E+01 -1.05330665032E+01 -1.05441262175E+01 -1.05552967300E+01 -1.05665050901E+01 -1.05776725563E+01 -1.05887147848E+01 -1.05995421024E+01 -1.06100598707E+01 -1.06201689447E+01 -1.06297662311E+01 -1.06387453480E+01 -1.06469973851E+01 -1.06544117661E+01 -1.06608772071E+01 -1.06662827669E+01 -1.06705189811E+01 -1.06734790689E+01 -1.06750602002E+01 -1.06751648060E+01 -1.06737019146E+01 -1.06705884930E+01 -1.06657507678E+01 -1.06591255036E+01 -1.06506612090E+01 -1.06403192433E+01 -1.06280747944E+01 -1.06139177005E+01 -1.05978530857E+01 -1.05799017866E+01 -1.05601005453E+01 -1.05385019519E+01 -1.05151741237E+01 -1.04902001145E+01 -1.04636770567E+01 -1.04357150450E+01 -1.04064357814E+01 -1.03759710094E+01 -1.03444607727E+01 -1.03120515429E+01 -1.02788942658E+01 -1.02451423800E+01 -1.02109498634E+01 -1.01764693615E+01 -1.01418504500E+01 -1.01072380746E+01 -1.00727712069E+01 -1.00385817411E+01 -1.00047936490E+01 -9.97152239664E+00 -9.93887461725E+00 -9.90694802282E+00 -9.87583153042E+00 -9.84560557112E+00 -9.81634254541E+00 -9.78810738622E+00 -9.76095818974E+00 -9.73494687513E+00 -9.71011983634E+00 -9.68651855205E+00 -9.66418012352E+00 -9.64313771376E+00 -9.62342086547E+00 -9.60505567902E+00 -9.58806483560E+00 -9.57246745429E+00 -9.55827877622E+00 -9.54550967291E+00 -9.53416598152E+00 -9.52424767556E+00 -9.51574788724E+00 -9.50865180651E+00 -9.50293549215E+00 -9.49856464263E+00 -9.49549338685E+00 -9.49366316863E+00 -9.49300181112E+00 -9.49342285785E+00 -9.49482529349E+00 -9.49709374773E+00 -9.50009927821E+00 -9.50370081082E+00 -9.50774728774E+00 -9.51208053394E+00 -9.51653880436E+00 -9.52096091855E+00 -9.52519083196E+00 -9.52908243997E+00 -9.53250436795E+00 -9.53534447513E+00 -9.53751379690E+00 -9.53894967226E+00 -9.53961784964E+00 -9.53951343283E+00 -9.53866061085E+00 -9.53711120388E+00 -9.53494214108E+00 -9.53225205684E+00 -9.52915724235E+00 -9.52578721547E+00 -9.52228017351E+00 -9.51877857231E+00 -9.51542503694E+00 -9.51235875948E+00 -9.50971248550E+00 -9.50761013777E+00 -9.50616507874E+00 -9.50547897530E+00 -9.50564120158E+00 -9.50672869802E+00 -9.50880619723E+00 -9.51192672657E+00 -9.51613230319E+00 -9.52145474668E+00 -9.52791654596E+00 -9.53553172952E+00 -9.54430670031E+00 -9.55424100741E+00 -9.56532803655E+00 -9.57755560931E+00 -9.59090648762E+00 -9.60535878472E+00 -9.62088628766E+00 -9.63745869857E+00 -9.65504180377E+00 -9.67359758024E+00 -9.69308424926E+00 -9.71345628717E+00 -9.73466440197E+00 -9.75665548448E+00 -9.77937254148E+00 -9.80275461747E+00 -9.82673671077E+00 -9.85124968873E+00 -9.87622020598E+00 -9.90157062893E+00 -9.92721896900E+00 -9.95307882671E+00 -9.97905934833E+00 -1.00050651968E+01 -1.00309965385E+01 -1.00567490480E+01 -1.00822139333E+01 -1.01072779839E+01 -1.01318236463E+01 -1.01557291307E+01 -1.01788685532E+01 -1.02011121200E+01 -1.02223263574E+01 -1.02423743937E+01 -1.02611162967E+01 -1.02784094703E+01 -1.02941091117E+01 -1.03080687282E+01 -1.03201407118E+01 -1.03301769666E+01 -1.03380295813E+01 -1.03435515395E+01 -1.03465974576E+01 -1.03470243418E+01 -1.03446923558E+01 -1.03394655951E+01 -1.03312128670E+01 -1.03198084816E+01 -1.03051330689E+01 -1.02870744453E+01 -1.02656160938E+01 -1.02411131010E+01 -1.02138775824E+01 -1.01835234385E+01 -1.01495576750E+01 -1.01118453255E+01 -1.00703584496E+01 -1.00250897385E+01 -9.97605394629E+00 -9.92328920435E+00 -9.86685818316E+00 -9.80684906611E+00 -9.74337629424E+00 -9.67658103783E+00 -9.60663134611E+00 -9.53372192152E+00 -9.45807345924E+00 -9.37993148623E+00 -9.29956462625E+00 -9.21726220817E+00 -9.13333112432E+00 -9.04809183330E+00 -8.96187338358E+00 -8.87500731809E+00 -8.78782030326E+00 -8.70062529747E+00 -8.61371104493E+00 -8.52732965367E+00 -8.44168197929E+00 -8.35690048434E+00 -8.27303247167E+00 -8.19006929564E+00 -8.10799682632E+00 -8.02668283432E+00 -7.94623024872E+00 -7.86687593986E+00 -7.78836062915E+00 -7.71054689918E+00 -7.63354701895E+00 -7.55734939195E+00 -7.48194274379E+00 -7.40731611307E+00 -7.33345884234E+00 -7.26036056886E+00 -7.18801121544E+00 -7.11640098123E+00 -7.04552033246E+00 -6.97535999324E+00 -6.90591093632E+00 -6.83716437390E+00 -6.76911174853E+00 -6.70174472406E+00 -6.63505517663E+00 -6.56903518588E+00 -6.50367702619E+00 -6.43897315816E+00 -6.37491622018E+00 -6.31149902023E+00 -6.24871452792E+00 -6.18655586663E+00 -6.12501630601E+00 -6.06408925466E+00 -6.00376825302E+00 -5.94404696656E+00 -5.88491917927E+00 -5.82637878731E+00 -5.76841979304E+00 -5.71103629923E+00 -5.65422250364E+00 -5.59797269376E+00 -5.54228124193E+00 -5.48714260070E+00 -5.43255129843E+00 -5.37850193518E+00 -5.32498917894E+00 -5.27200776204E+00 -5.21955247786E+00 -5.16761817780E+00 -5.11619976853E+00 -5.06529220950E+00 -5.01489051035E+00 -4.96498972968E+00 -4.91558497320E+00 -4.86667139061E+00 -4.81824417554E+00 -4.77029856484E+00 -4.72282983674E+00 -4.67583331028E+00 -4.62930434476E+00 -4.58323833914E+00 -4.53763073176E+00 -4.49247700002E+00 -4.44777266024E+00 -4.40351326756E+00 -4.35969441589E+00 -4.31631173798E+00 -4.27336090541E+00 -4.23083762869E+00 -4.18873765735E+00 -4.14705677998E+00 -4.10579082433E+00 -4.06493565736E+00 -4.02448718523E+00 -3.98444135336E+00 -3.94479414633E+00 -3.90554158786E+00 -3.86667974070E+00 -3.82820470647E+00 -3.79011262554E+00 -3.75239967677E+00 -3.71506207733E+00 -3.67809608241E+00 -3.64149798496E+00 -3.60526411535E+00 -3.56939084108E+00 -3.53387456641E+00 -3.49871173203E+00 -3.46389881468E+00 -3.42943232678E+00 -3.39530881606E+00 -3.36152486517E+00 -3.32807709129E+00 -3.29496214578E+00 -3.26217671378E+00 -3.22971751381E+00 -3.19758129745E+00 -3.16576484894E+00 -3.13426498480E+00 -3.10307855354E+00 -3.07220243521E+00 -3.04163354116E+00 -3.01136881362E+00 -2.98140522543E+00 -2.95173977966E+00 -2.92236950931E+00 -2.89329147702E+00 -2.86450277473E+00 -2.83600052337E+00 -2.80778187258E+00 -2.77984400042E+00 -2.75218411304E+00 -2.72479944444E+00 -2.69768725616E+00 -2.67084483700E+00 -2.64426950277E+00 -2.61795859598E+00 -2.59190948560E+00 -2.56611956677E+00 -2.54058626059E+00 -2.51530701377E+00 -2.49027929847E+00 -2.46550061197E+00 -2.44096847649E+00 -2.41668043886E+00 -2.39263407034E+00 -2.36882696636E+00 -2.34525674626E+00 -2.32192105306E+00 -2.29881755325E+00 -2.27594393651E+00 -2.25329791554E+00 -2.23087722575E+00 -2.20867962512E+00 -2.18670289392E+00 -2.16494483450E+00 -2.14340327107E+00 -2.12207604951E+00 -2.10096103711E+00 -2.08005612238E+00 -2.05935921485E+00 -2.03886824484E+00 -2.01858116325E+00 -1.99849594139E+00 -1.97861057074E+00 -1.95892306277E+00 -1.93943144872E+00 -1.92013377944E+00 -1.90102812515E+00 -1.88211257529E+00 -1.86338523830E+00 -1.84484424144E+00 -1.82648773060E+00 -1.80831387012E+00 -1.79032084262E+00 -1.77250684878E+00 -1.75487010719E+00 -1.73740885416E+00 -1.72012134357E+00 -1.70300584664E+00 -1.68606065182E+00 -1.66928406457E+00 -1.65267440723E+00 -1.63623001882E+00 -1.61994925487E+00 -1.60383048731E+00 -1.58787210425E+00 -1.57207250983E+00 -1.55643012407E+00 -1.54094338274E+00 -1.52561073713E+00 -1.51043065397E+00 -1.49540161524E+00 -1.48052211802E+00 -1.46579067434E+00 -1.45120581105E+00 -1.43676606965E+00 -1.42247000615E+00 -1.40831619093E+00 -1.39430320859E+00 -1.38042965782E+00 -1.36669415126E+00 -1.35309531533E+00 -1.33963179014E+00 -1.32630222933E+00 -1.31310529992E+00 -1.30003968221E+00 -1.28710406963E+00 -1.27429716859E+00 -1.26161769840E+00 -1.24906439109E+00 -1.23663599132E+00 -1.22433125502E+00 -1.21214895375E+00 -1.20008634267E+00 -1.18814544282E+00 -1.17632451443E+00 -1.16461988995E+00 -1.15303172882E+00 -1.14155887143E+00 -1.13020017091E+00 -1.11895449132E+00 -1.10782070810E+00 -1.09679770788E+00 -1.08588438834E+00 -1.07507965815E+00 -1.06438243682E+00 -1.05379165462E+00 -1.04330625246E+00 -1.03292518180E+00 -1.02264740452E+00 -1.01247189283E+00 -1.00239762917E+00 -9.92423606084E-01 -9.82548826212E-01 -9.72772299562E-01 -9.63093057110E-01 -9.53510121065E-01 -9.44022535914E-01 -9.34629354626E-01 -9.25329637163E-01 -9.16122453334E-01 -9.07006882617E-01 -8.97982013344E-01 -8.89046943021E-01 -8.80200778133E-01 -8.71442634057E-01 -8.62771634970E-01 -8.54186913765E-01 -8.45687611964E-01 -8.37272879629E-01 -8.28941875279E-01 -8.20693765808E-01 -8.12527726397E-01 -8.04442940436E-01 -7.96438599439E-01 -7.88513902966E-01 -7.80668058540E-01 -7.72900281571E-01 -7.65209795274E-01 -7.57595830594E-01 -7.50057626129E-01 -7.42594428051E-01 -7.35205490035E-01 -7.27890073181E-01 -7.20647445940E-01 -7.13476884045E-01 -7.06377670433E-01 -6.99349095176E-01 -6.92390455411E-01 -6.85501055270E-01 -6.78680205804E-01 -6.71927224926E-01 -6.65241437329E-01 -6.58622174431E-01 -6.52068774299E-01 -6.45580581587E-01 -6.39156947472E-01 -6.32797229584E-01 -6.26500791947E-01 -6.20267004911E-01 -6.14095245092E-01 -6.07984895309E-01 -6.01935344523E-01 -5.95945987773E-01 -5.90016226118E-01 -5.84145466577E-01 -5.78333122070E-01 -5.72578611357E-01 -5.66881358983E-01 -5.61240795216E-01 -5.55656355997E-01 -5.50127482876E-01 -5.44653622963E-01 -5.39234228865E-01 -5.33868758640E-01 -5.28556675735E-01 -5.23297448938E-01 -5.18090552323E-01 -5.12935465194E-01 -5.07831672040E-01 -5.02778662475E-01 -4.97775931196E-01 -4.92822977925E-01 -4.87919307363E-01 -4.83064429137E-01 -4.78257857758E-01 -4.73499112562E-01 -4.68787717673E-01 -4.64123201945E-01 -4.59505098925E-01 -4.54932946798E-01 -4.50406288344E-01 -4.45924670895E-01 -4.41487646284E-01 -4.37094770806E-01 -4.32745605169E-01 -4.28439714453E-01 -4.24176668066E-01 -4.19956039699E-01 -4.15777407286E-01 -4.11640352960E-01 -4.07544463012E-01 -4.03489327851E-01 -3.99474541958E-01 -3.95499703853E-01 -3.91564416047E-01 -3.87668285010E-01 -3.83810921124E-01 -3.79991938650E-01 -3.76210955686E-01 -3.72467594132E-01 -3.68761479647E-01 -3.65092241617E-01 -3.61459513116E-01 -3.57862930868E-01 -3.54302135211E-01 -3.50776770063E-01 -3.47286482883E-01 -3.43830924642E-01 -3.40409749780E-01 -3.37022616176E-01 -3.33669185115E-01 1 1 Beta L 1183 6.65205468145E-09 6.78643509995E-09 6.92353018297E-09 7.06339477039E-09 7.20608480989E-09 7.35165737940E-09 7.50017070989E-09 7.65168420866E-09 7.80625848314E-09 7.96395536510E-09 8.12483793539E-09 8.28897054919E-09 8.45641886173E-09 8.62724985457E-09 8.80153186239E-09 8.97933460030E-09 9.16072919178E-09 9.34578819709E-09 9.53458564228E-09 9.72719704886E-09 9.92369946396E-09 1.01241714912E-08 1.03286933220E-08 1.05373467678E-08 1.07502152928E-08 1.09673840473E-08 1.11889399017E-08 1.14149714812E-08 1.16455692015E-08 1.18808253048E-08 1.21208338966E-08 1.23656909835E-08 1.26154945118E-08 1.28703444060E-08 1.31303426096E-08 1.33955931254E-08 1.36662020570E-08 1.39422776516E-08 1.42239303432E-08 1.45112727966E-08 1.48044199527E-08 1.51034890740E-08 1.54085997924E-08 1.57198741562E-08 1.60374366793E-08 1.63614143908E-08 1.66919368863E-08 1.70291363790E-08 1.73731477534E-08 1.77241086186E-08 1.80821593635E-08 1.84474432132E-08 1.88201062862E-08 1.92002976527E-08 1.95881693943E-08 1.99838766647E-08 2.03875777523E-08 2.07994341429E-08 2.12196105844E-08 2.16482751531E-08 2.20855993206E-08 2.25317580222E-08 2.29869297275E-08 2.34512965111E-08 2.39250441261E-08 2.44083620777E-08 2.49014436996E-08 2.54044862310E-08 2.59176908957E-08 2.64412629823E-08 2.69754119266E-08 2.75203513954E-08 2.80762993717E-08 2.86434782421E-08 2.92221148857E-08 2.98124407649E-08 3.04146920180E-08 3.10291095534E-08 3.16559391463E-08 3.22954315370E-08 3.29478425310E-08 3.36134331012E-08 3.42924694930E-08 3.49852233297E-08 3.56919717223E-08 3.64129973794E-08 3.71485887211E-08 3.78990399936E-08 3.86646513874E-08 3.94457291573E-08 4.02425857448E-08 4.10555399033E-08 4.18849168251E-08 4.27310482721E-08 4.35942727082E-08 4.44749354347E-08 4.53733887284E-08 4.62899919826E-08 4.72251118508E-08 4.81791223934E-08 4.91524052275E-08 5.01453496790E-08 5.11583529390E-08 5.21918202223E-08 5.32461649297E-08 5.43218088130E-08 5.54191821441E-08 5.65387238871E-08 5.76808818735E-08 5.88461129818E-08 6.00348833200E-08 6.12476684120E-08 6.24849533880E-08 6.37472331786E-08 6.50350127125E-08 6.63488071186E-08 6.76891419323E-08 6.90565533053E-08 7.04515882205E-08 7.18748047104E-08 7.33267720805E-08 7.48080711373E-08 7.63192944200E-08 7.78610464381E-08 7.94339439131E-08 8.10386160248E-08 8.26757046635E-08 8.43458646865E-08 8.60497641800E-08 8.77880847267E-08 8.95615216779E-08 9.13707844319E-08 9.32165967182E-08 9.50996968861E-08 9.70208382008E-08 9.89807891446E-08 1.00980333724E-07 1.03020271783E-07 1.05101419325E-07 1.07224608836E-07 1.09390689620E-07 1.11600528139E-07 1.13855008357E-07 1.16155032097E-07 1.18501519399E-07 1.20895408888E-07 1.23337658153E-07 1.25829244127E-07 1.28371163475E-07 1.30964433001E-07 1.33610090047E-07 1.36309192910E-07 1.39062821268E-07 1.41872076609E-07 1.44738082672E-07 1.47661985899E-07 1.50644955889E-07 1.53688185870E-07 1.56792893175E-07 1.59960319728E-07 1.63191732542E-07 1.66488424226E-07 1.69851713499E-07 1.73282945723E-07 1.76783493436E-07 1.80354756903E-07 1.83998164679E-07 1.87715174174E-07 1.91507272242E-07 1.95375975773E-07 1.99322832299E-07 2.03349420617E-07 2.07457351414E-07 2.11648267919E-07 2.15923846554E-07 2.20285797606E-07 2.24735865916E-07 2.29275831569E-07 2.33907510612E-07 2.38632755778E-07 2.43453457230E-07 2.48371543311E-07 2.53388981322E-07 2.58507778304E-07 2.63729981846E-07 2.69057680897E-07 2.74493006609E-07 2.80038133185E-07 2.85695278748E-07 2.91466706233E-07 2.97354724288E-07 3.03361688199E-07 3.09490000830E-07 3.15742113590E-07 3.22120527406E-07 3.28627793729E-07 3.35266515553E-07 3.42039348454E-07 3.48949001657E-07 3.55998239114E-07 3.63189880615E-07 3.70526802913E-07 3.78011940873E-07 3.85648288652E-07 3.93438900890E-07 4.01386893936E-07 4.09495447093E-07 4.17767803891E-07 4.26207273383E-07 4.34817231469E-07 4.43601122248E-07 4.52562459392E-07 4.61704827556E-07 4.71031883811E-07 4.80547359101E-07 4.90255059746E-07 5.00158868953E-07 5.10262748380E-07 5.20570739713E-07 5.31086966286E-07 5.41815634730E-07 5.52761036656E-07 5.63927550369E-07 5.75319642626E-07 5.86941870415E-07 5.98798882781E-07 6.10895422689E-07 6.23236328916E-07 6.35826537989E-07 6.48671086159E-07 6.61775111417E-07 6.75143855549E-07 6.88782666230E-07 7.02696999168E-07 7.16892420279E-07 7.31374607924E-07 7.46149355170E-07 7.61222572113E-07 7.76600288241E-07 7.92288654846E-07 8.08293947484E-07 8.24622568486E-07 8.41281049519E-07 8.58276054197E-07 8.75614380749E-07 8.93302964736E-07 9.11348881830E-07 9.29759350638E-07 9.48541735593E-07 9.67703549900E-07 9.87252458540E-07 1.00719628134E-06 1.02754299609E-06 1.04830074176E-06 1.06947782171E-06 1.09108270706E-06 1.11312404006E-06 1.13561063753E-06 1.15855149441E-06 1.18195578735E-06 1.20583287838E-06 1.23019231866E-06 1.25504385229E-06 1.28039742021E-06 1.30626316419E-06 1.33265143087E-06 1.35957277591E-06 1.38703796822E-06 1.41505799422E-06 1.44364406232E-06 1.47280760731E-06 1.50256029502E-06 1.53291402689E-06 1.56388094485E-06 1.59547343607E-06 1.62770413796E-06 1.66224632039E-06 1.69593050347E-06 1.73009565046E-06 1.76500134580E-06 1.80054222185E-06 1.83696709104E-06 1.87405541581E-06 1.91187785111E-06 1.95040587039E-06 1.98975875514E-06 2.02998838570E-06 2.07093699256E-06 2.11277582966E-06 2.15528684283E-06 2.19898529930E-06 2.24325931222E-06 2.28859417411E-06 2.33468444582E-06 2.38194001118E-06 2.42992267377E-06 2.47906266227E-06 2.52893580516E-06 2.58024245388E-06 2.63221021041E-06 2.68528367600E-06 2.73961580775E-06 2.79483418667E-06 2.85134363239E-06 2.90881619364E-06 2.96761914159E-06 3.02751264001E-06 3.08865459839E-06 3.15098769177E-06 3.21457960065E-06 3.27955512341E-06 3.34564114405E-06 3.41334017119E-06 3.48211257458E-06 3.55255276665E-06 3.62423104956E-06 3.69742606434E-06 3.77203891894E-06 3.84827496489E-06 3.92588670330E-06 4.00526689236E-06 4.08602260496E-06 4.16865970577E-06 4.25274524994E-06 4.33872254501E-06 4.42626174162E-06 4.51569048310E-06 4.60682498638E-06 4.69989033105E-06 4.79477170460E-06 4.89167395245E-06 4.99036352981E-06 5.09122035135E-06 5.19398240662E-06 5.29881995658E-06 5.40596735844E-06 5.51497463337E-06 5.62642595126E-06 5.74010796524E-06 5.85597025686E-06 5.97424410194E-06 6.09492241467E-06 6.21797053630E-06 6.34360485717E-06 6.47165712602E-06 6.60238952964E-06 6.73566355456E-06 6.87183954613E-06 7.01048672943E-06 7.15219330028E-06 7.29653412724E-06 7.44396460692E-06 7.59422865687E-06 7.74774227450E-06 7.90410728652E-06 8.06380881049E-06 8.22658775638E-06 8.39285370981E-06 8.56230715546E-06 8.73518240480E-06 8.91174896799E-06 9.09161219476E-06 9.27534717036E-06 9.46261072976E-06 9.65378975072E-06 9.84869964926E-06 1.00477510657E-05 1.02505331214E-05 1.04577117371E-05 1.06688557545E-05 1.08844025889E-05 1.11041811495E-05 1.13285722878E-05 1.15572698950E-05 1.17908084977E-05 1.20288564224E-05 1.22719185127E-05 1.25197456858E-05 1.27726362329E-05 1.30306050465E-05 1.32938139061E-05 1.35623309146E-05 1.38363066548E-05 1.41157243712E-05 1.44008497075E-05 1.46918212383E-05 1.49885033114E-05 1.52912516582E-05 1.56001621767E-05 1.59152032725E-05 1.62367327329E-05 1.65647253811E-05 1.68992559223E-05 1.72406709873E-05 1.75888990078E-05 1.79442189546E-05 1.83066464606E-05 1.86764384622E-05 1.90536567348E-05 1.94385795639E-05 1.98311868241E-05 2.02318050383E-05 2.06404437382E-05 2.10574101904E-05 2.14826994268E-05 2.19167192170E-05 2.23593441606E-05 2.28111422142E-05 2.32717253352E-05 2.37419742483E-05 2.42214769621E-05 2.47107529594E-05 2.52099646911E-05 2.57190823940E-05 2.62387368031E-05 2.67687155023E-05 2.73094439470E-05 2.78610447336E-05 2.84239378018E-05 2.89980585485E-05 2.95838348772E-05 3.01813712482E-05 3.07911282487E-05 3.14130232376E-05 3.20476862005E-05 3.26949303076E-05 3.33554695826E-05 3.40292246979E-05 3.47166662847E-05 3.54178840502E-05 3.61333969672E-05 3.68632907109E-05 3.76079619072E-05 3.83676160811E-05 3.91427501026E-05 3.99333738673E-05 4.07400187476E-05 4.15630166514E-05 4.24025781399E-05 4.32591679014E-05 4.41329703809E-05 4.50245681660E-05 4.59340486498E-05 4.68619253262E-05 4.78085971002E-05 4.87743193664E-05 4.97596150978E-05 5.07647931978E-05 5.17902472558E-05 5.28364738220E-05 5.39038017194E-05 5.49927154402E-05 5.61035495190E-05 5.72369140169E-05 5.83930802202E-05 5.95727861636E-05 6.07760959132E-05 6.20038868015E-05 6.32563231510E-05 6.45342503947E-05 6.58378022290E-05 6.71677694934E-05 6.85247506739E-05 6.99088832893E-05 7.13211275125E-05 7.27619056527E-05 7.42317235513E-05 7.57312273288E-05 7.72611760731E-05 7.88217653883E-05 8.04141721658E-05 8.20385025130E-05 8.36958264922E-05 8.53864192841E-05 8.71114848876E-05 8.88710578965E-05 9.06664109723E-05 9.24979369537E-05 9.43664953054E-05 9.62727742760E-05 9.82176110205E-05 1.00201656409E-04 1.02225810451E-04 1.04290889148E-04 1.06397695145E-04 1.08546943840E-04 1.10739822257E-04 1.12976741264E-04 1.15259011856E-04 1.17587407169E-04 1.19962689426E-04 1.22386188108E-04 1.24858363953E-04 1.27380772693E-04 1.29953901854E-04 1.32579133361E-04 1.35257303974E-04 1.37989765783E-04 1.40777142751E-04 1.43621134920E-04 1.46522309535E-04 1.49482222978E-04 1.52501972461E-04 1.55582593977E-04 1.58725581665E-04 1.61931973477E-04 1.65203145549E-04 1.68540506703E-04 1.71945108121E-04 1.75418611703E-04 1.78962298272E-04 1.82577423766E-04 1.86265754124E-04 1.90028468381E-04 1.93867309112E-04 1.97783572587E-04 2.01779048267E-04 2.05855164350E-04 2.10013691040E-04 2.14256161575E-04 2.18584352544E-04 2.22999993869E-04 2.27504831590E-04 2.32100660534E-04 2.36789305667E-04 2.41572739062E-04 2.46452697274E-04 2.51431433701E-04 2.56510491774E-04 2.61692396114E-04 2.66978756282E-04 2.72372036589E-04 2.77874246303E-04 2.83487589418E-04 2.89214344175E-04 2.95056702428E-04 3.01017253087E-04 3.07098023549E-04 3.13301874645E-04 3.19630785773E-04 3.26087689680E-04 3.32674997970E-04 3.39395338584E-04 3.46251565232E-04 3.53246133589E-04 3.60382130208E-04 3.67662157672E-04 3.75089305528E-04 3.82666556415E-04 3.90396812966E-04 3.98283175408E-04 4.06328896300E-04 4.14537141622E-04 4.22911232262E-04 4.31454483832E-04 4.40170238449E-04 4.49062164434E-04 4.58133663549E-04 4.67388385724E-04 4.76830127543E-04 4.86462570598E-04 4.96289560823E-04 5.06315110214E-04 5.16543146659E-04 5.26977877275E-04 5.37623281278E-04 5.48483785116E-04 5.59563706121E-04 5.70867331514E-04 5.82399478379E-04 5.94164476830E-04 6.06167132584E-04 6.18412267398E-04 6.30904747593E-04 6.43649647449E-04 6.56651861615E-04 6.69916907225E-04 6.83449758402E-04 6.97256071513E-04 7.11341249563E-04 7.25710978136E-04 7.40370960165E-04 7.55327025002E-04 7.70585363232E-04 7.86151717651E-04 8.02032725973E-04 8.18234420940E-04 8.34763417352E-04 8.51626340437E-04 8.68829767573E-04 8.86380880906E-04 9.04286439775E-04 9.22553736556E-04 9.41189969291E-04 9.60202790162E-04 9.79599462389E-04 9.99388186112E-04 1.01957643890E-03 1.04017268553E-03 1.06118481286E-03 1.08262146196E-03 1.10449120115E-03 1.12680256270E-03 1.14956473617E-03 1.17278669002E-03 1.19647765876E-03 1.22064721692E-03 1.24530498973E-03 1.27046086585E-03 1.29612486715E-03 1.32230732721E-03 1.34901853694E-03 1.37626952347E-03 1.40407071682E-03 1.43243371312E-03 1.46136943387E-03 1.49088980823E-03 1.52100640354E-03 1.55173136422E-03 1.58307690558E-03 1.61505570484E-03 1.64768031386E-03 1.68096407228E-03 1.71492011634E-03 1.74956193543E-03 1.78490358811E-03 1.82095912866E-03 1.85774291143E-03 1.89526969454E-03 1.93355446443E-03 1.97261263518E-03 2.01245964489E-03 2.05311161953E-03 2.09458463746E-03 2.13689543323E-03 2.18006076000E-03 2.22409810309E-03 2.26902484696E-03 2.31485909502E-03 2.36161901894E-03 2.40932358808E-03 2.45799164253E-03 2.50764270856E-03 2.55829665364E-03 2.60997374026E-03 2.66269459272E-03 2.71648029539E-03 2.77135248115E-03 2.82733283502E-03 2.88444392008E-03 2.94270853972E-03 3.00215000623E-03 3.06279202240E-03 3.12465887233E-03 3.18777528157E-03 3.25216650539E-03 3.31785826097E-03 3.38487682626E-03 3.45324900475E-03 3.52300209113E-03 3.59416400171E-03 3.66676317612E-03 3.74082860528E-03 3.81638996874E-03 3.89347741145E-03 3.97212176033E-03 4.05235453272E-03 4.13420765985E-03 4.21771353182E-03 4.30290697078E-03 4.38982062321E-03 4.47848786498E-03 4.56894913766E-03 4.66123417979E-03 4.75538431864E-03 4.85143662122E-03 4.94942764667E-03 5.04939802686E-03 5.15138816473E-03 5.25543512292E-03 5.36158749360E-03 5.46988112115E-03 5.58036104670E-03 5.69307474427E-03 5.80806088544E-03 5.92537331374E-03 6.04505219013E-03 6.16714853461E-03 6.29170970966E-03 6.41878814606E-03 6.54843031101E-03 6.68069239718E-03 6.81562480572E-03 6.95328114570E-03 7.09371781126E-03 7.23699027818E-03 7.38315696987E-03 7.53227305981E-03 7.68440076267E-03 7.83960049042E-03 7.99793533289E-03 8.15946536938E-03 8.32425726379E-03 8.49237780315E-03 8.66389094410E-03 8.83886908313E-03 9.01737920056E-03 9.19949299613E-03 9.38528497478E-03 9.57482776110E-03 9.76819701713E-03 9.96547033702E-03 1.01667290136E-02 1.03720425848E-02 1.05815149223E-02 1.07952029756E-02 1.10132126746E-02 1.12356249075E-02 1.14625153129E-02 1.16940094553E-02 1.19301448219E-02 1.21710790612E-02 1.24168541336E-02 1.26676025426E-02 1.29234073209E-02 1.31843795280E-02 1.34506123276E-02 1.37222323580E-02 1.39993214756E-02 1.42820098262E-02 1.45704049112E-02 1.48646209587E-02 1.51647714898E-02 1.54709822650E-02 1.57833752990E-02 1.61020702161E-02 1.64271985401E-02 1.67588880532E-02 1.70972731625E-02 1.74424857387E-02 1.77946658739E-02 1.81539506685E-02 1.85204881018E-02 1.88944210557E-02 1.92759014704E-02 1.96650787914E-02 2.00621032637E-02 2.04671497068E-02 2.08803572213E-02 2.13019119426E-02 2.17319655643E-02 2.21706964699E-02 2.26182819419E-02 2.30748947332E-02 2.35407192338E-02 2.40159416257E-02 2.45007500457E-02 2.49953402806E-02 2.54999038380E-02 2.60146454977E-02 2.65397743193E-02 2.70754878981E-02 2.76220124121E-02 2.81795564764E-02 2.87483461557E-02 2.93286046908E-02 2.99205670579E-02 3.05244682492E-02 3.11405424035E-02 3.17690443469E-02 3.24102160556E-02 3.30643169886E-02 3.37316044252E-02 3.44123475330E-02 3.51068125513E-02 3.58152803732E-02 3.65380259406E-02 3.72753450305E-02 3.80275235763E-02 3.87948637400E-02 3.95776693517E-02 4.03762541879E-02 4.11909298763E-02 4.20220259772E-02 4.28698678013E-02 4.37347949731E-02 4.46171501924E-02 4.55172824012E-02 4.64355511348E-02 4.73723171998E-02 4.83279571266E-02 4.93028458254E-02 5.02973709075E-02 5.13119276711E-02 5.23469194530E-02 5.34027535324E-02 5.44798491539E-02 5.55786349437E-02 5.66995439479E-02 5.78430240191E-02 5.90095202690E-02 6.01995046558E-02 6.14134384533E-02 6.26518096366E-02 6.39151043724E-02 6.52038220100E-02 6.65184756994E-02 6.78595807936E-02 6.92276708969E-02 7.06232844815E-02 7.20469747454E-02 7.34993027188E-02 7.49808426540E-02 7.64921789560E-02 7.80339090102E-02 7.96066396917E-02 8.12109932437E-02 8.28476010438E-02 8.45171083435E-02 8.62201748113E-02 8.79574690440E-02 8.97296767791E-02 9.15374962159E-02 9.33816375198E-02 9.52628291534E-02 9.71818027722E-02 9.91393386690E-02 1.01136155175E-01 1.03173099636E-01 1.05250929310E-01 1.07370455519E-01 1.09532571437E-01 1.11738032136E-01 1.13987787823E-01 1.16282656738E-01 1.18623594247E-01 1.21011461171E-01 1.23447240000E-01 1.25931854437E-01 1.28466303538E-01 1.31051527715E-01 1.33688607364E-01 1.36378518620E-01 1.39122326866E-01 1.41921115766E-01 1.44775966375E-01 1.47687989555E-01 1.50658318329E-01 1.53688124636E-01 1.56778566944E-01 1.59930872236E-01 1.63146238675E-01 1.66425942090E-01 1.69771227477E-01 1.73183425040E-01 1.76663835386E-01 1.80213808050E-01 1.83834741822E-01 1.87528007279E-01 1.91295050009E-01 1.95137324076E-01 1.99056317198E-01 2.03053535751E-01 2.07130525246E-01 2.11288848367E-01 2.15530125422E-01 2.19855969822E-01 2.24268062533E-01 2.28768073904E-01 2.33357759818E-01 2.38038860578E-01 2.42813181370E-01 2.47682541295E-01 2.52648811993E-01 2.57713881548E-01 2.62879697731E-01 2.68148211811E-01 2.73521448397E-01 2.79001449102E-01 2.84590283743E-01 2.90290099814E-01 2.96103040418E-01 3.02031311941E-01 3.08077167138E-01 3.14242887712E-01 3.20530792960E-01 3.26943273840E-01 3.33482729077E-01 3.40151626626E-01 3.46952476726E-01 3.53887821261E-01 3.60960264475E-01 3.68172459858E-01 3.75527090018E-01 3.83026908145E-01 3.90674710197E-01 3.98473332396E-01 4.06425679137E-01 4.14534700212E-01 4.22803392771E-01 4.31234811315E-01 4.39832086403E-01 4.48598356519E-01 4.57536865323E-01 4.66650887375E-01 4.75943758899E-01 4.85418887362E-01 4.95079715848E-01 5.04929776058E-01 5.14972639630E-01 5.25211955772E-01 5.35651424541E-01 5.46294819440E-01 5.57145967556E-01 5.68208783694E-01 5.79487219013E-01 5.90985322778E-01 6.02707188335E-01 6.14656988122E-01 6.26838970024E-01 6.39257445924E-01 6.51916794593E-01 6.64821480177E-01 6.77976030926E-01 6.91385053477E-01 7.05053223089E-01 7.18985298131E-01 7.33186110409E-01 7.47660569437E-01 7.62413660100E-01 7.77450447074E-01 7.92776077493E-01 8.08395774845E-01 8.24314843251E-01 8.40538670603E-01 8.57072720808E-01 8.73922550205E-01 8.91093783503E-01 9.08592144039E-01 9.26423427100E-01 9.44593516537E-01 9.63108382244E-01 9.81974074972E-01 1.00119673026E+00 1.02078257454E+00 1.04073791247E+00 1.06106913567E+00 1.08178272466E+00 1.10288524225E+00 1.12438332995E+00 1.14628372949E+00 1.16859325030E+00 1.19131879571E+00 1.21446734795E+00 1.23804597750E+00 1.26206182720E+00 1.28652213088E+00 1.31143419808E+00 1.33680541438E+00 1.36264325146E+00 1.38895524941E+00 1.41574902588E+00 1.44303227560E+00 1.47081275840E+00 1.49909830735E+00 1.52789682213E+00 1.55721626673E+00 1.58706466785E+00 1.61745010975E+00 1.64838073664E+00 1.67986473902E+00 1.71191036741E+00 1.74452590559E+00 1.77771968802E+00 1.81150008181E+00 1.84587548999E+00 1.88085433743E+00 1.91644507703E+00 1.95265617487E+00 1.98949610699E+00 2.02697335722E+00 2.06509639859E+00 2.10387370311E+00 2.14331371750E+00 2.18342486588E+00 2.22421553547E+00 2.26569407170E+00 2.30786876076E+00 2.35074783291E+00 2.39433943227E+00 2.43865162606E+00 2.48369237560E+00 2.52946953295E+00 2.57599082388E+00 2.62326383362E+00 2.67129599261E+00 2.72009455941E+00 2.76966660434E+00 2.82001899230E+00 2.87115836276E+00 2.92309111162E+00 2.97582336814E+00 3.02936097617E+00 3.08370946883E+00 3.13887404486E+00 3.19485954468E+00 3.25167042130E+00 3.30931071459E+00 3.36778401984E+00 3.42709346044E+00 3.48724164881E+00 3.54823066123E+00 3.61006199376E+00 3.67273653067E+00 3.73625450240E+00 3.80061544472E+00 3.86581815649E+00 3.93186065416E+00 3.99874012279E+00 4.06645286944E+00 4.13499426876E+00 4.20435871026E+00 4.27453953921E+00 4.34552900090E+00 4.41731817352E+00 4.48989690823E+00 4.56325375648E+00 4.63737590222E+00 4.71224908564E+00 4.78785752693E+00 4.86418384390E+00 4.94120896817E+00 5.01891205789E+00 5.09727040302E+00 5.17625933230E+00 5.25585211084E+00 5.33601983810E+00 5.41673133700E+00 5.49795304341E+00 5.57964888597E+00 5.66178016645E+00 5.74430543108E+00 5.82718033884E+00 5.91035752490E+00 5.99378645861E+00 6.07741329550E+00 6.16118072425E+00 6.24502781186E+00 6.32888983502E+00 6.41269811586E+00 6.49637984562E+00 6.57985790428E+00 6.66305067681E+00 6.74587186255E+00 6.82823027713E+00 6.91002965473E+00 6.99116844002E+00 7.07153957851E+00 7.15103030065E+00 7.22952190510E+00 7.30688953305E+00 7.38300194424E+00 7.45772128894E+00 7.53090287628E+00 7.60239494458E+00 7.67203842790E+00 7.73966672782E+00 7.80510548221E+00 7.86817234154E+00 7.92867674769E+00 7.98641971870E+00 8.04119364528E+00 8.09278209169E+00 8.14095961570E+00 8.18549159900E+00 8.22613409779E+00 8.26263371404E+00 8.29472748995E+00 8.32214283411E+00 8.34459747418E+00 8.36179945323E+00 8.37344716085E+00 8.37922941712E+00 8.37882560404E+00 8.37190585951E+00 8.35813133445E+00 8.33715452295E+00 8.30861967267E+00 8.27216328335E+00 8.22741470099E+00 8.17399682112E+00 8.11152690245E+00 8.03961751206E+00 7.95787760279E+00 7.86591373863E+00 7.76333148108E+00 7.64973694339E+00 7.52473852776E+00 7.38794885875E+00 7.23898692095E+00 7.07748041686E+00 6.90306835440E+00 6.71540387745E+00 6.51415734533E+00 6.29901967911E+00 6.06970597270E+00 5.82595938600E+00 5.56755531524E+00 5.29430585193E+00 5.00606452283E+00 4.70273131196E+00 4.38425795469E+00 4.05065349383E+00 3.70199007930E+00 3.33840898903E+00 2.96012684203E+00 2.56744196831E+00 2.16074088893E+00 1.74050485616E+00 1.30731638836E+00 8.61865730929E-01 4.04957154931E-01 -6.24849953673E-02 -5.39410620226E-01 -1.02463865735E+00 -1.51685249268E+00 -2.01459612203E+00 -2.51627123260E+00 -3.02013536150E+00 -3.52430132130E+00 -4.02673807817E+00 -4.52527328104E+00 -5.01759765018E+00 -5.50127142960E+00 -5.97373311666E+00 -6.43231067098E+00 -6.87423540197E+00 -7.29665871776E+00 -7.69667189990E+00 -8.07132904255E+00 -8.41767325746E+00 -8.73276620641E+00 -9.01372096988E+00 -9.25773819648E+00 -9.46214540986E+00 -9.62443925633E+00 -9.74233039086E+00 -9.81379057986E+00 -9.83710148358E+00 -9.81090443619E+00 -9.73425040015E+00 -9.60664909174E+00 -9.42811610381E+00 -9.19921663741E+00 -8.92110424443E+00 -8.59555273311E+00 -8.22497912618E+00 -7.81245526904E+00 -7.36170535724E+00 -6.87708629917E+00 -6.36354742597E+00 -5.82656561583E+00 -5.27205140220E+00 -4.70622107902E+00 -4.13542919963E+00 -3.56595516644E+00 -3.00373697055E+00 -2.45404322381E+00 -1.92108441796E+00 -1.40752158168E+00 -9.15655267137E-01 -4.40917455124E-01 -4.40216403186E-02 4.59577515649E-03 -2.54301578645E-04 2.17118529872E-04 1.59531569956E-04 1.55131915113E-04 1.45955106030E-04 1.37744690119E-04 1.29904871775E-04 1.22471995025E-04 1.15420513356E-04 2 2 Beta L 1174 6.48040722081E-13 6.67776500254E-13 6.88113322353E-13 7.09069492892E-13 7.30663873837E-13 7.52915901591E-13 7.75845604479E-13 7.99473620782E-13 8.23821217310E-13 8.48910308543E-13 8.74763476357E-13 9.01403990348E-13 9.28855828776E-13 9.57143700150E-13 9.86293065464E-13 1.01633016111E-12 1.04728202251E-12 1.07917650842E-12 1.11204232604E-12 1.14590905681E-12 1.18080718309E-12 1.21676811554E-12 1.25382422142E-12 1.29200885374E-12 1.33135638125E-12 1.37190221936E-12 1.41368286208E-12 1.45673591480E-12 1.50110012817E-12 1.54681543299E-12 1.59392297611E-12 1.64246515750E-12 1.69248566841E-12 1.74402953066E-12 1.79714313721E-12 1.85187429390E-12 1.90827226246E-12 1.96638780486E-12 2.02627322902E-12 2.08798243587E-12 2.15157096785E-12 2.21709605894E-12 2.28461668614E-12 2.35419362258E-12 2.42588949218E-12 2.49976882608E-12 2.57589812066E-12 2.65434589743E-12 2.73518276468E-12 2.81848148105E-12 2.90431702100E-12 2.99276664232E-12 3.08390995564E-12 3.17782899608E-12 3.27460829713E-12 3.37433496669E-12 3.47709876549E-12 3.58299218789E-12 3.69211054512E-12 3.80455205107E-12 3.92041791067E-12 4.03981241103E-12 4.16284301525E-12 4.28962045918E-12 4.42025885109E-12 4.55487577434E-12 4.69359239324E-12 4.83653356213E-12 4.98382793769E-12 5.13560809482E-12 5.29201064589E-12 5.45317636376E-12 5.61925030846E-12 5.79038195775E-12 5.96672534166E-12 6.14843918114E-12 6.33568703091E-12 6.52863742668E-12 6.72746403683E-12 6.93234581872E-12 7.14346717980E-12 7.36101814354E-12 7.58519452048E-12 7.81619808451E-12 8.05423675441E-12 8.29952478107E-12 8.55228294027E-12 8.81273873140E-12 9.08112658226E-12 9.35768806004E-12 9.64267208873E-12 9.93633517320E-12 1.02389416300E-11 1.05507638255E-11 1.08720824206E-11 1.12031866237E-11 1.15443744511E-11 1.18959529947E-11 1.22582386990E-11 1.26315576455E-11 1.30162458466E-11 1.34126495476E-11 1.38211255386E-11 1.42420414754E-11 1.46757762110E-11 1.51227201358E-11 1.55832755295E-11 1.60578569231E-11 1.65468914718E-11 1.70508193398E-11 1.75700940962E-11 1.81051831232E-11 1.86565680372E-11 1.92247451218E-11 1.98102257746E-11 2.04135369679E-11 2.10352217224E-11 2.16758395963E-11 2.23359671891E-11 2.30161986599E-11 2.37171462633E-11 2.44394408991E-11 2.51837326815E-11 2.59506915232E-11 2.67410077390E-11 2.75553926668E-11 2.83945793080E-11 2.92593229873E-11 3.01504020323E-11 3.10686184743E-11 3.20147987701E-11 3.29897945458E-11 3.39944833634E-11 3.50297695107E-11 3.60965848151E-11 3.71958894824E-11 3.83286729610E-11 3.94959548325E-11 4.06987857293E-11 4.19382482805E-11 4.32154580860E-11 4.45315647209E-11 4.58877527699E-11 4.72852428938E-11 4.87252929282E-11 5.02091990152E-11 5.17382967704E-11 5.33139624851E-11 5.49376143647E-11 5.66107138056E-11 5.83347667102E-11 6.01113248424E-11 6.19419872245E-11 6.38284015762E-11 6.57722657978E-11 6.77753294983E-11 6.98393955701E-11 7.19663218122E-11 7.41580226016E-11 7.64164706170E-11 7.87436986141E-11 8.11418012552E-11 8.36129369944E-11 8.61593300209E-11 8.87832722601E-11 9.14871254372E-11 9.42733232025E-11 9.71443733222E-11 1.00102859935E-10 1.03151445879E-10 1.06292875087E-10 1.09529975057E-10 1.12865659397E-10 1.16302930450E-10 1.19844881991E-10 1.23494702014E-10 1.27255675606E-10 1.31131187895E-10 1.35124727104E-10 1.39239887689E-10 1.43480373571E-10 1.47850001474E-10 1.52352704358E-10 1.56992534960E-10 1.61773669440E-10 1.66700411142E-10 1.71777194467E-10 1.77008588861E-10 1.82399302933E-10 1.87954188689E-10 1.93678245901E-10 1.99576626608E-10 2.05654639750E-10 2.11917755950E-10 2.18371612433E-10 2.25022018108E-10 2.31874958787E-10 2.38936602580E-10 2.46213305444E-10 2.53711616901E-10 2.61438285938E-10 2.69400267080E-10 2.77604726645E-10 2.86059049202E-10 2.94770844212E-10 3.03747952878E-10 3.12998455203E-10 3.22530677265E-10 3.32353198706E-10 3.42474860459E-10 3.52904772702E-10 3.63652323060E-10 3.74727185055E-10 3.86139326809E-10 3.97899020020E-10 4.10016849206E-10 4.22503721231E-10 4.35370875122E-10 4.48629892187E-10 4.62292706435E-10 4.76371615322E-10 4.90879290816E-10 5.05828790804E-10 5.21233570844E-10 5.37107496279E-10 5.53464854713E-10 5.70320368872E-10 5.87689209857E-10 6.05587010797E-10 6.24029880920E-10 6.43034420054E-10 6.62617733568E-10 6.82797447765E-10 7.03591725749E-10 7.25019283775E-10 7.47099408090E-10 7.69851972297E-10 7.93297455239E-10 8.17456959433E-10 8.42352230062E-10 8.68005674552E-10 8.94440382732E-10 9.21680147625E-10 9.49749486856E-10 9.78673664727E-10 1.00847871495E-09 1.03919146408E-09 1.07083955566E-09 1.10345147511E-09 1.13705657537E-09 1.17168510328E-09 1.20736822687E-09 1.24413806334E-09 1.28202770804E-09 1.32107126420E-09 1.36130387365E-09 1.40276174847E-09 1.44548220353E-09 1.48950369013E-09 1.53486583057E-09 1.58160945384E-09 1.62977663237E-09 1.67941071985E-09 1.73055639032E-09 1.78325967833E-09 1.83756802040E-09 1.89353029769E-09 1.95119688004E-09 2.01061967127E-09 2.07185215588E-09 2.13494944725E-09 2.19996833721E-09 2.26696734713E-09 2.33600678064E-09 2.40714877791E-09 2.48045737151E-09 2.55599854414E-09 2.63384028794E-09 2.71405266574E-09 2.79670787409E-09 2.88188030825E-09 2.96964662916E-09 3.06008583244E-09 3.15327931945E-09 3.24931097064E-09 3.34826722096E-09 3.45023713772E-09 3.55531250071E-09 3.66358788487E-09 3.77516074533E-09 3.89013150519E-09 4.00860364591E-09 4.13068380039E-09 4.25648184900E-09 4.38611101849E-09 4.51968798385E-09 4.65733297335E-09 4.79916987677E-09 4.94532635690E-09 5.09593396442E-09 5.25112825633E-09 5.41104891797E-09 5.57583988873E-09 5.74564949158E-09 5.92063056663E-09 6.10094060865E-09 6.28674190882E-09 6.47820170087E-09 6.67549231150E-09 6.87879131558E-09 7.08828169592E-09 7.30415200798E-09 7.52659654962E-09 7.75581553591E-09 7.99201527941E-09 8.23540837580E-09 8.48621389530E-09 8.74465757977E-09 9.01097204596E-09 9.28539699485E-09 9.56817942740E-09 9.85957386686E-09 1.01598425879E-08 1.04692558525E-08 1.07880921536E-08 1.11166384654E-08 1.14551905015E-08 1.18040529818E-08 1.21635399059E-08 1.25339748363E-08 1.29156911895E-08 1.33090325358E-08 1.37143529091E-08 1.41320171249E-08 1.45624011091E-08 1.50058922365E-08 1.54628896789E-08 1.59338047648E-08 1.64190613495E-08 1.69190961966E-08 1.74343593713E-08 1.79653146450E-08 1.85124399133E-08 1.90762276259E-08 1.96571852296E-08 2.02558356254E-08 2.08727176391E-08 2.15083865059E-08 2.21634143708E-08 2.28383908028E-08 2.35339233264E-08 2.42506379675E-08 2.49891798177E-08 2.57502136143E-08 2.65344243391E-08 2.73425178345E-08 2.81752214390E-08 2.90332846421E-08 2.99174797583E-08 3.08286026228E-08 3.17674733076E-08 3.27349368594E-08 3.37318640606E-08 3.47591522129E-08 3.58177259446E-08 3.69085380435E-08 3.80325703137E-08 3.91908344602E-08 4.03843729984E-08 4.16142601935E-08 4.28816030267E-08 4.41875421918E-08 4.55332531220E-08 4.69199470476E-08 4.83488720864E-08 5.00907901388E-08 5.16116196033E-08 5.31775787708E-08 5.45467900990E-08 5.62073771934E-08 5.79183627720E-08 5.96816009035E-08 6.14980090631E-08 6.33707097961E-08 6.52999835680E-08 6.72876748450E-08 6.93360504244E-08 7.14477410137E-08 7.36220009980E-08 7.58637399734E-08 7.81734226130E-08 8.05532384791E-08 8.30053342597E-08 8.55327410066E-08 8.81365582345E-08 9.08205317069E-08 9.35852496476E-08 9.64344248842E-08 9.93706923161E-08 1.02396100265E-07 1.05513739447E-07 1.08726144510E-07 1.12036052257E-07 1.15447737361E-07 1.18962313329E-07 1.22584786291E-07 1.26316930239E-07 1.30162639370E-07 1.34125859974E-07 1.38209741100E-07 1.42418083183E-07 1.46754787070E-07 1.51222768375E-07 1.55827249098E-07 1.60571887539E-07 1.65460312108E-07 1.70499763111E-07 1.75690405744E-07 1.81040284606E-07 1.86552176352E-07 1.92232532802E-07 1.98085891188E-07 2.04117342150E-07 2.10333286638E-07 2.16737075778E-07 2.23336887961E-07 2.30137634158E-07 2.37144894431E-07 2.44365807729E-07 2.51806927563E-07 2.59474647534E-07 2.67375314833E-07 2.75517336579E-07 2.83906524859E-07 2.92550993489E-07 3.01459628277E-07 3.10639711144E-07 3.20099041796E-07 3.29845325687E-07 3.39890436402E-07 3.50240031514E-07 3.60905087068E-07 3.71895271280E-07 3.83219297088E-07 3.94889162465E-07 4.06912755951E-07 4.19305025608E-07 4.32073505279E-07 4.45229748164E-07 4.58788077397E-07 4.72758629910E-07 4.87154986235E-07 5.01989593463E-07 5.17276038635E-07 5.33027092467E-07 5.49259689496E-07 5.65985280527E-07 5.83220345400E-07 6.00981138679E-07 6.19280493277E-07 6.38139260403E-07 6.57573557148E-07 6.77595418612E-07 6.98231874964E-07 7.19493359239E-07 7.41403418422E-07 7.63981315266E-07 7.87245735295E-07 8.11219560577E-07 8.35923076796E-07 8.61378285710E-07 8.87610311919E-07 9.14639985177E-07 9.42493256370E-07 9.71194198721E-07 1.00076927580E-06 1.03124528091E-06 1.06265040915E-06 1.09501028124E-06 1.12835593180E-06 1.16271733961E-06 1.19812384003E-06 1.23461179461E-06 1.27220887794E-06 1.31095043478E-06 1.35087337611E-06 1.39201176435E-06 1.43440212928E-06 1.47808395822E-06 1.52309551184E-06 1.56947798678E-06 1.61727388483E-06 1.66652477321E-06 1.71727397894E-06 1.76957063550E-06 1.82346155613E-06 1.87899040794E-06 1.93621323226E-06 1.99517549946E-06 2.05593543116E-06 2.11854525706E-06 2.18305973872E-06 2.24954248847E-06 2.31804757776E-06 2.38864123652E-06 2.46138247822E-06 2.53633880792E-06 2.61357903493E-06 2.69317096452E-06 2.77518585197E-06 2.85970134469E-06 2.94678800557E-06 3.03652767080E-06 3.12899992268E-06 3.22428849513E-06 3.32248006399E-06 3.42365862105E-06 3.52792191929E-06 3.63535823927E-06 3.74606771836E-06 3.86014695512E-06 3.97770280838E-06 4.09883731411E-06 4.22366033131E-06 4.35228745759E-06 4.48482793739E-06 4.62140768887E-06 4.76214546229E-06 4.90716884541E-06 5.05660872374E-06 5.21059950603E-06 5.36928302469E-06 5.53279347692E-06 5.70128734770E-06 5.87491281795E-06 6.05382092596E-06 6.23818205191E-06 6.42815793602E-06 6.62391477582E-06 6.82564125154E-06 7.03350144432E-06 7.24769792693E-06 7.46841548726E-06 7.69585392985E-06 7.93021923541E-06 8.17172283708E-06 8.42057870825E-06 8.67701784855E-06 8.94125881676E-06 9.21355439886E-06 9.49413553748E-06 9.78326561628E-06 1.00811979634E-05 1.03882069990E-05 1.07045629510E-05 1.10305549551E-05 1.13664705102E-05 1.17126208224E-05 1.20693090182E-05 1.24368597680E-05 1.28156029375E-05 1.32058831541E-05 1.36080455175E-05 1.40224567975E-05 1.44494864932E-05 1.48895196220E-05 1.53429582116E-05 1.58102011452E-05 1.62916729025E-05 1.67878097582E-05 1.72990480683E-05 1.78258641621E-05 1.83687191423E-05 1.89281038583E-05 1.95045250416E-05 2.00985037415E-05 2.07105611115E-05 2.13412672469E-05 2.19911719424E-05 2.26608743915E-05 2.33509680238E-05 2.40620765907E-05 2.47948355258E-05 2.55499143034E-05 2.63279848331E-05 2.71297543985E-05 2.79559301645E-05 2.88072733847E-05 2.96845385941E-05 3.05885162232E-05 3.15200251869E-05 3.24798990010E-05 3.34690046614E-05 3.44882288785E-05 3.55384846595E-05 3.66207284070E-05 3.77359276923E-05 3.88850911882E-05 4.00692390690E-05 4.12894535430E-05 4.25468207554E-05 4.38424771457E-05 4.51775913474E-05 4.65533633418E-05 4.79710185515E-05 4.94318517410E-05 5.09371625619E-05 5.24883262810E-05 5.40867059336E-05 5.57337727427E-05 5.74309829434E-05 5.91798774981E-05 6.09820243191E-05 6.28390565608E-05 6.47526301784E-05 6.67244775716E-05 6.87563635880E-05 7.08501201335E-05 7.30076310814E-05 7.52308469034E-05 7.75217478847E-05 7.98824166604E-05 8.23149648014E-05 8.48215777404E-05 8.74045229391E-05 9.00661125553E-05 9.28087450269E-05 9.56348990901E-05 9.85470974482E-05 1.01547970316E-04 1.04640221372E-04 1.07826623982E-04 1.11110045690E-04 1.14493452585E-04 1.17979874549E-04 1.21572455279E-04 1.25274420306E-04 1.29089103735E-04 1.33019935825E-04 1.37070453268E-04 1.41244300394E-04 1.45545238497E-04 1.49977121633E-04 1.54543942912E-04 1.59249815674E-04 1.64098964139E-04 1.69095754121E-04 1.74244688365E-04 1.79550384219E-04 1.85017623952E-04 1.90651317440E-04 1.96456531327E-04 2.02438495284E-04 2.08602581135E-04 2.14954338813E-04 2.21499476176E-04 2.28243890739E-04 2.35193626956E-04 2.42354955808E-04 2.49734300292E-04 2.57338348211E-04 2.65173550259E-04 2.73250559346E-04 2.81541638429E-04 2.90395457945E-04 2.96720412675E-04 3.11254765130E-04 3.15537051380E-04 3.30276975803E-04 3.32766730724E-04 3.49916078309E-04 3.57211858880E-04 3.68951424048E-04 3.80594228818E-04 3.91611006091E-04 4.02167586201E-04 4.14688821881E-04 4.30313955473E-04 4.42300561964E-04 4.55996200564E-04 4.63650284354E-04 4.91743014985E-04 4.90216004511E-04 5.13160501893E-04 5.33310703398E-04 5.41069711837E-04 5.63177911150E-04 5.78094632483E-04 5.95785950411E-04 6.11643530066E-04 6.35310847407E-04 6.52255651746E-04 6.72823958054E-04 6.90205509599E-04 7.13474444604E-04 7.36749601529E-04 7.55260399413E-04 7.81914192838E-04 8.04925187561E-04 8.28661340877E-04 8.53759338788E-04 8.78621662174E-04 9.09225051176E-04 9.33327102348E-04 9.64237745939E-04 9.90414627213E-04 1.02301346636E-03 1.05411191949E-03 1.08507747394E-03 1.11660409782E-03 1.15897843802E-03 1.18121029230E-03 1.22624208681E-03 1.26124555554E-03 1.30039056190E-03 1.33551029703E-03 1.38163260162E-03 1.42684897956E-03 1.46280241580E-03 1.50847664569E-03 1.55548575149E-03 1.59956022328E-03 1.65885788711E-03 1.69883781821E-03 1.75353479527E-03 1.80658267598E-03 1.86261294479E-03 1.92225354563E-03 1.97718474617E-03 2.03320365759E-03 2.10280779427E-03 2.15909885928E-03 2.23619558770E-03 2.29334206966E-03 2.36883590760E-03 2.43647506592E-03 2.51235024393E-03 2.58962058704E-03 2.67438171519E-03 2.74273011871E-03 2.83581459441E-03 2.92106857427E-03 3.00573191745E-03 3.10406550478E-03 3.18794676544E-03 3.29642146505E-03 3.38899754896E-03 3.49760088334E-03 3.59714723768E-03 3.71358350770E-03 3.82173660779E-03 3.93902237820E-03 4.06163085741E-03 4.18277698625E-03 4.30768026715E-03 4.44369585384E-03 4.57455335145E-03 4.71648725847E-03 4.85950059063E-03 5.00437598573E-03 5.16195490547E-03 5.31282169749E-03 5.47964004834E-03 5.64350298745E-03 5.81459172968E-03 5.99414695264E-03 6.17400280696E-03 6.36159260144E-03 6.55548881175E-03 6.75552901650E-03 6.96201452088E-03 7.16941954344E-03 7.39190456897E-03 7.61466674574E-03 7.84476495006E-03 8.08544861202E-03 8.33003989678E-03 8.58307492686E-03 8.84522654233E-03 9.11227481533E-03 9.39062318499E-03 9.67464770587E-03 9.96890670191E-03 1.02741156587E-02 1.05820308565E-02 1.09072141712E-02 1.12366571012E-02 1.15788361362E-02 1.19299663201E-02 1.22920840289E-02 1.26665340816E-02 1.30506609178E-02 1.34467974154E-02 1.38545912945E-02 1.42767728817E-02 1.47087046852E-02 1.51575227789E-02 1.56149611910E-02 1.60911004970E-02 1.65783404715E-02 1.70821302257E-02 1.76001309707E-02 1.81351489177E-02 1.86846162467E-02 1.92520764360E-02 1.98361753536E-02 2.04382326412E-02 2.10574296998E-02 2.16979212107E-02 2.23547156654E-02 2.30333555308E-02 2.37314689732E-02 2.44519661820E-02 2.51924726852E-02 2.59572917946E-02 2.67437487719E-02 2.75545638590E-02 2.83900596107E-02 2.92501526637E-02 3.01373403805E-02 3.10503022968E-02 3.19907378376E-02 3.29607872958E-02 3.39591077903E-02 3.49876150323E-02 3.60474161745E-02 3.71390879124E-02 3.82639828922E-02 3.94222590665E-02 4.06160849909E-02 4.18455957976E-02 4.31118163549E-02 4.44168877641E-02 4.57608281367E-02 4.71454686281E-02 4.85717951289E-02 5.00407760791E-02 5.15543677454E-02 5.31133020830E-02 5.47191888834E-02 5.63736818395E-02 5.80770849217E-02 5.98329959450E-02 6.16405907357E-02 6.35026856834E-02 6.54214171480E-02 6.73970506578E-02 6.94322224809E-02 7.15284593895E-02 7.36880459737E-02 7.59117301904E-02 7.82024954311E-02 8.05619149932E-02 8.29919386420E-02 8.54950267454E-02 8.80726228552E-02 9.07280116459E-02 9.34623733377E-02 9.62787239098E-02 9.91794496077E-02 1.02166766566E-01 1.05243391218E-01 1.08411770622E-01 1.11675211850E-01 1.15035605198E-01 1.18496472982E-01 1.22060765922E-01 1.25730989315E-01 1.29510849626E-01 1.33403049422E-01 1.37411419820E-01 1.41538925820E-01 1.45789267708E-01 1.50165877878E-01 1.54672718516E-01 1.59313364651E-01 1.64091729658E-01 1.69011875965E-01 1.74078006820E-01 1.79294207769E-01 1.84665004673E-01 1.90194710067E-01 1.95888191613E-01 2.01749778209E-01 2.07784831491E-01 2.13997988270E-01 2.20394510096E-01 2.26979795718E-01 2.33759043814E-01 2.40738074441E-01 2.47922516097E-01 2.55318271652E-01 2.62931380656E-01 2.70768031779E-01 2.78834779019E-01 2.87138020348E-01 2.95684517341E-01 3.04481285716E-01 3.13535362076E-01 3.22854070078E-01 3.32444906675E-01 3.42315524862E-01 3.52473950628E-01 3.62928187630E-01 3.73686506424E-01 3.84757630615E-01 3.96150238038E-01 4.07873233385E-01 4.19936012645E-01 4.32348009341E-01 4.45118773223E-01 4.58258565832E-01 4.71777323530E-01 4.85685765144E-01 4.99994433238E-01 5.14714510167E-01 5.29857263257E-01 5.45434155608E-01 5.61457239802E-01 5.77938530784E-01 5.94890584091E-01 6.12326113094E-01 6.30258256292E-01 6.48700362225E-01 6.67666162429E-01 6.87169721230E-01 7.07225359018E-01 7.27847921117E-01 7.49052359810E-01 7.70854128195E-01 7.93268978796E-01 8.16313088928E-01 8.40002909822E-01 8.64355339027E-01 8.89387594917E-01 9.15117301374E-01 9.41562520669E-01 9.68741565369E-01 9.96673327300E-01 1.02537690032E+00 1.05487195239E+00 1.08517844243E+00 1.11631677188E+00 1.14830781129E+00 1.18117270848E+00 1.21493318030E+00 1.24961126166E+00 1.28522942878E+00 1.32181060785E+00 1.35937806780E+00 1.39795562816E+00 1.43756739159E+00 1.47823791866E+00 1.51999225250E+00 1.56285576959E+00 1.60685424905E+00 1.65201395465E+00 1.69836143715E+00 1.74592376026E+00 1.79472823895E+00 1.84480267514E+00 1.89617517595E+00 1.94887421263E+00 2.00292860989E+00 2.05836749692E+00 2.11522035121E+00 2.17351691943E+00 2.23328723095E+00 2.29456156496E+00 2.35737047904E+00 2.42174468507E+00 2.48771512733E+00 2.55531288560E+00 2.62456918265E+00 2.69551533758E+00 2.76818271913E+00 2.84260275436E+00 2.91880681547E+00 2.99682625567E+00 3.07669231268E+00 3.15843605968E+00 3.24208839926E+00 3.32767995683E+00 3.41524103989E+00 3.50480159999E+00 3.59639112476E+00 3.69003859446E+00 3.78577241768E+00 3.88362030549E+00 3.98360925976E+00 4.08576540946E+00 4.19011398580E+00 4.29667917862E+00 4.40548404929E+00 4.51655043239E+00 4.62989880882E+00 4.74554819241E+00 4.86351599744E+00 4.98381793350E+00 5.10646782054E+00 5.23147750019E+00 5.35885664219E+00 5.48861260894E+00 5.62075028197E+00 5.75527190479E+00 5.89217687662E+00 6.03146159994E+00 6.17311926156E+00 6.31713963809E+00 6.46350889609E+00 6.61220935812E+00 6.76321929823E+00 6.91651268112E+00 7.07205895565E+00 7.22982276704E+00 7.38976373746E+00 7.55183616899E+00 7.71598878781E+00 7.88216445824E+00 8.05029989104E+00 8.22032535303E+00 8.39216435532E+00 8.56573334787E+00 8.74094140105E+00 8.91768988065E+00 9.09587211903E+00 9.27537308151E+00 9.45606902394E+00 9.63782715618E+00 9.82050528678E+00 1.00039514841E+01 1.01880037193E+01 1.03724895224E+01 1.05572256287E+01 1.07420176385E+01 1.09266596693E+01 1.11109340233E+01 1.12946108555E+01 1.14774478560E+01 1.16591899356E+01 1.18395689374E+01 1.20183033500E+01 1.21950980473E+01 1.23696440497E+01 1.25416183050E+01 1.27106834959E+01 1.28764878859E+01 1.30386651869E+01 1.31968344752E+01 1.33506001415E+01 1.34995518914E+01 1.36432647932E+01 1.37812993808E+01 1.39132018190E+01 1.40385041269E+01 1.41567244777E+01 1.42673675721E+01 1.43699250869E+01 1.44638762191E+01 1.45486883160E+01 1.46238176051E+01 1.46887100323E+01 1.47428022049E+01 1.47855224578E+01 1.48162920405E+01 1.48345264332E+01 1.48396368025E+01 1.48310315945E+01 1.48081182808E+01 1.47703052552E+01 1.47170038882E+01 1.46476307511E+01 1.45616100010E+01 1.44583759417E+01 1.43373757597E+01 1.41980724361E+01 1.40399478376E+01 1.38625059844E+01 1.36652764987E+01 1.34478182277E+01 1.32097230344E+01 1.29506197633E+01 1.26701783525E+01 1.23681141093E+01 1.20441921138E+01 1.16982317530E+01 1.13301113625E+01 1.09397729598E+01 1.05272270442E+01 1.00925574465E+01 9.63592619187E+00 9.15757835468E+00 8.65784686512E+00 8.13715723515E+00 7.59603216006E+00 7.03509595497E+00 6.45507877949E+00 5.85682059651E+00 5.24127481764E+00 4.60951157251E+00 3.96272054832E+00 3.30221333271E+00 2.62942519868E+00 1.94591626540E+00 1.25337196071E+00 5.53602729369E-01 -1.51457099797E-01 -8.59751341498E-01 -1.56910495705E+00 -2.27722809304E+00 -2.98172122302E+00 -3.68008145732E+00 -4.36971007349E+00 -5.04792132708E+00 -5.71195258592E+00 -6.35897583040E+00 -6.98611055879E+00 -7.59043811243E+00 -8.16901745207E+00 -8.71890237746E+00 -9.23716020102E+00 -9.72089184950E+00 -1.01672533790E+01 -1.05734788569E+01 -1.09369045705E+01 -1.12549944946E+01 -1.15253669529E+01 -1.17458223812E+01 -1.19143721039E+01 -1.20292680118E+01 -1.20890330230E+01 -1.20924921993E+01 -1.20388043714E+01 -1.19274941236E+01 -1.17584839652E+01 -1.15321265117E+01 -1.12492364731E+01 -1.09111222373E+01 -1.05196168038E+01 -1.00771078103E+01 -9.58656635191E+00 -9.05157426850E+00 -8.47634952914E+00 -7.86576929704E+00 -7.22539020989E+00 -6.56146535357E+00 -5.88095734256E+00 -5.19154686588E+00 -4.50163599043E+00 -3.82034546343E+00 -3.15750520249E+00 -2.52363714357E+00 -1.92992959774E+00 -1.38820232257E+00 -9.10861484016E-01 -5.10844681567E-01 -2.01548142850E-01 3.19097371617E-03 8.97691406255E-02 3.92013555926E-02 -1.17053123729E-01 -9.90588583870E-02 -5.55036434428E-02 -2.92903824002E-02 -1.31394516352E-02 -4.68398245396E-03 -1.17331866220E-03 -2.45384737304E-04 -1.66320398621E-04 -1.63783528344E-04 -1.61247017623E-04 -1.58713716511E-04 -1.56185858757E-04 -1.53665602080E-04 3 2 Beta L 1174 6.34290556588E-13 6.53607579879E-13 6.73512894112E-13 6.94024415413E-13 7.15160605536E-13 7.36940488479E-13 7.59383667606E-13 7.82510343294E-13 8.06341331111E-13 8.30898080557E-13 8.56202694362E-13 8.82277948387E-13 9.09147312121E-13 9.36834969806E-13 9.65365842201E-13 9.94765609018E-13 1.02506073203E-12 1.05627847890E-12 1.08844694770E-12 1.12159509222E-12 1.15575274804E-12 1.19095065934E-12 1.22722050663E-12 1.26459493522E-12 1.30310758461E-12 1.34279311878E-12 1.38368725741E-12 1.42582680797E-12 1.46924969890E-12 1.51399501374E-12 1.56010302629E-12 1.60761523687E-12 1.65657440968E-12 1.70702461128E-12 1.75901125026E-12 1.81258111811E-12 1.86778243131E-12 1.92466487478E-12 1.98327964655E-12 2.04367950388E-12 2.10591881071E-12 2.17005358663E-12 2.23614155726E-12 2.30424220624E-12 2.37441682874E-12 2.44672858666E-12 2.52124256547E-12 2.59802583278E-12 2.67714749871E-12 2.75867877810E-12 2.84269305461E-12 2.92926594675E-12 3.01847537597E-12 3.11040163679E-12 3.20512746904E-12 3.30273813236E-12 3.40332148294E-12 3.50696805258E-12 3.61377113020E-12 3.72382684577E-12 3.83723425687E-12 3.95409543782E-12 4.07451557157E-12 4.19860304437E-12 4.32646954333E-12 4.45823015692E-12 4.59400347859E-12 4.73391171349E-12 4.87808078848E-12 5.02664046546E-12 5.17972445817E-12 5.33747055252E-12 5.50002073067E-12 5.66752129873E-12 5.84012301853E-12 6.01798124326E-12 6.20125605733E-12 6.39011242045E-12 6.58472031610E-12 6.78525490450E-12 6.99189668034E-12 7.20483163515E-12 7.42425142477E-12 7.65035354183E-12 7.88334149348E-12 8.12342498461E-12 8.37082010658E-12 8.62574953168E-12 8.88844271362E-12 9.15913609398E-12 9.43807331507E-12 9.72550543924E-12 1.00216911748E-11 1.03268971089E-11 1.06413979474E-11 1.09654767625E-11 1.12994252468E-11 1.16435439765E-11 1.19981426818E-11 1.23635405254E-11 1.27400663900E-11 1.31280591744E-11 1.35278680981E-11 1.39398530163E-11 1.43643847432E-11 1.48018453860E-11 1.52526286887E-11 1.57171403869E-11 1.61957985723E-11 1.66890340696E-11 1.71972908242E-11 1.77210263014E-11 1.82607118984E-11 1.88168333687E-11 1.93898912592E-11 1.99804013607E-11 2.05888951722E-11 2.12159203790E-11 2.18620413463E-11 2.25278396266E-11 2.32139144831E-11 2.39208834297E-11 2.46493827860E-11 2.54000682507E-11 2.61736154913E-11 2.69707207527E-11 2.77921014832E-11 2.86384969811E-11 2.95106690594E-11 3.04094027319E-11 3.13355069195E-11 3.22898151784E-11 3.32731864507E-11 3.42865058367E-11 3.53306853923E-11 3.64066649497E-11 3.75154129629E-11 3.86579273802E-11 3.98352365415E-11 4.10484001047E-11 4.22985099987E-11 4.35866914069E-11 4.49141037795E-11 4.62819418773E-11 4.76914368467E-11 4.91438573286E-11 5.06405105993E-11 5.21827437478E-11 5.37719448880E-11 5.54095444082E-11 5.70970162586E-11 5.88358792777E-11 6.06276985596E-11 6.24740868626E-11 6.43767060607E-11 6.63372686398E-11 6.83575392385E-11 7.04393362366E-11 7.25845333919E-11 7.47950615268E-11 7.70729102658E-11 7.94201298264E-11 8.18388328647E-11 8.43311963767E-11 8.68994636579E-11 8.95459463220E-11 9.22730263821E-11 9.50831583944E-11 9.79788716673E-11 1.00962772538E-10 1.04037546720E-10 1.07205961715E-10 1.10470869313E-10 1.13835208150E-10 1.17302006358E-10 1.20874384289E-10 1.24555557326E-10 1.28348838771E-10 1.32257642834E-10 1.36285487704E-10 1.40435998712E-10 1.44712911597E-10 1.49120075871E-10 1.53661458279E-10 1.58341146372E-10 1.63163352184E-10 1.68132416026E-10 1.73252810391E-10 1.78529143980E-10 1.83966165849E-10 1.89568769685E-10 1.95341998210E-10 2.01291047717E-10 2.07421272755E-10 2.13738190939E-10 2.20247487921E-10 2.26955022509E-10 2.33866831936E-10 2.40989137297E-10 2.48328349149E-10 2.55891073276E-10 2.63684116641E-10 2.71714493509E-10 2.79989431761E-10 2.88516379401E-10 2.97303011256E-10 3.06357235888E-10 3.15687202711E-10 3.25301309325E-10 3.35208209073E-10 3.45416818836E-10 3.55936327049E-10 3.66776201982E-10 3.77946200252E-10 3.89456375613E-10 4.01317087999E-10 4.13539012851E-10 4.26133150727E-10 4.39110837201E-10 4.52483753067E-10 4.66263934851E-10 4.80463785648E-10 4.95096086280E-10 5.10174006807E-10 5.25711118375E-10 5.41721405432E-10 5.58219278317E-10 5.75219586230E-10 5.92737630594E-10 6.10789178833E-10 6.29390478557E-10 6.48558272193E-10 6.68309812047E-10 6.88662875839E-10 7.09635782699E-10 7.31247409660E-10 7.53517208644E-10 7.76465223973E-10 8.00112110410E-10 8.24479151748E-10 8.49588279969E-10 8.75462094982E-10 9.02123884968E-10 9.29597647337E-10 9.57908110329E-10 9.87080755271E-10 1.01714183951E-09 1.04811842006E-09 1.08003837792E-09 1.11293044321E-09 1.14682422102E-09 1.18175021803E-09 1.21773986998E-09 1.25482557001E-09 1.29304069774E-09 1.33241964936E-09 1.37299786859E-09 1.41481187856E-09 1.45789931471E-09 1.50229895863E-09 1.54805077301E-09 1.59519593755E-09 1.64377688609E-09 1.69383734477E-09 1.74542237136E-09 1.79857839589E-09 1.85335326235E-09 1.90979627182E-09 1.96795822682E-09 2.02789147704E-09 2.08964996643E-09 2.15328928182E-09 2.21886670287E-09 2.28644125369E-09 2.35607375594E-09 2.42782688356E-09 2.50176521922E-09 2.57795531240E-09 2.65646573933E-09 2.73736716469E-09 2.82073240521E-09 2.90663649525E-09 2.99515675427E-09 3.08637285649E-09 3.18036690254E-09 3.27722349342E-09 3.37702980658E-09 3.47987567445E-09 3.58585366524E-09 3.69505916629E-09 3.80759046992E-09 3.92354886189E-09 4.04303871259E-09 4.16616757093E-09 4.29304626120E-09 4.42378898278E-09 4.55851341293E-09 4.69734081272E-09 4.84039613619E-09 4.98780814278E-09 5.13970951322E-09 5.29623696901E-09 5.45753139541E-09 5.62373796828E-09 5.79500628475E-09 5.97149049786E-09 6.15334945529E-09 6.34074684238E-09 6.53385132942E-09 6.73283672346E-09 6.93788212478E-09 7.14917208806E-09 7.36689678854E-09 7.59125219311E-09 7.82244023677E-09 8.06066900435E-09 8.30615291781E-09 8.55911292921E-09 8.81977671964E-09 9.08837890407E-09 9.36516124259E-09 9.65037285795E-09 9.94427045985E-09 1.02471185759E-08 1.05591897899E-08 1.08807649870E-08 1.12121336064E-08 1.15535939024E-08 1.19054532121E-08 1.22680282327E-08 1.26416453062E-08 1.30266407130E-08 1.34233609751E-08 1.38321631674E-08 1.42534152393E-08 1.46874963463E-08 1.51347971904E-08 1.55957203727E-08 1.60706807551E-08 1.65601058338E-08 1.70644361246E-08 1.75841255585E-08 1.81196418912E-08 1.86714671234E-08 1.92400979349E-08 1.98260461320E-08 2.04298391073E-08 2.10520203152E-08 2.16931497609E-08 2.23538045038E-08 2.30345791779E-08 2.37360865262E-08 2.44589579526E-08 2.52038440899E-08 2.59714153861E-08 2.67623627067E-08 2.75773979579E-08 2.84172547261E-08 2.92826889390E-08 3.01744795457E-08 3.10934292177E-08 3.20403650718E-08 3.30161394137E-08 3.40216305063E-08 3.50577433591E-08 3.61254105435E-08 3.72255930318E-08 3.83592810623E-08 3.95274950305E-08 4.07312864076E-08 4.19717386869E-08 4.32499683589E-08 4.45671259163E-08 4.59243968896E-08 4.73230029139E-08 4.90134090224E-08 5.05017780264E-08 5.20343774078E-08 5.33905288459E-08 5.50158799842E-08 5.66905882337E-08 5.84164129064E-08 6.01943314201E-08 6.20272649166E-08 6.39156123219E-08 6.58611646048E-08 6.78660839077E-08 6.99329427672E-08 7.20611267237E-08 7.42552931682E-08 7.65159775119E-08 7.88453210393E-08 8.12454182637E-08 8.37191981557E-08 8.62677837680E-08 8.88947961009E-08 9.16008752097E-08 9.43896317638E-08 9.72635843205E-08 1.00224820335E-07 1.03276315839E-07 1.06420584096E-07 1.09660295822E-07 1.12999581236E-07 1.16439613215E-07 1.19985225035E-07 1.23638201364E-07 1.27402351518E-07 1.31281476730E-07 1.35278736989E-07 1.39397774615E-07 1.43642458833E-07 1.48015687785E-07 1.52522466623E-07 1.57166467030E-07 1.61951211172E-07 1.66883688999E-07 1.71964235587E-07 1.77200624683E-07 1.82595595434E-07 1.88155453394E-07 1.93884615577E-07 1.99788133260E-07 2.05872146375E-07 2.12140138186E-07 2.18599893311E-07 2.25256368666E-07 2.32114969421E-07 2.39182709284E-07 2.46465937975E-07 2.53970979888E-07 2.61704035419E-07 2.69673314645E-07 2.77884526065E-07 2.86345641217E-07 2.95065247345E-07 3.04050530898E-07 3.13309175889E-07 3.22848721148E-07 3.32680671340E-07 3.42810691680E-07 3.53249496891E-07 3.64006477106E-07 3.75090301892E-07 3.86512529324E-07 3.98281118011E-07 4.10410381737E-07 4.22907969202E-07 4.35785129703E-07 4.49055782724E-07 4.62729933385E-07 4.76820858723E-07 4.91340701789E-07 5.06302851404E-07 5.21719744528E-07 5.37607913979E-07 5.53978642700E-07 5.70848076891E-07 5.88231981739E-07 6.06143213588E-07 6.24601818967E-07 6.43623670133E-07 6.63220932104E-07 6.83419380666E-07 7.04229861616E-07 7.25675046320E-07 7.47773918090E-07 7.70544737500E-07 7.94009926885E-07 8.18189286772E-07 8.43104485780E-07 8.68779866687E-07 8.95236105848E-07 9.22498376740E-07 9.50590427001E-07 9.79538003862E-07 1.00936742376E-06 1.04010615494E-06 1.07177951350E-06 1.10441767058E-06 1.13805007110E-06 1.17270541531E-06 1.20841912117E-06 1.24521852076E-06 1.28313816598E-06 1.32221398749E-06 1.36247956486E-06 1.40397053020E-06 1.44672556278E-06 1.49078216058E-06 1.53618053484E-06 1.58296233802E-06 1.63116824249E-06 1.68084083672E-06 1.73202785454E-06 1.78477527808E-06 1.83912601581E-06 1.89513469812E-06 1.95284599796E-06 2.01231679123E-06 2.07359820783E-06 2.13674400070E-06 2.20181610910E-06 2.26886776287E-06 2.33796354464E-06 2.40916147182E-06 2.48252750471E-06 2.55812890197E-06 2.63603214958E-06 2.71630699050E-06 2.79902920299E-06 2.88426818988E-06 2.97210387149E-06 3.06261410682E-06 3.15588100162E-06 3.25198915238E-06 3.35102113990E-06 3.45307222311E-06 3.55822912619E-06 3.66658965447E-06 3.77824857027E-06 3.89331016734E-06 4.01187462245E-06 4.13404930482E-06 4.25994725437E-06 4.38967571862E-06 4.52335759966E-06 4.66110938881E-06 4.80305583251E-06 4.94932511207E-06 5.10004873935E-06 5.25536531917E-06 5.41540679225E-06 5.58032569745E-06 5.75026731107E-06 5.92537976892E-06 6.10582928800E-06 6.29177440345E-06 6.48337812534E-06 6.68082431742E-06 6.88427465829E-06 7.09392650929E-06 7.30996117455E-06 7.53257419501E-06 7.76196705222E-06 7.99834674634E-06 8.24192283021E-06 8.49292100644E-06 8.75155596075E-06 9.01807419458E-06 9.29270257856E-06 9.57569829790E-06 9.86730967096E-06 1.01678049734E-05 1.04774490519E-05 1.07965245928E-05 1.11253133861E-05 1.14641195443E-05 1.18132401819E-05 1.21729929280E-05 1.25437006872E-05 1.29257005208E-05 1.33193306102E-05 1.37249496434E-05 1.41429194846E-05 1.45736169652E-05 1.50174351736E-05 1.54747651650E-05 1.59460220370E-05 1.64316328562E-05 1.69320250185E-05 1.74476640573E-05 1.79790019425E-05 1.85265189715E-05 1.90907110128E-05 1.96720877783E-05 2.02711603484E-05 2.08884853608E-05 2.15246022020E-05 2.21800963948E-05 2.28555493762E-05 2.35515714833E-05 2.42687849093E-05 2.50078444323E-05 2.57694080357E-05 2.65541677050E-05 2.73628163131E-05 2.81960980172E-05 2.90547520070E-05 2.99395518958E-05 3.08512988731E-05 3.17908091168E-05 3.27589309672E-05 3.37565326265E-05 3.47845078608E-05 3.58437922106E-05 3.69353330869E-05 3.80601173743E-05 3.92191445760E-05 4.04134728528E-05 4.16441661235E-05 4.29123362422E-05 4.42191270920E-05 4.55657131967E-05 4.69532946997E-05 4.83831379118E-05 4.98565156065E-05 5.13747728317E-05 5.29392454947E-05 5.45513718045E-05 5.62125786263E-05 5.79243732491E-05 5.96882909493E-05 6.15059293373E-05 6.33789102295E-05 6.53089286685E-05 6.72977125830E-05 6.93470549084E-05 7.14587994603E-05 7.36348548353E-05 7.58771605608E-05 7.81877537870E-05 8.05687020915E-05 8.30221446800E-05 8.55503003840E-05 8.81554327730E-05 9.08398893922E-05 9.36060957953E-05 9.64565222536E-05 9.93937425583E-05 1.02420403090E-04 1.05539218643E-04 1.08752996186E-04 1.12064637945E-04 1.15477110545E-04 1.18993490603E-04 1.22616935645E-04 1.26350708827E-04 1.30198167812E-04 1.34162774225E-04 1.38248095297E-04 1.42457811991E-04 1.46795697642E-04 1.51265660330E-04 1.55871725931E-04 1.60618029603E-04 1.65508844421E-04 1.70548577231E-04 1.75741748323E-04 1.81093038006E-04 1.86607252710E-04 1.92289351465E-04 1.98144452949E-04 2.04177815340E-04 2.10394870947E-04 2.16801206735E-04 2.23402594720E-04 2.30204952472E-04 2.37214416817E-04 2.44437275963E-04 2.51880072891E-04 2.59549142703E-04 2.67454717865E-04 2.75571539902E-04 2.84222457106E-04 2.90548826770E-04 3.04481624331E-04 3.08948472571E-04 3.23101777734E-04 3.25942250524E-04 3.42356021052E-04 3.49674297216E-04 3.61119281222E-04 3.72494803625E-04 3.83289399552E-04 3.93729202218E-04 4.05985098666E-04 4.21052165362E-04 4.32892779279E-04 4.46244644424E-04 4.54140546579E-04 4.80790556310E-04 4.80284651028E-04 5.02259768466E-04 5.21726821693E-04 5.29795928662E-04 5.51148724825E-04 5.65819567871E-04 5.83182066124E-04 5.98807708625E-04 6.21707059439E-04 6.38396004222E-04 6.58503591711E-04 6.75706414123E-04 6.98342855803E-04 7.21041898590E-04 7.39370658659E-04 7.65277762104E-04 7.87795968293E-04 8.11118869466E-04 8.35679493719E-04 8.60078367216E-04 8.89808061722E-04 9.13601251996E-04 9.43726270646E-04 9.69522261175E-04 1.00130162130E-03 1.03172230325E-03 1.06211062453E-03 1.09306347854E-03 1.13403363228E-03 1.15656506807E-03 1.20010115980E-03 1.23451971323E-03 1.27278357284E-03 1.30740227090E-03 1.35224943238E-03 1.39634659330E-03 1.43192153808E-03 1.47658970947E-03 1.52251289650E-03 1.56587300698E-03 1.62332228964E-03 1.66300216847E-03 1.71641234296E-03 1.76832472139E-03 1.82313531620E-03 1.88133971028E-03 1.93529915854E-03 1.99036650057E-03 2.05806664548E-03 2.11362441645E-03 2.18840049647E-03 2.24496151390E-03 2.31855541265E-03 2.38499750473E-03 2.45921764328E-03 2.53475984515E-03 2.61735267255E-03 2.68506291674E-03 2.77561433297E-03 2.85908958688E-03 2.94224833966E-03 3.03805953536E-03 3.12081813110E-03 3.22630223377E-03 3.31738110073E-03 3.42337513883E-03 3.52117948729E-03 3.63478700195E-03 3.74090295903E-03 3.85568396120E-03 3.97550331875E-03 4.09423705855E-03 4.21663734911E-03 4.34948484756E-03 4.47784735474E-03 4.61658537062E-03 4.75661932352E-03 4.89860703586E-03 5.05252033694E-03 5.20059163159E-03 5.36354136954E-03 5.52411745910E-03 5.69164258085E-03 5.86720769235E-03 6.04344750659E-03 6.22704344597E-03 6.41685009318E-03 6.61260161227E-03 6.81467130105E-03 7.01795406377E-03 7.23545984116E-03 7.45365032996E-03 7.67897591539E-03 7.91443579269E-03 8.15393705996E-03 8.40166506295E-03 8.65817733964E-03 8.91972357156E-03 9.19211296650E-03 9.47022071204E-03 9.75827158488E-03 1.00568973187E-02 1.03585882442E-02 1.06767010344E-02 1.09993084827E-02 1.13342376073E-02 1.16780055787E-02 1.20325216190E-02 1.23990060621E-02 1.27751032703E-02 1.31628961721E-02 1.35621569879E-02 1.39753602077E-02 1.43983053771E-02 1.48375479410E-02 1.52855332252E-02 1.57515397556E-02 1.62286071405E-02 1.67217816092E-02 1.72289265018E-02 1.77526565332E-02 1.82906359929E-02 1.88461530072E-02 1.94179998241E-02 2.00074041708E-02 2.06136673502E-02 2.12406154973E-02 2.18837213724E-02 2.25480957506E-02 2.32316071914E-02 2.39369505532E-02 2.46620040039E-02 2.54107434259E-02 2.61807670120E-02 2.69745991065E-02 2.77925993351E-02 2.86347145031E-02 2.95033098958E-02 3.03971936725E-02 3.13179971707E-02 3.22677252914E-02 3.32452029281E-02 3.42522367065E-02 3.52899081665E-02 3.63587928014E-02 3.74602033465E-02 3.85943335557E-02 3.97632505499E-02 4.09671299604E-02 4.22069894259E-02 4.34848567244E-02 4.48008216442E-02 4.61566371220E-02 4.75532850798E-02 4.89917304260E-02 5.04738447222E-02 5.20003931371E-02 5.35729222486E-02 5.51930503100E-02 5.68611404262E-02 5.85805818840E-02 6.03507274765E-02 6.21742437184E-02 6.40532045481E-02 6.59879530185E-02 6.79810147003E-02 7.00339022952E-02 7.21488263539E-02 7.43265898932E-02 7.65700528562E-02 7.88807789668E-02 8.12606904808E-02 8.37121737027E-02 8.62366889005E-02 8.88373920814E-02 9.15155065308E-02 9.42739522815E-02 9.71150675148E-02 1.00041044011E-01 1.03054537039E-01 1.06157957143E-01 1.09354511283E-01 1.12646109073E-01 1.16036164911E-01 1.19527573326E-01 1.23122825045E-01 1.26825519946E-01 1.30638341376E-01 1.34565014122E-01 1.38608475067E-01 1.42772343138E-01 1.47059994468E-01 1.51475302621E-01 1.56021788784E-01 1.60703293145E-01 1.65523803021E-01 1.70487434220E-01 1.75598213987E-01 1.80860569674E-01 1.86278749258E-01 1.91857514593E-01 1.97601143906E-01 2.03514869143E-01 2.09603269238E-01 2.15871503297E-01 2.22324867860E-01 2.28968484315E-01 2.35808054610E-01 2.42849116445E-01 2.50097467877E-01 2.57559045873E-01 2.65239933558E-01 2.73146560717E-01 2.81285228541E-01 2.89662580698E-01 2.98285509101E-01 3.07160936120E-01 3.16296061566E-01 3.25698258273E-01 3.35375054871E-01 3.45334338207E-01 3.55583987636E-01 3.66132144307E-01 3.76987379412E-01 3.88158237674E-01 3.99653490250E-01 4.11482373534E-01 4.23654177069E-01 4.36178314226E-01 4.49064869365E-01 4.62323647585E-01 4.75965190316E-01 4.89999897252E-01 5.04438775224E-01 5.19292928673E-01 5.34573664201E-01 5.50292849378E-01 5.66462339918E-01 5.83094510790E-01 6.00201903601E-01 6.17797475418E-01 6.35894398700E-01 6.54506223685E-01 6.73646830543E-01 6.93330360769E-01 7.13571464523E-01 7.34384916755E-01 7.55785980714E-01 7.77790222929E-01 8.00413627781E-01 8.23672462942E-01 8.47583434348E-01 8.72163574826E-01 8.97430320554E-01 9.23401543104E-01 9.50095376693E-01 9.77530521418E-01 1.00572589746E+00 1.03470098715E+00 1.06447557626E+00 1.09506989363E+00 1.12650463588E+00 1.15880079296E+00 1.19197991586E+00 1.22606388742E+00 1.26107503628E+00 1.29703614508E+00 1.33397035349E+00 1.37190134902E+00 1.41085312275E+00 1.45085013056E+00 1.49191731583E+00 1.53407997391E+00 1.57736381622E+00 1.62179504607E+00 1.66740017786E+00 1.71420624568E+00 1.76224056314E+00 1.81153094068E+00 1.86210551929E+00 1.91399282534E+00 1.96722176092E+00 2.02182155997E+00 2.07782182867E+00 2.13525247332E+00 2.19414371330E+00 2.25452605124E+00 2.31643029933E+00 2.37988746632E+00 2.44492882873E+00 2.51158584267E+00 2.57989015036E+00 2.64987353783E+00 2.72156789163E+00 2.79500520696E+00 2.87021748339E+00 2.94723675785E+00 3.02609501519E+00 3.10682414318E+00 3.18945592608E+00 3.27402194615E+00 3.36055354549E+00 3.44908179029E+00 3.53963737021E+00 3.63225055794E+00 3.72695114799E+00 3.82376834033E+00 3.92273072737E+00 4.02386614219E+00 4.12720163325E+00 4.23276333051E+00 4.34057636276E+00 4.45066476464E+00 4.56305135713E+00 4.67775764021E+00 4.79480366765E+00 4.91420794667E+00 5.03598726405E+00 5.16015660030E+00 5.28672894710E+00 5.41571517796E+00 5.54712388337E+00 5.68096122069E+00 5.81723071862E+00 5.95593313048E+00 6.09706622628E+00 6.24062460648E+00 6.38659951069E+00 6.53497859420E+00 6.68574573148E+00 6.83888076708E+00 6.99435931603E+00 7.15215248906E+00 7.31222667997E+00 7.47454328106E+00 7.63905843599E+00 7.80572276403E+00 7.97448107870E+00 8.14527210654E+00 8.31802818602E+00 8.49267497107E+00 8.66913112222E+00 8.84730799089E+00 9.02710929929E+00 9.20843081531E+00 9.39116001828E+00 9.57517576960E+00 9.76034796497E+00 9.94653720122E+00 1.01335944252E+01 1.03213605943E+01 1.05096663269E+01 1.06983315644E+01 1.08871652251E+01 1.10759648718E+01 1.12645163788E+01 1.14525936110E+01 1.16399581058E+01 1.18263587770E+01 1.20115316207E+01 1.21951994440E+01 1.23770716131E+01 1.25568438183E+01 1.27341978641E+01 1.29088014924E+01 1.30803082266E+01 1.32483572589E+01 1.34125733692E+01 1.35725668894E+01 1.37279337127E+01 1.38782553509E+01 1.40230990528E+01 1.41620179728E+01 1.42945514127E+01 1.44202251308E+01 1.45385517212E+01 1.46490310817E+01 1.47511509627E+01 1.48443876087E+01 1.49282065016E+01 1.50020632023E+01 1.50654043078E+01 1.51176685222E+01 1.51582878496E+01 1.51866889180E+01 1.52022944346E+01 1.52045247838E+01 1.51927997707E+01 1.51665405125E+01 1.51251714927E+01 1.50681227680E+01 1.49948323443E+01 1.49047487198E+01 1.47973335972E+01 1.46720647687E+01 1.45284391714E+01 1.43659761182E+01 1.41842206982E+01 1.39827473411E+01 1.37611635521E+01 1.35191137941E+01 1.32562835289E+01 1.29724033899E+01 1.26672534852E+01 1.23406678133E+01 1.19925387744E+01 1.16228217569E+01 1.12315397820E+01 1.08187881742E+01 1.03847392365E+01 9.92964689569E+00 9.45385128480E+00 8.95778322496E+00 8.44196856676E+00 7.90703234855E+00 7.35370272098E+00 6.78281459326E+00 6.19531294228E+00 5.59225573418E+00 4.97481639525E+00 4.34428577437E+00 3.70207353423E+00 3.04970890128E+00 2.38884072047E+00 1.72123673303E+00 1.04878202491E+00 3.73476569276E-01 -3.02568195267E-01 -9.77133815674E-01 -1.64790036780E+00 -2.31245314346E+00 -2.96829053948E+00 -3.61283319191E+00 -4.24343439747E+00 -4.85739186187E+00 -5.45196079134E+00 -6.02436835962E+00 -6.57182954564E+00 -7.09156435470E+00 -7.58081640125E+00 -8.03687284181E+00 -8.45708561710E+00 -8.83889396635E+00 -9.17984815408E+00 -9.47763434712E+00 -9.73010055761E+00 -9.93528357033E+00 -1.00914367478E+01 -1.01970586026E+01 -1.02509220168E+01 -1.02521039706E+01 -1.02000156357E+01 -1.00944326745E+01 -9.93552557297E+00 -9.72388981897E+00 -9.46057572329E+00 -9.14711765452E+00 -8.78556244496E+00 -8.37849668725E+00 -7.92907261815E+00 -7.44103224463E+00 -6.91872932648E+00 -6.36714878477E+00 -5.79192305515E+00 -5.19934484579E+00 -4.59637571078E+00 -3.99064978903E+00 -3.39047201341E+00 -2.80481004610E+00 -2.24327917997E+00 -1.71611942749E+00 -1.23416406893E+00 -8.08798903553E-01 -4.51912353882E-01 -1.75829246110E-01 6.70549130928E-03 8.31398760712E-02 3.60153618476E-02 -1.06327838199E-01 -9.00479561094E-02 -5.04956951571E-02 -2.66682021807E-02 -1.19737790268E-02 -4.27403938030E-03 -1.07448475174E-03 -2.28061485650E-04 -1.55786962775E-04 -1.53354761786E-04 -1.50925447816E-04 -1.48501683671E-04 -1.46085553819E-04 -1.43679058350E-04 4 Number of nonzero Dij 1 1 1.78632433765E-02 2 2 -3.47670229969E+00 2 3 3.82419517109E+00 3 3 -4.24274587148E+00 0 nqf. If not zero, Qij's inside rinner are computed using qfcoef's 1 1 1 i j (l(j)) -3.58228713765E-19 Q_int -4.33836454136E-38 -2.29101131825E-38 3.04758439626E-38 2.10442155731E-38 -4.01919416938E-39 -8.27592300184E-38 -5.96960687298E-38 2.43053305068E-38 1.13053842121E-38 1.14196644831E-38 -6.62068934256E-38 2.13503900413E-38 6.28406879193E-38 -6.41742546244E-38 -6.27676612154E-38 6.47729846256E-38 -6.56161425604E-38 -6.02862899343E-38 4.87003127132E-38 -4.12118828255E-38 -1.41335883386E-38 9.36562620144E-38 4.87183433393E-37 1.30537557814E-37 3.13815394012E-38 3.98701169685E-37 -1.83727574733E-37 5.28481978158E-38 -5.56702891437E-38 -1.70422613964E-37 -1.86420270443E-37 3.92620108999E-39 -1.80909152319E-38 -6.36642829665E-37 -1.38538106628E-37 -1.19839173150E-37 -9.09787768659E-38 7.75657723582E-37 -1.06354468952E-37 -7.62945892857E-38 -3.89864962147E-38 -2.48090871436E-37 1.91254104942E-37 -9.95342960674E-38 4.25461407646E-39 -3.34537285588E-37 -3.11309511542E-37 1.81075641336E-37 2.24142675648E-37 1.80728281016E-37 5.85990123751E-38 2.96606457862E-37 -5.06396746913E-38 2.86016739483E-37 3.28797202412E-37 -2.80119373460E-37 2.88094420344E-37 -2.84974821536E-38 -4.54817149373E-37 -6.57950456953E-37 -5.95448872835E-37 4.99859902147E-37 1.64140268867E-36 -2.49365709994E-36 2.28429182307E-36 2.79816522811E-36 -2.08551142140E-37 5.28807097344E-37 3.36580792428E-36 4.42066124449E-37 -5.91867737145E-37 4.32293172965E-37 -1.75853785523E-37 -2.67020854189E-37 9.83109836350E-37 8.06170247092E-37 -3.00085286535E-37 1.42957625308E-36 -2.54000097340E-37 2.87826580848E-38 -1.31784943443E-36 1.17333558173E-36 2.15081894581E-37 8.13963470565E-37 -9.90244364129E-37 1.38969114141E-36 4.57920683799E-37 1.04578148938E-36 -5.22143080526E-38 -9.23253159962E-37 5.58631480868E-37 -1.17269040389E-36 2.35959967018E-36 3.87141786484E-37 -1.07335743367E-36 7.04745758848E-37 -1.86379128074E-37 -1.48254027622E-36 -2.81249085039E-36 9.59675510102E-37 3.53627531699E-37 -1.11471268998E-36 -4.04718354258E-38 -7.93406590198E-38 -1.15749852567E-36 -1.33469445988E-36 1.22763530019E-36 -2.40634643433E-36 -1.19504233325E-35 -5.00111362155E-36 -3.92594166125E-36 4.19116119351E-36 -1.16288313845E-36 5.43717034112E-36 -4.56100764179E-38 -5.59028478674E-36 -2.47086707975E-35 -4.32495412292E-36 1.00570294501E-36 2.79011425395E-36 -3.08667218418E-37 -5.90863975644E-36 -2.86260101708E-36 -3.29133428932E-36 -4.27269361501E-36 -7.55096045134E-37 4.49092895628E-37 -8.57603638951E-36 7.41211790196E-36 1.78907857954E-36 4.81752640139E-36 2.61490152625E-36 -1.12394101004E-35 4.33348700054E-35 7.82232684448E-36 3.07180193843E-35 7.94083060347E-36 3.11452655795E-36 -1.79664959986E-36 4.92384826753E-37 -4.52700857649E-35 1.16649465477E-35 -2.04796272800E-37 -8.29967425105E-36 1.77689377123E-35 1.95309354577E-35 -1.20835763427E-35 -1.19341967956E-35 -5.93045695739E-36 -1.34344327917E-35 1.97774378751E-35 1.48427381626E-35 -3.50474713498E-36 2.02951193120E-35 -2.36192899642E-35 6.30479422071E-36 1.10548389231E-35 2.29377762551E-35 1.76025695679E-35 1.28825772989E-34 -1.36330277451E-34 -2.28469043088E-36 -1.44739306833E-34 9.27474760923E-36 -5.13665445224E-36 1.55643471319E-34 -2.02500759411E-35 -3.18662328586E-35 -1.88604027287E-34 2.95785667920E-35 1.85301419735E-34 1.25509368925E-35 4.17683292762E-35 -4.28174539226E-35 -3.74703587212E-38 -1.90557630898E-34 -2.93898603425E-35 -2.17526358378E-34 5.10785457196E-35 -6.59821847664E-35 -2.10919420649E-35 2.62595532339E-35 -1.86759132301E-36 -3.44426702687E-35 -7.86086453614E-35 1.86155863485E-35 3.46796851133E-35 8.55685222841E-35 -3.68983675137E-36 -7.50723409796E-35 -6.12270283608E-35 -6.74325848547E-35 7.97255000436E-35 -2.06856113138E-35 -3.19116818932E-35 8.49635234146E-35 7.31894799369E-35 2.80833803630E-35 1.86153028972E-35 1.50328932658E-34 6.36396315231E-35 -6.49359587717E-34 1.06299972958E-35 -4.20218353049E-35 9.18293742496E-35 -1.56121811350E-34 7.83501609293E-34 -2.12105076262E-35 -6.34536187178E-34 -8.01884878099E-34 -1.30775079640E-34 8.99541474758E-34 9.48842460811E-34 4.08687049504E-35 -2.68759062032E-34 9.65734499836E-35 -1.70450534974E-34 -1.78641311301E-34 -1.09638377086E-34 -1.06679381682E-34 -1.16360789838E-34 -1.37086932709E-34 1.53853009399E-34 -3.57384493787E-34 2.75057779680E-34 3.23055125820E-34 -2.25684419290E-34 -1.81094394248E-34 -1.50525353968E-34 3.43068954928E-34 1.40985319161E-34 1.19599802231E-34 6.86721384267E-34 -6.69392110462E-34 3.72703231131E-34 -1.45165019480E-34 7.10996936004E-34 6.37916062381E-35 5.75137587747E-34 4.12003191846E-34 -2.96458823746E-34 -4.08828484693E-34 -4.60017650422E-34 -9.01016799153E-35 -1.38646405834E-34 6.22587653146E-34 1.28602048771E-34 -7.55052412310E-34 -4.29455589033E-34 -1.77039699633E-34 -6.04722582398E-34 1.35185677081E-33 -9.64944839827E-34 -1.11998684453E-33 1.24037850631E-33 1.50728292157E-33 -7.98304882097E-35 -3.94900259845E-34 -1.52557256368E-34 1.07145583449E-33 8.29435609212E-34 -4.97801284749E-34 8.69083940941E-34 -8.21321217978E-34 -1.10499213679E-33 -8.63557629004E-34 2.00591663809E-33 -2.41617556419E-34 -2.82928038106E-33 2.64651806348E-33 -1.05079315234E-33 1.31015044427E-33 -1.15710534293E-33 1.74070591304E-33 3.03946871842E-33 -1.14200866305E-33 1.34576563984E-33 8.68695591464E-33 -1.09818611323E-33 2.74443578322E-33 -1.02410325355E-32 2.53976415457E-33 -1.20333540080E-33 -4.15378795652E-33 3.82620342033E-33 5.47443021473E-33 -1.32895874271E-33 -5.53637020297E-33 3.54704823131E-34 -3.98311993603E-33 -8.74570643393E-34 -8.96477062742E-35 6.16088681283E-33 -3.77070017266E-33 -5.29580550407E-33 2.79993197527E-32 -3.47296202708E-32 -7.15736526946E-34 1.77324691443E-33 -3.20374473101E-32 -3.19244554114E-33 -5.05891349653E-33 9.74327130317E-33 7.82241205279E-33 -9.96486559520E-33 -3.08353882953E-32 -4.02270071282E-32 9.69312237614E-33 -5.03876247161E-32 -1.20773771726E-32 1.37478377050E-34 5.35916652770E-32 -1.07742697416E-33 -5.27126142701E-33 1.04996436495E-32 -8.21957608335E-33 -7.42996425090E-33 9.27874063042E-33 4.52351153310E-33 -1.72917465841E-33 2.45961235000E-32 1.06324805293E-32 -9.29672063404E-33 -1.88586886931E-32 -2.01995578100E-32 -9.95757841666E-33 1.71980272850E-32 7.47346560282E-33 1.60768665895E-32 2.35249393127E-32 6.59936465883E-33 1.86183972572E-32 -6.79164482052E-33 -9.86494732359E-33 2.27901888728E-32 -4.34014626675E-32 2.23211287982E-32 -2.58820983082E-32 -3.52195861477E-32 1.20787744628E-31 -2.56132975331E-32 -4.38772569535E-32 -1.78880146954E-31 1.95385502763E-32 2.05273851622E-33 -2.03994673831E-32 -2.14513806409E-33 1.45368248433E-31 -1.90801299998E-33 -4.60544967989E-32 -2.42146020797E-31 7.02186534896E-33 -9.66038292679E-32 -4.30289984575E-32 -9.79066264446E-32 9.04531593757E-32 2.63016145545E-32 6.01005929034E-32 -8.41827827618E-33 -4.83424393238E-32 1.00407735693E-32 -4.34380127750E-32 -2.51735023177E-32 2.90676532816E-32 7.49093906548E-32 8.39985855920E-32 1.13357644516E-32 -1.48164609927E-32 7.59777795978E-32 1.24030654733E-31 1.04290232485E-31 -1.70533208831E-31 -1.64818089944E-31 1.89496060055E-31 1.33330843458E-31 -5.20145751054E-32 -3.74349274754E-32 8.68414212884E-33 1.40890200055E-31 -5.34846246177E-32 1.45619168692E-31 -6.17980752394E-32 1.86735961841E-31 -6.27838697282E-32 -1.79246798232E-31 -5.49507245575E-32 2.90231870248E-31 5.05195868580E-32 2.24867915364E-31 1.77944378052E-30 3.93506212608E-31 -2.31859099622E-31 3.52577162966E-31 -1.74616894784E-31 -3.46233875593E-31 3.87863305903E-31 -1.33365619390E-31 -3.53455150458E-31 -1.12898651683E-31 -2.68096270116E-32 2.83981298640E-31 -4.52553610697E-32 -2.84082290253E-31 -1.33862058268E-31 -1.03114951306E-31 5.55451425128E-31 -4.53154954474E-31 -3.15137263921E-31 -2.06333747824E-31 -3.50820142734E-31 -5.98798141902E-31 -6.92967251749E-31 6.08895912638E-32 2.50598238153E-30 3.88177342100E-31 7.17175800653E-31 2.18310530125E-30 -2.90091990485E-31 1.36196796223E-31 -1.25001011752E-31 -7.66767818871E-31 -6.28996318995E-31 -6.03701906301E-31 -1.05728696513E-31 -9.75688879783E-31 9.42765463783E-31 -3.32273975176E-31 4.92500700897E-31 6.87162634104E-31 1.38731945935E-30 -2.94543716900E-31 1.25135636920E-30 -1.41060123611E-30 -7.18646396679E-30 -1.53908562058E-30 -8.44914203818E-30 9.31682893004E-30 -2.25165950220E-31 5.28646373283E-31 1.19578673852E-30 -2.22491076423E-30 2.74414629342E-30 1.02346974528E-29 -1.01027902791E-31 -1.19887865990E-29 2.09213814508E-30 6.57754973255E-31 9.94281099979E-30 1.06367719822E-30 4.45583898852E-31 -1.35021063090E-29 8.82484368894E-30 -3.71185332842E-31 -4.46401186152E-31 -6.04639846912E-31 2.10025162006E-30 3.81721841003E-31 5.52238163267E-30 1.21522512088E-30 -1.84013262792E-30 5.72894350161E-30 -1.40894954038E-30 3.01191282332E-30 -6.65854711939E-31 -5.67721365761E-30 5.59239306900E-30 4.21732130212E-30 5.54136937407E-30 -3.06375731757E-30 1.28567789567E-30 3.24293262775E-30 9.92142738149E-31 1.90130538090E-30 -1.25196173064E-29 2.87632616868E-30 4.88110676985E-30 -9.44574277530E-31 7.93215313955E-30 1.13332907151E-29 1.23412498212E-29 -4.67380276615E-29 -7.23453204826E-30 -5.47911954902E-29 4.35324985397E-29 6.02212344299E-30 -1.25463444536E-29 1.03155968030E-29 5.10663365981E-29 -4.27895307611E-29 4.87458631488E-29 -2.22047397517E-29 -5.32299437027E-30 1.89916972011E-29 2.50209631447E-29 1.80204359113E-29 -6.67254072596E-30 2.19799876106E-29 -3.87267615934E-30 -1.63260584542E-29 1.66573830666E-29 1.23806957110E-29 -1.00138368707E-29 -1.41620038247E-30 1.18339811327E-29 -5.29919323484E-30 -2.09753069986E-29 -2.12478540124E-29 -2.12817148389E-29 -3.54213751928E-29 -3.97288492170E-29 1.65872902825E-29 1.70895065339E-29 2.97445965334E-29 4.00122435756E-29 2.94257716552E-29 3.91192188480E-29 -4.73342006194E-29 -3.90696443643E-29 3.31902406784E-29 -4.43746714089E-29 -3.51629610857E-29 -2.97722643311E-29 -2.85337194093E-29 -3.08745257125E-30 2.48018919311E-28 -4.88014329695E-29 -8.26229572362E-29 1.53138587384E-29 -8.98661587230E-29 -2.27868636148E-29 8.01588658578E-29 -8.94000552706E-29 3.98820244052E-29 6.88712649980E-29 -3.74726639429E-30 8.03065738752E-29 2.32601205534E-29 -2.44748742057E-29 -4.18620543165E-29 5.52858274798E-28 -4.75296768197E-28 5.64129471451E-28 4.96565611637E-28 -1.28928314470E-28 -1.80031598458E-28 -1.00373185989E-28 -1.61249189237E-28 -5.11170754069E-29 -7.40048651594E-29 -1.25480537393E-28 -1.39088913564E-28 1.23274967762E-29 1.78537232619E-29 -8.19141534312E-29 -8.82310323684E-28 6.89943610932E-28 -7.60731611409E-28 -3.17914666919E-29 1.97087896644E-28 1.81895155052E-29 3.19050657659E-28 -2.40593701932E-28 -7.07196649310E-29 1.70631232289E-28 -2.99107428229E-28 -1.00029881242E-29 1.36225155723E-28 7.23208340760E-29 1.37874885578E-29 -6.99484952044E-29 2.40464519675E-28 -2.64020541505E-28 -3.51097158426E-28 -3.03419344474E-29 -1.83911661625E-27 -3.76333719408E-28 -2.54837564044E-28 4.95406932194E-28 1.96943005163E-27 -7.73254944750E-28 2.59025924879E-28 -2.84197826488E-28 -4.16983820438E-28 -7.76387381030E-28 2.73545878380E-27 3.94033921230E-29 1.97683961229E-28 2.61244505132E-27 8.06018751600E-28 2.53570454250E-27 -3.23527817271E-28 3.83776799145E-27 2.53989490099E-27 6.02015543801E-28 7.10096374649E-28 -9.59192611046E-28 -1.52852235189E-27 1.30549668298E-27 -5.99869617265E-28 -8.72221965131E-28 -1.29575024720E-27 -6.58119568008E-28 1.05990127855E-27 1.52985836936E-27 5.56348983123E-28 -1.19120093620E-27 -5.03625109920E-28 5.77062831805E-28 -1.40278795584E-27 1.13311789737E-27 -1.41081725927E-28 -1.55974840053E-27 2.46408664037E-27 3.08617817654E-27 -8.72484368012E-28 1.62241674487E-28 -1.02396937116E-27 -1.20028239197E-26 -2.29379909293E-27 -2.62848798708E-27 -1.43819859281E-27 -1.28919266987E-27 1.29626971097E-26 -6.40422730851E-28 -2.90372811267E-27 2.94314482594E-27 -9.42704439754E-27 1.53579875141E-26 2.32880470082E-27 -2.81163143405E-27 2.78529761891E-27 5.75588687663E-27 -3.62930759886E-27 1.25405179878E-27 -5.93904264415E-27 -6.39207443659E-27 -1.52288703233E-27 -4.42951960502E-27 -3.44738841731E-27 -3.83858744970E-27 1.07719094819E-27 2.08132725846E-27 -4.69934829151E-27 -4.77067953241E-27 -4.14333937601E-27 1.01549873486E-27 -2.90763433519E-27 -4.72651972557E-27 -6.60865931246E-27 -5.92731903898E-27 -1.03719211229E-26 -8.14546392034E-27 1.23373831019E-26 -2.47166039533E-27 1.02774375804E-26 5.54130022830E-29 1.13816491534E-26 -1.12096578043E-26 -7.01849145063E-27 -2.09375285336E-27 1.00232462921E-26 -8.01271185150E-27 -6.35243499707E-27 4.16799162931E-27 1.43843670354E-26 2.26692076872E-26 2.30539479441E-26 -2.33357452845E-26 -6.81038191228E-27 -2.36205615313E-27 -2.04954442191E-26 1.26692264029E-26 -1.99520852051E-26 -2.44051571355E-26 -6.71318622761E-27 1.66616241812E-27 2.08290330582E-27 1.30156612001E-25 6.32928155630E-27 -2.21750897848E-26 -5.33123511314E-27 5.00931090997E-26 6.96391053044E-27 -4.54247756597E-26 -3.09977144349E-27 -3.57415287249E-26 -7.15712040403E-27 -2.43203040246E-26 -1.26099699373E-27 -1.22482961929E-25 2.54207697728E-26 -1.41904010013E-25 2.13158553416E-26 3.58686441327E-26 -4.47928433483E-26 -6.43668706485E-27 -2.30053658734E-26 1.17084263448E-26 -1.16883620493E-26 -7.18116962759E-26 -3.54317833383E-26 -9.22485930594E-26 -6.24598565109E-26 6.56289534455E-26 9.29236914989E-26 -7.77664657920E-26 -7.59518750758E-26 5.45889058762E-26 -3.12557613135E-26 2.20082274700E-26 9.59875308918E-26 3.76348736151E-26 -1.47254009862E-27 6.87994401703E-27 1.83410958890E-26 -5.47664144619E-26 -1.43859550522E-25 -7.87488560177E-26 -7.43135291693E-25 -1.10473919342E-25 -1.14924312196E-25 -7.45553610667E-25 -7.62652976823E-25 -9.18249459687E-26 -8.58025114186E-26 6.00054477102E-26 1.68002409612E-25 9.22487720684E-26 6.87670546293E-26 1.38536228892E-25 3.88847579513E-26 9.32131586600E-26 -1.67248860873E-25 1.30054927074E-25 -2.99407771255E-26 2.60439785538E-25 2.01602182376E-26 -2.76867298478E-25 1.19033275592E-25 -2.25542778571E-25 -3.02979025625E-25 -4.07602568236E-25 1.30952539662E-25 3.43683042397E-25 -1.52892991116E-25 -1.88122233493E-25 -3.97444775083E-25 2.13307572618E-25 4.01105992535E-25 3.65534740424E-25 -1.59342793613E-25 -3.46907810480E-25 -6.92025329878E-25 5.90546945773E-25 8.18080325978E-25 3.09258781929E-24 2.97408869340E-25 -6.44927420450E-25 -3.36934532344E-24 -3.51841473591E-24 -2.59085858414E-24 -6.40643972833E-25 3.59103656690E-24 3.47400397697E-24 -7.36862872912E-25 -6.37011306313E-25 1.27755072793E-25 3.02467825858E-25 -1.16473349478E-24 -6.72956486053E-25 9.75467370317E-25 2.37241802106E-25 -6.66828026066E-25 1.01067519535E-24 1.27687527364E-24 -1.16270785258E-25 -1.39385887990E-24 -9.30542013135E-25 -1.45717959543E-24 -6.95154335344E-25 -1.12669965750E-24 -4.76839026474E-25 2.21297882728E-25 1.27240037095E-24 3.39083344296E-25 -1.58707458158E-24 -1.56063791568E-24 -2.82865580869E-24 -7.45265438906E-25 -1.19798469884E-24 -2.40517896206E-24 7.25090426353E-25 -7.59344915896E-26 2.68842344055E-24 -1.67341877997E-24 -1.68179426609E-24 2.65507903882E-24 1.49930217791E-24 -1.29819239130E-24 -4.16369878769E-26 -2.26154938466E-24 -1.90634417798E-24 2.00864133214E-24 2.40760904827E-24 -5.22009429084E-24 1.90717206026E-25 1.59058441774E-24 5.38833883082E-25 -2.96562508612E-24 5.86655506754E-24 -1.11333394606E-24 -3.20210845323E-24 -4.13426411448E-24 -5.47600788626E-24 3.38565262533E-24 5.01313398378E-24 -6.07738168049E-24 -3.48821943509E-23 -5.34723171757E-24 2.07968688494E-24 1.23740427941E-23 7.76508613241E-24 4.90822820878E-24 -8.35247475484E-24 9.24431773074E-24 -2.17878246419E-24 1.04115935827E-24 2.53770368248E-24 -3.79215412654E-23 7.22633400502E-24 4.02198573315E-24 -7.70186952442E-24 -4.53181371586E-24 -5.80768921258E-24 5.86931750499E-23 2.46435266753E-24 1.05751755237E-23 1.55594012127E-23 -4.61571572573E-24 -2.36459080437E-23 4.16724691820E-25 -6.85281792705E-24 6.66455559296E-24 2.53740633311E-24 1.64434141155E-23 -2.00200445037E-23 8.12369227849E-24 1.81848756403E-23 -1.19161593782E-23 5.52944610974E-24 -1.82065763940E-23 1.15552341988E-23 -2.36359406462E-23 -1.66760113844E-23 1.62867103971E-22 2.71824390492E-23 1.85169271821E-22 1.88276734685E-22 -4.01395295993E-23 1.56698276276E-22 7.46603899066E-24 2.65951844358E-23 -4.55272187572E-23 -1.81158714131E-22 1.58246163510E-22 4.47074480314E-23 -1.76632799244E-23 -1.34342665686E-25 1.91944684039E-22 -3.36776828153E-23 2.24913105357E-23 2.26039893657E-23 8.84838270999E-23 2.59452128765E-23 3.95689076623E-23 -1.85327276539E-23 -1.55084886249E-23 -7.01746203780E-24 -2.22573227582E-23 -1.28864596318E-23 -5.60852754457E-23 4.19172072282E-23 1.00753891907E-22 8.69149714901E-23 -1.48176876225E-23 -1.01419234974E-22 -8.32065973900E-23 7.72406816441E-23 -3.96615247736E-23 -1.47785357968E-22 -1.14521840163E-22 -1.00941822395E-22 -1.82433370849E-22 -3.52765538742E-23 8.40059102414E-22 -1.81813864504E-22 5.16991722171E-22 -7.97390498800E-22 8.91606892952E-22 1.41008539882E-22 1.46375579913E-22 1.48732357129E-22 7.10842780810E-23 -8.83999385410E-23 7.74418913932E-22 -8.90029542879E-22 2.98874503740E-22 1.05039458346E-22 6.44873887067E-23 -3.29085367188E-22 -1.98678989057E-22 -5.12513153303E-23 -3.69998708010E-22 -4.05743546904E-22 -1.64656392083E-22 3.22656613963E-22 -3.38514372649E-22 -1.62456124634E-22 -3.87012425630E-23 3.43848801707E-22 -4.23513935411E-23 -1.95750186305E-22 -3.06320788129E-22 1.50502901076E-22 6.47452644314E-22 1.15110080960E-22 -3.75068516465E-22 -4.70828647464E-22 -1.30389951177E-22 -7.40122318983E-22 -4.79192823679E-22 -4.70963486374E-22 7.69463765653E-22 -8.90094242051E-23 8.36207603956E-22 -6.58206109438E-22 5.26844562996E-22 1.23412051498E-22 5.07775051457E-22 -6.24585990362E-22 7.14995296804E-22 -5.00495087151E-22 -1.32238767122E-21 4.90908941960E-22 -1.92980461870E-22 1.39999618310E-21 -1.23183569427E-21 3.87502908161E-22 -1.43127060333E-21 8.28544937077E-22 3.38821040939E-22 4.18867363769E-22 -1.05844666742E-21 5.37559895631E-23 4.62068236713E-22 -4.41482140911E-22 -4.53225864163E-22 -1.10876140981E-21 -1.89220797516E-21 -1.13542656304E-20 -2.72690157532E-21 -8.92436670113E-22 -3.32426573383E-21 -2.94673799941E-21 -2.40654845062E-21 -2.81512820525E-21 4.41000582345E-22 3.20033024047E-21 1.39148545201E-20 -1.33769286458E-20 2.04515297564E-21 -3.30874287477E-21 1.34918546319E-21 6.12562990532E-22 2.23311187730E-21 1.82160926749E-22 6.84835152945E-22 5.16408943488E-21 -1.78328650785E-21 -2.26528041373E-21 -4.38691125366E-21 2.92255405677E-21 3.32733130195E-21 3.87501023717E-22 6.42843394243E-21 6.26500657258E-21 2.13097095680E-21 -4.81562081619E-21 -6.18678351950E-21 3.90231461525E-22 6.76889145545E-21 1.15424021296E-21 -5.78758475201E-21 -2.84720913004E-20 2.60475138104E-21 9.24509939767E-21 -4.13703414967E-21 4.67237455437E-21 -7.76031508312E-21 6.04419641989E-21 1.10571865788E-20 -3.88575793938E-21 -6.40699321566E-21 1.03706463676E-20 1.29993399796E-20 5.11244311993E-21 -2.23376507180E-21 -1.02418185905E-20 -1.77035226477E-21 1.04733173591E-20 -3.02965112697E-21 1.85023392136E-20 1.79722735821E-20 2.50350467307E-20 -1.27922827291E-20 1.73721817663E-20 1.05718446590E-20 2.27522257018E-20 1.05223185455E-20 -1.74623109329E-20 1.54180724517E-20 2.50305402470E-20 -1.49062568298E-20 -1.61038956200E-20 -9.88106703475E-22 -6.77363024995E-21 -1.43842237002E-20 -1.84383649451E-20 -4.38852596078E-21 4.83315707737E-20 -1.93531271787E-21 5.12890918541E-20 -3.64009486639E-21 -4.96133767674E-21 -6.01718489305E-21 -3.53929167295E-20 -1.25786959099E-20 -4.51950001774E-20 -3.78496392548E-20 -2.43673551012E-19 1.05962201574E-20 1.72949043320E-20 1.71276586716E-20 4.75391327674E-20 1.09060781108E-20 -2.47179673156E-19 8.30246681739E-20 5.24843262326E-20 9.90136761215E-20 -2.01172431259E-20 -4.83659306975E-20 7.55857166558E-20 1.18459994121E-20 -5.51057990369E-20 -2.29610765213E-20 -3.27608515485E-20 -1.96262876664E-20 -7.34946859334E-20 -2.77661433488E-20 -4.69521421915E-20 3.37111250998E-20 -4.80992940689E-20 7.37807293854E-20 -6.01243341430E-20 -1.85481963469E-19 -7.55508190722E-20 -7.04513823023E-20 -1.45614007598E-19 -1.06894474307E-19 6.33940326866E-20 6.65783921340E-20 -7.09538682297E-20 8.49209803862E-20 1.14571512605E-19 -1.19385204626E-19 -1.65213386636E-19 1.97993611498E-19 -1.57434179860E-19 -1.82493417709E-19 6.74150797174E-20 -1.83795956572E-19 -3.61247144737E-19 -4.33167255656E-19 3.72261368884E-19 -1.97494042867E-19 -3.98714754743E-19 -3.28995841712E-19 2.85078307064E-20 -3.50824815677E-19 3.64369487941E-19 2.45033986095E-19 -1.18612927656E-19 1.56890813576E-19 2.01026238512E-19 5.77637541055E-21 1.61523614096E-19 2.79693123848E-19 -1.40924735371E-20 7.17790295425E-19 -1.90298085142E-19 -1.23372180924E-19 -6.79474226648E-19 -7.32264207132E-19 1.48730661134E-19 -2.06171823533E-18 2.97183132531E-20 -2.83541427657E-19 -8.98974088650E-20 4.67717087935E-19 -3.71840235472E-19 6.80482276152E-19 -2.86621894784E-18 -1.62092967325E-19 1.46561142939E-20 -4.22054149405E-20 4.68755437903E-20 -1.70467494076E-18 8.56604447753E-19 1.36326831634E-19 1.59367769038E-18 1.63366026458E-18 -1.65045915363E-18 -2.06956365682E-19 6.82355047135E-19 6.96329571080E-19 -1.48739124040E-18 1.50647140975E-18 -9.51383042058E-18 -6.73677166950E-20 -8.86986166881E-18 9.44006059971E-18 -1.39214051229E-18 1.09370323605E-17 -3.12266333786E-18 -7.71491433746E-19 2.71444209301E-18 -1.86890327521E-18 8.42285526006E-19 -1.38845416845E-17 -2.90939354290E-18 -1.18710889500E-17 1.95364185388E-18 -5.08454914083E-19 -9.03297679041E-19 -3.15454690803E-18 2.40425135178E-18 1.31492185676E-17 1.24460370209E-17 1.07438075357E-17 2.09273509370E-18 1.42090726275E-17 -1.83546256425E-18 1.64833766538E-18 -2.38360033670E-18 -6.26662321263E-18 -2.97813043192E-19 -3.91830581868E-18 4.04648736849E-18 -6.73929167037E-18 -6.27006530010E-18 -3.73847168052E-18 -6.63403221861E-18 -3.26375806740E-18 2.42703495958E-19 5.11467059385E-18 -4.39411977276E-18 8.34354886471E-20 -3.04418889047E-19 -6.73849599066E-18 -9.91079566850E-19 4.67622781530E-18 -3.08765157460E-18 -9.13695427841E-19 -2.37427024374E-18 -4.66751886231E-18 9.51575916680E-18 6.51655555684E-18 7.89077933342E-18 -3.05113997262E-18 -4.05172101034E-18 -3.70030937513E-18 -9.77925197091E-20 6.32464817453E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 2 2 i j (l(j)) 0.00000000000E+00 Q_int 5.50480089586E-25 5.78703807304E-25 6.08374585973E-25 6.39566617993E-25 6.72357899693E-25 7.06830426357E-25 7.43070397256E-25 7.81168431195E-25 8.21219793104E-25 8.63324632247E-25 9.07588232655E-25 9.54121276385E-25 1.00304012028E-24 1.05446708694E-24 1.10853077056E-24 1.16536635851E-24 1.22511596937E-24 1.28792900828E-24 1.35396254056E-24 1.42338168444E-24 1.49636002393E-24 1.57308004290E-24 1.65373358135E-24 1.73852231514E-24 1.82765826027E-24 1.92136430303E-24 2.01987475733E-24 2.12343595063E-24 2.23230683985E-24 2.34675965892E-24 2.46708059950E-24 2.59357052662E-24 2.72654573098E-24 2.86633871984E-24 3.01329904851E-24 3.16779419435E-24 3.33021047569E-24 3.50095401784E-24 3.68045176859E-24 3.86915256580E-24 4.06752825977E-24 4.27607489305E-24 4.49531394086E-24 4.72579361501E-24 4.96809023473E-24 5.22280966778E-24 5.49058884541E-24 5.77209735506E-24 6.06803911462E-24 6.37915413264E-24 6.70622035872E-24 7.05005562878E-24 7.41151971008E-24 7.79151645112E-24 8.19099604166E-24 8.61095738877E-24 9.05245061455E-24 9.51657968203E-24 1.00045051556E-23 1.05174471032E-23 1.10566881467E-23 1.16235766697E-23 1.22195301888E-23 1.28460388982E-23 1.35046693959E-23 1.41970686013E-23 1.49249678730E-23 1.56901873384E-23 1.64946404447E-23 1.73403387436E-23 1.82293969215E-23 1.91640380869E-23 2.01465993294E-23 2.11795375640E-23 2.22654356742E-23 2.34070089711E-23 2.46071119823E-23 2.58687455906E-23 2.71950645371E-23 2.85893853100E-23 3.00551944375E-23 3.15961572058E-23 3.32161268246E-23 3.49191540617E-23 3.67094973723E-23 3.85916335470E-23 4.05702689067E-23 4.26503510704E-23 4.48370813270E-23 4.71359276410E-23 4.95526383257E-23 5.20932564164E-23 5.47641347819E-23 5.75719520090E-23 6.05237291035E-23 6.36268470454E-23 6.68890652460E-23 7.03185409499E-23 7.39238496326E-23 7.77140064437E-23 8.16984887494E-23 8.58872598308E-23 9.02907937973E-23 9.49201017776E-23 9.97867594526E-23 1.04902936002E-22 1.10281424531E-22 1.15935674062E-22 1.21879823166E-22 1.28128735310E-22 1.34698036029E-22 1.41604151998E-22 1.48864352103E-22 1.56496790625E-22 1.64520552638E-22 1.72955701724E-22 1.81823330150E-22 1.91145611605E-22 2.00945856650E-22 2.11248571001E-22 2.22079516809E-22 2.33465777082E-22 2.45435823400E-22 2.58019587113E-22 2.71248534186E-22 2.85155743875E-22 2.99775991449E-22 3.15145835142E-22 3.31303707568E-22 3.48290011825E-22 3.66147222519E-22 3.84919991978E-22 4.04655261904E-22 4.25402380751E-22 4.47213227122E-22 4.70142339493E-22 4.94247052586E-22 5.19587640740E-22 5.46227468624E-22 5.74233149681E-22 6.03674712702E-22 6.34625776927E-22 6.67163736139E-22 7.01369952182E-22 7.37329958411E-22 7.75133673573E-22 8.14875626643E-22 8.56655193204E-22 9.00576843933E-22 9.46750405831E-22 9.95291336852E-22 1.04632101461E-21 1.09996703986E-21 1.15636355563E-21 1.21565158257E-21 1.27797937162E-21 1.34350277472E-21 1.41238563451E-21 1.48480019401E-21 1.56092752733E-21 1.64095799245E-21 1.72509170723E-21 1.81353904976E-21 1.90652118446E-21 2.00427061511E-21 2.10703176618E-21 2.21506159407E-21 2.32863022962E-21 2.44802165356E-21 2.57353440663E-21 2.70548233609E-21 2.84419538047E-21 2.99002039463E-21 3.14332201705E-21 3.30448358162E-21 3.47390807620E-21 3.65201915024E-21 3.83926217421E-21 4.03610535317E-21 4.24304089759E-21 4.46058625409E-21 4.68928539936E-21 4.92971020038E-21 5.18246184435E-21 5.44817234201E-21 5.72750610799E-21 6.02116162216E-21 6.32987317626E-21 6.65441270992E-21 6.99559174101E-21 7.35426339477E-21 7.73132453712E-21 8.12771801728E-21 8.54443502538E-21 8.98251757096E-21 9.44306108850E-21 9.92721717665E-21 1.04361964777E-20 1.09712717051E-20 1.15337808254E-20 1.21251304044E-20 1.27467991240E-20 1.34003414797E-20 1.40873916678E-20 1.48096676714E-20 1.55689755567E-20 1.63672139888E-20 1.72063789795E-20 1.80885688783E-20 1.90159896191E-20 1.99909602369E-20 2.10159186658E-20 2.20934278357E-20 2.32261820805E-20 2.44170138757E-20 2.56689009209E-20 2.69849735854E-20 2.83685227364E-20 2.98230079669E-20 3.13520662476E-20 3.29595210202E-20 3.46493917586E-20 3.64259040196E-20 3.82935000088E-20 4.02568496886E-20 4.23208624554E-20 4.44906994158E-20 4.67717862921E-20 4.91698269889E-20 5.16908178567E-20 5.43410626851E-20 5.71271884660E-20 6.00561619644E-20 6.31353071391E-20 6.63723234560E-20 6.97753051412E-20 7.33527614205E-20 7.71136377972E-20 8.10673384201E-20 8.52237495990E-20 8.95932645258E-20 9.41868092625E-20 9.90158700622E-20 1.04092522091E-19 1.09429459621E-19 1.15040027776E-19 1.20938255895E-19 1.27138892619E-19 1.33657442769E-19 1.40510206113E-19 1.47714318125E-19 1.55287792836E-19 1.63249567876E-19 1.71619551825E-19 1.80418674001E-19 1.89668936788E-19 1.99393470658E-19 2.09616592008E-19 2.20363863961E-19 2.31662160292E-19 2.43539732621E-19 2.56026281060E-19 2.69153028480E-19 2.82952798581E-19 2.97460097969E-19 3.12711202442E-19 3.28744247700E-19 3.45599324698E-19 3.63318579900E-19 3.81946320664E-19 4.01529126037E-19 4.22115963220E-19 4.43758310020E-19 4.66510283565E-19 4.90428775627E-19 5.15573594882E-19 5.42007616459E-19 5.69796939167E-19 5.99011050771E-19 6.29723001748E-19 6.62009587954E-19 6.95951542651E-19 7.31633738384E-19 7.69145399204E-19 8.08580323777E-19 8.50037119927E-19 8.93619451211E-19 9.39436296126E-19 9.87602220615E-19 1.03823766454E-18 1.09146924285E-18 1.14743006218E-18 1.20626005368E-18 1.26810632292E-18 1.33312351774E-18 1.40147421493E-18 1.47332932679E-18 1.54886852846E-18 1.62828070722E-18 1.71176443480E-18 1.79952846395E-18 1.89179225035E-18 1.98878650145E-18 2.09075375330E-18 2.19794897703E-18 2.31064021644E-18 2.42910925819E-18 2.55365233648E-18 2.68458087374E-18 2.82222225936E-18 2.96692066834E-18 3.11903792191E-18 3.27895439226E-18 3.44706995367E-18 3.62380498239E-18 3.80960140784E-18 4.00492381762E-18 4.21026061924E-18 4.42612526137E-18 4.65305751779E-18 4.89162483700E-18 5.14242376124E-18 5.40608141809E-18 5.68325708864E-18 5.97464385601E-18 6.28097033847E-18 6.60300251129E-18 6.94154562213E-18 7.29744620455E-18 7.67159419480E-18 8.06492515710E-18 8.47842262306E-18 8.91312055100E-18 9.37010591137E-18 9.85052140476E-18 1.03555683193E-17 1.08865095342E-17 1.14446726783E-17 1.20314534488E-17 1.26483191023E-17 1.32968121228E-17 1.39785540793E-17 1.46952496804E-17 1.54486910368E-17 1.62407621427E-17 1.70734435865E-17 1.79488175037E-17 1.88690727829E-17 1.98365105394E-17 2.08535498691E-17 2.19227338976E-17 2.30467361390E-17 2.42283671816E-17 2.54705817151E-17 2.67764859195E-17 2.81493452320E-17 2.95925925119E-17 3.11098366251E-17 3.27048714676E-17 3.43816854525E-17 3.61444714830E-17 3.79976374368E-17 3.99458171882E-17 4.19938821947E-17 4.41469536790E-17 4.64104154337E-17 4.87899272846E-17 5.12914392420E-17 5.39212063798E-17 5.66858044760E-17 5.95921464553E-17 6.26474996753E-17 6.58595040986E-17 6.92361913964E-17 7.27860050319E-17 7.65178213735E-17 8.04409718900E-17 8.45652664840E-17 8.89010180221E-17 9.34590681218E-17 9.82508142616E-17 1.03288238280E-16 1.08583936338E-16 1.14151150411E-16 1.20003801408E-16 1.26156523974E-16 1.32624703089E-16 1.39424512536E-16 1.46572955343E-16 1.54087906301E-16 1.61988156659E-16 1.70293461113E-16 1.79024587203E-16 1.88203367237E-16 1.97852752892E-16 2.07996872598E-16 2.18661091874E-16 2.29872076753E-16 2.41657860463E-16 2.54047913522E-16 2.67073217432E-16 2.80766342147E-16 2.95161527511E-16 3.10294768881E-16 3.26203907131E-16 3.42928723273E-16 3.60511037927E-16 3.78994815900E-16 3.98426276116E-16 4.18854007186E-16 4.40329088906E-16 4.62905219984E-16 4.86638852308E-16 5.11589332110E-16 5.37819048359E-16 5.65393588763E-16 5.94381903776E-16 6.24856479005E-16 6.56893516460E-16 6.90573125100E-16 7.25979521145E-16 7.63201238655E-16 8.02331350916E-16 8.43467703164E-16 8.86713157248E-16 9.32175848839E-16 9.79969457821E-16 1.03021349255E-15 1.08303358867E-15 1.13856182329E-15 1.19693704523E-15 1.25830522219E-15 1.32281980579E-15 1.39064211523E-15 1.46194174070E-15 1.53689696740E-15 1.61569522138E-15 1.69853353819E-15 1.78561905555E-15 1.87716953131E-15 1.97341388794E-15 2.07459278496E-15 2.18095922071E-15 2.29277916494E-15 2.41033222392E-15 2.53391233952E-15 2.66382852428E-15 2.80040563403E-15 2.94398518025E-15 3.09492618394E-15 3.25360607343E-15 3.42042162805E-15 3.59578997035E-15 3.78014960903E-15 3.97396153550E-15 4.17771037651E-15 4.39190560599E-15 4.61708281899E-15 4.85380507089E-15 5.10266428532E-15 5.36428273426E-15 5.63931459400E-15 5.92844758091E-15 6.23240467107E-15 6.55194590798E-15 6.88787030313E-15 7.24101783383E-15 7.61227154356E-15 8.00255975005E-15 8.41285836641E-15 8.84419334147E-15 9.29764322506E-15 9.77434186491E-15 1.02754812418E-14 1.08023144501E-14 1.13561588309E-14 1.19383992664E-14 1.25504916421E-14 1.31939664878E-14 1.38704328043E-14 1.45815820867E-14 1.53291925540E-14 1.61151335951E-14 1.69413704436E-14 1.78099690916E-14 1.87231014553E-14 1.96830508063E-14 2.06922174802E-14 2.17531248792E-14 2.28684257810E-14 2.40409089724E-14 2.52735062223E-14 2.65692996125E-14 2.79315292442E-14 2.93636013396E-14 3.08690967590E-14 3.24517799544E-14 3.41156083826E-14 3.58647424000E-14 3.77035556656E-14 3.96366460768E-14 4.16688472663E-14 4.38052406883E-14 4.60511683237E-14 4.84122460377E-14 5.08943776220E-14 5.35037695560E-14 5.62469465263E-14 5.91307677406E-14 6.21624440784E-14 6.53495561216E-14 6.87000731085E-14 7.22223728604E-14 7.59252627290E-14 7.98180016188E-14 8.39103231377E-14 8.82124599345E-14 9.27351692849E-14 9.74897599886E-14 1.02488120646E-13 1.07742749382E-13 1.13266785100E-13 1.19074040331E-13 1.25179035770E-13 1.31597036583E-13 1.38344090579E-13 1.45437068330E-13 1.52893705356E-13 1.60732646470E-13 1.68973492397E-13 1.77636848780E-13 1.86744377705E-13 1.96318851859E-13 2.06384211475E-13 2.16965624184E-13 2.28089547946E-13 2.39783797203E-13 2.52077612425E-13 2.65001733216E-13 2.78588475177E-13 2.92871810705E-13 3.07887453928E-13 3.23672950009E-13 3.40267769014E-13 3.57713404602E-13 3.76053477766E-13 3.95333845904E-13 4.15602717471E-13 4.36910772512E-13 4.59311289379E-13 4.82860277936E-13 5.07616619602E-13 5.33642214566E-13 5.61002136554E-13 5.89764795528E-13 6.20002108724E-13 6.51789680465E-13 6.85206991187E-13 7.20337596155E-13 7.57269334369E-13 7.96094548180E-13 8.36910314161E-13 8.79818685818E-13 9.24926948743E-13 9.72347888843E-13 1.02220007432E-12 1.07460815213E-12 1.12970315959E-12 1.18762285200E-12 1.24851204706E-12 1.31252298693E-12 1.37981571884E-12 1.45055849523E-12 1.52492819441E-12 1.60311076277E-12 1.68530167963E-12 1.77170644600E-12 1.86254109832E-12 1.95803274856E-12 2.05842015203E-12 2.16395430425E-12 2.27489906847E-12 2.39153183531E-12 2.51414421628E-12 2.64304277275E-12 2.77854978240E-12 2.92100404486E-12 3.07076172874E-12 3.22819726202E-12 3.39370426809E-12 3.56769654978E-12 3.75060912385E-12 3.94289930847E-12 4.14504786648E-12 4.35756020723E-12 4.58096765007E-12 4.81582875250E-12 5.06273070657E-12 5.32229080667E-12 5.59515799269E-12 5.88201447227E-12 6.18357742612E-12 6.50060080081E-12 6.83387719350E-12 7.18423983319E-12 7.55256466354E-12 7.93977253252E-12 8.34683149424E-12 8.77475922872E-12 9.22462558579E-12 9.69755525933E-12 1.01947305985E-11 1.07173945634E-11 1.12668538314E-11 1.18444820640E-11 1.24517233398E-11 1.30900957643E-11 1.37611952641E-11 1.44666995763E-11 1.52083724418E-11 1.59880680136E-11 1.68077354927E-11 1.76694239921E-11 1.85752876746E-11 1.95275911196E-11 2.05287149872E-11 2.15811619839E-11 2.26875630895E-11 2.38506841679E-11 2.50734328340E-11 2.63588657678E-11 2.77101963244E-11 2.91308025604E-11 3.06242357099E-11 3.21942290290E-11 3.38447071219E-11 3.55797957770E-11 3.74038322498E-11 3.93213761173E-11 4.13372206692E-11 4.34564048829E-11 4.56842260086E-11 4.80262528357E-11 5.04883395542E-11 5.30766404544E-11 5.57976252270E-11 5.86580952009E-11 6.16652002861E-11 6.48264568531E-11 6.81497665496E-11 7.16434359584E-11 7.53161974576E-11 7.91772309527E-11 8.32361868547E-11 8.75032101869E-11 9.19889658950E-11 9.67046655318E-11 1.01662095304E-10 1.06873645448E-10 1.12352341112E-10 1.18111875179E-10 1.24166641992E-10 1.30531773847E-10 1.37223178498E-10 1.44257578840E-10 1.51652554929E-10 1.59426587512E-10 1.67599104736E-10 1.76190530075E-10 1.85222333773E-10 1.94717086392E-10 2.04698514838E-10 2.15191562164E-10 2.26222449472E-10 2.37818741529E-10 2.50009415503E-10 2.62824933666E-10 2.76297318919E-10 2.90460235235E-10 3.05349071361E-10 3.21001029453E-10 3.37455218025E-10 3.54752749012E-10 3.72936841358E-10 3.92052927887E-10 4.12148769604E-10 4.33274574473E-10 4.55483122645E-10 4.78829898785E-10 5.03373229809E-10 5.29174431240E-10 5.56297959598E-10 5.84811573723E-10 6.14786503711E-10 6.46297628755E-10 6.79423664087E-10 7.14247356965E-10 7.50855693914E-10 7.89340117232E-10 8.29796753096E-10 8.72326652277E-10 9.17036041098E-10 9.64036587188E-10 1.01344567791E-09 1.06538671325E-09 1.11998941353E-09 1.17739014316E-09 1.23773225072E-09 1.30116642624E-09 1.36785107751E-09 1.43795272489E-09 1.51164641664E-09 1.58911616566E-09 1.67055540755E-09 1.75616748348E-09 1.84616614878E-09 1.94077610194E-09 2.04023354821E-09 2.14478678868E-09 2.25469683573E-09 2.37023806646E-09 2.49169890744E-09 2.61938254975E-09 2.75360770775E-09 2.89470941230E-09 3.04303984618E-09 3.19896922044E-09 3.36288669593E-09 3.53520135811E-09 3.71634322641E-09 3.90676433574E-09 4.10693985607E-09 4.31736927681E-09 4.53857765006E-09 4.77111690264E-09 5.01556720213E-09 5.27253841029E-09 5.54267159342E-09 5.82664062266E-09 6.12515384867E-09 6.43895586860E-09 6.76882937284E-09 7.11559709658E-09 7.48012386639E-09 7.86331875001E-09 8.26613732062E-09 8.68958402705E-09 9.13471470194E-09 9.60263917596E-09 1.00945240448E-08 1.06115955679E-08 1.11551427149E-08 1.17265203688E-08 1.23271526952E-08 1.29585366831E-08 1.36222458534E-08 1.43199341856E-08 1.50533402090E-08 1.58242913296E-08 1.66347083647E-08 1.74866103152E-08 1.83821193710E-08 1.93234661877E-08 2.03129954128E-08 2.13531715106E-08 2.24465848744E-08 2.35959582493E-08 2.48041534899E-08 2.60741786517E-08 2.74091954550E-08 2.88125271141E-08 3.02876665803E-08 3.18382851992E-08 3.34682417973E-08 3.51815922511E-08 3.69825995239E-08 3.88757442252E-08 4.08657357027E-08 4.29575236986E-08 4.51563105944E-08 4.74675642883E-08 4.98970317175E-08 5.24507530667E-08 5.51350767094E-08 5.79566748904E-08 6.09225602286E-08 6.40401030265E-08 6.73170494908E-08 7.07615408492E-08 7.43821334612E-08 7.81878199273E-08 8.21880512793E-08 8.63927603076E-08 9.08123860363E-08 9.54578994862E-08 1.00340830688E-07 1.05473297118E-07 1.10868033531E-07 1.16538423332E-07 1.22498531517E-07 1.28763139286E-07 1.35347780416E-07 1.42268779459E-07 1.49543291877E-07 1.57189346211E-07 1.65225888369E-07 1.73672828160E-07 1.82551088174E-07 1.91882655131E-07 2.01690633815E-07 2.11999303738E-07 2.22834178655E-07 2.34222069079E-07 2.46191147948E-07 2.58771019597E-07 2.71992792214E-07 2.85889153922E-07 3.00494452706E-07 3.15844780363E-07 3.31978060651E-07 3.48934141889E-07 3.66754894206E-07 3.85484311661E-07 4.05168619490E-07 4.25856386759E-07 4.47598644629E-07 4.70449010577E-07 4.94463818818E-07 5.19702257276E-07 5.46226511408E-07 5.74101915213E-07 6.03397109796E-07 6.34184209860E-07 6.66538978508E-07 7.00541010777E-07 7.36273926315E-07 7.73825571688E-07 8.13288232748E-07 8.54758857587E-07 8.98339290588E-07 9.44136518107E-07 9.92262926388E-07 1.04283657229E-06 1.09598146739E-06 1.15182787632E-06 1.21051262973E-06 1.27217945288E-06 1.33697931044E-06 1.40507076833E-06 1.47662037355E-06 1.55180305259E-06 1.63080252971E-06 1.71381176568E-06 1.80103341821E-06 1.89268032506E-06 1.98897601087E-06 2.09015521895E-06 2.19646446908E-06 2.30816264282E-06 2.42552159736E-06 2.54882680953E-06 2.67837805123E-06 2.81449009792E-06 2.95749347166E-06 3.10773522038E-06 3.26557973511E-06 3.43140960697E-06 3.60562652580E-06 3.78865222242E-06 3.98092945653E-06 4.18292305250E-06 4.39512098522E-06 4.61803551839E-06 4.85220439772E-06 5.09819210163E-06 5.35659115207E-06 5.62802348831E-06 5.91314190669E-06 6.21263156925E-06 6.52721158454E-06 6.85763666389E-06 7.20469885670E-06 7.56922936826E-06 7.95210046393E-06 8.35422746375E-06 8.77657083136E-06 9.22013836176E-06 9.68598747224E-06 1.01752276012E-05 1.06890227198E-05 1.12285939611E-05 1.17952223729E-05 1.23902517984E-05 1.30150918916E-05 1.36712212733E-05 1.43601908324E-05 1.50836271814E-05 1.58432362706E-05 1.66408071691E-05 1.74782160196E-05 1.83574301745E-05 1.92805125212E-05 2.02496260042E-05 2.12670383535E-05 2.23351270267E-05 2.34563843749E-05 2.46334230414E-05 2.58689816027E-05 2.71659304628E-05 2.85272780094E-05 2.99561770451E-05 3.14559315032E-05 3.30300034604E-05 3.46820204572E-05 3.64157831408E-05 3.82352732400E-05 4.01446618885E-05 4.21483183074E-05 4.42508188626E-05 4.64569565113E-05 4.87717506517E-05 5.12004573918E-05 5.37485802526E-05 5.64218813224E-05 5.92263928778E-05 6.21684294893E-05 6.52546006277E-05 6.84918237910E-05 7.18873381671E-05 7.54487188538E-05 7.91838916529E-05 8.31011484587E-05 8.72091632600E-05 9.15170087757E-05 9.60341737443E-05 1.00770580888E-04 1.05736605569E-04 1.10943095168E-04 1.16401389191E-04 1.22123340138E-04 1.28121335153E-04 1.34408318470E-04 1.40997814681E-04 1.47903952846E-04 1.55141491463E-04 1.62725844329E-04 1.70673107291E-04 1.79000085929E-04 1.87724324172E-04 1.96864133882E-04 2.06438625402E-04 2.16467739104E-04 2.26972277939E-04 2.37973941012E-04 2.49495358181E-04 2.61560125704E-04 2.74192842935E-04 2.87419150075E-04 3.01265766985E-04 3.15760533058E-04 3.30932448154E-04 3.46811714581E-04 3.63429780131E-04 3.80819382145E-04 3.99014592588E-04 4.18050864128E-04 4.37965077176E-04 4.58795587866E-04 4.80582276926E-04 5.03366599412E-04 5.27191635239E-04 5.52102140453E-04 5.78144599183E-04 6.05367276198E-04 6.33820269974E-04 6.63555566186E-04 6.94627091519E-04 7.27090767680E-04 7.61004565481E-04 7.96428558852E-04 8.33424978634E-04 8.72058265978E-04 9.12395125165E-04 9.54504575646E-04 9.98458003089E-04 1.04432920919E-03 1.09219445998E-03 1.14213253241E-03 1.19422475880E-03 1.24855506899E-03 1.30521002968E-03 1.36427888077E-03 1.42585356808E-03 1.49002877234E-03 1.55690193363E-03 1.62657327115E-03 1.69914579753E-03 1.77472532735E-03 1.85342047915E-03 1.93534267038E-03 2.02060610471E-03 2.10932775095E-03 2.20162731284E-03 2.29762718911E-03 2.39745242284E-03 2.50123063946E-03 2.60909197245E-03 2.72116897582E-03 2.83759652248E-03 2.95851168757E-03 3.08405361558E-03 3.21436337041E-03 3.34958376712E-03 3.48985918437E-03 3.63533535628E-03 3.78615914264E-03 3.94247827620E-03 4.10444108579E-03 4.27219619403E-03 4.44589218837E-03 4.62567726410E-03 4.81169883813E-03 5.00410313210E-03 5.20303472368E-03 5.40863606462E-03 5.62104696440E-03 5.84040403813E-03 6.06684011758E-03 6.30048362416E-03 6.54145790275E-03 6.78988051537E-03 7.04586249374E-03 7.30950754993E-03 7.58091124444E-03 7.86016011100E-03 8.14733073790E-03 8.44248880539E-03 8.74568807932E-03 9.05696936114E-03 9.37635939461E-03 9.70386973019E-03 1.00394955478E-02 1.03832144398E-02 1.07349851550E-02 1.10947463071E-02 1.14624150489E-02 1.18378857163E-02 1.22210284438E-02 1.26116877586E-02 1.30096811542E-02 1.34147976515E-02 1.38267963518E-02 1.42454049887E-02 1.46703184850E-02 1.51011975248E-02 1.55376671463E-02 1.59793153674E-02 1.64256918531E-02 1.68763066355E-02 1.73306288994E-02 1.77880858453E-02 1.82480616438E-02 1.87098964960E-02 1.91728858158E-02 1.96362795489E-02 2.00992816470E-02 2.05610497148E-02 2.10206948481E-02 2.14772816817E-02 2.19298286688E-02 2.23773086104E-02 2.28186494567E-02 2.32527354012E-02 2.36784082883E-02 2.40944693571E-02 2.44996813398E-02 2.48927709380E-02 2.52724316944E-02 2.56373272807E-02 2.59860952176E-02 2.63173510439E-02 2.66296929490E-02 2.69217068803E-02 2.71919721340E-02 2.74390674375E-02 2.76615775232E-02 2.78581001949E-02 2.80272538784E-02 2.81676856477E-02 2.82780797085E-02 2.83571663176E-02 2.84037311090E-02 2.84166247906E-02 2.83947731688E-02 2.83371874483E-02 2.82429747492E-02 2.81113487721E-02 2.79416405338E-02 2.77333090888E-02 2.74859521388E-02 2.71993164285E-02 2.68733078118E-02 2.65080008673E-02 2.61036479325E-02 2.56606874202E-02 2.51797512708E-02 2.46616713928E-02 2.41074849378E-02 2.35184382536E-02 2.28959893599E-02 2.22418087920E-02 2.15577786623E-02 2.08459897968E-02 2.01087368110E-02 1.93485110073E-02 1.85679909853E-02 1.77700308810E-02 1.69576461708E-02 1.61339970006E-02 1.53023690308E-02 1.44661518176E-02 1.36288147824E-02 1.27938808576E-02 1.19648979307E-02 1.11454082404E-02 1.03389159136E-02 9.54885285973E-03 8.77854326069E-03 8.03116691480E-03 7.30972169849E-03 6.61698540763E-03 5.95547722406E-03 5.32741902063E-03 4.73469666936E-03 4.17882144813E-03 3.66089155151E-03 3.18155359964E-03 2.74096390428E-03 2.33874909500E-03 1.97396553163E-03 1.64505673513E-03 1.35021839954E-03 1.08871396429E-03 8.59845585456E-04 6.62571900593E-04 4.95511124199E-04 3.56950972169E-04 2.44866295621E-04 1.56945308615E-04 9.06252819917E-05 4.31385437859E-05 1.15695727020E-05 -7.07610789592E-06 -1.57906348741E-05 -1.74696457333E-05 -1.48049611423E-05 -1.01640208967E-05 -5.45622544493E-06 -1.98661296901E-06 -2.97616918042E-07 5.56723964118E-18 8.19259347842E-19 -3.54144949624E-18 -1.23211324965E-17 -2.20775284226E-17 1.42639502372E-17 7.17757598375E-18 -8.58203054545E-18 -4.77530026717E-18 1.05079841184E-17 -1.82953453560E-18 -4.15913980608E-18 -3.82007551296E-18 1.50005822625E-18 1.21729852264E-17 -2.56015891175E-18 3.08114129956E-18 -5.81440337003E-19 6.55512775501E-19 5.73357965256E-18 2.94171830466E-18 2.75137394365E-18 3.90462506868E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 3 2 i j (l(j)) 0.00000000000E+00 Q_int -6.53537308065E-25 -6.87044882362E-25 -7.22270426729E-25 -7.59302023376E-25 -7.98232270582E-25 -8.39158514245E-25 -8.82183091289E-25 -9.27413585568E-25 -9.74963096878E-25 -1.02495052376E-24 -1.07750086083E-24 -1.13274551129E-24 -1.19082261555E-24 -1.25187739661E-24 -1.31606252324E-24 -1.38353849168E-24 -1.45447402699E-24 -1.52904650498E-24 -1.60744239566E-24 -1.68985772962E-24 -1.77649858809E-24 -1.86758161838E-24 -1.96333457548E-24 -2.06399689167E-24 -2.16982027517E-24 -2.28106933956E-24 -2.39802226545E-24 -2.52097149607E-24 -2.65022446854E-24 -2.78610438261E-24 -2.92895100885E-24 -3.07912153823E-24 -3.23699147528E-24 -3.40295557708E-24 -3.57742884033E-24 -3.76084753907E-24 -3.95367031559E-24 -4.15637932725E-24 -4.36948145218E-24 -4.59350955668E-24 -4.82902382771E-24 -5.07661317362E-24 -5.33689669672E-24 -5.61052524142E-24 -5.89818302159E-24 -6.20058933151E-24 -6.51850034448E-24 -6.85271100361E-24 -7.20405700964E-24 -7.57341691059E-24 -7.96171429859E-24 -8.36992011938E-24 -8.79905510012E-24 -9.25019230179E-24 -9.72445980238E-24 -1.02230435177E-23 -1.07471901666E-23 -1.12982103889E-23 -1.18774820221E-23 -1.24864535470E-23 -1.31266477096E-23 -1.37996653287E-23 -1.45071892990E-23 -1.52509887989E-23 -1.60329237146E-23 -1.68549492907E-23 -1.77191210192E-23 -1.86275997797E-23 -1.95826572421E-23 -2.05866815477E-23 -2.16421832801E-23 -2.27518017435E-23 -2.39183115619E-23 -2.51446296176E-23 -2.64338223444E-23 -2.77891133956E-23 -2.92138917048E-23 -3.07117199598E-23 -3.22863435115E-23 -3.39416997390E-23 -3.56819278949E-23 -3.75113794561E-23 -3.94346290045E-23 -4.14564856655E-23 -4.35820051341E-23 -4.58165023160E-23 -4.81655646180E-23 -5.06350659193E-23 -5.32311812596E-23 -5.59604022794E-23 -5.88295534527E-23 -6.18458091520E-23 -6.50167115876E-23 -6.83501896671E-23 -7.18545788220E-23 -7.55386418505E-23 -7.94115908291E-23 -8.34831101475E-23 -8.77633807246E-23 -9.22631054664E-23 -9.69935360283E-23 -1.01966500951E-22 -1.07194435236E-22 -1.12690411443E-22 -1.18468172375E-22 -1.24542165444E-22 -1.30927578796E-22 -1.37640379289E-22 -1.44697352423E-22 -1.52116144305E-22 -1.59915305779E-22 -1.68114338811E-22 -1.76733745255E-22 -1.85795078115E-22 -1.95320995443E-22 -2.05335316995E-22 -2.15863083790E-22 -2.26930620729E-22 -2.38565602419E-22 -2.50797122373E-22 -2.63655765763E-22 -2.77173685895E-22 -2.91384684609E-22 -3.06324296804E-22 -3.22029879292E-22 -3.38540704209E-22 -3.55898057218E-22 -3.74145340741E-22 -3.93328182491E-22 -4.13494549564E-22 -4.34694868381E-22 -4.56982150781E-22 -4.80412126579E-22 -5.05043382916E-22 -5.30937510764E-22 -5.58159258927E-22 -5.86776695956E-22 -6.16861380347E-22 -6.48488539482E-22 -6.81737257729E-22 -7.16690674203E-22 -7.53436190648E-22 -7.92065689996E-22 -8.32675766114E-22 -8.75367965342E-22 -9.20249040416E-22 -9.67431217397E-22 -1.01703247630E-21 -1.06917684611E-21 -1.12399471491E-21 -1.18162315593E-21 -1.24220627026E-21 -1.30589554727E-21 -1.37285024331E-21 -1.44323777999E-21 -1.51723416281E-21 -1.59502442128E-21 -1.67680307154E-21 -1.76277460282E-21 -1.85315398873E-21 -1.94816722479E-21 -2.04805189359E-21 -2.15305775881E-21 -2.26344738982E-21 -2.37949681817E-21 -2.50149622787E-21 -2.62975068100E-21 -2.76458088049E-21 -2.90632397204E-21 -3.05533438721E-21 -3.21198472964E-21 -3.37666670678E-21 -3.54979210933E-21 -3.73179384097E-21 -3.92312700080E-21 -4.12427002137E-21 -4.33572586500E-21 -4.55802328141E-21 -4.79171812992E-21 -5.03739476935E-21 -5.29566751925E-21 -5.56718219599E-21 -5.85261772768E-21 -6.15268785178E-21 -6.46814289989E-21 -6.79977167391E-21 -7.14840341846E-21 -7.51490989449E-21 -7.90020755903E-21 -8.30525985692E-21 -8.73107962982E-21 -9.17873164893E-21 -9.64933527741E-21 -1.01440672694E-20 -1.06641647126E-20 -1.12109281213E-20 -1.17857246889E-20 -1.23899917060E-20 -1.30252401550E-20 -1.36930584877E-20 -1.43951165977E-20 -1.51331699959E-20 -1.59090642002E-20 -1.67247393500E-20 -1.75822350580E-20 -1.84836955101E-20 -1.94313748266E-20 -2.04276426995E-20 -2.14749903172E-20 -2.25760365940E-20 -2.37335347191E-20 -2.49503790405E-20 -2.62296123026E-20 -2.75744332546E-20 -2.89882046492E-20 -3.04744616510E-20 -3.20369206764E-20 -3.36794886866E-20 -3.54062729569E-20 -3.72215913469E-20 -3.91299830980E-20 -4.11362201832E-20 -4.32453192396E-20 -4.54625541133E-20 -4.77934690457E-20 -5.02438925378E-20 -5.28199519242E-20 -5.55280886946E-20 -5.83750746008E-20 -6.13680285900E-20 -6.45144346054E-20 -6.78221603000E-20 -7.12994767103E-20 -7.49550789377E-20 -7.87981078909E-20 -8.28381731430E-20 -8.70853769604E-20 -9.15503395638E-20 -9.62442256842E-20 -1.01178772480E-19 -1.06366318888E-19 -1.11819836475E-19 -1.17552961872E-19 -1.23580030879E-19 -1.29916114305E-19 -1.36577055656E-19 -1.43579510755E-19 -1.50940989383E-19 -1.58679899069E-19 -1.66815591116E-19 -1.75368408989E-19 -1.84359739183E-19 -1.93812064705E-19 -2.03749021289E-19 -2.14195456498E-19 -2.25177491856E-19 -2.36722588170E-19 -2.48859614187E-19 -2.61618918791E-19 -2.75032406882E-19 -2.89133619163E-19 -3.03957816003E-19 -3.19542065609E-19 -3.35925336716E-19 -3.53148596026E-19 -3.71254910651E-19 -3.90289555800E-19 -4.10300127992E-19 -4.31336664069E-19 -4.53451766319E-19 -4.76700734004E-19 -5.01141701641E-19 -5.26835784366E-19 -5.53847230756E-19 -5.82243583481E-19 -6.12095848196E-19 -6.43478671095E-19 -6.76470525563E-19 -7.11153908400E-19 -7.47615546107E-19 -7.85946611747E-19 -8.26242952925E-19 -8.68605331455E-19 -9.13139675322E-19 -9.59957343549E-19 -1.00917540466E-18 -1.06091692941E-18 -1.11531129853E-18 -1.17249452622E-18 -1.23260960029E-18 -1.29580683971E-18 -1.36224427043E-18 -1.43208802058E-18 -1.50551273586E-18 -1.58270201623E-18 -1.66384887505E-18 -1.74915622165E-18 -1.83883736875E-18 -1.93311656586E-18 -2.03222955998E-18 -2.13642418514E-18 -2.24596098205E-18 -2.36111384967E-18 -2.48217073002E-18 -2.60943432823E-18 -2.74322286946E-18 -2.88387089459E-18 -3.03173009680E-18 -3.18717020094E-18 -3.35057988805E-18 -3.52236776729E-18 -3.70296339761E-18 -3.89281836195E-18 -4.09240739636E-18 -4.30222957715E-18 -4.52280956878E-18 -4.75469893584E-18 -4.99847752220E-18 -5.25475490100E-18 -5.52417189879E-18 -5.80740219802E-18 -6.10515402154E-18 -6.41817190358E-18 -6.74723855139E-18 -7.09317680249E-18 -7.45685168215E-18 -7.83917256641E-18 -8.24109545599E-18 -8.66362536679E-18 -9.10781884294E-18 -9.57478659873E-18 -1.00656962960E-17 -1.05817754636E-17 -1.11243145676E-17 -1.16946702371E-17 -1.22942686573E-17 -1.29246091355E-17 -1.35872678498E-17 -1.42839017908E-17 -1.50162529049E-17 -1.57861524496E-17 -1.65955255733E-17 -1.74463961283E-17 -1.83408917325E-17 -1.92812490887E-17 -2.02698195779E-17 -2.13090751387E-17 -2.24016144490E-17 -2.35501694232E-17 -2.47576120442E-17 -2.60269615442E-17 -2.73613919548E-17 -2.87642400434E-17 -3.02390136572E-17 -3.17894004941E-17 -3.34192773243E-17 -3.51327196840E-17 -3.69340120665E-17 -3.88276586355E-17 -4.08183944877E-17 -4.29111974934E-17 -4.51113007434E-17 -4.74242056345E-17 -4.98556956258E-17 -5.24118507003E-17 -5.50990625682E-17 -5.79240506492E-17 -6.08938788745E-17 -6.40159733504E-17 -6.72981409276E-17 -7.07485887217E-17 -7.43759446356E-17 -7.81892789340E-17 -8.21981269229E-17 -8.64125127936E-17 -9.08429746876E-17 -9.55005910481E-17 -1.00397008321E-16 -1.05544470077E-16 -1.10955847629E-16 -1.16644672213E-16 -1.22625168825E-16 -1.28912291793E-16 -1.35521762167E-16 -1.42470107033E-16 -1.49774700833E-16 -1.57453808820E-16 -1.65526632719E-16 -1.74013358752E-16 -1.82935208105E-16 -1.92314489996E-16 -2.02174657461E-16 -2.12540365993E-16 -2.23437535200E-16 -2.34893413612E-16 -2.46936646819E-16 -2.59597349096E-16 -2.72907178711E-16 -2.86899417078E-16 -3.01609051985E-16 -3.17072865076E-16 -3.33329523826E-16 -3.50419678230E-16 -3.68386062446E-16 -3.87273601655E-16 -4.07129524395E-16 -4.28003480655E-16 -4.49947666029E-16 -4.73016952227E-16 -4.97269024283E-16 -5.22764524802E-16 -5.49567205586E-16 -5.77744087058E-16 -6.07365625837E-16 -6.38505890922E-16 -6.71242748895E-16 -7.05658058634E-16 -7.41837875996E-16 -7.79872668999E-16 -8.19857544042E-16 -8.61892483717E-16 -9.06082596812E-16 -9.52538381140E-16 -1.00137599984E-15 -1.05271757183E-15 -1.10669147718E-15 -1.16343267812E-15 -1.22308305653E-15 -1.28579176867E-15 -1.35171561819E-15 -1.42101944820E-15 -1.49387655345E-15 -1.57046911368E-15 -1.65098864914E-15 -1.73563649946E-15 -1.82462432715E-15 -1.91817464684E-15 -2.01652138165E-15 -2.11991044817E-15 -2.22860037129E-15 -2.34286293072E-15 -2.46298384054E-15 -2.58926346361E-15 -2.72201756264E-15 -2.86157808975E-15 -3.00829401651E-15 -3.16253220654E-15 -3.32467833285E-15 -3.49513784220E-15 -3.67433696892E-15 -3.86272380071E-15 -4.06076939906E-15 -4.26896897713E-15 -4.48784313805E-15 -4.71793917664E-15 -4.95983244794E-15 -5.21412780585E-15 -5.48146111556E-15 -5.76250084353E-15 -6.05794972898E-15 -6.36854654102E-15 -6.69506792599E-15 -7.03833034941E-15 -7.39919213753E-15 -7.77855562356E-15 -8.17736940391E-15 -8.59663071016E-15 -9.03738790256E-15 -9.50074309147E-15 -9.98785489311E-15 -1.04999413267E-14 -1.10382828599E-14 -1.16042256109E-14 -1.21991847140E-14 -1.28246478583E-14 -1.34821790074E-14 -1.41734223104E-14 -1.49001062127E-14 -1.56640477779E-14 -1.64671572316E-14 -1.73114427373E-14 -1.81990154182E-14 -1.91320946359E-14 -2.01130135396E-14 -2.11442248999E-14 -2.22283072424E-14 -2.33679712944E-14 -2.45660667635E-14 -2.58255894631E-14 -2.71496888027E-14 -2.85416756635E-14 -3.00050306766E-14 -3.15434129262E-14 -3.31606690990E-14 -3.48608431024E-14 -3.66481861763E-14 -3.85271675226E-14 -4.05024854803E-14 -4.25790792737E-14 -4.47621413618E-14 -4.70571304224E-14 -4.94697850004E-14 -5.20061378571E-14 -5.46725310542E-14 -5.74756318119E-14 -6.04224491792E-14 -6.35203515601E-14 -6.67770851369E-14 -7.02007932390E-14 -7.38000367048E-14 -7.75838152866E-14 -8.15615901541E-14 -8.57433075507E-14 -9.01394236631E-14 -9.47609307658E-14 -9.96193847061E-14 -1.04726933798E-13 -1.10096349197E-13 -1.15741056835E-13 -1.21675170988E-13 -1.27913529566E-13 -1.34471731216E-13 -1.41366174324E-13 -1.48614098014E-13 -1.56233625257E-13 -1.64243808178E-13 -1.72664675699E-13 -1.81517283617E-13 -1.90823767248E-13 -2.00607396775E-13 -2.10892635432E-13 -2.21705200667E-13 -2.33072128450E-13 -2.45021840864E-13 -2.57584217175E-13 -2.70790668539E-13 -2.84674216538E-13 -2.99269575744E-13 -3.14613240518E-13 -3.30743576255E-13 -3.47700915311E-13 -3.65527657844E-13 -3.84268377825E-13 -4.03969934489E-13 -4.24681589494E-13 -4.46455130091E-13 -4.69344998600E-13 -4.93408428537E-13 -5.18705587710E-13 -5.45299728652E-13 -5.73257346769E-13 -6.02648346595E-13 -6.33546216571E-13 -6.66028212779E-13 -7.00175552104E-13 -7.36073615292E-13 -7.73812160417E-13 -8.13485547301E-13 -8.55192973426E-13 -8.99038721951E-13 -9.45132422437E-13 -9.93589324941E-13 -1.04453058816E-12 -1.09808358236E-12 -1.15438220779E-12 -1.21356722949E-12 -1.27578662920E-12 -1.34119597534E-12 -1.40995881197E-12 -1.48224706763E-12 -1.55824148520E-12 -1.63813207381E-12 -1.72211858381E-12 -1.81041100623E-12 -1.90323009774E-12 -2.00080793255E-12 -2.10338848265E-12 -2.21122822769E-12 -2.32459679625E-12 -2.44377763988E-12 -2.56906874177E-12 -2.70078336164E-12 -2.83925081901E-12 -2.98481731635E-12 -3.13784680472E-12 -3.29872189353E-12 -3.46784480708E-12 -3.64563839015E-12 -3.83254716499E-12 -4.02903844267E-12 -4.23560349127E-12 -4.45275876404E-12 -4.68104719043E-12 -4.92103953336E-12 -5.17333581607E-12 -5.43856682205E-12 -5.71739567193E-12 -6.01051948111E-12 -6.31867110248E-12 -6.64262095833E-12 -6.98317896628E-12 -7.34119656385E-12 -7.71756883687E-12 -8.11323675691E-12 -8.52918953346E-12 -8.96646708668E-12 -9.42616264680E-12 -9.90942548690E-12 -1.04174637956E-11 -1.09515476973E-11 -1.15130124265E-11 -1.21032616660E-11 -1.27237710551E-11 -1.33760918779E-11 -1.40618549413E-11 -1.47827746507E-11 -1.55406532955E-11 -1.63373855538E-11 -1.71749632278E-11 -1.80554802239E-11 -1.89811377799E-11 -1.99542499771E-11 -2.09772495142E-11 -2.20526937991E-11 -2.31832713211E-11 -2.43718083988E-11 -2.56212762058E-11 -2.69347982416E-11 -2.83156580896E-11 -2.97673076731E-11 -3.12933758440E-11 -3.28976774600E-11 -3.45842229393E-11 -3.63572282359E-11 -3.82211254552E-11 -4.01805738417E-11 -4.22404714726E-11 -4.44059674871E-11 -4.66824749661E-11 -4.90756844275E-11 -5.15915780760E-11 -5.42364447355E-11 -5.70168955743E-11 -5.99398806159E-11 -6.30127061157E-11 -6.62430527882E-11 -6.96389950625E-11 -7.32090211591E-11 -7.69620544040E-11 -8.09074754429E-11 -8.50551457315E-11 -8.94154321216E-11 -9.39992328343E-11 -9.88180045755E-11 -1.03883791363E-10 -1.09209254326E-10 -1.14807703524E-10 -1.20693131292E-10 -1.26880246949E-10 -1.33384513687E-10 -1.40222187127E-10 -1.47410356092E-10 -1.54966985084E-10 -1.62910959262E-10 -1.71262131560E-10 -1.80041372446E-10 -1.89270621820E-10 -1.98972943946E-10 -2.09172584853E-10 -2.19895033512E-10 -2.31167084403E-10 -2.43016905734E-10 -2.55474108530E-10 -2.68569821686E-10 -2.82336768929E-10 -2.96809350765E-10 -3.12023730507E-10 -3.28017924568E-10 -3.44831897204E-10 -3.62507660313E-10 -3.81089378612E-10 -4.00623479528E-10 -4.21158769549E-10 -4.42746555566E-10 -4.65440773315E-10 -4.89298122020E-10 -5.14378205617E-10 -5.40743682148E-10 -5.68460419183E-10 -5.97597659563E-10 -6.28228192939E-10 -6.60428538134E-10 -6.94279134303E-10 -7.29864540964E-10 -7.67273649796E-10 -8.06599905861E-10 -8.47941541173E-10 -8.91401819670E-10 -9.37089294801E-10 -9.85118080924E-10 -1.03560813690E-09 -1.08868556654E-09 -1.14448293253E-09 -1.20313958762E-09 -1.26480202142E-09 -1.32962422694E-09 -1.39776808366E-09 -1.46940376227E-09 -1.54471014705E-09 -1.62387528621E-09 -1.70709685484E-09 -1.79458265405E-09 -1.88655112372E-09 -1.98323189172E-09 -2.08486634328E-09 -2.19170822351E-09 -2.30402427097E-09 -2.42209488122E-09 -2.54621480857E-09 -2.67669389493E-09 -2.81385784773E-09 -2.95804905049E-09 -3.10962741318E-09 -3.26897127302E-09 -3.43647833403E-09 -3.61256665754E-09 -3.79767570683E-09 -3.99226744140E-09 -4.19682746318E-09 -4.41186623167E-09 -4.63792033043E-09 -4.87555380968E-09 -5.12535958212E-09 -5.38796090703E-09 -5.66401293622E-09 -5.95420435151E-09 -6.25925906992E-09 -6.57993805522E-09 -6.91704120411E-09 -7.27140934097E-09 -7.64392630812E-09 -8.03552116668E-09 -8.44717050586E-09 -8.87990087352E-09 -9.33479132708E-09 -9.81297612245E-09 -1.03156475273E-08 -1.08440587911E-08 -1.13995272617E-08 -1.19834376502E-08 -1.25972454861E-08 -1.32424807264E-08 -1.39207515607E-08 -1.46337484010E-08 -1.53832480915E-08 -1.61711183118E-08 -1.69993222233E-08 -1.78699233384E-08 -1.87850906474E-08 -1.97471040054E-08 -2.07583597834E-08 -2.18213768242E-08 -2.29388026883E-08 -2.41134202227E-08 -2.53481544656E-08 -2.66460799031E-08 -2.80104280876E-08 -2.94445956573E-08 -3.09521527487E-08 -3.25368518566E-08 -3.42026371191E-08 -3.59536541044E-08 -3.77942600673E-08 -3.97290347524E-08 -4.17627917265E-08 -4.39005902995E-08 -4.61477480478E-08 -4.85098539713E-08 -5.09927823292E-08 -5.36027071591E-08 -5.63461175595E-08 -5.92298337281E-08 -6.22610238170E-08 -6.54472216627E-08 -6.87963453868E-08 -7.23167169648E-08 -7.60170827784E-08 -7.99066352044E-08 -8.39950353127E-08 -8.82924367024E-08 -9.28095105598E-08 -9.75574719636E-08 -1.02548107558E-07 -1.07793804586E-07 -1.13307581436E-07 -1.19103119699E-07 -1.25194797869E-07 -1.31597726749E-07 -1.38327786632E-07 -1.45401666388E-07 -1.52836904502E-07 -1.60651932209E-07 -1.68866118787E-07 -1.77499819164E-07 -1.86574423903E-07 -1.96112411734E-07 -2.06137404722E-07 -2.16674226224E-07 -2.27748961781E-07 -2.39389023055E-07 -2.51623215012E-07 -2.64481806494E-07 -2.77996604312E-07 -2.92201031114E-07 -3.07130207147E-07 -3.22821036137E-07 -3.39312295493E-07 -3.56644731043E-07 -3.74861156534E-07 -3.94006558134E-07 -4.14128204176E-07 -4.35275760408E-07 -4.57501411039E-07 -4.80859985848E-07 -5.05409093654E-07 -5.31209262502E-07 -5.58324086838E-07 -5.86820382073E-07 -6.16768346870E-07 -6.48241733554E-07 -6.81318027036E-07 -7.16078632667E-07 -7.52609073486E-07 -7.90999197298E-07 -8.31343394098E-07 -8.73740824295E-07 -9.18295658349E-07 -9.65117328306E-07 -1.01432079187E-06 -1.06602680957E-06 -1.12036223574E-06 -1.17746032395E-06 -1.23746104753E-06 -1.30051143604E-06 -1.36676592843E-06 -1.43638674365E-06 -1.50954426958E-06 -1.58641747126E-06 -1.66719431924E-06 -1.75207223903E-06 -1.84125858285E-06 -1.93497112450E-06 -2.03343857868E-06 -2.13690114578E-06 -2.24561108359E-06 -2.35983330691E-06 -2.47984601674E-06 -2.60594136021E-06 -2.73842612287E-06 -2.87762245487E-06 -3.02386863259E-06 -3.17751985746E-06 -3.33894909380E-06 -3.50854794741E-06 -3.68672758697E-06 -3.87391971018E-06 -4.07057755689E-06 -4.27717697125E-06 -4.49421751547E-06 -4.72222363727E-06 -4.96174589391E-06 -5.21336223520E-06 -5.47767934834E-06 -5.75533406752E-06 -6.04699485121E-06 -6.35336333039E-06 -6.67517593094E-06 -7.01320557366E-06 -7.36826345555E-06 -7.74120091595E-06 -8.13291139165E-06 -8.54433246491E-06 -8.97644800865E-06 -9.43029043335E-06 -9.90694304014E-06 -1.04075424850E-05 -1.09332813591E-05 -1.14854108905E-05 -1.20652437725E-05 -1.26741571248E-05 -1.33135955926E-05 -1.39850745910E-05 -1.46901836992E-05 -1.54305902141E-05 -1.62080428663E-05 -1.70243757102E-05 -1.78815121916E-05 -1.87814694037E-05 -1.97263625371E-05 -2.07184095351E-05 -2.17599359598E-05 -2.28533800804E-05 -2.40012981927E-05 -2.52063701788E-05 -2.64714053176E-05 -2.77993483570E-05 -2.91932858580E-05 -3.06564528222E-05 -3.21922396151E-05 -3.38041991953E-05 -3.54960546648E-05 -3.72717071514E-05 -3.91352440365E-05 -4.10909475435E-05 -4.31433036996E-05 -4.52970116863E-05 -4.75569935940E-05 -4.99284045954E-05 -5.24166435542E-05 -5.50273640864E-05 -5.77664860896E-05 -6.06402077588E-05 -6.36550181062E-05 -6.68177100038E-05 -7.01353937668E-05 -7.36155112976E-05 -7.72658508100E-05 -8.10945621534E-05 -8.51101727580E-05 -8.93216042212E-05 -9.37381895574E-05 -9.83696911312E-05 -1.03226319298E-04 -1.08318751774E-04 -1.13658153752E-04 -1.19256198799E-04 -1.25125090545E-04 -1.31277585189E-04 -1.37727014855E-04 -1.44487311805E-04 -1.51573033547E-04 -1.58999388851E-04 -1.66782264694E-04 -1.74938254174E-04 -1.83484685383E-04 -1.92439651299E-04 -2.01822040676E-04 -2.11651569994E-04 -2.21948816451E-04 -2.32735252037E-04 -2.44033278702E-04 -2.55866264630E-04 -2.68258581629E-04 -2.81235643658E-04 -2.94823946500E-04 -3.09051108573E-04 -3.23945912905E-04 -3.39538350262E-04 -3.55859663426E-04 -3.72942392630E-04 -3.90820422128E-04 -4.09529027900E-04 -4.29104926461E-04 -4.49586324766E-04 -4.71012971174E-04 -4.93426207441E-04 -5.16869021699E-04 -5.41386102382E-04 -5.67023893038E-04 -5.93830647966E-04 -6.21856488611E-04 -6.51153460633E-04 -6.81775591565E-04 -7.13778948955E-04 -7.47221698884E-04 -7.82164164734E-04 -8.18668886067E-04 -8.56800677476E-04 -8.96626687224E-04 -9.38216455508E-04 -9.81641972140E-04 -1.02697773343E-03 -1.07430079806E-03 -1.12369084164E-03 -1.17523020973E-03 -1.22900396905E-03 -1.28509995641E-03 -1.34360882528E-03 -1.40462408933E-03 -1.46824216281E-03 -1.53456239716E-03 -1.60368711351E-03 -1.67572163054E-03 -1.75077428716E-03 -1.82895645959E-03 -1.91038257207E-03 -1.99517010073E-03 -2.08343956999E-03 -2.17531454060E-03 -2.27092158888E-03 -2.37039027613E-03 -2.47385310761E-03 -2.58144548012E-03 -2.69330561734E-03 -2.80957449198E-03 -2.93039573383E-03 -3.05591552262E-03 -3.18628246467E-03 -3.32164745225E-03 -3.46216350452E-03 -3.60798558881E-03 -3.75927042116E-03 -3.91617624468E-03 -4.07886258464E-03 -4.24748997887E-03 -4.42221968211E-03 -4.60321334303E-03 -4.79063265243E-03 -4.98463896131E-03 -5.18539286729E-03 -5.39305376808E-03 -5.60777938047E-03 -5.82972522354E-03 -6.05904406454E-03 -6.29588532634E-03 -6.54039445488E-03 -6.79271224549E-03 -7.05297412687E-03 -7.32130940158E-03 -7.59784044201E-03 -7.88268184099E-03 -8.17593951614E-03 -8.47770976745E-03 -8.78807828752E-03 -9.10711912426E-03 -9.43489359593E-03 -9.77144915882E-03 -1.01168182279E-02 -1.04710169511E-02 -1.08340439388E-02 -1.12058789491E-02 -1.15864815319E-02 -1.19757896323E-02 -1.23737181579E-02 -1.27801575123E-02 -1.31949720980E-02 -1.36179987941E-02 -1.40490454130E-02 -1.44878891418E-02 -1.49342749747E-02 -1.53879141436E-02 -1.58484825533E-02 -1.63156192324E-02 -1.67889248062E-02 -1.72679600040E-02 -1.77522442111E-02 -1.82412540767E-02 -1.87344221927E-02 -1.92311358542E-02 -1.97307359201E-02 -2.02325157859E-02 -2.07357204880E-02 -2.12395459566E-02 -2.17431384343E-02 -2.22455940817E-02 -2.27459587890E-02 -2.32432282145E-02 -2.37363480728E-02 -2.42242146926E-02 -2.47056758692E-02 -2.51795320327E-02 -2.56445377556E-02 -2.60994036225E-02 -2.65427984854E-02 -2.69733521254E-02 -2.73896583429E-02 -2.77902784975E-02 -2.81737455146E-02 -2.85385683780E-02 -2.88832371222E-02 -2.92062283379E-02 -2.95060111999E-02 -2.97810540233E-02 -3.00298313521E-02 -3.02508315752E-02 -3.04425650660E-02 -3.06035728300E-02 -3.07324356445E-02 -3.08277836634E-02 -3.08883064549E-02 -3.09127634332E-02 -3.08999946343E-02 -3.08489317798E-02 -3.07586095618E-02 -3.06281770741E-02 -3.04569093034E-02 -3.02442185840E-02 -2.99896659131E-02 -2.96929720078E-02 -2.93540279807E-02 -2.89729054976E-02 -2.85498662744E-02 -2.80853707624E-02 -2.75800858610E-02 -2.70348914968E-02 -2.64508858996E-02 -2.58293894052E-02 -2.51719466176E-02 -2.44803267624E-02 -2.37565220721E-02 -2.30027440522E-02 -2.22214174887E-02 -2.14151720768E-02 -2.05868315678E-02 -1.97394003587E-02 -1.88760474771E-02 -1.80000879467E-02 -1.71149615577E-02 -1.62242091055E-02 -1.53314462090E-02 -1.44403348645E-02 -1.35545529419E-02 -1.26777618821E-02 -1.18135729014E-02 -1.09655120613E-02 -1.01369846025E-02 -9.33123898541E-03 -8.55133110673E-03 -7.80008918426E-03 -7.08007980937E-03 -6.39357565691E-03 -5.74252531519E-03 -5.12852564946E-03 -4.55279703815E-03 -4.01616172147E-03 -3.51902537299E-03 -3.06136184724E-03 -2.64270086919E-03 -2.26211821565E-03 -1.91822769834E-03 -1.60917399527E-03 -1.33295109300E-03 -1.08843921938E-03 -8.74543408589E-04 -6.89894294039E-04 -5.32864084460E-04 -4.01588234153E-04 -2.93993019246E-04 -2.07829127315E-04 -1.40711241544E-04 -9.01634518480E-05 -5.36701533377E-05 -2.87318972467E-05 -1.29254414732E-05 -3.96700854513E-06 2.22499703529E-07 1.45185606330E-06 1.19524225386E-06 5.31468326531E-07 8.90747847442E-08 1.25388815674E-18 -1.54172013488E-18 1.64264983647E-18 7.12674545535E-19 2.09978242738E-19 -3.78506851711E-19 -3.49844146586E-19 -1.41194175516E-19 -2.55785320245E-19 7.51991493633E-19 3.02624703593E-18 -1.82239466576E-19 2.44265533815E-18 6.12572683440E-19 -3.27744983072E-18 -5.70776070157E-20 6.08744320434E-18 -6.26482012422E-18 7.39997227327E-18 -4.36896119497E-18 -4.54784724911E-18 -4.94892466767E-19 -8.20638238891E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 2 2 i j (l(j)) 3.90821846769E-01 Q_int 7.25784365668E-28 7.70664364359E-28 8.18319587176E-28 8.68921644396E-28 9.22652758081E-28 9.79706418276E-28 1.04028807978E-27 1.10461590202E-27 1.17292153463E-27 1.24545095166E-27 1.32246533737E-27 1.40424202672E-27 1.49107550412E-27 1.58327846388E-27 1.68118293626E-27 1.78514148309E-27 1.89552846744E-27 2.01274140168E-27 2.13720237897E-27 2.26935959328E-27 2.40968895331E-27 2.55869579634E-27 2.71691670795E-27 2.88492145432E-27 3.06331503399E-27 3.25273985655E-27 3.45387805595E-27 3.66745394697E-27 3.89423663351E-27 4.13504277818E-27 4.39073954322E-27 4.66224771315E-27 4.95054501065E-27 5.25666961739E-27 5.58172391260E-27 5.92687844285E-27 6.29337613724E-27 6.68253678335E-27 7.09576177985E-27 7.53453918304E-27 8.00044906551E-27 8.49516920608E-27 9.02048113162E-27 9.57827653245E-27 1.01705640745E-26 1.07994766327E-26 1.14672789715E-26 1.21763759006E-26 1.29293209349E-26 1.37288254899E-26 1.45777686454E-26 1.54792075137E-26 1.64363882486E-26 1.74527577343E-26 1.85319759991E-26 1.96779293941E-26 2.08947445895E-26 2.21868034343E-26 2.35587587358E-26 2.50155510150E-26 2.65624262976E-26 2.82049550055E-26 2.99490520161E-26 3.18009979625E-26 3.37674618503E-26 3.58555250737E-26 3.80727069155E-26 4.04269916252E-26 4.29268571706E-26 4.55813057678E-26 4.83998962989E-26 5.13927787343E-26 5.45707306832E-26 5.79451962053E-26 6.15283270212E-26 6.53330262721E-26 6.93729949847E-26 7.36627814100E-26 7.82178334127E-26 8.30545540997E-26 8.81903608899E-26 9.36437482349E-26 9.94343542194E-26 1.05583031279E-25 1.12111921293E-25 1.19044535317E-25 1.26405838250E-25 1.34222338733E-25 1.42522184610E-25 1.51335264291E-25 1.60693314383E-25 1.70630033973E-25 1.81181205984E-25 1.92384826032E-25 2.04281239250E-25 2.16913285576E-25 2.30326454019E-25 2.44569046474E-25 2.59692351657E-25 2.75750829801E-25 2.92802308772E-25 3.10908192312E-25 3.30133681158E-25 3.50548007835E-25 3.72224685969E-25 3.95241775013E-25 4.19682161348E-25 4.45633856764E-25 4.73190315395E-25 5.02450770254E-25 5.33520590583E-25 5.66511661293E-25 6.01542785874E-25 6.38740114209E-25 6.78237596856E-25 7.20177467416E-25 7.64710754719E-25 8.11997826700E-25 8.62208967892E-25 9.15524992636E-25 9.72137896207E-25 1.03225154620E-24 1.09608241669E-24 1.16386036775E-24 1.23582947321E-24 1.31224889958E-24 1.39339383933E-24 1.47955650190E-24 1.57104716592E-24 1.66819529661E-24 1.77135073215E-24 1.88088494355E-24 1.99719237225E-24 2.12069185063E-24 2.25182811020E-24 2.39107338311E-24 2.53892910276E-24 2.69592770943E-24 2.86263456766E-24 3.03965000220E-24 3.22761145980E-24 3.42719580473E-24 3.63912175617E-24 3.86415247646E-24 4.10309831922E-24 4.35681974757E-24 4.62623043268E-24 4.91230054399E-24 5.21606024287E-24 5.53860339232E-24 5.88109149603E-24 6.24475788107E-24 6.63091213921E-24 7.04094484284E-24 7.47633255254E-24 7.93864313430E-24 8.42954140553E-24 8.95079513018E-24 9.50428138464E-24 1.00919933172E-23 1.07160473256E-23 1.13786906781E-23 1.20823096067E-23 1.28294378993E-23 1.36227660246E-23 1.44651508208E-23 1.53596257829E-23 1.63094119868E-23 1.73179296886E-23 1.83888106413E-23 1.95259111728E-23 2.07333260730E-23 2.20154033398E-23 2.33767598357E-23 2.48222979146E-23 2.63572230746E-23 2.79870627040E-23 2.97176859856E-23 3.15553250324E-23 3.35065973295E-23 3.55785295644E-23 3.77785829309E-23 4.01146799971E-23 4.25952332353E-23 4.52291753160E-23 4.80259912753E-23 5.09957526710E-23 5.41491538515E-23 5.74975504664E-23 6.10530003596E-23 6.48283069904E-23 6.88370655398E-23 7.30937118678E-23 7.76135744979E-23 8.24129298167E-23 8.75090606864E-23 9.29203186813E-23 9.86661901741E-23 1.04767366507E-22 1.11245818503E-22 1.18124875587E-22 1.25429309791E-22 1.33185424967E-22 1.41421151506E-22 1.50166146917E-22 1.59451902625E-22 1.69311857381E-22 1.79781517667E-22 1.90898585566E-22 2.02703094529E-22 2.15237553534E-22 2.28547100168E-22 2.42679663172E-22 2.57686135034E-22 2.73620555256E-22 2.90540304957E-22 3.08506313506E-22 3.27583277934E-22 3.47839895912E-22 3.69349113138E-22 3.92188386019E-22 4.16439960597E-22 4.42191168729E-22 4.69534742569E-22 4.98569148505E-22 5.29398941751E-22 5.62135142849E-22 5.96895637469E-22 6.33805600924E-22 6.72997948934E-22 7.14613816269E-22 7.58803064984E-22 8.05724824083E-22 8.55548062561E-22 9.08452197868E-22 9.64627742010E-22 1.02427698760E-21 1.08761473631E-21 1.15486907243E-21 1.22628218417E-21 1.30211123584E-21 1.38262929388E-21 1.46812631023E-21 1.55891016645E-21 1.65530778244E-21 1.75766629366E-21 1.86635430127E-21 1.98176319943E-21 2.10430858475E-21 2.23443175291E-21 2.37260128778E-21 2.51931474885E-21 2.67510046293E-21 2.84051942677E-21 3.01616732720E-21 3.20267668626E-21 3.40071913896E-21 3.61100785189E-21 3.83430009142E-21 4.07139995060E-21 4.32316124486E-21 4.59049058659E-21 4.87435064995E-21 5.17576363754E-21 5.49581496143E-21 5.83565715181E-21 6.19651400734E-21 6.57968500216E-21 6.98654996536E-21 7.41857404991E-21 7.87731300874E-21 8.36441879716E-21 8.88164552166E-21 9.43085575662E-21 1.00140272515E-20 1.06332600530E-20 1.12907840674E-20 1.19889670907E-20 1.27303233350E-20 1.35175224829E-20 1.43533993004E-20 1.52409638462E-20 1.61834123102E-20 1.71841385236E-20 1.82467461805E-20 1.93750618148E-20 2.05731485802E-20 2.18453208813E-20 2.31961599110E-20 2.46305301469E-20 2.61535968691E-20 2.77708447609E-20 2.94880976589E-20 3.13115395260E-20 3.32477367197E-20 3.53036616381E-20 3.74867178283E-20 3.98047666472E-20 4.22661555703E-20 4.48797482523E-20 4.76549564454E-20 5.06017738916E-20 5.37308123116E-20 5.70533396176E-20 6.05813204905E-20 6.43274594654E-20 6.83052466816E-20 7.25290064617E-20 7.70139488947E-20 8.17762246083E-20 8.68329829290E-20 9.22024336377E-20 9.79039125451E-20 1.03957951121E-19 1.10386350429E-19 1.17212259635E-19 1.24460259370E-19 1.32156450243E-19 1.40328546836E-19 1.49005977502E-19 1.58219990343E-19 1.68003765733E-19 1.78392535804E-19 1.89423711323E-19 2.01137016404E-19 2.13574631565E-19 2.26781345619E-19 2.40804716962E-19 2.55695244836E-19 2.71506551179E-19 2.88295573722E-19 3.06122771027E-19 3.25052340202E-19 3.45152448078E-19 3.66495476687E-19 3.89158283911E-19 4.13222480254E-19 4.38774722729E-19 4.65907026913E-19 4.94717098307E-19 5.25308684175E-19 5.57791947150E-19 5.92283861934E-19 6.28908636537E-19 6.67798159553E-19 7.09092475107E-19 7.52940287159E-19 7.99499495000E-19 8.48937761859E-19 9.01433118669E-19 9.57174605170E-19 1.01636295066E-18 1.07921129681E-18 1.14594596525E-18 1.21680727253E-18 1.29205039553E-18 1.37194629036E-18 1.45678266811E-18 1.54686503091E-18 1.64251777207E-18 1.74408534421E-18 1.85193349971E-18 1.96645060778E-18 2.08804905300E-18 2.21716672037E-18 2.35426857213E-18 2.49984832216E-18 2.65443021384E-18 2.81857090790E-18 2.99286148703E-18 3.17792958433E-18 3.37444164354E-18 3.58310531889E-18 3.80467202346E-18 4.03993963502E-18 4.28975536928E-18 4.55501883074E-18 4.83668525225E-18 5.13576893485E-18 5.45334690034E-18 5.79056276971E-18 6.14863088139E-18 6.52884066417E-18 6.93256128048E-18 7.36124655687E-18 7.81644021934E-18 8.29978145235E-18 8.81301080166E-18 9.35797644215E-18 9.93664083317E-18 1.05510877855E-17 1.12035299654E-17 1.18963168623E-17 1.26319432496E-17 1.34130581686E-17 1.42424744678E-17 1.51231789318E-17 1.60583430376E-17 1.70513343744E-17 1.81057287714E-17 1.92253231737E-17 2.04141493159E-17 2.16764882406E-17 2.30168857142E-17 2.44401685970E-17 2.59514622245E-17 2.75562088646E-17 2.92601873150E-17 3.10695337131E-17 3.29907636327E-17 3.50307955468E-17 3.71969757413E-17 3.94971047697E-17 4.19394655428E-17 4.45328531564E-17 4.72866065624E-17 5.02106421993E-17 5.33154897011E-17 5.66123298160E-17 6.01130346680E-17 6.38302105090E-17 6.77772431152E-17 7.19683459891E-17 7.64186115435E-17 8.11440654494E-17 8.61617243459E-17 9.14896571171E-17 9.71470499593E-17 1.03154275471E-16 1.09532966017E-16 1.16306091624E-16 1.23498042699E-16 1.31134717862E-16 1.39243617203E-16 1.47853941314E-16 1.56996696442E-16 1.66704806141E-16 1.77013229832E-16 1.87959088695E-16 1.99581799340E-16 2.11923215750E-16 2.25027779997E-16 2.38942682281E-16 2.53718030860E-16 2.69407032495E-16 2.86066184046E-16 3.03755475920E-16 3.22538608098E-16 3.42483219518E-16 3.63661131647E-16 3.86148607111E-16 4.10026624316E-16 4.35381169054E-16 4.62303544139E-16 4.90890698193E-16 5.21245574753E-16 5.53477482976E-16 5.87702491262E-16 6.24043845218E-16 6.62632411464E-16 7.03607148887E-16 7.47115609032E-16 7.93314467433E-16 8.42370087806E-16 8.94459121123E-16 9.49769141732E-16 1.00849932281E-15 1.07086115359E-15 1.13707920092E-15 1.20739191795E-15 1.28205250276E-15 1.36132981018E-15 1.44550931987E-15 1.53489416437E-15 1.62980622068E-15 1.73058726928E-15 1.83760022495E-15 1.95123044354E-15 2.07188710969E-15 2.20000471026E-15 2.33604459891E-15 2.48049665742E-15 2.63388105974E-15 2.79675014511E-15 2.96969040703E-15 3.15332460516E-15 3.34831400792E-15 3.55536077360E-15 3.77521047887E-15 4.00865480352E-15 4.25653438127E-15 4.51974182686E-15 4.79922495026E-15 5.09599016972E-15 5.41110613580E-15 5.74570757950E-15 6.10099939834E-15 6.47826099513E-15 6.87885088498E-15 7.30421158722E-15 7.75587481977E-15 8.23546701474E-15 8.74471517506E-15 9.28545309324E-15 9.85962795471E-15 1.04693073494E-14 1.11166867170E-14 1.18040972522E-14 1.25340142997E-14 1.33090662669E-14 1.41320440889E-14 1.50059112782E-14 1.59338145960E-14 1.69190953832E-14 1.79653015922E-14 1.90762005623E-14 2.02557925857E-14 2.15083253119E-14 2.28383090424E-14 2.42505329722E-14 2.57500824344E-14 2.73423572119E-14 2.90330909811E-14 3.08283719574E-14 3.27346648185E-14 3.47588339818E-14 3.69081683220E-14 3.91904074171E-14 4.16137694167E-14 4.41869806341E-14 4.69193069677E-14 4.98205872652E-14 5.29012687515E-14 5.61724446463E-14 5.96458941082E-14 6.33341246484E-14 6.72504171672E-14 7.14088737751E-14 7.58244685702E-14 8.05131015564E-14 8.54916558943E-14 9.07780586927E-14 9.63913455588E-14 1.02351729139E-13 1.08680671901E-13 1.15400963407E-13 1.22536802378E-13 1.30113883823E-13 1.38159491556E-13 1.46702596436E-13 1.55773960682E-13 1.65406248636E-13 1.75634144372E-13 1.86494476583E-13 1.98026351184E-13 2.10271292119E-13 2.23273390867E-13 2.37079465200E-13 2.51739227751E-13 2.67305465009E-13 2.83834227375E-13 3.01385030976E-13 3.20021071952E-13 3.39809453994E-13 3.60821429950E-13 3.83132658371E-13 4.06823475914E-13 4.31979186594E-13 4.58690368911E-13 4.87053201979E-13 5.17169811802E-13 5.49148638974E-13 5.83104829108E-13 6.19160647398E-13 6.57445918823E-13 6.98098495558E-13 7.41264753290E-13 7.87100118213E-13 8.35769626614E-13 8.87448519045E-13 9.42322871240E-13 1.00059026403E-12 1.06246049469E-12 1.12815633223E-12 1.19791431945E-12 1.27198562450E-12 1.35063694513E-12 1.43415146886E-12 1.52282989249E-12 1.61699150461E-12 1.71697533510E-12 1.82314137565E-12 1.93587187573E-12 2.05557271874E-12 2.18267488315E-12 2.31763599401E-12 2.46094197045E-12 2.61310877486E-12 2.77468427041E-12 2.94625019321E-12 3.12842424655E-12 3.32186232449E-12 3.52726087299E-12 3.74535939696E-12 3.97694312228E-12 4.22284582247E-12 4.48395281997E-12 4.76120417305E-12 5.05559805971E-12 5.36819437072E-12 5.70011852485E-12 6.05256551983E-12 6.42680423383E-12 6.82418199280E-12 7.24612942010E-12 7.69416558601E-12 8.16990347541E-12 8.67505579360E-12 9.21144113083E-12 9.78099050804E-12 1.03857543271E-11 1.10279097524E-11 1.17097685385E-11 1.24337853677E-11 1.32025666668E-11 1.40188799916E-11 1.48856640052E-11 1.58060390229E-11 1.67833182817E-11 1.78210198133E-11 1.89228791578E-11 2.00928627745E-11 2.13351823121E-11 2.26543098028E-11 2.40549937218E-11 2.55422760709E-11 2.71215105554E-11 2.87983818175E-11 3.05789259112E-11 3.24695520190E-11 3.44770655108E-11 3.66086924237E-11 3.88721055000E-11 4.12754517269E-11 4.38273817420E-11 4.65370808588E-11 4.94143022087E-11 5.24694017661E-11 5.57133756261E-11 5.91578996168E-11 6.28153711902E-11 6.66989541710E-11 7.08226259963E-11 7.52012280607E-11 7.98505191032E-11 8.47872318460E-11 9.00291332465E-11 9.55950884669E-11 1.01505128634E-10 1.07780522789E-10 1.14443854819E-10 1.21519103961E-10 1.29031731871E-10 1.37008773760E-10 1.45478935532E-10 1.54472697436E-10 1.64022423063E-10 1.74162476643E-10 1.84929345642E-10 1.96361772695E-10 2.08500894812E-10 2.21390390723E-10 2.35076638862E-10 2.49608883491E-10 2.65039411975E-10 2.81423742654E-10 2.98820824948E-10 3.17293250456E-10 3.36907478950E-10 3.57734076340E-10 3.79847969174E-10 4.03328713818E-10 4.28260781817E-10 4.54733864620E-10 4.82843194778E-10 5.12689889495E-10 5.44381313170E-10 5.78031463200E-10 6.13761380946E-10 6.51699584787E-10 6.91982533970E-10 7.34755117429E-10 7.80171175452E-10 8.28394051896E-10 8.79597181324E-10 9.33964712509E-10 9.91692168827E-10 1.05298715237E-09 1.11807008850E-09 1.18717501784E-09 1.26055043818E-09 1.33846019516E-09 1.42118443124E-09 1.50902059163E-09 1.60228449240E-09 1.70131145438E-09 1.80645750783E-09 1.91810067060E-09 2.03664230501E-09 2.16250855949E-09 2.29615189824E-09 2.43805272620E-09 2.58872111245E-09 2.74869862119E-09 2.91856025513E-09 3.09891652436E-09 3.29041562668E-09 3.49374578267E-09 3.70963770587E-09 3.93886721532E-09 4.18225802615E-09 4.44068470825E-09 4.71507581109E-09 5.00641720534E-09 5.31575561477E-09 5.64420237165E-09 5.99293740021E-09 6.36321344311E-09 6.75636057064E-09 7.17379091903E-09 7.61700378431E-09 8.08759097809E-09 8.58724253389E-09 9.11775276629E-09 9.68102670931E-09 1.02790869202E-08 1.09140807542E-08 1.15882880297E-08 1.23041292148E-08 1.30641740840E-08 1.38711509289E-08 1.47279563195E-08 1.56376654813E-08 1.66035433004E-08 1.76290560140E-08 1.87178836143E-08 1.98739330095E-08 2.11013520257E-08 2.24045442160E-08 2.37881846358E-08 2.52572365603E-08 2.68169692275E-08 2.84729766763E-08 3.02311977609E-08 3.20979373800E-08 3.40798889719E-08 3.61841585091E-08 3.84182898118E-08 4.07902915482E-08 4.33086658125E-08 4.59824385121E-08 4.88211915720E-08 5.18350971641E-08 5.50349540032E-08 5.84322258904E-08 6.20390826198E-08 6.58684433917E-08 6.99340228920E-08 7.42503802040E-08 7.88329707231E-08 8.36982012289E-08 8.88634883787E-08 9.43473207733E-08 1.00169324799E-07 1.06350334548E-07 1.12912465994E-07 1.19879195742E-07 1.27275444572E-07 1.35127666125E-07 1.43463941009E-07 1.52314076671E-07 1.61709713401E-07 1.71684436777E-07 1.82273897060E-07 1.93515935819E-07 2.05450720389E-07 2.18120886452E-07 2.31571689450E-07 2.45851165131E-07 2.61010300041E-07 2.77103212300E-07 2.94187343518E-07 3.12323662428E-07 3.31576880852E-07 3.52015683034E-07 3.73712968730E-07 3.96746111380E-07 4.21197231828E-07 4.47153488841E-07 4.74707387323E-07 5.03957105263E-07 5.35006840668E-07 5.67967179584E-07 6.02955486532E-07 6.40096318737E-07 6.79521865507E-07 7.21372414382E-07 7.65796845631E-07 8.12953156779E-07 8.63009019015E-07 9.16142367410E-07 9.72542026968E-07 1.03240837666E-06 1.09595405380E-06 1.16340470100E-06 1.23499975867E-06 1.31099330524E-06 1.39165494849E-06 1.47727077080E-06 1.56814433153E-06 1.66459773015E-06 1.76697273360E-06 1.87563197180E-06 1.99096020530E-06 2.11336566968E-06 2.24328150084E-06 2.38116724648E-06 2.52751046851E-06 2.68282844216E-06 2.84766995739E-06 3.02261722872E-06 3.20828791992E-06 3.40533729043E-06 3.61446047089E-06 3.83639487513E-06 4.07192275697E-06 4.32187392048E-06 4.58712859260E-06 4.86862046779E-06 5.16733993500E-06 5.48433749764E-06 5.82072739801E-06 6.17769145823E-06 6.55648315034E-06 6.95843190931E-06 7.38494770306E-06 7.83752587445E-06 8.31775227179E-06 8.82730868393E-06 9.36797859862E-06 9.94165330242E-06 1.05503383425E-05 1.11961603711E-05 1.18813743958E-05 1.26083714573E-05 1.33796867625E-05 1.41980082963E-05 1.50661859418E-05 1.59872411380E-05 1.69643771052E-05 1.80009896719E-05 1.91006787377E-05 2.02672604077E-05 2.15047798389E-05 2.28175248372E-05 2.42100402505E-05 2.56871432004E-05 2.72539392036E-05 2.89158392307E-05 3.06785777575E-05 3.25482318652E-05 3.45312414471E-05 3.66344305865E-05 3.88650301701E-05 4.12307018078E-05 4.37395631315E-05 4.64002145492E-05 4.92217675385E-05 5.22138745620E-05 5.53867606973E-05 5.87512570754E-05 6.23188362282E-05 6.61016494499E-05 7.01125662840E-05 7.43652162510E-05 7.88740329419E-05 8.36543006036E-05 8.87222033547E-05 9.40948771714E-05 9.97904647964E-05 1.05828173726E-04 1.12228337439E-04 1.19012480048E-04 1.26203384550E-04 1.33825164857E-04 1.41903341840E-04 1.50464923553E-04 1.59538489892E-04 1.69154281906E-04 1.79344296001E-04 1.90142383295E-04 2.01584354392E-04 2.13708089838E-04 2.26553656575E-04 2.40163430672E-04 2.54582226663E-04 2.69857433831E-04 2.86039159761E-04 3.03180381553E-04 3.21337105050E-04 3.40568532486E-04 3.60937238965E-04 3.82509358185E-04 4.05354777873E-04 4.29547345377E-04 4.55165083900E-04 4.82290419887E-04 5.11010422062E-04 5.41417052682E-04 5.73607431541E-04 6.07684113319E-04 6.43755378867E-04 6.81935541055E-04 7.22345265813E-04 7.65111909038E-04 8.10369870035E-04 8.58260962206E-04 9.08934801709E-04 9.62549214811E-04 1.01927066473E-03 1.07927469871E-03 1.14274641616E-03 1.20988095864E-03 1.28088402259E-03 1.35597239554E-03 1.43537451679E-03 1.51933106334E-03 1.60809556199E-03 1.70193502853E-03 1.80113063480E-03 1.90597840474E-03 2.01678994006E-03 2.13389317662E-03 2.25763317240E-03 2.38837292773E-03 2.52649423899E-03 2.67239858624E-03 2.82650805587E-03 2.98926629889E-03 3.16113952566E-03 3.34261753773E-03 3.53421479739E-03 3.73647153553E-03 3.94995489826E-03 4.17526013273E-03 4.41301181240E-03 4.66386510198E-03 4.92850706214E-03 5.20765799383E-03 5.50207282208E-03 5.81254251886E-03 6.13989556440E-03 6.48499944621E-03 6.84876219478E-03 7.23213395474E-03 7.63610858992E-03 8.06172532051E-03 8.51007039026E-03 8.98227876108E-03 9.47953583241E-03 1.00030791819E-02 1.05542003241E-02 1.11342464822E-02 1.17446223696E-02 1.23867919743E-02 1.30622803424E-02 1.37726753524E-02 1.45196294750E-02 1.53048615096E-02 1.61301582895E-02 1.69973763467E-02 1.79084435267E-02 1.88653605412E-02 1.98702024488E-02 2.09251200491E-02 2.20323411784E-02 2.31941718910E-02 2.44129975110E-02 2.56912835375E-02 2.70315763852E-02 2.84365039418E-02 2.99087759206E-02 3.14511839878E-02 3.30666016410E-02 3.47579838149E-02 3.65283661884E-02 3.83808641664E-02 4.03186715080E-02 4.23450585718E-02 4.44633701469E-02 4.66770228387E-02 4.89895019742E-02 5.14043579941E-02 5.39252022950E-02 5.65557024856E-02 5.92995770177E-02 6.21605891560E-02 6.51425402454E-02 6.82492622362E-02 7.14846094289E-02 7.48524493959E-02 7.83566530417E-02 8.20010837610E-02 8.57895856563E-02 8.97259707754E-02 9.38140053338E-02 9.80573948862E-02 1.02459768413E-01 1.07024661295E-01 1.11755497142E-01 1.16655568467E-01 1.21728016162E-01 1.26975807792E-01 1.32401714669E-01 1.38008287731E-01 1.43797832202E-01 1.49772381076E-01 1.55933667424E-01 1.62283095558E-01 1.68821711107E-01 1.75550170039E-01 1.82468706705E-01 1.89577100980E-01 1.96874644586E-01 2.04360106712E-01 2.12031699047E-01 2.19887040367E-01 2.27923120826E-01 2.36136266126E-01 2.44522101769E-01 2.53075517577E-01 2.61790632739E-01 2.70660761611E-01 2.79678380556E-01 2.88835096102E-01 2.98121614738E-01 3.07527714672E-01 3.17042219891E-01 3.26652976912E-01 3.36346834573E-01 3.46109627293E-01 3.55926162184E-01 3.65780210455E-01 3.75654503521E-01 3.85530734269E-01 3.95389563891E-01 4.05210634738E-01 4.14972589616E-01 4.24653097932E-01 4.34228889096E-01 4.43675793554E-01 4.52968791801E-01 4.62082071687E-01 4.70989094303E-01 4.79662668651E-01 4.88075035300E-01 4.96197959115E-01 5.04002831124E-01 5.11460779468E-01 5.18542789339E-01 5.25219831692E-01 5.31463000426E-01 5.37243657638E-01 5.42533586442E-01 5.47305150718E-01 5.51531461070E-01 5.55186546128E-01 5.58245528226E-01 5.60684802367E-01 5.62482217260E-01 5.63617257119E-01 5.64071222792E-01 5.63827410699E-01 5.62871287954E-01 5.61190661992E-01 5.58775842926E-01 5.55619796843E-01 5.51718288185E-01 5.47070009384E-01 5.41676695895E-01 5.35543224837E-01 5.28677695489E-01 5.21091489979E-01 5.12799312623E-01 5.03819206487E-01 4.94172545933E-01 4.83884004082E-01 4.72981494347E-01 4.61496085435E-01 4.49461889445E-01 4.36915923017E-01 4.23897941723E-01 4.10450248234E-01 3.96617475095E-01 3.82446343236E-01 3.67985397708E-01 3.53284722371E-01 3.38395635626E-01 3.23370369511E-01 3.08261734767E-01 2.93122774704E-01 2.78006410908E-01 2.62965084001E-01 2.48050392797E-01 2.33312735316E-01 2.18800955145E-01 2.04561996692E-01 1.90640572822E-01 1.77078848319E-01 1.63916142492E-01 1.51188654116E-01 1.38929211672E-01 1.27167051657E-01 1.15927627421E-01 1.05232450707E-01 9.50989676929E-02 8.55404709533E-02 7.65660483212E-02 6.81805691582E-02 6.03847080301E-02 5.31750052368E-02 4.65439630645E-02 4.04801760141E-02 3.49684926259E-02 2.99902058739E-02 2.55232684512E-02 2.15425286410E-02 1.80199818711E-02 1.49250325212E-02 1.22247601174E-02 9.88418373858E-03 7.86892354171E-03 6.15281443148E-03 4.71121343613E-03 3.51890753179E-03 2.55039886580E-03 1.78019652813E-03 1.18311175435E-03 7.34553386729E-04 4.10820427743E-04 1.89388591249E-04 4.91878871321E-05 -2.91315422429E-05 -6.29478938013E-05 -6.74327999469E-05 -5.53351214815E-05 -3.67852927224E-05 -1.91219157729E-05 -6.74223582155E-06 -9.78195295648E-07 9.45057769829E-18 -7.36471297381E-18 1.12948080812E-17 1.10582397457E-17 -6.20265413476E-17 5.07632544047E-17 1.14185829055E-17 3.97339711603E-18 -1.01796198192E-17 3.03089381528E-17 -7.64824969053E-18 -1.32696108517E-17 7.81036944170E-18 -1.33056975445E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2 3 2 i j (l(j)) -4.38140525515E-01 Q_int -8.82805023219E-28 -9.37394637105E-28 -9.95359884190E-28 -1.05690950197E-27 -1.12226513555E-27 -1.19166213581E-27 -1.26535040691E-27 -1.34359530620E-27 -1.42667859985E-27 -1.51489947746E-27 -1.60857562946E-27 -1.70804439119E-27 -1.81366395763E-27 -1.92581467331E-27 -2.04490040193E-27 -2.17134998074E-27 -2.30561876482E-27 -2.44819026680E-27 -2.59957789810E-27 -2.76032681770E-27 -2.93101589534E-27 -3.11225979606E-27 -3.30471119368E-27 -3.50906312110E-27 -3.72605146597E-27 -3.95645762072E-27 -4.20111129637E-27 -4.46089351041E-27 -4.73673975940E-27 -5.02964338780E-27 -5.34065916502E-27 -5.67090708381E-27 -6.02157639338E-27 -6.39392988201E-27 -6.78930842445E-27 -7.20913581051E-27 -7.65492387223E-27 -8.12827792815E-27 -8.63090256415E-27 -9.16460777181E-27 -9.73131546635E-27 -1.03330664076E-26 -1.09720275488E-26 -1.16504998404E-26 -1.23709265154E-26 -1.31359018879E-26 -1.39481806955E-26 -1.48106880194E-26 -1.57265298175E-26 -1.66990041095E-26 -1.77316128533E-26 -1.88280745556E-26 -1.99923376628E-26 -2.12285947798E-26 -2.25412977674E-26 -2.39351737743E-26 -2.54152422596E-26 -2.69868330686E-26 -2.86556056256E-26 -3.04275693142E-26 -3.23091051179E-26 -3.43069885976E-26 -3.64284142918E-26 -3.86810216245E-26 -4.10729224151E-26 -4.36127300900E-26 -4.63095907000E-26 -4.91732158564E-26 -5.22139177026E-26 -5.54426460497E-26 -5.88710278071E-26 -6.25114088521E-26 -6.63768984886E-26 -7.04814166543E-26 -7.48397440480E-26 -7.94675753558E-26 -8.43815757690E-26 -8.95994409966E-26 -9.51399609895E-26 -1.01023087604E-25 -1.07270006450E-25 -1.13903213183E-25 -1.20946594512E-25 -1.28425514217E-25 -1.36366904487E-25 -1.44799362905E-25 -1.53753255428E-25 -1.63260825742E-25 -1.73356311368E-25 -1.84076066959E-25 -1.95458695213E-25 -2.07545185887E-25 -2.20379063402E-25 -2.34006543577E-25 -2.48476700063E-25 -2.63841641050E-25 -2.80156696922E-25 -2.97480619502E-25 -3.15875793622E-25 -3.35408461780E-25 -3.56148962675E-25 -3.78171984515E-25 -4.01556833965E-25 -4.26387721739E-25 -4.52754065855E-25 -4.80750813628E-25 -5.10478783591E-25 -5.42045028543E-25 -5.75563221062E-25 -6.11154062842E-25 -6.48945719356E-25 -6.89074281386E-25 -7.31684255097E-25 -7.76929082417E-25 -8.24971693592E-25 -8.75985093914E-25 -9.30152986722E-25 -9.87670434936E-25 -1.04874456349E-24 -1.11359530522E-24 -1.18245619284E-24 -1.25557519991E-24 -1.33321563383E-24 -1.41565708404E-24 -1.50319642878E-24 -1.59614890425E-24 -1.69484923976E-24 -1.79965286312E-24 -1.91093718057E-24 -2.02910293585E-24 -2.15457565329E-24 -2.28780717022E-24 -2.42927726398E-24 -2.57949537970E-24 -2.73900246487E-24 -2.90837291724E-24 -3.08821665340E-24 -3.27918130502E-24 -3.48195455111E-24 -3.69726659436E-24 -3.92589279068E-24 -4.16865644130E-24 -4.42643175757E-24 -4.70014700902E-24 -4.99078786620E-24 -5.29940095010E-24 -5.62709760113E-24 -5.97505788118E-24 -6.34453482305E-24 -6.73685894279E-24 -7.15344303096E-24 -7.59578724020E-24 -8.06548448742E-24 -8.56422619000E-24 -9.09380835672E-24 -9.65613805535E-24 -1.02532402801E-23 -1.08872652440E-23 -1.15604961215E-23 -1.22753572710E-23 -1.30344229647E-23 -1.38404266588E-23 -1.46962708371E-23 -1.56050374631E-23 -1.65699990781E-23 -1.75946305860E-23 -1.86826217669E-23 -1.98378905641E-23 -2.10645971929E-23 -2.23671591221E-23 -2.37502669813E-23 -2.52189014526E-23 -2.67783512063E-23 -2.84342319456E-23 -3.01925066295E-23 -3.20595069457E-23 -3.40419561119E-23 -3.61469930859E-23 -3.83821982742E-23 -4.07556208296E-23 -4.32758076363E-23 -4.59518340887E-23 -4.87933367720E-23 -5.18105481646E-23 -5.50143334859E-23 -5.84162298230E-23 -6.20284876766E-23 -6.58641150761E-23 -6.99369244222E-23 -7.42615822272E-23 -7.88536619293E-23 -8.37296999747E-23 -8.89072553661E-23 -9.44049728943E-23 -1.00242650279E-22 -1.06441309464E-22 -1.13023272316E-22 -1.20012241009E-22 -1.27433383377E-22 -1.35313423547E-22 -1.43680738174E-22 -1.52565458626E-22 -1.61999579491E-22 -1.72017073791E-22 -1.82654015325E-22 -1.93948708567E-22 -2.05941826610E-22 -2.18676557631E-22 -2.32198760411E-22 -2.46557129484E-22 -2.61803370483E-22 -2.77992386338E-22 -2.95182474988E-22 -3.13435539314E-22 -3.32817310059E-22 -3.53397582524E-22 -3.75250467914E-22 -3.98454660213E-22 -4.23093719569E-22 -4.49256373199E-22 -4.77036834908E-22 -5.06535144353E-22 -5.37857527300E-22 -5.71116778148E-22 -6.06432666111E-22 -6.43932366518E-22 -6.83750918780E-22 -7.26031712678E-22 -7.70927004721E-22 -8.18598466434E-22 -8.69217766550E-22 -9.22967189203E-22 -9.80040290346E-22 -1.04064259476E-21 -1.10499233618E-21 -1.17332124314E-21 -1.24587537349E-21 -1.32291600041E-21 -1.40472055335E-21 -1.49158361701E-21 -1.58381799219E-21 -1.68175582223E-21 -1.78574978904E-21 -1.89617438318E-21 -2.01342725238E-21 -2.13793063356E-21 -2.27013287331E-21 -2.41051004238E-21 -2.55956765014E-21 -2.71784246488E-21 -2.88590444678E-21 -3.06435880040E-21 -3.25384815405E-21 -3.45505487394E-21 -3.66870352145E-21 -3.89556346233E-21 -4.13645163723E-21 -4.39223550361E-21 -4.66383615946E-21 -4.95223166030E-21 -5.25846054121E-21 -5.58362555669E-21 -5.92889765173E-21 -6.29552017853E-21 -6.68481337388E-21 -7.09817911342E-21 -7.53710595994E-21 -8.00317452379E-21 -8.49806315478E-21 -9.02355398605E-21 -9.58153935169E-21 -1.01740286012E-20 -1.08031553351E-20 -1.14711850888E-20 -1.21805234900E-20 -1.29337249225E-20 -1.37335017242E-20 -1.45827339545E-20 -1.54844797659E-20 -1.64419864161E-20 -1.74587019622E-20 -1.85382876771E-20 -1.96846312342E-20 -2.09018607071E-20 -2.21943594351E-20 -2.35667818080E-20 -2.50240700268E-20 -2.65714719013E-20 -2.82145597475E-20 -2.99592504541E-20 -3.18118267895E-20 -3.37789600269E-20 -3.58677339678E-20 -3.80856704513E-20 -4.04407564410E-20 -4.29414727864E-20 -4.55968247635E-20 -4.84163745031E-20 -5.14102754250E-20 -5.45893088012E-20 -5.79649225800E-20 -6.15492726110E-20 -6.53552664194E-20 -6.93966096868E-20 -7.36878556064E-20 -7.82444572902E-20 -8.30828234172E-20 -8.82203773215E-20 -9.36756197360E-20 -9.94681954141E-20 -1.05618963873E-19 -1.12150074508E-19 -1.19085046359E-19 -1.26448852799E-19 -1.34268011467E-19 -1.42570679762E-19 -1.51386756238E-19 -1.60747988271E-19 -1.70688086384E-19 -1.81242845642E-19 -1.92450274549E-19 -2.04350731927E-19 -2.16987072243E-19 -2.30404799936E-19 -2.44652233280E-19 -2.59780678384E-19 -2.75844613946E-19 -2.92901887436E-19 -3.11013923411E-19 -3.30245944707E-19 -3.50667207311E-19 -3.72351249761E-19 -3.95376157959E-19 -4.19824846365E-19 -4.45785356581E-19 -4.73351174393E-19 -5.02621566419E-19 -5.33701937580E-19 -5.66704210666E-19 -6.01747229379E-19 -6.38957186302E-19 -6.78468077323E-19 -7.20422184165E-19 -7.64970586755E-19 -8.12273707271E-19 -8.62501887838E-19 -9.15836003935E-19 -9.72468115750E-19 -1.03260215980E-18 -1.09645468330E-18 -1.16425562401E-18 -1.23624913823E-18 -1.31269447999E-18 -1.39386693473E-18 -1.48005881053E-18 -1.57158049078E-18 -1.66876155191E-18 -1.77195195016E-18 -1.88152328186E-18 -1.99787012151E-18 -2.12141144274E-18 -2.25259212700E-18 -2.39188456565E-18 -2.53979036108E-18 -2.69684213295E-18 -2.86360543628E-18 -3.04068079799E-18 -3.22870587945E-18 -3.42835777277E-18 -3.64035543901E-18 -3.86546229726E-18 -4.10448897370E-18 -4.35829622079E-18 -4.62779801684E-18 -4.91396485732E-18 -5.21782724972E-18 -5.54047942442E-18 -5.88308327510E-18 -6.24687254283E-18 -6.63315725881E-18 -7.04332846188E-18 -7.47886320779E-18 -7.94132988811E-18 -8.43239387813E-18 -8.95382353401E-18 -9.50749656072E-18 -1.00954067737E-17 -1.07196712790E-17 -1.13825380966E-17 -1.20863942562E-17 -1.28337743928E-17 -1.36273698739E-17 -1.44700384918E-17 -1.53648147541E-17 -1.63149208117E-17 -1.73237780612E-17 -1.83950194666E-17 -1.95325026408E-17 -2.07403237376E-17 -2.20228322024E-17 -2.33846464341E-17 -2.48306704170E-17 -2.63661113797E-17 -2.79964985471E-17 -2.97277030510E-17 -3.15659590728E-17 -3.35178862927E-17 -3.55905137281E-17 -3.77913050447E-17 -4.01281854344E-17 -4.26095701535E-17 -4.52443948272E-17 -4.80421476269E-17 -5.10129034373E-17 -5.41673601373E-17 -5.75168771229E-17 -6.10735162134E-17 -6.48500850863E-17 -6.88601833984E-17 -7.31182517590E-17 -7.76396237311E-17 -8.24405810481E-17 -8.75384122454E-17 -9.29514749167E-17 -9.86992618209E-17 -1.04802471076E-16 -1.11283080695E-16 -1.18164427728E-16 -1.25471292301E-16 -1.33229986848E-16 -1.41468450868E-16 -1.50216351531E-16 -1.59505190513E-16 -1.69368417433E-16 -1.79841550310E-16 -1.90962303462E-16 -2.02770723314E-16 -2.15309332611E-16 -2.28623283544E-16 -2.42760520338E-16 -2.57771951908E-16 -2.73711635180E-16 -2.90636969751E-16 -3.08608904589E-16 -3.27692157508E-16 -3.47955448223E-16 -3.69471745808E-16 -3.92318531458E-16 -4.16578077507E-16 -4.42337743684E-16 -4.69690291703E-16 -4.98734219297E-16 -5.29574114909E-16 -5.62321034322E-16 -5.97092900563E-16 -6.34014928554E-16 -6.73220076009E-16 -7.14849522214E-16 -7.59053176417E-16 -8.05990217653E-16 -8.55829667947E-16 -9.08751000961E-16 -9.64944788284E-16 -1.02461338568E-15 -1.08797166175E-15 -1.15524777173E-15 -1.22668397899E-15 -1.30253752752E-15 -1.38308156818E-15 -1.46860614236E-15 -1.55941922640E-15 -1.65584784063E-15 -1.75823922692E-15 -1.86696209915E-15 -1.98240797089E-15 -2.10499256527E-15 -2.23515731195E-15 -2.37337093675E-15 -2.52013114946E-15 -2.67596643612E-15 -2.84143796209E-15 -3.01714159272E-15 -3.20371003913E-15 -3.40181513650E-15 -3.61217026337E-15 -3.83553291047E-15 -4.07270740840E-15 -4.32454782400E-15 -4.59196103580E-15 -4.87590999962E-15 -5.17741721614E-15 -5.49756841287E-15 -5.83751645377E-15 -6.19848549062E-15 -6.58177537117E-15 -6.98876631973E-15 -7.42092390731E-15 -7.87980432898E-15 -8.36706000763E-15 -8.88444554424E-15 -9.43382403595E-15 -1.00171737850E-14 -1.06365954224E-14 -1.12943194720E-14 -1.19927143825E-14 -1.27342950559E-14 -1.35217319036E-14 -1.43578604618E-14 -1.52456916024E-14 -1.61884223745E-14 -1.71894475170E-14 -1.82523716818E-14 -1.93810224145E-14 -2.05794639365E-14 -2.18520117798E-14 -2.32032483264E-14 -2.46380393089E-14 -2.61615513315E-14 -2.77792704735E-14 -2.94970220445E-14 -3.13209915598E-14 -3.32577470136E-14 -3.53142625293E-14 -3.74979434715E-14 -3.98166531121E-14 -4.22787409438E-14 -4.48930727449E-14 -4.76690625038E-14 -5.06167063160E-14 -5.37466183784E-14 -5.70700692082E-14 -6.05990262260E-14 -6.43461968470E-14 -6.83250742378E-14 -7.25499859017E-14 -7.70361452685E-14 -8.17997064739E-14 -8.68578225262E-14 -9.22287070697E-14 -9.79316999666E-14 -1.03987336935E-13 -1.10417423489E-13 -1.17245113459E-13 -1.24494992357E-13 -1.32193165901E-13 -1.40367354016E-13 -1.49046990641E-13 -1.58263329714E-13 -1.68049557702E-13 -1.78440913096E-13 -1.89474813291E-13 -2.01190989313E-13 -2.13631628873E-13 -2.26841528266E-13 -2.40868253671E-13 -2.55762312408E-13 -2.71577334801E-13 -2.88370267272E-13 -3.06201577379E-13 -3.25135471536E-13 -3.45240126186E-13 -3.66587933272E-13 -3.89255760886E-13 -4.13325230028E-13 -4.38883008487E-13 -4.66021122879E-13 -4.94837289989E-13 -5.25435268592E-13 -5.57925233032E-13 -5.92424169891E-13 -6.29056299194E-13 -6.67953521642E-13 -7.09255893511E-13 -7.53112130899E-13 -7.99680145161E-13 -8.49127611438E-13 -9.01632572342E-13 -9.57384078963E-13 -1.01658287151E-12 -1.07944210201E-12 -1.14618810176E-12 -1.21706119610E-12 -1.29231656970E-12 -1.37222518525E-12 -1.45707475895E-12 -1.54717079640E-12 -1.64283769241E-12 -1.74441989888E-12 -1.85228316486E-12 -1.96681585330E-12 -2.08843033916E-12 -2.21756449397E-12 -2.35468326222E-12 -2.50028033515E-12 -2.65487992798E-12 -2.81903866714E-12 -2.99334759406E-12 -3.17843429285E-12 -3.37496514957E-12 -3.58364775110E-12 -3.80523343239E-12 -4.04051998107E-12 -4.29035450938E-12 -4.55563650354E-12 -4.83732106167E-12 -5.13642233192E-12 -5.45401716301E-12 -5.79124898057E-12 -6.14933190304E-12 -6.52955511203E-12 -6.93328749277E-12 -7.36198256152E-12 -7.81718369750E-12 -8.30052969825E-12 -8.81376067840E-12 -9.35872433302E-12 -9.93738258827E-12 -1.05518186629E-11 -1.12042445667E-11 -1.18970090622E-11 -1.26326061163E-11 -1.34136838818E-11 -1.42430542192E-11 -1.51237028329E-11 -1.60587999961E-11 -1.70517119783E-11 -1.81060131507E-11 -1.92254988557E-11 -2.04141990636E-11 -2.16763928727E-11 -2.30166239195E-11 -2.44397167153E-11 -2.59507940171E-11 -2.75552952592E-11 -2.92589961533E-11 -3.10680294184E-11 -3.29889068994E-11 -3.50285429735E-11 -3.71942794510E-11 -3.94939119719E-11 -4.19357180734E-11 -4.45284869602E-11 -4.72815511584E-11 -5.02048200488E-11 -5.33088155842E-11 -5.66047100674E-11 -6.01043664484E-11 -6.38203809002E-11 -6.77661282198E-11 -7.19558099240E-11 -7.64045053070E-11 -8.11282257444E-11 -8.61439722729E-11 -9.14697967093E-11 -9.71248667335E-11 -1.03129534604E-10 -1.09505410537E-10 -1.16275440552E-10 -1.23463988768E-10 -1.31096925084E-10 -1.39201718435E-10 -1.47807535282E-10 -1.56945344854E-10 -1.66648030345E-10 -1.76950507082E-10 -1.87889848478E-10 -1.99505418822E-10 -2.11839015434E-10 -2.24935018325E-10 -2.38840550619E-10 -2.53605647176E-10 -2.69283435059E-10 -2.85930324247E-10 -3.03606210918E-10 -3.22374692308E-10 -3.42303295511E-10 -3.63463720618E-10 -3.85932098017E-10 -4.09789262553E-10 -4.35121043454E-10 -4.62018573769E-10 -4.90578617417E-10 -5.20903916995E-10 -5.53103563539E-10 -5.87293387923E-10 -6.23596378065E-10 -6.62143120295E-10 -7.03072268867E-10 -7.46531044465E-10 -7.92675763046E-10 -8.41672397796E-10 -8.93697174972E-10 -9.48937208322E-10 -1.00759116999E-09 -1.06987000549E-09 -1.13599769100E-09 -1.20621203780E-09 -1.28076554756E-09 -1.35992631822E-09 -1.44397900821E-09 -1.53322585794E-09 -1.62798777583E-09 -1.72860549086E-09 -1.83544077652E-09 -1.94887774923E-09 -2.06932424856E-09 -2.19721330122E-09 -2.33300467641E-09 -2.47718653430E-09 -2.63027718377E-09 -2.79282693576E-09 -2.96542008652E-09 -3.14867700837E-09 -3.34325638093E-09 -3.54985755166E-09 -3.76922304970E-09 -4.00214124550E-09 -4.24944918225E-09 -4.51203558432E-09 -4.79084403325E-09 -5.08687636296E-09 -5.40119625544E-09 -5.73493304397E-09 -6.08928577533E-09 -6.46552750615E-09 -6.86500986459E-09 -7.28916790292E-09 -7.73952523801E-09 -8.21769951862E-09 -8.72540821500E-09 -9.26447478653E-09 -9.83683521412E-09 -1.04445449287E-08 -1.10897861874E-08 -1.17748758925E-08 -1.25022738849E-08 -1.32745917630E-08 -1.40946022328E-08 -1.49652490417E-08 -1.58896575179E-08 -1.68711457651E-08 -1.79132365370E-08 -1.90196698540E-08 -2.01944163872E-08 -2.14416916686E-08 -2.27659711873E-08 -2.41720063811E-08 -2.56648416651E-08 -2.72498324546E-08 -2.89326643226E-08 -3.07193733454E-08 -3.26163676781E-08 -3.46304504602E-08 -3.67688441388E-08 -3.90392163000E-08 -4.14497070275E-08 -4.40089580450E-08 -4.67261435354E-08 -4.96110029465E-08 -5.26738757601E-08 -5.59257384122E-08 -5.93782434798E-08 -6.30437612822E-08 -6.69354240196E-08 -7.10671726372E-08 -7.54538065648E-08 -8.01110364938E-08 -8.50555404142E-08 -9.03050230727E-08 -9.58782791027E-08 -1.01795259974E-07 -1.08077145126E-07 -1.14746417396E-07 -1.21826943109E-07 -1.29344057054E-07 -1.37324652684E-07 -1.45797277847E-07 -1.54792236356E-07 -1.64341695818E-07 -1.74479802021E-07 -1.85242800374E-07 -1.96669164754E-07 -2.08799734212E-07 -2.21677858126E-07 -2.35349550126E-07 -2.49863651544E-07 -2.65272004757E-07 -2.81629637216E-07 -2.98994956645E-07 -3.17429958242E-07 -3.37000444487E-07 -3.57776258364E-07 -3.79831530920E-07 -4.03244943776E-07 -4.28100007854E-07 -4.54485358903E-07 -4.82495071239E-07 -5.12228990486E-07 -5.43793086656E-07 -5.77299828762E-07 -6.12868582207E-07 -6.50626030416E-07 -6.90706622118E-07 -7.33253045880E-07 -7.78416733482E-07 -8.26358393940E-07 -8.77248579979E-07 -9.31268288967E-07 -9.88609600356E-07 -1.04947635182E-06 -1.11408485647E-06 -1.18266466363E-06 -1.25545936571E-06 -1.33272745407E-06 -1.41474322674E-06 -1.50179775122E-06 -1.59419988546E-06 -1.69227736082E-06 -1.79637793047E-06 -1.90687058736E-06 -2.02414685568E-06 -2.14862216060E-06 -2.28073728056E-06 -2.42095988737E-06 -2.56978617922E-06 -2.72774261226E-06 -2.89538773646E-06 -3.07331414220E-06 -3.26215052408E-06 -3.46256386896E-06 -3.67526177563E-06 -3.90099491391E-06 -4.14055963159E-06 -4.39480071795E-06 -4.66461433303E-06 -4.95095111264E-06 -5.25481945960E-06 -5.57728903199E-06 -5.91949444031E-06 -6.28263916572E-06 -6.66799971261E-06 -7.07693000916E-06 -7.51086607072E-06 -7.97133094104E-06 -8.45993992844E-06 -8.97840615350E-06 -9.52854642700E-06 -1.01122874775E-05 -1.07316725485E-05 -1.13888683878E-05 -1.20861726510E-05 -1.28260217436E-05 -1.36109991279E-05 -1.44438441204E-05 -1.53274612100E-05 -1.62649299255E-05 -1.72595152855E-05 -1.83146788636E-05 -1.94340905052E-05 -2.06216407328E-05 -2.18814538797E-05 -2.32179019947E-05 -2.46356195610E-05 -2.61395190765E-05 -2.77348075453E-05 -2.94270039315E-05 -3.12219576308E-05 -3.31258680184E-05 -3.51453051324E-05 -3.72872315605E-05 -3.95590255940E-05 -4.19685057242E-05 -4.45239565552E-05 -4.72341562132E-05 -5.01084053357E-05 -5.31565577306E-05 -5.63890527966E-05 -5.98169498053E-05 -6.34519641463E-05 -6.73065056456E-05 -7.13937190721E-05 -7.57275269522E-05 -8.03226748201E-05 -8.51947790375E-05 -9.03603773231E-05 -9.58369821395E-05 -1.01643137095E-04 -1.07798476518E-04 -1.14323788387E-04 -1.21241080783E-04 -1.28573652062E-04 -1.36346164948E-04 -1.44584724747E-04 -1.53316961913E-04 -1.62572119186E-04 -1.72381143542E-04 -1.82776783226E-04 -1.93793690103E-04 -2.05468527637E-04 -2.17840084759E-04 -2.30949395956E-04 -2.44839867874E-04 -2.59557412793E-04 -2.75150589297E-04 -2.91670750529E-04 -3.09172200390E-04 -3.27712358095E-04 -3.47351931495E-04 -3.68155099591E-04 -3.90189704707E-04 -4.13527454781E-04 -4.38244136266E-04 -4.64419838152E-04 -4.92139187648E-04 -5.21491598059E-04 -5.52571529447E-04 -5.85478762667E-04 -6.20318687392E-04 -6.57202604775E-04 -6.96248045403E-04 -7.37579103243E-04 -7.81326786277E-04 -8.27629384570E-04 -8.76632856528E-04 -9.28491234123E-04 -9.83367047896E-04 -1.04143177257E-03 -1.10286629410E-03 -1.16786139909E-03 -1.23661828740E-03 -1.30934910894E-03 -1.38627752548E-03 -1.46763929857E-03 -1.55368290443E-03 -1.64467017685E-03 -1.74087697910E-03 -1.84259390582E-03 -1.95012701602E-03 -2.06379859811E-03 -2.18394796800E-03 -2.31093230141E-03 -2.44512750129E-03 -2.58692910145E-03 -2.73675320735E-03 -2.89503747513E-03 -3.06224212966E-03 -3.23885102278E-03 -3.42537273240E-03 -3.62234170345E-03 -3.83031943132E-03 -4.04989568873E-03 -4.28168979644E-03 -4.52635193847E-03 -4.78456452234E-03 -5.05704358451E-03 -5.34454024143E-03 -5.64784218617E-03 -5.96777523052E-03 -6.30520489244E-03 -6.66103802823E-03 -7.03622450894E-03 -7.43175893998E-03 -7.84868242283E-03 -8.28808435746E-03 -8.75110428360E-03 -9.23893375884E-03 -9.75281827118E-03 -1.02940591830E-02 -1.08640157035E-02 -1.14641068852E-02 -1.20958136417E-02 -1.27606807796E-02 -1.34603190422E-02 -1.41964071560E-02 -1.49706938761E-02 -1.57850000211E-02 -1.66412204909E-02 -1.75413262575E-02 -1.84873663205E-02 -1.94814696148E-02 -2.05258468609E-02 -2.16227923442E-02 -2.27746856108E-02 -2.39839930632E-02 -2.52532694431E-02 -2.65851591820E-02 -2.79823976023E-02 -2.94478119497E-02 -3.09843222359E-02 -3.25949418697E-02 -3.42827780521E-02 -3.60510319120E-02 -3.79029983544E-02 -3.98420655946E-02 -4.18717143471E-02 -4.39955166406E-02 -4.62171342242E-02 -4.85403165322E-02 -5.09688981711E-02 -5.35067958922E-02 -5.61580050110E-02 -5.89265952330E-02 -6.18167058462E-02 -6.48325402355E-02 -6.79783596775E-02 -7.12584763697E-02 -7.46772456501E-02 -7.82390573592E-02 -8.19483263002E-02 -8.58094817493E-02 -8.98269559700E-02 -9.40051716851E-02 -9.83485284617E-02 -1.02861387964E-01 -1.07548058032E-01 -1.12412775545E-01 -1.17459688030E-01 -1.22692833986E-01 -1.28116121882E-01 -1.33733307815E-01 -1.39547971791E-01 -1.45563492626E-01 -1.51783021445E-01 -1.58209453792E-01 -1.64845400330E-01 -1.71693156180E-01 -1.78754668892E-01 -1.86031505101E-01 -1.93524815911E-01 -2.01235301069E-01 -2.09163171995E-01 -2.17308113770E-01 -2.25669246182E-01 -2.34245083948E-01 -2.43033496259E-01 -2.52031665808E-01 -2.61236047481E-01 -2.70642326905E-01 -2.80245379091E-01 -2.90039227401E-01 -3.00017003118E-01 -3.10170905907E-01 -3.20492165480E-01 -3.30971004808E-01 -3.41596605238E-01 -3.52357073900E-01 -3.63239413814E-01 -3.74229497113E-01 -3.85312041850E-01 -3.96470592826E-01 -4.07687506945E-01 -4.18943943568E-01 -4.30219860386E-01 -4.41494015302E-01 -4.52743974856E-01 -4.63946129675E-01 -4.75075717480E-01 -4.86106854109E-01 -4.97012573047E-01 -5.07764873904E-01 -5.18334780245E-01 -5.28692407155E-01 -5.38807038865E-01 -5.48647216698E-01 -5.58180837563E-01 -5.67375263102E-01 -5.76197439581E-01 -5.84614028450E-01 -5.92591547468E-01 -6.00096522141E-01 -6.07095647110E-01 -6.13555957038E-01 -6.19445006357E-01 -6.24731057180E-01 -6.29383274464E-01 -6.33371927435E-01 -6.36668596108E-01 -6.39246381605E-01 -6.41080118820E-01 -6.42146589875E-01 -6.42424736638E-01 -6.41895870494E-01 -6.40543877419E-01 -6.38355416324E-01 -6.35320108562E-01 -6.31430716414E-01 -6.26683308340E-01 -6.21077408766E-01 -6.14616130183E-01 -6.07306285373E-01 -5.99158477659E-01 -5.90187167144E-01 -5.80410711083E-01 -5.69851376653E-01 -5.58535324616E-01 -5.46492562584E-01 -5.33756866876E-01 -5.20365672227E-01 -5.06359928950E-01 -4.91783927492E-01 -4.76685090676E-01 -4.61113734326E-01 -4.45122797349E-01 -4.28767542749E-01 -4.12105231445E-01 -3.95194771169E-01 -3.78096343087E-01 -3.60871009154E-01 -3.43580303546E-01 -3.26285811834E-01 -3.09048741803E-01 -2.91929490087E-01 -2.74987208939E-01 -2.58279377600E-01 -2.41861382816E-01 -2.25786113058E-01 -2.10103570969E-01 -1.94860508486E-01 -1.80100088901E-01 -1.65861579933E-01 -1.52180081615E-01 -1.39086292467E-01 -1.26606317039E-01 -1.14761517498E-01 -1.03568411422E-01 -9.30386174367E-02 -8.31788497766E-02 -7.39909621793E-02 -6.54720409097E-02 -5.76145459818E-02 -5.04064989340E-02 -4.38317147701E-02 -3.78700749268E-02 -3.24978373846E-02 -2.76879793247E-02 -2.34105670589E-02 -1.96331473655E-02 -1.63211538659E-02 -1.34383217182E-02 -1.09471037165E-02 -8.80908090421E-03 -6.98726578938E-03 -5.45205507225E-03 -4.17561235858E-03 -3.13024943522E-03 -2.28874203695E-03 -1.62463720350E-03 -1.11254727155E-03 -7.28425484040E-04 -4.49818201813E-04 -2.56088769594E-04 -1.28608214455E-04 -5.09081330276E-05 -8.79134515614E-06 9.60385491213E-06 1.37897448187E-05 1.09691304772E-05 6.13254456924E-06 2.21574796032E-06 3.20335879476E-07 -2.15297268357E-18 5.19526898617E-19 6.21994850047E-18 -2.05955596539E-18 3.31990085701E-18 -3.97929304798E-18 -6.75917521891E-19 -4.81009317863E-20 -1.00278677297E-19 1.80701505647E-18 1.35225451312E-18 -1.59525545867E-18 7.70789562934E-19 -4.10392039885E-20 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3 3 2 i j (l(j)) 4.92186023555E-01 Q_int 1.07318050821E-27 1.13954228462E-27 1.21000764412E-27 1.28483033809E-27 1.36427980906E-27 1.44864216093E-27 1.53822118930E-27 1.63333947543E-27 1.73433954788E-27 1.84158511600E-27 1.95546237968E-27 2.07638142008E-27 2.20477767634E-27 2.34111351367E-27 2.48587988835E-27 2.63959811569E-27 2.80282174733E-27 2.97613856467E-27 3.16017269544E-27 3.35558686129E-27 3.56308476430E-27 3.78341362104E-27 4.01736685336E-27 4.26578694562E-27 4.52956847845E-27 4.80966135031E-27 5.10707419806E-27 5.42287802919E-27 5.75821007861E-27 6.11427790389E-27 6.49236373380E-27 6.89382908570E-27 7.32011966850E-27 7.77277058874E-27 8.25341187864E-27 8.76377436600E-27 9.30569590704E-27 9.88112800463E-27 1.04921428359E-26 1.11409407141E-26 1.18298580125E-26 1.25613755774E-26 1.33381276622E-26 1.41629114134E-26 1.50386969434E-26 1.59686380260E-26 1.69560834535E-26 1.80045890961E-26 1.91179307066E-26 2.03001175172E-26 2.15554066775E-26 2.28883185843E-26 2.43036531601E-26 2.58065071382E-26 2.74022924161E-26 2.90967555444E-26 3.08959984206E-26 3.28065002626E-26 3.48351409404E-26 3.69892257516E-26 3.92765117283E-26 4.17052355705E-26 4.42841433074E-26 4.70225217922E-26 4.99302321453E-26 5.30177452647E-26 5.62961795324E-26 5.97773408529E-26 6.34737651669E-26 6.73987635946E-26 7.15664703697E-26 7.59918937381E-26 8.06909700041E-26 8.56806209176E-26 9.09788146114E-26 9.66046303053E-26 1.02578327012E-25 1.08921416493E-25 1.15656740720E-25 1.22808554137E-25 1.30402610995E-25 1.38466258103E-25 1.47028533298E-25 1.56120270021E-25 1.65774208344E-25 1.76025112871E-25 1.86909897930E-25 1.98467760506E-25 2.10740321387E-25 2.23771775047E-25 2.37609048796E-25 2.52301971763E-25 2.67903454343E-25 2.84469678723E-25 3.02060301204E-25 3.20738667027E-25 3.40572038484E-25 3.61631837132E-25 3.83993900996E-25 4.07738757656E-25 4.32951914245E-25 4.59724165358E-25 4.88151920017E-25 5.18337548841E-25 5.50389752700E-25 5.84423954145E-25 6.20562713063E-25 6.58936168018E-25 6.99682504895E-25 7.42948454517E-25 7.88889821034E-25 8.37672042985E-25 8.89470789058E-25 9.44472590687E-25 1.00287551377E-24 1.06488987189E-24 1.13073898374E-24 1.20065997724E-24 1.27490464348E-24 1.35374034346E-24 1.43745097083E-24 1.52633797428E-24 1.62072144302E-24 1.72094125948E-24 1.82735832325E-24 1.94035585069E-24 2.06034075494E-24 2.18774511126E-24 2.32302771294E-24 2.46667572345E-24 2.61920643078E-24 2.78116911023E-24 2.95314700236E-24 3.13575941334E-24 3.32966394508E-24 3.53555886333E-24 3.75418561217E-24 3.98633148402E-24 4.23283245476E-24 4.49457619412E-24 4.77250526225E-24 5.06762050398E-24 5.38098465292E-24 5.71372615845E-24 6.06704324938E-24 6.44220824883E-24 6.84057215600E-24 7.26356951119E-24 7.71272356176E-24 8.18965174737E-24 8.69607152461E-24 9.23380655163E-24 9.80479325529E-24 1.04110878044E-23 1.10548735142E-23 1.17384687085E-23 1.24643350683E-23 1.32350864966E-23 1.40534985307E-23 1.49225183381E-23 1.58452753284E-23 1.68250924236E-23 1.78654980234E-23 1.89702387115E-23 2.01432927476E-23 2.13888843931E-23 2.27114991232E-23 2.41158997794E-23 2.56071437208E-23 2.71906010360E-23 2.88719738817E-23 3.06573170158E-23 3.25530596018E-23 3.45660283605E-23 3.67034721532E-23 3.89730880862E-23 4.13830492278E-23 4.39420340409E-23 4.66592576345E-23 4.95445049480E-23 5.26081659877E-23 5.58612732420E-23 5.93155414102E-23 6.29834095883E-23 6.68780860627E-23 7.10135958749E-23 7.54048313262E-23 8.00676056067E-23 8.50187097393E-23 9.02759730456E-23 9.58583273510E-23 1.01785875160E-22 1.08079962045E-22 1.14763253517E-22 1.21859816642E-22 1.29395206711E-22 1.37396559266E-22 1.45892687817E-22 1.54914187601E-22 1.64493545760E-22 1.74665258328E-22 1.85465954454E-22 1.96934528309E-22 2.09112279142E-22 2.22043060006E-22 2.35773435677E-22 2.50352850334E-22 2.65833805612E-22 2.82272049668E-22 2.99726777932E-22 3.18260846273E-22 3.37940997351E-22 3.58838100961E-22 3.81027409240E-22 4.04588827659E-22 4.29607202766E-22 4.56172627727E-22 4.84380766755E-22 5.14333199610E-22 5.46137787392E-22 5.79909060960E-22 6.15768633362E-22 6.53845637778E-22 6.94277192539E-22 7.37208894897E-22 7.82795345335E-22 8.31200704296E-22 8.82599283334E-22 9.37176172832E-22 9.95127908516E-22 1.05666317921E-21 1.12200357831E-21 1.19138440182E-21 1.26505549561E-21 1.34328215514E-21 1.42634608086E-21 1.51454639256E-21 1.60820070661E-21 1.70764627963E-21 1.81324122306E-21 1.92536579269E-21 2.04442375801E-21 2.17084385624E-21 2.30508133620E-21 2.44761959774E-21 2.59897193248E-21 2.75968337221E-21 2.93033265159E-21 3.11153429226E-21 3.30394081572E-21 3.50824509315E-21 3.72518284050E-21 3.95553526782E-21 4.20013189251E-21 4.45985352643E-21 4.73563544780E-21 5.02847076923E-21 5.33941401395E-21 5.66958491326E-21 6.02017243875E-21 6.39243908394E-21 6.78772541051E-21 7.20745487589E-21 7.65313895916E-21 8.12638260401E-21 8.62888999832E-21 9.16247071102E-21 9.72904620853E-21 1.03306567741E-20 1.09694688549E-20 1.16477828639E-20 1.23680414636E-20 1.31328383620E-20 1.39449276533E-20 1.48072337352E-20 1.57228618402E-20 1.66951092174E-20 1.77274770064E-20 1.88236828450E-20 1.99876742572E-20 2.12236428679E-20 2.25360394975E-20 2.39295901899E-20 2.54093132309E-20 2.69805372200E-20 2.86489202584E-20 3.04204703250E-20 3.23015669111E-20 3.42989839935E-20 3.64199144283E-20 3.86719958530E-20 4.10633381897E-20 4.36025528503E-20 4.62987837462E-20 4.91617402167E-20 5.22017319928E-20 5.54297063234E-20 5.88572873974E-20 6.24968182029E-20 6.63614049756E-20 7.04649643954E-20 7.48222737009E-20 7.94490239040E-20 8.43618762942E-20 8.95785224370E-20 9.51177478830E-20 1.00999499816E-19 1.07244958883E-19 1.13876615470E-19 1.20918350690E-19 1.28395522379E-19 1.36335056417E-19 1.44765543682E-19 1.53717343016E-19 1.63222690544E-19 1.73315815762E-19 1.84033064796E-19 1.95413031293E-19 2.07496695395E-19 2.20327571313E-19 2.33951864024E-19 2.48418635663E-19 2.63779982191E-19 2.80091221007E-19 2.97411090140E-19 3.15801959776E-19 3.35330056854E-19 3.56065703559E-19 3.78083570548E-19 4.01462945857E-19 4.26288020413E-19 4.52648191215E-19 4.80638383261E-19 5.10359391380E-19 5.41918243198E-19 5.75428584556E-19 6.11011088754E-19 6.48793891109E-19 6.88913050375E-19 7.31513038703E-19 7.76747261894E-19 8.24778611828E-19 8.75780053045E-19 9.29935245606E-19 9.87439206466E-19 1.04849901174E-18 1.11333454241E-18 1.18217927612E-18 1.25528112795E-18 1.33290334318E-18 1.41532544525E-18 1.50284424233E-18 1.59577489620E-18 1.69445205710E-18 1.79923106888E-18 1.91048924859E-18 2.02862724524E-18 2.15407048257E-18 2.28727069100E-18 2.42870753439E-18 2.57889033731E-18 2.73835991914E-18 2.90769054165E-18 3.08749197692E-18 3.27841170315E-18 3.48113723634E-18 3.69639860601E-18 3.92497098413E-18 4.16767747657E-18 4.42539208712E-18 4.69904286488E-18 4.98961524621E-18 5.29815560333E-18 5.62577501243E-18 5.97365325467E-18 6.34304306469E-18 6.73527464179E-18 7.15176044001E-18 7.59400025457E-18 8.06358662262E-18 8.56221055814E-18 9.09166764139E-18 9.65386448485E-18 1.02508255991E-17 1.08847006833E-17 1.15577723661E-17 1.22724644260E-17 1.30313505189E-17 1.38371634467E-17 1.46928049978E-17 1.56013563965E-17 1.65660893994E-17 1.75904780765E-17 1.86782113215E-17 1.98332061365E-17 2.10596217364E-17 2.23618745272E-17 2.37446540093E-17 2.52129396648E-17 2.67720188891E-17 2.84275060307E-17 3.01853626093E-17 3.20519187830E-17 3.40338961440E-17 3.61384319233E-17 3.83731046920E-17 4.07459616527E-17 4.32655476172E-17 4.59409357776E-17 4.87817603785E-17 5.17982514113E-17 5.50012714521E-17 5.84023547791E-17 6.20137489075E-17 6.58484586938E-17 6.99202931669E-17 7.42439152549E-17 7.88348945872E-17 8.37097635613E-17 8.88860768768E-17 9.43824747507E-17 1.00218750042E-16 1.06415919525E-16 1.12996299575E-16 1.19983586527E-16 1.27402942009E-16 1.35281083549E-16 1.43646380789E-16 1.52528957640E-16 1.61960800763E-16 1.71975874755E-16 1.82610244454E-16 1.93902204810E-16 2.05892418789E-16 2.18624063800E-16 2.32142987178E-16 2.46497871282E-16 2.61740408803E-16 2.77925488909E-16 2.95111394904E-16 3.13360014107E-16 3.32737060712E-16 3.53312312423E-16 3.75159861727E-16 3.98358382704E-16 4.22991414334E-16 4.49147661321E-16 4.76921313521E-16 5.06412385124E-16 5.37727074803E-16 5.70978148140E-16 6.06285343698E-16 6.43775804196E-16 6.83584534358E-16 7.25854887063E-16 7.70739079559E-16 8.18398741604E-16 8.69005497490E-16 9.22741584069E-16 9.79800506984E-16 1.04038773749E-15 1.10472145234E-15 1.17303331946E-15 1.24556933218E-15 1.32259069505E-15 1.40437476443E-15 1.49121604727E-15 1.58342726160E-15 1.68134046265E-15 1.78530823856E-15 1.89570498005E-15 2.01292822860E-15 2.13740010799E-15 2.26956884435E-15 2.40991038021E-15 2.55893008839E-15 2.71716459180E-15 2.88518369581E-15 3.06359244011E-15 3.25303327745E-15 3.45418838706E-15 3.66778213120E-15 3.89458366349E-15 4.13540969868E-15 4.39112745354E-15 4.66265776972E-15 4.95097842959E-15 5.25712767727E-15 5.58220795722E-15 5.92738988411E-15 6.29391645814E-15 6.68310754098E-15 7.09636460853E-15 7.53517579755E-15 8.00112126430E-15 8.49587887458E-15 9.02123024562E-15 9.57906716150E-15 1.01713983853E-14 1.08003568927E-14 1.14682075521E-14 1.21773552808E-14 1.29303537047E-14 1.37299143531E-14 1.45789164237E-14 1.54804171493E-14 1.64376628071E-14 1.74541004078E-14 1.85333901083E-14 1.96794183912E-14 2.08963120594E-14 2.21884530967E-14 2.35604944461E-14 2.50173767647E-14 2.65643462144E-14 2.82069733523E-14 2.99511731894E-14 3.18032264901E-14 3.37698023874E-14 3.58579823982E-14 3.80752859219E-14 4.04296973167E-14 4.29296946499E-14 4.55842802257E-14 4.84030130007E-14 5.13960430039E-14 5.45741478846E-14 5.79487717211E-14 6.15320662273E-14 6.53369345093E-14 6.93770775260E-14 7.36670434229E-14 7.82222799169E-14 8.30591899194E-14 8.81951905989E-14 9.36487760958E-14 9.94395841150E-14 1.05588466635E-13 1.12117564992E-13 1.19050389602E-13 1.26411904615E-13 1.34228617805E-13 1.42528676016E-13 1.51341966508E-13 1.60700224572E-13 1.70637147799E-13 1.81188517411E-13 1.92392327099E-13 2.04288919824E-13 2.16921133076E-13 2.30334453114E-13 2.44577178748E-13 2.59700595241E-13 2.75759158968E-13 2.92810693486E-13 3.10916597738E-13 3.30142067120E-13 3.50556328220E-13 3.72232888071E-13 3.95249798817E-13 4.19689938738E-13 4.45641310657E-13 4.73197358789E-13 5.02457305189E-13 5.33526506998E-13 5.66516835772E-13 6.01547080275E-13 6.38743374165E-13 6.78239650132E-13 7.20178122106E-13 7.64709797286E-13 8.11995019818E-13 8.62204048097E-13 9.15517667756E-13 9.72127842549E-13 1.03223840549E-12 1.09606579270E-12 1.16383982266E-12 1.23580452360E-12 1.31221901207E-12 1.39335842582E-12 1.47951491437E-12 1.57099869078E-12 1.66813914849E-12 1.77128604721E-12 1.88081077206E-12 1.99710767066E-12 2.12059547278E-12 2.25171879784E-12 2.39094975553E-12 2.53878964549E-12 2.69577076192E-12 2.86245830995E-12 3.03945244026E-12 3.22739040968E-12 3.42694887526E-12 3.63884633015E-12 3.86384569013E-12 4.10275704003E-12 4.35644054986E-12 4.62580957129E-12 4.91183392556E-12 5.21554339457E-12 5.53803142787E-12 5.88045907875E-12 6.24405918366E-12 6.63014080006E-12 7.04009391847E-12 7.47539446595E-12 7.93760961878E-12 8.42840344359E-12 8.94954288720E-12 9.50290413667E-12 1.00904793726E-11 1.07143839398E-11 1.13768639612E-11 1.20803044224E-11 1.28272377562E-11 1.36203529571E-11 1.44625052617E-11 1.53567264179E-11 1.63062356085E-11 1.73144510265E-11 1.83850021912E-11 1.95217429864E-11 2.07287655677E-11 2.20104150399E-11 2.33713051546E-11 2.48163348501E-11 2.63507059487E-11 2.79799418257E-11 2.97099072968E-11 3.15468297538E-11 3.34973215078E-11 3.55684036981E-11 3.77675314322E-11 4.01026206845E-11 4.25820767658E-11 4.52148245881E-11 4.80103407324E-11 5.09786875922E-11 5.41305495570E-11 5.74772714724E-11 6.10308994461E-11 6.48042242084E-11 6.88108270848E-11 7.30651289657E-11 7.75824420306E-11 8.23790250113E-11 8.74721415532E-11 9.28801224114E-11 9.86224313098E-11 1.04719735085E-10 1.11193977842E-10 1.18068460250E-10 1.25367922857E-10 1.33118635414E-10 1.41348491541E-10 1.50087108630E-10 1.59365934624E-10 1.69218361006E-10 1.79679843213E-10 1.90788027771E-10 2.02582887882E-10 2.15106867096E-10 2.28405032284E-10 2.42525235306E-10 2.57518285202E-10 2.73438130775E-10 2.90342055557E-10 3.08290881909E-10 3.27349191969E-10 3.47585557684E-10 3.69072789438E-10 3.91888196299E-10 4.16113864508E-10 4.41836952733E-10 4.69150005502E-10 4.98151285609E-10 5.28945127129E-10 5.61642311447E-10 5.96360464373E-10 6.33224479861E-10 6.72366968356E-10 7.13928733526E-10 7.58059278599E-10 8.04917343367E-10 8.54671475275E-10 9.07500633734E-10 9.63594835586E-10 1.02315583549E-09 1.08639785181E-09 1.15354833772E-09 1.22484879585E-09 1.30055564835E-09 1.38094115633E-09 1.46629439897E-09 1.55692231203E-09 1.65315078927E-09 1.75532585576E-09 1.86381490640E-09 1.97900802961E-09 2.10131940604E-09 2.23118879712E-09 2.36908312259E-09 2.51549813942E-09 2.67096021998E-09 2.83602824369E-09 3.01129559845E-09 3.19739232277E-09 3.39498734973E-09 3.60479092634E-09 3.82755714818E-09 4.06408667718E-09 4.31522960691E-09 4.58188851541E-09 4.86502170765E-09 5.16564664682E-09 5.48484361620E-09 5.82375957775E-09 6.18361230080E-09 6.56569472927E-09 6.97137960793E-09 7.40212441786E-09 7.85947659945E-09 8.34507909048E-09 8.86067623399E-09 9.40812002699E-09 9.98937674515E-09 1.06065340132E-08 1.12618082679E-08 1.19575527213E-08 1.26962657675E-08 1.34805999582E-08 1.43133714917E-08 1.51975703168E-08 1.61363708171E-08 1.71331432098E-08 1.81914655935E-08 1.93151367710E-08 2.05081898477E-08 2.17749066702E-08 2.31198331549E-08 2.45477955568E-08 2.60639177334E-08 2.76736395048E-08 2.93827360760E-08 3.11973387322E-08 3.31239567628E-08 3.51695007102E-08 3.73413071184E-08 3.96471647538E-08 4.20953424396E-08 4.46946185983E-08 4.74543126660E-08 5.03843183462E-08 5.34951389836E-08 5.67979250661E-08 6.03045140598E-08 6.40274726867E-08 6.79801417565E-08 7.21766838230E-08 7.66321337140E-08 8.13624521791E-08 8.63845828349E-08 9.17165126122E-08 9.73773358786E-08 1.03387322546E-07 1.09767990306E-07 1.16542181358E-07 1.23734143745E-07 1.31369617812E-07 1.39475927825E-07 1.48082079321E-07 1.57218862343E-07 1.66918961047E-07 1.77217070016E-07 1.88150017672E-07 1.99756897305E-07 2.12079206037E-07 2.25160992392E-07 2.39049012826E-07 2.53792897834E-07 2.69445328311E-07 2.86062222557E-07 3.03702934853E-07 3.22430466091E-07 3.42311687305E-07 3.63417576868E-07 3.85823472169E-07 4.09609336710E-07 4.34860043381E-07 4.61665675227E-07 4.90121844372E-07 5.20330030558E-07 5.52397940235E-07 5.86439887591E-07 6.22577198821E-07 6.60938640975E-07 7.01660877033E-07 7.44888948609E-07 7.90776788096E-07 8.39487761939E-07 8.91195247065E-07 9.46083242233E-07 1.00434701670E-06 1.06619379825E-06 1.13184350298E-06 1.20152950959E-06 1.27549948051E-06 1.35401623290E-06 1.43735866269E-06 1.52582272433E-06 1.61972247028E-06 1.71939115330E-06 1.82518239554E-06 1.93747142847E-06 2.05665640787E-06 2.18315980826E-06 2.31742990188E-06 2.45994232677E-06 2.61120174988E-06 2.77174363040E-06 2.94213608965E-06 3.12298189363E-06 3.31492055537E-06 3.51863056363E-06 3.73483174612E-06 3.96428777483E-06 4.20780882220E-06 4.46625437688E-06 4.74053622881E-06 5.03162163349E-06 5.34053666629E-06 5.66836977789E-06 6.01627556278E-06 6.38547875368E-06 6.77727845499E-06 7.19305262960E-06 7.63426285371E-06 8.10245935603E-06 8.59928635759E-06 9.12648773019E-06 9.68591299197E-06 1.02795236604E-05 1.09093999830E-05 1.15777480687E-05 1.22869074424E-05 1.30393590484E-05 1.38377337289E-05 1.46848212037E-05 1.55835795831E-05 1.65371454422E-05 1.75488444914E-05 1.86222028769E-05 1.97609591467E-05 2.09690769228E-05 2.22507583186E-05 2.36104581456E-05 2.50528989539E-05 2.65830869556E-05 2.82063288812E-05 2.99282498224E-05 3.17548121181E-05 3.36923353432E-05 3.57475174631E-05 3.79274572201E-05 4.02396778221E-05 4.26921520071E-05 4.52933285620E-05 4.80521603769E-05 5.09781341228E-05 5.40813016426E-05 5.73723131536E-05 6.08624523605E-05 6.45636735876E-05 6.84886410427E-05 7.26507703298E-05 7.70642723374E-05 8.17441996321E-05 8.67064954977E-05 9.19680457630E-05 9.75467335743E-05 1.03461497271E-04 1.09732391537E-04 1.16380652001E-04 1.23428763480E-04 1.30900532056E-04 1.38821161197E-04 1.47217332137E-04 1.56117288749E-04 1.65550927135E-04 1.75549890209E-04 1.86147667509E-04 1.97379700539E-04 2.09283493909E-04 2.21898732601E-04 2.35267405648E-04 2.49433936596E-04 2.64445321066E-04 2.80351271798E-04 2.97204371557E-04 3.15060234299E-04 3.33977675014E-04 3.54018888681E-04 3.75249638799E-04 3.97739455959E-04 4.21561846961E-04 4.46794514988E-04 4.73519591385E-04 5.01823879596E-04 5.31799111845E-04 5.63542219187E-04 5.97155615525E-04 6.32747496300E-04 6.70432152488E-04 7.10330300654E-04 7.52569429769E-04 7.97284165567E-04 8.44616653227E-04 8.94716959194E-04 9.47743492981E-04 1.00386344983E-03 1.06325327510E-03 1.12609915138E-03 1.19259750917E-03 1.26295556216E-03 1.33739186822E-03 1.41613691689E-03 1.49943374460E-03 1.58753857873E-03 1.68072151143E-03 1.77926720443E-03 1.88347562605E-03 1.99366282137E-03 2.11016171686E-03 2.23332296067E-03 2.36351579963E-03 2.50112899425E-03 2.64657177293E-03 2.80027482642E-03 2.96269134385E-03 3.13429809144E-03 3.31559653496E-03 3.50711400713E-03 3.70940492094E-03 3.92305203007E-03 4.14866773713E-03 4.38689545088E-03 4.63841099307E-03 4.90392405573E-03 5.18417970961E-03 5.47995996407E-03 5.79208537914E-03 6.12141672975E-03 6.46885672232E-03 6.83535176365E-03 7.22189378174E-03 7.62952209815E-03 8.05932535097E-03 8.51244346755E-03 8.99006968558E-03 9.49345262080E-03 1.00238983795E-02 1.05827727134E-02 1.11715032137E-02 1.17915815420E-02 1.24445656928E-02 1.31320822853E-02 1.38558288779E-02 1.46175763002E-02 1.54191709980E-02 1.62625373820E-02 1.71496801749E-02 1.80826867462E-02 1.90637294282E-02 2.00950678008E-02 2.11790509345E-02 2.23181195806E-02 2.35148082939E-02 2.47717474745E-02 2.60916653127E-02 2.74773896206E-02 2.89318495322E-02 3.04580770522E-02 3.20592084328E-02 3.37384853570E-02 3.54992559023E-02 3.73449752625E-02 3.92792061972E-02 4.13056191827E-02 4.34279922325E-02 4.56502103559E-02 4.79762646196E-02 5.04102507784E-02 5.29563674353E-02 5.56189136932E-02 5.84022862568E-02 6.13109759412E-02 6.43495635433E-02 6.75227150301E-02 7.08351759956E-02 7.42917653377E-02 7.78973681040E-02 8.16569274569E-02 8.55754357023E-02 8.96579243324E-02 9.39094530255E-02 9.83350975517E-02 1.02939936528E-01 1.07729036971E-01 1.12707438596E-01 1.17880136807E-01 1.23252064330E-01 1.28828071447E-01 1.34612904777E-01 1.40611184569E-01 1.46827380477E-01 1.53265785764E-01 1.59930489933E-01 1.66825349752E-01 1.73953958662E-01 1.81319614571E-01 1.88925286028E-01 1.96773576806E-01 2.04866688915E-01 2.13206384082E-01 2.21793943766E-01 2.30630127756E-01 2.39715131461E-01 2.49048541978E-01 2.58629293072E-01 2.68455619192E-01 2.78525008717E-01 2.88834156580E-01 2.99378916514E-01 3.10154253121E-01 3.21154194055E-01 3.32371782577E-01 3.43799030804E-01 3.55426873997E-01 3.67245126242E-01 3.79242437929E-01 3.91406255437E-01 4.03722783491E-01 4.16176950645E-01 4.28752378404E-01 4.41431354499E-01 4.54194810859E-01 4.67022306841E-01 4.79892018295E-01 4.92780733054E-01 5.05663853434E-01 5.18515406360E-01 5.31308061702E-01 5.44013159415E-01 5.56600746055E-01 5.69039621231E-01 5.81297394504E-01 5.93340553238E-01 6.05134541824E-01 6.16643852681E-01 6.27832129343E-01 6.38662281881E-01 6.49096614829E-01 6.59096967670E-01 6.68624867849E-01 6.77641696162E-01 6.86108864232E-01 6.93988003669E-01 7.01241166340E-01 7.07831035056E-01 7.13721143799E-01 7.18876106452E-01 7.23261852844E-01 7.26845870726E-01 7.29597452149E-01 7.31487942523E-01 7.32490990491E-01 7.32582796591E-01 7.31742358512E-01 7.29951710659E-01 7.27196155568E-01 7.23464484668E-01 7.18749185780E-01 7.13046634684E-01 7.06357268102E-01 6.98685735412E-01 6.90041026484E-01 6.80436573086E-01 6.69890321447E-01 6.58424773716E-01 6.46066996238E-01 6.32848592855E-01 6.18805641666E-01 6.03978594049E-01 5.88412135077E-01 5.72155004874E-01 5.55259780871E-01 5.37782621375E-01 5.19782971351E-01 5.01323231793E-01 4.82468394555E-01 4.63285645043E-01 4.43843935617E-01 4.24213533077E-01 4.04465544038E-01 3.84671422422E-01 3.64902463723E-01 3.45229290977E-01 3.25721337719E-01 3.06446333411E-01 2.87469796960E-01 2.68854544100E-01 2.50660214344E-01 2.32942823225E-01 2.15754345352E-01 1.99142333587E-01 1.83149579383E-01 1.67813818871E-01 1.53167488892E-01 1.39237536575E-01 1.26045285486E-01 1.13606360680E-01 1.01930674256E-01 9.10224722100E-02 8.08804425457E-02 7.14978836882E-02 6.28629313569E-02 5.49588410803E-02 4.77643226023E-02 4.12539214811E-02 3.53984422804E-02 3.01654068955E-02 2.55195407954E-02 2.14232793123E-02 1.78372856196E-02 1.47209717423E-02 1.20330138828E-02 9.73185356303E-03 7.77617662021E-03 6.12687131310E-03 4.75164900466E-03 3.62032405277E-03 2.70355341849E-03 1.97314365013E-03 1.40233351372E-03 9.66047015703E-04 6.41111853848E-04 4.06438735222E-04 2.43157514561E-04 1.34706731419E-04 6.68738561159E-05 2.77843885160E-05 7.83888505704E-06 -4.01986456663E-07 -2.38315181641E-06 -1.76918270584E-06 -7.02996524778E-07 -1.04125480698E-07 -4.00366648458E-19 5.39578431869E-19 -2.60993842391E-18 8.34414800168E-19 -2.60848937704E-19 2.09802171190E-19 -2.40818134907E-20 4.14180331251E-21 -1.04366385275E-20 9.92046190770E-20 8.17057306907E-19 -2.97113349190E-19 -5.56759221493E-19 2.75149170376E-19 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4D 2 9.00 Wavefunction 1.00960786366E-14 1.04035500062E-14 1.07203852731E-14 1.10468696103E-14 1.13832968759E-14 1.17299698771E-14 1.20872006430E-14 1.24553107053E-14 1.28346313881E-14 1.32255041055E-14 1.36282806694E-14 1.40433236058E-14 1.44710064814E-14 1.49117142396E-14 1.53658435473E-14 1.58338031514E-14 1.63160142471E-14 1.68129108570E-14 1.73249402216E-14 1.78525632019E-14 1.83962546942E-14 1.89565040575E-14 1.95338155541E-14 2.01287088032E-14 2.07417192490E-14 2.13733986422E-14 2.20243155370E-14 2.26950558025E-14 2.33862231501E-14 2.40984396772E-14 2.48323464267E-14 2.55886039643E-14 2.63678929727E-14 2.71709148647E-14 2.79983924141E-14 2.88510704067E-14 2.97297163102E-14 3.06351209652E-14 3.15680992969E-14 3.25294910490E-14 3.35201615388E-14 3.45410024367E-14 3.55929325684E-14 3.66768987420E-14 3.77938766003E-14 3.89448714986E-14 4.01309194102E-14 4.13530878581E-14 4.26124768766E-14 4.39102200006E-14 4.52474852867E-14 4.66254763639E-14 4.80454335171E-14 4.95086348036E-14 5.10163972034E-14 5.25700778044E-14 5.41710750239E-14 5.58208298677E-14 5.75208272263E-14 5.92725972122E-14 6.10777165366E-14 6.29378099288E-14 6.48545515983E-14 6.68296667420E-14 6.88649330969E-14 7.09621825401E-14 7.31233027376E-14 7.53502388436E-14 7.76449952508E-14 8.00096373948E-14 8.24462936133E-14 8.49571570613E-14 8.75444876853E-14 9.02106142577E-14 9.29579364722E-14 9.57889271044E-14 9.87061342368E-14 1.01712183553E-13 1.04809780700E-13 1.08001713724E-13 1.11290855581E-13 1.14680166720E-13 1.18172697750E-13 1.21771592185E-13 1.25480089273E-13 1.29301526911E-13 1.33239344651E-13 1.37297086796E-13 1.41478405586E-13 1.45787064490E-13 1.50226941594E-13 1.54802033086E-13 1.59516456856E-13 1.64374456205E-13 1.69380403660E-13 1.74538804912E-13 1.79854302869E-13 1.85331681840E-13 1.90975871833E-13 1.96791953003E-13 2.02785160213E-13 2.08960887756E-13 2.15324694203E-13 2.21882307409E-13 2.28639629668E-13 2.35602743027E-13 2.42777914758E-13 2.50171603000E-13 2.57790462571E-13 2.65641350959E-13 2.73731334494E-13 2.82067694706E-13 2.90657934883E-13 2.99509786821E-13 3.08631217783E-13 3.18030437673E-13 3.27715906424E-13 3.37696341612E-13 3.47980726301E-13 3.58578317131E-13 3.69498652651E-13 3.80751561899E-13 3.92347173252E-13 4.04295923545E-13 4.16608567457E-13 4.29296187201E-13 4.42370202490E-13 4.55842380820E-13 4.69724848061E-13 4.84030099371E-13 4.98771010440E-13 5.13960849086E-13 5.29613287186E-13 5.45742412992E-13 5.62362743806E-13 5.79489239047E-13 5.97137313716E-13 6.15322852273E-13 6.34062222929E-13 6.53372292383E-13 6.73270441000E-13 6.93774578457E-13 7.14903159862E-13 7.36675202363E-13 7.59110302269E-13 7.82228652684E-13 8.06051061683E-13 8.30598971042E-13 8.55894475536E-13 8.81960342827E-13 9.08820033954E-13 9.36497724452E-13 9.65018326110E-13 9.94407509395E-13 1.02469172655E-12 1.05589823543E-12 1.08805512398E-12 1.12119133558E-12 1.15533669506E-12 1.19052193553E-12 1.22677872611E-12 1.26413970033E-12 1.30263848560E-12 1.34230973343E-12 1.38318915062E-12 1.42531353139E-12 1.46872079054E-12 1.51344999752E-12 1.55954141165E-12 1.60703651831E-12 1.65597806628E-12 1.70641010629E-12 1.75837803055E-12 1.81192861371E-12 1.86711005491E-12 1.92397202117E-12 1.98256569210E-12 2.04294380595E-12 2.10516070709E-12 2.16927239495E-12 2.23533657437E-12 2.30341270755E-12 2.37356206763E-12 2.44584779375E-12 2.52033494794E-12 2.59709057368E-12 2.67618375620E-12 2.75768568470E-12 2.84166971642E-12 2.92821144266E-12 3.01738875680E-12 3.10928192445E-12 3.20397365565E-12 3.30154917936E-12 3.40209632013E-12 3.50570557717E-12 3.61247020580E-12 3.72248630139E-12 3.83585288584E-12 3.95267199674E-12 4.07304877917E-12 4.19709158034E-12 4.32491204715E-12 4.45662522664E-12 4.59234966956E-12 4.73220753706E-12 4.87632471067E-12 5.02483090555E-12 5.17785978730E-12 5.33554909224E-12 5.49804075137E-12 5.66548101816E-12 5.83802060014E-12 6.01581479457E-12 6.19902362821E-12 6.38781200138E-12 6.58234983635E-12 6.78281223028E-12 6.98937961286E-12 7.20223790866E-12 7.42157870450E-12 7.64759942189E-12 7.88050349473E-12 8.12050055238E-12 8.36780660839E-12 8.62264425487E-12 8.88524286291E-12 9.15583878895E-12 9.43467558758E-12 9.72200423072E-12 1.00180833335E-11 1.03231793871E-11 1.06375669986E-11 1.09615291380E-11 1.12953573930E-11 1.16393522316E-11 1.19938232724E-11 1.23590895631E-11 1.27354798682E-11 1.31233329641E-11 1.35229979449E-11 1.39348345360E-11 1.43592134181E-11 1.47965165607E-11 1.52471375663E-11 1.57114820240E-11 1.61899678752E-11 1.66830257894E-11 1.71910995520E-11 1.77146464635E-11 1.82541377516E-11 1.88100589946E-11 1.93829105593E-11 1.99732080506E-11 2.05814827760E-11 2.12082822238E-11 2.18541705557E-11 2.25197291148E-11 2.32055569485E-11 2.39122713482E-11 2.46405084045E-11 2.53909235797E-11 2.61641922980E-11 2.69610105535E-11 2.77820955361E-11 2.86281862777E-11 2.95000443170E-11 3.03984543850E-11 3.13242251111E-11 3.22781897514E-11 3.32612069384E-11 3.42741614536E-11 3.53179650244E-11 3.63935571443E-11 3.75019059186E-11 3.86440089358E-11 3.98208941656E-11 4.10336208838E-11 4.22832806263E-11 4.35709981707E-11 4.48979325497E-11 4.62652780936E-11 4.76742655052E-11 4.91261629681E-11 5.06222772878E-11 5.21639550677E-11 5.37525839217E-11 5.53895937226E-11 5.70764578894E-11 5.88146947133E-11 6.06058687243E-11 6.24515920996E-11 6.43535261144E-11 6.63133826372E-11 6.83329256706E-11 7.04139729393E-11 7.25583975256E-11 7.47681295559E-11 7.70451579376E-11 7.93915321493E-11 8.18093640855E-11 8.43008299575E-11 8.68681722521E-11 8.95137017497E-11 9.22397996047E-11 9.50489194884E-11 9.79435897974E-11 1.00926415929E-10 1.04000082628E-10 1.07167356401E-10 1.10431088006E-10 1.13794215020E-10 1.17259764486E-10 1.20830855628E-10 1.24510702670E-10 1.28302617720E-10 1.32210013756E-10 1.36236407698E-10 1.40385423570E-10 1.44660795764E-10 1.49066372403E-10 1.53606118800E-10 1.58284121032E-10 1.63104589615E-10 1.68071863294E-10 1.73190412947E-10 1.78464845613E-10 1.83899908635E-10 1.89500493933E-10 1.95271642409E-10 2.01218548484E-10 2.07346564772E-10 2.13661206897E-10 2.20168158461E-10 2.26873276154E-10 2.33782595033E-10 2.40902333946E-10 2.48238901134E-10 2.55798900000E-10 2.63589135047E-10 2.71616618008E-10 2.79888574156E-10 2.88412448802E-10 2.97195914004E-10 3.06246875467E-10 3.15573479662E-10 3.25184121156E-10 3.35087450166E-10 3.45292380352E-10 3.55808096830E-10 3.66644064449E-10 3.77810036300E-10 3.89316062505E-10 4.01172499253E-10 4.13390018129E-10 4.25979615714E-10 4.38952623484E-10 4.52320718011E-10 4.66095931470E-10 4.80290662470E-10 4.94917687215E-10 5.09990171000E-10 5.25521680062E-10 5.41526193794E-10 5.58018117321E-10 5.75012294471E-10 5.92524021132E-10 6.10569059022E-10 6.29163649873E-10 6.48324530051E-10 6.68068945620E-10 6.88414667863E-10 7.09380009280E-10 7.30983840067E-10 7.53245605104E-10 7.76185341454E-10 7.99823696398E-10 8.24181946020E-10 8.49282014356E-10 8.75146493127E-10 9.01798662074E-10 9.29262509909E-10 9.57562755910E-10 9.86724872166E-10 1.01677510651E-09 1.04774050612E-09 1.07964894192E-09 1.11252913359E-09 1.14641067546E-09 1.18132406317E-09 1.21730072105E-09 1.25437303046E-09 1.29257435892E-09 1.33193909014E-09 1.37250265494E-09 1.41430156321E-09 1.45737343671E-09 1.50175704293E-09 1.54749233004E-09 1.59462046279E-09 1.64318385957E-09 1.69322623062E-09 1.74479261735E-09 1.79792943286E-09 1.85268450376E-09 1.90910711319E-09 1.96724804516E-09 2.02715963030E-09 2.08889579293E-09 2.15251209961E-09 2.21806580916E-09 2.28561592416E-09 2.35522324409E-09 2.42695042007E-09 2.50086201118E-09 2.57702454263E-09 2.65550656564E-09 2.73637871909E-09 2.81971379314E-09 2.90558679471E-09 2.99407501504E-09 3.08525809923E-09 3.17921811790E-09 3.27603964111E-09 3.37580981443E-09 3.47861843741E-09 3.58455804440E-09 3.69372398780E-09 3.80621452394E-09 3.92213090147E-09 4.04157745253E-09 4.16466168659E-09 4.29149438729E-09 4.42218971212E-09 4.55686529515E-09 4.69564235292E-09 4.83864579357E-09 4.98600432921E-09 5.13785059181E-09 5.29432125258E-09 5.45555714494E-09 5.62170339130E-09 5.79290953372E-09 5.96932966841E-09 6.15112258454E-09 6.33845190705E-09 6.53148624400E-09 6.73039933830E-09 6.93537022406E-09 7.14658338779E-09 7.36422893438E-09 7.58850275827E-09 7.81960671970E-09 8.05774882644E-09 8.30314342101E-09 8.55601137356E-09 8.81658028070E-09 9.08508467033E-09 9.36176621275E-09 9.64687393813E-09 9.94066446069E-09 1.02434022097E-08 1.05553596673E-08 1.08768176140E-08 1.12080653812E-08 1.15494011118E-08 1.19011320283E-08 1.22635747094E-08 1.26370553751E-08 1.30219101801E-08 1.34184855164E-08 1.38271383251E-08 1.42482364179E-08 1.46821588075E-08 1.51292960495E-08 1.55900505934E-08 1.60648371449E-08 1.65540830394E-08 1.70582286264E-08 1.75777276657E-08 1.81130477363E-08 1.86646706566E-08 1.92330929187E-08 1.98188261346E-08 2.04223974972E-08 2.10443502546E-08 2.16852441991E-08 2.23456561707E-08 2.30261805768E-08 2.37274299269E-08 2.44500353839E-08 2.51946473322E-08 2.59619359629E-08 2.67525918773E-08 2.75673267084E-08 2.84068737611E-08 2.92719886724E-08 3.01634500916E-08 3.10820603808E-08 3.20286463376E-08 3.30040599385E-08 3.40091791062E-08 3.50449084998E-08 3.61121803285E-08 3.72119551913E-08 3.83452229410E-08 3.95130035753E-08 4.07163481549E-08 4.19563397494E-08 4.32340944120E-08 4.45507621840E-08 4.59075281300E-08 4.73056134044E-08 4.87462763501E-08 5.02308136318E-08 5.17605614023E-08 5.33368965052E-08 5.49612377145E-08 5.66350470108E-08 5.83598308979E-08 6.01371417578E-08 6.19685792487E-08 6.38557917439E-08 6.58004778160E-08 6.78043877651E-08 6.98693251946E-08 7.19971486339E-08 7.41897732113E-08 7.64491723778E-08 7.87773796828E-08 8.11764906045E-08 8.36486644360E-08 8.61961262282E-08 8.88211687925E-08 9.15261547646E-08 9.43135187302E-08 9.71857694168E-08 1.00145491951E-07 1.03195350185E-07 1.06338089095E-07 1.09576537249E-07 1.12913609357E-07 1.16352308888E-07 1.19895730780E-07 1.23547064219E-07 1.27309595514E-07 1.31186711050E-07 1.35181900341E-07 1.39298759165E-07 1.43540992804E-07 1.47912419376E-07 1.52416973274E-07 1.57058708703E-07 1.61841803332E-07 1.66770562052E-07 1.71849420848E-07 1.77082950798E-07 1.82475862179E-07 1.88033008709E-07 1.93759391917E-07 1.99660165640E-07 2.05740640664E-07 2.12006289505E-07 2.18462751326E-07 2.25115837023E-07 2.31971534443E-07 2.39036013782E-07 2.46315633132E-07 2.53816944204E-07 2.61546698223E-07 2.69511852008E-07 2.77719574225E-07 2.86177251843E-07 2.94892496783E-07 3.03873152762E-07 3.13127302356E-07 3.22663274271E-07 3.32489650840E-07 3.42615275743E-07 3.53049261968E-07 3.63801000010E-07 3.74880166321E-07 3.86296732018E-07 3.98060971854E-07 4.10183473466E-07 4.22675146901E-07 4.35547234431E-07 4.48811320675E-07 4.62479343015E-07 4.76563602347E-07 4.91076774139E-07 5.06031919847E-07 5.21442498658E-07 5.37322379608E-07 5.53685854060E-07 5.70547648557E-07 5.87922938082E-07 6.05827359706E-07 6.24277026658E-07 6.43288542825E-07 6.62879017694E-07 6.83066081739E-07 7.03867902290E-07 7.25303199878E-07 7.47391265078E-07 7.70151975863E-07 7.93605815491E-07 8.17773890937E-07 8.42677951876E-07 8.68340410256E-07 8.94784360463E-07 9.22033600096E-07 9.50112651376E-07 9.79046783212E-07 1.00886203393E-06 1.03958523471E-06 1.07124403370E-06 1.10386692093E-06 1.13748325388E-06 1.17212328397E-06 1.20781818370E-06 1.24460007475E-06 1.28250205684E-06 1.32155823753E-06 1.36180376287E-06 1.40327484906E-06 1.44600881500E-06 1.49004411587E-06 1.53542037771E-06 1.58217843307E-06 1.63036035778E-06 1.68000950871E-06 1.73117056285E-06 1.78388955747E-06 1.83821393151E-06 1.89419256827E-06 1.95187583938E-06 2.01131565010E-06 2.07256548598E-06 2.13568046101E-06 2.20071736715E-06 2.26773472544E-06 2.33679283857E-06 2.40795384520E-06 2.48128177574E-06 2.55684261001E-06 2.63470433653E-06 2.71493701365E-06 2.79761283255E-06 2.88280618216E-06 2.97059371602E-06 3.06105442118E-06 3.15426968924E-06 3.25032338945E-06 3.34930194414E-06 3.45129440637E-06 3.55639253993E-06 3.66469090182E-06 3.77628692716E-06 3.89128101674E-06 4.00977662714E-06 4.13188036371E-06 4.25770207616E-06 4.38735495726E-06 4.52095564434E-06 4.65862432398E-06 4.80048484014E-06 4.94666480360E-06 5.09729570927E-06 5.25251305083E-06 5.41245644569E-06 5.57726975550E-06 5.74710121921E-06 5.92210358331E-06 6.10243423929E-06 6.28825536589E-06 6.47973406861E-06 6.67704253482E-06 6.88035819209E-06 7.08986385238E-06 7.30574789061E-06 7.52820439966E-06 7.75743338093E-06 7.99364090220E-06 8.23703930391E-06 8.48784737648E-06 8.74629055919E-06 9.01260114239E-06 9.28701848600E-06 9.56978921811E-06 9.86116747547E-06 1.01614151234E-05 1.04708020015E-05 1.07896061604E-05 1.11181141201E-05 1.14566211369E-05 1.18054314680E-05 1.21648586547E-05 1.25352258072E-05 1.29168659136E-05 1.33101221274E-05 1.37153481037E-05 1.41329083174E-05 1.45631784011E-05 1.50065454880E-05 1.54634085676E-05 1.59341788530E-05 1.64192801514E-05 1.69191492512E-05 1.74342363039E-05 1.79650052304E-05 1.85119341345E-05 1.90755157013E-05 1.96562576481E-05 2.02546831374E-05 2.08713312414E-05 2.15067573968E-05 2.21615338767E-05 2.28362502811E-05 2.35315140582E-05 2.42479510121E-05 2.49862058690E-05 2.57469428226E-05 2.65308461424E-05 2.73386207847E-05 2.81709930014E-05 2.90287110201E-05 2.99125456930E-05 3.08232912100E-05 3.17617658103E-05 3.27288125192E-05 3.37252999103E-05 3.47521228848E-05 3.58102035053E-05 3.69004917907E-05 3.80239665916E-05 3.91816364798E-05 4.03745406368E-05 4.16037498319E-05 4.28703673566E-05 4.41755299877E-05 4.55204090781E-05 4.69062115802E-05 4.83341811073E-05 4.98055991072E-05 5.13217859491E-05 5.28841021803E-05 5.44939496854E-05 5.61527729841E-05 5.78620605214E-05 5.96233459827E-05 6.14382096955E-05 6.33082800181E-05 6.52352348378E-05 6.72208030270E-05 6.92667660129E-05 7.13749593750E-05 7.35472744610E-05 7.57856601210E-05 7.80921243952E-05 8.04687363337E-05 8.29176278573E-05 8.54409956043E-05 8.80411029689E-05 9.07202820415E-05 9.34809357190E-05 9.63255398750E-05 9.92566454918E-05 1.02276881016E-04 1.05388954625E-04 1.08595656694E-04 1.11899862237E-04 1.15304533477E-04 1.18812722511E-04 1.22427573967E-04 1.26152327841E-04 1.29990322383E-04 1.33944997033E-04 1.38019895481E-04 1.42218668864E-04 1.46545078927E-04 1.51003001435E-04 1.55596429584E-04 1.60329477540E-04 1.65206384119E-04 1.70231516492E-04 1.75409374126E-04 1.80744592732E-04 1.86241948382E-04 1.91906361745E-04 1.97742902442E-04 2.03756793561E-04 2.09953416228E-04 2.16338314435E-04 2.22917199889E-04 2.29695957115E-04 2.36680648614E-04 2.43877520262E-04 2.51293006791E-04 2.58933737508E-04 2.66806542130E-04 2.74918456812E-04 2.83276730362E-04 2.91888830636E-04 3.00762451113E-04 3.09905517687E-04 3.19326195631E-04 3.29032896809E-04 3.39034287055E-04 3.49339293830E-04 3.59957114028E-04 3.70897222095E-04 3.82169378329E-04 3.93783637476E-04 4.05750357519E-04 4.18080208796E-04 4.30784183323E-04 4.43873604459E-04 4.57360136788E-04 4.71255796359E-04 4.85572961166E-04 5.00324381997E-04 5.15523193547E-04 5.31182925914E-04 5.47317516379E-04 5.63941321576E-04 5.81069129994E-04 5.98716174866E-04 6.16898147417E-04 6.35631210514E-04 6.54932012710E-04 6.74817702708E-04 6.95305944228E-04 7.16414931344E-04 7.38163404236E-04 7.60570665417E-04 7.83656596430E-04 8.07441675033E-04 8.31946992896E-04 8.57194273774E-04 8.83205892271E-04 9.10004893089E-04 9.37615010857E-04 9.66060690576E-04 9.95367108556E-04 1.02556019408E-03 1.05666665158E-03 1.08871398357E-03 1.12173051411E-03 1.15574541305E-03 1.19078872092E-03 1.22689137458E-03 1.26408523349E-03 1.30240310692E-03 1.34187878177E-03 1.38254705123E-03 1.42444374434E-03 1.46760575628E-03 1.51207107957E-03 1.55787883617E-03 1.60506931047E-03 1.65368398319E-03 1.70376556632E-03 1.75535803893E-03 1.80850668409E-03 1.86325812675E-03 1.91966037278E-03 1.97776284896E-03 2.03761644425E-03 2.09927355205E-03 2.16278811381E-03 2.22821566369E-03 2.29561337453E-03 2.36504010513E-03 2.43655644878E-03 2.51022478312E-03 2.58610932140E-03 2.66427616516E-03 2.74479335830E-03 2.82773094267E-03 2.91316101512E-03 3.00115778620E-03 3.09179764029E-03 3.18515919754E-03 3.28132337729E-03 3.38037346336E-03 3.48239517093E-03 3.58747671536E-03 3.69570888270E-03 3.80718510214E-03 3.92200152039E-03 4.04025707794E-03 4.16205358741E-03 4.28749581386E-03 4.41669155726E-03 4.54975173707E-03 4.68679047896E-03 4.82792520384E-03 4.97327671914E-03 5.12296931233E-03 5.27713084695E-03 5.43589286101E-03 5.59939066776E-03 5.76776345916E-03 5.94115441180E-03 6.11971079545E-03 6.30358408431E-03 6.49293007099E-03 6.68790898319E-03 6.88868560330E-03 7.09542939080E-03 7.30831460756E-03 7.52752044620E-03 7.75323116139E-03 7.98563620422E-03 8.22493035972E-03 8.47131388751E-03 8.72499266569E-03 8.98617833792E-03 9.25508846387E-03 9.53194667295E-03 9.81698282145E-03 1.01104331531E-02 1.04125404631E-02 1.07235542655E-02 1.10437309645E-02 1.13733340287E-02 1.17126341695E-02 1.20619095229E-02 1.24214458347E-02 1.27915366500E-02 1.31724835055E-02 1.35645961262E-02 1.39681926255E-02 1.43835997091E-02 1.48111528823E-02 1.52511966614E-02 1.57040847885E-02 1.61701804500E-02 1.66498564991E-02 1.71434956810E-02 1.76514908626E-02 1.81742452654E-02 1.87121727013E-02 1.92656978129E-02 1.98352563162E-02 2.04212952465E-02 2.10242732084E-02 2.16446606277E-02 2.22829400067E-02 2.29396061826E-02 2.36151665878E-02 2.43101415133E-02 2.50250643741E-02 2.57604819767E-02 2.65169547887E-02 2.72950572100E-02 2.80953778450E-02 2.89185197767E-02 2.97651008414E-02 3.06357539036E-02 3.15311271318E-02 3.24518842737E-02 3.33987049312E-02 3.43722848343E-02 3.53733361143E-02 3.64025875744E-02 3.74607849585E-02 3.85486912177E-02 3.96670867723E-02 4.08167697714E-02 4.19985563465E-02 4.32132808615E-02 4.44617961553E-02 4.57449737788E-02 4.70637042244E-02 4.84188971470E-02 4.98114815760E-02 5.12424061175E-02 5.27126391452E-02 5.42231689796E-02 5.57750040543E-02 5.73691730668E-02 5.90067251159E-02 6.06887298204E-02 6.24162774207E-02 6.41904788610E-02 6.60124658501E-02 6.78833908996E-02 6.98044273380E-02 7.17767692991E-02 7.38016316823E-02 7.58802500833E-02 7.80138806927E-02 8.02038001621E-02 8.24513054325E-02 8.47577135257E-02 8.71243612950E-02 8.95526051323E-02 9.20438206297E-02 9.45994021937E-02 9.72207626072E-02 9.99093325384E-02 1.02666559993E-01 1.05493909707E-01 1.08392862474E-01 1.11364914414E-01 1.14411576161E-01 1.17534371990E-01 1.20734838863E-01 1.24014525392E-01 1.27374990726E-01 1.30817803348E-01 1.34344539781E-01 1.37956783198E-01 1.41656121942E-01 1.45444147933E-01 1.49322454979E-01 1.53292636965E-01 1.57356285939E-01 1.61514990070E-01 1.65770331488E-01 1.70123883990E-01 1.74577210619E-01 1.79131861101E-01 1.83789369141E-01 1.88551249577E-01 1.93418995371E-01 1.98394074457E-01 2.03477926420E-01 2.08671959014E-01 2.13977544507E-01 2.19396015859E-01 2.24928662714E-01 2.30576727221E-01 2.36341399656E-01 2.42223813871E-01 2.48225042539E-01 2.54346092208E-01 2.60587898157E-01 2.66951319050E-01 2.73437131383E-01 2.80046023726E-01 2.86778590757E-01 2.93635327073E-01 3.00616620799E-01 3.07722746965E-01 3.14953860670E-01 3.22309990016E-01 3.29791028820E-01 3.37396729091E-01 3.45126693288E-01 3.52980366334E-01 3.60957027422E-01 3.69055781582E-01 3.77275551047E-01 3.85615066412E-01 3.94072857606E-01 4.02647244705E-01 4.11336328596E-01 4.20137981544E-01 4.29049837673E-01 4.38069283419E-01 4.47193447987E-01 4.56419193854E-01 4.65743107363E-01 4.75161489454E-01 4.84670346567E-01 4.94265381754E-01 5.03941986045E-01 5.13695230095E-01 5.23519856145E-01 5.33410270340E-01 5.43360535416E-01 5.53364363825E-01 5.63415111310E-01 5.73505770986E-01 5.83628967990E-01 5.93776954727E-01 6.03941606815E-01 6.14114419758E-01 6.24286506449E-01 6.34448595579E-01 6.44591031024E-01 6.54703772314E-01 6.64776396271E-01 6.74798099904E-01 6.84757704677E-01 6.94643662229E-01 7.04444061658E-01 7.14146638471E-01 7.23738785291E-01 7.33207564433E-01 7.42539722439E-01 7.51721706676E-01 7.60739684084E-01 7.69579562176E-01 7.78227012369E-01 7.86667495725E-01 7.94886291194E-01 8.02868526413E-01 8.10599211125E-01 8.18063273276E-01 8.25245597831E-01 8.32131068322E-01 8.38704611164E-01 8.44951242730E-01 8.50856119163E-01 8.56404588892E-01 8.61582247803E-01 8.66374996976E-01 8.70769102879E-01 8.74751259910E-01 8.78308655094E-01 8.81429034775E-01 8.84100773049E-01 8.86312941698E-01 8.88055381300E-01 8.89318773199E-01 8.90094711925E-01 8.90375777649E-01 8.90155608189E-01 8.89428970042E-01 8.88191827874E-01 8.86441411838E-01 8.84176282052E-01 8.81396389517E-01 8.78103132711E-01 8.74299409043E-01 8.69989660325E-01 8.65179911353E-01 8.59877800693E-01 8.54092602698E-01 8.47835239789E-01 8.41118283990E-01 8.33955946708E-01 8.26364055746E-01 8.18360018523E-01 8.09962770509E-01 8.01192707684E-01 7.92071599714E-01 7.82622477577E-01 7.72869502800E-01 7.62837831040E-01 7.52553460271E-01 7.42043053283E-01 7.31333737352E-01 7.20452882951E-01 7.09427861684E-01 6.98285783686E-01 6.87053214961E-01 6.75755875433E-01 6.64418318743E-01 6.53063595200E-01 6.41712899635E-01 6.30385206283E-01 6.19096893262E-01 6.07861359657E-01 5.96688638655E-01 5.85585010761E-01 5.74552622001E-01 5.63590704955E-01 5.52701649208E-01 5.41888927411E-01 5.31155899037E-01 5.20505808813E-01 5.09941784417E-01 4.99466833568E-01 4.89083841044E-01 4.78795566503E-01 4.68604644110E-01 4.58513583911E-01 4.48524774821E-01 4.38640487545E-01 4.28856627734E-01 4.19181467260E-01 4.09616972914E-01 4.00164992609E-01 3.90827263829E-01 3.81605416145E-01 3.72500972903E-01 3.63515352914E-01 3.54649872165E-01 3.45905745535E-01 3.37284088534E-01 3.28785919046E-01 3.20412159087E-01 3.12163636563E-01 3.04041087040E-01 2.96045155512E-01 2.88176398179E-01 2.80435284219E-01 2.72822197563E-01 2.65337438670E-01 2.57981226296E-01 2.50753699266E-01 2.43654918239E-01 2.36684867465E-01 2.29843456544E-01 2.23130522178E-01 2.16545829912E-01 2.10089075876E-01 2.03759888518E-01 1.97557830328E-01 1.91482399565E-01 1.85533031967E-01 1.79709102460E-01 1.74009926866E-01 1.68434763595E-01 1.62982815343E-01 1.57653230775E-01 1.52445106208E-01 1.47357487292E-01 1.42389370680E-01 1.37539705698E-01 1.32807396011E-01 1.28191301280E-01 1.23690238824E-01 1.19302985269E-01 1.15028278202E-01 1.10864817807E-01 1.06811268516E-01 1.02866260641E-01 9.90283920049E-02 9.52962295749E-02 9.16683110810E-02 8.81431466370E-02 8.47192203528E-02 8.13949919425E-02 7.81688983257E-02 7.50393552240E-02 7.20047587493E-02 6.90634869873E-02 6.62139015717E-02 6.34543492525E-02 6.07831634552E-02 5.81986658322E-02 5.56991678043E-02 5.32829720938E-02 5.09483742461E-02 4.86936641412E-02 4.65171274930E-02 4.44170473366E-02 4.23917055009E-02 4.04393840619E-02 3.85583667558E-02 3.67469406893E-02 3.50033976494E-02 3.33260351399E-02 3.17131578637E-02 3.01630791364E-02 2.86741222086E-02 2.72446215563E-02 2.58729241420E-02 2.45573906445E-02 2.32963966569E-02 2.20883338484E-02 2.09316110905E-02 1.98246555432E-02 1.87659137017E-02 1.77538523991E-02 1.67869597662E-02 1.58637461438E-02 1.49827449487E-02 1.41425134899E-02 1.33416337347E-02 1.25787130235E-02 1.18523847323E-02 1.11613088817E-02 1.05041726927E-02 9.87969108754E-03 9.28660713707E-03 8.72369245280E-03 8.18974752504E-03 7.68360200689E-03 7.20411494461E-03 6.75017495516E-03 6.32070035159E-03 5.91463921740E-03 5.53096943084E-03 5.16869864066E-03 4.82686419451E-03 4.50453302160E-03 4.20080147142E-03 3.91479510999E-03 3.64566847579E-03 3.39260479714E-03 3.15481567301E-03 2.93154071947E-03 2.72204718372E-03 2.52562952802E-03 2.34160898551E-03 2.16933309026E-03 2.00817518357E-03 1.85753389891E-03 1.71683262737E-03 1.58551896601E-03 1.46306415103E-03 1.34896247777E-03 1.24273070966E-03 1.14390747788E-03 1.05205267366E-03 9.66746834904E-04 8.87590528943E-04 8.14203732876E-04 7.46225213133E-04 6.83311905637E-04 6.25138297925E-04 5.71395814502E-04 5.21792206585E-04 4.76050947366E-04 4.33910633788E-04 3.95124395790E-04 3.59459313886E-04 3.26695845880E-04 2.96627263448E-04 2.69059099250E-04 2.43808605188E-04 2.20704222345E-04 1.99585063117E-04 1.80300405955E-04 1.62709203122E-04 1.46679601798E-04 1.32088478827E-04 1.18820989348E-04 1.06770129516E-04 9.58363134740E-05 8.59269646871E-05 7.69561217162E-05 6.88440584733E-05 6.15169189508E-05 5.49063663892E-05 4.89492468070E-05 4.35872667837E-05 3.87666853543E-05 3.44380198388E-05 3.05557654059E-05 2.70781281351E-05 2.39667713210E-05 2.11865747360E-05 1.87054065453E-05 1.64939075498E-05 1.45252874116E-05 1.27751325042E-05 1.12212250119E-05 9.84337289506E-06 8.62325032579E-06 7.54424819268E-06 6.59133426757E-06 5.75092262447E-06 5.01075189909E-06 4.35977197835E-06 3.78803871141E-06 3.28661623773E-06 2.84748653306E-06 2.46346578110E-06 2.12812718672E-06 1.83572985556E-06 1.58115337531E-06 1.35983774474E-06 1.16772830848E-06 1.00122536792E-06 8.57138154250E-07 7.32642878155E-07 6.25244459493E-07 5.32741825913E-07 4.53196458898E-07 3.84903860102E-07 3.26367777095E-07 2.76276952338E-07 2.33484184611E-07 1.96987507364E-07 1.65913301063E-07 1.39501168818E-07 1.17090416398E-07 9.81079890622E-08 8.20577285099E-08 6.85108236351E-08 5.70973386228E-08 4.74987112901E-08 3.94411234070E-08 3.26896530522E-08 2.70431268749E-08 2.23295974414E-08 1.84023776680E-08 1.51365706771E-08 1.24260393247E-08 1.01807650457E-08 8.32455071465E-09 6.79302681663E-09 5.53192445250E-09 4.49558256752E-09 3.64568452580E-09 2.95034035371E-09 2.38266133869E-09 1.92019692457E-09 1.54426417605E-09 1.23934958962E-09 9.92600355656E-10 7.93392719868E-10 6.32966670382E-10 5.04117580277E-10 4.00936685475E-10 3.18593390353E-10 2.53153385577E-10 2.00685922947E-10 1.58717922278E-10 1.25227731494E-10 9.85666582566E-11 7.73933979266E-11 6.06193730264E-11 4.73632814999E-11 3.69133970005E-11 2.87075632049E-11 2.22687923982E-11 1.72295437523E-11 1.32958559929E-11 1.02332308202E-11 7.85509772844E-12 6.01341348451E-12 4.59102199776E-12 3.49546191241E-12 2.65396145816E-12 2.00940420925E-12 1.51708656702E-12 1.14211899559E-12 8.57349178903E-13 6.41707086342E-13 4.78890092834E-13 3.56321363222E-13 2.64327169161E-13 1.95489077175E-13 1.44135386557E-13 1.05943109288E-13 7.76274289503E-14 5.67001695272E-14 4.12825313702E-14 2.99603643244E-14 2.16726755866E-14 1.56260193984E-14 1.12289759972E-14 8.04217178183E-15 5.74028190663E-15 4.08324011848E-15 2.89449918134E-15 2.04467174219E-15 1.43926279631E-15 1.00950268614E-15 7.05521272702E-16 4.91283552743E-16 3.40845747451E-16 2.35597665711E-16 1.62239006793E-16 1.11299790941E-16 7.60626774554E-17 5.17809853161E-17 3.51134526793E-17 2.37172426964E-17 1.59560371552E-17 1.06914996980E-17 7.13489126904E-18 4.74191156192E-18 3.13847692541E-18 2.06854840720E-18 1.35761107760E-18 8.87216249255E-19 5.77310344550E-19 3.74021054611E-19 2.41251794040E-19 1.54922174160E-19 9.90388735907E-20 6.30270863649E-20 3.99262345658E-20 2.51755529008E-20 1.58004325272E-20 9.86978701646E-21 6.13585064589E-21 3.79620023391E-21 2.33727442281E-21 1.43197449705E-21 8.72980107357E-22 5.29535631745E-22 3.19584625501E-22 1.91890850788E-22 1.14624641038E-22 6.81136955778E-23 4.02625069598E-23 2.36730406936E-23 1.38442953965E-23 8.05244440728E-24 4.65801547250E-24 5S 0 1.00 Wavefunction 1.68405811068E-06 1.70098317608E-06 1.71807834122E-06 1.73534531562E-06 1.75278582600E-06 1.77040161642E-06 1.78819444849E-06 1.80616610148E-06 1.82431837260E-06 1.84265307707E-06 1.86117204838E-06 1.87987713845E-06 1.89877021781E-06 1.91785317576E-06 1.93712792064E-06 1.95659637992E-06 1.97626050046E-06 1.99612224871E-06 2.01618361085E-06 2.03644659302E-06 2.05691322156E-06 2.07758554313E-06 2.09846562499E-06 2.11955555515E-06 2.14085744265E-06 2.16237341767E-06 2.18410563183E-06 2.20605625838E-06 2.22822749240E-06 2.25062155102E-06 2.27324067367E-06 2.29608712229E-06 2.31916318153E-06 2.34247115902E-06 2.36601338559E-06 2.38979221546E-06 2.41381002655E-06 2.43806922065E-06 2.46257222371E-06 2.48732148604E-06 2.51231948260E-06 2.53756871320E-06 2.56307170279E-06 2.58883100168E-06 2.61484918583E-06 2.64112885708E-06 2.66767264343E-06 2.69448319925E-06 2.72156320565E-06 2.74891537064E-06 2.77654242945E-06 2.80444714482E-06 2.83263230725E-06 2.86110073527E-06 2.88985527575E-06 2.91889880417E-06 2.94823422490E-06 2.97786447151E-06 3.00779250705E-06 3.03802132436E-06 3.06855394633E-06 3.09939342625E-06 3.13054284810E-06 3.16200532685E-06 3.19378400876E-06 3.22588207175E-06 3.25830272563E-06 3.29104921250E-06 3.32412480703E-06 3.35753281682E-06 3.39127658269E-06 3.42535947905E-06 3.45978491422E-06 3.49455633076E-06 3.52967720585E-06 3.56515105161E-06 3.60098141545E-06 3.63717188043E-06 3.67372606563E-06 3.71064762651E-06 3.74794025525E-06 3.78560768113E-06 3.82365367095E-06 3.86208202932E-06 3.90089659912E-06 3.94010126183E-06 3.97969993796E-06 4.01969658741E-06 4.06009520986E-06 4.10089984523E-06 4.14211457400E-06 4.18374351769E-06 4.22579083922E-06 4.26826074336E-06 4.31115747714E-06 4.35448533027E-06 4.39824863556E-06 4.44245176939E-06 4.48709915210E-06 4.53219524848E-06 4.57774456817E-06 4.62375166613E-06 4.67022114312E-06 4.71715764612E-06 4.76456586883E-06 4.81245055211E-06 4.86081648445E-06 4.90966850251E-06 4.95901149152E-06 5.00885038581E-06 5.05919016933E-06 5.11003587609E-06 5.16139259071E-06 5.21326544890E-06 5.26565963799E-06 5.31858039744E-06 5.37203301938E-06 5.42602284910E-06 5.48055528565E-06 5.53563578230E-06 5.59126984715E-06 5.64746304367E-06 5.70422099121E-06 5.76154936561E-06 5.81945389977E-06 5.87794038418E-06 5.93701466754E-06 5.99668265733E-06 6.05695032041E-06 6.11782368358E-06 6.17930883423E-06 6.24141192093E-06 6.30413915405E-06 6.36749680635E-06 6.43149121366E-06 6.49612877547E-06 6.56141595559E-06 6.62735928280E-06 6.69396535148E-06 6.76124082230E-06 6.82919242285E-06 6.89782694837E-06 6.96715126235E-06 7.03717229729E-06 7.10789705535E-06 7.17933260906E-06 7.25148610205E-06 7.32436474972E-06 7.39797584000E-06 7.47232673405E-06 7.54742486704E-06 7.62327774884E-06 7.69989296480E-06 7.77727817650E-06 7.85544112255E-06 7.93438961928E-06 8.01413156163E-06 8.09467492385E-06 8.17602776035E-06 8.25819820648E-06 8.34119447935E-06 8.42502487867E-06 8.50969778754E-06 8.59522167333E-06 8.68160508850E-06 8.76885667146E-06 8.85698514744E-06 8.94599932938E-06 9.03590811875E-06 9.12672050652E-06 9.21844557401E-06 9.31109249380E-06 9.40467053065E-06 9.49918904246E-06 9.59465748115E-06 9.69108539366E-06 9.78848242284E-06 9.88685830850E-06 9.98622288830E-06 1.00865860988E-05 1.01879579764E-05 1.02903486583E-05 1.03937683838E-05 1.04982274948E-05 1.06037364375E-05 1.07103057627E-05 1.08179461275E-05 1.09266682960E-05 1.10364831406E-05 1.11474016428E-05 1.12594348945E-05 1.13725940992E-05 1.14868905729E-05 1.16023357454E-05 1.17189411612E-05 1.18367184810E-05 1.19556794827E-05 1.20758360624E-05 1.21972002359E-05 1.23197841397E-05 1.24436000324E-05 1.25686602955E-05 1.26949774354E-05 1.28225640837E-05 1.29514329992E-05 1.30815970690E-05 1.32130693096E-05 1.33458628683E-05 1.34799910246E-05 1.36154671914E-05 1.37523049165E-05 1.38905178837E-05 1.40301199145E-05 1.41711249692E-05 1.43135471484E-05 1.44574006944E-05 1.46026999928E-05 1.47494595736E-05 1.48976941129E-05 1.50474184343E-05 1.51986475103E-05 1.53513964640E-05 1.55056805704E-05 1.56615152581E-05 1.58189161107E-05 1.59778988683E-05 1.61384794294E-05 1.63006738523E-05 1.64644983564E-05 1.66299693245E-05 1.67971033037E-05 1.69659170075E-05 1.71364273176E-05 1.73086512851E-05 1.74826061325E-05 1.76583092555E-05 1.78357782245E-05 1.80150307867E-05 1.81960848674E-05 1.83789585722E-05 1.85636701887E-05 1.87502381881E-05 1.89386812275E-05 1.91290181512E-05 1.93212679933E-05 1.95154499788E-05 1.97115835262E-05 1.99096882489E-05 2.01097839576E-05 2.03118906621E-05 2.05160285732E-05 2.07222181049E-05 2.09304798763E-05 2.11408347139E-05 2.13533036533E-05 2.15679079416E-05 2.17846690394E-05 2.20036086230E-05 2.22247485867E-05 2.24481110446E-05 2.26737183331E-05 2.29015930132E-05 2.31317578727E-05 2.33642359281E-05 2.35990504275E-05 2.38362248527E-05 2.40757829212E-05 2.43177485892E-05 2.45621460533E-05 2.48089997537E-05 2.50583343758E-05 2.53101748535E-05 2.55645463709E-05 2.58214743656E-05 2.60809845305E-05 2.63431028170E-05 2.66078554371E-05 2.68752688663E-05 2.71453698462E-05 2.74181853873E-05 2.76937427713E-05 2.79720695543E-05 2.82531935692E-05 2.85371429287E-05 2.88239460280E-05 2.91136315478E-05 2.94062284569E-05 2.97017660152E-05 3.00002737768E-05 3.03017815929E-05 3.06063196145E-05 3.09139182957E-05 3.12246083968E-05 3.15384209870E-05 3.18553874480E-05 3.21755394767E-05 3.24989090886E-05 3.28255286212E-05 3.31554307367E-05 3.34886484256E-05 3.38252150101E-05 3.41651641472E-05 3.45085298322E-05 3.48553464020E-05 3.52056485388E-05 3.55594712730E-05 3.59168499874E-05 3.62778204203E-05 3.66424186690E-05 3.70106811938E-05 3.73826448214E-05 3.77583467486E-05 3.81378245460E-05 3.85211161619E-05 3.89082599258E-05 3.92992945525E-05 3.96942591461E-05 4.00931932033E-05 4.04961366182E-05 4.09031296855E-05 4.13142131050E-05 4.17294279856E-05 4.21488158493E-05 4.25724186353E-05 4.30002787045E-05 4.34324388434E-05 4.38689422686E-05 4.43098326310E-05 4.47551540201E-05 4.52049509687E-05 4.56592684570E-05 4.61181519174E-05 4.65816472389E-05 4.70498007716E-05 4.75226593314E-05 4.80002702048E-05 4.84826811537E-05 4.89699404196E-05 4.94620967293E-05 4.99591992991E-05 5.04612978398E-05 5.09684425620E-05 5.14806841811E-05 5.19980739217E-05 5.25206635237E-05 5.30485052467E-05 5.35816518758E-05 5.41201567264E-05 5.46640736497E-05 5.52134570382E-05 5.57683618312E-05 5.63288435200E-05 5.68949581535E-05 5.74667623443E-05 5.80443132735E-05 5.86276686971E-05 5.92168869517E-05 5.98120269601E-05 6.04131482372E-05 6.10203108961E-05 6.16335756541E-05 6.22530038388E-05 6.28786573939E-05 6.35105988860E-05 6.41488915102E-05 6.47935990970E-05 6.54447861183E-05 6.61025176939E-05 6.67668595982E-05 6.74378782666E-05 6.81156408022E-05 6.88002149826E-05 6.94916692664E-05 7.01900728003E-05 7.08954954262E-05 7.16080076877E-05 7.23276808373E-05 7.30545868439E-05 7.37887983996E-05 7.45303889269E-05 7.52794325866E-05 7.60360042844E-05 7.68001796793E-05 7.75720351904E-05 7.83516480050E-05 7.91390960860E-05 7.99344581800E-05 8.07378138250E-05 8.15492433585E-05 8.23688279253E-05 8.31966494858E-05 8.40327908240E-05 8.48773355562E-05 8.57303681390E-05 8.65919738776E-05 8.74622389348E-05 8.83412503394E-05 8.92290959948E-05 9.01258646878E-05 9.10316460977E-05 9.19465308051E-05 9.28706103010E-05 9.38039769958E-05 9.47467242289E-05 9.56989462776E-05 9.66607383670E-05 9.76321966791E-05 9.86134183625E-05 9.96045015424E-05 1.00605545330E-04 1.01616649833E-04 1.02637916165E-04 1.03669446456E-04 1.04711343862E-04 1.05763712577E-04 1.06826657841E-04 1.07900285951E-04 1.08984704275E-04 1.10080021258E-04 1.11186346435E-04 1.12303790444E-04 1.13432465033E-04 1.14572483073E-04 1.15723958570E-04 1.16887006677E-04 1.18061743702E-04 1.19248287125E-04 1.20446755604E-04 1.21657268991E-04 1.22879948342E-04 1.24114915931E-04 1.25362295260E-04 1.26622211071E-04 1.27894789362E-04 1.29180157397E-04 1.30478443718E-04 1.31789778161E-04 1.33114291864E-04 1.34452117285E-04 1.35803388214E-04 1.37168239784E-04 1.38546808488E-04 1.39939232189E-04 1.41345650137E-04 1.42766202981E-04 1.44201032784E-04 1.45650283037E-04 1.47114098674E-04 1.48592626084E-04 1.50086013128E-04 1.51594409154E-04 1.53117965011E-04 1.54656833063E-04 1.56211167207E-04 1.57781122886E-04 1.59366857105E-04 1.60968528449E-04 1.62586297096E-04 1.64220324832E-04 1.65870775072E-04 1.67537812874E-04 1.69221604951E-04 1.70922319696E-04 1.72640127193E-04 1.74375199236E-04 1.76127709345E-04 1.77897832784E-04 1.79685746580E-04 1.81491629540E-04 1.83315662265E-04 1.85158027175E-04 1.87018908522E-04 1.88898492410E-04 1.90796966814E-04 1.92714521599E-04 1.94651348537E-04 1.96607641330E-04 1.98583595625E-04 2.00579409038E-04 2.02595281168E-04 2.04631413624E-04 2.06688010040E-04 2.08765276096E-04 2.10863419541E-04 2.12982650213E-04 2.15123180057E-04 2.17285223152E-04 2.19468995725E-04 2.21674716179E-04 2.23902605113E-04 2.26152885343E-04 2.28425781924E-04 2.30721522175E-04 2.33040335698E-04 2.35382454406E-04 2.37748112541E-04 2.40137546701E-04 2.42550995863E-04 2.44988701404E-04 2.47450907132E-04 2.49937859302E-04 2.52449806646E-04 2.54987000397E-04 2.57549694314E-04 2.60138144707E-04 2.62752610461E-04 2.65393353066E-04 2.68060636641E-04 2.70754727958E-04 2.73475896475E-04 2.76224414354E-04 2.79000556499E-04 2.81804600573E-04 2.84636827033E-04 2.87497519157E-04 2.90386963068E-04 2.93305447768E-04 2.96253265165E-04 2.99230710100E-04 3.02238080381E-04 3.05275676809E-04 3.08343803209E-04 3.11442766462E-04 3.14572876535E-04 3.17734446510E-04 3.20927792619E-04 3.24153234274E-04 3.27411094096E-04 3.30701697954E-04 3.34025374990E-04 3.37382457660E-04 3.40773281759E-04 3.44198186461E-04 3.47657514351E-04 3.51151611458E-04 3.54680827291E-04 3.58245514876E-04 3.61846030785E-04 3.65482735180E-04 3.69155991844E-04 3.72866168216E-04 3.76613635435E-04 3.80398768368E-04 3.84221945656E-04 3.88083549745E-04 3.91983966931E-04 3.95923587393E-04 3.99902805234E-04 4.03922018523E-04 4.07981629331E-04 4.12082043775E-04 4.16223672056E-04 4.20406928501E-04 4.24632231606E-04 4.28900004074E-04 4.33210672864E-04 4.37564669228E-04 4.41962428755E-04 4.46404391418E-04 4.50891001616E-04 4.55422708219E-04 4.59999964611E-04 4.64623228740E-04 4.69292963161E-04 4.74009635080E-04 4.78773716408E-04 4.83585683802E-04 4.88446018714E-04 4.93355207444E-04 4.98313741181E-04 5.03322116060E-04 5.08380833208E-04 5.13490398794E-04 5.18651324081E-04 5.23864125477E-04 5.29129324589E-04 5.34447448271E-04 5.39819028681E-04 5.45244603334E-04 5.50724715153E-04 5.56259912527E-04 5.61850749366E-04 5.67497785152E-04 5.73201585004E-04 5.78962719726E-04 5.84781765871E-04 5.90659305794E-04 5.96595927715E-04 6.02592225775E-04 6.08648800098E-04 6.14766256849E-04 6.20945208299E-04 6.27186272884E-04 6.33490075264E-04 6.39857246395E-04 6.46288423583E-04 6.52784250554E-04 6.59345377519E-04 6.65972461235E-04 6.72666165077E-04 6.79427159099E-04 6.86256120109E-04 6.93153731728E-04 7.00120684469E-04 7.07157675799E-04 7.14265410213E-04 7.21444599304E-04 7.28695961836E-04 7.36020223815E-04 7.43418118565E-04 7.50890386798E-04 7.58437776694E-04 7.66061043973E-04 7.73760951971E-04 7.81538271721E-04 7.89393782027E-04 7.97328269546E-04 8.05342528865E-04 8.13437362584E-04 8.21613581395E-04 8.29872004166E-04 8.38213458022E-04 8.46638778432E-04 8.55148809289E-04 8.63744403001E-04 8.72426420574E-04 8.81195731700E-04 8.90053214846E-04 8.98999757343E-04 9.08036255474E-04 9.17163614570E-04 9.26382749098E-04 9.35694582754E-04 9.45100048560E-04 9.54600088955E-04 9.64195655895E-04 9.73887710946E-04 9.83677225385E-04 9.93565180297E-04 1.00355256668E-03 1.01364038553E-03 1.02382964797E-03 1.03412137534E-03 1.04451659927E-03 1.05501636186E-03 1.06562171570E-03 1.07633372404E-03 1.08715346089E-03 1.09808201108E-03 1.10912047045E-03 1.12026994589E-03 1.13153155550E-03 1.14290642869E-03 1.15439570630E-03 1.16600054068E-03 1.17772209588E-03 1.18956154771E-03 1.20152008389E-03 1.21359890414E-03 1.22579922037E-03 1.23812225671E-03 1.25056924974E-03 1.26314144851E-03 1.27584011477E-03 1.28866652303E-03 1.30162196072E-03 1.31470772832E-03 1.32792513949E-03 1.34127552122E-03 1.35476021394E-03 1.36838057169E-03 1.38213796223E-03 1.39603376722E-03 1.41006938233E-03 1.42424621737E-03 1.43856569651E-03 1.45302925836E-03 1.46763835612E-03 1.48239445779E-03 1.49729904626E-03 1.51235361950E-03 1.52755969070E-03 1.54291878844E-03 1.55843245685E-03 1.57410225577E-03 1.58992976088E-03 1.60591656394E-03 1.62206427288E-03 1.63837451201E-03 1.65484892221E-03 1.67148916104E-03 1.68829690296E-03 1.70527383951E-03 1.72242167948E-03 1.73974214907E-03 1.75723699210E-03 1.77490797018E-03 1.79275686291E-03 1.81078546807E-03 1.82899560179E-03 1.84738909875E-03 1.86596781239E-03 1.88473361513E-03 1.90368839848E-03 1.92283407336E-03 1.94217257023E-03 1.96170583929E-03 1.98143585076E-03 2.00136459501E-03 2.02149408284E-03 2.04182634566E-03 2.06236343571E-03 2.08310742630E-03 2.10406041203E-03 2.12522450902E-03 2.14660185511E-03 2.16819461014E-03 2.19000495616E-03 2.21203509768E-03 2.23428726188E-03 2.25676369889E-03 2.27946668205E-03 2.30239850810E-03 2.32556149749E-03 2.34895799462E-03 2.37259036808E-03 2.39646101094E-03 2.42057234101E-03 2.44492680109E-03 2.46952685928E-03 2.49437500920E-03 2.51947377035E-03 2.54482568831E-03 2.57043333507E-03 2.59629930932E-03 2.62242623675E-03 2.64881677031E-03 2.67547359056E-03 2.70239940593E-03 2.72959695308E-03 2.75706899716E-03 2.78481833217E-03 2.81284778126E-03 2.84116019705E-03 2.86975846199E-03 2.89864548866E-03 2.92782422013E-03 2.95729763029E-03 2.98706872422E-03 3.01714053851E-03 3.04751614164E-03 3.07819863435E-03 3.10919114996E-03 3.14049685483E-03 3.17211894863E-03 3.20406066480E-03 3.23632527092E-03 3.26891606908E-03 3.30183639630E-03 3.33508962493E-03 3.36867916307E-03 3.40260845494E-03 3.43688098136E-03 3.47150026016E-03 3.50646984659E-03 3.54179333377E-03 3.57747435317E-03 3.61351657500E-03 3.64992370873E-03 3.68669950351E-03 3.72384774868E-03 3.76137227422E-03 3.79927695126E-03 3.83756569254E-03 3.87624245296E-03 3.91531123006E-03 3.95477606454E-03 3.99464104077E-03 4.03491028737E-03 4.07558797769E-03 4.11667833041E-03 4.15818561007E-03 4.20011412766E-03 4.24246824115E-03 4.28525235615E-03 4.32847092642E-03 4.37212845454E-03 4.41622949248E-03 4.46077864227E-03 4.50578055657E-03 4.55123993938E-03 4.59716154666E-03 4.64355018697E-03 4.69041072222E-03 4.73774806829E-03 4.78556719576E-03 4.83387313060E-03 4.88267095494E-03 4.93196580776E-03 4.98176288564E-03 5.03206744355E-03 5.08288479562E-03 5.13422031589E-03 5.18607943917E-03 5.23846766180E-03 5.29139054252E-03 5.34485370331E-03 5.39886283023E-03 5.45342367433E-03 5.50854205249E-03 5.56422384840E-03 5.62047501342E-03 5.67730156756E-03 5.73470960044E-03 5.79270527223E-03 5.85129481471E-03 5.91048453223E-03 5.97028080277E-03 6.03069007897E-03 6.09171888926E-03 6.15337383889E-03 6.21566161109E-03 6.27858896819E-03 6.34216275278E-03 6.40638988892E-03 6.47127738331E-03 6.53683232654E-03 6.60306189434E-03 6.66997334887E-03 6.73757404005E-03 6.80587140682E-03 6.87487297859E-03 6.94458637658E-03 7.01501931522E-03 7.08617960368E-03 7.15807514724E-03 7.23071394889E-03 7.30410411082E-03 7.37825383602E-03 7.45317142988E-03 7.52886530181E-03 7.60534396695E-03 7.68261604789E-03 7.76069027639E-03 7.83957549517E-03 7.91928065979E-03 7.99981484045E-03 8.08118722395E-03 8.16340711564E-03 8.24648394141E-03 8.33042724971E-03 8.41524671369E-03 8.50095213329E-03 8.58755343746E-03 8.67506068638E-03 8.76348407375E-03 8.85283392914E-03 8.94312072037E-03 9.03435505597E-03 9.12654768772E-03 9.21970951316E-03 9.31385157825E-03 9.40898508010E-03 9.50512136966E-03 9.60227195459E-03 9.70044850213E-03 9.79966284208E-03 9.89992696982E-03 1.00012530494E-02 1.01036534169E-02 1.02071405832E-02 1.03117272381E-02 1.04174262530E-02 1.05242506848E-02 1.06322137795E-02 1.07413289758E-02 1.08516099089E-02 1.09630704144E-02 1.10757245321E-02 1.11895865106E-02 1.13046708108E-02 1.14209921108E-02 1.15385653098E-02 1.16574055331E-02 1.17775281362E-02 1.18989487102E-02 1.20216830860E-02 1.21457473400E-02 1.22711577985E-02 1.23979310439E-02 1.25260839190E-02 1.26556335336E-02 1.27865972697E-02 1.29189927874E-02 1.30528380309E-02 1.31881512349E-02 1.33249509308E-02 1.34632559532E-02 1.36030854469E-02 1.37444588732E-02 1.38873960177E-02 1.40319169969E-02 1.41780422665E-02 1.43257926280E-02 1.44751892377E-02 1.46262536142E-02 1.47790076466E-02 1.49334736038E-02 1.50896741427E-02 1.52476323174E-02 1.54073715888E-02 1.55689158337E-02 1.57322893554E-02 1.58975168932E-02 1.60646236331E-02 1.62336352186E-02 1.64045777617E-02 1.65774778542E-02 1.67523625797E-02 1.69292595251E-02 1.71081967938E-02 1.72892030175E-02 1.74723073703E-02 1.76575395814E-02 1.78449299497E-02 1.80345093576E-02 1.82263092860E-02 1.84203618297E-02 1.86166997127E-02 1.88153563042E-02 1.90163656359E-02 1.92197624183E-02 1.94255820588E-02 1.96338606798E-02 1.98446351371E-02 2.00579430393E-02 2.02738227680E-02 2.04923134978E-02 2.07134552172E-02 2.09372887512E-02 2.11638557826E-02 2.13931988759E-02 2.16253615006E-02 2.18603880559E-02 2.20983238960E-02 2.23392153559E-02 2.25831097788E-02 2.28300555432E-02 2.30801020918E-02 2.33332999609E-02 2.35897008109E-02 2.38493574573E-02 2.41123239035E-02 2.43786553736E-02 2.46484083473E-02 2.49216405952E-02 2.51984112153E-02 2.54787806710E-02 2.57628108299E-02 2.60505650040E-02 2.63421079915E-02 2.66375061194E-02 2.69368272878E-02 2.72401410155E-02 2.75475184872E-02 2.78590326021E-02 2.81747580242E-02 2.84947712338E-02 2.88191505816E-02 2.91479763435E-02 2.94813307777E-02 2.98192981839E-02 3.01619649638E-02 3.05094196842E-02 3.08617531419E-02 3.12190584305E-02 3.15814310098E-02 3.19489687772E-02 3.23217721416E-02 3.26999440999E-02 3.30835903153E-02 3.34728191993E-02 3.38677419954E-02 3.42684728660E-02 3.46751289824E-02 3.50878306175E-02 3.55067012414E-02 3.59318676206E-02 3.63634599202E-02 3.68016118096E-02 3.72464605719E-02 3.76981472162E-02 3.81568165949E-02 3.86226175236E-02 3.90957029059E-02 3.95762298618E-02 4.00643598607E-02 4.05602588587E-02 4.10640974406E-02 4.15760509660E-02 4.20962997213E-02 4.26250290758E-02 4.31624296434E-02 4.37086974496E-02 4.42640341041E-02 4.48286469787E-02 4.54027493912E-02 4.59865607961E-02 4.65803069799E-02 4.71842202645E-02 4.77985397164E-02 4.84235113620E-02 4.90593884114E-02 4.97064314884E-02 5.03649088676E-02 5.10350967200E-02 5.17172793656E-02 5.24117495345E-02 5.31188086354E-02 5.38387670339E-02 5.45719443375E-02 5.53186696910E-02 5.60792820800E-02 5.68541306439E-02 5.76435749978E-02 5.84479855646E-02 5.92677439164E-02 6.01032431255E-02 6.09548881259E-02 6.18230960846E-02 6.27082967836E-02 6.36109330112E-02 6.45314609652E-02 6.54703506655E-02 6.64280863775E-02 6.74051670462E-02 6.84021067407E-02 6.94194351089E-02 7.04576978429E-02 7.15174571546E-02 7.25992922602E-02 7.37037998761E-02 7.48315947227E-02 7.59833100375E-02 7.71595980974E-02 7.83611307478E-02 7.95885999395E-02 8.08427182722E-02 8.21242195434E-02 8.34338593017E-02 8.47724154040E-02 8.61406885743E-02 8.75395029642E-02 8.89697067114E-02 9.04321724963E-02 9.19277980936E-02 9.34575069173E-02 9.50222485558E-02 9.66229992953E-02 9.82607626278E-02 9.99365697413E-02 1.01651479987E-01 1.03406581320E-01 1.05202990713E-01 1.07041854529E-01 1.08924348860E-01 1.10851679813E-01 1.12825083751E-01 1.14845827469E-01 1.16915208305E-01 1.19034554185E-01 1.21205223570E-01 1.23428605330E-01 1.25706118502E-01 1.28039211944E-01 1.30429363867E-01 1.32878081228E-01 1.35386898978E-01 1.37957379148E-01 1.40591109765E-01 1.43289703566E-01 1.46054796516E-01 1.48888046096E-01 1.51791129350E-01 1.54765740675E-01 1.57813589320E-01 1.60936396599E-01 1.64135892767E-01 1.67413813559E-01 1.70771896361E-01 1.74211875991E-01 1.77735480060E-01 1.81344423900E-01 1.85040405033E-01 1.88825097141E-01 1.92700143539E-01 1.96667150109E-01 2.00727677676E-01 2.04883233811E-01 2.09135264041E-01 2.13485142438E-01 2.17934161588E-01 2.22483521921E-01 2.27134320388E-01 2.31887538498E-01 2.36744029700E-01 2.41704506133E-01 2.46769524743E-01 2.51939472807E-01 2.57214552878E-01 2.62594767203E-01 2.68079901662E-01 2.73669509288E-01 2.79362893440E-01 2.85159090724E-01 2.91056853764E-01 2.97054633926E-01 3.03150564153E-01 3.09342442031E-01 3.15627713277E-01 3.22003455817E-01 3.28466364659E-01 3.35012737780E-01 3.41638463250E-01 3.48339007852E-01 3.55109407452E-01 3.61944259389E-01 3.68837717170E-01 3.75783487755E-01 3.82774831710E-01 3.89804566535E-01 3.96865073417E-01 4.03948307686E-01 4.11045813225E-01 4.18148741027E-01 4.25247872106E-01 4.32333644881E-01 4.39396187139E-01 4.46425352590E-01 4.53410761989E-01 4.60341848701E-01 4.67207908515E-01 4.73998153410E-01 4.80701768896E-01 4.87307974426E-01 4.93806086287E-01 5.00185582270E-01 5.06436167302E-01 5.12547839124E-01 5.18510953013E-01 5.24316284446E-01 5.29955088540E-01 5.35419155045E-01 5.40700857645E-01 5.45793196303E-01 5.50689831428E-01 5.55385108714E-01 5.59874073592E-01 5.64152474445E-01 5.68216753911E-01 5.72064027938E-01 5.75692052614E-01 5.79099179269E-01 5.82284298920E-01 5.85246777835E-01 5.87986386836E-01 5.90503227976E-01 5.92797663430E-01 5.94870252864E-01 5.96721706783E-01 5.98352864519E-01 5.99764689297E-01 6.00958265880E-01 6.01934798793E-01 6.02695610552E-01 6.03242139924E-01 6.03575940184E-01 6.03698677392E-01 6.03612128671E-01 6.03318180497E-01 6.02818826980E-01 6.02116168158E-01 6.01212408269E-01 6.00109854027E-01 5.98810912877E-01 5.97318091231E-01 5.95633992689E-01 5.93761316223E-01 5.91702854332E-01 5.89461491165E-01 5.87040200586E-01 5.84442044209E-01 5.81670169363E-01 5.78727807006E-01 5.75618269570E-01 5.72344948738E-01 5.68911313139E-01 5.65320905966E-01 5.61577342505E-01 5.57684307568E-01 5.53645552832E-01 5.49464894075E-01 5.45146208305E-01 5.40693430779E-01 5.36110551911E-01 5.31401614059E-01 5.26570708206E-01 5.21621970515E-01 5.16559578771E-01 5.11387748706E-01 5.06110730219E-01 5.00732803475E-01 4.95258274917E-01 4.89691473168E-01 4.84036744856E-01 4.78298450349E-01 4.72480959436E-01 4.66588646939E-01 4.60625888290E-01 4.54597055078E-01 4.48506510581E-01 4.42358605309E-01 4.36157672548E-01 4.29908023965E-01 4.23613945254E-01 4.17279691859E-01 4.10909484787E-01 4.04507506530E-01 3.98077897115E-01 3.91624750288E-01 3.85152109867E-01 3.78663966252E-01 3.72164253131E-01 3.65656844378E-01 3.59145551151E-01 3.52634119214E-01 3.46126226467E-01 3.39625480710E-01 3.33135417627E-01 3.26659498999E-01 3.20201111140E-01 3.13763563559E-01 3.07350087828E-01 3.00963836666E-01 2.94607883214E-01 2.88285220499E-01 2.81998761072E-01 2.75751336801E-01 2.69545698809E-01 2.63384517536E-01 2.57270382911E-01 2.51205804606E-01 2.45193212374E-01 2.39234956424E-01 2.33333307835E-01 2.27490458989E-01 2.21708523989E-01 2.15989539069E-01 2.10335462960E-01 2.04748177216E-01 1.99229486473E-01 1.93781118638E-01 1.88404725008E-01 1.83101880302E-01 1.77874082604E-01 1.72722753228E-01 1.67649236500E-01 1.62654799461E-01 1.57740631498E-01 1.52907843918E-01 1.48157469477E-01 1.43490461863E-01 1.38907695174E-01 1.34409963375E-01 1.29997979784E-01 1.25672376577E-01 1.21433704350E-01 1.17282431737E-01 1.13218945123E-01 1.09243548447E-01 1.05356463125E-01 1.01557828103E-01 9.78477000479E-02 9.42260536959E-02 9.06927823626E-02 8.72476986221E-02 8.38905351635E-02 8.06209458264E-02 7.74385068186E-02 7.43427181151E-02 7.13330050366E-02 6.84087200054E-02 6.55691444714E-02 6.28134910042E-02 6.01409055410E-02 5.75504697834E-02 5.50412037321E-02 5.26120683483E-02 5.02619683312E-02 4.79897549988E-02 4.57942292590E-02 4.36741446598E-02 4.16282105028E-02 3.96550950101E-02 3.77534285289E-02 3.59218067626E-02 3.41587940152E-02 3.24629264363E-02 3.08327152562E-02 2.92666499983E-02 2.77632016587E-02 2.63208258422E-02 2.49379658464E-02 2.36130556825E-02 2.23445230268E-02 2.11307920932E-02 1.99702864219E-02 1.88614315746E-02 1.78026577345E-02 1.67924022029E-02 1.58291117892E-02 1.49112450908E-02 1.40372746599E-02 1.32056890537E-02 1.24149947672E-02 1.16637180464E-02 1.09504065823E-02 1.02736310840E-02 9.63198673168E-03 9.02409451084E-03 8.44860242768E-03 7.90418660784E-03 7.38955228027E-03 6.90343464825E-03 6.44459965028E-03 6.01184461343E-03 5.60399880250E-03 5.21992386794E-03 4.85851419638E-03 4.51869716709E-03 4.19943331849E-03 3.89971642855E-03 3.61857351304E-03 3.35506474600E-03 3.10828330636E-03 2.87735515523E-03 2.66143874785E-03 2.45972468472E-03 2.27143530596E-03 2.09582423319E-03 1.93217586313E-03 1.77980481702E-03 1.63805534978E-03 1.50630072302E-03 1.38394254565E-03 1.27041008582E-03 1.16515955787E-03 1.06767338767E-03 9.77459459931E-04 8.94050349024E-04 8.17002594781E-04 7.45895325107E-04 6.80333410799E-04 6.19932277828E-04 5.64348956467E-04 5.13262085617E-04 4.66356088231E-04 4.23330197149E-04 3.83901784467E-04 3.47805540688E-04 3.14792672422E-04 2.84630119284E-04 2.57099790821E-04 2.31997824169E-04 2.09133863078E-04 1.88330358835E-04 1.69421893543E-04 1.52254526121E-04 1.36685161300E-04 1.22580942643E-04 1.09818638901E-04 9.82843992130E-05 8.78710832653E-05 7.84855242901E-05 7.00308717553E-05 6.24162341327E-05 5.55643779270E-05 4.94061666979E-05 4.38779735835E-05 3.89213150495E-05 3.44825025155E-05 3.05123115576E-05 2.69656682956E-05 2.38013525435E-05 2.09817172730E-05 1.84724239154E-05 1.62421930041E-05 1.42625696422E-05 1.25077032662E-05 1.09541411647E-05 9.58063520192E-06 8.36796119306E-06 7.29875037509E-06 6.35733241643E-06 5.52958941306E-06 4.80282032322E-06 4.16561529998E-06 3.60773939031E-06 3.12002508014E-06 2.69427317685E-06 2.32316153491E-06 2.00016114436E-06 1.71945911843E-06 1.47588813234E-06 1.26486188330E-06 1.08231615866E-06 9.24655117828E-07 7.88702411569E-07 6.71656780546E-07 5.71051793625E-07 4.84719404428E-07 4.10757022774E-07 3.47497815312E-07 2.93483967025E-07 2.47442652164E-07 2.08264479600E-07 1.74984193443E-07 1.46763425066E-07 1.22875307322E-07 1.02690775798E-07 8.56663952896E-08 7.13335624084E-08 5.92889472347E-08 4.91860482971E-08 4.07277458318E-08 3.36597482950E-08 2.77648364762E-08 2.28578182941E-08 1.87811154860E-08 1.54009109327E-08 1.26037923278E-08 1.02938343188E-08 8.39006715112E-09 6.82428525782E-09 5.53915418465E-09 4.48657874943E-09 3.62629943726E-09 2.92468774796E-09 2.35371458086E-09 1.89006862502E-09 1.51440577215E-09 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4.44864942431E-12 4.53851810406E-12 4.63020225158E-12 4.72373854174E-12 4.81916439030E-12 4.91651796888E-12 5.01583822021E-12 5.11716487371E-12 5.22053846140E-12 5.32600033408E-12 5.43359267792E-12 5.54335853129E-12 5.65534180199E-12 5.76958728482E-12 5.88614067950E-12 6.00504860894E-12 6.12635863791E-12 6.25011929202E-12 6.37638007719E-12 6.50519149943E-12 6.63660508501E-12 6.77067340112E-12 6.90745007688E-12 7.04698982478E-12 7.18934846259E-12 7.33458293565E-12 7.48275133969E-12 7.63391294405E-12 7.78812821539E-12 7.94545884187E-12 8.10596775784E-12 8.26971916902E-12 8.43677857814E-12 8.60721281119E-12 8.78109004416E-12 8.95847983024E-12 9.13945312772E-12 9.32408232833E-12 9.51244128621E-12 9.70460534746E-12 9.90065138027E-12 1.01006578057E-11 1.03047046289E-11 1.05128734714E-11 1.07252476034E-11 1.09419119776E-11 1.11629532624E-11 1.13884598775E-11 1.16185220283E-11 1.18532317429E-11 1.20926829083E-11 1.23369713082E-11 1.25861946610E-11 1.28404526596E-11 1.30998470105E-11 1.33644814749E-11 1.36344619102E-11 1.39098963120E-11 1.41908948579E-11 1.44775699510E-11 1.47700362651E-11 1.50684107907E-11 1.53728128816E-11 1.56833643027E-11 1.60001892787E-11 1.63234145438E-11 1.66531693924E-11 1.69895857309E-11 1.73327981302E-11 1.76829438800E-11 1.80401630432E-11 1.84045985122E-11 1.87763960661E-11 1.91557044288E-11 1.95426753289E-11 1.99374635597E-11 2.03402270418E-11 2.07511268861E-11 2.11703274579E-11 2.15979964430E-11 2.20343049149E-11 2.24794274025E-11 2.29335419610E-11 2.33968302422E-11 2.38694775675E-11 2.43516730023E-11 2.48436094311E-11 2.53454836351E-11 2.58574963706E-11 2.63798524495E-11 2.69127608214E-11 2.74564346565E-11 2.80110914318E-11 2.85769530173E-11 2.91542457653E-11 2.97432006004E-11 3.03440531126E-11 3.09570436508E-11 3.15824174195E-11 3.22204245764E-11 3.28713203331E-11 3.35353650563E-11 3.42128243730E-11 3.49039692759E-11 3.56090762322E-11 3.63284272940E-11 3.70623102114E-11 3.78110185474E-11 3.85748517953E-11 3.93541154986E-11 4.01491213731E-11 4.09601874318E-11 4.17876381121E-11 4.26318044052E-11 4.34930239888E-11 4.43716413624E-11 4.52680079846E-11 4.61824824140E-11 4.71154304526E-11 4.80672252922E-11 4.90382476632E-11 5.00288859877E-11 5.10395365342E-11 5.20706035765E-11 5.31224995550E-11 5.41956452424E-11 5.52904699110E-11 5.64074115056E-11 5.75469168175E-11 5.87094416643E-11 5.98954510712E-11 6.11054194580E-11 6.23398308281E-11 6.35991789627E-11 6.48839676177E-11 6.61947107259E-11 6.75319326019E-11 6.88961681524E-11 7.02879630898E-11 7.17078741508E-11 7.31564693186E-11 7.46343280508E-11 7.61420415106E-11 7.76802128036E-11 7.92494572187E-11 8.08504024748E-11 8.24836889714E-11 8.41499700448E-11 8.58499122299E-11 8.75841955261E-11 8.93535136701E-11 9.11585744127E-11 9.30000998023E-11 9.48788264739E-11 9.67955059430E-11 9.87509049073E-11 1.00745805552E-10 1.02781005865E-10 1.04857319953E-10 1.06975578370E-10 1.09136628446E-10 1.11341334632E-10 1.13590578839E-10 1.15885260795E-10 1.18226298404E-10 1.20614628111E-10 1.23051205281E-10 1.25537004577E-10 1.28073020353E-10 1.30660267047E-10 1.33299779595E-10 1.35992613836E-10 1.38739846939E-10 1.41542577836E-10 1.44401927655E-10 1.47319040175E-10 1.50295082281E-10 1.53331244428E-10 1.56428741123E-10 1.59588811406E-10 1.62812719346E-10 1.66101754551E-10 1.69457232679E-10 1.72880495965E-10 1.76372913762E-10 1.79935883083E-10 1.83570829163E-10 1.87279206030E-10 1.91062497084E-10 1.94922215693E-10 1.98859905796E-10 2.02877142521E-10 2.06975532817E-10 2.11156716096E-10 2.15422364886E-10 2.19774185505E-10 2.24213918739E-10 2.28743340542E-10 2.33364262742E-10 2.38078533771E-10 2.42888039400E-10 2.47794703497E-10 2.52800488792E-10 2.57907397668E-10 2.63117472957E-10 2.68432798759E-10 2.73855501275E-10 2.79387749659E-10 2.85031756886E-10 2.90789780635E-10 2.96664124191E-10 3.02657137373E-10 3.08771217465E-10 3.15008810182E-10 3.21372410645E-10 3.27864564380E-10 3.34487868337E-10 3.41244971926E-10 3.48138578079E-10 3.55171444332E-10 3.62346383927E-10 3.69666266935E-10 3.77134021410E-10 3.84752634553E-10 3.92525153913E-10 4.00454688602E-10 4.08544410542E-10 4.16797555730E-10 4.25217425537E-10 4.33807388023E-10 4.42570879291E-10 4.51511404854E-10 4.60632541045E-10 4.69937936441E-10 4.79431313327E-10 4.89116469181E-10 4.98997278198E-10 5.09077692834E-10 5.19361745393E-10 5.29853549635E-10 5.40557302424E-10 5.51477285405E-10 5.62617866722E-10 5.73983502757E-10 5.85578739919E-10 5.97408216461E-10 6.09476664335E-10 6.21788911082E-10 6.34349881771E-10 6.47164600959E-10 6.60238194710E-10 6.73575892639E-10 6.87183030006E-10 7.01065049852E-10 7.15227505175E-10 7.29676061150E-10 7.44416497397E-10 7.59454710291E-10 7.74796715323E-10 7.90448649505E-10 8.06416773825E-10 8.22707475750E-10 8.39327271786E-10 8.56282810078E-10 8.73580873073E-10 8.91228380235E-10 9.09232390808E-10 9.27600106644E-10 9.46338875082E-10 9.65456191886E-10 9.84959704247E-10 1.00485721384E-09 1.02515667993E-09 1.04586622261E-09 1.06699412596E-09 1.08854884143E-09 1.11053899122E-09 1.13297337169E-09 1.15586095690E-09 1.17921090220E-09 1.20303254789E-09 1.22733542296E-09 1.25212924890E-09 1.27742394359E-09 1.30322962524E-09 1.32955661650E-09 1.35641544852E-09 1.38381686522E-09 1.41177182754E-09 1.44029151786E-09 1.46938734444E-09 1.49907094604E-09 1.52935419650E-09 1.56024920955E-09 1.59176834363E-09 1.62392420683E-09 1.65672966195E-09 1.69019783164E-09 1.72434210363E-09 1.75917613611E-09 1.79471386318E-09 1.83096950045E-09 1.86795755068E-09 1.90569280960E-09 1.94419037187E-09 1.98346563704E-09 2.02353431579E-09 2.06441243616E-09 2.10611634997E-09 2.14866273939E-09 2.19206862358E-09 2.23635136551E-09 2.28152867892E-09 2.32761863537E-09 2.37463967152E-09 2.42261059645E-09 2.47155059923E-09 2.52147925655E-09 2.57241654061E-09 2.62438282706E-09 2.67739890316E-09 2.73148597611E-09 2.78666568152E-09 2.84296009210E-09 2.90039172641E-09 2.95898355795E-09 3.01875902432E-09 3.07974203657E-09 3.14195698880E-09 3.20542876792E-09 3.27018276357E-09 3.33624487830E-09 3.40364153795E-09 3.47239970216E-09 3.54254687524E-09 3.61411111709E-09 3.68712105448E-09 3.76160589248E-09 3.83759542614E-09 3.91512005241E-09 3.99421078232E-09 4.07489925334E-09 4.15721774209E-09 4.24119917721E-09 4.32687715256E-09 4.41428594063E-09 4.50346050626E-09 4.59443652066E-09 4.68725037563E-09 4.78193919813E-09 4.87854086517E-09 4.97709401890E-09 5.07763808211E-09 5.18021327401E-09 5.28486062626E-09 5.39162199944E-09 5.50054009979E-09 5.61165849627E-09 5.72502163799E-09 5.84067487199E-09 5.95866446143E-09 6.07903760402E-09 6.20184245095E-09 6.32712812612E-09 6.45494474583E-09 6.58534343881E-09 6.71837636664E-09 6.85409674467E-09 6.99255886326E-09 7.13381810955E-09 7.27793098957E-09 7.42495515084E-09 7.57494940549E-09 7.72797375372E-09 7.88408940782E-09 8.04335881670E-09 8.20584569081E-09 8.37161502766E-09 8.54073313781E-09 8.71326767140E-09 8.88928764521E-09 9.06886347028E-09 9.25206698006E-09 9.43897145914E-09 9.62965167260E-09 9.82418389589E-09 1.00226459453E-08 1.02251172093E-08 1.04316786799E-08 1.06424129854E-08 1.08574044234E-08 1.10767389944E-08 1.13005044362E-08 1.15287902590E-08 1.17616877816E-08 1.19992901670E-08 1.22416924609E-08 1.24889916286E-08 1.27412865945E-08 1.29986782814E-08 1.32612696509E-08 1.35291657446E-08 1.38024737261E-08 1.40813029240E-08 1.43657648754E-08 1.46559733708E-08 1.49520444993E-08 1.52540966953E-08 1.55622507858E-08 1.58766300386E-08 1.61973602120E-08 1.65245696046E-08 1.68583891070E-08 1.71989522539E-08 1.75463952778E-08 1.79008571633E-08 1.82624797027E-08 1.86314075529E-08 1.90077882931E-08 1.93917724837E-08 1.97835137270E-08 2.01831687281E-08 2.05908973581E-08 2.10068627177E-08 2.14312312025E-08 2.18641725696E-08 2.23058600059E-08 2.27564701964E-08 2.32161833961E-08 2.36851835012E-08 2.41636581231E-08 2.46517986632E-08 2.51498003898E-08 2.56578625159E-08 2.61761882791E-08 2.67049850229E-08 2.72444642794E-08 2.77948418544E-08 2.83563379131E-08 2.89291770688E-08 2.95135884725E-08 3.01098059044E-08 3.07180678677E-08 3.13386176839E-08 3.19717035902E-08 3.26175788388E-08 3.32765017981E-08 3.39487360562E-08 3.46345505264E-08 3.53342195546E-08 3.60480230293E-08 3.67762464932E-08 3.75191812581E-08 3.82771245207E-08 3.90503794818E-08 3.98392554681E-08 4.06440680549E-08 4.14651391936E-08 4.23027973393E-08 4.31573775832E-08 4.40292217861E-08 4.49186787154E-08 4.58261041846E-08 4.67518611956E-08 4.76963200839E-08 4.86598586672E-08 4.96428623958E-08 5.06457245076E-08 5.16688461850E-08 5.27126367154E-08 5.37775136553E-08 5.48639029969E-08 5.59722393392E-08 5.71029660610E-08 5.82565354993E-08 5.94334091294E-08 6.06340577504E-08 6.18589616728E-08 6.31086109111E-08 6.43835053801E-08 6.56841550943E-08 6.70110803726E-08 6.83648120461E-08 6.97458916708E-08 7.11548717441E-08 7.25923159261E-08 7.40587992649E-08 7.55549084269E-08 7.70812419317E-08 7.86384103912E-08 8.02270367543E-08 8.18477565562E-08 8.35012181725E-08 8.51880830790E-08 8.69090261161E-08 8.86647357592E-08 9.04559143938E-08 9.22832785972E-08 9.41475594248E-08 9.60495027029E-08 9.79898693272E-08 9.99694355672E-08 1.01988993377E-07 1.04049350713E-07 1.06151331855E-07 1.08295777740E-07 1.10483546295E-07 1.12715512781E-07 1.14992570146E-07 1.17315629381E-07 1.19685619884E-07 1.22103489831E-07 1.24570206558E-07 1.27086756949E-07 1.29654147826E-07 1.32273406359E-07 1.34945580470E-07 1.37671739260E-07 1.40452973431E-07 1.43290395725E-07 1.46185141370E-07 1.49138368534E-07 1.52151258788E-07 1.55225017581E-07 1.58360874722E-07 1.61560084870E-07 1.64823928040E-07 1.68153710115E-07 1.71550763365E-07 1.75016446988E-07 1.78552147645E-07 1.82159280026E-07 1.85839287406E-07 1.89593642230E-07 1.93423846704E-07 1.97331433389E-07 2.01317965821E-07 2.05385039139E-07 2.09534280718E-07 2.13767350825E-07 2.18085943284E-07 2.22491786153E-07 2.26986642418E-07 2.31572310700E-07 2.36250625972E-07 2.41023460301E-07 2.45892723593E-07 2.50860364357E-07 2.55928370495E-07 2.61098770088E-07 2.66373632216E-07 2.71755067786E-07 2.77245230377E-07 2.82846317105E-07 2.88560569504E-07 2.94390274424E-07 3.00337764948E-07 3.06405421330E-07 3.12595671947E-07 3.18910994275E-07 3.25353915883E-07 3.31927015446E-07 3.38632923781E-07 3.45474324901E-07 3.52453957096E-07 3.59574614026E-07 3.66839145850E-07 3.74250460365E-07 3.81811524174E-07 3.89525363881E-07 3.97395067302E-07 4.05423784710E-07 4.13614730095E-07 4.21971182461E-07 4.30496487141E-07 4.39194057142E-07 4.48067374516E-07 4.57119991763E-07 4.66355533255E-07 4.75777696699E-07 4.85390254618E-07 4.95197055878E-07 5.05202027226E-07 5.15409174880E-07 5.25822586136E-07 5.36446431016E-07 5.47284963948E-07 5.58342525478E-07 5.69623544022E-07 5.81132537648E-07 5.92874115900E-07 6.04852981653E-07 6.17073933016E-07 6.29541865263E-07 6.42261772810E-07 6.55238751235E-07 6.68477999328E-07 6.81984821202E-07 6.95764628428E-07 7.09822942226E-07 7.24165395698E-07 7.38797736108E-07 7.53725827207E-07 7.68955651609E-07 7.84493313211E-07 8.00345039672E-07 8.16517184933E-07 8.33016231799E-07 8.49848794568E-07 8.67021621718E-07 8.84541598645E-07 9.02415750469E-07 9.20651244888E-07 9.39255395091E-07 9.58235662747E-07 9.77599661034E-07 9.97355157752E-07 1.01751007849E-06 1.03807250986E-06 1.05905070281E-06 1.08045307600E-06 1.10228821921E-06 1.12456489693E-06 1.14729205189E-06 1.17047880876E-06 1.19413447789E-06 1.21826855916E-06 1.24289074583E-06 1.26801092862E-06 1.29363919971E-06 1.31978585695E-06 1.34646140812E-06 1.37367657525E-06 1.40144229909E-06 1.42976974363E-06 1.45867030076E-06 1.48815559497E-06 1.51823748825E-06 1.54892808497E-06 1.58023973701E-06 1.61218504885E-06 1.64477688293E-06 1.67802836497E-06 1.71195288957E-06 1.74656412577E-06 1.78187602287E-06 1.81790281630E-06 1.85465903365E-06 1.89215950081E-06 1.93041934831E-06 1.96945401772E-06 2.00927926822E-06 2.04991118339E-06 2.09136617799E-06 2.13366100511E-06 2.17681276324E-06 2.22083890373E-06 2.26575723821E-06 2.31158594635E-06 2.35834358365E-06 2.40604908952E-06 2.45472179542E-06 2.50438143334E-06 2.55504814427E-06 2.60674248702E-06 2.65948544718E-06 2.71329844623E-06 2.76820335089E-06 2.82422248273E-06 2.88137862788E-06 2.93969504703E-06 2.99919548564E-06 3.05990418440E-06 3.12184588988E-06 3.18504586548E-06 3.24952990265E-06 3.31532433233E-06 3.38245603681E-06 3.45095246178E-06 3.52084162884E-06 3.59215214833E-06 3.66491323261E-06 3.73915470980E-06 3.81490703801E-06 3.89220132012E-06 3.97106931926E-06 4.05154347485E-06 4.13365691945E-06 4.21744349646E-06 4.30293777862E-06 4.39017508756E-06 4.47919151432E-06 4.57002394100E-06 4.66271006355E-06 4.75728841574E-06 4.85379839448E-06 4.95228028622E-06 5.05277529483E-06 5.15532557054E-06 5.25997424021E-06 5.36676543866E-06 5.47574434109E-06 5.58695719633E-06 5.70045136088E-06 5.81627533334E-06 5.93447878924E-06 6.05511261571E-06 6.17822894588E-06 6.30388119252E-06 6.43212408082E-06 6.56301367993E-06 6.69660743316E-06 6.83296418693E-06 6.97214421872E-06 7.11420926435E-06 7.25922254553E-06 7.40724879815E-06 7.55835430263E-06 7.71260691704E-06 7.87007611370E-06 8.03083302022E-06 8.19495046512E-06 8.36250302809E-06 8.53356709537E-06 8.70822091952E-06 8.88654468369E-06 9.06862057007E-06 9.25453283220E-06 9.44436787125E-06 9.63821431570E-06 9.83616310505E-06 1.00383075769E-05 1.02447435582E-05 1.04555694599E-05 1.06708863768E-05 1.08907981904E-05 1.11154116777E-05 1.13448366240E-05 1.15791859413E-05 1.18185757918E-05 1.20631257180E-05 1.23129587775E-05 1.25682016859E-05 1.28289849651E-05 1.30954430994E-05 1.33677146995E-05 1.36459426738E-05 1.39302744085E-05 1.42208619566E-05 1.45178622367E-05 1.48214372407E-05 1.51317542536E-05 1.54489860830E-05 1.57733113013E-05 1.61049145003E-05 1.64439865589E-05 1.67907249249E-05 1.71453339118E-05 1.75080250114E-05 1.78790172230E-05 1.82585374007E-05 1.86468206194E-05 1.90441105604E-05 1.94506599190E-05 1.98667308335E-05 2.02925953394E-05 2.07285358472E-05 2.11748456484E-05 2.16318294489E-05 2.20998039331E-05 2.25790983592E-05 2.30700551886E-05 2.35730307512E-05 2.40883959484E-05 2.46165369960E-05 2.51578562100E-05 2.57127728372E-05 2.62817239340E-05 2.68651652949E-05 2.74635724355E-05 2.80774416321E-05 2.87072910209E-05 2.93536617618E-05 3.00171192694E-05 3.06982545152E-05 3.13976854072E-05 3.21160582476E-05 3.28540492783E-05 3.36123663150E-05 3.43917504776E-05 3.51929780225E-05 3.60168622819E-05 3.68642557178E-05 3.77360520961E-05 3.86331887899E-05 3.95566492171E-05 4.05074654240E-05 4.14867208196E-05 4.24955530725E-05 4.35351571798E-05 4.46067887167E-05 4.57117672795E-05 4.68514801324E-05 4.80273860715E-05 4.92410195172E-05 5.04939948508E-05 5.17880110086E-05 5.31248563492E-05 5.45064138105E-05 5.59346663741E-05 5.74117028547E-05 5.89397240352E-05 6.05210491664E-05 6.21581228557E-05 6.38535223649E-05 6.56099653453E-05 6.74303180323E-05 6.93176039309E-05 7.12750130181E-05 7.33059114957E-05 7.54138521241E-05 7.76025851747E-05 7.98760700343E-05 8.22384875031E-05 8.46942528278E-05 8.72480295112E-05 8.99047439468E-05 9.26696009266E-05 9.55481000746E-05 9.85460532613E-05 1.01669603056E-04 1.04925242279E-04 1.08319834725E-04 1.11860637112E-04 1.15555322350E-04 1.19412004184E-04 1.23439263319E-04 1.27646175084E-04 1.32042338758E-04 1.36637908629E-04 1.41443626909E-04 1.46470858599E-04 1.51731628428E-04 1.57238659989E-04 1.63005417191E-04 1.69046148178E-04 1.75375931844E-04 1.82010727115E-04 1.88967425137E-04 1.96263904565E-04 2.03919090111E-04 2.11953014564E-04 2.20386884461E-04 2.29243149647E-04 2.38545576927E-04 2.48319328063E-04 2.58591042368E-04 2.69388924148E-04 2.80742835298E-04 2.92684393327E-04 3.05247075138E-04 3.18466326898E-04 3.32379680331E-04 3.47026875826E-04 3.62449992739E-04 3.78693587298E-04 3.95804838559E-04 4.13833702858E-04 4.32833077260E-04 4.52858972503E-04 4.73970695981E-04 4.96231045347E-04 5.19706513314E-04 5.44467504314E-04 5.70588563659E-04 5.98148619929E-04 6.27231241315E-04 6.57924906706E-04 6.90323292343E-04 7.24525574911E-04 7.60636751979E-04 7.98767980757E-04 8.39036936180E-04 8.81568189392E-04 9.26493607749E-04 9.73952777527E-04 1.02409345058E-03 1.07707201625E-03 1.13305399992E-03 1.19221458964E-03 1.25473919236E-03 1.32082402136E-03 1.39067671654E-03 1.46451699940E-03 1.54257736448E-03 1.62510380920E-03 1.71235660428E-03 1.80461110664E-03 1.90215861728E-03 2.00530728627E-03 2.11438306750E-03 2.22973072562E-03 2.35171489796E-03 2.48072121426E-03 2.61715747712E-03 2.76145490634E-03 2.91406945031E-03 3.07548316791E-03 3.24620568445E-03 3.42677572527E-03 3.61776273094E-03 3.81976855807E-03 4.03342926991E-03 4.25941702112E-03 4.49844204122E-03 4.75125472160E-03 5.01864781084E-03 5.30145872365E-03 5.60057196860E-03 5.91692170030E-03 6.25149440175E-03 6.60533170273E-03 6.97953334057E-03 7.37526026950E-03 7.79373792532E-03 8.23625965223E-03 8.70419029878E-03 9.19896999022E-03 9.72211808494E-03 1.02752373224E-02 1.08600181707E-02 1.14782433820E-02 1.21317927637E-02 1.28226481747E-02 1.35528987546E-02 1.43247463954E-02 1.51405114643E-02 1.60026387876E-02 1.69137039039E-02 1.78764195974E-02 1.88936427196E-02 1.99683813103E-02 2.11038020261E-02 2.23032378883E-02 2.35701963572E-02 2.49083677445E-02 2.63216339722E-02 2.78140776880E-02 2.93899917459E-02 3.10538890606E-02 3.28105128454E-02 3.46648472398E-02 3.66221283367E-02 3.86878556141E-02 4.08678037797E-02 4.31680350319E-02 4.55949117443E-02 4.81551095759E-02 5.08556310101E-02 5.37038193243E-02 5.67073729900E-02 5.98743605020E-02 6.32132356338E-02 6.67328531132E-02 7.04424847131E-02 7.43518357463E-02 7.84710619530E-02 8.28107867677E-02 8.73821189464E-02 9.21966705347E-02 9.72665751531E-02 1.02604506571E-01 1.08223697536E-01 1.14137958829E-01 1.20361698497E-01 1.26909941221E-01 1.33798347767E-01 1.41043234470E-01 1.48661592678E-01 1.56671108097E-01 1.65090179949E-01 1.73937939879E-01 1.83234270501E-01 1.92999823496E-01 2.03256037153E-01 2.14025153232E-01 2.25330233040E-01 2.37195172559E-01 2.49644716508E-01 2.62704471170E-01 2.76400915819E-01 2.90761412574E-01 3.05814214489E-01 3.21588471681E-01 3.38114235282E-01 3.55422458989E-01 3.73544997982E-01 3.92514604953E-01 4.12364922985E-01 4.33130475019E-01 4.54846649598E-01 4.77549682621E-01 5.01276634763E-01 5.26065364266E-01 5.51954494759E-01 5.78983377759E-01 6.07192049509E-01 6.36621181792E-01 6.67312026359E-01 6.99306352584E-01 7.32646378000E-01 7.67374691305E-01 8.03534167498E-01 8.41167874738E-01 8.80318972591E-01 9.21030601285E-01 9.63345761631E-01 1.00730718529E+00 1.05295719507E+00 1.10033755494E+00 1.14948930956E+00 1.20045261307E+00 1.25326654689E+00 1.30796892650E+00 1.36459609709E+00 1.42318271791E+00 1.48376153551E+00 1.54636314592E+00 1.61101574588E+00 1.67774487348E+00 1.74657313842E+00 1.81751994254E+00 1.89060119098E+00 1.96582899475E+00 2.04321136549E+00 2.12275190330E+00 2.20444947879E+00 2.28829791040E+00 2.37428563855E+00 2.46239539792E+00 2.55260388966E+00 2.64488145531E+00 2.73919175446E+00 2.83549144822E+00 2.93372989092E+00 3.03384883251E+00 3.13578213426E+00 3.23945550062E+00 3.34478623009E+00 3.45168298837E+00 3.56004560671E+00 3.66976490907E+00 3.78072257127E+00 3.89279101567E+00 4.00583334494E+00 4.11970331836E+00 4.23424537429E+00 4.34929470216E+00 4.46467736754E+00 4.58021049353E+00 4.69570250154E+00 4.81095341454E+00 4.92575522542E+00 5.03989233280E+00 5.15314204634E+00 5.26527516314E+00 5.37605661631E+00 5.48524619626E+00 5.59259934458E+00 5.69786801977E+00 5.80080163337E+00 5.90114805410E+00 5.99865467699E+00 6.09306955345E+00 6.18414257754E+00 6.27162672250E+00 6.35527932105E+00 6.43486338166E+00 6.51014893258E+00 6.58091438400E+00 6.64694789837E+00 6.70804875785E+00 6.76402871732E+00 6.81471333059E+00 6.85994323719E+00 6.89957539647E+00 6.93348425568E+00 6.96156283848E+00 6.98372374055E+00 6.99990001882E+00 7.01004596195E+00 7.01413772947E+00 7.01217384863E+00 7.00417555849E+00 6.99018699215E+00 6.97027518978E+00 6.94452993611E+00 6.91306341855E+00 6.87600970351E+00 6.83352403082E+00 6.78578192845E+00 6.73297815172E+00 6.67532545370E+00 6.61305319590E+00 6.54640581020E+00 6.47564112579E+00 6.40102857636E+00 6.32284730503E+00 6.24138418624E+00 6.15693178494E+00 6.06978627505E+00 5.98024533971E+00 5.88860607651E+00 5.79516293114E+00 5.70020568262E+00 5.60401750297E+00 5.50687311300E+00 5.40903705508E+00 5.31076210183E+00 5.21228781801E+00 5.11383929079E+00 5.01562604103E+00 4.91784112569E+00 4.82066043855E+00 4.72424221370E+00 4.62872673259E+00 4.53423623297E+00 4.44087501383E+00 4.34872972778E+00 4.25786984841E+00 4.16834829694E+00 4.08020220879E+00 3.99345381752E+00 3.90811143023E+00 3.82417046521E+00 3.74161452013E+00 3.66041643636E+00 3.58053932321E+00 3.50193750483E+00 3.42455735029E+00 3.34833793095E+00 3.27322992330E+00 3.19925180758E+00 3.12643548696E+00 3.05480819842E+00 2.98439277844E+00 2.91520793622E+00 2.84726854660E+00 2.78058595808E+00 2.71516830941E+00 2.65102084692E+00 2.58814623421E+00 2.52654484508E+00 2.46621502982E+00 2.40715334481E+00 2.34935473499E+00 2.29281265864E+00 2.23751914437E+00 2.18346477017E+00 2.13063855568E+00 2.07902776264E+00 2.02861783564E+00 1.97939324012E+00 1.93133747925E+00 1.88443298618E+00 1.83866112174E+00 1.79400216487E+00 1.75043530453E+00 1.70793864561E+00 1.66648924445E+00 1.62606318870E+00 1.58663571172E+00 1.54818132281E+00 1.51067488922E+00 1.47406975674E+00 1.43837098828E+00 1.40355762831E+00 1.36960855098E+00 1.33650256584E+00 1.30421847872E+00 1.27273514343E+00 1.24203151030E+00 1.21208667144E+00 1.18287990306E+00 1.15439070465E+00 1.12659883524E+00 1.09948434672E+00 1.07302761430E+00 1.04720936422E+00 1.02201069879E+00 9.97413118697E-01 9.73398542926E-01 9.49949326101E-01 9.27048273538E-01 9.04678654004E-01 8.82824210291E-01 8.61469167708E-01 8.40598240584E-01 8.20196636870E-01 8.00250060936E-01 7.80744714673E-01 7.61667296974E-01 7.43005001712E-01 7.24745514283E-01 7.06877006843E-01 6.89388132293E-01 6.72268017137E-01 6.55506253281E-01 6.39092888868E-01 6.23018418239E-01 6.07273771104E-01 5.91850300991E-01 5.76739773075E-01 5.61934351443E-01 5.47426585885E-01 5.33209398270E-01 5.19276068584E-01 5.05620220692E-01 4.92235807887E-01 4.79117098285E-01 4.66258660127E-01 4.53655347034E-01 4.41302283269E-01 4.29194849062E-01 4.17328666029E-01 4.05699582737E-01 3.94303660451E-01 3.83137159104E-01 3.72196523514E-01 3.61478369898E-01 3.50979472695E-01 3.40696751736E-01 3.30627259786E-01 3.20768170480E-01 3.11116766669E-01 3.01670429212E-01 2.92426626212E-01 2.83382902727E-01 2.74536870964E-01 2.65886200969E-01 2.57428611825E-01 2.49161863360E-01 2.41083748386E-01 2.33192085456E-01 2.25484712091E-01 2.17959478285E-01 2.10612081291E-01 2.03442578759E-01 1.96448830984E-01 1.89628690570E-01 1.82979999659E-01 1.76500586874E-01 1.70188264691E-01 1.64040827250E-01 1.58056048627E-01 1.52231681510E-01 1.46565456288E-01 1.41055080516E-01 1.35698238738E-01 1.30492592639E-01 1.25435781504E-01 1.20525422970E-01 1.15759114019E-01 1.11134432215E-01 1.06648937137E-01 1.02300172003E-01 9.80856654344E-02 9.40029333672E-02 9.00494810559E-02 8.62228051695E-02 8.25203959469E-02 7.89397393936E-02 7.54783194991E-02 7.21336204583E-02 6.89031288781E-02 6.57843359537E-02 6.27747396010E-02 5.98718465315E-02 5.70731742581E-02 5.43762530225E-02 5.17786276349E-02 4.92778592195E-02 4.68715268599E-02 4.45572291403E-02 4.23325855801E-02 4.01952379596E-02 3.81428515380E-02 3.61731161642E-02 3.42837472826E-02 3.24724868387E-02 3.07371040876E-02 2.90753963124E-02 2.74851894577E-02 2.59643386862E-02 2.45107288667E-02 2.31222749994E-02 2.17969225899E-02 2.05326479783E-02 1.93274586331E-02 1.81793934180E-02 1.70865228391E-02 1.60469492811E-02 1.50588072381E-02 1.41202635465E-02 1.32295176234E-02 1.23848017168E-02 1.15843811682E-02 1.08265546928E-02 1.01096546750E-02 9.43204748169E-03 8.79213379026E-03 8.18834893028E-03 7.61916323502E-03 7.08308239913E-03 6.57864783768E-03 6.10443704123E-03 5.65906392124E-03 5.24117913978E-03 4.84947041724E-03 4.48266281192E-03 4.13951896527E-03 3.81883930689E-03 3.51946221379E-03 3.24026411887E-03 2.98015956385E-03 2.73810119308E-03 2.51307968450E-03 2.30412361572E-03 2.11029926292E-03 1.93071033179E-03 1.76449762014E-03 1.61083861245E-03 1.46894700753E-03 1.33807218106E-03 1.21749858527E-03 1.10654508869E-03 1.00456425944E-03 9.10941595754E-04 8.25094708011E-04 7.46472456787E-04 6.74554051565E-04 6.08848115062E-04 5.48891718133E-04 4.94249390315E-04 4.44512111014E-04 3.99296286312E-04 3.58242716251E-04 3.21015557284E-04 2.87301284411E-04 2.56807657279E-04 2.29262694299E-04 2.04413658532E-04 1.82026058838E-04 1.61882669456E-04 1.43782570895E-04 1.27540214696E-04 1.12984514309E-04 9.99579640324E-05 8.83157876437E-05 7.79251180817E-05 6.86642092319E-05 6.04216806215E-05 5.30957959294E-05 4.65937775460E-05 4.08311447339E-05 3.57310956218E-05 3.12239250358E-05 2.72464677159E-05 2.37415762265E-05 2.06576307634E-05 1.79480797088E-05 1.55710099837E-05 1.34887461626E-05 1.16674772557E-05 1.00769100101E-05 8.68994754351E-06 7.48239210265E-06 6.43267071955E-06 5.52158253999E-06 4.73206660071E-06 4.04898884695E-06 3.45894720260E-06 2.95009353184E-06 2.51197136392E-06 2.13536828926E-06 1.81218197371E-06 1.53529878685E-06 1.29848407661E-06 1.09628317642E-06 9.23932276865E-07 7.77278341481E-07 6.52707295853E-07 5.47087010429E-07 4.57759416100E-07 3.82348999838E-07 3.18799257356E-07 2.65339727754E-07 2.20448921826E-07 1.82821663380E-07 1.51340371203E-07 1.25049853448E-07 1.03135226687E-07 8.49026091832E-08 6.97622723713E-08 5.72139661587E-08 4.68341626934E-08 3.82649897826E-08 3.12046493850E-08 2.53991386624E-08 2.06351111221E-08 1.67337335386E-08 1.35454107653E-08 1.09449001565E-08 8.82501850110E-09 7.10035069696E-09 5.70026288590E-09 4.56616226892E-09 3.64955180406E-09 2.91038020556E-09 2.31564562174E-09 1.83821672072E-09 1.45583965496E-09 1.15030356598E-09 9.06740983586E-10 7.13042720236E-10 5.59369706425E-10 4.37746700210E-10 3.41724972469E-10 2.66102954473E-10 2.06695468665E-10 1.60143576414E-10 1.23758294642E-10 9.53924803776E-11 7.33360800503E-11 5.62307077260E-11 4.30001706039E-11 3.27941160547E-11 2.49424456310E-11 1.89185395949E-11 1.43096709345E-11 1.07932695953E-11 8.11793363481E-12 6.08828105375E-12 4.55290009590E-12 3.39479195328E-12 2.52381246293E-12 1.87071230209E-12 1.38245159682E-12 1.01852749321E-12 7.48104420892E-13 5.47778467774E-13 3.99841132562E-13 2.90935115824E-13 2.11016907586E-13 1.52558696536E-13 1.09936363558E-13 7.89616938130E-14 5.65259932191E-14 4.03294758404E-14 2.86764656268E-14 2.03209285223E-14 1.43503624645E-14 1.00988200539E-14 7.08198040771E-15 4.94885043189E-15 3.44596348048E-15 2.39093647644E-15 1.65300964015E-15 1.13877713321E-15 7.81762451433E-16 5.34830917628E-16 3.64687856931E-16 2.47904244567E-16 1.68056736832E-16 1.13677574786E-16 7.67907688673E-17 5.18710395466E-17 3.48968262728E-17 2.33816043066E-17 1.56017118145E-17 1.03672068054E-17 6.86000847198E-18 4.52004286923E-18 2.96549307699E-18 1.93717562227E-18 1.25991100261E-18 8.15812616444E-19 5.25897773428E-19 3.37483939014E-19 2.15588727981E-19 1.37088257722E-19 espresso-5.1/pseudo/O_US.van0000644000175000017500000073630512341373031014127 0ustar mbamba 7 3 2 3 9 2002 oxygen 8.000000000 6.000000000 5.000000000 2 737 -3.15835075432E+01 200 2.000000000 -1.757644159 210 4.000000000 -0.664248934 3 0 0.700000000 2 2 0.00000 3 8 10.00000 7.00000000000E-01 7.00000000000E-01 7.00000000000E-01 0 1.20000000000E+00 1.20000000000E+00 4 519 0 -1.75764529391E+00 0.00000000000E+00 1.88218263298E-05 3.79655050950E-05 5.74376636052E-05 7.72408401877E-05 9.73826948028E-05 1.17871399910E-04 1.38706412890E-04 1.59900174232E-04 1.81452999228E-04 2.03390164875E-04 2.25661438685E-04 2.48378117906E-04 2.71408496979E-04 2.94904406597E-04 3.18730844697E-04 3.43037403341E-04 3.67706087116E-04 3.92799833210E-04 4.18369010284E-04 4.44313374063E-04 4.70760291247E-04 4.97589632922E-04 5.24945134266E-04 5.52750320332E-04 5.80982059271E-04 6.09786301756E-04 6.38987203506E-04 6.68744121964E-04 6.99025336006E-04 7.29757250544E-04 7.61075675417E-04 7.92892221780E-04 8.25304885540E-04 8.58183881788E-04 8.91705977621E-04 9.25775236013E-04 9.60395021200E-04 9.95667923341E-04 1.03148660284E-03 1.06794303822E-03 1.10502217129E-03 1.14274987178E-03 1.18108073140E-03 1.22009946584E-03 1.25979001667E-03 1.30012594020E-03 1.34119663504E-03 1.38292189359E-03 1.42540372405E-03 1.46857416870E-03 1.51249672746E-03 1.55719893899E-03 1.60261572034E-03 1.64884419722E-03 1.69585189496E-03 1.74365594902E-03 1.79226884391E-03 1.84176623041E-03 1.89203336768E-03 1.94321988289E-03 1.99525081127E-03 2.04818355642E-03 2.10201372011E-03 2.15675014912E-03 2.21247083096E-03 2.26910254488E-03 2.32669485097E-03 2.38530201598E-03 2.44490713497E-03 2.50550366615E-03 2.56715961688E-03 2.62986784366E-03 2.69363243606E-03 2.75852153210E-03 2.82447328399E-03 2.89159244411E-03 2.95983363141E-03 3.02925832039E-03 3.09984363400E-03 3.17167307244E-03 3.24470633719E-03 3.31898701699E-03 3.39454916361E-03 3.47138054848E-03 3.54956408499E-03 3.62904289762E-03 3.70991430082E-03 3.79213494740E-03 3.87579606126E-03 3.96085658521E-03 4.04738428096E-03 4.13539981630E-03 4.22491321485E-03 4.31593394278E-03 4.40854971699E-03 4.50272821958E-03 4.59851249076E-03 4.69594084928E-03 4.79503725854E-03 4.89582463078E-03 4.99832637066E-03 5.10258600408E-03 5.20864707077E-03 5.31649025990E-03 5.42619456042E-03 5.53776652004E-03 5.65124707998E-03 5.76668438470E-03 5.88405973982E-03 6.00347316661E-03 6.12491411764E-03 6.24843060276E-03 6.37406153691E-03 6.50184489152E-03 6.63179558564E-03 6.76399194442E-03 6.89842914678E-03 7.03516529870E-03 7.17424245624E-03 7.31571641265E-03 7.45956039826E-03 7.60592370900E-03 7.75474660334E-03 7.90610637202E-03 8.06010064405E-03 8.21667839163E-03 8.37596297246E-03 8.53795117910E-03 8.70273092941E-03 8.87029236902E-03 9.04076373668E-03 9.21410993249E-03 9.39043879319E-03 9.56976719150E-03 9.75217972427E-03 9.93769871995E-03 1.01263899879E-02 1.03183072940E-02 1.05135073071E-02 1.07120396164E-02 1.09139659738E-02 1.11193515908E-02 1.13282399646E-02 1.15406967383E-02 1.17567888031E-02 1.19765859369E-02 1.22001190673E-02 1.24274872221E-02 1.26587318074E-02 1.28939453707E-02 1.31331620232E-02 1.33764743575E-02 1.36239511688E-02 1.38756453130E-02 1.41316592016E-02 1.43920333464E-02 1.46568609474E-02 1.49262206386E-02 1.52001857175E-02 1.54788245912E-02 1.57622374737E-02 1.60504813184E-02 1.63436640267E-02 1.66418532179E-02 1.69451383044E-02 1.72536109765E-02 1.75673484883E-02 1.78864566526E-02 1.82110202380E-02 1.85411200738E-02 1.88768778970E-02 1.92183603738E-02 1.95656856568E-02 1.99189507890E-02 2.02782507911E-02 2.06436880296E-02 2.10153806078E-02 2.13934156628E-02 2.17779221634E-02 2.21689931327E-02 2.25667505096E-02 2.29713083827E-02 2.33827815962E-02 2.38012822457E-02 2.42269390385E-02 2.46598736172E-02 2.51002023951E-02 2.55480632689E-02 2.60035726695E-02 2.64668684567E-02 2.69380908502E-02 2.74173547682E-02 2.79048153781E-02 2.84006094086E-02 2.89048773808E-02 2.94177530325E-02 2.99394124888E-02 3.04699722869E-02 3.10096032480E-02 3.15584643892E-02 3.21166940003E-02 3.26844723141E-02 3.32619511440E-02 3.38493006078E-02 3.44466829634E-02 3.50542813819E-02 3.56722615329E-02 3.63007978109E-02 3.69400810534E-02 3.75902880319E-02 3.82516031602E-02 3.89242227842E-02 3.96083358752E-02 4.03041400878E-02 4.10118324431E-02 4.17316199268E-02 4.24637057668E-02 4.32083041503E-02 4.39656223189E-02 4.47358829742E-02 4.55193056179E-02 4.63161127227E-02 4.71265393710E-02 4.79508070070E-02 4.87891626296E-02 4.96418394635E-02 5.05090884310E-02 5.13911538088E-02 5.22882881679E-02 5.32007487204E-02 5.41288036262E-02 5.50727053750E-02 5.60327412785E-02 5.70091738650E-02 5.80022878602E-02 5.90123634992E-02 6.00397042201E-02 6.10845800948E-02 6.21473159350E-02 6.32281975200E-02 6.43275460679E-02 6.54456705632E-02 6.65828903134E-02 6.77395369199E-02 6.89159373783E-02 7.01124252496E-02 7.13293517802E-02 7.25670582972E-02 7.38258991034E-02 7.51062391910E-02 7.64084410419E-02 7.77328779242E-02 7.90799290054E-02 8.04499794932E-02 8.18434205532E-02 8.32606507064E-02 8.47020772328E-02 8.61681073386E-02 8.76591645329E-02 8.91756735761E-02 9.07180640878E-02 9.22867821663E-02 9.38822719453E-02 9.55049892006E-02 9.71553980730E-02 9.88339700607E-02 1.00541181270E-01 1.02277518958E-01 1.04043482956E-01 1.05839568817E-01 1.07666295604E-01 1.09524177520E-01 1.11413748893E-01 1.13335543604E-01 1.15290110446E-01 1.17278005122E-01 1.19299794080E-01 1.21356048527E-01 1.23447356001E-01 1.25574311330E-01 1.27737515240E-01 1.29937582604E-01 1.32175140229E-01 1.34450819639E-01 1.36765264940E-01 1.39119136910E-01 1.41513097084E-01 1.43947824595E-01 1.46424008252E-01 1.48942348127E-01 1.51503556309E-01 1.54108354305E-01 1.56757477829E-01 1.59451675172E-01 1.62191703552E-01 1.64978336374E-01 1.67812356541E-01 1.70694560878E-01 1.73625760524E-01 1.76606776400E-01 1.79638447120E-01 1.82721618586E-01 1.85857158185E-01 1.89045940335E-01 1.92288856676E-01 1.95586811722E-01 1.98940727545E-01 2.02351534663E-01 2.05820185655E-01 2.09347640298E-01 2.12934882031E-01 2.16582901329E-01 2.20292708949E-01 2.24065330880E-01 2.27901807662E-01 2.31803195736E-01 2.35770570251E-01 2.39805016734E-01 2.43907646100E-01 2.48079577180E-01 2.52321951016E-01 2.56635923452E-01 2.61022668044E-01 2.65483374380E-01 2.70019251617E-01 2.74631524388E-01 2.79321435638E-01 2.84090245371E-01 2.88939232646E-01 2.93869691920E-01 2.98882939128E-01 3.03980304252E-01 3.09163137804E-01 3.14432806491E-01 3.19790697090E-01 3.25238212570E-01 3.30776773292E-01 3.36407820212E-01 3.42132807924E-01 3.47953213278E-01 3.53870524950E-01 3.59886255414E-01 3.66001927632E-01 3.72219085780E-01 3.78539288674E-01 3.84964111222E-01 3.91495145275E-01 3.98133994611E-01 4.04882282523E-01 4.11741642087E-01 4.18713722541E-01 4.25800184402E-01 4.33002700859E-01 4.40322956722E-01 4.47762645317E-01 4.55323471008E-01 4.63007144674E-01 4.70815384254E-01 4.78749913605E-01 4.86812459096E-01 4.95004750911E-01 5.03328516655E-01 5.11785485851E-01 5.20377381136E-01 5.29105920266E-01 5.37972812106E-01 5.46979753440E-01 5.56128428036E-01 5.65420498506E-01 5.74857610498E-01 5.84441380681E-01 5.94173398240E-01 6.04055218597E-01 6.14088356624E-01 6.24274286152E-01 6.34614428034E-01 6.45110149573E-01 6.55762754616E-01 6.66573477492E-01 6.77543474880E-01 6.88673817219E-01 6.99965481299E-01 7.11419337035E-01 7.23036141430E-01 7.34816522971E-01 7.46760972175E-01 7.58869826910E-01 7.71143258794E-01 7.83581257939E-01 7.96183615115E-01 8.08949905876E-01 8.21879469591E-01 8.34971389765E-01 8.48224471129E-01 8.61637216129E-01 8.75207798581E-01 8.88934036707E-01 9.02813361800E-01 9.16842787875E-01 9.31018875606E-01 9.45337696512E-01 9.59794791494E-01 9.74385129637E-01 9.89103061406E-01 1.00394226949E+00 1.01889571591E+00 1.03395558527E+00 1.04911322495E+00 1.06435907859E+00 1.07968261784E+00 1.09507226801E+00 1.11051532810E+00 1.12599788662E+00 1.14150473151E+00 1.15701925360E+00 1.17252334479E+00 1.18799728962E+00 1.20341964964E+00 1.21876714202E+00 1.23401451110E+00 1.24913439122E+00 1.26409716595E+00 1.27887081618E+00 1.29342076451E+00 1.30770971122E+00 1.32169746529E+00 1.33534076772E+00 1.34859311217E+00 1.36140456054E+00 1.37372155572E+00 1.38548673427E+00 1.39663873978E+00 1.40711204013E+00 1.41683675157E+00 1.42573847382E+00 1.43373813940E+00 1.44075188583E+00 1.44669095120E+00 1.45146160830E+00 1.45496513920E+00 1.45709786432E+00 1.45775123670E+00 1.45681201555E+00 1.45416253350E+00 1.44968107696E+00 1.44324239736E+00 1.43471837865E+00 1.42397888385E+00 1.41089280974E+00 1.39532938022E+00 1.37715971351E+00 1.35625869608E+00 1.33250720811E+00 1.30579473599E+00 1.27602242061E+00 1.24310658185E+00 1.20698276741E+00 1.16761036795E+00 1.12497784198E+00 1.07910858713E+00 1.03006749212E+00 9.77968190874E-01 9.22981037342E-01 8.65341798839E-01 8.05361061288E-01 7.43434319784E-01 6.80052718437E-01 6.15814396383E-01 5.51436398642E-01 4.87767128985E-01 4.25799368929E-01 3.66683975776E-01 3.11744523423E-01 2.62493399434E-01 2.20650249242E-01 1.88164242649E-01 1.67245150032E-01 1.49722461024E-01 1.33583583339E-01 1.18209948265E-01 1.02896563568E-01 8.69403884432E-02 6.97821693153E-02 5.12618091845E-02 3.20120183110E-02 1.40284315729E-02 2.00317257640E-03 -1.71702638303E-04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2.37093114382E+00 6.37001146400E+00 -2.81423698376E-01 0.00000000000E+00 -3.73129097873E-10 -1.51813790066E-09 -3.47461464800E-09 -6.28373433413E-09 -9.98831720896E-09 -1.46328893611E-08 -2.02637454555E-08 -2.69290137016E-08 -3.46787231289E-08 -4.35648732527E-08 -5.36415062113E-08 -6.49647814624E-08 -7.75930531285E-08 -9.15869500825E-08 -1.07009458871E-07 -1.23926009571E-07 -1.42404564689E-07 -1.62515711203E-07 -1.84332755855E-07 -2.07931823816E-07 -2.33391960837E-07 -2.60795239002E-07 -2.90226866217E-07 -3.21775299562E-07 -3.55532362640E-07 -3.91593367066E-07 -4.30057238227E-07 -4.71026645486E-07 -5.14608136965E-07 -5.60912279065E-07 -6.10053800909E-07 -6.62151743855E-07 -7.17329616274E-07 -7.75715553762E-07 -8.37442484986E-07 -9.02648303353E-07 -9.71476044714E-07 -1.04407407130E-06 -1.12059626210E-06 -1.20120220996E-06 -1.28605742554E-06 -1.37533354848E-06 -1.46920856591E-06 -1.56786703865E-06 -1.67150033535E-06 -1.78030687476E-06 -1.89449237661E-06 -2.01427012112E-06 -2.13986121770E-06 -2.27149488303E-06 -2.40940872879E-06 -2.55384905961E-06 -2.70507118125E-06 -2.86333971968E-06 -3.02892895129E-06 -3.20212314458E-06 -3.38321691384E-06 -3.57251558514E-06 -3.77033557517E-06 -3.97700478319E-06 -4.19286299674E-06 -4.41826231150E-06 -4.65356756576E-06 -4.89915679007E-06 -5.15542167254E-06 -5.42276804041E-06 -5.70161635835E-06 -5.99240224414E-06 -6.29557700236E-06 -6.61160817659E-06 -6.94098012094E-06 -7.28419459138E-06 -7.64177135772E-06 -8.01424883690E-06 -8.40218474827E-06 -8.80615679173E-06 -9.22676334942E-06 -9.66462421181E-06 -1.01203813291E-05 -1.05946995888E-05 -1.10882676201E-05 -1.16017986264E-05 -1.21360312469E-05 -1.26917304477E-05 -1.32696884447E-05 -1.38707256572E-05 -1.44956916960E-05 -1.51454663854E-05 -1.58209608200E-05 -1.65231184590E-05 -1.72529162584E-05 -1.80113658423E-05 -1.87995147146E-05 -1.96184475135E-05 -2.04692873089E-05 -2.13531969447E-05 -2.22713804285E-05 -2.32250843688E-05 -2.42155994620E-05 -2.52442620316E-05 -2.63124556199E-05 -2.74216126360E-05 -2.85732160595E-05 -2.97688012049E-05 -3.10099575457E-05 -3.22983306024E-05 -3.36356238963E-05 -3.50236009701E-05 -3.64640874789E-05 -3.79589733542E-05 -3.95102150419E-05 -4.11198378182E-05 -4.27899381863E-05 -4.45226863548E-05 -4.63203288032E-05 -4.81851909356E-05 -5.01196798262E-05 -5.21262870598E-05 -5.42075916711E-05 -5.63662631852E-05 -5.86050647637E-05 -6.09268564589E-05 -6.33345985816E-05 -6.58313551849E-05 -6.84202976682E-05 -7.11047085063E-05 -7.38879851074E-05 -7.67736438042E-05 -7.97653239833E-05 -8.28667923572E-05 -8.60819473840E-05 -8.94148238400E-05 -9.28695975498E-05 -9.64505902807E-05 -1.00162274806E-04 -1.04009280141E-04 -1.07996396965E-04 -1.12128583225E-04 -1.16410969937E-04 -1.20848867185E-04 -1.25447770327E-04 -1.30213366421E-04 -1.35151540862E-04 -1.40268384260E-04 -1.45570199545E-04 -1.51063509327E-04 -1.56755063502E-04 -1.62651847122E-04 -1.68761088540E-04 -1.75090267837E-04 -1.81647125529E-04 -1.88439671588E-04 -1.95476194766E-04 -2.02765272242E-04 -2.10315779601E-04 -2.18136901162E-04 -2.26238140652E-04 -2.34629332259E-04 -2.43320652056E-04 -2.52322629826E-04 -2.61646161292E-04 -2.71302520763E-04 -2.81303374227E-04 -2.91660792881E-04 -3.02387267137E-04 -3.13495721108E-04 -3.24999527586E-04 -3.36912523547E-04 -3.49249026177E-04 -3.62023849460E-04 -3.75252321326E-04 -3.88950301398E-04 -4.03134199346E-04 -4.17820993867E-04 -4.33028252323E-04 -4.48774151051E-04 -4.65077496374E-04 -4.81957746325E-04 -4.99435033129E-04 -5.17530186443E-04 -5.36264757409E-04 -5.55661043516E-04 -5.75742114325E-04 -5.96531838076E-04 -6.18054909201E-04 -6.40336876783E-04 -6.63404173992E-04 -6.87284148529E-04 -7.12005094106E-04 -7.37596283010E-04 -7.64087999779E-04 -7.91511576034E-04 -8.19899426489E-04 -8.49285086209E-04 -8.79703249129E-04 -9.11189807893E-04 -9.43781895051E-04 -9.77517925664E-04 -1.01243764136E-03 -1.04858215590E-03 -1.08599400228E-03 -1.12471718144E-03 -1.16479721268E-03 -1.20628118570E-03 -1.24921781449E-03 -1.29365749302E-03 -1.33965235280E-03 -1.38725632246E-03 -1.43652518928E-03 -1.48751666285E-03 -1.54029044086E-03 -1.59490827718E-03 -1.65143405212E-03 -1.70993384520E-03 -1.77047601033E-03 -1.83313125347E-03 -1.89797271302E-03 -1.96507604282E-03 -2.03451949801E-03 -2.10638402376E-03 -2.18075334698E-03 -2.25771407109E-03 -2.33735577403E-03 -2.41977110953E-03 -2.50505591170E-03 -2.59330930324E-03 -2.68463380718E-03 -2.77913546239E-03 -2.87692394293E-03 -2.97811268136E-03 -3.08281899616E-03 -3.19116422341E-03 -3.30327385279E-03 -3.41927766808E-03 -3.53930989239E-03 -3.66350933806E-03 -3.79201956160E-03 -3.92498902366E-03 -4.06257125431E-03 -4.20492502369E-03 -4.35221451826E-03 -4.50460952280E-03 -4.66228560836E-03 -4.82542432631E-03 -4.99421340864E-03 -5.16884697481E-03 -5.34952574523E-03 -5.53645726165E-03 -5.72985611457E-03 -5.92994417801E-03 -6.13695085167E-03 -6.35111331094E-03 -6.57267676469E-03 -6.80189472132E-03 -7.03902926317E-03 -7.28435132953E-03 -7.53814100848E-03 -7.80068783790E-03 -8.07229111578E-03 -8.35326022008E-03 -8.64391493850E-03 -8.94458580831E-03 -9.25561446654E-03 -9.57735401076E-03 -9.91016937082E-03 -1.02544376916E-02 -1.06105487273E-02 -1.09789052472E-02 -1.13599234539E-02 -1.17540334128E-02 -1.21616794950E-02 -1.25833208324E-02 -1.30194317860E-02 -1.34705024275E-02 -1.39370390340E-02 -1.44195645969E-02 -1.49186193448E-02 -1.54347612800E-02 -1.59685667302E-02 -1.65206309145E-02 -1.70915685240E-02 -1.76820143179E-02 -1.82926237346E-02 -1.89240735175E-02 -1.95770623577E-02 -2.02523115504E-02 -2.09505656686E-02 -2.16725932512E-02 -2.24191875072E-02 -2.31911670361E-02 -2.39893765625E-02 -2.48146876873E-02 -2.56679996537E-02 -2.65502401281E-02 -2.74623659956E-02 -2.84053641704E-02 -2.93802524195E-02 -3.03880802002E-02 -3.14299295102E-02 -3.25069157496E-02 -3.36201885948E-02 -3.47709328822E-02 -3.59603695013E-02 -3.71897562963E-02 -3.84603889740E-02 -3.97736020176E-02 -4.11307696038E-02 -4.25333065218E-02 -4.39826690922E-02 -4.54803560835E-02 -4.70279096236E-02 -4.86269161034E-02 -5.02790070698E-02 -5.19858601051E-02 -5.37491996880E-02 -5.55707980335E-02 -5.74524759065E-02 -5.93961034047E-02 -6.14036007060E-02 -6.34769387737E-02 -6.56181400143E-02 -6.78292788816E-02 -7.01124824181E-02 -7.24699307285E-02 -7.49038573738E-02 -7.74165496803E-02 -8.00103489502E-02 -8.26876505656E-02 -8.54509039735E-02 -8.83026125389E-02 -9.12453332537E-02 -9.42816762863E-02 -9.74143043568E-02 -1.00645931921E-01 -1.03979324144E-01 -1.07417295652E-01 -1.10962709026E-01 -1.14618473034E-01 -1.18387540567E-01 -1.22272906255E-01 -1.26277603743E-01 -1.30404702590E-01 -1.34657304768E-01 -1.39038540726E-01 -1.43551564987E-01 -1.48199551244E-01 -1.52985686906E-01 -1.57913167078E-01 -1.62985187906E-01 -1.68204939263E-01 -1.73575596724E-01 -1.79100312777E-01 -1.84782207230E-01 -1.90624356754E-01 -1.96629783510E-01 -2.02801442809E-01 -2.09142209745E-01 -2.15654864738E-01 -2.22342077938E-01 -2.29206392422E-01 -2.36250206123E-01 -2.43475752440E-01 -2.50885079462E-01 -2.58480027742E-01 -2.66262206589E-01 -2.74232968792E-01 -2.82393383761E-01 -2.90744209014E-01 -2.99285859995E-01 -3.08018378180E-01 -3.16941397461E-01 -3.26054108795E-01 -3.35355223135E-01 -3.44842932647E-01 -3.54514870274E-01 -3.64368067696E-01 -3.74398911778E-01 -3.84603099607E-01 -3.94975592280E-01 -4.05510567594E-01 -4.16201371866E-01 -4.27040471138E-01 -4.38019402038E-01 -4.49128722670E-01 -4.60357963899E-01 -4.71695581498E-01 -4.83128909632E-01 -4.94644116256E-01 -5.06226161032E-01 -5.17858756432E-01 -5.29524332758E-01 -5.41204007855E-01 -5.52877562335E-01 -5.64523421175E-01 -5.76118642572E-01 -5.87638914951E-01 -5.99058563014E-01 -6.10350563678E-01 -6.21486572706E-01 -6.32436962722E-01 -6.43170873168E-01 -6.53656272590E-01 -6.63860033392E-01 -6.73748018901E-01 -6.83285182228E-01 -6.92435675979E-01 -7.01162971343E-01 -7.09429984540E-01 -7.17199207899E-01 -7.24432842154E-01 -7.31092925743E-01 -7.37141456062E-01 -7.42540496816E-01 -7.47252264782E-01 -7.51239188594E-01 -7.54463931577E-01 -7.56889370320E-01 -7.58478520722E-01 -7.59194403714E-01 -7.58999844011E-01 -7.57857197238E-01 -7.55728003753E-01 -7.52572571798E-01 -7.48349498386E-01 -7.43015143903E-01 -7.36523085956E-01 -7.28823589728E-01 -7.19863146091E-01 -7.09584144950E-01 -6.97924769478E-01 -6.84819216447E-01 -6.70198367834E-01 -6.53991057655E-01 -6.36126093269E-01 -6.16535198990E-01 -5.95157047307E-01 -5.71942523755E-01 -5.46861328282E-01 -5.19909940163E-01 -4.91120855294E-01 -4.60572833230E-01 -4.28401656414E-01 -3.94810597930E-01 -3.60079415171E-01 -3.24570245525E-01 -2.88728308078E-01 -2.53074879454E-01 -2.18189735750E-01 -1.84680347829E-01 -1.53135930401E-01 -1.24066524428E-01 -9.78314847631E-02 -7.45693351999E-02 -5.41538609669E-02 -3.62223667529E-02 -2.03551231036E-02 -6.38380720246E-03 5.70705345492E-03 1.59437787217E-02 2.43697115215E-02 3.10451417491E-02 3.60471027754E-02 3.94690343423E-02 4.14203003858E-02 4.20255376917E-02 4.14237993904E-02 3.97674375506E-02 3.72206511264E-02 3.39576017192E-02 3.01599815679E-02 2.60139012208E-02 2.17059628205E-02 1.74183991444E-02 1.33232064636E-02 9.57528739354E-03 6.30476863361E-03 3.60887727559E-03 1.54406211022E-03 1.19428108262E-04 -7.07011338955E-04 -1.02734265848E-03 -9.75851860679E-04 -7.12252172520E-04 -3.95221172163E-04 -1.48317705473E-04 -2.62515986934E-05 -3.58101321517E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -1.33016518940E+01 6.59065692713E+01 1.01249551289E+02 -2.34357956744E+03 1.11381377834E+04 -2.58527841297E+04 2.98820075593E+04 -1.37203195181E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -9.64748461868E-02 2.43523082944E+00 -1.75201418198E-01 0.00000000000E+00 -2.69995676405E-10 -1.09852239271E-09 -2.51422614211E-09 -4.54690109128E-09 -7.22753191166E-09 -1.05883376173E-08 -1.46628169618E-08 -1.94857954489E-08 -2.50934740136E-08 -3.15234794317E-08 -3.88149165182E-08 -4.70084221782E-08 -5.61462213731E-08 -6.62721850710E-08 -7.74318902497E-08 -8.96726820233E-08 -1.03043737969E-07 -1.17596134726E-07 -1.33382916954E-07 -1.50459168727E-07 -1.68882087442E-07 -1.88711060350E-07 -2.10007743781E-07 -2.32836145163E-07 -2.57262707936E-07 -2.83356399460E-07 -3.11188802023E-07 -3.40834207046E-07 -3.72369712616E-07 -4.05875324446E-07 -4.41434060391E-07 -4.79132058635E-07 -5.19058689688E-07 -5.61306672319E-07 -6.05972193560E-07 -6.53155032925E-07 -7.02958690998E-07 -7.55490522524E-07 -8.10861874183E-07 -8.69188227189E-07 -9.30589344892E-07 -9.95189425560E-07 -1.06311726051E-06 -1.13450639777E-06 -1.20949531153E-06 -1.28822757744E-06 -1.37085205409E-06 -1.45752307090E-06 -1.54840062246E-06 -1.64365056977E-06 -1.74344484850E-06 -1.84796168450E-06 -1.95738581686E-06 -2.07190872878E-06 -2.19172888651E-06 -2.31705198658E-06 -2.44809121177E-06 -2.58506749591E-06 -2.72820979798E-06 -2.87775538581E-06 -3.03395012957E-06 -3.19704880564E-06 -3.36731541095E-06 -3.54502348839E-06 -3.73045646348E-06 -3.92390799284E-06 -4.12568232475E-06 -4.33609467235E-06 -4.55547159976E-06 -4.78415142169E-06 -5.02248461699E-06 -5.27083425655E-06 -5.52957644614E-06 -5.79910078463E-06 -6.07981083822E-06 -6.37212463108E-06 -6.67647515312E-06 -6.99331088546E-06 -7.32309634405E-06 -7.66631264237E-06 -8.02345807351E-06 -8.39504871265E-06 -8.78161904035E-06 -9.18372258762E-06 -9.60193260329E-06 -1.00368427447E-05 -1.04890677921E-05 -1.09592443886E-05 -1.14480318045E-05 -1.19561127297E-05 -1.24841940923E-05 -1.30330079069E-05 -1.36033121506E-05 -1.41958916717E-05 -1.48115591275E-05 -1.54511559566E-05 -1.61155533840E-05 -1.68056534610E-05 -1.75223901416E-05 -1.82667303959E-05 -1.90396753623E-05 -1.98422615397E-05 -2.06755620207E-05 -2.15406877679E-05 -2.24387889343E-05 -2.33710562294E-05 -2.43387223328E-05 -2.53430633568E-05 -2.63854003593E-05 -2.74671009094E-05 -2.85895807078E-05 -2.97543052617E-05 -3.09627916198E-05 -3.22166101655E-05 -3.35173864737E-05 -3.48668032305E-05 -3.62666022209E-05 -3.77185863835E-05 -3.92246219380E-05 -4.07866405856E-05 -4.24066417849E-05 -4.40866951080E-05 -4.58289426767E-05 -4.76356016839E-05 -4.95089670020E-05 -5.14514138811E-05 -5.34654007412E-05 -5.55534720603E-05 -5.77182613627E-05 -5.99624943111E-05 -6.22889919041E-05 -6.47006737862E-05 -6.72005616706E-05 -6.97917828811E-05 -7.24775740164E-05 -7.52612847403E-05 -7.81463817040E-05 -8.11364526029E-05 -8.42352103739E-05 -8.74464975380E-05 -9.07742906923E-05 -9.42227051574E-05 -9.77959997855E-05 -1.01498581934E-04 -1.05335012611E-04 -1.09310011799E-04 -1.13428463962E-04 -1.17695423741E-04 -1.22116121849E-04 -1.26695971167E-04 -1.31440573052E-04 -1.36355723863E-04 -1.41447421706E-04 -1.46721873425E-04 -1.52185501815E-04 -1.57844953103E-04 -1.63707104677E-04 -1.69779073076E-04 -1.76068222271E-04 -1.82582172217E-04 -1.89328807705E-04 -1.96316287522E-04 -2.03553053922E-04 -2.11047842423E-04 -2.18809691946E-04 -2.26847955301E-04 -2.35172310028E-04 -2.43792769623E-04 -2.52719695139E-04 -2.61963807193E-04 -2.71536198385E-04 -2.81448346140E-04 -2.91712126000E-04 -3.02339825361E-04 -3.13344157698E-04 -3.24738277261E-04 -3.36535794295E-04 -3.48750790763E-04 -3.61397836628E-04 -3.74492006680E-04 -3.88048897951E-04 -4.02084647717E-04 -4.16615952132E-04 -4.31660085485E-04 -4.47234920132E-04 -4.63358947106E-04 -4.80051297426E-04 -4.97331764155E-04 -5.15220825190E-04 -5.33739666858E-04 -5.52910208296E-04 -5.72755126685E-04 -5.93297883337E-04 -6.14562750677E-04 -6.36574840149E-04 -6.59360131075E-04 -6.82945500502E-04 -7.07358754064E-04 -7.32628657906E-04 -7.58784971693E-04 -7.85858482741E-04 -8.13881041324E-04 -8.42885597172E-04 -8.72906237224E-04 -9.03978224657E-04 -9.36138039255E-04 -9.69423419138E-04 -1.00387340392E-03 -1.03952837935E-03 -1.07643012341E-03 -1.11462185406E-03 -1.15414827855E-03 -1.19505564441E-03 -1.23739179219E-03 -1.28120620997E-03 -1.32655008968E-03 -1.37347638544E-03 -1.42203987371E-03 -1.47229721561E-03 -1.52430702128E-03 -1.57812991638E-03 -1.63382861093E-03 -1.69146797035E-03 -1.75111508899E-03 -1.81283936603E-03 -1.87671258405E-03 -1.94280899009E-03 -2.01120537959E-03 -2.08198118295E-03 -2.15521855516E-03 -2.23100246831E-03 -2.30942080721E-03 -2.39056446822E-03 -2.47452746133E-03 -2.56140701565E-03 -2.65130368838E-03 -2.74432147743E-03 -2.84056793769E-03 -2.94015430121E-03 -3.04319560129E-03 -3.14981080066E-03 -3.26012292388E-03 -3.37425919407E-03 -3.49235117411E-03 -3.61453491245E-03 -3.74095109364E-03 -3.87174519380E-03 -4.00706764109E-03 -4.14707398135E-03 -4.29192504915E-03 -4.44178714427E-03 -4.59683221386E-03 -4.75723804044E-03 -4.92318843586E-03 -5.09487344149E-03 -5.27248953463E-03 -5.45623984155E-03 -5.64633435719E-03 -5.84299017168E-03 -6.04643170403E-03 -6.25689094299E-03 -6.47460769540E-03 -6.69982984220E-03 -6.93281360221E-03 -7.17382380404E-03 -7.42313416620E-03 -7.68102758561E-03 -7.94779643481E-03 -8.22374286805E-03 -8.50917913629E-03 -8.80442791165E-03 -9.10982262114E-03 -9.42570779013E-03 -9.75243939570E-03 -1.00903852300E-02 -1.04399252737E-02 -1.08014520803E-02 -1.11753711704E-02 -1.15621014376E-02 -1.19620755642E-02 -1.23757404490E-02 -1.28035576462E-02 -1.32460038148E-02 -1.37035711808E-02 -1.41767680096E-02 -1.46661190913E-02 -1.51721662371E-02 -1.56954687871E-02 -1.62366041306E-02 -1.67961682380E-02 -1.73747762037E-02 -1.79730628013E-02 -1.85916830501E-02 -1.92313127930E-02 -1.98926492846E-02 -2.05764117917E-02 -2.12833422025E-02 -2.20142056470E-02 -2.27697911267E-02 -2.35509121531E-02 -2.43584073944E-02 -2.51931413307E-02 -2.60560049150E-02 -2.69479162407E-02 -2.78698212135E-02 -2.88226942272E-02 -2.98075388415E-02 -3.08253884610E-02 -3.18773070122E-02 -3.29643896191E-02 -3.40877632728E-02 -3.52485874947E-02 -3.64480549897E-02 -3.76873922867E-02 -3.89678603644E-02 -4.02907552576E-02 -4.16574086414E-02 -4.30691883882E-02 -4.45274990950E-02 -4.60337825734E-02 -4.75895183003E-02 -4.91962238201E-02 -5.08554550953E-02 -5.25688067969E-02 -5.43379125277E-02 -5.61644449699E-02 -5.80501159504E-02 -5.99966764111E-02 -6.20059162772E-02 -6.40796642105E-02 -6.62197872363E-02 -6.84281902319E-02 -7.07068152612E-02 -7.30576407423E-02 -7.54826804307E-02 -7.79839822018E-02 -8.05636266136E-02 -8.32237252297E-02 -8.59664186824E-02 -8.87938744521E-02 -9.17082843387E-02 -9.47118616003E-02 -9.78068377307E-02 -1.00995458847E-01 -1.04279981653E-01 -1.07662668958E-01 -1.11145784690E-01 -1.14731588402E-01 -1.18422329201E-01 -1.22220239078E-01 -1.26127525590E-01 -1.30146363852E-01 -1.34278887792E-01 -1.38527180616E-01 -1.42893264451E-01 -1.47379089093E-01 -1.51986519825E-01 -1.56717324251E-01 -1.61573158081E-01 -1.66555549835E-01 -1.71665884399E-01 -1.76905385384E-01 -1.82275096254E-01 -1.87775860154E-01 -1.93408298424E-01 -1.99172787737E-01 -2.05069435855E-01 -2.11098055962E-01 -2.17258139576E-01 -2.23548828030E-01 -2.29968882541E-01 -2.36516652900E-01 -2.43190044812E-01 -2.49986485986E-01 -2.56902891036E-01 -2.63935625337E-01 -2.71080467977E-01 -2.78332573990E-01 -2.85686436106E-01 -2.93135846273E-01 -3.00673857267E-01 -3.08292744757E-01 -3.15983970242E-01 -3.23738145329E-01 -3.31544997889E-01 -3.39393340696E-01 -3.47271043195E-01 -3.55165007136E-01 -3.63061146865E-01 -3.70944375111E-01 -3.78798595179E-01 -3.86606700503E-01 -3.94350582536E-01 -4.02011147990E-01 -4.09568346431E-01 -4.17001209198E-01 -4.24287900572E-01 -4.31405782028E-01 -4.38331490237E-01 -4.45041029301E-01 -4.51509877465E-01 -4.57713108173E-01 -4.63625524955E-01 -4.69221809119E-01 -4.74476678606E-01 -4.79365055670E-01 -4.83862240215E-01 -4.87944084700E-01 -4.91587165471E-01 -4.94768944272E-01 -4.97467912446E-01 -4.99663709120E-01 -5.01337203385E-01 -5.02470529321E-01 -5.03047061658E-01 -5.03051319071E-01 -5.02468781749E-01 -5.01285609981E-01 -4.99488251490E-01 -4.97062927152E-01 -4.93994987953E-01 -4.90268140905E-01 -4.85863548384E-01 -4.80758814469E-01 -4.74926883646E-01 -4.68334891982E-01 -4.60943028960E-01 -4.52703489485E-01 -4.43559620278E-01 -4.33445392222E-01 -4.22285359549E-01 -4.09995296208E-01 -3.96483727109E-01 -3.81654593314E-01 -3.65411300901E-01 -3.47662396151E-01 -3.28329076429E-01 -3.07354675542E-01 -2.84716141572E-01 -2.60437339174E-01 -2.34603741418E-01 -2.07377713576E-01 -1.79013122498E-01 -1.49867430173E-01 -1.20408768034E-01 -9.12147927336E-02 -6.29595039326E-02 -3.63838590295E-02 -1.22462865220E-02 8.74937187354E-03 2.60475047383E-02 3.93481589553E-02 4.87082596906E-02 5.45960571618E-02 5.78248546973E-02 5.92401170887E-02 5.92090038022E-02 5.78193505473E-02 5.51651294971E-02 5.13570619038E-02 4.65222785212E-02 4.08037840526E-02 3.43596862402E-02 2.73621313823E-02 1.99958677042E-02 1.24563309332E-02 4.94712128763E-03 -2.32328771243E-03 -9.14578620359E-03 -1.53159999445E-02 -2.06409693099E-02 -2.49472624979E-02 -2.80905455431E-02 -2.99664642738E-02 -3.05224235233E-02 -2.97694740733E-02 -2.77930057267E-02 -2.47603177967E-02 -2.09224198590E-02 -1.66067296895E-02 -1.21968938648E-02 -8.09618657235E-03 -4.67256349497E-03 -2.18766091930E-03 -7.20765731276E-04 -1.15017753586E-04 -1.43041396745E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -9.62505610220E+00 4.24577280197E+01 2.81236775166E+02 -3.68612459850E+03 1.69243235417E+04 -3.92452953110E+04 4.55663845493E+04 -2.10378506803E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -4.54454871531E-15 -3.72965722521E-14 -1.29140378371E-13 -3.14071701822E-13 -6.29420049707E-13 -1.11608485729E-12 -1.81878625334E-12 -2.78633127853E-12 -4.07189644727E-12 -5.73332759275E-12 -7.83345798704E-12 -1.04404457829E-11 -1.36281318823E-11 -1.74764193960E-11 -2.20716759266E-11 -2.75071599694E-11 -3.38834728032E-11 -4.13090373135E-11 -4.99006052728E-11 -5.97837946847E-11 -7.10936588884E-11 -8.39752892102E-11 -9.85844530505E-11 -1.15088269393E-10 -1.33665923839E-10 -1.54509425371E-10 -1.77824407189E-10 -2.03830974070E-10 -2.32764598859E-10 -2.64877070806E-10 -3.00437498656E-10 -3.39733371518E-10 -3.83071680723E-10 -4.30780106051E-10 -4.83208269900E-10 -5.40729063129E-10 -6.03740046561E-10 -6.72664932304E-10 -7.47955149296E-10 -8.30091497707E-10 -9.19585897083E-10 -1.01698323340E-09 -1.12286331042E-09 -1.23784291113E-09 -1.36257797522E-09 -1.49776589903E-09 -1.64414796455E-09 -1.80251190474E-09 -1.97369461230E-09 -2.15858500001E-09 -2.35812702074E-09 -2.57332285587E-09 -2.80523628124E-09 -3.05499622038E-09 -3.32380049511E-09 -3.61291978422E-09 -3.92370180163E-09 -4.25757570577E-09 -4.61605675282E-09 -5.00075120700E-09 -5.41336152175E-09 -5.85569180650E-09 -6.32965359453E-09 -6.83727192793E-09 -7.38069177713E-09 -7.96218481271E-09 -8.58415654865E-09 -9.24915387710E-09 -9.95987301543E-09 -1.07191678882E-08 -1.15300589668E-08 -1.23957425926E-08 -1.33196008071E-08 -1.43052117201E-08 -1.53563604405E-08 -1.64770506035E-08 -1.76715165234E-08 -1.89442360082E-08 -2.02999438683E-08 -2.17436461600E-08 -2.32806351993E-08 -2.49165053910E-08 -2.66571699133E-08 -2.85088783061E-08 -3.04782350101E-08 -3.25722189073E-08 -3.47982039167E-08 -3.71639807021E-08 -3.96777795496E-08 -4.23482944791E-08 -4.51847086542E-08 -4.81967211596E-08 -5.13945752201E-08 -5.47890879365E-08 -5.83916816196E-08 -6.22144168074E-08 -6.62700270548E-08 -7.05719555900E-08 -7.51343939371E-08 -7.99723226080E-08 -8.51015539757E-08 -9.05387774422E-08 -9.63016070251E-08 -1.02408631489E-07 -1.08879467157E-07 -1.15734813549E-07 -1.22996511986E-07 -1.30687607328E-07 -1.38832413007E-07 -1.47456579532E-07 -1.56587166641E-07 -1.66252719304E-07 -1.76483347779E-07 -1.87310811924E-07 -1.98768610010E-07 -2.10892072248E-07 -2.23718459300E-07 -2.37287066033E-07 -2.51639330776E-07 -2.66818950401E-07 -2.82872001502E-07 -2.99847068018E-07 -3.17795375632E-07 -3.36770933300E-07 -3.56830682289E-07 -3.78034653120E-07 -4.00446130834E-07 -4.24131829011E-07 -4.49162073019E-07 -4.75610992960E-07 -5.03556726841E-07 -5.33081634489E-07 -5.64272522801E-07 -5.97220882896E-07 -6.32023139817E-07 -6.68780915438E-07 -7.07601305256E-07 -7.48597169823E-07 -7.91887441562E-07 -8.37597447791E-07 -8.85859250805E-07 -9.36812005899E-07 -9.90602338293E-07 -1.04738473993E-06 -1.10732198723E-06 -1.17058558079E-06 -1.23735620841E-06 -1.30782423232E-06 -1.38219020227E-06 -1.46066539552E-06 -1.54347238530E-06 -1.63084563919E-06 -1.72303214902E-06 -1.82029209387E-06 -1.92289953797E-06 -2.03114316528E-06 -2.14532705276E-06 -2.26577148416E-06 -2.39281380668E-06 -2.52680933262E-06 -2.66813228831E-06 -2.81717681297E-06 -2.97435800993E-06 -3.14011305307E-06 -3.31490235125E-06 -3.49921077390E-06 -3.69354894084E-06 -3.89845457969E-06 -4.11449395448E-06 -4.34226336912E-06 -4.58239074957E-06 -4.83553730898E-06 -5.10239929987E-06 -5.38370985819E-06 -5.68024094373E-06 -5.99280538214E-06 -6.32225901374E-06 -6.66950295466E-06 -7.03548597614E-06 -7.42120700826E-06 -7.82771777438E-06 -8.25612556324E-06 -8.70759614569E-06 -9.18335684377E-06 -9.68469975984E-06 -1.02129851742E-05 -1.07696451200E-05 -1.13561871439E-05 -1.19741982637E-05 -1.26253491315E-05 -1.33113984133E-05 -1.40341973976E-05 -1.47956948429E-05 -1.55979420777E-05 -1.64430983660E-05 -1.73334365511E-05 -1.82713489928E-05 -1.92593538135E-05 -2.03001014679E-05 -2.13963816538E-05 -2.25511305816E-05 -2.37674386203E-05 -2.50485583404E-05 -2.63979129723E-05 -2.78191053043E-05 -2.93159270390E-05 -3.08923686357E-05 -3.25526296597E-05 -3.43011296683E-05 -3.61425196567E-05 -3.80816940968E-05 -4.01238035955E-05 -4.22742682059E-05 -4.45387914245E-05 -4.69233749089E-05 -4.94343339524E-05 -5.20783137547E-05 -5.48623065283E-05 -5.77936694831E-05 -6.08801437338E-05 -6.41298741767E-05 -6.75514303844E-05 -7.11538285700E-05 -7.49465546746E-05 -7.89395886342E-05 -8.31434298859E-05 -8.75691241742E-05 -9.22282917237E-05 -9.71331568455E-05 -1.02296579049E-04 -1.07732085735E-04 -1.13453906546E-04 -1.19477009456E-04 -1.25817138697E-04 -1.32490854585E-04 -1.39515575377E-04 -1.46909621223E-04 -1.54692260344E-04 -1.62883757520E-04 -1.71505425028E-04 -1.80579676118E-04 -1.90130081183E-04 -2.00181426722E-04 -2.10759777256E-04 -2.21892540325E-04 -2.33608534719E-04 -2.45938062091E-04 -2.58912982126E-04 -2.72566791424E-04 -2.86934706269E-04 -3.02053749490E-04 -3.17962841568E-04 -3.34702896230E-04 -3.52316920708E-04 -3.70850120886E-04 -3.90350011572E-04 -4.10866532117E-04 -4.32452167630E-04 -4.55162076047E-04 -4.79054221306E-04 -5.04189512919E-04 -5.30631952215E-04 -5.58448785547E-04 -5.87710664785E-04 -6.18491815396E-04 -6.50870212454E-04 -6.84927764908E-04 -7.20750508476E-04 -7.58428807522E-04 -7.98057566291E-04 -8.39736449897E-04 -8.83570115463E-04 -9.29668453832E-04 -9.78146842259E-04 -1.02912640855E-03 -1.08273430707E-03 -1.13910400711E-03 -1.19837559403E-03 -1.26069608377E-03 -1.32621975112E-03 -1.39510847227E-03 -1.46753208223E-03 -1.54366874757E-03 -1.62370535501E-03 -1.70783791651E-03 -1.79627199119E-03 -1.88922312490E-03 -1.98691730777E-03 -2.08959145040E-03 -2.19749387926E-03 -2.31088485180E-03 -2.43003709183E-03 -2.55523634583E-03 -2.68678196045E-03 -2.82498748214E-03 -2.97018127900E-03 -3.12270718564E-03 -3.28292517142E-03 -3.45121203249E-03 -3.62796210817E-03 -3.81358802192E-03 -4.00852144738E-03 -4.21321389977E-03 -4.42813755289E-03 -4.65378608195E-03 -4.89067553251E-03 -5.13934521549E-03 -5.40035862844E-03 -5.67430440298E-03 -5.96179727834E-03 -6.26347910089E-03 -6.58001984934E-03 -6.91211868534E-03 -7.26050502910E-03 -7.62593965939E-03 -8.00921583753E-03 -8.41116045452E-03 -8.83263520063E-03 -9.27453775656E-03 -9.73780300523E-03 -1.02234042633E-02 -1.07323545309E-02 -1.12657077596E-02 -1.18245601353E-02 -1.24100513780E-02 -1.30233660538E-02 -1.36657349009E-02 -1.43384361671E-02 -1.50427969583E-02 -1.57801945975E-02 -1.65520579932E-02 -1.73598690182E-02 -1.82051638982E-02 -1.90895346118E-02 -2.00146303024E-02 -2.09821587054E-02 -2.19938875932E-02 -2.30516462427E-02 -2.41573269298E-02 -2.53128864599E-02 -2.65203477415E-02 -2.77818014134E-02 -2.90994075411E-02 -3.04753973947E-02 -3.19120753290E-02 -3.34118207876E-02 -3.49770904558E-02 -3.66104205928E-02 -3.83144295771E-02 -4.00918207066E-02 -4.19453852956E-02 -4.38780061235E-02 -4.58926612920E-02 -4.79924285574E-02 -5.01804902109E-02 -5.24601385914E-02 -5.48347823202E-02 -5.73079533611E-02 -5.98833150163E-02 -6.25646709795E-02 -6.53559755817E-02 -6.82613453697E-02 -7.12850721755E-02 -7.44316378379E-02 -7.77057307544E-02 -8.11122644432E-02 -8.46563983090E-02 -8.83435608047E-02 -9.21794751900E-02 -9.61701880813E-02 -1.00322100985E-01 -1.04642004996E-01 -1.09137118818E-01 -1.13815130252E-01 -1.18684241251E-01 -1.23753216588E-01 -1.29031436155E-01 -1.34528950796E-01 -1.40256541509E-01 -1.46225781747E-01 -1.52449102387E-01 -1.58939858806E-01 -1.65712399290E-01 -1.72782133807E-01 -1.80165601910E-01 -1.87880538246E-01 -1.95945933844E-01 -2.04382090958E-01 -2.13210668876E-01 -2.22454717637E-01 -2.32138696126E-01 -2.42288470523E-01 -2.52931288517E-01 -2.64095724168E-01 -2.75811587747E-01 -2.88109794315E-01 -3.01022184334E-01 -3.14581289168E-01 -3.28820033977E-01 -3.43771370369E-01 -3.59467831173E-01 -3.75941000017E-01 -3.93220889008E-01 -4.11335218912E-01 -4.30308597804E-01 -4.50161596400E-01 -4.70909721251E-01 -4.92562290855E-01 -5.15121224561E-01 -5.38579760117E-01 -5.62921122895E-01 -5.88117178307E-01 -6.14127108742E-01 -6.40896167502E-01 -6.68354574580E-01 -6.96416632421E-01 -7.24980153807E-01 -7.53926307972E-01 -7.83120004243E-01 -8.12410943846E-01 -8.41635478412E-01 -8.70619416401E-01 -8.99181913700E-01 -9.27140569214E-01 -9.54317817034E-01 -9.80548659786E-01 -1.00568971900E+00 -1.02962948322E+00 -1.05229950908E+00 -1.07368617092E+00 -1.09384235894E+00 -1.11289829444E+00 -1.13107036812E+00 -1.14866662369E+00 -1.16608722317E+00 -1.18381797148E+00 -1.20241479206E+00 -1.22247699390E+00 -1.24460734043E+00 -1.26935743139E+00 -1.29715787604E+00 -1.32823432661E+00 -1.36251282023E+00 -1.39952119370E+00 -1.43829766850E+00 -1.47732298131E+00 -1.51449828872E+00 -1.54719660998E+00 -1.57241900882E+00 -1.58708483505E+00 -1.58847264690E+00 -1.57479587007E+00 -1.54583035337E+00 -1.50338711329E+00 -1.45120787514E+00 -1.39350607647E+00 -1.33218466289E+00 -1.26766546657E+00 -1.20033218415E+00 -1.13058470901E+00 -1.05883623379E+00 -9.85511285407E-01 -9.11045030752E-01 -8.35884152302E-01 -7.60489493235E-01 -6.85340515076E-01 -6.10941366055E-01 -5.37828035199E-01 -4.66575644032E-01 -3.97804433964E-01 -3.32182452618E-01 -2.70422401488E-01 -2.13269656969E-01 -1.61478277766E-01 -1.15772053089E-01 -7.67886126523E-02 -4.50066305061E-02 -2.06595784575E-02 -3.64461571592E-03 6.55787935660E-03 1.09303989672E-02 1.08983117917E-02 8.20796732160E-03 4.67386678947E-03 1.79619984105E-03 3.25313996275E-04 4.57193474971E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -3.05886600741E+01 4.64716019018E+02 -6.45773770577E+03 4.77056526325E+04 -1.87591618563E+05 4.01190153463E+05 -4.41589272676E+05 1.96182846645E+05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3.75767267671E-15 3.08387739465E-14 1.06780079163E-13 2.59691055781E-13 5.20437710297E-13 9.22837854407E-13 1.50386845111E-12 2.30388573824E-12 3.36685886563E-12 4.74061782298E-12 6.47711647846E-12 8.63271159375E-12 1.12684587286E-11 1.44504259987E-11 1.82500267045E-11 2.27443719027E-11 2.80166440533E-11 3.41564929369E-11 4.12604551012E-11 4.94323981664E-11 5.87839913908E-11 6.94352039766E-11 8.15148326745E-11 9.51610603318E-11 1.10522047120E-10 1.27756556272E-10 1.47034616253E-10 1.68538221408E-10 1.92462073226E-10 2.19014364481E-10 2.48417608639E-10 2.80909517047E-10 3.16743926542E-10 3.56191780299E-10 3.99542164837E-10 4.47103406309E-10 4.99204229341E-10 5.56194981870E-10 6.18448929630E-10 6.86363624101E-10 7.60362347978E-10 8.40895642420E-10 9.28442920550E-10 1.02351417196E-09 1.12665176318E-09 1.23843233943E-09 1.35946883303E-09 1.49041258456E-09 1.63195558267E-09 1.78483282915E-09 1.94982483605E-09 2.12776026207E-09 2.31951869573E-09 2.52603359343E-09 2.74829538061E-09 2.98735472511E-09 3.24432599187E-09 3.52039088892E-09 3.81680231498E-09 4.13488841957E-09 4.47605688718E-09 4.84179945755E-09 5.23369669486E-09 5.65342301927E-09 6.10275201495E-09 6.58356202949E-09 7.09784208045E-09 7.64769808559E-09 8.23535943408E-09 8.86318591724E-09 9.53367503799E-09 1.02494697194E-08 1.10133664338E-08 1.18283237751E-08 1.26974714978E-08 1.36241200480E-08 1.46117706129E-08 1.56641257165E-08 1.67851003897E-08 1.79788339480E-08 1.92497024062E-08 2.06023315670E-08 2.20416108176E-08 2.35727076728E-08 2.52010831048E-08 2.69325077010E-08 2.87730786949E-08 3.07292379149E-08 3.28077907026E-08 3.50159258502E-08 3.73612366111E-08 3.98517428431E-08 4.24959143419E-08 4.53026954302E-08 4.82815308673E-08 5.14423931516E-08 5.47958112885E-08 5.83529011015E-08 6.21253971697E-08 6.61256864768E-08 7.03668438634E-08 7.48626693773E-08 7.96277276233E-08 8.46773892185E-08 9.00278744644E-08 9.56962993529E-08 1.01700724031E-07 1.08060203853E-07 1.14794843159E-07 1.21925851923E-07 1.29475605420E-07 1.37467707076E-07 1.45927054671E-07 1.54879910062E-07 1.64353972624E-07 1.74378456596E-07 1.84984172549E-07 1.96203613183E-07 2.08071043683E-07 2.20622596884E-07 2.33896373492E-07 2.47932547621E-07 2.62773477944E-07 2.78463824733E-07 2.95050673119E-07 3.12583662884E-07 3.31115125140E-07 3.50700226245E-07 3.71397119359E-07 3.93267104013E-07 4.16374794143E-07 4.40788295013E-07 4.66579389499E-07 4.93823734242E-07 5.22601066164E-07 5.52995419913E-07 5.85095356797E-07 6.18994205828E-07 6.54790317492E-07 6.92587330930E-07 7.32494455223E-07 7.74626765536E-07 8.19105514885E-07 8.66058462358E-07 9.15620218651E-07 9.67932609824E-07 1.02314506025E-06 1.08141499571E-06 1.14290826782E-06 1.20779960068E-06 1.27627306120E-06 1.34852255409E-06 1.42475234295E-06 1.50517759876E-06 1.59002497731E-06 1.67953322687E-06 1.77395382797E-06 1.87355166675E-06 1.97860574367E-06 2.08940991955E-06 2.20627370077E-06 2.32952306571E-06 2.45950133465E-06 2.59657008525E-06 2.74111011622E-06 2.89352246143E-06 3.05422945736E-06 3.22367586643E-06 3.40233005937E-06 3.59068525946E-06 3.78926085211E-06 3.99860376295E-06 4.21928990830E-06 4.45192572143E-06 4.69714975887E-06 4.95563439084E-06 5.22808758004E-06 5.51525475368E-06 5.81792077334E-06 6.13691200793E-06 6.47309851498E-06 6.82739633607E-06 7.20076991209E-06 7.59423462484E-06 8.00885947126E-06 8.44576987741E-06 8.90615065932E-06 9.39124913833E-06 9.90237841908E-06 1.04409208384E-05 1.10083315939E-05 1.16061425623E-05 1.22359663157E-05 1.28995003484E-05 1.35985315226E-05 1.43349407464E-05 1.51107078947E-05 1.59279169868E-05 1.67887616327E-05 1.76955507623E-05 1.86507146536E-05 1.96568112725E-05 2.07165329429E-05 2.18327133627E-05 2.30083349839E-05 2.42465367753E-05 2.55506223881E-05 2.69240687441E-05 2.83705350692E-05 2.98938723945E-05 3.14981335490E-05 3.31875836692E-05 3.49667112523E-05 3.68402397800E-05 3.88131399433E-05 4.08906424980E-05 4.30782517830E-05 4.53817599363E-05 4.78072618434E-05 5.03611708549E-05 5.30502353136E-05 5.58815559314E-05 5.88626040595E-05 6.20012408965E-05 6.53057376830E-05 6.87847969314E-05 7.24475747436E-05 7.63037042724E-05 8.03633203822E-05 8.46370855711E-05 8.91362172171E-05 9.38725162146E-05 9.88583970709E-05 1.04106919536E-04 1.09631821842E-04 1.15447555633E-04 1.21569322665E-04 1.28013113375E-04 1.34795747398E-04 1.41934916137E-04 1.49449227484E-04 1.57358252801E-04 1.65682576268E-04 1.74443846720E-04 1.83664832084E-04 1.93369476556E-04 2.03582960639E-04 2.14331764199E-04 2.25643732654E-04 2.37548146489E-04 2.50075794210E-04 2.63259048952E-04 2.77131948866E-04 2.91730281511E-04 3.07091672402E-04 3.23255677940E-04 3.40263882915E-04 3.58160002803E-04 3.76989991074E-04 3.96802151757E-04 4.17647257496E-04 4.39578673348E-04 4.62652486605E-04 4.86927642889E-04 5.12466088830E-04 5.39332921605E-04 5.67596545663E-04 5.97328836949E-04 6.28605314961E-04 6.61505322985E-04 6.96112216871E-04 7.32513562725E-04 7.70801343886E-04 8.11072177611E-04 8.53427541862E-04 8.97974012630E-04 9.44823512237E-04 9.94093569070E-04 1.04590758922E-03 1.10039514049E-03 1.15769224933E-03 1.21794171110E-03 1.28129341433E-03 1.34790467942E-03 1.41794061229E-03 1.49157447376E-03 1.56898806495E-03 1.65037212954E-03 1.73592677338E-03 1.82586190199E-03 1.92039767684E-03 2.01976499073E-03 2.12420596309E-03 2.23397445590E-03 2.34933661070E-03 2.47057140752E-03 2.59797124633E-03 2.73184255170E-03 2.87250640126E-03 3.02029917870E-03 3.17557325201E-03 3.33869767742E-03 3.51005892993E-03 3.69006166083E-03 3.87912948298E-03 4.07770578433E-03 4.28625457037E-03 4.50526133589E-03 4.73523396675E-03 4.97670367201E-03 5.23022594689E-03 5.49638156708E-03 5.77577761459E-03 6.06904853560E-03 6.37685723062E-03 6.69989617697E-03 7.03888858410E-03 7.39458958152E-03 7.76778743969E-03 8.15930482378E-03 8.57000008025E-03 9.00076855623E-03 9.45254395163E-03 9.92629970364E-03 1.04230504038E-02 1.09438532468E-02 1.14898095121E-02 1.20620660762E-02 1.26618169576E-02 1.32903048928E-02 1.39488229444E-02 1.46387161404E-02 1.53613831461E-02 1.61182779691E-02 1.69109116971E-02 1.77408542715E-02 1.86097362965E-02 1.95192508878E-02 2.04711555627E-02 2.14672741744E-02 2.25094988971E-02 2.35997922647E-02 2.47401892714E-02 2.59327995416E-02 2.71798095781E-02 2.84834850998E-02 2.98461734823E-02 3.12703063159E-02 3.27584020988E-02 3.43130690865E-02 3.59370083186E-02 3.76330168520E-02 3.94039912288E-02 4.12529312130E-02 4.31829438346E-02 4.51972477839E-02 4.72991782018E-02 4.94921919203E-02 5.17798732095E-02 5.41659400944E-02 5.66542513097E-02 5.92488139668E-02 6.19537920111E-02 6.47735155552E-02 6.77124911740E-02 7.07754132572E-02 7.39671765105E-02 7.72928897049E-02 8.07578907675E-02 8.43677633089E-02 8.81283546732E-02 9.20457955913E-02 9.61265215020E-02 1.00377295590E-01 1.04805233565E-01 1.09417830176E-01 1.14222987412E-01 1.19229044306E-01 1.24444808178E-01 1.29879587104E-01 1.35543223302E-01 1.41446127023E-01 1.47599310432E-01 1.54014420818E-01 1.60703772311E-01 1.67680375126E-01 1.74957961141E-01 1.82551004387E-01 1.90474734804E-01 1.98745143321E-01 2.07378976046E-01 2.16393715034E-01 2.25807542776E-01 2.35639287214E-01 2.45908343768E-01 2.56634570518E-01 2.67838152400E-01 2.79539430012E-01 2.91758688448E-01 3.04515901463E-01 3.17830426331E-01 3.31720644942E-01 3.46203547091E-01 3.61294252594E-01 3.77005469881E-01 3.93346890083E-01 4.10324517487E-01 4.27939939651E-01 4.46189543417E-01 4.65063686791E-01 4.84545841060E-01 5.04611722761E-01 5.25228441138E-01 5.46353693612E-01 5.67935049342E-01 5.89909369181E-01 6.12202418873E-01 6.34728740927E-01 6.57391858700E-01 6.80084893153E-01 7.02691677577E-01 7.25088457258E-01 7.47146257935E-01 7.68733997520E-01 7.89722397579E-01 8.09988722346E-01 8.29422330951E-01 8.47930970365E-01 8.65447659817E-01 8.81937919910E-01 8.97406980138E-01 9.11906457235E-01 9.25539836619E-01 9.38465916221E-01 9.50899198031E-01 9.63106055701E-01 9.75395394231E-01 9.88102488678E-01 1.00156479523E+00 1.01608883734E+00 1.03190786487E+00 1.04913096090E+00 1.06768572999E+00 1.08725873361E+00 1.10724048995E+00 1.12668508254E+00 1.14429799441E+00 1.15846915372E+00 1.16737024604E+00 1.16913414259E+00 1.16212643304E+00 1.14529898709E+00 1.11857432657E+00 1.08313348677E+00 1.04134761837E+00 9.95875845186E-01 9.47951037512E-01 8.97895623588E-01 8.46011629029E-01 7.92613828959E-01 7.38027562134E-01 6.82587150673E-01 6.26635146687E-01 5.70522592909E-01 5.14610410337E-01 4.59271907483E-01 4.04896230173E-01 3.51892336530E-01 3.00692785464E-01 2.51756280346E-01 2.05567534376E-01 1.62632664513E-01 1.23468048789E-01 8.85805027176E-02 5.84368972249E-02 3.34221453116E-02 1.37860676442E-02 -4.17748884425E-04 -9.39415996376E-03 -1.36577473955E-02 -1.40553153409E-02 -1.17363171240E-02 -8.04575096677E-03 -4.32052167673E-03 -1.59498216257E-03 -2.80522915195E-04 -3.85127548216E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2.52923181969E+01 -3.13650333545E+02 3.99933362859E+03 -2.91838976865E+04 1.14605192755E+05 -2.45167084910E+05 2.70001118653E+05 -1.20019531504E+05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0 -6.64264385250E-01 0.00000000000E+00 4.49737645399E-05 9.07153891932E-05 1.37235457249E-04 1.84556096700E-04 2.32686154899E-04 2.81628921525E-04 3.31422650147E-04 3.82058640773E-04 4.33570085228E-04 4.85912652456E-04 5.39276522665E-04 5.93353210251E-04 6.48583724795E-04 7.04537274566E-04 7.61664960762E-04 8.19548839249E-04 8.78581612228E-04 9.38615141166E-04 9.99531345259E-04 1.06168145032E-03 1.12471238748E-03 1.18902722334E-03 1.25424491164E-03 1.32062281141E-03 1.38829251008E-03 1.45684198447E-03 1.52684786091E-03 1.59788897866E-03 1.67008591765E-03 1.74373230078E-03 1.81843873585E-03 1.89454119201E-03 1.97179290411E-03 2.05061619263E-03 2.13055356538E-03 2.21193144151E-03 2.29479356428E-03 2.37889420097E-03 2.46459605723E-03 2.55169541048E-03 2.64027362937E-03 2.73033250125E-03 2.82205149292E-03 2.91523900289E-03 3.01000744400E-03 3.10649208023E-03 3.20449623655E-03 3.30430943520E-03 3.40570418459E-03 3.50894533776E-03 3.61390599364E-03 3.72057789848E-03 3.82921321192E-03 3.93961016386E-03 4.05192369090E-03 4.16617295276E-03 4.28240850505E-03 4.40046407714E-03 4.52076778331E-03 4.64295064065E-03 4.76731363345E-03 4.89375813003E-03 5.02239145021E-03 5.15326864430E-03 5.28623003865E-03 5.42159483581E-03 5.55928892604E-03 5.69925143448E-03 5.84161647455E-03 5.98649419173E-03 6.13378213652E-03 6.28358874168E-03 6.43600483535E-03 6.59092277137E-03 6.74862458762E-03 6.90891110080E-03 7.07200097274E-03 7.23783493154E-03 7.40658238585E-03 7.57809623707E-03 7.75262128626E-03 7.93012451088E-03 8.11063169966E-03 8.29429029398E-03 8.48096793105E-03 8.67096863553E-03 8.86410805024E-03 9.06064570465E-03 9.26044593505E-03 9.46374715618E-03 9.67048713163E-03 9.88073038873E-03 1.00945928730E-02 1.03121728869E-02 1.05333597997E-02 1.07583850481E-02 1.09872703536E-02 1.12200452640E-02 1.14567959710E-02 1.16975968756E-02 1.19425406615E-02 1.21916539439E-02 1.24449693695E-02 1.27027019298E-02 1.29647919038E-02 1.32313806626E-02 1.35025225516E-02 1.37782495018E-02 1.40587916751E-02 1.43440374675E-02 1.46341954440E-02 1.49293165471E-02 1.52294710743E-02 1.55347399883E-02 1.58452809329E-02 1.61610514346E-02 1.64822778557E-02 1.68089915797E-02 1.71412780413E-02 1.74791842941E-02 1.78230104046E-02 1.81725317644E-02 1.85281549912E-02 1.88898726213E-02 1.92576347720E-02 1.96318254968E-02 2.00123215123E-02 2.03993784835E-02 2.07929795147E-02 2.11934140572E-02 2.16005532443E-02 2.20147707629E-02 2.24360023808E-02 2.28644813925E-02 2.33002226922E-02 2.37434478494E-02 2.41942412561E-02 2.46527368183E-02 2.51190616960E-02 2.55933650065E-02 2.60757760671E-02 2.65664045815E-02 2.70654392269E-02 2.75730107375E-02 2.80892409839E-02 2.86142605130E-02 2.91483117159E-02 2.96914460084E-02 3.02438912682E-02 3.08057245747E-02 3.13772099459E-02 3.19584425404E-02 3.25495820858E-02 3.31508647241E-02 3.37623646794E-02 3.43843597378E-02 3.50169714253E-02 3.56603735381E-02 3.63147644913E-02 3.69803588885E-02 3.76572904033E-02 3.83458260267E-02 3.90460835483E-02 3.97583195229E-02 4.04827220351E-02 4.12194859431E-02 4.19688571951E-02 4.27310028651E-02 4.35061610111E-02 4.42945903965E-02 4.50964370706E-02 4.59120210955E-02 4.67415104960E-02 4.75851559685E-02 4.84432155843E-02 4.93159381692E-02 5.02035326883E-02 5.11063124460E-02 5.20244748417E-02 5.29583326134E-02 5.39081261034E-02 5.48741253831E-02 5.58566098000E-02 5.68558802070E-02 5.78721958216E-02 5.89058458262E-02 5.99571526250E-02 6.10263792516E-02 6.21138688892E-02 6.32199079881E-02 6.43447946572E-02 6.54889044155E-02 6.66525165810E-02 6.78359690049E-02 6.90396049744E-02 7.02637999104E-02 7.15088158214E-02 7.27751076269E-02 7.40629774075E-02 7.53727814331E-02 7.67049493154E-02 7.80597973487E-02 7.94377469315E-02 8.08391740750E-02 8.22644960744E-02 8.37140821541E-02 8.51883690792E-02 8.66877834708E-02 8.82127193742E-02 8.97636271410E-02 9.13409544225E-02 9.29451242167E-02 9.45766051568E-02 9.62358524042E-02 9.79233424451E-02 9.96395397033E-02 1.01384938013E-01 1.03160016070E-01 1.04965293658E-01 1.06801261264E-01 1.08668441031E-01 1.10567361650E-01 1.12498539592E-01 1.14462547180E-01 1.16459904062E-01 1.18491191161E-01 1.20556956522E-01 1.22657791955E-01 1.24794283942E-01 1.26967029025E-01 1.29176613262E-01 1.31423690851E-01 1.33708837704E-01 1.36032725687E-01 1.38395985174E-01 1.40799283071E-01 1.43243242866E-01 1.45728612887E-01 1.48256001843E-01 1.50826162365E-01 1.53439766715E-01 1.56097550585E-01 1.58800245021E-01 1.61548572512E-01 1.64343296493E-01 1.67185190199E-01 1.70074998743E-01 1.73013530855E-01 1.76001582724E-01 1.79039948755E-01 1.82129460721E-01 1.85270949223E-01 1.88465258736E-01 1.91713245197E-01 1.95015779775E-01 1.98373743849E-01 2.01788024214E-01 2.05259541586E-01 2.08789201494E-01 2.12377938214E-01 2.16026707320E-01 2.19736448364E-01 2.23508142017E-01 2.27342770195E-01 2.31241325169E-01 2.35204811440E-01 2.39234260179E-01 2.43330702572E-01 2.47495170944E-01 2.51728747622E-01 2.56032483135E-01 2.60407479850E-01 2.64854819672E-01 2.69375623951E-01 2.73971009008E-01 2.78642110369E-01 2.83390070433E-01 2.88216058444E-01 2.93121234457E-01 2.98106777487E-01 3.03173889961E-01 3.08323772482E-01 3.13557631718E-01 3.18876700741E-01 3.24282217858E-01 3.29775410320E-01 3.35357547958E-01 3.41029887178E-01 3.46793698010E-01 3.52650257838E-01 3.58600849898E-01 3.64646770623E-01 3.70789314569E-01 3.77029780017E-01 3.83369479098E-01 3.89809715671E-01 3.96351805114E-01 4.02997060841E-01 4.09746791927E-01 4.16602317088E-01 4.23564939336E-01 4.30635977181E-01 4.37816720535E-01 4.45108473935E-01 4.52512524740E-01 4.60030153684E-01 4.67662622778E-01 4.75411197763E-01 4.83277108020E-01 4.91261589439E-01 4.99365831969E-01 5.07591029624E-01 5.15938337002E-01 5.24408883522E-01 5.33003772273E-01 5.41724074498E-01 5.50570817360E-01 5.59545006933E-01 5.68647579965E-01 5.77879452654E-01 5.87241474719E-01 5.96734447856E-01 6.06359112379E-01 6.16116149519E-01 6.26006163780E-01 6.36029693985E-01 6.46187195704E-01 6.56479042649E-01 6.66905513523E-01 6.77466796721E-01 6.88162966334E-01 6.98993997100E-01 7.09959737481E-01 7.21059915327E-01 7.32294117488E-01 7.43661793660E-01 7.55162242395E-01 7.66794592759E-01 7.78557814415E-01 7.90450681031E-01 8.02471790207E-01 8.14619515144E-01 8.26892032183E-01 8.39287274949E-01 8.51802939494E-01 8.64436466073E-01 8.77185019316E-01 8.90045487860E-01 9.03014443454E-01 9.16088151989E-01 9.29262534978E-01 9.42533163616E-01 9.55895233590E-01 9.69343545356E-01 9.82872490109E-01 9.96476017246E-01 1.01014762207E+00 1.02388031663E+00 1.03766660490E+00 1.05149846256E+00 1.06536730207E+00 1.07926395877E+00 1.09317864284E+00 1.10710093025E+00 1.12101971811E+00 1.13492319866E+00 1.14879882663E+00 1.16263327981E+00 1.17641243857E+00 1.19012132667E+00 1.20374409882E+00 1.21726398565E+00 1.23066325980E+00 1.24392320196E+00 1.25702404533E+00 1.26994495263E+00 1.28266395688E+00 1.29515792768E+00 1.30740252431E+00 1.31937215218E+00 1.33103991925E+00 1.34237758601E+00 1.35335553151E+00 1.36394269484E+00 1.37410654477E+00 1.38381302734E+00 1.39302652864E+00 1.40170983218E+00 1.40982407976E+00 1.41732873890E+00 1.42418156333E+00 1.43033856797E+00 1.43575399940E+00 1.44038031640E+00 1.44416817186E+00 1.44706640481E+00 1.44902203457E+00 1.44998027115E+00 1.44988452390E+00 1.44867643178E+00 1.44629589604E+00 1.44268113567E+00 1.43776874764E+00 1.43149379108E+00 1.42378988782E+00 1.41458934263E+00 1.40382328754E+00 1.39142184777E+00 1.37731434260E+00 1.36142950819E+00 1.34369575764E+00 1.32404147894E+00 1.30239536890E+00 1.27868681135E+00 1.25284630327E+00 1.22480592890E+00 1.19449988853E+00 1.16186508748E+00 1.12684178358E+00 1.08937430167E+00 1.04941182249E+00 1.00690923539E+00 9.61828080513E-01 9.14137561561E-01 8.63815647880E-01 8.10850257282E-01 7.55240532129E-01 6.96998195465E-01 6.36148996728E-01 5.72734241262E-01 5.06812396491E-01 4.38460770835E-01 3.67777254454E-01 2.94882109086E-01 2.19919788844E-01 1.43060774605E-01 6.45033858347E-02 -1.55244447453E-02 -9.67634959798E-02 -1.78921707712E-01 -2.61672821752E-01 -3.44655273859E-01 -4.27471412356E-01 -5.09687123981E-01 -5.90831966875E-01 -6.70399911304E-01 -7.47850814185E-01 -8.22612750371E-01 -8.94085343876E-01 -9.61644247183E-01 -1.02464692943E+00 -1.08243992122E+00 -1.13436769208E+00 -1.17978329324E+00 -1.21806091803E+00 -1.24861047922E+00 -1.27089428661E+00 -1.28444584241E+00 -1.28889071272E+00 -1.28396933818E+00 -1.26956154725E+00 -1.24571238794E+00 -1.21265876206E+00 -1.17085614223E+00 -1.12100449084E+00 -1.06407228612E+00 -1.00131738899E+00 -9.34303347995E-01 -8.64909685778E-01 -7.95334806392E-01 -7.28090499037E-01 -6.65987716138E-01 -6.12114544029E-01 -5.69809329531E-01 -5.42635073356E-01 -5.34365970946E-01 -5.49010343125E-01 -5.64886850880E-01 -5.74052899970E-01 -5.71346699082E-01 -5.51120375979E-01 -5.07968794091E-01 -4.37961107502E-01 -3.40691862822E-01 -2.22472356002E-01 -1.00827449008E-01 -1.46089546787E-02 1.18840449676E-03 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -2.38780785780E-01 1.57282325446E+00 -1.51915733511E-01 0.00000000000E+00 -1.65807149783E-10 -6.74614013642E-10 -1.54401239381E-09 -2.79229919794E-09 -4.43850243526E-09 -6.50240813781E-09 -9.00458823925E-09 -1.19664294446E-08 -1.54101631260E-08 -1.93588962792E-08 -2.38366435801E-08 -2.88683605773E-08 -3.44799780618E-08 -4.06984376551E-08 -4.75517286578E-08 -5.50689262019E-08 -6.32802307549E-08 -7.22170090196E-08 -8.19118362814E-08 -9.23985402507E-08 -1.03712246456E-07 -1.15889425237E-07 -1.28967940401E-07 -1.42987099589E-07 -1.57987706428E-07 -1.74012114509E-07 -1.91104283281E-07 -2.09309835903E-07 -2.28676119139E-07 -2.49252265361E-07 -2.71089256727E-07 -2.94239991633E-07 -3.18759353477E-07 -3.44704281868E-07 -3.72133846310E-07 -4.01109322500E-07 -4.31694271281E-07 -4.63954620391E-07 -4.97958749056E-07 -5.33777575575E-07 -5.71484647958E-07 -6.11156237752E-07 -6.52871437152E-07 -6.96712259521E-07 -7.42763743421E-07 -7.91114060295E-07 -8.41854625921E-07 -8.95080215762E-07 -9.50889084354E-07 -1.00938308887E-06 -1.07066781702E-06 -1.13485271940E-06 -1.20205124647E-06 -1.27238099035E-06 -1.34596383154E-06 -1.42292609078E-06 -1.50339868620E-06 -1.58751729598E-06 -1.67542252666E-06 -1.76726008736E-06 -1.86318097005E-06 -1.96334163612E-06 -2.06790420947E-06 -2.17703667629E-06 -2.29091309188E-06 -2.40971379463E-06 -2.53362562744E-06 -2.66284216691E-06 -2.79756396048E-06 -2.93799877184E-06 -3.08436183488E-06 -3.23687611650E-06 -3.39577258857E-06 -3.56129050933E-06 -3.73367771461E-06 -3.91319091916E-06 -4.10009602853E-06 -4.29466846169E-06 -4.49719348497E-06 -4.70796655757E-06 -4.92729368908E-06 -5.15549180946E-06 -5.39288915183E-06 -5.63982564865E-06 -5.89665334153E-06 -6.16373680544E-06 -6.44145358756E-06 -6.73019466137E-06 -7.03036489656E-06 -7.34238354524E-06 -7.66668474503E-06 -8.00371803957E-06 -8.35394891721E-06 -8.71785936831E-06 -9.09594846188E-06 -9.48873294227E-06 -9.89674784657E-06 -1.03205471434E-05 -1.07607043937E-05 -1.12178134351E-05 -1.16924890889E-05 -1.21853678925E-05 -1.26971088570E-05 -1.32283942510E-05 -1.37799304112E-05 -1.43524485819E-05 -1.49467057829E-05 -1.55634857079E-05 -1.62035996536E-05 -1.68678874815E-05 -1.75572186126E-05 -1.82724930570E-05 -1.90146424785E-05 -1.97846312966E-05 -2.05834578269E-05 -2.14121554599E-05 -2.22717938821E-05 -2.31634803381E-05 -2.40883609368E-05 -2.50476220035E-05 -2.60424914775E-05 -2.70742403594E-05 -2.81441842075E-05 -2.92536846861E-05 -3.04041511683E-05 -3.15970423930E-05 -3.28338681798E-05 -3.41161912035E-05 -3.54456288294E-05 -3.68238550123E-05 -3.82526022614E-05 -3.97336636727E-05 -4.12688950323E-05 -4.28602169915E-05 -4.45096173179E-05 -4.62191532241E-05 -4.79909537764E-05 -4.98272223877E-05 -5.17302393955E-05 -5.37023647298E-05 -5.57460406724E-05 -5.78637947125E-05 -6.00582425000E-05 -6.23320909013E-05 -6.46881411608E-05 -6.71292921709E-05 -6.96585438555E-05 -7.22790006703E-05 -7.49938752238E-05 -7.78064920228E-05 -8.07202913486E-05 -8.37388332654E-05 -8.68658017677E-05 -9.01050090711E-05 -9.34604000510E-05 -9.69360568339E-05 -1.00536203548E-04 -1.04265211236E-04 -1.08127602940E-04 -1.12128058961E-04 -1.16271422295E-04 -1.20562704264E-04 -1.25007090339E-04 -1.29609946158E-04 -1.34376823759E-04 -1.39313468024E-04 -1.44425823344E-04 -1.49720040519E-04 -1.55202483887E-04 -1.60879738710E-04 -1.66758618800E-04 -1.72846174423E-04 -1.79149700464E-04 -1.85676744876E-04 -1.92435117422E-04 -1.99432898718E-04 -2.06678449583E-04 -2.14180420714E-04 -2.21947762693E-04 -2.29989736341E-04 -2.38315923421E-04 -2.46936237715E-04 -2.55860936484E-04 -2.65100632311E-04 -2.74666305362E-04 -2.84569316067E-04 -2.94821418226E-04 -3.05434772581E-04 -3.16421960840E-04 -3.27796000190E-04 -3.39570358310E-04 -3.51758968888E-04 -3.64376247685E-04 -3.77437109137E-04 -3.90956983534E-04 -4.04951834788E-04 -4.19438178803E-04 -4.34433102480E-04 -4.49954283376E-04 -4.66020010023E-04 -4.82649202959E-04 -4.99861436467E-04 -5.17676961061E-04 -5.36116726742E-04 -5.55202407046E-04 -5.74956423919E-04 -5.95401973433E-04 -6.16563052390E-04 -6.38464485824E-04 -6.61131955449E-04 -6.84592029072E-04 -7.08872191012E-04 -7.34000873553E-04 -7.60007489464E-04 -7.86922465636E-04 -8.14777277856E-04 -8.43604486757E-04 -8.73437775007E-04 -9.04311985741E-04 -9.36263162312E-04 -9.69328589380E-04 -1.00354683540E-03 -1.03895779655E-03 -1.07560274214E-03 -1.11352436154E-03 -1.15276681276E-03 -1.19337577256E-03 -1.23539848836E-03 -1.27888383186E-03 -1.32388235441E-03 -1.37044634433E-03 -1.41862988611E-03 -1.46848892160E-03 -1.52008131329E-03 -1.57346690962E-03 -1.62870761260E-03 -1.68586744759E-03 -1.74501263544E-03 -1.80621166709E-03 -1.86953538054E-03 -1.93505704050E-03 -2.00285242062E-03 -2.07299988843E-03 -2.14558049316E-03 -2.22067805640E-03 -2.29837926580E-03 -2.37877377178E-03 -2.46195428753E-03 -2.54801669221E-03 -2.63706013753E-03 -2.72918715785E-03 -2.82450378388E-03 -2.92311966002E-03 -3.02514816552E-03 -3.13070653965E-03 -3.23991601075E-03 -3.35290192961E-03 -3.46979390699E-03 -3.59072595560E-03 -3.71583663662E-03 -3.84526921083E-03 -3.97917179460E-03 -4.11769752068E-03 -4.26100470419E-03 -4.40925701367E-03 -4.56262364756E-03 -4.72127951606E-03 -4.88540542872E-03 -5.05518828765E-03 -5.23082128671E-03 -5.41250411677E-03 -5.60044317709E-03 -5.79485179307E-03 -5.99595044047E-03 -6.20396697631E-03 -6.41913687644E-03 -6.64170348012E-03 -6.87191824156E-03 -7.11004098874E-03 -7.35634018946E-03 -7.61109322487E-03 -7.87458667059E-03 -8.14711658550E-03 -8.42898880826E-03 -8.72051926180E-03 -9.02203426573E-03 -9.33387085684E-03 -9.65637711771E-03 -9.98991251340E-03 -1.03348482365E-02 -1.06915675601E-02 -1.10604661995E-02 -1.14419526812E-02 -1.18364487210E-02 -1.22443896092E-02 -1.26662246045E-02 -1.31024173346E-02 -1.35534462056E-02 -1.40198048176E-02 -1.45020023874E-02 -1.50005641787E-02 -1.55160319373E-02 -1.60489643325E-02 -1.65999374043E-02 -1.71695450136E-02 -1.77583992980E-02 -1.83671311290E-02 -1.89963905722E-02 -1.96468473480E-02 -2.03191912923E-02 -2.10141328156E-02 -2.17324033593E-02 -2.24747558473E-02 -2.32419651306E-02 -2.40348284247E-02 -2.48541657352E-02 -2.57008202708E-02 -2.65756588404E-02 -2.74795722315E-02 -2.84134755661E-02 -2.93783086315E-02 -3.03750361809E-02 -3.14046482006E-02 -3.24681601383E-02 -3.35666130871E-02 -3.47010739206E-02 -3.58726353723E-02 -3.70824160527E-02 -3.83315603959E-02 -3.96212385306E-02 -4.09526460627E-02 -4.23270037645E-02 -4.37455571573E-02 -4.52095759781E-02 -4.67203535178E-02 -4.82792058193E-02 -4.98874707203E-02 -5.15465067278E-02 -5.32576917067E-02 -5.50224213675E-02 -5.68421075332E-02 -5.87181761670E-02 -6.06520651398E-02 -6.26452217159E-02 -6.46990997320E-02 -6.68151564465E-02 -6.89948490319E-02 -7.12396306819E-02 -7.35509463046E-02 -7.59302277716E-02 -7.83788886896E-02 -8.08983186616E-02 -8.34898770032E-02 -8.61548858781E-02 -8.88946228147E-02 -9.17103125676E-02 -9.46031182855E-02 -9.75741319453E-02 -1.00624364017E-01 -1.03754732317E-01 -1.06966050021E-01 -1.10259012791E-01 -1.13634184992E-01 -1.17091984968E-01 -1.20632669347E-01 -1.24256316360E-01 -1.27962808166E-01 -1.31751812160E-01 -1.35622761295E-01 -1.39574833403E-01 -1.43606929575E-01 -1.47717651625E-01 -1.51905278700E-01 -1.56167743135E-01 -1.60502605644E-01 -1.64907029985E-01 -1.69377757263E-01 -1.73911080066E-01 -1.78502816662E-01 -1.83148285529E-01 -1.87842280535E-01 -1.92579047129E-01 -1.97352259949E-01 -2.02155002320E-01 -2.06979748148E-01 -2.11818346805E-01 -2.16662011616E-01 -2.21501312658E-01 -2.26326174611E-01 -2.31125880444E-01 -2.35889081809E-01 -2.40603816975E-01 -2.45257537243E-01 -2.49837142712E-01 -2.54329028303E-01 -2.58719140867E-01 -2.62993048145E-01 -2.67136020236E-01 -2.71133124023E-01 -2.74969330836E-01 -2.78629637300E-01 -2.82099198966E-01 -2.85363475872E-01 -2.88408388640E-01 -2.91220483058E-01 -2.93787100353E-01 -2.96096549484E-01 -2.98138276813E-01 -2.99903027412E-01 -3.01382991079E-01 -3.02571924888E-01 -3.03465242759E-01 -3.04060061274E-01 -3.04355189675E-01 -3.04351050948E-01 -3.04049520024E-01 -3.03453664767E-01 -3.02567375519E-01 -3.01394869977E-01 -2.99940062131E-01 -2.98205787313E-01 -2.96192880380E-01 -2.93899111017E-01 -2.91317989500E-01 -2.88437468365E-01 -2.85238580638E-01 -2.81694073795E-01 -2.77767120655E-01 -2.73410213745E-01 -2.68564377923E-01 -2.63158866218E-01 -2.57111534342E-01 -2.50330117604E-01 -2.42714656408E-01 -2.34161327894E-01 -2.24567934886E-01 -2.13841270152E-01 -2.01906502957E-01 -1.88718612787E-01 -1.74275706629E-01 -1.58633785330E-01 -1.41922156112E-01 -1.24358211886E-01 -1.06259713133E-01 -8.80520346342E-02 -7.02671312063E-02 -5.35303454809E-02 -3.85308290996E-02 -2.59716208450E-02 -1.64968808560E-02 -1.05973010244E-02 -8.50165666477E-03 -1.00748878222E-02 -1.47640640450E-02 -2.16676052610E-02 -2.98560068058E-02 -3.88933022427E-02 -4.86294869876E-02 -5.89073982548E-02 -6.95517528165E-02 -8.03695437115E-02 -9.11507542021E-02 -1.01669497176E-01 -1.11685723741E-01 -1.20947687233E-01 -1.29195391641E-01 -1.36165298431E-01 -1.41596597647E-01 -1.45239369307E-01 -1.46864939811E-01 -1.46278675755E-01 -1.43335303527E-01 -1.37956599205E-01 -1.30150883602E-01 -1.20033196757E-01 -1.07844222292E-01 -9.39650507440E-02 -7.89236523000E-02 -6.33876965854E-02 -4.81372353960E-02 -3.40104041221E-02 -2.18164039828E-02 -1.22143096243E-02 -5.56590543853E-03 -1.78993353376E-03 -2.79493137142E-04 -3.28780712547E-06 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -5.91084694393E+00 1.92624280245E+01 3.45331104594E+02 -3.84281887077E+03 1.73462185904E+04 -4.00902204526E+04 4.65003640751E+04 -2.14595346532E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -4.52545867507E-15 -3.71399025725E-14 -1.28597905514E-13 -3.12752398501E-13 -6.26776081218E-13 -1.11139658600E-12 -1.81114618998E-12 -2.77462691546E-12 -4.05479190507E-12 -5.70924400762E-12 -7.80055256225E-12 -1.03965894233E-11 -1.35708853258E-11 -1.74030077524E-11 -2.19789615265E-11 -2.73916134231E-11 -3.37411421626E-11 -4.11355152233E-11 -4.96909939924E-11 -5.95326688544E-11 -7.07950259059E-11 -8.36225470789E-11 -9.81703455479E-11 -1.14604838406E-10 -1.33104458695E-10 -1.53860408998E-10 -1.77077458909E-10 -2.02974788846E-10 -2.31786882770E-10 -2.63764472552E-10 -2.99175536849E-10 -3.38306357526E-10 -3.81462636809E-10 -4.28970678538E-10 -4.81178637073E-10 -5.38457837579E-10 -6.01204171655E-10 -6.69839572444E-10 -7.44813573615E-10 -8.26604956829E-10 -9.15723492563E-10 -1.01271177942E-09 -1.11814718731E-09 -1.23264391025E-09 -1.35685513474E-09 -1.49147533004E-09 -1.63724266707E-09 -1.79494157287E-09 -1.96540542817E-09 -2.14951941568E-09 -2.34822352748E-09 -2.56251574009E-09 -2.79345536635E-09 -3.04216659382E-09 -3.30984221966E-09 -3.59774759277E-09 -3.90722477452E-09 -4.23969692968E-09 -4.59667296022E-09 -4.97975239513E-09 -5.39063054993E-09 -5.83110397068E-09 -6.30307617772E-09 -6.80856372529E-09 -7.34970259426E-09 -7.92875493577E-09 -8.54811618470E-09 -9.21032256298E-09 -9.91805899370E-09 -1.06741674480E-08 -1.14816557484E-08 -1.23437068522E-08 -1.32636886421E-08 -1.42451642502E-08 -1.52919029439E-08 -1.64078916052E-08 -1.75973468332E-08 -1.88647277051E-08 -2.02147492298E-08 -2.16523965313E-08 -2.31829398013E-08 -2.48119500623E-08 -2.65453157836E-08 -2.83892603967E-08 -3.03503607577E-08 -3.24355666077E-08 -3.46522210832E-08 -3.70080823346E-08 -3.95113463098E-08 -4.21706707663E-08 -4.49952005764E-08 -4.79945943956E-08 -5.11790527651E-08 -5.45593477263E-08 -5.81468540261E-08 -6.19535819997E-08 -6.59922122181E-08 -7.02761319948E-08 -7.48194738510E-08 -7.96371560422E-08 -8.47449252571E-08 -9.01594016024E-08 -9.58981259961E-08 -1.01979610096E-07 -1.08423388900E-07 -1.15250076156E-07 -1.22481422731E-07 -1.30140378105E-07 -1.38251155140E-07 -1.46839298306E-07 -1.55931755551E-07 -1.65556954000E-07 -1.75744879687E-07 -1.86527161539E-07 -1.97937159827E-07 -2.10010059332E-07 -2.22782967465E-07 -2.36295017605E-07 -2.50587477939E-07 -2.65703866078E-07 -2.81690069775E-07 -2.98594474041E-07 -3.16468095028E-07 -3.35364721006E-07 -3.55341060826E-07 -3.76456900260E-07 -3.98775266631E-07 -4.22362602169E-07 -4.47288946560E-07 -4.73628129161E-07 -5.01457971400E-07 -5.30860499894E-07 -5.61922170844E-07 -5.94734106309E-07 -6.29392342983E-07 -6.65998094121E-07 -7.04658025324E-07 -7.45484544897E-07 -7.88596109555E-07 -8.34117546275E-07 -8.82180391156E-07 -9.32923246164E-07 -9.86492154718E-07 -1.04304099709E-06 -1.10273190669E-06 -1.16573570827E-06 -1.23223237927E-06 -1.30241153550E-06 -1.37647294239E-06 -1.45462705318E-06 -1.53709557554E-06 -1.62411206791E-06 -1.71592256737E-06 -1.81278625051E-06 -1.91497612906E-06 -2.02277978218E-06 -2.13650012728E-06 -2.25645623132E-06 -2.38298416487E-06 -2.51643790099E-06 -2.65719026146E-06 -2.80563391260E-06 -2.96218241357E-06 -3.12727131959E-06 -3.30135934328E-06 -3.48492957676E-06 -3.67849077811E-06 -3.88257872523E-06 -4.09775764078E-06 -4.32462169190E-06 -4.56379656852E-06 -4.81594114451E-06 -5.08174922593E-06 -5.36195139079E-06 -5.65731692540E-06 -5.96865586202E-06 -6.29682112335E-06 -6.64271077923E-06 -7.00727042161E-06 -7.39149566368E-06 -7.79643476997E-06 -8.22319142389E-06 -8.67292764014E-06 -9.14686682938E-06 -9.64629702314E-06 -1.01725742673E-05 -1.07271261929E-05 -1.13114557734E-05 -1.19271452785E-05 -1.25758604339E-05 -1.32593547989E-05 -1.39794743716E-05 -1.47381624350E-05 -1.55374646561E-05 -1.63795344499E-05 -1.72666386241E-05 -1.82011633172E-05 -1.91856202466E-05 -2.02226532816E-05 -2.13150453587E-05 -2.24657257577E-05 -2.36777777548E-05 -2.49544466755E-05 -2.62991483651E-05 -2.77154780998E-05 -2.92072199615E-05 -3.07783566982E-05 -3.24330800981E-05 -3.41758019006E-05 -3.60111652748E-05 -3.79440568921E-05 -3.99796196258E-05 -4.21232659078E-05 -4.43806917782E-05 -4.67578916615E-05 -4.92611739081E-05 -5.18971771391E-05 -5.46728874371E-05 -5.75956564246E-05 -6.06732202767E-05 -6.39137197149E-05 -6.73257210329E-05 -7.09182382066E-05 -7.47007561434E-05 -7.86832551292E-05 -8.28762365342E-05 -8.72907498402E-05 -9.19384210587E-05 -9.68314826076E-05 -1.01982804723E-04 -1.07405928483E-04 -1.13115100522E-04 -1.19125309525E-04 -1.25452324593E-04 -1.32112735565E-04 -1.39123995404E-04 -1.46504464747E-04 -1.54273458726E-04 -1.62451296181E-04 -1.71059351367E-04 -1.80120108309E-04 -1.89657217899E-04 -1.99695557909E-04 -2.10261296036E-04 -2.21381956145E-04 -2.33086487864E-04 -2.45405339693E-04 -2.58370535803E-04 -2.72015756709E-04 -2.86376424000E-04 -3.01489789332E-04 -3.17395027883E-04 -3.34133336497E-04 -3.51748036736E-04 -3.70284683082E-04 -3.89791176535E-04 -4.10317883871E-04 -4.31917762823E-04 -4.54646493479E-04 -4.78562616179E-04 -5.03727676234E-04 -5.30206375782E-04 -5.58066733111E-04 -5.87380249820E-04 -6.18222086152E-04 -6.50671244915E-04 -6.84810764358E-04 -7.20727920432E-04 -7.58514438863E-04 -7.98266717485E-04 -8.40086059285E-04 -8.84078916674E-04 -9.30357147448E-04 -9.79038282997E-04 -1.03024580928E-03 -1.08410946114E-03 -1.14076553051E-03 -1.20035718921E-03 -1.26303482678E-03 -1.32895640424E-03 -1.39828782418E-03 -1.47120331807E-03 -1.54788585144E-03 -1.62852754762E-03 -1.71333013086E-03 -1.80250538955E-03 -1.89627566040E-03 -1.99487433438E-03 -2.09854638523E-03 -2.20754892142E-03 -2.32215176251E-03 -2.44263804070E-03 -2.56930482855E-03 -2.70246379385E-03 -2.84244188251E-03 -2.98958203043E-03 -3.14424390547E-03 -3.30680468029E-03 -3.47765983728E-03 -3.65722400637E-03 -3.84593183689E-03 -4.04423890434E-03 -4.25262265322E-03 -4.47158337666E-03 -4.70164523412E-03 -4.94335730785E-03 -5.19729469915E-03 -5.46405966530E-03 -5.74428279804E-03 -6.03862424428E-03 -6.34777496999E-03 -6.67245806781E-03 -7.01343010901E-03 -7.37148254041E-03 -7.74744312668E-03 -8.14217743833E-03 -8.55659038568E-03 -8.99162779887E-03 -9.44827805396E-03 -9.92757374482E-03 -1.04305934006E-02 -1.09584632482E-02 -1.15123590188E-02 -1.20935077985E-02 -1.27031899197E-02 -1.33427408951E-02 -1.40135533892E-02 -1.47170792281E-02 -1.54548314438E-02 -1.62283863511E-02 -1.70393856540E-02 -1.78895385784E-02 -1.87806240280E-02 -1.97144927587E-02 -2.06930695674E-02 -2.17183554918E-02 -2.27924300134E-02 -2.39174532612E-02 -2.50956682076E-02 -2.63294028523E-02 -2.76210723860E-02 -2.89731813269E-02 -3.03883256236E-02 -3.18691947153E-02 -3.34185735409E-02 -3.50393444898E-02 -3.67344892838E-02 -3.85070907818E-02 -4.03603346981E-02 -4.22975112232E-02 -4.43220165392E-02 -4.64373542180E-02 -4.86471364938E-02 -5.09550853985E-02 -5.33650337502E-02 -5.58809259851E-02 -5.85068188220E-02 -6.12468817492E-02 -6.41053973236E-02 -6.70867612712E-02 -7.01954823788E-02 -7.34361821638E-02 -7.68135943116E-02 -8.03325638660E-02 -8.39980461576E-02 -8.78151054528E-02 -9.17889133020E-02 -9.59247465627E-02 -1.00227985067E-01 -1.04704108896E-01 -1.09358695217E-01 -1.14197414618E-01 -1.19226026890E-01 -1.24450376140E-01 -1.29876385158E-01 -1.35510048884E-01 -1.41357426828E-01 -1.47424634247E-01 -1.53717831836E-01 -1.60243213658E-01 -1.67006992972E-01 -1.74015385560E-01 -1.81274590065E-01 -1.88790764793E-01 -1.96570000316E-01 -2.04618287114E-01 -2.12941477371E-01 -2.21545239916E-01 -2.30435007146E-01 -2.39615912620E-01 -2.49092717844E-01 -2.58869726593E-01 -2.68950684938E-01 -2.79338664965E-01 -2.90035930007E-01 -3.01043779023E-01 -3.12362367655E-01 -3.23990503360E-01 -3.35925411958E-01 -3.48162472976E-01 -3.60694921231E-01 -3.73513512337E-01 -3.86606150166E-01 -3.99957474839E-01 -4.13548410567E-01 -4.27355673682E-01 -4.41351242513E-01 -4.55501792426E-01 -4.69768101430E-01 -4.84104434248E-01 -4.98457915786E-01 -5.12767908447E-01 -5.26965411803E-01 -5.40972507760E-01 -5.54701879429E-01 -5.68056437425E-01 -5.80929093093E-01 -5.93202723976E-01 -6.04750382396E-01 -6.15435802896E-01 -6.25114267877E-01 -6.33633892433E-01 -6.40837388089E-01 -6.46564359939E-01 -6.50654181153E-01 -6.52949471539E-01 -6.53300181129E-01 -6.51568244015E-01 -6.47632720004E-01 -6.41395280914E-01 -6.32785823393E-01 -6.21767901163E-01 -6.08343568034E-01 -5.92557112546E-01 -5.74497052675E-01 -5.54295655564E-01 -5.32125169474E-01 -5.08189926741E-01 -4.82713529456E-01 -4.55920505410E-01 -4.28012171952E-01 -3.99137028771E-01 -3.69356881340E-01 -3.38611130529E-01 -3.06683284443E-01 -2.73175730316E-01 -2.37501013573E-01 -1.98899976787E-01 -1.56498450638E-01 -1.09413561636E-01 -5.69160668683E-02 1.35694244828E-03 6.51695376261E-02 1.33511471948E-01 2.04637233626E-01 2.76609538356E-01 3.48340490238E-01 4.19276467883E-01 4.88859150495E-01 5.56501246561E-01 6.21582580721E-01 6.83444518373E-01 7.41382889809E-01 7.94639896370E-01 8.42395908261E-01 8.83762617593E-01 9.17779671237E-01 9.43417670003E-01 9.59591207793E-01 9.65186364182E-01 9.59107572065E-01 9.40348859084E-01 9.08093748017E-01 8.61846207712E-01 8.01591400163E-01 7.27979012899E-01 6.42513064048E-01 5.47719876565E-01 4.47250548270E-01 3.45857078185E-01 2.49165889511E-01 1.63166458097E-01 9.33505018021E-02 4.35043336290E-02 1.43168351964E-02 2.28884018384E-03 2.90120329990E-05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -3.04601679382E+01 3.07806023941E+02 -2.79490546192E+03 1.86829333356E+04 -7.19646396707E+04 1.52912374973E+05 -1.67717135171E+05 7.43182957789E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3.51407365252E-15 2.88395856572E-14 9.98578363170E-14 2.42856037964E-13 4.86699243698E-13 8.63012955090E-13 1.40637702674E-12 2.15453151994E-12 3.14859519397E-12 4.43329736170E-12 6.05722387634E-12 8.07307805895E-12 1.05379574207E-11 1.35136470810E-11 1.70669308332E-11 2.12699208606E-11 2.62004071612E-11 3.19422277997E-11 3.85856611629E-11 4.62278414625E-11 5.49731987969E-11 6.49339251538E-11 7.62304678124E-11 8.89920516844E-11 1.03357232215E-10 1.19474480556E-10 1.37502802814E-10 1.57612395277E-10 1.79985337629E-10 2.04816326256E-10 2.32313449891E-10 2.62699009940E-10 2.96210387961E-10 3.33100962927E-10 3.73641081016E-10 4.18119080831E-10 4.66842377123E-10 5.20138606234E-10 5.78356836669E-10 6.41868848374E-10 7.11070484511E-10 7.86383079701E-10 8.68254968947E-10 9.57163081644E-10 1.05361462536E-09 1.15814886425E-09 1.27133899743E-09 1.39379414246E-09 1.52616143012E-09 1.66912821611E-09 1.82342441633E-09 1.98982497240E-09 2.16915245441E-09 2.36227980857E-09 2.57013325736E-09 2.79369536072E-09 3.03400824686E-09 3.29217702191E-09 3.56937336819E-09 3.86683934112E-09 4.18589137576E-09 4.52792451414E-09 4.89441686534E-09 5.28693431092E-09 5.70713546900E-09 6.15677693073E-09 6.63771878412E-09 7.15193044042E-09 7.70149677958E-09 8.28862463183E-09 8.91564961342E-09 9.58504333567E-09 1.02994210073E-08 1.10615494513E-08 1.18743555580E-08 1.27409351992E-08 1.36645626255E-08 1.46487003762E-08 1.56970097254E-08 1.68133616965E-08 1.80018486729E-08 1.92667966383E-08 2.06127780794E-08 2.20446255872E-08 2.35674461934E-08 2.51866364813E-08 2.69078985139E-08 2.87372566198E-08 3.06810750860E-08 3.27460768037E-08 3.49393629184E-08 3.72684335388E-08 3.97412095588E-08 4.23660556542E-08 4.51518045147E-08 4.81077823779E-08 5.12438359342E-08 5.45703606754E-08 5.80983307644E-08 6.18393305048E-08 6.58055874984E-08 7.00100075773E-08 7.44662116061E-08 7.91885742538E-08 8.41922648385E-08 8.94932903560E-08 9.51085408075E-08 1.01055836948E-07 1.07353980583E-07 1.14022807554E-07 1.21083243540E-07 1.28557362847E-07 1.36468450322E-07 1.44841066569E-07 1.53701116637E-07 1.63075922365E-07 1.72994298583E-07 1.83486633351E-07 1.94584972484E-07 2.06323108559E-07 2.18736674652E-07 2.31863243059E-07 2.45742429259E-07 2.60416001390E-07 2.75927995543E-07 2.92324837170E-07 3.09655468926E-07 3.27971485295E-07 3.47327274351E-07 3.67780167026E-07 3.89390594289E-07 4.12222252647E-07 4.36342278407E-07 4.61821431164E-07 4.88734286988E-07 5.17159441842E-07 5.47179725749E-07 5.78882428281E-07 6.12359535968E-07 6.47707982250E-07 6.85029910633E-07 7.24432951740E-07 7.66030514992E-07 8.09942095685E-07 8.56293598266E-07 9.05217676673E-07 9.56854092618E-07 1.01135009277E-06 1.06886080580E-06 1.12954966041E-06 1.19358882530E-06 1.26115967242E-06 1.33245326451E-06 1.40767086840E-06 1.48702449530E-06 1.57073746952E-06 1.65904502712E-06 1.75219494608E-06 1.85044820958E-06 1.95407970417E-06 2.06337895468E-06 2.17865089772E-06 2.30021669583E-06 2.42841459444E-06 2.56360082382E-06 2.70615054839E-06 2.85645886594E-06 3.01494185920E-06 3.18203770268E-06 3.35820782761E-06 3.54393814790E-06 3.73974035049E-06 3.94615325334E-06 4.16374423462E-06 4.39311073678E-06 4.63488184952E-06 4.88971997564E-06 5.15832258414E-06 5.44142405523E-06 5.73979762181E-06 6.05425741270E-06 6.38566060275E-06 6.73490967548E-06 7.10295480406E-06 7.49079635684E-06 7.89948753393E-06 8.33013714150E-06 8.78391251122E-06 9.26204257214E-06 9.76582108312E-06 1.02966100340E-05 1.08558432244E-05 1.14450300295E-05 1.20657593617E-05 1.27197038402E-05 1.34086241767E-05 1.41343737905E-05 1.48989036644E-05 1.57042674529E-05 1.65526268576E-05 1.74462572813E-05 1.83875537777E-05 1.93790373101E-05 2.04233613361E-05 2.15233187343E-05 2.26818490924E-05 2.39020463728E-05 2.51871669773E-05 2.65406382308E-05 2.79660673057E-05 2.94672506088E-05 3.10481836560E-05 3.27130714595E-05 3.44663394526E-05 3.63126449818E-05 3.82568893938E-05 4.03042307481E-05 4.24600971885E-05 4.47302010061E-05 4.71205534290E-05 4.96374801775E-05 5.22876378226E-05 5.50780309886E-05 5.80160304451E-05 6.11093921303E-05 6.43662771571E-05 6.77952728483E-05 7.14054148566E-05 7.52062104215E-05 7.92076628237E-05 8.34202970959E-05 8.78551870537E-05 9.25239837152E-05 9.74389451770E-05 1.02612968023E-04 1.08059620340E-04 1.13793176425E-04 1.19828653266E-04 1.26181848887E-04 1.32869382650E-04 1.39908737612E-04 1.47318305045E-04 1.55117431213E-04 1.63326466540E-04 1.71966817264E-04 1.81060999722E-04 1.90632697379E-04 2.00706820755E-04 2.11309570371E-04 2.22468502884E-04 2.34212600557E-04 2.46572344226E-04 2.59579789943E-04 2.73268649467E-04 2.87674374797E-04 3.02834246942E-04 3.18787469123E-04 3.35575264643E-04 3.53240979626E-04 3.71830190878E-04 3.91390819105E-04 4.11973247742E-04 4.33630447674E-04 4.56418108110E-04 4.80394773915E-04 5.05621989694E-04 5.32164450953E-04 5.60090162664E-04 5.89470605571E-04 6.20380910607E-04 6.52900041788E-04 6.87110987977E-04 7.23100963911E-04 7.60961620932E-04 8.00789267834E-04 8.42685102298E-04 8.86755453383E-04 9.33112035550E-04 9.81872214744E-04 1.03315928704E-03 1.08710277044E-03 1.14383871027E-03 1.20350999896E-03 1.26626671061E-03 1.33226645104E-03 1.40167472403E-03 1.47466531430E-03 1.55142068799E-03 1.63213241133E-03 1.71700158813E-03 1.80623931702E-03 1.90006716901E-03 1.99871768620E-03 2.10243490256E-03 2.21147488734E-03 2.32610631224E-03 2.44661104288E-03 2.57328475565E-03 2.70643758072E-03 2.84639477205E-03 2.99349740538E-03 3.14810310493E-03 3.31058679990E-03 3.48134151154E-03 3.66077917165E-03 3.84933147346E-03 4.04745075578E-03 4.25561092117E-03 4.47430838907E-03 4.70406308458E-03 4.94541946383E-03 5.19894757652E-03 5.46524416639E-03 5.74493381027E-03 6.03867009627E-03 6.34713684164E-03 6.67104935067E-03 7.01115571312E-03 7.36823814319E-03 7.74311435948E-03 8.13663900560E-03 8.54970511164E-03 8.98324559595E-03 9.43823480701E-03 9.91569010467E-03 1.04166734799E-02 1.09422932123E-02 1.14937055635E-02 1.20721165063E-02 1.26787834854E-02 1.33150172110E-02 1.39821834795E-02 1.46817050211E-02 1.54150633706E-02 1.61838007571E-02 1.69895220104E-02 1.78338964786E-02 1.87186599536E-02 1.96456165981E-02 2.06166408699E-02 2.16336794364E-02 2.26987530737E-02 2.38139585435E-02 2.49814704386E-02 2.62035429910E-02 2.74825118333E-02 2.88207957028E-02 3.02208980806E-02 3.16854087542E-02 3.32170052916E-02 3.48184544175E-02 3.64926132768E-02 3.82424305736E-02 4.00709475721E-02 4.19812989434E-02 4.39767134451E-02 4.60605144144E-02 4.82361200615E-02 5.05070435406E-02 5.28768927837E-02 5.53493700724E-02 5.79282713294E-02 6.06174851025E-02 6.34209912181E-02 6.63428590736E-02 6.93872455391E-02 7.25583924338E-02 7.58606235369E-02 7.92983410924E-02 8.28760217550E-02 8.65982119237E-02 9.04695223970E-02 9.44946222746E-02 9.86782320204E-02 1.03025115585E-01 1.07540071472E-01 1.12227922608E-01 1.17093504865E-01 1.22141654042E-01 1.27377191089E-01 1.32804905334E-01 1.38429535408E-01 1.44255747538E-01 1.50288110818E-01 1.56531069013E-01 1.62988908374E-01 1.69665720900E-01 1.76565362358E-01 1.83691404338E-01 1.91047079479E-01 1.98635218953E-01 2.06458181142E-01 2.14517770389E-01 2.22815144559E-01 2.31350710084E-01 2.40124003043E-01 2.49133554791E-01 2.58376740558E-01 2.67849609459E-01 2.77546694353E-01 2.87460800086E-01 2.97582768786E-01 3.07901221138E-01 3.18402272919E-01 3.29069226539E-01 3.39882238010E-01 3.50817960581E-01 3.61849167337E-01 3.72944356348E-01 3.84067343547E-01 3.95176850375E-01 4.06226095425E-01 4.17162401852E-01 4.27926835158E-01 4.38453889118E-01 4.48671241018E-01 4.58499600929E-01 4.67852683382E-01 4.76637333186E-01 4.84753840235E-01 4.92096480349E-01 4.98554320302E-01 5.04012324498E-01 5.08352797662E-01 5.11457191618E-01 5.13208293847E-01 5.13492800006E-01 5.12204250996E-01 5.09246286401E-01 5.04536129328E-01 4.98008172392E-01 4.89617480642E-01 4.79342965798E-01 4.67189919103E-01 4.53191521991E-01 4.37408890849E-01 4.19929164752E-01 4.00861127402E-01 3.80327885824E-01 3.58456233829E-01 3.35362538975E-01 3.11135342942E-01 2.85815396214E-01 2.59374591567E-01 2.31696238031E-01 2.02560311611E-01 1.71638650542E-01 1.38506330570E-01 1.02676258824E-01 6.36636380030E-02 2.10841289164E-02 -2.52177672054E-02 -7.50286574887E-02 -1.27661063949E-01 -1.81978406198E-01 -2.36725417468E-01 -2.91159766585E-01 -3.44858602041E-01 -3.97391442360E-01 -4.48305154921E-01 -4.97121251418E-01 -5.43332082762E-01 -5.86396081184E-01 -6.25732432113E-01 -6.60715871986E-01 -6.90672708169E-01 -7.14879636123E-01 -7.32567471148E-01 -7.42932473151E-01 -7.45158453018E-01 -7.38453191280E-01 -7.22102703842E-01 -6.95546320469E-01 -6.58474082525E-01 -6.10945241637E-01 -5.53522202601E-01 -4.87407703973E-01 -4.14564072402E-01 -3.37782203301E-01 -2.60655477623E-01 -1.87402861900E-01 -1.22481505115E-01 -6.99429718466E-02 -3.25375334165E-02 -1.06896090404E-02 -1.70620067545E-03 -2.15523707042E-05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2.36526905415E+01 -2.16618937616E+02 1.75886609060E+03 -1.13775210409E+04 4.35525864462E+04 -9.24275347828E+04 1.01350037186E+05 -4.49088864014E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1 -1.75764529391E+00 0.00000000000E+00 -2.82474453422E-10 3.67025650284E-09 1.84110939846E-09 -6.72987250548E-11 -2.64944734622E-09 -5.88062310563E-09 -9.79882099019E-09 -1.44357553257E-08 -1.98287172883E-08 -2.60107783789E-08 -3.30231961413E-08 -4.09010678781E-08 -4.96862455622E-08 -5.94260217741E-08 -7.01551077082E-08 -8.19237331617E-08 -9.47847754554E-08 -1.08777441715E-07 -1.23953718716E-07 -1.40376718747E-07 -1.58091188486E-07 -1.77158632722E-07 -1.97634554230E-07 -2.19586967821E-07 -2.43076479109E-07 -2.68167834573E-07 -2.94924578567E-07 -3.23437886382E-07 -3.53755882242E-07 -3.85982738766E-07 -4.20159654855E-07 -4.56426354793E-07 -4.94804574995E-07 -5.35438199380E-07 -5.78383819688E-07 -6.23753042109E-07 -6.71641579759E-07 -7.22158266021E-07 -7.75401662526E-07 -8.31478208719E-07 -8.90530829596E-07 -9.52645205362E-07 -1.01795910718E-06 -1.08660825516E-06 -1.15871315974E-06 -1.23442339303E-06 -1.31386742960E-06 -1.39721167100E-06 -1.48459803441E-06 -1.57617849328E-06 -1.67215329055E-06 -1.77264465212E-06 -1.87785915332E-06 -1.98798872923E-06 -2.10321555929E-06 -2.22369120831E-06 -2.34972119874E-06 -2.48143057589E-06 -2.61905899838E-06 -2.76287198621E-06 -2.91305987631E-06 -3.06989030205E-06 -3.23361270723E-06 -3.40448966205E-06 -3.58281004816E-06 -3.76880829713E-06 -3.96284775353E-06 -4.16517070236E-06 -4.37610280264E-06 -4.59600660952E-06 -4.82517686374E-06 -5.06400415704E-06 -5.31277445593E-06 -5.57195745417E-06 -5.84187813752E-06 -6.12295902199E-06 -6.41562332947E-06 -6.72025789362E-06 -7.03741344509E-06 -7.36740517551E-06 -7.71084788131E-06 -8.06813552714E-06 -8.43988752011E-06 -8.82651922428E-06 -9.22865275319E-06 -9.64686666425E-06 -1.00817150411E-05 -1.05338143633E-05 -1.10038404230E-05 -1.14923832883E-05 -1.20001697850E-05 -1.25279109533E-05 -1.30762936743E-05 -1.36461065657E-05 -1.42381297130E-05 -1.48531367028E-05 -1.54920111659E-05 -1.61556052194E-05 -1.68447993994E-05 -1.75605310598E-05 -1.83037990343E-05 -1.90755170405E-05 -1.98768626378E-05 -2.07086870047E-05 -2.15723250826E-05 -2.24687871102E-05 -2.33992131266E-05 -2.43650128147E-05 -2.53673414776E-05 -2.64074108264E-05 -2.74868329623E-05 -2.86067841039E-05 -2.97688675102E-05 -3.09744893527E-05 -3.22253417743E-05 -3.35228887371E-05 -3.48689126926E-05 -3.62651547958E-05 -3.77133170085E-05 -3.92153597558E-05 -4.07731294709E-05 -4.23886251912E-05 -4.40640185453E-05 -4.58012285495E-05 -4.76026787802E-05 -4.94704979398E-05 -5.14071694041E-05 -5.34150233514E-05 -5.54967025814E-05 -5.76547470503E-05 -5.98918874198E-05 -6.22109739321E-05 -6.46148958780E-05 -6.71065727064E-05 -6.96892732068E-05 -7.23660671771E-05 -7.51404313435E-05 -7.80157104859E-05 -8.09954884905E-05 -8.40834870650E-05 -8.72835335469E-05 -9.05996076405E-05 -9.40357014323E-05 -9.75961780714E-05 -1.01285368675E-04 -1.05107815386E-04 -1.09068171020E-04 -1.13171439392E-04 -1.17422455665E-04 -1.21826585832E-04 -1.26389099305E-04 -1.31115730584E-04 -1.36012021316E-04 -1.41084175007E-04 -1.46338172874E-04 -1.51780582450E-04 -1.57417843458E-04 -1.63256966895E-04 -1.69304907769E-04 -1.75569086348E-04 -1.82056993496E-04 -1.88776617548E-04 -1.95735856169E-04 -2.02943426844E-04 -2.10407685483E-04 -2.18137917357E-04 -2.26143215776E-04 -2.34433353698E-04 -2.43018213892E-04 -2.51908214233E-04 -2.61113848077E-04 -2.70646367941E-04 -2.80517039434E-04 -2.90737794882E-04 -3.01320719779E-04 -3.12278683187E-04 -3.23624586690E-04 -3.35372052667E-04 -3.47535164656E-04 -3.60128315306E-04 -3.73166563644E-04 -3.86665460828E-04 -4.00641048529E-04 -4.15109906849E-04 -4.30089389131E-04 -4.45597092729E-04 -4.61651550453E-04 -4.78271744477E-04 -4.95477518536E-04 -5.13289056248E-04 -5.31727651082E-04 -5.50815014480E-04 -5.70573749839E-04 -5.91027313286E-04 -6.12199683531E-04 -6.34116114457E-04 -6.56802266606E-04 -6.80285086953E-04 -7.04592103878E-04 -7.29752164561E-04 -7.55794707141E-04 -7.82750614106E-04 -8.10651446758E-04 -8.39530093401E-04 -8.69420554481E-04 -9.00357968305E-04 -9.32378594342E-04 -9.65520123880E-04 -9.99821513260E-04 -1.03532285462E-03 -1.07206588977E-03 -1.11009380728E-03 -1.14945089578E-03 -1.19018354238E-03 -1.23233928015E-03 -1.27596752208E-03 -1.32111924080E-03 -1.36784739602E-03 -1.41620643880E-03 -1.46625298535E-03 -1.51804550878E-03 -1.57164444667E-03 -1.62711235108E-03 -1.68451406076E-03 -1.74391636041E-03 -1.80538864460E-03 -1.86900246913E-03 -1.93483206301E-03 -2.00295399543E-03 -2.07344761706E-03 -2.14639497913E-03 -2.22188090756E-03 -2.29999323925E-03 -2.38082277025E-03 -2.46446343311E-03 -2.55101237519E-03 -2.64057012152E-03 -2.73324063494E-03 -2.82913150390E-03 -2.92835382071E-03 -3.03102283959E-03 -3.13725741298E-03 -3.24718074531E-03 -3.36092004780E-03 -3.47860717272E-03 -3.60037818944E-03 -3.72637416513E-03 -3.85674057584E-03 -3.99162846129E-03 -4.13119341348E-03 -4.27559690437E-03 -4.42500556456E-03 -4.57959188916E-03 -4.73953431812E-03 -4.90501726289E-03 -5.07623161715E-03 -5.25337460585E-03 -5.43665038320E-03 -5.62626996205E-03 -5.82245165932E-03 -6.02542115920E-03 -6.23541186406E-03 -6.45266524898E-03 -6.67743086699E-03 -6.90996693574E-03 -7.15054032065E-03 -7.39942716268E-03 -7.65691271942E-03 -7.92329235784E-03 -8.19887114528E-03 -8.48396464326E-03 -8.77889913844E-03 -9.08401211301E-03 -9.39965219388E-03 -9.72618014672E-03 -1.00639689034E-02 -1.04134037298E-02 -1.07748834767E-02 -1.11488199057E-02 -1.15356391045E-02 -1.19357814408E-02 -1.23497019431E-02 -1.27778714113E-02 -1.32207759864E-02 -1.36789186256E-02 -1.41528188634E-02 -1.46430139854E-02 -1.51500589918E-02 -1.56745278072E-02 -1.62170133447E-02 -1.67781284097E-02 -1.73585064543E-02 -1.79588018223E-02 -1.85796908183E-02 -1.92218722381E-02 -1.98860682259E-02 -2.05730245814E-02 -2.12835123107E-02 -2.20183275220E-02 -2.27782929344E-02 -2.35642582835E-02 -2.43771013840E-02 -2.52177288055E-02 -2.60870772259E-02 -2.69861136095E-02 -2.79158368513E-02 -2.88772783522E-02 -2.98715033659E-02 -3.08996112589E-02 -3.19627379013E-02 -3.30620550412E-02 -3.41987730678E-02 -3.53741408651E-02 -3.65894477796E-02 -3.78460242376E-02 -3.91452434487E-02 -4.04885222630E-02 -4.18773226465E-02 -4.33131528188E-02 -4.47975687034E-02 -4.63321751502E-02 -4.79186275848E-02 -4.95586326660E-02 -5.12539509445E-02 -5.30063968120E-02 -5.48178411738E-02 -5.66902124630E-02 -5.86254979812E-02 -6.06257456505E-02 -6.26930654994E-02 -6.48296314019E-02 -6.70376820800E-02 -6.93195234807E-02 -7.16775296617E-02 -7.41141448929E-02 -7.66318848931E-02 -7.92333387674E-02 -8.19211701357E-02 -8.46981195485E-02 -8.75670049831E-02 -9.05307243939E-02 -9.35922566193E-02 -9.67546632734E-02 -1.00021090056E-01 -1.03394768276E-01 -1.06879016040E-01 -1.10477240253E-01 -1.14192937035E-01 -1.18029693534E-01 -1.21991188937E-01 -1.26081195573E-01 -1.30303579559E-01 -1.34662302303E-01 -1.39161420279E-01 -1.43805086678E-01 -1.48597550938E-01 -1.53543159485E-01 -1.58646355797E-01 -1.63911679964E-01 -1.69343768622E-01 -1.74947354537E-01 -1.80727265075E-01 -1.86688421824E-01 -1.92835838697E-01 -1.99174620174E-01 -2.05709959445E-01 -2.12447135505E-01 -2.19391510477E-01 -2.26548525878E-01 -2.33923699282E-01 -2.41522619015E-01 -2.49350940280E-01 -2.57414378499E-01 -2.65718703849E-01 -2.74269733918E-01 -2.83073326383E-01 -2.92135370395E-01 -3.01461777217E-01 -3.11058470706E-01 -3.20931375554E-01 -3.31086405622E-01 -3.41529451020E-01 -3.52266363733E-01 -3.63302942414E-01 -3.74644915724E-01 -3.86297924991E-01 -3.98267504217E-01 -4.10559060667E-01 -4.23177851865E-01 -4.36128962284E-01 -4.49417278782E-01 -4.63047462699E-01 -4.77023922226E-01 -4.91350781301E-01 -5.06031847648E-01 -5.21070578437E-01 -5.36470043825E-01 -5.52232888881E-01 -5.68361292478E-01 -5.84856925353E-01 -6.01720903733E-01 -6.18953743211E-01 -6.36555307697E-01 -6.54524757384E-01 -6.72860493744E-01 -6.91560101389E-01 -7.10620287649E-01 -7.30036819143E-01 -7.49804454955E-01 -7.69916877415E-01 -7.90366618635E-01 -8.11144984576E-01 -8.32241974489E-01 -8.53646197085E-01 -8.75344782246E-01 -8.97323288046E-01 -9.19565602912E-01 -9.42053842386E-01 -9.64768239483E-01 -9.87687028561E-01 -1.01078632202E+00 -1.03403997724E+00 -1.05741945594E+00 -1.08089367052E+00 -1.10442882061E+00 -1.12798821370E+00 -1.15153207227E+00 -1.17501732163E+00 -1.19839736043E+00 -1.22162180734E+00 -1.24463622554E+00 -1.26738181952E+00 -1.28979510387E+00 -1.31180754108E+00 -1.33334514594E+00 -1.35432805638E+00 -1.37467006924E+00 -1.39427814123E+00 -1.41305185770E+00 -1.43088287277E+00 -1.44765432655E+00 -1.46324025086E+00 -1.47750497506E+00 -1.49030255344E+00 -1.50147623660E+00 -1.51085802265E+00 -1.51826832762E+00 -1.52351582815E+00 -1.52639754258E+00 -1.52669922617E+00 -1.52419617709E+00 -1.51865456388E+00 -1.50983340283E+00 -1.49748733546E+00 -1.48137037138E+00 -1.46124078273E+00 -1.43686734482E+00 -1.40803713237E+00 -1.37456507342E+00 -1.33630545504E+00 -1.29316553915E+00 -1.24512139911E+00 -1.19223599342E+00 -1.13467938340E+00 -1.07275081910E+00 -1.00690220924E+00 -9.37762198776E-01 -8.66159743662E-01 -7.93145663747E-01 -7.20010230744E-01 -6.48294395987E-01 -5.79791911116E-01 -5.16539414380E-01 -4.60791763801E-01 -4.14980809042E-01 -3.81657825136E-01 -3.63426768040E-01 -3.50658047054E-01 -3.39878394764E-01 -3.28449816743E-01 -3.12879097053E-01 -2.89058723842E-01 -2.52882023019E-01 -2.01523358923E-01 -1.35772387080E-01 -6.37870815708E-02 -9.56896679976E-03 7.53803734834E-04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4.87513710425E+01 9.76916513986E+00 3.45427100924E+00 0.00000000000E+00 1.65599506018E-09 6.73769180370E-09 1.54207879464E-08 2.78880234276E-08 4.43294400459E-08 6.49426503346E-08 8.99331160003E-08 1.19514436259E-07 1.53908646417E-07 1.93346527054E-07 2.38067924178E-07 2.88322080742E-07 3.44367979909E-07 4.06474700485E-07 4.74921784944E-07 5.49999620474E-07 6.32009833523E-07 7.21265698284E-07 8.18092559634E-07 9.22828271018E-07 1.03582364780E-06 1.15744293661E-06 1.28806430130E-06 1.42808032598E-06 1.57789853586E-06 1.73794193640E-06 1.90864957148E-06 2.09047710129E-06 2.28389740043E-06 2.48940117723E-06 2.70749761471E-06 2.93871503424E-06 3.18360158237E-06 3.44272594195E-06 3.71667806814E-06 4.00606995033E-06 4.31153640082E-06 4.63373587108E-06 4.97335129685E-06 5.33109097272E-06 5.70768945742E-06 6.10390851096E-06 6.52053806445E-06 6.95839722406E-06 7.41833531002E-06 7.90123293213E-06 8.40800310285E-06 8.93959238935E-06 9.49698210594E-06 1.00811895481E-05 1.06932692700E-05 1.13343144059E-05 1.20054580391E-05 1.27078746170E-05 1.34427814175E-05 1.42114400647E-05 1.50151580993E-05 1.58552906027E-05 1.67332418779E-05 1.76504671900E-05 1.86084745660E-05 1.96088266587E-05 2.06531426746E-05 2.17431003699E-05 2.28804381156E-05 2.40669570345E-05 2.53045232131E-05 2.65950699902E-05 2.79406003255E-05 2.93431892505E-05 3.08049864050E-05 3.23282186617E-05 3.39151928422E-05 3.55682985280E-05 3.72900109685E-05 3.90828940907E-05 4.09496036140E-05 4.28928902725E-05 4.49156031501E-05 4.70206931308E-05 4.92112164704E-05 5.14903384903E-05 5.38613374018E-05 5.63276082617E-05 5.88926670665E-05 6.15601549882E-05 6.43338427573E-05 6.72176351983E-05 7.02155759227E-05 7.33318521847E-05 7.65707999061E-05 7.99369088745E-05 8.34348281235E-05 8.70693714984E-05 9.08455234155E-05 9.47684448214E-05 9.88434793588E-05 1.03076159746E-04 1.07472214380E-04 1.12037574162E-04 1.16778379570E-04 1.21700987966E-04 1.26811981166E-04 1.32118173264E-04 1.37626618732E-04 1.43344620801E-04 1.49279740132E-04 1.55439803783E-04 1.61832914495E-04 1.68467460294E-04 1.75352124423E-04 1.82495895629E-04 1.89908078792E-04 1.97598305934E-04 2.05576547604E-04 2.13853124655E-04 2.22438720436E-04 2.31344393395E-04 2.40581590134E-04 2.50162158896E-04 2.60098363540E-04 2.70402897980E-04 2.81088901139E-04 2.92169972411E-04 3.03660187663E-04 3.15574115786E-04 3.27926835823E-04 3.40733954687E-04 3.54011625493E-04 3.67776566520E-04 3.82046080838E-04 3.96838076599E-04 4.12171088046E-04 4.28064297234E-04 4.44537556511E-04 4.61611411774E-04 4.79307126522E-04 4.97646706752E-04 5.16652926705E-04 5.36349355507E-04 5.56760384729E-04 5.77911256895E-04 5.99828094984E-04 6.22537932941E-04 6.46068747248E-04 6.70449489582E-04 6.95710120600E-04 7.21881644894E-04 7.48996147152E-04 7.77086829560E-04 8.06188050506E-04 8.36335364610E-04 8.67565564143E-04 8.99916721867E-04 9.33428235361E-04 9.68140872869E-04 1.00409682073E-03 1.04133973247E-03 1.07991477951E-03 1.11986870373E-03 1.16124987177E-03 1.20410833122E-03 1.24849586874E-03 1.29446607021E-03 1.34207438294E-03 1.39137818000E-03 1.44243682681E-03 1.49531174994E-03 1.55006650844E-03 1.60676686741E-03 1.66548087432E-03 1.72627893776E-03 1.78923390908E-03 1.85442116670E-03 1.92191870339E-03 1.99180721656E-03 2.06417020158E-03 2.13909404843E-03 2.21666814157E-03 2.29698496328E-03 2.38014020056E-03 2.46623285569E-03 2.55536536063E-03 2.64764369525E-03 2.74317750975E-03 2.84208025118E-03 2.94446929437E-03 3.05046607730E-03 3.16019624117E-03 3.27378977523E-03 3.39138116662E-03 3.51310955529E-03 3.63911889430E-03 3.76955811554E-03 3.90458130122E-03 4.04434786114E-03 4.18902271608E-03 4.33877648749E-03 4.49378569359E-03 4.65423295228E-03 4.82030719091E-03 4.99220386328E-03 5.17012517400E-03 5.35428031055E-03 5.54488568328E-03 5.74216517358E-03 5.94635039049E-03 6.15768093613E-03 6.37640468011E-03 6.60277804337E-03 6.83706629161E-03 7.07954383877E-03 7.33049456079E-03 7.59021212008E-03 7.85900030103E-03 8.13717335685E-03 8.42505636829E-03 8.72298561445E-03 9.03130895620E-03 9.35038623262E-03 9.68058967083E-03 1.00223043097E-02 1.03759284380E-02 1.07418740471E-02 1.11205672992E-02 1.15124490116E-02 1.19179751564E-02 1.23376173781E-02 1.27718635283E-02 1.32212182176E-02 1.36862033876E-02 1.41673589004E-02 1.46652431494E-02 1.51804336893E-02 1.57135278883E-02 1.62651436013E-02 1.68359198657E-02 1.74265176212E-02 1.80376204522E-02 1.86699353566E-02 1.93241935384E-02 2.00011512282E-02 2.07015905297E-02 2.14263202950E-02 2.21761770284E-02 2.29520258204E-02 2.37547613120E-02 2.45853086914E-02 2.54446247224E-02 2.63336988080E-02 2.72535540874E-02 2.82052485695E-02 2.91898763033E-02 3.02085685867E-02 3.12624952135E-02 3.23528657622E-02 3.34809309251E-02 3.46479838813E-02 3.58553617135E-02 3.71044468699E-02 3.83966686734E-02 3.97335048783E-02 4.11164832778E-02 4.25471833607E-02 4.40272380219E-02 4.55583353262E-02 4.71422203277E-02 4.87806969457E-02 5.04756299000E-02 5.22289467052E-02 5.40426397278E-02 5.59187683056E-02 5.78594609332E-02 5.98669175135E-02 6.19434116779E-02 6.40912931766E-02 6.63129903410E-02 6.86110126201E-02 7.09879531914E-02 7.34464916505E-02 7.59893967786E-02 7.86195293917E-02 8.13398452723E-02 8.41533981855E-02 8.70633429820E-02 9.00729387889E-02 9.31855522903E-02 9.64046611003E-02 9.97338572288E-02 1.03176850643E-01 1.06737472926E-01 1.10419681034E-01 1.14227561150E-01 1.18165332648E-01 1.22237352149E-01 1.26448117693E-01 1.30802273005E-01 1.35304611879E-01 1.39960082660E-01 1.44773792847E-01 1.49751013790E-01 1.54897185515E-01 1.60217921645E-01 1.65719014442E-01 1.71406439955E-01 1.77286363284E-01 1.83365143950E-01 1.89649341378E-01 1.96145720491E-01 2.02861257407E-01 2.09803145252E-01 2.16978800067E-01 2.24395866823E-01 2.32062225542E-01 2.39985997501E-01 2.48175551542E-01 2.56639510463E-01 2.65386757500E-01 2.74426442881E-01 2.83767990458E-01 2.93421104409E-01 3.03395775989E-01 3.13702290342E-01 3.24351233351E-01 3.35353498523E-01 3.46720293894E-01 3.58463148945E-01 3.70593921518E-01 3.83124804708E-01 3.96068333736E-01 4.09437392765E-01 4.23245221649E-01 4.37505422607E-01 4.52231966786E-01 4.67439200691E-01 4.83141852475E-01 4.99355038044E-01 5.16094266954E-01 5.33375448081E-01 5.51214895016E-01 5.69629331159E-01 5.88635894474E-01 6.08252141866E-01 6.28496053129E-01 6.49386034427E-01 6.70940921263E-01 6.93179980860E-01 7.16122913924E-01 7.39789855710E-01 7.64201376328E-01 7.89378480219E-01 8.15342604717E-01 8.42115617625E-01 8.69719813700E-01 8.98177909957E-01 9.27513039689E-01 9.57748745071E-01 9.88908968241E-01 1.02101804071E+00 1.05410067097E+00 1.08818193008E+00 1.12328723515E+00 1.15944233044E+00 1.19667326587E+00 1.23500637282E+00 1.27446823679E+00 1.31508566673E+00 1.35688566082E+00 1.39989536814E+00 1.44414204608E+00 1.48965301299E+00 1.53645559551E+00 1.58457707037E+00 1.63404459978E+00 1.68488516006E+00 1.73712546280E+00 1.79079186773E+00 1.84591028668E+00 1.90250607768E+00 1.96060392830E+00 2.02022772721E+00 2.08140042298E+00 2.14414386879E+00 2.20847865189E+00 2.27442390654E+00 2.34199710887E+00 2.41121385230E+00 2.48208760183E+00 2.55462942577E+00 2.62884770302E+00 2.70474780444E+00 2.78233174650E+00 2.86159781566E+00 2.94254016200E+00 3.02514836057E+00 3.10940693950E+00 3.19529487384E+00 3.28278504472E+00 3.37184366392E+00 3.46242966431E+00 3.55449405781E+00 3.64797926305E+00 3.74281840632E+00 3.83893460047E+00 3.93624020824E+00 4.03463609803E+00 4.13401090205E+00 4.23424028940E+00 4.33518626859E+00 4.43669653694E+00 4.53860389704E+00 4.64072576326E+00 4.74286378406E+00 4.84480360887E+00 4.94631483027E+00 5.04715113431E+00 5.14705069276E+00 5.24573683083E+00 5.34291900219E+00 5.43829409932E+00 5.53154812059E+00 5.62235820599E+00 5.71039503933E+00 5.79532559680E+00 5.87681619769E+00 5.95453578363E+00 6.02815931667E+00 6.09737114370E+00 6.16186812649E+00 6.22136228246E+00 6.27558262472E+00 6.32427583382E+00 6.36720534279E+00 6.40414837992E+00 6.43489050014E+00 6.45921715956E+00 6.47690196708E+00 6.48769140329E+00 6.49128605676E+00 6.48731882044E+00 6.47533104666E+00 6.45474840573E+00 6.42485914715E+00 6.38479861822E+00 6.33354520369E+00 6.26993419026E+00 6.19269719014E+00 6.10053524534E+00 5.99223285534E+00 5.86681675421E+00 5.72375547648E+00 5.56318078408E+00 5.38608564249E+00 5.19440933828E+00 4.99084926896E+00 4.77812807003E+00 4.55785719741E+00 4.33101561455E+00 4.09860145567E+00 3.86164467101E+00 3.62119662544E+00 3.37832174040E+00 3.13409236516E+00 2.88958807737E+00 2.64590047512E+00 2.40414423038E+00 2.16547464299E+00 1.93111117336E+00 1.70236536969E+00 1.48067027911E+00 1.26760681648E+00 1.06492076281E+00 8.74522164177E-01 6.98457170817E-01 5.38841164347E-01 3.97742073900E-01 2.77005114262E-01 1.78016385340E-01 1.01414897322E-01 4.67828815321E-02 1.23740505018E-02 -5.02306671265E-03 -9.95385035068E-03 -7.75519134109E-03 -3.52095682183E-03 -7.09003838548E-04 -1.07360283220E-05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5.90344466663E+01 -2.13815380307E+02 1.06002745565E+03 -7.77795068645E+03 3.39206853881E+04 -7.86789537932E+04 9.20243505013E+04 -4.28358340376E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3.03645134451E+01 1.04549846251E+04 -1.59981287965E+05 1.07956334049E+06 -3.90370497406E+06 7.81076901974E+06 -8.15459582836E+06 3.47155454705E+06 -3.65943725563E+01 -1.41089989620E+01 -1.86761883227E+00 0.00000000000E+00 -1.10123979470E-09 -4.48057757943E-09 -1.02548526613E-08 -1.85455874388E-08 -2.94791600595E-08 -4.31869832232E-08 -5.98056893435E-08 -7.94773222924E-08 -1.02349535956E-07 -1.28575799843E-07 -1.58315611987E-07 -1.91734719406E-07 -2.29005346374E-07 -2.70306430786E-07 -3.15823868890E-07 -3.65750768691E-07 -4.20287712317E-07 -4.79643027667E-07 -5.44033069664E-07 -6.13682511446E-07 -6.88824645849E-07 -7.69701697526E-07 -8.56565146095E-07 -9.49676060673E-07 -1.04930544623E-06 -1.15573460211E-06 -1.26925549327E-06 -1.39017113448E-06 -1.51879598816E-06 -1.65545637617E-06 -1.80049090606E-06 -1.95425091240E-06 -2.11710091355E-06 -2.28941908452E-06 -2.47159774643E-06 -2.66404387319E-06 -2.86717961597E-06 -3.08144284603E-06 -3.30728771665E-06 -3.54518524482E-06 -3.79562391318E-06 -4.05911029324E-06 -4.33616969033E-06 -4.62734681121E-06 -4.93320645502E-06 -5.25433422847E-06 -5.59133728606E-06 -5.94484509620E-06 -6.31551023416E-06 -6.70400920272E-06 -7.11104328161E-06 -7.53733940651E-06 -7.98365107899E-06 -8.45075930800E-06 -8.93947358449E-06 -9.45063288993E-06 -9.98510674012E-06 -1.05437962654E-05 -1.11276353287E-05 -1.17375916824E-05 -1.23746681657E-05 -1.30399039439E-05 -1.37343757904E-05 -1.44591994143E-05 -1.52155308332E-05 -1.60045677947E-05 -1.68275512473E-05 -1.76857668620E-05 -1.85805466077E-05 -1.95132703808E-05 -2.04853676924E-05 -2.14983194128E-05 -2.25536595788E-05 -2.36529772616E-05 -2.47979185020E-05 -2.59901883109E-05 -2.72315527408E-05 -2.85238410288E-05 -2.98689478142E-05 -3.12688354333E-05 -3.27255362937E-05 -3.42411553318E-05 -3.58178725549E-05 -3.74579456723E-05 -3.91637128175E-05 -4.09375953651E-05 -4.27821008455E-05 -4.46998259607E-05 -4.66934597056E-05 -4.87657865963E-05 -5.09196900120E-05 -5.31581556517E-05 -5.54842751118E-05 -5.79012495872E-05 -6.04123937014E-05 -6.30211394688E-05 -6.57310403955E-05 -6.85457757211E-05 -7.14691548089E-05 -7.45051216871E-05 -7.76577597491E-05 -8.09312966146E-05 -8.43301091614E-05 -8.78587287306E-05 -9.15218465117E-05 -9.53243191157E-05 -9.92711743402E-05 -1.03367617135E-04 -1.07619035773E-04 -1.12031008237E-04 -1.16609308829E-04 -1.21359914999E-04 -1.26289014426E-04 -1.31403012331E-04 -1.36708539047E-04 -1.42212457854E-04 -1.47921873085E-04 -1.53844138505E-04 -1.59986865993E-04 -1.66357934511E-04 -1.72965499395E-04 -1.79818001956E-04 -1.86924179427E-04 -1.94293075241E-04 -2.01934049670E-04 -2.09856790836E-04 -2.18071326096E-04 -2.26588033821E-04 -2.35417655594E-04 -2.44571308809E-04 -2.54060499725E-04 -2.63897136963E-04 -2.74093545467E-04 -2.84662480952E-04 -2.95617144850E-04 -3.06971199773E-04 -3.18738785509E-04 -3.30934535572E-04 -3.43573594323E-04 -3.56671634680E-04 -3.70244876446E-04 -3.84310105266E-04 -3.98884692234E-04 -4.13986614188E-04 -4.29634474696E-04 -4.45847525770E-04 -4.62645690333E-04 -4.80049585453E-04 -4.98080546386E-04 -5.16760651450E-04 -5.36112747749E-04 -5.56160477789E-04 -5.76928307017E-04 -5.98441552302E-04 -6.20726411403E-04 -6.43809993450E-04 -6.67720350480E-04 -6.92486510055E-04 -7.18138509011E-04 -7.44707428365E-04 -7.72225429426E-04 -8.00725791151E-04 -8.30242948791E-04 -8.60812533860E-04 -8.92471415493E-04 -9.25257743214E-04 -9.59210991191E-04 -9.94372004002E-04 -1.03078304399E-03 -1.06848784022E-03 -1.10753163919E-03 -1.14796125717E-03 -1.18982513445E-03 -1.23317339142E-03 -1.27805788656E-03 -1.32453227643E-03 -1.37265207772E-03 -1.42247473147E-03 -1.47405966946E-03 -1.52746838286E-03 -1.58276449331E-03 -1.64001382635E-03 -1.69928448748E-03 -1.76064694070E-03 -1.82417408990E-03 -1.88994136285E-03 -1.95802679830E-03 -2.02851113586E-03 -2.10147790906E-03 -2.17701354164E-03 -2.25520744703E-03 -2.33615213132E-03 -2.41994329974E-03 -2.50667996676E-03 -2.59646456999E-03 -2.68940308795E-03 -2.78560516189E-03 -2.88518422178E-03 -2.98825761657E-03 -3.09494674893E-03 -3.20537721459E-03 -3.31967894643E-03 -3.43798636350E-03 -3.56043852511E-03 -3.68717929017E-03 -3.81835748197E-03 -3.95412705859E-03 -4.09464728907E-03 -4.24008293563E-03 -4.39060444204E-03 -4.54638812843E-03 -4.70761639269E-03 -4.87447791874E-03 -5.04716789185E-03 -5.22588822127E-03 -5.41084777040E-03 -5.60226259476E-03 -5.80035618807E-03 -6.00535973653E-03 -6.21751238185E-03 -6.43706149303E-03 -6.66426294744E-03 -6.89938142126E-03 -7.14269068980E-03 -7.39447393793E-03 -7.65502408085E-03 -7.92464409582E-03 -8.20364736485E-03 -8.49235802904E-03 -8.79111135466E-03 -9.10025411163E-03 -9.42014496456E-03 -9.75115487685E-03 -1.00936675284E-02 -1.04480797470E-02 -1.08148019545E-02 -1.11942586272E-02 -1.15868887721E-02 -1.19931464189E-02 -1.24135011277E-02 -1.28484385141E-02 -1.32984607915E-02 -1.37640873312E-02 -1.42458552406E-02 -1.47443199615E-02 -1.52600558864E-02 -1.57936569962E-02 -1.63457375184E-02 -1.69169326068E-02 -1.75078990429E-02 -1.81193159606E-02 -1.87518855941E-02 -1.94063340503E-02 -2.00834121054E-02 -2.07838960278E-02 -2.15085884273E-02 -2.22583191312E-02 -2.30339460882E-02 -2.38363563019E-02 -2.46664667929E-02 -2.55252255918E-02 -2.64136127635E-02 -2.73326414636E-02 -2.82833590281E-02 -2.92668480962E-02 -3.02842277693E-02 -3.13366548047E-02 -3.24253248467E-02 -3.35514736953E-02 -3.47163786136E-02 -3.59213596747E-02 -3.71677811503E-02 -3.84570529393E-02 -3.97906320414E-02 -4.11700240722E-02 -4.25967848253E-02 -4.40725218787E-02 -4.55988962489E-02 -4.71776240929E-02 -4.88104784594E-02 -5.04992910894E-02 -5.22459542692E-02 -5.40524227343E-02 -5.59207156269E-02 -5.78529185082E-02 -5.98511854253E-02 -6.19177410339E-02 -6.40548827789E-02 -6.62649831326E-02 -6.85504918915E-02 -7.09139385334E-02 -7.33579346342E-02 -7.58851763465E-02 -7.84984469395E-02 -8.12006194022E-02 -8.39946591086E-02 -8.68836265467E-02 -8.98706801116E-02 -9.29590789620E-02 -9.61521859413E-02 -9.94534705627E-02 -1.02866512058E-01 -1.06395002492E-01 -1.10042749936E-01 -1.13813681710E-01 -1.17711847683E-01 -1.21741423632E-01 -1.25906714670E-01 -1.30212158722E-01 -1.34662330064E-01 -1.39261942917E-01 -1.44015855088E-01 -1.48929071670E-01 -1.54006748779E-01 -1.59254197348E-01 -1.64676886948E-01 -1.70280449653E-01 -1.76070683939E-01 -1.82053558606E-01 -1.88235216719E-01 -1.94621979578E-01 -2.01220350682E-01 -2.08037019704E-01 -2.15078866463E-01 -2.22352964876E-01 -2.29866586895E-01 -2.37627206406E-01 -2.45642503090E-01 -2.53920366225E-01 -2.62468898433E-01 -2.71296419332E-01 -2.80411469111E-01 -2.89822811984E-01 -2.99539439529E-01 -3.09570573877E-01 -3.19925670747E-01 -3.30614422296E-01 -3.41646759771E-01 -3.53032855931E-01 -3.64783127225E-01 -3.76908235691E-01 -3.89419090556E-01 -4.02326849496E-01 -4.15642919539E-01 -4.29378957564E-01 -4.43546870367E-01 -4.58158814249E-01 -4.73227194099E-01 -4.88764661897E-01 -5.04784114630E-01 -5.21298691532E-01 -5.38321770618E-01 -5.55866964435E-01 -5.73948114985E-01 -5.92579287732E-01 -6.11774764625E-01 -6.31549036067E-01 -6.51916791722E-01 -6.72892910084E-01 -6.94492446688E-01 -7.16730620870E-01 -7.39622800930E-01 -7.63184487577E-01 -7.87431295517E-01 -8.12378932998E-01 -8.38043179158E-01 -8.64439858974E-01 -8.91584815595E-01 -9.19493879826E-01 -9.48182836510E-01 -9.77667387518E-01 -1.00796311103E+00 -1.03908541679E+00 -1.07104949688E+00 -1.10387027173E+00 -1.13756233076E+00 -1.17213986729E+00 -1.20761660701E+00 -1.24400572957E+00 -1.28131978263E+00 -1.31957058743E+00 -1.35876913550E+00 -1.39892547532E+00 -1.44004858832E+00 -1.48214625303E+00 -1.52522489665E+00 -1.56928943274E+00 -1.61434308409E+00 -1.66038718950E+00 -1.70742099349E+00 -1.75544141753E+00 -1.80444281190E+00 -1.85441668678E+00 -1.90535142183E+00 -1.95723195310E+00 -2.01003943673E+00 -2.06375088880E+00 -2.11833880121E+00 -2.17377073381E+00 -2.23000888342E+00 -2.28700963115E+00 -2.34472306999E+00 -2.40309251565E+00 -2.46205400462E+00 -2.52153578462E+00 -2.58145780399E+00 -2.64173120821E+00 -2.70225785337E+00 -2.76292984843E+00 -2.82362914025E+00 -2.88422715734E+00 -2.94458453086E+00 -3.00455091351E+00 -3.06396491906E+00 -3.12265420748E+00 -3.18043574170E+00 -3.23711624348E+00 -3.29249287535E+00 -3.34635417472E+00 -3.39848126313E+00 -3.44864934907E+00 -3.49662953495E+00 -3.54219092870E+00 -3.58510304598E+00 -3.62513847074E+00 -3.66207571878E+00 -3.69570222075E+00 -3.72581730751E+00 -3.75223504235E+00 -3.77478670201E+00 -3.79332266239E+00 -3.80771339970E+00 -3.81784927500E+00 -3.82363873771E+00 -3.82500456795E+00 -3.82187778936E+00 -3.81418893794E+00 -3.80185648358E+00 -3.78477239105E+00 -3.76278509812E+00 -3.73568060471E+00 -3.70316293006E+00 -3.66483591983E+00 -3.62018926905E+00 -3.56859263686E+00 -3.50930277624E+00 -3.44148950803E+00 -3.36428681348E+00 -3.27687475933E+00 -3.17859552913E+00 -3.06910113150E+00 -2.94851927462E+00 -2.81760423418E+00 -2.67780653757E+00 -2.53114193347E+00 -2.37965691141E+00 -2.22458799001E+00 -2.06671037620E+00 -1.90681808450E+00 -1.74573711634E+00 -1.58432207402E+00 -1.42345462903E+00 -1.26404441157E+00 -1.10703274302E+00 -9.53399355269E-01 -8.04171812091E-01 -6.60436737348E-01 -5.23351163634E-01 -3.94151345945E-01 -2.74155285837E-01 -1.64754061267E-01 -6.73859979288E-02 1.65130295217E-02 8.55899881999E-02 1.38691577679E-01 1.75020618275E-01 1.94329387023E-01 1.97137908845E-01 1.84950596096E-01 1.60424011758E-01 1.27412640786E-01 9.07931313274E-02 5.59534110785E-02 2.78591639276E-02 9.72822092493E-03 1.64056749689E-03 2.18349099060E-05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -3.92580168208E+01 1.62591288441E+02 -8.56230115972E+02 6.15070978530E+03 -2.65169678166E+04 6.10747765628E+04 -7.10276058184E+04 3.29002912635E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -7.54769901270E+00 -6.90388837093E+03 1.05217388491E+05 -7.09853067180E+05 2.56682363756E+06 -5.13591934979E+06 5.36208913173E+06 -2.28278000670E+06 1 -6.64264385250E-01 0.00000000000E+00 -1.22204435567E-10 -5.27088716479E-09 -4.75836525926E-09 -4.80089361196E-09 -4.78615235215E-09 -4.77437938464E-09 -4.75950451394E-09 -4.74167466821E-09 -4.72139537172E-09 -4.69774592352E-09 -4.67117356344E-09 -4.64129889781E-09 -4.60747419443E-09 -4.57091218062E-09 -4.53004670584E-09 -4.48466735325E-09 -4.43665276596E-09 -4.38339588866E-09 -4.32497258590E-09 -4.26280732387E-09 -4.19534598319E-09 -4.12310446822E-09 -4.04463652385E-09 -3.96201075901E-09 -3.87212440642E-09 -3.77657775335E-09 -3.67483360546E-09 -3.56612118032E-09 -3.45127447403E-09 -3.32859930855E-09 -3.19722281627E-09 -3.06249228233E-09 -2.91161994529E-09 -2.76133530106E-09 -2.59550138143E-09 -2.42379665217E-09 -2.24108719592E-09 -2.04859681002E-09 -1.84643098834E-09 -1.63166328403E-09 -1.40886911123E-09 -1.17126449850E-09 -9.22605177096E-10 -6.61769733399E-10 -3.85332359014E-10 -1.00731019401E-10 2.06526908985E-10 5.20853689748E-10 8.53437587419E-10 1.20560750070E-09 1.56602391738E-09 1.95368290338E-09 2.35234293655E-09 2.77105690044E-09 3.21138406219E-09 3.67045493711E-09 4.15211549509E-09 4.65089094732E-09 5.17728373936E-09 5.72506674679E-09 6.30041835788E-09 6.89410326823E-09 7.51976857963E-09 8.17360564158E-09 8.84928394837E-09 9.56528277826E-09 1.02996077871E-08 1.10721942857E-08 1.18802943285E-08 1.27192274118E-08 1.35929221468E-08 1.45017884354E-08 1.54547682107E-08 1.64442868843E-08 1.74730912157E-08 1.85532799787E-08 1.96619906934E-08 2.08342701449E-08 2.20409097882E-08 2.33033521067E-08 2.46213830354E-08 2.59838138556E-08 2.74047323304E-08 2.88870658576E-08 3.04237075545E-08 3.20283421327E-08 3.36917197490E-08 3.54191677828E-08 3.72259159691E-08 3.90943916541E-08 4.10462867684E-08 4.30644705698E-08 4.51725102404E-08 4.73558280786E-08 4.96308540085E-08 5.19906948512E-08 5.44472490693E-08 5.69955816739E-08 5.96472090967E-08 6.24033302473E-08 6.52570379104E-08 6.82336316135E-08 7.13172317489E-08 7.45268343886E-08 7.78546255626E-08 8.13101072952E-08 8.49097635731E-08 8.86361986400E-08 9.25040680974E-08 9.65410963500E-08 1.00703482025E-07 1.05048201961E-07 1.09547263119E-07 1.14226726692E-07 1.19080179589E-07 1.24117348734E-07 1.29352665984E-07 1.34780387965E-07 1.40424676680E-07 1.46274240425E-07 1.52350423182E-07 1.58661388354E-07 1.65207735399E-07 1.72004710863E-07 1.79060328748E-07 1.86385387677E-07 1.93984078385E-07 2.01882549061E-07 2.10065297393E-07 2.18574608017E-07 2.27399781982E-07 2.36565914776E-07 2.46066390433E-07 2.55945995623E-07 2.66191180731E-07 2.76836829290E-07 2.87873617052E-07 2.99339998645E-07 3.11245995337E-07 3.23599325611E-07 3.36435003746E-07 3.49751164470E-07 3.63580182088E-07 3.77942762591E-07 3.92849574766E-07 4.08338762075E-07 4.24415208422E-07 4.41109691757E-07 4.58455931496E-07 4.76466512315E-07 4.95173081013E-07 5.14611171427E-07 5.34787103521E-07 5.55763835636E-07 5.77550089003E-07 6.00189327034E-07 6.23708515919E-07 6.48151453331E-07 6.73562161892E-07 6.99952214014E-07 7.27408595499E-07 7.55932812652E-07 7.85594520838E-07 8.16426580963E-07 8.48503576354E-07 8.81841636337E-07 9.16533519255E-07 9.52614018275E-07 9.90148962294E-07 1.02918858624E-06 1.06983906852E-06 1.11212867658E-06 1.15613871434E-06 1.20196377429E-06 1.24967534195E-06 1.29934923514E-06 1.35108763829E-06 1.40497804410E-06 1.46111782254E-06 1.51961021863E-06 1.58057724254E-06 1.64411345798E-06 1.71033947063E-06 1.77941562727E-06 1.85142921814E-06 1.92655204464E-06 2.00492747056E-06 2.08670666272E-06 2.17205016837E-06 2.26114497425E-06 2.35417990120E-06 2.45130094385E-06 2.55278680037E-06 2.65879396700E-06 2.76958856450E-06 2.88537270724E-06 3.00644611068E-06 3.13304253481E-06 3.26546435264E-06 3.40400476602E-06 3.54899853076E-06 3.70074377375E-06 3.85964407516E-06 4.02605564069E-06 4.20037404622E-06 4.38302532397E-06 4.57447461686E-06 4.77517163041E-06 4.98563363799E-06 5.20640659104E-06 5.43805043718E-06 5.68113330769E-06 5.93635834670E-06 6.20435251409E-06 6.48584925770E-06 6.78161849464E-06 7.09246948026E-06 7.41924721105E-06 7.76289610979E-06 8.12435712073E-06 8.50469332043E-06 8.90496103548E-06 9.32639000867E-06 9.77015140293E-06 1.02376253593E-05 1.07301784438E-05 1.12493282511E-05 1.17966405443E-05 1.23738270367E-05 1.29826824590E-05 1.36251346398E-05 1.43031911750E-05 1.50190741849E-05 1.57750563089E-05 1.65736330603E-05 1.74174204498E-05 1.83092040656E-05 1.92519982679E-05 2.02489407745E-05 2.13034670701E-05 2.24191373915E-05 2.35998470714E-05 2.48496630924E-05 2.61729988395E-05 2.75744785207E-05 2.90591436188E-05 3.06322036044E-05 3.22994272613E-05 3.40667872813E-05 3.59407717258E-05 3.79282251993E-05 4.00364838522E-05 4.22734229965E-05 4.46473499363E-05 4.71672069113E-05 4.98425099836E-05 5.26834302485E-05 5.57007893390E-05 5.89062092707E-05 6.23120073396E-05 6.59314155582E-05 6.97785209486E-05 7.38683559768E-05 7.82170134973E-05 8.28416524290E-05 8.77605517855E-05 9.29933432812E-05 9.85609040425E-05 1.04485550524E-04 1.10791115783E-04 1.17503087846E-04 1.24648653234E-04 1.32256851223E-04 1.40358744105E-04 1.48987455069E-04 1.58178392697E-04 1.67969410413E-04 1.78400861627E-04 1.89515965898E-04 2.01360795010E-04 2.13984612326E-04 2.27440039928E-04 2.41783280001E-04 2.57074383504E-04 2.73377518133E-04 2.90761149778E-04 3.09298535461E-04 3.29067857875E-04 3.50152628816E-04 3.72642098875E-04 3.96631573393E-04 4.22222860103E-04 4.49524722403E-04 4.78653312303E-04 5.09732707386E-04 5.42895420394E-04 5.78283000816E-04 6.16046588423E-04 6.56347633305E-04 6.99358535716E-04 7.45263404631E-04 7.94258818172E-04 8.46554731214E-04 9.02375246753E-04 9.61959730860E-04 1.02556360438E-03 1.09345972404E-03 1.16593918440E-03 1.24331283336E-03 1.32591238727E-03 1.41409192863E-03 1.50822930414E-03 1.60872772901E-03 1.71601744862E-03 1.83055752672E-03 1.95283767356E-03 2.08338033986E-03 2.22274272342E-03 2.37151917882E-03 2.53034345316E-03 2.69989137088E-03 2.88088344400E-03 3.07408779239E-03 3.28032315443E-03 3.50046206359E-03 3.73543445991E-03 3.98623097514E-03 4.25390704912E-03 4.53958687560E-03 4.84446762196E-03 5.16982405997E-03 5.51701331119E-03 5.88747984947E-03 6.28276093562E-03 6.70449211244E-03 7.15441327502E-03 7.63437477356E-03 8.14634411557E-03 8.69241273237E-03 9.27480340878E-03 9.89587776968E-03 1.05581443468E-02 1.12642669618E-02 1.20170735011E-02 1.28195649908E-02 1.36749254954E-02 1.45865316397E-02 1.55579634676E-02 1.65930150532E-02 1.76957057630E-02 1.88702919974E-02 2.01212792193E-02 2.14534343775E-02 2.28717988757E-02 2.43817015777E-02 2.59887725585E-02 2.76989567224E-02 2.95185280127E-02 3.14541036809E-02 3.35126586461E-02 3.57015400552E-02 3.80284818438E-02 4.05016189996E-02 4.31295019486E-02 4.59211102345E-02 4.88858661343E-02 5.20336472566E-02 5.53747986065E-02 5.89201434824E-02 6.26809931878E-02 6.66691552397E-02 7.08969396716E-02 7.53771633789E-02 8.01231518650E-02 8.51487381396E-02 9.04682582984E-02 9.60965433074E-02 1.02048906485E-01 1.08341125955E-01 1.14989421648E-01 1.22010426083E-01 1.29421147950E-01 1.37238928094E-01 1.45481386524E-01 1.54166360161E-01 1.63311829237E-01 1.72935832650E-01 1.83056369642E-01 1.93691287836E-01 2.04858155339E-01 2.16574116132E-01 2.28855727089E-01 2.41718775031E-01 2.55178072570E-01 2.69247230723E-01 2.83938407207E-01 2.99262028254E-01 3.15226482955E-01 3.31837788069E-01 3.49099222133E-01 3.67010927689E-01 3.85569479924E-01 4.04767421610E-01 4.24592762797E-01 4.45028446000E-01 4.66051775982E-01 4.87633815883E-01 5.09738750364E-01 5.32323218368E-01 5.55335618320E-01 5.78715390232E-01 6.02392279848E-01 6.26285591846E-01 6.50303440659E-01 6.74342008951E-01 6.98284826498E-01 7.22002083968E-01 7.45349998890E-01 7.68170254115E-01 7.90289531495E-01 8.11519167643E-01 8.31654961445E-01 8.50477166854E-01 8.67750708592E-01 8.83225661708E-01 8.96638040125E-01 9.07710942693E-01 9.16156108906E-01 9.21675938328E-01 9.23966031053E-01 9.22718306006E-01 9.17624754504E-01 9.08381883175E-01 8.94695896221E-01 8.76288658988E-01 8.52904473514E-01 8.24317681200E-01 7.90341087311E-01 7.50835174658E-01 7.05718040987E-01 6.54975952582E-01 5.98674356416E-01 5.36969133682E-01 4.70117806258E-01 3.98490328169E-01 3.22578999880E-01 2.43006943181E-01 1.60534461065E-01 7.60624894158E-02 -9.36777406688E-03 -9.45800978839E-02 -1.78274444489E-01 -2.59045428841E-01 -3.35409292800E-01 -4.05840680919E-01 -4.68820429094E-01 -5.22895398206E-01 -5.66751069331E-01 -5.99297119900E-01 -6.19765479392E-01 -6.27819360638E-01 -6.23670426403E-01 -6.08199517624E-01 -5.83074191992E-01 -5.50853653067E-01 -5.15068482969E-01 -4.80258954354E-01 -4.51951700710E-01 -4.36550386066E-01 -4.41112142217E-01 -4.72978568428E-01 -5.39229047097E-01 -6.45926536668E-01 -7.97134121119E-01 -9.93697689665E-01 -1.23182083162E+00 -1.50150808845E+00 -1.78824517725E+00 -2.06637885645E+00 -2.30031899708E+00 -2.44603514921E+00 -2.45465710038E+00 -2.28033476517E+00 -1.89474541704E+00 -1.31201105534E+00 -6.26451873932E-01 -9.47079653140E-02 7.46743726970E-03 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2.73113452874E+01 1.49777277851E+01 9.13952296225E-01 0.00000000000E+00 7.33568450440E-10 2.98464545840E-09 6.83106114712E-09 1.23537651852E-08 1.96369417994E-08 2.87681288801E-08 3.98383413231E-08 5.29421987561E-08 6.81780578031E-08 8.56481490448E-08 1.05458718841E-07 1.27720176183E-07 1.52547244754E-07 1.80059120377E-07 2.10379634037E-07 2.43637420685E-07 2.79966094003E-07 3.19504427358E-07 3.62396541154E-07 4.08792096801E-07 4.58846497543E-07 5.12721096368E-07 5.70583411266E-07 6.32607348073E-07 6.98973431184E-07 7.69869042387E-07 8.45488668126E-07 9.26034155467E-07 1.01171497708E-06 1.10274850553E-06 1.19936029729E-06 1.30178438661E-06 1.41026358989E-06 1.52504982058E-06 1.64640441529E-06 1.77459847128E-06 1.90991319577E-06 2.05264026764E-06 2.20308221168E-06 2.36155278603E-06 2.52837738326E-06 2.70389344543E-06 2.88845089370E-06 3.08241257312E-06 3.28615471280E-06 3.50006740240E-06 3.72455508514E-06 3.96003706816E-06 4.20694805075E-06 4.46573867098E-06 4.73687607150E-06 5.02084448516E-06 5.31814584102E-06 5.62930039161E-06 5.95484736209E-06 6.29534562206E-06 6.65137438088E-06 7.02353390721E-06 7.41244627375E-06 7.81875612789E-06 8.24313148935E-06 8.68626457551E-06 9.14887265568E-06 9.63169893508E-06 1.01355134696E-05 1.06611141126E-05 1.12093274946E-05 1.17810100368E-05 1.23770490011E-05 1.29983635746E-05 1.36459059942E-05 1.43206627086E-05 1.50236555818E-05 1.57559431379E-05 1.65186218494E-05 1.73128274706E-05 1.81397364169E-05 1.90005671926E-05 1.98965818677E-05 2.08290876071E-05 2.17994382516E-05 2.28090359552E-05 2.38593328781E-05 2.49518329400E-05 2.60880936324E-05 2.72697278959E-05 2.84984060611E-05 2.97758578579E-05 3.11038744941E-05 3.24843108065E-05 3.39190874863E-05 3.54101933821E-05 3.69596878828E-05 3.85697033827E-05 4.02424478333E-05 4.19802073822E-05 4.37853491045E-05 4.56603238290E-05 4.76076690616E-05 4.96300120110E-05 5.17300727189E-05 5.39106672987E-05 5.61747112866E-05 5.85252231087E-05 6.09653276686E-05 6.34982600590E-05 6.61273694023E-05 6.88561228236E-05 7.16881095621E-05 7.46270452246E-05 7.76767761861E-05 8.08412841433E-05 8.41246908256E-05 8.75312628689E-05 9.10654168585E-05 9.47317245467E-05 9.85349182508E-05 1.02479896438E-04 1.06571729502E-04 1.10815665746E-04 1.15217137560E-04 1.19781767827E-04 1.24515376539E-04 1.29423987649E-04 1.34513836154E-04 1.39791375430E-04 1.45263284815E-04 1.50936477455E-04 1.56818108427E-04 1.62915583131E-04 1.69236565987E-04 1.75788989420E-04 1.82581063162E-04 1.89621283873E-04 1.96918445098E-04 2.04481647563E-04 2.12320309830E-04 2.20444179318E-04 2.28863343708E-04 2.37588242739E-04 2.46629680410E-04 2.55998837610E-04 2.65707285174E-04 2.75766997398E-04 2.86190366020E-04 2.96990214677E-04 3.08179813867E-04 3.19772896427E-04 3.31783673538E-04 3.44226851298E-04 3.57117647844E-04 3.70471811086E-04 3.84305637040E-04 3.98635988797E-04 4.13480316144E-04 4.28856675866E-04 4.44783752744E-04 4.61280881275E-04 4.78368068146E-04 4.96066015477E-04 5.14396144869E-04 5.33380622277E-04 5.53042383741E-04 5.73405162004E-04 5.94493514044E-04 6.16332849555E-04 6.38949460412E-04 6.62370551141E-04 6.86624270445E-04 7.11739743816E-04 7.37747107259E-04 7.64677542185E-04 7.92563311501E-04 8.21437796936E-04 8.51335537660E-04 8.82292270218E-04 9.14344969846E-04 9.47531893200E-04 9.81892622552E-04 1.01746811151E-03 1.05430073230E-03 1.09243432468E-03 1.13191424650E-03 1.17278742607E-03 1.21510241622E-03 1.25890945031E-03 1.30426050008E-03 1.35120933558E-03 1.39981158703E-03 1.45012480887E-03 1.50220854605E-03 1.55612440245E-03 1.61193611178E-03 1.66970961084E-03 1.72951311525E-03 1.79141719785E-03 1.85549486973E-03 1.92182166402E-03 1.99047572255E-03 2.06153788549E-03 2.13509178402E-03 2.21122393613E-03 2.29002384579E-03 2.37158410535E-03 2.45600050154E-03 2.54337212506E-03 2.63380148381E-03 2.72739462011E-03 2.82426123174E-03 2.92451479726E-03 3.02827270541E-03 3.13565638905E-03 3.24679146352E-03 3.36180786978E-03 3.48084002229E-03 3.60402696200E-03 3.73151251443E-03 3.86344545312E-03 3.99997966858E-03 4.14127434296E-03 4.28749413059E-03 4.43880934454E-03 4.59539614956E-03 4.75743676144E-03 4.92511965300E-03 5.09863976714E-03 5.27819873685E-03 5.46400511272E-03 5.65627459796E-03 5.85523029129E-03 6.06110293798E-03 6.27413118915E-03 6.49456186976E-03 6.72265025551E-03 6.95866035884E-03 7.20286522449E-03 7.45554723480E-03 7.71699842505E-03 7.98752080927E-03 8.26742671669E-03 8.55703913928E-03 8.85669209072E-03 9.16673097705E-03 9.48751297946E-03 9.81940744957E-03 1.01627963175E-02 1.05180745135E-02 1.08856504024E-02 1.12659462334E-02 1.16593986032E-02 1.20664589343E-02 1.24875939695E-02 1.29232862806E-02 1.33740347949E-02 1.38403553377E-02 1.43227811917E-02 1.48218636750E-02 1.53381727362E-02 1.58722975693E-02 1.64248472468E-02 1.69964513734E-02 1.75877607593E-02 1.81994481148E-02 1.88322087662E-02 1.94867613932E-02 2.01638487895E-02 2.08642386460E-02 2.15887243578E-02 2.23381258555E-02 2.31132904614E-02 2.39150937711E-02 2.47444405609E-02 2.56022657224E-02 2.64895352238E-02 2.74072470997E-02 2.83564324686E-02 2.93381565800E-02 3.03535198914E-02 3.14036591746E-02 3.24897486542E-02 3.36130011762E-02 3.47746694097E-02 3.59760470804E-02 3.72184702372E-02 3.85033185532E-02 3.98320166598E-02 4.12060355157E-02 4.26268938113E-02 4.40961594077E-02 4.56154508118E-02 4.71864386883E-02 4.88108474061E-02 5.04904566236E-02 5.22271029088E-02 5.40226813977E-02 5.58791474886E-02 5.77985185739E-02 5.97828758085E-02 6.18343659146E-02 6.39552030233E-02 6.61476705515E-02 6.84141231145E-02 7.07569884732E-02 7.31787695160E-02 7.56820462727E-02 7.82694779611E-02 8.09438050647E-02 8.37078514394E-02 8.65645264483E-02 8.95168271224E-02 9.25678403463E-02 9.57207450645E-02 9.89788145081E-02 1.02345418438E-01 1.05824025403E-01 1.09418205005E-01 1.13131630176E-01 1.16968079452E-01 1.20931439253E-01 1.25025706150E-01 1.29254989125E-01 1.33623511813E-01 1.38135614722E-01 1.42795757423E-01 1.47608520707E-01 1.52578608695E-01 1.57710850900E-01 1.63010204228E-01 1.68481754912E-01 1.74130720362E-01 1.79962450934E-01 1.85982431589E-01 1.92196283453E-01 1.98609765235E-01 2.05228774523E-01 2.12059348916E-01 2.19107666990E-01 2.26380049085E-01 2.33882957880E-01 2.41622998754E-01 2.49606919904E-01 2.57841612206E-01 2.66334108782E-01 2.75091584275E-01 2.84121353772E-01 2.93430871389E-01 3.03027728451E-01 3.12919651264E-01 3.23114498430E-01 3.33620257683E-01 3.44445042200E-01 3.55597086346E-01 3.67084740825E-01 3.78916467172E-01 3.91100831553E-01 4.03646497811E-01 4.16562219702E-01 4.29856832272E-01 4.43539242283E-01 4.57618417642E-01 4.72103375743E-01 4.87003170629E-01 5.02326878895E-01 5.18083584221E-01 5.34282360423E-01 5.50932252901E-01 5.68042258351E-01 5.85621302584E-01 6.03678216301E-01 6.22221708627E-01 6.41260338226E-01 6.60802481752E-01 6.80856299426E-01 7.01429697436E-01 7.22530286905E-01 7.44165339073E-01 7.66341736363E-01 7.89065918923E-01 8.12343826246E-01 8.36180833374E-01 8.60581681214E-01 8.85550400404E-01 9.11090228144E-01 9.37203517371E-01 9.63891637594E-01 9.91154866681E-01 1.01899227285E+00 1.04740158607E+00 1.07637905807E+00 1.10591931017E+00 1.13601516801E+00 1.16665748249E+00 1.19783493605E+00 1.22953383371E+00 1.26173787811E+00 1.29442792822E+00 1.32758174138E+00 1.36117369869E+00 1.39517451398E+00 1.42955092710E+00 1.46426538270E+00 1.49927569613E+00 1.53453470906E+00 1.56998993799E+00 1.60558321980E+00 1.64125035977E+00 1.67692078848E+00 1.71251723551E+00 1.74795542944E+00 1.78314383521E+00 1.81798344154E+00 1.85236761320E+00 1.88618202453E+00 1.91930469230E+00 1.95160612776E+00 1.98294962883E+00 2.01319173419E+00 2.04218286109E+00 2.06976814792E+00 2.09578852036E+00 2.12008199624E+00 2.14248523875E+00 2.16283535922E+00 2.18097196006E+00 2.19673939402E+00 2.20998919788E+00 2.22058263682E+00 2.22839326940E+00 2.23330941264E+00 2.23523635301E+00 2.23409811257E+00 2.22983854268E+00 2.22242148289E+00 2.21182969467E+00 2.19806226424E+00 2.18113017360E+00 2.16104977532E+00 2.13783398651E+00 2.11148115703E+00 2.08196178409E+00 2.04920355801E+00 2.01307565091E+00 1.97337371217E+00 1.92980771278E+00 1.88199556082E+00 1.82946622807E+00 1.77167685104E+00 1.70804865877E+00 1.63802622651E+00 1.56116279956E+00 1.47723023014E+00 1.38634382133E+00 1.28907764677E+00 1.18652109999E+00 1.08018719479E+00 9.71620423956E-01 8.61771459218E-01 7.51252647724E-01 6.40693706251E-01 5.30754157940E-01 4.22123763590E-01 3.15524546981E-01 2.11714616427E-01 1.11493772559E-01 1.57105635096E-02 -7.47300117525E-02 -1.58859554532E-01 -2.35642212722E-01 -3.03976507959E-01 -3.62706916910E-01 -4.10649902023E-01 -4.46639673340E-01 -4.69599064203E-01 -4.78640167410E-01 -4.73197326534E-01 -4.53191075907E-01 -4.19214894502E-01 -3.72726301171E-01 -3.16209139682E-01 -2.53254790967E-01 -1.88488294660E-01 -1.27246731021E-01 -7.49154237132E-02 -3.58700884438E-02 -1.21101257124E-02 -1.98334730623E-03 -2.57333067441E-05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 2.61509279865E+01 -1.24046259224E+02 6.87081211992E+02 -4.85122463130E+03 2.07143367901E+04 -4.74259869712E+04 5.48851446325E+04 -2.53150947827E+04 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -4.72471281731E+00 4.56099308048E+03 -6.91795491975E+04 4.66595889364E+05 -1.68719963512E+06 3.37594037790E+06 -3.52467439133E+06 1.50057961032E+06 2 2 2 2 8 10.000000000 1.00000000000E+00 0.00000000000E+00 -1.53885128729E-04 -3.10400708802E-04 -4.69591704243E-04 -6.31503847547E-04 -7.96183652808E-04 -9.63678429341E-04 -1.13403629510E-03 -1.30730619055E-03 -1.48353789273E-03 -1.66278202953E-03 -1.84509009425E-03 -2.03051446042E-03 -2.21910839677E-03 -2.41092608261E-03 -2.60602262337E-03 -2.80445406641E-03 -3.00627741713E-03 -3.21155065537E-03 -3.42033275203E-03 -3.63268368604E-03 -3.84866446157E-03 -4.06833712557E-03 -4.29176478558E-03 -4.51901162788E-03 -4.75014293589E-03 -4.98522510898E-03 -5.22432568149E-03 -5.46751334217E-03 -5.71485795387E-03 -5.96643057366E-03 -6.22230347321E-03 -6.48255015957E-03 -6.74724539624E-03 -7.01646522473E-03 -7.29028698631E-03 -7.56878934430E-03 -7.85205230664E-03 -8.14015724886E-03 -8.43318693748E-03 -8.73122555378E-03 -9.03435871795E-03 -9.34267351375E-03 -9.65625851346E-03 -9.97520380336E-03 -1.02996010096E-02 -1.06295433245E-02 -1.09651255334E-02 -1.13064440418E-02 -1.16535969029E-02 -1.20066838463E-02 -1.23658063061E-02 -1.27310674501E-02 -1.31025722097E-02 -1.34804273100E-02 -1.38647413003E-02 -1.42556245851E-02 -1.46531894565E-02 -1.50575501256E-02 -1.54688227560E-02 -1.58871254967E-02 -1.63125785163E-02 -1.67453040374E-02 -1.71854263719E-02 -1.76330719563E-02 -1.80883693885E-02 -1.85514494643E-02 -1.90224452154E-02 -1.95014919471E-02 -1.99887272776E-02 -2.04842911775E-02 -2.09883260096E-02 -2.15009765704E-02 -2.20223901309E-02 -2.25527164799E-02 -2.30921079659E-02 -2.36407195420E-02 -2.41987088093E-02 -2.47662360630E-02 -2.53434643381E-02 -2.59305594562E-02 -2.65276900731E-02 -2.71350277276E-02 -2.77527468901E-02 -2.83810250133E-02 -2.90200425830E-02 -2.96699831696E-02 -3.03310334815E-02 -3.10033834179E-02 -3.16872261239E-02 -3.23827580459E-02 -3.30901789878E-02 -3.38096921686E-02 -3.45415042804E-02 -3.52858255483E-02 -3.60428697902E-02 -3.68128544786E-02 -3.75960008029E-02 -3.83925337328E-02 -3.92026820831E-02 -4.00266785792E-02 -4.08647599240E-02 -4.17171668660E-02 -4.25841442681E-02 -4.34659411783E-02 -4.43628109006E-02 -4.52750110685E-02 -4.62028037183E-02 -4.71464553646E-02 -4.81062370769E-02 -4.90824245571E-02 -5.00752982189E-02 -5.10851432682E-02 -5.21122497848E-02 -5.31569128061E-02 -5.42194324113E-02 -5.53001138077E-02 -5.63992674182E-02 -5.75172089707E-02 -5.86542595882E-02 -5.98107458815E-02 -6.09870000423E-02 -6.21833599391E-02 -6.34001692136E-02 -6.46377773799E-02 -6.58965399241E-02 -6.71768184067E-02 -6.84789805663E-02 -6.98034004248E-02 -7.11504583950E-02 -7.25205413896E-02 -7.39140429320E-02 -7.53313632693E-02 -7.67729094871E-02 -7.82390956260E-02 -7.97303428007E-02 -8.12470793204E-02 -8.27897408115E-02 -8.43587703430E-02 -8.59546185527E-02 -8.75777437774E-02 -8.92286121829E-02 -9.09076978990E-02 -9.26154831542E-02 -9.43524584146E-02 -9.61191225240E-02 -9.79159828471E-02 -9.97435554142E-02 -1.01602365070E-01 -1.03492945623E-01 -1.05415839999E-01 -1.07371600395E-01 -1.09360788440E-01 -1.11383975354E-01 -1.13441742110E-01 -1.15534679604E-01 -1.17663388821E-01 -1.19828481008E-01 -1.22030577848E-01 -1.24270311640E-01 -1.26548325477E-01 -1.28865273431E-01 -1.31221820742E-01 -1.33618644003E-01 -1.36056431360E-01 -1.38535882703E-01 -1.41057709868E-01 -1.43622636840E-01 -1.46231399963E-01 -1.48884748142E-01 -1.51583443066E-01 -1.54328259420E-01 -1.57119985106E-01 -1.59959421471E-01 -1.62847383531E-01 -1.65784700206E-01 -1.68772214558E-01 -1.71810784026E-01 -1.74901280675E-01 -1.78044591440E-01 -1.81241618385E-01 -1.84493278950E-01 -1.87800506222E-01 -1.91164249192E-01 -1.94585473032E-01 -1.98065159361E-01 -2.01604306533E-01 -2.05203929911E-01 -2.08865062164E-01 -2.12588753552E-01 -2.16376072230E-01 -2.20228104545E-01 -2.24145955352E-01 -2.28130748315E-01 -2.32183626238E-01 -2.36305751374E-01 -2.40498305770E-01 -2.44762491583E-01 -2.49099531436E-01 -2.53510668749E-01 -2.57997168103E-01 -2.62560315580E-01 -2.67201419144E-01 -2.71921808990E-01 -2.76722837938E-01 -2.81605881791E-01 -2.86572339743E-01 -2.91623634751E-01 -2.96761213956E-01 -3.01986549064E-01 -3.07301136782E-01 -3.12706499211E-01 -3.18204184300E-01 -3.23795766245E-01 -3.29482845964E-01 -3.35267051504E-01 -3.41150038533E-01 -3.47133490760E-01 -3.53219120444E-01 -3.59408668824E-01 -3.65703906649E-01 -3.72106634614E-01 -3.78618683913E-01 -3.85241916690E-01 -3.91978226603E-01 -3.98829539290E-01 -4.05797812957E-01 -4.12885038850E-01 -4.20093241866E-01 -4.27424481038E-01 -4.34880850167E-01 -4.42464478315E-01 -4.50177530463E-01 -4.58022208014E-01 -4.66000749476E-01 -4.74115430973E-01 -4.82368566954E-01 -4.90762510712E-01 -4.99299655124E-01 -5.07982433172E-01 -5.16813318717E-01 -5.25794827025E-01 -5.34929515568E-01 -5.44219984559E-01 -5.53668877787E-01 -5.63278883149E-01 -5.73052733526E-01 -5.82993207314E-01 -5.93103129334E-01 -6.03385371368E-01 -6.13842853104E-01 -6.24478542671E-01 -6.35295457624E-01 -6.46296665473E-01 -6.57485284715E-01 -6.68864485353E-01 -6.80437489972E-01 -6.92207574251E-01 -7.04178068087E-01 -7.16352356090E-01 -7.28733878759E-01 -7.41326132964E-01 -7.54132673170E-01 -7.67157111901E-01 -7.80403121019E-01 -7.93874432164E-01 -8.07574838092E-01 -8.21508193082E-01 -8.35678414343E-01 -8.50089482377E-01 -8.64745442463E-01 -8.79650404965E-01 -8.94808546897E-01 -9.10224112177E-01 -9.25901413267E-01 -9.41844831373E-01 -9.58058818159E-01 -9.74547895884E-01 -9.91316659205E-01 -1.00836977523E+00 -1.02571198541E+00 -1.04334810551E+00 -1.06128302762E+00 -1.07952171998E+00 -1.09806922910E+00 -1.11693067953E+00 -1.13611127604E+00 -1.15561630323E+00 -1.17545112790E+00 -1.19562119850E+00 -1.21613204757E+00 -1.23698929108E+00 -1.25819863100E+00 -1.27976585440E+00 -1.30169683626E+00 -1.32399753827E+00 -1.34667401186E+00 -1.36973239672E+00 -1.39317892403E+00 -1.41701991468E+00 -1.44126178274E+00 -1.46591103331E+00 -1.49097426624E+00 -1.51645817363E+00 -1.54236954376E+00 -1.56871525821E+00 -1.59550229604E+00 -1.62273773048E+00 -1.65042873335E+00 -1.67858257128E+00 -1.70720661046E+00 -1.73630831225E+00 -1.76589523828E+00 -1.79597504546E+00 -1.82655549141E+00 -1.85764442881E+00 -1.88924981120E+00 -1.92137968654E+00 -1.95404220352E+00 -1.98724560415E+00 -2.02099823064E+00 -2.05530851697E+00 -2.09018499632E+00 -2.12563629154E+00 -2.16167112319E+00 -2.19829829882E+00 -2.23552672161E+00 -2.27336537830E+00 -2.31182334862E+00 -2.35090979162E+00 -2.39063395601E+00 -2.43100516471E+00 -2.47203282610E+00 -2.51372641679E+00 -2.55609549372E+00 -2.59914967490E+00 -2.64289865268E+00 -2.68735217208E+00 -2.73252004527E+00 -2.77841212738E+00 -2.82503833234E+00 -2.87240860575E+00 -2.92053294229E+00 -2.96942135540E+00 -3.01908389634E+00 -3.06953062035E+00 -3.12077160757E+00 -3.17281692534E+00 -3.22567665112E+00 -3.27936083047E+00 -3.33387950234E+00 -3.38924265220E+00 -3.44546023993E+00 -3.50254214762E+00 -3.56049821041E+00 -3.61933815835E+00 -3.67907165051E+00 -3.73970821036E+00 -3.80125726352E+00 -3.86372806593E+00 -3.92712974573E+00 -3.99147122352E+00 -4.05676125885E+00 -4.12300836173E+00 -4.19022084437E+00 -4.25840672302E+00 -4.32757377572E+00 -4.39772943338E+00 -4.46888084436E+00 -4.54103475384E+00 -4.61419757600E+00 -4.68837526055E+00 -4.76357337357E+00 -4.83979694987E+00 -4.91705058374E+00 -4.99533826571E+00 -5.07466348445E+00 -5.15502904651E+00 -5.23643719079E+00 -5.31888938954E+00 -5.40238647697E+00 -5.48692842974E+00 -5.57251451140E+00 -5.65914303017E+00 -5.74681150116E+00 -5.83551637895E+00 -5.92525323957E+00 -6.01601648513E+00 -6.10779954743E+00 -6.20059456153E+00 -6.29439259284E+00 -6.38918327611E+00 -6.48495506767E+00 -6.58169484571E+00 -6.67938818944E+00 -6.77801893589E+00 -6.87756948772E+00 -6.97802032135E+00 -7.07935032507E+00 -7.18153625343E+00 -7.28455309748E+00 -7.38837348063E+00 -7.49296806391E+00 -7.59830487946E+00 -7.70434977538E+00 -7.81106568525E+00 -7.91841311967E+00 -8.02634937357E+00 -8.13482907519E+00 -8.24380333730E+00 -8.35322037848E+00 -8.46302462890E+00 -8.57315744231E+00 -8.68355617014E+00 -8.79415498306E+00 -8.90488392639E+00 -9.01566986509E+00 -9.12643552572E+00 -9.23710056539E+00 -9.34758058910E+00 -9.45778832156E+00 -9.56763256511E+00 -9.67701942699E+00 -9.78585115903E+00 -9.89402737169E+00 -1.00014436839E+01 -1.01079928520E+01 -1.02135631693E+01 -1.03180394624E+01 -1.04213012213E+01 -1.05232234665E+01 -1.06236746491E+01 -1.07225174504E+01 -1.08196065457E+01 -1.09147894275E+01 -1.10079041521E+01 -1.10987802802E+01 -1.11872367502E+01 -1.12730830960E+01 -1.13561178232E+01 -1.14361305188E+01 -1.15129020272E+01 -1.15862095398E+01 -1.16558321251E+01 -1.17215637171E+01 -1.17832305380E+01 -1.18407184770E+01 -1.18940065943E+01 -1.19432050565E+01 -1.19885862333E+01 -1.20305913438E+01 -1.20697886639E+01 -1.21067491526E+01 -1.21418165755E+01 -1.21746422391E+01 -1.22033757856E+01 -1.22259268885E+01 -1.22426149183E+01 -1.22548285694E+01 -1.22628645940E+01 -1.22666518141E+01 -1.22662884713E+01 -1.22619056383E+01 -1.22536802927E+01 -1.22418376694E+01 -1.22266606978E+01 -1.22084928156E+01 -1.21877492103E+01 -1.21649208378E+01 -1.21405878135E+01 -1.21154250879E+01 -1.20902183964E+01 -1.20658721196E+01 -1.20434282557E+01 -1.20240770491E+01 -1.20091794628E+01 -1.20002811532E+01 -1.19991409702E+01 -1.19992263265E+01 -1.19992999752E+01 -1.19993642711E+01 -1.19994217656E+01 -1.19994750008E+01 -1.19995262487E+01 -1.19995769907E+01 -1.19996273387E+01 -1.19996746464E+01 -1.19997114699E+01 -1.19997498702E+01 -1.19997835197E+01 -1.19997858807E+01 -1.19997895016E+01 -1.19998063994E+01 -1.19998176267E+01 -1.19998277027E+01 -1.19998365825E+01 -1.19998444510E+01 -1.19998514669E+01 -1.19998577633E+01 -1.19998634534E+01 -1.19998686316E+01 -1.19998733777E+01 -1.19998777577E+01 -1.19998818270E+01 -1.19998856315E+01 -1.19998892095E+01 -1.19998925927E+01 -1.19998958080E+01 -1.19998988776E+01 -1.19999018206E+01 -1.19999046532E+01 -1.19999073895E+01 -1.19999100419E+01 -1.19999126212E+01 -1.19999151375E+01 -1.19999175996E+01 -1.19999200157E+01 -1.19999223932E+01 -1.19999247390E+01 -1.19999270587E+01 -1.19999293578E+01 -1.19999316404E+01 -1.19999339098E+01 -1.19999361683E+01 -1.19999384170E+01 -1.19999406558E+01 -1.19999428834E+01 -1.19999450970E+01 -1.19999472927E+01 -1.19999494653E+01 -1.19999516083E+01 -1.19999537141E+01 -1.19999557744E+01 -1.19999577798E+01 -1.19999597205E+01 -1.19999615865E+01 -1.19999633675E+01 -1.19999650533E+01 -1.19999666345E+01 -1.19999681022E+01 -1.19999694486E+01 -1.19999706670E+01 -1.19999717523E+01 -1.19999727010E+01 -1.19999735116E+01 -1.19999741842E+01 -1.19999747211E+01 -1.19999751265E+01 -1.19999754066E+01 -1.19999755693E+01 -1.19999756243E+01 -1.19999755827E+01 -1.19999754566E+01 -1.19999752594E+01 -1.19999750048E+01 -1.19999747069E+01 -1.19999743799E+01 -1.19999740374E+01 -1.19999736929E+01 -1.19999733585E+01 -1.19999730457E+01 -1.19999727646E+01 -1.19999725240E+01 -1.19999723312E+01 -1.19999721922E+01 -1.19999721115E+01 -1.19999720923E+01 -1.19999721364E+01 -1.19999722444E+01 -1.19999724159E+01 -1.19999726494E+01 -1.19999729428E+01 -1.19999732931E+01 -1.19999736968E+01 -1.19999741501E+01 -1.19999746487E+01 -1.19999751883E+01 -1.19999757644E+01 -1.19999763725E+01 -1.19999770080E+01 -1.19999776668E+01 -1.19999783445E+01 -1.19999790372E+01 -1.19999797410E+01 -1.19999804525E+01 -1.19999811682E+01 -1.19999818852E+01 -1.19999826007E+01 -1.19999833121E+01 -1.19999840171E+01 -1.19999847136E+01 -1.19999853998E+01 -1.19999860740E+01 -1.19999867349E+01 -1.19999873812E+01 -1.19999880117E+01 -1.19999886257E+01 -1.19999892223E+01 -1.19999898010E+01 -1.19999903611E+01 -1.19999909025E+01 -1.19999914247E+01 -1.19999919276E+01 -1.19999924111E+01 -1.19999928752E+01 -1.19999933200E+01 -1.19999937455E+01 -1.19999941521E+01 -1.19999945399E+01 -1.19999949091E+01 -1.19999952603E+01 -1.19999955936E+01 -1.19999959095E+01 -1.19999962085E+01 -1.19999964910E+01 -1.19999967574E+01 -1.19999970084E+01 -1.19999972443E+01 -1.19999974657E+01 -1.19999976733E+01 -1.19999978674E+01 -1.19999980489E+01 -1.19999982180E+01 -1.19999983757E+01 -1.19999985224E+01 -1.19999986586E+01 -1.19999987849E+01 -1.19999989015E+01 -1.19999990092E+01 -1.19999991082E+01 -1.19999991992E+01 -1.19999992825E+01 -1.19999993586E+01 -1.19999994280E+01 -1.19999994912E+01 -1.19999995484E+01 -1.19999996003E+01 -1.19999996470E+01 -1.19999996891E+01 -1.19999997269E+01 -1.19999997608E+01 -1.19999997910E+01 -1.19999998179E+01 -1.19999998418E+01 -1.19999998629E+01 -1.19999998816E+01 -1.19999998980E+01 -1.19999999125E+01 -1.19999999251E+01 -1.19999999360E+01 -1.19999999456E+01 -1.19999999510E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 -1.20000000000E+01 0.00000000000E+00 -9.43177621460E-05 -1.90247754779E-04 -2.87817536701E-04 -3.87055137791E-04 -4.87989067058E-04 -5.90648320828E-04 -6.95062391078E-04 -8.01261273905E-04 -9.09275478144E-04 -1.01913603413E-03 -1.13087450263E-03 -1.24452298387E-03 -1.36011412679E-03 -1.47768113842E-03 -1.59725779341E-03 -1.71887844374E-03 -1.84257802857E-03 -1.96839208431E-03 -2.09635675478E-03 -2.22650880165E-03 -2.35888561497E-03 -2.49352522390E-03 -2.63046630766E-03 -2.76974820661E-03 -2.91141093360E-03 -3.05549518540E-03 -3.20204235447E-03 -3.35109454076E-03 -3.50269456387E-03 -3.65688597534E-03 -3.81371307114E-03 -3.97322090439E-03 -4.13545529835E-03 -4.30046285952E-03 -4.46829099107E-03 -4.63898790646E-03 -4.81260264325E-03 -4.98918507722E-03 -5.16878593670E-03 -5.35145681710E-03 -5.53725019581E-03 -5.72621944717E-03 -5.91841885789E-03 -6.11390364260E-03 -6.31272995974E-03 -6.51495492764E-03 -6.72063664097E-03 -6.92983418744E-03 -7.14260766472E-03 -7.35901819773E-03 -7.57912795623E-03 -7.80300017262E-03 -8.03069916013E-03 -8.26229033130E-03 -8.49784021675E-03 -8.73741648433E-03 -8.98108795848E-03 -9.22892464008E-03 -9.48099772650E-03 -9.73737963210E-03 -9.99814400895E-03 -1.02633657681E-02 -1.05331211009E-02 -1.08074875012E-02 -1.10865437873E-02 -1.13703701248E-02 -1.16590480493E-02 -1.19526604902E-02 -1.22512917946E-02 -1.25550277508E-02 -1.28639556138E-02 -1.31781641300E-02 -1.34977435623E-02 -1.38227857168E-02 -1.41533839686E-02 -1.44896332887E-02 -1.48316302715E-02 -1.51794731624E-02 -1.55332618857E-02 -1.58930980740E-02 -1.62590850966E-02 -1.66313280900E-02 -1.70099339873E-02 -1.73950115493E-02 -1.77866713958E-02 -1.81850260372E-02 -1.85901899069E-02 -1.90022793941E-02 -1.94214128771E-02 -1.98477107575E-02 -2.02812954948E-02 -2.07222916413E-02 -2.11708258780E-02 -2.16270270511E-02 -2.20910262088E-02 -2.25629566388E-02 -2.30429539070E-02 -2.35311558960E-02 -2.40277028449E-02 -2.45327373895E-02 -2.50464046031E-02 -2.55688520385E-02 -2.61002297700E-02 -2.66406904365E-02 -2.71903892854E-02 -2.77494842174E-02 -2.83181358314E-02 -2.88965074706E-02 -2.94847652698E-02 -3.00830782026E-02 -3.06916181302E-02 -3.13105598505E-02 -3.19400811484E-02 -3.25803628466E-02 -3.32315888578E-02 -3.38939462372E-02 -3.45676252362E-02 -3.52528193571E-02 -3.59497254083E-02 -3.66585435611E-02 -3.73794774069E-02 -3.81127340157E-02 -3.88585239954E-02 -3.96170615519E-02 -4.03885645513E-02 -4.11732545815E-02 -4.19713570162E-02 -4.27831010795E-02 -4.36087199112E-02 -4.44484506342E-02 -4.53025344222E-02 -4.61712165684E-02 -4.70547465566E-02 -4.79533781318E-02 -4.88673693737E-02 -4.97969827701E-02 -5.07424852922E-02 -5.17041484710E-02 -5.26822484754E-02 -5.36770661907E-02 -5.46888872995E-02 -5.57180023633E-02 -5.67647069056E-02 -5.78293014965E-02 -5.89120918389E-02 -6.00133888556E-02 -6.11335087785E-02 -6.22727732391E-02 -6.34315093603E-02 -6.46100498498E-02 -6.58087330957E-02 -6.70279032627E-02 -6.82679103908E-02 -6.95291104952E-02 -7.08118656679E-02 -7.21165441814E-02 -7.34435205934E-02 -7.47931758542E-02 -7.61658974152E-02 -7.75620793396E-02 -7.89821224145E-02 -8.04264342657E-02 -8.18954294735E-02 -8.33895296912E-02 -8.49091637651E-02 -8.64547678568E-02 -8.80267855673E-02 -8.96256680635E-02 -9.12518742064E-02 -9.29058706819E-02 -9.45881321335E-02 -9.62991412974E-02 -9.80393891393E-02 -9.98093749945E-02 -1.01609606709E-01 -1.03440600786E-01 -1.05302882527E-01 -1.07196986189E-01 -1.09123455129E-01 -1.11082841960E-01 -1.13075708710E-01 -1.15102626978E-01 -1.17164178099E-01 -1.19260953304E-01 -1.21393553892E-01 -1.23562591397E-01 -1.25768687761E-01 -1.28012475510E-01 -1.30294597934E-01 -1.32615709266E-01 -1.34976474867E-01 -1.37377571412E-01 -1.39819687085E-01 -1.42303521768E-01 -1.44829787237E-01 -1.47399207367E-01 -1.50012518331E-01 -1.52670468806E-01 -1.55373820183E-01 -1.58123346785E-01 -1.60919836074E-01 -1.63764088879E-01 -1.66656919617E-01 -1.69599156517E-01 -1.72591641855E-01 -1.75635232185E-01 -1.78730798578E-01 -1.81879226865E-01 -1.85081417879E-01 -1.88338287707E-01 -1.91650767943E-01 -1.95019805944E-01 -1.98446365091E-01 -2.01931425056E-01 -2.05475982067E-01 -2.09081049187E-01 -2.12747656586E-01 -2.16476851826E-01 -2.20269700145E-01 -2.24127284748E-01 -2.28050707102E-01 -2.32041087233E-01 -2.36099564031E-01 -2.40227295558E-01 -2.44425459356E-01 -2.48695252771E-01 -2.53037893269E-01 -2.57454618760E-01 -2.61946687936E-01 -2.66515380600E-01 -2.71161998006E-01 -2.75887863208E-01 -2.80694321404E-01 -2.85582740294E-01 -2.90554510437E-01 -2.95611045613E-01 -3.00753783196E-01 -3.05984184522E-01 -3.11303735272E-01 -3.16713945850E-01 -3.22216351774E-01 -3.27812514067E-01 -3.33504019655E-01 -3.39292481767E-01 -3.45179540346E-01 -3.51166862455E-01 -3.57256142698E-01 -3.63449103637E-01 -3.69747496221E-01 -3.76153100211E-01 -3.82667724620E-01 -3.89293208148E-01 -3.96031419626E-01 -4.02884258464E-01 -4.09853655101E-01 -4.16941571462E-01 -4.24150001416E-01 -4.31480971241E-01 -4.38936540089E-01 -4.46518800454E-01 -4.54229878651E-01 -4.62071935288E-01 -4.70047165746E-01 -4.78157800663E-01 -4.86406106414E-01 -4.94794385605E-01 -5.03324977551E-01 -5.12000258775E-01 -5.20822643495E-01 -5.29794584117E-01 -5.38918571724E-01 -5.48197136576E-01 -5.57632848595E-01 -5.67228317859E-01 -5.76986195095E-01 -5.86909172163E-01 -5.96999982543E-01 -6.07261401823E-01 -6.17696248171E-01 -6.28307382817E-01 -6.39097710518E-01 -6.50070180027E-01 -6.61227784550E-01 -6.72573562195E-01 -6.84110596417E-01 -6.95842016452E-01 -7.07770997737E-01 -7.19900762323E-01 -7.32234579277E-01 -7.44775765066E-01 -7.57527683927E-01 -7.70493748222E-01 -7.83677418778E-01 -7.97082205198E-01 -8.10711666165E-01 -8.24569409712E-01 -8.38659093473E-01 -8.52984424906E-01 -8.67549161491E-01 -8.82357110892E-01 -8.97412131092E-01 -9.12718130491E-01 -9.28279067965E-01 -9.44098952886E-01 -9.60181845104E-01 -9.76531854876E-01 -9.93153142749E-01 -1.01004991939E+00 -1.02722644538E+00 -1.04468703091E+00 -1.06243603543E+00 -1.08047786727E+00 -1.09881698314E+00 -1.11745788756E+00 -1.13640513225E+00 -1.15566331540E+00 -1.17523708085E+00 -1.19513111718E+00 -1.21535015674E+00 -1.23589897450E+00 -1.25678238683E+00 -1.27800525019E+00 -1.29957245962E+00 -1.32148894718E+00 -1.34375968014E+00 -1.36638965917E+00 -1.38938391625E+00 -1.41274751245E+00 -1.43648553557E+00 -1.46060309754E+00 -1.48510533168E+00 -1.50999738973E+00 -1.53528443866E+00 -1.56097165725E+00 -1.58706423245E+00 -1.61356735550E+00 -1.64048621774E+00 -1.66782600618E+00 -1.69559189879E+00 -1.72378905941E+00 -1.75242263244E+00 -1.78149773714E+00 -1.81101946152E+00 -1.84099285598E+00 -1.87142292648E+00 -1.90231462726E+00 -1.93367285327E+00 -1.96550243197E+00 -1.99780811485E+00 -2.03059456825E+00 -2.06386636387E+00 -2.09762796855E+00 -2.13188373364E+00 -2.16663788368E+00 -2.20189450446E+00 -2.23765753054E+00 -2.27393073194E+00 -2.31071770024E+00 -2.34802183392E+00 -2.38584632290E+00 -2.42419413231E+00 -2.46306798540E+00 -2.50247034567E+00 -2.54240339795E+00 -2.58286902868E+00 -2.62386880515E+00 -2.66540395373E+00 -2.70747533707E+00 -2.75008343022E+00 -2.79322829558E+00 -2.83690955672E+00 -2.88112637098E+00 -2.92587740083E+00 -2.97116078393E+00 -3.01697410188E+00 -3.06331434754E+00 -3.11017789108E+00 -3.15756044437E+00 -3.20545702411E+00 -3.25386191325E+00 -3.30276862099E+00 -3.35216984107E+00 -3.40205740849E+00 -3.45242225459E+00 -3.50325436043E+00 -3.55454270840E+00 -3.60627523222E+00 -3.65843876508E+00 -3.71101898614E+00 -3.76400036513E+00 -3.81736610537E+00 -3.87109808488E+00 -3.92517679587E+00 -3.97958128248E+00 -4.03428907685E+00 -4.08927613362E+00 -4.14451676281E+00 -4.19998356123E+00 -4.25564734256E+00 -4.31147706605E+00 -4.36743976409E+00 -4.42350046874E+00 -4.47962213748E+00 -4.53576557812E+00 -4.59188937342E+00 -4.64794980539E+00 -4.70390077964E+00 -4.75969375013E+00 -4.81527764456E+00 -4.87059879084E+00 -4.92560084498E+00 -4.98022472101E+00 -5.03440852325E+00 -5.08808748155E+00 -5.14119389017E+00 -5.19365705090E+00 -5.24540322113E+00 -5.29635556763E+00 -5.34643412705E+00 -5.39555577385E+00 -5.44363419685E+00 -5.49057988528E+00 -5.53630012578E+00 -5.58069901136E+00 -5.62367746376E+00 -5.66513327077E+00 -5.70496113994E+00 -5.74305277047E+00 -5.77929694504E+00 -5.81357964352E+00 -5.84578418072E+00 -5.87579137026E+00 -5.90347971715E+00 -5.92872564142E+00 -5.95140373576E+00 -5.97138705992E+00 -5.98854747518E+00 -6.00275602224E+00 -6.01388334607E+00 -6.02180017197E+00 -6.02637783671E+00 -6.02748887974E+00 -6.02500769929E+00 -6.01881127894E+00 -6.00877999067E+00 -5.99479848094E+00 -5.97675664730E+00 -5.95455071334E+00 -5.92808441119E+00 -5.89727028164E+00 -5.86203110301E+00 -5.82230146157E+00 -5.77802947784E+00 -5.72917870498E+00 -5.67573021770E+00 -5.61768491261E+00 -5.55506604387E+00 -5.48792202143E+00 -5.41632950274E+00 -5.34039681342E+00 -5.26026773712E+00 -5.17612572047E+00 -5.08819854516E+00 -4.99676352601E+00 -4.90215330176E+00 -4.80476229299E+00 -4.70505391082E+00 -4.60356860898E+00 -4.50093288118E+00 -4.39786931503E+00 -4.29520782218E+00 -4.19389817158E+00 -4.09502395772E+00 -3.99981813676E+00 -3.90968025960E+00 -3.82619551917E+00 -3.75115786815E+00 -3.67807060774E+00 -3.60572762254E+00 -3.53416292368E+00 -3.46340587062E+00 -3.39348643922E+00 -3.32442988650E+00 -3.25626195682E+00 -3.18900368279E+00 -3.12267645370E+00 -3.05729702847E+00 -2.99288239318E+00 -2.92944505969E+00 -2.86699764374E+00 -2.80554851851E+00 -2.74510605047E+00 -2.68567467188E+00 -2.62725871802E+00 -2.56985897587E+00 -2.51347607421E+00 -2.45810755734E+00 -2.40375078789E+00 -2.35040058506E+00 -2.29805160838E+00 -2.24669658912E+00 -2.19632817125E+00 -2.14693775242E+00 -2.09851676551E+00 -2.05105613171E+00 -2.00454697160E+00 -1.95898065785E+00 -1.91434894874E+00 -1.87064461174E+00 -1.82786097543E+00 -1.78599307929E+00 -1.74503664257E+00 -1.70498968170E+00 -1.66585089882E+00 -1.62762169869E+00 -1.59030400710E+00 -1.55390261587E+00 -1.51842245403E+00 -1.48387119404E+00 -1.45025601659E+00 -1.41758642286E+00 -1.38587055554E+00 -1.35511817880E+00 -1.32533664007E+00 -1.29653399727E+00 -1.26871472393E+00 -1.24188297763E+00 -1.21603816151E+00 -1.19117833590E+00 -1.16729574967E+00 -1.14438039792E+00 -1.12241562793E+00 -1.10138184042E+00 -1.08125225969E+00 -1.06199676787E+00 -1.04357791041E+00 -1.02595484428E+00 -1.00907963190E+00 -9.92901277598E-01 -9.77362345840E-01 -9.62403055137E-01 -9.47958240292E-01 -9.33961467469E-01 -9.20342342331E-01 -9.07030601820E-01 -8.93953749270E-01 -8.81041065762E-01 -8.68221529040E-01 -8.55427671247E-01 -8.42593713657E-01 -8.29659182446E-01 -8.16567171693E-01 -8.03267621477E-01 -7.89715614576E-01 -7.75874228408E-01 -7.61712781793E-01 -7.47209197462E-01 -7.32348144610E-01 -7.17122889251E-01 -7.01533320145E-01 -6.85587311666E-01 -6.69298664420E-01 -6.52688048109E-01 -6.35780922423E-01 -6.18608155778E-01 -6.01204009194E-01 -5.83606535951E-01 -5.65855709402E-01 -5.47993699871E-01 -5.30063210483E-01 -5.12107706699E-01 -4.94169999194E-01 -4.76292475599E-01 -4.58515943224E-01 -4.40879888176E-01 -4.23421568539E-01 -4.06176306903E-01 -3.89176809104E-01 -3.72453483752E-01 -3.56033953112E-01 -3.39943387003E-01 -3.24204169758E-01 -3.08836234395E-01 -2.93856851153E-01 -2.79280949396E-01 -2.65120997259E-01 -2.51387301809E-01 -2.38087954473E-01 -2.25229103467E-01 -2.12814944919E-01 -2.00847964785E-01 -1.89328960362E-01 -1.78257251482E-01 -1.67630721176E-01 -1.57445997741E-01 -1.47698506578E-01 -1.38382625853E-01 -1.29491743993E-01 -1.21018392215E-01 -1.12954303994E-01 -1.05290527812E-01 -9.80174862003E-02 -9.11250718676E-02 -8.46027047875E-02 -7.84394144830E-02 -7.26238941919E-02 -6.71445716361E-02 -6.19896596426E-02 -5.71472172530E-02 -5.26051963936E-02 -4.83514947410E-02 -4.43739981585E-02 -4.06606263593E-02 -3.71993709022E-02 -3.39783343945E-02 -3.09857638921E-02 -2.82100841633E-02 -2.56399263876E-02 -2.32641558472E-02 -2.10718958742E-02 -1.90840502120E-02 -1.72230548655E-02 -1.55117909870E-02 -1.39415389212E-02 -1.25037740891E-02 -1.11901909866E-02 -9.99272481557E-03 -8.90357039122E-03 -7.91519857201E-03 -7.02037004276E-03 -6.21214662463E-03 -5.48390006490E-03 -4.82931845441E-03 -4.24241030852E-03 -3.71750645662E-03 -3.24925983362E-03 -2.83264332480E-03 -2.46294579474E-03 -2.13576646216E-03 -1.84700777373E-03 -1.59286694444E-03 -1.36982632819E-03 -1.17464278808E-03 -1.00433622943E-03 -8.56177459784E-04 -7.27675531905E-04 -6.16564720314E-04 -5.20791275027E-04 -4.38500085393E-04 -3.68021376759E-04 -3.28114468179E-04 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 -1.77635683940E-14 0.00000000000E+00 3.20190559074E-10 1.30274863602E-09 2.98164580113E-09 5.39221525656E-09 8.57120203775E-09 1.25568150014E-08 1.73887806624E-08 2.31083989447E-08 2.97586009128E-08 3.73840085535E-08 4.60309966792E-08 5.57477570275E-08 6.65843646327E-08 7.85928465508E-08 9.18272530175E-08 1.06343731126E-07 1.22200601115E-07 1.39458435346E-07 1.58180140088E-07 1.78431040179E-07 2.00278966683E-07 2.23794347646E-07 2.49050302050E-07 2.76122737085E-07 3.05090448852E-07 3.36035226609E-07 3.69041960705E-07 4.04198754304E-07 4.41597039046E-07 4.81331694784E-07 5.23501173526E-07 5.68207627750E-07 6.15557043216E-07 6.65659376457E-07 7.18628697099E-07 7.74583335179E-07 8.33646033636E-07 8.95944106161E-07 9.61609600579E-07 1.03077946797E-06 1.10359573772E-06 1.18020569870E-06 1.26076208682E-06 1.34542327913E-06 1.43435349474E-06 1.52772300277E-06 1.62570833755E-06 1.72849252145E-06 1.83626529536E-06 1.94922335741E-06 2.06757060985E-06 2.19151841473E-06 2.32128585844E-06 2.45710002547E-06 2.59919628182E-06 2.74781856822E-06 2.90321970368E-06 3.06566169957E-06 3.23541608471E-06 3.41276424178E-06 3.59799775548E-06 3.79141877286E-06 3.99334037620E-06 4.20408696885E-06 4.42399467464E-06 4.65341175111E-06 4.89269901718E-06 5.14223029574E-06 5.40239287165E-06 5.67358796568E-06 5.95623122499E-06 6.25075323066E-06 6.55760002295E-06 6.87723364475E-06 7.21013270406E-06 7.55679295593E-06 7.91772790479E-06 8.29346942759E-06 8.68456841871E-06 9.09159545731E-06 9.51514149780E-06 9.95581858444E-06 1.04142605907E-05 1.08911239842E-05 1.13870886188E-05 1.19028585533E-05 1.24391628992E-05 1.29967566984E-05 1.35764218297E-05 1.41789679489E-05 1.48052334601E-05 1.54560865210E-05 1.61324260836E-05 1.68351829706E-05 1.75653209892E-05 1.83238380837E-05 1.91117675280E-05 1.99301791594E-05 2.07801806558E-05 2.16629188562E-05 2.25795811276E-05 2.35313967799E-05 2.45196385285E-05 2.55456240086E-05 2.66107173422E-05 2.77163307585E-05 2.88639262712E-05 3.00550174140E-05 3.12911710355E-05 3.25740091575E-05 3.39052108965E-05 3.52865144528E-05 3.67197191676E-05 3.82066876523E-05 3.97493479911E-05 4.13496960195E-05 4.30097976829E-05 4.47317914757E-05 4.65178909654E-05 4.83703874046E-05 5.02916524322E-05 5.22841408697E-05 5.43503936133E-05 5.64930406259E-05 5.87148040342E-05 6.10185013311E-05 6.34070486906E-05 6.58834643964E-05 6.84508723895E-05 7.11125059389E-05 7.38717114393E-05 7.67319523394E-05 7.96968132074E-05 8.27700039363E-05 8.59553640952E-05 8.92568674311E-05 9.26786265261E-05 9.62248976161E-05 9.99000855765E-05 1.03708749080E-04 1.07655605931E-04 1.11745538591E-04 1.15983599886E-04 1.20375018917E-04 1.24925207175E-04 1.29639764868E-04 1.34524487460E-04 1.39585372446E-04 1.44828626355E-04 1.50260671996E-04 1.55888155960E-04 1.61717956370E-04 1.67757190911E-04 1.74013225132E-04 1.80493681034E-04 1.87206445957E-04 1.94159681777E-04 2.01361834414E-04 2.08821643675E-04 2.16548153436E-04 2.24550722173E-04 2.32839033859E-04 2.41423109243E-04 2.50313317507E-04 2.59520388339E-04 2.69055424414E-04 2.78929914312E-04 2.89155745880E-04 2.99745220056E-04 3.10711065174E-04 3.22066451756E-04 3.33825007828E-04 3.46000834752E-04 3.58608523615E-04 3.71663172178E-04 3.85180402418E-04 3.99176378670E-04 4.13667826399E-04 4.28672051622E-04 4.44206961001E-04 4.60291082628E-04 4.76943587532E-04 4.94184311930E-04 5.12033780244E-04 5.30513228915E-04 5.49644631045E-04 5.69450721885E-04 5.89955025208E-04 6.11181880589E-04 6.33156471639E-04 6.55904855205E-04 6.79453991583E-04 7.03831775779E-04 7.29067069850E-04 7.55189736358E-04 7.82230672993E-04 8.10221848380E-04 8.39196339138E-04 8.69188368210E-04 9.00233344527E-04 9.32367904040E-04 9.65629952177E-04 1.00005870776E-03 1.03569474845E-03 1.07258005777E-03 1.11075807375E-03 1.15027373921E-03 1.19117355392E-03 1.23350562837E-03 1.27731973960E-03 1.32266738879E-03 1.36960186100E-03 1.41817828682E-03 1.46845370632E-03 1.52048713510E-03 1.57433963264E-03 1.63007437309E-03 1.68775671844E-03 1.74745429424E-03 1.80923706801E-03 1.87317743025E-03 1.93935027837E-03 2.00783310348E-03 2.07870608019E-03 2.15205215955E-03 2.22795716517E-03 2.30650989275E-03 2.38780221298E-03 2.47192917808E-03 2.55898913201E-03 2.64908382452E-03 2.74231852912E-03 2.83880216526E-03 2.93864742461E-03 3.04197090184E-03 3.14889322993E-03 3.25953922013E-03 3.37403800686E-03 3.49252319765E-03 3.61513302821E-03 3.74201052303E-03 3.87330366151E-03 4.00916554983E-03 4.14975459894E-03 4.29523470864E-03 4.44577545814E-03 4.60155230329E-03 4.76274678060E-03 4.92954671852E-03 5.10214645601E-03 5.28074706879E-03 5.46555660348E-03 5.65679031995E-03 5.85467094218E-03 6.05942891785E-03 6.27130268709E-03 6.49053896058E-03 6.71739300751E-03 6.95212895352E-03 7.19502008926E-03 7.44634918964E-03 7.70640884441E-03 7.97550180038E-03 8.25394131558E-03 8.54205152605E-03 8.84016782548E-03 9.14863725822E-03 9.46781892630E-03 9.79808441067E-03 1.01398182075E-02 1.04934181798E-02 1.08592960252E-02 1.12378777601E-02 1.16296042211E-02 1.20349315847E-02 1.24543319044E-02 1.28882936682E-02 1.33373223752E-02 1.38019411328E-02 1.42826912754E-02 1.47801330058E-02 1.52948460580E-02 1.58274303857E-02 1.63785068741E-02 1.69487180780E-02 1.75387289861E-02 1.81492278130E-02 1.87809268201E-02 1.94345631655E-02 2.01108997853E-02 2.08107263068E-02 2.15348599943E-02 2.22841467298E-02 2.30594620300E-02 2.38617120988E-02 2.46918349202E-02 2.55508013899E-02 2.64396164893E-02 2.73593205017E-02 2.83109902746E-02 2.92957405278E-02 3.03147252100E-02 3.13691389058E-02 3.24602182953E-02 3.35892436677E-02 3.47575404917E-02 3.59664810445E-02 3.72174861017E-02 3.85120266919E-02 3.98516259158E-02 4.12378608355E-02 4.26723644347E-02 4.41568276532E-02 4.56930015000E-02 4.72826992459E-02 4.89277987007E-02 5.06302445777E-02 5.23920509498E-02 5.42153037997E-02 5.61021636692E-02 5.80548684117E-02 6.00757360515E-02 6.21671677548E-02 6.43316509177E-02 6.65717623744E-02 6.88901717325E-02 7.12896448400E-02 7.37730473888E-02 7.63433486622E-02 7.90036254306E-02 8.17570660029E-02 8.46069744396E-02 8.75567749350E-02 9.06100163740E-02 9.37703770732E-02 9.70416697122E-02 1.00427846463E-01 1.03933004328E-01 1.07561390689E-01 1.11317409085E-01 1.15205625223E-01 1.19230773224E-01 1.23397762129E-01 1.27711682663E-01 1.32177814270E-01 1.36801632428E-01 1.41588816259E-01 1.46545256441E-01 1.51677063429E-01 1.56990575996E-01 1.62492370118E-01 1.68189268191E-01 1.74088348601E-01 1.80196955663E-01 1.86522709919E-01 1.93073518828E-01 1.99857587824E-01 2.06883431781E-01 2.14159886860E-01 2.21696122763E-01 2.29501655378E-01 2.37586359827E-01 2.45960483899E-01 2.54634661875E-01 2.63619928721E-01 2.72927734638E-01 2.82569959949E-01 2.92558930300E-01 3.02907432130E-01 3.13628728388E-01 3.24736574431E-01 3.36245234057E-01 3.48169495606E-01 3.60524688041E-01 3.73326696926E-01 3.86591980192E-01 4.00337583570E-01 4.14581155555E-01 4.29340961744E-01 4.44635898370E-01 4.60485504838E-01 4.76909975043E-01 4.93930167213E-01 5.11567612032E-01 5.29844518710E-01 5.48783778707E-01 5.68408966728E-01 5.88744338625E-01 6.09814825772E-01 6.31646025487E-01 6.54264187017E-01 6.77696192596E-01 7.01969533060E-01 7.27112277476E-01 7.53153036246E-01 7.80120917137E-01 8.08045473692E-01 8.36956645486E-01 8.66884689757E-01 8.97860103947E-01 9.29913538777E-01 9.63075701577E-01 9.97377249687E-01 1.03284867390E+00 1.06952017206E+00 1.10742151320E+00 1.14658189272E+00 1.18702977944E+00 1.22879275577E+00 1.27189735218E+00 1.31636887801E+00 1.36223125052E+00 1.40950682474E+00 1.45821622671E+00 1.50837819330E+00 1.56000942145E+00 1.61312443023E+00 1.66773543852E+00 1.72385226077E+00 1.78148222286E+00 1.84063009829E+00 1.90129806389E+00 1.96348567143E+00 2.02718982874E+00 2.09240478011E+00 2.15912207077E+00 2.22733047486E+00 2.29701585930E+00 2.36816094860E+00 2.44074494741E+00 2.51474296892E+00 2.59012520889E+00 2.66685579810E+00 2.74489126092E+00 2.82417850702E+00 2.90465228915E+00 2.98623207425E+00 3.06881830337E+00 3.15228806028E+00 3.23649023555E+00 3.32124036610E+00 3.40631545541E+00 3.49144923823E+00 3.57632854691E+00 3.66059165495E+00 3.74382970017E+00 3.82559248605E+00 3.90540005819E+00 3.98276134014E+00 4.05720060496E+00 4.12829136851E+00 4.19569497552E+00 4.25919704528E+00 4.31872805958E+00 4.37434325749E+00 4.42611936124E+00 4.47398635391E+00 4.51778673856E+00 4.55737091291E+00 4.59260124145E+00 4.62335282344E+00 4.64951419992E+00 4.67098799036E+00 4.68769145721E+00 4.69955698924E+00 4.70653250409E+00 4.70858176138E+00 4.70568458901E+00 4.69783701471E+00 4.68505130797E+00 4.66735592528E+00 4.64479536650E+00 4.61742993680E+00 4.58533542507E+00 4.54860269527E+00 4.50733720520E+00 4.46165845171E+00 4.41169935982E+00 4.35760561087E+00 4.29953493689E+00 4.23765637777E+00 4.17214951189E+00 4.10320364538E+00 4.03101695221E+00 3.95579552559E+00 3.87775230642E+00 3.79710582569E+00 3.71407871083E+00 3.62889652861E+00 3.54178891692E+00 3.45298217860E+00 3.36270537804E+00 3.27118690051E+00 3.17865349464E+00 3.08532934528E+00 2.99143518754E+00 2.89718746082E+00 2.80279751190E+00 2.70847084598E+00 2.61440643272E+00 2.52079606618E+00 2.42782378375E+00 2.33566534306E+00 2.24448775991E+00 2.15444890642E+00 2.06569717049E+00 1.97837117583E+00 1.89259956221E+00 1.80850082507E+00 1.72618321277E+00 1.64574468071E+00 1.56727289945E+00 1.49084531610E+00 1.41652926509E+00 1.34438212767E+00 1.27445153556E+00 1.20677561804E+00 1.14138328720E+00 1.07829456074E+00 1.01752091663E+00 9.59065678701E-01 9.02924427290E-01 8.49085433904E-01 7.97530113670E-01 7.48233494516E-01 7.01164696693E-01 6.56287421484E-01 6.13560442812E-01 5.72938100512E-01 5.34370789297E-01 4.97805442216E-01 4.63186003133E-01 4.30453887221E-01 3.99548424672E-01 3.70407286926E-01 3.42966891462E-01 3.17162784881E-01 2.92930001209E-01 2.70203395671E-01 2.48917951785E-01 2.29009062513E-01 2.10412784235E-01 1.93066064728E-01 1.76906944716E-01 1.61874734562E-01 1.47910166325E-01 1.34955523038E-01 1.22954745925E-01 1.11853521592E-01 1.01599350230E-01 9.21415969126E-02 8.34315272050E-02 7.54223290885E-02 6.80691224544E-02 6.13289579866E-02 5.51608066176E-02 4.95255411152E-02 4.43859108253E-02 3.97065108319E-02 3.54537463501E-02 3.15957933129E-02 2.81025557487E-02 2.49456206352E-02 2.20982106317E-02 1.95351351509E-02 1.72327400214E-02 1.51688560394E-02 1.33227465651E-02 1.16750543616E-02 1.02077477867E-02 8.90406648811E-03 7.74846670665E-03 6.72656632915E-03 5.82508981215E-03 5.03181313143E-03 4.33550890324E-03 3.72589185061E-03 3.19356478292E-03 2.72996527412E-03 2.32731321896E-03 1.97855945303E-03 1.67733561205E-03 1.41790540263E-03 1.19511744167E-03 1.00435981016E-03 8.41516448183E-04 7.02925501191E-04 5.85339706042E-04 4.85888885695E-04 4.02044599508E-04 3.31586975748E-04 2.72573732295E-04 2.23311372572E-04 1.82328525686E-04 1.48351383648E-04 1.20281174000E-04 9.71735937253E-05 7.82201197544E-05 6.27311029129E-05 5.01205456004E-05 3.98924589012E-05 3.16286919870E-05 2.49781255217E-05 1.96471211112E-05 1.53911205179E-05 1.20072911750E-05 9.32811832236E-06 7.21584866076E-06 5.55769560286E-06 4.26172183121E-06 3.25332079980E-06 2.47222489832E-06 1.86997411664E-06 1.40778509477E-06 1.05476633213E-06 7.86430986807E-07 5.83464063576E-07 4.30705826809E-07 3.16317951503E-07 2.31103226295E-07 1.67953536140E-07 1.21404379351E-07 8.72774395607E-08 6.23952743525E-08 4.43549669408E-08 3.13495724522E-08 2.20280880030E-08 1.53862861094E-08 1.06821208306E-08 7.37057539990E-09 5.05379391102E-09 3.44315044192E-09 2.33057617321E-09 1.56704737082E-09 1.04652462472E-09 6.94054280043E-10 4.57013080251E-10 2.98708924245E-10 1.93736358851E-10 1.24629554163E-10 7.94676828700E-11 5.01742440442E-11 3.13182293293E-11 1.92754594089E-11 1.16464375852E-11 6.85550153120E-12 3.87715599390E-12 2.05102000576E-12 9.58225759449E-13 3.40473374668E-13 4.91757476273E-14 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5.29635113499E-06 1.06832360010E-05 1.61622021457E-05 2.17348235702E-05 2.74027011807E-05 3.31674632488E-05 3.90307658791E-05 4.49942934849E-05 5.10597592724E-05 5.72289057325E-05 6.35035051415E-05 6.98853600706E-05 7.63763039030E-05 8.29782013614E-05 8.96929490432E-05 9.65224759654E-05 1.03468744119E-04 1.10533749032E-04 1.17719520345E-04 1.25028122389E-04 1.32461654785E-04 1.40022253043E-04 1.47712089177E-04 1.55533372328E-04 1.63488349398E-04 1.71579305700E-04 1.79808565607E-04 1.88178493228E-04 1.96691493080E-04 2.05350010784E-04 2.14156533764E-04 2.23113591964E-04 2.32223758573E-04 2.41489650766E-04 2.50913930455E-04 2.60499305052E-04 2.70248528251E-04 2.80164400814E-04 2.90249771379E-04 3.00507537280E-04 3.10940645372E-04 3.21552092887E-04 3.32344928287E-04 3.43322252146E-04 3.54487218036E-04 3.65843033437E-04 3.77392960653E-04 3.89140317755E-04 4.01088479533E-04 4.13240878461E-04 4.25601005689E-04 4.38172412041E-04 4.50958709041E-04 4.63963569943E-04 4.77190730792E-04 4.90643991496E-04 5.04327216916E-04 5.18244337978E-04 5.32399352802E-04 5.46796327850E-04 5.61439399093E-04 5.76332773203E-04 5.91480728758E-04 6.06887617473E-04 6.22557865448E-04 6.38495974442E-04 6.54706523167E-04 6.71194168598E-04 6.87963647318E-04 7.05019776872E-04 7.22367457158E-04 7.40011671827E-04 7.57957489721E-04 7.76210066327E-04 7.94774645257E-04 8.13656559754E-04 8.32861234228E-04 8.52394185810E-04 8.72261025938E-04 8.92467461973E-04 9.13019298830E-04 9.33922440657E-04 9.55182892520E-04 9.76806762136E-04 9.98800261625E-04 1.02116970929E-03 1.04392153145E-03 1.06706226425E-03 1.09059855559E-03 1.11453716698E-03 1.13888497552E-03 1.16364897587E-03 1.18883628224E-03 1.21445413047E-03 1.24050988005E-03 1.26701101631E-03 1.29396515252E-03 1.32138003206E-03 1.34926353070E-03 1.37762365885E-03 1.40646856380E-03 1.43580653215E-03 1.46564599212E-03 1.49599551601E-03 1.52686382266E-03 1.55825977993E-03 1.59019240728E-03 1.62267087832E-03 1.65570452350E-03 1.68930283274E-03 1.72347545819E-03 1.75823221697E-03 1.79358309404E-03 1.82953824502E-03 1.86610799913E-03 1.90330286214E-03 1.94113351943E-03 1.97961083901E-03 2.01874587466E-03 2.05854986914E-03 2.09903425735E-03 2.14021066967E-03 2.18209093530E-03 2.22468708561E-03 2.26801135767E-03 2.31207619770E-03 2.35689426467E-03 2.40247843395E-03 2.44884180098E-03 2.49599768506E-03 2.54395963318E-03 2.59274142386E-03 2.64235707117E-03 2.69282082872E-03 2.74414719379E-03 2.79635091143E-03 2.84944697877E-03 2.90345064928E-03 2.95837743717E-03 3.01424312185E-03 3.07106375243E-03 3.12885565239E-03 3.18763542423E-03 3.24741995424E-03 3.30822641735E-03 3.37007228208E-03 3.43297531556E-03 3.49695358861E-03 3.56202548094E-03 3.62820968646E-03 3.69552521861E-03 3.76399141583E-03 3.83362794714E-03 3.90445481777E-03 3.97649237491E-03 4.04976131354E-03 4.12428268243E-03 4.20007789012E-03 4.27716871110E-03 4.35557729208E-03 4.43532615832E-03 4.51643822013E-03 4.59893677943E-03 4.68284553647E-03 4.76818859661E-03 4.85499047726E-03 4.94327611491E-03 5.03307087233E-03 5.12440054580E-03 5.21729137258E-03 5.31177003841E-03 5.40786368517E-03 5.50559991872E-03 5.60500681678E-03 5.70611293702E-03 5.80894732528E-03 5.91353952390E-03 6.01991958018E-03 6.12811805506E-03 6.23816603186E-03 6.35009512524E-03 6.46393749026E-03 6.57972583163E-03 6.69749341310E-03 6.81727406702E-03 6.93910220405E-03 7.06301282306E-03 7.18904152117E-03 7.31722450399E-03 7.44759859600E-03 7.58020125116E-03 7.71507056366E-03 7.85224527882E-03 7.99176480430E-03 8.13366922135E-03 8.27799929636E-03 8.42479649258E-03 8.57410298199E-03 8.72596165747E-03 8.88041614507E-03 9.03751081658E-03 9.19729080225E-03 9.35980200378E-03 9.52509110751E-03 9.69320559778E-03 9.86419377064E-03 1.00381047477E-02 1.02149884902E-02 1.03948958134E-02 1.05778784012E-02 1.07639888209E-02 1.09532805386E-02 1.11458079340E-02 1.13416263165E-02 1.15407919410E-02 1.17433620239E-02 1.19493947596E-02 1.21589493374E-02 1.23720859583E-02 1.25888658522E-02 1.28093512959E-02 1.30336056306E-02 1.32616932801E-02 1.34936797696E-02 1.37296317445E-02 1.39696169890E-02 1.42137044464E-02 1.44619642382E-02 1.47144676847E-02 1.49712873252E-02 1.52324969390E-02 1.54981715666E-02 1.57683875312E-02 1.60432224606E-02 1.63227553096E-02 1.66070663825E-02 1.68962373564E-02 1.71903513045E-02 1.74894927201E-02 1.77937475407E-02 1.81032031729E-02 1.84179485172E-02 1.87380739939E-02 1.90636715688E-02 1.93948347799E-02 1.97316587639E-02 2.00742402838E-02 2.04226777567E-02 2.07770712820E-02 2.11375226699E-02 2.15041354713E-02 2.18770150068E-02 2.22562683976E-02 2.26420045959E-02 2.30343344161E-02 2.34333705670E-02 2.38392276841E-02 2.42520223621E-02 2.46718731891E-02 2.50989007800E-02 2.55332278116E-02 2.59749790577E-02 2.64242814248E-02 2.68812639888E-02 2.73460580319E-02 2.78187970806E-02 2.82996169435E-02 2.87886557510E-02 2.92860539943E-02 2.97919545665E-02 3.03065028029E-02 3.08298465233E-02 3.13621360742E-02 3.19035243721E-02 3.24541669474E-02 3.30142219890E-02 3.35838503899E-02 3.41632157934E-02 3.47524846399E-02 3.53518262149E-02 3.59614126977E-02 3.65814192106E-02 3.72120238697E-02 3.78534078352E-02 3.85057553646E-02 3.91692538645E-02 3.98440939453E-02 4.05304694755E-02 4.12285776375E-02 4.19386189841E-02 4.26607974967E-02 4.33953206431E-02 4.41423994375E-02 4.49022485013E-02 4.56750861243E-02 4.64611343280E-02 4.72606189287E-02 4.80737696029E-02 4.89008199529E-02 4.97420075745E-02 5.05975741245E-02 5.14677653907E-02 5.23528313620E-02 5.32530263010E-02 5.41686088161E-02 5.50998419365E-02 5.60469931874E-02 5.70103346672E-02 5.79901431250E-02 5.89867000411E-02 6.00002917068E-02 6.10312093074E-02 6.20797490057E-02 6.31462120267E-02 6.42309047447E-02 6.53341387710E-02 6.64562310432E-02 6.75975039168E-02 6.87582852574E-02 6.99389085350E-02 7.11397129198E-02 7.23610433798E-02 7.36032507795E-02 7.48666919810E-02 7.61517299466E-02 7.74587338427E-02 7.87880791465E-02 8.01401477529E-02 8.15153280852E-02 8.29140152060E-02 8.43366109312E-02 8.57835239449E-02 8.72551699172E-02 8.87519716236E-02 9.02743590662E-02 9.18227695974E-02 9.33976480457E-02 9.49994468432E-02 9.66286261556E-02 9.82856540146E-02 9.99710064523E-02 1.01685167638E-01 1.03428630017E-01 1.05201894451E-01 1.07005470367E-01 1.08839875896E-01 1.10705638027E-01 1.12603292758E-01 1.14533385248E-01 1.16496469976E-01 1.18493110897E-01 1.20523881608E-01 1.22589365511E-01 1.24690155978E-01 1.26826856526E-01 1.29000080988E-01 1.31210453690E-01 1.33458609628E-01 1.35745194654E-01 1.38070865660E-01 1.40436290766E-01 1.42842149513E-01 1.45289133057E-01 1.47777944370E-01 1.50309298440E-01 1.52883922474E-01 1.55502556113E-01 1.58165951639E-01 1.60874874195E-01 1.63630102002E-01 1.66432426582E-01 1.69282652990E-01 1.72181600041E-01 1.75130100546E-01 1.78129001552E-01 1.81179164585E-01 1.84281465899E-01 1.87436796724E-01 1.90646063526E-01 1.93910188265E-01 1.97230108660E-01 2.00606778462E-01 2.04041167722E-01 2.07534263072E-01 2.11087068013E-01 2.14700603196E-01 2.18375906719E-01 2.22114034428E-01 2.25916060212E-01 2.29783076321E-01 2.33716193673E-01 2.37716542178E-01 2.41785271057E-01 2.45923549178E-01 2.50132565388E-01 2.54413528856E-01 2.58767669420E-01 2.63196237940E-01 2.67700506659E-01 2.72281769565E-01 2.76941342767E-01 2.81680564869E-01 2.86500797360E-01 2.91403424997E-01 2.96389856212E-01 3.01461523510E-01 3.06619883881E-01 3.11866419224E-01 3.17202636767E-01 3.22630069502E-01 3.28150276624E-01 3.33764843983E-01 3.39475384535E-01 3.45283538809E-01 3.51190975373E-01 3.57199391322E-01 3.63310512755E-01 3.69526095281E-01 3.75847924515E-01 3.82277816597E-01 3.88817618711E-01 3.95469209615E-01 4.02234500182E-01 4.09115433950E-01 4.16113987677E-01 4.23232171914E-01 4.30472031575E-01 4.37835646533E-01 4.45325132213E-01 4.52942640197E-01 4.60690358849E-01 4.68570513939E-01 4.76585369283E-01 4.84737227393E-01 4.93028430141E-01 5.01461359428E-01 5.10038437872E-01 5.18762129502E-01 5.27634940466E-01 5.36659419750E-01 5.45838159912E-01 5.55173797828E-01 5.64669015445E-01 5.74326540555E-01 5.84149147579E-01 5.94139658362E-01 6.04300942983E-01 6.14635920584E-01 6.25147560203E-01 6.35838881632E-01 6.46712956279E-01 6.57772908056E-01 6.69021914274E-01 6.80463206553E-01 6.92100071757E-01 7.03935852930E-01 7.15973950265E-01 7.28217822073E-01 7.40670985782E-01 7.53337018944E-01 7.66219560267E-01 7.79322310655E-01 7.92649034274E-01 8.06203559634E-01 8.19989780688E-01 8.34011657951E-01 8.48273219637E-01 8.62778562816E-01 8.77531854593E-01 8.92537333304E-01 9.07799309730E-01 9.23322168344E-01 9.39110368562E-01 9.55168446029E-01 9.71501013919E-01 9.88112764263E-01 1.00500846930E+00 1.02219298283E+00 1.03967124163E+00 1.05744826688E+00 1.07552916556E+00 1.09391913198E+00 1.11262344920E+00 1.13164749062E+00 1.15099672148E+00 1.17067670044E+00 1.19069308118E+00 1.21105161400E+00 1.23175814753E+00 1.25281863036E+00 1.27423911275E+00 1.29602574838E+00 1.31818479615E+00 1.34072262192E+00 1.36364570036E+00 1.38696061684E+00 1.41067406927E+00 1.43479287008E+00 1.45932394813E+00 1.48427435072E+00 1.50965124562E+00 1.53546192313E+00 1.56171379815E+00 1.58841441233E+00 1.61557143624E+00 1.64319267158E+00 1.67128605339E+00 1.69985965236E+00 1.72892167712E+00 1.75848047663E+00 1.78854454257E+00 1.81912251176E+00 1.85022316866E+00 1.88185544788E+00 1.91402843677E+00 1.94675137801E+00 1.98003367225E+00 2.01388488087E+00 2.04831472865E+00 2.08333310664E+00 2.11895007492E+00 2.15517586556E+00 2.19202088554E+00 2.22949571972E+00 2.26761113389E+00 2.30637807786E+00 2.34580768864E+00 2.38591129359E+00 2.42670041369E+00 2.46818676688E+00 2.51038227138E+00 2.55329904913E+00 2.59694942931E+00 2.64134595182E+00 2.68650137092E+00 2.73242865889E+00 2.77914100975E+00 2.82665184305E+00 2.87497480775E+00 2.92412378608E+00 2.97411289761E+00 3.02495650323E+00 3.07666920934E+00 3.12926587198E+00 3.18276160117E+00 3.23717176519E+00 3.29251199502E+00 3.34879818885E+00 3.40604651661E+00 3.46427342464E+00 3.52349564040E+00 3.58373017729E+00 3.64499433952E+00 3.70730572710E+00 3.77068224089E+00 3.83514208773E+00 3.90070378570E+00 3.96738616939E+00 4.03520839537E+00 4.10418994764E+00 4.17435064329E+00 4.24571063811E+00 4.31829043244E+00 4.39211087707E+00 4.46719317918E+00 4.54355890845E+00 4.62123000329E+00 4.70022877710E+00 4.78057792469E+00 4.86230052882E+00 4.94542006682E+00 5.02996041732E+00 5.11594586712E+00 5.20340111819E+00 5.29235129472E+00 5.38282195038E+00 5.47483907563E+00 5.56842910522E+00 5.66361892575E+00 5.76043588341E+00 5.85890779185E+00 5.95906294013E+00 6.06093010089E+00 6.16453853860E+00 6.26991801796E+00 6.37709881244E+00 6.48611171303E+00 6.59698803701E+00 6.70975963701E+00 6.82445891012E+00 6.94111880723E+00 7.05977284247E+00 7.18045510285E+00 7.30320025805E+00 7.42804357036E+00 7.55502090487E+00 7.68416873970E+00 7.81552417653E+00 7.94912495123E+00 8.08500944471E+00 8.22321669397E+00 8.36378640327E+00 8.50675895557E+00 8.65217542412E+00 8.80007758426E+00 8.95050792540E+00 9.10350966329E+00 9.25912675235E+00 9.41740389837E+00 9.57838657131E+00 9.74212101837E+00 9.90865427729E+00 1.00780341899E+01 1.02503094156E+01 1.04255294460E+01 1.06037446182E+01 1.07850061301E+01 1.09693660545E+01 1.11568773546E+01 1.13475938986E+01 1.15415704758E+01 1.17388628119E+01 1.19395275851E+01 1.21436224425E+01 1.23512060167E+01 1.25623379424E+01 1.27770788737E+01 1.29954905016E+01 1.32176355714E+01 1.34435779011E+01 1.36733823996E+01 1.39071150853E+01 1.41448431051E+01 1.43866347536E+01 1.46325594929E+01 1.48826879724E+01 1.51370920491E+01 1.53958448085E+01 1.56590205852E+01 1.59266949846E+01 1.61989449042E+01 1.64758485562E+01 1.67574854897E+01 1.70439366135E+01 1.73352842195E+01 1.76316120062E+01 1.79330051029E+01 1.82395500940E+01 1.85513350438E+01 1.88684495222E+01 1.91909846301E+01 1.95190330255E+01 1.98526889504E+01 2.01920482577E+01 2.05372084387E+01 2.08882686513E+01 2.12453297483E+01 2.16084943064E+01 2.19778666558E+01 2.23535529101E+01 2.27356609965E+01 2.31243006874E+01 2.35195836314E+01 2.39216233857E+01 2.43305354485E+01 2.47464372923E+01 2.51694483977E+01 2.55996902876E+01 2.60372865621E+01 2.64823629342E+01 2.69350472658E+01 2.73954696042E+01 2.78637622200E+01 2.83400596445E+01 2.88244987087E+01 2.93172185826E+01 2.98183608151E+01 3.03280693747E+01 3.08464906907E+01 3.13737736956E+01 3.19100698676E+01 3.24555332743E+01 3.30103206165E+01 3.35745912742E+01 3.41485073512E+01 3.47322337226E+01 3.53259380817E+01 3.59297909882E+01 3.65439659174E+01 3.71686393098E+01 3.78039906221E+01 3.84502023784E+01 3.91074602228E+01 3.97759529727E+01 4.04558726733E+01 4.11474146522E+01 4.18507775762E+01 4.25661635077E+01 4.32937779633E+01 4.40338299725E+01 4.47865321380E+01 4.55521006966E+01 4.63307555812E+01 4.71227204844E+01 4.79282229223E+01 4.87474943003E+01 4.95807699790E+01 5.04282893426E+01 5.12902958668E+01 5.21670371896E+01 5.30587651817E+01 5.39657360193E+01 5.48882102576E+01 5.58264529055E+01 5.67807335021E+01 5.77513261938E+01 5.87385098129E+01 5.97425679582E+01 6.07637890763E+01 6.18024665441E+01 6.28588987537E+01 6.39333891975E+01 6.50262465558E+01 6.61377847856E+01 6.72683232100E+01 6.84181866111E+01 6.95877053222E+01 7.07772153235E+01 7.19870583381E+01 7.32175819307E+01 7.44691396067E+01 7.57420909145E+01 7.70368015483E+01 7.83536434535E+01 7.96929949333E+01 8.10552407574E+01 5.25159359463E-06 5.34136225794E-06 5.43266539126E-06 5.52552922422E-06 5.61998043481E-06 5.71604615702E-06 5.81375398868E-06 5.91313199936E-06 6.01420873844E-06 6.11701324332E-06 6.22157504773E-06 6.32792419025E-06 6.43609122295E-06 6.54610722011E-06 6.65800378720E-06 6.77181306994E-06 6.88756776354E-06 7.00530112207E-06 7.12504696806E-06 7.24683970217E-06 7.37071431309E-06 7.49670638760E-06 7.62485212079E-06 7.75518832645E-06 7.88775244764E-06 8.02258256748E-06 8.15971742005E-06 8.29919640153E-06 8.44105958155E-06 8.58534771463E-06 8.73210225199E-06 8.88136535335E-06 9.03317989911E-06 9.18758950265E-06 9.34463852288E-06 9.50437207692E-06 9.66683605315E-06 9.83207712431E-06 1.00001427610E-05 1.01710812451E-05 1.03449416841E-05 1.05217740247E-05 1.07016290673E-05 1.08845584809E-05 1.10706148174E-05 1.12598515275E-05 1.14523229749E-05 1.16480844532E-05 1.18471922007E-05 1.20497034172E-05 1.22556762804E-05 1.24651699622E-05 1.26782446462E-05 1.28949615445E-05 1.31153829157E-05 1.33395720826E-05 1.35675934505E-05 1.37995125254E-05 1.40353959333E-05 1.42753114387E-05 1.45193279650E-05 1.47675156132E-05 1.50199456828E-05 1.52766906922E-05 1.55378243993E-05 1.58034218226E-05 1.60735592631E-05 1.63483143263E-05 1.66277659438E-05 1.69119943966E-05 1.72010813382E-05 1.74951098176E-05 1.77941643036E-05 1.80983307086E-05 1.84076964137E-05 1.87223502939E-05 1.90423827430E-05 1.93678857002E-05 1.96989526762E-05 2.00356787800E-05 2.03781607467E-05 2.07264969646E-05 2.10807875041E-05 2.14411341458E-05 2.18076404105E-05 2.21804115883E-05 2.25595547691E-05 2.29451788735E-05 2.33373946837E-05 2.37363148758E-05 2.41420540519E-05 2.45547287729E-05 2.49744575924E-05 2.54013610903E-05 2.58355619076E-05 2.62771847820E-05 2.67263565830E-05 2.71832063491E-05 2.76478653244E-05 2.81204669964E-05 2.86011471344E-05 2.90900438285E-05 2.95872975293E-05 3.00930510881E-05 3.06074497982E-05 3.11306414363E-05 3.16627763054E-05 3.22040072773E-05 3.27544898374E-05 3.33143821285E-05 3.38838449970E-05 3.44630420385E-05 3.50521396450E-05 3.56513070530E-05 3.62607163916E-05 3.68805427324E-05 3.75109641394E-05 3.81521617206E-05 3.88043196795E-05 3.94676253686E-05 4.01422693427E-05 4.08284454140E-05 4.15263507077E-05 4.22361857183E-05 4.29581543677E-05 4.36924640637E-05 4.44393257590E-05 4.51989540128E-05 4.59715670513E-05 4.67573868315E-05 4.75566391042E-05 4.83695534790E-05 4.91963634905E-05 5.00373066653E-05 5.08926245900E-05 5.17625629809E-05 5.26473717545E-05 5.35473050993E-05 5.44626215486E-05 5.53935840552E-05 5.63404600666E-05 5.73035216019E-05 5.82830453301E-05 5.92793126494E-05 6.02926097682E-05 6.13232277870E-05 6.23714627825E-05 6.34376158923E-05 6.45219934015E-05 6.56249068310E-05 6.67466730262E-05 6.78876142491E-05 6.90480582698E-05 7.02283384615E-05 7.14287938959E-05 7.26497694405E-05 7.38916158581E-05 7.51546899071E-05 7.64393544441E-05 7.77459785285E-05 7.90749375281E-05 8.04266132271E-05 8.18013939358E-05 8.31996746020E-05 8.46218569247E-05 8.60683494694E-05 8.75395677854E-05 8.90359345253E-05 9.05578795663E-05 9.21058401337E-05 9.36802609266E-05 9.52815942457E-05 9.69103001230E-05 9.85668464543E-05 1.00251709133E-04 1.01965372188E-04 1.03708327921E-04 1.05481077051E-04 1.07284128852E-04 1.09118001307E-04 1.10983221253E-04 1.12880324531E-04 1.14809856141E-04 1.16772370402E-04 1.18768431105E-04 1.20798611680E-04 1.22863495358E-04 1.24963675341E-04 1.27099754970E-04 1.29272347900E-04 1.31482078273E-04 1.33729580903E-04 1.36015501453E-04 1.38340496625E-04 1.40705234345E-04 1.43110393956E-04 1.45556666414E-04 1.48044754486E-04 1.50575372950E-04 1.53149248806E-04 1.55767121477E-04 1.58429743028E-04 1.61137878378E-04 1.63892305523E-04 1.66693815756E-04 1.69543213896E-04 1.72441318521E-04 1.75388962199E-04 1.78386991733E-04 1.81436268397E-04 1.84537668191E-04 1.87692082085E-04 1.90900416283E-04 1.94163592476E-04 1.97482548112E-04 2.00858236663E-04 2.04291627898E-04 2.07783708165E-04 2.11335480670E-04 2.14947965769E-04 2.18622201260E-04 2.22359242678E-04 2.26160163604E-04 2.30026055969E-04 2.33958030368E-04 2.37957216382E-04 2.42024762900E-04 2.46161838449E-04 2.50369631530E-04 2.54649350962E-04 2.59002226225E-04 2.63429507815E-04 2.67932467605E-04 2.72512399209E-04 2.77170618351E-04 2.81908463249E-04 2.86727294993E-04 2.91628497940E-04 2.96613480112E-04 3.01683673597E-04 3.06840534963E-04 3.12085545677E-04 3.17420212530E-04 3.22846068067E-04 3.28364671032E-04 3.33977606813E-04 3.39686487898E-04 3.45492954338E-04 3.51398674217E-04 3.57405344136E-04 3.63514689695E-04 3.69728465989E-04 3.76048458117E-04 3.82476481690E-04 3.89014383355E-04 3.95664041325E-04 4.02427365917E-04 4.09306300105E-04 4.16302820072E-04 4.23418935783E-04 4.30656691561E-04 4.38018166673E-04 4.45505475928E-04 4.53120770285E-04 4.60866237472E-04 4.68744102610E-04 4.76756628859E-04 4.84906118061E-04 4.93194911408E-04 5.01625390109E-04 5.10199976078E-04 5.18921132627E-04 5.27791365176E-04 5.36813221970E-04 5.45989294816E-04 5.55322219821E-04 5.64814678154E-04 5.74469396814E-04 5.84289149415E-04 5.94276756982E-04 6.04435088762E-04 6.14767063047E-04 6.25275648012E-04 6.35963862572E-04 6.46834777243E-04 6.57891515028E-04 6.69137252315E-04 6.80575219787E-04 6.92208703349E-04 7.04041045077E-04 7.16075644173E-04 7.28315957945E-04 7.40765502799E-04 7.53427855247E-04 7.66306652938E-04 7.79405595702E-04 7.92728446612E-04 8.06279033064E-04 8.20061247880E-04 8.34079050424E-04 8.48336467739E-04 8.62837595705E-04 8.77586600216E-04 8.92587718375E-04 9.07845259713E-04 9.23363607427E-04 9.39147219637E-04 9.55200630670E-04 9.71528452360E-04 9.88135375375E-04 1.00502617056E-03 1.02220569032E-03 1.03967886999E-03 1.05745072928E-03 1.07552637371E-03 1.09391099605E-03 1.11260987785E-03 1.13162839094E-03 1.15097199896E-03 1.17064625897E-03 1.19065682300E-03 1.21100943969E-03 1.23170995596E-03 1.25276431867E-03 1.27417857632E-03 1.29595888082E-03 1.31811148923E-03 1.34064276557E-03 1.36355918263E-03 1.38686732385E-03 1.41057388522E-03 1.43468567717E-03 1.45920962656E-03 1.48415277863E-03 1.50952229908E-03 1.53532547607E-03 1.56156972236E-03 1.58826257742E-03 1.61541170958E-03 1.64302491827E-03 1.67111013622E-03 1.69967543177E-03 1.72872901119E-03 1.75827922099E-03 1.78833455040E-03 1.81890363371E-03 1.84999525285E-03 1.88161833981E-03 1.91378197932E-03 1.94649541136E-03 1.97976803386E-03 2.01360940541E-03 2.04802924797E-03 2.08303744971E-03 2.11864406780E-03 2.15485933133E-03 2.19169364425E-03 2.22915758834E-03 2.26726192627E-03 2.30601760467E-03 2.34543575732E-03 2.38552770827E-03 2.42630497516E-03 2.46777927253E-03 2.50996251513E-03 2.55286682139E-03 2.59650451688E-03 2.64088813788E-03 2.68603043494E-03 2.73194437656E-03 2.77864315294E-03 2.82614017973E-03 2.87444910190E-03 2.92358379768E-03 2.97355838251E-03 3.02438721312E-03 3.07608489165E-03 3.12866626985E-03 3.18214645332E-03 3.23654080590E-03 3.29186495401E-03 3.34813479123E-03 3.40536648278E-03 3.46357647023E-03 3.52278147617E-03 3.58299850907E-03 3.64424486810E-03 3.70653814816E-03 3.76989624491E-03 3.83433735990E-03 3.89988000581E-03 3.96654301179E-03 4.03434552881E-03 4.10330703524E-03 4.17344734238E-03 4.24478660017E-03 4.31734530302E-03 4.39114429563E-03 4.46620477903E-03 4.54254831663E-03 4.62019684046E-03 4.69917265744E-03 4.77949845579E-03 4.86119731155E-03 4.94429269524E-03 5.02880847855E-03 5.11476894121E-03 5.20219877802E-03 5.29112310587E-03 5.38156747101E-03 5.47355785633E-03 5.56712068892E-03 5.66228284754E-03 5.75907167046E-03 5.85751496323E-03 5.95764100670E-03 6.05947856515E-03 6.16305689453E-03 6.26840575089E-03 6.37555539893E-03 6.48453662067E-03 6.59538072429E-03 6.70811955317E-03 6.82278549499E-03 6.93941149105E-03 7.05803104575E-03 7.17867823620E-03 7.30138772198E-03 7.42619475518E-03 7.55313519042E-03 7.68224549524E-03 7.81356276053E-03 7.94712471121E-03 8.08296971704E-03 8.22113680365E-03 8.36166566377E-03 8.50459666864E-03 8.64997087956E-03 8.79783005973E-03 8.94821668623E-03 9.10117396223E-03 9.25674582939E-03 9.41497698051E-03 9.57591287232E-03 9.73959973860E-03 9.90608460341E-03 1.00754152946E-02 1.02476404577E-02 1.04228095696E-02 1.06009729530E-02 1.07821817907E-02 1.09664881407E-02 1.11539449505E-02 1.13446060728E-02 1.15385262809E-02 1.17357612844E-02 1.19363677450E-02 1.21404032930E-02 1.23479265440E-02 1.25589971153E-02 1.27736756435E-02 1.29920238015E-02 1.32141043166E-02 1.34399809881E-02 1.36697187060E-02 1.39033834697E-02 1.41410424063E-02 1.43827637908E-02 1.46286170651E-02 1.48786728579E-02 1.51330030055E-02 1.53916805721E-02 1.56547798706E-02 1.59223764845E-02 1.61945472890E-02 1.64713704736E-02 1.67529255642E-02 1.70392934461E-02 1.73305563873E-02 1.76267980619E-02 1.79281035746E-02 1.82345594845E-02 1.85462538305E-02 1.88632761563E-02 1.91857175364E-02 1.95136706018E-02 1.98472295672E-02 2.01864902576E-02 2.05315501360E-02 2.08825083315E-02 2.12394656675E-02 2.16025246910E-02 2.19717897018E-02 2.23473667826E-02 2.27293638295E-02 2.31178905827E-02 2.35130586586E-02 2.39149815812E-02 2.43237748153E-02 2.47395557992E-02 2.51624439787E-02 2.55925608415E-02 2.60300299517E-02 2.64749769859E-02 2.69275297686E-02 2.73878183096E-02 2.78559748408E-02 2.83321338545E-02 2.88164321421E-02 2.93090088329E-02 2.98100054349E-02 3.03195658745E-02 3.08378365388E-02 3.13649663167E-02 3.19011066425E-02 3.24464115389E-02 3.30010376615E-02 3.35651443437E-02 3.41388936422E-02 3.47224503844E-02 3.53159822146E-02 3.59196596430E-02 3.65336560947E-02 3.71581479588E-02 3.77933146397E-02 3.84393386086E-02 3.90964054556E-02 3.97647039434E-02 4.04444260612E-02 4.11357670799E-02 4.18389256085E-02 4.25541036508E-02 4.32815066636E-02 4.40213436158E-02 4.47738270481E-02 4.55391731346E-02 4.63176017442E-02 4.71093365046E-02 4.79146048657E-02 4.87336381656E-02 4.95666716967E-02 5.04139447734E-02 5.12757008009E-02 5.21521873451E-02 5.30436562034E-02 5.39503634778E-02 5.48725696476E-02 5.58105396448E-02 5.67645429301E-02 5.77348535701E-02 5.87217503163E-02 5.97255166851E-02 6.07464410391E-02 6.17848166701E-02 6.28409418834E-02 6.39151200832E-02 6.50076598602E-02 6.61188750800E-02 6.72490849730E-02 6.83986142269E-02 6.95677930791E-02 7.07569574120E-02 7.19664488496E-02 7.31966148554E-02 7.44478088321E-02 7.57203902237E-02 7.70147246182E-02 7.83311838528E-02 7.96701461207E-02 8.10319960799E-02 8.24171249635E-02 8.38259306923E-02 8.52588179889E-02 8.67161984940E-02 8.81984908850E-02 8.97061209956E-02 9.12395219390E-02 9.27991342314E-02 9.43854059194E-02 9.59987927080E-02 9.76397580921E-02 9.93087734893E-02 1.01006318375E-01 1.02732880422E-01 1.04488955638E-01 1.06275048508E-01 1.08091672144E-01 1.09939348425E-01 1.11818608153E-01 1.13729991204E-01 1.15674046680E-01 1.17651333072E-01 1.19662418415E-01 1.21707880456E-01 1.23788306815E-01 1.25904295159E-01 1.28056453371E-01 1.30245399724E-01 1.32471763060E-01 1.34736182970E-01 1.37039309979E-01 1.39381805729E-01 1.41764343174E-01 1.44187606773E-01 1.46652292680E-01 1.49159108954E-01 1.51708775753E-01 1.54302025548E-01 1.56939603328E-01 1.59622266820E-01 1.62350786701E-01 1.65125946820E-01 1.67948544429E-01 1.70819390405E-01 1.73739309486E-01 1.76709140509E-01 1.79729736648E-01 1.82801965663E-01 1.85926710145E-01 1.89104867773E-01 1.92337351570E-01 1.95625090167E-01 1.98969028066E-01 2.02370125917E-01 2.05829360789E-01 2.09347726453E-01 2.12926233669E-01 2.16565910470E-01 2.20267802468E-01 2.24032973142E-01 2.27862504154E-01 2.31757495655E-01 2.35719066599E-01 2.39748355070E-01 2.43846518604E-01 2.48014734524E-01 2.52254200278E-01 2.56566133782E-01 2.60951773772E-01 2.65412380157E-01 2.69949234383E-01 2.74563639800E-01 2.79256922037E-01 2.84030429385E-01 2.88885533178E-01 2.93823628195E-01 2.98846133055E-01 3.03954490626E-01 3.09150168440E-01 3.14434659116E-01 3.19809480784E-01 3.25276177527E-01 3.30836319822E-01 3.36491504990E-01 3.42243357656E-01 3.48093530216E-01 3.54043703311E-01 3.60095586310E-01 3.66250917804E-01 3.72511466099E-01 3.78879029730E-01 3.85355437975E-01 3.91942551380E-01 3.98642262295E-01 4.05456495418E-01 4.12387208347E-01 4.19436392141E-01 4.26606071893E-01 4.33898307315E-01 4.41315193324E-01 4.48858860648E-01 4.56531476438E-01 4.64335244886E-01 4.72272407865E-01 4.80345245567E-01 4.88556077164E-01 4.96907261468E-01 5.05401197612E-01 5.14040325740E-01 5.22827127707E-01 5.31764127791E-01 5.40853893418E-01 5.50099035903E-01 5.59502211196E-01 5.69066120648E-01 5.78793511784E-01 5.88687179096E-01 5.98749964842E-01 6.08984759868E-01 6.19394504430E-01 6.29982189048E-01 6.40750855358E-01 6.51703596990E-01 6.62843560454E-01 6.74173946047E-01 6.85698008768E-01 6.97419059259E-01 7.09340464749E-01 7.21465650029E-01 7.33798098429E-01 7.46341352823E-01 7.59099016645E-01 7.72074754926E-01 7.85272295343E-01 7.98695429296E-01 8.12348012989E-01 8.26233968547E-01 8.40357285136E-01 8.54722020112E-01 8.69332300184E-01 8.84192322604E-01 8.99306356368E-01 9.14678743446E-01 9.30313900027E-01 9.46216317789E-01 9.62390565189E-01 9.78841288776E-01 9.95573214523E-01 1.01259114919E+00 1.02989998170E+00 1.04750468454E+00 1.06541031521E+00 1.08362201765E+00 1.10214502373E+00 1.12098465474E+00 1.14014632295E+00 1.15963553314E+00 1.17945788417E+00 1.19961907064E+00 1.22012488444E+00 1.24098121652E+00 1.26219405849E+00 1.28376950438E+00 1.30571375241E+00 1.32803310674E+00 1.35073397928E+00 1.37382289155E+00 2 0.00000000000E+00 9.82324719653E-06 1.98144090899E-05 2.99763559494E-05 4.03120071042E-05 5.08243317854E-05 6.15163499785E-05 7.23911332914E-05 8.34518058370E-05 9.47015451299E-05 1.06143583000E-04 1.17781206521E-04 1.29617758953E-04 1.41656640706E-04 1.53901310315E-04 1.66355285431E-04 1.79022143837E-04 1.91905524473E-04 2.05009128478E-04 2.18336720260E-04 2.31892128573E-04 2.45679247617E-04 2.59702038159E-04 2.73964528668E-04 2.88470816474E-04 3.03225068946E-04 3.18231524687E-04 3.33494494752E-04 3.49018363887E-04 3.64807591790E-04 3.80866714389E-04 3.97200345149E-04 4.13813176392E-04 4.30709980652E-04 4.47895612038E-04 4.65375007635E-04 4.83153188920E-04 5.01235263203E-04 5.19626425097E-04 5.38331958006E-04 5.57357235649E-04 5.76707723597E-04 5.96388980849E-04 6.16406661425E-04 6.36766515990E-04 6.57474393510E-04 6.78536242928E-04 6.99958114874E-04 7.21746163404E-04 7.43906647769E-04 7.66445934210E-04 7.89370497788E-04 8.12686924244E-04 8.36401911893E-04 8.60522273544E-04 8.85054938461E-04 9.10006954351E-04 9.35385489388E-04 9.61197834277E-04 9.87451404341E-04 1.01415374166E-03 1.04131251722E-03 1.06893553314E-03 1.09703072490E-03 1.12560616363E-03 1.15467005840E-03 1.18423075862E-03 1.21429675639E-03 1.24487668901E-03 1.27597934138E-03 1.30761364856E-03 1.33978869838E-03 1.37251373395E-03 1.40579815641E-03 1.43965152759E-03 1.47408357275E-03 1.50910418338E-03 1.54472342006E-03 1.58095151532E-03 1.61779887660E-03 1.65527608922E-03 1.69339391946E-03 1.73216331759E-03 1.77159542107E-03 1.81170155774E-03 1.85249324903E-03 1.89398221332E-03 1.93618036930E-03 1.97909983936E-03 2.02275295311E-03 2.06715225087E-03 2.11231048734E-03 2.15824063521E-03 2.20495588892E-03 2.25246966840E-03 2.30079562299E-03 2.34994763531E-03 2.39993982527E-03 2.45078655412E-03 2.50250242855E-03 2.55510230494E-03 2.60860129358E-03 2.66301476300E-03 2.71835834445E-03 2.77464793631E-03 2.83189970871E-03 2.89013010812E-03 2.94935586214E-03 3.00959398427E-03 3.07086177875E-03 3.13317684562E-03 3.19655708570E-03 3.26102070575E-03 3.32658622372E-03 3.39327247404E-03 3.46109861303E-03 3.53008412441E-03 3.60024882489E-03 3.67161286984E-03 3.74419675913E-03 3.81802134294E-03 3.89310782779E-03 3.96947778264E-03 4.04715314505E-03 4.12615622748E-03 4.20650972371E-03 4.28823671534E-03 4.37136067841E-03 4.45590549018E-03 4.54189543590E-03 4.62935521588E-03 4.71830995247E-03 4.80878519738E-03 4.90080693891E-03 4.99440160948E-03 5.08959609318E-03 5.18641773348E-03 5.28489434108E-03 5.38505420191E-03 5.48692608521E-03 5.59053925181E-03 5.69592346249E-03 5.80310898655E-03 5.91212661047E-03 6.02300764674E-03 6.13578394286E-03 6.25048789043E-03 6.36715243448E-03 6.48581108290E-03 6.60649791603E-03 6.72924759645E-03 6.85409537890E-03 6.98107712041E-03 7.11022929054E-03 7.24158898185E-03 7.37519392053E-03 7.51108247722E-03 7.64929367797E-03 7.78986721544E-03 7.93284346027E-03 8.07826347264E-03 8.22616901403E-03 8.37660255917E-03 8.52960730820E-03 8.68522719904E-03 8.84350691999E-03 9.00449192246E-03 9.16822843405E-03 9.33476347172E-03 9.50414485527E-03 9.67642122099E-03 9.85164203561E-03 1.00298576104E-02 1.02111191156E-02 1.03954785951E-02 1.05829889809E-02 1.07737041091E-02 1.09676787344E-02 1.11649685460E-02 1.13656301840E-02 1.15697212548E-02 1.17773003482E-02 1.19884270535E-02 1.22031619771E-02 1.24215667595E-02 1.26437040927E-02 1.28696377387E-02 1.30994325468E-02 1.33331544729E-02 1.35708705976E-02 1.38126491459E-02 1.40585595062E-02 1.43086722504E-02 1.45630591534E-02 1.48217932144E-02 1.50849486769E-02 1.53526010500E-02 1.56248271300E-02 1.59017050222E-02 1.61833141630E-02 1.64697353423E-02 1.67610507267E-02 1.70573438827E-02 1.73586998003E-02 1.76652049172E-02 1.79769471430E-02 1.82940158846E-02 1.86165020709E-02 1.89444981789E-02 1.92780982598E-02 1.96173979653E-02 1.99624945749E-02 2.03134870232E-02 2.06704759276E-02 2.10335636172E-02 2.14028541608E-02 2.17784533970E-02 2.21604689633E-02 2.25490103266E-02 2.29441888141E-02 2.33461176441E-02 2.37549119581E-02 2.41706888527E-02 2.45935674128E-02 2.50236687442E-02 2.54611160082E-02 2.59060344551E-02 2.63585514600E-02 2.68187965574E-02 2.72869014777E-02 2.77630001836E-02 2.82472289074E-02 2.87397261883E-02 2.92406329114E-02 2.97500923460E-02 3.02682501854E-02 3.07952545869E-02 3.13312562127E-02 3.18764082711E-02 3.24308665587E-02 3.29947895027E-02 3.35683382047E-02 3.41516764841E-02 3.47449709229E-02 3.53483909111E-02 3.59621086924E-02 3.65862994111E-02 3.72211411590E-02 3.78668150237E-02 3.85235051371E-02 3.91913987248E-02 3.98706861562E-02 4.05615609954E-02 4.12642200524E-02 4.19788634358E-02 4.27056946051E-02 4.34449204250E-02 4.41967512194E-02 4.49614008266E-02 4.57390866554E-02 4.65300297413E-02 4.73344548042E-02 4.81525903063E-02 4.89846685108E-02 4.98309255418E-02 5.06916014443E-02 5.15669402451E-02 5.24571900150E-02 5.33626029310E-02 5.42834353393E-02 5.52199478197E-02 5.61724052497E-02 5.71410768704E-02 5.81262363519E-02 5.91281618606E-02 6.01471361261E-02 6.11834465097E-02 6.22373850726E-02 6.33092486456E-02 6.43993388989E-02 6.55079624127E-02 6.66354307479E-02 6.77820605186E-02 6.89481734634E-02 7.01340965187E-02 7.13401618912E-02 7.25667071325E-02 7.38140752119E-02 7.50826145918E-02 7.63726793016E-02 7.76846290133E-02 7.90188291162E-02 8.03756507927E-02 8.17554710934E-02 8.31586730134E-02 8.45856455671E-02 8.60367838645E-02 8.75124891864E-02 8.90131690595E-02 9.05392373317E-02 9.20911142468E-02 9.36692265184E-02 9.52740074042E-02 9.69058967782E-02 9.85653412040E-02 1.00252794005E-01 1.01968715338E-01 1.03713572256E-01 1.05487838785E-01 1.07291995984E-01 1.09126532013E-01 1.10991942197E-01 1.12888729086E-01 1.14817402515E-01 1.16778479664E-01 1.18772485108E-01 1.20799950873E-01 1.22861416487E-01 1.24957429020E-01 1.27088543133E-01 1.29255321115E-01 1.31458332919E-01 1.33698156190E-01 1.35975376297E-01 1.38290586352E-01 1.40644387226E-01 1.43037387562E-01 1.45470203778E-01 1.47943460069E-01 1.50457788395E-01 1.53013828471E-01 1.55612227740E-01 1.58253641343E-01 1.60938732082E-01 1.63668170369E-01 1.66442634166E-01 1.69262808922E-01 1.72129387486E-01 1.75043070020E-01 1.78004563895E-01 1.81014583572E-01 1.84073850472E-01 1.87183092832E-01 1.90343045542E-01 1.93554449971E-01 1.96818053770E-01 2.00134610660E-01 2.03504880199E-01 2.06929627535E-01 2.10409623127E-01 2.13945642450E-01 2.17538465680E-01 2.21188877345E-01 2.24897665956E-01 2.28665623608E-01 2.32493545555E-01 2.36382229750E-01 2.40332476353E-01 2.44345087215E-01 2.48420865310E-01 2.52560614145E-01 2.56765137124E-01 2.61035236870E-01 2.65371714508E-01 2.69775368900E-01 2.74246995837E-01 2.78787387174E-01 2.83397329924E-01 2.88077605288E-01 2.92828987634E-01 2.97652243416E-01 3.02548130029E-01 3.07517394602E-01 3.12560772722E-01 3.17678987084E-01 3.22872746078E-01 3.28142742284E-01 3.33489650898E-01 3.38914128067E-01 3.44416809144E-01 3.49998306842E-01 3.55659209301E-01 3.61400078051E-01 3.67221445875E-01 3.73123814558E-01 3.79107652535E-01 3.85173392407E-01 3.91321428352E-01 3.97552113396E-01 4.03865756558E-01 4.10262619861E-01 4.16742915196E-01 4.23306801040E-01 4.29954379021E-01 4.36685690324E-01 4.43500711929E-01 4.50399352680E-01 4.57381449174E-01 4.64446761468E-01 4.71594968588E-01 4.78825663845E-01 4.86138349948E-01 4.93532433892E-01 5.01007221638E-01 5.08561912560E-01 5.16195593651E-01 5.23907233502E-01 5.31695676006E-01 5.39559633828E-01 5.47497681592E-01 5.55508248800E-01 5.63589612474E-01 5.71739889505E-01 5.79957028715E-01 5.88238802613E-01 5.96582798855E-01 6.04986411393E-01 6.13446831317E-01 6.21961037388E-01 6.30525786263E-01 6.39137602414E-01 6.47792767760E-01 6.56487311001E-01 6.65216996686E-01 6.73977314034E-01 6.82763465519E-01 6.91570355263E-01 7.00392577271E-01 7.09224403555E-01 7.18059772205E-01 7.26892275469E-01 7.35715147926E-01 7.44521254847E-01 7.53303080840E-01 7.62052718915E-01 7.70761860104E-01 7.79421783792E-01 7.88023348944E-01 7.96556986429E-01 8.05012692654E-01 8.13380024763E-01 8.21648097645E-01 8.29805583058E-01 8.37840711145E-01 8.45741274662E-01 8.53494636239E-01 8.61087738985E-01 8.68507120756E-01 8.75738932354E-01 8.82768959930E-01 8.89582651772E-01 8.96165149605E-01 9.02501324414E-01 9.08575816697E-01 9.14373080866E-01 9.19877433344E-01 9.25073103655E-01 9.29944287582E-01 9.34475201114E-01 9.38650133653E-01 9.42453498576E-01 9.45869878935E-01 9.48884065815E-01 9.51481086606E-01 9.53646220399E-01 9.55364997763E-01 9.56623182553E-01 9.57406734101E-01 9.57701749402E-01 9.57494386725E-01 9.56770774752E-01 9.55516914890E-01 9.53718589055E-01 9.51361290974E-01 9.48430205928E-01 9.44910271583E-01 9.40786360575E-01 9.36043632795E-01 9.30668110065E-01 9.24647525412E-01 9.17972486309E-01 9.10637963209E-01 9.02645056959E-01 8.94002896212E-01 8.84730345509E-01 8.74856932570E-01 8.64421981748E-01 8.53470301738E-01 8.42041974389E-01 8.30162732378E-01 8.17853843525E-01 8.05137017965E-01 7.92034495521E-01 7.78568965406E-01 7.64763511346E-01 7.50641555837E-01 7.36226804398E-01 7.21543189313E-01 7.06614813624E-01 6.91465894959E-01 6.76120709822E-01 6.60603538047E-01 6.44938607906E-01 6.29150041668E-01 6.13261801984E-01 5.97297639002E-01 5.81281038449E-01 5.65235170705E-01 5.49182840990E-01 5.33146440793E-01 5.17147900560E-01 5.01208643883E-01 4.85349543124E-01 4.69590876801E-01 4.53952288623E-01 4.38452748580E-01 4.23110515920E-01 4.07943104514E-01 3.92967250386E-01 3.78198881975E-01 3.63653092872E-01 3.49344117637E-01 3.35285310392E-01 3.21489126829E-01 3.07967109260E-01 2.94729875342E-01 2.81787110055E-01 2.69147561506E-01 2.56819040100E-01 2.44808421557E-01 2.33121653271E-01 2.21763764402E-01 2.10738879141E-01 2.00050233453E-01 1.89700194682E-01 1.79690284259E-01 1.70021202859E-01 1.60692858166E-01 1.51704394619E-01 1.43054225204E-01 1.34740064714E-01 1.26758964483E-01 1.19107348073E-01 1.11781047884E-01 1.04775342225E-01 9.80849928283E-02 9.17042823827E-02 8.56270520950E-02 7.98467389264E-02 7.43564125233E-02 6.91488115624E-02 6.42163795495E-02 5.95512998575E-02 5.51455300587E-02 5.09908353925E-02 4.70788214331E-02 4.34009658377E-02 3.99486492394E-02 3.67131851914E-02 3.36858492105E-02 3.08579068412E-02 2.82206407635E-02 2.57653768664E-02 2.34835092848E-02 2.13665243139E-02 1.94060231768E-02 1.75937435529E-02 1.59215798243E-02 1.43816019508E-02 1.29660729223E-02 1.16674647080E-02 1.04784726573E-02 9.39202829093E-03 8.40131045076E-03 7.49975477537E-03 6.68106149309E-03 5.93920152965E-03 5.26842095156E-03 4.66324377383E-03 4.11847318217E-03 3.62919122822E-03 3.19075707392E-03 2.79880386913E-03 2.44923435933E-03 2.13821532637E-03 1.86217097380E-03 1.61777537102E-03 1.40194407539E-03 1.21182505092E-03 1.04478900308E-03 8.98419246312E-04 7.70501218183E-04 6.59011748997E-04 5.62108190382E-04 4.78117499556E-04 4.05525368861E-04 3.42965482142E-04 2.89208971435E-04 2.43154138841E-04 2.03816499949E-04 1.70319196627E-04 1.41883818659E-04 1.17821665617E-04 9.75254726727E-05 8.04616168067E-05 6.61628131407E-05 5.42213049572E-05 4.42825454132E-05 3.60393640091E-05 2.92266065711E-05 2.36162338188E-05 1.90128605261E-05 1.52497148062E-05 1.21849951344E-05 9.69860133564E-06 7.68921485062E-06 6.07170312092E-06 4.77482284653E-06 3.73919711345E-06 2.91554191744E-06 2.26311836547E-06 1.74838774964E-06 1.34384765990E-06 1.02702902980E-06 7.79633664229E-07 5.86794352434E-07 4.36439773788E-07 3.18747076285E-07 2.25665167036E-07 1.50491242568E-07 8.74816081323E-08 3.14749174573E-08 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5.61916611148E-11 2.28625135240E-10 5.23262243731E-10 9.46303766628E-10 1.50419825270E-09 2.20365114301E-09 3.05163421902E-09 4.05539538644E-09 5.22246880684E-09 6.56068538895E-09 8.07818365228E-09 9.78342097619E-09 1.16851852478E-08 1.37926069225E-08 1.61151715121E-08 1.86627325147E-08 2.14455248022E-08 2.44741784815E-08 2.77597332459E-08 3.13136532332E-08 3.51478424092E-08 3.92746604944E-08 4.37069394521E-08 4.84580005594E-08 5.35416720794E-08 5.89723075566E-08 6.47648047574E-08 7.09346252772E-08 7.74978148386E-08 8.44710243035E-08 9.18715314252E-08 9.97172633652E-08 1.08026820002E-07 1.16819498059E-07 1.26115316081E-07 1.35935040286E-07 1.46300211328E-07 1.57233171999E-07 1.68757095897E-07 1.80896017110E-07 1.93674860934E-07 2.07119475666E-07 2.21256665525E-07 2.36114224706E-07 2.51720972646E-07 2.68106790514E-07 2.85302658982E-07 3.03340697318E-07 3.22254203850E-07 3.42077697839E-07 3.62846962823E-07 3.84599091474E-07 4.07372532021E-07 4.31207136305E-07 4.56144209497E-07 4.82226561570E-07 5.09498560559E-07 5.38006187682E-07 5.67797094387E-07 5.98920661390E-07 6.31428059774E-07 6.65372314218E-07 7.00808368434E-07 7.37793152883E-07 7.76385654854E-07 8.16646990989E-07 8.58640482331E-07 9.02431731989E-07 9.48088705513E-07 9.95681814063E-07 1.04528400048E-06 1.09697082834E-06 1.15082057415E-06 1.20691432270E-06 1.26533606575E-06 1.32617280419E-06 1.38951465371E-06 1.45545495414E-06 1.52409038265E-06 1.59552107084E-06 1.66985072589E-06 1.74718675599E-06 1.82764040003E-06 1.91132686190E-06 1.99836544939E-06 2.08887971794E-06 2.18299761938E-06 2.28085165586E-06 2.38257903908E-06 2.48832185508E-06 2.59822723476E-06 2.71244753031E-06 2.83114049777E-06 2.95446948588E-06 3.08260363159E-06 3.21571806226E-06 3.35399410491E-06 3.49761950272E-06 3.64678863907E-06 3.80170276932E-06 3.96257026065E-06 4.12960684022E-06 4.30303585188E-06 4.48308852188E-06 4.67000423371E-06 4.86403081250E-06 5.06542481929E-06 5.27445185547E-06 5.49138687778E-06 5.71651452425E-06 5.95012945143E-06 6.19253668324E-06 6.44405197198E-06 6.70500217186E-06 6.97572562537E-06 7.25657256311E-06 7.54790551747E-06 7.85009975060E-06 8.16354369720E-06 8.48863942266E-06 8.82580309707E-06 9.17546548560E-06 9.53807245587E-06 9.91408550294E-06 1.03039822923E-05 1.07082572220E-05 1.11274220036E-05 1.15620062641E-05 1.20125581679E-05 1.24796450606E-05 1.29638541351E-05 1.34657931209E-05 1.39860909968E-05 1.45253987285E-05 1.50843900319E-05 1.56637621623E-05 1.62642367315E-05 1.68865605527E-05 1.75315065145E-05 1.81998744858E-05 1.88924922514E-05 1.96102164797E-05 2.03539337247E-05 2.11245614621E-05 2.19230491609E-05 2.27503793929E-05 2.36075689795E-05 2.44956701790E-05 2.54157719145E-05 2.63690010441E-05 2.73565236756E-05 2.83795465257E-05 2.94393183267E-05 3.05371312819E-05 3.16743225710E-05 3.28522759075E-05 3.40724231499E-05 3.53362459684E-05 3.66452775696E-05 3.80011044803E-05 3.94053683928E-05 4.08597680744E-05 4.23660613423E-05 4.39260671069E-05 4.55416674855E-05 4.72148099891E-05 4.89475097844E-05 5.07418520343E-05 5.25999943183E-05 5.45241691375E-05 5.65166865049E-05 5.85799366259E-05 6.07163926708E-05 6.29286136429E-05 6.52192473457E-05 6.75910334523E-05 7.00468066804E-05 7.25895000773E-05 7.52221484175E-05 7.79478917178E-05 8.07699788732E-05 8.36917714185E-05 8.67167474193E-05 8.98485054968E-05 9.30907689918E-05 9.64473902714E-05 9.99223551849E-05 1.03519787672E-04 1.07243954531E-04 1.11099270350E-04 1.15090302608E-04 1.19221776954E-04 1.23498582661E-04 1.27925778279E-04 1.32508597470E-04 1.37252455051E-04 1.42162953245E-04 1.47245888146E-04 1.52507256401E-04 1.57953262132E-04 1.63590324087E-04 1.69425083041E-04 1.75464409449E-04 1.81715411366E-04 1.88185442636E-04 1.94882111359E-04 2.01813288658E-04 2.08987117735E-04 2.16412023250E-04 2.24096721013E-04 2.32050228012E-04 2.40281872786E-04 2.48801306148E-04 2.57618512286E-04 2.66743820234E-04 2.76187915742E-04 2.85961853550E-04 2.96077070087E-04 3.06545396599E-04 3.17379072726E-04 3.28590760553E-04 3.40193559130E-04 3.52201019495E-04 3.64627160213E-04 3.77486483435E-04 3.90793991521E-04 4.04565204218E-04 4.18816176433E-04 4.33563516603E-04 4.48824405708E-04 4.64616616910E-04 4.80958535883E-04 4.97869181823E-04 5.15368229175E-04 5.33476030105E-04 5.52213637728E-04 5.71602830139E-04 5.91666135245E-04 6.12426856453E-04 6.33909099223E-04 6.56137798528E-04 6.79138747241E-04 7.02938625482E-04 7.27565030968E-04 7.53046510382E-04 7.79412591804E-04 8.06693818246E-04 8.34921782309E-04 8.64129162017E-04 8.94349757858E-04 9.25618531074E-04 9.57971643239E-04 9.91446497168E-04 1.02608177921E-03 1.06191750293E-03 1.09899505432E-03 1.13735723847E-03 1.17704832778E-03 1.21811411189E-03 1.26060194916E-03 1.30456081995E-03 1.35004138163E-03 1.39709602543E-03 1.44577893523E-03 1.49614614821E-03 1.54825561759E-03 1.60216727741E-03 1.65794310950E-03 1.71564721255E-03 1.77534587363E-03 1.83710764189E-03 1.90100340478E-03 1.96710646677E-03 2.03549263062E-03 2.10624028132E-03 2.17943047274E-03 2.25514701715E-03 2.33347657763E-03 2.41450876344E-03 2.49833622856E-03 2.58505477328E-03 2.67476344923E-03 2.76756466763E-03 2.86356431108E-03 2.96287184893E-03 3.06560045630E-03 3.17186713689E-03 3.28179284969E-03 3.39550263967E-03 3.51312577259E-03 3.63479587407E-03 3.76065107295E-03 3.89083414919E-03 4.02549268627E-03 4.16477922837E-03 4.30885144237E-03 4.45787228481E-03 4.61201017393E-03 4.77143916700E-03 4.93633914289E-03 5.10689599026E-03 5.28330180135E-03 5.46575507145E-03 5.65446090440E-03 5.84963122404E-03 6.05148499193E-03 6.26024843131E-03 6.47615525760E-03 6.69944691545E-03 6.93037282261E-03 7.16919062061E-03 7.41616643250E-03 7.67157512782E-03 7.93570059473E-03 8.20883601973E-03 8.49128417487E-03 8.78335771261E-03 9.08537946866E-03 9.39768277255E-03 9.72061176649E-03 1.00545217322E-02 1.03997794261E-02 1.07567634231E-02 1.11258644682E-02 1.15074858377E-02 1.19020437077E-02 1.23099675327E-02 1.27317004320E-02 1.31676995849E-02 1.36184366357E-02 1.40843981060E-02 1.45660858173E-02 1.50640173218E-02 1.55787263418E-02 1.61107632180E-02 1.66606953672E-02 1.72291077477E-02 1.78166033333E-02 1.84238035965E-02 1.90513489991E-02 1.96998994911E-02 2.03701350179E-02 2.10627560344E-02 2.17784840269E-02 2.25180620426E-02 2.32822552247E-02 2.40718513552E-02 2.48876614028E-02 2.57305200772E-02 2.66012863882E-02 2.75008442098E-02 2.84301028483E-02 2.93899976144E-02 3.03814903982E-02 3.14055702471E-02 3.24632539450E-02 3.35555865938E-02 3.46836421937E-02 3.58485242254E-02 3.70513662298E-02 3.82933323867E-02 3.95756180905E-02 4.08994505237E-02 4.22660892245E-02 4.36768266511E-02 4.51329887394E-02 4.66359354538E-02 4.81870613314E-02 4.97877960169E-02 5.14396047893E-02 5.31439890781E-02 5.49024869694E-02 5.67166737001E-02 5.85881621411E-02 6.05186032667E-02 6.25096866122E-02 6.45631407168E-02 6.66807335537E-02 6.88642729445E-02 7.11156069603E-02 7.34366243070E-02 7.58292546961E-02 7.82954692003E-02 8.08372805938E-02 8.34567436769E-02 8.61559555856E-02 8.89370560853E-02 9.18022278478E-02 9.47536967119E-02 9.77937319268E-02 1.00924646375E-01 1.04148796776E-01 1.07468583865E-01 1.10886452546E-01 1.14404892013E-01 1.18026435834E-01 1.21753661990E-01 1.25589192861E-01 1.29535695145E-01 1.33595879701E-01 1.37772501284E-01 1.42068358177E-01 1.46486291661E-01 1.51029185324E-01 1.55699964144E-01 1.60501593325E-01 1.65437076826E-01 1.70509455516E-01 1.75721804898E-01 1.81077232319E-01 1.86578873569E-01 1.92229888766E-01 1.98033457415E-01 2.03992772491E-01 2.10111033412E-01 2.16391437717E-01 2.22837171276E-01 2.29451396801E-01 2.36237240462E-01 2.43197776329E-01 2.50336008393E-01 2.57654849870E-01 2.65157099490E-01 2.72845414452E-01 2.80722279715E-01 2.88789973306E-01 2.97050527299E-01 3.05505684165E-01 3.14156848189E-01 3.23005031703E-01 3.32050795924E-01 3.41294186274E-01 3.50734662140E-01 3.60371021165E-01 3.70201318303E-01 3.80222780077E-01 3.90431714671E-01 4.00823418787E-01 4.11392082476E-01 4.22130693535E-01 4.33030943413E-01 4.44083137070E-01 4.55276109640E-01 4.66597153324E-01 4.78031958387E-01 4.89564572715E-01 5.01177384825E-01 5.12851135659E-01 5.24564964807E-01 5.36296496945E-01 5.48021974176E-01 5.59716439568E-01 5.71353976377E-01 5.82908006078E-01 5.94351646388E-01 6.05658127707E-01 6.16801262768E-01 6.27755959651E-01 6.38498762558E-01 6.49008397836E-01 6.59266294700E-01 6.69257041101E-01 6.78968725430E-01 6.88393104916E-01 6.97525532310E-01 7.06364565078E-01 7.14911177509E-01 7.23167498039E-01 7.31135004810E-01 7.38812135443E-01 7.46191306720E-01 7.53255401186E-01 7.59973865638E-01 7.66298685763E-01 7.72160654528E-01 7.77466538138E-01 7.82097954079E-01 7.85912989522E-01 7.88751762398E-01 7.90447191784E-01 7.90842063176E-01 7.89812851535E-01 7.87299378501E-01 7.83336738462E-01 7.78081290034E-01 7.71814771711E-01 7.64898139688E-01 7.57629417843E-01 7.50092695218E-01 7.42296958715E-01 7.34249777775E-01 7.25959381657E-01 7.17434253799E-01 7.08683116668E-01 6.99714916212E-01 6.90538806616E-01 6.81164134763E-01 6.71600424994E-01 6.61857363663E-01 6.51944783958E-01 6.41872650586E-01 6.31651044651E-01 6.21290148436E-01 6.10800230293E-01 6.00191629443E-01 5.89474740773E-01 5.78659999536E-01 5.67757865935E-01 5.56778809575E-01 5.45733293694E-01 5.34631759249E-01 5.23484608677E-01 5.12302189528E-01 5.01094777709E-01 4.89872560661E-01 4.78645620143E-01 4.67423915067E-01 4.56217264010E-01 4.45035327962E-01 4.33887592915E-01 4.22783352927E-01 4.11731693260E-01 4.00741474308E-01 3.89821315872E-01 3.78979582560E-01 3.68224369848E-01 3.57563491575E-01 3.47004468398E-01 3.36554517954E-01 3.26220546208E-01 3.16009140699E-01 3.05926565111E-01 2.95978755822E-01 2.86171319804E-01 2.76509534450E-01 2.66998348667E-01 2.57642385722E-01 2.48445947159E-01 2.39413018175E-01 2.30547273792E-01 2.21852086116E-01 2.13330532035E-01 2.04985401601E-01 1.96819206452E-01 1.88834188505E-01 1.81032328310E-01 1.73415353266E-01 1.65984745189E-01 1.58741747402E-01 1.51687370925E-01 1.44822399982E-01 1.38147396474E-01 1.31662703669E-01 1.25368448877E-01 1.19264545399E-01 1.13350693612E-01 1.07626381506E-01 1.02090884645E-01 9.67432658826E-02 9.15823748542E-02 8.66068475872E-02 8.18151062921E-02 7.72053596407E-02 7.27756036019E-02 6.85236230946E-02 6.44469945075E-02 6.05430892785E-02 5.68090785467E-02 5.32419389965E-02 4.98384598617E-02 4.65952511351E-02 4.35087529098E-02 4.05752458322E-02 3.77908625570E-02 3.51516001349E-02 3.26533331968E-02 3.02918278316E-02 2.80627560090E-02 2.59617104240E-02 2.39842196141E-02 2.21257632210E-02 2.03817872533E-02 1.87477192301E-02 1.72189830754E-02 1.57910136558E-02 1.44592708515E-02 1.32192530718E-02 1.20665101249E-02 1.09966553754E-02 1.00053771217E-02 9.08844914758E-03 8.24174040235E-03 7.46122378418E-03 6.74298400332E-03 6.08322451626E-03 5.47827352838E-03 4.92458907188E-03 4.41876317301E-03 3.95752512967E-03 3.53774392671E-03 3.15642982188E-03 2.81073514007E-03 2.49795431787E-03 2.21552324383E-03 1.96101794285E-03 1.73215265495E-03 1.52677736087E-03 1.34287480729E-03 1.17855708561E-03 1.03206181743E-03 9.01748000197E-04 7.86091564602E-04 6.83680694698E-04 5.93210959446E-04 5.13480302574E-04 4.43383935202E-04 3.81909173088E-04 3.28130257596E-04 2.81203196491E-04 2.40360657649E-04 2.04906943813E-04 1.74213064629E-04 1.47711991744E-04 1.24894013789E-04 1.05302277165E-04 8.85285144825E-05 7.42089698298E-05 6.20205293962E-05 5.16770634320E-05 4.29259830899E-05 3.55450134752E-05 2.93391821774E-05 2.41380207048E-05 1.97929745836E-05 1.61750164231E-05 1.31724549756E-05 1.06889321314E-05 8.64159887362E-06 6.95946044841E-06 5.58188037796E-06 4.45723240653E-06 3.54168900615E-06 2.79813461714E-06 2.19519130242E-06 1.70634386849E-06 1.30915063439E-06 9.84524757882E-07 7.16069131896E-07 4.89445032627E-07 2.91750481924E-07 1.10878027183E-07 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 espresso-5.1/pseudo/clean_ps0000755000175000017500000000256612341373031014321 0ustar mbamba#!/bin/bash # # The following PPs are not on the web and are not removed. The others # are. # # HUSPBE.RRKJ3 O_US.van Rhs.pbe-rrkjus_lb.UPF # H_US.van Pt.rel-pbe-n-rrkjus.UPF Si.bhs # Ni.rel-pbe-nd-rrkjus.UPF Rh.pbe-rrkjus_lb.UPF Si.rel-pbe-rrkj.UPF # Au.pz-rrkjus_aewfc.UPF \rm -rf Al.pz-vbc.UPF >& /dev/null \rm -rf Al.pbe-rrkj.UPF >& /dev/null \rm -rf As.pz-bhs.UPF >& /dev/null \rm -rf Cu.pz-d-rrkjus.UPF >& /dev/null \rm -rf Cu.pbe-kjpaw.UPF >& /dev/null \rm -rf Ni.pz-nd-rrkjus.UPF >& /dev/null \rm -rf Ni.pbe-nd-rrkjus.UPF >& /dev/null \rm -rf Fe.pz-nd-rrkjus.UPF >& /dev/null \rm -rf Fe.rel-pbe-kjpaw.UPF >& /dev/null \rm -rf Si.pz-vbc.UPF >& /dev/null \rm -rf Si.pbe-rrkj.UPF >& /dev/null \rm -rf C.pz-rrkjus.UPF >& /dev/null \rm -rf C.pz-kjpaw.UPF >& /dev/null \rm -rf C.pz-vbc.UPF >& /dev/null \rm -rf C.pbe-rrkjus.UPF >& /dev/null \rm -rf C.tpss-mt.UPF >& /dev/null \rm -rf H.tpss-mt.UPF >& /dev/null \rm -rf H.pbe-rrkjus.UPF >& /dev/null \rm -rf H.pz-kjpaw.UPF >& /dev/null \rm -rf H.pz-vbc.UPF >& /dev/null \rm -rf O.pbe-rrkjus.UPF >& /dev/null \rm -rf O.pz-rrkjus.UPF >& /dev/null \rm -rf O.pz-van_ak.UPF >& /dev/null \rm -rf Pt.rel-pz-n-rrkjus.UPF >& /dev/null \rm -rf Au.rel-pz-kjpaw.UPF >& /dev/null \rm -rf Pb.pz-d-van.UPF >& /dev/null \rm -rf Ti.pz-sp-van_ak.UPF >& /dev/null \rm -rf vdW_kernel_table >& /dev/null espresso-5.1/pseudo/H_US.van0000644000175000017500000015740512341373031014116 0ustar mbamba 7 3 2 26 9 2002 hydrogen 1.000000000 1.000000000 5.000000000 1 399 -9.17722813320E-01 100 1.000000000 -0.477159370 3 0 0.500000000 1 2 0.00000 3 8 10.00000 5.00000000000E-01 0 8.00000000000E-01 1 271 0 -4.77175016779E-01 0.00000000000E+00 1.02765767535E-03 2.08132643737E-03 3.16166983182E-03 4.26935770419E-03 5.40508076718E-03 6.56954692327E-03 7.76348142921E-03 8.98762785877E-03 1.02427483999E-02 1.15296240080E-02 1.28490552904E-02 1.42018624068E-02 1.55888865703E-02 1.70109890601E-02 1.84690530200E-02 1.99639831933E-02 2.14967068557E-02 2.30681739395E-02 2.46793579023E-02 2.63312560640E-02 2.80248903050E-02 2.97613070671E-02 3.15415793249E-02 3.33668051621E-02 3.52381097512E-02 3.71566460241E-02 3.91235938232E-02 4.11401623143E-02 4.32075895662E-02 4.53271427055E-02 4.75001200748E-02 4.97278501477E-02 5.20116933903E-02 5.43530421910E-02 5.67533215552E-02 5.92139903229E-02 6.17365408578E-02 6.43225001197E-02 6.69734308518E-02 6.96909306678E-02 7.24766347761E-02 7.53322141306E-02 7.82593781758E-02 8.12598741994E-02 8.43354876713E-02 8.74880445690E-02 9.07194085351E-02 9.40314856820E-02 9.74262205339E-02 1.00905600268E-01 1.04471652587E-01 1.08126447018E-01 1.11872095035E-01 1.15710750546E-01 1.19644609081E-01 1.23675909715E-01 1.27806932503E-01 1.32040001170E-01 1.36377480461E-01 1.40821777907E-01 1.45375341944E-01 1.50040662101E-01 1.54820268661E-01 1.59716730751E-01 1.64732656429E-01 1.69870691654E-01 1.75133517343E-01 1.80523850385E-01 1.86044439306E-01 1.91698064238E-01 1.97487533108E-01 2.03415680363E-01 2.09485363187E-01 2.15699458361E-01 2.22060858779E-01 2.28572469737E-01 2.35237203469E-01 2.42057975361E-01 2.49037697312E-01 2.56179272771E-01 2.63485588796E-01 2.70959510358E-01 2.78603870461E-01 2.86421462795E-01 2.94415031562E-01 3.02587260420E-01 3.10940762449E-01 3.19478065595E-01 3.28201601078E-01 3.37113687146E-01 3.46216513545E-01 3.55512124163E-01 3.65002397339E-01 3.74689026486E-01 3.84573496239E-01 3.94657060437E-01 4.04940713504E-01 4.15425164873E-01 4.26110806659E-01 4.36997681946E-01 4.48085449299E-01 4.59373344139E-01 4.70860138490E-01 4.82544096835E-01 4.94422928212E-01 5.06493736289E-01 5.18752963895E-01 5.31196335544E-01 5.43818794076E-01 5.56614434102E-01 5.69576430209E-01 5.82696960715E-01 5.95967125778E-01 6.09376860516E-01 6.22914842648E-01 6.36568393723E-01 6.50323374450E-01 6.64164074235E-01 6.78073093102E-01 6.92031217664E-01 7.06017290065E-01 7.20008069152E-01 7.33978085429E-01 7.47899487958E-01 7.61741884264E-01 7.75472173461E-01 7.89054371190E-01 8.02449429299E-01 8.15615047701E-01 8.28505481039E-01 8.41071340000E-01 8.53259387815E-01 8.65012333777E-01 8.76268624269E-01 8.86962233589E-01 8.97022455631E-01 9.06373699416E-01 9.14935290800E-01 9.22621282992E-01 9.29340280404E-01 9.34995279139E-01 9.39483529242E-01 9.42696424330E-01 9.44519424738E-01 9.44832021035E-01 9.43507746759E-01 9.40414248475E-01 9.35413424288E-01 9.28361641690E-01 9.19110047586E-01 9.07504984976E-01 8.93388531025E-01 8.76599174884E-01 8.56972652531E-01 8.34342959996E-01 8.08543566428E-01 7.79408850062E-01 7.46775782844E-01 7.10485888947E-01 6.70387505147E-01 6.26338370571E-01 5.78208574370E-01 5.25883889243E-01 4.69269517518E-01 4.08294274793E-01 3.42915233151E-01 2.73122839744E-01 1.98946523030E-01 1.20460786468E-01 3.77917819608E-02 -4.88756613401E-02 -1.39290594198E-01 -2.33128152803E-01 -3.29981503012E-01 -4.29353643638E-01 -5.30649227913E-01 -6.33166605803E-01 -7.36090340159E-01 -8.38484509123E-01 -9.39287171991E-01 -1.03730644918E+00 -1.13121874824E+00 -1.21956975215E+00 -1.30077887931E+00 -1.37314801417E+00 -1.43487539916E+00 -1.48407565988E+00 -1.51880700198E+00 -1.53710666130E+00 -1.53703569304E+00 -1.51673413783E+00 -1.47448748339E+00 -1.40880512381E+00 -1.31851118018E+00 -1.20284755186E+00 -1.06158838049E+00 -8.95164191929E-01 -7.04792790864E-01 -4.92612481451E-01 -2.61811342765E-01 -1.67440780524E-02 2.36974609847E-01 4.92414050915E-01 7.41326086082E-01 9.74218172857E-01 1.18052419188E+00 1.34889821898E+00 1.46765737651E+00 1.52539848532E+00 1.51180839957E+00 1.41867806450E+00 1.24111354238E+00 9.78911209295E-01 6.38026474564E-01 2.32013193741E-01 -2.16757524139E-01 -6.76375578958E-01 -1.10554269901E+00 -1.45507535193E+00 -1.67125369517E+00 -1.70027736797E+00 -1.49922937422E+00 -1.04836796714E+00 -3.65723761646E-01 4.76857832211E-01 1.34114234777E+00 2.02220842982E+00 2.27640417874E+00 1.90656793014E+00 9.40813588823E-01 8.01928215637E-02 -7.63579719903E-03 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6.65578617599E+00 -3.57460913696E+01 9.49576732529E+00 0.00000000000E+00 1.39412053655E-06 5.71854568728E-06 1.31958894776E-05 2.40620138329E-05 3.85667546054E-05 5.69746860590E-05 7.95659258206E-05 1.06636982411E-04 1.38501647579E-04 1.75491935780E-04 2.17959073261E-04 2.66274539333E-04 3.20831162573E-04 3.82044274807E-04 4.50352925901E-04 5.26221162526E-04 6.10139374250E-04 7.02625710458E-04 8.04227571817E-04 9.15523180158E-04 1.03712323089E-03 1.16967263228E-03 1.31385233602E-03 1.47038126410E-03 1.64001833673E-03 1.82356460679E-03 2.02186550637E-03 2.23581321117E-03 2.46634912904E-03 2.71446651910E-03 2.98121324832E-03 3.26769469277E-03 3.57507679111E-03 3.90458925835E-03 4.25752896831E-03 4.63526351361E-03 5.03923495260E-03 5.47096375303E-03 5.93205294286E-03 6.42419247920E-03 6.94916384677E-03 7.50884489820E-03 8.10521494884E-03 8.74036013968E-03 9.41647908253E-03 1.01358888025E-02 1.09010309939E-02 1.17144786052E-02 1.25789427727E-02 1.34972801189E-02 1.44725004377E-02 1.55077747851E-02 1.66064439986E-02 1.77720276676E-02 1.90082335799E-02 2.03189676686E-02 2.17083444889E-02 2.31806982510E-02 2.47405944408E-02 2.63928420609E-02 2.81425065243E-02 2.99949232375E-02 3.19557119118E-02 3.40307916406E-02 3.62263967870E-02 3.85490937260E-02 4.10057984886E-02 4.36037953579E-02 4.63507564709E-02 4.92547624818E-02 5.23243243464E-02 5.55684062915E-02 5.89964500353E-02 6.26184003300E-02 6.64447319018E-02 7.04864778678E-02 7.47552597141E-02 7.92633189243E-02 8.40235503538E-02 8.90495374491E-02 9.43555894198E-02 9.99567804749E-02 1.05868991244E-01 1.12108952509E-01 1.18694291380E-01 1.25643580062E-01 1.32976387352E-01 1.40713333039E-01 1.48876145367E-01 1.57487721736E-01 1.66572192843E-01 1.76154990440E-01 1.86262918941E-01 1.96924231081E-01 2.08168707866E-01 2.20027743059E-01 2.32534432454E-01 2.45723668213E-01 2.59632238527E-01 2.74298932922E-01 2.89764653488E-01 3.06072532351E-01 3.23268055726E-01 3.41399194863E-01 3.60516544240E-01 3.80673467350E-01 4.01926250418E-01 4.24334264408E-01 4.47960135662E-01 4.72869925504E-01 4.99133319121E-01 5.26823824038E-01 5.56018978436E-01 5.86800569551E-01 6.19254862321E-01 6.53472838410E-01 6.89550445603E-01 7.27588857533E-01 7.67694743528E-01 8.09980548227E-01 8.54564780461E-01 9.01572310658E-01 9.51134675783E-01 1.00339039056E+00 1.05848526333E+00 1.11657271459E+00 1.17781409564E+00 1.24237900449E+00 1.31044559522E+00 1.38220087671E+00 1.45784099548E+00 1.53757149681E+00 1.62160755703E+00 1.71017417909E+00 1.80350634193E+00 1.90184909311E+00 2.00545757251E+00 2.11459695335E+00 2.22954228508E+00 2.35057822075E+00 2.47799860974E+00 2.61210593455E+00 2.75321056860E+00 2.90162982970E+00 3.05768680252E+00 3.22170890133E+00 3.39402614331E+00 3.57496910193E+00 3.76486650971E+00 3.96404248076E+00 4.17281332538E+00 4.39148393254E+00 4.62034370193E+00 4.85966201458E+00 5.10968324216E+00 5.37062130918E+00 5.64265384001E+00 5.92591594602E+00 6.22049373561E+00 6.52641766428E+00 6.84365588201E+00 7.17210778276E+00 7.51159801488E+00 7.86187127253E+00 8.22258825540E+00 8.59332325559E+00 8.97356390474E+00 9.36271368689E+00 9.76009788815E+00 1.01649737057E+01 1.05765452658E+01 1.09939842913E+01 1.14164570954E+01 1.18431584434E+01 1.22733525899E+01 1.27064214410E+01 1.31419192734E+01 1.35796327383E+01 1.40196439426E+01 1.44623932163E+01 1.49087367064E+01 1.53599921963E+01 1.58179645418E+01 1.62849399220E+01 1.67636358482E+01 1.72570917682E+01 1.77684834931E+01 1.83008440173E+01 1.88566742727E+01 1.94374308120E+01 2.00428844185E+01 2.06703554819E+01 2.13138500185E+01 2.19631458087E+01 2.26029122314E+01 2.32119901113E+01 2.37630077203E+01 2.42225616648E+01 2.45522380685E+01 2.47107752619E+01 2.46576505939E+01 2.43582769954E+01 2.37907744527E+01 2.29538845059E+01 2.18749724400E+01 2.06161927911E+01 1.92758485400E+01 1.79810240879E+01 1.68674003862E+01 1.60442420641E+01 1.55498103437E+01 1.53204260926E+01 1.52335670808E+01 1.52322886107E+01 1.52872003131E+01 1.53549517702E+01 1.53779353384E+01 1.52866782634E+01 1.50046711718E+01 1.44560825557E+01 1.35766053081E+01 1.23272382682E+01 1.07099608736E+01 8.78282671341E+00 6.66989621003E+00 4.55893622554E+00 2.67804248574E+00 1.24375832777E+00 3.82105595475E-01 4.63446413577E-02 4.75883350841E-05 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3.54057737160E+02 4.02436715542E+03 -2.39594005421E+05 4.06532314711E+06 -3.39603786801E+07 1.49408497891E+08 -3.32059597235E+08 2.94504065235E+08 2 8 10.000000000 6.00000000000E-01 0.00000000000E+00 -4.70448615498E-04 -9.52806671066E-04 -1.44737560272E-03 -1.95446450133E-03 -2.47439025881E-03 -3.00747779569E-03 -3.55406024591E-03 -4.11447917161E-03 -4.68908477415E-03 -5.27823611277E-03 -5.88230132750E-03 -6.50165786886E-03 -7.13669273203E-03 -7.78780269830E-03 -8.45539458096E-03 -9.13988547904E-03 -9.84170303558E-03 -1.05612857042E-02 -1.12990830205E-02 -1.20555558819E-02 -1.28311768325E-02 -1.36264303578E-02 -1.44418131831E-02 -1.52778345830E-02 -1.61350166952E-02 -1.70138948456E-02 -1.79150178771E-02 -1.88389484913E-02 -1.97862635939E-02 -2.07575546533E-02 -2.17534280629E-02 -2.27745055176E-02 -2.38214243942E-02 -2.48948381467E-02 -2.59954167044E-02 -2.71238468880E-02 -2.82808328265E-02 -2.94670963939E-02 -3.06833776460E-02 -3.19304352789E-02 -3.32090470866E-02 -3.45200104425E-02 -3.58641427777E-02 -3.72422820867E-02 -3.86552874280E-02 -4.01040394547E-02 -4.15894409375E-02 -4.31124173220E-02 -4.46739172745E-02 -4.62749132672E-02 -4.79164021476E-02 -4.95994057521E-02 -5.13249715006E-02 -5.30941730391E-02 -5.49081108594E-02 -5.67679129730E-02 -5.86747355558E-02 -6.06297636542E-02 -6.26342118549E-02 -6.46893250253E-02 -6.67963790077E-02 -6.89566813948E-02 -7.11715722490E-02 -7.34424249134E-02 -7.57706467558E-02 -7.81576800166E-02 -8.06050025761E-02 -8.31141288402E-02 -8.56866105301E-02 -8.83240376065E-02 -9.10280390791E-02 -9.38002839704E-02 -9.66424821425E-02 -9.95563853003E-02 -1.02543787832E-01 -1.05606527852E-01 -1.08746488052E-01 -1.11965596778E-01 -1.15265828888E-01 -1.18649206871E-01 -1.22117801691E-01 -1.25673733946E-01 -1.29319174698E-01 -1.33056346662E-01 -1.36887525013E-01 -1.40815038598E-01 -1.44841270701E-01 -1.48968660274E-01 -1.53199702645E-01 -1.57536950752E-01 -1.61983015766E-01 -1.66540568323E-01 -1.71212339025E-01 -1.76001119646E-01 -1.80909763482E-01 -1.85941186502E-01 -1.91098367488E-01 -1.96384349101E-01 -2.01802237751E-01 -2.07355204526E-01 -2.13046484707E-01 -2.18879378499E-01 -2.24857250090E-01 -2.30983528092E-01 -2.37261704010E-01 -2.43695332283E-01 -2.50288027985E-01 -2.57043466319E-01 -2.63965379330E-01 -2.71057554643E-01 -2.78323830915E-01 -2.85768095551E-01 -2.93394278531E-01 -3.01206348775E-01 -3.09208305883E-01 -3.17404174714E-01 -3.25797994474E-01 -3.34393810970E-01 -3.43195662344E-01 -3.52207568342E-01 -3.61433511870E-01 -3.70877424502E-01 -3.80543162907E-01 -3.90434489745E-01 -4.00555043966E-01 -4.10908316259E-01 -4.21497612273E-01 -4.32326021986E-01 -4.43396375236E-01 -4.54711204891E-01 -4.66272694803E-01 -4.78082637751E-01 -4.90142377343E-01 -5.02452763586E-01 -5.15014092682E-01 -5.27826066143E-01 -5.40887736128E-01 -5.54197478560E-01 -5.67752956930E-01 -5.81551125932E-01 -5.95588233331E-01 -6.09859877800E-01 -6.24361075643E-01 -6.39086403291E-01 -6.54030161228E-01 -6.69186635053E-01 -6.84550389029E-01 -7.00116675127E-01 -7.15881877968E-01 -7.31844083161E-01 -7.48003668664E-01 -7.64364007786E-01 -7.80932156856E-01 -7.97719615295E-01 -8.14743001209E-01 -8.32024731404E-01 -8.49593521114E-01 -8.67484802170E-01 -8.85740856163E-01 -9.04410786648E-01 -9.23550122829E-01 -9.43220222988E-01 -9.63487280918E-01 -9.84421163541E-01 -1.00609390191E+00 -1.02857812905E+00 -1.05194530033E+00 -1.07626404393E+00 -1.10159846493E+00 -1.12800676927E+00 -1.15553996205E+00 -1.18424093129E+00 -1.21414349581E+00 -1.24527154346E+00 -1.27763749492E+00 -1.31123985943E+00 -1.34605860432E+00 -1.38204767845E+00 -1.41912303585E+00 -1.45714567945E+00 -1.49589903982E+00 -1.53506290677E+00 -1.57418805556E+00 -1.61268142165E+00 -1.64981499112E+00 -1.68477541100E+00 -1.71676459649E+00 -1.74514566567E+00 -1.76959502042E+00 -1.79019042095E+00 -1.80735476252E+00 -1.82162239363E+00 -1.83328061918E+00 -1.84202200489E+00 -1.84676567639E+00 -1.84580973839E+00 -1.83749710578E+00 -1.82151259806E+00 -1.80047631975E+00 -1.78071655155E+00 -1.77091878154E+00 -1.77869099593E+00 -1.80704244803E+00 -1.85326356035E+00 -1.91112110805E+00 -1.97485078687E+00 -2.04158383694E+00 -2.10841831601E+00 -2.16298865353E+00 -2.17685019961E+00 -2.12903885236E+00 -2.05908226470E+00 -2.02609911102E+00 -2.02273049274E+00 -2.01954229707E+00 -2.01395609512E+00 -2.00858493806E+00 -2.00393636170E+00 -2.00079347475E+00 -1.99999235017E+00 -1.99999228850E+00 -1.99999214525E+00 -1.99999190963E+00 -1.99999158484E+00 -1.99999119736E+00 -1.99999080608E+00 -1.99999050485E+00 -1.99999040765E+00 -1.99999063901E+00 -1.99999087468E+00 -1.99998786857E+00 -2.00000784257E+00 -2.00003110703E+00 -2.00000513903E+00 -1.99998539938E+00 -1.99999145772E+00 -1.99999081890E+00 -1.99999062086E+00 -1.99999042789E+00 -1.99999023995E+00 -1.99999005692E+00 -1.99998987870E+00 -1.99998970512E+00 -1.99998953600E+00 -1.99998937113E+00 -1.99998921027E+00 -1.99998905316E+00 -1.99998889957E+00 -1.99998874921E+00 -1.99998860185E+00 -1.99998845727E+00 -1.99998831530E+00 -1.99998817583E+00 -1.99998803886E+00 -1.99998790446E+00 -1.99998777288E+00 -1.99998764456E+00 -1.99998752009E+00 -1.99998740037E+00 -1.99998728652E+00 -1.99998718000E+00 -1.99998708255E+00 -1.99998699630E+00 -1.99998692366E+00 -1.99998686742E+00 -1.99998683060E+00 -1.99998681651E+00 -1.99998682855E+00 -1.99998687019E+00 -1.99998694479E+00 -1.99998705547E+00 -1.99998720484E+00 -1.99998739496E+00 -1.99998762693E+00 -1.99998790090E+00 -1.99998821567E+00 -1.99998856871E+00 -1.99998895590E+00 -1.99998937158E+00 -1.99998980839E+00 -1.99999025757E+00 -1.99999070888E+00 -1.99999115105E+00 -1.99999157194E+00 -1.99999195914E+00 -1.99999230024E+00 -1.99999258356E+00 -1.99999279854E+00 -1.99999293641E+00 -1.99999299057E+00 -1.99999295708E+00 -1.99999283495E+00 -1.99999262629E+00 -1.99999233628E+00 -1.99999197306E+00 -1.99999154733E+00 -1.99999107191E+00 -1.99999056112E+00 -1.99999003017E+00 -1.99998949447E+00 -1.99998896897E+00 -1.99998846764E+00 -1.99998800294E+00 -1.99998758557E+00 -1.99998722416E+00 -1.99998692523E+00 -1.99998669321E+00 -1.99998653053E+00 -1.99998643781E+00 -1.99998641411E+00 -1.99998645710E+00 -1.99998656346E+00 -1.99998672896E+00 -1.99998694884E+00 -1.99998721790E+00 -1.99998753076E+00 -1.99998788197E+00 -1.99998826612E+00 -1.99998867797E+00 -1.99998911247E+00 -1.99998956486E+00 -1.99999003066E+00 -1.99999050570E+00 -1.99999098616E+00 -1.99999146852E+00 -1.99999194959E+00 -1.99999242649E+00 -1.99999289665E+00 -1.99999335775E+00 -1.99999380779E+00 -1.99999424500E+00 -1.99999466787E+00 -1.99999507511E+00 -1.99999546567E+00 -1.99999583869E+00 -1.99999619352E+00 -1.99999652970E+00 -1.99999684694E+00 -1.99999714510E+00 -1.99999742422E+00 -1.99999768445E+00 -1.99999792436E+00 -1.99999814829E+00 -1.99999835506E+00 -1.99999854509E+00 -1.99999871889E+00 -1.99999887706E+00 -1.99999902030E+00 -1.99999914935E+00 -1.99999926502E+00 -1.99999936816E+00 -1.99999945961E+00 -1.99999954027E+00 -1.99999961100E+00 -1.99999967268E+00 -1.99999972614E+00 -1.99999977220E+00 -1.99999981165E+00 -1.99999984521E+00 -1.99999987360E+00 -1.99999989744E+00 -1.99999991733E+00 -1.99999993381E+00 -1.99999994738E+00 -1.99999995846E+00 -1.99999996744E+00 -1.99999997300E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 -2.00000000000E+00 0.00000000000E+00 -4.35825633329E-04 -8.82684215544E-04 -1.34085501397E-03 -1.81062436145E-03 -2.29228583484E-03 -2.78614043790E-03 -3.29249678887E-03 -3.81167131268E-03 -4.34398843804E-03 -4.88978079942E-03 -5.44938944413E-03 -6.02316404452E-03 -6.61146311559E-03 -7.21465423798E-03 -7.83311428649E-03 -8.46722966440E-03 -9.11739654357E-03 -9.78402111055E-03 -1.04675198188E-02 -1.11683196473E-02 -1.18868583652E-02 -1.26235848039E-02 -1.33789591344E-02 -1.41534531536E-02 -1.49475505755E-02 -1.57617473311E-02 -1.65965518753E-02 -1.74524855010E-02 -1.83300826613E-02 -1.92298912999E-02 -2.01524731885E-02 -2.10984042741E-02 -2.20682750332E-02 -2.30626908357E-02 -2.40822723173E-02 -2.51276557606E-02 -2.61994934863E-02 -2.72984542531E-02 -2.84252236676E-02 -2.95805046037E-02 -3.07650176326E-02 -3.19795014628E-02 -3.32247133905E-02 -3.45014297609E-02 -3.58104464401E-02 -3.71525792985E-02 -3.85286647057E-02 -3.99395600361E-02 -4.13861441872E-02 -4.28693181096E-02 -4.43900053490E-02 -4.59491526010E-02 -4.75477302781E-02 -4.91867330901E-02 -5.08671806370E-02 -5.25901180156E-02 -5.43566164393E-02 -5.61677738715E-02 -5.80247156735E-02 -5.99285952650E-02 -6.18805948003E-02 -6.38819258579E-02 -6.59338301450E-02 -6.80375802161E-02 -7.01944802071E-02 -7.24058665833E-02 -7.46731089031E-02 -7.69976105962E-02 -7.93808097568E-02 -8.18241799521E-02 -8.43292310453E-02 -8.68975100340E-02 -8.95306019030E-02 -9.22301304922E-02 -9.49977593789E-02 -9.78351927741E-02 -1.00744176433E-01 -1.03726498581E-01 -1.06783990849E-01 -1.09918529224E-01 -1.13132035016E-01 -1.16426475828E-01 -1.19803866545E-01 -1.23266270330E-01 -1.26815799626E-01 -1.30454617177E-01 -1.34184937043E-01 -1.38009025630E-01 -1.41929202724E-01 -1.45947842524E-01 -1.50067374680E-01 -1.54290285330E-01 -1.58619118132E-01 -1.63056475295E-01 -1.67605018603E-01 -1.72267470421E-01 -1.77046614700E-01 -1.81945297955E-01 -1.86966430229E-01 -1.92112986033E-01 -1.97388005250E-01 -2.02794594021E-01 -2.08335925573E-01 -2.14015241022E-01 -2.19835850113E-01 -2.25801131910E-01 -2.31914535418E-01 -2.38179580137E-01 -2.44599856534E-01 -2.51179026426E-01 -2.57920823264E-01 -2.64829052305E-01 -2.71907590662E-01 -2.79160387227E-01 -2.86591462434E-01 -2.94204907869E-01 -3.02004885694E-01 -3.09995627880E-01 -3.18181435226E-01 -3.26566676136E-01 -3.35155785148E-01 -3.43953261182E-01 -3.52963665479E-01 -3.62191619213E-01 -3.71641800743E-01 -3.81318942472E-01 -3.91227827280E-01 -4.01373284500E-01 -4.11760185391E-01 -4.22393438078E-01 -4.33277981893E-01 -4.44418781102E-01 -4.55820817936E-01 -4.67489084888E-01 -4.79428576219E-01 -4.91644278604E-01 -5.04141160855E-01 -5.16924162647E-01 -5.29998182185E-01 -5.43368062711E-01 -5.57038577784E-01 -5.71014415233E-01 -5.85300159693E-01 -5.99900273615E-01 -6.14819076654E-01 -6.30060723306E-01 -6.45629178691E-01 -6.61528192340E-01 -6.77761269872E-01 -6.94331642400E-01 -7.11242233539E-01 -7.28495623856E-01 -7.46094012603E-01 -7.64039176577E-01 -7.82332425923E-01 -8.00974556727E-01 -8.19965800197E-01 -8.39305768268E-01 -8.58993395440E-01 -8.79026876662E-01 -8.99403601084E-01 -9.20120081485E-01 -9.41171879221E-01 -9.62553524499E-01 -9.84258431844E-01 -1.00627881061E+00 -1.02860557042E+00 -1.05122822142E+00 -1.07413476933E+00 -1.09731160526E+00 -1.12074339026E+00 -1.14441293483E+00 -1.16830107335E+00 -1.19238653397E+00 -1.21664580396E+00 -1.24105299131E+00 -1.26557968297E+00 -1.29019480064E+00 -1.31486445499E+00 -1.33955179959E+00 -1.36421688591E+00 -1.38881652119E+00 -1.41330413135E+00 -1.43762963128E+00 -1.46173930565E+00 -1.48557570361E+00 -1.50907755157E+00 -1.53217968887E+00 -1.55481303183E+00 -1.57690457290E+00 -1.59837742242E+00 -1.61915090172E+00 -1.63914069787E+00 -1.65825909171E+00 -1.67641527288E+00 -1.69351575727E+00 -1.70946492507E+00 -1.72416570000E+00 -1.73752039354E+00 -1.74943174134E+00 -1.75980416335E+00 -1.76854528341E+00 -1.77556774969E+00 -1.78079140331E+00 -1.78414584924E+00 -1.78557349193E+00 -1.78503310694E+00 -1.78250403043E+00 -1.77799106038E+00 -1.77153017722E+00 -1.76319520706E+00 -1.75310556901E+00 -1.74143526813E+00 -1.72842331915E+00 -1.71438581186E+00 -1.69972985883E+00 -1.68496969848E+00 -1.67074526252E+00 -1.65784355546E+00 -1.64710146114E+00 -1.63697945331E+00 -1.62667769350E+00 -1.61619780234E+00 -1.60554156373E+00 -1.59471105026E+00 -1.58370852517E+00 -1.57253648054E+00 -1.56119762490E+00 -1.54969481798E+00 -1.53803115921E+00 -1.52620980223E+00 -1.51423416020E+00 -1.50210758316E+00 -1.48983369614E+00 -1.47741592306E+00 -1.46485797327E+00 -1.45216319706E+00 -1.43933523558E+00 -1.42637719495E+00 -1.41329247360E+00 -1.40008374500E+00 -1.38675397488E+00 -1.37330520718E+00 -1.35973978141E+00 -1.34605892227E+00 -1.33226416542E+00 -1.31835575820E+00 -1.30433429966E+00 -1.29019896877E+00 -1.27594938178E+00 -1.26158367417E+00 -1.24710057529E+00 -1.23249738071E+00 -1.21777223950E+00 -1.20292206314E+00 -1.18794501359E+00 -1.17283840085E+00 -1.15760134781E+00 -1.14223272831E+00 -1.12673396481E+00 -1.11110704858E+00 -1.09535739703E+00 -1.07949197560E+00 -1.06352210349E+00 -1.04746166487E+00 -1.03132970999E+00 -1.01514870912E+00 -9.98946762219E-01 -9.82755825011E-01 -9.66613330394E-01 -9.50560317293E-01 -9.34642293778E-01 -9.18907235490E-01 -9.03405588404E-01 -8.88188171688E-01 -8.73305317609E-01 -8.58804798427E-01 -8.44730211531E-01 -8.31119130483E-01 -8.18000943963E-01 -8.05395491356E-01 -7.93310642021E-01 -7.81741710577E-01 -7.70669115165E-01 -7.60058876778E-01 -7.49860717262E-01 -7.40009921757E-01 -7.30426209426E-01 -7.21017149519E-01 -7.11678021939E-01 -7.02296785395E-01 -6.92754907001E-01 -6.82933571489E-01 -6.72715118228E-01 -6.61989816884E-01 -6.50657218682E-01 -6.38632560756E-01 -6.25847194988E-01 -6.12253693806E-01 -5.97824696726E-01 -5.82556133177E-01 -5.66464287671E-01 -5.49587097598E-01 -5.31979772745E-01 -5.13714617789E-01 -4.94875905609E-01 -4.75558917310E-01 -4.55864840507E-01 -4.35899679788E-01 -4.15769778196E-01 -3.95581033066E-01 -3.75435360095E-01 -3.55430395160E-01 -3.35656963425E-01 -3.16199253461E-01 -2.97133183434E-01 -2.78526930132E-01 -2.60440006138E-01 -2.42923998836E-01 -2.26022161787E-01 -2.09770237101E-01 -1.94196390472E-01 -1.79322027070E-01 -1.65161939204E-01 -1.51725063297E-01 -1.39014747890E-01 -1.27029428782E-01 -1.15762956705E-01 -1.05205187047E-01 -9.53423294880E-02 -8.61574590211E-02 -7.76308649610E-02 -6.97404936588E-02 -6.24622834237E-02 -5.57705488944E-02 -4.96382934531E-02 -4.40375428137E-02 -3.89396290648E-02 -3.43154781653E-02 -3.01358610744E-02 -2.63716374243E-02 -2.30261609170E-02 -2.00024674021E-02 -1.73030198737E-02 -1.49035811968E-02 -1.27803465998E-02 -1.09101198572E-02 -9.27046831509E-03 -7.83985759692E-03 -6.59776426321E-03 -5.52476702562E-03 -4.60261621165E-03 -3.81428237932E-03 -3.14398479393E-03 -2.57720113159E-03 -2.10065983643E-03 -1.70231691273E-03 -1.37131902547E-03 -1.09795494480E-03 -8.73597399680E-04 -6.90637424592E-04 -5.42413224042E-04 -4.23135487912E-04 -3.27810950395E-04 -2.52165816368E-04 -1.92570482679E-04 -1.55845298102E-04 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 1.33226762955E-15 0.00000000000E+00 1.10501278930E-08 4.53265356658E-08 1.04593690424E-07 1.90721044143E-07 3.05688783410E-07 4.51593883196E-07 6.30656480452E-07 8.45226584180E-07 1.09779113944E-06 1.39098146370E-06 1.72758107488E-06 2.11053393133E-06 2.54295310525E-06 3.02812991199E-06 3.56954351872E-06 4.17087105758E-06 4.83599826927E-06 5.56903070448E-06 6.37430551233E-06 7.25640384590E-06 8.22016391691E-06 9.27069473314E-06 1.04133905538E-05 1.16539461003E-05 1.29983725604E-05 1.44530144284E-05 1.60245672233E-05 1.77200961299E-05 1.95470556122E-05 2.15133100472E-05 2.36271554334E-05 2.58973422280E-05 2.83330993719E-05 3.09441595636E-05 3.37407858456E-05 3.67337995715E-05 3.99346098249E-05 4.33552443639E-05 4.70083821705E-05 5.09073876875E-05 5.50663468283E-05 5.95001048521E-05 6.42243061989E-05 6.92554363865E-05 7.46108660732E-05 8.03088973986E-05 8.63688127190E-05 9.28109258588E-05 9.96566360091E-05 1.06928484406E-04 1.14650213931E-04 1.22846831788E-04 1.31544675405E-04 1.40771481731E-04 1.50556460100E-04 1.60930368845E-04 1.71925595849E-04 1.83576243237E-04 1.95918216417E-04 2.08989317694E-04 2.22829344681E-04 2.37480193767E-04 2.52985968871E-04 2.69393095779E-04 2.86750442324E-04 3.05109444711E-04 3.24524240302E-04 3.45051807177E-04 3.66752110812E-04 3.89688258238E-04 4.13926660051E-04 4.39537200661E-04 4.66593417192E-04 4.95172687476E-04 5.25356427571E-04 5.57230299283E-04 5.90884428203E-04 6.26413632740E-04 6.63917664721E-04 7.03501462116E-04 7.45275414459E-04 7.89355641614E-04 8.35864286497E-04 8.84929822448E-04 9.36687375943E-04 9.91279065376E-04 1.04885435667E-03 1.10957043652E-03 1.17359260404E-03 1.24109468177E-03 1.31225944676E-03 1.38727908285E-03 1.46635565494E-03 1.54970160621E-03 1.63754027950E-03 1.73010646361E-03 1.82764696581E-03 1.93042121152E-03 2.03870187229E-03 2.15277552328E-03 2.27294333126E-03 2.39952177446E-03 2.53284339518E-03 2.67325758660E-03 2.82113141471E-03 2.97685047659E-03 3.14081979609E-03 3.31346475797E-03 3.49523208145E-03 3.68659083410E-03 3.88803348677E-03 4.10007701037E-03 4.32326401480E-03 4.55816393048E-03 4.80537423250E-03 5.06552170720E-03 5.33926376057E-03 5.62728976775E-03 5.93032246200E-03 6.24911936159E-03 6.58447423189E-03 6.93721857962E-03 7.30822317538E-03 7.69839959950E-03 8.10870180548E-03 8.54012769403E-03 8.99372068924E-03 9.47057130741E-03 9.97181870686E-03 1.04986522057E-02 1.10523127524E-02 1.16340943312E-02 1.22453452833E-02 1.28874695208E-02 1.35619276081E-02 1.42702376821E-02 1.50139761799E-02 1.57947783395E-02 1.66143384332E-02 1.74744096933E-02 1.83768038848E-02 1.93233904744E-02 2.03160953461E-02 2.13568990083E-02 2.24478342373E-02 2.35909830998E-02 2.47884733006E-02 2.60424738026E-02 2.73551896707E-02 2.87288561047E-02 3.01657316311E-02 3.16680904489E-02 3.32382139426E-02 3.48783814072E-02 3.65908600705E-02 3.83778945441E-02 4.02416958956E-02 4.21844306066E-02 4.42082097697E-02 4.63150789779E-02 4.85070094822E-02 5.07858913286E-02 5.31535293420E-02 5.56116429932E-02 5.81618713723E-02 6.08057846815E-02 6.35449038553E-02 6.63807300992E-02 6.93147862938E-02 7.23486723180E-02 7.54841363804E-02 7.87231643592E-02 8.20680889155E-02 8.55217196794E-02 8.90874950654E-02 9.27696551646E-02 9.65734335947E-02 1.00505264074E-01 1.04572994726E-01 1.08786099617E-01 1.13155872740E-01 1.17695584531E-01 1.22420575123E-01 1.27348252083E-01 1.32497953634E-01 1.37890631990E-01 1.43548306232E-01 1.49493231496E-01 1.55746732853E-01 1.62327660498E-01 1.69250440707E-01 1.76522727913E-01 1.84142711065E-01 1.92096196011E-01 2.00353677751E-01 2.08867732892E-01 2.17571199777E-01 2.26376760722E-01 2.35178675227E-01 2.43857495828E-01 2.52288567873E-01 2.60354881110E-01 2.67964285375E-01 2.75070063606E-01 2.81692239204E-01 2.87934726916E-01 2.93990693595E-01 3.00125982073E-01 3.06629953846E-01 3.13728484574E-01 3.21472776751E-01 3.29664619208E-01 3.37975967484E-01 3.46281300677E-01 3.54562746652E-01 3.62803653942E-01 3.70986577885E-01 3.79093301123E-01 3.87104859801E-01 3.95001575709E-01 4.02763094712E-01 4.10368431674E-01 4.17796022163E-01 4.25023781140E-01 4.32029168873E-01 4.38789264249E-01 4.45280845695E-01 4.51480479741E-01 4.57364617118E-01 4.62909695841E-01 4.68092250102E-01 4.72889023213E-01 4.77277147033E-01 4.81234698993E-01 4.84739213048E-01 4.87769537547E-01 4.90305390323E-01 4.92327502954E-01 4.93817767038E-01 4.94759381756E-01 4.95137001332E-01 4.94936881568E-01 4.94147023798E-01 4.92757315409E-01 4.90759664999E-01 4.88148131323E-01 4.84919043875E-01 4.81071114277E-01 4.76605536153E-01 4.71526072743E-01 4.65839129794E-01 4.59553813136E-01 4.52681968415E-01 4.45238202601E-01 4.37239884772E-01 4.28707126065E-01 4.19662736454E-01 4.10132158587E-01 4.00143376639E-01 3.89726800883E-01 3.78915126378E-01 3.67743167062E-01 3.56247664304E-01 3.44467071922E-01 3.32441317578E-01 3.20211543383E-01 3.07819826686E-01 2.95308884774E-01 2.82721765607E-01 2.70101529181E-01 2.57490922741E-01 2.44932055109E-01 2.32466074194E-01 2.20132853210E-01 2.07970690071E-01 1.96016025191E-01 1.84303181947E-01 1.72864134083E-01 1.61728303496E-01 1.50922391169E-01 1.40470243341E-01 1.30392753832E-01 1.20707802994E-01 1.11430232332E-01 1.02571853686E-01 9.41414904230E-02 8.61450483095E-02 7.85856124566E-02 7.14635673610E-02 6.47767360368E-02 5.85205352584E-02 5.26881431772E-02 4.72706768491E-02 4.22573766804E-02 3.76357961175E-02 3.33919944767E-02 2.95107319577E-02 2.59756654034E-02 2.27695441872E-02 1.98744049981E-02 1.72717647357E-02 1.49428100302E-02 1.28685820753E-02 1.10301548175E-02 9.40880465061E-03 7.98616934097E-03 6.74439413021E-03 5.66626286733E-03 4.73531243794E-03 3.93592898481E-03 3.25342498827E-03 2.67409670786E-03 2.18526210826E-03 1.77527987452E-03 1.43355066143E-03 1.15050211510E-03 9.17559568781E-04 7.27104536160E-04 5.72423277412E-04 4.47647742590E-04 3.47691154217E-04 2.68180358936E-04 2.05386893463E-04 1.56158474501E-04 1.17852362499E-04 8.82717734923E-05 6.56062402949E-05 4.83765621789E-05 3.53847420579E-05 2.56690970570E-05 1.84645470999E-05 1.31679380034E-05 9.30814072605E-06 6.52058503994E-06 4.52583126816E-06 3.11175420540E-06 2.11890492040E-06 1.42862463336E-06 9.53506215952E-07 6.29829298510E-07 4.11631143062E-07 2.66114496206E-07 1.70133261926E-07 1.07535672301E-07 6.71795966974E-08 4.14685799686E-08 2.52853947697E-08 1.52250007825E-08 9.04995305231E-09 5.30880970536E-09 3.07231637666E-09 1.75349274316E-09 9.86635808762E-10 5.47095100311E-10 2.98847260977E-10 1.60740875705E-10 8.50889583383E-11 4.43006607858E-11 2.26641362477E-11 1.13766603142E-11 5.58803781979E-12 2.67122532490E-12 1.22817006631E-12 5.28428423316E-13 1.98098881123E-13 5.12156356343E-14 1.55593343615E-15 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6.27499101025E-05 1.27088341742E-04 1.93055508533E-04 2.60692642102E-04 3.30042017859E-04 4.01146981422E-04 4.74051975707E-04 5.48802568709E-04 6.25445481983E-04 7.04028619843E-04 7.84601099310E-04 8.67213280805E-04 9.51916799631E-04 1.03876459825E-03 1.12781095935E-03 1.21911153982E-03 1.31272340548E-03 1.40870506681E-03 1.50711651546E-03 1.60801926180E-03 1.71147637332E-03 1.81755251409E-03 1.92631398514E-03 2.03782876595E-03 2.15216655687E-03 2.26939882275E-03 2.38959883756E-03 2.51284173024E-03 2.63920453161E-03 2.76876622252E-03 2.90160778324E-03 3.03781224409E-03 3.17746473729E-03 3.32065255018E-03 3.46746517981E-03 3.61799438885E-03 3.77233426296E-03 3.93058126959E-03 4.09283431826E-03 4.25919482242E-03 4.42976676279E-03 4.60465675239E-03 4.78397410315E-03 4.96783089426E-03 5.15634204219E-03 5.34962537256E-03 5.54780169373E-03 5.75099487235E-03 5.95933191079E-03 6.17294302645E-03 6.39196173326E-03 6.61652492503E-03 6.84677296106E-03 7.08284975388E-03 7.32490285916E-03 7.57308356797E-03 7.82754700133E-03 8.08845220719E-03 8.35596225977E-03 8.63024436158E-03 8.91146994785E-03 9.19981479373E-03 9.49545912414E-03 9.79858772640E-03 1.01093900658E-02 1.04280604038E-02 1.07547979199E-02 1.10898068355E-02 1.14332965423E-02 1.17854817323E-02 1.21465825329E-02 1.25168246438E-02 1.28964394784E-02 1.32856643082E-02 1.36847424115E-02 1.40939232251E-02 1.45134625003E-02 1.49436224628E-02 1.53846719766E-02 1.58368867121E-02 1.63005493180E-02 1.67759495987E-02 1.72633846948E-02 1.77631592691E-02 1.82755856970E-02 1.88009842617E-02 1.93396833544E-02 1.98920196795E-02 2.04583384653E-02 2.10389936793E-02 2.16343482502E-02 2.22447742937E-02 2.28706533461E-02 2.35123766021E-02 2.41703451597E-02 2.48449702706E-02 2.55366735976E-02 2.62458874776E-02 2.69730551924E-02 2.77186312457E-02 2.84830816465E-02 2.92668842014E-02 3.00705288124E-02 3.08945177837E-02 3.17393661350E-02 3.26056019242E-02 3.34937665768E-02 3.44044152246E-02 3.53381170527E-02 3.62954556551E-02 3.72770293996E-02 3.82834518017E-02 3.93153519083E-02 4.03733746904E-02 4.14581814467E-02 4.25704502169E-02 4.37108762050E-02 4.48801722145E-02 4.60790690933E-02 4.73083161912E-02 4.85686818275E-02 4.98609537718E-02 5.11859397361E-02 5.25444678797E-02 5.39373873271E-02 5.53655686982E-02 5.68299046528E-02 5.83313104486E-02 5.98707245130E-02 6.14491090300E-02 6.30674505414E-02 6.47267605631E-02 6.64280762180E-02 6.81724608838E-02 6.99610048576E-02 7.17948260377E-02 7.36750706219E-02 7.56029138245E-02 7.75795606101E-02 7.96062464472E-02 8.16842380806E-02 8.38148343227E-02 8.59993668654E-02 8.82392011127E-02 9.05357370340E-02 9.28904100389E-02 9.53046918747E-02 9.77800915461E-02 1.00318156259E-01 1.02920472385E-01 1.05588666458E-01 1.08324406186E-01 1.11129401494E-01 1.14005405597E-01 1.16954216090E-01 1.19977676076E-01 1.23077675317E-01 1.26256151411E-01 1.29515091011E-01 1.32856531060E-01 1.36282560066E-01 1.39795319410E-01 1.43397004680E-01 1.47089867046E-01 1.50876214668E-01 1.54758414137E-01 1.58738891953E-01 1.62820136045E-01 1.67004697323E-01 1.71295191274E-01 1.75694299596E-01 1.80204771876E-01 1.84829427305E-01 1.89571156444E-01 1.94432923028E-01 1.99417765818E-01 2.04528800504E-01 2.09769221650E-01 2.15142304689E-01 2.20651407972E-01 2.26299974869E-01 2.32091535917E-01 2.38029711032E-01 2.44118211765E-01 2.50360843628E-01 2.56761508469E-01 2.63324206912E-01 2.70053040857E-01 2.76952216045E-01 2.84026044684E-01 2.91278948147E-01 2.98715459736E-01 3.06340227511E-01 3.14158017202E-01 3.22173715182E-01 3.30392331521E-01 3.38819003124E-01 3.47458996934E-01 3.56317713229E-01 3.65400688995E-01 3.74713601386E-01 3.84262271278E-01 3.94052666898E-01 4.04090907564E-01 4.14383267502E-01 4.24936179772E-01 4.35756240288E-01 4.46850211941E-01 4.58225028822E-01 4.69887800564E-01 4.81845816779E-01 4.94106551615E-01 5.06677668431E-01 5.19567024584E-01 5.32782676342E-01 5.46332883917E-01 5.60226116630E-01 5.74471058204E-01 5.89076612190E-01 6.04051907536E-01 6.19406304288E-01 6.35149399445E-01 6.51291032953E-01 6.67841293859E-01 6.84810526614E-01 7.02209337542E-01 7.20048601465E-01 7.38339468505E-01 7.57093371048E-01 7.76322030895E-01 7.96037466583E-01 8.16252000901E-01 8.36978268593E-01 8.58229224248E-01 8.80018150408E-01 9.02358665859E-01 9.25264734152E-01 9.48750672324E-01 9.72831159852E-01 9.97521247823E-01 1.02283636835E+00 1.04879234420E+00 1.07540539871E+00 1.10269216590E+00 1.13066970089E+00 1.15935549055E+00 1.18876746444E+00 1.21892400598E+00 1.24984396402E+00 1.28154666451E+00 1.31405192269E+00 1.34738005540E+00 1.38155189380E+00 1.41658879642E+00 1.45251266244E+00 1.48934594546E+00 1.52711166749E+00 1.56583343331E+00 1.60553544531E+00 1.64624251852E+00 1.68798009620E+00 1.73077426569E+00 1.77465177474E+00 1.81964004821E+00 1.86576720526E+00 1.91306207684E+00 1.96155422379E+00 2.01127395529E+00 2.06225234779E+00 2.11452126444E+00 2.16811337501E+00 2.22306217632E+00 2.27940201315E+00 2.33716809975E+00 2.39639654179E+00 2.45712435898E+00 2.51938950818E+00 2.58323090714E+00 2.64868845881E+00 2.71580307628E+00 2.78461670839E+00 2.85517236589E+00 2.92751414836E+00 3.00168727177E+00 3.07773809674E+00 3.15571415751E+00 3.23566419166E+00 3.31763817056E+00 3.40168733061E+00 3.48786420529E+00 3.57622265792E+00 3.66681791544E+00 3.75970660282E+00 3.85494677852E+00 3.95259797074E+00 4.05272121467E+00 4.15537909058E+00 4.26063576299E+00 4.36855702075E+00 4.47921031816E+00 4.59266481713E+00 4.70899143041E+00 4.82826286593E+00 4.95055367222E+00 5.07594028500E+00 5.20450107500E+00 5.33631639690E+00 5.47146863955E+00 5.61004227752E+00 5.75212392383E+00 5.89780238414E+00 6.04716871224E+00 6.20031626693E+00 6.35734077043E+00 6.51834036815E+00 6.68341569010E+00 6.85266991372E+00 7.02620882841E+00 7.20414090164E+00 7.38657734675E+00 7.57363219246E+00 7.76542235413E+00 7.96206770686E+00 8.16369116039E+00 8.37041873595E+00 8.58237964500E+00 8.79970637001E+00 9.02253474726E+00 9.25100405173E+00 9.48525708418E+00 9.72544026038E+00 9.97170370264E+00 1.02242013336E+01 1.04830909726E+01 1.07485344339E+01 1.10206976285E+01 1.12997506671E+01 1.15858679670E+01 1.18792283609E+01 1.21800152085E+01 1.24884165114E+01 1.28046250305E+01 1.31288384063E+01 1.34612592828E+01 1.38020954339E+01 1.41515598932E+01 1.45098710874E+01 1.48772529727E+01 1.52539351747E+01 1.56401531320E+01 1.60361482435E+01 1.64421680189E+01 1.68584662339E+01 1.72853030884E+01 1.77229453693E+01 1.81716666173E+01 1.86317472977E+01 1.91034749761E+01 1.95871444974E+01 2.00830581710E+01 2.05915259590E+01 2.11128656704E+01 2.16474031593E+01 2.21954725293E+01 2.27574163414E+01 2.33335858288E+01 2.39243411162E+01 2.45300514449E+01 2.51510954036E+01 2.57878611650E+01 2.64407467284E+01 2.71101601685E+01 2.77965198905E+01 2.85002548916E+01 2.92218050291E+01 2.99616212952E+01 3.07201660993E+01 3.14979135566E+01 3.22953497844E+01 3.31129732065E+01 3.39512948641E+01 3.48108387354E+01 3.56921420635E+01 3.65957556915E+01 3.75222444074E+01 3.84721872969E+01 3.94461781050E+01 4.04448256079E+01 4.14687539927E+01 4.25186032479E+01 4.35950295635E+01 4.46987057411E+01 4.58303216142E+01 4.69905844794E+01 4.81802195389E+01 4.93999703534E+01 5.06505993067E+01 5.19328880827E+01 6.19688044167E-05 6.35375521692E-05 6.51460129602E-05 6.67951921300E-05 6.84861204692E-05 7.02198548631E-05 7.19974789522E-05 7.38201038093E-05 7.56888686344E-05 7.76049414662E-05 7.95695199127E-05 8.15838318994E-05 8.36491364368E-05 8.57667244074E-05 8.79379193728E-05 9.01640784004E-05 9.24465929121E-05 9.47868895537E-05 9.71864310869E-05 9.96467173032E-05 1.02169285962E-04 1.04755713750E-04 1.07407617269E-04 1.10126654045E-04 1.12914523565E-04 1.15772968338E-04 1.18703774985E-04 1.21708775356E-04 1.24789847673E-04 1.27948917707E-04 1.31187959980E-04 1.34508998998E-04 1.37914110519E-04 1.41405422849E-04 1.44985118171E-04 1.48655433912E-04 1.52418664138E-04 1.56277160991E-04 1.60233336156E-04 1.64289662373E-04 1.68448674977E-04 1.72712973486E-04 1.77085223226E-04 1.81568156995E-04 1.86164576773E-04 1.90877355471E-04 1.95709438731E-04 2.00663846760E-04 2.05743676226E-04 2.10952102186E-04 2.16292380078E-04 2.21767847748E-04 2.27381927542E-04 2.33138128443E-04 2.39040048264E-04 2.45091375896E-04 2.51295893616E-04 2.57657479450E-04 2.64180109596E-04 2.70867860911E-04 2.77724913456E-04 2.84755553113E-04 2.91964174260E-04 2.99355282520E-04 3.06933497577E-04 3.14703556061E-04 3.22670314512E-04 3.30838752414E-04 3.39213975305E-04 3.47801217973E-04 3.56605847725E-04 3.65633367740E-04 3.74889420512E-04 3.84379791376E-04 3.94110412121E-04 4.04087364704E-04 4.14316885044E-04 4.24805366924E-04 4.35559365987E-04 4.46585603833E-04 4.57890972218E-04 4.69482537367E-04 4.81367544385E-04 4.93553421787E-04 5.06047786145E-04 5.18858446842E-04 5.31993410959E-04 5.45460888276E-04 5.59269296404E-04 5.73427266048E-04 5.87943646400E-04 6.02827510670E-04 6.18088161758E-04 6.33735138068E-04 6.49778219469E-04 6.66227433409E-04 6.83093061182E-04 7.00385644356E-04 7.18115991356E-04 7.36295184228E-04 7.54934585558E-04 7.74045845579E-04 7.93640909452E-04 8.13732024728E-04 8.34331749008E-04 8.55452957792E-04 8.77108852521E-04 8.99312968836E-04 9.22079185031E-04 9.45421730733E-04 9.69355195793E-04 9.93894539406E-04 1.01905509946E-03 1.04485260212E-03 1.07130317168E-03 1.09842334059E-03 1.12623005984E-03 1.15474070954E-03 1.18397310978E-03 1.21394553175E-03 1.24467670920E-03 1.27618585010E-03 1.30849264871E-03 1.34161729782E-03 1.37558050141E-03 1.41040348759E-03 1.44610802187E-03 1.48271642074E-03 1.52025156563E-03 1.55873691724E-03 1.59819653017E-03 1.63865506795E-03 1.68013781849E-03 1.72267070987E-03 1.76628032651E-03 1.81099392586E-03 1.85683945536E-03 1.90384556997E-03 1.95204165003E-03 2.00145781967E-03 2.05212496560E-03 2.10407475643E-03 2.15733966248E-03 2.21195297605E-03 2.26794883224E-03 2.32536223027E-03 2.38422905539E-03 2.44458610128E-03 2.50647109307E-03 2.56992271088E-03 2.63498061405E-03 2.70168546587E-03 2.77007895906E-03 2.84020384177E-03 2.91210394434E-03 2.98582420667E-03 3.06141070632E-03 3.13891068733E-03 3.21837258970E-03 3.29984607970E-03 3.38338208092E-03 3.46903280607E-03 3.55685178966E-03 3.64689392141E-03 3.73921548057E-03 3.83387417112E-03 3.93092915784E-03 4.03044110324E-03 4.13247220554E-03 4.23708623749E-03 4.34434858626E-03 4.45432629432E-03 4.56708810132E-03 4.68270448705E-03 4.80124771552E-03 4.92279188010E-03 5.04741294987E-03 5.17518881703E-03 5.30619934567E-03 5.44052642163E-03 5.57825400371E-03 5.71946817613E-03 5.86425720234E-03 6.01271158021E-03 6.16492409854E-03 6.32098989512E-03 6.48100651615E-03 6.64507397722E-03 6.81329482585E-03 6.98577420554E-03 7.16261992150E-03 7.34394250809E-03 7.52985529781E-03 7.72047449220E-03 7.91591923448E-03 8.11631168396E-03 8.32177709245E-03 8.53244388252E-03 8.74844372778E-03 8.96991163515E-03 9.19698602929E-03 9.42980883908E-03 9.66852558636E-03 9.91328547687E-03 1.01642414935E-02 1.04215504920E-02 1.06853732987E-02 1.09558748116E-02 1.12332241029E-02 1.15175945250E-02 1.18091638185E-02 1.21081142239E-02 1.24146325948E-02 1.27289105152E-02 1.30511444190E-02 1.33815357130E-02 1.37202909024E-02 1.40676217202E-02 1.44237452595E-02 1.47888841092E-02 1.51632664928E-02 1.55471264116E-02 1.59407037905E-02 1.63442446282E-02 1.67580011509E-02 1.71822319698E-02 1.76172022430E-02 1.80631838411E-02 1.85204555170E-02 1.89893030806E-02 1.94700195768E-02 1.99629054690E-02 2.04682688269E-02 2.09864255192E-02 2.15176994106E-02 2.20624225646E-02 2.26209354509E-02 2.31935871582E-02 2.37807356125E-02 2.43827478007E-02 2.50000000000E-02 2.56328780131E-02 2.62817774094E-02 2.69471037721E-02 2.76292729519E-02 2.83287113267E-02 2.90458560682E-02 2.97811554153E-02 3.05350689540E-02 3.13080679048E-02 3.21006354172E-02 3.29132668717E-02 3.37464701894E-02 3.46007661495E-02 3.54766887148E-02 3.63747853655E-02 3.72956174410E-02 3.82397604916E-02 3.92078046373E-02 4.02003549371E-02 4.12180317675E-02 4.22614712095E-02 4.33313254467E-02 4.44282631729E-02 4.55529700098E-02 4.67061489358E-02 4.78885207253E-02 4.91008243992E-02 5.03438176868E-02 5.16182774992E-02 5.29250004153E-02 5.42648031796E-02 5.56385232123E-02 5.70470191332E-02 5.84911712981E-02 5.99718823492E-02 6.14900777789E-02 6.30467065090E-02 6.46427414829E-02 6.62791802746E-02 6.79570457115E-02 6.96773865141E-02 7.14412779516E-02 7.32498225133E-02 7.51041505987E-02 7.70054212230E-02 7.89548227422E-02 8.09535735959E-02 8.30029230684E-02 8.51041520698E-02 8.72585739365E-02 8.94675352525E-02 9.17324166905E-02 9.40546338750E-02 9.64356382674E-02 9.88769180730E-02 1.01379999171E-01 1.03946446069E-01 1.06577862879E-01 1.09275894323E-01 1.12042226758E-01 1.14878589233E-01 1.17786754565E-01 1.20768540453E-01 1.23825810610E-01 1.26960475930E-01 1.30174495679E-01 1.33469878727E-01 1.36848684793E-01 1.40313025742E-01 1.43865066900E-01 1.47507028408E-01 1.51241186610E-01 1.55069875478E-01 1.58995488065E-01 1.63020478008E-01 1.67147361057E-01 1.71378716647E-01 1.75717189515E-01 1.80165491346E-01 1.84726402473E-01 1.89402773616E-01 1.94197527658E-01 1.99113661476E-01 2.04154247814E-01 2.09322437203E-01 2.14621459929E-01 2.20054628055E-01 2.25625337486E-01 2.31337070098E-01 2.37193395909E-01 2.43197975314E-01 2.49354561370E-01 2.55667002145E-01 2.62139243118E-01 2.68775329652E-01 2.75579409516E-01 2.82555735482E-01 2.89708667981E-01 2.97042677827E-01 3.04562349018E-01 3.12272381590E-01 3.20177594567E-01 3.28282928962E-01 3.36593450875E-01 3.45114354652E-01 3.53850966134E-01 3.62808745990E-01 3.71993293122E-01 3.81410348171E-01 3.91065797105E-01 4.00965674891E-01 4.11116169277E-01 4.21523624652E-01 4.32194546014E-01 4.43135603037E-01 4.54353634236E-01 4.65855651247E-01 4.77648843206E-01 4.89740581240E-01 5.02138423080E-01 5.14850117780E-01 5.27883610564E-01 5.41247047788E-01 5.54948782036E-01 5.68997377338E-01 5.83401614524E-01 5.98170496709E-01 6.13313254928E-01 6.28839353895E-01 6.44758497930E-01 6.61080637014E-01 6.77815973016E-01 6.94974966067E-01 7.12568341094E-01 7.30607094531E-01 7.49102501185E-01 7.68066121288E-01 7.87509807719E-01 8.07445713415E-01 8.27886298967E-01 8.48844340406E-01 8.70332937190E-01 8.92365520391E-01 9.14955861092E-01 9.38118078990E-01 9.61866651226E-01 9.86216421430E-01 1.01118260900E+00 1.03678081862E+00 1.06302705000E+00 1.08993770789E+00 1.11752961233E+00 1.14582000916E+00 1.17482658079E+00 1.20456745728E+00 1.23506122764E+00 1.26632695147E+00 1.29838417087E+00 1 0.00000000000E+00 8.59934612422E-05 1.74163855027E-04 2.64566273735E-04 3.57257209915E-04 4.52294584832E-04 5.49737784497E-04 6.49647696607E-04 7.52086748394E-04 8.57118945430E-04 9.64809911389E-04 1.07522692881E-03 1.18843898086E-03 1.30451679416E-03 1.42353288263E-03 1.54556159249E-03 1.67067914828E-03 1.79896370014E-03 1.93049537214E-03 2.06535631187E-03 2.20363074126E-03 2.34540500859E-03 2.49076764185E-03 2.63980940335E-03 2.79262334570E-03 2.94930486916E-03 3.10995178035E-03 3.27466435246E-03 3.44354538682E-03 3.61670027607E-03 3.79423706880E-03 3.97626653571E-03 4.16290223747E-03 4.35426059408E-03 4.55046095600E-03 4.75162567688E-03 4.95788018807E-03 5.16935307489E-03 5.38617615467E-03 5.60848455664E-03 5.83641680370E-03 6.07011489600E-03 6.30972439663E-03 6.55539451909E-03 6.80727821687E-03 7.06553227505E-03 7.33031740398E-03 7.60179833501E-03 7.88014391842E-03 8.16552722348E-03 8.45812564071E-03 8.75812098637E-03 9.06569960924E-03 9.38105249958E-03 9.70437540052E-03 1.00358689217E-02 1.03757386552E-02 1.07241952940E-02 1.10814547529E-02 1.14477382911E-02 1.18232726384E-02 1.22082901228E-02 1.26030288008E-02 1.30077325906E-02 1.34226514066E-02 1.38480412977E-02 1.42841645865E-02 1.47312900121E-02 1.51896928743E-02 1.56596551807E-02 1.61414657956E-02 1.66354205909E-02 1.71418226002E-02 1.76609821730E-02 1.81932171330E-02 1.87388529362E-02 1.92982228322E-02 1.98716680262E-02 2.04595378431E-02 2.10621898919E-02 2.16799902320E-02 2.23133135403E-02 2.29625432784E-02 2.36280718608E-02 2.43103008229E-02 2.50096409887E-02 2.57265126385E-02 2.64613456754E-02 2.72145797904E-02 2.79866646264E-02 2.87780599395E-02 2.95892357578E-02 3.04206725376E-02 3.12728613155E-02 3.21463038555E-02 3.30415127926E-02 3.39590117692E-02 3.48993355658E-02 3.58630302242E-02 3.68506531628E-02 3.78627732818E-02 3.88999710594E-02 3.99628386363E-02 4.10519798875E-02 4.21680104812E-02 4.33115579227E-02 4.44832615820E-02 4.56837727039E-02 4.69137543995E-02 4.81738816165E-02 4.94648410886E-02 5.07873312598E-02 5.21420621841E-02 5.35297553982E-02 5.49511437646E-02 5.64069712847E-02 5.78979928790E-02 5.94249741330E-02 6.09886910074E-02 6.25899295098E-02 6.42294853278E-02 6.59081634207E-02 6.76267775688E-02 6.93861498795E-02 7.11871102489E-02 7.30304957779E-02 7.49171501439E-02 7.68479229268E-02 7.88236688903E-02 8.08452472215E-02 8.29135207286E-02 8.50293550012E-02 8.71936175373E-02 8.94071768416E-02 9.16709015018E-02 9.39856592521E-02 9.63523160322E-02 9.87717350558E-02 1.01244775900E-01 1.03772293639E-01 1.06355138027E-01 1.08994152777E-01 1.11690174939E-01 1.14444034417E-01 1.17256553668E-01 1.20128547606E-01 1.23060823769E-01 1.26054182791E-01 1.29109419245E-01 1.32227322902E-01 1.35408680498E-01 1.38654278066E-01 1.41964903925E-01 1.45341352410E-01 1.48784428459E-01 1.52294953131E-01 1.55873770193E-01 1.59521753875E-01 1.63239817930E-01 1.67028926099E-01 1.70890104127E-01 1.74824453442E-01 1.78833166602E-01 1.82917544638E-01 1.87079016349E-01 1.91319159639E-01 1.95639724917E-01 2.00042660540E-01 2.04530140248E-01 2.09104592450E-01 2.13768731146E-01 2.18525588158E-01 2.23378546236E-01 2.28331372442E-01 2.33388251048E-01 2.38553814989E-01 2.43833174675E-01 2.49231942712E-01 2.54756252783E-01 2.60412770636E-01 2.66208694762E-01 2.72151743991E-01 2.78250128865E-01 2.84512503253E-01 2.90947892343E-01 2.97565592827E-01 3.04375040865E-01 3.11385643316E-01 3.18606567781E-01 3.26046487288E-01 3.33713276082E-01 3.41613653967E-01 3.49752778143E-01 3.58133783619E-01 3.66757276095E-01 3.75620784914E-01 3.84718188298E-01 3.94039128820E-01 4.03568443790E-01 4.13285643116E-01 4.23164475978E-01 4.33172637072E-01 4.43271672810E-01 4.53417156844E-01 4.63559211563E-01 4.73643456237E-01 4.83612461150E-01 4.93407777780E-01 5.02972594633E-01 5.12255032938E-01 5.21212042022E-01 5.29813776785E-01 5.38048235979E-01 5.45925808616E-01 5.53483218902E-01 5.60786185777E-01 5.67929938815E-01 5.75036588815E-01 5.82248288121E-01 5.89715205442E-01 5.97577682686E-01 6.05942663947E-01 6.14855732014E-01 6.24271984086E-01 6.34031570743E-01 6.43848836685E-01 6.53326991205E-01 6.62011528967E-01 6.69491938716E-01 6.75546271812E-01 6.80285364756E-01 6.84172579239E-01 6.87669263521E-01 6.90852473213E-01 6.93710812691E-01 6.96232149248E-01 6.98404990030E-01 7.00218096621E-01 7.01660527204E-01 7.02721679968E-01 7.03391337878E-01 7.03659714472E-01 7.03517500856E-01 7.02955913449E-01 7.01966742720E-01 7.00542402360E-01 6.98675979170E-01 6.96361283006E-01 6.93592897117E-01 6.90366228081E-01 6.86677555729E-01 6.82524082125E-01 6.77903980014E-01 6.72816439679E-01 6.67261714624E-01 6.61241164852E-01 6.54757298179E-01 6.47813808162E-01 6.40415609057E-01 6.32568866234E-01 6.24281022402E-01 6.15560817947E-01 6.06418305666E-01 5.96864858124E-01 5.86913167906E-01 5.76577238973E-01 5.65872369438E-01 5.54815124149E-01 5.43423297498E-01 5.31715865185E-01 5.19712925620E-01 5.07435630212E-01 4.94906103588E-01 4.82147353663E-01 4.69183173023E-01 4.56038032290E-01 4.42736967282E-01 4.29305461336E-01 4.15769324799E-01 4.02154573548E-01 3.88487308499E-01 3.74793598126E-01 3.61099365606E-01 3.47430282432E-01 3.33811669404E-01 3.20268406372E-01 3.06824850665E-01 2.93504764858E-01 2.80331252729E-01 2.67326703249E-01 2.54512740443E-01 2.41910178299E-01 2.29538977894E-01 2.17418205602E-01 2.05565989490E-01 1.93999473048E-01 1.82734763980E-01 1.71786878157E-01 1.61169677690E-01 1.50895804579E-01 1.40976610452E-01 1.31422085176E-01 1.22240786164E-01 1.13439772032E-01 1.05024543080E-01 9.69989922985E-02 8.93653692378E-02 8.21242596753E-02 7.52745825681E-02 6.88136059630E-02 6.27369821135E-02 5.70388020437E-02 5.17116685771E-02 4.67467867868E-02 4.21340699127E-02 3.78622587749E-02 3.39190521320E-02 3.02912455137E-02 2.69648757656E-02 2.39253687259E-02 2.11576873915E-02 1.86464781905E-02 1.63762130800E-02 1.43313254909E-02 1.24963383484E-02 1.08559827146E-02 9.39530585688E-03 8.09976785427E-03 6.95532612033E-03 5.94850750337E-03 5.06646786874E-03 4.29703930840E-03 3.62876532754E-03 3.05092454576E-03 2.55354360456E-03 2.12740010319E-03 1.76401648458E-03 1.45564586629E-03 1.19525085716E-03 9.76476421319E-04 7.93617848144E-04 6.41584863269E-04 5.15862861759E-04 4.12472131577E-04 3.27926318948E-04 2.59190269245E-04 2.03638354284E-04 1.59013818216E-04 1.23389629021E-04 9.51312404739E-05 7.28615785191E-05 5.54284794103E-05 4.18747264634E-05 3.14107592028E-05 2.33900639579E-05 1.72871992067E-05 1.26783624041E-05 9.22436756851E-06 6.65587410558E-06 4.76068649478E-06 3.37293049742E-06 2.36390307214E-06 1.63438835168E-06 1.10822833728E-06 7.26930818749E-07 4.45083001358E-07 2.26308715812E-07 3.94453218062E-08 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 espresso-5.1/pseudo/HUSPBE.RRKJ30000644000175000017500000055741112341373031014356 0ustar mbamba H 3 F F 1 4 3 4 .10000000000E+01-.61916649298E+00 1 -.60000000000E+01 .10000000000E+03 .10000000000E+01 .10000000000E-01 1061 3 2 1.10000000000E+00 1.10000000000E+00 1.10000000000E+00 1.20000000000E+00 1.20000000000E+00 1.10000000000E+00 1S 1 0 1.00 1S 1 0 .00 2P 2 1 .00 629 -1.27153486665E+00 -1.28431212103E+00 -1.29721773160E+00 -1.31025298660E+00 -1.32336077396E+00 -1.33675008998E+00 -1.35021059006E+00 -1.36372623067E+00 -1.37742098316E+00 -1.39132698512E+00 -1.40525148455E+00 -1.41936695717E+00 -1.43367580861E+00 -1.44811266563E+00 -1.46256318143E+00 -1.47735404183E+00 -1.49215240071E+00 -1.50718850803E+00 -1.52228194969E+00 -1.53759409312E+00 -1.55306324961E+00 -1.56864937156E+00 -1.58442812610E+00 -1.60030820688E+00 -1.61636006803E+00 -1.63274413086E+00 -1.64900486952E+00 -1.66569323017E+00 -1.68232257259E+00 -1.69926855775E+00 -1.71633307833E+00 -1.73360523565E+00 -1.75104616918E+00 -1.76861686428E+00 -1.78639725238E+00 -1.80434189651E+00 -1.82245738395E+00 -1.84074477695E+00 -1.85932997229E+00 -1.87797507557E+00 -1.89685769832E+00 -1.91586421674E+00 -1.93515612710E+00 -1.95458004938E+00 -1.97423004478E+00 -1.99406522735E+00 -2.01408345189E+00 -2.03434582453E+00 -2.05477050662E+00 -2.07542256862E+00 -2.09628892622E+00 -2.11733686407E+00 -2.13856602593E+00 -2.16012012400E+00 -2.18174810542E+00 -2.20372292125E+00 -2.22583210684E+00 -2.24822776643E+00 -2.27082001241E+00 -2.29363870548E+00 -2.31668594949E+00 -2.33993109972E+00 -2.36346125512E+00 -2.38719071753E+00 -2.41122429497E+00 -2.43536893647E+00 -2.45989353811E+00 -2.48457568349E+00 -2.50951466751E+00 -2.53475840191E+00 -2.56022939371E+00 -2.58595374016E+00 -2.61191947654E+00 -2.63814138960E+00 -2.66466105404E+00 -2.69139090010E+00 -2.71849743313E+00 -2.74576418827E+00 -2.77337204963E+00 -2.80122616150E+00 -2.82934791004E+00 -2.85775042774E+00 -2.88645495204E+00 -2.91550945890E+00 -2.94473605576E+00 -2.97434966491E+00 -3.00421634286E+00 -3.03439294811E+00 -3.06483906595E+00 -3.09562303334E+00 -3.12672385311E+00 -3.15814168643E+00 -3.18987380577E+00 -3.22187957809E+00 -3.25427804175E+00 -3.28694981594E+00 -3.31996172362E+00 -3.35328640276E+00 -3.38701599302E+00 -3.42098413356E+00 -3.45533224021E+00 -3.49005445887E+00 -3.52507731861E+00 -3.56051665711E+00 -3.59622498520E+00 -3.63237978164E+00 -3.66886260046E+00 -3.70567902828E+00 -3.74288185676E+00 -3.78047833838E+00 -3.81843391361E+00 -3.85677632391E+00 -3.89551635679E+00 -3.93459831503E+00 -3.97410093871E+00 -4.01402751969E+00 -4.05431726113E+00 -4.09500894111E+00 -4.13615083135E+00 -4.17765030112E+00 -4.21961465368E+00 -4.26195119543E+00 -4.30472914227E+00 -4.34792867602E+00 -4.39160116191E+00 -4.43569324544E+00 -4.48019206990E+00 -4.52518207273E+00 -4.57059756206E+00 -4.61645216712E+00 -4.66279978570E+00 -4.70960467739E+00 -4.75684602621E+00 -4.80458860766E+00 -4.85280361355E+00 -4.90151654260E+00 -4.95071331630E+00 -5.00034992877E+00 -5.05054784105E+00 -5.10122845378E+00 -5.15240492341E+00 -5.20409975069E+00 -5.25629917063E+00 -5.30905526864E+00 -5.36228465407E+00 -5.41611937979E+00 -5.47041527101E+00 -5.52530473488E+00 -5.58073057780E+00 -5.63670158590E+00 -5.69324915281E+00 -5.75033079313E+00 -5.80801191232E+00 -5.86623570089E+00 -5.92508725062E+00 -5.98448016618E+00 -6.04449872839E+00 -6.10510247586E+00 -6.16632041240E+00 -6.22813236981E+00 -6.29057828235E+00 -6.35365329334E+00 -6.41732795561E+00 -6.48165709149E+00 -6.54664394110E+00 -6.61223642077E+00 -6.67851318493E+00 -6.74543375153E+00 -6.81302576017E+00 -6.88130473849E+00 -6.95025824001E+00 -7.01987127595E+00 -7.09022504027E+00 -7.16124760788E+00 -7.23297410924E+00 -7.30543961834E+00 -7.37860963305E+00 -7.45250980830E+00 -7.52713118471E+00 -7.60249390232E+00 -7.67863880263E+00 -7.75549274709E+00 -7.83315660206E+00 -7.91155803933E+00 -7.99076426697E+00 -8.07075950607E+00 -8.15151176639E+00 -8.23308443456E+00 -8.31548268680E+00 -8.39867783475E+00 -8.48271474560E+00 -8.56756862896E+00 -8.65326502179E+00 -8.73982010852E+00 -8.82723247381E+00 -8.91550394329E+00 -9.00464937779E+00 -9.09466989397E+00 -9.18559072567E+00 -9.27742565764E+00 -9.37012617162E+00 -9.46378209594E+00 -9.55834503997E+00 -9.65383567242E+00 -9.75029332638E+00 -9.84767590760E+00 -9.94604150911E+00 -1.00453599313E+01 -1.01456694302E+01 -1.02469588195E+01 -1.03492510388E+01 -1.04525494000E+01 -1.05568603661E+01 -1.06621994642E+01 -1.07685729918E+01 -1.08759903573E+01 -1.09844746348E+01 -1.10940041214E+01 -1.12046223734E+01 -1.13163275032E+01 -1.14291148956E+01 -1.15430213823E+01 -1.16580403570E+01 -1.17741739702E+01 -1.18914535661E+01 -1.20098729289E+01 -1.21294603075E+01 -1.22502085624E+01 -1.23721393199E+01 -1.24952525663E+01 -1.26195666858E+01 -1.27450946209E+01 -1.28718505726E+01 -1.29998260609E+01 -1.31290582598E+01 -1.32595335269E+01 -1.33912891114E+01 -1.35243091283E+01 -1.36586389643E+01 -1.37942480231E+01 -1.39311794018E+01 -1.40694358806E+01 -1.42090260494E+01 -1.43499644085E+01 -1.44922680027E+01 -1.46359395560E+01 -1.47809909269E+01 -1.49274480823E+01 -1.50753044759E+01 -1.52245830823E+01 -1.53753025632E+01 -1.55274480312E+01 -1.56810717774E+01 -1.58361547592E+01 -1.59927205309E+01 -1.61507898999E+01 -1.63103531615E+01 -1.64714429454E+01 -1.66340652453E+01 -1.67982322721E+01 -1.69639664692E+01 -1.71312561470E+01 -1.73001470035E+01 -1.74706283941E+01 -1.76427153861E+01 -1.78164400853E+01 -1.79917920640E+01 -1.81687867787E+01 -1.83474588592E+01 -1.85277980579E+01 -1.87098297676E+01 -1.88935600182E+01 -1.90790170317E+01 -1.92661924719E+01 -1.94551214791E+01 -1.96457988376E+01 -1.98382530966E+01 -2.00324787372E+01 -2.02285173305E+01 -2.04263453189E+01 -2.06260096683E+01 -2.08275104221E+01 -2.10308518011E+01 -2.12360663934E+01 -2.14431472879E+01 -2.16521232844E+01 -2.18630054686E+01 -2.20758010766E+01 -2.22905196921E+01 -2.25071853219E+01 -2.27258039352E+01 -2.29463913445E+01 -2.31689636181E+01 -2.33935273633E+01 -2.36200925063E+01 -2.38486792843E+01 -2.40793068869E+01 -2.43119681001E+01 -2.45466896602E+01 -2.47834799302E+01 -2.50223463608E+01 -2.52633129273E+01 -2.55063748448E+01 -2.57515603874E+01 -2.59988764822E+01 -2.62483232850E+01 -2.64999205663E+01 -2.67536807240E+01 -2.70096145313E+01 -2.72677314068E+01 -2.75280375413E+01 -2.77905453890E+01 -2.80552681464E+01 -2.83222080345E+01 -2.85913864407E+01 -2.88627942959E+01 -2.91364625646E+01 -2.94123798558E+01 -2.96905660252E+01 -2.99710175400E+01 -3.02537574175E+01 -3.05387809664E+01 -3.08260962002E+01 -3.11157123101E+01 -3.14076313009E+01 -3.17018635724E+01 -3.19984069104E+01 -3.22972678781E+01 -3.25984566823E+01 -3.29019710224E+01 -3.32078028391E+01 -3.35159770513E+01 -3.38264757992E+01 -3.41393120248E+01 -3.44544792226E+01 -3.47719770961E+01 -3.50918071556E+01 -3.54139676030E+01 -3.57384523620E+01 -3.60652640490E+01 -3.63943849923E+01 -3.67258279374E+01 -3.70595782581E+01 -3.73956239347E+01 -3.77339674301E+01 -3.80745928091E+01 -3.84174928569E+01 -3.87626569940E+01 -3.91100737687E+01 -3.94597288980E+01 -3.98116092367E+01 -4.01656988202E+01 -4.05219810983E+01 -4.08804415032E+01 -4.12410560152E+01 -4.16038070743E+01 -4.19686730684E+01 -4.23356299211E+01 -4.27046533119E+01 -4.30757187685E+01 -4.34487965142E+01 -4.38238566874E+01 -4.42008714674E+01 -4.45798053963E+01 -4.49606257181E+01 -4.53432955258E+01 -4.57277739483E+01 -4.61140285577E+01 -4.65020059533E+01 -4.68916723921E+01 -4.72829758039E+01 -4.76758685885E+01 -4.80703012846E+01 -4.84662231049E+01 -4.88635740891E+01 -4.92622967652E+01 -4.96623366831E+01 -5.00636265199E+01 -5.04660966670E+01 -5.08696901018E+01 -5.12743252673E+01 -5.16799330018E+01 -5.20864367001E+01 -5.24937552784E+01 -5.29018072726E+01 -5.33105061665E+01 -5.37197585747E+01 -5.41294794594E+01 -5.45395675008E+01 -5.49499220146E+01 -5.53604445994E+01 -5.57710237550E+01 -5.61815507441E+01 -5.65919120647E+01 -5.70019879860E+01 -5.74116550283E+01 -5.78207842190E+01 -5.82292515281E+01 -5.86369156696E+01 -5.90436397844E+01 -5.94492757360E+01 -5.98536788079E+01 -6.02566931371E+01 -6.06581609366E+01 -6.10579170705E+01 -6.14557964462E+01 -6.18516212207E+01 -6.22452149285E+01 -6.26363924440E+01 -6.30249661376E+01 -6.34107365375E+01 -6.37935073686E+01 -6.41730682178E+01 -6.45492089939E+01 -6.49217111188E+01 -6.52903519649E+01 -6.56548971367E+01 -6.60151151341E+01 -6.63707568090E+01 -6.67215789503E+01 -6.70673228335E+01 -6.74077263522E+01 -6.77425237693E+01 -6.80714356075E+01 -6.83941829656E+01 -6.87104739417E+01 -6.90200178408E+01 -6.93225062696E+01 -6.96176357510E+01 -6.99050872551E+01 -7.01845363134E+01 -7.04556549410E+01 -7.07181049633E+01 -7.09715413431E+01 -7.12156156973E+01 -7.14499652279E+01 -7.16742302727E+01 -7.18880355981E+01 -7.20910043554E+01 -7.22827494580E+01 -7.24628804461E+01 -7.26309992088E+01 -7.27866980805E+01 -7.29295697517E+01 -7.30591940789E+01 -7.31751488404E+01 -7.32770033893E+01 -7.33643275133E+01 -7.34366783855E+01 -7.34936108665E+01 -7.35346786246E+01 -7.35594257836E+01 -7.35673959628E+01 -7.35581270495E+01 -7.35311562092E+01 -7.34860139490E+01 -7.34222357298E+01 -7.33393466013E+01 -7.32368752866E+01 -7.31143517557E+01 -7.29713018532E+01 -7.28072551753E+01 -7.26217402193E+01 -7.24142928500E+01 -7.21844469252E+01 -7.19317442087E+01 -7.16557283679E+01 -7.13559535791E+01 -7.10319751949E+01 -7.06833623716E+01 -7.03096918016E+01 -6.99105498483E+01 -6.94855384281E+01 -6.90342690804E+01 -6.85563689227E+01 -6.80514840731E+01 -6.75192785133E+01 -6.69594337448E+01 -6.63716529001E+01 -6.57556663231E+01 -6.51112255332E+01 -6.44381116132E+01 -6.37361356117E+01 -6.30051388132E+01 -6.22449978787E+01 -6.14556225364E+01 -6.06369685130E+01 -5.97890242209E+01 -5.89118274331E+01 -5.80054593706E+01 -5.70700530088E+01 -5.61057944080E+01 -5.51129194848E+01 -5.40917285801E+01 -5.30425783780E+01 -5.19658928986E+01 -5.08621598890E+01 -4.97319447928E+01 -4.85758773517E+01 -4.73946724196E+01 -4.61891213498E+01 -4.49601017905E+01 -4.37085744436E+01 -4.24355970348E+01 -4.11423146735E+01 -3.98299739370E+01 -3.84999181906E+01 -3.71535967391E+01 -3.57925657293E+01 -3.44184871351E+01 -3.30331375110E+01 -3.16384077115E+01 -3.02363029870E+01 -2.88289511739E+01 -2.74185971878E+01 -2.60076078603E+01 -2.45984762421E+01 -2.31938132434E+01 -2.17963603449E+01 -2.04089756335E+01 -1.90346447772E+01 -1.76764713703E+01 -1.63376766796E+01 -1.50216000720E+01 -1.37316911908E+01 -1.24715056851E+01 -1.12447008127E+01 -1.00550278729E+01 -8.90632474190E+00 -7.80250557401E+00 -6.74754976163E+00 -5.74549421800E+00 -4.80041284446E+00 -3.91640766902E+00 -3.09758930783E+00 -2.34805875490E+00 -1.67188588368E+00 -1.07308783457E+00 -5.55606302480E-01 -1.23275277022E-01 2.20202146534E-01 4.71287805932E-01 6.26643311499E-01 6.83166600812E-01 6.38026874652E-01 4.88712064751E-01 2.33069365280E-01 -1.30647535178E-01 -6.03728670752E-01 -1.18695459083E+00 -1.88054459583E+00 -2.68409877842E+00 -3.59653793333E+00 -4.61604543216E+00 -5.74000313555E+00 -6.96492872549E+00 -8.28641112724E+00 -9.69904488859E+00 -1.11963676890E+01 -1.27707948402E+01 -1.44135585578E+01 -1.61146496774E+01 -1.78627596023E+01 -1.96452328141E+01 -2.14480215763E+01 -2.32556495329E+01 -2.50511855427E+01 -2.68162291390E+01 -2.85309075753E+01 -3.01738903964E+01 -3.17224245634E+01 -3.31523857516E+01 -3.44383591325E+01 -3.55537456318E+01 -3.64708962616E+01 -3.71612888110E+01 -3.75957348838E+01 -3.77446352445E+01 -3.75782789779E+01 -3.70671953605E+01 -3.61825598898E+01 -3.48966590529E+01 -3.31834180547E+01 -3.10189936136E+01 -2.83824369640E+01 -2.52564199035E+01 -2.16280401158E+01 -1.74896835596E+01 -1.28399560023E+01 -7.68467185663E+00 -2.03788394027E+00 4.07705204448E+00 1.06264027812E+01 1.75650024637E+01 2.48352467499E+01 3.23661863109E+01 4.00727744294E+01 4.78553393506E+01 5.55993696527E+01 6.31757243475E+01 7.04413885072E+01 7.72409491883E+01 8.34089696788E+01 8.87735018064E+01 9.31610099943E+01 9.64030353177E+01 9.83449949870E+01 9.88575759077E+01 9.78512773303E+01 9.52947445626E+01 9.12376575722E+01 8.57780123863E+01 7.88563651409E+01 7.03599746977E+01 6.01719192915E+01 4.81676614575E+01 3.42489619623E+01 1.80138652835E+01 1.97585690602E+00 -1.96630360174E-01 1.95679193160E-02 -1.94729914071E-03 1.93798574139E-04 -1.93062962078E-05 1.94870557376E-06 -1.88810411258E-07 1.56095339208E-08 -2.26541185777E-10 -1.16985319142E-08 -4.21433600343E-02 1.86345478544E-02 3.57843450182E-06 3.65072134542E-06 3.72446838509E-06 3.79970511488E-06 3.87646162450E-06 3.95476861131E-06 4.03465739268E-06 4.11615991842E-06 4.19930878360E-06 4.28413724153E-06 4.37067921713E-06 4.45896932039E-06 4.54904286029E-06 4.64093585884E-06 4.73468506554E-06 4.83032797200E-06 4.92790282697E-06 5.02744865162E-06 5.12900525510E-06 5.23261325049E-06 5.33831407101E-06 5.44614998654E-06 5.55616412059E-06 5.66840046745E-06 5.78290390983E-06 5.89972023673E-06 6.01889616179E-06 6.14047934193E-06 6.26451839639E-06 6.39106292615E-06 6.52016353375E-06 6.65187184349E-06 6.78624052209E-06 6.92332329969E-06 7.06317499133E-06 7.20585151882E-06 7.35140993313E-06 7.49990843712E-06 7.65140640882E-06 7.80596442513E-06 7.96364428601E-06 8.12450903917E-06 8.28862300527E-06 8.45605180354E-06 8.62686237804E-06 8.80112302439E-06 8.97890341700E-06 9.16027463692E-06 9.34530920022E-06 9.53408108693E-06 9.72666577057E-06 9.92314024831E-06 1.01235830717E-05 1.03280743779E-05 1.05366959219E-05 1.07495311091E-05 1.09666650283E-05 1.11881844861E-05 1.14141780413E-05 1.16447360401E-05 1.18799506526E-05 1.21199159091E-05 1.23647277380E-05 1.26144840037E-05 1.28692845460E-05 1.31292312198E-05 1.33944279357E-05 1.36649807012E-05 1.39409976638E-05 1.42225891530E-05 1.45098677252E-05 1.48029482084E-05 1.51019477475E-05 1.54069858518E-05 1.57181844420E-05 1.60356678989E-05 1.63595631136E-05 1.66899995373E-05 1.70271092333E-05 1.73710269295E-05 1.77218900724E-05 1.80798388815E-05 1.84450164053E-05 1.88175685784E-05 1.91976442797E-05 1.95853953915E-05 1.99809768602E-05 2.03845467577E-05 2.07962663449E-05 2.12163001356E-05 2.16448159619E-05 2.20819850414E-05 2.25279820450E-05 2.29829851669E-05 2.34471761949E-05 2.39207405834E-05 2.44038675268E-05 2.48967500351E-05 2.53995850105E-05 2.59125733259E-05 2.64359199044E-05 2.69698338017E-05 2.75145282882E-05 2.80702209349E-05 2.86371336988E-05 2.92154930122E-05 2.98055298721E-05 3.04074799322E-05 3.10215835967E-05 3.16480861155E-05 3.22872376822E-05 3.29392935331E-05 3.36045140486E-05 3.42831648569E-05 3.49755169394E-05 3.56818467382E-05 3.64024362659E-05 3.71375732177E-05 3.78875510855E-05 3.86526692744E-05 3.94332332215E-05 4.02295545170E-05 4.10419510282E-05 4.18707470250E-05 4.27162733088E-05 4.35788673439E-05 4.44588733906E-05 4.53566426424E-05 4.62725333647E-05 4.72069110370E-05 4.81601484974E-05 4.91326260905E-05 5.01247318179E-05 5.11368614918E-05 5.21694188917E-05 5.32228159242E-05 5.42974727860E-05 5.53938181298E-05 5.65122892343E-05 5.76533321767E-05 5.88174020090E-05 6.00049629383E-05 6.12164885096E-05 6.24524617932E-05 6.37133755751E-05 6.49997325522E-05 6.63120455300E-05 6.76508376250E-05 6.90166424717E-05 7.04100044321E-05 7.18314788109E-05 7.32816320744E-05 7.47610420730E-05 7.62702982696E-05 7.78100019712E-05 7.93807665656E-05 8.09832177630E-05 8.26179938418E-05 8.42857458998E-05 8.59871381100E-05 8.77228479816E-05 8.94935666262E-05 9.12999990289E-05 9.31428643253E-05 9.50228960833E-05 9.69408425912E-05 9.88974671506E-05 1.00893548376E-04 1.02929880499E-04 1.05007273680E-04 1.07126554325E-04 1.09288565409E-04 1.11494166805E-04 1.13744235621E-04 1.16039666542E-04 1.18381372178E-04 1.20770283423E-04 1.23207349818E-04 1.25693539916E-04 1.28229841666E-04 1.30817262794E-04 1.33456831197E-04 1.36149595339E-04 1.38896624665E-04 1.41699010011E-04 1.44557864031E-04 1.47474321624E-04 1.50449540382E-04 1.53484701031E-04 1.56581007893E-04 1.59739689349E-04 1.62961998317E-04 1.66249212735E-04 1.69602636053E-04 1.73023597739E-04 1.76513453791E-04 1.80073587257E-04 1.83705408772E-04 1.87410357096E-04 1.91189899671E-04 1.95045533183E-04 1.98978784137E-04 2.02991209443E-04 2.07084397010E-04 2.11259966357E-04 2.15519569231E-04 2.19864890238E-04 2.24297647488E-04 2.28819593246E-04 2.33432514606E-04 2.38138234165E-04 2.42938610719E-04 2.47835539969E-04 2.52830955242E-04 2.57926828218E-04 2.63125169684E-04 2.68428030288E-04 2.73837501317E-04 2.79355715484E-04 2.84984847734E-04 2.90727116060E-04 2.96584782338E-04 3.02560153175E-04 3.08655580774E-04 3.14873463815E-04 3.21216248351E-04 3.27686428720E-04 3.34286548478E-04 3.41019201339E-04 3.47887032148E-04 3.54892737853E-04 3.62039068511E-04 3.69328828300E-04 3.76764876557E-04 3.84350128833E-04 3.92087557960E-04 3.99980195148E-04 4.08031131097E-04 4.16243517122E-04 4.24620566309E-04 4.33165554683E-04 4.41881822404E-04 4.50772774971E-04 4.59841884468E-04 4.69092690805E-04 4.78528803008E-04 4.88153900508E-04 4.97971734466E-04 5.07986129117E-04 5.18200983136E-04 5.28620271029E-04 5.39248044541E-04 5.50088434101E-04 5.61145650276E-04 5.72423985262E-04 5.83927814388E-04 5.95661597657E-04 6.07629881301E-04 6.19837299370E-04 6.32288575342E-04 6.44988523759E-04 6.57942051892E-04 6.71154161431E-04 6.84629950202E-04 6.98374613909E-04 7.12393447907E-04 7.26691848999E-04 7.41275317264E-04 7.56149457910E-04 7.71319983155E-04 7.86792714140E-04 8.02573582869E-04 8.18668634171E-04 8.35084027705E-04 8.51826039978E-04 8.68901066404E-04 8.86315623389E-04 9.04076350441E-04 9.22190012315E-04 9.40663501184E-04 9.59503838845E-04 9.78718178944E-04 9.98313809243E-04 1.01829815391E-03 1.03867877583E-03 1.05946337897E-03 1.08065981076E-03 1.10227606448E-03 1.12432028170E-03 1.14680075479E-03 1.16972592935E-03 1.19310440679E-03 1.21694494684E-03 1.24125647016E-03 1.26604806094E-03 1.29132896953E-03 1.31710861509E-03 1.34339658830E-03 1.37020265408E-03 1.39753675428E-03 1.42540901049E-03 1.45382972683E-03 1.48280939270E-03 1.51235868570E-03 1.54248847439E-03 1.57320982124E-03 1.60453398547E-03 1.63647242599E-03 1.66903680431E-03 1.70223898748E-03 1.73609105107E-03 1.77060528212E-03 1.80579418211E-03 1.84167046998E-03 1.87824708511E-03 1.91553719031E-03 1.95355417486E-03 1.99231165750E-03 2.03182348943E-03 2.07210375732E-03 2.11316678636E-03 2.15502714317E-03 2.19769963884E-03 2.24119933188E-03 2.28554153120E-03 2.33074179899E-03 2.37681595368E-03 2.42378007281E-03 2.47165049587E-03 2.52044382713E-03 2.57017693842E-03 2.62086697188E-03 2.67253134262E-03 2.72518774138E-03 2.77885413713E-03 2.83354877955E-03 2.88929020150E-03 2.94609722141E-03 3.00398894556E-03 3.06298477030E-03 3.12310438419E-03 3.18436776997E-03 3.24679520655E-03 3.31040727073E-03 3.37522483894E-03 3.44126908879E-03 3.50856150042E-03 3.57712385785E-03 3.64697825002E-03 3.71814707176E-03 3.79065302457E-03 3.86451911718E-03 3.93976866591E-03 4.01642529493E-03 4.09451293609E-03 4.17405582877E-03 4.25507851924E-03 4.33760585995E-03 4.42166300847E-03 4.50727542611E-03 4.59446887630E-03 4.68326942264E-03 4.77370342659E-03 4.86579754482E-03 4.95957872624E-03 5.05507420854E-03 5.15231151447E-03 5.25131844756E-03 5.35212308750E-03 5.45475378497E-03 5.55923915611E-03 5.66560807631E-03 5.77388967367E-03 5.88411332172E-03 5.99630863173E-03 6.11050544427E-03 6.22673382027E-03 6.34502403135E-03 6.46540654948E-03 6.58791203596E-03 6.71257132964E-03 6.83941543434E-03 6.96847550558E-03 7.09978283630E-03 7.23336884191E-03 7.36926504429E-03 7.50750305493E-03 7.64811455710E-03 7.79113128699E-03 7.93658501382E-03 8.08450751883E-03 8.23493057326E-03 8.38788591501E-03 8.54340522424E-03 8.70152009760E-03 8.86226202129E-03 9.02566234269E-03 9.19175224065E-03 9.36056269438E-03 9.53212445079E-03 9.70646799041E-03 9.88362349164E-03 1.00636207935E-02 1.02464893565E-02 1.04322582221E-02 1.06209559702E-02 1.08126106745E-02 1.10072498570E-02 1.12049004392E-02 1.14055886923E-02 1.16093401849E-02 1.18161797293E-02 1.20261313241E-02 1.22392180966E-02 1.24554622414E-02 1.26748849575E-02 1.28975063824E-02 1.31233455244E-02 1.33524201925E-02 1.35847469225E-02 1.38203409025E-02 1.40592158941E-02 1.43013841517E-02 1.45468563388E-02 1.47956414420E-02 1.50477466815E-02 1.53031774191E-02 1.55619370635E-02 1.58240269721E-02 1.60894463506E-02 1.63581921486E-02 1.66302589533E-02 1.69056388795E-02 1.71843214564E-02 1.74662935117E-02 1.77515390526E-02 1.80400391436E-02 1.83317717812E-02 1.86267117658E-02 1.89248305698E-02 1.92260962041E-02 1.95304730802E-02 1.98379218700E-02 2.01483993632E-02 2.04618583207E-02 2.07782473267E-02 2.10975106370E-02 2.14195880255E-02 2.17444146280E-02 2.20719207838E-02 2.24020318750E-02 2.27346681646E-02 2.30697446315E-02 2.34071708051E-02 2.37468505980E-02 2.40886821380E-02 2.44325575983E-02 2.47783630283E-02 2.51259781836E-02 2.54752763555E-02 2.58261242020E-02 2.61783815790E-02 2.65319013722E-02 2.68865293318E-02 2.72421039083E-02 2.75984560913E-02 2.79554092511E-02 2.83127789846E-02 2.86703729650E-02 2.90279907961E-02 2.93854238730E-02 2.97424552478E-02 3.00988595041E-02 3.04544026371E-02 3.08088419439E-02 3.11619259226E-02 3.15133941816E-02 3.18629773604E-02 3.22103970623E-02 3.25553658006E-02 3.28975869590E-02 3.32367547669E-02 3.35725542921E-02 3.39046614503E-02 3.42327430334E-02 3.45564567590E-02 3.48754513399E-02 3.51893665769E-02 3.54978334759E-02 3.58004743900E-02 3.60969031881E-02 3.63867254528E-02 3.66695387067E-02 3.69449326707E-02 3.72124895543E-02 3.74717843807E-02 3.77223853467E-02 3.79638542200E-02 3.81957467753E-02 3.84176132694E-02 3.86289989589E-02 3.88294446599E-02 3.90184873516E-02 3.91956608263E-02 3.93604963852E-02 3.95125235823E-02 3.96512710170E-02 3.97762671769E-02 3.98870413314E-02 3.99831244763E-02 4.00640503306E-02 4.01293563867E-02 4.01785850123E-02 4.02112846058E-02 4.02270108046E-02 4.02253277458E-02 4.02058093790E-02 4.01680408297E-02 4.01116198138E-02 4.00361580995E-02 3.99412830174E-02 3.98266390142E-02 3.96918892501E-02 3.95367172353E-02 3.93608285030E-02 3.91639523154E-02 3.89458433992E-02 3.87062837049E-02 3.84450841855E-02 3.81620865904E-02 3.78571652662E-02 3.75302289598E-02 3.71812226167E-02 3.68101291659E-02 3.64169712843E-02 3.60018131321E-02 3.55647620497E-02 3.51059702060E-02 3.46256361894E-02 3.41240065292E-02 3.36013771373E-02 3.30580946577E-02 3.24945577124E-02 3.19112180308E-02 3.13085814492E-02 3.06872087682E-02 3.00477164528E-02 2.93907771632E-02 2.87171201008E-02 2.80275311558E-02 2.73228528422E-02 2.66039840065E-02 2.58718792957E-02 2.51275483702E-02 2.43720548506E-02 2.36065149828E-02 2.28320960110E-02 2.20500142464E-02 2.12615328220E-02 2.04679591218E-02 1.96706418794E-02 1.88709679356E-02 1.80703586522E-02 1.72702659770E-02 1.64721681587E-02 1.56775651118E-02 1.48879734336E-02 1.41049210798E-02 1.33299417036E-02 1.25645686720E-02 1.18103287689E-02 1.10687356052E-02 1.03412827519E-02 9.62943662299E-03 8.93462913100E-03 8.25825014871E-03 7.60163980890E-03 6.96608068081E-03 6.35278986456E-03 5.76291104888E-03 5.19750658131E-03 4.65754960345E-03 4.14391630763E-03 3.65737837453E-03 3.19859565456E-03 2.76810915827E-03 2.36633442408E-03 1.99355533298E-03 1.64991844191E-03 1.33542790800E-03 1.04994107653E-03 7.93164804673E-04 5.64652591784E-04 3.63802585014E-04 1.89856525436E-04 4.18996957356E-05 -8.11380750984E-05 -1.80480301428E-04 -2.57500584460E-04 -3.13718178590E-04 -3.50792360624E-04 -3.70515594387E-04 -3.74805497233E-04 -3.65695630522E-04 -3.45325153138E-04 -3.15927395617E-04 -2.79817432291E-04 -2.39378749923E-04 -1.97049133471E-04 -1.55305912647E-04 -1.16650736519E-04 -8.32403950402E-05 -5.57408152677E-05 -3.42460683960E-05 -1.85867227399E-05 -8.30012270977E-06 -2.59964518973E-06 -3.43042055624E-07 -1.44437150288E-16 2.23142031311E-17 5.85604521372E-18 -1.53125370908E-17 -1.74616203082E-16 1.12401081450E-17 -2.73902094227E-17 1.49231841577E-17 -1.77481713143E-17 2.02555677469E-17 -1.23434501365E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 629 1.67326984510E+00 1.69008406916E+00 1.70706720536E+00 1.72422094905E+00 1.74146874895E+00 1.75908646415E+00 1.77679907834E+00 1.79458610017E+00 1.81260787377E+00 1.83090583641E+00 1.84923095741E+00 1.86780637286E+00 1.88663481386E+00 1.90563229404E+00 1.92465063501E+00 1.94411241042E+00 1.96358727403E+00 1.98337299272E+00 2.00323621608E+00 2.02338592644E+00 2.04374191840E+00 2.06425289673E+00 2.08501638579E+00 2.10591471309E+00 2.12703866279E+00 2.14859583640E+00 2.16999750318E+00 2.19195561401E+00 2.21384143063E+00 2.23614040117E+00 2.25859663096E+00 2.28132517635E+00 2.30427599525E+00 2.32739854043E+00 2.35079632881E+00 2.37441055184E+00 2.39824988440E+00 2.42231560047E+00 2.44677060346E+00 2.47130730599E+00 2.49615556114E+00 2.52116821406E+00 2.54655430451E+00 2.57211556215E+00 2.59797360193E+00 2.62407556575E+00 2.65041885435E+00 2.67708232781E+00 2.70396051140E+00 2.73113719560E+00 2.75859581949E+00 2.78629410307E+00 2.81423144804E+00 2.84259391853E+00 2.87105678094E+00 2.89997318892E+00 2.92906831050E+00 2.95853902948E+00 2.98826901833E+00 3.01829701889E+00 3.04862578982E+00 3.07921584675E+00 3.11017962345E+00 3.14140663823E+00 3.17303226395E+00 3.20480716242E+00 3.23707874016E+00 3.26955978861E+00 3.30237851375E+00 3.33559717479E+00 3.36911536302E+00 3.40296705039E+00 3.43713676128E+00 3.47164376624E+00 3.50654169536E+00 3.54171756831E+00 3.57738659288E+00 3.61326909620E+00 3.64959892047E+00 3.68625343041E+00 3.72326048068E+00 3.76063699980E+00 3.79841062736E+00 3.83664328843E+00 3.87510521238E+00 3.91407426140E+00 3.95337735072E+00 3.99308805187E+00 4.03315416217E+00 4.07366414982E+00 4.11459090314E+00 4.15593470950E+00 4.19769207957E+00 4.23981067323E+00 4.28244434335E+00 4.32543883046E+00 4.36888065488E+00 4.41273447552E+00 4.45711954579E+00 4.50182080503E+00 4.54702118146E+00 4.59271315618E+00 4.63880191955E+00 4.68543717000E+00 4.73242843351E+00 4.78000518374E+00 4.82801434936E+00 4.87646333154E+00 4.92542034222E+00 4.97489493974E+00 5.02484244806E+00 5.07529893219E+00 5.12627828511E+00 5.17770872008E+00 5.22969201285E+00 5.28223261494E+00 5.33525192750E+00 5.38880024060E+00 5.44293996381E+00 5.49755159764E+00 5.55277378468E+00 5.60848689589E+00 5.66478046187E+00 5.72162901225E+00 5.77909896877E+00 5.83712150098E+00 5.89568010521E+00 5.95488402667E+00 6.01464843494E+00 6.07499105748E+00 6.13598166926E+00 6.19757418386E+00 6.25974181931E+00 6.32256836264E+00 6.38601674796E+00 6.45011997413E+00 6.51486005919E+00 6.58018010505E+00 6.64623732461E+00 6.71293020055E+00 6.78027586964E+00 6.84830348832E+00 6.91699544504E+00 6.98641911675E+00 7.05646691577E+00 7.12730958307E+00 7.19876092195E+00 7.27099218041E+00 7.34392959936E+00 7.41758461278E+00 7.49199792266E+00 7.56711479777E+00 7.64301988197E+00 7.71963984800E+00 7.79708486744E+00 7.87524334801E+00 7.95422440351E+00 8.03397587805E+00 8.11453537137E+00 8.19587693769E+00 8.27805238801E+00 8.36105556963E+00 8.44484852450E+00 8.52950229717E+00 8.61502122027E+00 8.70133812465E+00 8.78855477459E+00 8.87661908232E+00 8.96556681813E+00 9.05541831387E+00 9.14615754389E+00 9.23776535940E+00 9.33034682789E+00 9.42380915995E+00 9.51819790347E+00 9.61355856937E+00 9.70984671277E+00 9.80709569269E+00 9.90529404695E+00 1.00044680011E+01 1.01046705134E+01 1.02058072227E+01 1.03080086746E+01 1.04111815387E+01 1.05154128886E+01 1.06206824739E+01 1.07269491575E+01 1.08342950193E+01 1.09427269502E+01 1.10522080474E+01 1.11627965172E+01 1.12744604336E+01 1.13872330631E+01 1.15011354750E+01 1.16161660648E+01 1.17323273413E+01 1.18496387481E+01 1.19681018883E+01 1.20877496299E+01 1.22085999419E+01 1.23305903290E+01 1.24538370981E+01 1.25782779331E+01 1.27039397163E+01 1.28308735316E+01 1.29590251576E+01 1.30884699099E+01 1.32191689579E+01 1.33511719786E+01 1.34844647085E+01 1.36190770495E+01 1.37550134703E+01 1.38922825720E+01 1.40309046315E+01 1.41708880523E+01 1.43122451625E+01 1.44550060750E+01 1.45991429348E+01 1.47447122992E+01 1.48917119443E+01 1.50401361620E+01 1.51900327749E+01 1.53413935093E+01 1.54942213715E+01 1.56485571389E+01 1.58043929984E+01 1.59617657435E+01 1.61206663702E+01 1.62811231015E+01 1.64431361741E+01 1.66067295990E+01 1.67719203572E+01 1.69387270850E+01 1.71071390739E+01 1.72772046320E+01 1.74489064037E+01 1.76222927951E+01 1.77973435344E+01 1.79741175855E+01 1.81525756505E+01 1.83327737107E+01 1.85147156548E+01 1.86984128446E+01 1.88838843129E+01 1.90711523668E+01 1.92602208275E+01 1.94511052915E+01 1.96438396200E+01 1.98384156292E+01 2.00348633234E+01 2.02332070912E+01 2.04334280191E+01 2.06355939597E+01 2.08396806219E+01 2.10457187226E+01 2.12537354859E+01 2.14637186499E+01 2.16757107042E+01 2.18897196992E+01 2.21057617196E+01 2.23238660953E+01 2.25440180062E+01 2.27662768553E+01 2.29906291746E+01 2.32170947668E+01 2.34457154347E+01 2.36764780254E+01 2.39094028260E+01 2.41445349229E+01 2.43818613753E+01 2.46214153443E+01 2.48632049308E+01 2.51072669450E+01 2.53535909214E+01 2.56022226198E+01 2.58531556080E+01 2.61064271277E+01 2.63620303493E+01 2.66200193577E+01 2.68803639981E+01 2.71431253354E+01 2.74083037316E+01 2.76759049710E+01 2.79459715124E+01 2.82184947348E+01 2.84935122056E+01 2.87710385679E+01 2.90510835062E+01 2.93336597316E+01 2.96187985995E+01 2.99065081519E+01 3.01968091511E+01 3.04897226820E+01 3.07852576127E+01 3.10834270955E+01 3.13842576004E+01 3.16877742555E+01 3.19939680488E+01 3.23028738473E+01 3.26145027861E+01 3.29288647884E+01 3.32459911714E+01 3.35658760374E+01 3.38885562481E+01 3.42140410522E+01 3.45423309508E+01 3.48734517893E+01 3.52074198845E+01 3.55442494451E+01 3.58839529342E+01 3.62265386318E+01 3.65720229071E+01 3.69204230971E+01 3.72717423233E+01 3.76260085051E+01 3.79832101653E+01 3.83433875877E+01 3.87065262841E+01 3.90726521675E+01 3.94417608869E+01 3.98138824377E+01 4.01890109596E+01 4.05671570316E+01 4.09483327291E+01 4.13325408471E+01 4.17197950069E+01 4.21100925349E+01 4.25034420786E+01 4.28998569876E+01 4.32993344453E+01 4.37018641703E+01 4.41074785072E+01 4.45161544804E+01 4.49279089402E+01 4.53427335570E+01 4.57606280424E+01 4.61815944171E+01 4.66056304135E+01 4.70327282172E+01 4.74628912484E+01 4.78960966722E+01 4.83323609713E+01 4.87716652158E+01 4.92139938410E+01 4.96593499823E+01 5.01077129781E+01 5.05590734094E+01 5.10134175123E+01 5.14707303483E+01 5.19309933261E+01 5.23941892838E+01 5.28602974085E+01 5.33292960975E+01 5.38011663018E+01 5.42758767136E+01 5.47534043699E+01 5.52337210311E+01 5.57167952561E+01 5.62025952580E+01 5.66910890279E+01 5.71822376767E+01 5.76760021670E+01 5.81723460845E+01 5.86712231028E+01 5.91725903596E+01 5.96763996009E+01 6.01825974103E+01 6.06911412512E+01 6.12019614530E+01 6.17150137071E+01 6.22302299909E+01 6.27475480109E+01 6.32669030495E+01 6.37882286108E+01 6.43114463301E+01 6.48364809951E+01 6.53632612733E+01 6.58916991482E+01 6.64217035999E+01 6.69531998391E+01 6.74860813205E+01 6.80202574661E+01 6.85556280405E+01 6.90920869619E+01 6.96295276164E+01 7.01678368063E+01 7.07068924046E+01 7.12465830258E+01 7.17867761800E+01 7.23273401553E+01 7.28681461287E+01 7.34090482952E+01 7.39499043619E+01 7.44905658290E+01 7.50308760766E+01 7.55706735920E+01 7.61097896959E+01 7.66480620475E+01 7.71853059301E+01 7.77213422985E+01 7.82559774666E+01 7.87890221034E+01 7.93202724155E+01 7.98495220556E+01 8.03765551159E+01 8.09011556848E+01 8.14230913010E+01 8.19421312274E+01 8.24580334669E+01 8.29705527226E+01 8.34794283291E+01 8.39844036930E+01 8.44852038808E+01 8.49815543156E+01 8.54731693926E+01 8.59597582090E+01 8.64410145964E+01 8.69166360670E+01 8.73862972709E+01 8.78496804720E+01 8.83064478332E+01 8.87562570944E+01 8.91987612500E+01 8.96335954920E+01 9.00603957081E+01 9.04787809443E+01 9.08883717658E+01 9.12887658246E+01 9.16795671004E+01 9.20603594357E+01 9.24307196213E+01 9.27902198864E+01 9.31384192702E+01 9.34748679336E+01 9.37991117086E+01 9.41106777968E+01 9.44090974581E+01 9.46938818436E+01 9.49645400344E+01 9.52205679095E+01 9.54614570237E+01 9.56866890862E+01 9.58957335132E+01 9.60880602394E+01 9.62631226900E+01 9.64203716807E+01 9.65592472373E+01 9.66791900487E+01 9.67796246208E+01 9.68599725971E+01 9.69196542276E+01 9.69580775789E+01 9.69746502427E+01 9.69687725850E+01 9.69398442447E+01 9.68872564738E+01 9.68104071628E+01 9.67086810032E+01 9.65814677044E+01 9.64281588822E+01 9.62481411332E+01 9.60408062361E+01 9.58055449020E+01 9.55417577445E+01 9.52488431802E+01 9.49262102695E+01 9.45732709795E+01 9.41894513326E+01 9.37741793663E+01 9.33269014885E+01 9.28470743905E+01 9.23341678464E+01 9.17876723341E+01 9.12070914047E+01 9.05919494003E+01 8.99417959165E+01 8.92562043548E+01 8.85347715081E+01 8.77771229052E+01 8.69829200539E+01 8.61518526645E+01 8.52836495281E+01 8.43780790544E+01 8.34349496605E+01 8.24541164334E+01 8.14354781774E+01 8.03789941529E+01 7.92846668931E+01 7.81525637819E+01 7.69828094310E+01 7.57755964383E+01 7.45311871277E+01 7.32499093845E+01 7.19321755099E+01 7.05784717741E+01 6.91893726426E+01 6.77655361090E+01 6.63077217535E+01 6.48167734215E+01 6.32936461159E+01 6.17393948541E+01 6.01551873058E+01 5.85422995842E+01 5.69021342684E+01 5.52362079034E+01 5.35461691646E+01 5.18337927512E+01 5.01009911567E+01 4.83498157627E+01 4.65824554497E+01 4.48012478182E+01 4.30086787316E+01 4.12073823222E+01 3.94001514580E+01 3.75899304899E+01 3.57798213502E+01 3.39730889580E+01 3.21731502330E+01 3.03835903380E+01 2.86081444186E+01 2.68507115717E+01 2.51153421207E+01 2.34062370394E+01 2.17277482284E+01 2.00843681109E+01 1.84807238095E+01 1.69215711318E+01 1.54117844491E+01 1.39563466819E+01 1.25603356109E+01 1.12289092070E+01 9.96729523852E+00 8.78076430106E+00 7.67461791215E+00 6.65416278981E+00 5.72468683474E+00 4.89143084988E+00 4.15956009657E+00 3.53413442424E+00 3.02006604538E+00 2.62208903344E+00 2.34471479195E+00 2.19218648837E+00 2.16843127494E+00 2.27701460682E+00 2.52107837368E+00 2.90328801601E+00 3.42577099453E+00 4.09005199510E+00 4.89698373614E+00 5.84667967990E+00 6.93843878648E+00 8.17066756296E+00 9.54080471617E+00 1.10452381694E+01 1.26792239955E+01 1.44368029698E+01 1.63107158785E+01 1.82923229842E+01 2.03715197274E+01 2.25366587309E+01 2.47744751149E+01 2.70700122749E+01 2.94065614878E+01 3.17656045451E+01 3.41267680900E+01 3.64677914029E+01 3.87645094494E+01 4.09908511525E+01 4.31188605790E+01 4.51187449723E+01 4.69589439752E+01 4.86062372648E+01 5.00258854264E+01 5.11818074301E+01 5.20368131838E+01 5.25528756358E+01 5.26914656407E+01 5.24139437774E+01 5.16820206030E+01 5.04582872016E+01 4.87068219183E+01 4.63938787032E+01 4.34886597471E+01 3.99641789934E+01 3.57982072033E+01 3.09743194668E+01 2.54830163514E+01 1.93229341798E+01 1.25021289817E+01 5.03941277697E+00 -3.03426602873E+00 -1.16744300044E+01 -2.08217069923E+01 -3.04005291182E+01 -4.03179624979E+01 -5.04627384450E+01 -6.07045780540E+01 -7.08939248000E+01 -8.08622301769E+01 -9.04229492259E+01 -9.93734726686E+01 -1.07498226669E+02 -1.14573251140E+02 -1.20372611522E+02 -1.24677069628E+02 -1.27285526158E+02 -1.28029829366E+02 -1.26793669137E+02 -1.23536388330E+02 -1.18322701019E+02 -1.11280086984E+02 -1.02331253145E+02 -9.13296399112E+01 -7.81233050403E+01 -6.25504652418E+01 -4.44835616164E+01 -2.34005101686E+01 -2.56702845870E+00 2.55461683120E-01 -2.54225932365E-02 2.52992651484E-03 -2.51782586737E-04 2.50825530197E-05 -2.53156209926E-06 2.45317629639E-07 -2.03028963340E-08 2.99640281602E-10 1.51253894431E-08 -3.00168022536E-02 1.52438936704E-02 2.94757945071E-06 3.00712257234E-06 3.06786846593E-06 3.12984142586E-06 3.19306623717E-06 3.25756818544E-06 3.32337306692E-06 3.39050719883E-06 3.45899742988E-06 3.52887115099E-06 3.60015630626E-06 3.67288140411E-06 3.74707552871E-06 3.82276835155E-06 3.89999014335E-06 3.97877178614E-06 4.05914478557E-06 4.14114128354E-06 4.22479407104E-06 4.31013660122E-06 4.39720300281E-06 4.48602809369E-06 4.57664739487E-06 4.66909714462E-06 4.76341431302E-06 4.85963661665E-06 4.95780253372E-06 5.05795131943E-06 5.16012302161E-06 5.26435849680E-06 5.37069942648E-06 5.47918833379E-06 5.58986860050E-06 5.70278448430E-06 5.81798113654E-06 5.93550462021E-06 6.05540192838E-06 6.17772100294E-06 6.30251075376E-06 6.42982107822E-06 6.55970288115E-06 6.69220809514E-06 6.82738970129E-06 6.96530175036E-06 7.10599938436E-06 7.24953885857E-06 7.39597756399E-06 7.54537405026E-06 7.69778804905E-06 7.85328049789E-06 8.01191356448E-06 8.17375067157E-06 8.33885652220E-06 8.50729712560E-06 8.67913982348E-06 8.85445331695E-06 9.03330769389E-06 9.21577445700E-06 9.40192655226E-06 9.59183839808E-06 9.78558591500E-06 9.98324655594E-06 1.01848993372E-05 1.03906248698E-05 1.06005053919E-05 1.08146248014E-05 1.10330686895E-05 1.12559243749E-05 1.14832809384E-05 1.17152292586E-05 1.19518620483E-05 1.21932738912E-05 1.24395612796E-05 1.26908226532E-05 1.29471584382E-05 1.32086710869E-05 1.34754651194E-05 1.37476471646E-05 1.40253260029E-05 1.43086126095E-05 1.45976201990E-05 1.48924642699E-05 1.51932626510E-05 1.55001355486E-05 1.58132055937E-05 1.61325978916E-05 1.64584400711E-05 1.67908623359E-05 1.71299975160E-05 1.74759811211E-05 1.78289513939E-05 1.81890493658E-05 1.85564189127E-05 1.89312068123E-05 1.93135628028E-05 1.97036396421E-05 2.01015931689E-05 2.05075823646E-05 2.09217694167E-05 2.13443197831E-05 2.17754022582E-05 2.22151890397E-05 2.26638557975E-05 2.31215817433E-05 2.35885497020E-05 2.40649461843E-05 2.45509614609E-05 2.50467896382E-05 2.55526287353E-05 2.60686807629E-05 2.65951518034E-05 2.71322520928E-05 2.76801961045E-05 2.82392026341E-05 2.88094948865E-05 2.93913005644E-05 2.99848519591E-05 3.05903860422E-05 3.12081445600E-05 3.18383741293E-05 3.24813263353E-05 3.31372578314E-05 3.38064304410E-05 3.44891112616E-05 3.51855727701E-05 3.58960929314E-05 3.66209553085E-05 3.73604491745E-05 3.81148696277E-05 3.88845177082E-05 3.96697005173E-05 4.04707313392E-05 4.12879297645E-05 4.21216218174E-05 4.29721400845E-05 4.38398238462E-05 4.47250192110E-05 4.56280792527E-05 4.65493641493E-05 4.74892413264E-05 4.84480856014E-05 4.94262793322E-05 5.04242125682E-05 5.14422832040E-05 5.24808971371E-05 5.35404684274E-05 5.46214194611E-05 5.57241811171E-05 5.68491929372E-05 5.79969032989E-05 5.91677695927E-05 6.03622584020E-05 6.15808456869E-05 6.28240169719E-05 6.40922675366E-05 6.53861026110E-05 6.67060375742E-05 6.80525981567E-05 6.94263206479E-05 7.08277521058E-05 7.22574505729E-05 7.37159852948E-05 7.52039369437E-05 7.67218978464E-05 7.82704722169E-05 7.98502763926E-05 8.14619390766E-05 8.31061015835E-05 8.47834180912E-05 8.64945558959E-05 8.82401956745E-05 9.00210317496E-05 9.18377723619E-05 9.36911399463E-05 9.55818714141E-05 9.75107184412E-05 9.94784477606E-05 1.01485841462E-04 1.03533697296E-04 1.05622828986E-04 1.07754066544E-04 1.09928256592E-04 1.12146262697E-04 1.14408965698E-04 1.16717264057E-04 1.19072074201E-04 1.21474330881E-04 1.23924987534E-04 1.26425016651E-04 1.28975410155E-04 1.31577179786E-04 1.34231357487E-04 1.36938995811E-04 1.39701168319E-04 1.42518970000E-04 1.45393517690E-04 1.48325950505E-04 1.51317430277E-04 1.54369142003E-04 1.57482294298E-04 1.60658119862E-04 1.63897875951E-04 1.67202844861E-04 1.70574334414E-04 1.74013678468E-04 1.77522237416E-04 1.81101398714E-04 1.84752577408E-04 1.88477216671E-04 1.92276788355E-04 1.96152793552E-04 2.00106763162E-04 2.04140258476E-04 2.08254871767E-04 2.12452226894E-04 2.16733979917E-04 2.21101819721E-04 2.25557468655E-04 2.30102683183E-04 2.34739254541E-04 2.39469009415E-04 2.44293810626E-04 2.49215557826E-04 2.54236188214E-04 2.59357677259E-04 2.64582039436E-04 2.69911328980E-04 2.75347640650E-04 2.80893110509E-04 2.86549916717E-04 2.92320280336E-04 2.98206466156E-04 3.04210783531E-04 3.10335587228E-04 3.16583278298E-04 3.22956304957E-04 3.29457163486E-04 3.36088399140E-04 3.42852607088E-04 3.49752433350E-04 3.56790575769E-04 3.63969784984E-04 3.71292865436E-04 3.78762676375E-04 3.86382132897E-04 3.94154206996E-04 4.02081928626E-04 4.10168386796E-04 4.18416730670E-04 4.26830170694E-04 4.35411979735E-04 4.44165494251E-04 4.53094115466E-04 4.62201310575E-04 4.71490613967E-04 4.80965628465E-04 4.90630026587E-04 5.00487551833E-04 5.10542019987E-04 5.20797320442E-04 5.31257417546E-04 5.41926351973E-04 5.52808242107E-04 5.63907285460E-04 5.75227760102E-04 5.86774026118E-04 5.98550527088E-04 6.10561791587E-04 6.22812434709E-04 6.35307159617E-04 6.48050759110E-04 6.61048117220E-04 6.74304210829E-04 6.87824111309E-04 7.01612986186E-04 7.15676100831E-04 7.30018820174E-04 7.44646610435E-04 7.59565040890E-04 7.74779785655E-04 7.90296625493E-04 8.06121449650E-04 8.22260257711E-04 8.38719161481E-04 8.55504386893E-04 8.72622275936E-04 8.90079288612E-04 9.07882004909E-04 9.26037126808E-04 9.44551480302E-04 9.63432017453E-04 9.82685818456E-04 1.00232009374E-03 1.02234218607E-03 1.04275957273E-03 1.06357986762E-03 1.08481082349E-03 1.10646033414E-03 1.12853643661E-03 1.15104731346E-03 1.17400129505E-03 1.19740686177E-03 1.22127264639E-03 1.24560743636E-03 1.27042017615E-03 1.29571996961E-03 1.32151608235E-03 1.34781794409E-03 1.37463515109E-03 1.40197746854E-03 1.42985483300E-03 1.45827735479E-03 1.48725532050E-03 1.51679919536E-03 1.54691962574E-03 1.57762744158E-03 1.60893365887E-03 1.64084948211E-03 1.67338630675E-03 1.70655572166E-03 1.74036951156E-03 1.77483965950E-03 1.80997834928E-03 1.84579796784E-03 1.88231110771E-03 1.91953056939E-03 1.95746936372E-03 1.99614071421E-03 2.03555805938E-03 2.07573505505E-03 2.11668557660E-03 2.15842372120E-03 2.20096380997E-03 2.24432039014E-03 2.28850823715E-03 2.33354235665E-03 2.37943798653E-03 2.42621059879E-03 2.47387590145E-03 2.52244984027E-03 2.57194860050E-03 2.62238860846E-03 2.67378653312E-03 2.72615928750E-03 2.77952402998E-03 2.83389816558E-03 2.88929934706E-03 2.94574547584E-03 3.00325470296E-03 3.06184542968E-03 3.12153630817E-03 3.18234624180E-03 3.24429438551E-03 3.30740014578E-03 3.37168318058E-03 3.43716339905E-03 3.50386096101E-03 3.57179627619E-03 3.64099000332E-03 3.71146304894E-03 3.78323656594E-03 3.85633195184E-03 3.93077084686E-03 4.00657513160E-03 4.08376692450E-03 4.16236857888E-03 4.24240267980E-03 4.32389204038E-03 4.40685969791E-03 4.49132890950E-03 4.57732314732E-03 4.66486609350E-03 4.75398163444E-03 4.84469385485E-03 4.93702703116E-03 5.03100562450E-03 5.12665427317E-03 5.22399778449E-03 5.32306112620E-03 5.42386941718E-03 5.52644791760E-03 5.63082201839E-03 5.73701723013E-03 5.84505917114E-03 5.95497355495E-03 6.06678617697E-03 6.18052290041E-03 6.29620964137E-03 6.41387235311E-03 6.53353700952E-03 6.65522958754E-03 6.77897604883E-03 6.90480232034E-03 7.03273427395E-03 7.16279770508E-03 7.29501831020E-03 7.42942166325E-03 7.56603319095E-03 7.70487814685E-03 7.84598158428E-03 7.98936832792E-03 8.13506294418E-03 8.28308971015E-03 8.43347258124E-03 8.58623515734E-03 8.74140064759E-03 8.89899183357E-03 9.05903103096E-03 9.22154004965E-03 9.38654015214E-03 9.55405201032E-03 9.72409566046E-03 9.89669045652E-03 1.00718550215E-02 1.02496071972E-02 1.04299639915E-02 1.06129415246E-02 1.07985549724E-02 1.09868185081E-02 1.11777452422E-02 1.13713471597E-02 1.15676350553E-02 1.17666184670E-02 1.19683056063E-02 1.21727032876E-02 1.23798168538E-02 1.25896501007E-02 1.28022051981E-02 1.30174826096E-02 1.32354810088E-02 1.34561971940E-02 1.36796259994E-02 1.39057602054E-02 1.41345904443E-02 1.43661051057E-02 1.46002902373E-02 1.48371294452E-02 1.50766037900E-02 1.53186916814E-02 1.55633687699E-02 1.58106078366E-02 1.60603786800E-02 1.63126480003E-02 1.65673792826E-02 1.68245326761E-02 1.70840648728E-02 1.73459289829E-02 1.76100744086E-02 1.78764467162E-02 1.81449875061E-02 1.84156342813E-02 1.86883203145E-02 1.89629745131E-02 1.92395212841E-02 1.95178803972E-02 1.97979668473E-02 2.00796907163E-02 2.03629570349E-02 2.06476656438E-02 2.09337110554E-02 2.12209823160E-02 2.15093628685E-02 2.17987304162E-02 2.20889567889E-02 2.23799078097E-02 2.26714431648E-02 2.29634162762E-02 2.32556741768E-02 2.35480573904E-02 2.38403998144E-02 2.41325286089E-02 2.44242640898E-02 2.47154196289E-02 2.50058015595E-02 2.52952090907E-02 2.55834342284E-02 2.58702617057E-02 2.61554689227E-02 2.64388258967E-02 2.67200952229E-02 2.69990320485E-02 2.72753840578E-02 2.75488914731E-02 2.78192870692E-02 2.80862962036E-02 2.83496368646E-02 2.86090197364E-02 2.88641482833E-02 2.91147188541E-02 2.93604208079E-02 2.96009366618E-02 2.98359422625E-02 3.00651069823E-02 3.02880939411E-02 3.05045602560E-02 3.07141573179E-02 3.09165310990E-02 3.11113224904E-02 3.12981676710E-02 3.14766985109E-02 3.16465430073E-02 3.18073257569E-02 3.19586684643E-02 3.21001904876E-02 3.22315094229E-02 3.23522417273E-02 3.24620033831E-02 3.25604106017E-02 3.26470805699E-02 3.27216322379E-02 3.27836871500E-02 3.28328703177E-02 3.28688111364E-02 3.28911443445E-02 3.28995110257E-02 3.28935596529E-02 3.28729471753E-02 3.28373401452E-02 3.27864158857E-02 3.27198636967E-02 3.26373860981E-02 3.25387001090E-02 3.24235385595E-02 3.22916514334E-02 3.21428072395E-02 3.19767944073E-02 3.17934227046E-02 3.15925246725E-02 3.13739570739E-02 3.11376023509E-02 3.08833700857E-02 3.06111984604E-02 3.03210557078E-02 3.00129415503E-02 2.96868886162E-02 2.93429638290E-02 2.89812697613E-02 2.86019459447E-02 2.82051701275E-02 2.77911594718E-02 2.73601716796E-02 2.69125060398E-02 2.64485043842E-02 2.59685519435E-02 2.54730780922E-02 2.49625569712E-02 2.44375079775E-02 2.38984961094E-02 2.33461321557E-02 2.27810727176E-02 2.22040200523E-02 2.16157217266E-02 2.10169700685E-02 2.04086014084E-02 1.97914950968E-02 1.91665722902E-02 1.85347944953E-02 1.78971618624E-02 1.72547112212E-02 1.66085138507E-02 1.59596729787E-02 1.53093210053E-02 1.46586164479E-02 1.40087406048E-02 1.33608939396E-02 1.27162921847E-02 1.20761621711E-02 1.14417373880E-02 1.08142532804E-02 1.01949422961E-02 9.58502869467E-03 8.98572313248E-03 8.39821704440E-03 7.82367684156E-03 7.26323794990E-03 6.71799871660E-03 6.18901421442E-03 5.67728997721E-03 5.18377570295E-03 4.70935896371E-03 4.25485896479E-03 3.82102039841E-03 3.40850743983E-03 3.01789793649E-03 2.64967784307E-03 2.30423595726E-03 1.98185901289E-03 1.68272718825E-03 1.40691008829E-03 1.15436325968E-03 9.24925297463E-04 7.18315600879E-04 5.34132834581E-04 3.71854148650E-04 2.30835207643E-04 1.10311074569E-04 9.39799037958E-06 -7.29039167300E-05 -1.37706965400E-04 -1.86231280290E-04 -2.19799167855E-04 -2.39828511124E-04 -2.47825197970E-04 -2.45374610635E-04 -2.34132218600E-04 -2.15813332298E-04 -1.92182091467E-04 -1.65039779053E-04 -1.36212569294E-04 -1.07538836754E-04 -8.08561713633E-05 -5.77370299767E-05 -3.86790107203E-05 -2.37678891405E-05 -1.28992425529E-05 -5.75886907078E-06 -1.80290256718E-06 -2.37750464829E-07 -1.23342023948E-17 7.58010841858E-18 9.13112058106E-18 -1.27779244048E-17 -7.54916640432E-17 -2.74341614786E-17 -1.84999381883E-17 1.15187438673E-17 1.20078154831E-17 -7.32486172123E-19 -1.73224799183E-17 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -2.08411904985E-02 1.24529070693E-02 2.42648687827E-06 2.47550356057E-06 2.52551038008E-06 2.57652733620E-06 2.62857483229E-06 2.68167368372E-06 2.73584512629E-06 2.79111082462E-06 2.84749288089E-06 2.90501384363E-06 2.96369671674E-06 3.02356496869E-06 3.08464254189E-06 3.14695386226E-06 3.21052384900E-06 3.27537792455E-06 3.34154202471E-06 3.40904260908E-06 3.47790667154E-06 3.54816175113E-06 3.61983594297E-06 3.69295790954E-06 3.76755689213E-06 3.84366272249E-06 3.92130583477E-06 4.00051727770E-06 4.08132872694E-06 4.16377249779E-06 4.24788155807E-06 4.33368954130E-06 4.42123076014E-06 4.51054022008E-06 4.60165363344E-06 4.69460743362E-06 4.78943878966E-06 4.88618562112E-06 4.98488661315E-06 5.08558123202E-06 5.18830974081E-06 5.29311321556E-06 5.40003356162E-06 5.50911353042E-06 5.62039673651E-06 5.73392767501E-06 5.84975173936E-06 5.96791523943E-06 6.08846542005E-06 6.21145047982E-06 6.33691959042E-06 6.46492291618E-06 6.59551163412E-06 6.72873795442E-06 6.86465514121E-06 7.00331753386E-06 7.14478056867E-06 7.28910080098E-06 7.43633592774E-06 7.58654481058E-06 7.73978749923E-06 7.89612525555E-06 8.05562057794E-06 8.21833722628E-06 8.38434024738E-06 8.55369600092E-06 8.72647218595E-06 8.90273786787E-06 9.08256350599E-06 9.26602098164E-06 9.45318362685E-06 9.64412625357E-06 9.83892518353E-06 1.00376582787E-05 1.02404049722E-05 1.04472463003E-05 1.06582649343E-05 1.08735452138E-05 1.10931731802E-05 1.13172366112E-05 1.15458250553E-05 1.17790298680E-05 1.20169442482E-05 1.22596632747E-05 1.25072839451E-05 1.27599052136E-05 1.30176280306E-05 1.32805553834E-05 1.35487923367E-05 1.38224460747E-05 1.41016259435E-05 1.43864434952E-05 1.46770125319E-05 1.49734491509E-05 1.52758717914E-05 1.55844012813E-05 1.58991608855E-05 1.62202763546E-05 1.65478759755E-05 1.68820906220E-05 1.72230538072E-05 1.75709017363E-05 1.79257733610E-05 1.82878104348E-05 1.86571575693E-05 1.90339622916E-05 1.94183751034E-05 1.98105495403E-05 2.02106422330E-05 2.06188129699E-05 2.10352247603E-05 2.14600438991E-05 2.18934400330E-05 2.23355862282E-05 2.27866590386E-05 2.32468385764E-05 2.37163085831E-05 2.41952565033E-05 2.46838735582E-05 2.51823548220E-05 2.56908992994E-05 2.62097100044E-05 2.67389940407E-05 2.72789626841E-05 2.78298314664E-05 2.83918202606E-05 2.89651533682E-05 2.95500596080E-05 3.01467724070E-05 3.07555298931E-05 3.13765749886E-05 3.20101555075E-05 3.26565242528E-05 3.33159391173E-05 3.39886631851E-05 3.46749648360E-05 3.53751178517E-05 3.60894015243E-05 3.68181007664E-05 3.75615062240E-05 3.83199143914E-05 3.90936277284E-05 3.98829547798E-05 4.06882102972E-05 4.15097153636E-05 4.23477975199E-05 4.32027908944E-05 4.40750363345E-05 4.49648815415E-05 4.58726812073E-05 4.67987971546E-05 4.77435984795E-05 4.87074616969E-05 4.96907708889E-05 5.06939178560E-05 5.17173022714E-05 5.27613318384E-05 5.38264224507E-05 5.49129983560E-05 5.60214923232E-05 5.71523458118E-05 5.83060091460E-05 5.94829416913E-05 6.06836120350E-05 6.19084981699E-05 6.31580876823E-05 6.44328779426E-05 6.57333763008E-05 6.70601002851E-05 6.84135778048E-05 6.97943473567E-05 7.12029582361E-05 7.26399707517E-05 7.41059564445E-05 7.56014983112E-05 7.71271910323E-05 7.86836412040E-05 8.02714675747E-05 8.18913012870E-05 8.35437861232E-05 8.52295787564E-05 8.69493490062E-05 8.87037800996E-05 9.04935689365E-05 9.23194263607E-05 9.41820774363E-05 9.60822617292E-05 9.80207335942E-05 9.99982624672E-05 1.02015633164E-04 1.04073646184E-04 1.06173118020E-04 1.08314881474E-04 1.10499785980E-04 1.12728697931E-04 1.15002501014E-04 1.17322096551E-04 1.19688403846E-04 1.22102360539E-04 1.24564922967E-04 1.27077066534E-04 1.29639786080E-04 1.32254096271E-04 1.34921031979E-04 1.37641648688E-04 1.40417022891E-04 1.43248252505E-04 1.46136457290E-04 1.49082779277E-04 1.52088383202E-04 1.55154456954E-04 1.58282212021E-04 1.61472883957E-04 1.64727732847E-04 1.68048043787E-04 1.71435127371E-04 1.74890320188E-04 1.78414985326E-04 1.82010512888E-04 1.85678320516E-04 1.89419853926E-04 1.93236587452E-04 1.97130024598E-04 2.01101698607E-04 2.05153173032E-04 2.09286042323E-04 2.13501932422E-04 2.17802501371E-04 2.22189439932E-04 2.26664472212E-04 2.31229356307E-04 2.35885884954E-04 2.40635886194E-04 2.45481224052E-04 2.50423799218E-04 2.55465549757E-04 2.60608451814E-04 2.65854520345E-04 2.71205809855E-04 2.76664415148E-04 2.82232472096E-04 2.87912158412E-04 2.93705694451E-04 2.99615344006E-04 3.05643415138E-04 3.11792261004E-04 3.18064280709E-04 3.24461920170E-04 3.30987672993E-04 3.37644081369E-04 3.44433736980E-04 3.51359281925E-04 3.58423409661E-04 3.65628865956E-04 3.72978449862E-04 3.80475014706E-04 3.88121469088E-04 3.95920777908E-04 4.03875963400E-04 4.11990106190E-04 4.20266346364E-04 4.28707884559E-04 4.37317983070E-04 4.46099966974E-04 4.55057225271E-04 4.64193212046E-04 4.73511447646E-04 4.83015519876E-04 4.92709085216E-04 5.02595870052E-04 5.12679671932E-04 5.22964360833E-04 5.33453880454E-04 5.44152249527E-04 5.55063563139E-04 5.66191994088E-04 5.77541794246E-04 5.89117295947E-04 6.00922913391E-04 6.12963144075E-04 6.25242570236E-04 6.37765860315E-04 6.50537770447E-04 6.63563145961E-04 6.76846922907E-04 6.90394129602E-04 7.04209888194E-04 7.18299416243E-04 7.32668028327E-04 7.47321137665E-04 7.62264257760E-04 7.77503004058E-04 7.93043095631E-04 8.08890356876E-04 8.25050719232E-04 8.41530222920E-04 8.58335018694E-04 8.75471369614E-04 8.92945652841E-04 9.10764361438E-04 9.28934106198E-04 9.47461617486E-04 9.66353747091E-04 9.85617470101E-04 1.00525988679E-03 1.02528822452E-03 1.04570983964E-03 1.06653221946E-03 1.08776298412E-03 1.10940988861E-03 1.13148082468E-03 1.15398382284E-03 1.17692705434E-03 1.20031883314E-03 1.22416761792E-03 1.24848201408E-03 1.27327077574E-03 1.29854280773E-03 1.32430716763E-03 1.35057306776E-03 1.37734987720E-03 1.40464712376E-03 1.43247449604E-03 1.46084184536E-03 1.48975918777E-03 1.51923670606E-03 1.54928475166E-03 1.57991384660E-03 1.61113468548E-03 1.64295813735E-03 1.67539524758E-03 1.70845723975E-03 1.74215551748E-03 1.77650166623E-03 1.81150745505E-03 1.84718483835E-03 1.88354595756E-03 1.92060314279E-03 1.95836891443E-03 1.99685598469E-03 2.03607725908E-03 2.07604583787E-03 2.11677501743E-03 2.15827829153E-03 2.20056935257E-03 2.24366209269E-03 2.28757060487E-03 2.33230918386E-03 2.37789232703E-03 2.42433473518E-03 2.47165131319E-03 2.51985717051E-03 2.56896762161E-03 2.61899818627E-03 2.66996458971E-03 2.72188276262E-03 2.77476884096E-03 2.82863916570E-03 2.88351028230E-03 2.93939894006E-03 2.99632209129E-03 3.05429689020E-03 3.11334069170E-03 3.17347104989E-03 3.23470571636E-03 3.29706263820E-03 3.36055995587E-03 3.42521600064E-03 3.49104929192E-03 3.55807853413E-03 3.62632261344E-03 3.69580059404E-03 3.76653171414E-03 3.83853538167E-03 3.91183116951E-03 3.98643881040E-03 4.06237819148E-03 4.13966934836E-03 4.21833245878E-03 4.29838783581E-03 4.37985592062E-03 4.46275727470E-03 4.54711257164E-03 4.63294258831E-03 4.72026819554E-03 4.80911034823E-03 4.89949007482E-03 4.99142846620E-03 5.08494666392E-03 5.18006584780E-03 5.27680722278E-03 5.37519200514E-03 5.47524140785E-03 5.57697662532E-03 5.68041881718E-03 5.78558909138E-03 5.89250848633E-03 6.00119795223E-03 6.11167833143E-03 6.22397033791E-03 6.33809453571E-03 6.45407131645E-03 6.57192087566E-03 6.69166318825E-03 6.81331798264E-03 6.93690471397E-03 7.06244253595E-03 7.18995027163E-03 7.31944638289E-03 7.45094893858E-03 7.58447558150E-03 7.72004349383E-03 7.85766936138E-03 7.99736933622E-03 8.13915899802E-03 8.28305331377E-03 8.42906659602E-03 8.57721245956E-03 8.72750377647E-03 8.87995262953E-03 9.03457026397E-03 9.19136703752E-03 9.35035236865E-03 9.51153468314E-03 9.67492135874E-03 9.84051866808E-03 1.00083317196E-02 1.01783643968E-02 1.03506192951E-02 1.05250976575E-02 1.07017993075E-02 1.08807225806E-02 1.10618642535E-02 1.12452194712E-02 1.14307816725E-02 1.16185425130E-02 1.18084917862E-02 1.20006173430E-02 1.21949050080E-02 1.23913384953E-02 1.25898993212E-02 1.27905667150E-02 1.29933175284E-02 1.31981261425E-02 1.34049643728E-02 1.36138013729E-02 1.38246035357E-02 1.40373343933E-02 1.42519545151E-02 1.44684214044E-02 1.46866893932E-02 1.49067095360E-02 1.51284295018E-02 1.53517934655E-02 1.55767419977E-02 1.58032119535E-02 1.60311363617E-02 1.62604443118E-02 1.64910608415E-02 1.67229068241E-02 1.69558988557E-02 1.71899491421E-02 1.74249653875E-02 1.76608506824E-02 1.78975033939E-02 1.81348170568E-02 1.83726802658E-02 1.86109765713E-02 1.88495843755E-02 1.90883768335E-02 1.93272217557E-02 1.95659815150E-02 1.98045129579E-02 2.00426673199E-02 2.02802901462E-02 2.05172212177E-02 2.07532944842E-02 2.09883380029E-02 2.12221738856E-02 2.14546182531E-02 2.16854811988E-02 2.19145667615E-02 2.21416729082E-02 2.23665915278E-02 2.25891084371E-02 2.28090033979E-02 2.30260501487E-02 2.32400164496E-02 2.34506641426E-02 2.36577492276E-02 2.38610219554E-02 2.40602269378E-02 2.42551032768E-02 2.44453847139E-02 2.46307997982E-02 2.48110720784E-02 2.49859203150E-02 2.51550587179E-02 2.53181972067E-02 2.54750416981E-02 2.56252944184E-02 2.57686542439E-02 2.59048170695E-02 2.60334762061E-02 2.61543228084E-02 2.62670463335E-02 2.63713350301E-02 2.64668764617E-02 2.65533580609E-02 2.66304677182E-02 2.66978944048E-02 2.67553288292E-02 2.68024641288E-02 2.68389965961E-02 2.68646264402E-02 2.68790585827E-02 2.68820034880E-02 2.68731780285E-02 2.68523063829E-02 2.68191209671E-02 2.67733633979E-02 2.67147854868E-02 2.66431502632E-02 2.65582330261E-02 2.64598224208E-02 2.63477215403E-02 2.62217490471E-02 2.60817403153E-02 2.59275485865E-02 2.57590461397E-02 2.55761254693E-02 2.53787004681E-02 2.51667076110E-02 2.49401071347E-02 2.46988842080E-02 2.44430500882E-02 2.41726432572E-02 2.38877305315E-02 2.35884081399E-02 2.32748027616E-02 2.29470725184E-02 2.26054079127E-02 2.22500327044E-02 2.18812047181E-02 2.14992165723E-02 2.11043963229E-02 2.06971080111E-02 2.02777521071E-02 1.98467658413E-02 1.94046234129E-02 1.89518360668E-02 1.84889520299E-02 1.80165562980E-02 1.75352702630E-02 1.70457511728E-02 1.65486914153E-02 1.60448176176E-02 1.55348895532E-02 1.50196988497E-02 1.45000674916E-02 1.39768461104E-02 1.34509120591E-02 1.29231672662E-02 1.23945358653E-02 1.18659616018E-02 1.13384050122E-02 1.08128403802E-02 1.02902524714E-02 9.77163304944E-03 9.25797718256E-03 8.75027934549E-03 8.24952932901E-03 7.75670796819E-03 7.27278270397E-03 6.79870299477E-03 6.33539559718E-03 5.88375973713E-03 5.44466219557E-03 5.01893233510E-03 4.60735709644E-03 4.21067599625E-03 3.82957616013E-03 3.46468742691E-03 3.11657756285E-03 2.78574762600E-03 2.47262752339E-03 2.17757180498E-03 1.90085573984E-03 1.64267172119E-03 1.40312604745E-03 1.18223612694E-03 9.79928153428E-04 7.96035299340E-04 6.30296471751E-04 4.82355674705E-04 3.51762018535E-04 2.37970413605E-04 1.40342981696E-04 5.81512132971E-05 -9.42110681767E-06 -6.32741900737E-05 -1.04387742668E-04 -1.33815672833E-04 -1.52680016904E-04 -1.62164104670E-04 -1.63504995762E-04 -1.57985230812E-04 -1.46923953851E-04 -1.31667475720E-04 -1.13579361984E-04 -9.40301428537E-05 -7.43867566559E-05 -5.60018523046E-05 -4.00246253780E-05 -2.68288519860E-05 -1.64912172027E-05 -8.95060541681E-06 -3.99530370939E-06 -1.25029645581E-06 -1.64774888026E-07 4.18394786855E-17 1.60349756296E-18 -4.44867007563E-18 -5.51102207559E-18 -9.59630044471E-18 -1.22983136583E-17 7.59154944654E-18 1.49597837854E-18 6.21686986749E-18 -7.26783396563E-18 -8.08663349754E-18 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1.10000000000E+00 -5.01093999843E+00 -5.01093960017E+00 -5.01093919386E+00 -5.01093877939E+00 -5.01093835658E+00 -5.01093792518E+00 -5.01093748504E+00 -5.01093703600E+00 -5.01093657790E+00 -5.01093611054E+00 -5.01093563374E+00 -5.01093514731E+00 -5.01093465106E+00 -5.01093414477E+00 -5.01093362827E+00 -5.01093310133E+00 -5.01093256375E+00 -5.01093201530E+00 -5.01093145578E+00 -5.01093088496E+00 -5.01093030260E+00 -5.01092970849E+00 -5.01092910237E+00 -5.01092848401E+00 -5.01092785316E+00 -5.01092720956E+00 -5.01092655297E+00 -5.01092588311E+00 -5.01092519972E+00 -5.01092450253E+00 -5.01092379126E+00 -5.01092306561E+00 -5.01092232532E+00 -5.01092157007E+00 -5.01092079956E+00 -5.01092001349E+00 -5.01091921155E+00 -5.01091839340E+00 -5.01091755872E+00 -5.01091670720E+00 -5.01091583847E+00 -5.01091495219E+00 -5.01091404801E+00 -5.01091312557E+00 -5.01091218450E+00 -5.01091122442E+00 -5.01091024494E+00 -5.01090924569E+00 -5.01090822625E+00 -5.01090718622E+00 -5.01090612518E+00 -5.01090504271E+00 -5.01090393839E+00 -5.01090281175E+00 -5.01090166236E+00 -5.01090048976E+00 -5.01089929347E+00 -5.01089807302E+00 -5.01089682792E+00 -5.01089555767E+00 -5.01089426177E+00 -5.01089293969E+00 -5.01089159092E+00 -5.01089021490E+00 -5.01088881109E+00 -5.01088737892E+00 -5.01088591784E+00 -5.01088442725E+00 -5.01088290655E+00 -5.01088135513E+00 -5.01087977238E+00 -5.01087815767E+00 -5.01087651036E+00 -5.01087482977E+00 -5.01087311524E+00 -5.01087136609E+00 -5.01086958160E+00 -5.01086776108E+00 -5.01086590379E+00 -5.01086400900E+00 -5.01086207595E+00 -5.01086010386E+00 -5.01085809193E+00 -5.01085603937E+00 -5.01085394537E+00 -5.01085180909E+00 -5.01084962965E+00 -5.01084740621E+00 -5.01084513788E+00 -5.01084282373E+00 -5.01084046285E+00 -5.01083805430E+00 -5.01083559711E+00 -5.01083309031E+00 -5.01083053288E+00 -5.01082792381E+00 -5.01082526206E+00 -5.01082254656E+00 -5.01081977623E+00 -5.01081694996E+00 -5.01081406663E+00 -5.01081112508E+00 -5.01080812413E+00 -5.01080506259E+00 -5.01080193923E+00 -5.01079875281E+00 -5.01079550205E+00 -5.01079218566E+00 -5.01078880231E+00 -5.01078535065E+00 -5.01078182931E+00 -5.01077823687E+00 -5.01077457190E+00 -5.01077083294E+00 -5.01076701849E+00 -5.01076312704E+00 -5.01075915702E+00 -5.01075510686E+00 -5.01075097493E+00 -5.01074675959E+00 -5.01074245916E+00 -5.01073807192E+00 -5.01073359611E+00 -5.01072902995E+00 -5.01072437162E+00 -5.01071961925E+00 -5.01071477096E+00 -5.01070982481E+00 -5.01070477882E+00 -5.01069963098E+00 -5.01069437923E+00 -5.01068902149E+00 -5.01068355561E+00 -5.01067797941E+00 -5.01067229067E+00 -5.01066648712E+00 -5.01066056644E+00 -5.01065452628E+00 -5.01064836422E+00 -5.01064207780E+00 -5.01063566452E+00 -5.01062912183E+00 -5.01062244711E+00 -5.01061563770E+00 -5.01060869088E+00 -5.01060160389E+00 -5.01059437391E+00 -5.01058699805E+00 -5.01057947337E+00 -5.01057179686E+00 -5.01056396549E+00 -5.01055597612E+00 -5.01054782556E+00 -5.01053951057E+00 -5.01053102784E+00 -5.01052237400E+00 -5.01051354558E+00 -5.01050453908E+00 -5.01049535091E+00 -5.01048597742E+00 -5.01047641486E+00 -5.01046665942E+00 -5.01045670724E+00 -5.01044655434E+00 -5.01043619669E+00 -5.01042563016E+00 -5.01041485055E+00 -5.01040385356E+00 -5.01039263483E+00 -5.01038118989E+00 -5.01036951418E+00 -5.01035760307E+00 -5.01034545180E+00 -5.01033305557E+00 -5.01032040943E+00 -5.01030750836E+00 -5.01029434722E+00 -5.01028092080E+00 -5.01026722375E+00 -5.01025325064E+00 -5.01023899590E+00 -5.01022445387E+00 -5.01020961879E+00 -5.01019448476E+00 -5.01017904576E+00 -5.01016329568E+00 -5.01014722826E+00 -5.01013083712E+00 -5.01011411576E+00 -5.01009705754E+00 -5.01007965569E+00 -5.01006190331E+00 -5.01004379338E+00 -5.01002531869E+00 -5.01000647193E+00 -5.00998724564E+00 -5.00996763219E+00 -5.00994762380E+00 -5.00992721255E+00 -5.00990639036E+00 -5.00988514899E+00 -5.00986348003E+00 -5.00984137489E+00 -5.00981882482E+00 -5.00979582092E+00 -5.00977235407E+00 -5.00974841501E+00 -5.00972399425E+00 -5.00969908215E+00 -5.00967366886E+00 -5.00964774435E+00 -5.00962129837E+00 -5.00959432047E+00 -5.00956680002E+00 -5.00953872614E+00 -5.00951008775E+00 -5.00948087356E+00 -5.00945107205E+00 -5.00942067147E+00 -5.00938965982E+00 -5.00935802490E+00 -5.00932575424E+00 -5.00929283514E+00 -5.00925925462E+00 -5.00922499949E+00 -5.00919005625E+00 -5.00915441117E+00 -5.00911805022E+00 -5.00908095912E+00 -5.00904312330E+00 -5.00900452789E+00 -5.00896515774E+00 -5.00892499739E+00 -5.00888403109E+00 -5.00884224278E+00 -5.00879961607E+00 -5.00875613425E+00 -5.00871178029E+00 -5.00866653683E+00 -5.00862038615E+00 -5.00857331020E+00 -5.00852529057E+00 -5.00847630849E+00 -5.00842634481E+00 -5.00837538003E+00 -5.00832339425E+00 -5.00827036718E+00 -5.00821627815E+00 -5.00816110608E+00 -5.00810482947E+00 -5.00804742639E+00 -5.00798887452E+00 -5.00792915108E+00 -5.00786823284E+00 -5.00780609614E+00 -5.00774271683E+00 -5.00767807034E+00 -5.00761213158E+00 -5.00754487498E+00 -5.00747627449E+00 -5.00740630354E+00 -5.00733493507E+00 -5.00726214146E+00 -5.00718789459E+00 -5.00711216579E+00 -5.00703492581E+00 -5.00695614488E+00 -5.00687579264E+00 -5.00679383813E+00 -5.00671024981E+00 -5.00662499554E+00 -5.00653804255E+00 -5.00644935744E+00 -5.00635890619E+00 -5.00626665413E+00 -5.00617256590E+00 -5.00607660548E+00 -5.00597873619E+00 -5.00587892062E+00 -5.00577712064E+00 -5.00567329744E+00 -5.00556741143E+00 -5.00545942228E+00 -5.00534928891E+00 -5.00523696946E+00 -5.00512242127E+00 -5.00500560087E+00 -5.00488646401E+00 -5.00476496555E+00 -5.00464105954E+00 -5.00451469916E+00 -5.00438583669E+00 -5.00425442357E+00 -5.00412041027E+00 -5.00398374637E+00 -5.00384438050E+00 -5.00370226033E+00 -5.00355733257E+00 -5.00340954293E+00 -5.00325883611E+00 -5.00310515579E+00 -5.00294844459E+00 -5.00278864412E+00 -5.00262569485E+00 -5.00245953619E+00 -5.00229010643E+00 -5.00211734273E+00 -5.00194118108E+00 -5.00176155632E+00 -5.00157840208E+00 -5.00139165078E+00 -5.00120123361E+00 -5.00100708052E+00 -5.00080912017E+00 -5.00060727993E+00 -5.00040148585E+00 -5.00019166264E+00 -4.99997773367E+00 -4.99975962090E+00 -4.99953724490E+00 -4.99931052479E+00 -4.99907937826E+00 -4.99884372153E+00 -4.99860346928E+00 -4.99835853470E+00 -4.99810882941E+00 -4.99785426347E+00 -4.99759474531E+00 -4.99733018175E+00 -4.99706047797E+00 -4.99678553742E+00 -4.99650526189E+00 -4.99621955140E+00 -4.99592830420E+00 -4.99563141676E+00 -4.99532878372E+00 -4.99502029785E+00 -4.99470585004E+00 -4.99438532927E+00 -4.99405862254E+00 -4.99372561489E+00 -4.99338618932E+00 -4.99304022681E+00 -4.99268760622E+00 -4.99232820431E+00 -4.99196189565E+00 -4.99158855264E+00 -4.99120804544E+00 -4.99082024192E+00 -4.99042500764E+00 -4.99002220581E+00 -4.98961169724E+00 -4.98919334029E+00 -4.98876699083E+00 -4.98833250222E+00 -4.98788972520E+00 -4.98743850792E+00 -4.98697869583E+00 -4.98651013164E+00 -4.98603265529E+00 -4.98554610387E+00 -4.98505031160E+00 -4.98454510969E+00 -4.98403032638E+00 -4.98350578682E+00 -4.98297131301E+00 -4.98242672372E+00 -4.98187183447E+00 -4.98130645740E+00 -4.98073040122E+00 -4.98014347115E+00 -4.97954546878E+00 -4.97893619206E+00 -4.97831543514E+00 -4.97768298834E+00 -4.97703863800E+00 -4.97638216641E+00 -4.97571335172E+00 -4.97503196778E+00 -4.97433778407E+00 -4.97363056557E+00 -4.97291007260E+00 -4.97217606077E+00 -4.97142828075E+00 -4.97066647818E+00 -4.96989039352E+00 -4.96909976189E+00 -4.96829431288E+00 -4.96747377040E+00 -4.96663785250E+00 -4.96578627119E+00 -4.96491873221E+00 -4.96403493485E+00 -4.96313457174E+00 -4.96221732856E+00 -4.96128288391E+00 -4.96033090896E+00 -4.95936106721E+00 -4.95837301424E+00 -4.95736639742E+00 -4.95634085558E+00 -4.95529601870E+00 -4.95423150758E+00 -4.95314693349E+00 -4.95204189780E+00 -4.95091599162E+00 -4.94976879532E+00 -4.94859987821E+00 -4.94740879803E+00 -4.94619510050E+00 -4.94495831882E+00 -4.94369797318E+00 -4.94241357026E+00 -4.94110460258E+00 -4.93977054798E+00 -4.93841086901E+00 -4.93702501228E+00 -4.93561240775E+00 -4.93417246812E+00 -4.93270458800E+00 -4.93120814321E+00 -4.92968248996E+00 -4.92812696402E+00 -4.92654087987E+00 -4.92492352975E+00 -4.92327418275E+00 -4.92159208381E+00 -4.91987645271E+00 -4.91812648298E+00 -4.91634134078E+00 -4.91452016379E+00 -4.91266205994E+00 -4.91076610620E+00 -4.90883134726E+00 -4.90685679420E+00 -4.90484142305E+00 -4.90278417338E+00 -4.90068394673E+00 -4.89853960512E+00 -4.89634996936E+00 -4.89411381741E+00 -4.89182988265E+00 -4.88949685207E+00 -4.88711336439E+00 -4.88467800821E+00 -4.88218931999E+00 -4.87964578203E+00 -4.87704582035E+00 -4.87438780254E+00 -4.87167003559E+00 -4.86889076350E+00 -4.86604816504E+00 -4.86314035126E+00 -4.86016536309E+00 -4.85712116876E+00 -4.85400566122E+00 -4.85081665552E+00 -4.84755188609E+00 -4.84420900399E+00 -4.84078557408E+00 -4.83727907218E+00 -4.83368688217E+00 -4.83000629302E+00 -4.82623449583E+00 -4.82236858074E+00 -4.81840553394E+00 -4.81434223455E+00 -4.81017545150E+00 -4.80590184042E+00 -4.80151794050E+00 -4.79702017134E+00 -4.79240482985E+00 -4.78766808705E+00 -4.78280598505E+00 -4.77781443396E+00 -4.77268920880E+00 -4.76742594659E+00 -4.76202014343E+00 -4.75646715160E+00 -4.75076217688E+00 -4.74490027587E+00 -4.73887635347E+00 -4.73268516050E+00 -4.72632129143E+00 -4.71977918236E+00 -4.71305310911E+00 -4.70613718556E+00 -4.69902536225E+00 -4.69171142514E+00 -4.68418899481E+00 -4.67645152577E+00 -4.66849230625E+00 -4.66030445835E+00 -4.65188093842E+00 -4.64321453810E+00 -4.63429788558E+00 -4.62512344754E+00 -4.61568353145E+00 -4.60597028859E+00 -4.59597571751E+00 -4.58569166822E+00 -4.57510984706E+00 -4.56422182224E+00 -4.55301903020E+00 -4.54149278272E+00 -4.52963427492E+00 -4.51743459420E+00 -4.50488473005E+00 -4.49197558491E+00 -4.47869798614E+00 -4.46504269898E+00 -4.45100044074E+00 -4.43656189625E+00 -4.42171773443E+00 -4.40645862638E+00 -4.39077526466E+00 -4.37465838413E+00 -4.35809878419E+00 -4.34108735264E+00 -4.32361509101E+00 -4.30567314166E+00 -4.28725281643E+00 -4.26834562715E+00 -4.24894331777E+00 -4.22903789842E+00 -4.20862168125E+00 -4.18768731811E+00 -4.16622784017E+00 -4.14423669937E+00 -4.12170781184E+00 -4.09863560318E+00 -4.07501505560E+00 -4.05084175697E+00 -4.02611195169E+00 -4.00082259328E+00 -3.97497139871E+00 -3.94855690439E+00 -3.92157852361E+00 -3.89403660541E+00 -3.86593249474E+00 -3.83726859364E+00 -3.80804842336E+00 -3.77827668718E+00 -3.74795933359E+00 -3.71710361965E+00 -3.68571817414E+00 -3.65381306024E+00 -3.62139983722E+00 -3.58849162076E+00 -3.55510314146E+00 -3.52125080092E+00 -3.48695272492E+00 -3.45222881294E+00 -3.41710078339E+00 -3.38159221386E+00 -3.34572857549E+00 -3.30953726059E+00 -3.27304760263E+00 -3.23629088758E+00 -3.19930035553E+00 -3.16211119133E+00 -3.12476050328E+00 -3.08728728838E+00 -3.04973238291E+00 -3.01213839681E+00 -2.97454963064E+00 -2.93701197328E+00 -2.89957277908E+00 -2.86228072273E+00 -2.82518563022E+00 -2.78833828439E+00 -2.75179020336E+00 -2.71559339030E+00 -2.67980005319E+00 -2.64446229303E+00 -2.60963175942E+00 -2.57535927255E+00 -2.54169441078E+00 -2.50868506362E+00 -2.47637695012E+00 -2.44481310339E+00 -2.41403332252E+00 -2.38407359420E+00 -2.35496548700E+00 -2.32673552282E+00 -2.29940453108E+00 -2.27298699315E+00 -2.24749038624E+00 -2.22291453832E+00 -2.19925100838E+00 -2.17648250925E+00 -2.15458239380E+00 -2.13351422951E+00 -2.11323149115E+00 -2.09367740641E+00 -2.07478499606E+00 -2.05647735678E+00 -2.03866824323E+00 -2.02126301498E+00 -2.00416002434E+00 -1.98725253323E+00 -1.97043126033E+00 -1.95358767544E+00 -1.93661817480E+00 -1.91942929125E+00 -1.90194411469E+00 -1.88411012388E+00 -1.86590865876E+00 -1.84736629469E+00 -1.82859992423E+00 -1.80993114495E+00 -1.79170076069E+00 -1.77384083810E+00 -1.75619082056E+00 -1.73871642257E+00 -1.72141589664E+00 -1.70428751266E+00 -1.68732955776E+00 -1.67054033615E+00 -1.65391816891E+00 -1.63746139376E+00 -1.62116836488E+00 -1.60503745292E+00 -1.58906704472E+00 -1.57325554318E+00 -1.55760136710E+00 -1.54210295100E+00 -1.52675874499E+00 -1.51156721458E+00 -1.49652684056E+00 -1.48163611884E+00 -1.46689356028E+00 -1.45229769058E+00 -1.43784705007E+00 -1.42354019365E+00 -1.40937569057E+00 -1.39535212431E+00 -1.38146809248E+00 -1.36772220660E+00 -1.35411309203E+00 -1.34063938782E+00 -1.32729974653E+00 -1.31409283416E+00 -1.30101732997E+00 -1.28807192635E+00 -1.27525532874E+00 -1.26256625542E+00 -1.25000343745E+00 -1.23756561853E+00 -1.22525155483E+00 -1.21306001494E+00 -1.20098977967E+00 -1.18903964200E+00 -1.17720840690E+00 -1.16549489124E+00 -1.15389792368E+00 -1.14241634453E+00 -1.13104900566E+00 -1.11979477035E+00 -1.10865251323E+00 -1.09762112011E+00 -1.08669948791E+00 -1.07588652452E+00 -1.06518114872E+00 -1.05457915672E+00 -1.04408317680E+00 -1.03369829415E+00 -1.02341625452E+00 -1.01323314333E+00 -1.00315135425E+00 -9.93169879079E-01 -9.83287719670E-01 -9.73503887802E-01 -9.63817405089E-01 -9.54227302879E-01 -9.44732622160E-01 -9.35332413463E-01 -9.26025736767E-01 -9.16811661409E-01 -9.07689265984E-01 -8.98657638260E-01 -8.89715875084E-01 -8.80863082291E-01 -8.72098374616E-01 -8.63420875608E-01 -8.54829717538E-01 -8.46324041315E-01 -8.37902996400E-01 -8.29565740721E-01 -8.21311440590E-01 -8.13139270617E-01 -8.05048413631E-01 -7.97038060595E-01 -7.89107410528E-01 -7.81255670422E-01 -7.73482055166E-01 -7.65785787464E-01 -7.58166097760E-01 -7.50622224158E-01 -7.43153412350E-01 -7.35758915535E-01 -7.28437994348E-01 -7.21189916784E-01 -7.14013958124E-01 -7.06909400865E-01 -6.99875534643E-01 -6.92911656166E-01 -6.86017069141E-01 -6.79191084205E-01 -6.72433018853E-01 -6.65742197374E-01 -6.59117950777E-01 -6.52559616728E-01 -6.46066539480E-01 -6.39638069810E-01 -6.33273564951E-01 -6.26972388530E-01 -6.20733910498E-01 -6.14557507074E-01 -6.08442560678E-01 -6.02388459866E-01 -5.96394599276E-01 -5.90460379559E-01 -5.84585207327E-01 -5.78768495084E-01 -5.73009661175E-01 -5.67308129724E-01 -5.61663330577E-01 -5.56074699245E-01 -5.50541676847E-01 -5.45063710055E-01 -5.39640251040E-01 -5.34270757415E-01 -5.28954692182E-01 -5.23691523680E-01 -5.18480725531E-01 -5.13321776587E-01 -5.08214160881E-01 -5.03157367575E-01 -4.98150890908E-01 -4.93194230147E-01 -4.88286889539E-01 -4.83428378260E-01 -4.78618210369E-01 -4.73855904758E-01 -4.69140985104E-01 -4.64472979825E-01 -4.59851422031E-01 -4.55275849479E-01 -4.50745804526E-01 -4.46260834087E-01 -4.41820489585E-01 -4.37424326912E-01 -4.33071906381E-01 -4.28762792684E-01 -4.24496554849E-01 -4.20272766196E-01 -4.16091004296E-01 -4.11950850927E-01 -4.07851892033E-01 -4.03793717684E-01 -3.99775922032E-01 -3.95798103273E-01 -3.91859863607E-01 -3.87960809194E-01 -3.84100550119E-01 -3.80278700351E-01 -3.76494877705E-01 -3.72748703800E-01 -3.69039804026E-01 -3.65367807504E-01 -3.61732347046E-01 -3.58133059124E-01 -3.54569583827E-01 -3.51041564829E-01 -3.47548649353E-01 -3.44090488132E-01 -3.40666735376E-01 -3.37277048739E-01 -3.33921089282E-01 -3.30598521440E-01 -3.27309012985E-01 -3.24052235001E-01 -3.20827861839E-01 -3.17635571096E-01 -3.14475043575E-01 -3.11345963254E-01 -3.08248017257E-01 -3.05180895822E-01 -3.02144292267E-01 -2.99137902961E-01 -2.96161427296E-01 -2.93214567654E-01 -2.90297029375E-01 -2.87408520735E-01 -2.84548752908E-01 -2.81717439944E-01 -2.78914298735E-01 -2.76139048992E-01 -2.73391413212E-01 -2.70671116654E-01 -2.67977887309E-01 -2.65311455873E-01 -2.62671555724E-01 -2.60057922887E-01 -2.57470296019E-01 -2.54908416371E-01 -2.52372027771E-01 -2.49860876594E-01 -2.47374711740E-01 -2.44913284603E-01 -2.42476349054E-01 -2.40063661408E-01 -2.37674980409E-01 -2.35310067197E-01 -2.32968685289E-01 -2.30650600556E-01 -2.28355581195E-01 -2.26083397712E-01 -2.23833822895E-01 -2.21606631791E-01 -2.19401601686E-01 -2.17218512080E-01 -2.15057144670E-01 -2.12917283320E-01 -2.10798714048E-01 -2.08701224999E-01 -2.06624606425E-01 -2.04568650666E-01 -2.02533152127E-01 -2.00517907259E-01 -1.98522714537E-01 -1.96547374442E-01 -1.94591689438E-01 -1.92655463957E-01 -1.90738504375E-01 -1.88840618994E-01 -1.86961618023E-01 -1.85101313560E-01 -1.83259519573E-01 -1.81436051879E-01 -1.79630728129E-01 -1.77843367787E-01 -1.76073792115E-01 -1.74321824151E-01 -1.72587288695E-01 -1.70870012289E-01 -1.69169823201E-01 -1.67486551411E-01 -1.65820028585E-01 -1.64170088068E-01 -1.62536564861E-01 -1.60919295608E-01 -1.59318118579E-01 -1.57732873642E-01 -1.56163402232E-01 -1.54609547617E-01 -1.53071090567E-01 -1.51548007767E-01 -1.50040079897E-01 -1.48547156157E-01 -1.47069087257E-01 -1.45605725389E-01 -1.44156924214E-01 -1.42722538852E-01 -1.41302425863E-01 -1.39896443234E-01 -1.38504450366E-01 -1.37126308058E-01 -1.35761878495E-01 -1.34411025234E-01 -1.33073613187E-01 -1.31749508612E-01 -1.30438579098E-01 -1.29140693550E-01 -1.27855722180E-01 -1.26583536488E-01 -1.25324009255E-01 -1.24077014528E-01 -1.22842427606E-01 -1.21620125028E-01 -1.20409984565E-01 -1.19211885200E-01 -1.18025707123E-01 -1.16851331716E-01 -1.15688641538E-01 -1.14537520322E-01 -1.13397852953E-01 -1.12269525463E-01 -1.11152425020E-01 -1.10046439912E-01 -1.08951459539E-01 -1.07867374404E-01 -1.06794076095E-01 -1.05731457284E-01 -1.04679411706E-01 -1.03637834156E-01 -1.02606620476E-01 -1.01585667544E-01 -1.00574873263E-01 -9.95741365538E-02 -9.85833573408E-02 -9.76024365457E-02 -9.66312760756E-02 -9.56697788136E-02 -9.47178486092E-02 -9.37753902687E-02 -9.28423095452E-02 -9.19185131302E-02 -9.10039086430E-02 -9.00984046225E-02 -8.92019105176E-02 -8.83143366780E-02 -8.74355943458E-02 -8.65655956458E-02 -8.57042535775E-02 -8.48514820060E-02 -8.40071956534E-02 -8.31713100904E-02 -8.23437417277E-02 -8.15244078078E-02 -8.07132263966E-02 -7.99101163753E-02 -7.91149974323E-02 -7.83277900549E-02 -7.75484155218E-02 -7.67767958949E-02 -7.60128540115E-02 -7.52565134769E-02 -7.45076986563E-02 -7.37663346677E-02 -7.30323473741E-02 -7.23056633760E-02 -7.15862100046E-02 -7.08739153138E-02 -7.01687080735E-02 -6.94705177626E-02 -6.87792745613E-02 -6.80949093448E-02 -6.74173536760E-02 -6.67465397988E-02 -6.60824006311E-02 -6.54248697586E-02 -6.47738814275E-02 -6.41293705386E-02 -6.34912726402E-02 -6.28595239220E-02 -6.22340612085E-02 -6.16148219530E-02 -6.10017442311E-02 -6.03947667344E-02 -5.97938287647E-02 -5.91988702277E-02 -5.86098316271E-02 -5.80266540585E-02 -5.74492792036E-02 -5.68776493245E-02 -5.63117072578E-02 -5.57513964087E-02 -5.51966607457E-02 -5.46474447948E-02 -5.41036936339E-02 -5.35653528875E-02 -5.30323687210E-02 -5.25046878355E-02 -5.19822574626E-02 -5.14650253588E-02 -5.09529398004E-02 -5.04459495784E-02 -4.99440039934E-02 -4.94470528504E-02 -4.89550464540E-02 -4.84679356029E-02 -4.79856715859E-02 -4.75082061759E-02 -4.70354916262E-02 -4.65674806648E-02 -4.61041264903E-02 -4.56453827669E-02 -4.51912036198E-02 -4.47415436307E-02 -4.42963578333E-02 -4.38556017085E-02 -4.34192311805E-02 -4.29872026118E-02 -4.25594727991E-02 -4.21359989692E-02 -4.17167387743E-02 -4.13016502881E-02 -4.08906920013E-02 -4.04838228178E-02 -4.00810020503E-02 -3.96821894164E-02 -3.92873450345E-02 -3.88964294199E-02 -3.85094034806E-02 -3.81262285137E-02 -3.77468662015E-02 -3.73712786073E-02 -3.69994281722E-02 -3.66312777107E-02 -3.62667904075E-02 -3.59059298136E-02 -3.55486598425E-02 -3.51949447671E-02 -3.48447492155E-02 -3.44980381678E-02 -3.41547769527E-02 -3.38149312438E-02 -3.34784670562E-02 -3.31453507431E-02 -3.28155489928E-02 -3.24890288247E-02 -3.21657575866E-02 -3.18457029510E-02 -3.15288329123E-02 -3.12151157831E-02 -3.09045201915E-02 -3.05970150777E-02 -3.02925696909E-02 -2.99911535863E-02 -2.96927366221E-02 -2.93972889563E-02 -2.91047810438E-02 -2.88151836338E-02 -2.85284677661E-02 -2.82446047689E-02 -2.79635662558E-02 -2.76853241226E-02 -2.74098505448E-02 -2.71371179750E-02 -2.68670991396E-02 -2.65997670365E-02 -2.63350949322E-02 -2.60730563594E-02 -2.58136251140E-02 -2.55567752526E-02 -2.53024810900E-02 -2.50507171966E-02 -2.48014583958E-02 -2.45546797615E-02 -2.43103566156E-02 -2.40684645257E-02 -2.38289793022E-02 -2.35918769966E-02 -2.33571338983E-02 -2.31247265329E-02 -2.28946316594E-02 -2.26668262681E-02 -2.24412875784E-02 -2.22179930361E-02 -2.19969203116E-02 -2.17780472975E-02 -2.15613521063E-02 -2.13468130683E-02 -2.11344087293E-02 -2.09241178488E-02 -2.07159193976E-02 -2.05097925556E-02 -2.03057167099E-02 -2.01036714528E-02 8.88653641214E-06 9.06605352908E-06 9.24919701697E-06 9.43604012867E-06 9.62665759663E-06 9.82112566280E-06 1.00195221091E-05 1.02219262886E-05 1.04284191571E-05 1.06390833056E-05 1.08540029934E-05 1.10732641814E-05 1.12969545672E-05 1.15251636194E-05 1.17579826139E-05 1.19955046700E-05 1.22378247879E-05 1.24850398867E-05 1.27372488431E-05 1.29945525306E-05 1.32570538604E-05 1.35248578221E-05 1.37980715260E-05 1.40768042456E-05 1.43611674615E-05 1.46512749060E-05 1.49472426083E-05 1.52491889413E-05 1.55572346684E-05 1.58715029922E-05 1.61921196038E-05 1.65192127326E-05 1.68529131980E-05 1.71933544612E-05 1.75406726793E-05 1.78950067589E-05 1.82564984123E-05 1.86252922137E-05 1.90015356572E-05 1.93853792157E-05 1.97769764010E-05 2.01764838252E-05 2.05840612634E-05 2.09998717173E-05 2.14240814806E-05 2.18568602054E-05 2.22983809699E-05 2.27488203475E-05 2.32083584779E-05 2.36771791383E-05 2.41554698174E-05 2.46434217903E-05 2.51412301944E-05 2.56490941083E-05 2.61672166305E-05 2.66958049608E-05 2.72350704835E-05 2.77852288513E-05 2.83465000718E-05 2.89191085953E-05 2.95032834044E-05 3.00992581059E-05 3.07072710233E-05 3.13275652930E-05 3.19603889607E-05 3.26059950808E-05 3.32646418176E-05 3.39365925479E-05 3.46221159669E-05 3.53214861953E-05 3.60349828883E-05 3.67628913482E-05 3.75055026374E-05 3.82631136955E-05 3.90360274574E-05 3.98245529742E-05 4.06290055371E-05 4.14497068029E-05 4.22869849226E-05 4.31411746726E-05 4.40126175879E-05 4.49016620991E-05 4.58086636709E-05 4.67339849447E-05 4.76779958828E-05 4.86410739163E-05 4.96236040959E-05 5.06259792456E-05 5.16486001192E-05 5.26918755608E-05 5.37562226675E-05 5.48420669561E-05 5.59498425331E-05 5.70799922675E-05 5.82329679682E-05 5.94092305634E-05 6.06092502856E-05 6.18335068584E-05 6.30824896883E-05 6.43566980597E-05 6.56566413345E-05 6.69828391551E-05 6.83358216516E-05 6.97161296533E-05 7.11243149046E-05 7.25609402849E-05 7.40265800333E-05 7.55218199773E-05 7.70472577668E-05 7.86035031118E-05 8.01911780266E-05 8.18109170764E-05 8.34633676317E-05 8.51491901253E-05 8.68690583161E-05 8.86236595576E-05 9.04136950718E-05 9.22398802287E-05 9.41029448313E-05 9.60036334066E-05 9.79427055022E-05 9.99209359886E-05 1.01939115369E-04 1.03998050091E-04 1.06098562875E-04 1.08241493031E-04 1.10427696805E-04 1.12658047709E-04 1.14933436876E-04 1.17254773414E-04 1.19622984763E-04 1.22039017071E-04 1.24503835566E-04 1.27018424940E-04 1.29583789746E-04 1.32200954790E-04 1.34870965545E-04 1.37594888565E-04 1.40373811907E-04 1.43208845569E-04 1.46101121925E-04 1.49051796179E-04 1.52062046826E-04 1.55133076116E-04 1.58266110535E-04 1.61462401292E-04 1.64723224815E-04 1.68049883259E-04 1.71443705025E-04 1.74906045285E-04 1.78438286520E-04 1.82041839072E-04 1.85718141703E-04 1.89468662163E-04 1.93294897779E-04 1.97198376040E-04 2.01180655214E-04 2.05243324957E-04 2.09388006949E-04 2.13616355536E-04 2.17930058385E-04 2.22330837153E-04 2.26820448171E-04 2.31400683139E-04 2.36073369837E-04 2.40840372849E-04 2.45703594298E-04 2.50664974606E-04 2.55726493256E-04 2.60890169580E-04 2.66158063555E-04 2.71532276622E-04 2.77014952512E-04 2.82608278098E-04 2.88314484260E-04 2.94135846764E-04 3.00074687163E-04 3.06133373716E-04 3.12314322320E-04 3.18619997467E-04 3.25052913218E-04 3.31615634191E-04 3.38310776576E-04 3.45141009170E-04 3.52109054423E-04 3.59217689516E-04 3.66469747456E-04 3.73868118190E-04 3.81415749744E-04 3.89115649388E-04 3.96970884812E-04 4.04984585342E-04 4.13159943165E-04 4.21500214586E-04 4.30008721312E-04 4.38688851752E-04 4.47544062352E-04 4.56577878952E-04 4.65793898169E-04 4.75195788808E-04 4.84787293305E-04 4.94572229190E-04 5.04554490586E-04 5.14738049736E-04 5.25126958555E-04 5.35725350219E-04 5.46537440783E-04 5.57567530826E-04 5.68820007138E-04 5.80299344431E-04 5.92010107086E-04 6.03956950938E-04 6.16144625088E-04 6.28577973763E-04 6.41261938194E-04 6.54201558552E-04 6.67401975899E-04 6.80868434202E-04 6.94606282359E-04 7.08620976289E-04 7.22918081047E-04 7.37503272983E-04 7.52382341950E-04 7.67561193545E-04 7.83045851396E-04 7.98842459502E-04 8.14957284605E-04 8.31396718613E-04 8.48167281076E-04 8.65275621699E-04 8.82728522911E-04 9.00532902480E-04 9.18695816178E-04 9.37224460501E-04 9.56126175433E-04 9.75408447272E-04 9.95078911507E-04 1.01514535574E-03 1.03561572269E-03 1.05649811321E-03 1.07780078942E-03 1.09953217784E-03 1.12170087261E-03 1.14431563881E-03 1.16738541576E-03 1.19091932042E-03 1.21492665091E-03 1.23941689000E-03 1.26439970874E-03 1.28988497009E-03 1.31588273271E-03 1.34240325473E-03 1.36945699766E-03 1.39705463030E-03 1.42520703279E-03 1.45392530072E-03 1.48322074928E-03 1.51310491753E-03 1.54358957273E-03 1.57468671474E-03 1.60640858052E-03 1.63876764870E-03 1.67177664425E-03 1.70544854319E-03 1.73979657748E-03 1.77483423985E-03 1.81057528891E-03 1.84703375414E-03 1.88422394117E-03 1.92216043700E-03 1.96085811542E-03 2.00033214244E-03 2.04059798188E-03 2.08167140108E-03 2.12356847659E-03 2.16630560010E-03 2.20989948441E-03 2.25436716948E-03 2.29972602867E-03 2.34599377497E-03 2.39318846746E-03 2.44132851780E-03 2.49043269685E-03 2.54052014144E-03 2.59161036120E-03 2.64372324555E-03 2.69687907080E-03 2.75109850735E-03 2.80640262701E-03 2.86281291050E-03 2.92035125499E-03 2.97903998185E-03 3.03890184443E-03 3.09996003610E-03 3.16223819826E-03 3.22576042863E-03 3.29055128960E-03 3.35663581670E-03 3.42403952725E-03 3.49278842912E-03 3.56290902964E-03 3.63442834465E-03 3.70737390767E-03 3.78177377927E-03 3.85765655649E-03 3.93505138248E-03 4.01398795629E-03 4.09449654273E-03 4.17660798248E-03 4.26035370225E-03 4.34576572515E-03 4.43287668123E-03 4.52171981808E-03 4.61232901167E-03 4.70473877731E-03 4.79898428077E-03 4.89510134952E-03 4.99312648416E-03 5.09309687002E-03 5.19505038884E-03 5.29902563068E-03 5.40506190596E-03 5.51319925763E-03 5.62347847350E-03 5.73594109876E-03 5.85062944860E-03 5.96758662104E-03 6.08685650981E-03 6.20848381752E-03 6.33251406884E-03 6.45899362390E-03 6.58796969185E-03 6.71949034451E-03 6.85360453017E-03 6.99036208755E-03 7.12981375991E-03 7.27201120922E-03 7.41700703054E-03 7.56485476649E-03 7.71560892182E-03 7.86932497814E-03 8.02605940874E-03 8.18586969354E-03 8.34881433408E-03 8.51495286872E-03 8.68434588780E-03 8.85705504901E-03 9.03314309276E-03 9.21267385767E-03 9.39571229606E-03 9.58232448959E-03 9.77257766488E-03 9.96654020918E-03 1.01642816861E-02 1.03658728514E-02 1.05713856686E-02 1.07808933249E-02 1.09944702467E-02 1.12121921155E-02 1.14341358835E-02 1.16603797894E-02 1.18910033735E-02 1.21260874937E-02 1.23657143405E-02 1.26099674525E-02 1.28589317316E-02 1.31126934576E-02 1.33713403035E-02 1.36349613498E-02 1.39036470992E-02 1.41774894906E-02 1.44565819130E-02 1.47410192195E-02 1.50308977404E-02 1.53263152960E-02 1.56273712101E-02 1.59341663213E-02 1.62468029956E-02 1.65653851377E-02 1.68900182016E-02 1.72208092016E-02 1.75578667218E-02 1.79013009256E-02 1.82512235643E-02 1.86077479852E-02 1.89709891392E-02 1.93410635869E-02 1.97180895048E-02 2.01021866901E-02 2.04934765650E-02 2.08920821795E-02 2.12981282142E-02 2.17117409809E-02 2.21330484227E-02 2.25621801134E-02 2.29992672549E-02 2.34444426735E-02 2.38978408156E-02 2.43595977406E-02 2.48298511142E-02 2.53087401984E-02 2.57964058408E-02 2.62929904625E-02 2.67986380435E-02 2.73134941067E-02 2.78377056999E-02 2.83714213759E-02 2.89147911707E-02 2.94679665789E-02 3.00311005274E-02 3.06043473469E-02 3.11878627406E-02 3.17818037501E-02 3.23863287196E-02 3.30015972566E-02 3.36277701899E-02 3.42650095248E-02 3.49134783956E-02 3.55733410139E-02 3.62447626146E-02 3.69279093987E-02 3.76229484713E-02 3.83300477772E-02 3.90493760326E-02 3.97811026523E-02 4.05253976736E-02 4.12824316755E-02 4.20523756947E-02 4.28354011355E-02 4.36316796772E-02 4.44413831753E-02 4.52646835587E-02 4.61017527221E-02 4.69527624128E-02 4.78178841130E-02 4.86972889165E-02 4.95911473996E-02 5.04996294874E-02 5.14229043137E-02 5.23611400751E-02 5.33145038796E-02 5.42831615887E-02 5.52672776538E-02 5.62670149456E-02 5.72825345780E-02 5.83139957247E-02 5.93615554295E-02 6.04253684098E-02 6.15055868536E-02 6.26023602089E-02 6.37158349666E-02 6.48461544366E-02 6.59934585158E-02 6.71578834501E-02 6.83395615880E-02 6.95386211277E-02 7.07551858570E-02 7.19893748850E-02 7.32413023675E-02 7.45110772244E-02 7.57988028503E-02 7.71045768175E-02 7.84284905721E-02 7.97706291233E-02 8.11310707250E-02 8.25098865511E-02 8.39071403644E-02 8.53228881781E-02 8.67571779121E-02 8.82100490421E-02 8.96815322438E-02 9.11716490312E-02 9.26804113890E-02 9.42078214019E-02 9.57538708769E-02 9.73185409639E-02 9.89018017706E-02 1.00503611976E-01 1.02123918439E-01 1.03762655809E-01 1.05419746128E-01 1.07095098440E-01 1.08788608393E-01 1.10500157847E-01 1.12229614481E-01 1.13976831401E-01 1.15741646749E-01 1.17523883327E-01 1.19323348209E-01 1.21139832373E-01 1.22973110332E-01 1.24822939774E-01 1.26689061217E-01 1.28571197662E-01 1.30469054273E-01 1.32382318055E-01 1.34310657558E-01 1.36253722585E-01 1.38211143930E-01 1.40182533121E-01 1.42167482191E-01 1.44165563470E-01 1.46176329394E-01 1.48199312344E-01 1.50234024507E-01 1.52279957769E-01 1.54336583631E-01 1.56403353159E-01 1.58479696969E-01 1.60565025237E-01 1.62658727756E-01 1.64760174018E-01 1.66868713345E-01 1.68983675052E-01 1.71104368656E-01 1.73230084126E-01 1.75360092177E-01 1.77493644607E-01 1.79629974689E-01 1.81768297597E-01 1.83907810893E-01 1.86047695054E-01 1.88187114056E-01 1.90325216002E-01 1.92461133803E-01 1.94593985914E-01 1.96722877113E-01 1.98846899337E-01 2.00965132565E-01 2.03076645749E-01 2.05180497798E-01 2.07275738608E-01 2.09361410132E-01 2.11436547501E-01 2.13500180185E-01 2.15551333191E-01 2.17589028304E-01 2.19612285354E-01 2.21620123520E-01 2.23611562657E-01 2.25585624651E-01 2.27541334788E-01 2.29477723138E-01 2.31393825952E-01 2.33288687057E-01 2.35161359257E-01 2.37010905716E-01 2.38836401339E-01 2.40636934124E-01 2.42411606491E-01 2.44159536578E-01 2.45879859492E-01 2.47571728519E-01 2.49234316268E-01 2.50866815766E-01 2.52468441466E-01 2.54038430194E-01 2.55576041996E-01 2.57080560902E-01 2.58551295585E-01 2.59987579915E-01 2.61388773399E-01 2.62754261500E-01 2.64083455834E-01 2.65375794232E-01 2.66630740666E-01 2.67847785039E-01 2.69026442828E-01 2.70166254583E-01 2.71266785278E-01 2.72327623510E-01 2.73348380557E-01 2.74328689282E-01 2.75268202892E-01 2.76166593564E-01 2.77023550923E-01 2.77838780398E-01 2.78612001447E-01 2.79342945675E-01 2.80031354833E-01 2.80676978737E-01 2.81279573091E-01 2.81838897242E-01 2.82354711881E-01 2.82826776696E-01 2.83254848001E-01 2.83638676344E-01 2.83978004129E-01 2.84272563249E-01 2.84522072749E-01 2.84726236548E-01 2.84884741209E-01 2.84997253793E-01 2.85063419793E-01 2.85082861156E-01 2.85055174411E-01 2.84979928891E-01 2.84856665054E-01 2.84684892904E-01 2.84464090489E-01 2.84193702478E-01 2.83873138780E-01 2.83501773205E-01 2.83078942107E-01 2.82603943000E-01 2.82076033095E-01 2.81494427710E-01 2.80858298511E-01 2.80166771525E-01 2.79418924789E-01 2.78613784534E-01 2.77750514114E-01 2.76829030296E-01 2.75849473151E-01 2.74812021565E-01 2.73716894085E-01 2.72564348503E-01 2.71354681157E-01 2.70088226101E-01 2.68765365681E-01 2.67386568326E-01 2.65952361569E-01 2.64463321590E-01 2.62920073219E-01 2.61323289929E-01 2.59673693775E-01 2.57972055252E-01 2.56219193083E-01 2.54415973932E-01 2.52563312044E-01 2.50662168801E-01 2.48713552209E-01 2.46718516299E-01 2.44678160456E-01 2.42593628658E-01 2.40466108650E-01 2.38296831030E-01 2.36087068250E-01 2.33838133555E-01 2.31551379830E-01 2.29228198373E-01 2.26870017599E-01 2.24478301659E-01 2.22054548994E-01 2.19600290817E-01 2.17117089519E-01 2.14606537019E-01 2.12070253041E-01 2.09509883332E-01 2.06927097821E-01 2.04323588726E-01 2.01701068600E-01 1.99061268335E-01 1.96405935119E-01 1.93736830346E-01 1.91055727535E-01 1.88364410503E-01 1.85664515808E-01 1.82957995984E-01 1.80246650644E-01 1.77532280836E-01 1.74816686422E-01 1.72101663766E-01 1.69389003458E-01 1.66680488068E-01 1.63977890154E-01 1.61282969607E-01 1.58597470832E-01 1.55923121207E-01 1.53261629210E-01 1.50614681923E-01 1.47983942862E-01 1.45371049865E-01 1.42777613029E-01 1.40205212679E-01 1.37655397400E-01 1.35129682106E-01 1.32629546173E-01 1.30156431625E-01 1.27711741387E-01 1.25296837599E-01 1.22913039999E-01 1.20561624378E-01 1.18243821112E-01 1.15960813769E-01 1.13713737794E-01 1.11503679283E-01 1.09331673839E-01 1.07198705521E-01 1.05105705881E-01 1.03053553097E-01 1.01043071210E-01 9.90750294555E-02 9.71501417016E-02 9.52690659990E-02 9.34324042399E-02 9.16407019345E-02 8.98944481082E-02 8.81940753237E-02 8.65399598343E-02 8.49324218715E-02 8.33717260756E-02 8.18580820732E-02 8.03916452080E-02 7.89725174341E-02 7.76007483752E-02 7.62763365596E-02 7.49992308363E-02 7.37693319787E-02 7.25864944816E-02 7.14505285557E-02 7.03612023210E-02 6.93182442000E-02 6.83213455043E-02 6.73701632078E-02 6.64643228887E-02 6.56034218184E-02 6.47870321628E-02 6.40147042503E-02 6.32859698468E-02 6.26003453564E-02 6.19573348501E-02 6.13564327975E-02 6.07971263487E-02 6.02788969858E-02 5.98012213341E-02 5.93635708944E-02 5.89654104451E-02 5.86061948612E-02 5.82853641305E-02 5.80023364210E-02 5.77564991896E-02 5.75471985198E-02 5.73737271442E-02 5.72353119117E-02 5.71311017516E-02 5.70601573951E-02 5.70214441470E-02 5.70138288052E-02 5.70360813870E-02 5.70868817163E-02 5.71648302768E-02 5.72684622062E-02 5.73962630002E-02 5.75466844700E-02 5.77181597096E-02 5.79091161874E-02 5.81179864778E-02 5.83432165077E-02 5.85832714605E-02 5.88366396432E-02 5.91018346958E-02 5.93773965313E-02 5.96618913561E-02 5.99539110700E-02 6.02520722807E-02 6.05550151123E-02 6.08614019378E-02 6.11699161224E-02 6.14792608385E-02 6.17881579836E-02 6.20953472213E-02 6.23995851519E-02 6.26996446105E-02 6.29943140900E-02 6.32823972792E-02 6.35627127112E-02 6.38340935114E-02 6.40953872420E-02 6.43454558347E-02 6.45831756117E-02 6.48074373907E-02 6.50171466786E-02 6.52112239529E-02 6.53886050416E-02 6.55482416057E-02 6.56891017384E-02 6.58101706952E-02 6.59104517706E-02 6.59889673453E-02 6.60447601261E-02 6.60768946085E-02 6.60844587935E-02 6.60665661934E-02 6.60223581650E-02 6.59510066102E-02 6.58517170823E-02 6.57237323360E-02 6.55663363528E-02 6.53788588630E-02 6.51606803727E-02 6.49112376840E-02 6.46300298700E-02 6.43166246364E-02 6.39706649656E-02 6.35918759005E-02 6.31800712897E-02 6.27351602797E-02 6.22571533178E-02 6.17461674164E-02 6.12024304340E-02 6.06262841509E-02 6.00181859585E-02 5.93787090357E-02 5.87085409526E-02 5.80084807141E-02 5.72794343197E-02 5.65224089811E-02 5.57385061818E-02 5.49289137959E-02 5.40948974970E-02 5.32377916885E-02 5.23589901719E-02 5.14599367510E-02 5.05421159383E-02 4.96070439038E-02 4.86562597739E-02 4.76913173628E-02 4.67137773910E-02 4.57252002298E-02 4.47271391863E-02 4.37211343390E-02 4.27087069145E-02 4.16913541960E-02 4.06705449443E-02 3.96477153100E-02 3.86242652140E-02 3.76015551706E-02 3.65809035390E-02 3.55635841245E-02 3.45508242123E-02 3.35438028996E-02 3.25436497601E-02 3.15514438034E-02 3.05682127099E-02 2.95949323186E-02 2.86325263468E-02 2.76818663238E-02 2.67437717174E-02 2.58190102362E-02 2.49082982896E-02 2.40123015888E-02 2.31316358719E-02 2.22668677392E-02 2.14185155813E-02 2.05870505893E-02 1.97728978307E-02 1.89764373805E-02 1.81980054961E-02 1.74378958235E-02 1.66963606270E-02 1.59736120330E-02 1.52698232804E-02 1.45851299694E-02 1.39196313067E-02 1.32733913380E-02 1.26464401688E-02 1.20387751704E-02 1.14503621831E-02 1.08811366469E-02 1.03310047737E-02 9.79984468808E-03 9.28750755306E-03 8.79381868679E-03 8.31857867305E-03 7.86156446973E-03 7.42253051926E-03 7.00120986490E-03 6.59731527690E-03 6.21054039181E-03 5.84056086825E-03 5.48703556137E-03 5.14960771775E-03 4.82790619166E-03 4.52154668261E-03 4.23013299326E-03 3.95325830592E-03 3.69050647474E-03 3.44145333009E-03 3.20566799056E-03 2.98271417770E-03 2.77215152756E-03 2.57353689299E-03 2.38642563028E-03 2.21037286324E-03 2.04493471820E-03 1.88966952317E-03 1.74413896463E-03 1.60790919594E-03 1.48055189157E-03 1.36164524193E-03 1.25077488431E-03 1.14753476581E-03 1.05152793514E-03 9.62367260691E-04 8.79676073082E-04 8.03088731188E-04 7.32251111239E-04 6.66821019397E-04 6.06468528835E-04 5.50876242946E-04 4.99739486907E-04 4.52766430286E-04 4.09678143872E-04 3.70208594264E-04 3.34104580069E-04 3.01125613838E-04 2.71043754032E-04 2.43643391468E-04 2.18720994732E-04 1.96084819114E-04 1.75554583539E-04 1.56961119932E-04 1.40145999314E-04 1.24961138792E-04 1.11268393417E-04 9.89391366738E-05 8.78538331559E-05 7.79016067230E-05 6.89798071904E-05 6.09935783424E-05 5.38554297961E-05 4.74848149802E-05 4.18077172323E-05 3.67562457683E-05 3.22682430271E-05 2.82869046619E-05 2.47604132254E-05 2.16415863838E-05 1.88875403008E-05 1.64593686487E-05 1.43218375385E-05 1.24430965080E-05 1.07944055725E-05 9.34987821941E-06 8.08624012296E-06 6.98260326137E-06 6.02025504043E-06 5.18246196030E-06 4.45428730808E-06 3.82242231470E-06 3.27503018166E-06 2.80160235878E-06 2.39282643485E-06 2.04046166051E-06 1.73720284055E-06 1.47662540953E-06 1.25308577744E-06 1.06163393408E-06 8.97935434602E-07 7.58201226504E-07 6.39124643058E-07 5.37824933152E-07 4.51796741474E-07 3.78864994798E-07 3.17144690237E-07 2.65005119518E-07 2.21038099609E-07 1.84029814407E-07 1.52935904612E-07 1.26859473464E-07 1.05031704658E-07 8.67948155918E-08 7.15870941107E-08 5.89297902117E-08 4.84156557693E-08 3.96989453499E-08 3.24867096282E-08 2.65312299067E-08 2.16234578231E-08 1.75873385976E-08 1.42749091986E-08 1.15620746602E-08 9.34497655273E-09 7.53687735788E-09 6.06549330435E-09 4.87071615266E-09 3.90267154287E-09 3.12006790278E-09 2.48879561903E-09 1.98074125695E-09 1.57278613326E-09 1.24596255107E-09 9.84744546537E-10 7.76453118492E-10 6.10758656107E-10 4.79265686595E-10 3.75167168874E-10 2.92957394255E-10 2.28194151040E-10 1.77302193839E-10 1.37411255322E-10 1.06222870317E-10 8.19011698488E-11 6.29835639527E-11 4.83078830210E-11 3.69531025034E-11 2.81912476684E-11 2.14484751972E-11 1.62736665393E-11 1.23131529670E-11 9.29043175264E-12 6.98993354586E-12 5.24406863060E-12 3.92291931984E-12 2.92606163165E-12 2.17609531083E-12 1.61354041028E-12 1.19282375546E-12 8.79132006562E-13 6.45951677160E-13 4.73152031752E-13 3.45495669992E-13 2.51484992002E-13 1.82471611275E-13 1.31970961284E-13 9.51365109095E-14 6.83577268703E-14 4.89536638997E-14 3.49402080783E-14 2.48538585125E-14 1.76187629398E-14 1.24467313609E-14 8.76230651847E-15 6.14680652369E-15 4.29668212844E-15 2.99263627118E-15 2.07680616925E-15 1.43596366068E-15 9.89191472489E-16 6.78876105561E-16 4.64149172846E-16 3.16129502557E-16 2.14484637756E-16 1.44955345617E-16 9.75803025176E-17 6.54278731831E-17 4.36937022175E-17 2.90611510078E-17 1.92498383998E-17 1.26982518239E-17 8.34152619672E-18 5.45649737827E-18 3.55411417459E-18 2.30504856719E-18 1.48847896099E-18 9.56979278591E-19 6.12553553801E-19 3.90349658001E-19 2.47640507331E-19 1.56402374877E-19 9.83385679638E-20 6.15579439658E-20 3.83681556987E-20 2.38163189356E-20 1.47284786115E-20 9.08038004786E-21 5.58724563444E-21 3.43762641861E-21 2.10453836645E-21 1.28194835020E-21 3.68746577667E-03 3.72452505020E-03 3.76195676424E-03 3.79976466153E-03 3.83795252242E-03 3.87652416525E-03 3.91548344670E-03 3.95483426222E-03 3.99458054639E-03 4.03472627331E-03 4.07527545703E-03 4.11623215192E-03 4.15760045308E-03 4.19938449674E-03 4.24158846072E-03 4.28421656478E-03 4.32727307109E-03 4.37076228463E-03 4.41468855365E-03 4.45905627006E-03 4.50386986991E-03 4.54913383381E-03 4.59485268737E-03 4.64103100168E-03 4.68767339375E-03 4.73478452696E-03 4.78236911156E-03 4.83043190510E-03 4.87897771292E-03 4.92801138864E-03 4.97753783463E-03 5.02756200253E-03 5.07808889368E-03 5.12912355968E-03 5.18067110289E-03 5.23273667690E-03 5.28532548707E-03 5.33844279106E-03 5.39209389931E-03 5.44628417564E-03 5.50101903772E-03 5.55630395765E-03 5.61214446248E-03 5.66854613478E-03 5.72551461320E-03 5.78305559301E-03 5.84117482669E-03 5.89987812448E-03 5.95917135499E-03 6.01906044576E-03 6.07955138388E-03 6.14065021655E-03 6.20236305169E-03 6.26469605859E-03 6.32765546847E-03 6.39124757515E-03 6.45547873562E-03 6.52035537074E-03 6.58588396582E-03 6.65207107132E-03 6.71892330347E-03 6.78644734491E-03 6.85464994541E-03 6.92353792251E-03 6.99311816219E-03 7.06339761959E-03 7.13438331966E-03 7.20608235790E-03 7.27850190105E-03 7.35164918777E-03 7.42553152945E-03 7.50015631082E-03 7.57553099080E-03 7.65166310315E-03 7.72856025728E-03 7.80623013900E-03 7.88468051123E-03 7.96391921485E-03 8.04395416944E-03 8.12479337406E-03 8.20644490807E-03 8.28891693192E-03 8.37221768796E-03 8.45635550126E-03 8.54133878047E-03 8.62717601858E-03 8.71387579387E-03 8.80144677065E-03 8.88989770022E-03 8.97923742167E-03 9.06947486280E-03 9.16061904098E-03 9.25267906408E-03 9.34566413132E-03 9.43958353424E-03 9.53444665761E-03 9.63026298032E-03 9.72704207637E-03 9.82479361581E-03 9.92352736569E-03 1.00232531910E-02 1.01239810558E-02 1.02257210238E-02 1.03284832601E-02 1.04322780313E-02 1.05371157073E-02 1.06430067617E-02 1.07499617734E-02 1.08579914272E-02 1.09671065152E-02 1.10773179375E-02 1.11886367036E-02 1.13010739335E-02 1.14146408584E-02 1.15293488223E-02 1.16452092828E-02 1.17622338125E-02 1.18804340999E-02 1.19998219506E-02 1.21204092886E-02 1.22422081573E-02 1.23652307209E-02 1.24894892653E-02 1.26149961999E-02 1.27417640579E-02 1.28698054984E-02 1.29991333073E-02 1.31297603985E-02 1.32616998153E-02 1.33949647316E-02 1.35295684531E-02 1.36655244191E-02 1.38028462032E-02 1.39415475149E-02 1.40816422012E-02 1.42231442474E-02 1.43660677791E-02 1.45104270632E-02 1.46562365092E-02 1.48035106711E-02 1.49522642484E-02 1.51025120878E-02 1.52542691843E-02 1.54075506831E-02 1.55623718811E-02 1.57187482277E-02 1.58766953274E-02 1.60362289403E-02 1.61973649843E-02 1.63601195365E-02 1.65245088347E-02 1.66905492789E-02 1.68582574333E-02 1.70276500272E-02 1.71987439577E-02 1.73715562901E-02 1.75461042607E-02 1.77224052778E-02 1.79004769234E-02 1.80803369555E-02 1.82620033090E-02 1.84454940983E-02 1.86308276183E-02 1.88180223467E-02 1.90070969455E-02 1.91980702632E-02 1.93909613360E-02 1.95857893903E-02 1.97825738442E-02 1.99813343095E-02 2.01820905933E-02 2.03848627006E-02 2.05896708356E-02 2.07965354038E-02 2.10054770143E-02 2.12165164813E-02 2.14296748265E-02 2.16449732809E-02 2.18624332870E-02 2.20820765006E-02 2.23039247934E-02 2.25280002545E-02 2.27543251929E-02 2.29829221395E-02 2.32138138494E-02 2.34470233040E-02 2.36825737130E-02 2.39204885170E-02 2.41607913895E-02 2.44035062391E-02 2.46486572120E-02 2.48962686943E-02 2.51463653139E-02 2.53989719435E-02 2.56541137025E-02 2.59118159593E-02 2.61721043343E-02 2.64350047016E-02 2.67005431919E-02 2.69687461951E-02 2.72396403621E-02 2.75132526080E-02 2.77896101146E-02 2.80687403324E-02 2.83506709837E-02 2.86354300649E-02 2.89230458496E-02 2.92135468906E-02 2.95069620228E-02 2.98033203662E-02 3.01026513282E-02 3.04049846067E-02 3.07103501925E-02 3.10187783722E-02 3.13302997312E-02 3.16449451563E-02 3.19627458386E-02 3.22837332765E-02 3.26079392784E-02 3.29353959657E-02 3.32661357759E-02 3.36001914653E-02 3.39375961122E-02 3.42783831197E-02 3.46225862190E-02 3.49702394722E-02 3.53213772757E-02 3.56760343630E-02 3.60342458079E-02 3.63960470278E-02 3.67614737867E-02 3.71305621987E-02 3.75033487307E-02 3.78798702062E-02 3.82601638082E-02 3.86442670827E-02 3.90322179421E-02 3.94240546681E-02 3.98198159156E-02 4.02195407158E-02 4.06232684795E-02 4.10310390011E-02 4.14428924612E-02 4.18588694309E-02 4.22790108748E-02 4.27033581548E-02 4.31319530333E-02 4.35648376774E-02 4.40020546616E-02 4.44436469724E-02 4.48896580112E-02 4.53401315983E-02 4.57951119764E-02 4.62546438146E-02 4.67187722117E-02 4.71875427003E-02 4.76610012505E-02 4.81391942735E-02 4.86221686255E-02 4.91099716118E-02 4.96026509900E-02 5.01002549745E-02 5.06028322401E-02 5.11104319258E-02 5.16231036391E-02 5.21408974593E-02 5.26638639421E-02 5.31920541230E-02 5.37255195217E-02 5.42643121461E-02 5.48084844956E-02 5.53580895662E-02 5.59131808537E-02 5.64738123580E-02 5.70400385871E-02 5.76119145615E-02 5.81894958177E-02 5.87728384126E-02 5.93619989277E-02 5.99570344728E-02 6.05580026907E-02 6.11649617604E-02 6.17779704023E-02 6.23970878814E-02 6.30223740117E-02 6.36538891606E-02 6.42916942526E-02 6.49358507737E-02 6.55864207751E-02 6.62434668779E-02 6.69070522766E-02 6.75772407435E-02 6.82540966327E-02 6.89376848841E-02 6.96280710276E-02 7.03253211870E-02 7.10295020840E-02 7.17406810421E-02 7.24589259910E-02 7.31843054700E-02 7.39168886324E-02 7.46567452490E-02 7.54039457122E-02 7.61585610399E-02 7.69206628790E-02 7.76903235097E-02 7.84676158485E-02 7.92526134526E-02 8.00453905231E-02 8.08460219087E-02 8.16545831094E-02 8.24711502798E-02 8.32958002326E-02 8.41286104420E-02 8.49696590471E-02 8.58190248550E-02 8.66767873439E-02 8.75430266666E-02 8.84178236531E-02 8.93012598136E-02 9.01934173418E-02 9.10943791172E-02 9.20042287077E-02 9.29230503727E-02 9.38509290651E-02 9.47879504340E-02 9.57342008265E-02 9.66897672905E-02 9.76547375759E-02 9.86292001372E-02 9.96132441349E-02 1.00606959437E-01 1.01610436621E-01 1.02623766974E-01 1.03647042495E-01 1.04680355896E-01 1.05723800603E-01 1.06777470753E-01 1.07841461200E-01 1.08915867512E-01 1.10000785971E-01 1.11096313575E-01 1.12202548034E-01 1.13319587773E-01 1.14447531928E-01 1.15586480348E-01 1.16736533593E-01 1.17897792928E-01 1.19070360327E-01 1.20254338468E-01 1.21449830732E-01 1.22656941197E-01 1.23875774639E-01 1.25106436524E-01 1.26349033010E-01 1.27603670937E-01 1.28870457827E-01 1.30149501878E-01 1.31440911954E-01 1.32744797588E-01 1.34061268970E-01 1.35390436941E-01 1.36732412986E-01 1.38087309231E-01 1.39455238429E-01 1.40836313953E-01 1.42230649792E-01 1.43638360534E-01 1.45059561363E-01 1.46494368044E-01 1.47942896913E-01 1.49405264866E-01 1.50881589346E-01 1.52371988330E-01 1.53876580317E-01 1.55395484310E-01 1.56928819805E-01 1.58476706774E-01 1.60039265646E-01 1.61616617294E-01 1.63208883012E-01 1.64816184503E-01 1.66438643852E-01 1.68076383509E-01 1.69729526267E-01 1.71398195242E-01 1.73082513845E-01 1.74782605761E-01 1.76498594922E-01 1.78230605483E-01 1.79978761791E-01 1.81743188359E-01 1.83524009836E-01 1.85321350976E-01 1.87135336606E-01 1.88966091592E-01 1.90813740804E-01 1.92678409083E-01 1.94560221202E-01 1.96459301825E-01 1.98375775472E-01 2.00309766474E-01 2.02261398930E-01 2.04230796666E-01 2.06218083185E-01 2.08223381620E-01 2.10246814687E-01 2.12288504632E-01 2.14348573179E-01 2.16427141474E-01 2.18524330030E-01 2.20640258669E-01 2.22775046462E-01 2.24928811662E-01 2.27101671646E-01 2.29293742847E-01 2.31505140682E-01 2.33735979485E-01 2.35986372432E-01 2.38256431467E-01 2.40546267223E-01 2.42855988943E-01 2.45185704397E-01 2.47535519796E-01 2.49905539706E-01 2.52295866957E-01 2.54706602548E-01 2.57137845557E-01 2.59589693033E-01 2.62062239904E-01 2.64555578865E-01 2.67069800278E-01 2.69604992053E-01 2.72161239542E-01 2.74738625415E-01 2.77337229547E-01 2.79957128888E-01 2.82598397343E-01 2.85261105633E-01 2.87945321171E-01 2.90651107916E-01 2.93378526237E-01 2.96127632766E-01 2.98898480252E-01 3.01691117407E-01 3.04505588747E-01 3.07341934439E-01 3.10200190131E-01 3.13080386784E-01 3.15982550504E-01 3.18906702361E-01 3.21852858213E-01 3.24821028515E-01 3.27811218138E-01 3.30823426167E-01 3.33857645709E-01 3.36913863690E-01 3.39992060645E-01 3.43092210511E-01 3.46214280408E-01 3.49358230422E-01 3.52524013376E-01 3.55711574606E-01 3.58920851721E-01 3.62151774371E-01 3.65404263998E-01 3.68678233592E-01 3.71973587438E-01 3.75290220858E-01 3.78628019954E-01 3.81986861336E-01 3.85366611856E-01 3.88767128332E-01 3.92188257273E-01 3.95629834590E-01 3.99091685312E-01 4.02573623295E-01 4.06075450928E-01 4.09596958831E-01 4.13137925553E-01 4.16698117269E-01 4.20277287467E-01 4.23875176636E-01 4.27491511951E-01 4.31126006954E-01 4.34778361232E-01 4.38448260094E-01 4.42135374248E-01 4.45839359466E-01 4.49559856263E-01 4.53296489564E-01 4.57048868370E-01 4.60816585431E-01 4.64599216910E-01 4.68396322056E-01 4.72207442869E-01 4.76032103774E-01 4.79869811290E-01 4.83720053708E-01 4.87582300766E-01 4.91456003330E-01 4.95340593078E-01 4.99235482191E-01 5.03140063043E-01 5.07053707910E-01 5.10975768666E-01 5.14905576507E-01 5.18842441669E-01 5.22785653162E-01 5.26734478512E-01 5.30688163515E-01 5.34645931998E-01 5.38606985605E-01 5.42570503584E-01 5.46535642595E-01 5.50501536534E-01 5.54467296377E-01 5.58432010037E-01 5.62394742244E-01 5.66354534449E-01 5.70310404745E-01 5.74261347817E-01 5.78206334914E-01 5.82144313852E-01 5.86074209038E-01 5.89994921535E-01 5.93905329147E-01 5.97804286549E-01 6.01690625439E-01 6.05563154739E-01 6.09420660827E-01 6.13261907810E-01 6.17085637844E-01 6.20890571489E-01 6.24675408119E-01 6.28438826372E-01 6.32179484656E-01 6.35896021699E-01 6.39587057160E-01 6.43251192287E-01 6.46887010638E-01 6.50493078860E-01 6.54067947523E-01 6.57610152023E-01 6.61118213544E-01 6.64590640089E-01 6.68025927576E-01 6.71422561003E-01 6.74779015680E-01 6.78093758539E-01 6.81365249512E-01 6.84591942976E-01 6.87772289287E-01 6.90904736369E-01 6.93987731400E-01 6.97019722549E-01 6.99999160807E-01 7.02924501884E-01 7.05794208177E-01 7.08606750815E-01 7.11360611772E-01 7.14054286049E-01 7.16686283924E-01 7.19255133260E-01 7.21759381878E-01 7.24197599983E-01 7.26568382638E-01 7.28870352288E-01 7.31102161320E-01 7.33262494653E-01 7.35350072355E-01 7.37363652275E-01 7.39302032676E-01 7.41164054869E-01 7.42948605822E-01 7.44654620745E-01 7.46281085626E-01 7.47827039708E-01 7.49291577889E-01 7.50673853021E-01 7.51973078102E-01 7.53188528324E-01 7.54319542958E-01 7.55365527063E-01 7.56325952969E-01 7.57200361536E-01 7.57988363124E-01 7.58689638273E-01 7.59303938039E-01 7.59831083957E-01 7.60270967594E-01 7.60623549648E-01 7.60888858553E-01 7.61066988551E-01 7.61158097177E-01 7.61162402120E-01 7.61080177407E-01 7.60911748860E-01 7.60657488789E-01 7.60317809856E-01 7.59893158081E-01 7.59384004929E-01 7.58790838450E-01 7.58114153419E-01 7.57354440459E-01 7.56512174112E-01 7.55587799844E-01 7.54581719983E-01 7.53494278598E-01 7.52325745236E-01 7.51076296182E-01 7.49745990040E-01 7.48334742153E-01 7.46842305677E-01 7.45268253998E-01 7.43611958185E-01 7.41872561654E-01 7.40048953442E-01 7.38139740318E-01 7.36143522433E-01 7.34059908382E-01 7.31888814945E-01 7.29630194197E-01 7.27284034003E-01 7.24850358594E-01 7.22329229126E-01 7.19720744219E-01 7.17025040467E-01 7.14242292927E-01 7.11372715585E-01 7.08416561788E-01 7.05374124652E-01 7.02245737434E-01 6.99031773885E-01 6.95732648555E-01 6.92348817078E-01 6.88880776415E-01 6.85329065063E-01 6.81694263229E-01 6.77976992967E-01 6.74177918272E-01 6.70297745142E-01 6.66337221598E-01 6.62297137658E-01 6.58178325280E-01 6.53981658254E-01 6.49708052064E-01 6.45358463696E-01 6.40933891411E-01 6.36435374476E-01 6.31863992854E-01 6.27220866843E-01 6.22507156690E-01 6.17724062148E-01 6.12872822000E-01 6.07954713602E-01 6.02971052868E-01 5.97922927677E-01 5.92811989744E-01 5.87639663766E-01 5.82407410418E-01 5.77116725038E-01 5.71769136787E-01 5.66366207836E-01 5.60909532569E-01 5.55400737179E-01 5.49841478103E-01 5.44233440094E-01 5.38578336401E-01 5.32877908348E-01 5.27133923780E-01 5.21348175963E-01 5.15522482523E-01 5.09658684343E-01 5.03758644456E-01 4.97824246906E-01 4.91857395588E-01 4.85860013073E-01 4.79834039409E-01 4.73781430908E-01 4.67704158909E-01 4.61604208533E-01 4.55483577414E-01 4.49344274426E-01 4.43188318385E-01 4.37017736751E-01 4.30834564314E-01 4.24640841875E-01 4.18438614923E-01 4.12229932309E-01 4.06016844925E-01 3.99801404385E-01 3.93585661718E-01 3.87371666084E-01 3.81161463500E-01 3.74957095605E-01 3.68760598464E-01 3.62574001408E-01 3.56399325944E-01 3.50238584718E-01 3.44093780569E-01 3.37966905664E-01 3.31859940743E-01 3.25774854472E-01 3.19713602935E-01 3.13678129257E-01 3.07670363383E-01 3.01692222020E-01 2.95745608741E-01 2.89832414262E-01 2.83954516881E-01 2.78113783082E-01 2.72312068269E-01 2.66551217620E-01 2.60833067012E-01 2.55159443972E-01 2.49532168570E-01 2.43953054198E-01 2.38423908094E-01 2.32946531514E-01 2.27522719382E-01 2.22154259258E-01 2.16842929423E-01 2.11590495855E-01 2.06398707882E-01 2.01269292250E-01 1.96203945392E-01 1.91204323686E-01 1.86272031577E-01 1.81408607555E-01 1.76615508142E-01 1.71894090312E-01 1.67245593060E-01 1.62671119189E-01 1.58171618706E-01 1.53747875442E-01 1.49400498505E-01 1.45129919933E-01 1.40936399293E-01 1.36820035172E-01 1.32780782619E-01 1.28818474784E-01 1.24932846615E-01 1.21123558347E-01 1.17390216931E-01 1.13732394050E-01 1.10149640079E-01 1.06641493916E-01 1.03207489056E-01 9.98471565222E-02 9.65600253957E-02 9.33456216388E-02 9.02034658293E-02 8.71330703046E-02 8.41339360886E-02 8.12055498661E-02 7.83473811766E-02 7.55588799318E-02 7.28394743064E-02 7.01885690197E-02 6.76055439978E-02 6.50897533963E-02 6.26405249526E-02 6.02571596347E-02 5.79389315533E-02 5.56850881038E-02 5.34948503104E-02 5.13674133432E-02 4.93019471856E-02 4.72975974304E-02 4.53534861869E-02 4.34687130812E-02 4.16423563386E-02 3.98734739340E-02 3.81611048010E-02 3.65042700908E-02 3.49019744735E-02 3.33532074746E-02 3.18569448414E-02 3.04121499357E-02 2.90177751450E-02 2.76727633127E-02 2.63760491806E-02 2.51265608417E-02 2.39232211996E-02 2.27649494320E-02 2.16506624528E-02 2.05792763707E-02 1.95497079369E-02 1.85608759778E-02 1.76117028039E-02 1.67011155881E-02 1.58280477011E-02 1.49914399958E-02 1.41902420257E-02 1.34234131881E-02 1.26899237776E-02 1.19887559410E-02 1.13189045243E-02 1.06793778069E-02 1.00691981220E-02 9.48740236553E-03 8.93304240321E-03 8.40518538564E-03 7.90291398836E-03 7.42532659354E-03 6.97153743176E-03 6.54067670127E-03 6.13189068041E-03 5.74434184589E-03 5.37720900612E-03 5.02968745540E-03 4.70098915099E-03 4.39034291234E-03 4.09699463900E-03 3.82020754223E-03 3.55926238381E-03 3.31345771533E-03 3.08211011083E-03 2.86455438615E-03 2.66014379889E-03 2.46825022348E-03 2.28826429692E-03 2.11959553146E-03 1.96167239129E-03 1.81394233152E-03 1.67587179789E-03 1.54694618689E-03 1.42666976617E-03 1.31456555584E-03 1.21017517173E-03 1.11305863184E-03 1.02279412771E-03 9.38977762646E-04 8.61223258866E-04 7.89161635770E-04 7.22440861760E-04 6.60725481949E-04 6.03696224230E-04 5.51049586155E-04 5.02497405044E-04 4.57766413729E-04 4.16597784283E-04 3.78746661988E-04 3.43981691766E-04 3.12084539152E-04 2.82849407843E-04 2.56082555705E-04 2.31601811045E-04 2.09236090830E-04 1.88824922408E-04 1.70217970200E-04 1.53274568674E-04 1.37863262833E-04 1.23861357303E-04 1.11154475024E-04 9.96361263949E-05 8.92072896687E-05 7.97760032962E-05 7.12569705071E-05 6.35711770370E-05 5.66455220769E-05 5.04124627888E-05 4.48096725972E-05 3.97797133827E-05 3.52697216301E-05 3.12311085191E-05 2.76192738830E-05 2.43933339084E-05 2.15158623937E-05 1.89526453468E-05 1.66724486539E-05 1.46467985257E-05 1.28497743898E-05 1.12578138794E-05 9.84952954203E-06 8.60553688138E-06 7.50829332836E-06 6.54194773260E-06 5.69219995931E-06 4.94617017645E-06 4.29227741974E-06 3.72012702920E-06 3.22040656095E-06 2.78478979133E-06 2.40584844781E-06 2.07697132240E-06 1.79229044949E-06 1.54661406106E-06 1.33246375737E-06 1.14609827730E-06 9.84179682266E-07 8.43734966888E-07 7.22120731750E-07 6.16990737548E-07 5.26266164087E-07 4.48108402635E-07 3.80894215392E-07 3.23193101663E-07 2.73746716387E-07 2.31450193003E-07 1.95335229227E-07 1.64554800964E-07 1.38369376359E-07 1.16134508831E-07 9.72896946836E-08 8.13483876697E-08 6.78890695061E-08 5.65472818712E-08 4.70085317668E-08 3.90019883007E-08 3.22948949039E-08 2.66876267343E-08 2.20093284967E-08 1.81140731478E-08 1.48774869110E-08 1.21937907253E-08 9.97321266761E-09 8.13973003550E-09 6.62910365043E-09 5.38717054796E-09 4.36836456733E-09 3.53443744482E-09 2.85335586328E-09 2.29835252434E-09 1.84711170042E-09 1.48107190310E-09 1.18483028405E-09 9.45635177250E-10 7.52954808924E-10 5.98111656118E-10 4.73973239544E-10 3.74691301485E-10 2.95482357700E-10 2.32443533873E-10 1.82398412673E-10 1.42768336960E-10 1.11465247257E-10 8.68026861138E-11 6.74220864188E-11 5.22318827086E-11 4.03573508022E-11 3.10993981363E-11 2.39008006570E-11 1.83186175992E-11 1.40019647645E-11 1.06730310206E-11 8.11291756834E-12 6.14956968477E-12 4.64813264054E-12 3.50320898656E-12 2.63266032976E-12 1.97265999643E-12 1.47375577418E-12 1.09774582903E-12 8.15207292346E-13 6.03547089581E-13 4.45469356837E-13 3.27774130649E-13 2.40418640069E-13 1.75786104950E-13 1.28117979073E-13 9.30745168545E-14 6.73957609208E-14 4.86408565364E-14 3.49882570969E-14 2.50831076015E-14 1.79210577338E-14 1.27601089734E-14 9.05396072478E-15 6.40178653675E-15 4.51052256716E-15 3.16665095138E-15 2.21516262187E-15 1.54392920118E-15 1.07213531232E-15 7.41747714211E-16 5.11247283766E-16 3.51040812839E-16 2.40115096409E-16 1.63606240483E-16 1.11040633410E-16 7.50669227113E-17 5.05455226337E-17 3.38974300008E-17 2.26403578679E-17 1.50596365261E-17 9.97567878632E-18 6.58035134329E-18 4.32231168556E-18 2.82699461842E-18 1.84101415732E-18 1.19369582900E-18 7.70576202230E-19 4.95226244030E-19 3.16838855016E-19 2.01790320144E-19 1.27929152570E-19 8.07283369499E-20 5.07048574583E-20 3.16971189039E-20 1.97204151822E-20 1.22100525685E-20 7.52321010522E-21 4.61266353298E-21 2.81411491786E-21 1.70825093936E-21 1.03171417996E-21 6.19930360332E-22 3.70578183618E-22 2.20367560041E-22 1.30353759097E-22 7.66980846222E-23 4.48856261672E-23 2.61257269486E-23 1.51232135095E-23 8.70583493237E-24 4.98360046177E-24 2.83673003143E-24 1.60549924484E-24 9.03430143315E-25 5.05412793811E-25 2.81086266208E-25 1.55399302410E-25 8.53981750051E-26 4.66457396180E-26 2.53228606849E-26 1.36623116743E-26 7.32519577047E-27 3.90274899106E-27 2.06609734091E-27 1.08675556438E-27 5.67918194087E-28 2.94838440680E-28 1.52054107180E-28 7.78930941496E-29 3.96330266117E-29 2.00282702820E-29 1.00514267247E-29 5.00933276175E-30 2.47895986116E-30 1.21805186375E-30 5.94206860614E-31 2.87775454223E-31 1.38351009917E-31 6.60224131716E-32 3.12714905826E-32 1.47001317792E-32 6.85766600791E-33 3.17453818826E-33 1.45814341017E-33 6.64509777047E-34 3.00434370484E-34 1.34744258296E-34 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 6.11220329138E-07 6.23567761492E-07 6.36164627001E-07 6.49015964487E-07 6.62126914560E-07 6.75502721676E-07 6.89148736230E-07 7.03070416703E-07 7.17273331840E-07 7.31763162878E-07 7.46545705821E-07 7.61626873755E-07 7.77012699218E-07 7.92709336606E-07 8.08723064639E-07 8.25060288875E-07 8.41727544263E-07 8.58731497769E-07 8.76078951030E-07 8.93776843085E-07 9.11832253143E-07 9.30252403421E-07 9.49044662026E-07 9.68216545906E-07 9.87775723857E-07 1.00773001959E-06 1.02808741485E-06 1.04885605264E-06 1.07004424042E-06 1.09166045351E-06 1.11371333839E-06 1.13621171624E-06 1.15916458640E-06 1.18258113004E-06 1.20647071376E-06 1.23084289337E-06 1.25570741773E-06 1.28107423262E-06 1.30695348474E-06 1.33335552573E-06 1.36029091635E-06 1.38777043071E-06 1.41580506054E-06 1.44440601960E-06 1.47358474817E-06 1.50335291766E-06 1.53372243520E-06 1.56470544846E-06 1.59631435052E-06 1.62856178477E-06 1.66146065001E-06 1.69502410558E-06 1.72926557668E-06 1.76419875966E-06 1.79983762754E-06 1.83619643561E-06 1.87328972711E-06 1.91113233905E-06 1.94973940815E-06 1.98912637687E-06 2.02930899964E-06 2.07030334909E-06 2.11212582253E-06 2.15479314848E-06 2.19832239340E-06 2.24273096846E-06 2.28803663652E-06 2.33425751927E-06 2.38141210443E-06 2.42951925317E-06 2.47859820764E-06 2.52866859868E-06 2.57975045364E-06 2.63186420445E-06 2.68503069570E-06 2.73927119306E-06 2.79460739174E-06 2.85106142517E-06 2.90865587386E-06 2.96741377443E-06 3.02735862882E-06 3.08851441367E-06 3.15090558993E-06 3.21455711264E-06 3.27949444090E-06 3.34574354805E-06 3.41333093206E-06 3.48228362613E-06 3.55262920948E-06 3.62439581841E-06 3.69761215752E-06 3.77230751120E-06 3.84851175533E-06 3.92625536926E-06 4.00556944794E-06 4.08648571439E-06 4.16903653241E-06 4.25325491943E-06 4.33917455982E-06 4.42682981828E-06 4.51625575360E-06 4.60748813269E-06 4.70056344489E-06 4.79551891650E-06 4.89239252573E-06 4.99122301787E-06 5.09204992072E-06 5.19491356049E-06 5.29985507783E-06 5.40691644435E-06 5.51614047934E-06 5.62757086692E-06 5.74125217352E-06 5.85722986563E-06 5.97555032806E-06 6.09626088241E-06 6.21940980604E-06 6.34504635132E-06 6.47322076536E-06 6.60398431006E-06 6.73738928264E-06 6.87348903650E-06 7.01233800256E-06 7.15399171105E-06 7.29850681365E-06 7.44594110616E-06 7.59635355162E-06 7.74980430384E-06 7.90635473146E-06 8.06606744245E-06 8.22900630919E-06 8.39523649393E-06 8.56482447488E-06 8.73783807274E-06 8.91434647783E-06 9.09442027773E-06 9.27813148548E-06 9.46555356835E-06 9.65676147722E-06 9.85183167653E-06 1.00508421748E-05 1.02538725558E-05 1.04610040104E-05 1.06723193690E-05 1.08879031345E-05 1.11078415163E-05 1.13322224644E-05 1.15611357049E-05 1.17946727757E-05 1.20329270630E-05 1.22759938385E-05 1.25239702978E-05 1.27769555990E-05 1.30350509024E-05 1.32983594107E-05 1.35669864105E-05 1.38410393140E-05 1.41206277025E-05 1.44058633694E-05 1.46968603654E-05 1.49937350440E-05 1.52966061076E-05 1.56055946553E-05 1.59208242310E-05 1.62424208729E-05 1.65705131637E-05 1.69052322821E-05 1.72467120548E-05 1.75950890104E-05 1.79505024337E-05 1.83130944212E-05 1.86830099381E-05 1.90603968757E-05 1.94454061109E-05 1.98381915663E-05 2.02389102713E-05 2.06477224253E-05 2.10647914614E-05 2.14902841113E-05 2.19243704723E-05 2.23672240751E-05 2.28190219528E-05 2.32799447117E-05 2.37501766032E-05 2.42299055977E-05 2.47193234591E-05 2.52186258216E-05 2.57280122676E-05 2.62476864073E-05 2.67778559600E-05 2.73187328369E-05 2.78705332256E-05 2.84334776763E-05 2.90077911896E-05 2.95937033065E-05 3.01914481997E-05 3.08012647670E-05 3.14233967266E-05 3.20580927142E-05 3.27056063818E-05 3.33661964995E-05 3.40401270578E-05 3.47276673735E-05 3.54290921964E-05 3.61446818193E-05 3.68747221893E-05 3.76195050217E-05 3.83793279166E-05 3.91544944769E-05 3.99453144294E-05 4.07521037485E-05 4.15751847814E-05 4.24148863768E-05 4.32715440158E-05 4.41454999453E-05 4.50371033144E-05 4.59467103132E-05 4.68746843145E-05 4.78213960187E-05 4.87872236008E-05 4.97725528613E-05 5.07777773793E-05 5.18032986693E-05 5.28495263407E-05 5.39168782607E-05 5.50057807206E-05 5.61166686049E-05 5.72499855644E-05 5.84061841928E-05 5.95857262057E-05 6.07890826251E-05 6.20167339656E-05 6.32691704260E-05 6.45468920832E-05 6.58504090917E-05 6.71802418853E-05 6.85369213843E-05 6.99209892057E-05 7.13329978787E-05 7.27735110636E-05 7.42431037754E-05 7.57423626118E-05 7.72718859863E-05 7.88322843649E-05 8.04241805085E-05 8.20482097195E-05 8.37050200939E-05 8.53952727776E-05 8.71196422287E-05 8.88788164845E-05 9.06734974340E-05 9.25044010955E-05 9.43722579006E-05 9.62778129826E-05 9.82218264718E-05 1.00205073796E-04 1.02228345987E-04 1.04292449993E-04 1.06398208999E-04 1.08546462751E-04 1.10738067888E-04 1.12973898280E-04 1.15254845372E-04 1.17581818541E-04 1.19955745447E-04 1.22377572407E-04 1.24848264762E-04 1.27368807260E-04 1.29940204448E-04 1.32563481059E-04 1.35239682425E-04 1.37969874885E-04 1.40755146201E-04 1.43596605994E-04 1.46495386174E-04 1.49452641388E-04 1.52469549474E-04 1.55547311924E-04 1.58687154357E-04 1.61890326995E-04 1.65158105164E-04 1.68491789784E-04 1.71892707887E-04 1.75362213133E-04 1.78901686343E-04 1.82512536040E-04 1.86196198998E-04 1.89954140810E-04 1.93787856456E-04 1.97698870889E-04 2.01688739636E-04 2.05759049400E-04 2.09911418682E-04 2.14147498415E-04 2.18468972603E-04 2.22877558986E-04 2.27375009700E-04 2.31963111970E-04 2.36643688795E-04 2.41418599669E-04 2.46289741294E-04 2.51259048326E-04 2.56328494119E-04 2.61500091497E-04 2.66775893535E-04 2.72157994350E-04 2.77648529918E-04 2.83249678901E-04 2.88963663487E-04 2.94792750250E-04 3.00739251032E-04 3.06805523828E-04 3.12993973701E-04 3.19307053708E-04 3.25747265847E-04 3.32317162020E-04 3.39019345012E-04 3.45856469497E-04 3.52831243054E-04 3.59946427207E-04 3.67204838487E-04 3.74609349508E-04 3.82162890066E-04 3.89868448266E-04 3.97729071655E-04 4.05747868394E-04 4.13928008436E-04 4.22272724741E-04 4.30785314501E-04 4.39469140396E-04 4.48327631873E-04 4.57364286444E-04 4.66582671013E-04 4.75986423229E-04 4.85579252855E-04 4.95364943177E-04 5.05347352428E-04 5.15530415238E-04 5.25918144121E-04 5.36514630980E-04 5.47324048641E-04 5.58350652421E-04 5.69598781717E-04 5.81072861631E-04 5.92777404621E-04 6.04717012180E-04 6.16896376553E-04 6.29320282478E-04 6.41993608958E-04 6.54921331076E-04 6.68108521826E-04 6.81560353992E-04 6.95282102051E-04 7.09279144115E-04 7.23556963905E-04 7.38121152761E-04 7.52977411689E-04 7.68131553441E-04 7.83589504635E-04 7.99357307908E-04 8.15441124113E-04 8.31847234548E-04 8.48582043225E-04 8.65652079183E-04 8.83063998835E-04 9.00824588357E-04 9.18940766121E-04 9.37419585163E-04 9.56268235701E-04 9.75494047689E-04 9.95104493414E-04 1.01510719014E-03 1.03550990281E-03 1.05632054673E-03 1.07754719041E-03 1.09919805833E-03 1.12128153386E-03 1.14380616210E-03 1.16678065293E-03 1.19021388395E-03 1.21411490357E-03 1.23849293408E-03 1.26335737488E-03 1.28871780558E-03 1.31458398934E-03 1.34096587612E-03 1.36787360606E-03 1.39531751287E-03 1.42330812728E-03 1.45185618058E-03 1.48097260813E-03 1.51066855303E-03 1.54095536971E-03 1.57184462772E-03 1.60334811544E-03 1.63547784396E-03 1.66824605089E-03 1.70166520433E-03 1.73574800688E-03 1.77050739958E-03 1.80595656613E-03 1.84210893691E-03 1.87897819328E-03 1.91657827174E-03 1.95492336831E-03 1.99402794287E-03 2.03390672351E-03 2.07457471110E-03 2.11604718372E-03 2.15833970125E-03 2.20146811002E-03 2.24544854747E-03 2.29029744682E-03 2.33603154193E-03 2.38266787205E-03 2.43022378674E-03 2.47871695075E-03 2.52816534900E-03 2.57858729159E-03 2.63000141886E-03 2.68242670648E-03 2.73588247060E-03 2.79038837302E-03 2.84596442641E-03 2.90263099958E-03 2.96040882276E-03 3.01931899294E-03 3.07938297923E-03 3.14062262821E-03 3.20306016943E-03 3.26671822078E-03 3.33161979396E-03 3.39778830003E-03 3.46524755483E-03 3.53402178457E-03 3.60413563131E-03 3.67561415853E-03 3.74848285664E-03 3.82276764858E-03 3.89849489531E-03 3.97569140137E-03 4.05438442040E-03 4.13460166066E-03 4.21637129051E-03 4.29972194390E-03 4.38468272578E-03 4.47128321754E-03 4.55955348236E-03 4.64952407053E-03 4.74122602474E-03 4.83469088527E-03 4.92995069520E-03 5.02703800542E-03 5.12598587971E-03 5.22682789966E-03 5.32959816948E-03 5.43433132077E-03 5.54106251717E-03 5.64982745889E-03 5.76066238712E-03 5.87360408833E-03 5.98868989838E-03 6.10595770662E-03 6.22544595967E-03 6.34719366515E-03 6.47124039520E-03 6.59762628986E-03 6.72639206021E-03 6.85757899133E-03 6.99122894508E-03 7.12738436266E-03 7.26608826688E-03 7.40738426430E-03 7.55131654705E-03 7.69792989440E-03 7.84726967411E-03 7.99938184345E-03 8.15431295002E-03 8.31211013216E-03 8.47282111917E-03 8.63649423115E-03 8.80317837856E-03 8.97292306144E-03 9.14577836829E-03 9.32179497459E-03 9.50102414106E-03 9.68351771143E-03 9.86932810996E-03 1.00585083385E-02 1.02511119735E-02 1.04471931618E-02 1.06468066172E-02 1.08500076161E-02 1.10568519921E-02 1.12673961317E-02 1.14816969683E-02 1.16998119765E-02 1.19217991658E-02 1.21477170742E-02 1.23776247611E-02 1.26115818005E-02 1.28496482728E-02 1.30918847574E-02 1.33383523247E-02 1.35891125273E-02 1.38442273917E-02 1.41037594095E-02 1.43677715283E-02 1.46363271427E-02 1.49094900850E-02 1.51873246160E-02 1.54698954157E-02 1.57572675739E-02 1.60495065814E-02 1.63466783206E-02 1.66488490567E-02 1.69560854294E-02 1.72684544445E-02 1.75860234660E-02 1.79088602089E-02 1.82370327324E-02 1.85706094335E-02 1.89096590422E-02 1.92542506163E-02 1.96044535378E-02 1.99603375110E-02 2.03219725598E-02 2.06894290287E-02 2.10627775828E-02 2.14420892110E-02 2.18274352295E-02 2.22188872880E-02 2.26165173771E-02 2.30203978372E-02 2.34306013704E-02 2.38472010537E-02 2.42702703547E-02 2.46998831491E-02 2.51361137414E-02 2.55790368873E-02 2.60287278188E-02 2.64852622720E-02 2.69487165172E-02 2.74191673913E-02 2.78966923340E-02 2.83813694246E-02 2.88732774231E-02 2.93724958126E-02 2.98791048439E-02 3.03931855831E-02 3.09148199602E-02 3.14440908194E-02 3.19810819718E-02 3.25258782475E-02 3.30785655496E-02 3.36392309081E-02 3.42079625333E-02 3.47848498679E-02 3.53699836387E-02 3.59634559049E-02 3.65653601041E-02 3.71757910940E-02 3.77948451896E-02 3.84226201943E-02 3.90592154242E-02 3.97047317248E-02 4.03592714779E-02 4.10229385980E-02 4.16958385180E-02 4.23780781601E-02 4.30697658935E-02 4.37710114762E-02 4.44819259785E-02 4.52026216896E-02 4.59332120030E-02 4.66738112821E-02 4.74245347029E-02 4.81854980754E-02 4.89568176400E-02 4.97386098418E-02 5.05309910806E-02 5.13340774385E-02 5.21479843845E-02 5.29728264597E-02 5.38087169437E-02 5.46557675052E-02 5.55140878421E-02 5.63837853131E-02 5.72649645693E-02 5.81577271897E-02 5.90621713307E-02 5.99783913961E-02 6.09064777394E-02 6.18465164079E-02 6.27985889404E-02 6.37627722316E-02 6.47391384747E-02 6.57277551954E-02 6.67286853882E-02 6.77419877659E-02 6.87677171281E-02 6.98059248534E-02 7.08566595107E-02 7.19199675788E-02 7.29958942524E-02 7.40844842958E-02 7.51857828885E-02 7.62998363820E-02 7.74266928534E-02 7.85664022936E-02 7.97190160817E-02 8.08845851728E-02 8.20631577908E-02 8.32547790753E-02 8.44594915315E-02 8.56773351396E-02 8.69083473050E-02 8.81525627976E-02 8.94100137015E-02 9.06807294007E-02 9.19647365640E-02 9.32620590636E-02 9.45727178749E-02 9.58967310035E-02 9.72341134239E-02 9.85848770191E-02 9.99490305194E-02 1.01326579442E-01 1.02717526028E-01 1.04121869185E-01 1.05539604419E-01 1.06970723777E-01 1.08415215783E-01 1.09873065373E-01 1.11344253829E-01 1.12828758720E-01 1.14326553828E-01 1.15837609089E-01 1.17361890516E-01 1.18899360137E-01 1.20449975919E-01 1.22013691699E-01 1.23590457107E-01 1.25180217491E-01 1.26782913842E-01 1.28398482709E-01 1.30026856124E-01 1.31667961511E-01 1.33321721608E-01 1.34988054370E-01 1.36666872885E-01 1.38358085280E-01 1.40061594620E-01 1.41777298819E-01 1.43505090531E-01 1.45244857066E-01 1.46996480414E-01 1.48759837024E-01 1.50534797366E-01 1.52321226060E-01 1.54118981975E-01 1.55927917974E-01 1.57747880780E-01 1.59578710858E-01 1.61420242313E-01 1.63272302899E-01 1.65134713722E-01 1.67007288813E-01 1.68889835343E-01 1.70782153678E-01 1.72684037102E-01 1.74595271683E-01 1.76515636160E-01 1.78444901824E-01 1.80382832417E-01 1.82329184015E-01 1.84283704936E-01 1.86246135633E-01 1.88216208607E-01 1.90193648318E-01 1.92178171103E-01 1.94169485106E-01 1.96167290211E-01 1.98171277987E-01 2.00181131641E-01 2.02196525985E-01 2.04217127417E-01 2.06242593909E-01 2.08272575023E-01 2.10306711939E-01 2.12344637508E-01 2.14385976328E-01 2.16430344855E-01 2.18477351546E-01 2.20526597046E-01 2.22577674423E-01 2.24630169457E-01 2.26683661006E-01 2.28737721440E-01 2.30791917181E-01 2.32845809341E-01 2.34898954497E-01 2.36950905609E-01 2.39001213109E-01 2.41049426195E-01 2.43095094337E-01 2.45137769055E-01 2.47177005965E-01 2.49212367162E-01 2.51243423942E-01 2.53269759915E-01 2.55290974523E-01 2.57306686989E-01 2.59316540714E-01 2.61320208106E-01 2.63317395842E-01 2.65307850501E-01 2.67291364510E-01 2.69267782284E-01 2.71237006407E-01 2.73199003632E-01 2.75153810430E-01 2.77101537719E-01 2.79042374323E-01 2.80976588625E-01 2.82904527769E-01 2.84826613675E-01 2.86743335084E-01 2.88655234827E-01 2.90562891583E-01 2.92466895609E-01 2.94367818288E-01 2.96266175938E-01 2.98162389096E-01 3.00056739418E-01 3.01949327267E-01 3.03840033727E-01 3.05728491005E-01 3.07614064712E-01 3.09495850300E-01 3.11372684210E-01 3.13243168335E-01 3.15105704751E-01 3.16958536654E-01 3.18799791211E-01 3.20627520546E-01 3.22439738052E-01 3.24234448378E-01 3.26009670499E-01 3.27763454094E-01 3.29493889999E-01 3.31199115744E-01 3.32877317271E-01 3.34526727834E-01 3.36145624963E-01 3.37732326195E-01 3.39285184117E-01 3.40802581123E-01 3.42282924165E-01 3.43724639696E-01 3.45126168902E-01 3.46485963297E-01 3.47802480714E-01 3.49074181682E-01 3.50299526181E-01 3.51476970749E-01 3.52604965925E-01 3.53681953985E-01 3.54706366960E-01 3.55676624899E-01 3.56591134376E-01 3.57448287207E-01 3.58246459391E-01 3.58984010251E-01 3.59659281806E-01 3.60270598356E-01 3.60816266334E-01 3.61294574425E-01 3.61703794008E-01 3.62042179966E-01 3.62307971928E-01 3.62499396005E-01 3.62614667120E-01 3.62651992018E-01 3.62609573075E-01 3.62485613013E-01 3.62278320662E-01 3.61985917882E-01 3.61606647771E-01 3.61138784273E-01 3.60580643251E-01 3.59930595074E-01 3.59187078687E-01 3.58348617083E-01 3.57413833990E-01 3.56381471486E-01 3.55250408190E-01 3.54019677523E-01 3.52688485520E-01 3.51256227571E-01 3.49722503485E-01 3.48087130304E-01 3.46350152350E-01 3.44511848131E-01 3.42572733857E-01 3.40533563506E-01 3.38395325511E-01 3.36159236333E-01 3.33826731249E-01 3.31399452824E-01 3.28879237544E-01 3.26268101112E-01 3.23568222886E-01 3.20781929891E-01 3.17911680782E-01 3.14960050066E-01 3.11929712825E-01 3.08823430117E-01 3.05644035185E-01 3.02394420538E-01 2.99077525962E-01 2.95696327448E-01 2.92253827037E-01 2.88753043557E-01 2.85197004194E-01 2.81588736877E-01 2.77931263411E-01 2.74227593320E-01 2.70480718379E-01 2.66693607619E-01 2.62869203125E-01 2.59010416209E-01 2.55120124127E-01 2.51201167248E-01 2.47256346651E-01 2.43288422127E-01 2.39300110547E-01 2.35294084583E-01 2.31272971744E-01 2.27239353715E-01 2.23195765969E-01 2.19144697631E-01 2.15088591574E-01 2.11029844725E-01 2.06970808546E-01 2.02913789690E-01 1.98861050781E-01 1.94814811314E-01 1.90777248644E-01 1.86750499022E-01 1.82736658687E-01 1.78737784941E-01 1.74755897222E-01 1.70792978118E-01 1.66850974311E-01 1.62931797412E-01 1.59037324679E-01 1.55169399586E-01 1.51329832320E-01 1.47520399723E-01 1.43742845388E-01 1.39998879431E-01 1.36290178017E-01 1.32618382634E-01 1.28985099141E-01 1.25391896566E-01 1.21840305670E-01 1.18331817297E-01 1.14867880509E-01 1.11449900545E-01 1.08079236607E-01 1.04757199520E-01 1.01485049273E-01 9.82639925001E-02 9.50951799064E-02 9.19797036947E-02 8.89185950153E-02 8.59128214786E-02 8.29632847612E-02 8.00708183389E-02 7.72361853764E-02 7.44600768004E-02 7.17431095818E-02 6.90858252497E-02 6.64886886538E-02 6.39520869930E-02 6.14763291205E-02 5.90616451356E-02 5.67081862658E-02 5.44160250423E-02 5.21851557684E-02 5.00154952757E-02 4.79068839618E-02 4.58590871014E-02 4.38717964188E-02 4.19446319079E-02 4.00771438875E-02 3.82688152722E-02 3.65190640446E-02 3.48272459089E-02 3.31926571073E-02 3.16145373804E-02 3.00920730516E-02 2.86244002160E-02 2.72106080144E-02 2.58497419741E-02 2.45408073964E-02 2.32827727743E-02 2.20745732220E-02 2.09151139003E-02 1.98032734220E-02 1.87379072225E-02 1.77178508816E-02 1.67419233849E-02 1.58089303112E-02 1.49176669367E-02 1.40669212462E-02 1.32554768421E-02 1.24821157440E-02 1.17456210726E-02 1.10447796123E-02 1.03783842477E-02 9.74523627012E-03 9.14414755265E-03 8.57394259000E-03 8.03346040347E-03 7.52155630996E-03 7.03710355550E-03 6.57899481437E-03 6.14614355523E-03 5.73748527644E-03 5.35197861328E-03 4.98860632001E-03 4.64637613038E-03 4.32432150040E-03 4.02150223746E-03 3.73700502043E-03 3.46994381523E-03 3.21946019087E-03 2.98472354099E-03 2.76493121603E-03 2.55930857134E-03 2.36710893656E-03 2.18761351013E-03 2.02012953075E-03 1.86397577267E-03 1.71850249318E-03 1.58308924413E-03 1.45714373627E-03 1.34010106679E-03 1.23142293831E-03 1.13059687162E-03 1.03713541368E-03 9.50575343120E-04 8.70476874819E-04 7.96422865364E-04 7.28018021094E-04 6.64888110300E-04 6.06679181127E-04 5.53056786617E-04 5.03705218285E-04 4.58326749510E-04 4.16640889956E-04 3.78383652159E-04 3.43306831309E-04 3.11177299202E-04 2.81776313234E-04 2.54898841222E-04 2.30352902767E-04 2.07958927787E-04 1.87549132750E-04 1.68966915097E-04 1.52066266214E-04 1.36711203292E-04 1.22775220284E-04 1.10140758163E-04 9.86986945472E-05 8.83478527512E-05 7.89945302255E-05 7.05520463067E-05 6.29403091341E-05 5.60854015456E-05 4.99191857118E-05 4.43789262271E-05 3.94069313317E-05 3.49502119051E-05 3.09601578354E-05 2.73922313393E-05 2.42056767827E-05 2.13632465248E-05 1.88309422940E-05 1.65777715826E-05 1.45755185374E-05 1.27985288099E-05 1.12235078253E-05 9.82933192247E-06 8.59687181519E-06 7.50882782709E-06 6.54957635228E-06 5.70502700069E-06 4.96248989259E-06 4.31055257540E-06 3.73896604581E-06 3.23853937157E-06 2.80104242019E-06 2.41911621534E-06 2.08619045671E-06 1.79640775453E-06 1.54455414632E-06 1.32599548005E-06 1.13661926533E-06 9.72781611413E-07 8.31258888665E-07 7.09203767619E-07 6.04105307501E-07 5.13752783513E-07 4.36202959434E-07 3.69750529061E-07 3.12901466598E-07 2.64349042284E-07 2.22952275218E-07 1.87716610559E-07 1.57776622862E-07 1.32380561401E-07 1.10876566719E-07 9.27004005217E-08 7.73645431859E-08 6.44485247194E-08 5.35903659380E-08 4.44790169066E-08 3.68476893593E-08 3.04679888685E-08 2.51447609874E-08 2.07115734678E-08 1.70267639683E-08 1.39699894429E-08 1.14392196572E-08 9.34812304343E-09 7.62379839814E-09 6.20481077871E-09 5.03949438414E-09 4.08448924511E-09 3.30348221677E-09 2.66612609402E-09 2.14711367523E-09 1.72538631094E-09 1.38345891055E-09 1.10684556628E-09 8.83571907658E-10 7.03762044062E-10 5.59289504420E-10 4.43482960132E-10 3.50878736790E-10 2.77013197154E-10 2.18249027194E-10 1.71630292265E-10 1.34761864397E-10 1.05709466316E-10 8.29171444107E-11 6.48773977044E-11 5.06349355721E-11 3.69206468881E-06 3.76664913241E-06 3.84274027312E-06 3.92036854789E-06 3.99956500852E-06 4.08036133410E-06 4.16278984363E-06 4.24688350902E-06 4.33267596821E-06 4.42020153867E-06 4.50949523111E-06 4.60059276347E-06 4.69353057523E-06 4.78834584199E-06 4.88507649030E-06 4.98376121288E-06 5.08443948404E-06 5.18715157554E-06 5.29193857262E-06 5.39884239050E-06 5.50790579110E-06 5.61917240016E-06 5.73268672469E-06 5.84849417079E-06 5.96664106177E-06 6.08717465670E-06 6.21014316931E-06 6.33559578731E-06 6.46358269198E-06 6.59415507833E-06 6.72736517551E-06 6.86326626774E-06 7.00191271562E-06 7.14335997783E-06 7.28766463338E-06 7.43488440417E-06 7.58507817812E-06 7.73830603272E-06 7.89462925904E-06 8.05411038626E-06 8.21681320666E-06 8.38280280116E-06 8.55214556533E-06 8.72490923596E-06 8.90116291814E-06 9.08097711288E-06 9.26442374537E-06 9.45157619366E-06 9.64250931808E-06 9.83729949115E-06 1.00360246281E-05 1.02387642181E-05 1.04455993561E-05 1.06566127748E-05 1.08718888786E-05 1.10915137766E-05 1.13155753173E-05 1.15441631238E-05 1.17773686296E-05 1.20152851151E-05 1.22580077450E-05 1.25056336062E-05 1.27582617469E-05 1.30159932160E-05 1.32789311035E-05 1.35471805819E-05 1.38208489480E-05 1.41000456661E-05 1.43848824117E-05 1.46754731158E-05 1.49719340111E-05 1.52743836780E-05 1.55829430921E-05 1.58977356728E-05 1.62188873323E-05 1.65465265263E-05 1.68807843053E-05 1.72217943667E-05 1.75696931087E-05 1.79246196844E-05 1.82867160580E-05 1.86561270609E-05 1.90330004503E-05 1.94174869678E-05 1.98097403998E-05 2.02099176389E-05 2.06181787472E-05 2.10346870194E-05 2.14596090489E-05 2.18931147937E-05 2.23353776452E-05 2.27865744968E-05 2.32468858148E-05 2.37164957109E-05 2.41955920155E-05 2.46843663529E-05 2.51830142177E-05 2.56917350534E-05 2.62107323319E-05 2.67402136348E-05 2.72803907363E-05 2.78314796883E-05 2.83937009064E-05 2.89672792582E-05 2.95524441530E-05 3.01494296337E-05 3.07584744706E-05 3.13798222561E-05 3.20137215031E-05 3.26604257435E-05 3.33201936300E-05 3.39932890394E-05 3.46799811780E-05 3.53805446895E-05 3.60952597644E-05 3.68244122523E-05 3.75682937762E-05 3.83272018487E-05 3.91014399914E-05 3.98913178559E-05 4.06971513477E-05 4.15192627527E-05 4.23579808655E-05 4.32136411211E-05 4.40865857294E-05 4.49771638111E-05 4.58857315381E-05 4.68126522753E-05 4.77582967259E-05 4.87230430800E-05 4.97072771652E-05 5.07113926011E-05 5.17357909565E-05 5.27808819101E-05 5.38470834138E-05 5.49348218602E-05 5.60445322527E-05 5.71766583795E-05 5.83316529908E-05 5.95099779799E-05 6.07121045674E-05 6.19385134900E-05 6.31896951923E-05 6.44661500228E-05 6.57683884339E-05 6.70969311857E-05 6.84523095542E-05 6.98350655435E-05 7.12457521025E-05 7.26849333454E-05 7.41531847776E-05 7.56510935253E-05 7.71792585701E-05 7.87382909881E-05 8.03288141945E-05 8.19514641922E-05 8.36068898258E-05 8.52957530410E-05 8.70187291491E-05 8.87765070963E-05 9.05697897392E-05 9.23992941254E-05 9.42657517799E-05 9.61699089971E-05 9.81125271391E-05 1.00094382939E-04 1.02116268813E-04 1.04178993174E-04 1.06283380757E-04 1.08430272945E-04 1.10620528111E-04 1.12855021953E-04 1.15134647849E-04 1.17460317212E-04 1.19832959856E-04 1.22253524361E-04 1.24722978458E-04 1.27242309414E-04 1.29812524423E-04 1.32434651010E-04 1.35109737444E-04 1.37838853149E-04 1.40623089139E-04 1.43463558448E-04 1.46361396574E-04 1.49317761936E-04 1.52333836334E-04 1.55410825417E-04 1.58549959172E-04 1.61752492406E-04 1.65019705253E-04 1.68352903680E-04 1.71753420012E-04 1.75222613460E-04 1.78761870663E-04 1.82372606246E-04 1.86056263376E-04 1.89814314346E-04 1.93648261153E-04 1.97559636105E-04 2.01550002427E-04 2.05620954887E-04 2.09774120426E-04 2.14011158816E-04 2.18333763311E-04 2.22743661330E-04 2.27242615139E-04 2.31832422560E-04 2.36514917679E-04 2.41291971584E-04 2.46165493106E-04 2.51137429581E-04 2.56209767625E-04 2.61384533924E-04 2.66663796044E-04 2.72049663251E-04 2.77544287354E-04 2.83149863556E-04 2.88868631335E-04 2.94702875330E-04 3.00654926254E-04 3.06727161815E-04 3.12922007670E-04 3.19241938386E-04 3.25689478424E-04 3.32267203142E-04 3.38977739824E-04 3.45823768720E-04 3.52808024114E-04 3.59933295408E-04 3.67202428236E-04 3.74618325591E-04 3.82183948978E-04 3.89902319596E-04 3.97776519532E-04 4.05809692987E-04 4.14005047529E-04 4.22365855361E-04 4.30895454623E-04 4.39597250718E-04 4.48474717664E-04 4.57531399467E-04 4.66770911536E-04 4.76196942113E-04 4.85813253733E-04 4.95623684722E-04 5.05632150717E-04 5.15842646217E-04 5.26259246168E-04 5.36886107576E-04 5.47727471158E-04 5.58787663017E-04 5.70071096362E-04 5.81582273250E-04 5.93325786369E-04 6.05306320861E-04 6.17528656171E-04 6.29997667940E-04 6.42718329936E-04 6.55695716015E-04 6.68935002136E-04 6.82441468400E-04 6.96220501141E-04 7.10277595050E-04 7.24618355352E-04 7.39248500013E-04 7.54173862004E-04 7.69400391598E-04 7.84934158719E-04 8.00781355342E-04 8.16948297928E-04 8.33441429918E-04 8.50267324273E-04 8.67432686064E-04 8.84944355112E-04 9.02809308683E-04 9.21034664233E-04 9.39627682212E-04 9.58595768918E-04 9.77946479410E-04 9.97687520481E-04 1.01782675368E-03 1.03837219842E-03 1.05933203508E-03 1.08071460830E-03 1.10252843015E-03 1.12478218356E-03 1.14748472569E-03 1.17064509137E-03 1.19427249670E-03 1.21837634263E-03 1.24296621861E-03 1.26805190639E-03 1.29364338385E-03 1.31975082884E-03 1.34638462322E-03 1.37355535687E-03 1.40127383187E-03 1.42955106667E-03 1.45839830041E-03 1.48782699729E-03 1.51784885105E-03 1.54847578951E-03 1.57971997923E-03 1.61159383020E-03 1.64411000072E-03 1.67728140226E-03 1.71112120454E-03 1.74564284055E-03 1.78086001186E-03 1.81678669384E-03 1.85343714113E-03 1.89082589312E-03 1.92896777961E-03 1.96787792650E-03 2.00757176166E-03 2.04806502086E-03 2.08937375387E-03 2.13151433061E-03 2.17450344746E-03 2.21835813372E-03 2.26309575809E-03 2.30873403540E-03 2.35529103337E-03 2.40278517956E-03 2.45123526842E-03 2.50066046846E-03 2.55108032964E-03 2.60251479078E-03 2.65498418718E-03 2.70850925840E-03 2.76311115615E-03 2.81881145230E-03 2.87563214713E-03 2.93359567768E-03 2.99272492621E-03 3.05304322892E-03 3.11457438476E-03 3.17734266444E-03 3.24137281956E-03 3.30669009199E-03 3.37332022333E-03 3.44128946464E-03 3.51062458624E-03 3.58135288783E-03 3.65350220863E-03 3.72710093788E-03 3.80217802539E-03 3.87876299234E-03 3.95688594234E-03 4.03657757252E-03 4.11786918504E-03 4.20079269861E-03 4.28538066038E-03 4.37166625790E-03 4.45968333140E-03 4.54946638625E-03 4.64105060566E-03 4.73447186356E-03 4.82976673777E-03 4.92697252336E-03 5.02612724627E-03 5.12726967714E-03 5.23043934544E-03 5.33567655376E-03 5.44302239245E-03 5.55251875441E-03 5.66420835023E-03 5.77813472354E-03 5.89434226661E-03 6.01287623625E-03 6.13378276998E-03 6.25710890245E-03 6.38290258217E-03 6.51121268846E-03 6.64208904876E-03 6.77558245620E-03 6.91174468739E-03 7.05062852066E-03 7.19228775443E-03 7.33677722597E-03 7.48415283049E-03 7.63447154044E-03 7.78779142521E-03 7.94417167109E-03 8.10367260159E-03 8.26635569803E-03 8.43228362048E-03 8.60152022905E-03 8.77413060542E-03 8.95018107481E-03 9.12973922823E-03 9.31287394501E-03 9.49965541581E-03 9.69015516580E-03 9.88444607830E-03 1.00826024188E-02 1.02846998590E-02 1.04908155017E-02 1.07010279059E-02 1.09154171117E-02 1.11340646664E-02 1.13570536501E-02 1.15844687026E-02 1.18163960499E-02 1.20529235310E-02 1.22941406260E-02 1.25401384831E-02 1.27910099476E-02 1.30468495894E-02 1.33077537329E-02 1.35738204854E-02 1.38451497669E-02 1.41218433400E-02 1.44040048402E-02 1.46917398061E-02 1.49851557106E-02 1.52843619922E-02 1.55894700861E-02 1.59005934563E-02 1.62178476280E-02 1.65413502196E-02 1.68712209758E-02 1.72075818006E-02 1.75505567907E-02 1.79002722688E-02 1.82568568181E-02 1.86204413159E-02 1.89911589683E-02 1.93691453449E-02 1.97545384135E-02 2.01474785752E-02 2.05481086998E-02 2.09565741613E-02 2.13730228736E-02 2.17976053259E-02 2.22304746193E-02 2.26717865024E-02 2.31216994076E-02 2.35803744875E-02 2.40479756511E-02 2.45246696003E-02 2.50106258661E-02 2.55060168452E-02 2.60110178364E-02 2.65258070766E-02 2.70505657776E-02 2.75854781616E-02 2.81307314979E-02 2.86865161380E-02 2.92530255519E-02 2.98304563633E-02 3.04190083844E-02 3.10188846514E-02 3.16302914587E-02 3.22534383928E-02 3.28885383668E-02 3.35358076528E-02 3.41954659155E-02 3.48677362440E-02 3.55528451838E-02 3.62510227677E-02 3.69625025463E-02 3.76875216180E-02 3.84263206574E-02 3.91791439442E-02 3.99462393899E-02 4.07278585645E-02 4.15242567222E-02 4.23356928252E-02 4.31624295680E-02 4.40047333988E-02 4.48628745416E-02 4.57371270153E-02 4.66277686529E-02 4.75350811188E-02 4.84593499247E-02 4.94008644444E-02 5.03599179268E-02 5.13368075076E-02 5.23318342193E-02 5.33453030001E-02 5.43775227004E-02 5.54288060878E-02 5.64994698513E-02 5.75898346024E-02 5.87002248753E-02 5.98309691251E-02 6.09823997241E-02 6.21548529564E-02 6.33486690104E-02 6.45641919697E-02 6.58017698023E-02 6.70617543475E-02 6.83445013014E-02 6.96503702004E-02 7.09797244029E-02 7.23329310699E-02 7.37103611430E-02 7.51123893218E-02 7.65393940388E-02 7.79917574341E-02 7.94698653280E-02 8.09741071927E-02 8.25048761229E-02 8.40625688061E-02 8.56475854915E-02 8.72603299589E-02 8.89012094874E-02 9.05706348241E-02 9.22690201528E-02 9.39967830636E-02 9.57543445233E-02 9.75421288470E-02 9.93605636711E-02 1.01210079929E-01 1.03091111827E-01 1.05004096827E-01 1.06949475629E-01 1.08927692157E-01 1.10939193552E-01 1.12984430170E-01 1.15063855579E-01 1.17177926573E-01 1.19327103182E-01 1.21511848692E-01 1.23732629682E-01 1.25989916054E-01 1.28284181084E-01 1.30615901478E-01 1.32985557441E-01 1.35393632755E-01 1.37840614870E-01 1.40326995010E-01 1.42853268286E-01 1.45419933832E-01 1.48027494948E-01 1.50676459262E-01 1.53367338909E-01 1.56100650721E-01 1.58876916442E-01 1.61696662949E-01 1.64560422505E-01 1.67468733011E-01 1.70422138294E-01 1.73421188400E-01 1.76466439905E-01 1.79558456250E-01 1.82697808085E-01 1.85885073625E-01 1.89120839031E-01 1.92405698790E-01 1.95740256115E-01 1.99125123348E-01 2.02560922369E-01 2.06048285016E-01 2.09587853490E-01 2.13180280770E-01 2.16826231016E-01 2.20526379957E-01 2.24281415266E-01 2.28092036913E-01 2.31958957483E-01 2.35882902472E-01 2.39864610531E-01 2.43904833668E-01 2.48004337390E-01 2.52163900786E-01 2.56384316534E-01 2.60666390830E-01 2.65010943224E-01 2.69418806364E-01 2.73890825626E-01 2.78427858634E-01 2.83030774654E-01 2.87700453858E-01 2.92437786447E-01 2.97243671634E-01 3.02119016479E-01 3.07064734569E-01 3.12081744553E-01 3.17170968525E-01 3.22333330267E-01 3.27569753350E-01 3.32881159121E-01 3.38268464580E-01 3.43732580178E-01 3.49274407553E-01 3.54894837254E-01 3.60594746476E-01 3.66374996862E-01 3.72236432428E-01 3.78179877663E-01 3.84206135876E-01 3.90315987857E-01 3.96510190942E-01 4.02789478537E-01 4.09154560198E-01 4.15606122331E-01 4.22144829574E-01 4.28771326907E-01 4.35486242515E-01 4.42290191369E-01 4.49183779473E-01 4.56167608626E-01 4.63242281461E-01 4.70408406411E-01 4.77666602092E-01 4.85017500381E-01 4.92461747239E-01 5.00000000000E-01 5.07632919637E-01 5.15361160617E-01 5.23185366875E-01 5.31106171119E-01 5.39124194253E-01 5.47240044791E-01 5.55454318266E-01 5.63767596614E-01 5.72180447560E-01 5.80693423979E-01 5.89307063255E-01 5.98021886620E-01 6.06838398487E-01 6.15757085765E-01 6.24778417169E-01 6.33902842514E-01 6.43130791996E-01 6.52462675460E-01 6.61898881667E-01 6.71439777535E-01 6.81085707374E-01 6.90836992114E-01 7.00693928518E-01 7.10656788378E-01 7.20725817708E-01 7.30901235921E-01 7.41183234996E-01 7.51571978631E-01 7.62067601385E-01 7.72670207810E-01 7.83379871569E-01 7.94196634539E-01 8.05120505905E-01 8.16151461236E-01 8.27289441551E-01 8.38534352371E-01 8.49886062745E-01 8.61344404273E-01 8.72909170105E-01 8.84580113917E-01 8.96356948876E-01 9.08239346575E-01 9.20226935949E-01 9.32319302165E-01 9.44515985481E-01 9.56816480083E-01 9.69220232879E-01 9.81726642268E-01 9.94335056868E-01 1.00704477420E+00 1.01985503932E+00 1.03276504342E+00 1.04577392240E+00 1.05888075528E+00 1.07208456270E+00 1.08538430523E+00 1.09877888167E+00 1.11226712730E+00 1.12584781195E+00 1.13951963813E+00 1.15328123891E+00 1.16713117585E+00 1.18106793674E+00 1.19508993324E+00 1.20919549847E+00 1.22338288439E+00 1.23765025917E+00 1.25199570431E+00 1.26641721173E+00 1.28091268066E+00 1.29547991444E+00 1.31011661715E+00 1.32482039007E+00 1.33958872803E+00 1.35441901562E+00 1.36930852318E+00 1.38425440273E+00 1.39925368368E+00 1.41430326840E+00 1.42939992768E+00 1.44454029602E+00 1.45972086677E+00 1.47493798716E+00 1.49018785320E+00 1.50546650447E+00 1.52076981878E+00 1.53609350677E+00 1.55143310638E+00 1.56678397732E+00 1.58214129543E+00 1.59750004705E+00 1.61285502333E+00 1.62820081461E+00 1.64353180474E+00 1.65884216557E+00 1.67412585142E+00 1.68937659370E+00 1.70458789563E+00 1.71975302719E+00 1.73486502017E+00 1.74991666353E+00 1.76490049895E+00 1.77980881669E+00 1.79463365176E+00 1.80936678050E+00 1.82399971743E+00 1.83852371262E+00 1.85292974944E+00 1.86720854286E+00 1.88135053816E+00 1.89534591025E+00 1.90918456356E+00 1.92285613239E+00 1.93634998205E+00 1.94965521047E+00 1.96276065052E+00 1.97565487292E+00 1.98832618992E+00 2.00076265947E+00 2.01295209022E+00 2.02488204704E+00 2.03653985724E+00 2.04791261743E+00 2.05898720098E+00 2.06975026602E+00 2.08018826412E+00 2.09028744935E+00 2.10003388795E+00 2.10941346844E+00 2.11841191207E+00 2.12701478377E+00 2.13520750329E+00 2.14297535672E+00 2.15030350820E+00 2.15717701182E+00 2.16358082361E+00 2.16949981366E+00 2.17491877826E+00 2.17982245200E+00 2.18419551983E+00 2.18802262902E+00 2.19128840096E+00 2.19397744282E+00 2.19607435897E+00 2.19756376218E+00 2.19843028461E+00 2.19865858845E+00 2.19823337638E+00 2.19713940167E+00 2.19536147802E+00 2.19288448918E+00 2.18969339823E+00 2.18577325668E+00 2.18110921329E+00 2.17568652275E+00 2.16949055422E+00 2.16250679967E+00 2.15472088222E+00 2.14611856442E+00 2.13668575661E+00 2.12640852528E+00 2.11527310169E+00 2.10326589055E+00 2.09037347916E+00 2.07658264678E+00 2.06188037443E+00 2.04625385526E+00 2.02969050545E+00 2.01217797577E+00 1.99370416390E+00 1.97425722760E+00 1.95382559875E+00 1.93239799839E+00 1.90996345291E+00 1.88651131133E+00 1.86203126391E+00 1.83651336210E+00 1.80994803989E+00 1.78232613676E+00 1.75363892218E+00 1.72387812188E+00 1.69303594586E+00 1.66110511832E+00 1.62807890952E+00 1.59395116975E+00 1.55871636533E+00 1.52236961690E+00 1.48490673996E+00 1.44632428776E+00 1.40661959663E+00 1.36579083379E+00 1.32383704772E+00 1.28075822109E+00 1.23655532645E+00 1.19123038447E+00 1.14478652509E+00 1.09722805128E+00 1.04856050571E+00 9.98790740137E-01 9.47926987656E-01 8.95978937709E-01 8.42957813894E-01 7.88876454505E-01 7.33749395781E-01 6.77592957779E-01 6.20425332816E-01 5.62266676370E-01 5.03139200327E-01 4.43067268451E-01 3.82077493910E-01 3.20198838679E-01 2.57462714629E-01 1.93903086061E-01 1.29556573430E-01 6.44625579751E-02 -1.33671305926E-03 -6.77960209724E-02 -1.34867070299E-01 -2.02498384075E-01 -2.70635200130E-01 -3.39219368914E-01 -4.08189253395E-01 -4.77479631612E-01 -5.47021602520E-01 -6.16742495797E-01 -6.86565786344E-01 -7.56411014255E-01 -8.26193711080E-01 -8.95825333257E-01 -9.65213203663E-01 -1.03426046225E+00 -1.10286602681E+00 -1.17092456501E+00 -1.23832647878E+00 -1.30495790227E+00 -1.37070071476E+00 -1.43543256964E+00 -1.49902694098E+00 -1.56135318904E+00 -1.62227664619E+00 -1.68165872478E+00 -1.73935704844E+00 -1.79522560841E+00 -1.84911494659E+00 -1.90087236681E+00 -1.95034217599E+00 -1.99733715623E+00 -2.04140593613E+00 -2.08234458563E+00 -2.11997640003E+00 -2.15412451385E+00 -2.18461247417E+00 -2.21126485712E+00 -2.23390792871E+00 -2.25237035047E+00 -2.26648393079E+00 -2.27608442209E+00 -2.28101236410E+00 -2.28111397307E+00 -2.27624207648E+00 -2.26625709260E+00 -2.25102805365E+00 -2.23043367118E+00 -2.20436344171E+00 -2.17271879027E+00 -2.13541424885E+00 -2.09237866651E+00 -2.04355644701E+00 -1.98890880935E+00 -1.92841506604E+00 -1.86207391301E+00 -1.78990472462E+00 -1.71194884618E+00 -1.62827087584E+00 -1.53895992679E+00 -1.44413085976E+00 -1.34392547528E+00 -1.23851365382E+00 -1.12809443148E+00 -1.01289699774E+00 -8.93181600967E-01 -7.69240346693E-01 -6.41397872533E-01 -5.10011883134E-01 -3.75473527653E-01 -2.38207601654E-01 -9.86725547618E-02 4.26397150648E-02 1.85204300098E-01 3.28463973883E-01 4.71830154416E-01 6.14684158918E-01 7.56378769290E-01 8.96240126654E-01 1.03356997250E+00 1.16764825271E+00 1.29773609922E+00 1.42307920213E+00 1.54291158286E+00 1.65645977619E+00 1.76294742592E+00 1.86160029533E+00 1.95165168961E+00 2.03234828260E+00 2.10295633562E+00 2.16276829015E+00 2.21110971017E+00 2.24734654363E+00 2.27089266510E+00 2.28121765421E+00 2.27785475684E+00 2.26040896712E+00 2.22856516027E+00 2.18209619680E+00 2.12087091024E+00 2.04486188081E+00 1.95415288914E+00 1.84894593494E+00 1.72956769752E+00 1.59647530736E+00 1.45026129095E+00 1.29165754546E+00 1.12153819515E+00 9.40921178770E-01 7.50968415728E-01 5.52984400212E-01 3.48413075800E-01 1.38832849406E-01 -7.40503872168E-02 -2.88412347495E-01 -5.02321654231E-01 -7.13753440336E-01 -9.20605303969E-01 -1.12071564712E+00 -1.31188439340E+00 -1.49189604295E+00 -1.65854498003E+00 -1.80966290213E+00 -1.94314818856E+00 -2.05699697185E+00 -2.14933561715E+00 -2.21845425468E+00 -2.26284094752E+00 -2.28121601430E+00 -2.27256596369E+00 -2.23617643704E+00 -2.17166349817E+00 -2.07900255796E+00 -1.95855417652E+00 -1.81108595098E+00 -1.63778967388E+00 -1.44029293803E+00 -1.22066437153E+00 -9.81411713559E-01 -7.25471989946E-01 -4.56193119577E-01 -1.77306380906E-01 1.07110706946E-01 3.92681379938E-01 6.74786609877E-01 9.48631966081E-01 1.20932401334E+00 1.45195563498E+00 1.67169938029E+00 1.86390762698E+00 2.02421802829E+00 2.14866238678E+00 2.23377677214E+00 2.27671038839E+00 2.27533040761E+00 2.22831973589E+00 2.13526447639E+00 1.99672771821E+00 1.81430622402E+00 1.59066662814E+00 1.32955790544E+00 1.03579714193E+00 7.15226042905E-01 3.74636160420E-01 2.16615156152E-02 -3.35361869372E-01 -6.87569034199E-01 -1.02577013256E+00 -1.34068264929E+00 -1.62318765604E+00 -1.86460463063E+00 -2.05697801373E+00 -2.19336737480E+00 -2.26813186676E+00 -2.27719863272E+00 -2.21830405886E+00 -2.09119631953E+00 -1.89778760652E+00 -1.64224484306E+00 -1.33100861568E+00 -9.72731559937E-01 -5.78129540040E-01 -1.59741672095E-01 2.68401465497E-01 6.91198268909E-01 1.09297777031E+00 1.45807054111E+00 1.77143216535E+00 2.01929800638E+00 2.18984371840E+00 2.27382229448E+00 2.26514569226E+00 2.16137754115E+00 1.96410340254E+00 1.67914678829E+00 1.31660284963E+00 8.90667456647E-01 4.19247324063E-01 -7.66531990106E-02 -5.73761316428E-01 -1.04756047768E+00 -1.47347619525E+00 -1.82817463963E+00 -2.09091252655E+00 -2.24486550000E+00 -2.27835379899E+00 -2.18587954621E+00 -1.96889050878E+00 -1.63619148414E+00 -1.20393712170E+00 -6.95159200765E-01 -1.38806883078E-01 4.31690555101E-01 9.80293922676E-01 1.47057546204E+00 1.86817280738E+00 2.14332370726E+00 2.27330311752E+00 2.24456785899E+00 2.05441092227E+00 1.71194029082E+00 1.23822753041E+00 6.65519765532E-01 3.54738445155E-02 -6.03549523750E-01 -1.20000602850E+00 -1.70328682873E+00 -2.06813712070E+00 -2.25900668894E+00 -2.25392183801E+00 -2.04745894037E+00 -1.65243155260E+00 -1.09997953952E+00 -4.37869623194E-01 2.73023089519E-01 espresso-5.1/pseudo/Si.rel-pbe-rrkj.UPF0000644000175000017500000062105312341373031016027 0ustar mbamba Generated using "atomic" code by A. Dal Corso (espresso distribution) Author: anonymous Generation date: 27Apr2007 2 The Pseudo was generated with a Fully-Relativistic Calculation 2 2.4000000E+00 L component and cutoff radius for Local Potential nl pn l occ Rcut Rcut US E pseu 3S 1 0 2.00 2.40000000000 2.40000000000 -0.79355814405 3P 2 1 2.00 2.40000000000 2.40000000000 -0.30060327675 3P 2 1 0.00 2.40000000000 2.40000000000 -0.29828881130 3D 3 2 0.00 2.40000000000 2.40000000000 -0.10000000000 3D 3 2 0.00 2.40000000000 2.40000000000 -0.10000000000 0 Version Number Si Element NC Norm - Conserving pseudopotential F Nonlinear Core Correction SLA PW PBX PBC PBE Exchange-Correlation functional 4.00000000000 Z valence -7.48292757640 Total energy 0.0000000 0.0000000 Suggested cutoff for wfc and rho 2 Max angular momentum component 1141 Number of points in mesh 3 3 Number of Wavefunctions, Number of Projectors Wavefunctions nl l occ 3S 0 2.00 3P 1 2.00 3P 1 0.00 6.51344261110E-05 6.59537163335E-05 6.67833119583E-05 6.76233426115E-05 6.84739395496E-05 6.93352356800E-05 7.02073655821E-05 7.10904655278E-05 7.19846735035E-05 7.28901292308E-05 7.38069741891E-05 7.47353516373E-05 7.56754066363E-05 7.66272860714E-05 7.75911386760E-05 7.85671150538E-05 7.95553677032E-05 8.05560510407E-05 8.15693214250E-05 8.25953371817E-05 8.36342586279E-05 8.46862480972E-05 8.57514699651E-05 8.68300906746E-05 8.79222787624E-05 8.90282048851E-05 9.01480418460E-05 9.12819646219E-05 9.24301503904E-05 9.35927785580E-05 9.47700307876E-05 9.59620910274E-05 9.71691455391E-05 9.83913829275E-05 9.96289941697E-05 1.00882172645E-04 1.02151114165E-04 1.03436017004E-04 1.04737081932E-04 1.06054512241E-04 1.07388513784E-04 1.08739295001E-04 1.10107066953E-04 1.11492043359E-04 1.12894440624E-04 1.14314477875E-04 1.15752376995E-04 1.17208362660E-04 1.18682662370E-04 1.20175506487E-04 1.21687128272E-04 1.23217763918E-04 1.24767652590E-04 1.26337036462E-04 1.27926160753E-04 1.29535273767E-04 1.31164626931E-04 1.32814474834E-04 1.34485075270E-04 1.36176689272E-04 1.37889581159E-04 1.39624018574E-04 1.41380272525E-04 1.43158617432E-04 1.44959331164E-04 1.46782695086E-04 1.48628994104E-04 1.50498516703E-04 1.52391555003E-04 1.54308404792E-04 1.56249365584E-04 1.58214740658E-04 1.60204837106E-04 1.62219965886E-04 1.64260441866E-04 1.66326583874E-04 1.68418714749E-04 1.70537161391E-04 1.72682254812E-04 1.74854330186E-04 1.77053726905E-04 1.79280788629E-04 1.81535863341E-04 1.83819303401E-04 1.86131465601E-04 1.88472711221E-04 1.90843406086E-04 1.93243920621E-04 1.95674629912E-04 1.98135913762E-04 2.00628156752E-04 2.03151748299E-04 2.05707082721E-04 2.08294559292E-04 2.10914582312E-04 2.13567561165E-04 2.16253910384E-04 2.18974049716E-04 2.21728404189E-04 2.24517404177E-04 2.27341485465E-04 2.30201089323E-04 2.33096662570E-04 2.36028657644E-04 2.38997532677E-04 2.42003751560E-04 2.45047784021E-04 2.48130105698E-04 2.51251198208E-04 2.54411549229E-04 2.57611652573E-04 2.60852008261E-04 2.64133122606E-04 2.67455508289E-04 2.70819684439E-04 2.74226176716E-04 2.77675517391E-04 2.81168245431E-04 2.84704906581E-04 2.88286053451E-04 2.91912245605E-04 2.95584049640E-04 2.99302039285E-04 3.03066795482E-04 3.06878906482E-04 3.10738967936E-04 3.14647582986E-04 3.18605362361E-04 3.22612924472E-04 3.26670895509E-04 3.30779909538E-04 3.34940608601E-04 3.39153642815E-04 3.43419670476E-04 3.47739358159E-04 3.52113380825E-04 3.56542421922E-04 3.61027173498E-04 3.65568336305E-04 3.70166619908E-04 3.74822742799E-04 3.79537432505E-04 3.84311425708E-04 3.89145468353E-04 3.94040315769E-04 3.98996732786E-04 4.04015493854E-04 4.09097383165E-04 4.14243194774E-04 4.19453732726E-04 4.24729811177E-04 4.30072254524E-04 4.35481897537E-04 4.40959585482E-04 4.46506174259E-04 4.52122530535E-04 4.57809531875E-04 4.63568066887E-04 4.69399035352E-04 4.75303348372E-04 4.81281928506E-04 4.87335709921E-04 4.93465638532E-04 4.99672672154E-04 5.05957780647E-04 5.12321946072E-04 5.18766162844E-04 5.25291437884E-04 5.31898790780E-04 5.38589253945E-04 5.45363872776E-04 5.52223705821E-04 5.59169824945E-04 5.66203315491E-04 5.73325276457E-04 5.80536820664E-04 5.87839074930E-04 5.95233180248E-04 6.02720291961E-04 6.10301579946E-04 6.17978228794E-04 6.25751437998E-04 6.33622422138E-04 6.41592411070E-04 6.49662650121E-04 6.57834400283E-04 6.66108938409E-04 6.74487557412E-04 6.82971566467E-04 6.91562291220E-04 7.00261073987E-04 7.09069273972E-04 7.17988267474E-04 7.27019448103E-04 7.36164227000E-04 7.45424033055E-04 7.54800313132E-04 7.64294532294E-04 7.73908174031E-04 7.83642740495E-04 7.93499752732E-04 8.03480750919E-04 8.13587294608E-04 8.23820962967E-04 8.34183355028E-04 8.44676089935E-04 8.55300807200E-04 8.66059166956E-04 8.76952850219E-04 8.87983559149E-04 8.99153017317E-04 9.10462969973E-04 9.21915184320E-04 9.33511449791E-04 9.45253578324E-04 9.57143404653E-04 9.69182786586E-04 9.81373605301E-04 9.93717765638E-04 1.00621719640E-03 1.01887385064E-03 1.03168970600E-03 1.04466676497E-03 1.05780705525E-03 1.07111263003E-03 1.08458556835E-03 1.09822797536E-03 1.11204198273E-03 1.12602974892E-03 1.14019345955E-03 1.15453532773E-03 1.16905759440E-03 1.18376252870E-03 1.19865242830E-03 1.21372961978E-03 1.22899645899E-03 1.24445533139E-03 1.26010865247E-03 1.27595886809E-03 1.29200845488E-03 1.30825992062E-03 1.32471580464E-03 1.34137867819E-03 1.35825114489E-03 1.37533584110E-03 1.39263543633E-03 1.41015263368E-03 1.42789017025E-03 1.44585081756E-03 1.46403738200E-03 1.48245270526E-03 1.50109966478E-03 1.51998117417E-03 1.53910018371E-03 1.55845968079E-03 1.57806269036E-03 1.59791227544E-03 1.61801153756E-03 1.63836361728E-03 1.65897169465E-03 1.67983898971E-03 1.70096876304E-03 1.72236431620E-03 1.74402899229E-03 1.76596617645E-03 1.78817929643E-03 1.81067182305E-03 1.83344727083E-03 1.85650919848E-03 1.87986120947E-03 1.90350695260E-03 1.92745012256E-03 1.95169446052E-03 1.97624375471E-03 2.00110184102E-03 2.02627260355E-03 2.05175997530E-03 2.07756793873E-03 2.10370052636E-03 2.13016182149E-03 2.15695595874E-03 2.18408712474E-03 2.21155955880E-03 2.23937755354E-03 2.26754545558E-03 2.29606766621E-03 2.32494864208E-03 2.35419289591E-03 2.38380499717E-03 2.41378957281E-03 2.44415130798E-03 2.47489494676E-03 2.50602529292E-03 2.53754721062E-03 2.56946562524E-03 2.60178552410E-03 2.63451195723E-03 2.66765003822E-03 2.70120494495E-03 2.73518192045E-03 2.76958627369E-03 2.80442338043E-03 2.83969868402E-03 2.87541769630E-03 2.91158599845E-03 2.94820924184E-03 2.98529314892E-03 3.02284351413E-03 3.06086620479E-03 3.09936716202E-03 3.13835240167E-03 3.17782801527E-03 3.21780017097E-03 3.25827511449E-03 3.29925917012E-03 3.34075874171E-03 3.38278031365E-03 3.42533045190E-03 3.46841580500E-03 3.51204310513E-03 3.55621916913E-03 3.60095089962E-03 3.64624528601E-03 3.69210940565E-03 3.73855042489E-03 3.78557560024E-03 3.83319227948E-03 3.88140790281E-03 3.93023000403E-03 3.97966621168E-03 4.02972425027E-03 4.08041194147E-03 4.13173720535E-03 4.18370806156E-03 4.23633263067E-03 4.28961913538E-03 4.34357590180E-03 4.39821136080E-03 4.45353404926E-03 4.50955261149E-03 4.56627580048E-03 4.62371247936E-03 4.68187162272E-03 4.74076231804E-03 4.80039376712E-03 4.86077528750E-03 4.92191631390E-03 4.98382639975E-03 5.04651521860E-03 5.10999256573E-03 5.17426835959E-03 5.23935264341E-03 5.30525558674E-03 5.37198748705E-03 5.43955877133E-03 5.50797999774E-03 5.57726185723E-03 5.64741517523E-03 5.71845091334E-03 5.79038017104E-03 5.86321418742E-03 5.93696434295E-03 6.01164216124E-03 6.08725931084E-03 6.16382760710E-03 6.24135901396E-03 6.31986564586E-03 6.39935976963E-03 6.47985380639E-03 6.56136033348E-03 6.64389208648E-03 6.72746196113E-03 6.81208301540E-03 6.89776847150E-03 6.98453171795E-03 7.07238631170E-03 7.16134598020E-03 7.25142462358E-03 7.34263631681E-03 7.43499531190E-03 7.52851604013E-03 7.62321311432E-03 7.71910133106E-03 7.81619567309E-03 7.91451131160E-03 8.01406360860E-03 8.11486811934E-03 8.21694059474E-03 8.32029698382E-03 8.42495343624E-03 8.53092630477E-03 8.63823214789E-03 8.74688773236E-03 8.85691003583E-03 8.96831624951E-03 9.08112378086E-03 9.19535025627E-03 9.31101352387E-03 9.42813165627E-03 9.54672295343E-03 9.66680594547E-03 9.78839939561E-03 9.91152230307E-03 1.00361939061E-02 1.01624336848E-02 1.02902613644E-02 1.04196969183E-02 1.05507605711E-02 1.06834728016E-02 1.08178543465E-02 1.09539262032E-02 1.10917096331E-02 1.12312261653E-02 1.13724975993E-02 1.15155460093E-02 1.16603937467E-02 1.18070634444E-02 1.19555780198E-02 1.21059606785E-02 1.22582349183E-02 1.24124245322E-02 1.25685536127E-02 1.27266465552E-02 1.28867280622E-02 1.30488231466E-02 1.32129571362E-02 1.33791556773E-02 1.35474447386E-02 1.37178506158E-02 1.38903999350E-02 1.40651196574E-02 1.42420370835E-02 1.44211798568E-02 1.46025759687E-02 1.47862537629E-02 1.49722419394E-02 1.51605695591E-02 1.53512660486E-02 1.55443612047E-02 1.57398851988E-02 1.59378685820E-02 1.61383422897E-02 1.63413376461E-02 1.65468863698E-02 1.67550205781E-02 1.69657727925E-02 1.71791759435E-02 1.73952633756E-02 1.76140688530E-02 1.78356265645E-02 1.80599711289E-02 1.82871376006E-02 1.85171614747E-02 1.87500786930E-02 1.89859256492E-02 1.92247391949E-02 1.94665566453E-02 1.97114157847E-02 1.99593548730E-02 2.02104126510E-02 2.04646283472E-02 2.07220416831E-02 2.09826928803E-02 2.12466226658E-02 2.15138722794E-02 2.17844834794E-02 2.20584985491E-02 2.23359603042E-02 2.26169120985E-02 2.29013978313E-02 2.31894619542E-02 2.34811494776E-02 2.37765059784E-02 2.40755776067E-02 2.43784110929E-02 2.46850537555E-02 2.49955535079E-02 2.53099588665E-02 2.56283189576E-02 2.59506835256E-02 2.62771029408E-02 2.66076282068E-02 2.69423109688E-02 2.72812035217E-02 2.76243588182E-02 2.79718304769E-02 2.83236727911E-02 2.86799407367E-02 2.90406899815E-02 2.94059768931E-02 2.97758585485E-02 3.01503927423E-02 3.05296379963E-02 3.09136535684E-02 3.13024994618E-02 3.16962364344E-02 3.20949260084E-02 3.24986304799E-02 3.29074129285E-02 3.33213372273E-02 3.37404680529E-02 3.41648708953E-02 3.45946120682E-02 3.50297587197E-02 3.54703788422E-02 3.59165412836E-02 3.63683157577E-02 3.68257728551E-02 3.72889840544E-02 3.77580217333E-02 3.82329591799E-02 3.87138706042E-02 3.92008311496E-02 3.96939169045E-02 4.01932049148E-02 4.06987731951E-02 4.12107007415E-02 4.17290675437E-02 4.22539545976E-02 4.27854439179E-02 4.33236185509E-02 4.38685625874E-02 4.44203611761E-02 4.49791005365E-02 4.55448679730E-02 4.61177518877E-02 4.66978417950E-02 4.72852283351E-02 4.78800032883E-02 4.84822595894E-02 4.90920913422E-02 4.97095938342E-02 5.03348635513E-02 5.09679981933E-02 5.16090966887E-02 5.22582592105E-02 5.29155871916E-02 5.35811833408E-02 5.42551516589E-02 5.49375974549E-02 5.56286273622E-02 5.63283493558E-02 5.70368727685E-02 5.77543083087E-02 5.84807680770E-02 5.92163655843E-02 5.99612157692E-02 6.07154350161E-02 6.14791411732E-02 6.22524535712E-02 6.30354930418E-02 6.38283819363E-02 6.46312441454E-02 6.54442051179E-02 6.62673918806E-02 6.71009330581E-02 6.79449588929E-02 6.87996012658E-02 6.96649937163E-02 7.05412714638E-02 7.14285714286E-02 7.23270322529E-02 7.32367943232E-02 7.41579997916E-02 7.50907925983E-02 7.60353184941E-02 7.69917250632E-02 7.79601617459E-02 7.89407798625E-02 7.99337326366E-02 8.09391752191E-02 8.19572647123E-02 8.29881601949E-02 8.40320227463E-02 8.50890154723E-02 8.61593035301E-02 8.72430541543E-02 8.83404366832E-02 8.94516225851E-02 9.05767854851E-02 9.17161011920E-02 9.28697477263E-02 9.40379053477E-02 9.52207565831E-02 9.64184862554E-02 9.76312815124E-02 9.88593318558E-02 1.00102829171E-01 1.01361967757E-01 1.02636944356E-01 1.03927958187E-01 1.05235210973E-01 1.06558906974E-01 1.07899253022E-01 1.09256458547E-01 1.10630735617E-01 1.12022298964E-01 1.13431366023E-01 1.14858156963E-01 1.16302894725E-01 1.17765805050E-01 1.19247116522E-01 1.20747060599E-01 1.22265871649E-01 1.23803786991E-01 1.25361046926E-01 1.26937894780E-01 1.28534576938E-01 1.30151342885E-01 1.31788445244E-01 1.33446139817E-01 1.35124685620E-01 1.36824344930E-01 1.38545383322E-01 1.40288069712E-01 1.42052676399E-01 1.43839479105E-01 1.45648757023E-01 1.47480792855E-01 1.49335872861E-01 1.51214286901E-01 1.53116328481E-01 1.55042294799E-01 1.56992486791E-01 1.58967209178E-01 1.60966770515E-01 1.62991483238E-01 1.65041663711E-01 1.67117632280E-01 1.69219713320E-01 1.71348235283E-01 1.73503530757E-01 1.75685936511E-01 1.77895793550E-01 1.80133447168E-01 1.82399247004E-01 1.84693547094E-01 1.87016705926E-01 1.89369086499E-01 1.91751056377E-01 1.94162987747E-01 1.96605257479E-01 1.99078247183E-01 2.01582343268E-01 2.04117937005E-01 2.06685424584E-01 2.09285207181E-01 2.11917691018E-01 2.14583287425E-01 2.17282412907E-01 2.20015489208E-01 2.22782943378E-01 2.25585207835E-01 2.28422720440E-01 2.31295924560E-01 2.34205269138E-01 2.37151208767E-01 2.40134203754E-01 2.43154720199E-01 2.46213230064E-01 2.49310211247E-01 2.52446147658E-01 2.55621529293E-01 2.58836852312E-01 2.62092619116E-01 2.65389338424E-01 2.68727525357E-01 2.72107701512E-01 2.75530395050E-01 2.78996140772E-01 2.82505480209E-01 2.86058961701E-01 2.89657140489E-01 2.93300578794E-01 2.96989845911E-01 3.00725518296E-01 3.04508179655E-01 3.08338421036E-01 3.12216840924E-01 3.16144045327E-01 3.20120647881E-01 3.24147269938E-01 3.28224540665E-01 3.32353097144E-01 3.36533584471E-01 3.40766655855E-01 3.45052972722E-01 3.49393204819E-01 3.53788030314E-01 3.58238135909E-01 3.62744216941E-01 3.67306977496E-01 3.71927130513E-01 3.76605397901E-01 3.81342510648E-01 3.86139208939E-01 3.90996242266E-01 3.95914369552E-01 4.00894359264E-01 4.05936989535E-01 4.11043048286E-01 4.16213333350E-01 4.21448652594E-01 4.26749824048E-01 4.32117676029E-01 4.37553047277E-01 4.43056787079E-01 4.48629755405E-01 4.54272823043E-01 4.59986871734E-01 4.65772794309E-01 4.71631494831E-01 4.77563888734E-01 4.83570902966E-01 4.89653476136E-01 4.95812558657E-01 5.02049112899E-01 5.08364113337E-01 5.14758546701E-01 5.21233412136E-01 5.27789721352E-01 5.34428498786E-01 5.41150781760E-01 5.47957620644E-01 5.54850079022E-01 5.61829233853E-01 5.68896175645E-01 5.76052008622E-01 5.83297850898E-01 5.90634834649E-01 5.98064106295E-01 6.05586826674E-01 6.13204171227E-01 6.20917330179E-01 6.28727508728E-01 6.36635927228E-01 6.44643821388E-01 6.52752442456E-01 6.60963057422E-01 6.69276949210E-01 6.77695416883E-01 6.86219775843E-01 6.94851358040E-01 7.03591512175E-01 7.12441603915E-01 7.21403016106E-01 7.30477148985E-01 7.39665420405E-01 7.48969266052E-01 7.58390139670E-01 7.67929513291E-01 7.77588877461E-01 7.87369741474E-01 7.97273633612E-01 8.07302101377E-01 8.17456711738E-01 8.27739051373E-01 8.38150726919E-01 8.48693365221E-01 8.59368613589E-01 8.70178140050E-01 8.81123633617E-01 8.92206804543E-01 9.03429384599E-01 9.14793127333E-01 9.26299808355E-01 9.37951225606E-01 9.49749199645E-01 9.61695573929E-01 9.73792215102E-01 9.86041013291E-01 9.98443882393E-01 1.01100276038E+00 1.02371960961E+00 1.03659641711E+00 1.04963519491E+00 1.06283798035E+00 1.07620683638E+00 1.08974385192E+00 1.10345114215E+00 1.11733084887E+00 1.13138514081E+00 1.14561621398E+00 1.16002629201E+00 1.17461762651E+00 1.18939249740E+00 1.20435321329E+00 1.21950211182E+00 1.23484156004E+00 1.25037395476E+00 1.26610172296E+00 1.28202732213E+00 1.29815324067E+00 1.31448199830E+00 1.33101614642E+00 1.34775826852E+00 1.36471098059E+00 1.38187693152E+00 1.39925880354E+00 1.41685931260E+00 1.43468120880E+00 1.45272727686E+00 1.47100033651E+00 1.48950324296E+00 1.50823888732E+00 1.52721019708E+00 1.54642013654E+00 1.56587170729E+00 1.58556794867E+00 1.60551193828E+00 1.62570679239E+00 1.64615566650E+00 1.66686175578E+00 1.68782829560E+00 1.70905856203E+00 1.73055587233E+00 1.75232358551E+00 1.77436510281E+00 1.79668386827E+00 1.81928336924E+00 1.84216713694E+00 1.86533874700E+00 1.88880182004E+00 1.91256002220E+00 1.93661706576E+00 1.96097670968E+00 1.98564276019E+00 2.01061907143E+00 2.03590954598E+00 2.06151813555E+00 2.08744884152E+00 2.11370571561E+00 2.14029286053E+00 2.16721443056E+00 2.19447463225E+00 2.22207772507E+00 2.25002802205E+00 2.27832989049E+00 2.30698775262E+00 2.33600608627E+00 2.36538942562E+00 2.39514236189E+00 2.42526954402E+00 2.45577567945E+00 2.48666553483E+00 2.51794393676E+00 2.54961577255E+00 2.58168599099E+00 2.61415960312E+00 2.64704168301E+00 2.68033736854E+00 2.71405186225E+00 2.74819043207E+00 2.78275841225E+00 2.81776120409E+00 2.85320427684E+00 2.88909316858E+00 2.92543348699E+00 2.96223091035E+00 2.99949118830E+00 3.03722014286E+00 3.07542366925E+00 3.11410773684E+00 3.15327839010E+00 3.19294174952E+00 3.23310401259E+00 3.27377145474E+00 3.31495043034E+00 3.35664737368E+00 3.39886880001E+00 3.44162130651E+00 3.48491157333E+00 3.52874636468E+00 3.57313252983E+00 3.61807700420E+00 3.66358681047E+00 3.70966905963E+00 3.75633095213E+00 3.80357977898E+00 3.85142292291E+00 3.89986785951E+00 3.94892215840E+00 3.99859348440E+00 4.04888959878E+00 4.09981836039E+00 4.15138772696E+00 4.20360575631E+00 4.25648060761E+00 4.31002054267E+00 4.36423392720E+00 4.41912923217E+00 4.47471503507E+00 4.53100002129E+00 4.58799298549E+00 4.64570283293E+00 4.70413858089E+00 4.76330936007E+00 4.82322441602E+00 4.88389311061E+00 4.94532492343E+00 5.00752945333E+00 5.07051641990E+00 5.13429566498E+00 5.19887715419E+00 5.26427097854E+00 5.33048735594E+00 5.39753663284E+00 5.46542928581E+00 5.53417592323E+00 5.60378728690E+00 5.67427425373E+00 5.74564783746E+00 5.81791919035E+00 5.89109960496E+00 5.96520051586E+00 6.04023350148E+00 6.11621028587E+00 6.19314274056E+00 6.27104288641E+00 6.34992289547E+00 6.42979509289E+00 6.51067195889E+00 6.59256613062E+00 6.67549040422E+00 6.75945773678E+00 6.84448124836E+00 6.93057422407E+00 7.01775011609E+00 7.10602254585E+00 7.19540530609E+00 7.28591236305E+00 7.37755785864E+00 7.47035611265E+00 7.56432162501E+00 7.65946907800E+00 7.75581333863E+00 7.85336946087E+00 7.95215268806E+00 8.05217845529E+00 8.15346239179E+00 8.25602032337E+00 8.35986827493E+00 8.46502247291E+00 8.57149934787E+00 8.67931553705E+00 8.78848788694E+00 8.89903345594E+00 9.01096951703E+00 9.12431356043E+00 9.23908329639E+00 9.35529665792E+00 9.47297180358E+00 9.59212712035E+00 9.71278122651E+00 9.83495297449E+00 9.95866145388E+00 1.00839259944E+01 1.02107661689E+01 1.03392017963E+01 1.04692529451E+01 1.06009399359E+01 1.07342833452E+01 1.08693040080E+01 1.10060230218E+01 1.11444617490E+01 1.12846418211E+01 1.14265851414E+01 1.15703138889E+01 1.17158505214E+01 1.18632177795E+01 1.20124386894E+01 1.21635365674E+01 1.23165350226E+01 1.24714579616E+01 1.26283295912E+01 1.27871744230E+01 1.29480172768E+01 1.31108832847E+01 1.32757978947E+01 1.34427868752E+01 1.36118763185E+01 1.37830926451E+01 1.39564626080E+01 1.41320132966E+01 1.43097721411E+01 1.44897669165E+01 1.46720257475E+01 1.48565771124E+01 1.50434498476E+01 1.52326731525E+01 1.54242765936E+01 1.56182901093E+01 1.58147440146E+01 1.60136690058E+01 1.62150961654E+01 1.64190569667E+01 1.66255832791E+01 1.68347073727E+01 1.70464619236E+01 1.72608800189E+01 1.74779951617E+01 1.76978412769E+01 1.79204527158E+01 1.81458642618E+01 1.83741111361E+01 1.86052290027E+01 1.88392539741E+01 1.90762226172E+01 1.93161719590E+01 1.95591394919E+01 1.98051631802E+01 2.00542814655E+01 2.03065332731E+01 2.05619580179E+01 2.08205956104E+01 2.10824864633E+01 2.13476714976E+01 2.16161921491E+01 2.18880903745E+01 2.21634086586E+01 2.24421900204E+01 2.27244780200E+01 2.30103167656E+01 2.32997509200E+01 2.35928257078E+01 2.38895869227E+01 2.41900809341E+01 2.44943546949E+01 2.48024557485E+01 2.51144322362E+01 2.54303329051E+01 2.57502071152E+01 2.60741048475E+01 2.64020767118E+01 2.67341739543E+01 2.70704484659E+01 2.74109527901E+01 2.77557401314E+01 2.81048643636E+01 2.84583800381E+01 2.88163423923E+01 2.91788073587E+01 2.95458315731E+01 2.99174723837E+01 3.02937878603E+01 3.06748368029E+01 3.10606787512E+01 3.14513739937E+01 3.18469835773E+01 3.22475693170E+01 3.26531938049E+01 3.30639204208E+01 3.34798133416E+01 3.39009375513E+01 3.43273588515E+01 3.47591438713E+01 3.51963600781E+01 3.56390757877E+01 3.60873601755E+01 3.65412832867E+01 3.70009160477E+01 3.74663302772E+01 3.79375986970E+01 3.84147949438E+01 3.88979935804E+01 3.93872701077E+01 3.98827009761E+01 4.03843635976E+01 4.08923363581E+01 4.14066986294E+01 4.19275307816E+01 4.24549141957E+01 4.29889312766E+01 4.35296654654E+01 4.40772012531E+01 4.46316241931E+01 4.51930209152E+01 4.57614791387E+01 4.63370876865E+01 4.69199364985E+01 4.75101166460E+01 4.81077203459E+01 4.87128409750E+01 4.93255730847E+01 4.99460124154E+01 5.05742559122E+01 5.12104017394E+01 5.18545492961E+01 5.25067992316E+01 5.31672534613E+01 5.38360151825E+01 5.45131888906E+01 5.51988803954E+01 5.58931968375E+01 5.65962467054E+01 5.73081398520E+01 5.80289875120E+01 5.87589023193E+01 5.94979983247E+01 6.02463910134E+01 6.10041973233E+01 6.17715356631E+01 6.25485259310E+01 6.33352895334E+01 6.41319494036E+01 6.49386300214E+01 6.57554574322E+01 6.65825592671E+01 6.74200647623E+01 6.82681047797E+01 6.91268118275E+01 6.99963200802E+01 7.08767654004E+01 7.17682853593E+01 7.26710192589E+01 7.35851081530E+01 7.45106948700E+01 7.54479240347E+01 7.63969420910E+01 7.73578973250E+01 7.83309398877E+01 7.93162218193E+01 8.03138970718E+01 8.13241215342E+01 8.23470530560E+01 8.33828514723E+01 8.44316786289E+01 8.54936984070E+01 8.65690767495E+01 8.76579816863E+01 8.87605833611E+01 8.98770540576E+01 9.10075682267E+01 9.21523025134E+01 9.33114357850E+01 9.44851491582E+01 9.56736260282E+01 9.68770520969E+01 9.80956154021E+01 9.93295063468E+01 1.00578917729E+02 8.14180326388E-07 8.24421454169E-07 8.34791399479E-07 8.45291782644E-07 8.55924244370E-07 8.66690446000E-07 8.77592069776E-07 8.88630819098E-07 8.99808418793E-07 9.11126615385E-07 9.22587177364E-07 9.34191895466E-07 9.45942582953E-07 9.57841075893E-07 9.69889233450E-07 9.82088938173E-07 9.94442096290E-07 1.00695063801E-06 1.01961651781E-06 1.03244171477E-06 1.04542823285E-06 1.05857810122E-06 1.07189337456E-06 1.08537613343E-06 1.09902848453E-06 1.11285256106E-06 1.12685052308E-06 1.14102455777E-06 1.15537687988E-06 1.16990973197E-06 1.18462538485E-06 1.19952613784E-06 1.21461431924E-06 1.22989228659E-06 1.24536242712E-06 1.26102715806E-06 1.27688892706E-06 1.29295021255E-06 1.30921352415E-06 1.32568140302E-06 1.34235642230E-06 1.35924118751E-06 1.37633833692E-06 1.39365054199E-06 1.41118050780E-06 1.42893097343E-06 1.44690471244E-06 1.46510453325E-06 1.48353327962E-06 1.50219383109E-06 1.52108910340E-06 1.54022204897E-06 1.55959565738E-06 1.57921295578E-06 1.59907700941E-06 1.61919092208E-06 1.63955783663E-06 1.66018093543E-06 1.68106344087E-06 1.70220861590E-06 1.72361976449E-06 1.74530023217E-06 1.76725340657E-06 1.78948271790E-06 1.81199163955E-06 1.83478368858E-06 1.85786242629E-06 1.88123145879E-06 1.90489443753E-06 1.92885505991E-06 1.95311706981E-06 1.97768425822E-06 2.00256046383E-06 2.02774957358E-06 2.05325552333E-06 2.07908229843E-06 2.10523393437E-06 2.13171451739E-06 2.15852818515E-06 2.18567912732E-06 2.21317158631E-06 2.24100985786E-06 2.26919829176E-06 2.29774129251E-06 2.32664332001E-06 2.35590889026E-06 2.38554257607E-06 2.41554900776E-06 2.44593287390E-06 2.47669892203E-06 2.50785195940E-06 2.53939685374E-06 2.57133853401E-06 2.60368199115E-06 2.63643227890E-06 2.66959451457E-06 2.70317387980E-06 2.73717562145E-06 2.77160505237E-06 2.80646755221E-06 2.84176856831E-06 2.87751361654E-06 2.91370828212E-06 2.95035822055E-06 2.98746915846E-06 3.02504689450E-06 3.06309730027E-06 3.10162632122E-06 3.14063997760E-06 3.18014436536E-06 3.22014565716E-06 3.26065010326E-06 3.30166403257E-06 3.34319385361E-06 3.38524605549E-06 3.42782720895E-06 3.47094396739E-06 3.51460306788E-06 3.55881133226E-06 3.60357566814E-06 3.64890307006E-06 3.69480062050E-06 3.74127549106E-06 3.78833494352E-06 3.83598633103E-06 3.88423709920E-06 3.93309478733E-06 3.98256702952E-06 4.03266155590E-06 4.08338619386E-06 4.13474886923E-06 4.18675760751E-06 4.23942053519E-06 4.29274588095E-06 4.34674197699E-06 4.40141726031E-06 4.45678027403E-06 4.51283966873E-06 4.56960420381E-06 4.62708274885E-06 4.68528428498E-06 4.74421790632E-06 4.80389282135E-06 4.86431835441E-06 4.92550394711E-06 4.98745915982E-06 5.05019367317E-06 5.11371728956E-06 5.17803993468E-06 5.24317165907E-06 5.30912263971E-06 5.37590318155E-06 5.44352371921E-06 5.51199481852E-06 5.58132717824E-06 5.65153163168E-06 5.72261914844E-06 5.79460083609E-06 5.86748794190E-06 5.94129185464E-06 6.01602410633E-06 6.09169637402E-06 6.16832048166E-06 6.24590840192E-06 6.32447225808E-06 6.40402432590E-06 6.48457703555E-06 6.56614297355E-06 6.64873488475E-06 6.73236567431E-06 6.81704840970E-06 6.90279632277E-06 6.98962281181E-06 7.07754144363E-06 7.16656595571E-06 7.25671025830E-06 7.34798843663E-06 7.44041475310E-06 7.53400364951E-06 7.62876974932E-06 7.72472785993E-06 7.82189297498E-06 7.92028027672E-06 8.01990513837E-06 8.12078312651E-06 8.22293000354E-06 8.32636173011E-06 8.43109446765E-06 8.53714458084E-06 8.64452864025E-06 8.75326342484E-06 8.86336592465E-06 8.97485334342E-06 9.08774310129E-06 9.20205283750E-06 9.31780041319E-06 9.43500391415E-06 9.55368165367E-06 9.67385217539E-06 9.79553425619E-06 9.91874690914E-06 1.00435093865E-05 1.01698411826E-05 1.02977620371E-05 1.04272919379E-05 1.05584511242E-05 1.06912600900E-05 1.08257395870E-05 1.09619106277E-05 1.10997944894E-05 1.12394127165E-05 1.13807871247E-05 1.15239398040E-05 1.16688931224E-05 1.18156697291E-05 1.19642925582E-05 1.21147848323E-05 1.22671700663E-05 1.24214720705E-05 1.25777149550E-05 1.27359231330E-05 1.28961213250E-05 1.30583345621E-05 1.32225881906E-05 1.33889078754E-05 1.35573196043E-05 1.37278496920E-05 1.39005247841E-05 1.40753718615E-05 1.42524182444E-05 1.44316915966E-05 1.46132199300E-05 1.47970316087E-05 1.49831553538E-05 1.51716202473E-05 1.53624557374E-05 1.55556916424E-05 1.57513581559E-05 1.59494858512E-05 1.61501056861E-05 1.63532490078E-05 1.65589475580E-05 1.67672334774E-05 1.69781393112E-05 1.71916980137E-05 1.74079429541E-05 1.76269079210E-05 1.78486271281E-05 1.80731352195E-05 1.83004672750E-05 1.85306588158E-05 1.87637458097E-05 1.89997646771E-05 1.92387522964E-05 1.94807460099E-05 1.97257836295E-05 1.99739034430E-05 2.02251442195E-05 2.04795452160E-05 2.07371461831E-05 2.09979873714E-05 2.12621095380E-05 2.15295539525E-05 2.18003624036E-05 2.20745772057E-05 2.23522412053E-05 2.26333977881E-05 2.29180908854E-05 2.32063649810E-05 2.34982651184E-05 2.37938369075E-05 2.40931265320E-05 2.43961807565E-05 2.47030469339E-05 2.50137730127E-05 2.53284075444E-05 2.56469996913E-05 2.59695992341E-05 2.62962565796E-05 2.66270227686E-05 2.69619494842E-05 2.73010890592E-05 2.76444944850E-05 2.79922194192E-05 2.83443181947E-05 2.87008458276E-05 2.90618580260E-05 2.94274111988E-05 2.97975624646E-05 3.01723696601E-05 3.05518913497E-05 3.09361868345E-05 3.13253161615E-05 3.17193401328E-05 3.21183203156E-05 3.25223190512E-05 3.29313994654E-05 3.33456254777E-05 3.37650618119E-05 3.41897740057E-05 3.46198284212E-05 3.50552922553E-05 3.54962335502E-05 3.59427212038E-05 3.63948249807E-05 3.68526155230E-05 3.73161643615E-05 3.77855439266E-05 3.82608275599E-05 3.87420895252E-05 3.92294050209E-05 3.97228501909E-05 4.02225021371E-05 4.07284389311E-05 4.12407396265E-05 4.17594842714E-05 4.22847539207E-05 4.28166306488E-05 4.33551975625E-05 4.39005388141E-05 4.44527396142E-05 4.50118862452E-05 4.55780660751E-05 4.61513675706E-05 4.67318803111E-05 4.73196950030E-05 4.79149034935E-05 4.85175987852E-05 4.91278750504E-05 4.97458276460E-05 5.03715531284E-05 5.10051492684E-05 5.16467150668E-05 5.22963507695E-05 5.29541578834E-05 5.36202391922E-05 5.42946987725E-05 5.49776420099E-05 5.56691756158E-05 5.63694076436E-05 5.70784475060E-05 5.77964059920E-05 5.85233952840E-05 5.92595289755E-05 6.00049220891E-05 6.07596910938E-05 6.15239539238E-05 6.22978299968E-05 6.30814402325E-05 6.38749070716E-05 6.46783544949E-05 6.54919080426E-05 6.63156948342E-05 6.71498435881E-05 6.79944846416E-05 6.88497499717E-05 6.97157732153E-05 7.05926896903E-05 7.14806364167E-05 7.23797521380E-05 7.32901773428E-05 7.42120542869E-05 7.51455270155E-05 7.60907413855E-05 7.70478450887E-05 7.80169876745E-05 7.89983205733E-05 7.99919971204E-05 8.09981725798E-05 8.20170041685E-05 8.30486510809E-05 8.40932745141E-05 8.51510376925E-05 8.62221058937E-05 8.73066464744E-05 8.84048288963E-05 8.95168247525E-05 9.06428077947E-05 9.17829539601E-05 9.29374413987E-05 9.41064505017E-05 9.52901639290E-05 9.64887666382E-05 9.77024459136E-05 9.89313913949E-05 1.00175795107E-04 1.01435851492E-04 1.02711757434E-04 1.04003712298E-04 1.05311917953E-04 1.06636578810E-04 1.07977901849E-04 1.09336096654E-04 1.10711375448E-04 1.12103953119E-04 1.13514047261E-04 1.14941878203E-04 1.16387669048E-04 1.17851645703E-04 1.19334036918E-04 1.20835074318E-04 1.22354992445E-04 1.23894028788E-04 1.25452423826E-04 1.27030421059E-04 1.28628267055E-04 1.30246211479E-04 1.31884507138E-04 1.33543410020E-04 1.35223179332E-04 1.36924077540E-04 1.38646370414E-04 1.40390327066E-04 1.42156219992E-04 1.43944325116E-04 1.45754921834E-04 1.47588293055E-04 1.49444725247E-04 1.51324508482E-04 1.53227936479E-04 1.55155306652E-04 1.57106920158E-04 1.59083081940E-04 1.61084100777E-04 1.63110289333E-04 1.65161964203E-04 1.67239445966E-04 1.69343059233E-04 1.71473132697E-04 1.73629999187E-04 1.75813995718E-04 1.78025463543E-04 1.80264748210E-04 1.82532199609E-04 1.84828172037E-04 1.87153024242E-04 1.89507119488E-04 1.91890825607E-04 1.94304515058E-04 1.96748564985E-04 1.99223357275E-04 2.01729278621E-04 2.04266720576E-04 2.06836079622E-04 2.09437757227E-04 2.12072159907E-04 2.14739699293E-04 2.17440792195E-04 2.20175860662E-04 2.22945332056E-04 2.25749639111E-04 2.28589220007E-04 2.31464518434E-04 2.34375983662E-04 2.37324070615E-04 2.40309239937E-04 2.43331958066E-04 2.46392697309E-04 2.49491935912E-04 2.52630158138E-04 2.55807854339E-04 2.59025521039E-04 2.62283661003E-04 2.65582783323E-04 2.68923403493E-04 2.72306043492E-04 2.75731231864E-04 2.79199503803E-04 2.82711401231E-04 2.86267472892E-04 2.89868274427E-04 2.93514368470E-04 2.97206324730E-04 3.00944720084E-04 3.04730138662E-04 3.08563171944E-04 3.12444418849E-04 3.16374485831E-04 3.20353986970E-04 3.24383544071E-04 3.28463786760E-04 3.32595352585E-04 3.36778887110E-04 3.41015044021E-04 3.45304485227E-04 3.49647880961E-04 3.54045909888E-04 3.58499259209E-04 3.63008624768E-04 3.67574711164E-04 3.72198231856E-04 3.76879909279E-04 3.81620474954E-04 3.86420669605E-04 3.91281243272E-04 3.96202955430E-04 4.01186575105E-04 4.06232880998E-04 4.11342661606E-04 4.16516715342E-04 4.21755850662E-04 4.27060886191E-04 4.32432650853E-04 4.37871983996E-04 4.43379735528E-04 4.48956766045E-04 4.54603946971E-04 4.60322160688E-04 4.66112300679E-04 4.71975271666E-04 4.77911989749E-04 4.83923382553E-04 4.90010389370E-04 4.96173961307E-04 5.02415061435E-04 5.08734664938E-04 5.15133759268E-04 5.21613344296E-04 5.28174432470E-04 5.34818048974E-04 5.41545231886E-04 5.48357032343E-04 5.55254514701E-04 5.62238756707E-04 5.69310849662E-04 5.76471898596E-04 5.83723022437E-04 5.91065354188E-04 5.98500041103E-04 6.06028244867E-04 6.13651141778E-04 6.21369922927E-04 6.29185794392E-04 6.37099977417E-04 6.45113708609E-04 6.53228240131E-04 6.61444839894E-04 6.69764791760E-04 6.78189395737E-04 6.86719968186E-04 6.95357842028E-04 7.04104366947E-04 7.12960909607E-04 7.21928853858E-04 7.31009600962E-04 7.40204569804E-04 7.49515197115E-04 7.58942937701E-04 7.68489264665E-04 7.78155669640E-04 7.87943663022E-04 7.97854774204E-04 8.07890551818E-04 8.18052563974E-04 8.28342398508E-04 8.38761663226E-04 8.49311986161E-04 8.59995015822E-04 8.70812421454E-04 8.81765893298E-04 8.92857142857E-04 9.04087903161E-04 9.15459929040E-04 9.26974997394E-04 9.38634907479E-04 9.50441481177E-04 9.62396563290E-04 9.74502021824E-04 9.86759748282E-04 9.99171657958E-04 1.01173969024E-03 1.02446580890E-03 1.03735200244E-03 1.05040028433E-03 1.06361269340E-03 1.07699129413E-03 1.09053817693E-03 1.10425545854E-03 1.11814528231E-03 1.13220981856E-03 1.14645126490E-03 1.16087184658E-03 1.17547381685E-03 1.19025945729E-03 1.20523107819E-03 1.22039101891E-03 1.23574164820E-03 1.25128536464E-03 1.26702459696E-03 1.28296180445E-03 1.29909947734E-03 1.31544013716E-03 1.33198633718E-03 1.34874066277E-03 1.36570573184E-03 1.38288419521E-03 1.40027873704E-03 1.41789207528E-03 1.43572696204E-03 1.45378618406E-03 1.47207256313E-03 1.49058895652E-03 1.50933825748E-03 1.52832339561E-03 1.54754733738E-03 1.56701308657E-03 1.58672368474E-03 1.60668221172E-03 1.62689178606E-03 1.64735556556E-03 1.66807674771E-03 1.68905857024E-03 1.71030431162E-03 1.73181729152E-03 1.75360087140E-03 1.77565845498E-03 1.79799348881E-03 1.82060946278E-03 1.84350991068E-03 1.86669841076E-03 1.89017858626E-03 1.91395410601E-03 1.93802868499E-03 1.96240608488E-03 1.98709011473E-03 2.01208463144E-03 2.03739354047E-03 2.06302079639E-03 2.08897040351E-03 2.11524641650E-03 2.14185294104E-03 2.16879413447E-03 2.19607420639E-03 2.22369741937E-03 2.25166808961E-03 2.27999058756E-03 2.30866933867E-03 2.33770882407E-03 2.36711358123E-03 2.39688820471E-03 2.42703734684E-03 2.45756571849E-03 2.48847808979E-03 2.51977929085E-03 2.55147421256E-03 2.58356780730E-03 2.61606508976E-03 2.64897113772E-03 2.68229109281E-03 2.71603016134E-03 2.75019361511E-03 2.78478679222E-03 2.81981509794E-03 2.85528400550E-03 2.89119905700E-03 2.92756586423E-03 2.96439010959E-03 3.00167754693E-03 3.03943400249E-03 3.07766537580E-03 3.11637764059E-03 3.15557684573E-03 3.19526911616E-03 3.23546065390E-03 3.27615773895E-03 3.31736673030E-03 3.35909406696E-03 3.40134626891E-03 3.44412993812E-03 3.48745175965E-03 3.53131850261E-03 3.57573702127E-03 3.62071425611E-03 3.66625723492E-03 3.71237307389E-03 3.75906897870E-03 3.80635224569E-03 3.85423026296E-03 3.90271051154E-03 3.95180056659E-03 4.00150809852E-03 4.05184087422E-03 4.10280675831E-03 4.15441371430E-03 4.20666980588E-03 4.25958319819E-03 4.31316215903E-03 4.36741506023E-03 4.42235037892E-03 4.47797669886E-03 4.53430271177E-03 4.59133721870E-03 4.64908913141E-03 4.70756747376E-03 4.76678138310E-03 4.82674011173E-03 4.88745302833E-03 4.94892961940E-03 5.01117949080E-03 5.07421236918E-03 5.13803810358E-03 5.20266666688E-03 5.26810815743E-03 5.33437280060E-03 5.40147095037E-03 5.46941309097E-03 5.53820983849E-03 5.60787194256E-03 5.67841028804E-03 5.74983589667E-03 5.82215992887E-03 5.89539368539E-03 5.96954860918E-03 6.04463628708E-03 6.12066845170E-03 6.19765698321E-03 6.27561391124E-03 6.35455141671E-03 6.43448183377E-03 6.51541765170E-03 6.59737151690E-03 6.68035623482E-03 6.76438477200E-03 6.84947025805E-03 6.93562598777E-03 7.02286542317E-03 7.11120219557E-03 7.20065010778E-03 7.29122313622E-03 7.38293543311E-03 7.47580132869E-03 7.56983533343E-03 7.66505214034E-03 7.76146662724E-03 7.85909385910E-03 7.95794909036E-03 8.05804776735E-03 8.15940553071E-03 8.26203821777E-03 8.36596186512E-03 8.47119271103E-03 8.57774719804E-03 8.68564197550E-03 8.79489390219E-03 8.90552004894E-03 9.01753770132E-03 9.13096436231E-03 9.24581775506E-03 9.36211582565E-03 9.47987674588E-03 9.59911891614E-03 9.71986096826E-03 9.84212176843E-03 9.96592042015E-03 1.00912762672E-02 1.02182088967E-02 1.03467381422E-02 1.04768840865E-02 1.06086670653E-02 1.07421076699E-02 1.08772267506E-02 1.10140454202E-02 1.11525850568E-02 1.12928673075E-02 1.14349140917E-02 1.15787476044E-02 1.17243903201E-02 1.18718649956E-02 1.20211946741E-02 1.21724026888E-02 1.23255126661E-02 1.24805485299E-02 1.26375345048E-02 1.27964951202E-02 1.29574552139E-02 1.31204399364E-02 1.32854747544E-02 1.34525854547E-02 1.36217981490E-02 1.37931392769E-02 1.39666356109E-02 1.41423142601E-02 1.43202026747E-02 1.45003286501E-02 1.46827203313E-02 1.48674062175E-02 1.50544151662E-02 1.52437763978E-02 1.54355195005E-02 1.56296744345E-02 1.58262715370E-02 1.60253415266E-02 1.62269155084E-02 1.64310249788E-02 1.66377018303E-02 1.68469783565E-02 1.70588872573E-02 1.72734616441E-02 1.74907350443E-02 1.77107414074E-02 1.79335151100E-02 1.81590909608E-02 1.83875042064E-02 1.86187905370E-02 1.88529860916E-02 1.90901274635E-02 1.93302517067E-02 1.95733963411E-02 1.98195993584E-02 2.00688992285E-02 2.03213349049E-02 2.05769458313E-02 2.08357719473E-02 2.10978536950E-02 2.13632320253E-02 2.16319484041E-02 2.19040448188E-02 2.21795637851E-02 2.24585483534E-02 2.27410421155E-02 2.30270892118E-02 2.33167343376E-02 2.36100227505E-02 2.39070002775E-02 2.42077133220E-02 2.45122088709E-02 2.48205345024E-02 2.51327383928E-02 2.54488693248E-02 2.57689766944E-02 2.60931105190E-02 2.64213214452E-02 2.67536607566E-02 2.70901803820E-02 2.74309329031E-02 2.77759715634E-02 2.81253502757E-02 2.84791236312E-02 2.88373469077E-02 2.92000760783E-02 2.95673678203E-02 2.99392795236E-02 3.03158693002E-02 3.06971959931E-02 3.10833191854E-02 3.14742992095E-02 3.18701971568E-02 3.22710748874E-02 3.26769950390E-02 3.30880210376E-02 3.35042171068E-02 3.39256482781E-02 3.43523804009E-02 3.47844801531E-02 3.52220150511E-02 3.56650534606E-02 3.61136646072E-02 3.65679185874E-02 3.70278863793E-02 3.74936398538E-02 3.79652517858E-02 3.84427958656E-02 3.89263467105E-02 3.94159798762E-02 3.99117718690E-02 4.04138001574E-02 4.09221431842E-02 4.14368803792E-02 4.19580921711E-02 4.24858600002E-02 4.30202663313E-02 4.35613946667E-02 4.41093295585E-02 4.46641566229E-02 4.52259625525E-02 4.57948351309E-02 4.63708632454E-02 4.69541369016E-02 4.75447472373E-02 4.81427865364E-02 4.87483482439E-02 4.93615269800E-02 4.99824185550E-02 5.06111199847E-02 5.12477295049E-02 5.18923465870E-02 5.25450719539E-02 5.32060075952E-02 5.38752567834E-02 5.45529240900E-02 5.52391154021E-02 5.59339379383E-02 5.66375002662E-02 5.73499123187E-02 5.80712854116E-02 5.88017322611E-02 5.95413670008E-02 6.02903052003E-02 6.10486638826E-02 6.18165615429E-02 6.25941181667E-02 6.33814552488E-02 6.41786958122E-02 6.49859644274E-02 6.58033872318E-02 6.66310919493E-02 6.74692079105E-02 6.83178660727E-02 6.91771990404E-02 7.00473410863E-02 7.09284281717E-02 7.18205979683E-02 7.27239898794E-02 7.36387450620E-02 7.45650064483E-02 7.55029187685E-02 7.64526285734E-02 7.74142842571E-02 7.83880360801E-02 7.93740361933E-02 8.03724386612E-02 8.13833994861E-02 8.24070766327E-02 8.34436300528E-02 8.44932217098E-02 8.55560156045E-02 8.66321778008E-02 8.77218764512E-02 8.88252818232E-02 8.99425663262E-02 9.10739045381E-02 9.22194732330E-02 9.33794514081E-02 9.45540203126E-02 9.57433634750E-02 9.69476667328E-02 9.81671182608E-02 9.94019086008E-02 1.00652230691E-01 1.01918279897E-01 1.03200254042E-01 1.04498353437E-01 1.05812780911E-01 1.07143741848E-01 1.08491444213E-01 1.09856098587E-01 1.11237918199E-01 1.12637118963E-01 1.14053919505E-01 1.15488541205E-01 1.16941208224E-01 1.18412147545E-01 1.19901589004E-01 1.21409765331E-01 1.22936912181E-01 1.24483268174E-01 1.26049074930E-01 1.27634577111E-01 1.29240022454E-01 1.30865661813E-01 1.32511749199E-01 1.34178541815E-01 1.35866300101E-01 1.37575287772E-01 1.39305771863E-01 1.41058022764E-01 1.42832314267E-01 1.44628923611E-01 1.46448131518E-01 1.48290222243E-01 1.50155483618E-01 1.52044207092E-01 1.53956687783E-01 1.55893224520E-01 1.57854119890E-01 1.59839680287E-01 1.61850215960E-01 1.63886041058E-01 1.65947473684E-01 1.68034835940E-01 1.70148453981E-01 1.72288658064E-01 1.74455782600E-01 1.76650166208E-01 1.78872151763E-01 1.81122086456E-01 1.83400321844E-01 1.85707213904E-01 1.88043123095E-01 1.90408414407E-01 1.92803457420E-01 1.95228626366E-01 1.97684300182E-01 2.00170862572E-01 2.02688702067E-01 2.05238212084E-01 2.07819790989E-01 2.10433842159E-01 2.13080774045E-01 2.15761000236E-01 2.18474939522E-01 2.21223015961E-01 2.24005658947E-01 2.26823303273E-01 2.29676389202E-01 2.32565362533E-01 2.35490674676E-01 2.38452782716E-01 2.41452149488E-01 2.44489243649E-01 2.47564539753E-01 2.50678518319E-01 2.53831665914E-01 2.57024475223E-01 2.60257445130E-01 2.63531080791E-01 2.66845893721E-01 2.70202401864E-01 2.73601129682E-01 2.77042608233E-01 2.80527375255E-01 2.84055975251E-01 2.87628959570E-01 2.91246886500E-01 2.94910321348E-01 2.98619836534E-01 3.02376011677E-01 3.06179433687E-01 3.10030696856E-01 3.13930402953E-01 3.17879161313E-01 3.21877588940E-01 3.25926310594E-01 3.30025958898E-01 3.34177174429E-01 3.38380605823E-01 3.42636909876E-01 3.46946751643E-01 3.51310804546E-01 3.55729750476E-01 3.60204279904E-01 3.64735091984E-01 3.69322894663E-01 3.73968404797E-01 3.78672348254E-01 3.83435460037E-01 3.88258484390E-01 3.93142174921E-01 3.98087294717E-01 4.03094616462E-01 4.08164922562E-01 4.13299005261E-01 4.18497666770E-01 4.23761719391E-01 4.29091985643E-01 4.34489298391E-01 4.39954500976E-01 4.45488447347E-01 4.51092002194E-01 4.56766041084E-01 4.62511450597E-01 4.68329128465E-01 4.74219983713E-01 4.80184936797E-01 4.86224919755E-01 4.92340876346E-01 4.98533762201E-01 5.04804544970E-01 5.11154204476E-01 5.17583732867E-01 5.24094134769E-01 5.30686427446E-01 5.37361640957E-01 5.44120818318E-01 5.50965015663E-01 5.57895302413E-01 5.64912761440E-01 5.72018489234E-01 5.79213596081E-01 5.86499206231E-01 5.93876458075E-01 6.01346504324E-01 6.08910512188E-01 6.16569663558E-01 6.24325155193E-01 6.32178198903E-01 6.40130021743E-01 6.48181866201E-01 6.56334990395E-01 6.64590668266E-01 6.72950189781E-01 6.81414861132E-01 6.89986004942E-01 6.98664960469E-01 7.07453083817E-01 7.16351748149E-01 7.25362343900E-01 7.34486278992E-01 7.43724979059E-01 7.53079887668E-01 7.62552466541E-01 7.72144195789E-01 7.81856574138E-01 7.91691119167E-01 8.01649367545E-01 8.11732875267E-01 8.21943217903E-01 8.32281990838E-01 8.42750809528E-01 8.53351309747E-01 8.64085147843E-01 8.74954001003E-01 8.85959567504E-01 8.97103566991E-01 9.08387740736E-01 9.19813851913E-01 9.31383685875E-01 9.43099050434E-01 9.54961776138E-01 9.66973716562E-01 9.79136748597E-01 9.91452772741E-01 1.00392371340E+00 1.01655151918E+00 1.02933816320E+00 1.04228564340E+00 1.05539598286E+00 1.06867123009E+00 1.08211345937E+00 1.09572477108E+00 1.10950729201E+00 1.12346317572E+00 1.13759460283E+00 1.15190378142E+00 1.16639294731E+00 1.18106436448E+00 1.19592032535E+00 1.21096315121E+00 1.22619519253E+00 1.24161882933E+00 1.25723647161E+00 -1.05300774746E+01 -1.05300775064E+01 -1.05300775806E+01 -1.05300776560E+01 -1.05300777336E+01 -1.05300778196E+01 -1.05300779034E+01 -1.05300779856E+01 -1.05300780770E+01 -1.05300781648E+01 -1.05300782509E+01 -1.05300783451E+01 -1.05300784424E+01 -1.05300785397E+01 -1.05300786396E+01 -1.05300787418E+01 -1.05300788464E+01 -1.05300789532E+01 -1.05300790615E+01 -1.05300791727E+01 -1.05300792913E+01 -1.05300794159E+01 -1.05300795387E+01 -1.05300796624E+01 -1.05300797927E+01 -1.05300799265E+01 -1.05300800580E+01 -1.05300801950E+01 -1.05300803415E+01 -1.05300804883E+01 -1.05300806375E+01 -1.05300807916E+01 -1.05300809464E+01 -1.05300811065E+01 -1.05300812753E+01 -1.05300814456E+01 -1.05300816168E+01 -1.05300817936E+01 -1.05300819793E+01 -1.05300821692E+01 -1.05300823586E+01 -1.05300825558E+01 -1.05300827597E+01 -1.05300829655E+01 -1.05300831781E+01 -1.05300833960E+01 -1.05300836185E+01 -1.05300838490E+01 -1.05300840840E+01 -1.05300843234E+01 -1.05300845708E+01 -1.05300848243E+01 -1.05300850829E+01 -1.05300853485E+01 -1.05300856222E+01 -1.05300859019E+01 -1.05300861879E+01 -1.05300864818E+01 -1.05300867827E+01 -1.05300870916E+01 -1.05300874091E+01 -1.05300877339E+01 -1.05300880675E+01 -1.05300884097E+01 -1.05300887598E+01 -1.05300891175E+01 -1.05300894845E+01 -1.05300898632E+01 -1.05300902519E+01 -1.05300906479E+01 -1.05300910535E+01 -1.05300914717E+01 -1.05300919005E+01 -1.05300923389E+01 -1.05300927884E+01 -1.05300932497E+01 -1.05300937227E+01 -1.05300942072E+01 -1.05300947041E+01 -1.05300952132E+01 -1.05300957352E+01 -1.05300962711E+01 -1.05300968210E+01 -1.05300973842E+01 -1.05300979611E+01 -1.05300985533E+01 -1.05300991608E+01 -1.05300997827E+01 -1.05301004204E+01 -1.05301010750E+01 -1.05301017457E+01 -1.05301024334E+01 -1.05301031388E+01 -1.05301038618E+01 -1.05301046028E+01 -1.05301053631E+01 -1.05301061431E+01 -1.05301069425E+01 -1.05301077616E+01 -1.05301086011E+01 -1.05301094627E+01 -1.05301103464E+01 -1.05301112516E+01 -1.05301121800E+01 -1.05301131322E+01 -1.05301141083E+01 -1.05301151092E+01 -1.05301161357E+01 -1.05301171877E+01 -1.05301182664E+01 -1.05301193726E+01 -1.05301205065E+01 -1.05301216691E+01 -1.05301228613E+01 -1.05301240837E+01 -1.05301253370E+01 -1.05301266222E+01 -1.05301279399E+01 -1.05301292908E+01 -1.05301306759E+01 -1.05301320960E+01 -1.05301335522E+01 -1.05301350453E+01 -1.05301365761E+01 -1.05301381458E+01 -1.05301397551E+01 -1.05301414052E+01 -1.05301430970E+01 -1.05301448316E+01 -1.05301466102E+01 -1.05301484338E+01 -1.05301503036E+01 -1.05301522207E+01 -1.05301541863E+01 -1.05301562017E+01 -1.05301582681E+01 -1.05301603868E+01 -1.05301625592E+01 -1.05301647866E+01 -1.05301670703E+01 -1.05301694119E+01 -1.05301718127E+01 -1.05301742743E+01 -1.05301767982E+01 -1.05301793860E+01 -1.05301820394E+01 -1.05301847599E+01 -1.05301875493E+01 -1.05301904093E+01 -1.05301933417E+01 -1.05301963483E+01 -1.05301994311E+01 -1.05302025919E+01 -1.05302058327E+01 -1.05302091556E+01 -1.05302125626E+01 -1.05302160559E+01 -1.05302196375E+01 -1.05302233097E+01 -1.05302270750E+01 -1.05302309357E+01 -1.05302348941E+01 -1.05302389527E+01 -1.05302431139E+01 -1.05302473804E+01 -1.05302517551E+01 -1.05302562405E+01 -1.05302608395E+01 -1.05302655549E+01 -1.05302703898E+01 -1.05302753470E+01 -1.05302804296E+01 -1.05302856410E+01 -1.05302909843E+01 -1.05302964628E+01 -1.05303020800E+01 -1.05303078395E+01 -1.05303137447E+01 -1.05303197994E+01 -1.05303260074E+01 -1.05303323726E+01 -1.05303388989E+01 -1.05303455904E+01 -1.05303524513E+01 -1.05303594863E+01 -1.05303666990E+01 -1.05303740942E+01 -1.05303816766E+01 -1.05303894512E+01 -1.05303974228E+01 -1.05304055960E+01 -1.05304139759E+01 -1.05304225681E+01 -1.05304313778E+01 -1.05304404104E+01 -1.05304496720E+01 -1.05304591679E+01 -1.05304689042E+01 -1.05304788871E+01 -1.05304891227E+01 -1.05304996173E+01 -1.05305103777E+01 -1.05305214103E+01 -1.05305327222E+01 -1.05305443209E+01 -1.05305562131E+01 -1.05305684063E+01 -1.05305809083E+01 -1.05305937267E+01 -1.05306068697E+01 -1.05306203456E+01 -1.05306341624E+01 -1.05306483288E+01 -1.05306628541E+01 -1.05306777471E+01 -1.05306930172E+01 -1.05307086740E+01 -1.05307247273E+01 -1.05307411870E+01 -1.05307580632E+01 -1.05307753670E+01 -1.05307931088E+01 -1.05308112993E+01 -1.05308299505E+01 -1.05308490739E+01 -1.05308686816E+01 -1.05308887862E+01 -1.05309093997E+01 -1.05309305345E+01 -1.05309522045E+01 -1.05309744234E+01 -1.05309972049E+01 -1.05310205633E+01 -1.05310445128E+01 -1.05310690688E+01 -1.05310942467E+01 -1.05311200619E+01 -1.05311465307E+01 -1.05311736698E+01 -1.05312014962E+01 -1.05312300270E+01 -1.05312592798E+01 -1.05312892734E+01 -1.05313200266E+01 -1.05313515587E+01 -1.05313838892E+01 -1.05314170384E+01 -1.05314510268E+01 -1.05314858753E+01 -1.05315216063E+01 -1.05315582429E+01 -1.05315958063E+01 -1.05316343207E+01 -1.05316738109E+01 -1.05317143009E+01 -1.05317558160E+01 -1.05317983825E+01 -1.05318420272E+01 -1.05318867769E+01 -1.05319326597E+01 -1.05319797045E+01 -1.05320279403E+01 -1.05320773975E+01 -1.05321281074E+01 -1.05321801016E+01 -1.05322334120E+01 -1.05322880722E+01 -1.05323441170E+01 -1.05324015810E+01 -1.05324605002E+01 -1.05325209117E+01 -1.05325828530E+01 -1.05326463631E+01 -1.05327114817E+01 -1.05327782492E+01 -1.05328467073E+01 -1.05329168993E+01 -1.05329888691E+01 -1.05330626618E+01 -1.05331383234E+01 -1.05332159012E+01 -1.05332954437E+01 -1.05333770008E+01 -1.05334606239E+01 -1.05335463651E+01 -1.05336342777E+01 -1.05337244169E+01 -1.05338168395E+01 -1.05339116033E+01 -1.05340087670E+01 -1.05341083917E+01 -1.05342105404E+01 -1.05343152765E+01 -1.05344226654E+01 -1.05345327751E+01 -1.05346456740E+01 -1.05347614327E+01 -1.05348801239E+01 -1.05350018220E+01 -1.05351266031E+01 -1.05352545453E+01 -1.05353857293E+01 -1.05355202367E+01 -1.05356581514E+01 -1.05357995605E+01 -1.05359445525E+01 -1.05360932181E+01 -1.05362456505E+01 -1.05364019450E+01 -1.05365621997E+01 -1.05367265152E+01 -1.05368949946E+01 -1.05370677434E+01 -1.05372448694E+01 -1.05374264838E+01 -1.05376127007E+01 -1.05378036365E+01 -1.05379994114E+01 -1.05382001481E+01 -1.05384059723E+01 -1.05386170128E+01 -1.05388334019E+01 -1.05390552759E+01 -1.05392827735E+01 -1.05395160372E+01 -1.05397552141E+01 -1.05400004541E+01 -1.05402519104E+01 -1.05405097409E+01 -1.05407741080E+01 -1.05410451772E+01 -1.05413231186E+01 -1.05416081068E+01 -1.05419003200E+01 -1.05421999419E+01 -1.05425071612E+01 -1.05428221707E+01 -1.05431451679E+01 -1.05434763552E+01 -1.05438159405E+01 -1.05441641377E+01 -1.05445211658E+01 -1.05448872479E+01 -1.05452626142E+01 -1.05456475011E+01 -1.05460421503E+01 -1.05464468096E+01 -1.05468617332E+01 -1.05472871816E+01 -1.05477234222E+01 -1.05481707290E+01 -1.05486293836E+01 -1.05490996743E+01 -1.05495818964E+01 -1.05500763529E+01 -1.05505833551E+01 -1.05511032216E+01 -1.05516362785E+01 -1.05521828616E+01 -1.05527433148E+01 -1.05533179898E+01 -1.05539072481E+01 -1.05545114606E+01 -1.05551310070E+01 -1.05557662771E+01 -1.05564176704E+01 -1.05570855963E+01 -1.05577704750E+01 -1.05584727371E+01 -1.05591928241E+01 -1.05599311889E+01 -1.05606882959E+01 -1.05614646210E+01 -1.05622606523E+01 -1.05630768907E+01 -1.05639138490E+01 -1.05647720533E+01 -1.05656520429E+01 -1.05665543710E+01 -1.05674796048E+01 -1.05684283254E+01 -1.05694011288E+01 -1.05703986261E+01 -1.05714214441E+01 -1.05724702243E+01 -1.05735456247E+01 -1.05746483210E+01 -1.05757790046E+01 -1.05769383845E+01 -1.05781271876E+01 -1.05793461590E+01 -1.05805960619E+01 -1.05818776792E+01 -1.05831918133E+01 -1.05845392857E+01 -1.05859209391E+01 -1.05873376370E+01 -1.05887902641E+01 -1.05902797264E+01 -1.05918069529E+01 -1.05933728955E+01 -1.05949785289E+01 -1.05966248524E+01 -1.05983128883E+01 -1.06000436845E+01 -1.06018183153E+01 -1.06036378800E+01 -1.06055035043E+01 -1.06074163406E+01 -1.06093775695E+01 -1.06113884004E+01 -1.06134500698E+01 -1.06155638440E+01 -1.06177310200E+01 -1.06199529247E+01 -1.06222309152E+01 -1.06245663802E+01 -1.06269607406E+01 -1.06294154502E+01 -1.06319319958E+01 -1.06345118972E+01 -1.06371567084E+01 -1.06398680182E+01 -1.06426474504E+01 -1.06454966645E+01 -1.06484173559E+01 -1.06514112563E+01 -1.06544801337E+01 -1.06576257944E+01 -1.06608500815E+01 -1.06641548757E+01 -1.06675420962E+01 -1.06710137006E+01 -1.06745716849E+01 -1.06782180831E+01 -1.06819549688E+01 -1.06857844541E+01 -1.06897086893E+01 -1.06937298636E+01 -1.06978502047E+01 -1.07020719775E+01 -1.07063974860E+01 -1.07108290704E+01 -1.07153691076E+01 -1.07200200109E+01 -1.07247842282E+01 -1.07296642419E+01 -1.07346625673E+01 -1.07397817523E+01 -1.07450243748E+01 -1.07503930414E+01 -1.07558903865E+01 -1.07615190691E+01 -1.07672817725E+01 -1.07731812005E+01 -1.07792200745E+01 -1.07854011318E+01 -1.07917271218E+01 -1.07982008042E+01 -1.08048249439E+01 -1.08116023059E+01 -1.08185356541E+01 -1.08256277451E+01 -1.08328813229E+01 -1.08402991152E+01 -1.08478838255E+01 -1.08556381291E+01 -1.08635646666E+01 -1.08716660356E+01 -1.08799447847E+01 -1.08884034054E+01 -1.08970443238E+01 -1.09058698922E+01 -1.09148823800E+01 -1.09240839638E+01 -1.09334767167E+01 -1.09430625978E+01 -1.09528434428E+01 -1.09628209501E+01 -1.09729966679E+01 -1.09833719835E+01 -1.09939481087E+01 -1.10047260649E+01 -1.10157066701E+01 -1.10268905232E+01 -1.10382779870E+01 -1.10498691736E+01 -1.10616639278E+01 -1.10736618091E+01 -1.10858620728E+01 -1.10982636538E+01 -1.11108651478E+01 -1.11236647918E+01 -1.11366604446E+01 -1.11498495677E+01 -1.11632292066E+01 -1.11767959689E+01 -1.11905460057E+01 -1.12044749916E+01 -1.12185781045E+01 -1.12328500061E+01 -1.12472848234E+01 -1.12618761282E+01 -1.12766169194E+01 -1.12914996061E+01 -1.13065159887E+01 -1.13216572447E+01 -1.13369139126E+01 -1.13522758781E+01 -1.13677323621E+01 -1.13832719095E+01 -1.13988823794E+01 -1.14145509386E+01 -1.14302640569E+01 -1.14460075021E+01 -1.14617663402E+01 -1.14775249384E+01 -1.14932669687E+01 -1.15089754161E+01 -1.15246325890E+01 -1.15402201332E+01 -1.15557190501E+01 -1.15711097177E+01 -1.15863719156E+01 -1.16014848534E+01 -1.16164272033E+01 -1.16311771374E+01 -1.16457123685E+01 -1.16600101947E+01 -1.16740475493E+01 -1.16878010540E+01 -1.17012470765E+01 -1.17143617913E+01 -1.17271212465E+01 -1.17395014326E+01 -1.17514783555E+01 -1.17630281127E+01 -1.17741269739E+01 -1.17847514624E+01 -1.17948784405E+01 -1.18044851979E+01 -1.18135495394E+01 -1.18220498759E+01 -1.18299653158E+01 -1.18372757569E+01 -1.18439619773E+01 -1.18500057274E+01 -1.18553898192E+01 -1.18600982126E+01 -1.18641161026E+01 -1.18674300002E+01 -1.18700278107E+01 -1.18718989078E+01 -1.18730342027E+01 -1.18734262068E+01 -1.18730690890E+01 -1.18719587264E+01 -1.18700927466E+01 -1.18674705638E+01 -1.18640934053E+01 -1.18599643306E+01 -1.18550882417E+01 -1.18494718826E+01 -1.18431238318E+01 -1.18360544842E+01 -1.18282760238E+01 -1.18198023869E+01 -1.18106492168E+01 -1.18008338088E+01 -1.17903750466E+01 -1.17792933309E+01 -1.17676104992E+01 -1.17553497388E+01 -1.17425354934E+01 -1.17291933628E+01 -1.17153499969E+01 -1.17010329863E+01 -1.16862707472E+01 -1.16710924049E+01 -1.16555276733E+01 -1.16396067344E+01 -1.16233601160E+01 -1.16068185701E+01 -1.15900129526E+01 -1.15729741043E+01 -1.15557327348E+01 -1.15383193098E+01 -1.15207639420E+01 -1.15030962870E+01 -1.14853454445E+01 -1.14675398651E+01 -1.14497072631E+01 -1.14318745364E+01 -1.14140676928E+01 -1.13963117835E+01 -1.13786308446E+01 -1.13610478447E+01 -1.13435846414E+01 -1.13262619443E+01 -1.13090992857E+01 -1.12921149984E+01 -1.12753262004E+01 -1.12587487869E+01 -1.12423974282E+01 -1.12262855739E+01 -1.12104254632E+01 -1.11948281401E+01 -1.11795034743E+01 -1.11644601859E+01 -1.11497058752E+01 -1.11352470553E+01 -1.11210891887E+01 -1.11072367261E+01 -1.10936931488E+01 -1.10804610114E+01 -1.10675419881E+01 -1.10549369181E+01 -1.10426458539E+01 -1.10306681086E+01 -1.10190023043E+01 -1.10076464199E+01 -1.09965978384E+01 -1.09858533942E+01 -1.09754094190E+01 -1.09652617864E+01 -1.09554059560E+01 -1.09458370152E+01 -1.09365497199E+01 -1.09275385338E+01 -1.09187976650E+01 -1.09103211016E+01 -1.09021026453E+01 -1.08941359421E+01 -1.08864145127E+01 -1.08789317791E+01 -1.08716810907E+01 -1.08646557475E+01 -1.08578490216E+01 -1.08512541770E+01 -1.08448644875E+01 -1.08386732524E+01 -1.08326738107E+01 -1.08268595539E+01 -1.08212239365E+01 -1.08157604854E+01 -1.08104628077E+01 -1.08053245969E+01 -1.08003396380E+01 -1.07955018107E+01 -1.07908050925E+01 -1.07862435591E+01 -1.07818113851E+01 -1.07775028424E+01 -1.07733122991E+01 -1.07692342158E+01 -1.07652631421E+01 -1.07613937122E+01 -1.07576206389E+01 -1.07539387082E+01 -1.07503427719E+01 -1.07468277402E+01 -1.07433885736E+01 -1.07400202741E+01 -1.07367178758E+01 -1.07334764351E+01 -1.07302910203E+01 -1.07271567005E+01 -1.07240685341E+01 -1.07210215574E+01 -1.07180107714E+01 -1.07150311295E+01 -1.07120775242E+01 -1.07091447728E+01 -1.07062276037E+01 -1.07033206417E+01 -1.07004183926E+01 -1.06975152277E+01 -1.06946053681E+01 -1.06916828681E+01 -1.06887415986E+01 -1.06857752295E+01 -1.06827772126E+01 -1.06797407630E+01 -1.06766588413E+01 -1.06735241347E+01 -1.06703290378E+01 -1.06670656336E+01 -1.06637256739E+01 -1.06603005593E+01 -1.06567813197E+01 -1.06531585942E+01 -1.06494226110E+01 -1.06455631678E+01 -1.06415696121E+01 -1.06374308216E+01 -1.06331351854E+01 -1.06286705854E+01 -1.06240243788E+01 -1.06191833812E+01 -1.06141338507E+01 -1.06088614732E+01 -1.06033513499E+01 -1.05975879853E+01 -1.05915552783E+01 -1.05852365149E+01 -1.05786143637E+01 -1.05716708740E+01 -1.05643874775E+01 -1.05567449927E+01 -1.05487236344E+01 -1.05403030260E+01 -1.05314622172E+01 -1.05221797061E+01 -1.05124334671E+01 -1.05022009834E+01 -1.04914592859E+01 -1.04801849981E+01 -1.04683543870E+01 -1.04559434204E+01 -1.04429278309E+01 -1.04292831859E+01 -1.04149849643E+01 -1.04000086391E+01 -1.03843297656E+01 -1.03679240754E+01 -1.03507675746E+01 -1.03328366457E+01 -1.03141081527E+01 -1.02945595481E+01 -1.02741689794E+01 -1.02529153959E+01 -1.02307786513E+01 -1.02077396027E+01 -1.01837802030E+01 -1.01588835846E+01 -1.01330341324E+01 -1.01062175451E+01 -1.00784208808E+01 -1.00496325866E+01 -1.00198425104E+01 -9.98904189272E+00 -9.95722333793E+00 -9.92438076415E+00 -9.89050933181E+00 -9.85560535080E+00 -9.81966616751E+00 -9.78269003292E+00 -9.74467595404E+00 -9.70562353128E+00 -9.66553278486E+00 -9.62440397392E+00 -9.58223741225E+00 -9.53903328474E+00 -9.49479146884E+00 -9.44951136503E+00 -9.40319174034E+00 -9.35583058814E+00 -9.30742500733E+00 -9.25797110299E+00 -9.20746391000E+00 -9.15589734021E+00 -9.10326415285E+00 -9.04955594706E+00 -8.99476317475E+00 -8.93887517095E+00 -8.88188019884E+00 -8.82376550570E+00 -8.76451738647E+00 -8.70412125120E+00 -8.64256169349E+00 -8.57982255737E+00 -8.51588700113E+00 -8.45073755777E+00 -8.38435619322E+00 -8.31672436512E+00 -8.24782308676E+00 -8.17763300286E+00 -8.10613448580E+00 -8.03330776279E+00 -7.95913308633E+00 -7.88359096167E+00 -7.80666244561E+00 -7.72832953150E+00 -7.64857563404E+00 -7.56738618611E+00 -7.48474935620E+00 -7.40065689107E+00 -7.31510508220E+00 -7.22809584794E+00 -7.13963791525E+00 -7.04974807689E+00 -6.95845249132E+00 -6.86578798542E+00 -6.77180331333E+00 -6.67656032123E+00 -6.58013496573E+00 -6.48261813542E+00 -6.38411622976E+00 -6.28475145732E+00 -6.18466182579E+00 -6.08400080863E+00 -5.98293668641E+00 -5.88165157417E+00 -5.78034015801E+00 -5.67920817375E+00 -5.57847066754E+00 -5.47835008150E+00 -5.37907420741E+00 -5.28087404831E+00 -5.18398162172E+00 -5.08862772986E+00 -4.99503971344E+00 -4.90343919541E+00 -4.81403981239E+00 -4.72704492333E+00 -4.64264527873E+00 -4.56101663040E+00 -4.48231725974E+00 -4.40668540484E+00 -4.33423657086E+00 -4.26506071624E+00 -4.19921931876E+00 -4.13674234028E+00 -4.07762512864E+00 -4.02182531874E+00 -3.96925982421E+00 -3.91980204594E+00 -3.87327946587E+00 -3.82947184407E+00 -3.78811029602E+00 -3.74887759579E+00 -3.71141013172E+00 -3.67530203480E+00 -3.64011210890E+00 -3.60537431848E+00 -3.57061273567E+00 -3.53536201959E+00 -3.49919470088E+00 -3.46175678234E+00 -3.42281345116E+00 -3.38230704496E+00 -3.34050434673E+00 -3.29834641242E+00 -3.25701930663E+00 -3.21656322165E+00 -3.17666898929E+00 -3.13726349850E+00 -3.09834122249E+00 -3.05989668111E+00 -3.02192443608E+00 -2.98441908780E+00 -2.94730290234E+00 -2.91064256360E+00 -2.87458502900E+00 -2.83897270465E+00 -2.80372482626E+00 -2.76891223844E+00 -2.73452980008E+00 -2.70057240896E+00 -2.66703500298E+00 -2.63391256143E+00 -2.60120010616E+00 -2.56889270278E+00 -2.53698546178E+00 -2.50547353950E+00 -2.47435213908E+00 -2.44357585293E+00 -2.41318511826E+00 -2.38325709055E+00 -2.35369686747E+00 -2.32446163793E+00 -2.29558923506E+00 -2.26707519678E+00 -2.23891511010E+00 -2.21110461121E+00 -2.18363938559E+00 -2.15651516804E+00 -2.12972774265E+00 -2.10327294269E+00 -2.07714665055E+00 -2.05134479750E+00 -2.02586336354E+00 -2.00069837711E+00 -1.97584591470E+00 -1.95130210079E+00 -1.92706310750E+00 -1.90312515358E+00 -1.87948450444E+00 -1.85613747193E+00 -1.83308041351E+00 -1.81030973183E+00 -1.78782187422E+00 -1.76561333221E+00 -1.74368064091E+00 -1.72202037855E+00 -1.70062916585E+00 -1.67950366550E+00 -1.65864058159E+00 -1.63803665904E+00 -1.61768868305E+00 -1.59759347858E+00 -1.57774790974E+00 -1.55814887929E+00 -1.53879332812E+00 -1.51967823473E+00 -1.50080061467E+00 -1.48215752015E+00 -1.46374603946E+00 -1.44556329658E+00 -1.42760645068E+00 -1.40987269572E+00 -1.39235926002E+00 -1.37506340582E+00 -1.35798242897E+00 -1.34111365845E+00 -1.32445445608E+00 -1.30800221613E+00 -1.29175436496E+00 -1.27570836072E+00 -1.25986169297E+00 -1.24421188237E+00 -1.22875648035E+00 -1.21349306877E+00 -1.19841925963E+00 -1.18353269470E+00 -1.16883104519E+00 -1.15431201145E+00 -1.13997332263E+00 -1.12581273630E+00 -1.11182803818E+00 -1.09801704174E+00 -1.08437758789E+00 -1.07090754461E+00 -1.05760480664E+00 -1.04446729511E+00 -1.03149295722E+00 -1.01867976587E+00 -1.00602571934E+00 -9.93528840964E-01 -9.81187178790E-01 -9.68998805242E-01 -9.56961816813E-01 -9.45074333740E-01 -9.33334499693E-01 -9.21740481463E-01 -9.10290468667E-01 -8.98982673440E-01 -8.87815330152E-01 -8.76786695114E-01 -8.65895046297E-01 -8.55138683055E-01 -8.44515925853E-01 -8.34025115995E-01 -8.23664615365E-01 -8.13432806163E-01 -8.03328090649E-01 -7.93348890896E-01 -7.83493648539E-01 -7.73760824530E-01 -7.64148898900E-01 -7.54656370519E-01 -7.45281756864E-01 -7.36023593791E-01 -7.26880435301E-01 -7.17850853321E-01 -7.08933437479E-01 -7.00126794890E-01 -6.91429549933E-01 -6.82840344047E-01 -6.74357835510E-01 -6.65980699242E-01 -6.57707626590E-01 -6.49537325133E-01 -6.41468518477E-01 -6.33499946060E-01 -6.25630362955E-01 -6.17858539676E-01 -6.10183261992E-01 -6.02603330732E-01 -5.95117561608E-01 -5.87724785400E-01 -5.80423846231E-01 -5.73213603767E-01 -5.66092931412E-01 -5.59060716553E-01 -5.52115860383E-01 -5.45257277735E-01 -5.38483896910E-01 -5.31794659513E-01 -5.25188520284E-01 -5.18664447208E-01 -5.12221420420E-01 -5.05858432466E-01 -4.99574484442E-01 -4.93368633461E-01 -4.87239803392E-01 -4.81187183660E-01 -4.75208671361E-01 -4.69305597009E-01 -4.63475789300E-01 -4.57718400624E-01 -4.52032531377E-01 -4.46417293131E-01 -4.40871808492E-01 -4.35395210968E-01 -4.29986644830E-01 -4.24645263962E-01 -4.19370235819E-01 -4.14160735127E-01 -4.09015947889E-01 -4.03935070223E-01 -3.98917308232E-01 -3.93961878019E-01 -3.89068004997E-01 -3.84234926956E-01 -3.79461884032E-01 -3.74748132798E-01 -3.70092936724E-01 -3.65495568423E-01 -3.60955309549E-01 -3.56471450677E-01 -3.52043291194E-01 -3.47670139192E-01 -3.43351311357E-01 -3.39086132863E-01 -3.34873937267E-01 -3.30714066405E-01 -3.26605870001E-01 -3.22548706724E-01 -3.18541942338E-01 -3.14584950780E-01 -3.10677113759E-01 -3.06817820670E-01 -3.03006468490E-01 -2.99242461687E-01 -2.95525212127E-01 -2.91854138983E-01 -2.88228668642E-01 -2.84648234616E-01 -2.81112277457E-01 -2.77620244663E-01 -2.74171590597E-01 -2.70765776399E-01 -2.67402269906E-01 -2.64080545560E-01 -2.60800084338E-01 -2.57560373659E-01 -2.54360907312E-01 -2.51201185375E-01 -2.48080714134E-01 -2.44999006010E-01 -2.41955579478E-01 -2.38949958998E-01 -2.35981674936E-01 -2.33050263490E-01 -2.30155266622E-01 -2.27296231983E-01 -2.24472712842E-01 -2.21684268019E-01 -2.18930461815E-01 -2.16210863940E-01 -2.13525049453E-01 -2.10872598689E-01 -2.08253097198E-01 -2.05666135676E-01 -2.03111309907E-01 -2.00588220694E-01 -1.98096473798E-01 -1.95635679879E-01 -1.93205454433E-01 -1.90805417732E-01 -1.88435194766E-01 -1.86094415183E-01 -1.83782713231E-01 -1.81499727701E-01 -1.79245101873E-01 -1.77018483457E-01 -1.74819524540E-01 -1.72647881528E-01 -1.70503215099E-01 -1.68385190145E-01 -1.66293475719E-01 -1.64227744987E-01 -1.62187675175E-01 -1.60172947516E-01 -1.58183247207E-01 -1.56218263351E-01 -1.54277688917E-01 -1.52361220686E-01 -1.50468559206E-01 -1.48599408744E-01 -1.46753477242E-01 -1.44930476270E-01 -1.43130120979E-01 -1.41352130061E-01 -1.39596225701E-01 -1.37862133535E-01 -1.36149582608E-01 -1.34458305330E-01 -1.32788037436E-01 -1.31138517943E-01 -1.29509489110E-01 -1.27900696398E-01 -1.26311888431E-01 -1.24742816952E-01 -1.23193236793E-01 -1.21662905828E-01 -1.20151584939E-01 -1.18659037980E-01 -1.17185031737E-01 -1.15729335894E-01 -1.14291722995E-01 -1.12871968410E-01 -1.11469850300E-01 -1.10085149580E-01 -1.08717649890E-01 -1.07367137553E-01 -1.06033401550E-01 -1.04716233481E-01 -1.03415427537E-01 -1.02130780465E-01 -1.00862091534E-01 -9.96091625103E-02 -9.83717976210E-02 -9.71498035252E-02 -9.59429892838E-02 -9.47511663297E-02 -9.35741484381E-02 -9.24117516976E-02 -9.12637944813E-02 -9.01300974186E-02 -8.90104833669E-02 -8.79047773844E-02 -8.68128067022E-02 -8.57344006977E-02 -8.46693908677E-02 -8.36176108022E-02 -8.25788961586E-02 -8.15530846355E-02 -8.05400159479E-02 -7.95395318015E-02 1 0 Beta L 853 3.77200132062E-04 3.81944725674E-04 3.86748998928E-04 3.91613702502E-04 3.96546579553E-04 4.01515177810E-04 4.06536940162E-04 4.11770938535E-04 4.16795272755E-04 4.22108201131E-04 4.27400458426E-04 4.32835684206E-04 4.38193933658E-04 4.43780601874E-04 4.49307002731E-04 4.55023307290E-04 4.60696213841E-04 4.66541306357E-04 4.72349689351E-04 4.78336558387E-04 4.84339519398E-04 4.90397051406E-04 4.96554714049E-04 5.02864003256E-04 5.09172177154E-04 5.15540821215E-04 5.22062208520E-04 5.28638352266E-04 5.35256610115E-04 5.42005611279E-04 5.48813822380E-04 5.55737157710E-04 5.62702849532E-04 5.69829070363E-04 5.76944359780E-04 5.84235396155E-04 5.91546259094E-04 5.99002669746E-04 6.06584760781E-04 6.14121355985E-04 6.21922588327E-04 6.29730384629E-04 6.37589688236E-04 6.45703566486E-04 6.53776668664E-04 6.61995115536E-04 6.70356809366E-04 6.78739358807E-04 6.87297003565E-04 6.95967577763E-04 7.04702279377E-04 7.13541010513E-04 7.22537436050E-04 7.31637680319E-04 7.40824327718E-04 7.50122252789E-04 7.59621318756E-04 7.69097768058E-04 7.78845302638E-04 7.88588175093E-04 7.98549199430E-04 8.08579389517E-04 8.18751149807E-04 8.29025402424E-04 8.39476520812E-04 8.50009855040E-04 8.60754123455E-04 8.71560712619E-04 8.82500146517E-04 8.93597289155E-04 9.04876855397E-04 9.16218080539E-04 9.27743817620E-04 9.39427356892E-04 9.51242417883E-04 9.63208408269E-04 9.75315294325E-04 9.87589735061E-04 1.00002284690E-03 1.01259752536E-03 1.02534154863E-03 1.03822404507E-03 1.05129180760E-03 1.06450464424E-03 1.07790193931E-03 1.09146824411E-03 1.10517771634E-03 1.11908167464E-03 1.13320035376E-03 1.14739956395E-03 1.16187095571E-03 1.17647573143E-03 1.19126024003E-03 1.20625883884E-03 1.22142636373E-03 1.23680137505E-03 1.25233761762E-03 1.26809297441E-03 1.28404326071E-03 1.30022879717E-03 1.31654830535E-03 1.33311425320E-03 1.34986907416E-03 1.36689208035E-03 1.38405063947E-03 1.40147315444E-03 1.41909277875E-03 1.43693989475E-03 1.45501473608E-03 1.47333492959E-03 1.49183619704E-03 1.51062212844E-03 1.52962209736E-03 1.54886724319E-03 1.56833920093E-03 1.58807737024E-03 1.60803892650E-03 1.62827094408E-03 1.64874923664E-03 1.66949358371E-03 1.69048532493E-03 1.71176700398E-03 1.73326793125E-03 1.75511463670E-03 1.77714445163E-03 1.79952974573E-03 1.82214712257E-03 1.84506314147E-03 1.86829730551E-03 1.89177141981E-03 1.91558758998E-03 1.93966807722E-03 1.96406069056E-03 1.98878888257E-03 2.01379280822E-03 2.03912075435E-03 2.06477267558E-03 2.09074153745E-03 2.11704680625E-03 2.14366844787E-03 2.17063582413E-03 2.19793555610E-03 2.22558187035E-03 2.25357900768E-03 2.28193331024E-03 2.31062898986E-03 2.33969945416E-03 2.36912370729E-03 2.39892072487E-03 2.42910244513E-03 2.45964743754E-03 2.49058571046E-03 2.52192187929E-03 2.55363666393E-03 2.58577101163E-03 2.61827754013E-03 2.65123803904E-03 2.68455870811E-03 2.71834597890E-03 2.75251644555E-03 2.78716225895E-03 2.82220392837E-03 2.85771007613E-03 2.89365702839E-03 2.93003927973E-03 2.96691655920E-03 3.00421764733E-03 3.04201847672E-03 3.08027758503E-03 3.11902559473E-03 3.15825452171E-03 3.19798548076E-03 3.23820381956E-03 3.27895033102E-03 3.32017748903E-03 3.36195198377E-03 3.40423772154E-03 3.44705234691E-03 3.49041511255E-03 3.53431277924E-03 3.57877235378E-03 3.62378794500E-03 3.66937115543E-03 3.71552483051E-03 3.76226166335E-03 3.80958809428E-03 3.85750751609E-03 3.90602010825E-03 3.95515917840E-03 4.00490513508E-03 4.05528880964E-03 4.10628859071E-03 4.15794499816E-03 4.21024410920E-03 4.26319977163E-03 4.31682260600E-03 4.37112675512E-03 4.42610215356E-03 4.48178299940E-03 4.53814993987E-03 4.59523845210E-03 4.65303693666E-03 4.71156279386E-03 4.77082885736E-03 4.83083721242E-03 4.89160467683E-03 4.95313163188E-03 5.01543635173E-03 5.07852124365E-03 5.14239856633E-03 5.20708713743E-03 5.27257979969E-03 5.33890097206E-03 5.40605903582E-03 5.47405276464E-03 5.54291437998E-03 5.61263083112E-03 5.68323337559E-03 5.75472331739E-03 5.82709767362E-03 5.90040333526E-03 5.97461858369E-03 6.04976586394E-03 6.12586755998E-03 6.20291594141E-03 6.28094292302E-03 6.35994277974E-03 6.43995172763E-03 6.52094654448E-03 6.60297116182E-03 6.68602921642E-03 6.77012555850E-03 6.85528398571E-03 6.94151686301E-03 7.02882239702E-03 7.11724097428E-03 7.20676248028E-03 7.29741036237E-03 7.38920328458E-03 7.48214525593E-03 7.57626428806E-03 7.67155656359E-03 7.76805436875E-03 7.86576261821E-03 7.96470327926E-03 8.06488714118E-03 8.16632967282E-03 8.26905277053E-03 8.37306143742E-03 8.47837635336E-03 8.58503068137E-03 8.69301057112E-03 8.80235436075E-03 8.91307698958E-03 9.02518966924E-03 9.13871060858E-03 9.25366132790E-03 9.37005781061E-03 9.48792056196E-03 9.60725885302E-03 9.72810963417E-03 9.85046701994E-03 9.97437483895E-03 1.00998341373E-02 1.02268774027E-02 1.03555139543E-02 1.04857671274E-02 1.06176643994E-02 1.07512176149E-02 1.08864483757E-02 1.10233849102E-02 1.11620411069E-02 1.13024410379E-02 1.14446084420E-02 1.15885648033E-02 1.17343268298E-02 1.18819286562E-02 1.20313832391E-02 1.21827193529E-02 1.23359574588E-02 1.24911249393E-02 1.26482436408E-02 1.28073358702E-02 1.29684335260E-02 1.31315559379E-02 1.32967276960E-02 1.34639808510E-02 1.36333337232E-02 1.38048225613E-02 1.39784633180E-02 1.41542889163E-02 1.43323279756E-02 1.45126065268E-02 1.46951482213E-02 1.48799917730E-02 1.50671570857E-02 1.52566776738E-02 1.54485808864E-02 1.56428986896E-02 1.58396623489E-02 1.60388971137E-02 1.62406415531E-02 1.64449233808E-02 1.66517707564E-02 1.68612244198E-02 1.70733085050E-02 1.72880650856E-02 1.75055181203E-02 1.77257105164E-02 1.79486675758E-02 1.81744346189E-02 1.84030370388E-02 1.86345180998E-02 1.88689089433E-02 1.91062462321E-02 1.93465723495E-02 1.95899181396E-02 1.98363265436E-02 2.00858354571E-02 2.03384797918E-02 2.05943052053E-02 2.08533431185E-02 2.11156453033E-02 2.13812418001E-02 2.16501823197E-02 2.19225035773E-02 2.21982519109E-02 2.24774671194E-02 2.27601941399E-02 2.30464788396E-02 2.33363633581E-02 2.36298925280E-02 2.39271177976E-02 2.42280769703E-02 2.45328240282E-02 2.48414033088E-02 2.51538637605E-02 2.54702555114E-02 2.57906254997E-02 2.61150257020E-02 2.64435039942E-02 2.67761174754E-02 2.71129118290E-02 2.74539417218E-02 2.77992639518E-02 2.81489262783E-02 2.85029888305E-02 2.88615039777E-02 2.92245275576E-02 2.95921180550E-02 2.99643309358E-02 3.03412261057E-02 3.07228617247E-02 3.11092972242E-02 3.15005923719E-02 3.18968098987E-02 3.22980107598E-02 3.27042573221E-02 3.31156121504E-02 3.35321435713E-02 3.39539115575E-02 3.43809844766E-02 3.48134294379E-02 3.52513125026E-02 3.56947037502E-02 3.61436711406E-02 3.65982846695E-02 3.70586167321E-02 3.75247378590E-02 3.79967220192E-02 3.84746409287E-02 3.89585721712E-02 3.94485885965E-02 3.99447674934E-02 4.04471886083E-02 4.09559262139E-02 4.14710640089E-02 4.19926787036E-02 4.25208545396E-02 4.30556729001E-02 4.35972170823E-02 4.41455722180E-02 4.47008228925E-02 4.52630579481E-02 4.58323628918E-02 4.64088270843E-02 4.69925419978E-02 4.75835967020E-02 4.81820861436E-02 4.87880990863E-02 4.94017368091E-02 5.00230887509E-02 5.06522558449E-02 5.12893354438E-02 5.19344253097E-02 5.25876289254E-02 5.32490462992E-02 5.39187809887E-02 5.45969383732E-02 5.52836229812E-02 5.59789437312E-02 5.66830072634E-02 5.73959251431E-02 5.81178073346E-02 5.88487664959E-02 5.95889181608E-02 6.03383763986E-02 6.10972594084E-02 6.18656841586E-02 6.26437709538E-02 6.34316428363E-02 6.42294206480E-02 6.50372296796E-02 6.58551953689E-02 6.66834473640E-02 6.75221125196E-02 6.83713228082E-02 6.92312106920E-02 7.01019094688E-02 7.09835564583E-02 7.18762881504E-02 7.27802437949E-02 7.36955646413E-02 7.46223931079E-02 7.55608743655E-02 7.65111545552E-02 7.74733815121E-02 7.84477052934E-02 7.94342781529E-02 8.04332541169E-02 8.14447882117E-02 8.24690387488E-02 8.35061645433E-02 8.45563291499E-02 8.56196934996E-02 8.66964260472E-02 8.77866927760E-02 8.88906644893E-02 9.00085124788E-02 9.11404122127E-02 9.22865382340E-02 9.34470708806E-02 9.46221899999E-02 9.58120783816E-02 9.70169225838E-02 9.82369086946E-02 9.94722280742E-02 1.00723072180E-01 1.01989636010E-01 1.03272117325E-01 1.04570714922E-01 1.05885631854E-01 1.07217071698E-01 1.08565242621E-01 1.09930354234E-01 1.11312618637E-01 1.12712251399E-01 1.14129469361E-01 1.15564493979E-01 1.17017548198E-01 1.18488857842E-01 1.19978651340E-01 1.21487161185E-01 1.23014621153E-01 1.24561269257E-01 1.26127345344E-01 1.27713093225E-01 1.29318759064E-01 1.30944592357E-01 1.32590845601E-01 1.34257774811E-01 1.35945638417E-01 1.37654698840E-01 1.39385220844E-01 1.41137474080E-01 1.42911729541E-01 1.44708262584E-01 1.46527352334E-01 1.48369280969E-01 1.50234333755E-01 1.52122800063E-01 1.54034972872E-01 1.55971147963E-01 1.57931625798E-01 1.59916710042E-01 1.61926708387E-01 1.63961931582E-01 1.66022694935E-01 1.68109317693E-01 1.70222122423E-01 1.72361436210E-01 1.74527589653E-01 1.76720917967E-01 1.78941760286E-01 1.81190459272E-01 1.83467363346E-01 1.85772823228E-01 1.88107195465E-01 1.90470840140E-01 1.92864122401E-01 1.95287410724E-01 1.97741079649E-01 2.00225506965E-01 2.02741075644E-01 2.05288173567E-01 2.07867192482E-01 2.10478529701E-01 2.13122587281E-01 2.15799771462E-01 2.18510494297E-01 2.21255172497E-01 2.24034227470E-01 2.26848086206E-01 2.29697180485E-01 2.32581947965E-01 2.35502830318E-01 2.38460276100E-01 2.41454737697E-01 2.44486674308E-01 2.47556549716E-01 2.50664833737E-01 2.53812001276E-01 2.56998533767E-01 2.60224917415E-01 2.63491645124E-01 2.66799214985E-01 2.70148131270E-01 2.73538904390E-01 2.76972050334E-01 2.80448091796E-01 2.83967557161E-01 2.87530981229E-01 2.91138905183E-01 2.94791876267E-01 2.98490448416E-01 3.02235182154E-01 3.06026643969E-01 3.09865407565E-01 3.13752053238E-01 3.17687167327E-01 3.21671344215E-01 3.25705183753E-01 3.29789293952E-01 3.33924288806E-01 3.38110790068E-01 3.42349426284E-01 3.46640832940E-01 3.50985653628E-01 3.55384537927E-01 3.59838143928E-01 3.64347136733E-01 3.68912188598E-01 3.73533979781E-01 3.78213198064E-01 3.82950538569E-01 3.87746704630E-01 3.92602406832E-01 3.97518364050E-01 4.02495302781E-01 4.07533957651E-01 4.12635070821E-01 4.17799393428E-01 4.23027683590E-01 4.28320708598E-01 4.33679243205E-01 4.39104070860E-01 4.44595983111E-01 4.50155780001E-01 4.55784269791E-01 4.61482269299E-01 4.67250603880E-01 4.73090107236E-01 4.79001621775E-01 4.84985998259E-01 4.91044096552E-01 4.97176784582E-01 5.03384939256E-01 5.09669446290E-01 5.16031199810E-01 5.22471102954E-01 5.28990067515E-01 5.35589013990E-01 5.42268871781E-01 5.49030578946E-01 5.55875082333E-01 5.62803337712E-01 5.69816309501E-01 5.76914970742E-01 5.84100303545E-01 5.91373298496E-01 5.98734954817E-01 6.06186280626E-01 6.13728292460E-01 6.21362015513E-01 6.29088483478E-01 6.36908738496E-01 6.44823831111E-01 6.52834820242E-01 6.60942773025E-01 6.69148764645E-01 6.77453878623E-01 6.85859206081E-01 6.94365846425E-01 7.02974906316E-01 7.11687500348E-01 7.20504750554E-01 7.29427785874E-01 7.38457742969E-01 7.47595765129E-01 7.56843002277E-01 7.66200611320E-01 7.75669755072E-01 7.85251602856E-01 7.94947329724E-01 8.04758116156E-01 8.14685148498E-01 8.24729617635E-01 8.34892719603E-01 8.45175654591E-01 8.55579627233E-01 8.66105845464E-01 8.76755521073E-01 8.87529868488E-01 8.98430104695E-01 9.09457448941E-01 9.20613122006E-01 9.31898345782E-01 9.43314342879E-01 9.54862335918E-01 9.66543546993E-01 9.78359197235E-01 9.90310505979E-01 1.00239869009E+00 1.01462496359E+00 1.02699053647E+00 1.03949661439E+00 1.05214439738E+00 1.06493507961E+00 1.07786984795E+00 1.09094988137E+00 1.10417634995E+00 1.11755041377E+00 1.13107322201E+00 1.14474591178E+00 1.15856960678E+00 1.17254541669E+00 1.18667443507E+00 1.20095773891E+00 1.21539638659E+00 1.22999141674E+00 1.24474384703E+00 1.25965467188E+00 1.27472486164E+00 1.28995536035E+00 1.30534708406E+00 1.32090091932E+00 1.33661772065E+00 1.35249830914E+00 1.36854346992E+00 1.38475395002E+00 1.40113045636E+00 1.41767365287E+00 1.43438415846E+00 1.45126254411E+00 1.46830933021E+00 1.48552498380E+00 1.50290991542E+00 1.52046447615E+00 1.53818895443E+00 1.55608357228E+00 1.57414848244E+00 1.59238376384E+00 1.61078941860E+00 1.62936536726E+00 1.64811144507E+00 1.66702739737E+00 1.68611287500E+00 1.70536742954E+00 1.72479050837E+00 1.74438144912E+00 1.76413947474E+00 1.78406368701E+00 1.80415306129E+00 1.82440643976E+00 1.84482252500E+00 1.86539987322E+00 1.88613688684E+00 1.90703180735E+00 1.92808270706E+00 1.94928748098E+00 1.97064383851E+00 1.99214929383E+00 2.01380115706E+00 2.03559652392E+00 2.05753226555E+00 2.07960501772E+00 2.10181116926E+00 2.12414685039E+00 2.14660792005E+00 2.16918995275E+00 2.19188822536E+00 2.21469770199E+00 2.23761301970E+00 2.26062847226E+00 2.28373799379E+00 2.30693514156E+00 2.33021307775E+00 2.35356455060E+00 2.37698187449E+00 2.40045690913E+00 2.42398103799E+00 2.44754514524E+00 2.47113959244E+00 2.49475419315E+00 2.51837818727E+00 2.54200021397E+00 2.56560828298E+00 2.58918974561E+00 2.61273126353E+00 2.63621877679E+00 2.65963747082E+00 2.68297174115E+00 2.70620515797E+00 2.72932042840E+00 2.75229935797E+00 2.77512281068E+00 2.79777066729E+00 2.82022178321E+00 2.84245394418E+00 2.86444382141E+00 2.88616692549E+00 2.90759755889E+00 2.92870876823E+00 2.94947229506E+00 2.96985852651E+00 2.98983644544E+00 3.00937358003E+00 3.02843595413E+00 3.04698803721E+00 3.06499269527E+00 3.08241114338E+00 3.09920289844E+00 3.11532573556E+00 3.13073564538E+00 3.14538679564E+00 3.15923149620E+00 3.17222016825E+00 3.18430131956E+00 3.19542152531E+00 3.20552541650E+00 3.21455567680E+00 3.22245304799E+00 3.22915634733E+00 3.23460249562E+00 3.23872655946E+00 3.24146180832E+00 3.24273978751E+00 3.24249041031E+00 3.24064206905E+00 3.23712176867E+00 3.23185528381E+00 3.22476734125E+00 3.21578183061E+00 3.20482204418E+00 3.19181094883E+00 3.17667149186E+00 3.15932694190E+00 3.13970126843E+00 3.11771955981E+00 3.09330848315E+00 3.06639678607E+00 3.03691584250E+00 3.00480024309E+00 2.96998843030E+00 2.93242337932E+00 2.89205332312E+00 2.84883252181E+00 2.80272207413E+00 2.75369076859E+00 2.70171597174E+00 2.64678454909E+00 2.58889381377E+00 2.52805249733E+00 2.46428173497E+00 2.39761605767E+00 2.32810438099E+00 2.25581098042E+00 2.18081644096E+00 2.10321856730E+00 2.02313324043E+00 1.94069520423E+00 1.85605876490E+00 1.76939838503E+00 1.68090915234E+00 1.59080710307E+00 1.49932937858E+00 1.40673419334E+00 1.31330059228E+00 1.21932797513E+00 1.12513536597E+00 1.03106040638E+00 9.37458051877E-01 8.44698952513E-01 7.53167500214E-01 6.63259527856E-01 5.75379647718E-01 4.89938219974E-01 4.07347945966E-01 3.28020085018E-01 2.52360298382E-01 1.80764129499E-01 1.13612135644E-01 5.12646927761E-02 -5.94349718259E-03 -5.77091592845E-02 -1.03766412270E-01 -1.43892892831E-01 -1.77915970002E-01 -2.05718970351E-01 -2.27247321143E-01 -2.42514503603E-01 -2.51607692336E-01 -2.54692938497E-01 -2.52019734230E-01 -2.43924774213E-01 -2.30834705442E-01 -2.13267630477E-01 -1.91833100456E-01 -1.67230303018E-01 -1.40244117310E-01 -1.11738671259E-01 -8.26479985523E-02 -5.39633501379E-02 -2.67166700392E-02 -1.95969656499E-03 1.92619039524E-02 3.59400290290E-02 4.71419112203E-02 5.20555763900E-02 5.00378357409E-02 4.07242185566E-02 2.36338797224E-02 2.78853866011E-03 -2.66285118891E-04 3.62976213596E-05 5.99428383250E-06 8.67837800385E-06 8.07855418087E-06 7.79357057068E-06 7.46899012701E-06 7.14326827255E-06 6.80430238581E-06 6.48141588687E-06 2.40 2.40 3S 2 1 Beta L 853 -4.00348976379E-08 -4.10483858970E-08 -4.20875307336E-08 -4.31529816469E-08 -4.42454045785E-08 -4.53654823283E-08 -4.65139149814E-08 -4.76914203455E-08 -4.88987343999E-08 -5.01366117550E-08 -5.14058261246E-08 -5.27071708090E-08 -5.40414591909E-08 -5.54095252440E-08 -5.68122240541E-08 -5.82504323538E-08 -5.97250490699E-08 -6.12369958859E-08 -6.27872178178E-08 -6.43766838048E-08 -6.60063873148E-08 -6.76773469656E-08 -6.93906071615E-08 -7.11472387457E-08 -7.29483396702E-08 -7.47950356817E-08 -7.66884810253E-08 -7.86298591661E-08 -8.06203835286E-08 -8.26612982552E-08 -8.47538789841E-08 -8.68994336465E-08 -8.90993032838E-08 -9.13548628861E-08 -9.36675222517E-08 -9.60387268679E-08 -9.84699588148E-08 -1.00962737692E-07 -1.03518621566E-07 -1.06139207949E-07 -1.08826134792E-07 -1.11581081512E-07 -1.14405770040E-07 -1.17301965899E-07 -1.20271479306E-07 -1.23316166302E-07 -1.26437929917E-07 -1.29638721353E-07 -1.32920541211E-07 -1.36285440735E-07 -1.39735523095E-07 -1.43272944706E-07 -1.46899916572E-07 -1.50618705668E-07 -1.54431636359E-07 -1.58341091849E-07 -1.62349515676E-07 -1.66459413236E-07 -1.70673353349E-07 -1.74993969863E-07 -1.79423963305E-07 -1.83966102565E-07 -1.88623226629E-07 -1.93398246349E-07 -1.98294146270E-07 -2.03313986487E-07 -2.08460904565E-07 -2.13738117495E-07 -2.19148923706E-07 -2.24696705129E-07 -2.30384929307E-07 -2.36217151567E-07 -2.42197017236E-07 -2.48328263926E-07 -2.54614723865E-07 -2.61060326296E-07 -2.67669099929E-07 -2.74445175464E-07 -2.81392788168E-07 -2.88516280526E-07 -2.95820104952E-07 -3.03308826574E-07 -3.10987126087E-07 -3.18859802679E-07 -3.26931777028E-07 -3.35208094381E-07 -3.43693927706E-07 -3.52394580925E-07 -3.61315492230E-07 -3.70462237481E-07 -3.79840533691E-07 -3.89456242600E-07 -3.99315374341E-07 -4.09424091191E-07 -4.19788711428E-07 -4.30415713276E-07 -4.41311738958E-07 -4.52483598845E-07 -4.63938275712E-07 -4.75682929106E-07 -4.87724899818E-07 -5.00071714472E-07 -5.12731090228E-07 -5.25710939609E-07 -5.39019375443E-07 -5.52664715937E-07 -5.66655489871E-07 -5.81000441936E-07 -5.95708538194E-07 -6.10788971683E-07 -6.26251168166E-07 -6.42104792019E-07 -6.58359752274E-07 -6.75026208809E-07 -6.92114578703E-07 -7.09635542744E-07 -7.27600052105E-07 -7.46019335188E-07 -7.64904904647E-07 -7.84268564576E-07 -8.04122417894E-07 -8.24478873906E-07 -8.45350656060E-07 -8.66750809899E-07 -8.88692711217E-07 -9.11190074417E-07 -9.34256961082E-07 -9.57907788770E-07 -9.82157340017E-07 -1.00702077158E-06 -1.03251362392E-06 -1.05865183090E-06 -1.08545172974E-06 -1.11293007126E-06 -1.14110403031E-06 -1.16999121655E-06 -1.19960968539E-06 -1.22997794935E-06 -1.26111498958E-06 -1.29304026775E-06 -1.32577373820E-06 -1.35933586040E-06 -1.39374761179E-06 -1.42903050083E-06 -1.46520658046E-06 -1.50229846193E-06 -1.53883558145E-06 -1.57781182069E-06 -1.61781722658E-06 -1.65879719023E-06 -1.70082989244E-06 -1.74392668025E-06 -1.78808969714E-06 -1.83343613360E-06 -1.87985378814E-06 -1.92748545792E-06 -1.97632997788E-06 -2.02638825800E-06 -2.07773741847E-06 -2.13036714116E-06 -2.18433634239E-06 -2.23965849305E-06 -2.29638753250E-06 -2.35460108262E-06 -2.41418458965E-06 -2.47538585613E-06 -2.53807380016E-06 -2.60233582348E-06 -2.66831534937E-06 -2.73584351607E-06 -2.80517957496E-06 -2.87622206175E-06 -2.94903375618E-06 -3.02379683975E-06 -3.10030509747E-06 -3.17889038519E-06 -3.25936807209E-06 -3.34190351532E-06 -3.42658837219E-06 -3.51331804464E-06 -3.60234377089E-06 -3.69354523808E-06 -3.78708636446E-06 -3.88304283701E-06 -3.98131072580E-06 -4.08219105156E-06 -4.18554228986E-06 -4.29152822499E-06 -4.40025145915E-06 -4.51162550614E-06 -4.62591537702E-06 -4.74304856731E-06 -4.86313243187E-06 -4.98634515233E-06 -5.11254199663E-06 -5.24205412293E-06 -5.37478073917E-06 -5.51085824943E-06 -5.65046675314E-06 -5.79346355225E-06 -5.94022038361E-06 -6.09063267668E-06 -6.24481044974E-06 -6.40300862357E-06 -6.56506300235E-06 -6.73134805777E-06 -6.90178154297E-06 -7.07650613893E-06 -7.25575239548E-06 -7.43939392023E-06 -7.62780855754E-06 -7.82094281451E-06 -8.01893577300E-06 -8.22203045732E-06 -8.43013461098E-06 -8.64364783545E-06 -8.86247252720E-06 -9.08684864919E-06 -9.31697915290E-06 -9.55281687000E-06 -9.79472233133E-06 -1.00426970131E-05 -1.02969645897E-05 -1.05577074385E-05 -1.08249490913E-05 -1.10990737867E-05 -1.13800750145E-05 -1.16681812159E-05 -1.19636435050E-05 -1.22664854701E-05 -1.25770925596E-05 -1.28955173991E-05 -1.32219733176E-05 -1.35567922127E-05 -1.38999424010E-05 -1.42519163832E-05 -1.46127344283E-05 -1.49826702115E-05 -1.53620540181E-05 -1.57509054283E-05 -1.61497227856E-05 -1.65585850557E-05 -1.69778101048E-05 -1.74076358699E-05 -1.78483489851E-05 -1.83002252441E-05 -1.87635355107E-05 -1.92385481974E-05 -1.97256585611E-05 -2.02250092404E-05 -2.07370838923E-05 -2.12620602071E-05 -2.18003578320E-05 -2.23522760469E-05 -2.29181532459E-05 -2.34983923310E-05 -2.40932701418E-05 -2.47032297115E-05 -2.53286487913E-05 -2.59698650649E-05 -2.66273393339E-05 -2.73014584999E-05 -2.79926104754E-05 -2.87012966016E-05 -2.94279059994E-05 -3.01729265451E-05 -3.09367881615E-05 -3.17199888552E-05 -3.25230323258E-05 -3.33463740304E-05 -3.41906000180E-05 -3.50561667446E-05 -3.59436507911E-05 -3.68535998724E-05 -3.77865936556E-05 -3.87432063831E-05 -3.97240342659E-05 -4.07296656728E-05 -4.17608021353E-05 -4.28180098674E-05 -4.39019964378E-05 -4.50133990589E-05 -4.61529725145E-05 -4.73213781548E-05 -4.85193484612E-05 -4.97476657788E-05 -5.10070553235E-05 -5.22983367317E-05 -5.36223310559E-05 -5.49797929144E-05 -5.63716677218E-05 -5.77987448467E-05 -5.92619120140E-05 -6.07627011400E-05 -6.22957589741E-05 -6.38841257716E-05 -6.54952995294E-05 -6.71513558934E-05 -6.88502884328E-05 -7.05975483017E-05 -7.23827420315E-05 -7.42159730588E-05 -7.60882976286E-05 -7.80300572944E-05 -7.99871078088E-05 -8.20284651514E-05 -8.40912156294E-05 -8.62310523512E-05 -8.84035289243E-05 -9.06509906677E-05 -9.29409061195E-05 -9.52978058112E-05 -9.77047514479E-05 -1.00178443054E-04 -1.02720114154E-04 -1.05314358253E-04 -1.07986632680E-04 -1.10714402631E-04 -1.13521858423E-04 -1.16392712649E-04 -1.19335235850E-04 -1.22367598298E-04 -1.25457996676E-04 -1.28632201135E-04 -1.31890179342E-04 -1.35236069319E-04 -1.38647000758E-04 -1.42171220467E-04 -1.45756969677E-04 -1.49450918590E-04 -1.53233823744E-04 -1.57124068763E-04 -1.61084429076E-04 -1.65174664053E-04 -1.69347277271E-04 -1.73639670757E-04 -1.78044207593E-04 -1.82531571385E-04 -1.87165191471E-04 -1.91897568084E-04 -1.96763267610E-04 -2.01737413859E-04 -2.06851614362E-04 -2.12075131786E-04 -2.17455256594E-04 -2.22955856131E-04 -2.28597793888E-04 -2.34398128108E-04 -2.40310508910E-04 -2.46406817501E-04 -2.52647453651E-04 -2.59033924475E-04 -2.65599593974E-04 -2.72315468565E-04 -2.79216121604E-04 -2.86281396380E-04 -2.93523424725E-04 -3.00965224234E-04 -3.08577766409E-04 -3.16384056238E-04 -3.24401503245E-04 -3.32614441656E-04 -3.41024677671E-04 -3.49669179641E-04 -3.58509102332E-04 -3.67599874942E-04 -3.76891110179E-04 -3.86438471681E-04 -3.96219151998E-04 -4.06252866718E-04 -4.16534755944E-04 -4.27077676542E-04 -4.37889654714E-04 -4.48977341860E-04 -4.60340611899E-04 -4.71992001865E-04 -4.83943244654E-04 -4.96195849726E-04 -5.08751689295E-04 -5.21632730236E-04 -5.34837811389E-04 -5.48377189438E-04 -5.62260270715E-04 -5.76491762447E-04 -5.91084511610E-04 -6.06048060233E-04 -6.21392280555E-04 -6.37118547624E-04 -6.53238501505E-04 -6.69791714648E-04 -6.86740605043E-04 -7.04147335861E-04 -7.21927914655E-04 -7.40232750420E-04 -7.58939803736E-04 -7.78203981747E-04 -7.97838150001E-04 -8.18092569619E-04 -8.38769249366E-04 -8.60022998438E-04 -8.81801307903E-04 -9.04062445358E-04 -9.27011483019E-04 -9.50465380283E-04 -9.74496218563E-04 -9.99194199092E-04 -1.02448368293E-03 -1.05038432710E-03 -1.07702127262E-03 -1.10426990602E-03 -1.13219153095E-03 -1.16089662625E-03 -1.19025485306E-03 -1.22038669070E-03 -1.25129355850E-03 -1.28294038248E-03 -1.31546029295E-03 -1.34870265754E-03 -1.38289698184E-03 -1.41786208079E-03 -1.45378034197E-03 -1.49055631583E-03 -1.52830631968E-03 -1.56696695593E-03 -1.60666821841E-03 -1.64730786845E-03 -1.68901612630E-03 -1.73176854234E-03 -1.77561021380E-03 -1.82055183218E-03 -1.86661624277E-03 -1.91389750661E-03 -1.96231725212E-03 -2.01200214481E-03 -2.06292606530E-03 -2.11514125285E-03 -2.16868133998E-03 -2.22358058232E-03 -2.27984587233E-03 -2.33757623930E-03 -2.39672484489E-03 -2.45740797226E-03 -2.51958833499E-03 -2.58338107779E-03 -2.64875929887E-03 -2.71580778558E-03 -2.78455314335E-03 -2.85501519627E-03 -2.92729906777E-03 -3.00137715840E-03 -3.07735182380E-03 -3.15523684298E-03 -3.23510591317E-03 -3.31697619089E-03 -3.40093978674E-03 -3.48701744479E-03 -3.57526597252E-03 -3.66576363874E-03 -3.75854352642E-03 -3.85366571793E-03 -3.95120352027E-03 -4.05120466567E-03 -4.15374332770E-03 -4.25885966774E-03 -4.36665517015E-03 -4.47717432939E-03 -4.59047232184E-03 -4.70666375851E-03 -4.82577172207E-03 -4.94790474604E-03 -5.07313215414E-03 -5.20151587241E-03 -5.33315529870E-03 -5.46812399811E-03 -5.60650761886E-03 -5.74838710109E-03 -5.89386979104E-03 -6.04301220825E-03 -6.19594605351E-03 -6.35274184782E-03 -6.51349903827E-03 -6.67833228012E-03 -6.84732855879E-03 -7.02059963688E-03 -7.19825967262E-03 -7.38040766437E-03 -7.56716432274E-03 -7.75864219109E-03 -7.95497177455E-03 -8.15625794175E-03 -8.36263858867E-03 -8.57423690555E-03 -8.79119078630E-03 -9.01362883271E-03 -9.24169086389E-03 -9.47552135293E-03 -9.71526504012E-03 -9.96107368256E-03 -1.02130932848E-02 -1.04714875159E-02 -1.07364170400E-02 -1.10080432434E-02 -1.12865387586E-02 -1.15720712155E-02 -1.18648285078E-02 -1.21649815771E-02 -1.24727270701E-02 -1.27882472534E-02 -1.31117486501E-02 -1.34434231543E-02 -1.37834848794E-02 -1.41321387366E-02 -1.44896050938E-02 -1.48561064639E-02 -1.52318736669E-02 -1.56171293622E-02 -1.60121280561E-02 -1.64171035142E-02 -1.68323151455E-02 -1.72580124363E-02 -1.76944738865E-02 -1.81419522420E-02 -1.86007437266E-02 -1.90711201291E-02 -1.95533799183E-02 -2.00478213630E-02 -2.05547500831E-02 -2.10744834011E-02 -2.16073413867E-02 -2.21536549030E-02 -2.27137653150E-02 -2.32880177072E-02 -2.38767684225E-02 -2.44803834715E-02 -2.50992363991E-02 -2.57337123088E-02 -2.63841999205E-02 -2.70511089940E-02 -2.77348466641E-02 -2.84358398997E-02 -2.91545207346E-02 -2.98913347027E-02 -3.06467383721E-02 -3.14211976815E-02 -3.22151944293E-02 -3.30292147446E-02 -3.38637660051E-02 -3.47193637654E-02 -3.55965336429E-02 -3.64958193895E-02 -3.74177775272E-02 -3.83629735992E-02 -3.93319941160E-02 -4.03254360140E-02 -4.13439088893E-02 -4.23880460861E-02 -4.34584863249E-02 -4.45558902184E-02 -4.56809349538E-02 -4.68343102024E-02 -4.80167289891E-02 -4.92289149535E-02 -5.04716169727E-02 -5.17455942837E-02 -5.30516336118E-02 -5.43905339922E-02 -5.57631186726E-02 -5.71702274457E-02 -5.86127262107E-02 -6.00914946201E-02 -6.16074429295E-02 -6.31614949270E-02 -6.47546042595E-02 -6.63877433431E-02 -6.80619107965E-02 -6.97781292201E-02 -7.15374458204E-02 -7.33409337232E-02 -7.51896924944E-02 -7.70848481434E-02 -7.90275555575E-02 -8.10189941830E-02 -8.30603776368E-02 -8.51529438106E-02 -8.72979640648E-02 -8.94967400524E-02 -9.17506024492E-02 -9.40609191177E-02 -9.64290854747E-02 -9.88565347652E-02 -1.01344733936E-01 -1.03895182665E-01 -1.06509420921E-01 -1.09189022730E-01 -1.11935600606E-01 -1.14750806404E-01 -1.17636330645E-01 -1.20593904660E-01 -1.23625301304E-01 -1.26732335231E-01 -1.29916864291E-01 -1.33180791238E-01 -1.36526062292E-01 -1.39954671126E-01 -1.43468658527E-01 -1.47070112027E-01 -1.50761169343E-01 -1.54544018273E-01 -1.58420897550E-01 -1.62394098090E-01 -1.66465964428E-01 -1.70638895794E-01 -1.74915346321E-01 -1.79297827840E-01 -1.83788909452E-01 -1.88391219735E-01 -1.93107446860E-01 -1.97940341861E-01 -2.02892716861E-01 -2.07967449241E-01 -2.13167480860E-01 -2.18495819990E-01 -2.23955543062E-01 -2.29549794931E-01 -2.35281791126E-01 -2.41154818741E-01 -2.47172237098E-01 -2.53337480440E-01 -2.59654057829E-01 -2.66125555810E-01 -2.72755638063E-01 -2.79548048686E-01 -2.86506611567E-01 -2.93635233157E-01 -3.00937903352E-01 -3.08418696074E-01 -3.16081771607E-01 -3.23931377393E-01 -3.31971849101E-01 -3.40207612252E-01 -3.48643183278E-01 -3.57283170658E-01 -3.66132275963E-01 -3.75195295651E-01 -3.84477121058E-01 -3.93982740819E-01 -4.03717240205E-01 -4.13685804180E-01 -4.23893716218E-01 -4.34346360397E-01 -4.45049222268E-01 -4.56007888668E-01 -4.67228049106E-01 -4.78715496323E-01 -4.90476125743E-01 -5.02515937816E-01 -5.14841035562E-01 -5.27457627395E-01 -5.40372025275E-01 -5.53590644921E-01 -5.67120006452E-01 -5.80966732559E-01 -5.95137548662E-01 -6.09639282186E-01 -6.24478860915E-01 -6.39663312148E-01 -6.55199761436E-01 -6.71095430172E-01 -6.87357634309E-01 -7.03993781455E-01 -7.21011368867E-01 -7.38417980112E-01 -7.56221281862E-01 -7.74429020617E-01 -7.93049018026E-01 -8.12089167261E-01 -8.31557427295E-01 -8.51461818180E-01 -8.71810414911E-01 -8.92611340757E-01 -9.13872761028E-01 -9.35602874450E-01 -9.57809905974E-01 -9.80502097075E-01 -1.00368769645E+00 -1.02737494975E+00 -1.05157208780E+00 -1.07628731546E+00 -1.10152879751E+00 -1.12730464561E+00 -1.15362290282E+00 -1.18049152772E+00 -1.20791837747E+00 -1.23591118868E+00 -1.26447755864E+00 -1.29362492396E+00 -1.32336053785E+00 -1.35369144696E+00 -1.38462446535E+00 -1.41616614758E+00 -1.44832276029E+00 -1.48110025086E+00 -1.51450421583E+00 -1.54853986543E+00 -1.58321198779E+00 -1.61852490986E+00 -1.65448245600E+00 -1.69108790531E+00 -1.72834394491E+00 -1.76625262156E+00 -1.80481529091E+00 -1.84403256225E+00 -1.88390424274E+00 -1.92442927618E+00 -1.96560568011E+00 -2.00743047963E+00 -2.04989963636E+00 -2.09300797600E+00 -2.13674911054E+00 -2.18111535749E+00 -2.22609765560E+00 -2.27168547555E+00 -2.31786672843E+00 -2.36462766810E+00 -2.41195279107E+00 -2.45982473188E+00 -2.50822415320E+00 -2.55712963365E+00 -2.60651754979E+00 -2.65636195471E+00 -2.70663445304E+00 -2.75730407066E+00 -2.80833712249E+00 -2.85969707473E+00 -2.91134440527E+00 -2.96323646044E+00 -3.01532730865E+00 -3.06756759261E+00 -3.11990437889E+00 -3.17228100658E+00 -3.22463693561E+00 -3.27690759439E+00 -3.32902422944E+00 -3.38091375590E+00 -3.43249861183E+00 -3.48369661653E+00 -3.53442083353E+00 -3.58457944231E+00 -3.63407561660E+00 -3.68280741470E+00 -3.73066768168E+00 -3.77754396546E+00 -3.82331845128E+00 -3.86786791386E+00 -3.91106369305E+00 -3.95277169431E+00 -3.99285241665E+00 -4.03116101358E+00 -4.06754738801E+00 -4.10185632675E+00 -4.13392767820E+00 -4.16359657605E+00 -4.19069371598E+00 -4.21504568655E+00 -4.23647536153E+00 -4.25480235741E+00 -4.26984355938E+00 -4.28141372370E+00 -4.28932615696E+00 -4.29339348075E+00 -4.29342848271E+00 -4.28924506008E+00 -4.28065925865E+00 -4.26749040941E+00 -4.24956236733E+00 -4.22670485182E+00 -4.19875489110E+00 -4.16555837063E+00 -4.12697168235E+00 -4.08286347492E+00 -4.03311649778E+00 -3.97762953551E+00 -3.91631942368E+00 -3.84912313550E+00 -3.77599992981E+00 -3.69693354241E+00 -3.61193440699E+00 -3.52104188359E+00 -3.42432647295E+00 -3.32189199137E+00 -3.21387767666E+00 -3.10046019449E+00 -2.98185551026E+00 -2.85832058811E+00 -2.73015487806E+00 -2.59770154682E+00 -2.46134840722E+00 -2.32152849899E+00 -2.17872027017E+00 -2.03344730982E+00 -1.88627757898E+00 -1.73782208929E+00 -1.58873297706E+00 -1.43970092279E+00 -1.29145186882E+00 -1.14474298841E+00 -1.00035786655E+00 -8.59100855153E-01 -7.21790572304E-01 -5.89252523073E-01 -4.62310826500E-01 -3.41779044805E-01 -2.28450121242E-01 -1.23085446877E-01 -2.64030917871E-02 6.09347467280E-02 1.38335005830E-01 2.05287632819E-01 2.61379952251E-01 3.06311371291E-01 3.39908234694E-01 3.62138599596E-01 3.73126653336E-01 3.73166442140E-01 3.62734515371E-01 3.42501016964E-01 3.13338671604E-01 2.76329016863E-01 2.32765121881E-01 1.84149908529E-01 1.32189047090E-01 7.87772377521E-02 2.59765060507E-02 -2.40150663594E-02 -6.89059857745E-02 -1.06367437113E-01 -1.34105205127E-01 -1.49949961784E-01 -1.51970578607E-01 -1.38598521791E-01 -1.08917128713E-01 -6.16642669764E-02 -7.09766675666E-03 7.30199405679E-04 -4.81661291289E-05 2.68733033429E-05 1.74444589196E-05 1.65252417524E-05 1.48909057402E-05 1.34496330135E-05 1.21052310943E-05 1.08608947198E-05 9.71067802441E-06 2.40 2.40 3P 3 1 Beta L 853 -4.02111234670E-08 -4.12290729043E-08 -4.22727918542E-08 -4.33429326752E-08 -4.44401642400E-08 -4.55651723542E-08 -4.67186601844E-08 -4.79013486980E-08 -4.91139771139E-08 -5.03573033644E-08 -5.16321045687E-08 -5.29391775192E-08 -5.42793391790E-08 -5.56534271928E-08 -5.70623004103E-08 -5.85068394231E-08 -5.99879471151E-08 -6.15065492269E-08 -6.30635949342E-08 -6.46600574413E-08 -6.62969345892E-08 -6.79752494794E-08 -6.96960511133E-08 -7.14604150481E-08 -7.32694440686E-08 -7.51242688767E-08 -7.70260487985E-08 -7.89759725083E-08 -8.09752587719E-08 -8.30251572082E-08 -8.51269490705E-08 -8.72819480473E-08 -8.94915010829E-08 -9.17569892199E-08 -9.40798284623E-08 -9.64614706601E-08 -9.89034044173E-08 -1.01407156022E-07 -1.03974290400E-07 -1.06606412095E-07 -1.09305166267E-07 -1.12072239727E-07 -1.14909361985E-07 -1.17818306335E-07 -1.20800890963E-07 -1.23858980079E-07 -1.26994485090E-07 -1.30209365789E-07 -1.33505631580E-07 -1.36885342736E-07 -1.40350611689E-07 -1.43903604342E-07 -1.47546541433E-07 -1.51281699916E-07 -1.55111414386E-07 -1.59038078540E-07 -1.63064146670E-07 -1.67192135200E-07 -1.71424624258E-07 -1.75764259286E-07 -1.80213752699E-07 -1.84775885574E-07 -1.89453509392E-07 -1.94249547822E-07 -1.99166998543E-07 -2.04208935121E-07 -2.09378508933E-07 -2.14678951128E-07 -2.20113574657E-07 -2.25685776336E-07 -2.31399038973E-07 -2.37256933542E-07 -2.43263121419E-07 -2.49421356666E-07 -2.55735488381E-07 -2.62209463102E-07 -2.68847327273E-07 -2.75653229777E-07 -2.82631424524E-07 -2.89786273112E-07 -2.97122247555E-07 -3.04643933076E-07 -3.12356030973E-07 -3.20263361559E-07 -3.28370867172E-07 -3.36683615268E-07 -3.45206801585E-07 -3.53945753392E-07 -3.62905932817E-07 -3.72092940266E-07 -3.81512517917E-07 -3.91170553312E-07 -4.01073083038E-07 -4.11226296499E-07 -4.21636539784E-07 -4.32310319634E-07 -4.43254307508E-07 -4.54475343756E-07 -4.65980441891E-07 -4.77776792973E-07 -4.89871770107E-07 -5.02272933046E-07 -5.14988032921E-07 -5.28025017084E-07 -5.41392034075E-07 -5.55097438714E-07 -5.69149797325E-07 -5.83557893091E-07 -5.98330731541E-07 -6.13477546179E-07 -6.29007804258E-07 -6.44931212695E-07 -6.61257724139E-07 -6.77997543191E-07 -6.95161132783E-07 -7.12759220718E-07 -7.30802806375E-07 -7.49303167580E-07 -7.68271867664E-07 -7.87720762681E-07 -8.07662008824E-07 -8.28108070022E-07 -8.49071725728E-07 -8.70566078911E-07 -8.92604564240E-07 -9.15200956488E-07 -9.38369379136E-07 -9.62124313202E-07 -9.86480606293E-07 -1.01145348189E-06 -1.03705854885E-06 -1.06331181117E-06 -1.09022967800E-06 -1.11782897388E-06 -1.14612694927E-06 -1.17514129133E-06 -1.20489013497E-06 -1.23539207418E-06 -1.26666617367E-06 -1.29873198077E-06 -1.33160953765E-06 -1.36531939387E-06 -1.39988261917E-06 -1.43532081669E-06 -1.47165613648E-06 -1.50741606664E-06 -1.54563883127E-06 -1.58478367147E-06 -1.62495878312E-06 -1.66611737176E-06 -1.70834346133E-06 -1.75161618070E-06 -1.79599248886E-06 -1.84150416864E-06 -1.88815705291E-06 -1.93599674305E-06 -1.98503748465E-06 -2.03532112920E-06 -2.08690628714E-06 -2.13976125579E-06 -2.19396590988E-06 -2.24955061833E-06 -2.30650723783E-06 -2.36500446604E-06 -2.42483204202E-06 -2.48630503942E-06 -2.54927486592E-06 -2.61381131553E-06 -2.68008604926E-06 -2.74788108884E-06 -2.81756087162E-06 -2.88888231864E-06 -2.96204660182E-06 -3.03712801700E-06 -3.11397845596E-06 -3.19288317033E-06 -3.27374864619E-06 -3.35662723584E-06 -3.44169881418E-06 -3.52879850686E-06 -3.61822779055E-06 -3.70982038016E-06 -3.80377457880E-06 -3.90016088499E-06 -3.99884572658E-06 -4.10018181537E-06 -4.20398691474E-06 -4.31043487788E-06 -4.41963138395E-06 -4.53150634642E-06 -4.64629295954E-06 -4.76395118451E-06 -4.88456303304E-06 -5.00829172366E-06 -5.13507399314E-06 -5.26514534720E-06 -5.39846102790E-06 -5.53511648190E-06 -5.67536957411E-06 -5.81898317504E-06 -5.96639263911E-06 -6.11744207478E-06 -6.27234027928E-06 -6.43121371514E-06 -6.59397050694E-06 -6.76100249720E-06 -6.93218045069E-06 -7.10768799790E-06 -7.28770297499E-06 -7.47216672686E-06 -7.66140347093E-06 -7.85537589884E-06 -8.05424755266E-06 -8.25825071168E-06 -8.46727156423E-06 -8.68171228393E-06 -8.90152273771E-06 -9.12687299647E-06 -9.35800408107E-06 -9.59488722728E-06 -9.83785680166E-06 -1.00869234976E-05 -1.03423075381E-05 -1.06042049410E-05 -1.08726211766E-05 -1.11479603688E-05 -1.14301892800E-05 -1.17195675599E-05 -1.20163250896E-05 -1.23204982771E-05 -1.26324815499E-05 -1.29522955411E-05 -1.32801898313E-05 -1.36164918371E-05 -1.39611491120E-05 -1.43146693489E-05 -1.46770603432E-05 -1.50486356501E-05 -1.54296877405E-05 -1.58202708447E-05 -1.62208413440E-05 -1.66314916147E-05 -1.70525574435E-05 -1.74842870277E-05 -1.79269262824E-05 -1.83808194024E-05 -1.88461379081E-05 -1.93232683516E-05 -1.98124876805E-05 -2.03140693273E-05 -2.08283685233E-05 -2.13556655047E-05 -2.18963231030E-05 -2.24506920776E-05 -2.30190553351E-05 -2.36018330600E-05 -2.41993422386E-05 -2.48119905559E-05 -2.54401510991E-05 -2.60841915839E-05 -2.67445835913E-05 -2.74216345801E-05 -2.81158544176E-05 -2.88276793973E-05 -2.95574569257E-05 -3.03057521274E-05 -3.10729878276E-05 -3.18596403692E-05 -3.26662060300E-05 -3.34931733097E-05 -3.43411218703E-05 -3.52105028113E-05 -3.61018904076E-05 -3.70158490900E-05 -3.79529466484E-05 -3.89137758272E-05 -3.98989118850E-05 -4.09089762234E-05 -4.19446538795E-05 -4.30065084579E-05 -4.40952616697E-05 -4.52115585883E-05 -4.63561361806E-05 -4.75296749231E-05 -4.87329313450E-05 -4.99666510859E-05 -5.12316022643E-05 -5.25285559690E-05 -5.38583635038E-05 -5.52218175596E-05 -5.66198203806E-05 -5.80531730374E-05 -5.95228592967E-05 -6.10294405648E-05 -6.25773665572E-05 -6.41510897782E-05 -6.57917629792E-05 -6.74480097289E-05 -6.91494380715E-05 -7.09108661068E-05 -7.26969509449E-05 -7.45484356417E-05 -7.64249619227E-05 -7.83688051804E-05 -8.03427589482E-05 -8.23881102505E-05 -8.44605684040E-05 -8.66099662742E-05 -8.87953927101E-05 -9.10478235163E-05 -9.33518322656E-05 -9.57130057559E-05 -9.81378561578E-05 -1.00619909195E-04 -1.03170045767E-04 -1.05781358240E-04 -1.08457864411E-04 -1.11203668863E-04 -1.14021981748E-04 -1.16906154086E-04 -1.19861574232E-04 -1.22904056009E-04 -1.26008827480E-04 -1.29199090361E-04 -1.32474350566E-04 -1.35826619744E-04 -1.39259174178E-04 -1.42793213789E-04 -1.46408601600E-04 -1.50093928437E-04 -1.53925646883E-04 -1.57805675616E-04 -1.61797767471E-04 -1.65891260416E-04 -1.70104065150E-04 -1.74401540404E-04 -1.78824663875E-04 -1.83334859948E-04 -1.87997767890E-04 -1.92738773375E-04 -1.97622646599E-04 -2.02633415121E-04 -2.07750595574E-04 -2.13019906316E-04 -2.18409526457E-04 -2.23931297561E-04 -2.29615976060E-04 -2.35417421171E-04 -2.41376813795E-04 -2.47490775916E-04 -2.53754914266E-04 -2.60178164498E-04 -2.66765653800E-04 -2.73514250436E-04 -2.80444325544E-04 -2.87546309003E-04 -2.94814289793E-04 -3.02288692978E-04 -3.09935191021E-04 -3.17776469817E-04 -3.25832244920E-04 -3.34075984012E-04 -3.42527203456E-04 -3.51204759711E-04 -3.60096338029E-04 -3.69205133479E-04 -3.78559622282E-04 -3.88135482282E-04 -3.97969991415E-04 -4.08030700137E-04 -4.18375274897E-04 -4.28954421825E-04 -4.39817571230E-04 -4.50953216268E-04 -4.62368331623E-04 -4.74069783311E-04 -4.86071363795E-04 -4.98380080713E-04 -5.10993336727E-04 -5.23929241684E-04 -5.37190635025E-04 -5.50792276585E-04 -5.64730990530E-04 -5.79032088846E-04 -5.93686348382E-04 -6.08716914994E-04 -6.24123013658E-04 -6.39927131093E-04 -6.56114174692E-04 -6.72766317205E-04 -6.89733207785E-04 -7.07222800704E-04 -7.25129592546E-04 -7.43484231669E-04 -7.62302441991E-04 -7.81588282416E-04 -8.01423904684E-04 -8.21637786671E-04 -8.42484009438E-04 -8.63794240547E-04 -8.85642875265E-04 -9.08120475188E-04 -9.31045988456E-04 -9.54647225568E-04 -9.78789352278E-04 -1.00361147770E-03 -1.02895370470E-03 -1.05506444904E-03 -1.08173082233E-03 -1.10912216594E-03 -1.13717967277E-03 -1.16601481137E-03 -1.19547686157E-03 -1.22577932225E-03 -1.25678887508E-03 -1.28860090769E-03 -1.32123145888E-03 -1.35466410584E-03 -1.38895518670E-03 -1.42411881291E-03 -1.46015986293E-03 -1.49713755105E-03 -1.53502277005E-03 -1.57388913449E-03 -1.61369812384E-03 -1.65458581331E-03 -1.69645234194E-03 -1.73938053053E-03 -1.78342072834E-03 -1.82856687362E-03 -1.87484113862E-03 -1.92231560596E-03 -1.97095422389E-03 -2.02085790693E-03 -2.07200985017E-03 -2.12444869378E-03 -2.17821377627E-03 -2.23338024501E-03 -2.28987535329E-03 -2.34787034576E-03 -2.40727195557E-03 -2.46821147755E-03 -2.53069461282E-03 -2.59473622961E-03 -2.66042619555E-03 -2.72775666813E-03 -2.79680443076E-03 -2.86758831337E-03 -2.94017739531E-03 -3.01458729677E-03 -3.09089853243E-03 -3.16911980740E-03 -3.24934223087E-03 -3.33157864970E-03 -3.41590745707E-03 -3.50235403374E-03 -3.59100908837E-03 -3.68189689032E-03 -3.77508121072E-03 -3.87062351277E-03 -3.96859321622E-03 -4.06903428219E-03 -4.17202092964E-03 -4.27760577506E-03 -4.38586846068E-03 -4.49687433554E-03 -4.61067974019E-03 -4.72736869852E-03 -4.84701392618E-03 -4.96967594801E-03 -5.09545524031E-03 -5.22440613949E-03 -5.35662720946E-03 -5.49217967281E-03 -5.63117951747E-03 -5.77368777184E-03 -5.91979595359E-03 -6.06960870362E-03 -6.22321224606E-03 -6.38068721461E-03 -6.54216580117E-03 -6.70771588813E-03 -6.87745399811E-03 -7.05149407279E-03 -7.22993117998E-03 -7.41287925955E-03 -7.60046145273E-03 -7.79277681819E-03 -7.98997450331E-03 -8.19214053043E-03 -8.39943125046E-03 -8.61196111384E-03 -8.82986951034E-03 -9.05328238856E-03 -9.28234943646E-03 -9.51720807570E-03 -9.75800651794E-03 -1.00048942550E-02 -1.02580234008E-02 -1.05175521143E-02 -1.07836488161E-02 -1.10564674796E-02 -1.13361850287E-02 -1.16229777458E-02 -1.19170160267E-02 -1.22184950074E-02 -1.25275865918E-02 -1.28445007927E-02 -1.31694184141E-02 -1.35025523544E-02 -1.38441085016E-02 -1.41942941903E-02 -1.45533326391E-02 -1.49214446504E-02 -1.52988597166E-02 -1.56858135514E-02 -1.60825434874E-02 -1.64893008908E-02 -1.69063335239E-02 -1.73339052029E-02 -1.77722798377E-02 -1.82217266911E-02 -1.86825323517E-02 -1.91549748597E-02 -1.96393518983E-02 -2.01359659006E-02 -2.06451209527E-02 -2.11671348678E-02 -2.17023343226E-02 -2.22510463074E-02 -2.28136158701E-02 -2.33903875219E-02 -2.39817253560E-02 -2.45879878962E-02 -2.52095587552E-02 -2.58468172350E-02 -2.65001618486E-02 -2.71699959007E-02 -2.78567346765E-02 -2.85608025357E-02 -2.92826370670E-02 -3.00226826229E-02 -3.07814011236E-02 -3.15592569891E-02 -3.23567341711E-02 -3.31743258239E-02 -3.40125369454E-02 -3.48718837736E-02 -3.57529008435E-02 -3.66561290324E-02 -3.75821260603E-02 -3.85314667201E-02 -3.95047326056E-02 -4.05025268782E-02 -4.15254635669E-02 -4.25741726772E-02 -4.36493025709E-02 -4.47515128413E-02 -4.58814827708E-02 -4.70399097448E-02 -4.82275039937E-02 -4.94449958221E-02 -5.06931364959E-02 -5.19726895059E-02 -5.32844424461E-02 -5.46292008180E-02 -5.60077879498E-02 -5.74210519064E-02 -5.88698565018E-02 -6.03550914628E-02 -6.18776651711E-02 -6.34385091420E-02 -6.50385797730E-02 -6.66788533351E-02 -6.83603340509E-02 -7.00840467232E-02 -7.18510454993E-02 -7.36624058531E-02 -7.55192336141E-02 -7.74226590595E-02 -7.93738412636E-02 -8.13739661388E-02 -8.34242509707E-02 -8.55259399922E-02 -8.76803097103E-02 -8.98886664218E-02 -9.21523481092E-02 -9.44727261132E-02 -9.68512041188E-02 -9.92892204813E-02 -1.01788246610E-01 -1.04349792098E-01 -1.06975400064E-01 -1.09666652710E-01 -1.12425168793E-01 -1.15252607700E-01 -1.18150666433E-01 -1.21121083675E-01 -1.24165639867E-01 -1.27286156921E-01 -1.30484500822E-01 -1.33762581391E-01 -1.37122354126E-01 -1.40565820105E-01 -1.44095028628E-01 -1.47712076202E-01 -1.51419108897E-01 -1.55218324097E-01 -1.59111968996E-01 -1.63102344528E-01 -1.67191804475E-01 -1.71382758089E-01 -1.75677669215E-01 -1.80079060508E-01 -1.84589510575E-01 -1.89211659277E-01 -1.93948206137E-01 -1.98801911920E-01 -2.03775601521E-01 -2.08872162983E-01 -2.14094550043E-01 -2.19445783827E-01 -2.24928951886E-01 -2.30547212601E-01 -2.36303793810E-01 -2.42201995356E-01 -2.48245190663E-01 -2.54436826823E-01 -2.60780427235E-01 -2.67279591885E-01 -2.73937999622E-01 -2.80759408439E-01 -2.87747657420E-01 -2.94906668579E-01 -3.02240446289E-01 -3.09753081184E-01 -3.17448748962E-01 -3.25331713714E-01 -3.33406327334E-01 -3.41677032675E-01 -3.50148362909E-01 -3.58824944047E-01 -3.67711495925E-01 -3.76812832109E-01 -3.86133863158E-01 -3.95679595822E-01 -4.05455134428E-01 -4.15465683236E-01 -4.25716545175E-01 -4.36213124023E-01 -4.46960925801E-01 -4.57965557230E-01 -4.69232728978E-01 -4.80768254350E-01 -4.92578050492E-01 -5.04668138916E-01 -5.17044644813E-01 -5.29713798657E-01 -5.42681934567E-01 -5.55955491202E-01 -5.69541011424E-01 -5.83445141037E-01 -5.97674629172E-01 -6.12236326661E-01 -6.27137185128E-01 -6.42384256558E-01 -6.57984690142E-01 -6.73945732442E-01 -6.90274723920E-01 -7.06979097298E-01 -7.24066375111E-01 -7.41544165927E-01 -7.59420162524E-01 -7.77702136626E-01 -7.96397935968E-01 -8.15515479574E-01 -8.35062752533E-01 -8.55047801217E-01 -8.75478726678E-01 -8.96363678685E-01 -9.17710848925E-01 -9.39528462474E-01 -9.61824770880E-01 -9.84608042002E-01 -1.00788655098E+00 -1.03166856986E+00 -1.05596235592E+00 -1.08077614015E+00 -1.10611811358E+00 -1.13199641384E+00 -1.15841911009E+00 -1.18539418640E+00 -1.21292952555E+00 -1.24103288957E+00 -1.26971190068E+00 -1.29897402042E+00 -1.32882652637E+00 -1.35927648942E+00 -1.39033074751E+00 -1.42199587854E+00 -1.45427817224E+00 -1.48718359854E+00 -1.52071777607E+00 -1.55488593673E+00 -1.58969288955E+00 -1.62514298208E+00 -1.66124005850E+00 -1.69798741706E+00 -1.73538776343E+00 -1.77344316213E+00 -1.81215498573E+00 -1.85152385984E+00 -1.89154960675E+00 -1.93223118469E+00 -1.97356662456E+00 -2.01555296378E+00 -2.05818617518E+00 -2.10146109463E+00 -2.14537134274E+00 -2.18990924455E+00 -2.23506574488E+00 -2.28083031887E+00 -2.32719088047E+00 -2.37413368471E+00 -2.42164322734E+00 -2.46970214012E+00 -2.51829108070E+00 -2.56738862053E+00 -2.61697112617E+00 -2.66701263817E+00 -2.71748474555E+00 -2.76835645533E+00 -2.81959406002E+00 -2.87116099962E+00 -2.92301772156E+00 -2.97512153725E+00 -3.02742647510E+00 -3.07988313241E+00 -3.13243852455E+00 -3.18503593271E+00 -3.23761475213E+00 -3.29011033859E+00 -3.34245385785E+00 -3.39457213498E+00 -3.44638750810E+00 -3.49781768572E+00 -3.54877560892E+00 -3.59916932187E+00 -3.64890184931E+00 -3.69787108539E+00 -3.74596969508E+00 -3.79308502855E+00 -3.83909905464E+00 -3.88388831133E+00 -3.92732388014E+00 -3.96927138489E+00 -4.00959101815E+00 -4.04813760060E+00 -4.08476067408E+00 -4.11930463455E+00 -4.15160890812E+00 -4.18150817284E+00 -4.20883263391E+00 -4.23340835295E+00 -4.25505763862E+00 -4.27359950279E+00 -4.28885018524E+00 -4.30062375472E+00 -4.30873278736E+00 -4.31298913062E+00 -4.31320475377E+00 -4.30919269157E+00 -4.30076808337E+00 -4.28774931048E+00 -4.26995923628E+00 -4.24722654828E+00 -4.21938720522E+00 -4.18628598816E+00 -4.14777815392E+00 -4.10373118969E+00 -4.05402666268E+00 -3.99856216085E+00 -3.93725331596E+00 -3.87003589887E+00 -3.79686797659E+00 -3.71773211425E+00 -3.63263760741E+00 -3.54162272331E+00 -3.44475692853E+00 -3.34214307876E+00 -3.23391954014E+00 -3.12026221227E+00 -3.00138641693E+00 -2.87754861524E+00 -2.74904791287E+00 -2.61622730926E+00 -2.47947464574E+00 -2.33922320444E+00 -2.19595190733E+00 -2.05018506587E+00 -1.90249162740E+00 -1.75348386765E+00 -1.60381547680E+00 -1.45417898809E+00 -1.30530250196E+00 -1.15794565799E+00 -1.01289481457E+00 -8.70957398579E-01 -7.32955394142E-01 -5.99717947638E-01 -4.72073072791E-01 -3.50838451968E-01 -2.36811339121E-01 -1.30757585020E-01 -3.33998193917E-02 5.45951572876E-02 1.32629699295E-01 2.00189262725E-01 2.56856851183E-01 3.02327806575E-01 3.36424755936E-01 3.59112483610E-01 3.70512450868E-01 3.70916629459E-01 3.60800252110E-01 3.40833009035E-01 3.11888135456E-01 2.75048737614E-01 2.31610593685E-01 1.83080540195E-01 1.31169409498E-01 7.77783221394E-02 2.49769526494E-02 -2.50278205732E-02 -6.99347049127E-02 -1.07404309679E-01 -1.35131391414E-01 -1.50935584259E-01 -1.52875307357E-01 -1.39372862231E-01 -1.09505266660E-01 -6.20024348014E-02 -7.16936639063E-03 6.97680833833E-04 -8.25448946923E-05 -5.37992539377E-06 -1.31597718267E-05 -1.24621739733E-05 -1.25539038267E-05 -1.25204667245E-05 -1.24564694229E-05 -1.23566441808E-05 -1.22248097822E-05 2.40 2.40 3P 3 Number of nonzero Dij 1 1 6.34407926354E-01 2 2 2.41313598459E-01 3 3 2.40024713855E-01 3S 0 2.00 Wavefunction 1.13153964440E-05 1.14577266129E-05 1.16018470750E-05 1.17477803495E-05 1.18955492388E-05 1.20451768320E-05 1.21966865087E-05 1.23501019427E-05 1.25054471055E-05 1.26627462701E-05 1.28220240147E-05 1.29833052268E-05 1.31466151071E-05 1.33119791729E-05 1.34794232628E-05 1.36489735403E-05 1.38206564979E-05 1.39944989614E-05 1.41705280942E-05 1.43487714012E-05 1.45292567331E-05 1.47120122913E-05 1.48970666317E-05 1.50844486694E-05 1.52741876832E-05 1.54663133203E-05 1.56608556007E-05 1.58578449221E-05 1.60573120643E-05 1.62592881947E-05 1.64638048724E-05 1.66708940536E-05 1.68805880963E-05 1.70929197658E-05 1.73079222393E-05 1.75256291114E-05 1.77460743992E-05 1.79692925478E-05 1.81953184356E-05 1.84241873795E-05 1.86559351408E-05 1.88905979306E-05 1.91282124154E-05 1.93688157231E-05 1.96124454483E-05 1.98591396589E-05 2.01089369012E-05 2.03618762067E-05 2.06179970976E-05 2.08773395934E-05 2.11399442169E-05 2.14058520007E-05 2.16751044935E-05 2.19477437664E-05 2.22238124201E-05 2.25033535908E-05 2.27864109574E-05 2.30730287483E-05 2.33632517482E-05 2.36571253050E-05 2.39546953371E-05 2.42560083405E-05 2.45611113961E-05 2.48700521767E-05 2.51828789552E-05 2.54996406115E-05 2.58203866401E-05 2.61451671585E-05 2.64740329142E-05 2.68070352934E-05 2.71442263283E-05 2.74856587059E-05 2.78313857758E-05 2.81814615584E-05 2.85359407541E-05 2.88948787510E-05 2.92583316339E-05 2.96263561933E-05 2.99990099337E-05 3.03763510833E-05 3.07584386024E-05 3.11453321931E-05 3.15370923084E-05 3.19337801618E-05 3.23354577367E-05 3.27421877960E-05 3.31540338925E-05 3.35710603779E-05 3.39933324137E-05 3.44209159809E-05 3.48538778904E-05 3.52922857936E-05 3.57362081928E-05 3.61857144519E-05 3.66408748073E-05 3.71017603791E-05 3.75684431816E-05 3.80409961353E-05 3.85194930777E-05 3.90040087751E-05 3.94946189343E-05 3.99914002144E-05 4.04944302387E-05 4.10037876069E-05 4.15195519075E-05 4.20418037298E-05 4.25706246772E-05 4.31060973792E-05 4.36483055049E-05 4.41973337756E-05 4.47532679785E-05 4.53161949798E-05 4.58862027383E-05 4.64633803193E-05 4.70478179082E-05 4.76396068252E-05 4.82388395387E-05 4.88456096806E-05 4.94600120603E-05 5.00821426800E-05 5.07120987492E-05 5.13499787005E-05 5.19958822043E-05 5.26499101849E-05 5.33121648361E-05 5.39827496371E-05 5.46617693686E-05 5.53493301297E-05 5.60455393536E-05 5.67505058251E-05 5.74643396973E-05 5.81871525091E-05 5.89190572021E-05 5.96601681386E-05 6.04106011195E-05 6.11704734025E-05 6.19399037198E-05 6.27190122976E-05 6.35079208740E-05 6.43067527185E-05 6.51156326512E-05 6.59346870624E-05 6.67640439320E-05 6.76038328499E-05 6.84541850360E-05 6.93152333606E-05 7.01871123657E-05 7.10699582854E-05 7.19639090676E-05 7.28691043952E-05 7.37856857084E-05 7.47137962263E-05 7.56535809698E-05 7.66051867836E-05 7.75687623599E-05 7.85444582611E-05 7.95324269434E-05 8.05328227809E-05 8.15458020895E-05 8.25715231512E-05 8.36101462392E-05 8.46618336427E-05 8.57267496923E-05 8.68050607856E-05 8.78969354134E-05 8.90025441860E-05 9.01220598596E-05 9.12556573635E-05 9.24035138277E-05 9.35658086098E-05 9.47427233241E-05 9.59344418689E-05 9.71411504562E-05 9.83630376399E-05 9.96002943462E-05 1.00853113903E-04 1.02121692068E-04 1.03406227066E-04 1.04706919610E-04 1.06023972942E-04 1.07357592857E-04 1.08707987742E-04 1.10075368603E-04 1.11459949101E-04 1.12861945585E-04 1.14281577125E-04 1.15719065548E-04 1.17174635469E-04 1.18648514331E-04 1.20140932436E-04 1.21652122984E-04 1.23182322108E-04 1.24731768913E-04 1.26300705511E-04 1.27889377057E-04 1.29498031793E-04 1.31126921083E-04 1.32776299453E-04 1.34446424630E-04 1.36137557584E-04 1.37849962568E-04 1.39583907158E-04 1.41339662296E-04 1.43117502335E-04 1.44917705075E-04 1.46740551814E-04 1.48586327387E-04 1.50455320213E-04 1.52347822339E-04 1.54264129485E-04 1.56204541092E-04 1.58169360368E-04 1.60158894335E-04 1.62173453876E-04 1.64213353788E-04 1.66278912825E-04 1.68370453753E-04 1.70488303396E-04 1.72632792693E-04 1.74804256743E-04 1.77003034863E-04 1.79229470636E-04 1.81483911970E-04 1.83766711149E-04 1.86078224887E-04 1.88418814388E-04 1.90788845399E-04 1.93188688268E-04 1.95618718004E-04 1.98079314331E-04 2.00570861751E-04 2.03093749606E-04 2.05648372132E-04 2.08235128529E-04 2.10854423014E-04 2.13506664896E-04 2.16192268627E-04 2.18911653878E-04 2.21665245597E-04 2.24453474081E-04 2.27276775038E-04 2.30135589658E-04 2.33030364685E-04 2.35961552480E-04 2.38929611096E-04 2.41935004351E-04 2.44978201897E-04 2.48059679295E-04 2.51179918090E-04 2.54339405886E-04 2.57538636421E-04 2.60778109646E-04 2.64058331803E-04 2.67379815501E-04 2.70743079803E-04 2.74148650300E-04 2.77597059197E-04 2.81088845397E-04 2.84624554580E-04 2.88204739298E-04 2.91829959050E-04 2.95500780380E-04 2.99217776957E-04 3.02981529672E-04 3.06792626724E-04 3.10651663713E-04 3.14559243735E-04 3.18515977475E-04 3.22522483303E-04 3.26579387370E-04 3.30687323708E-04 3.34846934326E-04 3.39058869314E-04 3.43323786944E-04 3.47642353769E-04 3.52015244734E-04 3.56443143276E-04 3.60926741435E-04 3.65466739959E-04 3.70063848419E-04 3.74718785311E-04 3.79432278179E-04 3.84205063723E-04 3.89037887912E-04 3.93931506110E-04 3.98886683185E-04 4.03904193633E-04 4.08984821699E-04 4.14129361500E-04 4.19338617151E-04 4.24613402885E-04 4.29954543189E-04 4.35362872927E-04 4.40839237473E-04 4.46384492844E-04 4.51999505834E-04 4.57685154149E-04 4.63442326546E-04 4.69271922971E-04 4.75174854699E-04 4.81152044483E-04 4.87204426691E-04 4.93332947457E-04 4.99538564830E-04 5.05822248919E-04 5.12184982053E-04 5.18627758930E-04 5.25151586774E-04 5.31757485493E-04 5.38446487841E-04 5.45219639579E-04 5.52077999637E-04 5.59022640284E-04 5.66054647294E-04 5.73175120119E-04 5.80385172058E-04 5.87685930436E-04 5.95078536778E-04 6.02564146991E-04 6.10143931542E-04 6.17819075647E-04 6.25590779454E-04 6.33460258233E-04 6.41428742567E-04 6.49497478545E-04 6.57667727958E-04 6.65940768501E-04 6.74317893967E-04 6.82800414460E-04 6.91389656592E-04 7.00086963701E-04 7.08893696053E-04 7.17811231066E-04 7.26840963520E-04 7.35984305780E-04 7.45242688019E-04 7.54617558441E-04 7.64110383514E-04 7.73722648196E-04 7.83455856174E-04 7.93311530098E-04 8.03291211825E-04 8.13396462658E-04 8.23628863597E-04 8.33990015588E-04 8.44481539772E-04 8.55105077748E-04 8.65862291828E-04 8.76754865301E-04 8.87784502702E-04 8.98952930077E-04 9.10261895260E-04 9.21713168151E-04 9.33308540993E-04 9.45049828659E-04 9.56938868938E-04 9.68977522828E-04 9.81167674830E-04 9.93511233251E-04 1.00601013050E-03 1.01866632340E-03 1.03148179351E-03 1.04445854741E-03 1.05759861706E-03 1.07090406008E-03 1.08437696012E-03 1.09801942716E-03 1.11183359787E-03 1.12582163593E-03 1.13998573240E-03 1.15432810604E-03 1.16885100369E-03 1.18355670060E-03 1.19844750085E-03 1.21352573765E-03 1.22879377376E-03 1.24425400184E-03 1.25990884487E-03 1.27576075651E-03 1.29181222149E-03 1.30806575602E-03 1.32452390822E-03 1.34118925848E-03 1.35806441991E-03 1.37515203874E-03 1.39245479477E-03 1.40997540180E-03 1.42771660805E-03 1.44568119659E-03 1.46387198586E-03 1.48229183004E-03 1.50094361958E-03 1.51983028162E-03 1.53895478051E-03 1.55832011825E-03 1.57792933501E-03 1.59778550960E-03 1.61789176000E-03 1.63825124384E-03 1.65886715893E-03 1.67974274380E-03 1.70088127820E-03 1.72228608363E-03 1.74396052395E-03 1.76590800584E-03 1.78813197945E-03 1.81063593890E-03 1.83342342289E-03 1.85649801528E-03 1.87986334568E-03 1.90352309005E-03 1.92748097131E-03 1.95174075997E-03 1.97630627472E-03 2.00118138312E-03 2.02637000221E-03 2.05187609916E-03 2.07770369197E-03 2.10385685009E-03 2.13033969516E-03 2.15715640167E-03 2.18431119765E-03 2.21180836544E-03 2.23965224235E-03 2.26784722144E-03 2.29639775223E-03 2.32530834150E-03 2.35458355403E-03 2.38422801338E-03 2.41424640268E-03 2.44464346545E-03 2.47542400641E-03 2.50659289230E-03 2.53815505271E-03 2.57011548099E-03 2.60247923502E-03 2.63525143819E-03 2.66843728024E-03 2.70204201817E-03 2.73607097716E-03 2.77052955155E-03 2.80542320572E-03 2.84075747513E-03 2.87653796723E-03 2.91277036253E-03 2.94946041555E-03 2.98661395589E-03 3.02423688925E-03 3.06233519854E-03 3.10091494489E-03 3.13998226882E-03 3.17954339131E-03 3.21960461494E-03 3.26017232508E-03 3.30125299103E-03 3.34285316723E-03 3.38497949445E-03 3.42763870106E-03 3.47083760427E-03 3.51458311140E-03 3.55888222121E-03 3.60374202517E-03 3.64916970886E-03 3.69517255331E-03 3.74175793640E-03 3.78893333430E-03 3.83670632286E-03 3.88508457916E-03 3.93407588293E-03 3.98368811812E-03 4.03392927446E-03 4.08480744900E-03 4.13633084777E-03 4.18850778737E-03 4.24134669670E-03 4.29485611861E-03 4.34904471167E-03 4.40392125195E-03 4.45949463479E-03 4.51577387665E-03 4.57276811700E-03 4.63048662023E-03 4.68893877759E-03 4.74813410918E-03 4.80808226601E-03 4.86879303202E-03 4.93027632623E-03 4.99254220488E-03 5.05560086364E-03 5.11946263986E-03 5.18413801486E-03 5.24963761624E-03 5.31597222034E-03 5.38315275461E-03 5.45119030018E-03 5.52009609432E-03 5.58988153312E-03 5.66055817414E-03 5.73213773908E-03 5.80463211661E-03 5.87805336522E-03 5.95241371607E-03 6.02772557603E-03 6.10400153069E-03 6.18125434744E-03 6.25949697871E-03 6.33874256521E-03 6.41900443922E-03 6.50029612806E-03 6.58263135754E-03 6.66602405557E-03 6.75048835579E-03 6.83603860134E-03 6.92268934867E-03 7.01045537154E-03 7.09935166498E-03 7.18939344946E-03 7.28059617513E-03 7.37297552613E-03 7.46654742508E-03 7.56132803760E-03 7.65733377704E-03 7.75458130923E-03 7.85308755745E-03 7.95286970745E-03 8.05394521265E-03 8.15633179948E-03 8.26004747277E-03 8.36511052147E-03 8.47153952431E-03 8.57935335574E-03 8.68857119205E-03 8.79921251753E-03 8.91129713094E-03 9.02484515205E-03 9.13987702845E-03 9.25641354247E-03 9.37447581831E-03 9.49408532947E-03 9.61526390620E-03 9.73803374336E-03 9.86241740833E-03 9.98843784930E-03 1.01161184037E-02 1.02454828068E-02 1.03765552009E-02 1.05093601444E-02 1.06439226210E-02 1.07802680501E-02 1.09184222963E-02 1.10584116798E-02 1.12002629874E-02 1.13440034832E-02 1.14896609199E-02 1.16372635505E-02 1.17868401401E-02 1.19384199788E-02 1.20920328938E-02 1.22477092627E-02 1.24054800273E-02 1.25653767072E-02 1.27274314144E-02 1.28916768677E-02 1.30581464087E-02 1.32268740168E-02 1.33978943258E-02 1.35712426405E-02 1.37469549544E-02 1.39250679667E-02 1.41056191014E-02 1.42886465259E-02 1.44741891707E-02 1.46622867494E-02 1.48529797799E-02 1.50463096054E-02 1.52423184167E-02 1.54410492755E-02 1.56425461375E-02 1.58468538770E-02 1.60540183121E-02 1.62640862307E-02 1.64771054171E-02 1.66931246800E-02 1.69121938809E-02 1.71343639636E-02 1.73596869850E-02 1.75882161462E-02 1.78200058250E-02 1.80551116099E-02 1.82935903343E-02 1.85355001127E-02 1.87809003774E-02 1.90298519167E-02 1.92824169146E-02 1.95386589914E-02 1.97986432456E-02 2.00624362980E-02 2.03301063356E-02 2.06017231591E-02 2.08773582300E-02 2.11570847205E-02 2.14409775643E-02 2.17291135100E-02 2.20215711751E-02 2.23184311023E-02 2.26197758184E-02 2.29256898936E-02 2.32362600042E-02 2.35515749963E-02 2.38717259523E-02 2.41968062595E-02 2.45269116804E-02 2.48621404258E-02 2.52025932303E-02 2.55483734300E-02 2.58995870430E-02 2.62563428525E-02 2.66187524921E-02 2.69869305347E-02 2.73609945837E-02 2.77410653672E-02 2.81272668357E-02 2.85197262624E-02 2.89185743466E-02 2.93239453215E-02 2.97359770642E-02 3.01548112095E-02 3.05805932683E-02 3.10134727480E-02 3.14536032786E-02 3.19011427413E-02 3.23562534017E-02 3.28191020476E-02 3.32898601300E-02 3.37687039096E-02 3.42558146071E-02 3.47513785585E-02 3.52555873749E-02 3.57686381069E-02 3.62907334151E-02 3.68220817442E-02 3.73628975033E-02 3.79134012515E-02 3.84738198881E-02 3.90443868499E-02 3.96253423128E-02 4.02169333996E-02 4.08194143945E-02 4.14330469626E-02 4.20581003764E-02 4.26948517478E-02 4.33435862675E-02 4.40045974500E-02 4.46781873858E-02 4.53646669998E-02 4.60643563174E-02 4.67775847363E-02 4.75046913063E-02 4.82460250153E-02 4.90019450837E-02 4.97728212641E-02 5.05590341500E-02 5.13609754909E-02 5.21790485146E-02 5.30136682570E-02 5.38652618996E-02 5.47342691131E-02 5.56211424096E-02 5.65263475011E-02 5.74503636652E-02 5.83936841181E-02 5.93568163938E-02 6.03402827309E-02 6.13446204652E-02 6.23703824287E-02 6.34181373549E-02 6.44884702897E-02 6.55819830077E-02 6.66992944337E-02 6.78410410686E-02 6.90078774198E-02 7.02004764350E-02 7.14195299393E-02 7.26657490749E-02 7.39398647423E-02 7.52426280427E-02 7.65748107207E-02 7.79372056062E-02 7.93306270548E-02 8.07559113850E-02 8.22139173126E-02 8.37055263785E-02 8.52316433713E-02 8.67931967411E-02 8.83911390042E-02 9.00264471365E-02 9.17001229536E-02 9.34131934763E-02 9.51667112787E-02 9.69617548169E-02 9.87994287362E-02 1.00680864154E-01 1.02607218913E-01 1.04579677814E-01 1.06599452797E-01 1.08667783109E-01 1.10785935411E-01 1.12955203859E-01 1.15176910119E-01 1.17452403350E-01 1.19783060114E-01 1.22170284236E-01 1.24615506592E-01 1.27120184829E-01 1.29685803009E-01 1.32313871167E-01 1.35005924785E-01 1.37763524168E-01 1.40588253722E-01 1.43481721119E-01 1.46445556353E-01 1.49481410664E-01 1.52590955341E-01 1.55775880375E-01 1.59037892971E-01 1.62378715905E-01 1.65800085704E-01 1.69303750660E-01 1.72891468657E-01 1.76565004797E-01 1.80326128824E-01 1.84176612329E-01 1.88118225725E-01 1.92152734990E-01 1.96281898144E-01 2.00507461483E-01 2.04831155518E-01 2.09254690642E-01 2.13779752494E-01 2.18407997009E-01 2.23141045151E-01 2.27980477306E-01 2.32927827335E-01 2.37984576264E-01 2.43152145610E-01 2.48431890325E-01 2.53825091350E-01 2.59332947778E-01 2.64956568602E-01 2.70696964053E-01 2.76555036515E-01 2.82531571022E-01 2.88627225315E-01 2.94842519478E-01 3.01177825136E-01 3.07633354231E-01 3.14209147368E-01 3.20905061749E-01 3.27720758697E-01 3.34655690788E-01 3.41709088607E-01 3.48879947141E-01 3.56167011855E-01 3.63568764446E-01 3.71083408345E-01 3.78708853978E-01 3.86442703848E-01 3.94282237481E-01 4.02224396294E-01 4.10265768448E-01 4.18402573757E-01 4.26630648738E-01 4.34945431874E-01 4.43341949193E-01 4.51814800271E-01 4.60358144755E-01 4.68965689539E-01 4.77630676720E-01 4.86345872472E-01 4.95103556978E-01 5.03895515596E-01 5.12713031408E-01 5.21546879340E-01 5.30387322028E-01 5.39224107635E-01 5.48046469810E-01 5.56843129996E-01 5.65602302308E-01 5.74311701199E-01 5.82958552117E-01 5.91529605406E-01 6.00011153646E-01 6.08389052660E-01 6.16648746412E-01 6.24775295982E-01 6.32753412826E-01 6.40567496495E-01 6.48201676968E-01 6.55639861733E-01 6.62865787732E-01 6.69863078225E-01 6.76615304615E-01 6.83106053217E-01 6.89318996906E-01 6.95237971504E-01 7.00847056730E-01 7.06130661439E-01 7.11073612795E-01 7.15661248949E-01 7.19879514681E-01 7.23715059373E-01 7.27155336561E-01 7.30188704192E-01 7.32804524608E-01 7.34993263120E-01 7.36746583939E-01 7.38057442052E-01 7.38920169537E-01 7.39330554656E-01 7.39285911927E-01 7.38785141278E-01 7.37828774242E-01 7.36419005089E-01 7.34559704669E-01 7.32256414723E-01 7.29516320362E-01 7.26348198423E-01 7.22762339472E-01 7.18770441289E-01 7.14385471838E-01 7.09621499900E-01 7.04493491850E-01 6.99017073374E-01 6.93208255351E-01 6.87083123643E-01 6.80657493130E-01 6.73946527020E-01 6.66964323258E-01 6.59723470757E-01 6.52234579170E-01 6.44505786998E-01 6.36542254007E-01 6.28345645210E-01 6.19916465464E-01 6.11263773981E-01 6.02399273734E-01 5.93334832941E-01 5.84082462883E-01 5.74654295657E-01 5.65062561886E-01 5.55319568448E-01 5.45437676239E-01 5.35429278024E-01 5.25299801157E-01 5.15068518551E-01 5.04747785185E-01 4.94349900331E-01 4.83887086235E-01 4.73371467066E-01 4.62815048155E-01 4.52229695553E-01 4.41627115942E-01 4.31018836934E-01 4.20416187793E-01 4.09830280633E-01 3.99271992120E-01 3.88751945747E-01 3.78280494728E-01 3.67867705556E-01 3.57523342301E-01 3.47256851719E-01 3.37077349229E-01 3.26993605806E-01 3.17014035877E-01 3.07146686272E-01 2.97399226299E-01 2.87778938982E-01 2.78292713524E-01 2.68947039027E-01 2.59747999500E-01 2.50701270181E-01 2.41812115181E-01 2.33085386451E-01 2.24525524065E-01 2.16136557785E-01 2.07922109898E-01 1.99885399263E-01 1.92029246530E-01 1.84356080464E-01 1.76867945323E-01 1.69566509192E-01 1.62453073229E-01 1.55528581722E-01 1.48793632875E-01 1.42248490253E-01 1.35893094793E-01 1.29727077297E-01 1.23749771331E-01 1.17960226449E-01 1.12357221667E-01 1.06939279108E-01 1.01704677759E-01 9.66514672715E-02 9.17774817444E-02 8.70803534322E-02 8.25575263363E-02 7.82062696263E-02 7.40236908552E-02 7.00067489324E-02 6.61522668250E-02 6.24569439609E-02 5.89173683150E-02 5.55300281608E-02 5.22913234773E-02 4.91975770015E-02 4.62450449239E-02 4.34299272250E-02 4.07483776536E-02 3.81965133526E-02 3.57704241348E-02 3.34661814172E-02 3.12798468196E-02 2.92074804346E-02 2.72451487753E-02 2.53889324070E-02 2.36349332663E-02 2.19792816722E-02 2.04181430289E-02 1.89477242216E-02 1.75642797030E-02 1.62641172672E-02 1.50436035065E-02 1.38991689449E-02 1.28273128435E-02 1.18246076684E-02 1.08877032162E-02 1.00133303894E-02 9.19830461615E-03 8.43952890823E-03 7.73399655469E-03 7.07879344780E-03 6.47110004096E-03 5.90819293978E-03 5.38744612935E-03 4.90633184307E-03 4.46242108006E-03 4.05338378052E-03 3.67698867013E-03 3.33110278637E-03 3.01369070159E-03 2.72281345857E-03 2.45662723644E-03 2.21338176506E-03 1.99141850762E-03 1.78916863132E-03 1.60515078701E-03 1.43796871833E-03 1.28630872159E-03 1.14893697708E-03 1.02469677236E-03 9.12505637628E-04 8.11352412753E-04 7.20294264548E-04 6.38453672388E-04 5.65015399054E-04 4.99223462788E-04 4.40378125441E-04 3.87832910437E-04 3.40991663160E-04 2.99305665125E-04 2.62270812143E-04 2.29424865510E-04 2.00344784037E-04 1.74644143653E-04 1.51970650180E-04 1.32003749809E-04 1.14452340827E-04 9.90525891656E-05 8.55658494578E-05 7.37766924553E-05 6.34910388976E-05 5.45343992200E-05 4.67502178635E-05 3.99983203776E-05 3.41534610181E-05 2.91039681051E-05 2.47504840403E-05 2.10047965705E-05 1.77887576351E-05 1.50332859391E-05 1.26774492423E-05 1.06676222601E-05 8.95671601186E-06 7.50347443485E-06 6.27183409947E-06 5.23034290177E-06 4.35163372393E-06 3.61197096378E-06 2.99099522784E-06 2.47090918528E-06 2.03635995215E-06 1.67415625652E-06 1.37299192245E-06 1.12320056535E-06 9.16538558033E-07 7.45993529123E-07 6.05615852138E-07 4.90370774816E-07 3.96009023090E-07 3.18953892085E-07 2.56203006139E-07 2.05243091566E-07 1.63976258826E-07 1.30656434929E-07 1.03832006172E-07 8.22774851648E-08 6.50059248827E-08 5.12072026375E-08 4.02160255275E-08 3.14876927683E-08 2.45776036324E-08 1.91239875647E-08 1.48333968492E-08 1.14685597138E-08 8.83824338413E-09 6.78882272375E-09 5.19729114161E-09 3.96548681554E-09 3.01533936134E-09 2.28497026238E-09 1.72550503258E-09 1.29847656482E-09 9.73717754042E-10 7.27657587789E-10 5.41948758470E-10 4.02366740095E-10 2.97930436986E-10 2.20203183479E-10 1.62740266330E-10 1.19805178290E-10 8.78504695197E-11 6.41621691447E-11 4.66722454246E-11 3.38112353584E-11 2.43929187334E-11 1.75244463271E-11 1.25366004306E-11 8.92990937297E-12 6.33319211344E-12 4.47180519580E-12 3.14342898428E-12 2.19968579660E-12 1.53224854714E-12 1.06239103142E-12 7.33163622072E-13 5.03562245602E-13 3.44203466635E-13 2.34132067707E-13 1.58476025133E-13 1.06732415766E-13 7.15207338131E-14 4.76807245627E-14 3.16228534133E-14 2.08630739278E-14 1.36913390654E-14 8.93665380024E-15 5.80144191405E-15 3.74540879325E-15 2.40455463149E-15 1.53501180598E-15 9.74315381132E-16 6.14846767851E-16 3.85728797406E-16 2.40554232476E-16 1.49117030224E-16 9.18738503235E-17 5.62566320372E-17 3.42325278102E-17 2.06991975008E-17 1.24360592246E-17 7.42321076186E-18 4.40194993380E-18 2.59302568618E-18 1.51719224756E-18 8.81677367386E-19 5.08834786785E-19 2.91611195815E-19 1.65940994739E-19 9.37533074904E-20 5.25852267395E-20 2.92782749729E-20 1.61804888770E-20 8.87486070804E-21 4.83074401652E-21 2.60920005482E-21 1.39829687153E-21 7.43442340921E-22 3.92109896585E-22 2.05133733881E-22 1.06436539747E-22 5.47676166778E-23 2.79441469721E-23 1.41366239377E-23 7.08992630106E-24 3.52477703676E-24 1.73687132815E-24 8.48205837427E-25 4.10471892149E-25 1.96817842807E-25 9.34962272713E-26 4.39968258339E-26 2.05066475127E-26 9.46589808473E-27 4.32683103243E-27 1.95823790379E-27 8.77392973346E-28 3.89135748334E-28 1.70816881702E-28 7.42039179684E-29 3.18957095185E-29 1.35640493443E-29 5.70610383244E-30 2.37423669075E-30 9.76972771010E-31 3.97515741765E-31 1.59910942358E-31 6.35904348490E-32 2.49937929228E-32 9.70812828231E-33 3.72595165783E-33 1.41277137414E-33 5.29143281699E-34 1.95737641085E-34 7.15001854870E-35 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 3P 1 2.00 Wavefunction 1.32508292500E-09 1.35862755896E-09 1.39302137937E-09 1.42828588349E-09 1.46444311278E-09 1.50151566669E-09 1.53952671677E-09 1.57850002117E-09 1.61845993947E-09 1.65943144791E-09 1.70144015503E-09 1.74451231764E-09 1.78867485723E-09 1.83395537684E-09 1.88038217826E-09 1.92798427975E-09 1.97679143418E-09 2.02683414761E-09 2.07814369837E-09 2.13075215658E-09 2.18469240426E-09 2.23999815581E-09 2.29670397912E-09 2.35484531719E-09 2.41445851025E-09 2.47558081847E-09 2.53825044529E-09 2.60250656127E-09 2.66838932857E-09 2.73593992607E-09 2.80520057509E-09 2.87621456578E-09 2.94902628422E-09 3.02368124008E-09 3.10022609515E-09 3.17870869245E-09 3.25917808617E-09 3.34168457229E-09 3.42627972005E-09 3.51301640418E-09 3.60194883793E-09 3.69313260695E-09 3.78662470408E-09 3.88248356492E-09 3.98076910439E-09 4.08154275413E-09 4.18486750096E-09 4.29080792622E-09 4.39943024612E-09 4.51080235314E-09 4.62499385848E-09 4.74207613555E-09 4.86212236457E-09 4.98520757836E-09 5.11140870917E-09 5.24080463683E-09 5.37347623800E-09 5.50950643675E-09 5.64898025638E-09 5.79198487258E-09 5.93860966788E-09 6.08894628755E-09 6.24308869687E-09 6.40113323987E-09 6.56317869954E-09 6.72932635956E-09 6.89968006763E-09 7.07434630036E-09 7.25343422984E-09 7.43705579184E-09 7.62532575584E-09 7.81836179667E-09 8.01628456816E-09 8.21921777848E-09 8.42728826749E-09 8.64062608603E-09 8.85936457717E-09 9.08364045959E-09 9.31359391303E-09 9.54936866588E-09 9.79111208503E-09 1.00389752680E-08 1.02931131373E-08 1.05536845375E-08 1.08208523341E-08 1.10947835156E-08 1.13756492981E-08 1.16636252318E-08 1.19588913109E-08 1.22616320865E-08 1.25720367813E-08 1.28902994084E-08 1.32166188923E-08 1.35511991933E-08 1.38942494350E-08 1.42459840349E-08 1.46066228387E-08 1.49763912573E-08 1.53555204081E-08 1.57442472590E-08 1.61428147771E-08 1.65514720800E-08 1.69704745919E-08 1.74000842029E-08 1.78405694330E-08 1.82922055999E-08 1.87552749909E-08 1.92300670394E-08 1.97168785059E-08 2.02160136634E-08 2.07277844877E-08 2.12525108522E-08 2.17905207279E-08 2.23421503886E-08 2.29077446208E-08 2.34876569392E-08 2.40822498080E-08 2.46918948670E-08 2.53169731643E-08 2.59578753942E-08 2.66150021414E-08 2.72887641316E-08 2.79795824879E-08 2.86878889944E-08 2.94141263656E-08 3.01587485236E-08 3.09222208815E-08 3.17050206343E-08 3.25076370574E-08 3.33305718123E-08 3.41743392598E-08 3.50394667823E-08 3.59264951126E-08 3.68359786722E-08 3.77684859180E-08 3.87245996974E-08 3.97049176128E-08 4.07100523946E-08 4.17406322850E-08 4.27973014298E-08 4.38807202819E-08 4.49915660131E-08 4.61305329384E-08 4.72983329491E-08 4.84956959583E-08 4.97233703569E-08 5.09821234814E-08 5.22727420935E-08 5.35960328719E-08 5.49528229164E-08 5.63439602651E-08 5.77703144242E-08 5.92327769113E-08 6.07322618134E-08 6.22697063572E-08 6.38460714958E-08 6.54623425087E-08 6.71195296181E-08 6.88186686198E-08 7.05608215311E-08 7.23470772544E-08 7.41785522577E-08 7.60563912727E-08 7.79817680098E-08 7.99558858924E-08 8.19799788085E-08 8.40553118822E-08 8.61831822642E-08 8.83649199430E-08 9.06018885757E-08 9.28954863408E-08 9.52471468115E-08 9.76583398524E-08 1.00130572538E-07 1.02665390094E-07 1.05264376864E-07 1.07929157300E-07 1.10661396976E-07 1.13462803631E-07 1.16335128236E-07 1.19280166088E-07 1.22299757931E-07 1.25395791109E-07 1.28570200743E-07 1.31824970942E-07 1.35162136046E-07 1.38583781890E-07 1.42092047115E-07 1.45689124502E-07 1.49377262341E-07 1.53158765838E-07 1.57035998557E-07 1.61011383895E-07 1.65087406597E-07 1.69266614311E-07 1.73551619179E-07 1.77945099467E-07 1.82449801245E-07 1.87068540098E-07 1.91804202890E-07 1.96659749564E-07 2.01638214996E-07 2.06742710888E-07 2.11976427718E-07 2.17342636731E-07 2.22844691981E-07 2.28486032433E-07 2.34270184110E-07 2.40200762296E-07 2.46281473795E-07 2.52516119252E-07 2.58908595524E-07 2.65462898117E-07 2.72183123685E-07 2.79073472589E-07 2.86138251523E-07 2.93381876204E-07 3.00808874136E-07 3.08423887434E-07 3.16231675733E-07 3.24237119154E-07 3.32445221363E-07 3.40861112692E-07 3.49490053349E-07 3.58337436704E-07 3.67408792663E-07 3.76709791120E-07 3.86246245505E-07 3.96024116413E-07 4.06049515335E-07 4.16328708474E-07 4.26868120663E-07 4.37674339381E-07 4.48754118869E-07 4.60114384353E-07 4.71762236372E-07 4.83704955215E-07 4.95950005476E-07 5.08505040712E-07 5.21377908233E-07 5.34576654005E-07 5.48109527678E-07 5.61984987743E-07 5.76211706819E-07 5.90798577073E-07 6.05754715781E-07 6.21089471020E-07 6.36812427519E-07 6.52933412643E-07 6.69462502539E-07 6.86410028433E-07 7.03786583088E-07 7.21603027423E-07 7.39870497306E-07 7.58600410506E-07 7.77804473839E-07 7.97494690479E-07 8.17683367461E-07 8.38383123377E-07 8.59606896258E-07 8.81367951665E-07 9.03679890977E-07 9.26556659896E-07 9.50012557161E-07 9.74062243483E-07 9.98720750715E-07 1.02400349124E-06 1.04992626762E-06 1.07650528243E-06 1.10375714846E-06 1.13169889902E-06 1.16034799863E-06 1.18972235394E-06 1.21984032490E-06 1.25072073624E-06 1.28238288925E-06 1.31484657382E-06 1.34813208085E-06 1.38226021489E-06 1.41725230717E-06 1.45313022890E-06 1.48991640500E-06 1.52763382805E-06 1.56630607271E-06 1.60595731042E-06 1.64661232454E-06 1.68829652583E-06 1.73103596830E-06 1.77485736554E-06 1.81978810741E-06 1.86585627713E-06 1.91309066886E-06 1.96152080568E-06 2.01117695808E-06 2.06209016282E-06 2.11429224238E-06 2.16781582482E-06 2.22269436421E-06 2.27896216148E-06 2.33665438594E-06 2.39580709716E-06 2.45645726763E-06 2.51864280575E-06 2.58240257962E-06 2.64777644126E-06 2.71480525158E-06 2.78353090589E-06 2.85399636006E-06 2.92624565743E-06 3.00032395630E-06 3.07627755814E-06 3.15415393659E-06 3.23400176706E-06 3.31587095720E-06 3.39981267810E-06 3.48587939624E-06 3.57412490631E-06 3.66460436483E-06 3.75737432459E-06 3.85249277008E-06 3.95001915363E-06 4.05001443266E-06 4.15254110772E-06 4.25766326158E-06 4.36544659930E-06 4.47595848925E-06 4.58926800529E-06 4.70544596986E-06 4.82456499831E-06 4.94669954429E-06 5.07192594621E-06 5.20032247507E-06 5.33196938330E-06 5.46694895491E-06 5.60534555701E-06 5.74724569246E-06 5.89273805397E-06 6.04191357953E-06 6.19486550927E-06 6.35168944371E-06 6.51248340354E-06 6.67734789087E-06 6.84638595204E-06 7.01970324209E-06 7.19740809071E-06 7.37961157000E-06 7.56642756393E-06 7.75797283943E-06 7.95436711949E-06 8.15573315787E-06 8.36219681593E-06 8.57388714126E-06 8.79093644833E-06 9.01348040122E-06 9.24165809837E-06 9.47561215961E-06 9.71548881520E-06 9.96143799733E-06 1.02136134338E-05 1.04721727439E-05 1.07372775376E-05 1.10090935155E-05 1.12877905735E-05 1.15735429082E-05 1.18665291262E-05 1.21669323555E-05 1.24749403604E-05 1.27907456580E-05 1.31145456397E-05 1.34465426935E-05 1.37869443312E-05 1.41359633179E-05 1.44938178047E-05 1.48607314658E-05 1.52369336373E-05 1.56226594615E-05 1.60181500334E-05 1.64236525514E-05 1.68394204719E-05 1.72657136677E-05 1.77027985905E-05 1.81509484375E-05 1.86104433220E-05 1.90815704485E-05 1.95646242925E-05 2.00599067842E-05 2.05677274974E-05 2.10884038432E-05 2.16222612679E-05 2.21696334572E-05 2.27308625440E-05 2.33062993226E-05 2.38963034682E-05 2.45012437613E-05 2.51214983185E-05 2.57574548287E-05 2.64095107957E-05 2.70780737865E-05 2.77635616858E-05 2.84664029579E-05 2.91870369138E-05 2.99259139864E-05 3.06834960114E-05 3.14602565170E-05 3.22566810189E-05 3.30732673241E-05 3.39105258428E-05 3.47689799062E-05 3.56491660947E-05 3.65516345729E-05 3.74769494335E-05 3.84256890498E-05 3.93984464378E-05 4.03958296262E-05 4.14184620372E-05 4.24669828756E-05 4.35420475287E-05 4.46443279761E-05 4.57745132095E-05 4.69333096637E-05 4.81214416580E-05 4.93396518491E-05 5.05887016953E-05 5.18693719328E-05 5.31824630634E-05 5.45287958554E-05 5.59092118561E-05 5.73245739184E-05 5.87757667402E-05 6.02636974171E-05 6.17892960101E-05 6.33535161264E-05 6.49573355162E-05 6.66017566835E-05 6.82878075131E-05 7.00165419133E-05 7.17890404744E-05 7.36064111448E-05 7.54697899235E-05 7.73803415701E-05 7.93392603335E-05 8.13477706981E-05 8.34071281500E-05 8.55186199609E-05 8.76835659943E-05 8.99033195297E-05 9.21792681092E-05 9.45128344051E-05 9.69054771090E-05 9.93586918445E-05 1.01874012102E-04 1.04453010197E-04 1.07097298255E-04 1.09808529218E-04 1.12588397878E-04 1.15438641937E-04 1.18361043095E-04 1.21357428162E-04 1.24429670202E-04 1.27579689704E-04 1.30809455780E-04 1.34120987402E-04 1.37516354660E-04 1.40997680059E-04 1.44567139844E-04 1.48226965364E-04 1.51979444465E-04 1.55826922922E-04 1.59771805904E-04 1.63816559484E-04 1.67963712173E-04 1.72215856508E-04 1.76575650671E-04 1.81045820152E-04 1.85629159453E-04 1.90328533836E-04 1.95146881116E-04 2.00087213500E-04 2.05152619466E-04 2.10346265701E-04 2.15671399078E-04 2.21131348688E-04 2.26729527923E-04 2.32469436611E-04 2.38354663207E-04 2.44388887035E-04 2.50575880590E-04 2.56919511903E-04 2.63423746955E-04 2.70092652161E-04 2.76930396916E-04 2.83941256198E-04 2.91129613252E-04 2.98499962322E-04 3.06056911474E-04 3.13805185470E-04 3.21749628731E-04 3.29895208366E-04 3.38247017280E-04 3.46810277365E-04 3.55590342762E-04 3.64592703217E-04 3.73822987516E-04 3.83286967007E-04 3.92990559212E-04 4.02939831533E-04 4.13141005050E-04 4.23600458414E-04 4.34324731840E-04 4.45320531202E-04 4.56594732235E-04 4.68154384832E-04 4.80006717467E-04 4.92159141714E-04 5.04619256892E-04 5.17394854822E-04 5.30493924709E-04 5.43924658141E-04 5.57695454223E-04 5.71814924838E-04 5.86291900037E-04 6.01135433575E-04 6.16354808579E-04 6.31959543364E-04 6.47959397398E-04 6.64364377415E-04 6.81184743685E-04 6.98431016443E-04 7.16113982482E-04 7.34244701912E-04 7.52834515092E-04 7.71895049738E-04 7.91438228209E-04 8.11476274984E-04 8.32021724322E-04 8.53087428120E-04 8.74686563974E-04 8.96832643439E-04 9.19539520500E-04 9.42821400263E-04 9.66692847862E-04 9.91168797596E-04 1.01626456229E-03 1.04199584292E-03 1.06837873843E-03 1.09542975586E-03 1.12316582069E-03 1.15160428749E-03 1.18076295076E-03 1.21066005613E-03 1.24131431182E-03 1.27274490035E-03 1.30497149065E-03 1.33801425031E-03 1.37189385833E-03 1.40663151808E-03 1.44224897060E-03 1.47876850827E-03 1.51621298881E-03 1.55460584965E-03 1.59397112266E-03 1.63433344922E-03 1.67571809574E-03 1.71815096953E-03 1.76165863510E-03 1.80626833083E-03 1.85200798611E-03 1.89890623894E-03 1.94699245389E-03 1.99629674058E-03 2.04684997267E-03 2.09868380722E-03 2.15183070465E-03 2.20632394917E-03 2.26219766972E-03 2.31948686144E-03 2.37822740775E-03 2.43845610289E-03 2.50021067515E-03 2.56352981058E-03 2.62845317741E-03 2.69502145101E-03 2.76327633953E-03 2.83326061022E-03 2.90501811635E-03 2.97859382485E-03 3.05403384473E-03 3.13138545607E-03 3.21069713992E-03 3.29201860884E-03 3.37540083828E-03 3.46089609874E-03 3.54855798877E-03 3.63844146882E-03 3.73060289588E-03 3.82510005915E-03 3.92199221646E-03 4.02134013174E-03 4.12320611339E-03 4.22765405366E-03 4.33474946901E-03 4.44455954152E-03 4.55715316137E-03 4.67260097035E-03 4.79097540656E-03 4.91235075020E-03 5.03680317054E-03 5.16441077409E-03 5.29525365403E-03 5.42941394085E-03 5.56697585431E-03 5.70802575673E-03 5.85265220767E-03 6.00094601989E-03 6.15300031691E-03 6.30891059187E-03 6.46877476801E-03 6.63269326062E-03 6.80076904061E-03 6.97310769965E-03 7.14981751703E-03 7.33100952815E-03 7.51679759480E-03 7.70729847721E-03 7.90263190790E-03 8.10292066745E-03 8.30829066212E-03 8.51887100351E-03 8.73479409017E-03 8.95619569128E-03 9.18321503249E-03 9.41599488381E-03 9.65468164983E-03 9.89942546211E-03 1.01503802739E-02 1.04077039574E-02 1.06715584030E-02 1.09421096216E-02 1.12195278487E-02 1.15039876522E-02 1.17956680416E-02 1.20947525805E-02 1.24014295023E-02 1.27158918278E-02 1.30383374863E-02 1.33689694397E-02 1.37079958090E-02 1.40556300046E-02 1.44120908592E-02 1.47776027643E-02 1.51523958092E-02 1.55367059246E-02 1.59307750283E-02 1.63348511748E-02 1.67491887088E-02 1.71740484214E-02 1.76096977107E-02 1.80564107458E-02 1.85144686343E-02 1.89841595934E-02 1.94657791259E-02 1.99596301986E-02 2.04660234257E-02 2.09852772556E-02 2.15177181619E-02 2.20636808384E-02 2.26235083983E-02 2.31975525768E-02 2.37861739390E-02 2.43897420905E-02 2.50086358934E-02 2.56432436858E-02 2.62939635048E-02 2.69612033153E-02 2.76453812406E-02 2.83469257991E-02 2.90662761438E-02 2.98038823054E-02 3.05602054406E-02 3.13357180826E-02 3.21309043961E-02 3.29462604355E-02 3.37822944063E-02 3.46395269299E-02 3.55184913112E-02 3.64197338088E-02 3.73438139079E-02 3.82913045953E-02 3.92627926361E-02 4.02588788520E-02 4.12801784013E-02 4.23273210586E-02 4.34009514957E-02 4.45017295615E-02 4.56303305619E-02 4.67874455374E-02 4.79737815392E-02 4.91900619024E-02 5.04370265153E-02 5.17154320846E-02 5.30260523950E-02 5.43696785621E-02 5.57471192786E-02 5.71592010507E-02 5.86067684256E-02 6.00906842068E-02 6.16118296570E-02 6.31711046864E-02 6.47694280251E-02 6.64077373770E-02 6.80869895544E-02 6.98081605896E-02 7.15722458231E-02 7.33802599647E-02 7.52332371246E-02 7.71322308133E-02 7.90783139058E-02 8.10725785680E-02 8.31161361412E-02 8.52101169813E-02 8.73556702501E-02 8.95539636524E-02 9.18061831172E-02 9.41135324163E-02 9.64772327172E-02 9.88985220647E-02 1.01378654785E-01 1.03918900810E-01 1.06520544908E-01 1.09184885828E-01 1.11913235339E-01 1.14706917160E-01 1.17567265777E-01 1.20495625143E-01 1.23493347242E-01 1.26561790515E-01 1.29702318149E-01 1.32916296198E-01 1.36205091551E-01 1.39570069725E-01 1.43012592472E-01 1.46534015195E-01 1.50135684168E-01 1.53818933535E-01 1.57585082090E-01 1.61435429827E-01 1.65371254242E-01 1.69393806379E-01 1.73504306617E-01 1.77703940178E-01 1.81993852345E-01 1.86375143393E-01 1.90848863204E-01 1.95416005575E-01 2.00077502192E-01 2.04834216286E-01 2.09686935933E-01 2.14636367021E-01 2.19683125859E-01 2.24827731431E-01 2.30070597300E-01 2.35412023145E-01 2.40852185951E-01 2.46391130839E-01 2.52028761554E-01 2.57764830622E-01 2.63598929173E-01 2.69530476463E-01 2.75558709105E-01 2.81682670036E-01 2.87901197250E-01 2.94212912322E-01 3.00616208777E-01 3.07109240332E-01 3.13689909069E-01 3.20355853602E-01 3.27104437290E-01 3.33932736575E-01 3.40837529520E-01 3.47815284641E-01 3.54862150119E-01 3.61973943504E-01 3.69146142016E-01 3.76373873572E-01 3.83651908671E-01 3.90974653263E-01 3.98336142772E-01 4.05730037409E-01 4.13149618961E-01 4.20587789206E-01 4.28037070159E-01 4.35489606316E-01 4.42937169086E-01 4.50371163624E-01 4.57782638234E-01 4.65162296547E-01 4.72500512671E-01 4.79787349478E-01 4.87012580215E-01 4.94165713605E-01 5.01236022557E-01 5.08212576631E-01 5.15084278342E-01 5.21839903359E-01 5.28468144633E-01 5.34957660428E-01 5.41297126167E-01 5.47475289997E-01 5.53481031828E-01 5.59303425613E-01 5.64931804490E-01 5.70355828353E-01 5.75565553305E-01 5.80551502346E-01 5.85304736539E-01 5.89816925778E-01 5.94080418140E-01 5.98088306721E-01 6.01834492664E-01 6.05313743007E-01 6.08521741835E-01 6.11455133070E-01 6.14111553166E-01 6.16489651829E-01 6.18589098818E-01 6.20410574807E-01 6.21955744248E-01 6.23227208178E-01 6.24228434913E-01 6.24963666691E-01 6.25437800405E-01 6.25656240786E-01 6.25624724624E-01 6.25349114950E-01 6.24835164496E-01 6.24088248222E-01 6.23113065304E-01 6.21913311599E-01 6.20491324393E-01 6.18847702069E-01 6.16980902289E-01 6.14886823277E-01 6.12558373921E-01 6.09987797289E-01 6.07175964997E-01 6.04126410326E-01 6.00842907473E-01 5.97329466024E-01 5.93590325164E-01 5.89629947618E-01 5.85453013335E-01 5.81064412894E-01 5.76469240656E-01 5.71672787615E-01 5.66680533949E-01 5.61498141313E-01 5.56131444795E-01 5.50586444539E-01 5.44869297010E-01 5.38986305906E-01 5.32943912691E-01 5.26748686739E-01 5.20407315074E-01 5.13926591713E-01 5.07313406601E-01 5.00574734157E-01 4.93717621432E-01 4.86749175912E-01 4.79669651633E-01 4.72493053879E-01 4.65226593840E-01 4.57877491231E-01 4.50452960908E-01 4.42960199433E-01 4.35406371681E-01 4.27798597550E-01 4.20143938868E-01 4.12449386594E-01 4.04721848382E-01 3.96968136605E-01 3.89194956912E-01 3.81408897406E-01 3.73616418491E-01 3.65823843466E-01 3.58037349907E-01 3.50262961881E-01 3.42506543021E-01 3.34773790478E-01 3.27070229769E-01 3.19401210505E-01 3.11771903001E-01 3.04187295738E-01 2.96652193646E-01 2.89171217185E-01 2.81748802156E-01 2.74389200220E-01 2.67096480037E-01 2.59874529000E-01 2.52727055472E-01 2.45657591471E-01 2.38669495751E-01 2.31765957174E-01 2.24949998347E-01 2.18224479424E-01 2.11592102017E-01 2.05055413158E-01 1.98616809236E-01 1.92278539857E-01 1.86042711575E-01 1.79911291435E-01 1.73886110286E-01 1.67968865833E-01 1.62161125380E-01 1.56464328258E-01 1.50879787911E-01 1.45408693629E-01 1.40052111945E-01 1.34810987692E-01 1.29686144738E-01 1.24678286443E-01 1.19787995854E-01 1.15015735691E-01 1.10361848169E-01 1.05826554712E-01 1.01409955607E-01 9.71120296679E-02 9.29326339619E-02 8.88715036554E-02 8.49282520384E-02 8.11023707793E-02 7.73932304570E-02 7.38000814119E-02 7.03220549530E-02 6.69581649482E-02 6.37073098193E-02 6.05682749559E-02 5.75397355544E-02 5.46202598803E-02 5.18083129471E-02 4.91022605974E-02 4.65003739655E-02 4.40008342975E-02 4.16017380999E-02 3.93011025824E-02 3.70968713607E-02 3.49869203808E-02 3.29690640249E-02 3.10410613610E-02 2.92006224927E-02 2.74454149726E-02 2.57730702380E-02 2.41811900323E-02 2.26673527759E-02 2.12291198520E-02 1.98640417750E-02 1.85696642136E-02 1.73435338391E-02 1.61832039757E-02 1.50862400310E-02 1.40502246870E-02 1.30727628341E-02 1.21514862367E-02 1.12840579159E-02 1.04681762420E-02 9.70157873035E-03 8.98204553486E-03 8.30740263801E-03 7.67552473655E-03 7.08433782452E-03 6.53182147685E-03 6.01601083836E-03 5.53499832446E-03 5.08693504095E-03 4.67003193177E-03 4.28256066425E-03 3.92285426253E-03 3.58930750035E-03 3.28037706527E-03 2.99458150664E-03 2.73050098022E-03 2.48677680261E-03 2.26211082865E-03 2.05526466540E-03 1.86505873584E-03 1.69037120586E-03 1.53013678744E-03 1.38334543127E-03 1.24904092117E-03 1.12631938275E-03 1.01432771824E-03 9.12261978923E-04 8.19365686056E-04 7.34928110935E-04 6.58282523849E-04 5.88804421313E-04 5.25909739645E-04 4.69053066072E-04 4.17728378133E-04 3.71487312349E-04 3.29888530375E-04 2.92520370171E-04 2.59002034239E-04 2.28981815715E-04 2.02135381136E-04 1.78164111689E-04 1.56793504564E-04 1.37771635761E-04 1.20867685367E-04 1.05870526037E-04 9.25873751735E-05 8.08425110167E-05 7.04760526576E-05 6.13428037802E-05 5.33111597849E-05 4.62608710193E-05 4.00724655475E-05 3.46492495486E-05 2.99052367029E-05 2.57629924892E-05 2.21529161654E-05 1.90125684921E-05 1.62860437614E-05 1.39233845870E-05 1.18800378269E-05 1.01163499432E-05 8.59710004802E-06 7.29106885156E-06 6.17064170128E-06 5.21144389593E-06 4.39200645873E-06 3.69346057077E-06 3.09925888987E-06 2.59492201460E-06 2.16780839645E-06 1.80690605255E-06 1.50264448754E-06 1.24672529426E-06 1.03196996817E-06 8.52183538898E-07 7.02032693153E-07 5.76937135696E-07 4.72973008227E-07 3.86787259533E-07 3.15521933240E-07 2.56747411563E-07 2.08403724216E-07 1.68749100720E-07 1.36315011442E-07 1.09867007821E-07 8.83707351997E-08 7.09625526981E-08 5.69242538362E-08 4.56614396445E-08 3.65228187790E-08 2.91290172810E-08 2.31642615750E-08 1.83664913138E-08 1.45188718530E-08 1.14425312449E-08 8.99036492125E-09 7.04176813767E-09 5.49817182260E-09 4.27927173200E-09 3.31985381376E-09 2.56713048116E-09 1.97851314875E-09 1.51975595966E-09 1.16341420234E-09 8.87568546363E-10 6.74772994155E-10 5.11190418247E-10 3.85884802534E-10 2.90243897148E-10 2.17509995156E-10 1.62400005952E-10 1.20798992353E-10 8.95139094619E-11 6.60764827264E-11 4.85860355175E-11 3.55846643601E-11 2.59584999145E-11 1.88599175358E-11 1.36465026547E-11 9.83335991299E-12 7.05600436959E-12 5.04160869666E-12 3.58681999068E-12 2.54071910564E-12 1.79178760150E-12 1.25798389104E-12 8.79220661494E-13 6.11688351615E-13 4.23591279110E-13 2.91959711593E-13 2.00277554212E-13 1.36725357854E-13 9.28852954010E-14 6.27912767309E-14 4.22356434918E-14 2.82656539682E-14 1.88196439965E-14 1.24654564908E-14 8.21336286009E-15 5.38295981067E-15 3.50896852623E-15 2.27492222780E-15 1.46673801612E-15 9.40388366996E-16 5.99515015482E-16 3.80014376194E-16 2.39483596134E-16 1.50036022273E-16 9.34387850674E-17 5.78413118696E-17 3.55873317155E-17 2.17603398970E-17 1.32225456503E-17 7.98379538651E-18 4.78976254860E-18 2.85491864458E-18 1.69049199973E-18 9.94342835104E-19 5.80933454250E-19 3.37090830943E-19 1.94249740768E-19 1.11155020468E-19 6.31559889927E-20 3.56268999209E-20 1.99517176046E-20 1.10912766622E-20 6.11986037189E-21 3.35134732806E-21 1.82126872318E-21 9.82117559768E-22 5.25466999998E-22 2.78918343435E-22 1.46863868121E-22 7.67034950017E-23 3.97313339103E-23 2.04091011806E-23 1.03954123772E-23 3P 1 0.00 Wavefunction 1.30664920902E-09 1.33972719124E-09 1.37364254656E-09 1.40841647320E-09 1.44407070597E-09 1.48062752995E-09 1.51810979434E-09 1.55654092677E-09 1.59594494794E-09 1.63634648667E-09 1.67777079521E-09 1.72024376512E-09 1.76379194339E-09 1.80844254903E-09 1.85422349014E-09 1.90116338130E-09 1.94929156145E-09 1.99863811229E-09 2.04923387702E-09 2.10111047962E-09 2.15430034468E-09 2.20883671758E-09 2.26475368533E-09 2.32208619787E-09 2.38087008987E-09 2.44114210319E-09 2.50293990978E-09 2.56630213531E-09 2.63126838321E-09 2.69787925950E-09 2.76617639816E-09 2.83620248713E-09 2.90800129497E-09 2.98161769829E-09 3.05709770974E-09 3.13448850677E-09 3.21383846117E-09 3.29519716923E-09 3.37861548278E-09 3.46414554101E-09 3.55184080297E-09 3.64175608106E-09 3.73394757526E-09 3.82847290824E-09 3.92539116143E-09 4.02476291188E-09 4.12665027018E-09 4.23111691924E-09 4.33822815411E-09 4.44805092281E-09 4.56065386814E-09 4.67610737061E-09 4.79448359242E-09 4.91585652255E-09 5.04030202305E-09 5.16789787640E-09 5.29872383416E-09 5.43286166682E-09 5.57039521488E-09 5.71141044130E-09 5.85599548518E-09 6.00424071688E-09 6.15623879450E-09 6.31208472179E-09 6.47187590752E-09 6.63571222638E-09 6.80369608142E-09 6.97593246800E-09 7.15252903949E-09 7.33359617448E-09 7.51924704582E-09 7.70959769137E-09 7.90476708647E-09 8.10487721834E-09 8.31005316234E-09 8.52042316011E-09 8.73611869974E-09 8.95727459798E-09 9.18402908446E-09 9.41652388812E-09 9.65490432577E-09 9.89931939296E-09 1.01499218571E-08 1.04068683528E-08 1.06703194800E-08 1.09404399043E-08 1.12173984598E-08 1.15013682545E-08 1.17925267788E-08 1.20910560162E-08 1.23971425574E-08 1.27109777162E-08 1.30327576500E-08 1.33626834816E-08 1.37009614255E-08 1.40478029163E-08 1.44034247414E-08 1.47680491758E-08 1.51419041218E-08 1.55252232509E-08 1.59182461500E-08 1.63212184712E-08 1.67343920854E-08 1.71580252395E-08 1.75923827180E-08 1.80377360085E-08 1.84943634713E-08 1.89625505135E-08 1.94425897671E-08 1.99347812725E-08 2.04394326652E-08 2.09568593688E-08 2.14873847920E-08 2.20313405302E-08 2.25890665737E-08 2.31609115193E-08 2.37472327888E-08 2.43483968520E-08 2.49647794561E-08 2.55967658603E-08 2.62447510766E-08 2.69091401170E-08 2.75903482462E-08 2.82888012414E-08 2.90049356587E-08 2.97391991052E-08 3.04920505196E-08 3.12639604585E-08 3.20554113908E-08 3.28668979992E-08 3.36989274891E-08 3.45520199061E-08 3.54267084608E-08 3.63235398620E-08 3.72430746585E-08 3.81858875896E-08 3.91525679440E-08 4.01437199286E-08 4.11599630455E-08 4.22019324798E-08 4.32702794963E-08 4.43656718469E-08 4.54887941873E-08 4.66403485057E-08 4.78210545610E-08 4.90316503330E-08 5.02728924834E-08 5.15455568291E-08 5.28504388269E-08 5.41883540703E-08 5.55601388001E-08 5.69666504265E-08 5.84087680651E-08 5.98873930863E-08 6.14034496791E-08 6.29578854282E-08 6.45516719067E-08 6.61858052829E-08 6.78613069437E-08 6.95792241322E-08 7.13406306025E-08 7.31466272912E-08 7.49983430051E-08 7.68969351269E-08 7.88435903386E-08 8.08395253632E-08 8.28859877252E-08 8.49842565302E-08 8.71356432648E-08 8.93414926157E-08 9.16031833109E-08 9.39221289808E-08 9.62997790420E-08 9.87376196034E-08 1.01237174395E-07 1.03800005720E-07 1.06427715431E-07 1.09121945934E-07 1.11884381209E-07 1.14716747870E-07 1.17620816237E-07 1.20598401449E-07 1.23651364592E-07 1.26781613870E-07 1.29991105789E-07 1.33281846387E-07 1.36655892485E-07 1.40115352971E-07 1.43662390122E-07 1.47299220950E-07 1.51028118595E-07 1.54851413739E-07 1.58771496066E-07 1.62790815756E-07 1.66911885016E-07 1.71137279647E-07 1.75469640660E-07 1.79911675923E-07 1.84466161851E-07 1.89135945149E-07 1.93923944582E-07 1.98833152808E-07 2.03866638242E-07 2.09027546976E-07 2.14319104749E-07 2.19744618956E-07 2.25307480721E-07 2.31011167015E-07 2.36859242829E-07 2.42855363401E-07 2.49003276503E-07 2.55306824782E-07 2.61769948162E-07 2.68396686307E-07 2.75191181145E-07 2.82157679457E-07 2.89300535535E-07 2.96624213896E-07 3.04133292080E-07 3.11832463507E-07 3.19726540411E-07 3.27820456849E-07 3.36119271785E-07 3.44628172249E-07 3.53352476585E-07 3.62297637768E-07 3.71469246818E-07 3.80873036292E-07 3.90514883867E-07 4.00400816013E-07 4.10537011764E-07 4.20929806576E-07 4.31585696285E-07 4.42511341174E-07 4.53713570130E-07 4.65199384914E-07 4.76975964540E-07 4.89050669755E-07 5.01431047649E-07 5.14124836366E-07 5.27139969941E-07 5.40484583261E-07 5.54167017151E-07 5.68195823582E-07 5.82579771020E-07 5.97327849908E-07 6.12449278280E-07 6.27953507530E-07 6.43850228313E-07 6.60149376603E-07 6.76861139907E-07 6.93995963630E-07 7.11564557604E-07 7.29577902779E-07 7.48047258095E-07 7.66984167508E-07 7.86400467215E-07 8.06308293047E-07 8.26720088054E-07 8.47648610285E-07 8.69106940762E-07 8.91108491653E-07 9.13667014659E-07 9.36796609606E-07 9.60511733259E-07 9.84827208360E-07 1.00975823289E-06 1.03532038957E-06 1.06152965560E-06 1.08840241265E-06 1.11595545708E-06 1.14420601046E-06 1.17317173035E-06 1.20287072127E-06 1.23332154610E-06 1.26454323761E-06 1.29655531041E-06 1.32937777313E-06 1.36303114089E-06 1.39753644818E-06 1.43291526198E-06 1.46918969524E-06 1.50638242070E-06 1.54451668507E-06 1.58361632354E-06 1.62370577470E-06 1.66481009583E-06 1.70695497850E-06 1.75016676470E-06 1.79447246325E-06 1.83989976672E-06 1.88647706871E-06 1.93423348162E-06 1.98319885483E-06 2.03340379336E-06 2.08487967702E-06 2.13765867998E-06 2.19177379092E-06 2.24725883364E-06 2.30414848818E-06 2.36247831254E-06 2.42228476485E-06 2.48360522619E-06 2.54647802398E-06 2.61094245587E-06 2.67703881435E-06 2.74480841194E-06 2.81429360697E-06 2.88553783011E-06 2.95858561145E-06 3.03348260841E-06 3.11027563421E-06 3.18901268718E-06 3.26974298072E-06 3.35251697408E-06 3.43738640392E-06 3.52440431661E-06 3.61362510140E-06 3.70510452443E-06 3.79889976358E-06 3.89506944417E-06 3.99367367567E-06 4.09477408924E-06 4.19843387622E-06 4.30471782768E-06 4.41369237489E-06 4.52542563086E-06 4.63998743286E-06 4.75744938617E-06 4.87788490874E-06 5.00136927711E-06 5.12797967352E-06 5.25779523406E-06 5.39089709818E-06 5.52736845942E-06 5.66729461739E-06 5.81076303107E-06 5.95786337352E-06 6.10868758789E-06 6.26332994491E-06 6.42188710181E-06 6.58445816272E-06 6.75114474066E-06 6.92205102099E-06 7.09728382659E-06 7.27695268458E-06 7.46116989482E-06 7.65005060009E-06 7.84371285806E-06 8.04227771506E-06 8.24586928179E-06 8.45461481085E-06 8.66864477631E-06 8.88809295523E-06 9.11309651133E-06 9.34379608068E-06 9.58033585963E-06 9.82286369491E-06 1.00715311761E-05 1.03264937303E-05 1.05879107194E-05 1.08559455396E-05 1.11307657235E-05 1.14125430450E-05 1.17014536264E-05 1.19976780489E-05 1.23014014648E-05 1.26128137141E-05 1.29321094425E-05 1.32594882232E-05 1.35951546819E-05 1.39393186244E-05 1.42921951679E-05 1.46540048756E-05 1.50249738942E-05 1.54053340956E-05 1.57953232217E-05 1.61951850329E-05 1.66051694606E-05 1.70255327637E-05 1.74565376881E-05 1.78984536315E-05 1.83515568117E-05 1.88161304391E-05 1.92924648938E-05 1.97808579072E-05 2.02816147480E-05 2.07950484132E-05 2.13214798233E-05 2.18612380235E-05 2.24146603891E-05 2.29820928361E-05 2.35638900381E-05 2.41604156475E-05 2.47720425229E-05 2.53991529623E-05 2.60421389419E-05 2.67014023615E-05 2.73773552950E-05 2.80704202489E-05 2.87810304258E-05 2.95096299954E-05 3.02566743722E-05 3.10226304999E-05 3.18079771438E-05 3.26132051896E-05 3.34388179507E-05 3.42853314822E-05 3.51532749045E-05 3.60431907330E-05 3.69556352178E-05 3.78911786916E-05 3.88504059259E-05 3.98339164965E-05 4.08423251587E-05 4.18762622314E-05 4.29363739910E-05 4.40233230758E-05 4.51377888998E-05 4.62804680777E-05 4.74520748606E-05 4.86533415822E-05 4.98850191167E-05 5.11478773482E-05 5.24427056523E-05 5.37703133891E-05 5.51315304099E-05 5.65272075752E-05 5.79582172873E-05 5.94254540354E-05 6.09298349551E-05 6.24723004014E-05 6.40538145370E-05 6.56753659348E-05 6.73379681965E-05 6.90426605856E-05 7.07905086777E-05 7.25826050265E-05 7.44200698473E-05 7.63040517167E-05 7.82357282917E-05 8.02163070449E-05 8.22470260204E-05 8.43291546077E-05 8.64639943351E-05 8.86528796840E-05 9.08971789228E-05 9.31982949631E-05 9.55576662361E-05 9.79767675932E-05 1.00457111227E-04 1.03000247618E-04 1.05607766503E-04 1.08281297871E-04 1.11022512980E-04 1.13833125405E-04 1.16714892107E-04 1.19669614534E-04 1.22699139744E-04 1.25805361566E-04 1.28990221778E-04 1.32255711327E-04 1.35603871570E-04 1.39036795551E-04 1.42556629314E-04 1.46165573241E-04 1.49865883430E-04 1.53659873105E-04 1.57549914066E-04 1.61538438169E-04 1.65627938846E-04 1.69820972672E-04 1.74120160954E-04 1.78528191380E-04 1.83047819694E-04 1.87681871423E-04 1.92433243643E-04 1.97304906791E-04 2.02299906528E-04 2.07421365637E-04 2.12672485981E-04 2.18056550507E-04 2.23576925298E-04 2.29237061679E-04 2.35040498377E-04 2.40990863738E-04 2.47091877990E-04 2.53347355579E-04 2.59761207552E-04 2.66337444004E-04 2.73080176588E-04 2.79993621089E-04 2.87082100062E-04 2.94350045538E-04 3.01802001794E-04 3.09442628203E-04 3.17276702147E-04 3.25309122006E-04 3.33544910228E-04 3.41989216470E-04 3.50647320823E-04 3.59524637116E-04 3.68626716308E-04 3.77959249962E-04 3.87528073805E-04 3.97339171389E-04 4.07398677831E-04 4.17712883659E-04 4.28288238749E-04 4.39131356365E-04 4.50249017300E-04 4.61648174123E-04 4.73335955534E-04 4.85319670830E-04 4.97606814482E-04 5.10205070828E-04 5.23122318893E-04 5.36366637317E-04 5.49946309424E-04 5.63869828407E-04 5.78145902652E-04 5.92783461196E-04 6.07791659319E-04 6.23179884286E-04 6.38957761229E-04 6.55135159177E-04 6.71722197248E-04 6.88729250989E-04 7.06166958880E-04 7.24046229007E-04 7.42378245900E-04 7.61174477546E-04 7.80446682582E-04 8.00206917670E-04 8.20467545057E-04 8.41241240332E-04 8.62541000375E-04 8.84380151515E-04 9.06772357887E-04 9.29731630011E-04 9.53272333577E-04 9.77409198471E-04 1.00215732801E-03 1.02753220844E-03 1.05354971862E-03 1.08022614005E-03 1.10757816704E-03 1.13562291722E-03 1.16437794230E-03 1.19386123907E-03 1.22409126072E-03 1.25508692844E-03 1.28686764328E-03 1.31945329838E-03 1.35286429146E-03 1.38712153762E-03 1.42224648251E-03 1.45826111583E-03 1.49518798510E-03 1.53305020991E-03 1.57187149641E-03 1.61167615226E-03 1.65248910189E-03 1.69433590222E-03 1.73724275869E-03 1.78123654183E-03 1.82634480411E-03 1.87259579732E-03 1.92001849037E-03 1.96864258751E-03 2.01849854705E-03 2.06961760056E-03 2.12203177254E-03 2.17577390063E-03 2.23087765626E-03 2.28737756592E-03 2.34530903293E-03 2.40470835975E-03 2.46561277088E-03 2.52806043639E-03 2.59209049593E-03 2.65774308351E-03 2.72505935279E-03 2.79408150309E-03 2.86485280602E-03 2.93741763283E-03 3.01182148244E-03 3.08811101018E-03 3.16633405728E-03 3.24653968115E-03 3.32877818633E-03 3.41310115638E-03 3.49956148645E-03 3.58821341677E-03 3.67911256699E-03 3.77231597135E-03 3.86788211483E-03 3.96587097012E-03 4.06634403568E-03 4.16936437465E-03 4.27499665480E-03 4.38330718955E-03 4.49436397997E-03 4.60823675791E-03 4.72499703020E-03 4.84471812403E-03 4.96747523343E-03 5.09334546701E-03 5.22240789685E-03 5.35474360873E-03 5.49043575360E-03 5.62956960033E-03 5.77223258988E-03 5.91851439086E-03 6.06850695644E-03 6.22230458278E-03 6.38000396896E-03 6.54170427839E-03 6.70750720184E-03 6.87751702206E-03 7.05184068007E-03 7.23058784312E-03 7.41387097437E-03 7.60180540444E-03 7.79450940464E-03 7.99210426219E-03 8.19471435729E-03 8.40246724216E-03 8.61549372211E-03 8.83392793865E-03 9.05790745468E-03 9.28757334190E-03 9.52307027039E-03 9.76454660042E-03 1.00121544767E-02 1.02660499247E-02 1.05263929499E-02 1.07933476391E-02 1.10670822642E-02 1.13477693891E-02 1.16355859787E-02 1.19307135111E-02 1.22333380918E-02 1.25436505718E-02 1.28618466678E-02 1.31881270857E-02 1.35226976468E-02 1.38657694176E-02 1.42175588422E-02 1.45782878785E-02 1.49481841369E-02 1.53274810232E-02 1.57164178842E-02 1.61152401570E-02 1.65241995221E-02 1.69435540596E-02 1.73735684096E-02 1.78145139354E-02 1.82666688916E-02 1.87303185953E-02 1.92057556012E-02 1.96932798807E-02 2.01931990055E-02 2.07058283340E-02 2.12314912031E-02 2.17705191230E-02 2.23232519769E-02 2.28900382248E-02 2.34712351105E-02 2.40672088744E-02 2.46783349689E-02 2.53049982793E-02 2.59475933483E-02 2.66065246045E-02 2.72822065956E-02 2.79750642252E-02 2.86855329945E-02 2.94140592468E-02 3.01611004171E-02 3.09271252851E-02 3.17126142317E-02 3.25180594998E-02 3.33439654579E-02 3.41908488673E-02 3.50592391529E-02 3.59496786759E-02 3.68627230103E-02 3.77989412211E-02 3.87589161448E-02 3.97432446716E-02 4.07525380293E-02 4.17874220680E-02 4.28485375452E-02 4.39365404113E-02 4.50521020942E-02 4.61959097830E-02 4.73686667102E-02 4.85710924308E-02 4.98039230989E-02 5.10679117394E-02 5.23638285156E-02 5.36924609898E-02 5.50546143777E-02 5.64511117937E-02 5.78827944877E-02 5.93505220698E-02 6.08551727235E-02 6.23976434048E-02 6.39788500254E-02 6.55997276185E-02 6.72612304855E-02 6.89643323207E-02 7.07100263124E-02 7.24993252180E-02 7.43332614098E-02 7.62128868898E-02 7.81392732699E-02 8.01135117141E-02 8.21367128405E-02 8.42100065781E-02 8.63345419759E-02 8.85114869597E-02 9.07420280319E-02 9.30273699113E-02 9.53687351065E-02 9.77673634188E-02 1.00224511369E-01 1.02741451544E-01 1.05319471853E-01 1.07959874694E-01 1.10663976015E-01 1.13433104276E-01 1.16268599289E-01 1.19171810943E-01 1.22144097795E-01 1.25186825528E-01 1.28301365258E-01 1.31489091698E-01 1.34751381141E-01 1.38089609289E-01 1.41505148886E-01 1.44999367167E-01 1.48573623105E-01 1.52229264438E-01 1.55967624479E-01 1.59790018698E-01 1.63697741047E-01 1.67692060041E-01 1.71774214565E-01 1.75945409414E-01 1.80206810538E-01 1.84559539991E-01 1.89004670578E-01 1.93543220179E-01 1.98176145748E-01 2.02904336983E-01 2.07728609650E-01 2.12649698557E-01 2.17668250178E-01 2.22784814922E-01 2.27999839034E-01 2.33313656141E-01 2.38726478441E-01 2.44238387526E-01 2.49849324867E-01 2.55559081955E-01 2.61367290103E-01 2.67273409954E-01 2.73276720677E-01 2.79376308906E-01 2.85571057427E-01 2.91859633665E-01 2.98240477992E-01 3.04711791917E-01 3.11271526187E-01 3.17917368887E-01 3.24646733562E-01 3.31456747476E-01 3.38344240046E-01 3.45305731571E-01 3.52337422330E-01 3.59435182159E-01 3.66594540627E-01 3.73810677921E-01 3.81078416582E-01 3.88392214216E-01 3.95746157355E-01 4.03133956597E-01 4.10548943210E-01 4.17984067366E-01 4.25431898190E-01 4.32884625797E-01 4.40334065531E-01 4.47771664577E-01 4.55188511153E-01 4.62575346474E-01 4.69922579676E-01 4.77220305895E-01 4.84458327653E-01 4.91626179742E-01 4.98713157729E-01 5.05708350213E-01 5.12600674930E-01 5.19378918762E-01 5.26031781693E-01 5.32547924663E-01 5.38916021281E-01 5.45124813243E-01 5.51163169264E-01 5.57020147265E-01 5.62685059444E-01 5.68147539799E-01 5.73397613567E-01 5.78425767918E-01 5.83223023159E-01 5.87781003571E-01 5.92092006861E-01 5.96149071130E-01 5.99946038063E-01 6.03477610978E-01 6.06739406196E-01 6.09727996101E-01 6.12440942119E-01 6.14876815754E-01 6.17035205734E-01 6.18916709241E-01 6.20522905166E-01 6.21856307318E-01 6.22920295552E-01 6.23719022841E-01 6.24257296465E-01 6.24540431642E-01 6.24574076213E-01 6.24364005288E-01 6.23915885165E-01 6.23235006327E-01 6.22325985897E-01 6.21192440569E-01 6.19836631841E-01 6.18259086167E-01 6.16458193651E-01 6.14429789869E-01 6.12166726542E-01 6.09661193769E-01 6.06914006607E-01 6.03928640875E-01 6.00708813875E-01 5.97258478955E-01 5.93581819813E-01 5.89683244519E-01 5.85567379288E-01 5.81239061975E-01 5.76703335306E-01 5.71965439814E-01 5.67030806472E-01 5.61905049061E-01 5.56593956208E-01 5.51103483079E-01 5.45439742717E-01 5.39608997029E-01 5.33617647378E-01 5.27472224793E-01 5.21179379768E-01 5.14745871662E-01 5.08178557684E-01 5.01484381484E-01 4.94670361357E-01 4.87743578081E-01 4.80704098727E-01 4.73566062897E-01 4.66336661487E-01 4.59023096049E-01 4.51632565418E-01 4.44172252278E-01 4.36649309766E-01 4.29070848169E-01 4.21443921820E-01 4.13775516274E-01 4.06072535847E-01 3.98341791607E-01 3.90589989902E-01 3.82823721488E-01 3.75049451342E-01 3.67273509207E-01 3.59502080921E-01 3.51741200588E-01 3.43996743596E-01 3.36274420516E-01 3.28579771900E-01 3.20918163954E-01 3.13294785095E-01 3.05714643358E-01 2.98182564637E-01 2.90703191707E-01 2.83280983994E-01 2.75920218045E-01 2.68624988627E-01 2.61399210415E-01 2.54246620193E-01 2.47170779502E-01 2.40175077682E-01 2.33262735214E-01 2.26436807326E-01 2.19700187754E-01 2.13055612639E-01 2.06505664445E-01 2.00052775872E-01 1.93699233688E-01 1.87447182424E-01 1.81298627887E-01 1.75255440439E-01 1.69319358010E-01 1.63491988801E-01 1.57774813672E-01 1.52169188174E-01 1.46676344236E-01 1.41297391503E-01 1.36033318330E-01 1.30884992457E-01 1.25853161385E-01 1.20938452505E-01 1.16141372992E-01 1.11462309553E-01 1.06901528038E-01 1.02459173013E-01 9.81352673175E-02 9.39297116969E-02 8.98422845432E-02 8.58726418199E-02 8.20203172125E-02 7.82847225590E-02 7.46651486004E-02 7.11607660889E-02 6.77706272825E-02 6.44936678490E-02 6.13287091921E-02 5.82744612084E-02 5.53295254736E-02 5.24923988515E-02 4.97614775109E-02 4.71350613328E-02 4.46113586817E-02 4.21884915120E-02 3.98645007781E-02 3.76373521109E-02 3.55049417237E-02 3.34651025087E-02 3.15156102821E-02 2.96541901399E-02 2.78785228815E-02 2.61862514644E-02 2.45749874502E-02 2.30423174060E-02 2.15858092271E-02 2.02030183472E-02 1.88914938083E-02 1.76487841600E-02 1.64724431655E-02 1.53600352907E-02 1.43091409568E-02 1.33173615398E-02 1.23823241022E-02 1.15016858448E-02 1.06731382693E-02 9.89441104532E-03 9.16327557547E-03 8.47754825755E-03 7.83509344202E-03 7.23382608649E-03 6.67171410994E-03 6.14678045135E-03 5.65710483866E-03 5.20082527525E-03 4.77613925251E-03 4.38130469801E-03 4.01464066943E-03 3.67452780564E-03 3.35940854660E-03 3.06778713440E-03 2.79822940816E-03 2.54936240592E-03 2.31987378656E-03 2.10851108542E-03 1.91408081658E-03 1.73544743547E-03 1.57153217475E-03 1.42131176650E-03 1.28381706343E-03 1.15813157136E-03 1.04338990510E-03 9.38776179061E-04 8.43522343826E-04 7.56906479139E-04 6.78251053368E-04 6.06921158816E-04 5.42322731097E-04 4.83900763926E-04 4.31140131239E-04 3.83584499676E-04 3.40784129660E-04 3.02319293962E-04 2.67801553305E-04 2.36871973370E-04 2.09199397610E-04 1.84478777736E-04 1.62429563630E-04 1.42794154118E-04 1.25336409722E-04 1.09840228203E-04 9.61081835166E-05 8.39602284560E-05 7.32324610943E-05 6.37759549206E-05 5.54556524024E-05 4.81480655695E-05 4.17302932693E-05 3.61029394988E-05 3.11775794174E-05 2.68745360627E-05 2.31221508606E-05 1.98561001149E-05 1.70187560798E-05 1.45585911063E-05 1.24296232665E-05 1.05909017844E-05 9.00603054627E-06 7.64272792030E-06 6.47242109021E-06 5.46987309355E-06 4.61284075442E-06 3.88176171348E-06 3.25946877815E-06 2.73092984888E-06 2.28301171681E-06 1.90426607606E-06 1.58473614774E-06 1.31578237231E-06 1.08992569066E-06 9.00707001544E-07 7.42561453161E-07 6.10706298197E-07 5.01041114634E-07 4.10059267714E-07 3.34769561493E-07 2.72627100603E-07 2.21472453909E-07 1.79478281279E-07 1.45102652347E-07 1.17048352010E-07 9.42275311318E-08 7.57311229081E-08 6.08025056439E-08 4.88149518745E-08 3.90797216350E-08 3.11962036461E-08 2.48306453803E-08 1.97058119161E-08 1.55921000586E-08 1.22999269913E-08 9.67323138812E-09 7.58394221898E-09 5.92728643012E-09 4.61782131949E-09 3.58609078857E-09 2.77581679537E-09 2.14154831503E-09 1.64669999994E-09 1.26192158934E-09 9.63747019011E-10 7.33479197030E-10 5.56272612125E-10 4.20381397422E-10 3.16545252021E-10 2.37489790993E-10 1.77521513184E-10 1.32200704012E-10 9.80782816966E-11 7.24849008323E-11 5.33625931121E-11 3.91308940669E-11 2.85808151284E-11 2.07912069597E-11 1.50630537442E-11 1.08680665472E-11 7.80863129764E-12 5.58673474159E-12 3.97995852640E-12 2.82301356584E-12 1.99359793866E-12 1.40161374867E-12 9.80981804324E-13 6.83456293521E-13 4.73972108841E-13 3.27161211450E-13 2.24756485473E-13 1.53666131908E-13 1.04552244799E-13 7.07866375656E-14 4.76875525287E-14 3.19644608913E-14 2.13162479647E-14 1.41418834782E-14 9.33315735874E-15 6.12697544988E-15 4.00065338842E-15 2.59808644922E-15 1.67797094618E-15 1.07768875633E-15 6.88255788765E-16 4.37041971524E-16 2.75919206280E-16 1.73178747761E-16 1.08051077849E-16 6.70120683540E-17 4.13079374072E-17 2.53068045035E-17 1.54074493414E-17 9.32136958597E-18 5.60337543459E-18 3.34661512918E-18 1.98569468013E-18 1.17039911068E-18 6.85226272933E-19 3.98451796418E-19 2.30102913036E-19 1.31957872816E-19 7.51410397259E-20 4.24824115765E-20 2.38447113446E-20 1.32857570684E-20 7.34770585299E-21 4.03318196918E-21 2.19701662494E-21 1.18759044665E-21 6.36950530602E-22 3.38928171491E-22 1.78907832058E-22 9.36757063596E-23 4.86470161993E-23 2.50537164254E-23 1.27946783536E-23 2.56076396881E-10 2.62559001963E-10 2.69205714985E-10 2.76020690361E-10 2.83008187673E-10 2.90172574336E-10 2.97518328324E-10 3.05050040976E-10 3.12772419857E-10 3.20690291707E-10 3.28808605455E-10 3.37132435312E-10 3.45666983945E-10 3.54417585726E-10 3.63389710067E-10 3.72588964839E-10 3.82021099879E-10 3.91692010580E-10 4.01607741576E-10 4.11774490526E-10 4.22198611980E-10 4.32886621355E-10 4.43845199008E-10 4.55081194409E-10 4.66601630423E-10 4.78413707701E-10 4.90524809178E-10 5.02942504690E-10 5.15674555704E-10 5.28728920170E-10 5.42113757494E-10 5.55837433638E-10 5.69908526350E-10 5.84335830527E-10 5.99128363706E-10 6.14295371707E-10 6.29846334408E-10 6.45790971673E-10 6.62139249423E-10 6.78901385871E-10 6.96087857902E-10 7.13709407627E-10 7.31777049094E-10 7.50302075175E-10 7.69296064621E-10 7.88770889300E-10 8.08738721620E-10 8.29212042134E-10 8.50203647343E-10 8.71726657692E-10 8.93794525772E-10 9.16421044730E-10 9.39620356886E-10 9.63406962578E-10 9.87795729219E-10 1.01280190059E-09 1.03844110639E-09 1.06472937195E-09 1.09168312832E-09 1.11931922249E-09 1.14765492792E-09 1.17670795538E-09 1.20649646397E-09 1.23703907250E-09 1.26835487110E-09 1.30046343320E-09 1.33338482770E-09 1.36713963158E-09 1.40174894271E-09 1.43723439306E-09 1.47361816222E-09 1.51092299125E-09 1.54917219692E-09 1.58838968625E-09 1.62859997148E-09 1.66982818539E-09 1.71210009698E-09 1.75544212761E-09 1.79988136750E-09 1.84544559265E-09 1.89216328225E-09 1.94006363640E-09 1.98917659444E-09 2.03953285361E-09 2.09116388826E-09 2.14410196953E-09 2.19838018550E-09 2.25403246187E-09 2.31109358321E-09 2.36959921462E-09 2.42958592411E-09 2.49109120539E-09 2.55415350135E-09 2.61881222806E-09 2.68510779939E-09 2.75308165235E-09 2.82277627289E-09 2.89423522252E-09 2.96750316550E-09 3.04262589681E-09 3.11965037071E-09 3.19862473011E-09 3.27959833670E-09 3.36262180175E-09 3.44774701777E-09 3.53502719093E-09 3.62451687434E-09 3.71627200212E-09 3.81034992440E-09 3.90680944311E-09 4.00571084879E-09 4.10711595823E-09 4.21108815313E-09 4.31769241973E-09 4.42699538938E-09 4.53906538025E-09 4.65397243999E-09 4.77178838951E-09 4.89258686791E-09 5.01644337846E-09 5.14343533582E-09 5.27364211443E-09 5.40714509812E-09 5.54402773094E-09 5.68437556940E-09 5.82827633585E-09 5.97581997339E-09 6.12709870202E-09 6.28220707635E-09 6.44124204466E-09 6.60430300948E-09 6.77149188976E-09 6.94291318458E-09 7.11867403842E-09 7.29888430816E-09 7.48365663176E-09 7.67310649861E-09 7.86735232179E-09 8.06651551202E-09 8.27072055360E-09 8.48009508217E-09 8.69476996452E-09 8.91487938037E-09 9.14056090627E-09 9.37195560154E-09 9.60920809650E-09 9.85246668283E-09 1.01018834063E-08 1.03576141616E-08 1.06198187903E-08 1.08886611802E-08 1.11643093679E-08 1.14469356441E-08 1.17367166611E-08 1.20338335431E-08 1.23384719997E-08 1.26508224417E-08 1.29710801002E-08 1.32994451488E-08 1.36361228287E-08 1.39813235765E-08 1.43352631564E-08 1.46981627948E-08 1.50702493183E-08 1.54517552960E-08 1.58429191846E-08 1.62439854773E-08 1.66552048568E-08 1.70768343521E-08 1.75091374990E-08 1.79523845049E-08 1.84068524174E-08 1.88728252982E-08 1.93505943998E-08 1.98404583481E-08 2.03427233289E-08 2.08577032793E-08 2.13857200839E-08 2.19271037762E-08 2.24821927444E-08 2.30513339437E-08 2.36348831122E-08 2.42332049943E-08 2.48466735677E-08 2.54756722781E-08 2.61205942782E-08 2.67818426736E-08 2.74598307750E-08 2.81549823565E-08 2.88677319202E-08 2.95985249681E-08 3.03478182807E-08 3.11160802019E-08 3.19037909326E-08 3.27114428302E-08 3.35395407168E-08 3.43886021944E-08 3.52591579687E-08 3.61517521810E-08 3.70669427478E-08 3.80053017102E-08 3.89674155909E-08 3.99538857612E-08 4.09653288171E-08 4.20023769640E-08 4.30656784128E-08 4.41558977846E-08 4.52737165260E-08 4.64198333357E-08 4.75949646007E-08 4.87998448445E-08 5.00352271859E-08 5.13018838102E-08 5.26006064516E-08 5.39322068886E-08 5.52975174507E-08 5.66973915396E-08 5.81327041619E-08 5.96043524767E-08 6.11132563562E-08 6.26603589609E-08 6.42466273288E-08 6.58730529808E-08 6.75406525394E-08 6.92504683655E-08 7.10035692091E-08 7.28010508778E-08 7.46440369220E-08 7.65336793371E-08 7.84711592838E-08 8.04576878266E-08 8.24945066909E-08 8.45828890391E-08 8.67241402671E-08 8.89195988200E-08 9.11706370289E-08 9.34786619691E-08 9.58451163398E-08 9.82714793661E-08 1.00759267724E-07 1.03310036487E-07 1.05925380103E-07 1.08606933385E-07 1.11356372537E-07 1.14175416203E-07 1.17065826538E-07 1.20029410314E-07 1.23068020044E-07 1.26183555148E-07 1.29377963133E-07 1.32653240817E-07 1.36011435573E-07 1.39454646611E-07 1.42985026292E-07 1.46604781472E-07 1.50316174882E-07 1.54121526546E-07 1.58023215225E-07 1.62023679913E-07 1.66125421355E-07 1.70331003618E-07 1.74643055685E-07 1.79064273109E-07 1.83597419693E-07 1.88245329219E-07 1.93010907221E-07 1.97897132804E-07 2.02907060504E-07 2.08043822199E-07 2.13310629070E-07 2.18710773607E-07 2.24247631670E-07 2.29924664600E-07 2.35745421384E-07 2.41713540873E-07 2.47832754061E-07 2.54106886420E-07 2.60539860286E-07 2.67135697320E-07 2.73898521021E-07 2.80832559305E-07 2.87942147151E-07 2.95231729310E-07 3.02705863092E-07 3.10369221210E-07 3.18226594709E-07 3.26282895958E-07 3.34543161731E-07 3.43012556351E-07 3.51696374925E-07 3.60600046658E-07 3.69729138249E-07 3.79089357373E-07 3.88686556256E-07 3.98526735335E-07 4.08616047012E-07 4.18960799508E-07 4.29567460810E-07 4.40442662714E-07 4.51593204985E-07 4.63026059604E-07 4.74748375140E-07 4.86767481217E-07 4.99090893110E-07 5.11726316443E-07 5.24681652017E-07 5.37965000754E-07 5.51584668772E-07 5.65549172583E-07 5.79867244425E-07 5.94547837732E-07 6.09600132739E-07 6.25033542234E-07 6.40857717447E-07 6.57082554099E-07 6.73718198601E-07 6.90775054404E-07 7.08263788519E-07 7.26195338201E-07 7.44580917796E-07 7.63432025769E-07 7.82760451910E-07 8.02578284718E-07 8.22897918976E-07 8.43732063521E-07 8.65093749205E-07 8.86996337064E-07 9.09453526692E-07 9.32479364828E-07 9.56088254159E-07 9.80294962353E-07 1.00511463132E-06 1.03056278668E-06 1.05665534756E-06 1.08340863651E-06 1.11083938976E-06 1.13896476774E-06 1.16780236583E-06 1.19737022538E-06 1.22768684506E-06 1.25877119245E-06 1.29064271594E-06 1.32332135693E-06 1.35682756237E-06 1.39118229757E-06 1.42640705936E-06 1.46252388963E-06 1.49955538910E-06 1.53752473157E-06 1.57645567844E-06 1.61637259366E-06 1.65730045901E-06 1.69926488981E-06 1.74229215104E-06 1.78640917379E-06 1.83164357222E-06 1.87802366094E-06 1.92557847276E-06 1.97433777699E-06 2.02433209814E-06 2.07559273513E-06 2.12815178097E-06 2.18204214296E-06 2.23729756340E-06 2.29395264081E-06 2.35204285175E-06 2.41160457311E-06 2.47267510505E-06 2.53529269449E-06 2.59949655918E-06 2.66532691246E-06 2.73282498856E-06 2.80203306860E-06 2.87299450727E-06 2.94575376017E-06 3.02035641182E-06 3.09684920445E-06 3.17528006750E-06 3.25569814786E-06 3.33815384090E-06 3.42269882232E-06 3.50938608077E-06 3.59826995133E-06 3.68940614989E-06 3.78285180834E-06 3.87866551070E-06 3.97690733022E-06 4.07763886734E-06 4.18092328874E-06 4.28682536727E-06 4.39541152305E-06 4.50674986549E-06 4.62091023652E-06 4.73796425481E-06 4.85798536125E-06 4.98104886552E-06 5.10723199390E-06 5.23661393830E-06 5.36927590658E-06 5.50530117417E-06 5.64477513697E-06 5.78778536570E-06 5.93442166160E-06 6.08477611365E-06 6.23894315713E-06 6.39701963388E-06 6.55910485397E-06 6.72530065910E-06 6.89571148754E-06 7.07044444082E-06 7.24960935217E-06 7.43331885669E-06 7.62168846338E-06 7.81483662909E-06 8.01288483430E-06 8.21595766098E-06 8.42418287244E-06 8.63769149529E-06 8.85661790348E-06 9.08109990469E-06 9.31127882881E-06 9.54729961888E-06 9.78931092435E-06 1.00374651968E-05 1.02919187883E-05 1.05528320520E-05 1.08203694461E-05 1.10946996394E-05 1.13759956211E-05 1.16644348121E-05 1.19601991805E-05 1.22634753590E-05 1.25744547663E-05 1.28933337312E-05 1.32203136205E-05 1.35556009697E-05 1.38994076177E-05 1.42519508447E-05 1.46134535142E-05 1.49841442186E-05 1.53642574285E-05 1.57540336460E-05 1.61537195630E-05 1.65635682226E-05 1.69838391852E-05 1.74147986995E-05 1.78567198779E-05 1.83098828764E-05 1.87745750794E-05 1.92510912902E-05 1.97397339257E-05 2.02408132171E-05 2.07546474157E-05 2.12815630047E-05 2.18218949163E-05 2.23759867554E-05 2.29441910287E-05 2.35268693807E-05 2.41243928361E-05 2.47371420484E-05 2.53655075563E-05 2.60098900465E-05 2.66707006237E-05 2.73483610890E-05 2.80433042251E-05 2.87559740900E-05 2.94868263189E-05 3.02363284342E-05 3.10049601652E-05 3.17932137753E-05 3.26015943999E-05 3.34306203933E-05 3.42808236852E-05 3.51527501477E-05 3.60469599728E-05 3.69640280606E-05 3.79045444187E-05 3.88691145728E-05 3.98583599900E-05 4.08729185130E-05 4.19134448084E-05 4.29806108269E-05 4.40751062776E-05 4.51976391155E-05 4.63489360445E-05 4.75297430336E-05 4.87408258498E-05 4.99829706062E-05 5.12569843259E-05 5.25636955234E-05 5.39039548036E-05 5.52786354776E-05 5.66886341982E-05 5.81348716140E-05 5.96182930436E-05 6.11398691698E-05 6.27005967559E-05 6.43014993826E-05 6.59436282089E-05 6.76280627553E-05 6.93559117124E-05 7.11283137730E-05 7.29464384919E-05 7.48114871714E-05 7.67246937747E-05 7.86873258687E-05 8.07006855960E-05 8.27661106781E-05 8.48849754503E-05 8.70586919296E-05 8.92887109180E-05 9.15765231394E-05 9.39236604155E-05 9.63316968780E-05 9.88022502216E-05 1.01336982998E-04 1.03937603951E-04 1.06605869398E-04 1.09343584657E-04 1.12152605518E-04 1.15034839769E-04 1.17992248765E-04 1.21026849063E-04 1.24140714099E-04 1.27335975929E-04 1.30614827029E-04 1.33979522156E-04 1.37432380274E-04 1.40975786545E-04 1.44612194388E-04 1.48344127620E-04 1.52174182654E-04 1.56105030796E-04 1.60139420601E-04 1.64280180337E-04 1.68530220511E-04 1.72892536509E-04 1.77370211317E-04 1.81966418346E-04 1.86684424357E-04 1.91527592498E-04 1.96499385443E-04 2.01603368660E-04 2.06843213788E-04 2.12222702147E-04 2.17745728377E-04 2.23416304210E-04 2.29238562395E-04 2.35216760756E-04 2.41355286422E-04 2.47658660200E-04 2.54131541137E-04 2.60778731238E-04 2.67605180377E-04 2.74615991402E-04 2.81816425433E-04 2.89211907368E-04 2.96808031610E-04 3.04610568022E-04 3.12625468111E-04 3.20858871468E-04 3.29317112461E-04 3.38006727197E-04 3.46934460771E-04 3.56107274805E-04 3.65532355294E-04 3.75217120778E-04 3.85169230844E-04 3.95396594983E-04 4.05907381818E-04 4.16710028704E-04 4.27813251742E-04 4.39226056209E-04 4.50957747423E-04 4.63017942075E-04 4.75416580033E-04 4.88163936662E-04 5.01270635657E-04 5.14747662437E-04 5.28606378110E-04 5.42858534048E-04 5.57516287093E-04 5.72592215419E-04 5.88099335098E-04 6.04051117389E-04 6.20461506784E-04 6.37344939859E-04 6.54716364955E-04 6.72591262739E-04 6.90985667682E-04 7.09916190495E-04 7.29400041581E-04 7.49455055540E-04 7.70099716780E-04 7.91353186295E-04 8.13235329662E-04 8.35766746312E-04 8.58968800147E-04 8.82863651557E-04 9.07474290923E-04 9.32824573655E-04 9.58939256864E-04 9.85844037736E-04 1.01356559369E-03 1.04213162443E-03 1.07157089594E-03 1.10191328656E-03 1.13318983525E-03 1.16543279213E-03 1.19867567137E-03 1.23295330665E-03 1.26830190924E-03 1.30475912883E-03 1.34236411733E-03 1.38115759563E-03 1.42118192371E-03 1.46248117398E-03 1.50510120825E-03 1.54908975846E-03 1.59449651120E-03 1.64137319647E-03 1.68977368070E-03 1.73975406432E-03 1.79137278411E-03 1.84469072059E-03 1.89977131061E-03 1.95668066562E-03 2.01548769563E-03 2.07626423938E-03 2.13908520094E-03 2.20402869307E-03 2.27117618770E-03 2.34061267394E-03 2.41242682391E-03 2.48671116688E-03 2.56356227213E-03 2.64308094094E-03 2.72537240823E-03 2.81054655435E-03 2.89871812742E-03 2.99000697705E-03 3.08453829966E-03 3.18244289631E-03 3.28385744352E-03 3.38892477779E-03 3.49779419457E-03 3.61062176233E-03 3.72757065267E-03 3.84881148709E-03 3.97452270146E-03 4.10489092905E-03 4.24011140304E-03 4.38038837948E-03 4.52593558196E-03 4.67697666881E-03 4.83374572424E-03 4.99648777445E-03 5.16545933025E-03 5.34092895718E-03 5.52317787490E-03 5.71250058712E-03 5.90920554369E-03 6.11361583648E-03 6.32606993076E-03 6.54692243392E-03 6.77654490330E-03 7.01532669518E-03 7.26367585700E-03 7.52202006494E-03 7.79080760902E-03 8.07050842827E-03 8.36161519827E-03 8.66464447368E-03 8.98013788845E-03 9.30866341647E-03 9.65081669564E-03 1.00072224183E-02 1.03785357914E-02 1.07654440691E-02 1.11686681621E-02 1.15889643266E-02 1.20271259368E-02 1.24839853442E-02 1.29604158291E-02 1.34573336463E-02 1.39757001710E-02 1.45165241482E-02 1.50808640506E-02 1.56698305490E-02 1.62845891001E-02 1.69263626574E-02 1.75964345086E-02 1.82961512450E-02 1.90269258690E-02 1.97902410433E-02 2.05876524879E-02 2.14207925297E-02 2.22913738108E-02 2.32011931586E-02 2.41521356258E-02 2.51461787024E-02 2.61853967073E-02 2.72719653620E-02 2.84081665527E-02 2.95963932838E-02 3.08391548284E-02 3.21390820774E-02 3.34989330921E-02 3.49215988626E-02 3.64101092724E-02 3.79676392738E-02 3.95975152704E-02 4.13032217107E-02 4.30884078871E-02 4.49568949409E-02 4.69126830671E-02 4.89599589145E-02 5.11031031738E-02 5.33466983432E-02 5.56955366626E-02 5.81546282007E-02 6.07292090802E-02 6.34247498209E-02 6.62469637807E-02 6.92018156671E-02 7.22955300911E-02 7.55346001307E-02 7.89257958660E-02 8.24761728436E-02 8.61930804247E-02 9.00841699616E-02 9.41574027462E-02 9.84210576644E-02 1.02883738485E-01 1.07554380704E-01 1.12442257858E-01 1.17556987208E-01 1.22908534701E-01 1.28507219082E-01 1.34363715041E-01 1.40489055273E-01 1.46894631283E-01 1.53592192815E-01 1.60593845707E-01 1.67912048024E-01 1.75559604268E-01 1.83549657457E-01 1.91895678886E-01 2.00611455320E-01 2.09711073404E-01 2.19208901027E-01 2.29119565398E-01 2.39457927559E-01 2.50239053054E-01 2.61478178475E-01 2.73190673594E-01 2.85391998782E-01 2.98097657409E-01 3.11323142936E-01 3.25083880395E-01 3.39395161956E-01 3.54272076317E-01 3.69729431623E-01 3.85781671674E-01 4.02442785199E-01 4.19726207973E-01 4.37644717637E-01 4.56210321071E-01 4.75434134276E-01 4.95326254717E-01 5.15895626209E-01 5.37149896440E-01 5.59095267375E-01 5.81736338824E-01 6.05075945592E-01 6.29114988758E-01 6.53852261719E-01 6.79284271801E-01 7.05405058400E-01 7.32206008725E-01 7.59675672451E-01 7.87799576704E-01 8.16560043029E-01 8.45936008151E-01 8.75902850564E-01 9.06432225132E-01 9.37491908124E-01 9.69045655266E-01 1.00105307556E+00 1.03346952383E+00 1.06624601501E+00 1.09932916342E+00 1.13266115031E+00 1.16617972295E+00 1.19981822867E+00 1.23350568714E+00 1.26716690408E+00 1.30072262949E+00 1.33408976316E+00 1.36718161010E+00 1.39990818776E+00 1.43217658697E+00 1.46389138747E+00 1.49495512847E+00 1.52526883383E+00 1.55473259075E+00 1.58324617964E+00 1.61070975194E+00 1.63702455168E+00 1.66209367512E+00 1.68582286178E+00 1.70812130885E+00 1.72890249976E+00 1.74808503632E+00 1.76559346290E+00 1.78135906976E+00 1.79532066197E+00 1.80742527917E+00 1.81762885121E+00 1.82589677410E+00 1.83220439052E+00 1.83653735972E+00 1.83889190158E+00 1.83927490107E+00 1.83770386016E+00 1.83420668601E+00 1.82882130631E+00 1.82159510474E+00 1.81258417245E+00 1.80185237411E+00 1.78947023059E+00 1.77551362339E+00 1.76006232986E+00 1.74319840171E+00 1.72500440317E+00 1.70556152905E+00 1.68494762687E+00 1.66323515129E+00 1.64048908303E+00 1.61676484924E+00 1.59210628653E+00 1.56654369315E+00 1.54009202263E+00 1.51276307399E+00 1.48461210770E+00 1.45570720930E+00 1.42611684688E+00 1.39590962886E+00 1.36515406729E+00 1.33391834795E+00 1.30227010785E+00 1.27027622119E+00 1.23800259438E+00 1.20549931439E+00 1.17284481272E+00 1.14010097869E+00 1.10732801569E+00 1.07458429027E+00 1.04192619331E+00 1.00940801350E+00 9.77081823229E-01 9.44997377034E-01 9.13202022749E-01 8.81740625256E-01 8.50655502881E-01 8.19986376335E-01 7.89770330069E-01 7.60041785886E-01 7.30819246979E-01 7.02145252507E-01 6.74046209363E-01 6.46545872679E-01 6.19665376457E-01 5.93423274449E-01 5.67835590777E-01 5.42915879737E-01 5.18675294177E-01 4.95122661805E-01 4.72264568719E-01 4.50105449447E-01 4.28647682712E-01 4.07891692137E-01 3.87836051086E-01 3.68477590809E-01 3.49811511079E-01 3.31831492500E-01 3.14529809701E-01 2.97897444627E-01 2.81924199210E-01 2.66598806709E-01 2.51909041081E-01 2.37841823780E-01 2.24383327455E-01 2.11519076064E-01 1.99234040992E-01 1.87512732819E-01 1.76339288464E-01 1.65697553455E-01 1.55571159183E-01 1.45943595017E-01 1.36798275236E-01 1.28118600765E-01 1.19888015764E-01 1.12090059150E-01 1.04708411180E-01 9.77269352405E-02 9.11297150396E-02 8.49010873945E-02 7.90256708525E-02 7.34883903837E-02 6.82744983990E-02 6.33695923569E-02 5.87596292241E-02 5.44309370567E-02 5.03702239657E-02 4.65645847257E-02 4.30015052782E-02 3.96688653676E-02 3.65549395384E-02 3.36483967061E-02 3.09382984986E-02 2.84140965471E-02 2.60656288894E-02 2.38831156281E-02 2.18571539699E-02 1.99787127534E-02 1.82391265559E-02 1.66300894534E-02 1.51436484949E-02 1.37721969350E-02 1.25084672621E-02 1.13455240457E-02 1.02767566203E-02 9.29587161604E-03 8.39688534185E-03 7.57411602492E-03 6.82217590632E-03 6.13596319440E-03 5.51065387724E-03 4.94169339697E-03 4.42478819121E-03 3.95589710923E-03 3.53122271349E-03 3.14720247998E-03 2.80049991382E-03 2.48799559925E-03 2.20677820551E-03 1.95413547220E-03 1.72754519947E-03 1.52466626933E-03 1.34332972524E-03 1.18152993751E-03 1.03741588141E-03 9.09282554724E-04 7.95562560062E-04 6.94817876113E-04 6.05731840125E-04 5.27101362091E-04 4.57829388903E-04 3.96917634458E-04 3.43459589310E-04 2.96633820998E-04 2.55697573753E-04 2.19980673851E-04 1.88879744525E-04 1.61852732112E-04 1.38413742967E-04 1.18128188696E-04 1.00608235453E-04 8.55085513732E-05 7.25223447724E-05 6.13776844414E-05 5.18340922867E-05 4.36793976412E-05 3.67268418430E-05 3.08124211100E-05 2.57924553408E-05 2.15413702116E-05 1.79496798290E-05 1.49221572066E-05 1.23761799560E-05 1.02402388036E-05 8.45259685540E-06 6.96008790756E-06 5.71704254497E-06 4.68433125847E-06 3.82851433738E-06 3.12108884848E-06 2.53782358370E-06 2.05817343936E-06 1.66476527182E-06 1.34294785130E-06 1.08039910201E-06 8.66784366668E-07 6.93459964921E-07 5.53216821480E-07 4.40059431015E-07 3.49020088464E-07 2.76023538577E-07 2.17665095730E-07 1.71144627454E-07 1.34169713079E-07 1.04869114070E-07 8.17199477731E-08 6.34865814738E-08 4.91695191599E-08 3.79627807816E-08 2.92184756590E-08 2.24174502131E-08 1.71450475462E-08 1.30711544549E-08 9.93383224585E-09 7.52593292767E-09 5.68419365742E-09 4.28015793711E-09 3.21161852928E-09 2.40114944011E-09 1.78865160887E-09 1.32746679866E-09 9.81505372214E-10 7.22956729449E-10 5.30471174250E-10 3.87721716773E-10 2.82270860594E-10 2.04681228575E-10 1.47820350648E-10 1.06319424020E-10 7.61536694613E-11 5.43183131455E-11 3.85794519092E-11 2.72833079304E-11 1.92108147050E-11 1.34672424200E-11 9.39878754640E-12 6.52981955289E-12 4.51588123566E-12 3.10864809623E-12 2.12992412740E-12 1.45243362091E-12 9.85699833217E-13 6.65712932526E-13 4.47406941255E-13 2.99208772630E-13 1.99108182998E-13 1.31838467878E-13 8.68642251484E-14 5.69525183021E-14 3.71635648485E-14 2.41415188952E-14 1.56187737195E-14 1.00713677906E-14 6.48074135930E-15 4.16993414550E-15 2.66783258539E-15 1.69699929659E-15 1.07316602913E-15 6.74656006599E-16 4.21595279878E-16 2.61863042632E-16 1.61653322857E-16 9.91729970197E-17 6.04597867862E-17 3.66243331146E-17 2.20428586903E-17 1.31803178150E-17 7.82902855973E-18 4.61931635392E-18 2.70706521242E-18 1.57555584900E-18 9.10637187286E-19 5.22631287416E-19 2.97814161654E-19 1.68483039664E-19 9.46211959854E-20 5.27475238667E-20 2.91847931070E-20 1.60254799743E-20 8.73220313898E-21 4.72120569461E-21 2.53253667524E-21 1.34768743562E-21 7.11392978912E-22 3.72454069408E-22 1.93389934357E-22 9.95743953274E-23 5.08356365005E-23 2.57305552911E-23 1.29105071475E-23 6.42100561779E-24 3.16504694022E-24 1.54605794320E-24 7.48325279004E-25 3.58859143475E-25 1.70480946386E-25 8.02221974424E-26 3.73876469604E-26 1.72553562035E-26 7.88548886700E-27 3.56769916233E-27 1.59789438850E-27 7.08358000307E-28 3.10775211047E-28 1.34918658943E-28 5.79525126467E-29 2.46257202362E-29 1.03505422850E-29 4.30264081587E-30 1.76866056156E-30 7.18836507576E-31 2.88821852228E-31 1.14704785635E-31 4.50216159590E-32 1.74616131097E-32 6.69123471759E-33 2.53291635726E-33 9.47024784865E-34 3.49671426948E-34 1.27481977547E-34 4.58836505440E-35 1.63011209343E-35 5.71552640233E-36 1.97743534745E-36 6.74967356534E-37 2.27260456612E-37 7.54659235767E-38 2.47108771504E-38 7.97735789129E-39 2.53855199594E-39 7.96142070749E-40 2.46032835995E-40 7.49053819428E-41 2.24630578265E-41 6.63403952403E-42 1.92910980241E-42 5.52231136175E-43 1.55590884609E-43 4.31379915187E-44 1.17668522909E-44 3.15715778858E-45 8.33062821998E-46 2.16129196984E-46 3S 1 0 0.50 2.00 3P 2 1 0.50 2.00 3P 2 1 1.50 0.00 0 0.50 1 0.50 1 1.50 -7.00000000 100.00000000 14.00000000 0.01250000 espresso-5.1/clib/0000755000175000017500000000000012341373043012213 5ustar mbambaespresso-5.1/clib/indici.c0000644000175000017500000000725112341373034013623 0ustar mbamba/* Copyright (C) 2002 FPMD group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ #include #include #include "c_defs.h" #define MAX_INDEX 32768 struct Index { unsigned char i[8]; } ; static struct Index * P_Index; static int * P_IndexIndex; static struct Index * LN; static int * IG; static int LN_SIZE; int IndexCmp( struct Index * A, struct Index * B) { int i; for(i = 7; i>=0 ; i--) { if(A->i[i] > B->i[i] ) { return +1; } else if(A->i[i] < B->i[i]) { return -1; } } return 0; } int index_comp(unsigned i,unsigned j) { int cmp; cmp = IndexCmp(P_Index + i, P_Index + j); if ( cmp > 0 ) return 1; else if ( cmp == 0 ) return 0; return -1; } int index_swap(unsigned i,unsigned j) { static struct Index tmp; static int itmp; tmp = P_Index[j] ; P_Index[j] = P_Index[i] ; P_Index[i] = tmp ; itmp = P_IndexIndex[j] ; P_IndexIndex[j] = P_IndexIndex[i] ; P_IndexIndex[i] = itmp ; return 1; } int IndexSort(struct Index * A, int * IndexIndex, int n) { void Qsort(unsigned n,int (*comp)(),int (*swap)()); P_Index = A; P_IndexIndex = IndexIndex; Qsort((unsigned)n,index_comp,index_swap); return 1; } int IndexSet( struct Index * A, int I1, int I2, int I3 ) { unsigned int himask = 0xFF00; unsigned int lomask = 0x00FF; if(abs(I1)>=MAX_INDEX || abs(I2)>=MAX_INDEX || abs(I3)>=MAX_INDEX ) { return -1; } if(I1<0) I1 += MAX_INDEX; if(I2<0) I2 += MAX_INDEX; if(I3<0) I3 += MAX_INDEX; A->i[7] = (unsigned char ) 0; A->i[6] = (unsigned char ) 0; A->i[5] = (unsigned char ) ((himask & (unsigned int) I1)>>8); A->i[4] = (unsigned char ) ( lomask & (unsigned int) I1); A->i[3] = (unsigned char ) ((himask & (unsigned int) I2)>>8); A->i[2] = (unsigned char ) ( lomask & (unsigned int) I2); A->i[1] = (unsigned char ) ((himask & (unsigned int) I3)>>8); A->i[0] = (unsigned char ) ( lomask & (unsigned int) I3); return 0; } int IndexShow(struct Index A) { int i; for(i=7;i>=0;i--) printf("%2x",A.i[i]); printf("\n"); return 0; } int IndexFind(struct Index * A, int n, struct Index * B) { int lb, ub, i, cmp; lb = 0; ub = n-1; i = lb; while(lb<(ub-1)) { i = lb + (ub - lb)/2; cmp = IndexCmp(B,&A[i]); if(cmp>0) { lb = i; } else if(cmp<0) { ub = i; } else { ub = lb = i; } } if(lb LN_SIZE) { exit(*ig); } IndexSet( &LN[*ig-1], *IRI1, *IRI2, *IRI3 ); IG[*ig-1] = *ig; } int F77_FUNC_(ln_activate,LN_ACTIVATE)() { IndexSort(LN,IG,LN_SIZE); return 0; } int F77_FUNC_(ln_ind,LN_IND)(int * IRI1, int * IRI2, int * IRI3) { static struct Index B; static int ib; IndexSet(&B,*IRI1,*IRI2,*IRI3); ib = IndexFind(LN,LN_SIZE,&B); if(ib>=0) return IG[ib]; return -1; } espresso-5.1/clib/md5.h0000644000175000017500000000650612341373034013060 0ustar mbamba/* Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved. This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. L. Peter Deutsch ghost@aladdin.com */ /* $Id: md5.h,v 1.1 2010-08-13 10:50:08 degironc Exp $ */ /* Independent implementation of MD5 (RFC 1321). This code implements the MD5 Algorithm defined in RFC 1321, whose text is available at http://www.ietf.org/rfc/rfc1321.txt The code is derived from the text of the RFC, including the test suite (section A.5) but excluding the rest of Appendix A. It does not include any code or documentation that is identified in the RFC as being copyrighted. The original and principal author of md5.h is L. Peter Deutsch . Other authors are noted in the change history that follows (in reverse chronological order): 2002-04-13 lpd Removed support for non-ANSI compilers; removed references to Ghostscript; clarified derivation from RFC 1321; now handles byte order either statically or dynamically. 1999-11-04 lpd Edited comments slightly for automatic TOC extraction. 1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5); added conditionalization for C++ compilation from Martin Purschke . 1999-05-03 lpd Original version. */ #ifndef md5_INCLUDED # define md5_INCLUDED /* * This package supports both compile-time and run-time determination of CPU * byte order. If ARCH_IS_BIG_ENDIAN is defined as 0, the code will be * compiled to run only on little-endian CPUs; if ARCH_IS_BIG_ENDIAN is * defined as non-zero, the code will be compiled to run only on big-endian * CPUs; if ARCH_IS_BIG_ENDIAN is not defined, the code will be compiled to * run on either big- or little-endian CPUs, but will run slightly less * efficiently on either one than if ARCH_IS_BIG_ENDIAN is defined. */ typedef unsigned char md5_byte_t; /* 8-bit byte */ typedef unsigned int md5_word_t; /* 32-bit word */ /* Define the state of the MD5 Algorithm. */ typedef struct md5_state_s { md5_word_t count[2]; /* message length in bits, lsw first */ md5_word_t abcd[4]; /* digest buffer */ md5_byte_t buf[64]; /* accumulate block */ } md5_state_t; #ifdef __cplusplus extern "C" { #endif /* Initialize the algorithm. */ void md5_init(md5_state_t *pms); /* Append a string to the message. */ void md5_append(md5_state_t *pms, const md5_byte_t *data, int nbytes); /* Finish the message and return the digest. */ void md5_finish(md5_state_t *pms, md5_byte_t digest[16]); #ifdef __cplusplus } /* end extern "C" */ #endif #endif /* md5_INCLUDED */ espresso-5.1/clib/ptrace.c0000644000175000017500000000115612341373034013640 0ustar mbamba#include "c_defs.h" /* Print the stack trace */ #ifdef __PTRACE #include #include #endif #include void F77_FUNC(ptrace,PTRACE)(int *kilobytes) { #ifdef __PTRACE void *array[12]; size_t size; char **strings; size_t i; size = backtrace (array, 12); strings = backtrace_symbols (array, size); printf ("Obtained %zd stack frames.\n", size); printf ("Use 'addr2line -e /where/is/code.x 0x12345' to get the source line number\n"); for (i = 0; i < size; i++) printf ("%s\n", strings[i]); free (strings); #else printf ("No stack trace available.\n"); #endif } espresso-5.1/clib/customize_signals.c0000644000175000017500000000112112341373034016114 0ustar mbamba #ifdef __TRAP_SIGUSR1 #include #include #include int init_signal(int signum, void (*new_handler)(int)) { static struct sigaction action; action.sa_handler = new_handler; // Don't block anything. // Not sure if it's the correct behavior (or even if there is one) sigemptyset(&action.sa_mask); // This will probably make MPI happy action.sa_flags = SA_RESTART; return sigaction(signum, &action, NULL); } int init_signal_USR1(void (*new_handler)(int)) { return init_signal(SIGUSR1, new_handler); } #else void dummy ( ) { } #endif espresso-5.1/clib/md5_from_file.c0000644000175000017500000000335312341373034015072 0ustar mbamba/* Copyright (C) 2011-2013 Quantum ESPRESSO group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . ------------------------------------------------------ */ #include #include #include #include "c_defs.h" #include "md5.h" #define MAX_BUF 1024 static void fatal ( const char * msg ) { fprintf( stderr , "fatal: %s" , *msg ? msg : "Oops!" ) ; exit( -1 ) ; } /* fatal */ static void * xcmalloc ( size_t size ) { register void * ptr = malloc( size ) ; if ( ptr == NULL ) fatal( "md5_from_file: virtual memory exhausted" ) ; else memset( ptr , 0 , size ) ; return ptr ; } /* xcmalloc */ char *readFile( FILE *file ) { char *out; unsigned long fileLen; if (!file) { exit(1); } fseek(file, 0, SEEK_END); fileLen=ftell(file); fseek(file, 0, SEEK_SET); out=(char *)xcmalloc(fileLen+1); if (!out) { fprintf(stderr, "Memory error!"); fclose(file); exit(1); } fread(out, fileLen, 1, file); return out; } void get_md5(const char *file, char *md5, int err) { FILE *fp; char *data; int i; md5_state_t state; md5_byte_t digest[16]; if(file==NULL) { err = 1; return; } fp=fopen(file,"rb"); if(fp==NULL) { err = 2; return; } data=readFile(fp); if(data==NULL) { err = 3; return; } md5_init(&state); md5_append(&state,(const md5_byte_t *)data,strlen(data)); md5_finish(&state,digest); for(i=0;i<16;i++){ snprintf(md5+i*2,sizeof(md5),"%02x",digest[i]); } fclose(fp); free(data); err = 0; return; } espresso-5.1/clib/md5.c0000644000175000017500000003042412341373034013047 0ustar mbamba/* Copyright (C) 1999, 2000, 2002 Aladdin Enterprises. All rights reserved. This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. L. Peter Deutsch ghost@aladdin.com */ /* $Id: md5.c,v 1.1 2010-08-13 10:50:08 degironc Exp $ */ /* Independent implementation of MD5 (RFC 1321). This code implements the MD5 Algorithm defined in RFC 1321, whose text is available at http://www.ietf.org/rfc/rfc1321.txt The code is derived from the text of the RFC, including the test suite (section A.5) but excluding the rest of Appendix A. It does not include any code or documentation that is identified in the RFC as being copyrighted. The original and principal author of md5.c is L. Peter Deutsch . Other authors are noted in the change history that follows (in reverse chronological order): 2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order either statically or dynamically; added missing #include in library. 2002-03-11 lpd Corrected argument list for main(), and added int return type, in test program and T value program. 2002-02-21 lpd Added missing #include in test program. 2000-07-03 lpd Patched to eliminate warnings about "constant is unsigned in ANSI C, signed in traditional"; made test program self-checking. 1999-11-04 lpd Edited comments slightly for automatic TOC extraction. 1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5). 1999-05-03 lpd Original version. */ #include "md5.h" #include #include #include #include #include #include #include #undef BYTE_ORDER /* 1 = big-endian, -1 = little-endian, 0 = unknown */ #ifdef ARCH_IS_BIG_ENDIAN # define BYTE_ORDER (ARCH_IS_BIG_ENDIAN ? 1 : -1) #else # define BYTE_ORDER 0 #endif #define T_MASK ((md5_word_t)~0) #define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87) #define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9) #define T3 0x242070db #define T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111) #define T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050) #define T6 0x4787c62a #define T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec) #define T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe) #define T9 0x698098d8 #define T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850) #define T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e) #define T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841) #define T13 0x6b901122 #define T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c) #define T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71) #define T16 0x49b40821 #define T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d) #define T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf) #define T19 0x265e5a51 #define T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855) #define T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2) #define T22 0x02441453 #define T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e) #define T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437) #define T25 0x21e1cde6 #define T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829) #define T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278) #define T28 0x455a14ed #define T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa) #define T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07) #define T31 0x676f02d9 #define T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375) #define T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd) #define T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e) #define T35 0x6d9d6122 #define T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3) #define T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb) #define T38 0x4bdecfa9 #define T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f) #define T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f) #define T41 0x289b7ec6 #define T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805) #define T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a) #define T44 0x04881d05 #define T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6) #define T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a) #define T47 0x1fa27cf8 #define T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a) #define T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb) #define T50 0x432aff97 #define T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58) #define T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6) #define T53 0x655b59c3 #define T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d) #define T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82) #define T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e) #define T57 0x6fa87e4f #define T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f) #define T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb) #define T60 0x4e0811a1 #define T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d) #define T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca) #define T63 0x2ad7d2bb #define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e) static void md5_process(md5_state_t *pms, const md5_byte_t *data /*[64]*/) { md5_word_t a = pms->abcd[0], b = pms->abcd[1], c = pms->abcd[2], d = pms->abcd[3]; md5_word_t t; #if BYTE_ORDER > 0 /* Define storage only for big-endian CPUs. */ md5_word_t X[16]; #else /* Define storage for little-endian or both types of CPUs. */ md5_word_t xbuf[16]; const md5_word_t *X; #endif { #if BYTE_ORDER == 0 /* * Determine dynamically whether this is a big-endian or * little-endian machine, since we can use a more efficient * algorithm on the latter. */ static const int w = 1; if (*((const md5_byte_t *)&w)) /* dynamic little-endian */ #endif #if BYTE_ORDER <= 0 /* little-endian */ { /* * On little-endian machines, we can process properly aligned * data without copying it. */ if (!((data - (const md5_byte_t *)0) & 3)) { /* data are properly aligned */ X = (const md5_word_t *)data; } else { /* not aligned */ memcpy(xbuf, data, 64); X = xbuf; } } #endif #if BYTE_ORDER == 0 else /* dynamic big-endian */ #endif #if BYTE_ORDER >= 0 /* big-endian */ { /* * On big-endian machines, we must arrange the bytes in the * right order. */ const md5_byte_t *xp = data; int i; # if BYTE_ORDER == 0 X = xbuf; /* (dynamic only) */ # else # define xbuf X /* (static only) */ # endif for (i = 0; i < 16; ++i, xp += 4) xbuf[i] = xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24); } #endif } #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) /* Round 1. */ /* Let [abcd k s i] denote the operation a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */ #define F(x, y, z) (((x) & (y)) | (~(x) & (z))) #define SET(a, b, c, d, k, s, Ti)\ t = a + F(b,c,d) + X[k] + Ti;\ a = ROTATE_LEFT(t, s) + b /* Do the following 16 operations. */ SET(a, b, c, d, 0, 7, T1); SET(d, a, b, c, 1, 12, T2); SET(c, d, a, b, 2, 17, T3); SET(b, c, d, a, 3, 22, T4); SET(a, b, c, d, 4, 7, T5); SET(d, a, b, c, 5, 12, T6); SET(c, d, a, b, 6, 17, T7); SET(b, c, d, a, 7, 22, T8); SET(a, b, c, d, 8, 7, T9); SET(d, a, b, c, 9, 12, T10); SET(c, d, a, b, 10, 17, T11); SET(b, c, d, a, 11, 22, T12); SET(a, b, c, d, 12, 7, T13); SET(d, a, b, c, 13, 12, T14); SET(c, d, a, b, 14, 17, T15); SET(b, c, d, a, 15, 22, T16); #undef SET /* Round 2. */ /* Let [abcd k s i] denote the operation a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */ #define G(x, y, z) (((x) & (z)) | ((y) & ~(z))) #define SET(a, b, c, d, k, s, Ti)\ t = a + G(b,c,d) + X[k] + Ti;\ a = ROTATE_LEFT(t, s) + b /* Do the following 16 operations. */ SET(a, b, c, d, 1, 5, T17); SET(d, a, b, c, 6, 9, T18); SET(c, d, a, b, 11, 14, T19); SET(b, c, d, a, 0, 20, T20); SET(a, b, c, d, 5, 5, T21); SET(d, a, b, c, 10, 9, T22); SET(c, d, a, b, 15, 14, T23); SET(b, c, d, a, 4, 20, T24); SET(a, b, c, d, 9, 5, T25); SET(d, a, b, c, 14, 9, T26); SET(c, d, a, b, 3, 14, T27); SET(b, c, d, a, 8, 20, T28); SET(a, b, c, d, 13, 5, T29); SET(d, a, b, c, 2, 9, T30); SET(c, d, a, b, 7, 14, T31); SET(b, c, d, a, 12, 20, T32); #undef SET /* Round 3. */ /* Let [abcd k s t] denote the operation a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */ #define H(x, y, z) ((x) ^ (y) ^ (z)) #define SET(a, b, c, d, k, s, Ti)\ t = a + H(b,c,d) + X[k] + Ti;\ a = ROTATE_LEFT(t, s) + b /* Do the following 16 operations. */ SET(a, b, c, d, 5, 4, T33); SET(d, a, b, c, 8, 11, T34); SET(c, d, a, b, 11, 16, T35); SET(b, c, d, a, 14, 23, T36); SET(a, b, c, d, 1, 4, T37); SET(d, a, b, c, 4, 11, T38); SET(c, d, a, b, 7, 16, T39); SET(b, c, d, a, 10, 23, T40); SET(a, b, c, d, 13, 4, T41); SET(d, a, b, c, 0, 11, T42); SET(c, d, a, b, 3, 16, T43); SET(b, c, d, a, 6, 23, T44); SET(a, b, c, d, 9, 4, T45); SET(d, a, b, c, 12, 11, T46); SET(c, d, a, b, 15, 16, T47); SET(b, c, d, a, 2, 23, T48); #undef SET /* Round 4. */ /* Let [abcd k s t] denote the operation a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */ #define I(x, y, z) ((y) ^ ((x) | ~(z))) #define SET(a, b, c, d, k, s, Ti)\ t = a + I(b,c,d) + X[k] + Ti;\ a = ROTATE_LEFT(t, s) + b /* Do the following 16 operations. */ SET(a, b, c, d, 0, 6, T49); SET(d, a, b, c, 7, 10, T50); SET(c, d, a, b, 14, 15, T51); SET(b, c, d, a, 5, 21, T52); SET(a, b, c, d, 12, 6, T53); SET(d, a, b, c, 3, 10, T54); SET(c, d, a, b, 10, 15, T55); SET(b, c, d, a, 1, 21, T56); SET(a, b, c, d, 8, 6, T57); SET(d, a, b, c, 15, 10, T58); SET(c, d, a, b, 6, 15, T59); SET(b, c, d, a, 13, 21, T60); SET(a, b, c, d, 4, 6, T61); SET(d, a, b, c, 11, 10, T62); SET(c, d, a, b, 2, 15, T63); SET(b, c, d, a, 9, 21, T64); #undef SET /* Then perform the following additions. (That is increment each of the four registers by the value it had before this block was started.) */ pms->abcd[0] += a; pms->abcd[1] += b; pms->abcd[2] += c; pms->abcd[3] += d; } void md5_init(md5_state_t *pms) { pms->count[0] = pms->count[1] = 0; pms->abcd[0] = 0x67452301; pms->abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476; pms->abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301; pms->abcd[3] = 0x10325476; } void md5_append(md5_state_t *pms, const md5_byte_t *data, int nbytes) { const md5_byte_t *p = data; int left = nbytes; int offset = (pms->count[0] >> 3) & 63; md5_word_t nbits = (md5_word_t)(nbytes << 3); if (nbytes <= 0) return; /* Update the message length. */ pms->count[1] += nbytes >> 29; pms->count[0] += nbits; if (pms->count[0] < nbits) pms->count[1]++; /* Process an initial partial block. */ if (offset) { int copy = (offset + nbytes > 64 ? 64 - offset : nbytes); memcpy(pms->buf + offset, p, copy); if (offset + copy < 64) return; p += copy; left -= copy; md5_process(pms, pms->buf); } /* Process full blocks. */ for (; left >= 64; p += 64, left -= 64) md5_process(pms, p); /* Process a final partial block. */ if (left) memcpy(pms->buf, p, left); } void md5_finish(md5_state_t *pms, md5_byte_t digest[16]) { static const md5_byte_t pad[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; md5_byte_t data[8]; int i; /* Save the length before padding. */ for (i = 0; i < 8; ++i) data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3)); /* Pad to 56 bytes mod 64. */ md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1); /* Append the length. */ md5_append(pms, data, 8); for (i = 0; i < 16; ++i) digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3)); } espresso-5.1/clib/eval_infix.c0000644000175000017500000004573212341373034014516 0ustar mbamba/* Copyright (C) 2008 by www.guidealgoritmi.it Author: Vincenzo Lo Cicero. e-mail: vincenzolocicero@guidealgoritmi.it http://www.guidealgoritmi.it This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* This version of EvalInfix includes a wrapper to allow calls from fortran code (written by Lorenzo Paulatto, 2008). An example F90 program follows: PROGRAM use_ex implicit none character(len=256) :: expr integer :: ierr real(8) :: result real(8),external :: eval_infix expr = "3 * 3" result = eval_infix(ierr, expr) if (ierr == 0) then write(*,*) result, expr else stop endif END PROGRAM */ #include #include #include #include #include #include "c_defs.h" /* #pragma warning( disable : 4996 ) */ #define MAXOP 100 /* dimensione massima di un operando o operatore */ #define MAXSTACK 100 /* dimensione massima dello stack */ typedef int BOOL; #ifndef FALSE #define FALSE 0 #endif #ifndef TRUE #define TRUE 1 #endif typedef enum tagTokenType { EOL, UNKNOWN, VALUE, OPAREN, CPAREN, EXP, UPLUS, UMINUS, MULT, DIV, PLUS, MINUS }TokenTypeEnum; typedef struct tagToken { TokenTypeEnum Type; char str[54]; double Value; }Token; struct Precedence { int inputSymbol; int topOfStack; } PREC_TABLE [ ] = { { 0, -1 }, {-1, -1}, { 0, 0 }, /* EOL, UNKNOWN, VALUE */ { 100, 0 }, { 0, 99 }, /* OPAREN, CPAREN */ { 6, 5 }, {6, 5}, {6, 5}, /* EXP, UPLUS, UMINUS */ { 3, 4 }, { 3, 4 }, /* MULT, DIV */ { 1, 2 }, { 1, 2 } /* PLUS, MINUS */ }; int nNextPos = 0; TokenTypeEnum PreviousTokenType = EOL; int sp_op = 0; Token stack_op[MAXSTACK]; /* stack degli operatori */ /* Operazioni sullo stack degli operatori */ void push_op(Token, char *); Token pop_op(char *); Token top_op(char *); BOOL is_empty_op(); int sp_val = 0; double stack_val[MAXSTACK]; /* stack degli operandi */ /* Operazioni sullo stack degli operandi */ void push_val(double, char *); double pop_val(char *); double top_val(char *); BOOL is_empty_val(); TokenTypeEnum GetNextToken(const char *str, Token *token, BOOL bIsInfix); double BinaryOperation(double left, double right, char op, char *strError); /*BOOL InfixToPostfix(const char *strInfix, char *strPostfix, char *strError); double EvalPostfix(const char *strExpression, char *strError); */ double EvalInfix(const char *strExpression, char *strError); /* inserisce un elemento nello stack degli operatori */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ void push_op(Token Tok, char *strError) { strcpy(strError, ""); if (sp_op < MAXSTACK) stack_op[sp_op++] = Tok; else sprintf(strError, "Error: operators stack is full, cannot add more elements %c\n", Tok.str[0]); } /* Estrae e ritorna un elemento dallo stack degli operatori */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ Token pop_op(char *strError) { Token tok_temp; strcpy(strError, ""); if (sp_op > 0) return stack_op[--sp_op]; else { sprintf(strError, "Error: missing operator\n"); strcpy(tok_temp.str, ""); tok_temp.Type = UNKNOWN; return tok_temp; } } /* Ritorna il valore in cima allo stack degli operatori senza estrarlo */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ Token top_op(char *strError) { Token tok_temp; strcpy(strError, ""); if (sp_op >= 0) return stack_op[sp_op - 1]; else { sprintf(strError, "Error: missing operator\n"); strcpy(tok_temp.str, ""); tok_temp.Type = UNKNOWN; return tok_temp; } } /* Ritorna un valore diverso da zero se lo stack degli operatori è vuoto */ BOOL is_empty_op() { if ( sp_op > 0 ) return FALSE; else return TRUE; } /* Inserisce un elemento nello stack degli operandi */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ void push_val(double c, char *strError) { strcpy(strError, ""); if (sp_val < MAXSTACK) stack_val[sp_val++] = c; else sprintf(strError, "Error: values stack is full: cannot add more elements %g\n", c); } /* Estrae e ritorna un elemento dallo stack degli operandi */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ double pop_val(char *strError) { strcpy(strError, ""); if (sp_val > 0) return stack_val[--sp_val]; else { sprintf(strError, "Error: missing operand\n"); return 0; } } /* ritorna il valore in cima allo stack degli operandi senza estrarlo */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ double top_val(char *strError) { strcpy(strError, ""); if (sp_val > 0) return stack_val[sp_val - 1]; else { sprintf(strError, "Error top: values stack is empty\n"); return 0; } } /* ritorna un valore diverso da zero se lo stack degli operandi è vuoto */ BOOL is_empty_val() { if ( sp_val > 0 ) return FALSE; else return TRUE; } /* ritorna un valore diverso da zero per "e", "E", "d o "D", o se il carattere prima lo era */ BOOL is_scientific(char strChar) { static BOOL was_scientific = FALSE; if (was_scientific) { was_scientific = FALSE; return TRUE; } else if (strChar == 'e' || strChar == 'E'|| strChar == 'd' || strChar == 'D') { was_scientific = TRUE; return TRUE; } else if ( isdigit(strChar) ){ was_scientific = FALSE; return TRUE; } else { was_scientific = FALSE; return FALSE; } } /* Analizzatore lessicale */ TokenTypeEnum GetNextToken(const char *str, Token *token, BOOL bIsInfix) { int i; char strToken[MAXOP]; while ( 1 ) { while ( str[nNextPos++] == ' ' ) ; --nNextPos; if ( str[nNextPos] == '\0' ) { token->Type = EOL; strcpy(token->str, "\n"); nNextPos = 0; PreviousTokenType = EOL; return EOL; } else if ( is_scientific(str[nNextPos]) ) { i = 0; while ( is_scientific(strToken[i++] = str[nNextPos++]) ) if (strToken[i-1] == 'd' || strToken[i-1] == 'D') strToken[i-1] = 'e'; if ( str[nNextPos - 1] == '.' ) { while ( is_scientific(strToken[i++] = str[nNextPos++]) ) if (strToken[i-1] == 'd' || strToken[i-1] == 'D') strToken[i-1] = 'e'; strToken[i - 1] = '\0'; --nNextPos; token->Type = VALUE; strcpy(token->str, strToken); token->Value = atof(strToken); return VALUE; } else { strToken[i - 1] = '\0'; --nNextPos; token->Type = VALUE; strcpy(token->str, strToken); token->Value = atof(strToken); return VALUE; } } else if ( str[nNextPos] == '.' ) { i = 0; strToken[i++] = str[nNextPos++]; while ( is_scientific(strToken[i++] = str[nNextPos++]) ) if (strToken[i-1] == 'd' || strToken[i-1] == 'D') strToken[i-1] = 'e'; strToken[i - 1] = '\0'; --nNextPos; token->Type = VALUE; strcpy(token->str, strToken); token->Value = atof(strToken); return VALUE; } else if ( str[nNextPos] == '(' ) { token->Type = OPAREN; strcpy(token->str, "("); ++nNextPos; return OPAREN; } else if ( str[nNextPos] == ')' ) { token->Type = CPAREN; strcpy(token->str, ")"); ++nNextPos; return CPAREN; } else if ( str[nNextPos] == '+' ) { strcpy(token->str, "+"); ++nNextPos; if ( !bIsInfix ) { token->Type = PLUS; return PLUS; } else { if ( PreviousTokenType == CPAREN || PreviousTokenType == VALUE ) { token->Type = PLUS; return PLUS; } else { token->Type = UPLUS; return UPLUS; } } } else if ( str[nNextPos] == '-' ) { strcpy(token->str, "-"); ++nNextPos; if ( !bIsInfix ) { token->Type = MINUS; return MINUS; } else { if ( PreviousTokenType == CPAREN || PreviousTokenType == VALUE ) { token->Type = MINUS; return MINUS; } else { token->Type = UMINUS; return UMINUS; } } } else if ( str[nNextPos] == '~' ) { strcpy(token->str, "~"); ++nNextPos; if ( !bIsInfix ) { token->Type = UMINUS; return UMINUS; } else { token->Type = UNKNOWN; return UNKNOWN; } } else if ( str[nNextPos] == '*' ) { token->Type = MULT; strcpy(token->str, "*"); ++nNextPos; return MULT; } else if ( str[nNextPos] == '/' ) { token->Type = DIV; strcpy(token->str, "/"); ++nNextPos; return DIV; } else if ( str[nNextPos] == '^' ) { token->Type = EXP; strcpy(token->str, "^"); ++nNextPos; return EXP; } else { token->Type = UNKNOWN; token->str[0] = str[nNextPos]; token->str[1] = '\0'; ++nNextPos; return UNKNOWN; } } return EOL; } /* Ritorna il risultato di un'operazione binaria */ /* In caso di errore viene riportato un messaggio nel parametro strError */ /* In assenza di errori, il parametro strError è impostato ala stringa vuota = "" */ double BinaryOperation(double left, double right, char op, char* strError) { strcpy(strError, ""); switch ( op ) { case '-': return left - right; case '+': return left + right; case '*': return left * right; case '/': if ( right == 0 ) { sprintf(strError, "Error: division by zero!\n"); return 0.0; } else return left / right; case '^': return pow(left, right); default: if ( op == '(' ) sprintf(strError, "Error: unbalanced brackets.\n"); else sprintf(strError, "Error: unknown operator: %c\n", op); return 0.0; } } /* Calcola e restituisce il risultato di un'espressione in forma infissa */ double EvalInfix(const char *strExpression, char * strError) { Token tok; Token tok_temp; double left, right; double dblRet; strcpy(strError, ""); tok_temp.Type = EOL; tok_temp.str[0] = '@'; tok_temp.str[1] = '\0'; push_op(tok_temp, strError); if ( strError[0] != '\0' ) return 0.0; left = right = 0.0; while ( (PreviousTokenType = GetNextToken(strExpression, &tok, TRUE)) != EOL ) { if ( tok.Type == UNKNOWN ) { sprintf(strError, "Error: invalid token: %s\n", tok.str); return 0.0; } else if ( tok.Type == VALUE ) { push_val(tok.Value, strError); if ( strError[0] != '\0' ) return 0.0; } else if ( tok.Type == OPAREN || tok.Type == UMINUS || tok.Type == UPLUS ) { push_op(tok, strError); if ( strError[0] != '\0' ) return 0.0; } else if ( tok.Type == CPAREN ) { while ( top_op(strError).Type != OPAREN ) { if ( strError[0] != '\0' ) return 0.0; tok_temp = pop_op(strError); if ( strError[0] != '\0' ) return 0.0; if ( (tok_temp.Type == EOL) || (is_empty_op()) ) { sprintf(strError, "Error: unbalanced brackets.\n"); return 0.0; } right = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; if ( tok_temp.Type != UMINUS ) { left = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; dblRet = BinaryOperation(left, right, tok_temp.str[0], strError); if ( strError[0] != '\0' ) return 0.0; push_val(dblRet, strError); if ( strError[0] != '\0' ) return 0.0; } else { push_val( -1 * right, strError ); if ( strError[0] != '\0' ) return 0.0; } } pop_op(strError); if ( strError[0] != '\0' ) return 0.0; } else { while ( PREC_TABLE[ top_op(strError).Type ].topOfStack >= PREC_TABLE[ tok.Type ].inputSymbol ) { if ( strError[0] != '\0' ) return 0.0; if ( top_op(strError).Type != UMINUS && top_op(strError).Type != UPLUS ) { if ( strError[0] != '\0' ) return 0.0; right = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; left = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; tok_temp = pop_op(strError); if ( strError[0] != '\0' ) return 0.0; dblRet = BinaryOperation(left, right, tok_temp.str[0], strError); if ( strError[0] != '\0' ) return 0.0; push_val(dblRet, strError); if ( strError[0] != '\0' ) return 0.0; } else { if ( top_op(strError).Type == UMINUS ) { if ( strError[0] != '\0' ) return 0.0; right = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; pop_op(strError); if ( strError[0] != '\0' ) return 0.0; push_val(-1 * right, strError); if ( strError[0] != '\0' ) return 0.0; } else { pop_op(strError); if ( strError[0] != '\0' ) return 0.0; } } } if ( tok.Type != EOL ) { push_op(tok, strError); if ( strError[0] != '\0' ) return 0.0; } } } while ( 1 ) { tok_temp = pop_op(strError); if ( strError[0] != '\0' ) return 0.0; if ( tok_temp.Type == EOL ) break; if ( tok_temp.Type != UPLUS ) { right = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; } if ( tok_temp.Type != UMINUS && tok_temp.Type != UPLUS ) { left = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; dblRet = BinaryOperation(left, right, tok_temp.str[0], strError); if ( strError[0] != '\0' ) return 0.0; push_val(dblRet, strError); if ( strError[0] != '\0' ) return 0.0; } else { push_val( -1 * right, strError ); if ( strError[0] != '\0' ) return 0.0; } } dblRet = pop_val(strError); if ( strError[0] != '\0' ) return 0.0; if ( is_empty_val() ) { return dblRet; } else { sprintf(strError, "Error: malformed expression.\n"); return 0.0; } } double eval_infix( int *ierr, const char *strExpression, int len ) { double result = 0.0; char strHelper[257]; char strError[257]; int i; /* maximum length of strExpression is 256 chars */ if (len>256) { printf("[eval_infix.c] expression longer than 256 characters\n"); ierr[0] = 1; return result; } /* it's safer to reformat strings for C, with null terminator '\0' */ for(i=0;i #include #include #include #include #include #include #include "c_defs.h" #include #if defined(_WIN32) #include #endif int check_writable_dir(const char *filename) { struct stat sb; if (stat(filename, &sb) == -1) { return -3; /* does not exist */ /* note: this happens also if looking for "dir/" when there is a file called "dir" */ } if ( (sb.st_mode & S_IFMT) != S_IFDIR) { fprintf( stderr , "\ncheck_writable_dir fail: file '%s' exists but is NOT a directory\n", filename ) ; return -2; /* not a directory */ } /* if ( ! (sb.st_mode & S_IWUSR) ) return -4; */ /* not writeble by owner */ /* return 0 if I can read, write and execute (enter) this directory, -1 otherwise note: we do not actually need R_OK in Quantum-ESPRESSO; W_OK is definitely needed, about X_OK I'm not sure */ #if !defined(_WIN32) if ( access(filename, W_OK|R_OK|X_OK ) ) { fprintf( stderr , "\ncheck_writable_dir fail: insufficient permissions to access '%s'\n", filename ) ; return -1; /* no permissions */ } #endif return 0; } /* check_writable_dir */ int c_mkdir_safe( const char * dirname ) { int retval = -1 ; /* return directly -1 if directory exists and is writable */ if ( check_writable_dir(dirname) == 0) return -1; #if defined(_WIN32) retval = _mkdir( dirname ) ; #else mode_t mode = 0777 ; retval = mkdir( dirname , mode ) ; #endif if ( retval == -1 && errno != EEXIST ) { fprintf( stderr , "\nmkdir fail: [%d] %s\n" , errno , strerror( errno ) ) ; retval = 1 ; } /* double check that the directory is a directory and has the good permissions */ if ( check_writable_dir(dirname) < 0) retval = 1; return retval ; } /* EOF */ espresso-5.1/clib/qsort.c0000644000175000017500000000235312341373034013532 0ustar mbamba/* Copyright (C) 2002 FPMD group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ #include #include /* qsort - quick sort qsort(n,comp,swap) unsigned n; int (*comp)(); int (*swap)(); ***** see bsort for parameters */ static unsigned _rearr(unsigned lb,unsigned ub); static void _quick(unsigned lb,unsigned ub); static int (*_comp)(unsigned,unsigned), (*_swap)(unsigned,unsigned); void Qsort(unsigned n,int (*comp)(),int (*swap)()) { _comp = comp; _swap = swap; _quick(0,n-1); } static void _quick(unsigned lb,unsigned ub) { unsigned j; if(lb lb && (*_comp)(ub,lb) >=0) ub--; if(ub != lb) { (*_swap)(ub,lb); while(lb #include #include #else #include #include #endif #include #include "c_defs.h" double F77_FUNC(cclock,CCLOCK)() /* Return the second elapsed since Epoch (00:00:00 UTC, January 1, 1970) */ { struct timeval tmp; double sec; gettimeofday( &tmp, (struct timezone *)0 ); sec = tmp.tv_sec + ((double)tmp.tv_usec)/1000000.0; return sec; } double F77_FUNC(scnds,SCNDS) ( ) /* Return the cpu time associated to the current process */ { double sec=0.0; #if defined(_WIN32) // from MSDN docs. FILETIME ct,et,kt,ut; union { FILETIME ft; uint64_t ui; } cpu; if (GetProcessTimes(GetCurrentProcess(),&ct,&et,&kt,&ut)) { cpu.ft = ut; sec = cpu.ui * 0.0000001; } #else static struct rusage T; getrusage(RUSAGE_SELF, &T); sec = ((double)T.ru_utime.tv_sec + ((double)T.ru_utime.tv_usec)/1000000.0); #endif return sec; } espresso-5.1/clib/stack.c0000644000175000017500000000164412341373034013471 0ustar mbamba/* Copyright (C) 2007-2008 Quantum ESPRESSO group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ #include "c_defs.h" #include #include #ifdef __INTEL #include void F77_FUNC_(remove_stack_limit,REMOVE_STACK_LIMIT) (void) { struct rlimit rlim = { RLIM_INFINITY, RLIM_INFINITY }; /* Modified according to Cesar Da Silva suggestions */ if ( setrlimit(RLIMIT_STACK, &rlim) == -1 ) { if ( getrlimit(RLIMIT_STACK, &rlim) == 0 ) { rlim.rlim_cur = rlim.rlim_max; if ( setrlimit(RLIMIT_STACK, &rlim) == 0 ) { getrlimit(RLIMIT_STACK, &rlim); } else { perror(" Cannot set stack size to new value"); } } } } #else void F77_FUNC_(remove_stack_limit,REMOVE_STACK_LIMIT) (void) { } #endif espresso-5.1/clib/fftw.h0000644000175000017500000003267412341373034013346 0ustar mbamba /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* fftw.h -- system-wide definitions */ /* $Id: fftw.h,v 1.2 2006-01-15 20:18:53 giannozz Exp $ */ #ifndef FFTW_H #define FFTW_H #include #include #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ /* our real numbers */ typedef double FFTW_REAL; /********************************************* * Complex numbers and operations *********************************************/ typedef struct { FFTW_REAL re, im; } FFTW_COMPLEX; #define c_re(c) ((c).re) #define c_im(c) ((c).im) typedef enum { FFTW_FORWARD = -1, FFTW_BACKWARD = 1 } fftw_direction; #ifndef FFTW_1_0_COMPATIBILITY #define FFTW_1_0_COMPATIBILITY 1 #endif #if FFTW_1_0_COMPATIBILITY /* backward compatibility with FFTW-1.0 */ #define REAL FFTW_REAL #define COMPLEX FFTW_COMPLEX #endif /********************************************* * Success or failure status *********************************************/ typedef enum { FFTW_SUCCESS = 0, FFTW_FAILURE = -1 } fftw_status; /********************************************* * Codelets *********************************************/ /* * There are two kinds of codelets: * * NO_TWIDDLE computes the FFT of a certain size, operating * out-of-place (i.e., take an input and produce a * separate output) * * TWIDDLE like no_twiddle, but operating in place. Moreover, * multiplies the input by twiddle factors. */ typedef void (notw_codelet) (const FFTW_COMPLEX *, FFTW_COMPLEX *, int, int); typedef void (twiddle_codelet) (FFTW_COMPLEX *, const FFTW_COMPLEX *, int, int, int); typedef void (generic_codelet) (FFTW_COMPLEX *, const FFTW_COMPLEX *, int, int, int, int); /********************************************* * Configurations *********************************************/ /* * A configuration is a database of all known codelets */ typedef struct { int size; /* size of the problem */ int signature; /* unique codelet id */ notw_codelet *codelet; /* * pointer to the codelet that solves * the problem */ } config_notw; extern config_notw fftw_config_notw[]; extern config_notw fftwi_config_notw[]; typedef struct { int size; /* size of the problem */ int signature; /* unique codelet id */ twiddle_codelet *codelet; } config_twiddle; extern config_twiddle fftw_config_twiddle[]; extern config_twiddle fftwi_config_twiddle[]; extern generic_codelet fftw_twiddle_generic; extern generic_codelet fftwi_twiddle_generic; extern char *fftw_version; /***************************** * Plans *****************************/ /* * A plan is a sequence of reductions to compute a FFT of * a given size. At each step, the FFT algorithm can: * * 1) apply a notw codelet, or * 2) recurse and apply a twiddle codelet, or * 3) apply the generic codelet. */ enum fftw_node_type { FFTW_NOTW, FFTW_TWIDDLE, FFTW_GENERIC }; /* structure that contains twiddle factors */ typedef struct fftw_twiddle_struct { int n; int r; int m; FFTW_COMPLEX *twarray; struct fftw_twiddle_struct *next; int refcnt; } fftw_twiddle; /* structure that holds all the data needed for a given step */ typedef struct fftw_plan_node_struct { enum fftw_node_type type; union { /* nodes of type FFTW_NOTW */ struct { int size; notw_codelet *codelet; } notw; /* nodes of type FFTW_TWIDDLE */ struct { int size; twiddle_codelet *codelet; fftw_twiddle *tw; struct fftw_plan_node_struct *recurse; } twiddle; /* nodes of type FFTW_GENERIC */ struct { int size; generic_codelet *codelet; fftw_twiddle *tw; struct fftw_plan_node_struct *recurse; } generic; } nodeu; int refcnt; } fftw_plan_node; struct fftw_plan_struct { int n; fftw_direction dir; fftw_plan_node *root; double cost; int flags; enum fftw_node_type wisdom_type; int wisdom_signature; struct fftw_plan_struct *next; int refcnt; }; /* a plan is just an array of instructions */ typedef struct fftw_plan_struct *fftw_plan; /* flags for the planner */ #define FFTW_ESTIMATE (0) #define FFTW_MEASURE (1) #define FFTW_IN_PLACE (8) #define FFTW_USE_WISDOM (16) extern fftw_plan fftw_create_plan(int n, fftw_direction dir, int flags); extern fftw_twiddle *fftw_create_twiddle(int n, int r, int m); extern void fftw_destroy_twiddle(fftw_twiddle * tw); extern void fftw_print_plan(fftw_plan plan); extern void fftw_destroy_plan(fftw_plan plan); extern void fftw_naive(int n, FFTW_COMPLEX *in, FFTW_COMPLEX *out); extern void fftwi_naive(int n, FFTW_COMPLEX *in, FFTW_COMPLEX *out); void fftw(fftw_plan plan, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist); extern double fftw_measure_runtime(fftw_plan plan); extern void fftw_die(char *s); extern void *fftw_malloc(size_t n); extern void fftw_free(void *p); extern void fftw_check_memory_leaks(void); extern void fftw_strided_copy(int, FFTW_COMPLEX *, int, FFTW_COMPLEX *); extern void fftw_executor_simple(int, const FFTW_COMPLEX *, FFTW_COMPLEX *, fftw_plan_node *, int, int); extern void *(*fftw_malloc_hook) (size_t n); extern void (*fftw_free_hook) (void *p); /* Wisdom: */ #define FFTW_HAS_WISDOM /* define this symbol so that we know we are using a version of FFTW with wisdom */ extern void fftw_forget_wisdom(void); extern void fftw_export_wisdom(void (*emitter)(char c, void *), void *data); extern fftw_status fftw_import_wisdom(int (*g)(void *), void *data); extern void fftw_export_wisdom_to_file(FILE *output_file); extern fftw_status fftw_import_wisdom_from_file(FILE *input_file); extern char *fftw_export_wisdom_to_string(void); extern fftw_status fftw_import_wisdom_from_string(const char *input_string); /* * define symbol so we know this function is available (it is not in * older FFTWs) */ #define FFTW_HAS_FPRINT_PLAN extern void fftw_fprint_plan(FILE * f, fftw_plan plan); /* Returns 1 if FFTW is working. Otherwise, its value is undefined: */ #define is_fftw_working() 1 /***************************** * N-dimensional code *****************************/ typedef struct { int is_in_place; /* 1 if for in-place FFT's, 0 otherwise */ int rank; /* * the rank (number of dimensions) of the * array to be FFT'ed */ int *n; /* * the dimensions of the array to the * FFT'ed */ int *n_before; /* * n_before[i] = product of n[j] for j < i */ int *n_after; /* n_after[i] = product of n[j] for j > i */ fftw_plan *plans; /* fftw plans for each dimension */ FFTW_COMPLEX *work; /* * work array for FFT when doing * "in-place" FFT */ } fftwnd_aux_data; typedef fftwnd_aux_data *fftwnd_plan; /* Initializing the FFTWND Auxiliary Data */ fftwnd_plan fftw2d_create_plan(int nx, int ny, fftw_direction dir, int flags); fftwnd_plan fftw3d_create_plan(int nx, int ny, int nz, fftw_direction dir, int flags); fftwnd_plan fftwnd_create_plan(int rank, const int *n, fftw_direction dir, int flags); /* Freeing the FFTWND Auxiliary Data */ void fftwnd_destroy_plan(fftwnd_plan plan); /* Computing the N-Dimensional FFT */ void fftwnd(fftwnd_plan plan, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist); /****************************************************************************/ /********************************** Timers **********************************/ /****************************************************************************/ /* * Here, you can use all the nice timers available in your machine. */ /* * Things you should define to include your own clock: fftw_time -- the data type used to store a time extern fftw_time fftw_get_time(void); -- a function returning the current time. (We have implemented this as a macro in most cases.) extern fftw_time fftw_time_diff(fftw_time t1, fftw_time t2); -- returns the time difference (t1 - t2). If t1 < t2, it may simply return zero (although this is not required). (We have implemented this as a macro in most cases.) extern double fftw_time_to_sec(fftw_time t); -- returns the time t expressed in seconds, as a double. (Implemented as a macro in most cases.) FFTW_TIME_MIN -- a double-precision macro holding the minimum time interval (in seconds) for accurate time measurements. This should probably be at least 100 times the precision of your clock (we use even longer intervals, to be conservative). This will determine how long the planner takes to measure the speeds of different possible plans. Bracket all of your definitions with an appropriate #ifdef so that they will be enabled on your machine. If you do add your own high-precision timer code, let us know (at fftw@theory.lcs.mit.edu). Only declarations should go in this file. Any function definitions that you need should go into timer.c. */ /* define a symbol so that we know that we have the fftw_time_diff function/macro (it did not exist prior to FFTW 1.2) */ #define FFTW_HAS_TIME_DIFF #ifdef SOLARIS /* we use the nanosecond virtual timer */ #include typedef hrtime_t fftw_time; #define fftw_get_time() gethrtime() #define fftw_time_diff(t1,t2) ((t1) - (t2)) #define fftw_time_to_sec(t) ((double) t / 1.0e9) /* * a measurement is valid if it runs for at least * FFTW_TIME_MIN seconds. */ #define FFTW_TIME_MIN (1.0e-4) /* for Solaris nanosecond timer */ #endif /* SOLARIS */ #if defined(MAC) || defined(macintosh) /* Use Macintosh Time Manager routines (maximum resolution is about 20 microseconds). */ typedef struct fftw_time_struct { unsigned long hi,lo; } fftw_time; extern fftw_time get_Mac_microseconds(void); #define fftw_get_time() get_Mac_microseconds() /* define as a function instead of a macro: */ extern fftw_time fftw_time_diff(fftw_time t1, fftw_time t2); #define fftw_time_to_sec(t) ((t).lo * 1.0e-6 + 4294967295.0e-6 * (t).hi) /* very conservative, since timer should be accurate to 20e-6: */ /* (although this seems not to be the case in practice) */ #define FFTW_TIME_MIN (5.0e-2) /* for MacOS Time Manager timer */ #endif /* Macintosh */ #ifdef __WIN32__ #include typedef unsigned long fftw_time; extern unsigned long GetPerfTime(void); extern double GetPerfSec(double ticks); #define fftw_get_time() GetPerfTime() #define fftw_time_diff(t1,t2) ((t1) - (t2)) #define fftw_time_to_sec(t) GetPerfSec(t) #define FFTW_TIME_MIN (5.0e-2) /* for Win32 timer */ #endif /* __WIN32__ */ #if defined(_CRAYMPP) /* Cray MPP system */ double SECONDR(void); /* * I think you have to link with -lsci to * get this */ typedef double fftw_time; #define fftw_get_time() SECONDR() #define fftw_time_diff(t1,t2) ((t1) - (t2)) #define fftw_time_to_sec(t) (t) #define FFTW_TIME_MIN (1.0e-1) /* for Cray MPP SECONDR timer */ #endif /* _CRAYMPP */ /*********************************************** * last resort: good old Unix clock() ***********************************************/ #ifndef FFTW_TIME_MIN #include typedef clock_t fftw_time; #ifndef CLOCKS_PER_SEC #ifdef sun /* stupid sunos4 prototypes */ #define CLOCKS_PER_SEC 1000000 extern long clock(void); #else /* not sun, we don't know CLOCKS_PER_SEC */ #error Please define CLOCKS_PER_SEC #endif #endif #if defined(__QK_USER__) #define fftw_get_time() ((long) (dclock() * 1000000.0L)) #else #define fftw_get_time() clock() #endif #define fftw_time_diff(t1,t2) ((t1) - (t2)) #define fftw_time_to_sec(t) (((double) (t)) / CLOCKS_PER_SEC) /* * ***VERY*** conservative constant: this says that a * measurement must run for 200ms in order to be valid. * You had better check the manual of your machine * to discover if it can do better than this */ #define FFTW_TIME_MIN (2.0e-1) /* for default clock() timer */ #endif /* UNIX clock() */ /****************************************************************************/ #ifdef __cplusplus } /* extern "C" */ #endif /* __cplusplus */ #endif /* FFTW_H */ espresso-5.1/clib/fftw.c0000644000175000017500000350205312341373034013335 0ustar mbamba/* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ #include #include #if defined(__QK_USER__) #include #endif #include "fftw.h" /**************** import/export using file ***************/ static void file_emitter(char c, void *data) { putc(c,(FILE *) data); } void fftw_export_wisdom_to_file(FILE *output_file) { if (output_file) fftw_export_wisdom(file_emitter,(void *) output_file); } static int file_get_input(void *data) { return getc((FILE *) data); } fftw_status fftw_import_wisdom_from_file(FILE *input_file) { if (!input_file) return FFTW_FAILURE; return fftw_import_wisdom(file_get_input, (void *) input_file); } /*************** import/export using string **************/ static void emission_counter(char c, void *data) { int *counter = (int *) data; ++*counter; } static void string_emitter(char c, void *data) { char **output_string = (char **) data; *((*output_string)++) = c; **output_string = 0; } char *fftw_export_wisdom_to_string(void) { int string_length = 0; char *s, *s2; fftw_export_wisdom(emission_counter, (void *) &string_length); s = fftw_malloc(sizeof(char) * (string_length + 1)); if (!s) return 0; s2 = s; fftw_export_wisdom(string_emitter, (void *) &s2); if (s + string_length != s2) fftw_die("Unexpected output string length!"); return s; } static int string_get_input(void *data) { char **input_string = (char **) data; if (**input_string) return *((*input_string)++); else return 0; } fftw_status fftw_import_wisdom_from_string(const char *input_string) { const char *s = input_string; if (!input_string) return FFTW_FAILURE; return fftw_import_wisdom(string_get_input, (void *) &s); } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* config.c -- this file contains all the codelets the system knows about */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #if defined FFTW_USING_CILK #include #include #endif #include "fftw.h" /* the signature is the same as the size, for now */ #define NOTW_CODELET(x) { x, x, fftw_no_twiddle_##x } #define NOTWI_CODELET(x) { x, x, fftwi_no_twiddle_##x } extern notw_codelet fftw_no_twiddle_1; extern notw_codelet fftw_no_twiddle_2; extern notw_codelet fftw_no_twiddle_3; extern notw_codelet fftw_no_twiddle_4; extern notw_codelet fftw_no_twiddle_5; extern notw_codelet fftw_no_twiddle_6; extern notw_codelet fftw_no_twiddle_7; extern notw_codelet fftw_no_twiddle_8; extern notw_codelet fftw_no_twiddle_9; extern notw_codelet fftw_no_twiddle_10; extern notw_codelet fftw_no_twiddle_11; extern notw_codelet fftw_no_twiddle_12; extern notw_codelet fftw_no_twiddle_13; extern notw_codelet fftw_no_twiddle_14; extern notw_codelet fftw_no_twiddle_15; extern notw_codelet fftw_no_twiddle_16; extern notw_codelet fftw_no_twiddle_32; extern notw_codelet fftw_no_twiddle_64; extern notw_codelet fftwi_no_twiddle_1; extern notw_codelet fftwi_no_twiddle_2; extern notw_codelet fftwi_no_twiddle_3; extern notw_codelet fftwi_no_twiddle_4; extern notw_codelet fftwi_no_twiddle_5; extern notw_codelet fftwi_no_twiddle_6; extern notw_codelet fftwi_no_twiddle_7; extern notw_codelet fftwi_no_twiddle_8; extern notw_codelet fftwi_no_twiddle_9; extern notw_codelet fftwi_no_twiddle_10; extern notw_codelet fftwi_no_twiddle_11; extern notw_codelet fftwi_no_twiddle_12; extern notw_codelet fftwi_no_twiddle_13; extern notw_codelet fftwi_no_twiddle_14; extern notw_codelet fftwi_no_twiddle_15; extern notw_codelet fftwi_no_twiddle_16; extern notw_codelet fftwi_no_twiddle_32; extern notw_codelet fftwi_no_twiddle_64; config_notw fftw_config_notw[] = { NOTW_CODELET(1), NOTW_CODELET(2), NOTW_CODELET(3), NOTW_CODELET(4), NOTW_CODELET(5), NOTW_CODELET(6), NOTW_CODELET(7), NOTW_CODELET(8), NOTW_CODELET(9), NOTW_CODELET(10), NOTW_CODELET(11), NOTW_CODELET(12), NOTW_CODELET(13), NOTW_CODELET(14), NOTW_CODELET(15), NOTW_CODELET(16), NOTW_CODELET(32), NOTW_CODELET(64), {0, 0, (notw_codelet *) 0} }; config_notw fftwi_config_notw[] = { NOTWI_CODELET(1), NOTWI_CODELET(2), NOTWI_CODELET(3), NOTWI_CODELET(4), NOTWI_CODELET(5), NOTWI_CODELET(6), NOTWI_CODELET(7), NOTWI_CODELET(8), NOTWI_CODELET(9), NOTWI_CODELET(10), NOTWI_CODELET(11), NOTWI_CODELET(12), NOTWI_CODELET(13), NOTWI_CODELET(14), NOTWI_CODELET(15), NOTWI_CODELET(16), NOTWI_CODELET(32), NOTWI_CODELET(64), {0, 0, (notw_codelet *) 0} }; /* the signature is the same as the size, for now */ #define TWIDDLE_CODELET(x) { x, x, fftw_twiddle_##x } #define TWIDDLEI_CODELET(x) { x, x, fftwi_twiddle_##x } extern twiddle_codelet fftw_twiddle_2; extern twiddle_codelet fftw_twiddle_3; extern twiddle_codelet fftw_twiddle_4; extern twiddle_codelet fftw_twiddle_5; extern twiddle_codelet fftw_twiddle_6; extern twiddle_codelet fftw_twiddle_7; extern twiddle_codelet fftw_twiddle_8; extern twiddle_codelet fftw_twiddle_9; extern twiddle_codelet fftw_twiddle_10; extern twiddle_codelet fftw_twiddle_16; extern twiddle_codelet fftw_twiddle_32; extern twiddle_codelet fftw_twiddle_64; extern twiddle_codelet fftwi_twiddle_2; extern twiddle_codelet fftwi_twiddle_3; extern twiddle_codelet fftwi_twiddle_4; extern twiddle_codelet fftwi_twiddle_5; extern twiddle_codelet fftwi_twiddle_6; extern twiddle_codelet fftwi_twiddle_7; extern twiddle_codelet fftwi_twiddle_8; extern twiddle_codelet fftwi_twiddle_9; extern twiddle_codelet fftwi_twiddle_10; extern twiddle_codelet fftwi_twiddle_16; extern twiddle_codelet fftwi_twiddle_32; extern twiddle_codelet fftwi_twiddle_64; config_twiddle fftw_config_twiddle[] = { TWIDDLE_CODELET(2), TWIDDLE_CODELET(3), TWIDDLE_CODELET(4), TWIDDLE_CODELET(5), TWIDDLE_CODELET(6), TWIDDLE_CODELET(7), TWIDDLE_CODELET(8), TWIDDLE_CODELET(9), TWIDDLE_CODELET(10), TWIDDLE_CODELET(16), TWIDDLE_CODELET(32), TWIDDLE_CODELET(64), {0, 0, (twiddle_codelet *) 0} }; config_twiddle fftwi_config_twiddle[] = { TWIDDLEI_CODELET(2), TWIDDLEI_CODELET(3), TWIDDLEI_CODELET(4), TWIDDLEI_CODELET(5), TWIDDLEI_CODELET(6), TWIDDLEI_CODELET(7), TWIDDLEI_CODELET(8), TWIDDLEI_CODELET(9), TWIDDLEI_CODELET(10), TWIDDLEI_CODELET(16), TWIDDLEI_CODELET(32), TWIDDLEI_CODELET(64), {0, 0, (twiddle_codelet *) 0} }; /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * executor.c -- execute the fft */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #include "fftw.h" #include #include char *fftw_version = "FFTW V1.1 ($Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $)"; /* * This function is called in other files, so we cannot declare * it as static. */ void fftw_strided_copy(int n, FFTW_COMPLEX *in, int ostride, FFTW_COMPLEX *out) { int i; FFTW_REAL r0, r1, i0, i1; FFTW_REAL r2, r3, i2, i3; i = 0; if (n & 3) for (; i < (n & 3); ++i) { out[i * ostride] = in[i]; } for (; i < n; i += 4) { r0 = c_re(in[i]); i0 = c_im(in[i]); r1 = c_re(in[i + 1]); i1 = c_im(in[i + 1]); r2 = c_re(in[i + 2]); i2 = c_im(in[i + 2]); r3 = c_re(in[i + 3]); i3 = c_im(in[i + 3]); c_re(out[i * ostride]) = r0; c_im(out[i * ostride]) = i0; c_re(out[(i + 1) * ostride]) = r1; c_im(out[(i + 1) * ostride]) = i1; c_re(out[(i + 2) * ostride]) = r2; c_im(out[(i + 2) * ostride]) = i2; c_re(out[(i + 3) * ostride]) = r3; c_im(out[(i + 3) * ostride]) = i3; } } /* * Do *not* declare simple executor as static--we need to call it * from executor_cilk.cilk...also, preface its name with "fftw_" * to avoid any possible name collisions. */ void fftw_executor_simple(int n, const FFTW_COMPLEX *in, FFTW_COMPLEX *out, fftw_plan_node *p, int istride, int ostride) { switch (p->type) { case FFTW_NOTW: (p->nodeu.notw.codelet) (in, out, istride, ostride); break; case FFTW_TWIDDLE: { int r = p->nodeu.twiddle.size; int m = n / r; int i; twiddle_codelet *codelet; FFTW_COMPLEX *W; for (i = 0; i < r; ++i) { fftw_executor_simple(m, in + i * istride, out + i * (m * ostride), p->nodeu.twiddle.recurse, istride * r, ostride); } codelet = p->nodeu.twiddle.codelet; W = p->nodeu.twiddle.tw->twarray; codelet(out, W, m * ostride, m, ostride); break; } case FFTW_GENERIC: { int r = p->nodeu.generic.size; int m = n / r; int i; generic_codelet *codelet; FFTW_COMPLEX *W; for (i = 0; i < r; ++i) { fftw_executor_simple(m, in + i * istride, out + i * (m * ostride), p->nodeu.generic.recurse, istride * r, ostride); } codelet = p->nodeu.generic.codelet; W = p->nodeu.generic.tw->twarray; codelet(out, W, m, r, n, ostride); break; } default: fftw_die("BUG in executor: illegal plan\n"); break; } } static void executor_simple_inplace(int n, FFTW_COMPLEX *in, FFTW_COMPLEX *out, fftw_plan_node *p, int istride) { switch (p->type) { case FFTW_NOTW: (p->nodeu.notw.codelet) (in, in, istride, istride); break; default: { FFTW_COMPLEX *tmp; if (out) tmp = out; else tmp = (FFTW_COMPLEX *) fftw_malloc(n * sizeof(FFTW_COMPLEX)); fftw_executor_simple(n, in, tmp, p, istride, 1); fftw_strided_copy(n, tmp, istride, in); if (!out) fftw_free(tmp); } } } static void executor_many(int n, const FFTW_COMPLEX *in, FFTW_COMPLEX *out, fftw_plan_node *p, int istride, int ostride, int howmany, int idist, int odist) { switch (p->type) { case FFTW_NOTW: { int s; notw_codelet *codelet = p->nodeu.notw.codelet; for (s = 0; s < howmany; ++s) codelet(in + s * idist, out + s * odist, istride, ostride); break; } default: { int s; for (s = 0; s < howmany; ++s) { fftw_executor_simple(n, in + s * idist, out + s * odist, p, istride, ostride); } } } } static void executor_many_inplace(int n, FFTW_COMPLEX *in, FFTW_COMPLEX *out, fftw_plan_node *p, int istride, int howmany, int idist) { switch (p->type) { case FFTW_NOTW: { int s; notw_codelet *codelet = p->nodeu.notw.codelet; for (s = 0; s < howmany; ++s) codelet(in + s * idist, in + s * idist, istride, istride); break; } default: { int s; FFTW_COMPLEX *tmp; if (out) tmp = out; else tmp = (FFTW_COMPLEX *) fftw_malloc(n * sizeof(FFTW_COMPLEX)); for (s = 0; s < howmany; ++s) { fftw_executor_simple(n, in + s * idist, tmp, p, istride, 1); fftw_strided_copy(n, tmp, istride, in + s * idist); } if (!out) fftw_free(tmp); } } } /* user interface */ void fftw(fftw_plan plan, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist) { int n = plan->n; if (plan->flags & FFTW_IN_PLACE) { if (howmany == 1) { executor_simple_inplace(n, in, out, plan->root, istride); } else { executor_many_inplace(n, in, out, plan->root, istride, howmany, idist); } } else { if (howmany == 1) { fftw_executor_simple(n, in, out, plan->root, istride, ostride); } else { executor_many(n, in, out, plan->root, istride, ostride, howmany, idist, odist); } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #include #include "fftw.h" /* Prototypes for functions used internally in this file: */ static void fftw2d_out_of_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist); static void fftw3d_out_of_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist); static void fftwnd_out_of_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist); static void fftw2d_in_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in_out, int istride, int idist); static void fftw3d_in_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in_out, int istride, int idist); static void fftwnd_in_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in_out, int istride, int idist); /*********** Initializing the FFTWND Auxiliary Data **********/ fftwnd_plan fftw2d_create_plan(int nx, int ny, fftw_direction dir, int flags) { int n[2]; n[0] = nx; n[1] = ny; return fftwnd_create_plan(2, n, dir, flags); } fftwnd_plan fftw3d_create_plan(int nx, int ny, int nz, fftw_direction dir, int flags) { int n[3]; n[0] = nx; n[1] = ny; n[2] = nz; return fftwnd_create_plan(3, n, dir, flags); } fftwnd_plan fftwnd_create_plan(int rank, const int *n, fftw_direction dir, int flags) { int i, j, max_dim = 0; fftwnd_plan p; int cur_flags; if (rank < 0) return 0; for (i = 0; i < rank; ++i) if (n[i] <= 0) return 0; p = (fftwnd_plan) fftw_malloc(sizeof(fftwnd_aux_data)); p->n = 0; p->n_before = 0; p->n_after = 0; p->plans = 0; p->work = 0; p->rank = rank; p->is_in_place = flags & FFTW_IN_PLACE; if (rank == 0) return 0; p->n = (int *) fftw_malloc(sizeof(int) * rank); p->n_before = (int *) fftw_malloc(sizeof(int) * rank); p->n_after = (int *) fftw_malloc(sizeof(int) * rank); p->plans = (fftw_plan *) fftw_malloc(rank * sizeof(fftw_plan)); p->n_before[0] = 1; p->n_after[rank - 1] = 1; for (i = 0; i < rank; ++i) { p->n[i] = n[i]; if (i) { p->n_before[i] = p->n_before[i - 1] * n[i - 1]; p->n_after[rank - 1 - i] = p->n_after[rank - i] * n[rank - i]; } if (i < rank - 1 || (flags & FFTW_IN_PLACE)) { /* fft's except the last dimension are always in-place */ cur_flags = flags | FFTW_IN_PLACE; for (j = i - 1; j >= 0 && n[i] != n[j]; --j); if (n[i] > max_dim) max_dim = n[i]; } else { cur_flags = flags; /* we must create a separate plan for the last dimension */ j = -1; } if (j >= 0) { /* * If a plan already exists for this size * array, reuse it: */ p->plans[i] = p->plans[j]; } else { /* generate a new plan: */ p->plans[i] = fftw_create_plan(n[i], dir, cur_flags); if (!p->plans[i]) { fftwnd_destroy_plan(p); return 0; } } } /* Create work array for in-place FFTs: */ if (max_dim > 0) p->work = (FFTW_COMPLEX *) fftw_malloc(sizeof(FFTW_COMPLEX) * max_dim); return p; } /************* Freeing the FFTWND Auxiliary Data *************/ void fftwnd_destroy_plan(fftwnd_plan plan) { if (plan) { if (plan->plans) { int i, j; for (i = 0; i < plan->rank; ++i) { for (j = i - 1; j >= 0 && plan->plans[i] != plan->plans[j]; --j); if (j < 0 && plan->plans[i]) fftw_destroy_plan(plan->plans[i]); } fftw_free(plan->plans); } if (plan->n) fftw_free(plan->n); if (plan->n_before) fftw_free(plan->n_before); if (plan->n_after) fftw_free(plan->n_after); if (plan->work) fftw_free(plan->work); fftw_free(plan); } } /************** Computing the N-Dimensional FFT **************/ void fftwnd(fftwnd_plan plan, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist) { if (plan->is_in_place) /* fft is in-place */ switch (plan->rank) { case 0: break; case 1: fftw(plan->plans[0], howmany, in, istride, idist, plan->work, 1, 0); break; case 2: fftw2d_in_place_aux(plan, howmany, in, istride, idist); break; case 3: fftw3d_in_place_aux(plan, howmany, in, istride, idist); break; default: fftwnd_in_place_aux(plan, howmany, in, istride, idist); } else { if (in == out || out == 0) fftw_die("Illegal attempt to perform in-place FFT!\n"); switch (plan->rank) { case 0: break; case 1: fftw(plan->plans[0], howmany, in, istride, idist, out, ostride, odist); break; case 2: fftw2d_out_of_place_aux(plan, howmany, in, istride, idist, out, ostride, odist); break; case 3: fftw3d_out_of_place_aux(plan, howmany, in, istride, idist, out, ostride, odist); break; default: fftwnd_out_of_place_aux(plan, howmany, in, istride, idist, out, ostride, odist); } } } static void fftw2d_out_of_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist) { int fft_iter; fftw_plan p0, p1; int n0, n1; p0 = p->plans[0]; p1 = p->plans[1]; n0 = p->n[0]; n1 = p->n[1]; for (fft_iter = 0; fft_iter < howmany; ++fft_iter) { /* FFT y dimension (out-of-place): */ fftw(p1, n0, in + fft_iter * idist, istride, n1 * istride, out + fft_iter * odist, ostride, n1 * ostride); /* FFT x dimension (in-place): */ fftw(p0, n1, out + fft_iter * odist, n1 * ostride, ostride, p->work, 1, 1); } } static void fftw3d_out_of_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist) { int fft_iter; int i; fftw_plan p0, p1, p2; int n0, n1, n2; p0 = p->plans[0]; p1 = p->plans[1]; p2 = p->plans[2]; n0 = p->n[0]; n1 = p->n[1]; n2 = p->n[2]; for (fft_iter = 0; fft_iter < howmany; ++fft_iter) { /* FFT z dimension (out-of-place): */ fftw(p2, n0 * n1, in + fft_iter * idist, istride, n2 * istride, out + fft_iter * odist, ostride, n2 * ostride); /* FFT y dimension (in-place): */ for (i = 0; i < n0; ++i) fftw(p1, n2, out + fft_iter * odist + i * n1 * n2 * ostride, n2 * ostride, ostride, p->work, 1, 0); /* FFT x dimension (in-place): */ fftw(p0, n1 * n2, out + fft_iter * odist, n1 * n2 * ostride, ostride, p->work, 1, 0); } } static void fftwnd_out_of_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in, int istride, int idist, FFTW_COMPLEX *out, int ostride, int odist) { int fft_iter; int j, i; /* Do FFT for rank > 3: */ for (fft_iter = 0; fft_iter < howmany; ++fft_iter) { /* do last dimension (out-of-place): */ fftw(p->plans[p->rank - 1], p->n_before[p->rank - 1], in + fft_iter * idist, istride, p->n[p->rank - 1] * istride, out + fft_iter * odist, ostride, p->n[p->rank - 1] * ostride); /* do first dimension (in-place): */ fftw(p->plans[0], p->n_after[0], out + fft_iter * odist, p->n_after[0] * ostride, ostride, p->work, 1, 0); /* do other dimensions (in-place): */ for (j = 1; j < p->rank - 1; ++j) for (i = 0; i < p->n_before[j]; ++i) fftw(p->plans[j], p->n_after[j], out + fft_iter * odist + i * ostride * p->n[j] * p->n_after[j], p->n_after[j] * ostride, ostride, p->work, 1, 0); } } static void fftw2d_in_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in_out, int istride, int idist) { int fft_iter; fftw_plan p0, p1; int n0, n1; p0 = p->plans[0]; p1 = p->plans[1]; n0 = p->n[0]; n1 = p->n[1]; for (fft_iter = 0; fft_iter < howmany; ++fft_iter) { /* FFT y dimension: */ fftw(p1, n0, in_out + fft_iter * idist, istride, istride * n1, p->work, 1, 0); /* FFT x dimension: */ fftw(p0, n1, in_out + fft_iter * idist, istride * n1, istride, p->work, 1, 0); } } static void fftw3d_in_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in_out, int istride, int idist) { int i; int fft_iter; fftw_plan p0, p1, p2; int n0, n1, n2; p0 = p->plans[0]; p1 = p->plans[1]; p2 = p->plans[2]; n0 = p->n[0]; n1 = p->n[1]; n2 = p->n[2]; for (fft_iter = 0; fft_iter < howmany; ++fft_iter) { /* FFT z dimension: */ fftw(p2, n0 * n1, in_out + fft_iter * idist, istride, n2 * istride, p->work, 1, 0); /* FFT y dimension: */ for (i = 0; i < n0; ++i) fftw(p1, n2, in_out + fft_iter * idist + i * n1 * n2 * istride, n2 * istride, istride, p->work, 1, 0); /* FFT x dimension: */ fftw(p0, n1 * n2, in_out + fft_iter * idist, n1 * n2 * istride, istride, p->work, 1, 0); } } static void fftwnd_in_place_aux(fftwnd_plan p, int howmany, FFTW_COMPLEX *in_out, int istride, int idist) /* Do FFT for rank > 3: */ { int fft_iter; int j, i; for (fft_iter = 0; fft_iter < howmany; ++fft_iter) { /* do last dimension: */ fftw(p->plans[p->rank - 1], p->n_before[p->rank - 1], in_out + fft_iter * idist, istride, p->n[p->rank - 1] * istride, p->work, 1, 0); /* do first dimension: */ fftw(p->plans[0], p->n_after[0], in_out + fft_iter * idist, p->n_after[0] * istride, istride, p->work, 1, 0); /* do other dimensions: */ for (j = 1; j < p->rank - 1; ++j) for (i = 0; i < p->n_before[j]; ++i) fftw(p->plans[j], p->n_after[j], in_out + fft_iter * idist + i * istride * p->n[j] * p->n_after[j], p->n_after[j] * istride, istride, p->work, 1, 0); } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 0 FP additions and 0 FP multiplications */ void fftw_no_twiddle_1(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); c_re(out[0]) = tre0_0_0; c_im(out[0]) = tim0_0_0; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 108 FP additions and 32 FP multiplications */ void fftw_no_twiddle_10(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[4 * istride]); tim1_0_0 = c_im(in[4 * istride]); tre1_1_0 = c_re(in[9 * istride]); tim1_1_0 = c_im(in[9 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[8 * istride]); tim1_0_0 = c_im(in[8 * istride]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_4 = tre1_0_0 + tre1_1_0; tim0_0_4 = tim1_0_0 + tim1_1_0; tre0_1_4 = tre1_0_0 - tre1_1_0; tim0_1_4 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_1 + tre0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_2 + tre0_0_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_0_1 - tim0_0_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_0_2 - tim0_0_3)); c_re(out[6 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[4 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_1 + tim0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_2 + tim0_0_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_0_4 - tre0_0_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_0_3 - tre0_0_2)); c_im(out[6 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[4 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_2 + tre0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_1 + tre0_0_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_0_1 - tim0_0_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_0_3 - tim0_0_2)); c_re(out[2 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[8 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_2 + tim0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_1 + tim0_0_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_0_4 - tre0_0_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_0_2 - tre0_0_3)); c_im(out[2 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[8 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[5 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4; c_im(out[5 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_1 + tre0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_2 + tre0_1_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_1 - tim0_1_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_1_2 - tim0_1_3)); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[9 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_1 + tim0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_2 + tim0_1_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_4 - tre0_1_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_1_3 - tre0_1_2)); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[9 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_2 + tre0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_1 + tre0_1_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_1 - tim0_1_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_1_3 - tim0_1_2)); c_re(out[7 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[3 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_2 + tim0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_1 + tim0_1_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_4 - tre0_1_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_1_2 - tre0_1_3)); c_im(out[7 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[3 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 230 FP additions and 100 FP multiplications */ void fftw_no_twiddle_11(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_8_0; FFTW_REAL tim0_8_0; FFTW_REAL tre0_9_0; FFTW_REAL tim0_9_0; FFTW_REAL tre0_10_0; FFTW_REAL tim0_10_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); tre0_5_0 = c_re(in[5 * istride]); tim0_5_0 = c_im(in[5 * istride]); tre0_6_0 = c_re(in[6 * istride]); tim0_6_0 = c_im(in[6 * istride]); tre0_7_0 = c_re(in[7 * istride]); tim0_7_0 = c_im(in[7 * istride]); tre0_8_0 = c_re(in[8 * istride]); tim0_8_0 = c_im(in[8 * istride]); tre0_9_0 = c_re(in[9 * istride]); tim0_9_0 = c_im(in[9 * istride]); tre0_10_0 = c_re(in[10 * istride]); tim0_10_0 = c_im(in[10 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0 + tre0_7_0 + tre0_8_0 + tre0_9_0 + tre0_10_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0 + tim0_7_0 + tim0_8_0 + tim0_9_0 + tim0_10_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tre0_1_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K415415013) * (tre0_2_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_3_0 + tre0_8_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K540640817) * (tim0_1_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_2_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_3_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_4_0 - tim0_7_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_5_0 - tim0_6_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[10 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tim0_1_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K415415013) * (tim0_2_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_3_0 + tim0_8_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K540640817) * (tre0_10_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_9_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_8_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_7_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_6_0 - tre0_5_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[10 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tre0_1_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K841253532) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_3_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_2_0 + tre0_9_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K909631995) * (tim0_1_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_2_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_8_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_7_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_6_0 - tim0_5_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[9 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tim0_1_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K841253532) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_3_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_2_0 + tim0_9_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K909631995) * (tre0_10_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_9_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_3_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_4_0 - tre0_7_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_5_0 - tre0_6_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[9 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tre0_3_0 + tre0_8_0)) + (((FFTW_REAL) FFTW_K841253532) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_2_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_1_0 + tre0_10_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K989821441) * (tim0_1_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_9_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_8_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_4_0 - tim0_7_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_5_0 - tim0_6_0)); c_re(out[3 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[8 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tim0_3_0 + tim0_8_0)) + (((FFTW_REAL) FFTW_K841253532) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_2_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_1_0 + tim0_10_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K989821441) * (tre0_10_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_2_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_3_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_7_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_6_0 - tre0_5_0)); c_im(out[3 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[8 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tre0_3_0 + tre0_8_0)) + (((FFTW_REAL) FFTW_K415415013) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_2_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_1_0 + tre0_10_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K755749574) * (tim0_1_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_9_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_3_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_4_0 - tim0_7_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_6_0 - tim0_5_0)); c_re(out[4 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[7 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tim0_3_0 + tim0_8_0)) + (((FFTW_REAL) FFTW_K415415013) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_2_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_1_0 + tim0_10_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K755749574) * (tre0_10_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_2_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_8_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_7_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_5_0 - tre0_6_0)); c_im(out[4 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[7 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tre0_2_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K415415013) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_3_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_1_0 + tre0_10_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K281732556) * (tim0_1_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_9_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_3_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_7_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_5_0 - tim0_6_0)); c_re(out[5 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[6 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tim0_2_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K415415013) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_3_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_1_0 + tim0_10_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K281732556) * (tre0_10_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_2_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_8_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_4_0 - tre0_7_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_6_0 - tre0_5_0)); c_im(out[5 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[6 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 104 FP additions and 16 FP multiplications */ void fftw_no_twiddle_12(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[4 * istride]); tim1_1_0 = c_im(in[4 * istride]); tre1_2_0 = c_re(in[8 * istride]); tim1_2_0 = c_im(in[8 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[3 * istride]); tim1_0_0 = c_im(in[3 * istride]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre1_2_0 = c_re(in[11 * istride]); tim1_2_0 = c_im(in[11 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[10 * istride]); tim1_1_0 = c_im(in[10 * istride]); tre1_2_0 = c_re(in[2 * istride]); tim1_2_0 = c_im(in[2 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[9 * istride]); tim1_0_0 = c_im(in[9 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre1_2_0 = c_re(in[5 * istride]); tim1_2_0 = c_im(in[5 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_3 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_3 = tre2_0_0 + tre2_1_0; tre0_2_3 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_3 = tim2_0_0 + tim2_1_0; tim0_2_3 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(out[0]) = tre1_0_0 + tre1_0_1; c_im(out[0]) = tim1_0_0 + tim1_0_1; c_re(out[6 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[6 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[9 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[9 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[3 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[3 * ostride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_1_0 + tre0_1_2; tim1_0_0 = tim0_1_0 + tim0_1_2; tre1_1_0 = tre0_1_0 - tre0_1_2; tim1_1_0 = tim0_1_0 - tim0_1_2; tre1_0_1 = tre0_1_1 + tre0_1_3; tim1_0_1 = tim0_1_1 + tim0_1_3; tre1_1_1 = tre0_1_1 - tre0_1_3; tim1_1_1 = tim0_1_1 - tim0_1_3; c_re(out[4 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[4 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[10 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[10 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[ostride]) = tre1_1_0 + tim1_1_1; c_im(out[ostride]) = tim1_1_0 - tre1_1_1; c_re(out[7 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[7 * ostride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_2_0 + tre0_2_2; tim1_0_0 = tim0_2_0 + tim0_2_2; tre1_1_0 = tre0_2_0 - tre0_2_2; tim1_1_0 = tim0_2_0 - tim0_2_2; tre1_0_1 = tre0_2_1 + tre0_2_3; tim1_0_1 = tim0_2_1 + tim0_2_3; tre1_1_1 = tre0_2_1 - tre0_2_3; tim1_1_1 = tim0_2_1 - tim0_2_3; c_re(out[8 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[8 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[2 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[2 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[5 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[5 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[11 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[11 * ostride]) = tim1_1_0 + tre1_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 324 FP additions and 144 FP multiplications */ void fftw_no_twiddle_13(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_8_0; FFTW_REAL tim0_8_0; FFTW_REAL tre0_9_0; FFTW_REAL tim0_9_0; FFTW_REAL tre0_10_0; FFTW_REAL tim0_10_0; FFTW_REAL tre0_11_0; FFTW_REAL tim0_11_0; FFTW_REAL tre0_12_0; FFTW_REAL tim0_12_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); tre0_5_0 = c_re(in[5 * istride]); tim0_5_0 = c_im(in[5 * istride]); tre0_6_0 = c_re(in[6 * istride]); tim0_6_0 = c_im(in[6 * istride]); tre0_7_0 = c_re(in[7 * istride]); tim0_7_0 = c_im(in[7 * istride]); tre0_8_0 = c_re(in[8 * istride]); tim0_8_0 = c_im(in[8 * istride]); tre0_9_0 = c_re(in[9 * istride]); tim0_9_0 = c_im(in[9 * istride]); tre0_10_0 = c_re(in[10 * istride]); tim0_10_0 = c_im(in[10 * istride]); tre0_11_0 = c_re(in[11 * istride]); tim0_11_0 = c_im(in[11 * istride]); tre0_12_0 = c_re(in[12 * istride]); tim0_12_0 = c_im(in[12 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0 + tre0_7_0 + tre0_8_0 + tre0_9_0 + tre0_10_0 + tre0_11_0 + tre0_12_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0 + tim0_7_0 + tim0_8_0 + tim0_9_0 + tim0_10_0 + tim0_11_0 + tim0_12_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tre0_1_0 + tre0_12_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_2_0 + tre0_11_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_4_0 + tre0_9_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K464723172) * (tim0_1_0 - tim0_12_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_2_0 - tim0_11_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_3_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_4_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_5_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_6_0 - tim0_7_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[12 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tim0_1_0 + tim0_12_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_2_0 + tim0_11_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_4_0 + tim0_9_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K464723172) * (tre0_12_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_11_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_10_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_9_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_8_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_7_0 - tre0_6_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[12 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K568064746) * (tre0_1_0 + tre0_12_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_5_0 + tre0_8_0)) + (((FFTW_REAL) FFTW_K885456025) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_4_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_2_0 + tre0_11_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K822983865) * (tim0_1_0 - tim0_12_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_2_0 - tim0_11_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_3_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_9_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_8_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_7_0 - tim0_6_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[11 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K568064746) * (tim0_1_0 + tim0_12_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_5_0 + tim0_8_0)) + (((FFTW_REAL) FFTW_K885456025) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_4_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_2_0 + tim0_11_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K822983865) * (tre0_12_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_11_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_10_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_4_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_5_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_6_0 - tre0_7_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[11 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tre0_1_0 + tre0_12_0)) + (((FFTW_REAL) FFTW_K885456025) * (tre0_4_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_2_0 + tre0_11_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K992708874) * (tim0_1_0 - tim0_12_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_2_0 - tim0_11_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_10_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_9_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_5_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_6_0 - tim0_7_0)); c_re(out[3 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[10 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tim0_1_0 + tim0_12_0)) + (((FFTW_REAL) FFTW_K885456025) * (tim0_4_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_2_0 + tim0_11_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K992708874) * (tre0_12_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_11_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_3_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_4_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_8_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_7_0 - tre0_6_0)); c_im(out[3 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[10 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tre0_3_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_4_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_2_0 + tre0_11_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_1_0 + tre0_12_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K935016242) * (tim0_1_0 - tim0_12_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_11_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_10_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_4_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_8_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_7_0 - tim0_6_0)); c_re(out[4 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[9 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tim0_3_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_4_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_2_0 + tim0_11_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_1_0 + tim0_12_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K935016242) * (tre0_12_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_2_0 - tre0_11_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_3_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_9_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_5_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_6_0 - tre0_7_0)); c_im(out[4 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[9 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tre0_2_0 + tre0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_3_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K885456025) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_4_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_1_0 + tre0_12_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K663122658) * (tim0_1_0 - tim0_12_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_11_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_3_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_9_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_8_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_6_0 - tim0_7_0)); c_re(out[5 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[8 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tim0_2_0 + tim0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_3_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K885456025) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_4_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_1_0 + tim0_12_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K663122658) * (tre0_12_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_2_0 - tre0_11_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_10_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_4_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_5_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_7_0 - tre0_6_0)); c_im(out[5 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[8 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tre0_2_0 + tre0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_4_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_1_0 + tre0_12_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K239315664) * (tim0_1_0 - tim0_12_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_11_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_3_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_9_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_5_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_7_0 - tim0_6_0)); c_re(out[6 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[7 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tim0_2_0 + tim0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_4_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_1_0 + tim0_12_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K239315664) * (tre0_12_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_2_0 - tre0_11_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_10_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_4_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_8_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_6_0 - tre0_7_0)); c_im(out[6 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[7 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 208 FP additions and 72 FP multiplications */ void fftw_no_twiddle_14(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[9 * istride]); tim1_1_0 = c_im(in[9 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[4 * istride]); tim1_0_0 = c_im(in[4 * istride]); tre1_1_0 = c_re(in[11 * istride]); tim1_1_0 = c_im(in[11 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[13 * istride]); tim1_1_0 = c_im(in[13 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[8 * istride]); tim1_0_0 = c_im(in[8 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre0_0_4 = tre1_0_0 + tre1_1_0; tim0_0_4 = tim1_0_0 + tim1_1_0; tre0_1_4 = tre1_0_0 - tre1_1_0; tim0_1_4 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[10 * istride]); tim1_0_0 = c_im(in[10 * istride]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_5 = tre1_0_0 + tre1_1_0; tim0_0_5 = tim1_0_0 + tim1_1_0; tre0_1_5 = tre1_0_0 - tre1_1_0; tim0_1_5 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[12 * istride]); tim1_0_0 = c_im(in[12 * istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_6 = tre1_0_0 + tre1_1_0; tim0_0_6 = tim1_0_0 + tim1_1_0; tre0_1_6 = tre1_0_0 - tre1_1_0; tim0_1_6 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4 + tre0_0_5 + tre0_0_6; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4 + tim0_0_5 + tim0_0_6; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_0_1 + tre0_0_6)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_0_3 + tre0_0_4)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_0_2 + tre0_0_5)); tre2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_0_1 - tim0_0_6)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_0_2 - tim0_0_5)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_0_3 - tim0_0_4)); c_re(out[8 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[6 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_0_1 + tim0_0_6)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_0_3 + tim0_0_4)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_0_2 + tim0_0_5)); tim2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_0_6 - tre0_0_1)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_0_5 - tre0_0_2)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_0_4 - tre0_0_3)); c_im(out[8 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[6 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_0_3 + tre0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_0_2 + tre0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_0_1 + tre0_0_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_0_1 - tim0_0_6)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_0_5 - tim0_0_2)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_0_4 - tim0_0_3)); c_re(out[2 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[12 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_0_3 + tim0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_0_2 + tim0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_0_1 + tim0_0_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_0_6 - tre0_0_1)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_0_2 - tre0_0_5)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_0_3 - tre0_0_4)); c_im(out[2 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[12 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_0_2 + tre0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_0_3 + tre0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_0_1 + tre0_0_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_0_1 - tim0_0_6)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_0_5 - tim0_0_2)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_0_3 - tim0_0_4)); c_re(out[10 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[4 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_0_2 + tim0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_0_3 + tim0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_0_1 + tim0_0_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_0_6 - tre0_0_1)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_0_2 - tre0_0_5)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_0_4 - tre0_0_3)); c_im(out[10 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[4 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[7 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4 + tre0_1_5 + tre0_1_6; c_im(out[7 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4 + tim0_1_5 + tim0_1_6; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_1 + tre0_1_6)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_3 + tre0_1_4)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_2 + tre0_1_5)); tre2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_1_1 - tim0_1_6)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_1_2 - tim0_1_5)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_1_3 - tim0_1_4)); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[13 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_1 + tim0_1_6)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_3 + tim0_1_4)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_2 + tim0_1_5)); tim2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_1_6 - tre0_1_1)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_1_5 - tre0_1_2)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_1_4 - tre0_1_3)); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[13 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_3 + tre0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_2 + tre0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_1 + tre0_1_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_1_1 - tim0_1_6)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_1_5 - tim0_1_2)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_1_4 - tim0_1_3)); c_re(out[9 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[5 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_3 + tim0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_2 + tim0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_1 + tim0_1_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_1_6 - tre0_1_1)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_1_2 - tre0_1_5)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_1_3 - tre0_1_4)); c_im(out[9 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[5 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_2 + tre0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_3 + tre0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_1 + tre0_1_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_1_1 - tim0_1_6)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_1_5 - tim0_1_2)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_1_3 - tim0_1_4)); c_re(out[3 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[11 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_2 + tim0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_3 + tim0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_1 + tim0_1_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_1_6 - tre0_1_1)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_1_2 - tre0_1_5)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_1_4 - tre0_1_3)); c_im(out[3 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[11 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 202 FP additions and 68 FP multiplications */ void fftw_no_twiddle_15(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre1_2_0 = c_re(in[10 * istride]); tim1_2_0 = c_im(in[10 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[3 * istride]); tim1_0_0 = c_im(in[3 * istride]); tre1_1_0 = c_re(in[8 * istride]); tim1_1_0 = c_im(in[8 * istride]); tre1_2_0 = c_re(in[13 * istride]); tim1_2_0 = c_im(in[13 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[11 * istride]); tim1_1_0 = c_im(in[11 * istride]); tre1_2_0 = c_re(in[istride]); tim1_2_0 = c_im(in[istride]); tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[9 * istride]); tim1_0_0 = c_im(in[9 * istride]); tre1_1_0 = c_re(in[14 * istride]); tim1_1_0 = c_im(in[14 * istride]); tre1_2_0 = c_re(in[4 * istride]); tim1_2_0 = c_im(in[4 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_3 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_3 = tre2_0_0 + tre2_1_0; tre0_2_3 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_3 = tim2_0_0 + tim2_1_0; tim0_2_3 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[12 * istride]); tim1_0_0 = c_im(in[12 * istride]); tre1_1_0 = c_re(in[2 * istride]); tim1_1_0 = c_im(in[2 * istride]); tre1_2_0 = c_re(in[7 * istride]); tim1_2_0 = c_im(in[7 * istride]); tre0_0_4 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_4 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_4 = tre2_0_0 + tre2_1_0; tre0_2_4 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_4 = tim2_0_0 + tim2_1_0; tim0_2_4 = tim2_0_0 - tim2_1_0; } } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_1 + tre0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_2 + tre0_0_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_0_1 - tim0_0_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_0_2 - tim0_0_3)); c_re(out[6 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[9 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_1 + tim0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_2 + tim0_0_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_0_4 - tre0_0_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_0_3 - tre0_0_2)); c_im(out[6 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[9 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_2 + tre0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_1 + tre0_0_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_0_1 - tim0_0_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_0_3 - tim0_0_2)); c_re(out[12 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[3 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_2 + tim0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_1 + tim0_0_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_0_4 - tre0_0_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_0_2 - tre0_0_3)); c_im(out[12 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[3 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[10 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4; c_im(out[10 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_1 + tre0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_2 + tre0_1_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_1 - tim0_1_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_1_2 - tim0_1_3)); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[4 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_1 + tim0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_2 + tim0_1_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_4 - tre0_1_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_1_3 - tre0_1_2)); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[4 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_2 + tre0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_1 + tre0_1_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_1 - tim0_1_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_1_3 - tim0_1_2)); c_re(out[7 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[13 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_2 + tim0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_1 + tim0_1_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_4 - tre0_1_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_1_2 - tre0_1_3)); c_im(out[7 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[13 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[5 * ostride]) = tre0_2_0 + tre0_2_1 + tre0_2_2 + tre0_2_3 + tre0_2_4; c_im(out[5 * ostride]) = tim0_2_0 + tim0_2_1 + tim0_2_2 + tim0_2_3 + tim0_2_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_1 + tre0_2_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_2 + tre0_2_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_2_1 - tim0_2_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_2_2 - tim0_2_3)); c_re(out[11 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[14 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_1 + tim0_2_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_2 + tim0_2_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_2_4 - tre0_2_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_2_3 - tre0_2_2)); c_im(out[11 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[14 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_2 + tre0_2_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_1 + tre0_2_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_2_1 - tim0_2_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_2_3 - tim0_2_2)); c_re(out[2 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[8 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_2 + tim0_2_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_1 + tim0_2_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_2_4 - tre0_2_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_2_2 - tre0_2_3)); c_im(out[2 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[8 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 144 FP additions and 24 FP multiplications */ void fftw_no_twiddle_16(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[0]); tim2_0_0 = c_im(in[0]); tre2_1_0 = c_re(in[8 * istride]); tim2_1_0 = c_im(in[8 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[4 * istride]); tim2_0_0 = c_im(in[4 * istride]); tre2_1_0 = c_re(in[12 * istride]); tim2_1_0 = c_im(in[12 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 + tim1_1_1; tim0_1_0 = tim1_1_0 - tre1_1_1; tre0_3_0 = tre1_1_0 - tim1_1_1; tim0_3_0 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[istride]); tim2_0_0 = c_im(in[istride]); tre2_1_0 = c_re(in[9 * istride]); tim2_1_0 = c_im(in[9 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[5 * istride]); tim2_0_0 = c_im(in[5 * istride]); tre2_1_0 = c_re(in[13 * istride]); tim2_1_0 = c_im(in[13 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 + tim1_1_1; tim0_1_1 = tim1_1_0 - tre1_1_1; tre0_3_1 = tre1_1_0 - tim1_1_1; tim0_3_1 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[2 * istride]); tim2_0_0 = c_im(in[2 * istride]); tre2_1_0 = c_re(in[10 * istride]); tim2_1_0 = c_im(in[10 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[6 * istride]); tim2_0_0 = c_im(in[6 * istride]); tre2_1_0 = c_re(in[14 * istride]); tim2_1_0 = c_im(in[14 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 + tim1_1_1; tim0_1_2 = tim1_1_0 - tre1_1_1; tre0_3_2 = tre1_1_0 - tim1_1_1; tim0_3_2 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[3 * istride]); tim2_0_0 = c_im(in[3 * istride]); tre2_1_0 = c_re(in[11 * istride]); tim2_1_0 = c_im(in[11 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[7 * istride]); tim2_0_0 = c_im(in[7 * istride]); tre2_1_0 = c_re(in[15 * istride]); tim2_1_0 = c_im(in[15 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 + tim1_1_1; tim0_1_3 = tim1_1_0 - tre1_1_1; tre0_3_3 = tre1_1_0 - tim1_1_1; tim0_3_3 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(out[0]) = tre1_0_0 + tre1_0_1; c_im(out[0]) = tim1_0_0 + tim1_0_1; c_re(out[8 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[8 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[4 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[4 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[12 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[12 * ostride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_2 + tim0_1_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_2 - tre0_1_2); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_1) + (((FFTW_REAL) FFTW_K382683432) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_1) - (((FFTW_REAL) FFTW_K382683432) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_3) + (((FFTW_REAL) FFTW_K923879532) * tim0_1_3); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_1_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(out[ostride]) = tre1_0_0 + tre1_0_1; c_im(out[ostride]) = tim1_0_0 + tim1_0_1; c_re(out[9 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[9 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[5 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[5 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[13 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[13 * ostride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_2_0 + tim0_2_2; tim1_0_0 = tim0_2_0 - tre0_2_2; tre1_1_0 = tre0_2_0 - tim0_2_2; tim1_1_0 = tim0_2_0 + tre0_2_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_1 + tim0_2_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_1 - tre0_2_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_3 - tre0_2_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_3 + tre0_2_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } c_re(out[2 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[2 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[10 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[10 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[6 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[6 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[14 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[14 * ostride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_2 - tre0_3_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_2 + tre0_3_2); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 - tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_1) + (((FFTW_REAL) FFTW_K923879532) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_1) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_3_3) + (((FFTW_REAL) FFTW_K382683432) * tim0_3_3); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_3); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(out[3 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[3 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[11 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[11 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[7 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[7 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[15 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[15 * ostride]) = tim1_1_0 + tre1_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 4 FP additions and 0 FP multiplications */ void fftw_no_twiddle_2(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0; c_im(out[0]) = tim0_0_0 + tim0_1_0; c_re(out[ostride]) = tre0_0_0 - tre0_1_0; c_im(out[ostride]) = tim0_0_0 - tim0_1_0; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 14 FP additions and 4 FP multiplications */ void fftw_no_twiddle_3(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_0 + tre0_2_0)); tre1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_1_0 - tim0_2_0); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[2 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_0 + tim0_2_0)); tim1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_2_0 - tre0_1_0); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[2 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 376 FP additions and 88 FP multiplications */ void fftw_no_twiddle_32(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[0]); tim2_0_0 = c_im(in[0]); tre2_1_0 = c_re(in[16 * istride]); tim2_1_0 = c_im(in[16 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[8 * istride]); tim2_0_0 = c_im(in[8 * istride]); tre2_1_0 = c_re(in[24 * istride]); tim2_1_0 = c_im(in[24 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 + tim1_1_1; tim0_1_0 = tim1_1_0 - tre1_1_1; tre0_3_0 = tre1_1_0 - tim1_1_1; tim0_3_0 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[istride]); tim2_0_0 = c_im(in[istride]); tre2_1_0 = c_re(in[17 * istride]); tim2_1_0 = c_im(in[17 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[9 * istride]); tim2_0_0 = c_im(in[9 * istride]); tre2_1_0 = c_re(in[25 * istride]); tim2_1_0 = c_im(in[25 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 + tim1_1_1; tim0_1_1 = tim1_1_0 - tre1_1_1; tre0_3_1 = tre1_1_0 - tim1_1_1; tim0_3_1 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[2 * istride]); tim2_0_0 = c_im(in[2 * istride]); tre2_1_0 = c_re(in[18 * istride]); tim2_1_0 = c_im(in[18 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[10 * istride]); tim2_0_0 = c_im(in[10 * istride]); tre2_1_0 = c_re(in[26 * istride]); tim2_1_0 = c_im(in[26 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 + tim1_1_1; tim0_1_2 = tim1_1_0 - tre1_1_1; tre0_3_2 = tre1_1_0 - tim1_1_1; tim0_3_2 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[3 * istride]); tim2_0_0 = c_im(in[3 * istride]); tre2_1_0 = c_re(in[19 * istride]); tim2_1_0 = c_im(in[19 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[11 * istride]); tim2_0_0 = c_im(in[11 * istride]); tre2_1_0 = c_re(in[27 * istride]); tim2_1_0 = c_im(in[27 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 + tim1_1_1; tim0_1_3 = tim1_1_0 - tre1_1_1; tre0_3_3 = tre1_1_0 - tim1_1_1; tim0_3_3 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[4 * istride]); tim2_0_0 = c_im(in[4 * istride]); tre2_1_0 = c_re(in[20 * istride]); tim2_1_0 = c_im(in[20 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[12 * istride]); tim2_0_0 = c_im(in[12 * istride]); tre2_1_0 = c_re(in[28 * istride]); tim2_1_0 = c_im(in[28 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_4 = tre1_0_0 + tre1_0_1; tim0_0_4 = tim1_0_0 + tim1_0_1; tre0_2_4 = tre1_0_0 - tre1_0_1; tim0_2_4 = tim1_0_0 - tim1_0_1; tre0_1_4 = tre1_1_0 + tim1_1_1; tim0_1_4 = tim1_1_0 - tre1_1_1; tre0_3_4 = tre1_1_0 - tim1_1_1; tim0_3_4 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[5 * istride]); tim2_0_0 = c_im(in[5 * istride]); tre2_1_0 = c_re(in[21 * istride]); tim2_1_0 = c_im(in[21 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[13 * istride]); tim2_0_0 = c_im(in[13 * istride]); tre2_1_0 = c_re(in[29 * istride]); tim2_1_0 = c_im(in[29 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_5 = tre1_0_0 + tre1_0_1; tim0_0_5 = tim1_0_0 + tim1_0_1; tre0_2_5 = tre1_0_0 - tre1_0_1; tim0_2_5 = tim1_0_0 - tim1_0_1; tre0_1_5 = tre1_1_0 + tim1_1_1; tim0_1_5 = tim1_1_0 - tre1_1_1; tre0_3_5 = tre1_1_0 - tim1_1_1; tim0_3_5 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[6 * istride]); tim2_0_0 = c_im(in[6 * istride]); tre2_1_0 = c_re(in[22 * istride]); tim2_1_0 = c_im(in[22 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[14 * istride]); tim2_0_0 = c_im(in[14 * istride]); tre2_1_0 = c_re(in[30 * istride]); tim2_1_0 = c_im(in[30 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_6 = tre1_0_0 + tre1_0_1; tim0_0_6 = tim1_0_0 + tim1_0_1; tre0_2_6 = tre1_0_0 - tre1_0_1; tim0_2_6 = tim1_0_0 - tim1_0_1; tre0_1_6 = tre1_1_0 + tim1_1_1; tim0_1_6 = tim1_1_0 - tre1_1_1; tre0_3_6 = tre1_1_0 - tim1_1_1; tim0_3_6 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[7 * istride]); tim2_0_0 = c_im(in[7 * istride]); tre2_1_0 = c_re(in[23 * istride]); tim2_1_0 = c_im(in[23 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[15 * istride]); tim2_0_0 = c_im(in[15 * istride]); tre2_1_0 = c_re(in[31 * istride]); tim2_1_0 = c_im(in[31 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_7 = tre1_0_0 + tre1_0_1; tim0_0_7 = tim1_0_0 + tim1_0_1; tre0_2_7 = tre1_0_0 - tre1_0_1; tim0_2_7 = tim1_0_0 - tim1_0_1; tre0_1_7 = tre1_1_0 + tim1_1_1; tim0_1_7 = tim1_1_0 - tre1_1_1; tre0_3_7 = tre1_1_0 - tim1_1_1; tim0_3_7 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[0]) = tre2_0_0 + tre2_0_1; c_im(out[0]) = tim2_0_0 + tim2_0_1; c_re(out[16 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[16 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[8 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[8 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[24 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[24 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[4 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[4 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[20 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[20 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[12 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[12 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[28 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[28 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_4 + tim0_1_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_4 - tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_1) + (((FFTW_REAL) FFTW_K195090322) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_1) - (((FFTW_REAL) FFTW_K195090322) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_1_5) + (((FFTW_REAL) FFTW_K831469612) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_1_5) - (((FFTW_REAL) FFTW_K831469612) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_2) + (((FFTW_REAL) FFTW_K382683432) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_2) - (((FFTW_REAL) FFTW_K382683432) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_6) + (((FFTW_REAL) FFTW_K923879532) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_3) + (((FFTW_REAL) FFTW_K555570233) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_3) - (((FFTW_REAL) FFTW_K555570233) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_1_7) + (((FFTW_REAL) FFTW_K980785280) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_1_7) - (((FFTW_REAL) FFTW_K980785280) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[ostride]) = tre2_0_0 + tre2_0_1; c_im(out[ostride]) = tim2_0_0 + tim2_0_1; c_re(out[17 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[17 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[9 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[9 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[25 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[25 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[5 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[5 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[21 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[21 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[13 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[13 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[29 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[29 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_2_0 + tim0_2_4; tim1_0_0 = tim0_2_0 - tre0_2_4; tre1_1_0 = tre0_2_0 - tim0_2_4; tim1_1_0 = tim0_2_0 + tre0_2_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_1) + (((FFTW_REAL) FFTW_K382683432) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_1) - (((FFTW_REAL) FFTW_K382683432) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_5) - (((FFTW_REAL) FFTW_K382683432) * tre0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_5) + (((FFTW_REAL) FFTW_K923879532) * tre0_2_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_2 + tim0_2_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_2 - tre0_2_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_6 - tre0_2_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_6 + tre0_2_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_3) + (((FFTW_REAL) FFTW_K923879532) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_7) - (((FFTW_REAL) FFTW_K923879532) * tre0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_7) + (((FFTW_REAL) FFTW_K382683432) * tre0_2_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[2 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[2 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[18 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[18 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[10 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[10 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[26 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[26 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[6 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[6 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[22 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[22 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[14 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[14 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[30 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[30 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_4 - tre0_3_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_4 + tre0_3_4); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 - tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_1) + (((FFTW_REAL) FFTW_K555570233) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_1) - (((FFTW_REAL) FFTW_K555570233) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_3_5) - (((FFTW_REAL) FFTW_K980785280) * tre0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_3_5) + (((FFTW_REAL) FFTW_K195090322) * tre0_3_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_2) + (((FFTW_REAL) FFTW_K923879532) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_2) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_3_6) + (((FFTW_REAL) FFTW_K382683432) * tim0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_3_3) - (((FFTW_REAL) FFTW_K195090322) * tre0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_3_3) + (((FFTW_REAL) FFTW_K980785280) * tre0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_3_7) + (((FFTW_REAL) FFTW_K831469612) * tim0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_7) - (((FFTW_REAL) FFTW_K555570233) * tim0_3_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_1_0 - tim2_0_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = (-(tim2_0_0 + tim2_1_0)); } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[3 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[3 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[19 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[19 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[11 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[11 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[27 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[27 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[7 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[7 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[23 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[23 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[15 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[15 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[31 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[31 * ostride]) = tim2_1_0 + tre2_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 16 FP additions and 0 FP multiplications */ void fftw_no_twiddle_4(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[2 * istride]); tim1_1_0 = c_im(in[2 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[istride]); tim1_0_0 = c_im(in[istride]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1; c_im(out[0]) = tim0_0_0 + tim0_0_1; c_re(out[2 * ostride]) = tre0_0_0 - tre0_0_1; c_im(out[2 * ostride]) = tim0_0_0 - tim0_0_1; c_re(out[ostride]) = tre0_1_0 + tim0_1_1; c_im(out[ostride]) = tim0_1_0 - tre0_1_1; c_re(out[3 * ostride]) = tre0_1_0 - tim0_1_1; c_im(out[3 * ostride]) = tim0_1_0 + tre0_1_1; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 44 FP additions and 16 FP multiplications */ void fftw_no_twiddle_5(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_0 + tre0_3_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_2_0 - tim0_3_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[4 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_0 + tim0_3_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_4_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_3_0 - tre0_2_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[4 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_0 + tre0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_0 + tre0_4_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_3_0 - tim0_2_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[3 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_0 + tim0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_0 + tim0_4_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_4_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_2_0 - tre0_3_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[3 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 40 FP additions and 8 FP multiplications */ void fftw_no_twiddle_6(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[4 * istride]); tim1_0_0 = c_im(in[4 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_1 - tim0_0_2); c_re(out[4 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[2 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_2 - tre0_0_1); c_im(out[4 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[2 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[3 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2; c_im(out[3 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_1 + tre0_1_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_1_1 - tim0_1_2); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[5 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_1 + tim0_1_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_1_2 - tre0_1_1); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[5 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 928 FP additions and 248 FP multiplications */ void fftw_no_twiddle_64(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_4_1; FFTW_REAL tim0_4_1; FFTW_REAL tre0_4_2; FFTW_REAL tim0_4_2; FFTW_REAL tre0_4_3; FFTW_REAL tim0_4_3; FFTW_REAL tre0_4_4; FFTW_REAL tim0_4_4; FFTW_REAL tre0_4_5; FFTW_REAL tim0_4_5; FFTW_REAL tre0_4_6; FFTW_REAL tim0_4_6; FFTW_REAL tre0_4_7; FFTW_REAL tim0_4_7; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_5_1; FFTW_REAL tim0_5_1; FFTW_REAL tre0_5_2; FFTW_REAL tim0_5_2; FFTW_REAL tre0_5_3; FFTW_REAL tim0_5_3; FFTW_REAL tre0_5_4; FFTW_REAL tim0_5_4; FFTW_REAL tre0_5_5; FFTW_REAL tim0_5_5; FFTW_REAL tre0_5_6; FFTW_REAL tim0_5_6; FFTW_REAL tre0_5_7; FFTW_REAL tim0_5_7; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_6_1; FFTW_REAL tim0_6_1; FFTW_REAL tre0_6_2; FFTW_REAL tim0_6_2; FFTW_REAL tre0_6_3; FFTW_REAL tim0_6_3; FFTW_REAL tre0_6_4; FFTW_REAL tim0_6_4; FFTW_REAL tre0_6_5; FFTW_REAL tim0_6_5; FFTW_REAL tre0_6_6; FFTW_REAL tim0_6_6; FFTW_REAL tre0_6_7; FFTW_REAL tim0_6_7; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_7_1; FFTW_REAL tim0_7_1; FFTW_REAL tre0_7_2; FFTW_REAL tim0_7_2; FFTW_REAL tre0_7_3; FFTW_REAL tim0_7_3; FFTW_REAL tre0_7_4; FFTW_REAL tim0_7_4; FFTW_REAL tre0_7_5; FFTW_REAL tim0_7_5; FFTW_REAL tre0_7_6; FFTW_REAL tim0_7_6; FFTW_REAL tre0_7_7; FFTW_REAL tim0_7_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[0]); tim2_0_0 = c_im(in[0]); tre2_1_0 = c_re(in[32 * istride]); tim2_1_0 = c_im(in[32 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[8 * istride]); tim2_0_0 = c_im(in[8 * istride]); tre2_1_0 = c_re(in[40 * istride]); tim2_1_0 = c_im(in[40 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[16 * istride]); tim2_0_0 = c_im(in[16 * istride]); tre2_1_0 = c_re(in[48 * istride]); tim2_1_0 = c_im(in[48 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[24 * istride]); tim2_0_0 = c_im(in[24 * istride]); tre2_1_0 = c_re(in[56 * istride]); tim2_1_0 = c_im(in[56 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_0 = tre2_0_0 + tre2_0_1; tim0_0_0 = tim2_0_0 + tim2_0_1; tre0_4_0 = tre2_0_0 - tre2_0_1; tim0_4_0 = tim2_0_0 - tim2_0_1; tre0_2_0 = tre2_1_0 + tim2_1_1; tim0_2_0 = tim2_1_0 - tre2_1_1; tre0_6_0 = tre2_1_0 - tim2_1_1; tim0_6_0 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_0 = tre2_0_0 + tre2_0_1; tim0_1_0 = tim2_0_0 + tim2_0_1; tre0_5_0 = tre2_0_0 - tre2_0_1; tim0_5_0 = tim2_0_0 - tim2_0_1; tre0_3_0 = tre2_1_0 + tim2_1_1; tim0_3_0 = tim2_1_0 - tre2_1_1; tre0_7_0 = tre2_1_0 - tim2_1_1; tim0_7_0 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[istride]); tim2_0_0 = c_im(in[istride]); tre2_1_0 = c_re(in[33 * istride]); tim2_1_0 = c_im(in[33 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[9 * istride]); tim2_0_0 = c_im(in[9 * istride]); tre2_1_0 = c_re(in[41 * istride]); tim2_1_0 = c_im(in[41 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[17 * istride]); tim2_0_0 = c_im(in[17 * istride]); tre2_1_0 = c_re(in[49 * istride]); tim2_1_0 = c_im(in[49 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[25 * istride]); tim2_0_0 = c_im(in[25 * istride]); tre2_1_0 = c_re(in[57 * istride]); tim2_1_0 = c_im(in[57 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_1 = tre2_0_0 + tre2_0_1; tim0_0_1 = tim2_0_0 + tim2_0_1; tre0_4_1 = tre2_0_0 - tre2_0_1; tim0_4_1 = tim2_0_0 - tim2_0_1; tre0_2_1 = tre2_1_0 + tim2_1_1; tim0_2_1 = tim2_1_0 - tre2_1_1; tre0_6_1 = tre2_1_0 - tim2_1_1; tim0_6_1 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_1 = tre2_0_0 + tre2_0_1; tim0_1_1 = tim2_0_0 + tim2_0_1; tre0_5_1 = tre2_0_0 - tre2_0_1; tim0_5_1 = tim2_0_0 - tim2_0_1; tre0_3_1 = tre2_1_0 + tim2_1_1; tim0_3_1 = tim2_1_0 - tre2_1_1; tre0_7_1 = tre2_1_0 - tim2_1_1; tim0_7_1 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[2 * istride]); tim2_0_0 = c_im(in[2 * istride]); tre2_1_0 = c_re(in[34 * istride]); tim2_1_0 = c_im(in[34 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[10 * istride]); tim2_0_0 = c_im(in[10 * istride]); tre2_1_0 = c_re(in[42 * istride]); tim2_1_0 = c_im(in[42 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[18 * istride]); tim2_0_0 = c_im(in[18 * istride]); tre2_1_0 = c_re(in[50 * istride]); tim2_1_0 = c_im(in[50 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[26 * istride]); tim2_0_0 = c_im(in[26 * istride]); tre2_1_0 = c_re(in[58 * istride]); tim2_1_0 = c_im(in[58 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_2 = tre2_0_0 + tre2_0_1; tim0_0_2 = tim2_0_0 + tim2_0_1; tre0_4_2 = tre2_0_0 - tre2_0_1; tim0_4_2 = tim2_0_0 - tim2_0_1; tre0_2_2 = tre2_1_0 + tim2_1_1; tim0_2_2 = tim2_1_0 - tre2_1_1; tre0_6_2 = tre2_1_0 - tim2_1_1; tim0_6_2 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_2 = tre2_0_0 + tre2_0_1; tim0_1_2 = tim2_0_0 + tim2_0_1; tre0_5_2 = tre2_0_0 - tre2_0_1; tim0_5_2 = tim2_0_0 - tim2_0_1; tre0_3_2 = tre2_1_0 + tim2_1_1; tim0_3_2 = tim2_1_0 - tre2_1_1; tre0_7_2 = tre2_1_0 - tim2_1_1; tim0_7_2 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[3 * istride]); tim2_0_0 = c_im(in[3 * istride]); tre2_1_0 = c_re(in[35 * istride]); tim2_1_0 = c_im(in[35 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[11 * istride]); tim2_0_0 = c_im(in[11 * istride]); tre2_1_0 = c_re(in[43 * istride]); tim2_1_0 = c_im(in[43 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[19 * istride]); tim2_0_0 = c_im(in[19 * istride]); tre2_1_0 = c_re(in[51 * istride]); tim2_1_0 = c_im(in[51 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[27 * istride]); tim2_0_0 = c_im(in[27 * istride]); tre2_1_0 = c_re(in[59 * istride]); tim2_1_0 = c_im(in[59 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_3 = tre2_0_0 + tre2_0_1; tim0_0_3 = tim2_0_0 + tim2_0_1; tre0_4_3 = tre2_0_0 - tre2_0_1; tim0_4_3 = tim2_0_0 - tim2_0_1; tre0_2_3 = tre2_1_0 + tim2_1_1; tim0_2_3 = tim2_1_0 - tre2_1_1; tre0_6_3 = tre2_1_0 - tim2_1_1; tim0_6_3 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_3 = tre2_0_0 + tre2_0_1; tim0_1_3 = tim2_0_0 + tim2_0_1; tre0_5_3 = tre2_0_0 - tre2_0_1; tim0_5_3 = tim2_0_0 - tim2_0_1; tre0_3_3 = tre2_1_0 + tim2_1_1; tim0_3_3 = tim2_1_0 - tre2_1_1; tre0_7_3 = tre2_1_0 - tim2_1_1; tim0_7_3 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[4 * istride]); tim2_0_0 = c_im(in[4 * istride]); tre2_1_0 = c_re(in[36 * istride]); tim2_1_0 = c_im(in[36 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[12 * istride]); tim2_0_0 = c_im(in[12 * istride]); tre2_1_0 = c_re(in[44 * istride]); tim2_1_0 = c_im(in[44 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[20 * istride]); tim2_0_0 = c_im(in[20 * istride]); tre2_1_0 = c_re(in[52 * istride]); tim2_1_0 = c_im(in[52 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[28 * istride]); tim2_0_0 = c_im(in[28 * istride]); tre2_1_0 = c_re(in[60 * istride]); tim2_1_0 = c_im(in[60 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_4 = tre2_0_0 + tre2_0_1; tim0_0_4 = tim2_0_0 + tim2_0_1; tre0_4_4 = tre2_0_0 - tre2_0_1; tim0_4_4 = tim2_0_0 - tim2_0_1; tre0_2_4 = tre2_1_0 + tim2_1_1; tim0_2_4 = tim2_1_0 - tre2_1_1; tre0_6_4 = tre2_1_0 - tim2_1_1; tim0_6_4 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_4 = tre2_0_0 + tre2_0_1; tim0_1_4 = tim2_0_0 + tim2_0_1; tre0_5_4 = tre2_0_0 - tre2_0_1; tim0_5_4 = tim2_0_0 - tim2_0_1; tre0_3_4 = tre2_1_0 + tim2_1_1; tim0_3_4 = tim2_1_0 - tre2_1_1; tre0_7_4 = tre2_1_0 - tim2_1_1; tim0_7_4 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[5 * istride]); tim2_0_0 = c_im(in[5 * istride]); tre2_1_0 = c_re(in[37 * istride]); tim2_1_0 = c_im(in[37 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[13 * istride]); tim2_0_0 = c_im(in[13 * istride]); tre2_1_0 = c_re(in[45 * istride]); tim2_1_0 = c_im(in[45 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[21 * istride]); tim2_0_0 = c_im(in[21 * istride]); tre2_1_0 = c_re(in[53 * istride]); tim2_1_0 = c_im(in[53 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[29 * istride]); tim2_0_0 = c_im(in[29 * istride]); tre2_1_0 = c_re(in[61 * istride]); tim2_1_0 = c_im(in[61 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_5 = tre2_0_0 + tre2_0_1; tim0_0_5 = tim2_0_0 + tim2_0_1; tre0_4_5 = tre2_0_0 - tre2_0_1; tim0_4_5 = tim2_0_0 - tim2_0_1; tre0_2_5 = tre2_1_0 + tim2_1_1; tim0_2_5 = tim2_1_0 - tre2_1_1; tre0_6_5 = tre2_1_0 - tim2_1_1; tim0_6_5 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_5 = tre2_0_0 + tre2_0_1; tim0_1_5 = tim2_0_0 + tim2_0_1; tre0_5_5 = tre2_0_0 - tre2_0_1; tim0_5_5 = tim2_0_0 - tim2_0_1; tre0_3_5 = tre2_1_0 + tim2_1_1; tim0_3_5 = tim2_1_0 - tre2_1_1; tre0_7_5 = tre2_1_0 - tim2_1_1; tim0_7_5 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[6 * istride]); tim2_0_0 = c_im(in[6 * istride]); tre2_1_0 = c_re(in[38 * istride]); tim2_1_0 = c_im(in[38 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[14 * istride]); tim2_0_0 = c_im(in[14 * istride]); tre2_1_0 = c_re(in[46 * istride]); tim2_1_0 = c_im(in[46 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[22 * istride]); tim2_0_0 = c_im(in[22 * istride]); tre2_1_0 = c_re(in[54 * istride]); tim2_1_0 = c_im(in[54 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[30 * istride]); tim2_0_0 = c_im(in[30 * istride]); tre2_1_0 = c_re(in[62 * istride]); tim2_1_0 = c_im(in[62 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_6 = tre2_0_0 + tre2_0_1; tim0_0_6 = tim2_0_0 + tim2_0_1; tre0_4_6 = tre2_0_0 - tre2_0_1; tim0_4_6 = tim2_0_0 - tim2_0_1; tre0_2_6 = tre2_1_0 + tim2_1_1; tim0_2_6 = tim2_1_0 - tre2_1_1; tre0_6_6 = tre2_1_0 - tim2_1_1; tim0_6_6 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_6 = tre2_0_0 + tre2_0_1; tim0_1_6 = tim2_0_0 + tim2_0_1; tre0_5_6 = tre2_0_0 - tre2_0_1; tim0_5_6 = tim2_0_0 - tim2_0_1; tre0_3_6 = tre2_1_0 + tim2_1_1; tim0_3_6 = tim2_1_0 - tre2_1_1; tre0_7_6 = tre2_1_0 - tim2_1_1; tim0_7_6 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[7 * istride]); tim2_0_0 = c_im(in[7 * istride]); tre2_1_0 = c_re(in[39 * istride]); tim2_1_0 = c_im(in[39 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[15 * istride]); tim2_0_0 = c_im(in[15 * istride]); tre2_1_0 = c_re(in[47 * istride]); tim2_1_0 = c_im(in[47 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[23 * istride]); tim2_0_0 = c_im(in[23 * istride]); tre2_1_0 = c_re(in[55 * istride]); tim2_1_0 = c_im(in[55 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[31 * istride]); tim2_0_0 = c_im(in[31 * istride]); tre2_1_0 = c_re(in[63 * istride]); tim2_1_0 = c_im(in[63 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_7 = tre2_0_0 + tre2_0_1; tim0_0_7 = tim2_0_0 + tim2_0_1; tre0_4_7 = tre2_0_0 - tre2_0_1; tim0_4_7 = tim2_0_0 - tim2_0_1; tre0_2_7 = tre2_1_0 + tim2_1_1; tim0_2_7 = tim2_1_0 - tre2_1_1; tre0_6_7 = tre2_1_0 - tim2_1_1; tim0_6_7 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_7 = tre2_0_0 + tre2_0_1; tim0_1_7 = tim2_0_0 + tim2_0_1; tre0_5_7 = tre2_0_0 - tre2_0_1; tim0_5_7 = tim2_0_0 - tim2_0_1; tre0_3_7 = tre2_1_0 + tim2_1_1; tim0_3_7 = tim2_1_0 - tre2_1_1; tre0_7_7 = tre2_1_0 - tim2_1_1; tim0_7_7 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[0]) = tre2_0_0 + tre2_0_1; c_im(out[0]) = tim2_0_0 + tim2_0_1; c_re(out[32 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[32 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[16 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[16 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[48 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[48 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[8 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[8 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[40 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[40 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[24 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[24 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[56 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[56 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_4) + (((FFTW_REAL) FFTW_K382683432) * tim0_1_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_4) - (((FFTW_REAL) FFTW_K382683432) * tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tre0_1_1) + (((FFTW_REAL) FFTW_K098017140) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tim0_1_1) - (((FFTW_REAL) FFTW_K098017140) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_1_5) + (((FFTW_REAL) FFTW_K471396736) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_1_5) - (((FFTW_REAL) FFTW_K471396736) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_2) + (((FFTW_REAL) FFTW_K195090322) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_2) - (((FFTW_REAL) FFTW_K195090322) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_6) + (((FFTW_REAL) FFTW_K555570233) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_6) - (((FFTW_REAL) FFTW_K555570233) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_1_3) + (((FFTW_REAL) FFTW_K290284677) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_1_3) - (((FFTW_REAL) FFTW_K290284677) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_1_7) + (((FFTW_REAL) FFTW_K634393284) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_1_7) - (((FFTW_REAL) FFTW_K634393284) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[ostride]) = tre2_0_0 + tre2_0_1; c_im(out[ostride]) = tim2_0_0 + tim2_0_1; c_re(out[33 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[33 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[17 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[17 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[49 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[49 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[9 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[9 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[41 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[41 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[25 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[25 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[57 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[57 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_4 + tim0_2_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_4 - tre0_2_4); tre1_0_0 = tre0_2_0 + tre2_1_0; tim1_0_0 = tim0_2_0 + tim2_1_0; tre1_1_0 = tre0_2_0 - tre2_1_0; tim1_1_0 = tim0_2_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_2_1) + (((FFTW_REAL) FFTW_K195090322) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_2_1) - (((FFTW_REAL) FFTW_K195090322) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_2_5) + (((FFTW_REAL) FFTW_K831469612) * tim0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_2_5) - (((FFTW_REAL) FFTW_K831469612) * tre0_2_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_2) + (((FFTW_REAL) FFTW_K382683432) * tim0_2_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_2) - (((FFTW_REAL) FFTW_K382683432) * tre0_2_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_6) + (((FFTW_REAL) FFTW_K923879532) * tim0_2_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_2_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_2_3) + (((FFTW_REAL) FFTW_K555570233) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_2_3) - (((FFTW_REAL) FFTW_K555570233) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_2_7) + (((FFTW_REAL) FFTW_K980785280) * tim0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_2_7) - (((FFTW_REAL) FFTW_K980785280) * tre0_2_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[2 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[2 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[34 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[34 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[18 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[18 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[50 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[50 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[10 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[10 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[42 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[42 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[26 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[26 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[58 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[58 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_4) + (((FFTW_REAL) FFTW_K923879532) * tim0_3_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_4) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_4); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_3_1) + (((FFTW_REAL) FFTW_K290284677) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_3_1) - (((FFTW_REAL) FFTW_K290284677) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_3_5) + (((FFTW_REAL) FFTW_K995184726) * tim0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_3_5) - (((FFTW_REAL) FFTW_K995184726) * tre0_3_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_2) + (((FFTW_REAL) FFTW_K555570233) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_2) - (((FFTW_REAL) FFTW_K555570233) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_3_6) - (((FFTW_REAL) FFTW_K195090322) * tre0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_3_6) + (((FFTW_REAL) FFTW_K980785280) * tre0_3_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tre0_3_3) + (((FFTW_REAL) FFTW_K773010453) * tim0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tim0_3_3) - (((FFTW_REAL) FFTW_K773010453) * tre0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_3_7) - (((FFTW_REAL) FFTW_K471396736) * tre0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K471396736) * tim0_3_7) + (((FFTW_REAL) FFTW_K881921264) * tre0_3_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[3 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[3 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[35 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[35 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[19 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[19 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[51 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[51 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[11 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[11 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[43 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[43 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[27 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[27 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[59 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[59 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_4_0 + tim0_4_4; tim1_0_0 = tim0_4_0 - tre0_4_4; tre1_1_0 = tre0_4_0 - tim0_4_4; tim1_1_0 = tim0_4_0 + tre0_4_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_1) + (((FFTW_REAL) FFTW_K382683432) * tim0_4_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_1) - (((FFTW_REAL) FFTW_K382683432) * tre0_4_1); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_5) - (((FFTW_REAL) FFTW_K382683432) * tre0_4_5); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_5) + (((FFTW_REAL) FFTW_K923879532) * tre0_4_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_2 + tim0_4_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_2 - tre0_4_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_6 - tre0_4_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_6 + tre0_4_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_3) + (((FFTW_REAL) FFTW_K923879532) * tim0_4_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_4_3); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_7) - (((FFTW_REAL) FFTW_K923879532) * tre0_4_7); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_7) + (((FFTW_REAL) FFTW_K382683432) * tre0_4_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[4 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[4 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[36 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[36 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[20 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[20 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[52 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[52 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[12 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[12 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[44 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[44 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[28 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[28 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[60 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[60 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_5_4) - (((FFTW_REAL) FFTW_K382683432) * tre0_5_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_5_4) + (((FFTW_REAL) FFTW_K923879532) * tre0_5_4); tre1_0_0 = tre0_5_0 + tre2_1_0; tim1_0_0 = tim0_5_0 - tim2_1_0; tre1_1_0 = tre0_5_0 - tre2_1_0; tim1_1_0 = tim0_5_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_5_1) + (((FFTW_REAL) FFTW_K471396736) * tim0_5_1); tim2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_5_1) - (((FFTW_REAL) FFTW_K471396736) * tre0_5_1); tre2_1_0 = (((FFTW_REAL) FFTW_K634393284) * tim0_5_5) - (((FFTW_REAL) FFTW_K773010453) * tre0_5_5); tim2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_5_5) + (((FFTW_REAL) FFTW_K634393284) * tre0_5_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_5_2) + (((FFTW_REAL) FFTW_K831469612) * tim0_5_2); tim2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_5_2) - (((FFTW_REAL) FFTW_K831469612) * tre0_5_2); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_5_6) - (((FFTW_REAL) FFTW_K980785280) * tre0_5_6); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_5_6) + (((FFTW_REAL) FFTW_K195090322) * tre0_5_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_5_3) + (((FFTW_REAL) FFTW_K995184726) * tim0_5_3); tim2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_5_3) - (((FFTW_REAL) FFTW_K995184726) * tre0_5_3); tre2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_5_7) + (((FFTW_REAL) FFTW_K290284677) * tim0_5_7); tim2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tre0_5_7) - (((FFTW_REAL) FFTW_K956940335) * tim0_5_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[5 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[5 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[37 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[37 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[21 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[21 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[53 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[53 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[13 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[13 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[45 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[45 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[29 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[29 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[61 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[61 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_6_4 - tre0_6_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_6_4 + tre0_6_4); tre1_0_0 = tre0_6_0 + tre2_1_0; tim1_0_0 = tim0_6_0 - tim2_1_0; tre1_1_0 = tre0_6_0 - tre2_1_0; tim1_1_0 = tim0_6_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_6_1) + (((FFTW_REAL) FFTW_K555570233) * tim0_6_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_6_1) - (((FFTW_REAL) FFTW_K555570233) * tre0_6_1); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_6_5) - (((FFTW_REAL) FFTW_K980785280) * tre0_6_5); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_6_5) + (((FFTW_REAL) FFTW_K195090322) * tre0_6_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_6_2) + (((FFTW_REAL) FFTW_K923879532) * tim0_6_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_6_2) - (((FFTW_REAL) FFTW_K923879532) * tre0_6_2); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_6_6) + (((FFTW_REAL) FFTW_K382683432) * tim0_6_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_6_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_6_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_6_3) - (((FFTW_REAL) FFTW_K195090322) * tre0_6_3); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_6_3) + (((FFTW_REAL) FFTW_K980785280) * tre0_6_3); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_6_7) + (((FFTW_REAL) FFTW_K831469612) * tim0_6_7); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_6_7) - (((FFTW_REAL) FFTW_K555570233) * tim0_6_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_1_0 - tim2_0_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = (-(tim2_0_0 + tim2_1_0)); } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[6 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[6 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[38 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[38 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[22 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[22 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[54 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[54 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[14 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[14 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[46 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[46 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[30 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[30 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[62 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[62 * ostride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_7_4) - (((FFTW_REAL) FFTW_K923879532) * tre0_7_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_7_4) + (((FFTW_REAL) FFTW_K382683432) * tre0_7_4); tre1_0_0 = tre0_7_0 + tre2_1_0; tim1_0_0 = tim0_7_0 - tim2_1_0; tre1_1_0 = tre0_7_0 - tre2_1_0; tim1_1_0 = tim0_7_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_7_1) + (((FFTW_REAL) FFTW_K634393284) * tim0_7_1); tim2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_7_1) - (((FFTW_REAL) FFTW_K634393284) * tre0_7_1); tre2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_7_5) + (((FFTW_REAL) FFTW_K290284677) * tim0_7_5); tim2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tre0_7_5) - (((FFTW_REAL) FFTW_K956940335) * tim0_7_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_7_2) + (((FFTW_REAL) FFTW_K980785280) * tim0_7_2); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_7_2) - (((FFTW_REAL) FFTW_K980785280) * tre0_7_2); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_7_6) + (((FFTW_REAL) FFTW_K831469612) * tim0_7_6); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_7_6) - (((FFTW_REAL) FFTW_K555570233) * tim0_7_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_7_3) - (((FFTW_REAL) FFTW_K471396736) * tre0_7_3); tim2_0_0 = (((FFTW_REAL) FFTW_K471396736) * tim0_7_3) + (((FFTW_REAL) FFTW_K881921264) * tre0_7_3); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_7_7) - (((FFTW_REAL) FFTW_K995184726) * tim0_7_7); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_7_7) + (((FFTW_REAL) FFTW_K995184726) * tre0_7_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_1_0 - tim2_0_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = (-(tim2_0_0 + tim2_1_0)); } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[7 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[7 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[39 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[39 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[23 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[23 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[55 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[55 * ostride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(out[15 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[15 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[47 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[47 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[31 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[31 * ostride]) = tim2_1_0 - tre2_1_1; c_re(out[63 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[63 * ostride]) = tim2_1_0 + tre2_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 90 FP additions and 36 FP multiplications */ void fftw_no_twiddle_7(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); tre0_5_0 = c_re(in[5 * istride]); tim0_5_0 = c_im(in[5 * istride]); tre0_6_0 = c_re(in[6 * istride]); tim0_6_0 = c_im(in[6 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_2_0 + tre0_5_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_1_0 - tim0_6_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_2_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_3_0 - tim0_4_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[6 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_2_0 + tim0_5_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_6_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_5_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_4_0 - tre0_3_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[6 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_1_0 - tim0_6_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_5_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_4_0 - tim0_3_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[5 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_6_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_2_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_3_0 - tre0_4_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[5 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_1_0 - tim0_6_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_5_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_3_0 - tim0_4_0)); c_re(out[3 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[4 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_6_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_2_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_4_0 - tre0_3_0)); c_im(out[3 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[4 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 52 FP additions and 4 FP multiplications */ void fftw_no_twiddle_8(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[4 * istride]); tim1_1_0 = c_im(in[4 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[istride]); tim1_0_0 = c_im(in[istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[6 * istride]); tim1_1_0 = c_im(in[6 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[3 * istride]); tim1_0_0 = c_im(in[3 * istride]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(out[0]) = tre1_0_0 + tre1_0_1; c_im(out[0]) = tim1_0_0 + tim1_0_1; c_re(out[4 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[4 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[2 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[2 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[6 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[6 * ostride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_1_0 + tim0_1_2; tim1_0_0 = tim0_1_0 - tre0_1_2; tre1_1_0 = tre0_1_0 - tim0_1_2; tim1_1_0 = tim0_1_0 + tre0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_1 + tim0_1_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_1 - tre0_1_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_3 - tre0_1_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_3 + tre0_1_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } c_re(out[ostride]) = tre1_0_0 + tre1_0_1; c_im(out[ostride]) = tim1_0_0 + tim1_0_1; c_re(out[5 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[5 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[3 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[3 * ostride]) = tim1_1_0 - tre1_1_1; c_re(out[7 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[7 * ostride]) = tim1_1_0 + tre1_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 92 FP additions and 40 FP multiplications */ void fftw_no_twiddle_9(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre1_2_0 = c_re(in[6 * istride]); tim1_2_0 = c_im(in[6 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[istride]); tim1_0_0 = c_im(in[istride]); tre1_1_0 = c_re(in[4 * istride]); tim1_1_0 = c_im(in[4 * istride]); tre1_2_0 = c_re(in[7 * istride]); tim1_2_0 = c_im(in[7 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre1_2_0 = c_re(in[8 * istride]); tim1_2_0 = c_im(in[8 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_1 - tim0_0_2); c_re(out[3 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[6 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_2 - tre0_0_1); c_im(out[3 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[6 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tre0_1_1) + (((FFTW_REAL) FFTW_K642787609) * tim0_1_1); tim1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tim0_1_1) - (((FFTW_REAL) FFTW_K642787609) * tre0_1_1); tre1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_1_2) + (((FFTW_REAL) FFTW_K984807753) * tim0_1_2); tim1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_1_2) - (((FFTW_REAL) FFTW_K984807753) * tre0_1_2); c_re(out[ostride]) = tre0_1_0 + tre1_1_0 + tre1_2_0; c_im(out[ostride]) = tim0_1_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); c_re(out[4 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[7 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); c_im(out[4 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[7 * ostride]) = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_2_1) + (((FFTW_REAL) FFTW_K984807753) * tim0_2_1); tim1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_2_1) - (((FFTW_REAL) FFTW_K984807753) * tre0_2_1); tre1_2_0 = (((FFTW_REAL) FFTW_K342020143) * tim0_2_2) - (((FFTW_REAL) FFTW_K939692620) * tre0_2_2); tim1_2_0 = (((FFTW_REAL) FFTW_K939692620) * tim0_2_2) + (((FFTW_REAL) FFTW_K342020143) * tre0_2_2); c_re(out[2 * ostride]) = tre0_2_0 + tre1_1_0 + tre1_2_0; c_im(out[2 * ostride]) = tim0_2_0 + tim1_1_0 - tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 + tim1_2_0); c_re(out[5 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[8 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 + (((FFTW_REAL) FFTW_K499999999) * (tim1_2_0 - tim1_1_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); c_im(out[5 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[8 * ostride]) = tim2_0_0 - tim2_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 0 FP additions and 0 FP multiplications */ void fftwi_no_twiddle_1(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); c_re(out[0]) = tre0_0_0; c_im(out[0]) = tim0_0_0; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 108 FP additions and 32 FP multiplications */ void fftwi_no_twiddle_10(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[4 * istride]); tim1_0_0 = c_im(in[4 * istride]); tre1_1_0 = c_re(in[9 * istride]); tim1_1_0 = c_im(in[9 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[8 * istride]); tim1_0_0 = c_im(in[8 * istride]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_4 = tre1_0_0 + tre1_1_0; tim0_0_4 = tim1_0_0 + tim1_1_0; tre0_1_4 = tre1_0_0 - tre1_1_0; tim0_1_4 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_1 + tre0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_2 + tre0_0_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_0_4 - tim0_0_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_0_3 - tim0_0_2)); c_re(out[6 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[4 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_1 + tim0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_2 + tim0_0_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_0_1 - tre0_0_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_0_2 - tre0_0_3)); c_im(out[6 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[4 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_2 + tre0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_1 + tre0_0_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_0_4 - tim0_0_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_0_2 - tim0_0_3)); c_re(out[2 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[8 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_2 + tim0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_1 + tim0_0_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_0_1 - tre0_0_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_0_3 - tre0_0_2)); c_im(out[2 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[8 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[5 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4; c_im(out[5 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_1 + tre0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_2 + tre0_1_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_4 - tim0_1_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_1_3 - tim0_1_2)); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[9 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_1 + tim0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_2 + tim0_1_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_1 - tre0_1_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_1_2 - tre0_1_3)); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[9 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_2 + tre0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_1 + tre0_1_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_4 - tim0_1_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_1_2 - tim0_1_3)); c_re(out[7 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[3 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_2 + tim0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_1 + tim0_1_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_1 - tre0_1_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_1_3 - tre0_1_2)); c_im(out[7 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[3 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 230 FP additions and 100 FP multiplications */ void fftwi_no_twiddle_11(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_8_0; FFTW_REAL tim0_8_0; FFTW_REAL tre0_9_0; FFTW_REAL tim0_9_0; FFTW_REAL tre0_10_0; FFTW_REAL tim0_10_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); tre0_5_0 = c_re(in[5 * istride]); tim0_5_0 = c_im(in[5 * istride]); tre0_6_0 = c_re(in[6 * istride]); tim0_6_0 = c_im(in[6 * istride]); tre0_7_0 = c_re(in[7 * istride]); tim0_7_0 = c_im(in[7 * istride]); tre0_8_0 = c_re(in[8 * istride]); tim0_8_0 = c_im(in[8 * istride]); tre0_9_0 = c_re(in[9 * istride]); tim0_9_0 = c_im(in[9 * istride]); tre0_10_0 = c_re(in[10 * istride]); tim0_10_0 = c_im(in[10 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0 + tre0_7_0 + tre0_8_0 + tre0_9_0 + tre0_10_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0 + tim0_7_0 + tim0_8_0 + tim0_9_0 + tim0_10_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tre0_1_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K415415013) * (tre0_2_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_3_0 + tre0_8_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K540640817) * (tim0_10_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_9_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_8_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_7_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_6_0 - tim0_5_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[10 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tim0_1_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K415415013) * (tim0_2_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_3_0 + tim0_8_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K540640817) * (tre0_1_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_2_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_3_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_4_0 - tre0_7_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_5_0 - tre0_6_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[10 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tre0_1_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K841253532) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_3_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_2_0 + tre0_9_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K909631995) * (tim0_10_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_9_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_3_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_4_0 - tim0_7_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_5_0 - tim0_6_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[9 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tim0_1_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K841253532) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_3_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_2_0 + tim0_9_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K909631995) * (tre0_1_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_2_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_8_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_7_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_6_0 - tre0_5_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[9 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tre0_3_0 + tre0_8_0)) + (((FFTW_REAL) FFTW_K841253532) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_2_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_1_0 + tre0_10_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K989821441) * (tim0_10_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_2_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_3_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_7_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_6_0 - tim0_5_0)); c_re(out[3 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[8 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K415415013) * (tim0_3_0 + tim0_8_0)) + (((FFTW_REAL) FFTW_K841253532) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_2_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_1_0 + tim0_10_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K989821441) * (tre0_1_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_9_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_8_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_4_0 - tre0_7_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_5_0 - tre0_6_0)); c_im(out[3 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[8 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tre0_3_0 + tre0_8_0)) + (((FFTW_REAL) FFTW_K415415013) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_2_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_1_0 + tre0_10_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K755749574) * (tim0_10_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_2_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_8_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K281732556) * (tim0_7_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_5_0 - tim0_6_0)); c_re(out[4 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[7 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tim0_3_0 + tim0_8_0)) + (((FFTW_REAL) FFTW_K415415013) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_2_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_1_0 + tim0_10_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K755749574) * (tre0_1_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_9_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_3_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K281732556) * (tre0_4_0 - tre0_7_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_6_0 - tre0_5_0)); c_im(out[4 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[7 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tre0_2_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K415415013) * (tre0_4_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tre0_5_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tre0_3_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K959492973) * (tre0_1_0 + tre0_10_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K281732556) * (tim0_10_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K540640817) * (tim0_2_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K755749574) * (tim0_8_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K909631995) * (tim0_4_0 - tim0_7_0)) + (((FFTW_REAL) FFTW_K989821441) * (tim0_6_0 - tim0_5_0)); c_re(out[5 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[6 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K841253532) * (tim0_2_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K415415013) * (tim0_4_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K142314838) * (tim0_5_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K654860733) * (tim0_3_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K959492973) * (tim0_1_0 + tim0_10_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K281732556) * (tre0_1_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K540640817) * (tre0_9_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K755749574) * (tre0_3_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K909631995) * (tre0_7_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K989821441) * (tre0_5_0 - tre0_6_0)); c_im(out[5 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[6 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 104 FP additions and 16 FP multiplications */ void fftwi_no_twiddle_12(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[4 * istride]); tim1_1_0 = c_im(in[4 * istride]); tre1_2_0 = c_re(in[8 * istride]); tim1_2_0 = c_im(in[8 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[3 * istride]); tim1_0_0 = c_im(in[3 * istride]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre1_2_0 = c_re(in[11 * istride]); tim1_2_0 = c_im(in[11 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[10 * istride]); tim1_1_0 = c_im(in[10 * istride]); tre1_2_0 = c_re(in[2 * istride]); tim1_2_0 = c_im(in[2 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[9 * istride]); tim1_0_0 = c_im(in[9 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre1_2_0 = c_re(in[5 * istride]); tim1_2_0 = c_im(in[5 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_3 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_3 = tre2_0_0 + tre2_1_0; tre0_2_3 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_3 = tim2_0_0 + tim2_1_0; tim0_2_3 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(out[0]) = tre1_0_0 + tre1_0_1; c_im(out[0]) = tim1_0_0 + tim1_0_1; c_re(out[6 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[6 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[9 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[9 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[3 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[3 * ostride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_1_0 + tre0_1_2; tim1_0_0 = tim0_1_0 + tim0_1_2; tre1_1_0 = tre0_1_0 - tre0_1_2; tim1_1_0 = tim0_1_0 - tim0_1_2; tre1_0_1 = tre0_1_1 + tre0_1_3; tim1_0_1 = tim0_1_1 + tim0_1_3; tre1_1_1 = tre0_1_1 - tre0_1_3; tim1_1_1 = tim0_1_1 - tim0_1_3; c_re(out[4 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[4 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[10 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[10 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[ostride]) = tre1_1_0 - tim1_1_1; c_im(out[ostride]) = tim1_1_0 + tre1_1_1; c_re(out[7 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[7 * ostride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_2_0 + tre0_2_2; tim1_0_0 = tim0_2_0 + tim0_2_2; tre1_1_0 = tre0_2_0 - tre0_2_2; tim1_1_0 = tim0_2_0 - tim0_2_2; tre1_0_1 = tre0_2_1 + tre0_2_3; tim1_0_1 = tim0_2_1 + tim0_2_3; tre1_1_1 = tre0_2_1 - tre0_2_3; tim1_1_1 = tim0_2_1 - tim0_2_3; c_re(out[8 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[8 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[2 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[2 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[5 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[5 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[11 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[11 * ostride]) = tim1_1_0 - tre1_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 324 FP additions and 144 FP multiplications */ void fftwi_no_twiddle_13(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_8_0; FFTW_REAL tim0_8_0; FFTW_REAL tre0_9_0; FFTW_REAL tim0_9_0; FFTW_REAL tre0_10_0; FFTW_REAL tim0_10_0; FFTW_REAL tre0_11_0; FFTW_REAL tim0_11_0; FFTW_REAL tre0_12_0; FFTW_REAL tim0_12_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); tre0_5_0 = c_re(in[5 * istride]); tim0_5_0 = c_im(in[5 * istride]); tre0_6_0 = c_re(in[6 * istride]); tim0_6_0 = c_im(in[6 * istride]); tre0_7_0 = c_re(in[7 * istride]); tim0_7_0 = c_im(in[7 * istride]); tre0_8_0 = c_re(in[8 * istride]); tim0_8_0 = c_im(in[8 * istride]); tre0_9_0 = c_re(in[9 * istride]); tim0_9_0 = c_im(in[9 * istride]); tre0_10_0 = c_re(in[10 * istride]); tim0_10_0 = c_im(in[10 * istride]); tre0_11_0 = c_re(in[11 * istride]); tim0_11_0 = c_im(in[11 * istride]); tre0_12_0 = c_re(in[12 * istride]); tim0_12_0 = c_im(in[12 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0 + tre0_7_0 + tre0_8_0 + tre0_9_0 + tre0_10_0 + tre0_11_0 + tre0_12_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0 + tim0_7_0 + tim0_8_0 + tim0_9_0 + tim0_10_0 + tim0_11_0 + tim0_12_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tre0_1_0 + tre0_12_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_2_0 + tre0_11_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_4_0 + tre0_9_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K464723172) * (tim0_12_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_11_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_10_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_9_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_8_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_7_0 - tim0_6_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[12 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tim0_1_0 + tim0_12_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_2_0 + tim0_11_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_4_0 + tim0_9_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K464723172) * (tre0_1_0 - tre0_12_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_2_0 - tre0_11_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_3_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_4_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_5_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_6_0 - tre0_7_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[12 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K568064746) * (tre0_1_0 + tre0_12_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_5_0 + tre0_8_0)) + (((FFTW_REAL) FFTW_K885456025) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_4_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_2_0 + tre0_11_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K822983865) * (tim0_12_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_11_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_10_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_4_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_5_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_6_0 - tim0_7_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[11 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K568064746) * (tim0_1_0 + tim0_12_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_5_0 + tim0_8_0)) + (((FFTW_REAL) FFTW_K885456025) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_4_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_2_0 + tim0_11_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K822983865) * (tre0_1_0 - tre0_12_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_2_0 - tre0_11_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_3_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_9_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_8_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_7_0 - tre0_6_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[11 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tre0_1_0 + tre0_12_0)) + (((FFTW_REAL) FFTW_K885456025) * (tre0_4_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_2_0 + tre0_11_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K992708874) * (tim0_12_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_11_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_3_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_4_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_8_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_7_0 - tim0_6_0)); c_re(out[3 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[10 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tim0_1_0 + tim0_12_0)) + (((FFTW_REAL) FFTW_K885456025) * (tim0_4_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_2_0 + tim0_11_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K992708874) * (tre0_1_0 - tre0_12_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_2_0 - tre0_11_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_10_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_9_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_5_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_6_0 - tre0_7_0)); c_im(out[3 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[10 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tre0_3_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_4_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_2_0 + tre0_11_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_1_0 + tre0_12_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K935016242) * (tim0_12_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_2_0 - tim0_11_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_3_0 - tim0_10_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_9_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_5_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_6_0 - tim0_7_0)); c_re(out[4 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[9 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tim0_3_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_4_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_2_0 + tim0_11_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_1_0 + tim0_12_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K935016242) * (tre0_1_0 - tre0_12_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_11_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_10_0 - tre0_3_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_4_0 - tre0_9_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_8_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_7_0 - tre0_6_0)); c_im(out[4 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[9 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tre0_2_0 + tre0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_3_0 + tre0_10_0)) + (((FFTW_REAL) FFTW_K885456025) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_4_0 + tre0_9_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_1_0 + tre0_12_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K663122658) * (tim0_12_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_2_0 - tim0_11_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_10_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K239315664) * (tim0_4_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_5_0 - tim0_8_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_7_0 - tim0_6_0)); c_re(out[5 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[8 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K120536680) * (tim0_2_0 + tim0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_3_0 + tim0_10_0)) + (((FFTW_REAL) FFTW_K885456025) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_4_0 + tim0_9_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_1_0 + tim0_12_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K663122658) * (tre0_1_0 - tre0_12_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_11_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_3_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K239315664) * (tre0_9_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_8_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_6_0 - tre0_7_0)); c_im(out[5 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[8 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tre0_2_0 + tre0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tre0_4_0 + tre0_9_0)) + (((FFTW_REAL) FFTW_K120536680) * (tre0_6_0 + tre0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tre0_5_0 + tre0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tre0_3_0 + tre0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tre0_1_0 + tre0_12_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K239315664) * (tim0_12_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K464723172) * (tim0_2_0 - tim0_11_0)) + (((FFTW_REAL) FFTW_K663122658) * (tim0_10_0 - tim0_3_0)) + (((FFTW_REAL) FFTW_K822983865) * (tim0_4_0 - tim0_9_0)) + (((FFTW_REAL) FFTW_K935016242) * (tim0_8_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K992708874) * (tim0_6_0 - tim0_7_0)); c_re(out[6 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[7 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K885456025) * (tim0_2_0 + tim0_11_0)) + (((FFTW_REAL) FFTW_K568064746) * (tim0_4_0 + tim0_9_0)) + (((FFTW_REAL) FFTW_K120536680) * (tim0_6_0 + tim0_7_0)) - (((FFTW_REAL) FFTW_K354604887) * (tim0_5_0 + tim0_8_0)) - (((FFTW_REAL) FFTW_K748510748) * (tim0_3_0 + tim0_10_0)) - (((FFTW_REAL) FFTW_K970941817) * (tim0_1_0 + tim0_12_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K239315664) * (tre0_1_0 - tre0_12_0)) + (((FFTW_REAL) FFTW_K464723172) * (tre0_11_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K663122658) * (tre0_3_0 - tre0_10_0)) + (((FFTW_REAL) FFTW_K822983865) * (tre0_9_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K935016242) * (tre0_5_0 - tre0_8_0)) + (((FFTW_REAL) FFTW_K992708874) * (tre0_7_0 - tre0_6_0)); c_im(out[6 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[7 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 208 FP additions and 72 FP multiplications */ void fftwi_no_twiddle_14(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[9 * istride]); tim1_1_0 = c_im(in[9 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[4 * istride]); tim1_0_0 = c_im(in[4 * istride]); tre1_1_0 = c_re(in[11 * istride]); tim1_1_0 = c_im(in[11 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[13 * istride]); tim1_1_0 = c_im(in[13 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[8 * istride]); tim1_0_0 = c_im(in[8 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre0_0_4 = tre1_0_0 + tre1_1_0; tim0_0_4 = tim1_0_0 + tim1_1_0; tre0_1_4 = tre1_0_0 - tre1_1_0; tim0_1_4 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[10 * istride]); tim1_0_0 = c_im(in[10 * istride]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_5 = tre1_0_0 + tre1_1_0; tim0_0_5 = tim1_0_0 + tim1_1_0; tre0_1_5 = tre1_0_0 - tre1_1_0; tim0_1_5 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[12 * istride]); tim1_0_0 = c_im(in[12 * istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_6 = tre1_0_0 + tre1_1_0; tim0_0_6 = tim1_0_0 + tim1_1_0; tre0_1_6 = tre1_0_0 - tre1_1_0; tim0_1_6 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4 + tre0_0_5 + tre0_0_6; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4 + tim0_0_5 + tim0_0_6; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_0_1 + tre0_0_6)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_0_3 + tre0_0_4)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_0_2 + tre0_0_5)); tre2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_0_6 - tim0_0_1)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_0_5 - tim0_0_2)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_0_4 - tim0_0_3)); c_re(out[8 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[6 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_0_1 + tim0_0_6)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_0_3 + tim0_0_4)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_0_2 + tim0_0_5)); tim2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_0_1 - tre0_0_6)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_0_2 - tre0_0_5)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_0_3 - tre0_0_4)); c_im(out[8 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[6 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_0_3 + tre0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_0_2 + tre0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_0_1 + tre0_0_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_0_6 - tim0_0_1)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_0_2 - tim0_0_5)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_0_3 - tim0_0_4)); c_re(out[2 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[12 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_0_3 + tim0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_0_2 + tim0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_0_1 + tim0_0_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_0_1 - tre0_0_6)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_0_5 - tre0_0_2)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_0_4 - tre0_0_3)); c_im(out[2 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[12 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_0_2 + tre0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_0_3 + tre0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_0_1 + tre0_0_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_0_6 - tim0_0_1)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_0_2 - tim0_0_5)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_0_4 - tim0_0_3)); c_re(out[10 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[4 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_0_2 + tim0_0_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_0_3 + tim0_0_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_0_1 + tim0_0_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_0_1 - tre0_0_6)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_0_5 - tre0_0_2)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_0_3 - tre0_0_4)); c_im(out[10 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[4 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[7 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4 + tre0_1_5 + tre0_1_6; c_im(out[7 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4 + tim0_1_5 + tim0_1_6; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_1 + tre0_1_6)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_3 + tre0_1_4)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_2 + tre0_1_5)); tre2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_1_6 - tim0_1_1)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_1_5 - tim0_1_2)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_1_4 - tim0_1_3)); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[13 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_1 + tim0_1_6)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_3 + tim0_1_4)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_2 + tim0_1_5)); tim2_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_1_1 - tre0_1_6)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_1_2 - tre0_1_5)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_1_3 - tre0_1_4)); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[13 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_3 + tre0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_2 + tre0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_1 + tre0_1_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_1_6 - tim0_1_1)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_1_2 - tim0_1_5)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_1_3 - tim0_1_4)); c_re(out[9 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[5 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_3 + tim0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_2 + tim0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_1 + tim0_1_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_1_1 - tre0_1_6)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_1_5 - tre0_1_2)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_1_4 - tre0_1_3)); c_im(out[9 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[5 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_2 + tre0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_3 + tre0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_1 + tre0_1_6)); tre2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_1_6 - tim0_1_1)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_1_2 - tim0_1_5)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_1_4 - tim0_1_3)); c_re(out[3 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[11 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_2 + tim0_1_5)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_3 + tim0_1_4)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_1 + tim0_1_6)); tim2_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_1_1 - tre0_1_6)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_1_5 - tre0_1_2)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_1_3 - tre0_1_4)); c_im(out[3 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[11 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 202 FP additions and 68 FP multiplications */ void fftwi_no_twiddle_15(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre1_2_0 = c_re(in[10 * istride]); tim1_2_0 = c_im(in[10 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[3 * istride]); tim1_0_0 = c_im(in[3 * istride]); tre1_1_0 = c_re(in[8 * istride]); tim1_1_0 = c_im(in[8 * istride]); tre1_2_0 = c_re(in[13 * istride]); tim1_2_0 = c_im(in[13 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[6 * istride]); tim1_0_0 = c_im(in[6 * istride]); tre1_1_0 = c_re(in[11 * istride]); tim1_1_0 = c_im(in[11 * istride]); tre1_2_0 = c_re(in[istride]); tim1_2_0 = c_im(in[istride]); tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[9 * istride]); tim1_0_0 = c_im(in[9 * istride]); tre1_1_0 = c_re(in[14 * istride]); tim1_1_0 = c_im(in[14 * istride]); tre1_2_0 = c_re(in[4 * istride]); tim1_2_0 = c_im(in[4 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_3 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_3 = tre2_0_0 + tre2_1_0; tre0_2_3 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_3 = tim2_0_0 + tim2_1_0; tim0_2_3 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[12 * istride]); tim1_0_0 = c_im(in[12 * istride]); tre1_1_0 = c_re(in[2 * istride]); tim1_1_0 = c_im(in[2 * istride]); tre1_2_0 = c_re(in[7 * istride]); tim1_2_0 = c_im(in[7 * istride]); tre0_0_4 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_4 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_4 = tre2_0_0 + tre2_1_0; tre0_2_4 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_4 = tim2_0_0 + tim2_1_0; tim0_2_4 = tim2_0_0 - tim2_1_0; } } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_1 + tre0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_2 + tre0_0_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_0_4 - tim0_0_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_0_3 - tim0_0_2)); c_re(out[6 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[9 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_1 + tim0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_2 + tim0_0_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_0_1 - tre0_0_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_0_2 - tre0_0_3)); c_im(out[6 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[9 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_2 + tre0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_1 + tre0_0_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_0_4 - tim0_0_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_0_2 - tim0_0_3)); c_re(out[12 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[3 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_2 + tim0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_1 + tim0_0_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_0_1 - tre0_0_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_0_3 - tre0_0_2)); c_im(out[12 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[3 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[10 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4; c_im(out[10 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_1 + tre0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_2 + tre0_1_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_4 - tim0_1_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_1_3 - tim0_1_2)); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[4 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_1 + tim0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_2 + tim0_1_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_1 - tre0_1_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_1_2 - tre0_1_3)); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[4 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_2 + tre0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_1 + tre0_1_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_4 - tim0_1_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_1_2 - tim0_1_3)); c_re(out[7 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[13 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_2 + tim0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_1 + tim0_1_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_1 - tre0_1_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_1_3 - tre0_1_2)); c_im(out[7 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[13 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[5 * ostride]) = tre0_2_0 + tre0_2_1 + tre0_2_2 + tre0_2_3 + tre0_2_4; c_im(out[5 * ostride]) = tim0_2_0 + tim0_2_1 + tim0_2_2 + tim0_2_3 + tim0_2_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_1 + tre0_2_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_2 + tre0_2_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_2_4 - tim0_2_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_2_3 - tim0_2_2)); c_re(out[11 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[14 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_1 + tim0_2_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_2 + tim0_2_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_2_1 - tre0_2_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_2_2 - tre0_2_3)); c_im(out[11 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[14 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_2 + tre0_2_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_1 + tre0_2_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_2_4 - tim0_2_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_2_2 - tim0_2_3)); c_re(out[2 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[8 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_2 + tim0_2_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_1 + tim0_2_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_2_1 - tre0_2_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_2_3 - tre0_2_2)); c_im(out[2 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[8 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 144 FP additions and 24 FP multiplications */ void fftwi_no_twiddle_16(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[0]); tim2_0_0 = c_im(in[0]); tre2_1_0 = c_re(in[8 * istride]); tim2_1_0 = c_im(in[8 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[4 * istride]); tim2_0_0 = c_im(in[4 * istride]); tre2_1_0 = c_re(in[12 * istride]); tim2_1_0 = c_im(in[12 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 - tim1_1_1; tim0_1_0 = tim1_1_0 + tre1_1_1; tre0_3_0 = tre1_1_0 + tim1_1_1; tim0_3_0 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[istride]); tim2_0_0 = c_im(in[istride]); tre2_1_0 = c_re(in[9 * istride]); tim2_1_0 = c_im(in[9 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[5 * istride]); tim2_0_0 = c_im(in[5 * istride]); tre2_1_0 = c_re(in[13 * istride]); tim2_1_0 = c_im(in[13 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 - tim1_1_1; tim0_1_1 = tim1_1_0 + tre1_1_1; tre0_3_1 = tre1_1_0 + tim1_1_1; tim0_3_1 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[2 * istride]); tim2_0_0 = c_im(in[2 * istride]); tre2_1_0 = c_re(in[10 * istride]); tim2_1_0 = c_im(in[10 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[6 * istride]); tim2_0_0 = c_im(in[6 * istride]); tre2_1_0 = c_re(in[14 * istride]); tim2_1_0 = c_im(in[14 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 - tim1_1_1; tim0_1_2 = tim1_1_0 + tre1_1_1; tre0_3_2 = tre1_1_0 + tim1_1_1; tim0_3_2 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[3 * istride]); tim2_0_0 = c_im(in[3 * istride]); tre2_1_0 = c_re(in[11 * istride]); tim2_1_0 = c_im(in[11 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[7 * istride]); tim2_0_0 = c_im(in[7 * istride]); tre2_1_0 = c_re(in[15 * istride]); tim2_1_0 = c_im(in[15 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 - tim1_1_1; tim0_1_3 = tim1_1_0 + tre1_1_1; tre0_3_3 = tre1_1_0 + tim1_1_1; tim0_3_3 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(out[0]) = tre1_0_0 + tre1_0_1; c_im(out[0]) = tim1_0_0 + tim1_0_1; c_re(out[8 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[8 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[4 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[4 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[12 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[12 * ostride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_2 - tim0_1_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_2 + tre0_1_2); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_1) - (((FFTW_REAL) FFTW_K382683432) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_1) + (((FFTW_REAL) FFTW_K382683432) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_1_3); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_3) + (((FFTW_REAL) FFTW_K923879532) * tre0_1_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(out[ostride]) = tre1_0_0 + tre1_0_1; c_im(out[ostride]) = tim1_0_0 + tim1_0_1; c_re(out[9 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[9 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[5 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[5 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[13 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[13 * ostride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_2_0 - tim0_2_2; tim1_0_0 = tim0_2_0 + tre0_2_2; tre1_1_0 = tre0_2_0 + tim0_2_2; tim1_1_0 = tim0_2_0 - tre0_2_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_1 - tim0_2_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_1 + tre0_2_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_3 + tim0_2_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_3 - tim0_2_3); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(out[2 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[2 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[10 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[10 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[6 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[6 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[14 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[14 * ostride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_2 + tim0_3_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_2 - tim0_3_2); tre1_0_0 = tre0_3_0 - tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 + tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_1) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_1) + (((FFTW_REAL) FFTW_K923879532) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_3); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_3_3) + (((FFTW_REAL) FFTW_K382683432) * tre0_3_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } c_re(out[3 * ostride]) = tre1_0_0 + tre1_0_1; c_im(out[3 * ostride]) = tim1_0_0 + tim1_0_1; c_re(out[11 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[11 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[7 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[7 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[15 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[15 * ostride]) = tim1_1_0 - tre1_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 4 FP additions and 0 FP multiplications */ void fftwi_no_twiddle_2(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0; c_im(out[0]) = tim0_0_0 + tim0_1_0; c_re(out[ostride]) = tre0_0_0 - tre0_1_0; c_im(out[ostride]) = tim0_0_0 - tim0_1_0; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 14 FP additions and 4 FP multiplications */ void fftwi_no_twiddle_3(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_0 + tre0_2_0)); tre1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_2_0 - tim0_1_0); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[2 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_0 + tim0_2_0)); tim1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_1_0 - tre0_2_0); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[2 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 376 FP additions and 88 FP multiplications */ void fftwi_no_twiddle_32(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[0]); tim2_0_0 = c_im(in[0]); tre2_1_0 = c_re(in[16 * istride]); tim2_1_0 = c_im(in[16 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[8 * istride]); tim2_0_0 = c_im(in[8 * istride]); tre2_1_0 = c_re(in[24 * istride]); tim2_1_0 = c_im(in[24 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 - tim1_1_1; tim0_1_0 = tim1_1_0 + tre1_1_1; tre0_3_0 = tre1_1_0 + tim1_1_1; tim0_3_0 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[istride]); tim2_0_0 = c_im(in[istride]); tre2_1_0 = c_re(in[17 * istride]); tim2_1_0 = c_im(in[17 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[9 * istride]); tim2_0_0 = c_im(in[9 * istride]); tre2_1_0 = c_re(in[25 * istride]); tim2_1_0 = c_im(in[25 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 - tim1_1_1; tim0_1_1 = tim1_1_0 + tre1_1_1; tre0_3_1 = tre1_1_0 + tim1_1_1; tim0_3_1 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[2 * istride]); tim2_0_0 = c_im(in[2 * istride]); tre2_1_0 = c_re(in[18 * istride]); tim2_1_0 = c_im(in[18 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[10 * istride]); tim2_0_0 = c_im(in[10 * istride]); tre2_1_0 = c_re(in[26 * istride]); tim2_1_0 = c_im(in[26 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 - tim1_1_1; tim0_1_2 = tim1_1_0 + tre1_1_1; tre0_3_2 = tre1_1_0 + tim1_1_1; tim0_3_2 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[3 * istride]); tim2_0_0 = c_im(in[3 * istride]); tre2_1_0 = c_re(in[19 * istride]); tim2_1_0 = c_im(in[19 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[11 * istride]); tim2_0_0 = c_im(in[11 * istride]); tre2_1_0 = c_re(in[27 * istride]); tim2_1_0 = c_im(in[27 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 - tim1_1_1; tim0_1_3 = tim1_1_0 + tre1_1_1; tre0_3_3 = tre1_1_0 + tim1_1_1; tim0_3_3 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[4 * istride]); tim2_0_0 = c_im(in[4 * istride]); tre2_1_0 = c_re(in[20 * istride]); tim2_1_0 = c_im(in[20 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[12 * istride]); tim2_0_0 = c_im(in[12 * istride]); tre2_1_0 = c_re(in[28 * istride]); tim2_1_0 = c_im(in[28 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_4 = tre1_0_0 + tre1_0_1; tim0_0_4 = tim1_0_0 + tim1_0_1; tre0_2_4 = tre1_0_0 - tre1_0_1; tim0_2_4 = tim1_0_0 - tim1_0_1; tre0_1_4 = tre1_1_0 - tim1_1_1; tim0_1_4 = tim1_1_0 + tre1_1_1; tre0_3_4 = tre1_1_0 + tim1_1_1; tim0_3_4 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[5 * istride]); tim2_0_0 = c_im(in[5 * istride]); tre2_1_0 = c_re(in[21 * istride]); tim2_1_0 = c_im(in[21 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[13 * istride]); tim2_0_0 = c_im(in[13 * istride]); tre2_1_0 = c_re(in[29 * istride]); tim2_1_0 = c_im(in[29 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_5 = tre1_0_0 + tre1_0_1; tim0_0_5 = tim1_0_0 + tim1_0_1; tre0_2_5 = tre1_0_0 - tre1_0_1; tim0_2_5 = tim1_0_0 - tim1_0_1; tre0_1_5 = tre1_1_0 - tim1_1_1; tim0_1_5 = tim1_1_0 + tre1_1_1; tre0_3_5 = tre1_1_0 + tim1_1_1; tim0_3_5 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[6 * istride]); tim2_0_0 = c_im(in[6 * istride]); tre2_1_0 = c_re(in[22 * istride]); tim2_1_0 = c_im(in[22 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[14 * istride]); tim2_0_0 = c_im(in[14 * istride]); tre2_1_0 = c_re(in[30 * istride]); tim2_1_0 = c_im(in[30 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_6 = tre1_0_0 + tre1_0_1; tim0_0_6 = tim1_0_0 + tim1_0_1; tre0_2_6 = tre1_0_0 - tre1_0_1; tim0_2_6 = tim1_0_0 - tim1_0_1; tre0_1_6 = tre1_1_0 - tim1_1_1; tim0_1_6 = tim1_1_0 + tre1_1_1; tre0_3_6 = tre1_1_0 + tim1_1_1; tim0_3_6 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[7 * istride]); tim2_0_0 = c_im(in[7 * istride]); tre2_1_0 = c_re(in[23 * istride]); tim2_1_0 = c_im(in[23 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[15 * istride]); tim2_0_0 = c_im(in[15 * istride]); tre2_1_0 = c_re(in[31 * istride]); tim2_1_0 = c_im(in[31 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_7 = tre1_0_0 + tre1_0_1; tim0_0_7 = tim1_0_0 + tim1_0_1; tre0_2_7 = tre1_0_0 - tre1_0_1; tim0_2_7 = tim1_0_0 - tim1_0_1; tre0_1_7 = tre1_1_0 - tim1_1_1; tim0_1_7 = tim1_1_0 + tre1_1_1; tre0_3_7 = tre1_1_0 + tim1_1_1; tim0_3_7 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[0]) = tre2_0_0 + tre2_0_1; c_im(out[0]) = tim2_0_0 + tim2_0_1; c_re(out[16 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[16 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[8 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[8 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[24 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[24 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[4 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[4 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[20 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[20 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[12 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[12 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[28 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[28 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_4 - tim0_1_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_4 + tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_1) - (((FFTW_REAL) FFTW_K195090322) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_1) + (((FFTW_REAL) FFTW_K195090322) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_1_5) - (((FFTW_REAL) FFTW_K831469612) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_1_5) + (((FFTW_REAL) FFTW_K831469612) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_2) - (((FFTW_REAL) FFTW_K382683432) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_2) + (((FFTW_REAL) FFTW_K382683432) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_6) + (((FFTW_REAL) FFTW_K923879532) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_3) - (((FFTW_REAL) FFTW_K555570233) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_3) + (((FFTW_REAL) FFTW_K555570233) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_1_7) - (((FFTW_REAL) FFTW_K980785280) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_1_7) + (((FFTW_REAL) FFTW_K980785280) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[ostride]) = tre2_0_0 + tre2_0_1; c_im(out[ostride]) = tim2_0_0 + tim2_0_1; c_re(out[17 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[17 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[9 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[9 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[25 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[25 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[5 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[5 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[21 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[21 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[13 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[13 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[29 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[29 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_2_0 - tim0_2_4; tim1_0_0 = tim0_2_0 + tre0_2_4; tre1_1_0 = tre0_2_0 + tim0_2_4; tim1_1_0 = tim0_2_0 - tre0_2_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_1) - (((FFTW_REAL) FFTW_K382683432) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_1) + (((FFTW_REAL) FFTW_K382683432) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_5) + (((FFTW_REAL) FFTW_K923879532) * tim0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_5) - (((FFTW_REAL) FFTW_K382683432) * tim0_2_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_2 - tim0_2_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_2 + tre0_2_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_6 + tim0_2_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_6 - tim0_2_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_3) + (((FFTW_REAL) FFTW_K923879532) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_7) + (((FFTW_REAL) FFTW_K382683432) * tim0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_7) - (((FFTW_REAL) FFTW_K923879532) * tim0_2_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[2 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[2 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[18 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[18 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[10 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[10 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[26 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[26 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[6 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[6 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[22 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[22 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[14 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[14 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[30 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[30 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_4 + tim0_3_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_4 - tim0_3_4); tre1_0_0 = tre0_3_0 - tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 + tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_1) - (((FFTW_REAL) FFTW_K555570233) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_1) + (((FFTW_REAL) FFTW_K555570233) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_3_5) + (((FFTW_REAL) FFTW_K195090322) * tim0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_3_5) - (((FFTW_REAL) FFTW_K980785280) * tim0_3_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_2) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_2) + (((FFTW_REAL) FFTW_K923879532) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_3_6) + (((FFTW_REAL) FFTW_K382683432) * tre0_3_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_3_3) + (((FFTW_REAL) FFTW_K980785280) * tim0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_3_3) - (((FFTW_REAL) FFTW_K195090322) * tim0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_7) - (((FFTW_REAL) FFTW_K555570233) * tre0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_3_7) + (((FFTW_REAL) FFTW_K831469612) * tre0_3_7); tre1_0_3 = tre2_1_0 - tre2_0_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = (-(tre2_0_0 + tre2_1_0)); tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[3 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[3 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[19 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[19 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[11 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[11 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[27 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[27 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[7 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[7 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[23 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[23 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[15 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[15 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[31 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[31 * ostride]) = tim2_1_0 - tre2_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 16 FP additions and 0 FP multiplications */ void fftwi_no_twiddle_4(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[2 * istride]); tim1_1_0 = c_im(in[2 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[istride]); tim1_0_0 = c_im(in[istride]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1; c_im(out[0]) = tim0_0_0 + tim0_0_1; c_re(out[2 * ostride]) = tre0_0_0 - tre0_0_1; c_im(out[2 * ostride]) = tim0_0_0 - tim0_0_1; c_re(out[ostride]) = tre0_1_0 - tim0_1_1; c_im(out[ostride]) = tim0_1_0 + tre0_1_1; c_re(out[3 * ostride]) = tre0_1_0 + tim0_1_1; c_im(out[3 * ostride]) = tim0_1_0 - tre0_1_1; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 44 FP additions and 16 FP multiplications */ void fftwi_no_twiddle_5(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_0 + tre0_3_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_4_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_3_0 - tim0_2_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[4 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_0 + tim0_3_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_2_0 - tre0_3_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[4 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_0 + tre0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_0 + tre0_4_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_4_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_2_0 - tim0_3_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[3 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_0 + tim0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_0 + tim0_4_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_3_0 - tre0_2_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[3 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 40 FP additions and 8 FP multiplications */ void fftwi_no_twiddle_6(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[4 * istride]); tim1_0_0 = c_im(in[4 * istride]); tre1_1_0 = c_re(in[istride]); tim1_1_0 = c_im(in[istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_2 - tim0_0_1); c_re(out[4 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[2 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_1 - tre0_0_2); c_im(out[4 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[2 * ostride]) = tim2_0_0 - tim2_1_0; } c_re(out[3 * ostride]) = tre0_1_0 + tre0_1_1 + tre0_1_2; c_im(out[3 * ostride]) = tim0_1_0 + tim0_1_1 + tim0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_1 + tre0_1_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_1_2 - tim0_1_1); c_re(out[ostride]) = tre2_0_0 + tre2_1_0; c_re(out[5 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_1 + tim0_1_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_1_1 - tre0_1_2); c_im(out[ostride]) = tim2_0_0 + tim2_1_0; c_im(out[5 * ostride]) = tim2_0_0 - tim2_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 928 FP additions and 248 FP multiplications */ void fftwi_no_twiddle_64(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_4_1; FFTW_REAL tim0_4_1; FFTW_REAL tre0_4_2; FFTW_REAL tim0_4_2; FFTW_REAL tre0_4_3; FFTW_REAL tim0_4_3; FFTW_REAL tre0_4_4; FFTW_REAL tim0_4_4; FFTW_REAL tre0_4_5; FFTW_REAL tim0_4_5; FFTW_REAL tre0_4_6; FFTW_REAL tim0_4_6; FFTW_REAL tre0_4_7; FFTW_REAL tim0_4_7; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_5_1; FFTW_REAL tim0_5_1; FFTW_REAL tre0_5_2; FFTW_REAL tim0_5_2; FFTW_REAL tre0_5_3; FFTW_REAL tim0_5_3; FFTW_REAL tre0_5_4; FFTW_REAL tim0_5_4; FFTW_REAL tre0_5_5; FFTW_REAL tim0_5_5; FFTW_REAL tre0_5_6; FFTW_REAL tim0_5_6; FFTW_REAL tre0_5_7; FFTW_REAL tim0_5_7; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_6_1; FFTW_REAL tim0_6_1; FFTW_REAL tre0_6_2; FFTW_REAL tim0_6_2; FFTW_REAL tre0_6_3; FFTW_REAL tim0_6_3; FFTW_REAL tre0_6_4; FFTW_REAL tim0_6_4; FFTW_REAL tre0_6_5; FFTW_REAL tim0_6_5; FFTW_REAL tre0_6_6; FFTW_REAL tim0_6_6; FFTW_REAL tre0_6_7; FFTW_REAL tim0_6_7; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_7_1; FFTW_REAL tim0_7_1; FFTW_REAL tre0_7_2; FFTW_REAL tim0_7_2; FFTW_REAL tre0_7_3; FFTW_REAL tim0_7_3; FFTW_REAL tre0_7_4; FFTW_REAL tim0_7_4; FFTW_REAL tre0_7_5; FFTW_REAL tim0_7_5; FFTW_REAL tre0_7_6; FFTW_REAL tim0_7_6; FFTW_REAL tre0_7_7; FFTW_REAL tim0_7_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[0]); tim2_0_0 = c_im(in[0]); tre2_1_0 = c_re(in[32 * istride]); tim2_1_0 = c_im(in[32 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[8 * istride]); tim2_0_0 = c_im(in[8 * istride]); tre2_1_0 = c_re(in[40 * istride]); tim2_1_0 = c_im(in[40 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[16 * istride]); tim2_0_0 = c_im(in[16 * istride]); tre2_1_0 = c_re(in[48 * istride]); tim2_1_0 = c_im(in[48 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[24 * istride]); tim2_0_0 = c_im(in[24 * istride]); tre2_1_0 = c_re(in[56 * istride]); tim2_1_0 = c_im(in[56 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_0 = tre2_0_0 + tre2_0_1; tim0_0_0 = tim2_0_0 + tim2_0_1; tre0_4_0 = tre2_0_0 - tre2_0_1; tim0_4_0 = tim2_0_0 - tim2_0_1; tre0_2_0 = tre2_1_0 - tim2_1_1; tim0_2_0 = tim2_1_0 + tre2_1_1; tre0_6_0 = tre2_1_0 + tim2_1_1; tim0_6_0 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_0 = tre2_0_0 + tre2_0_1; tim0_1_0 = tim2_0_0 + tim2_0_1; tre0_5_0 = tre2_0_0 - tre2_0_1; tim0_5_0 = tim2_0_0 - tim2_0_1; tre0_3_0 = tre2_1_0 - tim2_1_1; tim0_3_0 = tim2_1_0 + tre2_1_1; tre0_7_0 = tre2_1_0 + tim2_1_1; tim0_7_0 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[istride]); tim2_0_0 = c_im(in[istride]); tre2_1_0 = c_re(in[33 * istride]); tim2_1_0 = c_im(in[33 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[9 * istride]); tim2_0_0 = c_im(in[9 * istride]); tre2_1_0 = c_re(in[41 * istride]); tim2_1_0 = c_im(in[41 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[17 * istride]); tim2_0_0 = c_im(in[17 * istride]); tre2_1_0 = c_re(in[49 * istride]); tim2_1_0 = c_im(in[49 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[25 * istride]); tim2_0_0 = c_im(in[25 * istride]); tre2_1_0 = c_re(in[57 * istride]); tim2_1_0 = c_im(in[57 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_1 = tre2_0_0 + tre2_0_1; tim0_0_1 = tim2_0_0 + tim2_0_1; tre0_4_1 = tre2_0_0 - tre2_0_1; tim0_4_1 = tim2_0_0 - tim2_0_1; tre0_2_1 = tre2_1_0 - tim2_1_1; tim0_2_1 = tim2_1_0 + tre2_1_1; tre0_6_1 = tre2_1_0 + tim2_1_1; tim0_6_1 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_1 = tre2_0_0 + tre2_0_1; tim0_1_1 = tim2_0_0 + tim2_0_1; tre0_5_1 = tre2_0_0 - tre2_0_1; tim0_5_1 = tim2_0_0 - tim2_0_1; tre0_3_1 = tre2_1_0 - tim2_1_1; tim0_3_1 = tim2_1_0 + tre2_1_1; tre0_7_1 = tre2_1_0 + tim2_1_1; tim0_7_1 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[2 * istride]); tim2_0_0 = c_im(in[2 * istride]); tre2_1_0 = c_re(in[34 * istride]); tim2_1_0 = c_im(in[34 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[10 * istride]); tim2_0_0 = c_im(in[10 * istride]); tre2_1_0 = c_re(in[42 * istride]); tim2_1_0 = c_im(in[42 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[18 * istride]); tim2_0_0 = c_im(in[18 * istride]); tre2_1_0 = c_re(in[50 * istride]); tim2_1_0 = c_im(in[50 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[26 * istride]); tim2_0_0 = c_im(in[26 * istride]); tre2_1_0 = c_re(in[58 * istride]); tim2_1_0 = c_im(in[58 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_2 = tre2_0_0 + tre2_0_1; tim0_0_2 = tim2_0_0 + tim2_0_1; tre0_4_2 = tre2_0_0 - tre2_0_1; tim0_4_2 = tim2_0_0 - tim2_0_1; tre0_2_2 = tre2_1_0 - tim2_1_1; tim0_2_2 = tim2_1_0 + tre2_1_1; tre0_6_2 = tre2_1_0 + tim2_1_1; tim0_6_2 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_2 = tre2_0_0 + tre2_0_1; tim0_1_2 = tim2_0_0 + tim2_0_1; tre0_5_2 = tre2_0_0 - tre2_0_1; tim0_5_2 = tim2_0_0 - tim2_0_1; tre0_3_2 = tre2_1_0 - tim2_1_1; tim0_3_2 = tim2_1_0 + tre2_1_1; tre0_7_2 = tre2_1_0 + tim2_1_1; tim0_7_2 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[3 * istride]); tim2_0_0 = c_im(in[3 * istride]); tre2_1_0 = c_re(in[35 * istride]); tim2_1_0 = c_im(in[35 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[11 * istride]); tim2_0_0 = c_im(in[11 * istride]); tre2_1_0 = c_re(in[43 * istride]); tim2_1_0 = c_im(in[43 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[19 * istride]); tim2_0_0 = c_im(in[19 * istride]); tre2_1_0 = c_re(in[51 * istride]); tim2_1_0 = c_im(in[51 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[27 * istride]); tim2_0_0 = c_im(in[27 * istride]); tre2_1_0 = c_re(in[59 * istride]); tim2_1_0 = c_im(in[59 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_3 = tre2_0_0 + tre2_0_1; tim0_0_3 = tim2_0_0 + tim2_0_1; tre0_4_3 = tre2_0_0 - tre2_0_1; tim0_4_3 = tim2_0_0 - tim2_0_1; tre0_2_3 = tre2_1_0 - tim2_1_1; tim0_2_3 = tim2_1_0 + tre2_1_1; tre0_6_3 = tre2_1_0 + tim2_1_1; tim0_6_3 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_3 = tre2_0_0 + tre2_0_1; tim0_1_3 = tim2_0_0 + tim2_0_1; tre0_5_3 = tre2_0_0 - tre2_0_1; tim0_5_3 = tim2_0_0 - tim2_0_1; tre0_3_3 = tre2_1_0 - tim2_1_1; tim0_3_3 = tim2_1_0 + tre2_1_1; tre0_7_3 = tre2_1_0 + tim2_1_1; tim0_7_3 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[4 * istride]); tim2_0_0 = c_im(in[4 * istride]); tre2_1_0 = c_re(in[36 * istride]); tim2_1_0 = c_im(in[36 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[12 * istride]); tim2_0_0 = c_im(in[12 * istride]); tre2_1_0 = c_re(in[44 * istride]); tim2_1_0 = c_im(in[44 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[20 * istride]); tim2_0_0 = c_im(in[20 * istride]); tre2_1_0 = c_re(in[52 * istride]); tim2_1_0 = c_im(in[52 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[28 * istride]); tim2_0_0 = c_im(in[28 * istride]); tre2_1_0 = c_re(in[60 * istride]); tim2_1_0 = c_im(in[60 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_4 = tre2_0_0 + tre2_0_1; tim0_0_4 = tim2_0_0 + tim2_0_1; tre0_4_4 = tre2_0_0 - tre2_0_1; tim0_4_4 = tim2_0_0 - tim2_0_1; tre0_2_4 = tre2_1_0 - tim2_1_1; tim0_2_4 = tim2_1_0 + tre2_1_1; tre0_6_4 = tre2_1_0 + tim2_1_1; tim0_6_4 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_4 = tre2_0_0 + tre2_0_1; tim0_1_4 = tim2_0_0 + tim2_0_1; tre0_5_4 = tre2_0_0 - tre2_0_1; tim0_5_4 = tim2_0_0 - tim2_0_1; tre0_3_4 = tre2_1_0 - tim2_1_1; tim0_3_4 = tim2_1_0 + tre2_1_1; tre0_7_4 = tre2_1_0 + tim2_1_1; tim0_7_4 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[5 * istride]); tim2_0_0 = c_im(in[5 * istride]); tre2_1_0 = c_re(in[37 * istride]); tim2_1_0 = c_im(in[37 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[13 * istride]); tim2_0_0 = c_im(in[13 * istride]); tre2_1_0 = c_re(in[45 * istride]); tim2_1_0 = c_im(in[45 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[21 * istride]); tim2_0_0 = c_im(in[21 * istride]); tre2_1_0 = c_re(in[53 * istride]); tim2_1_0 = c_im(in[53 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[29 * istride]); tim2_0_0 = c_im(in[29 * istride]); tre2_1_0 = c_re(in[61 * istride]); tim2_1_0 = c_im(in[61 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_5 = tre2_0_0 + tre2_0_1; tim0_0_5 = tim2_0_0 + tim2_0_1; tre0_4_5 = tre2_0_0 - tre2_0_1; tim0_4_5 = tim2_0_0 - tim2_0_1; tre0_2_5 = tre2_1_0 - tim2_1_1; tim0_2_5 = tim2_1_0 + tre2_1_1; tre0_6_5 = tre2_1_0 + tim2_1_1; tim0_6_5 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_5 = tre2_0_0 + tre2_0_1; tim0_1_5 = tim2_0_0 + tim2_0_1; tre0_5_5 = tre2_0_0 - tre2_0_1; tim0_5_5 = tim2_0_0 - tim2_0_1; tre0_3_5 = tre2_1_0 - tim2_1_1; tim0_3_5 = tim2_1_0 + tre2_1_1; tre0_7_5 = tre2_1_0 + tim2_1_1; tim0_7_5 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[6 * istride]); tim2_0_0 = c_im(in[6 * istride]); tre2_1_0 = c_re(in[38 * istride]); tim2_1_0 = c_im(in[38 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[14 * istride]); tim2_0_0 = c_im(in[14 * istride]); tre2_1_0 = c_re(in[46 * istride]); tim2_1_0 = c_im(in[46 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[22 * istride]); tim2_0_0 = c_im(in[22 * istride]); tre2_1_0 = c_re(in[54 * istride]); tim2_1_0 = c_im(in[54 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[30 * istride]); tim2_0_0 = c_im(in[30 * istride]); tre2_1_0 = c_re(in[62 * istride]); tim2_1_0 = c_im(in[62 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_6 = tre2_0_0 + tre2_0_1; tim0_0_6 = tim2_0_0 + tim2_0_1; tre0_4_6 = tre2_0_0 - tre2_0_1; tim0_4_6 = tim2_0_0 - tim2_0_1; tre0_2_6 = tre2_1_0 - tim2_1_1; tim0_2_6 = tim2_1_0 + tre2_1_1; tre0_6_6 = tre2_1_0 + tim2_1_1; tim0_6_6 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_6 = tre2_0_0 + tre2_0_1; tim0_1_6 = tim2_0_0 + tim2_0_1; tre0_5_6 = tre2_0_0 - tre2_0_1; tim0_5_6 = tim2_0_0 - tim2_0_1; tre0_3_6 = tre2_1_0 - tim2_1_1; tim0_3_6 = tim2_1_0 + tre2_1_1; tre0_7_6 = tre2_1_0 + tim2_1_1; tim0_7_6 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[7 * istride]); tim2_0_0 = c_im(in[7 * istride]); tre2_1_0 = c_re(in[39 * istride]); tim2_1_0 = c_im(in[39 * istride]); tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[15 * istride]); tim2_0_0 = c_im(in[15 * istride]); tre2_1_0 = c_re(in[47 * istride]); tim2_1_0 = c_im(in[47 * istride]); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[23 * istride]); tim2_0_0 = c_im(in[23 * istride]); tre2_1_0 = c_re(in[55 * istride]); tim2_1_0 = c_im(in[55 * istride]); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(in[31 * istride]); tim2_0_0 = c_im(in[31 * istride]); tre2_1_0 = c_re(in[63 * istride]); tim2_1_0 = c_im(in[63 * istride]); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_7 = tre2_0_0 + tre2_0_1; tim0_0_7 = tim2_0_0 + tim2_0_1; tre0_4_7 = tre2_0_0 - tre2_0_1; tim0_4_7 = tim2_0_0 - tim2_0_1; tre0_2_7 = tre2_1_0 - tim2_1_1; tim0_2_7 = tim2_1_0 + tre2_1_1; tre0_6_7 = tre2_1_0 + tim2_1_1; tim0_6_7 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_7 = tre2_0_0 + tre2_0_1; tim0_1_7 = tim2_0_0 + tim2_0_1; tre0_5_7 = tre2_0_0 - tre2_0_1; tim0_5_7 = tim2_0_0 - tim2_0_1; tre0_3_7 = tre2_1_0 - tim2_1_1; tim0_3_7 = tim2_1_0 + tre2_1_1; tre0_7_7 = tre2_1_0 + tim2_1_1; tim0_7_7 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[0]) = tre2_0_0 + tre2_0_1; c_im(out[0]) = tim2_0_0 + tim2_0_1; c_re(out[32 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[32 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[16 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[16 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[48 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[48 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[8 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[8 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[40 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[40 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[24 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[24 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[56 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[56 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_4) - (((FFTW_REAL) FFTW_K382683432) * tim0_1_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_4) + (((FFTW_REAL) FFTW_K382683432) * tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tre0_1_1) - (((FFTW_REAL) FFTW_K098017140) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tim0_1_1) + (((FFTW_REAL) FFTW_K098017140) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_1_5) - (((FFTW_REAL) FFTW_K471396736) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_1_5) + (((FFTW_REAL) FFTW_K471396736) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_2) - (((FFTW_REAL) FFTW_K195090322) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_2) + (((FFTW_REAL) FFTW_K195090322) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_6) - (((FFTW_REAL) FFTW_K555570233) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_6) + (((FFTW_REAL) FFTW_K555570233) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_1_3) - (((FFTW_REAL) FFTW_K290284677) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_1_3) + (((FFTW_REAL) FFTW_K290284677) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_1_7) - (((FFTW_REAL) FFTW_K634393284) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_1_7) + (((FFTW_REAL) FFTW_K634393284) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[ostride]) = tre2_0_0 + tre2_0_1; c_im(out[ostride]) = tim2_0_0 + tim2_0_1; c_re(out[33 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[33 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[17 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[17 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[49 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[49 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[9 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[9 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[41 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[41 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[25 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[25 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[57 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[57 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_4 - tim0_2_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_4 + tre0_2_4); tre1_0_0 = tre0_2_0 + tre2_1_0; tim1_0_0 = tim0_2_0 + tim2_1_0; tre1_1_0 = tre0_2_0 - tre2_1_0; tim1_1_0 = tim0_2_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_2_1) - (((FFTW_REAL) FFTW_K195090322) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_2_1) + (((FFTW_REAL) FFTW_K195090322) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_2_5) - (((FFTW_REAL) FFTW_K831469612) * tim0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_2_5) + (((FFTW_REAL) FFTW_K831469612) * tre0_2_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_2) - (((FFTW_REAL) FFTW_K382683432) * tim0_2_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_2) + (((FFTW_REAL) FFTW_K382683432) * tre0_2_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_2_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_6) + (((FFTW_REAL) FFTW_K923879532) * tre0_2_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_2_3) - (((FFTW_REAL) FFTW_K555570233) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_2_3) + (((FFTW_REAL) FFTW_K555570233) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_2_7) - (((FFTW_REAL) FFTW_K980785280) * tim0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_2_7) + (((FFTW_REAL) FFTW_K980785280) * tre0_2_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[2 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[2 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[34 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[34 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[18 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[18 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[50 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[50 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[10 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[10 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[42 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[42 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[26 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[26 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[58 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[58 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_4) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_4) + (((FFTW_REAL) FFTW_K923879532) * tre0_3_4); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_3_1) - (((FFTW_REAL) FFTW_K290284677) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_3_1) + (((FFTW_REAL) FFTW_K290284677) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_3_5) - (((FFTW_REAL) FFTW_K995184726) * tim0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_3_5) + (((FFTW_REAL) FFTW_K995184726) * tre0_3_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_2) - (((FFTW_REAL) FFTW_K555570233) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_2) + (((FFTW_REAL) FFTW_K555570233) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_3_6) + (((FFTW_REAL) FFTW_K980785280) * tim0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_3_6) - (((FFTW_REAL) FFTW_K195090322) * tim0_3_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tre0_3_3) - (((FFTW_REAL) FFTW_K773010453) * tim0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tim0_3_3) + (((FFTW_REAL) FFTW_K773010453) * tre0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K471396736) * tre0_3_7) + (((FFTW_REAL) FFTW_K881921264) * tim0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_3_7) - (((FFTW_REAL) FFTW_K471396736) * tim0_3_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[3 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[3 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[35 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[35 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[19 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[19 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[51 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[51 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[11 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[11 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[43 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[43 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[27 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[27 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[59 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[59 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_4_0 - tim0_4_4; tim1_0_0 = tim0_4_0 + tre0_4_4; tre1_1_0 = tre0_4_0 + tim0_4_4; tim1_1_0 = tim0_4_0 - tre0_4_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_1) - (((FFTW_REAL) FFTW_K382683432) * tim0_4_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_1) + (((FFTW_REAL) FFTW_K382683432) * tre0_4_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_5) + (((FFTW_REAL) FFTW_K923879532) * tim0_4_5); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_5) - (((FFTW_REAL) FFTW_K382683432) * tim0_4_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_2 - tim0_4_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_2 + tre0_4_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_6 + tim0_4_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_6 - tim0_4_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_4_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_3) + (((FFTW_REAL) FFTW_K923879532) * tre0_4_3); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_7) + (((FFTW_REAL) FFTW_K382683432) * tim0_4_7); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_7) - (((FFTW_REAL) FFTW_K923879532) * tim0_4_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[4 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[4 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[36 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[36 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[20 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[20 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[52 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[52 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[12 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[12 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[44 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[44 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[28 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[28 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[60 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[60 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_5_4) + (((FFTW_REAL) FFTW_K923879532) * tim0_5_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_5_4) - (((FFTW_REAL) FFTW_K382683432) * tim0_5_4); tre1_0_0 = tre0_5_0 - tre2_1_0; tim1_0_0 = tim0_5_0 + tim2_1_0; tre1_1_0 = tre0_5_0 + tre2_1_0; tim1_1_0 = tim0_5_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_5_1) - (((FFTW_REAL) FFTW_K471396736) * tim0_5_1); tim2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_5_1) + (((FFTW_REAL) FFTW_K471396736) * tre0_5_1); tre2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_5_5) + (((FFTW_REAL) FFTW_K634393284) * tim0_5_5); tim2_1_0 = (((FFTW_REAL) FFTW_K634393284) * tre0_5_5) - (((FFTW_REAL) FFTW_K773010453) * tim0_5_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_5_2) - (((FFTW_REAL) FFTW_K831469612) * tim0_5_2); tim2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_5_2) + (((FFTW_REAL) FFTW_K831469612) * tre0_5_2); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_5_6) + (((FFTW_REAL) FFTW_K195090322) * tim0_5_6); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_5_6) - (((FFTW_REAL) FFTW_K980785280) * tim0_5_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_5_3) - (((FFTW_REAL) FFTW_K995184726) * tim0_5_3); tim2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_5_3) + (((FFTW_REAL) FFTW_K995184726) * tre0_5_3); tre2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tim0_5_7) - (((FFTW_REAL) FFTW_K956940335) * tre0_5_7); tim2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_5_7) + (((FFTW_REAL) FFTW_K290284677) * tre0_5_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[5 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[5 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[37 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[37 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[21 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[21 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[53 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[53 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[13 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[13 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[45 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[45 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[29 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[29 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[61 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[61 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_6_4 + tim0_6_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_6_4 - tim0_6_4); tre1_0_0 = tre0_6_0 - tre2_1_0; tim1_0_0 = tim0_6_0 + tim2_1_0; tre1_1_0 = tre0_6_0 + tre2_1_0; tim1_1_0 = tim0_6_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_6_1) - (((FFTW_REAL) FFTW_K555570233) * tim0_6_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_6_1) + (((FFTW_REAL) FFTW_K555570233) * tre0_6_1); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_6_5) + (((FFTW_REAL) FFTW_K195090322) * tim0_6_5); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_6_5) - (((FFTW_REAL) FFTW_K980785280) * tim0_6_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_6_2) - (((FFTW_REAL) FFTW_K923879532) * tim0_6_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_6_2) + (((FFTW_REAL) FFTW_K923879532) * tre0_6_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_6_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_6_6); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_6_6) + (((FFTW_REAL) FFTW_K382683432) * tre0_6_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_6_3) + (((FFTW_REAL) FFTW_K980785280) * tim0_6_3); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_6_3) - (((FFTW_REAL) FFTW_K195090322) * tim0_6_3); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_6_7) - (((FFTW_REAL) FFTW_K555570233) * tre0_6_7); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_6_7) + (((FFTW_REAL) FFTW_K831469612) * tre0_6_7); tre1_0_3 = tre2_1_0 - tre2_0_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = (-(tre2_0_0 + tre2_1_0)); tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[6 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[6 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[38 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[38 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[22 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[22 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[54 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[54 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[14 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[14 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[46 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[46 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[30 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[30 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[62 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[62 * ostride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_7_4) + (((FFTW_REAL) FFTW_K382683432) * tim0_7_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_7_4) - (((FFTW_REAL) FFTW_K923879532) * tim0_7_4); tre1_0_0 = tre0_7_0 - tre2_1_0; tim1_0_0 = tim0_7_0 + tim2_1_0; tre1_1_0 = tre0_7_0 + tre2_1_0; tim1_1_0 = tim0_7_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_7_1) - (((FFTW_REAL) FFTW_K634393284) * tim0_7_1); tim2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_7_1) + (((FFTW_REAL) FFTW_K634393284) * tre0_7_1); tre2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tim0_7_5) - (((FFTW_REAL) FFTW_K956940335) * tre0_7_5); tim2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_7_5) + (((FFTW_REAL) FFTW_K290284677) * tre0_7_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_7_2) - (((FFTW_REAL) FFTW_K980785280) * tim0_7_2); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_7_2) + (((FFTW_REAL) FFTW_K980785280) * tre0_7_2); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_7_6) - (((FFTW_REAL) FFTW_K555570233) * tre0_7_6); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_7_6) + (((FFTW_REAL) FFTW_K831469612) * tre0_7_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K471396736) * tre0_7_3) + (((FFTW_REAL) FFTW_K881921264) * tim0_7_3); tim2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_7_3) - (((FFTW_REAL) FFTW_K471396736) * tim0_7_3); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_7_7) + (((FFTW_REAL) FFTW_K995184726) * tim0_7_7); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_7_7) - (((FFTW_REAL) FFTW_K995184726) * tre0_7_7); tre1_0_3 = tre2_1_0 - tre2_0_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = (-(tre2_0_0 + tre2_1_0)); tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(out[7 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[7 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[39 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[39 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[23 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[23 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[55 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[55 * ostride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(out[15 * ostride]) = tre2_0_0 + tre2_0_1; c_im(out[15 * ostride]) = tim2_0_0 + tim2_0_1; c_re(out[47 * ostride]) = tre2_0_0 - tre2_0_1; c_im(out[47 * ostride]) = tim2_0_0 - tim2_0_1; c_re(out[31 * ostride]) = tre2_1_0 - tim2_1_1; c_im(out[31 * ostride]) = tim2_1_0 + tre2_1_1; c_re(out[63 * ostride]) = tre2_1_0 + tim2_1_1; c_im(out[63 * ostride]) = tim2_1_0 - tre2_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 90 FP additions and 36 FP multiplications */ void fftwi_no_twiddle_7(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; tre0_0_0 = c_re(in[0]); tim0_0_0 = c_im(in[0]); tre0_1_0 = c_re(in[istride]); tim0_1_0 = c_im(in[istride]); tre0_2_0 = c_re(in[2 * istride]); tim0_2_0 = c_im(in[2 * istride]); tre0_3_0 = c_re(in[3 * istride]); tim0_3_0 = c_im(in[3 * istride]); tre0_4_0 = c_re(in[4 * istride]); tim0_4_0 = c_im(in[4 * istride]); tre0_5_0 = c_re(in[5 * istride]); tim0_5_0 = c_im(in[5 * istride]); tre0_6_0 = c_re(in[6 * istride]); tim0_6_0 = c_im(in[6 * istride]); c_re(out[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0; c_im(out[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_2_0 + tre0_5_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_6_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_5_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_4_0 - tim0_3_0)); c_re(out[ostride]) = tre1_0_0 + tre1_1_0; c_re(out[6 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_2_0 + tim0_5_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_1_0 - tre0_6_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_2_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_3_0 - tre0_4_0)); c_im(out[ostride]) = tim1_0_0 + tim1_1_0; c_im(out[6 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_6_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_2_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_3_0 - tim0_4_0)); c_re(out[2 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[5 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_1_0 - tre0_6_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_5_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_4_0 - tre0_3_0)); c_im(out[2 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[5 * ostride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_6_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_2_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_4_0 - tim0_3_0)); c_re(out[3 * ostride]) = tre1_0_0 + tre1_1_0; c_re(out[4 * ostride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_1_0 - tre0_6_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_5_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_3_0 - tre0_4_0)); c_im(out[3 * ostride]) = tim1_0_0 + tim1_1_0; c_im(out[4 * ostride]) = tim1_0_0 - tim1_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 52 FP additions and 4 FP multiplications */ void fftwi_no_twiddle_8(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[4 * istride]); tim1_1_0 = c_im(in[4 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[istride]); tim1_0_0 = c_im(in[istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[6 * istride]); tim1_1_0 = c_im(in[6 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(in[3 * istride]); tim1_0_0 = c_im(in[3 * istride]); tre1_1_0 = c_re(in[7 * istride]); tim1_1_0 = c_im(in[7 * istride]); tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(out[0]) = tre1_0_0 + tre1_0_1; c_im(out[0]) = tim1_0_0 + tim1_0_1; c_re(out[4 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[4 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[2 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[2 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[6 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[6 * ostride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_1_0 - tim0_1_2; tim1_0_0 = tim0_1_0 + tre0_1_2; tre1_1_0 = tre0_1_0 + tim0_1_2; tim1_1_0 = tim0_1_0 - tre0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_1 - tim0_1_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_1 + tre0_1_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_3 + tim0_1_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_3 - tim0_1_3); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(out[ostride]) = tre1_0_0 + tre1_0_1; c_im(out[ostride]) = tim1_0_0 + tim1_0_1; c_re(out[5 * ostride]) = tre1_0_0 - tre1_0_1; c_im(out[5 * ostride]) = tim1_0_0 - tim1_0_1; c_re(out[3 * ostride]) = tre1_1_0 - tim1_1_1; c_im(out[3 * ostride]) = tim1_1_0 + tre1_1_1; c_re(out[7 * ostride]) = tre1_1_0 + tim1_1_1; c_im(out[7 * ostride]) = tim1_1_0 - tre1_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 92 FP additions and 40 FP multiplications */ void fftwi_no_twiddle_9(const FFTW_COMPLEX *in, FFTW_COMPLEX *out, int istride, int ostride) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[0]); tim1_0_0 = c_im(in[0]); tre1_1_0 = c_re(in[3 * istride]); tim1_1_0 = c_im(in[3 * istride]); tre1_2_0 = c_re(in[6 * istride]); tim1_2_0 = c_im(in[6 * istride]); tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[istride]); tim1_0_0 = c_im(in[istride]); tre1_1_0 = c_re(in[4 * istride]); tim1_1_0 = c_im(in[4 * istride]); tre1_2_0 = c_re(in[7 * istride]); tim1_2_0 = c_im(in[7 * istride]); tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(in[2 * istride]); tim1_0_0 = c_im(in[2 * istride]); tre1_1_0 = c_re(in[5 * istride]); tim1_1_0 = c_im(in[5 * istride]); tre1_2_0 = c_re(in[8 * istride]); tim1_2_0 = c_im(in[8 * istride]); tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } c_re(out[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(out[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_2 - tim0_0_1); c_re(out[3 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[6 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_1 - tre0_0_2); c_im(out[3 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[6 * ostride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tre0_1_1) - (((FFTW_REAL) FFTW_K642787609) * tim0_1_1); tim1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tim0_1_1) + (((FFTW_REAL) FFTW_K642787609) * tre0_1_1); tre1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_1_2) - (((FFTW_REAL) FFTW_K984807753) * tim0_1_2); tim1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_1_2) + (((FFTW_REAL) FFTW_K984807753) * tre0_1_2); c_re(out[ostride]) = tre0_1_0 + tre1_1_0 + tre1_2_0; c_im(out[ostride]) = tim0_1_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); c_re(out[4 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[7 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); c_im(out[4 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[7 * ostride]) = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_2_1) - (((FFTW_REAL) FFTW_K984807753) * tim0_2_1); tim1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_2_1) + (((FFTW_REAL) FFTW_K984807753) * tre0_2_1); tre1_2_0 = (((FFTW_REAL) FFTW_K939692620) * tre0_2_2) + (((FFTW_REAL) FFTW_K342020143) * tim0_2_2); tim1_2_0 = (((FFTW_REAL) FFTW_K342020143) * tre0_2_2) - (((FFTW_REAL) FFTW_K939692620) * tim0_2_2); c_re(out[2 * ostride]) = tre0_2_0 + tre1_1_0 - tre1_2_0; c_im(out[2 * ostride]) = tim0_2_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 + (((FFTW_REAL) FFTW_K499999999) * (tre1_2_0 - tre1_1_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); c_re(out[5 * ostride]) = tre2_0_0 + tre2_1_0; c_re(out[8 * ostride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 + tre1_2_0); c_im(out[5 * ostride]) = tim2_0_0 + tim2_1_0; c_im(out[8 * ostride]) = tim2_0_0 - tim2_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 126 FP additions and 68 FP multiplications */ void fftw_twiddle_10(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 9) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_4 = tre1_0_0 + tre1_1_0; tim0_0_4 = tim1_0_0 + tim1_1_0; tre0_1_4 = tre1_0_0 - tre1_1_0; tim0_1_4 = tim1_0_0 - tim1_1_0; } c_re(inout[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4; c_im(inout[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_1 + tre0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_2 + tre0_0_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_0_1 - tim0_0_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_0_2 - tim0_0_3)); c_re(inout[6 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[4 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_1 + tim0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_2 + tim0_0_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_0_4 - tre0_0_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_0_3 - tre0_0_2)); c_im(inout[6 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[4 * stride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_2 + tre0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_1 + tre0_0_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_0_1 - tim0_0_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_0_3 - tim0_0_2)); c_re(inout[2 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[8 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_2 + tim0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_1 + tim0_0_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_0_4 - tre0_0_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_0_2 - tre0_0_3)); c_im(inout[2 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[8 * stride]) = tim2_0_0 - tim2_1_0; } c_re(inout[5 * stride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4; c_im(inout[5 * stride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_1 + tre0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_2 + tre0_1_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_1 - tim0_1_4)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_1_2 - tim0_1_3)); c_re(inout[stride]) = tre2_0_0 + tre2_1_0; c_re(inout[9 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_1 + tim0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_2 + tim0_1_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_4 - tre0_1_1)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_1_3 - tre0_1_2)); c_im(inout[stride]) = tim2_0_0 + tim2_1_0; c_im(inout[9 * stride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_2 + tre0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_1 + tre0_1_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_1 - tim0_1_4)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_1_3 - tim0_1_2)); c_re(inout[7 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[3 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_2 + tim0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_1 + tim0_1_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_4 - tre0_1_1)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_1_2 - tre0_1_3)); c_im(inout[7 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[3 * stride]) = tim2_0_0 - tim2_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 174 FP additions and 84 FP multiplications */ void fftw_twiddle_16(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 15) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(inout[0]); tim2_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[12 * stride]); ti = c_im(inout[12 * stride]); twr = c_re(W[11]); twi = c_im(W[11]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 + tim1_1_1; tim0_1_0 = tim1_1_0 - tre1_1_1; tre0_3_0 = tre1_1_0 - tim1_1_1; tim0_3_0 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[13 * stride]); ti = c_im(inout[13 * stride]); twr = c_re(W[12]); twi = c_im(W[12]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 + tim1_1_1; tim0_1_1 = tim1_1_0 - tre1_1_1; tre0_3_1 = tre1_1_0 - tim1_1_1; tim0_3_1 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[10 * stride]); ti = c_im(inout[10 * stride]); twr = c_re(W[9]); twi = c_im(W[9]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[14 * stride]); ti = c_im(inout[14 * stride]); twr = c_re(W[13]); twi = c_im(W[13]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 + tim1_1_1; tim0_1_2 = tim1_1_0 - tre1_1_1; tre0_3_2 = tre1_1_0 - tim1_1_1; tim0_3_2 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[11 * stride]); ti = c_im(inout[11 * stride]); twr = c_re(W[10]); twi = c_im(W[10]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[15 * stride]); ti = c_im(inout[15 * stride]); twr = c_re(W[14]); twi = c_im(W[14]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 + tim1_1_1; tim0_1_3 = tim1_1_0 - tre1_1_1; tre0_3_3 = tre1_1_0 - tim1_1_1; tim0_3_3 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(inout[0]) = tre1_0_0 + tre1_0_1; c_im(inout[0]) = tim1_0_0 + tim1_0_1; c_re(inout[8 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[8 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[4 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[4 * stride]) = tim1_1_0 - tre1_1_1; c_re(inout[12 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[12 * stride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_2 + tim0_1_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_2 - tre0_1_2); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_1) + (((FFTW_REAL) FFTW_K382683432) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_1) - (((FFTW_REAL) FFTW_K382683432) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_3) + (((FFTW_REAL) FFTW_K923879532) * tim0_1_3); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_1_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(inout[stride]) = tre1_0_0 + tre1_0_1; c_im(inout[stride]) = tim1_0_0 + tim1_0_1; c_re(inout[9 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[9 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[5 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[5 * stride]) = tim1_1_0 - tre1_1_1; c_re(inout[13 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[13 * stride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_2_0 + tim0_2_2; tim1_0_0 = tim0_2_0 - tre0_2_2; tre1_1_0 = tre0_2_0 - tim0_2_2; tim1_1_0 = tim0_2_0 + tre0_2_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_1 + tim0_2_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_1 - tre0_2_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_3 - tre0_2_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_3 + tre0_2_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } c_re(inout[2 * stride]) = tre1_0_0 + tre1_0_1; c_im(inout[2 * stride]) = tim1_0_0 + tim1_0_1; c_re(inout[10 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[10 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[6 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[6 * stride]) = tim1_1_0 - tre1_1_1; c_re(inout[14 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[14 * stride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_2 - tre0_3_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_2 + tre0_3_2); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 - tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_1) + (((FFTW_REAL) FFTW_K923879532) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_1) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_3_3) + (((FFTW_REAL) FFTW_K382683432) * tim0_3_3); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_3); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(inout[3 * stride]) = tre1_0_0 + tre1_0_1; c_im(inout[3 * stride]) = tim1_0_0 + tim1_0_1; c_re(inout[11 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[11 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[7 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[7 * stride]) = tim1_1_0 - tre1_1_1; c_re(inout[15 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[15 * stride]) = tim1_1_0 + tre1_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 6 FP additions and 4 FP multiplications */ void fftw_twiddle_2(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 1) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) - (ti * twi); tim0_1_0 = (tr * twi) + (ti * twr); } c_re(inout[0]) = tre0_0_0 + tre0_1_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0; c_re(inout[stride]) = tre0_0_0 - tre0_1_0; c_im(inout[stride]) = tim0_0_0 - tim0_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 18 FP additions and 12 FP multiplications */ void fftw_twiddle_3(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 2) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) - (ti * twi); tim0_1_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre0_2_0 = (tr * twr) - (ti * twi); tim0_2_0 = (tr * twi) + (ti * twr); } c_re(inout[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_0 + tre0_2_0)); tre1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_1_0 - tim0_2_0); c_re(inout[stride]) = tre1_0_0 + tre1_1_0; c_re(inout[2 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_0 + tim0_2_0)); tim1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_2_0 - tre0_1_0); c_im(inout[stride]) = tim1_0_0 + tim1_1_0; c_im(inout[2 * stride]) = tim1_0_0 - tim1_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 438 FP additions and 212 FP multiplications */ void fftw_twiddle_32(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 31) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(inout[0]); tim2_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[16 * stride]); ti = c_im(inout[16 * stride]); twr = c_re(W[15]); twi = c_im(W[15]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[24 * stride]); ti = c_im(inout[24 * stride]); twr = c_re(W[23]); twi = c_im(W[23]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 + tim1_1_1; tim0_1_0 = tim1_1_0 - tre1_1_1; tre0_3_0 = tre1_1_0 - tim1_1_1; tim0_3_0 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[17 * stride]); ti = c_im(inout[17 * stride]); twr = c_re(W[16]); twi = c_im(W[16]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[25 * stride]); ti = c_im(inout[25 * stride]); twr = c_re(W[24]); twi = c_im(W[24]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 + tim1_1_1; tim0_1_1 = tim1_1_0 - tre1_1_1; tre0_3_1 = tre1_1_0 - tim1_1_1; tim0_3_1 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[18 * stride]); ti = c_im(inout[18 * stride]); twr = c_re(W[17]); twi = c_im(W[17]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[10 * stride]); ti = c_im(inout[10 * stride]); twr = c_re(W[9]); twi = c_im(W[9]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[26 * stride]); ti = c_im(inout[26 * stride]); twr = c_re(W[25]); twi = c_im(W[25]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 + tim1_1_1; tim0_1_2 = tim1_1_0 - tre1_1_1; tre0_3_2 = tre1_1_0 - tim1_1_1; tim0_3_2 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[19 * stride]); ti = c_im(inout[19 * stride]); twr = c_re(W[18]); twi = c_im(W[18]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[11 * stride]); ti = c_im(inout[11 * stride]); twr = c_re(W[10]); twi = c_im(W[10]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[27 * stride]); ti = c_im(inout[27 * stride]); twr = c_re(W[26]); twi = c_im(W[26]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 + tim1_1_1; tim0_1_3 = tim1_1_0 - tre1_1_1; tre0_3_3 = tre1_1_0 - tim1_1_1; tim0_3_3 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[20 * stride]); ti = c_im(inout[20 * stride]); twr = c_re(W[19]); twi = c_im(W[19]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[12 * stride]); ti = c_im(inout[12 * stride]); twr = c_re(W[11]); twi = c_im(W[11]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[28 * stride]); ti = c_im(inout[28 * stride]); twr = c_re(W[27]); twi = c_im(W[27]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_4 = tre1_0_0 + tre1_0_1; tim0_0_4 = tim1_0_0 + tim1_0_1; tre0_2_4 = tre1_0_0 - tre1_0_1; tim0_2_4 = tim1_0_0 - tim1_0_1; tre0_1_4 = tre1_1_0 + tim1_1_1; tim0_1_4 = tim1_1_0 - tre1_1_1; tre0_3_4 = tre1_1_0 - tim1_1_1; tim0_3_4 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[21 * stride]); ti = c_im(inout[21 * stride]); twr = c_re(W[20]); twi = c_im(W[20]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[13 * stride]); ti = c_im(inout[13 * stride]); twr = c_re(W[12]); twi = c_im(W[12]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[29 * stride]); ti = c_im(inout[29 * stride]); twr = c_re(W[28]); twi = c_im(W[28]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_5 = tre1_0_0 + tre1_0_1; tim0_0_5 = tim1_0_0 + tim1_0_1; tre0_2_5 = tre1_0_0 - tre1_0_1; tim0_2_5 = tim1_0_0 - tim1_0_1; tre0_1_5 = tre1_1_0 + tim1_1_1; tim0_1_5 = tim1_1_0 - tre1_1_1; tre0_3_5 = tre1_1_0 - tim1_1_1; tim0_3_5 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[22 * stride]); ti = c_im(inout[22 * stride]); twr = c_re(W[21]); twi = c_im(W[21]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[14 * stride]); ti = c_im(inout[14 * stride]); twr = c_re(W[13]); twi = c_im(W[13]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[30 * stride]); ti = c_im(inout[30 * stride]); twr = c_re(W[29]); twi = c_im(W[29]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_6 = tre1_0_0 + tre1_0_1; tim0_0_6 = tim1_0_0 + tim1_0_1; tre0_2_6 = tre1_0_0 - tre1_0_1; tim0_2_6 = tim1_0_0 - tim1_0_1; tre0_1_6 = tre1_1_0 + tim1_1_1; tim0_1_6 = tim1_1_0 - tre1_1_1; tre0_3_6 = tre1_1_0 - tim1_1_1; tim0_3_6 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[23 * stride]); ti = c_im(inout[23 * stride]); twr = c_re(W[22]); twi = c_im(W[22]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[15 * stride]); ti = c_im(inout[15 * stride]); twr = c_re(W[14]); twi = c_im(W[14]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[31 * stride]); ti = c_im(inout[31 * stride]); twr = c_re(W[30]); twi = c_im(W[30]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_7 = tre1_0_0 + tre1_0_1; tim0_0_7 = tim1_0_0 + tim1_0_1; tre0_2_7 = tre1_0_0 - tre1_0_1; tim0_2_7 = tim1_0_0 - tim1_0_1; tre0_1_7 = tre1_1_0 + tim1_1_1; tim0_1_7 = tim1_1_0 - tre1_1_1; tre0_3_7 = tre1_1_0 - tim1_1_1; tim0_3_7 = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[0]) = tre2_0_0 + tre2_0_1; c_im(inout[0]) = tim2_0_0 + tim2_0_1; c_re(inout[16 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[16 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[8 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[8 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[24 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[24 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[4 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[4 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[20 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[20 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[12 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[12 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[28 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[28 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_4 + tim0_1_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_4 - tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_1) + (((FFTW_REAL) FFTW_K195090322) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_1) - (((FFTW_REAL) FFTW_K195090322) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_1_5) + (((FFTW_REAL) FFTW_K831469612) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_1_5) - (((FFTW_REAL) FFTW_K831469612) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_2) + (((FFTW_REAL) FFTW_K382683432) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_2) - (((FFTW_REAL) FFTW_K382683432) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_6) + (((FFTW_REAL) FFTW_K923879532) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_3) + (((FFTW_REAL) FFTW_K555570233) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_3) - (((FFTW_REAL) FFTW_K555570233) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_1_7) + (((FFTW_REAL) FFTW_K980785280) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_1_7) - (((FFTW_REAL) FFTW_K980785280) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[stride]) = tre2_0_0 + tre2_0_1; c_im(inout[stride]) = tim2_0_0 + tim2_0_1; c_re(inout[17 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[17 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[9 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[9 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[25 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[25 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[5 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[5 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[21 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[21 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[13 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[13 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[29 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[29 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_2_0 + tim0_2_4; tim1_0_0 = tim0_2_0 - tre0_2_4; tre1_1_0 = tre0_2_0 - tim0_2_4; tim1_1_0 = tim0_2_0 + tre0_2_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_1) + (((FFTW_REAL) FFTW_K382683432) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_1) - (((FFTW_REAL) FFTW_K382683432) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_5) - (((FFTW_REAL) FFTW_K382683432) * tre0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_5) + (((FFTW_REAL) FFTW_K923879532) * tre0_2_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_2 + tim0_2_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_2 - tre0_2_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_6 - tre0_2_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_6 + tre0_2_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_3) + (((FFTW_REAL) FFTW_K923879532) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_7) - (((FFTW_REAL) FFTW_K923879532) * tre0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_7) + (((FFTW_REAL) FFTW_K382683432) * tre0_2_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[2 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[2 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[18 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[18 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[10 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[10 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[26 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[26 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[6 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[6 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[22 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[22 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[14 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[14 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[30 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[30 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_4 - tre0_3_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_3_4 + tre0_3_4); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 - tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_1) + (((FFTW_REAL) FFTW_K555570233) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_1) - (((FFTW_REAL) FFTW_K555570233) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_3_5) - (((FFTW_REAL) FFTW_K980785280) * tre0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_3_5) + (((FFTW_REAL) FFTW_K195090322) * tre0_3_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_2) + (((FFTW_REAL) FFTW_K923879532) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_2) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_3_6) + (((FFTW_REAL) FFTW_K382683432) * tim0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_3_3) - (((FFTW_REAL) FFTW_K195090322) * tre0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_3_3) + (((FFTW_REAL) FFTW_K980785280) * tre0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_3_7) + (((FFTW_REAL) FFTW_K831469612) * tim0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_7) - (((FFTW_REAL) FFTW_K555570233) * tim0_3_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_1_0 - tim2_0_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = (-(tim2_0_0 + tim2_1_0)); } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[3 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[3 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[19 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[19 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[11 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[11 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[27 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[27 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[7 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[7 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[23 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[23 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[15 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[15 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[31 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[31 * stride]) = tim2_1_0 + tre2_1_1; } } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 22 FP additions and 12 FP multiplications */ void fftw_twiddle_4(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 3) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } c_re(inout[0]) = tre0_0_0 + tre0_0_1; c_im(inout[0]) = tim0_0_0 + tim0_0_1; c_re(inout[2 * stride]) = tre0_0_0 - tre0_0_1; c_im(inout[2 * stride]) = tim0_0_0 - tim0_0_1; c_re(inout[stride]) = tre0_1_0 + tim0_1_1; c_im(inout[stride]) = tim0_1_0 - tre0_1_1; c_re(inout[3 * stride]) = tre0_1_0 - tim0_1_1; c_im(inout[3 * stride]) = tim0_1_0 + tre0_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 52 FP additions and 32 FP multiplications */ void fftw_twiddle_5(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 4) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) - (ti * twi); tim0_1_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre0_2_0 = (tr * twr) - (ti * twi); tim0_2_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre0_3_0 = (tr * twr) - (ti * twi); tim0_3_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre0_4_0 = (tr * twr) - (ti * twi); tim0_4_0 = (tr * twi) + (ti * twr); } c_re(inout[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_0 + tre0_3_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_2_0 - tim0_3_0)); c_re(inout[stride]) = tre1_0_0 + tre1_1_0; c_re(inout[4 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_0 + tim0_3_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_4_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_3_0 - tre0_2_0)); c_im(inout[stride]) = tim1_0_0 + tim1_1_0; c_im(inout[4 * stride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_0 + tre0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_0 + tre0_4_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_0 - tim0_4_0)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_3_0 - tim0_2_0)); c_re(inout[2 * stride]) = tre1_0_0 + tre1_1_0; c_re(inout[3 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_0 + tim0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_0 + tim0_4_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_4_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_2_0 - tre0_3_0)); c_im(inout[2 * stride]) = tim1_0_0 + tim1_1_0; c_im(inout[3 * stride]) = tim1_0_0 - tim1_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 50 FP additions and 28 FP multiplications */ void fftw_twiddle_6(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 5) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } c_re(inout[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(inout[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_1 - tim0_0_2); c_re(inout[4 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[2 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_2 - tre0_0_1); c_im(inout[4 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[2 * stride]) = tim2_0_0 - tim2_1_0; } c_re(inout[3 * stride]) = tre0_1_0 + tre0_1_1 + tre0_1_2; c_im(inout[3 * stride]) = tim0_1_0 + tim0_1_1 + tim0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_1 + tre0_1_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_1_1 - tim0_1_2); c_re(inout[stride]) = tre2_0_0 + tre2_1_0; c_re(inout[5 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_1 + tim0_1_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_1_2 - tre0_1_1); c_im(inout[stride]) = tim2_0_0 + tim2_1_0; c_im(inout[5 * stride]) = tim2_0_0 - tim2_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 1054 FP additions and 500 FP multiplications */ void fftw_twiddle_64(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 63) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_4_1; FFTW_REAL tim0_4_1; FFTW_REAL tre0_4_2; FFTW_REAL tim0_4_2; FFTW_REAL tre0_4_3; FFTW_REAL tim0_4_3; FFTW_REAL tre0_4_4; FFTW_REAL tim0_4_4; FFTW_REAL tre0_4_5; FFTW_REAL tim0_4_5; FFTW_REAL tre0_4_6; FFTW_REAL tim0_4_6; FFTW_REAL tre0_4_7; FFTW_REAL tim0_4_7; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_5_1; FFTW_REAL tim0_5_1; FFTW_REAL tre0_5_2; FFTW_REAL tim0_5_2; FFTW_REAL tre0_5_3; FFTW_REAL tim0_5_3; FFTW_REAL tre0_5_4; FFTW_REAL tim0_5_4; FFTW_REAL tre0_5_5; FFTW_REAL tim0_5_5; FFTW_REAL tre0_5_6; FFTW_REAL tim0_5_6; FFTW_REAL tre0_5_7; FFTW_REAL tim0_5_7; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_6_1; FFTW_REAL tim0_6_1; FFTW_REAL tre0_6_2; FFTW_REAL tim0_6_2; FFTW_REAL tre0_6_3; FFTW_REAL tim0_6_3; FFTW_REAL tre0_6_4; FFTW_REAL tim0_6_4; FFTW_REAL tre0_6_5; FFTW_REAL tim0_6_5; FFTW_REAL tre0_6_6; FFTW_REAL tim0_6_6; FFTW_REAL tre0_6_7; FFTW_REAL tim0_6_7; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_7_1; FFTW_REAL tim0_7_1; FFTW_REAL tre0_7_2; FFTW_REAL tim0_7_2; FFTW_REAL tre0_7_3; FFTW_REAL tim0_7_3; FFTW_REAL tre0_7_4; FFTW_REAL tim0_7_4; FFTW_REAL tre0_7_5; FFTW_REAL tim0_7_5; FFTW_REAL tre0_7_6; FFTW_REAL tim0_7_6; FFTW_REAL tre0_7_7; FFTW_REAL tim0_7_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(inout[0]); tim2_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[32 * stride]); ti = c_im(inout[32 * stride]); twr = c_re(W[31]); twi = c_im(W[31]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[40 * stride]); ti = c_im(inout[40 * stride]); twr = c_re(W[39]); twi = c_im(W[39]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[16 * stride]); ti = c_im(inout[16 * stride]); twr = c_re(W[15]); twi = c_im(W[15]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[48 * stride]); ti = c_im(inout[48 * stride]); twr = c_re(W[47]); twi = c_im(W[47]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[24 * stride]); ti = c_im(inout[24 * stride]); twr = c_re(W[23]); twi = c_im(W[23]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[56 * stride]); ti = c_im(inout[56 * stride]); twr = c_re(W[55]); twi = c_im(W[55]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_0 = tre2_0_0 + tre2_0_1; tim0_0_0 = tim2_0_0 + tim2_0_1; tre0_4_0 = tre2_0_0 - tre2_0_1; tim0_4_0 = tim2_0_0 - tim2_0_1; tre0_2_0 = tre2_1_0 + tim2_1_1; tim0_2_0 = tim2_1_0 - tre2_1_1; tre0_6_0 = tre2_1_0 - tim2_1_1; tim0_6_0 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_0 = tre2_0_0 + tre2_0_1; tim0_1_0 = tim2_0_0 + tim2_0_1; tre0_5_0 = tre2_0_0 - tre2_0_1; tim0_5_0 = tim2_0_0 - tim2_0_1; tre0_3_0 = tre2_1_0 + tim2_1_1; tim0_3_0 = tim2_1_0 - tre2_1_1; tre0_7_0 = tre2_1_0 - tim2_1_1; tim0_7_0 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[33 * stride]); ti = c_im(inout[33 * stride]); twr = c_re(W[32]); twi = c_im(W[32]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[41 * stride]); ti = c_im(inout[41 * stride]); twr = c_re(W[40]); twi = c_im(W[40]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[17 * stride]); ti = c_im(inout[17 * stride]); twr = c_re(W[16]); twi = c_im(W[16]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[49 * stride]); ti = c_im(inout[49 * stride]); twr = c_re(W[48]); twi = c_im(W[48]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[25 * stride]); ti = c_im(inout[25 * stride]); twr = c_re(W[24]); twi = c_im(W[24]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[57 * stride]); ti = c_im(inout[57 * stride]); twr = c_re(W[56]); twi = c_im(W[56]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_1 = tre2_0_0 + tre2_0_1; tim0_0_1 = tim2_0_0 + tim2_0_1; tre0_4_1 = tre2_0_0 - tre2_0_1; tim0_4_1 = tim2_0_0 - tim2_0_1; tre0_2_1 = tre2_1_0 + tim2_1_1; tim0_2_1 = tim2_1_0 - tre2_1_1; tre0_6_1 = tre2_1_0 - tim2_1_1; tim0_6_1 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_1 = tre2_0_0 + tre2_0_1; tim0_1_1 = tim2_0_0 + tim2_0_1; tre0_5_1 = tre2_0_0 - tre2_0_1; tim0_5_1 = tim2_0_0 - tim2_0_1; tre0_3_1 = tre2_1_0 + tim2_1_1; tim0_3_1 = tim2_1_0 - tre2_1_1; tre0_7_1 = tre2_1_0 - tim2_1_1; tim0_7_1 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[34 * stride]); ti = c_im(inout[34 * stride]); twr = c_re(W[33]); twi = c_im(W[33]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[10 * stride]); ti = c_im(inout[10 * stride]); twr = c_re(W[9]); twi = c_im(W[9]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[42 * stride]); ti = c_im(inout[42 * stride]); twr = c_re(W[41]); twi = c_im(W[41]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[18 * stride]); ti = c_im(inout[18 * stride]); twr = c_re(W[17]); twi = c_im(W[17]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[50 * stride]); ti = c_im(inout[50 * stride]); twr = c_re(W[49]); twi = c_im(W[49]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[26 * stride]); ti = c_im(inout[26 * stride]); twr = c_re(W[25]); twi = c_im(W[25]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[58 * stride]); ti = c_im(inout[58 * stride]); twr = c_re(W[57]); twi = c_im(W[57]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_2 = tre2_0_0 + tre2_0_1; tim0_0_2 = tim2_0_0 + tim2_0_1; tre0_4_2 = tre2_0_0 - tre2_0_1; tim0_4_2 = tim2_0_0 - tim2_0_1; tre0_2_2 = tre2_1_0 + tim2_1_1; tim0_2_2 = tim2_1_0 - tre2_1_1; tre0_6_2 = tre2_1_0 - tim2_1_1; tim0_6_2 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_2 = tre2_0_0 + tre2_0_1; tim0_1_2 = tim2_0_0 + tim2_0_1; tre0_5_2 = tre2_0_0 - tre2_0_1; tim0_5_2 = tim2_0_0 - tim2_0_1; tre0_3_2 = tre2_1_0 + tim2_1_1; tim0_3_2 = tim2_1_0 - tre2_1_1; tre0_7_2 = tre2_1_0 - tim2_1_1; tim0_7_2 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[35 * stride]); ti = c_im(inout[35 * stride]); twr = c_re(W[34]); twi = c_im(W[34]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[11 * stride]); ti = c_im(inout[11 * stride]); twr = c_re(W[10]); twi = c_im(W[10]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[43 * stride]); ti = c_im(inout[43 * stride]); twr = c_re(W[42]); twi = c_im(W[42]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[19 * stride]); ti = c_im(inout[19 * stride]); twr = c_re(W[18]); twi = c_im(W[18]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[51 * stride]); ti = c_im(inout[51 * stride]); twr = c_re(W[50]); twi = c_im(W[50]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[27 * stride]); ti = c_im(inout[27 * stride]); twr = c_re(W[26]); twi = c_im(W[26]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[59 * stride]); ti = c_im(inout[59 * stride]); twr = c_re(W[58]); twi = c_im(W[58]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_3 = tre2_0_0 + tre2_0_1; tim0_0_3 = tim2_0_0 + tim2_0_1; tre0_4_3 = tre2_0_0 - tre2_0_1; tim0_4_3 = tim2_0_0 - tim2_0_1; tre0_2_3 = tre2_1_0 + tim2_1_1; tim0_2_3 = tim2_1_0 - tre2_1_1; tre0_6_3 = tre2_1_0 - tim2_1_1; tim0_6_3 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_3 = tre2_0_0 + tre2_0_1; tim0_1_3 = tim2_0_0 + tim2_0_1; tre0_5_3 = tre2_0_0 - tre2_0_1; tim0_5_3 = tim2_0_0 - tim2_0_1; tre0_3_3 = tre2_1_0 + tim2_1_1; tim0_3_3 = tim2_1_0 - tre2_1_1; tre0_7_3 = tre2_1_0 - tim2_1_1; tim0_7_3 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[36 * stride]); ti = c_im(inout[36 * stride]); twr = c_re(W[35]); twi = c_im(W[35]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[12 * stride]); ti = c_im(inout[12 * stride]); twr = c_re(W[11]); twi = c_im(W[11]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[44 * stride]); ti = c_im(inout[44 * stride]); twr = c_re(W[43]); twi = c_im(W[43]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[20 * stride]); ti = c_im(inout[20 * stride]); twr = c_re(W[19]); twi = c_im(W[19]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[52 * stride]); ti = c_im(inout[52 * stride]); twr = c_re(W[51]); twi = c_im(W[51]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[28 * stride]); ti = c_im(inout[28 * stride]); twr = c_re(W[27]); twi = c_im(W[27]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[60 * stride]); ti = c_im(inout[60 * stride]); twr = c_re(W[59]); twi = c_im(W[59]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_4 = tre2_0_0 + tre2_0_1; tim0_0_4 = tim2_0_0 + tim2_0_1; tre0_4_4 = tre2_0_0 - tre2_0_1; tim0_4_4 = tim2_0_0 - tim2_0_1; tre0_2_4 = tre2_1_0 + tim2_1_1; tim0_2_4 = tim2_1_0 - tre2_1_1; tre0_6_4 = tre2_1_0 - tim2_1_1; tim0_6_4 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_4 = tre2_0_0 + tre2_0_1; tim0_1_4 = tim2_0_0 + tim2_0_1; tre0_5_4 = tre2_0_0 - tre2_0_1; tim0_5_4 = tim2_0_0 - tim2_0_1; tre0_3_4 = tre2_1_0 + tim2_1_1; tim0_3_4 = tim2_1_0 - tre2_1_1; tre0_7_4 = tre2_1_0 - tim2_1_1; tim0_7_4 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[37 * stride]); ti = c_im(inout[37 * stride]); twr = c_re(W[36]); twi = c_im(W[36]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[13 * stride]); ti = c_im(inout[13 * stride]); twr = c_re(W[12]); twi = c_im(W[12]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[45 * stride]); ti = c_im(inout[45 * stride]); twr = c_re(W[44]); twi = c_im(W[44]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[21 * stride]); ti = c_im(inout[21 * stride]); twr = c_re(W[20]); twi = c_im(W[20]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[53 * stride]); ti = c_im(inout[53 * stride]); twr = c_re(W[52]); twi = c_im(W[52]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[29 * stride]); ti = c_im(inout[29 * stride]); twr = c_re(W[28]); twi = c_im(W[28]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[61 * stride]); ti = c_im(inout[61 * stride]); twr = c_re(W[60]); twi = c_im(W[60]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_5 = tre2_0_0 + tre2_0_1; tim0_0_5 = tim2_0_0 + tim2_0_1; tre0_4_5 = tre2_0_0 - tre2_0_1; tim0_4_5 = tim2_0_0 - tim2_0_1; tre0_2_5 = tre2_1_0 + tim2_1_1; tim0_2_5 = tim2_1_0 - tre2_1_1; tre0_6_5 = tre2_1_0 - tim2_1_1; tim0_6_5 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_5 = tre2_0_0 + tre2_0_1; tim0_1_5 = tim2_0_0 + tim2_0_1; tre0_5_5 = tre2_0_0 - tre2_0_1; tim0_5_5 = tim2_0_0 - tim2_0_1; tre0_3_5 = tre2_1_0 + tim2_1_1; tim0_3_5 = tim2_1_0 - tre2_1_1; tre0_7_5 = tre2_1_0 - tim2_1_1; tim0_7_5 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[38 * stride]); ti = c_im(inout[38 * stride]); twr = c_re(W[37]); twi = c_im(W[37]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[14 * stride]); ti = c_im(inout[14 * stride]); twr = c_re(W[13]); twi = c_im(W[13]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[46 * stride]); ti = c_im(inout[46 * stride]); twr = c_re(W[45]); twi = c_im(W[45]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[22 * stride]); ti = c_im(inout[22 * stride]); twr = c_re(W[21]); twi = c_im(W[21]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[54 * stride]); ti = c_im(inout[54 * stride]); twr = c_re(W[53]); twi = c_im(W[53]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[30 * stride]); ti = c_im(inout[30 * stride]); twr = c_re(W[29]); twi = c_im(W[29]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[62 * stride]); ti = c_im(inout[62 * stride]); twr = c_re(W[61]); twi = c_im(W[61]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_6 = tre2_0_0 + tre2_0_1; tim0_0_6 = tim2_0_0 + tim2_0_1; tre0_4_6 = tre2_0_0 - tre2_0_1; tim0_4_6 = tim2_0_0 - tim2_0_1; tre0_2_6 = tre2_1_0 + tim2_1_1; tim0_2_6 = tim2_1_0 - tre2_1_1; tre0_6_6 = tre2_1_0 - tim2_1_1; tim0_6_6 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_6 = tre2_0_0 + tre2_0_1; tim0_1_6 = tim2_0_0 + tim2_0_1; tre0_5_6 = tre2_0_0 - tre2_0_1; tim0_5_6 = tim2_0_0 - tim2_0_1; tre0_3_6 = tre2_1_0 + tim2_1_1; tim0_3_6 = tim2_1_0 - tre2_1_1; tre0_7_6 = tre2_1_0 - tim2_1_1; tim0_7_6 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[39 * stride]); ti = c_im(inout[39 * stride]); twr = c_re(W[38]); twi = c_im(W[38]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[15 * stride]); ti = c_im(inout[15 * stride]); twr = c_re(W[14]); twi = c_im(W[14]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[47 * stride]); ti = c_im(inout[47 * stride]); twr = c_re(W[46]); twi = c_im(W[46]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[23 * stride]); ti = c_im(inout[23 * stride]); twr = c_re(W[22]); twi = c_im(W[22]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[55 * stride]); ti = c_im(inout[55 * stride]); twr = c_re(W[54]); twi = c_im(W[54]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[31 * stride]); ti = c_im(inout[31 * stride]); twr = c_re(W[30]); twi = c_im(W[30]); tre2_0_0 = (tr * twr) - (ti * twi); tim2_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[63 * stride]); ti = c_im(inout[63 * stride]); twr = c_re(W[62]); twi = c_im(W[62]); tre2_1_0 = (tr * twr) - (ti * twi); tim2_1_0 = (tr * twi) + (ti * twr); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_7 = tre2_0_0 + tre2_0_1; tim0_0_7 = tim2_0_0 + tim2_0_1; tre0_4_7 = tre2_0_0 - tre2_0_1; tim0_4_7 = tim2_0_0 - tim2_0_1; tre0_2_7 = tre2_1_0 + tim2_1_1; tim0_2_7 = tim2_1_0 - tre2_1_1; tre0_6_7 = tre2_1_0 - tim2_1_1; tim0_6_7 = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } tre0_1_7 = tre2_0_0 + tre2_0_1; tim0_1_7 = tim2_0_0 + tim2_0_1; tre0_5_7 = tre2_0_0 - tre2_0_1; tim0_5_7 = tim2_0_0 - tim2_0_1; tre0_3_7 = tre2_1_0 + tim2_1_1; tim0_3_7 = tim2_1_0 - tre2_1_1; tre0_7_7 = tre2_1_0 - tim2_1_1; tim0_7_7 = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[0]) = tre2_0_0 + tre2_0_1; c_im(inout[0]) = tim2_0_0 + tim2_0_1; c_re(inout[32 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[32 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[16 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[16 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[48 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[48 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[8 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[8 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[40 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[40 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[24 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[24 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[56 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[56 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_4) + (((FFTW_REAL) FFTW_K382683432) * tim0_1_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_4) - (((FFTW_REAL) FFTW_K382683432) * tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tre0_1_1) + (((FFTW_REAL) FFTW_K098017140) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tim0_1_1) - (((FFTW_REAL) FFTW_K098017140) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_1_5) + (((FFTW_REAL) FFTW_K471396736) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_1_5) - (((FFTW_REAL) FFTW_K471396736) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_2) + (((FFTW_REAL) FFTW_K195090322) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_2) - (((FFTW_REAL) FFTW_K195090322) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_6) + (((FFTW_REAL) FFTW_K555570233) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_6) - (((FFTW_REAL) FFTW_K555570233) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_1_3) + (((FFTW_REAL) FFTW_K290284677) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_1_3) - (((FFTW_REAL) FFTW_K290284677) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_1_7) + (((FFTW_REAL) FFTW_K634393284) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_1_7) - (((FFTW_REAL) FFTW_K634393284) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[stride]) = tre2_0_0 + tre2_0_1; c_im(inout[stride]) = tim2_0_0 + tim2_0_1; c_re(inout[33 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[33 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[17 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[17 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[49 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[49 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[9 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[9 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[41 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[41 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[25 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[25 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[57 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[57 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_4 + tim0_2_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_4 - tre0_2_4); tre1_0_0 = tre0_2_0 + tre2_1_0; tim1_0_0 = tim0_2_0 + tim2_1_0; tre1_1_0 = tre0_2_0 - tre2_1_0; tim1_1_0 = tim0_2_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_2_1) + (((FFTW_REAL) FFTW_K195090322) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_2_1) - (((FFTW_REAL) FFTW_K195090322) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_2_5) + (((FFTW_REAL) FFTW_K831469612) * tim0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_2_5) - (((FFTW_REAL) FFTW_K831469612) * tre0_2_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_2) + (((FFTW_REAL) FFTW_K382683432) * tim0_2_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_2) - (((FFTW_REAL) FFTW_K382683432) * tre0_2_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_6) + (((FFTW_REAL) FFTW_K923879532) * tim0_2_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_2_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_2_3) + (((FFTW_REAL) FFTW_K555570233) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_2_3) - (((FFTW_REAL) FFTW_K555570233) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_2_7) + (((FFTW_REAL) FFTW_K980785280) * tim0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_2_7) - (((FFTW_REAL) FFTW_K980785280) * tre0_2_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[2 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[2 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[34 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[34 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[18 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[18 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[50 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[50 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[10 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[10 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[42 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[42 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[26 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[26 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[58 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[58 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_4) + (((FFTW_REAL) FFTW_K923879532) * tim0_3_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_4) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_4); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_3_1) + (((FFTW_REAL) FFTW_K290284677) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_3_1) - (((FFTW_REAL) FFTW_K290284677) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_3_5) + (((FFTW_REAL) FFTW_K995184726) * tim0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_3_5) - (((FFTW_REAL) FFTW_K995184726) * tre0_3_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_2) + (((FFTW_REAL) FFTW_K555570233) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_2) - (((FFTW_REAL) FFTW_K555570233) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_3_6) - (((FFTW_REAL) FFTW_K195090322) * tre0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_3_6) + (((FFTW_REAL) FFTW_K980785280) * tre0_3_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tre0_3_3) + (((FFTW_REAL) FFTW_K773010453) * tim0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tim0_3_3) - (((FFTW_REAL) FFTW_K773010453) * tre0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_3_7) - (((FFTW_REAL) FFTW_K471396736) * tre0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K471396736) * tim0_3_7) + (((FFTW_REAL) FFTW_K881921264) * tre0_3_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[3 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[3 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[35 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[35 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[19 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[19 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[51 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[51 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[11 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[11 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[43 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[43 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[27 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[27 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[59 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[59 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_4_0 + tim0_4_4; tim1_0_0 = tim0_4_0 - tre0_4_4; tre1_1_0 = tre0_4_0 - tim0_4_4; tim1_1_0 = tim0_4_0 + tre0_4_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_1) + (((FFTW_REAL) FFTW_K382683432) * tim0_4_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_1) - (((FFTW_REAL) FFTW_K382683432) * tre0_4_1); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_5) - (((FFTW_REAL) FFTW_K382683432) * tre0_4_5); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_5) + (((FFTW_REAL) FFTW_K923879532) * tre0_4_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_2 + tim0_4_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_2 - tre0_4_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_6 - tre0_4_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_6 + tre0_4_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_3) + (((FFTW_REAL) FFTW_K923879532) * tim0_4_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_4_3); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_7) - (((FFTW_REAL) FFTW_K923879532) * tre0_4_7); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_7) + (((FFTW_REAL) FFTW_K382683432) * tre0_4_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[4 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[4 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[36 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[36 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[20 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[20 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[52 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[52 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[12 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[12 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[44 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[44 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[28 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[28 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[60 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[60 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_5_4) - (((FFTW_REAL) FFTW_K382683432) * tre0_5_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_5_4) + (((FFTW_REAL) FFTW_K923879532) * tre0_5_4); tre1_0_0 = tre0_5_0 + tre2_1_0; tim1_0_0 = tim0_5_0 - tim2_1_0; tre1_1_0 = tre0_5_0 - tre2_1_0; tim1_1_0 = tim0_5_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_5_1) + (((FFTW_REAL) FFTW_K471396736) * tim0_5_1); tim2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_5_1) - (((FFTW_REAL) FFTW_K471396736) * tre0_5_1); tre2_1_0 = (((FFTW_REAL) FFTW_K634393284) * tim0_5_5) - (((FFTW_REAL) FFTW_K773010453) * tre0_5_5); tim2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_5_5) + (((FFTW_REAL) FFTW_K634393284) * tre0_5_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_5_2) + (((FFTW_REAL) FFTW_K831469612) * tim0_5_2); tim2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_5_2) - (((FFTW_REAL) FFTW_K831469612) * tre0_5_2); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_5_6) - (((FFTW_REAL) FFTW_K980785280) * tre0_5_6); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_5_6) + (((FFTW_REAL) FFTW_K195090322) * tre0_5_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_5_3) + (((FFTW_REAL) FFTW_K995184726) * tim0_5_3); tim2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_5_3) - (((FFTW_REAL) FFTW_K995184726) * tre0_5_3); tre2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_5_7) + (((FFTW_REAL) FFTW_K290284677) * tim0_5_7); tim2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tre0_5_7) - (((FFTW_REAL) FFTW_K956940335) * tim0_5_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[5 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[5 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[37 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[37 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[21 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[21 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[53 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[53 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[13 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[13 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[45 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[45 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[29 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[29 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[61 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[61 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_6_4 - tre0_6_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_6_4 + tre0_6_4); tre1_0_0 = tre0_6_0 + tre2_1_0; tim1_0_0 = tim0_6_0 - tim2_1_0; tre1_1_0 = tre0_6_0 - tre2_1_0; tim1_1_0 = tim0_6_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_6_1) + (((FFTW_REAL) FFTW_K555570233) * tim0_6_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_6_1) - (((FFTW_REAL) FFTW_K555570233) * tre0_6_1); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_6_5) - (((FFTW_REAL) FFTW_K980785280) * tre0_6_5); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_6_5) + (((FFTW_REAL) FFTW_K195090322) * tre0_6_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_6_2) + (((FFTW_REAL) FFTW_K923879532) * tim0_6_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_6_2) - (((FFTW_REAL) FFTW_K923879532) * tre0_6_2); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_6_6) + (((FFTW_REAL) FFTW_K382683432) * tim0_6_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_6_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_6_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_6_3) - (((FFTW_REAL) FFTW_K195090322) * tre0_6_3); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_6_3) + (((FFTW_REAL) FFTW_K980785280) * tre0_6_3); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_6_7) + (((FFTW_REAL) FFTW_K831469612) * tim0_6_7); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_6_7) - (((FFTW_REAL) FFTW_K555570233) * tim0_6_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_1_0 - tim2_0_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = (-(tim2_0_0 + tim2_1_0)); } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[6 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[6 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[38 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[38 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[22 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[22 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[54 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[54 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[14 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[14 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[46 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[46 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[30 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[30 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[62 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[62 * stride]) = tim2_1_0 + tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_7_4) - (((FFTW_REAL) FFTW_K923879532) * tre0_7_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_7_4) + (((FFTW_REAL) FFTW_K382683432) * tre0_7_4); tre1_0_0 = tre0_7_0 + tre2_1_0; tim1_0_0 = tim0_7_0 - tim2_1_0; tre1_1_0 = tre0_7_0 - tre2_1_0; tim1_1_0 = tim0_7_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_7_1) + (((FFTW_REAL) FFTW_K634393284) * tim0_7_1); tim2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_7_1) - (((FFTW_REAL) FFTW_K634393284) * tre0_7_1); tre2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_7_5) + (((FFTW_REAL) FFTW_K290284677) * tim0_7_5); tim2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tre0_7_5) - (((FFTW_REAL) FFTW_K956940335) * tim0_7_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_7_2) + (((FFTW_REAL) FFTW_K980785280) * tim0_7_2); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_7_2) - (((FFTW_REAL) FFTW_K980785280) * tre0_7_2); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_7_6) + (((FFTW_REAL) FFTW_K831469612) * tim0_7_6); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_7_6) - (((FFTW_REAL) FFTW_K555570233) * tim0_7_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_7_3) - (((FFTW_REAL) FFTW_K471396736) * tre0_7_3); tim2_0_0 = (((FFTW_REAL) FFTW_K471396736) * tim0_7_3) + (((FFTW_REAL) FFTW_K881921264) * tre0_7_3); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_7_7) - (((FFTW_REAL) FFTW_K995184726) * tim0_7_7); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_7_7) + (((FFTW_REAL) FFTW_K995184726) * tre0_7_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_1_0 - tim2_0_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = (-(tim2_0_0 + tim2_1_0)); } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[7 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[7 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[39 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[39 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[23 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[23 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[55 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[55 * stride]) = tim2_1_0 + tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 + tim1_1_2; tim2_0_0 = tim1_1_0 - tre1_1_2; tre2_1_0 = tre1_1_0 - tim1_1_2; tim2_1_0 = tim1_1_0 + tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 + tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 - tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 - tre1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_3 + tre1_1_3); tre2_0_1 = tre3_0_0 + tre3_1_0; tim2_0_1 = tim3_0_0 - tim3_1_0; tre2_1_1 = tre3_0_0 - tre3_1_0; tim2_1_1 = tim3_0_0 + tim3_1_0; } c_re(inout[15 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[15 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[47 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[47 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[31 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[31 * stride]) = tim2_1_0 - tre2_1_1; c_re(inout[63 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[63 * stride]) = tim2_1_0 + tre2_1_1; } } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 102 FP additions and 60 FP multiplications */ void fftw_twiddle_7(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 6) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) - (ti * twi); tim0_1_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre0_2_0 = (tr * twr) - (ti * twi); tim0_2_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre0_3_0 = (tr * twr) - (ti * twi); tim0_3_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre0_4_0 = (tr * twr) - (ti * twi); tim0_4_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre0_5_0 = (tr * twr) - (ti * twi); tim0_5_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre0_6_0 = (tr * twr) - (ti * twi); tim0_6_0 = (tr * twi) + (ti * twr); } c_re(inout[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_2_0 + tre0_5_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_1_0 - tim0_6_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_2_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_3_0 - tim0_4_0)); c_re(inout[stride]) = tre1_0_0 + tre1_1_0; c_re(inout[6 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_2_0 + tim0_5_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_6_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_5_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_4_0 - tre0_3_0)); c_im(inout[stride]) = tim1_0_0 + tim1_1_0; c_im(inout[6 * stride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_1_0 - tim0_6_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_5_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_4_0 - tim0_3_0)); c_re(inout[2 * stride]) = tre1_0_0 + tre1_1_0; c_re(inout[5 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_6_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_2_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_3_0 - tre0_4_0)); c_im(inout[2 * stride]) = tim1_0_0 + tim1_1_0; c_im(inout[5 * stride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_1_0 - tim0_6_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_5_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_3_0 - tim0_4_0)); c_re(inout[3 * stride]) = tre1_0_0 + tre1_1_0; c_re(inout[4 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_6_0 - tre0_1_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_2_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_4_0 - tre0_3_0)); c_im(inout[3 * stride]) = tim1_0_0 + tim1_1_0; c_im(inout[4 * stride]) = tim1_0_0 - tim1_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 66 FP additions and 32 FP multiplications */ void fftw_twiddle_8(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 7) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(inout[0]) = tre1_0_0 + tre1_0_1; c_im(inout[0]) = tim1_0_0 + tim1_0_1; c_re(inout[4 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[4 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[2 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[2 * stride]) = tim1_1_0 - tre1_1_1; c_re(inout[6 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[6 * stride]) = tim1_1_0 + tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_1_0 + tim0_1_2; tim1_0_0 = tim0_1_0 - tre0_1_2; tre1_1_0 = tre0_1_0 - tim0_1_2; tim1_1_0 = tim0_1_0 + tre0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_1 + tim0_1_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_1 - tre0_1_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_3 - tre0_1_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_3 + tre0_1_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } c_re(inout[stride]) = tre1_0_0 + tre1_0_1; c_im(inout[stride]) = tim1_0_0 + tim1_0_1; c_re(inout[5 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[5 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[3 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[3 * stride]) = tim1_1_0 - tre1_1_1; c_re(inout[7 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[7 * stride]) = tim1_1_0 + tre1_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 108 FP additions and 72 FP multiplications */ void fftw_twiddle_9(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 8) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre1_2_0 = (tr * twr) - (ti * twi); tim1_2_0 = (tr * twi) + (ti * twr); } tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre1_2_0 = (tr * twr) - (ti * twi); tim1_2_0 = (tr * twi) + (ti * twr); } tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) - (ti * twi); tim1_0_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) - (ti * twi); tim1_1_0 = (tr * twi) + (ti * twr); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre1_2_0 = (tr * twr) - (ti * twi); tim1_2_0 = (tr * twi) + (ti * twr); } tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } c_re(inout[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(inout[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_1 - tim0_0_2); c_re(inout[3 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[6 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_2 - tre0_0_1); c_im(inout[3 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[6 * stride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tre0_1_1) + (((FFTW_REAL) FFTW_K642787609) * tim0_1_1); tim1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tim0_1_1) - (((FFTW_REAL) FFTW_K642787609) * tre0_1_1); tre1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_1_2) + (((FFTW_REAL) FFTW_K984807753) * tim0_1_2); tim1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_1_2) - (((FFTW_REAL) FFTW_K984807753) * tre0_1_2); c_re(inout[stride]) = tre0_1_0 + tre1_1_0 + tre1_2_0; c_im(inout[stride]) = tim0_1_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 - tim1_2_0); c_re(inout[4 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[7 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); c_im(inout[4 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[7 * stride]) = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_2_1) + (((FFTW_REAL) FFTW_K984807753) * tim0_2_1); tim1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_2_1) - (((FFTW_REAL) FFTW_K984807753) * tre0_2_1); tre1_2_0 = (((FFTW_REAL) FFTW_K342020143) * tim0_2_2) - (((FFTW_REAL) FFTW_K939692620) * tre0_2_2); tim1_2_0 = (((FFTW_REAL) FFTW_K939692620) * tim0_2_2) + (((FFTW_REAL) FFTW_K342020143) * tre0_2_2); c_re(inout[2 * stride]) = tre0_2_0 + tre1_1_0 + tre1_2_0; c_im(inout[2 * stride]) = tim0_2_0 + tim1_1_0 - tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_1_0 + tim1_2_0); c_re(inout[5 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[8 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 + (((FFTW_REAL) FFTW_K499999999) * (tim1_2_0 - tim1_1_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_2_0 - tre1_1_0); c_im(inout[5 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[8 * stride]) = tim2_0_0 - tim2_1_0; } } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 126 FP additions and 68 FP multiplications */ void fftwi_twiddle_10(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 9) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_4 = tre1_0_0 + tre1_1_0; tim0_0_4 = tim1_0_0 + tim1_1_0; tre0_1_4 = tre1_0_0 - tre1_1_0; tim0_1_4 = tim1_0_0 - tim1_1_0; } c_re(inout[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2 + tre0_0_3 + tre0_0_4; c_im(inout[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2 + tim0_0_3 + tim0_0_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_1 + tre0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_2 + tre0_0_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_0_4 - tim0_0_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_0_3 - tim0_0_2)); c_re(inout[6 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[4 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_1 + tim0_0_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_2 + tim0_0_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_0_1 - tre0_0_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_0_2 - tre0_0_3)); c_im(inout[6 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[4 * stride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_0_2 + tre0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_0_1 + tre0_0_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_0_4 - tim0_0_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_0_2 - tim0_0_3)); c_re(inout[2 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[8 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_0_2 + tim0_0_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_0_1 + tim0_0_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_0_1 - tre0_0_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_0_3 - tre0_0_2)); c_im(inout[2 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[8 * stride]) = tim2_0_0 - tim2_1_0; } c_re(inout[5 * stride]) = tre0_1_0 + tre0_1_1 + tre0_1_2 + tre0_1_3 + tre0_1_4; c_im(inout[5 * stride]) = tim0_1_0 + tim0_1_1 + tim0_1_2 + tim0_1_3 + tim0_1_4; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_1 + tre0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_2 + tre0_1_3)); tre2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_1_4 - tim0_1_1)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_1_3 - tim0_1_2)); c_re(inout[stride]) = tre2_0_0 + tre2_1_0; c_re(inout[9 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_1 + tim0_1_4)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_2 + tim0_1_3)); tim2_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_1 - tre0_1_4)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_1_2 - tre0_1_3)); c_im(inout[stride]) = tim2_0_0 + tim2_1_0; c_im(inout[9 * stride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_2 + tre0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_1 + tre0_1_4)); tre2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_1_4 - tim0_1_1)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_1_2 - tim0_1_3)); c_re(inout[7 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[3 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_2 + tim0_1_3)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_1 + tim0_1_4)); tim2_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_1 - tre0_1_4)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_1_3 - tre0_1_2)); c_im(inout[7 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[3 * stride]) = tim2_0_0 - tim2_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 174 FP additions and 84 FP multiplications */ void fftwi_twiddle_16(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 15) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(inout[0]); tim2_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[12 * stride]); ti = c_im(inout[12 * stride]); twr = c_re(W[11]); twi = c_im(W[11]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 - tim1_1_1; tim0_1_0 = tim1_1_0 + tre1_1_1; tre0_3_0 = tre1_1_0 + tim1_1_1; tim0_3_0 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[13 * stride]); ti = c_im(inout[13 * stride]); twr = c_re(W[12]); twi = c_im(W[12]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 - tim1_1_1; tim0_1_1 = tim1_1_0 + tre1_1_1; tre0_3_1 = tre1_1_0 + tim1_1_1; tim0_3_1 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[10 * stride]); ti = c_im(inout[10 * stride]); twr = c_re(W[9]); twi = c_im(W[9]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[14 * stride]); ti = c_im(inout[14 * stride]); twr = c_re(W[13]); twi = c_im(W[13]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 - tim1_1_1; tim0_1_2 = tim1_1_0 + tre1_1_1; tre0_3_2 = tre1_1_0 + tim1_1_1; tim0_3_2 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[11 * stride]); ti = c_im(inout[11 * stride]); twr = c_re(W[10]); twi = c_im(W[10]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[15 * stride]); ti = c_im(inout[15 * stride]); twr = c_re(W[14]); twi = c_im(W[14]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 - tim1_1_1; tim0_1_3 = tim1_1_0 + tre1_1_1; tre0_3_3 = tre1_1_0 + tim1_1_1; tim0_3_3 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(inout[0]) = tre1_0_0 + tre1_0_1; c_im(inout[0]) = tim1_0_0 + tim1_0_1; c_re(inout[8 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[8 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[4 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[4 * stride]) = tim1_1_0 + tre1_1_1; c_re(inout[12 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[12 * stride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_2 - tim0_1_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_2 + tre0_1_2); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_1) - (((FFTW_REAL) FFTW_K382683432) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_1) + (((FFTW_REAL) FFTW_K382683432) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_1_3); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_3) + (((FFTW_REAL) FFTW_K923879532) * tre0_1_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(inout[stride]) = tre1_0_0 + tre1_0_1; c_im(inout[stride]) = tim1_0_0 + tim1_0_1; c_re(inout[9 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[9 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[5 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[5 * stride]) = tim1_1_0 + tre1_1_1; c_re(inout[13 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[13 * stride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_2_0 - tim0_2_2; tim1_0_0 = tim0_2_0 + tre0_2_2; tre1_1_0 = tre0_2_0 + tim0_2_2; tim1_1_0 = tim0_2_0 - tre0_2_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_1 - tim0_2_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_1 + tre0_2_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_3 + tim0_2_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_3 - tim0_2_3); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(inout[2 * stride]) = tre1_0_0 + tre1_0_1; c_im(inout[2 * stride]) = tim1_0_0 + tim1_0_1; c_re(inout[10 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[10 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[6 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[6 * stride]) = tim1_1_0 + tre1_1_1; c_re(inout[14 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[14 * stride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_2 + tim0_3_2); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_2 - tim0_3_2); tre1_0_0 = tre0_3_0 - tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 + tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_1) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_1) + (((FFTW_REAL) FFTW_K923879532) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_3) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_3); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_3_3) + (((FFTW_REAL) FFTW_K382683432) * tre0_3_3); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } c_re(inout[3 * stride]) = tre1_0_0 + tre1_0_1; c_im(inout[3 * stride]) = tim1_0_0 + tim1_0_1; c_re(inout[11 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[11 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[7 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[7 * stride]) = tim1_1_0 + tre1_1_1; c_re(inout[15 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[15 * stride]) = tim1_1_0 - tre1_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 6 FP additions and 4 FP multiplications */ void fftwi_twiddle_2(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 1) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) + (ti * twi); tim0_1_0 = (ti * twr) - (tr * twi); } c_re(inout[0]) = tre0_0_0 + tre0_1_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0; c_re(inout[stride]) = tre0_0_0 - tre0_1_0; c_im(inout[stride]) = tim0_0_0 - tim0_1_0; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 18 FP additions and 12 FP multiplications */ void fftwi_twiddle_3(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 2) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) + (ti * twi); tim0_1_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre0_2_0 = (tr * twr) + (ti * twi); tim0_2_0 = (ti * twr) - (tr * twi); } c_re(inout[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_0 + tre0_2_0)); tre1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_2_0 - tim0_1_0); c_re(inout[stride]) = tre1_0_0 + tre1_1_0; c_re(inout[2 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_0 + tim0_2_0)); tim1_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_1_0 - tre0_2_0); c_im(inout[stride]) = tim1_0_0 + tim1_1_0; c_im(inout[2 * stride]) = tim1_0_0 - tim1_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 438 FP additions and 212 FP multiplications */ void fftwi_twiddle_32(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 31) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(inout[0]); tim2_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[16 * stride]); ti = c_im(inout[16 * stride]); twr = c_re(W[15]); twi = c_im(W[15]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[24 * stride]); ti = c_im(inout[24 * stride]); twr = c_re(W[23]); twi = c_im(W[23]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_0 = tre1_0_0 + tre1_0_1; tim0_0_0 = tim1_0_0 + tim1_0_1; tre0_2_0 = tre1_0_0 - tre1_0_1; tim0_2_0 = tim1_0_0 - tim1_0_1; tre0_1_0 = tre1_1_0 - tim1_1_1; tim0_1_0 = tim1_1_0 + tre1_1_1; tre0_3_0 = tre1_1_0 + tim1_1_1; tim0_3_0 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[17 * stride]); ti = c_im(inout[17 * stride]); twr = c_re(W[16]); twi = c_im(W[16]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[25 * stride]); ti = c_im(inout[25 * stride]); twr = c_re(W[24]); twi = c_im(W[24]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_1 = tre1_0_0 + tre1_0_1; tim0_0_1 = tim1_0_0 + tim1_0_1; tre0_2_1 = tre1_0_0 - tre1_0_1; tim0_2_1 = tim1_0_0 - tim1_0_1; tre0_1_1 = tre1_1_0 - tim1_1_1; tim0_1_1 = tim1_1_0 + tre1_1_1; tre0_3_1 = tre1_1_0 + tim1_1_1; tim0_3_1 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[18 * stride]); ti = c_im(inout[18 * stride]); twr = c_re(W[17]); twi = c_im(W[17]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[10 * stride]); ti = c_im(inout[10 * stride]); twr = c_re(W[9]); twi = c_im(W[9]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[26 * stride]); ti = c_im(inout[26 * stride]); twr = c_re(W[25]); twi = c_im(W[25]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_2 = tre1_0_0 + tre1_0_1; tim0_0_2 = tim1_0_0 + tim1_0_1; tre0_2_2 = tre1_0_0 - tre1_0_1; tim0_2_2 = tim1_0_0 - tim1_0_1; tre0_1_2 = tre1_1_0 - tim1_1_1; tim0_1_2 = tim1_1_0 + tre1_1_1; tre0_3_2 = tre1_1_0 + tim1_1_1; tim0_3_2 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[19 * stride]); ti = c_im(inout[19 * stride]); twr = c_re(W[18]); twi = c_im(W[18]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[11 * stride]); ti = c_im(inout[11 * stride]); twr = c_re(W[10]); twi = c_im(W[10]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[27 * stride]); ti = c_im(inout[27 * stride]); twr = c_re(W[26]); twi = c_im(W[26]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_3 = tre1_0_0 + tre1_0_1; tim0_0_3 = tim1_0_0 + tim1_0_1; tre0_2_3 = tre1_0_0 - tre1_0_1; tim0_2_3 = tim1_0_0 - tim1_0_1; tre0_1_3 = tre1_1_0 - tim1_1_1; tim0_1_3 = tim1_1_0 + tre1_1_1; tre0_3_3 = tre1_1_0 + tim1_1_1; tim0_3_3 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[20 * stride]); ti = c_im(inout[20 * stride]); twr = c_re(W[19]); twi = c_im(W[19]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[12 * stride]); ti = c_im(inout[12 * stride]); twr = c_re(W[11]); twi = c_im(W[11]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[28 * stride]); ti = c_im(inout[28 * stride]); twr = c_re(W[27]); twi = c_im(W[27]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_4 = tre1_0_0 + tre1_0_1; tim0_0_4 = tim1_0_0 + tim1_0_1; tre0_2_4 = tre1_0_0 - tre1_0_1; tim0_2_4 = tim1_0_0 - tim1_0_1; tre0_1_4 = tre1_1_0 - tim1_1_1; tim0_1_4 = tim1_1_0 + tre1_1_1; tre0_3_4 = tre1_1_0 + tim1_1_1; tim0_3_4 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[21 * stride]); ti = c_im(inout[21 * stride]); twr = c_re(W[20]); twi = c_im(W[20]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[13 * stride]); ti = c_im(inout[13 * stride]); twr = c_re(W[12]); twi = c_im(W[12]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[29 * stride]); ti = c_im(inout[29 * stride]); twr = c_re(W[28]); twi = c_im(W[28]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_5 = tre1_0_0 + tre1_0_1; tim0_0_5 = tim1_0_0 + tim1_0_1; tre0_2_5 = tre1_0_0 - tre1_0_1; tim0_2_5 = tim1_0_0 - tim1_0_1; tre0_1_5 = tre1_1_0 - tim1_1_1; tim0_1_5 = tim1_1_0 + tre1_1_1; tre0_3_5 = tre1_1_0 + tim1_1_1; tim0_3_5 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[22 * stride]); ti = c_im(inout[22 * stride]); twr = c_re(W[21]); twi = c_im(W[21]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[14 * stride]); ti = c_im(inout[14 * stride]); twr = c_re(W[13]); twi = c_im(W[13]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[30 * stride]); ti = c_im(inout[30 * stride]); twr = c_re(W[29]); twi = c_im(W[29]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_6 = tre1_0_0 + tre1_0_1; tim0_0_6 = tim1_0_0 + tim1_0_1; tre0_2_6 = tre1_0_0 - tre1_0_1; tim0_2_6 = tim1_0_0 - tim1_0_1; tre0_1_6 = tre1_1_0 - tim1_1_1; tim0_1_6 = tim1_1_0 + tre1_1_1; tre0_3_6 = tre1_1_0 + tim1_1_1; tim0_3_6 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[23 * stride]); ti = c_im(inout[23 * stride]); twr = c_re(W[22]); twi = c_im(W[22]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[15 * stride]); ti = c_im(inout[15 * stride]); twr = c_re(W[14]); twi = c_im(W[14]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[31 * stride]); ti = c_im(inout[31 * stride]); twr = c_re(W[30]); twi = c_im(W[30]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } tre0_0_7 = tre1_0_0 + tre1_0_1; tim0_0_7 = tim1_0_0 + tim1_0_1; tre0_2_7 = tre1_0_0 - tre1_0_1; tim0_2_7 = tim1_0_0 - tim1_0_1; tre0_1_7 = tre1_1_0 - tim1_1_1; tim0_1_7 = tim1_1_0 + tre1_1_1; tre0_3_7 = tre1_1_0 + tim1_1_1; tim0_3_7 = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[0]) = tre2_0_0 + tre2_0_1; c_im(inout[0]) = tim2_0_0 + tim2_0_1; c_re(inout[16 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[16 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[8 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[8 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[24 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[24 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[4 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[4 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[20 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[20 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[12 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[12 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[28 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[28 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_4 - tim0_1_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_4 + tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_1) - (((FFTW_REAL) FFTW_K195090322) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_1) + (((FFTW_REAL) FFTW_K195090322) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_1_5) - (((FFTW_REAL) FFTW_K831469612) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_1_5) + (((FFTW_REAL) FFTW_K831469612) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_2) - (((FFTW_REAL) FFTW_K382683432) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_2) + (((FFTW_REAL) FFTW_K382683432) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_1_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_1_6) + (((FFTW_REAL) FFTW_K923879532) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_3) - (((FFTW_REAL) FFTW_K555570233) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_3) + (((FFTW_REAL) FFTW_K555570233) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_1_7) - (((FFTW_REAL) FFTW_K980785280) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_1_7) + (((FFTW_REAL) FFTW_K980785280) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[stride]) = tre2_0_0 + tre2_0_1; c_im(inout[stride]) = tim2_0_0 + tim2_0_1; c_re(inout[17 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[17 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[9 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[9 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[25 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[25 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[5 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[5 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[21 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[21 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[13 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[13 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[29 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[29 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_2_0 - tim0_2_4; tim1_0_0 = tim0_2_0 + tre0_2_4; tre1_1_0 = tre0_2_0 + tim0_2_4; tim1_1_0 = tim0_2_0 - tre0_2_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_1) - (((FFTW_REAL) FFTW_K382683432) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_1) + (((FFTW_REAL) FFTW_K382683432) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_5) + (((FFTW_REAL) FFTW_K923879532) * tim0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_5) - (((FFTW_REAL) FFTW_K382683432) * tim0_2_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_2 - tim0_2_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_2 + tre0_2_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_6 + tim0_2_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_6 - tim0_2_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_3) + (((FFTW_REAL) FFTW_K923879532) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_7) + (((FFTW_REAL) FFTW_K382683432) * tim0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_7) - (((FFTW_REAL) FFTW_K923879532) * tim0_2_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[2 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[2 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[18 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[18 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[10 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[10 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[26 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[26 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[6 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[6 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[22 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[22 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[14 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[14 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[30 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[30 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_4 + tim0_3_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_3_4 - tim0_3_4); tre1_0_0 = tre0_3_0 - tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 + tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_1) - (((FFTW_REAL) FFTW_K555570233) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_1) + (((FFTW_REAL) FFTW_K555570233) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_3_5) + (((FFTW_REAL) FFTW_K195090322) * tim0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_3_5) - (((FFTW_REAL) FFTW_K980785280) * tim0_3_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_2) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_2) + (((FFTW_REAL) FFTW_K923879532) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_3_6) + (((FFTW_REAL) FFTW_K382683432) * tre0_3_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_3_3) + (((FFTW_REAL) FFTW_K980785280) * tim0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_3_3) - (((FFTW_REAL) FFTW_K195090322) * tim0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_7) - (((FFTW_REAL) FFTW_K555570233) * tre0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_3_7) + (((FFTW_REAL) FFTW_K831469612) * tre0_3_7); tre1_0_3 = tre2_1_0 - tre2_0_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = (-(tre2_0_0 + tre2_1_0)); tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[3 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[3 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[19 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[19 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[11 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[11 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[27 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[27 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[7 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[7 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[23 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[23 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[15 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[15 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[31 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[31 * stride]) = tim2_1_0 - tre2_1_1; } } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 22 FP additions and 12 FP multiplications */ void fftwi_twiddle_4(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 3) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } c_re(inout[0]) = tre0_0_0 + tre0_0_1; c_im(inout[0]) = tim0_0_0 + tim0_0_1; c_re(inout[2 * stride]) = tre0_0_0 - tre0_0_1; c_im(inout[2 * stride]) = tim0_0_0 - tim0_0_1; c_re(inout[stride]) = tre0_1_0 - tim0_1_1; c_im(inout[stride]) = tim0_1_0 + tre0_1_1; c_re(inout[3 * stride]) = tre0_1_0 + tim0_1_1; c_im(inout[3 * stride]) = tim0_1_0 - tre0_1_1; } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 52 FP additions and 32 FP multiplications */ void fftwi_twiddle_5(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 4) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) + (ti * twi); tim0_1_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre0_2_0 = (tr * twr) + (ti * twi); tim0_2_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre0_3_0 = (tr * twr) + (ti * twi); tim0_3_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre0_4_0 = (tr * twr) + (ti * twi); tim0_4_0 = (ti * twr) - (tr * twi); } c_re(inout[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_1_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_2_0 + tre0_3_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tim0_4_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K587785252) * (tim0_3_0 - tim0_2_0)); c_re(inout[stride]) = tre1_0_0 + tre1_1_0; c_re(inout[4 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_1_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_2_0 + tim0_3_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K951056516) * (tre0_1_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K587785252) * (tre0_2_0 - tre0_3_0)); c_im(inout[stride]) = tim1_0_0 + tim1_1_0; c_im(inout[4 * stride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tre0_2_0 + tre0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tre0_1_0 + tre0_4_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tim0_4_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K951056516) * (tim0_2_0 - tim0_3_0)); c_re(inout[2 * stride]) = tre1_0_0 + tre1_1_0; c_re(inout[3 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K309016994) * (tim0_2_0 + tim0_3_0)) - (((FFTW_REAL) FFTW_K809016994) * (tim0_1_0 + tim0_4_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K587785252) * (tre0_1_0 - tre0_4_0)) + (((FFTW_REAL) FFTW_K951056516) * (tre0_3_0 - tre0_2_0)); c_im(inout[2 * stride]) = tim1_0_0 + tim1_1_0; c_im(inout[3 * stride]) = tim1_0_0 - tim1_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 50 FP additions and 28 FP multiplications */ void fftwi_twiddle_6(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 5) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } c_re(inout[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(inout[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_2 - tim0_0_1); c_re(inout[4 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[2 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_1 - tre0_0_2); c_im(inout[4 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[2 * stride]) = tim2_0_0 - tim2_1_0; } c_re(inout[3 * stride]) = tre0_1_0 + tre0_1_1 + tre0_1_2; c_im(inout[3 * stride]) = tim0_1_0 + tim0_1_1 + tim0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_1_1 + tre0_1_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_1_2 - tim0_1_1); c_re(inout[stride]) = tre2_0_0 + tre2_1_0; c_re(inout[5 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_1_1 + tim0_1_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_1_1 - tre0_1_2); c_im(inout[stride]) = tim2_0_0 + tim2_1_0; c_im(inout[5 * stride]) = tim2_0_0 - tim2_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 1054 FP additions and 500 FP multiplications */ void fftwi_twiddle_64(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 63) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_0_4; FFTW_REAL tim0_0_4; FFTW_REAL tre0_0_5; FFTW_REAL tim0_0_5; FFTW_REAL tre0_0_6; FFTW_REAL tim0_0_6; FFTW_REAL tre0_0_7; FFTW_REAL tim0_0_7; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; FFTW_REAL tre0_1_4; FFTW_REAL tim0_1_4; FFTW_REAL tre0_1_5; FFTW_REAL tim0_1_5; FFTW_REAL tre0_1_6; FFTW_REAL tim0_1_6; FFTW_REAL tre0_1_7; FFTW_REAL tim0_1_7; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; FFTW_REAL tre0_2_3; FFTW_REAL tim0_2_3; FFTW_REAL tre0_2_4; FFTW_REAL tim0_2_4; FFTW_REAL tre0_2_5; FFTW_REAL tim0_2_5; FFTW_REAL tre0_2_6; FFTW_REAL tim0_2_6; FFTW_REAL tre0_2_7; FFTW_REAL tim0_2_7; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_3_1; FFTW_REAL tim0_3_1; FFTW_REAL tre0_3_2; FFTW_REAL tim0_3_2; FFTW_REAL tre0_3_3; FFTW_REAL tim0_3_3; FFTW_REAL tre0_3_4; FFTW_REAL tim0_3_4; FFTW_REAL tre0_3_5; FFTW_REAL tim0_3_5; FFTW_REAL tre0_3_6; FFTW_REAL tim0_3_6; FFTW_REAL tre0_3_7; FFTW_REAL tim0_3_7; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_4_1; FFTW_REAL tim0_4_1; FFTW_REAL tre0_4_2; FFTW_REAL tim0_4_2; FFTW_REAL tre0_4_3; FFTW_REAL tim0_4_3; FFTW_REAL tre0_4_4; FFTW_REAL tim0_4_4; FFTW_REAL tre0_4_5; FFTW_REAL tim0_4_5; FFTW_REAL tre0_4_6; FFTW_REAL tim0_4_6; FFTW_REAL tre0_4_7; FFTW_REAL tim0_4_7; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_5_1; FFTW_REAL tim0_5_1; FFTW_REAL tre0_5_2; FFTW_REAL tim0_5_2; FFTW_REAL tre0_5_3; FFTW_REAL tim0_5_3; FFTW_REAL tre0_5_4; FFTW_REAL tim0_5_4; FFTW_REAL tre0_5_5; FFTW_REAL tim0_5_5; FFTW_REAL tre0_5_6; FFTW_REAL tim0_5_6; FFTW_REAL tre0_5_7; FFTW_REAL tim0_5_7; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; FFTW_REAL tre0_6_1; FFTW_REAL tim0_6_1; FFTW_REAL tre0_6_2; FFTW_REAL tim0_6_2; FFTW_REAL tre0_6_3; FFTW_REAL tim0_6_3; FFTW_REAL tre0_6_4; FFTW_REAL tim0_6_4; FFTW_REAL tre0_6_5; FFTW_REAL tim0_6_5; FFTW_REAL tre0_6_6; FFTW_REAL tim0_6_6; FFTW_REAL tre0_6_7; FFTW_REAL tim0_6_7; FFTW_REAL tre0_7_0; FFTW_REAL tim0_7_0; FFTW_REAL tre0_7_1; FFTW_REAL tim0_7_1; FFTW_REAL tre0_7_2; FFTW_REAL tim0_7_2; FFTW_REAL tre0_7_3; FFTW_REAL tim0_7_3; FFTW_REAL tre0_7_4; FFTW_REAL tim0_7_4; FFTW_REAL tre0_7_5; FFTW_REAL tim0_7_5; FFTW_REAL tre0_7_6; FFTW_REAL tim0_7_6; FFTW_REAL tre0_7_7; FFTW_REAL tim0_7_7; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = c_re(inout[0]); tim2_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[32 * stride]); ti = c_im(inout[32 * stride]); twr = c_re(W[31]); twi = c_im(W[31]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[40 * stride]); ti = c_im(inout[40 * stride]); twr = c_re(W[39]); twi = c_im(W[39]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[16 * stride]); ti = c_im(inout[16 * stride]); twr = c_re(W[15]); twi = c_im(W[15]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[48 * stride]); ti = c_im(inout[48 * stride]); twr = c_re(W[47]); twi = c_im(W[47]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[24 * stride]); ti = c_im(inout[24 * stride]); twr = c_re(W[23]); twi = c_im(W[23]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[56 * stride]); ti = c_im(inout[56 * stride]); twr = c_re(W[55]); twi = c_im(W[55]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_0 = tre2_0_0 + tre2_0_1; tim0_0_0 = tim2_0_0 + tim2_0_1; tre0_4_0 = tre2_0_0 - tre2_0_1; tim0_4_0 = tim2_0_0 - tim2_0_1; tre0_2_0 = tre2_1_0 - tim2_1_1; tim0_2_0 = tim2_1_0 + tre2_1_1; tre0_6_0 = tre2_1_0 + tim2_1_1; tim0_6_0 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_0 = tre2_0_0 + tre2_0_1; tim0_1_0 = tim2_0_0 + tim2_0_1; tre0_5_0 = tre2_0_0 - tre2_0_1; tim0_5_0 = tim2_0_0 - tim2_0_1; tre0_3_0 = tre2_1_0 - tim2_1_1; tim0_3_0 = tim2_1_0 + tre2_1_1; tre0_7_0 = tre2_1_0 + tim2_1_1; tim0_7_0 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[33 * stride]); ti = c_im(inout[33 * stride]); twr = c_re(W[32]); twi = c_im(W[32]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[9 * stride]); ti = c_im(inout[9 * stride]); twr = c_re(W[8]); twi = c_im(W[8]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[41 * stride]); ti = c_im(inout[41 * stride]); twr = c_re(W[40]); twi = c_im(W[40]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[17 * stride]); ti = c_im(inout[17 * stride]); twr = c_re(W[16]); twi = c_im(W[16]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[49 * stride]); ti = c_im(inout[49 * stride]); twr = c_re(W[48]); twi = c_im(W[48]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[25 * stride]); ti = c_im(inout[25 * stride]); twr = c_re(W[24]); twi = c_im(W[24]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[57 * stride]); ti = c_im(inout[57 * stride]); twr = c_re(W[56]); twi = c_im(W[56]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_1 = tre2_0_0 + tre2_0_1; tim0_0_1 = tim2_0_0 + tim2_0_1; tre0_4_1 = tre2_0_0 - tre2_0_1; tim0_4_1 = tim2_0_0 - tim2_0_1; tre0_2_1 = tre2_1_0 - tim2_1_1; tim0_2_1 = tim2_1_0 + tre2_1_1; tre0_6_1 = tre2_1_0 + tim2_1_1; tim0_6_1 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_1 = tre2_0_0 + tre2_0_1; tim0_1_1 = tim2_0_0 + tim2_0_1; tre0_5_1 = tre2_0_0 - tre2_0_1; tim0_5_1 = tim2_0_0 - tim2_0_1; tre0_3_1 = tre2_1_0 - tim2_1_1; tim0_3_1 = tim2_1_0 + tre2_1_1; tre0_7_1 = tre2_1_0 + tim2_1_1; tim0_7_1 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[34 * stride]); ti = c_im(inout[34 * stride]); twr = c_re(W[33]); twi = c_im(W[33]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[10 * stride]); ti = c_im(inout[10 * stride]); twr = c_re(W[9]); twi = c_im(W[9]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[42 * stride]); ti = c_im(inout[42 * stride]); twr = c_re(W[41]); twi = c_im(W[41]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[18 * stride]); ti = c_im(inout[18 * stride]); twr = c_re(W[17]); twi = c_im(W[17]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[50 * stride]); ti = c_im(inout[50 * stride]); twr = c_re(W[49]); twi = c_im(W[49]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[26 * stride]); ti = c_im(inout[26 * stride]); twr = c_re(W[25]); twi = c_im(W[25]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[58 * stride]); ti = c_im(inout[58 * stride]); twr = c_re(W[57]); twi = c_im(W[57]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_2 = tre2_0_0 + tre2_0_1; tim0_0_2 = tim2_0_0 + tim2_0_1; tre0_4_2 = tre2_0_0 - tre2_0_1; tim0_4_2 = tim2_0_0 - tim2_0_1; tre0_2_2 = tre2_1_0 - tim2_1_1; tim0_2_2 = tim2_1_0 + tre2_1_1; tre0_6_2 = tre2_1_0 + tim2_1_1; tim0_6_2 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_2 = tre2_0_0 + tre2_0_1; tim0_1_2 = tim2_0_0 + tim2_0_1; tre0_5_2 = tre2_0_0 - tre2_0_1; tim0_5_2 = tim2_0_0 - tim2_0_1; tre0_3_2 = tre2_1_0 - tim2_1_1; tim0_3_2 = tim2_1_0 + tre2_1_1; tre0_7_2 = tre2_1_0 + tim2_1_1; tim0_7_2 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[35 * stride]); ti = c_im(inout[35 * stride]); twr = c_re(W[34]); twi = c_im(W[34]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[11 * stride]); ti = c_im(inout[11 * stride]); twr = c_re(W[10]); twi = c_im(W[10]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[43 * stride]); ti = c_im(inout[43 * stride]); twr = c_re(W[42]); twi = c_im(W[42]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[19 * stride]); ti = c_im(inout[19 * stride]); twr = c_re(W[18]); twi = c_im(W[18]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[51 * stride]); ti = c_im(inout[51 * stride]); twr = c_re(W[50]); twi = c_im(W[50]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[27 * stride]); ti = c_im(inout[27 * stride]); twr = c_re(W[26]); twi = c_im(W[26]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[59 * stride]); ti = c_im(inout[59 * stride]); twr = c_re(W[58]); twi = c_im(W[58]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_3 = tre2_0_0 + tre2_0_1; tim0_0_3 = tim2_0_0 + tim2_0_1; tre0_4_3 = tre2_0_0 - tre2_0_1; tim0_4_3 = tim2_0_0 - tim2_0_1; tre0_2_3 = tre2_1_0 - tim2_1_1; tim0_2_3 = tim2_1_0 + tre2_1_1; tre0_6_3 = tre2_1_0 + tim2_1_1; tim0_6_3 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_3 = tre2_0_0 + tre2_0_1; tim0_1_3 = tim2_0_0 + tim2_0_1; tre0_5_3 = tre2_0_0 - tre2_0_1; tim0_5_3 = tim2_0_0 - tim2_0_1; tre0_3_3 = tre2_1_0 - tim2_1_1; tim0_3_3 = tim2_1_0 + tre2_1_1; tre0_7_3 = tre2_1_0 + tim2_1_1; tim0_7_3 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[36 * stride]); ti = c_im(inout[36 * stride]); twr = c_re(W[35]); twi = c_im(W[35]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[12 * stride]); ti = c_im(inout[12 * stride]); twr = c_re(W[11]); twi = c_im(W[11]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[44 * stride]); ti = c_im(inout[44 * stride]); twr = c_re(W[43]); twi = c_im(W[43]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[20 * stride]); ti = c_im(inout[20 * stride]); twr = c_re(W[19]); twi = c_im(W[19]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[52 * stride]); ti = c_im(inout[52 * stride]); twr = c_re(W[51]); twi = c_im(W[51]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[28 * stride]); ti = c_im(inout[28 * stride]); twr = c_re(W[27]); twi = c_im(W[27]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[60 * stride]); ti = c_im(inout[60 * stride]); twr = c_re(W[59]); twi = c_im(W[59]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_4 = tre2_0_0 + tre2_0_1; tim0_0_4 = tim2_0_0 + tim2_0_1; tre0_4_4 = tre2_0_0 - tre2_0_1; tim0_4_4 = tim2_0_0 - tim2_0_1; tre0_2_4 = tre2_1_0 - tim2_1_1; tim0_2_4 = tim2_1_0 + tre2_1_1; tre0_6_4 = tre2_1_0 + tim2_1_1; tim0_6_4 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_4 = tre2_0_0 + tre2_0_1; tim0_1_4 = tim2_0_0 + tim2_0_1; tre0_5_4 = tre2_0_0 - tre2_0_1; tim0_5_4 = tim2_0_0 - tim2_0_1; tre0_3_4 = tre2_1_0 - tim2_1_1; tim0_3_4 = tim2_1_0 + tre2_1_1; tre0_7_4 = tre2_1_0 + tim2_1_1; tim0_7_4 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[37 * stride]); ti = c_im(inout[37 * stride]); twr = c_re(W[36]); twi = c_im(W[36]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[13 * stride]); ti = c_im(inout[13 * stride]); twr = c_re(W[12]); twi = c_im(W[12]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[45 * stride]); ti = c_im(inout[45 * stride]); twr = c_re(W[44]); twi = c_im(W[44]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[21 * stride]); ti = c_im(inout[21 * stride]); twr = c_re(W[20]); twi = c_im(W[20]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[53 * stride]); ti = c_im(inout[53 * stride]); twr = c_re(W[52]); twi = c_im(W[52]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[29 * stride]); ti = c_im(inout[29 * stride]); twr = c_re(W[28]); twi = c_im(W[28]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[61 * stride]); ti = c_im(inout[61 * stride]); twr = c_re(W[60]); twi = c_im(W[60]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_5 = tre2_0_0 + tre2_0_1; tim0_0_5 = tim2_0_0 + tim2_0_1; tre0_4_5 = tre2_0_0 - tre2_0_1; tim0_4_5 = tim2_0_0 - tim2_0_1; tre0_2_5 = tre2_1_0 - tim2_1_1; tim0_2_5 = tim2_1_0 + tre2_1_1; tre0_6_5 = tre2_1_0 + tim2_1_1; tim0_6_5 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_5 = tre2_0_0 + tre2_0_1; tim0_1_5 = tim2_0_0 + tim2_0_1; tre0_5_5 = tre2_0_0 - tre2_0_1; tim0_5_5 = tim2_0_0 - tim2_0_1; tre0_3_5 = tre2_1_0 - tim2_1_1; tim0_3_5 = tim2_1_0 + tre2_1_1; tre0_7_5 = tre2_1_0 + tim2_1_1; tim0_7_5 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[38 * stride]); ti = c_im(inout[38 * stride]); twr = c_re(W[37]); twi = c_im(W[37]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[14 * stride]); ti = c_im(inout[14 * stride]); twr = c_re(W[13]); twi = c_im(W[13]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[46 * stride]); ti = c_im(inout[46 * stride]); twr = c_re(W[45]); twi = c_im(W[45]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[22 * stride]); ti = c_im(inout[22 * stride]); twr = c_re(W[21]); twi = c_im(W[21]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[54 * stride]); ti = c_im(inout[54 * stride]); twr = c_re(W[53]); twi = c_im(W[53]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[30 * stride]); ti = c_im(inout[30 * stride]); twr = c_re(W[29]); twi = c_im(W[29]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[62 * stride]); ti = c_im(inout[62 * stride]); twr = c_re(W[61]); twi = c_im(W[61]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_6 = tre2_0_0 + tre2_0_1; tim0_0_6 = tim2_0_0 + tim2_0_1; tre0_4_6 = tre2_0_0 - tre2_0_1; tim0_4_6 = tim2_0_0 - tim2_0_1; tre0_2_6 = tre2_1_0 - tim2_1_1; tim0_2_6 = tim2_1_0 + tre2_1_1; tre0_6_6 = tre2_1_0 + tim2_1_1; tim0_6_6 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_6 = tre2_0_0 + tre2_0_1; tim0_1_6 = tim2_0_0 + tim2_0_1; tre0_5_6 = tre2_0_0 - tre2_0_1; tim0_5_6 = tim2_0_0 - tim2_0_1; tre0_3_6 = tre2_1_0 - tim2_1_1; tim0_3_6 = tim2_1_0 + tre2_1_1; tre0_7_6 = tre2_1_0 + tim2_1_1; tim0_7_6 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[39 * stride]); ti = c_im(inout[39 * stride]); twr = c_re(W[38]); twi = c_im(W[38]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_0 = tre2_0_0 + tre2_1_0; tim1_0_0 = tim2_0_0 + tim2_1_0; tre1_1_0 = tre2_0_0 - tre2_1_0; tim1_1_0 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[15 * stride]); ti = c_im(inout[15 * stride]); twr = c_re(W[14]); twi = c_im(W[14]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[47 * stride]); ti = c_im(inout[47 * stride]); twr = c_re(W[46]); twi = c_im(W[46]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[23 * stride]); ti = c_im(inout[23 * stride]); twr = c_re(W[22]); twi = c_im(W[22]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[55 * stride]); ti = c_im(inout[55 * stride]); twr = c_re(W[54]); twi = c_im(W[54]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[31 * stride]); ti = c_im(inout[31 * stride]); twr = c_re(W[30]); twi = c_im(W[30]); tre2_0_0 = (tr * twr) + (ti * twi); tim2_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[63 * stride]); ti = c_im(inout[63 * stride]); twr = c_re(W[62]); twi = c_im(W[62]); tre2_1_0 = (tr * twr) + (ti * twi); tim2_1_0 = (ti * twr) - (tr * twi); } tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; tre0_0_7 = tre2_0_0 + tre2_0_1; tim0_0_7 = tim2_0_0 + tim2_0_1; tre0_4_7 = tre2_0_0 - tre2_0_1; tim0_4_7 = tim2_0_0 - tim2_0_1; tre0_2_7 = tre2_1_0 - tim2_1_1; tim0_2_7 = tim2_1_0 + tre2_1_1; tre0_6_7 = tre2_1_0 + tim2_1_1; tim0_6_7 = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } tre0_1_7 = tre2_0_0 + tre2_0_1; tim0_1_7 = tim2_0_0 + tim2_0_1; tre0_5_7 = tre2_0_0 - tre2_0_1; tim0_5_7 = tim2_0_0 - tim2_0_1; tre0_3_7 = tre2_1_0 - tim2_1_1; tim0_3_7 = tim2_1_0 + tre2_1_1; tre0_7_7 = tre2_1_0 + tim2_1_1; tim0_7_7 = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_0_0 + tre0_0_4; tim1_0_0 = tim0_0_0 + tim0_0_4; tre1_1_0 = tre0_0_0 - tre0_0_4; tim1_1_0 = tim0_0_0 - tim0_0_4; tre1_0_1 = tre0_0_1 + tre0_0_5; tim1_0_1 = tim0_0_1 + tim0_0_5; tre1_1_1 = tre0_0_1 - tre0_0_5; tim1_1_1 = tim0_0_1 - tim0_0_5; tre1_0_2 = tre0_0_2 + tre0_0_6; tim1_0_2 = tim0_0_2 + tim0_0_6; tre1_1_2 = tre0_0_2 - tre0_0_6; tim1_1_2 = tim0_0_2 - tim0_0_6; tre1_0_3 = tre0_0_3 + tre0_0_7; tim1_0_3 = tim0_0_3 + tim0_0_7; tre1_1_3 = tre0_0_3 - tre0_0_7; tim1_1_3 = tim0_0_3 - tim0_0_7; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[0]) = tre2_0_0 + tre2_0_1; c_im(inout[0]) = tim2_0_0 + tim2_0_1; c_re(inout[32 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[32 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[16 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[16 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[48 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[48 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[8 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[8 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[40 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[40 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[24 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[24 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[56 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[56 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_1_4) - (((FFTW_REAL) FFTW_K382683432) * tim0_1_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_1_4) + (((FFTW_REAL) FFTW_K382683432) * tre0_1_4); tre1_0_0 = tre0_1_0 + tre2_1_0; tim1_0_0 = tim0_1_0 + tim2_1_0; tre1_1_0 = tre0_1_0 - tre2_1_0; tim1_1_0 = tim0_1_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tre0_1_1) - (((FFTW_REAL) FFTW_K098017140) * tim0_1_1); tim2_0_0 = (((FFTW_REAL) FFTW_K995184726) * tim0_1_1) + (((FFTW_REAL) FFTW_K098017140) * tre0_1_1); tre2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_1_5) - (((FFTW_REAL) FFTW_K471396736) * tim0_1_5); tim2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_1_5) + (((FFTW_REAL) FFTW_K471396736) * tre0_1_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_1_2) - (((FFTW_REAL) FFTW_K195090322) * tim0_1_2); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_1_2) + (((FFTW_REAL) FFTW_K195090322) * tre0_1_2); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_1_6) - (((FFTW_REAL) FFTW_K555570233) * tim0_1_6); tim2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_1_6) + (((FFTW_REAL) FFTW_K555570233) * tre0_1_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_1_3) - (((FFTW_REAL) FFTW_K290284677) * tim0_1_3); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_1_3) + (((FFTW_REAL) FFTW_K290284677) * tre0_1_3); tre2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_1_7) - (((FFTW_REAL) FFTW_K634393284) * tim0_1_7); tim2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_1_7) + (((FFTW_REAL) FFTW_K634393284) * tre0_1_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[stride]) = tre2_0_0 + tre2_0_1; c_im(inout[stride]) = tim2_0_0 + tim2_0_1; c_re(inout[33 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[33 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[17 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[17 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[49 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[49 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[9 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[9 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[41 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[41 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[25 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[25 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[57 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[57 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_2_4 - tim0_2_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_2_4 + tre0_2_4); tre1_0_0 = tre0_2_0 + tre2_1_0; tim1_0_0 = tim0_2_0 + tim2_1_0; tre1_1_0 = tre0_2_0 - tre2_1_0; tim1_1_0 = tim0_2_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_2_1) - (((FFTW_REAL) FFTW_K195090322) * tim0_2_1); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tim0_2_1) + (((FFTW_REAL) FFTW_K195090322) * tre0_2_1); tre2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_2_5) - (((FFTW_REAL) FFTW_K831469612) * tim0_2_5); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_2_5) + (((FFTW_REAL) FFTW_K831469612) * tre0_2_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_2_2) - (((FFTW_REAL) FFTW_K382683432) * tim0_2_2); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_2_2) + (((FFTW_REAL) FFTW_K382683432) * tre0_2_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_2_6) - (((FFTW_REAL) FFTW_K923879532) * tim0_2_6); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_2_6) + (((FFTW_REAL) FFTW_K923879532) * tre0_2_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_2_3) - (((FFTW_REAL) FFTW_K555570233) * tim0_2_3); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_2_3) + (((FFTW_REAL) FFTW_K555570233) * tre0_2_3); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_2_7) - (((FFTW_REAL) FFTW_K980785280) * tim0_2_7); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_2_7) + (((FFTW_REAL) FFTW_K980785280) * tre0_2_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[2 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[2 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[34 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[34 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[18 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[18 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[50 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[50 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[10 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[10 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[42 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[42 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[26 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[26 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[58 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[58 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_3_4) - (((FFTW_REAL) FFTW_K923879532) * tim0_3_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_3_4) + (((FFTW_REAL) FFTW_K923879532) * tre0_3_4); tre1_0_0 = tre0_3_0 + tre2_1_0; tim1_0_0 = tim0_3_0 + tim2_1_0; tre1_1_0 = tre0_3_0 - tre2_1_0; tim1_1_0 = tim0_3_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tre0_3_1) - (((FFTW_REAL) FFTW_K290284677) * tim0_3_1); tim2_0_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_3_1) + (((FFTW_REAL) FFTW_K290284677) * tre0_3_1); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_3_5) - (((FFTW_REAL) FFTW_K995184726) * tim0_3_5); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_3_5) + (((FFTW_REAL) FFTW_K995184726) * tre0_3_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_3_2) - (((FFTW_REAL) FFTW_K555570233) * tim0_3_2); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_3_2) + (((FFTW_REAL) FFTW_K555570233) * tre0_3_2); tre2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_3_6) + (((FFTW_REAL) FFTW_K980785280) * tim0_3_6); tim2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_3_6) - (((FFTW_REAL) FFTW_K195090322) * tim0_3_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tre0_3_3) - (((FFTW_REAL) FFTW_K773010453) * tim0_3_3); tim2_0_0 = (((FFTW_REAL) FFTW_K634393284) * tim0_3_3) + (((FFTW_REAL) FFTW_K773010453) * tre0_3_3); tre2_1_0 = (((FFTW_REAL) FFTW_K471396736) * tre0_3_7) + (((FFTW_REAL) FFTW_K881921264) * tim0_3_7); tim2_1_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_3_7) - (((FFTW_REAL) FFTW_K471396736) * tim0_3_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[3 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[3 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[35 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[35 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[19 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[19 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[51 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[51 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[11 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[11 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[43 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[43 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[27 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[27 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[59 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[59 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; tre1_0_0 = tre0_4_0 - tim0_4_4; tim1_0_0 = tim0_4_0 + tre0_4_4; tre1_1_0 = tre0_4_0 + tim0_4_4; tim1_1_0 = tim0_4_0 - tre0_4_4; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_1) - (((FFTW_REAL) FFTW_K382683432) * tim0_4_1); tim2_0_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_4_1) + (((FFTW_REAL) FFTW_K382683432) * tre0_4_1); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_5) + (((FFTW_REAL) FFTW_K923879532) * tim0_4_5); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_5) - (((FFTW_REAL) FFTW_K382683432) * tim0_4_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_2 - tim0_4_2); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_4_2 + tre0_4_2); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_6 + tim0_4_6); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_4_6 - tim0_4_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_3) - (((FFTW_REAL) FFTW_K923879532) * tim0_4_3); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_4_3) + (((FFTW_REAL) FFTW_K923879532) * tre0_4_3); tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_4_7) + (((FFTW_REAL) FFTW_K382683432) * tim0_4_7); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_4_7) - (((FFTW_REAL) FFTW_K923879532) * tim0_4_7); tre1_0_3 = tre2_0_0 - tre2_1_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = tre2_0_0 + tre2_1_0; tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[4 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[4 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[36 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[36 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[20 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[20 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[52 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[52 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[12 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[12 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[44 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[44 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[28 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[28 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[60 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[60 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_5_4) + (((FFTW_REAL) FFTW_K923879532) * tim0_5_4); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_5_4) - (((FFTW_REAL) FFTW_K382683432) * tim0_5_4); tre1_0_0 = tre0_5_0 - tre2_1_0; tim1_0_0 = tim0_5_0 + tim2_1_0; tre1_1_0 = tre0_5_0 + tre2_1_0; tim1_1_0 = tim0_5_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_5_1) - (((FFTW_REAL) FFTW_K471396736) * tim0_5_1); tim2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tim0_5_1) + (((FFTW_REAL) FFTW_K471396736) * tre0_5_1); tre2_1_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_5_5) + (((FFTW_REAL) FFTW_K634393284) * tim0_5_5); tim2_1_0 = (((FFTW_REAL) FFTW_K634393284) * tre0_5_5) - (((FFTW_REAL) FFTW_K773010453) * tim0_5_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tre0_5_2) - (((FFTW_REAL) FFTW_K831469612) * tim0_5_2); tim2_0_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_5_2) + (((FFTW_REAL) FFTW_K831469612) * tre0_5_2); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_5_6) + (((FFTW_REAL) FFTW_K195090322) * tim0_5_6); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_5_6) - (((FFTW_REAL) FFTW_K980785280) * tim0_5_6); tre1_0_2 = tre2_0_0 - tre2_1_0; tim1_0_2 = tim2_0_0 + tim2_1_0; tre1_1_2 = tre2_0_0 + tre2_1_0; tim1_1_2 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_5_3) - (((FFTW_REAL) FFTW_K995184726) * tim0_5_3); tim2_0_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_5_3) + (((FFTW_REAL) FFTW_K995184726) * tre0_5_3); tre2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tim0_5_7) - (((FFTW_REAL) FFTW_K956940335) * tre0_5_7); tim2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_5_7) + (((FFTW_REAL) FFTW_K290284677) * tre0_5_7); tre1_0_3 = tre2_0_0 + tre2_1_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = tre2_0_0 - tre2_1_0; tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[5 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[5 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[37 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[37 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[21 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[21 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[53 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[53 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[13 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[13 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[45 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[45 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[29 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[29 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[61 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[61 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_6_4 + tim0_6_4); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_6_4 - tim0_6_4); tre1_0_0 = tre0_6_0 - tre2_1_0; tim1_0_0 = tim0_6_0 + tim2_1_0; tre1_1_0 = tre0_6_0 + tre2_1_0; tim1_1_0 = tim0_6_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tre0_6_1) - (((FFTW_REAL) FFTW_K555570233) * tim0_6_1); tim2_0_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_6_1) + (((FFTW_REAL) FFTW_K555570233) * tre0_6_1); tre2_1_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_6_5) + (((FFTW_REAL) FFTW_K195090322) * tim0_6_5); tim2_1_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_6_5) - (((FFTW_REAL) FFTW_K980785280) * tim0_6_5); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_6_2) - (((FFTW_REAL) FFTW_K923879532) * tim0_6_2); tim2_0_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_6_2) + (((FFTW_REAL) FFTW_K923879532) * tre0_6_2); tre2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tim0_6_6) - (((FFTW_REAL) FFTW_K923879532) * tre0_6_6); tim2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tim0_6_6) + (((FFTW_REAL) FFTW_K382683432) * tre0_6_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_6_3) + (((FFTW_REAL) FFTW_K980785280) * tim0_6_3); tim2_0_0 = (((FFTW_REAL) FFTW_K980785280) * tre0_6_3) - (((FFTW_REAL) FFTW_K195090322) * tim0_6_3); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_6_7) - (((FFTW_REAL) FFTW_K555570233) * tre0_6_7); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_6_7) + (((FFTW_REAL) FFTW_K831469612) * tre0_6_7); tre1_0_3 = tre2_1_0 - tre2_0_0; tim1_0_3 = tim2_0_0 - tim2_1_0; tre1_1_3 = (-(tre2_0_0 + tre2_1_0)); tim1_1_3 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[6 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[6 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[38 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[38 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[22 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[22 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[54 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[54 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[14 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[14 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[46 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[46 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[30 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[30 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[62 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[62 * stride]) = tim2_1_0 - tre2_1_1; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_0_2; FFTW_REAL tim1_0_2; FFTW_REAL tre1_0_3; FFTW_REAL tim1_0_3; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; FFTW_REAL tre1_1_2; FFTW_REAL tim1_1_2; FFTW_REAL tre1_1_3; FFTW_REAL tim1_1_3; { FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_1_0 = (((FFTW_REAL) FFTW_K923879532) * tre0_7_4) + (((FFTW_REAL) FFTW_K382683432) * tim0_7_4); tim2_1_0 = (((FFTW_REAL) FFTW_K382683432) * tre0_7_4) - (((FFTW_REAL) FFTW_K923879532) * tim0_7_4); tre1_0_0 = tre0_7_0 - tre2_1_0; tim1_0_0 = tim0_7_0 + tim2_1_0; tre1_1_0 = tre0_7_0 + tre2_1_0; tim1_1_0 = tim0_7_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tre0_7_1) - (((FFTW_REAL) FFTW_K634393284) * tim0_7_1); tim2_0_0 = (((FFTW_REAL) FFTW_K773010453) * tim0_7_1) + (((FFTW_REAL) FFTW_K634393284) * tre0_7_1); tre2_1_0 = (((FFTW_REAL) FFTW_K290284677) * tim0_7_5) - (((FFTW_REAL) FFTW_K956940335) * tre0_7_5); tim2_1_0 = (((FFTW_REAL) FFTW_K956940335) * tim0_7_5) + (((FFTW_REAL) FFTW_K290284677) * tre0_7_5); tre1_0_1 = tre2_0_0 + tre2_1_0; tim1_0_1 = tim2_0_0 - tim2_1_0; tre1_1_1 = tre2_0_0 - tre2_1_0; tim1_1_1 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tre0_7_2) - (((FFTW_REAL) FFTW_K980785280) * tim0_7_2); tim2_0_0 = (((FFTW_REAL) FFTW_K195090322) * tim0_7_2) + (((FFTW_REAL) FFTW_K980785280) * tre0_7_2); tre2_1_0 = (((FFTW_REAL) FFTW_K831469612) * tim0_7_6) - (((FFTW_REAL) FFTW_K555570233) * tre0_7_6); tim2_1_0 = (((FFTW_REAL) FFTW_K555570233) * tim0_7_6) + (((FFTW_REAL) FFTW_K831469612) * tre0_7_6); tre1_0_2 = tre2_0_0 + tre2_1_0; tim1_0_2 = tim2_0_0 - tim2_1_0; tre1_1_2 = tre2_0_0 - tre2_1_0; tim1_1_2 = tim2_0_0 + tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = (((FFTW_REAL) FFTW_K471396736) * tre0_7_3) + (((FFTW_REAL) FFTW_K881921264) * tim0_7_3); tim2_0_0 = (((FFTW_REAL) FFTW_K881921264) * tre0_7_3) - (((FFTW_REAL) FFTW_K471396736) * tim0_7_3); tre2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tre0_7_7) + (((FFTW_REAL) FFTW_K995184726) * tim0_7_7); tim2_1_0 = (((FFTW_REAL) FFTW_K098017140) * tim0_7_7) - (((FFTW_REAL) FFTW_K995184726) * tre0_7_7); tre1_0_3 = tre2_1_0 - tre2_0_0; tim1_0_3 = tim2_0_0 + tim2_1_0; tre1_1_3 = (-(tre2_0_0 + tre2_1_0)); tim1_1_3 = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_0_0 + tre1_0_2; tim2_0_0 = tim1_0_0 + tim1_0_2; tre2_1_0 = tre1_0_0 - tre1_0_2; tim2_1_0 = tim1_0_0 - tim1_0_2; tre2_0_1 = tre1_0_1 + tre1_0_3; tim2_0_1 = tim1_0_1 + tim1_0_3; tre2_1_1 = tre1_0_1 - tre1_0_3; tim2_1_1 = tim1_0_1 - tim1_0_3; c_re(inout[7 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[7 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[39 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[39 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[23 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[23 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[55 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[55 * stride]) = tim2_1_0 - tre2_1_1; } { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_0_1; FFTW_REAL tim2_0_1; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; FFTW_REAL tre2_1_1; FFTW_REAL tim2_1_1; tre2_0_0 = tre1_1_0 - tim1_1_2; tim2_0_0 = tim1_1_0 + tre1_1_2; tre2_1_0 = tre1_1_0 + tim1_1_2; tim2_1_0 = tim1_1_0 - tre1_1_2; { FFTW_REAL tre3_0_0; FFTW_REAL tim3_0_0; FFTW_REAL tre3_1_0; FFTW_REAL tim3_1_0; tre3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_1 - tim1_1_1); tim3_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim1_1_1 + tre1_1_1); tre3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 + tim1_1_3); tim3_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre1_1_3 - tim1_1_3); tre2_0_1 = tre3_0_0 - tre3_1_0; tim2_0_1 = tim3_0_0 + tim3_1_0; tre2_1_1 = tre3_0_0 + tre3_1_0; tim2_1_1 = tim3_0_0 - tim3_1_0; } c_re(inout[15 * stride]) = tre2_0_0 + tre2_0_1; c_im(inout[15 * stride]) = tim2_0_0 + tim2_0_1; c_re(inout[47 * stride]) = tre2_0_0 - tre2_0_1; c_im(inout[47 * stride]) = tim2_0_0 - tim2_0_1; c_re(inout[31 * stride]) = tre2_1_0 - tim2_1_1; c_im(inout[31 * stride]) = tim2_1_0 + tre2_1_1; c_re(inout[63 * stride]) = tre2_1_0 + tim2_1_1; c_im(inout[63 * stride]) = tim2_1_0 - tre2_1_1; } } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 102 FP additions and 60 FP multiplications */ void fftwi_twiddle_7(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 6) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_3_0; FFTW_REAL tim0_3_0; FFTW_REAL tre0_4_0; FFTW_REAL tim0_4_0; FFTW_REAL tre0_5_0; FFTW_REAL tim0_5_0; FFTW_REAL tre0_6_0; FFTW_REAL tim0_6_0; tre0_0_0 = c_re(inout[0]); tim0_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre0_1_0 = (tr * twr) + (ti * twi); tim0_1_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre0_2_0 = (tr * twr) + (ti * twi); tim0_2_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre0_3_0 = (tr * twr) + (ti * twi); tim0_3_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre0_4_0 = (tr * twr) + (ti * twi); tim0_4_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre0_5_0 = (tr * twr) + (ti * twi); tim0_5_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre0_6_0 = (tr * twr) + (ti * twi); tim0_6_0 = (ti * twr) - (tr * twi); } c_re(inout[0]) = tre0_0_0 + tre0_1_0 + tre0_2_0 + tre0_3_0 + tre0_4_0 + tre0_5_0 + tre0_6_0; c_im(inout[0]) = tim0_0_0 + tim0_1_0 + tim0_2_0 + tim0_3_0 + tim0_4_0 + tim0_5_0 + tim0_6_0; { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_1_0 + tre0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_2_0 + tre0_5_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tim0_6_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_5_0 - tim0_2_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_4_0 - tim0_3_0)); c_re(inout[stride]) = tre1_0_0 + tre1_1_0; c_re(inout[6 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_1_0 + tim0_6_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_2_0 + tim0_5_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K781831482) * (tre0_1_0 - tre0_6_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_2_0 - tre0_5_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_3_0 - tre0_4_0)); c_im(inout[stride]) = tim1_0_0 + tim1_1_0; c_im(inout[6 * stride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tim0_6_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K433883739) * (tim0_2_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_3_0 - tim0_4_0)); c_re(inout[2 * stride]) = tre1_0_0 + tre1_1_0; c_re(inout[5 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K974927912) * (tre0_1_0 - tre0_6_0)) + (((FFTW_REAL) FFTW_K433883739) * (tre0_5_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_4_0 - tre0_3_0)); c_im(inout[2 * stride]) = tim1_0_0 + tim1_1_0; c_im(inout[5 * stride]) = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tre1_1_0; tre1_0_0 = tre0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tre0_2_0 + tre0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tre0_3_0 + tre0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tre0_1_0 + tre0_6_0)); tre1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tim0_6_0 - tim0_1_0)) + (((FFTW_REAL) FFTW_K781831482) * (tim0_2_0 - tim0_5_0)) + (((FFTW_REAL) FFTW_K974927912) * (tim0_4_0 - tim0_3_0)); c_re(inout[3 * stride]) = tre1_0_0 + tre1_1_0; c_re(inout[4 * stride]) = tre1_0_0 - tre1_1_0; } { FFTW_REAL tim1_0_0; FFTW_REAL tim1_1_0; tim1_0_0 = tim0_0_0 + (((FFTW_REAL) FFTW_K623489801) * (tim0_2_0 + tim0_5_0)) - (((FFTW_REAL) FFTW_K222520933) * (tim0_3_0 + tim0_4_0)) - (((FFTW_REAL) FFTW_K900968867) * (tim0_1_0 + tim0_6_0)); tim1_1_0 = (((FFTW_REAL) FFTW_K433883739) * (tre0_1_0 - tre0_6_0)) + (((FFTW_REAL) FFTW_K781831482) * (tre0_5_0 - tre0_2_0)) + (((FFTW_REAL) FFTW_K974927912) * (tre0_3_0 - tre0_4_0)); c_im(inout[3 * stride]) = tim1_0_0 + tim1_1_0; c_im(inout[4 * stride]) = tim1_0_0 - tim1_1_0; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 66 FP additions and 32 FP multiplications */ void fftwi_twiddle_8(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 7) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_0_3; FFTW_REAL tim0_0_3; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_1_3; FFTW_REAL tim0_1_3; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_0 = tre1_0_0 + tre1_1_0; tim0_0_0 = tim1_0_0 + tim1_1_0; tre0_1_0 = tre1_0_0 - tre1_1_0; tim0_1_0 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_1 = tre1_0_0 + tre1_1_0; tim0_0_1 = tim1_0_0 + tim1_1_0; tre0_1_1 = tre1_0_0 - tre1_1_0; tim0_1_1 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_2 = tre1_0_0 + tre1_1_0; tim0_0_2 = tim1_0_0 + tim1_1_0; tre0_1_2 = tre1_0_0 - tre1_1_0; tim0_1_2 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } tre0_0_3 = tre1_0_0 + tre1_1_0; tim0_0_3 = tim1_0_0 + tim1_1_0; tre0_1_3 = tre1_0_0 - tre1_1_0; tim0_1_3 = tim1_0_0 - tim1_1_0; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_0_0 + tre0_0_2; tim1_0_0 = tim0_0_0 + tim0_0_2; tre1_1_0 = tre0_0_0 - tre0_0_2; tim1_1_0 = tim0_0_0 - tim0_0_2; tre1_0_1 = tre0_0_1 + tre0_0_3; tim1_0_1 = tim0_0_1 + tim0_0_3; tre1_1_1 = tre0_0_1 - tre0_0_3; tim1_1_1 = tim0_0_1 - tim0_0_3; c_re(inout[0]) = tre1_0_0 + tre1_0_1; c_im(inout[0]) = tim1_0_0 + tim1_0_1; c_re(inout[4 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[4 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[2 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[2 * stride]) = tim1_1_0 + tre1_1_1; c_re(inout[6 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[6 * stride]) = tim1_1_0 - tre1_1_1; } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_0_1; FFTW_REAL tim1_0_1; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_1_1; FFTW_REAL tim1_1_1; tre1_0_0 = tre0_1_0 - tim0_1_2; tim1_0_0 = tim0_1_0 + tre0_1_2; tre1_1_0 = tre0_1_0 + tim0_1_2; tim1_1_0 = tim0_1_0 - tre0_1_2; { FFTW_REAL tre2_0_0; FFTW_REAL tim2_0_0; FFTW_REAL tre2_1_0; FFTW_REAL tim2_1_0; tre2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_1 - tim0_1_1); tim2_0_0 = ((FFTW_REAL) FFTW_K707106781) * (tim0_1_1 + tre0_1_1); tre2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_3 + tim0_1_3); tim2_1_0 = ((FFTW_REAL) FFTW_K707106781) * (tre0_1_3 - tim0_1_3); tre1_0_1 = tre2_0_0 - tre2_1_0; tim1_0_1 = tim2_0_0 + tim2_1_0; tre1_1_1 = tre2_0_0 + tre2_1_0; tim1_1_1 = tim2_0_0 - tim2_1_0; } c_re(inout[stride]) = tre1_0_0 + tre1_0_1; c_im(inout[stride]) = tim1_0_0 + tim1_0_1; c_re(inout[5 * stride]) = tre1_0_0 - tre1_0_1; c_im(inout[5 * stride]) = tim1_0_0 - tim1_0_1; c_re(inout[3 * stride]) = tre1_1_0 - tim1_1_1; c_im(inout[3 * stride]) = tim1_1_0 + tre1_1_1; c_re(inout[7 * stride]) = tre1_1_0 + tim1_1_1; c_im(inout[7 * stride]) = tim1_1_0 - tre1_1_1; } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* This file has been automatically generated --- DO NOT EDIT */ #include "fftw.h" #include "konst.h" /* Generated by $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ /* This function contains 108 FP additions and 72 FP multiplications */ void fftwi_twiddle_9(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int stride, int m, int dist) { int i; COMPLEX *inout; inout = A; for (i = 0; i < m; i = i + 1, inout = inout + dist, W = W + 8) { FFTW_REAL tre0_0_0; FFTW_REAL tim0_0_0; FFTW_REAL tre0_0_1; FFTW_REAL tim0_0_1; FFTW_REAL tre0_0_2; FFTW_REAL tim0_0_2; FFTW_REAL tre0_1_0; FFTW_REAL tim0_1_0; FFTW_REAL tre0_1_1; FFTW_REAL tim0_1_1; FFTW_REAL tre0_1_2; FFTW_REAL tim0_1_2; FFTW_REAL tre0_2_0; FFTW_REAL tim0_2_0; FFTW_REAL tre0_2_1; FFTW_REAL tim0_2_1; FFTW_REAL tre0_2_2; FFTW_REAL tim0_2_2; { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_0_0 = c_re(inout[0]); tim1_0_0 = c_im(inout[0]); { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[3 * stride]); ti = c_im(inout[3 * stride]); twr = c_re(W[2]); twi = c_im(W[2]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[6 * stride]); ti = c_im(inout[6 * stride]); twr = c_re(W[5]); twi = c_im(W[5]); tre1_2_0 = (tr * twr) + (ti * twi); tim1_2_0 = (ti * twr) - (tr * twi); } tre0_0_0 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_0 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_0 = tre2_0_0 + tre2_1_0; tre0_2_0 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_0 = tim2_0_0 + tim2_1_0; tim0_2_0 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[stride]); ti = c_im(inout[stride]); twr = c_re(W[0]); twi = c_im(W[0]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[4 * stride]); ti = c_im(inout[4 * stride]); twr = c_re(W[3]); twi = c_im(W[3]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[7 * stride]); ti = c_im(inout[7 * stride]); twr = c_re(W[6]); twi = c_im(W[6]); tre1_2_0 = (tr * twr) + (ti * twi); tim1_2_0 = (ti * twr) - (tr * twi); } tre0_0_1 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_1 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_1 = tre2_0_0 + tre2_1_0; tre0_2_1 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_1 = tim2_0_0 + tim2_1_0; tim0_2_1 = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_0_0; FFTW_REAL tim1_0_0; FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[2 * stride]); ti = c_im(inout[2 * stride]); twr = c_re(W[1]); twi = c_im(W[1]); tre1_0_0 = (tr * twr) + (ti * twi); tim1_0_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[5 * stride]); ti = c_im(inout[5 * stride]); twr = c_re(W[4]); twi = c_im(W[4]); tre1_1_0 = (tr * twr) + (ti * twi); tim1_1_0 = (ti * twr) - (tr * twi); } { FFTW_REAL tr; FFTW_REAL ti; FFTW_REAL twr; FFTW_REAL twi; tr = c_re(inout[8 * stride]); ti = c_im(inout[8 * stride]); twr = c_re(W[7]); twi = c_im(W[7]); tre1_2_0 = (tr * twr) + (ti * twi); tim1_2_0 = (ti * twr) - (tr * twi); } tre0_0_2 = tre1_0_0 + tre1_1_0 + tre1_2_0; tim0_0_2 = tim1_0_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); tre0_1_2 = tre2_0_0 + tre2_1_0; tre0_2_2 = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim1_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); tim0_1_2 = tim2_0_0 + tim2_1_0; tim0_2_2 = tim2_0_0 - tim2_1_0; } } c_re(inout[0]) = tre0_0_0 + tre0_0_1 + tre0_0_2; c_im(inout[0]) = tim0_0_0 + tim0_0_1 + tim0_0_2; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tre0_0_1 + tre0_0_2)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim0_0_2 - tim0_0_1); c_re(inout[3 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[6 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_0_0 - (((FFTW_REAL) FFTW_K499999999) * (tim0_0_1 + tim0_0_2)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre0_0_1 - tre0_0_2); c_im(inout[3 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[6 * stride]) = tim2_0_0 - tim2_1_0; } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tre0_1_1) - (((FFTW_REAL) FFTW_K642787609) * tim0_1_1); tim1_1_0 = (((FFTW_REAL) FFTW_K766044443) * tim0_1_1) + (((FFTW_REAL) FFTW_K642787609) * tre0_1_1); tre1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_1_2) - (((FFTW_REAL) FFTW_K984807753) * tim0_1_2); tim1_2_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_1_2) + (((FFTW_REAL) FFTW_K984807753) * tre0_1_2); c_re(inout[stride]) = tre0_1_0 + tre1_1_0 + tre1_2_0; c_im(inout[stride]) = tim0_1_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tre1_1_0 + tre1_2_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); c_re(inout[4 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[7 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_1_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 - tre1_2_0); c_im(inout[4 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[7 * stride]) = tim2_0_0 - tim2_1_0; } } { FFTW_REAL tre1_1_0; FFTW_REAL tim1_1_0; FFTW_REAL tre1_2_0; FFTW_REAL tim1_2_0; tre1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tre0_2_1) - (((FFTW_REAL) FFTW_K984807753) * tim0_2_1); tim1_1_0 = (((FFTW_REAL) FFTW_K173648177) * tim0_2_1) + (((FFTW_REAL) FFTW_K984807753) * tre0_2_1); tre1_2_0 = (((FFTW_REAL) FFTW_K939692620) * tre0_2_2) + (((FFTW_REAL) FFTW_K342020143) * tim0_2_2); tim1_2_0 = (((FFTW_REAL) FFTW_K342020143) * tre0_2_2) - (((FFTW_REAL) FFTW_K939692620) * tim0_2_2); c_re(inout[2 * stride]) = tre0_2_0 + tre1_1_0 - tre1_2_0; c_im(inout[2 * stride]) = tim0_2_0 + tim1_1_0 + tim1_2_0; { FFTW_REAL tre2_0_0; FFTW_REAL tre2_1_0; tre2_0_0 = tre0_2_0 + (((FFTW_REAL) FFTW_K499999999) * (tre1_2_0 - tre1_1_0)); tre2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tim1_2_0 - tim1_1_0); c_re(inout[5 * stride]) = tre2_0_0 + tre2_1_0; c_re(inout[8 * stride]) = tre2_0_0 - tre2_1_0; } { FFTW_REAL tim2_0_0; FFTW_REAL tim2_1_0; tim2_0_0 = tim0_2_0 - (((FFTW_REAL) FFTW_K499999999) * (tim1_1_0 + tim1_2_0)); tim2_1_0 = ((FFTW_REAL) FFTW_K866025403) * (tre1_1_0 + tre1_2_0); c_im(inout[5 * stride]) = tim2_0_0 + tim2_1_0; c_im(inout[8 * stride]) = tim2_0_0 - tim2_1_0; } } } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * generic.c -- "generic" solvers. They work for all * n (and are slow) */ #include "fftw.h" #include #include void fftw_twiddle_generic(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int m, int r, int n, int stride) { int i, j, k; const FFTW_COMPLEX *jp; FFTW_COMPLEX *kp; FFTW_COMPLEX *tmp = (FFTW_COMPLEX *) fftw_malloc(r * sizeof(FFTW_COMPLEX)); for (i = 0; i < m; ++i) { for (k = 0, kp = tmp; k < r; ++k, kp++) { FFTW_REAL r0, i0, rt, it, rw, iw; int l1 = i + m * k; int l0; r0 = i0 = 0.0; for (j = 0, jp = A + i * stride, l0 = 0; j < r; ++j, jp += m * stride) { rw = c_re(W[l0]); iw = c_im(W[l0]); rt = c_re(*jp); it = c_im(*jp); r0 += rt * rw - it * iw; i0 += rt * iw + it * rw; l0 += l1; if (l0 > n) l0 -= n; } c_re(*kp) = r0; c_im(*kp) = i0; } for (k = 0, kp = A + i * stride; k < r; ++k, kp += m * stride) *kp = tmp[k]; } fftw_free(tmp); } void fftwi_twiddle_generic(FFTW_COMPLEX *A, const FFTW_COMPLEX *W, int m, int r, int n, int stride) { int i, j, k; const FFTW_COMPLEX *jp; FFTW_COMPLEX *kp; FFTW_COMPLEX *tmp = (FFTW_COMPLEX *) fftw_malloc(r * sizeof(FFTW_COMPLEX)); for (i = 0; i < m; ++i) { for (k = 0, kp = tmp; k < r; ++k, kp++) { FFTW_REAL r0, i0, rt, it, rw, iw; int l1 = i + m * k; int l0; r0 = i0 = 0.0; for (j = 0, jp = A + i * stride, l0 = 0; j < r; ++j, jp += m * stride) { rw = c_re(W[l0]); iw = c_im(W[l0]); rt = c_re(*jp); it = c_im(*jp); r0 += rt * rw + it * iw; i0 += it * rw - rt * iw; l0 += l1; if (l0 > n) l0 -= n; } c_re(*kp) = r0; c_im(*kp) = i0; } for (k = 0, kp = A + i * stride; k < r; ++k, kp += m * stride) *kp = tmp[k]; } fftw_free(tmp); } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * malloc.c -- memory allocation related functions */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #if defined FFTW_USING_CILK #include #include #endif #include "fftw.h" #include #include int fftw_malloc_cnt = 0; void *(*fftw_malloc_hook) (size_t n) = (void *(*)(size_t n)) 0; void (*fftw_free_hook) (void *p) = (void (*)(void *p)) 0; #define FFTW_MALLOC_DEBUG 0 /* sorry for this debugging hack ... */ #define COMMA , #if FFTW_MALLOC_DEBUG #define WHEN_DEBUG(a) a /* * debugging malloc/free. Initialize every malloced and freed area to * random values, just to make sure we are not using uninitialized * pointers. Also check for writes past the ends of allocated blocks, * and a couple of other things. * * This code is a quick and dirty hack -- use at your own risk. */ int fftw_malloc_total = 0; #define MAGIC 0xABadCafe #define PAD_FACTOR 2 #define TWOINTS (2 * sizeof(int)) #define VERBOSE_ALLOCATION 0 #if VERBOSE_ALLOCATION #define WHEN_VERBOSE(a) a #else #define WHEN_VERBOSE(a) #endif void *fftw_malloc(size_t n) { char *p; int i; WHEN_VERBOSE({ printf("FFTW_MALLOC %d\n",n); fflush(stdout); }) if (n == 0) fftw_die("Tried to allocate a block of zero size!\n"); fftw_malloc_total += n; p = (char *) malloc(PAD_FACTOR*n + TWOINTS); if (!p) fftw_die("fftw_malloc: out of memory\n"); /* store the size in a known position */ ((int *) p)[0] = n; ((int *) p)[1] = MAGIC; for (i = 0; i < PAD_FACTOR*n; ++i) p[i + TWOINTS] = (char) (i ^ 0xDEADBEEF); ++fftw_malloc_cnt; /* skip the size we stored previously */ return (void *) (p + TWOINTS); } void fftw_free(void *p) { char *q = ((char *) p) - TWOINTS; if (!p) fftw_die("fftw_free: tried to free NULL pointer!\n"); if (!q) fftw_die("fftw_free: tried to free NULL+TWOINTS pointer!\n"); { int n = ((int *) q)[0]; int magic = ((int *) q)[1]; int i; WHEN_VERBOSE({ printf("FFTW_FREE %d\n",n); fflush(stdout); }) if (n == 0) fftw_die("Tried to free a freed pointer!\n"); *((int *) q) = 0; /* set to zero to detect duplicate free's */ if (magic != MAGIC) fftw_die("Wrong magic in fftw_free()!\n"); ((int *) q)[1] = ~MAGIC; if (n < 0) fftw_die("Tried to free block with corrupt size descriptor!\n"); fftw_malloc_total -= n; if (fftw_malloc_total < 0) fftw_die("fftw_malloc_total went negative!\n"); /* check for writing past end of array: */ for (i = n; i < PAD_FACTOR*n; ++i) if (q[i+TWOINTS] != (char) (i ^ 0xDEADBEEF)) { fprintf(stderr, "Byte %d past end of array has changed!\n", i - n + 1); fftw_die("Array bounds overwritten!\n"); } for (i = 0; i < PAD_FACTOR*n; ++i) q[i + TWOINTS] = (char) (i ^ 0xBEEFDEAD); --fftw_malloc_cnt; free(q); } } #else /* production version, no hacks */ #define WHEN_DEBUG(a) void *fftw_malloc(size_t n) { void *p; if (fftw_malloc_hook) return fftw_malloc_hook(n); if (n == 0) n = 1; p = malloc(n); if (!p) fftw_die("fftw_malloc: out of memory\n"); return p; } void fftw_free(void *p) { if (p) { if (fftw_free_hook) { fftw_free_hook(p); return; } free(p); } } #endif /* die when fatal errors occur */ void fftw_die(char *s) { fprintf(stderr, "%s", s); exit(1); } /* check for memory leaks when debugging */ void fftw_check_memory_leaks(void) { extern int fftw_node_cnt, fftw_plan_cnt, fftw_twiddle_size; if (WHEN_DEBUG(fftw_malloc_cnt ||) WHEN_DEBUG(fftw_malloc_total ||) fftw_node_cnt || fftw_plan_cnt || fftw_twiddle_size) { fprintf(stderr, "MEMORY LEAK!!!\n" WHEN_DEBUG("fftw_malloc = %d") " node=%d plan=%d twiddle=%d\n" WHEN_DEBUG("fftw_malloc_total = %d\n"), WHEN_DEBUG(fftw_malloc_cnt COMMA) fftw_node_cnt, fftw_plan_cnt, fftw_twiddle_size WHEN_DEBUG(COMMA fftw_malloc_total)); exit(1); } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #include "fftw.h" #include /* * Naive O(n^2) algorithm, used for testing purposes */ void fftw_naive(int n, FFTW_COMPLEX *in, FFTW_COMPLEX *out) { int i, j; FFTW_COMPLEX sum; FFTW_COMPLEX w; FFTW_REAL pi = 3.1415926535897932384626434; for (j = 0; j < n; ++j) { c_re(sum) = c_im(sum) = 0.0; for (i = 0; i < n; ++i) { c_re(w) = cos((2.0 * pi * (i * j % n)) / n); c_im(w) = -sin((2.0 * pi * (i * j % n)) / n); c_re(sum) += c_re(in[i]) * c_re(w) - c_im(in[i]) * c_im(w); c_im(sum) += c_im(in[i]) * c_re(w) + c_re(in[i]) * c_im(w); } out[j] = sum; } return; } /* * Naive O(n^2) algorithm, for the inverse. */ void fftwi_naive(int n, FFTW_COMPLEX *in, FFTW_COMPLEX *out) { int i, j; FFTW_COMPLEX sum; FFTW_COMPLEX w; FFTW_REAL pi = 3.1415926535897932384626434; for (j = 0; j < n; ++j) { c_re(sum) = c_im(sum) = 0.0; for (i = 0; i < n; ++i) { c_re(w) = cos((2.0 * pi * (i * j % n)) / n); c_im(w) = sin((2.0 * pi * (i * j % n)) / n); c_re(sum) += c_re(in[i]) * c_re(w) - c_im(in[i]) * c_im(w); c_im(sum) += c_im(in[i]) * c_re(w) + c_re(in[i]) * c_im(w); } out[j] = sum; } return; } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * planner.c -- find the optimal plan */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #if defined FFTW_USING_CILK #include #include #endif #include "fftw.h" #include #include int fftw_node_cnt = 0; int fftw_plan_cnt = 0; #define NOTW_OPTIMAL_SIZE 32 #define TWIDDLE_OPTIMAL_SIZE 12 /* wisdom prototypes */ extern int fftw_wisdom_lookup(int n, int flags, fftw_direction dir, enum fftw_node_type *type, int *signature, int replace_p); extern void fftw_wisdom_add(int n, int flags, fftw_direction dir, enum fftw_node_type type, int signature); /* constructors --- I wish I had ML */ static fftw_plan_node *make_node(void) { fftw_plan_node *p = (fftw_plan_node *) fftw_malloc(sizeof(fftw_plan_node)); p->refcnt = 0; fftw_node_cnt++; return p; } static void use_node(fftw_plan_node *p) { ++p->refcnt; } static fftw_plan_node *make_node_notw(int size, notw_codelet *codelet) { fftw_plan_node *p = make_node(); p->type = FFTW_NOTW; p->nodeu.notw.size = size; p->nodeu.notw.codelet = codelet; return p; } static fftw_plan_node *make_node_twiddle(int n, int size, twiddle_codelet *codelet, fftw_plan_node *recurse, int flags) { fftw_plan_node *p = make_node(); p->type = FFTW_TWIDDLE; p->nodeu.twiddle.size = size; p->nodeu.twiddle.codelet = codelet; p->nodeu.twiddle.recurse = recurse; use_node(recurse); if (flags & FFTW_MEASURE) p->nodeu.twiddle.tw = fftw_create_twiddle(n, size, n / size); else p->nodeu.twiddle.tw = 0; return p; } static fftw_plan_node *make_node_generic(int n, int size, generic_codelet *codelet, fftw_plan_node *recurse, int flags) { fftw_plan_node *p = make_node(); p->type = FFTW_GENERIC; p->nodeu.generic.size = size; p->nodeu.generic.codelet = codelet; p->nodeu.generic.recurse = recurse; use_node(recurse); if (flags & FFTW_MEASURE) p->nodeu.generic.tw = fftw_create_twiddle(n, 2, n); else p->nodeu.generic.tw = 0; return p; } static void destroy_tree(fftw_plan_node *p) { if (p) { --p->refcnt; if (p->refcnt == 0) { switch (p->type) { case FFTW_NOTW: break; case FFTW_TWIDDLE: if (p->nodeu.twiddle.tw) fftw_destroy_twiddle(p->nodeu.twiddle.tw); destroy_tree(p->nodeu.twiddle.recurse); break; case FFTW_GENERIC: if (p->nodeu.generic.tw) fftw_destroy_twiddle(p->nodeu.generic.tw); destroy_tree(p->nodeu.generic.recurse); break; } fftw_free(p); fftw_node_cnt--; } } } /* create a plan with twiddle factors, and other bells and whistles */ static fftw_plan make_plan(int n, fftw_direction dir, fftw_plan_node *root, int flags, enum fftw_node_type wisdom_type, int wisdom_signature) { fftw_plan p = (fftw_plan) fftw_malloc(sizeof(struct fftw_plan_struct)); p->n = n; p->dir = dir; p->flags = flags; use_node(root); p->root = root; p->cost = 0.0; p->wisdom_type = wisdom_type; p->wisdom_signature = wisdom_signature; p->next = (fftw_plan) 0; p->refcnt = 0; fftw_plan_cnt++; return p; } /* * complete with twiddle factors (because nodes don't have * them when FFTW_ESTIMATE is set) */ static void complete_twiddle(fftw_plan_node *p, int n) { int r; switch (p->type) { case FFTW_NOTW: break; case FFTW_TWIDDLE: r = p->nodeu.twiddle.size; if (!p->nodeu.twiddle.tw) p->nodeu.twiddle.tw = fftw_create_twiddle(n, r, n / r); complete_twiddle(p->nodeu.twiddle.recurse, n / r); break; case FFTW_GENERIC: r = p->nodeu.generic.size; if (!p->nodeu.generic.tw) p->nodeu.generic.tw = fftw_create_twiddle(n, 2, n); complete_twiddle(p->nodeu.generic.recurse, n / r); break; } } static void use_plan(fftw_plan p) { ++p->refcnt; } static void destroy_plan(fftw_plan p) { --p->refcnt; if (p->refcnt == 0) { destroy_tree(p->root); fftw_plan_cnt--; fftw_free(p); } } /* end of constructors */ /* management of plan tables */ static void make_empty_table(fftw_plan *table) { *table = (fftw_plan) 0; } static void insert(fftw_plan *table, fftw_plan this_plan, int n) { use_plan(this_plan); this_plan->n = n; this_plan->next = *table; *table = this_plan; } static fftw_plan lookup(fftw_plan *table, int n, int flags) { fftw_plan p; for (p = *table; p && ((p->n != n) || (p->flags != flags)); p = p->next); return p; } static void destroy_table(fftw_plan *table) { fftw_plan p, q; for (p = *table; p; p = q) { q = p->next; destroy_plan(p); } } static double estimate_node(fftw_plan_node *p) { int k; switch (p->type) { case FFTW_NOTW: k = p->nodeu.notw.size; return 1.0 + 0.1 * (k - NOTW_OPTIMAL_SIZE) * (k - NOTW_OPTIMAL_SIZE); case FFTW_TWIDDLE: k = p->nodeu.twiddle.size; return 1.0 + 0.1 * (k - TWIDDLE_OPTIMAL_SIZE) * (k - TWIDDLE_OPTIMAL_SIZE) + estimate_node(p->nodeu.twiddle.recurse); case FFTW_GENERIC: k = p->nodeu.generic.size; return 10.0 + k * k + estimate_node(p->nodeu.generic.recurse); } return 1.0E20; } /* auxiliary functions */ static void compute_cost(fftw_plan plan) { if (plan->flags & FFTW_MEASURE) plan->cost = fftw_measure_runtime(plan); else { double c; c = plan->n * estimate_node(plan->root); plan->cost = c; } } /* pick the better of two plans and destroy the other one. */ static fftw_plan pick_better(fftw_plan p1, fftw_plan p2) { if (!p1) return p2; if (!p2) return p1; if (p1->cost > p2->cost) { destroy_plan(p1); return p2; } else { destroy_plan(p2); return p1; } } /* find the smallest prime factor of n */ static int factor(int n) { int r; /* try 2 */ if ((n & 1) == 0) return 2; /* try odd numbers up to sqrt(n) */ for (r = 3; r * r <= n; r += 2) if (n % r == 0) return r; /* n is prime */ return n; } /* * Some macrology for the planner. If you have to write * the same line of code twice, there must be some bug. */ #define NOTW_ITERATOR(p, dir) \ config_notw *p = \ p = (dir == FFTW_FORWARD ? \ fftw_config_notw : fftwi_config_notw) #define TWIDDLE_ITERATOR(p, dir) \ config_twiddle *p = \ p = (dir == FFTW_FORWARD ? \ fftw_config_twiddle : fftwi_config_twiddle); #define FORALL_NOTW(p) \ for (; p->size; ++p) #define FORALL_TWIDDLE(p) \ for (; p->size; ++p) /****************************************** * Recursive planner * ******************************************/ fftw_plan planner(fftw_plan *table, int n, fftw_direction dir, int flags); /* * the planner consists of two parts: one that tries to * use accumulated wisdom, and one that does not. * A small driver invokes both parts in sequence */ /* planner with wisdom: look up the codelet suggested by the wisdom */ fftw_plan planner_wisdom(fftw_plan *table, int n, fftw_direction dir, int flags) { fftw_plan best = (fftw_plan) 0; fftw_plan_node *node; int have_wisdom; enum fftw_node_type wisdom_type; int wisdom_signature; /* see if we remember any wisdom for this case */ have_wisdom = fftw_wisdom_lookup(n, flags, dir, &wisdom_type, &wisdom_signature, 0); if (!have_wisdom) return best; if (wisdom_type == FFTW_NOTW) { NOTW_ITERATOR(p, dir); FORALL_NOTW(p) { /* see if wisdom applies */ if (wisdom_signature == p->signature && p->size == n) { node = make_node_notw(n, p->codelet); best = make_plan(n, dir, node, flags, FFTW_NOTW, p->signature); use_plan(best); return best; } } } if (wisdom_type == FFTW_TWIDDLE) { TWIDDLE_ITERATOR(p, dir); FORALL_TWIDDLE(p) { /* see if wisdom applies */ if (wisdom_signature == p->signature && (n % p->size) == 0) { fftw_plan r = planner(table, n / p->size, dir, flags); node = make_node_twiddle(n, p->size, p->codelet, r->root, flags); best = make_plan(n, dir, node, flags, FFTW_TWIDDLE, p->signature); use_plan(best); destroy_plan(r); return best; } } } /* * BUG (or: TODO) Can we have generic wisdom? This is probably * an academic question */ return best; } /* * planner with no wisdom: try all combinations and pick * the best */ fftw_plan planner_normal(fftw_plan *table, int n, fftw_direction dir, int flags) { fftw_plan best = (fftw_plan) 0; fftw_plan newplan; fftw_plan_node *node; /* see if we have any codelet that solves the problem */ { NOTW_ITERATOR(p, dir); FORALL_NOTW(p) { if (p->size == n) { node = make_node_notw(n, p->codelet); newplan = make_plan(n, dir, node, flags, FFTW_NOTW, p->signature); use_plan(newplan); compute_cost(newplan); best = pick_better(newplan, best); } } } /* Then, try all available twiddle codelets */ { TWIDDLE_ITERATOR(p, dir); FORALL_TWIDDLE(p) { if ((n % p->size) == 0 && (!best || n != p->size)) { fftw_plan r = planner(table, n / p->size, dir, flags); node = make_node_twiddle(n, p->size, p->codelet, r->root, flags); newplan = make_plan(n, dir, node, flags, FFTW_TWIDDLE, p->signature); use_plan(newplan); destroy_plan(r); compute_cost(newplan); best = pick_better(newplan, best); } } } /* * if no plan has been found so far, resort to generic codelets */ if (!best) { generic_codelet *codelet = (dir == FFTW_FORWARD ? fftw_twiddle_generic : fftwi_twiddle_generic); int size = factor(n); fftw_plan r = planner(table, n / size, dir, flags); node = make_node_generic(n, size, codelet, r->root, flags); newplan = make_plan(n, dir, node, flags, FFTW_GENERIC, 0); use_plan(newplan); destroy_plan(r); compute_cost(newplan); best = pick_better(newplan, best); } return best; } fftw_plan planner(fftw_plan *table, int n, fftw_direction dir, int flags) { fftw_plan best = (fftw_plan) 0; /* see if plan has already been computed */ best = lookup(table, n, flags); if (best) { use_plan(best); return best; } /* try a wise plan */ best = planner_wisdom(table, n, dir, flags); if (!best) { /* No wisdom. Plan normally. */ best = planner_normal(table, n, dir, flags); } if (best) { insert(table, best, n); /* remember the wisdom */ fftw_wisdom_add(n, flags, dir, best->wisdom_type, best->wisdom_signature); } return best; } fftw_plan fftw_create_plan(int n, fftw_direction dir, int flags) { fftw_plan table; fftw_plan p1; /* validate parameters */ if (n <= 0) return (fftw_plan) 0; if ((dir != FFTW_FORWARD) && (dir != FFTW_BACKWARD)) return (fftw_plan) 0; make_empty_table(&table); p1 = planner(&table, n, dir, flags); destroy_table(&table); complete_twiddle(p1->root, n); return p1; } void fftw_destroy_plan(fftw_plan plan) { destroy_plan(plan); } static void print_node(FILE * f, fftw_plan_node *p, int indent) { if (p) { switch (p->type) { case FFTW_NOTW: fprintf(f, "%*sFFTW_NOTW %d\n", indent, "", p->nodeu.notw.size); break; case FFTW_TWIDDLE: fprintf(f, "%*sFFTW_TWIDDLE %d\n", indent, "", p->nodeu.twiddle.size); print_node(f, p->nodeu.twiddle.recurse, indent); break; case FFTW_GENERIC: fprintf(f, "%*sFFTW_GENERIC %d\n", indent, "", p->nodeu.generic.size); print_node(f, p->nodeu.generic.recurse, indent); break; } } } void fftw_fprint_plan(FILE * f, fftw_plan p) { fprintf(f, "plan: (cost = %e)\n", p->cost); print_node(f, p->root, 0); } void fftw_print_plan(fftw_plan p) { fftw_fprint_plan(stdout, p); } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * timer.c -- this file measures the execution time of * ffts. This information is used by the planner. */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #include #include "fftw.h" #include #include /* * The timer keeps doubling the number of iterations * until the program runs for more than FFTW_TIME_MIN */ double fftw_measure_runtime(fftw_plan plan) { FFTW_COMPLEX *in, *out; fftw_time begin, end; double t; int i, iter; int n; n = plan->n; iter = 1; retry: in = (FFTW_COMPLEX *) fftw_malloc(n * sizeof(FFTW_COMPLEX)); out = (FFTW_COMPLEX *) fftw_malloc(n * sizeof(FFTW_COMPLEX)); begin = fftw_get_time(); for (i = 0; i < iter; ++i) { int j; /* generate random inputs */ for (j = 0; j < n; ++j) { c_re(in[j]) = 1.0; c_im(in[j]) = 32.432; } fftw(plan, 1, in, 1, 0, out, 1, 0); } end = fftw_get_time(); t = fftw_time_to_sec(fftw_time_diff(end,begin)); fftw_free(in); fftw_free(out); if (t < FFTW_TIME_MIN) { iter *= 2; /* * See D. E. Knuth, Structured Programming with GOTO Statements, * Computing Surveys (6), December 1974, for a justification * of this `goto' in the `n + 1/2' loop. */ goto retry; } return t / (double)iter; } #if defined(MAC) || defined(macintosh) /* Use Macintosh Time Manager to get the time: */ #pragma only_std_keywords off /* make sure compiler (CW) recognizes the pascal keywords that are in Timer.h */ #include #pragma only_std_keywords reset fftw_time get_Mac_microseconds(void) { fftw_time t; UnsignedWide microsec; /* * microsec.lo and microsec.hi are * unsigned long's, and are the two parts * of a 64 bit unsigned integer */ Microseconds(µsec); /* get time in microseconds */ /* store lo and hi words into our structure: */ t.lo = microsec.lo; t.hi = microsec.hi; return t; } fftw_time fftw_time_diff(fftw_time t1, fftw_time t2) /* This function takes the difference t1 - t2 of two 64 bit integers, represented by the 32 bit lo and hi words. if t1 < t2, returns 0. */ { fftw_time diff; if (t1.hi < t2.hi) { /* something is wrong...t1 < t2! */ diff.hi = diff.lo = 0; return diff; } else diff.hi = t1.hi - t2.hi; if (t1.lo < t2.lo) { if (diff.hi > 0) diff.hi -= 1; /* carry */ else { /* something is wrong...t1 < t2! */ diff.hi = diff.lo = 0; return diff; } } diff.lo = t1.lo - t2.lo; return diff; } #endif #if defined __WIN32__ #include static LARGE_INTEGER gFreq; static int gHaveHiResTimer = 0; static int gFirstTime = 1; unsigned long GetPerfTime(void) { LARGE_INTEGER lCounter; if (gFirstTime) { gFirstTime = 0; if (QueryPerformanceFrequency(&gFreq)) { gHaveHiResTimer = 1; } } if (gHaveHiResTimer) { QueryPerformanceCounter(&lCounter); return lCounter.u.LowPart; } else { #if defined(__QK_USER__) return (unsigned long) (dclock() * 1000000.0L) #else return (unsigned long) clock(); #endif } } double GetPerfSec(double pTime) { if (gHaveHiResTimer) { return pTime / gFreq.u.LowPart; /* assumes HighPart==0 */ } else { return pTime / CLOCKS_PER_SEC; } } #endif /* __WIN32__ */ /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * twiddle.c -- compute twiddle factors * These are the twiddle factors for *direct* fft. Flip sign to get * the inverse */ /* $Id: fftw.c,v 1.3 2010-01-26 14:06:59 giannozz Exp $ */ #if defined FFTW_USING_CILK #include #include #endif #include "fftw.h" #include #include #define FFTW_K2PI 6.2831853071795864769252867665590057683943387987502 /* * compute the W coefficients (that is, powers of the root of 1) * and store them into an array. */ static void fftw_compute_twiddle(int n, int r, int m, FFTW_COMPLEX *W) { double twoPiOverN; int i, j; twoPiOverN = FFTW_K2PI / (double) n; for (i = 0; i < m; ++i) for (j = 1; j < r; ++j) { int k = i * (r - 1) + (j - 1); c_re(W[k]) = cos(twoPiOverN * (double) i * (double) j); c_im(W[k]) = -sin(twoPiOverN * (double) i * (double) j); } } /* * these routines implement a simple reference-count-based * management of twiddle structures */ static fftw_twiddle *twlist = (fftw_twiddle *) 0; int fftw_twiddle_size = 0; /* total allocated size, for debugging */ fftw_twiddle *fftw_create_twiddle(int n, int r, int m) { fftw_twiddle *tw; FFTW_COMPLEX *W; /* lookup for this n in the twiddle list */ for (tw = twlist; tw; tw = tw->next) if (tw->n == n && tw->r == r && tw->m == m) { ++tw->refcnt; return tw; } /* not found --- allocate a new struct twiddle */ tw = (fftw_twiddle *) fftw_malloc(sizeof(fftw_twiddle)); W = (FFTW_COMPLEX *) fftw_malloc(m * (r - 1) * sizeof(FFTW_COMPLEX)); fftw_twiddle_size += n; tw->n = n; tw->r = r; tw->m = m; tw->twarray = W; tw->refcnt = 1; fftw_compute_twiddle(n, r, m, W); /* enqueue the new struct */ tw->next = twlist; twlist = tw; return tw; } void fftw_destroy_twiddle(fftw_twiddle * tw) { fftw_twiddle **p; --tw->refcnt; if (tw->refcnt == 0) { /* remove from the list of known twiddle factors */ for (p = &twlist; p; p = &((*p)->next)) if (*p == tw) { *p = tw->next; fftw_twiddle_size -= tw->n; fftw_free(tw->twarray); fftw_free(tw); return; } fftw_die("BUG in fftw_destroy_twiddle\n"); } } /* * Copyright (c) 1997 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to use, copy, modify, and distribute the Software without * restriction, provided the Software, including any modified copies made * under this license, is not distributed for a fee, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY BE LIABLE * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of the Massachusetts * Institute of Technology shall not be used in advertising or otherwise * to promote the sale, use or other dealings in this Software without * prior written authorization from the Massachusetts Institute of * Technology. * */ /* * wisdom.c -- manage the wisdom */ #include "fftw.h" #include #include #include struct wisdom { int n; int flags; fftw_direction dir; enum fftw_node_type type; /* this is the wisdom */ int signature; /* this is the wisdom */ struct wisdom *next; }; /* list of wisdom */ static struct wisdom *wisdom_list = (struct wisdom *) 0; int fftw_wisdom_lookup(int n, int flags, fftw_direction dir, enum fftw_node_type *type, int *signature, int replacep) { struct wisdom *p; if (!(flags & FFTW_USE_WISDOM)) return 0; /* simply ignore if wisdom is disabled */ flags |= FFTW_MEASURE; /* always use (only) wisdom from measurements */ for (p = wisdom_list; p; p = p->next) { if (p->n == n && p->flags == flags && p->dir == dir) { /* found wisdom */ if (replacep) { /* replace old wisdom with new */ p->type = *type; p->signature = *signature; } else { *type = p->type; *signature = p->signature; } return 1; } } return 0; } void fftw_wisdom_add(int n, int flags, fftw_direction dir, enum fftw_node_type type, int signature) { struct wisdom *p; if (!(flags & FFTW_USE_WISDOM)) return; /* simply ignore if wisdom is disabled */ if (!(flags & FFTW_MEASURE)) return; /* only measurements produce wisdom */ if (fftw_wisdom_lookup(n, flags, dir, &type, &signature, 1)) return; /* wisdom overwrote old wisdom */ p = (struct wisdom *) fftw_malloc(sizeof(struct wisdom)); p->n = n; p->flags = flags; p->dir = dir; p->type = type; p->signature = signature; /* remember this wisdom */ p->next = wisdom_list; wisdom_list = p; } void fftw_forget_wisdom(void) { while (wisdom_list) { struct wisdom *p; p = wisdom_list; wisdom_list = wisdom_list->next; fftw_free(p); } } /* * user-visible routines, to convert wisdom into strings etc. */ #define WISDOM_FORMAT_VERSION "FFTW-1.2" static void (*emit)(char c, void *data); static void emit_string(char *s, void *data) { while (*s) emit(*s++, data); } static void emit_int(int n, void *data) { char buf[128]; sprintf(buf, "%d", n); emit_string(buf, data); } /* dump wisdom in lisp-like format */ void fftw_export_wisdom(void (*emitter)(char c, void *), void *data) { struct wisdom *p; /* install the output handler */ emit = emitter; emit('(',data); emit_string(WISDOM_FORMAT_VERSION,data); for (p = wisdom_list; p; p = p->next) { emit(' ',data); /* separator to make the output nicer */ emit('(',data); emit_int((int) p->n, data); emit(' ',data); emit_int((int) p->flags, data); emit(' ',data); emit_int((int) p->dir, data); emit(' ',data); emit_int((int) p->type, data); emit(' ',data); emit_int((int) p->signature, data); emit(')',data); } emit(')',data); } /* input part */ static int next_char; static int (*get_input)(void *data); static fftw_status input_error; static void read_char(void *data) { next_char = get_input(data); if (next_char == 0 || next_char == EOF) input_error = FFTW_FAILURE; } /* skip blanks, newlines, tabs, etc */ static void eat_blanks(void *data) { while (isspace(next_char)) read_char(data); } static int read_int(void *data) { int sign = 1; int n = 0; eat_blanks(data); if (next_char == '-') { sign = -1; read_char(data); eat_blanks(data); } if (!isdigit(next_char)) { /* error, no digit */ input_error = FFTW_FAILURE; return 0; } while (isdigit(next_char)) { n = n * 10 + (next_char - '0'); read_char(data); } return sign * n; } #define EXPECT(c) \ { \ eat_blanks(data); \ if (input_error == FFTW_FAILURE || \ next_char != c) \ return FFTW_FAILURE; \ read_char(data); \ } #define EXPECT_INT(n) \ { \ n = read_int(data); \ if (input_error == FFTW_FAILURE) \ return FFTW_FAILURE; \ } #define EXPECT_STRING(s) \ { \ char *s1 = s; \ while (*s1) { \ EXPECT(*s1); \ ++s1; \ } \ } fftw_status fftw_import_wisdom(int (*g)(void *), void *data) { int n; int flags; fftw_direction dir; enum fftw_node_type type; int signature; get_input = g; input_error = FFTW_SUCCESS; read_char(data); eat_blanks(data); EXPECT('('); eat_blanks(data); EXPECT_STRING(WISDOM_FORMAT_VERSION); eat_blanks(data); while (next_char != ')') { EXPECT('('); EXPECT_INT(n); EXPECT_INT(flags); EXPECT_INT(dir); EXPECT_INT(type); EXPECT_INT(signature); eat_blanks(data); EXPECT(')'); /* the wisdom has been read properly. Add it */ fftw_wisdom_add(n, flags, dir, type, signature); /* prepare for next morsel of wisdom */ eat_blanks(data); } return FFTW_SUCCESS; } espresso-5.1/clib/memstat.c0000644000175000017500000000152012341373034014027 0ustar mbamba/* Copyright (C) 2002 FPMD group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ #include "c_defs.h" /* This function return the numer of kilobytes allocated by the calling process. Auhor: Carlo Cavazzoni. */ #if defined (__SVR4) && defined (__sun) #define SUN_MALLINFO #endif #if defined(HAVE_MALLINFO) && !defined(__QK_USER__) && !defined(SUN__MALLINFO) #include void F77_FUNC(memstat,MEMSTAT)(int *kilobytes) { struct mallinfo info; info = mallinfo(); #if defined(__AIX) *kilobytes = (info.arena) / 1024 ; #else *kilobytes = (info.arena + info.hblkhd) / 1024 ; #endif #else void F77_FUNC(memstat,MEMSTAT)(int *kilobytes) { *kilobytes = -1; #endif } espresso-5.1/clib/Makefile0000644000175000017500000000057512341373034013662 0ustar mbamba# Makefile for clib include ../make.sys OBJS = \ customize_signals.o \ stack.o \ c_mkdir.o \ copy.o \ cptimer.o \ eval_infix.o \ fft_stick.o \ indici.o \ md5.o \ md5_from_file.o \ memstat.o \ ptrace.o \ qsort.o all : clib.a clib.a : $(OBJS) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ source : co -l $(OBJS:.o=.c) clean : - rm -f clib.a *.o *.mod *.i core* include make.depend espresso-5.1/clib/copy.c0000644000175000017500000000121112341373034013324 0ustar mbamba #include #include int copy(const char* fn_in, const char* fn_out) { FILE *fd1 = fopen(fn_in, "r"); if(!fd1) return -1; // cannot open input FILE *fd2 = fopen(fn_out, "w"); if(!fd2) { // cannot open output fclose(fd1); return -2; } size_t l1; unsigned char buffer[8192]; while((l1 = fread(buffer, 1, sizeof buffer, fd1)) > 0) { size_t l2 = fwrite(buffer, 1, l1, fd2); if(l2 == 0 || l2 < l1) { fclose(fd1); fclose(fd2); if(l2==0) return -3; // output error return -4; // disk full } } fclose(fd1); fclose(fd2); return 0; } espresso-5.1/clib/make.depend0000644000175000017500000000055412341373034014315 0ustar mbambac_mkdir.o : ../include/c_defs.h cptimer.o : ../include/c_defs.h eval_infix.o : ../include/c_defs.h fft_stick.o : ../include/c_defs.h fft_stick.o : fftw.c fftw.o : fftw.o : indici.o : ../include/c_defs.h md5.o : md5_from_file.o : ../include/c_defs.h md5_from_file.o : memstat.o : ../include/c_defs.h ptrace.o : ../include/c_defs.h stack.o : ../include/c_defs.h espresso-5.1/upftools/0000755000175000017500000000000012341373041013153 5ustar mbambaespresso-5.1/upftools/read_upf_tofile.f900000644000175000017500000000526712341373034016636 0ustar mbamba! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------- PROGRAM read_upf_tofile !--------------------------------------------------------------------- ! ! This small program reads the pseudopotential in the Unified ! Pseudopotential Format and writes three files ! in a format which can be plotted. The files are: ! ! filewfc with the pseudo-wavefunctions ! filebeta with the beta functions ! filepot with the local potential, the valence and core charge. ! ! ! PWSCF modules ! ! USE constants, ONLY : fpi USE pseudo_types, ONLY : pseudo_upf, nullify_pseudo_upf, & deallocate_pseudo_upf USE upf_module, ONLY : read_upf USE radial_grids, ONLY : radial_grid_type, nullify_radial_grid ! IMPLICIT NONE ! INTEGER :: iunps, ierr ! CHARACTER(30) :: file_pseudo ! ! Local variables ! INTEGER :: ios, n, j TYPE (pseudo_upf) :: upf TYPE (radial_grid_type) :: grid ! WRITE(6,'("Name of the upf file > ", $)') READ(5,'(a)') file_pseudo ! nullify objects as soon as they are instantiated CALL nullify_pseudo_upf( upf ) CALL nullify_radial_grid( grid ) iunps=2 OPEN(UNIT=iunps,FILE=file_pseudo,STATUS='old',FORM='formatted', & ERR=100, IOSTAT=ios) 100 CALL errore('read_upf_tofile','open error on file '//file_pseudo,ios) CALL read_upf(upf, grid, ierr, unit=iunps) ! IF (ierr /= 0) & CALL errore('read_upf_tofile','reading pseudo upf', abs(ierr)) ! CLOSE(iunps) ! OPEN(UNIT=iunps,FILE='filewfc',STATUS='unknown',FORM='formatted', & ERR=200, IOSTAT=ios) 200 CALL errore('read_upf_tofile','open error on file filewfc',abs(ios)) DO n=1,upf%mesh WRITE(iunps,'(30f12.6)') upf%r(n), (upf%chi(n,j), j=1,upf%nwfc) ENDDO CLOSE(iunps) OPEN(UNIT=iunps,FILE='filebeta',STATUS='unknown',FORM='formatted', & ERR=300, IOSTAT=ios) 300 CALL errore('read_upf_tofile','open error on file filebeta',abs(ios)) DO n=1,upf%mesh WRITE(iunps,'(30f12.6)') upf%r(n), (upf%beta(n,j), j=1,upf%nbeta) ENDDO CLOSE(iunps) OPEN(UNIT=iunps,FILE='filepot',STATUS='unknown',FORM='formatted', & ERR=400, IOSTAT=ios) 400 CALL errore('read_upf_tofile','open error on file filepot',abs(ios)) DO n=1,upf%mesh WRITE(iunps,'(4f12.6)') upf%r(n), upf%vloc(n), & upf%rho_at(n), upf%rho_atc(n)*fpi*upf%r(n)**2 ENDDO CLOSE(iunps) CALL deallocate_pseudo_upf( upf ) END PROGRAM read_upf_tofile espresso-5.1/upftools/virtual.f900000644000175000017500000005522312341373034015172 0ustar mbamba!--------------------------------------------------------------------- ! ! Copyright (C) 2001-2002 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Generate a pseudopotential in the Virtual Crystal Approximation: ! ! V^{(vca)} = V_{loc)^{(vca)} + V_{nl}^{(vca)} ! where ! V_{loc)^{(vca)} = x V_{loc}^{(1)} + (1-x) V_{loc}^{(2)} ! and ! V_{nl)^{(vca)} = \sum_{ij} |\beta^{(1)}_i> x D^{(1)}_{ij} <\beta^{(1)}_j| ! + \sum_{ij} |\beta^{(2)}_i>(1-x)D^{(2)}_{ij} <\beta^{{2)}_j| ! where ! V_{loc}^{(n)}(r) is the local part of pseudopot n ! \beta^{{n)}_i(r) are the projectors for pseudopot n ! D^{(n))_{ij} are the (bare) components of matrix D for pseudopot n ! MODULE pseudo ! ! All variables to be read from the UPF file ! (UPF = unified pseudopotential format) ! INTEGER ,PARAMETER :: npsx = 2 ! npsx : maximum number of different pseudopotentials INTEGER, PARAMETER :: lmaxx = 3, nchix = 6, ndm = 2000 ! lmaxx : maximum non local angular momentum in PP ! nchix : maximum number of atomic wavefunctions per PP ! ndm : maximum number of points in the radial mesh INTEGER, PARAMETER :: nbrx = 8, lqmax = 5, nqfx = 8 ! nbrx : maximum number of beta functions ! lqmax : maximum number of angular momentum of Q ! nqfx : maximum number of coefficients in Q smoothing ! ! pp_header CHARACTER (len=80):: generated, date_author, comment CHARACTER (len=2) :: psd(npsx), pseudotype CHARACTER (len=20):: dft(npsx) INTEGER :: lmax(npsx), mesh(npsx), nbeta(npsx), ntwfc(npsx) LOGICAL :: nlcc(npsx), isus(npsx) real(8) :: zp(npsx), ecutrho, ecutwfc, etotps real(8) :: oc(nchix,npsx) CHARACTER(len=2) :: els(nchix,npsx) INTEGER :: lchi(nchix,npsx) ! ! pp_mesh real(8) :: r(ndm,npsx), rab(ndm,npsx) ! pp_nlcc real(8) :: rho_atc(ndm,npsx) ! ! pp_local real(8) :: vloc0(ndm,npsx) ! ! pp_nonlocal ! pp_beta real(8) :: betar(ndm, nbrx, npsx) INTEGER :: lll(nbrx,npsx), ikk2(nbrx,npsx) ! pp_dij real(8) :: dion(nbrx,nbrx,npsx) ! pp_qij INTEGER :: nqf(npsx), nqlc(npsx) real(8) :: rinner(lqmax,npsx), qqq(nbrx,nbrx,npsx), & qfunc(ndm,nbrx,nbrx,npsx) ! pp_qfcoef real(8) :: qfcoef(nqfx,lqmax,nbrx,nbrx,npsx) ! ! pp_pswfc real(8) :: chi(ndm,nchix,npsx) ! ! pp_rhoatom real(8) :: rho_at(ndm,npsx) END MODULE pseudo ! PROGRAM virtual !--------------------------------------------------------------------- ! ! Read pseudopotentials in the Unified Pseudopotential Format (UPF) ! IMPLICIT NONE INTEGER :: is, ios, iunps = 4 real (8) :: x CHARACTER (len=256) :: filein(2), fileout PRINT '('' '')' PRINT '('' Generate the UPF pseudopotential for a virtual atom '')' PRINT '('' combining two pseudopootentials in UPF format '')' PRINT '('' '')' ! DO is=1,2 PRINT '('' Input PP file # '',i2,'' in UPF format > '',$)', is READ (5, '(a)', end = 20, err = 20) filein(is) OPEN(unit=iunps,file=filein(is),status='old',form='formatted',iostat=ios) IF (ios/=0) STOP WRITE (*,*) " IOS= ", ios, is, iunps CALL read_pseudo(is, iunps) CLOSE (unit=iunps) PRINT '('' '')' ENDDO PRINT '('' New Pseudo = x '',a,'' + (1-x) '',a)', (trim(filein(is)), is=1,2) 10 CONTINUE PRINT '('' mixing parameter x [01) GOTO 10 CALL compute_virtual(x,filein) fileout='NewPseudo.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) 20 STOP END PROGRAM virtual ! !--------------------------------------------------------------------- SUBROUTINE compute_virtual(x,filein) USE pseudo USE upf, ONLY : & upf_rel => rel, upf_rcloc => rcloc, upf_nwfs => nwfs, & upf_oc => oc, upf_rcut => rcut, upf_rcutus => rcutus, & upf_epseu => epseu, upf_els => els, & upf_lchi => lchi, upf_nns => nns, & upf_generated => generated, upf_date_author => date_author, & upf_comment => comment, & upf_psd => psd, upf_pseudotype => pseudotype, & upf_iexch => iexch, & upf_icorr => icorr, & upf_igcx => igcx, & upf_igcc => igcc, & upf_lmax => lmax, upf_mesh => mesh, & upf_nbeta => nbeta, upf_ntwfc => ntwfc, upf_nlcc => nlcc, & upf_zp => zp, upf_ecutrho => ecutrho, upf_ecutwfc => ecutwfc, & upf_etotps => etotps, upf_ocw => ocw, & upf_elsw => elsw, upf_lchiw =>lchiw, & upf_r => r, upf_rab => rab, & upf_rho_atc => rho_atc, & upf_vloc0 => vloc0, & upf_betar => betar, upf_lll => lll, upf_ikk2 => ikk2, & upf_dion => dion, & upf_nqf => nqf, upf_nqlc => nqlc, & upf_rinner => rinner, upf_qqq => qqq, upf_qfunc => qfunc, & upf_qfcoef => qfcoef, & upf_chi => chi, & upf_rho_at => rho_at USE splinelib USE funct, ONLY : set_dft_from_name, get_iexch, get_icorr, get_igcx, get_igcc IMPLICIT NONE INTEGER :: i, j, ib CHARACTER (len=256) :: filein(2) CHARACTER (len=5) :: xlabel real (8) :: x, capel real (8), ALLOCATABLE :: aux1(:,:), aux2(:,:) LOGICAL :: interpolate interpolate = .false. ! !pp_info upf_rel = -1 upf_rcloc = 0.d0 ! !pp_header upf_generated = 'Generated using virtual.x code ' upf_date_author= 'Author and generation date: unknown. '//& 'Refer to original pseudopotential files' WRITE( xlabel, '(f5.3)' ) x upf_comment = 'Pseudo = x '//trim(filein(1))//& ' + (1-x) '//trim(filein(2))//', with x='//xlabel upf_psd = "Xx" upf_pseudotype = "NC" IF (isus(1) .or. isus(2)) upf_pseudotype = "US" CALL set_dft_from_name(dft(1)) upf_iexch = get_iexch() upf_icorr = get_icorr() upf_igcx = get_igcx() upf_igcc = get_igcc() CALL set_dft_from_name(dft(2)) IF (get_iexch()/=upf_iexch .or. get_icorr()/=upf_icorr .or. & get_igcx()/=upf_igcx .or. get_igcc()/=upf_igcc) & CALL errore ('virtual','conflicting DFT functionals',1) upf_lmax = max(lmax(1), lmax(2)) IF (mesh(1)/=mesh(2) ) THEN WRITE (*,*) " pseudopotentials have different mesh " WRITE (*,*) mesh(1),mesh(2) WRITE (*,*) r(1,1), r(1,2) WRITE (*,*) r(mesh(1),1),r(mesh(2),2) interpolate = .true. ENDIF upf_mesh = mesh(1) upf_nbeta = nbeta(1)+nbeta(2) upf_ntwfc = ntwfc(1) upf_nlcc = nlcc(1).or.nlcc(2) upf_ecutrho = ecutrho upf_ecutwfc = ecutwfc upf_etotps = etotps ALLOCATE( upf_ocw(upf_ntwfc), upf_elsw(upf_ntwfc), upf_lchiw(upf_ntwfc) ) upf_ocw(1:upf_ntwfc) = oc(1:upf_ntwfc,1) upf_elsw(1:upf_ntwfc) = els(1:upf_ntwfc,1) upf_lchiw(1:upf_ntwfc) = lchi(1:upf_ntwfc,1) upf_zp = x * zp(1) + (1.d0-x) * zp(2) ! !pp_mesh capel = 0.d0 DO i=1,upf_mesh capel = capel + abs(r(i,1)-r(i,2)) + abs(rab(i,1)-rab(i,2)) ENDDO IF (capel>1.d-6) THEN WRITE (*,*) " pseudopotentials have different mesh " interpolate = .true. ENDIF WRITE (*,*) "INTERPOLATE =", interpolate !if (interpolate) call errore ("virtual", & ! "grid interpolation is not working yet",1) IF (interpolate) ALLOCATE ( aux1(1,mesh(1)), aux2(1,mesh(2)) ) ALLOCATE( upf_r(upf_mesh), upf_rab(upf_mesh) ) upf_r(1:upf_mesh) = r(1:upf_mesh,1) upf_rab(1:upf_mesh) = rab(1:upf_mesh,1) ! !pp_nlcc ALLOCATE( upf_rho_atc(upf_mesh) ) IF (interpolate) THEN WRITE (*,*) "interpolate rho_atc" aux2(1,1:mesh(2)) = rho_atc(1:mesh(2),2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) rho_atc(1:upf_mesh,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_rho_atc(1:upf_mesh) = x * rho_atc(1:upf_mesh,1) + & (1.d0-x) * rho_atc(1:upf_mesh,2) ! !pp_local ALLOCATE( upf_vloc0(upf_mesh) ) IF (interpolate) THEN WRITE (*,*) " interpolate vloc0" aux2(1,1:mesh(2)) = vloc0(1:mesh(2),2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) vloc0(1:upf_mesh,2) = aux1(1,1:upf_mesh) ! Jivtesh - if the mesh of the first atom extends to a larger radius ! than the mesh of the second atom, then, for those radii that are ! greater than the maximum radius of the second atom, the local potential ! of the second atom is calculated using the expression ! v_local = (-2)*Z/r instead of using the extrapolated value. ! This is because, typically extrapolation leads to positive potentials. ! This is implemented in lines 240-242 DO i=1,mesh(1) IF(r(i,1)>r(mesh(2),2)) vloc0(i,2) = -(2.0*zp(2))/r(i,1) ENDDO ENDIF upf_vloc0(1:upf_mesh) = x * vloc0(1:upf_mesh,1) + & (1.d0-x) * vloc0(1:upf_mesh,2) ! !pp_nonlocal !pp_beta ALLOCATE( upf_betar(upf_mesh,upf_nbeta), & upf_lll(upf_nbeta), upf_ikk2(upf_nbeta) ) ib = 0 DO i=1,nbeta(1) ib = ib + 1 upf_betar(1:upf_mesh,ib) = betar(1:upf_mesh,i,1) upf_lll(ib) = lll(i,1) upf_ikk2(ib) = ikk2(i,1) ENDDO DO i=1,nbeta(2) ib = ib + 1 IF (interpolate) THEN WRITE (*,*) " interpolate betar" aux2(1,1:mesh(2)) = betar(1:mesh(2),i,2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) betar(1:upf_mesh,i,2) = aux1(1,1:upf_mesh) ENDIF upf_betar(1:upf_mesh,ib) = betar(1:upf_mesh,i,2) upf_lll(ib) = lll(i,2) ! SdG - when the meshes of the two pseudo are different the ikk2 limits ! for the beta functions of the second one must be set properly ! This is done in lines 273-277 IF (interpolate) THEN j = 1 DO WHILE ( upf_r(j) < r( ikk2(i,2), 2) ) j = j + 1 ENDDO upf_ikk2(ib) = j ELSE upf_ikk2(ib) = ikk2(i,2) ENDIF ENDDO ! !pp_dij ALLOCATE( upf_dion(upf_nbeta, upf_nbeta) ) upf_dion(:,:) = 0.d0 DO i=1,nbeta(1) DO j=1,nbeta(1) upf_dion(i,j) = x * dion(i,j,1) ENDDO ENDDO DO i=1,nbeta(2) DO j=1,nbeta(2) upf_dion(nbeta(1)+i,nbeta(1)+j) = (1.d0-x) * dion(i,j,2) ENDDO ENDDO ! !pp_qij IF (nqf(1)/=nqf(2)) & CALL errore ("Virtual","different nqf are not implemented (yet)", 1) IF (nqlc(1)/=nqlc(2)) & CALL errore ("Virtual","different nqlc are not implemented (yet)", 1) upf_nqf = nqf(1) upf_nqlc = nqlc(1) ALLOCATE( upf_rinner(upf_nqlc), upf_qqq(upf_nbeta,upf_nbeta), & upf_qfunc(upf_mesh,upf_nbeta,upf_nbeta) ) DO i=1,upf_nqlc IF(rinner(i,1)/=rinner(i,2)) & CALL errore("Virtual","different rinner are not implemented (yet)",i) ENDDO upf_rinner(1:upf_nqlc) = rinner(1:upf_nqlc,1) upf_qqq(:,:) = 0.d0 upf_qfunc(:,:,:) = 0.d0 DO i=1,nbeta(1) DO j=1,nbeta(1) upf_qqq(i,j) = x * qqq(i, j,1) upf_qfunc(1:upf_mesh,i,j) = x * qfunc(1:upf_mesh,i,j,1) ENDDO ENDDO DO i=1,nbeta(2) DO j=1,nbeta(2) upf_qqq(nbeta(1)+i,nbeta(1)+j) = (1.d0-x) * qqq(i, j, 2) IF (interpolate) THEN WRITE (*,*) " interpolate qfunc" aux2(1,1:mesh(2) ) = qfunc(1:mesh(2),i,j,2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) qfunc(1:upf_mesh,i,j,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_qfunc(1:upf_mesh,nbeta(1)+i,nbeta(1)+j) = (1.d0-x) * qfunc(1:upf_mesh,i,j,2) ENDDO ENDDO ! !pp_qfcoef ALLOCATE( upf_qfcoef(upf_nqf,upf_nqlc,upf_nbeta,upf_nbeta) ) upf_qfcoef(:,:,:,:) = 0.d0 DO i=1,nbeta(1) DO j=1,nbeta(1) upf_qfcoef(1:upf_nqf,1:upf_nqlc,i,j) = & x * qfcoef(1:upf_nqf,1:upf_nqlc,i,j, 1) ENDDO ENDDO DO i=1,nbeta(2) DO j=1,nbeta(2) upf_qfcoef(1:upf_nqf,1:upf_nqlc,nbeta(1)+i,nbeta(1)+j) = & (1.d0-x) * qfcoef(1:upf_nqf,1:upf_nqlc,i,j, 2) ENDDO ENDDO ! !pp_pswfc ALLOCATE (upf_chi(upf_mesh,upf_ntwfc) ) IF (ntwfc(1)==ntwfc(2)) THEN DO i=1,ntwfc(2) IF (interpolate) THEN WRITE (*,*) " interpolate chi" aux2(1,1:mesh(2)) = chi(1:mesh(2),i,2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) chi(1:upf_mesh,i,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF ! Jivtesh - The wavefunctions are calcuated to be the average of the ! wavefunctions of the two atoms - lines 365-366 upf_chi(1:upf_mesh,i) = x * chi(1:upf_mesh,i,1) + & (1.d0-x) * chi(1:upf_mesh,i,2) ENDDO ELSE WRITE (*,*) "Number of wavefunctions not the same for the two pseudopotentials" ENDIF !upf_chi(1:upf_mesh,1:upf_ntwfc) = chi(1:upf_mesh,1:upf_ntwfc,1) ! !pp_rhoatm ALLOCATE (upf_rho_at(upf_mesh) ) IF (interpolate) THEN WRITE (*,*) " interpolate rho_at" aux2(1,1:mesh(2)) = rho_at(1:mesh(2),2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) rho_at(1:upf_mesh,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_rho_at(1:upf_mesh) = x * rho_at(1:upf_mesh,1) + & (1.d0-x) * rho_at(1:upf_mesh,2) END SUBROUTINE compute_virtual ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo (is, iunps) !--------------------------------------------------------------------- ! ! Read pseudopotential in the Unified Pseudopotential Format (UPF) ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! is : index of this pseudopotential ! iunps: unit connected with pseudopotential file ! IF (is < 0 .or. is > npsx ) CALL errore ('read_pseudo', 'Wrong is number', 1) WRITE ( *, * ) " Reading pseudopotential file in UPF format..." !------->Search for Header CALL scan_begin (iunps, "HEADER", .true.) CALL read_pseudo_header (is, iunps) CALL scan_end (iunps, "HEADER") !-------->Search for mesh information CALL scan_begin (iunps, "MESH", .true.) CALL read_pseudo_mesh (is, iunps) CALL scan_end (iunps, "MESH") !-------->If present, search for nlcc IF (nlcc (is) ) THEN CALL scan_begin (iunps, "NLCC", .true.) CALL read_pseudo_nlcc (is, iunps) CALL scan_end (iunps, "NLCC") ENDIF !-------->Search for Local potential CALL scan_begin (iunps, "LOCAL", .true.) CALL read_pseudo_local (is, iunps) CALL scan_end (iunps, "LOCAL") !-------->Search for Nonlocal potential CALL scan_begin (iunps, "NONLOCAL", .true.) CALL read_pseudo_nl (is, iunps) CALL scan_end (iunps, "NONLOCAL") !-------->Search for atomic wavefunctions CALL scan_begin (iunps, "PSWFC", .true.) CALL read_pseudo_pswfc (is, iunps) CALL scan_end (iunps, "PSWFC") !-------->Search for atomic charge CALL scan_begin (iunps, "RHOATOM", .true.) CALL read_pseudo_rhoatom (is, iunps) CALL scan_end (iunps, "RHOATOM") ! WRITE ( *, * ) " ...done" RETURN END SUBROUTINE read_pseudo !--------------------------------------------------------------------- SUBROUTINE scan_begin (iunps, string, rew) !--------------------------------------------------------------------- ! IMPLICIT NONE ! Unit of the input file INTEGER :: iunps ! Label to be matched CHARACTER (len=*) :: string LOGICAL :: rew ! Flag: if .true. rewind the file CHARACTER (len=80) :: rstring ! String read from file INTEGER :: ios LOGICAL, EXTERNAL :: matches ios = 0 IF (rew) REWIND (iunps) DO WHILE (ios==0) READ (iunps, *, iostat = ios, err = 300) rstring IF (matches ("", rstring) ) RETURN ENDDO 300 CALL errore ('scan_begin', 'No '//string//' block', abs (ios) ) END SUBROUTINE scan_begin !--------------------------------------------------------------------- SUBROUTINE scan_end (iunps, string) !--------------------------------------------------------------------- IMPLICIT NONE ! Unit of the input file INTEGER :: iunps ! Label to be matched CHARACTER (len=*) :: string ! String read from file CHARACTER (len=80) :: rstring INTEGER :: ios LOGICAL, EXTERNAL :: matches READ (iunps, '(a)', iostat = ios, err = 300) rstring IF (matches ("", rstring) ) RETURN 300 CALL errore ('scan_end', & 'No '//string//' block end statement, possibly corrupted file', - 1) END SUBROUTINE scan_end ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_header (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: nv, ios, nw CHARACTER (len=75) :: dummy LOGICAL, EXTERNAL :: matches READ (iunps, *, err = 100, iostat = ios) nv, dummy READ (iunps, *, err = 100, iostat = ios) psd (is), dummy READ (iunps, *, err = 100, iostat = ios) pseudotype IF (matches (pseudotype, "US") ) isus (is) = .true. READ (iunps, *, err = 100, iostat = ios) nlcc (is), dummy READ (iunps, '(a20,t24,a)', err = 100, iostat = ios) dft(is), dummy READ (iunps, * ) zp (is), dummy READ (iunps, * ) etotps, dummy READ (iunps, * ) ecutwfc, ecutrho READ (iunps, * ) lmax (is), dummy READ (iunps, *, err = 100, iostat = ios) mesh (is), dummy READ (iunps, *, err = 100, iostat = ios) ntwfc(is), nbeta (is), dummy READ (iunps, '(a)', err = 100, iostat = ios) dummy DO nw = 1, ntwfc(is) READ (iunps, * ) els (nw,is), lchi (nw, is), oc (nw, is) ENDDO RETURN 100 CALL errore ('read_pseudo_header', 'Reading pseudo file', abs (ios)) END SUBROUTINE read_pseudo_header ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_local (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios ! READ (iunps, *, err=100, iostat=ios) (vloc0(ir,is) , ir=1,mesh(is)) 100 CALL errore ('read_pseudo_local','Reading pseudo file', abs(ios) ) RETURN END SUBROUTINE read_pseudo_local ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_mesh (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios ! CALL scan_begin (iunps, "R", .false.) READ (iunps, *, err = 100, iostat = ios) (r(ir,is), ir=1,mesh(is) ) CALL scan_end (iunps, "R") CALL scan_begin (iunps, "RAB", .false.) READ (iunps, *, err = 100, iostat = ios) (rab(ir,is), ir=1,mesh(is) ) CALL scan_end (iunps, "RAB") RETURN 100 CALL errore ('read_pseudo_mesh', 'Reading pseudo file', abs (ios) ) END SUBROUTINE read_pseudo_mesh ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_nl (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: nb, mb, n, ir, nd, ios, idum, ldum, icon, lp, i ! counters CHARACTER (len=75) :: dummy ! DO nb = 1, nbeta (is) CALL scan_begin (iunps, "BETA", .false.) READ (iunps, *, err = 100, iostat = ios) idum, lll(nb,is), dummy READ (iunps, '(i6)', err = 100, iostat = ios) ikk2(nb,is) READ (iunps, *, err = 100, iostat = ios) & (betar(ir,nb,is), ir=1,ikk2(nb,is)) DO ir = ikk2(nb,is) + 1, mesh (is) betar (ir, nb, is) = 0.d0 ENDDO CALL scan_end (iunps, "BETA") ENDDO WRITE(*,*)'ikk2',ikk2 CALL scan_begin (iunps, "DIJ", .false.) READ (iunps, *, err = 100, iostat = ios) nd, dummy dion (:,:,is) = 0.d0 DO icon = 1, nd READ (iunps, *, err = 100, iostat = ios) nb, mb, dion(nb,mb,is) dion (mb,nb,is) = dion (nb,mb,is) ENDDO CALL scan_end (iunps, "DIJ") IF (isus (is) ) THEN CALL scan_begin (iunps, "QIJ", .false.) READ (iunps, *, err = 100, iostat = ios) nqf(is) nqlc (is)= 2 * lmax (is) + 1 IF (nqlc(is)>lqmax .or. nqlc(is)<0) & CALL errore (' read_pseudo_nl', 'Wrong nqlc', nqlc (is) ) IF (nqf(is)/=0) THEN CALL scan_begin (iunps, "RINNER", .false.) READ (iunps,*,err=100,iostat=ios) & (idum,rinner(i,is),i=1,nqlc(is)) CALL scan_end (iunps, "RINNER") ENDIF DO nb = 1, nbeta(is) DO mb = nb, nbeta(is) READ (iunps,*,err=100,iostat=ios) idum, idum, ldum, dummy !" i j (l)" IF (ldum/=lll(mb,is) ) CALL errore ('read_pseudo_nl', & 'inconsistent angular momentum for Q_ij', 1) READ (iunps,*,err=100,iostat=ios) qqq(nb,mb,is), dummy ! "Q_int" qqq(mb,nb,is) = qqq(nb,mb,is) READ (iunps,*,err=100,iostat=ios) & (qfunc(n,nb,mb,is), n=1,mesh(is)) DO n = 0, mesh (is) qfunc(n,mb,nb,is) = qfunc(n,nb,mb,is) ENDDO IF (nqf(is)>0) THEN CALL scan_begin (iunps, "QFCOEF", .false.) READ (iunps,*,err=100,iostat=ios) & ((qfcoef(i,lp,nb,mb,is),i=1,nqf(is)),lp=1,nqlc(is)) CALL scan_end (iunps, "QFCOEF") ENDIF ENDDO ENDDO CALL scan_end (iunps, "QIJ") ELSE qqq (:,:,is) = 0.d0 qfunc(:,:,:,is) =0.d0 ENDIF 100 CALL errore ('read_pseudo_nl', 'Reading pseudo file', abs (ios) ) RETURN END SUBROUTINE read_pseudo_nl ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_nlcc (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios READ (iunps, *, err = 100, iostat = ios) (rho_atc(ir,is), ir=1,mesh(is) ) ! 100 CALL errore ('read_pseudo_nlcc', 'Reading pseudo file', abs (ios) ) RETURN END SUBROUTINE read_pseudo_nlcc ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_pswfc (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! CHARACTER (len=75) :: dummy INTEGER :: nb, ir, ios ! DO nb = 1, ntwfc(is) READ (iunps,*,err=100,iostat=ios) dummy !Wavefunction labels READ (iunps,*,err=100,iostat=ios) (chi(ir,nb,is), ir=1,mesh(is)) ENDDO 100 CALL errore ('read_pseudo_pswfc', 'Reading pseudo file', abs(ios)) RETURN END SUBROUTINE read_pseudo_pswfc ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_rhoatom (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios READ (iunps,*,err=100,iostat=ios) (rho_at(ir,is), ir=1,mesh(is)) RETURN 100 CALL errore ('read_pseudo_rhoatom','Reading pseudo file',abs(ios)) END SUBROUTINE read_pseudo_rhoatom espresso-5.1/upftools/upf2upf2.f900000644000175000017500000000544612341373034015157 0ustar mbamba! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM upf2upf2 !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in UPF v.1 format to UPF v.2 format ! USE pseudo_types, ONLY : pseudo_upf, nullify_pseudo_upf, & deallocate_pseudo_upf USE radial_grids, ONLY: radial_grid_type, nullify_radial_grid USE read_upf_v1_module, ONLY : read_upf_v1 USE write_upf_v2_module, ONLY: write_upf_v2 ! IMPLICIT NONE TYPE(pseudo_upf) :: upf TYPE (radial_grid_type), TARGET :: grid CHARACTER(len=256) filein, fileout INTEGER :: ios INTEGER, EXTERNAL :: atomic_number ! CALL get_file ( filein ) IF ( trim(filein) == ' ') & CALL errore ('upf2upf2', 'usage: upf2upf2 "file-to-be-converted"', 1) OPEN ( unit=1, file=filein, status = 'old', form='formatted', iostat=ios ) IF ( ios /= 0) & CALL errore ('upf2upf2', 'file: '//trim(filein)//' not found', 2) ! CALL nullify_pseudo_upf ( upf ) CALL nullify_radial_grid ( grid ) upf%grid => grid CALL read_upf_v1 (1, upf, grid, ios) IF ( ios /= 0) & CALL errore ('upf2upf2', 'file '//trim(filein)//' not UPF v.1', 3) ! CLOSE (unit=1) ! ! convert a few variables ! upf%nv = "2.0.1" IF ( .not. associated (upf%epseu) ) THEN ALLOCATE ( upf%epseu( upf%nwfc) ) upf%epseu=0 ENDIF ALLOCATE ( upf%nchi( upf%nwfc) ) IF ( .not. associated(upf%nn) ) THEN upf%nchi=0 ELSE upf%nchi=upf%nn(1:upf%nwfc) ENDIF ALLOCATE ( upf%rcut_chi( upf%nwfc ) ) ALLOCATE ( upf%rcutus_chi( upf%nwfc ) ) upf%rcut_chi=upf%rcut(1:upf%nwfc) upf%rcutus_chi=upf%rcutus(1:upf%nwfc) ! upf%rmax = upf%r(upf%mesh) upf%dx = log(upf%rmax/upf%r(1))/(upf%mesh-1) upf%zmesh = atomic_number( upf%psd ) upf%xmin = log(upf%r(1)*upf%zmesh ) IF ( upf%has_so) THEN upf%rel="full" ELSEIF ( upf%zmesh > 18 ) THEN upf%rel="scalar" ELSE upf%rel="no" ENDIF ! ! write to file ! fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') ! CALL write_upf_v2 (2, upf ) ! CLOSE (unit=2) CALL deallocate_pseudo_upf ( upf ) ! ---------------------------------------------------------- WRITE (6,"('Pseudopotential successfully written')") WRITE (6,"('Please review the content of the PP_INFO fields')") WRITE (6,"('*** Please TEST BEFORE USING !!! ***')") ! ---------------------------------------------------------- ! STOP END PROGRAM upf2upf2 espresso-5.1/upftools/rrkj2upf.f900000644000175000017500000001646312341373034015254 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM rrkj2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in "rrkj3" format ! (Rabe-Rappe-Kaxiras-Joannopoulos with 3 Bessel functions) ! to unified pseudopotential format ! IMPLICIT NONE CHARACTER(len=256) filein, fileout ! ! IF ( trim(filein) == ' ') & CALL errore ('rrkj2upf', 'usage: rrkj2upf "file-to-be-converted"', 1) CALL get_file ( filein ) OPEN (unit = 1, file = filein, status = 'old', form = 'formatted') CALL read_rrkj(1) CLOSE (1) ! convert variables read from rrkj3 format into those needed ! by the upf format - add missing quantities CALL convert_rrkj fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) STOP 20 WRITE (6,'("rrkj2upf: error reading pseudopotential file name")') STOP END PROGRAM rrkj2upf MODULE rrkj3 ! ! All variables read from RRKJ3 file format ! ! trailing underscore means that a variable with the same name ! is used in module 'upf' containing variables to be written ! CHARACTER(len=75):: titleps CHARACTER (len=2), ALLOCATABLE :: els_(:) INTEGER :: pseudotype_, iexch_, icorr_, igcx_, igcc_, mesh_, & nwfs_, nbeta_, lmax_ LOGICAL :: rel_, nlcc_ real (8) :: zp_, etotps_, xmin, rmax, zmesh, dx, rcloc_ INTEGER, ALLOCATABLE:: lchi_(:), nns_(:), ikk2_(:) real (8), ALLOCATABLE :: rcut_(:), rcutus_(:), oc_(:), & beta(:,:), dion_(:,:), qqq_(:,:), ddd(:,:), qfunc_(:,:,:), & rho_atc_(:), rho_at_(:), chi_(:,:), vloc_(:) END MODULE rrkj3 ! ! ---------------------------------------------------------- SUBROUTINE read_rrkj(iunps) ! ---------------------------------------------------------- ! USE rrkj3 IMPLICIT NONE INTEGER :: iunps INTEGER :: nb, mb, n, ir, ios !--- > Start the header reading READ (iunps, '(a75)', err = 100) titleps READ (iunps, *, err = 100) pseudotype_ READ (iunps, *, err = 100) rel_, nlcc_ READ (iunps, *, err=100) iexch_, icorr_, igcx_, igcc_ READ (iunps, '(2e17.11,i5)') zp_, etotps_, lmax_ READ (iunps, '(4e17.11,i5)', err=100) xmin, rmax, zmesh, dx, mesh_ READ (iunps, *, err=100) nwfs_, nbeta_ ALLOCATE(rcut_(nwfs_), rcutus_(nwfs_)) READ (iunps, *, err=100) (rcut_(nb), nb=1,nwfs_) READ (iunps, *, err=100) (rcutus_(nb), nb=1,nwfs_) ALLOCATE(els_(nwfs_), nns_(nwfs_), lchi_(nwfs_), oc_(nwfs_)) DO nb = 1, nwfs_ READ (iunps, '(a2,2i3,f6.2)', err = 100) els_(nb), & nns_(nb), lchi_(nb) , oc_(nb) ENDDO ALLOCATE(ikk2_(nbeta_)) ALLOCATE(beta( mesh_,nbeta_)) ALLOCATE(dion_(nbeta_,nbeta_)) ALLOCATE(ddd (nbeta_,nbeta_)) ALLOCATE(qqq_(nbeta_,nbeta_)) ALLOCATE(qfunc_(mesh_,nbeta_,nbeta_)) DO nb = 1, nbeta_ READ (iunps, *, err = 100) ikk2_(nb) READ (iunps, *, err = 100) (beta (ir, nb) , ir = 1,ikk2_(nb) ) DO ir = ikk2_(nb) + 1, mesh_ beta (ir, nb) = 0.d0 ENDDO DO mb = 1, nb READ (iunps, *, err = 100) dion_(nb, mb) dion_(mb, nb) = dion_(nb, mb) IF (pseudotype_==3) THEN READ (iunps, *, err = 100) qqq_(nb, mb) qqq_(mb, nb) = qqq_(nb, mb) READ (iunps, *, err = 100) (qfunc_(n,nb, mb), n = 1, mesh_) DO n = 1, mesh_ qfunc_(n, mb, nb) = qfunc_(n, nb, mb) ENDDO ELSE qqq_(nb, mb) = 0.d0 qqq_(mb, nb) = 0.d0 DO n = 1, mesh_ qfunc_(n, nb, mb) = 0.d0 qfunc_(n, mb, nb) = 0.d0 ENDDO ENDIF ENDDO ENDDO ! ! read the local potential ! ALLOCATE(vloc_(mesh_)) READ (iunps, *, err = 100) rcloc_, (vloc_(ir ) , ir = 1, mesh_ ) ! ! read the atomic charge ! ALLOCATE(rho_at_(mesh_)) READ (iunps, *, err=100) (rho_at_(ir), ir=1,mesh_) ! ! if present read the core charge ! ALLOCATE(rho_atc_(mesh_)) IF (nlcc_) THEN READ (iunps, *, err=100) (rho_atc_(ir), ir=1, mesh_) ENDIF ! ! read the pseudo wavefunctions of the atom ! ALLOCATE(chi_(mesh_,nwfs_)) READ (iunps, *, err=100) ( (chi_(ir,nb), ir = 1,mesh_) , nb = 1, nwfs_) ! ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully read' ! ---------------------------------------------------------- ! RETURN 100 WRITE (6,'("read_rrkj: error reading pseudopotential file")') STOP END SUBROUTINE read_rrkj SUBROUTINE convert_rrkj ! ---------------------------------------------------------- ! USE rrkj3 USE upf USE constants, ONLY : fpi IMPLICIT NONE INTEGER i, n real(8) :: x WRITE(generated, '("Generated using Andrea Dal Corso code (rrkj3)")') WRITE(date_author,'("Author: Andrea Dal Corso Generation date: unknown")') comment = 'Info:'//titleps IF (rel_) THEN rel = 1 ELSE rel = 0 ENDIF rcloc = rcloc_ nwfs = nwfs_ ALLOCATE( els(nwfs), oc(nwfs), epseu(nwfs)) ALLOCATE(lchi(nwfs), nns(nwfs) ) ALLOCATE(rcut (nwfs), rcutus (nwfs)) DO i=1, nwfs nns (i) = nns_(i) lchi(i) = lchi_(i) rcut(i) = rcut_(i) rcutus(i)= rcutus_(i) oc (i) = oc_(i) els(i) = els_(i) epseu(i) = 0.0d0 ENDDO DEALLOCATE (els_, oc_, rcutus_, rcut_, nns_) psd = titleps (7:8) IF (pseudotype_==3) THEN pseudotype = 'US' ELSE pseudotype = 'NC' ENDIF nlcc = nlcc_ zp = zp_ etotps = etotps_ ecutrho=0.0d0 ecutwfc=0.0d0 lmax = lmax_ mesh = mesh_ nbeta = nbeta_ ntwfc = 0 DO i=1, nwfs IF (oc(i) > 1.0d-12) ntwfc = ntwfc + 1 ENDDO ALLOCATE( elsw(ntwfc), ocw(ntwfc), lchiw(ntwfc) ) n = 0 DO i=1, nwfs IF (oc(i) > 1.0d-12) THEN n = n + 1 elsw(n) = els(i) ocw (n) = oc (i) lchiw(n)=lchi(i) ENDIF ENDDO iexch = iexch_ icorr = icorr_ igcx = igcx_ igcc = igcc_ ALLOCATE(rab(mesh)) ALLOCATE( r(mesh)) ! define logarithmic mesh DO i = 1, mesh x = xmin + dble(i-1) * dx r (i) = exp(x) / zmesh rab(i) = dx * r(i) ENDDO ALLOCATE (rho_atc(mesh)) ! rrkj rho_core(r) = 4pi*r^2*rho_core(r) UPF rho_atc (:) = rho_atc_(:) / fpi / r(:)**2 DEALLOCATE (rho_atc_) ALLOCATE (vloc0(mesh)) vloc0 = vloc_ DEALLOCATE (vloc_) ALLOCATE(ikk2(nbeta), lll(nbeta)) ikk2 = ikk2_ lll = lchi_ DEALLOCATE (ikk2_, lchi_) ! kkbeta = 0 ! do nb=1,nbeta ! kkbeta = max (kkbeta , ikk2(nb) ) ! end do ALLOCATE(betar(mesh,nbeta)) betar = 0.0d0 DO i=1, nbeta betar(1:ikk2(i),i) = beta(1:ikk2(i),i) ENDDO DEALLOCATE (beta) ALLOCATE(dion(nbeta,nbeta)) dion = dion_ DEALLOCATE (dion_) ALLOCATE(qqq(nbeta,nbeta)) qqq = qqq_ DEALLOCATE (qqq_) ALLOCATE(qfunc(mesh,nbeta,nbeta)) qfunc = qfunc_ nqf = 0 nqlc= 0 ALLOCATE (rho_at(mesh)) rho_at = rho_at_ DEALLOCATE (rho_at_) ALLOCATE (chi(mesh,ntwfc)) n = 0 DO i=1, nwfs IF (oc(i) > 1.0d-12) THEN n = n + 1 chi(:,n) = chi_(:,i) ENDIF ENDDO DEALLOCATE (chi_) RETURN END SUBROUTINE convert_rrkj espresso-5.1/upftools/write_upf.f900000644000175000017500000003637212341373034015514 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE upf ! ! All variables to be written into the UPF file ! (UPF = unified pseudopotential format, v.1) ! ! pp_info INTEGER :: rel real(8) :: rcloc INTEGER :: nwfs real(8), ALLOCATABLE :: oc(:), rcut(:), rcutus(:), epseu(:) CHARACTER(len=2), ALLOCATABLE :: els(:) INTEGER, ALLOCATABLE:: lchi (:), nns (:) ! ! pp_header CHARACTER (len=80):: generated, date_author, comment CHARACTER (len=2) :: psd, pseudotype INTEGER :: nv = 0 INTEGER :: iexch, icorr, igcx, igcc INTEGER :: lmax, mesh, nbeta, ntwfc LOGICAL :: nlcc real(8) :: zp, ecutrho, ecutwfc, etotps real(8), ALLOCATABLE :: ocw(:) CHARACTER(len=2), ALLOCATABLE :: elsw(:) INTEGER, ALLOCATABLE:: lchiw(:) ! ! pp_mesh real(8), ALLOCATABLE :: r(:), rab(:) ! ! pp_nlcc real(8), ALLOCATABLE :: rho_atc(:) ! ! pp_local real(8), ALLOCATABLE :: vloc0(:) ! ! pp_nonlocal ! pp_beta real(8), ALLOCATABLE :: betar(:,:) INTEGER, ALLOCATABLE:: lll(:), ikk2(:) ! pp_dij real(8), ALLOCATABLE :: dion(:,:) ! pp_qij INTEGER :: nqf, nqlc real(8), ALLOCATABLE :: rinner(:), qqq(:,:), qfunc(:,:,:) ! pp_qfcoef real(8), ALLOCATABLE :: qfcoef(:,:,:,:) ! ! pp_pswfc real(8), ALLOCATABLE :: chi(:,:) ! ! pp_rhoatom real(8), ALLOCATABLE :: rho_at(:) END MODULE upf ! SUBROUTINE write_upf_v1(ounps) USE upf, ONLY: nlcc INTEGER :: ounps CALL write_pseudo_comment(ounps) CALL write_pseudo_header(ounps) CALL write_pseudo_mesh(ounps) IF (nlcc) CALL write_pseudo_nlcc(ounps) CALL write_pseudo_local(ounps) CALL write_pseudo_nl(ounps) CALL write_pseudo_pswfc(ounps) CALL write_pseudo_rhoatom(ounps) ! PRINT '("*** PLEASE TEST BEFORE USING!!! ***")' PRINT '("review the content of the PP_INFO fields")' ! END SUBROUTINE write_upf_v1 ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_comment (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the comments of the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps INTEGER :: nb, ios WRITE (ounps, '(a9)', err = 100, iostat = ios) "" WRITE (ounps, '(a)', err = 100, iostat = ios) generated WRITE (ounps, '(a)', err = 100, iostat = ios) date_author WRITE (ounps, '(a)', err = 100, iostat = ios) comment IF (rel==2) THEN WRITE (ounps, '(i5,t14,a)', err = 100, iostat = ios) rel,& &"The Pseudo was generated with a Full-Relativistic Calculation" ELSEIF (rel==1) THEN WRITE (ounps, '(i5,t14,a)', err = 100, iostat = ios) rel,& &"The Pseudo was generated with a Scalar-Relativistic Calculation" ELSEIF (rel==0) THEN WRITE (ounps, '(i5,t14,a)', err = 100, iostat = ios) rel, & & "The Pseudo was generated with a Non-Relativistic Calculation" ENDIF IF (rcloc > 0.d0) & WRITE (ounps, '(1pe19.11,t24,a)', err = 100, iostat = ios) & rcloc, "Local Potential cutoff radius" IF (nwfs>0) & WRITE (ounps, '(a2,2a3,a6,3a19)', err = 100, iostat = ios) "nl", & &" pn", "l", "occ", "Rcut", "Rcut US", "E pseu" DO nb = 1, nwfs WRITE (ounps, '(a2,2i3,f6.2,3f19.11)') els (nb) , nns (nb) , & lchi (nb) , oc (nb) , rcut (nb) , rcutus (nb) , epseu(nb) ENDDO WRITE (ounps, '(a10)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_comment: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_comment ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_header (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the header of the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! CHARACTER (len=4) :: shortname CHARACTER (len=20):: dft INTEGER :: nb, ios ! ! WRITE (ounps, '(//a11)', err = 100, iostat = ios) "" WRITE (ounps, '(t3,i2,t24,a)', err = 100, iostat = ios) nv, & "Version Number" WRITE (ounps, '(t3,a,t24,a)', err = 100, iostat = ios) psd , & "Element" IF (pseudotype == 'NC') THEN WRITE (ounps, '(a5,t24,a)', err = 100, iostat = ios) "NC", & "Norm - Conserving pseudopotential" ELSEIF (pseudotype == 'US') THEN WRITE (ounps, '(a5,t24,a)', err = 100, iostat = ios) "US", & "Ultrasoft pseudopotential" ELSE WRITE(6,'("write_pseudo_header: unknown PP type ",A)') pseudotype STOP ENDIF WRITE (ounps, '(l5,t24,a)', err = 100, iostat = ios) nlcc , & "Nonlinear Core Correction" CALL dftname (iexch, icorr, igcx, igcc, dft, shortname) WRITE (ounps, '(a,t24,a4,a)', err = 100, iostat = ios) & dft, shortname," Exchange-Correlation functional" WRITE (ounps, '(f17.11,t24,a)') zp , "Z valence" WRITE (ounps, '(f17.11,t24,a)') etotps, "Total energy" WRITE (ounps, '(2f11.5,t24,a)') ecutwfc, ecutrho, & "Suggested cutoff for wfc and rho" WRITE (ounps, '(i5,t24,a)') lmax, "Max angular momentum component" WRITE (ounps, '(i5,t24,a)') mesh, "Number of points in mesh" WRITE (ounps, '(2i5,t24,a)', err = 100, iostat = ios) ntwfc, & nbeta , "Number of Wavefunctions, Number of Projectors" WRITE (ounps, '(a,t24,a2,a3,a6)', err = 100, iostat = ios) & " Wavefunctions", "nl", "l", "occ" DO nb = 1, ntwfc WRITE (ounps, '(t24,a2,i3,f6.2)') elsw(nb), lchiw(nb), ocw(nb) ENDDO !---> End header writing WRITE (ounps, '(a12)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_header: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_header ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_mesh (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the atomic charge density to the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! INTEGER :: ir, ios ! WRITE (ounps, '(//a9)', err = 100, iostat = ios) "" WRITE (ounps, '(t3,a6)', err = 100, iostat = ios) "" WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) (r(ir), ir=1,mesh ) WRITE (ounps, '(t3,a7)', err = 100, iostat = ios) "" WRITE (ounps, '(t3,a8)', err = 100, iostat = ios) "" WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) (rab(ir), ir=1,mesh ) WRITE (ounps, '(t3,a9)', err = 100, iostat = ios) "" WRITE (ounps, '(a10)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_mesh: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_mesh ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_nlcc (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the core charge for the nonlinear core ! correction of the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! INTEGER :: ir, ios WRITE (ounps, '(//a9)', err = 100, iostat = ios) "" WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) & ( rho_atc(ir), ir = 1, mesh ) WRITE (ounps, '(a10)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_nlcc: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_nlcc ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_local (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the local part of the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! INTEGER :: ir, ios WRITE (ounps, '(//a10)', err = 100, iostat = ios) "" WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) & ( vloc0(ir), ir = 1, mesh ) WRITE (ounps, '(a11)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_local: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_local ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_nl (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the non local part of the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! INTEGER :: nb, mb, n, ir, nd, i, lp, ios WRITE (ounps, '(//a13)', err = 100, iostat = ios) "" DO nb = 1, nbeta WRITE (ounps, '(t3,a9)', err = 100, iostat = ios) "" WRITE (ounps, '(2i5,t24,a)', err=100, iostat=ios) & nb, lll(nb), "Beta L" WRITE (ounps, '(i6)', err=100, iostat=ios) ikk2 (nb) WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) & ( betar(ir,nb), ir=1,ikk2(nb) ) WRITE (ounps, '(t3,a10)', err = 100, iostat = ios) "" ENDDO WRITE (ounps, '(t3,a8)', err = 100, iostat = ios) "" nd = 0 DO nb = 1, nbeta DO mb = nb, nbeta IF ( abs(dion(nb,mb)) > 1.0d-12 ) nd = nd + 1 ENDDO ENDDO WRITE (ounps, '(1p,i5,t24,a)', err=100, iostat=ios) & nd, "Number of nonzero Dij" DO nb = 1, nbeta DO mb = nb, nbeta IF ( abs(dion(nb,mb)) > 1.0d-12 ) & WRITE(ounps,'(1p,2i5,e19.11)', err=100, iostat=ios) & nb, mb, dion(nb,mb) ENDDO ENDDO WRITE (ounps, '(t3,a9)', err=100, iostat=ios) "" IF (pseudotype == 'US') THEN WRITE (ounps, '(t3,a8)', err = 100, iostat = ios) "" WRITE (ounps, '(i5,a)',err=100, iostat=ios) nqf," nqf.& & If not zero, Qij's inside rinner are computed using qfcoef's" IF (nqf>0) THEN WRITE (ounps, '(t5,a11)', err=100, iostat=ios) "" WRITE (ounps,'(i5,1pe19.11)', err=100, iostat=ios) & (i, rinner(i), i = 1, nqlc) WRITE (ounps, '(t5,a12)', err=100, iostat=ios) "" ENDIF DO nb = 1, nbeta DO mb = nb, nbeta WRITE (ounps, '(3i5,t24,a)', err=100, iostat=ios) & nb, mb, lll(mb) , "i j (l(j))" WRITE (ounps, '(1pe19.11,t24,a)', err=100, iostat=ios) & qqq(nb,mb), "Q_int" WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) & ( qfunc (n,nb,mb), n=1,mesh ) IF (nqf>0) THEN WRITE (ounps, '(t5,a11)', err=100, iostat=ios) & "" WRITE(ounps,'(1p4e19.11)', err=100, iostat=ios) & ((qfcoef(i,lp,nb,mb),i=1,nqf),lp=1,nqlc) WRITE (ounps, '(t5,a12)', err=100, iostat=ios) & "" ENDIF ENDDO ENDDO WRITE (ounps, '(t3,a9)', err = 100, iostat = ios) "" ENDIF WRITE (ounps, '(a14)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_nl: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_nl ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_pswfc (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the pseudo atomic functions ! of the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! INTEGER :: nb, ir, ios WRITE (ounps, '(//a10)', err = 100, iostat = ios) "" DO nb = 1, ntwfc WRITE (ounps,'(a2,i5,f6.2,t24,a)', err=100, iostat=ios) & elsw(nb), lchiw(nb), ocw(nb), "Wavefunction" WRITE (ounps, '(1p4e19.11)', err=100, iostat=ios) & ( chi(ir,nb), ir=1,mesh ) ENDDO WRITE (ounps, '(a11)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_pswfc: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_pswfc ! !--------------------------------------------------------------------- SUBROUTINE write_pseudo_rhoatom (ounps) !--------------------------------------------------------------------- ! ! ! This routine writes the atomic charge density to the new UPF file ! USE upf IMPLICIT NONE INTEGER :: ounps ! INTEGER :: ir, ios WRITE (ounps, '(//a12)', err = 100, iostat = ios) "" WRITE (ounps, '(1p4e19.11)', err = 100, iostat = ios) & ( rho_at(ir), ir=1,mesh ) WRITE (ounps, '(a13)', err = 100, iostat = ios) "" RETURN 100 WRITE(6,'("write_pseudo_rhoatom: error writing pseudopotential file")') STOP END SUBROUTINE write_pseudo_rhoatom !--------------------------------------------------------------------- SUBROUTINE dftname(iexch, icorr, igcx, igcc, longname, shortname) !--------------------------------------------------------------------- IMPLICIT NONE INTEGER iexch, icorr, igcx, igcc CHARACTER (len=4) :: shortname CHARACTER (len=20):: longname ! ! The data used to convert iexch, icorr, igcx, igcc ! into a user-readable string ! integer :: nxc, ncc, ngcx, ngcc, ncnl parameter (nxc = 8, ncc =11, ngcx =19, ngcc = 12) character (len=4) :: exc, corr character (len=4) :: gradx, gradc dimension exc (0:nxc), corr (0:ncc), gradx (0:ngcx), gradc (0: ngcc) data exc / 'NOX', 'SLA', 'SL1', 'RXC', 'OEP', 'HF', 'PB0X', 'B3LP', 'KZK' / data corr / 'NOC', 'PZ', 'VWN', 'LYP', 'PW', 'WIG', 'HL', 'OBZ', & 'OBW', 'GL' , 'B3LP', 'KZK' / data gradx / 'NOGX', 'B88', 'GGX', 'PBX', 'RPB', 'HCTH', 'OPTX',& 'TPSS', 'PB0X', 'B3LP','PSX', 'WCX', 'HSE', 'RW86', 'PBE', & 'META', 'C09X', 'SOX', 'M6LX', 'Q2DX' / data gradc / 'NOGC', 'P86', 'GGC', 'BLYP', 'PBC', 'HCTH', 'TPSS',& 'B3LP', 'PSC', 'PBE', 'META', 'M6LC', 'Q2DC' / IF (iexch==1.and.igcx==0.and.igcc==0) THEN shortname = corr(icorr) ELSEIF (iexch==1.and.icorr==3.and.igcx==1.and.igcc==3) THEN shortname = 'BLYP' ELSEIF (iexch==1.and.icorr==1.and.igcx==1.and.igcc==0) THEN shortname = 'B88' ELSEIF (iexch==1.and.icorr==1.and.igcx==1.and.igcc==1) THEN shortname = 'BP' ELSEIF (iexch==1.and.icorr==4.and.igcx==2.and.igcc==2) THEN shortname = 'PW91' ELSEIF (iexch==1.and.icorr==4.and.igcx==3.and.igcc==4) THEN shortname = 'PBE' ELSEIF (iexch==1.and.icorr==4.and.igcx==4.and.igcc==5) THEN shortname = 'TPSS' ELSEIF (iexch==1.and.icorr==4.and.igcx==10.and.igcc==8) THEN shortname = 'PBESOL' ELSE shortname = ' ' ENDIF WRITE(longname,'(4a5)') exc(iexch),corr(icorr),gradx(igcx),gradc(igcc) RETURN END SUBROUTINE dftname espresso-5.1/upftools/vanderbilt.f900000644000175000017500000002272312341373034015635 0ustar mbamba ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! MODULE Vanderbilt ! ! All variables read from Vanderbilt's file format ! ! trailing underscore means that a variable with the same name ! is used in module 'upf' containing variables to be written ! INTEGER :: nvalps, nang, nbeta_, kkbeta, nchi, ifpcor, keyps, & mesh_, iver(3), idmy(3), nnlz, ifqopt, nqf_, irel, npf, & nlc, lloc real(8) :: z_, zp_, exfact, etot, eloc, rcloc_, rpcor, & qtryc, ptryc, rinner1_ real(8), ALLOCATABLE:: wwnlps(:), eeps(:), rinner_(:), rc(:), & beta(:,:), ddd0(:,:), ddd(:,:), qqq_(:,:), eee(:), rho_atc_(:), & r_(:), rab_(:), rho_at_(:), qfunc_(:,:,:), vloc(:), vloc_(:), & wf(:,:), qfcoef_(:,:,:,:) INTEGER, ALLOCATABLE :: lll_(:), nnlzps(:), iptype(:) CHARACTER(len=20):: title END MODULE Vanderbilt ! ! ---------------------------------------------------------- SUBROUTINE read_uspp(iunit) ! ---------------------------------------------------------- ! USE Vanderbilt IMPLICIT NONE INTEGER :: iunit ! INTEGER :: i, j, k, lp real(8) :: rinner1 ! ! READ (iunit) (iver(i),i=1,3),(idmy(i),i=1,3) READ (iunit) title, z_, zp_, exfact, nvalps, mesh_, etot ALLOCATE(nnlzps(nvalps), wwnlps(nvalps), eeps(nvalps)) READ (iunit) (nnlzps(i),wwnlps(i),eeps(i),i=1,nvalps) READ (iunit) keyps, ifpcor, rinner1 IF ( iver(1) == 1 ) THEN nang = nvalps nqf_ = 3 nlc = 5 ELSEIF ( iver(1) == 2 ) THEN nang = nvalps nqf_ = 3 nlc = 2 * nvalps - 1 ELSEIF ( iver(1) >= 3 ) THEN READ (iunit) nang, lloc, eloc, ifqopt, nqf_, qtryc nlc = 2 * nang - 1 ENDIF ALLOCATE(rinner_(2*nang-1)) rinner_(1) = rinner1 rinner1_ = rinner1 IF (10*iver(1)+iver(2)>=51) & READ (iunit) (rinner_(i),i=1,nang*2-1) IF ( iver(1) >= 4 ) THEN READ (iunit) irel ELSE irel = 0 ENDIF ALLOCATE(rc(nang)) READ (iunit) (rc(i),i=1,nang) READ (iunit) nbeta_,kkbeta ! ALLOCATE(beta(kkbeta,nbeta_)) ALLOCATE(qfunc_(kkbeta,nbeta_,nbeta_)) ALLOCATE(ddd0(nbeta_,nbeta_)) ALLOCATE(ddd (nbeta_,nbeta_)) ALLOCATE(qqq_(nbeta_,nbeta_)) ALLOCATE(lll_(nbeta_)) ALLOCATE(eee(nbeta_)) ALLOCATE(qfcoef_(nqf_,nlc,nbeta_,nbeta_)) ! DO j=1,nbeta_ READ (iunit) lll_(j),eee(j),(beta(i,j),i=1,kkbeta) DO k=j,nbeta_ READ (iunit) ddd0(j,k),ddd(j,k),qqq_(j,k), & (qfunc_(i,j,k),i=1,kkbeta), & ((qfcoef_(i,lp,j,k),i=1,nqf_),lp=1,2*nang-1) ENDDO ENDDO ! ALLOCATE(iptype(nbeta_)) IF (10*iver(1)+iver(2)>=72) & READ (iunit) (iptype(j),j=1,nbeta_),npf,ptryc ! ALLOCATE(vloc_(mesh_)) READ (iunit) rcloc_,(vloc_(i),i=1,mesh_) ! ALLOCATE(rho_atc_(mesh_)) IF (ifpcor>0) THEN READ (iunit) rpcor READ (iunit) (rho_atc_(i),i=1,mesh_) ENDIF ! ALLOCATE(rho_at_(mesh_), vloc(mesh_)) READ (iunit) (vloc(i),i=1,mesh_) READ (iunit) (rho_at_(i),i=1,mesh_) ALLOCATE(r_(mesh_), rab_(mesh_)) READ (iunit) (r_(i),i=1,mesh_) READ (iunit) (rab_(i),i=1,mesh_) IF (iver(1) >= 6) THEN nchi = nvalps IF (iver(1) >= 7) READ (iunit) nchi ALLOCATE(wf(mesh_,nchi)) READ (iunit) ((wf(i,j), i=1,mesh_),j=1,nchi) ENDIF ! ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully read' ! ---------------------------------------------------------- ! END SUBROUTINE read_uspp ! ---------------------------------------------------------- ! ---------------------------------------------------------- SUBROUTINE read_vdb(iunit) ! ---------------------------------------------------------- ! USE Vanderbilt IMPLICIT NONE INTEGER :: iunit ! INTEGER :: i, j, k, lp real(8) :: rinner1 ! ! READ(iunit, *) (iver(i),i=1,3),(idmy(i),i=1,3) READ(iunit,'(a20,3f15.9)' ) title, z_, zp_, exfact READ(iunit, *) nvalps, mesh_, etot ALLOCATE(nnlzps(nvalps), wwnlps(nvalps), eeps(nvalps)) DO i = 1,nvalps READ(iunit, *) nnlzps(i), wwnlps(i), eeps(i) ENDDO READ(iunit, *) keyps, ifpcor, rinner1 IF ( iver(1) == 1 ) THEN nang = nvalps nqf_ = 3 nlc = 5 ELSEIF ( iver(1) == 2 ) THEN nang = nvalps nqf_ = 3 nlc = 2 * nvalps - 1 ELSEIF ( iver(1) >= 3 ) THEN READ(iunit, *) nang, lloc, eloc, ifqopt, nqf_, qtryc nlc = 2 * nang - 1 ENDIF ALLOCATE(rinner_(2*nang-1)) rinner_(1) = rinner1 IF (10*iver(1)+iver(2)>=51) & READ (iunit, *) (rinner_(i),i=1,nang*2-1) IF ( iver(1) >= 4 ) THEN READ (iunit, *) irel ELSE irel = 0 ENDIF ALLOCATE(rc(nang)) READ(iunit, *) ( rc(i), i=1,nang) READ (iunit,* ) nbeta_, kkbeta ALLOCATE(beta(kkbeta,nbeta_)) ALLOCATE(qfunc_(kkbeta,nbeta_,nbeta_)) ALLOCATE(ddd0(nbeta_,nbeta_)) ALLOCATE(ddd (nbeta_,nbeta_)) ALLOCATE(qqq_(nbeta_,nbeta_)) ALLOCATE(lll_(nbeta_)) ALLOCATE(eee (nbeta_)) ALLOCATE(qfcoef_(nqf_,nlc,nbeta_,nbeta_)) DO j=1,nbeta_ READ ( iunit, *) lll_(j) READ ( iunit, *) eee(j), ( beta(i,j), i=1,kkbeta ) DO k=j,nbeta_ READ( iunit, *) ddd0(j,k), ddd(j,k), qqq_(j,k), & (qfunc_(i,j,k),i=1,kkbeta),& ((qfcoef_(i,lp,j,k),i=1,nqf_),lp=1,2*nang-1) ENDDO ENDDO ALLOCATE(iptype(nbeta_)) IF (10*iver(1)+iver(2)>=72) THEN READ ( iunit, * ) (iptype(i), i=1,nbeta_) READ ( iunit, * ) npf, ptryc ENDIF ALLOCATE(vloc_(mesh_)) READ(iunit, *) rcloc_, ( vloc_(i), i=1,mesh_) ALLOCATE(rho_atc_(mesh_)) IF ( ifpcor>0 ) THEN READ(iunit, *) rpcor READ(iunit, *) ( rho_atc_(i), i=1,mesh_) ENDIF ALLOCATE(rho_at_(mesh_), vloc(mesh_)) READ(iunit, *) (vloc(i), i=1,mesh_) READ(iunit, *) (rho_at_(i), i=1,mesh_) ALLOCATE(r_(mesh_),rab_(mesh_)) READ(iunit, *) (r_(i), i=1,mesh_) READ(iunit, *) (rab_(i),i=1,mesh_) IF (iver(1) >= 6) THEN nchi = nvalps IF (iver(1) >= 7) READ (iunit, *) nchi ALLOCATE(wf(mesh_,nchi)) READ (iunit, *) ((wf(i,j), i=1,mesh_),j=1,nchi) ENDIF RETURN END SUBROUTINE read_vdb SUBROUTINE convert_uspp ! ---------------------------------------------------------- ! USE Vanderbilt USE constants, ONLY : fpi USE upf IMPLICIT NONE INTEGER i CHARACTER(len=1), DIMENSION(0:3) :: convel=(/'S','P','D','F'/) WRITE(generated, '("Generated using Vanderbilt code, version ",3i3)') iver WRITE(date_author,'("Author: unknown Generation date:",3i5)') idmy WRITE(comment,'("Automatically converted from original format")') IF (irel == 0) THEN rel = 0 ELSEIF (irel == 1) THEN rel = 2 ELSEIF (irel == 2) THEN rel = 1 ENDIF rcloc = rcloc_ nwfs = nvalps ALLOCATE( els(nwfs), oc(nwfs), epseu(nwfs)) ALLOCATE(lchi(nwfs), nns(nwfs) ) ALLOCATE(rcut (nwfs), rcutus (nwfs)) DO i=1, nwfs nns (i) = nnlzps(i)/100 lchi(i) = mod (nnlzps(i)/10,10) rcut(i) = rinner1_ rcutus(i)= rc(lchi(i)+1) oc (i) = wwnlps(i) WRITE(els(i),'(i1,a1)') nns(i), convel(lchi(i)) epseu(i) = eeps(i) ENDDO DEALLOCATE (nnlzps, rc, wwnlps, eeps) psd = title IF (keyps<=2) THEN pseudotype = 'NC' ELSE pseudotype = 'US' ENDIF nlcc = ifpcor>0 zp = zp_ etotps = etot ecutrho=0.0d0 ecutwfc=0.0d0 lmax = nang - 1 mesh = mesh_ nbeta = nbeta_ IF (nvalps /= nchi) THEN PRINT *, 'WARNING: verify info on atomic wavefunctions' ENDIF ntwfc = nchi ALLOCATE( elsw(ntwfc), ocw(ntwfc), lchiw(ntwfc) ) DO i=1, min(ntwfc,nwfs) elsw(i) = els(i) ocw(i) = oc (i) lchiw(i)=lchi(i) ENDDO print *, "I got this exfact", exfact IF ( exfact==0) THEN iexch=1; icorr=1; igcx=0; igcc=0 ! Perdew-Zunger ELSEIF ( exfact==1) THEN iexch=1; icorr=3; igcx=1; igcc=3 ! Becke-Lee-Yang-Parr ELSEIF ( exfact==2) THEN iexch=1; icorr=1; igcx=1; igcc=0 ! Becke88 exchange ELSEIF (exfact==-5.or.exfact==3) THEN iexch=1; icorr=1; igcx=1; igcc=1 ! Becke88-Perdew 86 ELSEIF (exfact==-6.or.exfact==4) THEN iexch=1; icorr=4; igcx=2; igcc=2 ! Perdew-Wang 91 ELSEIF (exfact== 5) THEN iexch=1; icorr=4; igcx=3; igcc=4 ! Perdew-Becke-Erkerhof ELSEIF (exfact== 6) THEN iexch=1; icorr=4; igcx=10; igcc=8 ! PBEsol print *, "I got the PBEsol correctly" ELSE WRITE (6,'("convert: wrong xc in pseudopotential ",f12.6)') exfact STOP ENDIF ALLOCATE (r(mesh), rab(mesh)) r = r_ rab=rab_ DEALLOCATE (r_, rab_) ALLOCATE (rho_atc(mesh)) ! Vanderbilt rho_core(r) = 4pi*r^2*rho_core(r) UPF rho_atc (1) = 0.d0 rho_atc (2:mesh) = rho_atc_(2:mesh) / fpi / r(2:mesh)**2 DEALLOCATE (rho_atc_) ALLOCATE (vloc0(mesh)) vloc0(2:mesh) = vloc_(2:mesh)/r(2:mesh) vloc0(1) = vloc0(2) DEALLOCATE (vloc_) ALLOCATE(ikk2(nbeta), lll(nbeta)) ikk2 = kkbeta lll = lll_ DEALLOCATE (lll_) ALLOCATE(betar(kkbeta,nbeta)) betar = beta DEALLOCATE (beta) ALLOCATE(dion(nbeta,nbeta)) dion = ddd0 DEALLOCATE (ddd0) ALLOCATE(qqq(nbeta,nbeta)) qqq = qqq_ DEALLOCATE (qqq_) ALLOCATE(qfunc(mesh,nbeta,nbeta)) qfunc(1:kkbeta,:,:) = qfunc_(1:kkbeta,:,:) qfunc(kkbeta+1:mesh,:,:) = 0.d0 DEALLOCATE (qfunc_) nqf = nqf_ nqlc= nlc ALLOCATE(rinner(nqlc)) rinner = rinner_ DEALLOCATE(rinner_) ALLOCATE(qfcoef(nqf,nqlc,nbeta,nbeta)) qfcoef = qfcoef_ DEALLOCATE (qfcoef_) ALLOCATE (rho_at(mesh)) rho_at = rho_at_ DEALLOCATE (rho_at_) ALLOCATE (chi(mesh,ntwfc)) chi = wf DEALLOCATE (wf) RETURN END SUBROUTINE convert_uspp espresso-5.1/upftools/fhi2upf.f900000644000175000017500000003015412341373034015043 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM fhi2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential file in Fritz-Haber numerical format ! either ".cpi" (fhi88pp) or ".fhi" (abinit) ! to unified pseudopotential format (v.2) ! Adapted from the converter written by Andrea Ferretti ! USE pseudo_types, ONLY : pseudo_upf, nullify_pseudo_upf, & deallocate_pseudo_upf USE write_upf_v2_module, ONLY : write_upf_v2 ! IMPLICIT NONE TYPE(pseudo_upf) :: upf CHARACTER(len=256) filein, fileout INTEGER :: ios ! CALL get_file ( filein ) IF ( trim(filein) == ' ') & CALL errore ('fhi2upf', 'usage: fhi2upf "file-to-be-converted"', 1) OPEN ( unit=1, file=filein, status = 'old', form='formatted', iostat=ios ) IF ( ios /= 0) CALL errore ('fhi2upf', 'file: '//trim(filein)//' not found', 2) ! CALL read_fhi(1) ! CLOSE (1) ! convert variables read from FHI format into those needed ! by the upf format - add missing quantities ! CALL nullify_pseudo_upf ( upf ) ! CALL convert_fhi (upf) ! ! write to file ! fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') ! CALL write_upf_v2 (2, upf ) ! CLOSE (unit=2) CALL deallocate_pseudo_upf ( upf ) ! ---------------------------------------------------------- WRITE (6,"('Pseudopotential successfully written')") WRITE (6,"('Please review the content of the PP_INFO fields')") WRITE (6,"('*** Please TEST BEFORE USING !!! ***')") ! ---------------------------------------------------------- ! STOP END PROGRAM fhi2upf MODULE fhi ! ! All variables read from FHI file format ! TYPE angular_comp real(8), POINTER :: pot(:) real(8), POINTER :: wfc(:) real(8), POINTER :: grid(:) real(8) :: amesh INTEGER :: nmesh INTEGER :: lcomp END TYPE angular_comp !------------------------------ real(8) :: Zval ! valence charge INTEGER :: lmax ! max l-component used LOGICAL :: nlcc_ real(8), ALLOCATABLE :: rho_atc(:) ! core charge TYPE (angular_comp), POINTER :: comp(:) ! PP numerical info ! (wfc, grid, potentials...) !------------------------------ ! variables for the abinit header real(8) :: Zatom, Zion, r2well, rchrg, fchrg, qchrg INTEGER :: pspdat = 0, pspcod = 0 , pspxc = 0, lloc = -1, mmax = 0 CHARACTER(len=256) :: info END MODULE fhi ! ! ---------------------------------------------------------- SUBROUTINE read_fhi(iunps) ! ---------------------------------------------------------- ! USE fhi IMPLICIT NONE INTEGER, PARAMETER :: Nl=7 ! max number of l-components INTEGER :: iunps real(8) :: r, drhoc, d2rhoc ! INTEGER :: l, i, idum, mesh ! Start reading file READ(iunps,'(a)') info READ(info,*,iostat=i) Zval, l IF ( i /= 0 .or. zval <= 0.0 .or. zval > 100.0 ) THEN WRITE (6,'("Assuming abinit format. First line:",/,A)') trim(info) READ(iunps,*) Zatom, Zion, pspdat READ(iunps,*) pspcod, pspxc, lmax,lloc, mmax, r2well IF (pspcod /= 6) THEN WRITE (6,'("read_fhi: unknown PP type ",i1,"...stopping")') pspcod STOP ENDIF READ(iunps,*) rchrg, fchrg, qchrg ! READ(iunps,*) READ(iunps,*) READ(iunps,*) ! READ(iunps,*) Zval, l IF (abs(Zion-Zval) > 1.0d-8) THEN WRITE (6,'("read_fhi: Zval/Zion mismatch...stopping")') STOP ENDIF IF (l-1 /= lmax) THEN WRITE (6,'("read_fhi: lmax mismatch...stopping")') STOP ENDIF ELSE info = ' ' ENDIF lmax = l - 1 IF (lmax+1 > Nl) THEN WRITE (6,'("read_fhi: too many l-components...stopping")') STOP ENDIF DO i=1,10 READ(iunps,*) ! skipping 11 lines ENDDO ALLOCATE( comp(0:lmax) ) DO l=0,lmax comp(l)%lcomp = l READ(iunps,*) comp(l)%nmesh, comp(l)%amesh IF (mmax > 0 .and. mmax /= comp(l)%nmesh) THEN WRITE (6,'("read_fhi: mismatched number of grid points...stopping")') STOP ENDIF IF ( l > 0) THEN IF (comp(l)%nmesh /= comp(0)%nmesh .or. & comp(l)%amesh /= comp(0)%amesh ) THEN WRITE(6,'("read_fhi: different radial grids not allowed...stopping")') STOP ENDIF ENDIF mesh = comp(l)%nmesh ALLOCATE( comp(l)%wfc(mesh), & ! wave-functions comp(l)%pot(mesh), & ! potentials comp(l)%grid(mesh) ) ! real space radial grid ! read the above quantities DO i=1,mesh READ(iunps,*) idum, comp(l)%grid(i), & comp(l)%wfc(i), & comp(l)%pot(i) ENDDO ENDDO nlcc_ =.false. ALLOCATE(rho_atc(comp(0)%nmesh)) mesh = comp(0)%nmesh DO i=1,mesh READ(iunps,*,end=10, err=20) r, rho_atc(i), drhoc, d2rhoc IF ( abs( r - comp(0)%grid(i) ) > 1.d-6 ) THEN WRITE(6,'("read_fhi: radial grid for core charge? stopping")') STOP ENDIF ENDDO nlcc_ = .true. ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential with NLCC successfully read' ! ---------------------------------------------------------- RETURN 20 WRITE(6,'("read_fhi: error reading core charge, assuming no core charge")') WRITE(6,'("this error may be due to the presence of additional", & & " lines at the end of file")') 10 CONTINUE ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential without NLCC successfully read' ! ---------------------------------------------------------- RETURN ! STOP END SUBROUTINE read_fhi ! ---------------------------------------------------------- SUBROUTINE convert_fhi (upf) ! ---------------------------------------------------------- ! USE fhi USE pseudo_types, ONLY : pseudo_upf USE funct, ONLY : set_dft_from_name, get_iexch, get_icorr, get_igcx, get_igcc USE constants, ONLY : fpi ! IMPLICIT NONE ! TYPE(pseudo_upf) :: upf ! real(8), ALLOCATABLE :: aux(:) real(8) :: vll CHARACTER (len=2):: label CHARACTER (len=2), EXTERNAL:: atom_name INTEGER :: l, i, ir, iv ! upf%nv = "2.0.1" upf%generated= "Generated using FHI98PP, converted with fhi2upf.x v.5.0.2" upf%author = "unknown" upf%date = "unknown" IF (trim(info) /= ' ') THEN upf%comment = trim(info) ELSE upf%comment = 'Info: automatically converted from FHI format' ENDIF upf%rel = 'scalar' ! just guessing IF (nint(Zatom) > 0) THEN upf%psd = atom_name(nint(Zatom)) IF (nint(Zatom) > 18) upf%rel = 'no' ! just guessing ELSE PRINT '("Atom name > ",$)' READ (5,'(a)') upf%psd ENDIF upf%typ = 'SL' upf%tvanp = .false. upf%tpawp = .false. upf%tcoulombp=.false. upf%nlcc = nlcc_ ! IF (pspxc == 7) THEN upf%dft = 'SLA-PW' ELSEIF (pspxc == 11) THEN upf%dft = 'PBE' ELSE IF (pspxc > 0) THEN PRINT '("DFT read from abinit file: ",i1)', pspxc ENDIF PRINT '("DFT > ",$)' READ (5,'(a)') upf%dft ENDIF ! upf%zp = Zval upf%etotps =0.0d0 upf%ecutrho=0.0d0 upf%ecutwfc=0.0d0 ! PRINT '("Confirm or modify l max, l loc (read:",2i3,") > ",$)', lmax, lloc READ (5,*) lmax, upf%lloc IF ( lmax == upf%lloc) THEN upf%lmax = lmax-1 ELSE upf%lmax = lmax ENDIF upf%lmax_rho = 0 upf%nwfc = lmax+1 ! ALLOCATE( upf%els(upf%nwfc) ) ALLOCATE( upf%oc(upf%nwfc) ) ALLOCATE( upf%epseu(upf%nwfc) ) ALLOCATE( upf%lchi(upf%nwfc) ) ALLOCATE( upf%nchi(upf%nwfc) ) ALLOCATE( upf%rcut_chi (upf%nwfc) ) ALLOCATE( upf%rcutus_chi(upf%nwfc) ) PRINT '("PPs in FHI format do not contain information on atomic valence (pseudo-)wavefunctions")' PRINT '("Provide the label and the occupancy for each atomic wavefunction used in the PP generation")' PRINT '("If unknown: list valence wfcts and occupancies for the atomic ground state ", & &"in increasing l order: s,p,d,f")' DO i=1, upf%nwfc 10 PRINT '("Wavefunction # ",i1,": label (e.g. 4s), occupancy > ",$)', i READ (5,*) label, upf%oc(i) READ (label(1:1),*, err=10) l upf%els(i) = label upf%nchi(i) = l IF ( label(2:2) == 's' .or. label(2:2) == 'S') THEN l=0 ELSEIF ( label(2:2) == 'p' .or. label(2:2) == 'P') THEN l=1 ELSEIF ( label(2:2) == 'd' .or. label(2:2) == 'D') THEN l=2 ELSEIF ( label(2:2) == 'f' .or. label(2:2) == 'F') THEN l=3 ELSE l=i-1 ENDIF upf%lchi(i) = l upf%rcut_chi(i) = 0.0d0 upf%rcutus_chi(i)= 0.0d0 upf%epseu(i) = 0.0d0 ENDDO upf%mesh = comp(0)%nmesh upf%dx = log( comp(0)%amesh ) upf%rmax = comp(0)%grid(upf%mesh) upf%xmin = log( comp(0)%grid(1)*Zatom ) upf%zmesh= Zatom ALLOCATE(upf%rab(upf%mesh)) ALLOCATE(upf%r(upf%mesh)) upf%r(:) = comp(0)%grid upf%rab(:)=upf%r(:)*upf%dx ALLOCATE (upf%rho_atc(upf%mesh)) IF (upf%nlcc) upf%rho_atc(:) = rho_atc(1:upf%mesh) / fpi ALLOCATE (upf%vloc(upf%mesh)) ! the factor 2 converts from Hartree to Rydberg upf%vloc(:) = 2.d0*comp(lloc)%pot upf%rcloc = 0.0d0 ALLOCATE(upf%vnl(upf%mesh,0:upf%lmax,1)) DO l=0, upf%lmax upf%vnl(:,l,1) = 2.d0*comp(l)%pot(:) ENDDO ! calculate number of nonlocal projectors IF ( upf%lloc >= 0 .and. upf%lloc <= upf%lmax ) THEN upf%nbeta= upf%lmax ELSE upf%nbeta= upf%lmax+1 ENDIF IF (upf%nbeta > 0) THEN ALLOCATE(upf%els_beta(upf%nbeta) ) ALLOCATE(upf%lll(upf%nbeta)) ALLOCATE(upf%kbeta(upf%nbeta)) iv=0 ! counter on beta functions DO i=1,upf%nwfc l=upf%lchi(i) IF (l/=upf%lloc) THEN iv=iv+1 upf%kbeta(iv)=upf%mesh DO ir = upf%mesh,1,-1 IF ( abs ( upf%vnl(ir,l,1) - upf%vnl(ir,upf%lloc,1) ) > 1.0E-6 ) THEN ! include points up to the last with nonzero value upf%kbeta(iv)=ir+1 exit ENDIF ENDDO ENDIF ENDDO ! the number of points used in the evaluation of integrals ! should be even (for simpson integration) DO i=1,upf%nbeta IF ( mod (upf%kbeta(i),2) == 0 ) upf%kbeta(i)=upf%kbeta(i)+1 upf%kbeta(i)=MIN(upf%mesh,upf%kbeta(i)) ENDDO upf%kkbeta = maxval(upf%kbeta(:)) ALLOCATE(upf%beta(upf%mesh,upf%nbeta)) ALLOCATE(upf%dion(upf%nbeta,upf%nbeta)) upf%beta(:,:) =0.d0 upf%dion(:,:) =0.d0 ALLOCATE(upf%rcut (upf%nbeta)) ALLOCATE(upf%rcutus(upf%nbeta)) ALLOCATE(aux(upf%kkbeta)) iv=0 ! counter on beta functions DO i=1,upf%nwfc l=upf%lchi(i) IF (l/=upf%lloc) THEN iv=iv+1 upf%lll(iv)=l upf%els_beta(iv)=upf%els(i) DO ir=1,upf%kbeta(iv) ! the factor 2 converts from Hartree to Rydberg upf%beta(ir,iv) = 2.d0 * comp(l)%wfc(ir) * & ( comp(l)%pot(ir) - comp(upf%lloc)%pot(ir) ) aux(ir) = comp(l)%wfc(ir) * upf%beta(ir,iv) ENDDO upf%rcut (iv) = upf%r(upf%kbeta(iv)) upf%rcutus(iv) = 0.0 CALL simpson(upf%kbeta(iv),aux,upf%rab,vll) upf%dion(iv,iv) = 1.0d0/vll ENDIF ENDDO DEALLOCATE(aux) ENDIF ALLOCATE (upf%chi(upf%mesh,upf%nwfc)) DO i=1,upf%nwfc upf%chi(:,i) = comp(i-1)%wfc(:) ENDDO ALLOCATE (upf%rho_at(upf%mesh)) upf%rho_at(:) = 0.d0 DO i=1,upf%nwfc upf%rho_at(:) = upf%rho_at(:) + upf%oc(i) * upf%chi(:,i) ** 2 ENDDO ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully converted' ! ---------------------------------------------------------- RETURN END SUBROUTINE convert_fhi espresso-5.1/upftools/interpolate.f900000644000175000017500000005136112341373034016031 0ustar mbamba!--------------------------------------------------------------------- ! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE pseudo_data ! ! All variables to be read from the UPF file ! (UPF = unified pseudopotential format) ! INTEGER ,PARAMETER :: npsx = 2 ! npsx : maximum number of different pseudopotentials INTEGER, PARAMETER :: lmaxx = 3, nchix = 6, ndm = 2000 ! lmaxx : maximum non local angular momentum in PP ! nchix : maximum number of atomic wavefunctions per PP ! ndm : maximum number of points in the radial mesh INTEGER, PARAMETER :: nbrx = 8, lqmax = 5, nqfx = 8 ! nbrx : maximum number of beta functions ! lqmax : maximum number of angular momentum of Q ! nqfx : maximum number of coefficients in Q smoothing ! ! pp_header CHARACTER (len=80):: generated, date_author, comment CHARACTER (len=2) :: psd(npsx), pseudotype CHARACTER (len=20):: dft(npsx) INTEGER :: lmax(npsx), mesh(npsx), nbeta(npsx), ntwfc(npsx) LOGICAL :: nlcc(npsx), isus(npsx) real(8) :: zp(npsx), ecutrho(npsx), ecutwfc(npsx), etotps(npsx) real(8) :: oc(nchix,npsx) CHARACTER(len=2) :: els(nchix,npsx) INTEGER :: lchi(nchix,npsx) ! ! pp_mesh real(8) :: r(ndm,npsx), rab(ndm,npsx) ! pp_nlcc real(8) :: rho_atc(ndm,npsx) ! ! pp_local real(8) :: vloc0(ndm,npsx) ! ! pp_nonlocal ! pp_beta real(8) :: betar(ndm, nbrx, npsx) INTEGER :: lll(nbrx,npsx), ikk2(nbrx,npsx) ! pp_dij real(8) :: dion(nbrx,nbrx,npsx) ! pp_qij INTEGER :: nqf(npsx), nqlc(npsx) real(8) :: rinner(lqmax,npsx), qqq(nbrx,nbrx,npsx), & qfunc(ndm,nbrx,nbrx,npsx) ! pp_qfcoef real(8) :: qfcoef(nqfx,lqmax,nbrx,nbrx,npsx) ! ! pp_pswfc real(8) :: chi(ndm,nchix,npsx) ! ! pp_rhoatom real(8) :: rho_at(ndm,npsx) END MODULE pseudo_data ! PROGRAM interpolate !--------------------------------------------------------------------- ! ! Read a pseudopotential in the Unified Pseudopotential Format (UPF) ! and interpolate all the data on a different radial grid. ! IMPLICIT NONE INTEGER :: is, ios, iunps = 4 real (8) :: xmin, dx CHARACTER (len=256) :: filein(2), fileout PRINT '('' '')' PRINT '('' Interpolate an UPF pseudopotential to a different radial mesh'')' PRINT '('' '')' ! is=2 PRINT '('' Read the pseudo to be converted '')' PRINT '('' Input PP file in UPF format > '',$)' READ (5, '(a)', end = 20, err = 20) filein(is) OPEN(unit=iunps,file=filein(is),status='old',form='formatted',iostat=ios) IF (ios/=0) STOP WRITE (*,*) " IOS= ", ios, is, iunps CALL read_pseudo(is, iunps) CLOSE (unit=iunps) PRINT '('' '')' ! 10 CONTINUE PRINT '('' radial mesh : r(i) = exp ( xmin + (i-1) *dx )/ Z_ion '')' WRITE(*,'(a,$)') " xmin, dx [typical values -7.0, 0.0125 ] > " READ (*,*) xmin, dx CALL interpolate_ps(filein,xmin,dx) fileout='NewPseudo.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) 20 STOP END PROGRAM interpolate ! !--------------------------------------------------------------------- SUBROUTINE interpolate_ps(filein,xmin,dx) USE pseudo_data USE upf, ONLY : & upf_rel => rel, upf_rcloc => rcloc, upf_nwfs => nwfs, & upf_oc => oc, upf_rcut => rcut, upf_rcutus => rcutus, & upf_epseu => epseu, upf_els => els, & upf_lchi => lchi, upf_nns => nns, & upf_generated => generated, upf_date_author => date_author, & upf_comment => comment, & upf_psd => psd, upf_pseudotype => pseudotype, & upf_iexch => iexch, & upf_icorr => icorr, & upf_igcx => igcx, & upf_igcc => igcc, & upf_lmax => lmax, upf_mesh => mesh, & upf_nbeta => nbeta, upf_ntwfc => ntwfc, upf_nlcc => nlcc, & upf_zp => zp, upf_ecutrho => ecutrho, upf_ecutwfc => ecutwfc, & upf_etotps => etotps, upf_ocw => ocw, & upf_elsw => elsw, upf_lchiw =>lchiw, & upf_r => r, upf_rab => rab, & upf_rho_atc => rho_atc, & upf_vloc0 => vloc0, & upf_betar => betar, upf_lll => lll, upf_ikk2 => ikk2, & upf_dion => dion, & upf_nqf => nqf, upf_nqlc => nqlc, & upf_rinner => rinner, upf_qqq => qqq, upf_qfunc => qfunc, & upf_qfcoef => qfcoef, & upf_chi => chi, & upf_rho_at => rho_at USE splinelib USE funct, ONLY : set_dft_from_name, get_iexch, get_icorr, get_igcx, get_igcc IMPLICIT NONE real (8), INTENT(in) :: dx, xmin INTEGER :: i, j, ib CHARACTER (len=256) :: filein(2) CHARACTER (len=5) :: dxlabel, xminlabel real (8) :: capel real (8), ALLOCATABLE :: aux1(:,:), aux2(:,:) LOGICAL :: interpolate interpolate = .false. ! WRITE(dxlabel,'(f5.4)') dx WRITE(xminlabel,'(f5.2)')xmin !pp_info upf_rel = -1 upf_rcloc = 0.d0 ! !pp_header upf_generated = 'Pseudopotential interpolated using interpolate.x code ' upf_date_author= 'Author and generation date: unknown. '//& 'Refer to original pseudopotential file' upf_comment = 'Pseudo '//trim(filein(2))//' on mesh r(i) = exp ( '//trim(xminlabel)//' + (i-1)*'//trim(dxlabel)//' )/Z_ion' upf_psd = psd(2) upf_pseudotype = "NC" IF (isus(2)) upf_pseudotype = "US" CALL set_dft_from_name(dft(2)) upf_iexch = get_iexch() upf_icorr = get_icorr() upf_igcx = get_igcx() upf_igcc = get_igcc() upf_lmax = lmax(2) zp(1) = zp(2) mesh(1) = (log(r(mesh(2),2) * zp(2) ) - xmin ) /dx + 1 DO i=1,mesh(1) r(i,1) = exp(xmin+dble(i-1)*dx)/zp(1) rab(i,1) = r(i,1) * dx ENDDO WRITE (*,*) xmin, dx, mesh(1),zp(1) IF (mesh(1)/=mesh(2) ) THEN WRITE (*,*) " pseudopotentials have different mesh " WRITE (*,*) mesh(1),mesh(2) WRITE (*,*) r(1,1), r(1,2) WRITE (*,*) r(mesh(1),1),r(mesh(2),2) interpolate = .true. ENDIF upf_mesh = mesh(1) upf_nbeta = nbeta(2) upf_ntwfc = ntwfc(2) upf_nlcc = nlcc(2) upf_ecutrho = ecutrho(2) upf_ecutwfc = ecutwfc(2) upf_etotps = etotps(2) ALLOCATE( upf_ocw(upf_ntwfc), upf_elsw(upf_ntwfc), upf_lchiw(upf_ntwfc) ) upf_ocw(1:upf_ntwfc) = oc(1:upf_ntwfc,2) upf_elsw(1:upf_ntwfc) = els(1:upf_ntwfc,2) upf_lchiw(1:upf_ntwfc) = lchi(1:upf_ntwfc,2) upf_zp = zp(2) ! !pp_mesh capel = 0.d0 DO i=1,upf_mesh capel = capel + abs(r(i,1)-r(i,2)) + abs(rab(i,1)-rab(i,2)) ENDDO IF (capel>1.d-6) THEN WRITE (*,*) " pseudopotentials have different mesh " interpolate = .true. ENDIF WRITE (*,*) "INTERPOLATE =", interpolate !if (interpolate) call errore ("virtual", & ! "grid interpolation is not working yet",1) IF (interpolate) ALLOCATE ( aux1(1,mesh(1)), aux2(1,mesh(2)) ) ALLOCATE( upf_r(upf_mesh), upf_rab(upf_mesh) ) upf_r(1:upf_mesh) = r(1:upf_mesh,1) upf_rab(1:upf_mesh) = rab(1:upf_mesh,1) ! !pp_nlcc ALLOCATE( upf_rho_atc(upf_mesh) ) IF (interpolate) THEN WRITE (*,'(a,$)') "interpolate rho_atc" aux2(1,1:mesh(2)) = rho_atc(1:mesh(2),2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) rho_atc(1:upf_mesh,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_rho_atc(1:upf_mesh) = rho_atc(1:upf_mesh,2) ! !pp_local ALLOCATE( upf_vloc0(upf_mesh) ) IF (interpolate) THEN WRITE (*,'(a,$)') " interpolate vloc0" aux2(1,1:mesh(2)) = vloc0(1:mesh(2),2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) vloc0(1:upf_mesh,2) = aux1(1,1:upf_mesh) ! Jivtesh - if the mesh of the first atom extends to a larger radius ! than the mesh of the second atom, then, for those radii that are ! greater than the maximum radius of the second atom, the local potential ! of the second atom is calculated using the expression ! v_local = (-2)*Z/r instead of using the extrapolated value. ! This is because, typically extrapolation leads to positive potentials. ! This is implemented in lines 240-242 DO i=1,mesh(1) IF(r(i,1)>r(mesh(2),2)) vloc0(i,2) = -(2.0*zp(2))/r(i,1) ENDDO WRITE (*,*) " done" ENDIF upf_vloc0(1:upf_mesh) = vloc0(1:upf_mesh,2) ! !pp_nonlocal !pp_beta ALLOCATE( upf_betar(upf_mesh,upf_nbeta), & upf_lll(upf_nbeta), upf_ikk2(upf_nbeta) ) ib = 0 DO i=1,nbeta(2) ib = ib + 1 IF (interpolate) THEN WRITE (*,'(a,$)') " interpolate betar" aux2(1,1:mesh(2)) = betar(1:mesh(2),i,2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) betar(1:upf_mesh,i,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_betar(1:upf_mesh,ib) = betar(1:upf_mesh,i,2) upf_lll(ib) = lll(i,2) ! SdG - when the meshes of the two pseudo are different the ikk2 limits ! for the beta functions of the second one must be set properly ! This is done in lines 273-277 IF (interpolate) THEN j = 1 DO WHILE ( upf_r(j) < r( ikk2(i,2), 2) ) j = j + 1 ENDDO upf_ikk2(ib) = j ELSE upf_ikk2(ib) = ikk2(i,2) ENDIF ENDDO ! !pp_dij ALLOCATE( upf_dion(upf_nbeta, upf_nbeta) ) upf_dion(:,:) = 0.d0 DO i=1,nbeta(2) DO j=1,nbeta(2) upf_dion(i,j) = dion(i,j,2) ENDDO ENDDO ! !pp_qij upf_nqf = nqf(2) upf_nqlc = nqlc(2) ALLOCATE( upf_rinner(upf_nqlc), upf_qqq(upf_nbeta,upf_nbeta), & upf_qfunc(upf_mesh,upf_nbeta,upf_nbeta) ) upf_rinner(1:upf_nqlc) = rinner(1:upf_nqlc,2) upf_qqq(:,:) = 0.d0 upf_qfunc(:,:,:) = 0.d0 DO i=1,nbeta(2) DO j=1,nbeta(2) upf_qqq(i,j) = qqq(i, j, 2) IF (interpolate) THEN WRITE (*,'(a,$)') " interpolate qfunc" aux2(1,1:mesh(2) ) = qfunc(1:mesh(2),i,j,2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) qfunc(1:upf_mesh,i,j,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_qfunc(1:upf_mesh,i,j) = qfunc(1:upf_mesh,i,j,2) ENDDO ENDDO ! !pp_qfcoef ALLOCATE( upf_qfcoef(upf_nqf,upf_nqlc,upf_nbeta,upf_nbeta) ) upf_qfcoef(:,:,:,:) = 0.d0 DO i=1,nbeta(2) DO j=1,nbeta(2) upf_qfcoef(1:upf_nqf,1:upf_nqlc,i,j) = & qfcoef(1:upf_nqf,1:upf_nqlc,i,j, 2) ENDDO ENDDO ! !pp_pswfc ALLOCATE (upf_chi(upf_mesh,upf_ntwfc) ) DO i=1,ntwfc(2) IF (interpolate) THEN WRITE (*,'(a,$)') " interpolate chi" aux2(1,1:mesh(2)) = chi(1:mesh(2),i,2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) chi(1:upf_mesh,i,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_chi(1:upf_mesh,i) = chi(1:upf_mesh,i,2) ENDDO !upf_chi(1:upf_mesh,1:upf_ntwfc) = chi(1:upf_mesh,1:upf_ntwfc,1) ! !pp_rhoatm ALLOCATE (upf_rho_at(upf_mesh) ) IF (interpolate) THEN WRITE (*,'(a,$)') " interpolate rho_at" aux2(1,1:mesh(2)) = rho_at(1:mesh(2),2) CALL dosplineint( r(1:mesh(2),2), aux2, upf_r(1:upf_mesh), aux1 ) rho_at(1:upf_mesh,2) = aux1(1,1:upf_mesh) WRITE (*,*) " done" ENDIF upf_rho_at(1:upf_mesh) = rho_at(1:upf_mesh,2) END SUBROUTINE interpolate_ps ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo (is, iunps) !--------------------------------------------------------------------- ! ! Read pseudopotential in the Unified Pseudopotential Format (UPF) ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! is : index of this pseudopotential ! iunps: unit connected with pseudopotential file ! IF (is < 0 .or. is > npsx ) CALL errore ('read_pseudo', 'Wrong is number', 1) WRITE ( *, * ) " Reading pseudopotential file in UPF format..." !------->Search for Header CALL scan_begin (iunps, "HEADER", .true.) CALL read_pseudo_header (is, iunps) CALL scan_end (iunps, "HEADER") !-------->Search for mesh information CALL scan_begin (iunps, "MESH", .true.) CALL read_pseudo_mesh (is, iunps) CALL scan_end (iunps, "MESH") !-------->If present, search for nlcc IF (nlcc (is) ) THEN CALL scan_begin (iunps, "NLCC", .true.) CALL read_pseudo_nlcc (is, iunps) CALL scan_end (iunps, "NLCC") ENDIF !-------->Search for Local potential CALL scan_begin (iunps, "LOCAL", .true.) CALL read_pseudo_local (is, iunps) CALL scan_end (iunps, "LOCAL") !-------->Search for Nonlocal potential CALL scan_begin (iunps, "NONLOCAL", .true.) CALL read_pseudo_nl (is, iunps) CALL scan_end (iunps, "NONLOCAL") !-------->Search for atomic wavefunctions CALL scan_begin (iunps, "PSWFC", .true.) CALL read_pseudo_pswfc (is, iunps) CALL scan_end (iunps, "PSWFC") !-------->Search for atomic charge CALL scan_begin (iunps, "RHOATOM", .true.) CALL read_pseudo_rhoatom (is, iunps) CALL scan_end (iunps, "RHOATOM") ! WRITE ( *, * ) " ...done" RETURN END SUBROUTINE read_pseudo !--------------------------------------------------------------------- SUBROUTINE scan_begin (iunps, string, rew) !--------------------------------------------------------------------- ! IMPLICIT NONE ! Unit of the input file INTEGER :: iunps ! Label to be matched CHARACTER (len=*) :: string LOGICAL :: rew ! Flag: if .true. rewind the file CHARACTER (len=80) :: rstring ! String read from file INTEGER :: ios LOGICAL, EXTERNAL :: matches ios = 0 IF (rew) REWIND (iunps) DO WHILE (ios==0) READ (iunps, *, iostat = ios, err = 300) rstring IF (matches ("", rstring) ) RETURN ENDDO 300 CALL errore ('scan_begin', 'No '//string//' block', abs (ios) ) END SUBROUTINE scan_begin !--------------------------------------------------------------------- SUBROUTINE scan_end (iunps, string) !--------------------------------------------------------------------- IMPLICIT NONE ! Unit of the input file INTEGER :: iunps ! Label to be matched CHARACTER (len=*) :: string ! String read from file CHARACTER (len=80) :: rstring INTEGER :: ios LOGICAL, EXTERNAL :: matches READ (iunps, '(a)', iostat = ios, err = 300) rstring IF (matches ("", rstring) ) RETURN 300 CALL errore ('scan_end', & 'No '//string//' block end statement, possibly corrupted file', - 1) END SUBROUTINE scan_end ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_header (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: nv, ios, nw CHARACTER (len=75) :: dummy LOGICAL, EXTERNAL :: matches READ (iunps, *, err = 100, iostat = ios) nv, dummy READ (iunps, *, err = 100, iostat = ios) psd (is), dummy READ (iunps, *, err = 100, iostat = ios) pseudotype IF (matches (pseudotype, "US") ) isus (is) = .true. READ (iunps, *, err = 100, iostat = ios) nlcc (is), dummy READ (iunps, '(a20,t24,a)', err = 100, iostat = ios) dft(is), dummy READ (iunps, * ) zp (is), dummy READ (iunps, * ) etotps (is), dummy READ (iunps, * ) ecutwfc (is), ecutrho (is) READ (iunps, * ) lmax (is), dummy READ (iunps, *, err = 100, iostat = ios) mesh (is), dummy READ (iunps, *, err = 100, iostat = ios) ntwfc(is), nbeta (is), dummy READ (iunps, '(a)', err = 100, iostat = ios) dummy DO nw = 1, ntwfc(is) READ (iunps, * ) els (nw,is), lchi (nw, is), oc (nw, is) ENDDO RETURN 100 CALL errore ('read_pseudo_header', 'Reading pseudo file', abs (ios)) END SUBROUTINE read_pseudo_header ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_local (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios ! READ (iunps, *, err=100, iostat=ios) (vloc0(ir,is) , ir=1,mesh(is)) 100 CALL errore ('read_pseudo_local','Reading pseudo file', abs(ios) ) RETURN END SUBROUTINE read_pseudo_local ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_mesh (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios ! CALL scan_begin (iunps, "R", .false.) READ (iunps, *, err = 100, iostat = ios) (r(ir,is), ir=1,mesh(is) ) CALL scan_end (iunps, "R") CALL scan_begin (iunps, "RAB", .false.) READ (iunps, *, err = 100, iostat = ios) (rab(ir,is), ir=1,mesh(is) ) CALL scan_end (iunps, "RAB") RETURN 100 CALL errore ('read_pseudo_mesh', 'Reading pseudo file', abs (ios) ) END SUBROUTINE read_pseudo_mesh ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_nl (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: nb, mb, n, ir, nd, ios, idum, ldum, icon, lp, i ! counters CHARACTER (len=75) :: dummy ! DO nb = 1, nbeta (is) CALL scan_begin (iunps, "BETA", .false.) READ (iunps, *, err = 100, iostat = ios) idum, lll(nb,is), dummy READ (iunps, '(i6)', err = 100, iostat = ios) ikk2(nb,is) READ (iunps, *, err = 100, iostat = ios) & (betar(ir,nb,is), ir=1,ikk2(nb,is)) DO ir = ikk2(nb,is) + 1, mesh (is) betar (ir, nb, is) = 0.d0 ENDDO CALL scan_end (iunps, "BETA") ENDDO WRITE(*,*)'ikk2',ikk2 CALL scan_begin (iunps, "DIJ", .false.) READ (iunps, *, err = 100, iostat = ios) nd, dummy dion (:,:,is) = 0.d0 DO icon = 1, nd READ (iunps, *, err = 100, iostat = ios) nb, mb, dion(nb,mb,is) dion (mb,nb,is) = dion (nb,mb,is) ENDDO CALL scan_end (iunps, "DIJ") IF (isus (is) ) THEN CALL scan_begin (iunps, "QIJ", .false.) READ (iunps, *, err = 100, iostat = ios) nqf(is) nqlc (is)= 2 * lmax (is) + 1 IF (nqlc(is)>lqmax .or. nqlc(is)<0) & CALL errore (' read_pseudo_nl', 'Wrong nqlc', nqlc (is) ) IF (nqf(is)/=0) THEN CALL scan_begin (iunps, "RINNER", .false.) READ (iunps,*,err=100,iostat=ios) & (idum,rinner(i,is),i=1,nqlc(is)) CALL scan_end (iunps, "RINNER") ENDIF DO nb = 1, nbeta(is) DO mb = nb, nbeta(is) READ (iunps,*,err=100,iostat=ios) idum, idum, ldum, dummy !" i j (l)" IF (ldum/=lll(mb,is) ) CALL errore ('read_pseudo_nl', & 'inconsistent angular momentum for Q_ij', 1) READ (iunps,*,err=100,iostat=ios) qqq(nb,mb,is), dummy ! "Q_int" qqq(mb,nb,is) = qqq(nb,mb,is) READ (iunps,*,err=100,iostat=ios) & (qfunc(n,nb,mb,is), n=1,mesh(is)) DO n = 0, mesh (is) qfunc(n,mb,nb,is) = qfunc(n,nb,mb,is) ENDDO IF (nqf(is)>0) THEN CALL scan_begin (iunps, "QFCOEF", .false.) READ (iunps,*,err=100,iostat=ios) & ((qfcoef(i,lp,nb,mb,is),i=1,nqf(is)),lp=1,nqlc(is)) CALL scan_end (iunps, "QFCOEF") ENDIF ENDDO ENDDO CALL scan_end (iunps, "QIJ") ELSE qqq (:,:,is) = 0.d0 qfunc(:,:,:,is) =0.d0 ENDIF 100 CALL errore ('read_pseudo_nl', 'Reading pseudo file', abs (ios) ) RETURN END SUBROUTINE read_pseudo_nl ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_nlcc (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios READ (iunps, *, err = 100, iostat = ios) (rho_atc(ir,is), ir=1,mesh(is) ) ! 100 CALL errore ('read_pseudo_nlcc', 'Reading pseudo file', abs (ios) ) RETURN END SUBROUTINE read_pseudo_nlcc ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_pswfc (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! CHARACTER (len=75) :: dummy INTEGER :: nb, ir, ios ! DO nb = 1, ntwfc(is) READ (iunps,*,err=100,iostat=ios) dummy !Wavefunction labels READ (iunps,*,err=100,iostat=ios) (chi(ir,nb,is), ir=1,mesh(is)) ENDDO 100 CALL errore ('read_pseudo_pswfc', 'Reading pseudo file', abs(ios)) RETURN END SUBROUTINE read_pseudo_pswfc ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_rhoatom (is, iunps) !--------------------------------------------------------------------- ! USE pseudo_data IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios READ (iunps,*,err=100,iostat=ios) (rho_at(ir,is), ir=1,mesh(is)) RETURN 100 CALL errore ('read_pseudo_rhoatom','Reading pseudo file',abs(ios)) END SUBROUTINE read_pseudo_rhoatom espresso-5.1/upftools/README0000644000175000017500000000722612341373034014044 0ustar mbambaUnified Pseudopotential File (UPF) Specifications - see: http://www.quantum-espresso.org/wiki/index.php/Unified_pseudopotential_format Available converters to UPF from: CASINO tabulated format (see below) CPMD (TYPE=NUMERIC, LOGARITHMIC, CAR, GOEDECKER) Fritz-Haber numerical format, either ".cpi" (fhi88pp) or ".fhi" (abinit) David Vanderbilt's code format (formatted or binary) Old Norm-Conserving PWSCF format (deprecated) Old "RRKJ3" PWSCF format (deprecated) Old Norm-Conserving CP90 format (deprecated) Pseudopotentials in PWSCF and CASINO ==================================== Two utilities are provided with the Quantum Espresso distribution to enable the PWscf code to be used in conjunction with the CASINO quantum Monte Carlo code. Of course all pseudopotentials generated via these automatic tools should be tested before being used for production runs. It should be noted that ultrasoft and PAW pseudopotentials cannot be used with the CASINO code. Currently only UPF files containing norm-conserving pseudopotentials can be converted using these utilities. ============ casino2upf.x ============ The first of these is casino2upf.x . This utility takes a given CASINO tabulated pseudopotential file and one or more awfn.data files specifying the pseudoatomic wavefunctions to be used in creating the Kleinman-Bylander projectors. A UPF file containing the projectors and the local potential is then written to the file name specified in inputpp. Any errors are communicated to the user via stderr. Usage: ./casino2upf.x < inputpp A sample inputpp file for converting a Trail and Needs pseudopotential would be: inputpp: &inputpp pp_data='pp.data' upf_file='my_pseudo_potential.UPF' / 3 awfn.data_s1_2S awfn.data_p1_2P awfn.data_d1_2D Here pp_data specifies the name and location of the file containing the CASINO pseudopotential. The utility then expects an input card after &inputpp consisting of the number of awfn.data files supplied (in this case 3) and then their names. The files are searched sequentially so the first s wavefunction found will be used for the s projector, first p for the p projector and so on. A note on the radial grid ------------------------- The utility currently performs no interpolation and attempts to use the same radial grid as the original pseudopotential. It therefore assumes that the grid will be of the standard form used by Trail and Needs. If this is not the case the flag tn_grid=.false. can be set in the input file. The standard logarithmic form, r(i)=exp(xmin + i*dx) / Z is then assumed. Values for xmin and dx can also be specified in the input file in the usual way. If interpolation from a different non-standard grid is required then the current recommended route is to use the casino2gon utility supplied with the CASINO distribution. This produces the older GON format that is (currently) still read by PWscf. Ghost states ------------ The Kleinman-Bylander form can unfortunately introduce ghost states into some calculations. If this does occur we recommend that the pseudopotential is re-converted using a different local channel. The local channel can be specified in the original CASINO pp.data file and is read in automatically by casino2upf.x . =========== up2casino.x =========== This utility takes a standard UPF pseudopotential from standard input and writes a CASINO tabulated pseudopotential file to standard output. Any errors are communicated via stderr. Usage: ./up2casino.x < pseudo.UPF > pp.data Care must be taken that the resulting pseudopotential file spec fies the required local channel. Also this utility should only be used with norm-conserving pseudopotentials. espresso-5.1/upftools/vdb2upf.f900000644000175000017500000000222112341373034015042 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM vdb2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in Vanderbilt format ! (formatted) to unified pseudopotential format ! IMPLICIT NONE CHARACTER(len=256) filein, fileout ! ! IF ( trim(filein) == ' ') & CALL errore ('vdb2upf', 'usage: vdb2upf "file-to-be-converted"', 1) CALL get_file ( filein ) OPEN(unit=1,file=filein,status='old',form='formatted') CALL read_vdb(1) CLOSE (unit=1) ! convert variables read from Vanderbilt format into those needed ! by the upf format - add missing quantities CALL convert_uspp fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) STOP END PROGRAM vdb2upf espresso-5.1/upftools/oldcp2upf.f900000644000175000017500000001454512341373034015404 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM oldcp2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in the old CP90 format ! (without core correction) to unified pseudopotential format ! IMPLICIT NONE CHARACTER(len=256) filein, fileout ! ! CALL get_file ( filein ) OPEN (unit = 1, file = filein, status = 'old', form = 'formatted') CALL read_oldcp(1) CLOSE (1) ! convert variables read from old CP90 format into those needed ! by the upf format - add missing quantities CALL convert_oldcp fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) STOP 20 CALL errore ('oldcp2upf', 'Reading pseudo file name ', 1) END PROGRAM oldcp2upf MODULE oldcp ! ! All variables read from old CP90 file format ! real(8) :: amesh, z, zv INTEGER :: exfact, lloc, nbeta_, mesh_ real(8) :: wrc1, rc1, wrc2, rc2, rcl(3,3), al(3,3), bl(3,3) real(8), ALLOCATABLE :: r_(:), vnl(:,:), chi_(:,:) ! !------------------------------ END MODULE oldcp ! ! ---------------------------------------------------------- SUBROUTINE read_oldcp(iunps) ! ---------------------------------------------------------- ! USE oldcp IMPLICIT NONE INTEGER :: iunps ! real(8), EXTERNAL :: qe_erf INTEGER :: i, l, j, jj ! READ(iunps,*, end=10, err=10) z, zv, nbeta_, lloc, exfact IF (z < 1 .or. z > 100 .or. zv < 1 .or. zv > 25 ) & CALL errore ('read_oldcp','wrong potential read',1) READ(iunps,*, end=10, err=10) wrc1, rc1, wrc2, rc2 READ(iunps,*, end=10, err=10) ( ( rcl(i,l), al(i,l), & bl(i,l), i = 1, 3), l = 1, 3) READ(iunps,*, end=10, err=10) mesh_, amesh ALLOCATE(r_(mesh_)) ALLOCATE (chi_(mesh_,nbeta_)) DO l = 1, nbeta_ IF (l > 1) READ(iunps,*, end=10, err=10) mesh_, amesh DO j = 1, mesh_ READ(iunps,*, end=10, err=10) jj, r_(j), chi_(j,l) ENDDO ENDDO ! ! convert analytic to numeric form ! ALLOCATE (vnl(mesh_,0:nbeta_)) DO l=0,nbeta_ ! ! DO NOT USE f90 ARRAY SYNTAX: qe_erf IS NOT AN INTRINSIC FUNCTION!!! ! DO j=1, mesh_ vnl(j,l)= - (wrc1*qe_erf(sqrt(rc1)*r_(j)) + & wrc2*qe_erf(sqrt(rc2)*r_(j)) ) * zv/r_(j) ENDDO ! DO i=1,3 vnl(:,l)= vnl(:,l)+ (al(i,l+1)+ bl(i,l+1)*r_(:)**2) * & exp(-rcl(i,l+1)*r_(:)**2) ENDDO ENDDO RETURN 10 CALL errore('read_oldcp','error in reading file',1) END SUBROUTINE read_oldcp ! ---------------------------------------------------------- SUBROUTINE convert_oldcp ! ---------------------------------------------------------- ! USE oldcp USE upf IMPLICIT NONE real(8), PARAMETER :: rmax = 10.0d0 real(8), ALLOCATABLE :: aux(:) real(8) :: vll CHARACTER (len=20):: dft CHARACTER (len=2), EXTERNAL :: atom_name INTEGER :: kkbeta INTEGER :: l, i, ir, iv ! WRITE(generated, '("Generated using unknown code")') WRITE(date_author,'("Author: unknown Generation date: as well")') comment = 'Info: automatically converted from old CP90 format' ! reasonable assumption IF (z > 18) THEN rel = 1 ELSE rel = 0 ENDIF rcloc = 0.0d0 nwfs = nbeta_ ALLOCATE( els(nwfs), oc(nwfs), epseu(nwfs)) ALLOCATE(lchi(nwfs), nns(nwfs) ) ALLOCATE(rcut (nwfs), rcutus (nwfs)) DO i=1, nwfs PRINT '("Wavefunction # ",i1,": label, occupancy > ",$)', i READ (5,*) els(i), oc(i) nns (i) = 0 lchi(i) = i-1 rcut(i) = 0.0d0 rcutus(i)= 0.0d0 epseu(i) = 0.0d0 ENDDO psd = atom_name (nint(z)) pseudotype = 'NC' nlcc = .false. zp = nint(zv) etotps =0.0d0 ecutrho=0.0d0 ecutwfc=0.0d0 lmax = nbeta_ - 1 nbeta = nbeta_ mesh = mesh_ ntwfc = nwfs ALLOCATE( elsw(ntwfc), ocw(ntwfc), lchiw(ntwfc) ) DO i=1, nwfs lchiw(i) = lchi(i) ocw(i) = oc(i) elsw(i) = els(i) ENDDO ! IF ( exfact==0) THEN iexch=1; icorr=1; igcx=0; igcc=0 ! Perdew-Zunger ELSEIF ( exfact==1) THEN iexch=1; icorr=3; igcx=1; igcc=3 ! Becke-Lee-Yang-Parr ELSEIF ( exfact==2) THEN iexch=1; icorr=1; igcx=1; igcc=0 ! Becke88 exchange ELSEIF (exfact==-5.or.exfact==3) THEN iexch=1; icorr=1; igcx=1; igcc=1 ! Becke88-Perdew 86 ELSEIF (exfact==-6.or.exfact==4) THEN iexch=1; icorr=4; igcx=2; igcc=2 ! Perdew-Wang 91 ELSEIF (exfact== 5) THEN iexch=1; icorr=4; igcx=3; igcc=4 ! Perdew-Becke-Erkerhof ELSE CALL errore('convert','Wrong xc in pseudopotential',1) ENDIF ALLOCATE(rab(mesh)) ALLOCATE( r(mesh)) r = r_ rab = r * log( amesh ) ! ! convert analytic to numeric form ! ! ALLOCATE (vloc0(mesh)) ! the factor 2 converts from Hartree to Rydberg vloc0(:) = vnl(:,lloc)*2.d0 IF (nbeta > 0) THEN ALLOCATE(ikk2(nbeta), lll(nbeta)) kkbeta=mesh DO ir = 1,mesh IF ( r(ir) > rmax ) THEN kkbeta=ir exit ENDIF ENDDO ikk2(:) = kkbeta ALLOCATE(aux(kkbeta)) ALLOCATE(betar(mesh,nbeta)) ALLOCATE(qfunc(mesh,nbeta,nbeta)) ALLOCATE(dion(nbeta,nbeta)) ALLOCATE(qqq (nbeta,nbeta)) qfunc(:,:,:)=0.0d0 dion(:,:) =0.d0 qqq(:,:) =0.d0 iv=0 DO i=1,nwfs l=lchi(i) IF (l/=lloc) THEN iv=iv+1 lll(iv)=l DO ir=1,kkbeta ! the factor 2 converts from Hartree to Rydberg betar(ir,iv) = 2.d0 * chi_(ir,l+1) * & ( vnl(ir,l) - vnl(ir,lloc) ) aux(ir) = chi_(ir,l+1) * betar(ir,iv) ENDDO CALL simpson(kkbeta,aux,rab,vll) dion(iv,iv) = 1.0d0/vll ENDIF ENDDO ENDIF ALLOCATE (rho_at(mesh)) rho_at = 0.d0 DO i=1,nwfs rho_at(:) = rho_at(:) + ocw(i) * chi_(:,i) ** 2 ENDDO ALLOCATE (chi(mesh,ntwfc)) chi = chi_ ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully converted' ! ---------------------------------------------------------- RETURN END SUBROUTINE convert_oldcp espresso-5.1/upftools/cpmd2upf.f900000644000175000017500000005441212341373034015223 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM cpmd2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in the CPMD format, TYPE: ! NORMCONSERVING [ NUMERIC, LOGARITHMIC, CAR ], single radial grid ! to unified pseudopotential format (v.2) ! USE pseudo_types, ONLY : pseudo_upf, nullify_pseudo_upf, & deallocate_pseudo_upf USE write_upf_v2_module, ONLY : write_upf_v2 ! IMPLICIT NONE TYPE(pseudo_upf) :: upf CHARACTER(len=256) filein, fileout INTEGER :: ios ! IF ( trim(filein) == ' ') & CALL errore ('cpmd2upf', 'usage: cpmd2upf "file-to-be-converted"', 1) CALL get_file ( filein ) OPEN ( unit=1, file=filein, status = 'old', form='formatted', iostat=ios ) IF ( ios /= 0) CALL errore ('cpmd2upf', 'file: '//trim(filein)//' not found', 2) ! CALL read_cpmd(1) ! CLOSE (unit=1) ! ! convert variables read from CPMD format into those needed ! by the upf format - add missing quantities ! CALL nullify_pseudo_upf ( upf ) ! CALL convert_cpmd (upf) ! ! write to file ! fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') ! CALL write_upf_v2 (2, upf ) ! CLOSE (unit=2) CALL deallocate_pseudo_upf ( upf ) ! ---------------------------------------------------------- WRITE (6,"('Pseudopotential successfully written')") WRITE (6,"('Please review the content of the PP_INFO fields')") WRITE (6,"('*** Please TEST BEFORE USING !!! ***')") ! ---------------------------------------------------------- ! STOP END PROGRAM cpmd2upf MODULE cpmd ! ! All variables read from CPMD file format ! CHARACTER (len=80) title ! INTEGER :: ixc, pstype = 0 real(8) :: alphaxc REAL(8) :: z, zv ! Grid variables INTEGER :: mesh real(8) :: amesh, rmax, xmin real(8), ALLOCATABLE :: r(:) ! PP variables INTEGER, PARAMETER :: lmaxx=3 INTEGER ::lmax, nwfc=0 ! Car PP variables real(8) :: alphaloc, alpha(0:lmaxx), a(0:lmaxx), b(0:lmaxx) ! Goedecker PP variables INTEGER, PARAMETER :: ncmax=4, nlmax=3 INTEGER :: nc, nl(0:lmaxx) real(8) :: rc, rl(0:lmaxx), c(ncmax), h(0:lmaxx, nlmax*(nlmax+1)/2 ) ! Numeric PP variables real(8), ALLOCATABLE :: vnl(:,:) real(8), ALLOCATABLE :: chi(:,:) ! Core correction variables LOGICAL :: nlcc=.false. real(8), ALLOCATABLE :: rho_atc(:) ! Variables used for reading and for checks INTEGER :: maxinfo, info_lines PARAMETER (maxinfo = 100) CHARACTER (len=80), ALLOCATABLE :: info_sect(:) !------------------------------ END MODULE cpmd ! ! ---------------------------------------------------------- SUBROUTINE read_cpmd(iunps) ! ---------------------------------------------------------- ! USE cpmd IMPLICIT NONE INTEGER :: iunps ! INTEGER :: found = 0, closed = 0, unknown = 0 INTEGER :: i, l, dum, ios CHARACTER (len=256) line CHARACTER (len=4) token real (8) :: amesh_, vnl0(0:3) LOGICAL :: grid_read = .false., wfc_read=.false. LOGICAL, EXTERNAL :: matches INTEGER, EXTERNAL :: locate REAL(8), EXTERNAL :: qe_erf ! info_lines = 0 10 READ (iunps,'(A)',end=20,err=20) line IF (matches ("&ATOM", trim(line)) ) THEN found = found + 1 ! Z READ (iunps,'(a)',end=200,err=200) line l = len_trim(line) i = locate('=',line) READ (line(i+1:l),*) z ! Zv READ (iunps,'(a)',end=200,err=200) line l = len_trim(line) i = locate('=',line) READ (line(i+1:l),*) zv ! XC READ (iunps,'(a)',end=200,err=200) line l = len_trim(line) i = locate('=',line) READ (line(i+1:l),*) ixc, alphaxc ! TYPE READ (iunps,'(a)',end=200,err=200) line IF ( matches("NORMCONSERVING",line) ) THEN IF ( matches("NUMERIC",line) .or. matches("LOGARITHMIC",line) ) THEN pstype = 1 ELSEIF ( matches("CAR",line) ) THEN pstype = 2 ELSEIF ( matches("GOEDECKER",line) ) THEN pstype = 3 ENDIF ENDIF IF (pstype == 0 ) CALL errore('read_cpmd','unknown type: '//line,1) ELSEIF (matches ("&INFO", trim(line)) ) THEN found = found + 1 ! read (iunps,'(a)') title ! store info section for later perusal ALLOCATE (info_sect(maxinfo)) DO i=1,maxinfo READ (iunps,'(a)',end=20,err=20) title IF (matches ("&END", trim(title)) ) THEN closed = closed + 1 GOTO 10 ELSE info_sect(i) = trim(title) info_lines = i ENDIF ENDDO ELSEIF (matches ("&POTENTIAL", trim(line)) ) THEN found = found + 1 READ (iunps,'(a)') line IF ( pstype == 1 ) THEN ! ! NORMCONSERVING NUMERIC ! READ (line,*,iostat=ios) mesh, amesh_ IF ( ios /= 0) THEN READ (line,*,iostat=ios) mesh amesh_ = -1.0d0 ENDIF IF ( .not. grid_read ) ALLOCATE (r(mesh)) ! ! determine the number of angular momenta ! READ (iunps, '(a)') line ios = 1 lmax= 4 DO WHILE (ios /= 0) lmax = lmax - 1 READ(line,*,iostat=ios) r(1),(vnl0(l),l=0,lmax) ENDDO ALLOCATE (vnl(mesh,0:lmax)) vnl(1,0:lmax) = vnl0(0:lmax) DO i=2,mesh READ(iunps, *) r(i),(vnl(i,l),l=0,lmax) ENDDO IF ( .not.grid_read ) THEN CALL check_radial_grid ( amesh_, mesh, r, amesh ) grid_read = .true. ENDIF ELSEIF ( pstype == 2 ) THEN ! ! NORMCONSERVING CAR ! READ(iunps, *) alphaloc ! convert r_c's written in file to alpha's: alpha = 1/r_c^2 alphaloc = 1.d0/alphaloc**2 DO lmax=-1,2 READ(iunps, '(A)') line IF (matches ("&END", trim(line)) ) THEN closed = closed + 1 exit ENDIF READ(line, *) alpha(lmax+1), a(lmax+1), b(lmax+1) alpha(lmax+1) = 1.d0/alpha(lmax+1)**2 ENDDO ELSEIF ( pstype == 3 ) THEN ! ! NORMCONSERVING GOEDECKER ! c(:) = 0.d0 rl(:) = 0.d0 nl(:) = 0 h(:,:) = 0.d0 READ(iunps, *) lmax lmax = lmax - 1 IF ( lmax > lmaxx ) & CALL errore('read_cpmd','incorrect parameter read',1) READ(iunps, *) rc READ(iunps, '(A)') line READ(line, *) nc IF ( nc > ncmax ) & CALL errore('read_cpmd','incorrect parameter read',2) ! I am not sure if it is possible to use nc in the same line ! where it is read. Just in case, better to read twice READ(line, *) dum, (c(i), i=1,nc) DO l=0,lmax+1 READ(iunps, '(A)') line IF ( matches ("&END", trim(line)) ) THEN closed = closed + 1 exit ENDIF READ(line, *) rl(l), nl(l) IF ( nl(l) > nlmax ) & CALL errore('read_cpmd','incorrect parameter read',3) IF ( nl(l) > 0 ) & READ(line, *) rl(l), dum, ( h(l,i), i=1,nl(l)*(nl(l)+1)/2) ENDDO ENDIF ELSEIF (matches ("&WAVEFUNCTION", trim(line)) ) THEN wfc_read=.true. found = found + 1 READ (iunps,'(A)') line READ (line,*,iostat=ios) mesh, amesh_ IF ( ios /= 0) THEN READ (line,*,iostat=ios) mesh amesh_ = -1.0d0 ENDIF IF ( .not. grid_read ) ALLOCATE(r(mesh)) ! find number of atomic wavefunctions READ (iunps,'(A)') line DO nwfc = lmax+1,1,-1 READ(line,*,iostat=ios) r(1),(vnl0(l),l=0,nwfc-1) IF ( ios == 0 ) exit ENDDO IF ( ios /= 0 ) & CALL errore('read_cpmd','at least one atomic wvfct should be present',1) ALLOCATE(chi(mesh,nwfc)) chi(1,1:nwfc) = vnl0(0:nwfc-1) DO i=2,mesh READ(iunps, *) r(i),(chi(i,l),l=1,nwfc) ENDDO IF ( .not.grid_read ) THEN CALL check_radial_grid ( amesh_, mesh, r, amesh ) grid_read = .true. ENDIF ELSEIF (matches ("&NLCC", trim(line)) ) THEN found = found + 1 READ (iunps, '(a)') line READ(iunps, *) mesh nlcc = ( mesh > 0 ) IF (nlcc) THEN IF ( .not. matches ("NUMERIC", trim(line)) ) & CALL errore('read_cpmd',' only NUMERIC core-correction supported',1) ALLOCATE (rho_atc(mesh)) READ(iunps, * ) (r(i), rho_atc(i), i=1,mesh) ENDIF ELSEIF (matches ("&ATDENS", trim(line)) ) THEN ! skip over &ATDENS section, add others here, if there are more. DO WHILE(.not. matches("&END", trim(line))) READ (iunps,'(a)') line ENDDO ELSEIF (matches ("&END", trim(line)) ) THEN closed = closed + 1 ELSE PRINT*, 'line ignored: ', line unknown = unknown + 1 ENDIF GOTO 10 20 CONTINUE IF ( pstype /= 3 ) THEN IF (nlcc .and. found /= 5 .or. .not.nlcc .and. found /= 4) & CALL errore('read_cpmd','some &FIELD card missing',found) ELSE IF (found /= 3) & CALL errore('read_cpmd','some &FIELD card missing',found) ENDIF IF (closed /= found) & CALL errore('read_cpmd','some &END card missing',closed) IF (unknown /= 0 ) PRINT '("WARNING: ",i3," cards not read")', unknown ! IF ( .not. grid_read ) THEN xmin = -7.0d0 amesh=0.0125d0 rmax =100.0d0 PRINT '("A radial grid must be provided. We use the following one:")' PRINT '("r_i = e^{xmin+(i-1)*dx}/Z, i=1,mesh, with parameters:")' PRINT '("Z=",f6.2,", xmin=",f6.2," dx=",f8.4," rmax=",f6.1)', & z, xmin, amesh, rmax mesh = 1 + (log(z*rmax)-xmin)/amesh mesh = (mesh/2)*2+1 ! mesh is odd (for historical reasons?) ALLOCATE (r(mesh)) DO i=1, mesh r(i) = exp (xmin+(i-1)*amesh)/z ENDDO PRINT '(I4," grid points, rmax=",f8.4)', mesh, r(mesh) grid_read = .true. ENDIF rmax = r(mesh) xmin = log(z*r(1)) ! IF ( .not. wfc_read ) PRINT '("Notice: atomic wfcs not found")' ! IF ( pstype == 2 ) THEN ALLOCATE (vnl(mesh,0:lmax)) DO l=0, lmax DO i=1, mesh vnl(i,l) = ( a(l) + b(l)*r(i)**2 ) * exp (-alpha(l)*r(i)**2) - & zv * qe_erf (sqrt(alphaloc)*r(i))/r(i) ENDDO ENDDO ENDIF RETURN 200 CALL errore('read_cpmd','error in reading file',1) END SUBROUTINE read_cpmd ! ---------------------------------------------------------- SUBROUTINE convert_cpmd(upf) ! ---------------------------------------------------------- ! USE cpmd USE pseudo_types, ONLY : pseudo_upf USE constants, ONLY : e2 ! IMPLICIT NONE ! TYPE(pseudo_upf) :: upf ! REAL(8), ALLOCATABLE :: aux(:) REAL(8) :: x, x2, vll, rcloc, fac REAL(8), EXTERNAL :: mygamma, qe_erf CHARACTER (len=20):: dft CHARACTER (len=2):: label CHARACTER (len=1):: spdf(0:3) = ['S','P','D','F'] CHARACTER (len=2), EXTERNAL :: atom_name INTEGER :: lloc, my_lmax, l, i, j, ij, ir, iv, jv ! ! NOTE: many CPMD pseudopotentials created with the 'Hamann' code ! from Juerg Hutter's homepage have additional (bogus) entries for ! pseudo-potential and wavefunction. In the 'report' they have ! the same rc and energy eigenvalue than the previous angular momentum. ! we need to be able to ignore that part or the resulting UPF file ! will be useless. so we first print the info section and ask ! for the LMAX to really use. AK 2005/03/30. ! DO i=1,info_lines PRINT '(A)', info_sect(i) ENDDO IF ( pstype == 3 ) THEN ! not actually used, except by write_upf to write a meaningful message lloc = -3 rcloc=0.0 ELSE PRINT '("max L to use ( <= ",I1," ) > ",$)', lmax READ (5,*) my_lmax IF ((my_lmax <= lmax) .and. (my_lmax >= 0)) lmax = my_lmax PRINT '("local L ( <= ",I1," ), Rc for local pot (au) > ",$)', lmax READ (5,*) lloc, rcloc ENDIF ! IF ( pstype == 3 ) THEN upf%generated= "Generated in analytical, separable form" upf%author = "Goedecker/Hartwigsen/Hutter/Teter" upf%date = "Phys.Rev.B58, 3641 (1998); B54, 1703 (1996)" ELSE upf%generated= "Generated using unknown code" upf%author = "unknown" upf%date = "unknown" ENDIF upf%nv = "2.0.1" upf%comment = "Info: automatically converted from CPMD format" upf%psd = atom_name ( nint(z) ) ! reasonable assumption IF (z > 18) THEN upf%rel = 'no' ELSE upf%rel = 'scalar' ENDIF IF ( pstype == 3 ) THEN upf%typ = 'NC' ELSE upf%typ = 'SL' ENDIF upf%tvanp = .false. upf%tpawp = .false. upf%tcoulombp=.false. upf%nlcc = nlcc ! IF (ixc==900) THEN PRINT '("Pade approx. not implemented! assuming Perdew-Zunger LDA")' upf%dft='SLA-PZ-NOGX-NOGC' ELSEIF (ixc==1100) THEN upf%dft='SLA-PZ-NOGX-NOGC' ELSEIF (ixc==1111) THEN upf%dft='SLA-PZ-B86-P88' ELSEIF (ixc==1134 .or. ixc==1434) THEN upf%dft='SLA-PW-PBX-PBC' ELSEIF (ixc==1134) THEN upf%dft='revPBE' ELSEIF (ixc==1197) THEN upf%dft='PBESOL' ELSEIF (ixc==1312) THEN upf%dft='BLYP' ELSEIF (ixc==362) THEN upf%dft='OLYP' ELSEIF (ixc==1372) THEN upf%dft='XLYP' ELSEIF (ixc==55) THEN upf%dft='HCTH' ELSE PRINT '("Unknown DFT ixc=",i4,". Please provide a DFT name > ",$)', ixc READ *, upf%dft ENDIF PRINT '("Assuming DFT: ",A," . Please check this is what you want")', & trim(upf%dft) ! upf%zp = zv upf%etotps =0.0d0 upf%ecutrho=0.0d0 upf%ecutwfc=0.0d0 IF ( lmax == lloc) THEN upf%lmax = lmax-1 ELSE upf%lmax = lmax ENDIF upf%lloc = lloc upf%lmax_rho = 0 upf%nwfc = nwfc ! ALLOCATE( upf%els(upf%nwfc) ) ALLOCATE( upf%oc(upf%nwfc) ) ALLOCATE( upf%epseu(upf%nwfc) ) ALLOCATE( upf%lchi(upf%nwfc) ) ALLOCATE( upf%nchi(upf%nwfc) ) ALLOCATE( upf%rcut_chi (upf%nwfc) ) ALLOCATE( upf%rcutus_chi(upf%nwfc) ) DO i=1, upf%nwfc 10 PRINT '("Wavefunction # ",i1,": label (e.g. 4s), occupancy > ",$)', i READ (5,*) label, upf%oc(i) READ (label(1:1),*, err=10) l upf%els(i) = label upf%nchi(i) = l IF ( label(2:2) == 's' .or. label(2:2) == 'S') THEN l=0 ELSEIF ( label(2:2) == 'p' .or. label(2:2) == 'P') THEN l=1 ELSEIF ( label(2:2) == 'd' .or. label(2:2) == 'D') THEN l=2 ELSEIF ( label(2:2) == 'f' .or. label(2:2) == 'F') THEN l=3 ELSE l=i-1 ENDIF upf%lchi(i) = l upf%rcut_chi(i) = 0.0d0 upf%rcutus_chi(i)= 0.0d0 upf%epseu(i) = 0.0d0 ENDDO upf%mesh = mesh upf%dx = amesh upf%rmax = rmax upf%xmin = xmin upf%zmesh= z ALLOCATE(upf%rab(upf%mesh)) ALLOCATE(upf%r(upf%mesh)) upf%r(:) = r(1:upf%mesh) upf%rab(:)=upf%r(:)*amesh ALLOCATE (upf%rho_atc(upf%mesh)) IF (upf%nlcc) upf%rho_atc(:) = rho_atc(1:upf%mesh) upf%rcloc = rcloc ALLOCATE (upf%vloc(upf%mesh)) ! ! the factor e2=2 converts from Hartree to Rydberg ! IF ( upf%typ == "SL" ) THEN upf%vloc(:) = vnl(1:upf%mesh,upf%lloc)*e2 ALLOCATE(upf%vnl(upf%mesh,0:upf%lmax,1)) upf%vnl(:,:,1) = vnl(1:upf%mesh,0:upf%lmax)*e2 upf%nbeta= lmax ELSE DO i=1,upf%mesh x = upf%r(i)/rc x2=x**2 upf%vloc(i) = e2 * ( -upf%zp*qe_erf(x/sqrt(2.d0))/upf%r(i) + & exp ( -0.5d0*x2 ) * (c(1) + x2*( c(2) + x2*( c(3) + x2*c(4) ) ) ) ) ENDDO upf%nbeta=0 DO l=0,upf%lmax upf%nbeta = upf%nbeta + nl(l) ENDDO ENDIF IF (upf%nbeta > 0) THEN ALLOCATE(upf%els_beta(upf%nbeta) ) ALLOCATE(upf%lll(upf%nbeta)) ALLOCATE(upf%kbeta(upf%nbeta)) IF ( pstype == 3 ) THEN upf%kbeta(:) = upf%mesh ELSE iv=0 ! counter on beta functions DO i=1,upf%nwfc l=upf%lchi(i) IF (l/=lloc) THEN iv=iv+1 upf%kbeta(iv)=upf%mesh DO ir = upf%mesh,1,-1 IF ( abs ( vnl(ir,l) - vnl(ir,lloc) ) > 1.0E-6 ) THEN ! include points up to the last with nonzero value upf%kbeta(iv)=ir+1 exit ENDIF ENDDO ENDIF ENDDO ! the number of points used in the evaluation of integrals ! should be even (for simpson integration) DO i=1,upf%nbeta IF ( mod (upf%kbeta(i),2) == 0 ) upf%kbeta(i)=upf%kbeta(i)+1 upf%kbeta(i)=MIN(upf%mesh,upf%kbeta(i)) ENDDO upf%kkbeta = maxval(upf%kbeta(:)) ENDIF ALLOCATE(upf%beta(upf%mesh,upf%nbeta)) ALLOCATE(upf%dion(upf%nbeta,upf%nbeta)) upf%beta(:,:) =0.d0 upf%dion(:,:) =0.d0 ALLOCATE(upf%rcut (upf%nbeta)) ALLOCATE(upf%rcutus(upf%nbeta)) IF ( pstype == 3 ) THEN iv=0 ! counter on beta functions DO l=0,upf%lmax ij = 0 DO i=1, nl(l) iv = iv+1 upf%lll(iv)=l WRITE (upf%els_beta(iv), '(I1,A1)' ) i, spdf(l) DO j=i, nl(l) jv = iv+j-i ij=ij+1 upf%dion(iv,jv) = h(l,ij)/e2 IF ( j > i ) upf%dion(jv,iv) = upf%dion(iv,jv) ENDDO fac= sqrt(2d0*rl(l)) / ( rl(l)**(l+2*i) * sqrt(mygamma(l+2*i)) ) DO ir=1,upf%mesh x2 = (upf%r(ir)/rl(l))**2 upf%beta(ir,iv) = upf%r(ir)**(l+2*(i-1)) * & exp ( -0.5d0*x2 ) * fac * e2 ! ...remember: the beta functions in the UPF format ! ...have to be multiplied by a factor r !!! upf%beta(ir,iv) = upf%beta(ir,iv)*upf%r(ir) ! ENDDO ! look for index kbeta such that v(i)=0 if i>kbeta DO ir=upf%mesh,1,-1 IF ( abs(upf%beta(ir,iv)) > 1.D-12 ) exit ENDDO IF ( ir < 2 ) THEN CALL errore('cpmd2upf','zero beta function?!?',iv) ELSEIF ( mod(ir,2) /= 0 ) THEN ! even index upf%kbeta(iv) = ir ELSEIF ( ir < upf%mesh .and. mod(ir,2) == 0 ) THEN ! odd index upf%kbeta(iv) = ir+1 ELSE upf%kbeta(iv) = upf%mesh ENDIF ! not really the same thing as rc in PP generation upf%rcut (iv) = upf%r(upf%kbeta(iv)) upf%rcutus(iv) = 0.0 ENDDO ENDDO upf%kkbeta = maxval(upf%kbeta(:)) ELSE ALLOCATE(aux(upf%kkbeta)) iv=0 ! counter on beta functions DO i=1,upf%nwfc l=upf%lchi(i) IF (l/=lloc) THEN iv=iv+1 upf%lll(iv)=l upf%els_beta(iv)=upf%els(i) DO ir=1,upf%kbeta(iv) ! the factor e2 converts from Hartree to Rydberg upf%beta(ir,iv) = e2 * chi(ir,l+1) * & ( vnl(ir,l) - vnl(ir,lloc) ) aux(ir) = chi(ir,l+1) * upf%beta(ir,iv) ENDDO upf%rcut (iv) = upf%r(upf%kbeta(iv)) upf%rcutus(iv) = 0.0 CALL simpson(upf%kbeta(iv),aux,upf%rab,vll) upf%dion(iv,iv) = 1.0d0/vll ENDIF ENDDO DEALLOCATE(aux) ENDIF ELSE ! prevents funny errors when writing file ALLOCATE(upf%dion(upf%nbeta,upf%nbeta)) ENDIF ALLOCATE (upf%chi(upf%mesh,upf%nwfc)) upf%chi(:,:) = chi(1:upf%mesh,1:upf%nwfc) ALLOCATE (upf%rho_at(upf%mesh)) upf%rho_at(:) = 0.d0 DO i=1,upf%nwfc upf%rho_at(:) = upf%rho_at(:) + upf%oc(i) * upf%chi(:,i) ** 2 ENDDO ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully converted' ! ---------------------------------------------------------- RETURN END SUBROUTINE convert_cpmd ! ! ------------------------------------------------------------------ SUBROUTINE check_radial_grid ( amesh_, mesh, r, amesh ) ! ------------------------------------------------------------------ ! IMPLICIT NONE INTEGER, INTENT (in) :: mesh REAL(8), INTENT (in) :: amesh_, r(mesh) REAL(8), INTENT (out) :: amesh INTEGER :: i ! ! get amesh if not available directly, check its value otherwise PRINT "('Radial grid r(i) has ',i4,' points')", mesh PRINT "('Assuming log radial grid: r(i)=exp[(i-1)*amesh]*r(1), with:')" IF (amesh_ < 0.0d0) THEN amesh = log (r(mesh)/r(1))/(mesh-1) PRINT "('amesh = log (r(mesh)/r(1))/(mesh-1) = ',f10.6)",amesh ELSE ! not clear whether the value of amesh read from file ! matches the above definition, or if it is exp(amesh) ... amesh = log (r(mesh)/r(1))/(mesh-1) IF ( abs ( amesh - amesh_ ) > 1.0d-5 ) THEN IF ( abs ( amesh - exp(amesh_) ) < 1.0d-5 ) THEN amesh = log(amesh_) PRINT "('amesh = log (value read from file) = ',f10.6)",amesh ELSE CALL errore ('cpmd2upf', 'unknown real-space grid',2) ENDIF ELSE amesh = amesh_ PRINT "('amesh = value read from file = ',f10.6)",amesh ENDIF ENDIF ! check if the grid is what we expect DO i=2,mesh IF ( abs(r(i) - exp((i-1)*amesh)*r(1)) > 1.0d-5) THEN PRINT "('grid point ',i4,': found ',f10.6,', expected ',f10.6)",& i, r(i), exp((i-1)*amesh)*r(1) CALL errore ('cpmd2upf', 'unknown real-space grid',1) ENDIF ENDDO RETURN END ! ------------------------------------------------------------------ REAL(8) FUNCTION mygamma ( n ) !------------------------------------------------------------------ ! ! mygamma(n) = \Gamma(n-1/2) = sqrt(pi)*(2n-3)!!/2**(n-1) ! USE constants, ONLY : pi IMPLICIT NONE INTEGER, INTENT(in) :: n ! REAL(8) :: x INTEGER, EXTERNAL :: semifact ! IF ( n < 2 ) CALL errore('mygamma','unexpected input argument',1) mygamma = sqrt(pi) * semifact(2*n-3) / 2.d0**(n-1) ! RETURN END FUNCTION mygamma ! ------------------------------------------------------------------ INTEGER FUNCTION locate(onechar,string) ! ------------------------------------------------------------------ ! CHARACTER(len=1) :: onechar CHARACTER(len=*) :: string ! INTEGER:: i ! DO i=1,len_trim(string) IF (string(i:i) == "=") THEN locate = i RETURN ENDIF ENDDO locate = 0 RETURN END FUNCTION locate espresso-5.1/upftools/casino2upf.f900000644000175000017500000000527512341373034015557 0ustar mbamba! ! Copyright (C) 2008 Simon Binnie ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM casino2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in CASINO tabulated ! format to unified pseudopotential format USE casino_pp USE write_upf_v2_module, ONLY : write_upf_v2 USE pseudo_types, ONLY : nullify_pseudo_upf, deallocate_pseudo_upf, & pseudo_upf IMPLICIT NONE ! INTEGER, EXTERNAL :: find_free_unit ! CHARACTER(len=256) :: pp_data CHARACTER(len=256) :: upf_file CHARACTER(len=256), ALLOCATABLE:: wavefile(:) INTEGER, ALLOCATABLE :: waveunit(:) INTEGER nofiles, i, ios, pp_unit TYPE(pseudo_upf) :: upf_out NAMELIST / inputpp / & pp_data, & !CASINO pp filename upf_file, & !output file tn_grid, & !.true. if Trail and Needs grid is used tn_prefac, & xmin, & !xmin for standard QE grid dx !dx for Trail and Needs and standard QE !grid pp_data= 'pp.data' upf_file= 'out.UPF' CALL nullify_pseudo_upf( upf_out ) WRITE(0,*) 'CASINO2UPF Converter' READ(*,inputpp,iostat=ios) READ(*,*,iostat=ios) nofiles ALLOCATE(wavefile(nofiles), waveunit(nofiles)) !Now read in the awfn file names and open the files DO i=1,nofiles READ(*,*,iostat=ios) wavefile(:) waveunit(i)=find_free_unit() OPEN(unit=waveunit(i),file=trim(wavefile(i)),& status='old',form='formatted', iostat=ios) IF (ios /= 0 ) THEN CALL errore ('casino2upf', 'cannot read file', trim(wavefile(i))) ENDIF ENDDO pp_unit=find_free_unit() OPEN(unit=pp_unit,file=trim(pp_data),status='old',form='formatted', iostat=ios) IF (ios /= 0 ) THEN CALL errore ('casino2upf', 'cannot read file', trim(wavefile(i))) ENDIF CALL read_casino(pp_unit,nofiles, waveunit) CLOSE (unit=pp_unit) DO i=1,nofiles CLOSE (waveunit(i)) ENDDO DEALLOCATE( wavefile, waveunit ) ! convert variables read from CASINO format into those needed ! by the upf format - add missing quantities CALL convert_casino(upf_out) PRINT '(''Output PP file in UPF format : '',a)', upf_file OPEN(unit=2,file=upf_file,status='unknown',form='formatted') CALL write_upf_v2(u=2,upf=upf_out) CLOSE(unit=2,status='keep') CALL deallocate_pseudo_upf( upf_out ) STOP END PROGRAM casino2upf espresso-5.1/upftools/casino_pp.f900000644000175000017500000004153212341373034015455 0ustar mbamba MODULE casino_pp ! ! All variables read from CASINO file format ! ! trailing underscore means that a variable with the same name ! is used in module 'upf' containing variables to be written ! USE kinds, ONLY : dp CHARACTER(len=20) :: dft_ CHARACTER(len=2) :: psd_ REAL(dp) :: zp_ INTEGER nlc, nnl, lmax_, lloc, nchi, rel_ LOGICAL :: numeric, bhstype, nlcc_ CHARACTER(len=2), ALLOCATABLE :: els_(:) REAL(dp) :: zmesh REAL(dp) :: xmin = -7.0_dp REAL(dp) :: dx = 20.0_dp/1500.0_dp REAL(dp) :: tn_prefac = 0.75E-6_dp LOGICAL :: tn_grid = .true. REAL(dp), ALLOCATABLE:: r_(:) INTEGER :: mesh_ REAL(dp), ALLOCATABLE:: vnl(:,:) INTEGER, ALLOCATABLE:: lchi_(:), nns_(:) REAL(dp), ALLOCATABLE:: chi_(:,:), oc_(:) CONTAINS ! ! ---------------------------------------------------------- SUBROUTINE read_casino(iunps,nofiles, waveunit) ! ---------------------------------------------------------- ! ! Reads in a CASINO tabulated pp file and it's associated ! awfn files. Some basic processing such as removing the ! r factors from the potentials is also performed. USE kinds, ONLY : dp IMPLICIT NONE TYPE :: wavfun_list INTEGER :: occ,eup,edwn, nquant, lquant CHARACTER(len=2) :: label #ifdef __STD_F95 REAL(dp), POINTER :: wavefunc(:) #else REAL(dp), ALLOCATABLE :: wavefunc(:) #endif TYPE (wavfun_list), POINTER :: p END TYPE wavfun_list TYPE :: channel_list INTEGER :: lquant #ifdef __STD_F95 REAL(dp), POINTER :: channel(:) #else REAL(dp), ALLOCATABLE :: channel(:) #endif TYPE (channel_list), POINTER :: p END TYPE channel_list TYPE (channel_list), POINTER :: phead TYPE (channel_list), POINTER :: pptr TYPE (channel_list), POINTER :: ptail TYPE (wavfun_list), POINTER :: mhead TYPE (wavfun_list), POINTER :: mptr TYPE (wavfun_list), POINTER :: mtail INTEGER :: iunps, nofiles, ios ! LOGICAL :: groundstate, found CHARACTER(len=2) :: label, rellab INTEGER :: l, i, ir, nb, gsorbs, j,k,m,tmp, lquant, orbs, nquant INTEGER, ALLOCATABLE :: gs(:,:) INTEGER, INTENT(in) :: waveunit(nofiles) NULLIFY ( mhead, mptr, mtail ) dft_ = 'HF' !Hardcoded at the moment should eventually be HF anyway nlc = 0 !These two values are always 0 for numeric pps nnl = 0 !so lets just hard code them nlcc_ = .false. !Again these two are alwas false for CASINO pps bhstype = .false. READ(iunps,'(a2,35x,a2)') rellab, psd_ READ(iunps,*) IF ( rellab == 'DF' ) THEN rel_=1 ELSE rel_=0 ENDIF READ(iunps,*) zmesh,zp_ !Here we are reading zmesh (atomic #) and DO i=1,3 !zp_ (pseudo charge) READ(iunps,*) ENDDO READ(iunps,*) lloc !reading in lloc IF ( zp_<=0d0 ) & CALL errore( 'read_casino','Wrong zp ',1 ) IF ( lloc>3.or.lloc<0 ) & CALL errore( 'read_casino','Wrong lloc ',1 ) ! ! compute the radial mesh ! DO i=1,3 READ(iunps,*) ENDDO READ(iunps,*) mesh_ !Reading in total no. of mesh points ALLOCATE( r_(mesh_)) READ(iunps,*) DO i=1,mesh_ READ(iunps,*) r_(i) ENDDO ! Read in the different channels of V_nl ALLOCATE(phead) ptail => phead pptr => phead ALLOCATE( pptr%channel(mesh_) ) READ(iunps, '(15x,I1,7x)') l pptr%lquant=l READ(iunps, *) (pptr%channel(ir),ir=1,mesh_) DO READ(iunps, '(15x,I1,7x)', IOSTAT=ios) l IF (ios /= 0 ) THEN exit ENDIF ALLOCATE(pptr%p) pptr=> pptr%p ptail=> pptr ALLOCATE( pptr%channel(mesh_) ) pptr%lquant=l READ(iunps, *) (pptr%channel(ir),ir=1,mesh_) ENDDO !Compute the number of channels read in. lmax_ =-1 pptr => phead DO IF ( .not. associated(pptr) )exit lmax_=lmax_+1 pptr =>pptr%p ENDDO ALLOCATE(vnl(mesh_,0:lmax_)) i=0 pptr => phead DO IF ( .not. associated(pptr) )exit ! lchi_(i) = pptr%lquant DO ir=1,mesh_ vnl(ir,i) = pptr%channel(ir) ENDDO DEALLOCATE( pptr%channel ) pptr =>pptr%p i=i+1 ENDDO !Clean up the linked list (deallocate it) DO IF ( .not. associated(phead) )exit pptr => phead phead => phead%p DEALLOCATE( pptr ) ENDDO DO l = 0, lmax_ DO ir = 1, mesh_ vnl(ir,l) = vnl(ir,l)/r_(ir) !Removing the factor of r CASINO has ENDDO ! correcting for possible divide by zero IF ( r_(1) == 0 ) THEN vnl(1,l) = 0 ENDIF ENDDO ALLOCATE(mhead) mtail => mhead mptr => mhead NULLIFY(mtail%p) groundstate=.true. DO j=1,nofiles DO i=1,4 READ(waveunit(j),*) ENDDO READ(waveunit(j),*) orbs IF ( groundstate ) THEN ALLOCATE( gs(orbs,3) ) gs = 0 gsorbs = orbs ENDIF DO i=1,2 READ(waveunit(j),*) ENDDO READ(waveunit(j),*) mtail%eup, mtail%edwn READ(waveunit(j),*) DO i=1,mtail%eup+mtail%edwn READ(waveunit(j),*) tmp, nquant, lquant IF ( groundstate ) THEN found = .true. DO m=1,orbs IF ( (nquant==gs(m,1) .and. lquant==gs(m,2)) ) THEN gs(m,3) = gs(m,3) + 1 exit ENDIF found = .false. ENDDO IF (.not. found ) THEN DO m=1,orbs IF ( gs(m,1) == 0 ) THEN gs(m,1) = nquant gs(m,2) = lquant gs(m,3) = 1 exit ENDIF ENDDO ENDIF ENDIF ENDDO READ(waveunit(j),*) READ(waveunit(j),*) DO i=1,mesh_ READ(waveunit(j),*) ENDDO DO k=1,orbs READ(waveunit(j),'(13x,a2)', err=300) label READ(waveunit(j),*) tmp, nquant, lquant IF ( .not. groundstate ) THEN found = .false. DO m = 1,gsorbs IF ( nquant == gs(m,1) .and. lquant == gs(m,2) ) THEN found = .true. exit ENDIF ENDDO mptr => mhead DO IF ( .not. associated(mptr) )exit IF ( nquant == mptr%nquant .and. lquant == mptr%lquant ) found = .true. mptr =>mptr%p ENDDO IF ( found ) THEN DO i=1,mesh_ READ(waveunit(j),*) ENDDO CYCLE ENDIF ENDIF #ifdef __STD_F95 IF ( associated(mtail%wavefunc) ) THEN #else IF ( allocated(mtail%wavefunc) ) THEN #endif ALLOCATE(mtail%p) mtail=>mtail%p NULLIFY(mtail%p) ALLOCATE( mtail%wavefunc(mesh_) ) ELSE ALLOCATE( mtail%wavefunc(mesh_) ) ENDIF mtail%label = label mtail%nquant = nquant mtail%lquant = lquant READ(waveunit(j), *, err=300) (mtail%wavefunc(ir),ir=1,mesh_) ENDDO groundstate = .false. ENDDO nchi =0 mptr => mhead DO IF ( .not. associated(mptr) )exit nchi=nchi+1 mptr =>mptr%p ENDDO ALLOCATE(lchi_(nchi), els_(nchi), nns_(nchi)) ALLOCATE(oc_(nchi)) ALLOCATE(chi_(mesh_,nchi)) oc_ = 0 !Sort out the occupation numbers DO i=1,gsorbs oc_(i)=gs(i,3) ENDDO DEALLOCATE( gs ) i=1 mptr => mhead DO IF ( .not. associated(mptr) )exit nns_(i) = mptr%nquant lchi_(i) = mptr%lquant els_(i) = mptr%label DO ir=1,mesh_ chi_(ir:,i) = mptr%wavefunc(ir) ENDDO DEALLOCATE( mptr%wavefunc ) mptr =>mptr%p i=i+1 ENDDO !Clean up the linked list (deallocate it) DO IF ( .not. associated(mhead) )exit mptr => mhead mhead => mhead%p DEALLOCATE( mptr ) ENDDO ! ---------------------------------------------------------- WRITE (0,'(a)') 'Pseudopotential successfully read' ! ---------------------------------------------------------- RETURN 300 CALL errore('read_casino','pseudo file is empty or wrong',1) END SUBROUTINE read_casino ! ---------------------------------------------------------- SUBROUTINE convert_casino(upf_out) ! ---------------------------------------------------------- USE kinds, ONLY : dp USE upf_module USE radial_grids, ONLY: radial_grid_type, deallocate_radial_grid USE funct, ONLY : set_dft_from_name, get_iexch, get_icorr, & get_igcx, get_igcc IMPLICIT NONE TYPE(pseudo_upf), INTENT(inout) :: upf_out REAL(dp), ALLOCATABLE :: aux(:) REAL(dp) :: vll INTEGER :: kkbeta, l, iv, ir, i, nb WRITE(upf_out%generated, '("From a Trail & Needs tabulated & &PP for CASINO")') WRITE(upf_out%author,'("unknown")') WRITE(upf_out%date,'("unknown")') upf_out%comment = 'Info: automatically converted from CASINO & &Tabulated format' IF (rel_== 0) THEN upf_out%rel = 'no' ELSEIF (rel_==1 ) THEN upf_out%rel = 'scalar' ELSE upf_out%rel = 'full' ENDIF IF (xmin == 0 ) THEN xmin= log(zmesh * r_(2) ) ENDIF ! Allocate and assign the raidal grid upf_out%mesh = mesh_ upf_out%zmesh = zmesh upf_out%dx = dx upf_out%xmin = xmin ALLOCATE(upf_out%rab(upf_out%mesh)) ALLOCATE( upf_out%r(upf_out%mesh)) upf_out%r = r_ DEALLOCATE( r_ ) upf_out%rmax = maxval(upf_out%r) ! ! subtract out the local part from the different ! potential channels ! DO l = 0, lmax_ IF ( l/=lloc ) vnl(:,l) = vnl(:,l) - vnl(:,lloc) ENDDO ALLOCATE (upf_out%vloc(upf_out%mesh)) upf_out%vloc(:) = vnl(:,lloc) ! Compute the derivatives of the grid. The Trail and Needs ! grids use r(i) = (tn_prefac / zmesh)*( exp(i*dx) - 1 ) so ! must be treated differently to standard QE grids. IF ( tn_grid ) THEN DO ir = 1, upf_out%mesh upf_out%rab(ir) = dx * ( upf_out%r(ir) + tn_prefac / zmesh ) ENDDO ELSE DO ir = 1, upf_out%mesh upf_out%rab(ir) = dx * upf_out%r(ir) ENDDO ENDIF ! ! compute the atomic charges ! ALLOCATE (upf_out%rho_at(upf_out%mesh)) upf_out%rho_at(:) = 0.d0 DO nb = 1, nchi IF( oc_(nb)/=0.d0) THEN upf_out%rho_at(:) = upf_out%rho_at(:) +& & oc_(nb)*chi_(:,nb)**2 ENDIF ENDDO ! This section deals with the pseudo wavefunctions. ! These values are just given directly to the pseudo_upf structure upf_out%nwfc = nchi ALLOCATE( upf_out%oc(upf_out%nwfc), upf_out%epseu(upf_out%nwfc) ) ALLOCATE( upf_out%lchi(upf_out%nwfc), upf_out%nchi(upf_out%nwfc) ) ALLOCATE( upf_out%els(upf_out%nwfc) ) ALLOCATE( upf_out%rcut_chi(upf_out%nwfc) ) ALLOCATE( upf_out%rcutus_chi (upf_out%nwfc) ) DO i=1, upf_out%nwfc upf_out%nchi(i) = nns_(i) upf_out%lchi(i) = lchi_(i) upf_out%rcut_chi(i) = 0.0d0 upf_out%rcutus_chi(i)= 0.0d0 upf_out%oc (i) = oc_(i) upf_out%els(i) = els_(i) upf_out%epseu(i) = 0.0d0 ENDDO DEALLOCATE (lchi_, oc_, nns_) upf_out%psd = psd_ upf_out%typ = 'NC' upf_out%nlcc = nlcc_ upf_out%zp = zp_ upf_out%etotps = 0.0d0 upf_out%ecutrho=0.0d0 upf_out%ecutwfc=0.0d0 upf_out%lloc=lloc IF ( lmax_ == lloc) THEN upf_out%lmax = lmax_-1 ELSE upf_out%lmax = lmax_ ENDIF upf_out%nbeta = lmax_ ALLOCATE ( upf_out%els_beta(upf_out%nbeta) ) ALLOCATE ( upf_out%rcut(upf_out%nbeta) ) ALLOCATE ( upf_out%rcutus(upf_out%nbeta) ) upf_out%rcut=0.0d0 upf_out%rcutus=0.0d0 upf_out%dft =dft_ IF (upf_out%nbeta > 0) THEN ALLOCATE(upf_out%kbeta(upf_out%nbeta), upf_out%lll(upf_out%nbeta)) upf_out%kkbeta=upf_out%mesh DO ir = 1,upf_out%mesh IF ( upf_out%r(ir) > upf_out%rmax ) THEN upf_out%kkbeta=ir exit ENDIF ENDDO ! make sure kkbeta is odd as required for simpson IF(mod(upf_out%kkbeta,2) == 0) upf_out%kkbeta=upf_out%kkbeta-1 upf_out%kbeta(:) = upf_out%kkbeta ALLOCATE(aux(upf_out%kkbeta)) ALLOCATE(upf_out%beta(upf_out%mesh,upf_out%nbeta)) ALLOCATE(upf_out%dion(upf_out%nbeta,upf_out%nbeta)) upf_out%dion(:,:) =0.d0 iv=0 DO i=1,upf_out%nwfc l=upf_out%lchi(i) IF (l/=upf_out%lloc) THEN iv=iv+1 upf_out%els_beta(iv)=upf_out%els(i) upf_out%lll(iv)=l DO ir=1,upf_out%kkbeta upf_out%beta(ir,iv)=chi_(ir,i)*vnl(ir,l) aux(ir) = chi_(ir,i)**2*vnl(ir,l) ENDDO CALL simpson(upf_out%kkbeta,aux,upf_out%rab,vll) upf_out%dion(iv,iv) = 1.0d0/vll ENDIF IF(iv >= upf_out%nbeta) exit ! skip additional pseudo wfns ENDDO DEALLOCATE (vnl, aux) ! ! redetermine ikk2 ! DO iv=1,upf_out%nbeta upf_out%kbeta(iv)=upf_out%kkbeta DO ir = upf_out%kkbeta,1,-1 IF ( abs(upf_out%beta(ir,iv)) > 1.d-12 ) THEN upf_out%kbeta(iv)=ir exit ENDIF ENDDO ENDDO ENDIF ALLOCATE (upf_out%chi(upf_out%mesh,upf_out%nwfc)) upf_out%chi = chi_ DEALLOCATE (chi_) RETURN END SUBROUTINE convert_casino SUBROUTINE write_casino_tab(upf_in, grid) USE upf_module USE radial_grids, ONLY: radial_grid_type, deallocate_radial_grid IMPLICIT NONE TYPE(pseudo_upf), INTENT(in) :: upf_in TYPE(radial_grid_type), INTENT(in) :: grid INTEGER :: i, lp1 INTEGER, EXTERNAL :: atomic_number WRITE(6,*) "Converted Pseudopotential in REAL space for ", upf_in%psd WRITE(6,*) "Atomic number and pseudo-charge" WRITE(6,"(I3,F5.2)") atomic_number( upf_in%psd ),upf_in%zp WRITE(6,*) "Energy units (rydberg/hartree/ev):" WRITE(6,*) "rydberg" WRITE(6,*) "Angular momentum of local component (0=s,1=p,2=d..)" WRITE(6,"(I2)") upf_in%lloc WRITE(6,*) "NLRULE override (1) VMC/DMC (2) config gen (0 ==> & &input/default VALUE)" WRITE(6,*) "0 0" WRITE(6,*) "Number of grid points" WRITE(6,*) grid%mesh WRITE(6,*) "R(i) in atomic units" WRITE(6, "(T4,E22.15)") grid%r(:) lp1 = size ( vnl, 2 ) DO i=1,lp1 WRITE(6, "(A,I1,A)") 'r*potential (L=',i-1,') in Ry' WRITE(6, "(T4,E22.15)") vnl(:,i) ENDDO END SUBROUTINE write_casino_tab SUBROUTINE conv_upf2casino(upf_in,grid) USE upf_module USE radial_grids, ONLY: radial_grid_type, deallocate_radial_grid IMPLICIT NONE TYPE(pseudo_upf), INTENT(in) :: upf_in TYPE(radial_grid_type), INTENT(in) :: grid INTEGER :: i, l, channels REAL(dp), PARAMETER :: offset=1E-20_dp !This is an offset added to the wavefunctions to !eliminate any divide by zeros that may be caused by !zeroed wavefunction terms. channels=upf_in%nbeta+1 ALLOCATE ( vnl(grid%mesh,channels) ) !Set up the local component of each channel DO i=1,channels vnl(:,i)=grid%r(:)*upf_in%vloc(:) ENDDO DO i=1,upf_in%nbeta l=upf_in%lll(i)+1 !Check if any wfc components have been zeroed !and apply the offset IF they have IF ( minval(abs(upf_in%chi(:,l))) /= 0 ) THEN vnl(:,l)= (upf_in%beta(:,l)/(upf_in%chi(:,l)) & *grid%r(:)) + vnl(:,l) ELSE WRITE(0,"(A,ES10.3,A)") 'Applying ',offset , ' offset to & &wavefunction to avoid divide by zero' vnl(:,l)= (upf_in%beta(:,l)/(upf_in%chi(:,l)+offset) & *grid%r(:)) + vnl(:,l) ENDIF ENDDO END SUBROUTINE conv_upf2casino END MODULE casino_pp espresso-5.1/upftools/uspp2upf.f900000644000175000017500000000235012341373034015261 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM uspp2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in Vanderbilt format ! (unformatted) to unified pseudopotential format ! IMPLICIT NONE CHARACTER(len=256) filein, fileout ! ! IF ( trim(filein) == ' ') & CALL errore ('uspp2upf', 'usage: uspp2upf "file-to-be-converted"', 1) CALL get_file ( filein ) OPEN(unit=1,file=filein,status='old',form='unformatted') CALL read_uspp(1) CLOSE (unit=1) ! convert variables read from Vanderbilt format into those needed ! by the upf format - add missing quantities CALL convert_uspp fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in UPF format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) STOP 20 WRITE (6,'("uspp2upf: error reading pseudopotential file name")') STOP END PROGRAM uspp2upf espresso-5.1/upftools/read_upf.f900000644000175000017500000002766712341373034015304 0ustar mbamba! ! Copyright (C) 2001-2002 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE pseudo ! ! All variables to be read from the UPF file ! (UPF = unified pseudopotential format) ! INTEGER ,PARAMETER :: npsx = 6 ! npsx : maximum number of different pseudopotentials INTEGER, PARAMETER :: lmaxx = 3, nchix = 6, ndm = 2000 ! lmaxx : maximum non local angular momentum in PP ! nchix : maximum number of atomic wavefunctions per PP ! ndm : maximum number of points in the radial mesh INTEGER, PARAMETER :: nbrx = 8, lqmax = 5, nqfx = 8 ! nbrx : maximum number of beta functions ! lqmax : maximum number of angular momentum of Q ! nqfx : maximum number of coefficients in Q smoothing ! ! pp_header CHARACTER (len=80):: generated, date_author, comment CHARACTER (len=2) :: psd(npsx), pseudotype CHARACTER (len=20):: dft(npsx) INTEGER :: lmax(npsx), mesh(npsx), nbeta(npsx), ntwfc(npsx) LOGICAL :: nlcc(npsx), isus(npsx) real(8) :: zp(npsx), ecutrho, ecutwfc, etotps real(8) :: oc(nchix,npsx) CHARACTER(len=2) :: els(nchix,npsx) INTEGER :: lchi(nchix,npsx) ! ! pp_mesh real(8) :: r(ndm,npsx), rab(ndm,npsx) ! pp_nlcc real(8) :: rho_atc(ndm,npsx) ! ! pp_local real(8) :: vloc0(ndm,npsx) ! ! pp_nonlocal ! pp_beta real(8) :: betar(ndm, nbrx, npsx) INTEGER :: lll(nbrx,npsx), ikk2(nbrx,npsx) ! pp_dij real(8) :: dion(nbrx,nbrx,npsx) ! pp_qij INTEGER :: nqf(npsx), nqlc(npsx) real(8) :: rinner(lqmax,npsx), qqq(nbrx,nbrx,npsx), & qfunc(ndm,nbrx,nbrx,npsx) ! pp_qfcoef real(8) :: qfcoef(nqfx,lqmax,nbrx,nbrx,npsx) ! ! pp_pswfc real(8) :: chi(ndm,nchix,npsx) ! ! pp_rhoatom real(8) :: rho_at(ndm,npsx) END MODULE pseudo ! !--------------------------------------------------------------------- PROGRAM read_ps !--------------------------------------------------------------------- ! ! Read pseudopotentials in the Unified Pseudopotential Format (UPF) ! IMPLICIT NONE INTEGER :: is, ios, iunps = 4 CHARACTER (len=256) :: filein ! is = 0 10 PRINT '('' Input PP file # '',i2,'' in UPF format > '',$)', is+1 READ (5, '(a)', end = 20, err = 20) filein OPEN(unit=iunps,file=filein,status='old',form='formatted',iostat=ios) IF (ios/=0) STOP is = is + 1 CALL read_pseudo(is, iunps) CLOSE (unit=iunps) GOTO 10 20 STOP END PROGRAM read_ps ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo (is, iunps) !--------------------------------------------------------------------- ! ! Read pseudopotential in the Unified Pseudopotential Format (UPF) ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! is : index of this pseudopotential ! iunps: unit connected with pseudopotential file ! IF (is < 0 .or. is > npsx ) CALL errore ('read_pseudo', 'Wrong is number', 1) WRITE ( *, * ) " Reading pseudopotential file in UPF format..." !------->Search for Header CALL scan_begin (iunps, "HEADER", .true.) CALL read_pseudo_header (is, iunps) CALL scan_end (iunps, "HEADER") !-------->Search for mesh information CALL scan_begin (iunps, "MESH", .true.) CALL read_pseudo_mesh (is, iunps) CALL scan_end (iunps, "MESH") !-------->If present, search for nlcc IF (nlcc (is) ) THEN CALL scan_begin (iunps, "NLCC", .true.) CALL read_pseudo_nlcc (is, iunps) CALL scan_end (iunps, "NLCC") ENDIF !-------->Search for Local potential CALL scan_begin (iunps, "LOCAL", .true.) CALL read_pseudo_local (is, iunps) CALL scan_end (iunps, "LOCAL") !-------->Search for Nonlocal potential CALL scan_begin (iunps, "NONLOCAL", .true.) CALL read_pseudo_nl (is, iunps) CALL scan_end (iunps, "NONLOCAL") !-------->Search for atomic wavefunctions CALL scan_begin (iunps, "PSWFC", .true.) CALL read_pseudo_pswfc (is, iunps) CALL scan_end (iunps, "PSWFC") !-------->Search for atomic charge CALL scan_begin (iunps, "RHOATOM", .true.) CALL read_pseudo_rhoatom (is, iunps) CALL scan_end (iunps, "RHOATOM") ! WRITE ( *, * ) " ...done" RETURN END SUBROUTINE read_pseudo !--------------------------------------------------------------------- SUBROUTINE scan_begin (iunps, string, rew) !--------------------------------------------------------------------- ! IMPLICIT NONE ! Unit of the input file INTEGER :: iunps ! Label to be matched CHARACTER (len=*) :: string LOGICAL :: rew ! Flag: if .true. rewind the file CHARACTER (len=80) :: rstring ! String read from file INTEGER :: ios LOGICAL, EXTERNAL :: matches ios = 0 IF (rew) REWIND (iunps) DO WHILE (ios==0) READ (iunps, *, iostat = ios, err = 300) rstring IF (matches ("", rstring) ) RETURN ENDDO 300 CALL errore ('scan_begin', 'No '//string//' block', abs (ios) ) END SUBROUTINE scan_begin !--------------------------------------------------------------------- SUBROUTINE scan_end (iunps, string) !--------------------------------------------------------------------- IMPLICIT NONE ! Unit of the input file INTEGER :: iunps ! Label to be matched CHARACTER (len=*) :: string ! String read from file CHARACTER (len=80) :: rstring INTEGER :: ios LOGICAL, EXTERNAL :: matches READ (iunps, '(a)', iostat = ios, err = 300) rstring IF (matches ("", rstring) ) RETURN 300 CALL errore ('scan_end', & 'No '//string//' block end statement, possibly corrupted file', - 1) END SUBROUTINE scan_end ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_header (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: nv, ios, nw CHARACTER (len=75) :: dummy LOGICAL, EXTERNAL :: matches READ (iunps, *, err = 100, iostat = ios) nv, dummy READ (iunps, *, err = 100, iostat = ios) psd (is), dummy READ (iunps, *, err = 100, iostat = ios) pseudotype IF (matches (pseudotype, "US") ) isus (is) = .true. READ (iunps, *, err = 100, iostat = ios) nlcc (is), dummy READ (iunps, '(a20,t24,a)', err = 100, iostat = ios) dft(is), dummy READ (iunps, * ) zp (is), dummy READ (iunps, * ) etotps, dummy READ (iunps, * ) ecutwfc, ecutrho READ (iunps, * ) lmax (is), dummy READ (iunps, *, err = 100, iostat = ios) mesh (is), dummy READ (iunps, *, err = 100, iostat = ios) ntwfc(is), nbeta (is), dummy READ (iunps, '(a)', err = 100, iostat = ios) dummy DO nw = 1, ntwfc(is) READ (iunps, * ) els (nw,is), lchi (nw, is), oc (nw, is) ENDDO RETURN 100 CALL errore ('read_pseudo_header', 'Reading pseudo file', abs (ios)) END SUBROUTINE read_pseudo_header ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_local (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios ! READ (iunps, *, err=100, iostat=ios) (vloc0(ir,is) , ir=1,mesh(is)) 100 CALL errore ('read_pseudo_local','Reading pseudo file', abs(ios) ) RETURN END SUBROUTINE read_pseudo_local ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_mesh (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios ! CALL scan_begin (iunps, "R", .false.) READ (iunps, *, err = 100, iostat = ios) (r(ir,is), ir=1,mesh(is) ) CALL scan_end (iunps, "R") CALL scan_begin (iunps, "RAB", .false.) READ (iunps, *, err = 100, iostat = ios) (rab(ir,is), ir=1,mesh(is) ) CALL scan_end (iunps, "RAB") RETURN 100 CALL errore ('read_pseudo_mesh', 'Reading pseudo file', abs (ios) ) END SUBROUTINE read_pseudo_mesh ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_nl (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: nb, mb, n, ir, nd, ios, idum, ldum, icon, lp, i ! counters CHARACTER (len=75) :: dummy ! DO nb = 1, nbeta (is) CALL scan_begin (iunps, "BETA", .false.) READ (iunps, *, err = 100, iostat = ios) idum, lll(nb,is), dummy READ (iunps, '(i6)', err = 100, iostat = ios) ikk2(nb,is) READ (iunps, *, err = 100, iostat = ios) & (betar(ir,nb,is), ir=1,ikk2(nb,is)) DO ir = ikk2(nb,is) + 1, mesh (is) betar (ir, nb, is) = 0.d0 ENDDO CALL scan_end (iunps, "BETA") ENDDO CALL scan_begin (iunps, "DIJ", .false.) READ (iunps, *, err = 100, iostat = ios) nd, dummy dion (:,:,is) = 0.d0 DO icon = 1, nd READ (iunps, *, err = 100, iostat = ios) nb, mb, dion(nb,mb,is) dion (mb,nb,is) = dion (nb,mb,is) ENDDO CALL scan_end (iunps, "DIJ") IF (isus (is) ) THEN CALL scan_begin (iunps, "QIJ", .false.) READ (iunps, *, err = 100, iostat = ios) nqf(is) nqlc (is)= 2 * lmax (is) + 1 IF (nqlc(is)>lqmax .or. nqlc(is)<0) & CALL errore (' read_pseudo_nl', 'Wrong nqlc', nqlc (is) ) IF (nqf(is)/=0) THEN CALL scan_begin (iunps, "RINNER", .false.) READ (iunps,*,err=100,iostat=ios) & (idum,rinner(i,is),i=1,nqlc(is)) CALL scan_end (iunps, "RINNER") ENDIF DO nb = 1, nbeta(is) DO mb = nb, nbeta(is) READ (iunps,*,err=100,iostat=ios) idum, idum, ldum, dummy !" i j (l)" IF (ldum/=lll(mb,is) ) CALL errore ('read_pseudo_nl', & 'inconsistent angular momentum for Q_ij', 1) READ (iunps,*,err=100,iostat=ios) qqq(nb,mb,is), dummy ! "Q_int" qqq(mb,nb,is) = qqq(nb,mb,is) READ (iunps,*,err=100,iostat=ios) & (qfunc(n,nb,mb,is), n=1,mesh(is)) DO n = 0, mesh (is) qfunc(n,mb,nb,is) = qfunc(n,nb,mb,is) ENDDO IF (nqf(is)>0) THEN CALL scan_begin (iunps, "QFCOEF", .false.) READ (iunps,*,err=100,iostat=ios) & ((qfcoef(i,lp,nb,mb,is),i=1,nqf(is)),lp=1,nqlc(is)) CALL scan_end (iunps, "QFCOEF") ENDIF ENDDO ENDDO CALL scan_end (iunps, "QIJ") ELSE qqq (:,:,is) = 0.d0 qfunc(:,:,:,is) =0.d0 ENDIF 100 CALL errore ('read_pseudo_nl', 'Reading pseudo file', abs (ios) ) RETURN END SUBROUTINE read_pseudo_nl ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_nlcc (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios READ (iunps, *, err = 100, iostat = ios) (rho_atc(ir,is), ir=1,mesh(is) ) ! 100 CALL errore ('read_pseudo_nlcc', 'Reading pseudo file', abs (ios) ) RETURN END SUBROUTINE read_pseudo_nlcc ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_pswfc (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! CHARACTER (len=75) :: dummy INTEGER :: nb, ir, ios ! DO nb = 1, ntwfc(is) READ (iunps,*,err=100,iostat=ios) dummy !Wavefunction labels READ (iunps,*,err=100,iostat=ios) (chi(ir,nb,is), ir=1,mesh(is)) ENDDO 100 CALL errore ('read_pseudo_pswfc', 'Reading pseudo file', abs(ios)) RETURN END SUBROUTINE read_pseudo_pswfc ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_rhoatom (is, iunps) !--------------------------------------------------------------------- ! USE pseudo IMPLICIT NONE ! INTEGER :: is, iunps ! INTEGER :: ir, ios READ (iunps,*,err=100,iostat=ios) (rho_at(ir,is), ir=1,mesh(is)) RETURN 100 CALL errore ('read_pseudo_rhoatom','Reading pseudo file',abs(ios)) END SUBROUTINE read_pseudo_rhoatom espresso-5.1/upftools/ncpp2upf.f900000644000175000017500000002343012341373034015234 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM ncpp2upf !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in PWSCF format ! (norm-conserving) to unified pseudopotential format IMPLICIT NONE CHARACTER(len=256) filein, fileout ! ! CALL get_file ( filein ) OPEN(unit=1,file=filein,status='old',form='formatted') CALL read_ncpp(1) CLOSE (unit=1) ! convert variables read from NCPP format into those needed ! by the upf format - add missing quantities CALL convert_ncpp fileout=trim(filein)//'.UPF' PRINT '(''Output PP file in US format : '',a)', fileout OPEN(unit=2,file=fileout,status='unknown',form='formatted') CALL write_upf_v1(2) CLOSE (unit=2) STOP 20 CALL errore ('ncpp2upf', 'Reading pseudo file name ', 1) END PROGRAM ncpp2upf MODULE ncpp ! ! All variables read from NCPP file format ! ! trailing underscore means that a variable with the same name ! is used in module 'upf' containing variables to be written ! CHARACTER(len=20) :: dft_ CHARACTER(len=2) :: psd_ real(8) :: zp_ INTEGER nlc, nnl, lmax_, lloc, nchi LOGICAL :: numeric, bhstype, nlcc_ real(8) :: alpc(2), cc(2), alps(3,0:3), aps(6,0:3) real(8) :: a_nlcc, b_nlcc, alpha_nlcc real(8) :: zmesh, xmin, dx real(8), ALLOCATABLE:: r_(:), rab_(:) INTEGER :: mesh_ real(8), ALLOCATABLE:: vnl(:,:), rho_atc_(:), rho_at_(:) INTEGER, ALLOCATABLE:: lchi_(:) real(8), ALLOCATABLE:: chi_(:,:), oc_(:) END MODULE ncpp ! ! ---------------------------------------------------------- SUBROUTINE read_ncpp(iunps) ! ---------------------------------------------------------- ! USE ncpp USE upf , ONLY : els IMPLICIT NONE INTEGER :: iunps ! CHARACTER(len=1), DIMENSION(0:3) :: convel=(/'S','P','D','F'/) CHARACTER(len=2) :: label real (8) :: x, qe_erf INTEGER :: l, i, ir, nb, n CHARACTER (len=255) line EXTERNAL qe_erf READ(iunps, *, end=300, err=300 ) dft_ IF (dft_(1:2)=='**') dft_ = 'PZ' READ (iunps, *, err=300) psd_, zp_, lmax_, nlc, nnl, nlcc_, & lloc, bhstype IF ( nlc>2 .or. nnl>3) & CALL errore( 'read_ncpp','Wrong nlc or nnl',1 ) IF ( nlc* nnl < 0 ) & CALL errore( 'read_ncpp','nlc*nnl < 0 ? ',1 ) IF ( zp_<=0d0 ) & CALL errore( 'read_ncpp','Wrong zp ',1 ) IF ( lmax_>3.or.lmax_<0 ) & CALL errore( 'read_ncpp','Wrong lmax ',1 ) IF (lloc==-1000) lloc=lmax_ ! ! In numeric pseudopotentials both nlc and nnl are zero. ! numeric = nlc<=0 .and. nnl<=0 IF (.not.numeric) THEN ! ! read pseudopotentials in analytic form ! READ(iunps, *, err=300) & ( alpc(i), i=1, 2 ), ( cc(i), i=1,2 ) IF ( abs(cc(1)+cc(2)-1.d0)>1.0d-6) & CALL errore ('read_ncpp','wrong pseudopotential coefficients',1) DO l = 0, lmax_ READ (iunps, *, err=300) & ( alps(i,l),i=1,3 ), (aps(i,l),i=1,6) ENDDO IF (nlcc_) THEN READ(iunps, *, err=300) & a_nlcc, b_nlcc, alpha_nlcc IF (alpha_nlcc<=0.d0) & CALL errore('read_ncpp','nlcc but alpha=0',1) ENDIF IF (bhstype) CALL bachel(alps,aps,1,lmax_) ENDIF READ(iunps, *, err=300) zmesh, xmin, dx, mesh_, nchi IF ( mesh_<=0) CALL errore( 'read_ncpp', 'mesh too small', 1) IF ( (nchilmax_ .or. lchi_(nb)<0) & CALL errore('read_ncpp','wrong lchi',nb) IF ( oc_(nb)<0.d0 .or. & oc_(nb)>2.d0*(2*lchi_(nb)+1)) & CALL errore('read_ncpp','wrong oc',nb) ! ! parse and check wavefunction label READ(line,'(14x,a2)', err=222, end=222) label IF (label(2:2)/=convel(lchi_(nb))) GOTO 222 DO l = 0, lmax_ IF (label(2:2)==convel(l)) THEN els(nb) = label(1:2) GOTO 223 ENDIF ENDDO 222 CONTINUE els(nb) = '*'//convel(lchi_(nb)) 223 CONTINUE ! ! finally read the wavefunction READ(iunps, *, err=300) (chi_(ir,nb),ir=1,mesh_) ENDDO ! ! compute the atomic charges ! ALLOCATE(rho_at_(mesh_)) rho_at_(:)=0.d0 DO nb = 1, nchi IF( oc_(nb)/=0.d0) & rho_at_(:) = rho_at_(:) + oc_(nb)*chi_(:,nb)**2 ENDDO ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully read' ! ---------------------------------------------------------- RETURN 300 CALL errore('read_ncpp','pseudo file is empty or wrong',1) END SUBROUTINE read_ncpp ! ---------------------------------------------------------- SUBROUTINE convert_ncpp ! ---------------------------------------------------------- USE ncpp USE upf USE funct, ONLY : set_dft_from_name, get_iexch, get_icorr, get_igcx, get_igcc IMPLICIT NONE real(8), PARAMETER :: rmax = 10.0d0 real(8), ALLOCATABLE :: aux(:) real(8) :: vll INTEGER :: kkbeta, l, iv, ir, i WRITE(generated, '("Generated using ld1 code (maybe, or maybe not)")') WRITE(date_author,'("Author: unknown Generation date: as well")') comment = 'Info: automatically converted from PWSCF format' ! reasonable assumption IF (zmesh > 18) THEN rel = 1 ELSE rel = 0 ENDIF rcloc = 0.0d0 nwfs = nchi ALLOCATE( oc(nwfs), epseu(nwfs)) ALLOCATE(lchi(nwfs), nns(nwfs) ) ALLOCATE(rcut (nwfs), rcutus (nwfs)) DO i=1, nwfs nns (i) = 0 lchi(i) = lchi_(i) rcut(i) = 0.0d0 rcutus(i)= 0.0d0 oc (i) = oc_(i) epseu(i) = 0.0d0 ENDDO DEALLOCATE (lchi_, oc_) psd = psd_ pseudotype = 'NC' nlcc = nlcc_ zp = zp_ etotps = 0.0d0 ecutrho=0.0d0 ecutwfc=0.0d0 IF ( lmax_ == lloc) THEN lmax = lmax_-1 ELSE lmax = lmax_ ENDIF nbeta= lmax_ mesh = mesh_ ntwfc= nchi ALLOCATE( elsw(ntwfc), ocw(ntwfc), lchiw(ntwfc) ) DO i=1, nchi lchiw(i) = lchi(i) ocw(i) = oc(i) elsw(i) = els(i) ENDDO CALL set_dft_from_name(dft_) iexch = get_iexch() icorr = get_icorr() igcx = get_igcx() igcc = get_igcc() ALLOCATE(rab(mesh)) ALLOCATE( r(mesh)) rab = rab_ r = r_ ALLOCATE (rho_atc(mesh)) rho_atc = rho_atc_ DEALLOCATE (rho_atc_) ALLOCATE (vloc0(mesh)) vloc0(:) = vnl(:,lloc) IF (nbeta > 0) THEN ALLOCATE(ikk2(nbeta), lll(nbeta)) kkbeta=mesh DO ir = 1,mesh IF ( r(ir) > rmax ) THEN kkbeta=ir exit ENDIF ENDDO ! make sure kkbeta is odd as required for simpson IF(mod(kkbeta,2) == 0) kkbeta=kkbeta-1 ikk2(:) = kkbeta ALLOCATE(aux(kkbeta)) ALLOCATE(betar(mesh,nbeta)) ALLOCATE(qfunc(mesh,nbeta,nbeta)) ALLOCATE(dion(nbeta,nbeta)) ALLOCATE(qqq (nbeta,nbeta)) qfunc(:,:,:)=0.0d0 dion(:,:) =0.d0 qqq(:,:) =0.d0 iv=0 DO i=1,nchi l=lchi(i) IF (l/=lloc) THEN iv=iv+1 lll(iv)=l DO ir=1,kkbeta betar(ir,iv)=chi_(ir,i)*vnl(ir,l) aux(ir) = chi_(ir,i)**2*vnl(ir,l) ENDDO CALL simpson(kkbeta,aux,rab,vll) dion(iv,iv) = 1.0d0/vll ENDIF IF(iv >= nbeta) exit ! skip additional pseudo wfns ENDDO DEALLOCATE (vnl, aux) ! ! redetermine ikk2 ! DO iv=1,nbeta ikk2(iv)=kkbeta DO ir = kkbeta,1,-1 IF ( abs(betar(ir,iv)) > 1.d-12 ) THEN ikk2(iv)=ir exit ENDIF ENDDO ENDDO ENDIF ALLOCATE (rho_at(mesh)) rho_at = rho_at_ DEALLOCATE (rho_at_) ALLOCATE (chi(mesh,ntwfc)) chi = chi_ DEALLOCATE (chi_) RETURN END SUBROUTINE convert_ncpp espresso-5.1/upftools/Makefile0000644000175000017500000000476612341373034014632 0ustar mbamba# Makefile for converters to UPF format include ../make.sys # location of needed modules MODFLAGS= $(MOD_FLAG)../iotk/src $(MOD_FLAG)../Modules $(MOD_FLAG). OBJS = write_upf.o QEMODS = ../Modules/libqemod.a TLDEPS = mods libs libiotk all : tldeps casino2upf.x cpmd2upf.x fhi2upf.x fpmd2upf.x \ ncpp2upf.x oldcp2upf.x read_upf_tofile.x rrkj2upf.x upf2casino.x \ uspp2upf.x vdb2upf.x virtual.x interpolate.x casino2upf.x : casino2upf.o casino_pp.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ casino2upf.o casino_pp.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) upf2upf2.x : upf2upf2.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ upf2upf2.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) cpmd2upf.x : cpmd2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ cpmd2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) fhi2upf.x : fhi2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ fhi2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) fpmd2upf.x : fpmd2upf.o $(OBJS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ fpmd2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) ncpp2upf.x : ncpp2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ ncpp2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) oldcp2upf.x : oldcp2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ oldcp2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) read_upf.x : read_upf.o $(LD) $(LDFLAGS) -o $@ read_upf.o $(LIBS) read_upf_tofile.x : read_upf_tofile.o $(QEMODS) $(LD) $(LDFLAGS) -o $@ read_upf_tofile.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) rrkj2upf.x : rrkj2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ rrkj2upf.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) upf2casino.x : upf2casino.o casino_pp.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ upf2casino.o casino_pp.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) uspp2upf.x : uspp2upf.o vanderbilt.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ uspp2upf.o vanderbilt.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) vdb2upf.x : vdb2upf.o vanderbilt.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ vdb2upf.o vanderbilt.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) virtual.x : virtual.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ virtual.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) interpolate.x : interpolate.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ interpolate.o $(OBJS) $(QEMODS) $(LIBOBJS) $(LIBS) tldeps: if test -n "$(TLDEPS)" ; then \ ( cd ../.. ; $(MAKE) $(TLDEPS) || exit 1 ) ; fi clean : - /bin/rm -f *.x *.o *~ *.F90 *.mod *.d *.i *.L include make.depend espresso-5.1/upftools/fpmd2upf.f900000644000175000017500000007142312341373034015227 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! This utility can be used to convert norm-conserving ! pseudopotentials from FPMD old format to UPF format ! ! Usage: ! fpmd2upf.x < input.namelist ! ! input.namelist should contain the namelist fpmd_pseudo ! fpmd_pseudo parameter are: ! ! psfile pseudopotential filename in FPMD format ! nwfs Number of wavefunction ! wfl(i) i = 1, nwfs Wavefunction label ! wfoc(i) i = 1, nwfs Wavefunction occupation ! psd element name ! zp valence charge ! iexch exchange functional ! icorr correlation functional ! igcx exchange gradient correction ! igcc correlation gradient correction ! ! Example: MODULE fpmd2upf_module USE kinds, ONLY: dp USE parameters USE radial_grids, ONLY: ndmx IMPLICIT NONE SAVE REAL(dp), PRIVATE :: TOLMESH = 1.d-5 TYPE pseudo_ncpp CHARACTER(len=4) :: psd ! Element label CHARACTER(len=20) :: pottyp ! Potential type LOGICAL :: tmix LOGICAL :: tnlcc INTEGER :: igau INTEGER :: lloc INTEGER :: nbeta INTEGER :: lll(lmaxx+1) INTEGER :: nchan INTEGER :: mesh REAL(dp) :: zv REAL(dp) :: dx ! r(i) = cost * EXP( xmin + dx * (i-1) ) REAL(dp) :: rab(ndmx) REAL(dp) :: rw(ndmx) REAL(dp) :: vnl(ndmx, lmaxx+1) REAL(dp) :: vloc(ndmx) REAL(dp) :: vrps(ndmx, lmaxx+1) REAL(dp) :: wgv(lmaxx+1) REAL(dp) :: rc(2) REAL(dp) :: wrc(2) REAL(dp) :: rcl(3,3) REAL(dp) :: al(3,3) REAL(dp) :: bl(3,3) INTEGER :: nrps ! number of atomic wave function INTEGER :: lrps(lmaxx+1) ! angular momentum REAL(dp) :: oc(lmaxx+1) ! occupation for each rps REAL(dp) :: rps(ndmx, lmaxx+1) ! atomic pseudo wave function REAL(dp) :: rhoc(ndmx) ! core charge END TYPE pseudo_ncpp CONTAINS SUBROUTINE read_pseudo_fpmd( ap, psfile ) TYPE(pseudo_ncpp) :: ap CHARACTER(len=256) :: psfile CHARACTER(len=80) :: error_msg INTEGER :: info, iunit iunit = 11 OPEN(UNIT=iunit,FILE=psfile,STATUS='OLD') REWIND( iunit ) CALL read_head_pp( iunit, ap, error_msg, info) IF( info /= 0 ) GOTO 200 IF( ap%pottyp == 'GIANNOZ' ) THEN CALL read_giannoz(iunit, ap, info) IF( info /= 0 ) GOTO 200 ELSEIF( ap%pottyp == 'NUMERIC' ) THEN CALL read_numeric_pp( iunit, ap, error_msg, info) IF( info /= 0 ) GOTO 200 ELSEIF( ap%pottyp == 'ANALYTIC' ) THEN CALL read_analytic_pp( iunit, ap, error_msg, info) IF( info /= 0 ) GOTO 200 ELSE info = 1 error_msg = ' Pseudopotential type '//trim(ap%pottyp)//' not implemented ' GOTO 200 ENDIF 200 CONTINUE IF( info /= 0 ) THEN CALL errore(' readpseudo ', error_msg, abs(info) ) ENDIF CLOSE(iunit) RETURN END SUBROUTINE read_pseudo_fpmd !=----------------------------------------------------------------------------=! SUBROUTINE analytic_to_numeric(ap) TYPE (pseudo_ncpp), INTENT(inout) :: ap INTEGER :: ir, mesh, lmax, l, n, il, ib, ll REAL(dp) :: xmin, zmesh, dx, x ! REAL(dp) :: pi = 3.14159265358979323846_dp ! ... declare external function REAL(dp), EXTERNAL :: qe_erf IF( ap%mesh == 0 ) THEN ! ... Local pseudopotential, define a logaritmic grid mesh = size( ap%rw ) xmin = -5.0d0 zmesh = 6.0d0 dx = 0.025d0 DO ir = 1, mesh x = xmin + dble(ir-1) * dx ap%rw(ir) = exp(x) / zmesh IF( ap%rw(ir) > 1000.0d0 ) exit ENDDO ap%mesh = mesh ap%dx = dx ap%rab = ap%dx * ap%rw ENDIF ap%vnl = 0.0d0 ap%vloc = 0.0d0 ap%vrps = 0.0d0 DO l = 1, 3 DO ir = 1, ap%mesh ap%vnl(ir,l)= - ( ap%wrc(1) * qe_erf(sqrt(ap%rc(1))*ap%rw(ir)) + & ap%wrc(2) * qe_erf(sqrt(ap%rc(2))*ap%rw(ir)) ) *& ap%zv / ap%rw(ir) ENDDO DO ir = 1, ap%mesh DO n = 1, ap%igau ap%vnl(ir,l)= ap%vnl(ir,l)+ (ap%al(n,l)+ ap%bl(n,l)*ap%rw(ir)**2 )* & exp(-ap%rcl(n,l)*ap%rw(ir)**2) ENDDO ENDDO ENDDO ! ... Copy local component to a separate array ap%vloc(:) = ap%vnl(:,ap%lloc) DO l = 1, ap%nbeta ll=ap%lll(l) + 1 ! find out the angular momentum (ll-1) of the component stored ! in position l ap%vrps(:,l) = ( ap%vnl(:,ll) - ap%vloc(:) ) * ap%rps(:,ll) ENDDO RETURN END SUBROUTINE analytic_to_numeric !=----------------------------------------------------------------------------=! SUBROUTINE read_giannoz(uni, ap, ierr) ! USE constants, ONLY : fpi IMPLICIT NONE TYPE (pseudo_ncpp), INTENT(inout) :: ap INTEGER, INTENT(in) :: uni INTEGER, INTENT(out) :: ierr REAL(dp) :: chi( size(ap%rps, 1), size(ap%rps, 2) ) REAL(dp) :: vnl( size(ap%vnl, 1), size(ap%vnl, 2) ) REAL(dp) :: rho_core( size(ap%rhoc, 1) ) REAL(dp) :: r, ra, rb, fac REAL(dp) :: oc( size(ap%rps, 2) ) REAL(dp) :: enl( size(ap%rps, 2) ) REAL(dp) :: zmesh, xmin, dx, etot REAL(dp) :: zval INTEGER :: nn(size(ap%rps, 2)), ll(size(ap%rps, 2)) INTEGER :: nwf, mesh, i, j, in1, in2, in3, in4, m INTEGER :: lmax, nlc, nnl, lloc, l, il LOGICAL :: nlcc CHARACTER(len=80) :: dft CHARACTER(len=4) :: atom CHARACTER(len=2) :: el( size(ap%rps, 2) ) CHARACTER(len=80) :: ppinfo CHARACTER(len=80) :: strdum CHARACTER(len=2) :: sdum1, sdum2 ! ierr = 0 READ(uni,fmt='(a)') dft READ(uni,fmt='(a4,f5.1,3i2,a2,l1,a2,i2,a)') & atom, zval, lmax, nlc, nnl, sdum1, nlcc, sdum2, lloc, ppinfo ! WRITE(6,*) ' DEBUG ', atom, zval,lmax, nlc, nnl, nlcc, lloc, ppinfo IF( (lmax+1) > size(ap%vnl, 2) ) THEN ierr = 1 RETURN ENDIF IF( (nlcc .and. .not.ap%tnlcc) .or. (.not.nlcc .and. ap%tnlcc) ) THEN ierr = 2 RETURN ENDIF READ(uni,fmt='(f8.2,f8.4,f10.6,2i6)') zmesh, xmin, dx, mesh, nwf IF( mesh > size(ap%rps, 1) ) THEN ierr = 3 RETURN ENDIF IF( nwf > size(ap%rps, 2) ) THEN ierr = 4 RETURN ENDIF DO j = 0, lmax READ(uni,fmt="(A16,i1)") strdum, l READ(uni,'(4e16.8)') (vnl(i,j+1), i=1,mesh) ENDDO IF (nlcc) THEN READ(uni,fmt='(4e16.8)') (rho_core(i), i=1,mesh) ENDIF DO j = 1, nwf READ(uni,fmt="(A16,a2)") strdum,el(j) READ(uni,fmt='(i5,f6.2)') ll(j),oc(j) READ(uni,fmt='(4e16.8)') (chi(i,j), i=1,mesh) ENDDO ap%zv = zval ap%nchan = lmax+1 ap%mesh = mesh ap%rw = 0.0d0 ap%vnl = 0.0d0 ap%vrps = 0.0d0 fac = 0.5d0 ! WRITE(6,*) ' DEBUG ', ap%lloc, ap%numeric, ap%nbeta, ap%raggio, ap%zv DO i = 1, mesh r = exp(xmin+dble(i-1)*dx)/zmesh ap%rw(i) = r DO j = 1, lmax+1 ap%vnl(i,j) = vnl(i,j) * fac ENDDO ENDDO IF( minval( ap%rw(1:mesh) ) <= 0.0d0 ) THEN ierr = 5 RETURN ENDIF ap%dx = dx ap%rab = ap%dx * ap%rw ap%vloc(:) = ap%vnl(:,ap%lloc) ap%lrps(1:nwf) = ll(1:nwf) ap%oc = 0.0d0 ap%nrps = nwf ap%mesh = mesh ap%rps = 0.0d0 ! fac = 1.0d0/SQRT(fpi) fac = 1.0d0 DO i = 1, mesh r = exp(xmin+dble(i-1)*dx)/zmesh DO j = 1, nwf ap%rps(i,j) = chi(i,j) * fac ENDDO ENDDO DO l = 1, ap%nbeta il=ap%lll(l) + 1 ! find out the angular momentum (il-1) of the component stored ! in position l DO i = 1, mesh ap%vrps(i,l) = ( ap%vnl(i,il) - ap%vloc(i) ) * ap%rps(i,il) ENDDO ENDDO IF( nlcc ) THEN ap%rhoc = 0.0d0 DO i = 1, mesh r = exp(xmin+dble(i-1)*dx)/zmesh ap%rhoc(i) = rho_core(i) ENDDO ENDIF RETURN END SUBROUTINE read_giannoz !=----------------------------------------------------------------------------=! SUBROUTINE ap_info( ap ) TYPE (pseudo_ncpp), INTENT(in) :: ap INTEGER :: in1, in2, in3, in4, m, il, ib, l, i IF (ap%nbeta > 0) THEN WRITE(6,10) ap%pottyp IF (ap%tmix) THEN WRITE(6,107) WRITE(6,106) (ap%lll(l),l=1,ap%nbeta) WRITE(6,105) (ap%wgv(l),l=1,ap%nbeta) ELSE WRITE(6,50) ap%lloc ENDIF WRITE(6,60) (ap%lll(l),l=1,ap%nbeta) ELSE ! ... A local pseudopotential has been read. WRITE(6,11) ap%pottyp WRITE(6,50) ap%lloc ENDIF 10 FORMAT( 3X,'Type is ',A10,' and NONLOCAL. ') 107 FORMAT( 3X,'Mixed reference potential:') 106 FORMAT( 3X,' L :',3(9X,i1)) 105 FORMAT( 3X,' Weight:',3(2X,F8.5)) 50 FORMAT( 3X,'Local component is ..... : ',I3) 60 FORMAT( 3X,'Non local components are : ',4I3) 11 FORMAT( 3X,'Type is ',A10,' and LOCAL. ') 20 FORMAT( 3X,'Pseudo charge : ',F8.3,', pseudo radius : ',F8.3) WRITE(6,20) ap%zv IF( ap%pottyp /= 'ANALYTIC' ) THEN WRITE(6,131) ap%nchan, ap%mesh, ap%dx in1=1 in2=ap%mesh/4 in3=ap%mesh/2 in4=ap%mesh WRITE(6,132) WRITE(6,120) in1,ap%rw(in1),(ap%vnl(in1,m),m=1,ap%nchan) WRITE(6,120) in2,ap%rw(in2),(ap%vnl(in2,m),m=1,ap%nchan) WRITE(6,120) in3,ap%rw(in3),(ap%vnl(in3,m),m=1,ap%nchan) WRITE(6,120) in4,ap%rw(in4),(ap%vnl(in4,m),m=1,ap%nchan) 131 FORMAT(/, 3X,'Pseudopotentials Grid : Channels = ',I2,& ', Mesh = ',I5,/,30X,'dx = ',F16.14) 132 FORMAT( 3X,'point radius pseudopotential') 120 FORMAT(I8,F15.10,5F10.6) ELSE WRITE(6,25) ap%igau WRITE(6,30) WRITE(6,104) ap%wrc(1),ap%rc(1),ap%wrc(2),ap%rc(2) 25 FORMAT(/, 3X,'Gaussians used : ',I2,'. Parameters are : ') 30 FORMAT( 3X,'C (core), Alfa(core) : ') 104 FORMAT(4(3X,F8.4)) WRITE(6,40) DO il=1,3 DO ib=1,ap%igau WRITE(6,103) ap%rcl(ib,il),ap%al(ib,il),ap%bl(ib,il) ENDDO ENDDO 40 FORMAT( 3X,'Hsc radii and coeff. A and B :') 103 FORMAT(3X,F8.4,2(3X,F15.7)) ENDIF IF( ap%nrps > 0 .and. ap%mesh > 0 ) THEN WRITE(6,141) ap%nrps, ap%mesh, ap%dx in1=1 in2=ap%mesh/4 in3=ap%mesh/2 in4=ap%mesh WRITE(6,145) (ap%oc(i),i=1,ap%nrps) WRITE(6,142) WRITE(6,120) in1,ap%rw(in1),(ap%rps(in1,m),m=1,ap%nrps) WRITE(6,120) in2,ap%rw(in2),(ap%rps(in2,m),m=1,ap%nrps) WRITE(6,120) in3,ap%rw(in3),(ap%rps(in3,m),m=1,ap%nrps) WRITE(6,120) in4,ap%rw(in4),(ap%rps(in4,m),m=1,ap%nrps) ENDIF 141 FORMAT(/, 3X,'Atomic wavefunction Grid : Channels = ',I2,& ', Mesh = ',I5,/,30X,'dx = ',F16.14) 142 FORMAT( 3X,'point radius wavefunction') 145 FORMAT( 3X,'Channels occupation number : ',5F10.4) IF( ap%tnlcc ) THEN WRITE(6,151) ap%mesh, ap%dx in1 = 1 in2 = ap%mesh / 4 in3 = ap%mesh / 2 in4 = ap%mesh WRITE(6,152) WRITE(6,120) in1,ap%rw(in1),ap%rhoc(in1) WRITE(6,120) in2,ap%rw(in2),ap%rhoc(in2) WRITE(6,120) in3,ap%rw(in3),ap%rhoc(in3) WRITE(6,120) in4,ap%rw(in4),ap%rhoc(in4) ENDIF 151 FORMAT(/, 3X,'Core correction Grid : Mesh = ',I5, & ', dx = ',F16.14) 152 FORMAT( 3X,'point radius rho core') RETURN END SUBROUTINE ap_info !=----------------------------------------------------------------------------=! REAL(dp) FUNCTION calculate_dx( a, m ) REAL(dp), INTENT(in) :: a(:) INTEGER, INTENT(in) :: m INTEGER :: n REAL(dp) :: ra, rb n = min( size( a ), m ) ra = a(1) rb = a(n) calculate_dx = log( rb / ra ) / dble( n - 1 ) WRITE(6,*) 'amesh (dx) = ', calculate_dx RETURN END FUNCTION calculate_dx SUBROUTINE read_atomic_wf( iunit, ap, err_msg, ierr) USE parser, ONLY: field_count IMPLICIT NONE INTEGER, INTENT(in) :: iunit TYPE (pseudo_ncpp), INTENT(inout) :: ap CHARACTER(len=*) :: err_msg INTEGER, INTENT(out) :: ierr ! CHARACTER(len=80) :: input_line INTEGER :: i, j, m, strlen, info, nf, mesh REAL(dp) :: rdum ! ... read atomic wave functions ! ... nchan : indicate number of atomic wave functions ( s p d ) ierr = 0 err_msg = ' error while reading atomic wf ' ap%rps = 0.0_dp ap%nrps = 0 ap%oc = 0.0d0 ap%lrps = 0 ! this is for local pseudopotentials IF( ap%nbeta == 0 ) RETURN READ(iunit,'(A80)',end=100) input_line CALL field_count(nf, input_line) strlen = len_trim(input_line) IF( nf == 2 ) THEN READ(input_line(1:strlen),*,IOSTAT=ierr) mesh, ap%nrps ELSE READ(input_line(1:strlen),*,IOSTAT=ierr) mesh, ap%nrps, ( ap%oc(j), j=1, min(ap%nrps,size(ap%oc)) ) ENDIF IF( ap%nrps > size(ap%rps,2) ) THEN ierr = 2 WRITE( 6, * ) ' nchan = (wf) ', ap%nrps err_msg = ' NCHAN NOT PROGRAMMED ' GOTO 110 ENDIF IF( mesh > size(ap%rw) .or. mesh < 0) THEN ierr = 4 err_msg = ' WAVMESH OUT OF RANGE ' GOTO 110 ENDIF DO j = 1, mesh READ(iunit,*,IOSTAT=ierr) rdum, (ap%rps(j,m),m=1,ap%nrps) IF( ap%mesh == 0 ) ap%rw(j) = rdum IF( abs(rdum - ap%rw(j))/(rdum+ap%rw(j)) > TOLMESH ) THEN ierr = 5 err_msg = ' radial meshes do not match ' GOTO 110 ENDIF ENDDO IF( ap%mesh == 0 ) THEN ap%mesh = mesh ap%dx = calculate_dx( ap%rw, ap%mesh ) ap%rab = ap%dx * ap%rw ENDIF GOTO 110 100 ierr = 1 110 CONTINUE RETURN END SUBROUTINE read_atomic_wf !=----------------------------------------------------------------------------=! SUBROUTINE read_numeric_pp( iunit, ap, err_msg, ierr) IMPLICIT NONE INTEGER, INTENT(in) :: iunit TYPE (pseudo_ncpp), INTENT(inout) :: ap CHARACTER(len=*) :: err_msg INTEGER, INTENT(out) :: ierr ! CHARACTER(len=80) :: input_line INTEGER :: i, j, m, strlen, info, nf, l, ll ! ... read numeric atomic pseudopotential ! ... nchan : indicate number of atomic wave functions ( s p d ) ierr = 0 err_msg = ' error while reading atomic numeric pseudo ' IF(ap%tmix) THEN READ(iunit,*) (ap%wgv(l),l=1,ap%nbeta) ENDIF READ(iunit,*,IOSTAT=ierr) ap%zv READ(iunit,*,IOSTAT=ierr) ap%mesh, ap%nchan IF((ap%nchan > size(ap%vnl,2) ) .or. (ap%nchan < 1)) THEN ierr = 1 WRITE( 6, * ) ' nchan (pp) = ', ap%nchan err_msg = ' NCHAN NOT PROGRAMMED ' GOTO 110 ENDIF IF((ap%mesh > size(ap%rw) ) .or. (ap%mesh < 0)) THEN info = 2 err_msg = ' NPOTMESH OUT OF RANGE ' GOTO 110 ENDIF ap%rw = 0.0d0 ap%vnl = 0.0d0 ap%vloc = 0.0d0 ap%vrps = 0.0d0 DO j = 1, ap%mesh READ(iunit,*,IOSTAT=ierr) ap%rw(j), (ap%vnl(j,l),l=1,ap%nchan) ENDDO IF( minval( ap%rw(1:ap%mesh) ) <= 0.0d0 ) THEN info = 30 err_msg = ' ap rw too small ' GOTO 110 ENDIF ! ... mixed reference potential is in vr(lloc) IF(ap%tmix) THEN DO j=1,ap%mesh ap%vnl(j,ap%lloc)= 0.d0 DO l=1,ap%nchan IF(l /= ap%lloc) THEN ap%vnl(j,ap%lloc)= ap%vnl(j,ap%lloc) + ap%wgv(l) * ap%vnl(j,l) ENDIF ENDDO ENDDO ENDIF ap%vloc(:) = ap%vnl(:,ap%lloc) ap%dx = calculate_dx( ap%rw, ap%mesh ) ap%rab = ap%dx * ap%rw CALL read_atomic_wf( iunit, ap, err_msg, ierr) IF( ierr /= 0 ) GOTO 110 DO l = 1, ap%nbeta ll=ap%lll(l) + 1 ap%vrps(:,l) = ( ap%vnl(:,ll) - ap%vloc(:) ) * ap%rps(:,ll) ENDDO IF(ap%tnlcc) THEN CALL read_atomic_cc( iunit, ap, err_msg, ierr) IF( ierr /= 0 ) GOTO 110 ENDIF GOTO 110 100 ierr = 1 110 CONTINUE RETURN END SUBROUTINE read_numeric_pp ! SUBROUTINE read_head_pp( iunit, ap, err_msg, ierr) IMPLICIT NONE INTEGER, INTENT(in) :: iunit TYPE (pseudo_ncpp), INTENT(inout) :: ap CHARACTER(len=*) :: err_msg INTEGER, INTENT(out) :: ierr ! INTEGER :: i, l ! ... read pseudo header ierr = 0 err_msg = ' error while reading header pseudo ' ap%lll = 0 READ(iunit, *) ap%tnlcc, ap%tmix READ(iunit, *) ap%pottyp, ap%lloc, ap%nbeta, (ap%lll(l), l = 1, min(ap%nbeta, size(ap%lll)) ) ap%lll = ap%lll - 1 IF( ap%nbeta > size(ap%lll) .or. ap%nbeta < 0 ) THEN ierr = 1 err_msg = 'LNL out of range' GOTO 110 ENDIF IF( ap%lloc < 0 .or. ap%lloc > size(ap%vnl,2) ) THEN ierr = 3 err_msg = 'LLOC out of range' GOTO 110 ENDIF IF( ap%tmix .and. ap%pottyp /= 'NUMERIC' ) THEN ierr = 4 err_msg = 'tmix not implemented for pseudo ' // ap%pottyp GOTO 110 ENDIF DO l = 2, ap%nbeta IF( ap%lll(l) <= ap%lll(l-1)) THEN ierr = 5 err_msg =' NONLOCAL COMPONENTS MUST BE GIVEN IN ASCENDING ORDER' GOTO 110 ENDIF ENDDO DO l = 1, ap%nbeta IF( ap%lll(l)+1 == ap%lloc) THEN ierr = 6 err_msg = ' LLOC.EQ.L NON LOCAL!!' GOTO 110 ENDIF ENDDO GOTO 110 100 ierr = 1 110 CONTINUE RETURN END SUBROUTINE read_head_pp !=----------------------------------------------------------------------------=! SUBROUTINE read_analytic_pp( iunit, ap, err_msg, ierr) IMPLICIT NONE INTEGER, INTENT(in) :: iunit TYPE (pseudo_ncpp), INTENT(inout) :: ap CHARACTER(len=*) :: err_msg INTEGER, INTENT(out) :: ierr ! INTEGER :: i, l ! ... read analytic pseudo gaussians ierr = 0 err_msg = ' error while reading atomic analytic pseudo ' READ(iunit,*,IOSTAT=ierr) ap%zv, ap%igau ap%mesh = 0 ap%nchan = 0 ap%dx = 0.0d0 ap%rab = 0.0d0 ap%rw = 0.0d0 ap%vnl = 0.0d0 ap%vloc = 0.0d0 ap%vrps = 0.0d0 SELECT CASE (ap%igau) CASE ( 1 ) READ(iunit,*,IOSTAT=ierr) ap%rc(1) ap%wrc(1) = 1.d0 ap%wrc(2) = 0.d0 ap%rc(2) = 0.d0 CASE ( 3 ) READ(iunit,*,IOSTAT=ierr) ap%wrc(1), ap%rc(1), ap%wrc(2), ap%rc(2) CASE DEFAULT ierr = 1 err_msg = ' IGAU NOT PROGRAMMED ' GOTO 110 END SELECT DO l=1,3 DO i=1,ap%igau READ(iunit,*,IOSTAT=ierr) ap%rcl(i,l), ap%al(i,l), ap%bl(i,l) ENDDO ENDDO CALL read_atomic_wf( iunit, ap, err_msg, ierr) IF( ierr /= 0 ) GOTO 110 IF(ap%tnlcc) THEN CALL read_atomic_cc( iunit, ap, err_msg, ierr) IF( ierr /= 0 ) GOTO 110 ENDIF ! ... Analytic pseudo are not supported anymore, conversion ! ... to numeric form is forced CALL analytic_to_numeric( ap ) GOTO 110 100 ierr = 1 110 CONTINUE RETURN END SUBROUTINE read_analytic_pp !=----------------------------------------------------------------------------=! SUBROUTINE read_atomic_cc( iunit, ap, err_msg, ierr) IMPLICIT NONE INTEGER, INTENT(in) :: iunit TYPE (pseudo_ncpp), INTENT(inout) :: ap CHARACTER(len=*) :: err_msg INTEGER, INTENT(out) :: ierr ! CHARACTER(len=80) :: input_line INTEGER :: j, mesh REAL(dp) :: rdum ! ... read atomic core ierr = 0 err_msg = ' error while reading atomic core pseudo ' ap%rhoc = 0.0d0 READ(iunit,*,IOSTAT=ierr) mesh IF(mesh > size(ap%rw) .or. mesh < 0 ) THEN ierr = 17 err_msg = ' CORE CORRECTION MESH OUT OF RANGE ' GOTO 110 ENDIF DO j = 1, mesh READ(iunit,*,IOSTAT=ierr) rdum, ap%rhoc(j) IF( ap%mesh == 0 ) ap%rw(j) = rdum IF( abs(rdum - ap%rw(j))/(rdum+ap%rw(j)) > TOLMESH ) THEN ierr = 5 err_msg = ' core cor. radial mesh does not match ' GOTO 110 ENDIF ENDDO IF( ap%mesh == 0 ) THEN ap%mesh = mesh ap%dx = calculate_dx( ap%rw, ap%mesh ) ap%rab = ap%dx * ap%rw ENDIF GOTO 110 100 ierr = 1 110 CONTINUE RETURN END SUBROUTINE read_atomic_cc END MODULE fpmd2upf_module PROGRAM fpmd2upf ! ! Convert a pseudopotential written in the FPMD format ! to unified pseudopotential format ! USE kinds USE fpmd2upf_module USE parameters USE upf IMPLICIT NONE TYPE (pseudo_ncpp) :: ap CHARACTER(len=256) :: psfile CHARACTER(len=2) :: wfl( 10 ) REAL(8) :: wfoc( 10 ) INTEGER :: nsp, nspnl, i, lloc, l, ir, iv, kkbeta REAL(8) :: rmax = 10 REAL(8) :: vll REAL(8), ALLOCATABLE :: aux(:) NAMELIST / fpmd_pseudo / psfile, nwfs, wfl, wfoc, psd, & iexch, icorr, igcx, igcc, zp ! ... end of declarations CALL input_from_file() READ( 5, fpmd_pseudo ) nsp = 1 CALL read_pseudo_fpmd(ap, psfile) WRITE(generated, '("Generated using unknown code")') WRITE(date_author,'("Author: unknown Generation date: as well")') comment = 'Info: automatically converted from CPMD format' rcloc = 0.0d0 ALLOCATE( els(nwfs), oc(nwfs), epseu(nwfs) ) ALLOCATE( lchi(nwfs), nns(nwfs) ) ALLOCATE( rcut (nwfs), rcutus (nwfs) ) els = '?' oc = 0.0d0 DO i = 1, nwfs els(i) = wfl(i) oc(i) = wfoc(i) lchi(i) = i - 1 nns (i) = 0 rcut(i) = 0.0d0 rcutus(i)= 0.0d0 epseu(i) = 0.0d0 ENDDO pseudotype = 'NC' nlcc = ap%tnlcc IF( ap%zv > 0.0d0 ) zp = ap%zv etotps = 0.0d0 lloc = ap%lloc lmax = max( maxval( ap%lll( 1:ap%nbeta ) ), ap%lloc - 1 ) nbeta = ap%nbeta mesh = ap%mesh ntwfc = nwfs ALLOCATE( elsw(ntwfc), ocw(ntwfc), lchiw(ntwfc) ) DO i = 1, nwfs lchiw(i) = lchi(i) ocw(i) = oc(i) elsw(i) = els(i) ENDDO ALLOCATE(rab(mesh)) ALLOCATE( r(mesh)) r = ap%rw ap%dx = calculate_dx( ap%rw, ap%mesh ) rab = ap%rw * ap%dx WRITE(6,*) ap%lloc, ap%lll( 1:ap%nbeta ) , ap%nbeta, ap%dx ALLOCATE (rho_atc(mesh)) IF (nlcc) rho_atc = ap%rhoc ALLOCATE (vloc0(mesh)) ! the factor 2 converts from Hartree to Rydberg vloc0(:) = ap%vloc * 2.0d0 IF (nbeta > 0) THEN ALLOCATE(ikk2(nbeta), lll(nbeta)) kkbeta = mesh DO ir = 1,mesh IF ( r(ir) > rmax ) THEN kkbeta=ir exit ENDIF ENDDO ikk2(:) = kkbeta ALLOCATE(aux(kkbeta)) ALLOCATE(betar(mesh,nbeta)) ALLOCATE(qfunc(mesh,nbeta,nbeta)) ALLOCATE(dion(nbeta,nbeta)) ALLOCATE(qqq (nbeta,nbeta)) qfunc(:,:,:)=0.0d0 dion(:,:) =0.d0 qqq(:,:) =0.d0 iv = 0 DO i = 1, nwfs l = lchi(i) IF ( l /= (lloc-1) ) THEN iv = iv + 1 lll( iv ) = l DO ir = 1, kkbeta ! the factor 2 converts from Hartree to Rydberg betar(ir, iv) = 2.d0 * ap%vrps( ir, iv ) aux(ir) = ap%rps(ir, (l+1) ) * betar(ir, iv) ENDDO CALL simpson2(kkbeta, aux(1), rab(1), vll) dion(iv,iv) = 1.0d0/vll WRITE(6,*) aux(2), rab(2), kkbeta, vll ENDIF ENDDO ENDIF ALLOCATE (rho_at(mesh)) rho_at = 0.d0 DO i = 1, nwfs rho_at(:) = rho_at(:) + ocw(i) * ap%rps(:, i) ** 2 ENDDO ALLOCATE (chi(mesh,ntwfc)) chi = ap%rps ! ---------------------------------------------------------- WRITE (6,'(a)') 'Pseudopotential successfully converted' ! ---------------------------------------------------------- CALL write_upf_v1( 10 ) 100 CONTINUE END PROGRAM fpmd2upf !---------------------------------------------------------------------- SUBROUTINE simpson2(mesh,func,rab,asum) !----------------------------------------------------------------------- ! ! simpson's rule integrator for function stored on the ! radial logarithmic mesh ! IMPLICIT NONE INTEGER :: i, mesh real(8) :: rab(mesh), func(mesh), f1, f2, f3, r12, asum ! routine assumes that mesh is an odd number so run check ! if ( mesh+1 - ( (mesh+1) / 2 ) * 2 .ne. 1 ) then ! write(*,*) '***error in subroutine radlg' ! write(*,*) 'routine assumes mesh is odd but mesh =',mesh+1 ! stop ! endif asum = 0.0d0 r12 = 1.0d0 / 12.0d0 f3 = func(1) * rab(1) * r12 DO i = 2,mesh-1,2 f1 = f3 f2 = func(i) * rab(i) * r12 f3 = func(i+1) * rab(i+1) * r12 asum = asum + 4.0d0*f1 + 16.0d0*f2 + 4.0d0*f3 ENDDO RETURN END SUBROUTINE simpson2 ! ! Description of the Native FPMD pseudopotential format ! ! The format of the file must be as follows ! (lowercase text and }'s are comments): ! ! When POTTYP = 'ANALYTIC' the layout is: ! ! TCC TMIX additional stuff on each line is ignored ! POTTYP LLOC LNL ( INDL(i), i = 1, LNL ) ! ( WGV(i), i = 1, LNL ) this line only if tmix(is) is true ! ZV IGAU igau must be 1 or 3 } ! WRC(1) RC(1) WRC(2) RC(2) this line if igau = 3 } ! RC(1) this one if igau = 1 } ! RCL(1,1) AL(1,1) BL(1,1) } } this ! ... ... ... } l = 0 } section ! RCL(IGAU,1) AL(IGAU,1) BL(IGAU,1) } } only if ! RCL(1,2) AL(1,2) BL(1,2) } } pottyp is ! ... ... ... } l = 1 } 'ANALYTIC' ! RCL(IGAU,2) AL(IGAU,2) BL(IGAU,2) } } ! RCL(1,3) AL(1,3) BL(1,3) } } ! ... ... ... } l = 2 } ! RCL(IGAU,3) AL(IGAU,3) BL(IGAU,3) } } ! NMESH NCHAN } ! RW( 1 ) ( RPS( 1, j ), j = 1, NCHAN ) } pseudowave ! ... ... ... } ! RW( NMESH ) ( RPS( NMESH, j ), j = 1, NCHAN ) } ! ! ! When POTTYP = 'NUMERIC' the layout is: ! ! TCC TMIX additional stuff on each line is ignored ! POTTYP LLOC LNL ( INDL(i), i = 1, LNL ) ! ( WGV(i), i = 1, LNL ) this line only if tmix(is) is true ! ZV } ! NMESH NCHAN } this if ! RW( 1 ) ( VR( 1, j ), j = 1, NCHAN ) } pottyp is ! ... ... ... } 'NUMERIC' ! RW( NMESH ) ( VR( NMESH, j ), j = 1, NCHAN ) } ! NMESH NCHAN } ! RW( 1 ) ( RPS( 1, j ), j = 1, NCHAN ) } pseudowave ! ... ... ... } ! RW( NMESH ) ( RPS( NMESH, j ), j = 1, NCHAN ) } ! ! DETAILED DESCRIPTION OF INPUT PARAMETERS: ! ! TCC (logical) True if Core Correction are required for this ! pseudo ! ! TMIX (logical) True if we want to mix nonlocal pseudopotential ! components ! ! WGV(i) (real) wheight of the nonlocal components in the ! pseudopotential mixing scheme ! These parameters are present only if TMIX = .TRUE. ! 1 <= i <= LNL ! ! POTTYP (character) pseudopotential type ! pottyp = 'ANALYTIC' : use an analytic expression ! pottyp = 'NUMERIC' : read values from a table ! ! ZV (integer) valence for each species ! ! IGAU (integer) number of Gaussians in the pseudopotentials ! expression used only if pottyp='ANALYTIC' ! ! parameters from Bachelet-Hamann-Schluter's table: ! ! WRC(2) (real) c1, c2 (core) parameters ! RC(2) (real) alpha1, alpha2 parameters ! ! RCL(i,3) (real) alpha1, alpha2, alpha3 for each angular momentum ! 1 <= i <= IGAU ! AL(i,3) (real) parameters for each angular momentum ! 1 <= i <= IGAU ! BL(i,3) (real) parameters for each angular momentum ! 1 <= i <= IGAU ! ! nonlocality ! IGAU (integer) number of Gaussians for analytic pseudopotentials ! LLOC (integer) index of the angular momentum component added to ! the local part ( s = 1, p = 2, d = 3 ) ! LNL (integer) number of non local component ! INDL(i) (integer) indices of non local components ! 1 <= i <= LNL ! ( 1 3 means s and d taken as non local ) ! ! pseudo grids ! NMESH (integer) number of points in the mesh mesh ! NCHAN (integer) numbero of colums, radial components ! RW(i) (real) distance from the core in A.U. (radial mesh) ! 1 <= i <= NMESH ! RPS(i,j) (real) Atomic pseudo - wavefunctions ! 1 <= i <= NMESH ; 1 <= j <= NCHAN ! VP(i,j) (real) Atomic pseudo - potential ! 1 <= i <= NMESH ; 1 <= j <= NCHAN ! ! ---------------------------------------------- ! END manual espresso-5.1/upftools/upf2casino.f900000644000175000017500000000341312341373034015547 0ustar mbamba! ! Copyright (C) 2011 Simon Binnie ! This file is distributed under the terms of the ! GNU General Public License. See the file 'License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- PROGRAM upf2casino !--------------------------------------------------------------------- ! ! Convert a pseudopotential written in UFP ! format to CASINO tabulated format USE upf_module USE radial_grids, ONLY : radial_grid_type, deallocate_radial_grid, & & nullify_radial_grid USE pseudo_types, ONLY : nullify_pseudo_upf USE casino_pp IMPLICIT NONE INTEGER :: ierr TYPE(pseudo_upf) :: upf_in TYPE(radial_grid_type) :: grid CALL nullify_pseudo_upf ( upf_in ) CALL nullify_radial_grid ( grid ) WRITE(0,*) 'UPF2CASINO Converter' WRITE(0,*) 'Usage: ./upf2casino < pp_in.UPF > pp_out.dat' WRITE(0,*) 'All pseudopotential files generated should be & &thoroughly checked.' WRITE(0,*) 'In paticular make sure the local channel chosen& & in the CASINO pp file is what you expected.' CALL read_upf(upf_in, grid, ierr, 5) IF (upf_in%typ /= 'NC') THEN WRITE(0,*) '' WRITE(0,*) 'WRONG PSEUDOPOTENTIAL!' WRITE(0,*) 'Only norm-conserving pps can be used in CASINO!' STOP ENDIF WRITE(0,*) "Number of grid points: ", grid%mesh WRITE(0,*) "Number of KB projectors: ", upf_in%nbeta WRITE(0,*) "Channel(s) of KB projectors: ", upf_in%lll WRITE(0,*) "Number of channels to be re-constructed: ", upf_in%nbeta+1 CALL conv_upf2casino(upf_in,grid) CALL write_casino_tab(upf_in,grid) DEALLOCATE(vnl) CALL deallocate_radial_grid(grid) CALL deallocate_pseudo_upf(upf_in) STOP END PROGRAM upf2casino espresso-5.1/upftools/make.depend0000644000175000017500000000302612341373034015254 0ustar mbambacasino2upf.o : ../Modules/pseudo_types.o casino2upf.o : ../Modules/write_upf_v2.o casino2upf.o : casino_pp.o casino_pp.o : ../Modules/funct.o casino_pp.o : ../Modules/kind.o casino_pp.o : ../Modules/radial_grids.o casino_pp.o : ../Modules/upf.o cpmd2upf.o : ../Modules/constants.o cpmd2upf.o : ../Modules/pseudo_types.o cpmd2upf.o : ../Modules/write_upf_v2.o fhi2upf.o : ../Modules/constants.o fhi2upf.o : ../Modules/funct.o fhi2upf.o : ../Modules/pseudo_types.o fhi2upf.o : ../Modules/write_upf_v2.o fpmd2upf.o : ../Modules/kind.o fpmd2upf.o : ../Modules/parameters.o fpmd2upf.o : ../Modules/parser.o fpmd2upf.o : ../Modules/radial_grids.o fpmd2upf.o : write_upf.o interpolate.o : ../Modules/funct.o interpolate.o : ../Modules/splinelib.o interpolate.o : write_upf.o ncpp2upf.o : ../Modules/funct.o ncpp2upf.o : write_upf.o oldcp2upf.o : write_upf.o read_upf_tofile.o : ../Modules/constants.o read_upf_tofile.o : ../Modules/pseudo_types.o read_upf_tofile.o : ../Modules/radial_grids.o read_upf_tofile.o : ../Modules/upf.o rrkj2upf.o : ../Modules/constants.o rrkj2upf.o : write_upf.o upf2casino.o : ../Modules/pseudo_types.o upf2casino.o : ../Modules/radial_grids.o upf2casino.o : ../Modules/upf.o upf2casino.o : casino_pp.o upf2upf2.o : ../Modules/pseudo_types.o upf2upf2.o : ../Modules/radial_grids.o upf2upf2.o : ../Modules/read_upf_v1.o upf2upf2.o : ../Modules/write_upf_v2.o vanderbilt.o : ../Modules/constants.o vanderbilt.o : write_upf.o virtual.o : ../Modules/funct.o virtual.o : ../Modules/splinelib.o virtual.o : read_upf.o virtual.o : write_upf.o espresso-5.1/environment_variables0000644000175000017500000000643412341373036015632 0ustar mbamba# environment_variables -- settings for running Quantum ESPRESSO examples ######## YOU MAY NEED TO EDIT THIS FILE TO MATCH YOUR CONFIGURATION ######## # BIN_DIR = path of compiled executables # Usually this is $PREFIX/bin, where $PREFIX is the root of the # Quantum ESPRESSO source tree. # PSEUDO_DIR = path of pseudopotentials required by the examples # if required pseudopotentials are not found in $PSEUDO_DIR, # example scripts will try to download them from NETWORK_PSEUDO # TMP_DIR = temporary directory to be used by the examples # Make sure that it is writable by you and that it doesn't contain # any valuable data (EVERYTHING THERE WILL BE DESTROYED) # The following should be good for most cases PREFIX=`cd ../../.. ; pwd` BIN_DIR=$PREFIX/bin PSEUDO_DIR=$PREFIX/pseudo # Beware: everything in $TMP_DIR will be destroyed ! TMP_DIR=$PREFIX/tempdir # There should be no need to change anything below this line NETWORK_PSEUDO=http://www.quantum-espresso.org/wp-content/uploads/upf_files/ # wget or curl needed if some PP has to be downloaded from web site # script wizard will surely find a better way to find what is available if test "`which curl`" = "" ; then if test "`which wget`" = "" ; then echo "wget or curl not found: will not be able to download missing PP" else WGET="wget -O" # echo "wget found" fi else WGET="curl -o" # echo "curl found" fi # To run the ESPRESSO programs on a parallel machine, you may have to # add the appropriate commands (poe, mpirun, mpprun...) and/or options # (specifying number of processors, pools...) before and after the # executable's name. That depends on how your machine is configured. # For example on an IBM SP4: # # poe pw.x -procs 4 < file.in > file.out # ^^^ PARA_PREFIX ^^^^^^^^ PARA_POSTFIX # # To run on a single processor, you can usually leave them empty. # BEWARE: most tests and examples are devised to be run serially or on # a small number of processors; do not use tests and examples to benchmark # parallelism, do not run on too many processors PARA_PREFIX="mpirun -np 2" PARA_PREFIX=" " # # available flags: # -ni n number of images (or -nimage) # (only for NEB; for PHonon, see below) # -nk n number of pools (or -npool, -npools) # -nb n number of band groups (or -nbgrp,-nband_group) # -nt n number of task groups (or -ntg, -ntask_groups) # -nd n number of processors for linear algebra # (or -ndiag, -northo) # PARA_POSTFIX=" -nk 1 -nd 1 -nb 1 -nt 1 " # # The following variables are used for image parallelization of PHonon # (see example in PHonon/examples/Image_example) # NB: the number of processors in PARA_IMAGE_PREFIX is the product of the # number of processors in PARA_PREFIX and the number of images in # PARA_IMAGE_POSTFIX # PARA_IMAGE_POSTFIX="-ni 2 $PARA_POSTFIX" PARA_IMAGE_PREFIX="mpirun -np 4" # function to test the exit status of a job check_failure () { # usage: check_failure $? if test $1 != 0 then $ECHO "Error condition encountered during test: exit status = $1" $ECHO "Aborting" exit 1 fi } espresso-5.1/License0000644000175000017500000004313112341373036012613 0ustar mbamba GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. espresso-5.1/COUPLE/0000755000175000017500000000000012341373041012267 5ustar mbambaespresso-5.1/COUPLE/tests/0000755000175000017500000000000012341373041013431 5ustar mbambaespresso-5.1/COUPLE/tests/metal.pw.c-0.ref0000644000175000017500000002552112341373026016244 0ustar mbamba Calling PW library interface with these flags: communicator index: 3 communicator size: 8 nimage: 1 npot: 1 npool: 1 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/metal.pw.in" Program PWSCF v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:51:41 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 8 processors R & G space division: proc/nbgrp/npool/nimage = 8 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/metal.pw.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: scalapack distributed-memory algorithm (size of sub-group: 2* 2 procs) Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 15 15 4 108 108 19 Max 16 16 5 110 110 22 Sum 121 121 37 869 869 169 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/akohlmey/compile/espresso-qmmm/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.00 Mb ( 12, 6) NL pseudopotentials 0.00 Mb ( 12, 4) Each V/rho on FFT grid 0.01 Mb ( 450) Each G-vector array 0.00 Mb ( 110) G-vector shells 0.00 Mb ( 29) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.00 Mb ( 12, 24) Each subspace H/S matrix 0.00 Mb ( 12, 12) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.05 Mb ( 450, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs + 2 random wfc total cpu time spent up to now is 0.1 secs per-process dynamical memory: 3.1 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.2 total cpu time spent up to now is 0.3 secs total energy = -4.18547348 Ry Harris-Foulkes estimate = -4.18624128 Ry estimated scf accuracy < 0.00592505 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -4.18546703 Ry Harris-Foulkes estimate = -4.18549536 Ry estimated scf accuracy < 0.00046567 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-05, avg # of iterations = 1.3 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7428 16.7431 20.1796 20.1796 23.2687 24.1726 k = 0.1250 0.1250 0.3750 ( 105 PWs) bands (ev): -1.5642 13.6751 17.3099 18.8471 20.1256 22.7027 k = 0.1250 0.1250 0.6250 ( 102 PWs) bands (ev): 0.7488 11.5557 13.9822 15.3803 16.8437 20.9948 k = 0.1250 0.1250 0.8750 ( 104 PWs) bands (ev): 4.0828 8.6646 10.5472 14.4194 15.7420 20.0604 k = 0.1250 0.3750 0.3750 ( 100 PWs) bands (ev): -0.4004 10.5636 15.0575 20.2794 22.2921 22.3025 k = 0.1250 0.3750 0.6250 ( 103 PWs) bands (ev): 1.8826 8.4273 12.9757 15.1047 21.3122 23.4592 k = 0.1250 0.3750 0.8750 ( 104 PWs) bands (ev): 5.1681 7.3418 9.7864 12.0728 20.3592 24.5665 k = 0.1250 0.6250 0.6250 ( 101 PWs) bands (ev): 4.1109 6.2842 10.9033 16.3672 18.2373 26.3755 k = 0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7475 7.4153 19.3070 19.3070 21.3017 21.3017 k = 0.3750 0.3750 0.6250 ( 103 PWs) bands (ev): 3.0033 5.2361 16.0323 17.3399 19.1721 23.3127 the Fermi energy is 8.3513 ev ! total energy = -4.18546970 Ry Harris-Foulkes estimate = -4.18546963 Ry estimated scf accuracy < 0.00000026 Ry The total energy is the sum of the following terms: one-electron contribution = 2.94161250 Ry hartree contribution = 0.01022676 Ry xc contribution = -1.63496626 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.00050817 Ry convergence has been achieved in 3 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.54 -0.00009883 0.00000000 0.00000000 -14.54 0.00 0.00 0.00000000 -0.00009883 0.00000000 0.00 -14.54 0.00 0.00000000 0.00000000 -0.00009883 0.00 0.00 -14.54 Writing output data file pwscf.save init_run : 0.01s CPU 0.03s WALL ( 1 calls) electrons : 0.13s CPU 0.31s WALL ( 1 calls) stress : 0.00s CPU 0.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.02s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.13s CPU 0.29s WALL ( 4 calls) sum_band : 0.00s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 100 calls) cegterg : 0.13s CPU 0.29s WALL ( 40 calls) Called by *egterg: h_psi : 0.03s CPU 0.07s WALL ( 127 calls) g_psi : 0.00s CPU 0.00s WALL ( 77 calls) cdiaghg : 0.08s CPU 0.19s WALL ( 107 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 127 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 137 calls) fft : 0.00s CPU 0.00s WALL ( 20 calls) fftw : 0.02s CPU 0.07s WALL ( 1584 calls) davcio : 0.00s CPU 0.00s WALL ( 10 calls) Parallel routines fft_scatter : 0.02s CPU 0.06s WALL ( 1604 calls) PWSCF : 0.23s CPU 0.53s WALL This run was terminated on: 11:51:42 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= rank 1 return value is: 0 rank 2 return value is: 0 rank 3 return value is: 0 rank 6 return value is: 0 rank 5 return value is: 0 rank 4 return value is: 0 rank 7 return value is: 0 rank 0 return value is: 0 espresso-5.1/COUPLE/tests/scf.pw.c-2.ref0000644000175000017500000002407512341373026015722 0ustar mbamba rank 6 of 7 is reserved Calling PW library interface with these flags: rank 7 of 7 is reserved communicator index: 3 communicator size: 6 nimage: 1 npot: 1 npool: 1 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/scf.pw.in" Program PWSCF v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:51:55 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 6 processors R & G space division: proc/nbgrp/npool/nimage = 6 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/scf.pw.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: scalapack distributed-memory algorithm (size of sub-group: 2* 2 procs) Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 27 27 9 242 242 46 Max 28 28 10 246 246 49 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/akohlmey/compile/espresso-qmmm/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.00 Mb ( 32, 4) NL pseudopotentials 0.00 Mb ( 32, 8) Each V/rho on FFT grid 0.01 Mb ( 675) Each G-vector array 0.00 Mb ( 243) G-vector shells 0.00 Mb ( 41) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.01 Mb ( 32, 16) Each subspace H/S matrix 0.00 Mb ( 8, 8) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.08 Mb ( 675, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 3.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.92E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79106268 Ry Harris-Foulkes estimate = -15.81238601 Ry estimated scf accuracy < 0.06367564 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.96E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79410107 Ry Harris-Foulkes estimate = -15.79443025 Ry estimated scf accuracy < 0.00230807 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.89E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447822 Ry Harris-Foulkes estimate = -15.79450092 Ry estimated scf accuracy < 0.00006336 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.92E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449507 Ry Harris-Foulkes estimate = -15.79449682 Ry estimated scf accuracy < 0.00000457 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.71E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9164 -0.0653 2.6795 4.0355 highest occupied level (ev): 5.5371 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378950 Ry hartree contribution = 1.08428596 Ry xc contribution = -4.81281281 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020599 -0.00000000 -0.00000000 -30.30 -0.00 -0.00 0.00000000 -0.00020599 0.00000000 0.00 -30.30 0.00 -0.00000000 0.00000000 -0.00020599 -0.00 0.00 -30.30 Writing output data file pwscf.save init_run : 0.01s CPU 0.03s WALL ( 1 calls) electrons : 0.04s CPU 0.07s WALL ( 1 calls) stress : 0.01s CPU 0.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.04s CPU 0.06s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.03s CPU 0.06s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.02s CPU 0.04s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.01s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.01s CPU 0.01s WALL ( 360 calls) PWSCF : 0.12s CPU 0.19s WALL This run was terminated on: 11:51:55 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= rank 1 return value is: 0 rank 2 return value is: 0 rank 3 return value is: 0 rank 5 return value is: 0 rank 0 return value is: 0 rank 4 return value is: 0 espresso-5.1/COUPLE/tests/scf.pw.in0000644000175000017500000000053312341373026015165 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/COUPLE/tests/scf.pw.f-2.ref0000644000175000017500000002401012341373026015712 0ustar mbamba Reserved CPU rank: 6 of 7 Calling PW library interface with these flags: communicator index: 3 communicator size: 6 nimage: 1 npot: 1 npool: 2 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/scf.pw.in" Reserved CPU rank: 7 of 7 Program PWSCF v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:51:53 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 6 processors K-points division: npool = 2 R & G space division: proc/nbgrp/npool/nimage = 3 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/scf.pw.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 54 54 18 485 485 93 Max 55 55 19 489 489 96 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/akohlmey/compile/espresso-qmmm/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.00 Mb ( 62, 4) NL pseudopotentials 0.01 Mb ( 62, 8) Each V/rho on FFT grid 0.02 Mb ( 1125) Each G-vector array 0.00 Mb ( 489) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 62, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.14 Mb ( 1125, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79103560 Ry Harris-Foulkes estimate = -15.81239112 Ry estimated scf accuracy < 0.06374798 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409498 Ry Harris-Foulkes estimate = -15.79442136 Ry estimated scf accuracy < 0.00230270 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447817 Ry Harris-Foulkes estimate = -15.79450052 Ry estimated scf accuracy < 0.00006288 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.86E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449509 Ry Harris-Foulkes estimate = -15.79449676 Ry estimated scf accuracy < 0.00000444 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.55E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 highest occupied level (ev): 5.5371 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378721 Ry hartree contribution = 1.08428956 Ry xc contribution = -4.81281412 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020597 0.00000000 0.00000000 -30.30 0.00 0.00 0.00000000 -0.00020597 0.00000000 0.00 -30.30 0.00 -0.00000000 -0.00000000 -0.00020597 -0.00 -0.00 -30.30 Writing output data file pwscf.save init_run : 0.02s CPU 0.05s WALL ( 1 calls) electrons : 0.01s CPU 0.03s WALL ( 1 calls) stress : 0.00s CPU 0.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 13 calls) cegterg : 0.01s CPU 0.01s WALL ( 6 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 18 calls) g_psi : 0.00s CPU 0.00s WALL ( 11 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 16 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 18 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 19 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.00s CPU 0.01s WALL ( 168 calls) davcio : 0.00s CPU 0.00s WALL ( 1 calls) Parallel routines fft_scatter : 0.00s CPU 0.01s WALL ( 196 calls) PWSCF : 0.10s CPU 0.23s WALL This run was terminated on: 11:51:54 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= Call to libpwscf finished with exit status 0 espresso-5.1/COUPLE/tests/h2o-mt-blyp.cp.f-4.ref0000644000175000017500000006163312341373026017203 0ustar mbamba Calling CPV library interface with these flags: communicator index: 3 communicator size: 4 nimage: 1 npot: 1 npool: 1 ntaskg: 1 nband: 1 ndiag: 4 Reserved CPU rank: 4 of 7 Reserved CPU rank: 6 of 7 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/h2o-mt-blyp.cp.in" Reserved CPU rank: 5 of 7 Reserved CPU rank: 7 of 7 Program CP v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:54: 7 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 4 processors R & G space division: proc/nbgrp/npool/nimage = 4 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/h2o-mt-blyp.cp.in Job Title: Water Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/akohlmey/compile/espresso-qmmm/pseudo/O.blyp-mt.UPF file type is UPF v.1 Reading pseudopotential for specie # 2 from file : /home/akohlmey/compile/espresso-qmmm/pseudo/H.blyp-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 100 Print out every 100 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 2493.41 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 7680 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Exchange-correlation = SLA LYP B88 BLYP ( 1 3 1 3 0) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.832500 -0.224300 -0.000100 -0.224300 1.832500 0.000200 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 917 917 227 41757 41757 5201 Max 920 920 230 41764 41764 5206 Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 18 1 1 4 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 93312 Number of x-y planes for each processors: nr3l = 18 18 18 18 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 18 1 1 4 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 93312 Number of x-y planes for each processors: nr3sl = 18 18 18 18 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 83519 20879 20882 20879.75 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 83519 20879 20882 20879.75 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 10408 2601 2603 2602.00 System geometry initialization ------------------------------ Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00001 with 4 procs Constraints matrixes will be distributed block like on ortho sub-group = 2* 2 procs Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 4 2.00 2.00 2.00 2.00 formf: eself= 18.94976 formf: vps(g=0)= -0.0061912 rhops(g=0)= -0.0033232 formf: sum_g vps(g)= -4.3546661 sum_g rhops(g)= -1.0540044 formf: vps(g=0)= -0.0011639 rhops(g=0)= -0.0005539 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 1.45743 0.0 0.0 16.61845 16.61845 16.61845 18.07588 0.0000 0.0000 0.0000 0.0000 2 3.37031 0.0 0.0 12.61697 12.61697 12.61697 15.98727 0.0000 0.0000 0.0000 0.0000 3 4.81260 0.0 0.0 7.78398 7.78398 7.78398 12.59658 0.0000 0.0000 0.0000 0.0000 4 5.48116 0.0 0.0 2.96217 2.96217 2.96217 8.44333 0.0000 0.0000 0.0000 0.0000 5 5.49239 0.0 0.0 -1.45144 -1.45144 -1.45144 4.04095 0.0000 0.0000 0.0000 0.0000 6 4.83753 0.0 0.0 -4.98322 -4.98322 -4.98322 -0.14570 0.0000 0.0000 0.0000 0.0000 7 3.53392 0.0 0.0 -6.98224 -6.98224 -6.98224 -3.44832 0.0000 0.0000 0.0000 0.0000 8 2.15219 0.0 0.0 -7.72794 -7.72794 -7.72794 -5.57576 0.0000 0.0000 0.0000 0.0000 9 1.32264 0.0 0.0 -8.20443 -8.20443 -8.20443 -6.88179 0.0000 0.0000 0.0000 0.0000 10 1.04393 0.0 0.0 -8.86827 -8.86827 -8.86827 -7.82433 0.0000 0.0000 0.0000 0.0000 11 0.97593 0.0 0.0 -9.62712 -9.62712 -9.62712 -8.65119 0.0000 0.0000 0.0000 0.0000 12 0.89782 0.0 0.0 -10.30456 -10.30456 -10.30456 -9.40674 0.0000 0.0000 0.0000 0.0000 13 0.78413 0.0 0.0 -10.85644 -10.85644 -10.85644 -10.07232 0.0000 0.0000 0.0000 0.0000 14 0.68263 0.0 0.0 -11.33250 -11.33250 -11.33250 -10.64987 0.0000 0.0000 0.0000 0.0000 15 0.61986 0.0 0.0 -11.78505 -11.78505 -11.78505 -11.16519 0.0000 0.0000 0.0000 0.0000 16 0.59021 0.0 0.0 -12.23682 -12.23682 -12.23682 -11.64660 0.0000 0.0000 0.0000 0.0000 17 0.57793 0.0 0.0 -12.69056 -12.69056 -12.69056 -12.11263 0.0000 0.0000 0.0000 0.0000 18 0.57140 0.0 0.0 -13.14295 -13.14295 -13.14295 -12.57155 0.0000 0.0000 0.0000 0.0000 19 0.56508 0.0 0.0 -13.59059 -13.59059 -13.59059 -13.02551 0.0000 0.0000 0.0000 0.0000 20 0.55658 0.0 0.0 -14.03047 -14.03047 -14.03047 -13.47389 0.0000 0.0000 0.0000 0.0000 21 0.54381 0.0 0.0 -14.45812 -14.45812 -14.45812 -13.91431 0.0000 0.0000 0.0000 0.0000 22 0.52411 0.0 0.0 -14.86634 -14.86634 -14.86634 -14.34223 0.0000 0.0000 0.0000 0.0000 23 0.49509 0.0 0.0 -15.24590 -15.24590 -15.24590 -14.75082 0.0000 0.0000 0.0000 0.0000 24 0.45610 0.0 0.0 -15.58802 -15.58802 -15.58802 -15.13193 0.0000 0.0000 0.0000 0.0000 25 0.40886 0.0 0.0 -15.88687 -15.88687 -15.88687 -15.47801 0.0000 0.0000 0.0000 0.0000 26 0.35685 0.0 0.0 -16.14069 -16.14069 -16.14069 -15.78384 0.0000 0.0000 0.0000 0.0000 27 0.30407 0.0 0.0 -16.35141 -16.35141 -16.35141 -16.04734 0.0000 0.0000 0.0000 0.0000 28 0.25391 0.0 0.0 -16.52336 -16.52336 -16.52336 -16.26945 0.0000 0.0000 0.0000 0.0000 29 0.20861 0.0 0.0 -16.66194 -16.66194 -16.66194 -16.45333 0.0000 0.0000 0.0000 0.0000 30 0.16924 0.0 0.0 -16.77266 -16.77266 -16.77266 -16.60342 0.0000 0.0000 0.0000 0.0000 31 0.13600 0.0 0.0 -16.86059 -16.86059 -16.86059 -16.72459 0.0000 0.0000 0.0000 0.0000 32 0.10849 0.0 0.0 -16.93010 -16.93010 -16.93010 -16.82161 0.0000 0.0000 0.0000 0.0000 33 0.08605 0.0 0.0 -16.98483 -16.98483 -16.98483 -16.89878 0.0000 0.0000 0.0000 0.0000 34 0.06790 0.0 0.0 -17.02773 -17.02773 -17.02773 -16.95984 0.0000 0.0000 0.0000 0.0000 35 0.05332 0.0 0.0 -17.06121 -17.06121 -17.06121 -17.00789 0.0000 0.0000 0.0000 0.0000 36 0.04166 0.0 0.0 -17.08720 -17.08720 -17.08720 -17.04554 0.0000 0.0000 0.0000 0.0000 37 0.03241 0.0 0.0 -17.10729 -17.10729 -17.10729 -17.07488 0.0000 0.0000 0.0000 0.0000 38 0.02512 0.0 0.0 -17.12277 -17.12277 -17.12277 -17.09766 0.0000 0.0000 0.0000 0.0000 39 0.01941 0.0 0.0 -17.13469 -17.13469 -17.13469 -17.11528 0.0000 0.0000 0.0000 0.0000 40 0.01497 0.0 0.0 -17.14387 -17.14387 -17.14387 -17.12889 0.0000 0.0000 0.0000 0.0000 41 0.01155 0.0 0.0 -17.15093 -17.15093 -17.15093 -17.13938 0.0000 0.0000 0.0000 0.0000 42 0.00892 0.0 0.0 -17.15639 -17.15639 -17.15639 -17.14747 0.0000 0.0000 0.0000 0.0000 43 0.00690 0.0 0.0 -17.16063 -17.16063 -17.16063 -17.15372 0.0000 0.0000 0.0000 0.0000 44 0.00537 0.0 0.0 -17.16394 -17.16394 -17.16394 -17.15857 0.0000 0.0000 0.0000 0.0000 45 0.00419 0.0 0.0 -17.16655 -17.16655 -17.16655 -17.16236 0.0000 0.0000 0.0000 0.0000 46 0.00330 0.0 0.0 -17.16862 -17.16862 -17.16862 -17.16532 0.0000 0.0000 0.0000 0.0000 47 0.00261 0.0 0.0 -17.17028 -17.17028 -17.17028 -17.16767 0.0000 0.0000 0.0000 0.0000 48 0.00209 0.0 0.0 -17.17162 -17.17162 -17.17162 -17.16953 0.0000 0.0000 0.0000 0.0000 49 0.00169 0.0 0.0 -17.17271 -17.17271 -17.17271 -17.17103 0.0000 0.0000 0.0000 0.0000 50 0.00137 0.0 0.0 -17.17361 -17.17361 -17.17361 -17.17224 0.0000 0.0000 0.0000 0.0000 51 0.00113 0.0 0.0 -17.17436 -17.17436 -17.17436 -17.17323 0.0000 0.0000 0.0000 0.0000 52 0.00093 0.0 0.0 -17.17498 -17.17498 -17.17498 -17.17405 0.0000 0.0000 0.0000 0.0000 53 0.00078 0.0 0.0 -17.17550 -17.17550 -17.17550 -17.17472 0.0000 0.0000 0.0000 0.0000 54 0.00065 0.0 0.0 -17.17594 -17.17594 -17.17594 -17.17529 0.0000 0.0000 0.0000 0.0000 55 0.00054 0.0 0.0 -17.17631 -17.17631 -17.17631 -17.17576 0.0000 0.0000 0.0000 0.0000 56 0.00046 0.0 0.0 -17.17662 -17.17662 -17.17662 -17.17616 0.0000 0.0000 0.0000 0.0000 57 0.00039 0.0 0.0 -17.17688 -17.17688 -17.17688 -17.17650 0.0000 0.0000 0.0000 0.0000 58 0.00033 0.0 0.0 -17.17711 -17.17711 -17.17711 -17.17678 0.0000 0.0000 0.0000 0.0000 59 0.00028 0.0 0.0 -17.17730 -17.17730 -17.17730 -17.17702 0.0000 0.0000 0.0000 0.0000 60 0.00024 0.0 0.0 -17.17746 -17.17746 -17.17746 -17.17723 0.0000 0.0000 0.0000 0.0000 61 0.00020 0.0 0.0 -17.17760 -17.17760 -17.17760 -17.17740 0.0000 0.0000 0.0000 0.0000 62 0.00017 0.0 0.0 -17.17772 -17.17772 -17.17772 -17.17755 0.0000 0.0000 0.0000 0.0000 63 0.00015 0.0 0.0 -17.17782 -17.17782 -17.17782 -17.17767 0.0000 0.0000 0.0000 0.0000 64 0.00012 0.0 0.0 -17.17791 -17.17791 -17.17791 -17.17778 0.0000 0.0000 0.0000 0.0000 65 0.00011 0.0 0.0 -17.17798 -17.17798 -17.17798 -17.17787 0.0000 0.0000 0.0000 0.0000 66 0.00009 0.0 0.0 -17.17804 -17.17804 -17.17804 -17.17795 0.0000 0.0000 0.0000 0.0000 67 0.00008 0.0 0.0 -17.17810 -17.17810 -17.17810 -17.17802 0.0000 0.0000 0.0000 0.0000 68 0.00007 0.0 0.0 -17.17814 -17.17814 -17.17814 -17.17808 0.0000 0.0000 0.0000 0.0000 69 0.00006 0.0 0.0 -17.17818 -17.17818 -17.17818 -17.17813 0.0000 0.0000 0.0000 0.0000 70 0.00005 0.0 0.0 -17.17822 -17.17822 -17.17822 -17.17817 0.0000 0.0000 0.0000 0.0000 71 0.00004 0.0 0.0 -17.17824 -17.17824 -17.17824 -17.17820 0.0000 0.0000 0.0000 0.0000 72 0.00004 0.0 0.0 -17.17827 -17.17827 -17.17827 -17.17823 0.0000 0.0000 0.0000 0.0000 73 0.00003 0.0 0.0 -17.17829 -17.17829 -17.17829 -17.17826 0.0000 0.0000 0.0000 0.0000 74 0.00003 0.0 0.0 -17.17831 -17.17831 -17.17831 -17.17828 0.0000 0.0000 0.0000 0.0000 75 0.00002 0.0 0.0 -17.17832 -17.17832 -17.17832 -17.17830 0.0000 0.0000 0.0000 0.0000 76 0.00002 0.0 0.0 -17.17834 -17.17834 -17.17834 -17.17832 0.0000 0.0000 0.0000 0.0000 77 0.00002 0.0 0.0 -17.17835 -17.17835 -17.17835 -17.17833 0.0000 0.0000 0.0000 0.0000 78 0.00001 0.0 0.0 -17.17836 -17.17836 -17.17836 -17.17834 0.0000 0.0000 0.0000 0.0000 79 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 80 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 81 0.00001 0.0 0.0 -17.17838 -17.17838 -17.17838 -17.17837 0.0000 0.0000 0.0000 0.0000 82 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 83 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 84 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17839 0.0000 0.0000 0.0000 0.0000 85 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17839 0.0000 0.0000 0.0000 0.0000 86 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 87 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 88 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17840 0.0000 0.0000 0.0000 0.0000 89 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 90 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 91 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 92 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 93 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 94 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 95 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 96 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 97 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 98 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 99 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 total energy = -17.17842 Hartree a.u. kinetic energy = 12.58528 Hartree a.u. electrostatic energy = -18.19051 Hartree a.u. esr = 0.14128 Hartree a.u. eself = 18.94976 Hartree a.u. pseudopotential energy = -9.32929 Hartree a.u. n-l pseudopotential energy = 1.95843 Hartree a.u. exchange-correlation energy = -4.20234 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.73 -12.71 -8.94 -6.91 Allocated memory (kb) = 34852 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.1167 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -0.21050589 0.02998249 -0.00360890 0.02998249 -0.21060143 -0.00234024 -0.00360890 -0.00234024 -0.08844614 ATOMIC_POSITIONS O 0.990000E-02 0.990000E-02 0.000000E+00 H 0.183250E+01 -0.224300E+00 -0.100000E-03 H -0.224300E+00 0.183250E+01 0.200000E-03 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): O 0.235873E-02 0.235085E-02 0.270774E-03 H -0.242591E-02 0.605181E-03 0.162770E-03 H 0.607669E-03 -0.241643E-02 0.100089E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00E+00 0.0000E+00 2 0.00E+00 0.0000E+00 100 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 writing restart file: /home/akohlmey/compile/espresso-qmmm/tmp//h2o_51.save restart file written in 0.082 sec. Averaged Physical Quantities accumulated this run ekinc : 0.44687 0.44687 (AU) ekin : 11.30009 11.30009 (AU) epot : -28.24112 -28.24112 (AU) total energy : -14.77337 -14.77337 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -14.77337 -14.77337 (AU) econs : -14.77337 -14.77337 (AU) pressure : 7.21895 7.21895 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 0.89s CPU 0.91s WALL ( 1 calls) main_loop : 26.75s CPU 27.37s WALL ( 100 calls) Called by main_loop: move_electro : 26.45s CPU 27.03s WALL ( 100 calls) ortho : 0.16s CPU 0.19s WALL ( 101 calls) updatc : 0.02s CPU 0.03s WALL ( 101 calls) strucf : 0.00s CPU 0.00s WALL ( 1 calls) calbec : 0.01s CPU 0.01s WALL ( 102 calls) Called by move_electrons: rhoofr : 3.95s CPU 4.00s WALL ( 101 calls) vofrho : 20.31s CPU 20.79s WALL ( 101 calls) dforce : 2.29s CPU 2.33s WALL ( 202 calls) calphi : 0.01s CPU 0.01s WALL ( 101 calls) nlfl : 0.00s CPU 0.00s WALL ( 101 calls) Called by ortho: ortho_iter : 0.06s CPU 0.06s WALL ( 101 calls) rsg : 0.04s CPU 0.05s WALL ( 101 calls) rhoset : 0.02s CPU 0.03s WALL ( 101 calls) sigset : 0.02s CPU 0.04s WALL ( 101 calls) tauset : 0.01s CPU 0.02s WALL ( 101 calls) Small boxes: Low-level routines: prefor : 0.00s CPU 0.00s WALL ( 101 calls) nlfq : 0.03s CPU 0.03s WALL ( 101 calls) nlsm1 : 0.01s CPU 0.01s WALL ( 102 calls) nlsm2 : 0.03s CPU 0.03s WALL ( 101 calls) fft : 6.63s CPU 6.95s WALL ( 808 calls) ffts : 1.71s CPU 1.73s WALL ( 202 calls) fftw : 3.07s CPU 3.12s WALL ( 606 calls) fft_scatter : 4.01s CPU 4.35s WALL ( 1616 calls) betagx : 0.27s CPU 0.27s WALL ( 1 calls) qradx : 0.00s CPU 0.00s WALL ( 1 calls) gram : 0.00s CPU 0.00s WALL ( 1 calls) nlinit : 0.64s CPU 0.64s WALL ( 1 calls) init_dim : 0.03s CPU 0.03s WALL ( 1 calls) newnlinit : 0.00s CPU 0.00s WALL ( 1 calls) from_scratch : 0.22s CPU 0.23s WALL ( 1 calls) ortho_iter : 0.06s CPU 0.06s WALL ( 101 calls) CP : 27.73s CPU 28.39s WALL This run was terminated on: 11:54:36 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= Call to libcpv finished with exit status 0 espresso-5.1/COUPLE/tests/metal.pw.f-2.ref0000644000175000017500000002543012341373026016250 0ustar mbamba Reserved CPU rank: 6 of 7 Reserved CPU rank: 7 of 7 Calling PW library interface with these flags: communicator index: 3 communicator size: 6 nimage: 1 npot: 1 npool: 2 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/metal.pw.in" Program PWSCF v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:51:43 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 6 processors K-points division: npool = 2 R & G space division: proc/nbgrp/npool/nimage = 3 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/metal.pw.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 40 40 12 289 289 55 Max 41 41 13 290 290 58 Sum 121 121 37 869 869 169 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/akohlmey/compile/espresso-qmmm/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.00 Mb ( 36, 6) NL pseudopotentials 0.00 Mb ( 36, 4) Each V/rho on FFT grid 0.02 Mb ( 1125) Each G-vector array 0.00 Mb ( 290) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.01 Mb ( 36, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.14 Mb ( 1125, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs + 2 random wfc total cpu time spent up to now is 0.1 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.3 total cpu time spent up to now is 0.1 secs total energy = -4.18547351 Ry Harris-Foulkes estimate = -4.18624124 Ry estimated scf accuracy < 0.00592442 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18546703 Ry Harris-Foulkes estimate = -4.18549537 Ry estimated scf accuracy < 0.00046582 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-05, avg # of iterations = 1.2 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7428 16.7431 20.1796 20.1796 23.2700 24.1734 k = 0.1250 0.1250 0.3750 ( 105 PWs) bands (ev): -1.5642 13.6751 17.3099 18.8471 20.1255 22.7027 k = 0.1250 0.1250 0.6250 ( 102 PWs) bands (ev): 0.7488 11.5557 13.9822 15.3803 16.8437 20.9947 k = 0.1250 0.1250 0.8750 ( 104 PWs) bands (ev): 4.0828 8.6646 10.5472 14.4194 15.7421 20.0604 k = 0.1250 0.3750 0.3750 ( 100 PWs) bands (ev): -0.4004 10.5636 15.0575 20.2794 22.2921 22.3023 k = 0.1250 0.3750 0.6250 ( 103 PWs) bands (ev): 1.8826 8.4273 12.9757 15.1047 21.3122 23.4591 k = 0.1250 0.3750 0.8750 ( 104 PWs) bands (ev): 5.1681 7.3418 9.7864 12.0728 20.3592 24.5663 k = 0.1250 0.6250 0.6250 ( 101 PWs) bands (ev): 4.1109 6.2842 10.9033 16.3672 18.2373 26.3751 k = 0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7475 7.4153 19.3070 19.3070 21.3017 21.3021 k = 0.3750 0.3750 0.6250 ( 103 PWs) bands (ev): 3.0033 5.2361 16.0323 17.3399 19.1721 23.3127 the Fermi energy is 8.3513 ev ! total energy = -4.18546970 Ry Harris-Foulkes estimate = -4.18546962 Ry estimated scf accuracy < 0.00000026 Ry The total energy is the sum of the following terms: one-electron contribution = 2.94161251 Ry hartree contribution = 0.01022708 Ry xc contribution = -1.63496658 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.00050817 Ry convergence has been achieved in 3 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.55 -0.00009889 0.00000000 0.00000000 -14.55 0.00 0.00 0.00000000 -0.00009889 -0.00000000 0.00 -14.55 -0.00 0.00000000 -0.00000000 -0.00009889 0.00 -0.00 -14.55 Writing output data file pwscf.save init_run : 0.01s CPU 0.03s WALL ( 1 calls) electrons : 0.04s CPU 0.09s WALL ( 1 calls) stress : 0.00s CPU 0.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.07s WALL ( 4 calls) sum_band : 0.00s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 50 calls) cegterg : 0.03s CPU 0.06s WALL ( 20 calls) Called by *egterg: h_psi : 0.03s CPU 0.04s WALL ( 64 calls) g_psi : 0.00s CPU 0.00s WALL ( 39 calls) cdiaghg : 0.01s CPU 0.02s WALL ( 54 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 64 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 69 calls) fft : 0.00s CPU 0.00s WALL ( 20 calls) fftw : 0.02s CPU 0.04s WALL ( 794 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) Parallel routines fft_scatter : 0.01s CPU 0.03s WALL ( 814 calls) PWSCF : 0.13s CPU 0.26s WALL This run was terminated on: 11:51:43 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= Call to libpwscf finished with exit status 0 espresso-5.1/COUPLE/tests/scf.pw.f-16.ref0000644000175000017500000000060012341373026015776 0ustar mbamba Reserved CPU rank: 2 of 7 Reserved CPU rank: 0 of 7 Reserved CPU rank: 4 of 7 Reserved CPU rank: 7 of 7 Reserved CPU rank: 3 of 7 Reserved CPU rank: 6 of 7 Reserved CPU rank: 1 of 7 Reserved CPU rank: 5 of 7 espresso-5.1/COUPLE/tests/h2o-mt-blyp.cp.c-0.ref0000644000175000017500000006164512341373026017177 0ustar mbamba Calling CPV library interface with these flags: communicator index: 3 communicator size: 8 nimage: 1 npot: 1 npool: 1 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/h2o-mt-blyp.cp.in" Program CP v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:52:24 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 8 processors R & G space division: proc/nbgrp/npool/nimage = 8 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/h2o-mt-blyp.cp.in Job Title: Water Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/akohlmey/compile/espresso-qmmm/pseudo/O.blyp-mt.UPF file type is UPF v.1 Reading pseudopotential for specie # 2 from file : /home/akohlmey/compile/espresso-qmmm/pseudo/H.blyp-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 100 Print out every 100 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 2493.41 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 7680 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Exchange-correlation = SLA LYP B88 BLYP ( 1 3 1 3 0) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.832500 -0.224300 -0.000100 -0.224300 1.832500 0.000200 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 457 457 113 20877 20877 2598 Max 460 460 116 20884 20884 2604 Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 9 1 1 8 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 46656 Number of x-y planes for each processors: nr3l = 9 9 9 9 9 9 9 9 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 9 1 1 8 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 46656 Number of x-y planes for each processors: nr3sl = 9 9 9 9 9 9 9 9 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 83519 10439 10442 10439.88 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 83519 10439 10442 10439.88 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 10408 1299 1302 1301.00 System geometry initialization ------------------------------ Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00004 with 4 procs Constraints matrixes will be distributed block like on ortho sub-group = 2* 2 procs Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 4 2.00 2.00 2.00 2.00 formf: eself= 18.94976 formf: vps(g=0)= -0.0061912 rhops(g=0)= -0.0033232 formf: sum_g vps(g)= -4.3546661 sum_g rhops(g)= -1.0540044 formf: vps(g=0)= -0.0011639 rhops(g=0)= -0.0005539 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 1.45743 0.0 0.0 16.61845 16.61845 16.61845 18.07588 0.0000 0.0000 0.0000 0.0000 2 3.37031 0.0 0.0 12.61697 12.61697 12.61697 15.98727 0.0000 0.0000 0.0000 0.0000 3 4.81260 0.0 0.0 7.78398 7.78398 7.78398 12.59658 0.0000 0.0000 0.0000 0.0000 4 5.48116 0.0 0.0 2.96217 2.96217 2.96217 8.44333 0.0000 0.0000 0.0000 0.0000 5 5.49239 0.0 0.0 -1.45144 -1.45144 -1.45144 4.04095 0.0000 0.0000 0.0000 0.0000 6 4.83753 0.0 0.0 -4.98322 -4.98322 -4.98322 -0.14570 0.0000 0.0000 0.0000 0.0000 7 3.53392 0.0 0.0 -6.98224 -6.98224 -6.98224 -3.44832 0.0000 0.0000 0.0000 0.0000 8 2.15219 0.0 0.0 -7.72794 -7.72794 -7.72794 -5.57576 0.0000 0.0000 0.0000 0.0000 9 1.32264 0.0 0.0 -8.20443 -8.20443 -8.20443 -6.88179 0.0000 0.0000 0.0000 0.0000 10 1.04393 0.0 0.0 -8.86827 -8.86827 -8.86827 -7.82433 0.0000 0.0000 0.0000 0.0000 11 0.97593 0.0 0.0 -9.62712 -9.62712 -9.62712 -8.65119 0.0000 0.0000 0.0000 0.0000 12 0.89782 0.0 0.0 -10.30456 -10.30456 -10.30456 -9.40674 0.0000 0.0000 0.0000 0.0000 13 0.78413 0.0 0.0 -10.85644 -10.85644 -10.85644 -10.07232 0.0000 0.0000 0.0000 0.0000 14 0.68263 0.0 0.0 -11.33250 -11.33250 -11.33250 -10.64987 0.0000 0.0000 0.0000 0.0000 15 0.61986 0.0 0.0 -11.78505 -11.78505 -11.78505 -11.16519 0.0000 0.0000 0.0000 0.0000 16 0.59021 0.0 0.0 -12.23682 -12.23682 -12.23682 -11.64660 0.0000 0.0000 0.0000 0.0000 17 0.57793 0.0 0.0 -12.69056 -12.69056 -12.69056 -12.11263 0.0000 0.0000 0.0000 0.0000 18 0.57140 0.0 0.0 -13.14295 -13.14295 -13.14295 -12.57155 0.0000 0.0000 0.0000 0.0000 19 0.56508 0.0 0.0 -13.59059 -13.59059 -13.59059 -13.02551 0.0000 0.0000 0.0000 0.0000 20 0.55658 0.0 0.0 -14.03047 -14.03047 -14.03047 -13.47389 0.0000 0.0000 0.0000 0.0000 21 0.54381 0.0 0.0 -14.45812 -14.45812 -14.45812 -13.91431 0.0000 0.0000 0.0000 0.0000 22 0.52411 0.0 0.0 -14.86634 -14.86634 -14.86634 -14.34223 0.0000 0.0000 0.0000 0.0000 23 0.49509 0.0 0.0 -15.24590 -15.24590 -15.24590 -14.75082 0.0000 0.0000 0.0000 0.0000 24 0.45610 0.0 0.0 -15.58802 -15.58802 -15.58802 -15.13193 0.0000 0.0000 0.0000 0.0000 25 0.40886 0.0 0.0 -15.88687 -15.88687 -15.88687 -15.47801 0.0000 0.0000 0.0000 0.0000 26 0.35685 0.0 0.0 -16.14069 -16.14069 -16.14069 -15.78384 0.0000 0.0000 0.0000 0.0000 27 0.30407 0.0 0.0 -16.35141 -16.35141 -16.35141 -16.04734 0.0000 0.0000 0.0000 0.0000 28 0.25391 0.0 0.0 -16.52336 -16.52336 -16.52336 -16.26945 0.0000 0.0000 0.0000 0.0000 29 0.20861 0.0 0.0 -16.66194 -16.66194 -16.66194 -16.45333 0.0000 0.0000 0.0000 0.0000 30 0.16924 0.0 0.0 -16.77266 -16.77266 -16.77266 -16.60342 0.0000 0.0000 0.0000 0.0000 31 0.13600 0.0 0.0 -16.86059 -16.86059 -16.86059 -16.72459 0.0000 0.0000 0.0000 0.0000 32 0.10849 0.0 0.0 -16.93010 -16.93010 -16.93010 -16.82161 0.0000 0.0000 0.0000 0.0000 33 0.08605 0.0 0.0 -16.98483 -16.98483 -16.98483 -16.89878 0.0000 0.0000 0.0000 0.0000 34 0.06790 0.0 0.0 -17.02773 -17.02773 -17.02773 -16.95984 0.0000 0.0000 0.0000 0.0000 35 0.05332 0.0 0.0 -17.06121 -17.06121 -17.06121 -17.00789 0.0000 0.0000 0.0000 0.0000 36 0.04166 0.0 0.0 -17.08720 -17.08720 -17.08720 -17.04554 0.0000 0.0000 0.0000 0.0000 37 0.03241 0.0 0.0 -17.10729 -17.10729 -17.10729 -17.07488 0.0000 0.0000 0.0000 0.0000 38 0.02512 0.0 0.0 -17.12277 -17.12277 -17.12277 -17.09766 0.0000 0.0000 0.0000 0.0000 39 0.01941 0.0 0.0 -17.13469 -17.13469 -17.13469 -17.11528 0.0000 0.0000 0.0000 0.0000 40 0.01497 0.0 0.0 -17.14387 -17.14387 -17.14387 -17.12889 0.0000 0.0000 0.0000 0.0000 41 0.01155 0.0 0.0 -17.15093 -17.15093 -17.15093 -17.13938 0.0000 0.0000 0.0000 0.0000 42 0.00892 0.0 0.0 -17.15639 -17.15639 -17.15639 -17.14747 0.0000 0.0000 0.0000 0.0000 43 0.00690 0.0 0.0 -17.16063 -17.16063 -17.16063 -17.15372 0.0000 0.0000 0.0000 0.0000 44 0.00537 0.0 0.0 -17.16394 -17.16394 -17.16394 -17.15857 0.0000 0.0000 0.0000 0.0000 45 0.00419 0.0 0.0 -17.16655 -17.16655 -17.16655 -17.16236 0.0000 0.0000 0.0000 0.0000 46 0.00330 0.0 0.0 -17.16862 -17.16862 -17.16862 -17.16532 0.0000 0.0000 0.0000 0.0000 47 0.00261 0.0 0.0 -17.17028 -17.17028 -17.17028 -17.16767 0.0000 0.0000 0.0000 0.0000 48 0.00209 0.0 0.0 -17.17162 -17.17162 -17.17162 -17.16953 0.0000 0.0000 0.0000 0.0000 49 0.00169 0.0 0.0 -17.17271 -17.17271 -17.17271 -17.17103 0.0000 0.0000 0.0000 0.0000 50 0.00137 0.0 0.0 -17.17361 -17.17361 -17.17361 -17.17224 0.0000 0.0000 0.0000 0.0000 51 0.00113 0.0 0.0 -17.17436 -17.17436 -17.17436 -17.17323 0.0000 0.0000 0.0000 0.0000 52 0.00093 0.0 0.0 -17.17498 -17.17498 -17.17498 -17.17405 0.0000 0.0000 0.0000 0.0000 53 0.00078 0.0 0.0 -17.17550 -17.17550 -17.17550 -17.17472 0.0000 0.0000 0.0000 0.0000 54 0.00065 0.0 0.0 -17.17594 -17.17594 -17.17594 -17.17529 0.0000 0.0000 0.0000 0.0000 55 0.00054 0.0 0.0 -17.17631 -17.17631 -17.17631 -17.17576 0.0000 0.0000 0.0000 0.0000 56 0.00046 0.0 0.0 -17.17662 -17.17662 -17.17662 -17.17616 0.0000 0.0000 0.0000 0.0000 57 0.00039 0.0 0.0 -17.17688 -17.17688 -17.17688 -17.17650 0.0000 0.0000 0.0000 0.0000 58 0.00033 0.0 0.0 -17.17711 -17.17711 -17.17711 -17.17678 0.0000 0.0000 0.0000 0.0000 59 0.00028 0.0 0.0 -17.17730 -17.17730 -17.17730 -17.17702 0.0000 0.0000 0.0000 0.0000 60 0.00024 0.0 0.0 -17.17746 -17.17746 -17.17746 -17.17723 0.0000 0.0000 0.0000 0.0000 61 0.00020 0.0 0.0 -17.17760 -17.17760 -17.17760 -17.17740 0.0000 0.0000 0.0000 0.0000 62 0.00017 0.0 0.0 -17.17772 -17.17772 -17.17772 -17.17755 0.0000 0.0000 0.0000 0.0000 63 0.00015 0.0 0.0 -17.17782 -17.17782 -17.17782 -17.17767 0.0000 0.0000 0.0000 0.0000 64 0.00012 0.0 0.0 -17.17791 -17.17791 -17.17791 -17.17778 0.0000 0.0000 0.0000 0.0000 65 0.00011 0.0 0.0 -17.17798 -17.17798 -17.17798 -17.17787 0.0000 0.0000 0.0000 0.0000 66 0.00009 0.0 0.0 -17.17804 -17.17804 -17.17804 -17.17795 0.0000 0.0000 0.0000 0.0000 67 0.00008 0.0 0.0 -17.17810 -17.17810 -17.17810 -17.17802 0.0000 0.0000 0.0000 0.0000 68 0.00007 0.0 0.0 -17.17814 -17.17814 -17.17814 -17.17808 0.0000 0.0000 0.0000 0.0000 69 0.00006 0.0 0.0 -17.17818 -17.17818 -17.17818 -17.17813 0.0000 0.0000 0.0000 0.0000 70 0.00005 0.0 0.0 -17.17822 -17.17822 -17.17822 -17.17817 0.0000 0.0000 0.0000 0.0000 71 0.00004 0.0 0.0 -17.17824 -17.17824 -17.17824 -17.17820 0.0000 0.0000 0.0000 0.0000 72 0.00004 0.0 0.0 -17.17827 -17.17827 -17.17827 -17.17823 0.0000 0.0000 0.0000 0.0000 73 0.00003 0.0 0.0 -17.17829 -17.17829 -17.17829 -17.17826 0.0000 0.0000 0.0000 0.0000 74 0.00003 0.0 0.0 -17.17831 -17.17831 -17.17831 -17.17828 0.0000 0.0000 0.0000 0.0000 75 0.00002 0.0 0.0 -17.17832 -17.17832 -17.17832 -17.17830 0.0000 0.0000 0.0000 0.0000 76 0.00002 0.0 0.0 -17.17834 -17.17834 -17.17834 -17.17832 0.0000 0.0000 0.0000 0.0000 77 0.00002 0.0 0.0 -17.17835 -17.17835 -17.17835 -17.17833 0.0000 0.0000 0.0000 0.0000 78 0.00001 0.0 0.0 -17.17836 -17.17836 -17.17836 -17.17834 0.0000 0.0000 0.0000 0.0000 79 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 80 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 81 0.00001 0.0 0.0 -17.17838 -17.17838 -17.17838 -17.17837 0.0000 0.0000 0.0000 0.0000 82 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 83 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 84 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17839 0.0000 0.0000 0.0000 0.0000 85 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17839 0.0000 0.0000 0.0000 0.0000 86 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 87 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 88 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17840 0.0000 0.0000 0.0000 0.0000 89 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 90 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 91 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 92 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 93 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 94 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 95 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 96 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 97 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 98 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 99 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 total energy = -17.17842 Hartree a.u. kinetic energy = 12.58528 Hartree a.u. electrostatic energy = -18.19051 Hartree a.u. esr = 0.14128 Hartree a.u. eself = 18.94976 Hartree a.u. pseudopotential energy = -9.32929 Hartree a.u. n-l pseudopotential energy = 1.95843 Hartree a.u. exchange-correlation energy = -4.20234 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.73 -12.71 -8.94 -6.91 Allocated memory (kb) = 23536 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.1167 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -0.21050589 0.02998249 -0.00360890 0.02998249 -0.21060143 -0.00234024 -0.00360890 -0.00234024 -0.08844614 ATOMIC_POSITIONS O 0.990000E-02 0.990000E-02 0.000000E+00 H 0.183250E+01 -0.224300E+00 -0.100000E-03 H -0.224300E+00 0.183250E+01 0.200000E-03 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): O 0.235873E-02 0.235085E-02 0.270774E-03 H -0.242591E-02 0.605181E-03 0.162770E-03 H 0.607669E-03 -0.241643E-02 0.100089E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00E+00 0.0000E+00 2 0.00E+00 0.0000E+00 100 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 writing restart file: /home/akohlmey/compile/espresso-qmmm/tmp//h2o_51.save restart file written in 0.150 sec. Averaged Physical Quantities accumulated this run ekinc : 0.44687 0.44687 (AU) ekin : 11.30009 11.30009 (AU) epot : -28.24112 -28.24112 (AU) total energy : -14.77337 -14.77337 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -14.77337 -14.77337 (AU) econs : -14.77337 -14.77337 (AU) pressure : 7.21895 7.21895 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 0.78s CPU 1.64s WALL ( 1 calls) main_loop : 12.79s CPU 27.93s WALL ( 100 calls) Called by main_loop: move_electro : 12.51s CPU 27.27s WALL ( 100 calls) ortho : 0.19s CPU 0.43s WALL ( 101 calls) updatc : 0.01s CPU 0.03s WALL ( 101 calls) strucf : 0.00s CPU 0.00s WALL ( 1 calls) calbec : 0.01s CPU 0.01s WALL ( 102 calls) Called by move_electrons: rhoofr : 1.81s CPU 3.74s WALL ( 101 calls) vofrho : 9.53s CPU 21.05s WALL ( 101 calls) dforce : 1.21s CPU 2.55s WALL ( 202 calls) calphi : 0.00s CPU 0.01s WALL ( 101 calls) nlfl : 0.01s CPU 0.01s WALL ( 101 calls) Called by ortho: ortho_iter : 0.09s CPU 0.21s WALL ( 101 calls) rsg : 0.04s CPU 0.10s WALL ( 101 calls) rhoset : 0.03s CPU 0.05s WALL ( 101 calls) sigset : 0.01s CPU 0.03s WALL ( 101 calls) tauset : 0.02s CPU 0.04s WALL ( 101 calls) Small boxes: Low-level routines: prefor : 0.00s CPU 0.00s WALL ( 101 calls) nlfq : 0.03s CPU 0.09s WALL ( 101 calls) nlsm1 : 0.01s CPU 0.01s WALL ( 102 calls) nlsm2 : 0.02s CPU 0.08s WALL ( 101 calls) fft : 3.07s CPU 8.08s WALL ( 808 calls) ffts : 0.77s CPU 1.62s WALL ( 202 calls) fftw : 1.68s CPU 3.69s WALL ( 606 calls) fft_scatter : 2.03s CPU 9.68s WALL ( 1616 calls) betagx : 0.26s CPU 0.52s WALL ( 1 calls) qradx : 0.00s CPU 0.00s WALL ( 1 calls) gram : 0.00s CPU 0.00s WALL ( 1 calls) nlinit : 0.64s CPU 1.33s WALL ( 1 calls) init_dim : 0.03s CPU 0.07s WALL ( 1 calls) newnlinit : 0.01s CPU 0.07s WALL ( 1 calls) from_scratch : 0.10s CPU 0.23s WALL ( 1 calls) ortho_iter : 0.09s CPU 0.21s WALL ( 101 calls) CP : 13.65s CPU 29.76s WALL This run was terminated on: 11:52:54 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= rank 1 return value is: 0 rank 5 return value is: 0 rank 0 return value is: 0 rank 3 return value is: 0 rank 6 return value is: 0 rank 7 return value is: 0 rank 4 return value is: 0 rank 2 return value is: 0 espresso-5.1/COUPLE/tests/metal.pw.f-0.ref0000644000175000017500000002534112341373026016247 0ustar mbamba Calling PW library interface with these flags: communicator index: 3 communicator size: 8 nimage: 1 npot: 1 npool: 2 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/metal.pw.in" Program PWSCF v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:51:40 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 8 processors K-points division: npool = 2 R & G space division: proc/nbgrp/npool/nimage = 4 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/metal.pw.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: scalapack distributed-memory algorithm (size of sub-group: 2* 2 procs) Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 30 30 9 217 217 41 Max 31 31 10 218 218 44 Sum 121 121 37 869 869 169 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/akohlmey/compile/espresso-qmmm/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.00 Mb ( 29, 6) NL pseudopotentials 0.00 Mb ( 29, 4) Each V/rho on FFT grid 0.01 Mb ( 900) Each G-vector array 0.00 Mb ( 217) G-vector shells 0.00 Mb ( 30) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.01 Mb ( 29, 24) Each subspace H/S matrix 0.00 Mb ( 12, 12) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.11 Mb ( 900, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs + 2 random wfc total cpu time spent up to now is 0.1 secs per-process dynamical memory: 3.1 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.2 total cpu time spent up to now is 0.3 secs total energy = -4.18547350 Ry Harris-Foulkes estimate = -4.18624124 Ry estimated scf accuracy < 0.00592498 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -4.18546703 Ry Harris-Foulkes estimate = -4.18549537 Ry estimated scf accuracy < 0.00046569 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-05, avg # of iterations = 1.2 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7428 16.7431 20.1796 20.1796 23.2680 24.1724 k = 0.1250 0.1250 0.3750 ( 105 PWs) bands (ev): -1.5642 13.6751 17.3099 18.8472 20.1257 22.7028 k = 0.1250 0.1250 0.6250 ( 102 PWs) bands (ev): 0.7488 11.5557 13.9822 15.3803 16.8437 20.9947 k = 0.1250 0.1250 0.8750 ( 104 PWs) bands (ev): 4.0828 8.6646 10.5472 14.4194 15.7421 20.0604 k = 0.1250 0.3750 0.3750 ( 100 PWs) bands (ev): -0.4004 10.5636 15.0575 20.2794 22.2922 22.3024 k = 0.1250 0.3750 0.6250 ( 103 PWs) bands (ev): 1.8826 8.4273 12.9757 15.1047 21.3122 23.4591 k = 0.1250 0.3750 0.8750 ( 104 PWs) bands (ev): 5.1681 7.3418 9.7864 12.0728 20.3592 24.5663 k = 0.1250 0.6250 0.6250 ( 101 PWs) bands (ev): 4.1109 6.2842 10.9033 16.3672 18.2373 26.3764 k = 0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7475 7.4153 19.3070 19.3070 21.3017 21.3022 k = 0.3750 0.3750 0.6250 ( 103 PWs) bands (ev): 3.0033 5.2361 16.0323 17.3399 19.1721 23.3127 the Fermi energy is 8.3513 ev ! total energy = -4.18546970 Ry Harris-Foulkes estimate = -4.18546962 Ry estimated scf accuracy < 0.00000026 Ry The total energy is the sum of the following terms: one-electron contribution = 2.94161250 Ry hartree contribution = 0.01022684 Ry xc contribution = -1.63496634 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.00050817 Ry convergence has been achieved in 3 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.54 -0.00009886 0.00000000 0.00000000 -14.54 0.00 0.00 0.00000000 -0.00009886 -0.00000000 0.00 -14.54 -0.00 0.00000000 -0.00000000 -0.00009886 0.00 -0.00 -14.54 Writing output data file pwscf.save init_run : 0.02s CPU 0.05s WALL ( 1 calls) electrons : 0.10s CPU 0.24s WALL ( 1 calls) stress : 0.00s CPU 0.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.02s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.09s CPU 0.22s WALL ( 4 calls) sum_band : 0.00s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 50 calls) cegterg : 0.08s CPU 0.18s WALL ( 20 calls) Called by *egterg: h_psi : 0.01s CPU 0.05s WALL ( 63 calls) g_psi : 0.00s CPU 0.00s WALL ( 38 calls) cdiaghg : 0.06s CPU 0.12s WALL ( 53 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 63 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 68 calls) fft : 0.00s CPU 0.00s WALL ( 20 calls) fftw : 0.01s CPU 0.05s WALL ( 798 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) Parallel routines fft_scatter : 0.00s CPU 0.04s WALL ( 818 calls) PWSCF : 0.21s CPU 0.51s WALL This run was terminated on: 11:51:40 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= Call to libpwscf finished with exit status 0 espresso-5.1/COUPLE/tests/metal.pw.in0000755000175000017500000000134512341373026015521 0ustar mbamba &control calculation='scf' tstress=.true. / &system ibrav=2, celldm(1) =7.50, nat=1, ntyp=1, ecutwfc =15.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 / &electrons / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS (alat) Al 0.00 0.00 0.00 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/COUPLE/tests/metal.pw.c-2.ref0000644000175000017500000002551512341373026016251 0ustar mbamba rank 6 of 7 is reserved Calling PW library interface with these flags: communicator index: 3 communicator size: 6 nimage: 1 npot: 1 npool: 1 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/metal.pw.in" rank 7 of 7 is reserved Program PWSCF v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:51:44 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 6 processors R & G space division: proc/nbgrp/npool/nimage = 6 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/metal.pw.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: scalapack distributed-memory algorithm (size of sub-group: 2* 2 procs) Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 20 20 6 144 144 27 Max 21 21 7 146 146 30 Sum 121 121 37 869 869 169 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/akohlmey/compile/espresso-qmmm/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.00 Mb ( 17, 6) NL pseudopotentials 0.00 Mb ( 17, 4) Each V/rho on FFT grid 0.01 Mb ( 675) Each G-vector array 0.00 Mb ( 146) G-vector shells 0.00 Mb ( 29) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.01 Mb ( 17, 24) Each subspace H/S matrix 0.00 Mb ( 12, 12) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.08 Mb ( 675, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs + 2 random wfc total cpu time spent up to now is 0.1 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.4 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.2 total cpu time spent up to now is 0.2 secs total energy = -4.18547340 Ry Harris-Foulkes estimate = -4.18624124 Ry estimated scf accuracy < 0.00592530 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -4.18546703 Ry Harris-Foulkes estimate = -4.18549535 Ry estimated scf accuracy < 0.00046562 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-05, avg # of iterations = 1.2 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7428 16.7431 20.1796 20.1796 23.2697 24.1724 k = 0.1250 0.1250 0.3750 ( 105 PWs) bands (ev): -1.5642 13.6751 17.3099 18.8471 20.1257 22.7028 k = 0.1250 0.1250 0.6250 ( 102 PWs) bands (ev): 0.7488 11.5557 13.9822 15.3803 16.8437 20.9947 k = 0.1250 0.1250 0.8750 ( 104 PWs) bands (ev): 4.0828 8.6646 10.5472 14.4194 15.7420 20.0604 k = 0.1250 0.3750 0.3750 ( 100 PWs) bands (ev): -0.4004 10.5636 15.0575 20.2794 22.2921 22.3025 k = 0.1250 0.3750 0.6250 ( 103 PWs) bands (ev): 1.8826 8.4273 12.9757 15.1047 21.3122 23.4590 k = 0.1250 0.3750 0.8750 ( 104 PWs) bands (ev): 5.1681 7.3418 9.7864 12.0728 20.3592 24.5664 k = 0.1250 0.6250 0.6250 ( 101 PWs) bands (ev): 4.1109 6.2842 10.9033 16.3672 18.2373 26.3752 k = 0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7475 7.4153 19.3070 19.3070 21.3017 21.3022 k = 0.3750 0.3750 0.6250 ( 103 PWs) bands (ev): 3.0033 5.2361 16.0323 17.3399 19.1721 23.3128 the Fermi energy is 8.3513 ev ! total energy = -4.18546970 Ry Harris-Foulkes estimate = -4.18546962 Ry estimated scf accuracy < 0.00000026 Ry The total energy is the sum of the following terms: one-electron contribution = 2.94161252 Ry hartree contribution = 0.01022703 Ry xc contribution = -1.63496655 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.00050817 Ry convergence has been achieved in 3 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.55 -0.00009888 0.00000000 -0.00000000 -14.55 0.00 -0.00 0.00000000 -0.00009888 0.00000000 0.00 -14.55 0.00 0.00000000 0.00000000 -0.00009888 0.00 0.00 -14.55 Writing output data file pwscf.save init_run : 0.01s CPU 0.03s WALL ( 1 calls) electrons : 0.13s CPU 0.25s WALL ( 1 calls) stress : 0.00s CPU 0.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.02s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.12s CPU 0.23s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 100 calls) cegterg : 0.12s CPU 0.23s WALL ( 40 calls) Called by *egterg: h_psi : 0.03s CPU 0.06s WALL ( 128 calls) g_psi : 0.00s CPU 0.00s WALL ( 78 calls) cdiaghg : 0.08s CPU 0.14s WALL ( 108 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 128 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 138 calls) fft : 0.00s CPU 0.00s WALL ( 20 calls) fftw : 0.03s CPU 0.06s WALL ( 1580 calls) davcio : 0.00s CPU 0.00s WALL ( 10 calls) Parallel routines fft_scatter : 0.02s CPU 0.05s WALL ( 1600 calls) PWSCF : 0.23s CPU 0.40s WALL This run was terminated on: 11:51:45 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= rank 0 return value is: 0 rank 3 return value is: 0 rank 4 return value is: 0 rank 5 return value is: 0 rank 2 return value is: 0 rank 1 return value is: 0 espresso-5.1/COUPLE/tests/check-couple.j0000755000175000017500000003157412341373026016166 0ustar mbamba#!/bin/sh # Automated checks for coupling to QE codes # . ../../environment_variables # # You shouldn't need to modify anything below this line. # # # this takes some existing test inputs and primarily checks # that the wrappers for fortran and c work correctly with # different sets of processor counts and a subcommunicator. # # taken from examples - not sure it is really needed if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi ESPRESSO_ROOT=`cd ../../ ; pwd` ESPRESSO_TMPDIR=$ESPRESSO_ROOT/tmp/ ESPRESSO_PSEUDO=$ESPRESSO_ROOT/pseudo/ # no need to specify outdir and pseudo_dir in all *.in files export ESPRESSO_TMPDIR ESPRESSO_PSEUDO if test ! -d $ESPRESSO_TMPDIR then mkdir $ESPRESSO_TMPDIR fi # this is the current directory, where the test is executed TESTDIR=`pwd` # With no arguments, checks all *.in files # With an argument, checks files (ending with .in) matching the argument if test $# = 0 then pwfiles=`/bin/ls *.pw.in` cpfiles=`/bin/ls *.cp.in` else pwfiles=`/bin/ls $*| grep "\.pw.in$"` cpfiles=`/bin/ls $*| grep "\.cp.in$"` fi ######################################################################## # function to get pseudopotentials from the web if missing ######################################################################## get_pp () { ppfiles=`grep UPF $1.in | awk '{print $3}'` for ppfile in $ppfiles do if ! test -f $ESPRESSO_PSEUDO/$ppfile ; then $ECHO "Downloading $ppfile to $ESPRESSO_PSEUDO...\c" $WGET $ESPRESSO_PSEUDO/$ppfile $NETWORK_PSEUDO/$ppfile 2> /dev/null if test $? != 0; then $ECHO "failed!" $ECHO "test $1 will not be executed" # status=1 else $ECHO "success" # status=0 fi fi done } ######################################################################## # function to test scf calculations - usage: check_scf "file prefix" ######################################################################## check_scf () { # get reference total energy (cut to 6 significant digits) e0=`grep ! $1.ref | tail -1 | awk '{printf "%12.6f\n", $5}'` # get reference number of scf iterations n0=`grep 'convergence has' $1.ref | tail -1 | awk '{print $6}'` # get reference initial force (cut to 4 significant digits) f0=`grep "Total force" $1.ref | head -1 | awk '{printf "%8.4f\n", $4}'` # get reference pressure p0=`grep "P= " $1.ref | tail -1 | awk '{print $6}'` # # note that only the final energy, pressure, number of iterations, # and only the initial force are tested - hopefully this should # cover the various MD and optimization cases as well as simple scf # e1=`grep ! $1.out | tail -1 | awk '{printf "%12.6f\n", $5}'` n1=`grep 'convergence has' $1.out | tail -1 | awk '{print $6}'` f1=`grep "Total force" $1.out | head -1 | awk '{printf "%8.4f\n", $4}'` p1=`grep "P= " $1.out | tail -1 | awk '{print $6}'` # if test "$e1" = "$e0" then if test "$n1" = "$n0" then if test "$f1" = "$f0" then if test "$p1" = "$p0" then $ECHO "passed" fi fi fi fi if test "$e1" != "$e0" then $ECHO "discrepancy in total energy detected" $ECHO "Reference: $e0, You got: $e1" fi if test "$n1" != "$n0" then $ECHO "discrepancy in number of scf iterations detected" $ECHO "Reference: $n0, You got: $n1" fi if test "$f1" != "$f0" then $ECHO "discrepancy in force detected" $ECHO "Reference: $f0, You got: $f1" fi if test "$p1" != "$p0" then $ECHO "discrepancy in pressure detected" $ECHO "Reference: $p0, You got: $p1" fi } ######################################################################## # function to test nscf calculations - usage: check_nscf "file prefix" "number" ######################################################################## check_nscf () { # get reference Fermi energy ef0=`grep Fermi $1.ref$2 | awk '{print $5}'` # get reference HOMO and LUMO eh0=`grep "highest occupied" $1.ref$2 | awk '{print $7}'` el0=`grep "highest occupied" $1.ref$2 | awk '{print $8}'` # get total polarization (for Berry's phase calculation) tf0=`grep " P = " $1.ref$2 | head -1 | awk '{printf "%7.5f", $3}'` # ef1=`grep Fermi $name.out$n | awk '{print $5}'` eh1=`grep "highest occupied" $1.out$2 | awk '{print $7}'` el1=`grep "highest occupied" $1.out$2 | awk '{print $8}'` tf1=`grep " P = " $1.out$2 | head -1 | awk '{printf "%7.5f", $3}'` # if test "$ef1" = "$ef0" then if test "$eh1" = "$eh0" then if test "$el1" = "$el0" then if test "$tf1" = "$tf0" then $ECHO "passed" fi fi fi fi if test "$ef1" != "$ef0" then $ECHO "discrepancy in Fermi energy detected" $ECHO "Reference: $ef0, You got: $ef1" fi if test "$eh1" != "$eh0" then $ECHO "discrepancy in HOMO detected" $ECHO "Reference: $eh0, You got: $eh1" fi if test "$el1" != "$el0" then $ECHO "discrepancy in LUMO detected" $ECHO "Reference: $el0, You got: $el1" fi if test "$tf1" != "$tf0" then $ECHO "discrepancy in polarization detected" $ECHO "Reference: $tf0, You got: $tf1" fi } ######################################################################## # function to test cp calculations - usage: check_cp "file prefix" ######################################################################## check_cp () { fname=$1.ref$2 # get reference total energy (cut to 6 significant digits) e0=`grep "total energy =" $fname | tail -1 | awk '{printf "%18.6f\n", $4}'` # get reference number for stress matrix s0=`grep -A 3 "Total stress" $fname | tail -3 | tr '\n' ' ' | awk '{ printf "%-18.8f", $1+$2+$3+$4+$5+$6+$7+$8+$9 }'` # get reference eigenvalues v0u=`grep -A 2 "Eigenvalues (eV).*spin.*1" $fname | tail -1 | awk '{ for(i=1;i<=NF;i++) { v=v+$i; } print v }'` v0d=`grep -A 2 "Eigenvalues (eV).*spin.*2" $fname | tail -1 | awk '{ for(i=1;i<=NF;i++) { v=v+$i; } print v }'` # get average temperature over the step of the current execution t0=`grep -A 6 "Averaged Physical Quantities" $fname | tail -1 | awk '{ print $4 }'` # note that only the final energy, pressure, number of iterations, # and only the initial force are tested - hopefully this should # cover the various MD and optimization cases as well as simple scf # fname=$1.out$2 e1=`grep "total energy =" $fname | tail -1 | awk '{printf "%18.6f\n", $4}'` s1=`grep -A 3 "Total stress" $fname | tail -3 | tr '\n' ' ' | awk '{ printf "%-18.8f", $1+$2+$3+$4+$5+$6+$7+$8+$9 }'` v1u=`grep -A 2 "Eigenvalues (eV).*spin.*1" $fname | tail -1 | awk '{ for(i=1;i<=NF;i++) { v=v+$i; } print v }'` v1d=`grep -A 2 "Eigenvalues (eV).*spin.*2" $fname | tail -1 | awk '{ for(i=1;i<=NF;i++) { v=v+$i; } print v }'` t1=`grep -A 6 "Averaged Physical Quantities" $fname | tail -1 | awk '{ print $4 }'` # #echo $e1 #echo $s1 #echo $v1 #echo $t1 # if test "$e1" = "$e0" then if test "$s1" = "$s0" then if test "$v1u" = "$v0u" then if test "$v1u" = "$v0u" then if test "$t1" = "$t0" then $ECHO " $2 passed" fi fi fi fi fi if test "$e1" != "$e0" then $ECHO "discrepancy in total energy detected" $ECHO "Reference: $e0, You got: $e1" fi if test "$s1" != "$s0" then $ECHO "discrepancy in stress detected" $ECHO "Reference: $s0, You got: $s1" fi if test "$v1u" != "$v0u" then $ECHO "discrepancy in eigenvalues detected" $ECHO "Reference: $v0u, You got: $v1u" fi if test "$v1d" != "$v0d" then $ECHO "discrepancy in eigenvalues detected" $ECHO "Reference: $v0d, You got: $v1d" fi if test "$t1" != "$t0" then $ECHO "discrepancy in average temperature" $ECHO "Reference: $t0, You got: $t1" fi } ######################################################################## # function to get wall times - usage: get_times "file prefix" ######################################################################## get_times () { # convert from "1h23m45.6s" to seconds # the following line prevents cases such as "2m 7.5s" grep 'WALL$' $1.ref | sed 's/m /m0/' > $1.tmp # in order to get cpu instead of wall time, replace $3 to $5 tref=`awk '{ str = $5; h = m = s = 0; if (split(str, x, "h") == 2) { h = x[1]; str = x[2]; } if (split(str, x, "m") == 2) { m = x[1]; str = x[2]; } if (split(str, x, "s") == 2) { s = x[1]; str = x[2]; } t += h * 3600 + m * 60 + s; } END { printf("%.2f\n", t); }' \ $1.tmp` # as above for file *.out grep 'WALL$' $1.out | sed 's/m /m0/' > $1.tmp tout=`awk '{ str = $5; h = m = s = 0; if (split(str, x, "h") == 2) { h = x[1]; str = x[2]; } if (split(str, x, "m") == 2) { m = x[1]; str = x[2]; } if (split(str, x, "s") == 2) { s = x[1]; str = x[2]; } t += h * 3600 + m * 60 + s; } END { printf("%.2f\n", t); }' \ $1.tmp` /bin/rm $1.tmp # accumulate data totref=`echo $totref $tref | awk '{print $1+$2}'` totout=`echo $totout $tout | awk '{print $1+$2}'` } ######################################################################## # Perform here required checks on pw.x based tests ######################################################################## for file in $pwfiles do name=`basename $file .in` get_pp $name $ECHO "Checking $name..." ### # run the code in the scratch directory # for res in 0 2 4 16 do $ECHO "f2pw.x with $res reserved MPI ranks...\c" cd $ESPRESSO_TMPDIR $PARA_PREFIX $ESPRESSO_ROOT/COUPLE/examples/f2pw.x $PARA_POSTFIX \ -i $TESTDIR/$name.in -nk 2 -ndiag 4 -nres $res > $TESTDIR/$name.f-$res.out if test $? != 0; then $ECHO "FAILED with error condition!" $ECHO "Input: $name.in, Output: $name.f-$res.out, Reference: $name.f-$res.ref" $ECHO "Aborting" exit 1 fi cd $TESTDIR ### if test -f $name.f-$res.ref ; then # reference file exists # Test for scf/relax/md/vc-relax # check_scf $name.f-$res # # extract wall time statistics # get_times $name.f-$res # else $ECHO "not checked, reference file not available " fi $ECHO "c2pw.x with $res reserved MPI ranks...\c" cd $ESPRESSO_TMPDIR $PARA_PREFIX $ESPRESSO_ROOT/COUPLE/examples/c2pw.x $PARA_POSTFIX \ -i $TESTDIR/$name.in -nk 2 -nd 4 -nres $res > $TESTDIR/$name.c-$res.out if test $? != 0; then $ECHO "FAILED with error condition!" $ECHO "Input: $name.in, Output: $name.c-$res.out, Reference: $name.c-$res.ref" $ECHO "Aborting" exit 1 fi cd $TESTDIR ### if test -f $name.c-$res.ref ; then # reference file exists # Test for scf/relax/md/vc-relax # check_scf $name.c-$res # # extract wall time statistics # get_times $name.c-$res # else $ECHO "not checked, reference file not available " fi done # done ######################################################################## # Perform here required checks on cp.x based tests ######################################################################## for file in $cpfiles do name=`basename $file .in` get_pp $name $ECHO "Checking $name..." ### # run the code in the scratch directory # for res in 0 2 4 16 do $ECHO "f2cp.x with $res reserved MPI ranks...\c" cd $ESPRESSO_TMPDIR $PARA_PREFIX $ESPRESSO_ROOT/COUPLE/examples/f2cp.x $PARA_POSTFIX \ -i $TESTDIR/$name.in -ndiag 4 -nres $res > $TESTDIR/$name.f-$res.out if test $? != 0; then $ECHO "FAILED with error condition!" $ECHO "Input: $name.in, Output: $name.f-$res.out, Reference: $name.f-$res.ref" $ECHO "Aborting" exit 1 fi cd $TESTDIR ### if test -f $name.f-$res.ref ; then # reference file exists # Test for scf/relax/md/vc-relax # check_cp $name.f-$res # # extract wall time statistics # get_times $name.f-$res # else $ECHO "not checked, reference file not available " fi $ECHO "c2cp.x with $res reserved MPI ranks...\c" cd $ESPRESSO_TMPDIR $PARA_PREFIX $ESPRESSO_ROOT/COUPLE/examples/c2cp.x $PARA_POSTFIX \ -i $TESTDIR/$name.in -nd 4 -nres $res > $TESTDIR/$name.c-$res.out if test $? != 0; then $ECHO "FAILED with error condition!" $ECHO "Input: $name.in, Output: $name.c-$res.out, Reference: $name.c-$res.ref" $ECHO "Aborting" exit 1 fi cd $TESTDIR ### if test -f $name.c-$res.ref ; then # reference file exists # Test for scf/relax/md/vc-relax # check_cp $name.c-$res # # extract wall time statistics # get_times $name.c-$res # else $ECHO "not checked, reference file not available " fi done # done $ECHO "Total wall time (s) spent in this run: " $totout $ECHO "Reference : " $totref espresso-5.1/COUPLE/tests/metal.pw.c-16.ref0000644000175000017500000000031012341373026016320 0ustar mbamba rank 5 of 7 is reserved rank 7 of 7 is reserved rank 1 of 7 is reserved rank 0 of 7 is reserved rank 2 of 7 is reserved rank 3 of 7 is reserved rank 4 of 7 is reserved rank 6 of 7 is reserved espresso-5.1/COUPLE/tests/metal.pw.f-16.ref0000644000175000017500000000060012341373026016325 0ustar mbamba Reserved CPU rank: 2 of 7 Reserved CPU rank: 5 of 7 Reserved CPU rank: 6 of 7 Reserved CPU rank: 1 of 7 Reserved CPU rank: 3 of 7 Reserved CPU rank: 7 of 7 Reserved CPU rank: 0 of 7 Reserved CPU rank: 4 of 7 espresso-5.1/COUPLE/tests/h2o-mt-blyp.cp.c-2.ref0000644000175000017500000006161512341373026017176 0ustar mbamba rank 6 of 7 is reserved rank 7 of 7 is reserved Calling CPV library interface with these flags: communicator index: 3 communicator size: 6 nimage: 1 npot: 1 npool: 1 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/h2o-mt-blyp.cp.in" Program CP v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:53:31 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 6 processors R & G space division: proc/nbgrp/npool/nimage = 6 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/h2o-mt-blyp.cp.in Job Title: Water Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/akohlmey/compile/espresso-qmmm/pseudo/O.blyp-mt.UPF file type is UPF v.1 Reading pseudopotential for specie # 2 from file : /home/akohlmey/compile/espresso-qmmm/pseudo/H.blyp-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 100 Print out every 100 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 2493.41 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 7680 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Exchange-correlation = SLA LYP B88 BLYP ( 1 3 1 3 0) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.832500 -0.224300 -0.000100 -0.224300 1.832500 0.000200 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 611 611 152 27836 27836 3468 Max 614 614 156 27842 27842 3472 Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 12 1 1 6 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 62208 Number of x-y planes for each processors: nr3l = 12 12 12 12 12 12 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 12 1 1 6 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 62208 Number of x-y planes for each processors: nr3sl = 12 12 12 12 12 12 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 83519 13918 13921 13919.83 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 83519 13918 13921 13919.83 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 10408 1734 1736 1734.67 System geometry initialization ------------------------------ Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00011 with 4 procs Constraints matrixes will be distributed block like on ortho sub-group = 2* 2 procs Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 4 2.00 2.00 2.00 2.00 formf: eself= 18.94976 formf: vps(g=0)= -0.0061912 rhops(g=0)= -0.0033232 formf: sum_g vps(g)= -4.3546661 sum_g rhops(g)= -1.0540044 formf: vps(g=0)= -0.0011639 rhops(g=0)= -0.0005539 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 1.45743 0.0 0.0 16.61845 16.61845 16.61845 18.07588 0.0000 0.0000 0.0000 0.0000 2 3.37031 0.0 0.0 12.61697 12.61697 12.61697 15.98727 0.0000 0.0000 0.0000 0.0000 3 4.81260 0.0 0.0 7.78398 7.78398 7.78398 12.59658 0.0000 0.0000 0.0000 0.0000 4 5.48116 0.0 0.0 2.96217 2.96217 2.96217 8.44333 0.0000 0.0000 0.0000 0.0000 5 5.49239 0.0 0.0 -1.45144 -1.45144 -1.45144 4.04095 0.0000 0.0000 0.0000 0.0000 6 4.83753 0.0 0.0 -4.98322 -4.98322 -4.98322 -0.14570 0.0000 0.0000 0.0000 0.0000 7 3.53392 0.0 0.0 -6.98224 -6.98224 -6.98224 -3.44832 0.0000 0.0000 0.0000 0.0000 8 2.15219 0.0 0.0 -7.72794 -7.72794 -7.72794 -5.57576 0.0000 0.0000 0.0000 0.0000 9 1.32264 0.0 0.0 -8.20443 -8.20443 -8.20443 -6.88179 0.0000 0.0000 0.0000 0.0000 10 1.04393 0.0 0.0 -8.86827 -8.86827 -8.86827 -7.82433 0.0000 0.0000 0.0000 0.0000 11 0.97593 0.0 0.0 -9.62712 -9.62712 -9.62712 -8.65119 0.0000 0.0000 0.0000 0.0000 12 0.89782 0.0 0.0 -10.30456 -10.30456 -10.30456 -9.40674 0.0000 0.0000 0.0000 0.0000 13 0.78413 0.0 0.0 -10.85644 -10.85644 -10.85644 -10.07232 0.0000 0.0000 0.0000 0.0000 14 0.68263 0.0 0.0 -11.33250 -11.33250 -11.33250 -10.64987 0.0000 0.0000 0.0000 0.0000 15 0.61986 0.0 0.0 -11.78505 -11.78505 -11.78505 -11.16519 0.0000 0.0000 0.0000 0.0000 16 0.59021 0.0 0.0 -12.23682 -12.23682 -12.23682 -11.64660 0.0000 0.0000 0.0000 0.0000 17 0.57793 0.0 0.0 -12.69056 -12.69056 -12.69056 -12.11263 0.0000 0.0000 0.0000 0.0000 18 0.57140 0.0 0.0 -13.14295 -13.14295 -13.14295 -12.57155 0.0000 0.0000 0.0000 0.0000 19 0.56508 0.0 0.0 -13.59059 -13.59059 -13.59059 -13.02551 0.0000 0.0000 0.0000 0.0000 20 0.55658 0.0 0.0 -14.03047 -14.03047 -14.03047 -13.47389 0.0000 0.0000 0.0000 0.0000 21 0.54381 0.0 0.0 -14.45812 -14.45812 -14.45812 -13.91431 0.0000 0.0000 0.0000 0.0000 22 0.52411 0.0 0.0 -14.86634 -14.86634 -14.86634 -14.34223 0.0000 0.0000 0.0000 0.0000 23 0.49509 0.0 0.0 -15.24590 -15.24590 -15.24590 -14.75082 0.0000 0.0000 0.0000 0.0000 24 0.45610 0.0 0.0 -15.58802 -15.58802 -15.58802 -15.13193 0.0000 0.0000 0.0000 0.0000 25 0.40886 0.0 0.0 -15.88687 -15.88687 -15.88687 -15.47801 0.0000 0.0000 0.0000 0.0000 26 0.35685 0.0 0.0 -16.14069 -16.14069 -16.14069 -15.78384 0.0000 0.0000 0.0000 0.0000 27 0.30407 0.0 0.0 -16.35141 -16.35141 -16.35141 -16.04734 0.0000 0.0000 0.0000 0.0000 28 0.25391 0.0 0.0 -16.52336 -16.52336 -16.52336 -16.26945 0.0000 0.0000 0.0000 0.0000 29 0.20861 0.0 0.0 -16.66194 -16.66194 -16.66194 -16.45333 0.0000 0.0000 0.0000 0.0000 30 0.16924 0.0 0.0 -16.77266 -16.77266 -16.77266 -16.60342 0.0000 0.0000 0.0000 0.0000 31 0.13600 0.0 0.0 -16.86059 -16.86059 -16.86059 -16.72459 0.0000 0.0000 0.0000 0.0000 32 0.10849 0.0 0.0 -16.93010 -16.93010 -16.93010 -16.82161 0.0000 0.0000 0.0000 0.0000 33 0.08605 0.0 0.0 -16.98483 -16.98483 -16.98483 -16.89878 0.0000 0.0000 0.0000 0.0000 34 0.06790 0.0 0.0 -17.02773 -17.02773 -17.02773 -16.95984 0.0000 0.0000 0.0000 0.0000 35 0.05332 0.0 0.0 -17.06121 -17.06121 -17.06121 -17.00789 0.0000 0.0000 0.0000 0.0000 36 0.04166 0.0 0.0 -17.08720 -17.08720 -17.08720 -17.04554 0.0000 0.0000 0.0000 0.0000 37 0.03241 0.0 0.0 -17.10729 -17.10729 -17.10729 -17.07488 0.0000 0.0000 0.0000 0.0000 38 0.02512 0.0 0.0 -17.12277 -17.12277 -17.12277 -17.09766 0.0000 0.0000 0.0000 0.0000 39 0.01941 0.0 0.0 -17.13469 -17.13469 -17.13469 -17.11528 0.0000 0.0000 0.0000 0.0000 40 0.01497 0.0 0.0 -17.14387 -17.14387 -17.14387 -17.12889 0.0000 0.0000 0.0000 0.0000 41 0.01155 0.0 0.0 -17.15093 -17.15093 -17.15093 -17.13938 0.0000 0.0000 0.0000 0.0000 42 0.00892 0.0 0.0 -17.15639 -17.15639 -17.15639 -17.14747 0.0000 0.0000 0.0000 0.0000 43 0.00690 0.0 0.0 -17.16063 -17.16063 -17.16063 -17.15372 0.0000 0.0000 0.0000 0.0000 44 0.00537 0.0 0.0 -17.16394 -17.16394 -17.16394 -17.15857 0.0000 0.0000 0.0000 0.0000 45 0.00419 0.0 0.0 -17.16655 -17.16655 -17.16655 -17.16236 0.0000 0.0000 0.0000 0.0000 46 0.00330 0.0 0.0 -17.16862 -17.16862 -17.16862 -17.16532 0.0000 0.0000 0.0000 0.0000 47 0.00261 0.0 0.0 -17.17028 -17.17028 -17.17028 -17.16767 0.0000 0.0000 0.0000 0.0000 48 0.00209 0.0 0.0 -17.17162 -17.17162 -17.17162 -17.16953 0.0000 0.0000 0.0000 0.0000 49 0.00169 0.0 0.0 -17.17271 -17.17271 -17.17271 -17.17103 0.0000 0.0000 0.0000 0.0000 50 0.00137 0.0 0.0 -17.17361 -17.17361 -17.17361 -17.17224 0.0000 0.0000 0.0000 0.0000 51 0.00113 0.0 0.0 -17.17436 -17.17436 -17.17436 -17.17323 0.0000 0.0000 0.0000 0.0000 52 0.00093 0.0 0.0 -17.17498 -17.17498 -17.17498 -17.17405 0.0000 0.0000 0.0000 0.0000 53 0.00078 0.0 0.0 -17.17550 -17.17550 -17.17550 -17.17472 0.0000 0.0000 0.0000 0.0000 54 0.00065 0.0 0.0 -17.17594 -17.17594 -17.17594 -17.17529 0.0000 0.0000 0.0000 0.0000 55 0.00054 0.0 0.0 -17.17631 -17.17631 -17.17631 -17.17576 0.0000 0.0000 0.0000 0.0000 56 0.00046 0.0 0.0 -17.17662 -17.17662 -17.17662 -17.17616 0.0000 0.0000 0.0000 0.0000 57 0.00039 0.0 0.0 -17.17688 -17.17688 -17.17688 -17.17650 0.0000 0.0000 0.0000 0.0000 58 0.00033 0.0 0.0 -17.17711 -17.17711 -17.17711 -17.17678 0.0000 0.0000 0.0000 0.0000 59 0.00028 0.0 0.0 -17.17730 -17.17730 -17.17730 -17.17702 0.0000 0.0000 0.0000 0.0000 60 0.00024 0.0 0.0 -17.17746 -17.17746 -17.17746 -17.17723 0.0000 0.0000 0.0000 0.0000 61 0.00020 0.0 0.0 -17.17760 -17.17760 -17.17760 -17.17740 0.0000 0.0000 0.0000 0.0000 62 0.00017 0.0 0.0 -17.17772 -17.17772 -17.17772 -17.17755 0.0000 0.0000 0.0000 0.0000 63 0.00015 0.0 0.0 -17.17782 -17.17782 -17.17782 -17.17767 0.0000 0.0000 0.0000 0.0000 64 0.00012 0.0 0.0 -17.17791 -17.17791 -17.17791 -17.17778 0.0000 0.0000 0.0000 0.0000 65 0.00011 0.0 0.0 -17.17798 -17.17798 -17.17798 -17.17787 0.0000 0.0000 0.0000 0.0000 66 0.00009 0.0 0.0 -17.17804 -17.17804 -17.17804 -17.17795 0.0000 0.0000 0.0000 0.0000 67 0.00008 0.0 0.0 -17.17810 -17.17810 -17.17810 -17.17802 0.0000 0.0000 0.0000 0.0000 68 0.00007 0.0 0.0 -17.17814 -17.17814 -17.17814 -17.17808 0.0000 0.0000 0.0000 0.0000 69 0.00006 0.0 0.0 -17.17818 -17.17818 -17.17818 -17.17813 0.0000 0.0000 0.0000 0.0000 70 0.00005 0.0 0.0 -17.17822 -17.17822 -17.17822 -17.17817 0.0000 0.0000 0.0000 0.0000 71 0.00004 0.0 0.0 -17.17824 -17.17824 -17.17824 -17.17820 0.0000 0.0000 0.0000 0.0000 72 0.00004 0.0 0.0 -17.17827 -17.17827 -17.17827 -17.17823 0.0000 0.0000 0.0000 0.0000 73 0.00003 0.0 0.0 -17.17829 -17.17829 -17.17829 -17.17826 0.0000 0.0000 0.0000 0.0000 74 0.00003 0.0 0.0 -17.17831 -17.17831 -17.17831 -17.17828 0.0000 0.0000 0.0000 0.0000 75 0.00002 0.0 0.0 -17.17832 -17.17832 -17.17832 -17.17830 0.0000 0.0000 0.0000 0.0000 76 0.00002 0.0 0.0 -17.17834 -17.17834 -17.17834 -17.17832 0.0000 0.0000 0.0000 0.0000 77 0.00002 0.0 0.0 -17.17835 -17.17835 -17.17835 -17.17833 0.0000 0.0000 0.0000 0.0000 78 0.00001 0.0 0.0 -17.17836 -17.17836 -17.17836 -17.17834 0.0000 0.0000 0.0000 0.0000 79 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 80 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 81 0.00001 0.0 0.0 -17.17838 -17.17838 -17.17838 -17.17837 0.0000 0.0000 0.0000 0.0000 82 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 83 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 84 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17839 0.0000 0.0000 0.0000 0.0000 85 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17839 0.0000 0.0000 0.0000 0.0000 86 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 87 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 88 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17840 0.0000 0.0000 0.0000 0.0000 89 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 90 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 91 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 92 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 93 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 94 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 95 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 96 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 97 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 98 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 99 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 total energy = -17.17842 Hartree a.u. kinetic energy = 12.58528 Hartree a.u. electrostatic energy = -18.19051 Hartree a.u. esr = 0.14128 Hartree a.u. eself = 18.94976 Hartree a.u. pseudopotential energy = -9.32929 Hartree a.u. n-l pseudopotential energy = 1.95843 Hartree a.u. exchange-correlation energy = -4.20234 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.73 -12.71 -8.94 -6.91 Allocated memory (kb) = 27472 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.1167 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -0.21050589 0.02998249 -0.00360890 0.02998249 -0.21060143 -0.00234024 -0.00360890 -0.00234024 -0.08844614 ATOMIC_POSITIONS O 0.990000E-02 0.990000E-02 0.000000E+00 H 0.183250E+01 -0.224300E+00 -0.100000E-03 H -0.224300E+00 0.183250E+01 0.200000E-03 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): O 0.235873E-02 0.235085E-02 0.270774E-03 H -0.242591E-02 0.605181E-03 0.162770E-03 H 0.607669E-03 -0.241643E-02 0.100089E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00E+00 0.0000E+00 2 0.00E+00 0.0000E+00 100 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 writing restart file: /home/akohlmey/compile/espresso-qmmm/tmp//h2o_51.save restart file written in 0.136 sec. Averaged Physical Quantities accumulated this run ekinc : 0.44687 0.44687 (AU) ekin : 11.30009 11.30009 (AU) epot : -28.24112 -28.24112 (AU) total energy : -14.77337 -14.77337 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -14.77337 -14.77337 (AU) econs : -14.77337 -14.77337 (AU) pressure : 7.21895 7.21895 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 0.89s CPU 1.58s WALL ( 1 calls) main_loop : 17.68s CPU 33.27s WALL ( 100 calls) Called by main_loop: move_electro : 17.38s CPU 32.63s WALL ( 100 calls) ortho : 0.18s CPU 0.38s WALL ( 101 calls) updatc : 0.02s CPU 0.05s WALL ( 101 calls) strucf : 0.00s CPU 0.00s WALL ( 1 calls) calbec : 0.01s CPU 0.02s WALL ( 102 calls) Called by move_electrons: rhoofr : 2.41s CPU 4.35s WALL ( 101 calls) vofrho : 13.47s CPU 25.50s WALL ( 101 calls) dforce : 1.62s CPU 3.00s WALL ( 202 calls) calphi : 0.01s CPU 0.01s WALL ( 101 calls) nlfl : 0.00s CPU 0.01s WALL ( 101 calls) Called by ortho: ortho_iter : 0.08s CPU 0.17s WALL ( 101 calls) rsg : 0.04s CPU 0.09s WALL ( 101 calls) rhoset : 0.02s CPU 0.05s WALL ( 101 calls) sigset : 0.02s CPU 0.04s WALL ( 101 calls) tauset : 0.02s CPU 0.03s WALL ( 101 calls) Small boxes: Low-level routines: prefor : 0.00s CPU 0.00s WALL ( 101 calls) nlfq : 0.03s CPU 0.08s WALL ( 101 calls) nlsm1 : 0.01s CPU 0.02s WALL ( 102 calls) nlsm2 : 0.03s CPU 0.08s WALL ( 101 calls) fft : 4.16s CPU 8.69s WALL ( 808 calls) ffts : 1.05s CPU 1.91s WALL ( 202 calls) fftw : 2.25s CPU 4.24s WALL ( 606 calls) fft_scatter : 2.70s CPU 9.94s WALL ( 1616 calls) betagx : 0.25s CPU 0.34s WALL ( 1 calls) qradx : 0.00s CPU 0.00s WALL ( 1 calls) gram : 0.00s CPU 0.00s WALL ( 1 calls) nlinit : 0.66s CPU 1.12s WALL ( 1 calls) init_dim : 0.03s CPU 0.06s WALL ( 1 calls) newnlinit : 0.03s CPU 0.18s WALL ( 1 calls) from_scratch : 0.20s CPU 0.39s WALL ( 1 calls) ortho_iter : 0.08s CPU 0.17s WALL ( 101 calls) CP : 18.66s CPU 35.03s WALL This run was terminated on: 11:54: 6 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= rank 1 return value is: 0 rank 4 return value is: 0 rank 5 return value is: 0 rank 0 return value is: 0 rank 2 return value is: 0 rank 3 return value is: 0 espresso-5.1/COUPLE/tests/h2o-mt-blyp.cp.c-4.ref0000644000175000017500000006156512341373026017204 0ustar mbamba rank 5 of 7 is reserved rank 4 of 7 is reserved Calling CPV library interface with these flags: communicator index: 3 communicator size: 4 nimage: 1 npot: 1 npool: 1 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/h2o-mt-blyp.cp.in" rank 7 of 7 is reserved rank 6 of 7 is reserved Program CP v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:54:37 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 4 processors R & G space division: proc/nbgrp/npool/nimage = 4 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/h2o-mt-blyp.cp.in Job Title: Water Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/akohlmey/compile/espresso-qmmm/pseudo/O.blyp-mt.UPF file type is UPF v.1 Reading pseudopotential for specie # 2 from file : /home/akohlmey/compile/espresso-qmmm/pseudo/H.blyp-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 100 Print out every 100 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 2493.41 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 7680 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Exchange-correlation = SLA LYP B88 BLYP ( 1 3 1 3 0) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.832500 -0.224300 -0.000100 -0.224300 1.832500 0.000200 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 917 917 227 41757 41757 5201 Max 920 920 230 41764 41764 5206 Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 18 1 1 4 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 93312 Number of x-y planes for each processors: nr3l = 18 18 18 18 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 18 1 1 4 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 93312 Number of x-y planes for each processors: nr3sl = 18 18 18 18 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 83519 20879 20882 20879.75 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 83519 20879 20882 20879.75 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 10408 2601 2603 2602.00 System geometry initialization ------------------------------ Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00002 with 4 procs Constraints matrixes will be distributed block like on ortho sub-group = 2* 2 procs Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 4 2.00 2.00 2.00 2.00 formf: eself= 18.94976 formf: vps(g=0)= -0.0061912 rhops(g=0)= -0.0033232 formf: sum_g vps(g)= -4.3546661 sum_g rhops(g)= -1.0540044 formf: vps(g=0)= -0.0011639 rhops(g=0)= -0.0005539 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 1.45743 0.0 0.0 16.61845 16.61845 16.61845 18.07588 0.0000 0.0000 0.0000 0.0000 2 3.37031 0.0 0.0 12.61697 12.61697 12.61697 15.98727 0.0000 0.0000 0.0000 0.0000 3 4.81260 0.0 0.0 7.78398 7.78398 7.78398 12.59658 0.0000 0.0000 0.0000 0.0000 4 5.48116 0.0 0.0 2.96217 2.96217 2.96217 8.44333 0.0000 0.0000 0.0000 0.0000 5 5.49239 0.0 0.0 -1.45144 -1.45144 -1.45144 4.04095 0.0000 0.0000 0.0000 0.0000 6 4.83753 0.0 0.0 -4.98322 -4.98322 -4.98322 -0.14570 0.0000 0.0000 0.0000 0.0000 7 3.53392 0.0 0.0 -6.98224 -6.98224 -6.98224 -3.44832 0.0000 0.0000 0.0000 0.0000 8 2.15219 0.0 0.0 -7.72794 -7.72794 -7.72794 -5.57576 0.0000 0.0000 0.0000 0.0000 9 1.32264 0.0 0.0 -8.20443 -8.20443 -8.20443 -6.88179 0.0000 0.0000 0.0000 0.0000 10 1.04393 0.0 0.0 -8.86827 -8.86827 -8.86827 -7.82433 0.0000 0.0000 0.0000 0.0000 11 0.97593 0.0 0.0 -9.62712 -9.62712 -9.62712 -8.65119 0.0000 0.0000 0.0000 0.0000 12 0.89782 0.0 0.0 -10.30456 -10.30456 -10.30456 -9.40674 0.0000 0.0000 0.0000 0.0000 13 0.78413 0.0 0.0 -10.85644 -10.85644 -10.85644 -10.07232 0.0000 0.0000 0.0000 0.0000 14 0.68263 0.0 0.0 -11.33250 -11.33250 -11.33250 -10.64987 0.0000 0.0000 0.0000 0.0000 15 0.61986 0.0 0.0 -11.78505 -11.78505 -11.78505 -11.16519 0.0000 0.0000 0.0000 0.0000 16 0.59021 0.0 0.0 -12.23682 -12.23682 -12.23682 -11.64660 0.0000 0.0000 0.0000 0.0000 17 0.57793 0.0 0.0 -12.69056 -12.69056 -12.69056 -12.11263 0.0000 0.0000 0.0000 0.0000 18 0.57140 0.0 0.0 -13.14295 -13.14295 -13.14295 -12.57155 0.0000 0.0000 0.0000 0.0000 19 0.56508 0.0 0.0 -13.59059 -13.59059 -13.59059 -13.02551 0.0000 0.0000 0.0000 0.0000 20 0.55658 0.0 0.0 -14.03047 -14.03047 -14.03047 -13.47389 0.0000 0.0000 0.0000 0.0000 21 0.54381 0.0 0.0 -14.45812 -14.45812 -14.45812 -13.91431 0.0000 0.0000 0.0000 0.0000 22 0.52411 0.0 0.0 -14.86634 -14.86634 -14.86634 -14.34223 0.0000 0.0000 0.0000 0.0000 23 0.49509 0.0 0.0 -15.24590 -15.24590 -15.24590 -14.75082 0.0000 0.0000 0.0000 0.0000 24 0.45610 0.0 0.0 -15.58802 -15.58802 -15.58802 -15.13193 0.0000 0.0000 0.0000 0.0000 25 0.40886 0.0 0.0 -15.88687 -15.88687 -15.88687 -15.47801 0.0000 0.0000 0.0000 0.0000 26 0.35685 0.0 0.0 -16.14069 -16.14069 -16.14069 -15.78384 0.0000 0.0000 0.0000 0.0000 27 0.30407 0.0 0.0 -16.35141 -16.35141 -16.35141 -16.04734 0.0000 0.0000 0.0000 0.0000 28 0.25391 0.0 0.0 -16.52336 -16.52336 -16.52336 -16.26945 0.0000 0.0000 0.0000 0.0000 29 0.20861 0.0 0.0 -16.66194 -16.66194 -16.66194 -16.45333 0.0000 0.0000 0.0000 0.0000 30 0.16924 0.0 0.0 -16.77266 -16.77266 -16.77266 -16.60342 0.0000 0.0000 0.0000 0.0000 31 0.13600 0.0 0.0 -16.86059 -16.86059 -16.86059 -16.72459 0.0000 0.0000 0.0000 0.0000 32 0.10849 0.0 0.0 -16.93010 -16.93010 -16.93010 -16.82161 0.0000 0.0000 0.0000 0.0000 33 0.08605 0.0 0.0 -16.98483 -16.98483 -16.98483 -16.89878 0.0000 0.0000 0.0000 0.0000 34 0.06790 0.0 0.0 -17.02773 -17.02773 -17.02773 -16.95984 0.0000 0.0000 0.0000 0.0000 35 0.05332 0.0 0.0 -17.06121 -17.06121 -17.06121 -17.00789 0.0000 0.0000 0.0000 0.0000 36 0.04166 0.0 0.0 -17.08720 -17.08720 -17.08720 -17.04554 0.0000 0.0000 0.0000 0.0000 37 0.03241 0.0 0.0 -17.10729 -17.10729 -17.10729 -17.07488 0.0000 0.0000 0.0000 0.0000 38 0.02512 0.0 0.0 -17.12277 -17.12277 -17.12277 -17.09766 0.0000 0.0000 0.0000 0.0000 39 0.01941 0.0 0.0 -17.13469 -17.13469 -17.13469 -17.11528 0.0000 0.0000 0.0000 0.0000 40 0.01497 0.0 0.0 -17.14387 -17.14387 -17.14387 -17.12889 0.0000 0.0000 0.0000 0.0000 41 0.01155 0.0 0.0 -17.15093 -17.15093 -17.15093 -17.13938 0.0000 0.0000 0.0000 0.0000 42 0.00892 0.0 0.0 -17.15639 -17.15639 -17.15639 -17.14747 0.0000 0.0000 0.0000 0.0000 43 0.00690 0.0 0.0 -17.16063 -17.16063 -17.16063 -17.15372 0.0000 0.0000 0.0000 0.0000 44 0.00537 0.0 0.0 -17.16394 -17.16394 -17.16394 -17.15857 0.0000 0.0000 0.0000 0.0000 45 0.00419 0.0 0.0 -17.16655 -17.16655 -17.16655 -17.16236 0.0000 0.0000 0.0000 0.0000 46 0.00330 0.0 0.0 -17.16862 -17.16862 -17.16862 -17.16532 0.0000 0.0000 0.0000 0.0000 47 0.00261 0.0 0.0 -17.17028 -17.17028 -17.17028 -17.16767 0.0000 0.0000 0.0000 0.0000 48 0.00209 0.0 0.0 -17.17162 -17.17162 -17.17162 -17.16953 0.0000 0.0000 0.0000 0.0000 49 0.00169 0.0 0.0 -17.17271 -17.17271 -17.17271 -17.17103 0.0000 0.0000 0.0000 0.0000 50 0.00137 0.0 0.0 -17.17361 -17.17361 -17.17361 -17.17224 0.0000 0.0000 0.0000 0.0000 51 0.00113 0.0 0.0 -17.17436 -17.17436 -17.17436 -17.17323 0.0000 0.0000 0.0000 0.0000 52 0.00093 0.0 0.0 -17.17498 -17.17498 -17.17498 -17.17405 0.0000 0.0000 0.0000 0.0000 53 0.00078 0.0 0.0 -17.17550 -17.17550 -17.17550 -17.17472 0.0000 0.0000 0.0000 0.0000 54 0.00065 0.0 0.0 -17.17594 -17.17594 -17.17594 -17.17529 0.0000 0.0000 0.0000 0.0000 55 0.00054 0.0 0.0 -17.17631 -17.17631 -17.17631 -17.17576 0.0000 0.0000 0.0000 0.0000 56 0.00046 0.0 0.0 -17.17662 -17.17662 -17.17662 -17.17616 0.0000 0.0000 0.0000 0.0000 57 0.00039 0.0 0.0 -17.17688 -17.17688 -17.17688 -17.17650 0.0000 0.0000 0.0000 0.0000 58 0.00033 0.0 0.0 -17.17711 -17.17711 -17.17711 -17.17678 0.0000 0.0000 0.0000 0.0000 59 0.00028 0.0 0.0 -17.17730 -17.17730 -17.17730 -17.17702 0.0000 0.0000 0.0000 0.0000 60 0.00024 0.0 0.0 -17.17746 -17.17746 -17.17746 -17.17723 0.0000 0.0000 0.0000 0.0000 61 0.00020 0.0 0.0 -17.17760 -17.17760 -17.17760 -17.17740 0.0000 0.0000 0.0000 0.0000 62 0.00017 0.0 0.0 -17.17772 -17.17772 -17.17772 -17.17755 0.0000 0.0000 0.0000 0.0000 63 0.00015 0.0 0.0 -17.17782 -17.17782 -17.17782 -17.17767 0.0000 0.0000 0.0000 0.0000 64 0.00012 0.0 0.0 -17.17791 -17.17791 -17.17791 -17.17778 0.0000 0.0000 0.0000 0.0000 65 0.00011 0.0 0.0 -17.17798 -17.17798 -17.17798 -17.17787 0.0000 0.0000 0.0000 0.0000 66 0.00009 0.0 0.0 -17.17804 -17.17804 -17.17804 -17.17795 0.0000 0.0000 0.0000 0.0000 67 0.00008 0.0 0.0 -17.17810 -17.17810 -17.17810 -17.17802 0.0000 0.0000 0.0000 0.0000 68 0.00007 0.0 0.0 -17.17814 -17.17814 -17.17814 -17.17808 0.0000 0.0000 0.0000 0.0000 69 0.00006 0.0 0.0 -17.17818 -17.17818 -17.17818 -17.17813 0.0000 0.0000 0.0000 0.0000 70 0.00005 0.0 0.0 -17.17822 -17.17822 -17.17822 -17.17817 0.0000 0.0000 0.0000 0.0000 71 0.00004 0.0 0.0 -17.17824 -17.17824 -17.17824 -17.17820 0.0000 0.0000 0.0000 0.0000 72 0.00004 0.0 0.0 -17.17827 -17.17827 -17.17827 -17.17823 0.0000 0.0000 0.0000 0.0000 73 0.00003 0.0 0.0 -17.17829 -17.17829 -17.17829 -17.17826 0.0000 0.0000 0.0000 0.0000 74 0.00003 0.0 0.0 -17.17831 -17.17831 -17.17831 -17.17828 0.0000 0.0000 0.0000 0.0000 75 0.00002 0.0 0.0 -17.17832 -17.17832 -17.17832 -17.17830 0.0000 0.0000 0.0000 0.0000 76 0.00002 0.0 0.0 -17.17834 -17.17834 -17.17834 -17.17832 0.0000 0.0000 0.0000 0.0000 77 0.00002 0.0 0.0 -17.17835 -17.17835 -17.17835 -17.17833 0.0000 0.0000 0.0000 0.0000 78 0.00001 0.0 0.0 -17.17836 -17.17836 -17.17836 -17.17834 0.0000 0.0000 0.0000 0.0000 79 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 80 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 81 0.00001 0.0 0.0 -17.17838 -17.17838 -17.17838 -17.17837 0.0000 0.0000 0.0000 0.0000 82 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 83 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 84 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17839 0.0000 0.0000 0.0000 0.0000 85 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17839 0.0000 0.0000 0.0000 0.0000 86 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 87 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 88 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17840 0.0000 0.0000 0.0000 0.0000 89 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 90 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 91 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 92 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 93 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 94 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 95 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 96 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 97 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 98 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 99 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 total energy = -17.17842 Hartree a.u. kinetic energy = 12.58528 Hartree a.u. electrostatic energy = -18.19051 Hartree a.u. esr = 0.14128 Hartree a.u. eself = 18.94976 Hartree a.u. pseudopotential energy = -9.32929 Hartree a.u. n-l pseudopotential energy = 1.95843 Hartree a.u. exchange-correlation energy = -4.20234 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.73 -12.71 -8.94 -6.91 Allocated memory (kb) = 34788 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.1167 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -0.21050589 0.02998249 -0.00360890 0.02998249 -0.21060143 -0.00234024 -0.00360890 -0.00234024 -0.08844614 ATOMIC_POSITIONS O 0.990000E-02 0.990000E-02 0.000000E+00 H 0.183250E+01 -0.224300E+00 -0.100000E-03 H -0.224300E+00 0.183250E+01 0.200000E-03 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): O 0.235873E-02 0.235085E-02 0.270774E-03 H -0.242591E-02 0.605181E-03 0.162770E-03 H 0.607669E-03 -0.241643E-02 0.100089E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00E+00 0.0000E+00 2 0.00E+00 0.0000E+00 100 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 writing restart file: /home/akohlmey/compile/espresso-qmmm/tmp//h2o_51.save restart file written in 0.084 sec. Averaged Physical Quantities accumulated this run ekinc : 0.44687 0.44687 (AU) ekin : 11.30009 11.30009 (AU) epot : -28.24112 -28.24112 (AU) total energy : -14.77337 -14.77337 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -14.77337 -14.77337 (AU) econs : -14.77337 -14.77337 (AU) pressure : 7.21895 7.21895 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 0.89s CPU 0.91s WALL ( 1 calls) main_loop : 26.64s CPU 29.48s WALL ( 100 calls) Called by main_loop: move_electro : 26.33s CPU 29.11s WALL ( 100 calls) ortho : 0.17s CPU 0.20s WALL ( 101 calls) updatc : 0.04s CPU 0.04s WALL ( 101 calls) strucf : 0.00s CPU 0.00s WALL ( 1 calls) calbec : 0.01s CPU 0.01s WALL ( 102 calls) Called by move_electrons: rhoofr : 3.81s CPU 4.10s WALL ( 101 calls) vofrho : 20.35s CPU 22.59s WALL ( 101 calls) dforce : 2.26s CPU 2.51s WALL ( 202 calls) calphi : 0.01s CPU 0.01s WALL ( 101 calls) nlfl : 0.00s CPU 0.00s WALL ( 101 calls) Called by ortho: ortho_iter : 0.06s CPU 0.07s WALL ( 101 calls) rsg : 0.04s CPU 0.05s WALL ( 101 calls) rhoset : 0.03s CPU 0.03s WALL ( 101 calls) sigset : 0.02s CPU 0.02s WALL ( 101 calls) tauset : 0.02s CPU 0.02s WALL ( 101 calls) Small boxes: Low-level routines: prefor : 0.00s CPU 0.00s WALL ( 101 calls) nlfq : 0.04s CPU 0.04s WALL ( 101 calls) nlsm1 : 0.01s CPU 0.01s WALL ( 102 calls) nlsm2 : 0.04s CPU 0.04s WALL ( 101 calls) fft : 6.57s CPU 7.67s WALL ( 808 calls) ffts : 1.64s CPU 1.80s WALL ( 202 calls) fftw : 3.04s CPU 3.39s WALL ( 606 calls) fft_scatter : 3.95s CPU 5.31s WALL ( 1616 calls) betagx : 0.27s CPU 0.27s WALL ( 1 calls) qradx : 0.00s CPU 0.00s WALL ( 1 calls) gram : 0.00s CPU 0.00s WALL ( 1 calls) nlinit : 0.64s CPU 0.65s WALL ( 1 calls) init_dim : 0.03s CPU 0.03s WALL ( 1 calls) newnlinit : 0.00s CPU 0.00s WALL ( 1 calls) from_scratch : 0.21s CPU 0.23s WALL ( 1 calls) ortho_iter : 0.06s CPU 0.07s WALL ( 101 calls) CP : 27.63s CPU 30.50s WALL This run was terminated on: 11:55: 7 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= rank 0 return value is: 0 rank 1 return value is: 0 rank 2 return value is: 0 rank 3 return value is: 0 espresso-5.1/COUPLE/tests/metal.pw.c-4.ref0000644000175000017500000002551112341373026016247 0ustar mbamba rank 5 of 7 is reserved rank 7 of 7 is reserved rank 4 of 7 is reserved Calling PW library interface with these flags: communicator index: 3 communicator size: 4 nimage: 1 npot: 1 npool: 1 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/metal.pw.in" rank 6 of 7 is reserved Program PWSCF v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:51:47 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 4 processors R & G space division: proc/nbgrp/npool/nimage = 4 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/metal.pw.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: scalapack distributed-memory algorithm (size of sub-group: 2* 2 procs) Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 30 30 9 217 217 41 Max 31 31 10 218 218 44 Sum 121 121 37 869 869 169 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/akohlmey/compile/espresso-qmmm/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.00 Mb ( 29, 6) NL pseudopotentials 0.00 Mb ( 29, 4) Each V/rho on FFT grid 0.01 Mb ( 900) Each G-vector array 0.00 Mb ( 217) G-vector shells 0.00 Mb ( 30) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.01 Mb ( 29, 24) Each subspace H/S matrix 0.00 Mb ( 12, 12) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.11 Mb ( 900, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs + 2 random wfc total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.1 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18547358 Ry Harris-Foulkes estimate = -4.18624128 Ry estimated scf accuracy < 0.00592440 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18546703 Ry Harris-Foulkes estimate = -4.18549539 Ry estimated scf accuracy < 0.00046579 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-05, avg # of iterations = 1.4 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7428 16.7431 20.1796 20.1796 23.2680 24.1724 k = 0.1250 0.1250 0.3750 ( 105 PWs) bands (ev): -1.5642 13.6751 17.3099 18.8472 20.1257 22.7028 k = 0.1250 0.1250 0.6250 ( 102 PWs) bands (ev): 0.7488 11.5557 13.9822 15.3803 16.8437 20.9947 k = 0.1250 0.1250 0.8750 ( 104 PWs) bands (ev): 4.0828 8.6646 10.5472 14.4194 15.7420 20.0604 k = 0.1250 0.3750 0.3750 ( 100 PWs) bands (ev): -0.4004 10.5636 15.0575 20.2794 22.2922 22.3024 k = 0.1250 0.3750 0.6250 ( 103 PWs) bands (ev): 1.8826 8.4273 12.9757 15.1047 21.3122 23.4591 k = 0.1250 0.3750 0.8750 ( 104 PWs) bands (ev): 5.1681 7.3418 9.7864 12.0728 20.3592 24.5665 k = 0.1250 0.6250 0.6250 ( 101 PWs) bands (ev): 4.1109 6.2842 10.9033 16.3672 18.2373 26.3758 k = 0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7475 7.4153 19.3070 19.3070 21.3017 21.3017 k = 0.3750 0.3750 0.6250 ( 103 PWs) bands (ev): 3.0033 5.2361 16.0323 17.3399 19.1721 23.3129 the Fermi energy is 8.3513 ev ! total energy = -4.18546970 Ry Harris-Foulkes estimate = -4.18546963 Ry estimated scf accuracy < 0.00000026 Ry The total energy is the sum of the following terms: one-electron contribution = 2.94161251 Ry hartree contribution = 0.01022669 Ry xc contribution = -1.63496620 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.00050817 Ry convergence has been achieved in 3 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.54 -0.00009883 0.00000000 0.00000000 -14.54 0.00 0.00 0.00000000 -0.00009883 0.00000000 0.00 -14.54 0.00 0.00000000 0.00000000 -0.00009883 0.00 0.00 -14.54 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.10s CPU 0.13s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.09s CPU 0.12s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 100 calls) cegterg : 0.09s CPU 0.12s WALL ( 40 calls) Called by *egterg: h_psi : 0.03s CPU 0.03s WALL ( 127 calls) g_psi : 0.00s CPU 0.00s WALL ( 77 calls) cdiaghg : 0.07s CPU 0.08s WALL ( 107 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 127 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 137 calls) fft : 0.00s CPU 0.00s WALL ( 20 calls) fftw : 0.02s CPU 0.03s WALL ( 1588 calls) davcio : 0.00s CPU 0.00s WALL ( 10 calls) Parallel routines fft_scatter : 0.01s CPU 0.01s WALL ( 1608 calls) PWSCF : 0.21s CPU 0.24s WALL This run was terminated on: 11:51:47 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= rank 1 return value is: 0 rank 2 return value is: 0 rank 3 return value is: 0 rank 0 return value is: 0 espresso-5.1/COUPLE/tests/scf.pw.c-16.ref0000644000175000017500000000031012341373026015771 0ustar mbamba rank 1 of 7 is reserved rank 4 of 7 is reserved rank 5 of 7 is reserved rank 0 of 7 is reserved rank 3 of 7 is reserved rank 7 of 7 is reserved rank 6 of 7 is reserved rank 2 of 7 is reserved espresso-5.1/COUPLE/tests/scf.pw.f-4.ref0000644000175000017500000002415012341373026015721 0ustar mbamba Reserved CPU rank: 4 of 7 Reserved CPU rank: 6 of 7 Calling PW library interface with these flags: communicator index: 3 communicator size: 4 nimage: 1 npot: 1 npool: 2 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/scf.pw.in" Reserved CPU rank: 5 of 7 Reserved CPU rank: 7 of 7 Program PWSCF v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:51:56 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 4 processors K-points division: npool = 2 R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/scf.pw.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 27 728 728 141 Max 82 82 28 731 731 142 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/akohlmey/compile/espresso-qmmm/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 93, 4) NL pseudopotentials 0.01 Mb ( 93, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 93, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79104458 Ry Harris-Foulkes estimate = -15.81238659 Ry estimated scf accuracy < 0.06372651 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409494 Ry Harris-Foulkes estimate = -15.79442260 Ry estimated scf accuracy < 0.00230503 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447812 Ry Harris-Foulkes estimate = -15.79450085 Ry estimated scf accuracy < 0.00006337 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.92E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449508 Ry Harris-Foulkes estimate = -15.79449683 Ry estimated scf accuracy < 0.00000458 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.73E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 highest occupied level (ev): 5.5371 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378764 Ry hartree contribution = 1.08428898 Ry xc contribution = -4.81281397 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020598 0.00000000 0.00000000 -30.30 0.00 0.00 0.00000000 -0.00020598 -0.00000000 0.00 -30.30 -0.00 0.00000000 -0.00000000 -0.00020598 0.00 -0.00 -30.30 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.02s CPU 0.02s WALL ( 1 calls) stress : 0.01s CPU 0.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 13 calls) cegterg : 0.01s CPU 0.01s WALL ( 6 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 18 calls) g_psi : 0.00s CPU 0.00s WALL ( 11 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 16 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 18 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 19 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.01s CPU 0.00s WALL ( 168 calls) davcio : 0.00s CPU 0.00s WALL ( 1 calls) Parallel routines fft_scatter : 0.00s CPU 0.00s WALL ( 196 calls) PWSCF : 0.10s CPU 0.12s WALL This run was terminated on: 11:51:56 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= Call to libpwscf finished with exit status 0 espresso-5.1/COUPLE/tests/h2o-mt-blyp.cp.f-2.ref0000644000175000017500000006151712341373026017202 0ustar mbamba Reserved CPU rank: 7 of 7 Calling CPV library interface with these flags: communicator index: 3 Reserved CPU rank: 6 of 7 communicator size: 6 nimage: 1 npot: 1 npool: 1 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/h2o-mt-blyp.cp.in" Program CP v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:52:55 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 6 processors R & G space division: proc/nbgrp/npool/nimage = 6 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/h2o-mt-blyp.cp.in Job Title: Water Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/akohlmey/compile/espresso-qmmm/pseudo/O.blyp-mt.UPF file type is UPF v.1 Reading pseudopotential for specie # 2 from file : /home/akohlmey/compile/espresso-qmmm/pseudo/H.blyp-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 100 Print out every 100 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 2493.41 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 7680 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Exchange-correlation = SLA LYP B88 BLYP ( 1 3 1 3 0) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.832500 -0.224300 -0.000100 -0.224300 1.832500 0.000200 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 611 611 152 27836 27836 3468 Max 614 614 156 27842 27842 3472 Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 12 1 1 6 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 62208 Number of x-y planes for each processors: nr3l = 12 12 12 12 12 12 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 12 1 1 6 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 62208 Number of x-y planes for each processors: nr3sl = 12 12 12 12 12 12 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 83519 13918 13921 13919.83 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 83519 13918 13921 13919.83 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 10408 1734 1736 1734.67 System geometry initialization ------------------------------ Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00003 with 4 procs Constraints matrixes will be distributed block like on ortho sub-group = 2* 2 procs Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 4 2.00 2.00 2.00 2.00 formf: eself= 18.94976 formf: vps(g=0)= -0.0061912 rhops(g=0)= -0.0033232 formf: sum_g vps(g)= -4.3546661 sum_g rhops(g)= -1.0540044 formf: vps(g=0)= -0.0011639 rhops(g=0)= -0.0005539 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 1.45743 0.0 0.0 16.61845 16.61845 16.61845 18.07588 0.0000 0.0000 0.0000 0.0000 2 3.37031 0.0 0.0 12.61697 12.61697 12.61697 15.98727 0.0000 0.0000 0.0000 0.0000 3 4.81260 0.0 0.0 7.78398 7.78398 7.78398 12.59658 0.0000 0.0000 0.0000 0.0000 4 5.48116 0.0 0.0 2.96217 2.96217 2.96217 8.44333 0.0000 0.0000 0.0000 0.0000 5 5.49239 0.0 0.0 -1.45144 -1.45144 -1.45144 4.04095 0.0000 0.0000 0.0000 0.0000 6 4.83753 0.0 0.0 -4.98322 -4.98322 -4.98322 -0.14570 0.0000 0.0000 0.0000 0.0000 7 3.53392 0.0 0.0 -6.98224 -6.98224 -6.98224 -3.44832 0.0000 0.0000 0.0000 0.0000 8 2.15219 0.0 0.0 -7.72794 -7.72794 -7.72794 -5.57576 0.0000 0.0000 0.0000 0.0000 9 1.32264 0.0 0.0 -8.20443 -8.20443 -8.20443 -6.88179 0.0000 0.0000 0.0000 0.0000 10 1.04393 0.0 0.0 -8.86827 -8.86827 -8.86827 -7.82433 0.0000 0.0000 0.0000 0.0000 11 0.97593 0.0 0.0 -9.62712 -9.62712 -9.62712 -8.65119 0.0000 0.0000 0.0000 0.0000 12 0.89782 0.0 0.0 -10.30456 -10.30456 -10.30456 -9.40674 0.0000 0.0000 0.0000 0.0000 13 0.78413 0.0 0.0 -10.85644 -10.85644 -10.85644 -10.07232 0.0000 0.0000 0.0000 0.0000 14 0.68263 0.0 0.0 -11.33250 -11.33250 -11.33250 -10.64987 0.0000 0.0000 0.0000 0.0000 15 0.61986 0.0 0.0 -11.78505 -11.78505 -11.78505 -11.16519 0.0000 0.0000 0.0000 0.0000 16 0.59021 0.0 0.0 -12.23682 -12.23682 -12.23682 -11.64660 0.0000 0.0000 0.0000 0.0000 17 0.57793 0.0 0.0 -12.69056 -12.69056 -12.69056 -12.11263 0.0000 0.0000 0.0000 0.0000 18 0.57140 0.0 0.0 -13.14295 -13.14295 -13.14295 -12.57155 0.0000 0.0000 0.0000 0.0000 19 0.56508 0.0 0.0 -13.59059 -13.59059 -13.59059 -13.02551 0.0000 0.0000 0.0000 0.0000 20 0.55658 0.0 0.0 -14.03047 -14.03047 -14.03047 -13.47389 0.0000 0.0000 0.0000 0.0000 21 0.54381 0.0 0.0 -14.45812 -14.45812 -14.45812 -13.91431 0.0000 0.0000 0.0000 0.0000 22 0.52411 0.0 0.0 -14.86634 -14.86634 -14.86634 -14.34223 0.0000 0.0000 0.0000 0.0000 23 0.49509 0.0 0.0 -15.24590 -15.24590 -15.24590 -14.75082 0.0000 0.0000 0.0000 0.0000 24 0.45610 0.0 0.0 -15.58802 -15.58802 -15.58802 -15.13193 0.0000 0.0000 0.0000 0.0000 25 0.40886 0.0 0.0 -15.88687 -15.88687 -15.88687 -15.47801 0.0000 0.0000 0.0000 0.0000 26 0.35685 0.0 0.0 -16.14069 -16.14069 -16.14069 -15.78384 0.0000 0.0000 0.0000 0.0000 27 0.30407 0.0 0.0 -16.35141 -16.35141 -16.35141 -16.04734 0.0000 0.0000 0.0000 0.0000 28 0.25391 0.0 0.0 -16.52336 -16.52336 -16.52336 -16.26945 0.0000 0.0000 0.0000 0.0000 29 0.20861 0.0 0.0 -16.66194 -16.66194 -16.66194 -16.45333 0.0000 0.0000 0.0000 0.0000 30 0.16924 0.0 0.0 -16.77266 -16.77266 -16.77266 -16.60342 0.0000 0.0000 0.0000 0.0000 31 0.13600 0.0 0.0 -16.86059 -16.86059 -16.86059 -16.72459 0.0000 0.0000 0.0000 0.0000 32 0.10849 0.0 0.0 -16.93010 -16.93010 -16.93010 -16.82161 0.0000 0.0000 0.0000 0.0000 33 0.08605 0.0 0.0 -16.98483 -16.98483 -16.98483 -16.89878 0.0000 0.0000 0.0000 0.0000 34 0.06790 0.0 0.0 -17.02773 -17.02773 -17.02773 -16.95984 0.0000 0.0000 0.0000 0.0000 35 0.05332 0.0 0.0 -17.06121 -17.06121 -17.06121 -17.00789 0.0000 0.0000 0.0000 0.0000 36 0.04166 0.0 0.0 -17.08720 -17.08720 -17.08720 -17.04554 0.0000 0.0000 0.0000 0.0000 37 0.03241 0.0 0.0 -17.10729 -17.10729 -17.10729 -17.07488 0.0000 0.0000 0.0000 0.0000 38 0.02512 0.0 0.0 -17.12277 -17.12277 -17.12277 -17.09766 0.0000 0.0000 0.0000 0.0000 39 0.01941 0.0 0.0 -17.13469 -17.13469 -17.13469 -17.11528 0.0000 0.0000 0.0000 0.0000 40 0.01497 0.0 0.0 -17.14387 -17.14387 -17.14387 -17.12889 0.0000 0.0000 0.0000 0.0000 41 0.01155 0.0 0.0 -17.15093 -17.15093 -17.15093 -17.13938 0.0000 0.0000 0.0000 0.0000 42 0.00892 0.0 0.0 -17.15639 -17.15639 -17.15639 -17.14747 0.0000 0.0000 0.0000 0.0000 43 0.00690 0.0 0.0 -17.16063 -17.16063 -17.16063 -17.15372 0.0000 0.0000 0.0000 0.0000 44 0.00537 0.0 0.0 -17.16394 -17.16394 -17.16394 -17.15857 0.0000 0.0000 0.0000 0.0000 45 0.00419 0.0 0.0 -17.16655 -17.16655 -17.16655 -17.16236 0.0000 0.0000 0.0000 0.0000 46 0.00330 0.0 0.0 -17.16862 -17.16862 -17.16862 -17.16532 0.0000 0.0000 0.0000 0.0000 47 0.00261 0.0 0.0 -17.17028 -17.17028 -17.17028 -17.16767 0.0000 0.0000 0.0000 0.0000 48 0.00209 0.0 0.0 -17.17162 -17.17162 -17.17162 -17.16953 0.0000 0.0000 0.0000 0.0000 49 0.00169 0.0 0.0 -17.17271 -17.17271 -17.17271 -17.17103 0.0000 0.0000 0.0000 0.0000 50 0.00137 0.0 0.0 -17.17361 -17.17361 -17.17361 -17.17224 0.0000 0.0000 0.0000 0.0000 51 0.00113 0.0 0.0 -17.17436 -17.17436 -17.17436 -17.17323 0.0000 0.0000 0.0000 0.0000 52 0.00093 0.0 0.0 -17.17498 -17.17498 -17.17498 -17.17405 0.0000 0.0000 0.0000 0.0000 53 0.00078 0.0 0.0 -17.17550 -17.17550 -17.17550 -17.17472 0.0000 0.0000 0.0000 0.0000 54 0.00065 0.0 0.0 -17.17594 -17.17594 -17.17594 -17.17529 0.0000 0.0000 0.0000 0.0000 55 0.00054 0.0 0.0 -17.17631 -17.17631 -17.17631 -17.17576 0.0000 0.0000 0.0000 0.0000 56 0.00046 0.0 0.0 -17.17662 -17.17662 -17.17662 -17.17616 0.0000 0.0000 0.0000 0.0000 57 0.00039 0.0 0.0 -17.17688 -17.17688 -17.17688 -17.17650 0.0000 0.0000 0.0000 0.0000 58 0.00033 0.0 0.0 -17.17711 -17.17711 -17.17711 -17.17678 0.0000 0.0000 0.0000 0.0000 59 0.00028 0.0 0.0 -17.17730 -17.17730 -17.17730 -17.17702 0.0000 0.0000 0.0000 0.0000 60 0.00024 0.0 0.0 -17.17746 -17.17746 -17.17746 -17.17723 0.0000 0.0000 0.0000 0.0000 61 0.00020 0.0 0.0 -17.17760 -17.17760 -17.17760 -17.17740 0.0000 0.0000 0.0000 0.0000 62 0.00017 0.0 0.0 -17.17772 -17.17772 -17.17772 -17.17755 0.0000 0.0000 0.0000 0.0000 63 0.00015 0.0 0.0 -17.17782 -17.17782 -17.17782 -17.17767 0.0000 0.0000 0.0000 0.0000 64 0.00012 0.0 0.0 -17.17791 -17.17791 -17.17791 -17.17778 0.0000 0.0000 0.0000 0.0000 65 0.00011 0.0 0.0 -17.17798 -17.17798 -17.17798 -17.17787 0.0000 0.0000 0.0000 0.0000 66 0.00009 0.0 0.0 -17.17804 -17.17804 -17.17804 -17.17795 0.0000 0.0000 0.0000 0.0000 67 0.00008 0.0 0.0 -17.17810 -17.17810 -17.17810 -17.17802 0.0000 0.0000 0.0000 0.0000 68 0.00007 0.0 0.0 -17.17814 -17.17814 -17.17814 -17.17808 0.0000 0.0000 0.0000 0.0000 69 0.00006 0.0 0.0 -17.17818 -17.17818 -17.17818 -17.17813 0.0000 0.0000 0.0000 0.0000 70 0.00005 0.0 0.0 -17.17822 -17.17822 -17.17822 -17.17817 0.0000 0.0000 0.0000 0.0000 71 0.00004 0.0 0.0 -17.17824 -17.17824 -17.17824 -17.17820 0.0000 0.0000 0.0000 0.0000 72 0.00004 0.0 0.0 -17.17827 -17.17827 -17.17827 -17.17823 0.0000 0.0000 0.0000 0.0000 73 0.00003 0.0 0.0 -17.17829 -17.17829 -17.17829 -17.17826 0.0000 0.0000 0.0000 0.0000 74 0.00003 0.0 0.0 -17.17831 -17.17831 -17.17831 -17.17828 0.0000 0.0000 0.0000 0.0000 75 0.00002 0.0 0.0 -17.17832 -17.17832 -17.17832 -17.17830 0.0000 0.0000 0.0000 0.0000 76 0.00002 0.0 0.0 -17.17834 -17.17834 -17.17834 -17.17832 0.0000 0.0000 0.0000 0.0000 77 0.00002 0.0 0.0 -17.17835 -17.17835 -17.17835 -17.17833 0.0000 0.0000 0.0000 0.0000 78 0.00001 0.0 0.0 -17.17836 -17.17836 -17.17836 -17.17834 0.0000 0.0000 0.0000 0.0000 79 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 80 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 81 0.00001 0.0 0.0 -17.17838 -17.17838 -17.17838 -17.17837 0.0000 0.0000 0.0000 0.0000 82 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 83 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 84 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17839 0.0000 0.0000 0.0000 0.0000 85 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17839 0.0000 0.0000 0.0000 0.0000 86 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 87 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 88 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17840 0.0000 0.0000 0.0000 0.0000 89 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 90 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 91 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 92 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 93 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 94 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 95 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 96 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 97 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 98 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 99 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 total energy = -17.17842 Hartree a.u. kinetic energy = 12.58528 Hartree a.u. electrostatic energy = -18.19051 Hartree a.u. esr = 0.14128 Hartree a.u. eself = 18.94976 Hartree a.u. pseudopotential energy = -9.32929 Hartree a.u. n-l pseudopotential energy = 1.95843 Hartree a.u. exchange-correlation energy = -4.20234 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.73 -12.71 -8.94 -6.91 Allocated memory (kb) = 27316 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.1167 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -0.21050589 0.02998249 -0.00360890 0.02998249 -0.21060143 -0.00234024 -0.00360890 -0.00234024 -0.08844614 ATOMIC_POSITIONS O 0.990000E-02 0.990000E-02 0.000000E+00 H 0.183250E+01 -0.224300E+00 -0.100000E-03 H -0.224300E+00 0.183250E+01 0.200000E-03 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): O 0.235873E-02 0.235085E-02 0.270774E-03 H -0.242591E-02 0.605181E-03 0.162770E-03 H 0.607669E-03 -0.241643E-02 0.100089E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00E+00 0.0000E+00 2 0.00E+00 0.0000E+00 100 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 writing restart file: /home/akohlmey/compile/espresso-qmmm/tmp//h2o_51.save restart file written in 0.079 sec. Averaged Physical Quantities accumulated this run ekinc : 0.44687 0.44687 (AU) ekin : 11.30009 11.30009 (AU) epot : -28.24112 -28.24112 (AU) total energy : -14.77337 -14.77337 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -14.77337 -14.77337 (AU) econs : -14.77337 -14.77337 (AU) pressure : 7.21895 7.21895 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 0.85s CPU 1.39s WALL ( 1 calls) main_loop : 17.67s CPU 33.63s WALL ( 100 calls) Called by main_loop: move_electro : 17.38s CPU 33.00s WALL ( 100 calls) ortho : 0.18s CPU 0.35s WALL ( 101 calls) updatc : 0.02s CPU 0.05s WALL ( 101 calls) strucf : 0.00s CPU 0.00s WALL ( 1 calls) calbec : 0.00s CPU 0.02s WALL ( 102 calls) Called by move_electrons: rhoofr : 2.49s CPU 4.34s WALL ( 101 calls) vofrho : 13.38s CPU 25.80s WALL ( 101 calls) dforce : 1.62s CPU 3.02s WALL ( 202 calls) calphi : 0.01s CPU 0.01s WALL ( 101 calls) nlfl : 0.00s CPU 0.01s WALL ( 101 calls) Called by ortho: ortho_iter : 0.08s CPU 0.16s WALL ( 101 calls) rsg : 0.03s CPU 0.08s WALL ( 101 calls) rhoset : 0.03s CPU 0.05s WALL ( 101 calls) sigset : 0.01s CPU 0.04s WALL ( 101 calls) tauset : 0.02s CPU 0.03s WALL ( 101 calls) Small boxes: Low-level routines: prefor : 0.00s CPU 0.00s WALL ( 101 calls) nlfq : 0.03s CPU 0.10s WALL ( 101 calls) nlsm1 : 0.00s CPU 0.02s WALL ( 102 calls) nlsm2 : 0.03s CPU 0.10s WALL ( 101 calls) fft : 4.24s CPU 8.43s WALL ( 808 calls) ffts : 1.07s CPU 1.87s WALL ( 202 calls) fftw : 2.28s CPU 4.27s WALL ( 606 calls) fft_scatter : 2.75s CPU 9.52s WALL ( 1616 calls) betagx : 0.26s CPU 0.39s WALL ( 1 calls) qradx : 0.00s CPU 0.00s WALL ( 1 calls) gram : 0.00s CPU 0.00s WALL ( 1 calls) nlinit : 0.64s CPU 0.98s WALL ( 1 calls) init_dim : 0.03s CPU 0.06s WALL ( 1 calls) newnlinit : 0.01s CPU 0.06s WALL ( 1 calls) from_scratch : 0.18s CPU 0.34s WALL ( 1 calls) ortho_iter : 0.08s CPU 0.16s WALL ( 101 calls) CP : 18.61s CPU 35.14s WALL This run was terminated on: 11:53:30 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= Call to libcpv finished with exit status 0 espresso-5.1/COUPLE/tests/h2o-mt-blyp.cp.f-16.ref0000644000175000017500000000060012341373026017251 0ustar mbamba Reserved CPU rank: 5 of 7 Reserved CPU rank: 7 of 7 Reserved CPU rank: 3 of 7 Reserved CPU rank: 0 of 7 Reserved CPU rank: 2 of 7 Reserved CPU rank: 1 of 7 Reserved CPU rank: 6 of 7 Reserved CPU rank: 4 of 7 espresso-5.1/COUPLE/tests/h2o-mt-blyp.cp.c-16.ref0000644000175000017500000000031012341373026017244 0ustar mbamba rank 2 of 7 is reserved rank 5 of 7 is reserved rank 1 of 7 is reserved rank 3 of 7 is reserved rank 7 of 7 is reserved rank 6 of 7 is reserved rank 0 of 7 is reserved rank 4 of 7 is reserved espresso-5.1/COUPLE/tests/metal.pw.f-4.ref0000644000175000017500000002557012341373026016257 0ustar mbamba Calling PW library interface with these flags: Reserved CPU rank: 4 of 7 Reserved CPU rank: 7 of 7 Reserved CPU rank: 6 of 7 Reserved CPU rank: 5 of 7 communicator index: 3 communicator size: 4 nimage: 1 npot: 1 npool: 2 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/metal.pw.in" Program PWSCF v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:51:46 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 4 processors K-points division: npool = 2 R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/metal.pw.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 60 60 18 434 434 83 Max 61 61 19 435 435 86 Sum 121 121 37 869 869 169 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/akohlmey/compile/espresso-qmmm/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 55, 6) NL pseudopotentials 0.00 Mb ( 55, 4) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.00 Mb ( 435) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 55, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs + 2 random wfc total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.3 total cpu time spent up to now is 0.1 secs total energy = -4.18547345 Ry Harris-Foulkes estimate = -4.18624125 Ry estimated scf accuracy < 0.00592529 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18546702 Ry Harris-Foulkes estimate = -4.18549536 Ry estimated scf accuracy < 0.00046564 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-05, avg # of iterations = 1.2 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7428 16.7431 20.1796 20.1796 23.2682 24.1724 k = 0.1250 0.1250 0.3750 ( 105 PWs) bands (ev): -1.5642 13.6751 17.3099 18.8471 20.1256 22.7030 k = 0.1250 0.1250 0.6250 ( 102 PWs) bands (ev): 0.7488 11.5557 13.9822 15.3803 16.8437 20.9947 k = 0.1250 0.1250 0.8750 ( 104 PWs) bands (ev): 4.0828 8.6646 10.5472 14.4194 15.7420 20.0604 k = 0.1250 0.3750 0.3750 ( 100 PWs) bands (ev): -0.4004 10.5636 15.0575 20.2794 22.2921 22.3024 k = 0.1250 0.3750 0.6250 ( 103 PWs) bands (ev): 1.8826 8.4273 12.9757 15.1047 21.3122 23.4591 k = 0.1250 0.3750 0.8750 ( 104 PWs) bands (ev): 5.1681 7.3418 9.7864 12.0728 20.3592 24.5664 k = 0.1250 0.6250 0.6250 ( 101 PWs) bands (ev): 4.1109 6.2842 10.9033 16.3672 18.2373 26.3756 k = 0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7475 7.4153 19.3070 19.3070 21.3017 21.3022 k = 0.3750 0.3750 0.6250 ( 103 PWs) bands (ev): 3.0033 5.2361 16.0323 17.3399 19.1721 23.3130 the Fermi energy is 8.3513 ev ! total energy = -4.18546970 Ry Harris-Foulkes estimate = -4.18546962 Ry estimated scf accuracy < 0.00000026 Ry The total energy is the sum of the following terms: one-electron contribution = 2.94161252 Ry hartree contribution = 0.01022697 Ry xc contribution = -1.63496648 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.00050817 Ry convergence has been achieved in 3 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.55 -0.00009889 0.00000000 -0.00000000 -14.55 0.00 -0.00 0.00000000 -0.00009889 0.00000000 0.00 -14.55 0.00 -0.00000000 0.00000000 -0.00009889 -0.00 0.00 -14.55 Writing output data file pwscf.save init_run : 0.01s CPU 0.02s WALL ( 1 calls) electrons : 0.04s CPU 0.05s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.04s CPU 0.04s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 50 calls) cegterg : 0.04s CPU 0.03s WALL ( 20 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 65 calls) g_psi : 0.00s CPU 0.00s WALL ( 40 calls) cdiaghg : 0.01s CPU 0.01s WALL ( 55 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 65 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 70 calls) fft : 0.00s CPU 0.00s WALL ( 20 calls) fftw : 0.02s CPU 0.02s WALL ( 796 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) Parallel routines fft_scatter : 0.01s CPU 0.01s WALL ( 816 calls) PWSCF : 0.14s CPU 0.17s WALL This run was terminated on: 11:51:46 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= Call to libpwscf finished with exit status 0 espresso-5.1/COUPLE/tests/h2o-mt-blyp.cp.f-0.ref0000644000175000017500000006140312341373026017172 0ustar mbamba Calling CPV library interface with these flags: communicator index: 3 communicator size: 8 nimage: 1 npot: 1 npool: 1 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/h2o-mt-blyp.cp.in" Program CP v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:52: 1 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 8 processors R & G space division: proc/nbgrp/npool/nimage = 8 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/h2o-mt-blyp.cp.in Job Title: Water Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/akohlmey/compile/espresso-qmmm/pseudo/O.blyp-mt.UPF file type is UPF v.1 Reading pseudopotential for specie # 2 from file : /home/akohlmey/compile/espresso-qmmm/pseudo/H.blyp-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 100 Print out every 100 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 2493.41 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 7680 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Exchange-correlation = SLA LYP B88 BLYP ( 1 3 1 3 0) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.832500 -0.224300 -0.000100 -0.224300 1.832500 0.000200 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 457 457 113 20877 20877 2598 Max 460 460 116 20884 20884 2604 Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 9 1 1 8 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 46656 Number of x-y planes for each processors: nr3l = 9 9 9 9 9 9 9 9 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 9 1 1 8 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 46656 Number of x-y planes for each processors: nr3sl = 9 9 9 9 9 9 9 9 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 83519 10439 10442 10439.88 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 83519 10439 10442 10439.88 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 10408 1299 1302 1301.00 System geometry initialization ------------------------------ Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00006 with 4 procs Constraints matrixes will be distributed block like on ortho sub-group = 2* 2 procs Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 4 2.00 2.00 2.00 2.00 formf: eself= 18.94976 formf: vps(g=0)= -0.0061912 rhops(g=0)= -0.0033232 formf: sum_g vps(g)= -4.3546661 sum_g rhops(g)= -1.0540044 formf: vps(g=0)= -0.0011639 rhops(g=0)= -0.0005539 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 1.45743 0.0 0.0 16.61845 16.61845 16.61845 18.07588 0.0000 0.0000 0.0000 0.0000 2 3.37031 0.0 0.0 12.61697 12.61697 12.61697 15.98727 0.0000 0.0000 0.0000 0.0000 3 4.81260 0.0 0.0 7.78398 7.78398 7.78398 12.59658 0.0000 0.0000 0.0000 0.0000 4 5.48116 0.0 0.0 2.96217 2.96217 2.96217 8.44333 0.0000 0.0000 0.0000 0.0000 5 5.49239 0.0 0.0 -1.45144 -1.45144 -1.45144 4.04095 0.0000 0.0000 0.0000 0.0000 6 4.83753 0.0 0.0 -4.98322 -4.98322 -4.98322 -0.14570 0.0000 0.0000 0.0000 0.0000 7 3.53392 0.0 0.0 -6.98224 -6.98224 -6.98224 -3.44832 0.0000 0.0000 0.0000 0.0000 8 2.15219 0.0 0.0 -7.72794 -7.72794 -7.72794 -5.57576 0.0000 0.0000 0.0000 0.0000 9 1.32264 0.0 0.0 -8.20443 -8.20443 -8.20443 -6.88179 0.0000 0.0000 0.0000 0.0000 10 1.04393 0.0 0.0 -8.86827 -8.86827 -8.86827 -7.82433 0.0000 0.0000 0.0000 0.0000 11 0.97593 0.0 0.0 -9.62712 -9.62712 -9.62712 -8.65119 0.0000 0.0000 0.0000 0.0000 12 0.89782 0.0 0.0 -10.30456 -10.30456 -10.30456 -9.40674 0.0000 0.0000 0.0000 0.0000 13 0.78413 0.0 0.0 -10.85644 -10.85644 -10.85644 -10.07232 0.0000 0.0000 0.0000 0.0000 14 0.68263 0.0 0.0 -11.33250 -11.33250 -11.33250 -10.64987 0.0000 0.0000 0.0000 0.0000 15 0.61986 0.0 0.0 -11.78505 -11.78505 -11.78505 -11.16519 0.0000 0.0000 0.0000 0.0000 16 0.59021 0.0 0.0 -12.23682 -12.23682 -12.23682 -11.64660 0.0000 0.0000 0.0000 0.0000 17 0.57793 0.0 0.0 -12.69056 -12.69056 -12.69056 -12.11263 0.0000 0.0000 0.0000 0.0000 18 0.57140 0.0 0.0 -13.14295 -13.14295 -13.14295 -12.57155 0.0000 0.0000 0.0000 0.0000 19 0.56508 0.0 0.0 -13.59059 -13.59059 -13.59059 -13.02551 0.0000 0.0000 0.0000 0.0000 20 0.55658 0.0 0.0 -14.03047 -14.03047 -14.03047 -13.47389 0.0000 0.0000 0.0000 0.0000 21 0.54381 0.0 0.0 -14.45812 -14.45812 -14.45812 -13.91431 0.0000 0.0000 0.0000 0.0000 22 0.52411 0.0 0.0 -14.86634 -14.86634 -14.86634 -14.34223 0.0000 0.0000 0.0000 0.0000 23 0.49509 0.0 0.0 -15.24590 -15.24590 -15.24590 -14.75082 0.0000 0.0000 0.0000 0.0000 24 0.45610 0.0 0.0 -15.58802 -15.58802 -15.58802 -15.13193 0.0000 0.0000 0.0000 0.0000 25 0.40886 0.0 0.0 -15.88687 -15.88687 -15.88687 -15.47801 0.0000 0.0000 0.0000 0.0000 26 0.35685 0.0 0.0 -16.14069 -16.14069 -16.14069 -15.78384 0.0000 0.0000 0.0000 0.0000 27 0.30407 0.0 0.0 -16.35141 -16.35141 -16.35141 -16.04734 0.0000 0.0000 0.0000 0.0000 28 0.25391 0.0 0.0 -16.52336 -16.52336 -16.52336 -16.26945 0.0000 0.0000 0.0000 0.0000 29 0.20861 0.0 0.0 -16.66194 -16.66194 -16.66194 -16.45333 0.0000 0.0000 0.0000 0.0000 30 0.16924 0.0 0.0 -16.77266 -16.77266 -16.77266 -16.60342 0.0000 0.0000 0.0000 0.0000 31 0.13600 0.0 0.0 -16.86059 -16.86059 -16.86059 -16.72459 0.0000 0.0000 0.0000 0.0000 32 0.10849 0.0 0.0 -16.93010 -16.93010 -16.93010 -16.82161 0.0000 0.0000 0.0000 0.0000 33 0.08605 0.0 0.0 -16.98483 -16.98483 -16.98483 -16.89878 0.0000 0.0000 0.0000 0.0000 34 0.06790 0.0 0.0 -17.02773 -17.02773 -17.02773 -16.95984 0.0000 0.0000 0.0000 0.0000 35 0.05332 0.0 0.0 -17.06121 -17.06121 -17.06121 -17.00789 0.0000 0.0000 0.0000 0.0000 36 0.04166 0.0 0.0 -17.08720 -17.08720 -17.08720 -17.04554 0.0000 0.0000 0.0000 0.0000 37 0.03241 0.0 0.0 -17.10729 -17.10729 -17.10729 -17.07488 0.0000 0.0000 0.0000 0.0000 38 0.02512 0.0 0.0 -17.12277 -17.12277 -17.12277 -17.09766 0.0000 0.0000 0.0000 0.0000 39 0.01941 0.0 0.0 -17.13469 -17.13469 -17.13469 -17.11528 0.0000 0.0000 0.0000 0.0000 40 0.01497 0.0 0.0 -17.14387 -17.14387 -17.14387 -17.12889 0.0000 0.0000 0.0000 0.0000 41 0.01155 0.0 0.0 -17.15093 -17.15093 -17.15093 -17.13938 0.0000 0.0000 0.0000 0.0000 42 0.00892 0.0 0.0 -17.15639 -17.15639 -17.15639 -17.14747 0.0000 0.0000 0.0000 0.0000 43 0.00690 0.0 0.0 -17.16063 -17.16063 -17.16063 -17.15372 0.0000 0.0000 0.0000 0.0000 44 0.00537 0.0 0.0 -17.16394 -17.16394 -17.16394 -17.15857 0.0000 0.0000 0.0000 0.0000 45 0.00419 0.0 0.0 -17.16655 -17.16655 -17.16655 -17.16236 0.0000 0.0000 0.0000 0.0000 46 0.00330 0.0 0.0 -17.16862 -17.16862 -17.16862 -17.16532 0.0000 0.0000 0.0000 0.0000 47 0.00261 0.0 0.0 -17.17028 -17.17028 -17.17028 -17.16767 0.0000 0.0000 0.0000 0.0000 48 0.00209 0.0 0.0 -17.17162 -17.17162 -17.17162 -17.16953 0.0000 0.0000 0.0000 0.0000 49 0.00169 0.0 0.0 -17.17271 -17.17271 -17.17271 -17.17103 0.0000 0.0000 0.0000 0.0000 50 0.00137 0.0 0.0 -17.17361 -17.17361 -17.17361 -17.17224 0.0000 0.0000 0.0000 0.0000 51 0.00113 0.0 0.0 -17.17436 -17.17436 -17.17436 -17.17323 0.0000 0.0000 0.0000 0.0000 52 0.00093 0.0 0.0 -17.17498 -17.17498 -17.17498 -17.17405 0.0000 0.0000 0.0000 0.0000 53 0.00078 0.0 0.0 -17.17550 -17.17550 -17.17550 -17.17472 0.0000 0.0000 0.0000 0.0000 54 0.00065 0.0 0.0 -17.17594 -17.17594 -17.17594 -17.17529 0.0000 0.0000 0.0000 0.0000 55 0.00054 0.0 0.0 -17.17631 -17.17631 -17.17631 -17.17576 0.0000 0.0000 0.0000 0.0000 56 0.00046 0.0 0.0 -17.17662 -17.17662 -17.17662 -17.17616 0.0000 0.0000 0.0000 0.0000 57 0.00039 0.0 0.0 -17.17688 -17.17688 -17.17688 -17.17650 0.0000 0.0000 0.0000 0.0000 58 0.00033 0.0 0.0 -17.17711 -17.17711 -17.17711 -17.17678 0.0000 0.0000 0.0000 0.0000 59 0.00028 0.0 0.0 -17.17730 -17.17730 -17.17730 -17.17702 0.0000 0.0000 0.0000 0.0000 60 0.00024 0.0 0.0 -17.17746 -17.17746 -17.17746 -17.17723 0.0000 0.0000 0.0000 0.0000 61 0.00020 0.0 0.0 -17.17760 -17.17760 -17.17760 -17.17740 0.0000 0.0000 0.0000 0.0000 62 0.00017 0.0 0.0 -17.17772 -17.17772 -17.17772 -17.17755 0.0000 0.0000 0.0000 0.0000 63 0.00015 0.0 0.0 -17.17782 -17.17782 -17.17782 -17.17767 0.0000 0.0000 0.0000 0.0000 64 0.00012 0.0 0.0 -17.17791 -17.17791 -17.17791 -17.17778 0.0000 0.0000 0.0000 0.0000 65 0.00011 0.0 0.0 -17.17798 -17.17798 -17.17798 -17.17787 0.0000 0.0000 0.0000 0.0000 66 0.00009 0.0 0.0 -17.17804 -17.17804 -17.17804 -17.17795 0.0000 0.0000 0.0000 0.0000 67 0.00008 0.0 0.0 -17.17810 -17.17810 -17.17810 -17.17802 0.0000 0.0000 0.0000 0.0000 68 0.00007 0.0 0.0 -17.17814 -17.17814 -17.17814 -17.17808 0.0000 0.0000 0.0000 0.0000 69 0.00006 0.0 0.0 -17.17818 -17.17818 -17.17818 -17.17813 0.0000 0.0000 0.0000 0.0000 70 0.00005 0.0 0.0 -17.17822 -17.17822 -17.17822 -17.17817 0.0000 0.0000 0.0000 0.0000 71 0.00004 0.0 0.0 -17.17824 -17.17824 -17.17824 -17.17820 0.0000 0.0000 0.0000 0.0000 72 0.00004 0.0 0.0 -17.17827 -17.17827 -17.17827 -17.17823 0.0000 0.0000 0.0000 0.0000 73 0.00003 0.0 0.0 -17.17829 -17.17829 -17.17829 -17.17826 0.0000 0.0000 0.0000 0.0000 74 0.00003 0.0 0.0 -17.17831 -17.17831 -17.17831 -17.17828 0.0000 0.0000 0.0000 0.0000 75 0.00002 0.0 0.0 -17.17832 -17.17832 -17.17832 -17.17830 0.0000 0.0000 0.0000 0.0000 76 0.00002 0.0 0.0 -17.17834 -17.17834 -17.17834 -17.17832 0.0000 0.0000 0.0000 0.0000 77 0.00002 0.0 0.0 -17.17835 -17.17835 -17.17835 -17.17833 0.0000 0.0000 0.0000 0.0000 78 0.00001 0.0 0.0 -17.17836 -17.17836 -17.17836 -17.17834 0.0000 0.0000 0.0000 0.0000 79 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 80 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 81 0.00001 0.0 0.0 -17.17838 -17.17838 -17.17838 -17.17837 0.0000 0.0000 0.0000 0.0000 82 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 83 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 84 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17839 0.0000 0.0000 0.0000 0.0000 85 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17839 0.0000 0.0000 0.0000 0.0000 86 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 87 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 88 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17840 0.0000 0.0000 0.0000 0.0000 89 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 90 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 91 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 92 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 93 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 94 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 95 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 96 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 97 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 98 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 99 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 total energy = -17.17842 Hartree a.u. kinetic energy = 12.58528 Hartree a.u. electrostatic energy = -18.19051 Hartree a.u. esr = 0.14128 Hartree a.u. eself = 18.94976 Hartree a.u. pseudopotential energy = -9.32929 Hartree a.u. n-l pseudopotential energy = 1.95843 Hartree a.u. exchange-correlation energy = -4.20234 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.73 -12.71 -8.94 -6.91 Allocated memory (kb) = 23532 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.1167 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -0.21050589 0.02998249 -0.00360890 0.02998249 -0.21060143 -0.00234024 -0.00360890 -0.00234024 -0.08844614 ATOMIC_POSITIONS O 0.990000E-02 0.990000E-02 0.000000E+00 H 0.183250E+01 -0.224300E+00 -0.100000E-03 H -0.224300E+00 0.183250E+01 0.200000E-03 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): O 0.235873E-02 0.235085E-02 0.270774E-03 H -0.242591E-02 0.605181E-03 0.162770E-03 H 0.607669E-03 -0.241643E-02 0.100089E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00E+00 0.0000E+00 2 0.00E+00 0.0000E+00 100 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 writing restart file: /home/akohlmey/compile/espresso-qmmm/tmp//h2o_51.save restart file written in 0.103 sec. Averaged Physical Quantities accumulated this run ekinc : 0.44687 0.44687 (AU) ekin : 11.30009 11.30009 (AU) epot : -28.24112 -28.24112 (AU) total energy : -14.77337 -14.77337 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -14.77337 -14.77337 (AU) econs : -14.77337 -14.77337 (AU) pressure : 7.21895 7.21895 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 0.87s CPU 2.00s WALL ( 1 calls) main_loop : 9.15s CPU 20.14s WALL ( 100 calls) Called by main_loop: move_electro : 8.96s CPU 19.69s WALL ( 100 calls) ortho : 0.13s CPU 0.30s WALL ( 101 calls) updatc : 0.01s CPU 0.02s WALL ( 101 calls) strucf : 0.00s CPU 0.00s WALL ( 1 calls) calbec : 0.00s CPU 0.01s WALL ( 102 calls) Called by move_electrons: rhoofr : 1.37s CPU 2.82s WALL ( 101 calls) vofrho : 6.77s CPU 15.15s WALL ( 101 calls) dforce : 0.85s CPU 1.82s WALL ( 202 calls) calphi : 0.00s CPU 0.00s WALL ( 101 calls) nlfl : 0.01s CPU 0.01s WALL ( 101 calls) Called by ortho: ortho_iter : 0.06s CPU 0.14s WALL ( 101 calls) rsg : 0.03s CPU 0.07s WALL ( 101 calls) rhoset : 0.02s CPU 0.04s WALL ( 101 calls) sigset : 0.01s CPU 0.02s WALL ( 101 calls) tauset : 0.01s CPU 0.03s WALL ( 101 calls) Small boxes: Low-level routines: prefor : 0.00s CPU 0.00s WALL ( 101 calls) nlfq : 0.01s CPU 0.06s WALL ( 101 calls) nlsm1 : 0.00s CPU 0.01s WALL ( 102 calls) nlsm2 : 0.01s CPU 0.06s WALL ( 101 calls) fft : 2.25s CPU 6.28s WALL ( 808 calls) ffts : 0.55s CPU 1.17s WALL ( 202 calls) fftw : 1.16s CPU 2.68s WALL ( 606 calls) fft_scatter : 1.67s CPU 7.71s WALL ( 1616 calls) betagx : 0.26s CPU 0.42s WALL ( 1 calls) qradx : 0.00s CPU 0.00s WALL ( 1 calls) gram : 0.00s CPU 0.00s WALL ( 1 calls) nlinit : 0.73s CPU 1.67s WALL ( 1 calls) init_dim : 0.03s CPU 0.09s WALL ( 1 calls) newnlinit : 0.10s CPU 0.48s WALL ( 1 calls) from_scratch : 0.10s CPU 0.22s WALL ( 1 calls) ortho_iter : 0.06s CPU 0.14s WALL ( 101 calls) CP : 10.08s CPU 22.30s WALL This run was terminated on: 11:52:23 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= Call to libcpv finished with exit status 0 espresso-5.1/COUPLE/tests/clean_all0000755000175000017500000000011312341373026015267 0ustar mbamba#!/bin/sh rm -r pwscf.* > /dev/null 2>&1 rm *.out > /dev/null 2>&1 exit 0 espresso-5.1/COUPLE/tests/h2o-mt-blyp.cp.in0000644000175000017500000000200112341373026016430 0ustar mbamba &control title = ' Water Molecule ', calculation = 'cp', restart_mode = 'from_scratch', ndr = 51, ndw = 51, nstep = 100, iprint = 100, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-9, ekin_conv_thr = 1.d-4, prefix = 'h2o' verbosity = 'medium' / &system ibrav = 14, celldm(1) = 12.0, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 3, ntyp = 2, nbnd = 4, ecutwfc = 80.0, / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', electron_dynamics = 'damp', electron_damping = 0.2 / &ions ion_dynamics = 'none', ion_radius(1) = 0.8d0, ion_radius(2) = 0.8d0, / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.00d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (bohr) O 0.0099 0.0099 0.0000 0 0 0 H 1.8325 -0.2243 -0.0001 1 1 1 H -0.2243 1.8325 0.0002 1 1 1 espresso-5.1/COUPLE/tests/scf.pw.c-4.ref0000644000175000017500000002407112341373026015720 0ustar mbamba rank 6 of 7 is reserved rank 7 of 7 is reserved rank 5 of 7 is reserved rank 4 of 7 is reserved Calling PW library interface with these flags: communicator index: 3 communicator size: 4 nimage: 1 npot: 1 npool: 1 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/scf.pw.in" Program PWSCF v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:51:57 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 4 processors R & G space division: proc/nbgrp/npool/nimage = 4 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/scf.pw.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: scalapack distributed-memory algorithm (size of sub-group: 2* 2 procs) Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 40 40 13 362 362 70 Max 41 41 14 366 366 71 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/akohlmey/compile/espresso-qmmm/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.00 Mb ( 51, 4) NL pseudopotentials 0.01 Mb ( 51, 8) Each V/rho on FFT grid 0.01 Mb ( 900) Each G-vector array 0.00 Mb ( 366) G-vector shells 0.00 Mb ( 42) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.01 Mb ( 51, 16) Each subspace H/S matrix 0.00 Mb ( 8, 8) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.11 Mb ( 900, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.79104447 Ry Harris-Foulkes estimate = -15.81239250 Ry estimated scf accuracy < 0.06374172 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.79409748 Ry Harris-Foulkes estimate = -15.79442401 Ry estimated scf accuracy < 0.00230269 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447838 Ry Harris-Foulkes estimate = -15.79450070 Ry estimated scf accuracy < 0.00006276 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.84E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449676 Ry estimated scf accuracy < 0.00000441 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.51E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9164 -0.0653 2.6795 4.0355 highest occupied level (ev): 5.5371 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378865 Ry hartree contribution = 1.08428733 Ry xc contribution = -4.81281332 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020599 -0.00000000 -0.00000000 -30.30 -0.00 -0.00 -0.00000000 -0.00020599 0.00000000 -0.00 -30.30 0.00 -0.00000000 0.00000000 -0.00020599 -0.00 0.00 -30.30 Writing output data file pwscf.save init_run : 0.01s CPU 0.02s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.03s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.02s CPU 0.03s WALL ( 12 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.02s CPU 0.02s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.00s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.00s CPU 0.00s WALL ( 360 calls) PWSCF : 0.11s CPU 0.13s WALL This run was terminated on: 11:51:57 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= rank 1 return value is: 0 rank 2 return value is: 0 rank 3 return value is: 0 rank 0 return value is: 0 espresso-5.1/COUPLE/tests/scf.pw.f-0.ref0000644000175000017500000002372112341373026015720 0ustar mbamba Calling PW library interface with these flags: communicator index: 3 communicator size: 8 nimage: 1 npot: 1 npool: 2 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/scf.pw.in" Program PWSCF v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:51:51 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 8 processors K-points division: npool = 2 R & G space division: proc/nbgrp/npool/nimage = 4 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/scf.pw.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: scalapack distributed-memory algorithm (size of sub-group: 2* 2 procs) Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 40 40 13 362 362 70 Max 41 41 14 366 366 71 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/akohlmey/compile/espresso-qmmm/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.00 Mb ( 51, 4) NL pseudopotentials 0.01 Mb ( 51, 8) Each V/rho on FFT grid 0.01 Mb ( 900) Each G-vector array 0.00 Mb ( 366) G-vector shells 0.00 Mb ( 42) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.01 Mb ( 51, 16) Each subspace H/S matrix 0.00 Mb ( 8, 8) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.11 Mb ( 900, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.93E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.79105082 Ry Harris-Foulkes estimate = -15.81238967 Ry estimated scf accuracy < 0.06371129 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.96E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.79409721 Ry Harris-Foulkes estimate = -15.79442497 Ry estimated scf accuracy < 0.00230625 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -15.79447820 Ry Harris-Foulkes estimate = -15.79450082 Ry estimated scf accuracy < 0.00006319 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.90E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -15.79449508 Ry Harris-Foulkes estimate = -15.79449680 Ry estimated scf accuracy < 0.00000454 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9164 -0.0653 2.6795 4.0355 highest occupied level (ev): 5.5371 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378896 Ry hartree contribution = 1.08428684 Ry xc contribution = -4.81281315 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020599 0.00000000 0.00000000 -30.30 0.00 0.00 0.00000000 -0.00020599 -0.00000000 0.00 -30.30 -0.00 0.00000000 -0.00000000 -0.00020599 0.00 -0.00 -30.30 Writing output data file pwscf.save init_run : 0.02s CPU 0.05s WALL ( 1 calls) electrons : 0.02s CPU 0.05s WALL ( 1 calls) stress : 0.01s CPU 0.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.04s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 13 calls) cegterg : 0.01s CPU 0.04s WALL ( 6 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 18 calls) g_psi : 0.00s CPU 0.00s WALL ( 11 calls) cdiaghg : 0.01s CPU 0.03s WALL ( 16 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 18 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 19 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.00s CPU 0.01s WALL ( 168 calls) davcio : 0.00s CPU 0.00s WALL ( 1 calls) Parallel routines fft_scatter : 0.00s CPU 0.01s WALL ( 196 calls) PWSCF : 0.12s CPU 0.29s WALL This run was terminated on: 11:51:51 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= Call to libpwscf finished with exit status 0 espresso-5.1/COUPLE/tests/scf.pw.c-0.ref0000644000175000017500000002410112341373026015706 0ustar mbamba Calling PW library interface with these flags: communicator index: 3 communicator size: 8 nimage: 1 npot: 1 npool: 1 ntaskg: 1 nband: 1 ndiag: 4 input: "/home/akohlmey/compile/espresso-qmmm/COUPLE/tests/scf.pw.in" Program PWSCF v.5.1.a (svn rev. mpi-refactor) starts on 27Sep2013 at 11:51:52 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 8 processors R & G space division: proc/nbgrp/npool/nimage = 8 Reading input from /home/akohlmey/compile/espresso-qmmm/COUPLE/tests/scf.pw.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: scalapack distributed-memory algorithm (size of sub-group: 2* 2 procs) Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 20 20 6 181 181 34 Max 21 21 7 185 185 36 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/akohlmey/compile/espresso-qmmm/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.00 Mb ( 26, 4) NL pseudopotentials 0.00 Mb ( 26, 8) Each V/rho on FFT grid 0.01 Mb ( 450) Each G-vector array 0.00 Mb ( 185) G-vector shells 0.00 Mb ( 41) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.01 Mb ( 26, 16) Each subspace H/S matrix 0.00 Mb ( 8, 8) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.05 Mb ( 450, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 3.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.95E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102424 Ry Harris-Foulkes estimate = -15.81238986 Ry estimated scf accuracy < 0.06377019 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409328 Ry Harris-Foulkes estimate = -15.79441899 Ry estimated scf accuracy < 0.00230167 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447824 Ry Harris-Foulkes estimate = -15.79450051 Ry estimated scf accuracy < 0.00006275 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.84E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -15.79449511 Ry Harris-Foulkes estimate = -15.79449676 Ry estimated scf accuracy < 0.00000441 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.51E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 highest occupied level (ev): 5.5371 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378626 Ry hartree contribution = 1.08429105 Ry xc contribution = -4.81281467 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020597 -0.00000000 -0.00000000 -30.30 -0.00 -0.00 -0.00000000 -0.00020597 0.00000000 -0.00 -30.30 0.00 -0.00000000 0.00000000 -0.00020597 -0.00 0.00 -30.30 Writing output data file pwscf.save init_run : 0.01s CPU 0.05s WALL ( 1 calls) electrons : 0.04s CPU 0.10s WALL ( 1 calls) stress : 0.00s CPU 0.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.08s WALL ( 6 calls) sum_band : 0.00s CPU 0.01s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.03s CPU 0.08s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.02s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.02s CPU 0.05s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.00s CPU 0.01s WALL ( 28 calls) fftw : 0.01s CPU 0.02s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.01s CPU 0.02s WALL ( 360 calls) PWSCF : 0.11s CPU 0.26s WALL This run was terminated on: 11:51:52 27Sep2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= rank 0 return value is: 0 rank 2 return value is: 0 rank 3 return value is: 0 rank 7 return value is: 0 rank 6 return value is: 0 rank 4 return value is: 0 rank 1 return value is: 0 rank 5 return value is: 0 espresso-5.1/COUPLE/README0000644000175000017500000000110412341373026013146 0ustar mbambaLibrary Interface to Quantum ESPRESSO This package allows calling programs of the Quantum Espresso package as subroutines. At the moment this feature is restricted to do something similar to calling an executable with the corresponding flags through the system() command. This is useful for building hybrid parallel programs where multiple executables, or multiple copies of the same executable are sharing a single MPI communicator and need to exchange information during the run. Additional APIs will be added as the need arises. Authors: Axel Kohlmeyer espresso-5.1/COUPLE/include/0000755000175000017500000000000012341373041013712 5ustar mbambaespresso-5.1/COUPLE/include/libqecouple.h0000644000175000017500000000204712341373026016375 0ustar mbamba/* * Copyright (C) 2013 Quantum ESPRESSO group * This file is distributed under the terms of the * GNU General Public License. See the file `License' * in the root directory of the present distribution, * or http://www.gnu.org/copyleft/gpl.txt . */ /* C/C++ interface to the codes of the Quantum ESPRESSO package */ #ifndef QE_LIBCOUPLE_H #define QE_LIBCOUPLE_H #ifdef __cplusplus extern "C" { #endif /* interface to pw.x */ /* launch a pw.x-like calculation */ void c2libpwscf(int lib_comm, int nimage, int npot, int npool, int ntaskgroup, int nband, int ndiag, int *exit_status, char *input_file); /* interface to cp.x */ /* launch a cp.x-like calculation */ void c2libcpv(int lib_comm, int nimage, int npot, int npool, int ntaskgroup, int nband, int ndiag, int *exit_status, char *input_file); /* accessing the qmmm.f90 module */ /* pass in the inter program communicator */ void c2qmmm_mpi_config(int qmmm_mode, int inter_comm, int verb, int inter_rank); #ifdef __cplusplus } #endif #endif /* QE_LIBCOUPLE_H */ espresso-5.1/COUPLE/src/0000755000175000017500000000000012341373041013056 5ustar mbambaespresso-5.1/COUPLE/src/libpwscf.f900000644000175000017500000000566112341373026015222 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE c2libpwscf(lib_comm,nim,npt,npl,nta,nbn,ndg,retval,infile) BIND(C) !---------------------------------------------------------------------------- ! ! ... C wrapper for library interface to the Pwscf USE ISO_C_BINDING ! IMPLICIT NONE ! INTEGER (kind=C_INT), VALUE :: lib_comm, nim, npt, npl, nta, nbn, ndg INTEGER (kind=C_INT), INTENT(OUT) :: retval CHARACTER (kind=C_CHAR), INTENT(IN) :: infile(*) INTEGER :: i, lib_comm_, nim_, npt_, npl_, nta_, nbn_, ndg_, retval_ CHARACTER(LEN=80) :: infile_ ! ! ... Copy C data types to Fortran data types lib_comm_ = lib_comm nim_ = nim npt_ = npt npl_ = npl nta_ = nta nbn_ = nbn ndg_ = ndg retval = 0 infile_ = ' ' ! ! ... Copying a string from C to Fortran is a bit ugly. DO i=1,80 IF (infile(i) == C_NULL_CHAR) EXIT infile_ = TRIM(infile_) // infile(i) END DO ! CALL f2libpwscf(lib_comm_,nim_,npt_,npl_,nta_,nbn_,ndg_,retval_,infile_) retval = retval_ ! END SUBROUTINE c2libpwscf ! !---------------------------------------------------------------------------- SUBROUTINE f2libpwscf(lib_comm,nim,npt,npl,nta,nbn,ndg,retval,infile) !---------------------------------------------------------------------------- ! ! ... Library interface to the Plane Wave Self-Consistent Field code ! USE environment, ONLY : environment_start USE mp_global, ONLY : mp_startup USE read_input, ONLY : read_input_file USE command_line_options, ONLY: set_command_line USE parallel_include ! IMPLICIT NONE INTEGER, INTENT(IN) :: lib_comm, nim, npt, npl, nta, nbn, ndg INTEGER, INTENT(INOUT) :: retval CHARACTER(LEN=80) :: infile ! #if defined(DEBUG_QECOUPLE) INTEGER :: me, num, ierr CALL MPI_COMM_SIZE(lib_comm,num,ierr) IF (ierr /= MPI_SUCCESS) THEN CALL MPI_ERROR_STRING(ierr, infile, 80, retval) PRINT*,'MPI Error: ', infile STOP 100 END IF CALL MPI_COMM_RANK(lib_comm,me,ierr) IF (me == 0) THEN PRINT*, 'Calling PW library interface with these flags:' PRINT*, 'communicator index: ', lib_comm PRINT*, 'communicator size: ', num PRINT*, 'nimage: ', nim PRINT*, 'npot: ', npt PRINT*, 'npool: ', npl PRINT*, 'ntaskg: ', nta PRINT*, 'nband: ', nbn PRINT*, 'ndiag: ', ndg PRINT*, 'input: "',TRIM(infile),'"' END IF #endif ! CALL set_command_line( nimage=nim, npot=npt, npool=npl, ntg=nta, & nband=nbn, ndiag=ndg ) CALL mp_startup ( my_world_comm=lib_comm ) CALL environment_start ( 'PWSCF' ) ! CALL read_input_file ('PW', infile ) ! ! ... Perform actual calculation ! CALL run_pwscf ( retval ) ! CALL stop_run( retval ) ! END SUBROUTINE f2libpwscf espresso-5.1/COUPLE/src/libcpv.f900000644000175000017500000000706312341373026014666 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE c2libcpv(lib_comm,nim,npt,npl,nta,nbn,ndg,retval,infile) BIND(C) !---------------------------------------------------------------------------- ! ! ... C wrapper for library interface to the Pwscf USE ISO_C_BINDING ! IMPLICIT NONE ! INTEGER (kind=C_INT), VALUE :: lib_comm, nim, npt, npl, nta, nbn, ndg INTEGER (kind=C_INT), INTENT(OUT) :: retval CHARACTER (kind=C_CHAR), INTENT(IN) :: infile(*) INTEGER :: i, lib_comm_, nim_, npt_, npl_, nta_, nbn_, ndg_, retval_ CHARACTER(LEN=80) :: infile_ ! ! ... Copy C data types to Fortran data types lib_comm_ = lib_comm nim_ = nim npt_ = npt npl_ = npl nta_ = nta nbn_ = nbn ndg_ = ndg retval = 0 infile_ = ' ' ! ! ... Copying a string from C to Fortran is a bit ugly. DO i=1,80 IF (infile(i) == C_NULL_CHAR) EXIT infile_ = TRIM(infile_) // infile(i) END DO ! CALL f2libcpv(lib_comm_,nim_,npt_,npl_,nta_,nbn_,ndg_,retval_,infile_) retval = retval_ ! END SUBROUTINE c2libcpv ! !---------------------------------------------------------------------------- SUBROUTINE f2libcpv(lib_comm,nim,npt,npl,nta,nbn,ndg,retval,infile) !---------------------------------------------------------------------------- ! ! ... Library interface to the QE CPV code ! USE input, ONLY : iosys_pseudo, iosys USE read_input, ONLY : read_input_file USE mp_global, ONLY : mp_startup USE io_global, ONLY : ionode, ionode_id USE environment, ONLY : environment_start USE check_stop, ONLY : check_stop_init USE mp_images, ONLY : intra_image_comm USE command_line_options, ONLY : set_command_line USE parallel_include ! IMPLICIT NONE INTEGER, INTENT(IN) :: lib_comm, nim, npt, npl, nta, nbn, ndg INTEGER, INTENT(INOUT) :: retval CHARACTER(LEN=80) :: infile ! #if defined(DEBUG_QECOUPLE) INTEGER :: me, num, ierr CALL MPI_COMM_SIZE(lib_comm,num,ierr) IF (ierr /= MPI_SUCCESS) THEN CALL MPI_ERROR_STRING(ierr, infile, 80, retval) PRINT*,'MPI Error: ', infile STOP 100 END IF CALL MPI_COMM_RANK(lib_comm,me,ierr) IF (me == 0) THEN PRINT*, 'Calling CPV library interface with these flags:' PRINT*, 'communicator index: ', lib_comm PRINT*, 'communicator size: ', num PRINT*, 'nimage: ', nim PRINT*, 'npot: ', npt PRINT*, 'npool: ', npl PRINT*, 'ntaskg: ', nta PRINT*, 'nband: ', nbn PRINT*, 'ndiag: ', ndg PRINT*, 'input: "',TRIM(infile),'"' END IF #endif ! CALL set_command_line( nimage=nim, npot=npt, npool=npl, ntg=nta, & nband=nbn, ndiag=ndg ) ! CALL mp_startup ( my_world_comm=lib_comm ) CALL environment_start ( 'CP' ) ! IF(ionode) CALL plugin_arguments() CALL plugin_arguments_bcast(ionode_id,intra_image_comm) ! ! ... open, read, close the input file ! CALL read_input_file( 'CP', infile ) ! ! ... read in pseudopotentials files and then ! ... copy pseudopotential parameters into internal variables ! CALL iosys_pseudo() ! ! ... copy-in input parameters from input_parameter module ! CALL iosys() ! ! call to void routine for user define / plugin patches initializations ! temporary moved to init_run ! CALL plugin_initialization() ! ! CALL check_stop_init() ! CALL cpr_loop( 1 ) ! CALL stop_run() retval = 0 ! END SUBROUTINE f2libcpv espresso-5.1/COUPLE/src/libqemod.f900000644000175000017500000000307112341373026015176 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !==-----------------------------------------------------------------------==! ! Wrappers for accessing facilities in the Modules subdirectory !---------------------------------------------------------------------------- ! These init subroutines have to be outside of Fortran modules so they ! can be called from C/C++ or Fortran code !==-----------------------------------------------------------------------==! ! Configure qm/mm interface for MPI message passing, C version SUBROUTINE c2qmmm_mpi_config ( qmmm_mode, inter_comm, verb, steps ) BIND(C) USE iso_c_binding USE qmmm, ONLY: qmmm_config IMPLICIT NONE ! INTEGER(C_INT), VALUE, INTENT(in) :: qmmm_mode, inter_comm, verb, steps CALL qmmm_config( mode=qmmm_mode, comm=inter_comm, verbose=verb, step=steps ) END SUBROUTINE c2qmmm_mpi_config !==-----------------------------------------------------------------------==! ! Configure qm/mm interface for MPI message passing, Fortran version SUBROUTINE f2qmmm_mpi_config ( qmmm_mode, inter_comm, verb, steps ) USE iso_c_binding USE qmmm, ONLY: qmmm_config IMPLICIT NONE ! INTEGER, INTENT(in) :: qmmm_mode, inter_comm, verb, steps CALL qmmm_config( mode=qmmm_mode, comm=inter_comm, verbose=verb, step=steps ) END SUBROUTINE f2qmmm_mpi_config !==-----------------------------------------------------------------------==! espresso-5.1/COUPLE/src/Makefile0000644000175000017500000000226512341373026014526 0ustar mbamba# Makefile for library coupling interface include ../../make.sys # location of required modules and include files MODFLAGS= $(MOD_FLAG)../../iotk/src $(MOD_FLAG)../../Modules $(MOD_FLAG)../../CPV/src IFLAGS=#-DDEBUG_QECOUPLE TLDEPS=pw cp COUPLEOBJS= \ libpwscf.o \ libcpv.o \ libqemod.o ######################################################################## all : tldeps libqecouple.a libqecouple.a : $(COUPLEOBJS) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ tldeps : if test -n "$(TLDEPS)" ; then \ ( cd ../.. ; $(MAKE) $(TLDEPS) || exit 1 ) ; fi clean : - /bin/rm -f *.x *.o *.a *~ *.F90 *.d *.mod *.i *.L # we currently need to specify explicit dependencies here libpwscf.o: libpwscf.f90 ../../Modules/environment.o ../../Modules/mp_global.o \ ../../Modules/read_input.o ../../Modules/command_line_options.o \ ../../Modules/parallel_include.o libcpv.o: libcpv.f90 ../../Modules/environment.o ../../Modules/mp_global.o \ ../../Modules/read_input.o ../../Modules/command_line_options.o \ ../../Modules/mp_images.o ../../Modules/check_stop.o \ ../../Modules/io_global.o ../../Modules/parallel_include.o \ ../../CPV/src/input.o libqemod.o: libqemod.f90 ../../Modules/qmmm.o # DO NOT DELETE espresso-5.1/COUPLE/examples/0000755000175000017500000000000012341373041014105 5ustar mbambaespresso-5.1/COUPLE/examples/f2pw.f900000644000175000017500000000600312341373026015305 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- PROGRAM qecouple !---------------------------------------------------------------------------- ! ! ... Test program for Q-E library interface ! IMPLICIT NONE INCLUDE 'mpif.h' ! INTEGER :: i, exit_status, ierr, ncpu, me, key, new_comm, nargs INTEGER :: nimage, npots, npools, ntg, nband, ndiag, nres CHARACTER(LEN=80) :: input_file, arg ! ! set defaults nimage = 1 npots = 1 npools = 1 ntg = 1 nband = 1 ndiag = 1 nres = 0 input_file = ' ' ! ! MPI setup CALL mpi_init(ierr) CALL mpi_comm_size(MPI_COMM_WORLD,ncpu,ierr) CALL mpi_Comm_rank(MPI_COMM_WORLD,me,ierr) ! ! parse command line flags nargs = command_argument_count() i = 1 DO CALL getarg(i,arg) IF (LEN_TRIM(arg) == 0) EXIT ! i = i + 1 IF (i > nargs) EXIT ! SELECT CASE ( TRIM(arg) ) ! CASE ( '-i', '-in', '-inp', '-input' ) CALL getarg(i, input_file) IF ( TRIM (input_file) == ' ') GO TO 15 i = i + 1 CASE ( '-ni', '-nimage', '-nimages' ) CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) nimage i = i + 1 CASE ( '-npot', '-npots' ) CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) npots i = i + 1 CASE ( '-nk', '-npool', '-npools') CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) npools i = i + 1 CASE ( '-nt', '-ntg', '-ntask_groups') CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) ntg i = i + 1 CASE ( '-nb', '-nband', '-nbgrp', '-nband_group') CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) nband i = i + 1 CASE ( '-nd', '-ndiag', '-northo', '-nproc_diag', '-nproc_ortho') CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) ndiag i = i + 1 CASE ( '-nr', '-nres', '-nreserved') CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) nres i = i + 1 CASE DEFAULT PRINT*, 'unknown input flag: ',TRIM(arg) CALL mpi_abort(MPI_COMM_WORLD,-1,ierr) END SELECT END DO 15 CONTINUE key = MPI_UNDEFINED IF (me < (ncpu - nres)) key = 1 CALL mpi_comm_split(MPI_COMM_WORLD, key, me, new_comm, ierr) IF (new_comm /= MPI_COMM_NULL) THEN CALL f2libpwscf(new_comm,nimage,npots,npools,ntg,nband,ndiag, & exit_status, input_file) PRINT *, 'Call to libpwscf finished with exit status', exit_status ELSE PRINT *, 'Reserved CPU rank:', me, " of", ncpu-1 exit_status = 0 END IF ! CALL mpi_finalize(ierr) CALL do_stop( exit_status ) ! STOP ! END PROGRAM qecouple espresso-5.1/COUPLE/examples/f2cp.f900000644000175000017500000000574112341373026015271 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- PROGRAM qecouple !---------------------------------------------------------------------------- ! ! ... Test program for Q-E library interface ! IMPLICIT NONE INCLUDE 'mpif.h' ! INTEGER :: i, exit_status, ierr, ncpu, me, key, new_comm, nargs INTEGER :: nimage, npots, npools, ntg, nband, ndiag, nres CHARACTER(LEN=80) :: input_file, arg ! ! set defaults nimage = 1 npots = 1 npools = 1 ntg = 1 nband = 1 ndiag = 1 nres = 0 input_file = ' ' ! ! MPI setup CALL mpi_init(ierr) CALL mpi_comm_size(MPI_COMM_WORLD,ncpu,ierr) CALL mpi_Comm_rank(MPI_COMM_WORLD,me,ierr) ! ! parse command line flags nargs = command_argument_count() i = 1 DO CALL getarg(i,arg) IF (LEN_TRIM(arg) == 0) EXIT ! i = i + 1 IF (i > nargs) EXIT ! SELECT CASE ( TRIM(arg) ) ! CASE ( '-i', '-in', '-inp', '-input' ) CALL getarg(i, input_file) IF ( TRIM (input_file) == ' ') GO TO 15 i = i + 1 CASE ( '-ni', '-nimage', '-nimages' ) CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) nimage i = i + 1 CASE ( '-npot', '-npots' ) CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) npots i = i + 1 CASE ( '-nk', '-npool', '-npools') CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) npools i = i + 1 CASE ( '-nt', '-ntg', '-ntask_groups') CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) ntg i = i + 1 CASE ( '-nb', '-nband', '-nbgrp', '-nband_group') CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) nband i = i + 1 CASE ( '-nd', '-ndiag', '-northo', '-nproc_diag', '-nproc_ortho') CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) ndiag i = i + 1 CASE ( '-nr', '-nres', '-nreserved') CALL getarg(i, arg) READ ( arg, *, ERR = 15, END = 15) nres i = i + 1 CASE DEFAULT PRINT*, 'unknown input flag: ',TRIM(arg) CALL mpi_abort(MPI_COMM_WORLD,-1,ierr) END SELECT END DO 15 CONTINUE key = MPI_UNDEFINED IF (me < (ncpu - nres)) key = 1 CALL mpi_comm_split(MPI_COMM_WORLD, key, me, new_comm, ierr) IF (new_comm /= MPI_COMM_NULL) THEN CALL f2libcpv(new_comm,nimage,npots,npools,ntg,nband,ndiag, & exit_status, input_file) PRINT *, 'Call to libcpv finished with exit status', exit_status ELSE PRINT *, 'Reserved CPU rank:', me, " of", ncpu-1 exit_status = 0 END IF ! CALL mpi_finalize(ierr) ! STOP ! END PROGRAM qecouple espresso-5.1/COUPLE/examples/c2cp.cpp0000644000175000017500000000611412341373026015445 0ustar mbamba// // Copyright (C) 2013 Quantum ESPRESSO group // This file is distributed under the terms of the // GNU General Public License. See the file `License' // in the root directory of the present distribution, // or http://www.gnu.org/copyleft/gpl.txt . // #include #include #include #include #include "libqecouple.h" // ... Test program for Q-E library interface int main(int argc, char **argv) { int retval, pw_comm, ncpu, key, me; char input[81] = { ' ', '\0' }; MPI_Comm new_comm; MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD,&ncpu); MPI_Comm_rank(MPI_COMM_WORLD,&me); // parse command line flags. int i=1; int nimage=1, npots=1, npools=1, ntg=1, nband=1, ndiag=1, nres=0; while (i < argc-1) { if (strncmp("-i",argv[i],2) == 0) { ++i; strncpy(input, argv[i], 80); input[80] = '\0'; ++i; continue; } if (strncmp("-ni",argv[i],3) == 0) { ++i; nimage=std::atoi(argv[i]); ++i; continue; } if (strncmp("-npot",argv[i],5) == 0) { ++i; npots=std::atoi(argv[i]); ++i; continue; } if ((strncmp("-nk",argv[i],3) == 0) || (strncmp("-npoo",argv[i],5) == 0)) { ++i; ndiag=std::atoi(argv[i]); ++i; continue; } if (strncmp("-nt",argv[i],3) == 0) { ++i; ntg=std::atoi(argv[i]); ++i; continue; } if (strncmp("-nb",argv[i],3) == 0) { ++i; nband=std::atoi(argv[i]); ++i; continue; } if ((strncmp("-nd",argv[i],3) == 0) || (strncmp("-no",argv[i],3) == 0) || (strcmp("-nproc_diag",argv[i]) == 0) || (strcmp("-nproc_ortho",argv[i]) == 0)) { ++i; ndiag=std::atoi(argv[i]); ++i; continue; } if (strncmp("-nr",argv[i],3) == 0) { ++i; nres=std::atoi(argv[i]); ++i; continue; } std::cerr << "usage: " << argv[0] << " -flag1 -flag2 \n" << std::endl; return -1; } if (i != argc) { std::cerr << "usage: " << argv[0] << " -flag1 -flag2 \n" << std::endl; return -1; } // Create new C-style communicator and convert to Fortran key = MPI_UNDEFINED; if (me < (ncpu - nres)) key = 1; MPI_Comm_split(MPI_COMM_WORLD, key, me, &new_comm); if (new_comm != MPI_COMM_NULL) { pw_comm = MPI_Comm_c2f(new_comm); // call Q-E c2libcpv(pw_comm,nimage,npots,npools,ntg,nband,ndiag,&retval,input); std::cout << " rank " << me << " return value is: " << retval << std::endl; } else { std::cout << " rank " << me << " of " << ncpu -1 << " is reserved" << std::endl; retval = 0; } MPI_Finalize(); return retval; } espresso-5.1/COUPLE/examples/README0000644000175000017500000000202612341373026014770 0ustar mbambaExample Programs for the Library Interface to Quantum ESPRESSO The programs in this directory demonstrate how the library interface can be used. The following examples are provided. To compile first do "make couple" on the top level and then compile with either make -f Makefile.gfortran or make -f Makefile.ifort depending whether you used gcc/gfortran or icc/ifort to compile Quantume ESPRESSO. c2pw.x and f2pw.x ================= These programs mimick the pw.x executable and provide the same command line flags with the additional flag -nreserve (or -nres, or -nr) which "reserves" the requested number of processors and thus is an example for how some other subroutines can be run alongside pw.x using the same MPI infrastructure. The c2pw.x program is written in C++, f2pw.x in Fortran and they show how to pass along the necessary flags and input to the library with either C or Fortran bindings. c2cp.x and f2cp.x ================= These programs mimick the cp.x executable in the same way as c2pw.x and f2pw.x follow the pw.x code. espresso-5.1/COUPLE/examples/Makefile.gfortran0000644000175000017500000000235412341373026017375 0ustar mbamba# Makefile for library coupling interface include ../../make.sys # FLAGS for OpenMPI when QE was compiled with GNU Fortran 4.x MPICXX=mpicxx MPICXXFLAGS=-DOMPI_SKIP_MPICXX=1 -O2 -Wall -g MPILIBS=-lgfortran -lmpi_f77 -lmpi # location of required libraries PWOBJS = ../src/libqecouple.a ../../PW/src/libpw.a ../../Modules/libqemod.a CPOBJS = ../src/libqecouple.a ../../CPV/src/libcp.a ../../Modules/libqemod.a LIBOBJS = ../../flib/ptools.a ../../flib/flib.a ../../clib/clib.a ../../iotk/src/libiotk.a TLDEPS=couple all : tldeps c2pw.x f2pw.x c2cp.x f2cp.x f2pw.x : f2pw.o $(PWOBJS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ $^ $(LIBS) c2pw.x : c2pw.o $(PWOBJS) $(LIBOBJS) $(MPICXX) $(LDFLAGS) -o $@ $^ $(MPILIBS) $(LIBS) f2cp.x : f2cp.o $(CPOBJS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ $^ $(LIBS) c2cp.x : c2cp.o $(CPOBJS) $(LIBOBJS) $(MPICXX) $(LDFLAGS) -o $@ $^ $(MPILIBS) $(LIBS) %.o: %.cpp $(MPICXX) -I../include -c $(MPICXXFLAGS) $< -o $@ tldeps: test -n "$(TLDEPS)" && ( cd ../.. ; $(MAKE) $(MFLAGS) $(TLDEPS) || exit 1) || : clean : - /bin/rm -f *.x *.o *.a *~ *.F90 *.d *.mod *.i *.L # explicit dependencies f2pw.o: f2pw.f90 c2pw.o: c2pw.cpp ../include/libqecouple.h f2cp.o: f2cp.f90 c2cp.o: c2cp.cpp ../include/libqecouple.h # DO NOT DELETE espresso-5.1/COUPLE/examples/Makefile.ifort0000644000175000017500000000244612341373026016700 0ustar mbamba# Makefile for library coupling interface include ../../make.sys # FLAGS for OpenMPI when QE was compiled with Intel Fortran 13.x MPICXX=mpiicpc MPICXXFLAGS=-DOMPI_SKIP_MPICXX=1 -O2 -Wall -DDEBUG_QECOUPLE -g MPILIBS=-Wl,-Bstatic,-lifport,-lifcore,-limf,-Bdynamic -lmpi_f77 -lmpi # location of required libraries PWOBJS = ../src/libqecouple.a ../../PW/src/libpw.a ../../Modules/libqemod.a CPOBJS = ../src/libqecouple.a ../../CPV/src/libcp.a ../../Modules/libqemod.a LIBOBJS = ../../flib/ptools.a ../../flib/flib.a ../../clib/clib.a ../../iotk/src/libiotk.a TLDEPS=couple all : tldeps c2pw.x f2pw.x c2cp.x f2cp.x f2pw.x : f2pw.o $(PWOBJS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ $^ $(LIBS) c2pw.x : c2pw.o $(PWOBJS) $(LIBOBJS) $(MPICXX) $(LDFLAGS) -o $@ $^ $(MPILIBS) $(LIBS) f2cp.x : f2cp.o $(CPOBJS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ $^ $(LIBS) c2cp.x : c2cp.o $(CPOBJS) $(LIBOBJS) $(MPICXX) $(LDFLAGS) -o $@ $^ $(MPILIBS) $(LIBS) %.o: %.cpp $(MPICXX) -I../include -c $(MPICXXFLAGS) $< -o $@ tldeps: test -n "$(TLDEPS)" && ( cd ../.. ; $(MAKE) $(MFLAGS) $(TLDEPS) || exit 1) || : clean : - /bin/rm -f *.x *.o *.a *~ *.F90 *.d *.mod *.i *.L # explicit dependencies f2pw.o: f2pw.f90 c2pw.o: c2pw.cpp ../include/libqecouple.h f2cp.o: f2cp.f90 c2cp.o: c2cp.cpp ../include/libqecouple.h # DO NOT DELETE espresso-5.1/COUPLE/examples/c2pw.cpp0000644000175000017500000000611612341373026015473 0ustar mbamba// // Copyright (C) 2013 Quantum ESPRESSO group // This file is distributed under the terms of the // GNU General Public License. See the file `License' // in the root directory of the present distribution, // or http://www.gnu.org/copyleft/gpl.txt . // #include #include #include #include #include "libqecouple.h" // ... Test program for Q-E library interface int main(int argc, char **argv) { int retval, pw_comm, ncpu, key, me; char input[81] = { ' ', '\0' }; MPI_Comm new_comm; MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD,&ncpu); MPI_Comm_rank(MPI_COMM_WORLD,&me); // parse command line flags. int i=1; int nimage=1, npots=1, npools=1, ntg=1, nband=1, ndiag=1, nres=0; while (i < argc-1) { if (strncmp("-i",argv[i],2) == 0) { ++i; strncpy(input, argv[i], 80); input[80] = '\0'; ++i; continue; } if (strncmp("-ni",argv[i],3) == 0) { ++i; nimage=std::atoi(argv[i]); ++i; continue; } if (strncmp("-npot",argv[i],5) == 0) { ++i; npots=std::atoi(argv[i]); ++i; continue; } if ((strncmp("-nk",argv[i],3) == 0) || (strncmp("-npoo",argv[i],5) == 0)) { ++i; ndiag=std::atoi(argv[i]); ++i; continue; } if (strncmp("-nt",argv[i],3) == 0) { ++i; ntg=std::atoi(argv[i]); ++i; continue; } if (strncmp("-nb",argv[i],3) == 0) { ++i; nband=std::atoi(argv[i]); ++i; continue; } if ((strncmp("-nd",argv[i],3) == 0) || (strncmp("-no",argv[i],3) == 0) || (strcmp("-nproc_diag",argv[i]) == 0) || (strcmp("-nproc_ortho",argv[i]) == 0)) { ++i; ndiag=std::atoi(argv[i]); ++i; continue; } if (strncmp("-nr",argv[i],3) == 0) { ++i; nres=std::atoi(argv[i]); ++i; continue; } std::cerr << "usage: " << argv[0] << " -flag1 -flag2 \n" << std::endl; return -1; } if (i != argc) { std::cerr << "usage: " << argv[0] << " -flag1 -flag2 \n" << std::endl; return -1; } // Create new C-style communicator and convert to Fortran key = MPI_UNDEFINED; if (me < (ncpu - nres)) key = 1; MPI_Comm_split(MPI_COMM_WORLD, key, me, &new_comm); if (new_comm != MPI_COMM_NULL) { pw_comm = MPI_Comm_c2f(new_comm); // call Q-E c2libpwscf(pw_comm,nimage,npots,npools,ntg,nband,ndiag,&retval,input); std::cout << " rank " << me << " return value is: " << retval << std::endl; } else { std::cout << " rank " << me << " of " << ncpu -1 << " is reserved" << std::endl; retval = 0; } MPI_Finalize(); return retval; } espresso-5.1/COUPLE/Makefile0000644000175000017500000000110212341373026013724 0ustar mbamba# Makefile for COUPLE sinclude ../make.sys default: all all: libcouple libcouple: ( cd src ; $(MAKE) all || exit 1 ) doc: if test -d Doc ; then \ ( cd Doc ; $(MAKE) all || exit 1) ; fi doc_clean: if test -d Doc ; then \ ( cd Doc ; $(MAKE) clean ; fi ) ; fi clean : examples_clean tests_clean if test -d src ; then \ ( cd src ; $(MAKE) clean ) ; fi ;\ examples_clean: if test -d examples ; then \ ( cd examples ; $(MAKE) -f Makefile.gfortran clean ) ; fi tests_clean: if test -d tests ; then \ ( cd tests ; ./clean_all ) ; fi distclean: clean doc_clean espresso-5.1/install/0000755000175000017500000000000012341373043012750 5ustar mbambaespresso-5.1/install/make_lapack.inc.in0000644000175000017500000000465512341373034016312 0ustar mbamba# @configure_input@ # -*- Makefile -*- #################################################################### # LAPACK make include file. # # LAPACK, Version 3.2 # # November 2008 # #################################################################### # # See the INSTALL/ directory for more examples. # SHELL = /bin/sh # # The machine (platform) identifier to append to the library names # PLAT = # # Modify the FORTRAN and OPTS definitions to refer to the # compiler and desired compiler options for your machine. NOOPT # refers to the compiler options desired when NO OPTIMIZATION is # selected. Define LOADER and LOADOPTS to refer to the loader # and desired load options for your machine. # FORTRAN = @f77@ OPTS = @fflags@ DRVOPTS = @fflags@ NOOPT = @fflags_noopt@ LOADER = @ld@ LOADOPTS = @ldflags@ # # Timer for the SECOND and DSECND routines # # Default : SECOND and DSECND will use a call to the EXTERNAL FUNCTION ETIME # TIMER = EXT_ETIME # For RS6K : SECOND and DSECND will use a call to the EXTERNAL FUNCTION ETIME_ # TIMER = EXT_ETIME_ # For gfortran compiler: SECOND and DSECND will use a call to the INTERNAL FUNCTION ETIME # TIMER = INT_ETIME # If your Fortran compiler does not provide etime (like Nag Fortran Compiler, etc...) # SECOND and DSECND will use a call to the Fortran standard INTERNAL FUNCTION CPU_TIME TIMER = INT_CPU_TIME # If neither of this works...you can use the NONE value... In that case, SECOND and DSECND will always return 0 # TIMER = NONE # # The archiver and the flag(s) to use when building archive (library) # If you system has no ranlib, set RANLIB = echo. # ARCH = @ar@ ARCHFLAGS= @arflags@ RANLIB = @ranlib@ # # The location of BLAS library for linking the testing programs. # The target's machine-specific, optimized BLAS library should be # used whenever possible. # BLASLIB = @blas_libs@ # # Location of the extended-precision BLAS (XBLAS) Fortran library # used for building and testing extended-precision routines. The # relevant routines will be compiled and XBLAS will be linked only if # USEXBLAS is defined. # # USEXBLAS = Yes XBLASLIB = # XBLASLIB = -lxblas # # Names of generated libraries. # LAPACKLIB = lapack$(PLAT).a TMGLIB = tmglib$(PLAT).a EIGSRCLIB = eigsrc$(PLAT).a LINSRCLIB = linsrc$(PLAT).a espresso-5.1/install/Makefile_lapack0000644000175000017500000005012712341373034015730 0ustar mbambainclude ../make.inc ####################################################################### # This is the makefile to create a library for LAPACK. # The files are organized as follows: # ALLAUX -- Auxiliary routines called from all precisions # ALLXAUX -- Auxiliary routines called from all precisions but # only from routines using extra precision. # SCLAUX -- Auxiliary routines called from both REAL and COMPLEX # DZLAUX -- Auxiliary routines called from both DOUBLE PRECISION # and COMPLEX*16 # SLASRC -- Single precision real LAPACK routines # SXLASRC -- Single precision real LAPACK routines using extra # precision. # CLASRC -- Single precision complex LAPACK routines # CXLASRC -- Single precision complex LAPACK routines using extra # precision. # DLASRC -- Double precision real LAPACK routines # DXLASRC -- Double precision real LAPACK routines using extra # precision. # ZLASRC -- Double precision complex LAPACK routines # ZXLASRC -- Double precision complex LAPACK routines using extra # precision. # # The library can be set up to include routines for any combination # of the four precisions. To create or add to the library, enter make # followed by one or more of the precisions desired. Some examples: # make single # make single complex # make single double complex complex16 # Alternatively, the command # make # without any arguments creates a library of all four precisions. # The library is called # lapack.a # and is created at the next higher directory level. # # To remove the object files after the library is created, enter # make clean # On some systems, you can force the source files to be recompiled by # entering (for example) # make single FRC=FRC # # ***Note*** # The functions lsame, second, dsecnd, slamch, and dlamch may have # to be installed before compiling the library. Refer to the # installation guide, LAPACK Working Note 41, for instructions. # ####################################################################### ALLAUX = ilaenv.o ieeeck.o lsamen.o xerbla.o xerbla_array.o iparmq.o \ ilaprec.o ilatrans.o ilauplo.o iladiag.o chla_transtype.o \ ../INSTALL/ilaver.o ../INSTALL/lsame.o ALLXAUX = #SCLAUX = \ # sbdsdc.o \ # sbdsqr.o sdisna.o slabad.o slacpy.o sladiv.o slae2.o slaebz.o \ # slaed0.o slaed1.o slaed2.o slaed3.o slaed4.o slaed5.o slaed6.o \ # slaed7.o slaed8.o slaed9.o slaeda.o slaev2.o slagtf.o \ # slagts.o slamrg.o slanst.o \ # slapy2.o slapy3.o slarnv.o \ # slarra.o slarrb.o slarrc.o slarrd.o slarre.o slarrf.o slarrj.o \ # slarrk.o slarrr.o slaneg.o \ # slartg.o slaruv.o slas2.o slascl.o \ # slasd0.o slasd1.o slasd2.o slasd3.o slasd4.o slasd5.o slasd6.o \ # slasd7.o slasd8.o slasda.o slasdq.o slasdt.o \ # slaset.o slasq1.o slasq2.o slasq3.o slasq4.o slasq5.o slasq6.o \ # slasr.o slasrt.o slassq.o slasv2.o spttrf.o sstebz.o sstedc.o \ # ssteqr.o ssterf.o slaisnan.o sisnan.o \ # ../INSTALL/slamch.o ../INSTALL/second_$(TIMER).o DZLAUX = \ dbdsdc.o \ dbdsqr.o ddisna.o dlabad.o dlacpy.o dladiv.o dlae2.o dlaebz.o \ dlaed0.o dlaed1.o dlaed2.o dlaed3.o dlaed4.o dlaed5.o dlaed6.o \ dlaed7.o dlaed8.o dlaed9.o dlaeda.o dlaev2.o dlagtf.o \ dlagts.o dlamrg.o dlanst.o \ dlapy2.o dlapy3.o dlarnv.o \ dlarra.o dlarrb.o dlarrc.o dlarrd.o dlarre.o dlarrf.o dlarrj.o \ dlarrk.o dlarrr.o dlaneg.o \ dlartg.o dlaruv.o dlas2.o dlascl.o \ dlasd0.o dlasd1.o dlasd2.o dlasd3.o dlasd4.o dlasd5.o dlasd6.o \ dlasd7.o dlasd8.o dlasda.o dlasdq.o dlasdt.o \ dlaset.o dlasq1.o dlasq2.o dlasq3.o dlasq4.o dlasq5.o dlasq6.o \ dlasr.o dlasrt.o dlassq.o dlasv2.o dpttrf.o dstebz.o dstedc.o \ dsteqr.o dsterf.o dlaisnan.o disnan.o \ ../INSTALL/dlamch.o ../INSTALL/dsecnd_$(TIMER).o #SLASRC = \ # sgbbrd.o sgbcon.o sgbequ.o sgbrfs.o sgbsv.o \ # sgbsvx.o sgbtf2.o sgbtrf.o sgbtrs.o sgebak.o sgebal.o sgebd2.o \ # sgebrd.o sgecon.o sgeequ.o sgees.o sgeesx.o sgeev.o sgeevx.o \ # sgegs.o sgegv.o sgehd2.o sgehrd.o sgelq2.o sgelqf.o \ # sgels.o sgelsd.o sgelss.o sgelsx.o sgelsy.o sgeql2.o sgeqlf.o \ # sgeqp3.o sgeqpf.o sgeqr2.o sgeqrf.o sgerfs.o sgerq2.o sgerqf.o \ # sgesc2.o sgesdd.o sgesv.o sgesvd.o sgesvx.o sgetc2.o sgetf2.o \ # sgetrf.o sgetri.o \ # sgetrs.o sggbak.o sggbal.o sgges.o sggesx.o sggev.o sggevx.o \ # sggglm.o sgghrd.o sgglse.o sggqrf.o \ # sggrqf.o sggsvd.o sggsvp.o sgtcon.o sgtrfs.o sgtsv.o \ # sgtsvx.o sgttrf.o sgttrs.o sgtts2.o shgeqz.o \ # shsein.o shseqr.o slabrd.o slacon.o slacn2.o \ # slaein.o slaexc.o slag2.o slags2.o slagtm.o slagv2.o slahqr.o \ # slahrd.o slahr2.o slaic1.o slaln2.o slals0.o slalsa.o slalsd.o \ # slangb.o slange.o slangt.o slanhs.o slansb.o slansp.o \ # slansy.o slantb.o slantp.o slantr.o slanv2.o \ # slapll.o slapmt.o \ # slaqgb.o slaqge.o slaqp2.o slaqps.o slaqsb.o slaqsp.o slaqsy.o \ # slaqr0.o slaqr1.o slaqr2.o slaqr3.o slaqr4.o slaqr5.o \ # slaqtr.o slar1v.o slar2v.o ilaslr.o ilaslc.o \ # slarf.o slarfb.o slarfg.o slarft.o slarfx.o slargv.o \ # slarrv.o slartv.o slarfp.o \ # slarz.o slarzb.o slarzt.o slaswp.o slasy2.o slasyf.o \ # slatbs.o slatdf.o slatps.o slatrd.o slatrs.o slatrz.o slatzm.o \ # slauu2.o slauum.o sopgtr.o sopmtr.o sorg2l.o sorg2r.o \ # sorgbr.o sorghr.o sorgl2.o sorglq.o sorgql.o sorgqr.o sorgr2.o \ # sorgrq.o sorgtr.o sorm2l.o sorm2r.o \ # sormbr.o sormhr.o sorml2.o sormlq.o sormql.o sormqr.o sormr2.o \ # sormr3.o sormrq.o sormrz.o sormtr.o spbcon.o spbequ.o spbrfs.o \ # spbstf.o spbsv.o spbsvx.o \ # spbtf2.o spbtrf.o spbtrs.o spocon.o spoequ.o sporfs.o sposv.o \ # sposvx.o spotf2.o spotrf.o spotri.o spotrs.o spstrf.o spstf2.o \ # sppcon.o sppequ.o \ # spprfs.o sppsv.o sppsvx.o spptrf.o spptri.o spptrs.o sptcon.o \ # spteqr.o sptrfs.o sptsv.o sptsvx.o spttrs.o sptts2.o srscl.o \ # ssbev.o ssbevd.o ssbevx.o ssbgst.o ssbgv.o ssbgvd.o ssbgvx.o \ # ssbtrd.o sspcon.o sspev.o sspevd.o sspevx.o sspgst.o \ # sspgv.o sspgvd.o sspgvx.o ssprfs.o sspsv.o sspsvx.o ssptrd.o \ # ssptrf.o ssptri.o ssptrs.o sstegr.o sstein.o sstev.o sstevd.o sstevr.o \ # sstevx.o ssycon.o ssyev.o ssyevd.o ssyevr.o ssyevx.o ssygs2.o \ # ssygst.o ssygv.o ssygvd.o ssygvx.o ssyrfs.o ssysv.o ssysvx.o \ # ssytd2.o ssytf2.o ssytrd.o ssytrf.o ssytri.o ssytrs.o stbcon.o \ # stbrfs.o stbtrs.o stgevc.o stgex2.o stgexc.o stgsen.o \ # stgsja.o stgsna.o stgsy2.o stgsyl.o stpcon.o stprfs.o stptri.o \ # stptrs.o \ # strcon.o strevc.o strexc.o strrfs.o strsen.o strsna.o strsyl.o \ # strti2.o strtri.o strtrs.o stzrqf.o stzrzf.o sstemr.o \ # slansf.o spftrf.o spftri.o spftrs.o ssfrk.o stfsm.o stftri.o stfttp.o \ # stfttr.o stpttf.o stpttr.o strttf.o strttp.o \ # sgejsv.o sgesvj.o sgsvj0.o sgsvj1.o \ # sgeequb.o ssyequb.o spoequb.o sgbequb.o # #SXLASRC = sgesvxx.o sgerfsx.o sla_gerfsx_extended.o sla_geamv.o \ # sla_gercond.o sla_rpvgrw.o ssysvxx.o ssyrfsx.o \ # sla_syrfsx_extended.o sla_syamv.o sla_syrcond.o sla_syrpvgrw.o \ # sposvxx.o sporfsx.o sla_porfsx_extended.o sla_porcond.o \ # sla_porpvgrw.o sgbsvxx.o sgbrfsx.o sla_gbrfsx_extended.o \ # sla_gbamv.o sla_gbrcond.o sla_gbrpvgrw.o sla_lin_berr.o slarscl2.o \ # slascl2.o sla_wwaddw.o #CLASRC = \ # cbdsqr.o cgbbrd.o cgbcon.o cgbequ.o cgbrfs.o cgbsv.o cgbsvx.o \ # cgbtf2.o cgbtrf.o cgbtrs.o cgebak.o cgebal.o cgebd2.o cgebrd.o \ # cgecon.o cgeequ.o cgees.o cgeesx.o cgeev.o cgeevx.o \ # cgegs.o cgegv.o cgehd2.o cgehrd.o cgelq2.o cgelqf.o \ # cgels.o cgelsd.o cgelss.o cgelsx.o cgelsy.o cgeql2.o cgeqlf.o cgeqp3.o \ # cgeqpf.o cgeqr2.o cgeqrf.o cgerfs.o cgerq2.o cgerqf.o \ # cgesc2.o cgesdd.o cgesv.o cgesvd.o cgesvx.o cgetc2.o cgetf2.o cgetrf.o \ # cgetri.o cgetrs.o \ # cggbak.o cggbal.o cgges.o cggesx.o cggev.o cggevx.o cggglm.o \ # cgghrd.o cgglse.o cggqrf.o cggrqf.o \ # cggsvd.o cggsvp.o \ # cgtcon.o cgtrfs.o cgtsv.o cgtsvx.o cgttrf.o cgttrs.o cgtts2.o chbev.o \ # chbevd.o chbevx.o chbgst.o chbgv.o chbgvd.o chbgvx.o chbtrd.o \ # checon.o cheev.o cheevd.o cheevr.o cheevx.o chegs2.o chegst.o \ # chegv.o chegvd.o chegvx.o cherfs.o chesv.o chesvx.o chetd2.o \ # chetf2.o chetrd.o \ # chetrf.o chetri.o chetrs.o chgeqz.o chpcon.o chpev.o chpevd.o \ # chpevx.o chpgst.o chpgv.o chpgvd.o chpgvx.o chprfs.o chpsv.o \ # chpsvx.o \ # chptrd.o chptrf.o chptri.o chptrs.o chsein.o chseqr.o clabrd.o \ # clacgv.o clacon.o clacn2.o clacp2.o clacpy.o clacrm.o clacrt.o cladiv.o \ # claed0.o claed7.o claed8.o \ # claein.o claesy.o claev2.o clags2.o clagtm.o \ # clahef.o clahqr.o \ # clahrd.o clahr2.o claic1.o clals0.o clalsa.o clalsd.o clangb.o clange.o clangt.o \ # clanhb.o clanhe.o \ # clanhp.o clanhs.o clanht.o clansb.o clansp.o clansy.o clantb.o \ # clantp.o clantr.o clapll.o clapmt.o clarcm.o claqgb.o claqge.o \ # claqhb.o claqhe.o claqhp.o claqp2.o claqps.o claqsb.o \ # claqr0.o claqr1.o claqr2.o claqr3.o claqr4.o claqr5.o \ # claqsp.o claqsy.o clar1v.o clar2v.o ilaclr.o ilaclc.o \ # clarf.o clarfb.o clarfg.o clarft.o clarfp.o \ # clarfx.o clargv.o clarnv.o clarrv.o clartg.o clartv.o \ # clarz.o clarzb.o clarzt.o clascl.o claset.o clasr.o classq.o \ # claswp.o clasyf.o clatbs.o clatdf.o clatps.o clatrd.o clatrs.o clatrz.o \ # clatzm.o clauu2.o clauum.o cpbcon.o cpbequ.o cpbrfs.o cpbstf.o cpbsv.o \ # cpbsvx.o cpbtf2.o cpbtrf.o cpbtrs.o cpocon.o cpoequ.o cporfs.o \ # cposv.o cposvx.o cpotf2.o cpotrf.o cpotri.o cpotrs.o cpstrf.o cpstf2.o \ # cppcon.o cppequ.o cpprfs.o cppsv.o cppsvx.o cpptrf.o cpptri.o cpptrs.o \ # cptcon.o cpteqr.o cptrfs.o cptsv.o cptsvx.o cpttrf.o cpttrs.o cptts2.o \ # crot.o cspcon.o cspmv.o cspr.o csprfs.o cspsv.o \ # cspsvx.o csptrf.o csptri.o csptrs.o csrscl.o cstedc.o \ # cstegr.o cstein.o csteqr.o csycon.o csymv.o \ # csyr.o csyrfs.o csysv.o csysvx.o csytf2.o csytrf.o csytri.o \ # csytrs.o ctbcon.o ctbrfs.o ctbtrs.o ctgevc.o ctgex2.o \ # ctgexc.o ctgsen.o ctgsja.o ctgsna.o ctgsy2.o ctgsyl.o ctpcon.o \ # ctprfs.o ctptri.o \ # ctptrs.o ctrcon.o ctrevc.o ctrexc.o ctrrfs.o ctrsen.o ctrsna.o \ # ctrsyl.o ctrti2.o ctrtri.o ctrtrs.o ctzrqf.o ctzrzf.o cung2l.o cung2r.o \ # cungbr.o cunghr.o cungl2.o cunglq.o cungql.o cungqr.o cungr2.o \ # cungrq.o cungtr.o cunm2l.o cunm2r.o cunmbr.o cunmhr.o cunml2.o \ # cunmlq.o cunmql.o cunmqr.o cunmr2.o cunmr3.o cunmrq.o cunmrz.o \ # cunmtr.o cupgtr.o cupmtr.o icmax1.o scsum1.o cstemr.o \ # chfrk.o ctfttp.o clanhf.o cpftrf.o cpftri.o cpftrs.o ctfsm.o ctftri.o \ # ctfttr.o ctpttf.o ctpttr.o ctrttf.o ctrttp.o \ # cgeequb.o cgbequb.o csyequb.o cpoequb.o cheequb.o # #CXLASRC = cgesvxx.o cgerfsx.o cla_gerfsx_extended.o cla_geamv.o \ # cla_gercond_c.o cla_gercond_x.o cla_rpvgrw.o \ # csysvxx.o csyrfsx.o cla_syrfsx_extended.o cla_syamv.o \ # cla_syrcond_c.o cla_syrcond_x.o cla_syrpvgrw.o \ # cposvxx.o cporfsx.o cla_porfsx_extended.o \ # cla_porcond_c.o cla_porcond_x.o cla_porpvgrw.o \ # cgbsvxx.o cgbrfsx.o cla_gbrfsx_extended.o cla_gbamv.o \ # cla_gbrcond_c.o cla_gbrcond_x.o cla_gbrpvgrw.o \ # chesvxx.o cherfsx.o cla_herfsx_extended.o cla_heamv.o \ # cla_hercond_c.o cla_hercond_x.o cla_herpvgrw.o \ # cla_lin_berr.o clarscl2.o clascl2.o cla_wwaddw.o DLASRC = \ dgbbrd.o dgbcon.o dgbequ.o dgbrfs.o dgbsv.o \ dgbsvx.o dgbtf2.o dgbtrf.o dgbtrs.o dgebak.o dgebal.o dgebd2.o \ dgebrd.o dgecon.o dgeequ.o dgees.o dgeesx.o dgeev.o dgeevx.o \ dgegs.o dgegv.o dgehd2.o dgehrd.o dgelq2.o dgelqf.o \ dgels.o dgelsd.o dgelss.o dgelsx.o dgelsy.o dgeql2.o dgeqlf.o \ dgeqp3.o dgeqpf.o dgeqr2.o dgeqrf.o dgerfs.o dgerq2.o dgerqf.o \ dgesc2.o dgesdd.o dgesv.o dgesvd.o dgesvx.o dgetc2.o dgetf2.o \ dgetrf.o dgetri.o \ dgetrs.o dggbak.o dggbal.o dgges.o dggesx.o dggev.o dggevx.o \ dggglm.o dgghrd.o dgglse.o dggqrf.o \ dggrqf.o dggsvd.o dggsvp.o dgtcon.o dgtrfs.o dgtsv.o \ dgtsvx.o dgttrf.o dgttrs.o dgtts2.o dhgeqz.o \ dhsein.o dhseqr.o dlabrd.o dlacon.o dlacn2.o \ dlaein.o dlaexc.o dlag2.o dlags2.o dlagtm.o dlagv2.o dlahqr.o \ dlahrd.o dlahr2.o dlaic1.o dlaln2.o dlals0.o dlalsa.o dlalsd.o \ dlangb.o dlange.o dlangt.o dlanhs.o dlansb.o dlansp.o \ dlansy.o dlantb.o dlantp.o dlantr.o dlanv2.o \ dlapll.o dlapmt.o \ dlaqgb.o dlaqge.o dlaqp2.o dlaqps.o dlaqsb.o dlaqsp.o dlaqsy.o \ dlaqr0.o dlaqr1.o dlaqr2.o dlaqr3.o dlaqr4.o dlaqr5.o \ dlaqtr.o dlar1v.o dlar2v.o iladlr.o iladlc.o \ dlarf.o dlarfb.o dlarfg.o dlarft.o dlarfx.o dlargv.o \ dlarrv.o dlartv.o dlarfp.o \ dlarz.o dlarzb.o dlarzt.o dlaswp.o dlasy2.o dlasyf.o \ dlatbs.o dlatdf.o dlatps.o dlatrd.o dlatrs.o dlatrz.o dlatzm.o dlauu2.o \ dlauum.o dopgtr.o dopmtr.o dorg2l.o dorg2r.o \ dorgbr.o dorghr.o dorgl2.o dorglq.o dorgql.o dorgqr.o dorgr2.o \ dorgrq.o dorgtr.o dorm2l.o dorm2r.o \ dormbr.o dormhr.o dorml2.o dormlq.o dormql.o dormqr.o dormr2.o \ dormr3.o dormrq.o dormrz.o dormtr.o dpbcon.o dpbequ.o dpbrfs.o \ dpbstf.o dpbsv.o dpbsvx.o \ dpbtf2.o dpbtrf.o dpbtrs.o dpocon.o dpoequ.o dporfs.o dposv.o \ dposvx.o dpotf2.o dpotrf.o dpotri.o dpotrs.o dpstrf.o dpstf2.o \ dppcon.o dppequ.o \ dpprfs.o dppsv.o dppsvx.o dpptrf.o dpptri.o dpptrs.o dptcon.o \ dpteqr.o dptrfs.o dptsv.o dptsvx.o dpttrs.o dptts2.o drscl.o \ dsbev.o dsbevd.o dsbevx.o dsbgst.o dsbgv.o dsbgvd.o dsbgvx.o \ dsbtrd.o dspcon.o dspev.o dspevd.o dspevx.o dspgst.o \ dspgv.o dspgvd.o dspgvx.o dsprfs.o dspsv.o dspsvx.o dsptrd.o \ dsptrf.o dsptri.o dsptrs.o dstegr.o dstein.o dstev.o dstevd.o dstevr.o \ dstevx.o dsycon.o dsyev.o dsyevd.o dsyevr.o \ dsyevx.o dsygs2.o dsygst.o dsygv.o dsygvd.o dsygvx.o dsyrfs.o \ dsysv.o dsysvx.o \ dsytd2.o dsytf2.o dsytrd.o dsytrf.o dsytri.o dsytrs.o dtbcon.o \ dtbrfs.o dtbtrs.o dtgevc.o dtgex2.o dtgexc.o dtgsen.o \ dtgsja.o dtgsna.o dtgsy2.o dtgsyl.o dtpcon.o dtprfs.o dtptri.o \ dtptrs.o \ dtrcon.o dtrevc.o dtrexc.o dtrrfs.o dtrsen.o dtrsna.o dtrsyl.o \ dtrti2.o dtrtri.o dtrtrs.o dtzrqf.o dtzrzf.o dstemr.o \ dsgesv.o dsposv.o dlag2s.o slag2d.o dlat2s.o \ dlansf.o dpftrf.o dpftri.o dpftrs.o dsfrk.o dtfsm.o dtftri.o dtfttp.o \ dtfttr.o dtpttf.o dtpttr.o dtrttf.o dtrttp.o \ dgejsv.o dgesvj.o dgsvj0.o dgsvj1.o \ dgeequb.o dsyequb.o dpoequb.o dgbequb.o #DXLASRC = dgesvxx.o dgerfsx.o dla_gerfsx_extended.o dla_geamv.o \ # dla_gercond.o dla_rpvgrw.o dsysvxx.o dsyrfsx.o \ # dla_syrfsx_extended.o dla_syamv.o dla_syrcond.o dla_syrpvgrw.o \ # dposvxx.o dporfsx.o dla_porfsx_extended.o dla_porcond.o \ # dla_porpvgrw.o dgbsvxx.o dgbrfsx.o dla_gbrfsx_extended.o \ # dla_gbamv.o dla_gbrcond.o dla_gbrpvgrw.o dla_lin_berr.o dlarscl2.o \ # dlascl2.o dla_wwaddw.o ZLASRC = \ zbdsqr.o zgbbrd.o zgbcon.o zgbequ.o zgbrfs.o zgbsv.o zgbsvx.o \ zgbtf2.o zgbtrf.o zgbtrs.o zgebak.o zgebal.o zgebd2.o zgebrd.o \ zgecon.o zgeequ.o zgees.o zgeesx.o zgeev.o zgeevx.o \ zgegs.o zgegv.o zgehd2.o zgehrd.o zgelq2.o zgelqf.o \ zgels.o zgelsd.o zgelss.o zgelsx.o zgelsy.o zgeql2.o zgeqlf.o zgeqp3.o \ zgeqpf.o zgeqr2.o zgeqrf.o zgerfs.o zgerq2.o zgerqf.o \ zgesc2.o zgesdd.o zgesv.o zgesvd.o zgesvx.o zgetc2.o zgetf2.o zgetrf.o \ zgetri.o zgetrs.o \ zggbak.o zggbal.o zgges.o zggesx.o zggev.o zggevx.o zggglm.o \ zgghrd.o zgglse.o zggqrf.o zggrqf.o \ zggsvd.o zggsvp.o \ zgtcon.o zgtrfs.o zgtsv.o zgtsvx.o zgttrf.o zgttrs.o zgtts2.o zhbev.o \ zhbevd.o zhbevx.o zhbgst.o zhbgv.o zhbgvd.o zhbgvx.o zhbtrd.o \ zhecon.o zheev.o zheevd.o zheevr.o zheevx.o zhegs2.o zhegst.o \ zhegv.o zhegvd.o zhegvx.o zherfs.o zhesv.o zhesvx.o zhetd2.o \ zhetf2.o zhetrd.o \ zhetrf.o zhetri.o zhetrs.o zhgeqz.o zhpcon.o zhpev.o zhpevd.o \ zhpevx.o zhpgst.o zhpgv.o zhpgvd.o zhpgvx.o zhprfs.o zhpsv.o \ zhpsvx.o \ zhptrd.o zhptrf.o zhptri.o zhptrs.o zhsein.o zhseqr.o zlabrd.o \ zlacgv.o zlacon.o zlacn2.o zlacp2.o zlacpy.o zlacrm.o zlacrt.o zladiv.o \ zlaed0.o zlaed7.o zlaed8.o \ zlaein.o zlaesy.o zlaev2.o zlags2.o zlagtm.o \ zlahef.o zlahqr.o \ zlahrd.o zlahr2.o zlaic1.o zlals0.o zlalsa.o zlalsd.o zlangb.o zlange.o \ zlangt.o zlanhb.o \ zlanhe.o \ zlanhp.o zlanhs.o zlanht.o zlansb.o zlansp.o zlansy.o zlantb.o \ zlantp.o zlantr.o zlapll.o zlapmt.o zlaqgb.o zlaqge.o \ zlaqhb.o zlaqhe.o zlaqhp.o zlaqp2.o zlaqps.o zlaqsb.o \ zlaqr0.o zlaqr1.o zlaqr2.o zlaqr3.o zlaqr4.o zlaqr5.o \ zlaqsp.o zlaqsy.o zlar1v.o zlar2v.o ilazlr.o ilazlc.o \ zlarcm.o zlarf.o zlarfb.o \ zlarfg.o zlarft.o zlarfp.o \ zlarfx.o zlargv.o zlarnv.o zlarrv.o zlartg.o zlartv.o \ zlarz.o zlarzb.o zlarzt.o zlascl.o zlaset.o zlasr.o \ zlassq.o zlaswp.o zlasyf.o \ zlatbs.o zlatdf.o zlatps.o zlatrd.o zlatrs.o zlatrz.o zlatzm.o zlauu2.o \ zlauum.o zpbcon.o zpbequ.o zpbrfs.o zpbstf.o zpbsv.o \ zpbsvx.o zpbtf2.o zpbtrf.o zpbtrs.o zpocon.o zpoequ.o zporfs.o \ zposv.o zposvx.o zpotf2.o zpotrf.o zpotri.o zpotrs.o zpstrf.o zpstf2.o \ zppcon.o zppequ.o zpprfs.o zppsv.o zppsvx.o zpptrf.o zpptri.o zpptrs.o \ zptcon.o zpteqr.o zptrfs.o zptsv.o zptsvx.o zpttrf.o zpttrs.o zptts2.o \ zrot.o zspcon.o zspmv.o zspr.o zsprfs.o zspsv.o \ zspsvx.o zsptrf.o zsptri.o zsptrs.o zdrscl.o zstedc.o \ zstegr.o zstein.o zsteqr.o zsycon.o zsymv.o \ zsyr.o zsyrfs.o zsysv.o zsysvx.o zsytf2.o zsytrf.o zsytri.o \ zsytrs.o ztbcon.o ztbrfs.o ztbtrs.o ztgevc.o ztgex2.o \ ztgexc.o ztgsen.o ztgsja.o ztgsna.o ztgsy2.o ztgsyl.o ztpcon.o \ ztprfs.o ztptri.o \ ztptrs.o ztrcon.o ztrevc.o ztrexc.o ztrrfs.o ztrsen.o ztrsna.o \ ztrsyl.o ztrti2.o ztrtri.o ztrtrs.o ztzrqf.o ztzrzf.o zung2l.o \ zung2r.o zungbr.o zunghr.o zungl2.o zunglq.o zungql.o zungqr.o zungr2.o \ zungrq.o zungtr.o zunm2l.o zunm2r.o zunmbr.o zunmhr.o zunml2.o \ zunmlq.o zunmql.o zunmqr.o zunmr2.o zunmr3.o zunmrq.o zunmrz.o \ zunmtr.o zupgtr.o \ zupmtr.o izmax1.o dzsum1.o zstemr.o \ zcgesv.o zcposv.o zlag2c.o clag2z.o zlat2c.o \ zhfrk.o ztfttp.o zlanhf.o zpftrf.o zpftri.o zpftrs.o ztfsm.o ztftri.o \ ztfttr.o ztpttf.o ztpttr.o ztrttf.o ztrttp.o \ zgeequb.o zgbequb.o zsyequb.o zpoequb.o zheequb.o #ZXLASRC = zgesvxx.o zgerfsx.o zla_gerfsx_extended.o zla_geamv.o \ # zla_gercond_c.o zla_gercond_x.o zla_rpvgrw.o zsysvxx.o zsyrfsx.o \ # zla_syrfsx_extended.o zla_syamv.o zla_syrcond_c.o zla_syrcond_x.o \ # zla_syrpvgrw.o zposvxx.o zporfsx.o zla_porfsx_extended.o \ # zla_porcond_c.o zla_porcond_x.o zla_porpvgrw.o zgbsvxx.o zgbrfsx.o \ # zla_gbrfsx_extended.o zla_gbamv.o zla_gbrcond_c.o zla_gbrcond_x.o \ # zla_gbrpvgrw.o zhesvxx.o zherfsx.o zla_herfsx_extended.o \ # zla_heamv.o zla_hercond_c.o zla_hercond_x.o zla_herpvgrw.o \ # zla_lin_berr.o zlarscl2.o zlascl2.o zla_wwaddw.o all: ../$(LAPACKLIB) #ifdef USEXBLAS #ALLXOBJ=$(SXLASRC) $(DXLASRC) $(CXLASRC) $(ZXLASRC) $(ALLXAUX) #endif #ALLOBJ=$(SLASRC) $(DLASRC) $(CLASRC) $(ZLASRC) $(SCLAUX) $(DZLAUX) \ # $(ALLAUX) ALLOBJ=$(DLASRC) $(ZLASRC) $(DZLAUX) \ $(ALLAUX) ../$(LAPACKLIB): $(ALLOBJ) $(ALLXOBJ) $(ARCH) $(ARCHFLAGS) $@ $(ALLOBJ) $(ALLXOBJ) $(RANLIB) $@ #single: $(SLASRC) $(ALLAUX) $(SCLAUX) # $(ARCH) $(ARCHFLAGS) ../$(LAPACKLIB) $(SLASRC) $(ALLAUX) \ # $(SCLAUX) # $(RANLIB) ../$(LAPACKLIB) #complex: $(CLASRC) $(ALLAUX) $(SCLAUX) # $(ARCH) $(ARCHFLAGS) ../$(LAPACKLIB) $(CLASRC) $(ALLAUX) \ # $(SCLAUX) # $(RANLIB) ../$(LAPACKLIB) double: $(DLASRC) $(ALLAUX) $(DZLAUX) $(ARCH) $(ARCHFLAGS) ../$(LAPACKLIB) $(DLASRC) $(ALLAUX) \ $(DZLAUX) $(RANLIB) ../$(LAPACKLIB) complex16: $(ZLASRC) $(ALLAUX) $(DZLAUX) $(ARCH) $(ARCHFLAGS) ../$(LAPACKLIB) $(ZLASRC) $(ALLAUX) \ $(DZLAUX) $(RANLIB) ../$(LAPACKLIB) $(ALLAUX): $(FRC) #$(SCLAUX): $(FRC) $(DZLAUX): $(FRC) #$(SLASRC): $(FRC) #$(CLASRC): $(FRC) $(DLASRC): $(FRC) $(ZLASRC): $(FRC) #ifdef USEXBLAS #$(ALLXAUX): $(FRC) #$(SXLASRC): $(FRC) #$(CXLASRC): $(FRC) #$(DXLASRC): $(FRC) #$(ZXLASRC): $(FRC) #endif FRC: @FRC=$(FRC) clean: rm -f *.o .f.o: $(FORTRAN) $(OPTS) -c $< -o $@ slaruv.o: slaruv.f ; $(FORTRAN) $(NOOPT) -c $< -o $@ dlaruv.o: dlaruv.f ; $(FORTRAN) $(NOOPT) -c $< -o $@ sla_wwaddw.o: sla_wwaddw.f ; $(FORTRAN) $(NOOPT) -c $< -o $@ dla_wwaddw.o: dla_wwaddw.f ; $(FORTRAN) $(NOOPT) -c $< -o $@ cla_wwaddw.o: cla_wwaddw.f ; $(FORTRAN) $(NOOPT) -c $< -o $@ zla_wwaddw.o: zla_wwaddw.f ; $(FORTRAN) $(NOOPT) -c $< -o $@ espresso-5.1/install/config.guess0000755000175000017500000012753412341373034015304 0ustar mbamba#! /bin/sh # Attempt to guess a canonical system name. # Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, # 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 # Free Software Foundation, Inc. timestamp='2008-01-23' # This file is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA # 02110-1301, USA. # # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. # Originally written by Per Bothner . # Please send patches to . Submit a context # diff and a properly formatted ChangeLog entry. # # This script attempts to guess a canonical system name similar to # config.sub. If it succeeds, it prints the system name on stdout, and # exits with 0. Otherwise, it exits with 1. # # The plan is that this can be called by configure scripts if you # don't specify an explicit build system type. me=`echo "$0" | sed -e 's,.*/,,'` usage="\ Usage: $0 [OPTION] Output the configuration name of the system \`$me' is run on. Operation modes: -h, --help print this help, then exit -t, --time-stamp print date of last modification, then exit -v, --version print version number, then exit Report bugs and patches to ." version="\ GNU config.guess ($timestamp) Originally written by Per Bothner. Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE." help=" Try \`$me --help' for more information." # Parse command line while test $# -gt 0 ; do case $1 in --time-stamp | --time* | -t ) echo "$timestamp" ; exit ;; --version | -v ) echo "$version" ; exit ;; --help | --h* | -h ) echo "$usage"; exit ;; -- ) # Stop option processing shift; break ;; - ) # Use stdin as input. break ;; -* ) echo "$me: invalid option $1$help" >&2 exit 1 ;; * ) break ;; esac done if test $# != 0; then echo "$me: too many arguments$help" >&2 exit 1 fi trap 'exit 1' 1 2 15 # CC_FOR_BUILD -- compiler used by this script. Note that the use of a # compiler to aid in system detection is discouraged as it requires # temporary files to be created and, as you can see below, it is a # headache to deal with in a portable fashion. # Historically, `CC_FOR_BUILD' used to be named `HOST_CC'. We still # use `HOST_CC' if defined, but it is deprecated. # Portable tmp directory creation inspired by the Autoconf team. set_cc_for_build=' trap "exitcode=\$?; (rm -f \$tmpfiles 2>/dev/null; rmdir \$tmp 2>/dev/null) && exit \$exitcode" 0 ; trap "rm -f \$tmpfiles 2>/dev/null; rmdir \$tmp 2>/dev/null; exit 1" 1 2 13 15 ; : ${TMPDIR=/tmp} ; { tmp=`(umask 077 && mktemp -d "$TMPDIR/cgXXXXXX") 2>/dev/null` && test -n "$tmp" && test -d "$tmp" ; } || { test -n "$RANDOM" && tmp=$TMPDIR/cg$$-$RANDOM && (umask 077 && mkdir $tmp) ; } || { tmp=$TMPDIR/cg-$$ && (umask 077 && mkdir $tmp) && echo "Warning: creating insecure temp directory" >&2 ; } || { echo "$me: cannot create a temporary directory in $TMPDIR" >&2 ; exit 1 ; } ; dummy=$tmp/dummy ; tmpfiles="$dummy.c $dummy.o $dummy.rel $dummy" ; case $CC_FOR_BUILD,$HOST_CC,$CC in ,,) echo "int x;" > $dummy.c ; for c in cc gcc c89 c99 ; do if ($c -c -o $dummy.o $dummy.c) >/dev/null 2>&1 ; then CC_FOR_BUILD="$c"; break ; fi ; done ; if test x"$CC_FOR_BUILD" = x ; then CC_FOR_BUILD=no_compiler_found ; fi ;; ,,*) CC_FOR_BUILD=$CC ;; ,*,*) CC_FOR_BUILD=$HOST_CC ;; esac ; set_cc_for_build= ;' # This is needed to find uname on a Pyramid OSx when run in the BSD universe. # (ghazi@noc.rutgers.edu 1994-08-24) if (test -f /.attbin/uname) >/dev/null 2>&1 ; then PATH=$PATH:/.attbin ; export PATH fi UNAME_MACHINE=`(uname -m) 2>/dev/null` || UNAME_MACHINE=unknown UNAME_RELEASE=`(uname -r) 2>/dev/null` || UNAME_RELEASE=unknown UNAME_SYSTEM=`(uname -s) 2>/dev/null` || UNAME_SYSTEM=unknown UNAME_VERSION=`(uname -v) 2>/dev/null` || UNAME_VERSION=unknown # Note: order is significant - the case branches are not exclusive. case "${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}" in *:NetBSD:*:*) # NetBSD (nbsd) targets should (where applicable) match one or # more of the tupples: *-*-netbsdelf*, *-*-netbsdaout*, # *-*-netbsdecoff* and *-*-netbsd*. For targets that recently # switched to ELF, *-*-netbsd* would select the old # object file format. This provides both forward # compatibility and a consistent mechanism for selecting the # object file format. # # Note: NetBSD doesn't particularly care about the vendor # portion of the name. We always set it to "unknown". sysctl="sysctl -n hw.machine_arch" UNAME_MACHINE_ARCH=`(/sbin/$sysctl 2>/dev/null || \ /usr/sbin/$sysctl 2>/dev/null || echo unknown)` case "${UNAME_MACHINE_ARCH}" in armeb) machine=armeb-unknown ;; arm*) machine=arm-unknown ;; sh3el) machine=shl-unknown ;; sh3eb) machine=sh-unknown ;; sh5el) machine=sh5le-unknown ;; *) machine=${UNAME_MACHINE_ARCH}-unknown ;; esac # The Operating System including object format, if it has switched # to ELF recently, or will in the future. case "${UNAME_MACHINE_ARCH}" in arm*|i386|m68k|ns32k|sh3*|sparc|vax) eval $set_cc_for_build if echo __ELF__ | $CC_FOR_BUILD -E - 2>/dev/null \ | grep __ELF__ >/dev/null then # Once all utilities can be ECOFF (netbsdecoff) or a.out (netbsdaout). # Return netbsd for either. FIX? os=netbsd else os=netbsdelf fi ;; *) os=netbsd ;; esac # The OS release # Debian GNU/NetBSD machines have a different userland, and # thus, need a distinct triplet. However, they do not need # kernel version information, so it can be replaced with a # suitable tag, in the style of linux-gnu. case "${UNAME_VERSION}" in Debian*) release='-gnu' ;; *) release=`echo ${UNAME_RELEASE}|sed -e 's/[-_].*/\./'` ;; esac # Since CPU_TYPE-MANUFACTURER-KERNEL-OPERATING_SYSTEM: # contains redundant information, the shorter form: # CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM is used. echo "${machine}-${os}${release}" exit ;; *:OpenBSD:*:*) UNAME_MACHINE_ARCH=`arch | sed 's/OpenBSD.//'` echo ${UNAME_MACHINE_ARCH}-unknown-openbsd${UNAME_RELEASE} exit ;; *:ekkoBSD:*:*) echo ${UNAME_MACHINE}-unknown-ekkobsd${UNAME_RELEASE} exit ;; *:SolidBSD:*:*) echo ${UNAME_MACHINE}-unknown-solidbsd${UNAME_RELEASE} exit ;; macppc:MirBSD:*:*) echo powerpc-unknown-mirbsd${UNAME_RELEASE} exit ;; *:MirBSD:*:*) echo ${UNAME_MACHINE}-unknown-mirbsd${UNAME_RELEASE} exit ;; alpha:OSF1:*:*) case $UNAME_RELEASE in *4.0) UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $3}'` ;; *5.*) UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $4}'` ;; esac # According to Compaq, /usr/sbin/psrinfo has been available on # OSF/1 and Tru64 systems produced since 1995. I hope that # covers most systems running today. This code pipes the CPU # types through head -n 1, so we only detect the type of CPU 0. ALPHA_CPU_TYPE=`/usr/sbin/psrinfo -v | sed -n -e 's/^ The alpha \(.*\) processor.*$/\1/p' | head -n 1` case "$ALPHA_CPU_TYPE" in "EV4 (21064)") UNAME_MACHINE="alpha" ;; "EV4.5 (21064)") UNAME_MACHINE="alpha" ;; "LCA4 (21066/21068)") UNAME_MACHINE="alpha" ;; "EV5 (21164)") UNAME_MACHINE="alphaev5" ;; "EV5.6 (21164A)") UNAME_MACHINE="alphaev56" ;; "EV5.6 (21164PC)") UNAME_MACHINE="alphapca56" ;; "EV5.7 (21164PC)") UNAME_MACHINE="alphapca57" ;; "EV6 (21264)") UNAME_MACHINE="alphaev6" ;; "EV6.7 (21264A)") UNAME_MACHINE="alphaev67" ;; "EV6.8CB (21264C)") UNAME_MACHINE="alphaev68" ;; "EV6.8AL (21264B)") UNAME_MACHINE="alphaev68" ;; "EV6.8CX (21264D)") UNAME_MACHINE="alphaev68" ;; "EV6.9A (21264/EV69A)") UNAME_MACHINE="alphaev69" ;; "EV7 (21364)") UNAME_MACHINE="alphaev7" ;; "EV7.9 (21364A)") UNAME_MACHINE="alphaev79" ;; esac # A Pn.n version is a patched version. # A Vn.n version is a released version. # A Tn.n version is a released field test version. # A Xn.n version is an unreleased experimental baselevel. # 1.2 uses "1.2" for uname -r. echo ${UNAME_MACHINE}-dec-osf`echo ${UNAME_RELEASE} | sed -e 's/^[PVTX]//' | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz'` exit ;; Alpha\ *:Windows_NT*:*) # How do we know it's Interix rather than the generic POSIX subsystem? # Should we change UNAME_MACHINE based on the output of uname instead # of the specific Alpha model? echo alpha-pc-interix exit ;; 21064:Windows_NT:50:3) echo alpha-dec-winnt3.5 exit ;; Amiga*:UNIX_System_V:4.0:*) echo m68k-unknown-sysv4 exit ;; *:[Aa]miga[Oo][Ss]:*:*) echo ${UNAME_MACHINE}-unknown-amigaos exit ;; *:[Mm]orph[Oo][Ss]:*:*) echo ${UNAME_MACHINE}-unknown-morphos exit ;; *:OS/390:*:*) echo i370-ibm-openedition exit ;; *:z/VM:*:*) echo s390-ibm-zvmoe exit ;; *:OS400:*:*) echo powerpc-ibm-os400 exit ;; arm:RISC*:1.[012]*:*|arm:riscix:1.[012]*:*) echo arm-acorn-riscix${UNAME_RELEASE} exit ;; arm:riscos:*:*|arm:RISCOS:*:*) echo arm-unknown-riscos exit ;; SR2?01:HI-UX/MPP:*:* | SR8000:HI-UX/MPP:*:*) echo hppa1.1-hitachi-hiuxmpp exit ;; Pyramid*:OSx*:*:* | MIS*:OSx*:*:* | MIS*:SMP_DC-OSx*:*:*) # akee@wpdis03.wpafb.af.mil (Earle F. Ake) contributed MIS and NILE. if test "`(/bin/universe) 2>/dev/null`" = att ; then echo pyramid-pyramid-sysv3 else echo pyramid-pyramid-bsd fi exit ;; NILE*:*:*:dcosx) echo pyramid-pyramid-svr4 exit ;; DRS?6000:unix:4.0:6*) echo sparc-icl-nx6 exit ;; DRS?6000:UNIX_SV:4.2*:7* | DRS?6000:isis:4.2*:7*) case `/usr/bin/uname -p` in sparc) echo sparc-icl-nx7; exit ;; esac ;; sun4H:SunOS:5.*:*) echo sparc-hal-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:5.*:* | tadpole*:SunOS:5.*:*) echo sparc-sun-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; i86pc:SunOS:5.*:* | i86xen:SunOS:5.*:*) echo i386-pc-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:6*:*) # According to config.sub, this is the proper way to canonicalize # SunOS6. Hard to guess exactly what SunOS6 will be like, but # it's likely to be more like Solaris than SunOS4. echo sparc-sun-solaris3`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:*:*) case "`/usr/bin/arch -k`" in Series*|S4*) UNAME_RELEASE=`uname -v` ;; esac # Japanese Language versions have a version number like `4.1.3-JL'. echo sparc-sun-sunos`echo ${UNAME_RELEASE}|sed -e 's/-/_/'` exit ;; sun3*:SunOS:*:*) echo m68k-sun-sunos${UNAME_RELEASE} exit ;; sun*:*:4.2BSD:*) UNAME_RELEASE=`(sed 1q /etc/motd | awk '{print substr($5,1,3)}') 2>/dev/null` test "x${UNAME_RELEASE}" = "x" && UNAME_RELEASE=3 case "`/bin/arch`" in sun3) echo m68k-sun-sunos${UNAME_RELEASE} ;; sun4) echo sparc-sun-sunos${UNAME_RELEASE} ;; esac exit ;; aushp:SunOS:*:*) echo sparc-auspex-sunos${UNAME_RELEASE} exit ;; # The situation for MiNT is a little confusing. The machine name # can be virtually everything (everything which is not # "atarist" or "atariste" at least should have a processor # > m68000). The system name ranges from "MiNT" over "FreeMiNT" # to the lowercase version "mint" (or "freemint"). Finally # the system name "TOS" denotes a system which is actually not # MiNT. But MiNT is downward compatible to TOS, so this should # be no problem. atarist[e]:*MiNT:*:* | atarist[e]:*mint:*:* | atarist[e]:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; atari*:*MiNT:*:* | atari*:*mint:*:* | atarist[e]:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; *falcon*:*MiNT:*:* | *falcon*:*mint:*:* | *falcon*:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; milan*:*MiNT:*:* | milan*:*mint:*:* | *milan*:*TOS:*:*) echo m68k-milan-mint${UNAME_RELEASE} exit ;; hades*:*MiNT:*:* | hades*:*mint:*:* | *hades*:*TOS:*:*) echo m68k-hades-mint${UNAME_RELEASE} exit ;; *:*MiNT:*:* | *:*mint:*:* | *:*TOS:*:*) echo m68k-unknown-mint${UNAME_RELEASE} exit ;; m68k:machten:*:*) echo m68k-apple-machten${UNAME_RELEASE} exit ;; powerpc:machten:*:*) echo powerpc-apple-machten${UNAME_RELEASE} exit ;; RISC*:Mach:*:*) echo mips-dec-mach_bsd4.3 exit ;; RISC*:ULTRIX:*:*) echo mips-dec-ultrix${UNAME_RELEASE} exit ;; VAX*:ULTRIX*:*:*) echo vax-dec-ultrix${UNAME_RELEASE} exit ;; 2020:CLIX:*:* | 2430:CLIX:*:*) echo clipper-intergraph-clix${UNAME_RELEASE} exit ;; mips:*:*:UMIPS | mips:*:*:RISCos) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #ifdef __cplusplus #include /* for printf() prototype */ int main (int argc, char *argv[]) { #else int main (argc, argv) int argc; char *argv[]; { #endif #if defined (host_mips) && defined (MIPSEB) #if defined (SYSTYPE_SYSV) printf ("mips-mips-riscos%ssysv\n", argv[1]); exit (0); #endif #if defined (SYSTYPE_SVR4) printf ("mips-mips-riscos%ssvr4\n", argv[1]); exit (0); #endif #if defined (SYSTYPE_BSD43) || defined(SYSTYPE_BSD) printf ("mips-mips-riscos%sbsd\n", argv[1]); exit (0); #endif #endif exit (-1); } EOF $CC_FOR_BUILD -o $dummy $dummy.c && dummyarg=`echo "${UNAME_RELEASE}" | sed -n 's/\([0-9]*\).*/\1/p'` && SYSTEM_NAME=`$dummy $dummyarg` && { echo "$SYSTEM_NAME"; exit; } echo mips-mips-riscos${UNAME_RELEASE} exit ;; Motorola:PowerMAX_OS:*:*) echo powerpc-motorola-powermax exit ;; Motorola:*:4.3:PL8-*) echo powerpc-harris-powermax exit ;; Night_Hawk:*:*:PowerMAX_OS | Synergy:PowerMAX_OS:*:*) echo powerpc-harris-powermax exit ;; Night_Hawk:Power_UNIX:*:*) echo powerpc-harris-powerunix exit ;; m88k:CX/UX:7*:*) echo m88k-harris-cxux7 exit ;; m88k:*:4*:R4*) echo m88k-motorola-sysv4 exit ;; m88k:*:3*:R3*) echo m88k-motorola-sysv3 exit ;; AViiON:dgux:*:*) # DG/UX returns AViiON for all architectures UNAME_PROCESSOR=`/usr/bin/uname -p` if [ $UNAME_PROCESSOR = mc88100 ] || [ $UNAME_PROCESSOR = mc88110 ] then if [ ${TARGET_BINARY_INTERFACE}x = m88kdguxelfx ] || \ [ ${TARGET_BINARY_INTERFACE}x = x ] then echo m88k-dg-dgux${UNAME_RELEASE} else echo m88k-dg-dguxbcs${UNAME_RELEASE} fi else echo i586-dg-dgux${UNAME_RELEASE} fi exit ;; M88*:DolphinOS:*:*) # DolphinOS (SVR3) echo m88k-dolphin-sysv3 exit ;; M88*:*:R3*:*) # Delta 88k system running SVR3 echo m88k-motorola-sysv3 exit ;; XD88*:*:*:*) # Tektronix XD88 system running UTekV (SVR3) echo m88k-tektronix-sysv3 exit ;; Tek43[0-9][0-9]:UTek:*:*) # Tektronix 4300 system running UTek (BSD) echo m68k-tektronix-bsd exit ;; *:IRIX*:*:*) echo mips-sgi-irix`echo ${UNAME_RELEASE}|sed -e 's/-/_/g'` exit ;; ????????:AIX?:[12].1:2) # AIX 2.2.1 or AIX 2.1.1 is RT/PC AIX. echo romp-ibm-aix # uname -m gives an 8 hex-code CPU id exit ;; # Note that: echo "'`uname -s`'" gives 'AIX ' i*86:AIX:*:*) echo i386-ibm-aix exit ;; ia64:AIX:*:*) if [ -x /usr/bin/oslevel ] ; then IBM_REV=`/usr/bin/oslevel` else IBM_REV=${UNAME_VERSION}.${UNAME_RELEASE} fi echo ${UNAME_MACHINE}-ibm-aix${IBM_REV} exit ;; *:AIX:2:3) if grep bos325 /usr/include/stdio.h >/dev/null 2>&1; then eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #include main() { if (!__power_pc()) exit(1); puts("powerpc-ibm-aix3.2.5"); exit(0); } EOF if $CC_FOR_BUILD -o $dummy $dummy.c && SYSTEM_NAME=`$dummy` then echo "$SYSTEM_NAME" else echo rs6000-ibm-aix3.2.5 fi elif grep bos324 /usr/include/stdio.h >/dev/null 2>&1; then echo rs6000-ibm-aix3.2.4 else echo rs6000-ibm-aix3.2 fi exit ;; *:AIX:*:[456]) IBM_CPU_ID=`/usr/sbin/lsdev -C -c processor -S available | sed 1q | awk '{ print $1 }'` if /usr/sbin/lsattr -El ${IBM_CPU_ID} | grep ' POWER' >/dev/null 2>&1; then IBM_ARCH=rs6000 else IBM_ARCH=powerpc fi if [ -x /usr/bin/oslevel ] ; then IBM_REV=`/usr/bin/oslevel` else IBM_REV=${UNAME_VERSION}.${UNAME_RELEASE} fi echo ${IBM_ARCH}-ibm-aix${IBM_REV} exit ;; *:AIX:*:*) echo rs6000-ibm-aix exit ;; ibmrt:4.4BSD:*|romp-ibm:BSD:*) echo romp-ibm-bsd4.4 exit ;; ibmrt:*BSD:*|romp-ibm:BSD:*) # covers RT/PC BSD and echo romp-ibm-bsd${UNAME_RELEASE} # 4.3 with uname added to exit ;; # report: romp-ibm BSD 4.3 *:BOSX:*:*) echo rs6000-bull-bosx exit ;; DPX/2?00:B.O.S.:*:*) echo m68k-bull-sysv3 exit ;; 9000/[34]??:4.3bsd:1.*:*) echo m68k-hp-bsd exit ;; hp300:4.4BSD:*:* | 9000/[34]??:4.3bsd:2.*:*) echo m68k-hp-bsd4.4 exit ;; 9000/[34678]??:HP-UX:*:*) HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'` case "${UNAME_MACHINE}" in 9000/31? ) HP_ARCH=m68000 ;; 9000/[34]?? ) HP_ARCH=m68k ;; 9000/[678][0-9][0-9]) if [ -x /usr/bin/getconf ]; then sc_cpu_version=`/usr/bin/getconf SC_CPU_VERSION 2>/dev/null` sc_kernel_bits=`/usr/bin/getconf SC_KERNEL_BITS 2>/dev/null` case "${sc_cpu_version}" in 523) HP_ARCH="hppa1.0" ;; # CPU_PA_RISC1_0 528) HP_ARCH="hppa1.1" ;; # CPU_PA_RISC1_1 532) # CPU_PA_RISC2_0 case "${sc_kernel_bits}" in 32) HP_ARCH="hppa2.0n" ;; 64) HP_ARCH="hppa2.0w" ;; '') HP_ARCH="hppa2.0" ;; # HP-UX 10.20 esac ;; esac fi if [ "${HP_ARCH}" = "" ]; then eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #define _HPUX_SOURCE #include #include int main () { #if defined(_SC_KERNEL_BITS) long bits = sysconf(_SC_KERNEL_BITS); #endif long cpu = sysconf (_SC_CPU_VERSION); switch (cpu) { case CPU_PA_RISC1_0: puts ("hppa1.0"); break; case CPU_PA_RISC1_1: puts ("hppa1.1"); break; case CPU_PA_RISC2_0: #if defined(_SC_KERNEL_BITS) switch (bits) { case 64: puts ("hppa2.0w"); break; case 32: puts ("hppa2.0n"); break; default: puts ("hppa2.0"); break; } break; #else /* !defined(_SC_KERNEL_BITS) */ puts ("hppa2.0"); break; #endif default: puts ("hppa1.0"); break; } exit (0); } EOF (CCOPTS= $CC_FOR_BUILD -o $dummy $dummy.c 2>/dev/null) && HP_ARCH=`$dummy` test -z "$HP_ARCH" && HP_ARCH=hppa fi ;; esac if [ ${HP_ARCH} = "hppa2.0w" ] then eval $set_cc_for_build # hppa2.0w-hp-hpux* has a 64-bit kernel and a compiler generating # 32-bit code. hppa64-hp-hpux* has the same kernel and a compiler # generating 64-bit code. GNU and HP use different nomenclature: # # $ CC_FOR_BUILD=cc ./config.guess # => hppa2.0w-hp-hpux11.23 # $ CC_FOR_BUILD="cc +DA2.0w" ./config.guess # => hppa64-hp-hpux11.23 if echo __LP64__ | (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | grep __LP64__ >/dev/null then HP_ARCH="hppa2.0w" else HP_ARCH="hppa64" fi fi echo ${HP_ARCH}-hp-hpux${HPUX_REV} exit ;; ia64:HP-UX:*:*) HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'` echo ia64-hp-hpux${HPUX_REV} exit ;; 3050*:HI-UX:*:*) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #include int main () { long cpu = sysconf (_SC_CPU_VERSION); /* The order matters, because CPU_IS_HP_MC68K erroneously returns true for CPU_PA_RISC1_0. CPU_IS_PA_RISC returns correct results, however. */ if (CPU_IS_PA_RISC (cpu)) { switch (cpu) { case CPU_PA_RISC1_0: puts ("hppa1.0-hitachi-hiuxwe2"); break; case CPU_PA_RISC1_1: puts ("hppa1.1-hitachi-hiuxwe2"); break; case CPU_PA_RISC2_0: puts ("hppa2.0-hitachi-hiuxwe2"); break; default: puts ("hppa-hitachi-hiuxwe2"); break; } } else if (CPU_IS_HP_MC68K (cpu)) puts ("m68k-hitachi-hiuxwe2"); else puts ("unknown-hitachi-hiuxwe2"); exit (0); } EOF $CC_FOR_BUILD -o $dummy $dummy.c && SYSTEM_NAME=`$dummy` && { echo "$SYSTEM_NAME"; exit; } echo unknown-hitachi-hiuxwe2 exit ;; 9000/7??:4.3bsd:*:* | 9000/8?[79]:4.3bsd:*:* ) echo hppa1.1-hp-bsd exit ;; 9000/8??:4.3bsd:*:*) echo hppa1.0-hp-bsd exit ;; *9??*:MPE/iX:*:* | *3000*:MPE/iX:*:*) echo hppa1.0-hp-mpeix exit ;; hp7??:OSF1:*:* | hp8?[79]:OSF1:*:* ) echo hppa1.1-hp-osf exit ;; hp8??:OSF1:*:*) echo hppa1.0-hp-osf exit ;; i*86:OSF1:*:*) if [ -x /usr/sbin/sysversion ] ; then echo ${UNAME_MACHINE}-unknown-osf1mk else echo ${UNAME_MACHINE}-unknown-osf1 fi exit ;; parisc*:Lites*:*:*) echo hppa1.1-hp-lites exit ;; C1*:ConvexOS:*:* | convex:ConvexOS:C1*:*) echo c1-convex-bsd exit ;; C2*:ConvexOS:*:* | convex:ConvexOS:C2*:*) if getsysinfo -f scalar_acc then echo c32-convex-bsd else echo c2-convex-bsd fi exit ;; C34*:ConvexOS:*:* | convex:ConvexOS:C34*:*) echo c34-convex-bsd exit ;; C38*:ConvexOS:*:* | convex:ConvexOS:C38*:*) echo c38-convex-bsd exit ;; C4*:ConvexOS:*:* | convex:ConvexOS:C4*:*) echo c4-convex-bsd exit ;; CRAY*Y-MP:*:*:*) echo ymp-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; CRAY*[A-Z]90:*:*:*) echo ${UNAME_MACHINE}-cray-unicos${UNAME_RELEASE} \ | sed -e 's/CRAY.*\([A-Z]90\)/\1/' \ -e y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/ \ -e 's/\.[^.]*$/.X/' exit ;; CRAY*TS:*:*:*) echo t90-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; CRAY*T3E:*:*:*) echo alphaev5-cray-unicosmk${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; CRAY*SV1:*:*:*) echo sv1-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; *:UNICOS/mp:*:*) echo craynv-cray-unicosmp${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; F30[01]:UNIX_System_V:*:* | F700:UNIX_System_V:*:*) FUJITSU_PROC=`uname -m | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz'` FUJITSU_SYS=`uname -p | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/\///'` FUJITSU_REL=`echo ${UNAME_RELEASE} | sed -e 's/ /_/'` echo "${FUJITSU_PROC}-fujitsu-${FUJITSU_SYS}${FUJITSU_REL}" exit ;; 5000:UNIX_System_V:4.*:*) FUJITSU_SYS=`uname -p | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/\///'` FUJITSU_REL=`echo ${UNAME_RELEASE} | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/ /_/'` echo "sparc-fujitsu-${FUJITSU_SYS}${FUJITSU_REL}" exit ;; i*86:BSD/386:*:* | i*86:BSD/OS:*:* | *:Ascend\ Embedded/OS:*:*) echo ${UNAME_MACHINE}-pc-bsdi${UNAME_RELEASE} exit ;; sparc*:BSD/OS:*:*) echo sparc-unknown-bsdi${UNAME_RELEASE} exit ;; *:BSD/OS:*:*) echo ${UNAME_MACHINE}-unknown-bsdi${UNAME_RELEASE} exit ;; *:FreeBSD:*:*) case ${UNAME_MACHINE} in pc98) echo i386-unknown-freebsd`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` ;; amd64) echo x86_64-unknown-freebsd`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` ;; *) echo ${UNAME_MACHINE}-unknown-freebsd`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` ;; esac exit ;; i*:CYGWIN*:*) echo ${UNAME_MACHINE}-pc-cygwin exit ;; *:MINGW*:*) echo ${UNAME_MACHINE}-pc-mingw32 exit ;; i*:windows32*:*) # uname -m includes "-pc" on this system. echo ${UNAME_MACHINE}-mingw32 exit ;; i*:PW*:*) echo ${UNAME_MACHINE}-pc-pw32 exit ;; *:Interix*:[3456]*) case ${UNAME_MACHINE} in x86) echo i586-pc-interix${UNAME_RELEASE} exit ;; EM64T | authenticamd) echo x86_64-unknown-interix${UNAME_RELEASE} exit ;; IA64) echo ia64-unknown-interix${UNAME_RELEASE} exit ;; esac ;; [345]86:Windows_95:* | [345]86:Windows_98:* | [345]86:Windows_NT:*) echo i${UNAME_MACHINE}-pc-mks exit ;; i*:Windows_NT*:* | Pentium*:Windows_NT*:*) # How do we know it's Interix rather than the generic POSIX subsystem? # It also conflicts with pre-2.0 versions of AT&T UWIN. Should we # UNAME_MACHINE based on the output of uname instead of i386? echo i586-pc-interix exit ;; i*:UWIN*:*) echo ${UNAME_MACHINE}-pc-uwin exit ;; amd64:CYGWIN*:*:* | x86_64:CYGWIN*:*:*) echo x86_64-unknown-cygwin exit ;; p*:CYGWIN*:*) echo powerpcle-unknown-cygwin exit ;; prep*:SunOS:5.*:*) echo powerpcle-unknown-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; *:GNU:*:*) # the GNU system echo `echo ${UNAME_MACHINE}|sed -e 's,[-/].*$,,'`-unknown-gnu`echo ${UNAME_RELEASE}|sed -e 's,/.*$,,'` exit ;; *:GNU/*:*:*) # other systems with GNU libc and userland echo ${UNAME_MACHINE}-unknown-`echo ${UNAME_SYSTEM} | sed 's,^[^/]*/,,' | tr '[A-Z]' '[a-z]'``echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'`-gnu exit ;; i*86:Minix:*:*) echo ${UNAME_MACHINE}-pc-minix exit ;; arm*:Linux:*:*) eval $set_cc_for_build if echo __ARM_EABI__ | $CC_FOR_BUILD -E - 2>/dev/null \ | grep -q __ARM_EABI__ then echo ${UNAME_MACHINE}-unknown-linux-gnu else echo ${UNAME_MACHINE}-unknown-linux-gnueabi fi exit ;; avr32*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; cris:Linux:*:*) echo cris-axis-linux-gnu exit ;; crisv32:Linux:*:*) echo crisv32-axis-linux-gnu exit ;; frv:Linux:*:*) echo frv-unknown-linux-gnu exit ;; ia64:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; m32r*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; m68*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; mips:Linux:*:*) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #undef CPU #undef mips #undef mipsel #if defined(__MIPSEL__) || defined(__MIPSEL) || defined(_MIPSEL) || defined(MIPSEL) CPU=mipsel #else #if defined(__MIPSEB__) || defined(__MIPSEB) || defined(_MIPSEB) || defined(MIPSEB) CPU=mips #else CPU= #endif #endif EOF eval "`$CC_FOR_BUILD -E $dummy.c 2>/dev/null | sed -n ' /^CPU/{ s: ::g p }'`" test x"${CPU}" != x && { echo "${CPU}-unknown-linux-gnu"; exit; } ;; mips64:Linux:*:*) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #undef CPU #undef mips64 #undef mips64el #if defined(__MIPSEL__) || defined(__MIPSEL) || defined(_MIPSEL) || defined(MIPSEL) CPU=mips64el #else #if defined(__MIPSEB__) || defined(__MIPSEB) || defined(_MIPSEB) || defined(MIPSEB) CPU=mips64 #else CPU= #endif #endif EOF eval "`$CC_FOR_BUILD -E $dummy.c 2>/dev/null | sed -n ' /^CPU/{ s: ::g p }'`" test x"${CPU}" != x && { echo "${CPU}-unknown-linux-gnu"; exit; } ;; or32:Linux:*:*) echo or32-unknown-linux-gnu exit ;; ppc:Linux:*:*) echo powerpc-unknown-linux-gnu exit ;; ppc64:Linux:*:*) echo powerpc64-unknown-linux-gnu exit ;; alpha:Linux:*:*) case `sed -n '/^cpu model/s/^.*: \(.*\)/\1/p' < /proc/cpuinfo` in EV5) UNAME_MACHINE=alphaev5 ;; EV56) UNAME_MACHINE=alphaev56 ;; PCA56) UNAME_MACHINE=alphapca56 ;; PCA57) UNAME_MACHINE=alphapca56 ;; EV6) UNAME_MACHINE=alphaev6 ;; EV67) UNAME_MACHINE=alphaev67 ;; EV68*) UNAME_MACHINE=alphaev68 ;; esac objdump --private-headers /bin/sh | grep ld.so.1 >/dev/null if test "$?" = 0 ; then LIBC="libc1" ; else LIBC="" ; fi echo ${UNAME_MACHINE}-unknown-linux-gnu${LIBC} exit ;; parisc:Linux:*:* | hppa:Linux:*:*) # Look for CPU level case `grep '^cpu[^a-z]*:' /proc/cpuinfo 2>/dev/null | cut -d' ' -f2` in PA7*) echo hppa1.1-unknown-linux-gnu ;; PA8*) echo hppa2.0-unknown-linux-gnu ;; *) echo hppa-unknown-linux-gnu ;; esac exit ;; parisc64:Linux:*:* | hppa64:Linux:*:*) echo hppa64-unknown-linux-gnu exit ;; s390:Linux:*:* | s390x:Linux:*:*) echo ${UNAME_MACHINE}-ibm-linux exit ;; sh64*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; sh*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; sparc:Linux:*:* | sparc64:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; vax:Linux:*:*) echo ${UNAME_MACHINE}-dec-linux-gnu exit ;; x86_64:Linux:*:*) echo x86_64-unknown-linux-gnu exit ;; xtensa*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; i*86:Linux:*:*) # The BFD linker knows what the default object file format is, so # first see if it will tell us. cd to the root directory to prevent # problems with other programs or directories called `ld' in the path. # Set LC_ALL=C to ensure ld outputs messages in English. ld_supported_targets=`cd /; LC_ALL=C ld --help 2>&1 \ | sed -ne '/supported targets:/!d s/[ ][ ]*/ /g s/.*supported targets: *// s/ .*// p'` case "$ld_supported_targets" in elf32-i386) TENTATIVE="${UNAME_MACHINE}-pc-linux-gnu" ;; a.out-i386-linux) echo "${UNAME_MACHINE}-pc-linux-gnuaout" exit ;; coff-i386) echo "${UNAME_MACHINE}-pc-linux-gnucoff" exit ;; "") # Either a pre-BFD a.out linker (linux-gnuoldld) or # one that does not give us useful --help. echo "${UNAME_MACHINE}-pc-linux-gnuoldld" exit ;; esac # Determine whether the default compiler is a.out or elf eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #include #ifdef __ELF__ # ifdef __GLIBC__ # if __GLIBC__ >= 2 LIBC=gnu # else LIBC=gnulibc1 # endif # else LIBC=gnulibc1 # endif #else #if defined(__INTEL_COMPILER) || defined(__PGI) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) LIBC=gnu #else LIBC=gnuaout #endif #endif #ifdef __dietlibc__ LIBC=dietlibc #endif EOF eval "`$CC_FOR_BUILD -E $dummy.c 2>/dev/null | sed -n ' /^LIBC/{ s: ::g p }'`" test x"${LIBC}" != x && { echo "${UNAME_MACHINE}-pc-linux-${LIBC}" exit } test x"${TENTATIVE}" != x && { echo "${TENTATIVE}"; exit; } ;; i*86:DYNIX/ptx:4*:*) # ptx 4.0 does uname -s correctly, with DYNIX/ptx in there. # earlier versions are messed up and put the nodename in both # sysname and nodename. echo i386-sequent-sysv4 exit ;; i*86:UNIX_SV:4.2MP:2.*) # Unixware is an offshoot of SVR4, but it has its own version # number series starting with 2... # I am not positive that other SVR4 systems won't match this, # I just have to hope. -- rms. # Use sysv4.2uw... so that sysv4* matches it. echo ${UNAME_MACHINE}-pc-sysv4.2uw${UNAME_VERSION} exit ;; i*86:OS/2:*:*) # If we were able to find `uname', then EMX Unix compatibility # is probably installed. echo ${UNAME_MACHINE}-pc-os2-emx exit ;; i*86:XTS-300:*:STOP) echo ${UNAME_MACHINE}-unknown-stop exit ;; i*86:atheos:*:*) echo ${UNAME_MACHINE}-unknown-atheos exit ;; i*86:syllable:*:*) echo ${UNAME_MACHINE}-pc-syllable exit ;; i*86:LynxOS:2.*:* | i*86:LynxOS:3.[01]*:* | i*86:LynxOS:4.0*:*) echo i386-unknown-lynxos${UNAME_RELEASE} exit ;; i*86:*DOS:*:*) echo ${UNAME_MACHINE}-pc-msdosdjgpp exit ;; i*86:*:4.*:* | i*86:SYSTEM_V:4.*:*) UNAME_REL=`echo ${UNAME_RELEASE} | sed 's/\/MP$//'` if grep Novell /usr/include/link.h >/dev/null 2>/dev/null; then echo ${UNAME_MACHINE}-univel-sysv${UNAME_REL} else echo ${UNAME_MACHINE}-pc-sysv${UNAME_REL} fi exit ;; i*86:*:5:[678]*) # UnixWare 7.x, OpenUNIX and OpenServer 6. case `/bin/uname -X | grep "^Machine"` in *486*) UNAME_MACHINE=i486 ;; *Pentium) UNAME_MACHINE=i586 ;; *Pent*|*Celeron) UNAME_MACHINE=i686 ;; esac echo ${UNAME_MACHINE}-unknown-sysv${UNAME_RELEASE}${UNAME_SYSTEM}${UNAME_VERSION} exit ;; i*86:*:3.2:*) if test -f /usr/options/cb.name; then UNAME_REL=`sed -n 's/.*Version //p' /dev/null >/dev/null ; then UNAME_REL=`(/bin/uname -X|grep Release|sed -e 's/.*= //')` (/bin/uname -X|grep i80486 >/dev/null) && UNAME_MACHINE=i486 (/bin/uname -X|grep '^Machine.*Pentium' >/dev/null) \ && UNAME_MACHINE=i586 (/bin/uname -X|grep '^Machine.*Pent *II' >/dev/null) \ && UNAME_MACHINE=i686 (/bin/uname -X|grep '^Machine.*Pentium Pro' >/dev/null) \ && UNAME_MACHINE=i686 echo ${UNAME_MACHINE}-pc-sco$UNAME_REL else echo ${UNAME_MACHINE}-pc-sysv32 fi exit ;; pc:*:*:*) # Left here for compatibility: # uname -m prints for DJGPP always 'pc', but it prints nothing about # the processor, so we play safe by assuming i386. echo i386-pc-msdosdjgpp exit ;; Intel:Mach:3*:*) echo i386-pc-mach3 exit ;; paragon:*:*:*) echo i860-intel-osf1 exit ;; i860:*:4.*:*) # i860-SVR4 if grep Stardent /usr/include/sys/uadmin.h >/dev/null 2>&1 ; then echo i860-stardent-sysv${UNAME_RELEASE} # Stardent Vistra i860-SVR4 else # Add other i860-SVR4 vendors below as they are discovered. echo i860-unknown-sysv${UNAME_RELEASE} # Unknown i860-SVR4 fi exit ;; mini*:CTIX:SYS*5:*) # "miniframe" echo m68010-convergent-sysv exit ;; mc68k:UNIX:SYSTEM5:3.51m) echo m68k-convergent-sysv exit ;; M680?0:D-NIX:5.3:*) echo m68k-diab-dnix exit ;; M68*:*:R3V[5678]*:*) test -r /sysV68 && { echo 'm68k-motorola-sysv'; exit; } ;; 3[345]??:*:4.0:3.0 | 3[34]??A:*:4.0:3.0 | 3[34]??,*:*:4.0:3.0 | 3[34]??/*:*:4.0:3.0 | 4400:*:4.0:3.0 | 4850:*:4.0:3.0 | SKA40:*:4.0:3.0 | SDS2:*:4.0:3.0 | SHG2:*:4.0:3.0 | S7501*:*:4.0:3.0) OS_REL='' test -r /etc/.relid \ && OS_REL=.`sed -n 's/[^ ]* [^ ]* \([0-9][0-9]\).*/\1/p' < /etc/.relid` /bin/uname -p 2>/dev/null | grep 86 >/dev/null \ && { echo i486-ncr-sysv4.3${OS_REL}; exit; } /bin/uname -p 2>/dev/null | /bin/grep entium >/dev/null \ && { echo i586-ncr-sysv4.3${OS_REL}; exit; } ;; 3[34]??:*:4.0:* | 3[34]??,*:*:4.0:*) /bin/uname -p 2>/dev/null | grep 86 >/dev/null \ && { echo i486-ncr-sysv4; exit; } ;; m68*:LynxOS:2.*:* | m68*:LynxOS:3.0*:*) echo m68k-unknown-lynxos${UNAME_RELEASE} exit ;; mc68030:UNIX_System_V:4.*:*) echo m68k-atari-sysv4 exit ;; TSUNAMI:LynxOS:2.*:*) echo sparc-unknown-lynxos${UNAME_RELEASE} exit ;; rs6000:LynxOS:2.*:*) echo rs6000-unknown-lynxos${UNAME_RELEASE} exit ;; PowerPC:LynxOS:2.*:* | PowerPC:LynxOS:3.[01]*:* | PowerPC:LynxOS:4.0*:*) echo powerpc-unknown-lynxos${UNAME_RELEASE} exit ;; SM[BE]S:UNIX_SV:*:*) echo mips-dde-sysv${UNAME_RELEASE} exit ;; RM*:ReliantUNIX-*:*:*) echo mips-sni-sysv4 exit ;; RM*:SINIX-*:*:*) echo mips-sni-sysv4 exit ;; *:SINIX-*:*:*) if uname -p 2>/dev/null >/dev/null ; then UNAME_MACHINE=`(uname -p) 2>/dev/null` echo ${UNAME_MACHINE}-sni-sysv4 else echo ns32k-sni-sysv fi exit ;; PENTIUM:*:4.0*:*) # Unisys `ClearPath HMP IX 4000' SVR4/MP effort # says echo i586-unisys-sysv4 exit ;; *:UNIX_System_V:4*:FTX*) # From Gerald Hewes . # How about differentiating between stratus architectures? -djm echo hppa1.1-stratus-sysv4 exit ;; *:*:*:FTX*) # From seanf@swdc.stratus.com. echo i860-stratus-sysv4 exit ;; i*86:VOS:*:*) # From Paul.Green@stratus.com. echo ${UNAME_MACHINE}-stratus-vos exit ;; *:VOS:*:*) # From Paul.Green@stratus.com. echo hppa1.1-stratus-vos exit ;; mc68*:A/UX:*:*) echo m68k-apple-aux${UNAME_RELEASE} exit ;; news*:NEWS-OS:6*:*) echo mips-sony-newsos6 exit ;; R[34]000:*System_V*:*:* | R4000:UNIX_SYSV:*:* | R*000:UNIX_SV:*:*) if [ -d /usr/nec ]; then echo mips-nec-sysv${UNAME_RELEASE} else echo mips-unknown-sysv${UNAME_RELEASE} fi exit ;; BeBox:BeOS:*:*) # BeOS running on hardware made by Be, PPC only. echo powerpc-be-beos exit ;; BeMac:BeOS:*:*) # BeOS running on Mac or Mac clone, PPC only. echo powerpc-apple-beos exit ;; BePC:BeOS:*:*) # BeOS running on Intel PC compatible. echo i586-pc-beos exit ;; SX-4:SUPER-UX:*:*) echo sx4-nec-superux${UNAME_RELEASE} exit ;; SX-5:SUPER-UX:*:*) echo sx5-nec-superux${UNAME_RELEASE} exit ;; SX-6:SUPER-UX:*:*) echo sx6-nec-superux${UNAME_RELEASE} exit ;; SX-7:SUPER-UX:*:*) echo sx7-nec-superux${UNAME_RELEASE} exit ;; SX-8:SUPER-UX:*:*) echo sx8-nec-superux${UNAME_RELEASE} exit ;; SX-8R:SUPER-UX:*:*) echo sx8r-nec-superux${UNAME_RELEASE} exit ;; Power*:Rhapsody:*:*) echo powerpc-apple-rhapsody${UNAME_RELEASE} exit ;; *:Rhapsody:*:*) echo ${UNAME_MACHINE}-apple-rhapsody${UNAME_RELEASE} exit ;; *:Darwin:*:*) UNAME_PROCESSOR=`uname -p` || UNAME_PROCESSOR=unknown case $UNAME_PROCESSOR in unknown) UNAME_PROCESSOR=powerpc ;; esac echo ${UNAME_PROCESSOR}-apple-darwin${UNAME_RELEASE} exit ;; *:procnto*:*:* | *:QNX:[0123456789]*:*) UNAME_PROCESSOR=`uname -p` if test "$UNAME_PROCESSOR" = "x86"; then UNAME_PROCESSOR=i386 UNAME_MACHINE=pc fi echo ${UNAME_PROCESSOR}-${UNAME_MACHINE}-nto-qnx${UNAME_RELEASE} exit ;; *:QNX:*:4*) echo i386-pc-qnx exit ;; NSE-?:NONSTOP_KERNEL:*:*) echo nse-tandem-nsk${UNAME_RELEASE} exit ;; NSR-?:NONSTOP_KERNEL:*:*) echo nsr-tandem-nsk${UNAME_RELEASE} exit ;; *:NonStop-UX:*:*) echo mips-compaq-nonstopux exit ;; BS2000:POSIX*:*:*) echo bs2000-siemens-sysv exit ;; DS/*:UNIX_System_V:*:*) echo ${UNAME_MACHINE}-${UNAME_SYSTEM}-${UNAME_RELEASE} exit ;; *:Plan9:*:*) # "uname -m" is not consistent, so use $cputype instead. 386 # is converted to i386 for consistency with other x86 # operating systems. if test "$cputype" = "386"; then UNAME_MACHINE=i386 else UNAME_MACHINE="$cputype" fi echo ${UNAME_MACHINE}-unknown-plan9 exit ;; *:TOPS-10:*:*) echo pdp10-unknown-tops10 exit ;; *:TENEX:*:*) echo pdp10-unknown-tenex exit ;; KS10:TOPS-20:*:* | KL10:TOPS-20:*:* | TYPE4:TOPS-20:*:*) echo pdp10-dec-tops20 exit ;; XKL-1:TOPS-20:*:* | TYPE5:TOPS-20:*:*) echo pdp10-xkl-tops20 exit ;; *:TOPS-20:*:*) echo pdp10-unknown-tops20 exit ;; *:ITS:*:*) echo pdp10-unknown-its exit ;; SEI:*:*:SEIUX) echo mips-sei-seiux${UNAME_RELEASE} exit ;; *:DragonFly:*:*) echo ${UNAME_MACHINE}-unknown-dragonfly`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` exit ;; *:*VMS:*:*) UNAME_MACHINE=`(uname -p) 2>/dev/null` case "${UNAME_MACHINE}" in A*) echo alpha-dec-vms ; exit ;; I*) echo ia64-dec-vms ; exit ;; V*) echo vax-dec-vms ; exit ;; esac ;; *:XENIX:*:SysV) echo i386-pc-xenix exit ;; i*86:skyos:*:*) echo ${UNAME_MACHINE}-pc-skyos`echo ${UNAME_RELEASE}` | sed -e 's/ .*$//' exit ;; i*86:rdos:*:*) echo ${UNAME_MACHINE}-pc-rdos exit ;; esac #echo '(No uname command or uname output not recognized.)' 1>&2 #echo "${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}" 1>&2 eval $set_cc_for_build cat >$dummy.c < # include #endif main () { #if defined (sony) #if defined (MIPSEB) /* BFD wants "bsd" instead of "newsos". Perhaps BFD should be changed, I don't know.... */ printf ("mips-sony-bsd\n"); exit (0); #else #include printf ("m68k-sony-newsos%s\n", #ifdef NEWSOS4 "4" #else "" #endif ); exit (0); #endif #endif #if defined (__arm) && defined (__acorn) && defined (__unix) printf ("arm-acorn-riscix\n"); exit (0); #endif #if defined (hp300) && !defined (hpux) printf ("m68k-hp-bsd\n"); exit (0); #endif #if defined (NeXT) #if !defined (__ARCHITECTURE__) #define __ARCHITECTURE__ "m68k" #endif int version; version=`(hostinfo | sed -n 's/.*NeXT Mach \([0-9]*\).*/\1/p') 2>/dev/null`; if (version < 4) printf ("%s-next-nextstep%d\n", __ARCHITECTURE__, version); else printf ("%s-next-openstep%d\n", __ARCHITECTURE__, version); exit (0); #endif #if defined (MULTIMAX) || defined (n16) #if defined (UMAXV) printf ("ns32k-encore-sysv\n"); exit (0); #else #if defined (CMU) printf ("ns32k-encore-mach\n"); exit (0); #else printf ("ns32k-encore-bsd\n"); exit (0); #endif #endif #endif #if defined (__386BSD__) printf ("i386-pc-bsd\n"); exit (0); #endif #if defined (sequent) #if defined (i386) printf ("i386-sequent-dynix\n"); exit (0); #endif #if defined (ns32000) printf ("ns32k-sequent-dynix\n"); exit (0); #endif #endif #if defined (_SEQUENT_) struct utsname un; uname(&un); if (strncmp(un.version, "V2", 2) == 0) { printf ("i386-sequent-ptx2\n"); exit (0); } if (strncmp(un.version, "V1", 2) == 0) { /* XXX is V1 correct? */ printf ("i386-sequent-ptx1\n"); exit (0); } printf ("i386-sequent-ptx\n"); exit (0); #endif #if defined (vax) # if !defined (ultrix) # include # if defined (BSD) # if BSD == 43 printf ("vax-dec-bsd4.3\n"); exit (0); # else # if BSD == 199006 printf ("vax-dec-bsd4.3reno\n"); exit (0); # else printf ("vax-dec-bsd\n"); exit (0); # endif # endif # else printf ("vax-dec-bsd\n"); exit (0); # endif # else printf ("vax-dec-ultrix\n"); exit (0); # endif #endif #if defined (alliant) && defined (i860) printf ("i860-alliant-bsd\n"); exit (0); #endif exit (1); } EOF $CC_FOR_BUILD -o $dummy $dummy.c 2>/dev/null && SYSTEM_NAME=`$dummy` && { echo "$SYSTEM_NAME"; exit; } # Apollos put the system type in the environment. test -d /usr/apollo && { echo ${ISP}-apollo-${SYSTYPE}; exit; } # Convex versions that predate uname can use getsysinfo(1) if [ -x /usr/convex/getsysinfo ] then case `getsysinfo -f cpu_type` in c1*) echo c1-convex-bsd exit ;; c2*) if getsysinfo -f scalar_acc then echo c32-convex-bsd else echo c2-convex-bsd fi exit ;; c34*) echo c34-convex-bsd exit ;; c38*) echo c38-convex-bsd exit ;; c4*) echo c4-convex-bsd exit ;; esac fi cat >&2 < in order to provide the needed information to handle your system. config.guess timestamp = $timestamp uname -m = `(uname -m) 2>/dev/null || echo unknown` uname -r = `(uname -r) 2>/dev/null || echo unknown` uname -s = `(uname -s) 2>/dev/null || echo unknown` uname -v = `(uname -v) 2>/dev/null || echo unknown` /usr/bin/uname -p = `(/usr/bin/uname -p) 2>/dev/null` /bin/uname -X = `(/bin/uname -X) 2>/dev/null` hostinfo = `(hostinfo) 2>/dev/null` /bin/universe = `(/bin/universe) 2>/dev/null` /usr/bin/arch -k = `(/usr/bin/arch -k) 2>/dev/null` /bin/arch = `(/bin/arch) 2>/dev/null` /usr/bin/oslevel = `(/usr/bin/oslevel) 2>/dev/null` /usr/convex/getsysinfo = `(/usr/convex/getsysinfo) 2>/dev/null` UNAME_MACHINE = ${UNAME_MACHINE} UNAME_RELEASE = ${UNAME_RELEASE} UNAME_SYSTEM = ${UNAME_SYSTEM} UNAME_VERSION = ${UNAME_VERSION} EOF exit 1 # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "timestamp='" # time-stamp-format: "%:y-%02m-%02d" # time-stamp-end: "'" # End: espresso-5.1/install/Makefile_lapack_testing_lin0000644000175000017500000002574012341373034020332 0ustar mbambainclude ../../make.inc ####################################################################### # This makefile creates the test programs for the linear equation # routines in LAPACK. The test files are grouped as follows: # # ALINTST -- Auxiliary test routines # SLINTST -- Single precision real test routines # CLINTST -- Single precision complex test routines # SCLNTST -- Single and Complex routines in common # DLINTST -- Double precision real test routines # ZLINTST -- Double precision complex test routines # DZLNTST -- Double and Double Complex routines in common # # Test programs can be generated for all or some of the four different # precisions. Enter make followed by one or more of the data types # desired. Some examples: # make single # make single complex # make single double complex complex16 # Alternatively, the command # make # without any arguments creates all four test programs. # The executable files are called # xlintims, xlintimd, xlintimc, and xlintimz # and are created in the next higher directory level. # # To remove the object files after the executable files have been # created, enter # make clean # On some systems, you can force the source files to be recompiled by # entering (for example) # make single FRC=FRC # ####################################################################### ALINTST = \ aladhd.o alaerh.o alaesm.o alahd.o alareq.o \ alasum.o alasvm.o chkxer.o icopy.o ilaenv.o xlaenv.o xerbla.o SCLNTST= slaord.o DZLNTST= dlaord.o SLINTST = schkaa.o \ schkeq.o schkgb.o schkge.o schkgt.o \ schklq.o schkpb.o schkpo.o schkps.o schkpp.o \ schkpt.o schkq3.o schkql.o schkqp.o schkqr.o schkrq.o \ schksp.o schksy.o schktb.o schktp.o schktr.o \ schktz.o \ sdrvgt.o sdrvls.o sdrvpb.o \ sdrvpp.o sdrvpt.o sdrvsp.o sdrvsy.o \ serrgt.o serrlq.o serrls.o \ serrpo.o serrps.o serrql.o serrqp.o serrqr.o \ serrrq.o serrsy.o serrtr.o serrtz.o serrvx.o \ sgbt01.o sgbt02.o sgbt05.o sgelqs.o sgeqls.o sgeqrs.o \ sgerqs.o sget01.o sget02.o \ sget03.o sget04.o sget06.o sget07.o sgtt01.o sgtt02.o \ sgtt05.o slaptm.o slarhs.o slatb4.o slatb5.o slattb.o slattp.o \ slattr.o slavsp.o slavsy.o slqt01.o slqt02.o \ slqt03.o spbt01.o spbt02.o spbt05.o spot01.o \ spot02.o spot03.o spot05.o spst01.o sppt01.o \ sppt02.o sppt03.o sppt05.o sptt01.o sptt02.o \ sptt05.o sqlt01.o sqlt02.o sqlt03.o sqpt01.o \ sqrt01.o sqrt02.o sqrt03.o sqrt11.o sqrt12.o \ sqrt13.o sqrt14.o sqrt15.o sqrt16.o sqrt17.o \ srqt01.o srqt02.o srqt03.o srzt01.o srzt02.o \ sspt01.o ssyt01.o \ stbt02.o stbt03.o stbt05.o stbt06.o stpt01.o \ stpt02.o stpt03.o stpt05.o stpt06.o strt01.o \ strt02.o strt03.o strt05.o strt06.o \ stzt01.o stzt02.o sgennd.o #ifdef USEXBLAS #SLINTST += sdrvgex.o serrgex.o sdrvgbx.o sdrvpox.o sebchvxx.o #else #SLINTST += sdrvge.o serrge.o sdrvgb.o sdrvpo.o #endif CLINTST = cchkaa.o \ cchkeq.o cchkgb.o cchkge.o cchkgt.o \ cchkhe.o cchkhp.o cchklq.o cchkpb.o \ cchkpo.o cchkps.o cchkpp.o cchkpt.o cchkq3.o cchkql.o cchkqp.o \ cchkqr.o cchkrq.o cchksp.o cchksy.o cchktb.o \ cchktp.o cchktr.o cchktz.o \ cdrvgt.o cdrvhe.o cdrvhp.o \ cdrvls.o cdrvpb.o cdrvpp.o cdrvpt.o \ cdrvsp.o cdrvsy.o \ cerrgt.o cerrhe.o cerrlq.o \ cerrls.o cerrps.o cerrql.o cerrqp.o \ cerrqr.o cerrrq.o cerrsy.o cerrtr.o cerrtz.o \ cerrvx.o \ cgbt01.o cgbt02.o cgbt05.o cgelqs.o cgeqls.o cgeqrs.o \ cgerqs.o cget01.o cget02.o \ cget03.o cget04.o cget07.o cgtt01.o cgtt02.o \ cgtt05.o chet01.o chpt01.o claipd.o claptm.o clarhs.o clatb4.o clatb5.o \ clatsp.o clatsy.o clattb.o clattp.o clattr.o \ clavhe.o clavhp.o clavsp.o clavsy.o clqt01.o \ clqt02.o clqt03.o cpbt01.o cpbt02.o cpbt05.o \ cpot01.o cpot02.o cpot03.o cpot05.o cpst01.o \ cppt01.o cppt02.o cppt03.o cppt05.o cptt01.o \ cptt02.o cptt05.o cqlt01.o cqlt02.o cqlt03.o \ cqpt01.o cqrt01.o cqrt02.o cqrt03.o cqrt11.o \ cqrt12.o cqrt13.o cqrt14.o cqrt15.o cqrt16.o \ cqrt17.o crqt01.o crqt02.o crqt03.o crzt01.o crzt02.o \ csbmv.o cspt01.o \ cspt02.o cspt03.o csyt01.o csyt02.o csyt03.o \ ctbt02.o ctbt03.o ctbt05.o ctbt06.o ctpt01.o \ ctpt02.o ctpt03.o ctpt05.o ctpt06.o ctrt01.o \ ctrt02.o ctrt03.o ctrt05.o ctrt06.o \ ctzt01.o ctzt02.o sget06.o cgennd.o #ifdef USEXBLAS #CLINTST += cdrvgex.o cdrvgbx.o cerrgex.o cdrvpox.o cerrpox.o cebchvxx.o #else #CLINTST += cdrvge.o cdrvgb.o cerrge.o cdrvpo.o cerrpo.o #endif DLINTST = dchkaa.o \ dchkeq.o dchkgb.o dchkge.o dchkgt.o \ dchklq.o dchkpb.o dchkpo.o dchkps.o dchkpp.o \ dchkpt.o dchkq3.o dchkql.o dchkqp.o dchkqr.o dchkrq.o \ dchksp.o dchksy.o dchktb.o dchktp.o dchktr.o \ dchktz.o \ ddrvgt.o ddrvls.o ddrvpb.o \ ddrvpp.o ddrvpt.o ddrvsp.o ddrvsy.o \ derrgt.o derrlq.o derrls.o \ derrps.o derrql.o derrqp.o derrqr.o \ derrrq.o derrsy.o derrtr.o derrtz.o derrvx.o \ dgbt01.o dgbt02.o dgbt05.o dgelqs.o dgeqls.o dgeqrs.o \ dgerqs.o dget01.o dget02.o \ dget03.o dget04.o dget06.o dget07.o dgtt01.o dgtt02.o \ dgtt05.o dlaptm.o dlarhs.o dlatb4.o dlatb5.o dlattb.o dlattp.o \ dlattr.o dlavsp.o dlavsy.o dlqt01.o dlqt02.o \ dlqt03.o dpbt01.o dpbt02.o dpbt05.o dpot01.o \ dpot02.o dpot03.o dpot05.o dpst01.o dppt01.o \ dppt02.o dppt03.o dppt05.o dptt01.o dptt02.o \ dptt05.o dqlt01.o dqlt02.o dqlt03.o dqpt01.o \ dqrt01.o dqrt02.o dqrt03.o dqrt11.o dqrt12.o \ dqrt13.o dqrt14.o dqrt15.o dqrt16.o dqrt17.o \ drqt01.o drqt02.o drqt03.o drzt01.o drzt02.o \ dspt01.o dsyt01.o \ dtbt02.o dtbt03.o dtbt05.o dtbt06.o dtpt01.o \ dtpt02.o dtpt03.o dtpt05.o dtpt06.o dtrt01.o \ dtrt02.o dtrt03.o dtrt05.o dtrt06.o \ dtzt01.o dtzt02.o dgennd.o #ifdef USEXBLAS #DLINTST += ddrvgex.o ddrvgbx.o derrgex.o ddrvpox.o derrpox.o debchvxx.o #else #DLINTST += ddrvge.o ddrvgb.o derrge.o ddrvpo.o derrpo.o #endif ZLINTST = zchkaa.o \ zchkeq.o zchkgb.o zchkge.o zchkgt.o \ zchkhe.o zchkhp.o zchklq.o zchkpb.o \ zchkpo.o zchkps.o zchkpp.o zchkpt.o zchkq3.o zchkql.o zchkqp.o \ zchkqr.o zchkrq.o zchksp.o zchksy.o zchktb.o \ zchktp.o zchktr.o zchktz.o \ zdrvgt.o zdrvhe.o zdrvhp.o \ zdrvls.o zdrvpb.o zdrvpp.o zdrvpt.o \ zdrvsp.o zdrvsy.o \ zerrgt.o zerrhe.o zerrlq.o \ zerrls.o zerrps.o zerrql.o zerrqp.o \ zerrqr.o zerrrq.o zerrsy.o zerrtr.o zerrtz.o \ zerrvx.o \ zgbt01.o zgbt02.o zgbt05.o zgelqs.o zgeqls.o zgeqrs.o \ zgerqs.o zget01.o zget02.o \ zget03.o zget04.o zget07.o zgtt01.o zgtt02.o \ zgtt05.o zhet01.o zhpt01.o zlaipd.o zlaptm.o zlarhs.o zlatb4.o zlatb5.o \ zlatsp.o zlatsy.o zlattb.o zlattp.o zlattr.o \ zlavhe.o zlavhp.o zlavsp.o zlavsy.o zlqt01.o \ zlqt02.o zlqt03.o zpbt01.o zpbt02.o zpbt05.o \ zpot01.o zpot02.o zpot03.o zpot05.o zpst01.o \ zppt01.o zppt02.o zppt03.o zppt05.o zptt01.o \ zptt02.o zptt05.o zqlt01.o zqlt02.o zqlt03.o \ zqpt01.o zqrt01.o zqrt02.o zqrt03.o zqrt11.o \ zqrt12.o zqrt13.o zqrt14.o zqrt15.o zqrt16.o \ zqrt17.o zrqt01.o zrqt02.o zrqt03.o zrzt01.o zrzt02.o \ zsbmv.o zspt01.o \ zspt02.o zspt03.o zsyt01.o zsyt02.o zsyt03.o \ ztbt02.o ztbt03.o ztbt05.o ztbt06.o ztpt01.o \ ztpt02.o ztpt03.o ztpt05.o ztpt06.o ztrt01.o \ ztrt02.o ztrt03.o ztrt05.o ztrt06.o \ ztzt01.o ztzt02.o dget06.o zgennd.o #ifdef USEXBLAS #ZLINTST += zdrvgex.o zdrvgbx.o zerrgex.o zdrvpox.o zerrpox.o zebchvxx.o #else #ZLINTST += zdrvge.o zdrvgb.o zerrge.o zdrvpo.o zerrpo.o #endif DSLINTST = dchkab.o \ ddrvab.o ddrvac.o derrab.o derrac.o dget08.o \ alaerh.o alahd.o aladhd.o alareq.o \ chkxer.o dlarhs.o dlatb4.o xerbla.o \ dget02.o dpot06.o ZCLINTST = zchkab.o \ zdrvab.o zdrvac.o zerrab.o zerrac.o zget08.o \ alaerh.o alahd.o aladhd.o alareq.o \ chkxer.o zget02.o zlarhs.o zlatb4.o \ zsbmv.o xerbla.o zpot06.o zlaipd.o SLINTSTRFP = schkrfp.o sdrvrfp.o sdrvrf1.o sdrvrf2.o sdrvrf3.o sdrvrf4.o serrrfp.o \ slatb4.o slarhs.o sget04.o spot01.o spot03.o spot02.o \ chkxer.o xerbla.o alaerh.o aladhd.o alahd.o alasvm.o DLINTSTRFP = dchkrfp.o ddrvrfp.o ddrvrf1.o ddrvrf2.o ddrvrf3.o ddrvrf4.o derrrfp.o \ dlatb4.o dlarhs.o dget04.o dpot01.o dpot03.o dpot02.o \ chkxer.o xerbla.o alaerh.o aladhd.o alahd.o alasvm.o CLINTSTRFP = cchkrfp.o cdrvrfp.o cdrvrf1.o cdrvrf2.o cdrvrf3.o cdrvrf4.o cerrrfp.o \ claipd.o clatb4.o clarhs.o csbmv.o cget04.o cpot01.o cpot03.o cpot02.o \ chkxer.o xerbla.o alaerh.o aladhd.o alahd.o alasvm.o ZLINTSTRFP = zchkrfp.o zdrvrfp.o zdrvrf1.o zdrvrf2.o zdrvrf3.o zdrvrf4.o zerrrfp.o \ zlatb4.o zlaipd.o zlarhs.o zsbmv.o zget04.o zpot01.o zpot03.o zpot02.o \ chkxer.o xerbla.o alaerh.o aladhd.o alahd.o alasvm.o all: single double complex complex16 proto-single proto-double proto-complex proto-complex16 single: ../xlintsts double: ../xlintstd complex: ../xlintstc complex16: ../xlintstz proto-single: ../xlintstrfs proto-double: ../xlintstds ../xlintstrfd proto-complex: ../xlintstrfc proto-complex16: ../xlintstzc ../xlintstrfz ../xlintsts : $(ALINTST) $(SLINTST) $(SCLNTST) $(LOADER) $(LOADOPTS) $(ALINTST) $(SCLNTST) $(SLINTST) \ ../../$(TMGLIB) ../../$(LAPACKLIB) $(XBLASLIB) $(BLASLIB) -o xlintsts && mv xlintsts $@ ../xlintstc : $(ALINTST) $(CLINTST) $(SCLNTST) $(LOADER) $(LOADOPTS) $(ALINTST) $(SCLNTST) $(CLINTST) \ ../../$(TMGLIB) ../../$(LAPACKLIB) $(XBLASLIB) $(BLASLIB) -o xlintstc && mv xlintstc $@ ../xlintstd : $(ALINTST) $(DLINTST) $(DZLNTST) $(LOADER) $(LOADOPTS) $^ \ ../../$(TMGLIB) ../../$(LAPACKLIB) $(XBLASLIB) $(BLASLIB) -o xlintstd && mv xlintstd $@ ../xlintstz : $(ALINTST) $(ZLINTST) $(DZLNTST) $(LOADER) $(LOADOPTS) $(ALINTST) $(DZLNTST) $(ZLINTST) \ ../../$(TMGLIB) ../../$(LAPACKLIB) $(XBLASLIB) $(BLASLIB) -o xlintstz && mv xlintstz $@ ../xlintstds : $(DSLINTST) $(LOADER) $(LOADOPTS) $(DSLINTST) \ ../../$(TMGLIB) ../../$(LAPACKLIB) $(BLASLIB) -o xlintstds && mv xlintstds $@ ../xlintstzc : $(ZCLINTST) $(LOADER) $(LOADOPTS) $(ZCLINTST) \ ../../$(TMGLIB) ../../$(LAPACKLIB) $(BLASLIB) -o xlintstzc && mv xlintstzc $@ ../xlintstrfs : $(SLINTSTRFP) $(LOADER) $(LOADOPTS) $(SLINTSTRFP) \ ../../$(TMGLIB) ../../$(LAPACKLIB) $(BLASLIB) -o xlintstrfs && mv xlintstrfs $@ ../xlintstrfd : $(DLINTSTRFP) $(LOADER) $(LOADOPTS) $(DLINTSTRFP) \ ../../$(TMGLIB) ../../$(LAPACKLIB) $(BLASLIB) -o xlintstrfd && mv xlintstrfd $@ ../xlintstrfc : $(CLINTSTRFP) $(LOADER) $(LOADOPTS) $(CLINTSTRFP) \ ../../$(TMGLIB) ../../$(LAPACKLIB) $(BLASLIB) -o xlintstrfc && mv xlintstrfc $@ ../xlintstrfz : $(ZLINTSTRFP) $(LOADER) $(LOADOPTS) $(ZLINTSTRFP) \ ../../$(TMGLIB) ../../$(LAPACKLIB) $(BLASLIB) -o xlintstrfz && mv xlintstrfz $@ $(ALINTST): $(FRC) $(SCLNTST): $(FRC) $(DZLNTST): $(FRC) $(SLINTST): $(FRC) $(CLINTST): $(FRC) $(DLINTST): $(FRC) $(ZLINTST): $(FRC) FRC: @FRC=$(FRC) clean: rm -f *.o schkaa.o: schkaa.f $(FORTRAN) $(DRVOPTS) -c $< -o $@ dchkaa.o: dchkaa.f $(FORTRAN) $(DRVOPTS) -c $< -o $@ cchkaa.o: cchkaa.f $(FORTRAN) $(DRVOPTS) -c $< -o $@ zchkaa.o: zchkaa.f $(FORTRAN) $(DRVOPTS) -c $< -o $@ .f.o: $(FORTRAN) $(OPTS) -c $< -o $@ espresso-5.1/install/config.sub0000644000175000017500000010115312341373034014731 0ustar mbamba#! /bin/sh # Configuration validation subroutine script. # Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, # 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 # Free Software Foundation, Inc. timestamp='2008-01-16' # This file is (in principle) common to ALL GNU software. # The presence of a machine in this file suggests that SOME GNU software # can handle that machine. It does not imply ALL GNU software can. # # This file is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA # 02110-1301, USA. # # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. # Please send patches to . Submit a context # diff and a properly formatted ChangeLog entry. # # Configuration subroutine to validate and canonicalize a configuration type. # Supply the specified configuration type as an argument. # If it is invalid, we print an error message on stderr and exit with code 1. # Otherwise, we print the canonical config type on stdout and succeed. # This file is supposed to be the same for all GNU packages # and recognize all the CPU types, system types and aliases # that are meaningful with *any* GNU software. # Each package is responsible for reporting which valid configurations # it does not support. The user should be able to distinguish # a failure to support a valid configuration from a meaningless # configuration. # The goal of this file is to map all the various variations of a given # machine specification into a single specification in the form: # CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM # or in some cases, the newer four-part form: # CPU_TYPE-MANUFACTURER-KERNEL-OPERATING_SYSTEM # It is wrong to echo any other type of specification. me=`echo "$0" | sed -e 's,.*/,,'` usage="\ Usage: $0 [OPTION] CPU-MFR-OPSYS $0 [OPTION] ALIAS Canonicalize a configuration name. Operation modes: -h, --help print this help, then exit -t, --time-stamp print date of last modification, then exit -v, --version print version number, then exit Report bugs and patches to ." version="\ GNU config.sub ($timestamp) Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE." help=" Try \`$me --help' for more information." # Parse command line while test $# -gt 0 ; do case $1 in --time-stamp | --time* | -t ) echo "$timestamp" ; exit ;; --version | -v ) echo "$version" ; exit ;; --help | --h* | -h ) echo "$usage"; exit ;; -- ) # Stop option processing shift; break ;; - ) # Use stdin as input. break ;; -* ) echo "$me: invalid option $1$help" exit 1 ;; *local*) # First pass through any local machine types. echo $1 exit ;; * ) break ;; esac done case $# in 0) echo "$me: missing argument$help" >&2 exit 1;; 1) ;; *) echo "$me: too many arguments$help" >&2 exit 1;; esac # Separate what the user gave into CPU-COMPANY and OS or KERNEL-OS (if any). # Here we must recognize all the valid KERNEL-OS combinations. maybe_os=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\2/'` case $maybe_os in nto-qnx* | linux-gnu* | linux-dietlibc | linux-newlib* | linux-uclibc* | \ uclinux-uclibc* | uclinux-gnu* | kfreebsd*-gnu* | knetbsd*-gnu* | netbsd*-gnu* | \ storm-chaos* | os2-emx* | rtmk-nova*) os=-$maybe_os basic_machine=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\1/'` ;; *) basic_machine=`echo $1 | sed 's/-[^-]*$//'` if [ $basic_machine != $1 ] then os=`echo $1 | sed 's/.*-/-/'` else os=; fi ;; esac ### Let's recognize common machines as not being operating systems so ### that things like config.sub decstation-3100 work. We also ### recognize some manufacturers as not being operating systems, so we ### can provide default operating systems below. case $os in -sun*os*) # Prevent following clause from handling this invalid input. ;; -dec* | -mips* | -sequent* | -encore* | -pc532* | -sgi* | -sony* | \ -att* | -7300* | -3300* | -delta* | -motorola* | -sun[234]* | \ -unicom* | -ibm* | -next | -hp | -isi* | -apollo | -altos* | \ -convergent* | -ncr* | -news | -32* | -3600* | -3100* | -hitachi* |\ -c[123]* | -convex* | -sun | -crds | -omron* | -dg | -ultra | -tti* | \ -harris | -dolphin | -highlevel | -gould | -cbm | -ns | -masscomp | \ -apple | -axis | -knuth | -cray) os= basic_machine=$1 ;; -sim | -cisco | -oki | -wec | -winbond) os= basic_machine=$1 ;; -scout) ;; -wrs) os=-vxworks basic_machine=$1 ;; -chorusos*) os=-chorusos basic_machine=$1 ;; -chorusrdb) os=-chorusrdb basic_machine=$1 ;; -hiux*) os=-hiuxwe2 ;; -sco6) os=-sco5v6 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco5) os=-sco3.2v5 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco4) os=-sco3.2v4 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco3.2.[4-9]*) os=`echo $os | sed -e 's/sco3.2./sco3.2v/'` basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco3.2v[4-9]*) # Don't forget version if it is 3.2v4 or newer. basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco5v6*) # Don't forget version if it is 3.2v4 or newer. basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco*) os=-sco3.2v2 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -udk*) basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -isc) os=-isc2.2 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -clix*) basic_machine=clipper-intergraph ;; -isc*) basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -lynx*) os=-lynxos ;; -ptx*) basic_machine=`echo $1 | sed -e 's/86-.*/86-sequent/'` ;; -windowsnt*) os=`echo $os | sed -e 's/windowsnt/winnt/'` ;; -psos*) os=-psos ;; -mint | -mint[0-9]*) basic_machine=m68k-atari os=-mint ;; esac # Decode aliases for certain CPU-COMPANY combinations. case $basic_machine in # Recognize the basic CPU types without company name. # Some are omitted here because they have special meanings below. 1750a | 580 \ | a29k \ | alpha | alphaev[4-8] | alphaev56 | alphaev6[78] | alphapca5[67] \ | alpha64 | alpha64ev[4-8] | alpha64ev56 | alpha64ev6[78] | alpha64pca5[67] \ | am33_2.0 \ | arc | arm | arm[bl]e | arme[lb] | armv[2345] | armv[345][lb] | avr | avr32 \ | bfin \ | c4x | clipper \ | d10v | d30v | dlx | dsp16xx \ | fido | fr30 | frv \ | h8300 | h8500 | hppa | hppa1.[01] | hppa2.0 | hppa2.0[nw] | hppa64 \ | i370 | i860 | i960 | ia64 \ | ip2k | iq2000 \ | m32c | m32r | m32rle | m68000 | m68k | m88k \ | maxq | mb | microblaze | mcore | mep \ | mips | mipsbe | mipseb | mipsel | mipsle \ | mips16 \ | mips64 | mips64el \ | mips64vr | mips64vrel \ | mips64orion | mips64orionel \ | mips64vr4100 | mips64vr4100el \ | mips64vr4300 | mips64vr4300el \ | mips64vr5000 | mips64vr5000el \ | mips64vr5900 | mips64vr5900el \ | mipsisa32 | mipsisa32el \ | mipsisa32r2 | mipsisa32r2el \ | mipsisa64 | mipsisa64el \ | mipsisa64r2 | mipsisa64r2el \ | mipsisa64sb1 | mipsisa64sb1el \ | mipsisa64sr71k | mipsisa64sr71kel \ | mipstx39 | mipstx39el \ | mn10200 | mn10300 \ | mt \ | msp430 \ | nios | nios2 \ | ns16k | ns32k \ | or32 \ | pdp10 | pdp11 | pj | pjl \ | powerpc | powerpc64 | powerpc64le | powerpcle | ppcbe \ | pyramid \ | score \ | sh | sh[1234] | sh[24]a | sh[23]e | sh[34]eb | sheb | shbe | shle | sh[1234]le | sh3ele \ | sh64 | sh64le \ | sparc | sparc64 | sparc64b | sparc64v | sparc86x | sparclet | sparclite \ | sparcv8 | sparcv9 | sparcv9b | sparcv9v \ | spu | strongarm \ | tahoe | thumb | tic4x | tic80 | tron \ | v850 | v850e \ | we32k \ | x86 | xc16x | xscale | xscalee[bl] | xstormy16 | xtensa \ | z8k) basic_machine=$basic_machine-unknown ;; m6811 | m68hc11 | m6812 | m68hc12) # Motorola 68HC11/12. basic_machine=$basic_machine-unknown os=-none ;; m88110 | m680[12346]0 | m683?2 | m68360 | m5200 | v70 | w65 | z8k) ;; ms1) basic_machine=mt-unknown ;; # We use `pc' rather than `unknown' # because (1) that's what they normally are, and # (2) the word "unknown" tends to confuse beginning users. i*86 | x86_64) basic_machine=$basic_machine-pc ;; # Object if more than one company name word. *-*-*) echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2 exit 1 ;; # Recognize the basic CPU types with company name. 580-* \ | a29k-* \ | alpha-* | alphaev[4-8]-* | alphaev56-* | alphaev6[78]-* \ | alpha64-* | alpha64ev[4-8]-* | alpha64ev56-* | alpha64ev6[78]-* \ | alphapca5[67]-* | alpha64pca5[67]-* | arc-* \ | arm-* | armbe-* | armle-* | armeb-* | armv*-* \ | avr-* | avr32-* \ | bfin-* | bs2000-* \ | c[123]* | c30-* | [cjt]90-* | c4x-* | c54x-* | c55x-* | c6x-* \ | clipper-* | craynv-* | cydra-* \ | d10v-* | d30v-* | dlx-* \ | elxsi-* \ | f30[01]-* | f700-* | fido-* | fr30-* | frv-* | fx80-* \ | h8300-* | h8500-* \ | hppa-* | hppa1.[01]-* | hppa2.0-* | hppa2.0[nw]-* | hppa64-* \ | i*86-* | i860-* | i960-* | ia64-* \ | ip2k-* | iq2000-* \ | m32c-* | m32r-* | m32rle-* \ | m68000-* | m680[012346]0-* | m68360-* | m683?2-* | m68k-* \ | m88110-* | m88k-* | maxq-* | mcore-* \ | mips-* | mipsbe-* | mipseb-* | mipsel-* | mipsle-* \ | mips16-* \ | mips64-* | mips64el-* \ | mips64vr-* | mips64vrel-* \ | mips64orion-* | mips64orionel-* \ | mips64vr4100-* | mips64vr4100el-* \ | mips64vr4300-* | mips64vr4300el-* \ | mips64vr5000-* | mips64vr5000el-* \ | mips64vr5900-* | mips64vr5900el-* \ | mipsisa32-* | mipsisa32el-* \ | mipsisa32r2-* | mipsisa32r2el-* \ | mipsisa64-* | mipsisa64el-* \ | mipsisa64r2-* | mipsisa64r2el-* \ | mipsisa64sb1-* | mipsisa64sb1el-* \ | mipsisa64sr71k-* | mipsisa64sr71kel-* \ | mipstx39-* | mipstx39el-* \ | mmix-* \ | mt-* \ | msp430-* \ | nios-* | nios2-* \ | none-* | np1-* | ns16k-* | ns32k-* \ | orion-* \ | pdp10-* | pdp11-* | pj-* | pjl-* | pn-* | power-* \ | powerpc-* | powerpc64-* | powerpc64le-* | powerpcle-* | ppcbe-* \ | pyramid-* \ | romp-* | rs6000-* \ | sh-* | sh[1234]-* | sh[24]a-* | sh[23]e-* | sh[34]eb-* | sheb-* | shbe-* \ | shle-* | sh[1234]le-* | sh3ele-* | sh64-* | sh64le-* \ | sparc-* | sparc64-* | sparc64b-* | sparc64v-* | sparc86x-* | sparclet-* \ | sparclite-* \ | sparcv8-* | sparcv9-* | sparcv9b-* | sparcv9v-* | strongarm-* | sv1-* | sx?-* \ | tahoe-* | thumb-* \ | tic30-* | tic4x-* | tic54x-* | tic55x-* | tic6x-* | tic80-* \ | tron-* \ | v850-* | v850e-* | vax-* \ | we32k-* \ | x86-* | x86_64-* | xc16x-* | xps100-* | xscale-* | xscalee[bl]-* \ | xstormy16-* | xtensa*-* \ | ymp-* \ | z8k-*) ;; # Recognize the basic CPU types without company name, with glob match. xtensa*) basic_machine=$basic_machine-unknown ;; # Recognize the various machine names and aliases which stand # for a CPU type and a company and sometimes even an OS. 386bsd) basic_machine=i386-unknown os=-bsd ;; 3b1 | 7300 | 7300-att | att-7300 | pc7300 | safari | unixpc) basic_machine=m68000-att ;; 3b*) basic_machine=we32k-att ;; a29khif) basic_machine=a29k-amd os=-udi ;; abacus) basic_machine=abacus-unknown ;; adobe68k) basic_machine=m68010-adobe os=-scout ;; alliant | fx80) basic_machine=fx80-alliant ;; altos | altos3068) basic_machine=m68k-altos ;; am29k) basic_machine=a29k-none os=-bsd ;; amd64) basic_machine=x86_64-pc ;; amd64-*) basic_machine=x86_64-`echo $basic_machine | sed 's/^[^-]*-//'` ;; amdahl) basic_machine=580-amdahl os=-sysv ;; amiga | amiga-*) basic_machine=m68k-unknown ;; amigaos | amigados) basic_machine=m68k-unknown os=-amigaos ;; amigaunix | amix) basic_machine=m68k-unknown os=-sysv4 ;; apollo68) basic_machine=m68k-apollo os=-sysv ;; apollo68bsd) basic_machine=m68k-apollo os=-bsd ;; aux) basic_machine=m68k-apple os=-aux ;; balance) basic_machine=ns32k-sequent os=-dynix ;; blackfin) basic_machine=bfin-unknown os=-linux ;; blackfin-*) basic_machine=bfin-`echo $basic_machine | sed 's/^[^-]*-//'` os=-linux ;; c90) basic_machine=c90-cray os=-unicos ;; convex-c1) basic_machine=c1-convex os=-bsd ;; convex-c2) basic_machine=c2-convex os=-bsd ;; convex-c32) basic_machine=c32-convex os=-bsd ;; convex-c34) basic_machine=c34-convex os=-bsd ;; convex-c38) basic_machine=c38-convex os=-bsd ;; cray | j90) basic_machine=j90-cray os=-unicos ;; craynv) basic_machine=craynv-cray os=-unicosmp ;; cr16) basic_machine=cr16-unknown os=-elf ;; crds | unos) basic_machine=m68k-crds ;; crisv32 | crisv32-* | etraxfs*) basic_machine=crisv32-axis ;; cris | cris-* | etrax*) basic_machine=cris-axis ;; crx) basic_machine=crx-unknown os=-elf ;; da30 | da30-*) basic_machine=m68k-da30 ;; decstation | decstation-3100 | pmax | pmax-* | pmin | dec3100 | decstatn) basic_machine=mips-dec ;; decsystem10* | dec10*) basic_machine=pdp10-dec os=-tops10 ;; decsystem20* | dec20*) basic_machine=pdp10-dec os=-tops20 ;; delta | 3300 | motorola-3300 | motorola-delta \ | 3300-motorola | delta-motorola) basic_machine=m68k-motorola ;; delta88) basic_machine=m88k-motorola os=-sysv3 ;; djgpp) basic_machine=i586-pc os=-msdosdjgpp ;; dpx20 | dpx20-*) basic_machine=rs6000-bull os=-bosx ;; dpx2* | dpx2*-bull) basic_machine=m68k-bull os=-sysv3 ;; ebmon29k) basic_machine=a29k-amd os=-ebmon ;; elxsi) basic_machine=elxsi-elxsi os=-bsd ;; encore | umax | mmax) basic_machine=ns32k-encore ;; es1800 | OSE68k | ose68k | ose | OSE) basic_machine=m68k-ericsson os=-ose ;; fx2800) basic_machine=i860-alliant ;; genix) basic_machine=ns32k-ns ;; gmicro) basic_machine=tron-gmicro os=-sysv ;; go32) basic_machine=i386-pc os=-go32 ;; h3050r* | hiux*) basic_machine=hppa1.1-hitachi os=-hiuxwe2 ;; h8300hms) basic_machine=h8300-hitachi os=-hms ;; h8300xray) basic_machine=h8300-hitachi os=-xray ;; h8500hms) basic_machine=h8500-hitachi os=-hms ;; harris) basic_machine=m88k-harris os=-sysv3 ;; hp300-*) basic_machine=m68k-hp ;; hp300bsd) basic_machine=m68k-hp os=-bsd ;; hp300hpux) basic_machine=m68k-hp os=-hpux ;; hp3k9[0-9][0-9] | hp9[0-9][0-9]) basic_machine=hppa1.0-hp ;; hp9k2[0-9][0-9] | hp9k31[0-9]) basic_machine=m68000-hp ;; hp9k3[2-9][0-9]) basic_machine=m68k-hp ;; hp9k6[0-9][0-9] | hp6[0-9][0-9]) basic_machine=hppa1.0-hp ;; hp9k7[0-79][0-9] | hp7[0-79][0-9]) basic_machine=hppa1.1-hp ;; hp9k78[0-9] | hp78[0-9]) # FIXME: really hppa2.0-hp basic_machine=hppa1.1-hp ;; hp9k8[67]1 | hp8[67]1 | hp9k80[24] | hp80[24] | hp9k8[78]9 | hp8[78]9 | hp9k893 | hp893) # FIXME: really hppa2.0-hp basic_machine=hppa1.1-hp ;; hp9k8[0-9][13679] | hp8[0-9][13679]) basic_machine=hppa1.1-hp ;; hp9k8[0-9][0-9] | hp8[0-9][0-9]) basic_machine=hppa1.0-hp ;; hppa-next) os=-nextstep3 ;; hppaosf) basic_machine=hppa1.1-hp os=-osf ;; hppro) basic_machine=hppa1.1-hp os=-proelf ;; i370-ibm* | ibm*) basic_machine=i370-ibm ;; # I'm not sure what "Sysv32" means. Should this be sysv3.2? i*86v32) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-sysv32 ;; i*86v4*) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-sysv4 ;; i*86v) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-sysv ;; i*86sol2) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-solaris2 ;; i386mach) basic_machine=i386-mach os=-mach ;; i386-vsta | vsta) basic_machine=i386-unknown os=-vsta ;; iris | iris4d) basic_machine=mips-sgi case $os in -irix*) ;; *) os=-irix4 ;; esac ;; isi68 | isi) basic_machine=m68k-isi os=-sysv ;; m68knommu) basic_machine=m68k-unknown os=-linux ;; m68knommu-*) basic_machine=m68k-`echo $basic_machine | sed 's/^[^-]*-//'` os=-linux ;; m88k-omron*) basic_machine=m88k-omron ;; magnum | m3230) basic_machine=mips-mips os=-sysv ;; merlin) basic_machine=ns32k-utek os=-sysv ;; mingw32) basic_machine=i386-pc os=-mingw32 ;; mingw32ce) basic_machine=arm-unknown os=-mingw32ce ;; miniframe) basic_machine=m68000-convergent ;; *mint | -mint[0-9]* | *MiNT | *MiNT[0-9]*) basic_machine=m68k-atari os=-mint ;; mips3*-*) basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'` ;; mips3*) basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'`-unknown ;; monitor) basic_machine=m68k-rom68k os=-coff ;; morphos) basic_machine=powerpc-unknown os=-morphos ;; msdos) basic_machine=i386-pc os=-msdos ;; ms1-*) basic_machine=`echo $basic_machine | sed -e 's/ms1-/mt-/'` ;; mvs) basic_machine=i370-ibm os=-mvs ;; ncr3000) basic_machine=i486-ncr os=-sysv4 ;; netbsd386) basic_machine=i386-unknown os=-netbsd ;; netwinder) basic_machine=armv4l-rebel os=-linux ;; news | news700 | news800 | news900) basic_machine=m68k-sony os=-newsos ;; news1000) basic_machine=m68030-sony os=-newsos ;; news-3600 | risc-news) basic_machine=mips-sony os=-newsos ;; necv70) basic_machine=v70-nec os=-sysv ;; next | m*-next ) basic_machine=m68k-next case $os in -nextstep* ) ;; -ns2*) os=-nextstep2 ;; *) os=-nextstep3 ;; esac ;; nh3000) basic_machine=m68k-harris os=-cxux ;; nh[45]000) basic_machine=m88k-harris os=-cxux ;; nindy960) basic_machine=i960-intel os=-nindy ;; mon960) basic_machine=i960-intel os=-mon960 ;; nonstopux) basic_machine=mips-compaq os=-nonstopux ;; np1) basic_machine=np1-gould ;; nsr-tandem) basic_machine=nsr-tandem ;; op50n-* | op60c-*) basic_machine=hppa1.1-oki os=-proelf ;; openrisc | openrisc-*) basic_machine=or32-unknown ;; os400) basic_machine=powerpc-ibm os=-os400 ;; OSE68000 | ose68000) basic_machine=m68000-ericsson os=-ose ;; os68k) basic_machine=m68k-none os=-os68k ;; pa-hitachi) basic_machine=hppa1.1-hitachi os=-hiuxwe2 ;; paragon) basic_machine=i860-intel os=-osf ;; parisc) basic_machine=hppa-unknown os=-linux ;; parisc-*) basic_machine=hppa-`echo $basic_machine | sed 's/^[^-]*-//'` os=-linux ;; pbd) basic_machine=sparc-tti ;; pbb) basic_machine=m68k-tti ;; pc532 | pc532-*) basic_machine=ns32k-pc532 ;; pc98) basic_machine=i386-pc ;; pc98-*) basic_machine=i386-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentium | p5 | k5 | k6 | nexgen | viac3) basic_machine=i586-pc ;; pentiumpro | p6 | 6x86 | athlon | athlon_*) basic_machine=i686-pc ;; pentiumii | pentium2 | pentiumiii | pentium3) basic_machine=i686-pc ;; pentium4) basic_machine=i786-pc ;; pentium-* | p5-* | k5-* | k6-* | nexgen-* | viac3-*) basic_machine=i586-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentiumpro-* | p6-* | 6x86-* | athlon-*) basic_machine=i686-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentiumii-* | pentium2-* | pentiumiii-* | pentium3-*) basic_machine=i686-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentium4-*) basic_machine=i786-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pn) basic_machine=pn-gould ;; power) basic_machine=power-ibm ;; ppc) basic_machine=powerpc-unknown ;; ppc-*) basic_machine=powerpc-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ppcle | powerpclittle | ppc-le | powerpc-little) basic_machine=powerpcle-unknown ;; ppcle-* | powerpclittle-*) basic_machine=powerpcle-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ppc64) basic_machine=powerpc64-unknown ;; ppc64-*) basic_machine=powerpc64-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ppc64le | powerpc64little | ppc64-le | powerpc64-little) basic_machine=powerpc64le-unknown ;; ppc64le-* | powerpc64little-*) basic_machine=powerpc64le-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ps2) basic_machine=i386-ibm ;; pw32) basic_machine=i586-unknown os=-pw32 ;; rdos) basic_machine=i386-pc os=-rdos ;; rom68k) basic_machine=m68k-rom68k os=-coff ;; rm[46]00) basic_machine=mips-siemens ;; rtpc | rtpc-*) basic_machine=romp-ibm ;; s390 | s390-*) basic_machine=s390-ibm ;; s390x | s390x-*) basic_machine=s390x-ibm ;; sa29200) basic_machine=a29k-amd os=-udi ;; sb1) basic_machine=mipsisa64sb1-unknown ;; sb1el) basic_machine=mipsisa64sb1el-unknown ;; sde) basic_machine=mipsisa32-sde os=-elf ;; sei) basic_machine=mips-sei os=-seiux ;; sequent) basic_machine=i386-sequent ;; sh) basic_machine=sh-hitachi os=-hms ;; sh5el) basic_machine=sh5le-unknown ;; sh64) basic_machine=sh64-unknown ;; sparclite-wrs | simso-wrs) basic_machine=sparclite-wrs os=-vxworks ;; sps7) basic_machine=m68k-bull os=-sysv2 ;; spur) basic_machine=spur-unknown ;; st2000) basic_machine=m68k-tandem ;; stratus) basic_machine=i860-stratus os=-sysv4 ;; sun2) basic_machine=m68000-sun ;; sun2os3) basic_machine=m68000-sun os=-sunos3 ;; sun2os4) basic_machine=m68000-sun os=-sunos4 ;; sun3os3) basic_machine=m68k-sun os=-sunos3 ;; sun3os4) basic_machine=m68k-sun os=-sunos4 ;; sun4os3) basic_machine=sparc-sun os=-sunos3 ;; sun4os4) basic_machine=sparc-sun os=-sunos4 ;; sun4sol2) basic_machine=sparc-sun os=-solaris2 ;; sun3 | sun3-*) basic_machine=m68k-sun ;; sun4) basic_machine=sparc-sun ;; sun386 | sun386i | roadrunner) basic_machine=i386-sun ;; sv1) basic_machine=sv1-cray os=-unicos ;; symmetry) basic_machine=i386-sequent os=-dynix ;; t3e) basic_machine=alphaev5-cray os=-unicos ;; t90) basic_machine=t90-cray os=-unicos ;; tic54x | c54x*) basic_machine=tic54x-unknown os=-coff ;; tic55x | c55x*) basic_machine=tic55x-unknown os=-coff ;; tic6x | c6x*) basic_machine=tic6x-unknown os=-coff ;; tile*) basic_machine=tile-unknown os=-linux-gnu ;; tx39) basic_machine=mipstx39-unknown ;; tx39el) basic_machine=mipstx39el-unknown ;; toad1) basic_machine=pdp10-xkl os=-tops20 ;; tower | tower-32) basic_machine=m68k-ncr ;; tpf) basic_machine=s390x-ibm os=-tpf ;; udi29k) basic_machine=a29k-amd os=-udi ;; ultra3) basic_machine=a29k-nyu os=-sym1 ;; v810 | necv810) basic_machine=v810-nec os=-none ;; vaxv) basic_machine=vax-dec os=-sysv ;; vms) basic_machine=vax-dec os=-vms ;; vpp*|vx|vx-*) basic_machine=f301-fujitsu ;; vxworks960) basic_machine=i960-wrs os=-vxworks ;; vxworks68) basic_machine=m68k-wrs os=-vxworks ;; vxworks29k) basic_machine=a29k-wrs os=-vxworks ;; w65*) basic_machine=w65-wdc os=-none ;; w89k-*) basic_machine=hppa1.1-winbond os=-proelf ;; xbox) basic_machine=i686-pc os=-mingw32 ;; xps | xps100) basic_machine=xps100-honeywell ;; ymp) basic_machine=ymp-cray os=-unicos ;; z8k-*-coff) basic_machine=z8k-unknown os=-sim ;; none) basic_machine=none-none os=-none ;; # Here we handle the default manufacturer of certain CPU types. It is in # some cases the only manufacturer, in others, it is the most popular. w89k) basic_machine=hppa1.1-winbond ;; op50n) basic_machine=hppa1.1-oki ;; op60c) basic_machine=hppa1.1-oki ;; romp) basic_machine=romp-ibm ;; mmix) basic_machine=mmix-knuth ;; rs6000) basic_machine=rs6000-ibm ;; vax) basic_machine=vax-dec ;; pdp10) # there are many clones, so DEC is not a safe bet basic_machine=pdp10-unknown ;; pdp11) basic_machine=pdp11-dec ;; we32k) basic_machine=we32k-att ;; sh[1234] | sh[24]a | sh[34]eb | sh[1234]le | sh[23]ele) basic_machine=sh-unknown ;; sparc | sparcv8 | sparcv9 | sparcv9b | sparcv9v) basic_machine=sparc-sun ;; cydra) basic_machine=cydra-cydrome ;; orion) basic_machine=orion-highlevel ;; orion105) basic_machine=clipper-highlevel ;; mac | mpw | mac-mpw) basic_machine=m68k-apple ;; pmac | pmac-mpw) basic_machine=powerpc-apple ;; *-unknown) # Make sure to match an already-canonicalized machine name. ;; *) echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2 exit 1 ;; esac # Here we canonicalize certain aliases for manufacturers. case $basic_machine in *-digital*) basic_machine=`echo $basic_machine | sed 's/digital.*/dec/'` ;; *-commodore*) basic_machine=`echo $basic_machine | sed 's/commodore.*/cbm/'` ;; *) ;; esac # Decode manufacturer-specific aliases for certain operating systems. if [ x"$os" != x"" ] then case $os in # First match some system type aliases # that might get confused with valid system types. # -solaris* is a basic system type, with this one exception. -solaris1 | -solaris1.*) os=`echo $os | sed -e 's|solaris1|sunos4|'` ;; -solaris) os=-solaris2 ;; -svr4*) os=-sysv4 ;; -unixware*) os=-sysv4.2uw ;; -gnu/linux*) os=`echo $os | sed -e 's|gnu/linux|linux-gnu|'` ;; # First accept the basic system types. # The portable systems comes first. # Each alternative MUST END IN A *, to match a version number. # -sysv* is not here because it comes later, after sysvr4. -gnu* | -bsd* | -mach* | -minix* | -genix* | -ultrix* | -irix* \ | -*vms* | -sco* | -esix* | -isc* | -aix* | -sunos | -sunos[34]*\ | -hpux* | -unos* | -osf* | -luna* | -dgux* | -solaris* | -sym* \ | -amigaos* | -amigados* | -msdos* | -newsos* | -unicos* | -aof* \ | -aos* \ | -nindy* | -vxsim* | -vxworks* | -ebmon* | -hms* | -mvs* \ | -clix* | -riscos* | -uniplus* | -iris* | -rtu* | -xenix* \ | -hiux* | -386bsd* | -knetbsd* | -mirbsd* | -netbsd* \ | -openbsd* | -solidbsd* \ | -ekkobsd* | -kfreebsd* | -freebsd* | -riscix* | -lynxos* \ | -bosx* | -nextstep* | -cxux* | -aout* | -elf* | -oabi* \ | -ptx* | -coff* | -ecoff* | -winnt* | -domain* | -vsta* \ | -udi* | -eabi* | -lites* | -ieee* | -go32* | -aux* \ | -chorusos* | -chorusrdb* \ | -cygwin* | -pe* | -psos* | -moss* | -proelf* | -rtems* \ | -mingw32* | -linux-gnu* | -linux-newlib* | -linux-uclibc* \ | -uxpv* | -beos* | -mpeix* | -udk* \ | -interix* | -uwin* | -mks* | -rhapsody* | -darwin* | -opened* \ | -openstep* | -oskit* | -conix* | -pw32* | -nonstopux* \ | -storm-chaos* | -tops10* | -tenex* | -tops20* | -its* \ | -os2* | -vos* | -palmos* | -uclinux* | -nucleus* \ | -morphos* | -superux* | -rtmk* | -rtmk-nova* | -windiss* \ | -powermax* | -dnix* | -nx6 | -nx7 | -sei* | -dragonfly* \ | -skyos* | -haiku* | -rdos* | -toppers* | -drops*) # Remember, each alternative MUST END IN *, to match a version number. ;; -qnx*) case $basic_machine in x86-* | i*86-*) ;; *) os=-nto$os ;; esac ;; -nto-qnx*) ;; -nto*) os=`echo $os | sed -e 's|nto|nto-qnx|'` ;; -sim | -es1800* | -hms* | -xray | -os68k* | -none* | -v88r* \ | -windows* | -osx | -abug | -netware* | -os9* | -beos* | -haiku* \ | -macos* | -mpw* | -magic* | -mmixware* | -mon960* | -lnews*) ;; -mac*) os=`echo $os | sed -e 's|mac|macos|'` ;; -linux-dietlibc) os=-linux-dietlibc ;; -linux*) os=`echo $os | sed -e 's|linux|linux-gnu|'` ;; -sunos5*) os=`echo $os | sed -e 's|sunos5|solaris2|'` ;; -sunos6*) os=`echo $os | sed -e 's|sunos6|solaris3|'` ;; -opened*) os=-openedition ;; -os400*) os=-os400 ;; -wince*) os=-wince ;; -osfrose*) os=-osfrose ;; -osf*) os=-osf ;; -utek*) os=-bsd ;; -dynix*) os=-bsd ;; -acis*) os=-aos ;; -atheos*) os=-atheos ;; -syllable*) os=-syllable ;; -386bsd) os=-bsd ;; -ctix* | -uts*) os=-sysv ;; -nova*) os=-rtmk-nova ;; -ns2 ) os=-nextstep2 ;; -nsk*) os=-nsk ;; # Preserve the version number of sinix5. -sinix5.*) os=`echo $os | sed -e 's|sinix|sysv|'` ;; -sinix*) os=-sysv4 ;; -tpf*) os=-tpf ;; -triton*) os=-sysv3 ;; -oss*) os=-sysv3 ;; -svr4) os=-sysv4 ;; -svr3) os=-sysv3 ;; -sysvr4) os=-sysv4 ;; # This must come after -sysvr4. -sysv*) ;; -ose*) os=-ose ;; -es1800*) os=-ose ;; -xenix) os=-xenix ;; -*mint | -mint[0-9]* | -*MiNT | -MiNT[0-9]*) os=-mint ;; -aros*) os=-aros ;; -kaos*) os=-kaos ;; -zvmoe) os=-zvmoe ;; -none) ;; *) # Get rid of the `-' at the beginning of $os. os=`echo $os | sed 's/[^-]*-//'` echo Invalid configuration \`$1\': system \`$os\' not recognized 1>&2 exit 1 ;; esac else # Here we handle the default operating systems that come with various machines. # The value should be what the vendor currently ships out the door with their # machine or put another way, the most popular os provided with the machine. # Note that if you're going to try to match "-MANUFACTURER" here (say, # "-sun"), then you have to tell the case statement up towards the top # that MANUFACTURER isn't an operating system. Otherwise, code above # will signal an error saying that MANUFACTURER isn't an operating # system, and we'll never get to this point. case $basic_machine in score-*) os=-elf ;; spu-*) os=-elf ;; *-acorn) os=-riscix1.2 ;; arm*-rebel) os=-linux ;; arm*-semi) os=-aout ;; c4x-* | tic4x-*) os=-coff ;; # This must come before the *-dec entry. pdp10-*) os=-tops20 ;; pdp11-*) os=-none ;; *-dec | vax-*) os=-ultrix4.2 ;; m68*-apollo) os=-domain ;; i386-sun) os=-sunos4.0.2 ;; m68000-sun) os=-sunos3 # This also exists in the configure program, but was not the # default. # os=-sunos4 ;; m68*-cisco) os=-aout ;; mep-*) os=-elf ;; mips*-cisco) os=-elf ;; mips*-*) os=-elf ;; or32-*) os=-coff ;; *-tti) # must be before sparc entry or we get the wrong os. os=-sysv3 ;; sparc-* | *-sun) os=-sunos4.1.1 ;; *-be) os=-beos ;; *-haiku) os=-haiku ;; *-ibm) os=-aix ;; *-knuth) os=-mmixware ;; *-wec) os=-proelf ;; *-winbond) os=-proelf ;; *-oki) os=-proelf ;; *-hp) os=-hpux ;; *-hitachi) os=-hiux ;; i860-* | *-att | *-ncr | *-altos | *-motorola | *-convergent) os=-sysv ;; *-cbm) os=-amigaos ;; *-dg) os=-dgux ;; *-dolphin) os=-sysv3 ;; m68k-ccur) os=-rtu ;; m88k-omron*) os=-luna ;; *-next ) os=-nextstep ;; *-sequent) os=-ptx ;; *-crds) os=-unos ;; *-ns) os=-genix ;; i370-*) os=-mvs ;; *-next) os=-nextstep3 ;; *-gould) os=-sysv ;; *-highlevel) os=-bsd ;; *-encore) os=-bsd ;; *-sgi) os=-irix ;; *-siemens) os=-sysv4 ;; *-masscomp) os=-rtu ;; f30[01]-fujitsu | f700-fujitsu) os=-uxpv ;; *-rom68k) os=-coff ;; *-*bug) os=-coff ;; *-apple) os=-macos ;; *-atari*) os=-mint ;; *) os=-none ;; esac fi # Here we handle the case where we know the os, and the CPU type, but not the # manufacturer. We pick the logical manufacturer. vendor=unknown case $basic_machine in *-unknown) case $os in -riscix*) vendor=acorn ;; -sunos*) vendor=sun ;; -aix*) vendor=ibm ;; -beos*) vendor=be ;; -hpux*) vendor=hp ;; -mpeix*) vendor=hp ;; -hiux*) vendor=hitachi ;; -unos*) vendor=crds ;; -dgux*) vendor=dg ;; -luna*) vendor=omron ;; -genix*) vendor=ns ;; -mvs* | -opened*) vendor=ibm ;; -os400*) vendor=ibm ;; -ptx*) vendor=sequent ;; -tpf*) vendor=ibm ;; -vxsim* | -vxworks* | -windiss*) vendor=wrs ;; -aux*) vendor=apple ;; -hms*) vendor=hitachi ;; -mpw* | -macos*) vendor=apple ;; -*mint | -mint[0-9]* | -*MiNT | -MiNT[0-9]*) vendor=atari ;; -vos*) vendor=stratus ;; esac basic_machine=`echo $basic_machine | sed "s/unknown/$vendor/"` ;; esac echo $basic_machine$os exit # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "timestamp='" # time-stamp-format: "%:y-%02m-%02d" # time-stamp-end: "'" # End: espresso-5.1/install/namedep.sh0000755000175000017500000000650112341373034014722 0ustar mbamba#!/bin/sh # namedep.sh -- script that computes dependencies on Fortran 90 modules # make sure there is no locale setting creating unneeded differences. LC_ALL=C export LC_ALL # first argument is mandatory if test $# = 0 then echo usage: $0 name [files] exit 1 fi # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname # module, function or subroutine whose dependencies must be computed name=$1 shift # list of files to be searched sources_all=`ls */*.f90` if test $# = 0 ; then sources="$sources_all" else sources="$* /dev/null" ; fi # search for declaration of $name # caution: must not select names that _contain_ $name decls=`egrep -ni -e "^ *subroutine *$name *(\(.*)?$" \ -e "^ *function *$name *(\(.*)?$" \ -e "^ *module *$name *$" \ $sources | sed 's/[:(]/ /g' | awk '{print $1 "@" $2 "@" $4}'` num=`echo $decls | wc | awk '{print $2}'` if test $num = 0 then echo error: $name not found exit 1 elif test $num -gt 1 then # $name is defined in more than one place, must choose one echo error: there are multiple declarations: for decl in $decls do file=`echo $decl | sed 's/@/ /g' | awk '{print $1}'` echo " $name [$file]" done echo please specify file exit 1 fi # build list of all module declarations # list format is: file_name starting_line module_name egrep -ni "^ *module *[a-zA-Z_][a-zA-Z_]*" $sources_all | grep -iv procedure | # exclude "module procedure" declarations sed 's/:/ /g' | awk '{print $1, $2, $4}' > namedep.sh.tmp1 decl=`echo $decls | sed 's/@/ /g'` file=`echo $decl | awk '{print $1}'` echo $name [$file]: # find starting and ending line start=`echo $decl | awk '{print $2}'` end=`egrep -ni -e "^ *end *subroutine *$name *$" \ -e "^ *end *function *$name *$" \ -e "^ *end *module *$name *$" \ $file | sed 's/:.*//'` # look for use declarations modules=`sed -n "$start,${end}p" $file | egrep -i "^ *use " | sed 's/,.*//' | # remove ", only: ..." awk '{print tolower($2)}' | # cast module name to lowercase sort | uniq # remove duplicates` # look for recursive dependencies modules_prev="" until test "$modules_prev" = "$modules" do modules_tested="$modules_prev" modules_prev="$modules" for module in $modules do # skip module if already tested if test "`echo $modules_tested | tr ' ' '\n' | grep ^$module\$`" = "" then mdecl=`egrep -i " $module *$" namedep.sh.tmp1` file=`echo $mdecl | awk '{print $1}'` # find starting and ending line start=`echo $mdecl | awk '{print $2}'` end=`egrep -ni "^ *end *module *$module *$" $file | sed 's/:.*//'` # look for use declarations recur=`sed -n "$start,${end}p" $file | egrep -i "^ *use " | sed 's/,.*//' | # remove ", only: ..." awk '{print tolower($2)}' | # cast module name to lowercase sort | uniq # remove duplicates` modules="$modules $recur" fi done # remove duplicates modules=`echo $modules | tr " " "\n" | sort | uniq` done # print final list of modules for module in $modules do mdecl=`grep -i $module namedep.sh.tmp1` file=`echo $mdecl | awk '{print $1}'` echo " $module [$file]" done # remove temporary file rm -f namedep.sh.tmp1 espresso-5.1/install/extlibs_makefile0000644000175000017500000000644612341373034016214 0ustar mbamba #=============================== # espresso #=============================== # include ../make.sys # # MAIN target # all: $(MAKE) libblas_$(BLAS_LIBS_SWITCH) $(MAKE) liblapack_$(LAPACK_LIBS_SWITCH) $(MAKE) libelpa_internal $(MAKE) libiotk # BLAS libblas : libblas_$(BLAS_LIBS_SWITCH) libblas_external : fake_blas_external fake_blas_external : touch fake_libblas.a -rm fake_libblas.a libblas_internal: if test ! -d ../BLAS; then \ ( gzip -dc ../archive/blas-1.tar.gz |(cd ../; tar -xvf -)); fi if test -e make_blas.inc; then \ (cp make_blas.inc ../BLAS/make.inc; \ cd ../BLAS; $(MAKE) $(BLASLIB)); else \ (echo "no configuration file found for blas"; \ echo "run configure from main QE dir"); fi # LAPACK liblapack : liblapack_$(LAPACK_LIBS_SWITCH) liblapack_external : fake_lapack_external fake_lapack_external : touch fake_liblapack.a -rm fake_liblapack.a liblapack_internal: if test ! -d ../lapack-3.2; then \ ( gzip -dc ../archive/lapack-3.2.tar.gz | (cd ../; tar -xvf -)); fi if test -e make_lapack.inc; then \ (cp make_lapack.inc ../lapack-3.2/make.inc; \ cp Makefile_lapack ../lapack-3.2/SRC/Makefile; \ cp Makefile_lapack_testing_lin ../lapack-3.2/TESTING/LIN/Makefile; \ cd ../lapack-3.2; $(MAKE) lapacklib); else \ (echo "no configuration file found for lapack"; \ echo "run configure from main QE dir"); fi libiotk: if test ! -d ../S3DE; then \ (gzip -dc ../archive/iotk-1.2.beta.tar.gz | (cd ../; tar -xvf -)) ; \ if test -e Makefile_iotk; then \ (cp Makefile_iotk ../S3DE/iotk/src/Makefile); fi; \ if test -e iotk_config.h; then \ (cp iotk_config.h ../S3DE/iotk/include/iotk_config.h); fi; fi cd ../S3DE/iotk/src; $(MAKE) lib+util; cd ../bin; ln -fs ../S3DE/iotk/tools/iotk .; \ ln -fs ../S3DE/iotk/src/iotk.x .; \ ln -fs ../S3DE/iotk/src/iotk_print_kinds.x .; \ cd ../; ln -fs S3DE/iotk iotk # ELPA libelpa : libelpa_$(ELPA_LIBS_SWITCH) libelpa_ : fake_elpa_external libelpa_disabled : fake_elpa_external fake_elpa_external : touch fake_libelpa.a -rm fake_libelpa.a libelpa_enabled: if test ! -d ../ELPA; then \ ( gzip -dc ../archive/ELPA-0.3.tar.gz |(cd ../; tar -xvf -)); fi cd ../ELPA; $(MAKE) ################################### # cleaning ################################### # each lib independently blas_clean: if test -d ../BLAS; then (cd ../BLAS; $(MAKE) clean); fi blas_veryclean: if test -d ../BLAS; then (rm -R -f ../BLAS); fi lapack_clean: if test -d ../lapack-3.2; then (cd ../lapack-3.2; $(MAKE) clean); fi lapack_veryclean: if test -d ../lapack-3.2; then (rm -R -f ../lapack-3.2); fi elpa_clean: if test -d ../ELPA; then (cd ../ELPA; $(MAKE) clean); fi elpa_veryclean: if test -d ../ELPA; then (rm -R -f ../ELPA); fi iotk_clean: if test -d ../S3DE; then (cd ../S3DE; $(MAKE) clean); fi if test -e ../S3DE/iotk/src/iotk.x; then \ rm -f ../S3DE/iotk/src/iotk.x; fi (rm -f ../bin/iotk; \ rm -f ../bin/iotk.x; \ rm -f ../bin/iotk_print_kinds.x) iotk_veryclean: if test -d ../S3DE; then (rm -R -f ../S3DE); fi if test -e ../S3DE/iotk/src/iotk.x; then (rm -f ../S3DE/iotk/src/iotk.x); fi rm -f ../bin/iotk; \ rm -f ../bin/iotk.x; \ rm -f ../bin/iotk_print_kinds.x; \ rm -f ../iotk # general cleaning clean: blas_clean lapack_clean elpa_clean iotk_clean veryclean: blas_veryclean lapack_veryclean elpa_veryclean iotk_veryclean espresso-5.1/install/includedep.sh0000755000175000017500000000346112341373034015427 0ustar mbamba#!/bin/sh # includedep.sh -- script that computes dependencies on preprocessor includes # make sure there is no locale setting creating unneeded differences. LC_ALL=C export LC_ALL # files whose dependencies must be computed sources=`echo *.c *.f90 | sed 's/\*\.c//g s/\*\.f90//g'` # remove the "*.c" and "*.f90" that remain # # when there are no such files if test "$sources" = " " ; then exit ; fi # files that may be included # extra directories may be specified on the command line includes=`echo *.h` for dir in $* do includes="$includes `echo $dir/*.h`" done includes=`echo $includes | sed 's/[^ ]*\*\.h//g'` # remove the "dir/*.h" that remain # # when there are no such files # create list of include dependencies # each line is of the form: # file_name.o : @include_file.h@ egrep -H '^ *# *include *"' $sources | # look for #include "..." statements # # ignore #include <...> ones sed 's/f90:/o / s/c:/o / s/# *include *// s/\"/ /g' | # replace extension, insert space # # remove '# include' statements # # remove quotes awk '{print $1 " : @" $2 "@"}' | # create dependency entry sort | uniq > includedep.tmp1 # remove duplicates # create list of available include files # for each file, create a line of the form: # s/@file_name@/pathname/g echo $includes | tr " " "\n" | sed 's/\//\\\//g s/.*\/\([^/]*\)/\1 &/' | # escape slashes awk '{print "s/@" $1 "@/" $2 "/" }' > includedep.tmp2 # replace file names with pathnames # by applying the file of substitution patterns just created sed -f includedep.tmp2 includedep.tmp1 rm -f includedep.tmp1 includedep.tmp2 # remove temporary files espresso-5.1/install/install-sh0000755000175000017500000001572212341373034014763 0ustar mbamba#!/bin/sh # # install - install a program, script, or datafile # # This originates from X11R5 (mit/util/scripts/install.sh), which was # later released in X11R6 (xc/config/util/install.sh) with the # following copyright and license. # # Copyright (C) 1994 X Consortium # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN # AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC- # TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # Except as contained in this notice, the name of the X Consortium shall not # be used in advertising or otherwise to promote the sale, use or other deal- # ings in this Software without prior written authorization from the X Consor- # tium. # # # FSF changes to this file are in the public domain. # # Calling this script install-sh is preferred over install.sh, to prevent # `make' implicit rules from creating a file called install from it # when there is no Makefile. # # This script is compatible with the BSD install script, but was written # from scratch. It can only install one file at a time, a restriction # shared with many OS's install programs. # set DOITPROG to echo to test this script # Don't use :- since 4.3BSD and earlier shells don't like it. doit="${DOITPROG-}" # put in absolute paths if you don't have them in your path; or use env. vars. mvprog="${MVPROG-mv}" cpprog="${CPPROG-cp}" chmodprog="${CHMODPROG-chmod}" chownprog="${CHOWNPROG-chown}" chgrpprog="${CHGRPPROG-chgrp}" stripprog="${STRIPPROG-strip}" rmprog="${RMPROG-rm}" mkdirprog="${MKDIRPROG-mkdir}" transformbasename="" transform_arg="" instcmd="$mvprog" chmodcmd="$chmodprog 0755" chowncmd="" chgrpcmd="" stripcmd="" rmcmd="$rmprog -f" mvcmd="$mvprog" src="" dst="" dir_arg="" while [ x"$1" != x ]; do case $1 in -c) instcmd=$cpprog shift continue;; -d) dir_arg=true shift continue;; -m) chmodcmd="$chmodprog $2" shift shift continue;; -o) chowncmd="$chownprog $2" shift shift continue;; -g) chgrpcmd="$chgrpprog $2" shift shift continue;; -s) stripcmd=$stripprog shift continue;; -t=*) transformarg=`echo $1 | sed 's/-t=//'` shift continue;; -b=*) transformbasename=`echo $1 | sed 's/-b=//'` shift continue;; *) if [ x"$src" = x ] then src=$1 else # this colon is to work around a 386BSD /bin/sh bug : dst=$1 fi shift continue;; esac done if [ x"$src" = x ] then echo "$0: no input file specified" >&2 exit 1 else : fi if [ x"$dir_arg" != x ]; then dst=$src src="" if [ -d "$dst" ]; then instcmd=: chmodcmd="" else instcmd=$mkdirprog fi else # Waiting for this to be detected by the "$instcmd $src $dsttmp" command # might cause directories to be created, which would be especially bad # if $src (and thus $dsttmp) contains '*'. if [ -f "$src" ] || [ -d "$src" ] then : else echo "$0: $src does not exist" >&2 exit 1 fi if [ x"$dst" = x ] then echo "$0: no destination specified" >&2 exit 1 else : fi # If destination is a directory, append the input filename; if your system # does not like double slashes in filenames, you may need to add some logic if [ -d "$dst" ] then dst=$dst/`basename "$src"` else : fi fi ## this sed command emulates the dirname command dstdir=`echo "$dst" | sed -e 's,[^/]*$,,;s,/$,,;s,^$,.,'` # Make sure that the destination directory exists. # this part is taken from Noah Friedman's mkinstalldirs script # Skip lots of stat calls in the usual case. if [ ! -d "$dstdir" ]; then defaultIFS=' ' IFS="${IFS-$defaultIFS}" oIFS=$IFS # Some sh's can't handle IFS=/ for some reason. IFS='%' set - `echo "$dstdir" | sed -e 's@/@%@g' -e 's@^%@/@'` IFS=$oIFS pathcomp='' while [ $# -ne 0 ] ; do pathcomp=$pathcomp$1 shift if [ ! -d "$pathcomp" ] ; then $mkdirprog "$pathcomp" else : fi pathcomp=$pathcomp/ done fi if [ x"$dir_arg" != x ] then $doit $instcmd "$dst" && if [ x"$chowncmd" != x ]; then $doit $chowncmd "$dst"; else : ; fi && if [ x"$chgrpcmd" != x ]; then $doit $chgrpcmd "$dst"; else : ; fi && if [ x"$stripcmd" != x ]; then $doit $stripcmd "$dst"; else : ; fi && if [ x"$chmodcmd" != x ]; then $doit $chmodcmd "$dst"; else : ; fi else # If we're going to rename the final executable, determine the name now. if [ x"$transformarg" = x ] then dstfile=`basename "$dst"` else dstfile=`basename "$dst" $transformbasename | sed $transformarg`$transformbasename fi # don't allow the sed command to completely eliminate the filename if [ x"$dstfile" = x ] then dstfile=`basename "$dst"` else : fi # Make a couple of temp file names in the proper directory. dsttmp=$dstdir/_inst.$$_ rmtmp=$dstdir/_rm.$$_ # Trap to clean up temp files at exit. trap 'status=$?; rm -f "$dsttmp" "$rmtmp" && exit $status' 0 trap '(exit $?); exit' 1 2 13 15 # Move or copy the file name to the temp name $doit $instcmd "$src" "$dsttmp" && # and set any options; do chmod last to preserve setuid bits # If any of these fail, we abort the whole thing. If we want to # ignore errors from any of these, just make sure not to ignore # errors from the above "$doit $instcmd $src $dsttmp" command. if [ x"$chowncmd" != x ]; then $doit $chowncmd "$dsttmp"; else :;fi && if [ x"$chgrpcmd" != x ]; then $doit $chgrpcmd "$dsttmp"; else :;fi && if [ x"$stripcmd" != x ]; then $doit $stripcmd "$dsttmp"; else :;fi && if [ x"$chmodcmd" != x ]; then $doit $chmodcmd "$dsttmp"; else :;fi && # Now remove or move aside any old file at destination location. We try this # two ways since rm can't unlink itself on some systems and the destination # file might be busy for other reasons. In this case, the final cleanup # might fail but the new file should still install successfully. { if [ -f "$dstdir/$dstfile" ] then $doit $rmcmd -f "$dstdir/$dstfile" 2>/dev/null || $doit $mvcmd -f "$dstdir/$dstfile" "$rmtmp" 2>/dev/null || { echo "$0: cannot unlink or rename $dstdir/$dstfile" >&2 (exit 1); exit } else : fi } && # Now rename the file to the real destination. $doit $mvcmd "$dsttmp" "$dstdir/$dstfile" fi && # The final little trick to "correctly" pass the exit status to the exit trap. { (exit 0); exit } espresso-5.1/install/espresso.nsis0000644000175000017500000001011012341373034015502 0ustar mbamba#!Nsis Installer Command Script # # The following external defines are recognized: # ${VERSION} = YYYYMMDD # ${VARIANT} = serial or mpich2 # ${BIT} = 32 or 64 # ${LIBGCC} = name of libgcc dll file to use # ${MINGW} = !include "LogicLib.nsh" !include "EnvVarUpdate.nsh" !include "x64.nsh" RequestExecutionLevel admin !macro VerifyUserIsAdmin UserInfo::GetAccountType pop $0 ${If} $0 != "admin" messageBox mb_iconstop "Administrator rights required!" setErrorLevel 740 ;ERROR_ELEVATION_REQUIRED quit ${EndIf} !macroend !macro CreateInternetShortcut FILENAME URL ICONFILE ICONINDEX WriteINIStr "${FILENAME}.url" "InternetShortcut" "URL" "${URL}" WriteINIStr "${FILENAME}.url" "InternetShortcut" "IconFile" "${ICONFILE}" WriteINIStr "${FILENAME}.url" "InternetShortcut" "IconIndex" "${ICONINDEX}" !macroend !ifndef LIBGCC !define LIBGCC libgcc_s_sjlj-1.dll !endif !define QE4WIN "Quantum ESPRESSO ${BIT}-bit ${VERSION}-${VARIANT}" OutFile "qe4win/qe4win-${VERSION}-${BIT}bit-${VARIANT}.exe" Name "${QE4WIN}" !if ${BIT} == 64 InstallDir "$ProgramFiles64\${QE4WIN}" !define MPICHDIR "$ProgramFiles64\MPICH2\bin" !else InstallDir "$ProgramFiles\${QE4WIN}" !define MPICHDIR "$ProgramFiles\MPICH2\bin" !endif XPStyle on ShowInstDetails show ShowUninstDetails show SetCompressor lzma Page directory Page instfiles DirText "Please select the Quantum ESPRESSO installation folder." function .onInit setShellVarContext all !insertmacro VerifyUserIsAdmin functionEnd Section "${QE4WIN}" SectionIn RO SetRegView ${BIT} CreateDirectory "$SMPROGRAMS\${QE4WIN}" CreateShortCut "$SMPROGRAMS\${QE4WIN}\Uninstall.lnk" "$INSTDIR\Uninstall.exe" "" "" CreateShortCut "$SMPROGRAMS\${QE4WIN}\README.lnk" "$INSTDIR\README.txt" "" "" CreateShortCut "$SMPROGRAMS\${QE4WIN}\Input Reference.lnk" "$INSTDIR\doc\qe-input-ref.html" "" "" CreateShortCut "$SMPROGRAMS\${QE4WIN}\Documentation.lnk" "$WINDIR\explorer.exe" \ '/e,"$INSTDIR\doc"' "" CreateShortCut "$SMPROGRAMS\${QE4WIN}\License.lnk" "$INSTDIR\License.txt" "" "" CreateShortCut "$SMPROGRAMS\${QE4WIN}\Release Notes.lnk" "$INSTDIR\Release-Notes.txt" "" "" !insertmacro CreateInternetShortcut "$SMPROGRAMS\${QE4WIN}\Quantum ESPRESSO Home Page" \ "http://www.quantum-espresso.org" "" "0" SetOutPath "$INSTDIR" CreateDirectory "$INSTDIR\bin" CreateDirectory "$INSTDIR\doc" CreateDirectory "$INSTDIR\pseudo" File qe-docs/License.txt File qe-docs/README.txt File qe-docs/Release-Notes.txt SetOutPath "$INSTDIR\bin" File ${MINGW}/${LIBGCC} File ${MINGW}/libgfortran-3.dll File ${MINGW}/libquadmath-0.dll File qe-${VARIANT}-${BIT}/*.* SetOutPath "$INSTDIR\doc" File qe-docs/qe-input-ref.html File qe-docs/QE-logo.jpg File qe-docs/*.pdf SetOutPath "$INSTDIR\pseudo" File espresso-current/pseudo/*.UPF File espresso-current/pseudo/*.van File espresso-current/pseudo/*.bhs ${EnvVarUpdate} $0 "PATH" "A" "HKLM" "${MPICHDIR}" ${EnvVarUpdate} $0 "PATH" "A" "HKLM" "$INSTDIR\bin" ${EnvVarUpdate} $0 "ESPRESSO_PSEUDO" "A" "HKLM" "$INSTDIR\pseudo" # ${EnvVarUpdate} $0 "ESPRESSO_TMPDIR" "A" "HKLM" "$AppData\Local\Temp" SectionEnd function un.onInit SetShellVarContext all !insertmacro VerifyUserIsAdmin functionEnd Section "Uninstall" SetRegView ${BIT} ${un.EnvVarUpdate} $0 "PATH" "R" "HKLM" "${MPICHDIR}" ${un.EnvVarUpdate} $0 "PATH" "R" "HKLM" "$INSTDIR\bin" ${un.EnvVarUpdate} $0 "ESPRESSO_PSEUDO" "R" "HKLM" "$INSTDIR\pseudo" # ${un.EnvVarUpdate} $0 "ESPRESSO_TMPDIR" "R" "HKLM" "$AppData\Local\Temp" RMDir /r "$SMPROGRAMS\${QE4WIN}" Delete /REBOOTOK "$INSTDIR\*.txt" Delete /REBOOTOK "$INSTDIR\Uninstall.exe" RMDir /r /REBOOTOK "$INSTDIR\bin" RMDir /r /REBOOTOK "$INSTDIR\doc" RMDir /r /REBOOTOK "$INSTDIR\pseudo" RMDir /REBOOTOK "$INSTDIR" SectionEnd Section -post SetRegView ${BIT} WriteUninstaller "$INSTDIR\Uninstall.exe" SectionEnd # Local Variables: # mode: sh # End: espresso-5.1/install/clean0000755000175000017500000000012112341373043013752 0ustar mbamba#!/bin/bash \rm -f uncompress* make_blas.inc make_lapack.inc make_wannier90.sys espresso-5.1/install/clean.sh0000755000175000017500000000012112341373034014363 0ustar mbamba#!/bin/bash \rm -f uncompress* make_blas.inc make_lapack.inc make_wannier90.sys espresso-5.1/install/Make.altix0000644000175000017500000000640112341373034014671 0ustar mbamba# Contributed by by Martin Hilgeman # Red Hat Linux Advanced Server release 2.1AS (Derry), # SGI ProPack 2.4 for Linux, Build 240rp04021313_10046-040213135, # SCSL >= 1.4.1, MPT >= 1.8.1, Intel 7.1 Fortran 95 and C++ compiler # # This Makefile has also been tested on: # Red Hat Enterprise Linux AS release 3 (Taroon) with # SGI ProPack 3SP2 for Linux, Build 302r67-0410222239 # SCSL >= 1.5.1.0, MPT >= 1.10, Intel 8.0.070 C/C++ compiler and # Intel 8.0.050 Fortran compiler # # NOT guaranteed to work on newer QE versions! Edit according to your needs .SUFFIXES : .SUFFIXES : .o .c .f .f90 .f90.o: $(F90) $(F90FLAGS) -c $< .f.o: $(F77) $(FFLAGS) -c $< .c.o: $(CC) $(CFLAGS) -c $< # Use the SGI SCSL scientific library (recommended) # We also use SHMEM as the parallel transport, which seems to be much # faster in the reduction routines DFLAGS = -D__ALTIX -D__LINUX64 -D__SCSL -D__PARA -D__MPI -D__SHMEM ## Use precompiled fftw library (version <= 2.1.5, NOT v.3!) ## In this case, specify also how to load the fftw library (FFTW_LIB) ## and the path to the fftw.h include file (FFTW_INC_DIR). Example: # FFTW_LIB = -L/usr/local/src/fftw-2.1.3/fftw/.libs -lfftw64 # FFTW_INC_DIR = /usr/local/src/fftw-2.1.3/fftw # CPPFLAGS = -D__ALTIX -D__LINUX64 -D__PARA -D__MPI -D__SHMEM -D__FFTW ## Use the local copy of fftw # CPPFLAGS = -D__ALTIX -D__LINUX64 -D__FFTW \ # -D__USE_INTERNAL_FFTW -D__PARA -D__MPI -D__SHMEM -DSHMEM \ # -I../include -I. ## Serial version # CPPFLAGS = -D__ALTIX -D__LINUX64 -D__SHMEM FDFLAGS = $(DFLAGS) IFLAGS = -I../include -I$(FFTW_INC_DIR) MOD_FLAS = -I CC = icc MPICC = icc F90 = ifort MPIF90 = ifort F77 = ifort MPIF77 = ifort CPP = cpp CPPFLAGS = $(DFLAGS) $(IFLAGS) CFLAGS = -ip -tpp2 $(CPPFLAGS) -O3 # Fortran compiler flags # -W0 disable warnings # -O3 more aggressive optimization # -tpp2 Itanium2 family optimization # -cm suppress all comment messages # -w disable all warnings # -ftz flush denormal results to zero # -ip enable single-file IP optimizations (within files) # -fno-alias assume no aliasing # -safe_cray_ptr assume that CRAY pointers do not alias other variables # -assume byterecl assume that record lengths are in bytes # -r8 defines real variables to be REAL(KIND=8) OFLAGS = -O3 -fno-alias -safe_cray_ptr -ip FFLAGS = -cm -w -r8 -ftz -tpp2 -assume byterecl $(OFLAGS) F90FLAGS = $(FFLAGS) -fpp $(FDFLAGS) $(IFLAGS) $(MODFLAGS) FFLAGS_NOOPT = -O0 -assume byterecl # Libraries: # Use the SGI SCSL scientific library (recommended) LIBS = -lmpi -lsma -lscs ## Use the Intel MKL libraries # LIBS = -lmpi -lsma -L/opt/intel/mkl60/lib/64 \ # -lmkl_lapack64 -lmkl_itp -lguide -lpthread LD = ifort LDFLAGS = AR = ar ARFLAGS = ruv # ranlib command. If ranlib is not needed (it isn't in most cases) use # RANLIB = echo RANLIB = ranlib # all internal and external libraries - do not modify LIBOBJS = ../flib/ptools.a ../flib/flib.a ../clib/clib.a \ ../iotk/src/libiotk.a espresso-5.1/install/make_blas.inc.in0000644000175000017500000000210212341373034015761 0ustar mbamba#################################################################### # BLAS make include file. # # March 2007 # #################################################################### # SHELL = /bin/sh # # The machine (platform) identifier to append to the library names # PLAT = # # Modify the FORTRAN and OPTS definitions to refer to the # compiler and desired compiler options for your machine. NOOPT # refers to the compiler options desired when NO OPTIMIZATION is # selected. Define LOADER and LOADOPTS to refer to the loader and # desired load options for your machine. # FORTRAN = @f77@ OPTS = -O2 @extlib_flags@ DRVOPTS = $(OPTS) NOOPT = @extlib_flags@ LOADER = @f77@ LOADOPTS = @extlib_flags@ # # The archiver and the flag(s) to use when building archive (library) # If you system has no ranlib, set RANLIB = echo. # ARCH = @ar@ ARCHFLAGS= @arflags@ RANLIB = @ranlib@ # # The location and name of the Reference BLAS library. # BLASLIB = blas$(PLAT).a espresso-5.1/install/plugins_list0000644000175000017500000000165212341373034015413 0ustar mbamba######################################## # definition of plugins version and URL ######################################## URL=http://files.qe-forge.org/index.php?file= WANT=want-2.4.0 WANT_URL=$(URL)$(WANT)-base.tar.gz # YAMBO=yambo-3.4.1 YAMBO_URL=$(URL)$(YAMBO)-rev51.tgz # W90=wannier90-1.2 W90_URL=$(URL)$(W90).tar.gz # SAX=sax-2.0.3 SAX_URL=$(URL)$(SAX).tar.gz # GIPAW=qe-gipaw-5.0 GIPAW_URL=$(URL)$(GIPAW).tar.gz # PLUMED=plumed-1.3-qe PLUMED_URL=$(URL)$(PLUMED).tar.gz # LD1=atomic-5.1 LD1_URL=$(URL)$(LD1).tar.gz # XSPECTRA=xspectra-5.1 XSPECTRA_URL=$(URL)$(XSPECTRA).tar.gz # PWCOND=pwcond-5.1 PWCOND_URL=$(URL)$(PWCOND).tar.gz # NEB=neb-5.1 NEB_URL=$(URL)$(NEB).tar.gz # PHONON=PHonon-5.1 PHONON_URL=$(URL)$(PHONON).tar.gz # TDDFPT=tddfpt-5.1 TDDFPT_URL=$(URL)$(TDDFPT).tar.gz # GUI=PWgui-5.1 GUI_URL=$(URL)$(GUI).tgz # GPU=v14.03.0 #GPU_URL=$(URL)$(GPU).tar.gz GPU_URL=https://github.com/fspiga/QE-GPU/archive/$(GPU).tar.gz # espresso-5.1/install/plugins_makefile0000644000175000017500000005335012341373034016217 0ustar mbamba #=============================== # espresso #=============================== # # Makefile for plugins # include ../make.sys include plugins_list # # MAIN target # EXTLIBS=liblapack libblas libiotk ########################################################## # LD1 ########################################################### ld1: uncompress-ld1 if test -d ../atomic; then \ cd ../atomic; $(MAKE) all || exit 1; cd ../bin; ln -fs ../atomic/src/ld1.x . ; fi touch make-ld1 uncompress-ld1: touch-dummy @(if test ! -s ../archive/$(LD1).tar.gz && test ! -d ../atomic ; then \ wget -O ../archive/$(LD1).tar.gz $(LD1_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(LD1).tar.gz $(LD1_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download ld1. Test whether curl or wget is installed and working," ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(LD1).tar.gz from $(LD1_URL)." ; \ exit 1 ; fi ; fi ; fi) if test ! -d ../atomic; then \ (gzip -dc ../archive/$(LD1).tar.gz | (cd ../ ; tar -xvf -)) ; fi touch uncompress-ld1 ########################################################## # XSpectra ########################################################### xspectra: uncompress-xspectra if test -d ../XSpectra; then \ cd ../XSpectra; $(MAKE) all || exit 1; cd ../bin; ln -fs ../XSpectra/src/xspectra.x . ; fi touch make-xspectra uncompress-xspectra: touch-dummy @(if test ! -s ../archive/$(XSPECTRA).tar.gz && test ! -d ../XSpectra ; then \ wget -O ../archive/$(XSPECTRA).tar.gz $(XSPECTRA_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(XSPECTRA).tar.gz $(XSPECTRA_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download xspectra. Test whether curl or wget is installed and working," ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(XSPECTRA).tar.gz from $(XSPECTRA_URL)." ; \ exit 1 ; fi ; fi ; fi) if test ! -d ../XSpectra; then \ (gzip -dc ../archive/$(XSPECTRA).tar.gz | (cd ../ ; tar -xvf -)) ; fi touch uncompress-xspectra ########################################################## # PWCOND ########################################################### pwcond: uncompress-pwcond if test -d ../PWCOND; then \ cd ../PWCOND; $(MAKE) all || exit 1; cd ../bin; ln -fs ../PWCOND/src/pwcond.x . ; fi touch make-pwcond uncompress-pwcond: touch-dummy @(if test ! -s ../archive/$(PWCOND).tar.gz && test ! -d ../PWCOND ; then \ wget -O ../archive/$(PWCOND).tar.gz $(PWCOND_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(PWCOND).tar.gz $(PWCOND_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download pwcond. Test whether curl or wget is installed and working," ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(PWCOND).tar.gz from $(PWCOND_URL)." ; \ exit 1 ; fi ; fi ; fi) if test ! -d ../PWCOND; then \ (gzip -dc ../archive/$(PWCOND).tar.gz | (cd ../ ; tar -xvf -)) ; \ (cd ../ ; ln -s $(PWCOND) PWCOND) ; fi touch uncompress-pwcond ########################################################## # NEB ########################################################### neb: uncompress-neb if test -d ../NEB; then \ cd ../NEB; $(MAKE) all || exit 1; cd ../bin; ln -fs ../NEB/src/neb.x . ; fi touch make-neb uncompress-neb: touch-dummy @(if test ! -s ../archive/$(NEB).tar.gz && test ! -d ../NEB ; then \ wget -O ../archive/$(NEB).tar.gz $(NEB_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(NEB).tar.gz $(NEB_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download neb. Test whether curl or wget is installed and working," ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(NEB).tar.gz from $(NEB_URL)." ; \ exit 1 ; fi ; fi ; fi) if test ! -d ../NEB; then \ (gzip -dc ../archive/$(NEB).tar.gz | (cd ../ ; tar -xvf -)) ; fi touch uncompress-neb ########################################################## # TDDFPT ########################################################### tddfpt: uncompress-tddfpt if test -d ../TDDFPT; then \ cd ../TDDFPT; $(MAKE) all || exit 1; cd ../bin; ln -fs ../TDDFPT/src/turbo_lanczos.x . ; \ ln -fs ../TDDFPT/tools/turbo_spectrum.x . ; fi touch make-tddfpt uncompress-tddfpt: touch-dummy @(if test ! -s ../archive/$(TDDFPT).tar.gz && test ! -d ../TDDFPT ; then \ wget -O ../archive/$(TDDFPT).tar.gz $(TDDFPT_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(TDDFPT).tar.gz $(TDDFPT_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download tddfpt. Test whether curl or wget is installed and working," ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(TDDFPT).tar.gz from $(TDDFPT_URL)." ; \ exit 1 ; fi ; fi ; fi) if test ! -d ../TDDFPT; then \ (gzip -dc ../archive/$(TDDFPT).tar.gz | (cd ../ ; tar -xvf -)) ; fi touch uncompress-tddfpt ########################################################## # PHonon ########################################################### phonon: uncompress-phonon if test -d ../PHonon; then \ cd ../PHonon; $(MAKE) all || exit 1; cd ../bin; \ ln -fs ../PHonon/PH/ph.x . ; \ ln -fs ../PHonon/PH/dynmat.x . ; \ ln -fs ../PHonon/PH/matdyn.x . ; \ ln -fs ../PHonon/PH/q2r.x . ; \ ln -fs ../PHonon/PH/q2qstar.x . ; \ ln -fs ../PHonon/PH/lambda.x . ; \ ln -fs ../PHonon/PH/fqha.x . ; \ ln -fs ../PHonon/Gamma/phcg.x . ; \ ln -fs ../PHonon/D3/d3.x . ; \ fi touch make-phonon uncompress-phonon: touch-dummy @(if test ! -s ../archive/$(PHONON).tar.gz && test ! -d ../PHonon ; then \ wget -O ../archive/$(PHONON).tar.gz $(PHONON_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(PHONON).tar.gz $(PHONON_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download phonon. Test whether curl or wget is installed and working," ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(PHONON).tar.gz from $(PHONON_URL)." ; \ exit 1 ; fi ; fi ; fi) if test ! -d ../PHonon; then \ (gzip -dc ../archive/$(PHONON).tar.gz | (cd ../ ; tar -xvf -)) ; fi touch uncompress-phonon ########################################################## # GIPAW ########################################################### #gipaw: uncompress-gipaw configure-gipaw gipaw: download-gipaw configure-gipaw if test -d ../GIPAW; then \ cd ../GIPAW; $(MAKE) all || exit 1; cd ../bin; ln -fs ../GIPAW/bin/gipaw.x . ; fi touch make-gipaw download-gipaw: @echo "GIPAW 5 is not ready for distribution. Donwloading the development version." @echo "This version is not bug free. Please, check if your results make sense." svn checkout http://qeforge.qe-forge.org/svn/qe-gipaw/trunk ../GIPAW uncompress-gipaw: touch-dummy @(if test ! -s ../archive/$(GIPAW).tar.gz && test ! -d ../GIPAW ; then \ wget -O ../archive/$(GIPAW).tar.gz $(GIPAW_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(GIPAW).tar.gz $(GIPAW_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download qe-gipaw. Test whether curl or wget is installed and working," ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(GIPAW).tar.gz from $(GIPAW_URL)." ; \ exit 1 ; fi ; fi ; fi) if test ! -d ../GIPAW; then \ (gzip -dc ../archive/$(GIPAW).tar.gz | (cd ../ ; tar -xvf -)) ; \ (cd ../ ; ln -s $(GIPAW) GIPAW) ; fi touch uncompress-gipaw configure-gipaw: touch-dummy cd ../GIPAW ; \ ./configure --with-qe-source=${TOPDIR} touch ./configure-gipaw ########################################################## # EPW ########################################################### epw: if test -d ../EPW; then \ cd ../EPW; $(MAKE) all || exit 1; cd ../bin; ln -fs ../EPW/bin/epw.x . ; fi -(cd ../bin; ln -fs ../EPW/src/epw.x .) touch make-epw ########################################################### # wannier90 ########################################################### w90: uncompress-w90 configure-w90 if test -d ../W90; then \ cd ../W90; $(MAKE) all || exit 1; cd ../bin; ln -fs ../W90/wannier90.x . ; fi -(cd ../bin; ln -fs ../W90/wannier90.x .) touch make-w90 uncompress-w90: touch-dummy @(if test ! -s ../archive/$(W90).tar.gz && test ! -d ../W90 ; then \ wget -O ../archive/$(W90).tar.gz $(W90_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(W90).tar.gz $(W90_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download wannier90. Test whether curl or wget is installed and working," ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(W90).tar.gz from $(W90_URL)." ; \ exit 1 ; fi ; fi ; fi) if test ! -d ../W90; then \ (gzip -dc ../archive/$(W90).tar.gz | (cd ../ ; tar -xvf -)) ; \ (cd ../ ; ln -s $(W90) W90) ; fi touch uncompress-w90 configure-w90: touch-dummy cd ../W90 ; \ if (test -e ../install/make_wannier90.sys) || (test -d ../W90); then \ (cp ../install/make_wannier90.sys ../W90/make.sys); fi touch ./configure-w90 ########################################################### # WANT ########################################################### want: extlibs uncompress-want configure-want if test -d ../WANT; then \ cd ../WANT; $(MAKE) all || exit 1; fi # - ( cd ../bin ; ln -sf ../WANT/bin/* . ) touch ./make-want uncompress-want: touch-dummy @(if test ! -s ../archive/$(WANT)-base.tar.gz && test ! -d ../WANT ; then \ wget -O ../archive/$(WANT)-base.tar.gz $(WANT_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(WANT)-base.tar.gz $(WANT_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download want. Test whether curl or wget is installed and working," ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(WANT)-base.tar.gz from $(WANT_URL)." ; \ exit 1 ; fi ; fi ; fi) if test ! -d ../WANT; then \ (gzip -dc ../archive/$(WANT)-base.tar.gz | (cd ../ ; tar -xvf -)) ; \ (cd ../ ; ln -s $(WANT) WANT) ; fi touch uncompress-want configure-want: touch-dummy cd ../WANT ; \ ./conf/configure \ --with-external-iotk \ IOTK_LIBS="-L../../S3DE/iotk/src -liotk" \ IOTK_INCLUDE="$(MOD_FLAG)../../S3DE/iotk/src" \ CC="$(CC)" \ F90="$(F90)" \ MPIF90="$(MPIF90)" \ F90FLAGS="$(F90FLAGS) $($PRE_FDFLAGS) $(FDFLAGS) $(IFLAGS) $(MODFLAGS)" \ F77="$(F77)" \ FFLAGS="$(FFLAGS)" \ FFLAGS_NOOPT="$(FFLAGS_NOOPT)" \ LD="$(LD)" \ LDFLAGS="$(LDFLAGS)" \ AR="$(AR)" \ ARFLAGS="$(ARFLAGS)" \ RANLIB="$(RANLIB)" \ DFLAGS="$(DFLAGS)" \ FDFLAGS="$(DFLAGS)" \ LAPACK_LIBS="$(LAPACK_LIBS)" \ BLAS_LIBS="$(BLAS_LIBS)" \ FFT_LIBS="$(FFT_LIBS)" touch ./configure-want ################################################### # YAMBO ################################################### yambo: extlibs uncompress-yambo configure-yambo if test -d ../YAMBO; then \ cd ../YAMBO; $(MAKE) all || exit 1; fi touch ./make-yambo uncompress-yambo: touch-dummy @(if test ! -s ../archive/$(YAMBO).tar.gz && test ! -d ../YAMBO ; then \ wget -O ../archive/$(YAMBO).tar.gz $(YAMBO_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(YAMBO).tar.gz $(YAMBO_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download yambo. Test whether curl or wget is installed and working," ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(YAMBO).tar.gz from $(YAMBO_URL)." ; \ exit 1 ; fi ; fi ; fi) if test ! -d ../YAMBO; then \ (gzip -dc ../archive/$(YAMBO).tar.gz | (cd ../ ; tar -xvf -)) ; \ (cd ../ ; ln -s $(YAMBO) YAMBO) ; fi touch uncompress-yambo configure-yambo: touch-dummy cd ../YAMBO ; \ ./configure --with-blas="$(BLAS_LIBS)" \ --with-lapack="$(LAPACK_LIBS)" \ --with-iotk="$(TOPDIR)/iotk" \ PFC="$(MPIF90)" \ FC="$(LD)" \ FCFLAGS="$(F90FLAGS) $(FDFLAGS) $(IFLAGS) $(MODFLAGS) $(FFLAGS_NOMAIN)" F77="$(F77)" \ FFLAGS="$(FFLAGS)" AR="$(AR)" \ ARFLAGS="$(ARFLAGS)" touch ./configure-yambo touch-dummy: $(dummy-variable) ########################################################### # plumed ########################################################### plumed: test-plumed uncompress-plumed patch-plumed if test -d ../PLUMED; then \ cd ../; $(MAKE) pw; $(MAKE) cp; fi touch make-plumed test-plumed: touch-dummy @(if test ! -s ../archive/$(PLUMED).tar.gz && test ! -d ../PLUMED; then \ echo "The release contains no PLUMED package. Trying to download it from qe-forge."; fi) touch ./test-plumed uncompress-plumed: touch-dummy @(if test ! -s ../archive/$(PLUMED).tar.gz && test ! -d ../PLUMED ; then \ wget -O ../archive/$(PLUMED).tar.gz $(PLUMED_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(PLUMED).tar.gz $(PLUMED_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download plumed. Test whether curl or wget is installed and working," ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(PLUMED).tar.gz from $(PLUMED_URL)." ; \ exit 1 ; fi ; fi ; fi) if test ! -d ../PLUMED; then \ (gzip -dc ../archive/$(PLUMED).tar.gz | (cd ../ ; tar -xvf -)) ; \ (cd ../ ; ln -s $(PLUMED) PLUMED) ; fi touch uncompress-plumed patch-plumed: touch-dummy if test -d ../PLUMED; then \ (cd ../PLUMED ; export plumedir="`pwd`" ; \ cp patches/plumedpatch_qespresso_5.1.sh ../ ; \ cd ../ ; ./plumedpatch_qespresso_5.1.sh -patch) ; fi touch ./patch-plumed ################################## # SaX ################################## sax: extlibs uncompress-sax configure-sax if test -d ../SaX; then \ cd ../SaX; $(MAKE) sax_all; fi # - ( cd ../bin ; ln -sf ../SaX/sax/bin/* . ) touch ./make-sax uncompress-sax: touch-dummy @(if test ! -s ../archive/$(SAX).tar.gz && test ! -d ../SaX ; then \ wget -O ../archive/$(SAX).tar.gz $(SAX_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(SAX).tar.gz $(SAX_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download SaX. Test whether curl or wget is installed and working." ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(SAX).tar.gz from $(SAX_URL)." ; \ exit 1 ; fi ; fi ; fi) if test ! -d ../SaX; then \ (gzip -dc ../archive/$(SAX).tar.gz | (cd ../ ; tar -xvf -)) ; \ (cd ../ ; ln -s $(SAX) SaX) ; fi touch uncompress-sax configure-sax: touch-dummy cd ../SaX ; \ ./configure \ --with-external-iotk \ IOTK_LIBS="-L../../S3DE/iotk/src -liotk" \ IOTK_INCLUDE="$(MOD_FLAG)../../S3DE/iotk/src" \ CC="$(CC)" \ F90="$(F90)" \ MPIF90="$(MPIF90)" \ F90FLAGS="$(F90FLAGS) $($PRE_FDFLAGS) $(FDFLAGS) $(IFLAGS) $(MODFLAGS)" \ F77="$(F77)" \ FFLAGS="$(FFLAGS)" \ FFLAGS_NOOPT="$(FFLAGS_NOOPT)" \ LD="$(LD)" \ LDFLAGS="$(LDFLAGS)" \ AR="$(AR)" \ ARFLAGS="$(ARFLAGS)" \ RANLIB="$(RANLIB)" \ DFLAGS="$(DFLAGS)" \ FDFLAGS="$(DFLAGS)" \ LAPACK_LIBS="$(LAPACK_LIBS)" \ BLAS_LIBS="$(BLAS_LIBS)" \ FFT_LIBS="$(FFT_LIBS)" touch ./configure-sax ################################## # extlibs ################################### extlibs: test -n "$(EXTLIBS)" && ( cd .. ; $(MAKE) $(EXTLIBS) || exit 1) || : ########################################################## # GUI ########################################################### gui: uncompress-gui touch make-gui uncompress-gui: touch-dummy @(if test ! -s ../archive/$(GUI).tgz && test ! -d ../GUI && test ! -d ../$(GUI); then \ wget -O ../archive/$(GUI).tgz $(GUI_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(GUI).tgz $(GUI_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download pwGUI. Test whether curl or wget is installed and working," ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(GUI).tar.gz from $(GUI_URL)." ; \ exit 1 ; fi ; fi ; fi) if test ! -d ../GUI && test ! -d ../$(GUI); then \ (gzip -dc ../archive/$(GUI).tgz | (cd ../ ; tar -xvf -)) ; fi touch uncompress-gui ########################################################## # GPU ########################################################### gpu: uncompress-gpu touch make-gpu uncompress-gpu: touch-dummy @(if test ! -s ../archive/$(GPU).tar.gz && test ! -d ../GPU && test ! -d ../$(GPU); then \ wget -O ../archive/$(GPU).tar.gz $(GPU_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ curl -o ../archive/$(GPU).tar.gz $(GPU_URL) > /dev/null 2>&1; \ if test "`echo $$?`" -ne "0" ; then \ echo "*** Unable to download QE-GPU. Test whether curl or wget is installed and working," ; \ echo "*** if you have direct access to internet. If not, copy into archive/ the file" ; \ echo "*** $(GPU).tar.gz from $(GPU_URL)." ; \ exit 1 ; fi ; fi ; fi) @ echo "" @ echo " *****************************************************************************" @ echo " * QE-GPU has been downloaded under ./archive Please follow the instructions *" @ echo " * reported here: http://qe-forge.org/gf/project/q-e-gpu/ *" @ echo " *****************************************************************************" @ echo "" touch uncompress-gpu ################################### # cleaning ################################### # each lib independently ld1_clean: if test -d ../atomic; then (cd ../atomic; \ $(MAKE) clean); fi rm -f ../bin/ld1.x rm -rf ./make-ld1 ld1_veryclean: ld1_clean # dir is not deleted for compatibility with the repository xspectra_clean: if test -d ../XSpectra; then (cd ../XSpectra; \ $(MAKE) clean); fi rm -f ../bin/xspectra.x rm -rf ./make-xspectra xspectra_veryclean: xspectra_clean # dir is not deleted for compatibility with the repository pwcond_clean: if test -d ../PWCOND; then (cd ../PWCOND; \ $(MAKE) clean); fi rm -f ../bin/pwcond.x rm -rf ./make-pwcond pwcond_veryclean: pwcond_clean # dir is not deleted for compatibility with the repository neb_clean: if test -d ../NEB; then (cd ../NEB; \ $(MAKE) clean); fi rm -f ../bin/neb.x rm -rf ./make-neb neb_veryclean: neb_clean # dir is not deleted for compatibility with the repository tddfpt_clean: if test -d ../TDDFPT; then (cd ../TDDFPT; \ $(MAKE) clean); fi rm -f ../bin/turbo_lanczos.x rm -f ../bin/turbo_spectrum.x rm -rf ./make-tddfpt tddfpt_veryclean: tddfpt_clean # dir is not deleted for compatibility with the repository phonon_clean: if test -d ../PHonon; then (cd ../PHonon; \ $(MAKE) clean); fi rm -rf ../bin/ph.x rm -rf ../bin/dynmat.x rm -rf ../bin/matdyn.x rm -rf ../bin/q2r.x rm -rf ../bin/q2qstar.x rm -rf ../bin/lambda.x rm -rf ../bin/fqha.x rm -rf ../bin/phcg.x rm -rf ../bin/d3.x rm -rf ./make-phonon phonon_veryclean: phonon_clean # dir is not deleted for compatibility with the repository # exe links to main bin dir are deleted by PHonon Makefile gipaw_clean: if test -d ../GIPAW; then (cd ../GIPAW; $(MAKE) clean); fi rm -f ../bin/gipaw.x rm -rf ./make-gipaw gipaw_veryclean: gipaw_clean if test -d ../GIPAW; then (cd ../GIPAW; \ rm -f config.log config.status ); fi rm -rf ./configure-gipaw epw_clean: if test -d ../EPW; then (cd ../EPW; \ $(MAKE) clean); fi rm -f ../bin/epw.x rm -rf ./make-epw epw_veryclean: epw_clean w90_clean: if test -d ../W90; then (cd ../W90; \ $(MAKE) veryclean); fi rm -f ../bin/wannier90.x rm -rf ./make-w90 ./configure-w90 w90_veryclean: w90_clean if test -d ../W90; then (rm -R -f ../W90); fi if test -d ../$(W90); then (rm -R -f ../$(W90)); fi rm -f ../bin/wannier90.x rm -rf ./uncompress-w90 want_clean: if test -d ../WANT; then (cd ../WANT; \ $(MAKE) clean); fi - rm -rf ./make-want ./configure-want want_veryclean: want_clean if test -d ../WANT; then (rm -R -f ../WANT); fi if test -d ../$(WANT); then (rm -R -f ../$(WANT)); fi - rm -rf ./uncompress-want yambo_clean: if test -d ../YAMBO; then (cd ../YAMBO; \ $(MAKE) clean); fi - rm -rf ./make-yambo ./configure-yambo yambo_veryclean: yambo_clean if test -d ../YAMBO; then (rm -R -f ../YAMBO); fi if test -d ../$(YAMBO); then (rm -R -f ../$(YAMBO)); fi - rm -rf ./uncompress-yambo plumed_clean: if test -d ../PLUMED; then (cd ../PLUMED; \ export plumedir="`pwd`" ; \ cd ../ ; ./plumedpatch_qespresso_5.1.sh -revert); fi cd ../PW ; $(MAKE) clean; cd ../CPV ; $(MAKE) clean rm -rf ./make-plumed ./patch-plumed plumed_veryclean: plumed_clean if test -d ../PLUMED; then (rm -R -f ../PLUMED); fi if test -d ../$(PLUMED); then (rm -R -f ../$(PLUMED)); fi rm -rf ./uncompress-plumed ../plumedpatch_qespresso_5.1.sh sax_clean: if test -d ../SaX; then (cd ../SaX; \ $(MAKE) clean); fi - rm -rf ./make-sax ./configure-sax sax_veryclean: sax_clean if test -d ../SaX; then (rm -R -f ../SaX); fi if test -d ../$(SAX); then (rm -R -f ../$(SAX)); fi - rm -rf ./uncompress-sax gui_clean: rm -rf ./make-gui gui_veryclean: gui_clean # dir is not deleted for compatibility with the repository gpu_clean: rm -f ./make-gpu gpu_veryclean: gpu_clean # dir is not deleted for compatibility with the repository ########################################################## # general cleaning ########################################################## clean: w90_clean want_clean yambo_clean plumed_clean epw_clean \ gui_clean phonon_clean tddfpt_clean xspectra_clean neb_clean pwcond_clean \ ld1_clean gipaw_clean gpu_clean veryclean: w90_veryclean want_veryclean yambo_veryclean plumed_veryclean epw_veryclean \ gui_veryclean phonon_veryclean tddfpt_veryclean xspectra_veryclean neb_veryclean \ pwcond_veryclean ld1_veryclean gipaw_veryclean gpu_veryclean espresso-5.1/install/make_wannier90.sys.in0000644000175000017500000000030012341373034016717 0ustar mbamba#======================================= # WANNIER90 #======================================= F90=@mpif90@ FCOPTS=@f90flags@ LDOPTS=@ldflags@ LIBS = @lapack_libs@ @blas_libs@ @mass_libs@ espresso-5.1/install/moduledep.sh0000755000175000017500000000415012341373034015265 0ustar mbamba#!/bin/sh # moduledep.sh -- script that computes dependencies on Fortran 90 modules # make sure there is no locale setting creating unneeded differences. LC_ALL=C export LC_ALL # files whose dependencies must be computed sources=`echo *.f90 | sed 's/\*\.f90//g'` # remove the "*.f90" that remains # # when there are no such files if test "$sources" = "" ; then exit ; fi # files that may contain modules # extra directories can be specified on the command line sources_all="$sources" for dir in $* do sources_all="$sources_all `echo $dir/*.f90`" done sources_all=`echo $sources_all | sed 's/[^ ]*\*\.f90//g'` # remove the "dir/*.f90" that remain # # when there are no such files rm -f moduledep.tmp1 moduledep.tmp2 # destroy previous contents # create list of module dependencies # each line is of the form: # file_name.o : @module_name@ # cast all module names to lowercase because Fortran is case insensitive egrep -H -i "^ *use " $sources | # look for "USE name" sed 's/f90:/o / s/,/ /' | # replace extension, insert space # # and remove trailing comma awk '{print $1 " : @" tolower($3) "@"}' | # create dependency entry sort | uniq > moduledep.tmp1 # remove duplicates # create list of available modules # for each module, create a line of the form: # s/@module_name@/file_name/g egrep -H -i "^ *module " $sources_all | # look for "MODULE name" sed 's/f90:/o / s/\//\\\//g' | # replace extension, insert # # space and escape slashes awk '{print "s/@" tolower($3) "@/" $1 "/" }' | # create substitution line sort | uniq > moduledep.tmp2 # remove duplicates # replace module names with file names # by applying the file of substitution patterns just created sed -f moduledep.tmp2 moduledep.tmp1 | awk '{if ($1 != $3) print}' | # remove self dependencies sort | uniq # remove duplicates rm -f moduledep.tmp1 moduledep.tmp2 # remove temporary files espresso-5.1/install/makedeps.sh0000755000175000017500000001131412341373034015100 0ustar mbamba#!/bin/sh # compute dependencies for the PWscf directory tree # make sure there is no locale setting creating unneeded differences. LC_ALL=C export LC_ALL # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname TOPDIR=`pwd` if test $# = 0 then dirs=" Modules clib PW/src CPV/src flib PW/tools upftools PP/src PWCOND/src\ PHonon/Gamma PHonon/PH PHonon/D3 PHonon/FD atomic/src XSpectra/src \ ACDFT NEB/src TDDFPT/src GIPAW/src GWW/pw4gww GWW/gww GWW/head" elif test $1 = "-addson" then echo "The script for adding new dependencies is running" echo "Usage: $0 -addson DIR DEPENDENCY_DIRS" echo "$0 assumes that the new dependencies are in $TOPDIR/../" # ninput=$# # echo "number of input arguments: $ninput" dirs=$2 shift shift add_deps=$* echo "dependencies in $add_deps will be searched for $dirs" else dirs=$* fi for dir in $dirs; do # the following command removes a trailing slash DIR=`echo ${dir%/}` # the following would also work #DIR=`echo $dir | sed "s,/$,,"` # set inter-directory dependencies - only directories containing # modules that are used, or files that are included, by routines # in directory DIR should be listed in DEPENDS LEVEL1=.. LEVEL2=../.. DEPENDS="$LEVEL1/include $LEVEL1/iotk/src" case $DIR in flib | upftools ) DEPENDS="$LEVEL1/include $LEVEL1/iotk/src $LEVEL1/Modules" ;; PP/src ) DEPENDS="$LEVEL2/include $LEVEL2/iotk/src $LEVEL2/Modules \ $LEVEL2/PW/src" ;; ACFDT ) DEPENDS="$LEVEL1/include $LEVEL1/iotk/src $LEVEL1/Modules \ $LEVEL1/PW/src $LEVEL1/PHonon/PH" ;; PW/src ) DEPENDS="$LEVEL2/include $LEVEL2/iotk/src $LEVEL2/Modules" ;; PW/tools | PWCOND/src | PHonon/FD ) DEPENDS="$LEVEL2/include $LEVEL2/PW/src $LEVEL2/iotk/src $LEVEL2/Modules" ;; CPV/src | atomic/src | GWW/gww ) DEPENDS="$LEVEL2/include $LEVEL2/iotk/src $LEVEL2/Modules" ;; PHonon/PH | PHonon/Gamma | XSpectra/src | PWCOND/src | GWW/pw4gww | NEB/src | GIPAW/src ) DEPENDS="$LEVEL2/include $LEVEL2/iotk/src $LEVEL2/Modules \ $LEVEL2/PW/src" ;; PHonon/D3 ) DEPENDS="$LEVEL2/include $LEVEL2/iotk/src $LEVEL2/Modules \ $LEVEL2/PW/src $LEVEL2/PHonon/PH" ;; GWW/pw4gww ) DEPENDS="$LEVEL2/include $LEVEL2/iotk/src $LEVEL2/Modules \ $LEVEL2/PW/src " ;; GWW/gww ) DEPENDS="$LEVEL2/include $LEVEL2/iotk/src $LEVEL2/Modules " ;; GWW/head ) DEPENDS="$LEVEL2/include $LEVEL2/iotk/src $LEVEL2/Modules \ $LEVEL2/PW/src $LEVEL2/PHonon/PH " ;; TDDFPT/src ) DEPENDS="$LEVEL2/include $LEVEL2/iotk/src $LEVEL2/Modules \ $LEVEL2/PW/src $LEVEL2/PHonon/PH" ;; *) # if addson needs a make.depend file DEPENDS="$DEPENDS $add_deps" esac # generate dependencies file (only for directories that are present) if test -d $TOPDIR/../$DIR then cd $TOPDIR/../$DIR $TOPDIR/moduledep.sh $DEPENDS > make.depend $TOPDIR/includedep.sh $DEPENDS >> make.depend # handle special cases sed '/@\/cineca\/prod\/hpm\/include\/f_hpm.h@/d' \ make.depend > make.depend.tmp sed '/@iso_c_binding@/d;/@ifcore@/d' make.depend.tmp > make.depend if test "$DIR" = "Modules" then sed '/@mpi@/d' make.depend > make.depend.tmp sed '/@elpa1@/d' make.depend.tmp > make.depend fi if test "$DIR" = "clib" then mv make.depend make.depend.tmp sed 's/@fftw.c@/fftw.c/' make.depend.tmp > make.depend fi if test "$DIR" = "PW/src" || test "$DIR" = "TDDFPT/src" then sed '/@environ_base@/d' make.depend > make.depend.tmp sed '/@environ_input@/d' make.depend.tmp > make.depend sed '/@environ_info@/d' make.depend > make.depend.tmp sed '/@environ_init@/d' make.depend.tmp > make.depend sed '/@environ_main@/d' make.depend > make.depend.tmp sed '/@environ_mp@/d' make.depend.tmp > make.depend sed '/@solvent_tddfpt@/d' make.depend > make.depend.tmp mv make.depend.tmp make.depend fi rm -f make.depend.tmp # check for missing dependencies if grep @ make.depend then notfound=1 echo WARNING: dependencies not found in directory $DIR else echo directory $DIR : ok fi else echo directory $DIR : not present in $TOPDIR fi done if test "$notfound" = "" then echo all dependencies updated successfully fi espresso-5.1/install/addsontool.sh0000755000175000017500000001133112341373034015454 0ustar mbamba#!/bin/bash # everything is performed in the destination directory # this script has to be run by addsonpatch.sh # do not execut it manually cd "$destination" if [ "$#" -eq 0 ]; then echo "[ USAGE :" echo "./install/addsonpatch.sh ADDSON_NAME WHERE_SOURCE WHERE_LINKS (-patch) (-revert) " echo " addsonpatch.sh has to be run from the Quantum ESPRESSO root directory" echo "WHERE_SOURCE is the relative path to the sources of the Addson code " echo "WHERE_LINKS is the relative path to the QE directory where the addson sources have to be linked" echo "at the moment it only allows for pure f90 routines to be linked in flib" echo "or pure f90 modules to be linked in Modules" echo " -patch : apply patch to Makefiles " echo " -revert : revert Makefiles to original " echo " ]" exit fi case "$4" in (-patch) echo "* I will try to patch needed files for integrated compilation ..." if test -e "${ADDSON_NAME}_PATCH" ; then echo "-- File $destination/${ADDSON_NAME}_PATCH exists" echo "-- I guess you have already patched $ADDSON_NAME" echo "-- Please unpatch it first, or start from a clean source tree" echo "-- See you later..." echo "* ABORT" exit fi echo "#Please do not remove or modify this file" > ${ADDSON_NAME}_PATCH echo "#It is keeps track of the steps for patching $ADDSON package" >> ${ADDSON_NAME}_PATCH #------------------- echo "-- Executing pre script" command -v patch &>/dev/null || { echo "I require patch command but it's not installed. Aborting." >&2; exit 1; } #------------------- check if GNU patch works cat > test_patch1 << \EOF alfa beta EOF cat > test_patch2 << \EOF alfa gamma EOF cat > test_patch3 << \EOF_EOF patch -c -l -b -F 3 --suffix=.pre "./test_patch1" << \EOF EOF_EOF diff -c test_patch1 test_patch2 >> test_patch3 echo EOF >> test_patch3 bash test_patch3 &> test_patch4 status=$? if [ $status -ne 0 ] then echo "patch does not work! Error message:" echo "**********" cat test_patch4 echo "**********" echo "Please install a recent version of the GNU patch utility and try again." exit fi rm test_patch1 test_patch2 test_patch3 test_patch4 if [ -e test_patch1.pre ] then rm test_patch1.pre fi #------------------------------------------- command -v sed &>/dev/null || { echo "I require sed command but it's not installed. Aborting." >&2; exit 1; } #------------------- check if GNU sed works cat > test_sed1 << \EOF alfa beta EOF cat > test_sed2 << \EOF alfa gamma beta EOF sed '/alfa/ a\ gamma' test_sed1 > tmp.1 mv tmp.1 test_sed1 diff -c test_sed1 test_sed2 >> test_sed3 # echo EOF >> test_sed3 bash test_sed3 &> test_sed4 status=$? if [ $status -ne 0 ] then echo "sed does not work! Error message:" echo "**********" cat test_sed4 echo "**********" echo "Please install a recent version of the GNU sed utility and try again." exit fi rm test_sed1 test_sed2 test_sed3 test_sed4 # ----------------------------------------- # ----------------------------------------- to_do_before_patch echo "-- Setting up symlinks" for file in $destination/$LINKED_FILES ; do base="${file##*/}" if test -e $destination/$WHERE_LINKS/$base ; then echo "PATCH ERROR: file $base is already in $WHERE_LINKS" exit 1 fi # echo "$destination/$WHERE_LINKS/$base" ln -s $file $destination/$WHERE_LINKS/$base done tmp_var=\$\(${ADDSON_NAME}_OBJECTS\) echo "-- modifying $WHERE_LINKS/Makefile" sed < $destination/$WHERE_LINKS/Makefile.pre$ADDSON_NAME > $destination/$WHERE_LINKS/tmp.1 '/make.sys/ a\ include '"${ADDSON_NAME}"'.inc \ ' sed < $destination/$WHERE_LINKS/tmp.1 > $destination/$WHERE_LINKS/Makefile '/= \\/ a\ '"${tmp_var}"' \\' rm $destination/$WHERE_LINKS/tmp.1 echo "-- Executing post script" to_do_after_patch echo "- DONE!" ;; (-revert) echo "* I will try to revert ..." echo "-- Executing pre script" to_do_before_revert echo "-- Removing symlinks" for file in $destination/$LINKED_FILES ; do base="${file##*/}" if test -e $destination/$WHERE_LINKS/$base ; then \ # echo "$destination/$WHERE_LINKS/$base" ; \ rm $destination/$WHERE_LINKS/$base ; \ else echo "where_links base: $destination/$WHERE_LINKS/$base" echo "PATCH WARNING: file $base is not in $destination/$WHERE_LINKS" fi done echo "-- Restoring .pre$ADDSON_NAME files" PREADDSON=$(find . -name "*.pre*") if ! test "$PREADDSON" ; then echo "-- I cannot find any .pre$ADDSON_NAME file" echo "* ABORT" exit fi rm ${ADDSON_NAME}_PATCH echo "-- Executing post script" to_do_after_revert echo "* DONE!" ;; (*) echo "Missing input argument" esac espresso-5.1/install/sync-mingw-to-repo.sh0000755000175000017500000000626612341373034016777 0ustar mbamba#!/bin/sh # sync windows installers to repository # function to selectively remove older packages # and make a symlink to the latest version prune_exe () { dir=$1 ref=$(date +%s) for bit in 32 64 do \ for var in serial mpich2 do \ old=999999999 for exe in ${dir}/qe4win-*svn20[0-9][0-9]*-${bit}bit-${var}.exe do \ [ -f ${exe} ] || continue # re-set symbolic link to latest entry p=$(echo ${exe} | sed -e 's@^\(.*/\)\(qe4win-.*\)\(20[0-9][0-9]\+\).*\(\.exe\)$@\1@') r=$(echo ${exe} | sed -e 's@^\(.*/\)\(qe4win-.*\)\(20[0-9][0-9]\+\).*\(\.exe\)$@\2@') t=$(echo ${exe} | sed -e 's@^\(.*/\)\(qe4win-.*\)\(20[0-9][0-9]\+\).*\(\.exe\)$@\3@') e=$(echo ${exe} | sed -e 's@^\(.*/\)\(qe4win-.*\)\(20[0-9][0-9]\+\).*\(\.exe\)$@\4@') # compute age difference in days y=$(echo ${t} | cut -c 1-4) m=$(echo ${t} | cut -c 5-6) d=$(echo ${t} | cut -c 7-8) s=$(date +%s -d "${m}/${d}/${y}") age=$(expr \( $ref - $s \) / 86400) if [ $age -lt $old ] then old=$age sym="${r}${t}-${bit}bit-${var}${e}" sto="${p}${r}-latest-${bit}bit-${var}${e}" fi # NOTE: to simplify the math, for the following we # define one month to have 28 days and a year of # 12 months to have correspondingly only 336 days. # after about one year we keep only one per year unset tmp if [ $age -gt 336 ] then y=$(expr $age / 336) eval tmp=\$year${bit}${y} if [ -n "$tmp" ] then rm -vf ${exe} else echo "first in year $y $exe" fi export year${bit}${y}=1 fi # after about three months we keep only one per month unset tmp if [ $age -gt 84 ] && [ $age -lt 336 ] then m=$(expr $age / 28) eval tmp=\$month${bit}${m} if [ -n "$tmp" ] then rm -vf ${exe} else echo "first in month $m $exe" fi export month${bit}${m}=1 fi # after one week we keep only one per week. unset tmp if [ $age -gt 7 ] && [ $age -lt 84 ] then w=$(expr $age / 7) eval tmp=\$week${bit}${w} if [ -n "$tmp" ] then rm -vf ${exe} else echo "first in week $w $exe" fi export week${bit}${w}=1 fi done rm -f ${sto} ln -s ${sym} ${sto} done done } if [ -n "${QE4WIN_REPO_USER}" ] \ && [ -n "${QE4WIN_REPO_HOST}" ] \ && [ -n "${QE4WIN_REPO_DIR}" ] then pushd ${HOME}/mingw-cross prune_exe qe4win rsync -arpv --delete qe4win/ \ ${QE4WIN_REPO_USER}@${QE4WIN_REPO_HOST}:${QE4WIN_REPO_DIR}/ ssh ${QE4WIN_REPO_USER}@${QE4WIN_REPO_HOST} "cd ${QE4WIN_REPO_DIR}/../; ./mkhtmlindex.sh qe4win" popd else cat < /dev/null cp $destination/make.sys $destination/make.sys.pre$ADDSON_NAME cp $destination/$WHERE_LINKS/Makefile $destination/$WHERE_LINKS/Makefile.pre$ADDSON_NAME if test -e $destination/$WHERE_LINKS/make.depend ; then cp $destination/$WHERE_LINKS/make.depend $destination/$WHERE_LINKS/make.depend.pre$ADDSON_NAME fi } function to_do_after_patch () { { echo -n "${ADDSON_NAME}_OBJECTS=" for file in $destination/$LINKED_FILES do f=${file##*/} echo " \\" echo -n " ${f%.f90}.o" done echo echo -n "${ADDSON_NAME}_SRC=" for file in $destination/$LINKED_FILES do f=${file##*/} echo " \\" echo -n " ${f%.f90}.f90" done echo echo } >> $destination/$WHERE_LINKS/$ADDSON_NAME.inc } function to_do_before_revert () { rm $destination/$WHERE_LINKS/$ADDSON_NAME.inc echo > /dev/null } function to_do_after_revert () { echo > /dev/null mv $destination/make.sys.pre$ADDSON_NAME $destination/make.sys mv $destination/$WHERE_LINKS/Makefile.pre$ADDSON_NAME $destination/$WHERE_LINKS/Makefile if test -e $destination/$WHERE_LINKS/make.depend.pre$ADDSON_NAME ; then \ mv $destination/$WHERE_LINKS/make.depend.pre$ADDSON_NAME $destination/$WHERE_LINKS/make.depend ; fi } ######### NAME="$0" echo "NAME $NAME " if test -e $destination/install/addsontool.sh ; then source $destination/install/addsontool.sh else echo "missing file addsontool.sh in install directory" EXIT fi espresso-5.1/install/build-mingw-cross.sh0000644000175000017500000001325312341373034016655 0ustar mbamba#!/bin/sh # automated build script to build windows installers from the lammps sources MINGW_BUILD_DIR=${HOME}/mingw-cross NUMCPU=${NUMCPU-1} echo X-compiling Quantum ESPRESSO for Windows in ${MINGW_BUILD_DIR} for d in "${PWD}" "${PWD%/install}" "$1" do \ if test -d "${d}/.git" then ESPRESSO_PATH="${d}" break fi done if test -z "${ESPRESSO_PATH}" then echo "'${PWD}' is not a suitable working directory" exit 1 fi # clean up leftovers from an old build and rebuild directories for d in qe-{serial,mpich2}-{32,64} espresso-current qe-docs do \ dir="${MINGW_BUILD_DIR}/${d}" rm -rf ${dir} mkdir -p "${dir}" || exit 2 done mkdir -p ${MINGW_BUILD_DIR}/qe4win pushd "${ESPRESSO_PATH}" git archive -v --format=tar --prefix=espresso-current/ HEAD \ | tar -C ${MINGW_BUILD_DIR} -xvf - popd mkdir -p ${MINGW_BUILD_DIR}/qe-serial-32 mkdir -p ${MINGW_BUILD_DIR}/qe-serial-64 mkdir -p ${MINGW_BUILD_DIR}/qe-mpich2-32 mkdir -p ${MINGW_BUILD_DIR}/qe-mpich2-64 pushd ${MINGW_BUILD_DIR}/espresso-current # build and collect various pieces of documentation ./configure make doc pushd Doc htmldoc --batch qe-input-ref.book cp -v developer_man.pdf ${MINGW_BUILD_DIR}/qe-docs/QE_DeveloperManual.pdf cp -v user_guide.pdf ${MINGW_BUILD_DIR}/qe-docs/QE_UserGuide.pdf cp -v plumed_quick_ref.pdf brillouin_zones.pdf constraints_HOWTO.pdf ${MINGW_BUILD_DIR}/qe-docs/ cp -v QE-logo.jpg qe-input-ref.html ${MINGW_BUILD_DIR}/qe-docs/ cp -v release-notes ${MINGW_BUILD_DIR}/qe-docs/Release-Notes.txt popd cp -v License ${MINGW_BUILD_DIR}/qe-docs/License.txt cp -v README ${MINGW_BUILD_DIR}/qe-docs/README.txt cp -v CPV/Doc/user_guide.pdf ${MINGW_BUILD_DIR}/qe-docs/CPV_UserGuide.pdf cp -v NEB/Doc/user_guide.pdf ${MINGW_BUILD_DIR}/qe-docs/NEB_UserGuide.pdf cp -v PW/Doc/user_guide.pdf ${MINGW_BUILD_DIR}/qe-docs/PW_UserGuide.pdf cp -v PP/Doc/user_guide.pdf ${MINGW_BUILD_DIR}/qe-docs/PP_UserGuide.pdf cp -v PHonon/Doc/user_guide.pdf ${MINGW_BUILD_DIR}/qe-docs/PHonon_UserGuide.pdf cp -v PHonon/Doc/developer_man.pdf ${MINGW_BUILD_DIR}/qe-docs/PHonon_DeveloperManual.pdf cp -v atomic/Doc/pseudo-gen.pdf PP/Doc/eps_man.pdf TDDFPT/Doc/turboTDDFT-CPC.pdf ${MINGW_BUILD_DIR}/qe-docs/ unix2dos ${MINGW_BUILD_DIR}/qe-docs/*.txt unix2dos ${MINGW_BUILD_DIR}/qe-docs/*.html make distclean # serial 32-bit mingw32-configure LIBDIRS=$PWD/install/blas-win32 FFLAGS="-O3 -march=core2" CFLAGS="-O3 -march=core2" make -j${NUMCPU} all || exit 1 make w90 || exit 1 STRIP=$(eval `rpm --eval %{mingw32_env}`; echo $STRIP) pushd bin for s in *.x do \ cp -v $s ${MINGW_BUILD_DIR}/qe-serial-32/$s.exe ${STRIP} -g ${MINGW_BUILD_DIR}/qe-serial-32/$s.exe done popd cp install/blas-win32/libopenblas.dll ${MINGW_BUILD_DIR}/qe-serial-32 make distclean # serial 64-bit mingw64-configure FFLAGS="-O3 -march=core2" CFLAGS="-O3 -march=core2" # LIBDIRS=$PWD/install/blas-win64 make -j${NUMCPU} all || exit 1 make w90 || exit 1 STRIP=$(eval `rpm --eval %{mingw64_env}`; echo $STRIP) pushd bin for s in *.x do \ cp -v $s ${MINGW_BUILD_DIR}/qe-serial-64/$s.exe ${STRIP} -g ${MINGW_BUILD_DIR}/qe-serial-64/$s.exe done popd #cp install/blas-win64/libopenblas.dll ${MINGW_BUILD_DIR}/qe-serial-64 make distclean # mpich2 32-bit mingw32-configure LIBDIRS=$PWD/install/blas-win32 FFLAGS="-O3 -march=core2" CFLAGS="-O3 -march=core2" \ MPI_LIBS="-L$PWD/install/mpich2-win32/lib -lfmpi -lmpi" make -j${NUMCPU} MANUAL_DFLAGS="-I$PWD/install/mpich2-win32/include" all || exit 1 make w90 || exit 1 STRIP=$(eval `rpm --eval %{mingw32_env}`; echo $STRIP) pushd bin for s in *.x do \ cp -v $s ${MINGW_BUILD_DIR}/qe-mpich2-32/$s.exe ${STRIP} -g ${MINGW_BUILD_DIR}/qe-mpich2-32/$s.exe done popd cp install/blas-win32/libopenblas.dll ${MINGW_BUILD_DIR}/qe-mpich2-32 make distclean # mpich2 64-bit mingw64-configure FFLAGS="-O3 -march=core2" CFLAGS="-O3 -march=core2" \ MPI_LIBS="-L$PWD/install/mpich2-win64/lib -lfmpi -lmpi" # LIBDIRS=$PWD/install/blas-win64 make -j${NUMCPU} MANUAL_DFLAGS="-I$PWD/install/mpich2-win64/include" all || exit 1 make w90 || exit 1 make -C W90/doc/user_guide make -C W90/doc/tutorial cp -v W90/doc/user_guide.pdf W ${MINGW_BUILD_DIR}/qe-docs/W90_UserGuide.pdf cp -v W90/doc/tutorial.pdf W ${MINGW_BUILD_DIR}/qe-docs/W90_Tutorial.pdf STRIP=$(eval `rpm --eval %{mingw64_env}`; echo $STRIP) pushd bin for s in *.x do \ cp -v $s ${MINGW_BUILD_DIR}/qe-mpich2-64/$s.exe ${STRIP} -g ${MINGW_BUILD_DIR}/qe-mpich2-64/$s.exe done popd #cp install/blas-win64/libopenblas.dll ${MINGW_BUILD_DIR}/qe-mpich2-64 make distclean popd pushd ${MINGW_BUILD_DIR} TOOLDIR=espresso-current/install # make this the real version later on verstr=5.1.svn$(date +%Y%m%d) cp ${TOOLDIR}/espresso.nsis . cp ${TOOLDIR}/EnvVarUpdate.nsh . # determine os vendor and release for installer tweaks. vendor=$(grep release /etc/issue | cut -d \ -f 1) release=$(grep release /etc/issue | cut -d \ -f 3) arch=$(uname -m) # build installers LIBGCC=libgcc_s_sjlj-1.dll makensis -DMINGW=/usr/i686-w64-mingw32/sys-root/mingw/bin/ -DBIT=32 \ -DVARIANT=serial -DVERSION=${verstr} -DLIBGCC=${LIBGCC} espresso.nsis makensis -DMINGW=/usr/i686-w64-mingw32/sys-root/mingw/bin/ -DBIT=32 \ -DVARIANT=mpich2 -DVERSION=${verstr} -DLIBGCC=${LIBGCC} espresso.nsis # Fedora 19 ships with GCC-4.8.x which has different exception handling # on 64-bit windows and thus uses a different name for libgcc if [ "$vendor" = "Fedora" ] && [ $release -ge 19 ] then LIBGCC=libgcc_s_seh-1.dll fi makensis -DMINGW=/usr/x86_64-w64-mingw32/sys-root/mingw/bin/ -DBIT=64 \ -DVARIANT=serial -DVERSION=${verstr} -DLIBGCC=${LIBGCC} espresso.nsis makensis -DMINGW=/usr/x86_64-w64-mingw32/sys-root/mingw/bin/ -DBIT=64 \ -DVARIANT=mpich2 -DVERSION=${verstr} -DLIBGCC=${LIBGCC} espresso.nsis exit 0 espresso-5.1/install/make.sys.in0000644000175000017500000001126112341373034015033 0ustar mbamba# @configure_input@ # compilation rules .SUFFIXES : .SUFFIXES : .o .c .f .f90 # most fortran compilers can directly preprocess c-like directives: use # $(MPIF90) $(F90FLAGS) -c $< # if explicit preprocessing by the C preprocessor is needed, use: # $(CPP) $(CPPFLAGS) $< -o $*.F90 # $(MPIF90) $(F90FLAGS) -c $*.F90 -o $*.o # remember the tabulator in the first column !!! .f90.o: @f90rule@ # .f.o and .c.o: do not modify .f.o: $(F77) $(FFLAGS) -c $< .c.o: $(CC) $(CFLAGS) -c $< @SET_MAKE@ # topdir for linking espresso libs with plugins TOPDIR = @topdir@ # DFLAGS = precompilation options (possible arguments to -D and -U) # used by the C compiler and preprocessor # FDFLAGS = as DFLAGS, for the f90 compiler # See include/defs.h.README for a list of options and their meaning # With the exception of IBM xlf, FDFLAGS = $(DFLAGS) # For IBM xlf, FDFLAGS is the same as DFLAGS with separating commas # MANUAL_DFLAGS = additional precompilation option(s), if desired # You may use this instead of tweaking DFLAGS and FDFLAGS # BEWARE: will not work for IBM xlf! Manually edit FDFLAGS MANUAL_DFLAGS = DFLAGS = @dflags@ $(MANUAL_DFLAGS) FDFLAGS = @fdflags@ $(MANUAL_DFLAGS) # IFLAGS = how to locate directories where files to be included are # In most cases, IFLAGS = -I../include IFLAGS = @iflags@ # MOD_FLAGS = flag used by f90 compiler to locate modules # Each Makefile defines the list of needed modules in MODFLAGS MOD_FLAG = @imod@ # Compilers: fortran-90, fortran-77, C # If a parallel compilation is desired, MPIF90 should be a fortran-90 # compiler that produces executables for parallel execution using MPI # (such as for instance mpif90, mpf90, mpxlf90,...); # otherwise, an ordinary fortran-90 compiler (f90, g95, xlf90, ifort,...) # If you have a parallel machine but no suitable candidate for MPIF90, # try to specify the directory containing "mpif.h" in IFLAGS # and to specify the location of MPI libraries in MPI_LIBS MPIF90 = @mpif90@ #F90 = @f90@ CC = @cc@ F77 = @f77@ # C preprocessor and preprocessing flags - for explicit preprocessing, # if needed (see the compilation rules above) # preprocessing flags must include DFLAGS and IFLAGS CPP = @cpp@ CPPFLAGS = @cppflags@ $(DFLAGS) $(IFLAGS) # compiler flags: C, F90, F77 # C flags must include DFLAGS and IFLAGS # F90 flags must include MODFLAGS, IFLAGS, and FDFLAGS with appropriate syntax CFLAGS = @cflags@ $(DFLAGS) $(IFLAGS) F90FLAGS = @f90flags@ @pre_fdflags@$(FDFLAGS) $(IFLAGS) $(MODFLAGS) FFLAGS = @fflags@ # compiler flags without optimization for fortran-77 # the latter is NEEDED to properly compile dlamch.f, used by lapack FFLAGS_NOOPT = @fflags_noopt@ # compiler flag needed by some compilers when the main is not fortran # Currently used for Yambo FFLAGS_NOMAIN = @fflags_nomain@ # Linker, linker-specific flags (if any) # Typically LD coincides with F90 or MPIF90, LD_LIBS is empty LD = @ld@ LDFLAGS = @ldflags@ LD_LIBS = @ld_libs@ # External Libraries (if any) : blas, lapack, fft, MPI # If you have nothing better, use the local copy : # BLAS_LIBS = /your/path/to/espresso/BLAS/blas.a # BLAS_LIBS_SWITCH = internal BLAS_LIBS = @blas_libs@ BLAS_LIBS_SWITCH = @blas_libs_switch@ # If you have nothing better, use the local copy : # LAPACK_LIBS = /your/path/to/espresso/lapack-3.2/lapack.a # LAPACK_LIBS_SWITCH = internal # For IBM machines with essl (-D__ESSL): load essl BEFORE lapack ! # remember that LAPACK_LIBS precedes BLAS_LIBS in loading order LAPACK_LIBS = @lapack_libs@ LAPACK_LIBS_SWITCH = @lapack_libs_switch@ ELPA_LIBS_SWITCH = @elpa_libs_switch@ SCALAPACK_LIBS = @scalapack_libs@ # nothing needed here if the the internal copy of FFTW is compiled # (needs -D__FFTW in DFLAGS) FFT_LIBS = @fft_libs@ # For parallel execution, the correct path to MPI libraries must # be specified in MPI_LIBS (except for IBM if you use mpxlf) MPI_LIBS = @mpi_libs@ # IBM-specific: MASS libraries, if available and if -D__MASS is defined in FDFLAGS MASS_LIBS = @mass_libs@ # ar command and flags - for most architectures: AR = ar, ARFLAGS = ruv AR = @ar@ ARFLAGS = @arflags@ # ranlib command. If ranlib is not needed (it isn't in most cases) use # RANLIB = echo RANLIB = @ranlib@ # all internal and external libraries - do not modify FLIB_TARGETS = all LIBOBJS = ../flib/ptools.a ../flib/flib.a ../clib/clib.a ../iotk/src/libiotk.a LIBS = $(SCALAPACK_LIBS) $(LAPACK_LIBS) $(FFT_LIBS) $(BLAS_LIBS) $(MPI_LIBS) $(MASS_LIBS) $(LD_LIBS) # wget or curl - useful to download from network WGET = @wget@ espresso-5.1/install/README.CINECA_fermi0000644000175000017500000000351512341373034015737 0ustar mbambaInfo by Carlo Cavazzoni, Sept. 2012, valid for QE v.5.0.x on machine Fermi (BG/Q) at CINECA, Bologna (see below for update): module purge module load bgq-xl/1.0 module load essl/5.1 module load lapack/3.4.1--bgq-xl--1.0 module load scalapack/2.0.2--bgq-xl--1.0 module load mass/7.3--bgq-xl--1.0 export BLAS_LIBS="-L$ESSL_LIB -lesslsmpbg" export LAPACK_LIBS=$LAPACK_LIB/liblapack.a export SCALAPACK_LIBS=$SCALAPACK_LIB/libscalapack.a ./configure --enable-openmp --with-scalapack make all During the compilation the compiler will complain with the error: "functionals.f90", 1500-004 (U) INTERNAL COMPILER ERROR while compiling wpbe_analy_erfc_approx_grad. Compilation ended. [...] 1501-511 Compilation failed for file functionals.f90. make[1]: *** [functionals.o] Error 1 make[1]: Leaving directory `/fermi/home/userinternal/ccavazzo/espresso/flib' make: *** [libs] Error 2 go to the directory "flib", and compile "by hand" functionals.f90 with the command: $ mpixlf90_r -qalias=noaryovrlp:nointptr -O2 -qstrict -qdpc=e -qsuffix=cpp=f90 -WF,-D__XLF,-D__FFTW,-D__MASS,-D__MPI,-D__PARA,-D__SCALAPACK,-D__OPENMP -I../include -I../iotk/src -I../Modules -I. -c functionals.f90 go back to the espresso home dir and restart with "make all". *** Updated october 2012: 1) use -D__LINUX_ESSL instead of -D__FFTW (essl fft seems slightly better) 2) use -D__ELPA (elpa gives better performance and scalability with diagonalization at gamma) DFLAGS = -D__XLF -D__LINUX_ESSL -D__MASS -D__MPI -D__PARA -D__SCALAPACK -D__OPENMP -D__ELPA FDFLAGS = -D__XLF,-D__LINUX_ESSL,-D__MASS,-D__MPI,-D__PARA,-D__SCALAPACK,-D__OPENMP,-D__ELPA 3) link with /bgsys/drivers/ppcfloor/comm/xl.ndebug/bin/mpixlf90_r compiler it links the version of the mpi library that does not contains the debug code LD = /bgsys/drivers/ppcfloor/comm/xl.ndebug/bin/mpixlf90_r espresso-5.1/install/Make.CRAY-XK70000644000175000017500000001332712341373034014722 0ustar mbamba# make.sys. Generated from make.sys.in by configure. # compilation rules .SUFFIXES : .SUFFIXES : .o .c .f .f90 .cu # most fortran compilers can directly preprocess c-like directives: use # $(MPIF90) $(F90FLAGS) -c $< # if explicit preprocessing by the C preprocessor is needed, use: # $(CPP) $(CPPFLAGS) $< -o $*.F90 # $(MPIF90) $(F90FLAGS) -c $*.F90 -o $*.o # remember the tabulator in the first column !!! .f90.o: $(MPIF90) $(F90FLAGS) -c $< # .f.o and .c.o: do not modify .f.o: $(F77) $(FFLAGS) -c $< .c.o: $(CC) $(CFLAGS) -c $< # CUDA files .cu.o: $(NVCC) $(NVCCFLAGS) -I../../include $(IFLAGS) $(DFLAGS) -c $< # topdir for linking espresso libs with plugins TOPDIR = /ccs/home/spigafi/espresso/GPU/../ # DFLAGS = precompilation options (possible arguments to -D and -U) # used by the C compiler and preprocessor # FDFLAGS = as DFLAGS, for the f90 compiler # See include/defs.h.README for a list of options and their meaning # With the exception of IBM xlf, FDFLAGS = $(DFLAGS) # For IBM xlf, FDFLAGS is the same as DFLAGS with separating commas # MANUAL_DFLAGS = additional precompilation option(s), if desired # You may use this instead of tweaking DFLAGS and FDFLAGS # BEWARE: will not work for IBM xlf! Manually edit FDFLAGS MANUAL_DFLAGS = DFLAGS = -D__PGI -D__IOTK_SAFEST -D__FFTW -D__MPI -D__PARA -D__SCALAPACK -D__CUDA -D__OPENMP -D__ELPA -D__PHIGEMM $(MANUAL_DFLAGS) FDFLAGS = $(DFLAGS) $(MANUAL_DFLAGS) # IFLAGS = how to locate directories where files to be included are # In most cases, IFLAGS = -I../include IFLAGS = -I$(MPICH_DIR)/include -I../include -I/ccs/home/spigafi/espresso/GPU/..//phiGEMM/include $(CRAY_CUDATOOLKIT_INCLUDE_OPTS) # MOD_FLAGS = flag used by f90 compiler to locate modules # Each Makefile defines the list of needed modules in MODFLAGS MOD_FLAG = -I # Compilers: fortran-90, fortran-77, C # If a parallel compilation is desired, MPIF90 should be a fortran-90 # compiler that produces executables for parallel execution using MPI # (such as for instance mpif90, mpf90, mpxlf90,...); # otherwise, an ordinary fortran-90 compiler (f90, g95, xlf90, ifort,...) # If you have a parallel machine but no suitable candidate for MPIF90, # try to specify the directory containing "mpif.h" in IFLAGS # and to specify the location of MPI libraries in MPI_LIBS MPIF90 = pgf90 #F90 = pgf90 CC = pgcc F77 = pgf77 # C preprocessor and preprocessing flags - for explicit preprocessing, # if needed (see the compilation rules above) # preprocessing flags must include DFLAGS and IFLAGS CPP = cpp CPPFLAGS = -P -traditional $(DFLAGS) $(IFLAGS) # compiler flags: C, F90, F77 # C flags must include DFLAGS and IFLAGS # F90 flags must include MODFLAGS, IFLAGS, and FDFLAGS with appropriate syntax CFLAGS = -O3 -D__align__\(n\)=__attribute__\(\(aligned\(n\)\)\) -D__location__\(a\)=__annotate__\(a\) -DCUDARTAPI= -D__x86_64 $(DFLAGS) $(IFLAGS) F90FLAGS = -O3 -Mcache_align -r8 -Mpreprocess -mp=nonuma $(FDFLAGS) $(IFLAGS) $(MODFLAGS) FFLAGS = -O3 -r8 -mp=nonuma # compiler flags without optimization for fortran-77 # the latter is NEEDED to properly compile dlamch.f, used by lapack FFLAGS_NOOPT = -O0 # compiler flag needed by some compilers when the main is not fortran # Currently used for Yambo FFLAGS_NOMAIN = -Mnomain # Linker, linker-specific flags (if any) # Typically LD coincides with F90 or MPIF90, LD_LIBS is empty LD = pgf90 LDFLAGS = -v -mp=nonuma LD_LIBS = $(MPICH_DIR)/lib/libmpich_pgi.so /opt/cray/libsci/12.0.00/pgi/119/interlagos/lib/libsci_pgi_mp.a $(CRAY_CUDATOOLKIT_POST_LINK_OPTS) -lcublas -lcufft # External Libraries (if any) : blas, lapack, fft, MPI # If you have nothing better, use the local copy : # BLAS_LIBS = /your/path/to/espresso/BLAS/blas.a # BLAS_LIBS_SWITCH = internal BLAS_LIBS = /ccs/home/spigafi/espresso/GPU/..//phiGEMM/lib/libphigemm.a BLAS_LIBS_SWITCH = external # OpenBLAS is used to exploit multi-core CPU if a multi-threaded BLAS # is not used or installed in the system (i.e. MKL is missing) OPENBLAS_INTERNAL = 0 # If you have nothing better, use the local copy : # LAPACK_LIBS = /your/path/to/espresso/lapack-3.2/lapack.a # LAPACK_LIBS_SWITCH = internal # For IBM machines with essl (-D__ESSL): load essl BEFORE lapack ! # remember that LAPACK_LIBS precedes BLAS_LIBS in loading order # CBLAS is used in case the C interface for BLAS is missing (i.e. ACML) CBLAS_ENABLED = 0 LAPACK_LIBS = LAPACK_LIBS_SWITCH = external ELPA_LIBS_SWITCH = enabled SCALAPACK_LIBS = $(TOPDIR)/ELPA/libelpa.a # nothing needed here if the the internal copy of FFTW is compiled # (needs -D__FFTW in DFLAGS) FFT_LIBS = # For parallel execution, the correct path to MPI libraries must # be specified in MPI_LIBS (except for IBM if you use mpxlf) MPI_LIBS = # IBM-specific: MASS libraries, if available and if -D__MASS is defined in FDFLAGS MASS_LIBS = # ar command and flags - for most architectures: AR = ar, ARFLAGS = ruv AR = ar ARFLAGS = ruv # ranlib command. If ranlib is not needed (it isn't in most cases) use # RANLIB = echo RANLIB = ranlib # all internal and external libraries - do not modify FLIB_TARGETS = all # CUDA section NVCC = /opt/nvidia/cudatoolkit/5.0.35.102/bin/nvcc NVCCFLAGS = -O3 -gencode arch=compute_30,code=sm_35 PHIGEMM_INTERNAL = 1 PHIGEMM_SYMBOLS = 1 MAGMA_INTERNAL = 0 LIBOBJS = ../flib/ptools.a ../flib/flib.a ../clib/clib.a ../iotk/src/libiotk.a LIBS = $(SCALAPACK_LIBS) $(LAPACK_LIBS) $(FFT_LIBS) $(BLAS_LIBS) $(MPI_LIBS) $(MASS_LIBS) $(LD_LIBS) # wget or curl - useful to download from network WGET = wget -O espresso-5.1/install/README.CRAY-XC300000644000175000017500000000370312341373034015043 0ustar mbambaInfo by F. Spiga (spiga -dot- filippo -at- gmail -dot- com) -- Jun 19, 2013 *** THIS IS A DRAFT *** Machine name : Piz Daint at CSCS (CH) Machine spec : http://user.cscs.ch/hardware/piz_daint_cray_xc30/index.html 0. Architecture peculiarities [TO BE ADDED] 1. Compile the code Up to now, extensive tests proven that Intel compiler is the best choice now to exploit GPU capabilities of QE and QE-GPU on CRAY XC30 nodes. # NOTE: Despite the selected compiler is Intel, xt-libsci is used. Intel: - compile: - CPU execution: - GPU execution without CRAY_CUDA_PROXY: - GPU execution with CRAY_CUDA_PROXY: PGI, CRAY: - compile: - CPU execution: - GPU execution without CRAY_CUDA_PROXY: - GPU execution with CRAY_CUDA_PROXY: GNU: 1.2 Piz Daint (CSCS) : [TO BE ADDED] 2. Good practices [TO BE ADDED] 3 Example scripts (CSCS, SLURM) 3.1 Piz Daint (SLURM) #!/bin/bash # Example requesting 4 nodes (32 cores in total in SINGLE STREAM MODE # using 4 OpenMP thread per MPI), 2 MPI process per node (8 in total) # sharing the NVIDIA K20x among them. #SBATCH --job-name="QE-TEST" #SBATCH --nodes=4 #SBATCH --time=00:25:00 #SBATCH --output=QE-BENCH.%j.o #SBATCH --error=QE-BENCH.%j.e #SBATCH --account=<...> export CRAY_CUDA_PROXY=1 #export MALLOC_MMAP_MAX_=0 #export MALLOC_TRIM_THRESHOLD_=536870912 export MPICH_VERSION_DISPLAY=1 export MPICH_ENV_DISPLAY=1 export MPICH_CPUMASK_DISPLAY=1 # REMEMBER... # '-n' : number of PEs or total MPI processes # '-d' : number OpenMP thread per node #export OMP_NUM_THREADS=8 #aprun -n 4 -j 1 -d 8 ./pw-mpi-omp-gpu.x -input ausurf_gamma.in | tee out.GPU.1-PER-NODE.$SLURM_JOB_ID.v1 export OMP_NUM_THREADS=4 aprun -n 8 -j 1 -d 4 ./pw-mpi-omp-gpu.x -input ausurf_gamma.in | tee out.GPU.2-PER-NODE.$SLURM_JOB_ID.v1 #export OMP_NUM_THREADS=2 #aprun -n 16 -j 1 -d 2 ./pw-mpi-omp-gpu.x -input ausurf_gamma.in | tee out.GPU.4-PER-NODE.$SLURM_JOB_ID.v1 4. Benchmarks [TO BE ADDED]espresso-5.1/install/README.CRAY-XK70000644000175000017500000001147712341373034015006 0ustar mbambaInfo by Filippo Spiga -- Sept 18, 2013 Machine name : TITAN at Oak Ridge National laboratory (USA) Machine spec : https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/ # IMPORTANT NOTE: Other CRAY XK7 systems might have different modules, please check for equivalent if the ones mentioned are missing 0. Architecture peculiarities CRAY XK7 systems currently in operation are equipped with one AMD 16-core Interlagos and one NVIDIA K20x. The XK7 blade layout is then similar to the CRAY XE6 one. As remind, Interlagos is composed of a number of "Bulldozer modules" or "Compute Unit". A compute unit has shared and dedicated components: - there are two independent integer units - a SHARED 256-bit Floating Point pipeline supporting SSEx and AVX extension For this reason it is better to use the CPU in SINGLE STREAM MODE (aprun -j 1) reducing the maximum number of OpenMP thread per node from 16 to 8 being able to exploit at maximum the floating-point pipeline. In this way the L2 cache is effectively twice as large and the peak performance (in double-precision) should not be affected. The interconnection topology might have "holes" due to service nodes and I/O nodes. Cray's Application Level Placement Scheduler (ALPS) should be able to support a resource manager to identify a subset of free nodes in the cluster to minimize hops. Please refer to specific user-guide provided by your HPC centre. 1. Compile GPU-accelerated PWscf Up to now, extensive tests proven that Intel compiler is the best choice now to exploit GPU capabilities of QE-GPU on CRAY XK7 nodes. # NOTE: Despite the selected compiler is Intel, xt-libsci (usually 12.0.02 or 12.0.03) is used. Intel: - compile: ok - CPU execution: ok - GPU execution: ok PGI: - compile: ok - CPU execution: ok - GPU execution: ok GNU: not tested yet _ After login to a system.... module load cudatoolkit module unload atp totalview-support xt-totalview hss-llm export FINALDIR=$HOME/whatever mkdir -p $FINALDIR make -f Makefile.gpu distclean cd GPU/ ./configure --enable-parallel --enable-openmp --enable-cuda --with-gpu-arch=35 --with-cuda-dir=${CRAY_CUDATOOLKIT_DIR} --without-magma --with-phigemm --with-scalapack ARCH=crayxt cd ../ make -f Makefile.gpu pw-gpu cp GPU/PW/pw-gpu.x ${FINALDIR}/pw-mpi-omp-gpu-scalapack.x _or_ make -f Makefile.gpu distclean cd GPU/ ./configure --enable-parallel --enable-openmp --enable-cuda --with-gpu-arch=35 --with-cuda-dir=${CRAY_CUDATOOLKIT_DIR} --without-magma --with-phigemm --with-scalapack --with-elpa ARCH=crayxt cd ../ make -f Makefile.gpu pw-gpu cp GPU/PW/pw-gpu.x ${FINALDIR}/pw-mpi-omp-gpu-elpa.x IMPORTANT NOTE (1): in case of PGI compiler, it is possible to compile a light version of the executable by avoiding CRAY wrappers. Look at the file "" as example. IMPORTANT NOTE (2): On TITAN the PGI compiler is the default right after login. If Intel is the preferred choice, do $ module switch PrgEnv-pgi PrgEnv-intel immediately after the login. 3. Running (using TORQUE/PBS Pro) Refer to this link https://www.olcf.ornl.gov/kb_articles/spider-the-center-wide-lustre-file-system/ about the filesystem management and availability IMPORTANT NOTE (1): The per node charging factor changed from 16 to 30 to reflect the availability of GPU/Accelerators. Job utilization is now calculated via the formula: 30 * wall-time * number of requested nodes IMPORTANT NOTE (2): Project granted at ORNL usually have 3 letters (XXX) and three digits (YYY) #!/bin/csh # # Example requesting 8 nodes (64 cores in total in SINGLE STREAM MODE # using 8 OpenMP thread per MPI), 1 MPI process per node (8 in total) # dedicating the full NVIDIA K20x resource to a single MPI process. # #PBS -A #PBS -N QE-BENCH #PBS -j oe #PBS -l walltime=1:00:00,nodes=8 cd $PBS_O_WORKDIR # Enable _only_ if '-N' > 1 (see below) #setenv CRAY_CUDA_PROXY 1 # DEBUG #setenv MPICH_ENV_DISPLAY 1 # _REMEMBER_ # '-n' : number of PEs or total MPI processes # '-d' : number OpenMP thread per node # '-N' : number of MPI processes per node # '-j' : setenv OMP_NUM_THREADS 8 aprun -N 1 -n 8 -j 1 -d 8 -cc numa_node ./pw-mpi-omp-gpu.x -input ausurf_gamma.in | tee out.GPU.1-PER-NODE.$PBS_JOBID.v1 2. Good practices - Each NVIDIA Tesla K20 GPU has 6 GB of memory on the card. Better to limit the number of MPI per node (so the number of MPI sharing the same GPU) to 2. - If the calculation is not too memory demanding, it is possible to increase the ratio MPI:GPU up to 4. - In order to share the GPU between multiple MPI processes within the node is mandatory to export the variable CRAY_CUDA_PROXY ("export CRAY_CUDA_PROXY=1") - compiling with huge-pages support does not produce big benefits, need more testing... 5. Benchmarks [TO BE ADDED]espresso-5.1/install/Make.BGP-openMP+FFTW0000644000175000017500000001165712341373034016127 0ustar mbamba# make.sys. Generated from make.sys.in by configure. # compilation rules .SUFFIXES : .SUFFIXES : .o .c .f .f90 # most fortran compilers can directly preprocess c-like directives: use # $(MPIF90) $(F90FLAGS) -c $< # if explicit preprocessing by the C preprocessor is needed, use: # $(CPP) $(CPPFLAGS) $< -o $*.F90 # $(MPIF90) $(F90FLAGS) -c $*.F90 -o $*.o # remember the tabulator in the first column !!! .f90.o: $(MPIF90) $(F90FLAGS) -c $< # .f.o and .c.o: do not modify .f.o: $(F77) $(FFLAGS) -c $< .c.o: $(CC) $(CFLAGS) -c $< # DFLAGS = precompilation options (possible arguments to -D and -U) # used by the C compiler and preprocessor # FDFLAGS = as DFLAGS, for the f90 compiler # See include/defs.h.README for a list of options and their meaning # With the exception of IBM xlf, FDFLAGS = $(DFLAGS) # For IBM xlf, FDFLAGS is the same as DFLAGS with separating commas DFLAGS = -D__AIX -D__XLF -D__MASS -D__MPI -D__PARA -D__LINUX_ESSL -D__SCALAPACK -D__OPENMP -D__FFTW FDFLAGS = -D__AIX,-D__XLF,-D__MASS,-D__MPI,-D__PARA,-D__LINUX_ESSL,-D__SCALAPACK,-D__OPENMP,-D__FFTW # IFLAGS = how to locate directories where files to be included are # In most cases, IFLAGS = -I../include IFLAGS = -I../include # MOD_FLAGS = flag used by f90 compiler to locate modules # Each Makefile defines the list of needed modules in MODFLAGS MOD_FLAG = -I # Compilers: fortran-90, fortran-77, C # If a parallel compilation is desired, MPIF90 should be a fortran-90 # compiler that produces executables for parallel execution using MPI # (such as for instance mpif90, mpf90, mpxlf90,...); # otherwise, an ordinary fortran-90 compiler (f90, g95, xlf90, ifort,...) # If you have a parallel machine but no suitable candidate for MPIF90, # try to specify the directory containing "mpif.h" in IFLAGS # and to specify the location of MPI libraries in MPI_LIBS MPIF90 = mpixlf90_r #F90 = bgxlf90_r CC = bgxlc_r F77 = bgxlf_r # C preprocessor and preprocessing flags - for explicit preprocessing, # if needed (see the compilation rules above) # preprocessing flags must include DFLAGS and IFLAGS CPP = cpp CPPFLAGS = -P -traditional $(DFLAGS) $(IFLAGS) # compiler flags: C, F90, F77 # C flags must include DFLAGS and IFLAGS # F90 flags must include MODFLAGS, IFLAGS, and FDFLAGS with appropriate syntax CFLAGS = -O3 -q32 $(DFLAGS) $(IFLAGS) F90FLAGS = $(FFLAGS) -qsuffix=cpp=f90 -WF,$(FDFLAGS) $(IFLAGS) $(MODFLAGS) FFLAGS = -q32 -qalias=noaryovrlp:nointptr -O3 -qstrict -qdpc=e -qsmp=omp -qthreaded # compiler flags without optimization for fortran-77 # the latter is NEEDED to properly compile dlamch.f, used by lapack FFLAGS_NOOPT = -q32 -O0 # Linker, linker-specific flags (if any) # Typically LD coincides with F90 or MPIF90, LD_LIBS is empty LD = mpixlf90_r LDFLAGS = -q32 -qsmp -qthreaded -Wl,--allow-multiple-definition LD_LIBS = # External Libraries (if any) : blas, lapack, fft, MPI # If you have nothing better, use the local copy : # BLAS_LIBS = /your/path/to/espresso/BLAS/blas.a # BLAS_LIBS_SWITCH = internal BLAS_LIBS = /bgsys/ibm_essl/sles10/prod/opt/ibmmath/essl/4.4/lib/libesslsmpbg.a BLAS_LIBS_SWITCH = external # If you have nothing better, use the local copy : # LAPACK_LIBS = /your/path/to/espresso/lapack-3.2/lapack.a # LAPACK_LIBS_SWITCH = internal # For IBM machines with essl (-D__ESSL): load essl BEFORE lapack ! # remember that LAPACK_LIBS precedes BLAS_LIBS in loading order LAPACK_LIBS = /bgp/userinternal/acv0/espresso/lapack-3.2/lapack.a LAPACK_LIBS_SWITCH = internal MYLIB=/bgp/userinternal/acv0/lib BLACS_LIBS=$(MYLIB)/libblacs.a $(MYLIB)/libblacsF77init.a $(MYLIB)/libblacs.a SCALAPACK_LIBS=/bgp/userinternal/acv0/lib/libscalapack.a $(BLACS_LIBS) # nothing needed here if the the internal copy of FFTW is compiled # (needs -D__FFTW in DFLAGS) FFT_LIBS = # For parallel execution, the correct path to MPI libraries must # be specified in MPI_LIBS (except for IBM if you use mpxlf) MPI_LIBS = # IBM-specific: MASS libraries, if available and if -D__MASS is defined in FDFLAGS MASS_LIBS = /opt/ibmcmp/xlmass/bg/4.4/bglib/libmassv.a /opt/ibmcmp/xlmass/bg/4.4/bglib/libmass.a # ar command and flags - for most architectures: AR = ar, ARFLAGS = ruv AR = ar ARFLAGS = ruv # ranlib command. If ranlib is not needed (it isn't in most cases) use # RANLIB = echo RANLIB = ranlib # all internal and external libraries - do not modify FLIB_TARGETS = all LIBOBJS = ../flib/ptools.a ../flib/flib.a ../clib/clib.a ../iotk/src/libiotk.a LIBS = $(SCALAPACK_LIBS) $(LAPACK_LIBS) $(FFT_LIBS) $(BLAS_LIBS) $(MPI_LIBS) $(MASS_LIBS) $(LD_LIBS) # topdir for linking espresso libs with plugins TOPDIR = /bgp/userinternal/acv0/espresso espresso-5.1/install/README.CRAY-XE60000644000175000017500000001442212341373034014770 0ustar mbambaInfo by F. Spiga (spiga -dot- filippo -at- gmail -dot- com) -- Jun 19, 2013 Machine name : MonteRosa at CSCS(CH) Machine spec : http://user.cscs.ch/hardware/monte_rosa_cray_xe6/index.html # IMPORTANT NOTE: Other CRAY XE6 systems might have different modules, please check for equivalent if the ones mentioned are missing. 0. Architecture peculiarities CRAY XE6 systems currently in operation are equipped with XE6 nodes that have two 16-core AMD. Interlagos is composed of a number of "Bulldozer modules" or "Compute Unit". A compute unit has shared and dedicated components: - there are two independent integer units - a SHARED 256-bit Floating Point pipeline supporting SSEx and AVX extension For this reason it is better to use the CPU in SINGLE STREAM MODE (aprun -j 1) reducing the maximum number of OpenMP thread per node from 32 to 16 (split across two two sockets) being able to exploit at maximum the floating-point pipeline. In this way the L2 cache is effectively twice as large and the peak performance (in double-precision)should not be affected. The interconnection topology might have "holes" due to service nodes and I/O nodes. Cray's Application Level Placement Scheduler (ALPS) should be able to support a resource manager to identify a subset of free nodes in the cluster to minimize hops. Please refer to specific user-guide provided by your HPC centre. 1. Compile the code All the compilers tested work. I prefer to use PGI (or eventually INTEL). 1.1 MonteRosa modules (PGI): There is not a default compiler after login... $ module load PrgEnv-pgi $ module unload atp totalview-support xt-totalview hss-llm $ ./configure ARCH=crayxt --enable-openmp --enable-parallel --with-scalapack $ ./configure ARCH=crayxt --enable-openmp --enable-parallel --with-scalapack --with-elpa # NOTE: It is possible to try to push more aggressive PGI compiler flags and optimizations by editing make.sys directly... CFLAGS = -Minfo=all -Mneginfo=all -O3 -fastsse -Mipa=fast,inline -tp bulldozer-64 $(DFLAGS) $(IFLAGS) F90FLAGS = -Minfo=all -Mneginfo=all -O3 -fastsse -Mipa=fast,inline -tp bulldozer-64 -Mcache_align -r8 -Mpreprocess -mp=nonuma $(FDFLAGS) $(IFLAGS) $(MODFLAGS) FFLAGS = -Minfo=all -Mneginfo=all -O3 -fastsse -Mipa=fast,inline -tp bulldozer-64 -r8 -mp=nonuma Real benefits have to be proven... 1.2 MonteRosa modules (Intel): There is not a default compiler after login... $ module load PrgEnv-intel $ module unload atp totalview-support xt-totalview hss-llm $ ./configure ARCH=crayxt --enable-openmp --enable-parallel --with-scalapack $ ./configure ARCH=crayxt --enable-openmp --enable-parallel --with-scalapack --with-elpa 2. Good practices - if your calculation is FFT-bounded Use the hybrid version of code. The reason is that there are 1 GByte RAM/core and if you put 32 MPI in a single node you are going to stress the GEMINI interconnection. - CRAY LIBSCI library works well for all the compilers, I do not see any advantages to use ACML explicitly. - use ScaLAPACK (--with-scalapack), let the configure detect and use the default library (it will be the CRAY libsci, the make.sys will not show anything because everything is done by the CRAY wrapper ftn/cc). - try ELPA library (--with-elpa) but check properly results - The environment is exported automatically by 'sbatch' during the submission operation. So check to have loaded properly the right modules. 3. Example scripts SLURM user-guide at CSCS http://user.cscs.ch/running_batch_jobs/slurm_at_cscs/index.html#c1130 3.1 MonteRosa (SLURM) - SINGLE STREAM MODE #!/bin/bash # This script run pw.x using 128 cores (32 MPI, 4 MPI per node, # 4 OMP per MPI threads in SINGLE STREAM MODE). #SBATCH --job-name="QE-BENCH" #SBATCH --nodes=8 #SBATCH --time=01:00:00 #SBATCH --output=QE-BENCH.%j.o #SBATCH --error=QE-BENCH.%j.e #SBATCH --account=<...> module load slurm # Useful information... echo "The current job ID is $SLURM_JOB_ID" echo "Running on $SLURM_JOB_NUM_NODES nodes" echo "Using $SLURM_NTASKS_PER_NODE tasks per node" echo "A total of $SLURM_NTASKS tasks is used" export OMP_NUM_THREADS=4 aprun -n $SLURM_NTASKS -j 1 -d 4 -S 1 ./pw.x -input ausurf_gamma.in | tee out # NOTE: The flag "-S" is the number of MPI tasks per NUMA node. Each XE6 nodes contains 2 x 16-core CPU, 4 NUMA nodes in total (each NUMA node has 4 Bulldozer Modules). The value of "-S" has to change according to the combination MPIxOMP in the node: -d 2 --> -S 2 (because there are 8 MPI to distribute across 4 NUMA nodes) -d 4 --> -S 1 (because there are 4 MPI to distribute across 4 NUMA nodes) "-S" is OPTIONAL. The resource manager should be enough smart to place the MPI processes in the right place but I never double-check 3.2 MonteRosa (SLURM) - DUAL STREAM MODE (or default) #!/bin/bash # This script run pw.x using 256 cores (32 MPI, 4 MPI per node, # 8 OMP per MPI threads). #SBATCH --job-name="QE-BENCH" #SBATCH --nodes=8 #SBATCH --time=01:00:00 #SBATCH --output=QE-BENCH.%j.o #SBATCH --error=QE-BENCH.%j.e #SBATCH --account=<...> module load slurm # Useful information... echo "The current job ID is $SLURM_JOB_ID" echo "Running on $SLURM_JOB_NUM_NODES nodes" echo "Using $SLURM_NTASKS_PER_NODE tasks per node" echo "A total of $SLURM_NTASKS tasks is used" export OMP_NUM_THREADS=8 aprun -n $SLURM_NPROCS -N 4 -d 8 -S 1 ./pw.x -input ausurf_gamma.in -npool 4 | tee out # NOTE (1): The flag "-S" is the number of MPI tasks per NUMA node. Each XE6 nodes contains 2 x 16-core CPU, 4 NUMA nodes in total (each NUMA node has 4 Bulldozer Modules). The value of "-S" has to change according to the combination MPIxOMP in the node: -N 8 -d 4 --> -S 2 (because there are 8 MPI to distribute across 4 NUMA nodes) -N 4 -d 8 --> -S 1 (because there are 4 MPI to distribute across 4 NUMA nodes) "-S" is OPTIONAL. The resource manager should be enough smart to place the MPI processes in the right place but I never double-check # NOTE (2): Other two useful options for aprun are: -ss (Optional) Demands strict memory containment per NUMA node. -cc (Optional) Controls how tasks are bound to cores and NUMA nodes. The recommend setting for most codes is -cc cpu which restricts each task to run on a specific core. Try and use them wisely. 4. Benchmarks [TO BE ADDED]espresso-5.1/install/Make.CRAY-XK7.WITH_GPU0000644000175000017500000001703412341373034016206 0ustar mbamba# make.sys. Edited by Filippo Spiga (filippo.spiga@quantum-espresso.org) # based on ORNL OCLF CRAY XK7 TITAN (March 22nd, 2014) # # First do # $ cd GPU # $ ./configure --enable-parallel --enable-openmp --enable-cuda --with-gpu-arch=35 --with-cuda-dir=${CRAY_CUDATOOLKIT_DIR} --withou-magma --with-phigemm --with-scalapack ARCH=crayxt # $ cd .. # # then replace the make.sys # # Modules: # # Currently Loaded Modulefiles: # 1) modules/3.2.6.7 11) xpmem/0.1-2.0402.45248.1.5.gem 21) pdsh/2.26-1.0402.45278.1.1.gem 31) moab/7.1.3 # 2) craype-network-gemini 12) job/1.5.5-0.1_2.0402.45272.1.5.gem 22) shared-root/1.0-1.0402.46893.3.17.gem 32) lustredu/1.3 # 3) xt-asyncpe/5.24 13) csa/3.0.0-1_2.0402.45268.1.90.gem 23) switch/1.0-1.0402.45840.2.63.gem 33) DefApps # 4) pgi/13.10.0 14) rca/1.0.0-2.0402.47290.7.1.gem 24) xe-sysroot/4.2.34 34) site-aprun/1.0 # 5) cray-libsci/12.1.3 15) audit/1.0.0-1.0402.45273.1.86.gem 25) atp/1.7.1 35) aprun-usage/1.0 # 6) udreg/2.3.2-1.0402.7546.1.5.gem 16) ccm/2.2.0-1.0402.46086.4.120 26) PrgEnv-pgi/4.2.34 36) altd/1.0 # 7) ugni/5.0-1.0402.7551.1.10.gem 17) configuration/1.0-1.0402.45284.1.2.gem 27) cray-mpich/6.2.0 37) cudatoolkit/5.5.20-1.0402.7700.8.1 # 8) pmi/5.0.1-1.0000.9799.94.9.gem 18) hosts/1.0-1.0402.45251.1.86.gem 28) craype-interlagos # 9) dmapp/4.0.1-1.0402.7784.4.1.gem 19) lbcd/2.1-1.0402.45245.1.2.gem 29) eswrap/1.0.15 # 10) gni-headers/2.1-1.0402.7541.1.5.gem 20) nodehealth/5.1-1.0402.45895.3.76.gem 30) torque/4.2.5-snap.201308291703 # # make.sys. Generated from make.sys.in by configure. # compilation rules .SUFFIXES : .SUFFIXES : .o .c .f .f90 .cu # most fortran compilers can directly preprocess c-like directives: use # $(MPIF90) $(F90FLAGS) -c $< # if explicit preprocessing by the C preprocessor is needed, use: # $(CPP) $(CPPFLAGS) $< -o $*.F90 # $(MPIF90) $(F90FLAGS) -c $*.F90 -o $*.o # remember the tabulator in the first column !!! .f90.o: $(MPIF90) $(F90FLAGS) -c $< # .f.o and .c.o: do not modify .f.o: $(F77) $(FFLAGS) -c $< .c.o: $(CC) $(CFLAGS) -c $< # CUDA files .cu.o: $(NVCC) $(NVCCFLAGS) -I../../include $(IFLAGS) $(DFLAGS) -c $< # topdir for linking espresso libs with plugins TOPDIR = /ccs/home/spigafi/espresso/GPU/../ # DFLAGS = precompilation options (possible arguments to -D and -U) # used by the C compiler and preprocessor # FDFLAGS = as DFLAGS, for the f90 compiler # See include/defs.h.README for a list of options and their meaning # With the exception of IBM xlf, FDFLAGS = $(DFLAGS) # For IBM xlf, FDFLAGS is the same as DFLAGS with separating commas # MANUAL_DFLAGS = additional precompilation option(s), if desired # You may use this instead of tweaking DFLAGS and FDFLAGS # BEWARE: will not work for IBM xlf! Manually edit FDFLAGS MANUAL_DFLAGS = DFLAGS = -D__PGI -D__IOTK_SAFEST -D__FFTW -D__MPI -D__PARA -D__SCALAPACK -D__CUDA -D__OPENMP -D__PHIGEMM $(MANUAL_DFLAGS) FDFLAGS = $(DFLAGS) $(MANUAL_DFLAGS) # IFLAGS = how to locate directories where files to be included are # In most cases, IFLAGS = -I../include IFLAGS = -I$(MPICH_DIR)/include -I../include -I/ccs/home/spigafi/espresso/GPU/..//phiGEMM/include -I/opt/nvidia/cudatoolkit/5.5.20-1.0402.7700.8.1/include # MOD_FLAGS = flag used by f90 compiler to locate modules # Each Makefile defines the list of needed modules in MODFLAGS MOD_FLAG = -I # Compilers: fortran-90, fortran-77, C # If a parallel compilation is desired, MPIF90 should be a fortran-90 # compiler that produces executables for parallel execution using MPI # (such as for instance mpif90, mpf90, mpxlf90,...); # otherwise, an ordinary fortran-90 compiler (f90, g95, xlf90, ifort,...) # If you have a parallel machine but no suitable candidate for MPIF90, # try to specify the directory containing "mpif.h" in IFLAGS # and to specify the location of MPI libraries in MPI_LIBS MPIF90 = pgf90 #F90 = pgf90 CC = pgcc F77 = pgf77 # C preprocessor and preprocessing flags - for explicit preprocessing, # if needed (see the compilation rules above) # preprocessing flags must include DFLAGS and IFLAGS CPP = cpp CPPFLAGS = -P -traditional $(DFLAGS) $(IFLAGS) # compiler flags: C, F90, F77 # C flags must include DFLAGS and IFLAGS # F90 flags must include MODFLAGS, IFLAGS, and FDFLAGS with appropriate syntax CFLAGS = -O3 -D__align__\(n\)=__attribute__\(\(aligned\(n\)\)\) -D__location__\(a\)=__annotate__\(a\) -DCUDARTAPI= -D__x86_64 $(DFLAGS) $(IFLAGS) F90FLAGS = -O3 -Mcache_align -r8 -Mpreprocess -mp=nonuma $(FDFLAGS) $(IFLAGS) $(MODFLAGS) FFLAGS = -O3 -r8 -mp=nonuma # compiler flags without optimization for fortran-77 # the latter is NEEDED to properly compile dlamch.f, used by lapack FFLAGS_NOOPT = -O0 # compiler flag needed by some compilers when the main is not fortran # Currently used for Yambo FFLAGS_NOMAIN = -Mnomain # Linker, linker-specific flags (if any) # Typically LD coincides with F90 or MPIF90, LD_LIBS is empty LD = pgf90 LDFLAGS = -v -mp=nonuma LD_LIBS = $(MPICH_DIR)/lib/libmpich_pgi.so /opt/cray/libsci/12.0.00/pgi/119/interlagos/lib/libsci_pgi_mp.a $(CRAY_CUDATOOLKIT_POST_LINK_OPTS) -lcublas -lcufft # External Libraries (if any) : blas, lapack, fft, MPI # If you have nothing better, use the local copy : # BLAS_LIBS = /your/path/to/espresso/BLAS/blas.a # BLAS_LIBS_SWITCH = internal BLAS_LIBS = /ccs/home/spigafi/espresso/GPU/..//phiGEMM/lib/libphigemm.a BLAS_LIBS_SWITCH = external # OpenBLAS is used to exploit multi-core CPU if a multi-threaded BLAS # is not used or installed in the system (i.e. MKL is missing) OPENBLAS_INTERNAL = 0 # If you have nothing better, use the local copy : # LAPACK_LIBS = /your/path/to/espresso/lapack-3.2/lapack.a # LAPACK_LIBS_SWITCH = internal # For IBM machines with essl (-D__ESSL): load essl BEFORE lapack ! # remember that LAPACK_LIBS precedes BLAS_LIBS in loading order # CBLAS is used in case the C interface for BLAS is missing (i.e. ACML) CBLAS_ENABLED = 0 LAPACK_LIBS = LAPACK_LIBS_SWITCH = external ELPA_LIBS_SWITCH = disabled SCALAPACK_LIBS = # nothing needed here if the the internal copy of FFTW is compiled # (needs -D__FFTW in DFLAGS) FFT_LIBS = # For parallel execution, the correct path to MPI libraries must # be specified in MPI_LIBS (except for IBM if you use mpxlf) MPI_LIBS = # IBM-specific: MASS libraries, if available and if -D__MASS is defined in FDFLAGS MASS_LIBS = # ar command and flags - for most architectures: AR = ar, ARFLAGS = ruv AR = ar ARFLAGS = ruv # ranlib command. If ranlib is not needed (it isn't in most cases) use # RANLIB = echo RANLIB = ranlib # all internal and external libraries - do not modify FLIB_TARGETS = all # CUDA section NVCC = /opt/nvidia/cudatoolkit/5.0.35.102/bin/nvcc NVCCFLAGS = -O3 -gencode arch=compute_35,code=sm_35 PHIGEMM_INTERNAL = 1 PHIGEMM_SYMBOLS = 1 MAGMA_INTERNAL = 0 LIBOBJS = ../flib/ptools.a ../flib/flib.a ../clib/clib.a ../iotk/src/libiotk.a LIBS = $(SCALAPACK_LIBS) $(LAPACK_LIBS) $(FFT_LIBS) $(BLAS_LIBS) $(MPI_LIBS) $(MASS_LIBS) $(LD_LIBS) # wget or curl - useful to download from network WGET = wget -O espresso-5.1/install/configure.msg.in0000644000175000017500000000151012341373034016043 0ustar mbamba-------------------------------------------------------------------- ESPRESSO can take advantage of several optimized numerical libraries (essl, fftw, mkl...). This configure script attempts to find them, but may fail if they have been installed in non-standard locations. If a required library is not found, the local copy will be compiled. The following libraries have been found: @blas_line@ @lapack_line@ @scalapack_line@ @fft_line@ @mpi_line@ @mass_line@ Please check if this is what you expect. If any libraries are missing, you may specify a list of directories to search and retry, as follows: ./configure LIBDIRS="list of directories, separated by spaces" @parallel_report@ For more info, read the ESPRESSO User's Guide (Doc/users-guide.tex). -------------------------------------------------------------------- espresso-5.1/install/Make.CRAY-XK7.WITHOUT_GPU0000644000175000017500000001552012341373034016574 0ustar mbamba# make.sys. Edited by Filippo Spiga (filippo.spiga@quantum-espresso.org) # based on ORNL OCLF CRAY XK7 TITAN (March 22nd, 2014) # # First run # $ ./configure --enable-parallel --enable-openmp --with-scalapack ARCH=crayxt # # then replace the make.sys # # Modules: # # Currently Loaded Modulefiles: # 1) modules/3.2.6.7 10) gni-headers/2.1-1.0402.7541.1.5.gem 19) lbcd/2.1-1.0402.45245.1.2.gem 28) craype-interlagos # 2) craype-network-gemini 11) xpmem/0.1-2.0402.45248.1.5.gem 20) nodehealth/5.1-1.0402.45895.3.76.gem 29) eswrap/1.0.15 # 3) xt-asyncpe/5.24 12) job/1.5.5-0.1_2.0402.45272.1.5.gem 21) pdsh/2.26-1.0402.45278.1.1.gem 30) torque/4.2.5-snap.201308291703 # 4) pgi/13.10.0 13) csa/3.0.0-1_2.0402.45268.1.90.gem 22) shared-root/1.0-1.0402.46893.3.17.gem 31) moab/7.1.3 # 5) cray-libsci/12.1.3 14) rca/1.0.0-2.0402.47290.7.1.gem 23) switch/1.0-1.0402.45840.2.63.gem 32) lustredu/1.3 # 6) udreg/2.3.2-1.0402.7546.1.5.gem 15) audit/1.0.0-1.0402.45273.1.86.gem 24) xe-sysroot/4.2.34 33) DefApps # 7) ugni/5.0-1.0402.7551.1.10.gem 16) ccm/2.2.0-1.0402.46086.4.120 25) atp/1.7.1 34) site-aprun/1.0 # 8) pmi/5.0.1-1.0000.9799.94.9.gem 17) configuration/1.0-1.0402.45284.1.2.gem 26) PrgEnv-pgi/4.2.34 35) aprun-usage/1.0 # 9) dmapp/4.0.1-1.0402.7784.4.1.gem 18) hosts/1.0-1.0402.45251.1.86.gem 27) cray-mpich/6.2.0 36) altd/1.0 # # compilation rules .SUFFIXES : .SUFFIXES : .o .c .f .f90 .cu # most fortran compilers can directly preprocess c-like directives: use # $(MPIF90) $(F90FLAGS) -c $< # if explicit preprocessing by the C preprocessor is needed, use: # $(CPP) $(CPPFLAGS) $< -o $*.F90 # $(MPIF90) $(F90FLAGS) -c $*.F90 -o $*.o # remember the tabulator in the first column !!! .f90.o: $(MPIF90) $(F90FLAGS) -c $< # .f.o and .c.o: do not modify .f.o: $(F77) $(FFLAGS) -c $< .c.o: $(CC) $(CFLAGS) -c $< # CUDA files .cu.o: $(NVCC) $(NVCCFLAGS) -I../../include $(IFLAGS) $(DFLAGS) -c $< # topdir for linking espresso libs with plugins TOPDIR = /ccs/home/spigafi/espresso/GPU/../ # DFLAGS = precompilation options (possible arguments to -D and -U) # used by the C compiler and preprocessor # FDFLAGS = as DFLAGS, for the f90 compiler # See include/defs.h.README for a list of options and their meaning # With the exception of IBM xlf, FDFLAGS = $(DFLAGS) # For IBM xlf, FDFLAGS is the same as DFLAGS with separating commas # MANUAL_DFLAGS = additional precompilation option(s), if desired # You may use this instead of tweaking DFLAGS and FDFLAGS # BEWARE: will not work for IBM xlf! Manually edit FDFLAGS MANUAL_DFLAGS = DFLAGS = -D__PGI -D__IOTK_SAFEST -D__FFTW -D__MPI -D__PARA -D__SCALAPACK -D__OPENMP $(MANUAL_DFLAGS) FDFLAGS = $(DFLAGS) $(MANUAL_DFLAGS) # IFLAGS = how to locate directories where files to be included are # In most cases, IFLAGS = -I../include IFLAGS = -I$(MPICH_DIR)/include -I../include # MOD_FLAGS = flag used by f90 compiler to locate modules # Each Makefile defines the list of needed modules in MODFLAGS MOD_FLAG = -I # Compilers: fortran-90, fortran-77, C # If a parallel compilation is desired, MPIF90 should be a fortran-90 # compiler that produces executables for parallel execution using MPI # (such as for instance mpif90, mpf90, mpxlf90,...); # otherwise, an ordinary fortran-90 compiler (f90, g95, xlf90, ifort,...) # If you have a parallel machine but no suitable candidate for MPIF90, # try to specify the directory containing "mpif.h" in IFLAGS # and to specify the location of MPI libraries in MPI_LIBS MPIF90 = pgf90 #F90 = pgf90 CC = pgcc F77 = pgf77 # C preprocessor and preprocessing flags - for explicit preprocessing, # if needed (see the compilation rules above) # preprocessing flags must include DFLAGS and IFLAGS CPP = cpp CPPFLAGS = -P -traditional $(DFLAGS) $(IFLAGS) # compiler flags: C, F90, F77 # C flags must include DFLAGS and IFLAGS # F90 flags must include MODFLAGS, IFLAGS, and FDFLAGS with appropriate syntax CFLAGS = -O3 $(DFLAGS) $(IFLAGS) F90FLAGS = -O3 -Mcache_align -r8 -Mpreprocess -mp=nonuma $(FDFLAGS) $(IFLAGS) $(MODFLAGS) FFLAGS = -O3 -r8 -mp=nonuma # compiler flags without optimization for fortran-77 # the latter is NEEDED to properly compile dlamch.f, used by lapack FFLAGS_NOOPT = -O0 # compiler flag needed by some compilers when the main is not fortran # Currently used for Yambo FFLAGS_NOMAIN = -Mnomain # Linker, linker-specific flags (if any) # Typically LD coincides with F90 or MPIF90, LD_LIBS is empty LD = pgf90 LDFLAGS = -v -mp=nonuma LD_LIBS = $(MPICH_DIR)/lib/libmpich_pgi.so # External Libraries (if any) : blas, lapack, fft, MPI # If you have nothing better, use the local copy : # BLAS_LIBS = /your/path/to/espresso/BLAS/blas.a # BLAS_LIBS_SWITCH = internal BLAS_LIBS = /opt/cray/libsci/12.0.00/pgi/119/interlagos/lib/libsci_pgi_mp.a BLAS_LIBS_SWITCH = external # OpenBLAS is used to exploit multi-core CPU if a multi-threaded BLAS # is not used or installed in the system (i.e. MKL is missing) OPENBLAS_INTERNAL = 0 # If you have nothing better, use the local copy : # LAPACK_LIBS = /your/path/to/espresso/lapack-3.2/lapack.a # LAPACK_LIBS_SWITCH = internal # For IBM machines with essl (-D__ESSL): load essl BEFORE lapack ! # remember that LAPACK_LIBS precedes BLAS_LIBS in loading order # CBLAS is used in case the C interface for BLAS is missing (i.e. ACML) CBLAS_ENABLED = 0 LAPACK_LIBS = LAPACK_LIBS_SWITCH = external #ELPA_LIBS_SWITCH = enabled #SCALAPACK_LIBS = $(TOPDIR)/ELPA/libelpa.a ELPA_LIBS_SWITCH = disabled SCALAPACK_LIBS = # nothing needed here if the the internal copy of FFTW is compiled # (needs -D__FFTW in DFLAGS) FFT_LIBS = # For parallel execution, the correct path to MPI libraries must # be specified in MPI_LIBS (except for IBM if you use mpxlf) MPI_LIBS = # IBM-specific: MASS libraries, if available and if -D__MASS is defined in FDFLAGS MASS_LIBS = # ar command and flags - for most architectures: AR = ar, ARFLAGS = ruv AR = ar ARFLAGS = ruv # ranlib command. If ranlib is not needed (it isn't in most cases) use # RANLIB = echo RANLIB = ranlib # all internal and external libraries - do not modify FLIB_TARGETS = all LIBOBJS = ../flib/ptools.a ../flib/flib.a ../clib/clib.a ../iotk/src/libiotk.a LIBS = $(SCALAPACK_LIBS) $(LAPACK_LIBS) $(FFT_LIBS) $(BLAS_LIBS) $(MPI_LIBS) $(MASS_LIBS) $(LD_LIBS) # wget or curl - useful to download from network WGET = wget -O espresso-5.1/install/EnvVarUpdate.nsh0000644000175000017500000002461012341373034016031 0ustar mbamba/** * EnvVarUpdate.nsh * : Environmental Variables: append, prepend, and remove entries * * WARNING: If you use StrFunc.nsh header then include it before this file * with all required definitions. This is to avoid conflicts * * Usage: * ${EnvVarUpdate} "ResultVar" "EnvVarName" "Action" "RegLoc" "PathString" * * Credits: * Version 1.0 * * Cal Turney (turnec2) * * Amir Szekely (KiCHiK) and e-circ for developing the forerunners of this * function: AddToPath, un.RemoveFromPath, AddToEnvVar, un.RemoveFromEnvVar, * WriteEnvStr, and un.DeleteEnvStr * * Diego Pedroso (deguix) for StrTok * * Kevin English (kenglish_hi) for StrContains * * Hendri Adriaens (Smile2Me), Diego Pedroso (deguix), and Dan Fuhry * (dandaman32) for StrReplace * * Version 1.1 (compatibility with StrFunc.nsh) * * techtonik * * http://nsis.sourceforge.net/Environmental_Variables:_append%2C_prepend%2C_and_remove_entries * */ !ifndef ENVVARUPDATE_FUNCTION !define ENVVARUPDATE_FUNCTION !verbose push !verbose 3 !include "LogicLib.nsh" !include "WinMessages.NSH" !include "StrFunc.nsh" ; ---- Fix for conflict if StrFunc.nsh is already includes in main file ----------------------- !macro _IncludeStrFunction StrFuncName !ifndef ${StrFuncName}_INCLUDED ${${StrFuncName}} !endif !ifndef Un${StrFuncName}_INCLUDED ${Un${StrFuncName}} !endif !define un.${StrFuncName} "${Un${StrFuncName}}" !macroend !insertmacro _IncludeStrFunction StrTok !insertmacro _IncludeStrFunction StrStr !insertmacro _IncludeStrFunction StrRep ; ---------------------------------- Macro Definitions ---------------------------------------- !macro _EnvVarUpdateConstructor ResultVar EnvVarName Action Regloc PathString Push "${EnvVarName}" Push "${Action}" Push "${RegLoc}" Push "${PathString}" Call EnvVarUpdate Pop "${ResultVar}" !macroend !define EnvVarUpdate '!insertmacro "_EnvVarUpdateConstructor"' !macro _unEnvVarUpdateConstructor ResultVar EnvVarName Action Regloc PathString Push "${EnvVarName}" Push "${Action}" Push "${RegLoc}" Push "${PathString}" Call un.EnvVarUpdate Pop "${ResultVar}" !macroend !define un.EnvVarUpdate '!insertmacro "_unEnvVarUpdateConstructor"' ; ---------------------------------- Macro Definitions end------------------------------------- ;----------------------------------- EnvVarUpdate start---------------------------------------- !define hklm_all_users 'HKLM "SYSTEM\CurrentControlSet\Control\Session Manager\Environment"' !define hkcu_current_user 'HKCU "Environment"' !macro EnvVarUpdate UN Function ${UN}EnvVarUpdate Push $0 Exch 4 Exch $1 Exch 3 Exch $2 Exch 2 Exch $3 Exch Exch $4 Push $5 Push $6 Push $7 Push $8 Push $9 Push $R0 /* After this point: ------------------------- $0 = ResultVar (returned) $1 = EnvVarName (input) $2 = Action (input) $3 = RegLoc (input) $4 = PathString (input) $5 = Orig EnvVar (read from registry) $6 = Len of $0 (temp) $7 = tempstr1 (temp) $8 = Entry counter (temp) $9 = tempstr2 (temp) $R0 = tempChar (temp) */ ; Step 1: Read contents of EnvVarName from RegLoc ; ; Check for empty EnvVarName ${If} $1 == "" SetErrors DetailPrint "ERROR: EnvVarName is blank" Goto EnvVarUpdate_Restore_Vars ${EndIf} ; Check for valid Action ${If} $2 != "A" ${AndIf} $2 != "P" ${AndIf} $2 != "R" SetErrors DetailPrint "ERROR: Invalid Action - must be A, P, or R" Goto EnvVarUpdate_Restore_Vars ${EndIf} ${If} $3 == HKLM ReadRegStr $5 ${hklm_all_users} $1 ; Get EnvVarName from all users into $5 ${ElseIf} $3 == HKCU ReadRegStr $5 ${hkcu_current_user} $1 ; Read EnvVarName from current user into $5 ${Else} SetErrors DetailPrint 'ERROR: Action is [$3] but must be "HKLM" or HKCU"' Goto EnvVarUpdate_Restore_Vars ${EndIf} ; Check for empty PathString ${If} $4 == "" SetErrors DetailPrint "ERROR: PathString is blank" Goto EnvVarUpdate_Restore_Vars ${EndIf} ; Make sure we've got some work to do ${If} $5 == "" ${AndIf} $2 == "R" SetErrors DetailPrint "$1 is empty - Nothing to remove" Goto EnvVarUpdate_Restore_Vars ${EndIf} ; Step 2: Scrub EnvVar ; StrCpy $0 $5 ; Copy the contents to $0 ; Remove spaces around semicolons (NOTE: spaces before the 1st entry or ; after the last one are not removed here but instead in Step 3) ${If} $0 != "" ; If EnvVar is not empty ... ${Do} ${${UN}StrStr} $7 $0 " ;" ${If} $7 == "" ${ExitDo} ${EndIf} ${${UN}StrRep} $0 $0 " ;" ";" ; Remove ';' ${Loop} ${Do} ${${UN}StrStr} $7 $0 "; " ${If} $7 == "" ${ExitDo} ${EndIf} ${${UN}StrRep} $0 $0 "; " ";" ; Remove ';' ${Loop} ${Do} ${${UN}StrStr} $7 $0 ";;" ${If} $7 == "" ${ExitDo} ${EndIf} ${${UN}StrRep} $0 $0 ";;" ";" ${Loop} ; Remove a leading or trailing semicolon from EnvVar StrCpy $7 $0 1 0 ${If} $7 == ";" StrCpy $0 $0 "" 1 ; Change ';' to '' ${EndIf} StrLen $6 $0 IntOp $6 $6 - 1 StrCpy $7 $0 1 $6 ${If} $7 == ";" StrCpy $0 $0 $6 ; Change ';' to '' ${EndIf} ; DetailPrint "Scrubbed $1: [$0]" ; Uncomment to debug ${EndIf} /* Step 3. Remove all instances of the target path/string (even if "A" or "P") $6 = bool flag (1 = found and removed PathString) $7 = a string (e.g. path) delimited by semicolon(s) $8 = entry counter starting at 0 $9 = copy of $0 $R0 = tempChar */ ${If} $5 != "" ; If EnvVar is not empty ... StrCpy $9 $0 StrCpy $0 "" StrCpy $8 0 StrCpy $6 0 ${Do} ${${UN}StrTok} $7 $9 ";" $8 "0" ; $7 = next entry, $8 = entry counter ${If} $7 == "" ; If we've run out of entries, ${ExitDo} ; were done ${EndIf} ; ; Remove leading and trailing spaces from this entry (critical step for Action=Remove) ${Do} StrCpy $R0 $7 1 ${If} $R0 != " " ${ExitDo} ${EndIf} StrCpy $7 $7 "" 1 ; Remove leading space ${Loop} ${Do} StrCpy $R0 $7 1 -1 ${If} $R0 != " " ${ExitDo} ${EndIf} StrCpy $7 $7 -1 ; Remove trailing space ${Loop} ${If} $7 == $4 ; If string matches, remove it by not appending it StrCpy $6 1 ; Set 'found' flag ${ElseIf} $7 != $4 ; If string does NOT match ${AndIf} $0 == "" ; and the 1st string being added to $0, StrCpy $0 $7 ; copy it to $0 without a prepended semicolon ${ElseIf} $7 != $4 ; If string does NOT match ${AndIf} $0 != "" ; and this is NOT the 1st string to be added to $0, StrCpy $0 $0;$7 ; append path to $0 with a prepended semicolon ${EndIf} ; IntOp $8 $8 + 1 ; Bump counter ${Loop} ; Check for duplicates until we run out of paths ${EndIf} ; Step 4: Perform the requested Action ; ${If} $2 != "R" ; If Append or Prepend ${If} $6 == 1 ; And if we found the target DetailPrint "Target is already present in $1. It will be removed and" ${EndIf} ${If} $0 == "" ; If EnvVar is (now) empty StrCpy $0 $4 ; just copy PathString to EnvVar ${If} $6 == 0 ; If found flag is either 0 ${OrIf} $6 == "" ; or blank (if EnvVarName is empty) DetailPrint "$1 was empty and has been updated with the target" ${EndIf} ${ElseIf} $2 == "A" ; If Append (and EnvVar is not empty), StrCpy $0 $0;$4 ; append PathString ${If} $6 == 1 DetailPrint "appended to $1" ${Else} DetailPrint "Target was appended to $1" ${EndIf} ${Else} ; If Prepend (and EnvVar is not empty), StrCpy $0 $4;$0 ; prepend PathString ${If} $6 == 1 DetailPrint "prepended to $1" ${Else} DetailPrint "Target was prepended to $1" ${EndIf} ${EndIf} ${Else} ; If Action = Remove ${If} $6 == 1 ; and we found the target DetailPrint "Target was found and removed from $1" ${Else} DetailPrint "Target was NOT found in $1 (nothing to remove)" ${EndIf} ${If} $0 == "" DetailPrint "$1 is now empty" ${EndIf} ${EndIf} ; Step 5: Update the registry at RegLoc with the updated EnvVar and announce the change ; ClearErrors ${If} $3 == HKLM WriteRegExpandStr ${hklm_all_users} $1 $0 ; Write it in all users section ${ElseIf} $3 == HKCU WriteRegExpandStr ${hkcu_current_user} $1 $0 ; Write it to current user section ${EndIf} IfErrors 0 +4 MessageBox MB_OK|MB_ICONEXCLAMATION "Could not write updated $1 to $3" DetailPrint "Could not write updated $1 to $3" Goto EnvVarUpdate_Restore_Vars ; "Export" our change SendMessage ${HWND_BROADCAST} ${WM_WININICHANGE} 0 "STR:Environment" /TIMEOUT=5000 EnvVarUpdate_Restore_Vars: ; ; Restore the user's variables and return ResultVar Pop $R0 Pop $9 Pop $8 Pop $7 Pop $6 Pop $5 Pop $4 Pop $3 Pop $2 Pop $1 Push $0 ; Push my $0 (ResultVar) Exch Pop $0 ; Restore his $0 FunctionEnd !macroend ; EnvVarUpdate UN !insertmacro EnvVarUpdate "" !insertmacro EnvVarUpdate "un." ;----------------------------------- EnvVarUpdate end---------------------------------------- !verbose pop !endif espresso-5.1/install/configure.ac0000644000175000017500000022716312341373034015251 0ustar mbambaAC_INIT(ESPRESSO, 5.1.svn, , espresso) # ---------------------------- # Non-standard precious variables # ---------------------------- AC_ARG_VAR(EXTLIB_FLAGS, This variable controls the flags passed to internal BLAS and LAPACK libraries) # ----------------------------- # options # ----------------------------- AC_ARG_ENABLE(parallel, [AS_HELP_STRING([--enable-parallel], [compile for parallel execution if possible (default: yes)])], [set_use_parallel=1 if test "$enableval" = "yes" ; then use_parallel=1 else use_parallel=0 fi], [set_use_parallel=0 use_parallel=1]) AC_ARG_ENABLE(openmp, [AS_HELP_STRING([--enable-openmp], [compile for openmp execution if possible (default: no)])], [if test "$enableval" = "yes" ; then use_openmp=1 else use_openmp=0 fi], [use_openmp=0]) # debug flags are implemented only for a few cases AC_ARG_ENABLE(debug, [AS_HELP_STRING([--enable-debug], [compile Fortran with debug flags (default: no)])], [if test "$enableval" = "yes" ; then use_debug=1 else use_debug=0 fi], [use_debug=0]) # shared library flags are implemented only for a few (untested) cases AC_ARG_ENABLE(shared, [AS_HELP_STRING([--enable-shared], [use shared libraries if available (default: yes)])], [if test "$enableval" = "yes" ; then use_shared=1 else use_shared=0 fi], [use_shared=1]) # the C-to-Fortran wrapper check may cause trouble on some machines AC_ARG_ENABLE(wrappers, [AS_HELP_STRING([--disable-wrappers], [disable C to fortran wrapper check (default: enabled)])], [if test "$enableval" = "yes" ; then check_wrappers=1 else check_wrappers=0 fi], [check_wrappers=1]) AC_ARG_ENABLE(signals, [AS_HELP_STRING([--enable-signals], [enable signal trapping (default: no)])], [if test "$enableval" = "yes" ; then use_signals=1 else use_signals=0 fi], [use_signals=0]) # ----------------------------- # packages # ---------------------------- AC_ARG_WITH(scalapack, [AS_HELP_STRING([--with-scalapack], [(yes|no|intel) Use scalapack if available. Set to "intel" to use Intel MPI and blacs (default: use openMPI)])], [if test "$withval" = "yes" ; then with_scalapack=1 elif test "$withval" = "intel" ; then with_scalapack=2 elif test "$withval" = "no" ; then with_scalapack=0 fi], [with_scalapack=1]) AC_ARG_WITH(elpa, [AS_HELP_STRING([--with-elpa], [(yes|no|) Use ELPA. Self-compile or a can be specified (default: no)])], [if test "$withval" = "yes" ; then with_elpa=1 elif test "$withval" = "no" ; then with_elpa=0 else with_elpa=2 with_elpa_path="$withval" fi], [with_elpa=0]) AC_ARG_WITH(internal-blas, [AS_HELP_STRING([--with-internal-blas], [compile with internal blas (default: no)])], [if test "$withval" = "yes" ; then use_internal_blas=1 else use_internal_blas=0 fi], [use_internal_blas=0]) AC_ARG_WITH(internal-lapack, [AS_HELP_STRING([--with-internal-lapack], [compile with internal lapack (default: no)])], [if test "$withval" = "yes" ; then use_internal_lapack=1 else use_internal_lapack=0 fi], [use_internal_lapack=0]) # ----------------------------- # more options # ---------------------------- AC_ARG_ENABLE(environment, [AS_HELP_STRING([--enable-environment], [compile solvent-related stuff (default: no)])], [if test "$enableval" = "yes" ; then enable_environment=1 else enable_environment=0 fi], [enable_environment=0]) # store variables from the environment, if set (may be or not be set) # If set, they take precedence over configure internal choice. # Flags and libraries are accepted without further testing; # compilers are tested. Specify compiler name only, not the full path # (i.e. F90=/usr/local/bin/f90 may not work, use F90=f90) topdir=$TOPDIR # current directory arch=$ARCH # see below for recognized architectures env_cc=$CC # C compiler (must be in the execution path) cpp=$CPP # C preprocessor (as above) cflags=$CFLAGS # Flags for C compiler cppflags=$CPPFLAGS # Flags for C preprocessor dflags=$DFLAGS # Fortran file preprocessing options, e.g. -D__DEFINE_THIS iflags=$IFLAGS # Location of include files - shouldn't be needed f77=$F77 # Fortran 77 serial compiler (must be in execution path) f90=$F90 # Fortran 90 serial compiler (must be in execution path) mpif90=$MPIF90 # Fortran 90 parallel compiler (must be in execution path) fflags=$FFLAGS # Flags for Fortran 77 and 90 compilers fflags_nomain=$FFLAGS_NOMAIN # Flags for linking Fortran sources with main in a different language fflags_noopt=$FFLAGS_NOOPT # as FFLAGS With optimization disabled f90flags=$F90FLAGS # Flags for Fortran 90 compiler only ld=$LD # Loader (must be in the execution path) ldflags=$LDFLAGS # Flags for loader ld_libs=$LD_LIBS # Additional libraries blas_libs=$BLAS_LIBS # blas library - specify e.g. /my/blas/lib/libmyblas.a # or -L/my/blas/lib -lmyblas lapack_libs=$LAPACK_LIBS # lapack library, similar to above fft_libs=$FFT_LIBS # FFT libraries - may depend upon DFLAGS mpi_libs=$MPI_LIBS # MPI libraries - shouldn't be needed mass_libs=$MASS_LIBS # MASS libraries (IBM only) libdirs=$LIBDIRS # Where to look for libraries (e.g. /my/blas/lib) scalapack_libs=$SCALAPACK_LIBS # scalapack libs scalapack_dir=$SCALAPACK_LIB # Where to look for scalapack libs blacs_dir=$BLACS_LIB # Where to look for libblacs.a ar=$AR # ar (shouldn't be needed) arflags=$ARFLAGS # Flags for ar (as above) extlib_flags=$EXTLIB_FLAGS # Flags for internal copies of lapack and blas # configure for current directory by default if test "$topdir" = "" ; then topdir="`pwd`" ; fi # check system type (no cross-compilation for now) AC_CANONICAL_BUILD # many HPC systems are configured so that running parallel programs # interactively is disabled: on those systems, AC_PROG_FC / _F77 / _CC # would fail because they can't run the compiled executables. # to work around that, let's pretend we are cross-compiling even if we aren't # !!! this relies on undocumented Autoconf behavior !!! # This is used to distinguish between true and fake cross compilation # (only on NEC SX8 actually) if test "$host" != "" ; then ranlib=echo; fi cross_compiling=yes if test "$host" = "" ; then host=$build; fi # identify host architecture if test "$arch" = "" then case $host in ia64-*-linux-gnu ) arch=ia64 ;; x86_64-*-linux-gnu ) arch=x86_64 ;; arm-*linux* ) arch=arm ;; *-pc-linux-gnu ) arch=ia32 ;; *-ibm-aix* ) arch=aix ;; sparc-sun-* ) arch=sparc ;; i386-pc-solaris* ) arch=solaris;; i*86-apple-darwin* ) arch=mac686 ;; *-pc-cygwin ) arch=cygwin ;; sx*-nec* ) arch=necsx ;; powerpc64-*-linux-gnu ) arch=ppc64 ;; *-*-mingw32 ) arch=mingw32;; *-*-mingw64 ) arch=mingw64;; * ) AC_MSG_WARN(Unrecognized build architecture) ;; esac # workaround for Cray-XT machines test -d /proc/cray_xt && arch=crayxt # workaround for IBM BG machines test -d /bgsys && arch=ppc64-bg test -f /bgsys/drivers/ppcfloor/bin/runjob && arch=ppc64-bgq fi echo detected architecture... $arch # candidate archiver and archiver flags try_ar="ar" try_arflags="ruv" try_iflags="-I../include" # candidate fortran compilers good for all cases try_mpif90="mpif90" try_f90="gfortran g95 f90" # add all needed -D options to try_dflags try_dflags="" # candidate compilers and flags based on architecture case $arch in ia32 | ia64 | x86_64 ) try_f90="ifort pgf90 pathf95 sunf95 openf95 $try_f90" ;; arm ) try_f90="$try_f90" ;; solaris ) try_f90="sunf95 $try_f90" ;; aix ) try_mpif90="mpxlf90_r mpxlf90" try_f90="xlf90_r xlf90 $try_f90" try_arflags="-X64 ruv" try_dflags="-D__AIX -D__XLF" ;; crayxt* ) try_f90="ftn" try_mpif90="ftn" ;; mac686 | cygwin ) try_f90="ifort $try_f90" ;; mingw* ) ld="$F90" # this is set for C/C++, but we need it for Fortran, too. try_dflags="-D_WIN32" ;; necsx ) sxopt=`echo $host|awk '{print substr($1,1,3)}'` echo $sxopt $host try_mpif90="sxmpif90" try_f90="sxf90" try_ar="sxar" try_arflags="rv" try_dflags='-D__SX6 ' use_fft_asl=0 use_fft_mathkeisan=1 use_fft_para=0 # default for Nec: no parallel unless explicitly required if test "$set_use_parallel" -ne 1 ; then use_parallel=0 ; fi if test "$use_parallel" -eq 1 ; then use_fft_para=1 ; fi try_dflags_fft_asl='-DASL' try_dflags_fft_mathkeisan=' ' try_dflags_fft_para='-D__USE_3D_FFT' ;; ppc64 ) try_mpif90="mpxlf90_r mpf90_r mpif90" try_f90="xlf90_r $try_f90" try_dflags="-D__XLF" try_arflags="ruv" ;; # PowerPC MareNostrum ppc64-mn ) try_f90="xlf90_r" try_dflags="-D__XLF" try_arflags="ruv" ;; # IBM BlueGene ppc64-bg | ppc64-bgq ) if test "$use_openmp" -eq 0 ; then try_mpif90="mpixlf90" try_f90="bgxlf90" else try_mpif90="mpixlf90_r" # Executable paths are usually consistent across several # IBM BG/P BG/Q machine deployed ld="/bgsys/drivers/ppcfloor/comm/xl.ndebug/bin/mpixlf90_r" try_f90="bgxlf90_r" fi try_arflags="ruv" try_dflags="-D__XLF" ;; * ) AC_MSG_WARN($arch : unsupported architecture?) ;; esac if test "$enable_environment" -eq 1 ; then try_dflags="$try_dflags -D__ENVIRONMENT" fi # check serial Fortran 90 compiler. This must be done before performing # the check for the parallel compiler (section below) because option # --disable-parallel will do very strange things otherwise. The reason # seems to be that autoconf does not repeat all tests for the second # occurrence of AC_PROG_FC. So the first occurrence is the one that # must always be performed, the second is optional. PG & CC sep.2006 # use F90 if set if test "$f90" = "" ; then f90="$try_f90" ; fi AC_PROG_FC($f90) f90=$FC AC_FC_SRCEXT(f90) # check parallel Fortran 90 compiler if test "$use_parallel" -eq 0 ; then mpif90=$f90 else # clear cached values (not sure when and why this is needed) unset FC ac_cv_prog_ac_ct_FC ac_cv_fc_compiler_gnu ac_cv_prog_fc_g if test "$mpif90" = "" ; then mpif90="$try_mpif90 $f90" AC_PROG_FC($mpif90) else AC_PROG_FC($mpif90) # this avoids that an empty MPIF90 field is produced if the corresponding # environment variable MPIF90 does not contain an acceptable compiler if test "$FC" = "" ; then AC_MSG_WARN([MPIF90 not found: using MPIF90 anyway]) FC=$MPIF90 fi fi mpif90=$FC fi # check which compiler does mpif90 wrap case "$arch" in ia32 | ia64 | x86_64 | mac686 ) echo $ECHO_N "checking version of $mpif90... $ECHO_C" ifort_version=`$mpif90 -V 2>&1 | grep "Intel(R)"` sunf95_version=`$mpif90 -V 2>&1 | grep "Sun Fortran"` openf95_version=`$mpif90 -V 2>&1 | grep "^Open64"` pgf_version=`$mpif90 -V 2>&1 | grep "^pgf"` g95_version=`$mpif90 -v 2>&1 | grep "g95"` eko_version=`$mpif90 -v 2>&1 | grep "EKOPath"` # obsolescent pathf95_version=`$mpif90 -v 2>&1 | grep "PathScale(TM)"` gfortran_version=`$mpif90 -v 2>&1 | grep "gcc version"` # if test "$ifort_version" != "" then version=`$mpif90 -V 2>&1 | grep Version | sed 's/.*Version//' | awk '{print $1}'` ifort_version=`echo $version | sed 's/\..*//'` echo "${ECHO_T}ifort $version" f90_in_mpif90="ifort" if test "$ifort_version" -gt 8; then # flags for MKL - ifort 9 and later MKL_LIBS="" if test "$ifort_version" -gt 9; then MKL_FLAGS="-static-intel" else MKL_FLAGS="-i-static" fi else # flags for MKL - ifort 8 and earlier, obsolescent MKL_LIBS="-lguide -lpthread" MKL_FLAGS="" fi elif test "$sunf95_version" != "" then version=`echo $sunf95_version | awk '{print $5}'` echo "${ECHO_T}sunf95 $version" f90_in_mpif90="sunf95" elif test "$openf95_version" != "" then version=`echo $openf95_version | awk '{print $5}'` echo "${ECHO_T}openf95 $version" f90_in_mpif90="openf95" elif test "$pgf_version" != "" then version=`echo $pgf_version | awk '{print $2}'` echo "${ECHO_T}pgf90 $version" f90_in_mpif90="pgf90" elif test "$eko_version" != "" then # obsolescent version=`echo $eko_version | awk '{print $6}'` echo "${ECHO_T}pathf95 $version" f90_in_mpif90="pathf95" elif test "$g95_version" != "" then version=`echo $g95_version | awk '{print $3}'` echo "${ECHO_T}g95 $version" f90_in_mpif90="g95" elif test "$pathf95_version" != "" then version=`echo $pathf95_version | awk '{print $5}'` echo "${ECHO_T}pathf95 $version" f90_in_mpif90="pathf95" elif test "$gfortran_version" != "" then version=`echo $gfortran_version | awk '{print $3}'` echo "${ECHO_T}gfortran $version" f90_in_mpif90="gfortran" else echo "${ECHO_T}unknown, assuming gfortran" f90_in_mpif90="gfortran" fi # check if serial and parallel compiler are the same if test "$f90" != "$f90_in_mpif90"; then AC_MSG_WARN([parallel compiler $mpif90 uses $f90_in_mpif90, but serial compiler $f90 was detected]) AC_MSG_WARN([assuming F90=$f90_in_mpif90, discarding $f90]) fi f90=$f90_in_mpif90 ;; esac echo setting F90... $f90 echo setting MPIF90... $mpif90 case "$f90" in f90 | fc | ftn ) echo $ECHO_N "checking version wrapped by $f90 command... $ECHO_C" if $f90 -V 2>&1 | grep -q "Intel(R)" ; then f90_version=ifort elif $f90 -V 2>&1 | grep -q "Sun Fortran" ; then f90_version=sunf95 elif $f90 -V 2>&1 | grep -q "^Open64" ; then f90_version=openf95 elif $f90 -V 2>&1 | grep -q "^pgf" ; then f90_version=pgf elif $f90 -v 2>&1 | grep -q "EKOPath" ; then # obsolescent f90_version=pathf95 elif $f90 -v 2>&1 | grep -q "g95" ; then f90_version=g95 elif $f90 -version 2>&1 | grep -q "PathScale(TM)" ; then f90_version=pathf95 elif $f90 -v 2>&1 | grep -q "gcc version" ; then f90_version=gfortran elif $f90 -V 2>&1 | grep -q "Cray Fortran" ; then f90_version=crayftn else echo $ECHO_N "unknown, leaving as... $ECHO_C" f90_version=$f90 fi echo $f90_version ;; * ) f90_version=$f90 ;; esac # candidate C and f77 compilers good for all cases try_cc="cc gcc" try_f77="$f90" case "$arch:$f90_version" in *:ifort* ) try_cc="icc ecc $try_cc" ;; *:pgf90 ) try_cc="pgcc $try_cc" try_f77="pgf77 $f90" ;; *:pathf95 ) try_cc="pathcc $try_cc" ;; *:sunf95 ) try_cc="suncc $try_cc" ;; *:openf95 ) try_cc="opencc $try_cc" ;; aix:*xlf*_r ) try_cc="xlc_r $try_cc" try_f77="xlf_r $f90" ;; aix:*xlf* ) try_cc="xlc $try_cc" try_f77="xlf $f90" ;; sparc:* | solaris:sunf95 ) try_f77="f77 $f90" ;; cray*:* ) try_cc="cc" ;; necsx:* ) try_cc="sxcc" ;; ppc64-bg*:*xlf90_r ) try_cc="bgxlc_r" try_f77="bgxlf_r" ;; ppc64-bg*:*xlf90 ) try_cc="bgxlc" try_f77="bgxlf" ;; ppc64:*xlf* | ppc64-mn:*xlf* ) try_cc="xlc_r $try_cc" try_f77="xlf_r $f90" ;; esac # check serial C compiler if test "$env_cc" = "" ; then cc="$try_cc" ; else cc="$env_cc"; fi AC_PROG_CC($cc) cc=$CC echo setting CC... $cc # check size of pointers to int - needed to decide the size of integer # arrays in fortran holding C pointers for FFTW AC_CHECK_SIZEOF([int *]) SIZEOF_INT_P=$ac_cv_sizeof_int_p AC_SUBST(SIZEOF_INT_P) AC_CONFIG_FILES([include/fft_defs.h:include/fft_defs.h.in]) # check if the structure mallinfo is present in malloc.h AC_CHECK_HEADER(malloc.h,have_malloc_h=1,have_malloc_h=0, ) if test "$have_malloc_h" -ne 0 then AC_CHECK_MEMBER([struct mallinfo.arena], [AC_DEFINE(HAVE_MALLINFO)], , [#include ]) fi # check serial Fortran 77 compiler (use F77 if it was set) if test "$f77" = "" ; then f77="$try_f77" ; fi AC_PROG_F77($f77) f77=$F77 echo setting F77... $f77 # check Fortran compiler flags # have_cpp=0: use external C preprocessing for fortran code # have_cpp=1: use C-like preprocessing in fortran compiler have_cpp=1 xlf_flags=0 echo using F90... $f90 case "$arch:$f90_version" in ia32:ifort* | ia64:ifort* | x86_64:ifort* | mac686:ifort* | crayxt*:ifort* ) try_fflags="-O2 -assume byterecl -g -traceback -par-report0 -vec-report0" if test "$use_debug" -eq 1; then try_fflags="$try_fflags -fpe0 -CB" fi try_fflags_nomain="-nofor_main" try_fflags_openmp="-openmp" try_f90flags="\$(FFLAGS) -nomodule" try_fflags_noopt="-O0 -assume byterecl -g -traceback" try_ldflags="" try_ldflags_static="-static" try_ldflags_openmp="-openmp" try_dflags="$try_dflags -D__INTEL" pre_fdflags="-fpp " ;; ia32:pgf* | ia64:pgf* | x86_64:pgf* ) try_fflags_nomain="-Mnomain" try_fflags="-fast -r8" try_fflags_openmp="-mp" try_f90flags="-fast -r8 -Mcache_align" try_fflags_noopt="-O0" try_ldflags="" try_ldflags_openmp="-mp" try_ldflags_static="-Bstatic" try_dflags="$try_dflags -D__PGI" have_cpp=0 ;; ia32:path* | ia64:path* | x86_64:path* ) try_fflags="-march=auto -O2" try_f90flags="\$(FFLAGS)" try_fflags_noopt="-O0" try_ldflags="" try_ldflags_static="-static" have_cpp=0 ;; *:g95 ) if test "$use_debug" -eq 1; then try_fflags="-O3 -g -freal=nan -finteger=12345678 -flogical=none -cpp" else try_fflags="-O3 -cpp" fi try_f90flags="\$(FFLAGS)" try_fflags_noopt="-O0 -cpp" try_ldflags="" try_ldflags_static="-static" ;; *:*gfortran ) if test "$use_debug" -eq 1; then try_fflags="-O3 -g -Wall -fbounds-check -frange-check" else try_fflags="-O3 -g" fi try_fflags_openmp="-fopenmp" try_f90flags="\$(FFLAGS) -x f95-cpp-input" try_fflags_noopt="-O0 -g" try_ldflags="-g -pthread" try_ldflags_openmp="-fopenmp" try_dflags="$try_dflags -D__GFORTRAN -D__STD_F95" try_ldflags_static="-static" ;; *:sunf95 ) try_fflags="-O4" try_fflags_openmp="-openmp" try_f90flags="\$(FFLAGS) -fpp" try_fflags_noopt="-O0" try_ldflags="-fast" try_ldflags_static="-Bstatic" imod="-M" ;; *:openf95 ) try_fflags="-O3" try_f90flags="\$(FFLAGS) -ftpp" try_fflags_noopt="-O0" try_ldflags="" imod="-I" ;; aix:*xlf* ) if test "$use_debug" -eq 1; then try_fflags="-q64 -qalias=noaryovrlp -g -C \ -qarch=auto -qtune=auto -qdpc -Q -qalias=nointptr" else try_fflags="-q64 -qalias=noaryovrlp -O3 -qstrict \ -qarch=auto -qtune=auto -qdpc -Q -qalias=nointptr" fi try_fflags_openmp="-qsmp=omp" try_f90flags="\$(FFLAGS) -qsuffix=cpp=f90 -qfree=f90" try_fflags_noopt="-q64 -O0" try_ldflags="-q64" try_ldflags_openmp="-qsmp=omp" # try_ldflags_static="-bstatic" pre_fdflags="-WF," xlf_flags=1 ;; solaris:sunf95 ) try_fflags="-fast -O2 -fpp" try_f90flags="\$(FFLAGS)" try_fflags_noopt="-O0 " try_ldflags="" imod="-M" ;; sparc:f90 ) try_fflags="-fast -O1 -nodepend -xvector=no -xchip=ultra3 \ -xarch=v8plusb -xlic_lib=sunperf" try_f90flags="\$(FFLAGS)" try_fflags_noopt="-O0 -xlic_lib=sunperf" try_ldflags="" imod="-M" have_cpp=0 ;; crayxt*:cray* ) try_fflags_nomain="" #NOTE: by default OpenMP is always ON (see crayftn man page) try_fflags_openmp="-homp" try_fflags="-O2" #NOTE: add '-rm' to get messages from crayftn about why # optimizations have not been applied try_f90flags="-O3,fp3 -f free" try_fflags_noopt="-O0" try_ldflags_openmp="-homp" try_ldflags="-v" try_ldflags_static="-static" try_dflags="$try_dflags -D__CRAY" have_cpp=0 ;; crayxt*:pgf* ) # see comment above for pgf* try_fflags_nomain="-Mnomain" try_fflags_openmp="-mp" try_fflags="-O3 -r8" try_f90flags="-fast -Mcache_align -r8 -Mpreprocess" try_fflags_noopt="-O0" try_ldflags_openmp="-mp" try_ldflags="-v" try_dflags="$try_dflags -D__PGI -D__IOTK_WORKAROUND1" have_cpp=1 ;; crayxt*:pathf* ) try_fflags="-march=auto -O2 -cpp" try_f90flags="\$(FFLAGS)" try_fflags_noopt="-O0" try_ldflags="" try_ldflags_static="-static" have_cpp=1 ;; necsx:* ) try_fflags=' -float0 -Cvopt -eab -R5 -Wf,-Ncont,-A dbl4,-P nh,-ptr byte,-pvctl noifopt loopcnt=9999999 expand=12 fullmsg vwork=stack,-fusion,-O noif,-init stack=nan heap=nan' try_f90flags=' -f2003 -float0 -Cvopt -eab -R5 -Wf,-Ncont,-A dbl4,-P nh,-ptr byte,-pvctl noifopt loopcnt=9999999 expand=12 fullmsg vwork=stack,-fusion,-O noif,-init stack=nan heap=nan' try_f90flags="-$sxopt $try_f90flags" try_fflags_noopt='-float0 ' try_f90flags_noopt='-f2003 -float0 -eab -R5 -C debug -Wf,-Ncont,-A dbl4,-P nh ,ptr byte,-init stack=nan heap=nan' try_f90flags_noopt="$try_f90flags_noopt" try_f90flags_inline='-f2003 -float0 -Cvopt -eab -R5 -pi noauto incdir exp=w0gauss -Wf,-Ncont,-A dbl4,-P nh,-ptr byte,-pvctl noifopt loopcnt=9999999 expand=12 fullmsg vwork=stack,-fusion,-O noif,-init stack=nan heap=nan' try_f90flags_inline="$try_f90flags_inline" try_ldflags_static='-P static' try_ldflags='-Wl,-f zero' try_ldflags="-p $try_ldflags" pre_fdflags="" ;; ppc64:*xlf* ) if test "$use_debug" -eq 1; then try_fflags="-g -C -qsuffix=cpp=f90 -qdpc -qalias=nointptr -Q" else try_fflags="-q64 -qthreaded -O4 -qsuffix=cpp=f90 -qdpc -qalias=nointptr -Q" fi try_f90flags="\$(FFLAGS) -qfree=f90" try_fflags_noopt="-q64 -qthreaded -O0" try_ldflags="-q64 -qthreaded" pre_fdflags="-WF," xlf_flags=1 ;; ppc64-mn:*xlf* ) if test "$use_debug" -eq 1; then try_fflags="-g -C -q64 -qstrict -qsuffix=cpp=f90 -qdpc -qalias=nointptr -Q -qtune=ppc970 -qarch=ppc970 -qcache=auto -qhot=vector,simd -qenablevmx" else try_fflags="-O3 -q64 -qstrict -qsuffix=cpp=f90 -qdpc -qalias=nointptr -Q -qtune=ppc970 -qarch=ppc970 -qcache=auto -qhot=vector,simd -qenablevmx" fi try_f90flags="\$(FFLAGS) -qfree=f90" try_fflags_noopt="-O0 -q64" try_ldflags="" pre_fdflags="-WF," xlf_flags=1 ;; ppc64-bg:*xlf* ) if test "$use_debug" -eq 1; then try_fflags="-q32 -qalias=noaryovrlp:nointptr -g -C -qdpc=e" else try_fflags="-q32 -qalias=noaryovrlp:nointptr -O3 -qstrict -qdpc=e" fi try_fflags_openmp="-qsmp=omp -qthreaded" try_f90flags="\$(FFLAGS) -qsuffix=cpp=f90" try_fflags_noopt="-q32 -O0" try_ldflags="-q32" try_ldflags_openmp="-qsmp=omp -qthreaded" pre_fdflags="-WF," xlf_flags=1 ;; ppc64-bgq:*xlf* ) if test "$use_debug" -eq 1; then try_fflags="-qalias=noaryovrlp:nointptr -g -C -qdpc=e" else try_fflags="-qalias=noaryovrlp:nointptr -O3 -qstrict -qdpc=e -qarch=qp -qtune=qp" fi try_fflags_openmp="-qsmp=noauto:omp -qtm -qthreaded" try_f90flags="\$(FFLAGS) -qsuffix=cpp=f90" try_fflags_noopt="-O0" try_ldflags="" try_ldflags_openmp="-qstatic -qsmp=noauto:omp -qtm -qthreaded" pre_fdflags="-WF," xlf_flags=1 ;; * ) # unknown, try these try_fflags="-O1" try_f90flags="\$(FFLAGS)" try_fflags_noopt="-O0" try_ldflags="" have_cpp=0 ;; esac if test "$use_shared" -eq 0 ; then try_ldflags="$try_ldflags $try_ldflags_static" ; fi if test "$use_openmp" -eq 1 ; then try_f90flags="$try_f90flags $try_fflags_openmp" try_fflags="$try_fflags $try_fflags_openmp" try_ldflags="$try_ldflags $try_ldflags_openmp" fi if test "$fflags" = "" ; then fflags=$try_fflags ; fi if test "$f90flags" = "" ; then f90flags=$try_f90flags ; fi if test "$fflags_noopt" = "" ; then fflags_noopt=$try_fflags_noopt ; fi if test "$fflags_nomain" = "" ; then fflags_nomain=$try_fflags_nomain ; fi echo setting FFLAGS... $fflags echo setting F90FLAGS... $f90flags echo setting FFLAGS_NOOPT... $fflags_noopt if test "$fflags_nomain" != "" ; then echo setting FFLAGS_NOMAIN... $fflags_nomain ; fi if test "$imod" = "" ; then imod="-I" ; fi # tentative C and loader flags, good for many cases try_cflags="-O3" c_ldflags="" try_cpp="cpp" case "$arch:$cc" in *:pgcc ) try_cflags="-fast" ;; # pathcc -E seems to give problems when preprocessing iotk #*:pathcc ) # try_cpp="pathcc -E" # ;; aix:xlc* | aix:cc ) try_cflags="-q64 -O2" c_ldflags="-q64" ;; *:suncc ) try_cflags="-fast -O" ;; sparc:cc ) try_cflags="-fast -dalign -xchip=ultra3 -xarch=v8plusb \ -xlic_lib=sunperf" try_cpp="fpp" ;; crayxt*:cc ) # Actually we need something like is done for ftn to detect # the proper compiler used (NdFilippo) try_cflags="-O3" ;; necsx:* ) #try_cflags="-D__SX6 \$(IFLAGS) \$(MODFLAGS)" try_cflags="" try_ar="sxar" ;; ppc64-mn:* ) try_cflags="-O3 -q64" ;; ppc64-bg:* ) try_cflags="-O3 -q32" ;; ppc64-bgq:* ) try_cflags="-O3" ;; ppc64:xlc*) try_cflags="-O3 -q64 -qthreaded" c_ldflags="-q64" ;; esac if test "$cflags" = "" ; then cflags=$try_cflags ; fi echo setting CFLAGS... $cflags # preprocessor - try cpp in all cases; the preprocessor returned by # AC_PROG_CPP # may sometimes refuse to preprocess fortran files if test "$cpp" = "" ; then cpp=$try_cpp; fi # if test "$cpp" = "" ; then cpp=$CPP; fi echo setting CPP... $cpp echo $ECHO_N "setting CPPFLAGS... $ECHO_C" case $cpp in cpp) try_cppflags="-P -C -traditional" ;; fpp) try_cppflags="-P -C " ;; *) try_cppflags="" ;; esac if test "$cppflags" = "" ; then cppflags=$try_cppflags ; fi echo "${ECHO_T}$cppflags" # linker and archiver # note that from this point on, further additions to # linker flags should be added to ldflags rather than try_ldflags if test "$ld" = "" ; then ld="$mpif90" ; fi if test "$ldflags" = "" ; then ldflags="$try_ldflags" ; fi if test "$ar" = "" ; then ar="$try_ar" ; fi if test "$arflags" = "" ; then arflags="$try_arflags" ; fi echo setting LD... $ld echo setting LDFLAGS... $ldflags echo setting AR... $ar echo setting ARFLAGS... $arflags # compilation rules AC_PROG_MAKE_SET echo $ECHO_N "checking whether Fortran files must be preprocessed... $ECHO_C" if test "$have_cpp" -ne 0 then f90rule="\$(MPIF90) \$(F90FLAGS) -c \$<" echo "${ECHO_T}no" else f90rule="\$(CPP) \$(CPPFLAGS) \$< -o \$*.F90 ; \\ \$(MPIF90) \$(F90FLAGS) -c \$*.F90 -o \$*.o" echo "${ECHO_T}yes" fi # compilation flags for all subsequent tests # remove all $(...) because at least one compiler doesn't like them # but if f90flags contains $(FFLAGS), substitute it test_cflags="`echo $cflags | sed 's/\$([[^)]]*)//g'`" test_cppflags="$test_cflags" if test "`echo $f90flags | grep '$(FFLAGS)'`" != "" then test_fflags="`echo $fflags $f90flags | sed 's/\$([[^)]]*)//g'`" else test_fflags="`echo $f90flags | sed 's/\$([[^)]]*)//g'`" fi test_ldflags="`echo $ldflags | sed 's/\$([[^)]]*)//g'`" # find Fortran to C wrappers if test "$check_wrappers" -ne 0; then AC_F77_WRAPPERS fi AC_LANG_PUSH(Fortran 77) F77=$f90 # use Fortran 90 actually # Search for libraries # Flags for needed libraries have_blas=0 have_lapack=0 have_fft=0 have_mpi=0 have_scalapack=0 # Flags for machine-specific libraries have_acml=0 have_atlas=0 have_essl=0 have_mkl=0 # check for blas # supported vendor replacements: # mkl and acml on Intel/AMD architectures # essl on aix # SUNperf on sparc # atlas is used over blas if available # internal version is used if none is found if test "$use_internal_blas" -eq 0 then if test "$blas_libs" = "" then # check directories in LD_LIBRARY_PATH too # (maybe they are already searched by default, but I'm not sure) ld_library_path=`echo $LD_LIBRARY_PATH | sed 's/:/ /g'` case "$arch:$f90" in x86_64:pgf* | x86_64:path* | x86_64:openf95 | crayxt*:* ) # check for acml - note that it contains lapack as well try_libdirs="/opt/acml*/pathscale64/lib/" try_libdirs="$ld_library_path $libdirs $try_libdirs" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" if test "$use_openmp" -eq 0; then AC_SEARCH_LIBS(dgemm, acml, have_blas=1 have_lapack=1 have_acml=1 blas_libs="$try_loption $LIBS") else AC_SEARCH_LIBS(dgemm, acml_mp, have_blas=1 have_lapack=1 have_acml=1 blas_libs="$try_loption $LIBS") fi if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; ia64:* ) # check for mkl (in several directories) try_libdirs="/opt/intel/Compiler/*/*/mkl/lib/64 /opt/intel/mkl/*/lib/64 /opt/intel/mkl*/lib/64 /opt/intel/mkl/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption=" " else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$MKL_FLAGS $test_ldflags $try_loption" LIBS="$MKL_LIBS" # # should work for recent MKL versions only # if test "$use_openmp" -eq 0; then if test "$f90" = "g95" -o "$f90" = "gfortran" ; then AC_SEARCH_LIBS(dgemm, mkl_gf_ipf, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_sequential -lmkl_core) else AC_SEARCH_LIBS(dgemm, mkl_intel_ipf, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_sequential -lmkl_core) fi else if test "$f90" = "g95" -o"$f90" = "gfortran"; then AC_SEARCH_LIBS(dgemm, mkl_gf_ipf, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_gnu_thread -lmkl_core" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_sequential -lmkl_core) else AC_SEARCH_LIBS(dgemm, mkl_intel_ipf, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_intel_thread -lmkl_core" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_sequential -lmkl_core) fi fi if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; *:sunf95 ) # check for acml - note that it contains lapack as well if test "$arch" = "x86_64" then try_libdirs="/usr/local/sunstudio*/lib/amd64/" else try_libdirs="/usr/local/sunstudio*/lib/" fi try_libdirs="$libdirs $ld_library_path $try_libdirs" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" AC_SEARCH_LIBS(dgemm, sunperf, have_blas=1 have_lapack=1 blas_libs="$try_loption $LIBS") if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; x86_64:* ) try_libdirs="/opt/intel/composer*/mkl/lib/intel64 /opt/intel/Compiler/*/*/mkl/lib/em64t /opt/intel/mkl/*/lib/em64t /opt/intel/mkl*/lib/em64t /opt/intel/mkl/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption=" " else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$MKL_FLAGS $test_ldflags $try_loption" LIBS="$MKL_LIBS" # # should work for recent MKL versions only # if test "$use_openmp" -eq 0; then if test "$f90" = "g95" -o "$f90" = "gfortran" ; then AC_SEARCH_LIBS(dgemm, mkl_gf_lp64, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_sequential -lmkl_core) else AC_SEARCH_LIBS(dgemm, mkl_intel_lp64, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_sequential -lmkl_core) fi else if test "$f90" = "g95" -o "$f90" = "gfortran" ; then AC_SEARCH_LIBS(dgemm, mkl_gf_lp64, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_gnu_thread -lmkl_core" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_sequential -lmkl_core) else AC_SEARCH_LIBS(dgemm, mkl_intel_lp64, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_intel_thread -lmkl_core" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_sequential -lmkl_core) fi fi if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; ia32:* ) # check for mkl (in several directories) try_libdirs="/opt/intel/composer*/mkl/lib/ia32 /opt/intel/Compiler/*/*/mkl/lib/32 /opt/intel/mkl/*/lib/32 /opt/intel/mkl*/lib/32 /opt/intel/mkl/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption="-L " else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$MKL_FLAGS $test_ldflags $try_loption" LIBS="$MKL_LIBS" # # should work for recent MKL versions only # if test "$use_openmp" -eq 0; then if test "$f90" = "g95" -o "$f90" = "gfortran"; then AC_SEARCH_LIBS(dgemm, mkl_gf, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_sequential -lmkl_core) else AC_SEARCH_LIBS(dgemm, mkl_intel, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_sequential -lmkl_core) fi else if test "$f90" = "g95" -o "$f90" = "gfortran" ; then AC_SEARCH_LIBS(dgemm, mkl_gf, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_gnu_thread -lmkl_core" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_sequential -lmkl_core) else AC_SEARCH_LIBS(dgemm, mkl_intel, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_intel_thread -lmkl_core" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_sequential -lmkl_core) fi fi if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; aix:* ) # check for essl unset ac_cv_search_dgemm # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="" AC_SEARCH_LIBS(dgemm, essl, have_blas=1 blas_libs="$LIBS" ) # notice that some IBM machines may not need -lessl # to load blas so the above test may fail if test "`echo $blas_libs | grep essl`" != "" then have_essl=1 try_dflags="$try_dflags -D__ESSL" fi # we need esslsmp for hybrid (MPI+OpenMP) build if test "$have_essl"="1"; then if test "$use_openmp" -ne 0 ; then blas_libs="-lesslsmp" fi fi ;; sparc:* | solaris:* ) # check for SUNperf library unset ac_cv_search_dgemm # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="" AC_SEARCH_LIBS(dgemm, sunperf, have_blas=1 have_lapack=1 blas_libs="-xlic_lib=sunperf $LIBS") ;; necsx:* ) #sx5-nec or sx6-nec or sx8-nec: check in (/SX)/usr/lib #sx8-nec-idris: check in /SX/opt/mathkeisan/inst/lib0 try_libdirs="/SX/usr/lib /SX/opt/mathkeisan/inst/lib0" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" AC_SEARCH_LIBS(dgemm, blas, have_blas=1 blas_libs="$try_loption $LIBS") if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; ppc64:* ) # check for essl unset ac_cv_search_dgemm # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="" AC_SEARCH_LIBS(dgemm, essl, have_blas=1 blas_libs="$LIBS" ) # notice that some IBM machines may not need -lessl # to load blas so the above test may fail if test "`echo $blas_libs | grep essl`" != "" then have_essl=1 try_dflags="$try_dflags -D__LINUX_ESSL" fi # OBM:Yet another work-around if the above search # returns "none required" if test "$ac_cv_search_dgemm" = "none required" then echo "There is no need for -lessl in this machine" have_essl=1 try_dflags="$try_dflags -D__LINUX_ESSL" fi # we need esslsmp for hybrid (MPI+OpenMP) build if test "$have_essl"="1"; then if test "$use_openmp" -ne 0 ; then blas_libs="-lesslsmp" fi fi ;; ppc64-*:* ) # assume essl unset ac_cv_search_dgemm # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" have_blas=1 have_essl=1 # BlueGene: for some obscure reason there is no need to # specify a library path to have essl linked, while # in reality it is needed to specify where essl are if test "$arch"="ppc64-bg"; then try_dflags="$try_dflags -D__LINUX_ESSL" if test "$blas_libs"=""; then if test "$use_openmp" -eq 0 ; then blas_libs="-L/opt/ibmmath/essl/4.4/lib/ -lesslbg" else blas_libs="-L/opt/ibmmath/essl/4.4/lib/ -lesslsmpbg" fi fi else try_dflags="$try_dflags -D__LINUX_ESSL" fi ;; mac686:ifort* ) #This solution is tested with MacOs 10.6 and Intel 11.1 #..and now MacOs 10.8.3 and Intel 13 try_libdirs="/Developer/opt/intel/Compiler/*/*/Frameworks/mkl/lib/universal /opt/intel/Compiler/*/*/Frameworks/mkl/lib/universal /opt/intel/mkl*/lib/em64t /opt/intel/mkl/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption="" else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$MKL_FLAGS $test_ldflags $try_loption" LIBS="$MKL_LIBS" # First, a by-the-apple-book search of MKL... >10.2 requires multiple libraries # 64 bit is buggy as of 11.1.088 if test "$use_openmp" -eq 0; then AC_SEARCH_LIBS(dgemm, mkl_intel, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core -lpthread" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_sequential -lmkl_core -lpthread) else AC_SEARCH_LIBS(dgemm, mkl_intel, have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_intel_thread -lmkl_core -openmp -lpthread" ldflags="$MKL_FLAGS $ldflags", echo "MKL not found", -lmkl_intel_thread -lmkl_core -openmp -lpthread) fi # 32 bit if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; esac # blas not (yet) found: look for more possibilities if test "$have_blas" -eq 0 then case "$f90" in pgf* ) # check for PGI blas unset ac_cv_search_dgemm # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="" AC_SEARCH_LIBS(dgemm, blas, have_blas=1 blas_libs="$LIBS") ;; esac fi if test "$have_blas" -eq 0 then # check for atlas (in several directories) try_libdirs="/usr/local/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="-latlas" AC_SEARCH_LIBS(dgemm, f77blas, have_blas=1 have_atlas=1 blas_libs="$try_loption $LIBS", , -lg2c) if test "$ac_cv_search_dgemm" != "no" then break ; fi done fi # blas still not found if test "$have_blas" -eq 0 then # check for blas (in several directories) try_libdirs="/usr/local/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" AC_SEARCH_LIBS(dgemm, blas-3 openblas blas, have_blas=1 blas_libs="$try_loption $LIBS") if test "$ac_cv_search_dgemm" != "no" then break ; fi done fi else # blas provided in BLAS_LIBS - not checked! have_blas=1 fi fi # check for lapack # # same supported vendor replacements as for blas # internal version is used if none is found if test "$use_internal_lapack" -eq 0 then if test "$lapack_libs" = "" then # check directories in LD_LIBRARY_PATH too # (maybe they are already searched by default, but I'm not sure) ld_library_path=`echo $LD_LIBRARY_PATH | sed 's/:/ /g'` case "$arch:$f90" in ia32:* | ia64:*| x86_64:* ) # check for mkl_lapack (if mkl found and acml not found) # OBSOLESCENT - recent versions of mkl contain lapack if test "$have_mkl" -ne 0 && test "$have_acml" -eq 0 then unset ac_cv_search_dspev ac_lib # clear cached value FFLAGS="$test_fflags" LIBS=" $blas_libs" LDFLAGS="$MKL_FLAGS $test_ldflags" AC_SEARCH_LIBS(dspev, mkl_lapack, have_lapack=1) if test "$ac_lib" != "" ; then lapack_libs="-l$ac_lib"; fi fi ;; sparc:* ) # check for SUNperf library unset ac_cv_search_dspev # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$blas_libs" AC_SEARCH_LIBS(dspev, sunperf, have_lapack=1 lapack_libs="-xlic_lib=sunperf $LIBS") ;; aix:* ) # check for essl unset ac_cv_search_dspev # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$blas_libs" AC_SEARCH_LIBS(dspev, essl, have_lapack=1 lapack_libs="$try_loption $LIBS" try_dflags="$try_dflags -D__ESSL") # essl may not have been found in previous test on blas if test "$have_lapack" -eq 1; then have_essl=1; fi ;; ppc64:* ) # check for essl unset ac_cv_search_dspev # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$blas_libs" AC_SEARCH_LIBS(dspev, essl, have_lapack=1 lapack_libs="$try_loption $LIBS" try_dflags="$try_dflags -D__LINUX_ESSL") # essl may not have been found in previous test on blas if test "$have_lapack" -eq 1; then have_essl=1; fi ;; necsx:* ) #sx5-nec or sx6-nec or sx8-nec: check in (/SX)/usr/lib #sx8-nec-idris: check in /SX/opt/mathkeisan/inst/lib0 try_libdirs="/SX/usr/lib /SX/opt/mathkeisan/inst/lib0" for dir in none $try_libdirs do unset ac_cv_search_dspev # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption $blas_libs" LIBS="" AC_SEARCH_LIBS(dspev, lapack, have_lapack=1 lapack_libs="$try_loption $LIBS") if test "$ac_cv_search_dspev" != "no" then break ; fi done ;; esac if test "$have_lapack" -eq 0 then # check for lapack (in several directories) try_libdirs="/usr/local/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dspev # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="$blas_libs" AC_SEARCH_LIBS(dspev, lapack-3 lapack, have_lapack=1 lapack_libs="$try_loption $LIBS") if test "$ac_cv_search_dspev" != "no"; then # essl must precede lapack (if present) if test "$have_essl" -ne 0 ; then lapack_libs="$blas_libs $lapack_libs" fi break fi done fi else # lapack provided in LAPACK_LIBS - not checked! have_lapack=1 fi fi # no blas library found, or internal blas required: use the built-in blas # (blas_libs is used in the above lapack tests: do not move the following # settings above lapack tests, which would seem a more logical place) if test "$have_blas" -eq 0 -o "$use_internal_blas" -eq 1 ; then blas_libs="$topdir/BLAS/blas.a" blas_libs_switch="internal" else blas_libs_switch="external" fi # no lapack library found, or incomplete lapack found (atlas, essl), # or internal lapack esplicitly required if test "$have_lapack" -eq 0 -o "$use_internal_lapack" -eq 1 ; then lapack_libs="$topdir/lapack-3.2/lapack.a" lapack_libs_switch="internal" else if test "$have_essl" -eq 1 -o "$have_atlas" -eq 1 ; then # IBM essl or atlas: add missing lapack routines - must be loaded after lib # atlas: add missing lapack routines so as to complete atlas # note that some compilers do not like to have multiple symbols lapack_libs="$lapack_libs $topdir/lapack-3.2/lapack.a" lapack_libs_switch="internal" else lapack_libs_switch="external" fi fi echo setting BLAS_LIBS... $blas_libs echo setting LAPACK_LIBS... $lapack_libs # check for FFT libraries (no check for explicit openmp) # supported vendor replacements: # essl on aix and some IBM linux machines # SUNperf on sparc # ASL/Mathkeisan on Nec # acml on amd if test "$fft_libs" = "" && test "$use_openmp" -eq 0 then # check directories in LD_LIBRARY_PATH too # (maybe they are already searched by default, but I'm not sure) ld_library_path=`echo $LD_LIBRARY_PATH | sed 's/:/ /g'` case "$arch" in aix ) # check for essl unset ac_cv_search_dcft # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$fft_libs" AC_SEARCH_LIBS(dcft, essl, have_fft=1 fft_libs="$LIBS") ;; ppc64 | ppc64-mn ) # check for essl unset ac_cv_search_dcft # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$fft_libs" AC_SEARCH_LIBS(dcft, essl, have_fft=1 fft_libs="$LIBS") ;; ppc64-bg | ppc64-bgq ) # check for esslbg unset ac_cv_search_dcft # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$fft_libs $blas_libs" AC_SEARCH_LIBS(dcft, esslbg, have_fft=1 fft_libs="$LIBS") ;; sparc ) # check for SUNperf FFT library on Sun Sparcs # but not on solaris PC! it is slower than FFTW unset ac_cv_search_zfft3i # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$libs" AC_SEARCH_LIBS(zfft3i, sunperf, have_fft=1 try_dflags="$try_dflags -D__SUNPERF" fft_libs="-xlic_lib=sunperf $LIBS") ;; necsx ) if test "$use_fft_mathkeisan" -ne 0 then #sx5-nec or sx6-nec or sx8-nec: check in (/SX)/usr/lib #sx8-nec-idris: check in /SX/opt/mathkeisan/inst/lib0 try_libdirs="/SX/usr/lib /SX/opt/mathkeisan/inst/lib0" #check for Mathkeisan (Cray simple precision ) #search for initialization subroutine echo $ECHO_N "Searching in Mathkeisan" $ECHO_C for dir in none $try_libdirs do unset ac_cv_search_zftfax # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" AC_SEARCH_LIBS(zftfax, fft, have_fft=1 try_dflags="$try_dflags try_dflags_fft_mathkeisan" fft_libs="$try_loption $LIBS") if test "$ac_cv_search_zftfax" != "no" then break ; fi done fi if test "$use_fft_asl" -ne 0 then #check for asl in (/SX)/usr/lib try_libdirs="/SX/usr/lib" #search for initialization subroutine echo $ECHO_N "Searching in Asl" $ECHO_C for dir in none $try_libdirs do unset ac_cv_search_zfc3cl # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" AC_SEARCH_LIBS(zfc3cl, asl, have_fft=1 asl_libs="$try_loption $LIBS" try_dflags="$try_dflags $try_dflags_fft_asl" fft_libs="$fft_libs $asl_libs") if test "$ac_cv_search_zfc3cl" != "no" then break ; fi done fi if test "$use_fft_para" -ne 0 then try_dflags="$try_dflags $try_dflags_fft_para" fi ;; esac fi if test "$have_fft" -eq 0 && test "$use_openmp" -eq 0 then # check for fftw v.3 (in several directories) try_libdirs="/usr/local/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dfftw_execute_dft # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi CFLAGS="$test_cflags" CPPFLAGS="$test_cppflags" LDFLAGS="$c_ldflags $try_loption" LIBS="$fft_libs" AC_SEARCH_LIBS(dfftw_execute_dft, fftw3, have_fft=1 fft_libs="$try_loption $LIBS", , -lm) if test "$ac_cv_search_dfftw_execute_dft" != "no" then try_dflags="$try_dflags -D__FFTW3" break fi done fi echo setting FFT_LIBS... $fft_libs # if no valid FFT library was found, use the local copy # (This happens also if OpenMP is enabled...) if test "$have_fft" -eq 0 then case "$arch" in ppc64-bg | ppc64-bgq ) try_dflags="$try_dflags -D__LINUX_ESSL" ;; * ) try_dflags="$try_dflags -D__FFTW" ;; esac fi F77=$f90 FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" # check for mass on aix if test "$mass_libs" = "" then # check directories in LD_LIBRARY_PATH too # (maybe they are already searched by default, but I'm not sure) ld_library_path=`echo $LD_LIBRARY_PATH | sed 's/:/ /g'` case "$arch" in aix | ppc64-bg ) # check for mass (in several directories) try_libdirs="/opt/ibmcmp/xlmass/bg/7.3/bglib64 /opt/ibmcmp/xlmass/bg/4.4/bglib /cineca/lib /cineca/lib/mass" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_vexp # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" AC_SEARCH_LIBS(vexp, massvp4 massv, , , -lmass) if test "$ac_cv_search_vexp" = "-lmassvp4" \ -o "$ac_cv_search_vexp" = "-lmassv" then mass_libs="$try_loption $ac_cv_search_vexp -lmass" fi if test "$ac_cv_search_vexp" != "no" ; then break ; fi done ;; ppc64-bgq ) # check for mass (in several directories) try_libdirs="/opt/ibmcmp/xlmass/bg/7.3/bglib64" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_vexp # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" AC_SEARCH_LIBS(vexp, massv, , , -lmass_simd) if test "$ac_cv_search_vexp" = "-lmassv" then mass_libs="$try_loption $ac_cv_search_vexp -lmass_simd" fi if test "$ac_cv_search_vexp" != "no" ; then break ; fi done ;; ppc64* ) # check for mass (in several directories) try_libdirs="/usr/local/lib /opt/ibmcmp/xlmass/*/lib64" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_vexp # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" AC_SEARCH_LIBS(vexp, massvp4_64, , , -lmass_64) if test "$ac_cv_search_vexp" = "-lmassvp4_64" then mass_libs="$try_loption $ac_cv_search_vexp -lmass_64" fi if test "$ac_cv_search_vexp" != "no" ; then break ; fi done ;; esac fi if test "$mass_libs" != ""; then try_dflags="$try_dflags -D__MASS" if test "$arch" = "ppc64-bg"; then # BlueGene wants this when mass libs are loaded, SP6 doesn't want this! ldflags="$ldflags -Wl,--allow-multiple-definition" fi if test "$arch" = "ppc64-bgq"; then # BlueGene wants this when mass libs are loaded, SP6 doesn't want this! ldflags="$ldflags -Wl,--allow-multiple-definition" fi fi echo setting MASS_LIBS... $mass_libs # check for mpi # some architectures require to link mpi libraries explicitly F77=$mpif90 # use parallel compiler if test "$mpi_libs" = "" then # check directories in LD_LIBRARY_PATH too # (maybe they are already searched by default, but I'm not sure) ld_library_path=`echo $LD_LIBRARY_PATH | sed 's/:/ /g'` if test "$use_parallel" -ne 0 then if test "$have_mpi" -eq 0 # check for mpi then unset ac_cv_search_mpi_init # clear cached value LDFLAGS="$test_ldflags" LIBS="$mpi_libs" AC_SEARCH_LIBS(mpi_init, mpi, have_mpi=1 mpi_libs="$LIBS") fi fi fi echo setting MPI_LIBS... $mpi_libs # final check on availability of parallel environment parallel=0 for dummy in x # to allow simple 'break' do test "$use_parallel" -eq 0 && break F77=$mpif90 LIBS="$mpi_libs" AC_SEARCH_LIBS(mpi_init, "", parallel=1 try_dflags="$try_dflags -D__MPI -D__PARA") # look for scalapack if required test "$parallel" -eq 0 && break test "$with_scalapack" -eq 0 && break if test "$scalapack_libs" = "" ; then # no additional libraries needed AC_SEARCH_LIBS(pdgemr2d, "" , have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK") test "$have_scalapack" -eq 1 && break # Intel MKL blacs&scalapack - Norbert Nemec 2010/08/20 # # Carlo Cavazzoni writes # If you want to use the version of scalapack distributed with MKL # you should be careful about: # 1) the size of the integer variable when calling MKL subroutine, # QE (up to now) uses integer*4, so you should link version with # the suffix: lp64 and NOT ilp64 . # 2) you should link the appropriate blacs for your MPI library: # INTEL MPI -> libmkl_blacs_intelmpi_lp64.a # OpenMPI -> libmkl_blacs_openmpi_lp64.a # SGI MPI -> libmkl_blacs_sgimpt_lp64.a # # if you are in doubt or if you have another version of MPI # you can always build BLACS by yourself. # if test "$have_mkl" -eq 1 then unset ac_cv_search_pdgemr2d # clear cached value LIBS="-lmkl_blacs_lp64 $mpi_libs $blas_libs" if test $with_scalapack -eq 1; then scalapack_libs=-lmkl_blacs_openmpi_lp64 else scalapack_libs=-lmkl_blacs_intelmpi_lp64 fi AC_SEARCH_LIBS(pdgemr2d, "mkl_scalapack_lp64" , have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK" scalapack_libs="-lmkl_scalapack_lp64 $scalapack_libs" ) test "$have_scalapack" -eq 1 && break fi # # sci libraries (e.g. cray xt) unset ac_cv_search_pdgemr2d # clear cached value scalapack_libs="-lsci" LIBS="$mpi_libs $scalapack_libs" AC_SEARCH_LIBS(pdgemr2d, "" , have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK") test "$have_scalapack" -eq 1 && break # scalapack (including blacs), no -L options unset ac_cv_search_pdgemr2d # clear cached value scalapack_libs="-lscalapack" LIBS="$mpi_libs $scalapack_libs" LDFLAGS="" AC_SEARCH_LIBS(pdgemr2d, "" , have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK") test "$have_scalapack" -eq 1 && break # scalapack + blacs, no -L options unset ac_cv_search_pdgemr2d # clear cached value blacs_libs="-lblacs -lblacsF77init -lblacs" scalapack_libs="-lscalapack $blacs_libs" LIBS="$mpi_libs $scalapack_libs" LDFLAGS="" AC_SEARCH_LIBS(pdgemr2d, "" , have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK") test "$have_scalapack" -eq 1 && break # scalapack + blacs with -L options unset ac_cv_search_pdgemr2d # clear cached value if test "$scalapack_dir" = ""; then scalapack_dir="/bgsys/local/scalapack/lib"; fi if test "$blacs_dir" = ""; then blacs_dir="/bgsys/local/blacs/lib"; fi blacs_libs="-L$blacs_dir -lblacs -lblacsF77init -lblacs" scalapack_libs="-L$scalapack_dir -lscalapack $blacs_libs" LIBS="$mpi_libs $scalapack_libs" LDFLAGS="" AC_SEARCH_LIBS(pdgemr2d, "" , have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK") else # scalapack provided in SCALAPACK_LIBS - not checked! have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK" fi done # ELPA iff SCALAPACK elpa_libs_switch="disabled" if test "$with_elpa" -eq 2 && test "$have_scalapack" -eq 1; then scalapack_libs="-L$with_elpa_path/lib -lelpa $scalapack_libs" # ELPA includes for FORTRAN, works with 2013.08 try_iflags="$try_iflags -I$with_elpa_path/include -I$with_elpa_path/include/elpa/modules " try_dflags="$try_dflags -D__ELPA" fi if test "$with_elpa" -eq 1 && test "$have_scalapack" -eq 1; then scalapack_libs="\$(TOPDIR)/ELPA/libelpa.a $scalapack_libs" try_dflags="$try_dflags -D__ELPA" elpa_libs_switch="enabled" fi echo setting SCALAPACK_LIBS... $scalapack_libs # preprocessing flag for openmp (experimental) if test "$use_openmp" -eq 1 ; then try_dflags="$try_dflags -D__OPENMP" ; fi # preprocessing flag for signal trapping (experimental) if test "$use_signals" -eq 1 ; then try_dflags="$try_dflags -D__TRAP_SIGUSR1" ; fi #OBM - This is yet another variable for internal copy of BLAS/LAPACK if test "$extlib_flags" = "" ; then case "$arch" in ppc64 ) extlib_flags="-q64 -qthreaded" echo setting extlib_flags ... $extlib_flags ;; esac fi ## if test "$dflags" = "" ; then dflags="$try_dflags" ; fi echo setting DFLAGS... $dflags if test "$iflags" = "" ; then iflags="$try_iflags" ; fi echo setting IFLAGS... $iflags # xlf compilers (AIX and powerpc) want comma-separated -D directives if test "$xlf_flags" -ne 0 then fdflags="`echo $dflags | sed 's/ */,/g'`" else fdflags="\$(DFLAGS)" fi echo setting FDFLAGS... $fdflags if test "$ranlib" != "echo" then AC_CHECK_PROG(ranlib,ranlib,ranlib,echo) fi # MacOs workaround for ranlib if test "$arch" = "mac686"; then if test "$ranlib" = "ranlib"; then ranlib="ranlib -c" fi fi echo setting RANLIB... $ranlib # check if wget or curl work AC_CHECK_PROG(wget, wget, wget -O) if test "$wget" = ""; then AC_CHECK_PROG(wget, curl, curl -o) fi echo setting WGET... $wget # configure output messages blas_line="BLAS_LIBS=$blas_libs" if test "$have_scalapack" -eq 1; then scalapack_line="SCALAPACK_LIBS=$scalapack_libs" else scalapack_libs="" scalapack_line="@delete@" fi lapack_line="LAPACK_LIBS=$lapack_libs" fft_line="FFT_LIBS=$fft_libs" if test "$mpi_libs" != "" ; then mpi_line="MPI_LIBS=$mpi_libs" else mpi_line="@delete@" fi if test "$mass_libs" != "" ; then mass_line="MASS_LIBS=$mass_libs" else mass_line="@delete@" fi if test "$use_parallel" -ne 0 then if test "$parallel" -ne 0 then parallel_report="Parallel environment detected successfully.\\ Configured for compilation of parallel executables." else parallel_report="Parallel environment not detected \ \(is this a parallel machine?\).\\ Configured for compilation of serial executables." fi else parallel_report="Configured for compilation of serial executables." fi # export settings to generated files AC_SUBST(cc) AC_SUBST(cflags) AC_SUBST(dflags) AC_SUBST(fdflags) AC_SUBST(cpp) AC_SUBST(cppflags) AC_SUBST(f90) AC_SUBST(mpif90) AC_SUBST(f90flags) AC_SUBST(f77) AC_SUBST(fflags) AC_SUBST(fflags_noopt) AC_SUBST(fflags_nomain) AC_SUBST(pre_fdflags) AC_SUBST(imod) AC_SUBST(iflags) AC_SUBST(ld) AC_SUBST(ldflags) AC_SUBST(ld_libs) AC_SUBST(blas_libs) AC_SUBST(blas_libs_switch) AC_SUBST(lapack_libs) AC_SUBST(lapack_libs_switch) AC_SUBST(fft_libs) AC_SUBST(mpi_libs) AC_SUBST(mass_libs) AC_SUBST(elpa_libs_switch) AC_SUBST(scalapack_libs) AC_SUBST(ar) AC_SUBST(arflags) AC_SUBST(ranlib) AC_SUBST(f90rule) AC_SUBST(blas_line) AC_SUBST(lapack_line) AC_SUBST(scalapack_line) AC_SUBST(fft_line) AC_SUBST(mpi_line) AC_SUBST(mass_line) AC_SUBST(parallel_report) AC_SUBST(wget) AC_SUBST(topdir) AC_SUBST(extlib_flags) AC_CONFIG_HEADERS([include/c_defs.h:include/c_defs.h.in]) AC_CONFIG_FILES(make.sys) AC_CONFIG_FILES(configure.msg) AC_CONFIG_FILES(install/make_wannier90.sys) AC_CONFIG_FILES(install/make_blas.inc) AC_CONFIG_FILES(install/make_lapack.inc) AC_OUTPUT # final messages sed '/@delete@/d' configure.msg echo configure: success espresso-5.1/install/Makefile_iotk0000644000175000017500000017374512341373034015457 0ustar mbamba# # DO NOT EDIT THIS FILE MANUALLY # This makefile was automatically generated # Directory : iotk # Package : Input/Output Tool Kit # Version : 1.1.0development # Authors : Giovanni Bussi # # Today is Thu Mar 20 09:48:09 CET 2008 # # Global OPTIONS file has NOT been found # Local OPTIONS file has been used in generation # # Sources defined by: *.f90 *.c *.f # # List of MAIN source files # (Fortran files containing a program statement): # example1.f90 example2.f90 example3.f90 example4.f90 iotk_copy.f90 iotk.f90 # iotk_print_kinds.f90 test2.f90 test3.f90 test4.f90 test5.f90 test6.f90 # test7.f90 test8.f90 test9.f90 test.f90 # # List of LIB source files # (Fortran files NOT containing a program statement and c files): # iotk_attr+CHARACTER1_0.f90 iotk_attr+COMPLEX1_0.f90 iotk_attr+COMPLEX1_3.f90 # iotk_attr+COMPLEX1_6.f90 iotk_attr+COMPLEX2_0.f90 iotk_attr+COMPLEX2_3.f90 # iotk_attr+COMPLEX2_6.f90 iotk_attr+COMPLEX3_0.f90 iotk_attr+COMPLEX3_3.f90 # iotk_attr+COMPLEX3_6.f90 iotk_attr+COMPLEX4_0.f90 iotk_attr+COMPLEX4_3.f90 # iotk_attr+COMPLEX4_6.f90 iotk_attr.f90 iotk_attr+INTEGER1_0.f90 # iotk_attr+INTEGER1_3.f90 iotk_attr+INTEGER1_6.f90 iotk_attr+INTEGER2_0.f90 # iotk_attr+INTEGER2_3.f90 iotk_attr+INTEGER2_6.f90 iotk_attr+INTEGER3_0.f90 # iotk_attr+INTEGER3_3.f90 iotk_attr+INTEGER3_6.f90 iotk_attr+INTEGER4_0.f90 # iotk_attr+INTEGER4_3.f90 iotk_attr+INTEGER4_6.f90 iotk_attr_interf.f90 # iotk_attr+LOGICAL1_0.f90 iotk_attr+LOGICAL1_3.f90 iotk_attr+LOGICAL1_6.f90 # iotk_attr+LOGICAL2_0.f90 iotk_attr+LOGICAL2_3.f90 iotk_attr+LOGICAL2_6.f90 # iotk_attr+LOGICAL3_0.f90 iotk_attr+LOGICAL3_3.f90 iotk_attr+LOGICAL3_6.f90 # iotk_attr+LOGICAL4_0.f90 iotk_attr+LOGICAL4_3.f90 iotk_attr+LOGICAL4_6.f90 # iotk_attr+REAL1_0.f90 iotk_attr+REAL1_3.f90 iotk_attr+REAL1_6.f90 # iotk_attr+REAL2_0.f90 iotk_attr+REAL2_3.f90 iotk_attr+REAL2_6.f90 # iotk_attr+REAL3_0.f90 iotk_attr+REAL3_3.f90 iotk_attr+REAL3_6.f90 # iotk_attr+REAL4_0.f90 iotk_attr+REAL4_3.f90 iotk_attr+REAL4_6.f90 iotk_base.f90 # iotk_dat+CHARACTER1_0.f90 iotk_dat+CHARACTER1_3.f90 iotk_dat+CHARACTER1_6.f90 # iotk_dat+COMPLEX1_0.f90 iotk_dat+COMPLEX1_3.f90 iotk_dat+COMPLEX1_6.f90 # iotk_dat+COMPLEX2_0.f90 iotk_dat+COMPLEX2_3.f90 iotk_dat+COMPLEX2_6.f90 # iotk_dat+COMPLEX3_0.f90 iotk_dat+COMPLEX3_3.f90 iotk_dat+COMPLEX3_6.f90 # iotk_dat+COMPLEX4_0.f90 iotk_dat+COMPLEX4_3.f90 iotk_dat+COMPLEX4_6.f90 # iotk_dat.f90 iotk_dat+INTEGER1_0.f90 iotk_dat+INTEGER1_3.f90 # iotk_dat+INTEGER1_6.f90 iotk_dat+INTEGER2_0.f90 iotk_dat+INTEGER2_3.f90 # iotk_dat+INTEGER2_6.f90 iotk_dat+INTEGER3_0.f90 iotk_dat+INTEGER3_3.f90 # iotk_dat+INTEGER3_6.f90 iotk_dat+INTEGER4_0.f90 iotk_dat+INTEGER4_3.f90 # iotk_dat+INTEGER4_6.f90 iotk_dat_interf.f90 iotk_dat+LOGICAL1_0.f90 # iotk_dat+LOGICAL1_3.f90 iotk_dat+LOGICAL1_6.f90 iotk_dat+LOGICAL2_0.f90 # iotk_dat+LOGICAL2_3.f90 iotk_dat+LOGICAL2_6.f90 iotk_dat+LOGICAL3_0.f90 # iotk_dat+LOGICAL3_3.f90 iotk_dat+LOGICAL3_6.f90 iotk_dat+LOGICAL4_0.f90 # iotk_dat+LOGICAL4_3.f90 iotk_dat+LOGICAL4_6.f90 iotk_dat+REAL1_0.f90 # iotk_dat+REAL1_3.f90 iotk_dat+REAL1_6.f90 iotk_dat+REAL2_0.f90 # iotk_dat+REAL2_3.f90 iotk_dat+REAL2_6.f90 iotk_dat+REAL3_0.f90 # iotk_dat+REAL3_3.f90 iotk_dat+REAL3_6.f90 iotk_dat+REAL4_0.f90 # iotk_dat+REAL4_3.f90 iotk_dat+REAL4_6.f90 iotk_error.f90 iotk_error_interf.f90 # iotk_files.f90 iotk_files_interf.f90 iotk_fmt.f90 iotk_fmt_interf.f90 # iotk_misc.f90 iotk_misc_interf.f90 iotk_module.f90 iotk_scan.f90 # iotk_scan_interf.f90 iotk_stream.f90 iotk_stream_interf.f90 iotk_str.f90 # iotk_str_interf.f90 iotk_tool.f90 iotk_tool_interf.f90 iotk_unit.f90 # iotk_unit_interf.f90 iotk_unit_list.f90 iotk_write.f90 iotk_write_interf.f90 # iotk_xtox.f90 iotk_xtox_interf.f90 # # Used libraries # # # Linked libraries # # # The real Makefile starts here # # IDE HOME variable set to DEFAULT IDEHOME=../.. # Default configuratione file CONFIG_FILE=../../../make.sys # # Objects to be linked in the library OBJ_LIB= iotk_attr+CHARACTER1_0.o iotk_attr+COMPLEX1_0.o iotk_attr+COMPLEX1_3.o\ iotk_attr+COMPLEX1_6.o iotk_attr+COMPLEX2_0.o iotk_attr+COMPLEX2_3.o\ iotk_attr+COMPLEX2_6.o iotk_attr+COMPLEX3_0.o iotk_attr+COMPLEX3_3.o\ iotk_attr+COMPLEX3_6.o iotk_attr+COMPLEX4_0.o iotk_attr+COMPLEX4_3.o\ iotk_attr+COMPLEX4_6.o iotk_attr.o iotk_attr+INTEGER1_0.o\ iotk_attr+INTEGER1_3.o iotk_attr+INTEGER1_6.o iotk_attr+INTEGER2_0.o\ iotk_attr+INTEGER2_3.o iotk_attr+INTEGER2_6.o iotk_attr+INTEGER3_0.o\ iotk_attr+INTEGER3_3.o iotk_attr+INTEGER3_6.o iotk_attr+INTEGER4_0.o\ iotk_attr+INTEGER4_3.o iotk_attr+INTEGER4_6.o iotk_attr_interf.o\ iotk_attr+LOGICAL1_0.o iotk_attr+LOGICAL1_3.o iotk_attr+LOGICAL1_6.o\ iotk_attr+LOGICAL2_0.o iotk_attr+LOGICAL2_3.o iotk_attr+LOGICAL2_6.o\ iotk_attr+LOGICAL3_0.o iotk_attr+LOGICAL3_3.o iotk_attr+LOGICAL3_6.o\ iotk_attr+LOGICAL4_0.o iotk_attr+LOGICAL4_3.o iotk_attr+LOGICAL4_6.o\ iotk_attr+REAL1_0.o iotk_attr+REAL1_3.o iotk_attr+REAL1_6.o iotk_attr+REAL2_0.o\ iotk_attr+REAL2_3.o iotk_attr+REAL2_6.o iotk_attr+REAL3_0.o iotk_attr+REAL3_3.o\ iotk_attr+REAL3_6.o iotk_attr+REAL4_0.o iotk_attr+REAL4_3.o iotk_attr+REAL4_6.o\ iotk_base.o iotk_dat+CHARACTER1_0.o iotk_dat+CHARACTER1_3.o\ iotk_dat+CHARACTER1_6.o iotk_dat+COMPLEX1_0.o iotk_dat+COMPLEX1_3.o\ iotk_dat+COMPLEX1_6.o iotk_dat+COMPLEX2_0.o iotk_dat+COMPLEX2_3.o\ iotk_dat+COMPLEX2_6.o iotk_dat+COMPLEX3_0.o iotk_dat+COMPLEX3_3.o\ iotk_dat+COMPLEX3_6.o iotk_dat+COMPLEX4_0.o iotk_dat+COMPLEX4_3.o\ iotk_dat+COMPLEX4_6.o iotk_dat.o iotk_dat+INTEGER1_0.o iotk_dat+INTEGER1_3.o\ iotk_dat+INTEGER1_6.o iotk_dat+INTEGER2_0.o iotk_dat+INTEGER2_3.o\ iotk_dat+INTEGER2_6.o iotk_dat+INTEGER3_0.o iotk_dat+INTEGER3_3.o\ iotk_dat+INTEGER3_6.o iotk_dat+INTEGER4_0.o iotk_dat+INTEGER4_3.o\ iotk_dat+INTEGER4_6.o iotk_dat_interf.o iotk_dat+LOGICAL1_0.o\ iotk_dat+LOGICAL1_3.o iotk_dat+LOGICAL1_6.o iotk_dat+LOGICAL2_0.o\ iotk_dat+LOGICAL2_3.o iotk_dat+LOGICAL2_6.o iotk_dat+LOGICAL3_0.o\ iotk_dat+LOGICAL3_3.o iotk_dat+LOGICAL3_6.o iotk_dat+LOGICAL4_0.o\ iotk_dat+LOGICAL4_3.o iotk_dat+LOGICAL4_6.o iotk_dat+REAL1_0.o\ iotk_dat+REAL1_3.o iotk_dat+REAL1_6.o iotk_dat+REAL2_0.o iotk_dat+REAL2_3.o\ iotk_dat+REAL2_6.o iotk_dat+REAL3_0.o iotk_dat+REAL3_3.o iotk_dat+REAL3_6.o\ iotk_dat+REAL4_0.o iotk_dat+REAL4_3.o iotk_dat+REAL4_6.o iotk_error.o\ iotk_error_interf.o iotk_files.o iotk_files_interf.o iotk_fmt.o\ iotk_fmt_interf.o iotk_misc.o iotk_misc_interf.o iotk_module.o iotk_scan.o\ iotk_scan_interf.o iotk_stream.o iotk_stream_interf.o iotk_str.o\ iotk_str_interf.o iotk_tool.o iotk_tool_interf.o iotk_unit.o iotk_unit_interf.o\ iotk_unit_list.o iotk_write.o iotk_write_interf.o iotk_xtox.o iotk_xtox_interf.o # # Macros to link the present library # (may be change by make.sys to the path of installed library) LIB_IOTK=libiotk.a LIB_IOTK_INCLUDE=-I. -I$(IDEHOME)/iotk/include # Switch to enable actual compilation # (may be change by make.sys to "external") LIB_IOTK_SWITCH=internal # Path for include AUTO_INCLUDE=$(LIB_IOTK_INCLUDE) # List of used library files AUTO_LIBS=$(LIB_IOTK) # Inclusion of system dependent files include $(CONFIG_FILE) # Macro (re)definitions from OPTIONS file (keyword DEFINITION) # Nothing found # Main target # INFO print a short help info: @make print_info # INFO make local library and all executables all: make loclib make example1.x make example2.x make example3.x make example4.x make iotk_copy.x make iotk.x make iotk_print_kinds.x make test2.x make test3.x make test4.x make test5.x make test6.x make test7.x make test8.x make test9.x make test.x # INFO make local library loclib: libs loclib_only loclib_only: ide_$(LIB_IOTK_SWITCH) ide_internal: libiotk.a ide_external: fake_external.a fake_external.a: touch $(OBJ_LIB) touch libiotk.a touch fake_external.a # Targets for executables # INFO make program example1.x example1.x: example1.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o example1.x example1.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program example2.x example2.x: example2.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o example2.x example2.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program example3.x example3.x: example3.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o example3.x example3.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program example4.x example4.x: example4.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o example4.x example4.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program iotk_copy.x iotk_copy.x: iotk_copy.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o iotk_copy.x iotk_copy.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program iotk.x iotk.x: iotk.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o iotk.x iotk.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program iotk_print_kinds.x iotk_print_kinds.x: iotk_print_kinds.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o iotk_print_kinds.x iotk_print_kinds.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program test2.x test2.x: test2.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o test2.x test2.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program test3.x test3.x: test3.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o test3.x test3.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program test4.x test4.x: test4.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o test4.x test4.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program test5.x test5.x: test5.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o test5.x test5.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program test6.x test6.x: test6.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o test6.x test6.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program test7.x test7.x: test7.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o test7.x test7.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program test8.x test8.x: test8.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o test8.x test8.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program test9.x test9.x: test9.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o test9.x test9.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # INFO make program test.x test.x: test.o libiotk.a make loclib_only $(LD) $(LDFLAGS) -o test.x test.o $(AUTO_LIBS) $(MPI_LIBS) $(LD_LIBS) # Targets for libraries # INFO make local library (without the used libraries) libiotk.a: $(OBJ_LIB) $(AR) $(ARFLAGS) libiotk.a $(OBJ_LIB) $(RANLIB) libiotk.a # INFO make all the used libs libs: # target for making Makefile # INFO make local Makefile make: cd $(IDEHOME) ; iotk/IDE/makemake.sh iotk # target for cleaning clean_: clean # INFO cleanup clean: - rm -f *.a *.o *.mod *.d *.pc *.pcl *.x *.F90 - rm -rf $(IDEHOME)/iotk/tmp/* - rm -f $(IDEHOME)/iotk/bin/*.x # Directly added lines from OPTIONS file (keyword MAKEFILE) # Directly added lines # INFO updates all *.f90 files with preprocessor update: cd ../include ; ../IDE/bin/sprep --autodep iotk_auxmacros.spp --include . --suffix .h ../IDE/bin/sprep --autodep *.spp --include ../include # INFO similar to update, with --compare-first (still unstable) update-compare: cd ../include ; ../IDE/bin/sprep --compare-first --autodep iotk_auxmacros.spp --include . --suffix .h ../IDE/bin/sprep --autodep *.spp --compare-first --include ../include # INFO creates a directory tmp/export containing few source files export: cd .. ; tools/export # INFO builds the local library and some utilities lib+util: loclib iotk_print_kinds.x iotk.x # Special rules for selected files (keyword DEFINITION.filebase) # Nothing found print_info: @echo " Package : Input/Output Tool Kit" @echo " Version : 1.1.0development" @echo " Authors : Giovanni Bussi" @echo @echo " type: make " @echo " Possible 's are:" @echo " info print a short help" @echo " all make local library and all executables" @echo " loclib make local library" @echo " example1.x make program example1.x" @echo " example2.x make program example2.x" @echo " example3.x make program example3.x" @echo " example4.x make program example4.x" @echo " iotk_copy.x make program iotk_copy.x" @echo " iotk.x make program iotk.x" @echo " iotk_print_kinds.x make program iotk_print_kinds.x" @echo " test2.x make program test2.x" @echo " test3.x make program test3.x" @echo " test4.x make program test4.x" @echo " test5.x make program test5.x" @echo " test6.x make program test6.x" @echo " test7.x make program test7.x" @echo " test8.x make program test8.x" @echo " test9.x make program test9.x" @echo " test.x make program test.x" @echo " libiotk.a make local library (without the used libraries)" @echo " libs make all the used libs" @echo " make make local Makefile" @echo " clean cleanup" @echo " update updates all *.f90 files with preprocessor" @echo " update-compare similar to update, with --compare-first (still unstable)" @echo " export creates a directory tmp/export containing few source files" @echo " lib+util builds the local library and some utilities" @echo # Dependencies example1.o : iotk_module.o example2.o : iotk_module.o example3.o : iotk_module.o example4.o : iotk_module.o iotk_attr+CHARACTER1_0.o : ../include/iotk_auxmacros.h iotk_attr+CHARACTER1_0.o : ../include/iotk_config.h iotk_attr+CHARACTER1_0.o : iotk_attr_interf.o iotk_attr+CHARACTER1_0.o : iotk_base.o iotk_attr+CHARACTER1_0.o : iotk_error_interf.o iotk_attr+CHARACTER1_0.o : iotk_misc_interf.o iotk_attr+CHARACTER1_0.o : iotk_str_interf.o iotk_attr+COMPLEX1_0.o : ../include/iotk_auxmacros.h iotk_attr+COMPLEX1_0.o : ../include/iotk_config.h iotk_attr+COMPLEX1_0.o : iotk_attr_interf.o iotk_attr+COMPLEX1_0.o : iotk_base.o iotk_attr+COMPLEX1_0.o : iotk_error_interf.o iotk_attr+COMPLEX1_0.o : iotk_fmt_interf.o iotk_attr+COMPLEX1_0.o : iotk_misc_interf.o iotk_attr+COMPLEX1_0.o : iotk_str_interf.o iotk_attr+COMPLEX1_0.o : iotk_xtox_interf.o iotk_attr+COMPLEX1_3.o : ../include/iotk_auxmacros.h iotk_attr+COMPLEX1_3.o : ../include/iotk_config.h iotk_attr+COMPLEX1_3.o : iotk_attr_interf.o iotk_attr+COMPLEX1_3.o : iotk_base.o iotk_attr+COMPLEX1_3.o : iotk_error_interf.o iotk_attr+COMPLEX1_3.o : iotk_misc_interf.o iotk_attr+COMPLEX1_3.o : iotk_str_interf.o iotk_attr+COMPLEX1_6.o : ../include/iotk_auxmacros.h iotk_attr+COMPLEX1_6.o : ../include/iotk_config.h iotk_attr+COMPLEX1_6.o : iotk_attr_interf.o iotk_attr+COMPLEX1_6.o : iotk_base.o iotk_attr+COMPLEX1_6.o : iotk_error_interf.o iotk_attr+COMPLEX1_6.o : iotk_misc_interf.o iotk_attr+COMPLEX1_6.o : iotk_str_interf.o iotk_attr+COMPLEX2_0.o : ../include/iotk_auxmacros.h iotk_attr+COMPLEX2_0.o : ../include/iotk_config.h iotk_attr+COMPLEX2_0.o : iotk_attr_interf.o iotk_attr+COMPLEX2_0.o : iotk_base.o iotk_attr+COMPLEX2_0.o : iotk_error_interf.o iotk_attr+COMPLEX2_0.o : iotk_fmt_interf.o iotk_attr+COMPLEX2_0.o : iotk_misc_interf.o iotk_attr+COMPLEX2_0.o : iotk_str_interf.o iotk_attr+COMPLEX2_0.o : iotk_xtox_interf.o iotk_attr+COMPLEX2_3.o : ../include/iotk_auxmacros.h iotk_attr+COMPLEX2_3.o : ../include/iotk_config.h iotk_attr+COMPLEX2_3.o : iotk_attr_interf.o iotk_attr+COMPLEX2_3.o : iotk_base.o iotk_attr+COMPLEX2_3.o : iotk_error_interf.o iotk_attr+COMPLEX2_3.o : iotk_misc_interf.o iotk_attr+COMPLEX2_3.o : iotk_str_interf.o iotk_attr+COMPLEX2_6.o : ../include/iotk_auxmacros.h iotk_attr+COMPLEX2_6.o : ../include/iotk_config.h iotk_attr+COMPLEX2_6.o : iotk_attr_interf.o iotk_attr+COMPLEX2_6.o : iotk_base.o iotk_attr+COMPLEX2_6.o : iotk_error_interf.o iotk_attr+COMPLEX2_6.o : iotk_misc_interf.o iotk_attr+COMPLEX2_6.o : iotk_str_interf.o iotk_attr+COMPLEX3_0.o : ../include/iotk_auxmacros.h iotk_attr+COMPLEX3_0.o : ../include/iotk_config.h iotk_attr+COMPLEX3_0.o : iotk_attr_interf.o iotk_attr+COMPLEX3_0.o : iotk_base.o iotk_attr+COMPLEX3_0.o : iotk_error_interf.o iotk_attr+COMPLEX3_0.o : iotk_fmt_interf.o iotk_attr+COMPLEX3_0.o : iotk_misc_interf.o iotk_attr+COMPLEX3_0.o : iotk_str_interf.o iotk_attr+COMPLEX3_0.o : iotk_xtox_interf.o iotk_attr+COMPLEX3_3.o : ../include/iotk_auxmacros.h iotk_attr+COMPLEX3_3.o : ../include/iotk_config.h iotk_attr+COMPLEX3_3.o : iotk_attr_interf.o iotk_attr+COMPLEX3_3.o : iotk_base.o iotk_attr+COMPLEX3_3.o : iotk_error_interf.o iotk_attr+COMPLEX3_3.o : iotk_misc_interf.o iotk_attr+COMPLEX3_3.o : iotk_str_interf.o iotk_attr+COMPLEX3_6.o : ../include/iotk_auxmacros.h iotk_attr+COMPLEX3_6.o : ../include/iotk_config.h iotk_attr+COMPLEX3_6.o : iotk_attr_interf.o iotk_attr+COMPLEX3_6.o : iotk_base.o iotk_attr+COMPLEX3_6.o : iotk_error_interf.o iotk_attr+COMPLEX3_6.o : iotk_misc_interf.o iotk_attr+COMPLEX3_6.o : iotk_str_interf.o iotk_attr+COMPLEX4_0.o : ../include/iotk_auxmacros.h iotk_attr+COMPLEX4_0.o : ../include/iotk_config.h iotk_attr+COMPLEX4_0.o : iotk_attr_interf.o iotk_attr+COMPLEX4_0.o : iotk_base.o iotk_attr+COMPLEX4_0.o : iotk_error_interf.o iotk_attr+COMPLEX4_0.o : iotk_fmt_interf.o iotk_attr+COMPLEX4_0.o : iotk_misc_interf.o iotk_attr+COMPLEX4_0.o : iotk_str_interf.o iotk_attr+COMPLEX4_0.o : iotk_xtox_interf.o iotk_attr+COMPLEX4_3.o : ../include/iotk_auxmacros.h iotk_attr+COMPLEX4_3.o : ../include/iotk_config.h iotk_attr+COMPLEX4_3.o : iotk_attr_interf.o iotk_attr+COMPLEX4_3.o : iotk_base.o iotk_attr+COMPLEX4_3.o : iotk_error_interf.o iotk_attr+COMPLEX4_3.o : iotk_misc_interf.o iotk_attr+COMPLEX4_3.o : iotk_str_interf.o iotk_attr+COMPLEX4_6.o : ../include/iotk_auxmacros.h iotk_attr+COMPLEX4_6.o : ../include/iotk_config.h iotk_attr+COMPLEX4_6.o : iotk_attr_interf.o iotk_attr+COMPLEX4_6.o : iotk_base.o iotk_attr+COMPLEX4_6.o : iotk_error_interf.o iotk_attr+COMPLEX4_6.o : iotk_misc_interf.o iotk_attr+COMPLEX4_6.o : iotk_str_interf.o iotk_attr+INTEGER1_0.o : ../include/iotk_auxmacros.h iotk_attr+INTEGER1_0.o : ../include/iotk_config.h iotk_attr+INTEGER1_0.o : iotk_attr_interf.o iotk_attr+INTEGER1_0.o : iotk_base.o iotk_attr+INTEGER1_0.o : iotk_error_interf.o iotk_attr+INTEGER1_0.o : iotk_fmt_interf.o iotk_attr+INTEGER1_0.o : iotk_misc_interf.o iotk_attr+INTEGER1_0.o : iotk_str_interf.o iotk_attr+INTEGER1_0.o : iotk_xtox_interf.o iotk_attr+INTEGER1_3.o : ../include/iotk_auxmacros.h iotk_attr+INTEGER1_3.o : ../include/iotk_config.h iotk_attr+INTEGER1_3.o : iotk_attr_interf.o iotk_attr+INTEGER1_3.o : iotk_base.o iotk_attr+INTEGER1_3.o : iotk_error_interf.o iotk_attr+INTEGER1_3.o : iotk_misc_interf.o iotk_attr+INTEGER1_3.o : iotk_str_interf.o iotk_attr+INTEGER1_6.o : ../include/iotk_auxmacros.h iotk_attr+INTEGER1_6.o : ../include/iotk_config.h iotk_attr+INTEGER1_6.o : iotk_attr_interf.o iotk_attr+INTEGER1_6.o : iotk_base.o iotk_attr+INTEGER1_6.o : iotk_error_interf.o iotk_attr+INTEGER1_6.o : iotk_misc_interf.o iotk_attr+INTEGER1_6.o : iotk_str_interf.o iotk_attr+INTEGER2_0.o : ../include/iotk_auxmacros.h iotk_attr+INTEGER2_0.o : ../include/iotk_config.h iotk_attr+INTEGER2_0.o : iotk_attr_interf.o iotk_attr+INTEGER2_0.o : iotk_base.o iotk_attr+INTEGER2_0.o : iotk_error_interf.o iotk_attr+INTEGER2_0.o : iotk_fmt_interf.o iotk_attr+INTEGER2_0.o : iotk_misc_interf.o iotk_attr+INTEGER2_0.o : iotk_str_interf.o iotk_attr+INTEGER2_0.o : iotk_xtox_interf.o iotk_attr+INTEGER2_3.o : ../include/iotk_auxmacros.h iotk_attr+INTEGER2_3.o : ../include/iotk_config.h iotk_attr+INTEGER2_3.o : iotk_attr_interf.o iotk_attr+INTEGER2_3.o : iotk_base.o iotk_attr+INTEGER2_3.o : iotk_error_interf.o iotk_attr+INTEGER2_3.o : iotk_misc_interf.o iotk_attr+INTEGER2_3.o : iotk_str_interf.o iotk_attr+INTEGER2_6.o : ../include/iotk_auxmacros.h iotk_attr+INTEGER2_6.o : ../include/iotk_config.h iotk_attr+INTEGER2_6.o : iotk_attr_interf.o iotk_attr+INTEGER2_6.o : iotk_base.o iotk_attr+INTEGER2_6.o : iotk_error_interf.o iotk_attr+INTEGER2_6.o : iotk_misc_interf.o iotk_attr+INTEGER2_6.o : iotk_str_interf.o iotk_attr+INTEGER3_0.o : ../include/iotk_auxmacros.h iotk_attr+INTEGER3_0.o : ../include/iotk_config.h iotk_attr+INTEGER3_0.o : iotk_attr_interf.o iotk_attr+INTEGER3_0.o : iotk_base.o iotk_attr+INTEGER3_0.o : iotk_error_interf.o iotk_attr+INTEGER3_0.o : iotk_fmt_interf.o iotk_attr+INTEGER3_0.o : iotk_misc_interf.o iotk_attr+INTEGER3_0.o : iotk_str_interf.o iotk_attr+INTEGER3_0.o : iotk_xtox_interf.o iotk_attr+INTEGER3_3.o : ../include/iotk_auxmacros.h iotk_attr+INTEGER3_3.o : ../include/iotk_config.h iotk_attr+INTEGER3_3.o : iotk_attr_interf.o iotk_attr+INTEGER3_3.o : iotk_base.o iotk_attr+INTEGER3_3.o : iotk_error_interf.o iotk_attr+INTEGER3_3.o : iotk_misc_interf.o iotk_attr+INTEGER3_3.o : iotk_str_interf.o iotk_attr+INTEGER3_6.o : ../include/iotk_auxmacros.h iotk_attr+INTEGER3_6.o : ../include/iotk_config.h iotk_attr+INTEGER3_6.o : iotk_attr_interf.o iotk_attr+INTEGER3_6.o : iotk_base.o iotk_attr+INTEGER3_6.o : iotk_error_interf.o iotk_attr+INTEGER3_6.o : iotk_misc_interf.o iotk_attr+INTEGER3_6.o : iotk_str_interf.o iotk_attr+INTEGER4_0.o : ../include/iotk_auxmacros.h iotk_attr+INTEGER4_0.o : ../include/iotk_config.h iotk_attr+INTEGER4_0.o : iotk_attr_interf.o iotk_attr+INTEGER4_0.o : iotk_base.o iotk_attr+INTEGER4_0.o : iotk_error_interf.o iotk_attr+INTEGER4_0.o : iotk_fmt_interf.o iotk_attr+INTEGER4_0.o : iotk_misc_interf.o iotk_attr+INTEGER4_0.o : iotk_str_interf.o iotk_attr+INTEGER4_0.o : iotk_xtox_interf.o iotk_attr+INTEGER4_3.o : ../include/iotk_auxmacros.h iotk_attr+INTEGER4_3.o : ../include/iotk_config.h iotk_attr+INTEGER4_3.o : iotk_attr_interf.o iotk_attr+INTEGER4_3.o : iotk_base.o iotk_attr+INTEGER4_3.o : iotk_error_interf.o iotk_attr+INTEGER4_3.o : iotk_misc_interf.o iotk_attr+INTEGER4_3.o : iotk_str_interf.o iotk_attr+INTEGER4_6.o : ../include/iotk_auxmacros.h iotk_attr+INTEGER4_6.o : ../include/iotk_config.h iotk_attr+INTEGER4_6.o : iotk_attr_interf.o iotk_attr+INTEGER4_6.o : iotk_base.o iotk_attr+INTEGER4_6.o : iotk_error_interf.o iotk_attr+INTEGER4_6.o : iotk_misc_interf.o iotk_attr+INTEGER4_6.o : iotk_str_interf.o iotk_attr_interf.o : ../include/iotk_auxmacros.h iotk_attr_interf.o : ../include/iotk_config.h iotk_attr_interf.o : iotk_base.o iotk_attr+LOGICAL1_0.o : ../include/iotk_auxmacros.h iotk_attr+LOGICAL1_0.o : ../include/iotk_config.h iotk_attr+LOGICAL1_0.o : iotk_attr_interf.o iotk_attr+LOGICAL1_0.o : iotk_base.o iotk_attr+LOGICAL1_0.o : iotk_error_interf.o iotk_attr+LOGICAL1_0.o : iotk_fmt_interf.o iotk_attr+LOGICAL1_0.o : iotk_misc_interf.o iotk_attr+LOGICAL1_0.o : iotk_str_interf.o iotk_attr+LOGICAL1_0.o : iotk_xtox_interf.o iotk_attr+LOGICAL1_3.o : ../include/iotk_auxmacros.h iotk_attr+LOGICAL1_3.o : ../include/iotk_config.h iotk_attr+LOGICAL1_3.o : iotk_attr_interf.o iotk_attr+LOGICAL1_3.o : iotk_base.o iotk_attr+LOGICAL1_3.o : iotk_error_interf.o iotk_attr+LOGICAL1_3.o : iotk_misc_interf.o iotk_attr+LOGICAL1_3.o : iotk_str_interf.o iotk_attr+LOGICAL1_6.o : ../include/iotk_auxmacros.h iotk_attr+LOGICAL1_6.o : ../include/iotk_config.h iotk_attr+LOGICAL1_6.o : iotk_attr_interf.o iotk_attr+LOGICAL1_6.o : iotk_base.o iotk_attr+LOGICAL1_6.o : iotk_error_interf.o iotk_attr+LOGICAL1_6.o : iotk_misc_interf.o iotk_attr+LOGICAL1_6.o : iotk_str_interf.o iotk_attr+LOGICAL2_0.o : ../include/iotk_auxmacros.h iotk_attr+LOGICAL2_0.o : ../include/iotk_config.h iotk_attr+LOGICAL2_0.o : iotk_attr_interf.o iotk_attr+LOGICAL2_0.o : iotk_base.o iotk_attr+LOGICAL2_0.o : iotk_error_interf.o iotk_attr+LOGICAL2_0.o : iotk_fmt_interf.o iotk_attr+LOGICAL2_0.o : iotk_misc_interf.o iotk_attr+LOGICAL2_0.o : iotk_str_interf.o iotk_attr+LOGICAL2_0.o : iotk_xtox_interf.o iotk_attr+LOGICAL2_3.o : ../include/iotk_auxmacros.h iotk_attr+LOGICAL2_3.o : ../include/iotk_config.h iotk_attr+LOGICAL2_3.o : iotk_attr_interf.o iotk_attr+LOGICAL2_3.o : iotk_base.o iotk_attr+LOGICAL2_3.o : iotk_error_interf.o iotk_attr+LOGICAL2_3.o : iotk_misc_interf.o iotk_attr+LOGICAL2_3.o : iotk_str_interf.o iotk_attr+LOGICAL2_6.o : ../include/iotk_auxmacros.h iotk_attr+LOGICAL2_6.o : ../include/iotk_config.h iotk_attr+LOGICAL2_6.o : iotk_attr_interf.o iotk_attr+LOGICAL2_6.o : iotk_base.o iotk_attr+LOGICAL2_6.o : iotk_error_interf.o iotk_attr+LOGICAL2_6.o : iotk_misc_interf.o iotk_attr+LOGICAL2_6.o : iotk_str_interf.o iotk_attr+LOGICAL3_0.o : ../include/iotk_auxmacros.h iotk_attr+LOGICAL3_0.o : ../include/iotk_config.h iotk_attr+LOGICAL3_0.o : iotk_attr_interf.o iotk_attr+LOGICAL3_0.o : iotk_base.o iotk_attr+LOGICAL3_0.o : iotk_error_interf.o iotk_attr+LOGICAL3_0.o : iotk_fmt_interf.o iotk_attr+LOGICAL3_0.o : iotk_misc_interf.o iotk_attr+LOGICAL3_0.o : iotk_str_interf.o iotk_attr+LOGICAL3_0.o : iotk_xtox_interf.o iotk_attr+LOGICAL3_3.o : ../include/iotk_auxmacros.h iotk_attr+LOGICAL3_3.o : ../include/iotk_config.h iotk_attr+LOGICAL3_3.o : iotk_attr_interf.o iotk_attr+LOGICAL3_3.o : iotk_base.o iotk_attr+LOGICAL3_3.o : iotk_error_interf.o iotk_attr+LOGICAL3_3.o : iotk_misc_interf.o iotk_attr+LOGICAL3_3.o : iotk_str_interf.o iotk_attr+LOGICAL3_6.o : ../include/iotk_auxmacros.h iotk_attr+LOGICAL3_6.o : ../include/iotk_config.h iotk_attr+LOGICAL3_6.o : iotk_attr_interf.o iotk_attr+LOGICAL3_6.o : iotk_base.o iotk_attr+LOGICAL3_6.o : iotk_error_interf.o iotk_attr+LOGICAL3_6.o : iotk_misc_interf.o iotk_attr+LOGICAL3_6.o : iotk_str_interf.o iotk_attr+LOGICAL4_0.o : ../include/iotk_auxmacros.h iotk_attr+LOGICAL4_0.o : ../include/iotk_config.h iotk_attr+LOGICAL4_0.o : iotk_attr_interf.o iotk_attr+LOGICAL4_0.o : iotk_base.o iotk_attr+LOGICAL4_0.o : iotk_error_interf.o iotk_attr+LOGICAL4_0.o : iotk_fmt_interf.o iotk_attr+LOGICAL4_0.o : iotk_misc_interf.o iotk_attr+LOGICAL4_0.o : iotk_str_interf.o iotk_attr+LOGICAL4_0.o : iotk_xtox_interf.o iotk_attr+LOGICAL4_3.o : ../include/iotk_auxmacros.h iotk_attr+LOGICAL4_3.o : ../include/iotk_config.h iotk_attr+LOGICAL4_3.o : iotk_attr_interf.o iotk_attr+LOGICAL4_3.o : iotk_base.o iotk_attr+LOGICAL4_3.o : iotk_error_interf.o iotk_attr+LOGICAL4_3.o : iotk_misc_interf.o iotk_attr+LOGICAL4_3.o : iotk_str_interf.o iotk_attr+LOGICAL4_6.o : ../include/iotk_auxmacros.h iotk_attr+LOGICAL4_6.o : ../include/iotk_config.h iotk_attr+LOGICAL4_6.o : iotk_attr_interf.o iotk_attr+LOGICAL4_6.o : iotk_base.o iotk_attr+LOGICAL4_6.o : iotk_error_interf.o iotk_attr+LOGICAL4_6.o : iotk_misc_interf.o iotk_attr+LOGICAL4_6.o : iotk_str_interf.o iotk_attr.o : ../include/iotk_auxmacros.h iotk_attr.o : ../include/iotk_config.h iotk_attr+REAL1_0.o : ../include/iotk_auxmacros.h iotk_attr+REAL1_0.o : ../include/iotk_config.h iotk_attr+REAL1_0.o : iotk_attr_interf.o iotk_attr+REAL1_0.o : iotk_base.o iotk_attr+REAL1_0.o : iotk_error_interf.o iotk_attr+REAL1_0.o : iotk_fmt_interf.o iotk_attr+REAL1_0.o : iotk_misc_interf.o iotk_attr+REAL1_0.o : iotk_str_interf.o iotk_attr+REAL1_0.o : iotk_xtox_interf.o iotk_attr+REAL1_3.o : ../include/iotk_auxmacros.h iotk_attr+REAL1_3.o : ../include/iotk_config.h iotk_attr+REAL1_3.o : iotk_attr_interf.o iotk_attr+REAL1_3.o : iotk_base.o iotk_attr+REAL1_3.o : iotk_error_interf.o iotk_attr+REAL1_3.o : iotk_misc_interf.o iotk_attr+REAL1_3.o : iotk_str_interf.o iotk_attr+REAL1_6.o : ../include/iotk_auxmacros.h iotk_attr+REAL1_6.o : ../include/iotk_config.h iotk_attr+REAL1_6.o : iotk_attr_interf.o iotk_attr+REAL1_6.o : iotk_base.o iotk_attr+REAL1_6.o : iotk_error_interf.o iotk_attr+REAL1_6.o : iotk_misc_interf.o iotk_attr+REAL1_6.o : iotk_str_interf.o iotk_attr+REAL2_0.o : ../include/iotk_auxmacros.h iotk_attr+REAL2_0.o : ../include/iotk_config.h iotk_attr+REAL2_0.o : iotk_attr_interf.o iotk_attr+REAL2_0.o : iotk_base.o iotk_attr+REAL2_0.o : iotk_error_interf.o iotk_attr+REAL2_0.o : iotk_fmt_interf.o iotk_attr+REAL2_0.o : iotk_misc_interf.o iotk_attr+REAL2_0.o : iotk_str_interf.o iotk_attr+REAL2_0.o : iotk_xtox_interf.o iotk_attr+REAL2_3.o : ../include/iotk_auxmacros.h iotk_attr+REAL2_3.o : ../include/iotk_config.h iotk_attr+REAL2_3.o : iotk_attr_interf.o iotk_attr+REAL2_3.o : iotk_base.o iotk_attr+REAL2_3.o : iotk_error_interf.o iotk_attr+REAL2_3.o : iotk_misc_interf.o iotk_attr+REAL2_3.o : iotk_str_interf.o iotk_attr+REAL2_6.o : ../include/iotk_auxmacros.h iotk_attr+REAL2_6.o : ../include/iotk_config.h iotk_attr+REAL2_6.o : iotk_attr_interf.o iotk_attr+REAL2_6.o : iotk_base.o iotk_attr+REAL2_6.o : iotk_error_interf.o iotk_attr+REAL2_6.o : iotk_misc_interf.o iotk_attr+REAL2_6.o : iotk_str_interf.o iotk_attr+REAL3_0.o : ../include/iotk_auxmacros.h iotk_attr+REAL3_0.o : ../include/iotk_config.h iotk_attr+REAL3_0.o : iotk_attr_interf.o iotk_attr+REAL3_0.o : iotk_base.o iotk_attr+REAL3_0.o : iotk_error_interf.o iotk_attr+REAL3_0.o : iotk_fmt_interf.o iotk_attr+REAL3_0.o : iotk_misc_interf.o iotk_attr+REAL3_0.o : iotk_str_interf.o iotk_attr+REAL3_0.o : iotk_xtox_interf.o iotk_attr+REAL3_3.o : ../include/iotk_auxmacros.h iotk_attr+REAL3_3.o : ../include/iotk_config.h iotk_attr+REAL3_3.o : iotk_attr_interf.o iotk_attr+REAL3_3.o : iotk_base.o iotk_attr+REAL3_3.o : iotk_error_interf.o iotk_attr+REAL3_3.o : iotk_misc_interf.o iotk_attr+REAL3_3.o : iotk_str_interf.o iotk_attr+REAL3_6.o : ../include/iotk_auxmacros.h iotk_attr+REAL3_6.o : ../include/iotk_config.h iotk_attr+REAL3_6.o : iotk_attr_interf.o iotk_attr+REAL3_6.o : iotk_base.o iotk_attr+REAL3_6.o : iotk_error_interf.o iotk_attr+REAL3_6.o : iotk_misc_interf.o iotk_attr+REAL3_6.o : iotk_str_interf.o iotk_attr+REAL4_0.o : ../include/iotk_auxmacros.h iotk_attr+REAL4_0.o : ../include/iotk_config.h iotk_attr+REAL4_0.o : iotk_attr_interf.o iotk_attr+REAL4_0.o : iotk_base.o iotk_attr+REAL4_0.o : iotk_error_interf.o iotk_attr+REAL4_0.o : iotk_fmt_interf.o iotk_attr+REAL4_0.o : iotk_misc_interf.o iotk_attr+REAL4_0.o : iotk_str_interf.o iotk_attr+REAL4_0.o : iotk_xtox_interf.o iotk_attr+REAL4_3.o : ../include/iotk_auxmacros.h iotk_attr+REAL4_3.o : ../include/iotk_config.h iotk_attr+REAL4_3.o : iotk_attr_interf.o iotk_attr+REAL4_3.o : iotk_base.o iotk_attr+REAL4_3.o : iotk_error_interf.o iotk_attr+REAL4_3.o : iotk_misc_interf.o iotk_attr+REAL4_3.o : iotk_str_interf.o iotk_attr+REAL4_6.o : ../include/iotk_auxmacros.h iotk_attr+REAL4_6.o : ../include/iotk_config.h iotk_attr+REAL4_6.o : iotk_attr_interf.o iotk_attr+REAL4_6.o : iotk_base.o iotk_attr+REAL4_6.o : iotk_error_interf.o iotk_attr+REAL4_6.o : iotk_misc_interf.o iotk_attr+REAL4_6.o : iotk_str_interf.o iotk_base.o : ../include/iotk_auxmacros.h iotk_base.o : ../include/iotk_config.h iotk_copy.o : iotk_files_interf.o iotk_copy.o : iotk_module.o iotk_dat+CHARACTER1_0.o : ../include/iotk_auxmacros.h iotk_dat+CHARACTER1_0.o : ../include/iotk_config.h iotk_dat+CHARACTER1_0.o : iotk_attr_interf.o iotk_dat+CHARACTER1_0.o : iotk_base.o iotk_dat+CHARACTER1_0.o : iotk_dat_interf.o iotk_dat+CHARACTER1_0.o : iotk_error_interf.o iotk_dat+CHARACTER1_0.o : iotk_fmt_interf.o iotk_dat+CHARACTER1_0.o : iotk_misc_interf.o iotk_dat+CHARACTER1_0.o : iotk_scan_interf.o iotk_dat+CHARACTER1_0.o : iotk_stream_interf.o iotk_dat+CHARACTER1_0.o : iotk_str_interf.o iotk_dat+CHARACTER1_0.o : iotk_unit_interf.o iotk_dat+CHARACTER1_0.o : iotk_write_interf.o iotk_dat+CHARACTER1_3.o : ../include/iotk_auxmacros.h iotk_dat+CHARACTER1_3.o : ../include/iotk_config.h iotk_dat+CHARACTER1_3.o : iotk_attr_interf.o iotk_dat+CHARACTER1_3.o : iotk_base.o iotk_dat+CHARACTER1_3.o : iotk_dat_interf.o iotk_dat+CHARACTER1_3.o : iotk_error_interf.o iotk_dat+CHARACTER1_3.o : iotk_fmt_interf.o iotk_dat+CHARACTER1_3.o : iotk_misc_interf.o iotk_dat+CHARACTER1_3.o : iotk_scan_interf.o iotk_dat+CHARACTER1_3.o : iotk_str_interf.o iotk_dat+CHARACTER1_3.o : iotk_unit_interf.o iotk_dat+CHARACTER1_3.o : iotk_write_interf.o iotk_dat+CHARACTER1_6.o : ../include/iotk_auxmacros.h iotk_dat+CHARACTER1_6.o : ../include/iotk_config.h iotk_dat+CHARACTER1_6.o : iotk_attr_interf.o iotk_dat+CHARACTER1_6.o : iotk_base.o iotk_dat+CHARACTER1_6.o : iotk_dat_interf.o iotk_dat+CHARACTER1_6.o : iotk_error_interf.o iotk_dat+CHARACTER1_6.o : iotk_fmt_interf.o iotk_dat+CHARACTER1_6.o : iotk_misc_interf.o iotk_dat+CHARACTER1_6.o : iotk_scan_interf.o iotk_dat+CHARACTER1_6.o : iotk_str_interf.o iotk_dat+CHARACTER1_6.o : iotk_unit_interf.o iotk_dat+CHARACTER1_6.o : iotk_write_interf.o iotk_dat+COMPLEX1_0.o : ../include/iotk_auxmacros.h iotk_dat+COMPLEX1_0.o : ../include/iotk_config.h iotk_dat+COMPLEX1_0.o : iotk_attr_interf.o iotk_dat+COMPLEX1_0.o : iotk_base.o iotk_dat+COMPLEX1_0.o : iotk_dat_interf.o iotk_dat+COMPLEX1_0.o : iotk_error_interf.o iotk_dat+COMPLEX1_0.o : iotk_fmt_interf.o iotk_dat+COMPLEX1_0.o : iotk_misc_interf.o iotk_dat+COMPLEX1_0.o : iotk_scan_interf.o iotk_dat+COMPLEX1_0.o : iotk_stream_interf.o iotk_dat+COMPLEX1_0.o : iotk_str_interf.o iotk_dat+COMPLEX1_0.o : iotk_unit_interf.o iotk_dat+COMPLEX1_0.o : iotk_write_interf.o iotk_dat+COMPLEX1_3.o : ../include/iotk_auxmacros.h iotk_dat+COMPLEX1_3.o : ../include/iotk_config.h iotk_dat+COMPLEX1_3.o : iotk_attr_interf.o iotk_dat+COMPLEX1_3.o : iotk_base.o iotk_dat+COMPLEX1_3.o : iotk_dat_interf.o iotk_dat+COMPLEX1_3.o : iotk_error_interf.o iotk_dat+COMPLEX1_3.o : iotk_fmt_interf.o iotk_dat+COMPLEX1_3.o : iotk_misc_interf.o iotk_dat+COMPLEX1_3.o : iotk_scan_interf.o iotk_dat+COMPLEX1_3.o : iotk_str_interf.o iotk_dat+COMPLEX1_3.o : iotk_unit_interf.o iotk_dat+COMPLEX1_3.o : iotk_write_interf.o iotk_dat+COMPLEX1_6.o : ../include/iotk_auxmacros.h iotk_dat+COMPLEX1_6.o : ../include/iotk_config.h iotk_dat+COMPLEX1_6.o : iotk_attr_interf.o iotk_dat+COMPLEX1_6.o : iotk_base.o iotk_dat+COMPLEX1_6.o : iotk_dat_interf.o iotk_dat+COMPLEX1_6.o : iotk_error_interf.o iotk_dat+COMPLEX1_6.o : iotk_fmt_interf.o iotk_dat+COMPLEX1_6.o : iotk_misc_interf.o iotk_dat+COMPLEX1_6.o : iotk_scan_interf.o iotk_dat+COMPLEX1_6.o : iotk_str_interf.o iotk_dat+COMPLEX1_6.o : iotk_unit_interf.o iotk_dat+COMPLEX1_6.o : iotk_write_interf.o iotk_dat+COMPLEX2_0.o : ../include/iotk_auxmacros.h iotk_dat+COMPLEX2_0.o : ../include/iotk_config.h iotk_dat+COMPLEX2_0.o : iotk_attr_interf.o iotk_dat+COMPLEX2_0.o : iotk_base.o iotk_dat+COMPLEX2_0.o : iotk_dat_interf.o iotk_dat+COMPLEX2_0.o : iotk_error_interf.o iotk_dat+COMPLEX2_0.o : iotk_fmt_interf.o iotk_dat+COMPLEX2_0.o : iotk_misc_interf.o iotk_dat+COMPLEX2_0.o : iotk_scan_interf.o iotk_dat+COMPLEX2_0.o : iotk_stream_interf.o iotk_dat+COMPLEX2_0.o : iotk_str_interf.o iotk_dat+COMPLEX2_0.o : iotk_unit_interf.o iotk_dat+COMPLEX2_0.o : iotk_write_interf.o iotk_dat+COMPLEX2_3.o : ../include/iotk_auxmacros.h iotk_dat+COMPLEX2_3.o : ../include/iotk_config.h iotk_dat+COMPLEX2_3.o : iotk_attr_interf.o iotk_dat+COMPLEX2_3.o : iotk_base.o iotk_dat+COMPLEX2_3.o : iotk_dat_interf.o iotk_dat+COMPLEX2_3.o : iotk_error_interf.o iotk_dat+COMPLEX2_3.o : iotk_fmt_interf.o iotk_dat+COMPLEX2_3.o : iotk_misc_interf.o iotk_dat+COMPLEX2_3.o : iotk_scan_interf.o iotk_dat+COMPLEX2_3.o : iotk_str_interf.o iotk_dat+COMPLEX2_3.o : iotk_unit_interf.o iotk_dat+COMPLEX2_3.o : iotk_write_interf.o iotk_dat+COMPLEX2_6.o : ../include/iotk_auxmacros.h iotk_dat+COMPLEX2_6.o : ../include/iotk_config.h iotk_dat+COMPLEX2_6.o : iotk_attr_interf.o iotk_dat+COMPLEX2_6.o : iotk_base.o iotk_dat+COMPLEX2_6.o : iotk_dat_interf.o iotk_dat+COMPLEX2_6.o : iotk_error_interf.o iotk_dat+COMPLEX2_6.o : iotk_fmt_interf.o iotk_dat+COMPLEX2_6.o : iotk_misc_interf.o iotk_dat+COMPLEX2_6.o : iotk_scan_interf.o iotk_dat+COMPLEX2_6.o : iotk_str_interf.o iotk_dat+COMPLEX2_6.o : iotk_unit_interf.o iotk_dat+COMPLEX2_6.o : iotk_write_interf.o iotk_dat+COMPLEX3_0.o : ../include/iotk_auxmacros.h iotk_dat+COMPLEX3_0.o : ../include/iotk_config.h iotk_dat+COMPLEX3_0.o : iotk_attr_interf.o iotk_dat+COMPLEX3_0.o : iotk_base.o iotk_dat+COMPLEX3_0.o : iotk_dat_interf.o iotk_dat+COMPLEX3_0.o : iotk_error_interf.o iotk_dat+COMPLEX3_0.o : iotk_fmt_interf.o iotk_dat+COMPLEX3_0.o : iotk_misc_interf.o iotk_dat+COMPLEX3_0.o : iotk_scan_interf.o iotk_dat+COMPLEX3_0.o : iotk_stream_interf.o iotk_dat+COMPLEX3_0.o : iotk_str_interf.o iotk_dat+COMPLEX3_0.o : iotk_unit_interf.o iotk_dat+COMPLEX3_0.o : iotk_write_interf.o iotk_dat+COMPLEX3_3.o : ../include/iotk_auxmacros.h iotk_dat+COMPLEX3_3.o : ../include/iotk_config.h iotk_dat+COMPLEX3_3.o : iotk_attr_interf.o iotk_dat+COMPLEX3_3.o : iotk_base.o iotk_dat+COMPLEX3_3.o : iotk_dat_interf.o iotk_dat+COMPLEX3_3.o : iotk_error_interf.o iotk_dat+COMPLEX3_3.o : iotk_fmt_interf.o iotk_dat+COMPLEX3_3.o : iotk_misc_interf.o iotk_dat+COMPLEX3_3.o : iotk_scan_interf.o iotk_dat+COMPLEX3_3.o : iotk_str_interf.o iotk_dat+COMPLEX3_3.o : iotk_unit_interf.o iotk_dat+COMPLEX3_3.o : iotk_write_interf.o iotk_dat+COMPLEX3_6.o : ../include/iotk_auxmacros.h iotk_dat+COMPLEX3_6.o : ../include/iotk_config.h iotk_dat+COMPLEX3_6.o : iotk_attr_interf.o iotk_dat+COMPLEX3_6.o : iotk_base.o iotk_dat+COMPLEX3_6.o : iotk_dat_interf.o iotk_dat+COMPLEX3_6.o : iotk_error_interf.o iotk_dat+COMPLEX3_6.o : iotk_fmt_interf.o iotk_dat+COMPLEX3_6.o : iotk_misc_interf.o iotk_dat+COMPLEX3_6.o : iotk_scan_interf.o iotk_dat+COMPLEX3_6.o : iotk_str_interf.o iotk_dat+COMPLEX3_6.o : iotk_unit_interf.o iotk_dat+COMPLEX3_6.o : iotk_write_interf.o iotk_dat+COMPLEX4_0.o : ../include/iotk_auxmacros.h iotk_dat+COMPLEX4_0.o : ../include/iotk_config.h iotk_dat+COMPLEX4_0.o : iotk_attr_interf.o iotk_dat+COMPLEX4_0.o : iotk_base.o iotk_dat+COMPLEX4_0.o : iotk_dat_interf.o iotk_dat+COMPLEX4_0.o : iotk_error_interf.o iotk_dat+COMPLEX4_0.o : iotk_fmt_interf.o iotk_dat+COMPLEX4_0.o : iotk_misc_interf.o iotk_dat+COMPLEX4_0.o : iotk_scan_interf.o iotk_dat+COMPLEX4_0.o : iotk_stream_interf.o iotk_dat+COMPLEX4_0.o : iotk_str_interf.o iotk_dat+COMPLEX4_0.o : iotk_unit_interf.o iotk_dat+COMPLEX4_0.o : iotk_write_interf.o iotk_dat+COMPLEX4_3.o : ../include/iotk_auxmacros.h iotk_dat+COMPLEX4_3.o : ../include/iotk_config.h iotk_dat+COMPLEX4_3.o : iotk_attr_interf.o iotk_dat+COMPLEX4_3.o : iotk_base.o iotk_dat+COMPLEX4_3.o : iotk_dat_interf.o iotk_dat+COMPLEX4_3.o : iotk_error_interf.o iotk_dat+COMPLEX4_3.o : iotk_fmt_interf.o iotk_dat+COMPLEX4_3.o : iotk_misc_interf.o iotk_dat+COMPLEX4_3.o : iotk_scan_interf.o iotk_dat+COMPLEX4_3.o : iotk_str_interf.o iotk_dat+COMPLEX4_3.o : iotk_unit_interf.o iotk_dat+COMPLEX4_3.o : iotk_write_interf.o iotk_dat+COMPLEX4_6.o : ../include/iotk_auxmacros.h iotk_dat+COMPLEX4_6.o : ../include/iotk_config.h iotk_dat+COMPLEX4_6.o : iotk_attr_interf.o iotk_dat+COMPLEX4_6.o : iotk_base.o iotk_dat+COMPLEX4_6.o : iotk_dat_interf.o iotk_dat+COMPLEX4_6.o : iotk_error_interf.o iotk_dat+COMPLEX4_6.o : iotk_fmt_interf.o iotk_dat+COMPLEX4_6.o : iotk_misc_interf.o iotk_dat+COMPLEX4_6.o : iotk_scan_interf.o iotk_dat+COMPLEX4_6.o : iotk_str_interf.o iotk_dat+COMPLEX4_6.o : iotk_unit_interf.o iotk_dat+COMPLEX4_6.o : iotk_write_interf.o iotk_dat+INTEGER1_0.o : ../include/iotk_auxmacros.h iotk_dat+INTEGER1_0.o : ../include/iotk_config.h iotk_dat+INTEGER1_0.o : iotk_attr_interf.o iotk_dat+INTEGER1_0.o : iotk_base.o iotk_dat+INTEGER1_0.o : iotk_dat_interf.o iotk_dat+INTEGER1_0.o : iotk_error_interf.o iotk_dat+INTEGER1_0.o : iotk_fmt_interf.o iotk_dat+INTEGER1_0.o : iotk_misc_interf.o iotk_dat+INTEGER1_0.o : iotk_scan_interf.o iotk_dat+INTEGER1_0.o : iotk_stream_interf.o iotk_dat+INTEGER1_0.o : iotk_str_interf.o iotk_dat+INTEGER1_0.o : iotk_unit_interf.o iotk_dat+INTEGER1_0.o : iotk_write_interf.o iotk_dat+INTEGER1_3.o : ../include/iotk_auxmacros.h iotk_dat+INTEGER1_3.o : ../include/iotk_config.h iotk_dat+INTEGER1_3.o : iotk_attr_interf.o iotk_dat+INTEGER1_3.o : iotk_base.o iotk_dat+INTEGER1_3.o : iotk_dat_interf.o iotk_dat+INTEGER1_3.o : iotk_error_interf.o iotk_dat+INTEGER1_3.o : iotk_fmt_interf.o iotk_dat+INTEGER1_3.o : iotk_misc_interf.o iotk_dat+INTEGER1_3.o : iotk_scan_interf.o iotk_dat+INTEGER1_3.o : iotk_str_interf.o iotk_dat+INTEGER1_3.o : iotk_unit_interf.o iotk_dat+INTEGER1_3.o : iotk_write_interf.o iotk_dat+INTEGER1_6.o : ../include/iotk_auxmacros.h iotk_dat+INTEGER1_6.o : ../include/iotk_config.h iotk_dat+INTEGER1_6.o : iotk_attr_interf.o iotk_dat+INTEGER1_6.o : iotk_base.o iotk_dat+INTEGER1_6.o : iotk_dat_interf.o iotk_dat+INTEGER1_6.o : iotk_error_interf.o iotk_dat+INTEGER1_6.o : iotk_fmt_interf.o iotk_dat+INTEGER1_6.o : iotk_misc_interf.o iotk_dat+INTEGER1_6.o : iotk_scan_interf.o iotk_dat+INTEGER1_6.o : iotk_str_interf.o iotk_dat+INTEGER1_6.o : iotk_unit_interf.o iotk_dat+INTEGER1_6.o : iotk_write_interf.o iotk_dat+INTEGER2_0.o : ../include/iotk_auxmacros.h iotk_dat+INTEGER2_0.o : ../include/iotk_config.h iotk_dat+INTEGER2_0.o : iotk_attr_interf.o iotk_dat+INTEGER2_0.o : iotk_base.o iotk_dat+INTEGER2_0.o : iotk_dat_interf.o iotk_dat+INTEGER2_0.o : iotk_error_interf.o iotk_dat+INTEGER2_0.o : iotk_fmt_interf.o iotk_dat+INTEGER2_0.o : iotk_misc_interf.o iotk_dat+INTEGER2_0.o : iotk_scan_interf.o iotk_dat+INTEGER2_0.o : iotk_stream_interf.o iotk_dat+INTEGER2_0.o : iotk_str_interf.o iotk_dat+INTEGER2_0.o : iotk_unit_interf.o iotk_dat+INTEGER2_0.o : iotk_write_interf.o iotk_dat+INTEGER2_3.o : ../include/iotk_auxmacros.h iotk_dat+INTEGER2_3.o : ../include/iotk_config.h iotk_dat+INTEGER2_3.o : iotk_attr_interf.o iotk_dat+INTEGER2_3.o : iotk_base.o iotk_dat+INTEGER2_3.o : iotk_dat_interf.o iotk_dat+INTEGER2_3.o : iotk_error_interf.o iotk_dat+INTEGER2_3.o : iotk_fmt_interf.o iotk_dat+INTEGER2_3.o : iotk_misc_interf.o iotk_dat+INTEGER2_3.o : iotk_scan_interf.o iotk_dat+INTEGER2_3.o : iotk_str_interf.o iotk_dat+INTEGER2_3.o : iotk_unit_interf.o iotk_dat+INTEGER2_3.o : iotk_write_interf.o iotk_dat+INTEGER2_6.o : ../include/iotk_auxmacros.h iotk_dat+INTEGER2_6.o : ../include/iotk_config.h iotk_dat+INTEGER2_6.o : iotk_attr_interf.o iotk_dat+INTEGER2_6.o : iotk_base.o iotk_dat+INTEGER2_6.o : iotk_dat_interf.o iotk_dat+INTEGER2_6.o : iotk_error_interf.o iotk_dat+INTEGER2_6.o : iotk_fmt_interf.o iotk_dat+INTEGER2_6.o : iotk_misc_interf.o iotk_dat+INTEGER2_6.o : iotk_scan_interf.o iotk_dat+INTEGER2_6.o : iotk_str_interf.o iotk_dat+INTEGER2_6.o : iotk_unit_interf.o iotk_dat+INTEGER2_6.o : iotk_write_interf.o iotk_dat+INTEGER3_0.o : ../include/iotk_auxmacros.h iotk_dat+INTEGER3_0.o : ../include/iotk_config.h iotk_dat+INTEGER3_0.o : iotk_attr_interf.o iotk_dat+INTEGER3_0.o : iotk_base.o iotk_dat+INTEGER3_0.o : iotk_dat_interf.o iotk_dat+INTEGER3_0.o : iotk_error_interf.o iotk_dat+INTEGER3_0.o : iotk_fmt_interf.o iotk_dat+INTEGER3_0.o : iotk_misc_interf.o iotk_dat+INTEGER3_0.o : iotk_scan_interf.o iotk_dat+INTEGER3_0.o : iotk_stream_interf.o iotk_dat+INTEGER3_0.o : iotk_str_interf.o iotk_dat+INTEGER3_0.o : iotk_unit_interf.o iotk_dat+INTEGER3_0.o : iotk_write_interf.o iotk_dat+INTEGER3_3.o : ../include/iotk_auxmacros.h iotk_dat+INTEGER3_3.o : ../include/iotk_config.h iotk_dat+INTEGER3_3.o : iotk_attr_interf.o iotk_dat+INTEGER3_3.o : iotk_base.o iotk_dat+INTEGER3_3.o : iotk_dat_interf.o iotk_dat+INTEGER3_3.o : iotk_error_interf.o iotk_dat+INTEGER3_3.o : iotk_fmt_interf.o iotk_dat+INTEGER3_3.o : iotk_misc_interf.o iotk_dat+INTEGER3_3.o : iotk_scan_interf.o iotk_dat+INTEGER3_3.o : iotk_str_interf.o iotk_dat+INTEGER3_3.o : iotk_unit_interf.o iotk_dat+INTEGER3_3.o : iotk_write_interf.o iotk_dat+INTEGER3_6.o : ../include/iotk_auxmacros.h iotk_dat+INTEGER3_6.o : ../include/iotk_config.h iotk_dat+INTEGER3_6.o : iotk_attr_interf.o iotk_dat+INTEGER3_6.o : iotk_base.o iotk_dat+INTEGER3_6.o : iotk_dat_interf.o iotk_dat+INTEGER3_6.o : iotk_error_interf.o iotk_dat+INTEGER3_6.o : iotk_fmt_interf.o iotk_dat+INTEGER3_6.o : iotk_misc_interf.o iotk_dat+INTEGER3_6.o : iotk_scan_interf.o iotk_dat+INTEGER3_6.o : iotk_str_interf.o iotk_dat+INTEGER3_6.o : iotk_unit_interf.o iotk_dat+INTEGER3_6.o : iotk_write_interf.o iotk_dat+INTEGER4_0.o : ../include/iotk_auxmacros.h iotk_dat+INTEGER4_0.o : ../include/iotk_config.h iotk_dat+INTEGER4_0.o : iotk_attr_interf.o iotk_dat+INTEGER4_0.o : iotk_base.o iotk_dat+INTEGER4_0.o : iotk_dat_interf.o iotk_dat+INTEGER4_0.o : iotk_error_interf.o iotk_dat+INTEGER4_0.o : iotk_fmt_interf.o iotk_dat+INTEGER4_0.o : iotk_misc_interf.o iotk_dat+INTEGER4_0.o : iotk_scan_interf.o iotk_dat+INTEGER4_0.o : iotk_stream_interf.o iotk_dat+INTEGER4_0.o : iotk_str_interf.o iotk_dat+INTEGER4_0.o : iotk_unit_interf.o iotk_dat+INTEGER4_0.o : iotk_write_interf.o iotk_dat+INTEGER4_3.o : ../include/iotk_auxmacros.h iotk_dat+INTEGER4_3.o : ../include/iotk_config.h iotk_dat+INTEGER4_3.o : iotk_attr_interf.o iotk_dat+INTEGER4_3.o : iotk_base.o iotk_dat+INTEGER4_3.o : iotk_dat_interf.o iotk_dat+INTEGER4_3.o : iotk_error_interf.o iotk_dat+INTEGER4_3.o : iotk_fmt_interf.o iotk_dat+INTEGER4_3.o : iotk_misc_interf.o iotk_dat+INTEGER4_3.o : iotk_scan_interf.o iotk_dat+INTEGER4_3.o : iotk_str_interf.o iotk_dat+INTEGER4_3.o : iotk_unit_interf.o iotk_dat+INTEGER4_3.o : iotk_write_interf.o iotk_dat+INTEGER4_6.o : ../include/iotk_auxmacros.h iotk_dat+INTEGER4_6.o : ../include/iotk_config.h iotk_dat+INTEGER4_6.o : iotk_attr_interf.o iotk_dat+INTEGER4_6.o : iotk_base.o iotk_dat+INTEGER4_6.o : iotk_dat_interf.o iotk_dat+INTEGER4_6.o : iotk_error_interf.o iotk_dat+INTEGER4_6.o : iotk_fmt_interf.o iotk_dat+INTEGER4_6.o : iotk_misc_interf.o iotk_dat+INTEGER4_6.o : iotk_scan_interf.o iotk_dat+INTEGER4_6.o : iotk_str_interf.o iotk_dat+INTEGER4_6.o : iotk_unit_interf.o iotk_dat+INTEGER4_6.o : iotk_write_interf.o iotk_dat_interf.o : ../include/iotk_auxmacros.h iotk_dat_interf.o : ../include/iotk_config.h iotk_dat_interf.o : iotk_base.o iotk_dat+LOGICAL1_0.o : ../include/iotk_auxmacros.h iotk_dat+LOGICAL1_0.o : ../include/iotk_config.h iotk_dat+LOGICAL1_0.o : iotk_attr_interf.o iotk_dat+LOGICAL1_0.o : iotk_base.o iotk_dat+LOGICAL1_0.o : iotk_dat_interf.o iotk_dat+LOGICAL1_0.o : iotk_error_interf.o iotk_dat+LOGICAL1_0.o : iotk_fmt_interf.o iotk_dat+LOGICAL1_0.o : iotk_misc_interf.o iotk_dat+LOGICAL1_0.o : iotk_scan_interf.o iotk_dat+LOGICAL1_0.o : iotk_stream_interf.o iotk_dat+LOGICAL1_0.o : iotk_str_interf.o iotk_dat+LOGICAL1_0.o : iotk_unit_interf.o iotk_dat+LOGICAL1_0.o : iotk_write_interf.o iotk_dat+LOGICAL1_3.o : ../include/iotk_auxmacros.h iotk_dat+LOGICAL1_3.o : ../include/iotk_config.h iotk_dat+LOGICAL1_3.o : iotk_attr_interf.o iotk_dat+LOGICAL1_3.o : iotk_base.o iotk_dat+LOGICAL1_3.o : iotk_dat_interf.o iotk_dat+LOGICAL1_3.o : iotk_error_interf.o iotk_dat+LOGICAL1_3.o : iotk_fmt_interf.o iotk_dat+LOGICAL1_3.o : iotk_misc_interf.o iotk_dat+LOGICAL1_3.o : iotk_scan_interf.o iotk_dat+LOGICAL1_3.o : iotk_str_interf.o iotk_dat+LOGICAL1_3.o : iotk_unit_interf.o iotk_dat+LOGICAL1_3.o : iotk_write_interf.o iotk_dat+LOGICAL1_6.o : ../include/iotk_auxmacros.h iotk_dat+LOGICAL1_6.o : ../include/iotk_config.h iotk_dat+LOGICAL1_6.o : iotk_attr_interf.o iotk_dat+LOGICAL1_6.o : iotk_base.o iotk_dat+LOGICAL1_6.o : iotk_dat_interf.o iotk_dat+LOGICAL1_6.o : iotk_error_interf.o iotk_dat+LOGICAL1_6.o : iotk_fmt_interf.o iotk_dat+LOGICAL1_6.o : iotk_misc_interf.o iotk_dat+LOGICAL1_6.o : iotk_scan_interf.o iotk_dat+LOGICAL1_6.o : iotk_str_interf.o iotk_dat+LOGICAL1_6.o : iotk_unit_interf.o iotk_dat+LOGICAL1_6.o : iotk_write_interf.o iotk_dat+LOGICAL2_0.o : ../include/iotk_auxmacros.h iotk_dat+LOGICAL2_0.o : ../include/iotk_config.h iotk_dat+LOGICAL2_0.o : iotk_attr_interf.o iotk_dat+LOGICAL2_0.o : iotk_base.o iotk_dat+LOGICAL2_0.o : iotk_dat_interf.o iotk_dat+LOGICAL2_0.o : iotk_error_interf.o iotk_dat+LOGICAL2_0.o : iotk_fmt_interf.o iotk_dat+LOGICAL2_0.o : iotk_misc_interf.o iotk_dat+LOGICAL2_0.o : iotk_scan_interf.o iotk_dat+LOGICAL2_0.o : iotk_stream_interf.o iotk_dat+LOGICAL2_0.o : iotk_str_interf.o iotk_dat+LOGICAL2_0.o : iotk_unit_interf.o iotk_dat+LOGICAL2_0.o : iotk_write_interf.o iotk_dat+LOGICAL2_3.o : ../include/iotk_auxmacros.h iotk_dat+LOGICAL2_3.o : ../include/iotk_config.h iotk_dat+LOGICAL2_3.o : iotk_attr_interf.o iotk_dat+LOGICAL2_3.o : iotk_base.o iotk_dat+LOGICAL2_3.o : iotk_dat_interf.o iotk_dat+LOGICAL2_3.o : iotk_error_interf.o iotk_dat+LOGICAL2_3.o : iotk_fmt_interf.o iotk_dat+LOGICAL2_3.o : iotk_misc_interf.o iotk_dat+LOGICAL2_3.o : iotk_scan_interf.o iotk_dat+LOGICAL2_3.o : iotk_str_interf.o iotk_dat+LOGICAL2_3.o : iotk_unit_interf.o iotk_dat+LOGICAL2_3.o : iotk_write_interf.o iotk_dat+LOGICAL2_6.o : ../include/iotk_auxmacros.h iotk_dat+LOGICAL2_6.o : ../include/iotk_config.h iotk_dat+LOGICAL2_6.o : iotk_attr_interf.o iotk_dat+LOGICAL2_6.o : iotk_base.o iotk_dat+LOGICAL2_6.o : iotk_dat_interf.o iotk_dat+LOGICAL2_6.o : iotk_error_interf.o iotk_dat+LOGICAL2_6.o : iotk_fmt_interf.o iotk_dat+LOGICAL2_6.o : iotk_misc_interf.o iotk_dat+LOGICAL2_6.o : iotk_scan_interf.o iotk_dat+LOGICAL2_6.o : iotk_str_interf.o iotk_dat+LOGICAL2_6.o : iotk_unit_interf.o iotk_dat+LOGICAL2_6.o : iotk_write_interf.o iotk_dat+LOGICAL3_0.o : ../include/iotk_auxmacros.h iotk_dat+LOGICAL3_0.o : ../include/iotk_config.h iotk_dat+LOGICAL3_0.o : iotk_attr_interf.o iotk_dat+LOGICAL3_0.o : iotk_base.o iotk_dat+LOGICAL3_0.o : iotk_dat_interf.o iotk_dat+LOGICAL3_0.o : iotk_error_interf.o iotk_dat+LOGICAL3_0.o : iotk_fmt_interf.o iotk_dat+LOGICAL3_0.o : iotk_misc_interf.o iotk_dat+LOGICAL3_0.o : iotk_scan_interf.o iotk_dat+LOGICAL3_0.o : iotk_stream_interf.o iotk_dat+LOGICAL3_0.o : iotk_str_interf.o iotk_dat+LOGICAL3_0.o : iotk_unit_interf.o iotk_dat+LOGICAL3_0.o : iotk_write_interf.o iotk_dat+LOGICAL3_3.o : ../include/iotk_auxmacros.h iotk_dat+LOGICAL3_3.o : ../include/iotk_config.h iotk_dat+LOGICAL3_3.o : iotk_attr_interf.o iotk_dat+LOGICAL3_3.o : iotk_base.o iotk_dat+LOGICAL3_3.o : iotk_dat_interf.o iotk_dat+LOGICAL3_3.o : iotk_error_interf.o iotk_dat+LOGICAL3_3.o : iotk_fmt_interf.o iotk_dat+LOGICAL3_3.o : iotk_misc_interf.o iotk_dat+LOGICAL3_3.o : iotk_scan_interf.o iotk_dat+LOGICAL3_3.o : iotk_str_interf.o iotk_dat+LOGICAL3_3.o : iotk_unit_interf.o iotk_dat+LOGICAL3_3.o : iotk_write_interf.o iotk_dat+LOGICAL3_6.o : ../include/iotk_auxmacros.h iotk_dat+LOGICAL3_6.o : ../include/iotk_config.h iotk_dat+LOGICAL3_6.o : iotk_attr_interf.o iotk_dat+LOGICAL3_6.o : iotk_base.o iotk_dat+LOGICAL3_6.o : iotk_dat_interf.o iotk_dat+LOGICAL3_6.o : iotk_error_interf.o iotk_dat+LOGICAL3_6.o : iotk_fmt_interf.o iotk_dat+LOGICAL3_6.o : iotk_misc_interf.o iotk_dat+LOGICAL3_6.o : iotk_scan_interf.o iotk_dat+LOGICAL3_6.o : iotk_str_interf.o iotk_dat+LOGICAL3_6.o : iotk_unit_interf.o iotk_dat+LOGICAL3_6.o : iotk_write_interf.o iotk_dat+LOGICAL4_0.o : ../include/iotk_auxmacros.h iotk_dat+LOGICAL4_0.o : ../include/iotk_config.h iotk_dat+LOGICAL4_0.o : iotk_attr_interf.o iotk_dat+LOGICAL4_0.o : iotk_base.o iotk_dat+LOGICAL4_0.o : iotk_dat_interf.o iotk_dat+LOGICAL4_0.o : iotk_error_interf.o iotk_dat+LOGICAL4_0.o : iotk_fmt_interf.o iotk_dat+LOGICAL4_0.o : iotk_misc_interf.o iotk_dat+LOGICAL4_0.o : iotk_scan_interf.o iotk_dat+LOGICAL4_0.o : iotk_stream_interf.o iotk_dat+LOGICAL4_0.o : iotk_str_interf.o iotk_dat+LOGICAL4_0.o : iotk_unit_interf.o iotk_dat+LOGICAL4_0.o : iotk_write_interf.o iotk_dat+LOGICAL4_3.o : ../include/iotk_auxmacros.h iotk_dat+LOGICAL4_3.o : ../include/iotk_config.h iotk_dat+LOGICAL4_3.o : iotk_attr_interf.o iotk_dat+LOGICAL4_3.o : iotk_base.o iotk_dat+LOGICAL4_3.o : iotk_dat_interf.o iotk_dat+LOGICAL4_3.o : iotk_error_interf.o iotk_dat+LOGICAL4_3.o : iotk_fmt_interf.o iotk_dat+LOGICAL4_3.o : iotk_misc_interf.o iotk_dat+LOGICAL4_3.o : iotk_scan_interf.o iotk_dat+LOGICAL4_3.o : iotk_str_interf.o iotk_dat+LOGICAL4_3.o : iotk_unit_interf.o iotk_dat+LOGICAL4_3.o : iotk_write_interf.o iotk_dat+LOGICAL4_6.o : ../include/iotk_auxmacros.h iotk_dat+LOGICAL4_6.o : ../include/iotk_config.h iotk_dat+LOGICAL4_6.o : iotk_attr_interf.o iotk_dat+LOGICAL4_6.o : iotk_base.o iotk_dat+LOGICAL4_6.o : iotk_dat_interf.o iotk_dat+LOGICAL4_6.o : iotk_error_interf.o iotk_dat+LOGICAL4_6.o : iotk_fmt_interf.o iotk_dat+LOGICAL4_6.o : iotk_misc_interf.o iotk_dat+LOGICAL4_6.o : iotk_scan_interf.o iotk_dat+LOGICAL4_6.o : iotk_str_interf.o iotk_dat+LOGICAL4_6.o : iotk_unit_interf.o iotk_dat+LOGICAL4_6.o : iotk_write_interf.o iotk_dat.o : ../include/iotk_auxmacros.h iotk_dat.o : ../include/iotk_config.h iotk_dat+REAL1_0.o : ../include/iotk_auxmacros.h iotk_dat+REAL1_0.o : ../include/iotk_config.h iotk_dat+REAL1_0.o : iotk_attr_interf.o iotk_dat+REAL1_0.o : iotk_base.o iotk_dat+REAL1_0.o : iotk_dat_interf.o iotk_dat+REAL1_0.o : iotk_error_interf.o iotk_dat+REAL1_0.o : iotk_fmt_interf.o iotk_dat+REAL1_0.o : iotk_misc_interf.o iotk_dat+REAL1_0.o : iotk_scan_interf.o iotk_dat+REAL1_0.o : iotk_stream_interf.o iotk_dat+REAL1_0.o : iotk_str_interf.o iotk_dat+REAL1_0.o : iotk_unit_interf.o iotk_dat+REAL1_0.o : iotk_write_interf.o iotk_dat+REAL1_3.o : ../include/iotk_auxmacros.h iotk_dat+REAL1_3.o : ../include/iotk_config.h iotk_dat+REAL1_3.o : iotk_attr_interf.o iotk_dat+REAL1_3.o : iotk_base.o iotk_dat+REAL1_3.o : iotk_dat_interf.o iotk_dat+REAL1_3.o : iotk_error_interf.o iotk_dat+REAL1_3.o : iotk_fmt_interf.o iotk_dat+REAL1_3.o : iotk_misc_interf.o iotk_dat+REAL1_3.o : iotk_scan_interf.o iotk_dat+REAL1_3.o : iotk_str_interf.o iotk_dat+REAL1_3.o : iotk_unit_interf.o iotk_dat+REAL1_3.o : iotk_write_interf.o iotk_dat+REAL1_6.o : ../include/iotk_auxmacros.h iotk_dat+REAL1_6.o : ../include/iotk_config.h iotk_dat+REAL1_6.o : iotk_attr_interf.o iotk_dat+REAL1_6.o : iotk_base.o iotk_dat+REAL1_6.o : iotk_dat_interf.o iotk_dat+REAL1_6.o : iotk_error_interf.o iotk_dat+REAL1_6.o : iotk_fmt_interf.o iotk_dat+REAL1_6.o : iotk_misc_interf.o iotk_dat+REAL1_6.o : iotk_scan_interf.o iotk_dat+REAL1_6.o : iotk_str_interf.o iotk_dat+REAL1_6.o : iotk_unit_interf.o iotk_dat+REAL1_6.o : iotk_write_interf.o iotk_dat+REAL2_0.o : ../include/iotk_auxmacros.h iotk_dat+REAL2_0.o : ../include/iotk_config.h iotk_dat+REAL2_0.o : iotk_attr_interf.o iotk_dat+REAL2_0.o : iotk_base.o iotk_dat+REAL2_0.o : iotk_dat_interf.o iotk_dat+REAL2_0.o : iotk_error_interf.o iotk_dat+REAL2_0.o : iotk_fmt_interf.o iotk_dat+REAL2_0.o : iotk_misc_interf.o iotk_dat+REAL2_0.o : iotk_scan_interf.o iotk_dat+REAL2_0.o : iotk_stream_interf.o iotk_dat+REAL2_0.o : iotk_str_interf.o iotk_dat+REAL2_0.o : iotk_unit_interf.o iotk_dat+REAL2_0.o : iotk_write_interf.o iotk_dat+REAL2_3.o : ../include/iotk_auxmacros.h iotk_dat+REAL2_3.o : ../include/iotk_config.h iotk_dat+REAL2_3.o : iotk_attr_interf.o iotk_dat+REAL2_3.o : iotk_base.o iotk_dat+REAL2_3.o : iotk_dat_interf.o iotk_dat+REAL2_3.o : iotk_error_interf.o iotk_dat+REAL2_3.o : iotk_fmt_interf.o iotk_dat+REAL2_3.o : iotk_misc_interf.o iotk_dat+REAL2_3.o : iotk_scan_interf.o iotk_dat+REAL2_3.o : iotk_str_interf.o iotk_dat+REAL2_3.o : iotk_unit_interf.o iotk_dat+REAL2_3.o : iotk_write_interf.o iotk_dat+REAL2_6.o : ../include/iotk_auxmacros.h iotk_dat+REAL2_6.o : ../include/iotk_config.h iotk_dat+REAL2_6.o : iotk_attr_interf.o iotk_dat+REAL2_6.o : iotk_base.o iotk_dat+REAL2_6.o : iotk_dat_interf.o iotk_dat+REAL2_6.o : iotk_error_interf.o iotk_dat+REAL2_6.o : iotk_fmt_interf.o iotk_dat+REAL2_6.o : iotk_misc_interf.o iotk_dat+REAL2_6.o : iotk_scan_interf.o iotk_dat+REAL2_6.o : iotk_str_interf.o iotk_dat+REAL2_6.o : iotk_unit_interf.o iotk_dat+REAL2_6.o : iotk_write_interf.o iotk_dat+REAL3_0.o : ../include/iotk_auxmacros.h iotk_dat+REAL3_0.o : ../include/iotk_config.h iotk_dat+REAL3_0.o : iotk_attr_interf.o iotk_dat+REAL3_0.o : iotk_base.o iotk_dat+REAL3_0.o : iotk_dat_interf.o iotk_dat+REAL3_0.o : iotk_error_interf.o iotk_dat+REAL3_0.o : iotk_fmt_interf.o iotk_dat+REAL3_0.o : iotk_misc_interf.o iotk_dat+REAL3_0.o : iotk_scan_interf.o iotk_dat+REAL3_0.o : iotk_stream_interf.o iotk_dat+REAL3_0.o : iotk_str_interf.o iotk_dat+REAL3_0.o : iotk_unit_interf.o iotk_dat+REAL3_0.o : iotk_write_interf.o iotk_dat+REAL3_3.o : ../include/iotk_auxmacros.h iotk_dat+REAL3_3.o : ../include/iotk_config.h iotk_dat+REAL3_3.o : iotk_attr_interf.o iotk_dat+REAL3_3.o : iotk_base.o iotk_dat+REAL3_3.o : iotk_dat_interf.o iotk_dat+REAL3_3.o : iotk_error_interf.o iotk_dat+REAL3_3.o : iotk_fmt_interf.o iotk_dat+REAL3_3.o : iotk_misc_interf.o iotk_dat+REAL3_3.o : iotk_scan_interf.o iotk_dat+REAL3_3.o : iotk_str_interf.o iotk_dat+REAL3_3.o : iotk_unit_interf.o iotk_dat+REAL3_3.o : iotk_write_interf.o iotk_dat+REAL3_6.o : ../include/iotk_auxmacros.h iotk_dat+REAL3_6.o : ../include/iotk_config.h iotk_dat+REAL3_6.o : iotk_attr_interf.o iotk_dat+REAL3_6.o : iotk_base.o iotk_dat+REAL3_6.o : iotk_dat_interf.o iotk_dat+REAL3_6.o : iotk_error_interf.o iotk_dat+REAL3_6.o : iotk_fmt_interf.o iotk_dat+REAL3_6.o : iotk_misc_interf.o iotk_dat+REAL3_6.o : iotk_scan_interf.o iotk_dat+REAL3_6.o : iotk_str_interf.o iotk_dat+REAL3_6.o : iotk_unit_interf.o iotk_dat+REAL3_6.o : iotk_write_interf.o iotk_dat+REAL4_0.o : ../include/iotk_auxmacros.h iotk_dat+REAL4_0.o : ../include/iotk_config.h iotk_dat+REAL4_0.o : iotk_attr_interf.o iotk_dat+REAL4_0.o : iotk_base.o iotk_dat+REAL4_0.o : iotk_dat_interf.o iotk_dat+REAL4_0.o : iotk_error_interf.o iotk_dat+REAL4_0.o : iotk_fmt_interf.o iotk_dat+REAL4_0.o : iotk_misc_interf.o iotk_dat+REAL4_0.o : iotk_scan_interf.o iotk_dat+REAL4_0.o : iotk_stream_interf.o iotk_dat+REAL4_0.o : iotk_str_interf.o iotk_dat+REAL4_0.o : iotk_unit_interf.o iotk_dat+REAL4_0.o : iotk_write_interf.o iotk_dat+REAL4_3.o : ../include/iotk_auxmacros.h iotk_dat+REAL4_3.o : ../include/iotk_config.h iotk_dat+REAL4_3.o : iotk_attr_interf.o iotk_dat+REAL4_3.o : iotk_base.o iotk_dat+REAL4_3.o : iotk_dat_interf.o iotk_dat+REAL4_3.o : iotk_error_interf.o iotk_dat+REAL4_3.o : iotk_fmt_interf.o iotk_dat+REAL4_3.o : iotk_misc_interf.o iotk_dat+REAL4_3.o : iotk_scan_interf.o iotk_dat+REAL4_3.o : iotk_str_interf.o iotk_dat+REAL4_3.o : iotk_unit_interf.o iotk_dat+REAL4_3.o : iotk_write_interf.o iotk_dat+REAL4_6.o : ../include/iotk_auxmacros.h iotk_dat+REAL4_6.o : ../include/iotk_config.h iotk_dat+REAL4_6.o : iotk_attr_interf.o iotk_dat+REAL4_6.o : iotk_base.o iotk_dat+REAL4_6.o : iotk_dat_interf.o iotk_dat+REAL4_6.o : iotk_error_interf.o iotk_dat+REAL4_6.o : iotk_fmt_interf.o iotk_dat+REAL4_6.o : iotk_misc_interf.o iotk_dat+REAL4_6.o : iotk_scan_interf.o iotk_dat+REAL4_6.o : iotk_str_interf.o iotk_dat+REAL4_6.o : iotk_unit_interf.o iotk_dat+REAL4_6.o : iotk_write_interf.o iotk_error_interf.o : ../include/iotk_auxmacros.h iotk_error_interf.o : ../include/iotk_config.h iotk_error_interf.o : iotk_base.o iotk_error.o : ../include/iotk_auxmacros.h iotk_error.o : ../include/iotk_config.h iotk_error.o : iotk_base.o iotk_error.o : iotk_error_interf.o iotk_error.o : iotk_misc_interf.o iotk_error.o : iotk_xtox_interf.o iotk_files_interf.o : ../include/iotk_auxmacros.h iotk_files_interf.o : ../include/iotk_config.h iotk_files_interf.o : iotk_base.o iotk_files.o : ../include/iotk_auxmacros.h iotk_files.o : ../include/iotk_config.h iotk_files.o : iotk_attr_interf.o iotk_files.o : iotk_base.o iotk_files.o : iotk_error_interf.o iotk_files.o : iotk_files_interf.o iotk_files.o : iotk_misc_interf.o iotk_files.o : iotk_scan_interf.o iotk_files.o : iotk_str_interf.o iotk_files.o : iotk_unit_interf.o iotk_files.o : iotk_write_interf.o iotk_fmt_interf.o : ../include/iotk_auxmacros.h iotk_fmt_interf.o : ../include/iotk_config.h iotk_fmt_interf.o : iotk_base.o iotk_fmt.o : ../include/iotk_auxmacros.h iotk_fmt.o : ../include/iotk_config.h iotk_fmt.o : iotk_base.o iotk_fmt.o : iotk_fmt_interf.o iotk_fmt.o : iotk_misc_interf.o iotk_fmt.o : iotk_str_interf.o iotk_fmt.o : iotk_xtox_interf.o iotk_misc_interf.o : ../include/iotk_auxmacros.h iotk_misc_interf.o : ../include/iotk_config.h iotk_misc_interf.o : iotk_base.o iotk_misc.o : ../include/iotk_auxmacros.h iotk_misc.o : ../include/iotk_config.h iotk_misc.o : iotk_attr_interf.o iotk_misc.o : iotk_base.o iotk_misc.o : iotk_dat_interf.o iotk_misc.o : iotk_error_interf.o iotk_misc.o : iotk_misc_interf.o iotk_misc.o : iotk_scan_interf.o iotk_misc.o : iotk_str_interf.o iotk_misc.o : iotk_unit_interf.o iotk_misc.o : iotk_write_interf.o iotk_misc.o : iotk_xtox_interf.o iotk_module.o : iotk_attr_interf.o iotk_module.o : iotk_base.o iotk_module.o : iotk_dat_interf.o iotk_module.o : iotk_error_interf.o iotk_module.o : iotk_files_interf.o iotk_module.o : iotk_fmt_interf.o iotk_module.o : iotk_misc_interf.o iotk_module.o : iotk_scan_interf.o iotk_module.o : iotk_tool_interf.o iotk_module.o : iotk_unit_interf.o iotk_module.o : iotk_write_interf.o iotk_module.o : iotk_xtox_interf.o iotk.o : iotk_base.o iotk.o : iotk_error_interf.o iotk.o : iotk_module.o iotk_print_kinds.o : iotk_module.o iotk_scan_interf.o : ../include/iotk_auxmacros.h iotk_scan_interf.o : ../include/iotk_config.h iotk_scan_interf.o : iotk_base.o iotk_scan.o : ../include/iotk_auxmacros.h iotk_scan.o : ../include/iotk_config.h iotk_scan.o : iotk_attr_interf.o iotk_scan.o : iotk_base.o iotk_scan.o : iotk_error_interf.o iotk_scan.o : iotk_files_interf.o iotk_scan.o : iotk_misc_interf.o iotk_scan.o : iotk_scan_interf.o iotk_scan.o : iotk_stream_interf.o iotk_scan.o : iotk_str_interf.o iotk_scan.o : iotk_unit_interf.o iotk_stream_interf.o : ../include/iotk_auxmacros.h iotk_stream_interf.o : ../include/iotk_config.h iotk_stream_interf.o : iotk_base.o iotk_stream.o : ../include/iotk_auxmacros.h iotk_stream.o : ../include/iotk_config.h iotk_stream.o : iotk_base.o iotk_stream.o : iotk_error_interf.o iotk_stream.o : iotk_stream_interf.o iotk_str_interf.o : ../include/iotk_auxmacros.h iotk_str_interf.o : ../include/iotk_config.h iotk_str_interf.o : iotk_base.o iotk_str.o : ../include/iotk_auxmacros.h iotk_str.o : ../include/iotk_config.h iotk_str.o : iotk_base.o iotk_str.o : iotk_error_interf.o iotk_str.o : iotk_misc_interf.o iotk_str.o : iotk_str_interf.o iotk_tool_interf.o : ../include/iotk_auxmacros.h iotk_tool_interf.o : ../include/iotk_config.h iotk_tool.o : ../include/iotk_auxmacros.h iotk_tool.o : ../include/iotk_config.h iotk_tool.o : iotk_base.o iotk_tool.o : iotk_error_interf.o iotk_tool.o : iotk_files_interf.o iotk_tool.o : iotk_misc_interf.o iotk_tool.o : iotk_str_interf.o iotk_tool.o : iotk_tool_interf.o iotk_tool.o : iotk_xtox_interf.o iotk_unit_interf.o : ../include/iotk_auxmacros.h iotk_unit_interf.o : ../include/iotk_config.h iotk_unit_interf.o : iotk_base.o iotk_unit_list.o : ../include/iotk_auxmacros.h iotk_unit_list.o : ../include/iotk_config.h iotk_unit_list.o : iotk_base.o iotk_unit.o : ../include/iotk_auxmacros.h iotk_unit.o : ../include/iotk_config.h iotk_unit.o : iotk_base.o iotk_unit.o : iotk_error_interf.o iotk_unit.o : iotk_misc_interf.o iotk_unit.o : iotk_str_interf.o iotk_unit.o : iotk_unit_interf.o iotk_unit.o : iotk_unit_list.o iotk_write_interf.o : ../include/iotk_auxmacros.h iotk_write_interf.o : ../include/iotk_config.h iotk_write_interf.o : iotk_base.o iotk_write.o : ../include/iotk_auxmacros.h iotk_write.o : ../include/iotk_config.h iotk_write.o : iotk_base.o iotk_write.o : iotk_error_interf.o iotk_write.o : iotk_files_interf.o iotk_write.o : iotk_misc_interf.o iotk_write.o : iotk_str_interf.o iotk_write.o : iotk_unit_interf.o iotk_write.o : iotk_write_interf.o iotk_xtox_interf.o : ../include/iotk_auxmacros.h iotk_xtox_interf.o : ../include/iotk_config.h iotk_xtox_interf.o : iotk_base.o iotk_xtox.o : ../include/iotk_auxmacros.h iotk_xtox.o : ../include/iotk_config.h iotk_xtox.o : iotk_base.o iotk_xtox.o : iotk_misc_interf.o test2.o : iotk_module.o test3.o : iotk_module.o test4.o : iotk_base.o test4.o : iotk_error_interf.o test5.o : iotk_module.o test5.o : iotk_xtox_interf.o test6.o : iotk_module.o test7.o : iotk_misc_interf.o test7.o : iotk_module.o test7.o : iotk_str_interf.o test8.o : iotk_module.o test8.o : iotk_stream_interf.o test9.o : iotk_module.o test9.o : iotk_unit_list.o test.o : iotk_module.o # End dependencies espresso-5.1/install/README.IBM-INTEL.IDRIS_ada0000644000175000017500000001534712341373034016577 0ustar mbamba Info by Lorenzo Paulatto http://www-int.impmc.upmc.fr/~paulatto/ Dec. 2012, valid for QE 5.0.2 and 4.3.2 on ADA machine of French computing center IDRIS: http://www.idris.fr/ada/ Configuration: IBM + Intel MKL Until a pre-compiled version of Intel MKL FFTW3 is made available you will have to compile the interface yourself: MKLBASE=$(cd $(dirname $(which ifort))/../../mkl; pwd) cp -r $MKLBASE/interfaces/fftw3xf/ $HOME/ cd $HOME/fftw3xf/ make libintel64 these steps will create an Intel FFTW3 library in "$HOME/fftw3xf/". It is not clear if this library is any faster than stock FFTW3 but at least it does no harm. You can also ignore this part and not set FFT_LIBS, using internal FFTW3 instead. Proceed with configure: export AR=xiar export MPIF90=mpiifort export FFT_LIBS="-L$HOME/fftw3xf -lfftw3xf_intel" export SCALAPACK_LIBS="-mkl=cluster" export BLAS_LIBS="-mkl=cluster" export LAPACK_LIBS="-mkl=cluster" ./configure Then proceed with make as usual. Notes: * setting AR=xiar is only needed if you want to enable multi-file optimisation (i.e. with -fast) however, I never found this optimisation to be any effective, it does not hurt to try but compilation time will increase a lot. * currently, the mkl variables are not properly set in the computing nodes, you should add something like this at the beginning of your job script or in your .bashrc: . /gpfs4l/smplocal/opt/intel/composer_xe_2011_sp1.6.233/mkl/bin/mklvars.sh intel64 do not forget the "." at the beginning! I'm confident this will be fixed soon anyway. * just setting SCALAPACK_LIBS="-mkl=cluster" is enough to compile, but leaving BLAS_LIBS or LAPACK_LIBS empty will pull in MKL libraries linked with the wrong MPI implementation. * alternatively, if you do not want scalapack, you can set --without-scalapack and set BLAS_LIBS="-mkl=sequential" and LAPACK_LIBS="-mkl=sequential". Below is the my working make.sys file. If you use it, do not forget to edit FFT_LIBS and TOPDIR according to your path. ################################################################### # make.sys. Generated from make.sys.in by configure. # compilation rules .SUFFIXES : .SUFFIXES : .o .c .f .f90 # most fortran compilers can directly preprocess c-like directives: use # $(MPIF90) $(F90FLAGS) -c $< # if explicit preprocessing by the C preprocessor is needed, use: # $(CPP) $(CPPFLAGS) $< -o $*.F90 # $(MPIF90) $(F90FLAGS) -c $*.F90 -o $*.o # remember the tabulator in the first column !!! .f90.o: $(MPIF90) $(F90FLAGS) -c $< # .f.o and .c.o: do not modify .f.o: $(F77) $(FFLAGS) -c $< .c.o: $(CC) $(CFLAGS) -c $< # DFLAGS = precompilation options (possible arguments to -D and -U) # used by the C compiler and preprocessor # FDFLAGS = as DFLAGS, for the f90 compiler # See include/defs.h.README for a list of options and their meaning # With the exception of IBM xlf, FDFLAGS = $(DFLAGS) # For IBM xlf, FDFLAGS is the same as DFLAGS with separating commas MANUAL_DFLAGS = DFLAGS = -D__INTEL -D__FFTW3 -D__MPI -D__PARA -D__SCALAPACK $(MANUAL_DFLAGS) FDFLAGS = $(DFLAGS) # IFLAGS = how to locate directories where files to be included are # In most cases, IFLAGS = -I../include IFLAGS = -I../include # MOD_FLAGS = flag used by f90 compiler to locate modules # Each Makefile defines the list of needed modules in MODFLAGS MOD_FLAG = -I # Compilers: fortran-90, fortran-77, C # If a parallel compilation is desired, MPIF90 should be a fortran-90 # compiler that produces executables for parallel execution using MPI # (such as for instance mpif90, mpf90, mpxlf90,...); # otherwise, an ordinary fortran-90 compiler (f90, g95, xlf90, ifort,...) # If you have a parallel machine but no suitable candidate for MPIF90, # try to specify the directory containing "mpif.h" in IFLAGS # and to specify the location of MPI libraries in MPI_LIBS MPIF90 = mpiifort #F90 = ifort CC = icc F77 = ifort # C preprocessor and preprocessing flags - for explicit preprocessing, # if needed (see the compilation rules above) # preprocessing flags must include DFLAGS and IFLAGS CPP = cpp CPPFLAGS = -P -traditional $(DFLAGS) $(IFLAGS) # compiler flags: C, F90, F77 # C flags must include DFLAGS and IFLAGS # F90 flags must include MODFLAGS, IFLAGS, and FDFLAGS with appropriate syntax CFLAGS = -O3 $(DFLAGS) $(IFLAGS) F90FLAGS = $(FFLAGS) -nomodule -fpp $(FDFLAGS) $(IFLAGS) $(MODFLAGS) FFLAGS = -O2 -assume byterecl -g -traceback -par-report0 -vec-report0 # compiler flags without optimization for fortran-77 # the latter is NEEDED to properly compile dlamch.f, used by lapack FFLAGS_NOOPT = -O0 -assume byterecl -g -traceback # compiler flag needed by some compilers when the main is not fortran # Currently used for Yambo FFLAGS_NOMAIN = -nofor_main # Linker, linker-specific flags (if any) # Typically LD coincides with F90 or MPIF90, LD_LIBS is empty LD = mpiifort LDFLAGS = LD_LIBS = # External Libraries (if any) : blas, lapack, fft, MPI # If you have nothing better, use the local copy : # BLAS_LIBS = /your/path/to/espresso/BLAS/blas.a # BLAS_LIBS_SWITCH = internal BLAS_LIBS = -mkl=cluster BLAS_LIBS_SWITCH = external # If you have nothing better, use the local copy : # LAPACK_LIBS = /your/path/to/espresso/lapack-3.2/lapack.a # LAPACK_LIBS_SWITCH = internal # For IBM machines with essl (-D__ESSL): load essl BEFORE lapack ! # remember that LAPACK_LIBS precedes BLAS_LIBS in loading order LAPACK_LIBS = -mkl=cluster LAPACK_LIBS_SWITCH = external ELPA_LIBS_SWITCH = disabled SCALAPACK_LIBS = -mkl=cluster # nothing needed here if the the internal copy of FFTW is compiled # (needs -D__FFTW in DFLAGS) FFT_LIBS = -L/smphome/rech/vad/rvad010/fftw3xf -lfftw3xf_intel # For parallel execution, the correct path to MPI libraries must # be specified in MPI_LIBS (except for IBM if you use mpxlf) MPI_LIBS = # IBM-specific: MASS libraries, if available and if -D__MASS is defined in FDFLAGS MASS_LIBS = # ar command and flags - for most architectures: AR = ar, ARFLAGS = ruv AR = xiar ARFLAGS = ruv # ranlib command. If ranlib is not needed (it isn't in most cases) use # RANLIB = echo RANLIB = ranlib # all internal and external libraries - do not modify FLIB_TARGETS = all LIBOBJS = ../flib/ptools.a ../flib/flib.a ../clib/clib.a ../iotk/src/libiotk.a LIBS = $(SCALAPACK_LIBS) $(LAPACK_LIBS) $(FFT_LIBS) $(BLAS_LIBS) $(MPI_LIBS) $(MASS_LIBS) $(LD_LIBS) # wget or curl - useful to download from network WGET = wget -O # topdir for linking espresso libs with plugins TOPDIR = /smphome/rech/vad/rvad010/espresso-fast espresso-5.1/install/iotk_config.h0000644000175000017500000000616512341373034015424 0ustar mbamba! Input/Output Tool Kit (IOTK) ! Copyright (C) 2004 Giovanni Bussi ! ! This library is free software; you can redistribute it and/or ! modify it under the terms of the GNU Lesser General Public ! License as published by the Free Software Foundation; either ! version 2.1 of the License, or (at your option) any later version. ! ! This library is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ! Lesser General Public License for more details. ! ! You should have received a copy of the GNU Lesser General Public ! License along with this library; if not, write to the Free Software ! Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ! !------------------------------------------------------------------------------! ! CONFIGURATION FILE FOR IOTK 1.1.0 for Quantum-Espresso !------------------------------------------------------------------------------! ! The following lines map some commonly defined system macro to the internal ! iotk macros. ! Iotk macros which are not defined take their default values. ! See the manual for a list of iotk macros. #ifndef __IOTK_CONFIG_H #define __IOTK_CONFIG_H ! Generic options valid for quantum-espresso ! QE uses ranks up to four and default integer/logicals only #define __IOTK_MAXRANK 4 ! some compilers do not like the following ! #define __IOTK_REAL1 selected_real_kind(6,30) ! #define __IOTK_REAL2 selected_real_kind(14,200) ! so we use explicit kinds #if defined(__NAG) # define __IOTK_REAL1 1 # define __IOTK_REAL2 2 #elif defined(__SX6) # define __IOTK_REAL2 8 #else # define __IOTK_REAL1 4 # define __IOTK_REAL2 8 #endif ! Machine-dependent options ! Only for compilers that require some special tricks #ifdef __IOTK_SAFEST ! ! force to define all the workarounds ! # define __IOTK_WORKAROUND1 # define __IOTK_WORKAROUND2 # define __IOTK_WORKAROUND3 # define __IOTK_WORKAROUND4 # define __IOTK_WORKAROUND5 # define __IOTK_WORKAROUND6 # define __IOTK_WORKAROUND7 # define __IOTK_WORKAROUND9 # define __IOTK_WORKAROUND10 #else ! ! proceed with a machine dependent def where available ! # if defined(__XLF) # define __IOTK_WORKAROUND5 # define __IOTK_WORKAROUND9 # define __IOTK_WORKAROUND10 # elif defined(__INTEL) # define __IOTK_WORKAROUND1 # define __IOTK_WORKAROUND3 # define __IOTK_WORKAROUND5 # elif defined(__PGI) # define __IOTK_WORKAROUND2 # define __IOTK_WORKAROUND4 # elif defined(__NAG) # define __IOTK_WORKAROUND4 # elif defined(__ALPHA) # define __IOTK_WORKAROUND1 # define __IOTK_WORKAROUND6 # define __IOTK_WORKAROUND8 # elif defined(__SX6) # define __IOTK_WORKAROUND5 # define __IOTK_WORKAROUND7 # else # define __IOTK_WORKAROUND1 # define __IOTK_WORKAROUND2 # define __IOTK_WORKAROUND3 # define __IOTK_WORKAROUND4 # define __IOTK_WORKAROUND5 # define __IOTK_WORKAROUND6 # define __IOTK_WORKAROUND7 # endif #endif #if defined(__PARA) # define __IOTK_MPI_ABORT #endif #endif espresso-5.1/install/Make.BGP0000644000175000017500000001145312341373034014163 0ustar mbamba# System-dependent definitions for IBM BG/P massively parallel machine # Written for the Jugene machine in Juelich - edit according to your needs # make.sys. Generated from make.sys.in by configure. # updated by Carlo Cavazzoni 8 July 2009 # updated by Paolo Giannozzi 19 May 2010 # compilation rules .SUFFIXES : .SUFFIXES : .o .c .f .f90 # most fortran compilers can directly preprocess c-like directives: use # $(MPIF90) $(F90FLAGS) -c $< # if explicit preprocessing by the C preprocessor is needed, use: # $(CPP) $(CPPFLAGS) $< -o $*.F90 # $(MPIF90) $(F90FLAGS) -c $*.F90 -o $*.o # remember the tabulator in the first column !!! .f90.o: $(MPIF90) $(F90FLAGS) -c $< # .f.o and .c.o: do not modify .f.o: $(F77) $(FFLAGS) -c $< .c.o: $(CC) $(CFLAGS) -c $< # DFLAGS = precompilation options (possible arguments to -D and -U) # used by the C compiler and preprocessor # FDFLAGS = as DFLAGS, for the f90 compiler # See include/defs.h.README for a list of options and their meaning # With the exception of IBM xlf, FDFLAGS = $(DFLAGS) # For IBM xlf, FDFLAGS is the same as DFLAGS with separating commas DFLAGS = -D__AIX -D__XLF -D__MPI -D__PARA -D__LINUX_ESSL -D__SCALAPACK -D__WALLTIME FDFLAGS = -D__AIX,-D__XLF,-D__MPI,-D__PARA,-D__LINUX_ESSL,-D__SCALAPACK,-D__WALLTIME # IFLAGS = how to locate directories where files to be included are # In most cases, IFLAGS = -I../include # If loading an external FFTW library, add the location of FFTW include files IFLAGS = -I../include # MODFLAGS = flag used by f90 compiler to locate modules MOD_FLAG = -I # Compilers: fortran-90, fortran-77, C # If a parallel compilation is desired, MPIF90 should be a fortran-90 # compiler that produces executables for parallel execution using MPI # (such as for instance mpif90, mpf90, mpxlf90,...); # otherwise, an ordinary fortran-90 compiler (f90, g95, xlf90, ifort,...) # If you have a parallel machine but no suitable candidate for MPIF90, # try to specify the directory containing "mpif.h" in IFLAGS # and to specify the location of MPI libraries in MPI_LIBS MPIF90 = mpixlf90_r #F90 = xlf90 CC = bgxlc_r F77 = bgxlf_r # C preprocessor and preprocessing flags - for explicit preprocessing, # if needed (see the compilation rules above) # preprocessing flags must include DFLAGS and IFLAGS CPP = cpp CPPFLAGS = -P $(DFLAGS) $(IFLAGS) # compiler flags: C, F90, F77 # C flags must include DFLAGS and IFLAGS # F90 flags must include MODFLAGS, IFLAGS, and FDFLAGS with appropriate syntax CFLAGS = -O3 -q32 $(DFLAGS) $(IFLAGS) FFLAGS = -O3 -qstrict -qsuffix=cpp=f90 \ -qdpc=e -qalias=noaryovrlp:nointptr -q32 F90FLAGS = $(FFLAGS) -WF,$(FDFLAGS) $(IFLAGS) $(MODFLAGS) # compiler flags without optimization for fortran-77 # the latter is NEEDED to properly compile dlamch.f, used by lapack FFLAGS_NOOPT = -O0 -q32 # Linker, linker-specific flags (if any) # Typically LD coincides with F90 or MPIF90, LD_LIBS is empty LD = $(MPIF90) LDFLAGS = -q32 LD_LIBS = # External Libraries (if any) : blas, lapack, fft, MPI # If you have nothing better, use the local copy : ../BLAS/blas.a BLAS_LIBS = -L/opt/ibmmath/essl/4.4/lib/ -lesslbg BLAS_LIBS_SWITCH = external FLIB_TARGETS = all # For IBM machines with essl (-D__ESSL): load essl BEFORE lapack ! # remember that LAPACK_LIBS precedes BLAS_LIBS in loading order LAPACK_LIBS = /homea/hch03/hch033/espresso/lapack-3.2/lapack.a LAPACK_LIBS_SWITCH = internal SCALAPACK_LIBS = /bgsys/local/scalapack/lib/libscalapack.a /bgsys/local/blacs/lib/libblacs.a /bgsys/local/blacs/lib/libblacsF77init.a /bgsys/local/blacs/lib/libblacs.a # nothing needed here if the the internal copy of FFTW is compiled # (needs -D__FFTW -D__USE_INTERNAL_FFTW in DFLAGS) FFT_LIBS = # For parallel execution, the correct path to MPI libraries must # be specified in MPI_LIBS (except for IBM if you use mpxlf) MPI_LIBS = # IBM-specific: MASS libraries, if available and if -D__MASS is defined in FDFLAGS MASS_LIBS = # pgplot libraries (used by some post-processing tools) PGPLOT_LIBS = # ar command and flags - for most architectures: AR = ar, ARFLAGS = ruv # ARFLAGS_DYNAMIC is used in iotk to produce a dynamical library, # for Mac OS-X with PowerPC and xlf compiler. In all other cases # ARFLAGS_DYNAMIC = $(ARFLAGS) AR = ar ARFLAGS = ruv ARFLAGS_DYNAMIC= ruv # ranlib command. If ranlib is not needed (it isn't in most cases) use # RANLIB = echo RANLIB = ranlib # all internal and external libraries - do not modify LIBOBJS = ../flib/ptools.a ../flib/flib.a ../clib/clib.a ../iotk/src/libiotk.a LIBS = $(SCALAPACK_LIBS) $(LAPACK_LIBS) $(BLAS_LIBS) $(FFT_LIBS) $(MPI_LIBS) $(MASS_LIBS) $(PGPLOT_LIBS) $(LD_LIBS) espresso-5.1/install/update_version0000755000175000017500000000150712341373034015730 0ustar mbamba#!/bin/sh # check if svn info available (do not write anything) svn info 2> /dev/null > /dev/null if [ $? = 0 ] ; then # svn info available: get svn revision svn_rev=$(svnversion -n) else # svn info available: revert to no info svn_rev=unknown fi # write svn into file version_tmp.f90 cat version.f90.in | sed 's/unknown/'$svn_rev'/' > version.f90.tmp # check if a previous version.f90 file exists if test -f version.f90 ; then # version.f90 existing: check if new and previous files differ diff -wib version.f90.tmp version.f90 2> /dev/null > /dev/null if [ $? = 1 ] ; then # they differ: update file version.f90 mv version.f90.tmp version.f90 fi # do not update if files are the same (prevents useless recompilation) else # file version.f90 not existing: create one mv version.f90.tmp version.f90 fi espresso-5.1/install/Make.BGP-openMP0000644000175000017500000001146612341373034015363 0ustar mbamba# make.sys. Generated from make.sys.in by configure. # compilation rules .SUFFIXES : .SUFFIXES : .o .c .f .f90 # most fortran compilers can directly preprocess c-like directives: use # $(MPIF90) $(F90FLAGS) -c $< # if explicit preprocessing by the C preprocessor is needed, use: # $(CPP) $(CPPFLAGS) $< -o $*.F90 # $(MPIF90) $(F90FLAGS) -c $*.F90 -o $*.o # remember the tabulator in the first column !!! .f90.o: $(MPIF90) $(F90FLAGS) -c $< # .f.o and .c.o: do not modify .f.o: $(F77) $(FFLAGS) -c $< .c.o: $(CC) $(CFLAGS) -c $< # DFLAGS = precompilation options (possible arguments to -D and -U) # used by the C compiler and preprocessor # FDFLAGS = as DFLAGS, for the f90 compiler # See include/defs.h.README for a list of options and their meaning # With the exception of IBM xlf, FDFLAGS = $(DFLAGS) # For IBM xlf, FDFLAGS is the same as DFLAGS with separating commas DFLAGS = -D__AIX -D__XLF -D__LINUX_ESSL -D__MPI -D__PARA -D__SCALAPACK -D__OPENMP FDFLAGS = -D__AIX,-D__XLF,-D__LINUX_ESSL,-D__MPI,-D__PARA,-D__SCALAPACK,-D__OPENMP # IFLAGS = how to locate directories where files to be included are # In most cases, IFLAGS = -I../include IFLAGS = -I../include # MOD_FLAGS = flag used by f90 compiler to locate modules # Each Makefile defines the list of needed modules in MODFLAGS MOD_FLAG = -I # Compilers: fortran-90, fortran-77, C # If a parallel compilation is desired, MPIF90 should be a fortran-90 # compiler that produces executables for parallel execution using MPI # (such as for instance mpif90, mpf90, mpxlf90,...); # otherwise, an ordinary fortran-90 compiler (f90, g95, xlf90, ifort,...) # If you have a parallel machine but no suitable candidate for MPIF90, # try to specify the directory containing "mpif.h" in IFLAGS # and to specify the location of MPI libraries in MPI_LIBS MPIF90 = mpixlf90_r #F90 = bgxlf90_r CC = bgxlc_r F77 = bgxlf_r # C preprocessor and preprocessing flags - for explicit preprocessing, # if needed (see the compilation rules above) # preprocessing flags must include DFLAGS and IFLAGS CPP = cpp CPPFLAGS = -P -traditional $(DFLAGS) $(IFLAGS) # compiler flags: C, F90, F77 # C flags must include DFLAGS and IFLAGS # F90 flags must include MODFLAGS, IFLAGS, and FDFLAGS with appropriate syntax CFLAGS = -O3 $(DFLAGS) $(IFLAGS) F90FLAGS = $(FFLAGS) -qsuffix=cpp=f90 -WF,$(FDFLAGS) $(IFLAGS) $(MODFLAGS) FFLAGS = -q32 -qalias=noaryovrlp:nointptr -O3 -qstrict -qdpc=e -qsmp=omp -qthreaded # compiler flags without optimization for fortran-77 # the latter is NEEDED to properly compile dlamch.f, used by lapack FFLAGS_NOOPT = -q32 -O0 # Linker, linker-specific flags (if any) # Typically LD coincides with F90 or MPIF90, LD_LIBS is empty LD = mpixlf90_r LDFLAGS = -q32 -qsmp=omp -qthreaded LD_LIBS = # External Libraries (if any) : blas, lapack, fft, MPI # If you have nothing better, use the local copy : # BLAS_LIBS = /your/path/to/espresso/BLAS/blas.a # BLAS_LIBS_SWITCH = internal BLAS_LIBS = -L/opt/ibmmath/essl/4.4/lib/ -lesslsmpbg BLAS_LIBS_SWITCH = external # If you have nothing better, use the local copy : # LAPACK_LIBS = /your/path/to/espresso/LAPACK/lapack.a # LAPACK_LIBS_SWITCH = internal # The following lapack libraries will be available in flib/ : # ../flib/lapack.a : contains all needed routines # ../flib/lapack_atlas.a: only routines not present in the Atlas library # For IBM machines with essl (-D__ESSL): load essl BEFORE lapack ! # remember that LAPACK_LIBS precedes BLAS_LIBS in loading order LAPACK_LIBS = -L/opt/ibmmath/essl/4.4/lib/ -lesslsmpbg /homea/hch03/hch033/espresso/lapack-3.2/lapack.a LAPACK_LIBS_SWITCH = internal SCALAPACK_LIBS = -L/bgsys/local/scalapack/lib -lscalapack -L/bgsys/local/blacs/lib -lblacs -lblacsF77init -lblacs # nothing needed here if the the internal copy of FFTW is compiled # (needs -D__FFTW in DFLAGS) FFT_LIBS = -L/opt/ibmmath/essl/4.4/lib/ -lesslsmpbg # For parallel execution, the correct path to MPI libraries must # be specified in MPI_LIBS (except for IBM if you use mpxlf) MPI_LIBS = # IBM-specific: MASS libraries, if available and if -D__MASS is defined in FDFLAGS MASS_LIBS = # ar command and flags - for most architectures: AR = ar, ARFLAGS = ruv AR = ar ARFLAGS = ruv # ranlib command. If ranlib is not needed (it isn't in most cases) use # RANLIB = echo RANLIB = ranlib # all internal and external libraries - do not modify FLIB_TARGETS = all LIBOBJS = ../flib/ptools.a ../flib/flib.a ../clib/clib.a ../iotk/src/libiotk.a LIBS = $(SCALAPACK_LIBS) $(LAPACK_LIBS) $(FFT_LIBS) $(BLAS_LIBS) $(MPI_LIBS) $(MASS_LIBS) $(PGPLOT_LIBS) $(LD_LIBS) # topdir for linking espresso libs with plugins TOPDIR = /homea/hch03/hch033/espresso espresso-5.1/install/README.MinGW0000644000175000017500000000311512341373034014610 0ustar mbambaNotes for cross-compiling Quantum ESPRESSO in serial/parallel from Fedora Linux to 32-bit and 64-bit Windows using the provided MinGW64/gcc toolchain. Set up a suitable (virtual) machine and install the following packages: make git vim-enhanced dos2unix htmldoc latex2html mingw32-nsis mingw32-gcc-gfortran mingw64-gcc-gfortran tcl tcllib netpbm-progs Create user 'winbuild' and set password. Log in and create ssh key pair and append the public key the .ssh/authorized_keys file of the repository account for automatic file transfer Edit $HOME/.bash_profile to set environment variables for depositing files QE4WIN_REPO_HOST QE4WIN_REPO_USER QE4WIN_REPO_DIR Clone adjusted espresso tree via (XXX: change to svn after completion): git clone git@bitbucket.org:akohlmey/espresso-qmmm.git espresso-qmmm cd espresso-qmmm git checkout mingw-build From now on, to build and sync the windows installers to the repository with: cd ~/espresso-qmmm/ git pull ./install/build-mingw-cross.sh ./install/sync-mingw-to-repo.sh To generate a suitable OpenBLAS dll download the latest OpenBLAS release source package, unpack it, and change into the unpacked directory make clean make BINARY=32 TARGET=CORE2 USE_THREAD=0 CC=i686-w64-mingw32-gcc \ FC=i686-w64-mingw32-gfortran HOSTCC=gcc mkdir -p ~/espresso-qmmm/install/blas-win32/ cp libopenblas.dll ~/espresso-qmmm/install/blas-win32/ make clean make BINARY=64 TARGET=CORE2 USE_THREAD=0 CC=x86_64-w64-mingw32-gcc \ FC=x86_64-w64-mingw32-gfortran HOSTCC=gcc mkdir -p ~/espresso-qmmm/install/blas-win64/ cp libopenblas.dll ~/espresso-qmmm/install/blas-win64/ espresso-5.1/install/configure0000755000175000017500000115243712341373034014674 0ustar mbamba#! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.69 for ESPRESSO 5.1.svn. # # # Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc. # # # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. ## -------------------- ## ## M4sh Initialization. ## ## -------------------- ## # Be more Bourne compatible DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi as_nl=' ' export as_nl # Printing a long string crashes Solaris 7 /usr/bin/printf. as_echo='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo$as_echo # Prefer a ksh shell builtin over an external printf program on Solaris, # but without wasting forks for bash or zsh. if test -z "$BASH_VERSION$ZSH_VERSION" \ && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='print -r --' as_echo_n='print -rn --' elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='printf %s\n' as_echo_n='printf %s' else if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then as_echo_body='eval /usr/ucb/echo -n "$1$as_nl"' as_echo_n='/usr/ucb/echo -n' else as_echo_body='eval expr "X$1" : "X\\(.*\\)"' as_echo_n_body='eval arg=$1; case $arg in #( *"$as_nl"*) expr "X$arg" : "X\\(.*\\)$as_nl"; arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;; esac; expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl" ' export as_echo_n_body as_echo_n='sh -c $as_echo_n_body as_echo' fi export as_echo_body as_echo='sh -c $as_echo_body as_echo' fi # The user is always right. if test "${PATH_SEPARATOR+set}" != set; then PATH_SEPARATOR=: (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && { (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 || PATH_SEPARATOR=';' } fi # IFS # We need space, tab and new line, in precisely that order. Quoting is # there to prevent editors from complaining about space-tab. # (If _AS_PATH_WALK were called with IFS unset, it would disable word # splitting by setting IFS to empty value.) IFS=" "" $as_nl" # Find who we are. Look in the path if we contain no directory separator. as_myself= case $0 in #(( *[\\/]* ) as_myself=$0 ;; *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break done IFS=$as_save_IFS ;; esac # We did not find ourselves, most probably we were run as `sh COMMAND' # in which case we are not to be found in the path. if test "x$as_myself" = x; then as_myself=$0 fi if test ! -f "$as_myself"; then $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2 exit 1 fi # Unset variables that we do not need and which cause bugs (e.g. in # pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1" # suppresses any "Segmentation fault" message there. '((' could # trigger a bug in pdksh 5.2.14. for as_var in BASH_ENV ENV MAIL MAILPATH do eval test x\${$as_var+set} = xset \ && ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || : done PS1='$ ' PS2='> ' PS4='+ ' # NLS nuisances. LC_ALL=C export LC_ALL LANGUAGE=C export LANGUAGE # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH # Use a proper internal environment variable to ensure we don't fall # into an infinite loop, continuously re-executing ourselves. if test x"${_as_can_reexec}" != xno && test "x$CONFIG_SHELL" != x; then _as_can_reexec=no; export _as_can_reexec; # We cannot yet assume a decent shell, so we have to provide a # neutralization value for shells without unset; and this also # works around shells that cannot unset nonexistent variables. # Preserve -v and -x to the replacement shell. BASH_ENV=/dev/null ENV=/dev/null (unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV case $- in # (((( *v*x* | *x*v* ) as_opts=-vx ;; *v* ) as_opts=-v ;; *x* ) as_opts=-x ;; * ) as_opts= ;; esac exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"} # Admittedly, this is quite paranoid, since all the known shells bail # out after a failed `exec'. $as_echo "$0: could not re-execute with $CONFIG_SHELL" >&2 as_fn_exit 255 fi # We don't want this to propagate to other subprocesses. { _as_can_reexec=; unset _as_can_reexec;} if test "x$CONFIG_SHELL" = x; then as_bourne_compatible="if test -n \"\${ZSH_VERSION+set}\" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on \${1+\"\$@\"}, which # is contrary to our usage. Disable this feature. alias -g '\${1+\"\$@\"}'='\"\$@\"' setopt NO_GLOB_SUBST else case \`(set -o) 2>/dev/null\` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi " as_required="as_fn_return () { (exit \$1); } as_fn_success () { as_fn_return 0; } as_fn_failure () { as_fn_return 1; } as_fn_ret_success () { return 0; } as_fn_ret_failure () { return 1; } exitcode=0 as_fn_success || { exitcode=1; echo as_fn_success failed.; } as_fn_failure && { exitcode=1; echo as_fn_failure succeeded.; } as_fn_ret_success || { exitcode=1; echo as_fn_ret_success failed.; } as_fn_ret_failure && { exitcode=1; echo as_fn_ret_failure succeeded.; } if ( set x; as_fn_ret_success y && test x = \"\$1\" ); then : else exitcode=1; echo positional parameters were not saved. fi test x\$exitcode = x0 || exit 1 test -x / || exit 1" as_suggested=" as_lineno_1=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_1a=\$LINENO as_lineno_2=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_2a=\$LINENO eval 'test \"x\$as_lineno_1'\$as_run'\" != \"x\$as_lineno_2'\$as_run'\" && test \"x\`expr \$as_lineno_1'\$as_run' + 1\`\" = \"x\$as_lineno_2'\$as_run'\"' || exit 1 test \$(( 1 + 1 )) = 2 || exit 1" if (eval "$as_required") 2>/dev/null; then : as_have_required=yes else as_have_required=no fi if test x$as_have_required = xyes && (eval "$as_suggested") 2>/dev/null; then : else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR as_found=false for as_dir in /bin$PATH_SEPARATOR/usr/bin$PATH_SEPARATOR$PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. as_found=: case $as_dir in #( /*) for as_base in sh bash ksh sh5; do # Try only shells that exist, to save several forks. as_shell=$as_dir/$as_base if { test -f "$as_shell" || test -f "$as_shell.exe"; } && { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$as_shell"; } 2>/dev/null; then : CONFIG_SHELL=$as_shell as_have_required=yes if { $as_echo "$as_bourne_compatible""$as_suggested" | as_run=a "$as_shell"; } 2>/dev/null; then : break 2 fi fi done;; esac as_found=false done $as_found || { if { test -f "$SHELL" || test -f "$SHELL.exe"; } && { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$SHELL"; } 2>/dev/null; then : CONFIG_SHELL=$SHELL as_have_required=yes fi; } IFS=$as_save_IFS if test "x$CONFIG_SHELL" != x; then : export CONFIG_SHELL # We cannot yet assume a decent shell, so we have to provide a # neutralization value for shells without unset; and this also # works around shells that cannot unset nonexistent variables. # Preserve -v and -x to the replacement shell. BASH_ENV=/dev/null ENV=/dev/null (unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV case $- in # (((( *v*x* | *x*v* ) as_opts=-vx ;; *v* ) as_opts=-v ;; *x* ) as_opts=-x ;; * ) as_opts= ;; esac exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"} # Admittedly, this is quite paranoid, since all the known shells bail # out after a failed `exec'. $as_echo "$0: could not re-execute with $CONFIG_SHELL" >&2 exit 255 fi if test x$as_have_required = xno; then : $as_echo "$0: This script requires a shell more modern than all" $as_echo "$0: the shells that I found on your system." if test x${ZSH_VERSION+set} = xset ; then $as_echo "$0: In particular, zsh $ZSH_VERSION has bugs and should" $as_echo "$0: be upgraded to zsh 4.3.4 or later." else $as_echo "$0: Please tell bug-autoconf@gnu.org about your system, $0: including any error possibly output before this $0: message. Then install a modern shell, or manually run $0: the script under such a shell if you do have one." fi exit 1 fi fi fi SHELL=${CONFIG_SHELL-/bin/sh} export SHELL # Unset more variables known to interfere with behavior of common tools. CLICOLOR_FORCE= GREP_OPTIONS= unset CLICOLOR_FORCE GREP_OPTIONS ## --------------------- ## ## M4sh Shell Functions. ## ## --------------------- ## # as_fn_unset VAR # --------------- # Portably unset VAR. as_fn_unset () { { eval $1=; unset $1;} } as_unset=as_fn_unset # as_fn_set_status STATUS # ----------------------- # Set $? to STATUS, without forking. as_fn_set_status () { return $1 } # as_fn_set_status # as_fn_exit STATUS # ----------------- # Exit the shell with STATUS, even in a "trap 0" or "set -e" context. as_fn_exit () { set +e as_fn_set_status $1 exit $1 } # as_fn_exit # as_fn_mkdir_p # ------------- # Create "$as_dir" as a directory, including parents if necessary. as_fn_mkdir_p () { case $as_dir in #( -*) as_dir=./$as_dir;; esac test -d "$as_dir" || eval $as_mkdir_p || { as_dirs= while :; do case $as_dir in #( *\'*) as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'( *) as_qdir=$as_dir;; esac as_dirs="'$as_qdir' $as_dirs" as_dir=`$as_dirname -- "$as_dir" || $as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_dir" : 'X\(//\)[^/]' \| \ X"$as_dir" : 'X\(//\)$' \| \ X"$as_dir" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_dir" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test -d "$as_dir" && break done test -z "$as_dirs" || eval "mkdir $as_dirs" } || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir" } # as_fn_mkdir_p # as_fn_executable_p FILE # ----------------------- # Test if FILE is an executable regular file. as_fn_executable_p () { test -f "$1" && test -x "$1" } # as_fn_executable_p # as_fn_append VAR VALUE # ---------------------- # Append the text in VALUE to the end of the definition contained in VAR. Take # advantage of any shell optimizations that allow amortized linear growth over # repeated appends, instead of the typical quadratic growth present in naive # implementations. if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then : eval 'as_fn_append () { eval $1+=\$2 }' else as_fn_append () { eval $1=\$$1\$2 } fi # as_fn_append # as_fn_arith ARG... # ------------------ # Perform arithmetic evaluation on the ARGs, and store the result in the # global $as_val. Take advantage of shells that can avoid forks. The arguments # must be portable across $(()) and expr. if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null; then : eval 'as_fn_arith () { as_val=$(( $* )) }' else as_fn_arith () { as_val=`expr "$@" || test $? -eq 1` } fi # as_fn_arith # as_fn_error STATUS ERROR [LINENO LOG_FD] # ---------------------------------------- # Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are # provided, also output the error to LOG_FD, referencing LINENO. Then exit the # script with STATUS, using 1 if that was 0. as_fn_error () { as_status=$1; test $as_status -eq 0 && as_status=1 if test "$4"; then as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack $as_echo "$as_me:${as_lineno-$LINENO}: error: $2" >&$4 fi $as_echo "$as_me: error: $2" >&2 as_fn_exit $as_status } # as_fn_error if expr a : '\(a\)' >/dev/null 2>&1 && test "X`expr 00001 : '.*\(...\)'`" = X001; then as_expr=expr else as_expr=false fi if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then as_basename=basename else as_basename=false fi if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then as_dirname=dirname else as_dirname=false fi as_me=`$as_basename -- "$0" || $as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \ X"$0" : 'X\(//\)$' \| \ X"$0" : 'X\(/\)' \| . 2>/dev/null || $as_echo X/"$0" | sed '/^.*\/\([^/][^/]*\)\/*$/{ s//\1/ q } /^X\/\(\/\/\)$/{ s//\1/ q } /^X\/\(\/\).*/{ s//\1/ q } s/.*/./; q'` # Avoid depending upon Character Ranges. as_cr_letters='abcdefghijklmnopqrstuvwxyz' as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ' as_cr_Letters=$as_cr_letters$as_cr_LETTERS as_cr_digits='0123456789' as_cr_alnum=$as_cr_Letters$as_cr_digits as_lineno_1=$LINENO as_lineno_1a=$LINENO as_lineno_2=$LINENO as_lineno_2a=$LINENO eval 'test "x$as_lineno_1'$as_run'" != "x$as_lineno_2'$as_run'" && test "x`expr $as_lineno_1'$as_run' + 1`" = "x$as_lineno_2'$as_run'"' || { # Blame Lee E. McMahon (1931-1989) for sed's syntax. :-) sed -n ' p /[$]LINENO/= ' <$as_myself | sed ' s/[$]LINENO.*/&-/ t lineno b :lineno N :loop s/[$]LINENO\([^'$as_cr_alnum'_].*\n\)\(.*\)/\2\1\2/ t loop s/-\n.*// ' >$as_me.lineno && chmod +x "$as_me.lineno" || { $as_echo "$as_me: error: cannot create $as_me.lineno; rerun with a POSIX shell" >&2; as_fn_exit 1; } # If we had to re-execute with $CONFIG_SHELL, we're ensured to have # already done that, so ensure we don't try to do so again and fall # in an infinite loop. This has already happened in practice. _as_can_reexec=no; export _as_can_reexec # Don't try to exec as it changes $[0], causing all sort of problems # (the dirname of $[0] is not the place where we might find the # original and so on. Autoconf is especially sensitive to this). . "./$as_me.lineno" # Exit status is that of the last command. exit } ECHO_C= ECHO_N= ECHO_T= case `echo -n x` in #((((( -n*) case `echo 'xy\c'` in *c*) ECHO_T=' ';; # ECHO_T is single tab character. xy) ECHO_C='\c';; *) echo `echo ksh88 bug on AIX 6.1` > /dev/null ECHO_T=' ';; esac;; *) ECHO_N='-n';; esac rm -f conf$$ conf$$.exe conf$$.file if test -d conf$$.dir; then rm -f conf$$.dir/conf$$.file else rm -f conf$$.dir mkdir conf$$.dir 2>/dev/null fi if (echo >conf$$.file) 2>/dev/null; then if ln -s conf$$.file conf$$ 2>/dev/null; then as_ln_s='ln -s' # ... but there are two gotchas: # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail. # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable. # In both cases, we have to default to `cp -pR'. ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe || as_ln_s='cp -pR' elif ln conf$$.file conf$$ 2>/dev/null; then as_ln_s=ln else as_ln_s='cp -pR' fi else as_ln_s='cp -pR' fi rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file rmdir conf$$.dir 2>/dev/null if mkdir -p . 2>/dev/null; then as_mkdir_p='mkdir -p "$as_dir"' else test -d ./-p && rmdir ./-p as_mkdir_p=false fi as_test_x='test -x' as_executable_p=as_fn_executable_p # Sed expression to map a string onto a valid CPP name. as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'" # Sed expression to map a string onto a valid variable name. as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'" test -n "$DJDIR" || exec 7<&0 &1 # Name of the host. # hostname on some systems (SVR3.2, old GNU/Linux) returns a bogus exit status, # so uname gets run too. ac_hostname=`(hostname || uname -n) 2>/dev/null | sed 1q` # # Initializations. # ac_default_prefix=/usr/local ac_clean_files= ac_config_libobj_dir=. LIBOBJS= cross_compiling=no subdirs= MFLAGS= MAKEFLAGS= # Identity of this package. PACKAGE_NAME='ESPRESSO' PACKAGE_TARNAME='espresso' PACKAGE_VERSION='5.1.svn' PACKAGE_STRING='ESPRESSO 5.1.svn' PACKAGE_BUGREPORT='' PACKAGE_URL='' # Factoring default headers for most tests. ac_includes_default="\ #include #ifdef HAVE_SYS_TYPES_H # include #endif #ifdef HAVE_SYS_STAT_H # include #endif #ifdef STDC_HEADERS # include # include #else # ifdef HAVE_STDLIB_H # include # endif #endif #ifdef HAVE_STRING_H # if !defined STDC_HEADERS && defined HAVE_MEMORY_H # include # endif # include #endif #ifdef HAVE_STRINGS_H # include #endif #ifdef HAVE_INTTYPES_H # include #endif #ifdef HAVE_STDINT_H # include #endif #ifdef HAVE_UNISTD_H # include #endif" ac_subst_vars='LTLIBOBJS LIBOBJS extlib_flags topdir parallel_report mass_line mpi_line fft_line scalapack_line lapack_line blas_line f90rule arflags ar scalapack_libs elpa_libs_switch mass_libs mpi_libs fft_libs lapack_libs_switch lapack_libs blas_libs_switch blas_libs ld_libs ldflags ld iflags imod pre_fdflags fflags_nomain fflags_noopt fflags f77 f90flags mpif90 f90 cppflags cpp fdflags dflags cflags cc wget ranlib FLIBS host_os host_vendor host_cpu host SET_MAKE ac_ct_F77 FFLAGS F77 SIZEOF_INT_P EGREP GREP CPP ac_ct_CC CPPFLAGS CFLAGS CC FCFLAGS_f90 OBJEXT EXEEXT ac_ct_FC LDFLAGS FCFLAGS FC build_os build_vendor build_cpu build EXTLIB_FLAGS target_alias host_alias build_alias LIBS ECHO_T ECHO_N ECHO_C DEFS mandir localedir libdir psdir pdfdir dvidir htmldir infodir docdir oldincludedir includedir localstatedir sharedstatedir sysconfdir datadir datarootdir libexecdir sbindir bindir program_transform_name prefix exec_prefix PACKAGE_URL PACKAGE_BUGREPORT PACKAGE_STRING PACKAGE_VERSION PACKAGE_TARNAME PACKAGE_NAME PATH_SEPARATOR SHELL' ac_subst_files='' ac_user_opts=' enable_option_checking enable_parallel enable_openmp enable_debug enable_shared enable_wrappers enable_signals with_scalapack with_elpa with_internal_blas with_internal_lapack enable_environment ' ac_precious_vars='build_alias host_alias target_alias EXTLIB_FLAGS FC FCFLAGS LDFLAGS LIBS CC CFLAGS CPPFLAGS CPP F77 FFLAGS' # Initialize some variables set by options. ac_init_help= ac_init_version=false ac_unrecognized_opts= ac_unrecognized_sep= # The variables have the same names as the options, with # dashes changed to underlines. cache_file=/dev/null exec_prefix=NONE no_create= no_recursion= prefix=NONE program_prefix=NONE program_suffix=NONE program_transform_name=s,x,x, silent= site= srcdir= verbose= x_includes=NONE x_libraries=NONE # Installation directory options. # These are left unexpanded so users can "make install exec_prefix=/foo" # and all the variables that are supposed to be based on exec_prefix # by default will actually change. # Use braces instead of parens because sh, perl, etc. also accept them. # (The list follows the same order as the GNU Coding Standards.) bindir='${exec_prefix}/bin' sbindir='${exec_prefix}/sbin' libexecdir='${exec_prefix}/libexec' datarootdir='${prefix}/share' datadir='${datarootdir}' sysconfdir='${prefix}/etc' sharedstatedir='${prefix}/com' localstatedir='${prefix}/var' includedir='${prefix}/include' oldincludedir='/usr/include' docdir='${datarootdir}/doc/${PACKAGE_TARNAME}' infodir='${datarootdir}/info' htmldir='${docdir}' dvidir='${docdir}' pdfdir='${docdir}' psdir='${docdir}' libdir='${exec_prefix}/lib' localedir='${datarootdir}/locale' mandir='${datarootdir}/man' ac_prev= ac_dashdash= for ac_option do # If the previous option needs an argument, assign it. if test -n "$ac_prev"; then eval $ac_prev=\$ac_option ac_prev= continue fi case $ac_option in *=?*) ac_optarg=`expr "X$ac_option" : '[^=]*=\(.*\)'` ;; *=) ac_optarg= ;; *) ac_optarg=yes ;; esac # Accept the important Cygnus configure options, so we can diagnose typos. case $ac_dashdash$ac_option in --) ac_dashdash=yes ;; -bindir | --bindir | --bindi | --bind | --bin | --bi) ac_prev=bindir ;; -bindir=* | --bindir=* | --bindi=* | --bind=* | --bin=* | --bi=*) bindir=$ac_optarg ;; -build | --build | --buil | --bui | --bu) ac_prev=build_alias ;; -build=* | --build=* | --buil=* | --bui=* | --bu=*) build_alias=$ac_optarg ;; -cache-file | --cache-file | --cache-fil | --cache-fi \ | --cache-f | --cache- | --cache | --cach | --cac | --ca | --c) ac_prev=cache_file ;; -cache-file=* | --cache-file=* | --cache-fil=* | --cache-fi=* \ | --cache-f=* | --cache-=* | --cache=* | --cach=* | --cac=* | --ca=* | --c=*) cache_file=$ac_optarg ;; --config-cache | -C) cache_file=config.cache ;; -datadir | --datadir | --datadi | --datad) ac_prev=datadir ;; -datadir=* | --datadir=* | --datadi=* | --datad=*) datadir=$ac_optarg ;; -datarootdir | --datarootdir | --datarootdi | --datarootd | --dataroot \ | --dataroo | --dataro | --datar) ac_prev=datarootdir ;; -datarootdir=* | --datarootdir=* | --datarootdi=* | --datarootd=* \ | --dataroot=* | --dataroo=* | --dataro=* | --datar=*) datarootdir=$ac_optarg ;; -disable-* | --disable-*) ac_useropt=`expr "x$ac_option" : 'x-*disable-\(.*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid feature name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "enable_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--disable-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval enable_$ac_useropt=no ;; -docdir | --docdir | --docdi | --doc | --do) ac_prev=docdir ;; -docdir=* | --docdir=* | --docdi=* | --doc=* | --do=*) docdir=$ac_optarg ;; -dvidir | --dvidir | --dvidi | --dvid | --dvi | --dv) ac_prev=dvidir ;; -dvidir=* | --dvidir=* | --dvidi=* | --dvid=* | --dvi=* | --dv=*) dvidir=$ac_optarg ;; -enable-* | --enable-*) ac_useropt=`expr "x$ac_option" : 'x-*enable-\([^=]*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid feature name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "enable_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--enable-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval enable_$ac_useropt=\$ac_optarg ;; -exec-prefix | --exec_prefix | --exec-prefix | --exec-prefi \ | --exec-pref | --exec-pre | --exec-pr | --exec-p | --exec- \ | --exec | --exe | --ex) ac_prev=exec_prefix ;; -exec-prefix=* | --exec_prefix=* | --exec-prefix=* | --exec-prefi=* \ | --exec-pref=* | --exec-pre=* | --exec-pr=* | --exec-p=* | --exec-=* \ | --exec=* | --exe=* | --ex=*) exec_prefix=$ac_optarg ;; -gas | --gas | --ga | --g) # Obsolete; use --with-gas. with_gas=yes ;; -help | --help | --hel | --he | -h) ac_init_help=long ;; -help=r* | --help=r* | --hel=r* | --he=r* | -hr*) ac_init_help=recursive ;; -help=s* | --help=s* | --hel=s* | --he=s* | -hs*) ac_init_help=short ;; -host | --host | --hos | --ho) ac_prev=host_alias ;; -host=* | --host=* | --hos=* | --ho=*) host_alias=$ac_optarg ;; -htmldir | --htmldir | --htmldi | --htmld | --html | --htm | --ht) ac_prev=htmldir ;; -htmldir=* | --htmldir=* | --htmldi=* | --htmld=* | --html=* | --htm=* \ | --ht=*) htmldir=$ac_optarg ;; -includedir | --includedir | --includedi | --included | --include \ | --includ | --inclu | --incl | --inc) ac_prev=includedir ;; -includedir=* | --includedir=* | --includedi=* | --included=* | --include=* \ | --includ=* | --inclu=* | --incl=* | --inc=*) includedir=$ac_optarg ;; -infodir | --infodir | --infodi | --infod | --info | --inf) ac_prev=infodir ;; -infodir=* | --infodir=* | --infodi=* | --infod=* | --info=* | --inf=*) infodir=$ac_optarg ;; -libdir | --libdir | --libdi | --libd) ac_prev=libdir ;; -libdir=* | --libdir=* | --libdi=* | --libd=*) libdir=$ac_optarg ;; -libexecdir | --libexecdir | --libexecdi | --libexecd | --libexec \ | --libexe | --libex | --libe) ac_prev=libexecdir ;; -libexecdir=* | --libexecdir=* | --libexecdi=* | --libexecd=* | --libexec=* \ | --libexe=* | --libex=* | --libe=*) libexecdir=$ac_optarg ;; -localedir | --localedir | --localedi | --localed | --locale) ac_prev=localedir ;; -localedir=* | --localedir=* | --localedi=* | --localed=* | --locale=*) localedir=$ac_optarg ;; -localstatedir | --localstatedir | --localstatedi | --localstated \ | --localstate | --localstat | --localsta | --localst | --locals) ac_prev=localstatedir ;; -localstatedir=* | --localstatedir=* | --localstatedi=* | --localstated=* \ | --localstate=* | --localstat=* | --localsta=* | --localst=* | --locals=*) localstatedir=$ac_optarg ;; -mandir | --mandir | --mandi | --mand | --man | --ma | --m) ac_prev=mandir ;; -mandir=* | --mandir=* | --mandi=* | --mand=* | --man=* | --ma=* | --m=*) mandir=$ac_optarg ;; -nfp | --nfp | --nf) # Obsolete; use --without-fp. with_fp=no ;; -no-create | --no-create | --no-creat | --no-crea | --no-cre \ | --no-cr | --no-c | -n) no_create=yes ;; -no-recursion | --no-recursion | --no-recursio | --no-recursi \ | --no-recurs | --no-recur | --no-recu | --no-rec | --no-re | --no-r) no_recursion=yes ;; -oldincludedir | --oldincludedir | --oldincludedi | --oldincluded \ | --oldinclude | --oldinclud | --oldinclu | --oldincl | --oldinc \ | --oldin | --oldi | --old | --ol | --o) ac_prev=oldincludedir ;; -oldincludedir=* | --oldincludedir=* | --oldincludedi=* | --oldincluded=* \ | --oldinclude=* | --oldinclud=* | --oldinclu=* | --oldincl=* | --oldinc=* \ | --oldin=* | --oldi=* | --old=* | --ol=* | --o=*) oldincludedir=$ac_optarg ;; -prefix | --prefix | --prefi | --pref | --pre | --pr | --p) ac_prev=prefix ;; -prefix=* | --prefix=* | --prefi=* | --pref=* | --pre=* | --pr=* | --p=*) prefix=$ac_optarg ;; -program-prefix | --program-prefix | --program-prefi | --program-pref \ | --program-pre | --program-pr | --program-p) ac_prev=program_prefix ;; -program-prefix=* | --program-prefix=* | --program-prefi=* \ | --program-pref=* | --program-pre=* | --program-pr=* | --program-p=*) program_prefix=$ac_optarg ;; -program-suffix | --program-suffix | --program-suffi | --program-suff \ | --program-suf | --program-su | --program-s) ac_prev=program_suffix ;; -program-suffix=* | --program-suffix=* | --program-suffi=* \ | --program-suff=* | --program-suf=* | --program-su=* | --program-s=*) program_suffix=$ac_optarg ;; -program-transform-name | --program-transform-name \ | --program-transform-nam | --program-transform-na \ | --program-transform-n | --program-transform- \ | --program-transform | --program-transfor \ | --program-transfo | --program-transf \ | --program-trans | --program-tran \ | --progr-tra | --program-tr | --program-t) ac_prev=program_transform_name ;; -program-transform-name=* | --program-transform-name=* \ | --program-transform-nam=* | --program-transform-na=* \ | --program-transform-n=* | --program-transform-=* \ | --program-transform=* | --program-transfor=* \ | --program-transfo=* | --program-transf=* \ | --program-trans=* | --program-tran=* \ | --progr-tra=* | --program-tr=* | --program-t=*) program_transform_name=$ac_optarg ;; -pdfdir | --pdfdir | --pdfdi | --pdfd | --pdf | --pd) ac_prev=pdfdir ;; -pdfdir=* | --pdfdir=* | --pdfdi=* | --pdfd=* | --pdf=* | --pd=*) pdfdir=$ac_optarg ;; -psdir | --psdir | --psdi | --psd | --ps) ac_prev=psdir ;; -psdir=* | --psdir=* | --psdi=* | --psd=* | --ps=*) psdir=$ac_optarg ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil) silent=yes ;; -sbindir | --sbindir | --sbindi | --sbind | --sbin | --sbi | --sb) ac_prev=sbindir ;; -sbindir=* | --sbindir=* | --sbindi=* | --sbind=* | --sbin=* \ | --sbi=* | --sb=*) sbindir=$ac_optarg ;; -sharedstatedir | --sharedstatedir | --sharedstatedi \ | --sharedstated | --sharedstate | --sharedstat | --sharedsta \ | --sharedst | --shareds | --shared | --share | --shar \ | --sha | --sh) ac_prev=sharedstatedir ;; -sharedstatedir=* | --sharedstatedir=* | --sharedstatedi=* \ | --sharedstated=* | --sharedstate=* | --sharedstat=* | --sharedsta=* \ | --sharedst=* | --shareds=* | --shared=* | --share=* | --shar=* \ | --sha=* | --sh=*) sharedstatedir=$ac_optarg ;; -site | --site | --sit) ac_prev=site ;; -site=* | --site=* | --sit=*) site=$ac_optarg ;; -srcdir | --srcdir | --srcdi | --srcd | --src | --sr) ac_prev=srcdir ;; -srcdir=* | --srcdir=* | --srcdi=* | --srcd=* | --src=* | --sr=*) srcdir=$ac_optarg ;; -sysconfdir | --sysconfdir | --sysconfdi | --sysconfd | --sysconf \ | --syscon | --sysco | --sysc | --sys | --sy) ac_prev=sysconfdir ;; -sysconfdir=* | --sysconfdir=* | --sysconfdi=* | --sysconfd=* | --sysconf=* \ | --syscon=* | --sysco=* | --sysc=* | --sys=* | --sy=*) sysconfdir=$ac_optarg ;; -target | --target | --targe | --targ | --tar | --ta | --t) ac_prev=target_alias ;; -target=* | --target=* | --targe=* | --targ=* | --tar=* | --ta=* | --t=*) target_alias=$ac_optarg ;; -v | -verbose | --verbose | --verbos | --verbo | --verb) verbose=yes ;; -version | --version | --versio | --versi | --vers | -V) ac_init_version=: ;; -with-* | --with-*) ac_useropt=`expr "x$ac_option" : 'x-*with-\([^=]*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid package name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "with_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--with-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval with_$ac_useropt=\$ac_optarg ;; -without-* | --without-*) ac_useropt=`expr "x$ac_option" : 'x-*without-\(.*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid package name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "with_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--without-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval with_$ac_useropt=no ;; --x) # Obsolete; use --with-x. with_x=yes ;; -x-includes | --x-includes | --x-include | --x-includ | --x-inclu \ | --x-incl | --x-inc | --x-in | --x-i) ac_prev=x_includes ;; -x-includes=* | --x-includes=* | --x-include=* | --x-includ=* | --x-inclu=* \ | --x-incl=* | --x-inc=* | --x-in=* | --x-i=*) x_includes=$ac_optarg ;; -x-libraries | --x-libraries | --x-librarie | --x-librari \ | --x-librar | --x-libra | --x-libr | --x-lib | --x-li | --x-l) ac_prev=x_libraries ;; -x-libraries=* | --x-libraries=* | --x-librarie=* | --x-librari=* \ | --x-librar=* | --x-libra=* | --x-libr=* | --x-lib=* | --x-li=* | --x-l=*) x_libraries=$ac_optarg ;; -*) as_fn_error $? "unrecognized option: \`$ac_option' Try \`$0 --help' for more information" ;; *=*) ac_envvar=`expr "x$ac_option" : 'x\([^=]*\)='` # Reject names that are not valid shell variable names. case $ac_envvar in #( '' | [0-9]* | *[!_$as_cr_alnum]* ) as_fn_error $? "invalid variable name: \`$ac_envvar'" ;; esac eval $ac_envvar=\$ac_optarg export $ac_envvar ;; *) # FIXME: should be removed in autoconf 3.0. $as_echo "$as_me: WARNING: you should use --build, --host, --target" >&2 expr "x$ac_option" : ".*[^-._$as_cr_alnum]" >/dev/null && $as_echo "$as_me: WARNING: invalid host type: $ac_option" >&2 : "${build_alias=$ac_option} ${host_alias=$ac_option} ${target_alias=$ac_option}" ;; esac done if test -n "$ac_prev"; then ac_option=--`echo $ac_prev | sed 's/_/-/g'` as_fn_error $? "missing argument to $ac_option" fi if test -n "$ac_unrecognized_opts"; then case $enable_option_checking in no) ;; fatal) as_fn_error $? "unrecognized options: $ac_unrecognized_opts" ;; *) $as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2 ;; esac fi # Check all directory arguments for consistency. for ac_var in exec_prefix prefix bindir sbindir libexecdir datarootdir \ datadir sysconfdir sharedstatedir localstatedir includedir \ oldincludedir docdir infodir htmldir dvidir pdfdir psdir \ libdir localedir mandir do eval ac_val=\$$ac_var # Remove trailing slashes. case $ac_val in */ ) ac_val=`expr "X$ac_val" : 'X\(.*[^/]\)' \| "X$ac_val" : 'X\(.*\)'` eval $ac_var=\$ac_val;; esac # Be sure to have absolute directory names. case $ac_val in [\\/$]* | ?:[\\/]* ) continue;; NONE | '' ) case $ac_var in *prefix ) continue;; esac;; esac as_fn_error $? "expected an absolute directory name for --$ac_var: $ac_val" done # There might be people who depend on the old broken behavior: `$host' # used to hold the argument of --host etc. # FIXME: To remove some day. build=$build_alias host=$host_alias target=$target_alias # FIXME: To remove some day. if test "x$host_alias" != x; then if test "x$build_alias" = x; then cross_compiling=maybe elif test "x$build_alias" != "x$host_alias"; then cross_compiling=yes fi fi ac_tool_prefix= test -n "$host_alias" && ac_tool_prefix=$host_alias- test "$silent" = yes && exec 6>/dev/null ac_pwd=`pwd` && test -n "$ac_pwd" && ac_ls_di=`ls -di .` && ac_pwd_ls_di=`cd "$ac_pwd" && ls -di .` || as_fn_error $? "working directory cannot be determined" test "X$ac_ls_di" = "X$ac_pwd_ls_di" || as_fn_error $? "pwd does not report name of working directory" # Find the source files, if location was not specified. if test -z "$srcdir"; then ac_srcdir_defaulted=yes # Try the directory containing this script, then the parent directory. ac_confdir=`$as_dirname -- "$as_myself" || $as_expr X"$as_myself" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_myself" : 'X\(//\)[^/]' \| \ X"$as_myself" : 'X\(//\)$' \| \ X"$as_myself" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_myself" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` srcdir=$ac_confdir if test ! -r "$srcdir/$ac_unique_file"; then srcdir=.. fi else ac_srcdir_defaulted=no fi if test ! -r "$srcdir/$ac_unique_file"; then test "$ac_srcdir_defaulted" = yes && srcdir="$ac_confdir or .." as_fn_error $? "cannot find sources ($ac_unique_file) in $srcdir" fi ac_msg="sources are in $srcdir, but \`cd $srcdir' does not work" ac_abs_confdir=`( cd "$srcdir" && test -r "./$ac_unique_file" || as_fn_error $? "$ac_msg" pwd)` # When building in place, set srcdir=. if test "$ac_abs_confdir" = "$ac_pwd"; then srcdir=. fi # Remove unnecessary trailing slashes from srcdir. # Double slashes in file names in object file debugging info # mess up M-x gdb in Emacs. case $srcdir in */) srcdir=`expr "X$srcdir" : 'X\(.*[^/]\)' \| "X$srcdir" : 'X\(.*\)'`;; esac for ac_var in $ac_precious_vars; do eval ac_env_${ac_var}_set=\${${ac_var}+set} eval ac_env_${ac_var}_value=\$${ac_var} eval ac_cv_env_${ac_var}_set=\${${ac_var}+set} eval ac_cv_env_${ac_var}_value=\$${ac_var} done # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures ESPRESSO 5.1.svn to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. Configuration: -h, --help display this help and exit --help=short display options specific to this package --help=recursive display the short help of all the included packages -V, --version display version information and exit -q, --quiet, --silent do not print \`checking ...' messages --cache-file=FILE cache test results in FILE [disabled] -C, --config-cache alias for \`--cache-file=config.cache' -n, --no-create do not create output files --srcdir=DIR find the sources in DIR [configure dir or \`..'] Installation directories: --prefix=PREFIX install architecture-independent files in PREFIX [$ac_default_prefix] --exec-prefix=EPREFIX install architecture-dependent files in EPREFIX [PREFIX] By default, \`make install' will install all the files in \`$ac_default_prefix/bin', \`$ac_default_prefix/lib' etc. You can specify an installation prefix other than \`$ac_default_prefix' using \`--prefix', for instance \`--prefix=\$HOME'. For better control, use the options below. Fine tuning of the installation directories: --bindir=DIR user executables [EPREFIX/bin] --sbindir=DIR system admin executables [EPREFIX/sbin] --libexecdir=DIR program executables [EPREFIX/libexec] --sysconfdir=DIR read-only single-machine data [PREFIX/etc] --sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com] --localstatedir=DIR modifiable single-machine data [PREFIX/var] --libdir=DIR object code libraries [EPREFIX/lib] --includedir=DIR C header files [PREFIX/include] --oldincludedir=DIR C header files for non-gcc [/usr/include] --datarootdir=DIR read-only arch.-independent data root [PREFIX/share] --datadir=DIR read-only architecture-independent data [DATAROOTDIR] --infodir=DIR info documentation [DATAROOTDIR/info] --localedir=DIR locale-dependent data [DATAROOTDIR/locale] --mandir=DIR man documentation [DATAROOTDIR/man] --docdir=DIR documentation root [DATAROOTDIR/doc/espresso] --htmldir=DIR html documentation [DOCDIR] --dvidir=DIR dvi documentation [DOCDIR] --pdfdir=DIR pdf documentation [DOCDIR] --psdir=DIR ps documentation [DOCDIR] _ACEOF cat <<\_ACEOF System types: --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in short | recursive ) echo "Configuration of ESPRESSO 5.1.svn:";; esac cat <<\_ACEOF Optional Features: --disable-option-checking ignore unrecognized --enable/--with options --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) --enable-FEATURE[=ARG] include FEATURE [ARG=yes] --enable-parallel compile for parallel execution if possible (default: yes) --enable-openmp compile for openmp execution if possible (default: no) --enable-debug compile Fortran with debug flags (default: no) --enable-shared use shared libraries if available (default: yes) --disable-wrappers disable C to fortran wrapper check (default: enabled) --enable-signals enable signal trapping (default: no) --enable-environment compile solvent-related stuff (default: no) Optional Packages: --with-PACKAGE[=ARG] use PACKAGE [ARG=yes] --without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no) --with-scalapack (yes|no|intel) Use scalapack if available. Set to "intel" to use Intel MPI and blacs (default: use openMPI) --with-elpa (yes|no|) Use ELPA. Self-compile or a can be specified (default: no) --with-internal-blas compile with internal blas (default: no) --with-internal-lapack compile with internal lapack (default: no) Some influential environment variables: EXTLIB_FLAGS This variable controls the flags passed to internal BLAS and LAPACK libraries FC Fortran compiler command FCFLAGS Fortran compiler flags LDFLAGS linker flags, e.g. -L if you have libraries in a nonstandard directory LIBS libraries to pass to the linker, e.g. -l CC C compiler command CFLAGS C compiler flags CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I if you have headers in a nonstandard directory CPP C preprocessor F77 Fortran 77 compiler command FFLAGS Fortran 77 compiler flags Use these variables to override the choices made by `configure' or to help it to find libraries and programs with nonstandard names/locations. Report bugs to the package provider. _ACEOF ac_status=$? fi if test "$ac_init_help" = "recursive"; then # If there are subdirs, report their specific --help. for ac_dir in : $ac_subdirs_all; do test "x$ac_dir" = x: && continue test -d "$ac_dir" || { cd "$srcdir" && ac_pwd=`pwd` && srcdir=. && test -d "$ac_dir"; } || continue ac_builddir=. case "$ac_dir" in .) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'` # A ".." for each directory in $ac_dir_suffix. ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'` case $ac_top_builddir_sub in "") ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_top_build_prefix=$ac_top_builddir_sub/ ;; esac ;; esac ac_abs_top_builddir=$ac_pwd ac_abs_builddir=$ac_pwd$ac_dir_suffix # for backward compatibility: ac_top_builddir=$ac_top_build_prefix case $srcdir in .) # We are building in place. ac_srcdir=. ac_top_srcdir=$ac_top_builddir_sub ac_abs_top_srcdir=$ac_pwd ;; [\\/]* | ?:[\\/]* ) # Absolute name. ac_srcdir=$srcdir$ac_dir_suffix; ac_top_srcdir=$srcdir ac_abs_top_srcdir=$srcdir ;; *) # Relative name. ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix ac_top_srcdir=$ac_top_build_prefix$srcdir ac_abs_top_srcdir=$ac_pwd/$srcdir ;; esac ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix cd "$ac_dir" || { ac_status=$?; continue; } # Check for guested configure. if test -f "$ac_srcdir/configure.gnu"; then echo && $SHELL "$ac_srcdir/configure.gnu" --help=recursive elif test -f "$ac_srcdir/configure"; then echo && $SHELL "$ac_srcdir/configure" --help=recursive else $as_echo "$as_me: WARNING: no configuration information is in $ac_dir" >&2 fi || ac_status=$? cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF ESPRESSO configure 5.1.svn generated by GNU Autoconf 2.69 Copyright (C) 2012 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit fi ## ------------------------ ## ## Autoconf initialization. ## ## ------------------------ ## # ac_fn_fc_try_compile LINENO # --------------------------- # Try to compile conftest.$ac_ext, and return whether this succeeded. ac_fn_fc_try_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_fc_werror_flag" || test ! -s conftest.err } && test -s conftest.$ac_objext; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_fc_try_compile # ac_fn_c_try_compile LINENO # -------------------------- # Try to compile conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_c_werror_flag" || test ! -s conftest.err } && test -s conftest.$ac_objext; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_compile # ac_fn_c_try_run LINENO # ---------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. Assumes # that executables *can* be run. ac_fn_c_try_run () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { ac_try='./conftest$ac_exeext' { { case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_try") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; }; then : ac_retval=0 else $as_echo "$as_me: program exited with status $ac_status" >&5 $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=$ac_status fi rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_run # ac_fn_c_compute_int LINENO EXPR VAR INCLUDES # -------------------------------------------- # Tries to find the compile-time value of EXPR in a program that includes # INCLUDES, setting VAR accordingly. Returns whether the value could be # computed ac_fn_c_compute_int () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if test "$cross_compiling" = yes; then # Depending upon the size, compute the lo and hi bounds. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) >= 0)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_lo=0 ac_mid=0 while :; do cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) <= $ac_mid)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=$ac_mid; break else as_fn_arith $ac_mid + 1 && ac_lo=$as_val if test $ac_lo -le $ac_mid; then ac_lo= ac_hi= break fi as_fn_arith 2 '*' $ac_mid + 1 && ac_mid=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) < 0)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=-1 ac_mid=-1 while :; do cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) >= $ac_mid)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_lo=$ac_mid; break else as_fn_arith '(' $ac_mid ')' - 1 && ac_hi=$as_val if test $ac_mid -le $ac_hi; then ac_lo= ac_hi= break fi as_fn_arith 2 '*' $ac_mid && ac_mid=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done else ac_lo= ac_hi= fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext # Binary search between lo and hi bounds. while test "x$ac_lo" != "x$ac_hi"; do as_fn_arith '(' $ac_hi - $ac_lo ')' / 2 + $ac_lo && ac_mid=$as_val cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) <= $ac_mid)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=$ac_mid else as_fn_arith '(' $ac_mid ')' + 1 && ac_lo=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done case $ac_lo in #(( ?*) eval "$3=\$ac_lo"; ac_retval=0 ;; '') ac_retval=1 ;; esac else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 static long int longval () { return $2; } static unsigned long int ulongval () { return $2; } #include #include int main () { FILE *f = fopen ("conftest.val", "w"); if (! f) return 1; if (($2) < 0) { long int i = longval (); if (i != ($2)) return 1; fprintf (f, "%ld", i); } else { unsigned long int i = ulongval (); if (i != ($2)) return 1; fprintf (f, "%lu", i); } /* Do not output a trailing newline, as this causes \r\n confusion on some platforms. */ return ferror (f) || fclose (f) != 0; ; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : echo >>conftest.val; read $3 &5 (eval "$ac_cpp conftest.$ac_ext") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } > conftest.i && { test -z "$ac_c_preproc_warn_flag$ac_c_werror_flag" || test ! -s conftest.err }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_cpp # ac_fn_c_check_header_compile LINENO HEADER VAR INCLUDES # ------------------------------------------------------- # Tests whether HEADER exists and can be compiled using the include files in # INCLUDES, setting the cache variable VAR accordingly. ac_fn_c_check_header_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 #include <$2> _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval "$3=yes" else eval "$3=no" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_header_compile # ac_fn_c_check_header_mongrel LINENO HEADER VAR INCLUDES # ------------------------------------------------------- # Tests whether HEADER exists, giving a warning if it cannot be compiled using # the include files in INCLUDES and setting the cache variable VAR # accordingly. ac_fn_c_check_header_mongrel () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if eval \${$3+:} false; then : { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } else # Is the header compilable? { $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 usability" >&5 $as_echo_n "checking $2 usability... " >&6; } cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 #include <$2> _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_header_compiler=yes else ac_header_compiler=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_compiler" >&5 $as_echo "$ac_header_compiler" >&6; } # Is the header present? { $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 presence" >&5 $as_echo_n "checking $2 presence... " >&6; } cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include <$2> _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : ac_header_preproc=yes else ac_header_preproc=no fi rm -f conftest.err conftest.i conftest.$ac_ext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_preproc" >&5 $as_echo "$ac_header_preproc" >&6; } # So? What about this header? case $ac_header_compiler:$ac_header_preproc:$ac_c_preproc_warn_flag in #(( yes:no: ) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&5 $as_echo "$as_me: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5 $as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;} ;; no:yes:* ) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: present but cannot be compiled" >&5 $as_echo "$as_me: WARNING: $2: present but cannot be compiled" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: check for missing prerequisite headers?" >&5 $as_echo "$as_me: WARNING: $2: check for missing prerequisite headers?" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: see the Autoconf documentation" >&5 $as_echo "$as_me: WARNING: $2: see the Autoconf documentation" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&5 $as_echo "$as_me: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5 $as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;} ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else eval "$3=\$ac_header_compiler" fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_header_mongrel # ac_fn_c_check_member LINENO AGGR MEMBER VAR INCLUDES # ---------------------------------------------------- # Tries to find if the field MEMBER exists in type AGGR, after including # INCLUDES, setting cache variable VAR accordingly. ac_fn_c_check_member () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2.$3" >&5 $as_echo_n "checking for $2.$3... " >&6; } if eval \${$4+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $5 int main () { static $2 ac_aggr; if (ac_aggr.$3) return 0; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval "$4=yes" else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $5 int main () { static $2 ac_aggr; if (sizeof ac_aggr.$3) return 0; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval "$4=yes" else eval "$4=no" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi eval ac_res=\$$4 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_member # ac_fn_f77_try_compile LINENO # ---------------------------- # Try to compile conftest.$ac_ext, and return whether this succeeded. ac_fn_f77_try_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_f77_werror_flag" || test ! -s conftest.err } && test -s conftest.$ac_objext; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_f77_try_compile # ac_fn_c_try_link LINENO # ----------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_link () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext conftest$ac_exeext if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_c_werror_flag" || test ! -s conftest.err } && test -s conftest$ac_exeext && { test "$cross_compiling" = yes || test -x conftest$ac_exeext }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi # Delete the IPA/IPO (Inter Procedural Analysis/Optimization) information # created by the PGI compiler (conftest_ipa8_conftest.oo), as it would # interfere with the next link command; also delete a directory that is # left behind by Apple's compiler. We do this before executing the actions. rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_link # ac_fn_f77_try_link LINENO # ------------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. ac_fn_f77_try_link () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext conftest$ac_exeext if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_f77_werror_flag" || test ! -s conftest.err } && test -s conftest$ac_exeext && { test "$cross_compiling" = yes || test -x conftest$ac_exeext }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi # Delete the IPA/IPO (Inter Procedural Analysis/Optimization) information # created by the PGI compiler (conftest_ipa8_conftest.oo), as it would # interfere with the next link command; also delete a directory that is # left behind by Apple's compiler. We do this before executing the actions. rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_f77_try_link cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by ESPRESSO $as_me 5.1.svn, which was generated by GNU Autoconf 2.69. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { cat <<_ASUNAME ## --------- ## ## Platform. ## ## --------- ## hostname = `(hostname || uname -n) 2>/dev/null | sed 1q` uname -m = `(uname -m) 2>/dev/null || echo unknown` uname -r = `(uname -r) 2>/dev/null || echo unknown` uname -s = `(uname -s) 2>/dev/null || echo unknown` uname -v = `(uname -v) 2>/dev/null || echo unknown` /usr/bin/uname -p = `(/usr/bin/uname -p) 2>/dev/null || echo unknown` /bin/uname -X = `(/bin/uname -X) 2>/dev/null || echo unknown` /bin/arch = `(/bin/arch) 2>/dev/null || echo unknown` /usr/bin/arch -k = `(/usr/bin/arch -k) 2>/dev/null || echo unknown` /usr/convex/getsysinfo = `(/usr/convex/getsysinfo) 2>/dev/null || echo unknown` /usr/bin/hostinfo = `(/usr/bin/hostinfo) 2>/dev/null || echo unknown` /bin/machine = `(/bin/machine) 2>/dev/null || echo unknown` /usr/bin/oslevel = `(/usr/bin/oslevel) 2>/dev/null || echo unknown` /bin/universe = `(/bin/universe) 2>/dev/null || echo unknown` _ASUNAME as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. $as_echo "PATH: $as_dir" done IFS=$as_save_IFS } >&5 cat >&5 <<_ACEOF ## ----------- ## ## Core tests. ## ## ----------- ## _ACEOF # Keep a trace of the command line. # Strip out --no-create and --no-recursion so they do not pile up. # Strip out --silent because we don't want to record it for future runs. # Also quote any args containing shell meta-characters. # Make two passes to allow for proper duplicate-argument suppression. ac_configure_args= ac_configure_args0= ac_configure_args1= ac_must_keep_next=false for ac_pass in 1 2 do for ac_arg do case $ac_arg in -no-create | --no-c* | -n | -no-recursion | --no-r*) continue ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil) continue ;; *\'*) ac_arg=`$as_echo "$ac_arg" | sed "s/'/'\\\\\\\\''/g"` ;; esac case $ac_pass in 1) as_fn_append ac_configure_args0 " '$ac_arg'" ;; 2) as_fn_append ac_configure_args1 " '$ac_arg'" if test $ac_must_keep_next = true; then ac_must_keep_next=false # Got value, back to normal. else case $ac_arg in *=* | --config-cache | -C | -disable-* | --disable-* \ | -enable-* | --enable-* | -gas | --g* | -nfp | --nf* \ | -q | -quiet | --q* | -silent | --sil* | -v | -verb* \ | -with-* | --with-* | -without-* | --without-* | --x) case "$ac_configure_args0 " in "$ac_configure_args1"*" '$ac_arg' "* ) continue ;; esac ;; -* ) ac_must_keep_next=true ;; esac fi as_fn_append ac_configure_args " '$ac_arg'" ;; esac done done { ac_configure_args0=; unset ac_configure_args0;} { ac_configure_args1=; unset ac_configure_args1;} # When interrupted or exit'd, cleanup temporary files, and complete # config.log. We remove comments because anyway the quotes in there # would cause problems or look ugly. # WARNING: Use '\'' to represent an apostrophe within the trap. # WARNING: Do not start the trap code with a newline, due to a FreeBSD 4.0 bug. trap 'exit_status=$? # Save into config.log some information that might help in debugging. { echo $as_echo "## ---------------- ## ## Cache variables. ## ## ---------------- ##" echo # The following way of writing the cache mishandles newlines in values, ( for ac_var in `(set) 2>&1 | sed -n '\''s/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'\''`; do eval ac_val=\$$ac_var case $ac_val in #( *${as_nl}*) case $ac_var in #( *_cv_*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5 $as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;; esac case $ac_var in #( _ | IFS | as_nl) ;; #( BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #( *) { eval $ac_var=; unset $ac_var;} ;; esac ;; esac done (set) 2>&1 | case $as_nl`(ac_space='\'' '\''; set) 2>&1` in #( *${as_nl}ac_space=\ *) sed -n \ "s/'\''/'\''\\\\'\'''\''/g; s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\''\\2'\''/p" ;; #( *) sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p" ;; esac | sort ) echo $as_echo "## ----------------- ## ## Output variables. ## ## ----------------- ##" echo for ac_var in $ac_subst_vars do eval ac_val=\$$ac_var case $ac_val in *\'\''*) ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;; esac $as_echo "$ac_var='\''$ac_val'\''" done | sort echo if test -n "$ac_subst_files"; then $as_echo "## ------------------- ## ## File substitutions. ## ## ------------------- ##" echo for ac_var in $ac_subst_files do eval ac_val=\$$ac_var case $ac_val in *\'\''*) ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;; esac $as_echo "$ac_var='\''$ac_val'\''" done | sort echo fi if test -s confdefs.h; then $as_echo "## ----------- ## ## confdefs.h. ## ## ----------- ##" echo cat confdefs.h echo fi test "$ac_signal" != 0 && $as_echo "$as_me: caught signal $ac_signal" $as_echo "$as_me: exit $exit_status" } >&5 rm -f core *.core core.conftest.* && rm -f -r conftest* confdefs* conf$$* $ac_clean_files && exit $exit_status ' 0 for ac_signal in 1 2 13 15; do trap 'ac_signal='$ac_signal'; as_fn_exit 1' $ac_signal done ac_signal=0 # confdefs.h avoids OS command line length limits that DEFS can exceed. rm -f -r conftest* confdefs.h $as_echo "/* confdefs.h */" > confdefs.h # Predefined preprocessor variables. cat >>confdefs.h <<_ACEOF #define PACKAGE_NAME "$PACKAGE_NAME" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_TARNAME "$PACKAGE_TARNAME" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_VERSION "$PACKAGE_VERSION" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_STRING "$PACKAGE_STRING" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_BUGREPORT "$PACKAGE_BUGREPORT" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_URL "$PACKAGE_URL" _ACEOF # Let the site file select an alternate cache file if it wants to. # Prefer an explicitly selected file to automatically selected ones. ac_site_file1=NONE ac_site_file2=NONE if test -n "$CONFIG_SITE"; then # We do not want a PATH search for config.site. case $CONFIG_SITE in #(( -*) ac_site_file1=./$CONFIG_SITE;; */*) ac_site_file1=$CONFIG_SITE;; *) ac_site_file1=./$CONFIG_SITE;; esac elif test "x$prefix" != xNONE; then ac_site_file1=$prefix/share/config.site ac_site_file2=$prefix/etc/config.site else ac_site_file1=$ac_default_prefix/share/config.site ac_site_file2=$ac_default_prefix/etc/config.site fi for ac_site_file in "$ac_site_file1" "$ac_site_file2" do test "x$ac_site_file" = xNONE && continue if test /dev/null != "$ac_site_file" && test -r "$ac_site_file"; then { $as_echo "$as_me:${as_lineno-$LINENO}: loading site script $ac_site_file" >&5 $as_echo "$as_me: loading site script $ac_site_file" >&6;} sed 's/^/| /' "$ac_site_file" >&5 . "$ac_site_file" \ || { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "failed to load site script $ac_site_file See \`config.log' for more details" "$LINENO" 5; } fi done if test -r "$cache_file"; then # Some versions of bash will fail to source /dev/null (special files # actually), so we avoid doing that. DJGPP emulates it as a regular file. if test /dev/null != "$cache_file" && test -f "$cache_file"; then { $as_echo "$as_me:${as_lineno-$LINENO}: loading cache $cache_file" >&5 $as_echo "$as_me: loading cache $cache_file" >&6;} case $cache_file in [\\/]* | ?:[\\/]* ) . "$cache_file";; *) . "./$cache_file";; esac fi else { $as_echo "$as_me:${as_lineno-$LINENO}: creating cache $cache_file" >&5 $as_echo "$as_me: creating cache $cache_file" >&6;} >$cache_file fi # Check that the precious variables saved in the cache have kept the same # value. ac_cache_corrupted=false for ac_var in $ac_precious_vars; do eval ac_old_set=\$ac_cv_env_${ac_var}_set eval ac_new_set=\$ac_env_${ac_var}_set eval ac_old_val=\$ac_cv_env_${ac_var}_value eval ac_new_val=\$ac_env_${ac_var}_value case $ac_old_set,$ac_new_set in set,) { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&5 $as_echo "$as_me: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&2;} ac_cache_corrupted=: ;; ,set) { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was not set in the previous run" >&5 $as_echo "$as_me: error: \`$ac_var' was not set in the previous run" >&2;} ac_cache_corrupted=: ;; ,);; *) if test "x$ac_old_val" != "x$ac_new_val"; then # differences in whitespace do not lead to failure. ac_old_val_w=`echo x $ac_old_val` ac_new_val_w=`echo x $ac_new_val` if test "$ac_old_val_w" != "$ac_new_val_w"; then { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' has changed since the previous run:" >&5 $as_echo "$as_me: error: \`$ac_var' has changed since the previous run:" >&2;} ac_cache_corrupted=: else { $as_echo "$as_me:${as_lineno-$LINENO}: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&5 $as_echo "$as_me: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&2;} eval $ac_var=\$ac_old_val fi { $as_echo "$as_me:${as_lineno-$LINENO}: former value: \`$ac_old_val'" >&5 $as_echo "$as_me: former value: \`$ac_old_val'" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: current value: \`$ac_new_val'" >&5 $as_echo "$as_me: current value: \`$ac_new_val'" >&2;} fi;; esac # Pass precious variables to config.status. if test "$ac_new_set" = set; then case $ac_new_val in *\'*) ac_arg=$ac_var=`$as_echo "$ac_new_val" | sed "s/'/'\\\\\\\\''/g"` ;; *) ac_arg=$ac_var=$ac_new_val ;; esac case " $ac_configure_args " in *" '$ac_arg' "*) ;; # Avoid dups. Use of quotes ensures accuracy. *) as_fn_append ac_configure_args " '$ac_arg'" ;; esac fi done if $ac_cache_corrupted; then { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: error: changes in the environment can compromise the build" >&5 $as_echo "$as_me: error: changes in the environment can compromise the build" >&2;} as_fn_error $? "run \`make distclean' and/or \`rm $cache_file' and start over" "$LINENO" 5 fi ## -------------------- ## ## Main body of script. ## ## -------------------- ## ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu # ---------------------------- # Non-standard precious variables # ---------------------------- # ----------------------------- # options # ----------------------------- # Check whether --enable-parallel was given. if test "${enable_parallel+set}" = set; then : enableval=$enable_parallel; set_use_parallel=1 if test "$enableval" = "yes" ; then use_parallel=1 else use_parallel=0 fi else set_use_parallel=0 use_parallel=1 fi # Check whether --enable-openmp was given. if test "${enable_openmp+set}" = set; then : enableval=$enable_openmp; if test "$enableval" = "yes" ; then use_openmp=1 else use_openmp=0 fi else use_openmp=0 fi # debug flags are implemented only for a few cases # Check whether --enable-debug was given. if test "${enable_debug+set}" = set; then : enableval=$enable_debug; if test "$enableval" = "yes" ; then use_debug=1 else use_debug=0 fi else use_debug=0 fi # shared library flags are implemented only for a few (untested) cases # Check whether --enable-shared was given. if test "${enable_shared+set}" = set; then : enableval=$enable_shared; if test "$enableval" = "yes" ; then use_shared=1 else use_shared=0 fi else use_shared=1 fi # the C-to-Fortran wrapper check may cause trouble on some machines # Check whether --enable-wrappers was given. if test "${enable_wrappers+set}" = set; then : enableval=$enable_wrappers; if test "$enableval" = "yes" ; then check_wrappers=1 else check_wrappers=0 fi else check_wrappers=1 fi # Check whether --enable-signals was given. if test "${enable_signals+set}" = set; then : enableval=$enable_signals; if test "$enableval" = "yes" ; then use_signals=1 else use_signals=0 fi else use_signals=0 fi # ----------------------------- # packages # ---------------------------- # Check whether --with-scalapack was given. if test "${with_scalapack+set}" = set; then : withval=$with_scalapack; if test "$withval" = "yes" ; then with_scalapack=1 elif test "$withval" = "intel" ; then with_scalapack=2 elif test "$withval" = "no" ; then with_scalapack=0 fi else with_scalapack=1 fi # Check whether --with-elpa was given. if test "${with_elpa+set}" = set; then : withval=$with_elpa; if test "$withval" = "yes" ; then with_elpa=1 elif test "$withval" = "no" ; then with_elpa=0 else with_elpa=2 with_elpa_path="$withval" fi else with_elpa=0 fi # Check whether --with-internal-blas was given. if test "${with_internal_blas+set}" = set; then : withval=$with_internal_blas; if test "$withval" = "yes" ; then use_internal_blas=1 else use_internal_blas=0 fi else use_internal_blas=0 fi # Check whether --with-internal-lapack was given. if test "${with_internal_lapack+set}" = set; then : withval=$with_internal_lapack; if test "$withval" = "yes" ; then use_internal_lapack=1 else use_internal_lapack=0 fi else use_internal_lapack=0 fi # ----------------------------- # more options # ---------------------------- # Check whether --enable-environment was given. if test "${enable_environment+set}" = set; then : enableval=$enable_environment; if test "$enableval" = "yes" ; then enable_environment=1 else enable_environment=0 fi else enable_environment=0 fi # store variables from the environment, if set (may be or not be set) # If set, they take precedence over configure internal choice. # Flags and libraries are accepted without further testing; # compilers are tested. Specify compiler name only, not the full path # (i.e. F90=/usr/local/bin/f90 may not work, use F90=f90) topdir=$TOPDIR # current directory arch=$ARCH # see below for recognized architectures env_cc=$CC # C compiler (must be in the execution path) cpp=$CPP # C preprocessor (as above) cflags=$CFLAGS # Flags for C compiler cppflags=$CPPFLAGS # Flags for C preprocessor dflags=$DFLAGS # Fortran file preprocessing options, e.g. -D__DEFINE_THIS iflags=$IFLAGS # Location of include files - shouldn't be needed f77=$F77 # Fortran 77 serial compiler (must be in execution path) f90=$F90 # Fortran 90 serial compiler (must be in execution path) mpif90=$MPIF90 # Fortran 90 parallel compiler (must be in execution path) fflags=$FFLAGS # Flags for Fortran 77 and 90 compilers fflags_nomain=$FFLAGS_NOMAIN # Flags for linking Fortran sources with main in a different language fflags_noopt=$FFLAGS_NOOPT # as FFLAGS With optimization disabled f90flags=$F90FLAGS # Flags for Fortran 90 compiler only ld=$LD # Loader (must be in the execution path) ldflags=$LDFLAGS # Flags for loader ld_libs=$LD_LIBS # Additional libraries blas_libs=$BLAS_LIBS # blas library - specify e.g. /my/blas/lib/libmyblas.a # or -L/my/blas/lib -lmyblas lapack_libs=$LAPACK_LIBS # lapack library, similar to above fft_libs=$FFT_LIBS # FFT libraries - may depend upon DFLAGS mpi_libs=$MPI_LIBS # MPI libraries - shouldn't be needed mass_libs=$MASS_LIBS # MASS libraries (IBM only) libdirs=$LIBDIRS # Where to look for libraries (e.g. /my/blas/lib) scalapack_libs=$SCALAPACK_LIBS # scalapack libs scalapack_dir=$SCALAPACK_LIB # Where to look for scalapack libs blacs_dir=$BLACS_LIB # Where to look for libblacs.a ar=$AR # ar (shouldn't be needed) arflags=$ARFLAGS # Flags for ar (as above) extlib_flags=$EXTLIB_FLAGS # Flags for internal copies of lapack and blas # configure for current directory by default if test "$topdir" = "" ; then topdir="`pwd`" ; fi # check system type (no cross-compilation for now) ac_aux_dir= for ac_dir in "$srcdir" "$srcdir/.." "$srcdir/../.."; do if test -f "$ac_dir/install-sh"; then ac_aux_dir=$ac_dir ac_install_sh="$ac_aux_dir/install-sh -c" break elif test -f "$ac_dir/install.sh"; then ac_aux_dir=$ac_dir ac_install_sh="$ac_aux_dir/install.sh -c" break elif test -f "$ac_dir/shtool"; then ac_aux_dir=$ac_dir ac_install_sh="$ac_aux_dir/shtool install -c" break fi done if test -z "$ac_aux_dir"; then as_fn_error $? "cannot find install-sh, install.sh, or shtool in \"$srcdir\" \"$srcdir/..\" \"$srcdir/../..\"" "$LINENO" 5 fi # These three variables are undocumented and unsupported, # and are intended to be withdrawn in a future Autoconf release. # They can cause serious problems if a builder's source tree is in a directory # whose full name contains unusual characters. ac_config_guess="$SHELL $ac_aux_dir/config.guess" # Please don't use this var. ac_config_sub="$SHELL $ac_aux_dir/config.sub" # Please don't use this var. ac_configure="$SHELL $ac_aux_dir/configure" # Please don't use this var. # Make sure we can run config.sub. $SHELL "$ac_aux_dir/config.sub" sun4 >/dev/null 2>&1 || as_fn_error $? "cannot run $SHELL $ac_aux_dir/config.sub" "$LINENO" 5 { $as_echo "$as_me:${as_lineno-$LINENO}: checking build system type" >&5 $as_echo_n "checking build system type... " >&6; } if ${ac_cv_build+:} false; then : $as_echo_n "(cached) " >&6 else ac_build_alias=$build_alias test "x$ac_build_alias" = x && ac_build_alias=`$SHELL "$ac_aux_dir/config.guess"` test "x$ac_build_alias" = x && as_fn_error $? "cannot guess build type; you must specify one" "$LINENO" 5 ac_cv_build=`$SHELL "$ac_aux_dir/config.sub" $ac_build_alias` || as_fn_error $? "$SHELL $ac_aux_dir/config.sub $ac_build_alias failed" "$LINENO" 5 fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_build" >&5 $as_echo "$ac_cv_build" >&6; } case $ac_cv_build in *-*-*) ;; *) as_fn_error $? "invalid value of canonical build" "$LINENO" 5;; esac build=$ac_cv_build ac_save_IFS=$IFS; IFS='-' set x $ac_cv_build shift build_cpu=$1 build_vendor=$2 shift; shift # Remember, the first character of IFS is used to create $*, # except with old shells: build_os=$* IFS=$ac_save_IFS case $build_os in *\ *) build_os=`echo "$build_os" | sed 's/ /-/g'`;; esac # many HPC systems are configured so that running parallel programs # interactively is disabled: on those systems, AC_PROG_FC / _F77 / _CC # would fail because they can't run the compiled executables. # to work around that, let's pretend we are cross-compiling even if we aren't # !!! this relies on undocumented Autoconf behavior !!! # This is used to distinguish between true and fake cross compilation # (only on NEC SX8 actually) if test "$host" != "" ; then ranlib=echo; fi cross_compiling=yes if test "$host" = "" ; then host=$build; fi # identify host architecture if test "$arch" = "" then case $host in ia64-*-linux-gnu ) arch=ia64 ;; x86_64-*-linux-gnu ) arch=x86_64 ;; arm-*linux* ) arch=arm ;; *-pc-linux-gnu ) arch=ia32 ;; *-ibm-aix* ) arch=aix ;; sparc-sun-* ) arch=sparc ;; i386-pc-solaris* ) arch=solaris;; i*86-apple-darwin* ) arch=mac686 ;; *-pc-cygwin ) arch=cygwin ;; sx*-nec* ) arch=necsx ;; powerpc64-*-linux-gnu ) arch=ppc64 ;; *-*-mingw32 ) arch=mingw32;; *-*-mingw64 ) arch=mingw64;; * ) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: Unrecognized build architecture" >&5 $as_echo "$as_me: WARNING: Unrecognized build architecture" >&2;} ;; esac # workaround for Cray-XT machines test -d /proc/cray_xt && arch=crayxt # workaround for IBM BG machines test -d /bgsys && arch=ppc64-bg test -f /bgsys/drivers/ppcfloor/bin/runjob && arch=ppc64-bgq fi echo detected architecture... $arch # candidate archiver and archiver flags try_ar="ar" try_arflags="ruv" try_iflags="-I../include" # candidate fortran compilers good for all cases try_mpif90="mpif90" try_f90="gfortran g95 f90" # add all needed -D options to try_dflags try_dflags="" # candidate compilers and flags based on architecture case $arch in ia32 | ia64 | x86_64 ) try_f90="ifort pgf90 pathf95 sunf95 openf95 $try_f90" ;; arm ) try_f90="$try_f90" ;; solaris ) try_f90="sunf95 $try_f90" ;; aix ) try_mpif90="mpxlf90_r mpxlf90" try_f90="xlf90_r xlf90 $try_f90" try_arflags="-X64 ruv" try_dflags="-D__AIX -D__XLF" ;; crayxt* ) try_f90="ftn" try_mpif90="ftn" ;; mac686 | cygwin ) try_f90="ifort $try_f90" ;; mingw* ) ld="$F90" # this is set for C/C++, but we need it for Fortran, too. try_dflags="-D_WIN32" ;; necsx ) sxopt=`echo $host|awk '{print substr($1,1,3)}'` echo $sxopt $host try_mpif90="sxmpif90" try_f90="sxf90" try_ar="sxar" try_arflags="rv" try_dflags='-D__SX6 ' use_fft_asl=0 use_fft_mathkeisan=1 use_fft_para=0 # default for Nec: no parallel unless explicitly required if test "$set_use_parallel" -ne 1 ; then use_parallel=0 ; fi if test "$use_parallel" -eq 1 ; then use_fft_para=1 ; fi try_dflags_fft_asl='-DASL' try_dflags_fft_mathkeisan=' ' try_dflags_fft_para='-D__USE_3D_FFT' ;; ppc64 ) try_mpif90="mpxlf90_r mpf90_r mpif90" try_f90="xlf90_r $try_f90" try_dflags="-D__XLF" try_arflags="ruv" ;; # PowerPC MareNostrum ppc64-mn ) try_f90="xlf90_r" try_dflags="-D__XLF" try_arflags="ruv" ;; # IBM BlueGene ppc64-bg | ppc64-bgq ) if test "$use_openmp" -eq 0 ; then try_mpif90="mpixlf90" try_f90="bgxlf90" else try_mpif90="mpixlf90_r" # Executable paths are usually consistent across several # IBM BG/P BG/Q machine deployed ld="/bgsys/drivers/ppcfloor/comm/xl.ndebug/bin/mpixlf90_r" try_f90="bgxlf90_r" fi try_arflags="ruv" try_dflags="-D__XLF" ;; * ) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $arch : unsupported architecture?" >&5 $as_echo "$as_me: WARNING: $arch : unsupported architecture?" >&2;} ;; esac if test "$enable_environment" -eq 1 ; then try_dflags="$try_dflags -D__ENVIRONMENT" fi # check serial Fortran 90 compiler. This must be done before performing # the check for the parallel compiler (section below) because option # --disable-parallel will do very strange things otherwise. The reason # seems to be that autoconf does not repeat all tests for the second # occurrence of AC_PROG_FC. So the first occurrence is the one that # must always be performed, the second is optional. PG & CC sep.2006 # use F90 if set if test "$f90" = "" ; then f90="$try_f90" ; fi ac_ext=${ac_fc_srcext-f} ac_compile='$FC -c $FCFLAGS $ac_fcflags_srcext conftest.$ac_ext >&5' ac_link='$FC -o conftest$ac_exeext $FCFLAGS $LDFLAGS $ac_fcflags_srcext conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_fc_compiler_gnu if test -n "$ac_tool_prefix"; then for ac_prog in $f90 do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_FC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$FC"; then ac_cv_prog_FC="$FC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_FC="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi FC=$ac_cv_prog_FC if test -n "$FC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $FC" >&5 $as_echo "$FC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$FC" && break done fi if test -z "$FC"; then ac_ct_FC=$FC for ac_prog in $f90 do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_FC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_FC"; then ac_cv_prog_ac_ct_FC="$ac_ct_FC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_FC="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_FC=$ac_cv_prog_ac_ct_FC if test -n "$ac_ct_FC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_FC" >&5 $as_echo "$ac_ct_FC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_FC" && break done if test "x$ac_ct_FC" = x; then FC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac FC=$ac_ct_FC fi fi # Provide some information about the compiler. $as_echo "$as_me:${as_lineno-$LINENO}: checking for Fortran compiler version" >&5 set X $ac_compile ac_compiler=$2 for ac_option in --version -v -V -qversion; do { { ac_try="$ac_compiler $ac_option >&5" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compiler $ac_option >&5") 2>conftest.err ac_status=$? if test -s conftest.err; then sed '10a\ ... rest of stderr output deleted ... 10q' conftest.err >conftest.er1 cat conftest.er1 >&5 fi rm -f conftest.er1 conftest.err $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } done rm -f a.out cat > conftest.$ac_ext <<_ACEOF program main end _ACEOF ac_clean_files_save=$ac_clean_files ac_clean_files="$ac_clean_files a.out a.out.dSYM a.exe b.out" # Try to create an executable without -o first, disregard a.out. # It will help us diagnose broken compilers, and finding out an intuition # of exeext. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the Fortran compiler works" >&5 $as_echo_n "checking whether the Fortran compiler works... " >&6; } ac_link_default=`$as_echo "$ac_link" | sed 's/ -o *conftest[^ ]*//'` # The possible output files: ac_files="a.out conftest.exe conftest a.exe a_out.exe b.out conftest.*" ac_rmfiles= for ac_file in $ac_files do case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; * ) ac_rmfiles="$ac_rmfiles $ac_file";; esac done rm -f $ac_rmfiles if { { ac_try="$ac_link_default" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link_default") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : # Autoconf-2.13 could set the ac_cv_exeext variable to `no'. # So ignore a value of `no', otherwise this would lead to `EXEEXT = no' # in a Makefile. We should not override ac_cv_exeext if it was cached, # so that the user can short-circuit this test for compilers unknown to # Autoconf. for ac_file in $ac_files '' do test -f "$ac_file" || continue case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; [ab].out ) # We found the default executable, but exeext='' is most # certainly right. break;; *.* ) if test "${ac_cv_exeext+set}" = set && test "$ac_cv_exeext" != no; then :; else ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'` fi # We set ac_cv_exeext here because the later test for it is not # safe: cross compilers may not add the suffix if given an `-o' # argument, so we may need to know it at that point already. # Even if this section looks crufty: it has the advantage of # actually working. break;; * ) break;; esac done test "$ac_cv_exeext" = no && ac_cv_exeext= else ac_file='' fi if test -z "$ac_file"; then : { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error 77 "Fortran compiler cannot create executables See \`config.log' for more details" "$LINENO" 5; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for Fortran compiler default output file name" >&5 $as_echo_n "checking for Fortran compiler default output file name... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_file" >&5 $as_echo "$ac_file" >&6; } ac_exeext=$ac_cv_exeext rm -f -r a.out a.out.dSYM a.exe conftest$ac_cv_exeext b.out ac_clean_files=$ac_clean_files_save { $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of executables" >&5 $as_echo_n "checking for suffix of executables... " >&6; } if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : # If both `conftest.exe' and `conftest' are `present' (well, observable) # catch `conftest.exe'. For instance with Cygwin, `ls conftest' will # work properly (i.e., refer to `conftest.exe'), while it won't with # `rm'. for ac_file in conftest.exe conftest conftest.*; do test -f "$ac_file" || continue case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; *.* ) ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'` break;; * ) break;; esac done else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot compute suffix of executables: cannot compile and link See \`config.log' for more details" "$LINENO" 5; } fi rm -f conftest conftest$ac_cv_exeext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_exeext" >&5 $as_echo "$ac_cv_exeext" >&6; } rm -f conftest.$ac_ext EXEEXT=$ac_cv_exeext ac_exeext=$EXEEXT cat > conftest.$ac_ext <<_ACEOF program main open(unit=9,file='conftest.out') close(unit=9) end _ACEOF ac_clean_files="$ac_clean_files conftest.out" # Check that the compiler produces executables we can run. If not, either # the compiler is broken, or we cross compile. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are cross compiling" >&5 $as_echo_n "checking whether we are cross compiling... " >&6; } if test "$cross_compiling" != yes; then { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if { ac_try='./conftest$ac_cv_exeext' { { case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_try") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; }; then cross_compiling=no else if test "$cross_compiling" = maybe; then cross_compiling=yes else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot run Fortran compiled programs. If you meant to cross compile, use \`--host'. See \`config.log' for more details" "$LINENO" 5; } fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $cross_compiling" >&5 $as_echo "$cross_compiling" >&6; } rm -f conftest.$ac_ext conftest$ac_cv_exeext conftest.out ac_clean_files=$ac_clean_files_save { $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of object files" >&5 $as_echo_n "checking for suffix of object files... " >&6; } if ${ac_cv_objext+:} false; then : $as_echo_n "(cached) " >&6 else cat > conftest.$ac_ext <<_ACEOF program main end _ACEOF rm -f conftest.o conftest.obj if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : for ac_file in conftest.o conftest.obj conftest.*; do test -f "$ac_file" || continue; case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM ) ;; *) ac_cv_objext=`expr "$ac_file" : '.*\.\(.*\)'` break;; esac done else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot compute suffix of object files: cannot compile See \`config.log' for more details" "$LINENO" 5; } fi rm -f conftest.$ac_cv_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_objext" >&5 $as_echo "$ac_cv_objext" >&6; } OBJEXT=$ac_cv_objext ac_objext=$OBJEXT # If we don't use `.F' as extension, the preprocessor is not run on the # input file. (Note that this only needs to work for GNU compilers.) ac_save_ext=$ac_ext ac_ext=F { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU Fortran compiler" >&5 $as_echo_n "checking whether we are using the GNU Fortran compiler... " >&6; } if ${ac_cv_fc_compiler_gnu+:} false; then : $as_echo_n "(cached) " >&6 else cat > conftest.$ac_ext <<_ACEOF program main #ifndef __GNUC__ choke me #endif end _ACEOF if ac_fn_fc_try_compile "$LINENO"; then : ac_compiler_gnu=yes else ac_compiler_gnu=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_cv_fc_compiler_gnu=$ac_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_fc_compiler_gnu" >&5 $as_echo "$ac_cv_fc_compiler_gnu" >&6; } ac_ext=$ac_save_ext ac_test_FCFLAGS=${FCFLAGS+set} ac_save_FCFLAGS=$FCFLAGS FCFLAGS= { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $FC accepts -g" >&5 $as_echo_n "checking whether $FC accepts -g... " >&6; } if ${ac_cv_prog_fc_g+:} false; then : $as_echo_n "(cached) " >&6 else FCFLAGS=-g cat > conftest.$ac_ext <<_ACEOF program main end _ACEOF if ac_fn_fc_try_compile "$LINENO"; then : ac_cv_prog_fc_g=yes else ac_cv_prog_fc_g=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_fc_g" >&5 $as_echo "$ac_cv_prog_fc_g" >&6; } if test "$ac_test_FCFLAGS" = set; then FCFLAGS=$ac_save_FCFLAGS elif test $ac_cv_prog_fc_g = yes; then if test "x$ac_cv_fc_compiler_gnu" = xyes; then FCFLAGS="-g -O2" else FCFLAGS="-g" fi else if test "x$ac_cv_fc_compiler_gnu" = xyes; then FCFLAGS="-O2" else FCFLAGS= fi fi if test $ac_compiler_gnu = yes; then GFC=yes else GFC= fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu f90=$FC ac_ext=${ac_fc_srcext-f} ac_compile='$FC -c $FCFLAGS $ac_fcflags_srcext conftest.$ac_ext >&5' ac_link='$FC -o conftest$ac_exeext $FCFLAGS $LDFLAGS $ac_fcflags_srcext conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_fc_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for Fortran flag to compile .f90 files" >&5 $as_echo_n "checking for Fortran flag to compile .f90 files... " >&6; } if ${ac_cv_fc_srcext_f90+:} false; then : $as_echo_n "(cached) " >&6 else ac_ext=f90 ac_fcflags_srcext_save=$ac_fcflags_srcext ac_fcflags_srcext= ac_cv_fc_srcext_f90=unknown case $ac_ext in #( [fF]77) ac_try=f77;; #( *) ac_try=f95;; esac for ac_flag in none -qsuffix=f=f90 -Tf "-x $ac_try"; do test "x$ac_flag" != xnone && ac_fcflags_srcext="$ac_flag" cat > conftest.$ac_ext <<_ACEOF program main end _ACEOF if ac_fn_fc_try_compile "$LINENO"; then : ac_cv_fc_srcext_f90=$ac_flag; break fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done rm -f conftest.$ac_objext conftest.f90 ac_fcflags_srcext=$ac_fcflags_srcext_save fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_fc_srcext_f90" >&5 $as_echo "$ac_cv_fc_srcext_f90" >&6; } if test "x$ac_cv_fc_srcext_f90" = xunknown; then as_fn_error $? "Fortran could not compile .f90 files" "$LINENO" 5 else ac_fc_srcext=f90 if test "x$ac_cv_fc_srcext_f90" = xnone; then ac_fcflags_srcext="" FCFLAGS_f90="" else ac_fcflags_srcext=$ac_cv_fc_srcext_f90 FCFLAGS_f90=$ac_cv_fc_srcext_f90 fi fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu # check parallel Fortran 90 compiler if test "$use_parallel" -eq 0 ; then mpif90=$f90 else # clear cached values (not sure when and why this is needed) unset FC ac_cv_prog_ac_ct_FC ac_cv_fc_compiler_gnu ac_cv_prog_fc_g if test "$mpif90" = "" ; then mpif90="$try_mpif90 $f90" ac_ext=${ac_fc_srcext-f} ac_compile='$FC -c $FCFLAGS $ac_fcflags_srcext conftest.$ac_ext >&5' ac_link='$FC -o conftest$ac_exeext $FCFLAGS $LDFLAGS $ac_fcflags_srcext conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_fc_compiler_gnu if test -n "$ac_tool_prefix"; then for ac_prog in $mpif90 do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_FC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$FC"; then ac_cv_prog_FC="$FC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_FC="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi FC=$ac_cv_prog_FC if test -n "$FC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $FC" >&5 $as_echo "$FC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$FC" && break done fi if test -z "$FC"; then ac_ct_FC=$FC for ac_prog in $mpif90 do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_FC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_FC"; then ac_cv_prog_ac_ct_FC="$ac_ct_FC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_FC="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_FC=$ac_cv_prog_ac_ct_FC if test -n "$ac_ct_FC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_FC" >&5 $as_echo "$ac_ct_FC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_FC" && break done if test "x$ac_ct_FC" = x; then FC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac FC=$ac_ct_FC fi fi # Provide some information about the compiler. $as_echo "$as_me:${as_lineno-$LINENO}: checking for Fortran compiler version" >&5 set X $ac_compile ac_compiler=$2 for ac_option in --version -v -V -qversion; do { { ac_try="$ac_compiler $ac_option >&5" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compiler $ac_option >&5") 2>conftest.err ac_status=$? if test -s conftest.err; then sed '10a\ ... rest of stderr output deleted ... 10q' conftest.err >conftest.er1 cat conftest.er1 >&5 fi rm -f conftest.er1 conftest.err $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } done rm -f a.out # If we don't use `.F' as extension, the preprocessor is not run on the # input file. (Note that this only needs to work for GNU compilers.) ac_save_ext=$ac_ext ac_ext=F { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU Fortran compiler" >&5 $as_echo_n "checking whether we are using the GNU Fortran compiler... " >&6; } if ${ac_cv_fc_compiler_gnu+:} false; then : $as_echo_n "(cached) " >&6 else cat > conftest.$ac_ext <<_ACEOF program main #ifndef __GNUC__ choke me #endif end _ACEOF if ac_fn_fc_try_compile "$LINENO"; then : ac_compiler_gnu=yes else ac_compiler_gnu=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_cv_fc_compiler_gnu=$ac_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_fc_compiler_gnu" >&5 $as_echo "$ac_cv_fc_compiler_gnu" >&6; } ac_ext=$ac_save_ext ac_test_FCFLAGS=${FCFLAGS+set} ac_save_FCFLAGS=$FCFLAGS FCFLAGS= { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $FC accepts -g" >&5 $as_echo_n "checking whether $FC accepts -g... " >&6; } if ${ac_cv_prog_fc_g+:} false; then : $as_echo_n "(cached) " >&6 else FCFLAGS=-g cat > conftest.$ac_ext <<_ACEOF program main end _ACEOF if ac_fn_fc_try_compile "$LINENO"; then : ac_cv_prog_fc_g=yes else ac_cv_prog_fc_g=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_fc_g" >&5 $as_echo "$ac_cv_prog_fc_g" >&6; } if test "$ac_test_FCFLAGS" = set; then FCFLAGS=$ac_save_FCFLAGS elif test $ac_cv_prog_fc_g = yes; then if test "x$ac_cv_fc_compiler_gnu" = xyes; then FCFLAGS="-g -O2" else FCFLAGS="-g" fi else if test "x$ac_cv_fc_compiler_gnu" = xyes; then FCFLAGS="-O2" else FCFLAGS= fi fi if test $ac_compiler_gnu = yes; then GFC=yes else GFC= fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu else ac_ext=${ac_fc_srcext-f} ac_compile='$FC -c $FCFLAGS $ac_fcflags_srcext conftest.$ac_ext >&5' ac_link='$FC -o conftest$ac_exeext $FCFLAGS $LDFLAGS $ac_fcflags_srcext conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_fc_compiler_gnu if test -n "$ac_tool_prefix"; then for ac_prog in $mpif90 do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_FC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$FC"; then ac_cv_prog_FC="$FC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_FC="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi FC=$ac_cv_prog_FC if test -n "$FC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $FC" >&5 $as_echo "$FC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$FC" && break done fi if test -z "$FC"; then ac_ct_FC=$FC for ac_prog in $mpif90 do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_FC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_FC"; then ac_cv_prog_ac_ct_FC="$ac_ct_FC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_FC="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_FC=$ac_cv_prog_ac_ct_FC if test -n "$ac_ct_FC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_FC" >&5 $as_echo "$ac_ct_FC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_FC" && break done if test "x$ac_ct_FC" = x; then FC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac FC=$ac_ct_FC fi fi # Provide some information about the compiler. $as_echo "$as_me:${as_lineno-$LINENO}: checking for Fortran compiler version" >&5 set X $ac_compile ac_compiler=$2 for ac_option in --version -v -V -qversion; do { { ac_try="$ac_compiler $ac_option >&5" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compiler $ac_option >&5") 2>conftest.err ac_status=$? if test -s conftest.err; then sed '10a\ ... rest of stderr output deleted ... 10q' conftest.err >conftest.er1 cat conftest.er1 >&5 fi rm -f conftest.er1 conftest.err $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } done rm -f a.out # If we don't use `.F' as extension, the preprocessor is not run on the # input file. (Note that this only needs to work for GNU compilers.) ac_save_ext=$ac_ext ac_ext=F { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU Fortran compiler" >&5 $as_echo_n "checking whether we are using the GNU Fortran compiler... " >&6; } if ${ac_cv_fc_compiler_gnu+:} false; then : $as_echo_n "(cached) " >&6 else cat > conftest.$ac_ext <<_ACEOF program main #ifndef __GNUC__ choke me #endif end _ACEOF if ac_fn_fc_try_compile "$LINENO"; then : ac_compiler_gnu=yes else ac_compiler_gnu=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_cv_fc_compiler_gnu=$ac_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_fc_compiler_gnu" >&5 $as_echo "$ac_cv_fc_compiler_gnu" >&6; } ac_ext=$ac_save_ext ac_test_FCFLAGS=${FCFLAGS+set} ac_save_FCFLAGS=$FCFLAGS FCFLAGS= { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $FC accepts -g" >&5 $as_echo_n "checking whether $FC accepts -g... " >&6; } if ${ac_cv_prog_fc_g+:} false; then : $as_echo_n "(cached) " >&6 else FCFLAGS=-g cat > conftest.$ac_ext <<_ACEOF program main end _ACEOF if ac_fn_fc_try_compile "$LINENO"; then : ac_cv_prog_fc_g=yes else ac_cv_prog_fc_g=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_fc_g" >&5 $as_echo "$ac_cv_prog_fc_g" >&6; } if test "$ac_test_FCFLAGS" = set; then FCFLAGS=$ac_save_FCFLAGS elif test $ac_cv_prog_fc_g = yes; then if test "x$ac_cv_fc_compiler_gnu" = xyes; then FCFLAGS="-g -O2" else FCFLAGS="-g" fi else if test "x$ac_cv_fc_compiler_gnu" = xyes; then FCFLAGS="-O2" else FCFLAGS= fi fi if test $ac_compiler_gnu = yes; then GFC=yes else GFC= fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu # this avoids that an empty MPIF90 field is produced if the corresponding # environment variable MPIF90 does not contain an acceptable compiler if test "$FC" = "" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: MPIF90 not found: using MPIF90 anyway" >&5 $as_echo "$as_me: WARNING: MPIF90 not found: using MPIF90 anyway" >&2;} FC=$MPIF90 fi fi mpif90=$FC fi # check which compiler does mpif90 wrap case "$arch" in ia32 | ia64 | x86_64 | mac686 ) echo $ECHO_N "checking version of $mpif90... $ECHO_C" ifort_version=`$mpif90 -V 2>&1 | grep "Intel(R)"` sunf95_version=`$mpif90 -V 2>&1 | grep "Sun Fortran"` openf95_version=`$mpif90 -V 2>&1 | grep "^Open64"` pgf_version=`$mpif90 -V 2>&1 | grep "^pgf"` g95_version=`$mpif90 -v 2>&1 | grep "g95"` eko_version=`$mpif90 -v 2>&1 | grep "EKOPath"` # obsolescent pathf95_version=`$mpif90 -v 2>&1 | grep "PathScale(TM)"` gfortran_version=`$mpif90 -v 2>&1 | grep "gcc version"` # if test "$ifort_version" != "" then version=`$mpif90 -V 2>&1 | grep Version | sed 's/.*Version//' | awk '{print $1}'` ifort_version=`echo $version | sed 's/\..*//'` echo "${ECHO_T}ifort $version" f90_in_mpif90="ifort" if test "$ifort_version" -gt 8; then # flags for MKL - ifort 9 and later MKL_LIBS="" if test "$ifort_version" -gt 9; then MKL_FLAGS="-static-intel" else MKL_FLAGS="-i-static" fi else # flags for MKL - ifort 8 and earlier, obsolescent MKL_LIBS="-lguide -lpthread" MKL_FLAGS="" fi elif test "$sunf95_version" != "" then version=`echo $sunf95_version | awk '{print $5}'` echo "${ECHO_T}sunf95 $version" f90_in_mpif90="sunf95" elif test "$openf95_version" != "" then version=`echo $openf95_version | awk '{print $5}'` echo "${ECHO_T}openf95 $version" f90_in_mpif90="openf95" elif test "$pgf_version" != "" then version=`echo $pgf_version | awk '{print $2}'` echo "${ECHO_T}pgf90 $version" f90_in_mpif90="pgf90" elif test "$eko_version" != "" then # obsolescent version=`echo $eko_version | awk '{print $6}'` echo "${ECHO_T}pathf95 $version" f90_in_mpif90="pathf95" elif test "$g95_version" != "" then version=`echo $g95_version | awk '{print $3}'` echo "${ECHO_T}g95 $version" f90_in_mpif90="g95" elif test "$pathf95_version" != "" then version=`echo $pathf95_version | awk '{print $5}'` echo "${ECHO_T}pathf95 $version" f90_in_mpif90="pathf95" elif test "$gfortran_version" != "" then version=`echo $gfortran_version | awk '{print $3}'` echo "${ECHO_T}gfortran $version" f90_in_mpif90="gfortran" else echo "${ECHO_T}unknown, assuming gfortran" f90_in_mpif90="gfortran" fi # check if serial and parallel compiler are the same if test "$f90" != "$f90_in_mpif90"; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: parallel compiler $mpif90 uses $f90_in_mpif90, but serial compiler $f90 was detected" >&5 $as_echo "$as_me: WARNING: parallel compiler $mpif90 uses $f90_in_mpif90, but serial compiler $f90 was detected" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: assuming F90=$f90_in_mpif90, discarding $f90" >&5 $as_echo "$as_me: WARNING: assuming F90=$f90_in_mpif90, discarding $f90" >&2;} fi f90=$f90_in_mpif90 ;; esac echo setting F90... $f90 echo setting MPIF90... $mpif90 case "$f90" in f90 | fc | ftn ) echo $ECHO_N "checking version wrapped by $f90 command... $ECHO_C" if $f90 -V 2>&1 | grep -q "Intel(R)" ; then f90_version=ifort elif $f90 -V 2>&1 | grep -q "Sun Fortran" ; then f90_version=sunf95 elif $f90 -V 2>&1 | grep -q "^Open64" ; then f90_version=openf95 elif $f90 -V 2>&1 | grep -q "^pgf" ; then f90_version=pgf elif $f90 -v 2>&1 | grep -q "EKOPath" ; then # obsolescent f90_version=pathf95 elif $f90 -v 2>&1 | grep -q "g95" ; then f90_version=g95 elif $f90 -version 2>&1 | grep -q "PathScale(TM)" ; then f90_version=pathf95 elif $f90 -v 2>&1 | grep -q "gcc version" ; then f90_version=gfortran elif $f90 -V 2>&1 | grep -q "Cray Fortran" ; then f90_version=crayftn else echo $ECHO_N "unknown, leaving as... $ECHO_C" f90_version=$f90 fi echo $f90_version ;; * ) f90_version=$f90 ;; esac # candidate C and f77 compilers good for all cases try_cc="cc gcc" try_f77="$f90" case "$arch:$f90_version" in *:ifort* ) try_cc="icc ecc $try_cc" ;; *:pgf90 ) try_cc="pgcc $try_cc" try_f77="pgf77 $f90" ;; *:pathf95 ) try_cc="pathcc $try_cc" ;; *:sunf95 ) try_cc="suncc $try_cc" ;; *:openf95 ) try_cc="opencc $try_cc" ;; aix:*xlf*_r ) try_cc="xlc_r $try_cc" try_f77="xlf_r $f90" ;; aix:*xlf* ) try_cc="xlc $try_cc" try_f77="xlf $f90" ;; sparc:* | solaris:sunf95 ) try_f77="f77 $f90" ;; cray*:* ) try_cc="cc" ;; necsx:* ) try_cc="sxcc" ;; ppc64-bg*:*xlf90_r ) try_cc="bgxlc_r" try_f77="bgxlf_r" ;; ppc64-bg*:*xlf90 ) try_cc="bgxlc" try_f77="bgxlf" ;; ppc64:*xlf* | ppc64-mn:*xlf* ) try_cc="xlc_r $try_cc" try_f77="xlf_r $f90" ;; esac # check serial C compiler if test "$env_cc" = "" ; then cc="$try_cc" ; else cc="$env_cc"; fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu if test -n "$ac_tool_prefix"; then for ac_prog in $cc do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$CC" && break done fi if test -z "$CC"; then ac_ct_CC=$CC for ac_prog in $cc do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CC"; then ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_CC="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CC=$ac_cv_prog_ac_ct_CC if test -n "$ac_ct_CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5 $as_echo "$ac_ct_CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_CC" && break done if test "x$ac_ct_CC" = x; then CC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CC=$ac_ct_CC fi fi test -z "$CC" && { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "no acceptable C compiler found in \$PATH See \`config.log' for more details" "$LINENO" 5; } # Provide some information about the compiler. $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler version" >&5 set X $ac_compile ac_compiler=$2 for ac_option in --version -v -V -qversion; do { { ac_try="$ac_compiler $ac_option >&5" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compiler $ac_option >&5") 2>conftest.err ac_status=$? if test -s conftest.err; then sed '10a\ ... rest of stderr output deleted ... 10q' conftest.err >conftest.er1 cat conftest.er1 >&5 fi rm -f conftest.er1 conftest.err $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } done { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU C compiler" >&5 $as_echo_n "checking whether we are using the GNU C compiler... " >&6; } if ${ac_cv_c_compiler_gnu+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { #ifndef __GNUC__ choke me #endif ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_compiler_gnu=yes else ac_compiler_gnu=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_cv_c_compiler_gnu=$ac_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_compiler_gnu" >&5 $as_echo "$ac_cv_c_compiler_gnu" >&6; } if test $ac_compiler_gnu = yes; then GCC=yes else GCC= fi ac_test_CFLAGS=${CFLAGS+set} ac_save_CFLAGS=$CFLAGS { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CC accepts -g" >&5 $as_echo_n "checking whether $CC accepts -g... " >&6; } if ${ac_cv_prog_cc_g+:} false; then : $as_echo_n "(cached) " >&6 else ac_save_c_werror_flag=$ac_c_werror_flag ac_c_werror_flag=yes ac_cv_prog_cc_g=no CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes else CFLAGS="" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : else ac_c_werror_flag=$ac_save_c_werror_flag CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_c_werror_flag=$ac_save_c_werror_flag fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_g" >&5 $as_echo "$ac_cv_prog_cc_g" >&6; } if test "$ac_test_CFLAGS" = set; then CFLAGS=$ac_save_CFLAGS elif test $ac_cv_prog_cc_g = yes; then if test "$GCC" = yes; then CFLAGS="-g -O2" else CFLAGS="-g" fi else if test "$GCC" = yes; then CFLAGS="-O2" else CFLAGS= fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $CC option to accept ISO C89" >&5 $as_echo_n "checking for $CC option to accept ISO C89... " >&6; } if ${ac_cv_prog_cc_c89+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_prog_cc_c89=no ac_save_CC=$CC cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include struct stat; /* Most of the following tests are stolen from RCS 5.7's src/conf.sh. */ struct buf { int x; }; FILE * (*rcsopen) (struct buf *, struct stat *, int); static char *e (p, i) char **p; int i; { return p[i]; } static char *f (char * (*g) (char **, int), char **p, ...) { char *s; va_list v; va_start (v,p); s = g (p, va_arg (v,int)); va_end (v); return s; } /* OSF 4.0 Compaq cc is some sort of almost-ANSI by default. It has function prototypes and stuff, but not '\xHH' hex character constants. These don't provoke an error unfortunately, instead are silently treated as 'x'. The following induces an error, until -std is added to get proper ANSI mode. Curiously '\x00'!='x' always comes out true, for an array size at least. It's necessary to write '\x00'==0 to get something that's true only with -std. */ int osf4_cc_array ['\x00' == 0 ? 1 : -1]; /* IBM C 6 for AIX is almost-ANSI by default, but it replaces macro parameters inside strings and character constants. */ #define FOO(x) 'x' int xlc6_cc_array[FOO(a) == 'x' ? 1 : -1]; int test (int i, double x); struct s1 {int (*f) (int a);}; struct s2 {int (*f) (double a);}; int pairnames (int, char **, FILE *(*)(struct buf *, struct stat *, int), int, int); int argc; char **argv; int main () { return f (e, argv, 0) != argv[0] || f (e, argv, 1) != argv[1]; ; return 0; } _ACEOF for ac_arg in '' -qlanglvl=extc89 -qlanglvl=ansi -std \ -Ae "-Aa -D_HPUX_SOURCE" "-Xc -D__EXTENSIONS__" do CC="$ac_save_CC $ac_arg" if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_c89=$ac_arg fi rm -f core conftest.err conftest.$ac_objext test "x$ac_cv_prog_cc_c89" != "xno" && break done rm -f conftest.$ac_ext CC=$ac_save_CC fi # AC_CACHE_VAL case "x$ac_cv_prog_cc_c89" in x) { $as_echo "$as_me:${as_lineno-$LINENO}: result: none needed" >&5 $as_echo "none needed" >&6; } ;; xno) { $as_echo "$as_me:${as_lineno-$LINENO}: result: unsupported" >&5 $as_echo "unsupported" >&6; } ;; *) CC="$CC $ac_cv_prog_cc_c89" { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_c89" >&5 $as_echo "$ac_cv_prog_cc_c89" >&6; } ;; esac if test "x$ac_cv_prog_cc_c89" != xno; then : fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu cc=$CC echo setting CC... $cc # check size of pointers to int - needed to decide the size of integer # arrays in fortran holding C pointers for FFTW ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to run the C preprocessor" >&5 $as_echo_n "checking how to run the C preprocessor... " >&6; } # On Suns, sometimes $CPP names a directory. if test -n "$CPP" && test -d "$CPP"; then CPP= fi if test -z "$CPP"; then if ${ac_cv_prog_CPP+:} false; then : $as_echo_n "(cached) " >&6 else # Double quotes because CPP needs to be expanded for CPP in "$CC -E" "$CC -E -traditional-cpp" "/lib/cpp" do ac_preproc_ok=false for ac_c_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.i conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.i conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.i conftest.err conftest.$ac_ext if $ac_preproc_ok; then : break fi done ac_cv_prog_CPP=$CPP fi CPP=$ac_cv_prog_CPP else ac_cv_prog_CPP=$CPP fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CPP" >&5 $as_echo "$CPP" >&6; } ac_preproc_ok=false for ac_c_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.i conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.i conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.i conftest.err conftest.$ac_ext if $ac_preproc_ok; then : else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "C preprocessor \"$CPP\" fails sanity check See \`config.log' for more details" "$LINENO" 5; } fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for grep that handles long lines and -e" >&5 $as_echo_n "checking for grep that handles long lines and -e... " >&6; } if ${ac_cv_path_GREP+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$GREP"; then ac_path_GREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in grep ggrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_GREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_GREP" || continue # Check for GNU ac_path_GREP and select it if it is found. # Check for GNU $ac_path_GREP case `"$ac_path_GREP" --version 2>&1` in *GNU*) ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'GREP' >> "conftest.nl" "$ac_path_GREP" -e 'GREP$' -e '-(cannot match)-' < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_GREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_GREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_GREP"; then as_fn_error $? "no acceptable grep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_GREP=$GREP fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_GREP" >&5 $as_echo "$ac_cv_path_GREP" >&6; } GREP="$ac_cv_path_GREP" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for egrep" >&5 $as_echo_n "checking for egrep... " >&6; } if ${ac_cv_path_EGREP+:} false; then : $as_echo_n "(cached) " >&6 else if echo a | $GREP -E '(a|b)' >/dev/null 2>&1 then ac_cv_path_EGREP="$GREP -E" else if test -z "$EGREP"; then ac_path_EGREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in egrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_EGREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_EGREP" || continue # Check for GNU ac_path_EGREP and select it if it is found. # Check for GNU $ac_path_EGREP case `"$ac_path_EGREP" --version 2>&1` in *GNU*) ac_cv_path_EGREP="$ac_path_EGREP" ac_path_EGREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'EGREP' >> "conftest.nl" "$ac_path_EGREP" 'EGREP$' < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_EGREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_EGREP="$ac_path_EGREP" ac_path_EGREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_EGREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_EGREP"; then as_fn_error $? "no acceptable egrep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_EGREP=$EGREP fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_EGREP" >&5 $as_echo "$ac_cv_path_EGREP" >&6; } EGREP="$ac_cv_path_EGREP" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ANSI C header files" >&5 $as_echo_n "checking for ANSI C header files... " >&6; } if ${ac_cv_header_stdc+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #include #include int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_header_stdc=yes else ac_cv_header_stdc=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext if test $ac_cv_header_stdc = yes; then # SunOS 4.x string.h does not declare mem*, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "memchr" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # ISC 2.0.2 stdlib.h does not declare free, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "free" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # /bin/cc in Irix-4.0.5 gets non-ANSI ctype macros unless using -ansi. if test "$cross_compiling" = yes; then : : else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #if ((' ' & 0x0FF) == 0x020) # define ISLOWER(c) ('a' <= (c) && (c) <= 'z') # define TOUPPER(c) (ISLOWER(c) ? 'A' + ((c) - 'a') : (c)) #else # define ISLOWER(c) \ (('a' <= (c) && (c) <= 'i') \ || ('j' <= (c) && (c) <= 'r') \ || ('s' <= (c) && (c) <= 'z')) # define TOUPPER(c) (ISLOWER(c) ? ((c) | 0x40) : (c)) #endif #define XOR(e, f) (((e) && !(f)) || (!(e) && (f))) int main () { int i; for (i = 0; i < 256; i++) if (XOR (islower (i), ISLOWER (i)) || toupper (i) != TOUPPER (i)) return 2; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : else ac_cv_header_stdc=no fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_header_stdc" >&5 $as_echo "$ac_cv_header_stdc" >&6; } if test $ac_cv_header_stdc = yes; then $as_echo "#define STDC_HEADERS 1" >>confdefs.h fi # On IRIX 5.3, sys/types and inttypes.h are conflicting. for ac_header in sys/types.h sys/stat.h stdlib.h string.h memory.h strings.h \ inttypes.h stdint.h unistd.h do : as_ac_Header=`$as_echo "ac_cv_header_$ac_header" | $as_tr_sh` ac_fn_c_check_header_compile "$LINENO" "$ac_header" "$as_ac_Header" "$ac_includes_default " if eval test \"x\$"$as_ac_Header"\" = x"yes"; then : cat >>confdefs.h <<_ACEOF #define `$as_echo "HAVE_$ac_header" | $as_tr_cpp` 1 _ACEOF fi done # The cast to long int works around a bug in the HP C Compiler # version HP92453-01 B.11.11.23709.GP, which incorrectly rejects # declarations like `int a3[[(sizeof (unsigned char)) >= 0]];'. # This bug is HP SR number 8606223364. { $as_echo "$as_me:${as_lineno-$LINENO}: checking size of int *" >&5 $as_echo_n "checking size of int *... " >&6; } if ${ac_cv_sizeof_int_p+:} false; then : $as_echo_n "(cached) " >&6 else if ac_fn_c_compute_int "$LINENO" "(long int) (sizeof (int *))" "ac_cv_sizeof_int_p" "$ac_includes_default"; then : else if test "$ac_cv_type_int_p" = yes; then { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error 77 "cannot compute sizeof (int *) See \`config.log' for more details" "$LINENO" 5; } else ac_cv_sizeof_int_p=0 fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_sizeof_int_p" >&5 $as_echo "$ac_cv_sizeof_int_p" >&6; } cat >>confdefs.h <<_ACEOF #define SIZEOF_INT_P $ac_cv_sizeof_int_p _ACEOF SIZEOF_INT_P=$ac_cv_sizeof_int_p ac_config_files="$ac_config_files include/fft_defs.h:include/fft_defs.h.in" # check if the structure mallinfo is present in malloc.h ac_fn_c_check_header_mongrel "$LINENO" "malloc.h" "ac_cv_header_malloc_h" "$ac_includes_default" if test "x$ac_cv_header_malloc_h" = xyes; then : have_malloc_h=1 else have_malloc_h=0 fi if test "$have_malloc_h" -ne 0 then ac_fn_c_check_member "$LINENO" "struct mallinfo" "arena" "ac_cv_member_struct_mallinfo_arena" "#include " if test "x$ac_cv_member_struct_mallinfo_arena" = xyes; then : $as_echo "#define HAVE_MALLINFO 1" >>confdefs.h fi fi # check serial Fortran 77 compiler (use F77 if it was set) if test "$f77" = "" ; then f77="$try_f77" ; fi ac_ext=f ac_compile='$F77 -c $FFLAGS conftest.$ac_ext >&5' ac_link='$F77 -o conftest$ac_exeext $FFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_f77_compiler_gnu if test -n "$ac_tool_prefix"; then for ac_prog in $f77 do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_F77+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$F77"; then ac_cv_prog_F77="$F77" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_F77="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi F77=$ac_cv_prog_F77 if test -n "$F77"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $F77" >&5 $as_echo "$F77" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$F77" && break done fi if test -z "$F77"; then ac_ct_F77=$F77 for ac_prog in $f77 do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_F77+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_F77"; then ac_cv_prog_ac_ct_F77="$ac_ct_F77" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_F77="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_F77=$ac_cv_prog_ac_ct_F77 if test -n "$ac_ct_F77"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_F77" >&5 $as_echo "$ac_ct_F77" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_F77" && break done if test "x$ac_ct_F77" = x; then F77="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac F77=$ac_ct_F77 fi fi # Provide some information about the compiler. $as_echo "$as_me:${as_lineno-$LINENO}: checking for Fortran 77 compiler version" >&5 set X $ac_compile ac_compiler=$2 for ac_option in --version -v -V -qversion; do { { ac_try="$ac_compiler $ac_option >&5" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compiler $ac_option >&5") 2>conftest.err ac_status=$? if test -s conftest.err; then sed '10a\ ... rest of stderr output deleted ... 10q' conftest.err >conftest.er1 cat conftest.er1 >&5 fi rm -f conftest.er1 conftest.err $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } done rm -f a.out # If we don't use `.F' as extension, the preprocessor is not run on the # input file. (Note that this only needs to work for GNU compilers.) ac_save_ext=$ac_ext ac_ext=F { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU Fortran 77 compiler" >&5 $as_echo_n "checking whether we are using the GNU Fortran 77 compiler... " >&6; } if ${ac_cv_f77_compiler_gnu+:} false; then : $as_echo_n "(cached) " >&6 else cat > conftest.$ac_ext <<_ACEOF program main #ifndef __GNUC__ choke me #endif end _ACEOF if ac_fn_f77_try_compile "$LINENO"; then : ac_compiler_gnu=yes else ac_compiler_gnu=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_cv_f77_compiler_gnu=$ac_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_f77_compiler_gnu" >&5 $as_echo "$ac_cv_f77_compiler_gnu" >&6; } ac_ext=$ac_save_ext ac_test_FFLAGS=${FFLAGS+set} ac_save_FFLAGS=$FFLAGS FFLAGS= { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $F77 accepts -g" >&5 $as_echo_n "checking whether $F77 accepts -g... " >&6; } if ${ac_cv_prog_f77_g+:} false; then : $as_echo_n "(cached) " >&6 else FFLAGS=-g cat > conftest.$ac_ext <<_ACEOF program main end _ACEOF if ac_fn_f77_try_compile "$LINENO"; then : ac_cv_prog_f77_g=yes else ac_cv_prog_f77_g=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_f77_g" >&5 $as_echo "$ac_cv_prog_f77_g" >&6; } if test "$ac_test_FFLAGS" = set; then FFLAGS=$ac_save_FFLAGS elif test $ac_cv_prog_f77_g = yes; then if test "x$ac_cv_f77_compiler_gnu" = xyes; then FFLAGS="-g -O2" else FFLAGS="-g" fi else if test "x$ac_cv_f77_compiler_gnu" = xyes; then FFLAGS="-O2" else FFLAGS= fi fi if test $ac_compiler_gnu = yes; then G77=yes else G77= fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu f77=$F77 echo setting F77... $f77 # check Fortran compiler flags # have_cpp=0: use external C preprocessing for fortran code # have_cpp=1: use C-like preprocessing in fortran compiler have_cpp=1 xlf_flags=0 echo using F90... $f90 case "$arch:$f90_version" in ia32:ifort* | ia64:ifort* | x86_64:ifort* | mac686:ifort* | crayxt*:ifort* ) try_fflags="-O2 -assume byterecl -g -traceback -par-report0 -vec-report0" if test "$use_debug" -eq 1; then try_fflags="$try_fflags -fpe0 -CB" fi try_fflags_nomain="-nofor_main" try_fflags_openmp="-openmp" try_f90flags="\$(FFLAGS) -nomodule" try_fflags_noopt="-O0 -assume byterecl -g -traceback" try_ldflags="" try_ldflags_static="-static" try_ldflags_openmp="-openmp" try_dflags="$try_dflags -D__INTEL" pre_fdflags="-fpp " ;; ia32:pgf* | ia64:pgf* | x86_64:pgf* ) try_fflags_nomain="-Mnomain" try_fflags="-fast -r8" try_fflags_openmp="-mp" try_f90flags="-fast -r8 -Mcache_align" try_fflags_noopt="-O0" try_ldflags="" try_ldflags_openmp="-mp" try_ldflags_static="-Bstatic" try_dflags="$try_dflags -D__PGI" have_cpp=0 ;; ia32:path* | ia64:path* | x86_64:path* ) try_fflags="-march=auto -O2" try_f90flags="\$(FFLAGS)" try_fflags_noopt="-O0" try_ldflags="" try_ldflags_static="-static" have_cpp=0 ;; *:g95 ) if test "$use_debug" -eq 1; then try_fflags="-O3 -g -freal=nan -finteger=12345678 -flogical=none -cpp" else try_fflags="-O3 -cpp" fi try_f90flags="\$(FFLAGS)" try_fflags_noopt="-O0 -cpp" try_ldflags="" try_ldflags_static="-static" ;; *:*gfortran ) if test "$use_debug" -eq 1; then try_fflags="-O3 -g -Wall -fbounds-check -frange-check" else try_fflags="-O3 -g" fi try_fflags_openmp="-fopenmp" try_f90flags="\$(FFLAGS) -x f95-cpp-input" try_fflags_noopt="-O0 -g" try_ldflags="-g -pthread" try_ldflags_openmp="-fopenmp" try_dflags="$try_dflags -D__GFORTRAN -D__STD_F95" try_ldflags_static="-static" ;; *:sunf95 ) try_fflags="-O4" try_fflags_openmp="-openmp" try_f90flags="\$(FFLAGS) -fpp" try_fflags_noopt="-O0" try_ldflags="-fast" try_ldflags_static="-Bstatic" imod="-M" ;; *:openf95 ) try_fflags="-O3" try_f90flags="\$(FFLAGS) -ftpp" try_fflags_noopt="-O0" try_ldflags="" imod="-I" ;; aix:*xlf* ) if test "$use_debug" -eq 1; then try_fflags="-q64 -qalias=noaryovrlp -g -C \ -qarch=auto -qtune=auto -qdpc -Q -qalias=nointptr" else try_fflags="-q64 -qalias=noaryovrlp -O3 -qstrict \ -qarch=auto -qtune=auto -qdpc -Q -qalias=nointptr" fi try_fflags_openmp="-qsmp=omp" try_f90flags="\$(FFLAGS) -qsuffix=cpp=f90 -qfree=f90" try_fflags_noopt="-q64 -O0" try_ldflags="-q64" try_ldflags_openmp="-qsmp=omp" # try_ldflags_static="-bstatic" pre_fdflags="-WF," xlf_flags=1 ;; solaris:sunf95 ) try_fflags="-fast -O2 -fpp" try_f90flags="\$(FFLAGS)" try_fflags_noopt="-O0 " try_ldflags="" imod="-M" ;; sparc:f90 ) try_fflags="-fast -O1 -nodepend -xvector=no -xchip=ultra3 \ -xarch=v8plusb -xlic_lib=sunperf" try_f90flags="\$(FFLAGS)" try_fflags_noopt="-O0 -xlic_lib=sunperf" try_ldflags="" imod="-M" have_cpp=0 ;; crayxt*:cray* ) try_fflags_nomain="" #NOTE: by default OpenMP is always ON (see crayftn man page) try_fflags_openmp="-homp" try_fflags="-O2" #NOTE: add '-rm' to get messages from crayftn about why # optimizations have not been applied try_f90flags="-O3,fp3 -f free" try_fflags_noopt="-O0" try_ldflags_openmp="-homp" try_ldflags="-v" try_ldflags_static="-static" try_dflags="$try_dflags -D__CRAY" have_cpp=0 ;; crayxt*:pgf* ) # see comment above for pgf* try_fflags_nomain="-Mnomain" try_fflags_openmp="-mp" try_fflags="-O3 -r8" try_f90flags="-fast -Mcache_align -r8 -Mpreprocess" try_fflags_noopt="-O0" try_ldflags_openmp="-mp" try_ldflags="-v" try_dflags="$try_dflags -D__PGI -D__IOTK_WORKAROUND1" have_cpp=1 ;; crayxt*:pathf* ) try_fflags="-march=auto -O2 -cpp" try_f90flags="\$(FFLAGS)" try_fflags_noopt="-O0" try_ldflags="" try_ldflags_static="-static" have_cpp=1 ;; necsx:* ) try_fflags=' -float0 -Cvopt -eab -R5 -Wf,-Ncont,-A dbl4,-P nh,-ptr byte,-pvctl noifopt loopcnt=9999999 expand=12 fullmsg vwork=stack,-fusion,-O noif,-init stack=nan heap=nan' try_f90flags=' -f2003 -float0 -Cvopt -eab -R5 -Wf,-Ncont,-A dbl4,-P nh,-ptr byte,-pvctl noifopt loopcnt=9999999 expand=12 fullmsg vwork=stack,-fusion,-O noif,-init stack=nan heap=nan' try_f90flags="-$sxopt $try_f90flags" try_fflags_noopt='-float0 ' try_f90flags_noopt='-f2003 -float0 -eab -R5 -C debug -Wf,-Ncont,-A dbl4,-P nh ,ptr byte,-init stack=nan heap=nan' try_f90flags_noopt="$try_f90flags_noopt" try_f90flags_inline='-f2003 -float0 -Cvopt -eab -R5 -pi noauto incdir exp=w0gauss -Wf,-Ncont,-A dbl4,-P nh,-ptr byte,-pvctl noifopt loopcnt=9999999 expand=12 fullmsg vwork=stack,-fusion,-O noif,-init stack=nan heap=nan' try_f90flags_inline="$try_f90flags_inline" try_ldflags_static='-P static' try_ldflags='-Wl,-f zero' try_ldflags="-p $try_ldflags" pre_fdflags="" ;; ppc64:*xlf* ) if test "$use_debug" -eq 1; then try_fflags="-g -C -qsuffix=cpp=f90 -qdpc -qalias=nointptr -Q" else try_fflags="-q64 -qthreaded -O4 -qsuffix=cpp=f90 -qdpc -qalias=nointptr -Q" fi try_f90flags="\$(FFLAGS) -qfree=f90" try_fflags_noopt="-q64 -qthreaded -O0" try_ldflags="-q64 -qthreaded" pre_fdflags="-WF," xlf_flags=1 ;; ppc64-mn:*xlf* ) if test "$use_debug" -eq 1; then try_fflags="-g -C -q64 -qstrict -qsuffix=cpp=f90 -qdpc -qalias=nointptr -Q -qtune=ppc970 -qarch=ppc970 -qcache=auto -qhot=vector,simd -qenablevmx" else try_fflags="-O3 -q64 -qstrict -qsuffix=cpp=f90 -qdpc -qalias=nointptr -Q -qtune=ppc970 -qarch=ppc970 -qcache=auto -qhot=vector,simd -qenablevmx" fi try_f90flags="\$(FFLAGS) -qfree=f90" try_fflags_noopt="-O0 -q64" try_ldflags="" pre_fdflags="-WF," xlf_flags=1 ;; ppc64-bg:*xlf* ) if test "$use_debug" -eq 1; then try_fflags="-q32 -qalias=noaryovrlp:nointptr -g -C -qdpc=e" else try_fflags="-q32 -qalias=noaryovrlp:nointptr -O3 -qstrict -qdpc=e" fi try_fflags_openmp="-qsmp=omp -qthreaded" try_f90flags="\$(FFLAGS) -qsuffix=cpp=f90" try_fflags_noopt="-q32 -O0" try_ldflags="-q32" try_ldflags_openmp="-qsmp=omp -qthreaded" pre_fdflags="-WF," xlf_flags=1 ;; ppc64-bgq:*xlf* ) if test "$use_debug" -eq 1; then try_fflags="-qalias=noaryovrlp:nointptr -g -C -qdpc=e" else try_fflags="-qalias=noaryovrlp:nointptr -O3 -qstrict -qdpc=e -qarch=qp -qtune=qp" fi try_fflags_openmp="-qsmp=noauto:omp -qtm -qthreaded" try_f90flags="\$(FFLAGS) -qsuffix=cpp=f90" try_fflags_noopt="-O0" try_ldflags="" try_ldflags_openmp="-qstatic -qsmp=noauto:omp -qtm -qthreaded" pre_fdflags="-WF," xlf_flags=1 ;; * ) # unknown, try these try_fflags="-O1" try_f90flags="\$(FFLAGS)" try_fflags_noopt="-O0" try_ldflags="" have_cpp=0 ;; esac if test "$use_shared" -eq 0 ; then try_ldflags="$try_ldflags $try_ldflags_static" ; fi if test "$use_openmp" -eq 1 ; then try_f90flags="$try_f90flags $try_fflags_openmp" try_fflags="$try_fflags $try_fflags_openmp" try_ldflags="$try_ldflags $try_ldflags_openmp" fi if test "$fflags" = "" ; then fflags=$try_fflags ; fi if test "$f90flags" = "" ; then f90flags=$try_f90flags ; fi if test "$fflags_noopt" = "" ; then fflags_noopt=$try_fflags_noopt ; fi if test "$fflags_nomain" = "" ; then fflags_nomain=$try_fflags_nomain ; fi echo setting FFLAGS... $fflags echo setting F90FLAGS... $f90flags echo setting FFLAGS_NOOPT... $fflags_noopt if test "$fflags_nomain" != "" ; then echo setting FFLAGS_NOMAIN... $fflags_nomain ; fi if test "$imod" = "" ; then imod="-I" ; fi # tentative C and loader flags, good for many cases try_cflags="-O3" c_ldflags="" try_cpp="cpp" case "$arch:$cc" in *:pgcc ) try_cflags="-fast" ;; # pathcc -E seems to give problems when preprocessing iotk #*:pathcc ) # try_cpp="pathcc -E" # ;; aix:xlc* | aix:cc ) try_cflags="-q64 -O2" c_ldflags="-q64" ;; *:suncc ) try_cflags="-fast -O" ;; sparc:cc ) try_cflags="-fast -dalign -xchip=ultra3 -xarch=v8plusb \ -xlic_lib=sunperf" try_cpp="fpp" ;; crayxt*:cc ) # Actually we need something like is done for ftn to detect # the proper compiler used (NdFilippo) try_cflags="-O3" ;; necsx:* ) #try_cflags="-D__SX6 \$(IFLAGS) \$(MODFLAGS)" try_cflags="" try_ar="sxar" ;; ppc64-mn:* ) try_cflags="-O3 -q64" ;; ppc64-bg:* ) try_cflags="-O3 -q32" ;; ppc64-bgq:* ) try_cflags="-O3" ;; ppc64:xlc*) try_cflags="-O3 -q64 -qthreaded" c_ldflags="-q64" ;; esac if test "$cflags" = "" ; then cflags=$try_cflags ; fi echo setting CFLAGS... $cflags # preprocessor - try cpp in all cases; the preprocessor returned by # AC_PROG_CPP # may sometimes refuse to preprocess fortran files if test "$cpp" = "" ; then cpp=$try_cpp; fi # if test "$cpp" = "" ; then cpp=$CPP; fi echo setting CPP... $cpp echo $ECHO_N "setting CPPFLAGS... $ECHO_C" case $cpp in cpp) try_cppflags="-P -C -traditional" ;; fpp) try_cppflags="-P -C " ;; *) try_cppflags="" ;; esac if test "$cppflags" = "" ; then cppflags=$try_cppflags ; fi echo "${ECHO_T}$cppflags" # linker and archiver # note that from this point on, further additions to # linker flags should be added to ldflags rather than try_ldflags if test "$ld" = "" ; then ld="$mpif90" ; fi if test "$ldflags" = "" ; then ldflags="$try_ldflags" ; fi if test "$ar" = "" ; then ar="$try_ar" ; fi if test "$arflags" = "" ; then arflags="$try_arflags" ; fi echo setting LD... $ld echo setting LDFLAGS... $ldflags echo setting AR... $ar echo setting ARFLAGS... $arflags # compilation rules { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether ${MAKE-make} sets \$(MAKE)" >&5 $as_echo_n "checking whether ${MAKE-make} sets \$(MAKE)... " >&6; } set x ${MAKE-make} ac_make=`$as_echo "$2" | sed 's/+/p/g; s/[^a-zA-Z0-9_]/_/g'` if eval \${ac_cv_prog_make_${ac_make}_set+:} false; then : $as_echo_n "(cached) " >&6 else cat >conftest.make <<\_ACEOF SHELL = /bin/sh all: @echo '@@@%%%=$(MAKE)=@@@%%%' _ACEOF # GNU make sometimes prints "make[1]: Entering ...", which would confuse us. case `${MAKE-make} -f conftest.make 2>/dev/null` in *@@@%%%=?*=@@@%%%*) eval ac_cv_prog_make_${ac_make}_set=yes;; *) eval ac_cv_prog_make_${ac_make}_set=no;; esac rm -f conftest.make fi if eval test \$ac_cv_prog_make_${ac_make}_set = yes; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } SET_MAKE= else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } SET_MAKE="MAKE=${MAKE-make}" fi echo $ECHO_N "checking whether Fortran files must be preprocessed... $ECHO_C" if test "$have_cpp" -ne 0 then f90rule="\$(MPIF90) \$(F90FLAGS) -c \$<" echo "${ECHO_T}no" else f90rule="\$(CPP) \$(CPPFLAGS) \$< -o \$*.F90 ; \\ \$(MPIF90) \$(F90FLAGS) -c \$*.F90 -o \$*.o" echo "${ECHO_T}yes" fi # compilation flags for all subsequent tests # remove all $(...) because at least one compiler doesn't like them # but if f90flags contains $(FFLAGS), substitute it test_cflags="`echo $cflags | sed 's/\$([^)]*)//g'`" test_cppflags="$test_cflags" if test "`echo $f90flags | grep '$(FFLAGS)'`" != "" then test_fflags="`echo $fflags $f90flags | sed 's/\$([^)]*)//g'`" else test_fflags="`echo $f90flags | sed 's/\$([^)]*)//g'`" fi test_ldflags="`echo $ldflags | sed 's/\$([^)]*)//g'`" # find Fortran to C wrappers if test "$check_wrappers" -ne 0; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking host system type" >&5 $as_echo_n "checking host system type... " >&6; } if ${ac_cv_host+:} false; then : $as_echo_n "(cached) " >&6 else if test "x$host_alias" = x; then ac_cv_host=$ac_cv_build else ac_cv_host=`$SHELL "$ac_aux_dir/config.sub" $host_alias` || as_fn_error $? "$SHELL $ac_aux_dir/config.sub $host_alias failed" "$LINENO" 5 fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_host" >&5 $as_echo "$ac_cv_host" >&6; } case $ac_cv_host in *-*-*) ;; *) as_fn_error $? "invalid value of canonical host" "$LINENO" 5;; esac host=$ac_cv_host ac_save_IFS=$IFS; IFS='-' set x $ac_cv_host shift host_cpu=$1 host_vendor=$2 shift; shift # Remember, the first character of IFS is used to create $*, # except with old shells: host_os=$* IFS=$ac_save_IFS case $host_os in *\ *) host_os=`echo "$host_os" | sed 's/ /-/g'`;; esac ac_ext=f ac_compile='$F77 -c $FFLAGS conftest.$ac_ext >&5' ac_link='$F77 -o conftest$ac_exeext $FFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_f77_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to get verbose linking output from $F77" >&5 $as_echo_n "checking how to get verbose linking output from $F77... " >&6; } if ${ac_cv_prog_f77_v+:} false; then : $as_echo_n "(cached) " >&6 else cat > conftest.$ac_ext <<_ACEOF program main end _ACEOF if ac_fn_f77_try_compile "$LINENO"; then : ac_cv_prog_f77_v= # Try some options frequently used verbose output for ac_verb in -v -verbose --verbose -V -\#\#\#; do cat > conftest.$ac_ext <<_ACEOF program main end _ACEOF # Compile and link our simple test program by passing a flag (argument # 1 to this macro) to the Fortran compiler in order to get # "verbose" output that we can then parse for the Fortran linker # flags. ac_save_FFLAGS=$FFLAGS FFLAGS="$FFLAGS $ac_verb" eval "set x $ac_link" shift $as_echo "$as_me:${as_lineno-$LINENO}: $*" >&5 # gfortran 4.3 outputs lines setting COLLECT_GCC_OPTIONS, COMPILER_PATH, # LIBRARY_PATH; skip all such settings. ac_f77_v_output=`eval $ac_link 5>&1 2>&1 | sed '/^Driving:/d; /^Configured with:/d; '"/^[_$as_cr_Letters][_$as_cr_alnum]*=/d"` $as_echo "$ac_f77_v_output" >&5 FFLAGS=$ac_save_FFLAGS rm -rf conftest* # On HP/UX there is a line like: "LPATH is: /foo:/bar:/baz" where # /foo, /bar, and /baz are search directories for the Fortran linker. # Here, we change these into -L/foo -L/bar -L/baz (and put it first): ac_f77_v_output="`echo $ac_f77_v_output | grep 'LPATH is:' | sed 's|.*LPATH is\(: *[^ ]*\).*|\1|;s|: */| -L/|g'` $ac_f77_v_output" # FIXME: we keep getting bitten by quoted arguments; a more general fix # that detects unbalanced quotes in FLIBS should be implemented # and (ugh) tested at some point. case $ac_f77_v_output in # With xlf replace commas with spaces, # and remove "-link" and closing parenthesis. *xlfentry*) ac_f77_v_output=`echo $ac_f77_v_output | sed ' s/,/ /g s/ -link / /g s/) *$// ' ` ;; # With Intel ifc, ignore the quoted -mGLOB_options_string stuff (quoted # $LIBS confuse us, and the libraries appear later in the output anyway). *mGLOB_options_string*) ac_f77_v_output=`echo $ac_f77_v_output | sed 's/"-mGLOB[^"]*"/ /g'` ;; # Portland Group compiler has singly- or doubly-quoted -cmdline argument # Singly-quoted arguments were reported for versions 5.2-4 and 6.0-4. # Doubly-quoted arguments were reported for "PGF90/x86 Linux/x86 5.0-2". *-cmdline\ * | *-ignore\ * | *-def\ *) ac_f77_v_output=`echo $ac_f77_v_output | sed "\ s/-cmdline *'[^']*'/ /g; s/-cmdline *\"[^\"]*\"/ /g s/-ignore *'[^']*'/ /g; s/-ignore *\"[^\"]*\"/ /g s/-def *'[^']*'/ /g; s/-def *\"[^\"]*\"/ /g"` ;; # If we are using fort77 (the f2c wrapper) then filter output and delete quotes. *fort77*f2c*gcc*) ac_f77_v_output=`echo "$ac_f77_v_output" | sed -n ' /:[ ]\+Running[ ]\{1,\}"gcc"/{ /"-c"/d /[.]c"*/d s/^.*"gcc"/"gcc"/ s/"//gp }'` ;; # If we are using Cray Fortran then delete quotes. *cft90*) ac_f77_v_output=`echo $ac_f77_v_output | sed 's/"//g'` ;; esac # look for -l* and *.a constructs in the output for ac_arg in $ac_f77_v_output; do case $ac_arg in [\\/]*.a | ?:[\\/]*.a | -[lLRu]*) ac_cv_prog_f77_v=$ac_verb break 2 ;; esac done done if test -z "$ac_cv_prog_f77_v"; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cannot determine how to obtain linking information from $F77" >&5 $as_echo "$as_me: WARNING: cannot determine how to obtain linking information from $F77" >&2;} fi else { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: compilation failed" >&5 $as_echo "$as_me: WARNING: compilation failed" >&2;} fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_f77_v" >&5 $as_echo "$ac_cv_prog_f77_v" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking for Fortran 77 libraries of $F77" >&5 $as_echo_n "checking for Fortran 77 libraries of $F77... " >&6; } if ${ac_cv_f77_libs+:} false; then : $as_echo_n "(cached) " >&6 else if test "x$FLIBS" != "x"; then ac_cv_f77_libs="$FLIBS" # Let the user override the test. else cat > conftest.$ac_ext <<_ACEOF program main end _ACEOF # Compile and link our simple test program by passing a flag (argument # 1 to this macro) to the Fortran compiler in order to get # "verbose" output that we can then parse for the Fortran linker # flags. ac_save_FFLAGS=$FFLAGS FFLAGS="$FFLAGS $ac_cv_prog_f77_v" eval "set x $ac_link" shift $as_echo "$as_me:${as_lineno-$LINENO}: $*" >&5 # gfortran 4.3 outputs lines setting COLLECT_GCC_OPTIONS, COMPILER_PATH, # LIBRARY_PATH; skip all such settings. ac_f77_v_output=`eval $ac_link 5>&1 2>&1 | sed '/^Driving:/d; /^Configured with:/d; '"/^[_$as_cr_Letters][_$as_cr_alnum]*=/d"` $as_echo "$ac_f77_v_output" >&5 FFLAGS=$ac_save_FFLAGS rm -rf conftest* # On HP/UX there is a line like: "LPATH is: /foo:/bar:/baz" where # /foo, /bar, and /baz are search directories for the Fortran linker. # Here, we change these into -L/foo -L/bar -L/baz (and put it first): ac_f77_v_output="`echo $ac_f77_v_output | grep 'LPATH is:' | sed 's|.*LPATH is\(: *[^ ]*\).*|\1|;s|: */| -L/|g'` $ac_f77_v_output" # FIXME: we keep getting bitten by quoted arguments; a more general fix # that detects unbalanced quotes in FLIBS should be implemented # and (ugh) tested at some point. case $ac_f77_v_output in # With xlf replace commas with spaces, # and remove "-link" and closing parenthesis. *xlfentry*) ac_f77_v_output=`echo $ac_f77_v_output | sed ' s/,/ /g s/ -link / /g s/) *$// ' ` ;; # With Intel ifc, ignore the quoted -mGLOB_options_string stuff (quoted # $LIBS confuse us, and the libraries appear later in the output anyway). *mGLOB_options_string*) ac_f77_v_output=`echo $ac_f77_v_output | sed 's/"-mGLOB[^"]*"/ /g'` ;; # Portland Group compiler has singly- or doubly-quoted -cmdline argument # Singly-quoted arguments were reported for versions 5.2-4 and 6.0-4. # Doubly-quoted arguments were reported for "PGF90/x86 Linux/x86 5.0-2". *-cmdline\ * | *-ignore\ * | *-def\ *) ac_f77_v_output=`echo $ac_f77_v_output | sed "\ s/-cmdline *'[^']*'/ /g; s/-cmdline *\"[^\"]*\"/ /g s/-ignore *'[^']*'/ /g; s/-ignore *\"[^\"]*\"/ /g s/-def *'[^']*'/ /g; s/-def *\"[^\"]*\"/ /g"` ;; # If we are using fort77 (the f2c wrapper) then filter output and delete quotes. *fort77*f2c*gcc*) ac_f77_v_output=`echo "$ac_f77_v_output" | sed -n ' /:[ ]\+Running[ ]\{1,\}"gcc"/{ /"-c"/d /[.]c"*/d s/^.*"gcc"/"gcc"/ s/"//gp }'` ;; # If we are using Cray Fortran then delete quotes. *cft90*) ac_f77_v_output=`echo $ac_f77_v_output | sed 's/"//g'` ;; esac ac_cv_f77_libs= # Save positional arguments (if any) ac_save_positional="$@" set X $ac_f77_v_output while test $# != 1; do shift ac_arg=$1 case $ac_arg in [\\/]*.a | ?:[\\/]*.a) ac_exists=false for ac_i in $ac_cv_f77_libs; do if test x"$ac_arg" = x"$ac_i"; then ac_exists=true break fi done if test x"$ac_exists" = xtrue; then : else ac_cv_f77_libs="$ac_cv_f77_libs $ac_arg" fi ;; -bI:*) ac_exists=false for ac_i in $ac_cv_f77_libs; do if test x"$ac_arg" = x"$ac_i"; then ac_exists=true break fi done if test x"$ac_exists" = xtrue; then : else if test "$ac_compiler_gnu" = yes; then for ac_link_opt in $ac_arg; do ac_cv_f77_libs="$ac_cv_f77_libs -Xlinker $ac_link_opt" done else ac_cv_f77_libs="$ac_cv_f77_libs $ac_arg" fi fi ;; # Ignore these flags. -lang* | -lcrt*.o | -lc | -lgcc* | -lSystem | -libmil | -little \ |-LANG:=* | -LIST:* | -LNO:* | -link) ;; -lkernel32) case $host_os in *cygwin*) ;; *) ac_cv_f77_libs="$ac_cv_f77_libs $ac_arg" ;; esac ;; -[LRuYz]) # These flags, when seen by themselves, take an argument. # We remove the space between option and argument and re-iterate # unless we find an empty arg or a new option (starting with -) case $2 in "" | -*);; *) ac_arg="$ac_arg$2" shift; shift set X $ac_arg "$@" ;; esac ;; -YP,*) for ac_j in `$as_echo "$ac_arg" | sed -e 's/-YP,/-L/;s/:/ -L/g'`; do ac_exists=false for ac_i in $ac_cv_f77_libs; do if test x"$ac_j" = x"$ac_i"; then ac_exists=true break fi done if test x"$ac_exists" = xtrue; then : else ac_arg="$ac_arg $ac_j" ac_cv_f77_libs="$ac_cv_f77_libs $ac_j" fi done ;; -[lLR]*) ac_exists=false for ac_i in $ac_cv_f77_libs; do if test x"$ac_arg" = x"$ac_i"; then ac_exists=true break fi done if test x"$ac_exists" = xtrue; then : else ac_cv_f77_libs="$ac_cv_f77_libs $ac_arg" fi ;; -zallextract*| -zdefaultextract) ac_cv_f77_libs="$ac_cv_f77_libs $ac_arg" ;; # Ignore everything else. esac done # restore positional arguments set X $ac_save_positional; shift # We only consider "LD_RUN_PATH" on Solaris systems. If this is seen, # then we insist that the "run path" must be an absolute path (i.e. it # must begin with a "/"). case `(uname -sr) 2>/dev/null` in "SunOS 5"*) ac_ld_run_path=`$as_echo "$ac_f77_v_output" | sed -n 's,^.*LD_RUN_PATH *= *\(/[^ ]*\).*$,-R\1,p'` test "x$ac_ld_run_path" != x && if test "$ac_compiler_gnu" = yes; then for ac_link_opt in $ac_ld_run_path; do ac_cv_f77_libs="$ac_cv_f77_libs -Xlinker $ac_link_opt" done else ac_cv_f77_libs="$ac_cv_f77_libs $ac_ld_run_path" fi ;; esac fi # test "x$[]_AC_LANG_PREFIX[]LIBS" = "x" fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_f77_libs" >&5 $as_echo "$ac_cv_f77_libs" >&6; } FLIBS="$ac_cv_f77_libs" ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_ext=f ac_compile='$F77 -c $FFLAGS conftest.$ac_ext >&5' ac_link='$F77 -o conftest$ac_exeext $FFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_f77_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dummy main to link with Fortran 77 libraries" >&5 $as_echo_n "checking for dummy main to link with Fortran 77 libraries... " >&6; } if ${ac_cv_f77_dummy_main+:} false; then : $as_echo_n "(cached) " >&6 else ac_f77_dm_save_LIBS=$LIBS LIBS="$LIBS $FLIBS" ac_fortran_dm_var=F77_DUMMY_MAIN ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu # First, try linking without a dummy main: cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef F77_DUMMY_MAIN # ifdef __cplusplus extern "C" # endif int F77_DUMMY_MAIN() { return 1; } #endif int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_fortran_dummy_main=none else ac_cv_fortran_dummy_main=unknown fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext if test $ac_cv_fortran_dummy_main = unknown; then for ac_func in MAIN__ MAIN_ __main MAIN _MAIN __MAIN main_ main__ _main; do cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #define $ac_fortran_dm_var $ac_func #ifdef F77_DUMMY_MAIN # ifdef __cplusplus extern "C" # endif int F77_DUMMY_MAIN() { return 1; } #endif int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_fortran_dummy_main=$ac_func; break fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext done fi ac_ext=f ac_compile='$F77 -c $FFLAGS conftest.$ac_ext >&5' ac_link='$F77 -o conftest$ac_exeext $FFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_f77_compiler_gnu ac_cv_f77_dummy_main=$ac_cv_fortran_dummy_main rm -rf conftest* LIBS=$ac_f77_dm_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_f77_dummy_main" >&5 $as_echo "$ac_cv_f77_dummy_main" >&6; } F77_DUMMY_MAIN=$ac_cv_f77_dummy_main if test "$F77_DUMMY_MAIN" != unknown; then : if test $F77_DUMMY_MAIN != none; then cat >>confdefs.h <<_ACEOF #define F77_DUMMY_MAIN $F77_DUMMY_MAIN _ACEOF if test "x$ac_cv_fc_dummy_main" = "x$ac_cv_f77_dummy_main"; then $as_echo "#define FC_DUMMY_MAIN_EQ_F77 1" >>confdefs.h fi fi else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "linking to Fortran libraries from C fails See \`config.log' for more details" "$LINENO" 5; } fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_ext=f ac_compile='$F77 -c $FFLAGS conftest.$ac_ext >&5' ac_link='$F77 -o conftest$ac_exeext $FFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_f77_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for Fortran 77 name-mangling scheme" >&5 $as_echo_n "checking for Fortran 77 name-mangling scheme... " >&6; } if ${ac_cv_f77_mangling+:} false; then : $as_echo_n "(cached) " >&6 else cat > conftest.$ac_ext <<_ACEOF subroutine foobar() return end subroutine foo_bar() return end _ACEOF if ac_fn_f77_try_compile "$LINENO"; then : mv conftest.$ac_objext cfortran_test.$ac_objext ac_save_LIBS=$LIBS LIBS="cfortran_test.$ac_objext $LIBS $FLIBS" ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_success=no for ac_foobar in foobar FOOBAR; do for ac_underscore in "" "_"; do ac_func="$ac_foobar$ac_underscore" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char $ac_func (); #ifdef F77_DUMMY_MAIN # ifdef __cplusplus extern "C" # endif int F77_DUMMY_MAIN() { return 1; } #endif int main () { return $ac_func (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_success=yes; break 2 fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext done done ac_ext=f ac_compile='$F77 -c $FFLAGS conftest.$ac_ext >&5' ac_link='$F77 -o conftest$ac_exeext $FFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_f77_compiler_gnu if test "$ac_success" = "yes"; then case $ac_foobar in foobar) ac_case=lower ac_foo_bar=foo_bar ;; FOOBAR) ac_case=upper ac_foo_bar=FOO_BAR ;; esac ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_success_extra=no for ac_extra in "" "_"; do ac_func="$ac_foo_bar$ac_underscore$ac_extra" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char $ac_func (); #ifdef F77_DUMMY_MAIN # ifdef __cplusplus extern "C" # endif int F77_DUMMY_MAIN() { return 1; } #endif int main () { return $ac_func (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_success_extra=yes; break fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext done ac_ext=f ac_compile='$F77 -c $FFLAGS conftest.$ac_ext >&5' ac_link='$F77 -o conftest$ac_exeext $FFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_f77_compiler_gnu if test "$ac_success_extra" = "yes"; then ac_cv_f77_mangling="$ac_case case" if test -z "$ac_underscore"; then ac_cv_f77_mangling="$ac_cv_f77_mangling, no underscore" else ac_cv_f77_mangling="$ac_cv_f77_mangling, underscore" fi if test -z "$ac_extra"; then ac_cv_f77_mangling="$ac_cv_f77_mangling, no extra underscore" else ac_cv_f77_mangling="$ac_cv_f77_mangling, extra underscore" fi else ac_cv_f77_mangling="unknown" fi else ac_cv_f77_mangling="unknown" fi LIBS=$ac_save_LIBS rm -rf conftest* rm -f cfortran_test* else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot compile a simple Fortran program See \`config.log' for more details" "$LINENO" 5; } fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_f77_mangling" >&5 $as_echo "$ac_cv_f77_mangling" >&6; } ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_ext=f ac_compile='$F77 -c $FFLAGS conftest.$ac_ext >&5' ac_link='$F77 -o conftest$ac_exeext $FFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_f77_compiler_gnu case $ac_cv_f77_mangling in "lower case, no underscore, no extra underscore") $as_echo "#define F77_FUNC(name,NAME) name" >>confdefs.h $as_echo "#define F77_FUNC_(name,NAME) name" >>confdefs.h ;; "lower case, no underscore, extra underscore") $as_echo "#define F77_FUNC(name,NAME) name" >>confdefs.h $as_echo "#define F77_FUNC_(name,NAME) name ## _" >>confdefs.h ;; "lower case, underscore, no extra underscore") $as_echo "#define F77_FUNC(name,NAME) name ## _" >>confdefs.h $as_echo "#define F77_FUNC_(name,NAME) name ## _" >>confdefs.h ;; "lower case, underscore, extra underscore") $as_echo "#define F77_FUNC(name,NAME) name ## _" >>confdefs.h $as_echo "#define F77_FUNC_(name,NAME) name ## __" >>confdefs.h ;; "upper case, no underscore, no extra underscore") $as_echo "#define F77_FUNC(name,NAME) NAME" >>confdefs.h $as_echo "#define F77_FUNC_(name,NAME) NAME" >>confdefs.h ;; "upper case, no underscore, extra underscore") $as_echo "#define F77_FUNC(name,NAME) NAME" >>confdefs.h $as_echo "#define F77_FUNC_(name,NAME) NAME ## _" >>confdefs.h ;; "upper case, underscore, no extra underscore") $as_echo "#define F77_FUNC(name,NAME) NAME ## _" >>confdefs.h $as_echo "#define F77_FUNC_(name,NAME) NAME ## _" >>confdefs.h ;; "upper case, underscore, extra underscore") $as_echo "#define F77_FUNC(name,NAME) NAME ## _" >>confdefs.h $as_echo "#define F77_FUNC_(name,NAME) NAME ## __" >>confdefs.h ;; *) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unknown Fortran name-mangling scheme" >&5 $as_echo "$as_me: WARNING: unknown Fortran name-mangling scheme" >&2;} ;; esac ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu fi ac_ext=f ac_compile='$F77 -c $FFLAGS conftest.$ac_ext >&5' ac_link='$F77 -o conftest$ac_exeext $FFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_f77_compiler_gnu F77=$f90 # use Fortran 90 actually # Search for libraries # Flags for needed libraries have_blas=0 have_lapack=0 have_fft=0 have_mpi=0 have_scalapack=0 # Flags for machine-specific libraries have_acml=0 have_atlas=0 have_essl=0 have_mkl=0 # check for blas # supported vendor replacements: # mkl and acml on Intel/AMD architectures # essl on aix # SUNperf on sparc # atlas is used over blas if available # internal version is used if none is found if test "$use_internal_blas" -eq 0 then if test "$blas_libs" = "" then # check directories in LD_LIBRARY_PATH too # (maybe they are already searched by default, but I'm not sure) ld_library_path=`echo $LD_LIBRARY_PATH | sed 's/:/ /g'` case "$arch:$f90" in x86_64:pgf* | x86_64:path* | x86_64:openf95 | crayxt*:* ) # check for acml - note that it contains lapack as well try_libdirs="/opt/acml*/pathscale64/lib/" try_libdirs="$ld_library_path $libdirs $try_libdirs" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" if test "$use_openmp" -eq 0; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' acml; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_lapack=1 have_acml=1 blas_libs="$try_loption $LIBS" fi else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' acml_mp; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_lapack=1 have_acml=1 blas_libs="$try_loption $LIBS" fi fi if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; ia64:* ) # check for mkl (in several directories) try_libdirs="/opt/intel/Compiler/*/*/mkl/lib/64 /opt/intel/mkl/*/lib/64 /opt/intel/mkl*/lib/64 /opt/intel/mkl/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption=" " else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$MKL_FLAGS $test_ldflags $try_loption" LIBS="$MKL_LIBS" # # should work for recent MKL versions only # if test "$use_openmp" -eq 0; then if test "$f90" = "g95" -o "$f90" = "gfortran" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_gf_ipf; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_sequential -lmkl_core $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_intel_ipf; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_sequential -lmkl_core $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi fi else if test "$f90" = "g95" -o"$f90" = "gfortran"; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_gf_ipf; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_sequential -lmkl_core $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_gnu_thread -lmkl_core" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_intel_ipf; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_sequential -lmkl_core $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_intel_thread -lmkl_core" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi fi fi if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; *:sunf95 ) # check for acml - note that it contains lapack as well if test "$arch" = "x86_64" then try_libdirs="/usr/local/sunstudio*/lib/amd64/" else try_libdirs="/usr/local/sunstudio*/lib/" fi try_libdirs="$libdirs $ld_library_path $try_libdirs" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' sunperf; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_lapack=1 blas_libs="$try_loption $LIBS" fi if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; x86_64:* ) try_libdirs="/opt/intel/composer*/mkl/lib/intel64 /opt/intel/Compiler/*/*/mkl/lib/em64t /opt/intel/mkl/*/lib/em64t /opt/intel/mkl*/lib/em64t /opt/intel/mkl/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption=" " else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$MKL_FLAGS $test_ldflags $try_loption" LIBS="$MKL_LIBS" # # should work for recent MKL versions only # if test "$use_openmp" -eq 0; then if test "$f90" = "g95" -o "$f90" = "gfortran" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_gf_lp64; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_sequential -lmkl_core $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_intel_lp64; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_sequential -lmkl_core $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi fi else if test "$f90" = "g95" -o "$f90" = "gfortran" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_gf_lp64; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_sequential -lmkl_core $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_gnu_thread -lmkl_core" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_intel_lp64; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_sequential -lmkl_core $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_intel_thread -lmkl_core" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi fi fi if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; ia32:* ) # check for mkl (in several directories) try_libdirs="/opt/intel/composer*/mkl/lib/ia32 /opt/intel/Compiler/*/*/mkl/lib/32 /opt/intel/mkl/*/lib/32 /opt/intel/mkl*/lib/32 /opt/intel/mkl/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption="-L " else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$MKL_FLAGS $test_ldflags $try_loption" LIBS="$MKL_LIBS" # # should work for recent MKL versions only # if test "$use_openmp" -eq 0; then if test "$f90" = "g95" -o "$f90" = "gfortran"; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_gf; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_sequential -lmkl_core $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_intel; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_sequential -lmkl_core $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi fi else if test "$f90" = "g95" -o "$f90" = "gfortran" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_gf; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_sequential -lmkl_core $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_gnu_thread -lmkl_core" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_intel; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_sequential -lmkl_core $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_intel_thread -lmkl_core" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi fi fi if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; aix:* ) # check for essl unset ac_cv_search_dgemm # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' essl; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 blas_libs="$LIBS" fi # notice that some IBM machines may not need -lessl # to load blas so the above test may fail if test "`echo $blas_libs | grep essl`" != "" then have_essl=1 try_dflags="$try_dflags -D__ESSL" fi # we need esslsmp for hybrid (MPI+OpenMP) build if test "$have_essl"="1"; then if test "$use_openmp" -ne 0 ; then blas_libs="-lesslsmp" fi fi ;; sparc:* | solaris:* ) # check for SUNperf library unset ac_cv_search_dgemm # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' sunperf; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_lapack=1 blas_libs="-xlic_lib=sunperf $LIBS" fi ;; necsx:* ) #sx5-nec or sx6-nec or sx8-nec: check in (/SX)/usr/lib #sx8-nec-idris: check in /SX/opt/mathkeisan/inst/lib0 try_libdirs="/SX/usr/lib /SX/opt/mathkeisan/inst/lib0" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' blas; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 blas_libs="$try_loption $LIBS" fi if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; ppc64:* ) # check for essl unset ac_cv_search_dgemm # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' essl; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 blas_libs="$LIBS" fi # notice that some IBM machines may not need -lessl # to load blas so the above test may fail if test "`echo $blas_libs | grep essl`" != "" then have_essl=1 try_dflags="$try_dflags -D__LINUX_ESSL" fi # OBM:Yet another work-around if the above search # returns "none required" if test "$ac_cv_search_dgemm" = "none required" then echo "There is no need for -lessl in this machine" have_essl=1 try_dflags="$try_dflags -D__LINUX_ESSL" fi # we need esslsmp for hybrid (MPI+OpenMP) build if test "$have_essl"="1"; then if test "$use_openmp" -ne 0 ; then blas_libs="-lesslsmp" fi fi ;; ppc64-*:* ) # assume essl unset ac_cv_search_dgemm # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" have_blas=1 have_essl=1 # BlueGene: for some obscure reason there is no need to # specify a library path to have essl linked, while # in reality it is needed to specify where essl are if test "$arch"="ppc64-bg"; then try_dflags="$try_dflags -D__LINUX_ESSL" if test "$blas_libs"=""; then if test "$use_openmp" -eq 0 ; then blas_libs="-L/opt/ibmmath/essl/4.4/lib/ -lesslbg" else blas_libs="-L/opt/ibmmath/essl/4.4/lib/ -lesslsmpbg" fi fi else try_dflags="$try_dflags -D__LINUX_ESSL" fi ;; mac686:ifort* ) #This solution is tested with MacOs 10.6 and Intel 11.1 #..and now MacOs 10.8.3 and Intel 13 try_libdirs="/Developer/opt/intel/Compiler/*/*/Frameworks/mkl/lib/universal /opt/intel/Compiler/*/*/Frameworks/mkl/lib/universal /opt/intel/mkl*/lib/em64t /opt/intel/mkl/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption="" else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$MKL_FLAGS $test_ldflags $try_loption" LIBS="$MKL_LIBS" # First, a by-the-apple-book search of MKL... >10.2 requires multiple libraries # 64 bit is buggy as of 11.1.088 if test "$use_openmp" -eq 0; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_intel; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_sequential -lmkl_core -lpthread $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_sequential -lmkl_core -lpthread" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' mkl_intel; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmkl_intel_thread -lmkl_core -openmp -lpthread $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_mkl=1 blas_libs="$try_loption $LIBS -lmkl_intel_thread -lmkl_core -openmp -lpthread" ldflags="$MKL_FLAGS $ldflags" else echo "MKL not found" fi fi # 32 bit if test "$ac_cv_search_dgemm" != "no" then break ; fi done ;; esac # blas not (yet) found: look for more possibilities if test "$have_blas" -eq 0 then case "$f90" in pgf* ) # check for PGI blas unset ac_cv_search_dgemm # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' blas; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 blas_libs="$LIBS" fi ;; esac fi if test "$have_blas" -eq 0 then # check for atlas (in several directories) try_libdirs="/usr/local/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="-latlas" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' f77blas; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lg2c $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 have_atlas=1 blas_libs="$try_loption $LIBS" fi if test "$ac_cv_search_dgemm" != "no" then break ; fi done fi # blas still not found if test "$have_blas" -eq 0 then # check for blas (in several directories) try_libdirs="/usr/local/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dgemm # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dgemm" >&5 $as_echo_n "checking for library containing dgemm... " >&6; } if ${ac_cv_search_dgemm+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dgemm end _ACEOF for ac_lib in '' blas-3 openblas blas; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dgemm=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dgemm+:} false; then : break fi done if ${ac_cv_search_dgemm+:} false; then : else ac_cv_search_dgemm=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dgemm" >&5 $as_echo "$ac_cv_search_dgemm" >&6; } ac_res=$ac_cv_search_dgemm if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_blas=1 blas_libs="$try_loption $LIBS" fi if test "$ac_cv_search_dgemm" != "no" then break ; fi done fi else # blas provided in BLAS_LIBS - not checked! have_blas=1 fi fi # check for lapack # # same supported vendor replacements as for blas # internal version is used if none is found if test "$use_internal_lapack" -eq 0 then if test "$lapack_libs" = "" then # check directories in LD_LIBRARY_PATH too # (maybe they are already searched by default, but I'm not sure) ld_library_path=`echo $LD_LIBRARY_PATH | sed 's/:/ /g'` case "$arch:$f90" in ia32:* | ia64:*| x86_64:* ) # check for mkl_lapack (if mkl found and acml not found) # OBSOLESCENT - recent versions of mkl contain lapack if test "$have_mkl" -ne 0 && test "$have_acml" -eq 0 then unset ac_cv_search_dspev ac_lib # clear cached value FFLAGS="$test_fflags" LIBS=" $blas_libs" LDFLAGS="$MKL_FLAGS $test_ldflags" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dspev" >&5 $as_echo_n "checking for library containing dspev... " >&6; } if ${ac_cv_search_dspev+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dspev end _ACEOF for ac_lib in '' mkl_lapack; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dspev=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dspev+:} false; then : break fi done if ${ac_cv_search_dspev+:} false; then : else ac_cv_search_dspev=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dspev" >&5 $as_echo "$ac_cv_search_dspev" >&6; } ac_res=$ac_cv_search_dspev if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_lapack=1 fi if test "$ac_lib" != "" ; then lapack_libs="-l$ac_lib"; fi fi ;; sparc:* ) # check for SUNperf library unset ac_cv_search_dspev # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$blas_libs" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dspev" >&5 $as_echo_n "checking for library containing dspev... " >&6; } if ${ac_cv_search_dspev+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dspev end _ACEOF for ac_lib in '' sunperf; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dspev=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dspev+:} false; then : break fi done if ${ac_cv_search_dspev+:} false; then : else ac_cv_search_dspev=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dspev" >&5 $as_echo "$ac_cv_search_dspev" >&6; } ac_res=$ac_cv_search_dspev if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_lapack=1 lapack_libs="-xlic_lib=sunperf $LIBS" fi ;; aix:* ) # check for essl unset ac_cv_search_dspev # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$blas_libs" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dspev" >&5 $as_echo_n "checking for library containing dspev... " >&6; } if ${ac_cv_search_dspev+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dspev end _ACEOF for ac_lib in '' essl; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dspev=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dspev+:} false; then : break fi done if ${ac_cv_search_dspev+:} false; then : else ac_cv_search_dspev=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dspev" >&5 $as_echo "$ac_cv_search_dspev" >&6; } ac_res=$ac_cv_search_dspev if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_lapack=1 lapack_libs="$try_loption $LIBS" try_dflags="$try_dflags -D__ESSL" fi # essl may not have been found in previous test on blas if test "$have_lapack" -eq 1; then have_essl=1; fi ;; ppc64:* ) # check for essl unset ac_cv_search_dspev # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$blas_libs" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dspev" >&5 $as_echo_n "checking for library containing dspev... " >&6; } if ${ac_cv_search_dspev+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dspev end _ACEOF for ac_lib in '' essl; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dspev=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dspev+:} false; then : break fi done if ${ac_cv_search_dspev+:} false; then : else ac_cv_search_dspev=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dspev" >&5 $as_echo "$ac_cv_search_dspev" >&6; } ac_res=$ac_cv_search_dspev if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_lapack=1 lapack_libs="$try_loption $LIBS" try_dflags="$try_dflags -D__LINUX_ESSL" fi # essl may not have been found in previous test on blas if test "$have_lapack" -eq 1; then have_essl=1; fi ;; necsx:* ) #sx5-nec or sx6-nec or sx8-nec: check in (/SX)/usr/lib #sx8-nec-idris: check in /SX/opt/mathkeisan/inst/lib0 try_libdirs="/SX/usr/lib /SX/opt/mathkeisan/inst/lib0" for dir in none $try_libdirs do unset ac_cv_search_dspev # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption $blas_libs" LIBS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dspev" >&5 $as_echo_n "checking for library containing dspev... " >&6; } if ${ac_cv_search_dspev+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dspev end _ACEOF for ac_lib in '' lapack; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dspev=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dspev+:} false; then : break fi done if ${ac_cv_search_dspev+:} false; then : else ac_cv_search_dspev=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dspev" >&5 $as_echo "$ac_cv_search_dspev" >&6; } ac_res=$ac_cv_search_dspev if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_lapack=1 lapack_libs="$try_loption $LIBS" fi if test "$ac_cv_search_dspev" != "no" then break ; fi done ;; esac if test "$have_lapack" -eq 0 then # check for lapack (in several directories) try_libdirs="/usr/local/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dspev # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="$blas_libs" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dspev" >&5 $as_echo_n "checking for library containing dspev... " >&6; } if ${ac_cv_search_dspev+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dspev end _ACEOF for ac_lib in '' lapack-3 lapack; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dspev=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dspev+:} false; then : break fi done if ${ac_cv_search_dspev+:} false; then : else ac_cv_search_dspev=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dspev" >&5 $as_echo "$ac_cv_search_dspev" >&6; } ac_res=$ac_cv_search_dspev if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_lapack=1 lapack_libs="$try_loption $LIBS" fi if test "$ac_cv_search_dspev" != "no"; then # essl must precede lapack (if present) if test "$have_essl" -ne 0 ; then lapack_libs="$blas_libs $lapack_libs" fi break fi done fi else # lapack provided in LAPACK_LIBS - not checked! have_lapack=1 fi fi # no blas library found, or internal blas required: use the built-in blas # (blas_libs is used in the above lapack tests: do not move the following # settings above lapack tests, which would seem a more logical place) if test "$have_blas" -eq 0 -o "$use_internal_blas" -eq 1 ; then blas_libs="$topdir/BLAS/blas.a" blas_libs_switch="internal" else blas_libs_switch="external" fi # no lapack library found, or incomplete lapack found (atlas, essl), # or internal lapack esplicitly required if test "$have_lapack" -eq 0 -o "$use_internal_lapack" -eq 1 ; then lapack_libs="$topdir/lapack-3.2/lapack.a" lapack_libs_switch="internal" else if test "$have_essl" -eq 1 -o "$have_atlas" -eq 1 ; then # IBM essl or atlas: add missing lapack routines - must be loaded after lib # atlas: add missing lapack routines so as to complete atlas # note that some compilers do not like to have multiple symbols lapack_libs="$lapack_libs $topdir/lapack-3.2/lapack.a" lapack_libs_switch="internal" else lapack_libs_switch="external" fi fi echo setting BLAS_LIBS... $blas_libs echo setting LAPACK_LIBS... $lapack_libs # check for FFT libraries (no check for explicit openmp) # supported vendor replacements: # essl on aix and some IBM linux machines # SUNperf on sparc # ASL/Mathkeisan on Nec # acml on amd if test "$fft_libs" = "" && test "$use_openmp" -eq 0 then # check directories in LD_LIBRARY_PATH too # (maybe they are already searched by default, but I'm not sure) ld_library_path=`echo $LD_LIBRARY_PATH | sed 's/:/ /g'` case "$arch" in aix ) # check for essl unset ac_cv_search_dcft # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$fft_libs" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dcft" >&5 $as_echo_n "checking for library containing dcft... " >&6; } if ${ac_cv_search_dcft+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dcft end _ACEOF for ac_lib in '' essl; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dcft=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dcft+:} false; then : break fi done if ${ac_cv_search_dcft+:} false; then : else ac_cv_search_dcft=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dcft" >&5 $as_echo "$ac_cv_search_dcft" >&6; } ac_res=$ac_cv_search_dcft if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_fft=1 fft_libs="$LIBS" fi ;; ppc64 | ppc64-mn ) # check for essl unset ac_cv_search_dcft # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$fft_libs" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dcft" >&5 $as_echo_n "checking for library containing dcft... " >&6; } if ${ac_cv_search_dcft+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dcft end _ACEOF for ac_lib in '' essl; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dcft=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dcft+:} false; then : break fi done if ${ac_cv_search_dcft+:} false; then : else ac_cv_search_dcft=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dcft" >&5 $as_echo "$ac_cv_search_dcft" >&6; } ac_res=$ac_cv_search_dcft if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_fft=1 fft_libs="$LIBS" fi ;; ppc64-bg | ppc64-bgq ) # check for esslbg unset ac_cv_search_dcft # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$fft_libs $blas_libs" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dcft" >&5 $as_echo_n "checking for library containing dcft... " >&6; } if ${ac_cv_search_dcft+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dcft end _ACEOF for ac_lib in '' esslbg; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dcft=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dcft+:} false; then : break fi done if ${ac_cv_search_dcft+:} false; then : else ac_cv_search_dcft=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dcft" >&5 $as_echo "$ac_cv_search_dcft" >&6; } ac_res=$ac_cv_search_dcft if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_fft=1 fft_libs="$LIBS" fi ;; sparc ) # check for SUNperf FFT library on Sun Sparcs # but not on solaris PC! it is slower than FFTW unset ac_cv_search_zfft3i # clear cached value FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" LIBS="$libs" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing zfft3i" >&5 $as_echo_n "checking for library containing zfft3i... " >&6; } if ${ac_cv_search_zfft3i+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call zfft3i end _ACEOF for ac_lib in '' sunperf; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_zfft3i=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_zfft3i+:} false; then : break fi done if ${ac_cv_search_zfft3i+:} false; then : else ac_cv_search_zfft3i=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_zfft3i" >&5 $as_echo "$ac_cv_search_zfft3i" >&6; } ac_res=$ac_cv_search_zfft3i if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_fft=1 try_dflags="$try_dflags -D__SUNPERF" fft_libs="-xlic_lib=sunperf $LIBS" fi ;; necsx ) if test "$use_fft_mathkeisan" -ne 0 then #sx5-nec or sx6-nec or sx8-nec: check in (/SX)/usr/lib #sx8-nec-idris: check in /SX/opt/mathkeisan/inst/lib0 try_libdirs="/SX/usr/lib /SX/opt/mathkeisan/inst/lib0" #check for Mathkeisan (Cray simple precision ) #search for initialization subroutine echo $ECHO_N "Searching in Mathkeisan" $ECHO_C for dir in none $try_libdirs do unset ac_cv_search_zftfax # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing zftfax" >&5 $as_echo_n "checking for library containing zftfax... " >&6; } if ${ac_cv_search_zftfax+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call zftfax end _ACEOF for ac_lib in '' fft; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_zftfax=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_zftfax+:} false; then : break fi done if ${ac_cv_search_zftfax+:} false; then : else ac_cv_search_zftfax=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_zftfax" >&5 $as_echo "$ac_cv_search_zftfax" >&6; } ac_res=$ac_cv_search_zftfax if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_fft=1 try_dflags="$try_dflags try_dflags_fft_mathkeisan" fft_libs="$try_loption $LIBS" fi if test "$ac_cv_search_zftfax" != "no" then break ; fi done fi if test "$use_fft_asl" -ne 0 then #check for asl in (/SX)/usr/lib try_libdirs="/SX/usr/lib" #search for initialization subroutine echo $ECHO_N "Searching in Asl" $ECHO_C for dir in none $try_libdirs do unset ac_cv_search_zfc3cl # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing zfc3cl" >&5 $as_echo_n "checking for library containing zfc3cl... " >&6; } if ${ac_cv_search_zfc3cl+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call zfc3cl end _ACEOF for ac_lib in '' asl; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_zfc3cl=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_zfc3cl+:} false; then : break fi done if ${ac_cv_search_zfc3cl+:} false; then : else ac_cv_search_zfc3cl=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_zfc3cl" >&5 $as_echo "$ac_cv_search_zfc3cl" >&6; } ac_res=$ac_cv_search_zfc3cl if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_fft=1 asl_libs="$try_loption $LIBS" try_dflags="$try_dflags $try_dflags_fft_asl" fft_libs="$fft_libs $asl_libs" fi if test "$ac_cv_search_zfc3cl" != "no" then break ; fi done fi if test "$use_fft_para" -ne 0 then try_dflags="$try_dflags $try_dflags_fft_para" fi ;; esac fi if test "$have_fft" -eq 0 && test "$use_openmp" -eq 0 then # check for fftw v.3 (in several directories) try_libdirs="/usr/local/lib" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_dfftw_execute_dft # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi CFLAGS="$test_cflags" CPPFLAGS="$test_cppflags" LDFLAGS="$c_ldflags $try_loption" LIBS="$fft_libs" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing dfftw_execute_dft" >&5 $as_echo_n "checking for library containing dfftw_execute_dft... " >&6; } if ${ac_cv_search_dfftw_execute_dft+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call dfftw_execute_dft end _ACEOF for ac_lib in '' fftw3; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lm $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_dfftw_execute_dft=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_dfftw_execute_dft+:} false; then : break fi done if ${ac_cv_search_dfftw_execute_dft+:} false; then : else ac_cv_search_dfftw_execute_dft=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_dfftw_execute_dft" >&5 $as_echo "$ac_cv_search_dfftw_execute_dft" >&6; } ac_res=$ac_cv_search_dfftw_execute_dft if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_fft=1 fft_libs="$try_loption $LIBS" fi if test "$ac_cv_search_dfftw_execute_dft" != "no" then try_dflags="$try_dflags -D__FFTW3" break fi done fi echo setting FFT_LIBS... $fft_libs # if no valid FFT library was found, use the local copy # (This happens also if OpenMP is enabled...) if test "$have_fft" -eq 0 then case "$arch" in ppc64-bg | ppc64-bgq ) try_dflags="$try_dflags -D__LINUX_ESSL" ;; * ) try_dflags="$try_dflags -D__FFTW" ;; esac fi F77=$f90 FFLAGS="$test_fflags" LDFLAGS="$test_ldflags" # check for mass on aix if test "$mass_libs" = "" then # check directories in LD_LIBRARY_PATH too # (maybe they are already searched by default, but I'm not sure) ld_library_path=`echo $LD_LIBRARY_PATH | sed 's/:/ /g'` case "$arch" in aix | ppc64-bg ) # check for mass (in several directories) try_libdirs="/opt/ibmcmp/xlmass/bg/7.3/bglib64 /opt/ibmcmp/xlmass/bg/4.4/bglib /cineca/lib /cineca/lib/mass" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_vexp # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing vexp" >&5 $as_echo_n "checking for library containing vexp... " >&6; } if ${ac_cv_search_vexp+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call vexp end _ACEOF for ac_lib in '' massvp4 massv; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmass $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_vexp=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_vexp+:} false; then : break fi done if ${ac_cv_search_vexp+:} false; then : else ac_cv_search_vexp=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_vexp" >&5 $as_echo "$ac_cv_search_vexp" >&6; } ac_res=$ac_cv_search_vexp if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" fi if test "$ac_cv_search_vexp" = "-lmassvp4" \ -o "$ac_cv_search_vexp" = "-lmassv" then mass_libs="$try_loption $ac_cv_search_vexp -lmass" fi if test "$ac_cv_search_vexp" != "no" ; then break ; fi done ;; ppc64-bgq ) # check for mass (in several directories) try_libdirs="/opt/ibmcmp/xlmass/bg/7.3/bglib64" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_vexp # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing vexp" >&5 $as_echo_n "checking for library containing vexp... " >&6; } if ${ac_cv_search_vexp+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call vexp end _ACEOF for ac_lib in '' massv; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmass_simd $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_vexp=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_vexp+:} false; then : break fi done if ${ac_cv_search_vexp+:} false; then : else ac_cv_search_vexp=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_vexp" >&5 $as_echo "$ac_cv_search_vexp" >&6; } ac_res=$ac_cv_search_vexp if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" fi if test "$ac_cv_search_vexp" = "-lmassv" then mass_libs="$try_loption $ac_cv_search_vexp -lmass_simd" fi if test "$ac_cv_search_vexp" != "no" ; then break ; fi done ;; ppc64* ) # check for mass (in several directories) try_libdirs="/usr/local/lib /opt/ibmcmp/xlmass/*/lib64" try_libdirs="$libdirs $try_libdirs $ld_library_path" for dir in none $try_libdirs do unset ac_cv_search_vexp # clear cached value if test "$dir" = "none" then try_loption= else echo $ECHO_N "in $dir: " $ECHO_C try_loption="-L$dir" fi FFLAGS="$test_fflags" LDFLAGS="$test_ldflags $try_loption" LIBS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing vexp" >&5 $as_echo_n "checking for library containing vexp... " >&6; } if ${ac_cv_search_vexp+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call vexp end _ACEOF for ac_lib in '' massvp4_64; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib -lmass_64 $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_vexp=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_vexp+:} false; then : break fi done if ${ac_cv_search_vexp+:} false; then : else ac_cv_search_vexp=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_vexp" >&5 $as_echo "$ac_cv_search_vexp" >&6; } ac_res=$ac_cv_search_vexp if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" fi if test "$ac_cv_search_vexp" = "-lmassvp4_64" then mass_libs="$try_loption $ac_cv_search_vexp -lmass_64" fi if test "$ac_cv_search_vexp" != "no" ; then break ; fi done ;; esac fi if test "$mass_libs" != ""; then try_dflags="$try_dflags -D__MASS" if test "$arch" = "ppc64-bg"; then # BlueGene wants this when mass libs are loaded, SP6 doesn't want this! ldflags="$ldflags -Wl,--allow-multiple-definition" fi if test "$arch" = "ppc64-bgq"; then # BlueGene wants this when mass libs are loaded, SP6 doesn't want this! ldflags="$ldflags -Wl,--allow-multiple-definition" fi fi echo setting MASS_LIBS... $mass_libs # check for mpi # some architectures require to link mpi libraries explicitly F77=$mpif90 # use parallel compiler if test "$mpi_libs" = "" then # check directories in LD_LIBRARY_PATH too # (maybe they are already searched by default, but I'm not sure) ld_library_path=`echo $LD_LIBRARY_PATH | sed 's/:/ /g'` if test "$use_parallel" -ne 0 then if test "$have_mpi" -eq 0 # check for mpi then unset ac_cv_search_mpi_init # clear cached value LDFLAGS="$test_ldflags" LIBS="$mpi_libs" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing mpi_init" >&5 $as_echo_n "checking for library containing mpi_init... " >&6; } if ${ac_cv_search_mpi_init+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call mpi_init end _ACEOF for ac_lib in '' mpi; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_mpi_init=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_mpi_init+:} false; then : break fi done if ${ac_cv_search_mpi_init+:} false; then : else ac_cv_search_mpi_init=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_mpi_init" >&5 $as_echo "$ac_cv_search_mpi_init" >&6; } ac_res=$ac_cv_search_mpi_init if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_mpi=1 mpi_libs="$LIBS" fi fi fi fi echo setting MPI_LIBS... $mpi_libs # final check on availability of parallel environment parallel=0 for dummy in x # to allow simple 'break' do test "$use_parallel" -eq 0 && break F77=$mpif90 LIBS="$mpi_libs" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing mpi_init" >&5 $as_echo_n "checking for library containing mpi_init... " >&6; } if ${ac_cv_search_mpi_init+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call mpi_init end _ACEOF for ac_lib in '' ""; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_mpi_init=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_mpi_init+:} false; then : break fi done if ${ac_cv_search_mpi_init+:} false; then : else ac_cv_search_mpi_init=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_mpi_init" >&5 $as_echo "$ac_cv_search_mpi_init" >&6; } ac_res=$ac_cv_search_mpi_init if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" parallel=1 try_dflags="$try_dflags -D__MPI -D__PARA" fi # look for scalapack if required test "$parallel" -eq 0 && break test "$with_scalapack" -eq 0 && break if test "$scalapack_libs" = "" ; then # no additional libraries needed { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing pdgemr2d" >&5 $as_echo_n "checking for library containing pdgemr2d... " >&6; } if ${ac_cv_search_pdgemr2d+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call pdgemr2d end _ACEOF for ac_lib in '' "" ; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_pdgemr2d=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_pdgemr2d+:} false; then : break fi done if ${ac_cv_search_pdgemr2d+:} false; then : else ac_cv_search_pdgemr2d=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_pdgemr2d" >&5 $as_echo "$ac_cv_search_pdgemr2d" >&6; } ac_res=$ac_cv_search_pdgemr2d if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK" fi test "$have_scalapack" -eq 1 && break # Intel MKL blacs&scalapack - Norbert Nemec 2010/08/20 # # Carlo Cavazzoni writes # If you want to use the version of scalapack distributed with MKL # you should be careful about: # 1) the size of the integer variable when calling MKL subroutine, # QE (up to now) uses integer*4, so you should link version with # the suffix: lp64 and NOT ilp64 . # 2) you should link the appropriate blacs for your MPI library: # INTEL MPI -> libmkl_blacs_intelmpi_lp64.a # OpenMPI -> libmkl_blacs_openmpi_lp64.a # SGI MPI -> libmkl_blacs_sgimpt_lp64.a # # if you are in doubt or if you have another version of MPI # you can always build BLACS by yourself. # if test "$have_mkl" -eq 1 then unset ac_cv_search_pdgemr2d # clear cached value LIBS="-lmkl_blacs_lp64 $mpi_libs $blas_libs" if test $with_scalapack -eq 1; then scalapack_libs=-lmkl_blacs_openmpi_lp64 else scalapack_libs=-lmkl_blacs_intelmpi_lp64 fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing pdgemr2d" >&5 $as_echo_n "checking for library containing pdgemr2d... " >&6; } if ${ac_cv_search_pdgemr2d+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call pdgemr2d end _ACEOF for ac_lib in '' "mkl_scalapack_lp64" ; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_pdgemr2d=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_pdgemr2d+:} false; then : break fi done if ${ac_cv_search_pdgemr2d+:} false; then : else ac_cv_search_pdgemr2d=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_pdgemr2d" >&5 $as_echo "$ac_cv_search_pdgemr2d" >&6; } ac_res=$ac_cv_search_pdgemr2d if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK" scalapack_libs="-lmkl_scalapack_lp64 $scalapack_libs" fi test "$have_scalapack" -eq 1 && break fi # # sci libraries (e.g. cray xt) unset ac_cv_search_pdgemr2d # clear cached value scalapack_libs="-lsci" LIBS="$mpi_libs $scalapack_libs" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing pdgemr2d" >&5 $as_echo_n "checking for library containing pdgemr2d... " >&6; } if ${ac_cv_search_pdgemr2d+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call pdgemr2d end _ACEOF for ac_lib in '' "" ; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_pdgemr2d=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_pdgemr2d+:} false; then : break fi done if ${ac_cv_search_pdgemr2d+:} false; then : else ac_cv_search_pdgemr2d=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_pdgemr2d" >&5 $as_echo "$ac_cv_search_pdgemr2d" >&6; } ac_res=$ac_cv_search_pdgemr2d if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK" fi test "$have_scalapack" -eq 1 && break # scalapack (including blacs), no -L options unset ac_cv_search_pdgemr2d # clear cached value scalapack_libs="-lscalapack" LIBS="$mpi_libs $scalapack_libs" LDFLAGS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing pdgemr2d" >&5 $as_echo_n "checking for library containing pdgemr2d... " >&6; } if ${ac_cv_search_pdgemr2d+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call pdgemr2d end _ACEOF for ac_lib in '' "" ; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_pdgemr2d=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_pdgemr2d+:} false; then : break fi done if ${ac_cv_search_pdgemr2d+:} false; then : else ac_cv_search_pdgemr2d=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_pdgemr2d" >&5 $as_echo "$ac_cv_search_pdgemr2d" >&6; } ac_res=$ac_cv_search_pdgemr2d if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK" fi test "$have_scalapack" -eq 1 && break # scalapack + blacs, no -L options unset ac_cv_search_pdgemr2d # clear cached value blacs_libs="-lblacs -lblacsF77init -lblacs" scalapack_libs="-lscalapack $blacs_libs" LIBS="$mpi_libs $scalapack_libs" LDFLAGS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing pdgemr2d" >&5 $as_echo_n "checking for library containing pdgemr2d... " >&6; } if ${ac_cv_search_pdgemr2d+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call pdgemr2d end _ACEOF for ac_lib in '' "" ; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_pdgemr2d=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_pdgemr2d+:} false; then : break fi done if ${ac_cv_search_pdgemr2d+:} false; then : else ac_cv_search_pdgemr2d=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_pdgemr2d" >&5 $as_echo "$ac_cv_search_pdgemr2d" >&6; } ac_res=$ac_cv_search_pdgemr2d if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK" fi test "$have_scalapack" -eq 1 && break # scalapack + blacs with -L options unset ac_cv_search_pdgemr2d # clear cached value if test "$scalapack_dir" = ""; then scalapack_dir="/bgsys/local/scalapack/lib"; fi if test "$blacs_dir" = ""; then blacs_dir="/bgsys/local/blacs/lib"; fi blacs_libs="-L$blacs_dir -lblacs -lblacsF77init -lblacs" scalapack_libs="-L$scalapack_dir -lscalapack $blacs_libs" LIBS="$mpi_libs $scalapack_libs" LDFLAGS="" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing pdgemr2d" >&5 $as_echo_n "checking for library containing pdgemr2d... " >&6; } if ${ac_cv_search_pdgemr2d+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat > conftest.$ac_ext <<_ACEOF program main call pdgemr2d end _ACEOF for ac_lib in '' "" ; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_f77_try_link "$LINENO"; then : ac_cv_search_pdgemr2d=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_pdgemr2d+:} false; then : break fi done if ${ac_cv_search_pdgemr2d+:} false; then : else ac_cv_search_pdgemr2d=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_pdgemr2d" >&5 $as_echo "$ac_cv_search_pdgemr2d" >&6; } ac_res=$ac_cv_search_pdgemr2d if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK" fi else # scalapack provided in SCALAPACK_LIBS - not checked! have_scalapack=1 try_dflags="$try_dflags -D__SCALAPACK" fi done # ELPA iff SCALAPACK elpa_libs_switch="disabled" if test "$with_elpa" -eq 2 && test "$have_scalapack" -eq 1; then scalapack_libs="-L$with_elpa_path/lib -lelpa $scalapack_libs" # ELPA includes for FORTRAN, works with 2013.08 try_iflags="$try_iflags -I$with_elpa_path/include -I$with_elpa_path/include/elpa/modules " try_dflags="$try_dflags -D__ELPA" fi if test "$with_elpa" -eq 1 && test "$have_scalapack" -eq 1; then scalapack_libs="\$(TOPDIR)/ELPA/libelpa.a $scalapack_libs" try_dflags="$try_dflags -D__ELPA" elpa_libs_switch="enabled" fi echo setting SCALAPACK_LIBS... $scalapack_libs # preprocessing flag for openmp (experimental) if test "$use_openmp" -eq 1 ; then try_dflags="$try_dflags -D__OPENMP" ; fi # preprocessing flag for signal trapping (experimental) if test "$use_signals" -eq 1 ; then try_dflags="$try_dflags -D__TRAP_SIGUSR1" ; fi #OBM - This is yet another variable for internal copy of BLAS/LAPACK if test "$extlib_flags" = "" ; then case "$arch" in ppc64 ) extlib_flags="-q64 -qthreaded" echo setting extlib_flags ... $extlib_flags ;; esac fi ## if test "$dflags" = "" ; then dflags="$try_dflags" ; fi echo setting DFLAGS... $dflags if test "$iflags" = "" ; then iflags="$try_iflags" ; fi echo setting IFLAGS... $iflags # xlf compilers (AIX and powerpc) want comma-separated -D directives if test "$xlf_flags" -ne 0 then fdflags="`echo $dflags | sed 's/ */,/g'`" else fdflags="\$(DFLAGS)" fi echo setting FDFLAGS... $fdflags if test "$ranlib" != "echo" then # Extract the first word of "ranlib", so it can be a program name with args. set dummy ranlib; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ranlib+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ranlib"; then ac_cv_prog_ranlib="$ranlib" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ranlib="ranlib" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS test -z "$ac_cv_prog_ranlib" && ac_cv_prog_ranlib="echo" fi fi ranlib=$ac_cv_prog_ranlib if test -n "$ranlib"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ranlib" >&5 $as_echo "$ranlib" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi # MacOs workaround for ranlib if test "$arch" = "mac686"; then if test "$ranlib" = "ranlib"; then ranlib="ranlib -c" fi fi echo setting RANLIB... $ranlib # check if wget or curl work # Extract the first word of "wget", so it can be a program name with args. set dummy wget; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_wget+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$wget"; then ac_cv_prog_wget="$wget" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_wget="wget -O" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi wget=$ac_cv_prog_wget if test -n "$wget"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $wget" >&5 $as_echo "$wget" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "$wget" = ""; then # Extract the first word of "curl", so it can be a program name with args. set dummy curl; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_wget+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$wget"; then ac_cv_prog_wget="$wget" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_wget="curl -o" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi wget=$ac_cv_prog_wget if test -n "$wget"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $wget" >&5 $as_echo "$wget" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi echo setting WGET... $wget # configure output messages blas_line="BLAS_LIBS=$blas_libs" if test "$have_scalapack" -eq 1; then scalapack_line="SCALAPACK_LIBS=$scalapack_libs" else scalapack_libs="" scalapack_line="@delete@" fi lapack_line="LAPACK_LIBS=$lapack_libs" fft_line="FFT_LIBS=$fft_libs" if test "$mpi_libs" != "" ; then mpi_line="MPI_LIBS=$mpi_libs" else mpi_line="@delete@" fi if test "$mass_libs" != "" ; then mass_line="MASS_LIBS=$mass_libs" else mass_line="@delete@" fi if test "$use_parallel" -ne 0 then if test "$parallel" -ne 0 then parallel_report="Parallel environment detected successfully.\\ Configured for compilation of parallel executables." else parallel_report="Parallel environment not detected \ \(is this a parallel machine?\).\\ Configured for compilation of serial executables." fi else parallel_report="Configured for compilation of serial executables." fi # export settings to generated files ac_config_headers="$ac_config_headers include/c_defs.h:include/c_defs.h.in" ac_config_files="$ac_config_files make.sys" ac_config_files="$ac_config_files configure.msg" ac_config_files="$ac_config_files install/make_wannier90.sys" ac_config_files="$ac_config_files install/make_blas.inc" ac_config_files="$ac_config_files install/make_lapack.inc" cat >confcache <<\_ACEOF # This file is a shell script that caches the results of configure # tests run on this system so they can be shared between configure # scripts and configure runs, see configure's option --config-cache. # It is not useful on other systems. If it contains results you don't # want to keep, you may remove or edit it. # # config.status only pays attention to the cache file if you give it # the --recheck option to rerun configure. # # `ac_cv_env_foo' variables (set or unset) will be overridden when # loading this file, other *unset* `ac_cv_foo' will be assigned the # following values. _ACEOF # The following way of writing the cache mishandles newlines in values, # but we know of no workaround that is simple, portable, and efficient. # So, we kill variables containing newlines. # Ultrix sh set writes to stderr and can't be redirected directly, # and sets the high bit in the cache file unless we assign to the vars. ( for ac_var in `(set) 2>&1 | sed -n 's/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'`; do eval ac_val=\$$ac_var case $ac_val in #( *${as_nl}*) case $ac_var in #( *_cv_*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5 $as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;; esac case $ac_var in #( _ | IFS | as_nl) ;; #( BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #( *) { eval $ac_var=; unset $ac_var;} ;; esac ;; esac done (set) 2>&1 | case $as_nl`(ac_space=' '; set) 2>&1` in #( *${as_nl}ac_space=\ *) # `set' does not quote correctly, so add quotes: double-quote # substitution turns \\\\ into \\, and sed turns \\ into \. sed -n \ "s/'/'\\\\''/g; s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\\2'/p" ;; #( *) # `set' quotes correctly as required by POSIX, so do not add quotes. sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p" ;; esac | sort ) | sed ' /^ac_cv_env_/b end t clear :clear s/^\([^=]*\)=\(.*[{}].*\)$/test "${\1+set}" = set || &/ t end s/^\([^=]*\)=\(.*\)$/\1=${\1=\2}/ :end' >>confcache if diff "$cache_file" confcache >/dev/null 2>&1; then :; else if test -w "$cache_file"; then if test "x$cache_file" != "x/dev/null"; then { $as_echo "$as_me:${as_lineno-$LINENO}: updating cache $cache_file" >&5 $as_echo "$as_me: updating cache $cache_file" >&6;} if test ! -f "$cache_file" || test -h "$cache_file"; then cat confcache >"$cache_file" else case $cache_file in #( */* | ?:*) mv -f confcache "$cache_file"$$ && mv -f "$cache_file"$$ "$cache_file" ;; #( *) mv -f confcache "$cache_file" ;; esac fi fi else { $as_echo "$as_me:${as_lineno-$LINENO}: not updating unwritable cache $cache_file" >&5 $as_echo "$as_me: not updating unwritable cache $cache_file" >&6;} fi fi rm -f confcache test "x$prefix" = xNONE && prefix=$ac_default_prefix # Let make expand exec_prefix. test "x$exec_prefix" = xNONE && exec_prefix='${prefix}' DEFS=-DHAVE_CONFIG_H ac_libobjs= ac_ltlibobjs= U= for ac_i in : $LIBOBJS; do test "x$ac_i" = x: && continue # 1. Remove the extension, and $U if already installed. ac_script='s/\$U\././;s/\.o$//;s/\.obj$//' ac_i=`$as_echo "$ac_i" | sed "$ac_script"` # 2. Prepend LIBOBJDIR. When used with automake>=1.10 LIBOBJDIR # will be set to the directory where LIBOBJS objects are built. as_fn_append ac_libobjs " \${LIBOBJDIR}$ac_i\$U.$ac_objext" as_fn_append ac_ltlibobjs " \${LIBOBJDIR}$ac_i"'$U.lo' done LIBOBJS=$ac_libobjs LTLIBOBJS=$ac_ltlibobjs : "${CONFIG_STATUS=./config.status}" ac_write_fail=0 ac_clean_files_save=$ac_clean_files ac_clean_files="$ac_clean_files $CONFIG_STATUS" { $as_echo "$as_me:${as_lineno-$LINENO}: creating $CONFIG_STATUS" >&5 $as_echo "$as_me: creating $CONFIG_STATUS" >&6;} as_write_fail=0 cat >$CONFIG_STATUS <<_ASEOF || as_write_fail=1 #! $SHELL # Generated by $as_me. # Run this file to recreate the current configuration. # Compiler output produced by configure, useful for debugging # configure, is in config.log if it exists. debug=false ac_cs_recheck=false ac_cs_silent=false SHELL=\${CONFIG_SHELL-$SHELL} export SHELL _ASEOF cat >>$CONFIG_STATUS <<\_ASEOF || as_write_fail=1 ## -------------------- ## ## M4sh Initialization. ## ## -------------------- ## # Be more Bourne compatible DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi as_nl=' ' export as_nl # Printing a long string crashes Solaris 7 /usr/bin/printf. as_echo='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo$as_echo # Prefer a ksh shell builtin over an external printf program on Solaris, # but without wasting forks for bash or zsh. if test -z "$BASH_VERSION$ZSH_VERSION" \ && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='print -r --' as_echo_n='print -rn --' elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='printf %s\n' as_echo_n='printf %s' else if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then as_echo_body='eval /usr/ucb/echo -n "$1$as_nl"' as_echo_n='/usr/ucb/echo -n' else as_echo_body='eval expr "X$1" : "X\\(.*\\)"' as_echo_n_body='eval arg=$1; case $arg in #( *"$as_nl"*) expr "X$arg" : "X\\(.*\\)$as_nl"; arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;; esac; expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl" ' export as_echo_n_body as_echo_n='sh -c $as_echo_n_body as_echo' fi export as_echo_body as_echo='sh -c $as_echo_body as_echo' fi # The user is always right. if test "${PATH_SEPARATOR+set}" != set; then PATH_SEPARATOR=: (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && { (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 || PATH_SEPARATOR=';' } fi # IFS # We need space, tab and new line, in precisely that order. Quoting is # there to prevent editors from complaining about space-tab. # (If _AS_PATH_WALK were called with IFS unset, it would disable word # splitting by setting IFS to empty value.) IFS=" "" $as_nl" # Find who we are. Look in the path if we contain no directory separator. as_myself= case $0 in #(( *[\\/]* ) as_myself=$0 ;; *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break done IFS=$as_save_IFS ;; esac # We did not find ourselves, most probably we were run as `sh COMMAND' # in which case we are not to be found in the path. if test "x$as_myself" = x; then as_myself=$0 fi if test ! -f "$as_myself"; then $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2 exit 1 fi # Unset variables that we do not need and which cause bugs (e.g. in # pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1" # suppresses any "Segmentation fault" message there. '((' could # trigger a bug in pdksh 5.2.14. for as_var in BASH_ENV ENV MAIL MAILPATH do eval test x\${$as_var+set} = xset \ && ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || : done PS1='$ ' PS2='> ' PS4='+ ' # NLS nuisances. LC_ALL=C export LC_ALL LANGUAGE=C export LANGUAGE # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH # as_fn_error STATUS ERROR [LINENO LOG_FD] # ---------------------------------------- # Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are # provided, also output the error to LOG_FD, referencing LINENO. Then exit the # script with STATUS, using 1 if that was 0. as_fn_error () { as_status=$1; test $as_status -eq 0 && as_status=1 if test "$4"; then as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack $as_echo "$as_me:${as_lineno-$LINENO}: error: $2" >&$4 fi $as_echo "$as_me: error: $2" >&2 as_fn_exit $as_status } # as_fn_error # as_fn_set_status STATUS # ----------------------- # Set $? to STATUS, without forking. as_fn_set_status () { return $1 } # as_fn_set_status # as_fn_exit STATUS # ----------------- # Exit the shell with STATUS, even in a "trap 0" or "set -e" context. as_fn_exit () { set +e as_fn_set_status $1 exit $1 } # as_fn_exit # as_fn_unset VAR # --------------- # Portably unset VAR. as_fn_unset () { { eval $1=; unset $1;} } as_unset=as_fn_unset # as_fn_append VAR VALUE # ---------------------- # Append the text in VALUE to the end of the definition contained in VAR. Take # advantage of any shell optimizations that allow amortized linear growth over # repeated appends, instead of the typical quadratic growth present in naive # implementations. if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then : eval 'as_fn_append () { eval $1+=\$2 }' else as_fn_append () { eval $1=\$$1\$2 } fi # as_fn_append # as_fn_arith ARG... # ------------------ # Perform arithmetic evaluation on the ARGs, and store the result in the # global $as_val. Take advantage of shells that can avoid forks. The arguments # must be portable across $(()) and expr. if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null; then : eval 'as_fn_arith () { as_val=$(( $* )) }' else as_fn_arith () { as_val=`expr "$@" || test $? -eq 1` } fi # as_fn_arith if expr a : '\(a\)' >/dev/null 2>&1 && test "X`expr 00001 : '.*\(...\)'`" = X001; then as_expr=expr else as_expr=false fi if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then as_basename=basename else as_basename=false fi if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then as_dirname=dirname else as_dirname=false fi as_me=`$as_basename -- "$0" || $as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \ X"$0" : 'X\(//\)$' \| \ X"$0" : 'X\(/\)' \| . 2>/dev/null || $as_echo X/"$0" | sed '/^.*\/\([^/][^/]*\)\/*$/{ s//\1/ q } /^X\/\(\/\/\)$/{ s//\1/ q } /^X\/\(\/\).*/{ s//\1/ q } s/.*/./; q'` # Avoid depending upon Character Ranges. as_cr_letters='abcdefghijklmnopqrstuvwxyz' as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ' as_cr_Letters=$as_cr_letters$as_cr_LETTERS as_cr_digits='0123456789' as_cr_alnum=$as_cr_Letters$as_cr_digits ECHO_C= ECHO_N= ECHO_T= case `echo -n x` in #((((( -n*) case `echo 'xy\c'` in *c*) ECHO_T=' ';; # ECHO_T is single tab character. xy) ECHO_C='\c';; *) echo `echo ksh88 bug on AIX 6.1` > /dev/null ECHO_T=' ';; esac;; *) ECHO_N='-n';; esac rm -f conf$$ conf$$.exe conf$$.file if test -d conf$$.dir; then rm -f conf$$.dir/conf$$.file else rm -f conf$$.dir mkdir conf$$.dir 2>/dev/null fi if (echo >conf$$.file) 2>/dev/null; then if ln -s conf$$.file conf$$ 2>/dev/null; then as_ln_s='ln -s' # ... but there are two gotchas: # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail. # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable. # In both cases, we have to default to `cp -pR'. ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe || as_ln_s='cp -pR' elif ln conf$$.file conf$$ 2>/dev/null; then as_ln_s=ln else as_ln_s='cp -pR' fi else as_ln_s='cp -pR' fi rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file rmdir conf$$.dir 2>/dev/null # as_fn_mkdir_p # ------------- # Create "$as_dir" as a directory, including parents if necessary. as_fn_mkdir_p () { case $as_dir in #( -*) as_dir=./$as_dir;; esac test -d "$as_dir" || eval $as_mkdir_p || { as_dirs= while :; do case $as_dir in #( *\'*) as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'( *) as_qdir=$as_dir;; esac as_dirs="'$as_qdir' $as_dirs" as_dir=`$as_dirname -- "$as_dir" || $as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_dir" : 'X\(//\)[^/]' \| \ X"$as_dir" : 'X\(//\)$' \| \ X"$as_dir" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_dir" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test -d "$as_dir" && break done test -z "$as_dirs" || eval "mkdir $as_dirs" } || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir" } # as_fn_mkdir_p if mkdir -p . 2>/dev/null; then as_mkdir_p='mkdir -p "$as_dir"' else test -d ./-p && rmdir ./-p as_mkdir_p=false fi # as_fn_executable_p FILE # ----------------------- # Test if FILE is an executable regular file. as_fn_executable_p () { test -f "$1" && test -x "$1" } # as_fn_executable_p as_test_x='test -x' as_executable_p=as_fn_executable_p # Sed expression to map a string onto a valid CPP name. as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'" # Sed expression to map a string onto a valid variable name. as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'" exec 6>&1 ## ----------------------------------- ## ## Main body of $CONFIG_STATUS script. ## ## ----------------------------------- ## _ASEOF test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Save the log message, to keep $0 and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by ESPRESSO $as_me 5.1.svn, which was generated by GNU Autoconf 2.69. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ on `(hostname || uname -n) 2>/dev/null | sed 1q` " _ACEOF case $ac_config_files in *" "*) set x $ac_config_files; shift; ac_config_files=$*;; esac case $ac_config_headers in *" "*) set x $ac_config_headers; shift; ac_config_headers=$*;; esac cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 # Files that config.status was made for. config_files="$ac_config_files" config_headers="$ac_config_headers" _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 ac_cs_usage="\ \`$as_me' instantiates files and other configuration actions from templates according to the current configuration. Unless the files and actions are specified as TAGs, all are instantiated by default. Usage: $0 [OPTION]... [TAG]... -h, --help print this help, then exit -V, --version print version number and configuration settings, then exit --config print configuration, then exit -q, --quiet, --silent do not print progress messages -d, --debug don't remove temporary files --recheck update $as_me by reconfiguring in the same conditions --file=FILE[:TEMPLATE] instantiate the configuration file FILE --header=FILE[:TEMPLATE] instantiate the configuration header FILE Configuration files: $config_files Configuration headers: $config_headers Report bugs to the package provider." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`" ac_cs_version="\\ ESPRESSO config.status 5.1.svn configured by $0, generated by GNU Autoconf 2.69, with options \\"\$ac_cs_config\\" Copyright (C) 2012 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." ac_pwd='$ac_pwd' srcdir='$srcdir' test -n "\$AWK" || AWK=awk _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # The default lists apply if the user does not specify any file. ac_need_defaults=: while test $# != 0 do case $1 in --*=?*) ac_option=`expr "X$1" : 'X\([^=]*\)='` ac_optarg=`expr "X$1" : 'X[^=]*=\(.*\)'` ac_shift=: ;; --*=) ac_option=`expr "X$1" : 'X\([^=]*\)='` ac_optarg= ac_shift=: ;; *) ac_option=$1 ac_optarg=$2 ac_shift=shift ;; esac case $ac_option in # Handling of the options. -recheck | --recheck | --rechec | --reche | --rech | --rec | --re | --r) ac_cs_recheck=: ;; --version | --versio | --versi | --vers | --ver | --ve | --v | -V ) $as_echo "$ac_cs_version"; exit ;; --config | --confi | --conf | --con | --co | --c ) $as_echo "$ac_cs_config"; exit ;; --debug | --debu | --deb | --de | --d | -d ) debug=: ;; --file | --fil | --fi | --f ) $ac_shift case $ac_optarg in *\'*) ac_optarg=`$as_echo "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;; '') as_fn_error $? "missing file argument" ;; esac as_fn_append CONFIG_FILES " '$ac_optarg'" ac_need_defaults=false;; --header | --heade | --head | --hea ) $ac_shift case $ac_optarg in *\'*) ac_optarg=`$as_echo "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;; esac as_fn_append CONFIG_HEADERS " '$ac_optarg'" ac_need_defaults=false;; --he | --h) # Conflict between --help and --header as_fn_error $? "ambiguous option: \`$1' Try \`$0 --help' for more information.";; --help | --hel | -h ) $as_echo "$ac_cs_usage"; exit ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil | --si | --s) ac_cs_silent=: ;; # This is an error. -*) as_fn_error $? "unrecognized option: \`$1' Try \`$0 --help' for more information." ;; *) as_fn_append ac_config_targets " $1" ac_need_defaults=false ;; esac shift done ac_configure_extra_args= if $ac_cs_silent; then exec 6>/dev/null ac_configure_extra_args="$ac_configure_extra_args --silent" fi _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 if \$ac_cs_recheck; then set X $SHELL '$0' $ac_configure_args \$ac_configure_extra_args --no-create --no-recursion shift \$as_echo "running CONFIG_SHELL=$SHELL \$*" >&6 CONFIG_SHELL='$SHELL' export CONFIG_SHELL exec "\$@" fi _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 exec 5>>config.log { echo sed 'h;s/./-/g;s/^.../## /;s/...$/ ##/;p;x;p;x' <<_ASBOX ## Running $as_me. ## _ASBOX $as_echo "$ac_log" } >&5 _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Handling of arguments. for ac_config_target in $ac_config_targets do case $ac_config_target in "include/fft_defs.h") CONFIG_FILES="$CONFIG_FILES include/fft_defs.h:include/fft_defs.h.in" ;; "include/c_defs.h") CONFIG_HEADERS="$CONFIG_HEADERS include/c_defs.h:include/c_defs.h.in" ;; "make.sys") CONFIG_FILES="$CONFIG_FILES make.sys" ;; "configure.msg") CONFIG_FILES="$CONFIG_FILES configure.msg" ;; "install/make_wannier90.sys") CONFIG_FILES="$CONFIG_FILES install/make_wannier90.sys" ;; "install/make_blas.inc") CONFIG_FILES="$CONFIG_FILES install/make_blas.inc" ;; "install/make_lapack.inc") CONFIG_FILES="$CONFIG_FILES install/make_lapack.inc" ;; *) as_fn_error $? "invalid argument: \`$ac_config_target'" "$LINENO" 5;; esac done # If the user did not use the arguments to specify the items to instantiate, # then the envvar interface is used. Set only those that are not. # We use the long form for the default assignment because of an extremely # bizarre bug on SunOS 4.1.3. if $ac_need_defaults; then test "${CONFIG_FILES+set}" = set || CONFIG_FILES=$config_files test "${CONFIG_HEADERS+set}" = set || CONFIG_HEADERS=$config_headers fi # Have a temporary directory for convenience. Make it in the build tree # simply because there is no reason against having it here, and in addition, # creating and moving files from /tmp can sometimes cause problems. # Hook for its removal unless debugging. # Note that there is a small window in which the directory will not be cleaned: # after its creation but before its name has been assigned to `$tmp'. $debug || { tmp= ac_tmp= trap 'exit_status=$? : "${ac_tmp:=$tmp}" { test ! -d "$ac_tmp" || rm -fr "$ac_tmp"; } && exit $exit_status ' 0 trap 'as_fn_exit 1' 1 2 13 15 } # Create a (secure) tmp directory for tmp files. { tmp=`(umask 077 && mktemp -d "./confXXXXXX") 2>/dev/null` && test -d "$tmp" } || { tmp=./conf$$-$RANDOM (umask 077 && mkdir "$tmp") } || as_fn_error $? "cannot create a temporary directory in ." "$LINENO" 5 ac_tmp=$tmp # Set up the scripts for CONFIG_FILES section. # No need to generate them if there are no CONFIG_FILES. # This happens for instance with `./config.status config.h'. if test -n "$CONFIG_FILES"; then ac_cr=`echo X | tr X '\015'` # On cygwin, bash can eat \r inside `` if the user requested igncr. # But we know of no other shell where ac_cr would be empty at this # point, so we can use a bashism as a fallback. if test "x$ac_cr" = x; then eval ac_cr=\$\'\\r\' fi ac_cs_awk_cr=`$AWK 'BEGIN { print "a\rb" }' /dev/null` if test "$ac_cs_awk_cr" = "a${ac_cr}b"; then ac_cs_awk_cr='\\r' else ac_cs_awk_cr=$ac_cr fi echo 'BEGIN {' >"$ac_tmp/subs1.awk" && _ACEOF { echo "cat >conf$$subs.awk <<_ACEOF" && echo "$ac_subst_vars" | sed 's/.*/&!$&$ac_delim/' && echo "_ACEOF" } >conf$$subs.sh || as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 ac_delim_num=`echo "$ac_subst_vars" | grep -c '^'` ac_delim='%!_!# ' for ac_last_try in false false false false false :; do . ./conf$$subs.sh || as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 ac_delim_n=`sed -n "s/.*$ac_delim\$/X/p" conf$$subs.awk | grep -c X` if test $ac_delim_n = $ac_delim_num; then break elif $ac_last_try; then as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 else ac_delim="$ac_delim!$ac_delim _$ac_delim!! " fi done rm -f conf$$subs.sh cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 cat >>"\$ac_tmp/subs1.awk" <<\\_ACAWK && _ACEOF sed -n ' h s/^/S["/; s/!.*/"]=/ p g s/^[^!]*!// :repl t repl s/'"$ac_delim"'$// t delim :nl h s/\(.\{148\}\)..*/\1/ t more1 s/["\\]/\\&/g; s/^/"/; s/$/\\n"\\/ p n b repl :more1 s/["\\]/\\&/g; s/^/"/; s/$/"\\/ p g s/.\{148\}// t nl :delim h s/\(.\{148\}\)..*/\1/ t more2 s/["\\]/\\&/g; s/^/"/; s/$/"/ p b :more2 s/["\\]/\\&/g; s/^/"/; s/$/"\\/ p g s/.\{148\}// t delim ' >$CONFIG_STATUS || ac_write_fail=1 rm -f conf$$subs.awk cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 _ACAWK cat >>"\$ac_tmp/subs1.awk" <<_ACAWK && for (key in S) S_is_set[key] = 1 FS = "" } { line = $ 0 nfields = split(line, field, "@") substed = 0 len = length(field[1]) for (i = 2; i < nfields; i++) { key = field[i] keylen = length(key) if (S_is_set[key]) { value = S[key] line = substr(line, 1, len) "" value "" substr(line, len + keylen + 3) len += length(value) + length(field[++i]) substed = 1 } else len += 1 + keylen } print line } _ACAWK _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 if sed "s/$ac_cr//" < /dev/null > /dev/null 2>&1; then sed "s/$ac_cr\$//; s/$ac_cr/$ac_cs_awk_cr/g" else cat fi < "$ac_tmp/subs1.awk" > "$ac_tmp/subs.awk" \ || as_fn_error $? "could not setup config files machinery" "$LINENO" 5 _ACEOF # VPATH may cause trouble with some makes, so we remove sole $(srcdir), # ${srcdir} and @srcdir@ entries from VPATH if srcdir is ".", strip leading and # trailing colons and then remove the whole line if VPATH becomes empty # (actually we leave an empty line to preserve line numbers). if test "x$srcdir" = x.; then ac_vpsub='/^[ ]*VPATH[ ]*=[ ]*/{ h s/// s/^/:/ s/[ ]*$/:/ s/:\$(srcdir):/:/g s/:\${srcdir}:/:/g s/:@srcdir@:/:/g s/^:*// s/:*$// x s/\(=[ ]*\).*/\1/ G s/\n// s/^[^=]*=[ ]*$// }' fi cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 fi # test -n "$CONFIG_FILES" # Set up the scripts for CONFIG_HEADERS section. # No need to generate them if there are no CONFIG_HEADERS. # This happens for instance with `./config.status Makefile'. if test -n "$CONFIG_HEADERS"; then cat >"$ac_tmp/defines.awk" <<\_ACAWK || BEGIN { _ACEOF # Transform confdefs.h into an awk script `defines.awk', embedded as # here-document in config.status, that substitutes the proper values into # config.h.in to produce config.h. # Create a delimiter string that does not exist in confdefs.h, to ease # handling of long lines. ac_delim='%!_!# ' for ac_last_try in false false :; do ac_tt=`sed -n "/$ac_delim/p" confdefs.h` if test -z "$ac_tt"; then break elif $ac_last_try; then as_fn_error $? "could not make $CONFIG_HEADERS" "$LINENO" 5 else ac_delim="$ac_delim!$ac_delim _$ac_delim!! " fi done # For the awk script, D is an array of macro values keyed by name, # likewise P contains macro parameters if any. Preserve backslash # newline sequences. ac_word_re=[_$as_cr_Letters][_$as_cr_alnum]* sed -n ' s/.\{148\}/&'"$ac_delim"'/g t rset :rset s/^[ ]*#[ ]*define[ ][ ]*/ / t def d :def s/\\$// t bsnl s/["\\]/\\&/g s/^ \('"$ac_word_re"'\)\(([^()]*)\)[ ]*\(.*\)/P["\1"]="\2"\ D["\1"]=" \3"/p s/^ \('"$ac_word_re"'\)[ ]*\(.*\)/D["\1"]=" \2"/p d :bsnl s/["\\]/\\&/g s/^ \('"$ac_word_re"'\)\(([^()]*)\)[ ]*\(.*\)/P["\1"]="\2"\ D["\1"]=" \3\\\\\\n"\\/p t cont s/^ \('"$ac_word_re"'\)[ ]*\(.*\)/D["\1"]=" \2\\\\\\n"\\/p t cont d :cont n s/.\{148\}/&'"$ac_delim"'/g t clear :clear s/\\$// t bsnlc s/["\\]/\\&/g; s/^/"/; s/$/"/p d :bsnlc s/["\\]/\\&/g; s/^/"/; s/$/\\\\\\n"\\/p b cont ' >$CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 for (key in D) D_is_set[key] = 1 FS = "" } /^[\t ]*#[\t ]*(define|undef)[\t ]+$ac_word_re([\t (]|\$)/ { line = \$ 0 split(line, arg, " ") if (arg[1] == "#") { defundef = arg[2] mac1 = arg[3] } else { defundef = substr(arg[1], 2) mac1 = arg[2] } split(mac1, mac2, "(") #) macro = mac2[1] prefix = substr(line, 1, index(line, defundef) - 1) if (D_is_set[macro]) { # Preserve the white space surrounding the "#". print prefix "define", macro P[macro] D[macro] next } else { # Replace #undef with comments. This is necessary, for example, # in the case of _POSIX_SOURCE, which is predefined and required # on some systems where configure will not decide to define it. if (defundef == "undef") { print "/*", prefix defundef, macro, "*/" next } } } { print } _ACAWK _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 as_fn_error $? "could not setup config headers machinery" "$LINENO" 5 fi # test -n "$CONFIG_HEADERS" eval set X " :F $CONFIG_FILES :H $CONFIG_HEADERS " shift for ac_tag do case $ac_tag in :[FHLC]) ac_mode=$ac_tag; continue;; esac case $ac_mode$ac_tag in :[FHL]*:*);; :L* | :C*:*) as_fn_error $? "invalid tag \`$ac_tag'" "$LINENO" 5;; :[FH]-) ac_tag=-:-;; :[FH]*) ac_tag=$ac_tag:$ac_tag.in;; esac ac_save_IFS=$IFS IFS=: set x $ac_tag IFS=$ac_save_IFS shift ac_file=$1 shift case $ac_mode in :L) ac_source=$1;; :[FH]) ac_file_inputs= for ac_f do case $ac_f in -) ac_f="$ac_tmp/stdin";; *) # Look for the file first in the build tree, then in the source tree # (if the path is not absolute). The absolute path cannot be DOS-style, # because $ac_f cannot contain `:'. test -f "$ac_f" || case $ac_f in [\\/$]*) false;; *) test -f "$srcdir/$ac_f" && ac_f="$srcdir/$ac_f";; esac || as_fn_error 1 "cannot find input file: \`$ac_f'" "$LINENO" 5;; esac case $ac_f in *\'*) ac_f=`$as_echo "$ac_f" | sed "s/'/'\\\\\\\\''/g"`;; esac as_fn_append ac_file_inputs " '$ac_f'" done # Let's still pretend it is `configure' which instantiates (i.e., don't # use $as_me), people would be surprised to read: # /* config.h. Generated by config.status. */ configure_input='Generated from '` $as_echo "$*" | sed 's|^[^:]*/||;s|:[^:]*/|, |g' `' by configure.' if test x"$ac_file" != x-; then configure_input="$ac_file. $configure_input" { $as_echo "$as_me:${as_lineno-$LINENO}: creating $ac_file" >&5 $as_echo "$as_me: creating $ac_file" >&6;} fi # Neutralize special characters interpreted by sed in replacement strings. case $configure_input in #( *\&* | *\|* | *\\* ) ac_sed_conf_input=`$as_echo "$configure_input" | sed 's/[\\\\&|]/\\\\&/g'`;; #( *) ac_sed_conf_input=$configure_input;; esac case $ac_tag in *:-:* | *:-) cat >"$ac_tmp/stdin" \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 ;; esac ;; esac ac_dir=`$as_dirname -- "$ac_file" || $as_expr X"$ac_file" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$ac_file" : 'X\(//\)[^/]' \| \ X"$ac_file" : 'X\(//\)$' \| \ X"$ac_file" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$ac_file" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` as_dir="$ac_dir"; as_fn_mkdir_p ac_builddir=. case "$ac_dir" in .) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'` # A ".." for each directory in $ac_dir_suffix. ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'` case $ac_top_builddir_sub in "") ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_top_build_prefix=$ac_top_builddir_sub/ ;; esac ;; esac ac_abs_top_builddir=$ac_pwd ac_abs_builddir=$ac_pwd$ac_dir_suffix # for backward compatibility: ac_top_builddir=$ac_top_build_prefix case $srcdir in .) # We are building in place. ac_srcdir=. ac_top_srcdir=$ac_top_builddir_sub ac_abs_top_srcdir=$ac_pwd ;; [\\/]* | ?:[\\/]* ) # Absolute name. ac_srcdir=$srcdir$ac_dir_suffix; ac_top_srcdir=$srcdir ac_abs_top_srcdir=$srcdir ;; *) # Relative name. ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix ac_top_srcdir=$ac_top_build_prefix$srcdir ac_abs_top_srcdir=$ac_pwd/$srcdir ;; esac ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix case $ac_mode in :F) # # CONFIG_FILE # _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # If the template does not know about datarootdir, expand it. # FIXME: This hack should be removed a few years after 2.60. ac_datarootdir_hack=; ac_datarootdir_seen= ac_sed_dataroot=' /datarootdir/ { p q } /@datadir@/p /@docdir@/p /@infodir@/p /@localedir@/p /@mandir@/p' case `eval "sed -n \"\$ac_sed_dataroot\" $ac_file_inputs"` in *datarootdir*) ac_datarootdir_seen=yes;; *@datadir@*|*@docdir@*|*@infodir@*|*@localedir@*|*@mandir@*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&5 $as_echo "$as_me: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&2;} _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_datarootdir_hack=' s&@datadir@&$datadir&g s&@docdir@&$docdir&g s&@infodir@&$infodir&g s&@localedir@&$localedir&g s&@mandir@&$mandir&g s&\\\${datarootdir}&$datarootdir&g' ;; esac _ACEOF # Neutralize VPATH when `$srcdir' = `.'. # Shell code in configure.ac might set extrasub. # FIXME: do we really want to maintain this feature? cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_sed_extra="$ac_vpsub $extrasub _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 :t /@[a-zA-Z_][a-zA-Z_0-9]*@/!b s|@configure_input@|$ac_sed_conf_input|;t t s&@top_builddir@&$ac_top_builddir_sub&;t t s&@top_build_prefix@&$ac_top_build_prefix&;t t s&@srcdir@&$ac_srcdir&;t t s&@abs_srcdir@&$ac_abs_srcdir&;t t s&@top_srcdir@&$ac_top_srcdir&;t t s&@abs_top_srcdir@&$ac_abs_top_srcdir&;t t s&@builddir@&$ac_builddir&;t t s&@abs_builddir@&$ac_abs_builddir&;t t s&@abs_top_builddir@&$ac_abs_top_builddir&;t t $ac_datarootdir_hack " eval sed \"\$ac_sed_extra\" "$ac_file_inputs" | $AWK -f "$ac_tmp/subs.awk" \ >$ac_tmp/out || as_fn_error $? "could not create $ac_file" "$LINENO" 5 test -z "$ac_datarootdir_hack$ac_datarootdir_seen" && { ac_out=`sed -n '/\${datarootdir}/p' "$ac_tmp/out"`; test -n "$ac_out"; } && { ac_out=`sed -n '/^[ ]*datarootdir[ ]*:*=/p' \ "$ac_tmp/out"`; test -z "$ac_out"; } && { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file contains a reference to the variable \`datarootdir' which seems to be undefined. Please make sure it is defined" >&5 $as_echo "$as_me: WARNING: $ac_file contains a reference to the variable \`datarootdir' which seems to be undefined. Please make sure it is defined" >&2;} rm -f "$ac_tmp/stdin" case $ac_file in -) cat "$ac_tmp/out" && rm -f "$ac_tmp/out";; *) rm -f "$ac_file" && mv "$ac_tmp/out" "$ac_file";; esac \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 ;; :H) # # CONFIG_HEADER # if test x"$ac_file" != x-; then { $as_echo "/* $configure_input */" \ && eval '$AWK -f "$ac_tmp/defines.awk"' "$ac_file_inputs" } >"$ac_tmp/config.h" \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 if diff "$ac_file" "$ac_tmp/config.h" >/dev/null 2>&1; then { $as_echo "$as_me:${as_lineno-$LINENO}: $ac_file is unchanged" >&5 $as_echo "$as_me: $ac_file is unchanged" >&6;} else rm -f "$ac_file" mv "$ac_tmp/config.h" "$ac_file" \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 fi else $as_echo "/* $configure_input */" \ && eval '$AWK -f "$ac_tmp/defines.awk"' "$ac_file_inputs" \ || as_fn_error $? "could not create -" "$LINENO" 5 fi ;; esac done # for ac_tag as_fn_exit 0 _ACEOF ac_clean_files=$ac_clean_files_save test $ac_write_fail = 0 || as_fn_error $? "write failure creating $CONFIG_STATUS" "$LINENO" 5 # configure is writing to config.log, and then calls config.status. # config.status does its own redirection, appending to config.log. # Unfortunately, on DOS this fails, as config.log is still kept open # by configure, so config.status won't be able to write to it; its # output is simply discarded. So we exec the FD to /dev/null, # effectively closing config.log, so it can be properly (re)opened and # appended to by config.status. When coming back to configure, we # need to make the FD available again. if test "$no_create" != yes; then ac_cs_success=: ac_config_status_args= test "$silent" = yes && ac_config_status_args="$ac_config_status_args --quiet" exec 5>/dev/null $SHELL $CONFIG_STATUS $ac_config_status_args || ac_cs_success=false exec 5>>config.log # Use ||, not &&, to avoid exiting from the if with $? = 1, which # would make configure fail if this is the last instruction. $ac_cs_success || as_fn_exit 1 fi if test -n "$ac_unrecognized_opts" && test "$enable_option_checking" != no; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unrecognized options: $ac_unrecognized_opts" >&5 $as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2;} fi # final messages sed '/@delete@/d' configure.msg echo configure: success espresso-5.1/PP/0000755000175000017500000000000012341373041011617 5ustar mbambaespresso-5.1/PP/tools/0000755000175000017500000000000012341373041012757 5ustar mbambaespresso-5.1/PP/tools/sum_states.py0000755000175000017500000002003112341372773015532 0ustar mbamba#! /usr/bin/python ###### SUM STATES ####### # Python script for summing and ploting the data from the Density Of States # files obtained from projwfc.x. It can sum also k-solved dos, and make a plot # with mathplotlib (if not available, gnuplot, if not avaible, print to file) # if there is not X11 forwarding, plots in terminal. # It does something very similar to sumpdos.f90, but with # some extra features (use "-h" option). # # it takes two different inputs, the first one is the pw.x output # ("-o" option), which is used for parsing the Fermi energy for fitting # the PDOS curve to the right energy. The other files are the pDOS files # ("-s" option), that can be given with shell syntax, i.e. # pdos_atm*Fe*wfc*d* for summing all the d orbitals of Fe. # It can also handle k solved dos files. # # One of the most useful feature, compared to the sumpdos.x, is the # fact that it also builds the picture directly, so it can be directly # visualized and exported for inclusion in a document. # It uses mathplotlib for plotting, but if no mathplotlib is found in # the $PYTHONPATH, it tries to use gnuplot, if no gnuplot available, # dumps the output data to a file. # In the that no X11 forwarding is available (i.e. ssh to the cluster), # it shows a rough graph in the terminal, so we get an idea of the shape # of the results. # # Example of usage: # cd ....../espresso-5.0/PP/examples/example02/results/ # ../../../src/sum_states.py -o ni.dos.out -s # ni.pdos_atm#1\(Ni\)_wfc#2\(d\) -t "Example PP/02" -xr -6 2 # # # The procedure for obtaining the DOS files is explained # i.e. in (espresso-dir)/PP/examples/example02/ # # Author: Dr. Julen Larrucea # University of Bremen, # Bremen Centre for Computational Materials Science, HMI Group # julenl [at] gmail.com or larrucea [at] hmi.uni-bremen.de # # This file is distributed under the terms of the GNU General Public # License. See the file `License' # in the root directory of the present distribution, # or http://www.gnu.org/copyleft/gpl.txt . ####################### import sys import os import fnmatch import linecache # Some default variables version=0.2 pwout="" selat="*" graphtitle="" min_x,max_x=-10,3 min_y,max_y="","" output_file_name="sum_dos.out" prt="no" print " #### sum_states.py version "+str(version)+" #### " # Check if X11, mathplotlib and gnuplot are available try: os.popen("gnuplot -V").read() prog_gnuplot="yes" # gnuplot is installed except: prog_gnuplot="no" # Parse command line options if len(sys.argv)>1: for i in sys.argv: if i.startswith('-'): option=i.split('-')[1] if option=="o": pwout= sys.argv[sys.argv.index('-o')+1] if option=="s": selat= sys.argv[sys.argv.index('-s')+1] if option=="p": prt="yes" if len(sys.argv) > sys.argv.index('-p')+1: # if there is a name after "-p" take it as an output name if sys.argv[sys.argv.index('-p')+1] != "-": # otherwise default name sum_dos.out dos_out_name=sys.argv[sys.argv.index('-p')+1] if option=="t": graphtitle= sys.argv[sys.argv.index('-t')+1] if option=="xr": min_x,max_x= float(sys.argv[sys.argv.index('-xr')+1]),float(sys.argv[sys.argv.index('-xr')+2]) if option=="yr": min_y,max_y= float(sys.argv[sys.argv.index('-yr')+1]),float(sys.argv[sys.argv.index('-yr')+2]) if option=="v": print "sum_dos.py version: "+version sys.exit() if option=="h": print ''' -o QE output file name (for grepping Fermi E) -s Selection of atoms for summing the DOSes. "*" for all, *1*Fe*d* for first Fe atom " (def. "*") -p Print output to a file and aditionaly provide an output name (def. no output and "sum_dos.out") -t set title in the head of the graph -xr set min and max x value for the axes in the graph -yr set min and max y value for the axes in the graph -h print this help -v print version Example: sum_states.py --s sys.pdos_atm#4\(Fe2\)_wfc#2\(d\) -t "Wustite LDA+U single Fe" -xr -9 4 ''' sys.exit() # Check for mathplotlib/gnuplot and import mpl if possible if len(os.popen('echo $DISPLAY').read()) > 1: graphic_plot="yes" try: from pylab import * mplplot="yes" print "pylab imported" except: print "There is no mathplotlib installed. Using gnuplot." mplplot="no" prt="yes" else: print "No X11. Trying to plot on terminal" graphic_plot="no" if prog_gnuplot=="no": prt="yes" # if not specified, try to find the espresso output, in order to parse the Fermi energy if pwout == "": for filen in filter(os.path.isfile, os.listdir('.')): if "Program PWSCF" in linecache.getline(filen, 2): print "Using " + filen + " as pw.x output. You can specify another one with the -o option." pwout=filen # Parse Fermi energy from the pw.x output if pwout!="": try: os.popen("grep -a 'the Fermi energy is' "+pwout ).read() fermi=float(os.popen("grep -a 'the Fermi energy is' "+pwout ).read().split()[4]) print "Fermi energy = ", fermi, "a.u." except: print "WARNING: No Fermi energy found. Using 0 e.V. instead" fermi=0 else: print "WARNING: No pw.x output found. Using E Fermi = 0 e.V." fermi=0 # List of all DOS files to add dosfiles=[] for dfile in os.listdir('.'): if fnmatch.fnmatch(dfile, selat): dosfiles.append(dfile) if len(dosfiles)==0: print "ERROR: Provide a (list of) valid DOS file(s)" sys.exit() print "dosfiles list: ", for dosfile in dosfiles: print dosfile, print "" # Check wetter we have k-solved DOS if open(dosfiles[0],'r').readline().split()[1]=="E": ksolved="no" print "no ksolved" elif open(dosfiles[0],'r').readline().split()[1]=="ik": ksolved="yes" print "ksolved" # Sum over all k-points and files mat=[] # matrix with total sum of ldos for i in range(len(dosfiles)): mati=[] # temporal matrix for each DOS file "i" k=0 for line in open(dosfiles[i],'r'): if len(line) > 10 and line.split()[0] != "#": if ksolved=="no": mati.append([float(line.split()[0]),float(line.split()[1]),float(line.split()[2])]) if ksolved=="yes": ik = int(line.split()[0]) if ik > k: #if it is a different k block k=int(line.split()[0]) oldmat=[] # temporal matrix for each k-point if ik == 1: mati.append([float(line.split()[1]),float(line.split()[2]),float(line.split()[3])]) # append: energy, ldosup, ldosdw elif ik == k and k > 1: oldmat.append([float(line.split()[1]),float(line.split()[2]),float(line.split()[3])]) elif len(line) < 5 and k > 1: #if blank line, sum k-frame to the total for j in range(len(oldmat)): mati[j]=[mati[j][0],mati[j][1]+oldmat[j][1],mati[j][2]+oldmat[j][2]] if mat == []: # if it is the first dos file, copy total matrix (mat) = the first dos files's data mat=mati[:] else: for j in range(len(mati)): # if it is not the first file, sum values mat[j]=[mat[j][0],mat[j][1]+mati[j][1],mat[j][2]+mati[j][2]] print "...ploting..." if prt=="yes": out=open(output_file_name,"w") x,y1,y2=[],[],[] for i in mat: x.append(i[0]-fermi) y1.append(i[1]) y2.append(-i[2]) if prt=="yes": # print to a file print>>out, i[0]-fermi, i[1], i[2] if prt=="yes": out.close() if graphic_plot=="yes": # if there is matplotlib, generate a plot with it if mplplot=="yes": plot(x,y1,linewidth=1.0) plot(x,y2,linewidth=1.0) print min(y2),max(y1) plt.title(graphtitle) plt.xlabel('E (eV)') plt.ylabel('States') plt.grid(True) plt.rcParams.update({'font.size': 22}) plt.fill(x,y1,color='0.8') plt.fill(x,y2,color='0.9') if min_x and max_x: fromx,tox=min_x,max_x plt.axis([fromx, tox, min(y2), max(y1)]) show() elif mplplot=="no" and prog_gnuplot=="yes": # If no mathplotlib available, use gnuplot os.system("echo \"plot '"+ output_file_name + "' using ($1-"+str(fermi)+"):2 w l, '' u ($1"+str(fermi)+"):3 w l\" | gnuplot -persist") elif graphic_plot=="no": # If no X forwarding available, show graph in terminal if prog_gnuplot=="yes": os.system("echo \"set terminal dumb; plot '"+ output_file_name + "' using ($1-"+str(fermi)+"):2 w l, '' u ($1-"+str(fermi)+"):3 w l\" | gnuplot -persist") espresso-5.1/PP/src/0000755000175000017500000000000012341373041012406 5ustar mbambaespresso-5.1/PP/src/plot_whole_cell.f900000644000175000017500000000207112341372773016114 0ustar mbamba! ! Copyright (C) 2004 Tone Kokalj ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE plot_whole_cell (alat, at, nat, tau, atm, ityp, & nr1, nr2, nr3, nr1x, nr2x, nr3x, rho, output_format, ounit) USE kinds, ONLY : DP IMPLICIT NONE INTEGER :: nat, ityp (nat), output_format, ounit INTEGER :: nr1x, nr2x, nr3x, nr1, nr2, nr3 CHARACTER(len=3) :: atm(*) real(DP) :: alat, tau (3, nat), at (3, 3), rho(2, nr1x,nr2x,nr3x) IF ( output_format == 3 ) THEN ! ! XCRYSDEN FORMAT ! CALL xsf_struct (alat, at, nat, tau, atm, ityp, ounit) CALL xsf_fast_datagrid_3d & (rho, nr1, nr2, nr3, nr1x, nr2x, nr3x, at, alat, ounit) ELSEIF ( output_format == 4 ) THEN ! ! gOpenMol format ! ! not yet implemented ! add code here ... ELSE CALL errore('plot_whole_cell', 'wrong output_format', 1) ENDIF END SUBROUTINE plot_whole_cell espresso-5.1/PP/src/wannier_hamiltonians.f900000644000175000017500000001020612341372773017151 0ustar mbamba! Copyright (C) 2006-2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) !----------------------------------------------------------------------- SUBROUTINE wannier_hamiltonian_JK(nwan,hamk,outfile) !----------------------------------------------------------------------- ! for Jan Kunis code USE io_global, ONLY: stdout USE kinds, ONLY: DP USE constants, ONLY : rytoev USE klist, ONLY: nks, wk IMPLICIT NONE INTEGER, INTENT(in) :: nwan, outfile COMPLEX(DP) :: hamk(nwan,nwan,nks) INTEGER :: i,j, ik COMPLEX(DP), ALLOCATABLE :: hamk2(:,:) real(DP) :: eps = 1.d-8, hr,hi WRITE(stdout,'(/5x,a32,i5,a9)') 'Hamiltonian is in the JK format,', nks, 'k-points' WRITE(stdout,'(5x,a48/)') 'ATTENTION: All k-points weights are real weights' ALLOCATE(hamk2(nwan,nwan)) WRITE(outfile,*) nks,nwan DO ik = 1, nks ! if(ik.eq.43) then ! write(stdout,*) 'Omitting point', ik ! CYCLE ! end if WRITE(outfile,'(f15.12)') wk(ik) ! eg-orbitals should be the first hamk2 = ZERO !hamk2(1,:) = hamk(1,:,ik) !hamk2(2,:) = hamk(4,:,ik) !hamk2(3,:) = hamk(2,:,ik) !hamk2(4,:) = hamk(3,:,ik) !hamk2(5:nwan,:) = hamk(5:nwan,:,ik) !hamk(:,:,ik) = hamk2 !hamk2(:,1) = hamk(:,1,ik) !hamk2(:,2) = hamk(:,4,ik) !hamk2(:,3) = hamk(:,2,ik) !hamk2(:,4) = hamk(:,3,ik) !hamk2(:,5:nwan) = hamk(:,5:nwan,ik) !rearrange !hamk2(1,:) = hamk(5,:,ik) !hamk2(2,:) = hamk(3,:,ik) !hamk2(3,:) = hamk(1,:,ik) !hamk2(4,:) = hamk(2,:,ik) !hamk2(5,:) = hamk(4,:,ik) !hamk2(6,:) = hamk(10,:,ik) !hamk2(7,:) = hamk(8,:,ik) !hamk2(8,:) = hamk(6,:,ik) !hamk2(9,:) = hamk(7,:,ik) !hamk2(10,:) = hamk(9,:,ik) !hamk2(11:nwan,:) = hamk(11:nwan,:,ik) !hamk(:,:,ik) = hamk2 !hamk2(:,1) = hamk(:,5,ik) !hamk2(:,2) = hamk(:,3,ik) !hamk2(:,3) = hamk(:,1,ik) !hamk2(:,4) = hamk(:,2,ik) !hamk2(:,5) = hamk(:,4,ik) !hamk2(:,6) = hamk(:,10,ik) !hamk2(:,7) = hamk(:,8,ik) !hamk2(:,8) = hamk(:,6,ik) !hamk2(:,9) = hamk(:,7,ik) !hamk2(:,10) = hamk(:,9,ik) !hamk2(:,11:nwan) = hamk(:,11:nwan,ik) hamk2 = hamk2 * rytoev hamk2 = hamk(:,:,ik) * rytoev DO i=1, nwan DO j=1, nwan hr = abs(dreal(hamk2(i,j))) hi = abs(aimag(hamk2(i,j))) IF((hr>=eps).and.(hi>=eps)) WRITE(outfile,'(2f12.8)') dreal(hamk2(i,j)), aimag(hamk2(i,j)) IF ((hr=eps)) WRITE(outfile,'(f3.0,f12.8)') 0., aimag(hamk2(i,j)) IF ((hr>=eps).and.(hi basis ! ! l = 0 block ! DO m1 = 1, 2 DO n1 = 1, 2 dy012 (m1, n1, isym)= conjg( s_spin (n1, m1, isym) ) ENDDO ENDDO ! ! l = 1 block ! DO m = 1, 3 DO n = 1, 3 yl1 (m, n) = ylms (n, 1+m) ENDDO ENDDO dy1 (:, :, isym) = matmul (yl1(:,:), yl1_inv(:,:)) DO m = 1, 3 DO n = 1, 3 DO m1 = 1, 2 DO n1 = 1, 2 dy112 (m+3*(m1-1), n+3*(n1-1), isym) = & cmplx(dy1 (m, n, isym), 0.d0,kind=DP) * s_spin (m1, n1, isym) ENDDO ENDDO ENDDO ENDDO ! ! l = 2 block ! DO m = 1, 5 DO n = 1, 5 yl2 (m, n) = ylms (n, 4+m) ENDDO ENDDO dy2 (:, :, isym) = matmul (yl2(:,:), yl2_inv(:,:)) DO m = 1, 5 DO n = 1, 5 DO m1 = 1, 2 DO n1 = 1, 2 dy212 (m+5*(m1-1), n+5*(n1-1), isym) = & cmplx(dy2 (m, n, isym), 0.d0,kind=DP) * s_spin (m1, n1, isym) ENDDO ENDDO ENDDO ENDDO ! ! l = 3 block ! DO m = 1, 7 DO n = 1, 7 yl3 (m, n) = ylms (n, 9+m) ENDDO ENDDO dy3 (:, :, isym) = matmul (yl3(:,:), yl3_inv(:,:)) DO m = 1, 7 DO n = 1, 7 DO m1 = 1, 2 DO n1 = 1, 2 dy312 (m+7*(m1-1), n+7*(n1-1), isym) = & cmplx(dy3 (m, n, isym), 0.d0,kind=DP) * s_spin (m1, n1, isym) ENDDO ENDDO ENDDO ENDDO ! ENDDO ! ! check that D_S matrices are unitary as they should ! delta (:,:) = (0.d0,0.d0) DO m= 1, 14 delta(m,m) = (1.d0,0.d0) ENDDO DO isym =1,nsym ! ! l = 0 block ! capel = 0.d0 dy012_con(:,:) = conjg( dy012(:,:,isym) ) DO m = 1, 2 DO n = 1, 2 capel = capel + & abs(ZDOTU(2,dy012_con(1,m),1,dy012(1,n,isym),1)-delta(m,n))**2 ENDDO ENDDO IF (capel>eps) CALL errore ('d_matrix_nc', & 'D_S (l=0) for this symmetry operation is not unitary',isym) ! ! l = 1 block ! capel = 0.d0 dy112_con(:,:) = conjg( dy112(:,:,isym) ) DO m = 1, 6 DO n = 1, 6 capel = capel + & abs(ZDOTU(6, dy112_con(1,m), 1, dy112(1,n,isym), 1)-delta(m,n))**2 ENDDO ENDDO IF (capel>eps) CALL errore ('d_matrix_nc', & 'D_S (l=1) for this symmetry operation is not unitary',isym) ! ! l = 2 block ! capel = 0.d0 dy212_con(:,:)=conjg(dy212(:,:,isym)) DO m = 1, 10 DO n = 1, 10 capel = capel + & abs(ZDOTU(10, dy212_con(1,m), 1, dy212(1,n,isym), 1)-delta(m,n))**2 ENDDO ENDDO IF (capel>eps) CALL errore ('d_matrix_nc', & 'D_S (l=2) for this symmetry operation is not unitary',isym) ! ! l = 3 block ! capel = 0.d0 dy312_con(:,:)=conjg(dy312(:,:,isym)) DO m = 1, 14 DO n = 1, 14 capel = capel + & abs(ZDOTU(14, dy312_con(1,m), 1, dy312(1,n,isym), 1)-delta(m,n))**2 ENDDO ENDDO IF (capel>eps) CALL errore ('d_matrix_nc', & 'D_S (l=3) for this symmetry operation is not unitary',isym) ! ENDDO ! RETURN ! END SUBROUTINE d_matrix_nc espresso-5.1/PP/src/spinsym.f900000644000175000017500000002473212341372773014453 0ustar mbamba! ! Copyright (C) 2008-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE spinsym(d_spin) !----------------------------------------------------------------------- ! ! Provides symmetry operations in the spin space for all bravais lattices ! USE kinds USE symm_base, ONLY : nsym, sname ! IMPLICIT NONE ! ! first the input/output variables ! COMPLEX(DP) :: d_spin(2,2,64) ! output: the symmetries of the system in the j=1/2 subspace ! ! here the local parameters ! ! sin3 = sin(pi/3), cos3 = cos(pi/3), m* = -* REAL(DP), PARAMETER :: sin3 = 0.866025403784438597d0, cos3 = 0.5d0, & msin3 =-0.866025403784438597d0, mcos3 = -0.5d0 ! cost1 = cos(pi/2), cost2= cos(pi/3), m* = -* REAL(DP), PARAMETER :: cost1=0.707106781186547d0, cost2=0.5d0, & mcost1=-0.707106781186547d0, mcost2=-0.5d0 ! ! and the local variables ! COMPLEX(DP) :: id_spin(2,2,64) ! ! symmetry matrices in the j=1/2 subspace ! INTEGER :: i,j ! ! counters ! CHARACTER :: isname (64) * 45 ! ! full name of the rotational part of each symmetry operation ! data isname/& & 'identity ',& & '180 deg rotation - cart. axis [0,0,1] ',& & '180 deg rotation - cart. axis [0,1,0] ',& & '180 deg rotation - cart. axis [1,0,0] ',& & '180 deg rotation - cart. axis [1,1,0] ',& & '180 deg rotation - cart. axis [1,-1,0] ',& & ' 90 deg rotation - cart. axis [0,0,-1] ',& & ' 90 deg rotation - cart. axis [0,0,1] ',& & '180 deg rotation - cart. axis [1,0,1] ',& & '180 deg rotation - cart. axis [-1,0,1] ',& & ' 90 deg rotation - cart. axis [0,1,0] ',& & ' 90 deg rotation - cart. axis [0,-1,0] ',& & '180 deg rotation - cart. axis [0,1,1] ',& & '180 deg rotation - cart. axis [0,1,-1] ',& & ' 90 deg rotation - cart. axis [-1,0,0] ',& & ' 90 deg rotation - cart. axis [1,0,0] ',& & '120 deg rotation - cart. axis [-1,-1,-1] ',& & '120 deg rotation - cart. axis [-1,1,1] ',& & '120 deg rotation - cart. axis [1,1,-1] ',& & '120 deg rotation - cart. axis [1,-1,1] ',& & '120 deg rotation - cart. axis [1,1,1] ',& & '120 deg rotation - cart. axis [-1,1,-1] ',& & '120 deg rotation - cart. axis [1,-1,-1] ',& & '120 deg rotation - cart. axis [-1,-1,1] ',& & ' 60 deg rotation - cryst. axis [0,0,1] ',& & ' 60 deg rotation - cryst. axis [0,0,-1] ',& & '120 deg rotation - cryst. axis [0,0,1] ',& & '120 deg rotation - cryst. axis [0,0,-1] ',& & '180 deg rotation - cryst. axis [1,-1,0] ',& & '180 deg rotation - cryst. axis [2,1,0] ',& & '180 deg rotation - cryst. axis [0,1,0] ',& & '180 deg rotation - cryst. axis [1,1,0] ',& & 'inversion ',& & 'inv. 180 deg rotation - cart. axis [0,0,1] ',& & 'inv. 180 deg rotation - cart. axis [0,1,0] ',& & 'inv. 180 deg rotation - cart. axis [1,0,0] ',& & 'inv. 180 deg rotation - cart. axis [1,1,0] ',& & 'inv. 180 deg rotation - cart. axis [1,-1,0] ',& & 'inv. 90 deg rotation - cart. axis [0,0,-1] ',& & 'inv. 90 deg rotation - cart. axis [0,0,1] ',& & 'inv. 180 deg rotation - cart. axis [1,0,1] ',& & 'inv. 180 deg rotation - cart. axis [-1,0,1] ',& & 'inv. 90 deg rotation - cart. axis [0,1,0] ',& & 'inv. 90 deg rotation - cart. axis [0,-1,0] ',& & 'inv. 180 deg rotation - cart. axis [0,1,1] ',& & 'inv. 180 deg rotation - cart. axis [0,1,-1] ',& & 'inv. 90 deg rotation - cart. axis [-1,0,0] ',& & 'inv. 90 deg rotation - cart. axis [1,0,0] ',& & 'inv. 120 deg rotation - cart. axis [-1,-1,-1]',& & 'inv. 120 deg rotation - cart. axis [-1,1,1] ',& & 'inv. 120 deg rotation - cart. axis [1,1,-1]' ,& & 'inv. 120 deg rotation - cart. axis [1,-1,1] ',& & 'inv. 120 deg rotation - cart. axis [1,1,1] ',& & 'inv. 120 deg rotation - cart. axis [-1,1,-1] ',& & 'inv. 120 deg rotation - cart. axis [1,-1,-1]',& & 'inv. 120 deg rotation - cart. axis [-1,-1,1] ',& & 'inv. 60 deg rotation - cryst. axis [0,0,1] ',& & 'inv. 60 deg rotation - cryst. axis [0,0,-1] ',& & 'inv. 120 deg rotation - cryst. axis [0,0,1] ',& & 'inv. 120 deg rotation - cryst. axis [0,0,-1] ',& & 'inv. 180 deg rotation - cryst. axis [1,-1,0] ',& & 'inv. 180 deg rotation - cryst. axis [2,1,0] ',& & 'inv. 180 deg rotation - cryst. axis [0,1,0] ',& & 'inv. 180 deg rotation - cryst. axis [1,1,0] ' / data id_spin / (-1.d0,0.d0), (0.d0,0.d0), (0.d0,0.d0), (-1.d0,0.d0), & (0.d0,-1.d0), (0.d0,0.d0), (0.d0,0.d0), (0.d0,1.d0), & (0.d0,0.d0), (1.d0,0.d0), (-1.d0,0.d0), (0.d0,0.d0), & (0.d0,0.d0), (0.d0,-1.d0), (0.d0,-1.d0), (0.d0,0.d0), & (0.d0,0.d0), (mcost1,mcost1), (cost1,mcost1),(0.d0,0.d0), & (0.d0,0.d0), (cost1,mcost1), (mcost1,mcost1), (0.d0,0.d0), & (cost1,mcost1), (0.d0,0.d0), (0.d0,0.d0), (cost1,cost1), & (mcost1,mcost1),(0.d0,0.d0), (0.d0,0.d0), (mcost1,cost1), & (0.d0,mcost1), (0.d0,mcost1), (0.d0,mcost1), (0.d0,cost1), & (0.d0,mcost1), (0.d0,cost1), (0.d0,cost1), (0.d0,cost1), & (mcost1,0.d0), (mcost1,0.d0), (cost1,0.d0), (mcost1,0.d0), & (cost1,0.d0), (mcost1,0.d0), (cost1,0.d0), (cost1,0.d0), & (0.d0,mcost1), (mcost1,0.d0), (cost1,0.d0), (0.d0,cost1), & (0.d0,cost1), (mcost1,0.d0), (cost1,0.d0), (0.d0,mcost1), & (mcost1,0.d0), (0.d0,cost1), (0.d0,cost1), (mcost1,0.d0), & (mcost1,0.d0), (0.d0,mcost1), (0.d0,mcost1), (mcost1,0.d0), & (cost2,mcost2),(mcost2,mcost2),(cost2,mcost2),(cost2,cost2), & (mcost2,mcost2),(mcost2,cost2),(cost2,cost2),(mcost2,cost2), & (mcost2,cost2),(mcost2,mcost2),(cost2,mcost2),(mcost2,mcost2),& (mcost2,mcost2),(cost2,mcost2),(mcost2,mcost2),(mcost2,cost2),& (mcost2,mcost2),(mcost2,mcost2),(cost2,mcost2),(mcost2,cost2),& (mcost2,cost2),(mcost2,cost2),(cost2,cost2),(mcost2,mcost2),& (cost2,mcost2),(mcost2,cost2),(cost2,cost2),(cost2,cost2), & (mcost2,mcost2),(cost2,cost2),(mcost2,cost2),(mcost2,cost2), & (msin3,mcos3), (0.d0,0.d0), (0.d0,0.d0), (msin3,cos3), & (sin3,mcos3), (0.d0,0.d0), (0.d0,0.d0), (sin3,cos3), & (mcos3,msin3), (0.d0,0.d0), (0.d0,0.d0), (mcos3,sin3), & (cos3,msin3), (0.d0,0.d0), (0.d0,0.d0), (cos3,sin3), & (0.d0,0.d0), (cos3,msin3), (mcos3,msin3), (0.d0,0.d0), & (0.d0,0.d0), (mcos3,msin3), (cos3,msin3), (0.d0,0.d0), & (0.d0,0.d0), (sin3,mcos3), (msin3,mcos3), (0.d0,0.d0), & (0.d0,0.d0), (msin3,mcos3), (sin3,mcos3), (0.d0,0.d0), & (-1.d0,0.d0), (0.d0,0.d0), (0.d0,0.d0), (-1.d0,0.d0), & (0.d0,-1.d0), (0.d0,0.d0), (0.d0,0.d0), (0.d0,1.d0), & (0.d0,0.d0), (1.d0,0.d0), (-1.d0,0.d0), (0.d0,0.d0), & (0.d0,0.d0), (0.d0,-1.d0), (0.d0,-1.d0), (0.d0,0.d0), & (0.d0,0.d0), (mcost1,mcost1), (cost1,mcost1),(0.d0,0.d0), & (0.d0,0.d0), (cost1,mcost1), (mcost1,mcost1), (0.d0,0.d0), & (cost1,mcost1), (0.d0,0.d0), (0.d0,0.d0), (cost1,cost1), & (mcost1,mcost1),(0.d0,0.d0), (0.d0,0.d0), (mcost1,cost1), & (0.d0,mcost1), (0.d0,mcost1), (0.d0,mcost1), (0.d0,cost1), & (0.d0,mcost1), (0.d0,cost1), (0.d0,cost1), (0.d0,cost1), & (mcost1,0.d0), (mcost1,0.d0), (cost1,0.d0), (mcost1,0.d0), & (cost1,0.d0), (mcost1,0.d0), (cost1,0.d0), (cost1,0.d0), & (0.d0,mcost1), (mcost1,0.d0), (cost1,0.d0), (0.d0,cost1), & (0.d0,cost1), (mcost1,0.d0), (cost1,0.d0), (0.d0,mcost1), & (mcost1,0.d0), (0.d0,cost1), (0.d0,cost1), (mcost1,0.d0), & (mcost1,0.d0), (0.d0,mcost1), (0.d0,mcost1), (mcost1,0.d0), & (cost2,mcost2),(mcost2,mcost2),(cost2,mcost2),(cost2,cost2), & (mcost2,mcost2),(mcost2,cost2),(cost2,cost2),(mcost2,cost2), & (mcost2,cost2),(mcost2,mcost2),(cost2,mcost2),(mcost2,mcost2),& (mcost2,mcost2),(cost2,mcost2),(mcost2,mcost2),(mcost2,cost2),& (mcost2,mcost2),(mcost2,mcost2),(cost2,mcost2),(mcost2,cost2),& (mcost2,cost2),(mcost2,cost2),(cost2,cost2),(mcost2,mcost2), & (cost2,mcost2),(mcost2,cost2),(cost2,cost2),(cost2,cost2), & (mcost2,mcost2),(cost2,cost2), (mcost2,cost2), (mcost2,cost2), & (msin3,mcos3), (0.d0,0.d0), (0.d0,0.d0), (msin3,cos3), & (sin3,mcos3), (0.d0,0.d0), (0.d0,0.d0), (sin3,cos3), & (mcos3,msin3), (0.d0,0.d0), (0.d0,0.d0), (mcos3,sin3), & (cos3,msin3), (0.d0,0.d0), (0.d0,0.d0), (cos3,sin3), & (0.d0,0.d0), (cos3,msin3), (mcos3,msin3), (0.d0,0.d0), & (0.d0,0.d0), (mcos3,msin3), (cos3,msin3), (0.d0,0.d0), & (0.d0,0.d0), (sin3,mcos3), (msin3,mcos3), (0.d0,0.d0), & (0.d0,0.d0), (msin3,mcos3), (sin3,mcos3), (0.d0,0.d0) / d_spin = (0.d0,0.d0) DO i=1,nsym DO j=1,64 IF ( TRIM ( sname(i) ) == TRIM ( isname(j) ) ) THEN d_spin(1,1,i)=id_spin(1,1,j) d_spin(2,1,i)=id_spin(2,1,j) d_spin(1,2,i)=id_spin(1,2,j) d_spin(2,2,i)=id_spin(2,2,j) ENDIF ENDDO ENDDO RETURN ! END SUBROUTINE spinsym espresso-5.1/PP/src/plotproj.f900000644000175000017500000001205412341372773014614 0ustar mbamba! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! PROGRAM plotproj ! ! This small program is used to select the band eigenvalues whose ! wavefunctions projected on atomic wavefunctions have projections larger ! than a given threshold. It requires two input files. The first is a ! file with the band eigenvalues, written in the output of pw.x. ! The input file with the bands has the following format: ! nbnd, nks ! number of bands, number of k points ! --- blank line ! kvector coordinates ! --- blank line ! bands eigenvalues ! ... ! --- blank line ! kvector coordinates ! --- blank line ! bands eigenvalues ! ... ! ! The second file is written by the projwfc.x program with the option ! lsym=.false. ! ! The input of this program is: ! filename ! name of the file with the band eigenvalues ! filename1 ! name of the file with the projections ! fileout ! name of the output file where the bands are written ! threshold ! see below ! ncri ! number of criterions for selecting the bands ! for each criterion ! first_atomic_wfc, last_atomic_wfc ! the band is selected if the ! sum of the projections on ! the atomic wavefunctions between ! first_atomic_wfc and ! last_atomic_wfc is larger than ! threshold. The sum is done on ! all criterions. ! IMPLICIT NONE INTEGER, PARAMETER :: DP = selected_real_kind(14,200) REAL(DP), ALLOCATABLE :: e(:,:), k(:,:), kx(:) INTEGER :: nks = 0, nbnd = 0, ios, n, i, ibnd, na, idum, nat, & natomwfc, nwfc, ntyp, ncri, icri LOGICAL, ALLOCATABLE :: toplot(:,:) CHARACTER(len=256) :: filename, filename1 REAL(DP) :: psum, threshold REAL(DP), ALLOCATABLE :: proj(:,:,:) INTEGER, ALLOCATABLE :: first_atomic_wfc(:), last_atomic_wfc(:) CALL get_file ( filename ) OPEN(UNIT=1,FILE=filename,FORM='formatted',status='old',iostat=ios) IF (ios/=0) STOP 'Error opening band file ' READ(1,*, err=20, iostat=ios) nbnd, nks IF (nks <= 0 .or. nbnd <= 0 ) THEN STOP 'Error reading file header' ELSE PRINT '("Reading ",i4," bands at ",i4," k-points")', nbnd, nks ENDIF ALLOCATE (e(nbnd,nks)) ALLOCATE (k(3,nks)) ALLOCATE (kx(nks)) ALLOCATE (toplot(nbnd,nks)) DO n=1,nks READ(1, *, ERR=20, IOSTAT=ios) READ(1, '(13x,3f7.4)', ERR=20, IOSTAT=ios) (k(i,n), i=1,3) READ(1, *, ERR=20, IOSTAT=ios) READ(1, '(2x,8f9.4)', END=20, ERR=20) (e(i,n),i=1,nbnd) IF (n==1) THEN kx(n) = sqrt (k(1,1)**2 + k(2,1)**2 + k(3,1)**2) ELSE kx(n) = kx(n-1) + sqrt ( (k(1,n)-k(1,n-1))**2 + & (k(2,n)-k(2,n-1))**2 + & (k(3,n)-k(3,n-1))**2 ) ENDIF ENDDO 20 IF (ios/=0) STOP "problem reading files" CLOSE(UNIT=1) CALL get_file ( filename1 ) OPEN(UNIT=1, FILE=filename1, FORM='formatted', STATUS='old', IOSTAT=ios) IF (ios/=0) STOP 'Error opening projection file ' READ(1, *, ERR=20, IOSTAT=ios) READ (1, '(8i8)', ERR=20, IOSTAT=ios) idum, idum, idum, idum, idum, & idum, nat, ntyp DO i=1,2+nat+ntyp READ(1, *, ERR=20, IOSTAT=ios) ENDDO READ (1, '(3i8)',ERR=20, IOSTAT=ios) natomwfc, nks, nbnd READ (1, *, ERR=20, IOSTAT=ios) ALLOCATE( proj(natomwfc,nbnd,nks) ) DO nwfc = 1, natomwfc READ(1, *, ERR=20, IOSTAT=ios) DO n=1,nks DO ibnd=1,nbnd READ(1, '(2i8,f20.10)', ERR=20, IOSTAT=ios) idum,idum,proj(nwfc,ibnd,n) ENDDO ENDDO ENDDO CLOSE(1) PRINT '("output file > ",$)' READ(5,'(a)', END=25, ERR=25) filename IF (filename == ' ' ) THEN PRINT '("skipping ...")' GOTO 25 ENDIF OPEN (UNIT=2,FILE=filename,FORM='formatted',STATUS='unknown',IOSTAT=ios) IF (ios/=0) STOP "Error opening output file " READ(5, *, ERR=20, IOSTAT=ios) threshold READ(5, *, ERR=20, IOSTAT=ios) ncri IF (ncri<1) STOP '("no orbital given ...")' ALLOCATE(first_atomic_wfc(ncri)) ALLOCATE(last_atomic_wfc(ncri)) DO icri=1,ncri READ(5, *, ERR=20, IOSTAT=ios) first_atomic_wfc(icri), & last_atomic_wfc(icri) IF (first_atomic_wfc(icri)>natomwfc.or.last_atomic_wfc(icri)>natomwfc .or. & first_atomic_wfc(icri)<1 .or. & last_atomic_wfc(icri) threshold) ENDDO ENDDO DO i=1,nbnd DO n=1,nks IF (toplot(i,n)) WRITE (2,'(2f10.4)') kx(n), e(i,n) ENDDO ENDDO CLOSE (UNIT = 2) 25 CONTINUE END PROGRAM plotproj espresso-5.1/PP/src/d_matrix_so.f900000644000175000017500000002212212341372773015250 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------- SUBROUTINE d_matrix_so (dyj12, dyj32, dyj52, dyj72) !--------------------------------------------------------------- ! ! Provides symmetry operations in the j=1/2, j=3/2, j=5/2 and j=7/2 ! subspaces ! USE kinds, ONLY: DP USE symm_base, ONLY: nsym, sr USE spin_orb, ONLY : rot_ylm USE random_numbers, ONLY : randy ! IMPLICIT NONE ! ! first the input/output variables ! COMPLEX(DP) :: dyj12 (2, 2, 48), dyj32 (4, 4, 48), dyj52 (6, 6, 48), & dyj72 (8, 8, 48) ! ! output: symmetry matrices in the j=1/2, j=3/2, j=5/2 and j=7/2 subspace ! respectively ! ! here the local parameters ! INTEGER, PARAMETER :: maxl = 3, maxm = 2*maxl+1, & maxlm = (maxl+1)*(maxl+1) INTEGER, PARAMETER :: maxmj = 2*maxl+2 ! ! maxl = max value of l allowed ! maxm = number of m components for l=maxl ! maxlm= number of l,m spherical harmonics for l <= maxl ! maxmj = number of mj components ! REAL(DP), PARAMETER :: eps = 1.0d-9 ! ! and the local variables ! INTEGER :: m, n, m1, n1, ipol, isym INTEGER :: l, n2, ind, ind1, ind2 REAL(DP) :: j, ylm(maxm, maxlm), ylms(maxm, maxlm), & rl(3,maxm), rrl (maxm), srl(3,maxm), capel REAL(DP) :: Ulall(maxl,maxmj+(maxmj-1),maxmj+(maxmj-1)), spinor, & Ul1(6,6), Ul1_inv(6,6), Ul3(14,14), Ul3_inv(14,14) COMPLEX(DP) :: dy1 (3, 3, 48), dy2 (5, 5, 48), & dy3 (7, 7, 48), dy112 (6, 6, 48), & dy212 (10, 10, 48), dy312 (14, 14, 48), & d12_con(2,2), d32_con(4,4), d52_con(6,6), d72_con(8,8), & s_spin(2,2,48), delta(8,8) COMPLEX(DP) :: ylm_compl(maxm, maxlm), ylms_compl(maxm, maxlm), & yl1 (3, 3), yl2(5, 5), yl3(7,7), & yl1_inv (3, 3), yl2_inv(5, 5), yl3_inv(7, 7), & Ul1C(6,6), Ul1C_inv(6,6), Ul3C(14,14), Ul3C_inv(14,14) COMPLEX(DP), EXTERNAL :: ZDOTU ! ! Here we find the true symmetries of the crystal ! CALL spinsym( s_spin ) ! ! Transformation matrices from the | l m s s_z > basis to the ! | j mj l s > basis in the l-subspace ! Ulall (:,:,:) = 0.d0 DO l = 1, 3 j = dble(l) - 0.5d0 DO m1= 1, 2*l m= m1 - l Ulall (l,m1,2*(m1-1)+1) = spinor (l,j,m,1) Ulall (l,m1,2*(m1-1)+4) = spinor (l,j,m,2) ENDDO j = dble(l) + 0.5d0 DO m1= 1, 2*l + 2 m = m1 - l - 2 IF (m1 == 1) THEN Ulall (l,m1+2*l,2*(m1-1)+2) = spinor (l,j,m,2) ELSEIF (m1==2*l+2) THEN Ulall (l,m1+2*l,2*(m1-1)-1) = spinor (l,j,m,1) ELSE Ulall (l,m1+2*l,2*(m1-1)-1) = spinor (l,j,m,1) Ulall (l,m1+2*l,2*(m1-1)+2) = spinor (l,j,m,2) ENDIF ENDDO ENDDO ! ! invert Ulall for l = 1 and l = 3 blocks ! (we don't need to invert l = 2 block, see below) ! ! l = 1 block ! DO m = 1, 6 DO n = 1, 6 Ul1 (m, n) = Ulall (1, m, n) ENDDO ENDDO CALL invmat (6, Ul1, Ul1_inv, capel) Ul1C (:,:) = cmplx(Ul1 (:,:), 0.d0,kind=DP) Ul1C_inv (:,:) = cmplx(Ul1_inv (:,:), 0.d0,kind=DP) ! ! l = 3 block ! DO m = 1, 14 DO n = 1, 14 Ul3 (m, n) = Ulall (3, m, n) ENDDO ENDDO CALL invmat (14, Ul3, Ul3_inv, capel) Ul3C (:,:) = cmplx(Ul3 (:,:), 0.d0,kind=DP) Ul3C_inv (:,:) = cmplx(Ul3_inv (:,:), 0.d0,kind=DP) ! ! randomly distributed points on a sphere ! DO m = 1, maxm rl (1, m) = randy () - 0.5d0 rl (2, m) = randy () - 0.5d0 rl (3, m) = randy () - 0.5d0 rrl (m) = rl (1,m)**2 + rl (2,m)**2 + rl (3,m)**2 ENDDO CALL ylmr2 ( maxlm, 2*maxl+1, rl, rrl, ylm ) ! ! calculate complex spherical harmonics ! ylm_compl = (0.d0,0.d0) DO l = 1, maxl DO m = -l, l ind = maxl + 1 + m ind1 = l**2 + l + 1 + m DO n2 = 1, 2*l+1 ind2 = l**2 + n2 IF (abs(rot_ylm(ind,n2))>1.d-8) & ylm_compl(:,ind1) = ylm_compl(:,ind1) + rot_ylm(ind,n2)*ylm(:,ind2) ENDDO ENDDO ENDDO ! ! invert Yl for each block of definite l (note the transpose operation) ! ! l = 1 block ! DO m = 1, 3 DO n = 1, 3 yl1 (m, n) = ylm_compl (n, 1+m) ENDDO ENDDO CALL invmat_complex (3, yl1, yl1_inv, capel) ! ! l = 2 block ! DO m = 1, 5 DO n = 1, 5 yl2 (m, n) = ylm_compl (n, 4+m) ENDDO ENDDO CALL invmat_complex (5, yl2, yl2_inv, capel) ! ! l = 3 block ! DO m = 1, 7 DO n = 1, 7 yl3 (m, n) = ylm_compl (n, 9+m) ENDDO ENDDO CALL invmat_complex (7, yl3, yl3_inv, capel) ! ! now for each symmetry operation of the point-group ... ! DO isym = 1, nsym ! ! srl(:,m) = rotated rl(:,m) vectors ! srl = matmul (sr(:,:,isym), rl) ! CALL ylmr2 ( maxlm, maxm, srl, rrl, ylms ) ! ! find D_S = Yl_S * Yl_inv (again, beware the transpose) ! and the rotation matrices for the | j mj l s > basis ! ylms_compl = (0.d0,0.d0) DO l = 1, maxl DO m = -l, l ind = maxl + 1 + m ind1 = l**2 + l + 1 + m DO n2 = 1, 2*l+1 ind2 = l**2 + n2 IF (abs(rot_ylm(ind,n2))>1.d-8) & ylms_compl (:,ind1) = ylms_compl (:,ind1) & + rot_ylm (ind,n2) * ylms (:,ind2) ENDDO ENDDO ENDDO ! ! l = 1 block => j=1/2 and j=3/2 ! DO m = 1, 3 DO n = 1, 3 yl1 (m, n) = ylms_compl (n, 1+m) ENDDO ENDDO dy1 (:, :, isym) = matmul (yl1 (:,:), yl1_inv (:,:)) DO m = 1, 3 DO n = 1, 3 DO m1 = 1, 2 DO n1 = 1, 2 dy112 (2*(m-1)+m1, 2*(n-1)+n1, isym) = dy1 (m, n, isym) & * s_spin (m1, n1, isym) ENDDO ENDDO ENDDO ENDDO dy112 (:, :, isym) = matmul (dy112 (:,:,isym), Ul1C_inv (:,:)) dy112 (:, :, isym) = matmul (Ul1C (:,:), dy112 (:,:,isym)) DO m = 1, 2 DO n = 1, 2 dyj12 (m, n, isym) = conjg(dy112 (n, m, isym)) ENDDO ENDDO DO m = 1, 4 DO n = 1, 4 dyj32 (m ,n, isym) = conjg(dy112 (2+n, 2+m, isym)) ENDDO ENDDO ! ! l = 3 block => j=5/2 and j=7/2 ! DO m = 1, 7 DO n = 1, 7 yl3 (m, n) = ylms_compl (n, 9+m) ENDDO ENDDO dy3 (:, :, isym) = matmul (yl3 (:,:), yl3_inv (:,:)) DO m = 1, 7 DO n = 1, 7 DO m1 = 1, 2 DO n1 = 1, 2 dy312 (2*(m-1)+m1, 2*(n-1)+n1, isym) = dy3 (m, n, isym) & * s_spin (m1, n1, isym) ENDDO ENDDO ENDDO ENDDO dy312 (:, :, isym) = matmul (dy312 (:,:,isym), Ul3C_inv (:,:)) dy312 (:, :, isym) = matmul (Ul3C (:,:), dy312 (:,:,isym)) DO m = 1, 6 DO n = 1, 6 dyj52 (m, n, isym) = conjg(dy312 (n, m, isym)) ENDDO ENDDO DO m = 1, 8 DO n = 1, 8 dyj72 (m ,n, isym) = conjg(dy312 (6+n, 6+m, isym)) ENDDO ENDDO ! ENDDO ! ! check that D_S matrices are unitary as they should ! delta (:,:) = (0.d0,0.d0) DO m= 1, 8 delta(m,m) = (1.d0,0.d0) ENDDO DO isym =1,nsym ! ! j = 1/2 block ! capel = 0.d0 d12_con(:,:) = conjg(dyj12 (:,:,isym)) DO m = 1, 2 DO n = 1, 2 capel = capel + & abs( ZDOTU(2, d12_con(1,m), 1, dyj12(1,n,isym), 1) - delta(m,n) )**2 ENDDO ENDDO IF (capel>eps) CALL errore ('d_matrix_so', & 'D_S (j=1/2) for this symmetry operation is not unitary',isym) ! ! j = 3/2 block ! capel = 0.d0 d32_con(:,:) = conjg(dyj32 (:,:,isym)) DO m = 1, 4 DO n = 1, 4 capel = capel + & abs( ZDOTU(4, d32_con(1,m), 1, dyj32(1,n,isym), 1) - delta(m,n) )**2 ENDDO ENDDO IF (capel>eps) CALL errore ('d_matrix_so', & 'D_S (j=3/2) for this symmetry operation is not unitary',isym) ! ! j = 5/2 block ! capel = 0.d0 d52_con(:,:) = conjg(dyj52 (:,:,isym)) DO m = 1, 6 DO n = 1, 6 capel = capel + & abs( ZDOTU(6, d52_con(1,m), 1, dyj52(1,n,isym), 1) - delta(m,n) )**2 ENDDO ENDDO IF (capel>eps) CALL errore ('d_matrix_so', & 'D_S (j=5/2) for this symmetry operation is not unitary',isym) ! ! j = 7/2 block ! capel = 0.d0 d72_con(:,:) = conjg(dyj72 (:,:,isym)) DO m = 1, 8 DO n = 1, 8 capel = capel + & abs( ZDOTU(8, d72_con(1,m), 1, dyj72(1,n,isym), 1) - delta(m,n) )**2 ENDDO ENDDO IF (capel>eps) CALL errore ('d_matrix_so', & 'D_S (j=7/2) for this symmetry operation is not unitary',isym) ! ENDDO ! RETURN ! END SUBROUTINE d_matrix_so espresso-5.1/PP/src/poormanwannier.f900000644000175000017500000002416712341372773016012 0ustar mbamba! ! Copyright (C) 2001-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ONE (1.D0,0.D0) #define ZERO (0.D0,0.D0) ! !----------------------------------------------------------------------- PROGRAM pmw !----------------------------------------------------------------------- ! ! projects wavefunctions onto atomic wavefunctions, ! ! input: namelist "&inputpp", with variables ! prefix prefix of input files saved by program pwscf ! outdir temporary directory where files resides ! USE kinds, ONLY : DP USE io_global, ONLY : stdout, ionode, ionode_id USE io_files, ONLY : prefix, tmp_dir USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE mp_global, ONLY : mp_startup USE environment,ONLY : environment_start ! IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! CHARACTER(len=256) :: outdir INTEGER :: ios INTEGER :: first_band, last_band NAMELIST / inputpp / outdir, prefix, first_band, last_band ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'PMW' ) IF ( ionode ) CALL input_from_file ( ) ! ! set default values for variables in namelist ! prefix = 'pwscf' CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( trim( outdir ) == ' ' ) outdir = './' first_band=-1 last_band=-1 ! ios = 0 ! IF ( ionode ) THEN ! READ (5, inputpp, iostat = ios) ! tmp_dir = trimcheck (outdir) ! ENDIF ! CALL mp_bcast( ios, ionode_id, world_comm ) IF ( ios/=0 ) CALL errore ('pmwannier', 'reading inputpp namelist', abs(ios)) ! ! ... Broadcast variables ! CALL mp_bcast( tmp_dir, ionode_id, world_comm ) CALL mp_bcast( prefix, ionode_id, world_comm ) CALL mp_bcast( first_band, ionode_id, world_comm ) CALL mp_bcast( last_band, ionode_id, world_comm ) ! ! Now allocate space for pwscf variables, read and check them. ! CALL read_file ( ) ! CALL openfil_pp ( ) ! CALL projection( first_band, last_band) ! CALL stop_pp ! END PROGRAM pmw !----------------------------------------------------------------------- SUBROUTINE projection (first_band, last_band) !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE uspp_param, ONLY : upf USE ions_base, ONLY : nat, ityp USE basis, ONLY : natomwfc, swfcatom USE cell_base USE constants, ONLY: rytoev USE gvect USE klist USE ldaU, ONLY : lda_plus_u, & Hubbard_lmax, Hubbard_l, Hubbard_alpha, Hubbard_U USE lsda_mod USE symm_base, ONLY: nsym, irt, d1, d2, d3 USE wvfct USE control_flags, ONLY: gamma_only USE uspp, ONLY: nkb, vkb USE becmod, ONLY: bec_type, becp, calbec, allocate_bec_type, deallocate_bec_type USE io_files, ONLY: nd_nmbr, prefix, tmp_dir, nwordwfc, iunwfc, & iunsat, nwordatwfc, diropn USE wavefunctions_module, ONLY: evc IMPLICIT NONE ! ! I/O variables ! INTEGER :: first_band, last_band ! ! local variables ! INTEGER :: ik, na, nt, n, m, l, nwfc, lmax_wfc, & ldim1, ldim2, lwork, i, j, info, counter, counter_ldau LOGICAL :: exst COMPLEX(DP), ALLOCATABLE :: proj (:,:,:) COMPLEX(DP), ALLOCATABLE :: wfcatom (:,:) ! COMPLEX(DP), ALLOCATABLE :: proj0(:,:) ! Some workspace for k-point calculation ... REAL (DP), ALLOCATABLE :: rproj0(:,:) ! ... or for gamma-point. COMPLEX(DP), ALLOCATABLE :: pp(:,:), u_m(:,:), w_m(:,:), work(:) ! the overlap matrix pp ! left unitary matrix in the SVD of sp_m ! right unitary matrix in the SVD of sp_m ! workspace for ZGESVD REAL(DP), ALLOCATABLE :: ew(:), rwork(:) ! the eigenvalues of pp ! workspace for ZGESVD REAL (DP) :: capel ! WRITE( stdout, '(/5x,"Calling projection .... ")') IF ( gamma_only ) WRITE( stdout, '(5x,"gamma-point specific algorithms are used")') ! nwordatwfc = npwx * natomwfc CALL diropn( iunsat, 'hub', 2*nwordatwfc, exst ) ! ALLOCATE(proj (natomwfc, nbnd, nkstot) ) ALLOCATE(wfcatom (npwx, natomwfc) ) ALLOCATE(swfcatom (npwx , natomwfc ) ) ! Allocate the array containing CALL allocate_bec_type ( nkb, natomwfc, becp) IF (first_band == -1) first_band = 1 IF (last_band == -1) last_band = nbnd IF (first_band > last_band ) CALL errore ('pmw',' first_band > last_band',1) IF (first_band < 0 ) CALL errore ('pmw',' first_band < 0 ', 1) IF (last_band > nbnd ) CALL errore ('pmw',' last_band > nbnd ', 1) counter = 0 counter_ldaU = 0 DO na = 1, nat nt = ityp (na) DO n = 1, upf(nt)%nwfc IF (upf(nt)%oc (n) >= 0.d0) THEN l = upf(nt)%lchi (n) IF ( (Hubbard_U(nt)/=0.d0 .or. Hubbard_alpha(nt)/=0.d0) .and. & l==Hubbard_l(nt) )THEN counter_ldaU = counter_ldaU + 2 * l + 1 ENDIF counter = counter + 2 * l + 1 ENDIF ENDDO ENDDO WRITE( stdout, *) " NBND = ", nbnd WRITE( stdout, *) " NATOMWFC =", natomwfc WRITE( stdout, *) " NKSTOT =", nkstot ldim1 = counter_ldaU ldim2 = last_band + 1 - first_band WRITE( stdout, *) ldim1, ldim2 IF (ldim1 > ldim2 ) CALL errore( 'projection','too few bands',ldim1-ldim2) lwork = 5 * max(ldim1,ldim2) ALLOCATE (pp(ldim1,ldim2), u_m(ldim1,ldim1), w_m(ldim2,ldim2), & work(lwork), ew(ldim1), rwork(lwork)) proj = 0.d0 ! ! initialize D_Sl for l=1, l=2 and l=3, for l=0 D_S0 is 1 ! CALL d_matrix (d1, d2, d3) WRITE (stdout,*) " Hubbard_lmax = ", Hubbard_lmax, lda_plus_u nwfc=0 lmax_wfc = 0 DO na = 1, nat nt = ityp (na) DO n = 1, upf(nt)%nwfc IF (upf(nt)%oc (n) >= 0.d0) THEN l = upf(nt)%lchi (n) lmax_wfc = max (lmax_wfc, l ) DO m = 1, 2 * l + 1 nwfc=nwfc+1 WRITE(stdout,*) " ATOMIC WFC #", nwfc,":", na,n,l,m ENDDO ENDIF ENDDO ENDDO IF (lmax_wfc > 3) CALL errore ('projection', 'l > 3 not yet implemented', 1) IF (nwfc /= natomwfc) CALL errore ('projection', 'wrong # of atomic wfcs?', 1) ! ! loop on k points ! CALL init_us_1 CALL init_at_1 ! DO ik = 1, nks WRITE ( stdout, * ) "KPOINT =", ik CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) CALL atomic_wfc (ik, wfcatom) CALL init_us_2 (npw, igk, xk (1, ik), vkb) CALL calbec ( npw, vkb, wfcatom, becp ) CALL s_psi (npwx, npw, natomwfc, wfcatom, swfcatom) ! ! wfcatom = |phi_i> , swfcatom = \hat S |phi_i> ! ! make the projection ! IF ( gamma_only ) THEN ALLOCATE(rproj0(natomwfc,nbnd) ) CALL calbec ( npw, swfcatom, evc, rproj0 ) proj(:,:,ik) = cmplx(rproj0(:,:),0.d0,kind=DP) DEALLOCATE (rproj0) ELSE ALLOCATE(proj0(natomwfc,nbnd) ) CALL calbec ( npw, swfcatom, evc, proj0 ) proj(:,:,ik) = proj0(:,:) DEALLOCATE (proj0) ENDIF counter = 0 counter_ldaU = 0 DO na = 1, nat nt = ityp (na) DO n = 1, upf(nt)%nwfc IF (upf(nt)%oc (n) >= 0.d0) THEN l = upf(nt)%lchi (n) IF ( (Hubbard_U(nt)/=0.d0.or.Hubbard_alpha(nt)/=0.d0) .and. & l==Hubbard_l(nt) )THEN pp(counter_ldaU+1:counter_ldaU+2*l+1, 1:ldim2) = & proj(counter+1:counter+2*l+1,first_band:last_band,ik) counter_ldaU = counter_ldaU + 2 * l + 1 ENDIF counter = counter + 2 * l + 1 ENDIF ENDDO ENDDO IF (counter_ldaU /= ldim1) CALL errore ('projection','wrong counter',1) CALL ZGESVD( 'A', 'A', ldim1, ldim2, pp, ldim1, ew, u_m, ldim1, & w_m, ldim2, work, lwork, rwork, info ) CALL errore ('projection','Singular Value Decomposition failed', abs(info)) DO i = 1, ldim1 WRITE ( stdout, * ) ew(i) WRITE ( stdout, '(8(2f5.2,2x))') u_m(:,i) WRITE ( stdout, '(8(2f5.2,2x))') w_m(i,:) ENDDO ! ! ... use sp_m to store u_m * w_m ! CALL zgemm( 'N', 'N', ldim1, ldim2, ldim1, ONE, u_m, ldim1, w_m, & ldim2, ZERO, pp, ldim1 ) ! ... check orthogonality CALL zgemm( 'N', 'C', ldim1, ldim1, ldim2, ONE, pp, ldim1, pp, & ldim1, ZERO, u_m, ldim1 ) capel = 0.d0 DO i=1,ldim1 u_m(i,i) = u_m(i,i) -1.d0 DO j=1,ldim1 capel = capel + abs( u_m(i,j) ) ENDDO u_m(i,i) = u_m(i,i) +1.d0 ENDDO IF (capel < 1.d-10) THEN WRITE ( stdout, *) " ORTHOGONALITY CHECK PASSED " ELSE WRITE ( stdout, *) " ORTHOGONALITY CHECK FAILED" WRITE ( stdout, *) " CAPEL = ", capel DO i=1,ldim1 WRITE ( stdout, '(8(2f5.2,2x))') u_m(:,i) ENDDO ENDIF counter = 0 counter_ldaU = 0 DO na = 1, nat nt = ityp (na) DO n = 1, upf(nt)%nwfc IF (upf(nt)%oc (n) >= 0.d0) THEN l = upf(nt)%lchi (n) IF ( (Hubbard_U(nt)/=0.d0.or.Hubbard_alpha(nt)/=0.d0) .and. & l==Hubbard_l(nt) )THEN CALL zgemm( 'N', 'C', npw, 2*l+1, ldim2, ONE, & evc(1,first_band), npwx, & pp(counter_ldaU+1,1), ldim1, ZERO, & wfcatom(1,counter+1), npwx ) counter_ldaU = counter_ldaU + 2 * l + 1 ENDIF counter = counter + 2 * l + 1 ENDIF ENDDO ENDDO CALL calbec ( npw, vkb, wfcatom, becp ) CALL s_psi (npwx, npw, natomwfc, wfcatom, swfcatom) CALL davcio (swfcatom, 2*nwordatwfc, iunsat, ik, 1) ! on k-points ENDDO ! CALL deallocate_bec_type (becp) ! DEALLOCATE (pp, u_m, w_m, work, ew, rwork) DEALLOCATE (swfcatom) DEALLOCATE (wfcatom) DEALLOCATE (proj) RETURN END SUBROUTINE projection espresso-5.1/PP/src/plotrho.f900000644000175000017500000011244312341372773014435 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- PROGRAM plotrho !----------------------------------------------------------------------- ! 2D contour plot - logarithmically or linearly spaced levels ! - Postscript printable output ! if " cplot" is called: ! - contour lines plus gray levels ! - negative values are shaded ! if "psplot" is called: ! - contour lines of various kinds (solid, dashed, etc) ! IMPLICIT NONE INTEGER, PARAMETER :: DP = selected_real_kind(14,200) INTEGER, PARAMETER :: stdout=6 ! for spline interpolation using essl toutines INTEGER, PARAMETER :: nwrk = 10000 real(DP) :: wrk (nwrk) INTEGER, ALLOCATABLE :: ityp (:) INTEGER :: nxi, nyi, nx, ny, i, j, k, nlevels, na, nat real(DP), ALLOCATABLE :: rhoi(:,:), xi(:), yi(:) real(DP), ALLOCATABLE :: rhoo(:,:), x (:), y (:) real(DP), ALLOCATABLE :: z (:) real(DP) :: xmin, xmax, ymin, ymax, rhomin, rhomax, rhoomin, rhoomax real(DP) :: xdim, ydim, xs, ys, r0 (3), tau1 (3), tau2 (3) real(DP), ALLOCATABLE :: tau (:,:) real(DP) :: at (3, 3), a0 CHARACTER (len=256) :: filename, fileout, ans * 1 LOGICAL :: logarithmic_scale CALL get_file ( filename ) OPEN (unit = 1, file = filename, form = 'formatted', status = 'old') READ (1, * ) nxi, nyi ALLOCATE ( xi(0:nxi), yi(0:nyi), rhoi(0:nxi,0:nyi) ) READ (1, * ) (xi (i), i = 0, nxi) READ (1, * ) (yi (j), j = 0, nyi) READ (1, * ) ( (rhoi (i, j), i = 0, nxi), j = 0, nyi) READ (1, * ) r0 READ (1, * ) tau1 READ (1, * ) tau2 READ (1, * ) nat IF (nat < 0 .or. nat > 1000000) THEN WRITE( stdout, '("Error: unlikely number of atoms ",i4)') nat STOP ENDIF ALLOCATE (tau (3,nat), ityp(nat) ) READ (1, * ) ( (tau (j, na), j = 1, 3), ityp (na), na = 1, nat) READ (1, * ) a0 READ (1, * ) at CLOSE (unit = 1) ! WRITE( stdout, '("r0 : ",3f8.4)') r0 WRITE( stdout, '("tau1 : ",3f8.4)') tau1 WRITE( stdout, '("tau2 : ",3f8.4)') tau2 ! WRITE( stdout, '("read",i4," atomic positions")') nat ! WRITE( stdout,'("Atomic positions:")') ! WRITE( stdout,'(3f8.4)') ( (tau(j,na),j=1,3),na=1,nat) WRITE( stdout, '("output file > ",$)') READ (5, '(a)') fileout WRITE( stdout, '("Read ",i3," *",i3," grid")') nxi+1, nyi+1 #ifdef __ESSL ! ! interpolation implemented only for ESSL routines ... ! WRITE( stdout, '("nx, ny (output) > ",$)') READ (5, * ) nx, ny #else nx = nxi ny = nyi #endif ALLOCATE ( x(0:nx), y(0:ny), rhoo(0:nx,0:ny) ) xmin = xi (0) xmax = xi (nxi) DO i = 0, nx x (i) = (xi (nxi) - xi (0) ) * dble (i) / dble (nx) ENDDO ymin = yi (0) ymax = yi (nyi) DO i = 0, ny y (i) = (yi (nyi) - yi (0) ) * dble (i) / dble (ny) ENDDO #ifdef __ESSL CALL dcsin2 (xi, yi, rhoi, nxi + 1, nyi + 1, nxi + 1, x, y, & nx + 1, ny + 1, rhoo, nx + 1, wrk, nwrk) #else rhoo (0:nx, 0:ny) = rhoi (0:nx, 0:ny) #endif rhomin = minval (rhoo(0:nx, 0:ny)) rhomax = maxval (rhoo(0:nx, 0:ny)) IF (rhomin > 0.d0) THEN WRITE( stdout,'("Logarithmic scale (y/n)? > ",$)') READ (5, '(a)') ans logarithmic_scale = ans/='n'.and.ans/='N' ELSE logarithmic_scale = .false. ENDIF 10 CONTINUE WRITE( stdout, '("Bounds: ",2f12.6)') rhomin, rhomax WRITE( stdout, '("min, max, # of levels > ",$)') READ (5, * ) rhoomin, rhoomax, nlevels IF ( rhoomax <= rhoomin .or. & rhoomin >= rhomax .or. rhoomax <= rhomin ) THEN WRITE( stdout, '("Out of Bounds! try again")') GOTO 10 ENDIF IF (nlevels > 1000) THEN WRITE( stdout, '("Are you sure you really need ",i8," levels?")') & nlevels ELSEIF (nlevels < 1) THEN WRITE( stdout, '("Too few levels! assuming 1 level")') nlevels = 1 ENDIF ALLOCATE (z(0:nlevels)) IF (logarithmic_scale) THEN DO k = 0, nlevels - 1 z (k) = exp (log (rhoomin) + (log (rhoomax) - log (rhoomin) ) & * dble (k) / (nlevels - 1) ) ENDDO ELSE DO k = 0, nlevels - 1 z (k) = rhoomin + (rhoomax - rhoomin) * dble (k) / (nlevels - 1) ENDDO ENDIF z (nlevels) = z (nlevels - 1) xdim = 15.0d0 * (xmax - xmin) / sqrt ( (xmax - xmin) **2 + (ymax - ymin) **2) ydim = 15.0d0 * (ymax - ymin) / sqrt ( (xmax - xmin) **2 + (ymax - ymin) **2) xs = 4.0d0 ys = 3.0d0 ! uncomment the call to "cplot" if you want contour lines, ! plus gray levels and shading for negative values CALL cplot (rhoo, nx, ny, x, xmin, xmax, nx, y, ymin, ymax, & ny, nlevels, z, xdim, ydim, xs, ys, filename, fileout) ! uncomment the call to "psplot" if you want contour lines ! of various kinds: solid, dashed, etc ! call psplot ( rhoo, nx, x, nx, y, ny, nlevels, z, xdim, ydim, & ! xs, ys, fileout) CALL atomi (nat, tau, ityp, at, a0, r0, tau1, tau2, xdim, ydim) 20 STOP DEALLOCATE (z) DEALLOCATE (rhoo, x , y ) DEALLOCATE (tau, ityp, z) DEALLOCATE (rhoi, xi, yi) END PROGRAM plotrho ! !----------------------------------------------------------------------- SUBROUTINE cplot (d, imax, jmax, x, xmin, xmax, iub, y, ymin, & ymax, jub, nc, z, xdim, ydim, xs, ys, str, filename) !----------------------------------------------------------------------- ! ! draws a contour plot of d(i,j). PostScript output on unit 1 ! F.Gygi Dec.15 1987 - P. Giannozzi Oct.6 1989 and later ! Algorithm by Paul D. Bourke, Byte magazine, june 1987, p. 143 ! d(0:imax,0:jmax) contains the function to plot ! x(0:imax) workspace ! xmin,xmax determines the range of the variable x ! iub is the number of intervals along the x axis (<=imax) ! y(0:jmax) workspace ! idem for ymin,ymax and jub (<=jmax) ! nc is the number of levels wanted ( <=ncmax), ! z(0:nc) are the levels, ! xdim and ydim are the physical dimensions of the figure in cm ! xs and ys determine a shift of the origin in cm IMPLICIT NONE INTEGER, PARAMETER :: DP = selected_real_kind(14,200) INTEGER :: imax, jmax, iub, jub, nc real(DP) :: d (0:imax, 0:jmax), x (0:imax), y (0:jmax), z (0:nc) real(DP) :: xmin, xmax, ymin, ymax, xdim, ydim, xs, ys CHARACTER (len=*) :: filename, str INTEGER, PARAMETER :: ncmax = 19 INTEGER :: i, j, k real(DP) :: gray (0:ncmax), dim real(DP) :: cm = 28.453d0, width=0.5d0, gray0=1.0d0, deltagray=0.7d0 ! cm : number of points per cm ! width: linewidth of the contour plot for PostScript printer OPEN (unit = 1, file = filename, status = 'unknown', form = & 'formatted') IF (nc > ncmax .or. nc < 1) STOP ' nc too big or wrong' IF (iub > imax .or.iub < 1) STOP ' iub too big or wrong' IF (jub > jmax .or.jub < 1) STOP ' jub too big or wrong' IF (xdim < 3.0d0 .or. ydim < 3.0d0) STOP ' really too small!' IF (xdim > 20.0.or. ydim > 30.0) STOP ' really too big!' IF (abs (xs) > 20.or. abs (ys) > 30) STOP ' xs or ys are weird' ! initializations for PostScript output WRITE (1, '(a)') '%! PS-Adobe-1.0' WRITE (1, '("%%BoundingBox:",4f6.1)') xs * cm, ys * cm, (xs + & xdim) * cm, (ys + ydim) * cm WRITE (1, '(a)') '/localdict 100 dict def' WRITE (1, '(a)') 'localdict begin' WRITE (1, '(a)') '/cm {28.453 mul} def' WRITE (1, '(a)') '/title {('//str//')} def' WRITE (1, '(a)') '/Times-Roman findfont 12 scalefont setfont' WRITE (1, '(a)') '% cshow prints a centered string at current position' WRITE (1, '(a)') '/cshow {gsave dup stringwidth pop 2 div neg 0' WRITE (1, '(a)') ' rmoveto show grestore} def' WRITE (1, '(a)') '% x1 y1 x2 y2 p : draws a segment from point 1 to point 2' WRITE (1, '(a)') '/p {0 setgray newpath moveto lineto stroke} def' WRITE (1, '(a)') '% x1 y1 x2 y2 x3 y3 x4 y4 sn :' WRITE (1, '(a)') '% fills the region bounded by points 1 to 4' WRITE (1, '(a)') '% with greyscale n' ! type of gray for shaded areas DO k = 0, nc gray (k) = gray0 - k * deltagray / nc IF (k<10) THEN WRITE (1, '("/s",i1," {",f4.2," setgray newpath ", & & "moveto lineto lineto lineto fill} def")') k, gray (k) WRITE (1, '("/t",i1," {",f4.2," setgray newpath ", & & "moveto lineto lineto fill} def")') k, gray (k) ELSE WRITE (1, '("/u",i1," {",f4.2," setgray newpath ", & & "moveto lineto lineto lineto fill} def")') mod (k, 10) , & &gray (k) WRITE (1, '("/v",i1," {",f4.2," setgray newpath ", & & "moveto lineto lineto fill} def")') mod (k, 10) , gray (k & &) ENDIF ENDDO WRITE (1, '(a)') '%%EndPreamble' WRITE (1, '(a)') 'gsave' WRITE (1, '(1x,f6.2," cm ",f6.2," cm translate")') xs, ys WRITE (1, '(a)') '% Uncomment next line if you want a big picture' WRITE (1, '(a)') '% 1.8 1.8 scale' WRITE (1, '(f7.3," setlinewidth")') width WRITE (1, '(a)') '% Comment the next line to remove the title' WRITE (1, '(1x,f6.2," cm ",f6.2," cm moveto title cshow")') & xdim / 2, ydim + 1.5d0 CALL hatch (0.d0, xdim, 0.d0, ydim) DO i = 0, iub x (i) = xdim * dble (i) / iub ENDDO DO j = 0, jub y (j) = ydim * dble (j) / jub ENDDO CALL conrec (imax, iub, jmax, jub, x, y, d, nc, z) ! draw frame of size xdim by ydim WRITE (1, '(a)') '1 setlinewidth 0 setgray newpath' WRITE (1, '(2f6.1," moveto")') 0.0d0, 0.0d0 WRITE (1, '(2f6.1," lineto")') xdim * cm, 0.0d0 WRITE (1, '(2f6.1," lineto")') xdim * cm, ydim * cm WRITE (1, '(2f6.1," lineto")') 0.0d0, ydim * cm WRITE (1, '(a)') 'closepath stroke' ! write (1,'(a)') 'grestore' ! write (1,'(a)') '%%Trailer' ! write (1,'(a)') 'showpage' ! close(1) RETURN END SUBROUTINE cplot SUBROUTINE conrec (imax, iub, jmax, jub, x, y, d, nc, z) IMPLICIT NONE INTEGER, PARAMETER :: DP = selected_real_kind(14,200) INTEGER :: imax, iub, jmax, jub, nc real(DP) :: d (0:imax, 0:jmax), x (0:imax), y (0:jmax), z (0:nc) INTEGER, PARAMETER :: ncmax = 19 CHARACTER (len=4) :: triangle (0:ncmax), trapez (0:ncmax) real(DP) :: h (0:4), xh (0:4), yh (0:4) real(DP) :: x1, y1, x2, y2, x3, y3, x4, y4, dx, dy, xx, yy, dmin, dmax real(DP) :: cm = 28.453d0 ! cm : conversion factor from cm to points for PostScript INTEGER :: ish (0:4), im (0:3), jm (0:3), castab (0:2, 0:2, 0:2) INTEGER :: i, j, k, m, m1, m2, m3, npoint, icase, levelin, nolevel data (im (i), i = 0, 3) / 0, 1, 1, 0 / data (jm (i), i = 0, 3) / 0, 0, 1, 1 / data ( ( (castab (i, j, k), k = 0, 2), j = 0, 2), i = 0, 2) & / 0, 0, 8, 0, 2, 5, 7, 6, 9, 0, 3, 4, 1, 3, 1, 4, 3, 0, 9, 6, 7, & 5, 2, 0, 8, 0, 0 / dy = (y (jub) - y (0) ) / (nc + 1) xx = x (iub) + 1.0d0 dx = 0.5d0 WRITE (1, '(a)') '% Start of Color Code' CALL hatch (xx, xx + dx, y (0), y (jub) ) DO k = 0, nc yy = y (jub) - k * dy WRITE (1, '(8f6.1,$)') xx * cm, yy * cm, (xx + dx) * cm, yy * cm, & (xx + dx) * cm, (yy - dy) * cm, xx * cm, (yy - dy) * cm IF (k < 10) THEN WRITE (triangle (k) , '(" t",i1,1x)') k WRITE (trapez (k) , '(" s",i1,1x)') k ELSE WRITE (triangle (k) , '(" v",i1)') mod (k, 10) WRITE (trapez (k) , '(" u",i1)') mod (k, 10) ENDIF WRITE (1, '(a4)') trapez (k) WRITE (1, * ) '0 setgray newpath' WRITE (1, '(2f6.1," moveto")') xx * cm, yy * cm WRITE (1, '(2f6.1," lineto")') (xx + dx) * cm, yy * cm WRITE (1, '(2f6.1," lineto")') (xx + dx) * cm, (yy - dy) & * cm WRITE (1, '(2f6.1," lineto")') xx * cm, (yy - dy) * cm WRITE (1, * ) 'closepath stroke' WRITE (1, '(2f6.1," moveto")') (x (iub) + 2.0d0) * cm, (yy - dy / & 2) * cm IF (k == 0) THEN WRITE (1, '("(z<",f7.5,") show")') z (0) ELSEIF (k==nc) THEN WRITE (1, '("(z>",f7.5,") show")') z (nc - 1) ELSE WRITE (1, '("(",f7.5,"= dmin .and. z (k) <= dmax) THEN levelin = k GOTO 10 ENDIF ENDDO ! no level in this box: paint the whole box and pass to another box WRITE (1, '(8f6.1,a4)') x (i) * cm, y (j) * cm, x (i + 1) * cm, y & (j) * cm, x (i + 1) * cm, y (j + 1) * cm, x (i) * cm, y (j + 1) & * cm, trapez (nolevel) GOTO 100 ! there is at least a level in this box: paint the whole box 10 CONTINUE WRITE (1, '(8f6.1,a4)') x (i) * cm, y (j) * cm, x (i + 1) * cm, y & (j) * cm, x (i + 1) * cm, y (j + 1) * cm, x (i) * cm, y (j + 1) & * cm, trapez (levelin) DO k = levelin, nc - 1 ! if no more levels in this box, move to another box IF (z (k) >dmax) GOTO 100 ! find contour of zero levels in this box DO m = 1, 4 h (m) = d (i + im (m - 1), j + jm (m - 1) ) - z (k) xh (m) = x (i + im (m - 1) ) yh (m) = y (j + jm (m - 1) ) ENDDO h (0) = (h (1) + h (2) + h (3) + h (4) ) / 4 xh (0) = (x (i) + x (i + 1) ) / 2 yh (0) = (y (j) + y (j + 1) ) / 2 DO m = 0, 4 IF (h (m) >0) THEN ish (m) = 2 ELSEIF (h (m) <0) THEN ish (m) = 0 ELSE ish (m) = 1 ENDIF ENDDO ! scan each triangle in the box to paint shaded areas DO m = 1, 4 m1 = m m2 = 0 m3 = mod (m, 4) + 1 npoint = 0 icase = castab (ish (m1), ish (m2), ish (m3) ) IF (icase == 0) THEN IF (ish (m1) ==2) THEN ! paint this triangle if positive x1 = xh (m1) y1 = yh (m1) x2 = xh (m2) y2 = yh (m2) x3 = xh (m3) y3 = yh (m3) npoint = 3 ENDIF ELSEIF (icase == 1) THEN ! line between vertices m1 and m2 x1 = xh (m1) y1 = yh (m1) x2 = xh (m2) y2 = yh (m2) IF (ish (m3) ==2) THEN x3 = xh (m3) y3 = yh (m3) npoint = 3 ENDIF ELSEIF (icase == 2) THEN ! line between vertices m2 and m3 x1 = xh (m2) y1 = yh (m2) x2 = xh (m3) y2 = yh (m3) IF (ish (m1) == 2) THEN x3 = xh (m1) y3 = yh (m1) npoint = 3 ENDIF ELSEIF (icase == 3) THEN ! line between vertices m3 and m1 x1 = xh (m3) y1 = yh (m3) x2 = xh (m1) y2 = yh (m1) IF (ish (m2) == 2) THEN x3 = xh (m2) y3 = yh (m2) npoint = 3 ENDIF ELSEIF (icase == 4) THEN ! line between vertex m1 and side m2-m3 x1 = xh (m1) y1 = yh (m1) x2 = (h (m3) * xh (m2) - h (m2) * xh (m3) ) / (h (m3) - h (m2) & ) y2 = (h (m3) * yh (m2) - h (m2) * yh (m3) ) / (h (m3) - h (m2) & ) IF (ish (m3) == 2) THEN x3 = xh (m3) y3 = yh (m3) ELSE x3 = xh (m2) y3 = yh (m2) ENDIF npoint = 3 ELSEIF (icase == 5) THEN ! line between vertex m2 and side m3-m1 x1 = xh (m2) y1 = yh (m2) x2 = (h (m1) * xh (m3) - h (m3) * xh (m1) ) / (h (m1) - h (m3) & ) y2 = (h (m1) * yh (m3) - h (m3) * yh (m1) ) / (h (m1) - h (m3) & ) IF (ish (m1) == 2) THEN x3 = xh (m1) y3 = yh (m1) ELSE x3 = xh (m3) y3 = yh (m3) ENDIF npoint = 3 ELSEIF (icase == 6) THEN ! line between vertex m3 and line m1-m2 x1 = xh (m3) y1 = yh (m3) x2 = (h (m2) * xh (m1) - h (m1) * xh (m2) ) / (h (m2) - h (m1) & ) y2 = (h (m2) * yh (m1) - h (m1) * yh (m2) ) / (h (m2) - h (m1) & ) IF (ish (m2) == 2) THEN x3 = xh (m2) y3 = yh (m2) ELSE x3 = xh (m1) y3 = yh (m1) ENDIF npoint = 3 ELSEIF (icase == 7) THEN ! line between sides m1-m2 and m2-m3 x1 = (h (m2) * xh (m1) - h (m1) * xh (m2) ) / (h (m2) - h (m1) & ) y1 = (h (m2) * yh (m1) - h (m1) * yh (m2) ) / (h (m2) - h (m1) & ) x2 = (h (m3) * xh (m2) - h (m2) * xh (m3) ) / (h (m3) - h (m2) & ) y2 = (h (m3) * yh (m2) - h (m2) * yh (m3) ) / (h (m3) - h (m2) & ) IF (ish (m2) == 2) THEN x3 = xh (m2) y3 = yh (m2) npoint = 3 ELSE x3 = xh (m3) y3 = yh (m3) x4 = xh (m1) y4 = yh (m1) npoint = 4 ENDIF ELSEIF (icase == 8) THEN ! line between sides m2-m3 and m3-m1 x1 = (h (m3) * xh (m2) - h (m2) * xh (m3) ) / (h (m3) - h (m2) & ) y1 = (h (m3) * yh (m2) - h (m2) * yh (m3) ) / (h (m3) - h (m2) & ) x2 = (h (m1) * xh (m3) - h (m3) * xh (m1) ) / (h (m1) - h (m3) & ) y2 = (h (m1) * yh (m3) - h (m3) * yh (m1) ) / (h (m1) - h (m3) & ) IF (ish (m3) == 2) THEN x3 = xh (m3) y3 = yh (m3) npoint = 3 ELSE x3 = xh (m1) y3 = yh (m1) x4 = xh (m2) y4 = yh (m2) npoint = 4 ENDIF ELSEIF (icase == 9) THEN ! line between sides m3-m1 and m1-m2 x1 = (h (m1) * xh (m3) - h (m3) * xh (m1) ) / (h (m1) - h (m3) & ) y1 = (h (m1) * yh (m3) - h (m3) * yh (m1) ) / (h (m1) - h (m3) & ) x2 = (h (m2) * xh (m1) - h (m1) * xh (m2) ) / (h (m2) - h (m1) & ) y2 = (h (m2) * yh (m1) - h (m1) * yh (m2) ) / (h (m2) - h (m1) & ) IF (ish (m1) == 2) THEN x3 = xh (m1) y3 = yh (m1) npoint = 3 ELSE x3 = xh (m2) y3 = yh (m2) x4 = xh (m3) y4 = yh (m3) npoint = 4 ENDIF ENDIF IF (npoint == 3) THEN WRITE (1, '(6f6.1,a4)') x1 * cm, y1 * cm, x2 * cm, y2 * cm, x3 & * cm, y3 * cm, triangle (k + 1) ELSEIF (npoint == 4) THEN WRITE (1, '(8f6.1,a4)') x1 * cm, y1 * cm, x2 * cm, y2 * cm, x3 & * cm, y3 * cm, x4 * cm, y4 * cm, trapez (k + 1) ENDIF IF (icase/=0) WRITE (1, '(4f6.1," p")') x1 * cm, y1 * cm, x2 * & cm, y2 * cm ENDDO ENDDO 100 CONTINUE ENDDO ENDDO ! RETURN END SUBROUTINE conrec ! !----------------------------------------------------------------------- SUBROUTINE atomi (nat, tau, ityp, at, a0, r0, tau1, tau2, xdim, ydim) !----------------------------------------------------------------------- ! IMPLICIT NONE INTEGER, PARAMETER :: DP = selected_real_kind(14,200) INTEGER :: nat, ityp (nat) real(DP) :: tau (3, nat), at (3, 3), r0 (3), tau1 (3), tau2 (3), a0 real(DP) :: xdim, ydim INTEGER :: n1, n2, n3, i, n real(DP) :: r (3), ri (3), tau1n, tau2n, delta0, r1, r2, r3 real(DP) :: delta = 1.0d0, cm = 28.453d0 ! delta0 = delta / a0 tau1n = sqrt (tau1 (1) **2 + tau1 (2) **2 + tau1 (3) **2) tau2n = sqrt (tau2 (1) **2 + tau2 (2) **2 + tau2 (3) **2) ! clip the rectangle WRITE (1, '(a)') 'gsave newpath' WRITE (1, '(2f6.1," moveto")') 0.0d0, 0.0d0 WRITE (1, '(2f6.1," lineto")') xdim * cm, 0.0d0 WRITE (1, '(2f6.1," lineto")') xdim * cm, ydim * cm WRITE (1, '(2f6.1," lineto")') 0.0d0, ydim * cm WRITE (1, '(a)') 'closepath clip stroke' ! really bad algorithm to generate (hopefully) all atoms ! that are inside the contour plane or at |z| < delta (a.u.) DO n1 = - 3, + 3 DO n2 = - 3, + 3 DO n3 = - 3, + 3 DO i = 1, 3 r (i) = n1 * at (i, 1) + n2 * at (i, 2) + n3 * at (i, 3) ENDDO DO n = 1, nat DO i = 1, 3 ri (i) = tau (i, n) + r (i) - r0 (i) ENDDO ! this is the component along direction 1 ... r1 = (ri (1) * tau1 (1) + ri (2) * tau1 (2) + ri (3) * tau1 (3))& / tau1n IF (r1 > - delta0 .and. r1 < tau1n + delta0) THEN ! and this is along direction 2 ... r2 = (ri (1) * tau2(1) + ri (2) * tau2(2) + ri (3) * tau2(3))& / tau2n IF (r2 > - delta0 .and. r2 < tau2n + delta0) THEN DO i = 1, 3 ri (i) = ri (i) - r1 * tau1 (i) / tau1n & - r2 * tau2 (i) / tau2n ENDDO r3 = sqrt (ri (1) **2 + ri (2) **2 + ri (3) **2) ! and this is along the direction orthogonal to plane IF (abs (r3) < delta0) THEN WRITE (1, '(3f6.1," 0 360 arc gsave ",f4.2, & & " setgray fill grestore stroke")') & r1 / tau1n * xdim * cm, r2 / tau2n * ydim * cm,& delta0 / tau1n * xdim * cm, abs (r3) / delta0 ENDIF ENDIF ENDIF ENDDO ENDDO ENDDO ENDDO ! WRITE (1, '(a)') 'grestore' WRITE (1, '(a)') 'grestore' WRITE (1, '(a)') '%%Trailer' WRITE (1, '(a)') 'showpage' CLOSE (1) RETURN END SUBROUTINE atomi SUBROUTINE hatch (x1, x2, y1, y2) IMPLICIT NONE INTEGER, PARAMETER :: DP = selected_real_kind(14,200) real(DP) :: x1, x2, y1, y2 real(DP) :: cm = 28.453d0, delta = 0.2d0, dim INTEGER :: nhach, n WRITE (1, '(a)') '% Beginning of hatching' WRITE (1, '(a)') 'gsave newpath' WRITE (1, '(2f6.1," moveto")') x1 * cm, y1 * cm WRITE (1, '(2f6.1," lineto")') x2 * cm, y1 * cm WRITE (1, '(2f6.1," lineto")') x2 * cm, y2 * cm WRITE (1, '(2f6.1," lineto")') x1 * cm, y2 * cm WRITE (1, '(a)') 'closepath clip' dim = max (x2 - x1, y2 - y1) nhach = dim / delta ! delta=dim/nhach DO n = 1, nhach WRITE (1, '(4f6.1," p")') (x1 + (n - 1) * delta) * cm, y1 * cm, & (x1 + dim) * cm, (y1 + dim - (n - 1) * delta) * cm WRITE (1, '(4f6.1," p")') x1 * cm, (y1 + (n - 1) * delta) & * cm, (x1 + dim - (n - 1) * delta) * cm, (y1 + dim) * cm ENDDO WRITE (1, '(a)') 'grestore' WRITE (1, '(a)') '% End of hatching' RETURN END SUBROUTINE hatch ! !----------------------------------------------------------------------- SUBROUTINE psplot ( d, imax, x, iub, y, jub, nlevels, z, & xdim, ydim, xs, ys, filename) !----------------------------------------------------------------------- ! ! draws a contour plot of d(i,j). PostScript output on unit 1 ! ! d(0:imax,0:jub) contains the function to plot on a uniform 2d grid ! x(0:iub) workspace ! iub is the number of intervals along the x axis (<=imax) ! y(0:jub) workspace ! jub is the number of intervals along the y axis ! nlevels is the number of levels wanted ! z(0:nlevels) are the levels ! xdim and ydim are the physical dimensions of the figure in cm ! xs and ys determine a shift of the origin in cm IMPLICIT NONE INTEGER, PARAMETER :: DP = selected_real_kind(14,200) INTEGER, PARAMETER :: ncontourmax=100, npointmax=500, nmaxtypes=8 INTEGER :: imax, iub, jub, nlevels real(DP) :: d(0:imax,0:jub), x(0:imax), y(0:jub), z(0:nlevels), & xdim, ydim, xs, ys ! real(DP) :: line(2,npointmax,ncontourmax), work(2,npointmax), & segments(2,2,npointmax*ncontourmax), yy, dy INTEGER :: npoints(ncontourmax), ncontours, i, j, k, l, npts real(DP), PARAMETER :: cm = 28.453d0 LOGICAL :: lwork(npointmax*ncontourmax) CHARACTER (len=256) :: filename, linetype(nmaxtypes) data linetype & / '[1 2 ] 0 setdash 0.5 setlinewidth', & '[1 2 4 2] 0 setdash', & '[4 2 ] 0 setdash', & '[ ] 0 setdash', & '[1 2 ] 0 setdash 1.0 setlinewidth', & '[1 2 4 2] 0 setdash', & '[4 2 ] 0 setdash', & '[ ] 0 setdash'/ OPEN (unit = 1, file = filename, status = 'unknown', form = & 'formatted') IF(nlevels < 1) STOP ' nunmber of levels is wrong' IF(iub > imax .or. iub < 1) STOP ' iub too big or wrong' IF(jub < 1) STOP ' jub or wrong' IF(xdim < 3.0d0 .or. ydim < 3.0d0 ) STOP ' really too small!' IF(xdim > 20.0.or. ydim > 30.0) STOP ' really too big!' IF(abs(xs) > 20 .or. abs(ys) > 30) STOP ' xs or ys are weird' ! initializations for PostScript output WRITE (1,'(a)') '%! PS-Adobe-1.0' WRITE (1,'(''%%BoundingBox:'',4f6.1)') & xs*cm, ys*cm,(xs+xdim)*cm,(ys+ydim)*cm WRITE (1,'(a)') '/localdict 100 dict def' WRITE (1,'(a)') 'localdict begin' WRITE (1,'(a)') '/cm {28.453 mul} def' WRITE (1,'(a)') '/title {('//filename//')} def' WRITE (1,'(a)') '/Times-Roman findfont 12 scalefont setfont' WRITE (1,'(a)') '% cshow prints a centered string at current position' WRITE (1,'(a)') '/cshow {gsave dup stringwidth pop 2 div neg 0' WRITE (1,'(a)') ' rmoveto show grestore} def' WRITE (1,'(a)') '% x1 y1 nm x2 y2 ...xn yn n-1 lrs :' WRITE (1,'(a)') '% draws a line from point 1 to point n' WRITE (1,'(a)') '/nm {newpath moveto} def' WRITE (1,'(a)') '/lrs {{lineto} repeat stroke} def' WRITE (1,'(a)') '%%EndPreamble' WRITE (1,'(a)') 'gsave' WRITE (1,'(a)') '0 setgray' WRITE (1,'(1x,f6.2,'' cm '',f6.2,'' cm translate'')') xs, ys WRITE (1,'(1x,f6.2,'' cm '',f6.2,'' cm moveto title cshow'')') & xdim/2, ydim+1.5d0 ! DO i=0,iub x(i)=xdim*dble(i)/iub ENDDO DO j=0,jub y(j)=ydim*dble(j)/jub ENDDO DO k=1,nlevels-1 IF (z(k)<=z(k-1)) STOP ' order of levels' ENDDO yy=y(jub)*0.75d0 dy=(y(jub)-y(0))/(nlevels-1)/2 DO k=0,nlevels-1 ! type of line WRITE (1,'(''%% This is level '',i3)') k WRITE (1,'(50a)') linetype(mod(k,nmaxtypes)+1) WRITE (1,*) ' newpath ' WRITE (1,'(2f6.1,'' moveto'')') (x(iub)+1.0d0)*cm, yy*cm WRITE (1,'(2f6.1,'' lineto'')') (x(iub)+1.8d0)*cm, yy*cm WRITE (1,*) 'closepath stroke' WRITE (1,'(2f6.1,'' moveto'')') (x(iub)+2.0d0)*cm, yy*cm WRITE (1,'(''( z = '',f6.3,'') show'')') z(k) yy=yy-dy CALL findcontours ( d, imax, iub, jub, x, y, z(k), segments, work, & lwork, npointmax, ncontourmax, line, npoints, ncontours) DO l=1,ncontours WRITE (1,'(12f6.1)') & ( line(1,npts,l)*cm, line(2,npts,l)*cm, npts=npoints(l),1,-1 ) WRITE (1,'(''nm'',i4,'' lrs'')') npoints(l)-1 ENDDO ENDDO ! draw frame of size xdim by ydim WRITE (1,*) '[] 0 setdash 1 setlinewidth 0 setgray newpath' WRITE (1,'(2f6.1,'' moveto'')') 0.0d0,0.0d0 WRITE (1,'(2f6.1,'' lineto'')') xdim*cm,0.0d0 WRITE (1,'(2f6.1,'' lineto'')') xdim*cm,ydim*cm WRITE (1,'(2f6.1,'' lineto'')') 0.0d0,ydim*cm WRITE (1,*) 'closepath stroke' ! write (1,*) 'grestore' ! write (1,'(a)') '%%Trailer' ! write (1,*) 'showpage' RETURN END SUBROUTINE psplot ! SUBROUTINE findcontours (d, imax, iub, jub, x, y, z, segments, work, & done, npointmax, ncontourmax, line, npoints, ncontours) ! IMPLICIT NONE INTEGER, PARAMETER :: DP = selected_real_kind(14,200) INTEGER :: imax, iub, jub, npointmax, ncontourmax, ncontours, & npoints(ncontourmax) real(DP) :: d(0:imax,0:jub),x(0:iub), y(0:jub), z, & line(2,npointmax,ncontourmax), segments(2,2,npointmax*ncontourmax) LOGICAL :: done(npointmax*ncontourmax) ! INTEGER :: i, j, m, i0, j0, m0, nsegments, nsegmax, nseg, nnext, npts, & isame, inext, nleft real(DP) :: epsx, epsy, work(2,npointmax) LOGICAL :: found, start_from_boundary, hit_boundary, loop_closed nsegmax=npointmax*ncontourmax nsegments=0 DO j0=jub-1,0,-1 DO i0=0,iub-1 DO m0=1,4 ! scan boxes and triangles until a contour is found CALL triangle ( d, x, y, z, imax, iub, jub, & i0, j0, m0, found, segments(1,1,nsegments+1) ) IF (found) THEN nsegments=nsegments+1 IF (nsegments > nsegmax) THEN PRINT '('' Erore: nsegments, nsegmax '',2i5)', & nsegments, nsegmax STOP ENDIF ENDIF ENDDO ENDDO ENDDO DO nseg=1,nsegments done(nseg)=.false. ENDDO ncontours=0 nleft=nsegments epsx = 0.0001d0 * (x(1)-x(0)) epsy = 0.0001d0 * (y(1)-y(0)) DO nseg=1,nsegments IF (.not.done(nseg)) THEN ncontours=ncontours+1 IF (ncontours>ncontourmax) THEN PRINT '('' too many ('',i4,'') contours'')', ncontours STOP ENDIF line(1,1,ncontours)=segments(1,1,nseg) line(2,1,ncontours)=segments(2,1,nseg) start_from_boundary = & abs(segments(1,1,nseg)-x( 0)) < epsx .or. & abs(segments(1,1,nseg)-x(iub)) < epsx .or. & abs(segments(2,1,nseg)-y( 0)) < epsy .or. & abs(segments(2,1,nseg)-y(jub)) < epsy ! true if the starting point lies on a boundary nnext=nseg inext=2 npts=1 10 npts=npts+1 IF (npts > npointmax) THEN PRINT '('' too many ('',i5,'') points'')', npts STOP ENDIF line(1,npts,ncontours)=segments(1,inext,nnext) line(2,npts,ncontours)=segments(2,inext,nnext) nleft=nleft-1 done(nnext)=.true. ! check if the loop is closed loop_closed = ( abs(segments(1,inext,nnext) - & line(1,1,ncontours)) < epsx ) .and. & ( abs(segments(2,inext,nnext) - & line(2,1,ncontours)) < epsy ) ! check if the border has been reached hit_boundary = & abs(segments(1,inext,nnext)-x( 0)) < epsx .or. & abs(segments(1,inext,nnext)-x(iub)) < epsx .or. & abs(segments(2,inext,nnext)-y( 0)) < epsy .or. & abs(segments(2,inext,nnext)-y(jub)) < epsy IF (nleft == 0) THEN IF (.not.hit_boundary .and. .not.loop_closed) & PRINT '('' Warning: no more points'')' npoints(ncontours)=npts RETURN ENDIF IF (start_from_boundary) THEN IF (hit_boundary) THEN npoints(ncontours)=npts GOTO 20 ELSEIF (loop_closed) THEN PRINT '('' Warning: loop closed on the boundary ?'')' GOTO 20 ENDIF ELSE IF (loop_closed) THEN npoints(ncontours)=npts GOTO 20 ELSEIF (hit_boundary) THEN DO nnext=1,npts work(1,nnext)=line(1,npts-nnext+1,ncontours) work(2,nnext)=line(2,npts-nnext+1,ncontours) ENDDO DO nnext=1,npts line(1,nnext,ncontours)=work(1,nnext) line(2,nnext,ncontours)=work(2,nnext) ENDDO start_from_boundary=.true. ENDIF ENDIF DO nnext=1,nsegments IF (.not.done(nnext)) THEN DO isame=1,2 found= ( abs(segments(1,isame,nnext) - & line(1,npts,ncontours)) < epsx ) .and. & ( abs(segments(2,isame,nnext) - & line(2,npts,ncontours)) < epsy ) IF (found) THEN inext=mod(isame,2)+1 !inext =1 if isame=2 and vice versa GOTO 10 ENDIF ENDDO ENDIF ENDDO npoints(ncontours)=npts-1 PRINT '('' Warning: next point not found'',i5)', nseg ENDIF 20 CONTINUE ENDDO RETURN END SUBROUTINE findcontours ! SUBROUTINE triangle ( d, x, y, z, imax, iub, jub, i0, j0, m0, found, line ) ! IMPLICIT NONE INTEGER, PARAMETER :: DP = selected_real_kind(14,200) INTEGER :: imax, iub, jub, i0, j0, m0 real(DP) :: d(0:imax,0:jub), x(0:iub), y(0:jub), z, line(2,2) LOGICAL :: found ! real(DP) :: h(0:4), xh(0:4), yh(0:4), dmin, dmax INTEGER :: m, icase, m1, m2, m3, i, j, k, ish(0:4), castab(-1:1,-1:1,-1:1) data (((castab(i,j,k),k=-1,1),j=-1,1),i=-1,1) / & 0 , 0 , 8 , 0 , 2 , 5 , 7 , 6 , 9 , 0 , 3 , 4 , & 1 , 3 , 1 , 4 , 3 , 0 , 9 , 6 , 7 , 5 , 2 , 0 , 8 , 0 , 0 / ! values of the function in the four corners... h (1) = d(i0 ,j0 ) - z h (2) = d(i0+1,j0 ) - z h (3) = d(i0+1,j0+1) - z h (4) = d(i0 ,j0+1) - z dmin=min(h(1),h(2),h(3),h(4)) dmax=max(h(1),h(2),h(3),h(4)) ! return if no contour is found in this box IF ( dmin > 0.0d0 .or. dmax < 0.0d0 ) THEN found=.false. RETURN ENDIF ! xy coordinates of the four corners... xh(1) = x(i0 ) xh(2) = x(i0+1) xh(3) = x(i0+1) xh(4) = x(i0 ) yh(1) = y(j0 ) yh(2) = y(j0 ) yh(3) = y(j0+1) yh(4) = y(j0+1) ! and this is the center of the box h(0) =(h(1)+h(2)+h(3)+h(4))/4.0d0 xh(0)=(x(i0)+x(i0+1))/2.0d0 yh(0)=(y(j0)+y(j0+1))/2.0d0 ! ish=+1 if h>0 ; ish=0 if h=0 ; ish=-1 if h<0 DO m=0,4 ish(m) = nint( sign(1.d0, h(m)) ) IF (h(m) == 0.0d0) ish(m) = 0 ENDDO ! starting triangle m1=m0 m2=0 m3=mod(m0,4)+1 icase=castab(ish(m1),ish(m2),ish(m3)) IF (icase == 0) THEN ! no contour in this triangle found=.false. RETURN ! NOTA BENE: if there is a point on the boundary, ! this is always chosen to be the first point ELSEIF (icase == 1) THEN ! line between vertices m1 and m2 line(1,1)=xh(m1) line(2,1)=yh(m1) line(1,2)=xh(m2) line(2,2)=yh(m2) ELSEIF (icase == 2) THEN ! line between vertices m2 and m3 line(1,1)=xh(m3) line(2,1)=yh(m3) line(1,2)=xh(m2) line(2,2)=yh(m2) ELSEIF (icase == 3) THEN ! line between vertices m3 and m1 line(1,1)=xh(m3) line(2,1)=yh(m3) line(1,2)=xh(m1) line(2,2)=yh(m1) ELSEIF (icase == 4) THEN ! line between vertex m1 and side m2-m3 line(1,1)=xh(m1) line(2,1)=yh(m1) line(1,2)=(h(m3)*xh(m2)-h(m2)*xh(m3))/(h(m3)-h(m2)) line(2,2)=(h(m3)*yh(m2)-h(m2)*yh(m3))/(h(m3)-h(m2)) ELSEIF (icase == 5) THEN ! line between vertex m2 and side m3-m1 line(1,1)=(h(m1)*xh(m3)-h(m3)*xh(m1))/(h(m1)-h(m3)) line(2,1)=(h(m1)*yh(m3)-h(m3)*yh(m1))/(h(m1)-h(m3)) line(1,2)=xh(m2) line(2,2)=yh(m2) ELSEIF (icase == 6) THEN ! line between vertex m3 and line m1-m2 line(1,1)=xh(m3) line(2,1)=yh(m3) line(1,2)=(h(m2)*xh(m1)-h(m1)*xh(m2))/(h(m2)-h(m1)) line(2,2)=(h(m2)*yh(m1)-h(m1)*yh(m2))/(h(m2)-h(m1)) ELSEIF (icase == 7) THEN ! line between sides m1-m2 and m2-m3 line(1,1)=(h(m2)*xh(m1)-h(m1)*xh(m2))/(h(m2)-h(m1)) line(2,1)=(h(m2)*yh(m1)-h(m1)*yh(m2))/(h(m2)-h(m1)) line(1,2)=(h(m3)*xh(m2)-h(m2)*xh(m3))/(h(m3)-h(m2)) line(2,2)=(h(m3)*yh(m2)-h(m2)*yh(m3))/(h(m3)-h(m2)) ELSEIF (icase == 8) THEN ! line between sides m2-m3 and m3-m1 line(1,1)=(h(m1)*xh(m3)-h(m3)*xh(m1))/(h(m1)-h(m3)) line(2,1)=(h(m1)*yh(m3)-h(m3)*yh(m1))/(h(m1)-h(m3)) line(1,2)=(h(m3)*xh(m2)-h(m2)*xh(m3))/(h(m3)-h(m2)) line(2,2)=(h(m3)*yh(m2)-h(m2)*yh(m3))/(h(m3)-h(m2)) ELSEIF (icase == 9) THEN ! line between sides m3-m1 and m1-m2 line(1,1)=(h(m1)*xh(m3)-h(m3)*xh(m1))/(h(m1)-h(m3)) line(2,1)=(h(m1)*yh(m3)-h(m3)*yh(m1))/(h(m1)-h(m3)) line(1,2)=(h(m2)*xh(m1)-h(m1)*xh(m2))/(h(m2)-h(m1)) line(2,2)=(h(m2)*yh(m1)-h(m1)*yh(m2))/(h(m2)-h(m1)) ENDIF found=.true. RETURN END SUBROUTINE triangle espresso-5.1/PP/src/punch_plot.f900000644000175000017500000002672012341372773015123 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE punch_plot (filplot, plot_num, sample_bias, z, dz, & emin, emax, kpoint, kband, spin_component, lsign, epsilon) !----------------------------------------------------------------------- ! ! This subroutine writes on output several quantities ! in a real space 3D mesh for subsequent processing or plotting ! The integer variable plot_num is used to choose the output quantity ! See file Doc/INPUT_PP.* for a description of plotted quantities ! ! The output quantity is written (formatted) on file filplot. ! USE kinds, ONLY : DP USE constants, ONLY : rytoev USE cell_base, ONLY : at, bg, omega, alat, celldm, ibrav USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv, atm USE run_info, ONLY : title USE extfield, ONLY : tefield, dipfield USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft, invfft USE gvect, ONLY : gcutm USE gvecs, ONLY : dual USE klist, ONLY : nks, nkstot, xk USE lsda_mod, ONLY : nspin, current_spin USE ener, ONLY : ehart USE io_global, ONLY : stdout, ionode USE scf, ONLY : rho, vltot, v USE wvfct, ONLY : npw, nbnd, wg, igk, ecutwfc USE noncollin_module, ONLY : noncolin USE fft_base, ONLY : grid_gather USE paw_postproc, ONLY : PAW_make_ae_charge IMPLICIT NONE CHARACTER(len=*) :: filplot INTEGER :: kpoint, kband, spin_component, plot_num LOGICAL :: lsign REAL(DP) :: sample_bias, dummy REAL(DP) :: emin, emax, z, dz, charge, epsilon INTEGER :: is, ipol, istates #ifdef __MPI ! auxiliary vector (parallel case) REAL(DP), ALLOCATABLE :: raux1 (:) #endif ! auxiliary vector REAL(DP), ALLOCATABLE :: raux (:), raux2(:,:) IF (filplot == ' ') RETURN #ifdef __MPI ALLOCATE (raux1( dfftp%nr1x * dfftp%nr2x * dfftp%nr3x)) #endif WRITE( stdout, '(/5x,"Calling punch_plot, plot_num = ",i3)') plot_num IF (plot_num == 7 ) & WRITE( stdout, '(/5x,"Plotting k_point = ",i3," band =", i3 )') & kpoint, kband IF (plot_num == 7 .and. noncolin .and. spin_component /= 0 ) & WRITE( stdout, '(/5x,"Plotting spin magnetization ipol = ",i3)') & spin_component ! ALLOCATE (raux(dfftp%nnr)) ! ! Here we decide which quantity to plot ! IF (plot_num == 0) THEN ! ! plot of the charge density ! IF (noncolin) THEN CALL dcopy (dfftp%nnr, rho%of_r, 1, raux, 1) ELSE IF (spin_component == 0) THEN CALL dcopy (dfftp%nnr, rho%of_r (1, 1), 1, raux, 1) DO is = 2, nspin CALL daxpy (dfftp%nnr, 1.d0, rho%of_r (1, is), 1, raux, 1) ENDDO ELSE IF (nspin == 2) current_spin = spin_component CALL dcopy (dfftp%nnr, rho%of_r (1, current_spin), 1, raux, 1) CALL dscal (dfftp%nnr, 0.5d0 * nspin, raux, 1) ENDIF ENDIF ELSEIF (plot_num == 1) THEN ! ! The total self-consistent potential V_H+V_xc on output ! IF (noncolin) THEN CALL dcopy (dfftp%nnr, v%of_r, 1, raux, 1) ELSE IF (spin_component == 0) THEN CALL dcopy (dfftp%nnr, v%of_r, 1, raux, 1) DO is = 2, nspin CALL daxpy (dfftp%nnr, 1.0d0, v%of_r (1, is), 1, raux, 1) ENDDO CALL dscal (dfftp%nnr, 1.d0 / nspin, raux, 1) ELSE IF (nspin == 2) current_spin = spin_component CALL dcopy (dfftp%nnr, v%of_r (1, current_spin), 1, raux, 1) ENDIF ENDIF CALL daxpy (dfftp%nnr, 1.0d0, vltot, 1, raux, 1) ELSEIF (plot_num == 2) THEN ! ! The local pseudopotential on output ! CALL dcopy (dfftp%nnr, vltot, 1, raux, 1) ELSEIF (plot_num == 3) THEN ! ! The local density of states at e_fermi on output ! IF (noncolin) CALL errore('punch_plot','not implemented yet',1) CALL local_dos (1, lsign, kpoint, kband, spin_component, emin, emax, raux) ELSEIF (plot_num == 4) THEN ! ! The local density of electronic entropy on output ! IF (noncolin) CALL errore('punch_plot','not implemented yet',1) CALL local_dos (2, lsign, kpoint, kband, spin_component, emin, emax, raux) ELSEIF (plot_num == 5) THEN IF (noncolin) CALL errore('punch_plot','not implemented yet',1) #ifdef __MPI CALL stm (sample_bias, raux1, istates) #else CALL stm (sample_bias, raux, istates) #endif WRITE (title, '(" Bias in eV = ",f10.4," # states",i4)') & sample_bias * rytoev, istates ELSEIF (plot_num == 6) THEN ! ! plot of the spin polarisation ! IF (nspin == 2) THEN CALL dcopy (dfftp%nnr, rho%of_r (1, 1), 1, raux, 1) CALL daxpy (dfftp%nnr, - 1.d0, rho%of_r (1, 2), 1, raux, 1) ELSE raux(:) = 0.d0 ENDIF ELSEIF (plot_num == 7) THEN IF (noncolin) THEN IF (spin_component==0) THEN CALL local_dos (0, lsign, kpoint, kband, spin_component, emin, emax, raux) ELSE CALL local_dos_mag (spin_component, kpoint, kband, raux) ENDIF ELSE CALL local_dos (0, lsign, kpoint, kband, spin_component, emin, emax, raux) ENDIF ELSEIF (plot_num == 8) THEN IF (noncolin) & CALL errore('punch_plot','elf+noncolin not yet implemented',1) CALL do_elf (raux) ELSEIF (plot_num == 9) THEN ! ! plot of the charge density minus the atomic rho ! allocate (raux2(dfftp%nnr,nspin)) raux2 = 0.d0 call atomic_rho(raux2, nspin) rho%of_r(:,:) = rho%of_r(:,:) - raux2 deallocate (raux2) IF (noncolin) THEN CALL dcopy (dfftp%nnr, rho%of_r, 1, raux, 1) ELSE IF (spin_component == 0) THEN CALL dcopy (dfftp%nnr, rho%of_r (1, 1), 1, raux, 1) DO is = 2, nspin CALL daxpy (dfftp%nnr, 1.d0, rho%of_r (1, is), 1, raux, 1) ENDDO ELSE IF (nspin == 2) current_spin = spin_component CALL dcopy (dfftp%nnr, rho%of_r (1, current_spin), 1, raux, 1) CALL dscal (dfftp%nnr, 0.5d0 * nspin, raux, 1) ENDIF ENDIF ELSEIF (plot_num == 10) THEN CALL local_dos (3, lsign, kpoint, kband, spin_component, emin, emax, raux) ELSEIF (plot_num == 11) THEN raux(:) = vltot(:) IF (nspin == 2) THEN rho%of_g(:,1) = rho%of_g(:,1) + rho%of_g(:,2) rho%of_r (:,1) = rho%of_r (:,1) + rho%of_r (:,2) nspin = 1 ENDIF CALL v_h (rho%of_g, ehart, charge, raux) IF (tefield.and.dipfield) CALL add_efield(raux,dummy,rho%of_r,.true.) ELSEIF (plot_num == 12) THEN raux=0.d0 IF (tefield) THEN CALL add_efield(raux,dummy,rho%of_r,.true.) ELSE CALL infomsg ('punch_plot','e_field is not calculated') ENDIF ELSEIF (plot_num == 13) THEN IF (noncolin) THEN IF (spin_component==0) THEN raux(:) = sqrt(rho%of_r(:,2)**2 + rho%of_r(:,3)**2 + rho%of_r(:,4)**2 ) ELSEIF (spin_component >= 1 .or. spin_component <=3) THEN raux(:) = rho%of_r(:,spin_component+1) ELSE CALL errore('punch_plot','spin_component not allowed',1) ENDIF ELSE CALL errore('punch_plot','noncollinear spin required',1) ENDIF ELSEIF (plot_num == 14 .or. plot_num == 15 .or. plot_num == 16 ) THEN ipol = plot_num - 13 CALL polarization ( spin_component, ipol, epsilon, raux ) ELSEIF (plot_num == 17) THEN WRITE(stdout, '(7x,a)') "Reconstructing all-electron valence charge." ! code partially duplicate from plot_num=0, should be unified CALL init_us_1() CALL PAW_make_ae_charge(rho) ! IF (spin_component == 0) THEN CALL dcopy (dfftp%nnr, rho%of_r (1, 1), 1, raux, 1) DO is = 2, nspin CALL daxpy (dfftp%nnr, 1.d0, rho%of_r (1, is), 1, raux, 1) ENDDO ELSE IF (nspin == 2) current_spin = spin_component CALL dcopy (dfftp%nnr, rho%of_r (1, current_spin), 1, raux, 1) CALL dscal (dfftp%nnr, 0.5d0 * nspin, raux, 1) ENDIF ELSEIF (plot_num == 18) THEN IF (noncolin) THEN IF (spin_component==0) THEN raux(:) = sqrt(v%of_r(:,2)**2 + v%of_r(:,3)**2 + v%of_r(:,4)**2 ) ELSEIF (spin_component >= 1 .or. spin_component <=3) THEN raux(:) = v%of_r(:,spin_component+1) ELSE CALL errore('punch_plot','spin_component not allowed',1) ENDIF ELSE CALL errore('punch_plot','B_xc available only when noncolin=.true.',1) ENDIF ELSEIF (plot_num == 19) THEN ! ! Reduced density gradient ! IF (noncolin) CALL errore('punch_plot','rdg+noncolin not yet implemented',1) CALL do_rdg (raux) ! in elf.f90 ELSEIF (plot_num == 20) THEN ! ! Density * second eigenvalue of Hessian of density (for coloring RDG plots) ! IF (noncolin) CALL errore('punch_plot','rdg+noncolin not yet implemented',1) CALL do_sl2rho (raux) ! in elf.f90 ELSE CALL infomsg ('punch_plot', 'plot_num not implemented') ENDIF #ifdef __MPI IF (.not. (plot_num == 5 ) ) CALL grid_gather (raux, raux1) IF ( ionode ) & CALL plot_io (filplot, title, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, & dfftp%nr1, dfftp%nr2, dfftp%nr3, nat, ntyp, ibrav, celldm, at, & gcutm, dual, ecutwfc, plot_num, atm, ityp, zv, tau, raux1, + 1) DEALLOCATE (raux1) #else CALL plot_io (filplot, title, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, & dfftp%nr1, dfftp%nr2, dfftp%nr3, nat, ntyp, ibrav, celldm, at,& gcutm, dual, ecutwfc, plot_num, atm, ityp, zv, tau, raux, + 1) #endif DEALLOCATE (raux) RETURN END SUBROUTINE punch_plot SUBROUTINE polarization ( spin_component, ipol, epsilon, raux ) ! USE kinds, ONLY : DP USE constants, ONLY : fpi USE fft_base, ONLY: dfftp USE fft_interfaces, ONLY : fwfft, invfft USE lsda_mod, ONLY : nspin USE gvect, ONLY : gstart, ngm, nl, nlm, g, gg USE scf, ONLY: rho USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY: psic ! IMPLICIT NONE INTEGER :: spin_component, ipol, ig REAL(DP) :: epsilon, raux ( dfftp%nnr) ! IF (ipol < 1 .or. ipol > 3) CALL errore('polarization', & 'wrong component',1) ! IF (spin_component == 0) THEN IF (nspin == 1 .or. nspin == 4 ) THEN psic(:) = cmplx(rho%of_r(:,1), 0.d0,kind=DP) ELSEIF (nspin == 2) THEN psic(:) = cmplx(rho%of_r(:,1) + rho%of_r(:,2), 0.d0,kind=DP) ENDIF ELSE IF (spin_component > nspin .or. spin_component < 1) & CALL errore('polarization', 'wrong spin component',1) psic(:) = cmplx(rho%of_r(:,spin_component), 0.d0,kind=DP) ENDIF ! ! transform to G space ! CALL fwfft ('Dense', psic, dfftp) ! IF (gstart == 2) psic (1) = (epsilon - 1.d0) / fpi DO ig = gstart, ngm psic (nl (ig) ) = psic (nl (ig) ) * g (ipol, ig) / gg (ig) & / (0.d0, 1.d0) IF (gamma_only) psic (nlm(ig) ) = conjg ( psic (nl (ig) ) ) ENDDO ! CALL invfft ('Dense', psic, dfftp) ! raux (:) = dble (psic (:) ) ! RETURN ! END SUBROUTINE polarization espresso-5.1/PP/src/projwfc_box.f900000644000175000017500000003447112341372773015274 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! real-space local DOS code courtesy of Guido Fratesi ! MODULE projections_ldos USE kinds, ONLY : DP REAL (DP), ALLOCATABLE :: proj (:,:,:) END MODULE projections_ldos ! !----------------------------------------------------------------------- SUBROUTINE projwave_boxes( filpdos, filproj, n_proj_boxes, irmin, irmax, plotboxes ) !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout, ionode USE run_info, ONLY: title USE atom USE ions_base, ONLY : zv, tau, nat, ntyp => nsp, ityp, atm USE basis, ONLY : natomwfc USE cell_base USE constants, ONLY: rytoev USE gvect USE gvecs, ONLY: dual USE klist, ONLY: xk, nks, nkstot USE lsda_mod, ONLY: nspin, isk, current_spin, lsda USE wvfct USE control_flags, ONLY: gamma_only USE uspp, ONLY: okvan USE noncollin_module, ONLY: noncolin, npol USE wavefunctions_module, ONLY: evc, psic USE wavefunctions_module, ONLY: psic_nc USE io_files, ONLY : iunwfc, nwordwfc USE scf, ONLY : rho USE projections_ldos, ONLY : proj USE fft_base, ONLY : grid_scatter, dfftp USE fft_interfaces, ONLY : invfft USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum ! ! IMPLICIT NONE ! INTEGER, PARAMETER :: N_MAX_BOXES = 999 CHARACTER (len=256) :: filpdos CHARACTER (len=*) :: filproj INTEGER :: n_proj_boxes, irmin(3,*), irmax(3,*) LOGICAL :: plotboxes ! INTEGER :: ik, ibnd, i, ir, ig, ipol, ibox, ir1, ir2, ir3, c_tab, is, iunproj INTEGER :: nri(3) CHARACTER (len=33) :: filextension CHARACTER (len=256):: fileout COMPLEX(DP), ALLOCATABLE :: caux(:) REAL(DP), ALLOCATABLE :: thetabox(:), raux(:), thetathisproc(:,:), union(:), intersection(:) LOGICAL, ALLOCATABLE :: isInside(:,:) REAL(DP), EXTERNAL :: DDOT REAL(DP), ALLOCATABLE :: boxvolume(:), boxcharge(:) ! WRITE( stdout, '(/5x,"Calling projwave_boxes .... ")') IF ( gamma_only ) THEN WRITE( stdout, '(5x,"gamma-point specific algorithms are used")') ENDIF ! IF (noncolin) THEN WRITE( stdout, '(/5x,"Non spin-resolved DOS will be computed")') ENDIF ! IF (okvan) THEN CALL errore( 'projwave_boxes', 'Augmentation contributions are currently not included to the DOS in boxes',-1) ENDIF ! IF ( ( n_proj_boxes > N_MAX_BOXES ) .or. ( n_proj_boxes < 1 ) ) & CALL errore ('projwave_boxes', 'n_proj_boxes not correct', abs (n_proj_boxes) ) ! ! ... Define functions with values 1.0 ! ... on the specified boxes and 0.0 elsewhere. ! ALLOCATE( thetabox (dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) ) ! ALLOCATE( thetathisproc(dfftp%nnr,1:n_proj_boxes) ) ! ALLOCATE ( isInside ( max(dfftp%nr1,dfftp%nr2,dfftp%nr3), 3 ) ) ! DO ibox = 1, n_proj_boxes ! ! A. Do the three directions independently: nri(1)=dfftp%nr1 nri(2)=dfftp%nr2 nri(3)=dfftp%nr3 DO i = 1, 3 ! boxes include the points in [irmin,irmax] if irmin<=irmax ! and the points in [1,irmax] and [irmin,nr] if irmin > irmax irmin(i,ibox)=mod(irmin(i,ibox),nri(i)) IF (irmin(i,ibox)<=0) irmin(i,ibox)=irmin(i,ibox)+nri(i) irmax(i,ibox)=mod(irmax(i,ibox),nri(i)) IF (irmax(i,ibox)<=0) irmax(i,ibox)=irmax(i,ibox)+nri(i) DO ir = 1, nri(i) IF (irmin(i,ibox)<=irmax(i,ibox)) THEN isInside(ir,i)=(ir>=irmin(i,ibox)).and.(ir<=irmax(i,ibox)) ELSE isInside(ir,i)=(ir>=irmin(i,ibox)).or. (ir<=irmax(i,ibox)) ENDIF ENDDO ENDDO ! ! B. Combine the conditions for the three directions to form a box ir=0 DO ir3 = 1, dfftp%nr3 DO ir2 = 1, dfftp%nr2 DO ir1 = 1, dfftp%nr1 ir=ir+1 IF ( isInside(ir1,1) .and. & isInside(ir2,2) .and. & isInside(ir3,3) ) THEN thetabox(ir)=1._DP ELSE thetabox(ir)=0._DP ENDIF ENDDO ENDDO ! ENDDO ! ! C. Output the functions thetabox in the XCrySDen format, ! so that the projection boxes can be visualised. IF ( ionode .and. plotboxes ) THEN filextension='.box#' ! 123456 c_tab = 6 IF (ibox < 10) THEN WRITE (filextension( c_tab : c_tab ),'(i1)') ibox c_tab = c_tab + 1 ELSEIF (ibox < 100) THEN WRITE (filextension( c_tab : c_tab+1 ),'(i2)') ibox c_tab = c_tab + 2 ELSEIF (ibox < 1000) THEN WRITE (filextension( c_tab : c_tab+2 ),'(i3)') ibox c_tab = c_tab + 3 ELSE CALL errore('projwave_boxes',& 'file extension not supporting so many boxes', n_proj_boxes) ENDIF ! fileout = trim(filpdos)//trim(filextension)//'.xsf' OPEN (4,file=fileout,form='formatted', status='unknown') CALL xsf_struct (alat, at, nat, tau, atm, ityp, 4) CALL xsf_fast_datagrid_3d(thetabox(1:dfftp%nr1x*dfftp%nr2x*dfftp%nr3x),& dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, at, alat, 4) CLOSE (4) ! ENDIF ! #ifdef __MPI CALL grid_scatter ( thetabox(:), thetathisproc(:,ibox) ) #else thetathisproc(:,ibox) = thetabox(1:dfftp%nnr) #endif ! ENDDO ! DEALLOCATE ( isInside ) DEALLOCATE ( thetabox ) ! ! ! ... For each box output the volume and the electronic charge contained ! ALLOCATE ( boxvolume (1:n_proj_boxes) ) ALLOCATE ( boxcharge (1:n_proj_boxes) ) ALLOCATE ( raux (dfftp%nnr) ) ! ! A. Integrate the volume DO ibox = 1, n_proj_boxes boxvolume(ibox) = sum(thetathisproc(1:dfftp%nnr,ibox)) CALL mp_sum ( boxvolume(ibox) , intra_pool_comm ) ENDDO ! ! B1. Copy the total charge density to raux IF (noncolin) THEN CALL DCOPY (dfftp%nnr, rho%of_r, 1, raux, 1) ELSE CALL DCOPY (dfftp%nnr, rho%of_r (1, 1), 1, raux, 1) DO is = 2, nspin CALL DAXPY (dfftp%nnr, 1.d0, rho%of_r (1, is), 1, raux, 1) ENDDO ENDIF ! ! B2. Integrate the charge ! the correct integral has dv = omega/(nr1*nr2*nr3) ! not omega/(nr1x*nr2x*nr3x) . PG 24 Oct 2010 DO ibox = 1, n_proj_boxes boxcharge(ibox) = DDOT(dfftp%nnr,raux(:),1,thetathisproc(:,ibox),1) & & * omega / (dfftp%nr1*dfftp%nr2*dfftp%nr3) CALL mp_sum ( boxcharge(ibox) , intra_pool_comm ) ENDDO ! ! C. Write the result IF (ionode) THEN WRITE (stdout,*) DO ibox = 1, n_proj_boxes WRITE (stdout, & '(5x,"Box #",i3," : vol ",f10.6," % = ",f14.6," (a.u.)^3; ",e13.6," elec")') & ibox, 100* boxvolume(ibox) /(dfftp%nr1*dfftp%nr2*dfftp%nr3), & omega* boxvolume(ibox)/(dfftp%nr1*dfftp%nr2*dfftp%nr3), boxcharge(ibox) ENDDO ENDIF ! DEALLOCATE ( boxvolume , boxcharge ) ! ! ... Here we sum for each k point the contribution ! ... of the wavefunctions to the charge in the specified box ! ALLOCATE( proj(1:n_proj_boxes,nbnd,nkstot) ) proj(:,:,:)=0._DP ! ALLOCATE( caux(dfftp%nnr) ) ! k_loop: DO ik = 1, nks ! IF ( lsda ) current_spin = isk(ik) CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) ! bnd_loop: DO ibnd = 1, nbnd ! IF (noncolin) THEN ! psic_nc = (0.d0,0.d0) DO ig = 1, npw psic_nc(nl(igk(ig)),1)=evc(ig ,ibnd) psic_nc(nl(igk(ig)),2)=evc(ig+npwx,ibnd) ENDDO raux=0._DP DO ipol=1,npol CALL invfft ('Dense', psic_nc(:,ipol), dfftp) raux(:) = raux(:)+dble( psic_nc(:,ipol) )**2 & + aimag( psic_nc(:,ipol) )**2 ENDDO ! ELSE ! caux(1:dfftp%nnr) = (0._DP,0._DP) DO ig = 1, npw caux (nl (igk (ig) ) ) = evc (ig, ibnd) ENDDO IF (gamma_only) THEN DO ig = 1, npw caux (nlm(igk (ig) ) ) = conjg(evc (ig, ibnd)) ENDDO ENDIF CALL invfft ('Dense', caux, dfftp) ! raux(:) = dble( caux(:) )**2 + aimag( caux(:) )**2 ! ENDIF ! ! The contribution of this wavefunction to the LDOS ! integrated in the volume is the projection of the ! squared wfc on a function =1 in the volume itself: ! DO ibox = 1, n_proj_boxes proj(ibox,ibnd,ik) = DDOT(dfftp%nnr,raux(:),1,thetathisproc(:,ibox),1) & & / (dfftp%nr1*dfftp%nr2*dfftp%nr3) ENDDO ! ENDDO bnd_loop ! CALL mp_sum ( proj(:,:,ik) , intra_pool_comm ) ! ENDDO k_loop ! DEALLOCATE ( caux ) DEALLOCATE ( raux ) DEALLOCATE ( thetathisproc ) ! ! vector proj is distributed across the pools ! collect data for all k-points to the first pool ! CALL poolrecover (proj, n_proj_boxes*nbnd, nkstot, nks) ! ! Output the projections IF ( ionode ) THEN IF (filproj/=' ') THEN iunproj=33 CALL write_io_header(filproj, iunproj, title, dfftp%nr1x, dfftp%nr2x, & dfftp%nr3x, dfftp%nr1, dfftp%nr2, dfftp%nr3, nat, ntyp, ibrav, & celldm, at, gcutm, dual, ecutwfc, nkstot,nbnd,natomwfc) DO ibox = 1, n_proj_boxes WRITE (iunproj,'(3i6)') ibox, n_proj_boxes WRITE (iunproj,'(i6,i6,f9.4,e13.6)') & ((ik,ibnd,et(ibnd,ik)*rytoev,proj(ibox,ibnd,ik),ibnd=1,nbnd),ik=1,nkstot) ENDDO CLOSE (iunproj) ENDIF ENDIF ! RETURN ! END SUBROUTINE projwave_boxes ! !----------------------------------------------------------------------- SUBROUTINE partialdos_boxes(Emin, Emax, DeltaE, kresolveddos, filpdos, n_proj_boxes) !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE klist, ONLY: wk, nkstot, degauss, ngauss, lgauss USE lsda_mod, ONLY: nspin, isk, current_spin USE wvfct, ONLY: et, nbnd USE constants, ONLY: rytoev USE projections_ldos, ONLY: proj ! IMPLICIT NONE CHARACTER (len=256) :: filpdos REAL(DP) :: Emin, Emax, DeltaE LOGICAL :: kresolveddos INTEGER :: n_proj_boxes ! CHARACTER (len=33) :: filextension CHARACTER (len=256):: fileout ! INTEGER :: ik, ibnd, ne, ie_mid, ie_delta, ie, is, nkseff, ikeff, ibox, nspin0 REAL(DP) :: etev, delta, Elw, Eup, wkeff REAL(DP), ALLOCATABLE :: dostot(:,:,:), dosbox(:,:,:,:), dosboxtot(:,:,:) REAL(DP), EXTERNAL :: w0gauss ! ! find band extrema ! Elw = et (1, 1) Eup = et (nbnd, 1) DO ik = 2, nkstot Elw = min (Elw, et (1, ik) ) Eup = max (Eup, et (nbnd, ik) ) ENDDO IF (degauss/=0.d0) THEN Eup = Eup + 3d0 * degauss Elw = Elw - 3d0 * degauss ENDIF Emin = max (Emin/rytoev, Elw) Emax = min (Emax/rytoev, Eup) DeltaE = DeltaE/rytoev ne = nint ( (Emax - Emin) / DeltaE+0.500001d0) ! IF (nspin==2) THEN nspin0 = 2 ELSE nspin0 = 1 ENDIF ! IF (kresolveddos) THEN IF ( nspin==2 ) THEN nkseff=nkstot/2 ELSE nkseff=nkstot ENDIF ELSE nkseff=1 ENDIF ! ALLOCATE (dosbox(0:ne,1:n_proj_boxes,nspin0,nkseff)) ALLOCATE (dostot(0:ne,nspin0,nkseff), dosboxtot(0:ne,nspin0,nkseff) ) dosbox(:,:,:,:) = 0.d0 dostot(:,:,:) = 0.d0 dosboxtot(:,:,:)= 0.d0 current_spin = 1 ie_delta = 5 * degauss / DeltaE + 1 ! DO ik = 1,nkstot ! IF (kresolveddos) THEN ! set equal weight to all k-points wkeff=1.D0 ! IF (( nspin==2 ).AND.( isk(ik)==2 )) THEN ikeff=ik-nkstot/2 ELSE ikeff=ik ENDIF ELSE ! use true weights wkeff=wk(ik) ! contributions from all k-points are summed in pdos(:,:,:,ikeff) ikeff=1 ENDIF ! IF ( nspin == 2 ) current_spin = isk ( ik ) DO ibnd = 1, nbnd etev = et(ibnd,ik) ie_mid = nint( (etev-Emin)/DeltaE ) DO ie = max(ie_mid-ie_delta, 0), min(ie_mid+ie_delta, ne) delta = w0gauss((Emin+DeltaE*ie-etev)/degauss,ngauss) & / degauss / rytoev ! DO ibox = 1, n_proj_boxes dosbox(ie,ibox,current_spin,ikeff) = & dosbox(ie,ibox,current_spin,ikeff) + & wkeff * delta * proj (ibox, ibnd, ik) ENDDO ! ! dostot(:,ns,ik) = total DOS (states/eV) for spin "ns" ! for k-point "ik" (or summed over all kp) ! dostot(ie,current_spin,ikeff) = dostot(ie,current_spin,ikeff) + & wkeff * delta ENDDO ENDDO ENDDO ! ! dosboxtot(:,ns,ik) = sum of all projected DOS ! DO ik=1,nkseff DO is=1,nspin0 DO ie=0,ne dosboxtot(ie,is,ik) = sum(dosbox(ie,1:n_proj_boxes,is,ik)) ENDDO ENDDO ENDDO ! fileout = trim(filpdos)//'.ldos_boxes' ! OPEN (4,file=fileout,form='formatted', & status='unknown') IF (kresolveddos) THEN WRITE (4,'("# ik ",$)') ELSE WRITE (4,'("#",$)') ENDIF IF (nspin0 == 2) THEN WRITE (4,'(" E (eV) tot_up(E) tot_dw(E) totldos_up totldos_dw ",$)') ELSE WRITE (4,'(" E (eV) tot(E) totldos ",$)') ENDIF DO ibox=1, n_proj_boxes IF (nspin0 == 2) THEN WRITE(4,'("#",i3," up(E) ",$)') ibox WRITE(4,'("#",i3," dw(E) ",$)') ibox ELSE WRITE(4,'("#",i3," (E) ",$)') ibox ENDIF ENDDO WRITE (4,*) DO ik=1,nkseff DO ie= 0, ne IF (kresolveddos) THEN WRITE (4,'(i5," ",$)') ik ENDIF etev = Emin + ie * DeltaE WRITE (4,'(f7.3,4(2e11.3),999(2e11.3))') etev*rytoev, & dostot(ie,1:nspin0,ik), dosboxtot(ie,1:nspin0,ik), & ( dosbox(ie,ibox,1:nspin0,ik), ibox = 1, n_proj_boxes ) ENDDO IF (kresolveddos) WRITE (4,*) ENDDO CLOSE (4) DEALLOCATE (dostot, dosboxtot) DEALLOCATE (dosbox) ! DEALLOCATE (proj) ! RETURN END SUBROUTINE partialdos_boxes espresso-5.1/PP/src/compute_ppsi.f900000644000175000017500000002750612341372773015462 0ustar mbamba ! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE compute_ppsi (ppsi, ppsi_us, ik, ipol, nbnd_occ, current_spin) !---------------------------------------------------------------------- ! ! On output: ppsi contains P_c^+ p | psi_ik > for the ipol cartesian ! coordinate ! ppsi_us contains the additional term required for US PP. ! See J. Chem. Phys. 120, 9935 (2004) Eq. 10. ! ! (vkb,evc,igk must be set) ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp, ntyp => nsp USE cell_base, ONLY : tpiba USE io_global, ONLY : stdout USE wavefunctions_module, ONLY : evc USE wvfct, ONLY : et, nbnd, npwx, npw, igk, g2kin USE uspp, ONLY : nkb, vkb, deeq, qq, qq_so, deeq_nc, okvan USE spin_orb, ONLY : lspinorb USE lsda_mod, ONLY : nspin USE gvect, ONLY : g USE klist, ONLY : xk, nks USE noncollin_module, ONLY : noncolin, npol USE becmod, ONLY : bec_type, becp, calbec USE uspp_param, ONLY : nh, nhm IMPLICIT NONE ! INTEGER, INTENT(in) :: ipol, ik, nbnd_occ, current_spin ! COMPLEX(DP) :: ppsi(npwx,npol,nbnd_occ), ppsi_us(npwx,npol,nbnd_occ) ! Local variables ! INTEGER :: ig, na, ibnd, ikb, jkb, nt, ih, jh, ip, ijkb0 ! counters REAL(DP), ALLOCATABLE :: gk (:,:) ! the derivative of |k+G| REAL(DP) :: vers(3) COMPLEX(DP), ALLOCATABLE :: ps2(:,:,:), dvkb (:,:), dvkb1 (:,:), & work (:,:), becp2(:,:), becp2_nc(:,:,:), psc(:,:,:,:), ps(:), & ps_nc(:,:), dpqq_so(:,:,:,:,:) REAL(DP), ALLOCATABLE :: dpqq(:,:,:,:) COMPLEX(DP), EXTERNAL :: zdotc ! ALLOCATE (work ( npwx, max(nkb,1))) ALLOCATE (gk ( 3, npwx)) IF (nkb > 0) THEN IF (noncolin) THEN ALLOCATE (becp2_nc (nkb, npol, nbnd)) ELSE ALLOCATE (becp2 (nkb, nbnd)) ENDIF ALLOCATE (dvkb (npwx, nkb)) ALLOCATE (dvkb1(npwx, nkb)) dvkb (:,:) = (0.d0, 0.d0) dvkb1(:,:) = (0.d0, 0.d0) ENDIF DO ig = 1, npw gk (1, ig) = (xk (1, ik) + g (1, igk (ig) ) ) * tpiba gk (2, ig) = (xk (2, ik) + g (2, igk (ig) ) ) * tpiba gk (3, ig) = (xk (3, ik) + g (3, igk (ig) ) ) * tpiba g2kin (ig) = gk (1, ig) **2 + gk (2, ig) **2 + gk (3, ig) **2 ENDDO ! ! this is the kinetic contribution to p : (k+G)_ipol * psi ! DO ip=1,npol DO ibnd = 1, nbnd_occ DO ig = 1, npw ppsi(ig,ip,ibnd)=gk(ipol,ig)*evc(ig+npwx*(ip-1),ibnd) ENDDO ENDDO ENDDO ! ! and this is the contribution from nonlocal pseudopotentials ! CALL gen_us_dj (ik, dvkb) vers=0.d0 vers(ipol)=1.d0 CALL gen_us_dy (ik, vers, dvkb1) DO ig = 1, npw IF (g2kin (ig) < 1.0d-10) THEN gk (1, ig) = 0.d0 gk (2, ig) = 0.d0 gk (3, ig) = 0.d0 ELSE gk (1, ig) = gk (1, ig) / sqrt (g2kin (ig) ) gk (2, ig) = gk (2, ig) / sqrt (g2kin (ig) ) gk (3, ig) = gk (3, ig) / sqrt (g2kin (ig) ) ENDIF ENDDO jkb = 0 DO nt = 1, ntyp DO na = 1, nat IF (nt == ityp (na)) THEN DO ikb = 1, nh (nt) jkb = jkb + 1 DO ig = 1, npw work (ig,jkb)=dvkb1(ig,jkb)+dvkb(ig,jkb)*gk(ipol,ig) ENDDO ENDDO ENDIF ENDDO ENDDO DEALLOCATE (gk) IF (noncolin) THEN CALL calbec ( npw, work, evc, becp2_nc ) ELSE CALL calbec ( npw, work, evc, becp2 ) ENDIF ijkb0 = 0 IF (noncolin) THEN ALLOCATE (psc( nkb, 2, nbnd_occ, 2)) psc=(0.d0,0.d0) ELSE ALLOCATE (ps2( nkb, nbnd_occ, 2)) ps2=(0.d0,0.d0) ENDIF DO nt = 1, ntyp DO na = 1, nat IF (nt == ityp (na)) THEN DO ih = 1, nh (nt) ikb = ijkb0 + ih DO jh = 1, nh (nt) jkb = ijkb0 + jh DO ibnd = 1, nbnd_occ IF (noncolin) THEN IF (lspinorb) THEN psc(ikb,1,ibnd,1)=psc(ikb,1,ibnd,1)+(0.d0,-1.d0)* & (becp2_nc(jkb,1,ibnd)*(deeq_nc(ih,jh,na,1) & -et(ibnd,ik)*qq_so(ih,jh,1,nt) )+ & becp2_nc(jkb,2,ibnd)*(deeq_nc(ih,jh,na,2)- & et(ibnd,ik)* qq_so(ih,jh,2,nt) ) ) psc(ikb,2,ibnd,1)=psc(ikb,2,ibnd,1)+(0.d0,-1.d0)* & (becp2_nc(jkb,1,ibnd)*(deeq_nc(ih,jh,na,3) & -et(ibnd,ik)*qq_so(ih,jh,3,nt) )+ & becp2_nc(jkb,2,ibnd)*(deeq_nc(ih,jh,na,4)- & et(ibnd,ik)* qq_so(ih,jh,4,nt) ) ) psc(ikb,1,ibnd,2)=psc(ikb,1,ibnd,2)+(0.d0,-1.d0)* & (becp%nc(jkb,1,ibnd)*(deeq_nc(ih,jh,na,1) & -et(ibnd,ik)*qq_so(ih,jh,1,nt) )+ & becp%nc(jkb,2,ibnd)*(deeq_nc(ih,jh,na,2)- & et(ibnd,ik)* qq_so(ih,jh,2,nt) ) ) psc(ikb,2,ibnd,2)=psc(ikb,2,ibnd,2)+(0.d0,-1.d0)* & (becp%nc(jkb,1,ibnd)*(deeq_nc(ih,jh,na,3) & -et(ibnd,ik)*qq_so(ih,jh,3,nt) )+ & becp%nc(jkb,2,ibnd)*(deeq_nc(ih,jh,na,4)- & et(ibnd,ik)* qq_so(ih,jh,4,nt) ) ) ELSE psc(ikb,1,ibnd,1)=psc(ikb,1,ibnd,1)+ (0.d0,-1.d0)* & ( becp2_nc(jkb,1,ibnd)*(deeq_nc(ih,jh,na,1) & -et(ibnd,ik)*qq(ih,jh,nt)) + & becp2_nc(jkb,2,ibnd)*deeq_nc(ih,jh,na,2) ) psc(ikb,2,ibnd,1)=psc(ikb,2,ibnd,1)+ (0.d0,-1.d0)* & ( becp2_nc(jkb,2,ibnd)*(deeq_nc(ih,jh,na,4) & -et(ibnd,ik)*qq(ih,jh,nt))+ & becp2_nc(jkb,1,ibnd)*deeq_nc(ih,jh,na,3) ) psc(ikb,1,ibnd,2)=psc(ikb,1,ibnd,2)+ (0.d0,-1.d0)* & ( becp%nc(jkb,1,ibnd)*(deeq_nc(ih,jh,na,1) & -et(ibnd,ik)*qq(ih,jh,nt))+ & becp%nc(jkb,2,ibnd)*deeq_nc(ih,jh,na,2) ) psc(ikb,2,ibnd,2)=psc(ikb,2,ibnd,2)+ (0.d0,-1.d0)* & ( becp%nc(jkb,2,ibnd)*(deeq_nc(ih,jh,na,4) & -et(ibnd,ik)*qq(ih,jh,nt))+ & becp%nc(jkb,1,ibnd)*deeq_nc(ih,jh,na,3) ) ENDIF ELSE ps2(ikb,ibnd,1) = ps2(ikb,ibnd,1)+ becp2(jkb,ibnd)* & (0.d0,-1.d0)*(deeq(ih,jh,na,current_spin) & -et(ibnd,ik)*qq(ih,jh,nt)) ps2(ikb,ibnd,2) = ps2(ikb,ibnd,2) +becp%k(jkb,ibnd) * & (0.d0,-1.d0)*(deeq(ih,jh,na,current_spin)& -et(ibnd,ik)*qq(ih,jh,nt)) ENDIF ENDDO ENDDO ENDDO ijkb0=ijkb0+nh(nt) ENDIF ENDDO ENDDO IF (ikb /= nkb .or. jkb /= nkb) CALL errore ('compute_ppsi', & 'unexpected error',1) IF (nkb>0) THEN IF (noncolin) THEN CALL zgemm( 'N', 'N', npwx, nbnd_occ*npol, nkb, & (0.d0,0.5d0), vkb, npwx, psc(1,1,1,1), nkb, (1.d0,0.d0), & ppsi, npwx ) CALL zgemm( 'N', 'N', npwx, nbnd_occ*npol, nkb, & (0.d0,0.5d0), work, npwx, psc(1,1,1,2), nkb, (1.d0,0.d0), & ppsi, npwx ) ELSE CALL zgemm( 'N', 'N', npw, nbnd_occ, nkb, & (0.d0,0.5d0), vkb(1,1), npwx, ps2(1,1,1), nkb, (1.d0,0.0d0), & ppsi, npwx ) CALL zgemm( 'N', 'N', npw, nbnd_occ, nkb, & (0.d0,0.5d0), work(1,1), npwx, ps2(1,1,2), nkb, (1.d0,0.0d0), & ppsi, npwx ) ENDIF ENDIF IF (noncolin) THEN DEALLOCATE (psc) ELSE DEALLOCATE (ps2) ENDIF ! ! ppsi contains p - i/2 [x, V_{nl}-eS] psi_v for the ipol polarization ! ! In the US case there is another term in the matrix element. ! This term has to be multiplied by the difference of the eigenvalues, ! so it is calculated separately here and multiplied in the calling ! routine. IF (okvan) THEN ppsi_us=(0.d0,0.d0) ALLOCATE (dpqq( nhm, nhm, 3, ntyp)) CALL compute_qdipol(dpqq,ipol) IF (noncolin) THEN ALLOCATE (ps_nc(nbnd_occ,npol)) IF (lspinorb) THEN ALLOCATE (dpqq_so( nhm, nhm, nspin, 3, ntyp)) CALL compute_qdipol_so(dpqq, dpqq_so,ipol) ENDIF ELSE ALLOCATE (ps(nbnd_occ)) ENDIF ijkb0 = 0 DO nt = 1, ntyp DO na = 1, nat IF (ityp(na)==nt) THEN DO ih = 1, nh (nt) ikb = ijkb0 + ih IF (noncolin) THEN ps_nc = (0.d0,0.d0) ELSE ps = (0.d0,0.d0) ENDIF DO jh = 1, nh (nt) jkb = ijkb0 + jh DO ibnd=1, nbnd_occ IF (noncolin) THEN DO ip=1,npol IF (lspinorb) THEN ps_nc(ibnd,ip)=ps_nc(ibnd,ip) + & (0.d0,1.d0)*(becp2_nc(jkb,1,ibnd)* & qq_so(ih,jh,1+(ip-1)*2,nt) + & becp2_nc(jkb,2,ibnd) * & qq_so(ih,jh,2+(ip-1)*2,nt) ) & + becp%nc(jkb,1,ibnd)* & dpqq_so(ih,jh,1+(ip-1)*2,ipol,nt) & + becp%nc(jkb,2,ibnd)* & dpqq_so(ih,jh,2+(ip-1)*2,ipol,nt) ELSE ps_nc(ibnd,ip)=ps_nc(ibnd,ip)+ & becp2_nc(jkb,ip,ibnd)*(0.d0,1.d0)* & qq(ih,jh,nt)+becp%nc(jkb,ip,ibnd) & *dpqq(ih,jh,ipol,nt) ENDIF ENDDO ELSE ps(ibnd) = ps(ibnd) + becp2(jkb,ibnd) * & (0.d0,1.d0) * qq(ih,jh,nt) + & becp%k(jkb,ibnd) * dpqq(ih,jh,ipol,nt) ENDIF ENDDO ENDDO DO ibnd = 1, nbnd_occ IF (noncolin) THEN DO ip=1,npol CALL zaxpy(npw,ps_nc(ibnd,ip),vkb(1,ikb),1,& ppsi_us(1,ip,ibnd),1) ENDDO ELSE CALL zaxpy(npw,ps(ibnd),vkb(1,ikb),1,ppsi_us(1,1,ibnd),1) ENDIF ENDDO ENDDO ijkb0=ijkb0+nh(nt) ENDIF ENDDO ENDDO IF (jkb/=nkb) CALL errore ('compute_ppsi', 'unexpected error', 1) IF (noncolin) THEN DEALLOCATE(ps_nc) ELSE DEALLOCATE(ps) ENDIF ENDIF IF (nkb > 0) THEN DEALLOCATE (dvkb1, dvkb) IF (noncolin) THEN DEALLOCATE(becp2_nc) ELSE DEALLOCATE(becp2) ENDIF ENDIF DEALLOCATE (work) RETURN END SUBROUTINE compute_ppsi espresso-5.1/PP/src/local_dos1d.f900000644000175000017500000001645312341372773015136 0ustar mbamba ! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- SUBROUTINE local_dos1d (ik, kband, plan) !-------------------------------------------------------------------- ! ! calculates |psi|^2 for band kband at point ik ! USE kinds, ONLY: dp USE cell_base, ONLY: omega USE ions_base, ONLY: nat, ntyp=>nsp, ityp USE fft_base, ONLY: dffts, dfftp USE fft_interfaces, ONLY : fwfft, invfft USE gvecs, ONLY : nls, doublegrid USE lsda_mod, ONLY: current_spin USE uspp, ONLY: becsum, indv, nhtol, nhtoj USE uspp_param, ONLY: upf, nh, nhm USE wvfct, ONLY: npw, npwx, wg, igk USE noncollin_module, ONLY: noncolin, npol USE spin_orb, ONLY: lspinorb, fcoef USE wavefunctions_module, ONLY: evc, psic, psic_nc USE becmod, ONLY: bec_type, becp IMPLICIT NONE ! ! input variables ! INTEGER :: ik, kband ! input: the k point ! input: the band real(DP) :: plan (dfftp%nr3) ! output: the planar average of this state ! ! Additional local variables for Ultrasoft PP's ! INTEGER :: ikb, jkb, ijkb0, ih, jh, na, ijh, ipol, np ! counter on beta functions ! counter on beta functions ! auxiliary variable for ijkb0 ! counter on solid beta functions ! counter on solid beta functions ! counter on atoms ! counter on composite beta functions ! the pseudopotential ! ! And here the local variables ! INTEGER :: ir, ig, ibnd, is1, is2, kkb, kh ! counter on 3D r points ! counter on spin polarizations ! counter on g vectors ! counter on bands real(DP) :: w1 ! the weight of one k point real(DP), ALLOCATABLE :: aux (:) ! auxiliary for rho COMPLEX(DP), ALLOCATABLE :: prho (:), be1(:,:), be2(:,:) ! complex charge for fft ALLOCATE (prho(dfftp%nnr)) ALLOCATE (aux(dfftp%nnr)) IF (lspinorb) THEN ALLOCATE(be1(nhm,2)) ALLOCATE(be2(nhm,2)) ENDIF aux(:) = 0.d0 becsum(:,:,:) = 0.d0 wg (kband, ik) = 1.d0 ! ! ! First compute the square modulus of the state kband,ik on the smooth ! mesh ! IF (noncolin) THEN psic_nc = (0.d0,0.d0) DO ig = 1, npw psic_nc (nls (igk (ig) ), 1 ) = evc (ig , kband) psic_nc (nls (igk (ig) ), 2 ) = evc (ig+npwx, kband) ENDDO DO ipol=1,npol CALL invfft ('Wave', psic_nc(:,ipol), dffts) ENDDO w1 = wg (kband, ik) / omega DO ipol=1,npol DO ir = 1, dffts%nnr aux(ir) = aux(ir) + w1 * ( dble(psic_nc(ir,ipol))**2 + & aimag(psic_nc(ir,ipol))**2 ) ENDDO ENDDO ELSE psic(1:dffts%nnr) = (0.d0,0.d0) DO ig = 1, npw psic (nls (igk (ig) ) ) = evc (ig, kband) ENDDO CALL invfft ('Wave', psic, dffts) w1 = wg (kband, ik) / omega DO ir = 1, dffts%nnr aux(ir) = aux(ir) + w1 * (dble(psic(ir))**2 + aimag(psic(ir))**2) ENDDO ENDIF ! ! If we have a US pseudopotential we compute here the becsum term ! ibnd = kband w1 = wg (ibnd, ik) ijkb0 = 0 DO np = 1, ntyp IF (upf(np)%tvanp) THEN DO na = 1, nat IF (ityp (na) == np) THEN IF (noncolin) THEN IF (upf(np)%has_so) THEN be1=(0.d0,0.d0) be2=(0.d0,0.d0) DO ih = 1, nh(np) ikb = ijkb0 + ih DO kh = 1, nh(np) IF ((nhtol(kh,np)==nhtol(ih,np)).and. & (nhtoj(kh,np)==nhtoj(ih,np)).and. & (indv(kh,np)==indv(ih,np))) THEN kkb=ijkb0 + kh DO is1=1,2 DO is2=1,2 be1(ih,is1)=be1(ih,is1)+ & fcoef(ih,kh,is1,is2,np)* & becp%nc(kkb,is2,ibnd) be2(ih,is1)=be2(ih,is1)+ & fcoef(kh,ih,is2,is1,np)* & conjg(becp%nc(kkb,is2,ibnd)) ENDDO ENDDO ENDIF ENDDO ENDDO ENDIF ENDIF ijh = 1 DO ih = 1, nh (np) ikb = ijkb0 + ih IF (noncolin) THEN IF (upf(np)%has_so) THEN becsum(ijh,na,1)=becsum(ijh,na,1)+ w1* & (be1(ih,1)*be2(ih,1)+be1(ih,2)*be2(ih,2)) ELSE DO ipol=1,npol becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * & dble( conjg(becp%nc(ikb,ipol,ibnd)) * & becp%nc(ikb,ipol,ibnd) ) ENDDO ENDIF ELSE becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * & dble( conjg(becp%k(ikb,ibnd)) * becp%k(ikb,ibnd) ) ENDIF ijh = ijh + 1 DO jh = ih + 1, nh (np) jkb = ijkb0 + jh IF (noncolin) THEN IF (upf(np)%has_so) THEN becsum(ijh,na,1)=becsum(ijh,na,1) & + w1*((be1(jh,1)*be2(ih,1)+ & be1(jh,2)*be2(ih,2))+ & (be1(ih,1)*be2(jh,1)+ & be1(ih,2)*be2(jh,2)) ) ELSE DO ipol=1,npol becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * 2.d0 * & dble( conjg(becp%nc(ikb,ipol,ibnd)) & * becp%nc(jkb,ipol,ibnd) ) ENDDO ENDIF ELSE becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * 2.d0 * & dble( conjg(becp%k(ikb,ibnd)) * becp%k(jkb,ibnd) ) ENDIF ijh = ijh + 1 ENDDO ENDDO ijkb0 = ijkb0 + nh (np) ENDIF ENDDO ELSE DO na = 1, nat IF (ityp (na) ==np) ijkb0 = ijkb0 + nh (np) ENDDO ENDIF ENDDO ! ! Interpolate on the thick mesh and pass to reciprocal space ! IF (doublegrid) THEN CALL interpolate (aux, aux, 1) ENDIF DO ir = 1, dfftp%nnr prho (ir) = cmplx(aux (ir), 0.d0,kind=DP) ENDDO CALL fwfft ('Dense', prho, dfftp) ! ! Here we add the US contribution to the charge for the atoms which n ! it. Or compute the planar average in the NC case. ! CALL addusdens1d (plan, prho) ! DEALLOCATE (aux) DEALLOCATE (prho) IF (lspinorb) THEN DEALLOCATE(be1) DEALLOCATE(be2) ENDIF ! RETURN END SUBROUTINE local_dos1d espresso-5.1/PP/src/write_p_avg.f900000644000175000017500000001270512341372773015254 0ustar mbamba! ! Copyright (C) 2006-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE write_p_avg(filp, spin_component, firstk, lastk) !--------------------------------------------------------------------- ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp, ntyp => nsp USE cell_base, ONLY : tpiba2, at, bg, ibrav USE constants, ONLY : rytoev USE gvect, ONLY : ngm, nl, g USE lsda_mod, ONLY : nspin USE ener, ONLY : ef USE wvfct, ONLY : et, nbnd, npwx, npw, igk, g2kin, ecutwfc USE klist, ONLY : xk, nks, nkstot USE io_files, ONLY : nwordwfc, iunwfc USE uspp, ONLY : nkb, vkb, okvan USE becmod, ONLY : bec_type, becp, calbec, & allocate_bec_type, deallocate_bec_type USE noncollin_module, ONLY : noncolin, npol USE ldaU, ONLY : lda_plus_u USE wavefunctions_module, ONLY : evc USE io_global, ONLY : ionode, ionode_id, stdout USE mp, ONLY : mp_bcast, mp_sum USE mp_global, ONLY : intra_bgrp_comm USE mp_world, ONLY : world_comm ! IMPLICIT NONE ! INTEGER :: spin_component, nks1, nks2, firstk, lastk INTEGER :: iunout, ios, ik, ibnd, jbnd, ipol, nbnd_occ COMPLEX(DP) :: zdotc COMPLEX(DP), ALLOCATABLE :: ppsi(:,:), ppsi_us(:,:), matp(:,:,:) CHARACTER (len=256) :: filp, namefile ! IF (lda_plus_u) CALL errore('write_p_avg', & 'write_p_avg not working with LDA+U',1) ALLOCATE(matp(nbnd,nbnd,3)) CALL allocate_bec_type ( nkb, nbnd, becp) IF (nspin==1.or.nspin==4) THEN nks1=max(1,firstk) nks2=min(nkstot, lastk) IF (spin_component /= 1) & CALL errore('write_p_avg','incorrect spin_component',1) ELSEIF (nspin==2) THEN IF (spin_component == 1) THEN nks1=max(1,firstk) nks2=min(nks/2,lastk) ELSEIF (spin_component==2) THEN nks1=nks/2 + max(1,firstk) nks2=nks/2 + min(nks/2,lastk) ELSE CALL errore('write_p_avg','incorrect spin_component',1) ENDIF ENDIF ios = 0 IF ( ionode ) THEN iunout=58 namefile=trim(filp) OPEN (unit = iunout, file = namefile, status = 'unknown', form = & 'formatted', iostat = ios) REWIND (iunout) ENDIF CALL mp_bcast (ios, ionode_id, world_comm) IF ( ios/=0 ) CALL errore ('write_p_avg', 'Opening filband file', abs (ios) ) DO ik = nks1, nks2 ! ! Compute the number of occupated bands at this k point ! DO ibnd = 1, nbnd IF (et (ibnd, ik)<=ef) nbnd_occ = ibnd ENDDO IF (nbnd_occ==nbnd) WRITE( stdout, '(5x,/,& &"No empty band at point ", i4,3f10.5)') & ik, (xk (ipol, ik) , ipol = 1, 3) ! ALLOCATE(ppsi(npwx*npol,nbnd_occ)) IF (okvan) ALLOCATE(ppsi_us(npwx*npol,nbnd_occ)) ! ! prepare the indices of this k point ! CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, & igk, g2kin) ! CALL init_us_2 (npw, igk, xk (1, ik), vkb) ! ! read eigenfunctions ! CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) IF (noncolin) THEN CALL calbec ( npw, vkb, evc, becp, nbnd_occ ) ELSE CALL calbec ( npw, vkb, evc, becp, nbnd_occ ) ENDIF DO ipol=1,3 CALL compute_ppsi(ppsi, ppsi_us, ik, ipol, nbnd_occ, spin_component) DO ibnd=nbnd_occ+1,nbnd DO jbnd=1,nbnd_occ IF (noncolin) THEN matp(ibnd-nbnd_occ,jbnd,ipol)= & zdotc(npwx*npol,evc(1,ibnd),1,ppsi(1,jbnd),1) IF (okvan) THEN matp(ibnd-nbnd_occ,jbnd,ipol)= & matp(ibnd-nbnd_occ,jbnd,ipol)+ & (0.d0,0.5d0)*(et(ibnd,ik)-et(jbnd,ik))* & (zdotc(npwx*npol,evc(1,ibnd),1,ppsi_us(1,jbnd),1) ) ENDIF ELSE matp(ibnd-nbnd_occ,jbnd,ipol)= & zdotc(npw,evc(1,ibnd),1,ppsi(1,jbnd),1) IF (okvan) THEN matp(ibnd-nbnd_occ,jbnd,ipol)= & matp(ibnd-nbnd_occ,jbnd,ipol) + & (0.d0,0.5d0)*zdotc(npw,evc(1,ibnd),1,ppsi_us(1,jbnd),1)* & (et(ibnd,ik)-et(jbnd,ik)) ENDIF ENDIF ENDDO ENDDO ENDDO DEALLOCATE(ppsi) IF (okvan) DEALLOCATE(ppsi_us) CALL mp_sum(matp, intra_bgrp_comm) IF (ionode) THEN IF (ik == nks1) & WRITE (iunout, '(" &p_mat nbnd=",i4,", nks=",i4," /")') & nbnd, nks2-nks1+1 WRITE (iunout, '(10x,3f10.6,i7)') xk(1,ik),xk(2,ik),xk(3,ik), & nbnd_occ DO ipol=1,3 WRITE (iunout, '(i3)') ipol DO ibnd=nbnd_occ+1,nbnd WRITE (iunout, '(5f15.8)') & (abs(matp(ibnd-nbnd_occ,jbnd,ipol))**2, jbnd=1,nbnd_occ) ENDDO ENDDO ENDIF ENDDO IF (ionode) THEN CLOSE(iunout) ENDIF DEALLOCATE(matp) ! RETURN END SUBROUTINE write_p_avg espresso-5.1/PP/src/do_shift_ew.f900000644000175000017500000001265612341372773015245 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE do_shift_ew (alat, nat, ntyp, ityp, zv, delta_zv, at, bg, tau, & omega, g, gg, ngm, gcutm, gstart, gamma_only, shift_ion) !----------------------------------------------------------------------- ! ! Calculates Ewald energy with both G- and R-space terms. ! Determines optimal alpha. Should hopefully work for any structure. ! ! USE kinds, ONLY : DP USE constants, ONLY : tpi, e2 USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! first the dummy variables ! INTEGER :: nat, ntyp, ityp (nat), ngm, gstart ! input: number of atoms in the unit cell ! input: number of different types of atoms ! input: the type of each atom ! input: number of plane waves for G sum ! input: first non-zero G vector LOGICAL :: gamma_only real(DP) :: tau (3, nat), g (3, ngm), gg (ngm), zv (ntyp), & at (3, 3), bg (3, 3), omega, alat, gcutm, delta_zv(ntyp), & shift_ion(nat) ! input: the positions of the atoms in the cell ! input: the coordinates of G vectors ! input: the square moduli of G vectors ! input: the charge of each type of atoms ! input: the direct lattice vectors ! input: the reciprocal lattice vectors ! input: the volume of the unit cell ! input: lattice parameter ! input: cut-off of g vectors real(DP) :: ewald ! output: the ewald energy ! ! here the local variables ! INTEGER, PARAMETER :: mxr = 50 ! the maximum number of R vectors included in r INTEGER :: ng, nr, na, nb, nt, nrm, ipol ! counter over reciprocal G vectors ! counter over direct vectors ! counter on atoms ! counter on atoms ! counter on atomic types ! number of R vectors included in r sum ! counter on polarization real(DP) :: charge, tpiba2, ewaldg, ewaldr, dtau (3), alpha, & r (3, mxr), r2 (mxr), rmax, rr, upperbound, fact, arg ! total ionic charge in the cell ! length in reciprocal space ! ewald energy computed in reciprocal space ! ewald energy computed in real space ! the difference tau_s - tau_s' ! alpha term in ewald sum ! input of the rgen routine ( not used here ) ! the square modulus of R_j-tau_s-tau_s' ! the maximum radius to consider real space sum ! buffer variable ! used to optimize alpha COMPLEX(DP), ALLOCATABLE :: rhon(:) real(DP), EXTERNAL :: qe_erfc ALLOCATE (rhon(ngm)) shift_ion(:) = 0.d0 tpiba2 = (tpi / alat) **2 charge = 0.d0 DO na = 1, nat charge = charge+zv (ityp (na) ) ENDDO alpha = 2.9d0 100 alpha = alpha - 0.1d0 ! ! choose alpha in order to have convergence in the sum over G ! upperbound is a safe upper bound for the error in the sum over G ! IF (alpha<=0.d0) CALL errore ('do_shift_ew', 'optimal alpha not found', 1) upperbound = 2.d0 * charge**2 * sqrt (2.d0 * alpha / tpi) * qe_erfc ( & sqrt (tpiba2 * gcutm / 4.d0 / alpha) ) IF (upperbound>1.0d-7) GOTO 100 ! ! G-space sum here. ! Determine if this processor contains G=0 and set the constant term ! IF (gstart==2) THEN DO na =1,nat shift_ion(na) = - charge * delta_zv(ityp(na)) /alpha/ 4.0d0 ENDDO ENDIF IF (gamma_only) THEN fact = 2.d0 ELSE fact = 1.d0 ENDIF DO ng = gstart, ngm rhon(ng) = (0.d0, 0.d0) DO na =1, nat arg = (g (1, ng) * tau (1, na) + & g (2, ng) * tau (2, na) + & g (3, ng) * tau (3, na) ) * tpi rhon(ng) = rhon(ng) + zv (ityp(na)) * cmplx(cos (arg), -sin (arg),kind=DP) ENDDO ENDDO DO na=1,nat DO ng=gstart, ngm arg = (g (1, ng) * tau (1, na) + g (2, ng) * tau (2, na) & + g (3, ng) * tau (3, na) ) * tpi shift_ion(na) = shift_ion(na) + fact * delta_zv(ityp(na)) * & conjg(rhon(ng)) * cmplx(cos (arg), -sin (arg),kind=DP) * & exp ( -gg(ng)*tpiba2/alpha/4.d0) / gg(ng)/tpiba2 ENDDO ENDDO shift_ion(:) = 2.d0 * tpi / omega * shift_ion(:) ! ! Here add the other constant term ! IF (gstart==2) THEN DO na = 1, nat shift_ion(na) = shift_ion(na) - & zv (ityp (na) ) * delta_zv(ityp(na)) * & sqrt (8.d0/tpi*alpha) ENDDO ENDIF ! ! R-space sum here (only for the processor that contains G=0) ! IF (gstart==2) THEN rmax = 4.d0 / sqrt (alpha) / alat ! ! with this choice terms up to ZiZj*erfc(4) are counted (erfc(4)=2x10^-8 ! DO na = 1, nat DO nb = 1, nat DO ipol = 1, 3 dtau (ipol) = tau (ipol, na) - tau (ipol, nb) ENDDO ! ! generates nearest-neighbors shells ! CALL rgen (dtau, rmax, mxr, at, bg, r, r2, nrm) ! ! and sum to the real space part ! DO nr = 1, nrm rr = sqrt (r2 (nr) ) * alat shift_ion(na) = shift_ion(na) + & delta_zv(ityp(na)) * zv (ityp (nb) ) * & qe_erfc ( sqrt (alpha) * rr) / rr ENDDO ENDDO ENDDO ENDIF shift_ion(:) = e2 * shift_ion(:) CALL mp_sum ( shift_ion, intra_pool_comm ) DEALLOCATE (rhon) RETURN END SUBROUTINE do_shift_ew espresso-5.1/PP/src/atomic_wfc_nc_proj.f900000644000175000017500000001764112341372773016577 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE atomic_wfc_nc_proj (ik, wfcatom) !----------------------------------------------------------------------- ! ! This routine computes the superposition of atomic wavefunctions ! for k-point "ik" - output in "wfcatom" - noncolinear case only ! If lspinorb=.TRUE. it makes linear combinations of eigenstates of ! the atomic total angular momenta j and j_z; otherwise, of eigenstates of ! the orbital angular momenta l, l_z and of s_z (the z-component of the spin). ! USE kinds, ONLY : DP USE constants, ONLY : tpi, fpi, pi USE cell_base, ONLY : omega, tpiba USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE basis, ONLY : natomwfc USE gvect, ONLY : mill, eigts1, eigts2, eigts3, g USE klist, ONLY : xk USE wvfct, ONLY : npwx, npw, nbnd, igk USE us, ONLY : tab_at, dq USE uspp_param, ONLY : upf USE noncollin_module, ONLY : noncolin, npol, angle1, angle2 USE spin_orb, ONLY : lspinorb, rot_ylm, fcoef, lmaxx ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ik COMPLEX(DP), INTENT(out) :: wfcatom (npwx, npol, natomwfc) ! INTEGER :: n_starting_wfc, lmax_wfc, nt, l, nb, na, m, lm, ig, iig, & i0, i1, i2, i3, nwfcm real(DP), ALLOCATABLE :: qg(:), ylm (:,:), chiq (:,:,:), gk (:,:) COMPLEX(DP), ALLOCATABLE :: sk (:), aux(:) COMPLEX(DP) :: kphase, lphase real(DP) :: arg, px, ux, vx, wx CALL start_clock ('atomic_wfc') ! calculate max angular momentum required in wavefunctions lmax_wfc = 0 DO nt = 1, ntyp lmax_wfc = max ( lmax_wfc, maxval (upf(nt)%lchi(1:upf(nt)%nwfc) ) ) ENDDO ! nwfcm = maxval ( upf(1:ntyp)%nwfc ) ! ALLOCATE ( ylm (npw,(lmax_wfc+1)**2), chiq(npw,nwfcm,ntyp), & sk(npw), gk(3,npw), qg(npw) ) ! DO ig = 1, npw gk (1,ig) = xk(1, ik) + g(1, igk(ig) ) gk (2,ig) = xk(2, ik) + g(2, igk(ig) ) gk (3,ig) = xk(3, ik) + g(3, igk(ig) ) qg(ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 ENDDO ! ! ylm = spherical harmonics ! CALL ylmr2 ((lmax_wfc+1)**2, npw, gk, qg, ylm) ! ! set now q=|k+G| in atomic units ! DO ig = 1, npw qg(ig) = sqrt(qg(ig))*tpiba ENDDO ! n_starting_wfc = 0 ! ! chiq = radial fourier transform of atomic orbitals chi ! DO nt = 1, ntyp DO nb = 1, upf(nt)%nwfc IF ( upf(nt)%oc (nb) >= 0.d0) THEN DO ig = 1, npw px = qg (ig) / dq - int (qg (ig) / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = int( qg (ig) / dq ) + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 chiq (ig, nb, nt) = & tab_at (i0, nb, nt) * ux * vx * wx / 6.d0 + & tab_at (i1, nb, nt) * px * vx * wx / 2.d0 - & tab_at (i2, nb, nt) * px * ux * wx / 2.d0 + & tab_at (i3, nb, nt) * px * ux * vx / 6.d0 ENDDO ENDIF ENDDO ENDDO DEALLOCATE (qg, gk) ALLOCATE ( aux(npw) ) DO na = 1, nat arg = (xk(1,ik)*tau(1,na) + xk(2,ik)*tau(2,na) + xk(3,ik)*tau(3,na)) * tpi kphase = cmplx(cos (arg), - sin (arg) ,kind=DP) ! ! sk is the structure factor ! DO ig = 1, npw iig = igk (ig) sk (ig) = kphase * eigts1 (mill(1,iig), na) * & eigts2 (mill(2,iig), na) * & eigts3 (mill(3,iig), na) ENDDO ! nt = ityp (na) DO nb = 1, upf(nt)%nwfc IF (upf(nt)%oc(nb) >= 0.d0) THEN l = upf(nt)%lchi(nb) lphase = (0.d0,1.d0)**l ! ! the factor i^l MUST BE PRESENT in order to produce ! wavefunctions for k=0 that are real in real space ! IF ( lspinorb ) THEN ! IF ( upf(nt)%has_so ) THEN ! CALL atomic_wfc_so ( ) ! ELSE ! CALL atomic_wfc_so2 ( ) ! ENDIF ! ELSE ! CALL atomic_wfc_nc_z ( ) ! ENDIF ! ENDIF ! ENDDO ! ENDDO IF (n_starting_wfc /= natomwfc) CALL errore ('atomic_wfc_nc_proj', & 'internal error: some wfcs were lost ', 1) DEALLOCATE(aux, sk, chiq, ylm) CALL stop_clock ('atomic_wfc') RETURN CONTAINS SUBROUTINE atomic_wfc_so ( ) ! ! ... spin-orbit case ! real(DP) :: fact(2), j real(DP), EXTERNAL :: spinor INTEGER :: ind, ind1, n1, is, sph_ind ! j = upf(nt)%jchi(nb) DO m = -l-1, l fact(1) = spinor(l,j,m,1) fact(2) = spinor(l,j,m,2) IF (abs(fact(1)) > 1.d-8 .or. abs(fact(2)) > 1.d-8) THEN n_starting_wfc = n_starting_wfc + 1 IF (n_starting_wfc > natomwfc) CALL errore & ('atomic_wfc_so', 'internal error: too many wfcs', 1) DO is=1,2 IF (abs(fact(is)) > 1.d-8) THEN ind=lmaxx+1+sph_ind(l,j,m,is) aux=(0.d0,0.d0) DO n1=1,2*l+1 ind1=l**2+n1 IF (abs(rot_ylm(ind,n1)) > 1.d-8) & aux(:)=aux(:)+rot_ylm(ind,n1)*ylm(:,ind1) ENDDO DO ig=1,npw wfcatom (ig,is,n_starting_wfc) = lphase*fact(is)*& sk(ig)*aux(ig)*chiq (ig, nb, nt) ENDDO ELSE wfcatom (:,is,n_starting_wfc) = (0.d0,0.d0) ENDIF ENDDO ENDIF ENDDO ! END SUBROUTINE atomic_wfc_so ! SUBROUTINE atomic_wfc_so2 ( ) ! ! ... spin-orbit case with no spin-orbit PP ! real(DP) :: fact(2), j real(DP), EXTERNAL :: spinor INTEGER :: ind, ind1, n1, n2, is, sph_ind ! DO n2 = l, l + 1 j = n2 - 0.5_dp IF (j > 0.0_dp) THEN DO m = -l-1, l fact(1) = spinor(l,j,m,1) fact(2) = spinor(l,j,m,2) IF (abs(fact(1)) > 1.d-8 .or. abs(fact(2)) > 1.d-8) THEN n_starting_wfc = n_starting_wfc + 1 IF (n_starting_wfc > natomwfc) CALL errore & ('atomic_wfc_so2', 'internal error: too many wfcs', 1) DO is=1,2 IF (abs(fact(is)) > 1.d-8) THEN ind=lmaxx+1+sph_ind(l,j,m,is) aux=(0.0_dp,0.0_dp) DO n1=1,2*l+1 ind1=l**2+n1 IF (abs(rot_ylm(ind,n1)) > 1.d-8) & aux(:)=aux(:)+rot_ylm(ind,n1)*ylm(:,ind1) ENDDO DO ig=1,npw wfcatom (ig,is,n_starting_wfc) = lphase * & fact(is)*sk(ig)*aux(ig)*chiq(ig,nb,nt) ENDDO ENDIF ENDDO ENDIF ENDDO ENDIF ENDDO ! END SUBROUTINE atomic_wfc_so2 ! SUBROUTINE atomic_wfc_nc_z ( ) ! ! ... noncolinear case, magnetization along z ! DO m = 1, 2 * l + 1 lm = l**2 + m n_starting_wfc = n_starting_wfc + 1 IF (n_starting_wfc + 2*l + 1 > natomwfc) CALL errore & ('atomic_wfc_nc_z', 'internal error: too many wfcs', 1) DO ig=1,npw aux(ig) = sk(ig)*ylm(ig,lm)*chiq(ig,nb,nt) ENDDO ! DO ig=1,npw wfcatom(ig,1,n_starting_wfc) = aux(ig) wfcatom(ig,2,n_starting_wfc) = (0.0_dp, 0.0_dp) ! wfcatom(ig,1,n_starting_wfc+2*l+1) = (0.0_dp, 0.0_dp) wfcatom(ig,2,n_starting_wfc+2*l+1) = aux(ig) ENDDO ENDDO n_starting_wfc = n_starting_wfc + 2*l+1 ! END SUBROUTINE atomic_wfc_nc_z END SUBROUTINE atomic_wfc_nc_proj espresso-5.1/PP/src/plan_avg.f900000644000175000017500000002136312341372773014535 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- PROGRAM plan_avg !----------------------------------------------------------------------- ! ! calculate planar averages of each wavefunction ! USE kinds, ONLY : DP USE run_info, ONLY: title USE cell_base, ONLY : ibrav, celldm, at USE fft_base, ONLY : dfftp USE gvect, ONLY : gcutm USE gvecs, ONLY : dual USE klist, ONLY : nkstot, xk USE ions_base, ONLY : nat, ntyp=>nsp, ityp, tau, atm, zv USE io_files, ONLY : tmp_dir, prefix USE io_global, ONLY : ionode, ionode_id USE wvfct, ONLY : nbnd, ecutwfc USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE mp_global, ONLY : mp_startup USE control_flags, ONLY : gamma_only USE environment, ONLY : environment_start ! IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! INTEGER :: ninter CHARACTER(len=256) :: filplot, outdir REAL(DP), ALLOCATABLE :: averag (:,:,:), plan (:,:,:) ! INTEGER :: iunplot = 4, ios, ibnd, ik, ir, nt, na, i ! NAMELIST / inputpp / outdir, prefix, filplot ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'plan-avg' ) ! IF ( ionode ) CALL input_from_file ( ) ! ! ! set default values for variables in namelist ! prefix = 'pwscf' CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( trim( outdir ) == ' ' ) outdir = './' filplot = 'tmp.pp' ! ios = 0 ! IF ( ionode ) THEN ! ! reading the namelist inputpp ! READ (5, inputpp, iostat = ios) tmp_dir = trimcheck (outdir) ! ENDIF ! CALL mp_bcast( ios, ionode_id, world_comm ) IF ( ios /= 0 ) CALL errore ('plan_avg', 'reading inputpp namelist', abs(ios)) ! ! ... Broadcast variables ! CALL mp_bcast( tmp_dir, ionode_id, world_comm ) CALL mp_bcast( prefix, ionode_id, world_comm ) CALL mp_bcast( filplot, ionode_id, world_comm ) ! ! Now allocate space for pwscf variables, read and check them. ! CALL read_file ( ) ! IF (gamma_only) CALL errore ('plan_avg', & ' planar average with gamma tricks not yet implemented',2) ! CALL openfil_pp ( ) ! ALLOCATE (averag( nat, nbnd, nkstot)) ALLOCATE (plan(dfftp%nr3, nbnd, nkstot)) ! CALL do_plan_avg (averag, plan, ninter) ! IF ( ionode ) THEN ! OPEN (UNIT = iunplot, FILE = filplot, FORM = 'formatted', & STATUS = 'unknown', err = 100, IOSTAT = ios) 100 CALL errore ('plan_avg', 'opening file '//trim(filplot), abs (ios) ) WRITE (iunplot, '(a)') title WRITE (iunplot, '(8i8)') dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, dfftp%nr1, dfftp%nr2, dfftp%nr3, nat, ntyp WRITE (iunplot, '(i6,6f12.8)') ibrav, celldm IF (ibrav == 0) THEN WRITE ( iunplot, * ) at(:,1) WRITE ( iunplot, * ) at(:,2) WRITE ( iunplot, * ) at(:,3) ENDIF WRITE (iunplot, '(3f20.10,i6)') gcutm, dual, ecutwfc, 9 WRITE (iunplot, '(i4,3x,a2,3x,f5.2)') & (nt, atm (nt), zv (nt), nt=1, ntyp) WRITE (iunplot, '(i4,3x,3f15.9,3x,i2)') (na, & (tau (i, na), i = 1, 3), ityp (na), na = 1, nat) ! WRITE (iunplot, '(3i8)') ninter, nkstot, nbnd DO ik = 1, nkstot DO ibnd = 1, nbnd WRITE (iunplot, '(3f15.9,i5)') xk (1, ik) , xk (2, ik) , xk (3, & ik) , ibnd WRITE (iunplot, '(4(1pe17.9))') (averag (ir, ibnd, ik) , ir = 1, & ninter) DO ir = 1, dfftp%nr3 WRITE (iunplot, * ) ir, plan (ir, ibnd, ik) ENDDO ENDDO ENDDO ! CLOSE (UNIT = iunplot, STATUS = 'keep') ! ENDIF ! DEALLOCATE (plan) DEALLOCATE (averag) ! CALL stop_pp ( ) CONTAINS ! SUBROUTINE do_plan_avg (averag, plan, ninter) ! ! This routine computes the planar average on the xy plane ! for the charge density of each state of the system. ! The routine should work on parallel machines. ! On these machines the results are collected for all ! k points and on exit each processor contains the ! planar average of all k points (even those of other pools). ! In the US case the augmentation part is added only in one ! dimension, so that no overload with respect to the NC case ! is expected. ! ! Furthermore the amount of charge contained in each plane is ! evaluated and given as output. The number of planes is ! computed starting from the atomic positions ! USE cell_base, ONLY: celldm, omega, alat, tpiba2 USE ions_base, ONLY: nat, ntyp=>nsp, ityp, tau USE gvect USE klist, ONLY: nks, nkstot, xk USE lsda_mod, ONLY: lsda, current_spin, isk USE uspp, ONLY: vkb, nkb USE wvfct, ONLY: npw, npwx, nbnd, wg, igk, g2kin USE wavefunctions_module, ONLY: evc USE noncollin_module, ONLY : noncolin, npol USE io_files, ONLY: iunwfc, nwordwfc USE becmod, ONLY: bec_type, becp, calbec, allocate_bec_type, deallocate_bec_type IMPLICIT NONE INTEGER :: ninter ! output: the number of planes real(DP) :: averag (nat, nbnd, nkstot), plan (dfftp%nr3, nbnd, nkstot) ! output: the average charge on ea ! output: the planar average ! ! Local variables ! INTEGER :: ik, ibnd, iin, na, ir, ij, ind, i1 (nat), ntau (nat + 1) ! counter on k points ! counter on bands ! counter on planes ! counter on atoms ! counter on points ! counter on coordinates and planes ! starting point of each plane ! the number of tau per plane real(DP) :: sp_min, avg (nat), z1 (nat), sum, zdim ! minimum plane distance ! the average position of each plane ! auxiliary for coordinates ! length in a.u. of the cell along z IF ( celldm(3) == 0.d0 ) celldm(3) = celldm(1) zdim = alat * celldm (3) sp_min = 2.d0 / alat ! ! Compute the number of planes and the coordinates on the mesh of th ! points which define each plane ! avg(:) = 0.d0 ninter = 1 z1 (ninter) = tau (3, 1) avg (ninter) = tau (3, 1) ntau (ninter) = 1 DO na = 2, nat DO iin = 1, ninter IF (abs (mod (z1(iin)-tau(3,na), celldm(3)) ) < sp_min) THEN avg (iin) = avg (iin) + tau (3, na) ntau (iin) = ntau (iin) + 1 GOTO 100 ENDIF ENDDO ninter = ninter + 1 z1 (ninter) = tau (3, na) avg (ninter) = tau (3, na) ntau (ninter) = 1 100 CONTINUE ENDDO ! ! for each plane compute the average position of the central plane ! and first point in the fft mesh ! DO iin = 1, ninter z1 (iin) = mod (avg (iin), celldm (3) ) / ntau (iin) ind = (z1 (iin) / celldm (3) ) * dfftp%nr3 + 1 IF (ind<=0) ind = ind+dfftp%nr3 i1 (iin) = ind ENDDO ! ! order the points ! DO iin = 1, ninter ntau (iin) = i1 (iin) DO ik = iin + 1, ninter IF (i1 (ik) rest ) nbase = nbase + rest * kunit ! ! copy the original points in the correct position of the list ! xk_collect(:,nbase+1:nbase+nks) = xk(:,1:nks) ! et_collect(:,nbase+1:nbase+nks)=et(:,1:nks) ! CALL mp_sum( xk_collect, inter_pool_comm ) ! CALL mp_sum( et_collect, inter_pool_comm ) ! #else xk_collect=xk et_collect=et #endif ! RETURN ! END SUBROUTINE xk_et_collect ! espresso-5.1/PP/src/xctest.f900000644000175000017500000001235612341372773014262 0ustar mbamba! ! Copyright (C) 2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! PROGRAM xctest USE mp_global, ONLY: mp_startup, mp_global_end USE io_global, ONLY: ionode USE kinds, ONLY: DP USE funct, ONLY: set_dft_from_indices IMPLICIT NONE INTEGER :: nnr = 1000 INTEGER :: nspin = 2 real(DP), ALLOCATABLE :: rhor( :, : ) real(DP), ALLOCATABLE :: grhor( :, :, : ) INTEGER :: iexch,icorr,igcx,igcc,inlc INTEGER :: nproc, mpime CALL mp_startup( ) if ( ionode ) then iexch=1 icorr=3 igcx=1 igcc=3 inlc=0 CALL set_dft_from_indices(iexch,icorr,igcx,igcc,inlc) OPEN(unit=17,form='unformatted',status='old') READ(17) nnr, nspin ALLOCATE(rhor( nnr, nspin )) ALLOCATE(grhor( nnr, 3, nspin )) READ(17) rhor READ(17) grhor CLOSE(17) !CALL test_gcxc( nnr, nspin, rhor, grhor ) CALL test_xc( nnr, nspin, rhor, grhor ) end if CALL mp_global_end() END PROGRAM xctest SUBROUTINE test_gcxc( nnr, nspin, rhor, grhor ) USE kinds, ONLY: DP ! use funct, only: gcxc IMPLICIT NONE INTEGER, INTENT(in) :: nnr, nspin real(DP) :: rhor( nnr, nspin ) real(DP) :: grhor( nnr, 3, nspin ) ! real(DP), PARAMETER :: epsr = 1.0d-10, epsg = 1.0d-10 real(DP), PARAMETER :: e2 = 1.0d0 real(DP) :: grho2( nspin ) real(DP) :: arho, segno real(DP) :: sx_w, sc_w, v1x_w, v2x_w, v1c_w, v2c_w real(DP) :: sx, sc, v1x, v2x, v1c, v2c real(DP) :: sx_m, sc_m, v1x_m, v2x_m, v1c_m, v2c_m real(DP) :: sx_d, sc_d, v1x_d, v2x_d, v1c_d, v2c_d INTEGER :: k, is, ipol DO k = 1, nnr ! ! DO is = 1, nspin grho2 (is) = grhor(k, 1, is)**2 + grhor(k, 2, is)**2 + grhor(k, 3, is)**2 ENDDO ! ! IF (nspin == 1) THEN ! ! This is the spin-unpolarised case ! arho = abs (rhor (k, 1) ) segno = sign (1.d0, rhor (k, 1) ) IF (arho > epsr .and. grho2 (1) > epsg) THEN ! call gcxc (arho, grho2(1), sx, sc, v1x, v2x, v1c, v2c) CALL becke88 (arho, grho2(1), sx, v1x, v2x) CALL wrap_b88 (arho, grho2(1), sx_w, v1x_w, v2x_w) ! DEBUG CALL glyp (arho, grho2(1), sc, v1c, v2c) CALL wrap_glyp (arho, grho2(1), sc_w, v1c_w, v2c_w) ! DEBUG sx_d = (sx_w - sx) / (abs(sx) + abs(sx_w)) sc_d = (sc_w - sc) / (abs(sc) + abs(sc_w)) v1x_d = (v1x_w - v1x) / (abs(v1x) + abs(v1x_w)) v1c_d = (v1c_w - v1c) / (abs(v1c) + abs(v1c_w)) v2x_d = (v2x_w - v2x) / (abs(v2x) + abs(v2x_w)) v2c_d = (v2c_w - v2c) / (abs(v2c) + abs(v2c_w)) WRITE(18,*) arho,grho2(1), sx_d, sc_d WRITE(19,*) arho,grho2(1), v1x_d, v1c_d WRITE(20,*) arho,grho2(1), v2x_w, v2x, v2x_d WRITE(21,*) arho,grho2(1), v2c_w, v2c, v2c_d ! ! first term of the gradient correction : D(rho*Exc)/D(rho) ! v (k, 1) = v (k, 1) + e2 * (v1x + v1c) ! HERE h contains D(rho*Exc)/D(|grad rho|) / |grad rho| ! ! h (k, 1, 1) = e2 * (v2x + v2c) ! etxc = etxc + e2 * (sx + sc) * segno ELSE ! h (k, 1, 1) = 0.d0 sx = 0.0d0 sc = 0.0d0 ENDIF ! ENDIF ! ENDDO RETURN END SUBROUTINE test_gcxc ! ! ! SUBROUTINE test_xc( nnr, nspin, rhor, grhor ) USE kinds, ONLY: DP USE funct, ONLY: get_iexch, get_icorr, get_igcx, get_igcc IMPLICIT NONE INTEGER, INTENT(in) :: nnr, nspin real(DP) :: rhor( nnr, nspin ) real(DP) :: grhor( nnr, 3, nspin ) ! real(DP) :: rhon( nnr, nspin ) real(DP) :: grhon( nnr, 3, nspin ) real(DP) :: exc, excn, rhod, grhod INTEGER :: ir, is, ipol INTEGER iexch,icorr,igcx,igcc iexch = get_iexch() icorr = get_icorr() igcx = get_igcx() igcc = get_igcc() rhon = rhor grhon = grhor ! ! original CP xc selection ! IF (iexch==1.and.icorr==1.and.igcx==0.and.igcc==0) THEN ! LDA (Perdew-Zunger) CALL expxc(nnr,nspin,rhor,exc) ELSEIF (iexch==1.and.icorr==4.and.igcx==2.and.igcc==2) THEN ! PW91 CALL ggapwold(nnr,nspin,grhor,rhor,exc) ELSEIF (iexch==1.and.icorr==3.and.igcx==1.and.igcc==3) THEN ! BLYP CALL ggablyp4(nnr,nspin,grhor,rhor,exc) ELSEIF (iexch==1.and.icorr==4.and.igcx==3.and.igcc==4) THEN ! PBE CALL ggapbe(nnr,nspin,grhor,rhor,exc) ELSE CALL errore('exc-cor','no such exch-corr',1) ENDIF ! ! Wrapper to PW xc selection ! CALL exch_corr_cp(nnr,nspin,grhon,rhon,excn) ! WRITE(6,*) 'EXC = ', exc, excn DO is = 1, nspin DO ir = 1, nnr rhod = abs( rhor( ir, is ) - rhon( ir, is ) ) / ( abs( rhor( ir, is ) ) + abs( rhon( ir, is ) ) ) WRITE(18,100) ir,is,rhod ENDDO ENDDO DO is = 1, nspin DO ir = 1, nnr DO ipol = 1, 3 grhod = abs( grhor( ir, ipol, is ) - grhon( ir, ipol, is ) ) / & ( abs( grhor( ir, ipol, is ) ) + abs( grhon( ir, ipol, is ) ) ) WRITE(19,100) ir,is,grhod ENDDO ENDDO ENDDO 100 FORMAT( I5, I2, 1X, E15.8, 1X, E15.8 ) END SUBROUTINE test_xc espresso-5.1/PP/src/epsilon.f900000644000175000017500000012354612341372773014425 0ustar mbamba ! Copyright (C) 2004-2009 Andrea Benassi and Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . !------------------------------ MODULE grid_module !------------------------------ USE kinds, ONLY : DP IMPLICIT NONE PRIVATE ! ! general purpose vars ! REAL(DP), ALLOCATABLE :: focc(:,:), wgrid(:) REAL(DP) :: alpha ! ! PUBLIC :: grid_build, grid_destroy PUBLIC :: focc, wgrid, alpha ! CONTAINS !--------------------------------------------- SUBROUTINE grid_build(nw, wmax, wmin) !------------------------------------------- ! USE kinds, ONLY : DP USE wvfct, ONLY : nbnd, wg USE klist, ONLY : nks, wk, nelec USE lsda_mod, ONLY : nspin USE uspp, ONLY : okvan ! IMPLICIT NONE ! ! input vars INTEGER, INTENT(in) :: nw REAL(DP), INTENT(in) :: wmax ,wmin ! ! local vars INTEGER :: iw,ik,i,ierr ! ! check on the number of bands: we need to include empty bands in order to allow ! to write the transitions ! IF ( REAL(nbnd, DP) <= nelec / 2.0_DP ) CALL errore('epsilon', 'bad band number', 1) ! ! spin is not implemented ! IF( nspin > 2 ) CALL errore('grid_build','Non collinear spin calculation not implemented',1) ! ! USPP are not implemented (dipole matrix elements are not trivial at all) ! IF ( okvan ) CALL errore('grid_build','USPP are not implemented',1) ALLOCATE ( focc( nbnd, nks), STAT=ierr ) IF (ierr/=0) CALL errore('grid_build','allocating focc', abs(ierr)) ! ALLOCATE( wgrid( nw ), STAT=ierr ) IF (ierr/=0) CALL errore('grid_build','allocating wgrid', abs(ierr)) ! ! check on k point weights, no symmetry operations are allowed ! DO ik = 2, nks ! IF ( abs( wk(1) - wk(ik) ) > 1.0d-8 ) & CALL errore('grid_build','non unifrom kpt grid', ik ) ! ENDDO ! ! occupation numbers, to be normalized differently ! whether we are spin resolved or not ! IF(nspin==1) THEN DO ik = 1,nks DO i = 1,nbnd focc(i,ik)= wg(i, ik ) * 2.0_DP / wk( ik ) ENDDO ENDDO ELSEIF(nspin==2) THEN DO ik = 1,nks DO i = 1,nbnd focc(i,ik)= wg(i, ik ) * 1.0_DP / wk( ik ) ENDDO ENDDO ENDIF ! ! set the energy grid ! alpha = (wmax - wmin) / REAL(nw, DP) ! DO iw = 1, nw wgrid(iw) = wmin + iw * alpha ENDDO ! END SUBROUTINE grid_build ! ! !---------------------------------- SUBROUTINE grid_destroy !---------------------------------- IMPLICIT NONE INTEGER :: ierr ! IF ( allocated( focc) ) THEN ! DEALLOCATE ( focc, wgrid, STAT=ierr) CALL errore('grid_destroy','deallocating grid stuff',abs(ierr)) ! ENDIF ! END SUBROUTINE grid_destroy END MODULE grid_module !------------------------------ PROGRAM epsilon !------------------------------ ! ! Compute the complex macroscopic dielectric function, ! at the RPA level, neglecting local field effects. ! Eps is computed both on the real or immaginary axis ! ! Authors: Andrea Benassi, Andrea Ferretti, Carlo Cavazzoni ! ! NOTE: Part of the basic implementation is taken from pw2gw.f90; ! ! USE kinds, ONLY : DP USE io_global, ONLY : stdout, ionode, ionode_id USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE iotk_module USE xml_io_base USE io_files, ONLY : tmp_dir, prefix, outdir USE constants, ONLY : RYTOEV USE ener, ONLY : ef USE klist, ONLY : lgauss USE ktetra, ONLY : ltetra USE wvfct, ONLY : nbnd USE lsda_mod, ONLY : nspin USE mp_global, ONLY : mp_startup USE environment, ONLY : environment_start ! IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! ! input variables ! INTEGER :: nw,nbndmin,nbndmax REAL(DP) :: intersmear,intrasmear,wmax,wmin,shift CHARACTER(10) :: calculation,smeartype LOGICAL :: metalcalc ! NAMELIST / inputpp / prefix, outdir, calculation NAMELIST / energy_grid / smeartype,intersmear,intrasmear,wmax,wmin,nbndmin,nbndmax,nw,shift ! ! local variables ! INTEGER :: ios !--------------------------------------------- ! program body !--------------------------------------------- ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'epsilon' ) ! ! Set default values for variables in namelist ! calculation = 'eps' prefix = 'pwscf' shift = 0.0d0 outdir = './' intersmear = 0.136 wmin = 0.0d0 wmax = 30.0d0 nbndmin = 1 nbndmax = 0 nw = 600 smeartype = 'gauss' intrasmear = 0.0d0 metalcalc = .false. ! ! this routine allows the user to redirect the input using -input ! instead of < ! CALL input_from_file( ) ! ! read input file ! IF (ionode) WRITE( stdout, "( 2/, 5x, 'Reading input file...' ) " ) ios = 0 ! IF ( ionode ) READ (5, inputpp, IOSTAT=ios) ! CALL mp_bcast ( ios, ionode_id, world_comm ) IF (ios/=0) CALL errore('epsilon', 'reading namelist INPUTPP', abs(ios)) ! IF ( ionode ) THEN ! READ (5, energy_grid, IOSTAT=ios) ! tmp_dir = trimcheck(outdir) ! ENDIF ! CALL mp_bcast ( ios, ionode_id, world_comm ) IF (ios/=0) CALL errore('epsilon', 'reading namelist ENERGY_GRID', abs(ios)) ! ! ... Broadcast variables ! IF (ionode) WRITE( stdout, "( 5x, 'Broadcasting variables...' ) " ) CALL mp_bcast( smeartype, ionode_id, world_comm ) CALL mp_bcast( calculation, ionode_id, world_comm ) CALL mp_bcast( prefix, ionode_id, world_comm ) CALL mp_bcast( tmp_dir, ionode_id, world_comm ) CALL mp_bcast( shift, ionode_id, world_comm ) CALL mp_bcast( outdir, ionode_id, world_comm ) CALL mp_bcast( intrasmear, ionode_id, world_comm ) CALL mp_bcast( intersmear, ionode_id, world_comm) CALL mp_bcast( wmax, ionode_id, world_comm ) CALL mp_bcast( wmin, ionode_id, world_comm ) CALL mp_bcast( nw, ionode_id, world_comm ) CALL mp_bcast( nbndmin, ionode_id, world_comm ) CALL mp_bcast( nbndmax, ionode_id, world_comm ) ! ! read PW simulation parameters from prefix.save/data-file.xml ! IF (ionode) WRITE( stdout, "( 5x, 'Reading PW restart file...' ) " ) CALL read_file CALL openfil_pp ! ! few conversions ! IF (ionode) WRITE(stdout,"(2/, 5x, 'Fermi energy [eV] is: ',f8.5)") ef *RYTOEV IF (lgauss .or. ltetra) THEN metalcalc=.true. IF (ionode) WRITE( stdout, "( 5x, 'The system is a metal...' ) " ) ELSE IF (ionode) WRITE( stdout, "( 5x, 'The system is a dielectric...' ) " ) ENDIF IF (nbndmax == 0) nbndmax = nbnd ! ! ... run the specific pp calculation ! IF (ionode) WRITE(stdout,"(/, 5x, 'Performing ',a,' calculation...')") trim(calculation) CALL start_clock( 'calculation' ) ! SELECT CASE ( trim(calculation) ) ! CASE ( 'eps' ) ! CALL eps_calc ( intersmear,intrasmear,nw,wmax,wmin,nbndmin,nbndmax,shift,metalcalc,nspin ) ! CASE ( 'jdos' ) ! CALL jdos_calc ( smeartype,intersmear,nw,wmax,wmin,nbndmin,nbndmax,shift,nspin ) ! CASE ( 'offdiag' ) ! CALL offdiag_calc ( intersmear,intrasmear,nw,wmax,wmin,nbndmin,nbndmax,shift,metalcalc,nspin ) ! CASE ( 'occ' ) ! CALL occ_calc () ! CASE DEFAULT ! CALL errore('epsilon','invalid CALCULATION = '//trim(calculation),1) ! END SELECT ! CALL stop_clock( 'calculation' ) ! ! few info about timing ! CALL stop_clock( 'epsilon' ) ! IF ( ionode ) WRITE( stdout , "(/)" ) ! CALL print_clock( 'epsilon' ) CALL print_clock( 'calculation' ) CALL print_clock( 'dipole_calc' ) ! IF ( ionode ) WRITE( stdout, * ) ! ! CALL stop_pp () END PROGRAM epsilon !----------------------------------------------------------------------------- SUBROUTINE eps_calc ( intersmear,intrasmear, nw, wmax, wmin, nbndmin, nbndmax, shift, & metalcalc , nspin) !----------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : PI, RYTOEV USE cell_base, ONLY : tpiba2, omega USE wvfct, ONLY : nbnd, et USE ener, ONLY : efermi => ef USE klist, ONLY : nks, nkstot, degauss USE io_global, ONLY : ionode, stdout ! USE grid_module, ONLY : alpha, focc, wgrid, grid_build, grid_destroy USE mp_global, ONLY : inter_pool_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! input variables ! INTEGER, INTENT(in) :: nw,nbndmin,nbndmax,nspin REAL(DP), INTENT(in) :: wmax, wmin, intersmear,intrasmear, shift LOGICAL, INTENT(in) :: metalcalc ! ! local variables ! INTEGER :: i, ik, iband1, iband2,is INTEGER :: iw, iwp, ierr REAL(DP) :: etrans, const, w, renorm(3) ! REAL(DP), ALLOCATABLE :: epsr(:,:), epsi(:,:), epsrc(:,:,:), epsic(:,:,:) REAL(DP), ALLOCATABLE :: ieps(:,:), eels(:,:), iepsc(:,:,:), eelsc(:,:,:) REAL(DP), ALLOCATABLE :: dipole(:,:,:) COMPLEX(DP),ALLOCATABLE :: dipole_aux(:,:,:) ! !-------------------------- ! main routine body !-------------------------- ! ! ! perform some consistency checks, calculate occupation numbers and setup w grid ! CALL grid_build(nw, wmax, wmin) ! ! allocate main spectral and auxiliary quantities ! ALLOCATE( dipole(3, nbnd, nbnd), STAT=ierr ) IF (ierr/=0) CALL errore('epsilon','allocating dipole', abs(ierr) ) ! ALLOCATE( dipole_aux(3, nbnd, nbnd), STAT=ierr ) IF (ierr/=0) CALL errore('epsilon','allocating dipole_aux', abs(ierr) ) ! ! spin unresolved calculation ! IF (nspin == 1) THEN ! ALLOCATE( epsr( 3, nw), epsi( 3, nw), eels( 3, nw), ieps(3,nw ), STAT=ierr ) IF (ierr/=0) CALL errore('epsilon','allocating eps', abs(ierr)) ! ! initialize response functions ! epsr(:,:) = 0.0_DP epsi(:,:) = 0.0_DP ieps(:,:) = 0.0_DP ! ! main kpt loop ! kpt_loop: & DO ik = 1, nks ! ! For every single k-point: order k+G for ! read and distribute wavefunctions ! compute dipole matrix 3 x nbnd x nbnd parallel over g ! recover g parallelism getting the total dipole matrix ! CALL dipole_calc( ik, dipole_aux, metalcalc , nbndmin, nbndmax) ! dipole(:,:,:)= tpiba2 * REAL( dipole_aux(:,:,:) * conjg(dipole_aux(:,:,:)), DP ) ! ! Calculation of real and immaginary parts ! of the macroscopic dielettric function from dipole ! approximation. ! 'intersmear' is the brodening parameter ! !Interband ! DO iband2 = nbndmin,nbndmax ! IF ( focc(iband2,ik) < 2.0d0) THEN DO iband1 = nbndmin,nbndmax ! IF (iband1==iband2) CYCLE IF ( focc(iband1,ik) >= 1e-4 ) THEN IF (abs(focc(iband2,ik)-focc(iband1,ik))< 1e-3) CYCLE ! ! transition energy ! etrans = ( et(iband2,ik) -et(iband1,ik) ) * RYTOEV + shift ! ! loop over frequencies ! DO iw = 1, nw ! w = wgrid(iw) ! epsi(:,iw) = epsi(:,iw) + dipole(:,iband1,iband2) * intersmear * w* & RYTOEV**3 * (focc(iband1,ik))/ & (( (etrans**2 -w**2 )**2 + intersmear**2 * w**2 )* etrans ) epsr(:,iw) = epsr(:,iw) + dipole(:,iband1,iband2) * RYTOEV**3 * & (focc(iband1,ik)) * & (etrans**2 - w**2 ) / & (( (etrans**2 -w**2 )**2 + intersmear**2 * w**2 )* etrans ) ENDDO ENDIF ENDDO ENDIF ENDDO ! !Intraband (only if metalcalc is true) ! IF (metalcalc) THEN DO iband1 = nbndmin,nbndmax ! IF ( focc(iband1,ik) < 2.0d0) THEN IF ( focc(iband1,ik) >= 1e-4 ) THEN ! ! loop over frequencies ! DO iw = 1, nw ! w = wgrid(iw) ! epsi(:,iw) = epsi(:,iw) + dipole(:,iband1,iband1) * intrasmear * w* & RYTOEV**2 * (exp((et(iband1,ik)-efermi)/degauss ))/ & (( w**4 + intrasmear**2 * w**2 )*(1+exp((et(iband1,ik)-efermi)/ & degauss))**2*degauss ) epsr(:,iw) = epsr(:,iw) - dipole(:,iband1,iband1) * RYTOEV**2 * & (exp((et(iband1,ik)-efermi)/degauss )) * w**2 / & (( w**4 + intrasmear**2 * w**2 )*(1+exp((et(iband1,ik)-efermi)/ & degauss))**2*degauss ) ENDDO ENDIF ENDIF ENDDO ENDIF ENDDO kpt_loop ! ! recover over kpt parallelization (inter_pool) ! CALL mp_sum( epsr, inter_pool_comm ) CALL mp_sum( epsi, inter_pool_comm ) ! ! impose the correct normalization ! const = 64.0d0 * PI / ( omega * REAL(nkstot, DP) ) epsr(:,:) = 1.0_DP + epsr(:,:) * const epsi(:,:) = epsi(:,:) * const ! ! Calculation of eels spectrum ! DO iw = 1, nw ! eels(:,iw) = epsi(:,iw) / ( epsr(:,iw)**2 + epsi(:,iw)**2 ) ! ENDDO ! ! calculation of dielectric function on the immaginary frequency axe ! DO iw = 1, nw DO iwp = 2, nw ! ieps(:,iw) = ieps(:,iw) + wgrid(iwp) * epsi(:,iwp) / ( wgrid(iwp)**2 + wgrid(iw)**2) ! ENDDO ENDDO ieps(:,:) = 1.0d0 + 2 / PI * ieps(:,:) * alpha ! ! check dielectric function normalizzation via sumrule ! DO i=1,3 renorm(i) = alpha * sum( epsi(i,:) * wgrid(:) ) ENDDO ! IF ( ionode ) THEN ! WRITE(stdout,"(/,5x, 'The bulk xx plasmon frequency [eV] is: ',f15.9 )") sqrt(renorm(1) * 2.0d0 / PI) WRITE(stdout,"(5x, 'The bulk yy plasmon frequency [eV] is: ',f15.9 )") sqrt(renorm(2) * 2.0d0 / PI) WRITE(stdout,"(5x, 'The bulk zz plasmon frequency [eV] is: ',f15.9 )") sqrt(renorm(3) * 2.0d0 / PI) WRITE(stdout,"(/,5x, 'Writing output on file...' )") ! ! write results on data files ! OPEN (30, FILE='epsr.dat', FORM='FORMATTED' ) OPEN (40, FILE='epsi.dat', FORM='FORMATTED' ) OPEN (41, FILE='eels.dat', FORM='FORMATTED' ) OPEN (42, FILE='ieps.dat', FORM='FORMATTED' ) ! WRITE(30, "(2x,'# energy grid [eV] epsr_x epsr_y epsr_z')" ) WRITE(40, "(2x,'# energy grid [eV] epsi_x epsi_y epsi_z')" ) WRITE(41, "(2x,'# energy grid [eV] eels components [arbitrary units]')" ) WRITE(42, "(2x,'# energy grid [eV] ieps_x ieps_y ieps_z ')" ) ! DO iw =1, nw ! WRITE(30,"(4f15.6)") wgrid(iw), epsr(1:3, iw) WRITE(40,"(4f15.6)") wgrid(iw), epsi(1:3, iw) WRITE(41,"(4f15.6)") wgrid(iw), eels(1:3, iw) WRITE(42,"(4f15.6)") wgrid(iw), ieps(1:3, iw) ! ENDDO ! CLOSE(30) CLOSE(40) CLOSE(41) CLOSE(42) ! ENDIF DEALLOCATE ( epsr, epsi, eels, ieps) ! ! collinear spin calculation ! ELSEIF (nspin == 2 ) THEN ! ALLOCATE( epsrc( 0:1, 3, nw), epsic( 0:1,3, nw), eelsc( 0:1,3, nw), iepsc(0:1,3,nw ), STAT=ierr ) IF (ierr/=0) CALL errore('epsilon','allocating eps', abs(ierr)) ! ! initialize response functions ! epsrc(:,:,:) = 0.0_DP epsic(:,:,:) = 0.0_DP iepsc(:,:,:) = 0.0_DP ! ! main kpt loop ! spin_loop: & DO is=0,1 kpt_loopspin: & ! if nspin=2 the number of nks must be even (even if the calculation ! is performed at gamma point only), so nks must be always a multiple of 2 DO ik = 1 + is * int(nks/2), int(nks/2) + is * int(nks/2) ! ! For every single k-point: order k+G for ! read and distribute wavefunctions ! compute dipole matrix 3 x nbnd x nbnd parallel over g ! recover g parallelism getting the total dipole matrix ! CALL dipole_calc( ik, dipole_aux, metalcalc , nbndmin, nbndmax) ! dipole(:,:,:)= tpiba2 * REAL( dipole_aux(:,:,:) * conjg(dipole_aux(:,:,:)), DP ) ! ! Calculation of real and immaginary parts ! of the macroscopic dielettric function from dipole ! approximation. ! 'intersmear' is the brodening parameter ! !Interband ! DO iband2 = nbndmin,nbndmax ! IF ( focc(iband2,ik) < 1.0d0) THEN DO iband1 = nbndmin,nbndmax ! IF (iband1==iband2) CYCLE IF ( focc(iband1,ik) >= 1e-4 ) THEN IF (abs(focc(iband2,ik)-focc(iband1,ik))< 1e-3) CYCLE ! ! transition energy ! etrans = ( et(iband2,ik) -et(iband1,ik) ) * RYTOEV + shift ! ! loop over frequencies ! DO iw = 1, nw ! w = wgrid(iw) ! epsic(is,:,iw) = epsic(is,:,iw) + dipole(:,iband1,iband2) * intersmear * w* & RYTOEV**3 * (focc(iband1,ik))/ & (( (etrans**2 -w**2 )**2 + intersmear**2 * w**2 )* etrans ) epsrc(is,:,iw) = epsrc(is,:,iw) + dipole(:,iband1,iband2) * RYTOEV**3 * & (focc(iband1,ik)) * & (etrans**2 - w**2 ) / & (( (etrans**2 -w**2 )**2 + intersmear**2 * w**2 )* etrans ) ENDDO ENDIF ENDDO ENDIF ENDDO ! !Intraband (only if metalcalc is true) ! IF (metalcalc) THEN DO iband1 = nbndmin,nbndmax ! IF ( focc(iband1,ik) < 1.0d0) THEN IF ( focc(iband1,ik) >= 1e-4 ) THEN ! ! loop over frequencies ! DO iw = 1, nw ! w = wgrid(iw) ! epsic(is,:,iw) = epsic(is,:,iw) + dipole(:,iband1,iband1) * intrasmear * w* & RYTOEV**2 * (exp((et(iband1,ik)-efermi)/degauss ))/ & (( w**4 + intrasmear**2 * w**2 )*(1+exp((et(iband1,ik)-efermi)/ & degauss))**2*degauss ) epsrc(is,:,iw) = epsrc(is,:,iw) - dipole(:,iband1,iband1) * RYTOEV**2 * & (exp((et(iband1,ik)-efermi)/degauss )) * w**2 / & (( w**4 + intrasmear**2 * w**2 )*(1+exp((et(iband1,ik)-efermi)/ & degauss))**2*degauss ) ENDDO ENDIF ENDIF ENDDO ENDIF ENDDO kpt_loopspin ENDDO spin_loop ! ! recover over kpt parallelization (inter_pool) ! CALL mp_sum( epsr, inter_pool_comm ) CALL mp_sum( epsi, inter_pool_comm ) ! ! impose the correct normalization ! const = 128.0d0 * PI / ( omega * REAL(nkstot, DP) ) epsrc(:,:,:) = 1.0_DP + epsrc(:,:,:) * const epsic(:,:,:) = epsic(:,:,:) * const ! ! Calculation of eels spectrum ! DO iw = 1, nw ! eelsc(:,:,iw) = epsic(:,:,iw) / ( epsrc(:,:,iw)**2 + epsic(:,:,iw)**2 ) ! ENDDO ! ! calculation of dielectric function on the immaginary frequency axe ! DO iw = 1, nw DO iwp = 2, nw ! iepsc(:,:,iw) = iepsc(:,:,iw) + wgrid(iwp) * epsic(:,:,iwp) / ( wgrid(iwp)**2 + wgrid(iw)**2) ! ENDDO ENDDO iepsc(:,:,:) = 1.0d0 + 2.0_DP / PI * iepsc(:,:,:) * alpha IF (ionode) THEN WRITE(stdout,"(/,5x, 'Writing output on file...' )") ! ! write results on data files ! OPEN (30, FILE='uepsr.dat', FORM='FORMATTED' ) OPEN (40, FILE='uepsi.dat', FORM='FORMATTED' ) OPEN (41, FILE='ueels.dat', FORM='FORMATTED' ) OPEN (42, FILE='uieps.dat', FORM='FORMATTED' ) OPEN (43, FILE='depsr.dat', FORM='FORMATTED' ) OPEN (44, FILE='depsi.dat', FORM='FORMATTED' ) OPEN (45, FILE='deels.dat', FORM='FORMATTED' ) OPEN (46, FILE='dieps.dat', FORM='FORMATTED' ) OPEN (47, FILE='epsr.dat', FORM='FORMATTED' ) OPEN (48, FILE='epsi.dat', FORM='FORMATTED' ) OPEN (49, FILE='eels.dat', FORM='FORMATTED' ) OPEN (50, FILE='ieps.dat', FORM='FORMATTED' ) ! WRITE(30, "(2x,'# energy grid [eV] epsr_x epsr_y epsr_z')" ) WRITE(40, "(2x,'# energy grid [eV] epsi_x epsi_y epsi_z')" ) WRITE(41, "(2x,'# energy grid [eV] eels components [arbitrary units]')" ) WRITE(42, "(2x,'# energy grid [eV] ieps_x ieps_y ieps_z ')" ) WRITE(43, "(2x,'# energy grid [eV] epsr_x epsr_y epsr_z')" ) WRITE(44, "(2x,'# energy grid [eV] epsi_x epsi_y epsi_z')" ) WRITE(45, "(2x,'# energy grid [eV] eels components [arbitrary units]')" ) WRITE(46, "(2x,'# energy grid [eV] ieps_x ieps_y ieps_z ')" ) WRITE(47, "(2x,'# energy grid [eV] epsr_x epsr_y epsr_z')" ) WRITE(48, "(2x,'# energy grid [eV] epsi_x epsi_y epsi_z')" ) WRITE(49, "(2x,'# energy grid [eV] eels components [arbitrary units]')" ) WRITE(50, "(2x,'# energy grid [eV] ieps_x ieps_y ieps_z ')" ) ! DO iw =1, nw ! WRITE(30,"(4f15.6)") wgrid(iw), epsrc(0,1:3, iw) WRITE(40,"(4f15.6)") wgrid(iw), epsic(0,1:3, iw) WRITE(41,"(4f15.6)") wgrid(iw), eelsc(0,1:3, iw) WRITE(42,"(4f15.6)") wgrid(iw), iepsc(0,1:3, iw) WRITE(43,"(4f15.6)") wgrid(iw), epsrc(1,1:3, iw) WRITE(44,"(4f15.6)") wgrid(iw), epsic(1,1:3, iw) WRITE(45,"(4f15.6)") wgrid(iw), eelsc(1,1:3, iw) WRITE(46,"(4f15.6)") wgrid(iw), iepsc(1,1:3, iw) WRITE(47,"(4f15.6)") wgrid(iw), epsrc(1,1:3, iw)+epsrc(0,1:3, iw) WRITE(48,"(4f15.6)") wgrid(iw), epsic(1,1:3, iw)+epsic(0,1:3, iw) WRITE(49,"(4f15.6)") wgrid(iw), eelsc(1,1:3, iw)+eelsc(0,1:3, iw) WRITE(50,"(4f15.6)") wgrid(iw), iepsc(1,1:3, iw)+iepsc(0,1:3, iw) ! ENDDO ! CLOSE(30) CLOSE(40) CLOSE(41) CLOSE(42) CLOSE(43) CLOSE(44) CLOSE(45) CLOSE(46) CLOSE(47) CLOSE(48) CLOSE(49) CLOSE(50) ! ENDIF DEALLOCATE ( epsrc, epsic, eelsc, iepsc) ENDIF ! ! local cleaning ! CALL grid_destroy() ! DEALLOCATE ( dipole, dipole_aux ) END SUBROUTINE eps_calc !---------------------------------------------------------------------------------------- SUBROUTINE jdos_calc ( smeartype,intersmear,nw,wmax,wmin,nbndmin,nbndmax,shift,nspin ) !-------------------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : PI, RYTOEV USE wvfct, ONLY : nbnd, et USE klist, ONLY : nks USE io_global, ONLY : ionode, stdout USE grid_module, ONLY : alpha, focc, wgrid, grid_build, grid_destroy ! IMPLICIT NONE ! ! input variables ! INTEGER, INTENT(in) :: nw,nbndmin,nbndmax,nspin REAL(DP), INTENT(in) :: wmax, wmin, intersmear, shift CHARACTER(*), INTENT(in) :: smeartype ! ! local variables ! INTEGER :: ik, is, iband1, iband2 INTEGER :: iw, ierr REAL(DP) :: etrans, w, renorm, count, srcount(0:1), renormzero,renormuno ! REAL(DP), ALLOCATABLE :: jdos(:),srjdos(:,:) ! !-------------------------- ! main routine body !-------------------------- ! ! No wavefunctions are needed in order to compute jdos, only eigenvalues, ! they are distributed to each task so ! no mpi calls are necessary in this routine ! ! perform some consistency checks, calculate occupation numbers and setup w grid ! CALL grid_build(nw, wmax, wmin ) ! ! spin unresolved calculation ! IF (nspin == 1) THEN ! ! allocate main spectral and auxiliary quantities ! ALLOCATE( jdos(nw), STAT=ierr ) IF (ierr/=0) CALL errore('epsilon','allocating jdos',abs(ierr)) ! ! initialize jdos ! jdos(:)=0.0_DP ! Initialising a counter for the number of transition count=0.0_DP ! ! main kpt loop ! IF (smeartype=='lorentz') THEN kpt_lor: & DO ik = 1, nks ! ! Calculation of joint density of states ! 'intersmear' is the brodening parameter ! DO iband2 = 1,nbnd IF ( focc(iband2,ik) < 2.0d0) THEN DO iband1 = 1,nbnd ! IF ( focc(iband1,ik) >= 1.0d-4 ) THEN ! ! transition energy ! etrans = ( et(iband2,ik) -et(iband1,ik) ) * RYTOEV + shift ! IF( etrans < 1.0d-10 ) CYCLE count = count + (focc(iband1,ik)-focc(iband2,ik)) ! ! loop over frequencies ! DO iw = 1, nw ! w = wgrid(iw) ! jdos(iw) = jdos(iw) + intersmear * (focc(iband1,ik)-focc(iband2,ik)) & / ( PI * ( (etrans -w )**2 + (intersmear)**2 ) ) ENDDO ENDIF ENDDO ENDIF ENDDO ENDDO kpt_lor ELSEIF (smeartype=='gauss') THEN kpt_gauss: & DO ik = 1, nks ! ! Calculation of joint density of states ! 'intersmear' is the brodening parameter ! DO iband2 = 1,nbnd DO iband1 = 1,nbnd ! IF ( focc(iband2,ik) < 2.0d0) THEN IF ( focc(iband1,ik) >= 1.0d-4 ) THEN ! ! transition energy ! etrans = ( et(iband2,ik) -et(iband1,ik) ) * RYTOEV + shift ! IF( etrans < 1.0d-10 ) CYCLE ! loop over frequencies ! count=count+ (focc(iband1,ik)-focc(iband2,ik)) DO iw = 1, nw ! w = wgrid(iw) ! jdos(iw) = jdos(iw) + (focc(iband1,ik)-focc(iband2,ik)) * & exp(-(etrans-w)**2/intersmear**2) & / (intersmear * sqrt(PI)) ENDDO ENDIF ENDIF ENDDO ENDDO ENDDO kpt_gauss ELSE CALL errore('epsilon', 'invalid SMEARTYPE = '//trim(smeartype), 1) ENDIF ! ! jdos normalizzation ! jdos(:)=jdos(:)/count ! ! check jdos normalization ! renorm = alpha * sum( jdos(:) ) ! ! write results on data files ! IF (ionode) THEN WRITE(stdout,"(/,5x, 'Integration over JDOS gives: ',f15.9,' instead of 1.0d0' )") renorm WRITE(stdout,"(/,5x, 'Writing output on file...' )") OPEN (30, FILE='jdos.dat', FORM='FORMATTED' ) ! WRITE(30, "(2x,'# energy grid [eV] JDOS [1/eV] ')" ) ! DO iw =1, nw ! WRITE(30,"(4f15.6)") wgrid(iw), jdos(iw) ! ENDDO ! CLOSE(30) ENDIF ! ! local cleaning ! DEALLOCATE ( jdos ) ! ! collinear spin calculation ! ELSEIF(nspin==2) THEN ! ! allocate main spectral and auxiliary quantities ! ALLOCATE( srjdos(0:1,nw), STAT=ierr ) IF (ierr/=0) CALL errore('epsilon','allocating spin resolved jdos',abs(ierr)) ! ! initialize jdos ! srjdos(:,:)=0.0_DP ! Initialising a counter for the number of transition srcount(:)=0.0_DP ! ! main kpt loop ! IF (smeartype=='lorentz') THEN DO is=0,1 ! if nspin=2 the number of nks must be even (even if the calculation ! is performed at gamma point only), so nks must be always a multiple of 2 DO ik = 1 + is * int(nks/2), int(nks/2) + is * int(nks/2) ! ! Calculation of joint density of states ! 'intersmear' is the brodening parameter ! DO iband2 = 1,nbnd IF ( focc(iband2,ik) < 2.0d0) THEN DO iband1 = 1,nbnd ! IF ( focc(iband1,ik) >= 1.0d-4 ) THEN ! ! transition energy ! etrans = ( et(iband2,ik) -et(iband1,ik) ) * RYTOEV + shift ! IF( etrans < 1.0d-10 ) CYCLE ! loop over frequencies ! srcount(is)=srcount(is)+ (focc(iband1,ik)-focc(iband2,ik)) DO iw = 1, nw ! w = wgrid(iw) ! srjdos(is,iw) = srjdos(is,iw) + intersmear * (focc(iband1,ik)-focc(iband2,ik)) & / ( PI * ( (etrans -w )**2 + (intersmear)**2 ) ) ENDDO ENDIF ENDDO ENDIF ENDDO ENDDO ENDDO ELSEIF (smeartype=='gauss') THEN DO is=0,1 ! if nspin=2 the number of nks must be even (even if the calculation ! is performed at gamma point only), so nks must be always a multiple of 2 DO ik = 1 + is * int(nks/2), int(nks/2) + is * int(nks/2) ! ! Calculation of joint density of states ! 'intersmear' is the brodening parameter ! DO iband2 = 1,nbnd DO iband1 = 1,nbnd ! IF ( focc(iband2,ik) < 2.0d0) THEN IF ( focc(iband1,ik) >= 1.0d-4 ) THEN ! ! transition energy ! etrans = ( et(iband2,ik) -et(iband1,ik) ) * RYTOEV + shift ! IF( etrans < 1.0d-10 ) CYCLE ! loop over frequencies ! srcount(is)=srcount(is)+ (focc(iband1,ik)-focc(iband2,ik)) DO iw = 1, nw ! w = wgrid(iw) ! srjdos(is,iw) = srjdos(is,iw) + (focc(iband1,ik)-focc(iband2,ik)) * & exp(-(etrans-w)**2/intersmear**2) & / (intersmear * sqrt(PI)) ENDDO ENDIF ENDIF ENDDO ENDDO ENDDO ENDDO ELSE CALL errore('epsilon', 'invalid SMEARTYPE = '//trim(smeartype), 1) ENDIF ! ! jdos normalizzation ! DO is = 0,1 srjdos(is,:)=srjdos(is,:)/srcount(is) ENDDO ! ! check jdos normalization ! renormzero = alpha * sum( srjdos(0,:) ) renormuno = alpha * sum( srjdos(1,:) ) ! ! write results on data files ! IF (ionode) THEN WRITE(stdout,"(/,5x, 'Integration over spin UP JDOS gives: ',f15.9,' instead of 1.0d0' )") renormzero WRITE(stdout,"(/,5x, 'Integration over spin DOWN JDOS gives: ',f15.9,' instead of 1.0d0' )") renormuno WRITE(stdout,"(/,5x, 'Writing output on file...' )") OPEN (30, FILE='jdos.dat', FORM='FORMATTED' ) ! WRITE(30, "(2x,'# energy grid [eV] UJDOS [1/eV] DJDOS[1:eV]')" ) ! DO iw =1, nw ! WRITE(30,"(4f15.6)") wgrid(iw), srjdos(0,iw), srjdos(1,iw) ! ENDDO ! CLOSE(30) ENDIF DEALLOCATE ( srjdos ) ENDIF ! ! local cleaning ! CALL grid_destroy() END SUBROUTINE jdos_calc !----------------------------------------------------------------------------- SUBROUTINE offdiag_calc ( intersmear,intrasmear, nw, wmax, wmin, nbndmin, nbndmax,& shift, metalcalc, nspin ) !----------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : PI, RYTOEV USE cell_base, ONLY : tpiba2, omega USE wvfct, ONLY : nbnd, et USE ener, ONLY : efermi => ef USE klist, ONLY : nks, nkstot, degauss USE grid_module, ONLY : focc, wgrid, grid_build, grid_destroy USE io_global, ONLY : ionode, stdout USE mp_global, ONLY : inter_pool_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! input variables ! INTEGER, INTENT(in) :: nw,nbndmin,nbndmax,nspin REAL(DP), INTENT(in) :: wmax, wmin, intersmear,intrasmear, shift LOGICAL, INTENT(in) :: metalcalc ! ! local variables ! INTEGER :: ik, iband1, iband2 INTEGER :: iw, ierr, it1, it2 REAL(DP) :: etrans, const, w ! COMPLEX(DP), ALLOCATABLE :: dipole_aux(:,:,:) COMPLEX(DP), ALLOCATABLE :: epstot(:,:,:),dipoletot(:,:,:,:) ! !-------------------------- ! main routine body !-------------------------- ! ! perform some consistency checks, calculate occupation numbers and setup w grid ! CALL grid_build(nw, wmax, wmin ) ! ! allocate main spectral and auxiliary quantities ! ALLOCATE( dipoletot(3,3, nbnd, nbnd), STAT=ierr ) IF (ierr/=0) CALL errore('epsilon','allocating dipoletot', abs(ierr) ) ! ALLOCATE( dipole_aux(3, nbnd, nbnd), STAT=ierr ) IF (ierr/=0) CALL errore('epsilon','allocating dipole_aux', abs(ierr) ) ! ALLOCATE(epstot( 3,3, nw),STAT=ierr ) IF (ierr/=0) CALL errore('epsilon','allocating epstot', abs(ierr)) ! ! initialize response functions ! epstot = (0.0_DP,0.0_DP) ! ! main kpt loop ! DO ik = 1, nks ! ! For every single k-point: order k+G for ! read and distribute wavefunctions ! compute dipole matrix 3 x nbnd x nbnd parallel over g ! recover g parallelism getting the total dipole matrix ! CALL dipole_calc( ik, dipole_aux, metalcalc, nbndmin, nbndmax) ! DO it2 = 1, 3 DO it1 = 1, 3 dipoletot(it1,it2,:,:) = tpiba2 * dipole_aux(it1,:,:) * conjg( dipole_aux(it2,:,:) ) ENDDO ENDDO ! ! Calculation of real and immaginary parts ! of the macroscopic dielettric function from dipole ! approximation. ! 'intersmear' is the brodening parameter ! DO iband2 = 1,nbnd IF ( focc(iband2,ik) < 2.0d0) THEN DO iband1 = 1,nbnd ! IF ( focc(iband1,ik) >= 1e-4 ) THEN ! ! transition energy ! etrans = ( et(iband2,ik) -et(iband1,ik) ) * RYTOEV + shift ! IF (abs(focc(iband2,ik)-focc(iband1,ik))< 1e-4) CYCLE ! ! loop over frequencies ! DO iw = 1, nw ! w = wgrid(iw) ! epstot(:,:,iw) = epstot(:,:,iw) + dipoletot(:,:,iband1,iband2)*RYTOEV**3/(etrans) *& focc(iband1,ik)/(etrans**2 - w**2 - (0,1)*intersmear*w) ENDDO ! ENDIF ENDDO ENDIF ENDDO ! !Intraband (only if metalcalc is true) ! IF (metalcalc) THEN DO iband1 = 1,nbnd ! IF ( focc(iband1,ik) < 2.0d0) THEN IF ( focc(iband1,ik) >= 1e-4 ) THEN ! ! loop over frequencies ! DO iw = 1, nw ! w = wgrid(iw) ! epstot(:,:,iw) = epstot(:,:,iw) - dipoletot(:,:,iband1,iband1)* & RYTOEV**2 * (exp((et(iband1,ik)-efermi)/degauss ))/ & (( w**2 + (0,1)*intrasmear*w)*(1+exp((et(iband1,ik)-efermi)/ & degauss))**2*degauss ) ENDDO ENDIF ENDIF ENDDO ENDIF ENDDO ! ! recover over kpt parallelization (inter_pool) ! CALL mp_sum( epstot, inter_pool_comm ) ! ! impose the correct normalization ! const = 64.0d0 * PI / ( omega * REAL(nkstot, DP) ) epstot(:,:,:) = epstot(:,:,:) * const ! ! add diagonal term ! epstot(1,1,:) = 1.0_DP + epstot(1,1,:) epstot(2,2,:) = 1.0_DP + epstot(2,2,:) epstot(3,3,:) = 1.0_DP + epstot(3,3,:) ! ! write results on data files ! IF (ionode) THEN ! WRITE(stdout,"(/,5x, 'Writing output on file...' )") ! OPEN (41, FILE='epsxx.dat', FORM='FORMATTED' ) OPEN (42, FILE='epsxy.dat', FORM='FORMATTED' ) OPEN (43, FILE='epsxz.dat', FORM='FORMATTED' ) OPEN (44, FILE='epsyx.dat', FORM='FORMATTED' ) OPEN (45, FILE='epsyy.dat', FORM='FORMATTED' ) OPEN (46, FILE='epsyz.dat', FORM='FORMATTED' ) OPEN (47, FILE='epszx.dat', FORM='FORMATTED' ) OPEN (48, FILE='epszy.dat', FORM='FORMATTED' ) OPEN (49, FILE='epszz.dat', FORM='FORMATTED' ) ! WRITE(41, "(2x,'# energy grid [eV] epsr epsi')" ) WRITE(42, "(2x,'# energy grid [eV] epsr epsi')" ) WRITE(43, "(2x,'# energy grid [eV] epsr epsi')" ) WRITE(44, "(2x,'# energy grid [eV] epsr epsi')" ) WRITE(45, "(2x,'# energy grid [eV] epsr epsi')" ) WRITE(46, "(2x,'# energy grid [eV] epsr epsi')" ) WRITE(47, "(2x,'# energy grid [eV] epsr epsi')" ) WRITE(48, "(2x,'# energy grid [eV] epsr epsi')" ) WRITE(49, "(2x,'# energy grid [eV] epsr epsi')" ) ! DO iw =1, nw ! WRITE(41,"(4f15.6)") wgrid(iw), REAL(epstot(1,1, iw)), aimag(epstot(1,1, iw)) WRITE(42,"(4f15.6)") wgrid(iw), REAL(epstot(1,2, iw)), aimag(epstot(1,2, iw)) WRITE(43,"(4f15.6)") wgrid(iw), REAL(epstot(1,3, iw)), aimag(epstot(1,3, iw)) WRITE(44,"(4f15.6)") wgrid(iw), REAL(epstot(2,1, iw)), aimag(epstot(2,1, iw)) WRITE(45,"(4f15.6)") wgrid(iw), REAL(epstot(2,2, iw)), aimag(epstot(2,2, iw)) WRITE(46,"(4f15.6)") wgrid(iw), REAL(epstot(2,3, iw)), aimag(epstot(2,3, iw)) WRITE(47,"(4f15.6)") wgrid(iw), REAL(epstot(3,1, iw)), aimag(epstot(3,1, iw)) WRITE(48,"(4f15.6)") wgrid(iw), REAL(epstot(3,2, iw)), aimag(epstot(3,2, iw)) WRITE(49,"(4f15.6)") wgrid(iw), REAL(epstot(3,3, iw)), aimag(epstot(3,3, iw)) ! ENDDO ! CLOSE(30) CLOSE(40) CLOSE(41) CLOSE(42) ! ENDIF ! ! local cleaning ! CALL grid_destroy() DEALLOCATE ( dipoletot, dipole_aux, epstot ) END SUBROUTINE offdiag_calc !-------------------------------------------------------------------- SUBROUTINE dipole_calc( ik, dipole_aux, metalcalc, nbndmin, nbndmax ) !------------------------------------------------------------------ USE kinds, ONLY : DP USE wvfct, ONLY : npw, nbnd, igk, g2kin, ecutwfc USE wavefunctions_module, ONLY : evc USE klist, ONLY : xk USE cell_base, ONLY : tpiba2 USE gvect, ONLY : ngm, g USE io_files, ONLY : nwordwfc, iunwfc USE grid_module, ONLY : focc USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! global variables INTEGER, INTENT(in) :: ik,nbndmin,nbndmax COMPLEX(DP), INTENT(inout) :: dipole_aux(3,nbnd,nbnd) LOGICAL, INTENT(in) :: metalcalc ! ! local variables INTEGER :: iband1,iband2,ig COMPLEX(DP) :: caux ! ! Routine Body ! CALL start_clock( 'dipole_calc' ) ! ! setup k+G grids for each kpt ! CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) ! ! read wfc for the given kpt ! CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) ! ! compute matrix elements ! dipole_aux(:,:,:) = (0.0_DP,0.0_DP) ! DO iband2 = nbndmin,nbndmax IF ( focc(iband2,ik) < 2.0d0) THEN DO iband1 = nbndmin,nbndmax ! IF ( iband1==iband2 ) CYCLE IF ( focc(iband1,ik) >= 1e-4 ) THEN ! DO ig=1,npw ! caux= conjg(evc(ig,iband1))*evc(ig,iband2) ! dipole_aux(:,iband1,iband2) = dipole_aux(:,iband1,iband2) + & ( g(:,igk(ig)) ) * caux ! ENDDO ENDIF ! ENDDO ENDIF ENDDO ! ! The diagonal terms are taken into account only if the system is treated like a metal, not ! in the intraband therm. Because of this we can recalculate the diagonal component of the dipole ! tensor directly as we need it for the intraband therm, without interference with interband one. ! IF (metalcalc) THEN ! DO iband1 = nbndmin,nbndmax DO ig=1,npw ! caux= conjg(evc(ig,iband1))*evc(ig,iband1) ! dipole_aux(:,iband1,iband1) = dipole_aux(:,iband1,iband1) + & ( g(:,igk(ig))+ xk(:,ik) ) * caux ! ENDDO ENDDO ! ENDIF ! ! recover over G parallelization (intra_bgrp) ! CALL mp_sum( dipole_aux, intra_bgrp_comm ) ! CALL stop_clock( 'dipole_calc' ) ! END SUBROUTINE dipole_calc !------------------------------------------------- SUBROUTINE occ_calc () !------------------------------------------------- ! USE kinds, ONLY : DP USE klist, ONLY : nkstot, wk, degauss USE wvfct, ONLY : nbnd, wg, et USE ener, ONLY : ef USE mp_global, ONLY : me_pool ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: focc(:,:),foccp(:,:) CHARACTER(25) :: filename INTEGER :: ierr, i, ik ! ALLOCATE ( focc( nbnd, nkstot), STAT=ierr ) IF (ierr/=0) CALL errore('grid_build','allocating focc', abs(ierr)) ! ALLOCATE ( foccp( nbnd, nkstot), STAT=ierr ) IF (ierr/=0) CALL errore('grid_build','allocating foccp', abs(ierr)) IF (me_pool==0) THEN ! filename = 'occupations.dat' ! WRITE(filename,"(I3,'.occupation.dat')")me_pool OPEN (unit=50, file=trim(filename)) WRITE(50,*) '#energy (Ry) occupation factor derivative' DO ik = 1,nkstot DO i = 1,nbnd focc(i,ik)= wg(i, ik ) * 2.0_DP/wk( ik ) foccp(i,ik)= 2* exp((et(i,ik)-ef)/degauss)/((1+exp((et(i,ik)-ef)/degauss))**2*degauss) WRITE(50,*)et(i,ik),focc(i,ik),foccp(i,ik) ENDDO ENDDO CLOSE (50) ! ENDIF ! DEALLOCATE ( focc, STAT=ierr) CALL errore('grid_destroy','deallocating grid stuff',abs(ierr)) ! DEALLOCATE ( foccp, STAT=ierr) CALL errore('grid_destroy','deallocating grid stuff',abs(ierr)) END SUBROUTINE occ_calc espresso-5.1/PP/src/wannier_plot.f900000644000175000017500000002015712341372773015447 0ustar mbamba! Copyright (C) 2006-2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) !----------------------------------------------------------------------- PROGRAM wannier_plot !----------------------------------------------------------------------- ! ! This program plots charge density of selected wannier function in ! IBM Data Explorer format USE io_global, ONLY: stdout, ionode, ionode_id USE kinds, ONLY : DP USE io_files, ONLY : prefix, tmp_dir USE wannier_new, ONLY : nwan, plot_wan_num, plot_wan_spin USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE io_global, ONLY : ionode, stdout USE mp_global, ONLY : mp_startup USE environment, ONLY : environment_start IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! CHARACTER(len=256) :: outdir INTEGER :: ios,nc(3),n0(3) NAMELIST /inputpp/ outdir, prefix, nwan, plot_wan_num, plot_wan_spin, nc, n0 ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'WANNIER_PLOT' ) ios = 0 ! IF ( ionode ) THEN ! ! set default values for variables in namelist ! CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( trim( outdir ) == ' ' ) outdir = './' prefix ='pwscf' nwan = 0 plot_wan_spin=1 nc(1) = 3 nc(2) = 3 nc(3) = 3 n0(1) = -1 n0(2) = -1 n0(3) = -1 ! CALL input_from_file ( ) ! READ (5, inputpp, iostat=ios ) ! tmp_dir = trimcheck (outdir) ENDIF ! CALL mp_bcast( ios, ionode_id, world_comm ) IF ( ios /= 0 ) CALL errore('wannier_ham','reading inputpp namelist',abs(ios)) CALL read_file CALL openfil_pp CALL wannier_init(.true.) !debug WRITE(stdout,'(5x,"Calling plot_wannier for wannier",i3)') plot_wan_num !end of debug CALL plot_wannier(nc,n0) !debug WRITE(stdout,'(5x,"Calling plot_atoms")') !end of debug CALL plot_atoms() CALL stop_pp CALL wannier_clean() END PROGRAM wannier_plot SUBROUTINE plot_wannier(nc,n0) USE io_global, ONLY : stdout, ionode, ionode_id USE io_files USE kinds, ONLY : DP USE wannier_new, ONLY : nwan,plot_wan_num,plot_wan_spin USE klist, ONLY : nks, xk, wk USE lsda_mod, ONLY : isk, current_spin, lsda, nspin USE wvfct, ONLY : nbnd, npwx, igk, npw, g2kin, ecutwfc USE constants, ONLY : rytoev , tpi USE buffers USE symm_base, ONLY : nsym USE basis, ONLY : swfcatom USE fft_base, ONLY : dffts, dfftp USE fft_interfaces,ONLY : invfft USE gvect USE gvecs USE cell_base USE ions_base, ONLY : nat, ntyp=>nsp, ityp, tau, atm, zv USE vlocal, ONLY : strf IMPLICIT NONE INTEGER, INTENT(in) :: nc(3), n0(3) INTEGER :: i,j, k, ik, n, ir, ios, n1, n2, n3,i1,j1,k1 COMPLEX(DP) :: phase COMPLEX(DP), ALLOCATABLE :: wan_func(:,:), pp_ort(:,:), psic(:), psic3(:,:,:), psic3_0(:,:,:), psic_sum(:,:,:,:), paux(:,:) real(DP), ALLOCATABLE :: rho(:,:,:,:), raux(:) real(DP) :: r(3) IF (nsym>1) THEN CALL errore('wannier_cmptn','k-points set is in the irreducible brillouin zone - not implemented',1) ENDIF ALLOCATE(wan_func(npwx,nwan)) ALLOCATE(psic(dffts%nnr)) ALLOCATE(psic3(dffts%nr1x,dffts%nr2x,dffts%nr3x)) ALLOCATE(psic3_0(dffts%nr1x,dffts%nr2x,dffts%nr3x)) ALLOCATE(psic_sum(nc(1)*dffts%nr1x,nc(2)*dffts%nr2x,nc(3)*dffts%nr3x,nspin)) ALLOCATE(rho(nc(1)*dffts%nr1x,nc(2)*dffts%nr2x,nc(3)*dffts%nr3x,nspin)) CALL init_us_1 CALL init_at_1 CALL struc_fact (nat, tau, ntyp, ityp, ngm, g, bg, dfftp%nr1, dfftp%nr2, dfftp%nr3, & strf, eigts1, eigts2, eigts3) current_spin = 1 wan_func = ZERO psic3 = ZERO psic3_0 = ZERO psic_sum = ZERO DO ik = 1, nks CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) IF (lsda) current_spin = isk(ik) wan_func = ZERO CALL get_buffer( wan_func, nwordwf, iunwf, ik) psic(1:dffts%nnr) = ZERO rho = ZERO DO j = 1, npw psic (nls (igk (j) ) ) = wan_func (j, plot_wan_num) ENDDO CALL invfft ('Wave', psic, dffts) DO k=1, dffts%nr3x DO j=1,dffts%nr2x DO i=1,dffts%nr1x n = i + (j-1)*dffts%nr1x + (k-1)*dffts%nr2x*dffts%nr1x psic3_0(i,j,k) = psic(n) ENDDO ENDDO ENDDO DO k=1, (dffts%nr3x-1)*nc(3) DO j=1, (dffts%nr2x-1)*nc(2) DO i=1, (dffts%nr1x-1)*nc(1) r = n0(1)*at(:,1)+n0(2)*at(:,2)+n0(3)*at(:,3) r = r + dble(i-1)*at(:,1)/dble(dffts%nr1x-1) + & dble(j-1)*at(:,2)/dble(dffts%nr2x-1) + & dble(k-1)*at(:,3)/dble(dffts%nr3x-1) phase = cos(tpi*(xk(1,ik)*r(1)+xk(2,ik)*r(2)+xk(3,ik)*r(3))) + & (0.d0,1.d0)*sin(tpi*(xk(1,ik)*r(1)+xk(2,ik)*r(2)+xk(3,ik)*r(3))) i1 = i - floor(dble(i-0.01)/dble(dffts%nr1x-1))*(dffts%nr1x-1) j1 = j - floor(dble(j-0.01)/dble(dffts%nr2x-1))*(dffts%nr2x-1) k1 = k - floor(dble(k-0.01)/dble(dffts%nr3x-1))*(dffts%nr3x-1) psic_sum(i,j,k,current_spin) = psic_sum(i,j,k,current_spin)+ & cmplx(wk(ik),0.d0,kind=DP)*psic3_0(i1,j1,k1)*phase ENDDO ENDDO ENDDO ENDDO !ik rho = 0.d0 DO n=1, nspin DO i=1, dffts%nr1x*nc(1) DO j=1, dffts%nr2x*nc(2) DO k=1,dffts%nr3x*nc(3) rho(i,j,k,n) = dreal(psic_sum(i,j,k,n))**2+aimag(psic_sum(i,j,k,n))**2 ENDDO ENDDO ENDDO ENDDO OPEN (10, file='wannier.plot.dx', err = 100, iostat = ios) 100 CALL errore ('plot_wannier', 'Opening out file', abs (ios) ) ! I want to write .dx file for dataexplorer WRITE(10,'(a36,3i6)') 'object 1 class gridpositions counts ', & dffts%nr3x*nc(3), dffts%nr2x*nc(2), dffts%nr1x*nc(1) WRITE(10,*) 'origin', n0(1)*at(:,1)+n0(2)*at(:,2)+n0(3)*at(:,3) WRITE(10,'(a5, 3f9.5)') 'delta', (at(i,1)/(1.d0*(dffts%nr3x-1)),i=1,3) WRITE(10,'(a5, 3f9.5)') 'delta', (at(i,2)/(1.d0*(dffts%nr2x-1)),i=1,3) WRITE(10,'(a5, 3f9.5)') 'delta', (at(i,3)/(1.d0*(dffts%nr1x-1)),i=1,3) WRITE(10,'(a38,3i6)') 'object 2 class gridconnections counts ', & dffts%nr3x*nc(3), dffts%nr2x*nc(2), dffts%nr1x*nc(1) WRITE(10,*) 'attribute "element type" string "cubes"' WRITE(10,*) 'attribute "ref" string "positions"' WRITE(10,'(a44,i10,a13)') 'object 3 class array type float rank 0 items', & dffts%nr3x*nc(3)*dffts%nr2x*nc(2)*dffts%nr1x*nc(1), 'data follows' DO i=1, dffts%nr3x*nc(3) DO j=1,dffts%nr2x*nc(2) DO k=1,dffts%nr1x*nc(1) WRITE(10,'(f13.7)') rho(k,j,i,plot_wan_spin) ! write(10,'(f13.7)') aimag(psic_sum(k,j,i,plot_wan_spin)) ENDDO ENDDO ENDDO WRITE(10,'(a34)') 'attribute "dep" string "positions"' WRITE(10,*) 'object "regular positions regular connections" class field' WRITE(10,*) 'component "positions" value 1' WRITE(10,*) 'component "connections" value 2' WRITE(10,*) 'component "data" value 3' WRITE(10,*) 'end' CLOSE(10) DEALLOCATE(wan_func) DEALLOCATE(psic) DEALLOCATE(psic3) DEALLOCATE(psic3_0) DEALLOCATE(psic_sum) DEALLOCATE(rho) END SUBROUTINE plot_wannier SUBROUTINE plot_atoms USE io_global, ONLY: stdout USE kinds, ONLY: DP USE ions_base, ONLY: tau, nat, ityp, zv IMPLICIT NONE INTEGER :: i,na, ios OPEN (20, file='atoms.plot.dx', err = 200, iostat = ios) 200 CALL errore ('plot_wannier', 'Opening out atoms file', abs (ios) ) WRITE(20,*) 'object 1 class array type float rank 1 shape 3 items', nat,' data follows' DO na = 1, nat WRITE(20,'(3f9.5)') (tau(i,na),i=1,3) ENDDO WRITE(20,*) 'object 2 class array type float rank 0 items', nat,' data follows' DO na = 1, nat WRITE(20,*) zv(ityp(na)) ENDDO WRITE(20,*) 'attribute "dep" string "positions"' WRITE(20,*) 'object "irregular positions" class field' WRITE(20,*) 'component "positions" value 1' WRITE(20,*) 'component "data" value 2' WRITE(20,*) 'end' CLOSE(20) END SUBROUTINE plot_atoms espresso-5.1/PP/src/bgw2pw.f900000644000175000017500000010040312341372773014147 0ustar mbamba! ! Copyright (C) 2010-2012 Georgy Samsonidze ! ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Converts BerkeleyGW WFN and RHO files to the format of pw.x. ! !------------------------------------------------------------------------------- ! ! BerkeleyGW, Copyright (c) 2011, The Regents of the University of ! California, through Lawrence Berkeley National Laboratory (subject to ! receipt of any required approvals from the U.S. Dept. of Energy). ! All rights reserved. ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are ! met: ! ! (1) Redistributions of source code must retain the above copyright ! notice, this list of conditions and the following disclaimer. ! ! (2) Redistributions in binary form must reproduce the above copyright ! notice, this list of conditions and the following disclaimer in the ! documentation and/or other materials provided with the distribution. ! ! (3) Neither the name of the University of California, Lawrence ! Berkeley National Laboratory, U.S. Dept. of Energy nor the names of ! its contributors may be used to endorse or promote products derived ! from this software without specific prior written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ! "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ! LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ! A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ! OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ! LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ! DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ! THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ! You are under no obligation whatsoever to provide any bug fixes, ! patches, or upgrades to the features, functionality or performance of ! the source code ("Enhancements") to anyone; however, if you choose to ! make your Enhancements available either publicly, or directly to ! Lawrence Berkeley National Laboratory, without imposing a separate ! written license agreement for such Enhancements, then you hereby grant ! the following license: a non-exclusive, royalty-free perpetual ! license to install, use, modify, prepare derivative works, incorporate ! into other computer software, distribute, and sublicense such ! enhancements or derivative works thereof, in binary and source code ! form. ! !------------------------------------------------------------------------------- ! ! bgw2pw subroutines: ! ! write_evc - generates eigenvalues and wavefunctions in espresso format ! write_cd - generates charge density in espresso format ! check_inversion - checks whether real/complex version is appropriate ! !------------------------------------------------------------------------------- PROGRAM bgw2pw USE environment, ONLY : environment_start, environment_end USE io_files, ONLY : prefix, tmp_dir, outdir USE io_global, ONLY : ionode, ionode_id USE kinds, ONLY : DP USE mp, ONLY : mp_bcast USE mp_global, ONLY : mp_startup USE mp_world, ONLY : world_comm IMPLICIT NONE character(len=6) :: codename = 'BGW2PW' integer :: real_or_complex logical :: wfng_flag character ( len = 256 ) :: wfng_file integer :: wfng_nband logical :: rhog_flag character ( len = 256 ) :: rhog_file NAMELIST / input_bgw2pw / prefix, outdir, & real_or_complex, wfng_flag, wfng_file, wfng_nband, & rhog_flag, rhog_file integer :: ios character ( len = 256 ) :: input_file_name character ( len = 256 ) :: output_dir_name character (len=256), external :: trimcheck #ifdef __PARA CALL mp_startup ( ) #endif CALL environment_start ( codename ) prefix = 'prefix' CALL get_env ( 'ESPRESSO_TMPDIR', outdir ) IF ( TRIM ( outdir ) == ' ' ) outdir = './' real_or_complex = 2 wfng_flag = .FALSE. wfng_file = 'WFN' wfng_nband = 0 rhog_flag = .FALSE. rhog_file = 'RHO' IF ( ionode ) THEN CALL input_from_file ( ) READ ( 5, input_bgw2pw, iostat = ios ) IF ( ios /= 0 ) CALL errore ( codename, 'input_bgw2pw', abs ( ios ) ) IF ( real_or_complex /= 1 .AND. real_or_complex /= 2 ) & CALL errore ( codename, 'real_or_complex', 1 ) IF ( wfng_nband .LT. 0 ) CALL errore ( codename, 'wfng_nband', 1 ) ENDIF tmp_dir = trimcheck ( outdir ) CALL mp_bcast ( outdir, ionode_id, world_comm ) CALL mp_bcast ( tmp_dir, ionode_id, world_comm ) CALL mp_bcast ( prefix, ionode_id, world_comm ) CALL mp_bcast ( real_or_complex, ionode_id, world_comm ) CALL mp_bcast ( wfng_flag, ionode_id, world_comm ) CALL mp_bcast ( wfng_file, ionode_id, world_comm ) CALL mp_bcast ( wfng_nband, ionode_id, world_comm ) CALL mp_bcast ( rhog_flag, ionode_id, world_comm ) CALL mp_bcast ( rhog_file, ionode_id, world_comm ) CALL read_file ( ) CALL openfil_pp ( ) IF ( wfng_flag ) THEN input_file_name = TRIM ( outdir ) // '/' // TRIM ( wfng_file ) output_dir_name = TRIM ( outdir ) // '/' // TRIM ( prefix ) // '.save' IF ( ionode ) WRITE ( 6, '(5x,"call write_evc")' ) CALL start_clock ( 'write_evc' ) CALL write_evc ( input_file_name, real_or_complex, wfng_nband, & output_dir_name ) CALL stop_clock ( 'write_evc' ) IF ( ionode ) WRITE ( 6, '(5x,"done write_evc",/)' ) ENDIF IF ( rhog_flag ) THEN input_file_name = TRIM ( outdir ) // '/' // TRIM ( rhog_file ) output_dir_name = TRIM ( outdir ) // '/' // TRIM ( prefix ) // '.save' IF ( ionode ) WRITE ( 6, '(5x,"call write_cd")' ) CALL start_clock ( 'write_cd' ) CALL write_cd ( input_file_name, real_or_complex, output_dir_name ) CALL stop_clock ( 'write_cd' ) IF ( ionode ) WRITE ( 6, '(5x,"done write_cd",/)' ) ENDIF IF ( ionode ) WRITE ( 6, * ) IF ( wfng_flag ) CALL print_clock ( 'write_evc' ) IF ( rhog_flag ) CALL print_clock ( 'write_cd' ) CALL environment_end ( codename ) CALL stop_pp ( ) STOP CONTAINS !------------------------------------------------------------------------------- SUBROUTINE write_evc ( input_file_name, real_or_complex, & wfng_nband, output_dir_name ) USE cell_base, ONLY : omega, alat, tpiba, tpiba2, at, bg USE constants, ONLY : eps6 USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, ngm_g, ig_l2g, mill, g USE io_global, ONLY : ionode, ionode_id USE ions_base, ONLY : nat USE iotk_module, ONLY : iotk_attlenx, iotk_free_unit, iotk_open_write, & iotk_write_begin, iotk_write_attr, iotk_write_empty, iotk_write_dat, & iotk_write_end, iotk_close_write, iotk_index USE kinds, ONLY : DP USE klist, ONLY : xk, nks, nkstot USE lsda_mod, ONLY : nspin USE mp, ONLY : mp_bcast, mp_sum, mp_max, mp_barrier USE mp_world, ONLY : world_comm, nproc USE mp_pools, ONLY : kunit, npool, my_pool_id, intra_pool_comm USE symm_base, ONLY : s, nsym USE xml_io_base, ONLY : create_directory USE qexml_module, ONLY : qexml_kpoint_dirname, qexml_wfc_filename #ifdef __PARA USE parallel_include, ONLY : MPI_INTEGER, MPI_DOUBLE_COMPLEX #endif USE wvfct, ONLY : npwx, g2kin, ecutwfc IMPLICIT NONE character ( len = 256 ), intent ( in ) :: input_file_name integer, intent ( in ) :: real_or_complex integer, intent ( in ) :: wfng_nband character ( len = 256 ), intent ( in ) :: output_dir_name logical :: f1, f2 integer :: ierr, i, j, iu, ik, is, ib, ig, jg, fg, ir, & na, nk, ns, nb, nbgw, ng, ngkmax, ntran, cell_symmetry, & nkbl, nkl, nkr, iks, ike, npw, npw_g, ngkdist_l, ngkdist_g, & igk_l2g, irecord, nrecord, ng_irecord, nr ( 3 ) real ( DP ) :: ecutrho, ecutwfn, celvol, recvol, al, bl, xdel, & a ( 3, 3 ), b ( 3, 3 ), adot ( 3, 3 ), bdot ( 3, 3 ) character :: sdate*32, stime*32, stitle*32 character ( len = 256 ) :: filename character ( iotk_attlenx ) :: attr integer, allocatable :: itmp ( : ) integer, allocatable :: ngk ( : ) integer, allocatable :: gvec ( :, : ) integer, allocatable :: igk_buf ( : ) integer, allocatable :: igk_dist ( :, : ) integer, allocatable :: gk_buf ( :, : ) integer, allocatable :: gk_dist ( :, : ) real ( DP ), allocatable :: k ( :, : ) real ( DP ), allocatable :: en ( :, :, : ) real ( DP ), allocatable :: oc ( :, :, : ) real ( DP ), allocatable :: wfngr ( :, : ) complex ( DP ), allocatable :: wfngc ( :, : ) complex ( DP ), allocatable :: wfng_buf ( :, : ) complex ( DP ), allocatable :: wfng_dist ( :, :, :, : ) CALL check_inversion ( real_or_complex, nsym, s, nspin, .true., .true. ) IF ( ionode ) CALL iotk_free_unit ( iu ) IF ( ionode ) THEN OPEN ( unit = iu, file = TRIM ( input_file_name ), & form = 'unformatted', status = 'old' ) READ ( iu ) stitle, sdate, stime ENDIF CALL mp_bcast ( stitle, ionode_id, world_comm ) f1 = real_or_complex == 1 .AND. stitle(1:8) == 'WFN-Real' f2 = real_or_complex == 2 .AND. stitle(1:11) == 'WFN-Complex' IF ( ( .NOT. f1 ) .AND. ( .NOT. f2 ) ) & CALL errore ( 'write_evc', 'file header', 1 ) IF ( ionode ) THEN READ ( iu ) ns, ng, ntran, cell_symmetry, na, ecutrho, nk, nb, ngkmax, ecutwfn READ ( iu ) ( nr ( ir ), ir = 1, 3 ) READ ( iu ) celvol, al, ( ( a ( j, i ), j = 1, 3 ), i = 1, 3 ), & ( ( adot ( j, i ), j = 1, 3 ), i = 1, 3 ) READ ( iu ) recvol, bl, ( ( b ( j, i ), j = 1, 3 ), i = 1, 3 ), & ( ( bdot ( j, i ), j = 1, 3 ), i = 1, 3 ) ENDIF CALL mp_bcast ( ns, ionode_id, world_comm ) CALL mp_bcast ( ng, ionode_id, world_comm ) CALL mp_bcast ( ntran, ionode_id, world_comm ) CALL mp_bcast ( cell_symmetry, ionode_id, world_comm ) CALL mp_bcast ( na, ionode_id, world_comm ) CALL mp_bcast ( ecutrho, ionode_id, world_comm ) CALL mp_bcast ( nk, ionode_id, world_comm ) CALL mp_bcast ( nb, ionode_id, world_comm ) CALL mp_bcast ( ngkmax, ionode_id, world_comm ) CALL mp_bcast ( ecutwfn, ionode_id, world_comm ) CALL mp_bcast ( nr, ionode_id, world_comm ) CALL mp_bcast ( celvol, ionode_id, world_comm ) CALL mp_bcast ( al, ionode_id, world_comm ) CALL mp_bcast ( a, ionode_id, world_comm ) CALL mp_bcast ( adot, ionode_id, world_comm ) CALL mp_bcast ( recvol, ionode_id, world_comm ) CALL mp_bcast ( bl, ionode_id, world_comm ) CALL mp_bcast ( b, ionode_id, world_comm ) CALL mp_bcast ( bdot, ionode_id, world_comm ) IF ( ns .NE. nspin ) CALL errore ( 'write_evc', 'ns', 1 ) IF ( ng .NE. ngm_g ) CALL errore ( 'write_evc', 'ng', 1 ) IF ( na .NE. nat ) CALL errore ( 'write_evc', 'na', 1 ) IF ( nk .NE. nkstot / nspin ) CALL errore ( 'write_evc', 'nk', 1 ) IF ( nr ( 1 ) .NE. dfftp%nr1 .OR. nr ( 2 ) .NE. dfftp%nr2 .OR. nr ( 3 ) .NE. dfftp%nr3 ) & CALL errore ( 'write_evc', 'nr', 1 ) IF ( abs ( celvol - omega ) .GT. eps6 ) & CALL errore ( 'write_evc', 'unit cell volume', 1 ) xdel = 0.0D0 DO i = 1, 3 DO j = 1, 3 xdel = xdel + abs ( al * a ( j, i ) - alat * at ( j, i ) ) ENDDO ENDDO IF ( xdel .GT. eps6 ) & CALL errore ( 'write_evc', 'direct lattice vectors', 1 ) xdel = 0.0D0 DO i = 1, 3 DO j = 1, 3 xdel = xdel + abs ( bl * b ( j, i ) - tpiba * bg ( j, i ) ) ENDDO ENDDO IF ( xdel .GT. eps6 ) & CALL errore ( 'write_evc', 'reciprocal lattice vectors', 1 ) nbgw = nb IF ( wfng_nband .GT. 0 .AND. wfng_nband .LT. nb ) nb = wfng_nband IF ( MOD ( ngkmax, nproc ) .EQ. 0 ) THEN ngkdist_l = ngkmax / nproc ELSE ngkdist_l = ngkmax / nproc + 1 ENDIF ngkdist_g = ngkdist_l * nproc ALLOCATE ( ngk ( nk ) ) ALLOCATE ( k ( 3, nk ) ) ALLOCATE ( en ( nb, nk, ns ) ) ALLOCATE ( oc ( nb, nk, ns ) ) ALLOCATE ( gvec ( 3, ng ) ) ALLOCATE ( igk_buf ( ngkdist_g ) ) ALLOCATE ( igk_dist ( ngkdist_l, nk ) ) ALLOCATE ( gk_buf ( 3, ngkdist_g ) ) ALLOCATE ( gk_dist ( 3, ngkdist_l ) ) IF ( real_or_complex .EQ. 1 ) THEN ALLOCATE ( wfngr ( ngkmax, ns ) ) ELSE ALLOCATE ( wfngc ( ngkmax, ns ) ) ENDIF ALLOCATE ( wfng_buf ( ngkdist_g, ns ) ) ALLOCATE ( wfng_dist ( ngkdist_l, nb, ns, nk ) ) IF ( ionode ) THEN READ ( iu ) READ ( iu ) READ ( iu ) READ ( iu ) ( ngk ( ik ), ik = 1, nk ) READ ( iu ) READ ( iu ) ( ( k ( ir, ik ), ir = 1, 3 ), ik = 1, nk ) READ ( iu ) READ ( iu ) READ ( iu ) ( ( ( en ( ib, ik, is ), ib = 1, nb ), ik = 1, nk ), is = 1, ns ) READ ( iu ) ( ( ( oc ( ib, ik, is ), ib = 1, nb ), ik = 1, nk ), is = 1, ns ) READ ( iu ) nrecord ig = 1 DO irecord = 1, nrecord READ ( iu ) ng_irecord READ ( iu ) ( ( gvec ( ir, jg ), ir = 1, 3 ), jg = ig, ig + ng_irecord - 1 ) ig = ig + ng_irecord ENDDO ENDIF IF ( ionode ) THEN CALL cryst_to_cart ( nk, k, bg, 1 ) DO is = 1, ns DO ik = 1, nk DO ib = 1, nb en ( ib, ik, is ) = en ( ib, ik, is ) / 2.0D0 ENDDO ENDDO ENDDO ENDIF CALL mp_bcast ( ngk, ionode_id, world_comm ) CALL mp_bcast ( k, ionode_id, world_comm ) CALL mp_bcast ( en, ionode_id, world_comm ) CALL mp_bcast ( oc, ionode_id, world_comm ) CALL mp_bcast ( gvec, ionode_id, world_comm ) fg = 0 DO ig = 1, ngm IF ( ( gvec ( 1, ig_l2g ( ig ) ) .NE. mill ( 1, ig ) ) .OR. & ( gvec ( 2, ig_l2g ( ig ) ) .NE. mill ( 2, ig ) ) .OR. & ( gvec ( 3, ig_l2g ( ig ) ) .NE. mill ( 3, ig ) ) ) & fg = fg + 1 ENDDO CALL mp_sum ( fg, intra_pool_comm ) IF ( fg .GT. 0 ) THEN IF ( ionode ) WRITE ( 6, 101 ) gvec ( :, : ) = 0 DO ig = 1, ngm gvec ( 1, ig_l2g ( ig ) ) = mill ( 1, ig ) gvec ( 2, ig_l2g ( ig ) ) = mill ( 2, ig ) gvec ( 3, ig_l2g ( ig ) ) = mill ( 3, ig ) ENDDO CALL mp_sum ( gvec, intra_pool_comm ) ENDIF DO ik = 1, nk IF ( ionode ) THEN READ ( iu ) nrecord ig = 1 DO irecord = 1, nrecord READ ( iu ) ng_irecord READ ( iu ) ( ( gk_buf ( ir, jg ), ir = 1, 3 ), jg = ig, ig + ng_irecord - 1 ) ig = ig + ng_irecord ENDDO DO ig = ngk ( ik ) + 1, ngkdist_g DO ir = 1, 3 gk_buf ( ir, ig ) = 0 ENDDO ENDDO ENDIF #ifdef __PARA CALL mp_barrier ( world_comm ) CALL MPI_Scatter ( gk_buf, 3 * ngkdist_l, MPI_INTEGER, & gk_dist, 3 * ngkdist_l, MPI_INTEGER, & ionode_id, world_comm, ierr ) IF ( ierr .GT. 0 ) CALL errore ( 'write_evc', 'mpi_scatter', ierr ) #else DO ig = 1, ngkdist_g DO ir = 1, 3 gk_dist ( ir, ig ) = gk_buf ( ir, ig ) ENDDO ENDDO #endif DO ig = 1, ngkdist_l DO jg = 1, ng IF ( gk_dist ( 1, ig ) .EQ. gvec ( 1, jg ) .AND. & gk_dist ( 2, ig ) .EQ. gvec ( 2, jg ) .AND. & gk_dist ( 3, ig ) .EQ. gvec ( 3, jg ) ) THEN igk_dist ( ig, ik ) = jg EXIT ENDIF ENDDO ENDDO DO ib = 1, nb IF ( ionode ) THEN READ ( iu ) nrecord ig = 1 DO irecord = 1, nrecord READ ( iu ) ng_irecord IF ( real_or_complex .EQ. 1 ) THEN READ ( iu ) ( ( wfngr ( jg, is ), jg = ig, ig + ng_irecord - 1 ), is = 1, ns ) ELSE READ ( iu ) ( ( wfngc ( jg, is ), jg = ig, ig + ng_irecord - 1 ), is = 1, ns ) ENDIF ig = ig + ng_irecord ENDDO DO is = 1, ns IF ( real_or_complex .EQ. 1 ) THEN DO ig = 1, ngk ( ik ) wfng_buf ( ig, is ) = CMPLX ( wfngr ( ig, is ), 0.0D0 ) ENDDO ELSE DO ig = 1, ngk ( ik ) wfng_buf ( ig, is ) = wfngc ( ig, is ) ENDDO ENDIF DO ig = ngk ( ik ) + 1, ngkdist_g wfng_buf ( ig, is ) = ( 0.0D0, 0.0D0 ) ENDDO ENDDO ENDIF #ifdef __PARA DO is = 1, ns CALL mp_barrier ( world_comm ) CALL MPI_Scatter ( wfng_buf ( :, is ), ngkdist_l, MPI_DOUBLE_COMPLEX, & wfng_dist ( :, ib, is, ik ), ngkdist_l, MPI_DOUBLE_COMPLEX, & ionode_id, world_comm, ierr ) IF ( ierr .GT. 0 ) CALL errore ( 'write_evc', 'mpi_scatter', ierr ) ENDDO #else DO is = 1, ns DO ig = 1, ngkdist_g wfng_dist ( ig, ib, is, ik ) = wfng_buf ( ig, is ) ENDDO ENDDO #endif ENDDO IF ( ik .LT. nk ) THEN DO ib = nb + 1, nbgw IF ( ionode ) THEN READ ( iu ) nrecord DO irecord = 1, nrecord READ ( iu ) READ ( iu ) ENDDO ENDIF ENDDO ENDIF ENDDO IF ( ionode ) THEN CLOSE ( unit = iu, status = 'keep' ) ENDIF DEALLOCATE ( gk_buf ) DEALLOCATE ( gk_dist ) IF ( real_or_complex .EQ. 1 ) THEN DEALLOCATE ( wfngr ) ELSE DEALLOCATE ( wfngc ) ENDIF CALL mp_bcast ( ngk, ionode_id, world_comm ) nkbl = nkstot / kunit nkl = kunit * ( nkbl / npool ) nkr = ( nkstot - nkl * npool ) / kunit IF ( my_pool_id .LT. nkr ) nkl = nkl + kunit iks = nkl * my_pool_id + 1 IF ( my_pool_id .GE. nkr ) iks = iks + nkr * kunit ike = iks + nkl - 1 npw_g = 0 ALLOCATE ( itmp ( npwx ) ) DO ik = 1, nks DO ig = 1, npwx itmp ( ig ) = 0 ENDDO npw = npwx CALL gk_sort ( xk ( 1, ik + iks - 1 ), ngm, g, ecutwfc / tpiba2, & npw, itmp ( 1 ), g2kin ) DO ig = 1, npw igk_l2g = ig_l2g ( itmp ( ig ) ) IF ( igk_l2g .GT. npw_g ) npw_g = igk_l2g ENDDO ENDDO DEALLOCATE ( itmp ) CALL mp_max ( npw_g, world_comm ) CALL create_directory ( output_dir_name ) DO ik = 1, nk CALL create_directory (qexml_kpoint_dirname( output_dir_name, ik ) ) ENDDO filename = TRIM ( output_dir_name ) // '/gvectors.dat' IF ( ionode ) THEN CALL iotk_open_write ( iu, FILE = TRIM ( filename ), SKIP_ROOT = .TRUE., BINARY = .TRUE. ) CALL iotk_write_begin ( iu, "G-VECTORS" ) CALL iotk_write_attr ( attr, "nr1s", nr ( 1 ), FIRST = .TRUE. ) CALL iotk_write_attr ( attr, "nr2s", nr ( 2 ) ) CALL iotk_write_attr ( attr, "nr3s", nr ( 3 ) ) CALL iotk_write_attr ( attr, "gvect_number", ng ) CALL iotk_write_attr ( attr, "gamma_only", .FALSE. ) CALL iotk_write_attr ( attr, "units", "crystal" ) CALL iotk_write_empty ( iu, "INFO", ATTR = attr ) CALL iotk_write_dat ( iu, "g", gvec ( 1 : 3, 1 : ng ), COLUMNS = 3 ) CALL iotk_write_end ( iu, "G-VECTORS" ) CALL iotk_close_write ( iu ) ENDIF DO ik = 1, nk filename = TRIM ( qexml_wfc_filename ( output_dir_name, 'gkvectors', ik ) ) IF ( ionode ) THEN CALL iotk_open_write ( iu, FILE = TRIM ( filename ), ROOT="GK-VECTORS", BINARY = .TRUE. ) CALL iotk_write_dat ( iu, "NUMBER_OF_GK-VECTORS", ngk ( ik ) ) CALL iotk_write_dat ( iu, "MAX_NUMBER_OF_GK-VECTORS", ngkmax ) CALL iotk_write_dat ( iu, "GAMMA_ONLY", .FALSE. ) CALL iotk_write_attr ( attr, "UNITS", "2 pi / a", FIRST = .TRUE. ) CALL iotk_write_dat ( iu, "K-POINT_COORDS", k ( :, ik ), ATTR = attr ) ENDIF #ifdef __PARA CALL mp_barrier ( world_comm ) CALL MPI_Gather ( igk_dist ( :, ik ) , ngkdist_l, MPI_INTEGER, & igk_buf, ngkdist_l, MPI_INTEGER, & ionode_id, world_comm, ierr ) IF ( ierr .GT. 0 ) CALL errore ( 'write_evc', 'mpi_gather', ierr ) #else DO ig = 1, ngkdist_g igk_buf ( ig ) = igk_dist ( ig, ik ) ENDDO #endif IF ( ionode ) THEN CALL iotk_write_dat ( iu, "INDEX", igk_buf ( 1 : ngk ( ik ) ) ) CALL iotk_write_dat ( iu, "GRID", gvec ( 1 : 3, igk_buf ( 1 : ngk ( ik ) ) ), COLUMNS = 3 ) CALL iotk_close_write ( iu ) ENDIF DO is = 1, ns IF ( ns .GT. 1 ) THEN filename = TRIM ( qexml_wfc_filename ( output_dir_name, 'eigenval', ik, is, EXTENSION = 'xml' ) ) ELSE filename = TRIM ( qexml_wfc_filename ( output_dir_name, 'eigenval', ik, EXTENSION = 'xml' ) ) ENDIF IF ( ionode ) THEN CALL iotk_open_write ( iu, FILE = TRIM ( filename ), BINARY = .FALSE. ) CALL iotk_write_attr ( attr, "nbnd", nb, FIRST = .TRUE. ) CALL iotk_write_attr ( attr, "ik", ik ) IF ( ns .GT. 1 ) CALL iotk_write_attr ( attr, "ispin", is ) CALL iotk_write_empty ( iu, "INFO", ATTR = attr ) CALL iotk_write_attr ( attr, "UNITS", "Hartree", FIRST = .TRUE. ) CALL iotk_write_empty ( iu, "UNITS_FOR_ENERGIES", ATTR = attr ) CALL iotk_write_dat ( iu, "EIGENVALUES", en ( :, ik, is ) ) CALL iotk_write_dat ( iu, "OCCUPATIONS", oc ( :, ik, is ) ) CALL iotk_close_write ( iu ) ENDIF IF ( ns .GT. 1 ) THEN filename = TRIM ( qexml_wfc_filename ( output_dir_name, 'evc', ik, is ) ) ELSE filename = TRIM ( qexml_wfc_filename ( output_dir_name, 'evc', ik ) ) ENDIF IF ( ionode ) THEN CALL iotk_open_write ( iu, FILE = TRIM ( filename ), ROOT = "WFC", BINARY = .TRUE. ) CALL iotk_write_attr ( attr, "ngw", npw_g, FIRST = .TRUE. ) CALL iotk_write_attr ( attr, "igwx", ngk ( ik ) ) CALL iotk_write_attr ( attr, "gamma_only", .FALSE. ) CALL iotk_write_attr ( attr, "nbnd", nb ) CALL iotk_write_attr ( attr, "ik", ik ) CALL iotk_write_attr ( attr, "nk", nk ) CALL iotk_write_attr ( attr, "ispin", is ) CALL iotk_write_attr ( attr, "nspin", ns ) CALL iotk_write_attr ( attr, "scale_factor", 1.0D0 ) CALL iotk_write_empty ( iu, "INFO", attr ) ENDIF DO ib = 1, nb #ifdef __PARA CALL mp_barrier ( world_comm ) CALL MPI_Gather ( wfng_dist ( :, ib, is, ik ), ngkdist_l, MPI_DOUBLE_COMPLEX, & wfng_buf ( :, is ), ngkdist_l, MPI_DOUBLE_COMPLEX, & ionode_id, world_comm, ierr ) IF ( ierr .GT. 0 ) CALL errore ( 'write_evc', 'mpi_gather', ierr ) #else DO ig = 1, ngkdist_g wfng_buf ( ig, is ) = wfng_dist ( ig, ib, is, ik ) ENDDO #endif IF ( ionode ) CALL iotk_write_dat ( iu, "evc" // iotk_index ( ib ), wfng_buf ( 1 : ngk ( ik ), is ) ) ENDDO IF ( ionode ) CALL iotk_close_write ( iu ) ENDDO ENDDO DEALLOCATE ( ngk ) DEALLOCATE ( k ) DEALLOCATE ( en ) DEALLOCATE ( oc ) DEALLOCATE ( gvec ) DEALLOCATE ( igk_buf ) DEALLOCATE ( igk_dist ) DEALLOCATE ( wfng_buf ) DEALLOCATE ( wfng_dist ) CALL mp_barrier ( world_comm ) RETURN 101 FORMAT ( 5X, "WARNING: reordering G-vectors" ) END SUBROUTINE write_evc !------------------------------------------------------------------------------- SUBROUTINE write_cd ( input_file_name, real_or_complex, output_dir_name ) USE cell_base, ONLY : omega, alat, tpiba, at, bg USE constants, ONLY : eps6 USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : invfft USE gvect, ONLY : ngm, ngm_g, ig_l2g, nl, mill USE io_global, ONLY : ionode, ionode_id USE ions_base, ONLY : nat USE io_rho_xml, ONLY : write_rho USE iotk_module, ONLY : iotk_attlenx, iotk_free_unit, iotk_open_write, & iotk_write_begin, iotk_write_attr, iotk_write_empty, iotk_write_dat, & iotk_write_end, iotk_close_write USE kinds, ONLY : DP USE lsda_mod, ONLY : nspin USE mp, ONLY : mp_bcast, mp_sum USE mp_pools, ONLY : intra_pool_comm USE mp_world, ONLY : world_comm USE scf, ONLY : rho USE symm_base, ONLY : s, nsym USE wavefunctions_module, ONLY : psic USE xml_io_base, ONLY : create_directory IMPLICIT NONE character ( len = 256 ), intent ( in ) :: input_file_name integer, intent ( in ) :: real_or_complex character ( len = 256 ), intent ( in ) :: output_dir_name logical :: f1, f2 integer :: i, j, iu, is, ig, jg, fg, ir, ns, ng, & ntran, cell_symmetry, na, irecord, nrecord, ng_irecord, nr ( 3 ) real ( DP ) :: ecutrho, celvol, recvol, al, bl, xdel, & a ( 3, 3 ), b ( 3, 3 ), adot ( 3, 3 ), bdot ( 3, 3 ) character :: sdate*32, stime*32, stitle*32 character ( len = 256 ) :: filename character ( iotk_attlenx ) :: attr integer, allocatable :: gvec ( :, : ) real ( DP ), allocatable :: rhogr ( :, : ) complex ( DP ), allocatable :: rhogc ( :, : ) complex ( DP ), allocatable :: rhog ( :, : ) complex ( DP ), allocatable :: rhog_unsrt ( :, : ) CALL check_inversion ( real_or_complex, nsym, s, nspin, .true., .true. ) IF ( ionode ) CALL iotk_free_unit ( iu ) IF ( ionode ) THEN OPEN ( unit = iu, file = TRIM ( input_file_name ), & form = 'unformatted', status = 'old' ) READ ( iu ) stitle, sdate, stime ENDIF CALL mp_bcast ( stitle, ionode_id, world_comm ) f1 = real_or_complex == 1 .AND. stitle(1:8) == 'RHO-Real' f2 = real_or_complex == 2 .AND. stitle(1:11) == 'RHO-Complex' IF ( ( .NOT. f1 ) .AND. ( .NOT. f2 ) ) & CALL errore ( 'write_cd', 'file header', 1 ) IF ( ionode ) THEN READ ( iu ) ns, ng, ntran, cell_symmetry, na, ecutrho READ ( iu ) ( nr ( ir ), ir = 1, 3 ) READ ( iu ) celvol, al, ( ( a ( j, i ), j = 1, 3 ), i = 1, 3 ), & ( ( adot ( j, i ), j = 1, 3 ), i = 1, 3 ) READ ( iu ) recvol, bl, ( ( b ( j, i ), j = 1, 3 ), i = 1, 3 ), & ( ( bdot ( j, i ), j = 1, 3 ), i = 1, 3 ) ENDIF CALL mp_bcast ( ns, ionode_id, world_comm ) CALL mp_bcast ( ng, ionode_id, world_comm ) CALL mp_bcast ( ntran, ionode_id, world_comm ) CALL mp_bcast ( cell_symmetry, ionode_id, world_comm ) CALL mp_bcast ( na, ionode_id, world_comm ) CALL mp_bcast ( ecutrho, ionode_id, world_comm ) CALL mp_bcast ( nr, ionode_id, world_comm ) CALL mp_bcast ( celvol, ionode_id, world_comm ) CALL mp_bcast ( al, ionode_id, world_comm ) CALL mp_bcast ( a, ionode_id, world_comm ) CALL mp_bcast ( adot, ionode_id, world_comm ) CALL mp_bcast ( recvol, ionode_id, world_comm ) CALL mp_bcast ( bl, ionode_id, world_comm ) CALL mp_bcast ( b, ionode_id, world_comm ) CALL mp_bcast ( bdot, ionode_id, world_comm ) IF ( ns .NE. nspin ) CALL errore ( 'write_cd', 'ns', 1 ) IF ( ng .NE. ngm_g ) CALL errore ( 'write_cd', 'ng', 1 ) IF ( na .NE. nat ) CALL errore ( 'write_cd', 'na', 1 ) IF ( nr ( 1 ) .NE. dfftp%nr1 .OR. nr ( 2 ) .NE. dfftp%nr2 .OR. nr ( 3 ) .NE. dfftp%nr3 ) & CALL errore ( 'write_cd', 'nr', 1 ) IF ( abs ( celvol - omega ) .GT. eps6 ) & CALL errore ( 'write_cd', 'unit cell volume', 1 ) xdel = 0.0D0 DO i = 1, 3 DO j = 1, 3 xdel = xdel + abs ( al * a ( j, i ) - alat * at ( j, i ) ) ENDDO ENDDO IF ( xdel .GT. eps6 ) & CALL errore ( 'write_cd', 'direct lattice vectors', 1 ) xdel = 0.0D0 DO i = 1, 3 DO j = 1, 3 xdel = xdel + abs ( bl * b ( j, i ) - tpiba * bg ( j, i ) ) ENDDO ENDDO IF ( xdel .GT. eps6 ) & CALL errore ( 'write_cd', 'reciprocal lattice vectors', 1 ) ALLOCATE ( gvec ( 3, ng ) ) IF ( real_or_complex .EQ. 1 ) THEN ALLOCATE ( rhogr ( ng, ns ) ) ELSE ALLOCATE ( rhogc ( ng, ns ) ) ENDIF ALLOCATE ( rhog ( ng, ns ) ) IF ( ionode ) THEN READ ( iu ) READ ( iu ) READ ( iu ) READ ( iu ) nrecord ig = 1 DO irecord = 1, nrecord READ ( iu ) ng_irecord READ ( iu ) ( ( gvec ( ir, jg ), ir = 1, 3 ), jg = ig, ig + ng_irecord - 1 ) ig = ig + ng_irecord ENDDO READ ( iu ) nrecord ig = 1 DO irecord = 1, nrecord READ ( iu ) ng_irecord IF ( real_or_complex .EQ. 1 ) THEN READ ( iu ) ( ( rhogr ( jg, is ), jg = ig, ig + ng_irecord - 1 ), is = 1, ns ) ELSE READ ( iu ) ( ( rhogc ( jg, is ), jg = ig, ig + ng_irecord - 1 ), is = 1, ns ) ENDIF ig = ig + ng_irecord ENDDO DO is = 1, ns IF ( real_or_complex .EQ. 1 ) THEN DO ig = 1, ng rhog ( ig, is ) = CMPLX ( rhogr ( ig, is ), 0.0D0 ) ENDDO ELSE DO ig = 1, ng rhog ( ig, is ) = rhogc ( ig, is ) ENDDO ENDIF ENDDO CLOSE ( unit = iu, status = 'keep' ) ENDIF IF ( real_or_complex .EQ. 1 ) THEN DEALLOCATE ( rhogr ) ELSE DEALLOCATE ( rhogc ) ENDIF IF ( ionode ) THEN DO is = 1, ns DO ig = 1, ng rhog ( ig, is ) = rhog ( ig, is ) / CMPLX ( omega, 0.0D0 ) ENDDO ENDDO ENDIF CALL mp_bcast ( gvec, ionode_id, world_comm ) CALL mp_bcast ( rhog, ionode_id, world_comm ) fg = 0 DO ig = 1, ngm IF ( ( gvec ( 1, ig_l2g ( ig ) ) .NE. mill ( 1, ig ) ) .OR. & ( gvec ( 2, ig_l2g ( ig ) ) .NE. mill ( 2, ig ) ) .OR. & ( gvec ( 3, ig_l2g ( ig ) ) .NE. mill ( 3, ig ) ) ) & fg = fg + 1 ENDDO CALL mp_sum ( fg, intra_pool_comm ) IF ( fg .GT. 0 ) THEN IF ( ionode ) WRITE ( 6, 101 ) ALLOCATE ( rhog_unsrt ( ng, ns ) ) rhog_unsrt ( :, : ) = rhog ( :, : ) rhog ( :, : ) = ( 0.0D0, 0.0D0 ) DO ig = 1, ng DO jg = 1, ngm IF ( ( mill ( 1, jg ) .EQ. gvec ( 1, ig ) ) .AND. & ( mill ( 2, jg ) .EQ. gvec ( 2, ig ) ) .AND. & ( mill ( 3, jg ) .EQ. gvec ( 3, ig ) ) ) THEN DO is = 1, ns rhog ( ig_l2g ( jg ), is ) = rhog_unsrt ( ig, is ) ENDDO ENDIF ENDDO ENDDO DEALLOCATE ( rhog_unsrt ) CALL mp_sum ( rhog, intra_pool_comm ) gvec ( :, : ) = 0 DO ig = 1, ngm gvec ( 1, ig_l2g ( ig ) ) = mill ( 1, ig ) gvec ( 2, ig_l2g ( ig ) ) = mill ( 2, ig ) gvec ( 3, ig_l2g ( ig ) ) = mill ( 3, ig ) ENDDO CALL mp_sum ( gvec, intra_pool_comm ) ENDIF DO is = 1, ns DO ig = 1, ngm rho%of_g ( ig, is ) = rhog ( ig_l2g ( ig ), is ) ENDDO ENDDO DEALLOCATE ( rhog ) DO is = 1, ns DO ig = 1, ngm psic ( nl ( ig ) ) = rho%of_g ( ig, is ) ENDDO CALL invfft ( 'Dense', psic, dfftp ) DO ir = 1, dfftp%nnr rho%of_r ( ir, is ) = psic ( ir ) ENDDO ENDDO CALL create_directory ( output_dir_name ) filename = TRIM ( output_dir_name ) // '/gvectors.dat' IF ( ionode ) THEN CALL iotk_open_write ( iu, FILE = TRIM ( filename ), SKIP_ROOT = .TRUE., BINARY = .TRUE. ) CALL iotk_write_begin ( iu, "G-VECTORS" ) CALL iotk_write_attr ( attr, "nr1s", dfftp%nr1, FIRST = .TRUE. ) CALL iotk_write_attr ( attr, "nr2s", dfftp%nr2 ) CALL iotk_write_attr ( attr, "nr3s", dfftp%nr3 ) CALL iotk_write_attr ( attr, "gvect_number", ng ) CALL iotk_write_attr ( attr, "gamma_only", .FALSE. ) CALL iotk_write_attr ( attr, "units", "crystal" ) CALL iotk_write_empty ( iu, "INFO", ATTR = attr ) CALL iotk_write_dat ( iu, "g", gvec ( 1 : 3, 1 : ng ), COLUMNS = 3 ) CALL iotk_write_end ( iu, "G-VECTORS" ) CALL iotk_close_write ( iu ) ENDIF DEALLOCATE ( gvec ) CALL write_rho ( rho%of_r, nspin ) RETURN 101 FORMAT ( 5X, "WARNING: reordering G-vectors" ) END SUBROUTINE write_cd !------------------------------------------------------------------------------- subroutine check_inversion(real_or_complex, ntran, mtrx, nspin, warn, real_need_inv) ! check_inversion Originally By D. Strubbe Last Modified 10/14/2010 ! Check whether our choice of real/complex version is appropriate given the ! presence or absence of inversion symmetry. USE io_global, ONLY : ionode implicit none integer, intent(in) :: real_or_complex integer, intent(in) :: ntran integer, intent(in) :: mtrx(3, 3, 48) integer, intent(in) :: nspin logical, intent(in) :: warn ! set to false to suppress warnings, for converters logical, intent(in) :: real_need_inv ! use for generating routines to block real without inversion integer :: invflag, isym, ii, jj, itest invflag = 0 do isym = 1, ntran itest = 0 do ii = 1, 3 do jj = 1, 3 if(ii .eq. jj) then itest = itest + (mtrx(ii, jj, isym) + 1)**2 else itest = itest + mtrx(ii, jj, isym)**2 endif enddo enddo if(itest .eq. 0) invflag = invflag + 1 if(invflag .gt. 1) call errore('check_inversion', 'More than one inversion symmetry operation is present.', invflag) enddo if(real_or_complex .eq. 2) then if(invflag .ne. 0 .and. warn) then if(ionode) write(6, '(a)') 'WARNING: Inversion symmetry is present. The real version would be faster.' endif else if(invflag .eq. 0) then if(real_need_inv) then call errore('check_inversion', 'The real version cannot be used without inversion symmetry.', -1) endif if(ionode) then write(6, '(a)') 'WARNING: Inversion symmetry is absent in symmetries used to reduce k-grid.' write(6, '(a)') 'Be sure inversion is still a spatial symmetry, or you must use complex version instead.' endif endif if(nspin .eq. 2) then call errore('check_inversion', & 'Time-reversal symmetry is absent in spin-polarized calculation. Complex version must be used.', -2) endif endif return end subroutine check_inversion !------------------------------------------------------------------------------- END PROGRAM bgw2pw espresso-5.1/PP/src/cube.f900000644000175000017500000001471412341372773013666 0ustar mbamba! ! Copyright (C) 2004 Axel Kohlmeyer ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! This file holds gaussian cube generation subroutines. ! Adapted by Axel Kohlmeyer from xsf.f90. ! updated by Axel Kohlmeyer on Sep 27, 2004. ! updated by PG on Sep. 15, 2005 to account for the case in which ! nr1x,nr2x,nr3x (the physical dimensions of array rho) differ from ! nr1, nr2, nr3 (the true dimensions) ! updated by PG on Feb, 2013 upon suggestion by Thomas Gruber: ! workaround for VESTA - reverted to previous behavior in Oct 2013 ! since workaround is no longer needed ! ------------------------------------------------------------------- ! this routine writes a gaussian 98 like formatted cubefile. ! atoms outside the supercell are wrapped back according to PBC. ! plain dumping of the data. no re-gridding or transformation to an ! orthorhombic box (needed for most .cube aware programs :-/). ! ------------------------------------------------------------------- SUBROUTINE write_cubefile ( alat, at, bg, nat, tau, atm, ityp, rho, & nr1, nr2, nr3, nr1x, nr2x, nr3x, ounit ) USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(IN):: nat, ityp(nat), ounit, nr1,nr2,nr3, nr1x,nr2x,nr3x CHARACTER(len=3), INTENT(IN) :: atm(*) REAL(DP), INTENT(IN) :: alat, tau(3,nat), at(3,3),bg(3,3), rho(nr1x,nr2x,nr3x) ! -- INTEGER :: i, nt, i1, i2, i3, at_num INTEGER, EXTERNAL:: atomic_number real(DP) :: at_chrg, tpos(3), inpos(3) !C WRITE A FORMATTED 'DENSITY-STYLE' CUBEFILE VERY SIMILAR !C TO THOSE CREATED BY THE GAUSSIAN PROGRAM OR THE CUBEGEN UTILITY. !C THE FORMAT IS AS FOLLOWS (LAST CHECKED AGAINST GAUSSIAN 98): !C !C LINE FORMAT CONTENTS !C =============================================================== !C 1 A TITLE !C 2 A DESCRIPTION OF PROPERTY STORED IN CUBEFILE !C 3 I5,3F12.6 #ATOMS, X-,Y-,Z-COORDINATES OF ORIGIN !C 4-6 I5,3F12.6 #GRIDPOINTS, INCREMENT VECTOR !C #ATOMS LINES OF ATOM COORDINATES: !C ... I5,4F12.6 ATOM NUMBER, CHARGE, X-,Y-,Z-COORDINATE !C REST: 6E13.5 CUBE DATA !C !C ALL COORDINATES ARE GIVEN IN ATOMIC UNITS. WRITE(ounit,*) 'Cubfile created from PWScf calculation' WRITE(ounit,*) ' Total SCF Density' ! origin is forced to (0.0,0.0,0.0) WRITE(ounit,'(I5,3F12.6)') nat, 0.0d0, 0.0d0, 0.0d0 WRITE(ounit,'(I5,3F12.6)') nr1, (alat*at(i,1)/dble(nr1),i=1,3) WRITE(ounit,'(I5,3F12.6)') nr2, (alat*at(i,2)/dble(nr2),i=1,3) WRITE(ounit,'(I5,3F12.6)') nr3, (alat*at(i,3)/dble(nr3),i=1,3) DO i=1,nat nt = ityp(i) ! find atomic number for this atom. at_num = atomic_number(trim(atm(nt))) at_chrg= dble(at_num) ! at_chrg could be alternatively set to valence charge ! positions are in cartesian coordinates and a.u. ! ! wrap coordinates back into cell. tpos = matmul( transpose(bg), tau(:,i) ) tpos = tpos - nint(tpos - 0.5d0) inpos = alat * matmul( at, tpos ) WRITE(ounit,'(I5,5F12.6)') at_num, at_chrg, inpos ENDDO DO i1=1,nr1 DO i2=1,nr2 WRITE(ounit,'(6E13.5)') (rho(i1,i2,i3),i3=1,nr3) ENDDO ENDDO RETURN END SUBROUTINE write_cubefile ! ------------------------------------------------------------------- ! this routine instead writes a re-gridded cubefile (i.e. by B-spline ! interpolation) ! ------------------------------------------------------------------- SUBROUTINE write_cubefile_new (alat, nat, tau, atm, ityp, x0, & m1, m2, m3, e1, e2, e3, nx, ny, nz, carica, ounit) USE kinds, ONLY : dp USE io_global, ONLY : stdout USE cell_base, ONLY : at implicit none real(dp), intent(in) :: alat, tau(3,nat) integer, intent(in) :: nat, ityp(nat), ounit, nx, ny, nz character(len=3) :: atm(*) real(dp), intent(in) :: m1, m2, m3, x0(3), e1(3), e2(3), e3(3), carica(nx,ny,nz) integer :: ia, i, j, k, at_num integer, external :: atomic_number real(dp) :: at_chrg, tpos(3), inpos(3) real(dp) :: bbmin(3), bbmax(3) integer, parameter :: natomsmax = 10000 real(dp) :: taupos(3,natomsmax), pos(3) integer :: natoms, taupostyp(natomsmax) ! generate bounding box bbmin(:) = 1d30 bbmax(:) = -1d30 call bbox(x0, bbmin, bbmax) call bbox(x0+e1, bbmin, bbmax) call bbox(x0+e2, bbmin, bbmax) call bbox(x0+e3, bbmin, bbmax) call bbox(x0+e1+e2, bbmin, bbmax) call bbox(x0+e2+e3, bbmin, bbmax) call bbox(x0+e3+e1, bbmin, bbmax) call bbox(x0+e1+e2+e3, bbmin, bbmax) write(stdout,'(5X,''Bounding box= ['',F12.4,'','',F12.4,'']'')') bbmin(1)*alat, bbmax(1)*alat write(stdout,'(5X,'' ['',F12.4,'','',F12.4,'']'')') bbmin(2)*alat, bbmax(2)*alat write(stdout,'(5X,'' ['',F12.4,'','',F12.4,'']'')') bbmin(3)*alat, bbmax(3)*alat ! generate atoms in bounding box natoms = 0 do i = -5, 5 do j = -5, 5 do k = -5, 5 do ia = 1, nat pos = tau(:,ia) + i*at(:,1) + j*at(:,2) + k*at(:,3) if (all(pos >= bbmin) .and. all(pos <= bbmax)) then natoms = natoms + 1 if (natoms > natomsmax) & call errore('write_cubefile_new', 'increase natomsmax', natoms) taupos(:,natoms) = pos(:) taupostyp(natoms) = ityp(ia) endif enddo enddo enddo enddo write(stdout,'(5X,I6,'' atoms inside bounding box'')') natoms write(ounit,*) 'cubfile created from pwscf calculation' write(ounit,*) 'total scf density' write(ounit,'(i5,3f12.6)') natoms, x0(:)*alat write(ounit,'(i5,3f12.6)') nx, alat*m1*e1(:)/dble(nx) write(ounit,'(i5,3f12.6)') ny, alat*m2*e2(:)/dble(ny) write(ounit,'(i5,3f12.6)') nz, alat*m3*e3(:)/dble(nz) do ia = 1, natoms at_num = atomic_number(trim(atm(taupostyp(ia)))) at_chrg = dble(at_num) write(ounit,'(i5,5f12.6)') at_num, at_chrg, alat*taupos(:,ia) enddo do i=1,nx do j=1,ny write(ounit,'(6e13.5)') (carica(i,j,k),k=1,nz) enddo enddo return END SUBROUTINE write_cubefile_new SUBROUTINE bbox(r, bbmin, bbmax) USE kinds, only: dp implicit none real(dp), intent(in) :: r(3) real(dp), intent(inout) :: bbmin(3), bbmax(3) integer :: i do i = 1, 3 bbmin(i) = min(bbmin(i), r(i)) bbmax(i) = max(bbmax(i), r(i)) enddo END SUBROUTINE bbox espresso-5.1/PP/src/add_shift_us.f900000644000175000017500000001772312341372773015407 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE add_shift_us( shift_nl ) !---------------------------------------------------------------------------- ! ! ... nonlocal potential contribution to forces ! ... wrapper ! USE kinds, ONLY : DP USE wvfct, ONLY : g2kin, ecutwfc USE control_flags, ONLY : gamma_only USE cell_base, ONLY : at, bg, tpiba, tpiba2 USE ions_base, ONLY : nat, ntyp => nsp , ityp USE klist, ONLY : nks, xk USE gvect, ONLY : g, ngm USE uspp, ONLY : nkb, vkb, qq, deeq USE uspp_param, ONLY : upf, nh, newpseudo USE wvfct, ONLY : nbnd, npw, npwx, igk, wg, et USE lsda_mod, ONLY : lsda, current_spin, isk USE symme, ONLY : symscalar USE wavefunctions_module, ONLY : evc USE io_files, ONLY : iunwfc, nwordwfc USE becmod, ONLY : calbec ! IMPLICIT NONE ! ! ... the dummy variable ! REAL(DP) :: shift_nl(nat) ! output: the nonlocal contribution ! ! IF ( gamma_only ) THEN ! CALL add_shift_us_gamma() ! ELSE ! CALL add_shift_us_k() ! ENDIF ! RETURN ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE add_shift_us_gamma() !----------------------------------------------------------------------- ! ! ... calculation at gamma ! USE mp_global, ONLY: inter_pool_comm, intra_pool_comm USE mp, ONLY: mp_sum IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: rbecp(:,:), shift_(:) ! auxiliary variables contain REAL(DP) :: ps INTEGER :: ik, ibnd, ih, jh, na, nt, ikb, jkb, ijkb0 ! counters ! ! ! ALLOCATE( rbecp( nkb, nbnd ), shift_(nat) ) ! shift_(:) = 0.d0 ! ! ... the forces are a sum over the K points and the bands ! DO ik = 1, nks IF ( lsda ) current_spin = isk(ik) ! CALL gk_sort (xk(1,ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) IF ( nks > 1 ) THEN CALL davcio( evc, 2*nwordwfc, iunwfc, ik, -1 ) IF ( nkb > 0 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ENDIF ! CALL calbec ( npw, vkb, evc, rbecp ) ! ijkb0 = 0 DO nt = 1, ntyp DO na = 1, nat IF ( ityp(na) == nt ) THEN DO ih = 1, nh(nt) ikb = ijkb0 + ih DO ibnd = 1, nbnd ps = deeq(ih,ih,na,current_spin) - & et(ibnd,ik) * qq(ih,ih,nt) shift_(na) = shift_(na) + ps * wg(ibnd,ik) * & rbecp(ikb,ibnd) * rbecp(ikb,ibnd) ENDDO ! IF ( upf(nt)%tvanp .or. newpseudo(nt) ) THEN ! ! ... in US case there is a contribution for jh<>ih. ! ... We use here the symmetry in the interchange ! ... of ih and jh ! DO jh = ( ih + 1 ), nh(nt) jkb = ijkb0 + jh DO ibnd = 1, nbnd ps = deeq(ih,jh,na,current_spin) - & et(ibnd,ik) * qq(ih,jh,nt) shift_(na) = shift_(na) + ps * wg(ibnd,ik) * & 2.d0 *rbecp(ikb,ibnd) *rbecp(jkb,ibnd) ENDDO ENDDO ENDIF ENDDO ijkb0 = ijkb0 + nh(nt) ENDIF ENDDO ENDDO ENDDO ! #ifdef __MPI ! ! ... collect contributions across pools ! CALL mp_sum( shift_, inter_pool_comm ) #endif ! ! ... Since our summation over k points was only on the irreducible ! ... BZ we have to symmetrize the shifts. ! CALL symscalar( nat, shift_ ) ! shift_nl(:) = shift_nl(:) + shift_(:) ! DEALLOCATE( rbecp, shift_ ) ! RETURN ! END SUBROUTINE add_shift_us_gamma ! !----------------------------------------------------------------------- SUBROUTINE add_shift_us_k() !----------------------------------------------------------------------- ! USE mp_global, ONLY: inter_pool_comm, intra_pool_comm USE mp, ONLY: mp_sum IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: shift_(:) ! auxiliary variable COMPLEX(DP), ALLOCATABLE :: becp(:,:) ! contains products of wavefunctions and beta REAL(DP) :: ps INTEGER :: ik, ibnd, ih, jh, na, nt, ikb, jkb, ijkb0 ! counters ! ALLOCATE( becp(nkb,nbnd), shift_( nat ) ) shift_(:) = 0.D0 ! ! ... the shifts are a sum over the K points and the bands ! DO ik = 1, nks IF ( lsda ) current_spin = isk(ik) ! CALL gk_sort (xk(1,ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) IF ( nks > 1 ) THEN CALL davcio( evc, 2*nwordwfc, iunwfc, ik, -1 ) IF ( nkb > 0 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ENDIF ! CALL calbec( npw, vkb, evc, becp ) ! ijkb0 = 0 DO nt = 1, ntyp DO na = 1, nat IF ( ityp(na) == nt ) THEN DO ih = 1, nh(nt) ikb = ijkb0 + ih DO ibnd = 1, nbnd ps = deeq(ih,ih,na,current_spin) - & et(ibnd,ik) * qq(ih,ih,nt) shift_(na) = shift_(na) + ps * wg(ibnd,ik) * & dble( conjg( becp(ikb,ibnd) ) * & becp(ikb,ibnd) ) ENDDO ! IF ( upf(nt)%tvanp .or. newpseudo(nt) ) THEN ! ! ... in US case there is a contribution for jh<>ih. ! ... We use here the symmetry in the interchange ! ... of ih and jh ! DO jh = ( ih + 1 ), nh(nt) jkb = ijkb0 + jh DO ibnd = 1, nbnd ps = deeq(ih,jh,na,current_spin) - & et(ibnd,ik) * qq (ih,jh,nt) shift_(na) = shift_ (na) + ps * wg(ibnd,ik) * & 2.d0 * dble( conjg( becp(ikb,ibnd) ) * & becp(jkb,ibnd) ) ENDDO ENDDO ENDIF ENDDO ijkb0 = ijkb0 + nh(nt) ENDIF ENDDO ENDDO ENDDO ! #ifdef __MPI ! ! ... collect contributions across pools ! CALL mp_sum( shift_, inter_pool_comm ) #endif ! ! ... Since our summation over k points was only on the irreducible ! ... BZ we have to symmetrize the forces. ! CALL symscalar( nat, shift_ ) ! shift_nl(:) = shift_nl(:) + shift_(:) DEALLOCATE( shift_ , becp) ! RETURN ! END SUBROUTINE add_shift_us_k ! END SUBROUTINE add_shift_us espresso-5.1/PP/src/pw_export.f900000644000175000017500000007141312341372773014776 0ustar mbamba! ! Copyright (C) 2003-2009 Andrea Ferretti and Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE io_base_export !=----------------------------------------------------------------------------=! ! do i = 1, nk ! ! ! WAVEFUNCTIONS( i ) ! write_restart_wfc read_restart_wfc ! ! end do ! ! USE io_global, ONLY : stdout USE kinds USE parameters, ONLY: nsx IMPLICIT NONE SAVE INTEGER, PARAMETER :: file_version = 202 INTEGER :: restart_module_verbosity = 0 INTERFACE write_restart_wfc MODULE PROCEDURE write_restart_wfc1, write_restart_wfc2 END INTERFACE !=----------------------------------------------------------------------------=! CONTAINS !=----------------------------------------------------------------------------=! ! !=----------------------------------------------------------------------------=! ! .. This subroutine write wavefunctions to the disk ! .. Where: ! iuni = Restart file I/O fortran unit ! SUBROUTINE write_restart_wfc1(iuni, & ik, nk, kunit, ispin, nspin, scal, wf0, t0, wfm, tm, ngw, gamma_only, nbnd, igl, ngwl ) ! USE mp_wave USE mp, ONLY: mp_sum, mp_get, mp_max USE mp_pools, ONLY: me_pool, my_pool_id, & nproc_pool, intra_pool_comm, root_pool USE mp_world, ONLY: mpime, nproc, root, world_comm USE io_global, ONLY: ionode, ionode_id USE iotk_module ! IMPLICIT NONE ! INTEGER, INTENT(in) :: iuni INTEGER, INTENT(in) :: ik, nk, kunit, ispin, nspin COMPLEX(DP), INTENT(in) :: wf0(:,:) COMPLEX(DP), INTENT(in) :: wfm(:,:) INTEGER, INTENT(in) :: ngw ! LOGICAL, INTENT(in) :: gamma_only INTEGER, INTENT(in) :: nbnd INTEGER, INTENT(in) :: ngwl INTEGER, INTENT(in) :: igl(:) REAL(DP), INTENT(in) :: scal LOGICAL, INTENT(in) :: t0, tm INTEGER :: i, j, ierr, idum = 0 INTEGER :: nkl, nkr, nkbl, iks, ike, nkt, ikt, igwx INTEGER :: npool, ipmask( nproc ), ipsour COMPLEX(DP), ALLOCATABLE :: wtmp(:) INTEGER, ALLOCATABLE :: igltot(:) CHARACTER(len=20) :: section_name = 'wfc' LOGICAL :: twrite = .true. INTEGER :: ierr_iotk CHARACTER(len=iotk_attlenx) :: attr ! ! ... Subroutine Body ! ! set working variables for k point index (ikt) and k points number (nkt) ikt = ik nkt = nk ! find out the number of pools npool = nproc / nproc_pool ! find out number of k points blocks nkbl = nkt / kunit ! k points per pool nkl = kunit * ( nkbl / npool ) ! find out the reminder nkr = ( nkt - nkl * npool ) / kunit ! Assign the reminder to the first nkr pools IF( my_pool_id < nkr ) nkl = nkl + kunit ! find out the index of the first k point in this pool iks = nkl * my_pool_id + 1 IF( my_pool_id >= nkr ) iks = iks + nkr * kunit ! find out the index of the last k point in this pool ike = iks + nkl - 1 ipmask = 0 ipsour = ionode_id ! find out the index of the processor which collect the data in the pool of ik IF( npool > 1 ) THEN IF( ( ikt >= iks ) .and. ( ikt <= ike ) ) THEN IF( me_pool == root_pool ) ipmask( mpime + 1 ) = 1 ENDIF CALL mp_sum( ipmask, world_comm ) DO i = 1, nproc IF( ipmask(i) == 1 ) ipsour = ( i - 1 ) ENDDO ENDIF igwx = 0 ierr = 0 IF( ( ikt >= iks ) .and. ( ikt <= ike ) ) THEN IF( ngwl > size( igl ) ) THEN ierr = 1 ELSE igwx = maxval( igl(1:ngwl) ) ENDIF ENDIF ! get the maximum index within the pool ! CALL mp_max( igwx, intra_pool_comm ) ! now notify all procs if an error has been found ! CALL mp_max( ierr, world_comm ) IF( ierr > 0 ) & CALL errore(' write_restart_wfc ',' wrong size ngl ', ierr ) IF( ipsour /= ionode_id ) THEN CALL mp_get( igwx, igwx, mpime, ionode_id, ipsour, 1, world_comm ) ENDIF IF(ionode) THEN CALL iotk_write_begin(iuni,"Kpoint"//iotk_index(ik)) CALL iotk_write_attr (attr,"ngw",ngw,first=.true.) CALL iotk_write_attr (attr,"nbnd",nbnd) CALL iotk_write_attr (attr,"gamma_only",gamma_only) CALL iotk_write_attr (attr,"ik",ik) CALL iotk_write_attr (attr,"nk",nk) CALL iotk_write_attr (attr,"kunit",kunit) CALL iotk_write_attr (attr,"ispin",ispin) CALL iotk_write_attr (attr,"nspin",nspin) CALL iotk_write_attr (attr,"scal",scal) CALL iotk_write_attr (attr,"igwx",igwx) CALL iotk_write_empty(iuni,"Info",attr) ENDIF ALLOCATE( wtmp( max(igwx,1) ) ) wtmp = 0.0d0 DO j = 1, nbnd IF( t0 ) THEN IF( npool > 1 ) THEN IF( ( ikt >= iks ) .and. ( ikt <= ike ) ) THEN CALL mergewf(wf0(:,j), wtmp, ngwl, igl, me_pool, & nproc_pool, root_pool, intra_pool_comm) ENDIF IF( ipsour /= ionode_id ) THEN CALL mp_get( wtmp, wtmp, mpime, ionode_id, ipsour, j, world_comm ) ENDIF ELSE CALL mergewf(wf0(:,j), wtmp, ngwl, igl, mpime, nproc, & ionode_id, world_comm ) ENDIF IF( ionode ) THEN CALL iotk_write_dat(iuni,"Wfc"//iotk_index(j),wtmp(1:igwx)) ENDIF ELSE ENDIF ENDDO DO j = 1, nbnd IF( tm ) THEN IF( npool > 1 ) THEN IF( ( ikt >= iks ) .and. ( ikt <= ike ) ) THEN CALL mergewf(wfm(:,j), wtmp, ngwl, igl, me_pool, & nproc_pool, root_pool, intra_pool_comm) ENDIF IF( ipsour /= ionode_id ) THEN CALL mp_get( wtmp, wtmp, mpime, ionode_id, ipsour, j, world_comm ) ENDIF ELSE CALL mergewf(wfm(:,j), wtmp, ngwl, igl, mpime, nproc, ionode_id, world_comm ) ENDIF IF( ionode ) THEN CALL iotk_write_dat(iuni,"Wfcm"//iotk_index(j),wtmp(1:igwx)) ENDIF ELSE ENDIF ENDDO IF(ionode) CALL iotk_write_end (iuni,"Kpoint"//iotk_index(ik)) DEALLOCATE( wtmp ) RETURN END SUBROUTINE !=----------------------------------------------------------------------------=! ! ! ! !=----------------------------------------------------------------------------=! SUBROUTINE write_restart_wfc2(iuni, nbnd) USE io_global, ONLY: ionode, ionode_id IMPLICIT NONE INTEGER, INTENT(in) :: iuni, nbnd LOGICAL :: twrite = .false. INTEGER :: idum, i CHARACTER(len=20) :: section_name = 'wfc' idum = nbnd RETURN END SUBROUTINE !=----------------------------------------------------------------------------=! ! ! !=----------------------------------------------------------------------------=! END MODULE !=----------------------------------------------------------------------------=! !----------------------------------------------------------------------- PROGRAM pw_export !----------------------------------------------------------------------- ! ! writes PWSCF data for postprocessing purposes in XML format using IOTK lib ! Wave-functions are collected and written using IO_BASE module. ! ! input: namelist "&inputpp", with variables ! prefix prefix of input files saved by program pwscf ! outdir temporary directory where files resides ! pp_file output file. If it is omitted, a directory ! "prefix.export/" is created in outdir and ! some output files are put there. Anyway all the data ! are accessible through the "prefix.export/index.xml" file which ! contains implicit pointers to all the other files in the ! export directory. If reading is done by the IOTK library ! all data appear to be in index.xml even if physically it ! is not. ! uspp_spsi using US PP if set .TRUE. writes S | psi > ! and | psi > separately in the output file ! single_file one-file output is produced ! ascii .... ! ! pseudo_dir pseudopotential directory ! psfile(:) name of the pp file for each species ! USE wrappers, ONLY : f_mkdir_safe USE pwcom USE fft_base, ONLY : dfftp USE io_global, ONLY : stdout, ionode, ionode_id USE io_files, ONLY : psfile, pseudo_dir USE io_files, ONLY : prefix, tmp_dir, outdir USE ions_base, ONLY : ntype => nsp USE iotk_module USE mp_global, ONLY : mp_startup USE mp_pools, ONLY : kunit USE mp_world, ONLY: world_comm USE mp, ONLY: mp_bcast USE environment, ONLY : environment_start ! IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! INTEGER :: ik, i, kunittmp, ios CHARACTER(len=200) :: pp_file CHARACTER(len=iotk_attlenx) :: attr LOGICAL :: found, uspp_spsi, ascii, single_file, raw NAMELIST /inputpp/ prefix, outdir, pp_file, uspp_spsi, ascii, single_file, & raw, psfile, pseudo_dir ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'PW_EXPORT' ) ! ! set default values for variables in namelist ! prefix='export' CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( trim( outdir ) == ' ' ) outdir = './' pp_file= ' ' uspp_spsi = .false. ascii = .false. single_file = .false. raw = .false. ! ! Reading input file ! IF ( ionode ) THEN ! CALL input_from_file ( ) ! READ(5,inputpp,IOSTAT=ios) ! IF (ios /= 0) CALL errore ('pw_export', 'reading inputpp namelist', abs(ios) ) ! IF( pp_file == ' ' ) THEN ! pp_file = trim(prefix)//".export/index.xml" ! IF(ionode) ios = f_mkdir_safe( trim(outdir)//"/"//trim(prefix)//".export" ) ENDIF ! ENDIF ! ! ... Broadcasting variables ! tmp_dir = trimcheck( outdir ) CALL mp_bcast( outdir, ionode_id, world_comm ) CALL mp_bcast( tmp_dir, ionode_id, world_comm ) CALL mp_bcast( prefix, ionode_id, world_comm ) CALL mp_bcast( pp_file, ionode_id, world_comm ) CALL mp_bcast( uspp_spsi, ionode_id, world_comm ) CALL mp_bcast( ascii, ionode_id, world_comm ) CALL mp_bcast( single_file, ionode_id, world_comm ) CALL mp_bcast( raw, ionode_id, world_comm ) CALL mp_bcast( pseudo_dir, ionode_id, world_comm ) CALL mp_bcast( psfile, ionode_id, world_comm ) ! ! Now allocate space for pwscf variables, read and check them. ! CALL read_file CALL openfil_pp ! #if defined __MPI kunittmp = kunit #else kunittmp = 1 #endif CALL write_export (pp_file, kunittmp, uspp_spsi, ascii, single_file, raw) CALL stop_pp STOP CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE write_export (pp_file,kunit,uspp_spsi, ascii, single_file, raw) !----------------------------------------------------------------------- ! USE iotk_module USE kinds, ONLY : DP USE pwcom USE start_k, ONLY : nk1, nk2, nk3, k1, k2, k3 USE control_flags, ONLY : gamma_only USE global_version, ONLY : version_number USE becmod, ONLY : bec_type, becp, calbec, & allocate_bec_type, deallocate_bec_type USE symm_base, ONLY : nsym, s, invsym, sname, irt, ftau USE uspp, ONLY : nkb, vkb USE wavefunctions_module, ONLY : evc USE io_files, ONLY : nd_nmbr, outdir, prefix, iunwfc, nwordwfc USE io_files, ONLY : pseudo_dir, psfile USE io_base_export, ONLY : write_restart_wfc USE io_global, ONLY : ionode, stdout USE ions_base, ONLY : atm, nat, ityp, tau, nsp USE mp_pools, ONLY : my_pool_id, intra_pool_comm, inter_pool_comm, & nproc_pool USE mp, ONLY : mp_sum, mp_max USE mp_world, ONLY : world_comm, nproc IMPLICIT NONE CHARACTER(5), PARAMETER :: fmt_name="QEXPT" CHARACTER(5), PARAMETER :: fmt_version="1.1.0" INTEGER, INTENT(in) :: kunit CHARACTER(80), INTENT(in) :: pp_file LOGICAL, INTENT(in) :: uspp_spsi, ascii, single_file, raw INTEGER :: i, j, k, ig, ik, ibnd, na, ngg,ig_, ierr INTEGER, ALLOCATABLE :: kisort(:) real(DP) :: xyz(3), tmp(3) INTEGER :: npool, nkbl, nkl, nkr, npwx_g INTEGER :: ike, iks, npw_g, ispin, local_pw INTEGER, ALLOCATABLE :: ngk_g( : ) INTEGER, ALLOCATABLE :: itmp_g( :, : ) real(DP),ALLOCATABLE :: rtmp_g( :, : ) real(DP),ALLOCATABLE :: rtmp_gg( : ) INTEGER, ALLOCATABLE :: itmp1( : ) INTEGER, ALLOCATABLE :: igwk( :, : ) INTEGER, ALLOCATABLE :: l2g_new( : ) INTEGER, ALLOCATABLE :: igk_l2g( :, : ) real(DP) :: wfc_scal LOGICAL :: twf0, twfm CHARACTER(iotk_attlenx) :: attr COMPLEX(DP), ALLOCATABLE :: sevc (:,:) REAL(DP), ALLOCATABLE :: raux(:) IF( nkstot > 0 ) THEN IF( ( kunit < 1 ) .or. ( mod( nkstot, kunit ) /= 0 ) ) & CALL errore( ' write_export ',' wrong kunit ', 1 ) IF( ( nproc_pool > nproc ) .or. ( mod( nproc, nproc_pool ) /= 0 ) ) & CALL errore( ' write_export ',' nproc_pool ', 1 ) ! find out the number of pools npool = nproc / nproc_pool ! find out number of k points blocks nkbl = nkstot / kunit ! k points per pool nkl = kunit * ( nkbl / npool ) ! find out the reminder nkr = ( nkstot - nkl * npool ) / kunit ! Assign the reminder to the first nkr pools IF( my_pool_id < nkr ) nkl = nkl + kunit ! find out the index of the first k point in this pool iks = nkl * my_pool_id + 1 IF( my_pool_id >= nkr ) iks = iks + nkr * kunit ! find out the index of the last k point in this pool ike = iks + nkl - 1 ENDIF ! find out the global number of G vectors: ngm_g ngm_g = ngm CALL mp_sum( ngm_g , intra_pool_comm ) ! Open file PP_FILE IF( ionode ) THEN WRITE(0,*) "Opening file "//trim(pp_file) CALL iotk_open_write(50,file=trim(outdir)//'/'//trim(pp_file)) WRITE(0,*) "Reconstructing the main grid" ENDIF ! collect all G vectors across processors within the pools ! and compute their modules ! ALLOCATE( itmp_g( 3, ngm_g ) ) ALLOCATE( rtmp_g( 3, ngm_g ) ) ALLOCATE( rtmp_gg( ngm_g ) ) itmp_g = 0 DO ig = 1, ngm itmp_g( 1, ig_l2g( ig ) ) = mill(1,ig ) itmp_g( 2, ig_l2g( ig ) ) = mill(2,ig ) itmp_g( 3, ig_l2g( ig ) ) = mill(3,ig ) ENDDO CALL mp_sum( itmp_g , intra_pool_comm ) ! ! here we are in crystal units rtmp_g(1:3,1:ngm_g) = REAL( itmp_g(1:3,1:ngm_g) ) ! ! go to cartesian units (tpiba) CALL cryst_to_cart( ngm_g, rtmp_g, bg , 1 ) ! ! compute squared moduli DO ig = 1, ngm_g rtmp_gg(ig) = rtmp_g(1,ig)**2 + rtmp_g(2,ig)**2 + rtmp_g(3,ig)**2 ENDDO DEALLOCATE( rtmp_g ) ! build the G+k array indexes ALLOCATE ( igk_l2g ( npwx, nks ) ) ALLOCATE ( kisort( npwx ) ) DO ik = 1, nks kisort = 0 npw = npwx CALL gk_sort (xk (1, ik+iks-1), ngm, g, ecutwfc / tpiba2, npw, kisort(1), g2kin) ! ! mapping between local and global G vector index, for this kpoint ! DO ig = 1, npw ! igk_l2g(ig,ik) = ig_l2g( kisort(ig) ) ! ENDDO ! igk_l2g( npw+1 : npwx, ik ) = 0 ! ngk (ik) = npw ENDDO DEALLOCATE (kisort) ! compute the global number of G+k vectors for each k point ALLOCATE( ngk_g( nkstot ) ) ngk_g = 0 ngk_g( iks:ike ) = ngk( 1:nks ) CALL mp_sum( ngk_g, world_comm ) ! compute the Maximum G vector index among all G+k and processors npw_g = maxval( igk_l2g(:,:) ) CALL mp_max( npw_g, world_comm ) ! compute the Maximum number of G vector among all k points npwx_g = maxval( ngk_g( 1:nkstot ) ) IF( ionode ) THEN ! WRITE(0,*) "Writing header" CALL iotk_write_begin(50,"Header") CALL iotk_write_attr (attr,"name",trim(fmt_name),FIRST=.true.) CALL iotk_write_attr (attr,"version",trim(fmt_version)) CALL iotk_write_empty(50,"format", ATTR=attr) ! CALL iotk_write_attr (attr,"name","Quantum ESPRESSO",FIRST=.true.) CALL iotk_write_attr (attr,"version",trim(version_number)) CALL iotk_write_empty(50,"creator", ATTR=attr) CALL iotk_write_end(50,"Header") ! WRITE(0,*) "Writing dimensions" CALL iotk_write_begin(50,"Dimensions") CALL iotk_write_attr (attr,"nktot",nkstot,first=.true.) CALL iotk_write_attr (attr,"nspin",nspin) CALL iotk_write_attr (attr,"nk1",nk1) CALL iotk_write_attr (attr,"nk2",nk2) CALL iotk_write_attr (attr,"nk3",nk3) CALL iotk_write_attr (attr,"s1",k1) CALL iotk_write_attr (attr,"s2",k2) CALL iotk_write_attr (attr,"s3",k3) CALL iotk_write_empty(50,"Kpoints",attr) CALL iotk_write_attr (attr,"nbnd",nbnd,first=.true.) CALL iotk_write_empty(50,"Bands",attr) CALL iotk_write_attr (attr,"gamma_only",gamma_only,first=.true.) CALL iotk_write_empty(50,"Gamma_tricks",attr) CALL iotk_write_attr (attr,"npw",ngm_g,first=.true.) CALL iotk_write_empty(50,"Main_grid",attr) CALL iotk_write_attr (attr,"npwx",npwx_g,first=.true.) CALL iotk_write_empty(50,"Wfc_grid",attr) CALL iotk_write_attr (attr,"natoms",nat,first=.true.) CALL iotk_write_empty(50,"Atoms",attr=attr) CALL iotk_write_attr (attr,"nsym",nsym,first=.true.) CALL iotk_write_empty(50,"Symmops",attr=attr) CALL iotk_write_end (50,"Dimensions") WRITE(0,*) "Writing cell" CALL iotk_write_attr (attr,"units","a.u.",first=.true.) CALL iotk_write_begin(50,"Cell",attr=attr) CALL iotk_write_attr (attr,"alat",alat,first=.true.) CALL iotk_write_attr (attr,"omega",omega) CALL iotk_write_attr (attr,"tpiba",tpiba) CALL iotk_write_attr (attr,"tpiba2",tpiba2) CALL iotk_write_empty(50,"Data",attr=attr) CALL iotk_write_attr (attr,"xyz",at(:,1)*alat,first=.true.) CALL iotk_write_empty(50,"a1",attr=attr) CALL iotk_write_attr (attr,"xyz",at(:,2)*alat,first=.true.) CALL iotk_write_empty(50,"a2",attr=attr) CALL iotk_write_attr (attr,"xyz",at(:,3)*alat,first=.true.) CALL iotk_write_empty(50,"a3",attr=attr) CALL iotk_write_attr (attr,"xyz",bg(:,1)*tpiba,first=.true.) CALL iotk_write_empty(50,"b1",attr=attr) CALL iotk_write_attr (attr,"xyz",bg(:,2)*tpiba,first=.true.) CALL iotk_write_empty(50,"b2",attr=attr) CALL iotk_write_attr (attr,"xyz",bg(:,3)*tpiba,first=.true.) CALL iotk_write_empty(50,"b3",attr=attr) CALL iotk_write_end(50,"Cell") WRITE(0,*) "Writing atoms" CALL iotk_write_begin(50,"Atoms") CALL iotk_write_attr (attr,"natoms",nat,FIRST=.true.) CALL iotk_write_attr (attr,"nspecies",nsp) CALL iotk_write_empty(50,"Data",attr=attr) CALL iotk_write_attr (attr,"units","alat",FIRST=.true.) CALL iotk_write_begin(50,"Positions",attr=attr) DO i = 1, nat xyz = tau(:,i) ! ! this line convert to crystal representation ! call cryst_to_cart(1,xyz,bg,-1) ! CALL iotk_write_attr (attr,"type",trim(atm(ityp(i))),first=.true.) CALL iotk_write_attr (attr,"xyz",xyz) CALL iotk_write_empty(50,"atom"//trim(iotk_index(i)),attr=attr) ENDDO CALL iotk_write_end(50,"Positions") CALL iotk_write_begin(50,"Types") CALL iotk_write_attr (attr,"pseudo_dir",trim(pseudo_dir),FIRST=.true.) CALL iotk_write_empty(50,"Data",attr=attr) DO i=1, nsp CALL iotk_write_attr (attr,"type",trim(atm(i)),FIRST=.true.) CALL iotk_write_attr (attr,"pseudo_file",trim(psfile(i)) ) CALL iotk_write_empty(50,"specie"//trim(iotk_index(i)), ATTR=attr ) ENDDO CALL iotk_write_end (50,"Types") CALL iotk_write_end (50,"Atoms") WRITE(0,*) "Writing symmetry operations" CALL iotk_write_begin(50,"Symmetry") CALL iotk_write_attr(attr,"nsym",nsym,first=.true.) CALL iotk_write_attr(attr,"invsym",invsym) CALL iotk_write_empty(50,"symmops",attr) ! ! The matrix s is the transpose of the symmetry matrix in direct space, ! in units of a_i. ! DO i=1,nsym ! CALL iotk_write_attr ( attr,"name", trim(sname(i)), FIRST=.true. ) CALL iotk_write_empty(50,"info"//trim(iotk_index(i)), ATTR=attr ) ! tmp(1) = ftau(1,i) / dble( dfftp%nr1 ) tmp(2) = ftau(2,i) / dble( dfftp%nr2 ) tmp(3) = ftau(3,i) / dble( dfftp%nr3 ) ! CALL iotk_write_attr(attr,"units","crystal",first=.true.) ! CALL iotk_write_dat (50,"sym"//trim(iotk_index(i)), & s(1:3,1:3,i), ATTR=attr, COLUMNS=3) CALL iotk_write_dat (50,"trasl"//trim(iotk_index(i)), tmp(:), ATTR=attr ) ! ENDDO ! CALL iotk_write_end (50,"Symmetry") WRITE(0,*) "Writing k-mesh" CALL iotk_write_attr (attr,"nk",nkstot,first=.true.) CALL iotk_write_begin(50,"Kmesh",attr=attr) CALL iotk_write_dat (50,"weights",wk(1:nkstot)) CALL iotk_write_dat (50,"k",xk(1:3,1:nkstot),fmt="(3f15.9)") CALL iotk_write_end (50,"Kmesh") WRITE(0,*) "Writing other parameters" CALL iotk_write_begin(50,"Other_parameters") CALL iotk_write_attr(attr,"wfc",ecutwfc,first=.true.) CALL iotk_write_attr(attr,"rho",dual*ecutwfc) CALL iotk_write_attr(attr,"units","Rydberg") CALL iotk_write_empty(50,"Cutoff",attr) CALL iotk_write_attr(attr,"nr1",dfftp%nr1,first=.true.) CALL iotk_write_attr(attr,"nr2",dfftp%nr2) CALL iotk_write_attr(attr,"nr3",dfftp%nr3) CALL iotk_write_empty(50,"Space_grid",attr) CALL iotk_write_attr(attr,"nelec",nelec,first=.true.) CALL iotk_write_empty(50,"Charge",attr) CALL iotk_write_end (50,"Other_parameters") WRITE(0,*) "Writing main grid" CALL iotk_write_attr(attr,"npw", ngm_g,first=.true.) CALL iotk_write_attr(attr,"gamma_only", gamma_only ) CALL iotk_write_attr(attr,"cutoff","NOT AVAILABLE") IF(.not.single_file) & CALL iotk_link(50,"Main_grid","mgrid",create=.true.,binary=.not.ascii,raw=raw) CALL iotk_write_begin(50,"Main_grid",attr=attr) CALL iotk_write_attr(attr,"units", "crystal",first=.true.) CALL iotk_write_dat(50,"g",itmp_g(1:3,1:ngm_g),fmt="(3i5)", attr=attr) CALL iotk_write_attr(attr,"units", "tpiba^2",first=.true.) CALL iotk_write_dat(50,"gg",rtmp_gg(1:ngm_g),attr=attr) CALL iotk_write_end(50,"Main_grid") ENDIF DEALLOCATE( rtmp_gg ) ! for each k point build and write the global G+k indexes array ALLOCATE( igwk( npwx_g,nkstot ) ) WRITE(0,*) "Writing grids for wfc" CALL iotk_write_attr (attr,"npwx",npwx_g,first=.true.) IF(ionode) CALL iotk_write_begin(50,"Wfc_grids",ATTR=attr) DO ik = 1, nkstot igwk(:,ik) = 0 ! ALLOCATE( itmp1( npw_g ), STAT= ierr ) IF ( ierr/=0 ) CALL errore('pw_export','allocating itmp1', abs(ierr) ) itmp1 = 0 ! IF( ik >= iks .and. ik <= ike ) THEN DO ig = 1, ngk( ik-iks+1 ) itmp1( igk_l2g( ig, ik-iks+1 ) ) = igk_l2g( ig, ik-iks+1 ) ENDDO ENDIF ! CALL mp_sum( itmp1, world_comm ) ! ngg = 0 DO ig = 1, npw_g IF( itmp1( ig ) == ig ) THEN ngg = ngg + 1 igwk( ngg , ik) = ig ENDIF ENDDO IF( ngg /= ngk_g( ik ) ) THEN WRITE( stdout,*) ' ik, ngg, ngk_g = ', ik, ngg, ngk_g( ik ) ENDIF ! DEALLOCATE( itmp1 ) ! IF( ionode ) THEN CALL iotk_write_attr (attr,"npw",ngk_g(ik),first=.true.) CALL iotk_write_attr(attr,"gamma_only", gamma_only ) CALL iotk_write_attr (attr,"kcry",xk(1:3,ik)) IF(.not.single_file) & CALL iotk_link(50,"Kpoint"//iotk_index(ik),"grid"//iotk_index(ik), & create=.true.,binary=.not.ascii,raw=raw) CALL iotk_write_begin(50,"Kpoint"//iotk_index(ik),attr) CALL iotk_write_dat (50,"index",igwk(1:ngk_g(ik),ik)) CALL iotk_write_dat (50,"grid",itmp_g(1:3,igwk(1:ngk_g(ik),ik)),fmt="(3i5)") CALL iotk_write_end (50,"Kpoint"//iotk_index(ik)) ENDIF ENDDO IF(ionode) CALL iotk_write_end(50,"Wfc_grids") DEALLOCATE( itmp_g ) #ifdef __MPI CALL poolrecover (et, nbnd, nkstot, nks) #endif ! ALLOCATE(raux(1:nbnd)) ! WRITE(0,*) "Writing band structure" IF( ionode ) THEN CALL iotk_write_attr (attr,"nspin",nspin,first=.true.) CALL iotk_write_attr (attr,"nk",nkstot) CALL iotk_write_attr (attr,"nbnd",nbnd) CALL iotk_write_attr (attr,"efermi",ef) CALL iotk_write_attr (attr,"units","Rydberg") CALL iotk_write_begin(50,"Eigenvalues",attr=attr) DO ik=1,nkstot CALL iotk_write_dat(50,"e"//iotk_index(ik),et(1:nbnd,ik)) ENDDO CALL iotk_write_end (50,"Eigenvalues") ENDIF IF( ionode ) THEN CALL iotk_write_attr (attr,"nspin",nspin,first=.true.) CALL iotk_write_attr (attr,"nk",nkstot) CALL iotk_write_attr (attr,"nbnd",nbnd) CALL iotk_write_begin(50,"OCCUPATIONS",attr=attr) DO ik=1,nkstot IF ( wk(ik) == 0.D0 ) THEN ! raux = wg(:,ik) ! ELSE ! raux = wg(:,ik) / wk(ik) ! END IF CALL iotk_write_dat(50,"wg"//iotk_index(ik),raux(1:nbnd)) ENDDO CALL iotk_write_end (50,"OCCUPATIONS") ENDIF ! DEALLOCATE(raux) ! wfc_scal = 1.0d0 twf0 = .true. twfm = .false. WRITE(0,*) "Writing Eigenvectors" IF( ionode ) CALL iotk_write_begin(50, "Eigenvectors") DO ik = 1, nkstot IF(.not.single_file .and. ionode) & CALL iotk_link(50,"Kpoint"//iotk_index(ik),"wfc"//iotk_index(ik), & create=.true.,binary=.not.ascii,raw=raw) local_pw = 0 IF( (ik >= iks) .and. (ik <= ike) ) THEN CALL davcio (evc, 2*nwordwfc, iunwfc, (ik-iks+1), - 1) local_pw = ngk(ik-iks+1) ENDIF ALLOCATE(l2g_new(local_pw)) l2g_new = 0 DO ig = 1, local_pw ngg = igk_l2g(ig,ik-iks+1) DO ig_ = 1, ngk_g(ik) IF(ngg == igwk(ig_,ik)) THEN l2g_new(ig) = ig_ exit ENDIF ENDDO ENDDO ispin = isk( ik ) ! WRITE(0,*) ' ### ', ik,nkstot,iks,ike,kunit,nproc,nproc_pool CALL write_restart_wfc(50, ik, nkstot, kunit, ispin, nspin, & wfc_scal, evc, twf0, evc, twfm, npw_g, gamma_only, nbnd, & l2g_new(:),local_pw ) DEALLOCATE(l2g_new) ENDDO IF( ionode ) CALL iotk_write_end (50, "Eigenvectors") ! ! If specified and if USPP are used the wfcs S_psi are written ! | spsi_nk > = \hat S | psi_nk > ! where S is the overlap operator of US PP ! IF ( uspp_spsi .and. nkb > 0 ) THEN ALLOCATE( sevc(npwx,nbnd), STAT=ierr ) IF (ierr/=0) CALL errore( ' write_export ',' Unable to allocate SEVC ', abs(ierr) ) WRITE(0,*) "Writing Eigenvectors_Spsi" IF( ionode ) CALL iotk_write_begin(50, "Eigenvectors_Spsi") CALL init_us_1 CALL init_at_1 CALL allocate_bec_type (nkb,nbnd, becp) DO ik = 1, nkstot IF(.not.single_file .and. ionode) & CALL iotk_link(50,"Kpoint"//iotk_index(ik),"swfc"//iotk_index(ik), & create=.true.,binary=.not.ascii,raw=raw) local_pw = 0 IF( (ik >= iks) .and. (ik <= ike) ) THEN CALL gk_sort (xk (1, ik+iks-1), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) CALL davcio (evc, 2*nwordwfc, iunwfc, (ik-iks+1), - 1) CALL init_us_2(npw, igk, xk(1, ik), vkb) local_pw = ngk(ik-iks+1) IF ( gamma_only ) THEN CALL calbec ( ngk_g(ik), vkb, evc, becp ) WRITE(0,*) 'Gamma only PW_EXPORT not yet tested' ELSE CALL calbec ( npw, vkb, evc, becp ) ENDIF CALL s_psi(npwx, npw, nbnd, evc, sevc) ENDIF ALLOCATE(l2g_new(local_pw)) l2g_new = 0 DO ig = 1, local_pw ngg = igk_l2g(ig,ik-iks+1) DO ig_ = 1, ngk_g(ik) IF(ngg == igwk(ig_,ik)) THEN l2g_new(ig) = ig_ exit ENDIF ENDDO ENDDO ispin = isk( ik ) CALL write_restart_wfc(50, ik, nkstot, kunit, ispin, nspin, & wfc_scal, sevc, twf0, sevc, twfm, npw_g, gamma_only, nbnd, & l2g_new(:),local_pw ) DEALLOCATE(l2g_new) ENDDO IF( ionode ) CALL iotk_write_end (50, "Eigenvectors_Spsi") DEALLOCATE( sevc, STAT=ierr ) IF ( ierr/= 0 ) CALL errore('pw_export','Unable to deallocate SEVC',abs(ierr)) CALL deallocate_bec_type ( becp ) ENDIF DEALLOCATE( igk_l2g ) DEALLOCATE( igwk ) DEALLOCATE ( ngk_g ) IF( ionode ) THEN CALL iotk_close_write(50) ENDIF END SUBROUTINE write_export END PROGRAM pw_export espresso-5.1/PP/src/sym_band.f900000644000175000017500000011437412341372773014547 0ustar mbamba! ! Copyright (C) 2006-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE sym_band(filband, spin_component, firstk, lastk) !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp, ntyp => nsp USE cell_base, ONLY : tpiba2, at, bg, ibrav USE constants, ONLY : rytoev USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, g USE lsda_mod, ONLY : nspin USE wvfct, ONLY : et, nbnd, npwx, npw, igk, g2kin, ecutwfc USE klist, ONLY : xk, nks, nkstot USE io_files, ONLY : nwordwfc, iunwfc USE symm_base, ONLY : s, ftau, nsym, t_rev, sname USE rap_point_group, ONLY : code_group, nclass, nelem, elem, which_irr, & char_mat, name_rap, name_class, gname, ir_ram USE rap_point_group_so, ONLY : nrap, nelem_so, elem_so, has_e, & which_irr_so, char_mat_so, name_rap_so, & name_class_so, d_spin, name_class_so1 USE rap_point_group_is, ONLY : nsym_is, sr_is, ftau_is, gname_is, & sname_is, code_group_is USE uspp, ONLY : nkb, vkb USE spin_orb, ONLY : domag USE noncollin_module, ONLY : noncolin USE wavefunctions_module, ONLY : evc USE io_global, ONLY : ionode, ionode_id, stdout USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! INTEGER :: ik, i, j, irot, iclass, ig, ibnd INTEGER :: spin_component, nks1, nks2, firstk, lastk INTEGER :: nks1tot, nks2tot INTEGER :: iunout, igroup, irap, dim_rap, ios INTEGER :: sk(3,3,48), ftauk(3,48), gk(3,48), sk_is(3,3,48), & gk_is(3,48), t_revk(48), nsymk, isym, ipol, jpol LOGICAL :: is_complex, is_complex_so, is_symmorphic, is_high_sym, search_sym REAL(DP), PARAMETER :: accuracy=1.d-4 COMPLEX(DP) :: d_spink(2,2,48), d_spin_is(2,2,48), zdotc COMPLEX(DP),ALLOCATABLE :: times(:,:,:) REAL(DP) :: dxk(3), dkmod, dkmod_save INTEGER, ALLOCATABLE :: rap_et(:,:), code_group_k(:) INTEGER, ALLOCATABLE :: ngroup(:), istart(:,:) CHARACTER(len=11) :: group_name CHARACTER(len=45) :: snamek(48) CHARACTER (len=256) :: filband, namefile ! IF (spin_component/=1.and.nspin/=2) & CALL errore('sym_band','incorrect spin_component',1) IF (spin_component<1.or.spin_component>2) & CALL errore('sym_band','incorrect lsda spin_component',1) ALLOCATE(rap_et(nbnd,nkstot)) ALLOCATE(code_group_k(nkstot)) ALLOCATE(times(nbnd,24,nkstot)) ALLOCATE(ngroup(nkstot)) ALLOCATE(istart(nbnd+1,nkstot)) code_group_k=0 rap_et=-1 times=(0.0_DP,0.0_DP) CALL find_nks1nks2(firstk,lastk,nks1tot,nks1,nks2tot,nks2,spin_component) ios=0 IF ( ionode ) THEN iunout=58 namefile=trim(filband)//".rap" OPEN (unit = iunout, file = namefile, status = 'unknown', form = & 'formatted', iostat = ios) REWIND (iunout) ENDIF CALL mp_bcast ( ios, ionode_id, intra_image_comm ) IF ( ios /= 0) CALL errore ('sym_band', 'Opening filband file', abs (ios) ) DO ik = nks1, nks2 ! ! prepare the indices of this k point ! CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, & igk, g2kin) ! CALL init_us_2 (npw, igk, xk (1, ik), vkb) ! ! read eigenfunctions ! CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) ! ! Find the small group of k ! CALL smallgk (xk(1,ik), at, bg, s, ftau, t_rev, sname, nsym, sk, ftauk, & gk, t_revk, snamek, nsymk) ! ! character of the irreducible representations ! CALL find_info_group(nsymk,sk,t_revk,ftauk,d_spink,gk,snamek,& sk_is,d_spin_is,gk_is, & is_symmorphic,search_sym) code_group_k(ik)=code_group ! IF (.not.search_sym) THEN rap_et(:,ik)=-1 GOTO 100 ENDIF ! ! Find the symmetry of each state ! IF (noncolin) THEN IF (domag) THEN CALL find_band_sym_so(evc,et(1,ik),at,nbnd,npw,nsym_is, & ngm,sk_is,ftau_is,d_spin_is,gk_is,xk(1,ik),igk,nl,dfftp%nr1,dfftp%nr2,& dfftp%nr3,dfftp%nr1x,dfftp%nr2x,dfftp%nr3x,dfftp%nnr,npwx,rap_et(1,ik),times(1,1,ik), & ngroup(ik),istart(1,ik),accuracy) ELSE CALL find_band_sym_so(evc,et(1,ik),at,nbnd,npw,nsymk,ngm, & sk,ftauk,d_spink,gk,xk(1,ik),igk,nl,dfftp%nr1,dfftp%nr2,dfftp%nr3,dfftp%nr1x, & dfftp%nr2x,dfftp%nr3x,dfftp%nnr,npwx,rap_et(1,ik),times(1,1,ik),ngroup(ik),& istart(1,ik),accuracy) ENDIF ELSE CALL find_band_sym (evc, et(1,ik), at, nbnd, npw, nsymk, ngm, & sk, ftauk, gk, xk(1,ik), igk, nl, dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1x, & dfftp%nr2x, dfftp%nr3x, dfftp%nnr, npwx, rap_et(1,ik), times(1,1,ik), ngroup(ik),& istart(1,ik),accuracy) ENDIF 100 CONTINUE ENDDO #ifdef __MPI ! ! Only the symmetry of a set of k points is calculated by this ! processor with pool. Here we collect the results into ionode ! CALL ipoolrecover(code_group_k,1,nkstot,nks) CALL ipoolrecover(rap_et,nbnd,nkstot,nks) CALL poolrecover(times,2*24*nbnd,nkstot,nks) CALL ipoolrecover(ngroup,1,nkstot,nks) CALL ipoolrecover(istart,nbnd+1,nkstot,nks) #endif IF (ionode) THEN is_high_sym=.false. DO ik=nks1tot, nks2tot CALL smallgk (xk(1,ik), at, bg, s, ftau, t_rev, sname, & nsym, sk, ftauk, gk, t_revk, snamek, nsymk) CALL find_info_group(nsymk,sk,t_revk,ftauk,d_spink,gk,snamek,& sk_is,d_spin_is,gk_is, & is_symmorphic,search_sym) IF (code_group_k(ik) /= code_group) & CALL errore('sym_band','problem with code_group',1) WRITE(stdout, '(/,1x,74("*"))') WRITE(stdout, '(/,20x,"xk=(",2(f10.5,","),f10.5," )")') & xk(1,ik), xk(2,ik), xk(3,ik) IF (.not.search_sym) THEN WRITE(stdout,'(/,5x,"zone border point and non-symmorphic group ")') WRITE(stdout,'(5x,"symmetry decomposition not available")') WRITE(stdout, '(/,1x,74("*"))') ENDIF IF (ik == nks1tot) THEN WRITE (iunout, '(" &plot_rap nbnd_rap=",i4,", nks_rap=",i4," /")') & nbnd, nks2tot-nks1tot+1 IF (search_sym) CALL write_group_info(.true.) is_high_sym=.true. dxk(:) = xk(:,nks1tot+1) - xk(:,nks1tot) dkmod_save = sqrt( dxk(1)**2 + dxk(2)**2 + dxk(3)**2 ) ELSE IF (code_group_k(ik)/=code_group_k(ik-1).and.search_sym) & CALL write_group_info(.true.) ! ! When the symmetry changes the point must be considered a high ! symmetry point. If the previous point was also high_symmetry, there ! are two possibilities. The two points are distant and in this case ! both of them must be considered high symmetry. If they are close only ! the first point is a high symmetry point. First compute the distance ! dxk(:) = xk(:,ik) - xk(:,ik-1) dkmod= sqrt( dxk(1)**2 + dxk(2)**2 + dxk(3)**2 ) IF (dkmod < 5.0_DP * dkmod_save) THEN ! ! In this case the two points are considered close ! is_high_sym= ((code_group_k(ik)/=code_group_k(ik-1)) & .and..not.is_high_sym) IF (dkmod > 1.d-3) dkmod_save=dkmod ELSE ! ! Points are distant. They are all high symmetry ! is_high_sym= .TRUE. ENDIF ENDIF WRITE (iunout, '(10x,3f10.6,l5)') xk(1,ik),xk(2,ik),xk(3,ik), & is_high_sym WRITE (iunout, '(10i8)') (rap_et(ibnd,ik), ibnd=1,nbnd) IF (.not.search_sym) CYCLE IF (noncolin) THEN IF (domag) THEN WRITE(stdout,'(/,5x,"Band symmetry, ",a11," [",a11, & & "] magnetic double point group,")') gname, gname_is WRITE(stdout,'(5x,"using ",a11,/)') gname_is ELSE WRITE(stdout,'(/,5x,"Band symmetry, ",a11,& & " double point group:",/)') gname ENDIF ELSE WRITE(stdout,'(/,5x,"Band symmetry, ",a11," point group:",/)') & group_name(code_group_k(ik)) ENDIF DO igroup=1,ngroup(ik) dim_rap=istart(igroup+1,ik)-istart(igroup,ik) DO irap=1,nclass IF (noncolin) THEN IF ((abs(nint(dble(times(igroup,irap,ik)))- & dble(times(igroup,irap,ik))) > accuracy).or. & (abs(aimag(times(igroup,irap,ik))) > accuracy) ) THEN WRITE(stdout,'(5x,"e(",i3," -",i3,") = ",f12.5,2x,& &"eV",3x,i3,3x, "--> ?")') & istart(igroup,ik), istart(igroup+1,ik)-1, & et(istart(igroup,ik),ik)*rytoev, dim_rap exit ELSEIF (abs(times(igroup,irap,ik)) > accuracy) THEN IF (abs(nint(dble(times(igroup,irap,ik))-1.d0)) < & accuracy) THEN WRITE(stdout,'(5x, "e(",i3," -",i3,") = ",& &f12.5,2x,"eV",3x,i3,3x,"--> ",a15)') & istart(igroup,ik), istart(igroup+1,ik)-1, & et(istart(igroup,ik),ik)*rytoev, & dim_rap, name_rap_so(irap) ELSE WRITE(stdout,'(5x,"e(",i3," -",i3,") = ",& &f12.5,2x,"eV",3x,i3,3x,"--> ",i3," ",a15)') & istart(igroup,ik), istart(igroup+1,ik)-1, & et(istart(igroup,ik),ik)*rytoev, dim_rap, & nint(dble(times(igroup,irap,ik))), name_rap_so(irap) ENDIF ENDIF ELSE IF ((abs(nint(dble(times(igroup,irap,ik)))- & dble(times(igroup,irap,ik))) > accuracy).or. & (abs(aimag(times(igroup,irap,ik))) > accuracy) ) THEN WRITE(stdout,'(5x,"e(",i3," -",i3,") = ",f12.5,2x,& &"eV",3x,i3,3x, "--> ?")') & istart(igroup,ik), istart(igroup+1,ik)-1, & et(istart(igroup,ik),ik)*rytoev, dim_rap exit ELSEIF (abs(times(igroup,irap,ik)) > accuracy) THEN IF (abs(nint(dble(times(igroup,irap,ik))-1.d0)) < & accuracy) THEN WRITE(stdout,'(5x, "e(",i3," -",i3,") = ",& &f12.5,2x,"eV",3x,i3,3x,"--> ",a15)') & istart(igroup,ik), istart(igroup+1,ik)-1, & et(istart(igroup,ik),ik)*rytoev, & dim_rap, name_rap(irap) ELSE WRITE(stdout,'(5x,"e(",i3," -",i3,") = ",& &f12.5,2x,"eV",3x,i3,3x,"--> ",i3," ",a15)') & istart(igroup,ik), istart(igroup+1,ik)-1, & et(istart(igroup,ik),ik)*rytoev, dim_rap, & nint(dble(times(igroup,irap,ik))), name_rap(irap) ENDIF ENDIF ENDIF ENDDO ENDDO WRITE( stdout, '(/,1x,74("*"))') ENDDO CLOSE(iunout) ENDIF ! DEALLOCATE(times) DEALLOCATE(code_group_k) DEALLOCATE(rap_et) DEALLOCATE(ngroup) DEALLOCATE(istart) ! RETURN END SUBROUTINE sym_band ! SUBROUTINE find_band_sym (evc,et,at,nbnd,npw,nsym,ngm,s,ftau,gk, & xk,igk,nl,nr1,nr2,nr3,nr1x,nr2x,nr3x,nrxx,npwx, & rap_et,times,ngroup,istart,accuracy) ! ! This subroutine finds the irreducible representations which give ! the transformation properties of the wavefunctions. ! Presently it does NOT work at zone border if the space group of ! the crystal has fractionary translations (non-symmorphic space groups). ! ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE constants, ONLY : rytoev USE rap_point_group, ONLY : code_group, nclass, nelem, elem, which_irr, & char_mat, name_rap, name_class, gname USE uspp, ONLY : vkb, nkb, okvan USE becmod, ONLY : bec_type, becp, calbec, & allocate_bec_type, deallocate_bec_type USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum IMPLICIT NONE REAL(DP), INTENT(in) :: accuracy INTEGER :: nr1, nr2, nr3, nr1x, nr2x, nr3x, nrxx, ngm, npw, npwx INTEGER :: & nsym, & nbnd, & rap_et(nbnd), & igk(npwx), & nl(ngm), & ftau(3,48), & gk(3,48), & s(3,3,48), & ngroup, & ! number of different frequencies groups istart(nbnd+1) REAL(DP) :: & at(3,3), & xk(3), & et(nbnd) COMPLEX(DP) :: & times(nbnd,24), & evc(npwx, nbnd) REAL(DP), PARAMETER :: eps=1.d-5 INTEGER :: & ibnd, & igroup, & dim_rap, & irot, & irap, & iclass, & shift, & na, i, j, ig, dimen COMPLEX(DP) :: zdotc REAL(DP), ALLOCATABLE :: w1(:) COMPLEX(DP), ALLOCATABLE :: evcr(:,:), trace(:,:) ! ! Divide the bands on the basis of the band degeneracy. ! ALLOCATE(w1(nbnd)) ALLOCATE(evcr(npwx,nbnd)) ALLOCATE(trace(48,nbnd)) IF (okvan) CALL allocate_bec_type ( nkb, nbnd, becp ) rap_et=-1 w1=et*rytoev ngroup=1 istart(ngroup)=1 DO ibnd=2,nbnd IF (abs(w1(ibnd)-w1(ibnd-1)) > 0.0001d0) THEN ngroup=ngroup+1 istart(ngroup)=ibnd ENDIF ENDDO istart(ngroup+1)=nbnd+1 ! ! Find the character of one symmetry operation per class ! DO iclass=1,nclass irot=elem(1,iclass) ! ! Rotate all the bands together. ! NB: rotate_psi assume that s is in the small group of k. It does not ! rotate the k point. ! ! DO ibnd=1,nbnd CALL rotate_psi(evc(1,ibnd),evcr(1,ibnd),s(1,1,irot), & ftau(1,irot),gk(1,irot),nl,igk,nr1,nr2,nr3,nr1x, & nr2x,nr3x,nrxx,ngm,npw) ENDDO ! ! and apply S if necessary ! IF ( okvan ) THEN CALL calbec( npw, vkb, evcr, becp ) CALL s_psi( npwx, npw, nbnd, evcr, evcr ) ENDIF ! ! Compute the trace of the representation for each group of bands ! DO igroup=1,ngroup dim_rap=istart(igroup+1)-istart(igroup) trace(iclass,igroup)=(0.d0,0.d0) DO i=1,dim_rap ibnd=istart(igroup)+i-1 trace(iclass,igroup)=trace(iclass,igroup) + & zdotc(npw,evc(1,ibnd),1,evcr(1,ibnd),1) ENDDO ! write(6,*) igroup, iclass, trace(iclass,igroup) ENDDO ENDDO ! CALL mp_sum( trace, intra_pool_comm ) !DO iclass=1,nclass ! write(6,'(i5,3(2f11.8,1x))') iclass,trace(iclass,4),trace(iclass,5), & ! trace(iclass,6) !ENDDO ! ! And now use the character table to identify the symmetry representation ! of each group of bands ! !WRITE(stdout,'(/,5x,"Band symmetry, ",a11," point group:",/)') gname DO igroup=1,ngroup dim_rap=istart(igroup+1)-istart(igroup) shift=0 DO irap=1,nclass times(igroup,irap)=(0.d0,0.d0) DO iclass=1,nclass times(igroup,irap)=times(igroup,irap) & +trace(iclass,igroup)*char_mat(irap,which_irr(iclass))& *nelem(iclass) ENDDO times(igroup,irap)=times(igroup,irap)/nsym IF ((abs(nint(dble(times(igroup,irap)))-dble(times(igroup,irap))) & > accuracy).or. (abs(aimag(times(igroup,irap))) > eps) ) THEN ! WRITE(stdout,'(5x,"e(",i3," -",i3,") = ",f12.5,2x,"eV",3x,i3,3x,& ! & "--> ?")') & ! istart(igroup), istart(igroup+1)-1, w1(istart(igroup)), dim_rap ibnd=istart(igroup) IF (rap_et(ibnd)==-1) THEN DO i=1,dim_rap ibnd=istart(igroup)+i-1 rap_et(ibnd)=0 ENDDO ENDIF GOTO 300 ELSEIF (abs(times(igroup,irap)) > accuracy) THEN ibnd=istart(igroup)+shift dimen=nint(dble(char_mat(irap,1))) IF (rap_et(ibnd)==-1) THEN DO i=1,dimen*nint(dble(times(igroup,irap))) ibnd=istart(igroup)+shift+i-1 rap_et(ibnd)=irap ENDDO shift=shift+dimen*nint(dble(times(igroup,irap))) ENDIF ! IF (ABS(NINT(DBLE(times))-1.d0) < 1.d-4) THEN ! WRITE(stdout,'(5x, "e(",i3," -",i3,") = ",f12.5,2x,"eV",3x,i3,& ! & 3x,"--> ",a15)') & ! istart(igroup), istart(igroup+1)-1, w1(istart(igroup)), & ! dim_rap, name_rap(irap) ! ELSE ! WRITE(stdout,'(5x,"e(",i3," -",i3,") = ",f12.5,2x,"eV",3x,i3,3x,& ! & "--> ",i3," ",a15)') & ! istart(igroup), istart(igroup+1)-1, & ! w1(istart(igroup)), dim_rap, NINT(DBLE(times)), name_rap(irap) ! END IF ENDIF ENDDO 300 CONTINUE ENDDO !WRITE( stdout, '(/,1x,74("*"))') DEALLOCATE(trace) DEALLOCATE(w1) DEALLOCATE(evcr) IF (okvan) CALL deallocate_bec_type (becp) RETURN END SUBROUTINE find_band_sym SUBROUTINE rotate_psi(evc,evcr,s,ftau,gk,nl,igk,nr1,nr2,nr3, & nr1x,nr2x,nr3x,nrxx,ngm,npw) USE kinds, ONLY : DP USE constants, ONLY : tpi USE fft_base, ONLY : cgather_sym, cscatter_sym, dfftp USE fft_interfaces, ONLY : fwfft, invfft IMPLICIT NONE INTEGER :: nr1, nr2, nr3, nr1x, nr2x, nr3x, nrxx, ngm, npw, nbnd INTEGER :: s(3,3), ftau(3), gk(3), nl(ngm), igk(npw) COMPLEX(DP), ALLOCATABLE :: psic(:), psir(:) COMPLEX(DP) :: evc(npw), evcr(npw) COMPLEX(DP) :: phase REAL(DP) :: arg INTEGER :: i, j, k, ri, rj, rk, ir, rir, ipol LOGICAL :: zone_border #if defined (__MPI) ! COMPLEX (DP), ALLOCATABLE :: psir_collect(:) COMPLEX (DP), ALLOCATABLE :: psic_collect(:) ! #endif ! ALLOCATE(psic(nrxx)) ALLOCATE(psir(nrxx)) ! zone_border=(gk(1)/=0.or.gk(2)/=0.or.gk(3)/=0) ! psic = ( 0.D0, 0.D0 ) ! psic(nl(igk(1:npw))) = evc(1:npw) ! CALL invfft ('Dense', psic, dfftp) ! #if defined (__MPI) ! ALLOCATE (psic_collect(nr1x*nr2x*nr3x)) ALLOCATE (psir_collect(nr1x*nr2x*nr3x)) ! CALL cgather_sym( psic, psic_collect ) ! psir_collect=(0.d0,0.d0) ! IF (zone_border) THEN DO k = 1, nr3 DO j = 1, nr2 DO i = 1, nr1 CALL ruotaijk (s, ftau, i, j, k, nr1, nr2, nr3, ri, rj, rk ) ir=i+(j-1)*nr1x+(k-1)*nr1x*nr2x rir=ri+(rj-1)*nr1x+(rk-1)*nr1x*nr2x arg=tpi*( (gk(1)*(i-1))/dble(nr1)+(gk(2)*(j-1))/dble(nr2)+ & (gk(3)*(k-1))/dble(nr3) ) phase=cmplx(cos(arg),sin(arg),kind=DP) psir_collect(ir)=psic_collect(rir)*phase ENDDO ENDDO ENDDO ELSE DO k = 1, nr3 DO j = 1, nr2 DO i = 1, nr1 CALL ruotaijk (s, ftau, i, j, k, nr1, nr2, nr3, ri, rj, rk ) ir=i+(j-1)*nr1x+(k-1)*nr1x*nr2x rir=ri+(rj-1)*nr1x+(rk-1)*nr1x*nr2x psir_collect(ir)=psic_collect(rir) ENDDO ENDDO ENDDO ENDIF ! CALL cscatter_sym( psir_collect, psir ) ! DEALLOCATE (psic_collect) DEALLOCATE (psir_collect) ! #else psir=(0.d0,0.d0) IF (zone_border) THEN DO k = 1, nr3 DO j = 1, nr2 DO i = 1, nr1 CALL ruotaijk (s, ftau, i, j, k, nr1, nr2, nr3, ri, rj, rk ) ir=i+(j-1)*nr1x+(k-1)*nr1x*nr2x rir=ri+(rj-1)*nr1x+(rk-1)*nr1x*nr2x arg=tpi*( (gk(1)*(i-1))/dble(nr1)+(gk(2)*(j-1))/dble(nr2)+ & (gk(3)*(k-1))/dble(nr3) ) phase=cmplx(cos(arg),sin(arg),kind=DP) psir(ir)=psic(rir)*phase ENDDO ENDDO ENDDO ELSE DO k = 1, nr3 DO j = 1, nr2 DO i = 1, nr1 CALL ruotaijk (s, ftau, i, j, k, nr1, nr2, nr3, ri, rj, rk ) ir=i+(j-1)*nr1x+(k-1)*nr1x*nr2x rir=ri+(rj-1)*nr1x+(rk-1)*nr1x*nr2x psir(ir)=psic(rir) ENDDO ENDDO ENDDO ENDIF ! #endif ! CALL fwfft ('Dense', psir, dfftp) ! evcr(1:npw) = psir(nl(igk(1:npw))) ! DEALLOCATE(psic) DEALLOCATE(psir) ! RETURN END SUBROUTINE rotate_psi SUBROUTINE find_band_sym_so (evc,et,at,nbnd,npw,nsym,ngm,s,ftau,d_spin,gk, & xk,igk,nl,nr1,nr2,nr3,nr1x,nr2x,nr3x,nrxx,npwx, & rap_et,times,ngroup,istart,accuracy) ! ! This subroutine finds the irreducible representations of the ! double group which give the transformation properties of the ! spinor wavefunctions evc. ! Presently it does NOT work at zone border if the space group of ! the crystal has fractionary translations (non-symmorphic space groups). ! ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE constants, ONLY : rytoev USE rap_point_group, ONLY : code_group, nclass, gname USE rap_point_group_so, ONLY : nrap, nelem_so, elem_so, has_e, which_irr_so, & char_mat_so, name_rap_so, name_class_so, & name_class_so1 USE rap_point_group_is, ONLY : gname_is USE spin_orb, ONLY : domag USE uspp, ONLY : vkb, nkb, okvan USE noncollin_module, ONLY : npol USE becmod, ONLY : bec_type, becp, calbec, allocate_bec_type, deallocate_bec_type USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum IMPLICIT NONE REAL(DP), INTENT(in) :: accuracy INTEGER :: nr1, nr2, nr3, nr1x, nr2x, nr3x, nrxx, ngm, npw, npwx INTEGER :: & nsym, & nbnd, & ngroup, & istart(nbnd+1), & rap_et(nbnd), & igk(npwx), & nl(ngm), & ftau(3,48), & gk(3,48), & s(3,3,48) REAL(DP) :: & at(3,3), & xk(3), & et(nbnd) COMPLEX(DP) :: & times(nbnd,24), & d_spin(2,2,48), & evc(npwx*npol, nbnd) REAL(DP), PARAMETER :: eps=1.d-5 INTEGER :: & ibnd, & igroup, & dim_rap, & ! counters irot, & irap, & shift, & iclass, & na, i, j, ig, ipol, jpol, jrap, dimen COMPLEX(DP) :: zdotc ! moltiplication factors REAL(DP), ALLOCATABLE :: w1(:) ! list of energy eigenvalues in eV COMPLEX(DP), ALLOCATABLE :: evcr(:,:), & ! the rotated of each wave function trace(:,:) ! the trace of the symmetry matrix ! within a given group ! ! Divide the bands on the basis of the band degeneracy. ! ALLOCATE(w1(nbnd)) ALLOCATE(evcr(npwx*npol,nbnd)) ALLOCATE(trace(48,nbnd)) IF (okvan) CALL allocate_bec_type ( nkb, nbnd, becp ) rap_et=-1 w1=et*rytoev ! ! divide the energies in groups of degenerate eigenvalues. Two eigenvalues ! are assumed to be degenerate if their difference is less than 0.0001 eV. ! ngroup=1 istart(ngroup)=1 DO ibnd=2,nbnd IF (abs(w1(ibnd)-w1(ibnd-1)) > 0.0001d0) THEN ngroup=ngroup+1 istart(ngroup)=ibnd ENDIF ENDDO istart(ngroup+1)=nbnd+1 ! ! Find the character of one symmetry operation per class ! trace=(0.d0,0.d0) DO iclass=1,nclass irot=elem_so(1,iclass) ! ! Rotate all the bands together. ! NB: rotate_psi assumes that s is in the small group of k. It does not ! rotate the k point. ! DO ibnd=1,nbnd CALL rotate_psi_so(evc(1,ibnd),evcr(1,ibnd),s(1,1,irot), & ftau(1,irot),d_spin(1,1,irot),has_e(1,iclass),gk(1,irot), & nl,igk,npol,nr1,nr2,nr3,nr1x,nr2x,nr3x,nrxx,ngm,npw,npwx) ENDDO ! ! and apply S in the US case. ! IF ( okvan ) THEN CALL calbec( npw, vkb, evcr, becp ) CALL s_psi( npwx, npw, nbnd, evcr, evcr ) ENDIF ! ! Compute the trace of the representation for each group of bands ! DO igroup=1,ngroup dim_rap=istart(igroup+1)-istart(igroup) DO i=1,dim_rap ibnd=istart(igroup)+i-1 trace(iclass,igroup)=trace(iclass,igroup) + & zdotc(2*npwx,evc(1,ibnd),1,evcr(1,ibnd),1) ENDDO ! write(6,*) igroup, iclass, dim_rap, trace(iclass,igroup) ENDDO ENDDO ! CALL mp_sum(trace,intra_pool_comm) ! !DO iclass=1,nclass ! write(6,'(i5,3(2f11.8,1x))') iclass,trace(iclass,1),trace(iclass,2), & ! trace(iclass,3) !ENDDO ! ! And now use the character table to identify the symmetry representation ! of each group of bands ! !IF (domag) THEN ! WRITE(stdout,'(/,5x,"Band symmetry, ",a11," [",a11, & ! & "] magnetic double point group,")') gname, gname_is ! WRITE(stdout,'(5x,"using ",a11,/)') gname_is !ELSE ! WRITE(stdout,'(/,5x,"Band symmetry, ",a11," double point group:",/)') gname !ENDIF DO igroup=1,ngroup dim_rap=istart(igroup+1)-istart(igroup) shift=0 DO irap=1,nrap times(igroup,irap)=(0.d0,0.d0) DO iclass=1,nclass times(igroup,irap)=times(igroup,irap) & +conjg(trace(iclass,igroup))*char_mat_so(irap, & which_irr_so(iclass))*dble(nelem_so(iclass)) ENDDO times(igroup,irap)=times(igroup,irap)/2/nsym IF ((abs(nint(dble(times(igroup,irap)))-dble(times(igroup,irap)))& > accuracy).or. (abs(aimag(times(igroup,irap))) > accuracy) ) THEN ! WRITE(stdout,'(5x,"e(",i3," -",i3,") = ",f12.5,2x,"eV",3x,i3,3x,& ! & "--> ?")') & ! istart(igroup), istart(igroup+1)-1, w1(istart(igroup)), dim_rap ibnd=istart(igroup) IF (rap_et(ibnd)==-1) THEN DO i=1,dim_rap ibnd=istart(igroup)+i-1 rap_et(ibnd)=0 ENDDO ENDIF GOTO 300 ENDIF IF (abs(times(igroup,irap)) > accuracy) THEN dimen=nint(dble(char_mat_so(irap,1))) ibnd=istart(igroup) + shift IF (rap_et(ibnd)==-1) THEN DO i=1,dimen*nint(dble(times(igroup,irap))) ibnd=istart(igroup)+shift+i-1 rap_et(ibnd)=irap ENDDO shift=shift+dimen*nint(dble(times(igroup,irap))) ENDIF ! IF (ABS(NINT(DBLE(times))-1.d0) < 1.d-4) THEN ! WRITE(stdout,'(5x, "e(",i3," -",i3,") = ",f12.5,2x,"eV",3x,i3,3x,& ! & "--> ",a15)') & ! istart(igroup), istart(igroup+1)-1, w1(istart(igroup)), & ! dim_rap, name_rap_so(irap) ! ELSE ! WRITE(stdout,'(5x,"e(",i3," -",i3,") = ",f12.5,2x,"eV",3x,i3,& ! & 3x,"--> ",i3," ",a15)') & ! istart(igroup), istart(igroup+1)-1, & ! w1(istart(igroup)), dim_rap, NINT(DBLE(times)), name_rap_so(irap) ! END IF ENDIF ENDDO 300 CONTINUE ENDDO !WRITE( stdout, '(/,1x,74("*"))') DEALLOCATE(trace) DEALLOCATE(w1) DEALLOCATE(evcr) IF (okvan) CALL deallocate_bec_type ( becp ) RETURN END SUBROUTINE find_band_sym_so SUBROUTINE rotate_psi_so(evc_nc,evcr,s,ftau,d_spin,has_e,gk,nl,igk,npol, & nr1,nr2,nr3,nr1x,nr2x,nr3x,nrxx,ngm,npw,npwx) ! ! This subroutine rotates a spinor wavefunction according to the symmetry ! s. d_spin contains the 2x2 rotation matrix in the spin space. ! has_e=-1 means that also a 360 degrees rotation is applied in spin space. ! USE kinds, ONLY : DP USE constants, ONLY : tpi USE fft_base, ONLY : cgather_sym, cscatter_sym, dfftp USE fft_interfaces, ONLY : fwfft, invfft IMPLICIT NONE INTEGER :: npol, nr1, nr2, nr3, nr1x, nr2x, nr3x, nrxx, ngm, npw, nbnd, npwx INTEGER :: s(3,3), ftau(3), gk(3), nl(ngm), igk(npw), has_e COMPLEX(DP), ALLOCATABLE :: psic(:,:), psir(:,:), evcr_save(:,:) COMPLEX(DP) :: evc_nc(npwx,2), evcr(npwx,2), d_spin(2,2) COMPLEX(DP) :: phase REAL(DP) :: arg, sum INTEGER :: i, j, k, ri, rj, rk, ir, rir, ipol, jpol LOGICAL :: zone_border ! #if defined (__MPI) ! COMPLEX (DP), ALLOCATABLE :: psir_collect(:) COMPLEX (DP), ALLOCATABLE :: psic_collect(:) ! ALLOCATE (psic_collect(nr1x*nr2x*nr3x)) ALLOCATE (psir_collect(nr1x*nr2x*nr3x)) #endif ! ALLOCATE(psic(nrxx,npol)) ALLOCATE(psir(nrxx,npol)) ALLOCATE(evcr_save(npwx,npol)) ! zone_border=(gk(1)/=0.or.gk(2)/=0.or.gk(3)/=0) ! psic = ( 0.D0, 0.D0 ) psir = ( 0.D0, 0.D0 ) ! DO ipol=1,npol ! psic(nl(igk(1:npw)),ipol) = evc_nc(1:npw,ipol) CALL invfft ('Dense', psic(:,ipol), dfftp) ! #if defined (__MPI) ! ! CALL cgather_sym( psic(:,ipol), psic_collect ) ! psir_collect=(0.d0,0.d0) ! IF (zone_border) THEN DO k = 1, nr3 DO j = 1, nr2 DO i = 1, nr1 CALL ruotaijk (s, ftau, i, j, k, nr1, nr2, nr3, ri, rj, rk ) ir=i+(j-1)*nr1x+(k-1)*nr1x*nr2x rir=ri+(rj-1)*nr1x+(rk-1)*nr1x*nr2x arg=tpi*( (gk(1)*(i-1))/dble(nr1)+(gk(2)*(j-1))/dble(nr2)+ & (gk(3)*(k-1))/dble(nr3) ) phase=cmplx(cos(arg),sin(arg),kind=DP) psir_collect(ir)=psic_collect(rir)*phase ENDDO ENDDO ENDDO ELSE DO k = 1, nr3 DO j = 1, nr2 DO i = 1, nr1 CALL ruotaijk (s, ftau, i, j, k, nr1, nr2, nr3, ri, rj, rk ) ir=i+(j-1)*nr1x+(k-1)*nr1x*nr2x rir=ri+(rj-1)*nr1x+(rk-1)*nr1x*nr2x psir_collect(ir)=psic_collect(rir) ENDDO ENDDO ENDDO ENDIF ! CALL cscatter_sym( psir_collect, psir(:,ipol) ) ! #else IF (zone_border) THEN DO k = 1, nr3 DO j = 1, nr2 DO i = 1, nr1 CALL ruotaijk (s, ftau, i, j, k, nr1, nr2, nr3, ri, rj, rk ) ir=i+(j-1)*nr1x+(k-1)*nr1x*nr2x rir=ri+(rj-1)*nr1x+(rk-1)*nr1x*nr2x arg=tpi*( (gk(1)*(i-1))/dble(nr1)+(gk(2)*(j-1))/dble(nr2)+ & (gk(3)*(k-1))/dble(nr3) ) phase=cmplx(cos(arg),sin(arg),kind=DP) psir(ir,ipol)=psic(rir,ipol)*phase ENDDO ENDDO ENDDO ELSE DO k = 1, nr3 DO j = 1, nr2 DO i = 1, nr1 CALL ruotaijk (s, ftau, i, j, k, nr1, nr2, nr3, ri, rj, rk ) ir=i+(j-1)*nr1x+(k-1)*nr1x*nr2x rir=ri+(rj-1)*nr1x+(rk-1)*nr1x*nr2x psir(ir,ipol)=psic(rir,ipol) ENDDO ENDDO ENDDO ENDIF ! #endif ! CALL fwfft ('Dense', psir(:,ipol), dfftp) ! evcr_save(1:npw,ipol) = psir(nl(igk(1:npw)),ipol) ! ENDDO evcr=(0.d0,0.d0) DO ipol=1,npol DO jpol=1,npol evcr(:,ipol)=evcr(:,ipol)+conjg(d_spin(jpol,ipol))*evcr_save(:,jpol) ENDDO ENDDO IF (has_e==-1) evcr=-evcr ! DEALLOCATE(evcr_save) DEALLOCATE(psic) DEALLOCATE(psir) #if defined (__MPI) DEALLOCATE (psic_collect) DEALLOCATE (psir_collect) #endif RETURN END SUBROUTINE rotate_psi_so SUBROUTINE find_nks1nks2(firstk,lastk,nks1tot,nks1,nks2tot,nks2,spin_component) ! ! This routine selects the first (nks1) and last (nks2) k point calculated ! by the current pool. ! USE lsda_mod, ONLY : nspin USE klist, ONLY : nks, nkstot USE mp_global, ONLY : my_pool_id, npool, kunit IMPLICIT NONE INTEGER, INTENT(out) :: nks1tot,nks1,nks2tot,nks2 INTEGER, INTENT(in) :: firstk, lastk, spin_component INTEGER :: nbase, rest IF (nspin==1.or.nspin==4) THEN nks1tot=max(1,firstk) nks2tot=min(nkstot, lastk) ELSEIF (nspin==2) THEN IF (spin_component == 1) THEN nks1tot=max(1,firstk) nks2tot=min(nkstot/2,lastk) ELSEIF (spin_component==2) THEN nks1tot=nkstot/2 + max(1,firstk) nks2tot=nkstot/2 + min(nkstot/2,lastk) ENDIF ENDIF IF (nks1tot>nks2tot) CALL errore('findnks1nks2','wrong nks1tot or nks2tot',1) #ifdef __MPI nks = kunit * ( nkstot / kunit / npool ) rest = ( nkstot - nks * npool ) / kunit IF ( ( my_pool_id + 1 ) <= rest ) nks = nks + kunit ! ! ... calculates nbase = the position in the list of the first point that ! ... belong to this npool - 1 ! nbase = nks * my_pool_id IF ( ( my_pool_id + 1 ) > rest ) nbase = nbase + rest * kunit nks1=max(1,nks1tot-nbase) IF (nks1>nks) nks1=nks+1 nks2=min(nks,nks2tot-nbase) IF (nks2<1) nks2=nks1-1 #else nks1=nks1tot nks2=nks2tot #endif END SUBROUTINE find_nks1nks2 SUBROUTINE find_info_group(nsym,s,t_rev,ftau,d_spink,gk,sname, & s_is,d_spin_is,gk_is, & is_symmorphic,search_sym) ! ! This routine receives as input a point group and sets the corresponding ! variables for the description of the classes and of the irreducible ! representations. It sets also the group name and code. ! In the magnetic case it selects the invariat subgroup. ! USE kinds, ONLY : DP USE cell_base, ONLY : at, bg USE noncollin_module, ONLY : noncolin USE spin_orb, ONLY : domag USE rap_point_group, ONLY : code_group, nclass, nelem, elem, which_irr, & char_mat, name_rap, name_class, gname, ir_ram USE rap_point_group_so, ONLY : nrap, nelem_so, elem_so, has_e, & which_irr_so, char_mat_so, name_rap_so, & name_class_so, d_spin, name_class_so1 USE rap_point_group_is, ONLY : nsym_is, sr_is, ftau_is, gname_is, & sname_is, code_group_is IMPLICIT NONE INTEGER, INTENT(in) :: nsym, & ! dimension of the group s(3,3,48), & ! rotation matrices t_rev(48), & ! if time reversal is need ftau(3,48), & ! fractionary translation gk(3,48) INTEGER, INTENT(out) :: s_is(3,3,48), & ! rotation matrices gk_is(3,48) COMPLEX(DP),INTENT(out) :: d_spink(2,2,48), & ! rotation in spin space d_spin_is(2,2,48) ! rotation in spin space LOGICAL, INTENT(out) :: is_symmorphic, & ! true if the gruop is symmorphic search_sym ! true if gk CHARACTER(len=45), INTENT(in) :: sname(48) REAL(DP) :: sr(3,3,48) INTEGER :: isym is_symmorphic=.true. search_sym=.true. DO isym=1,nsym is_symmorphic=( is_symmorphic.and.(ftau(1,isym)==0).and. & (ftau(2,isym)==0).and. & (ftau(3,isym)==0) ) ENDDO IF (.not.is_symmorphic) THEN DO isym=1,nsym search_sym=( search_sym.and.(gk(1,isym)==0).and. & (gk(2,isym)==0).and. & (gk(3,isym)==0) ) ENDDO ENDIF ! ! Set the group name, divide it in classes and set the irreducible ! representations ! nsym_is=0 DO isym=1,nsym CALL s_axis_to_cart (s(1,1,isym), sr(1,1,isym), at, bg) IF (noncolin) THEN ! ! In the noncollinear magnetic case finds the invariant subgroup of the point ! group of k. Presently we use only this subgroup to classify the levels. ! IF (domag) THEN IF (t_rev(isym)==0) THEN nsym_is=nsym_is+1 CALL s_axis_to_cart (s(1,1,isym), sr_is(1,1,nsym_is), at, bg) CALL find_u(sr_is(1,1,nsym_is),d_spin_is(1,1,nsym_is)) s_is(:,:,nsym_is)=s(:,:,isym) gk_is(:,nsym_is)=gk(:,isym) ftau_is(:,nsym_is)=ftau(:,isym) sname_is(nsym_is)=sname(isym) ENDIF ELSE CALL find_u(sr(1,1,isym),d_spink(1,1,isym)) ENDIF ENDIF ENDDO CALL find_group(nsym,sr,gname,code_group) IF (noncolin) THEN IF (domag) THEN CALL find_group(nsym_is,sr_is,gname_is,code_group_is) CALL set_irr_rap_so(code_group_is,nclass,nrap,char_mat_so, & name_rap_so,name_class_so,name_class_so1) CALL divide_class_so(code_group_is,nsym_is,sr_is,d_spin_is,& has_e,nclass,nelem_so,elem_so,which_irr_so) ELSE CALL set_irr_rap_so(code_group,nclass,nrap,char_mat_so, & name_rap_so,name_class_so,name_class_so1) CALL divide_class_so(code_group,nsym,sr,d_spink, & has_e,nclass,nelem_so,elem_so,which_irr_so) ENDIF ELSE CALL set_irr_rap(code_group,nclass,char_mat,name_rap,name_class,ir_ram) CALL divide_class(code_group,nsym,sr,nclass,nelem,elem,which_irr) ENDIF RETURN END SUBROUTINE find_info_group ! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE s_axis_to_cart (s, sr, at, bg) !---------------------------------------------------------------------- ! ! This routine transform a symmetry matrix expressed in the ! basis of the crystal axis in the cartesian basis. ! ! last revised 3 may 1995 by A. Dal Corso ! ! USE kinds IMPLICIT NONE ! ! first the input parameters ! INTEGER :: s (3, 3) ! input: matrix in crystal axis real(DP) :: sr (3, 3), at (3, 3), bg (3, 3) ! output: matrix in cartesian axis ! input: direct lattice vectors ! input: reciprocal lattice vectors ! ! here the local variable ! INTEGER :: apol, bpol, kpol, lpol ! ! counters on polarizations ! DO apol = 1, 3 DO bpol = 1, 3 sr (apol, bpol) = 0.d0 DO kpol = 1, 3 DO lpol = 1, 3 sr (apol, bpol) = sr (apol, bpol) + at (apol, kpol) * & dble ( s (lpol, kpol) ) * bg (bpol, lpol) ENDDO ENDDO ENDDO ENDDO RETURN END SUBROUTINE s_axis_to_cart espresso-5.1/PP/src/chdens.f900000644000175000017500000013214512341372773014213 0ustar mbamba! ! Copyright (C) 2001-2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE chdens (filplot,plot_num) !----------------------------------------------------------------------- ! Writes the charge density (or potential, or polarisation) ! into a file format suitable for plotting !----------------------------------------------------------------------- ! ! DESCRIPTION of the INPUT: see file INPUT_PP in Doc/ ! USE kinds, ONLY : dp USE io_global, ONLY : stdout, ionode, ionode_id USE io_files, ONLY : nd_nmbr USE mp_global, ONLY : nproc_pool USE mp_world, ONLY : world_comm USE mp, ONLY : mp_bcast USE parameters, ONLY : ntypx USE constants, ONLY : pi, fpi USE cell_base, ONLY : at, bg, celldm, ibrav, alat, omega, tpiba, tpiba2 USE ions_base, ONLY : nat, ityp, atm, ntyp => nsp, tau, zv USE lsda_mod, ONLY : nspin USE fft_base, ONLY : grid_scatter, dfftp, dffts USE fft_interfaces, ONLY : fwfft USE grid_subroutines,ONLY : realspace_grids_init USE gvect, ONLY : ngm, nl, g, gcutm USE gvecs, ONLY : gcutms, doublegrid, dual, ecuts USE recvec_subs,ONLY: ggen USE wvfct, ONLY: ecutwfc USE run_info, ONLY: title USE control_flags, ONLY: gamma_only USE wavefunctions_module, ONLY: psic IMPLICIT NONE CHARACTER (len=256), INTENT(in) :: filplot ! ! If plot_num=-1 the dimensions and structural data are read from the charge ! or potential file, otherwise it uses the data already read from ! the files in outdir. ! INTEGER, INTENT(in) :: plot_num ! INTEGER, PARAMETER :: nfilemax = 7 ! maximum number of files with charge INTEGER :: ounit, iflag, ios, ipol, nfile, ifile, nx, ny, nz, & na, i, output_format, idum, direction real(DP) :: e1(3), e2(3), e3(3), x0 (3), radius, m1, m2, m3, & weight (nfilemax), isovalue,heightmin,heightmax real(DP), ALLOCATABLE :: aux(:) CHARACTER (len=256) :: fileout CHARACTER (len=13), DIMENSION(0:7) :: formatname = & (/ 'gnuplot ', & 'contour.x ', & 'plotrho.x ', & 'XCrySDen ', & 'gOpenMol ', & 'XCrySDen ', & 'Gaussian cube', & 'gnuplot x,y,f' /) CHARACTER (len=20), DIMENSION(0:4) :: plotname = & (/ '1D spherical average', & '1D along a line ', & '2D contour ', & '3D ', & '2D polar on a sphere'/) real(DP) :: celldms (6), gcutmsa, duals, zvs(ntypx), ats(3,3) real(DP), ALLOCATABLE :: taus (:,:), rhor(:), rhos(:) INTEGER :: ibravs, nr1sxa, nr2sxa, nr3sxa, nr1sa, nr2sa, nr3sa, & ntyps, nats INTEGER, ALLOCATABLE :: ityps (:) CHARACTER (len=3) :: atms(ntypx) CHARACTER (len=256) :: filepp(nfilemax) CHARACTER (len=20) :: interpolation real(DP) :: rhotot COMPLEX(DP), ALLOCATABLE:: rhog (:) ! rho or polarization in G space LOGICAL :: fast3d, isostm_flag NAMELIST /plot/ & nfile, filepp, weight, iflag, e1, e2, e3, nx, ny, nz, x0, & radius, output_format, fileout, interpolation, & isostm_flag, isovalue, heightmin, heightmax, direction ! ! set the DEFAULT values ! nfile = 1 filepp(1) = filplot weight(1) = 1.0d0 iflag = 0 radius = 1.0d0 output_format = -1 fileout = ' ' e1(:) = 0.d0 e2(:) = 0.d0 e3(:) = 0.d0 x0(:) = 0.d0 nx = 0 ny = 0 nz = 0 interpolation = 'fourier' isostm_flag = .false. isovalue = 0.d0 heightmin = 0.0d0 heightmax = 1.0d0 direction = 1 ! ! read and check input data ! ! reading the namelist 'plot' ! IF (ionode) READ (5, plot, iostat = ios) ! CALL mp_bcast( ios, ionode_id, world_comm ) CALL mp_bcast( nfile, ionode_id, world_comm ) IF (ios /= 0) THEN IF (nfile > nfilemax) THEN ! if this happens the reading of the namelist will fail ! tell to user why CALL infomsg('chdens ', 'nfile is too large, exiting') ELSE CALL infomsg ('chdens', 'namelist plot not found or invalid, exiting') ENDIF RETURN ENDIF CALL mp_bcast( filepp, ionode_id, world_comm ) CALL mp_bcast( weight, ionode_id, world_comm ) CALL mp_bcast( iflag, ionode_id, world_comm ) CALL mp_bcast( radius, ionode_id, world_comm ) CALL mp_bcast( output_format, ionode_id, world_comm ) CALL mp_bcast( fileout, ionode_id, world_comm ) CALL mp_bcast( e1, ionode_id, world_comm ) CALL mp_bcast( e2, ionode_id, world_comm ) CALL mp_bcast( e3, ionode_id, world_comm ) CALL mp_bcast( x0, ionode_id, world_comm ) CALL mp_bcast( nx, ionode_id, world_comm ) CALL mp_bcast( ny, ionode_id, world_comm ) CALL mp_bcast( nz, ionode_id, world_comm ) CALL mp_bcast( interpolation, ionode_id, world_comm ) CALL mp_bcast( isostm_flag, ionode_id, world_comm ) CALL mp_bcast( isovalue, ionode_id, world_comm ) CALL mp_bcast( heightmin, ionode_id, world_comm ) CALL mp_bcast( heightmax, ionode_id, world_comm ) CALL mp_bcast( direction, ionode_id, world_comm ) IF (output_format == -1 .or. iflag == -1) THEN CALL infomsg ('chdens', 'output format not set, exiting' ) RETURN ENDIF ! ! check for number of files ! IF (nfile < 1 .or. nfile > nfilemax) & CALL errore ('chdens ', 'nfile is wrong ', 1) ! check for iflag IF (iflag <= 1) THEN ! 1D plot : check variables IF (e1(1)**2 + e1(2)**2 + e1(3)**2 < 1d-6) & CALL errore ('chdens', 'missing e1 vector', 1) IF (nx <= 0 ) CALL errore ('chdens', 'wrong nx', 1) ELSEIF (iflag == 2) THEN ! 2D plot : check variables IF (e1(1)**2 + e1(2)**2 + e1(3)**2 < 1d-6 .or. & e2(1)**2 + e2(2)**2 + e2(3)**2 < 1d-6) & CALL errore ('chdens', 'missing e1/e2 vectors', 1) IF (abs(e1(1)*e2(1) + e1(2)*e2(2) + e1(3)*e2(3)) > 1d-6) & CALL errore ('chdens', 'e1 and e2 are not orthogonal', 1) IF (nx <= 0 .or. ny <= 0 ) CALL errore ('chdens', 'wrong nx/ny', 2) ELSEIF (iflag == 3) THEN ! 3D plot : check variables IF ( abs(e1(1)*e2(1) + e1(2)*e2(2) + e1(3)*e2(3)) > 1d-6 .or. & abs(e1(1)*e3(1) + e1(2)*e3(2) + e1(3)*e3(3)) > 1d-6 .or. & abs(e2(1)*e3(1) + e2(2)*e3(2) + e2(3)*e3(3)) > 1d-6 ) & CALL errore ('chdens', 'e1, e2, e3 are not orthogonal', 1) IF ((iflag==3) .and.(output_format < 3 .or. output_format > 6)) & CALL errore ('chdens', 'incompatible iflag/output_format', 1) IF ((iflag/=3) .and. ((output_format == 5) .or. (output_format == 6))) & CALL errore ('chdens', 'output_format=5/6, iflag<>3', 1) ELSEIF (iflag == 4) THEN IF (nx <= 0 .or. ny <= 0 ) CALL errore ('chdens', 'wrong nx/ny', 4) ELSE CALL errore ('chdens', 'iflag not implemented', 1) ENDIF ! check interpolation if (trim(interpolation) /= 'fourier' .and. trim(interpolation) /= 'bspline') & call errore('chdens', 'wrong interpolation: ' // trim(interpolation), 1) ! if isostm_flag checks whether the input variables are set IF (isostm_flag) THEN IF (heightmax > 1.0 .or. heightmin > 1.0 .or. heightmin < 0.0 & .or. heightmax < 0.0 ) THEN CALL errore('isostm','problem with heightmax/min',1) ENDIF IF (direction /= 1 .and. direction /= -1) THEN CALL errore('isostm','direction not equal to +- 1',1) ENDIF END IF ! ! Read the header and allocate objects ! IF (plot_num==-1) THEN IF (ionode) & CALL read_io_header(filepp (1), title, dfftp%nr1x, dfftp%nr2x, & dfftp%nr3x, dfftp%nr1, dfftp%nr2, dfftp%nr3, nat, ntyp,& ibrav, celldm, at, gcutm, dual, ecutwfc, idum ) CALL mp_bcast( title, ionode_id, world_comm ) CALL mp_bcast( dfftp%nr1x, ionode_id, world_comm ) CALL mp_bcast( dfftp%nr2x, ionode_id, world_comm ) CALL mp_bcast( dfftp%nr3x, ionode_id, world_comm ) CALL mp_bcast( dfftp%nr1, ionode_id, world_comm ) CALL mp_bcast( dfftp%nr2, ionode_id, world_comm ) CALL mp_bcast( dfftp%nr3, ionode_id, world_comm ) CALL mp_bcast( nat, ionode_id, world_comm ) CALL mp_bcast( ntyp, ionode_id, world_comm ) CALL mp_bcast( ibrav, ionode_id, world_comm ) CALL mp_bcast( celldm, ionode_id, world_comm ) CALL mp_bcast( at, ionode_id, world_comm ) CALL mp_bcast( gcutm, ionode_id, world_comm ) CALL mp_bcast( dual, ionode_id, world_comm ) CALL mp_bcast( ecutwfc, ionode_id, world_comm ) ! ! ... see comment above ! ALLOCATE(tau (3, nat)) ALLOCATE(ityp(nat)) ! CALL latgen (ibrav, celldm, at(1,1), at(1,2), at(1,3), omega ) alat = celldm (1) ! define alat at = at / alat ! bring at in units of alat tpiba = 2.d0 * pi / alat tpiba2 = tpiba**2 doublegrid = dual>4.0d0 IF (doublegrid) THEN gcutms = 4.d0 * ecutwfc / tpiba2 ELSE gcutms = gcutm ENDIF nspin = 1 CALL recips (at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) CALL volume (alat, at(1,1), at(1,2), at(1,3), omega) CALL realspace_grids_init ( dfftp, dffts, at, bg, gcutm, gcutms ) ENDIF ALLOCATE (rhor(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x)) ALLOCATE (rhos(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x)) ALLOCATE (taus( 3 , nat)) ALLOCATE (ityps( nat)) ! rhor (:) = 0.0_DP ! ! Read files, verify consistency ! Note that only rho is read; all other quantities are discarded ! DO ifile = 1, nfile ! CALL plot_io (filepp (ifile), title, nr1sxa, nr2sxa, nr3sxa, & nr1sa, nr2sa, nr3sa, nats, ntyps, ibravs, celldms, ats, gcutmsa, & duals, ecuts, idum, atms, ityps, zvs, taus, rhos, - 1) IF (ifile==1.and.plot_num==-1) THEN atm=atms ityp=ityps zv=zvs tau=taus ENDIF ! IF (nats>nat) CALL errore ('chdens', 'wrong file order? ', 1) IF (dfftp%nr1x/=nr1sxa.or.dfftp%nr2x/=nr2sxa) CALL & errore ('chdens', 'incompatible nr1x or nr2x', 1) IF (dfftp%nr1/=nr1sa.or.dfftp%nr2/=nr2sa.or.dfftp%nr3/=nr3sa) CALL & errore ('chdens', 'incompatible nr1 or nr2 or nr3', 1) IF (ibravs/=ibrav) CALL errore ('chdens', 'incompatible ibrav', 1) IF (abs(gcutmsa-gcutm)>1.d-8.or.abs(duals-dual)>1.d-8.or.& abs(ecuts-ecutwfc)>1.d-8) & CALL errore ('chdens', 'incompatible gcutm or dual or ecut', 1) IF (ibravs /= 0 ) THEN DO i = 1, 6 IF (abs( celldm (i)-celldms (i) ) > 1.0d-7 ) & CALL errore ('chdens', 'incompatible celldm', 1) ENDDO ENDIF ! rhor (:) = rhor (:) + weight (ifile) * rhos (:) ENDDO DEALLOCATE (ityps) DEALLOCATE (taus) DEALLOCATE (rhos) ! ! open output file, i.e., "fileout" ! IF (ionode) THEN IF (fileout /= ' ') THEN ounit = 1 OPEN (unit=ounit, file=fileout, form='formatted', status='unknown') WRITE( stdout, '(/5x,"Writing data to be plotted to file ",a)') & trim(fileout) ELSE ounit = 6 ENDIF ENDIF ! the isostm subroutine is called only when isostm_flag is true and the ! charge density is related to an STM image (5) or is read from a file IF ( (isostm_flag) .AND. ( (plot_num == -1) .OR. (plot_num == 5) ) ) THEN IF ( .NOT. (iflag == 2))& CALL errore ('chdens', 'isostm should have iflag = 2', 1) CALL isostm_plot(rhor, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, & isovalue, heightmin, heightmax, direction) END IF ! ! At this point we start the calculations, first we normalize the ! vectors defining the plotting region. ! If these vectors have 0 length, replace them with crystal axis ! m1 = sqrt (e1 (1)**2 + e1 (2)**2 + e1 (3)**2) IF (abs(m1) < 1.d-6) THEN e1 (:) = at(:,1) m1 = sqrt (e1 (1)**2 + e1 (2)**2 + e1 (3)**2) ENDIF e1 (:) = e1 (:) / m1 ! m2 = sqrt (e2 (1)**2 + e2 (2)**2 + e2 (3)**2) IF (abs(m2) < 1.d-6) THEN e2 (:) = at(:,2) m2 = sqrt (e2 (1)**2 + e2 (2)**2 + e2 (3)**2) ENDIF e2 (:) = e2 (:) / m2 ! m3 = sqrt (e3 (1)**2 + e3 (2)**2 + e3 (3)**2) IF (abs(m3) < 1.d-6) THEN e3 (:) = at(:,3) m3 = sqrt (e3 (1)**2 + e3 (2)**2 + e3 (3)**2) ENDIF e3 (:) = e3 (:) / m3 ! ! are vectors defining the plotting region aligned along xyz ? ! fast3d = ( e1(2) == 0.d0 .and. e1(3) == 0.d0) .and. & ( e2(1) == 0.d0 .and. e2(3) == 0.d0) .and. & ( e3(1) == 0.d0 .and. e3(2) == 0.d0) ! ! are crystal axis aligned along xyz ? ! fast3d = fast3d .and. & ( at(2,1) == 0.d0 .and. at(3,1) == 0.d0) .and. & ( at(1,2) == 0.d0 .and. at(3,2) == 0.d0) .and. & ( at(1,3) == 0.d0 .and. at(2,3) == 0.d0) fast3d = fast3d .and. (trim(interpolation) == 'fourier') ! ! Initialise FFT for rho(r) => rho(G) conversion if needed ! IF (.not. ( iflag == 3 .and. ( output_format == 5 .or. & output_format == 6 .or. & fast3d ) ) ) THEN IF (plot_num==-1) THEN ! gamma_only=.false. ! nproc_pool=1 ! CALL allocate_fft() ! ! and rebuild G-vectors in reciprocal space ! CALL ggen ( gamma_only, at, bg ) ! ! here we compute the fourier components of the quantity to plot ! ELSE ! IF (gamma_only) THEN WRITE(stdout,'(/"BEWARE: plot requiring G-space interpolation",& &" not implemented for Gamma only!",/, & &"SOLUTION: restart this calculation with", & &" emtpy namelist &inputpp")') CALL errore ('chdens','Not implemented, please read above',1) ENDIF ! ENDIF #ifdef __MPI ALLOCATE(aux(dfftp%nnr)) CALL grid_scatter(rhor, aux) psic(:) = cmplx(aux(:), 0.d0,kind=DP) DEALLOCATE(aux) #else psic(:) = cmplx(rhor(:), 0.d0,kind=DP) #endif CALL fwfft ('Dense', psic, dfftp) ! ! we store the fourier components in the array rhog ! ALLOCATE (rhog( ngm)) rhog (:) = psic (nl (:) ) ! ENDIF ! ! And now the plot (rhog in G-space, rhor in real space) ! IF (iflag <= 1) THEN IF (TRIM(interpolation) == 'fourier') THEN CALL plot_1d (nx, m1, x0, e1, ngm, g, rhog, alat, iflag, ounit) ELSE CALL plot_1d_bspline (nx, m1, x0, e1, rhor, alat, iflag, ounit) ENDIF ELSEIF (iflag == 2) THEN IF (TRIM(interpolation) == 'fourier') THEN CALL plot_2d (nx, ny, m1, m2, x0, e1, e2, ngm, g, rhog, alat, & at, nat, tau, atm, ityp, output_format, ounit) ELSE CALL plot_2d_bspline (nx, ny, m1, m2, x0, e1, e2, rhor, alat, & at, nat, tau, atm, ityp, output_format, ounit) ENDIF IF (output_format == 2.and.ionode) THEN WRITE (ounit, '(i4)') nat WRITE (ounit, '(3f8.4,i3)') ( (tau(ipol,na), ipol=1,3), 1, na=1,nat) WRITE (ounit, '(f10.6)') celldm (1) WRITE (ounit, '(3(3f12.6/))') at ENDIF ELSEIF (iflag == 3) THEN IF (output_format == 4.and.ionode) THEN ! gopenmol wants the coordinates in a separate file IF (fileout /= ' ') THEN OPEN (unit = ounit+1, file = trim(fileout)//'.xyz', & form = 'formatted', status = 'unknown') WRITE( stdout, '(5x,"Writing coordinates to file ",a)') & trim(fileout)//'.xyz' ELSE OPEN (unit = ounit+1, file = 'coord.xyz', & form = 'formatted', status = 'unknown') WRITE( stdout, '("Writing coordinates to file coord.xyz")') ENDIF ENDIF IF (output_format == 5.and.ionode) THEN ! ! XCRYSDEN FORMAT ! CALL xsf_struct (alat, at, nat, tau, atm, ityp, ounit) CALL xsf_fast_datagrid_3d & (rhor, dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, at, alat, ounit) ELSEIF (output_format == 6.and.ionode ) THEN ! ! GAUSSIAN CUBE FORMAT ! IF (TRIM(interpolation) == 'fourier') THEN CALL write_cubefile (alat, at, bg, nat, tau, atm, ityp, rhor, & dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, ounit) ELSE CALL plot_3d_bspline(celldm(1), at, nat, tau, atm, ityp, rhor,& nx, ny, nz, m1, m2, m3, x0, e1, e2, e3, output_format, & ounit, rhotot) END IF ELSEIF (ionode) THEN ! ! GOPENMOL FORMAT ! IF (fast3d) THEN CALL plot_fast (celldm (1), at, nat, tau, atm, ityp, & dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, dfftp%nr1, dfftp%nr2, dfftp%nr3, rhor, & bg, m1, m2, m3, x0, e1, e2, e3, output_format, ounit, & rhotot) ELSE IF (nx<=0 .or. ny <=0 .or. nz <=0) & CALL errore("chdens","nx,ny,nz, required",1) IF (TRIM(interpolation) == 'fourier') THEN CALL plot_3d (celldm (1), at, nat, tau, atm, ityp, ngm, g, rhog,& nx, ny, nz, m1, m2, m3, x0, e1, e2, e3, output_format, & ounit, rhotot) ELSE CALL plot_3d_bspline(celldm(1), at, nat, tau, atm, ityp, rhor,& nx, ny, nz, m1, m2, m3, x0, e1, e2, e3, output_format, & ounit, rhotot) ENDIF ! ENDIF ENDIF ELSEIF (iflag == 4) THEN radius = radius / alat CALL plot_2ds (nx, ny, radius, ngm, g, rhog, output_format, ounit) ELSE CALL errore ('chdens', 'wrong iflag', 1) ENDIF ! WRITE(stdout, '(5x,"Plot Type: ",a," Output format: ",a)') & plotname(iflag), formatname(output_format) ! IF (allocated(rhog)) DEALLOCATE(rhog) DEALLOCATE(rhor) DEALLOCATE(tau) DEALLOCATE(ityp) END SUBROUTINE chdens ! !----------------------------------------------------------------------- SUBROUTINE plot_1d (nx, m1, x0, e, ngm, g, rhog, alat, iflag, ounit) !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY: pi USE io_global, ONLY : stdout, ionode USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE INTEGER :: nx, ngm, iflag, ounit ! number of points along the line ! number of G vectors ! type of plot ! output unit real(DP) :: e (3), x0 (3), m1, alat, g (3, ngm) ! vector defining the line ! origin of the line ! modulus of e ! lattice parameter ! G-vectors COMPLEX(DP) :: rhog (ngm) ! rho or polarization in G space INTEGER :: i, ig real(DP) :: rhomin, rhomax, rhoint, rhoim, xi, yi, zi, deltax, arg, gr, gg ! minimum value of the charge ! maximum value of the charge ! integrated charge ! integrated imaginary charge ! coordinates of a 3D point ! steps along the line ! the argument of the exponential ! |G|*|r| COMPLEX(DP) :: rho0g, carica (nx) deltax = m1 / (nx - 1) carica(:) = (0.d0,0.d0) IF (iflag == 1) THEN DO i = 1, nx xi = x0 (1) + (i - 1) * deltax * e (1) yi = x0 (2) + (i - 1) * deltax * e (2) zi = x0 (3) + (i - 1) * deltax * e (3) ! ! for each point we compute the charge from the Fourier components ! DO ig = 1, ngm ! ! NB: G are in 2pi/alat units, r are in alat units ! arg = 2.d0 * pi * ( xi*g(1,ig) + yi*g(2,ig) + zi*g(3,ig) ) carica(i) = carica(i) + rhog (ig) * cmplx(cos(arg),sin(arg),kind=DP) ENDDO ENDDO ELSEIF (iflag == 0) THEN ! ! spherically averaged charge: rho0(|r|) = int rho(r) dOmega ! rho0(r) = 4pi \sum_G rho(G) j_0(|G||r|) ! ! G =0 term gg=sqrt(g(1,1)**2+g(2,1)**2+g(3,1)**2) IF (gg<1.d-10) THEN DO i = 1, nx carica (i) = 4.d0 * pi * rhog (1) ENDDO ENDIF ! G!=0 terms DO ig = 2, ngm arg = 2.d0 * pi * ( x0(1)*g(1,ig) + x0(2)*g(2,ig) + x0(3)*g(3,ig) ) ! This displaces the origin into x0 rho0g = rhog (ig) * cmplx(cos(arg),sin(arg),kind=DP) ! r =0 term carica (1) = carica (1) + 4.d0 * pi * rho0g ! r!=0 terms DO i = 2, nx gr = 2.d0 * pi * sqrt(g(1,ig)**2 + g(2,ig)**2 + g(3,ig)**2) * & (i-1) * deltax carica (i) = carica (i) + 4.d0 * pi * rho0g * sin (gr) / gr ENDDO ENDDO ELSE CALL errore ('plot_1d', ' bad type of plot', 1) ENDIF CALL mp_sum( carica, intra_bgrp_comm ) ! ! Here we check the value of the resulting charge ! rhomin = 1.0d10 rhomax = -1.0d10 rhoim = 0.d0 DO i = 1, nx rhomin = min (rhomin, dble (carica (i) ) ) rhomax = max (rhomax, dble (carica (i) ) ) rhoim = rhoim + abs (aimag (carica (i) ) ) ENDDO rhoim = rhoim / nx WRITE(stdout, '(5x,"Min, Max, imaginary charge: ",3f12.6)') & rhomin, rhomax, rhoim ! ! we print the charge on output ! IF (ionode) THEN IF (iflag == 1) THEN DO i = 1, nx WRITE (ounit, '(2f20.10)') deltax*dble(i-1), dble(carica(i)) ENDDO ELSE rhoint = 0.d0 DO i = 1, nx ! ! simple trapezoidal rule: rhoint=int carica(i) r^2(i) dr ! rhoint = rhoint + dble(carica(i)) * (i-1)**2 * (deltax*alat)**3 WRITE (ounit, '(3f20.10)') deltax*dble(i-1), dble(carica(i)), rhoint ENDDO ENDIF ENDIF RETURN END SUBROUTINE plot_1d ! !----------------------------------------------------------------------- SUBROUTINE plot_2d (nx, ny, m1, m2, x0, e1, e2, ngm, g, rhog, alat, & at, nat, tau, atm, ityp, output_format, ounit) !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : pi USE io_global, ONLY : stdout, ionode USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE INTEGER :: nx, ny, ngm, nat, ityp (nat), output_format, ounit ! number of points along x ! number of points along y ! number of G vectors ! number of atoms ! types of atoms ! output unit ! output format CHARACTER(len=3) :: atm(*) ! atomic symbols real(DP) :: e1(3), e2(3), x0(3), m1, m2, g(3,ngm), alat, & tau(3,nat), at(3,3) ! vectors e1, e2 defining the plane ! origin ! modulus of e1 ! modulus of e2 ! G-vectors COMPLEX(DP) :: rhog (ngm) ! rho or polarization in G space INTEGER :: i, j, ig real(DP) :: rhomin, rhomax, rhoim, deltax, deltay ! minimum value of the charge ! maximum value of the charge ! integrated imaginary charge ! steps along e1 ! steps along e2 COMPLEX(DP), ALLOCATABLE :: eigx (:), eigy (:), carica(:,:) ALLOCATE (eigx( nx)) ALLOCATE (eigy( ny)) ALLOCATE (carica( nx , ny)) deltax = m1 / (nx - 1) deltay = m2 / (ny - 1) carica(:,:) = (0.d0,0.d0) DO ig = 1, ngm ! ! eigx=exp(iG*e1+iGx0), eigy=(iG*e2) ! These factors are calculated and stored in order to save CPU time ! DO i = 1, nx eigx (i) = exp ( (0.d0, 1.d0) * 2.d0 * pi * ( (i - 1) * deltax * & (e1(1) * g(1,ig) + e1(2) * g(2,ig) + e1(3) * g(3,ig) ) + & (x0 (1) * g(1,ig) + x0 (2) * g(2,ig) + x0 (3) * g(3,ig) ) ) ) ENDDO DO j = 1, ny eigy (j) = exp ( (0.d0, 1.d0) * 2.d0 * pi * (j - 1) * deltay * & (e2(1) * g(1,ig) + e2(2) * g(2,ig) + e2(3) * g(3,ig) ) ) ENDDO DO j = 1, ny DO i = 1, nx carica (i, j) = carica (i, j) + rhog (ig) * eigx (i) * eigy (j) ENDDO ENDDO ENDDO CALL mp_sum( carica, intra_bgrp_comm ) ! ! Here we check the value of the resulting charge ! rhomin = 1.0d10 rhomax = -1.0d10 rhoim = 0.d0 DO i = 1, nx DO j = 1, ny rhomin = min (rhomin, dble (carica (i, j) ) ) rhomax = max (rhomax, dble (carica (i, j) ) ) rhoim = rhoim + abs (aimag (carica (i, j) ) ) ENDDO ENDDO rhoim = rhoim / nx / ny WRITE(stdout, '(5x,"Min, Max, imaginary charge: ",3f12.6)') & rhomin, rhomax, rhoim ! ! and we print the charge on output ! IF (ionode) THEN IF (output_format == 0) THEN ! ! gnuplot format ! ! write(ounit,'(2i6)') nx,ny DO i = 1, nx WRITE (ounit, '(e25.14)') ( dble(carica(i,j)), j = 1, ny ) WRITE (ounit, * ) ENDDO ELSEIF (output_format == 1) THEN ! ! contour.x format ! WRITE (ounit, '(3i5,2e25.14)') nx, ny, 1, deltax, deltay WRITE (ounit, '(4e25.14)') ( ( dble(carica(i,j)), j = 1, ny ), i = 1, nx ) ELSEIF (output_format == 2) THEN ! ! plotrho format ! WRITE (ounit, '(2i4)') nx - 1, ny - 1 WRITE (ounit, '(8f8.4)') (deltax * (i - 1) , i = 1, nx) WRITE (ounit, '(8f8.4)') (deltay * (j - 1) , j = 1, ny) WRITE (ounit, '(6e12.4)') ( ( dble(carica(i,j)), i = 1, nx ), j = 1, ny ) WRITE (ounit, '(3f8.4)') x0 WRITE (ounit, '(3f8.4)') (m1 * e1 (i) , i = 1, 3) WRITE (ounit, '(3f8.4)') (m2 * e2 (i) , i = 1, 3) ELSEIF (output_format == 3) THEN ! ! XCRYSDEN's XSF format ! CALL xsf_struct (alat, at, nat, tau, atm, ityp, ounit) CALL xsf_datagrid_2d (carica, nx, ny, m1, m2, x0, e1, e2, alat, ounit) ELSEIF (output_format == 7) THEN ! ! gnuplot format : x, y, f(x,y) ! DO i=1, nx DO j=1, ny WRITE (ounit, '(3e20.8)') alat*deltax * (i - 1), & alat*deltay * (j - 1), dble(carica(i,j)) ENDDO WRITE(ounit, *) ENDDO ELSE CALL errore('plot_2d', 'wrong output_format', 1) ENDIF ENDIF DEALLOCATE (carica) DEALLOCATE (eigy) DEALLOCATE (eigx) RETURN END SUBROUTINE plot_2d ! !----------------------------------------------------------------------- SUBROUTINE plot_2ds (nx, ny, x0, ngm, g, rhog, output_format, ounit) !----------------------------------------------------------------------- USE kinds, ONLY : DP USE constants, ONLY: pi USE io_global, ONLY : stdout, ionode USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE INTEGER :: nx, ny, ngm, ounit, output_format ! number of points along x ! number of points along y ! number of G vectors ! output unit real(DP) :: x0, g (3, ngm) ! radius of the sphere ! G-vectors COMPLEX(DP) :: rhog (ngm) ! rho or polarization in G space INTEGER :: i, j, ig real(DP), ALLOCATABLE :: r (:,:,:) real(DP) :: theta, phi, rhomin, rhomax, rhoim, deltax, deltay ! the point in space ! the position on the sphere ! minimum value of the charge ! maximum value of the charge ! integrated imaginary charge ! steps along e1 ! steps along e2 COMPLEX(DP), ALLOCATABLE :: carica (:,:) COMPLEX(DP) :: eig ALLOCATE (carica( nx , ny)) ALLOCATE (r (3, nx , ny)) deltax = 2.d0 * pi / (nx - 1) deltay = pi / (ny - 1) carica(:,:) = (0.d0,0.d0) DO j = 1, ny DO i = 1, nx phi = (i - 1) * deltax theta = (j - 1) * deltay r (1, i, j) = x0 * sin (theta) * cos (phi) r (2, i, j) = x0 * sin (theta) * sin (phi) r (3, i, j) = x0 * cos (theta) ENDDO ENDDO DO ig = 1, ngm ! ! eigx=exp(iG*e1+iGx0), eigy=(iG*e2) ! These factors are calculated and stored in order to save CPU time ! DO j = 1, ny DO i = 1, nx eig = exp ( (0.d0,1.d0) * 2.d0 * pi * & ( r(1,i,j)*g(1,ig) + r(2,i,j)*g(2,ig) + r(3,i,j)*g(3,ig) ) ) carica (i, j) = carica (i, j) + rhog (ig) * eig ENDDO ENDDO ENDDO CALL mp_sum( carica, intra_bgrp_comm ) ! ! Here we check the value of the resulting charge ! rhomin = 1.0d10 rhomax = -1.0d10 rhoim = 0.d0 DO i = 1, nx DO j = 1, ny rhomin = min (rhomin, dble (carica (i, j) ) ) rhomax = max (rhomax, dble (carica (i, j) ) ) rhoim = rhoim + abs (aimag (carica (i, j) ) ) ENDDO ENDDO rhoim = rhoim / nx / ny WRITE(stdout, '(5x,"Min, Max, imaginary charge: ",3f12.6)') & rhomin, rhomax, rhoim ! ! and we print the charge on output ! IF (ionode) THEN IF (output_format==0) THEN ! ! gnuplot format ! WRITE (ounit, '(2i8)') nx, ny DO i = 1, nx WRITE (ounit, '(e25.14)') ( dble(carica(i,j)), j = 1, ny ) ENDDO ELSEIF (output_format==1) THEN ! ! contour.x format ! WRITE (ounit, '(3i5,2e25.14)') nx, ny, 1, deltax, deltay WRITE (ounit, '(4e25.14)') ( ( dble(carica(i,j)), j = 1, ny ), i = 1, nx ) ELSE CALL errore ('plot_2ds', 'not implemented plot', 1) ENDIF ENDIF DEALLOCATE (carica) DEALLOCATE (r) RETURN END SUBROUTINE plot_2ds ! !----------------------------------------------------------------------- SUBROUTINE plot_3d (alat, at, nat, tau, atm, ityp, ngm, g, rhog, & nx, ny, nz, m1, m2, m3, x0, e1, e2, e3, output_format, ounit, & rhotot) !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY: pi USE io_global, ONLY : stdout, ionode USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE INTEGER :: nat, ityp (nat), ngm, nx, ny, nz, output_format, ounit ! number of atoms ! type of atoms ! number of G vectors ! number of points along x, y, z ! output format ! output unit CHARACTER(len=3) :: atm(*) real(DP) :: alat, tau(3,nat), at(3,3), g(3,ngm), x0(3), & e1(3), e2(3), e3(3), m1, m2, m3 ! lattice parameter ! atomic positions ! lattice vectors ! G-vectors ! origin ! vectors e1,e2,e3 defining the parallelepiped ! moduli of e1,e2,e3 COMPLEX(DP) :: rhog (ngm) ! rho or polarization in G space INTEGER :: i, j, k, ig real(DP) :: rhomin, rhomax, rhotot, rhoabs, deltax, deltay, deltaz ! min, max value of the charge, total charge, total absolute charge ! steps along e1, e2, e3 COMPLEX(DP), ALLOCATABLE :: eigx (:), eigy (:), eigz (:) real(DP), ALLOCATABLE :: carica (:,:,:) real(DP) :: omega ALLOCATE (eigx( nx)) ALLOCATE (eigy( ny)) ALLOCATE (eigz( nz)) ALLOCATE (carica( nx , ny , nz)) deltax = m1 / nx deltay = m2 / ny deltaz = m3 / nz carica = 0.d0 DO ig = 1, ngm ! ! eigx=exp(iG*e1+iGx0), eigy=exp(iG*e2), eigz=exp(iG*e3) ! These factors are calculated and stored in order to save CPU time ! DO i = 1, nx eigx (i) = exp( (0.d0,1.d0) * 2.d0 * pi * ( (i-1) * deltax * & (e1(1)*g(1,ig)+e1(2)*g(2,ig)+e1(3)*g(3,ig)) + & ( x0(1)*g(1,ig)+ x0(2)*g(2,ig)+ x0(3)*g(3,ig)) ) ) ENDDO DO j = 1, ny eigy (j) = exp( (0.d0,1.d0) * 2.d0 * pi * (j-1) * deltay * & (e2(1)*g(1,ig)+e2(2)*g(2,ig)+e2(3)*g(3,ig)) ) ENDDO DO k = 1, nz eigz (k) = exp( (0.d0,1.d0) * 2.d0 * pi * (k-1) * deltaz * & (e3(1)*g(1,ig)+e3(2)*g(2,ig)+e3(3)*g(3,ig)) ) ENDDO DO k = 1, nz DO j = 1, ny DO i = 1, nx carica (i, j, k) = carica (i, j, k) + & dble (rhog (ig) * eigz (k) * eigy (j) * eigx (i) ) ENDDO ENDDO ENDDO ENDDO CALL mp_sum( carica, intra_bgrp_comm ) ! ! Here we check the value of the resulting charge ! CALL volume(alat,e1(1),e2(1),e3(1),omega) rhomin = max ( minval (carica), 1.d-10 ) rhomax = maxval (carica) rhotot = sum (carica(:,:,:)) * omega * deltax * deltay * deltaz rhoabs = sum (abs(carica(:,:,:))) * omega * deltax * deltay * deltaz WRITE(stdout, '(/5x,"Min, Max, Total, Abs charge: ",2f10.6,2x, 2f10.4)')& rhomin, rhomax, rhotot, rhoabs IF (ionode) THEN IF (output_format == 4) THEN ! ! "gOpenMol" file ! CALL write_openmol_file (alat, at, nat, tau, atm, ityp, x0, & m1, m2, m3, nx, ny, nz, rhomax, carica, ounit) ELSE ! user has calculated for very long, be nice and write some output even ! if the output_format is wrong; use XSF format as default ! ! XCRYSDEN's XSF format ! CALL xsf_struct (alat, at, nat, tau, atm, ityp, ounit) CALL xsf_datagrid_3d & (carica, nx, ny, nz, m1, m2, m3, x0, e1, e2, e3, alat, ounit) ENDIF ENDIF DEALLOCATE (carica) DEALLOCATE (eigz) DEALLOCATE (eigy) DEALLOCATE (eigx) RETURN END SUBROUTINE plot_3d ! !----------------------------------------------------------------------- SUBROUTINE plot_fast (alat, at, nat, tau, atm, ityp,& nr1x, nr2x, nr3x, nr1, nr2, nr3, rho, bg, m1, m2, m3, & x0, e1, e2, e3, output_format, ounit, rhotot) !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE kinds, ONLY : DP IMPLICIT NONE INTEGER :: nat, ityp(nat), nr1x, nr2x, nr3x, nr1, nr2, nr3, & output_format, ounit CHARACTER(len=3) :: atm(*) real(DP) :: alat, tau (3, nat), at (3, 3), rho(nr1x,nr2x,nr3x), & bg (3, 3), e1(3), e2(3), e3(3), x0 (3), m1, m2, m3 INTEGER :: nx, ny, nz, nx0, ny0, nz0, nx1, ny1, nz1, nix, niy, niz, i, j, k, i1, j1, k1 real(DP) :: rhomin, rhomax, rhotot, rhoabs real(DP), ALLOCATABLE :: carica (:,:,:) real(DP) :: deltax, deltay, deltaz real(DP) :: omega ! find FFT grid point closer to X0 (origin of the parallelepiped) ! (add 1 because r=0 correspond to n=1) nx0 = nint ( (x0(1)*bg(1,1) + x0(2)*bg(2,1) + x0(3)*bg(3,1) )*nr1) + 1 ny0 = nint ( (x0(1)*bg(1,2) + x0(2)*bg(2,2) + x0(3)*bg(3,2) )*nr2) + 1 nz0 = nint ( (x0(1)*bg(1,3) + x0(2)*bg(2,3) + x0(3)*bg(3,3) )*nr3) + 1 ! IF ( e1(2) /= 0.d0 .or. e1(3) /= 0.d0 .or. & e2(1) /= 0.d0 .or. e2(3) /= 0.d0 .or. & e3(1) /= 0.d0 .or. e3(2) /= 0.d0 ) & CALL errore ('plot_fast','need vectors along x,y,z',1) ! find FFT grid points closer to X0 + e1, X0 + e2, X0 + e3 ! (the opposite vertex of the parallelepiped) nx1 = nint ( ((x0(1)+m1)*bg(1,1)+x0(2)*bg(2,1)+x0(3)*bg(3,1) )*nr1) ny1 = nint ( (x0(1)*bg(1,2)+(x0(2)+m2)*bg(2,2)+x0(3)*bg(3,2) )*nr2) nz1 = nint ( (x0(1)*bg(1,3)+x0(2)*bg(2,3)+(x0(3)+m3)*bg(3,3) )*nr3) ! find number of intervals between points nix = nx1 - nx0 + 1 niy = ny1 - ny0 + 1 niz = nz1 - nz0 + 1 IF ( output_format == 3 ) THEN ! XSF grids require one more point at the end of the parallelepiped sides nx1 = nx1 + 1 ny1 = ny1 + 1 nz1 = nz1 + 1 nx = nix + 1 ny = niy + 1 nz = niz + 1 ELSE nx = nix ny = niy nz = niz END IF ALLOCATE ( carica(nx, ny, nz) ) carica = 0.d0 DO k = nz0, nz1 k1 = mod(k, nr3) IF (k1<=0) k1 = k1 + nr3 DO j = ny0, ny1 j1 = mod(j, nr2) IF (j1<=0) j1 = j1 + nr2 DO i = nx0, nx1 i1 = mod(i, nr1) IF (i1<=0) i1 = i1 + nr1 carica (i-nx0+1, j-ny0+1, k-nz0+1) = rho(i1, j1, k1) ENDDO ENDDO ENDDO ! ! recalculate m1, m2, m3 (the sides of the parallelepiped divided by alat) ! consistent with the FFT grid ! WRITE( stdout,'(5x,"Requested parallelepiped sides : ",3f8.4)') m1, m2,m3 m1 = nix * sqrt (at(1, 1) **2 + at(2, 1) **2 + at(3, 1) **2) / nr1 m2 = niy * sqrt (at(1, 2) **2 + at(2, 2) **2 + at(3, 2) **2) / nr2 m3 = niz * sqrt (at(1, 3) **2 + at(2, 3) **2 + at(3, 3) **2) / nr3 WRITE( stdout,'(5x,"Redefined parallelepiped sides : ",3f8.4)') m1, m2,m3 ! ! recalculate x0 (the origin of the parallelepiped) ! consistent with the FFT grid ! WRITE( stdout,'(5x,"Requested parallelepiped origin: ",3f8.4)') x0 x0(1)=(nx0-1)*at(1,1)/ nr1 +(ny0-1)*at(1,2)/ nr2 +(nz0-1)*at(1,3)/ nr3 x0(2)=(nx0-1)*at(2,1)/ nr1 +(ny0-1)*at(2,2)/ nr2 +(nz0-1)*at(2,3)/ nr3 x0(3)=(nx0-1)*at(3,1)/ nr1 +(ny0-1)*at(3,2)/ nr2 +(nz0-1)*at(3,3)/ nr3 WRITE( stdout,'(5x,"Redefined parallelepiped origin: ",3f8.4)') x0 deltax = m1/nix deltay = m2/niy deltaz = m3/niz ! ! Here we check the value of the resulting charge ! CALL volume(alat,at(1,1),at(1,2),at(1,3),omega) rhomin = max ( minval (carica), 1.d-10 ) rhomax = maxval (carica) rhotot = sum (carica(1:nix,1:niy,1:niz)) * omega * deltax * deltay * deltaz rhoabs = sum (abs(carica(1:nix,1:niy,1:niz))) * omega * deltax * deltay * deltaz WRITE(stdout, '(/5x,"Min, Max, Total, Abs charge: ",4f10.6)') rhomin, & rhomax, rhotot, rhoabs IF (output_format == 4) THEN ! ! "gopenmol" file ! CALL write_openmol_file (alat, at, nat, tau, atm, ityp, x0, & m1, m2, m3, nx, ny, nz, rhomax, carica, ounit) ELSE ! ! write XSF format ! CALL xsf_struct (alat, at, nat, tau, atm, ityp, ounit) CALL xsf_datagrid_3d (carica, nx, ny, nz, m1, m2, m3, x0, & e1, e2, e3, alat, ounit) ENDIF ! DEALLOCATE (carica) RETURN END SUBROUTINE plot_fast ! !----------------------------------------------------------------------- SUBROUTINE write_openmol_file (alat, at, nat, tau, atm, ityp, x0, & m1, m2, m3, nx, ny, nz, rhomax, carica, ounit) !----------------------------------------------------------------------- USE io_global, ONLY : stdout USE kinds, ONLY : DP USE constants, ONLY : bohr => BOHR_RADIUS_ANGS, eps4 IMPLICIT NONE INTEGER :: nat, ityp (nat), nx, ny, nz, ounit real(DP) :: alat, tau (3, nat), at (3, 3), rhomax, x0 (3), & m1, m2, m3, carica (nx, ny, nz) CHARACTER(len=3) :: atm(*) ! INTEGER, PARAMETER :: MAXATOMS = 999 INTEGER :: natoms CHARACTER(len=2) TYPE (MAXATOMS) INTEGER :: n1, n2, n3, na, i real(DP) :: atoms (3, MAXATOMS), r (3), x, y, z real(DP) :: sidex, sidey, sidez ! ! sides of the parallelepiped in A ! sidex = m1 * alat * bohr sidey = m2 * alat * bohr sidez = m3 * alat * bohr ! really bad algorithm to generate (hopefully) all atoms ! that are inside the visualization box natoms = 0 DO n1 = - 3, + 3 DO n2 = - 3, + 3 DO n3 = - 3, + 3 DO i = 1, 3 r (i) = n1 * at (i, 1) + n2 * at (i, 2) + n3 * at (i, 3) ENDDO DO na = 1, nat ! x,y,z are in A x = (tau (1, na) + r (1) - x0 (1) ) * alat * bohr y = (tau (2, na) + r (2) - x0 (2) ) * alat * bohr z = (tau (3, na) + r (3) - x0 (3) ) * alat * bohr IF ( x > -eps4 .and. x < sidex+eps4 .and. & y > -eps4 .and. y < sidey+eps4 .and. & z > -eps4 .and. z < sidez+eps4 ) THEN natoms = natoms + 1 IF (natoms>MAXATOMS) THEN WRITE(stdout, '(" MAXATOMS (",i4,") Exceeded, " & & ,"Truncating " )') MAXATOMS natoms = MAXATOMS GOTO 10 ENDIF ! atoms (1, natoms) = x atoms (2, natoms) = y atoms (3, natoms) = z ! TYPE(natoms)=atm(ityp(na)) ENDIF ENDDO ENDDO ENDDO ENDDO 10 WRITE( stdout,'(5x,"Found ",i4," atoms in the box")') natoms WRITE(ounit,'(" 3 2")') WRITE(ounit,'(3i5)') nz,ny,nx WRITE(ounit,'(6f10.4)') 0.0d0,sidez,0.0d0,sidey,0.0d0,sidex DO n3=1,nz DO n2 = 1, ny DO n1 = 1, nx WRITE (ounit, '(f20.10)') carica (n1, n2, n3) ENDDO ENDDO ENDDO ! ! gopenmol needs atomic positions in a separate file ! WRITE(ounit+1,'(i4,/)') natoms WRITE(ounit+1,'(2x,a2,3f9.4)') (TYPE(na),( atoms(i,na), i=1,3 ), na=1,natoms ) ! RETURN END SUBROUTINE write_openmol_file ! SUBROUTINE isostm_plot(rhor, nr1x, nr2x, nr3x, & isovalue, heightmin, heightmax, direction) !----------------------------------------------------------------------- ! ! Written by Andrea Cepellotti (2011), modified by Marco Pividori (2014) ! to better interface with the postprocessing suite of QE ! ! This subroutine calculates 2D images of STM as isosurface of ! integrated ldos. ! It receives as input the STM charge density (that will be ! overwritten!) and the dimension of the grid in the real space. ! Works only for surfaces perpendicular to idir=3, searching for the ! highest isovalue found from heightmax to heightmin or viceversa ! according to the variable direction. ! ! ! DESCRIPTION of the INPUT CARD ISOSTM : ! ! isovalue ! (real) value of the charge of the isosurface ! ! default value -> 0.0d0 ! heightmin ! (real) minimum value of the plane in which searching for the isosurface ! ! default value -> 0.0d0 ! heightmax ! (real) maximum value of the plane in which searching for the isosurface ! ! default value -> 1.0d0 ! ! the two parameters above are in percentage with respect to the ! ! height of the cell, i.e. between 0.0 and 1.0. ! ! If heightmax < heightmin, it treats it as if it's in the ! ! upper periodically repeated slab. ! ! Put heightmin somewhere in the bulk and heightmax in the vacuum ! direction ! (integer) direction along z of the scan for the stm image: ! ! if direction = 1 generates the isosurface as seen from heightmax to heightmin ! ! if direction =-1 generates the isosurface as seen from heightmin to heightmax ! ! default value -> 1 USE kinds, ONLY : DP USE io_global, ONLY : stdout, ionode, ionode_id USE mp, ONLY : mp_bcast IMPLICIT NONE INTEGER, INTENT(IN) :: nr1x, nr2x, nr3x !dimension of the grid in the REAL SPACE INTEGER :: ios real(DP) :: rhor(nr1x*nr2x*nr3x) ! charge in R space REAL(DP), ALLOCATABLE :: image (:,:) ! array for storing z coordinates REAL(DP), ALLOCATABLE :: reorder (:) ! temporary array used to reorder z coord if heightmax < heightmin INTEGER :: kmin,kmax,deltakz, ir, ir2,direction ! min fft z value ! max fft z value ! difference between kmin and kmax ! counters on grid ! direction of scan REAL(DP) :: isovalue,heightmin,heightmax ! input parameters REAL(DP) :: maximum,minimum ! max and min value of iLDOS LOGICAL :: saturation ! check on the image INTEGER :: i, j, k ! ! algorithm to find the isovalue ! kmin=NINT(heightmin*nr3x) kmax=NINT(heightmax*nr3x) deltakz=0 ! if heightmin > heightmax, translate the z coordinates so that heightmin < heightmax IF ( heightmin > heightmax ) THEN ALLOCATE (reorder(nr1x*nr2x*nr3x)) kmin=NINT(heightmin*nr3x) kmax=NINT(heightmax*nr3x) deltakz=nr3x-kmin+1 DO k = 1,nr3x DO j = 1,nr2x DO i = 1,nr1x ir = i + (j - 1) * nr1x + (k - 1) * nr1x * nr2x ir2 = i + (j - 1) * nr1x + ( mod((k + deltakz),nr3x) & - 1) * nr1x * nr2x reorder(ir2) = rhor(ir) ENDDO ENDDO ENDDO rhor=reorder DEALLOCATE (reorder) kmin= mod( kmin + deltakz, nr3x) kmax= mod( kmax + deltakz, nr3x) ENDIF IF (kmax > nr3x .or. kmin > nr3x .or. kmax <0 .or. kmin <0) THEN CALL errore('isostm','problem with heightmax/min',1) ENDIF ! ! now search for the isosurface ! ! if heightmin is 0.0d0, the lower limit is set to alat/nr3x IF (kmin == 0) kmin = 1 ALLOCATE (image(nr1x,nr2x)) image=0.d0 minimum=10.d0 maximum=0.d0 saturation=.false. DO k = kmin, kmax, direction DO j = 1, nr2x DO i = 1, nr1x ir = i + (j - 1) * nr1x + (k - 1) * nr1x * nr2x IF ( dble (rhor (ir) ) >= isovalue ) THEN image (i,j) = k IF (k==kmax) THEN saturation=.true. ENDIF IF (k < NINT(heightmin*nr3x) ) THEN image (i,j) = image (i,j) + mod((k + deltakz),nr3x) ENDIF ENDIF IF (dble (rhor (ir) ) < minimum ) THEN minimum = dble (rhor(ir)) ELSE IF (dble (rhor (ir) ) > maximum ) THEN maximum = dble (rhor (ir)) ENDIF ENDDO ENDDO ENDDO WRITE( stdout, * ) WRITE( stdout, * ) ' image of z coordinates of the constant isovalue' WRITE( stdout, * ) ' -----------------------------------------------' WRITE( stdout, * ) ' max density found: ',maximum WRITE( stdout, * ) ' min density found: ',minimum WRITE( stdout, * ) ' isovalue: ', isovalue IF (minimum > isovalue) CALL errore('isostm','too low isovalue',1) IF (maximum < isovalue) CALL errore('isostm','too high isovalue',1) IF (saturation) THEN WRITE( stdout, * ) '!! WARNING: possibly saturated image, change heights or isovalue' ENDIF !-------- !WARNING! We overwrite image(x,y) in the 3D real grid to use the FFT3D algorithm !-------- !overwriting charge with image(x,y) (z is a dummy variable) DO k = 1, nr3x DO j = 1, nr2x DO i = 1, nr1x ir = i + (j - 1) * nr1x + (k - 1) * nr1x * nr2x rhor(ir) = image(i,j) ENDDO ENDDO ENDDO DEALLOCATE(image) END SUBROUTINE isostm_plot espresso-5.1/PP/src/average.f900000644000175000017500000002721212341372773014357 0ustar mbamba ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- PROGRAM average !----------------------------------------------------------------------- ! ! This program calculates planar and macroscopic averages ! of a quantity defined on a 3D-FFT mesh. ! The planar average is done on FFT mesh planes. ! It reads the quantity to average, or several quantities, from ! one or several files and adds them with the given weights. ! It computes the planar average of the resulting quantity ! averaging on planes defined by the FFT mesh points and by one ! direction perpendicular to the planes. ! The planar average can be interpolated on a ! 1D-mesh with an arbitrary number of points. ! Finally, it computes the macroscopic average. The size ! of the averaging window is given as input. ! ! It receive as input the following variables: ! ! nfile ! the number of 3D-FFT files ! for each file: ! filename ! the name of the 3D-FFT file ! weight ! the weight of the quantity in this file ! . ! . ! end ! npt ! the number of points of the thick mesh ! idir ! 1,2 or 3. It is the fixed index which defines ! ! the planes of the planar average ! awin ! the size of the window for macroscopic averages. ! USE kinds, ONLY : DP USE klist, ONLY : nks USE parameters, ONLY : ntypx USE constants, ONLY : pi USE run_info, ONLY : title USE io_global, ONLY : stdout, ionode USE cell_base, ONLY : ibrav, alat, omega, celldm, tpiba, & tpiba2, at, bg USE gvect, ONLY : gcutm USE gvecs, ONLY : doublegrid, gcutms, dual USE wvfct, ONLY : ecutwfc USE fft_base, ONLY : dfftp USE grid_subroutines, ONLY : realspace_grids_init USE fft_base, ONLY : dffts USE ions_base, ONLY : zv, tau, nat, ntyp => nsp, ityp, atm USE lsda_mod, ONLY : nspin USE wavefunctions_module, ONLY : psic USE io_files, ONLY : iunpun USE scf, ONLY : rho USE mp_global, ONLY : mp_startup USE environment, ONLY : environment_start ! IMPLICIT NONE ! INTEGER :: npixmax, nfilemax ! maximum number of pixel ! maximum number of files with charge ! PARAMETER (npixmax = 5000, nfilemax = 7) ! INTEGER :: ibravs, nr1sxa, nr2sxa, nr3sxa, nr1sa, nr2sa, nr3sa, & ntyps, nats INTEGER :: npt, inunit, plot_num, ios, nfile, ifile, nmacro, & ir, i, j, k ! number of points ! number of input unit ! number of the plot ! integer unit for I/O control ! the number of files ! counter on the files ! points in the window ! counter on atoms ! counter on mesh points ! counters on directions REAL(DP) :: awin, deltaz, weight (nfilemax), gre(npixmax), & gim(npixmax), macros(npixmax) ! length of the window ! the delta on the thick mesh ! the weight of each file ! the function to average in thick mesh (real part) ! the function to average in thick mesh (im. part) ! the macroscopic average REAL(DP), ALLOCATABLE :: funcr (:), funci (:) ! the function to average (real part) ! the function to average (im. part) REAL(DP) :: celldms (6), gcutmsa, duals, ecuts, zvs (ntypx), ats(3,3) REAL(DP) :: leng REAL(DP), ALLOCATABLE :: taus (:,:) INTEGER, ALLOCATABLE :: ityps (:) CHARACTER (len=3) :: atms(ntypx) INTEGER :: nfft, nfftx, idir CHARACTER (len=256) :: filename (nfilemax) ! names of the files with the charge ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'AVERAGE' ) ! ! Works for parallel machines but only for one processor !!! ! IF ( ionode ) THEN ! inunit = 5 READ (inunit, *, err = 1100, iostat = ios) nfile IF (nfile<=0.or.nfile>nfilemax) CALL errore ('average ', & 'nfile is wrong ', 1) DO ifile = 1, nfile READ (inunit, '(a)', err = 1100, iostat = ios) filename (ifile) READ (inunit, *, err = 1100, iostat = ios) weight (ifile) ENDDO READ (inunit, *, err = 1100, iostat = ios) npt IF (npt<0.or.npt>npixmax) CALL errore ('average', ' wrong npt', 1) READ (inunit, *, err = 1100, iostat = ios) idir READ (inunit, *, err = 1100, iostat = ios) awin 1100 CALL errore ('average', 'readin input', abs (ios) ) CALL read_io_header(filename (1), title, dfftp%nr1x, dfftp%nr2x, & dfftp%nr3x, dfftp%nr1, dfftp%nr2, dfftp%nr3, & nat, ntyp, ibrav, celldm, at, gcutm, dual, ecutwfc, plot_num) nspin = 1 CALL latgen (ibrav, celldm, at(1,1), at(1,2), at(1,3), omega ) alat = celldm(1) ! define alat at = at / alat ! bring at in units of alat CALL recips (at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) tpiba = 2.d0 * pi / alat tpiba2 = tpiba**2 IF (idir==1) THEN nfft=dfftp%nr1 nfftx=dfftp%nr1x leng=alat*sqrt(at(1,1)**2+at(2,1)**2+at(3,1)**2) ELSEIF (idir==2) THEN nfft=dfftp%nr2 nfftx=dfftp%nr2x leng=alat*sqrt(at(1,2)**2+at(2,2)**2+at(3,2)**2) ELSEIF (idir==3) THEN nfft=dfftp%nr3 nfftx=dfftp%nr3x leng=alat*sqrt(at(1,3)**2+at(2,3)**2+at(3,3)**2) ELSE CALL errore('average','idir is wrong',1) ENDIF IF (npt4.d0 IF (doublegrid) THEN gcutms = 4.d0 * ecutwfc / tpiba2 ELSE gcutms = gcutm ENDIF ! not sure whether this is the correct thing to do in presence ! of a double grid, but the info on nrXs is not read from file! dffts%nr1 = dfftp%nr1 ; dffts%nr2 = dfftp%nr2 ; dffts%nr3 = dfftp%nr3 ! as above: this can be used in allocate_fft nks = 0 CALL volume (alat, at (1, 1), at (1, 2), at (1, 3), omega) CALL realspace_grids_init ( dfftp, dffts, at, bg, gcutm, gcutms ) CALL allocate_fft ( ) ! rho%of_r = 0.d0 ! ! Read first file ! CALL plot_io (filename (1), title, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, dfftp%nr1, dfftp%nr2, & dfftp%nr3, nat, ntyp, ibrav, celldm, at, gcutm, dual, ecutwfc, & plot_num, atm, ityp, zv, tau, rho%of_r, -1) ! DO ir = 1, dfftp%nnr psic (ir) = weight (1) * cmplx(rho%of_r(ir, 1),0.d0,kind=DP) ENDDO ! ! Now we open all the other files ! iunpun = 4 ! ! Read following files (if any), verify consistency ! Note that only rho is read; all other quantities are discarded ! DO ifile = 2, nfile ALLOCATE (taus( 3 , nat)) ALLOCATE (ityps( nat)) ! CALL plot_io (filename (ifile), title, nr1sxa, nr2sxa, nr3sxa, & nr1sa, nr2sa, nr3sa, nats, ntyps, ibravs, celldms, ats, gcutmsa, & duals, ecuts, plot_num, atms, ityps, zvs, taus, rho%of_r, - 1) ! DEALLOCATE (ityps) DEALLOCATE (taus) ! IF (nats>nat) CALL errore ('average', 'wrong file order? ', 1) IF (dfftp%nr1x/=nr1sxa.or.dfftp%nr2x/=nr2sxa) & CALL errore ('average', 'incompatible nr1x or nr2x', 1) IF (dfftp%nr1/=nr1sa.or.dfftp%nr2/=nr2sa.or.dfftp%nr3/=nr3sa) & CALL errore ('average', 'incompatible nr1 or nr2 or nr3', 1) IF (ibravs/=ibrav) CALL errore ('average', 'incompatible ibrav', 1) IF (gcutmsa/=gcutm.or.duals/=dual.or.ecuts/=ecutwfc ) & CALL errore ('average', 'incompatible gcutm or dual or ecut', 1) DO i = 1, 6 IF (abs( celldm (i)-celldms (i) ) > 1.0d-7 ) & CALL errore ('average', 'incompatible celldm', 1) ENDDO DO ir = 1, dfftp%nnr psic (ir) = psic (ir) + weight(ifile) * cmplx(rho%of_r(ir, 1),0.d0,kind=DP) ENDDO ENDDO ! ! compute the direct and reciprocal lattices ! ALLOCATE (funcr(nfftx)) ALLOCATE (funci(nfftx)) ! ! At this point we start the calculations, first we compute the ! planar averages ! IF (idir==1) THEN DO i = 1, dfftp%nr1 funcr (i) = 0.d0 funci (i) = 0.d0 DO j = 1, dfftp%nr2 DO k = 1, dfftp%nr3 ir = i + (j - 1) * dfftp%nr1x + (k - 1) * dfftp%nr1x * dfftp%nr2x funcr (i) = funcr (i) + dble (psic(ir)) ENDDO ENDDO funcr (i) = funcr (i) / (dble (dfftp%nr2 * dfftp%nr3)) ENDDO ELSEIF (idir==2) THEN DO j = 1, dfftp%nr2 funcr (j) = 0.d0 funci (j) = 0.d0 DO i = 1, dfftp%nr1 DO k = 1, dfftp%nr3 ir = i + (j - 1) * dfftp%nr1x + (k - 1) * dfftp%nr1x * dfftp%nr2x funcr (j) = funcr (j) + dble (psic (ir) ) ENDDO ENDDO funcr (j) = funcr (j) / (dble (dfftp%nr1 * dfftp%nr3) ) ENDDO ELSEIF (idir==3) THEN DO k = 1, dfftp%nr3 funcr (k) = 0.d0 funci (k) = 0.d0 DO j = 1, dfftp%nr2 DO i = 1, dfftp%nr1 ir = i + (j - 1) * dfftp%nr1x + (k - 1) * dfftp%nr1x * dfftp%nr2x funcr (k) = funcr (k) + dble (psic (ir) ) ENDDO ENDDO funcr (k) = funcr (k) / (dble (dfftp%nr1 * dfftp%nr2) ) ENDDO ELSE CALL errore('average','wrong idir',1) ENDIF ! ! add more points to compute the macroscopic average ! CALL cft (funcr, funci, nfft, nfft, nfft, - 1) CALL dscal (nfft, 1.d0 / nfft, funcr, 1) CALL dscal (nfft, 1.d0 / nfft, funci, 1) DO k = 1, npt IF (k<=nfft / 2) THEN gre (k) = funcr (k) gim (k) = funci (k) ELSEIF (k>npt - nfft / 2) THEN gre (k) = funcr (k - npt + nfft) gim (k) = funci (k - npt + nfft) ELSE gre (k) = 0.d0 gim (k) = 0.d0 ENDIF ENDDO IF (mod (nfft, 2) ==0) THEN gre (nfft / 2 + 1) = 0.5d0 * funcr (nfft / 2 + 1) gim (nfft / 2 + 1) = 0.5d0 * funci (nfft / 2 + 1) gre (npt - nfft / 2 + 1) = gre (nfft / 2 + 1) gim (npt - nfft / 2 + 1) = - gim (nfft / 2 + 1) ELSE gre (nfft / 2 + 1) = funcr (nfft / 2 + 1) gim (nfft / 2 + 1) = funci (nfft / 2 + 1) ENDIF CALL cft (gre, gim, npt, npt, npt, 1) ! ! compute the macroscopic average ! nmacro = npt * (awin / leng ) IF (nmacro<=0) CALL errore ('average ', 'nmacro is too small ', 1) DO i = 1, npt macros (i) = 0.d0 DO j = - nmacro / 2, nmacro / 2 k = i + j IF (k<=0) k = k + npt IF (k>npt) k = k - npt IF ( (2*j==nmacro) .or. (2*j==-nmacro) ) THEN macros (i) = macros (i) + 0.5d0 * gre(k) ELSE macros (i) = macros (i) + gre (k) ENDIF ENDDO macros (i) = macros (i) / dble (nmacro) ENDDO ! ! print the results on output ! deltaz = leng / dble (npt) WRITE( stdout, '(3f15.9)') (deltaz * (i - 1) , gre (i) , macros (i) , & i = 1, npt) DEALLOCATE(funci) DEALLOCATE(funcr) ! ENDIF ! CALL stop_pp ! END PROGRAM average espresso-5.1/PP/src/add_shift_lc.f900000644000175000017500000000560512341372773015352 0ustar mbamba! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE add_shift_lc (nat, tau, ityp, alat, omega, ngm, ngl, & igtongl, nrxx, g, rho, nl, nspin, gstart, gamma_only, vloc, shift_lc) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : tpi USE fft_base, ONLY: dfftp USE fft_interfaces, ONLY : fwfft USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! first the dummy variables ! INTEGER :: nat, ngm, nrxx, nspin, & ngl, gstart, igtongl (ngm), nl (ngm), ityp (nat) ! input: the number of atoms in the cell ! input: the number of G vectors ! input: number of spin polarizations ! input: the number of shells ! input: correspondence G <-> shell of G ! input: the correspondence fft mesh <-> G vec ! input: the types of atoms LOGICAL :: gamma_only real(DP) :: tau (3, nat), g (3, ngm), vloc (ngl, * ), & rho (nrxx, nspin), alat, omega ! input: the coordinates of the atoms ! input: the coordinates of G vectors ! input: the local potential ! input: the valence charge ! input: the length measure ! input: the volume of the cell real(DP) :: shift_lc ( nat) ! output: the local forces on atoms INTEGER :: ig, na ! counter on G vectors ! counter on atoms real(DP), ALLOCATABLE :: shift_(:) complex(DP), ALLOCATABLE :: aux (:) ! auxiliary space for FFT real(DP) :: arg, fact ! ! contribution to the force from the local part of the bare potential ! F_loc = Omega \Sum_G n*(G) d V_loc(G)/d R_i ! ALLOCATE (aux(nrxx), shift_(nat) ) shift_(:) = 0.d0 IF (nspin==2) THEN aux(:) = CMPLX ( rho(:,1)+rho(:,2), 0.0_dp, KIND=dp ) ELSE aux(:) = CMPLX ( rho(:,1), 0.0_dp, KIND=dp ) END IF CALL fwfft ('Dense', aux, dfftp) ! ! aux contains now n(G) ! IF (gamma_only) THEN fact = 2.d0 ELSE fact = 1.d0 ENDIF DO na = 1, nat ! contribution from G=0 is not zero but should be counted only once IF (gstart==2) shift_(na) = vloc(igtongl(1),ityp(na)) * DBLE (aux(nl(1))) / fact DO ig = gstart, ngm arg = (g (1, ig) * tau (1, na) + g (2, ig) * tau (2, na) + & g (3, ig) * tau (3, na) ) * tpi shift_ ( na) = shift_ (na) + & vloc (igtongl (ig), ityp (na) ) * & (cos (arg) * DBLE (aux(nl(ig))) - sin (arg) * AIMAG (aux(nl(ig))) ) ENDDO shift_ (na) = fact * shift_ (na) * omega ENDDO #ifdef __MPI CALL mp_sum( shift_, intra_pool_comm ) #endif shift_lc(:) = shift_lc(:) + shift_(:) DEALLOCATE (aux,shift_) RETURN END SUBROUTINE add_shift_lc espresso-5.1/PP/src/pw2gw.f900000644000175000017500000011274312341372773014017 0ustar mbamba ! Copyright (C) 2005-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! 13Aprile2005 ! GENERATES INPUT for GW code !tested on: Silicon bulk, Germanium Bulk, Na4, InP bulk ! Please note just symmorphic symm. op. have to be used ! Use input option of pw.x: force_symmorphic=.TRUE. !----------------------------------------------------------------------- PROGRAM pw2gw !----------------------------------------------------------------------- ! This subroutine writes files containing plane wave coefficients ! and other stuff needed by GW codes USE io_files, ONLY : prefix, outdir, tmp_dir USE io_global, ONLY : ionode, ionode_id USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm, nproc USE mp_global, ONLY : mp_startup USE mp_pools, ONLY : kunit USE environment,ONLY : environment_start USE us, ONLY : spline_ps ! IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! INTEGER :: ios INTEGER :: kunittmp LOGICAL :: use_gmaps CHARACTER(len=20) :: what CHARACTER(len=30) :: when NAMELIST / inputpp / prefix, outdir, what, use_gmaps ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'PW2GW' ) ! ! set default values for variables in namelist ! prefix = 'pwscf' CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( trim( outdir ) == ' ' ) outdir = './' what = 'gw' use_gmaps = .false. ios = 0 IF ( ionode ) THEN ! READ (5, inputpp, iostat=ios) tmp_dir = trimcheck (outdir) ! ENDIF ! CALL mp_bcast( ios, ionode_id, world_comm ) IF (ios /= 0) CALL errore('pw2gw', 'reading inputpp namelist', abs(ios)) ! ! ... Broadcast variables ! CALL mp_bcast( prefix, ionode_id, world_comm ) CALL mp_bcast(tmp_dir, ionode_id, world_comm ) CALL mp_bcast( what, ionode_id, world_comm ) CALL mp_bcast( use_gmaps, ionode_id, world_comm ) ! spline_ps = .false. CALL read_file CALL openfil_pp ! CALL mp_bcast(spline_ps, ionode_id, world_comm) #if defined __MPI kunittmp = kunit #else kunittmp = 1 #endif ! IF( trim( what ) == 'gw' ) THEN CALL compute_gw ( use_gmaps ) ELSE CALL write_gmaps ( kunittmp ) ENDIF ! CALL stop_pp END PROGRAM pw2gw SUBROUTINE compute_gw( use_gmaps ) ! This routine creates the QPLDA and the matrixelements ! tform = .false. UNFORMATTED QPLDA ! tform = .true. FORMATTED QPLDA ! tsingle must be always true USE kinds, ONLY : DP, sgl USE constants, ONLY : eps8, pi, AUTOEV, rytoev USE cell_base, ONLY : alat, tpiba2, at, bg, omega USE symm_base, ONLY : s, nsym USE wvfct, ONLY : npw, npwx, nbnd, igk, g2kin, wg, et, ecutwfc USE control_flags, ONLY : gamma_only USE gvect, ONLY : ngm, g, gg, ig_l2g, nl USE fft_base, ONLY: dfftp USE fft_interfaces, ONLY : fwfft, invfft USE klist , ONLY : nks, xk, wk USE lsda_mod, ONLY : nspin USE io_files, ONLY : nwordwfc, iunwfc USE wavefunctions_module, ONLY : evc, psic USE mp_global, ONLY : intra_image_comm, npool USE io_global, ONLY : ionode, ionode_id USE mp, ONLY : mp_sum , mp_max USE mp_world, ONLY : world_comm, mpime, nproc USE mp_wave, ONLY : mergewf USE parallel_include USE scf, ONLY : rho, rho_core, rhog_core USE ener, ONLY : etxc, vtxc USE uspp_param, ONLY : upf, nh USE uspp, ONLY : nhtol USE us, ONLY : tab, tab_d2y, spline_ps USE ions_base, ONLY : ntyp => nsp USE klist, ONLY : ngk IMPLICIT NONE LOGICAL, INTENT(in) :: use_gmaps INTEGER :: ii(16), ngw, nkpt, ig, ik, ir, n, i,j,k, io = 98, iband1, iband2 INTEGER :: omax, o, iproc INTEGER, ALLOCATABLE :: in1(:), in2(:), in3(:) INTEGER, ALLOCATABLE :: in1_tmp(:), in2_tmp(:), in3_tmp(:) INTEGER, ALLOCATABLE :: inx_rcv(:), ig_l2g_rcv(:) LOGICAL :: t_form = .false., t_single = .true. REAL(kind=sgl) :: a1_s(3), a2_s(3), a3_s(3) REAL(kind=sgl), ALLOCATABLE :: xk_s(:,:), eig_s(:,:), focc_s(:,:) REAL(kind=DP):: g2max, a1(3), a2(3), a3(3),norm, xkgk(3), rrhotwx(3), delta REAL(kind=DP):: alpha, egap, halfalpha, Df, const, dummy REAL(kind=DP), PARAMETER :: omegamax = 30.0 REAL(kind=DP), ALLOCATABLE:: gsort(:), eig(:,:), focc(:,:), kpg(:,:), omegatt(:), omeg(:) REAL(kind=DP), ALLOCATABLE:: pp1(:,:), pp2(:,:), pp3(:,:) REAL(kind=DP), ALLOCATABLE:: epsx(:,:), epsy(:,:), epsz(:,:) REAL(kind=DP), ALLOCATABLE:: epstx(:), epsty(:), epstz(:) REAL(kind=DP) :: epsxx, epsyy, epszz REAL(kind=DP) :: vxcdiag REAL(kind=DP), ALLOCATABLE :: vxc(:,:) COMPLEX(kind=DP):: rhotwx(3), ctemp, dasomma(3) COMPLEX(kind=DP), ALLOCATABLE:: c0(:), c0_m(:,:), c0_tmp_dp(:) !, c0_tmp(:) !, c0_gamma(:) COMPLEX(kind=sgl), ALLOCATABLE:: c0_s(:), c0_tmp(:) !, c0_gamma_s(:) CHARACTER(len=80) :: titleo(2) INTEGER :: igwx, igwxx, comm, ierr, ig_max, igwx_r INTEGER :: igwx_p(nproc) INTEGER, ALLOCATABLE :: igk_l2g(:) ! REAL(kind=DP), ALLOCATABLE :: vkb0(:), djl(:), vec_tab(:), vec_tab_d2y(:) INTEGER :: nb, nt, size_tab, size_tab_d2y, ipw, l ! ! REAL(kind=DP) :: norma ! Variable needed only for DEBUG ! #if defined __MPI INTEGER :: istatus( MPI_STATUS_SIZE ) #endif ! IF( nspin > 1 ) CALL errore('pw2gw','Spin polarization not implemented',1) IF( npool > 1 ) CALL errore('pw2gw','parallel run with pools not allowed yet',1) ! ! IF( mpime == 0 ) THEN IF (t_form) THEN WRITE (6,'(//" writing LDA info on unit 98 FORMATTED")') OPEN (io, FILE='QPLDA',STATUS='unknown',FORM='FORMATTED') ELSE WRITE (6,'(//" writing LDA info on unit io UNFORMATTED")') OPEN (io, FILE='QPLDA',STATUS='unknown',FORM='UNFORMATTED') ENDIF WRITE (6,'(//" writing matrixelements on unit 98 FORMATTED")') OPEN (90, FILE='matrixelements',STATUS='unknown',FORM='FORMATTED') ENDIF ! ! file's title [2 lines] ! titleo(1)='pw2gw' titleo(2)='test version' IF( mpime == 0 ) THEN IF (t_form) THEN WRITE (io,'(A80/A80)') titleo(1), titleo(2) ELSE WRITE (io) titleo(1) WRITE (io) titleo(2) ENDIF ! WRITE(6,*) 'qplda title' WRITE(6,*) titleo(1) WRITE(6,*) titleo(2) ENDIF ! ! Read 16 integers (reserved for future flags) ! Flags used so far: ! I1 = 0 if QPLDA file is formatted, 1 if unformatted ! I2 = 0 if RWG format, 1 if BF format ! I3 = 1 if non-symmorphic operations (+vectors) included, otherwise 0 ! ii(:) = 0 IF (t_form) THEN ii(1)=0 IF( mpime == 0 ) WRITE (io,'(16I5)') ii ELSE ii(1)=1 IF( mpime == 0 ) WRITE (io) ii ENDIF ! WRITE(6,'(16I5)') ii ! ! write real-space lattice vectors (Cartesian, in au) [3 lines] ! a1(:)=at(:,1)*alat a2(:)=at(:,2)*alat a3(:)=at(:,3)*alat a1_s(:) = a1(:) a2_s(:) = a2(:) a3_s(:) = a3(:) IF( mpime == 0 ) THEN ! IF (t_form) THEN WRITE (io,'(3E26.18)') a1, a2, a3 ELSE IF (t_single) THEN WRITE (io) a1_s, a2_s, a3_s ELSE WRITE (io) a1, a2, a3 ENDIF ENDIF ! WRITE(6,*) 'Vettori di reticolo diretto' WRITE(6,'(a,3E26.18)') 'a1', a1_s WRITE(6,'(a,3E26.18)') 'a2', a2_s WRITE(6,'(a,3E26.18)') 'a3', a3_s ! ENDIF ! ! Write symmetry operations. ! The matrix s is the transpose of the symmetry matrix in direct space, ! in units of a_i. But the transpose of the symmetry matrix in real space ! is the symmetry matrix in reciprocal space so "s" is already the symmetry ! matrix in reciprocal space in units of b_i ! The gw code will read row by row a matrix and will treat it as symmetry ! matrix in reciprocal space in units of b_i ! In other words, the gw code expects as input the direct space symmetry ! matrix, in units of a_i, written columnwise ! IF( mpime == 0 ) THEN WRITE(6,*)'nrot=',nsym WRITE(6,'(3E26.18)') (((float(s(i,j,k)),j=1,3),i=1,3),k=1,nsym) IF (t_form) THEN WRITE (io,'(I2)') nsym WRITE (io,'(3E26.18)') (((float(s(i,j,k)),j=1,3),i=1,3),k=1,nsym) IF (ii(3) == 1) THEN ! READ (10,1020) ((VOFFSET(I,J),I=1,3),J=1,NOP) ! WRITE (6,'(//" Run program CNVNSY to convert QPLDA file first.")') CALL errore('pw2gw','non-symmorphic translation vectors',ii(3)) ENDIF ELSE WRITE (io) nsym IF (t_single) THEN WRITE (io) (((float(s(i,j,k)),j=1,3),i=1,3),k=1,nsym) ELSE WRITE (io) (((dfloat(s(i,j,k)),j=1,3),i=1,3),k=1,nsym) ENDIF IF (ii(3) == 1) THEN ! READ (10,1020) ((VOFFSET(I,J),I=1,3),J=1,NOP) CALL errore('pw2gw','non-symmorphic translation vectors',ii(3)) ENDIF ENDIF ENDIF ! ! write reciprocal lattice vectors (in reciprocal lattice units; ! ie in the basis of the reciprocal lattice basis vectors) ! ! PWscf stores psi(k+G), using |k+G| to order the components; ! GW codes require on input psi_k(G), using the same set of G ! g2max = 0.0d0 g2kin(:) = 0.0d0 !DEBUG IF (ionode) WRITE(6,*) ' nks ', nks IF (ionode) WRITE(6,*) ' k points in cartesian coordinates' IF (ionode) WRITE(6,'(1x,3f10.6)') ( (xk(i,ik),i=1,3), ik=1,nks) !DEBUG igwx = 0 ! maximum G vector index DO ik = 1, nks CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) g2max = max ( g2max, maxval (g2kin(1:npw)) ) ! WRITE( 6, * ) 'DEBUG g2max ', g2max ! g2max, g2kin = RAGGIO DELLA SFERA |G+k| size( c0 ) ) & CALL errore(' pw2gw ', ' c0 too small ', 1 ) ENDDO ! read wavefunctions and write the matrixelemnts DO i = 1, n ALLOCATE( c0_tmp_dp( igwxx ) ) CALL mergewf( evc(:,i), c0_tmp_dp, npw, igk_l2g(:), mpime, nproc, 0, intra_image_comm ) ! ! important: missing components must be set to zero c0 (:) = 0.d0 DO ig=1,npw c0(igk(ig)) = evc(ig,i) ENDDO c0_m(:,i)=c0(:) c0_tmp = c0_tmp_dp IF( mpime == 0 ) WRITE(io) c0_tmp ! c0_s DEALLOCATE( c0_tmp_dp ) ENDDO ENDIF DEALLOCATE( igk_l2g ) ! k + g thet must be in 2piba units kpg(:,:) = 0.d0 DO ig=1,npw kpg(:,igk(ig))= xk_s(:,ik)+g(:,igk(ig)) ENDDO DO iband1 = 1,n IF ( focc(iband1,ik)>=1e-4) THEN DO iband2 = 1,n delta=2.0d0-focc(iband2,ik) IF (delta>1e-4) THEN rhotwx = 0.0 DO ig=1,igwx xkgk(1)= kpg(1,ig) xkgk(2)= kpg(2,ig) xkgk(3)= kpg(3,ig) ctemp= conjg(c0_m(ig,iband1))*c0_m(ig,iband2) rhotwx(1) = rhotwx(1) + xkgk(1) * ctemp rhotwx(2) = rhotwx(2) + xkgk(2) * ctemp rhotwx(3) = rhotwx(3) + xkgk(3) * ctemp ENDDO CALL mp_sum( rhotwx, world_comm ) IF (mpime == 0) THEN rrhotwx(1)=tpiba2* real(rhotwx(1)*conjg(rhotwx(1))) rrhotwx(2)=tpiba2* real(rhotwx(2)*conjg(rhotwx(2))) rrhotwx(3)=tpiba2* real(rhotwx(3)*conjg(rhotwx(3))) WRITE (90,'(1x,3i5,3e16.8,2f8.4)') ik,iband1,iband2,rrhotwx(1),rrhotwx(2), & rrhotwx(3),(eig(iband2,ik)-eig(iband1,ik))*AUTOEV, (focc(iband1,ik)-focc(iband2,ik)) egap = (eig(iband2,ik)-eig(iband1,ik))*AUTOEV Df = focc(iband1,ik)-focc(iband2,ik) IF (egap>1e-3.and.Df>1e-4) THEN DO o=1, omax+1 dummy = abs(egap - omeg(o)) IF (dummy" ALLOCATE ( vxc(dfftp%nnr,nspin) ) CALL v_xc (rho, rho_core, rhog_core, etxc, vtxc, vxc) DO ik=1,nkpt CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) CALL davcio( evc, 2*nwordwfc, iunwfc, ik, -1 ) DO iband1 = 1, nbnd psic(:) = (0.d0, 0.d0) DO ig = 1, npw psic(nl(igk(ig))) = evc(ig,iband1) ENDDO CALL invfft ('Dense', psic, dfftp) vxcdiag = 0.0d0 !norma = 0.0d0 DO ir = 1, dfftp%nnr vxcdiag = vxcdiag + vxc(ir,nspin) * & ( dble(psic (ir) ) **2 + aimag(psic (ir) ) **2) ! norma = norma + ( DBLE(psic (ir) ) **2 + AIMAG(psic (ir) ) **2) / (nr1*nr2*nr3) ENDDO ! PG: this is the correct integral - 27/8/2010 vxcdiag = vxcdiag * rytoev / (dfftp%nr1*dfftp%nr2*dfftp%nr3) CALL mp_sum( vxcdiag, world_comm ) !, intra_pool_comm ) ! ONLY FOR DEBUG! !IF (norma /= 1.0) THEN ! WRITE(*,*) "norma =", norma ! WRITE(*,*) "nrxx =", nrxx ! STOP !ENDIF WRITE(313,"(i1,2x,i1,4x,f18.14)") ik, iband1, vxcdiag ENDDO ENDDO DEALLOCATE ( vxc ) CLOSE (313) ! ! IF ( mpime == 0 ) THEN WRITE(6, * ) ' out from k-points loop' WRITE(6, * ) ' Starting writing epsx,y,z,tot' WRITE(6,*) pp1(1,100) WRITE(6,*) pp1(1,350) OPEN (91, FILE='epsX.dat',STATUS='unknown',FORM='FORMATTED') OPEN (92, FILE='epsY.dat',STATUS='unknown',FORM='FORMATTED') OPEN (93, FILE='epsZ.dat',STATUS='unknown',FORM='FORMATTED') OPEN (94, FILE='epsTOT.dat',STATUS='unknown',FORM='FORMATTED') DO ik = 1, nkpt DO o =2, omax+1 epsx(ik,o) = const * pp1(ik,o)*wk(ik)*0.5/ alpha epsy(ik,o) = const * pp2(ik,o)*wk(ik)*0.5/ alpha epsz(ik,o) = const * pp3(ik,o)*wk(ik)*0.5/ alpha ENDDO ENDDO WRITE(6, * ) epsx(1,150),epsx(1,300) DO o = 2, omax + 1 omegatt(o) = (omeg(o-1)+omeg(o))*0.5 DO ik = 1, nkpt epsxx= (epsx(ik,o-1)+epsx(ik,o))*0.5 epsyy= (epsy(ik,o-1)+epsy(ik,o))*0.5 epszz= (epsz(ik,o-1)+epsz(ik,o))*0.5 epstx(o)=epstx(o)+epsxx epsty(o)=epsty(o)+epsyy epstz(o)=epstz(o)+epszz ENDDO WRITE(91,"(f15.6,1x,f15.6)") omegatt(o), epstx(o) WRITE(92,"(f15.6,1x,f15.6)") omegatt(o), epsty(o) WRITE(93,"(f15.6,1x,f15.6)") omegatt(o), epstz(o) WRITE(94,"(f15.6,1x,f15.6)") omegatt(o), (epstx(o)+ epsty(o)+ epstz(o))/3.0 ENDDO WRITE(6, * ) ' Hey bello sto a fini' CLOSE(91) CLOSE(92) CLOSE(93) CLOSE(94) ENDIF DEALLOCATE (xk_s) DEALLOCATE (eig_s, eig) DEALLOCATE (focc_s, focc) DEALLOCATE (c0_s, c0, kpg, c0_m) DEALLOCATE (omeg, pp1,pp2, pp3, omegatt) DEALLOCATE ( epsx, epsy, epsz ) DEALLOCATE ( epstx, epsty, epstz ) ! IF( mpime == 0 ) CLOSE(io) IF( mpime == 0 ) CLOSE(90) ! END SUBROUTINE compute_gw !----------------------------------------------------------------------- SUBROUTINE write_gmaps ( kunit) !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE cell_base, ONLY : at, bg, tpiba2, alat USE ions_base, ONLY : atm, nat USE gvect, ONLY : ngm, ngm_g, ig_l2g, g USE lsda_mod, ONLY : nspin, isk USE ions_base, ONLY : ntyp => nsp, tau, ityp USE wvfct, ONLY : nbnd, npw, npwx, et, g2kin, ecutwfc USE klist, ONLY : nkstot, ngk, nks, xk USE wavefunctions_module, ONLY : evc USE io_files, ONLY : nd_nmbr, tmp_dir, prefix, iunwfc, nwordwfc USE io_global, ONLY : ionode USE mp_images, ONLY : my_image_id USE mp_global, ONLY : nproc_pool, my_pool_id, my_image_id, intra_pool_comm USE mp, ONLY : mp_sum, mp_max USE mp_world, ONLY : world_comm, nproc, mpime IMPLICIT NONE INTEGER :: kunit INTEGER :: i, j, k, ig, ik, ibnd, na, ngg, ikw INTEGER, ALLOCATABLE :: kisort(:) INTEGER :: npool, nkbl, nkl, nkr, npwx_g INTEGER :: ike, iks, npw_g, ispin INTEGER, ALLOCATABLE :: ngk_g( : ) INTEGER, ALLOCATABLE :: ngk_gw( : ) INTEGER, ALLOCATABLE :: itmp( :, : ) INTEGER, ALLOCATABLE :: igwk( : ) INTEGER, ALLOCATABLE :: igk_l2g( :, : ) real(kind=8) :: wfc_scal LOGICAL :: twf0, twfm, twrite_wfc ! ! IF( ionode ) WRITE( stdout, fmt="(//,'WRITING G-MAPS for each processor' )" ) IF( nkstot > 0 ) THEN IF( ( kunit < 1 ) .or. ( mod( nkstot, kunit ) /= 0 ) ) & CALL errore( ' write_wannier ',' wrong kunit ', 1 ) IF( ( nproc_pool > nproc ) .or. ( mod( nproc, nproc_pool ) /= 0 ) ) & CALL errore( ' write_wannier ',' nproc_pool ', 1 ) ! find out the number of pools npool = nproc / nproc_pool ! find out number of k points blocks nkbl = nkstot / kunit ! k points per pool nkl = kunit * ( nkbl / npool ) ! find out the reminder nkr = ( nkstot - nkl * npool ) / kunit ! Assign the reminder to the first nkr pools IF( my_pool_id < nkr ) nkl = nkl + kunit ! find out the index of the first k point in this pool iks = nkl * my_pool_id + 1 IF( my_pool_id >= nkr ) iks = iks + nkr * kunit ! find out the index of the last k point in this pool ike = iks + nkl - 1 ENDIF ! find out the global number of G vectors: ngm_g ngm_g = ngm CALL mp_sum( ngm_g, intra_pool_comm ) ! build the G+k array indexes ALLOCATE ( kisort( npwx ) ) ALLOCATE ( igk_l2g( npwx, ik ) ) DO ik = 1, nks kisort = 0 CALL gk_sort (xk (1, ik+iks-1), ngm, g, ecutwfc / tpiba2, npw, kisort(1), g2kin) DO ig = 1, npw igk_l2g(ig,ik) = ig_l2g(kisort(ig)) ENDDO ngk (ik) = npw ENDDO DEALLOCATE (kisort) ! compute the global number of G+k vectors for each k point ALLOCATE( ngk_g( nkstot ) ) ALLOCATE( ngk_gw( nkstot/nspin ) ) ngk_g = 0 ngk_g( iks:ike ) = ngk( 1:nks ) CALL mp_sum( ngk_g, world_comm ) ! compute the Maximum G vector index among all G+k an processors npw_g = maxval( ig_l2g(:) ) ! ( igk_l2g(:,:) ) CALL mp_max( npw_g, world_comm ) ! compute the Maximum number of G vector among all k points npwx_g = maxval( ngk_g( 1:nkstot ) ) ALLOCATE( igwk( npwx_g ) ) DO ik = 1, nkstot igwk = 0 ALLOCATE( itmp( npw_g, 1 ) ) itmp = 0 IF( ik >= iks .and. ik <= ike ) THEN DO ig = 1, ngk( ik-iks+1 ) itmp( ig_l2g( ig ), 1 ) = ig_l2g( ig ) ENDDO ENDIF CALL mp_sum( itmp, world_comm ) ngg = 0 DO ig = 1, npw_g IF( itmp( ig, 1 ) == ig ) THEN ngg = ngg + 1 igwk( ngg ) = ig ENDIF ENDDO IF( ngg /= ngk_g( ik ) ) THEN WRITE( stdout,*) ' ik, ngg, ngk_g = ', ik, ngg, ngk_g( ik ) ENDIF DEALLOCATE( itmp ) IF( ionode ) THEN ! write (40)( igwk(ig), ig = 1, npwx_g ) ENDIF ENDDO DEALLOCATE( igwk ) DO ik = 1, nkstot IF( (ik >= iks) .and. (ik <= ike) ) THEN ispin = isk( ik ) WRITE( 100 + mpime ) ik, iks, ike, nkstot, kunit, nproc, ispin, nspin, npw_g, & nbnd, ngk(ik-iks+1), 2*nwordwfc, npwx, iunwfc, nd_nmbr WRITE( 100 + mpime ) ( igk_l2g( i, ik-iks+1 ), i = 1, ngk(ik-iks+1) ) ENDIF ENDDO DEALLOCATE ( ngk_g ) DEALLOCATE ( ngk_gw ) DEALLOCATE (igk_l2g) END SUBROUTINE write_gmaps SUBROUTINE read_and_collect( c, ldc, n, ik ) USE io_global, ONLY : stdout USE io_files, ONLY : prefix USE kinds, ONLY : DP, sgl IMPLICIT NONE INTEGER :: ldc, n, ik COMPLEX(DP) :: c( ldc, n ) INTEGER :: ik_ , iks, ike, nkstot, kunit, nproc_ , ispin, nspin, npw_g , nbnd , ngk INTEGER :: nwordwfc, npwx, iunwfc INTEGER :: nfile, ip, i, j COMPLEX(DP), ALLOCATABLE :: evc( :, : ) INTEGER, ALLOCATABLE :: igk_l2g( : ) LOGICAL :: exst CHARACTER(len=3) :: nd_nmbr READ( 100 ) ik_ , iks, ike, nkstot, kunit, nproc_ , ispin, nspin, npw_g , & nbnd , ngk, nwordwfc, npwx, iunwfc, nd_nmbr REWIND( 100 ) nfile = nproc_ CLOSE( iunwfc ) DO ip = 0, nfile - 1 READ( 100 + ip ) ik_ , iks, ike, nkstot, kunit, nproc_ , ispin, nspin, npw_g , & nbnd , ngk, nwordwfc, npwx, iunwfc, nd_nmbr WRITE( stdout, * ) 'DEBUG nd_nmbr ', nd_nmbr IF( ( ik_ == ik ) .and. ( ik_ >= iks ) .and. ( ik_ <= ike ) ) THEN ALLOCATE( evc( npwx, nbnd ) ) ALLOCATE( igk_l2g( ngk ) ) READ( 100 + ip ) ( igk_l2g( i ), i = 1, ngk ) CALL diropn_gw ( 99, trim( prefix )//'.wfc', 2*nwordwfc, exst, ip, nd_nmbr ) CALL davcio ( evc, 2*nwordwfc, 99, (ik-iks+1), - 1 ) CLOSE( 99 ) DO j = 1, n DO i = 1, ngk c( igk_l2g( i ), j ) = evc( i, j ) ENDDO ENDDO DEALLOCATE( evc ) DEALLOCATE( igk_l2g ) ENDIF REWIND( 100 + ip ) ENDDO RETURN END SUBROUTINE ! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE diropn_gw (unit, filename, recl, exst, mpime, nd_nmbr_ ) !----------------------------------------------------------------------- ! ! this routine opens a file in tmp_dir for direct I/O access ! If appropriate, the node number is added to the file name ! USE kinds USE io_files IMPLICIT NONE ! ! first the input variables ! CHARACTER(len=*) :: filename ! input: name of the file to open INTEGER :: unit, recl ! input: unit of the file to open ! input: length of the records LOGICAL :: exst ! output: if true the file exists INTEGER :: mpime ! input: processor index CHARACTER(len=3) :: nd_nmbr_ ! ! local variables ! CHARACTER(len=256) :: tempfile ! complete file name CHARACTER(len=80) :: assstr INTEGER :: ios, unf_recl, ierr ! used to check I/O operations ! length of the record ! error code LOGICAL :: opnd ! if true the file is already opened IF (unit < 0) CALL errore ('diropn', 'wrong unit', 1) ! ! we first check that the file is not already openend ! ios = 0 INQUIRE (unit = unit, opened = opnd) IF (opnd) CALL errore ('diropn', "can't open a connected unit", abs(unit)) ! ! then we check the filename ! IF (filename == ' ') CALL errore ('diropn', 'filename not given', 2) tempfile = trim(tmp_dir) // trim(filename) // trim( nd_nmbr_ ) INQUIRE (file = tempfile, exist = exst) ! ! the unit for record length is unfortunately machine-dependent ! #define DIRECT_IO_FACTOR 8 unf_recl = DIRECT_IO_FACTOR * recl IF (unf_recl <= 0) CALL errore ('diropn', 'wrong record length', 3) ! OPEN ( unit, file = trim(tempfile), iostat = ios, form = 'unformatted', & status = 'unknown', access = 'direct', recl = unf_recl ) IF (ios /= 0) CALL errore ('diropn', 'error opening '//filename, unit) RETURN END SUBROUTINE diropn_gw !---------------------------------------------------------------------- subroutine gen_us_djl (ik,npw,djl,size_tab,vec_tab, spline_ps, vec_tab_d2y) !---------------------------------------------------------------------- ! ! Calculates the kleinman-bylander pseudopotentials with the ! derivative of the spherical harmonics projected on vector u ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : tpi USE cell_base, ONLY : tpiba USE klist, ONLY : xk USE wvfct, ONLY : igk USE gvect, ONLY : g USE us, ONLY : nqx, dq USE splinelib, ONLY : splint_deriv USE uspp_param, ONLY : upf ! implicit none ! real(DP), intent(inout) ::djl(1:npw) integer, intent(in) :: ik, npw integer, intent(in) :: size_tab real(DP), intent(in) :: vec_tab(1:size_tab) real(DP), intent(in) :: vec_tab_d2y(1:size_tab) logical :: spline_ps ! integer :: i0, i1, i2, & i3, ig real(DP), allocatable :: gk(:,:), q (:) real(DP) :: px, ux, vx, wx complex(DP), allocatable :: sk (:) integer :: iq real(DP), allocatable :: xdata(:) real(DP) :: qt allocate ( gk(3,npw) ) allocate ( q(npw) ) do ig = 1, npw gk (1, ig) = xk (1, ik) + g (1, igk (ig) ) gk (2, ig) = xk (2, ik) + g (2, igk (ig) ) gk (3, ig) = xk (3, ik) + g (3, igk (ig) ) q (ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo do ig = 1, npw q (ig) = sqrt ( q(ig) ) * tpiba end do if (spline_ps) then allocate(xdata(nqx)) do iq = 1, nqx xdata(iq) = (iq - 1) * dq enddo endif ! calculate beta in G-space using an interpolation table do ig = 1, npw qt = sqrt(q(ig)) * tpiba if (spline_ps) then djl(ig) = splint_deriv(xdata, vec_tab(:), & vec_tab_d2y(:), qt) else px = qt / dq - int (qt / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = qt / dq + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 djl (ig) = vec_tab (i0) * (-vx*wx-ux*wx-ux*vx) / 6.d0 + & vec_tab (i1) * (+vx*wx-px*wx-px*vx) / 2.d0 - & vec_tab (i2) * (+ux*wx-px*wx-px*ux) / 2.d0 + & vec_tab (i3) * (+ux*vx-px*vx-px*ux) / 6.d0 endif enddo deallocate (q) deallocate ( gk ) if (spline_ps) deallocate(xdata) return end subroutine gen_us_djl ! !---------------------------------------------------------------------- subroutine gen_us_vkb0 (ik,npw,vkb0,size_tab,vec_tab, spline_ps, vec_tab_d2y) !---------------------------------------------------------------------- ! ! Calculates the kleinman-bylander pseudopotentials with the ! derivative of the spherical harmonics projected on vector u ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : tpi USE cell_base, ONLY : tpiba USE klist, ONLY : xk USE wvfct, ONLY : igk USE gvect, ONLY : g USE us, ONLY : nqx, dq USE splinelib, ONLY : splint USE uspp_param, ONLY : upf ! implicit none ! real(DP), intent(inout) ::vkb0(1:npw) integer, intent(in) :: ik, npw integer, intent(in) :: size_tab real(DP), intent(in) :: vec_tab(1:size_tab) real(DP), intent(in) :: vec_tab_d2y(1:size_tab) logical :: spline_ps ! integer :: na, nt, nb, ikb,i0, i1, i2, & i3, ig real(DP), allocatable :: gk(:,:), q (:) real(DP) :: px, ux, vx, wx complex(DP), allocatable :: sk (:) integer :: iq real(DP), allocatable :: xdata(:) allocate ( gk(3,npw) ) allocate ( q(npw) ) do ig = 1, npw gk (1, ig) = xk (1, ik) + g (1, igk (ig) ) gk (2, ig) = xk (2, ik) + g (2, igk (ig) ) gk (3, ig) = xk (3, ik) + g (3, igk (ig) ) q (ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo do ig = 1, npw q (ig) = sqrt ( q(ig) ) * tpiba end do if (spline_ps) then allocate(xdata(nqx)) do iq = 1, nqx xdata(iq) = (iq - 1) * dq enddo endif ! calculate beta in G-space using an interpolation table do ig = 1, npw if (spline_ps) then vkb0(ig) = splint(xdata, vec_tab(:), & vec_tab_d2y(:), q(ig)) else px = q (ig) / dq - int (q (ig) / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = q (ig) / dq + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 vkb0 (ig) = vec_tab (i0) * ux * vx * wx / 6.d0 + & vec_tab (i1) * px * vx * wx / 2.d0 - & vec_tab (i2) * px * ux * wx / 2.d0 + & vec_tab (i3) * px * ux * vx / 6.d0 endif enddo deallocate (q) deallocate ( gk ) if (spline_ps) deallocate(xdata) return end subroutine gen_us_vkb0 espresso-5.1/PP/src/wfck2r.f900000644000175000017500000001035312341372773014141 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ----------------------------------------------------------------- ! This program reads the prefix.wfc in G-space written by QE and ! writes it in real space prefix.wfc_r. ! Warning: The wfc is written out in real space on the smooth ! grid, as such it occupies much more disk space then that in G-space. ! ! Program written by Matteo Calandra. ! !----------------------------------------------------------------------- PROGRAM wfck2r !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_files, ONLY : prefix, tmp_dir, diropn USE mp_global, ONLY : npool, mp_startup, intra_image_comm USE wvfct, ONLY : nbnd, npwx, igk, npw , g2kin, ecutwfc USE klist, ONLY : xk , nks USE io_global, ONLY : ionode, ionode_id, stdout USE mp, ONLY : mp_bcast, mp_barrier USE mp_world, ONLY : world_comm USE wavefunctions_module, ONLY : evc USE io_files, ONLY : nwordwfc, iunwfc USE gvect, ONLY : ngm, g USE gvecs, ONLY : nls USE noncollin_module, ONLY : npol, nspin_mag, noncolin USE cell_base, ONLY : tpiba2 USE environment,ONLY : environment_start USE fft_base, only : dffts, cgather_smooth USE fft_interfaces, ONLY : invfft ! IMPLICIT NONE CHARACTER (len=256) :: outdir CHARACTER(LEN=256), external :: trimcheck character(len=256) :: filename INTEGER :: iunitout,ios,ik,i,iuwfcr,lrwfcr,ibnd, ig, is LOGICAL :: exst COMPLEX(DP), ALLOCATABLE :: evc_r(:,:), dist_evc_r(:,:) NAMELIST / inputpp / outdir, prefix ! ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'WFCK2R' ) prefix = 'pwscf' CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( TRIM( outdir ) == ' ' ) outdir = './' IF ( npool > 1 ) CALL errore('bands','pools not implemented',npool) ! IF ( ionode ) THEN ! CALL input_from_file ( ) ! READ (5, inputpp, err = 200, iostat = ios) 200 CALL errore ('WFCK2R', 'reading inputpp namelist', ABS (ios) ) ! tmp_dir = trimcheck (outdir) ! END IF ! ! ... Broadcast variables ! CALL mp_bcast( tmp_dir, ionode_id, world_comm ) CALL mp_bcast( prefix, ionode_id, world_comm ) ! ! Now allocate space for pwscf variables, read and check them. ! CALL read_file call openfil_pp exst=.false. filename='wfc_r' write(6,*) 'filename=',filename iuwfcr=877 lrwfcr = 2 * dffts%nr1x*dffts%nr2x*dffts%nr3x * npol ! lrwfc = 2 * nbnd * npwx * npol write(6,*) dffts%nnr, npwx write(6,*) 'length of wfc in real space/per band', nks*lrwfcr*8 write(6,*) 'length of wfc in k space', 2*nbnd*npwx*nks*8 CALL init_us_1 ! !define lrwfcr ! IF (ionode) CALL diropn (iuwfcr, filename, lrwfcr, exst) ALLOCATE ( evc_r(dffts%nnr,npol) ) ALLOCATE ( dist_evc_r(dffts%nr1x*dffts%nr2x*dffts%nr3x,nspin_mag) ) DO ik = 1,nks ! ! prepare the indices of this k point ! CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, & igk, g2kin) CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) do ibnd=1,nbnd ! ! I perform fourier transform ! evc_r = cmplx(0.d0, 0.d0) do ig = 1, npw evc_r (nls (igk (ig) ),1 ) = evc (ig,ibnd) enddo CALL invfft ('Wave', evc_r(:,1), dffts) IF (noncolin) THEN DO ig = 1, npw evc_r (nls(igk(ig)),2) = evc (ig+npwx, ibnd) ENDDO CALL invfft ('Wave', evc_r(:,2), dffts) ENDIF dist_evc_r=CMPLX(0.d0,0.d0) #if defined (__MPI) DO is = 1, nspin_mag ! CALL cgather_smooth( evc_r(:,is), dist_evc_r(:,is) ) ! END DO #else dist_evc_r(1:dffts%nnr,:)=evc_r(1:dffts%nnr,:) #endif if(ionode) call davcio (dist_evc_r, lrwfcr, iuwfcr, (ik-1)*nbnd+ibnd, +1) enddo ! ! ... First task is the only task allowed to write the file ! enddo if(ionode) close(iuwfcr) DEALLOCATE (evc_r) CALL stop_pp STOP end PROGRAM wfck2r espresso-5.1/PP/src/elf.f900000644000175000017500000002135412341372773013514 0ustar mbamba ! ! Copyright (C) 2001-2005 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE do_elf (elf) !----------------------------------------------------------------------- ! ! calculation of the electron localization function; ! elf = 1/(1+d**2) ! where ! d = ( t(r) - t_von_Weizacker(r) ) / t_Thomas-Fermi(r) ! and ! t (r) = (hbar**2/2m) * \sum_{k,i} |grad psi_{k,i}|**2 ! (kinetic energy density) ! t_von_Weizaecker(r) = (hbar**2/2m) * 0.25 * |grad rho(r)|**2/rho ! (non-interacting boson) ! t_Thomas-Fermi (r) = (hbar**2/2m) * 3/5 * (3*pi**2)**(2/3) * rho**(5/3) ! (free electron gas) ! ! see also http://en.wikipedia.org/wiki/Electron_localization_function ! USE kinds, ONLY: DP USE constants, ONLY: pi USE cell_base, ONLY: omega, tpiba, tpiba2 USE fft_base, ONLY: dffts, dfftp USE fft_interfaces, ONLY : fwfft, invfft USE gvect, ONLY: gcutm, g, ngm, nl, nlm USE gvecs, ONLY : nls, nlsm, ngms, doublegrid, dual USE io_files, ONLY: iunwfc, nwordwfc USE klist, ONLY: nks, xk USE lsda_mod, ONLY: nspin USE scf, ONLY: rho USE symme, ONLY: sym_rho, sym_rho_init USE wvfct, ONLY: npw, igk, g2kin, nbnd, wg, ecutwfc USE control_flags, ONLY: gamma_only USE wavefunctions_module, ONLY: evc USE mp_global, ONLY: inter_pool_comm, intra_pool_comm USE mp, ONLY: mp_sum ! ! I/O variables ! IMPLICIT NONE REAL(DP) :: elf (dfftp%nnr) ! ! local variables ! INTEGER :: i, j, k, ibnd, ik, is REAL(DP) :: gv(3), w1, d, fac REAL(DP), ALLOCATABLE :: kkin (:), tbos (:) COMPLEX(DP), ALLOCATABLE :: aux (:), aux2 (:) ! CALL infomsg ('do_elf', 'elf + US not fully implemented') ! ALLOCATE (kkin(dfftp%nnr)) ALLOCATE (aux (dffts%nnr)) aux(:) = (0.d0,0.d0) kkin(:) = 0.d0 ! ! Calculates local kinetic energy, stored in kkin ! DO ik = 1, nks ! ! prepare the indices of this k point ! CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) ! ! reads the eigenfunctions ! CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) ! DO ibnd = 1, nbnd DO j = 1, 3 aux(:) = (0.d0,0.d0) w1 = wg (ibnd, ik) / omega DO i = 1, npw gv (j) = (xk (j, ik) + g (j, igk (i) ) ) * tpiba aux (nls(igk (i) ) ) = cmplx(0d0, gv (j) ,kind=DP) * evc (i, ibnd) IF (gamma_only) THEN aux (nlsm(igk (i) ) ) = cmplx(0d0, -gv (j) ,kind=DP) * & conjg ( evc (i, ibnd) ) ENDIF ENDDO CALL invfft ('Wave', aux, dffts) DO i = 1, dffts%nnr kkin(i) = kkin(i) + w1 * (dble(aux(i))**2 + aimag(aux(i))**2) ENDDO ! j ENDDO ! ibnd ENDDO ! ik ENDDO #ifdef __MPI ! ! reduce local kinetic energy across pools ! CALL mp_sum( kkin, inter_pool_comm ) #endif ! ! interpolate the local kinetic energy to the dense grid ! Note that for US PP this term is incomplete: it contains ! only the contribution from the smooth part of the wavefunction ! IF (doublegrid) THEN DEALLOCATE (aux) ALLOCATE(aux(dfftp%nnr)) CALL interpolate (kkin, kkin, 1) ENDIF ! ! symmetrize the local kinetic energy if needed ! IF ( .not. gamma_only) THEN ! CALL sym_rho_init ( gamma_only ) ! aux(:) = cmplx ( kkin (:), 0.0_dp, kind=dp) CALL fwfft ('Smooth', aux, dffts) ALLOCATE (aux2(ngm)) aux2(:) = aux(nl(:)) ! ! aux2 contains the local kinetic energy in G-space to be symmetrized ! CALL sym_rho ( 1, aux2 ) ! aux(:) = (0.0_dp, 0.0_dp) aux(nl(:)) = aux2(:) DEALLOCATE (aux2) CALL invfft ('Dense', aux, dfftp) kkin (:) = dble(aux(:)) ! ENDIF ! ! Calculate the bosonic kinetic density, stored in tbos ! aux --> charge density in Fourier space ! aux2 --> iG * rho(G) ! ALLOCATE ( tbos(dfftp%nnr), aux2(dfftp%nnr) ) tbos(:) = 0.d0 ! ! put the total (up+down) charge density in rho%of_r(*,1) ! DO is = 2, nspin rho%of_r (:, 1) = rho%of_r (:, 1) + rho%of_r (:, is) ENDDO ! aux(:) = cmplx( rho%of_r(:, 1), 0.d0 ,kind=DP) CALL fwfft ('Dense', aux, dfftp) ! DO j = 1, 3 aux2(:) = (0.d0,0.d0) DO i = 1, ngm aux2(nl(i)) = aux(nl(i)) * cmplx(0.0d0, g(j,i)*tpiba,kind=DP) ENDDO IF (gamma_only) THEN DO i = 1, ngm aux2(nlm(i)) = aux(nlm(i)) * cmplx(0.0d0,-g(j,i)*tpiba,kind=DP) ENDDO ENDIF CALL invfft ('Dense', aux2, dffts) DO i = 1, dfftp%nnr tbos (i) = tbos (i) + dble(aux2(i))**2 ENDDO ENDDO ! ! Calculates ELF ! fac = 5.d0 / (3.d0 * (3.d0 * pi**2) ** (2.d0 / 3.d0) ) elf(:) = 0.d0 DO i = 1, dfftp%nnr IF (rho%of_r (i,1) > 1.d-30) THEN d = fac / rho%of_r(i,1)**(5d0/3d0) * (kkin(i)-0.25d0*tbos(i)/rho%of_r(i,1)) elf (i) = 1.0d0 / (1.0d0 + d**2) ENDIF ENDDO DEALLOCATE (aux, aux2, tbos, kkin) RETURN END SUBROUTINE do_elf !----------------------------------------------------------------------- SUBROUTINE do_rdg (rdg) !----------------------------------------------------------------------- ! ! reduced density gradient ! rdg(r) = (1/2) (1/(3*pi**2))**(1/3) * |\nabla rho(r)|/rho(r)**(4/3) ! USE kinds, ONLY: DP USE constants, ONLY: pi USE cell_base, ONLY: omega, tpiba, tpiba2 USE fft_base, ONLY: dfftp USE scf, ONLY: rho USE gvect, ONLY: g, ngm, nl USE lsda_mod, ONLY: nspin IMPLICIT NONE REAL(DP), INTENT(OUT) :: rdg (dfftp%nnr) REAL(DP), ALLOCATABLE :: grho(:,:) REAL(DP) :: fac REAL(DP), PARAMETER :: rho_cut = 0.05d0 INTEGER :: is, i fac = (1.d0/2.d0) * 1.d0/(3.d0*pi**2)**(1.d0/3.d0) ! gradient of rho ALLOCATE( grho(3,dfftp%nnr) ) ! put the total (up+down) charge density in rho%of_r(*,1) DO is = 2, nspin rho%of_g(:,1) = rho%of_g(:,1) + rho%of_g(:,is) rho%of_r(:,1) = rho%of_r(:,1) + rho%of_r(:,is) ENDDO ! gradient of rho CALL gradrho(dfftp%nnr, rho%of_g(1,1), ngm, g, nl, grho) ! calculate rdg DO i = 1, dfftp%nnr IF (rho%of_r(i,1) > rho_cut) THEN rdg(i) = fac * 100.d0 / abs(rho%of_r(i,1))**(4.d0/3.d0) ELSE rdg(i) = fac * sqrt(grho(1,i)**2 + grho(2,i)**2 + grho(3,i)**2) / abs(rho%of_r(i,1))**(4.d0/3.d0) ENDIF ENDDO DEALLOCATE( grho ) RETURN END SUBROUTINE do_rdg !----------------------------------------------------------------------- SUBROUTINE do_sl2rho (sl2rho) !----------------------------------------------------------------------- ! ! Computes sign(l2)*rho(r), where l2 is the second largest eigenvalue ! of the electron-density Hessian matrix ! USE kinds, ONLY: DP USE constants, ONLY: pi USE cell_base, ONLY: omega, tpiba, tpiba2 USE fft_base, ONLY: dfftp USE scf, ONLY: rho USE gvect, ONLY: g, ngm, nl USE lsda_mod, ONLY: nspin IMPLICIT NONE REAL(DP), INTENT(OUT) :: sl2rho (dfftp%nnr) REAL(DP), ALLOCATABLE :: grho(:,:), hrho(:,:,:) INTEGER :: is, i ! REAL(DP), PARAMETER :: eps = 1.d-14 REAL(DP) :: vl, vu, work(24), hloc(3,3), e(3), v(3,3) INTEGER :: mo, info, iwork(15), ifail(3) ! ! gradient and hessian of rho ALLOCATE( grho(3,dfftp%nnr), hrho(3,3,dfftp%nnr) ) ! put the total (up+down) charge density in rho%of_r(*,1) DO is = 2, nspin rho%of_g(:,1) = rho%of_g(:,1) + rho%of_g(:,is) rho%of_r(:,1) = rho%of_r(:,1) + rho%of_r(:,is) ENDDO ! calculate hessian of rho (gradient is discarded) CALL hessian( dfftp%nnr, rho%of_r(:,1), ngm, g, nl, grho, hrho ) ! find eigenvalues of the hessian DO i = 1, dfftp%nnr ! IF ( abs(hrho(1,2,i) - hrho(2,1,i)) > eps & .OR. abs(hrho(1,3,i) - hrho(3,1,i)) > eps & .OR. abs(hrho(2,3,i) - hrho(3,2,i)) > eps ) THEN CALL errore('do_sl2rho', 'hessian not symmetric', i) ENDIF ! hloc = hrho(:,:,i) v (:,:) = 0.0_dp CALL DSYEVX ( 'V', 'I', 'U', 3, hloc, 3, vl, vu, 1, 3, 0.0_dp, mo, e,& v, 3, work, 24, iwork, ifail, info ) ! IF ( info > 0) THEN CALL errore('do_sl2rho','failed to diagonlize',info) ELSEIF (info < 0) THEN call errore('do_sl2rho','illegal arguments in DSYEVX',-info) ENDIF sl2rho(i) = sign(1.d0,e(2))*rho%of_r(i,1) ENDDO DEALLOCATE( grho, hrho ) RETURN END SUBROUTINE do_sl2rho espresso-5.1/PP/src/partialdos.f900000644000175000017500000004204512341372773015110 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE partialdos (Emin, Emax, DeltaE, kresolveddos, filpdos) !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE basis, ONLY : natomwfc USE ions_base, ONLY : ityp, atm USE klist, ONLY: wk, nkstot, degauss, ngauss, lgauss USE lsda_mod, ONLY: nspin, isk, current_spin USE wvfct, ONLY: et, nbnd USE constants, ONLY: rytoev ! USE projections ! IMPLICIT NONE CHARACTER (len=256) :: filpdos REAL(DP) :: Emin, Emax, DeltaE LOGICAL :: kresolveddos ! CHARACTER (len=33) :: filextension CHARACTER (len=256):: fileout CHARACTER (len=1) :: l_label(0:3)=(/'s','p','d','f'/) ! INTEGER :: ik, ibnd, m, & c_tab, nwfc, ne, ie_mid, ie_delta, ie, is, nkseff, ikeff REAL(DP) :: etev, delta, Elw, Eup, wkeff REAL(DP), ALLOCATABLE :: dostot(:,:,:), pdos(:,:,:,:), pdostot(:,:,:), & ldos(:,:,:) REAL(DP), EXTERNAL :: w0gauss ! ! ! find band extrema ! Elw = et (1, 1) Eup = et (nbnd, 1) DO ik = 2, nkstot Elw = min (Elw, et (1, ik) ) Eup = max (Eup, et (nbnd, ik) ) ENDDO IF (degauss/=0.d0) THEN Eup = Eup + 3d0 * degauss Elw = Elw - 3d0 * degauss ENDIF Emin = max (Emin/rytoev, Elw) Emax = min (Emax/rytoev, Eup) DeltaE = DeltaE/rytoev ne = nint ( (Emax - Emin) / DeltaE+0.500001d0) ! IF (kresolveddos) THEN IF ( nspin==2 ) THEN nkseff=nkstot/2 ELSE nkseff=nkstot ENDIF ELSE nkseff=1 ENDIF ! ALLOCATE (pdos(0:ne,natomwfc,nspin,nkseff)) ALLOCATE (dostot(0:ne,nspin,nkseff), pdostot(0:ne,nspin,nkseff), ldos(0:ne,nspin,nkseff) ) pdos(:,:,:,:) = 0.d0 dostot(:,:,:) = 0.d0 pdostot(:,:,:)= 0.d0 ! current_spin = 1 ie_delta = 5 * degauss / DeltaE + 1 DO ik = 1,nkstot ! IF (kresolveddos) THEN ! set equal weight to all k-points wkeff=1.D0 ! IF (( nspin==2 ).AND.( isk(ik)==2 )) THEN ikeff=ik-nkstot/2 ELSE ikeff=ik ENDIF ELSE ! use true weights wkeff=wk(ik) ! contributions from all k-points are summed in pdos(:,:,:,ikeff) ikeff=1 ENDIF ! IF ( nspin == 2 ) current_spin = isk ( ik ) DO ibnd = 1, nbnd etev = et(ibnd,ik) ie_mid = nint( (etev-Emin)/DeltaE ) DO ie = max(ie_mid-ie_delta, 0), min(ie_mid+ie_delta, ne) delta = w0gauss((Emin+DeltaE*ie-etev)/degauss,ngauss) & / degauss / rytoev ! ! pdos(:,nwfc,ns,ik) = DOS (states/eV) for spin "ns" ! projected over atomic wfc "nwfc" ! for k-point "ik" (or summed over all kp) ! DO nwfc = 1, natomwfc pdos(ie,nwfc,current_spin,ikeff) = pdos(ie,nwfc,current_spin,ikeff) + & wkeff * delta * proj (nwfc, ibnd, ik) ENDDO ! ! dostot(:,ns,ik) = total DOS (states/eV) for spin "ns" ! for k-point "ik" (or summed over all kp) ! dostot(ie,current_spin,ikeff) = dostot(ie,current_spin,ikeff) + & wkeff * delta ENDDO ENDDO ENDDO ! ! pdostot(:,ns,ik) = sum of all projected DOS ! DO ik=1,nkseff DO is=1,nspin DO ie=0,ne pdostot(ie,is,ik) = sum(pdos(ie,:,is,ik)) ENDDO ENDDO ENDDO DO nwfc = 1, natomwfc IF (nlmchi(nwfc)%m == 1) THEN filextension='.pdos_atm#' ! 12345678901 c_tab = 11 IF (nlmchi(nwfc)%na < 10) THEN WRITE (filextension( c_tab : c_tab ),'(i1)') nlmchi(nwfc)%na c_tab = c_tab + 1 ELSEIF (nlmchi(nwfc)%na < 100) THEN WRITE (filextension( c_tab : c_tab+1 ),'(i2)') nlmchi(nwfc)%na c_tab = c_tab + 2 ELSEIF (nlmchi(nwfc)%na < 1000) THEN WRITE (filextension( c_tab : c_tab+2 ),'(i3)') nlmchi(nwfc)%na c_tab = c_tab + 3 ELSEIF (nlmchi(nwfc)%na < 10000) THEN WRITE (filextension( c_tab : c_tab+3 ),'(i4)') nlmchi(nwfc)%na c_tab = c_tab + 4 ELSE CALL errore('partialdos',& 'file extension not supporting so many atoms', nwfc) ENDIF WRITE (filextension(c_tab:c_tab+4),'(a1,a)') & '(',trim(atm(ityp(nlmchi(nwfc)%na))) c_tab = c_tab + len_trim(atm(ityp(nlmchi(nwfc)%na))) + 1 IF (nlmchi(nwfc)%n >= 10) & CALL errore('partialdos',& 'file extension not supporting so many atomic wfc', nwfc) IF (nlmchi(nwfc)%l > 3) & CALL errore('partialdos',& 'file extension not supporting so many l', nwfc) WRITE (filextension(c_tab:),'(")_wfc#",i1,"(",a1,")")') & nlmchi(nwfc)%n, l_label(nlmchi(nwfc)%l) fileout = trim(filpdos)//trim(filextension) OPEN (4,file=fileout,form='formatted', & status='unknown') IF (kresolveddos) THEN WRITE (4,'("# ik ",$)') ELSE WRITE (4,'("#",$)') ENDIF IF (nspin == 1) THEN WRITE (4,'(" E (eV) ldos(E) ",$)') ELSE WRITE (4,'(" E (eV) ldosup(E) ldosdw(E)",$)') ENDIF DO m=1,2 * nlmchi(nwfc)%l + 1 IF (nspin == 1) THEN WRITE(4,'(" pdos(E) ",$)') ELSE WRITE(4,'(" pdosup(E) ",$)') WRITE(4,'(" pdosdw(E) ",$)') ENDIF ENDDO WRITE(4,*) ! ! ldos = PDOS summed over m (m=-l:+l) ! ldos (:,:,:) = 0.d0 DO ik=1,nkseff DO ie= 0, ne DO is=1, nspin DO m=1,2 * nlmchi(nwfc)%l + 1 ldos (ie, is, ik) = ldos (ie, is, ik) + pdos(ie,nwfc+m-1,is,ik) ENDDO ENDDO ENDDO ENDDO DO ik=1,nkseff DO ie= 0, ne IF (kresolveddos) THEN WRITE (4,'(i5," ",$)') ik ENDIF etev = Emin + ie * DeltaE WRITE (4,'(f7.3,2e11.3,14e11.3)') etev*rytoev, & (ldos(ie,is,ik), is=1,nspin), & ((pdos(ie,nwfc+m-1,is,ik), is=1,nspin), & m=1,2*nlmchi(nwfc)%l+1) ENDDO IF (kresolveddos) WRITE (4,*) ENDDO CLOSE (4) ENDIF ENDDO fileout = trim(filpdos)//".pdos_tot" OPEN (4,file=fileout,form='formatted', status='unknown') IF (kresolveddos) THEN WRITE (4,'("# ik ",$)') ELSE WRITE (4,'("#",$)') ENDIF IF (nspin == 1) THEN WRITE (4,'(" E (eV) dos(E) pdos(E)")') ELSE WRITE (4,'(" E (eV) dosup(E) dosdw(E) pdosup(E) pdosdw(E)")') ENDIF DO ik=1,nkseff DO ie= 0, ne IF (kresolveddos) THEN WRITE (4,'(i5," ",$)') ik ENDIF etev = Emin + ie * DeltaE WRITE (4,'(f7.3,4e11.3)') etev*rytoev, (dostot(ie,is,ik), is=1,nspin), & (pdostot(ie,is,ik), is=1,nspin) ENDDO IF (kresolveddos) WRITE (4,*) ENDDO CLOSE (4) DEALLOCATE (ldos, dostot, pdostot) DEALLOCATE (pdos) ! DEALLOCATE (nlmchi) DEALLOCATE (proj) ! RETURN END SUBROUTINE partialdos ! !----------------------------------------------------------------------- SUBROUTINE partialdos_nc (Emin, Emax, DeltaE, kresolveddos, filpdos) !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE basis, ONLY : natomwfc USE ions_base, ONLY : ityp, atm USE klist, ONLY: wk, nkstot, degauss, ngauss, lgauss USE lsda_mod, ONLY: nspin USE wvfct, ONLY: et, nbnd USE constants, ONLY: rytoev ! USE spin_orb, ONLY: lspinorb USE projections ! IMPLICIT NONE CHARACTER (len=256) :: filpdos REAL(DP) :: Emin, Emax, DeltaE LOGICAL :: kresolveddos ! CHARACTER (len=33) :: filextension CHARACTER (len=256):: fileout CHARACTER (len=1) :: l_label(0:3)=(/'s','p','d','f'/) ! INTEGER :: ik, ibnd, ind, m, & c_tab, nwfc, ne, ie_mid, ie_delta, ie, is, nkseff, ikeff, nspin0 REAL(DP) :: etev, delta, Elw, Eup, wkeff, fact(2), spinor REAL(DP), ALLOCATABLE :: dostot(:,:), pdos(:,:,:,:), pdostot(:,:,:), & ldos(:,:,:) REAL(DP), EXTERNAL :: w0gauss ! ! ! find band extrema ! Elw = et (1, 1) Eup = et (nbnd, 1) DO ik = 2, nkstot Elw = min (Elw, et (1, ik) ) Eup = max (Eup, et (nbnd, ik) ) ENDDO IF (degauss/=0.d0) THEN Eup = Eup + 3d0 * degauss Elw = Elw - 3d0 * degauss ENDIF Emin = max (Emin/rytoev, Elw) Emax = min (Emax/rytoev, Eup) DeltaE = DeltaE/rytoev ne = nint ( (Emax - Emin) / DeltaE+0.500001d0) ! IF (lspinorb) THEN nspin0 = 1 ELSE nspin0 = 2 ENDIF ! IF (kresolveddos) THEN nkseff=nkstot ELSE nkseff=1 ENDIF ! ALLOCATE (pdos(0:ne,natomwfc,nspin0,nkseff)) ALLOCATE (dostot(0:ne,nkseff), pdostot(0:ne,nspin0,nkseff), ldos(0:ne,nspin0,nkseff) ) pdos(:,:,:,:) = 0.d0 dostot(:,:) = 0.d0 pdostot(:,:,:)= 0.d0 ie_delta = 5 * degauss / DeltaE + 1 DO ik = 1,nkstot ! IF (kresolveddos) THEN ! set equal weight to all k-points wkeff=1.D0 ikeff=ik ELSE wkeff=wk(ik) ! contributions from all k-points are summed in pdos(:,:,:,ikeff) ikeff=1 ENDIF ! DO ibnd = 1, nbnd etev = et(ibnd,ik) ie_mid = nint( (etev-Emin)/DeltaE ) DO ie = max(ie_mid-ie_delta, 0), min(ie_mid+ie_delta, ne) delta = w0gauss((Emin+DeltaE*ie-etev)/degauss,ngauss) & / degauss / rytoev ! ! pdos(:,nwfc,ns,ik) = DOS (states/eV) for spin "ns" ! projected over atomic wfc "nwfc" ! for k-point "ik" (or summed over all kp) ! ! ! dostot(:,ik) = total DOS (states/eV) ! for k-point "ik" (or summed over all kp) ! IF (lspinorb) THEN DO nwfc = 1, natomwfc pdos(ie,nwfc,1,ikeff) = pdos(ie,nwfc,1,ikeff) + & wkeff * delta * proj (nwfc, ibnd, ik) ENDDO dostot(ie,ikeff) = dostot(ie,ikeff) + wkeff * delta ELSE DO nwfc = 1, natomwfc IF ( nlmchi(nwfc)%ind<=(2* nlmchi(nwfc)%l+1)) THEN pdos(ie,nwfc,1,ikeff) = pdos(ie,nwfc,1,ikeff) + & wkeff * delta * proj (nwfc, ibnd, ik) pdos(ie,nwfc,2,ikeff) = 0.d0 ELSE pdos(ie,nwfc,1,ikeff) = 0.d0 pdos(ie,nwfc,2,ikeff) = pdos(ie,nwfc,2,ikeff) + & wkeff * delta * proj (nwfc, ibnd, ik) ENDIF ENDDO dostot(ie,ikeff) = dostot(ie,ikeff) + wkeff * delta ENDIF ENDDO ENDDO ENDDO ! ! pdostot(:,ns,ik) = sum of all projected DOS ! DO ik=1,nkseff DO is=1,nspin0 DO ie=0,ne pdostot(ie,is,ik) = sum(pdos(ie,:,is,ik)) ENDDO ENDDO ENDDO DO nwfc = 1, natomwfc IF (nlmchi(nwfc)%ind == 1) THEN filextension='.pdos_atm#' ! 12345678901 c_tab = 11 IF (nlmchi(nwfc)%na < 10) THEN WRITE (filextension( c_tab : c_tab ),'(i1)') nlmchi(nwfc)%na c_tab = c_tab + 1 ELSEIF (nlmchi(nwfc)%na < 100) THEN WRITE (filextension( c_tab : c_tab+1 ),'(i2)') nlmchi(nwfc)%na c_tab = c_tab + 2 ELSEIF (nlmchi(nwfc)%na < 1000) THEN WRITE (filextension( c_tab : c_tab+2 ),'(i3)') nlmchi(nwfc)%na c_tab = c_tab + 3 ELSEIF (nlmchi(nwfc)%na < 10000) THEN WRITE (filextension( c_tab : c_tab+3 ),'(i4)') nlmchi(nwfc)%na c_tab = c_tab + 4 ELSE CALL errore('partialdos_nc',& 'file extension not supporting so many atoms', nwfc) ENDIF WRITE (filextension(c_tab:c_tab+4),'(a1,a)') & '(',trim(atm(ityp(nlmchi(nwfc)%na))) c_tab = c_tab + len_trim(atm(ityp(nlmchi(nwfc)%na))) + 1 IF (nlmchi(nwfc)%n >= 10) & CALL errore('partialdos_nc',& 'file extension not supporting so many atomic wfc', nwfc) IF (nlmchi(nwfc)%l > 3) & CALL errore('partialdos_nc',& 'file extension not supporting so many l', nwfc) IF (lspinorb) THEN WRITE (filextension(c_tab:),'(")_wfc#",i1,"(",a1,"_j",f3.1,")")') & nlmchi(nwfc)%n, l_label(nlmchi(nwfc)%l),nlmchi(nwfc)%jj ELSE WRITE (filextension(c_tab:),'(")_wfc#",i1,"(",a1,")")') & nlmchi(nwfc)%n, l_label(nlmchi(nwfc)%l) ENDIF fileout = trim(filpdos)//trim(filextension) OPEN (4,file=fileout,form='formatted', & status='unknown') IF (kresolveddos) THEN WRITE (4,'("# ik ",$)') ELSE WRITE (4,'("#",$)') ENDIF IF (nspin0 == 1) THEN WRITE (4,'(" E(eV) ldos(E) ",$)') ELSE WRITE (4,'(" E(eV) ldosup(E) ldosdw(E)",$)') ENDIF IF (lspinorb) THEN ind = 0 DO m = -nlmchi(nwfc)%l-1, nlmchi(nwfc)%l fact(1) = spinor(nlmchi(nwfc)%l,nlmchi(nwfc)%jj,m,1) fact(2) = spinor(nlmchi(nwfc)%l,nlmchi(nwfc)%jj,m,2) IF (abs(fact(1))>1.d-8.or.abs(fact(2))>1.d-8) THEN ind = ind + 1 WRITE(4,'("pdos(E)_",i1," ",$)') ind ENDIF ENDDO ELSE DO ind=1,2 * nlmchi(nwfc)%l + 1 WRITE(4,'(" pdosup(E) ",$)') WRITE(4,'(" pdosdw(E) ",$)') ENDDO ENDIF WRITE(4,*) ! ! ldos = PDOS summed over m (m=-l:+l) ! ldos (:,:,:) = 0.d0 IF (lspinorb) THEN DO ik=1,nkseff DO ie= 0, ne IF (abs(nlmchi(nwfc)%jj-nlmchi(nwfc)%l-0.5d0)<1.d-8) THEN DO ind = 1, 2 * nlmchi(nwfc)%l + 2 ldos (ie, 1, ik) = ldos (ie, 1, ik) + pdos(ie,nwfc+ind-1,1,ik) ENDDO ELSEIF (abs(nlmchi(nwfc)%jj-nlmchi(nwfc)%l+0.5d0)<1.d-8) THEN DO ind = 1, 2 * nlmchi(nwfc)%l ldos (ie, 1, ik) = ldos (ie, 1, ik) + pdos(ie,nwfc+ind-1,1,ik) ENDDO ENDIF ENDDO ENDDO DO ik=1,nkseff DO ie= 0, ne IF (kresolveddos) THEN WRITE (4,'(i5," ",$)') ik ENDIF etev = Emin + ie * DeltaE IF (abs(nlmchi(nwfc)%jj-nlmchi(nwfc)%l-0.5d0)<1.d-8) THEN WRITE (4,'(f7.3,2e11.3,14e11.3)') etev*rytoev, ldos(ie,1,ik), & (pdos(ie,nwfc+ind-1,1,ik), ind=1,2*nlmchi(nwfc)%l+2) ELSEIF (abs(nlmchi(nwfc)%jj-nlmchi(nwfc)%l+0.5d0)<1.d-8) THEN WRITE (4,'(f7.3,2e11.3,14e11.3)') etev*rytoev, ldos(ie,1,ik), & (pdos(ie,nwfc+ind-1,1,ik), ind=1,2*nlmchi(nwfc)%l) ENDIF ENDDO IF (kresolveddos) WRITE (4,*) ENDDO ELSE DO ik=1,nkseff DO ie= 0, ne DO is=1, nspin0 DO ind=1,4 * nlmchi(nwfc)%l + 2 ldos (ie, is, ik) = ldos (ie, is, ik) + pdos(ie,nwfc+ind-1,is, ik) ENDDO ENDDO ENDDO ENDDO DO ik=1,nkseff DO ie= 0, ne IF (kresolveddos) THEN WRITE (4,'(i5," ",$)') ik ENDIF etev = Emin + ie * DeltaE WRITE (4,'(f7.3,2e11.3,14e11.3)') etev*rytoev, & (ldos(ie,is,ik), is=1,nspin0), & ((pdos(ie,nwfc+ind-1+(is-1)*(2*nlmchi(nwfc)%l+1),is,ik), is=1,nspin0), & ind=1,2*nlmchi(nwfc)%l+1) ENDDO IF (kresolveddos) WRITE (4,*) ENDDO ENDIF CLOSE (4) ENDIF ENDDO fileout = trim(filpdos)//".pdos_tot" OPEN (4,file=fileout,form='formatted', status='unknown') IF (kresolveddos) THEN WRITE (4,'("# ik ",$)') ELSE WRITE (4,'("#",$)') ENDIF IF (nspin0 == 1) THEN WRITE (4,'(" E (eV) dos(E) pdos(E)")') ELSE WRITE (4,'(" E (eV) dos(E) pdosup(E) pdosdw(E)")') ENDIF DO ik=1,nkseff DO ie= 0, ne IF (kresolveddos) THEN WRITE (4,'(i5," ",$)') ik ENDIF etev = Emin + ie * DeltaE WRITE (4,'(f7.3,4e11.3)') etev*rytoev, dostot(ie,ik), & (pdostot(ie,is,ik), is=1,nspin0) ENDDO IF (kresolveddos) WRITE (4,*) ENDDO CLOSE (4) DEALLOCATE (ldos, dostot, pdostot) DEALLOCATE (pdos) ! DEALLOCATE (nlmchi) DEALLOCATE (proj) ! RETURN END SUBROUTINE partialdos_nc espresso-5.1/PP/src/cft.f900000644000175000017500000003335612341372773013527 0ustar mbamba! ! (C) Copyright CERN except where explicitly stated otherwise. ! Permission to use and/or redistribute this work is granted ! under the terms of the GNU General Public License, The software ! and documentation made available under the terms of this license ! are provided with no warranty. ! ! Slightly modified version of routine D702 of CERN lib ! !---------------------------------------------------------------------- SUBROUTINE cft (a, b, ntot, n, nspan, isn) !---------------------------------------------------------------------- ! ! multivariate complex fourier transform, computed in place ! using mixed-radix fast fourier transform algorithm. ! by R. C. Singleton, Stanford Research Institute, oct. 1968 ! arrays a and b originally hold the real and imaginary ! components of the data, and return the real and ! imaginary components of the resulting fourier coefficients. ! multivariate data is indexed according to the fortran ! array element successor function, without limit ! on the number of implied multiple subscripts. ! the subroutine is called once for each variate. ! the calls for a multivariate transform may be in any order. ! ntot is the total number of complex data values. ! n is the dimension of the current variable. ! nspan/n is the spacing of consucutive data values ! while indexing the current variable. ! the sign of isn determines the sign of the complex ! exponential, and the magnitude of isn is normally one. ! ! for a single-variate transform, ! ntot = n = nspan = (number of complex data values), f.g. ! call cft(a,b,n,n,n,1) ! ! a tri-variate transform with a(n1,n2,n3), b(n1,n2,n3) ! is computed by ! call cft(a,b,n1*n2*n3,n1,n1,1) ! call cft(a,b,n1*n2*n3,n2,n1*n2,1) ! call cft(a,b,n1*n2*n3,n3,n1*n2*n3,1) ! ! the data may alternatively be stored in a single complex ! array a, then the magnitude of isn changed to two to ! give the correct indexing increment and the second parameter ! used to pass the initial address for the sequence of ! imaginary values, e.g. ! ! real s(2) ! equivalence (a,s) ! .... ! .... ! call cft(a,s(2),ntot,n,nspan,2) ! ! arrays at(maxf), ck(maxf), bt(maxf), sk(maxf), and np(maxp) ! are used for temporary storage. if the available storage ! is insufficient, the program is terminated by a stop. ! maxf must be .ge. the maximum prime factor of n. ! maxp must be .gt. the number of prime factors of n. ! in addition, if the square-free portion k cf n has two or ! more prime factors, then maxp must be .ge. k-1. ! array storage in nfac for a maximum of 11 factors of n. ! if n has more than one square-free factor, the product of the ! square-free factors must be .le. 210 ! USE kinds IMPLICIT real(DP)(a - h, o - z) DIMENSION a ( * ), b ( * ) DIMENSION nfac (11), np (209) ! array storage for maximum prime factor of 23 DIMENSION at (23), ck (23), bt (23), sk (23) EQUIVALENCE (i, ii) ! the following two constants should agree with the array dimension maxf = 23 maxp = 209 IF (n<2) RETURN inc = isn ! the following constants are rad = 2.*pi , s72 = sin(0.4*pi) , ! c72 = cos(0.4*pi) and s120 = sqrt(0.75) rad = 6.2831853071796d0 s72 = 0.95105651629515d0 c72 = 0.30901699437495d0 s120 = 0.86602540378444d0 IF (isn>=0) GOTO 10 s72 = - s72 s120 = - s120 rad = - rad inc = - inc 10 nt = inc * ntot ks = inc * nspan kspan = ks nn = nt - inc jc = ks / n radf = rad * dble (jc) * 0.5d0 i = 0 jf = 0 ! determine the factors of n m = 0 k = n GOTO 20 15 m = m + 1 nfac (m) = 4 k = k / 16 20 IF (k - (k / 16) * 16==0) GOTO 15 j = 3 jj = 9 GOTO 30 25 m = m + 1 nfac (m) = j k = k / jj 30 IF (mod (k, jj) ==0) GOTO 25 j = j + 2 jj = j**2 IF (jj<=k) GOTO 30 IF (k>4) GOTO 40 kt = m nfac (m + 1) = k IF (k/=1) m = m + 1 GOTO 80 40 IF (k - (k / 4) * 4/=0) GOTO 50 m = m + 1 nfac (m) = 2 k = k / 4 50 kt = m j = 2 60 IF (mod (k, j) /=0) GOTO 70 m = m + 1 nfac (m) = j k = k / j 70 j = ( (j + 1) / 2) * 2 + 1 IF (j<=k) GOTO 60 80 IF (kt==0) GOTO 100 j = kt 90 m = m + 1 nfac (m) = nfac (j) j = j - 1 IF (j/=0) GOTO 90 ! compute fourier transform 100 sd = radf / dble (kspan) cd = 2.0d0 * sin (sd) **2 sd = sin (sd+sd) kk = 1 i = i + 1 IF (nfac (i) /=2) GOTO 400 ! transform for factor of 2 (including rotation factor) kspan = kspan / 2 k1 = kspan + 2 210 k2 = kk + kspan ak = a (k2) bk = b (k2) a (k2) = a (kk) - ak b (k2) = b (kk) - bk a (kk) = a (kk) + ak b (kk) = b (kk) + bk kk = k2 + kspan IF (kk<=nn) GOTO 210 kk = kk - nn IF (kk<=jc) GOTO 210 IF (kk>kspan) GOTO 800 220 c1 = 1.0d0 - cd s1 = sd 230 k2 = kk + kspan ak = a (kk) - a (k2) bk = b (kk) - b (k2) a (kk) = a (kk) + a (k2) b (kk) = b (kk) + b (k2) a (k2) = c1 * ak - s1 * bk b (k2) = s1 * ak + c1 * bk kk = k2 + kspan IF (kkk2) GOTO 230 ak = c1 - (cd * c1 + sd * s1) s1 = (sd * c1 - cd * s1) + s1 ! the following three statements compensate for truncation ! error. if rounded arithmetic is used, they may be deleted. c1 = 0.5d0 / (ak**2 + s1**2) + 0.5d0 s1 = c1 * s1 c1 = c1 * ak ! next statement should be deleted if non-rounded arithmetic is use ! c1=ak kk = kk + jc IF (kkmaxf) GOTO 998 ck (jf) = 1.0d0 sk (jf) = 0.0d0 j = 1 630 ck (j) = ck (k) * c1 + sk (k) * s1 sk (j) = ck (k) * s1 - sk (k) * c1 k = k - 1 ck (k) = ck (j) sk (k) = - sk (j) j = j + 1 IF (jjf) jj = jj - jf IF (knp (j) ) GOTO 830 j = 1 840 IF (kknp (j) ) GOTO 870 j = 1 880 IF (kk=m) RETURN kspnn = np (kt + 1) ! permutation for square-free factors of n j = m - kt nfac (j + 1) = 1 900 nfac (j) = nfac (j) * nfac (j + 1) j = j - 1 IF (j/=kt) GOTO 900 kt = kt + 1 nn = nfac (kt) - 1 IF (nn>maxp) GOTO 998 jj = 0 j = 0 GOTO 906 902 jj = jj - k2 k2 = kk k = k + 1 kk = nfac (k) 904 jj = kk + jj IF (jj>=k2) GOTO 902 np (j) = jj 906 k2 = nfac (kt) k = kt + 1 kk = nfac (k) j = j + 1 IF (j<=nn) GOTO 904 ! determine the permutation cycles of length greater than 1 j = 0 GOTO 914 910 k = kk kk = np (k) np (k) = - kk IF (kk/=j) GOTO 910 k3 = kk 914 j = j + 1 kk = np (j) IF (kk<0) GOTO 914 IF (kk/=j) GOTO 910 np (j) = - j IF (j/=nn) GOTO 914 maxf = inc * maxf ! reorder a and b, following the permutation cycles GOTO 950 924 j = j - 1 IF (np (j) <0) GOTO 924 jj = jc 926 kspan = jj IF (jj>maxf) kspan = maxf jj = jj - kspan k = np (j) kk = jc * k + ii + jj k1 = kk + kspan k2 = 0 928 k2 = k2 + 1 at (k2) = a (k1) bt (k2) = b (k1) k1 = k1 - inc IF (k1/=kk) GOTO 928 932 k1 = kk + kspan k2 = k1 - jc * (k + np (k) ) k = - np (k) 936 a (k1) = a (k2) b (k1) = b (k2) k1 = k1 - inc k2 = k2 - inc IF (k1/=kk) GOTO 936 kk = k2 IF (k/=j) GOTO 932 k1 = kk + kspan k2 = 0 940 k2 = k2 + 1 a (k1) = at (k2) b (k1) = bt (k2) k1 = k1 - inc IF (k1/=kk) GOTO 940 IF (jj/=0) GOTO 926 IF (j/=1) GOTO 924 950 j = k3 + 1 nt = nt - kspnn ii = nt - inc + 1 IF (nt>=0) GOTO 924 RETURN ! error finish, insufficient array storage 998 isn = 0 ! print 999 PRINT*,'Array bounds exceeded within subroutine cft' STOP !999 format(44h0array bounds exceeded within subroutine cft) END SUBROUTINE cft espresso-5.1/PP/src/do_initial_state.f900000644000175000017500000001553312341372773016263 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE do_initial_state (excite) !---------------------------------------------------------------------- ! ! This routine is a driver routine which computes the initial state ! contribution to the core level shift. ! ! contains five parts which are computed by different routines: ! a) add_shift_lc, contribution due to the local potential ! b) add_shift_cc, contribution due to NLCC ! c) add_shift_us , contribution due to the non-local potential ! d) add_shift_ew, contribution due to the electrostatic ewald term ! ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE cell_base, ONLY : at, bg, alat, omega USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv USE gvect, ONLY : ngm, gstart, ngl, nl, igtongl, g, gg, gcutm, eigts1, eigts2, eigts3 USE fft_base, ONLY : dfftp USE lsda_mod, ONLY : nspin USE symme, ONLY : symscalar USE vlocal, ONLY : strf, vloc USE scf, ONLY : rho USE ldaU, ONLY : lda_plus_u USE extfield, ONLY : tefield, forcefield USE uspp, ONLY : nkb, vkb USE uspp_param, ONLY : nh USE klist, ONLY : nks, xk USE wvfct, ONLY : npw, npwx, igk USE ener, ONLY : ef USE parameters, ONLY : ntypx USE control_flags, ONLY: gamma_only USE DFUNCT, ONLY : newd USE constants, ONLY : rytoev ! IMPLICIT NONE ! INTEGER :: excite(ntypx) INTEGER, ALLOCATABLE :: ityp_gs(:), ityp_excited(:) REAL(DP), ALLOCATABLE :: shift(:), & shift_ef (:), & shift_nl (:), & shift_lc (:), & shift_cc (:), & shift_ion (:), & shift_hub(:), & delta_zv(:) ! ! nonlocal, local, core-correction, ewald, and scf correction terms ! INTEGER :: ipol, na, nt, ik ! counter on polarization ! counter on atoms LOGICAL :: first ! CALL start_clock( 'do_shift' ) ! ALLOCATE( shift(nat), shift_ef(nat), shift_nl(nat), shift_lc(nat), & shift_cc(nat), shift_hub(nat), shift_ion(nat), delta_zv(ntyp) ) ALLOCATE ( ityp_gs(nat), ityp_excited(nat) ) ityp_gs(:) = ityp(:) DO nt =1,ntyp IF (excite(nt)<0 .or. excite(nt)>ntyp) & CALL errore ('do_initial_state', ' wrong excite value ', nt ) ENDDO DO nt=ntyp+1, ntypx IF (excite(nt)/=0 ) & CALL errore ('do_initial_state', ' cannot exicte nt>ntyp ', nt ) ENDDO ityp_gs(:) = ityp(:) ityp_excited(:) = ityp(:) DO na=1,nat IF (excite(ityp(na))/=0) ityp_excited (na) = excite(ityp(na)) ENDDO delta_zv(:) = 0.d0 DO nt=1,ntyp IF (excite(nt)/=0) delta_zv(nt) = zv(excite(nt)) - zv(nt) ENDDO ! shift_ef(:) = 0.D0 shift_nl(:) = 0.D0 shift_lc(:) = 0.D0 shift_cc(:) = 0.D0 shift_hub(:) = 0.D0 shift_ion(:) = 0.D0 ! WRITE( stdout, '(/,5x,"INITIAL STATE CONTRIBUTION TO", & & /,5x,"CORE LEVEL SHIFT ON ATOMS:", / )') DO na=1,nat shift_ef(na) = ef * delta_zv(ityp(na)) ENDDO first = .true. 10 CONTINUE ! ! ... The nonlocal contribution is computed here ! CALL add_shift_us( shift_nl ) ! ! ... The local contribution ! CALL add_shift_lc( nat, tau, ityp, alat, omega, ngm, ngl, igtongl, & dfftp%nnr, g, rho%of_r, nl, nspin, & gstart, gamma_only, vloc, shift_lc ) ! ! ... The NLCC contribution ! CALL add_shift_cc( shift_cc ) ! ! ... The Hubbard contribution ! IF ( lda_plus_u ) CALL errore('do_initial_state','LDA+U not implemented',1) ! ! change atomic type and recompute needed quantities ! IF ( first ) THEN ityp(:) = ityp_excited(:) CALL newd() nkb = 0 DO na = 1, nat nkb = nkb + nh (ityp(na)) ENDDO DEALLOCATE(vkb) IF(nkb>0) ALLOCATE(vkb(npwx,nkb)) IF ( nks == 1 ) THEN ik = 1 IF ( nkb > 0 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ENDIF shift_nl = - shift_nl shift_lc = - shift_lc shift_cc = - shift_cc shift_hub= - shift_hub first = .false. GOTO 10 ELSE ityp(:) = ityp_gs(:) CALL newd() nkb = 0 DO na = 1, nat nkb = nkb + nh (ityp(na)) ENDDO DEALLOCATE(vkb) IF(nkb>0) ALLOCATE(vkb(npwx,nkb)) IF ( nks == 1 ) THEN ik = 1 IF ( nkb > 0 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ENDIF ENDIF ! ! ... The ionic contribution is computed here ! ! call infomsg ('do_initial_state',' EWALD term is still missing') CALL do_shift_ew (alat, nat, ntyp, ityp, zv, delta_zv, at, bg, tau, & omega, g, gg, ngm, gcutm, gstart, gamma_only, shift_ion) ! ! ... here we sum all the contributions and compute the total force acting ! ... on the crstal ! DO na = 1, nat shift(na) = shift_ef(na) + & shift_nl(na) + & shift_ion(na) + & shift_lc(na) + & shift_cc(na) + & shift_hub(na) ENDDO ! ! ... resymmetrize (should not be needed, but ...) ! CALL symscalar( nat, shift ) ! ! ... write on output the initial state core level shifts ! DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), shift(na), shift(na)*rytoev ENDDO WRITE (stdout,*) #define DEBUG #ifdef DEBUG WRITE( stdout, '(5x,"The FERMI ENERGY contribution to shift")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), shift_ef(na), shift_ef(na)*rytoev ENDDO WRITE( stdout, '(5x,"The NON LOCAL contribution to shift")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), shift_nl(na), shift_nl(na)*rytoev ENDDO WRITE( stdout, '(5x,"The LOCAL contribution to shift")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), shift_lc(na), shift_lc(na)*rytoev ENDDO WRITE( stdout, '(5x,"The IONIC contribution to shift")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), shift_ion(na), shift_ion(na)*rytoev ENDDO WRITE( stdout, '(5x,"The CC contribution to shift")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), shift_cc(na), shift_cc(na)*rytoev ENDDO WRITE( stdout, '(5x,"The Hubbard contribution to shift")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), shift_hub(na), shift_hub(na)*rytoev ENDDO #endif ! DEALLOCATE( shift_ef, shift_nl, shift_lc, shift_cc, shift_hub, & shift_ion, delta_zv ) DEALLOCATE (ityp_gs, ityp_excited) ! CALL stop_clock( 'do_shift' ) ! RETURN ! 9035 FORMAT(5X,'atom ',I3,' type ',I2,' shift =',F13.6,' Ry, =',F13.5,' eV') ! END SUBROUTINE do_initial_state espresso-5.1/PP/src/dosg.f900000644000175000017500000000231612341372773013677 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- SUBROUTINE dos_g (et, nspin, nbnd, nks, wk, Degauss, ngauss, E, dosg) !-------------------------------------------------------------------- ! USE kinds, ONLY : DP IMPLICIT NONE INTEGER :: nspin, nks, nbnd, ngauss real(DP) :: wk (nks), et (nbnd, nks), Degauss, E, dosg (2) real(DP) :: w0gauss INTEGER :: n, ns, nk0, nk, ik INTEGER :: nspin0 EXTERNAL w0gauss ! IF (nspin == 1 .or. nspin == 4) THEN nk = nks ELSE nk = nks / 2 ENDIF nspin0=nspin IF (nspin==4) nspin0=1 ! DO ns = 1, nspin0 IF (ns==1) THEN nk0 = 1 ELSE nk0 = nks / 2 + 1 ENDIF dosg (ns) = 0.0d0 DO ik = nk0, nk0 + nk-1 DO n = 1, nbnd dosg (ns) = dosg (ns) + wk (ik) * w0gauss ( (E-et (n, ik) ) & / Degauss, ngauss) ENDDO ENDDO ! dosg (ns) = dosg (ns) / Degauss ! ENDDO ! RETURN END SUBROUTINE dos_g espresso-5.1/PP/src/paw_postproc.f900000644000175000017500000001424512341372773015467 0ustar mbambaMODULE paw_postproc USE kinds, ONLY : DP USE paw_variables, ONLY : paw_info IMPLICIT NONE PUBLIC :: PAW_make_ae_charge PRIVATE CONTAINS SUBROUTINE PAW_make_ae_charge(rho) USE paw_onecenter, ONLY : paw_rho_lm USE atom, ONLY : g => rgrid USE ions_base, ONLY : nat, ityp, tau USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nh, nhm, upf USE scf, ONLY : scf_type USE fft_base, ONLY : dfftp USE mp_global, ONLY : me_pool USE splinelib, ONLY : spline, splint USE cell_base, ONLY : at, bg, alat TYPE(scf_type), INTENT(inout) :: rho TYPE(paw_info) :: i ! minimal info on atoms INTEGER :: ipol ! counter on x,y,z INTEGER :: ir ! counter on grid point INTEGER :: is ! spin index INTEGER :: lm ! counters on angmom and radial grid INTEGER :: j,k,l, idx, idx0 INTEGER :: ia REAL(DP),ALLOCATABLE :: wsp_lm(:,:,:), ylm_posi(:,:), d1y(:), d2y(:) REAL(DP),ALLOCATABLE :: rho_lm(:,:,:), rho_lm_ae(:,:,:), rho_lm_ps(:,:,:) REAL(DP) :: posi(3), first, second REAL(DP) :: inv_nr1, inv_nr2, inv_nr3, distsq ! Some initialization ! inv_nr1 = 1.D0 / dble( dfftp%nr1 ) inv_nr2 = 1.D0 / dble( dfftp%nr2 ) inv_nr3 = 1.D0 / dble( dfftp%nr3 ) ! ! I cannot parallelize on atoms, because it is already parallelized ! on charge slabs ! atoms: DO ia = 1, nat ! i%a = ia ! atom's index i%t = ityp(ia) ! type of atom ia i%m = g(i%t)%mesh ! radial mesh size for atom i%t i%b = upf(i%t)%nbeta ! number of beta functions for i%t i%l = upf(i%t)%lmax_rho+1 ! max ang.mom. in augmentation for ia ! ifpaw: IF (upf(i%t)%tpawp) THEN ! ! Arrays are allocated inside the cycle to allow reduced ! memory usage as different atoms have different meshes ALLOCATE(rho_lm_ae(i%m,i%l**2,nspin), & rho_lm_ps(i%m,i%l**2,nspin) ) ALLOCATE(rho_lm(i%m,i%l**2,nspin), & ylm_posi(1,i%l**2), & wsp_lm(i%m, i%l**2,nspin) ) ! ! Compute rho spherical harmonics expansion from becsum and pfunc CALL PAW_rho_lm(i, rho%bec, upf(i%t)%paw%pfunc, rho_lm_ae) CALL PAW_rho_lm(i, rho%bec, upf(i%t)%paw%ptfunc, rho_lm_ps, & upf(i%t)%qfuncl) ! DO is=1,nspin DO lm = 1,i%l**2 DO ir = 1, i%m rho_lm(ir,lm,is) = ( rho_lm_ae(ir,lm,is) - & rho_lm_ps(ir,lm,is) ) * g(i%t)%rm2(ir) ENDDO ENDDO ! ! add core charge ! !DO ir = 1, i%m ! rho_lm(ir,1,is) = rho_lm(ir,1,is) + & ! upf(i%t)%paw%ae_rho_atc(ir) / nspin !ENDDO ENDDO ! deallocate asap DEALLOCATE(rho_lm_ae, rho_lm_ps) ! ALLOCATE( d1y(upf(i%t)%kkbeta), d2y(upf(i%t )%kkbeta) ) DO is = 1,nspin DO lm = 1, i%l**2 CALL radial_gradient(rho_lm(1:upf(i%t)%kkbeta,lm,is), d1y, & g(i%t)%r, upf(i%t)%kkbeta, 1) CALL radial_gradient(d1y, d2y, g(i%t)%r, upf(i%t)%kkbeta, 1) ! first = d1y(1) ! first derivative in first point second = d2y(1) ! second derivative in first point ! prepare interpolation CALL spline( g(i%t)%r(:), rho_lm(:,lm,is), first, second, & wsp_lm(:,lm,is) ) ENDDO ENDDO DEALLOCATE(d1y, d2y) ! #if defined (__MPI) idx0 = dfftp%nr1x* dfftp%nr2x * dfftp%ipp(me_pool+1) #else idx0 = 0 #endif rsp_point : DO ir = 1, dfftp%nr1x*dfftp%nr2x * dfftp%npl ! ! three dimensional indices (i,j,k) idx = idx0 + ir - 1 k = idx / ( dfftp%nr1x* dfftp%nr2x) idx = idx - ( dfftp%nr1x* dfftp%nr2x)*k j = idx / dfftp%nr1x idx = idx - dfftp%nr1x*j l = idx ! ! ... do not include points outside the physical range! IF ( l >= dfftp%nr1 .or. j >= dfftp%nr2 .or. k >= dfftp%nr3 ) CYCLE rsp_point ! DO ipol = 1, 3 posi(ipol) = dble( l )*inv_nr1*at(ipol,1) + & dble( j )*inv_nr2*at(ipol,2) + & dble( k )*inv_nr3*at(ipol,3) ENDDO ! ! find the distance of real-space grid's point ir w.r.t ! closer periodic image of atom ia ! posi(:) = posi(:) - tau(:,ia) CALL cryst_to_cart( 1, posi, bg, -1 ) posi(:) = posi(:) - anint( posi(:) ) CALL cryst_to_cart( 1, posi, at, 1 ) ! posi(:) = posi(:) * alat distsq = posi(1)**2 + posi(2)**2 + posi(3)**2 ! don't consider points too far from the atom: IF ( distsq > g(i%t)%r2(upf(i%t)%kkbeta) ) & CYCLE rsp_point ! ! generate the atomic charge on point posi(:), which means ! sum over l and m components rho_lm_ae-rho_lm_ps ! interpolate the radial function at distance |posi(:)| ! ! prepare spherical harmonics CALL ylmr2( i%l**2, 1, posi, distsq, ylm_posi ) DO is = 1,nspin DO lm = 1, i%l**2 ! do interpolation rho%of_r(ir,is)= rho%of_r(ir,is) + ylm_posi(1,lm) & * splint(g(i%t)%r(:) , rho_lm(:,lm,is), & wsp_lm(:,lm,is), sqrt(distsq) ) ENDDO ENDDO ENDDO rsp_point ! DEALLOCATE(rho_lm, ylm_posi, wsp_lm) ! ENDIF ifpaw ENDDO atoms END SUBROUTINE PAW_make_ae_charge END MODULE paw_postproc espresso-5.1/PP/src/wannier_umatrix_subroutines.f900000644000175000017500000001615012341372773020622 0ustar mbamba! Copyright (C) 2006-2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . SUBROUTINE mk_u(l,mmax,uvalue,jvalue,u2) IMPLICIT NONE ! Passed variables DOUBLE PRECISION uvalue,jvalue INTEGER mmax,l !Local variables DOUBLE PRECISION rcl(4),xu,xj,u(7,7,7,7),u2(10,10),tmp INTEGER i,j LOGICAL sw2 ! calculate F^0 .... F^3 CALL rcl_init(l,uvalue,jvalue,rcl) xu = rcl(1) xj = 0.d0 IF(l==1) xj = rcl(2)/5.d0 IF(l==2) xj = (rcl(2)+rcl(3))/14.d0 IF(l==3) xj = (4.d0*rcl(2)/15.d0+2.d0*rcl(3)/11.d0+100.d0*rcl(4)/429.d0 )/6.d0 ! Produce 4index Coulomb interaction matrix CALL u4ind(u,rcl,l) DO i = 1, mmax DO j = 1, mmax u2(i,j) = u(i,j,i,j) -u(i,j,j,i) u2(i+mmax,j+mmax) = u(i,j,i,j) -u(i,j,j,i) u2(i,j+mmax) = u(i,j,i,j) u2(i+mmax,j) = u(j,i,j,i) ENDDO ENDDO END SUBROUTINE mk_u SUBROUTINE u4ind(u,rcl,l) !----> calculation of coulomb integrals IMPLICIT NONE ! Passed variables INTEGER l DOUBLE PRECISION u(7,7,7,7),rcl(4) ! Local variables INTEGER mmax,k,k2p1,ms1,ms2,ms3,ms4,j,ms5,ms6,ms7,ms8 DOUBLE PRECISION cgk,cgk0,cgk1,cgk2,uc(7,7,7,7), & xk,xm1,xm2,xm3,xm,xm4,xl, & yor(7,7),yoi(7,7) DOUBLE COMPLEX am1,am2,am3,am4,amz DATA amz/(0.d0,0.d0)/ LOGICAL sw3 EXTERNAL cgk INTRINSIC dfloat mmax=2*l+1 xl=dfloat(l) CALL dinit(uc,7*7*7*7) DO k = 0, 2*l, 2 k2p1 = k/2 + 1 xk = dfloat(k) cgk0 = cgk(xl,0.d0,xk,0.d0,xl,0.d0) DO ms1 = 1,mmax xm1 = dfloat(ms1-l-1) DO ms2 = 1,mmax xm2 = dfloat(ms2-l-1) DO ms3 = 1,mmax xm3 = dfloat(ms3-l-1) xm = xm1 - xm3 DO ms4 = 1,mmax IF ((ms1+ms2-ms3-ms4)/=0) CYCLE xm4 = dfloat(ms4-l-1) cgk1 = cgk(xl,xm3,xk,xm,xl,xm1) cgk2 = cgk(xl,xm2,xk,xm,xl,xm4) uc(ms1,ms2,ms3,ms4) = uc(ms1,ms2,ms3,ms4) + & rcl(k2p1)*cgk0*cgk0*cgk1*cgk2 ENDDO ENDDO ENDDO ENDDO ENDDO CALL dinit(u,7*7*7*7) DO ms1 = 1,mmax DO ms2 = 1,mmax DO ms3 = 1,mmax DO ms4 = 1,mmax u(ms1,ms2,ms3,ms4) = uc(ms1,ms2,ms3,ms4) ENDDO ENDDO ENDDO ENDDO CALL ctormt(yor,yoi,l) CALL dinit(u,7*7*7*7) DO ms1=1,mmax DO ms2=1,mmax DO ms3=1,mmax DO ms4=1,mmax DO ms5=1,mmax am1 = dcmplx(yor(ms1,ms5),-yoi(ms1,ms5)) IF (am1==amz) CYCLE DO ms6=1,mmax am2 = dcmplx(yor(ms2,ms6),-yoi(ms2,ms6)) IF (am2==amz) CYCLE DO ms7=1,mmax am3 = dcmplx(yor(ms3,ms7),yoi(ms3,ms7)) IF (am3==amz) CYCLE DO ms8=1,mmax am4 = dcmplx(yor(ms4,ms8),yoi(ms4,ms8)) IF (am4==amz) CYCLE u(ms1,ms2,ms3,ms4) = u(ms1,ms2,ms3,ms4) & + am1*am2*am3*am4*uc(ms5,ms6,ms7,ms8) ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO 333 FORMAT(30f8.4) END SUBROUTINE u4ind DOUBLE PRECISION FUNCTION cgk(a,al,b,be,c,ga) IMPLICIT NONE ! Passed variables DOUBLE PRECISION a,al,b,be,c,ga ! Local variables INTEGER z,zmin,zmax,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13 DOUBLE PRECISION fa(0:20) DATA fa/1.d0, 1.d0, 2.d0, 6.d0, 24.d0, 12.d1, 72.d1, 504.d1, & 4032.d1, 36288.d1, 36288.d2, 399168.d2, 4790016.d2, & 62270208.d2, 871782912.d2, 1307674368.d3, 20922789888.d3, & 355687428096.d3, 6402373705728.d3, 121645100408832.d3, & 243290200817664.d4/ INTRINSIC idint,max0,min0,dsqrt i1=0 i2=idint(a+b-c) i3=idint(a-al) i4=idint(b+be) i5=idint(c-b+al) i6=idint(c-a-be) zmin=max0(i1,-i5,-i6) zmax=min0(i2, i3, i4) cgk=0.d0 IF (dabs(al)>a) RETURN IF (dabs(be)>b) RETURN IF (dabs(ga)>c) RETURN IF ( zmin>zmax ) RETURN IF ( (al+be)/=ga ) RETURN i7=idint(a-b+c) i8=idint(c+b-a) i9=idint(c+b+a) i10=idint(a+al) i11=idint(b-be) i12=idint(c+ga) i13=idint(c-ga) DO z=zmin,zmax cgk=cgk+(-1.d0)**z/(fa(z)*fa(i2-z)*fa(i3-z)*fa(i4-z)*fa(i5+z)* & fa(i6+z)) ENDDO cgk=cgk*dsqrt(fa(i2)*fa(i7)*fa(i8)*fa(i10)*fa(i3)* & fa(i4)*fa(i11)*fa(i12)*fa(i13)*(2.d0*c+1.d0)/ & fa(i9+1)) END FUNCTION cgk SUBROUTINE ctormt(yor,yoi,l) !.................................................................ctormt ! !----> transformation from (ms) to real harmonics basis set ! IMPLICIT NONE INTEGER l DOUBLE PRECISION yor(7,7),yoi(7,7),sqtwo INTRINSIC dsqrt CALL dinit(yor,7*7) CALL dinit(yoi,7*7) sqtwo=1.d0/dsqrt(2.d0) IF (l==0) THEN yor(1,1)=1.d0 ELSEIF (l==1) THEN yoi(1,1)= sqtwo yoi(1,3)= sqtwo yor(2,2)=1.d0 yor(3,1)= sqtwo yor(3,3)=-sqtwo ELSEIF (l==2) THEN yoi(1,1)= sqtwo yoi(1,5)=-sqtwo yoi(2,2)= sqtwo yoi(2,4)= sqtwo yor(3,3)=1.d0 yor(4,2)= sqtwo yor(4,4)=-sqtwo yor(5,1)= sqtwo yor(5,5)= sqtwo ELSEIF (l==3) THEN yoi(1,1)= sqtwo yoi(1,7)= sqtwo yoi(2,2)= sqtwo yoi(2,6)=-sqtwo yoi(3,3)= sqtwo yoi(3,5)= sqtwo yor(4,4)=1.d0 yor(5,3)= sqtwo yor(5,5)=-sqtwo yor(6,2)= sqtwo yor(6,6)= sqtwo yor(7,1)= sqtwo yor(7,7)=-sqtwo ENDIF END SUBROUTINE ctormt SUBROUTINE rcl_init(l,uvalue,jvalue,rcl) IMPLICIT NONE ! passed variables INTEGER l DOUBLE PRECISION rcl(4),uvalue,jvalue ! local variables DOUBLE PRECISION uv,jv INTEGER i CALL dinit(rcl,4) uv = uvalue jv = jvalue rcl(1) = uv IF(l == 1) THEN rcl(2) = jv *5.d0 ELSEIF(l == 2) THEN rcl(2) = jv * 14d0 / (1.d0 + 0.63d0) rcl(3) = 0.63d0 * rcl(2) ELSEIF(l == 3) THEN rcl(2) = 6435.d0 * jv / (286.d0 + 195.d0 * & 451.d0 / 675.d0 + 250.d0 * 1001.d0 / 2025.d0) rcl(3) = 451.d0 * rcl(2) / 675.d0 rcl(4) = 1001.d0 * rcl(2) / 2025.d0 ENDIF END SUBROUTINE rcl_init SUBROUTINE dinit(array,leng) IMPLICIT NONE ! Passed variables: INTEGER leng DOUBLE PRECISION array(leng) ! Local variables: INTEGER i,m,mp1 m = mod(leng,5) IF( m /= 0 ) THEN DO i = 1,m array(i) = 0.d0 ENDDO IF( leng < 5 ) RETURN ENDIF mp1 = m + 1 DO i = mp1,leng,5 array(i) = 0.d0 array(i + 1) = 0.d0 array(i + 2) = 0.d0 array(i + 3) = 0.d0 array(i + 4) = 0.d0 ENDDO END SUBROUTINE dinit espresso-5.1/PP/src/xsf.f900000644000175000017500000001451112341372773013543 0ustar mbamba! ! Copyright (C) 2003 Tone Kokalj ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! This file holds XSF (=Xcrysden Structure File) utilities. ! Routines written by Tone Kokalj on Mon Jan 27 18:51:17 CET 2003 ! ! ------------------------------------------------------------------- ! this routine writes the crystal structure in XSF format ! ------------------------------------------------------------------- SUBROUTINE xsf_struct (alat, at, nat, tau, atm, ityp, ounit) USE kinds, ONLY : DP USE constants, ONLY : BOHR_RADIUS_ANGS IMPLICIT NONE INTEGER :: nat, ityp (nat), ounit CHARACTER(len=3) :: atm(*) real(DP) :: alat, tau (3, nat), at (3, 3) ! -- INTEGER :: i, j, n real(DP) :: at1 (3, 3) ! convert lattice vectors to ANGSTROM units ... DO i=1,3 DO j=1,3 at1(j,i) = at(j,i)*alat*BOHR_RADIUS_ANGS ENDDO ENDDO WRITE(ounit,*) 'CRYSTAL' WRITE(ounit,*) 'PRIMVEC' WRITE(ounit,'(2(3F15.9/),3f15.9)') at1 WRITE(ounit,*) 'PRIMCOORD' WRITE(ounit,*) nat, 1 DO n=1,nat ! positions are in Angstroms WRITE(ounit,'(a3,3x,3f15.9)') atm(ityp(n)), & tau(1,n)*alat*BOHR_RADIUS_ANGS, & tau(2,n)*alat*BOHR_RADIUS_ANGS, & tau(3,n)*alat*BOHR_RADIUS_ANGS ENDDO RETURN END SUBROUTINE xsf_struct ! ------------------------------------------------------------------- ! this routine writes the 3D scalar field (i.e. uniform mesh of points) ! in XSF format using the FFT mesh (i.e. fast write) ! ------------------------------------------------------------------- SUBROUTINE xsf_fast_datagrid_3d & (rho, nr1, nr2, nr3, nr1x, nr2x, nr3x, at, alat, ounit) USE kinds, ONLY : DP USE constants, ONLY : BOHR_RADIUS_ANGS IMPLICIT NONE INTEGER :: nr1x, nr2x, nr3x, nr1, nr2, nr3, ounit real(DP) :: alat, at (3, 3), rho(nr1x,nr2x,nr3x) ! -- INTEGER :: i1, i2, i3, ix, iy, iz, count, i, & ind_x(10), ind_y(10),ind_z(10) ! XSF scalar-field header WRITE(ounit,'(a)') 'BEGIN_BLOCK_DATAGRID_3D' WRITE(ounit,'(a)') '3D_PWSCF' WRITE(ounit,'(a)') 'DATAGRID_3D_UNKNOWN' ! number of points in each direction WRITE(ounit,*) nr1+1, nr2+1, nr3+1 ! origin WRITE(ounit,'(3f10.6)') 0.0d0, 0.0d0, 0.0d0 ! 1st spanning (=lattice) vector WRITE(ounit,'(3f10.6)') (BOHR_RADIUS_ANGS*alat*at(i,1),i=1,3) ! in ANSTROMS ! 2nd spanning (=lattice) vector WRITE(ounit,'(3f10.6)') (BOHR_RADIUS_ANGS*alat*at(i,2),i=1,3) ! 3rd spanning (=lattice) vector WRITE(ounit,'(3f10.6)') (BOHR_RADIUS_ANGS*alat*at(i,3),i=1,3) count=0 DO i3=0,nr3 !iz = mod(i3,nr3) iz = mod(i3,nr3) + 1 DO i2=0,nr2 !iy = mod(i2,nr2) iy = mod(i2,nr2) + 1 DO i1=0,nr1 !ix = mod(i1,nr1) ix = mod(i1,nr1) + 1 !ii = (1+ix) + iy*nr1x + iz*nr1x*nr2x IF (count<6) THEN count = count + 1 !ind(count) = ii ELSE WRITE(ounit,'(6e13.5)') & (rho(ind_x(i),ind_y(i),ind_z(i)),i=1,6) count=1 !ind(count) = ii ENDIF ind_x(count) = ix ind_y(count) = iy ind_z(count) = iz ENDDO ENDDO ENDDO WRITE(ounit,'(6e13.5:)') (rho(ind_x(i),ind_y(i),ind_z(i)),i=1,count) WRITE(ounit,'(a)') 'END_DATAGRID_3D' WRITE(ounit,'(a)') 'END_BLOCK_DATAGRID_3D' RETURN END SUBROUTINE xsf_fast_datagrid_3d SUBROUTINE xsf_datagrid_2d (rho, nx, ny, m1, m2, x0, e1, e2, alat, ounit) USE kinds, ONLY : DP USE constants, ONLY : BOHR_RADIUS_ANGS IMPLICIT NONE INTEGER :: nx, ny, ounit real(DP) :: m1, m2, alat, x0(3), e1(3), e2(3), rho(2, nx, ny) ! -- INTEGER :: ix, iy, count, i, ind_x(10), ind_y(10) ! XSF scalar-field header WRITE(ounit,'(a)') 'BEGIN_BLOCK_DATAGRID_2D' WRITE(ounit,'(a)') '2D_PWSCF' WRITE(ounit,'(a)') 'DATAGRID_2D_UNKNOWN' ! number of points in each direction WRITE(ounit,*) nx, ny ! origin WRITE(ounit,'(3f10.6)') (BOHR_RADIUS_ANGS*alat*x0(i),i=1,3) ! in ANSTROMS ! 1st spanning (=lattice) vector WRITE(ounit,'(3f10.6)') (BOHR_RADIUS_ANGS*alat*e1(i)*m1,i=1,3) ! in ANSTROMS ! 2nd spanning (=lattice) vector WRITE(ounit,'(3f10.6)') (BOHR_RADIUS_ANGS*alat*e2(i)*m2,i=1,3) ! in ANSTROMS count=0 DO iy=1,ny DO ix=1,nx IF (count < 6) THEN count = count + 1 ELSE WRITE(ounit,'(6e13.5)') (rho(1,ind_x(i),ind_y(i)),i=1,6) count=1 ENDIF ind_x(count) = ix ind_y(count) = iy ENDDO ENDDO WRITE(ounit,'(6e13.5:)') (rho(1,ind_x(i),ind_y(i)),i=1,count) WRITE(ounit,'(a)') 'END_DATAGRID_2D' WRITE(ounit,'(a)') 'END_BLOCK_DATAGRID_2D' RETURN END SUBROUTINE xsf_datagrid_2d SUBROUTINE xsf_datagrid_3d & (rho, nx, ny, nz, m1, m2, m3, x0, e1, e2, e3, alat, ounit) USE kinds, ONLY : DP USE constants, ONLY : BOHR_RADIUS_ANGS IMPLICIT NONE INTEGER :: nx, ny, nz, ounit real(DP) :: m1, m2, m3, alat, x0(3), e1(3),e2(3),e3(3), rho(nx, ny, nz) ! -- INTEGER :: ix, iy, iz, count, i, ind_x(10), ind_y(10), ind_z(10) ! XSF scalar-field header WRITE(ounit,'(a)') 'BEGIN_BLOCK_DATAGRID_3D' WRITE(ounit,'(a)') '3D_PWSCF' WRITE(ounit,'(a)') 'DATAGRID_3D_UNKNOWN' ! number of points in each direction WRITE(ounit,*) nx, ny, nz ! origin WRITE(ounit,'(3f10.6)') (BOHR_RADIUS_ANGS*alat*x0(i),i=1,3) ! in ANSTROMS ! 1st spanning (=lattice) vector WRITE(ounit,'(3f10.6)') (BOHR_RADIUS_ANGS*alat*e1(i)*m1,i=1,3) ! in ANSTROMS ! 2nd spanning (=lattice) vector WRITE(ounit,'(3f10.6)') (BOHR_RADIUS_ANGS*alat*e2(i)*m2,i=1,3) ! in ANSTROMS ! 3rd spanning (=lattice) vector WRITE(ounit,'(3f10.6)') (BOHR_RADIUS_ANGS*alat*e3(i)*m3,i=1,3) count=0 DO iz=1,nz DO iy=1,ny DO ix=1,nx IF (count<6) THEN count = count + 1 ELSE WRITE(ounit,'(6e13.5)') (rho(ind_x(i),ind_y(i),ind_z(i)),i=1,6) count=1 ENDIF ind_x(count) = ix ind_y(count) = iy ind_z(count) = iz ENDDO ENDDO ENDDO WRITE(ounit,'(6e13.5:)') (rho(ind_x(i),ind_y(i),ind_z(i)),i=1,count) WRITE(ounit,'(a)') 'END_DATAGRID_3D' WRITE(ounit,'(a)') 'END_BLOCK_DATAGRID_3D' RETURN END SUBROUTINE xsf_datagrid_3d espresso-5.1/PP/src/chdens_bspline.f900000644000175000017500000002405212341372773015724 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! Real space interpolation by B-splines !----------------------------------------------------------------------- SUBROUTINE bspline_interpolation (nptx, rg, rhor, rhoint) !--------------------------------------------------------------------- ! ! Use B-spline interpolation instead of Fourier interpolation ! USE kinds, ONLY : dp USE io_global, ONLY : stdout, ionode USE fft_base, ONLY : dfftp USE cell_base, ONLY : bg USE bspline !--------------------------------------------------------------------- implicit none integer, intent(in) :: nptx real(dp), intent(inout) :: rg(3,nptx) ! in alat units real(dp), intent(in) :: rhor(dfftp%nr1x,dfftp%nr2x,dfftp%nr3x) real(dp), intent(out) :: rhoint(nptx) !--------------------------------------------------------------------- real(dp), allocatable :: xv(:), yv(:), zv(:) real(dp), allocatable :: xknot(:), yknot(:), zknot(:) real(dp), allocatable :: bcoef(:) real(dp), allocatable :: rhoext(:,:,:) integer, parameter :: kx = 5, ky = 5, kz = 5 ! order of B-spline integer :: nx, ny, nz, i, j, k, ii, jj, kk, ierr write(stdout,'(5X,"Interpolation by B-splines")') nx = dfftp%nr1 ny = dfftp%nr2 nz = dfftp%nr3 ! extend grid in all directions allocate(rhoext(-kx+1:nx+kx,-ky+1:ny+ky,-kx+1:nz+kz)) do i = -kx+1, nx+kx ii = i if (i <= 0) ii = i+nx if (i > nx) ii = i-nx do j = -ky+1, ny+ky jj = j if (j <= 0) jj = j+ny if (j > ny) jj = j-ny do k = -kz+1, nz+kz kk = k if (k <= 0) kk = k+nz if (k > nz) kk = k-nz rhoext(i,j,k) = rhor(ii, jj, kk) enddo enddo enddo nx = nx + 2*kx ny = ny + 2*ky nz = nz + 2*kz ! prepare B-spline interpolation allocate (xv(nx), yv(ny), zv(nz) ) allocate (xknot(nx+kx), yknot(ny+ky), zknot(nz+kz) ) allocate (bcoef(nx*ny*nz)) ! setup uniform grid along x do i = 1, nx xv(i) = dble(i-kx-1)/dble(nx-2*kx) enddo call dbsnak(nx, xv, kx, xknot, ierr) if (ierr /= 0) call errore('bspline_interpolation', 'error in dbsnak/x', ierr) ! setup uniform grid along y do i = 1, ny yv(i) = dble(i-ky-1)/dble(ny-2*ky) enddo call dbsnak(ny, yv, ky, yknot, ierr) if (ierr /= 0) call errore('bspline_interpolation', 'error in dbsnak/y', ierr) ! setup uniform grid along z do i = 1, nz zv(i) = dble(i-kz-1)/dble(nz-2*kz) enddo call dbsnak(nz, zv, kz, zknot, ierr) if (ierr /= 0) call errore('bspline_interpolation', 'error in dbsnak/z', ierr) ! setup B-spline coefficients call dbs3in(nx,xv,ny,yv,nz,zv,rhoext,nx,ny,kx,ky,kz,xknot,yknot,zknot,bcoef,ierr) if (ierr /= 0) call errore('bspline_interpolation', 'error in dbs3in', ierr) ! transform grid points in crystal coordinates call cryst_to_cart(nptx, rg, bg, -1) ! interpolate do i = 1, nptx rg(:,i) = modulo(rg(:,i), 1.d0) rhoint(i) = dbs3vl(rg(1,i),rg(2,i),rg(3,i),kx,ky,kz,xknot,yknot,zknot,nx,ny,nz,bcoef,ierr) if (ierr /= 0) then write(stdout,'(5X,''BSPLINE ERROR MESSAGE:'',A)') get_error_message() call errore('bspline_interpolation', 'error in dbs3vl', ierr) endif enddo ! we print the charge on output write(stdout, '(5x,"Min, Max charge: ",2f12.6)') minval(rhoint), maxval(rhoint) END SUBROUTINE bspline_interpolation !----------------------------------------------------------------------- SUBROUTINE plot_1d_bspline (nptx, m1, x0, e, rhor, alat, iflag, ounit) !--------------------------------------------------------------------- ! ! Use B-spline interpolation instead of Fourier ! USE kinds, ONLY : dp USE io_global, ONLY : stdout, ionode USE fft_base, ONLY : dfftp !--------------------------------------------------------------------- implicit none integer, intent(in) :: nptx, iflag, ounit real(dp), intent(in) :: e(3), x0(3), m1, alat real(dp), intent(in) :: rhor(dfftp%nr1x,dfftp%nr2x,dfftp%nr3x) !--------------------------------------------------------------------- real(dp), allocatable :: rg(:,:), carica(:) real(dp) :: deltax integer :: i if (iflag == 0) & call errore('plot_1d_bsplint', 'spherical average incompatible with B-splines', 1) ! grid in cartesian coordinates, in units of alat allocate( rg(3,nptx), carica(nptx) ) deltax = dble(m1) / dble(nptx - 1) do i = 1, nptx rg(1,i) = x0(1) + (i-1) * deltax*e(1) rg(2,i) = x0(2) + (i-1) * deltax*e(2) rg(3,i) = x0(3) + (i-1) * deltax*e(3) enddo ! interpolate call bspline_interpolation(nptx, rg, rhor, carica) ! we print the charge on output if (ionode) then do i = 1, nptx write (ounit, '(2f20.10)') deltax*dble(i-1), carica(i) enddo endif END SUBROUTINE plot_1d_bspline !----------------------------------------------------------------------- SUBROUTINE plot_2d_bspline (nx, ny, m1, m2, x0, e1, e2, rhor, alat, & at, nat, tau, atm, ityp, output_format, ounit) !----------------------------------------------------------------------- ! ! Use B-spline interpolation instead of Fourier ! USE kinds, ONLY : dp USE io_global, ONLY : stdout, ionode USE fft_base, ONLY : dfftp !--------------------------------------------------------------------- implicit none integer, intent(in) :: nx, ny, nat, ityp (nat), output_format, ounit real(dp), intent(in) :: e1(3), e2(3), x0(3), m1, m2, alat, tau(3,nat), at(3,3) character(len=3), intent(in) :: atm(*) real(dp), intent(in) :: rhor(dfftp%nr1x,dfftp%nr2x,dfftp%nr3x) !--------------------------------------------------------------------- real(dp), allocatable :: rg(:,:,:), carica(:,:) real(dp) :: deltax, deltay integer :: i, j, nptx ! grid in cartesian coordinates, in units of alat allocate( rg(3,nx,ny), carica(nx,ny) ) deltax = dble(m1) / dble(nx - 1) deltay = dble(m2) / dble(ny - 1) do i = 1, nx do j = 1, ny rg(:,i,j) = x0(:) + (i-1)*deltax*e1(:) + (j-1)*deltay*e2(:) enddo enddo ! interpolate nptx = nx*ny call bspline_interpolation(nptx, rg(1,1,1), rhor, carica(1,1)) ! and we print the charge on output if (ionode) then if (output_format == 0) then ! ! gnuplot format ! ! write(ounit,'(2i6)') nx,ny do i = 1, nx write (ounit, '(e25.14)') ( dble(carica(i,j)), j = 1, ny ) write (ounit, * ) enddo elseif (output_format == 1) then ! ! contour.x format ! write (ounit, '(3i5,2e25.14)') nx, ny, 1, deltax, deltay write (ounit, '(4e25.14)') ( ( dble(carica(i,j)), j = 1, ny ), i = 1, nx ) elseif (output_format == 2) then ! ! plotrho format ! write (ounit, '(2i4)') nx - 1, ny - 1 write (ounit, '(8f8.4)') (deltax * (i - 1) , i = 1, nx) write (ounit, '(8f8.4)') (deltay * (j - 1) , j = 1, ny) write (ounit, '(6e12.4)') ( ( dble(carica(i,j)), i = 1, nx ), j = 1, ny ) write (ounit, '(3f8.4)') x0 write (ounit, '(3f8.4)') (m1 * e1 (i) , i = 1, 3) write (ounit, '(3f8.4)') (m2 * e2 (i) , i = 1, 3) elseif (output_format == 3) then ! ! xcrysden's xsf format ! call xsf_struct (alat, at, nat, tau, atm, ityp, ounit) call xsf_datagrid_2d (carica, nx, ny, m1, m2, x0, e1, e2, alat, ounit) elseif (output_format == 7) then ! ! gnuplot format : x, y, f(x,y) ! do i=1, nx do j=1, ny write (ounit, '(3e20.8)') alat*deltax * (i - 1), & alat*deltay * (j - 1), dble(carica(i,j)) enddo write(ounit, *) enddo else call errore('plot_2d', 'wrong output_format', 1) endif endif END SUBROUTINE plot_2d_bspline !----------------------------------------------------------------------- SUBROUTINE plot_3d_bspline (alat, at, nat, tau, atm, ityp, rhor, & nx, ny, nz, m1, m2, m3, x0, e1, e2, e3, output_format, ounit) !----------------------------------------------------------------------- ! ! Use B-spline interpolation instead of Fourier ! USE kinds, ONLY : dp USE io_global, ONLY : stdout, ionode USE fft_base, ONLY : dfftp !--------------------------------------------------------------------- implicit none integer, intent(in) :: nx, ny, nz, nat, ityp(nat), output_format, ounit real(dp), intent(in) :: e1(3), e2(3), e3(3), x0(3), m1, m2, m3 real(dp), intent(in) :: alat, tau(3,nat), at(3,3) character(len=3), intent(in) :: atm(*) real(dp), intent(in) :: rhor(dfftp%nr1x,dfftp%nr2x,dfftp%nr3x) !--------------------------------------------------------------------- real(dp), allocatable :: rg(:,:,:,:), carica(:,:,:) real(dp) :: deltax, deltay, deltaz, rhomax integer :: i, j, k, nptx ! grid in cartesian coordinates, in units of alat allocate( rg(3,nx,ny,nz), carica(nx,ny,nz) ) deltax = dble(m1) / dble(nx - 1) deltay = dble(m2) / dble(ny - 1) deltaz = dble(m3) / dble(nz - 1) do i = 1, nx do j = 1, ny do k = 1, nz rg(:,i,j,k) = x0(:) + (i-1)*deltax*e1(:) + (j-1)*deltay*e2(:) + (k-1)*deltaz*e3(:) enddo enddo enddo ! interpolate nptx = nx*ny*nz call bspline_interpolation(nptx, rg(1,1,1,1), rhor, carica(1,1,1)) rhomax = maxval(carica) if (ionode) then if (output_format == 4) then ! gOpenMol file call write_openmol_file (alat, at, nat, tau, atm, ityp, x0, & m1, m2, m3, nx, ny, nz, rhomax, carica, ounit) elseif (output_format == 6) then ! Gaussian Cube call write_cubefile_new(alat, nat, tau, atm, ityp, x0, & m1, m2, m3, e1, e2, e3, nx, ny, nz, carica, ounit) else ! fallback to XCrysden call xsf_struct(alat, at, nat, tau, atm, ityp, ounit) call xsf_datagrid_3d(carica, nx, ny, nz, m1, m2, m3, x0, e1, e2, e3, alat, ounit) endif endif END SUBROUTINE plot_3d_bspline espresso-5.1/PP/src/cgracsc.f900000644000175000017500000001340512341372773014351 0ustar mbamba! ! Copyright (C) 2001-2005 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- FUNCTION cgracsc (nkb, bec1, bec2, nhm, ntyp, nh, qq, nat, ityp, & npw, psi1, psi2, upf) !----------------------------------------------------------------------- ! ! This function computes the scalar product between two wavefunction ! and the S matrix of the US pseudopotential: . ! It assumes that the product of psi1 with all the beta functions ! is in bec1, and the product of psi2 is in bec2. ! ! USE kinds USE pseudo_types, ONLY : pseudo_upf USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! here the dummy variables ! INTEGER :: nkb, npw, nhm, ntyp, nat, ityp (nat), nh (ntyp) ! input: the number of beta functions ! input: the number of plane waves ! input: the maximum number of solid be ! input: the number of types of atoms ! input: the number of atoms ! input: the type of each atom ! input: the number of beta for each ty COMPLEX(DP) :: bec1 (nkb), bec2 (nkb), psi1 (npw), psi2 (npw), & cgracsc ! input: the product of beta and psi1 ! input: the product of beta and psi2 ! input: the first wavefunction ! input: the second wavefunction ! output: the value of the scalar produ real(DP) :: qq (nhm, nhm, ntyp) ! input: the q values defining S TYPE(pseudo_upf) :: upf (ntyp) ! input: if true the pseudo is vanderb ! ! Here the local variables ! INTEGER :: ikb, jkb, na, np, ijkb0, ih, jh ! counter on total beta functions ! counter on total beta functions ! counter on atoms ! the pseudopotential of each atom ! auxiliary variable to compute ikb and jkb ! counter on solid beta functions ! counter on solid beta functions COMPLEX(DP) :: scal, zdotc ! scal = zdotc (npw, psi1, 1, psi2, 1) CALL mp_sum( scal, intra_bgrp_comm ) ijkb0 = 0 DO np = 1, ntyp IF (upf(np)%tvanp ) THEN DO na = 1, nat IF (ityp (na) ==np) THEN DO ih = 1, nh (np) ikb = ijkb0 + ih DO jh = 1, nh (np) jkb = ijkb0 + jh scal = scal + qq (ih,jh,np)*conjg(bec1(ikb))*bec2(jkb) ENDDO ENDDO ijkb0 = ijkb0 + nh (np) ENDIF ENDDO ELSE DO na = 1, nat IF (ityp (na) ==np) ijkb0 = ijkb0 + nh (np) ENDDO ENDIF ENDDO cgracsc = scal RETURN END FUNCTION cgracsc ! !----------------------------------------------------------------------- FUNCTION cgracsc_nc (nkb, bec1, bec2, nhm, ntyp, nh, nat, ityp, & npw, npol, psi1, psi2, upf) !----------------------------------------------------------------------- ! ! This function computes the scalar product between two wavefunction ! and the S matrix of the US pseudopotential: . ! It assumes that the product of psi1 with all the beta functions ! is in bec1, and the product of psi2 is in bec2. ! ! USE kinds USE uspp, ONLY: qq, qq_so USE spin_orb, ONLY: lspinorb USE pseudo_types, ONLY : pseudo_upf USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! here the dummy variables ! INTEGER :: nkb, npw, npol, nhm, ntyp, nat, ityp (nat), nh (ntyp) ! input: the number of beta functions ! input: the number of plane waves ! input: the maximum number of solid be ! input: the number of types of atoms ! input: the number of atoms ! input: the type of each atom ! input: the number of beta for each ty COMPLEX(DP) :: bec1 (nkb,npol), bec2 (nkb,npol), & psi1 (npw,npol), psi2 (npw,npol), cgracsc_nc ! input: the product of beta and psi1 ! input: the product of beta and psi2 ! input: the first wavefunction ! input: the second wavefunction ! output: the value of the scalar produ TYPE(pseudo_upf) :: upf (ntyp) ! input: if true the pseudo is vanderb ! ! Here the local variables ! INTEGER :: ikb, jkb, na, np, ijkb0, ih, jh, ipol, jpol, ijh ! counter on total beta functions ! counter on total beta functions ! counter on atoms ! the pseudopotential of each atom ! auxiliary variable to compute ikb and jkb ! counter on solid beta functions ! counter on solid beta functions COMPLEX(DP) :: scal, zdotc ! scal = zdotc (npw*npol, psi1, 1, psi2, 1) CALL mp_sum( scal, intra_bgrp_comm ) ijkb0 = 0 DO np = 1, ntyp IF (upf(np)%tvanp ) THEN DO na = 1, nat IF (ityp (na) ==np) THEN DO ih = 1, nh (np) ikb = ijkb0 + ih DO jh = 1, nh (np) jkb = ijkb0 + jh IF (lspinorb) THEN ijh=0 DO ipol=1,npol DO jpol=1,npol ijh=ijh+1 scal=scal+qq_so(ih,jh,ijh,np)* & conjg(bec1(ikb,ipol))*bec2(jkb,jpol) ENDDO ENDDO ELSE DO ipol=1,npol scal=scal+qq(ih,jh,np)* & conjg(bec1(ikb,ipol))*bec2(jkb,ipol) ENDDO ENDIF ENDDO ENDDO ijkb0 = ijkb0 + nh (np) ENDIF ENDDO ELSE DO na = 1, nat IF (ityp (na) ==np) ijkb0 = ijkb0 + nh (np) ENDDO ENDIF ENDDO cgracsc_nc = scal RETURN END FUNCTION cgracsc_nc espresso-5.1/PP/src/pawplot.f900000644000175000017500000003354312341372773014437 0ustar mbamba! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Experimental and incomplete plotting program for PAW ! charge density - Paolo Giannozzi. Input: a namelist ! &inputpp ... / ! Allowed variables in namelist are: ! outdir, prefix, spin_component, filplot, ! e1, e2, e3, x0, nx, ny, nz, plot ! Same meaning and usage as for "pp.x", with the exception of ! "plot" (can be "core", "valence", "core+valence") ! MODULE paw_postproc_ USE kinds, ONLY : DP USE paw_variables, ONLY : paw_info IMPLICIT NONE PUBLIC :: PAW_make_ae_charge_ PRIVATE CONTAINS SUBROUTINE PAW_make_ae_charge_ ( rho, flag, nx, r, rhopaw ) USE paw_onecenter, ONLY : paw_rho_lm USE atom, ONLY : g => rgrid USE constants, ONLY : fpi USE ions_base, ONLY : nat, ityp, tau USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nh, nhm, upf USE scf, ONLY : scf_type USE fft_base, ONLY : dfftp USE mp_global, ONLY : me_pool USE splinelib, ONLY : spline, splint USE cell_base, ONLY : at, bg, alat ! TYPE(scf_type), INTENT(in) :: rho ! only rho%bec is actually needed INTEGER, INTENT (in) :: flag ! -1=core, 0 =valence, 1=both INTEGER, INTENT (in) :: nx ! number of points in space REAL (dp), INTENT(in) :: r(3,nx) ! points in space (alat units) REAL (dp), INTENT(out) :: rhopaw(nx,nspin) ! PAW charge ! TYPE(paw_info) :: i ! minimal info on atoms INTEGER :: ip ! counter on x,y,z INTEGER :: ir ! counter on grid point INTEGER :: is ! spin index INTEGER :: lm ! counters on angmom and radial grid INTEGER :: j,k,l, idx, idx0 INTEGER :: ia REAL(DP),ALLOCATABLE :: wsp_lm(:,:,:), ylm_posi(:,:), d1y(:), d2y(:) REAL(DP),ALLOCATABLE :: rho_lm(:,:,:), rho_lm_ae(:,:,:), rho_lm_ps(:,:,:) REAL(DP) :: posi(3), first, second, distsq ! rhopaw (:,:) = 0.0_dp ! ! Currently assuming parallelization on input data points ! (no parallelization on atoms) ! atoms: DO ia = 1, nat ! i%a = ia ! atom's index i%t = ityp(ia) ! type of atom ia i%m = g(i%t)%mesh ! radial mesh size for atom i%t i%b = upf(i%t)%nbeta ! number of beta functions for i%t i%l = upf(i%t)%lmax_rho+1 ! max ang.mom. in augmentation for ia ! ifpaw: IF (upf(i%t)%tpawp) THEN ! ! Arrays are allocated inside the cycle to allow reduced ! memory usage as different atoms have different meshes ALLOCATE(rho_lm_ae(i%m,i%l**2,nspin), & rho_lm_ps(i%m,i%l**2,nspin) ) ALLOCATE(rho_lm(i%m,i%l**2,nspin), & ylm_posi(1,i%l**2), & wsp_lm(i%m, i%l**2,nspin) ) ! ! Compute rho spherical harmonics expansion from becsum and pfunc CALL PAW_rho_lm(i, rho%bec, upf(i%t)%paw%pfunc, rho_lm_ae) CALL PAW_rho_lm(i, rho%bec, upf(i%t)%paw%ptfunc, rho_lm_ps, & upf(i%t)%qfuncl) ! DO is=1,nspin IF ( flag >= 0 ) THEN DO lm = 1,i%l**2 DO ir = 1, i%m rho_lm(ir,lm,is) = ( rho_lm_ae(ir,lm,is) - & rho_lm_ps(ir,lm,is) ) * g(i%t)%rm2(ir) ENDDO ENDDO ELSE rho_lm(:,:,is) = 0.0_dp ENDIF ! ! add core charge (divide by Y_00=1/sqrt(4pi) to get l=0 component) ! IF ( abs(flag) == 1 ) THEN DO ir = 1, i%m rho_lm(ir,1,is) = rho_lm(ir,1,is) + & sqrt( fpi ) * upf(i%t)%paw%ae_rho_atc(ir) / nspin ENDDO ENDIF ENDDO ! deallocate asap DEALLOCATE(rho_lm_ae, rho_lm_ps) ! ALLOCATE( d1y(upf(i%t)%kkbeta), d2y(upf(i%t )%kkbeta) ) DO is = 1,nspin DO lm = 1, i%l**2 CALL radial_gradient(rho_lm(1:upf(i%t)%kkbeta,lm,is), d1y, & g(i%t)%r, upf(i%t)%kkbeta, 1) CALL radial_gradient(d1y, d2y, g(i%t)%r, upf(i%t)%kkbeta, 1) ! first = d1y(1) ! first derivative in first point second = d2y(1) ! second derivative in first point ! prepare interpolation CALL spline( g(i%t)%r(:), rho_lm(:,lm,is), first, second, & wsp_lm(:,lm,is) ) ENDDO ENDDO DEALLOCATE(d1y, d2y) ! rsp_point : DO ir = 1, nx ! posi(:) = r(:,ir) ! ! find the distance of real-space grid's point ir w.r.t ! closer periodic image of atom ia ! posi(:) = posi(:) - tau(:,ia) CALL cryst_to_cart( 1, posi, bg, -1 ) posi(:) = posi(:) - anint( posi(:) ) CALL cryst_to_cart( 1, posi, at, 1 ) ! posi(:) = posi(:) * alat distsq = posi(1)**2 + posi(2)**2 + posi(3)**2 ! ! don't consider points too far from the atom ! (criterion not valid in principle if core charge is present) ! IF ( abs(flag) == 1 .and. & distsq > g(i%t)%r2(upf(i%t)%kkbeta) ) CYCLE rsp_point ! ! generate the atomic charge on point posi(:), which means ! sum over l and m components rho_lm_ae-rho_lm_ps ! interpolate the radial function at distance |posi(:)| ! ! prepare spherical harmonics CALL ylmr2( i%l**2, 1, posi, distsq, ylm_posi ) DO is = 1,nspin DO lm = 1, i%l**2 ! do interpolation rhopaw(ir,is)= rhopaw(ir,is) + ylm_posi(1,lm) & * splint(g(i%t)%r(:) , rho_lm(:,lm,is), & wsp_lm(:,lm,is), sqrt(distsq) ) ENDDO ENDDO ENDDO rsp_point ! DEALLOCATE(rho_lm, ylm_posi, wsp_lm) ! ENDIF ifpaw ENDDO atoms END SUBROUTINE PAW_make_ae_charge_ END MODULE paw_postproc_ ! !----------------------------------------------------------------------- PROGRAM PAWplot !----------------------------------------------------------------------- ! ! Plot PAW charge density ! USE kinds, ONLY : dp USE io_global, ONLY : ionode, ionode_id, stdout USE mp_global, ONLY : mp_startup USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE environment,ONLY : environment_start USE lsda_mod, ONLY : nspin, current_spin USE cell_base, ONLY : bg USE gvect, ONLY : ngm, nl USE scf, ONLY : rho USE io_files, ONLY : tmp_dir, prefix USE noncollin_module, ONLY : noncolin USE paw_variables, ONLY : okpaw USE paw_postproc_, ONLY : PAW_make_ae_charge_ ! IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck LOGICAL, EXTERNAL :: matches ! CHARACTER(len=256) :: outdir, filplot CHARACTER(len=16) :: plot INTEGER :: spin_component, nx,ny,nz, flag, ios, is REAL(dp) :: e1(3), e2(3), e3(3), x0(3) REAL(dp), ALLOCATABLE :: rhoplot(:), rhopaw(:,:), r(:,:) COMPLEX(dp), ALLOCATABLE :: rhog(:) LOGICAL :: onedim, twodim, tredim ! NAMELIST / inputpp / outdir, prefix, spin_component, & filplot, e1, e2, e3, x0, nx, ny, nz, plot ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'POST-PROC' ) ! IF ( ionode ) CALL input_from_file ( ) ! ! set default values for variables in namelist ! prefix = 'pwscf' CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( trim( outdir ) == ' ' ) outdir = './' filplot = 'pawcharge.dat' plot = 'valence' spin_component = 0 e1(:) = 0.d0 e2(:) = 0.d0 e3(:) = 0.d0 x0(:) = 0.d0 nx = 0 ny = 0 nz = 0 ! ios = 0 IF ( ionode ) THEN ! ! reading the namelist inputpp ! READ (5, inputpp, iostat = ios) ! tmp_dir = trimcheck ( outdir ) ! ENDIF CALL mp_bcast (ios, ionode_id, world_comm) IF ( ios /= 0) & CALL errore ('pawplot', 'reading inputpp namelist', abs(ios)) ! ! ... Broadcast variables ! CALL mp_bcast( e1, ionode_id, world_comm ) CALL mp_bcast( e2, ionode_id, world_comm ) CALL mp_bcast( e3, ionode_id, world_comm ) CALL mp_bcast( x0, ionode_id, world_comm ) CALL mp_bcast( nx, ionode_id, world_comm ) CALL mp_bcast( ny, ionode_id, world_comm ) CALL mp_bcast( nz, ionode_id, world_comm ) CALL mp_bcast( tmp_dir, ionode_id, world_comm ) CALL mp_bcast( prefix, ionode_id, world_comm ) CALL mp_bcast( plot, ionode_id, world_comm ) CALL mp_bcast( spin_component, ionode_id, world_comm ) ! ! Now allocate space for pwscf variables, read and check them. ! CALL read_file ( ) ! ALLOCATE ( rhog(ngm) ) ! ! plot of the charge density - select rho(G) ! IF (noncolin) THEN rhog (:) = rho%of_g(:,1) ELSE IF (spin_component == 0) THEN rhog (:) = rho%of_g(:,1) DO is = 2, nspin rhog(:) = rhog (:) + rho%of_g(:,is) ENDDO ELSE IF (nspin == 2) current_spin = spin_component rhog (:) = rho%of_g(:,current_spin) ENDIF ENDIF ! tredim = ( e3(1)**2 + e3(2)**2 + e3(3)**2 > 1d-6 ) twodim = ( e2(1)**2 + e2(2)**2 + e2(3)**2 > 1d-6 ) .and. .not. tredim onedim = ( e1(1)**2 + e1(2)**2 + e1(3)**2 > 1d-6 ) .and. .not. twodim ! IF ( onedim ) THEN ! ! One-dimensional plot ! IF (nx <= 0 ) CALL errore ('pawplot', 'wrong nx', 1) ALLOCATE ( rhoplot(nx) ) IF ( okpaw ) THEN WRITE (stdout, '(5x,"Reconstructing all-electron charge (PAW)")') ALLOCATE ( rhopaw(nx,nspin), r(3,nx) ) DO is = 1, nx r(:, is) = x0 (:) + (is-1) * e1(:) / (nx-1) ENDDO ! IF ( matches ('core',plot) .and. matches ('valence',plot) ) THEN flag = 1 ELSEIF ( matches ('core',plot) ) THEN flag =-1 ELSE flag = 0 ENDIF CALL PAW_make_ae_charge_ (rho, flag, nx, r, rhopaw ) ! IF (spin_component == 0 .and. nspin ==2 ) THEN rhoplot(:) = rhopaw(:,1)+ rhopaw(:,2) ELSE IF (nspin == 2) current_spin = spin_component rhoplot(:) = rhopaw(:,current_spin) ENDIF DEALLOCATE ( r, rhopaw ) ELSE rhoplot(:) = 0.0_dp ENDIF ! CALL plot_1d_ (nx, x0, e1, rhog, rhoplot, flag, filplot ) ! DEALLOCATE ( rhoplot ) ! ELSEIF ( twodim ) THEN IF ( abs(e1(1)*e2(1) + e1(2)*e2(2) + e1(3)*e2(3)) > 1d-6) & CALL errore ('pawplot', 'e1 and e2 are not orthogonal', 1) IF ( nx <= 0 .or. ny <= 0 ) CALL errore ('pawplot', 'wrong nx or ny', 1) CALL errore ('pawplot', '2d plot not yet implemented', 2) ELSEIF (tredim) THEN IF ( nx <= 0 .or. ny <= 0 .or. nz <=0 ) & CALL errore ('pawplot', 'wrong nx or ny or nz', 1) CALL errore ('pawplot', '3d plot not yet implemented', 3) ENDIF ! DEALLOCATE (rhog) END PROGRAM PAWPLOT ! !----------------------------------------------------------------------- SUBROUTINE plot_1d_ (nx, x0, e, rhog, rhoplot, flag, filplot ) !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY: pi USE io_global, ONLY : stdout, ionode USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum USE gvect, ONLY : g, gstart, ngm USE control_flags, ONLY : gamma_only IMPLICIT NONE INTEGER, INTENT(in) :: nx, flag ! number of points along the line ! flag=-1: do not add smooth term real(DP), INTENT(in) :: e (3), x0 (3) ! vector defining the line ! origin of the line COMPLEX(DP), INTENT(in) :: rhog (ngm) ! rho in G space CHARACTER(len=*), INTENT(in) :: filplot real(DP), INTENT(inout) :: rhoplot(nx) ! INTEGER :: i, ig, ounit real(DP) :: rhosum(nx), rhomin, rhomax, x(3), deltax, arg ! DO i = 1, nx x(:) = x0 (:) + (i-1) * e (:) / (nx-1) ! ! for each point we compute the charge from the Fourier components ! rhosum(i) = 0.0_dp DO ig = gstart, ngm ! ! NB: G are in 2pi/alat units, r are in alat units ! arg = 2.0_dp*pi* ( x(1)*g(1,ig) + x(2)*g(2,ig) + x(3)*g(3,ig) ) rhosum(i) = rhosum(i) + dble ( rhog (ig) ) * cos (arg) - & aimag ( rhog (ig) ) * sin (arg) ENDDO IF ( gamma_only ) rhosum(i) = 2.0_dp * rhosum(i) IF ( gstart == 2 ) rhosum(i) = rhosum(i) + dble( rhog (1) ) ! ENDDO CALL mp_sum( rhosum, intra_pool_comm ) ! IF ( flag /= -1) rhoplot (:) = rhoplot(:) + rhosum(:) ! ! Here we check the value of the resulting charge ! rhomin = minval ( rhoplot(:) ) rhomax = maxval ( rhoplot(:) ) WRITE(stdout, '(5x,"Min, Max charge: ",2f12.6)') rhomin, rhomax ! ! we print the charge on output ! IF (ionode) THEN IF (filplot /= ' ') THEN ounit = 1 OPEN (unit=ounit, file=filplot, form='formatted', status='unknown') WRITE( stdout, '(/5x,"Writing data to be plotted to file ",a)') & trim(filplot) ELSE ounit = 6 ENDIF ! deltax = sqrt(e(1)**2+e(2)**2+e(3)**2) / (nx - 1) DO i = 1, nx WRITE (ounit, '(2f20.10)') deltax*dble(i-1), rhoplot(i) ENDDO IF (ounit == 1) CLOSE (unit = ounit, status='keep') ENDIF RETURN END SUBROUTINE plot_1d_ espresso-5.1/PP/src/ggen1d.f900000644000175000017500000000363112341372773014111 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE ggen1d (ngm1d, g1d, gg1d, ig1dto3d, nl1d, igtongl1d) ! ! This subroutine is the one dimensional equivalent of the ggen ! routine. It is used to produce the G vectors in the z directions ! to compute and output planar averages of the charge density ! of single levels. It should work in parallel machines. ! USE kinds, ONLY: DP USE cell_base, ONLY : at USE gvect, ONLY: ngm, g, gg, igtongl USE fft_base, ONLY: dfftp IMPLICIT NONE INTEGER :: ngm1d, ig1dto3d (dfftp%nr3), igtongl1d (dfftp%nr3), nl1d (dfftp%nr3) ! output: the number of 1D G vectors on this processor ! output: correspondence 1D with 3D G vectors ! output: the correspondence with the shells ! output: correspondence 1D FFT mesh G with array real(DP) :: g1d (3, dfftp%nr3), gg1d (dfftp%nr3) ! output: ngm1d 3D vectors with the 1D G of this ! output: ngm1d scalars with the modulus of 1D G ! ! local variables ! INTEGER :: ig, ig1d ! counter on 3D vectors ! counter on 1D vectors real(DP), PARAMETER :: eps = 1.d-12 g1d(:,:) = 0.d0 gg1d(:) = 0.d0 ig1d = 0 DO ig = 1, ngm IF ( (abs(g(1,ig))dfftp%nr3) CALL errore ('ggen1d', 'too many G', 1) g1d (3, ig1d) = g (3, ig) gg1d (ig1d) = gg (ig) ig1dto3d (ig1d) = ig nl1d (ig1d) = nint (g (3, ig) * at (3, 3) ) + 1 IF (nl1d (ig1d) <1) nl1d (ig1d) = nl1d (ig1d) + dfftp%nr3 ENDIF ENDDO ngm1d = ig1d DO ig1d = 1, ngm1d igtongl1d (ig1d) = igtongl (ig1dto3d (ig1d) ) ENDDO RETURN END SUBROUTINE ggen1d espresso-5.1/PP/src/dos.f900000644000175000017500000001167012341372773013533 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- PROGRAM do_dos !-------------------------------------------------------------------- ! ! Calculates the Density of States (DOS), ! separated into up and down components for LSDA ! ! See files INPUT_DOS.* in Doc/ directory for usage ! IMPORTANT: since v.5 namelist name is &dos and no longer &inputpp ! USE io_global, ONLY : stdout, ionode, ionode_id USE io_files, ONLY : prefix, tmp_dir USE constants, ONLY : rytoev USE kinds, ONLY : DP USE klist, ONLY : xk, wk, degauss, ngauss, lgauss, nks, nkstot USE ktetra, ONLY : ntetra, tetra, ltetra USE wvfct, ONLY : nbnd, et USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY: noncolin USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE mp_global, ONLY : mp_startup USE environment, ONLY : environment_start ! IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! CHARACTER(len=256) :: fildos, outdir REAL(DP) :: E, DOSofE (2), DOSint, DeltaE, Emin, Emax, & degauss1, E_unset=1000000.d0 INTEGER :: ik, n, ndos, ngauss1, ios NAMELIST /dos/ outdir, prefix, fildos, degauss, ngauss, & Emin, Emax, DeltaE ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'DOS' ) ! ios = 0 ! IF ( ionode ) THEN ! ! set default values for variables in namelist ! CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( trim( outdir ) == ' ' ) outdir = './' prefix ='pwscf' fildos =' ' Emin =-E_unset Emax = E_unset DeltaE = 0.01d0 ngauss = 0 degauss= 0.d0 ! CALL input_from_file ( ) ! READ (5, dos, iostat=ios ) ! tmp_dir = trimcheck (outdir) ! save the value of degauss and ngauss: they are read from file degauss1 = degauss ngauss1 = ngauss ! ENDIF ! CALL mp_bcast( ios, ionode_id, world_comm ) IF (ios /= 0) WRITE (stdout, & '("*** namelist &inputpp no longer valid: please use &dos instead")') IF ( ios /= 0 ) CALL errore('dos','reading dos namelist',abs(ios)) ! ! ... Broadcast variables ! CALL mp_bcast( tmp_dir, ionode_id, world_comm ) CALL mp_bcast( prefix, ionode_id, world_comm ) ! CALL read_xml_file( ) ! IF ( ionode ) THEN ! IF (nks/=nkstot) & CALL errore ('dos', 'pools not implemented, or incorrect file read', 1) ! IF (degauss1/=0.d0) THEN degauss=degauss1 ngauss =ngauss1 WRITE( stdout,'(/5x,"Gaussian broadening (read from input): ",& & "ngauss,degauss=",i4,f12.6/)') ngauss,degauss ltetra=.false. lgauss=.true. ELSEIF (ltetra) THEN WRITE( stdout,'(/5x,"Tetrahedra used"/)') ELSEIF (lgauss) THEN WRITE( stdout,'(/5x,"Gaussian broadening (read from file): ",& & "ngauss,degauss=",i4,f12.6/)') ngauss,degauss ELSE degauss=DeltaE/rytoev ngauss =0 WRITE( stdout,'(/5x,"Gaussian broadening (default values): ",& & "ngauss,degauss=",i4,f12.6/)') ngauss,degauss ltetra=.false. lgauss=.true. ENDIF ! ! find min and max energy for plot (band extrema if not set) ! IF ( Emin == -E_unset ) THEN Emin = MINVAL ( et(1, 1:nks) ) IF ( degauss > 0.0_dp ) Emin = Emin - 3.0_dp * degauss ELSE Emin = Emin/rytoev END IF IF ( Emax == E_unset ) THEN Emax = MINVAL ( et(nbnd, 1:nks) ) IF ( degauss > 0.0_dp ) Emax = Emax + 3.0_dp * degauss ELSE Emax = Emax/rytoev END IF ! DeltaE = DeltaE / rytoev ndos = nint ( (Emax - Emin) / DeltaE+0.500001d0) DOSint = 0.d0 ! IF ( fildos == ' ' ) fildos = trim(prefix)//'.dos' OPEN (unit = 4, file = fildos, status = 'unknown', form = 'formatted') IF (nspin==1.or.nspin==4) THEN WRITE(4,'("# E (eV) dos(E) Int dos(E)")') ELSE WRITE(4,'("# E (eV) dosup(E) dosdw(E) Int dos(E)")') ENDIF DO n= 1, ndos E = Emin + (n - 1) * DeltaE IF (ltetra) THEN CALL dos_t(et,nspin,nbnd, nks,ntetra,tetra, E, DOSofE) ELSE CALL dos_g(et,nspin,nbnd, nks,wk,degauss,ngauss, E, DOSofE) ENDIF IF (nspin==1.or.nspin==4) THEN DOSint = DOSint + DOSofE (1) * DeltaE WRITE (4, '(f7.3,2e12.4)') E * rytoev, DOSofE(1)/rytoev, DOSint ELSE DOSint = DOSint + (DOSofE (1) + DOSofE (2) ) * DeltaE WRITE (4, '(f7.3,3e12.4)') E * rytoev, DOSofE/rytoev, DOSint ENDIF ENDDO CLOSE (unit = 4) ! ENDIF ! CALL stop_pp ! END PROGRAM do_dos espresso-5.1/PP/src/compute_sigma_avg.f900000644000175000017500000002414212341372773016435 0ustar mbamba! ! Copyright (C) 2005 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE compute_sigma_avg(sigma_avg,becp_nc,ik,lsigma) ! ! This subroutine calculates the average value of the spin on ! the spinor wavefunctions. ! USE kinds, ONLY : DP USE noncollin_module, ONLY : noncolin, npol USE cell_base, ONLY : alat, at, tpiba, omega USE spin_orb, ONLY : fcoef USE uspp, ONLY : nkb,qq,vkb,nhtol,nhtoj,nhtolm,indv USE uspp_param, ONLY : upf, nh, nhm USE wvfct, ONLY : nbnd, npwx, npw, igk USE wavefunctions_module, ONLY : evc, psic_nc USE klist, ONLY : nks, xk USE gvect, ONLY : g,gg USE gvecs, ONLY : nls, nlsm, doublegrid USE scf, ONLY : rho USE ions_base, ONLY : nat, ntyp => nsp, ityp USE mp_global, ONLY : me_pool, intra_bgrp_comm USE mp, ONLY : mp_sum USE fft_base, ONLY : dffts, dfftp USE fft_interfaces, ONLY : invfft IMPLICIT NONE LOGICAL :: lsigma(4) ! if true the expectation value in this direction is calculated COMPLEX(DP) :: becp_nc(nkb,npol,nbnd) ! REAL(kind=DP) :: sigma_avg(4,nbnd) INTEGER :: ik INTEGER :: ibnd, ig, ir, ijkb0, na, np, ih, ikb, jh INTEGER :: ipol, kh, kkb, is1, is2, npwi, npwf INTEGER :: li, mi, lj, mj, mi1, i, j, k, ijk REAL(DP) :: magtot1(4), magtot2(4) REAL(DP) :: x0, y0, dx, dy, r_cut, r_aux, xx, yy COMPLEX(DP), ALLOCATABLE :: be1(:,:), qq_lz(:,:,:) COMPLEX(DP), ALLOCATABLE :: dfx(:), dfy(:) COMPLEX(DP) :: c_aux, zdotc IF (.not.(lsigma(1).or.lsigma(2).or.lsigma(3).or.lsigma(4))) RETURN ALLOCATE(be1(nhm,2)) ALLOCATE(dfx(dffts%nnr), dfy(dffts%nnr)) ALLOCATE(qq_lz(nhm,nhm,ntyp)) sigma_avg=0.d0 r_cut = 7.d0 x0 = 0.5d0*at(1,1)*alat y0 = 0.5d0*at(2,2)*alat dx = at(1,1)*alat/dffts%nr1 dy = at(2,2)*alat/dffts%nr2 qq_lz = 0.d0 DO np=1, ntyp DO ih = 1, nh (np) li = nhtol(ih,np) mi = nhtolm(ih,np) - li**2 IF (mi==2) THEN mi1 = 3 c_aux = -(0.d0,1.d0) ELSEIF (mi==3) THEN mi1 = 2 c_aux = (0.d0,1.d0) ELSEIF (mi==4) THEN mi1 = 5 c_aux = -(0.d0,2.d0) ELSEIF (mi==5) THEN mi1 = 4 c_aux = (0.d0,2.d0) ENDIF DO jh = ih+1, nh (np) lj = nhtol(jh,np) mj = nhtolm(jh,np) - lj**2 IF (lj==li.and.mj==mi1) THEN IF (mj>mi) THEN r_aux = qq(ih,jh-1,np) ELSE r_aux = qq(ih,jh+1,np) ENDIF qq_lz(ih,jh,np) = c_aux * r_aux ENDIF ENDDO ENDDO DO ih = 1, nh (np) DO jh = 1, ih-1 qq_lz(ih,jh,np) = conjg(qq_lz(jh,ih,np)) ENDDO ENDDO ENDDO DO ibnd = 1, nbnd rho%of_r = 0.d0 magtot1 = 0.d0 magtot2 = 0.d0 !-- Pseudo part psic_nc = (0.D0,0.D0) DO ig = 1, npw psic_nc(nls(igk(ig)), 1)=evc(ig ,ibnd) psic_nc(nls(igk(ig)), 2)=evc(ig+npwx,ibnd) ENDDO DO ipol=1,npol CALL invfft ('Wave', psic_nc(:,ipol), dffts) ENDDO ! ! Calculate the three components of the magnetization ! (stored in rho%of_r(ir,2-4) ) ! IF (lsigma(1)) THEN DO ir = 1,dffts%nnr rho%of_r(ir,2) = rho%of_r(ir,2) + 2.D0* & (REAL(psic_nc(ir,1))*REAL(psic_nc(ir,2)) + & aimag(psic_nc(ir,1))*aimag(psic_nc(ir,2))) ENDDO IF (doublegrid) CALL interpolate( rho%of_r(1,2), rho%of_r(1,2), 1 ) ENDIF IF (lsigma(2)) THEN DO ir = 1,dffts%nnr rho%of_r(ir,3) = rho%of_r(ir,3) + 2.D0* & (REAL(psic_nc(ir,1))*aimag(psic_nc(ir,2)) - & REAL(psic_nc(ir,2))*aimag(psic_nc(ir,1))) ENDDO IF (doublegrid) CALL interpolate( rho%of_r(1,3), rho%of_r(1,3), 1 ) ENDIF IF (lsigma(3)) THEN DO ir = 1,dffts%nnr rho%of_r(ir,4) = rho%of_r(ir,4) + & (REAL(psic_nc(ir,1))**2+aimag(psic_nc(ir,1))**2 & -REAL(psic_nc(ir,2))**2-aimag(psic_nc(ir,2))**2) ENDDO IF (doublegrid) CALL interpolate( rho%of_r(1,4), rho%of_r(1,4), 1 ) ENDIF IF (lsigma(4)) THEN !-- Calculate pseudo part of L_z DO ipol = 1, npol dfx = 0.d0 dfy = 0.d0 npwi=(ipol-1)*npwx+1 npwf=(ipol-1)*npwx+npw dfx(nls(igk(1:npw))) = (xk(1,ik)+g(1,igk(1:npw)))*tpiba* & (0.d0,1.d0)*evc(npwi:npwf,ibnd) dfy(nls(igk(1:npw))) = (xk(2,ik)+g(2,igk(1:npw)))*tpiba* & (0.d0,1.d0)*evc(npwi:npwf,ibnd) CALL invfft ('Wave', dfx, dffts) CALL invfft ('Wave', dfy, dffts) DO i = 1, dffts%nr1 xx = (i-1)*dx - x0 DO j = 1, dffts%nr2 yy = (j-1)*dy - y0 r_aux = DSQRT (xx**2 + yy**2) IF (r_aux<=r_cut) THEN DO k = 1, dffts%npp(me_pool+1) ijk = i + (j-1)*dffts%nr1x + (k-1)*dffts%nr1x*dffts%nr2x dfx(ijk) = xx * dfy(ijk) - yy * dfx(ijk) ENDDO ELSE DO k = 1, dffts%npp(me_pool+1) ijk = i + (j-1)*dffts%nr1x + (k-1)*dffts%nr1x*dffts%nr2x dfx (ijk) = 0.d0 ENDDO ENDIF ENDDO ENDDO c_aux = zdotc(dffts%nnr, psic_nc(1,ipol), 1, dfx, 1) magtot1(4) = magtot1(4) + aimag(c_aux) ENDDO CALL mp_sum( magtot1(4), intra_bgrp_comm ) magtot1(4) = magtot1(4)/(dffts%nr1*dffts%nr2*dffts%nr3) ENDIF DO ipol=1,3 IF (lsigma(ipol)) THEN DO ir = 1,dfftp%nnr magtot1(ipol) = magtot1(ipol) + rho%of_r(ir,ipol+1) ENDDO CALL mp_sum( magtot1(ipol), intra_bgrp_comm ) magtot1(ipol) = magtot1(ipol) / ( dfftp%nr1 * dfftp%nr2 * dfftp%nr3 ) ENDIF ENDDO !-- Augmentation part ijkb0 = 0 ! DO np = 1, ntyp ! IF ( upf(np)%tvanp ) THEN ! DO na = 1, nat ! IF (ityp(na)==np) THEN ! be1 = 0.d0 DO ih = 1, nh(np) ikb = ijkb0 + ih IF (upf(np)%has_so) THEN DO kh = 1, nh(np) IF ((nhtol(kh,np)==nhtol(ih,np)).and. & (nhtoj(kh,np)==nhtoj(ih,np)).and. & (indv(kh,np)==indv(ih,np))) THEN kkb=ijkb0 + kh DO is1=1,2 DO is2=1,2 be1(ih,is1)=be1(ih,is1)+ & fcoef(ih,kh,is1,is2,np)* & becp_nc(kkb,is2,ibnd) ENDDO ENDDO ENDIF ENDDO ELSE DO is1=1,2 be1(ih,is1) = becp_nc(ikb,is1,ibnd) ENDDO ENDIF ENDDO IF (lsigma(1)) THEN DO ih = 1, nh(np) magtot2(1)=magtot2(1)+ 2.d0*qq(ih,ih,np) & * REAL( be1(ih,2)*conjg(be1(ih,1)) ) DO jh = ih + 1, nh(np) magtot2(1)=magtot2(1)+2.d0*qq(ih,jh,np) & * REAL( be1(jh,2)*conjg(be1(ih,1))+ & be1(jh,1)*conjg(be1(ih,2)) ) ENDDO ENDDO ENDIF IF (lsigma(2)) THEN DO ih = 1, nh(np) magtot2(2)=magtot2(2)+ 2.d0*qq(ih,ih,np)*aimag & ( be1(ih,2)*conjg(be1(ih,1)) ) DO jh = ih + 1, nh(np) magtot2(2)=magtot2(2) + 2.d0*qq(ih,jh,np)*aimag & ( be1(jh,2) * conjg(be1(ih,1)) & - be1(jh,1) * conjg(be1(ih,2)) ) ENDDO ENDDO ENDIF IF (lsigma(3)) THEN DO ih = 1, nh(np) magtot2(3) = magtot2(3) + qq(ih,ih,np)* & ( abs(be1(ih,1))**2 - abs(be1(ih,2))**2 ) DO jh = ih + 1, nh(np) magtot2(3) = magtot2(3) + 2.d0*qq(ih,jh,np) & * REAL( be1(jh,1)*conjg(be1(ih,1)) & -be1(jh,2)*conjg(be1(ih,2)) ) ENDDO ENDDO ENDIF IF (lsigma(4)) THEN DO ih = 1, nh(np) DO jh = ih + 1, nh(np) magtot2(4)= magtot2(4)+2.d0*REAL(qq_lz(ih,jh,np)* & ( conjg(be1(ih,1))*be1(jh,1) + & conjg(be1(ih,2))*be1(jh,2) ) ) ENDDO ENDDO ENDIF ! ijkb0 = ijkb0 + nh(np) ! ENDIF ! ENDDO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! ENDDO ! ENDIF ! ENDDO DO ipol=1,3 IF (lsigma(ipol)) & sigma_avg(ipol,ibnd) = 0.5d0 * ( magtot1(ipol) + magtot2(ipol) ) ENDDO IF (lsigma(4)) & sigma_avg(4,ibnd) = magtot1(4) + magtot2(4) + sigma_avg(3,ibnd) ENDDO DEALLOCATE(be1) DEALLOCATE(dfx,dfy) DEALLOCATE(qq_lz) RETURN END SUBROUTINE compute_sigma_avg espresso-5.1/PP/src/wannier_u_matrix.f900000644000175000017500000000434612341372773016323 0ustar mbamba! Copyright (C) 2006-2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE wannier_u_matrix(U,hJ) USE io_global, ONLY: stdout, ionode, ionode_id USE io_files USE kinds, ONLY: DP USE wannier_new, ONLY: nwan, pp, wannier_occ, wannier_energy,wan_in IMPLICIT NONE INTEGER i,j, k,c, iwan, l real(DP) :: U, hJ, u2(10,10) INTEGER :: atoms(10) real(DP) :: rotm(10,10), unew(10,10), tmp WRITE(stdout,'(5x,a34)') 'Generation of interaction matrix U' WRITE(stdout,'(5x,a29)') '(works only for nspin=1 case)' WRITE(stdout,*) u2 = 0.d0 CALL mk_u(2,5,U,hJ,u2) !rotation from TB-LMTO basis to our new rotm = 0.d0 c = 0 DO iwan=1, nwan DO j=1,wan_in(iwan,1)%ning IF(wan_in(iwan,1)%ing(j)%l==2) THEN c = c+1 SELECT CASE(wan_in(iwan,1)%ing(j)%m) CASE(1) rotm(c,3) = wan_in(iwan,1)%ing(j)%c CASE(2) rotm(c,4) = wan_in(iwan,1)%ing(j)%c CASE(3) rotm(c,2) = wan_in(iwan,1)%ing(j)%c CASE(4) rotm(c,5) = wan_in(iwan,1)%ing(j)%c CASE(5) rotm(c,1) = wan_in(iwan,1)%ing(j)%c END SELECT ENDIF ENDDO ENDDO IF(c>5) CALL errore('Too many interactiong atoms - cant construct U matrix',c) DO i=1,5 DO j=1,5 rotm(i+5,j+5) = rotm(i,j) ENDDO ENDDO DO i = 1,10 DO j = 1, 10 tmp = 0.d0 DO k=1,10 DO l=1,10 tmp=tmp+rotm(i,k)*u2(k,l)*rotm(j,l) ENDDO ENDDO unew(i,j)=tmp ENDDO ENDDO !output DO i=1,c WRITE(stdout,'(5x,10f5.2)') (unew(i,j),j=1,c), (unew(i,j+5),j=1,c) ENDDO DO i=6,5+c WRITE(stdout,'(5x,10f5.2)') (unew(i,j),j=1,c), (unew(i,j+5),j=1,c) ENDDO WRITE(stdout,*) OPEN(70,file='umatrix',status='unknown',form='formatted') DO i=1,c WRITE(70,'(10f5.2)') (unew(i,j),j=1,c), (unew(i,j+5),j=1,c) ENDDO DO i=6,5+c WRITE(70,'(10f5.2)') (unew(i,j),j=1,c), (unew(i,j+5),j=1,c) ENDDO WRITE(70,*) CLOSE(70) END SUBROUTINE wannier_u_matrix espresso-5.1/PP/src/local_dos.f900000644000175000017500000004212012341372773014677 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- SUBROUTINE local_dos (iflag, lsign, kpoint, kband, spin_component, & emin, emax, dos) !-------------------------------------------------------------------- ! ! iflag=0: calculates |psi|^2 for band "kband" at point "kpoint" ! iflag=1: calculates the local density of state at e_fermi ! (only for metals) ! iflag=2: calculates the local density of electronic entropy ! (only for metals with fermi spreading) ! iflag=3: calculates the integral of local dos from "emin" to "emax" ! (emin, emax in Ry) ! ! lsign: if true and k=gamma and iflag=0, write |psi|^2 * sign(psi) ! spin_component: for iflag=3 and LSDA calculations only ! 0 for up+down dos, 1 for up dos, 2 for down dos ! USE kinds, ONLY : DP USE cell_base, ONLY : omega, tpiba2 USE ions_base, ONLY : nat, ntyp => nsp, ityp USE ener, ONLY : ef USE fft_base, ONLY : dffts, dfftp USE fft_interfaces, ONLY : fwfft, invfft USE gvect, ONLY : nl, ngm, g USE gvecs, ONLY : nls, nlsm, doublegrid USE klist, ONLY : lgauss, degauss, ngauss, nks, wk, xk, nkstot USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE scf, ONLY : rho USE symme, ONLY : sym_rho, sym_rho_init USE uspp, ONLY : nkb, vkb, becsum, nhtol, nhtoj, indv USE uspp_param, ONLY : upf, nh, nhm USE wavefunctions_module, ONLY : evc, psic, psic_nc USE wvfct, ONLY : nbnd, npwx, npw, igk, wg, et, g2kin, ecutwfc USE control_flags, ONLY : gamma_only USE noncollin_module, ONLY : noncolin, npol USE spin_orb, ONLY : lspinorb, fcoef USE io_files, ONLY : iunwfc, nwordwfc USE mp_global, ONLY : me_pool, nproc_pool, my_pool_id, npool USE mp, ONLY : mp_bcast, mp_sum USE mp_global, ONLY : inter_pool_comm, intra_pool_comm USE becmod, ONLY : calbec USE control_flags, ONLY : tqr USE realus, ONLY : addusdens_r IMPLICIT NONE ! ! input variables ! INTEGER, INTENT(in) :: iflag, kpoint, kband, spin_component LOGICAL, INTENT(in) :: lsign real(DP), INTENT(in) :: emin, emax ! real(DP), INTENT(out) :: dos (dfftp%nnr) ! ! local variables ! INTEGER :: ikb, jkb, ijkb0, ih, jh, kh, na, ijh, np ! counters for US PPs INTEGER :: ir, is, ig, ibnd, ik, irm, isup, isdw, ipol, kkb, is1, is2 ! counters real(DP) :: w, w1, modulus real(DP), ALLOCATABLE :: rbecp(:,:), segno(:), maxmod(:) COMPLEX(DP), ALLOCATABLE :: becp(:,:), & becp_nc(:,:,:), be1(:,:), be2(:,:) INTEGER :: who_calculate, iproc COMPLEX(DP) :: phase real(DP), EXTERNAL :: w0gauss, w1gauss LOGICAL :: i_am_the_pool INTEGER :: which_pool, kpoint_pool ! ! input checks ! IF (noncolin.and. lsign) CALL errore('local_dos','not available',1) IF (noncolin.and. gamma_only) CALL errore('local_dos','not available',1) ! IF ( (iflag == 0) .and. ( kband < 1 .or. kband > nbnd ) ) & CALL errore ('local_dos', 'wrong band specified', 1) IF ( (iflag == 0) .and. ( kpoint < 1 .or. kpoint > nkstot ) ) & CALL errore ('local_dos', 'wrong kpoint specified', 1) IF (lsign) THEN IF (iflag /= 0) CALL errore ('local_dos', 'inconsistent flags', 1) IF (sqrt(xk(1,kpoint)**2+xk(2,kpoint)**2+xk(3,kpoint)**2) > 1d-9 ) & CALL errore ('local_dos', 'k must be zero', 1) ENDIF ! IF (gamma_only) THEN ALLOCATE (rbecp(nkb,nbnd)) ELSE IF (noncolin) THEN ALLOCATE (becp_nc(nkb,npol,nbnd)) IF (lspinorb) THEN ALLOCATE(be1(nhm,2)) ALLOCATE(be2(nhm,2)) ENDIF ELSE ALLOCATE (becp(nkb,nbnd)) ENDIF ENDIF rho%of_r(:,:) = 0.d0 dos(:) = 0.d0 becsum(:,:,:) = 0.d0 IF (lsign) ALLOCATE(segno(dfftp%nnr)) ! ! calculate the correct weights ! IF (iflag /= 0.and. iflag /=3 .and. .not.lgauss) CALL errore ('local_dos', & 'gaussian broadening needed', 1) IF (iflag == 2 .and. ngauss /= -99) CALL errore ('local_dos', & ' beware: not using Fermi-Dirac function ', - ngauss) DO ik = 1, nks DO ibnd = 1, nbnd IF (iflag == 0) THEN wg (ibnd, ik) = 0.d0 ELSEIF (iflag == 1) THEN wg (ibnd, ik) = wk (ik) * w0gauss ( (ef - et (ibnd, ik) ) & / degauss, ngauss) / degauss ELSEIF (iflag == 2) THEN wg (ibnd, ik) = - wk (ik) * w1gauss ( (ef - et (ibnd, ik) ) & / degauss, ngauss) ELSEIF (iflag == 3) THEN IF (et (ibnd, ik) <= emax .and. et (ibnd, ik) >= emin) THEN wg (ibnd, ik) = wk (ik) ELSE wg (ibnd, ik) = 0.d0 ENDIF ELSE CALL errore ('local_dos', ' iflag not allowed', abs (iflag) ) ENDIF ENDDO ENDDO IF (npool>1) THEN CALL xk_pool( kpoint, nkstot, kpoint_pool, which_pool ) IF (kpoint_pool<1 .or. kpoint_pool> nks) & CALL errore('local_dos','problems with xk_pool',1) i_am_the_pool=(my_pool_id==which_pool) ELSE i_am_the_pool=.true. kpoint_pool=kpoint ENDIF IF (iflag == 0.and.i_am_the_pool) wg (kband, kpoint_pool) = 1.d0 ! ! here we sum for each k point the contribution ! of the wavefunctions to the density of states ! DO ik = 1, nks IF (ik == kpoint_pool .and.i_am_the_pool.or. iflag /= 0) THEN IF (lsda) current_spin = isk (ik) CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) CALL init_us_2 (npw, igk, xk (1, ik), vkb) IF (gamma_only) THEN CALL calbec ( npw, vkb, evc, rbecp ) ELSEIF (noncolin) THEN CALL calbec ( npw, vkb, evc, becp_nc ) ELSE CALL calbec ( npw, vkb, evc, becp ) ENDIF ! ! here we compute the density of states ! DO ibnd = 1, nbnd IF (ibnd == kband .or. iflag /= 0) THEN IF (noncolin) THEN psic_nc = (0.d0,0.d0) DO ig = 1, npw psic_nc(nls(igk(ig)),1)=evc(ig ,ibnd) psic_nc(nls(igk(ig)),2)=evc(ig+npwx,ibnd) ENDDO DO ipol=1,npol CALL invfft ('Wave', psic_nc(:,ipol), dffts) ENDDO ELSE psic(1:dffts%nnr) = (0.d0,0.d0) DO ig = 1, npw psic (nls (igk (ig) ) ) = evc (ig, ibnd) ENDDO IF (gamma_only) THEN DO ig = 1, npw psic (nlsm(igk (ig) ) ) = conjg(evc (ig, ibnd)) ENDDO ENDIF CALL invfft ('Wave', psic, dffts) ENDIF w1 = wg (ibnd, ik) / omega ! ! Compute and save the sign of the wavefunction at the gamma point ! IF (lsign) THEN IF (gamma_only) THEN ! psi(r) is real by construction segno(1:dffts%nnr) = dble(psic(1:dffts%nnr)) ELSE ! determine the phase factor that makes psi(r) real. ALLOCATE(maxmod(nproc_pool)) maxmod(me_pool+1)=0.0_DP DO ir = 1, dffts%nnr modulus=abs(psic(ir)) IF (modulus > maxmod(me_pool+1)) THEN irm=ir maxmod(me_pool+1)=modulus ENDIF ENDDO who_calculate=1 #ifdef __MPI CALL mp_sum(maxmod,intra_pool_comm) DO iproc=2,nproc_pool IF (maxmod(iproc)>maxmod(who_calculate)) & who_calculate=iproc ENDDO #endif IF (maxmod(who_calculate) < 1.d-10) & CALL errore('local_dos','zero wavefunction',1) IF (me_pool+1==who_calculate) & phase = psic(irm)/maxmod(who_calculate) DEALLOCATE(maxmod) #ifdef __MPI CALL mp_bcast(phase,who_calculate-1,intra_pool_comm) #endif segno(1:dffts%nnr) = dble( psic(1:dffts%nnr)*conjg(phase) ) ENDIF IF (doublegrid) CALL interpolate (segno, segno, 1) segno(:) = sign( 1.d0, segno(:) ) ENDIF ! IF (noncolin) THEN DO ipol=1,npol DO ir=1,dffts%nnr rho%of_r(ir,current_spin)=rho%of_r(ir,current_spin)+& w1*(dble(psic_nc(ir,ipol))**2+ & aimag(psic_nc(ir,ipol))**2) ENDDO ENDDO ELSE DO ir=1,dffts%nnr rho%of_r(ir,current_spin)=rho%of_r(ir,current_spin) + & w1 * (dble( psic (ir) ) **2 + aimag (psic (ir) ) **2) ENDDO ENDIF ! ! If we have a US pseudopotential we compute here the becsum term ! w1 = wg (ibnd, ik) ijkb0 = 0 DO np = 1, ntyp IF (upf(np)%tvanp ) THEN DO na = 1, nat IF (ityp (na) == np) THEN IF (noncolin) THEN IF (upf(np)%has_so) THEN be1=(0.d0,0.d0) be2=(0.d0,0.d0) DO ih = 1, nh(np) ikb = ijkb0 + ih DO kh = 1, nh(np) IF ((nhtol(kh,np)==nhtol(ih,np)).and. & (nhtoj(kh,np)==nhtoj(ih,np)).and. & (indv(kh,np)==indv(ih,np))) THEN kkb=ijkb0 + kh DO is1=1,2 DO is2=1,2 be1(ih,is1)=be1(ih,is1)+ & fcoef(ih,kh,is1,is2,np)* & becp_nc(kkb,is2,ibnd) be2(ih,is1)=be2(ih,is1)+ & fcoef(kh,ih,is2,is1,np)* & conjg(becp_nc(kkb,is2,ibnd)) ENDDO ENDDO ENDIF ENDDO ENDDO ENDIF ijh = 1 DO ih = 1, nh (np) ikb = ijkb0 + ih IF (upf(np)%has_so) THEN becsum(ijh,na,1)=becsum(ijh,na,1)+ w1* & (be1(ih,1)*be2(ih,1)+be1(ih,2)*be2(ih,2)) ELSE becsum(ijh,na,1) = becsum(ijh,na,1)+ & w1*(conjg(becp_nc(ikb,1,ibnd))* & becp_nc(ikb,1,ibnd)+ & conjg(becp_nc(ikb,2,ibnd))* & becp_nc(ikb,2,ibnd)) ENDIF ijh = ijh + 1 DO jh = ih + 1, nh (np) jkb = ijkb0 + jh IF (upf(np)%has_so) THEN becsum(ijh,na,1)=becsum(ijh,na,1) & + w1*((be1(jh,1)*be2(ih,1)+ & be1(jh,2)*be2(ih,2))+ & (be1(ih,1)*be2(jh,1)+ & be1(ih,2)*be2(jh,2)) ) ELSE becsum(ijh,na,1)= becsum(ijh,na,1)+ & w1*2.d0*dble(conjg(becp_nc(ikb,1,ibnd)) & *becp_nc(jkb,1,ibnd) + & conjg(becp_nc(ikb,2,ibnd)) & *becp_nc(jkb,2,ibnd) ) ENDIF ijh = ijh + 1 ENDDO ENDDO ELSE ijh = 1 DO ih = 1, nh (np) ikb = ijkb0 + ih IF (gamma_only) THEN becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * & rbecp(ikb,ibnd)*rbecp(ikb,ibnd) ELSE becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * & dble(conjg(becp(ikb,ibnd))*becp(ikb,ibnd)) ENDIF ijh = ijh + 1 DO jh = ih + 1, nh (np) jkb = ijkb0 + jh IF (gamma_only) THEN becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + 2.d0*w1 * & rbecp(ikb,ibnd)*rbecp(jkb,ibnd) ELSE becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + 2.d0*w1 * & dble(conjg(becp(ikb,ibnd))*becp(jkb,ibnd)) ENDIF ijh = ijh + 1 ENDDO ENDDO ENDIF ijkb0 = ijkb0 + nh (np) ENDIF ENDDO ELSE DO na = 1, nat IF (ityp (na) == np) ijkb0 = ijkb0 + nh (np) ENDDO ENDIF ENDDO ENDIF ENDDO ENDIF ENDDO IF (gamma_only) THEN DEALLOCATE(rbecp) ELSE IF (noncolin) THEN IF (lspinorb) THEN DEALLOCATE(be1) DEALLOCATE(be2) ENDIF DEALLOCATE(becp_nc) ELSE DEALLOCATE(becp) ENDIF ENDIF IF (doublegrid) THEN IF (noncolin) THEN CALL interpolate(rho%of_r, rho%of_r, 1) ELSE DO is = 1, nspin CALL interpolate(rho%of_r(1, is), rho%of_r(1, is), 1) ENDDO ENDIF ENDIF ! ! Here we add the US contribution to the charge ! if ( tqr ) then CALL addusdens_r(rho%of_r(:,:),.false.) else ! CALL addusdens(rho%of_r(:,:)) ! endif ! IF (nspin == 1 .or. nspin==4) THEN is = 1 dos(:) = rho%of_r (:, is) ELSE IF ( iflag==3 .and. (spin_component==1 .or. spin_component==2 ) ) THEN dos(:) = rho%of_r (:, spin_component) ELSE isup = 1 isdw = 2 dos(:) = rho%of_r (:, isup) + rho%of_r (:, isdw) ENDIF ENDIF IF (lsign) THEN dos(:) = dos(:) * segno(:) DEALLOCATE(segno) ENDIF #ifdef __MPI CALL mp_sum( dos, inter_pool_comm ) #endif IF (iflag == 0 .or. gamma_only) RETURN ! ! symmetrization of the local dos ! CALL sym_rho_init ( gamma_only ) ! psic(:) = cmplx ( dos(:), 0.0_dp, kind=dp) CALL fwfft ('Dense', psic, dfftp) rho%of_g(:,1) = psic(nl(:)) ! CALL sym_rho (1, rho%of_g) ! psic(:) = (0.0_dp, 0.0_dp) psic(nl(:)) = rho%of_g(:,1) CALL invfft ('Dense', psic, dfftp) dos(:) = dble(psic(:)) ! RETURN END SUBROUTINE local_dos !------------------------------------------------------------------------ SUBROUTINE xk_pool( ik, nkstot, ik_pool, which_pool ) !------------------------------------------------------------------------ ! ! This routine is a simplified version of set_kpoint_vars in ! xml_io_files. It recieves the index ik of a k_point in the complete ! k point list and return the index within the pool ik_pool, and ! the number of the pool that has that k point. ! ! USE mp_global, ONLY : npool, kunit ! IMPLICIT NONE INTEGER, INTENT(in) :: ik, nkstot INTEGER, INTENT(out) :: ik_pool, which_pool ! INTEGER :: nkl, nkr, nkbl ! ! IF (npool==1) THEN which_pool=1 ik_pool=ik RETURN ENDIF ! ! ... find out number of k points blocks ! nkbl = nkstot / kunit ! ! ... k points per pool ! nkl = kunit * ( nkbl / npool ) ! ! ... find out the reminder ! nkr = ( nkstot - nkl * npool ) / kunit ! ! ... calculate the pool and the index within the pool ! IF (ik<=nkr*(nkl+1)) THEN which_pool=(ik-1)/(nkl+1) ik_pool=ik-which_pool*(nkl+1) ELSE which_pool=nkr+(ik-nkr*(nkl+1)-1)/nkl ik_pool=ik-nkr*(nkl+1)-(which_pool-nkr)*nkl ENDIF RETURN END SUBROUTINE xk_pool espresso-5.1/PP/src/wannier_ham.f900000644000175000017500000002542712341372773015243 0ustar mbamba! Copyright (C) 2006-2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) !----------------------------------------------------------------------- PROGRAM wannier_ham !----------------------------------------------------------------------- ! ! This program generates Hamiltonian matrix on Wannier-functions basis USE io_global, ONLY: stdout, ionode, ionode_id USE kinds, ONLY: DP USE io_files, ONLY : prefix, tmp_dir USE wannier_new, ONLY: nwan, use_energy_int USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE read_cards_module, ONLY : read_cards USE mp_global, ONLY : mp_startup USE environment, ONLY : environment_start IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! CHARACTER(len=256) :: outdir INTEGER :: ios LOGICAL :: plot_bands, u_matrix real(DP) :: U,J NAMELIST /inputpp/ outdir, prefix, nwan, plot_bands, use_energy_int, u_matrix NAMELIST /Umatrix/ U,J ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'WANNIER_HAM') ! ios = 0 ! IF ( ionode ) THEN ! ! set default values for variables in namelist ! CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( trim( outdir ) == ' ' ) outdir = './' prefix ='pwscf' nwan = 0 plot_bands = .false. u_matrix=.false. ! U=0.d0 J=0.d0 ! CALL input_from_file ( ) ! READ (5, inputpp, iostat=ios ) IF(u_matrix) READ (5, Umatrix, iostat=ios ) ! tmp_dir = trimcheck (outdir) CALL read_cards('WANNIER_AC') ENDIF ! CALL mp_bcast( ios, ionode_id, world_comm ) IF ( ios /= 0 ) CALL errore('wannier_ham','reading inputpp namelist',abs(ios)) CALL read_file CALL openfil_pp CALL wannier_init(.false.) CALL new_hamiltonian(plot_bands) IF(u_matrix) CALL wannier_u_matrix(U,J) CALL stop_pp CALL wannier_clean() END PROGRAM wannier_ham SUBROUTINE new_hamiltonian(plot_bands) USE io_global, ONLY: stdout, ionode, ionode_id USE io_files USE kinds, ONLY: DP USE wannier_new, ONLY: nwan, pp, wannier_occ, wannier_energy,wan_in USE klist, ONLY: nks, xk, wk USE lsda_mod, ONLY: isk, current_spin, lsda, nspin USE wvfct, ONLY: nbnd, npwx, igk, npw, g2kin, et, ecutwfc USE gvect USE cell_base, ONLY: tpiba2 USE constants, ONLY : rytoev , tpi USE buffers USE symm_base, ONLY : nsym IMPLICIT NONE LOGICAL :: plot_bands INTEGER :: i,j,k,ik, n, ios, i1, i2, outfile, n_from, n_to COMPLEX(DP) :: wan_func(npwx,nwan), ham(nwan,nwan,nspin), v(nwan,nwan) COMPLEX(DP), ALLOCATABLE :: hamk(:,:,:), hamh(:,:,:) real(DP), ALLOCATABLE :: ek(:,:) real(DP) :: e(nwan), x, hoping(3) ! HMLT file unit outfile = 114 ALLOCATE(ek(nwan,nks)) ALLOCATE(hamk(nwan,nwan,nks)) ALLOCATE(hamh(nwan,nwan,nspin)) hamk = ZERO hamh = ZERO hoping(1) = 0. hoping(2) = 0. hoping(3) = 0. ek(:,:) = 0.d0 IF (nsym>1) THEN WRITE(stdout,'(/5x,a103/)') & 'WARNING: k-points set is in the irreducible brillouin zone.',& ' Wannier energies and occupations are wrong!' ENDIF current_spin = 1 CALL init_us_1 CALL init_at_1 ! Generating igk for orthoatwfc() REWIND( iunigk ) DO ik = 1, nks CALL gk_sort( xk(1,ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin ) IF ( nks > 1 ) WRITE( iunigk ) igk ENDDO ! CALL orthoatwfc( .true. ) wan_func = ZERO pp = ZERO ham = ZERO DO ik = 1, nks CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) IF (lsda) current_spin = isk(ik) CALL wannier_proj(ik,wan_func) pp = ZERO CALL get_buffer( pp, nwordwpp, iunwpp, ik) hamk(:,:,ik) = ZERO DO i=1, nwan DO j=1,nwan n_from = int (wan_in(i,current_spin)%bands_from ) n_to = int (wan_in(i,current_spin)%bands_to ) DO n = n_from, n_to ! On-site hamiltonian ham(i,j,current_spin) = ham(i,j,current_spin) + & pp(i,n)*cmplx(et(n,ik),0.d0,kind=DP)*conjg(pp(j,n))*wk(ik) ! Hoping integrals hamh(i,j,current_spin) = hamh(i,j,current_spin) + & pp(i,n)*cmplx(et(n,ik),0.d0,kind=DP)*conjg(pp(j,n))*wk(ik)*& cdexp( (0.d0,1.d0)*tpi* (xk(1,ik)*hoping(1) + & xk(2,ik)*hoping(2) + xk(3,ik)*hoping(3)) ) ! Current k-point hamiltonian hamk(i,j,ik) = hamk(i,j,ik) + pp(i,n)*conjg(pp(j,n))* & cmplx(et(n,ik),0.d0,kind=DP) !Overlap mtrx in current k-point (for debug purposes) ENDDO ENDDO ENDDO IF (plot_bands) CALL cdiagh(nwan,hamk(:,:,ik),nwan,ek(:,ik),v) !Hermicity check DO i=1,nwan DO j=1,nwan IF(abs(hamk(i,j,ik)-conjg(hamk(j,i,ik)))>=1.d-8) THEN WRITE(stdout,'(5x,"Wrong elements", 2i3," in",i4," k-point")') i,j,ik CALL errore ('wannier_ham', 'Hamiltonian is not hermitian', ik) ENDIF ENDDO ENDDO ENDDO !ik !Compute wannier parameters CALL wannier_occupancies(wannier_occ) CALL wannier_enrg(wannier_energy) !output computed DO j=1, nspin WRITE(stdout,'(/5x,a4,i2,a)') 'Spin', j,':' DO i=1, nwan WRITE(stdout,'(7x,a8,i3)') 'Wannier#',i WRITE(stdout,'(9x,a11,f5.3)') 'occupation:',wannier_occ(i,i,j) WRITE(stdout,'(9x,a7,f7.3,a3)') 'energy:',wannier_energy(i,j)*rytoev,' eV' ENDDO WRITE(stdout,'(7x,a26/)')'Wannier occupation matrix:' DO i=1,nwan WRITE(stdout,'(7x,50f7.3)') (wannier_occ(i,k,j),k=1,nwan) ENDDO ENDDO !end of output ! write HMLT file OPEN (outfile, file = 'hamilt', status = 'unknown', form = 'formatted', err = 300, iostat = ios) 300 CALL errore ('HMLT', 'Opening hamilt', abs (ios) ) CALL wannier_hamiltonian_JK(nwan,hamk,outfile) CLOSE(outfile) IF(nspin==1) THEN ham = 5.d-1*ham hamh = 5.d-1*hamh ENDIF DO i=1, nspin WRITE(stdout,*) ' ' CALL cdiagh(nwan,ham(:,:,i),nwan,e,v) WRITE(stdout,'(5x,a39)') 'Projected Hamiltonian eigenvalues (eV):' WRITE(stdout,'(6x,a5,i1,4x,50f9.4)') 'spin', i, (e(j)*rytoev,j=1,nwan) WRITE(stdout,*) ' ' ! hopings integrals IF(any(hoping/=0.d0)) THEN WRITE(stdout,'(5x,a44,3f6.2,a5)') 'Hopings from the atom in origin to direction', (hoping(j),j=1,3), 'are:' DO j=1,nwan WRITE(stdout,'(5x,20f9.5)') (dreal(hamh(j,n,i))*rytoev, n=1, nwan) ENDDO WRITE(stdout,*) ' ' ENDIF ! additional check: hamiltonian should be hermitian IF(sum(dimag(hamh))>=1d-9) THEN WRITE(stdout,*) 'ATTENTION! Hamiltonian is NOT hermitian' WRITE(stdout,*) 'Imaginary part is:' DO j=1,nwan WRITE(stdout,'(20f9.5)') (dimag(hamh(j,n,i))*rytoev, n=1, nwan) ENDDO WRITE(stdout,*) '---' ENDIF ENDDO IF(plot_bands) CALL plot_wannier_bands(ek) DEALLOCATE(ek) DEALLOCATE(hamk) DEALLOCATE(hamh) END SUBROUTINE new_hamiltonian SUBROUTINE plot_wannier_bands(ek) ! This routine produces three files wannier_bands.dat, original_bands.dat ! and wannier_bands.plot to visual check how generated Wannier-Hamiltonian ! reproduses original bands structure. To check just type 'gnuplot wannier_bands.plot' ! in your terminal window. Of course one can use another ploting software for that purpose, ! for example 'xmgrace original_bands.dat wannier_bands.dat' USE constants, ONLY: rytoev USE io_global, ONLY: stdout, ionode, ionode_id USE io_files USE kinds, ONLY: DP USE klist, ONLY: nks, xk USE lsda_mod, ONLY: nspin USE wvfct, ONLY: nbnd, et USE wannier_new, ONLY: nwan USE ener, ONLY: ef IMPLICIT NONE REAL(DP), INTENT(in) :: ek(nwan,nks) INTEGER :: i,j,k,ik,ios REAL(DP) :: x, emax, emin OPEN (unit = 113, file = 'wannier_bands.dat', status = 'unknown', form = 'formatted', err = 400, iostat = ios) OPEN (unit = 114, file = 'original_bands.dat', status = 'unknown', form = 'formatted', err = 401, iostat = ios) OPEN (unit = 115, file = 'wannier_bands.plot', status = 'unknown', form = 'formatted', err = 402, iostat = ios) 400 CALL errore ('plot_wannier_bands', 'wannier_bands.dat', abs (ios) ) 401 CALL errore ('plot_wannier_bands', 'original_bands.dat', abs (ios) ) 402 CALL errore ('plot_wannier_bands', 'wannier_bands.plot', abs (ios) ) emax = ek(1,1) emin = ek(1,1) DO i=1, nwan x = 0.d0 DO ik=1, nks/nspin ! find limits for pretty plotting IF (emaxek(i,ik)*rytoev) emin = ek(i,ik)*rytoev ! WRITE(113,'(2f15.9)') x, ek(i,ik)*rytoev IF (ik/=nks) THEN x = x + sqrt((xk(1,ik)-xk(1,ik+1))**2+(xk(2,ik)-xk(2,ik+1))**2+(xk(3,ik)-xk(3,ik+1))**2) ENDIF ENDDO WRITE(113, '(2a)') ' ' ENDDO DO i=1, nbnd x = 0.d0 DO ik=1, nks/nspin WRITE(114,'(2f15.9)') x, et(i,ik)*rytoev IF (ik/=nks) THEN x = x + sqrt((xk(1,ik)-xk(1,ik+1))**2+(xk(2,ik)-xk(2,ik+1))**2+(xk(3,ik)-xk(3,ik+1))**2) ENDIF ENDDO WRITE(114, '(2a)') ' ' ENDDO IF (nspin==2) THEN DO i=1, nwan x = 0.d0 DO ik=nks/2+1, nks ! find limits for pretty plotting IF (emaxek(i,ik)*rytoev) emin = ek(i,ik)*rytoev ! WRITE(113,'(2f15.9)') x, ek(i,ik)*rytoev IF (ik/=nks) THEN x = x + sqrt((xk(1,ik)-xk(1,ik+1))**2+(xk(2,ik)-xk(2,ik+1))**2+(xk(3,ik)-xk(3,ik+1))**2) ENDIF ENDDO WRITE(113, '(2a)') ' ' ENDDO DO i=1, nbnd x = 0.d0 DO ik=nks/2+1, nks WRITE(114,'(2f15.9)') x, et(i,ik)*rytoev IF (ik/=nks) THEN x = x + sqrt((xk(1,ik)-xk(1,ik+1))**2+(xk(2,ik)-xk(2,ik+1))**2+(xk(3,ik)-xk(3,ik+1))**2) ENDIF ENDDO WRITE(114, '(2a)') ' ' ENDDO ENDIF WRITE(115,*)'reset' WRITE(115,*)'set term post eps' WRITE(115,*)'set output "wannier_bands.eps"' WRITE(115,*)'unset xtics' WRITE(115,'(a12,f7.3,a,f7.3,a)')'set yrange [',emin-1.5,':',emax+1.5,']' WRITE(115,*)'set style line 1 lt 1 lc rgb "black" lw 2' WRITE(115,*)'set style line 2 lt 2 lc rgb "red" lw 2' WRITE(115,*)'set style line 3 lt 1 lc rgb "green" lw 1' WRITE(115,*)'set ylabel "Energy (eV)"' WRITE(115,*)'plot \\' WRITE(115,*)'"original_bands.dat" title "LDA bands" with lines linestyle 1,\\' WRITE(115,*)'"wannier_bands.dat" title "Wannier bands" with lines linestyle 2,\\' WRITE(115,'(f7.3,a44)') ef*rytoev,'title "Fermi energy" with lines linestyle 3' CLOSE(113) CLOSE(114) CLOSE(115) END SUBROUTINE plot_wannier_bands espresso-5.1/PP/src/pw2wannier90.f900000644000175000017500000034033012341372773015211 0ustar mbamba! ! Copyright (C) 2003-2013 Quantum ESPRESSO and Wannier90 groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! pw2wannier was written by Stefano de Gironcoli ! with later additions by ! Jonathan Yates - spinors ! Arash Mostofi - gamma point and transport things ! Timo Thonhauser, Graham Lopez, Ivo Souza ! uHu, uIu terms for orbital magnetisation ! please send bugs and comments to ! Jonathan Yates and Arash Mostofi ! ! Known limitations: ! spinors and orbital magnetisation term are not ! yet inplimented for ultrasofts or PAW ! ! ! module wannier USE kinds, only : DP !integer, allocatable :: nnb(:) ! #b (ik) integer :: nnb ! #b integer, allocatable :: kpb(:,:) ! k+b (ik,ib) integer, allocatable :: g_kpb(:,:,:) ! G_k+b (ipol,ik,ib) integer, allocatable :: ig_(:,:) ! G_k+b (ipol,ik,ib) integer, allocatable :: lw(:,:), mw(:,:) ! l and m of wannier (16,n_wannier) integer, allocatable :: num_sph(:) ! num. func. in lin. comb., (n_wannier) logical, allocatable :: excluded_band(:) ! begin change Lopez, Thonhauser, Souza integer :: iun_nnkp,iun_mmn,iun_amn,iun_band,iun_spn,iun_plot,iun_parity,& nnbx,nexband,iun_uhu,& iun_uIu !ivo ! end change Lopez, Thonhauser, Souza integer :: n_wannier !number of WF integer :: n_proj !number of projection complex(DP), allocatable :: gf(:,:) ! guding_function(npwx,n_wannier) integer :: ispinw, ikstart, ikstop, iknum character(LEN=15) :: wan_mode ! running mode logical :: logwann, wvfn_formatted, write_unk, & ! begin change Lopez, Thonhauser, Souza write_amn,write_mmn,reduce_unk,write_spn,& write_unkg,write_uhu,& write_uIu, spn_formatted, uHu_formatted, uIu_formatted !ivo ! end change Lopez, Thonhauser, Souza ! input data from nnkp file real(DP), allocatable :: center_w(:,:) ! center_w(3,n_wannier) integer, allocatable :: spin_eig(:) real(DP), allocatable :: spin_qaxis(:,:) integer, allocatable :: l_w(:), mr_w(:) ! l and mr of wannier (n_wannier) as from table 3.1,3.2 of spec. integer, allocatable :: r_w(:) ! index of radial function (n_wannier) as from table 3.3 of spec. real(DP), allocatable :: xaxis(:,:),zaxis(:,:) ! xaxis and zaxis(3,n_wannier) real(DP), allocatable :: alpha_w(:) ! alpha_w(n_wannier) ( called zona in wannier spec) ! real(DP), allocatable :: csph(:,:) ! expansion coefficients of gf on QE ylm function (16,n_wannier) CHARACTER(len=256) :: seedname = 'wannier' ! prepended to file names in wannier90 ! For implementation of wannier_lib integer :: mp_grid(3) ! dimensions of MP k-point grid real(DP) :: rlatt(3,3),glatt(3,3) ! real and recip lattices (Cartesian co-ords, units of Angstrom) real(DP), allocatable :: kpt_latt(:,:) ! k-points in crystal co-ords. kpt_latt(3,iknum) real(DP), allocatable :: atcart(:,:) ! atom centres in Cartesian co-ords and Angstrom units. atcart(3,nat) integer :: num_bands ! number of bands left after exclusions character(len=3), allocatable :: atsym(:) ! atomic symbols. atsym(nat) integer :: num_nnmax=12 complex(DP), allocatable :: m_mat(:,:,:,:), a_mat(:,:,:) complex(DP), allocatable :: u_mat(:,:,:), u_mat_opt(:,:,:) logical, allocatable :: lwindow(:,:) real(DP), allocatable :: wann_centers(:,:),wann_spreads(:) real(DP) :: spreads(3) real(DP), allocatable :: eigval(:,:) logical :: old_spinor_proj ! for compatability for nnkp files prior to W90v2.0 end module wannier ! !------------------------------------------------------------------------ PROGRAM pw2wannier90 ! This is the interface to the Wannier90 code: see http://www.wannier.org !------------------------------------------------------------------------ ! USE io_global, ONLY : stdout, ionode, ionode_id USE mp_global, ONLY : mp_startup USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE cell_base, ONLY : at, bg USE lsda_mod, ONLY : nspin, isk USE klist, ONLY : nkstot USE io_files, ONLY : prefix, tmp_dir USE noncollin_module, ONLY : noncolin USE control_flags, ONLY : gamma_only USE environment,ONLY : environment_start USE wvfct, ONLY : ecutwfc USE wannier ! IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! INTEGER :: ios CHARACTER(len=4) :: spin_component CHARACTER(len=256) :: outdir ! these are in wannier module.....-> integer :: ispinw, ikstart, ikstop, iknum NAMELIST / inputpp / outdir, prefix, spin_component, wan_mode, & seedname, write_unk, write_amn, write_mmn, write_spn, & ! begin change Lopez, Thonhauser, Souza wvfn_formatted, reduce_unk, write_unkg, write_uhu,& write_uIu, spn_formatted, uHu_formatted, uIu_formatted !ivo ! end change Lopez, Thonhauser, Souza ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'PW2WANNIER' ) ! ! Read input on i/o node and broadcast to the rest ! ios = 0 IF(ionode) THEN ! ! Check to see if we are reading from a file ! CALL input_from_file() ! ! set default values for variables in namelist ! CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( trim( outdir ) == ' ' ) outdir = './' prefix = ' ' seedname = 'wannier' spin_component = 'none' wan_mode = 'standalone' wvfn_formatted = .false. spn_formatted=.false. uHu_formatted=.false. uIu_formatted=.false. write_unk = .false. write_amn = .true. write_mmn = .true. write_spn = .false. ! begin change Lopez, Thonhauser, Souza write_uhu = .false. write_uIu = .false. !ivo ! end change Lopez, Thonhauser, Souza reduce_unk= .false. write_unkg= .false. ! ! reading the namelist inputpp ! READ (5, inputpp, iostat=ios) ! ! Check of namelist variables ! tmp_dir = trimcheck(outdir) ! back to all nodes ENDIF ! CALL mp_bcast(ios,ionode_id, world_comm) IF (ios /= 0) CALL errore( 'pw2wannier90', 'reading inputpp namelist', abs(ios)) ! ! broadcast input variable to all nodes ! CALL mp_bcast(outdir,ionode_id, world_comm) CALL mp_bcast(tmp_dir,ionode_id, world_comm) CALL mp_bcast(prefix,ionode_id, world_comm) CALL mp_bcast(seedname,ionode_id, world_comm) CALL mp_bcast(spin_component,ionode_id, world_comm) CALL mp_bcast(wan_mode,ionode_id, world_comm) CALL mp_bcast(wvfn_formatted,ionode_id, world_comm) CALL mp_bcast(write_unk,ionode_id, world_comm) CALL mp_bcast(write_amn,ionode_id, world_comm) CALL mp_bcast(write_mmn,ionode_id, world_comm) ! begin change Lopez, Thonhauser, Souza CALL mp_bcast(write_uhu,ionode_id, world_comm) CALL mp_bcast(write_uIu,ionode_id, world_comm) !ivo ! end change Lopez, Thonhauser, Souza CALL mp_bcast(write_spn,ionode_id, world_comm) CALL mp_bcast(reduce_unk,ionode_id, world_comm) CALL mp_bcast(write_unkg,ionode_id, world_comm) ! ! Now allocate space for pwscf variables, read and check them. ! logwann = .true. WRITE(stdout,*) WRITE(stdout,*) ' Reading nscf_save data' CALL read_file WRITE(stdout,*) ! IF (noncolin.and.gamma_only) CALL errore('pw2wannier90',& 'Non-collinear and gamma_only not implemented',1) ! Here we should trap restarts from a different number of nodes. ! or attempts at kpoint distribution ! SELECT CASE ( trim( spin_component ) ) CASE ( 'up' ) WRITE(stdout,*) ' Spin CASE ( up )' ispinw = 1 ikstart = 1 ikstop = nkstot/2 iknum = nkstot/2 CASE ( 'down' ) WRITE(stdout,*) ' Spin CASE ( down )' ispinw = 2 ikstart = nkstot/2 + 1 ikstop = nkstot iknum = nkstot/2 CASE DEFAULT IF(noncolin) THEN WRITE(stdout,*) ' Spin CASE ( non-collinear )' ELSE WRITE(stdout,*) ' Spin CASE ( default = unpolarized )' ENDIF ispinw = 0 ikstart = 1 ikstop = nkstot iknum = nkstot END SELECT ! WRITE(stdout,*) WRITE(stdout,*) ' Wannier mode is: ',wan_mode WRITE(stdout,*) ! IF(wan_mode=='standalone') THEN ! WRITE(stdout,*) ' -----------------' WRITE(stdout,*) ' *** Reading nnkp ' WRITE(stdout,*) ' -----------------' WRITE(stdout,*) CALL read_nnkp WRITE(stdout,*) ' Opening pp-files ' CALL openfil_pp CALL ylm_expansion WRITE(stdout,*) WRITE(stdout,*) IF(write_amn) THEN WRITE(stdout,*) ' ---------------' WRITE(stdout,*) ' *** Compute A ' WRITE(stdout,*) ' ---------------' WRITE(stdout,*) CALL compute_amn WRITE(stdout,*) ELSE WRITE(stdout,*) ' -----------------------------' WRITE(stdout,*) ' *** A matrix is not computed ' WRITE(stdout,*) ' -----------------------------' WRITE(stdout,*) ENDIF IF(write_mmn) THEN WRITE(stdout,*) ' ---------------' WRITE(stdout,*) ' *** Compute M ' WRITE(stdout,*) ' ---------------' WRITE(stdout,*) CALL compute_mmn WRITE(stdout,*) ELSE WRITE(stdout,*) ' -----------------------------' WRITE(stdout,*) ' *** M matrix is not computed ' WRITE(stdout,*) ' -----------------------------' WRITE(stdout,*) ENDIF if(noncolin) then IF(write_spn) THEN WRITE(stdout,*) ' ------------------' WRITE(stdout,*) ' *** Compute Spin ' WRITE(stdout,*) ' ------------------' WRITE(stdout,*) CALL compute_spin WRITE(stdout,*) ELSE WRITE(stdout,*) ' --------------------------------' WRITE(stdout,*) ' *** Spin matrix is not computed ' WRITE(stdout,*) ' --------------------------------' WRITE(stdout,*) ENDIF elseif(write_spn) then write(stdout,*) ' -----------------------------------' write(stdout,*) ' *** Non-collinear calculation is ' write(stdout,*) ' required for spin ' write(stdout,*) ' term to be computed ' write(stdout,*) ' -----------------------------------' endif IF(write_uHu.or.write_uIu) THEN WRITE(stdout,*) ' ----------------' WRITE(stdout,*) ' *** Compute Orb ' WRITE(stdout,*) ' ----------------' WRITE(stdout,*) CALL compute_orb WRITE(stdout,*) ELSE WRITE(stdout,*) ' -----------------------------------' WRITE(stdout,*) ' *** Orbital terms are not computed ' WRITE(stdout,*) ' -----------------------------------' WRITE(stdout,*) ENDIF WRITE(stdout,*) ' ----------------' WRITE(stdout,*) ' *** Write bands ' WRITE(stdout,*) ' ----------------' WRITE(stdout,*) CALL write_band WRITE(stdout,*) IF(write_unk) THEN WRITE(stdout,*) ' --------------------' WRITE(stdout,*) ' *** Write plot info ' WRITE(stdout,*) ' --------------------' WRITE(stdout,*) CALL write_plot WRITE(stdout,*) ELSE WRITE(stdout,*) ' -----------------------------' WRITE(stdout,*) ' *** Plot info is not printed ' WRITE(stdout,*) ' -----------------------------' WRITE(stdout,*) ENDIF IF(write_unkg) THEN WRITE(stdout,*) ' --------------------' WRITE(stdout,*) ' *** Write parity info ' WRITE(stdout,*) ' --------------------' WRITE(stdout,*) CALL write_parity WRITE(stdout,*) ELSE WRITE(stdout,*) ' -----------------------------' WRITE(stdout,*) ' *** Parity info is not printed ' WRITE(stdout,*) ' -----------------------------' WRITE(stdout,*) ENDIF WRITE(stdout,*) ' ------------' WRITE(stdout,*) ' *** Stop pp ' WRITE(stdout,*) ' ------------' WRITE(stdout,*) CALL stop_pp ! ENDIF ! IF(wan_mode=='library') THEN ! ! seedname='wannier' WRITE(stdout,*) ' Setting up...' CALL setup_nnkp WRITE(stdout,*) WRITE(stdout,*) ' Opening pp-files ' CALL openfil_pp WRITE(stdout,*) WRITE(stdout,*) ' Ylm expansion' CALL ylm_expansion WRITE(stdout,*) CALL compute_amn CALL compute_mmn if(noncolin) then IF(write_spn) THEN CALL compute_spin ENDIF ENDIF IF(write_uHu.or.write_uIu) THEN CALL compute_orb ENDIF CALL write_band IF(write_unk) CALL write_plot IF(write_unkg) THEN CALL write_parity ENDIF CALL run_wannier CALL lib_dealloc CALL stop_pp ! ENDIF ! IF(wan_mode=='wannier2sic') THEN ! CALL read_nnkp CALL wan2sic ! ENDIF ! STOP END PROGRAM pw2wannier90 ! !----------------------------------------------------------------------- SUBROUTINE lib_dealloc !----------------------------------------------------------------------- ! USE wannier IMPLICIT NONE DEALLOCATE(m_mat,u_mat,u_mat_opt,a_mat,eigval) RETURN END SUBROUTINE lib_dealloc ! !----------------------------------------------------------------------- SUBROUTINE setup_nnkp !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode, ionode_id USE kinds, ONLY : DP USE constants, ONLY : eps6, tpi, bohr => BOHR_RADIUS_ANGS USE cell_base, ONLY : at, bg, alat USE gvect, ONLY : g, gg USE ions_base, ONLY : nat, tau, ityp, atm USE klist, ONLY : xk USE mp, ONLY : mp_bcast, mp_sum USE mp_global, ONLY : intra_pool_comm USE mp_world, ONLY : world_comm USE wvfct, ONLY : nbnd,npwx USE control_flags, ONLY : gamma_only USE noncollin_module, ONLY : noncolin USE wannier IMPLICIT NONE real(DP) :: g_(3), gg_ INTEGER :: ik, ib, ig, iw, ia, indexb, TYPE INTEGER, ALLOCATABLE :: ig_check(:,:) real(DP) :: xnorm, znorm, coseno INTEGER :: exclude_bands(nbnd) ! aam: translations between PW2Wannier90 and Wannier90 ! pw2wannier90 <==> Wannier90 ! nbnd num_bands_tot ! n_wannier num_wann ! num_bands num_bands ! nat num_atoms ! iknum num_kpts ! rlatt transpose(real_lattice) ! glatt transpose(recip_lattice) ! kpt_latt kpt_latt ! nnb nntot ! kpb nnlist ! g_kpb nncell ! mp_grid mp_grid ! center_w proj_site ! l_w,mr_w,r_w proj_l,proj_m,proj_radial ! xaxis,zaxis proj_x,proj_z ! alpha_w proj_zona ! exclude_bands exclude_bands ! atcart atoms_cart ! atsym atom_symbols ALLOCATE( kpt_latt(3,iknum) ) ALLOCATE( atcart(3,nat), atsym(nat) ) ALLOCATE( kpb(iknum,num_nnmax), g_kpb(3,iknum,num_nnmax) ) ALLOCATE( center_w(3,nbnd), alpha_w(nbnd), l_w(nbnd), & mr_w(nbnd), r_w(nbnd), zaxis(3,nbnd), xaxis(3,nbnd) ) ALLOCATE( excluded_band(nbnd) ) ! real lattice (Cartesians, Angstrom) rlatt(:,:) = transpose(at(:,:))*alat*bohr ! reciprocal lattice (Cartesians, Angstrom) glatt(:,:) = transpose(bg(:,:))*tpi/(alat*bohr) ! convert Cartesian k-points to crystallographic co-ordinates kpt_latt(:,1:iknum)=xk(:,1:iknum) CALL cryst_to_cart(iknum,kpt_latt,at,-1) ! atom co-ordinates in Cartesian co-ords and Angstrom units atcart(:,:) = tau(:,:)*bohr*alat ! atom symbols DO ia=1,nat TYPE=ityp(ia) atsym(ia)=atm(TYPE) ENDDO ! MP grid dimensions CALL find_mp_grid() WRITE(stdout,'(" - Number of atoms is (",i3,")")') nat #ifdef __WANLIB IF (ionode) THEN CALL wannier_setup(seedname,mp_grid,iknum,rlatt, & ! input glatt,kpt_latt,nbnd,nat,atsym,atcart,gamma_only,noncolin, & ! input nnb,kpb,g_kpb,num_bands,n_wannier,center_w, & ! output l_w,mr_w,r_w,zaxis,xaxis,alpha_w,exclude_bands) ! output ENDIF #endif CALL mp_bcast(nnb,ionode_id, world_comm) CALL mp_bcast(kpb,ionode_id, world_comm) CALL mp_bcast(g_kpb,ionode_id, world_comm) CALL mp_bcast(num_bands,ionode_id, world_comm) CALL mp_bcast(n_wannier,ionode_id, world_comm) CALL mp_bcast(center_w,ionode_id, world_comm) CALL mp_bcast(l_w,ionode_id, world_comm) CALL mp_bcast(mr_w,ionode_id, world_comm) CALL mp_bcast(r_w,ionode_id, world_comm) CALL mp_bcast(zaxis,ionode_id, world_comm) CALL mp_bcast(xaxis,ionode_id, world_comm) CALL mp_bcast(alpha_w,ionode_id, world_comm) CALL mp_bcast(exclude_bands,ionode_id, world_comm) IF(noncolin) THEN n_proj=n_wannier/2 ELSE n_proj=n_wannier ENDIF ALLOCATE( gf(npwx,n_proj), csph(16,n_proj) ) WRITE(stdout,'(" - Number of wannier functions is (",i3,")")') n_wannier excluded_band(1:nbnd)=.false. nexband=0 band_loop: DO ib=1,nbnd indexb=exclude_bands(ib) IF (indexb>nbnd .or. indexb<0) THEN CALL errore('setup_nnkp',' wrong excluded band index ', 1) ELSEIF (indexb==0) THEN exit band_loop ELSE nexband=nexband+1 excluded_band(indexb)=.true. ENDIF ENDDO band_loop IF ( (nbnd-nexband)/=num_bands ) & CALL errore('setup_nnkp',' something wrong with num_bands',1) DO iw=1,n_proj xnorm = sqrt(xaxis(1,iw)*xaxis(1,iw) + xaxis(2,iw)*xaxis(2,iw) + & xaxis(3,iw)*xaxis(3,iw)) IF (xnorm < eps6) CALL errore ('setup_nnkp',' |xaxis| < eps ',1) znorm = sqrt(zaxis(1,iw)*zaxis(1,iw) + zaxis(2,iw)*zaxis(2,iw) + & zaxis(3,iw)*zaxis(3,iw)) IF (znorm < eps6) CALL errore ('setup_nnkp',' |zaxis| < eps ',1) coseno = (xaxis(1,iw)*zaxis(1,iw) + xaxis(2,iw)*zaxis(2,iw) + & xaxis(3,iw)*zaxis(3,iw))/xnorm/znorm IF (abs(coseno) > eps6) & CALL errore('setup_nnkp',' xaxis and zaxis are not orthogonal !',1) IF (alpha_w(iw) < eps6) & CALL errore('setup_nnkp',' zona value must be positive', 1) ! convert wannier center in cartesian coordinates (in unit of alat) CALL cryst_to_cart( 1, center_w(:,iw), at, 1 ) ENDDO WRITE(stdout,*) ' - All guiding functions are given ' nnbx=0 nnb=max(nnbx,nnb) ALLOCATE( ig_(iknum,nnb), ig_check(iknum,nnb) ) DO ik=1, iknum DO ib = 1, nnb g_(:) = REAL( g_kpb(:,ik,ib) ) CALL cryst_to_cart (1, g_, bg, 1) gg_ = g_(1)*g_(1) + g_(2)*g_(2) + g_(3)*g_(3) ig_(ik,ib) = 0 ig = 1 DO WHILE (gg(ig) <= gg_ + eps6) IF ( (abs(g(1,ig)-g_(1)) < eps6) .and. & (abs(g(2,ig)-g_(2)) < eps6) .and. & (abs(g(3,ig)-g_(3)) < eps6) ) ig_(ik,ib) = ig ig= ig +1 ENDDO ENDDO ENDDO ig_check(:,:) = ig_(:,:) CALL mp_sum( ig_check, intra_pool_comm ) DO ik=1, iknum DO ib = 1, nnb IF (ig_check(ik,ib) ==0) & CALL errore('setup_nnkp', & ' g_kpb vector is not in the list of Gs', 100*ik+ib ) ENDDO ENDDO DEALLOCATE (ig_check) WRITE(stdout,*) ' - All neighbours are found ' WRITE(stdout,*) RETURN END SUBROUTINE setup_nnkp ! !----------------------------------------------------------------------- SUBROUTINE run_wannier !----------------------------------------------------------------------- ! USE io_global, ONLY : ionode, ionode_id USE ions_base, ONLY : nat USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE control_flags, ONLY : gamma_only USE wannier IMPLICIT NONE ALLOCATE(u_mat(n_wannier,n_wannier,iknum)) ALLOCATE(u_mat_opt(num_bands,n_wannier,iknum)) ALLOCATE(lwindow(num_bands,iknum)) ALLOCATE(wann_centers(3,n_wannier)) ALLOCATE(wann_spreads(n_wannier)) #ifdef __WANLIB IF (ionode) THEN CALL wannier_run(seedname,mp_grid,iknum,rlatt, & ! input glatt,kpt_latt,num_bands,n_wannier,nnb,nat, & ! input atsym,atcart,gamma_only,m_mat,a_mat,eigval, & ! input u_mat,u_mat_opt,lwindow,wann_centers,wann_spreads,spreads) ! output ENDIF #endif CALL mp_bcast(u_mat,ionode_id, world_comm) CALL mp_bcast(u_mat_opt,ionode_id, world_comm) CALL mp_bcast(lwindow,ionode_id, world_comm) CALL mp_bcast(wann_centers,ionode_id, world_comm) CALL mp_bcast(wann_spreads,ionode_id, world_comm) CALL mp_bcast(spreads,ionode_id, world_comm) RETURN END SUBROUTINE run_wannier !----------------------------------------------------------------------- ! SUBROUTINE find_mp_grid() !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE kinds, ONLY: DP USE wannier IMPLICIT NONE ! <<>> INTEGER :: ik,ntemp,ii real(DP) :: min_k,temp(3,iknum),mpg1 min_k=minval(kpt_latt(1,:)) ii=0 DO ik=1,iknum IF (kpt_latt(1,ik)==min_k) THEN ii=ii+1 temp(:,ii)=kpt_latt(:,ik) ENDIF ENDDO ntemp=ii min_k=minval(temp(2,1:ntemp)) ii=0 DO ik=1,ntemp IF (temp(2,ik)==min_k) THEN ii=ii+1 ENDIF ENDDO mp_grid(3)=ii min_k=minval(temp(3,1:ntemp)) ii=0 DO ik=1,ntemp IF (temp(3,ik)==min_k) THEN ii=ii+1 ENDIF ENDDO mp_grid(2)=ii IF ( (mp_grid(2)==0) .or. (mp_grid(3)==0) ) & CALL errore('find_mp_grid',' one or more mp_grid dimensions is zero', 1) mpg1=iknum/(mp_grid(2)*mp_grid(3)) mp_grid(1) = nint(mpg1) WRITE(stdout,*) WRITE(stdout,'(3(a,i3))') ' MP grid is ',mp_grid(1),' x',mp_grid(2),' x',mp_grid(3) IF (real(mp_grid(1),kind=DP)/=mpg1) & CALL errore('find_mp_grid',' determining mp_grid failed', 1) RETURN END SUBROUTINE find_mp_grid !----------------------------------------------------------------------- ! SUBROUTINE read_nnkp !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode, ionode_id USE kinds, ONLY: DP USE constants, ONLY : eps6, tpi, bohr => BOHR_RADIUS_ANGS USE cell_base, ONLY : at, bg, alat USE gvect, ONLY : g, gg USE klist, ONLY : nkstot, xk USE mp, ONLY : mp_bcast, mp_sum USE mp_global, ONLY : intra_pool_comm USE mp_world, ONLY : world_comm USE wvfct, ONLY : npwx, nbnd USE noncollin_module, ONLY : noncolin USE wannier IMPLICIT NONE ! INTEGER, EXTERNAL :: find_free_unit ! real(DP) :: g_(3), gg_ INTEGER :: ik, ib, ig, ipol, iw, idum, indexb INTEGER numk, i, j INTEGER, ALLOCATABLE :: ig_check(:,:) real(DP) :: xx(3), xnorm, znorm, coseno LOGICAL :: have_nnkp,found IF (ionode) THEN ! Read nnkp file on ionode only INQUIRE(file=trim(seedname)//".nnkp",exist=have_nnkp) IF(.not. have_nnkp) THEN WRITE(stdout,*) ' Could not find the file '//trim(seedname)//'.nnkp' STOP ENDIF iun_nnkp = find_free_unit() OPEN (unit=iun_nnkp, file=trim(seedname)//".nnkp",form='formatted') ENDIF nnbx=0 ! check the information from *.nnkp with the nscf_save data WRITE(stdout,*) ' Checking info from wannier.nnkp file' WRITE(stdout,*) IF (ionode) THEN ! read from ionode only CALL scan_file_to('real_lattice',found) if(.not.found) then WRITE(stdout,*) ' Could not find real_lattice block in '//trim(seedname)//'.nnkp' STOP endif DO j=1,3 READ(iun_nnkp,*) (rlatt(i,j),i=1,3) DO i = 1,3 rlatt(i,j) = rlatt(i,j)/(alat*bohr) ENDDO ENDDO DO j=1,3 DO i=1,3 IF(abs(rlatt(i,j)-at(i,j))>eps6) THEN WRITE(stdout,*) ' Something wrong! ' WRITE(stdout,*) ' rlatt(i,j) =',rlatt(i,j), ' at(i,j)=',at(i,j) STOP ENDIF ENDDO ENDDO WRITE(stdout,*) ' - Real lattice is ok' CALL scan_file_to('recip_lattice',found) if(.not.found) then WRITE(stdout,*) ' Could not find recip_lattice block in '//trim(seedname)//'.nnkp' STOP endif DO j=1,3 READ(iun_nnkp,*) (glatt(i,j),i=1,3) DO i = 1,3 glatt(i,j) = (alat*bohr)*glatt(i,j)/tpi ENDDO ENDDO DO j=1,3 DO i=1,3 IF(abs(glatt(i,j)-bg(i,j))>eps6) THEN WRITE(stdout,*) ' Something wrong! ' WRITE(stdout,*) ' glatt(i,j)=',glatt(i,j), ' bg(i,j)=',bg(i,j) STOP ENDIF ENDDO ENDDO WRITE(stdout,*) ' - Reciprocal lattice is ok' CALL scan_file_to('kpoints',found) if(.not.found) then WRITE(stdout,*) ' Could not find kpoints block in '//trim(seedname)//'.nnkp' STOP endif READ(iun_nnkp,*) numk IF(numk/=iknum) THEN WRITE(stdout,*) ' Something wrong! ' WRITE(stdout,*) ' numk=',numk, ' iknum=',iknum STOP ENDIF DO i=1,numk READ(iun_nnkp,*) xx(1), xx(2), xx(3) CALL cryst_to_cart( 1, xx, bg, 1 ) IF(abs(xx(1)-xk(1,i))>eps6.or. & abs(xx(2)-xk(2,i))>eps6.or. & abs(xx(3)-xk(3,i))>eps6) THEN WRITE(stdout,*) ' Something wrong! ' WRITE(stdout,*) ' k-point ',i,' is wrong' WRITE(stdout,*) xx(1), xx(2), xx(3) WRITE(stdout,*) xk(1,i), xk(2,i), xk(3,i) STOP ENDIF ENDDO WRITE(stdout,*) ' - K-points are ok' ENDIF ! ionode ! Broadcast CALL mp_bcast(rlatt,ionode_id, world_comm) CALL mp_bcast(glatt,ionode_id, world_comm) IF (ionode) THEN ! read from ionode only if(noncolin) then old_spinor_proj=.false. CALL scan_file_to('spinor_projections',found) if(.not.found) then !try old style projections CALL scan_file_to('projections',found) if(found) then old_spinor_proj=.true. else WRITE(stdout,*) ' Could not find projections block in '//trim(seedname)//'.nnkp' STOP endif end if else CALL scan_file_to('projections',found) if(.not.found) then WRITE(stdout,*) ' Could not find projections block in '//trim(seedname)//'.nnkp' STOP endif endif READ(iun_nnkp,*) n_proj ENDIF ! Broadcast CALL mp_bcast(n_proj,ionode_id, world_comm) CALL mp_bcast(old_spinor_proj,ionode_id, world_comm) IF(old_spinor_proj) THEN n_wannier=n_proj*2 ELSE n_wannier=n_proj ENDIF ALLOCATE( center_w(3,n_proj), alpha_w(n_proj), gf(npwx,n_proj), & l_w(n_proj), mr_w(n_proj), r_w(n_proj), & zaxis(3,n_proj), xaxis(3,n_proj), csph(16,n_proj) ) if(noncolin.and..not.old_spinor_proj) then ALLOCATE( spin_eig(n_proj),spin_qaxis(3,n_proj) ) endif WRITE(stdout,'(" - Number of wannier functions is ok (",i3,")")') n_wannier IF (ionode) THEN ! read from ionode only DO iw=1,n_proj READ(iun_nnkp,*) (center_w(i,iw), i=1,3), l_w(iw), mr_w(iw), r_w(iw) READ(iun_nnkp,*) (zaxis(i,iw),i=1,3),(xaxis(i,iw),i=1,3),alpha_w(iw) xnorm = sqrt(xaxis(1,iw)*xaxis(1,iw) + xaxis(2,iw)*xaxis(2,iw) + & xaxis(3,iw)*xaxis(3,iw)) IF (xnorm < eps6) CALL errore ('read_nnkp',' |xaxis| < eps ',1) znorm = sqrt(zaxis(1,iw)*zaxis(1,iw) + zaxis(2,iw)*zaxis(2,iw) + & zaxis(3,iw)*zaxis(3,iw)) IF (znorm < eps6) CALL errore ('read_nnkp',' |zaxis| < eps ',1) coseno = (xaxis(1,iw)*zaxis(1,iw) + xaxis(2,iw)*zaxis(2,iw) + & xaxis(3,iw)*zaxis(3,iw))/xnorm/znorm IF (abs(coseno) > eps6) & CALL errore('read_nnkp',' xaxis and zaxis are not orthogonal !',1) IF (alpha_w(iw) < eps6) & CALL errore('read_nnkp',' zona value must be positive', 1) ! convert wannier center in cartesian coordinates (in unit of alat) CALL cryst_to_cart( 1, center_w(:,iw), at, 1 ) if(noncolin.and..not.old_spinor_proj) then READ(iun_nnkp,*) spin_eig(iw),(spin_qaxis(i,iw),i=1,3) xnorm = sqrt(spin_qaxis(1,iw)*spin_qaxis(1,iw) + spin_qaxis(2,iw)*spin_qaxis(2,iw) + & spin_qaxis(3,iw)*spin_qaxis(3,iw)) IF (xnorm < eps6) CALL errore ('read_nnkp',' |xaxis| < eps ',1) spin_qaxis(:,iw)=spin_qaxis(:,iw)/xnorm endif ENDDO ENDIF WRITE(stdout,*) ' - All guiding functions are given ' ! Broadcast CALL mp_bcast(center_w,ionode_id, world_comm) CALL mp_bcast(l_w,ionode_id, world_comm) CALL mp_bcast(mr_w,ionode_id, world_comm) CALL mp_bcast(r_w,ionode_id, world_comm) CALL mp_bcast(zaxis,ionode_id, world_comm) CALL mp_bcast(xaxis,ionode_id, world_comm) CALL mp_bcast(alpha_w,ionode_id, world_comm) CALL mp_bcast(spin_eig,ionode_id, world_comm) CALL mp_bcast(spin_qaxis,ionode_id, world_comm) ! WRITE(stdout,*) WRITE(stdout,*) 'Projections:' DO iw=1,n_proj WRITE(stdout,'(3f12.6,3i3,f12.6)') & center_w(1:3,iw),l_w(iw),mr_w(iw),r_w(iw),alpha_w(iw) ENDDO IF (ionode) THEN ! read from ionode only CALL scan_file_to('nnkpts',found) if(.not.found) then WRITE(stdout,*) ' Could not find nnkpts block in '//trim(seedname)//'.nnkp' STOP endif READ (iun_nnkp,*) nnb ENDIF ! Broadcast CALL mp_bcast(nnb,ionode_id, world_comm) ! nnbx = max (nnbx, nnb ) ! ALLOCATE ( kpb(iknum,nnbx), g_kpb(3,iknum,nnbx),& ig_(iknum,nnbx), ig_check(iknum,nnbx) ) ! read data about neighbours WRITE(stdout,*) WRITE(stdout,*) ' Reading data about k-point neighbours ' WRITE(stdout,*) IF (ionode) THEN DO ik=1, iknum DO ib = 1, nnb READ(iun_nnkp,*) idum, kpb(ik,ib), (g_kpb(ipol,ik,ib), ipol =1,3) ENDDO ENDDO ENDIF ! Broadcast CALL mp_bcast(kpb,ionode_id, world_comm) CALL mp_bcast(g_kpb,ionode_id, world_comm) DO ik=1, iknum DO ib = 1, nnb g_(:) = REAL( g_kpb(:,ik,ib) ) CALL cryst_to_cart (1, g_, bg, 1) gg_ = g_(1)*g_(1) + g_(2)*g_(2) + g_(3)*g_(3) ig_(ik,ib) = 0 ig = 1 DO WHILE (gg(ig) <= gg_ + eps6) IF ( (abs(g(1,ig)-g_(1)) < eps6) .and. & (abs(g(2,ig)-g_(2)) < eps6) .and. & (abs(g(3,ig)-g_(3)) < eps6) ) ig_(ik,ib) = ig ig= ig +1 ENDDO ENDDO ENDDO ig_check(:,:) = ig_(:,:) CALL mp_sum( ig_check, intra_pool_comm ) DO ik=1, iknum DO ib = 1, nnb IF (ig_check(ik,ib) ==0) & CALL errore('read_nnkp', & ' g_kpb vector is not in the list of Gs', 100*ik+ib ) ENDDO ENDDO DEALLOCATE (ig_check) WRITE(stdout,*) ' All neighbours are found ' WRITE(stdout,*) ALLOCATE( excluded_band(nbnd) ) IF (ionode) THEN ! read from ionode only CALL scan_file_to('exclude_bands',found) if(.not.found) then WRITE(stdout,*) ' Could not find exclude_bands block in '//trim(seedname)//'.nnkp' STOP endif READ (iun_nnkp,*) nexband excluded_band(1:nbnd)=.false. DO i=1,nexband READ(iun_nnkp,*) indexb IF (indexb<1 .or. indexb>nbnd) & CALL errore('read_nnkp',' wrong excluded band index ', 1) excluded_band(indexb)=.true. ENDDO ENDIF num_bands=nbnd-nexband ! Broadcast CALL mp_bcast(nexband,ionode_id, world_comm) CALL mp_bcast(excluded_band,ionode_id, world_comm) CALL mp_bcast(num_bands,ionode_id, world_comm) IF (ionode) CLOSE (iun_nnkp) ! ionode only RETURN END SUBROUTINE read_nnkp ! !----------------------------------------------------------------------- SUBROUTINE scan_file_to (keyword,found) !----------------------------------------------------------------------- ! USE wannier, ONLY :iun_nnkp USE io_global, ONLY : stdout IMPLICIT NONE CHARACTER(len=*), intent(in) :: keyword logical, intent(out) :: found CHARACTER(len=80) :: line1, line2 ! ! by uncommenting the following line the file scan restarts every time ! from the beginning thus making the reading independent on the order ! of data-blocks ! rewind (iun_nnkp) ! 10 CONTINUE READ(iun_nnkp,*,end=20) line1, line2 IF(line1/='begin') GOTO 10 IF(line2/=keyword) GOTO 10 found=.true. RETURN 20 found=.false. rewind (iun_nnkp) END SUBROUTINE scan_file_to ! !----------------------------------------------------------------------- SUBROUTINE compute_mmn !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE kinds, ONLY: DP USE wvfct, ONLY : nbnd, npw, npwx, igk, g2kin USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : evc, psic, psic_nc USE fft_base, ONLY : dffts, dfftp USE fft_interfaces, ONLY : fwfft, invfft USE gvecs, ONLY : nls, nlsm USE klist, ONLY : nkstot, xk USE io_files, ONLY : nwordwfc, iunwfc USE gvect, ONLY : g, ngm, gstart USE cell_base, ONLY : tpiba2, omega, alat, tpiba, at, bg USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE constants, ONLY : tpi USE uspp, ONLY : nkb, vkb USE uspp_param, ONLY : upf, nh, lmaxq USE becmod, ONLY : bec_type, becp, calbec, & allocate_bec_type, deallocate_bec_type USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum USE noncollin_module,ONLY : noncolin, npol USE wvfct, ONLY : ecutwfc USE wannier IMPLICIT NONE ! INTEGER, EXTERNAL :: find_free_unit ! complex(DP), parameter :: cmplx_i=(0.0_DP,1.0_DP) ! INTEGER :: mmn_tot, ik, ikp, ipol, ib, npwq, i, m, n INTEGER :: ikb, jkb, ih, jh, na, nt, ijkb0, ind, nbt INTEGER :: ikevc, ikpevcq, s, counter COMPLEX(DP), ALLOCATABLE :: phase(:), aux(:), aux2(:), evcq(:,:), & becp2(:,:), Mkb(:,:), aux_nc(:,:) real(DP), ALLOCATABLE :: rbecp2(:,:) COMPLEX(DP), ALLOCATABLE :: qb(:,:,:,:), qgm(:) real(DP), ALLOCATABLE :: qg(:), ylm(:,:), dxk(:,:) INTEGER, ALLOCATABLE :: igkq(:) COMPLEX(DP) :: mmn, zdotc, phase1 real(DP) :: arg, g_(3) CHARACTER (len=9) :: cdate,ctime CHARACTER (len=60) :: header LOGICAL :: any_uspp INTEGER :: nn,inn,loop,loop2 LOGICAL :: nn_found INTEGER :: istart,iend INTEGER :: ibnd_n, ibnd_m any_uspp = any(upf(1:ntyp)%tvanp) IF(any_uspp .and. noncolin) CALL errore('pw2wannier90',& 'NCLS calculation not implimented with USP',1) ALLOCATE( phase(dffts%nnr), igkq(npwx) ) ALLOCATE( evcq(npol*npwx,nbnd) ) IF(noncolin) THEN ALLOCATE( aux_nc(npwx,npol) ) ELSE ALLOCATE( aux(npwx) ) ENDIF IF (gamma_only) ALLOCATE(aux2(npwx)) IF (wan_mode=='library') ALLOCATE(m_mat(num_bands,num_bands,nnb,iknum)) IF (wan_mode=='standalone') THEN iun_mmn = find_free_unit() IF (ionode) OPEN (unit=iun_mmn, file=trim(seedname)//".mmn",form='formatted') CALL date_and_tim( cdate, ctime ) header='Created on '//cdate//' at '//ctime IF (ionode) THEN WRITE (iun_mmn,*) header WRITE (iun_mmn,*) nbnd-nexband, iknum, nnb ENDIF ENDIF ! ! USPP ! ! IF(any_uspp) THEN CALL init_us_1 CALL allocate_bec_type ( nkb, nbnd, becp ) IF (gamma_only) THEN ALLOCATE ( rbecp2(nkb,nbnd)) ELSE ALLOCATE ( becp2(nkb,nbnd) ) ENDIF ENDIF ! ! qb is FT of Q(r) ! nbt = nnb * iknum ! ALLOCATE( qg(nbt) ) ALLOCATE (dxk(3,nbt)) ! ind = 0 DO ik=1,iknum DO ib=1,nnb ind = ind + 1 ikp = kpb(ik,ib) ! g_(:) = REAL( g_kpb(:,ik,ib) ) CALL cryst_to_cart (1, g_, bg, 1) dxk(:,ind) = xk(:,ikp) +g_(:) - xk(:,ik) qg(ind) = dxk(1,ind)*dxk(1,ind)+dxk(2,ind)*dxk(2,ind)+dxk(3,ind)*dxk(3,ind) ENDDO ! write (stdout,'(i3,12f8.4)') ik, qg((ik-1)*nnb+1:ik*nnb) ENDDO ! ! USPP ! IF(any_uspp) THEN ALLOCATE( ylm(nbt,lmaxq*lmaxq), qgm(nbt) ) ALLOCATE( qb (nkb, nkb, ntyp, nbt) ) ! CALL ylmr2 (lmaxq*lmaxq, nbt, dxk, qg, ylm) qg(:) = sqrt(qg(:)) * tpiba ! DO nt = 1, ntyp IF (upf(nt)%tvanp ) THEN DO ih = 1, nh (nt) DO jh = 1, nh (nt) CALL qvan2 (nbt, ih, jh, nt, qg, qgm, ylm) qb (ih, jh, nt, 1:nbt) = omega * qgm(1:nbt) ENDDO ENDDO ENDIF ENDDO ! DEALLOCATE (qg, qgm, ylm ) ! ENDIF WRITE (stdout,*) "MMN" ! ALLOCATE( Mkb(nbnd,nbnd) ) ! WRITE(stdout,'(a,i8)') ' iknum = ',iknum ind = 0 DO ik=1,iknum WRITE (stdout,'(i8)') ik ikevc = ik + ikstart - 1 CALL davcio (evc, 2*nwordwfc, iunwfc, ikevc, -1 ) CALL gk_sort (xk(1,ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) ! ! USPP ! IF(any_uspp) THEN CALL init_us_2 (npw, igk, xk(1,ik), vkb) ! below we compute the product of beta functions with |psi> CALL calbec (npw, vkb, evc, becp) ENDIF ! ! !do ib=1,nnb(ik) DO ib=1,nnb ind = ind + 1 ikp = kpb(ik,ib) ! read wfc at k+b ikpevcq = ikp + ikstart - 1 ! if(noncolin) then ! call davcio (evcq_nc, 2*nwordwfc, iunwfc, ikpevcq, -1 ) ! else CALL davcio (evcq, 2*nwordwfc, iunwfc, ikpevcq, -1 ) ! end if CALL gk_sort (xk(1,ikp), ngm, g, ecutwfc / tpiba2, npwq, igkq, g2kin) ! compute the phase phase(:) = (0.d0,0.d0) IF ( ig_(ik,ib)>0) phase( nls(ig_(ik,ib)) ) = (1.d0,0.d0) CALL invfft ('Wave', phase, dffts) ! ! USPP ! IF(any_uspp) THEN CALL init_us_2 (npwq, igkq, xk(1,ikp), vkb) ! below we compute the product of beta functions with |psi> IF (gamma_only) THEN CALL calbec ( npwq, vkb, evcq, rbecp2 ) ELSE CALL calbec ( npwq, vkb, evcq, becp2 ) ENDIF ENDIF ! ! Mkb(:,:) = (0.0d0,0.0d0) ! IF (any_uspp) THEN ijkb0 = 0 DO nt = 1, ntyp IF ( upf(nt)%tvanp ) THEN DO na = 1, nat ! arg = dot_product( dxk(:,ind), tau(:,na) ) * tpi phase1 = cmplx( cos(arg), -sin(arg) ,kind=DP) ! IF ( ityp(na) == nt ) THEN DO jh = 1, nh(nt) jkb = ijkb0 + jh DO ih = 1, nh(nt) ikb = ijkb0 + ih ! DO m = 1,nbnd IF (excluded_band(m)) CYCLE IF (gamma_only) THEN DO n=1,m ! Mkb(m,n) is symmetric in m and n for gamma_only case IF (excluded_band(n)) CYCLE Mkb(m,n) = Mkb(m,n) + & phase1 * qb(ih,jh,nt,ind) * & becp%r(ikb,m) * rbecp2(jkb,n) ENDDO ELSE DO n=1,nbnd IF (excluded_band(n)) CYCLE Mkb(m,n) = Mkb(m,n) + & phase1 * qb(ih,jh,nt,ind) * & conjg( becp%k(ikb,m) ) * becp2(jkb,n) ENDDO ENDIF ENDDO ! m ENDDO !ih ENDDO !jh ijkb0 = ijkb0 + nh(nt) ENDIF !ityp ENDDO !nat ELSE !tvanp DO na = 1, nat IF ( ityp(na) == nt ) ijkb0 = ijkb0 + nh(nt) ENDDO ENDIF !tvanp ENDDO !ntyp ENDIF ! any_uspp ! ! ! loops on bands ! IF (wan_mode=='standalone') THEN IF (ionode) WRITE (iun_mmn,'(7i5)') ik, ikp, (g_kpb(ipol,ik,ib), ipol=1,3) ENDIF ! DO m=1,nbnd IF (excluded_band(m)) CYCLE ! IF(noncolin) THEN psic_nc(:,:) = (0.d0, 0.d0) DO ipol=1,2!npol istart=(ipol-1)*npwx+1 iend=istart+npw-1 psic_nc(nls (igk (1:npw) ),ipol ) = evc(istart:iend, m) CALL invfft ('Wave', psic_nc(:,ipol), dffts) psic_nc(1:dffts%nnr,ipol) = psic_nc(1:dffts%nnr,ipol) * & phase(1:dffts%nnr) CALL fwfft ('Wave', psic_nc(:,ipol), dffts) aux_nc(1:npwq,ipol) = psic_nc(nls (igkq(1:npwq) ),ipol ) ENDDO ELSE psic(:) = (0.d0, 0.d0) psic(nls (igk (1:npw) ) ) = evc (1:npw, m) IF(gamma_only) psic(nlsm(igk (1:npw) ) ) = conjg(evc (1:npw, m)) CALL invfft ('Wave', psic, dffts) psic(1:dffts%nnr) = psic(1:dffts%nnr) * phase(1:dffts%nnr) CALL fwfft ('Wave', psic, dffts) aux(1:npwq) = psic(nls (igkq(1:npwq) ) ) ENDIF IF(gamma_only) THEN IF (gstart==2) psic(nlsm(1)) = (0.d0,0.d0) aux2(1:npwq) = conjg(psic(nlsm(igkq(1:npwq) ) ) ) ENDIF ! ! Mkb(m,n) = Mkb(m,n) + \sum_{ijI} qb_{ij}^I * e^-i(b*tau_I) ! < beta_j,k2 | psi_n,k2 > ! IF (gamma_only) THEN DO n=1,m ! Mkb(m,n) is symmetric in m and n for gamma_only case IF (excluded_band(n)) CYCLE mmn = zdotc (npwq, aux,1,evcq(1,n),1) & + conjg(zdotc(npwq,aux2,1,evcq(1,n),1)) CALL mp_sum(mmn, intra_pool_comm) Mkb(m,n) = mmn + Mkb(m,n) IF (m/=n) Mkb(n,m) = Mkb(m,n) ! fill other half of matrix by symmetry ENDDO ELSEIF(noncolin) THEN DO n=1,nbnd IF (excluded_band(n)) CYCLE mmn=(0.d0, 0.d0) ! do ipol=1,2 ! mmn = mmn+zdotc (npwq, aux_nc(1,ipol),1,evcq_nc(1,ipol,n),1) mmn = mmn + zdotc (npwq, aux_nc(1,1),1,evcq(1,n),1) & + zdotc (npwq, aux_nc(1,2),1,evcq(npwx+1,n),1) ! end do CALL mp_sum(mmn, intra_pool_comm) Mkb(m,n) = mmn + Mkb(m,n) ENDDO ELSE DO n=1,nbnd IF (excluded_band(n)) CYCLE mmn = zdotc (npwq, aux,1,evcq(1,n),1) CALL mp_sum(mmn, intra_pool_comm) Mkb(m,n) = mmn + Mkb(m,n) ENDDO ENDIF ENDDO ! m ibnd_n = 0 DO n=1,nbnd IF (excluded_band(n)) CYCLE ibnd_n = ibnd_n + 1 ibnd_m = 0 DO m=1,nbnd IF (excluded_band(m)) CYCLE ibnd_m = ibnd_m + 1 IF (wan_mode=='standalone') THEN IF (ionode) WRITE (iun_mmn,'(2f18.12)') Mkb(m,n) ELSEIF (wan_mode=='library') THEN m_mat(ibnd_m,ibnd_n,ib,ik)=Mkb(m,n) ELSE CALL errore('compute_mmn',' value of wan_mode not recognised',1) ENDIF ENDDO ENDDO ENDDO !ib ENDDO !ik IF (ionode .and. wan_mode=='standalone') CLOSE (iun_mmn) IF (gamma_only) DEALLOCATE(aux2) DEALLOCATE (Mkb, dxk, phase, igkq) IF(noncolin) THEN DEALLOCATE(aux_nc) ELSE DEALLOCATE(aux) ENDIF DEALLOCATE(evcq) IF(any_uspp) THEN DEALLOCATE ( qb) CALL deallocate_bec_type (becp) IF (gamma_only) THEN DEALLOCATE (rbecp2) ELSE DEALLOCATE (becp2) ENDIF ENDIF ! WRITE(stdout,*) WRITE(stdout,*) ' MMN calculated' RETURN END SUBROUTINE compute_mmn !----------------------------------------------------------------------- SUBROUTINE compute_spin !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE kinds, ONLY: DP USE wvfct, ONLY : nbnd, npw, npwx, igk, g2kin USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : evc, psic, psic_nc USE fft_base, ONLY : dffts, dfftp USE fft_interfaces, ONLY : fwfft, invfft USE gvecs, ONLY : nls, nlsm USE klist, ONLY : nkstot, xk USE io_files, ONLY : nwordwfc, iunwfc USE gvect, ONLY : g, ngm, gstart USE cell_base, ONLY : tpiba2, omega, alat, tpiba, at, bg USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE constants, ONLY : tpi USE uspp, ONLY : nkb, vkb USE uspp_param, ONLY : upf, nh, lmaxq USE becmod, ONLY : bec_type, becp, calbec, & allocate_bec_type, deallocate_bec_type USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum USE noncollin_module,ONLY : noncolin, npol USE wvfct, ONLY : ecutwfc USE wannier ! begin change Lopez, Thonhauser, Souza USE mp, ONLY : mp_barrier USE scf, ONLY : vrs, vltot, v, kedtau USE gvecs, ONLY : doublegrid USE lsda_mod, ONLY : nspin USE constants, ONLY : rytoev IMPLICIT NONE ! INTEGER, EXTERNAL :: find_free_unit ! complex(DP), parameter :: cmplx_i=(0.0_DP,1.0_DP) ! INTEGER :: mmn_tot, ik, ikp, ipol, ib, npwq, i, m, n INTEGER :: ikb, jkb, ih, jh, na, nt, ijkb0, ind, nbt INTEGER :: ikevc, ikpevcq, s, counter COMPLEX(DP) :: mmn, zdotc, phase1 real(DP) :: arg, g_(3) CHARACTER (len=9) :: cdate,ctime CHARACTER (len=60) :: header LOGICAL :: any_uspp INTEGER :: nn,inn,loop,loop2 LOGICAL :: nn_found INTEGER :: istart,iend COMPLEX(DP) :: sigma_x,sigma_y,sigma_z,cdum1,cdum2 complex(DP), allocatable :: spn(:,:) any_uspp = any(upf(1:ntyp)%tvanp) IF(any_uspp .and. noncolin) CALL errore('pw2wannier90',& 'NCLS calculation not implemented with USP',1) if (write_spn) allocate(spn(3,(num_bands*(num_bands+1))/2)) !ivo ! not sure this is really needed if((write_spn.or.write_uhu.or.write_uIu).and.wan_mode=='library')& call errore('pw2wannier90',& 'write_spn, write_uhu, and write_uIu not meant to work library mode',1) !endivo IF(write_spn.and.noncolin) THEN IF (ionode) then iun_spn = find_free_unit() CALL date_and_tim( cdate, ctime ) header='Created on '//cdate//' at '//ctime if(spn_formatted) then OPEN (unit=iun_spn, file=trim(seedname)//".spn",form='formatted') WRITE (iun_spn,*) header !ivo WRITE (iun_spn,*) nbnd-nexband,iknum else OPEN (unit=iun_spn, file=trim(seedname)//".spn",form='unformatted') WRITE (iun_spn) header !ivo WRITE (iun_spn) nbnd-nexband,iknum endif ENDIF ENDIF ! WRITE(stdout,'(a,i8)') ' iknum = ',iknum ind = 0 DO ik=1,iknum WRITE (stdout,'(i8)') ik ikevc = ik + ikstart - 1 CALL davcio (evc, 2*nwordwfc, iunwfc, ikevc, -1 ) CALL gk_sort (xk(1,ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) IF(write_spn.and.noncolin) THEN counter=0 DO m=1,nbnd if(excluded_band(m)) cycle !ivo DO n=1,m if(excluded_band(n)) cycle !ivo cdum1=zdotc(npw,evc(1,n),1,evc(npwx+1,m),1) call mp_sum(cdum1,intra_pool_comm) cdum2=zdotc(npw,evc(npwx+1,n),1,evc(1,m),1) call mp_sum(cdum2,intra_pool_comm) sigma_x=cdum1+cdum2 sigma_y=cmplx_i*(cdum2-cdum1) sigma_z=zdotc(npw,evc(1,n),1,evc(1,m),1)& -zdotc(npw,evc(npwx+1,n),1,evc(npwx+1,m),1) call mp_sum(sigma_z,intra_pool_comm) counter=counter+1 spn(1,counter)=sigma_x spn(2,counter)=sigma_y spn(3,counter)=sigma_z ENDDO ENDDO if(ionode) then ! root node for i/o if(spn_formatted) then ! slow formatted way counter=0 do m=1,num_bands do n=1,m counter=counter+1 do s=1,3 write(iun_spn,'(2es26.16)') spn(s,counter) enddo enddo enddo else ! fast unformatted way write(iun_spn) ((spn(s,m),s=1,3),m=1,((num_bands*(num_bands+1))/2)) endif endif ! end of root activity ENDIF end DO IF (ionode .and. write_spn .and. noncolin) CLOSE (iun_spn) if(write_spn.and.noncolin) deallocate(spn) WRITE(stdout,*) WRITE(stdout,*) ' SPIN calculated' RETURN END SUBROUTINE compute_spin !----------------------------------------------------------------------- SUBROUTINE compute_orb !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE kinds, ONLY: DP USE wvfct, ONLY : nbnd, npw, npwx, igk, g2kin USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : evc, psic, psic_nc USE fft_base, ONLY : dffts, dfftp USE fft_interfaces, ONLY : fwfft, invfft USE gvecs, ONLY : nls, nlsm USE klist, ONLY : nkstot, xk USE io_files, ONLY : nwordwfc, iunwfc USE gvect, ONLY : g, ngm, gstart USE cell_base, ONLY : tpiba2, omega, alat, tpiba, at, bg USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE constants, ONLY : tpi USE uspp, ONLY : nkb, vkb USE uspp_param, ONLY : upf, nh, lmaxq USE becmod, ONLY : bec_type, becp, calbec, & allocate_bec_type, deallocate_bec_type USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum USE noncollin_module,ONLY : noncolin, npol USE wvfct, ONLY : ecutwfc USE wannier ! begin change Lopez, Thonhauser, Souza USE mp, ONLY : mp_barrier USE scf, ONLY : vrs, vltot, v, kedtau USE gvecs, ONLY : doublegrid USE lsda_mod, ONLY : nspin USE constants, ONLY : rytoev IMPLICIT NONE ! INTEGER, EXTERNAL :: find_free_unit ! complex(DP), parameter :: cmplx_i=(0.0_DP,1.0_DP) ! INTEGER :: mmn_tot, ik, ikp, ipol, ib, npwq, i, m, n INTEGER :: ikb, jkb, ih, jh, na, nt, ijkb0, ind, nbt INTEGER :: ikevc, ikpevcq, s, counter COMPLEX(DP), ALLOCATABLE :: phase(:), aux(:), aux2(:), evcq(:,:), & becp2(:,:), Mkb(:,:), aux_nc(:,:) real(DP), ALLOCATABLE :: rbecp2(:,:) COMPLEX(DP), ALLOCATABLE :: qb(:,:,:,:), qgm(:) real(DP), ALLOCATABLE :: qg(:), ylm(:,:) INTEGER, ALLOCATABLE :: igkq(:) COMPLEX(DP) :: mmn, zdotc, phase1 real(DP) :: arg, g_(3) CHARACTER (len=9) :: cdate,ctime CHARACTER (len=60) :: header LOGICAL :: any_uspp INTEGER :: nn,inn,loop,loop2 LOGICAL :: nn_found INTEGER :: istart,iend ! begin change Lopez, Thonhauser, Souza COMPLEX(DP) :: sigma_x,sigma_y,sigma_z,cdum1,cdum2 integer :: npw_b1, npw_b2, i_b1, i_b2, ikp_b1, ikp_b2 integer, allocatable :: igk_b1(:), igk_b2(:) complex(DP), allocatable :: evc_b1(:,:),evc_b2(:,:),evc_aux(:,:),H_evc(:,:) complex(DP), allocatable :: uHu(:,:),uIu(:,:),spn(:,:) ! end change Lopez, Thonhauser, Souza any_uspp = any(upf(1:ntyp)%tvanp) IF(any_uspp .and. noncolin) CALL errore('pw2wannier90',& 'NCLS calculation not implimented with USP',1) ALLOCATE( phase(dffts%nnr) ) ALLOCATE( evcq(npol*npwx,nbnd) ) IF(noncolin) THEN ALLOCATE( aux_nc(npwx,npol) ) ELSE ALLOCATE( aux(npwx) ) ENDIF IF (gamma_only) ALLOCATE(aux2(npwx)) IF (wan_mode=='library') ALLOCATE(m_mat(num_bands,num_bands,nnb,iknum)) if (write_uHu) allocate(uhu(num_bands,num_bands)) if (write_uIu) allocate(uIu(num_bands,num_bands)) !ivo ! not sure this is really needed if((write_uhu.or.write_uIu).and.wan_mode=='library')& call errore('pw2wannier90',& 'write_uhu, and write_uIu not meant to work library mode',1) !endivo ! ! ! begin change Lopez, Thonhauser, Souza ! !==================================================================== ! ! The following code was inserted by Timo Thonhauser, Ivo Souza, and ! Graham Lopez in order to calculate the matrix elements ! necessary for the Wannier interpolation ! of the orbital magnetization ! !==================================================================== ! ! ! if(write_uHu.or.write_uIu) then !ivo ! if(gamma_only) call errore('pw2wannier90',& 'write_uHu and write_uIu not yet implemented for gamma_only case',1) !ivo if(any_uspp) call errore('pw2wannier90',& 'write_uHu and write_uIu not yet implemented with USP',1) !ivo ! ! allocate(igk_b1(npwx),igk_b2(npwx),evc_b1(npol*npwx,nbnd),& evc_b2(npol*npwx,nbnd),& evc_aux(npol*npwx,nbnd)) ! if(write_uHu) then allocate(H_evc(npol*npwx,nbnd)) write(stdout,*) write(stdout,*) ' -----------------' write(stdout,*) ' *** Compute uHu ' write(stdout,*) ' -----------------' write(stdout,*) iun_uhu = find_free_unit() if (ionode) then CALL date_and_tim( cdate, ctime ) header='Created on '//cdate//' at '//ctime if(uHu_formatted) then open (unit=iun_uhu, file=TRIM(seedname)//".uHu",form='FORMATTED') write (iun_uhu,*) header write (iun_uhu,*) nbnd, iknum, nnb else open (unit=iun_uhu, file=TRIM(seedname)//".uHu",form='UNFORMATTED') write (iun_uhu) header write (iun_uhu) nbnd, iknum, nnb endif endif endif if(write_uIu) then write(stdout,*) write(stdout,*) ' -----------------' write(stdout,*) ' *** Compute uIu ' write(stdout,*) ' -----------------' write(stdout,*) iun_uIu = find_free_unit() if (ionode) then CALL date_and_tim( cdate, ctime ) header='Created on '//cdate//' at '//ctime if(uIu_formatted) then open (unit=iun_uIu, file=TRIM(seedname)//".uIu",form='FORMATTED') write (iun_uIu,*) header write (iun_uIu,*) nbnd, iknum, nnb else open (unit=iun_uIu, file=TRIM(seedname)//".uIu",form='UNFORMATTED') write (iun_uIu) header write (iun_uIu) nbnd, iknum, nnb endif endif endif CALL set_vrs(vrs,vltot,v%of_r,kedtau,v%kin_r,dfftp%nnr,nspin,doublegrid) call allocate_bec_type ( nkb, nbnd, becp ) write(stdout,'(a,i8)') ' iknum = ',iknum do ik = 1, iknum ! loop over k points ! write (stdout,'(i8)') ik ! ! sort the wfc at k and set up stuff for h_psi CALL gk_sort(xk(1,ik), ngm, g, ecutwfc/tpiba2, npw, igk, g2kin) CALL init_us_2(npw,igk,xk(1,ik),vkb) ! ! compute " H | u_n,k+b2 > " ! do i_b2 = 1, nnb ! nnb = # of nearest neighbors ! ! read wfc at k+b2 ikp_b2 = kpb(ik,i_b2) ! for kpoint 'ik', index of neighbor 'i_b2' ! ! call davcio (evc_b2, 2*nwordwfc, iunwfc, ikp_b2, -1 ) !ivo call davcio (evc_b2, 2*nwordwfc, iunwfc, ikp_b2+ikstart-1, -1 ) !ivo ! call gk_sort (xk(1,ikp_b2), ngm, g, ecutwfc/tpiba2, npw_b1, igk_b1, g2kin) !ivo call gk_sort (xk(1,ikp_b2), ngm, g, ecutwfc/tpiba2, npw_b2, igk_b2, g2kin) !ivo ! ! compute the phase phase(:) = ( 0.0D0, 0.0D0 ) if (ig_(ik,i_b2)>0) phase( nls(ig_(ik,i_b2)) ) = ( 1.0D0, 0.0D0 ) call invfft('Wave', phase, dffts) ! ! loop on bands evc_aux = ( 0.0D0, 0.0D0 ) do n = 1, nbnd !ivo replaced dummy m --> n everywhere on this do loop, for consistency w/ band indices in comments if (excluded_band(n)) cycle if(noncolin) then psic_nc = ( 0.0D0, 0.0D0 ) !ivo do ipol = 1, 2 ! psic_nc = ( 0.0D0, 0.0D0 ) !ivo istart=(ipol-1)*npwx+1 iend=istart+npw_b2-1 !ivo npw_b1 --> npw_b2 psic_nc(nls (igk_b2(1:npw_b2) ),ipol ) = evc_b2(istart:iend, n) !ivo igk_b1, npw_b1 --> igk_b2, npw_b2 ! multiply by phase in real space - '1' unless neighbor is in a bordering BZ call invfft ('Wave', psic_nc(:,ipol), dffts) psic_nc(1:dffts%nnr,ipol) = psic_nc(1:dffts%nnr,ipol) * conjg(phase(1:dffts%nnr)) call fwfft ('Wave', psic_nc(:,ipol), dffts) ! save the result iend=istart+npw-1 evc_aux(istart:iend,n) = psic_nc(nls (igk(1:npw) ),ipol ) end do else ! this is modeled after the pre-existing code at 1162 psic = ( 0.0D0, 0.0D0 ) ! Graham, changed npw --> npw_b2 on RHS. Do you agree?! psic(nls (igk_b2(1:npw_b2) ) ) = evc_b2(1:npw_b2, n) call invfft ('Wave', psic, dffts) psic(1:dffts%nnr) = psic(1:dffts%nnr) * conjg(phase(1:dffts%nnr)) call fwfft ('Wave', psic, dffts) evc_aux(1:npw,n) = psic(nls (igk(1:npw) ) ) end if end do !n if(write_uHu) then !ivo ! ! gk_sort overwrites the kinetic energy - recalculate at ik g2kin(1:npw) = ( ( xk(1,ik) + g(1,igk(1:npw)) )**2 + & ( xk(2,ik) + g(2,igk(1:npw)) )**2 + & ( xk(3,ik) + g(3,igk(1:npw)) )**2 ) * tpiba2 ! CALL h_psi(npwx, npw, nbnd, evc_aux, H_evc) endif ! ! compute " < u_m,k+b1 | " ! do i_b1 = 1, nnb ! ! read wfc at k+b1 !ivo replaced k+b2 --> k+b1 ikp_b1 = kpb(ik,i_b1) ! call davcio (evc_b1, 2*nwordwfc, iunwfc, ikp_b1, -1 ) !ivo call davcio (evc_b1, 2*nwordwfc, iunwfc, ikp_b1+ikstart-1, -1 ) !ivo ! call gk_sort (xk(1,ikp_b1), ngm, g, ecutwfc/tpiba2, npw_b2, igk_b2, g2kin) !ivo call gk_sort (xk(1,ikp_b1), ngm, g, ecutwfc/tpiba2, npw_b1, igk_b1, g2kin) !ivo ! ! compute the phase phase(:) = ( 0.0D0, 0.0D0 ) if (ig_(ik,i_b1)>0) phase( nls(ig_(ik,i_b1)) ) = ( 1.0D0, 0.0D0 ) !call cft3s (phase, nr1s, nr2s, nr3s, nrx1s, nrx2s, nrx3s, +2) call invfft('Wave', phase, dffts) ! ! loop on bands do m = 1, nbnd if (excluded_band(m)) cycle if(noncolin) then aux_nc = ( 0.0D0, 0.0D0 ) psic_nc = ( 0.0D0, 0.0D0 ) !ivo do ipol = 1, 2 ! psic_nc = ( 0.0D0, 0.0D0 ) !ivo istart=(ipol-1)*npwx+1 iend=istart+npw_b1-1 !ivo npw_b2 --> npw_b1 psic_nc(nls (igk_b1(1:npw_b1) ),ipol ) = evc_b1(istart:iend, m) !ivo igk_b2,npw_b2 --> igk_b1,npw_b1 ! multiply by phase in real space - '1' unless neighbor is in a different BZ call invfft ('Wave', psic_nc(:,ipol), dffts) !psic_nc(1:nrxxs,ipol) = psic_nc(1:nrxxs,ipol) * conjg(phase(1:nrxxs)) psic_nc(1:dffts%nnr,ipol) = psic_nc(1:dffts%nnr,ipol) * conjg(phase(1:dffts%nnr)) call fwfft ('Wave', psic_nc(:,ipol), dffts) ! save the result aux_nc(1:npw,ipol) = psic_nc(nls (igk(1:npw) ),ipol ) end do else ! this is modeled after the pre-existing code at 1162 aux = ( 0.0D0 ) psic = ( 0.0D0, 0.0D0 ) ! Graham, changed npw --> npw_b1 on RHS. Do you agree?! psic(nls (igk_b1(1:npw_b1) ) ) = evc_b1(1:npw_b1, m) !ivo igk_b2 --> igk_b1 call invfft ('Wave', psic, dffts) !psic(1:nrxxs) = psic(1:nrxxs) * conjg(phase(1:nrxxs)) psic(1:dffts%nnr) = psic(1:dffts%nnr) * conjg(phase(1:dffts%nnr)) call fwfft ('Wave', psic, dffts) aux(1:npw) = psic(nls (igk(1:npw) ) ) end if ! ! if(write_uHu) then !ivo do n = 1, nbnd ! loop over bands of already computed ket if (excluded_band(n)) cycle if(noncolin) then mmn = zdotc (npw, aux_nc(1,1),1,H_evc(1,n),1) + & zdotc (npw, aux_nc(1,2),1,H_evc(1+npwx,n),1) else mmn = zdotc (npw, aux,1,H_evc(1,n),1) end if mmn = mmn * rytoev ! because wannier90 works in eV call mp_sum(mmn, intra_pool_comm) ! if (ionode) write (iun_uhu) mmn uHu(n,m)=mmn ! end do !n endif if(write_uIu) then !ivo do n = 1, nbnd ! loop over bands of already computed ket if (excluded_band(n)) cycle if(noncolin) then mmn = zdotc (npw, aux_nc(1,1),1,evc_aux(1,n),1) + & zdotc (npw, aux_nc(1,2),1,evc_aux(1+npwx,n),1) else mmn = zdotc (npw, aux,1,evc_aux(1,n),1) end if call mp_sum(mmn, intra_pool_comm) ! if (ionode) write (iun_uIu) mmn uIu(n,m)=mmn ! end do !n endif ! end do ! m = 1, nbnd if (ionode) then ! write the files out to disk if(write_uhu) then if(uHu_formatted) then ! slow bulky way for transferable files do n=1,num_bands do m=1,num_bands write(iun_uHu,'(2ES20.10)') uHu(m,n) enddo enddo else ! the fast way write(iun_uHu) ((uHu(n,m),n=1,num_bands),m=1,num_bands) endif endif if(write_uiu) then if(uIu_formatted) then ! slow bulky way for transferable files do n=1,num_bands do m=1,num_bands write(iun_uIu,'(2ES20.10)') uIu(m,n) enddo enddo else ! the fast way write(iun_uIu) ((uIu(n,m),n=1,num_bands),m=1,num_bands) endif endif endif ! end of io end do ! i_b1 end do ! i_b2 end do ! ik ! deallocate(igk_b1,igk_b2,evc_b1,evc_b2,evc_aux) if(write_uHu) then deallocate(H_evc) deallocate(uHu) end if if(write_uIu) deallocate(uIu) if (ionode.and.write_uHu) close (iun_uhu) !ivo if (ionode.and.write_uIu) close (iun_uIu) !ivo ! else if(.not.write_uHu) then write(stdout,*) write(stdout,*) ' -------------------------------' write(stdout,*) ' *** uHu matrix is not computed ' write(stdout,*) ' -------------------------------' write(stdout,*) endif if(.not.write_uIu) then write(stdout,*) write(stdout,*) ' -------------------------------' write(stdout,*) ' *** uIu matrix is not computed ' write(stdout,*) ' -------------------------------' write(stdout,*) endif end if ! ! ! ! ! ! !==================================================================== ! ! END_m_orbit ! !==================================================================== ! ! end change Lopez, Thonhauser, Souza ! ! ! IF (gamma_only) DEALLOCATE(aux2) DEALLOCATE (phase) IF(noncolin) THEN DEALLOCATE(aux_nc) ELSE DEALLOCATE(aux) ENDIF DEALLOCATE(evcq) if(write_spn.and.noncolin) deallocate(spn) IF(any_uspp) THEN DEALLOCATE ( qb) CALL deallocate_bec_type (becp) IF (gamma_only) THEN DEALLOCATE (rbecp2) ELSE DEALLOCATE (becp2) ENDIF ENDIF ! WRITE(stdout,*) WRITE(stdout,*) ' uHu calculated' RETURN END SUBROUTINE compute_orb ! !----------------------------------------------------------------------- SUBROUTINE compute_amn !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE kinds, ONLY : DP USE klist, ONLY : nkstot, xk USE wvfct, ONLY : nbnd, npw, npwx, igk, g2kin USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : evc USE io_files, ONLY : nwordwfc, iunwfc USE gvect, ONLY : g, ngm, gstart USE cell_base, ONLY : tpiba2 USE uspp, ONLY : nkb, vkb USE becmod, ONLY : bec_type, becp, calbec, & allocate_bec_type, deallocate_bec_type USE wannier USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE uspp_param, ONLY : upf USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum USE noncollin_module,ONLY : noncolin, npol USE wvfct, ONLY : ecutwfc USE constants, ONLY : eps6 IMPLICIT NONE ! INTEGER, EXTERNAL :: find_free_unit ! COMPLEX(DP) :: amn, zdotc,amn_tmp,fac(2) real(DP):: ddot COMPLEX(DP), ALLOCATABLE :: sgf(:,:) INTEGER :: ik, ibnd, ibnd1, iw,i, ikevc, nt, ipol CHARACTER (len=9) :: cdate,ctime CHARACTER (len=60) :: header LOGICAL :: any_uspp, opnd, exst,spin_z_pos, spin_z_neg INTEGER :: istart !nocolin: we have half as many projections g(r) defined as wannier ! functions. We project onto (1,0) (ie up spin) and then onto ! (0,1) to obtain num_wann projections. jry !call read_gf_definition.....> this is done at the beging any_uspp =any (upf(1:ntyp)%tvanp) IF(any_uspp .and. noncolin) CALL errore('pw2wannier90',& 'NCLS calculation not implimented with USP',1) IF (wan_mode=='library') ALLOCATE(a_mat(num_bands,n_wannier,iknum)) IF (wan_mode=='standalone') THEN iun_amn = find_free_unit() IF (ionode) OPEN (unit=iun_amn, file=trim(seedname)//".amn",form='formatted') ENDIF WRITE (stdout,*) "AMN" IF (wan_mode=='standalone') THEN CALL date_and_tim( cdate, ctime ) header='Created on '//cdate//' at '//ctime IF (ionode) THEN WRITE (iun_amn,*) header WRITE (iun_amn,*) nbnd-nexband, iknum, n_wannier ENDIF ENDIF ! ALLOCATE( sgf(npwx,n_proj)) ! IF (any_uspp) THEN CALL allocate_bec_type ( nkb, n_wannier, becp) CALL init_us_1 ENDIF ! WRITE(stdout,'(a,i8)') ' iknum = ',iknum DO ik=1,iknum WRITE (stdout,'(i8)') ik ikevc = ik + ikstart - 1 ! if(noncolin) then ! call davcio (evc_nc, 2*nwordwfc, iunwfc, ikevc, -1 ) ! else CALL davcio (evc, 2*nwordwfc, iunwfc, ikevc, -1 ) ! end if CALL gk_sort (xk(1,ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) CALL generate_guiding_functions(ik) ! they are called gf(npw,n_proj) ! ! USPP ! IF(any_uspp) THEN CALL init_us_2 (npw, igk, xk (1, ik), vkb) ! below we compute the product of beta functions with trial func. IF (gamma_only) THEN CALL calbec ( npw, vkb, gf, becp, n_proj ) ELSE CALL calbec ( npw, vkb, gf, becp, n_proj ) ENDIF ! and we use it for the product S|trial_func> CALL s_psi (npwx, npw, n_proj, gf, sgf) ELSE sgf(:,:) = gf(:,:) ENDIF ! IF(noncolin) THEN if(old_spinor_proj) then ! we do the projection as g(r)*a(r) and g(r)*b(r) DO ipol=1,npol istart = (ipol-1)*npwx + 1 DO iw = 1,n_proj ibnd1 = 0 DO ibnd = 1,nbnd IF (excluded_band(ibnd)) CYCLE amn=(0.0_dp,0.0_dp) ! amn = zdotc(npw,evc_nc(1,ipol,ibnd),1,sgf(1,iw),1) amn = zdotc(npw,evc(istart,ibnd),1,sgf(1,iw),1) CALL mp_sum(amn, intra_pool_comm) ibnd1=ibnd1+1 IF (wan_mode=='standalone') THEN IF (ionode) WRITE(iun_amn,'(3i5,2f18.12)') ibnd1, iw+n_proj*(ipol-1), ik, amn ELSEIF (wan_mode=='library') THEN a_mat(ibnd1,iw+n_proj*(ipol-1),ik) = amn ELSE CALL errore('compute_amn',' value of wan_mode not recognised',1) ENDIF ENDDO ENDDO ENDDO ELSE DO iw = 1,n_proj spin_z_pos=.false.;spin_z_neg=.false. ! detect if spin quantisation axis is along z if((abs(spin_qaxis(1,iw)-0.0d0).unkg file ! iun_parity = find_free_unit() IF (ionode) THEN OPEN (unit=iun_parity, file=trim(seedname)//".unkg",form='formatted') WRITE(stdout,*)"Finding the 32 unkg's per band required for parity signature." ENDIF ! ! g_abc(:,ipw) are the coordinates of the ipw-th G vector in b1, b2, b3 basis, ! we compute them from g(:,ipw) by multiplying : transpose(at) with g(:,ipw) ! ALLOCATE(g_abc(3,npw)) DO igv=1,npw g_abc(:,igk(igv))=matmul(transpose(at),g(:,igk(igv))) ENDDO ! ! Count and identify the G vectors we will be extracting for each ! cpu. ! ig_idx=0 num_G = 0 DO igv=1,npw ! 0-th Order IF ( (abs(g_abc(1,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 0.d0 <= eps6) ) THEN ! 1 num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF ! 1st Order IF ( (abs(g_abc(1,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 0.d0 <= eps6) ) THEN ! x num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 0.d0 <= eps6) ) THEN ! y num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 1.d0 <= eps6) ) THEN ! z num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF ! 2nd Order IF ( (abs(g_abc(1,igv) - 2.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 0.d0 <= eps6) ) THEN ! x^2 num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 0.d0 <= eps6) ) THEN ! xy num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(2,igv) + 1.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 0.d0 <= eps6) ) THEN ! xy num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 1.d0 <= eps6) ) THEN ! xz num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(3,igv)) + 1.d0 <= eps6) ) THEN ! xz num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 2.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 0.d0 <= eps6) ) THEN ! y^2 num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 1.d0 <= eps6) ) THEN ! yz num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(3,igv)) + 1.d0 <= eps6) ) THEN ! yz num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 2.d0 <= eps6) ) THEN ! z^2 num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF ! 3rd Order IF ( (abs(g_abc(1,igv) - 3.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 0.d0 <= eps6) ) THEN ! x^3 num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 2.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 0.d0 <= eps6) ) THEN ! x^2y num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 2.d0) <= eps6) .and. & (abs(g_abc(2,igv) + 1.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 0.d0 <= eps6) ) THEN ! x^2y num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 2.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 1.d0 <= eps6) ) THEN ! x^2z num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 2.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(3,igv)) + 1.d0 <= eps6) ) THEN ! x^2z num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 2.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 0.d0 <= eps6) ) THEN ! xy^2 num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(2,igv) + 2.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 0.d0 <= eps6) ) THEN ! xy^2 num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 1.d0 <= eps6) ) THEN ! xyz num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(3,igv)) + 1.d0 <= eps6) ) THEN ! xyz num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(2,igv) + 1.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 1.d0 <= eps6) ) THEN ! xyz num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(2,igv) + 1.d0) <= eps6) .and. & (abs(g_abc(3,igv)) + 1.d0 <= eps6) ) THEN ! xyz num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 2.d0 <= eps6) ) THEN ! xz^2 num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(3,igv)) + 2.d0 <= eps6) ) THEN ! xz^2 num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 3.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 0.d0 <= eps6) ) THEN ! y^3 num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 2.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 1.d0 <= eps6) ) THEN ! y^2z num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 2.d0) <= eps6) .and. & (abs(g_abc(3,igv)) + 1.d0 <= eps6) ) THEN ! y^2z num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 2.d0 <= eps6) ) THEN ! yz^2 num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 0.d0) <= eps6) .and.& (abs(g_abc(2,igv) - 1.d0) <= eps6) .and. & (abs(g_abc(3,igv)) + 2.d0 <= eps6) ) THEN ! yz^2 num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF IF ( (abs(g_abc(1,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(2,igv) - 0.d0) <= eps6) .and. & (abs(g_abc(3,igv)) - 3.d0 <= eps6) ) THEN ! z^3 num_G(mpime+1) = num_G(mpime+1) + 1 ig_idx(num_G(mpime+1))=igv CYCLE ENDIF ENDDO ! ! Sum laterally across cpus num_G, so it contains ! the number of g_vectors on each node, and known to all cpus ! CALL mp_sum(num_G, intra_pool_comm) IF (ionode) WRITE(iun_parity,*) sum(num_G) IF (sum(num_G) /= 32) CALL errore('write_parity', 'incorrect number of g-vectors extracted',1) IF (ionode) THEN WRITE(stdout,*)' ...done' WRITE(stdout,*)'G-vector splitting:' DO i=1,nproc WRITE(stdout,*)' cpu: ',i-1,' number g-vectors: ',num_G(i) ENDDO WRITE(stdout,*)' Collecting g-vectors and writing to file' ENDIF ! ! Define needed intermediate arrays ! ALLOCATE(evc_sub(32,nbnd,nproc)) ALLOCATE(evc_sub_gathered(32,nbnd)) ALLOCATE(g_abc_pre_gather(3,32,nproc)) ! ! Initialise ! evc_sub=(0.d0,0.d0) evc_sub_1D=(0.d0,0.d0) evc_sub_gathered=(0.d0,0.d0) g_abc_pre_gather=0 g_abc_1D=0 g_abc_gathered=0 ! ! Compute displacements needed for filling evc_sub ! displ(1)=1 IF (nproc > 1) THEN DO i=2,nproc displ(i)=displ(i-1)+num_G(i-1) ENDDO ENDIF ! ! Fill evc_sub with required fourier component from each cpu dependent evc ! DO i=1,num_G(mpime+1) evc_sub(i+displ(mpime+1)-1,:,mpime+1)=evc(ig_idx(i),:) ENDDO ! ! g_abc_pre_gather(:,ipw,icpu) are the coordinates of the ipw-th G vector in b1, b2, b3 basis ! on icpu and stored sequencially, ready for a lateral mp_sum ! DO igv=1,num_G(mpime+1) g_abc_pre_gather(:,igv+displ(mpime+1)-1,mpime+1)=matmul(transpose(at),g(:,ig_idx(igk(igv)))) ENDDO ! ! Gather evc_sub and g_abc_pre_gather into common arrays to each cpu ! DO ibnd=1,nbnd evc_sub_1D=evc_sub(:,ibnd,mpime+1) CALL mp_sum(evc_sub_1D, intra_pool_comm) evc_sub_gathered(:,ibnd)=evc_sub_1D ENDDO ! DO i=1,3 g_abc_1D=g_abc_pre_gather(i,:,mpime+1) CALL mp_sum(g_abc_1D, intra_pool_comm) g_abc_gathered(i,:)=g_abc_1D ENDDO ! ! Write to file ! DO ibnd=1,nbnd DO igv=1,32 IF (ionode) WRITE(iun_parity,'(5i5,2f12.7)') ibnd, igv, nint(g_abc_gathered(1,igv)),& nint(g_abc_gathered(2,igv)),& nint(g_abc_gathered(3,igv)),& real(evc_sub_gathered(igv,ibnd)),& aimag(evc_sub_gathered(igv,ibnd)) ENDDO ENDDO WRITE(stdout,*)' ...done' ! IF (ionode) CLOSE(unit=iun_parity) ! DEALLOCATE(evc_sub) DEALLOCATE(evc_sub_gathered) DEALLOCATE(g_abc_pre_gather) END SUBROUTINE write_parity SUBROUTINE wan2sic USE io_global, ONLY : stdout USE kinds, ONLY : DP USE io_files, ONLY : iunwfc, nwordwfc, nwordwann USE cell_base, ONLY : omega, tpiba2 USE gvect, ONLY : g, ngm USE gvecs, ONLY: nls USE wavefunctions_module, ONLY : evc, psic USE wvfct, ONLY : nbnd, npwx, npw, igk, g2kin, ecutwfc USE klist, ONLY : nkstot, xk, wk USE wannier INTEGER :: i, j, nn, ik, ibnd, iw, ikevc COMPLEX(DP), ALLOCATABLE :: orbital(:,:), u_matrix(:,:,:) INTEGER :: iunatsicwfc = 31 ! unit for sic wfc OPEN (20, file = trim(seedname)//".dat" , form = 'formatted', status = 'unknown') WRITE(stdout,*) ' wannier plot ' ALLOCATE ( u_matrix( n_wannier, n_wannier, nkstot) ) ALLOCATE ( orbital( npwx, n_wannier) ) ! DO i = 1, n_wannier DO j = 1, n_wannier DO ik = 1, nkstot READ (20, * ) u_matrix(i,j,ik) !do nn = 1, nnb(ik) DO nn = 1, nnb READ (20, * ) ! m_matrix (i,j,nkp,nn) ENDDO ENDDO !nkp ENDDO !j ENDDO !i ! DO ik=1,iknum ikevc = ik + ikstart - 1 CALL davcio (evc, 2*nwordwfc, iunwfc, ikevc, -1) CALL gk_sort (xk(1,ik), ngm, g, ecutwfc/tpiba2, npw, igk, g2kin) WRITE(stdout,*) 'npw ',npw DO iw=1,n_wannier DO j=1,npw orbital(j,iw) = (0.0d0,0.0d0) DO ibnd=1,n_wannier orbital(j,iw) = orbital(j,iw) + u_matrix(iw,ibnd,ik)*evc(j,ibnd) WRITE(stdout,*) j, iw, ibnd, ik, orbital(j,iw), & u_matrix(iw,ibnd,ik), evc(j,ibnd) ENDDO !ibnd ENDDO !j ENDDO !wannier CALL davcio (orbital, 2*nwordwann, iunatsicwfc, ikevc, +1) ENDDO ! k-points DEALLOCATE ( u_matrix) WRITE(stdout,*) ' dealloc u ' DEALLOCATE ( orbital) WRITE(stdout,*) ' dealloc orbital ' ! END SUBROUTINE wan2sic SUBROUTINE ylm_expansion USE io_global, ONLY : stdout USE kinds, ONLY : DP USE random_numbers, ONLY : randy USE wannier IMPLICIT NONE ! local variables INTEGER, PARAMETER :: lmax2=16 INTEGER :: lm, i, ir, iw, m real(DP) :: capel real(DP), ALLOCATABLE :: r(:,:), rr(:), rp(:,:), ylm_w(:), ylm(:,:), mly(:,:) real(DP) :: u(3,3) ALLOCATE (r(3,lmax2), rp(3,lmax2), rr(lmax2), ylm_w(lmax2)) ALLOCATE (ylm(lmax2,lmax2), mly(lmax2,lmax2) ) ! generate a set of nr=lmax2 random vectors DO ir=1,lmax2 DO i=1,3 r(i,ir) = randy() -0.5d0 ENDDO ENDDO rr(:) = r(1,:)*r(1,:) + r(2,:)*r(2,:) + r(3,:)*r(3,:) !- compute ylm(ir,lm) CALL ylmr2(lmax2, lmax2, r, rr, ylm) !- store the inverse of ylm(ir,lm) in mly(lm,ir) CALL invmat(lmax2, ylm, mly, capel) !- check that r points are independent CALL check_inverse(lmax2, ylm, mly) DO iw=1, n_proj !- define the u matrix that rotate the reference frame CALL set_u_matrix (xaxis(:,iw),zaxis(:,iw),u) !- find rotated r-vectors rp(:,:) = matmul ( u(:,:) , r(:,:) ) !- set ylm funtion according to wannier90 (l,mr) indexing in the rotaterd points CALL ylm_wannier(ylm_w,l_w(iw),mr_w(iw),rp,lmax2) csph(:,iw) = matmul (mly(:,:), ylm_w(:)) ! write (stdout,*) ! write (stdout,'(2i4,2(2x,3f6.3))') l_w(iw), mr_w(iw), xaxis(:,iw), zaxis(:,iw) ! write (stdout,'(16i6)') (lm, lm=1,lmax2) ! write (stdout,'(16f6.3)') (csph(lm,iw), lm=1,lmax2) ENDDO DEALLOCATE (r, rp, rr, ylm_w, ylm, mly ) RETURN END SUBROUTINE ylm_expansion SUBROUTINE check_inverse(lmax2, ylm, mly) USE kinds, ONLY : DP USE constants, ONLY : eps8 IMPLICIT NONE ! I/O variables INTEGER :: lmax2 real(DP) :: ylm(lmax2,lmax2), mly(lmax2,lmax2) ! local variables real(DP), ALLOCATABLE :: uno(:,:) real(DP) :: capel INTEGER :: lm ! ALLOCATE (uno(lmax2,lmax2) ) uno = matmul(mly, ylm) capel = 0.d0 DO lm = 1, lmax2 uno(lm,lm) = uno(lm,lm) - 1.d0 ENDDO capel = capel + sum ( abs(uno(1:lmax2,1:lmax2) ) ) ! write (stdout,*) "capel = ", capel IF (capel > eps8) CALL errore('ylm_expansion', & ' inversion failed: r(*,1:nr) are not all independent !!',1) DEALLOCATE (uno) RETURN END SUBROUTINE check_inverse SUBROUTINE set_u_matrix(x,z,u) USE kinds, ONLY : DP USE constants, ONLY : eps6 IMPLICIT NONE ! I/O variables real(DP) :: x(3),z(3),u(3,3) ! local variables real(DP) :: xx, zz, y(3), coseno xx = sqrt(x(1)*x(1) + x(2)*x(2) + x(3)*x(3)) IF (xx < eps6) CALL errore ('set_u_matrix',' |xaxis| < eps ',1) ! x(:) = x(:)/xx zz = sqrt(z(1)*z(1) + z(2)*z(2) + z(3)*z(3)) IF (zz < eps6) CALL errore ('set_u_matrix',' |zaxis| < eps ',1) ! z(:) = z(:)/zz coseno = (x(1)*z(1) + x(2)*z(2) + x(3)*z(3))/xx/zz IF (abs(coseno) > eps6) CALL errore('set_u_matrix',' xaxis and zaxis are not orthogonal !',1) y(1) = (z(2)*x(3) - x(2)*z(3))/xx/zz y(2) = (z(3)*x(1) - x(3)*z(1))/xx/zz y(3) = (z(1)*x(2) - x(1)*z(2))/xx/zz u(1,:) = x(:)/xx u(2,:) = y(:) u(3,:) = z(:)/zz ! write (stdout,'(3f10.7)') u(:,:) RETURN END SUBROUTINE set_u_matrix SUBROUTINE ylm_wannier(ylm,l,mr,r,nr) ! ! this routine returns in ylm(r) the values at the nr points r(1:3,1:nr) ! of the spherical harmonic identified by indices (l,mr) ! in table 3.1 of the wannierf90 specification. ! ! No reference to the particular ylm ordering internal to Quantum ESPRESSO ! is assumed. ! ! If ordering in wannier90 code is changed or extended this should be the ! only place to be modified accordingly ! USE kinds, ONLY : DP USE constants, ONLY : pi, fpi, eps8 IMPLICIT NONE ! I/O variables ! INTEGER :: l, mr, nr real(DP) :: ylm(nr), r(3,nr) ! ! local variables ! real(DP), EXTERNAL :: s, p_z,px,py, dz2, dxz, dyz, dx2my2, dxy real(DP), EXTERNAL :: fz3, fxz2, fyz2, fzx2my2, fxyz, fxx2m3y2, fy3x2my2 real(DP) :: rr, cost, phi INTEGER :: ir real(DP) :: bs2, bs3, bs6, bs12 bs2 = 1.d0/sqrt(2.d0) bs3=1.d0/sqrt(3.d0) bs6 = 1.d0/sqrt(6.d0) bs12 = 1.d0/sqrt(12.d0) ! IF (l > 3 .or. l < -5 ) CALL errore('ylm_wannier',' l out of range ', 1) IF (l>=0) THEN IF (mr < 1 .or. mr > 2*l+1) CALL errore('ylm_wannier','mr out of range' ,1) ELSE IF (mr < 1 .or. mr > abs(l)+1 ) CALL errore('ylm_wannier','mr out of range',1) ENDIF DO ir=1, nr rr = sqrt( r(1,ir)*r(1,ir) + r(2,ir)*r(2,ir) + r(3,ir)*r(3,ir) ) IF (rr < eps8) CALL errore('ylm_wannier',' rr too small ',1) cost = r(3,ir) / rr ! ! beware the arc tan, it is defined modulo pi ! IF (r(1,ir) > eps8) THEN phi = atan( r(2,ir)/r(1,ir) ) ELSEIF (r(1,ir) < -eps8 ) THEN phi = atan( r(2,ir)/r(1,ir) ) + pi ELSE phi = sign( pi/2.d0,r(2,ir) ) ENDIF IF (l==0) THEN ! s orbital ylm(ir) = s(cost,phi) ENDIF IF (l==1) THEN ! p orbitals IF (mr==1) ylm(ir) = p_z(cost,phi) IF (mr==2) ylm(ir) = px(cost,phi) IF (mr==3) ylm(ir) = py(cost,phi) ENDIF IF (l==2) THEN ! d orbitals IF (mr==1) ylm(ir) = dz2(cost,phi) IF (mr==2) ylm(ir) = dxz(cost,phi) IF (mr==3) ylm(ir) = dyz(cost,phi) IF (mr==4) ylm(ir) = dx2my2(cost,phi) IF (mr==5) ylm(ir) = dxy(cost,phi) ENDIF IF (l==3) THEN ! f orbitals IF (mr==1) ylm(ir) = fz3(cost,phi) IF (mr==2) ylm(ir) = fxz2(cost,phi) IF (mr==3) ylm(ir) = fyz2(cost,phi) IF (mr==4) ylm(ir) = fzx2my2(cost,phi) IF (mr==5) ylm(ir) = fxyz(cost,phi) IF (mr==6) ylm(ir) = fxx2m3y2(cost,phi) IF (mr==7) ylm(ir) = fy3x2my2(cost,phi) ENDIF IF (l==-1) THEN ! sp hybrids IF (mr==1) ylm(ir) = bs2 * ( s(cost,phi) + px(cost,phi) ) IF (mr==2) ylm(ir) = bs2 * ( s(cost,phi) - px(cost,phi) ) ENDIF IF (l==-2) THEN ! sp2 hybrids IF (mr==1) ylm(ir) = bs3*s(cost,phi)-bs6*px(cost,phi)+bs2*py(cost,phi) IF (mr==2) ylm(ir) = bs3*s(cost,phi)-bs6*px(cost,phi)-bs2*py(cost,phi) IF (mr==3) ylm(ir) = bs3*s(cost,phi) +2.d0*bs6*px(cost,phi) ENDIF IF (l==-3) THEN ! sp3 hybrids IF (mr==1) ylm(ir) = 0.5d0*(s(cost,phi)+px(cost,phi)+py(cost,phi)+p_z(cost,phi)) IF (mr==2) ylm(ir) = 0.5d0*(s(cost,phi)+px(cost,phi)-py(cost,phi)-p_z(cost,phi)) IF (mr==3) ylm(ir) = 0.5d0*(s(cost,phi)-px(cost,phi)+py(cost,phi)-p_z(cost,phi)) IF (mr==4) ylm(ir) = 0.5d0*(s(cost,phi)-px(cost,phi)-py(cost,phi)+p_z(cost,phi)) ENDIF IF (l==-4) THEN ! sp3d hybrids IF (mr==1) ylm(ir) = bs3*s(cost,phi)-bs6*px(cost,phi)+bs2*py(cost,phi) IF (mr==2) ylm(ir) = bs3*s(cost,phi)-bs6*px(cost,phi)-bs2*py(cost,phi) IF (mr==3) ylm(ir) = bs3*s(cost,phi) +2.d0*bs6*px(cost,phi) IF (mr==4) ylm(ir) = bs2*p_z(cost,phi)+bs2*dz2(cost,phi) IF (mr==5) ylm(ir) =-bs2*p_z(cost,phi)+bs2*dz2(cost,phi) ENDIF IF (l==-5) THEN ! sp3d2 hybrids IF (mr==1) ylm(ir) = bs6*s(cost,phi)-bs2*px(cost,phi)-bs12*dz2(cost,phi)+.5d0*dx2my2(cost,phi) IF (mr==2) ylm(ir) = bs6*s(cost,phi)+bs2*px(cost,phi)-bs12*dz2(cost,phi)+.5d0*dx2my2(cost,phi) IF (mr==3) ylm(ir) = bs6*s(cost,phi)-bs2*py(cost,phi)-bs12*dz2(cost,phi)-.5d0*dx2my2(cost,phi) IF (mr==4) ylm(ir) = bs6*s(cost,phi)+bs2*py(cost,phi)-bs12*dz2(cost,phi)-.5d0*dx2my2(cost,phi) IF (mr==5) ylm(ir) = bs6*s(cost,phi)-bs2*p_z(cost,phi)+bs3*dz2(cost,phi) IF (mr==6) ylm(ir) = bs6*s(cost,phi)+bs2*p_z(cost,phi)+bs3*dz2(cost,phi) ENDIF ENDDO RETURN END SUBROUTINE ylm_wannier !======== l = 0 ===================================================================== FUNCTION s(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : fpi IMPLICIT NONE real(DP) :: s, cost,phi s = 1.d0/ sqrt(fpi) RETURN END FUNCTION s !======== l = 1 ===================================================================== FUNCTION p_z(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : fpi IMPLICIT NONE real(DP) ::p_z, cost,phi p_z = sqrt(3.d0/fpi) * cost RETURN END FUNCTION p_z FUNCTION px(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : fpi IMPLICIT NONE real(DP) ::px, cost, phi, sint sint = sqrt(abs(1.d0 - cost*cost)) px = sqrt(3.d0/fpi) * sint * cos(phi) RETURN END FUNCTION px FUNCTION py(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : fpi IMPLICIT NONE real(DP) ::py, cost, phi, sint sint = sqrt(abs(1.d0 - cost*cost)) py = sqrt(3.d0/fpi) * sint * sin(phi) RETURN END FUNCTION py !======== l = 2 ===================================================================== FUNCTION dz2(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : fpi IMPLICIT NONE real(DP) ::dz2, cost, phi dz2 = sqrt(1.25d0/fpi) * (3.d0* cost*cost-1.d0) RETURN END FUNCTION dz2 FUNCTION dxz(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : fpi IMPLICIT NONE real(DP) ::dxz, cost, phi, sint sint = sqrt(abs(1.d0 - cost*cost)) dxz = sqrt(15.d0/fpi) * sint*cost * cos(phi) RETURN END FUNCTION dxz FUNCTION dyz(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : fpi IMPLICIT NONE real(DP) ::dyz, cost, phi, sint sint = sqrt(abs(1.d0 - cost*cost)) dyz = sqrt(15.d0/fpi) * sint*cost * sin(phi) RETURN END FUNCTION dyz FUNCTION dx2my2(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : fpi IMPLICIT NONE real(DP) ::dx2my2, cost, phi, sint sint = sqrt(abs(1.d0 - cost*cost)) dx2my2 = sqrt(3.75d0/fpi) * sint*sint * cos(2.d0*phi) RETURN END FUNCTION dx2my2 FUNCTION dxy(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : fpi IMPLICIT NONE real(DP) ::dxy, cost, phi, sint sint = sqrt(abs(1.d0 - cost*cost)) dxy = sqrt(3.75d0/fpi) * sint*sint * sin(2.d0*phi) RETURN END FUNCTION dxy !======== l = 3 ===================================================================== FUNCTION fz3(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : pi IMPLICIT NONE real(DP) ::fz3, cost, phi fz3 = 0.25d0*sqrt(7.d0/pi) * ( 5.d0 * cost * cost - 3.d0 ) * cost RETURN END FUNCTION fz3 FUNCTION fxz2(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : pi IMPLICIT NONE real(DP) ::fxz2, cost, phi, sint sint = sqrt(abs(1.d0 - cost*cost)) fxz2 = 0.25d0*sqrt(10.5d0/pi) * ( 5.d0 * cost * cost - 1.d0 ) * sint * cos(phi) RETURN END FUNCTION fxz2 FUNCTION fyz2(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : pi IMPLICIT NONE real(DP) ::fyz2, cost, phi, sint sint = sqrt(abs(1.d0 - cost*cost)) fyz2 = 0.25d0*sqrt(10.5d0/pi) * ( 5.d0 * cost * cost - 1.d0 ) * sint * sin(phi) RETURN END FUNCTION fyz2 FUNCTION fzx2my2(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : pi IMPLICIT NONE real(DP) ::fzx2my2, cost, phi, sint sint = sqrt(abs(1.d0 - cost*cost)) fzx2my2 = 0.25d0*sqrt(105d0/pi) * sint * sint * cost * cos(2.d0*phi) RETURN END FUNCTION fzx2my2 FUNCTION fxyz(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : pi IMPLICIT NONE real(DP) ::fxyz, cost, phi, sint sint = sqrt(abs(1.d0 - cost*cost)) fxyz = 0.25d0*sqrt(105d0/pi) * sint * sint * cost * sin(2.d0*phi) RETURN END FUNCTION fxyz FUNCTION fxx2m3y2(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : pi IMPLICIT NONE real(DP) ::fxx2m3y2, cost, phi, sint sint = sqrt(abs(1.d0 - cost*cost)) fxx2m3y2 = 0.25d0*sqrt(17.5d0/pi) * sint * sint * sint * cos(3.d0*phi) RETURN END FUNCTION fxx2m3y2 FUNCTION fy3x2my2(cost,phi) USE kinds, ONLY : DP USE constants, ONLY : pi IMPLICIT NONE real(DP) ::fy3x2my2, cost, phi, sint sint = sqrt(abs(1.d0 - cost*cost)) fy3x2my2 = 0.25d0*sqrt(17.5d0/pi) * sint * sint * sint * sin(3.d0*phi) RETURN END FUNCTION fy3x2my2 ! ! !----------------------------------------------------------------------- SUBROUTINE radialpart(ng, q, alfa, rvalue, lmax, radial) !----------------------------------------------------------------------- ! ! This routine computes a table with the radial Fourier transform ! of the radial functions. ! USE kinds, ONLY : dp USE constants, ONLY : fpi USE cell_base, ONLY : omega ! IMPLICIT NONE ! I/O INTEGER :: ng, rvalue, lmax real(DP) :: q(ng), alfa, radial(ng,0:lmax) ! local variables real(DP), PARAMETER :: xmin=-6.d0, dx=0.025d0, rmax=10.d0 real(DP) :: rad_int, pref, x INTEGER :: l, lp1, ir, ig, mesh_r real(DP), ALLOCATABLE :: bes(:), func_r(:), r(:), rij(:), aux(:) mesh_r = nint ( ( log ( rmax ) - xmin ) / dx + 1 ) ALLOCATE ( bes(mesh_r), func_r(mesh_r), r(mesh_r), rij(mesh_r) ) ALLOCATE ( aux(mesh_r)) ! ! compute the radial mesh ! DO ir = 1, mesh_r x = xmin + dble (ir - 1) * dx r (ir) = exp (x) / alfa rij (ir) = dx * r (ir) ENDDO ! IF (rvalue==1) func_r(:) = 2.d0 * alfa**(3.d0/2.d0) * exp(-alfa*r(:)) IF (rvalue==2) func_r(:) = 1.d0/sqrt(8.d0) * alfa**(3.d0/2.d0) * & (2.0d0 - alfa*r(:)) * exp(-alfa*r(:)*0.5d0) IF (rvalue==3) func_r(:) = sqrt(4.d0/27.d0) * alfa**(3.0d0/2.0d0) * & (1.d0 - 2.0d0/3.0d0*alfa*r(:) + 2.d0*(alfa*r(:))**2/27.d0) * & exp(-alfa*r(:)/3.0d0) pref = fpi/sqrt(omega) ! DO l = 0, lmax DO ig=1,ng CALL sph_bes (mesh_r, r(1), q(ig), l, bes) aux(:) = bes(:) * func_r(:) * r(:) * r(:) ! second r factor added upo suggestion by YY Liang CALL simpson (mesh_r, aux, rij, rad_int) radial(ig,l) = rad_int * pref ENDDO ENDDO DEALLOCATE (bes, func_r, r, rij, aux ) RETURN END SUBROUTINE radialpart espresso-5.1/PP/src/smallgk.f900000644000175000017500000000543612341372773014403 0ustar mbamba! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE smallgk (xk, at, bg, s, ftau, t_rev, sname, nsym, sk, ftauk, gk, & t_revk, snamek, nsymk) !----------------------------------------------------------------------- ! ! This routine selects, among the symmetry matrices of the point group ! of a crystal, the symmetry operations which leave k unchanged. ! ! USE kinds, ONLY : DP IMPLICIT NONE REAL(DP), PARAMETER :: accep=1.d-5 CHARACTER(len=45) :: snamek(48), sname(48) REAL(DP) :: bg (3, 3), at (3, 3), xk (3) ! input: the reciprocal lattice vectors ! input: the direct lattice vectors ! input: the k point of the crystal INTEGER :: s (3, 3, 48), ftau(3,48), t_rev(48), nsym, sk (3, 3, 48), & ftauk(3,48), t_revk(48), gk(3,48), nsymk ! input: the symmetry matrices ! input: fractional translation associated to each rotation ! input: possible time reversal associated to the rotation ! input: dimension of the point group ! output: the symmetry matrices of the small group of k ! output: the fract. trans. associated to the operations of the small group of k ! output: the time reversal associated to the operations of the small group of k ! output: the G vector which connects k and the rotated k. REAL(DP) :: ak (3), rak (3), zero (3) ! k vector in crystal basis ! the rotated of the k vector ! the zero vector INTEGER :: isym, ipol, jpol ! counter on symmetry operations ! counter on polarizations ! counter on polarizations LOGICAL :: eqvect ! logical function, check if two vectors are equal ! ! Set to zero some variables and transform xq to the crystal basis ! zero = 0.d0 ak = xk CALL cryst_to_cart (1, ak, at, - 1) ! ! test all symmetries to see if the operation S sends k in k+G ... ! nsymk = 0 DO isym = 1, nsym rak = 0.d0 DO ipol = 1, 3 DO jpol = 1, 3 rak (ipol) = rak (ipol) + dble (s (ipol, jpol, isym) ) * & ak (jpol) ENDDO ENDDO IF ((t_rev(isym)==0 .and. eqvect(rak, ak, zero,accep)) .or. & (t_rev(isym)==1 .and. eqvect(rak, -ak, zero,accep)) ) THEN nsymk=nsymk+1 sk(:,:,nsymk)=s(:,:,isym) ftauk(:,nsymk)=ftau(:,isym) snamek(nsymk)=sname(isym) t_revk(nsymk)=t_rev(isym) IF (t_rev(isym)==0) THEN gk(:,nsymk)=nint(rak(:)-ak(:)) ELSEIF (t_rev(isym)==1) THEN gk(:,nsymk)=nint(rak(:)+ak(:)) ELSE CALL errore('smallgk','wrong t_rev',1) ENDIF ENDIF ENDDO ! RETURN END SUBROUTINE smallgk espresso-5.1/PP/src/postproc.f900000644000175000017500000001402612341372773014615 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- PROGRAM pp !----------------------------------------------------------------------- ! ! Program for data analysis and plotting. The two basic steps are: ! 1) read the output file produced by pw.x, extract and calculate ! the desired quantity (rho, V, ...) ! 2) write the desired quantity to file in a suitable format for ! various types of plotting and various plotting programs ! The two steps can be performed independently. Intermediate data ! can be saved to file in step 1 and read from file in step 2. ! ! DESCRIPTION of the INPUT : see file Doc/INPUT_PP.* ! USE io_global, ONLY : ionode USE mp_global, ONLY : mp_startup USE environment,ONLY : environment_start ! IMPLICIT NONE ! CHARACTER(len=256) :: filplot INTEGER :: plot_num ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'POST-PROC' ) ! IF ( ionode ) CALL input_from_file ( ) ! CALL extract (filplot, plot_num) ! CALL chdens (filplot, plot_num) ! CALL stop_pp() ! END PROGRAM pp ! !----------------------------------------------------------------------- SUBROUTINE extract (filplot,plot_num) !----------------------------------------------------------------------- ! ! This subroutine reads the data for the output file produced by pw.x ! extracts and calculates the desired quantity (rho, V, ...) ! writes it to a file for further processing or plotting ! ! DESCRIPTION of the INPUT: see file Doc/INPUT_PP ! USE kinds, ONLY : DP USE cell_base, ONLY : bg USE ener, ONLY : ef USE ions_base, ONLY : nat, ntyp=>nsp, ityp, tau USE gvect USE fft_base, ONLY : dfftp USE klist, ONLY : two_fermi_energies USE vlocal, ONLY : strf USE io_files, ONLY : tmp_dir, prefix USE io_global, ONLY : ionode, ionode_id USE mp_global, ONLY : nproc_pool, nproc_file, nproc_pool_file USE control_flags, ONLY : twfcollect USE noncollin_module, ONLY : i_cons USE paw_variables, ONLY : okpaw USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE constants, ONLY : rytoev IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! CHARACTER(len=256), INTENT(out) :: filplot INTEGER, INTENT(out) :: plot_num INTEGER :: kpoint, kband, spin_component, ios LOGICAL :: lsign, needwf REAL(DP) :: emin, emax, sample_bias, z, dz, epsilon ! directory for temporary files CHARACTER(len=256) :: outdir NAMELIST / inputpp / outdir, prefix, plot_num, sample_bias, & spin_component, z, dz, emin, emax, kpoint, kband, & filplot, lsign, epsilon ! ! set default values for variables in namelist ! prefix = 'pwscf' CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( trim( outdir ) == ' ' ) outdir = './' filplot = 'tmp.pp' plot_num = -1 spin_component = 0 sample_bias = 0.01d0 z = 1.d0 dz = 0.05d0 lsign=.false. emin = -999.0d0 emax = +999.0d0 epsilon=1.d0 ! ios = 0 ! IF ( ionode ) THEN ! ! reading the namelist inputpp ! READ (5, inputpp, iostat = ios) ! tmp_dir = trimcheck ( outdir ) ! ENDIF ! CALL mp_bcast (ios, ionode_id, world_comm) ! IF ( ios /= 0) CALL errore ('postproc', 'reading inputpp namelist', abs(ios)) ! ! ... Broadcast variables ! CALL mp_bcast( tmp_dir, ionode_id, world_comm ) CALL mp_bcast( prefix, ionode_id, world_comm ) CALL mp_bcast( plot_num, ionode_id, world_comm ) CALL mp_bcast( sample_bias, ionode_id, world_comm ) CALL mp_bcast( spin_component, ionode_id, world_comm ) CALL mp_bcast( z, ionode_id, world_comm ) CALL mp_bcast( dz, ionode_id, world_comm ) CALL mp_bcast( emin, ionode_id, world_comm ) CALL mp_bcast( emax, ionode_id, world_comm ) CALL mp_bcast( kband, ionode_id, world_comm ) CALL mp_bcast( kpoint, ionode_id, world_comm ) CALL mp_bcast( filplot, ionode_id, world_comm ) CALL mp_bcast( lsign, ionode_id, world_comm ) CALL mp_bcast( epsilon, ionode_id, world_comm ) ! ! no task specified: do nothing and return ! IF (plot_num == -1) RETURN ! IF (plot_num < 0 .or. plot_num > 20) CALL errore ('postproc', & 'Wrong plot_num', abs (plot_num) ) IF (plot_num == 7 .or. plot_num == 13 .or. plot_num==18) THEN IF (spin_component < 0 .or. spin_component > 3) CALL errore & ('postproc', 'wrong spin_component', 1) ELSEIF (plot_num == 10) THEN IF (spin_component < 0 .or. spin_component > 2) CALL errore & ('postproc', 'wrong spin_component', 2) ELSE IF (spin_component < 0 ) CALL errore & ('postproc', 'wrong spin_component', 3) ENDIF ! ! Now allocate space for pwscf variables, read and check them. ! needwf=(plot_num==3).or.(plot_num==4).or.(plot_num==5).or.(plot_num==7).or. & (plot_num==8).or.(plot_num==10) IF ( needwf ) THEN CALL read_file ( ) IF (nproc_pool /= nproc_pool_file .and. .not. twfcollect) & CALL errore('postproc', & 'pw.x run with a different number of procs/pools. Use wf_collect=.true.',1) CALL openfil_pp ( ) ELSE CALL read_xml_file ( ) END IF ! IF ( ( two_fermi_energies .or. i_cons /= 0) .and. & ( plot_num==3 .or. plot_num==4 .or. plot_num==5 ) ) & CALL errore('postproc',& 'Post-processing with constrained magnetization is not available yet',1) ! ! The following line sets emax to its default value if not set ! It is done here because Ef must be read from file ! IF (emax == +999.0d0) emax = ef IF (plot_num == 10) THEN emin = emin / rytoev emax = emax / rytoev ENDIF ! ! Now do whatever you want ! CALL punch_plot (filplot, plot_num, sample_bias, z, dz, & emin, emax, kpoint, kband, spin_component, lsign, epsilon) ! END SUBROUTINE extract espresso-5.1/PP/src/write_io_header.f900000644000175000017500000000366312341372773016102 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE write_io_header(filplot, iunplot, title, nr1x, nr2x, nr3x, & nr1, nr2, nr3, nat, ntyp, ibrav, celldm, at, gcutm, dual, ecutwfc, & nkstot,nbnd,natomwfc) !----------------------------------------------------------------------- USE kinds, ONLY: DP USE ions_base, ONLY : zv, atm, tau, ityp USE noncollin_module, ONLY: noncolin USE spin_orb, ONLY: lspinorb IMPLICIT NONE CHARACTER (len=*) :: filplot CHARACTER (len=*) :: title INTEGER :: nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp, ibrav REAL(DP) :: celldm (6), gcutm, dual, ecutwfc, at(3,3) INTEGER :: iunplot, ios, na, nt, i INTEGER :: nkstot,nbnd,natomwfc ! IF (filplot == ' ') CALL errore ('write_io_h', 'filename missing', 1) OPEN (UNIT = iunplot, FILE = filplot, FORM = 'formatted', & STATUS = 'unknown', ERR = 101, IOSTAT = ios) 101 CALL errore ('write_io_header', 'opening file '//trim(filplot), abs (ios) ) WRITE (iunplot, '(a)') title WRITE (iunplot, '(8i8)') nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp WRITE (iunplot, '(i6,6f12.8)') ibrav, celldm IF (ibrav == 0) THEN WRITE ( iunplot, * ) at(:,1) WRITE ( iunplot, * ) at(:,2) WRITE ( iunplot, * ) at(:,3) ENDIF WRITE (iunplot, '(3f20.10,i6)') gcutm, dual, ecutwfc, 9 WRITE (iunplot, '(i4,3x,a2,3x,f5.2)') & (nt, atm (nt), zv (nt), nt=1, ntyp) WRITE (iunplot, '(i4,3x,3f15.9,3x,i2)') (na, & (tau (i, na), i = 1, 3), ityp (na), na = 1, nat) WRITE (iunplot, '(3i8)') natomwfc, nkstot, nbnd WRITE (iunplot, '(2l5)') noncolin, lspinorb RETURN END SUBROUTINE write_io_header espresso-5.1/PP/src/work_function.f900000644000175000017500000001135012341372773015630 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE work_function (wf) ! ! Print out the workfunction, calculated as the difference between the ! potential energy and the fermi energy. ! Written for supercells with the main axis along z. ! USE constants, ONLY : rytoev, e2 USE io_global, ONLY : stdout, ionode, ionode_id USE io_files, ONLY : seqopn USE ener, ONLY : ef USE lsda_mod, ONLY : nspin, current_spin USE scf, ONLY : rho, vltot, v, rho_core, rhog_core USE gvect USE cell_base, ONLY : omega, alat USE fft_base, ONLY : grid_gather, dfftp USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm IMPLICIT NONE REAL(DP) :: wmean1, wmean2, meancharge, wx1, wx2, wxm, wf, etxc, vtxc INTEGER :: n1, n2, ni, nmean, nspin0 LOGICAL :: exst REAL(DP), ALLOCATABLE :: raux1 (:), vaux1 (:), vaux2(:), aux (:) REAL(DP), ALLOCATABLE :: vxc(:,:) ! auxiliary vectors for charge and potential ALLOCATE (raux1( dfftp%nr1x * dfftp%nr2x * dfftp%nr3x)) ALLOCATE (vaux1( dfftp%nr1x * dfftp%nr2x * dfftp%nr3x)) ALLOCATE (vaux2( dfftp%nr1x * dfftp%nr2x * dfftp%nr3x)) nspin0=nspin IF (nspin==4) nspin0=1 ALLOCATE (vxc(dfftp%nnr,nspin)) CALL v_xc (rho, rho_core, rhog_core, etxc, vtxc, vxc) IF ( ionode ) THEN ! CALL seqopn (17, 'workf', 'formatted', exst) CALL seqopn (19, 'charge', 'formatted', exst) ! ENDIF wf = 0.d0 DO current_spin=1,nspin0 #ifdef __MPI ALLOCATE (aux ( dfftp%nnr)) aux(:) = rho%of_r(:,current_spin) + rho_core(:)/nspin0 CALL grid_gather (aux, raux1) #else raux1(1:dfftp%nnr) = rho%of_r(1:dfftp%nnr,current_spin) + rho_core(1:dfftp%nnr)/nspin0 #endif ! #ifdef __MPI aux(:) = vltot(:) + v%of_r(:,current_spin) CALL grid_gather (aux, vaux1) aux(:) = aux(:) - vxc(:,current_spin) CALL grid_gather (aux, vaux2) #else vaux1(1:dfftp%nnr) = vltot(1:dfftp%nnr) + v%of_r(1:dfftp%nnr,current_spin) vaux2(1:dfftp%nnr) = vaux1(1:dfftp%nnr) -vxc(1:dfftp%nnr,current_spin) #endif ! #ifdef __MPI DEALLOCATE(aux) #endif IF ( ionode ) THEN ! IF (nspin == 2) THEN IF (current_spin==1) THEN WRITE(17,*) " SPIN UP " WRITE(19,*) " SPIN UP " ELSE WRITE(17,*) " SPIN DOWN " WRITE(19,*) " SPIN DOWN " ENDIF ENDIF DO nmean = 1, dfftp%nr3 wmean1 = 0.d0 wmean2 = 0.d0 meancharge = 0.d0 wx1 = 0.d0 wx2 = 0.d0 wxm = 0.d0 DO n2 = 1, dfftp%nr2 DO n1 = 1, dfftp%nr1 ni = n1 + (n2 - 1) * dfftp%nr1x + (nmean - 1) * dfftp%nr1x * dfftp%nr2x meancharge = meancharge+raux1 (ni) wxm = wxm + raux1 (ni) **2 wmean1 = wmean1 + vaux1 (ni) wx1 = wx1 + vaux1 (ni) **2 wmean2 = wmean2 + vaux2 (ni) wx2 = wx2 + vaux2 (ni) **2 ENDDO ENDDO wmean1 = wmean1 / dble (dfftp%nr1 * dfftp%nr2) wmean2 = wmean2 / dble (dfftp%nr1 * dfftp%nr2) meancharge = meancharge / dble (dfftp%nr1 * dfftp%nr2) wx1 = dsqrt (wx1 / dble (dfftp%nr1 * dfftp%nr2) - wmean1 * wmean1) wx2 = dsqrt (wx2 / dble (dfftp%nr1 * dfftp%nr2) - wmean2 * wmean2) wxm = dsqrt (wxm / dble (dfftp%nr1 * dfftp%nr2) - meancharge**2) IF (nmean== (dfftp%nr3 + 1) / 2) THEN wf = wf + (wmean2 - ef) IF (nspin == 2) THEN IF (current_spin==1) THEN WRITE( stdout,*) " SPIN UP " ELSE WRITE( stdout,*) " SPIN DOWN " ENDIF ENDIF WRITE( stdout, 9130) rytoev * (wmean1 - ef), wx1 * rytoev, & rytoev * (wmean2 - ef), wx2 * rytoev ENDIF WRITE (17, * ) nmean, (wmean1 - ef) * rytoev, wx1 * rytoev, & (wmean2 - ef) * rytoev, wx2 * rytoev WRITE (19, * ) nmean, meancharge, wxm ENDDO ! ENDIF ! ENDDO wf = wf / nspin0 ! CALL mp_bcast( wf, ionode_id, world_comm ) WRITE( stdout, '(/5x,"Work function written on file workf")') WRITE( stdout, '( 5x,"Planar mean charge written on file charge")') 9130 FORMAT (/' workfunction = ',f10.4,' +- ',f10.4,' eV', & & /' without exchcorr = ',f10.4,' +- ',f10.4,' eV') CLOSE (17) CLOSE (19) DEALLOCATE(raux1) DEALLOCATE(vaux1) DEALLOCATE(vaux2) DEALLOCATE(vxc) RETURN END SUBROUTINE work_function espresso-5.1/PP/src/openfil_pp.f900000644000175000017500000000322212341372773015073 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE openfil_pp() !---------------------------------------------------------------------------- ! ! ... This routine opens all files needed to the self consistent run, ! ... sets various file names, units, record lengths ! USE kinds, ONLY : DP USE wvfct, ONLY : nbnd, npwx USE control_flags, ONLY: twfcollect USE io_files, ONLY : prefix, iunwfc, nwordwfc, diropn USE noncollin_module, ONLY : npol ! IMPLICIT NONE ! LOGICAL :: exst ! twfcollect=.false. ! ! ... nwordwfc is the record length for the direct-access file ! ... containing wavefunctions ! ! NOTE: in post-processing codes, wavefunctions are still opened using ! "diropn" and not "open_buffer" (there is no real advantage in ! using buffers; there would be one if wavefunctions in collected ! format were read into a buffer instead of being written to file ! in distributed format, but this is not yet done). In order to have ! a uniform definition, nwordwfc is defined as in pwscf as the number ! of COMPLEX WORDS of the wavefunction packet. ! nwordwfc = nbnd * npwx * npol CALL diropn( iunwfc, 'wfc', 2*nwordwfc, exst ) IF ( .not. exst ) & CALL errore ('openfil_pp','file '//trim( prefix )//'.wfc'//' not found',1) ! RETURN ! END SUBROUTINE openfil_pp espresso-5.1/PP/src/local_dos_mag.f900000644000175000017500000002722512341372773015534 0ustar mbamba! ! Copyright (C) 2005 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE local_dos_mag(spin_component, kpoint, kband, raux) !---------------------------------------------------------------------------- ! ! ... calculates the symmetrized charge density and sum of occupied ! ... eigenvalues. ! ... this version works also for metals (gaussian spreading technique) ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE cell_base, ONLY : omega,tpiba2 USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : invfft USE gvect, ONLY : ngm, g USE fft_base, ONLY : dfftp USE gvecs, ONLY : nls, doublegrid USE klist, ONLY : nks, xk USE scf, ONLY : rho USE io_files, ONLY : iunwfc, nwordwfc USE uspp, ONLY : nkb, vkb, becsum, nhtol, nhtoj, indv, okvan USE uspp_param, ONLY : upf, nh, nhm USE wavefunctions_module, ONLY : evc, psic_nc USE noncollin_module, ONLY : noncolin, npol USE spin_orb, ONLY : lspinorb, fcoef USE wvfct, ONLY : nbnd, npwx, npw, igk, g2kin, ecutwfc USE becmod, ONLY : calbec ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: spin_component, kpoint, kband REAL(DP) :: raux(dfftp%nnr) INTEGER :: ikb, jkb, ijkb0, ih, jh, ijh, na, np ! counters on beta functions, atoms, pseudopotentials INTEGER :: ir, is, ig, ibnd, ik ! counter on 3D r points ! counter on spin polarizations ! counter on g vectors ! counter on bands ! counter on k points ! REAL(DP) :: w1 ! weights COMPLEX(DP), ALLOCATABLE :: becp_nc(:,:,:) ! contains ! COMPLEX(DP), ALLOCATABLE :: be1(:,:), be2(:,:) ! INTEGER :: ipol, kh, kkb, is1, is2 becsum(:,:,:) = 0.D0 rho%of_r(:,:) = 0.D0 w1=1.D0/omega ALLOCATE( becp_nc( nkb, npol, nbnd ) ) IF (lspinorb) ALLOCATE(be1(nhm,2), be2(nhm,2)) ! ! ... here we sum for each k point the contribution ! ... of the wavefunctions to the charge ! DO ik = 1, nks IF (ik == kpoint) THEN CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) IF (nkb > 0) CALL init_us_2 (npw, igk, xk (1, ik), vkb) CALL calbec ( npw, vkb, evc, becp_nc) ! ! DO ibnd = 1, nbnd ! IF (ibnd == kband) THEN psic_nc = (0.D0,0.D0) DO ig = 1, npw psic_nc(nls(igk(ig)),1)=evc(ig ,ibnd) psic_nc(nls(igk(ig)),2)=evc(ig+npwx,ibnd) ENDDO DO ipol=1,npol CALL invfft ('Wave', psic_nc(:,ipol), dffts) ENDDO IF (spin_component==1) THEN DO ir = 1,dffts%nnr rho%of_r(ir,2) = rho%of_r(ir,2) + 2.D0*w1* & (dble(psic_nc(ir,1))* dble(psic_nc(ir,2)) + & aimag(psic_nc(ir,1))*aimag(psic_nc(ir,2))) ENDDO ENDIF IF (spin_component==2) THEN DO ir = 1,dffts%nnr rho%of_r(ir,3) = rho%of_r(ir,3) + 2.D0*w1* & (dble(psic_nc(ir,1))*aimag(psic_nc(ir,2)) - & dble(psic_nc(ir,2))*aimag(psic_nc(ir,1))) ENDDO ENDIF IF (spin_component==3) THEN DO ir = 1,dffts%nnr rho%of_r(ir,4) = rho%of_r(ir,4) + w1* & (dble(psic_nc(ir,1))**2+aimag(psic_nc(ir,1))**2 & -dble(psic_nc(ir,2))**2-aimag(psic_nc(ir,2))**2) ENDDO ENDIF ijkb0 = 0 DO np = 1, ntyp ! IF ( upf(np)%tvanp ) THEN ! DO na = 1, nat ! IF (ityp(na)==np) THEN ! IF (upf(np)%has_so) THEN be1=(0.d0,0.d0) be2=(0.d0,0.d0) DO ih = 1, nh(np) ikb = ijkb0 + ih DO kh = 1, nh(np) IF ((nhtol(kh,np)==nhtol(ih,np)).and. & (nhtoj(kh,np)==nhtoj(ih,np)).and. & (indv(kh,np)==indv(ih,np))) THEN kkb=ijkb0 + kh DO is1=1,2 DO is2=1,2 be1(ih,is1)=be1(ih,is1)+ & fcoef(ih,kh,is1,is2,np)* & becp_nc(kkb,is2,ibnd) be2(ih,is1)=be2(ih,is1)+ & fcoef(kh,ih,is2,is1,np)* & conjg(becp_nc(kkb,is2,ibnd)) ENDDO ENDDO ENDIF ENDDO ENDDO ENDIF ijh = 1 ! DO ih = 1, nh(np) ! ikb = ijkb0 + ih ! IF (upf(np)%has_so) THEN IF (spin_component==1) & becsum(ijh,na,2)=becsum(ijh,na,2)+ & (be1(ih,2)*be2(ih,1)+ be1(ih,1)*be2(ih,2)) IF (spin_component==2) & becsum(ijh,na,3)=becsum(ijh,na,3)+ & (0.d0,-1.d0)* & (be1(ih,2)*be2(ih,1)-be1(ih,1)*be2(ih,2)) IF (spin_component==3) & becsum(ijh,na,4)=becsum(ijh,na,4)+ & (be1(ih,1)*be2(ih,1)-be1(ih,2)*be2(ih,2)) ELSE IF (spin_component==1) & becsum(ijh,na,2)=becsum(ijh,na,2) & + (conjg(becp_nc(ikb,2,ibnd)) & *becp_nc(ikb,1,ibnd) & + conjg(becp_nc(ikb,1,ibnd)) & *becp_nc(ikb,2,ibnd) ) IF (spin_component==2) & becsum(ijh,na,3)=becsum(ijh,na,3)+2.d0 & *aimag(conjg(becp_nc(ikb,1,ibnd))* & becp_nc(ikb,2,ibnd) ) IF (spin_component==3) & becsum(ijh,na,4) = becsum(ijh,na,4) & + ( conjg(becp_nc(ikb,1,ibnd)) & *becp_nc(ikb,1,ibnd) & - conjg(becp_nc(ikb,2,ibnd)) & *becp_nc(ikb,2,ibnd) ) ENDIF ! ijh = ijh + 1 ! DO jh = ( ih + 1 ), nh(np) ! jkb = ijkb0 + jh ! IF (upf(np)%has_so) THEN IF (spin_component==1) & becsum(ijh,na,2)=becsum(ijh,na,2)+( & (be1(jh,2)*be2(ih,1)+be1(jh,1)*be2(ih,2))+& (be1(ih,2)*be2(jh,1)+be1(ih,1)*be2(jh,2))) IF (spin_component==2) & becsum(ijh,na,3)=becsum(ijh,na,3)+ & (0.d0,-1.d0)*((be1(jh,2)*& be2(ih,1)-be1(jh,1)*be2(ih,2))+ & (be1(ih,2)*be2(jh,1)-be1(ih,1)*be2(jh,2))) IF (spin_component==3) & becsum(ijh,na,4)=becsum(ijh,na,4)+ & ((be1(jh,1)*be2(ih,1)- & be1(jh,2)*be2(ih,2))+ & (be1(ih,1)*be2(jh,1)- & be1(ih,2)*be2(jh,2)) ) ELSE IF (spin_component==1) & becsum(ijh,na,2)=becsum(ijh,na,2)+ 2.d0* & dble(conjg(becp_nc(ikb,2,ibnd))* & becp_nc(jkb,1,ibnd) + & conjg(becp_nc(ikb,1,ibnd))* & becp_nc(jkb,2,ibnd) ) IF (spin_component==2) & becsum(ijh,na,3)=becsum(ijh,na,3)+ & 2.d0* & aimag(conjg(becp_nc(ikb,1,ibnd))* & becp_nc(jkb,2,ibnd) + & conjg(becp_nc(ikb,1,ibnd))* & becp_nc(jkb,2,ibnd) ) IF (spin_component==3) & becsum(ijh,na,4)=becsum(ijh,na,4)+ 2.d0* & dble(conjg(becp_nc(ikb,1,ibnd))* & becp_nc(jkb,1,ibnd) - & conjg(becp_nc(ikb,2,ibnd))* & becp_nc(jkb,2,ibnd) ) ENDIF ! ijh = ijh + 1 ! ENDDO ! ENDDO ! ijkb0 = ijkb0 + nh(np) ! ENDIF ! ENDDO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! ENDDO ! ENDIF ! ENDDO ! ENDIF ! ENDDO ! ENDIF ! ENDDO ! IF ( doublegrid ) THEN is=spin_component+1 CALL interpolate( rho%of_r(1,is), rho%of_r(1,is), 1 ) ENDIF ! ! ... Here we add the Ultrasoft contribution to the charge and magnetization ! IF ( okvan ) CALL addusdens(rho%of_r(:,:)) DO ir=1,dfftp%nnr raux(ir)=rho%of_r(ir,spin_component+1) ENDDO ! IF (lspinorb) DEALLOCATE(be1, be2) DEALLOCATE( becp_nc ) RETURN ! END SUBROUTINE local_dos_mag espresso-5.1/PP/src/add_shift_cc.f900000644000175000017500000000632312341372773015337 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE add_shift_cc (shift_cc) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY: tpi USE atom, ONLY: rgrid USE uspp_param, ONLY: upf USE ions_base, ONLY: nat, ntyp => nsp, ityp, tau USE cell_base, ONLY: alat, omega, tpiba, tpiba2 USE fft_base, ONLY: dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY: ngm, gstart, nl, g, gg, ngl, gl, igtongl USE ener, ONLY: etxc, vtxc USE lsda_mod, ONLY: nspin USE scf, ONLY: rho, rho_core, rhog_core USE control_flags, ONLY: gamma_only USE wavefunctions_module, ONLY : psic USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! first the dummy variable ! real(DP) :: shift_cc (nat) ! output: the local forces on atoms INTEGER :: ig, ir, nt, na ! counter on G vectors ! counter on FFT grid points ! counter on types of atoms ! counter on atoms real(DP), ALLOCATABLE :: vxc (:,:), rhocg (:), shift_(:) ! exchange-correlation potential ! radial fourier trasform of rho core real(DP) :: arg, fact ! IF ( any (upf(1:ntyp)%nlcc) ) GOTO 15 RETURN ! 15 CONTINUE CALL infomsg ('add_shift_cc','BEWARE: shift with CC never tested !!!') IF (gamma_only) THEN fact = 2.d0 ELSE fact = 1.d0 ENDIF ! ! recalculate the exchange-correlation potential ! ALLOCATE ( vxc(dfftp%nnr,nspin), shift_(nat) ) shift_(:) = 0.d0 ! CALL v_xc (rho, rho_core, rhog_core, etxc, vtxc, vxc) ! IF (nspin==1) THEN DO ir = 1, dfftp%nnr psic (ir) = vxc (ir, 1) ENDDO ELSE DO ir = 1, dfftp%nnr psic (ir) = 0.5d0 * (vxc (ir, 1) + vxc (ir, 2) ) ENDDO ENDIF DEALLOCATE (vxc) CALL fwfft ('Dense', psic, dfftp) ! ! psic contains now Vxc(G) ! ALLOCATE ( rhocg(ngl) ) ! ! core correction term: sum on g of omega*ig*exp(-i*r_i*g)*n_core(g)*vxc ! g = 0 term gives no contribution ! DO nt = 1, ntyp IF ( upf(nt)%nlcc ) THEN CALL drhoc (ngl, gl, omega, tpiba2, rgrid(nt)%mesh, rgrid(nt)%r, & rgrid(nt)%rab, upf(nt)%rho_atc, rhocg) DO na = 1, nat IF (nt == ityp (na) ) THEN IF (gstart==2) shift_(na) = omega * rhocg (igtongl (1) ) * & conjg(psic (nl (1) ) ) DO ig = gstart, ngm arg = (g (1, ig) * tau (1, na) + g (2, ig) * tau (2, na) & + g (3, ig) * tau (3, na) ) * tpi shift_ (na) = shift_( na) + omega * & rhocg (igtongl (ig) ) * conjg(psic (nl (ig) ) ) * & cmplx( cos(arg), -sin(arg),kind=DP) * fact ENDDO ENDIF ENDDO ENDIF ENDDO #ifdef __MPI CALL mp_sum( shift_ , intra_pool_comm ) #endif shift_cc(:) = shift_cc(:) + shift_(:) DEALLOCATE (rhocg, shift_) ! RETURN END SUBROUTINE add_shift_cc espresso-5.1/PP/src/projwfc.f900000644000175000017500000022662512341372773014430 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- PROGRAM do_projwfc !----------------------------------------------------------------------- ! ! projects wavefunctions onto orthogonalized atomic wavefunctions, ! calculates Lowdin charges, spilling parameter, projected DOS ! or computes the LDOS in a volume given in input as function of energy ! ! See files INPUT_PROJWFC.* in Doc/ directory for usage ! IMPORTANT: since v.5 namelist name is &projwfc and no longer &inputpp ! USE io_global, ONLY : stdout, ionode, ionode_id USE constants, ONLY : rytoev USE kinds, ONLY : DP USE klist, ONLY : degauss, ngauss, lgauss USE io_files, ONLY : nd_nmbr, prefix, tmp_dir USE noncollin_module, ONLY : noncolin USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE mp_global, ONLY : mp_startup, nproc_ortho USE environment, ONLY : environment_start USE wvfct, ONLY: et, nbnd ! IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! CHARACTER (len=256) :: filpdos, filproj, outdir REAL (DP) :: Emin, Emax, DeltaE, degauss1 INTEGER :: ngauss1, ios LOGICAL :: lwrite_overlaps, lbinary_data LOGICAL :: lsym, kresolveddos, tdosinboxes, plotboxes INTEGER, PARAMETER :: N_MAX_BOXES = 999 INTEGER :: n_proj_boxes, irmin(3,N_MAX_BOXES), irmax(3,N_MAX_BOXES) LOGICAL :: lgww !if .true. use GW QP energies from file bands.dat ! NAMELIST / projwfc / outdir, prefix, ngauss, degauss, lsym, & Emin, Emax, DeltaE, filpdos, filproj, lgww, & kresolveddos, tdosinboxes, n_proj_boxes, irmin, irmax, plotboxes, & lwrite_overlaps, lbinary_data ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'PROJWFC' ) ! ! set default values for variables in namelist ! prefix = 'pwscf' CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( trim( outdir ) == ' ' ) outdir = './' filproj= ' ' filpdos= ' ' Emin =-1000000.d0 Emax =+1000000.d0 DeltaE = 0.01d0 ngauss = 0 lsym = .true. degauss= 0.d0 lgww = .false. lwrite_overlaps = .false. lbinary_data = .false. kresolveddos = .false. tdosinboxes = .false. plotboxes = .false. n_proj_boxes= 1 irmin(:,:) = 1 irmax(:,:) = 0 ! ios = 0 ! IF ( ionode ) THEN ! CALL input_from_file ( ) ! READ (5, projwfc, iostat = ios) ! tmp_dir = trimcheck (outdir) ! save the value of degauss and ngauss: they are read from file degauss1=degauss ngauss1 = ngauss ! ENDIF ! CALL mp_bcast (ios, ionode_id, world_comm ) ! IF (ios /= 0) WRITE (stdout, & '("*** namelist &inputpp no longer valid: please use &projwfc instead")') IF (ios /= 0) CALL errore ('do_projwfc', 'reading projwfc namelist', abs (ios) ) ! ! ... Broadcast variables ! CALL mp_bcast( tmp_dir, ionode_id, world_comm ) CALL mp_bcast( prefix, ionode_id, world_comm ) CALL mp_bcast( filproj, ionode_id, world_comm ) CALL mp_bcast( ngauss1, ionode_id, world_comm ) CALL mp_bcast( degauss1, ionode_id, world_comm ) CALL mp_bcast( DeltaE, ionode_id, world_comm ) CALL mp_bcast( lsym, ionode_id, world_comm ) CALL mp_bcast( Emin, ionode_id, world_comm ) CALL mp_bcast( Emax, ionode_id, world_comm ) CALL mp_bcast( lwrite_overlaps, ionode_id, world_comm ) CALL mp_bcast( lbinary_data, ionode_id, world_comm ) CALL mp_bcast( lgww, ionode_id, world_comm ) ! for projection on boxes CALL mp_bcast( tdosinboxes, ionode_id, world_comm ) CALL mp_bcast( n_proj_boxes, ionode_id, world_comm ) CALL mp_bcast( irmin, ionode_id, world_comm ) CALL mp_bcast( irmax, ionode_id, world_comm ) ! ! Now allocate space for pwscf variables, read and check them. ! CALL read_file ( ) ! IF(lgww) CALL get_et_from_gww ( nbnd, et ) ! CALL openfil_pp ( ) ! ! decide Gaussian broadening ! IF (degauss1/=0.d0) THEN degauss=degauss1 ngauss =ngauss1 WRITE( stdout,'(/5x,"Gaussian broadening (read from input): ",& & "ngauss,degauss=",i4,f12.6/)') ngauss,degauss lgauss=.true. ELSEIF (lgauss) THEN WRITE( stdout,'(/5x,"Gaussian broadening (read from file): ",& & "ngauss,degauss=",i4,f12.6/)') ngauss,degauss ELSE degauss=DeltaE/rytoev ngauss =0 WRITE( stdout,'(/5x,"Gaussian broadening (default values): ",& & "ngauss,degauss=",i4,f12.6/)') ngauss,degauss lgauss=.true. ENDIF ! IF ( filpdos == ' ') filpdos = prefix ! IF ( tdosinboxes ) THEN IF( nproc_ortho > 1 ) THEN CALL errore ('do_projwfc', 'nproc_ortho > 1 not yet implemented', 1) ELSE CALL projwave_boxes (filpdos, filproj, n_proj_boxes, irmin, irmax, plotboxes) ENDIF ELSE IF (noncolin) THEN CALL projwave_nc(filproj, lsym, lwrite_overlaps, lbinary_data ) ELSE IF( nproc_ortho > 1 ) THEN CALL pprojwave (filproj, lsym, lwrite_overlaps, lbinary_data ) ELSE CALL projwave (filproj, lsym, lwrite_overlaps, lbinary_data) ENDIF ENDIF ENDIF ! IF ( ionode ) THEN IF ( tdosinboxes ) THEN CALL partialdos_boxes (Emin, Emax, DeltaE, kresolveddos, filpdos, n_proj_boxes) ELSE IF ( lsym ) THEN ! IF (noncolin) THEN CALL partialdos_nc (Emin, Emax, DeltaE, kresolveddos, filpdos) ELSE CALL partialdos (Emin, Emax, DeltaE, kresolveddos, filpdos) ENDIF ! ENDIF ENDIF ENDIF ! CALL stop_pp ! END PROGRAM do_projwfc SUBROUTINE get_et_from_gww ( nbnd, et ) ! USE kinds, ONLY : dp USE constants, ONLY: rytoev USE io_global, ONLY : stdout ! IMPLICIT NONE INTEGER, INTENT(IN) :: nbnd REAL(dp), INTENT(OUT):: et(nbnd,1) ! INTEGER :: iun, idum, i, ios REAL(DP) :: rdum1, rdum2, rdum3 LOGICAL :: lex INTEGER, EXTERNAL :: find_free_unit ! INQUIRE ( file='bands.dat', EXIST=lex ) WRITE(stdout,*) 'lex=', lex CALL flush_unit(stdout) ! IF(lex) THEN WRITE(stdout,*) 'Read the file bands.dat => GWA Eigenvalues used.' CALL flush_unit(stdout) iun = find_free_unit() OPEN(unit=iun, file='bands.dat', status='unknown', form='formatted', & IOSTAT=ios) READ(iun,*) idum DO i=1, nbnd READ(iun,*) idum,rdum1,rdum2,et(i,1),rdum3 ENDDO et(:,1)=et(:,1)/rytoev !! in bands.dat file, the QP energies are in eV ELSE WRITE(stdout,*) 'The file bands.dat does not exist.' WRITE(stdout,*) 'Eigenergies are not modified' CALL flush_unit(stdout) ENDIF END SUBROUTINE get_et_from_gww ! MODULE projections USE kinds, ONLY : DP TYPE wfc_label INTEGER na, n, l, m, ind REAL (DP) jj END TYPE wfc_label TYPE(wfc_label), ALLOCATABLE :: nlmchi(:) REAL (DP), ALLOCATABLE :: proj (:,:,:) COMPLEX (DP), ALLOCATABLE :: proj_aux (:,:,:) COMPLEX (DP), ALLOCATABLE :: ovps_aux (:,:,:) CONTAINS ! SUBROUTINE fill_nlmchi ( natomwfc, nwfc, lmax_wfc ) ! USE ions_base, ONLY : ityp, nat USE uspp_param, ONLY: upf USE spin_orb, ONLY: lspinorb USE noncollin_module, ONLY: noncolin ! IMPLICIT NONE INTEGER, INTENT (IN) :: natomwfc INTEGER, INTENT (OUT) :: nwfc, lmax_wfc ! INTEGER :: na, nt, n, n1, n2, l, m, ind REAL(dp) :: jj, fact(2) REAL(dp), EXTERNAL :: spinor ! ALLOCATE (nlmchi(natomwfc)) nwfc=0 lmax_wfc = 0 DO na = 1, nat nt = ityp (na) n2 = 0 DO n = 1, upf(nt)%nwfc IF (upf(nt)%oc (n) >= 0.d0) THEN l = upf(nt)%lchi (n) lmax_wfc = max (lmax_wfc, l ) IF (lspinorb) THEN IF (upf(nt)%has_so) THEN jj = upf(nt)%jchi (n) ind = 0 DO m = -l-1, l fact(1) = spinor(l,jj,m,1) fact(2) = spinor(l,jj,m,2) IF (abs(fact(1)) > 1.d-8 .or. abs(fact(2)) > 1.d-8) THEN nwfc = nwfc + 1 ind = ind + 1 nlmchi(nwfc)%na = na nlmchi(nwfc)%n = n nlmchi(nwfc)%l = l nlmchi(nwfc)%m = m nlmchi(nwfc)%ind = ind nlmchi(nwfc)%jj = jj ENDIF ENDDO ELSE DO n1 = l, l+1 jj= dble(n1) - 0.5d0 ind = 0 IF (jj>0.d0) THEN n2 = n2 + 1 DO m = -l-1, l fact(1) = spinor(l,jj,m,1) fact(2) = spinor(l,jj,m,2) IF (abs(fact(1)) > 1.d-8 .or. abs(fact(2)) > 1.d-8) THEN nwfc = nwfc + 1 ind = ind + 1 nlmchi(nwfc)%na = na nlmchi(nwfc)%n = n2 nlmchi(nwfc)%l = l nlmchi(nwfc)%m = m nlmchi(nwfc)%ind = ind nlmchi(nwfc)%jj = jj ENDIF ENDDO ENDIF ENDDO ENDIF ELSE DO m = 1, 2 * l + 1 nwfc=nwfc+1 nlmchi(nwfc)%na = na nlmchi(nwfc)%n = n nlmchi(nwfc)%l = l nlmchi(nwfc)%m = m nlmchi(nwfc)%ind = m nlmchi(nwfc)%jj = 0.d0 ENDDO IF ( noncolin) THEN DO m = 1, 2 * l + 1 nlmchi(nwfc+2*l+1)%na = na nlmchi(nwfc+2*l+1)%n = n nlmchi(nwfc+2*l+1)%l = l nlmchi(nwfc+2*l+1)%m = m nlmchi(nwfc+2*l+1)%ind = m+2*l+1 nlmchi(nwfc+2*l+1)%jj = 0.d0 END DO nwfc=nwfc+2*l+1 ENDIF ENDIF ENDIF ENDDO ENDDO ! IF (lmax_wfc > 3) CALL errore ('fill_nlmchi', 'l > 3 not yet implemented',1) IF (nwfc /= natomwfc) CALL errore ('fill_nlmchi','wrong # of atomic wfcs',1) END SUBROUTINE fill_nlmchi ! END MODULE projections ! ! !----------------------------------------------------------------------- SUBROUTINE projwave( filproj, lsym, lwrite_ovp, lbinary ) !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE run_info, ONLY: title USE ions_base, ONLY : zv, tau, nat, ntyp => nsp, ityp, atm USE basis, ONLY : natomwfc, swfcatom USE cell_base USE constants, ONLY: rytoev, eps4 USE gvect USE gvecs, ONLY: dual USE fft_base, ONLY : dfftp USE klist, ONLY: xk, nks, nkstot, nelec USE lsda_mod, ONLY: nspin, isk, current_spin USE symm_base, ONLY: nsym, irt, d1, d2, d3 USE wvfct USE control_flags, ONLY: gamma_only USE uspp, ONLY: nkb, vkb USE becmod, ONLY: bec_type, becp, calbec, allocate_bec_type, deallocate_bec_type USE io_files, ONLY: nd_nmbr, prefix, tmp_dir, nwordwfc, iunwfc USE wavefunctions_module, ONLY: evc ! USE projections ! IMPLICIT NONE ! CHARACTER (len=*) :: filproj LOGICAL :: lwrite_ovp, lbinary ! INTEGER :: ik, ibnd, i, j, k, na, nb, nt, isym, n, m, m1, l, nwfc,& nwfc1, lmax_wfc, is, iunproj REAL(DP), ALLOCATABLE :: e (:) COMPLEX(DP), ALLOCATABLE :: wfcatom (:,:) COMPLEX(DP), ALLOCATABLE :: overlap(:,:), work(:,:),work1(:), proj0(:,:) ! Some workspace for k-point calculation ... REAL (DP), ALLOCATABLE ::roverlap(:,:), rwork1(:),rproj0(:,:) ! ... or for gamma-point. REAL(DP), ALLOCATABLE :: charges(:,:,:), charges_lm(:,:,:,:), proj1 (:) REAL(DP) :: psum, totcharge(2) INTEGER :: nksinit, nkslast CHARACTER(len=256) :: filename CHARACTER (len=1) :: l_label(0:3)=(/'s','p','d','f'/) CHARACTER (len=7) :: lm_label(1:7,1:3)=reshape( (/ & 'z ','x ','y ',' ',' ',' ',' ', & 'z2 ','xz ','yz ','x2-y2 ','xy ',' ',' ', & 'z3 ','xz2 ','yz2 ','zx2-zy2','xyz ','x3-3xy2','3yx2-y3' /), (/7,3/) ) INTEGER, ALLOCATABLE :: idx(:) LOGICAL :: lsym LOGICAL :: freeswfcatom ! ! WRITE( stdout, '(/5x,"Calling projwave .... ")') IF ( gamma_only ) THEN WRITE( stdout, '(5x,"gamma-point specific algorithms are used")') ENDIF ! ! initialize D_Sl for l=1, l=2 and l=3, for l=0 D_S0 is 1 ! CALL d_matrix (d1, d2, d3) ! ! fill structure nlmchi ! CALL fill_nlmchi ( natomwfc, nwfc, lmax_wfc ) ! ALLOCATE( proj (natomwfc, nbnd, nkstot) ) ALLOCATE( proj_aux (natomwfc, nbnd, nkstot) ) proj = 0.d0 proj_aux = (0.d0, 0.d0) ! IF ( lwrite_ovp ) THEN ALLOCATE( ovps_aux(natomwfc, natomwfc, nkstot) ) ELSE ALLOCATE( ovps_aux(1,1,1) ) ENDIF ovps_aux = (0.d0, 0.d0) ! IF (.not. ALLOCATED(swfcatom)) THEN ALLOCATE(swfcatom (npwx , natomwfc ) ) freeswfcatom = .true. ELSE freeswfcatom = .false. ENDIF ALLOCATE(wfcatom (npwx, natomwfc) ) ALLOCATE(overlap (natomwfc, natomwfc) ) overlap= (0.d0,0.d0) ! IF ( gamma_only ) THEN ALLOCATE(roverlap (natomwfc, natomwfc) ) roverlap= 0.d0 ENDIF CALL allocate_bec_type (nkb, natomwfc, becp ) ALLOCATE(e (natomwfc) ) ! ! loop on k points ! CALL init_us_1 CALL init_at_1 ! DO ik = 1, nks CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) CALL atomic_wfc (ik, wfcatom) CALL init_us_2 (npw, igk, xk (1, ik), vkb) CALL calbec ( npw, vkb, wfcatom, becp) CALL s_psi (npwx, npw, natomwfc, wfcatom, swfcatom) ! ! wfcatom = |phi_i> , swfcatom = \hat S |phi_i> ! calculate overlap matrix O_ij = ! IF ( gamma_only ) THEN CALL calbec ( npw, wfcatom, swfcatom, roverlap ) overlap(:,:)=cmplx(roverlap(:,:),0.0_dp, kind=dp) ! TEMP: diagonalization routine for real matrix should be used instead ELSE CALL calbec ( npw, wfcatom, swfcatom, overlap ) ENDIF ! ! save the overlap matrix ! IF ( lwrite_ovp ) THEN ! ovps_aux(1:natomwfc,1:natomwfc,ik) = overlap(1:natomwfc,1:natomwfc) ! ENDIF ! ! calculate O^{-1/2} ! ALLOCATE(work (natomwfc, natomwfc) ) CALL cdiagh (natomwfc, overlap, natomwfc, e, work) DO i = 1, natomwfc e (i) = 1.d0 / dsqrt (e (i) ) ENDDO DO i = 1, natomwfc DO j = i, natomwfc overlap (i, j) = (0.d0, 0.d0) DO k = 1, natomwfc overlap (i, j) = overlap (i, j) + e (k) * work (j, k) * conjg (work (i, k) ) ENDDO IF (j /= i) overlap (j, i) = conjg (overlap (i, j)) ENDDO ENDDO DEALLOCATE (work) ! ! calculate wfcatom = O^{-1/2} \hat S | phi> ! IF ( gamma_only ) THEN roverlap(:,:)=REAL(overlap(:,:),DP) ! TEMP: diagonalization routine for real matrix should be used instead CALL DGEMM ('n', 't', 2*npw, natomwfc, natomwfc, 1.d0 , & swfcatom, 2*npwx, roverlap, natomwfc, 0.d0, wfcatom, 2*npwx) ELSE CALL ZGEMM ('n', 't', npw, natomwfc, natomwfc, (1.d0, 0.d0) , & swfcatom, npwx, overlap, natomwfc, (0.d0, 0.d0), wfcatom, npwx) ENDIF ! ! make the projection ! IF ( gamma_only ) THEN ! ALLOCATE(rproj0(natomwfc,nbnd), rwork1 (nbnd) ) CALL calbec ( npw, wfcatom, evc, rproj0) ! proj_aux(:,:,ik) = cmplx( rproj0(:,:), 0.0_dp, kind=dp ) ! ELSE ! ALLOCATE(proj0(natomwfc,nbnd), work1 (nbnd) ) CALL calbec ( npw, wfcatom, evc, proj0) ! proj_aux(:,:,ik) = proj0(:,:) ! ENDIF ! ! symmetrize the projections ! IF (lsym) THEN DO nwfc = 1, natomwfc ! ! atomic wavefunction nwfc is on atom na ! na= nlmchi(nwfc)%na n = nlmchi(nwfc)%n l = nlmchi(nwfc)%l m = nlmchi(nwfc)%m ! DO isym = 1, nsym nb = irt (isym, na) DO nwfc1 =1, natomwfc IF (nlmchi(nwfc1)%na == nb .and. & nlmchi(nwfc1)%n == nlmchi(nwfc)%n .and. & nlmchi(nwfc1)%l == nlmchi(nwfc)%l .and. & nlmchi(nwfc1)%m == 1 ) GOTO 10 ENDDO CALL errore('projwave','cannot symmetrize',1) 10 nwfc1=nwfc1-1 ! ! nwfc1 is the first rotated atomic wfc corresponding to nwfc ! IF ( gamma_only ) THEN IF (l == 0) THEN rwork1(:) = rproj0 (nwfc1 + 1,:) ELSEIF (l == 1) THEN rwork1(:) = 0.d0 DO m1 = 1, 3 rwork1(:)=rwork1(:)+d1(m1,m,isym)*rproj0(nwfc1+m1,:) ENDDO ELSEIF (l == 2) THEN rwork1(:) = 0.d0 DO m1 = 1, 5 rwork1(:)=rwork1(:)+d2(m1,m,isym)*rproj0(nwfc1+m1,:) ENDDO ELSEIF (l == 3) THEN rwork1(:) = 0.d0 DO m1 = 1, 7 rwork1(:)=rwork1(:)+d3(m1,m,isym)*rproj0(nwfc1+m1,:) ENDDO ENDIF DO ibnd = 1, nbnd proj (nwfc, ibnd, ik) = proj (nwfc, ibnd, ik) + & rwork1(ibnd) * rwork1(ibnd) / nsym ENDDO ELSE IF (l == 0) THEN work1(:) = proj0 (nwfc1 + 1,:) ELSEIF (l == 1) THEN work1(:) = 0.d0 DO m1 = 1, 3 work1(:)=work1(:)+d1(m1,m,isym)*proj0(nwfc1+m1,:) ENDDO ELSEIF (l == 2) THEN work1(:) = 0.d0 DO m1 = 1, 5 work1(:)=work1(:)+d2(m1,m,isym)*proj0(nwfc1+m1,:) ENDDO ELSEIF (l == 3) THEN work1(:) = 0.d0 DO m1 = 1, 7 work1(:)=work1(:)+d3(m1,m,isym)*proj0(nwfc1+m1,:) ENDDO ENDIF DO ibnd = 1, nbnd proj (nwfc, ibnd, ik) = proj (nwfc, ibnd, ik) + & work1(ibnd) * conjg (work1(ibnd)) / nsym ENDDO ENDIF ENDDO ENDDO ELSE IF ( gamma_only ) THEN DO nwfc=1,natomwfc DO ibnd=1,nbnd proj(nwfc,ibnd,ik)=abs(rproj0(nwfc,ibnd))**2 ENDDO ENDDO ELSE DO nwfc=1,natomwfc DO ibnd=1,nbnd proj(nwfc,ibnd,ik)=abs(proj0(nwfc,ibnd))**2 ENDDO ENDDO ENDIF ENDIF IF ( gamma_only ) THEN DEALLOCATE (rwork1) DEALLOCATE (rproj0) ELSE DEALLOCATE (work1) DEALLOCATE (proj0) ENDIF ! on k-points ENDDO ! DEALLOCATE (e) IF ( gamma_only ) THEN DEALLOCATE (roverlap) ENDIF CALL deallocate_bec_type (becp) DEALLOCATE (overlap) DEALLOCATE (wfcatom) IF (freeswfcatom) DEALLOCATE (swfcatom) ! ! vectors et and proj are distributed across the pools ! collect data for all k-points to the first pool ! CALL poolrecover (et, nbnd, nkstot, nks) CALL poolrecover (proj, nbnd * natomwfc, nkstot, nks) CALL poolrecover (proj_aux, 2 * nbnd * natomwfc, nkstot, nks) ! IF ( lwrite_ovp ) THEN CALL poolrecover (ovps_aux, 2 * natomwfc * natomwfc, nkstot, nks) ENDIF ! IF ( ionode ) THEN ! ! write on the file filproj ! IF (filproj/=' ') THEN DO is=1,nspin IF (nspin==2) THEN IF (is==1) filename=trim(filproj)//'.up' IF (is==2) filename=trim(filproj)//'.down' nksinit=(nkstot/2)*(is-1)+1 nkslast=(nkstot/2)*is ELSE filename=trim(filproj) nksinit=1 nkslast=nkstot ENDIF iunproj=33 CALL write_io_header(filename, iunproj, title, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, & dfftp%nr1, dfftp%nr2, dfftp%nr3, nat, ntyp, ibrav, celldm, at, gcutm, dual, & ecutwfc, nkstot/nspin, nbnd, natomwfc) DO nwfc = 1, natomwfc WRITE(iunproj,'(2i5,a3,3i5)') & nwfc, nlmchi(nwfc)%na, atm(ityp(nlmchi(nwfc)%na)), & nlmchi(nwfc)%n, nlmchi(nwfc)%l, nlmchi(nwfc)%m DO ik=nksinit,nkslast DO ibnd=1,nbnd WRITE(iunproj,'(2i8,f20.10)') ik,ibnd, & abs(proj(nwfc,ibnd,ik)) ENDDO ENDDO ENDDO CLOSE(iunproj) ENDDO ENDIF ! ! write projections to file using iotk ! CALL write_proj( "atomic_proj", lbinary, proj_aux, lwrite_ovp, ovps_aux ) ! DEALLOCATE( proj_aux, ovps_aux ) ! ! write on the standard output file ! WRITE( stdout,'(/5x,"Atomic states used for projection")') WRITE( stdout,'( 5x,"(read from pseudopotential files):"/)') DO nwfc = 1, natomwfc WRITE(stdout,1000) & nwfc, nlmchi(nwfc)%na, atm(ityp(nlmchi(nwfc)%na)), & nlmchi(nwfc)%n, nlmchi(nwfc)%l, nlmchi(nwfc)%m ENDDO 1000 FORMAT (5x,"state #",i4,": atom ",i3," (",a3,"), wfc ",i2, & " (l=",i1," m=",i2,")") ! ALLOCATE(idx(natomwfc), proj1 (natomwfc) ) DO ik = 1, nkstot WRITE( stdout, '(/" k = ",3f14.10)') (xk (i, ik) , i = 1, 3) DO ibnd = 1, nbnd WRITE( stdout, '("==== e(",i4,") = ",f11.5," eV ==== ")') & ibnd, et (ibnd, ik) * rytoev ! ! sort projections by magnitude, in decreasing order ! DO nwfc = 1, natomwfc idx (nwfc) = 0 proj1 (nwfc) = - proj (nwfc, ibnd, ik) ENDDO ! ! projections differing by less than 1.d-4 are considered equal ! CALL hpsort_eps (natomwfc, proj1, idx, eps4) ! ! only projections that are larger than 0.001 are written ! DO nwfc = 1, natomwfc proj1 (nwfc) = - proj1(nwfc) IF ( abs (proj1(nwfc)) < 0.001d0 ) GOTO 20 ENDDO nwfc = natomwfc + 1 20 nwfc = nwfc -1 ! ! fancy (?!?) formatting ! WRITE( stdout, '(5x,"psi = ",5(f5.3,"*[#",i4,"]+"))') & (proj1 (i), idx(i), i = 1, min(5,nwfc)) DO j = 1, (nwfc-1)/5 WRITE( stdout, '(10x,"+",5(f5.3,"*[#",i4,"]+"))') & (proj1 (i), idx(i), i = 5*j+1, min(5*(j+1),nwfc)) ENDDO psum = SUM ( proj(1:natomwfc, ibnd, ik) ) WRITE( stdout, '(4x,"|psi|^2 = ",f5.3)') psum ! ENDDO ENDDO DEALLOCATE (idx, proj1) ! ! estimate partial charges (Loewdin) on each atom ! ALLOCATE ( charges (nat, 0:lmax_wfc, nspin ) ) ALLOCATE ( charges_lm (nat, 0:lmax_wfc, 1:2*lmax_wfc+1, nspin ) ) charges = 0.0d0 charges_lm = 0.d0 DO ik = 1, nkstot IF ( nspin == 1 ) THEN current_spin = 1 ELSEIF ( nspin == 2 ) THEN current_spin = isk ( ik ) ELSE CALL errore ('projave',' called in the wrong case ',1) ENDIF DO ibnd = 1, nbnd DO nwfc = 1, natomwfc na= nlmchi(nwfc)%na l = nlmchi(nwfc)%l m = nlmchi(nwfc)%m charges(na,l,current_spin) = charges(na,l,current_spin) + & wg (ibnd,ik) * proj (nwfc, ibnd, ik) charges_lm(na,l,m,current_spin) = charges_lm(na,l,m,current_spin) + & wg (ibnd,ik) * proj (nwfc, ibnd, ik) ENDDO ENDDO ENDDO ! WRITE( stdout, '(/"Lowdin Charges: "/)') ! DO na = 1, nat DO is = 1, nspin totcharge(is) = SUM(charges(na,0:lmax_wfc,is)) ENDDO IF ( nspin == 1) THEN DO l = 0, lmax_wfc WRITE(stdout, 2000,advance='no') na, totcharge(1), l_label(l), charges(na,l,1) IF (l /= 0) THEN DO m = 1, 2*l+1 WRITE( stdout,'(A1,A,''='',F8.4,'', '')',advance='no') & l_label(l), trim(lm_label(m,l)), charges_lm(na,l,m,1) ENDDO ENDIF WRITE(stdout,*) ENDDO ELSEIF ( nspin == 2) THEN WRITE( stdout, 2000) na, totcharge(1) + totcharge(2), & ( l_label(l), charges(na,l,1) + charges(na,l,2), l=0,lmax_wfc) DO l = 0, lmax_wfc WRITE(stdout,2001,advance='no') totcharge(1), l_label(l), charges(na,l,1) IF (l /= 0) THEN DO m = 1, 2*l+1 WRITE( stdout,'(A1,A,''='',F8.4,'', '')',advance='no') & l_label(l), trim(lm_label(m,l)), charges_lm(na,l,m,1) ENDDO ENDIF WRITE(stdout,*) ENDDO DO l = 0, lmax_wfc WRITE(stdout,2002,advance='no') totcharge(2), l_label(l), charges(na,l,2) IF (l /= 0) THEN DO m = 1, 2*l+1 WRITE( stdout,'(A1,A,''='',F8.4,'', '')',advance='no') & l_label(l), trim(lm_label(m,l)), charges_lm(na,l,m,2) ENDDO ENDIF WRITE(stdout,*) ENDDO WRITE( stdout, 2003) totcharge(1) - totcharge(2), & ( l_label(l), charges(na,l,1) - charges(na,l,2), l=0,lmax_wfc) ENDIF ENDDO 2000 FORMAT (5x,"Atom # ",i3,": total charge = ",f8.4,4(", ",a1," =",f8.4)) 2001 FORMAT (15x," spin up = ",f8.4,4(", ",a1," =",f8.4)) 2002 FORMAT (15x," spin down = ",f8.4,4(", ",a1," =",f8.4)) 2003 FORMAT (15x," polarization = ",f8.4,4(", ",a1," =",f8.4)) ! psum = SUM(charges(:,:,:)) / nelec WRITE( stdout, '(5x,"Spilling Parameter: ",f8.4)') 1.0d0 - psum ! ! Sanchez-Portal et al., Sol. State Commun. 95, 685 (1995). ! The spilling parameter measures the ability of the basis provided by ! the pseudo-atomic wfc to represent the PW eigenstates, ! by measuring how much of the subspace of the Hamiltonian ! eigenstates falls outside the subspace spanned by the atomic basis ! DEALLOCATE (charges, charges_lm) ! ENDIF ! RETURN ! END SUBROUTINE projwave ! !----------------------------------------------------------------------- SUBROUTINE projwave_nc(filproj, lsym, lwrite_ovp, lbinary ) !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE ions_base, ONLY : zv, tau, nat, ntyp => nsp, ityp, atm USE basis, ONLY : natomwfc, swfcatom USE run_info, ONLY: title USE cell_base USE constants, ONLY: rytoev, eps4 USE gvect USE gvecs, ONLY: dual USE fft_base, ONLY : dfftp USE klist, ONLY: xk, nks, nkstot, nelec USE lsda_mod, ONLY: nspin USE noncollin_module, ONLY: noncolin, npol, angle1, angle2 USE symm_base, ONLY: nsym, irt, t_rev USE wvfct USE control_flags, ONLY: gamma_only USE uspp, ONLY: nkb, vkb USE uspp_param, ONLY: upf USE becmod, ONLY: bec_type, becp, calbec, allocate_bec_type, deallocate_bec_type USE io_files, ONLY: nd_nmbr, prefix, tmp_dir, nwordwfc, iunwfc USE wavefunctions_module, ONLY: evc USE mp_global, ONLY : intra_pool_comm USE mp, ONLY : mp_sum ! USE spin_orb, ONLY: lspinorb, domag USE projections ! IMPLICIT NONE ! CHARACTER(len=*) :: filproj LOGICAL :: lwrite_ovp, lbinary LOGICAL :: lsym LOGICAL :: freeswfcatom ! INTEGER :: ik, ibnd, i, j, k, na, nb, nt, isym, ind, n, m, m1, n1, & n2, l, nwfc, nwfc1, lmax_wfc, is, nspin0, iunproj, & ind0 REAL(DP) :: jj REAL(DP), ALLOCATABLE :: e (:) COMPLEX(DP), ALLOCATABLE :: wfcatom (:,:) COMPLEX(DP), ALLOCATABLE :: overlap(:,:), work(:,:),work1(:), proj0(:,:) ! Some workspace for k-point calculation ... REAL(DP), ALLOCATABLE :: charges(:,:,:), proj1 (:) REAL(DP) :: psum, totcharge(2), fact(2), spinor, compute_mj INTEGER, ALLOCATABLE :: idx(:) ! COMPLEX(DP) :: d12(2, 2, 48), d32(4, 4, 48), d52(6, 6, 48), & d72(8, 8, 48) COMPLEX(DP) :: d012(2, 2, 48), d112(6, 6, 48), d212(10, 10, 48), & d312(14, 14, 48) ! ! ! IF (.not.noncolin) CALL errore('projwave_nc','called in the wrong case',1) IF (gamma_only) CALL errore('projwave_nc','gamma_only not yet implemented',1) WRITE( stdout, '(/5x,"Calling projwave_nc .... ")') ! ! fill structure nlmchi ! CALL fill_nlmchi ( natomwfc, nwfc, lmax_wfc ) ! ALLOCATE(wfcatom (npwx*npol,natomwfc) ) IF (.not. ALLOCATED(swfcatom)) THEN ALLOCATE(swfcatom (npwx*npol, natomwfc ) ) freeswfcatom = .true. ELSE freeswfcatom = .false. ENDIF CALL allocate_bec_type (nkb, natomwfc, becp ) ALLOCATE(e (natomwfc) ) ALLOCATE(work (natomwfc, natomwfc) ) ! ALLOCATE(overlap (natomwfc, natomwfc) ) ALLOCATE(proj0(natomwfc,nbnd), work1 (nbnd) ) ALLOCATE(proj (natomwfc, nbnd, nkstot) ) ALLOCATE(proj_aux (natomwfc, nbnd, nkstot) ) overlap = (0.d0,0.d0) proj0 = (0.d0,0.d0) proj = 0.d0 proj_aux = (0.d0,0.d0) ! IF ( lwrite_ovp ) THEN ALLOCATE( ovps_aux(natomwfc, natomwfc, nkstot) ) ELSE ALLOCATE( ovps_aux(1,1,1) ) ENDIF ovps_aux = (0.d0, 0.d0) ! ! loop on k points ! CALL init_us_1 CALL init_at_1 ! IF (lspinorb) THEN ! ! initialize D_Sj for j=1/2, j=3/2, j=5/2 and j=7/2 ! CALL d_matrix_so (d12, d32, d52, d72) ! ELSE ! ! initialize D_Sl for l=0, l=1, l=2 and l=3 ! CALL d_matrix_nc (d012, d112, d212, d312) ! ENDIF ! DO ik = 1, nks wfcatom = (0.d0,0.d0) swfcatom= (0.d0,0.d0) CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) ! CALL atomic_wfc_nc_proj (ik, wfcatom) ! CALL init_us_2 (npw, igk, xk (1, ik), vkb) CALL calbec ( npw, vkb, wfcatom, becp ) CALL s_psi (npwx, npw, natomwfc, wfcatom, swfcatom) ! ! wfcatom = |phi_i> , swfcatom = \hat S |phi_i> ! calculate overlap matrix O_ij = ! CALL ZGEMM ('C', 'N', natomwfc, natomwfc, npwx*npol, (1.d0, 0.d0), wfcatom, & npwx*npol, swfcatom, npwx*npol, (0.d0, 0.d0), overlap, natomwfc) CALL mp_sum ( overlap, intra_pool_comm ) ! ! save the overlap matrix ! IF ( lwrite_ovp ) THEN ! ovps_aux(:,:,ik) = overlap(:,:) ! ENDIF ! ! calculate O^{-1/2} ! CALL cdiagh (natomwfc, overlap, natomwfc, e, work) DO i = 1, natomwfc e (i) = 1.d0 / dsqrt (e (i) ) ENDDO DO i = 1, natomwfc DO j = i, natomwfc overlap (i, j) = (0.d0, 0.d0) DO k = 1, natomwfc overlap(i, j) = overlap(i, j) + e(k) * work(j, k) * conjg(work (i, k) ) ENDDO IF (j /= i) overlap (j, i) = conjg (overlap (i, j)) ENDDO ENDDO ! ! calculate wfcatom = O^{-1/2} \hat S | phi> ! CALL ZGEMM ('n', 't', npwx*npol, natomwfc, natomwfc, (1.d0, 0.d0) , & swfcatom, npwx*npol, overlap, natomwfc, (0.d0, 0.d0), wfcatom, npwx*npol) ! ! make the projection ! CALL ZGEMM ('C','N',natomwfc, nbnd, npwx*npol, (1.d0, 0.d0), wfcatom, & npwx*npol, evc, npwx*npol, (0.d0, 0.d0), proj0, natomwfc) CALL mp_sum ( proj0( :, 1:nbnd ), intra_pool_comm ) ! proj_aux(:,:,ik) = proj0(:,:) ! IF (lsym) THEN DO nwfc = 1, natomwfc ! ! atomic wavefunction nwfc is on atom na ! IF (lspinorb) THEN na= nlmchi(nwfc)%na n = nlmchi(nwfc)%n l = nlmchi(nwfc)%l m = nlmchi(nwfc)%m ind0 = nlmchi(nwfc)%ind jj = nlmchi(nwfc)%jj ! DO isym = 1, nsym !-- check for the time reversal IF (t_rev(isym) == 1) THEN ind = 2*jj + 2 - ind0 ELSE ind = ind0 ENDIF !-- nb = irt (isym, na) DO nwfc1 =1, natomwfc IF (nlmchi(nwfc1)%na == nb .and. & nlmchi(nwfc1)%n == nlmchi(nwfc)%n .and. & nlmchi(nwfc1)%l == nlmchi(nwfc)%l .and. & nlmchi(nwfc1)%jj == nlmchi(nwfc)%jj .and. & nlmchi(nwfc1)%ind == 1 ) GOTO 10 ENDDO CALL errore('projwave_nc','cannot symmetrize',1) 10 nwfc1=nwfc1-1 ! ! nwfc1 is the first rotated atomic wfc corresponding to nwfc ! IF (abs(jj-0.5d0)<1.d-8) THEN work1(:) = 0.d0 DO m1 = 1, 2 work1(:)=work1(:)+d12(m1,ind,isym)*proj0(nwfc1+m1,:) ENDDO ELSEIF (abs(jj-1.5d0)<1.d-8) THEN work1(:) = 0.d0 DO m1 = 1, 4 work1(:)=work1(:)+d32(m1,ind,isym)*proj0(nwfc1 + m1,:) ENDDO ELSEIF (abs(jj-2.5d0)<1.d-8) THEN work1(:) = 0.d0 DO m1 = 1, 6 work1(:)=work1(:)+d52(m1,ind,isym)*proj0(nwfc1+m1,:) ENDDO ELSEIF (abs(jj-3.5d0)<1.d-8) THEN work1(:) = 0.d0 DO m1 = 1, 8 work1(:)=work1(:)+d72(m1,ind,isym)*proj0(nwfc1+m1,:) ENDDO ENDIF DO ibnd = 1, nbnd proj (nwfc, ibnd, ik) = proj (nwfc, ibnd, ik) + & work1(ibnd) * conjg (work1(ibnd)) / nsym ENDDO ! on symmetries !-- in a nonmagnetic case - another loop with the time reversal IF (.not.domag.and.ind==ind0) THEN ind = 2*jj + 2 - ind0 nwfc1 = nwfc1 + 1 GOTO 10 ENDIF !-- ENDDO !-- in a nonmagnetic case - rescale IF (.not.domag) THEN DO ibnd = 1, nbnd proj(nwfc,ibnd,ik) = 0.5d0*proj(nwfc,ibnd,ik) ENDDO ENDIF !-- ELSE na= nlmchi(nwfc)%na n = nlmchi(nwfc)%n l = nlmchi(nwfc)%l m = nlmchi(nwfc)%m ind0 = nlmchi(nwfc)%ind ! DO isym = 1, nsym !-- check for the time reversal IF (t_rev(isym) == 1) THEN ind = 2*m - ind0 + 2*l + 1 ELSE ind = ind0 ENDIF !-- nb = irt (isym, na) DO nwfc1 =1, natomwfc IF (nlmchi(nwfc1)%na == nb .and. & nlmchi(nwfc1)%n == nlmchi(nwfc)%n .and. & nlmchi(nwfc1)%l == nlmchi(nwfc)%l .and. & nlmchi(nwfc1)%m == 1 .and. & nlmchi(nwfc1)%ind == 1) GOTO 15 ENDDO CALL errore('projwave_nc','cannot symmetrize',1) 15 nwfc1=nwfc1-1 IF (l == 0) THEN work1(:) = 0.d0 DO m1 = 1, 2 work1(:) = work1(:) + d012 (m1, ind, isym) * & proj0 (nwfc1 + m1,:) ENDDO ELSEIF (l == 1) THEN work1(:) = 0.d0 DO m1 = 1, 6 work1(:) = work1(:) + d112 (m1, ind, isym) * & proj0 (nwfc1 + m1,:) ENDDO ELSEIF (l == 2) THEN work1(:) = 0.d0 DO m1 = 1, 10 work1(:) = work1(:) + d212 (m1, ind, isym) * & proj0 (nwfc1 + m1,:) ENDDO ELSEIF (l == 3) THEN work1(:) = 0.d0 DO m1 = 1, 14 work1(:) = work1(:) + d312 (m1, ind, isym) * & proj0 (nwfc1 + m1,:) ENDDO ENDIF DO ibnd = 1, nbnd proj (nwfc, ibnd, ik) = proj (nwfc, ibnd, ik) + & work1(ibnd) * conjg (work1(ibnd)) / nsym ENDDO ! on symmetries ENDDO ENDIF ! on atomic wavefunctions ENDDO ELSE DO nwfc=1,natomwfc DO ibnd=1,nbnd proj(nwfc,ibnd,ik)=abs(proj0(nwfc,ibnd))**2 ENDDO ENDDO ENDIF ! on k-points ENDDO ! DEALLOCATE (work) DEALLOCATE (work1) DEALLOCATE (proj0) DEALLOCATE (e) CALL deallocate_bec_type (becp) DEALLOCATE (overlap) DEALLOCATE (wfcatom) IF (freeswfcatom) DEALLOCATE (swfcatom) ! ! vectors et and proj are distributed across the pools ! collect data for all k-points to the first pool ! CALL poolrecover (et, nbnd, nkstot, nks) CALL poolrecover (proj, nbnd * natomwfc, nkstot, nks) CALL poolrecover (proj_aux, 2 * nbnd * natomwfc, nkstot, nks) ! IF ( lwrite_ovp ) THEN CALL poolrecover (ovps_aux, 2 * natomwfc * natomwfc, nkstot, nks) ENDIF ! IF ( ionode ) THEN ! ! write on the file filproj ! IF (filproj/=' ') THEN iunproj=33 CALL write_io_header(filproj, iunproj, title, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, & dfftp%nr1, dfftp%nr2, dfftp%nr3, nat, ntyp, ibrav, celldm, at, gcutm, dual, ecutwfc, & nkstot,nbnd,natomwfc) DO nwfc = 1, natomwfc IF (lspinorb) THEN WRITE(iunproj,1000) & nwfc, nlmchi(nwfc)%na,atm(ityp(nlmchi(nwfc)%na)), & nlmchi(nwfc)%n,nlmchi(nwfc)%jj,nlmchi(nwfc)%l, & compute_mj(nlmchi(nwfc)%jj,nlmchi(nwfc)%l,nlmchi(nwfc)%m) ELSE WRITE(iunproj,1500) & nwfc, nlmchi(nwfc)%na, atm(ityp(nlmchi(nwfc)%na)), & nlmchi(nwfc)%n, nlmchi(nwfc)%l, nlmchi(nwfc)%m, & 0.5d0-int(nlmchi(nwfc)%ind/(2*nlmchi(nwfc)%l+2)) ENDIF DO ik=1,nkstot DO ibnd=1,nbnd WRITE(iunproj,'(2i8,f20.10)') ik,ibnd,abs(proj(nwfc,ibnd,ik)) ENDDO ENDDO ENDDO CLOSE(iunproj) ENDIF ! ! write projections to file using iotk ! CALL write_proj( "atomic_proj", lbinary, proj_aux, lwrite_ovp, ovps_aux ) ! DEALLOCATE( proj_aux, ovps_aux ) ! ! write on the standard output file ! WRITE( stdout,'(/5x,"Atomic states used for projection")') WRITE( stdout,'( 5x,"(read from pseudopotential files):"/)') IF (lspinorb) THEN DO nwfc = 1, natomwfc WRITE(stdout,1000) & nwfc, nlmchi(nwfc)%na, atm(ityp(nlmchi(nwfc)%na)), & nlmchi(nwfc)%n, nlmchi(nwfc)%jj, nlmchi(nwfc)%l, & compute_mj(nlmchi(nwfc)%jj,nlmchi(nwfc)%l,nlmchi(nwfc)%m) ENDDO 1000 FORMAT (5x,"state #",i3,": atom ",i3," (",a3,"), wfc ",i2, & " (j=",f3.1," l=",i1," m_j=",f4.1,")") ELSE DO nwfc = 1, natomwfc WRITE(stdout,1500) & nwfc, nlmchi(nwfc)%na, atm(ityp(nlmchi(nwfc)%na)), & nlmchi(nwfc)%n, nlmchi(nwfc)%l, nlmchi(nwfc)%m, & 0.5d0-int(nlmchi(nwfc)%ind/(2*nlmchi(nwfc)%l+2)) ENDDO 1500 FORMAT (5x,"state #",i3,": atom ",i3," (",a3,"), wfc ",i2, & " (l=",i1," m=",i2," s_z=",f4.1,")") ENDIF ! ALLOCATE(idx (natomwfc), proj1 (natomwfc) ) DO ik = 1, nkstot WRITE( stdout, '(/" k = ",3f14.10)') (xk (i, ik) , i = 1, 3) DO ibnd = 1, nbnd WRITE( stdout, '("==== e(",i4,") = ",f11.5," eV ==== ")') & ibnd, et (ibnd, ik) * rytoev ! ! sort projections by magnitude, in decreasing order ! DO nwfc = 1, natomwfc idx (nwfc) = 0 proj1 (nwfc) = - proj (nwfc, ibnd, ik) ENDDO CALL hpsort_eps (natomwfc, proj1, idx, eps4) ! ! only projections that are larger than 0.001 are written ! DO nwfc = 1, natomwfc proj1 (nwfc) = - proj1(nwfc) IF ( abs (proj1(nwfc)) < 0.001d0 ) GOTO 20 ENDDO nwfc = natomwfc + 1 20 nwfc = nwfc -1 ! ! fancy (?!?) formatting ! WRITE( stdout, '(5x,"psi = ",5(f5.3,"*[#",i3,"]+"))') & (proj1 (i), idx(i), i = 1, min(5,nwfc)) DO j = 1, (nwfc-1)/5 WRITE( stdout, '(10x,"+",5(f5.3,"*[#",i3,"]+"))') & (proj1 (i), idx(i), i = 5*j+1, min(5*(j+1),nwfc)) ENDDO psum = SUM ( proj(1:natomwfc, ibnd, ik) ) WRITE( stdout, '(4x,"|psi|^2 = ",f5.3)') psum ! ENDDO ENDDO DEALLOCATE (idx, proj1) ! ! estimate partial charges (Loewdin) on each atom ! IF (lspinorb) THEN nspin0 = 1 ELSE nspin0 = 2 ENDIF ALLOCATE ( charges (nat, 0:lmax_wfc, nspin0 ) ) charges = 0.0d0 IF (lspinorb) THEN DO ik = 1, nkstot DO ibnd = 1, nbnd DO nwfc = 1, natomwfc na= nlmchi(nwfc)%na l = nlmchi(nwfc)%l charges(na,l,1) = charges(na,l,1) + & wg (ibnd,ik) * proj (nwfc, ibnd, ik) ENDDO ENDDO ENDDO ELSE DO ik = 1, nkstot DO ibnd = 1, nbnd DO nwfc = 1, natomwfc na= nlmchi(nwfc)%na l = nlmchi(nwfc)%l IF ( nlmchi(nwfc)%ind<=(2*l+1)) THEN charges(na,l,1) = charges(na,l,1) + & wg (ibnd,ik) * proj (nwfc, ibnd, ik) ELSE charges(na,l,2) = charges(na,l,2) + & wg (ibnd,ik) * proj (nwfc, ibnd, ik) ENDIF ENDDO ENDDO ENDDO ENDIF ! WRITE( stdout, '(/"Lowdin Charges: "/)') ! DO na = 1, nat DO is = 1, nspin0 totcharge(is) = SUM(charges(na,0:lmax_wfc,is)) ENDDO IF ( nspin0 == 1) THEN WRITE( stdout, 2000) na, totcharge(1), & ( charges(na,l,1), l= 0,lmax_wfc) ELSEIF ( nspin0 == 2) THEN WRITE( stdout, 2000) na, totcharge(1) + totcharge(2), & ( charges(na,l,1) + charges(na,l,2), l=0,lmax_wfc) WRITE( stdout, 2001) totcharge(1), & ( charges(na,l,1), l= 0,lmax_wfc) WRITE( stdout, 2002) totcharge(2), & ( charges(na,l,2), l= 0,lmax_wfc) WRITE( stdout, 2003) totcharge(1) - totcharge(2), & ( charges(na,l,1) - charges(na,l,2), l=0,lmax_wfc) ENDIF ENDDO 2000 FORMAT (5x,"Atom # ",i3,": total charge = ",f8.4 ,& & ", s, p, d, f = ",4f8.4) 2001 FORMAT (15x," spin up = ",f8.4 , & & ", s, p, d, f = ",4f8.4) 2002 FORMAT (15x," spin down = ",f8.4 , & & ", s, p, d, f = ",4f8.4) 2003 FORMAT (15x," polarization = ",f8.4 , & & ", s, p, d, f = ",4f8.4) ! psum = sum(charges(:,:,:)) / nelec WRITE( stdout, '(5x,"Spilling Parameter: ",f8.4)') 1.0d0 - psum ! ! Sanchez-Portal et al., Sol. State Commun. 95, 685 (1995). ! The spilling parameter measures the ability of the basis provided by ! the pseudo-atomic wfc to represent the PW eigenstates, ! by measuring how much of the subspace of the Hamiltonian ! eigenstates falls outside the subspace spanned by the atomic basis ! DEALLOCATE (charges) ! ENDIF ! RETURN ! END SUBROUTINE projwave_nc ! !----------------------------------------------------------------------- FUNCTION compute_mj(j,l,m) !----------------------------------------------------------------------- USE kinds, ONLY: DP IMPLICIT NONE ! REAL(DP) :: compute_mj, j INTEGER :: l, m IF (abs(j-l-0.5d0)<1.d-4) THEN compute_mj=m+0.5d0 ELSEIF (abs(j-l+0.5d0)<1.d-4) THEN compute_mj=m-0.5d0 ELSE CALL errore('compute_mj','l and j not compatible',1) ENDIF RETURN END FUNCTION compute_mj ! !----------------------------------------------------------------------- SUBROUTINE write_proj (filename, lbinary, projs, lwrite_ovp, ovps ) !----------------------------------------------------------------------- ! USE kinds USE io_files, ONLY : iun => iunsat, prefix, tmp_dir USE basis, ONLY : natomwfc USE cell_base USE klist, ONLY : wk, xk, nkstot, nelec USE noncollin_module, ONLY : noncolin USE lsda_mod, ONLY : nspin, isk USE ener, ONLY : ef USE wvfct, ONLY : et, nbnd USE iotk_module IMPLICIT NONE CHARACTER(*), INTENT(IN) :: filename LOGICAL, INTENT(IN) :: lbinary COMPLEX(DP), INTENT(IN) :: projs(natomwfc,nbnd,nkstot) LOGICAL, INTENT(IN) :: lwrite_ovp COMPLEX(DP), INTENT(IN) :: ovps(natomwfc,natomwfc,nkstot) ! CHARACTER(256) :: tmp CHARACTER(iotk_attlenx) :: attr INTEGER :: ik, ik_eff, isp, ia, ierr, num_k_points ! ! subroutine body ! tmp = trim( tmp_dir ) // trim( prefix ) // '.save/' //trim(filename) ! IF ( lbinary ) THEN tmp = TRIM(tmp) // ".dat" ELSE tmp = TRIM(tmp) // ".xml" ENDIF ! CALL iotk_open_write(iun, FILE=trim(tmp), ROOT="ATOMIC_PROJECTIONS", & BINARY=lbinary, IERR=ierr ) IF ( ierr /= 0 ) RETURN ! ! num_k_points = nkstot IF ( nspin == 2 ) num_k_points = nkstot / 2 ! CALL iotk_write_begin(iun, "HEADER") ! CALL iotk_write_dat(iun, "NUMBER_OF_BANDS", nbnd) CALL iotk_write_dat(iun, "NUMBER_OF_K-POINTS", num_k_points ) CALL iotk_write_dat(iun, "NUMBER_OF_SPIN_COMPONENTS", nspin) CALL iotk_write_dat(iun, "NON-COLINEAR_CALCULATION",noncolin) CALL iotk_write_dat(iun, "NUMBER_OF_ATOMIC_WFC", natomwfc) CALL iotk_write_dat(iun, "NUMBER_OF_ELECTRONS", nelec ) CALL iotk_write_attr(attr, "UNITS", " 2 pi / a", FIRST=.true. ) CALL iotk_write_empty (iun, "UNITS_FOR_K-POINTS", ATTR=attr) CALL iotk_write_attr(attr, "UNITS", "Rydberg", FIRST=.true. ) CALL iotk_write_empty (iun, "UNITS_FOR_ENERGY", ATTR=attr) CALL iotk_write_dat(iun, "FERMI_ENERGY", ef ) ! CALL iotk_write_end(iun, "HEADER") ! ! CALL iotk_write_dat(iun, "K-POINTS", xk(:,1:num_k_points) , COLUMNS=3 ) CALL iotk_write_dat(iun, "WEIGHT_OF_K-POINTS", wk(1:num_k_points), COLUMNS=8 ) ! CALL iotk_write_begin(iun, "EIGENVALUES") ! DO ik=1,num_k_points ! CALL iotk_write_begin( iun, "K-POINT"//trim(iotk_index(ik)) ) ! IF ( nspin == 2 ) THEN ! ik_eff = ik + num_k_points ! CALL iotk_write_dat( iun, "EIG.1", et(:,ik) ) CALL iotk_write_dat( iun, "EIG.2", et(:,ik_eff) ) ! ELSE ! CALL iotk_write_dat( iun, "EIG", et(:,ik) ) ! ENDIF ! CALL iotk_write_end( iun, "K-POINT"//trim(iotk_index(ik)) ) ! ENDDO ! CALL iotk_write_end(iun, "EIGENVALUES") ! ! main loop atomic wfc ! CALL iotk_write_begin(iun, "PROJECTIONS") ! DO ik=1,num_k_points ! CALL iotk_write_begin( iun, "K-POINT"//trim(iotk_index(ik)) ) ! IF ( nspin == 2 ) THEN ! CALL iotk_write_begin ( iun, "SPIN.1" ) ! DO ia = 1, natomwfc CALL iotk_write_dat(iun, "ATMWFC"//trim(iotk_index(ia)), projs(ia,:,ik) ) ENDDO ! CALL iotk_write_end ( iun, "SPIN.1" ) ! ik_eff = ik + num_k_points ! CALL iotk_write_begin ( iun, "SPIN.2" ) ! DO ia = 1, natomwfc CALL iotk_write_dat(iun, "ATMWFC"//trim(iotk_index(ia)), projs(ia,:,ik_eff) ) ENDDO ! CALL iotk_write_end ( iun, "SPIN.2" ) ! ELSE ! DO ia = 1,natomwfc CALL iotk_write_dat(iun, "ATMWFC"//trim(iotk_index(ia)), projs(ia,:,ik) ) ENDDO ! ENDIF ! CALL iotk_write_end( iun, "K-POINT"//trim(iotk_index(ik)) ) ! ENDDO ! CALL iotk_write_end(iun, "PROJECTIONS") ! ! overlaps ! IF ( lwrite_ovp ) THEN ! CALL iotk_write_begin(iun, "OVERLAPS") ! DO ik=1,num_k_points ! CALL iotk_write_begin( iun, "K-POINT"//trim(iotk_index(ik)) ) ! DO isp = 1, nspin ! ik_eff = ik + num_k_points * ( isp -1 ) ! CALL iotk_write_dat(iun, "OVERLAP"//trim(iotk_index(isp)), ovps(:,:,ik_eff) ) ! ! ENDDO ! CALL iotk_write_end( iun, "K-POINT"//trim(iotk_index(ik)) ) ! ENDDO ! CALL iotk_write_end(iun, "OVERLAPS") ! ENDIF ! ! closing the file ! CALL iotk_close_write(iun) END SUBROUTINE write_proj ! ! projwave with distributed matrixes ! !----------------------------------------------------------------------- SUBROUTINE pprojwave( filproj, lsym, lwrite_ovp, lbinary ) !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE run_info, ONLY: title USE ions_base, ONLY : zv, tau, nat, ntyp => nsp, ityp, atm USE basis, ONLY : natomwfc, swfcatom USE cell_base USE constants, ONLY: rytoev, eps4 USE gvect USE gvecs, ONLY: dual USE fft_base, ONLY : dfftp USE klist, ONLY: xk, nks, nkstot, nelec USE lsda_mod, ONLY: nspin, isk, current_spin USE symm_base, ONLY: nsym, irt, d1, d2, d3 USE wvfct USE control_flags, ONLY: gamma_only USE uspp, ONLY: nkb, vkb USE uspp_param, ONLY: upf USE becmod, ONLY: bec_type, becp, calbec, allocate_bec_type, deallocate_bec_type USE io_files, ONLY: nd_nmbr, prefix, tmp_dir, nwordwfc, iunwfc USE spin_orb, ONLY: lspinorb USE mp, ONLY: mp_bcast USE mp_global, ONLY : npool, nproc_pool, me_pool, root_pool, & intra_pool_comm, me_image, & ortho_comm, np_ortho, me_ortho, ortho_comm_id, & leg_ortho USE wavefunctions_module, ONLY: evc USE parallel_toolkit, ONLY : zsqmred, zsqmher, zsqmdst, zsqmcll, dsqmsym USE zhpev_module, ONLY : pzhpev_drv, zhpev_drv USE descriptors, ONLY : la_descriptor, descla_init USE projections ! IMPLICIT NONE ! INTEGER, EXTERNAL :: find_free_unit ! COMPLEX(DP), PARAMETER :: zero = ( 0.0d0, 0.0d0 ) COMPLEX(DP), PARAMETER :: one = ( 1.0d0, 0.0d0 ) CHARACTER (len=*) :: filproj LOGICAL :: lwrite_ovp, lbinary ! INTEGER :: ik, ibnd, i, j, na, nb, nt, isym, n, m, m1, l, nwfc,& nwfc1, lmax_wfc, is, iunproj, iunaux REAL(DP), ALLOCATABLE :: e (:) COMPLEX(DP), ALLOCATABLE :: wfcatom (:,:) COMPLEX(DP), ALLOCATABLE :: work1(:), proj0(:,:) COMPLEX(DP), ALLOCATABLE :: overlap_d(:,:), work_d(:,:), diag(:,:), vv(:,:) COMPLEX(DP), ALLOCATABLE :: e_work_d(:,:) ! Some workspace for k-point calculation ... REAL (DP), ALLOCATABLE ::rwork1(:),rproj0(:,:) REAL (DP), ALLOCATABLE ::roverlap_d(:,:) ! ... or for gamma-point. REAL(DP), ALLOCATABLE :: charges(:,:,:), proj1 (:) REAL(DP) :: psum, totcharge(2) INTEGER :: nksinit, nkslast CHARACTER(len=256) :: filename CHARACTER(len=256) :: auxname CHARACTER (len=1) :: l_label(0:3)=(/'s','p','d','f'/) INTEGER, ALLOCATABLE :: idx(:) LOGICAL :: lsym LOGICAL :: freeswfcatom TYPE(la_descriptor) :: desc TYPE(la_descriptor), ALLOCATABLE :: desc_ip( :, : ) INTEGER, ALLOCATABLE :: rank_ip( :, : ) ! matrix distribution descriptors INTEGER :: nx, nrl, nrlx ! maximum local block dimension LOGICAL :: la_proc ! flag to distinguish procs involved in linear algebra INTEGER, ALLOCATABLE :: notcnv_ip( : ) INTEGER, ALLOCATABLE :: ic_notcnv( : ) ! ! WRITE( stdout, '(/5x,"Calling pprojwave .... ")') IF ( gamma_only ) THEN WRITE( stdout, '(5x,"gamma-point specific algorithms are used")') ENDIF ! ! Open file as temporary storage ! iunaux = find_free_unit() auxname = TRIM(tmp_dir) // TRIM(ADJUSTL(prefix)) // '.AUX' // TRIM(nd_nmbr) OPEN( unit=iunaux, file=trim(auxname), status='unknown', form='unformatted') ! ! ALLOCATE( ic_notcnv( np_ortho(2) ) ) ALLOCATE( notcnv_ip( np_ortho(2) ) ) ALLOCATE( desc_ip( np_ortho(1), np_ortho(2) ) ) ALLOCATE( rank_ip( np_ortho(1), np_ortho(2) ) ) ! CALL desc_init( natomwfc, desc, desc_ip ) ! ! initialize D_Sl for l=1, l=2 and l=3, for l=0 D_S0 is 1 ! CALL d_matrix (d1, d2, d3) ! ! fill structure nlmchi ! CALL fill_nlmchi ( natomwfc, nwfc, lmax_wfc ) ! IF( ionode ) THEN WRITE( stdout, * ) WRITE( stdout, * ) ' Problem Sizes ' WRITE( stdout, * ) ' natomwfc = ', natomwfc WRITE( stdout, * ) ' nbnd = ', nbnd WRITE( stdout, * ) ' nkstot = ', nkstot WRITE( stdout, * ) ' npwx = ', npwx WRITE( stdout, * ) ' nkb = ', nkb WRITE( stdout, * ) ENDIF ! ALLOCATE( proj (natomwfc, nbnd, nkstot) ) proj = 0.d0 ! ! this allocation is left written as fake ! because the overlap matrix should be collected ! in order to be proerly written ! IF ( lwrite_ovp .AND. .FALSE. ) THEN ALLOCATE( ovps_aux (natomwfc, natomwfc, nkstot) ) ELSE ALLOCATE( ovps_aux (1, 1, 1) ) ENDIF ovps_aux = (0.d0, 0.d0) IF (.not. ALLOCATED(swfcatom)) THEN ALLOCATE(swfcatom (npwx , natomwfc ) ) freeswfcatom = .true. ELSE freeswfcatom = .false. ENDIF ALLOCATE(wfcatom (npwx, natomwfc) ) ! ALLOCATE(e (natomwfc) ) ! ! loop on k points ! CALL init_us_1 CALL init_at_1 ! DO ik = 1, nks ! CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) CALL atomic_wfc (ik, wfcatom) CALL init_us_2 (npw, igk, xk (1, ik), vkb) CALL allocate_bec_type ( nkb, natomwfc, becp ) CALL calbec ( npw, vkb, wfcatom, becp) CALL s_psi (npwx, npw, natomwfc, wfcatom, swfcatom) CALL deallocate_bec_type (becp) ! ! wfcatom = |phi_i> , swfcatom = \hat S |phi_i> ! calculate overlap matrix O_ij = ! IF( la_proc ) THEN ALLOCATE(overlap_d (nx, nx) ) ELSE ALLOCATE(overlap_d (1, 1) ) ENDIF overlap_d = (0.d0,0.d0) IF ( gamma_only ) THEN IF( la_proc ) THEN ALLOCATE(roverlap_d (nx, nx) ) ELSE ALLOCATE(roverlap_d (1, 1) ) ENDIF roverlap_d = 0.d0 CALL calbec_ddistmat( npw, wfcatom, swfcatom, natomwfc, nx, roverlap_d ) overlap_d(:,:)=cmplx(roverlap_d(:,:),0.0_dp, kind=dp) ! TEMP: diagonalization routine for real matrix should be used instead ELSE CALL calbec_zdistmat( npw, wfcatom, swfcatom, natomwfc, nx, overlap_d ) ENDIF ! ! calculate O^{-1/2} ! IF ( desc%active_node > 0 ) THEN ! ! Compute local dimension of the cyclically distributed matrix ! ALLOCATE(work_d (nx, nx) ) nrl = desc%nrl nrlx = desc%nrlx ALLOCATE( diag( nrlx, natomwfc ) ) ALLOCATE( vv( nrlx, natomwfc ) ) ! CALL blk2cyc_zredist( natomwfc, diag, nrlx, natomwfc, overlap_d, nx, nx, desc ) ! CALL pzhpev_drv( 'V', diag, nrlx, e, vv, nrlx, nrl, natomwfc, & desc%npc * desc%npr, desc%mype, desc%comm ) ! CALL cyc2blk_zredist( natomwfc, vv, nrlx, natomwfc, work_d, nx, nx, desc ) ! DEALLOCATE( vv ) DEALLOCATE( diag ) ! ELSE ALLOCATE(work_d (1, 1) ) ENDIF CALL mp_bcast( e, root_pool, intra_pool_comm ) DO i = 1, natomwfc e (i) = 1.d0 / dsqrt (e (i) ) ENDDO IF ( desc%active_node > 0 ) THEN ALLOCATE(e_work_d (nx, nx) ) DO j = 1, desc%nc DO i = 1, desc%nr e_work_d( i, j ) = e( j + desc%ic - 1 ) * work_d( i, j ) ENDDO ENDDO CALL sqr_zmm_cannon( 'N', 'C', natomwfc, ONE, e_work_d, nx, work_d, nx, ZERO, overlap_d, nx, desc ) CALL zsqmher( natomwfc, overlap_d, nx, desc ) DEALLOCATE( e_work_d ) ENDIF ! DEALLOCATE( work_d ) ! ! calculate wfcatom = O^{-1/2} \hat S | phi> ! IF ( gamma_only ) THEN ! TEMP: diagonalization routine for real matrix should be used instead roverlap_d(:,:)=REAL(overlap_d(:,:),DP) CALL wf_times_roverlap( swfcatom, roverlap_d, wfcatom ) DEALLOCATE( roverlap_d ) ELSE CALL wf_times_overlap( swfcatom, overlap_d, wfcatom ) ENDIF IF( ALLOCATED( overlap_d ) ) DEALLOCATE( overlap_d ) ! ! make the projection ! IF ( gamma_only ) THEN ! ALLOCATE( rproj0(natomwfc,nbnd), rwork1 (nbnd) ) CALL calbec ( npw, wfcatom, evc, rproj0) ! WRITE( iunaux ) rproj0 ! ELSE ! ALLOCATE( proj0(natomwfc,nbnd), work1 (nbnd) ) CALL calbec ( npw, wfcatom, evc, proj0) ! WRITE( iunaux ) proj0 ! ENDIF ! ! symmetrize the projections ! IF (lsym) THEN ! DO nwfc = 1, natomwfc ! ! atomic wavefunction nwfc is on atom na ! na= nlmchi(nwfc)%na n = nlmchi(nwfc)%n l = nlmchi(nwfc)%l m = nlmchi(nwfc)%m ! DO isym = 1, nsym ! nb = irt (isym, na) DO nwfc1 =1, natomwfc IF (nlmchi(nwfc1)%na == nb .and. & nlmchi(nwfc1)%n == nlmchi(nwfc)%n .and. & nlmchi(nwfc1)%l == nlmchi(nwfc)%l .and. & nlmchi(nwfc1)%m == 1 ) GOTO 10 ENDDO CALL errore('pprojwave','cannot symmetrize',1) 10 nwfc1=nwfc1-1 ! ! nwfc1 is the first rotated atomic wfc corresponding to nwfc ! IF ( gamma_only ) THEN IF (l == 0) THEN rwork1(:) = rproj0 (nwfc1 + 1,:) ELSEIF (l == 1) THEN rwork1(:) = 0.d0 DO m1 = 1, 3 rwork1(:)=rwork1(:)+d1(m1,m,isym)*rproj0(nwfc1+m1,:) ENDDO ELSEIF (l == 2) THEN rwork1(:) = 0.d0 DO m1 = 1, 5 rwork1(:)=rwork1(:)+d2(m1,m,isym)*rproj0(nwfc1+m1,:) ENDDO ELSEIF (l == 3) THEN rwork1(:) = 0.d0 DO m1 = 1, 7 rwork1(:)=rwork1(:)+d3(m1,m,isym)*rproj0(nwfc1+m1,:) ENDDO ENDIF DO ibnd = 1, nbnd proj (nwfc, ibnd, ik) = proj (nwfc, ibnd, ik) + & rwork1(ibnd) * rwork1(ibnd) / nsym ENDDO ELSE IF (l == 0) THEN work1(:) = proj0 (nwfc1 + 1,:) ELSEIF (l == 1) THEN work1(:) = 0.d0 DO m1 = 1, 3 work1(:)=work1(:)+d1(m1,m,isym)*proj0(nwfc1+m1,:) ENDDO ELSEIF (l == 2) THEN work1(:) = 0.d0 DO m1 = 1, 5 work1(:)=work1(:)+d2(m1,m,isym)*proj0(nwfc1+m1,:) ENDDO ELSEIF (l == 3) THEN work1(:) = 0.d0 DO m1 = 1, 7 work1(:)=work1(:)+d3(m1,m,isym)*proj0(nwfc1+m1,:) ENDDO ENDIF DO ibnd = 1, nbnd proj (nwfc, ibnd, ik) = proj (nwfc, ibnd, ik) + & work1(ibnd) * conjg (work1(ibnd)) / nsym ENDDO ENDIF ENDDO ENDDO ! ELSE ! IF ( gamma_only ) THEN DO nwfc=1,natomwfc DO ibnd=1,nbnd proj(nwfc,ibnd,ik)=abs(rproj0(nwfc,ibnd))**2 ENDDO ENDDO ELSE DO nwfc=1,natomwfc DO ibnd=1,nbnd proj(nwfc,ibnd,ik)=abs(proj0(nwfc,ibnd))**2 ENDDO ENDDO ENDIF ! ENDIF ! IF ( gamma_only ) THEN DEALLOCATE (rwork1) DEALLOCATE (rproj0) ELSE DEALLOCATE (work1) DEALLOCATE (proj0) ENDIF ! ENDDO ! ! DEALLOCATE (e) ! DEALLOCATE (wfcatom) IF (freeswfcatom) DEALLOCATE (swfcatom) ! CLOSE( unit=iunaux ) ! ! ! vectors et and proj are distributed across the pools ! collect data for all k-points to the first pool ! CALL poolrecover (et, nbnd, nkstot, nks) CALL poolrecover (proj, nbnd * natomwfc, nkstot, nks) ! ! Recover proj_aux ! OPEN( unit=iunaux, file=trim(auxname), status='old', form='unformatted') ALLOCATE( proj_aux (natomwfc, nbnd, nkstot) ) proj_aux = (0.d0, 0.d0) ! DO ik = 1, nks ! IF( gamma_only ) THEN ALLOCATE( rproj0( natomwfc, nbnd ) ) READ( iunaux ) rproj0(:,:) proj_aux(:,:,ik) = cmplx( rproj0(:,:), 0.00_dp, kind=dp ) DEALLOCATE ( rproj0 ) ELSE READ( iunaux ) proj_aux(:,:,ik) ENDIF ! ENDDO ! CALL poolrecover (proj_aux, 2 * nbnd * natomwfc, nkstot, nks) ! CLOSE( unit=iunaux, status='delete' ) ! IF ( ionode ) THEN ! ! write on the file filproj ! IF (filproj/=' ') THEN DO is=1,nspin IF (nspin==2) THEN IF (is==1) filename=trim(filproj)//'.up' IF (is==2) filename=trim(filproj)//'.down' nksinit=(nkstot/2)*(is-1)+1 nkslast=(nkstot/2)*is ELSE filename=trim(filproj) nksinit=1 nkslast=nkstot ENDIF iunproj=33 CALL write_io_header(filename, iunproj, title, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, & dfftp%nr1, dfftp%nr2, dfftp%nr3, nat, ntyp, ibrav, celldm, at, gcutm, dual, & ecutwfc, nkstot/nspin,nbnd,natomwfc) DO nwfc = 1, natomwfc WRITE(iunproj,'(2i5,a3,3i5)') & nwfc, nlmchi(nwfc)%na, atm(ityp(nlmchi(nwfc)%na)), & nlmchi(nwfc)%n, nlmchi(nwfc)%l, nlmchi(nwfc)%m DO ik=nksinit,nkslast DO ibnd=1,nbnd WRITE(iunproj,'(2i8,f20.10)') ik,ibnd, & abs(proj(nwfc,ibnd,ik)) ENDDO ENDDO ENDDO CLOSE(iunproj) ENDDO ENDIF ! ! write projections to file using iotk ! CALL write_proj( "atomic_proj", lbinary, proj_aux, .FALSE., ovps_aux ) ! DEALLOCATE( proj_aux, ovps_aux ) ! ! write on the standard output file ! WRITE( stdout,'(/5x,"Atomic states used for projection")') WRITE( stdout,'( 5x,"(read from pseudopotential files):"/)') DO nwfc = 1, natomwfc WRITE(stdout,1000) & nwfc, nlmchi(nwfc)%na, atm(ityp(nlmchi(nwfc)%na)), & nlmchi(nwfc)%n, nlmchi(nwfc)%l, nlmchi(nwfc)%m ENDDO 1000 FORMAT (5x,"state #",i4,": atom ",i3," (",a3,"), wfc ",i2, & " (l=",i1," m=",i2,")") ! ALLOCATE(idx(natomwfc), proj1 (natomwfc) ) ! DO ik = 1, nkstot WRITE( stdout, '(/" k = ",3f14.10)') (xk (i, ik) , i = 1, 3) DO ibnd = 1, nbnd WRITE( stdout, '(5x,"e = ",f11.5," eV")') et (ibnd, ik) * rytoev ! ! sort projections by magnitude, in decreasing order ! DO nwfc = 1, natomwfc idx (nwfc) = 0 proj1 (nwfc) = - proj (nwfc, ibnd, ik) ENDDO ! ! projections differing by less than 1.d-4 are considered equal ! CALL hpsort_eps (natomwfc, proj1, idx, eps4) ! ! only projections that are larger than 0.001 are written ! DO nwfc = 1, natomwfc proj1 (nwfc) = - proj1(nwfc) IF ( abs (proj1(nwfc)) < 0.001d0 ) GOTO 20 ENDDO nwfc = natomwfc + 1 20 nwfc = nwfc -1 ! ! fancy (?!?) formatting ! WRITE( stdout, '(5x,"psi = ",5(f5.3,"*[#",i4,"]+"))') & (proj1 (i), idx(i), i = 1, min(5,nwfc)) DO j = 1, (nwfc-1)/5 WRITE( stdout, '(10x,"+",5(f5.3,"*[#",i4,"]+"))') & (proj1 (i), idx(i), i = 5*j+1, min(5*(j+1),nwfc)) ENDDO psum = SUM (proj (1:natomwfc, ibnd, ik) ) WRITE( stdout, '(4x,"|psi|^2 = ",f5.3)') psum ! ENDDO ENDDO ! DEALLOCATE (idx, proj1) ! ! estimate partial charges (Loewdin) on each atom ! ALLOCATE ( charges (nat, 0:lmax_wfc, nspin ) ) charges = 0.0d0 DO ik = 1, nkstot IF ( nspin == 1 ) THEN current_spin = 1 ELSEIF ( nspin == 2 ) THEN current_spin = isk ( ik ) ELSE CALL errore ('pprojwave',' called in the wrong case ',1) ENDIF DO ibnd = 1, nbnd DO nwfc = 1, natomwfc na= nlmchi(nwfc)%na l = nlmchi(nwfc)%l charges(na,l,current_spin) = charges(na,l,current_spin) + & wg (ibnd,ik) * proj (nwfc, ibnd, ik) ENDDO ENDDO ENDDO ! WRITE( stdout, '(/"Lowdin Charges: "/)') ! DO na = 1, nat DO is = 1, nspin totcharge(is) = SUM(charges(na,0:lmax_wfc,is)) ENDDO IF ( nspin == 1) THEN WRITE( stdout, 2000) na, totcharge(1), & ( l_label(l), charges(na,l,1), l= 0,lmax_wfc) ELSEIF ( nspin == 2) THEN WRITE( stdout, 2000) na, totcharge(1) + totcharge(2), & ( l_label(l), charges(na,l,1) + charges(na,l,2), l=0,lmax_wfc) WRITE( stdout, 2001) totcharge(1), & ( l_label(l), charges(na,l,1), l= 0,lmax_wfc) WRITE( stdout, 2002) totcharge(2), & ( l_label(l), charges(na,l,2), l= 0,lmax_wfc) WRITE( stdout, 2003) totcharge(1) - totcharge(2), & ( l_label(l), charges(na,l,1) - charges(na,l,2), l=0,lmax_wfc) ENDIF ENDDO 2000 FORMAT (5x,"Atom # ",i3,": total charge = ",f8.4,4(", ",a1," =",f8.4)) 2001 FORMAT (15x," spin up = ",f8.4,4(", ",a1," =",f8.4)) 2002 FORMAT (15x," spin down = ",f8.4,4(", ",a1," =",f8.4)) 2003 FORMAT (15x," polarization = ",f8.4,4(", ",a1," =",f8.4)) ! psum = SUM(charges(:,:,:)) / nelec WRITE( stdout, '(5x,"Spilling Parameter: ",f8.4)') 1.0d0 - psum ! ! Sanchez-Portal et al., Sol. State Commun. 95, 685 (1995). ! The spilling parameter measures the ability of the basis provided by ! the pseudo-atomic wfc to represent the PW eigenstates, ! by measuring how much of the subspace of the Hamiltonian ! eigenstates falls outside the subspace spanned by the atomic basis ! DEALLOCATE (charges) ! ENDIF ! RETURN ! CONTAINS ! SUBROUTINE desc_init( nsiz, desc, desc_ip ) ! INTEGER, INTENT(in) :: nsiz TYPE(la_descriptor), INTENT(out) :: desc TYPE(la_descriptor), INTENT(out) :: desc_ip(:,:) INTEGER :: i, j, rank INTEGER :: coor_ip( 2 ) ! CALL descla_init( desc, nsiz, nsiz, np_ortho, me_ortho, ortho_comm, ortho_comm_id ) ! nx = desc%nrcx ! DO j = 0, desc%npc - 1 DO i = 0, desc%npr - 1 coor_ip( 1 ) = i coor_ip( 2 ) = j CALL descla_init( desc_ip(i+1,j+1), desc%n, desc%nx, np_ortho, coor_ip, ortho_comm, 1 ) CALL GRID2D_RANK( 'R', desc%npr, desc%npc, i, j, rank ) rank_ip( i+1, j+1 ) = rank * leg_ortho ENDDO ENDDO ! la_proc = .false. IF( desc%active_node > 0 ) la_proc = .true. ! RETURN END SUBROUTINE desc_init ! SUBROUTINE calbec_zdistmat( npw, v, w, n, nx, dm ) ! ! This subroutine compute and store the ! result in distributed matrix dm ! USE mp, ONLY : mp_root_sum ! IMPLICIT NONE ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root, ldv, ldw INTEGER, INTENT(in) :: npw ! local number of plane wave INTEGER, INTENT(in) :: n ! global dimension of matrix dm INTEGER, INTENT(in) :: nx ! local leading dimension of matrix dm ! WARNING: nx is the same on all proc, SIZE( dm, 1 ) NO! COMPLEX(DP), INTENT(out) :: dm( :, : ) COMPLEX(DP) :: v(:,:), w(:,:) COMPLEX(DP), ALLOCATABLE :: work( :, : ) ! ALLOCATE( work( nx, nx ) ) ! work = zero ! ldv = size( v, 1 ) ldw = size( w, 1 ) ! DO ipc = 1, desc%npc ! loop on column procs ! nc = desc_ip( 1, ipc )%nc ic = desc_ip( 1, ipc )%ic ! DO ipr = 1, ipc ! desc( la_npr_ ) ! ipc ! use symmetry for the loop on row procs ! nr = desc_ip( ipr, ipc )%nr ir = desc_ip( ipr, ipc )%ir ! ! rank of the processor for which this block (ipr,ipc) is destinated ! root = rank_ip( ipr, ipc ) ! use blas subs. on the matrix block CALL ZGEMM( 'C', 'N', nr, nc, npw, ONE , & v(1,ir), ldv, w(1,ic), ldw, ZERO, work, nx ) ! accumulate result on dm of root proc. CALL mp_root_sum( work, dm, root, intra_pool_comm ) ENDDO ! ENDDO ! CALL zsqmher( n, dm, nx, desc ) ! DEALLOCATE( work ) ! RETURN END SUBROUTINE calbec_zdistmat ! SUBROUTINE calbec_ddistmat( npw, v, w, n, nx, dm ) ! ! This subroutine compute and store the ! result in distributed matrix dm ! USE mp, ONLY : mp_root_sum USE gvect, ONLY : gstart ! IMPLICIT NONE ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root, ldv, ldw, npw2, npwx2 INTEGER, INTENT(in) :: npw ! local number of plane wave INTEGER, INTENT(in) :: n ! global dimension of matrix dm INTEGER, INTENT(in) :: nx ! local leading dimension of matrix dm ! WARNING: nx is the same on all proc, SIZE( dm, 1 ) NO! REAL(DP), INTENT(out) :: dm( :, : ) COMPLEX(DP) :: v(:,:), w(:,:) REAL(DP), ALLOCATABLE :: work( :, : ) ! ALLOCATE( work( nx, nx ) ) ! npw2 = 2*npw npwx2 = 2*npwx ! work = zero ! ldv = size( v, 1 ) ldw = size( w, 1 ) ! DO ipc = 1, desc%npc ! loop on column procs ! nc = desc_ip( 1, ipc )%nc ic = desc_ip( 1, ipc )%ic ! DO ipr = 1, ipc ! desc( la_npr_ ) ! ipc ! use symmetry for the loop on row procs ! nr = desc_ip( ipr, ipc )%nr ir = desc_ip( ipr, ipc )%ir ! ! rank of the processor for which this block (ipr,ipc) is destinated ! root = rank_ip( ipr, ipc ) ! use blas subs. on the matrix block ! use blas subs. on the matrix block CALL DGEMM( 'T', 'N', nr, nc, npw2, 2.D0 , & v(1,ir), npwx2, w(1,ic), npwx2, 0.D0, work, nx ) IF ( gstart == 2 ) & CALL DGER( nr, nc, -1.D0, v(1,ir), npwx2, w(1,ic), npwx2, work, nx ) ! accumulate result on dm of root proc. CALL mp_root_sum( work, dm, root, intra_pool_comm ) ENDDO ! ENDDO ! CALL dsqmsym( n, dm, nx, desc ) ! DEALLOCATE( work ) ! RETURN END SUBROUTINE calbec_ddistmat ! ! ! SUBROUTINE wf_times_overlap( swfc, ovr, wfc ) COMPLEX(DP) :: swfc( :, : ), ovr( :, : ), wfc( :, : ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root COMPLEX(DP), ALLOCATABLE :: vtmp( :, : ) COMPLEX(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = desc_ip( 1, ipc )%nc ic = desc_ip( 1, ipc )%ic ! beta = ZERO DO ipr = 1, desc%npr ! nr = desc_ip( ipr, ipc )%nr ir = desc_ip( ipr, ipc )%ir ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .and. ipc-1 == desc%myc .and. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( ovr, root, intra_pool_comm ) CALL ZGEMM( 'N', 'N', npw, nc, nr, ONE, & swfc(1,ir), npwx, ovr, nx, beta, wfc(1,ic), npwx ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp, root, intra_pool_comm ) CALL ZGEMM( 'N', 'N', npw, nc, nr, ONE, & swfc(1,ir), npwx, vtmp, nx, beta, wfc(1,ic), npwx ) ENDIF ! beta = ONE ENDDO ! ENDDO ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE wf_times_overlap ! SUBROUTINE wf_times_roverlap( swfc, ovr, wfc ) USE gvect, ONLY : gstart COMPLEX(DP) :: swfc( :, : ), wfc( :, : ) REAL(DP) :: ovr( :, : ) ! INTEGER :: ipc, ipr, npw2, npwx2 INTEGER :: nr, nc, ir, ic, root REAL(DP), ALLOCATABLE :: vtmp( :, : ) REAL(DP) :: beta npw2 = 2*npw npwx2 = 2*npwx ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = desc_ip( 1, ipc )%nc ic = desc_ip( 1, ipc )%ic ! beta = 0.0d0 DO ipr = 1, desc%npr ! nr = desc_ip( ipr, ipc )%nr ir = desc_ip( ipr, ipc )%ir ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .and. ipc-1 == desc%myc .and. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( ovr, root, intra_pool_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & swfc(1,ir), npwx2, ovr, nx, beta, wfc(1,ic), npwx2 ) ! ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp, root, intra_pool_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & swfc(1,ir), npwx2, vtmp, nx, beta, wfc(1,ic), npwx2 ) ! ENDIF ! beta = 1.0d0 ENDDO ! ENDDO ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE wf_times_roverlap ! END SUBROUTINE pprojwave ! espresso-5.1/PP/src/sumpdos.f900000644000175000017500000001723012341372773014436 0ustar mbamba! ! Copyright (C) 2005 Andrea Ferretti ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #if defined(__ABSOFT) # define getarg getarg_ # define iargc iargc_ #endif ! PROGRAM sumpdos IMPLICIT NONE ! ! AUTHOR: Andrea Ferretti ! ! this program reads and sum pdos from different ! files (which are related to different atoms) ! ! file names are read from stdin ! USAGE: sumpdos ... ! INTEGER :: iargc ! function giving no of arguments INTEGER :: ngrid ! dimension of the energy grid INTEGER :: nfile ! number of files to sum INTEGER :: nspin ! number of spin_component CHARACTER(256), ALLOCATABLE :: file(:) ! names of the files to sum CHARACTER(256) :: filein CHARACTER(10) :: cdum, str1, str2 LOGICAL :: exist REAL :: efermi = 0.0d0 ! translate the input grid REAL, ALLOCATABLE :: pdos(:,:,:) REAL, ALLOCATABLE :: egrid(:) REAL, ALLOCATABLE :: mysum(:,:) INTEGER :: ios, ierr, iarg, ie, isp, ifile, i !************************************************************** ! User should supply input values here ! efermi = 0.0d0 !************************************************************** ! ! get the number of arguments (i.e. the number of files) ! nfile = iargc () IF ( nfile == 0 ) THEN WRITE(0,"( 'No file to sum' )") STOP ENDIF CALL getarg ( 1, str1 ) ! SELECT CASE ( trim(str1) ) CASE ( "-h" ) ! ! write the manual ! WRITE(0,"(/,'USAGE: sumpdos [-h] [-f ] [ ... ]', /, & &' Sum the pdos from the file specified in input and write the sum ', /, & &' to stdout', /, & &' -h : write this manual',/, & &' -f : takes the list of pdos files from ', /, & &' (one per line) instead of command line',/, & &' : the M-th pdos file', & & / )") STOP ! CASE ( "-f" ) ! ! read file names from file ! CALL getarg ( 2, filein ) IF ( len_trim(filein) == 0 ) CALL errore('sumpdos','provide filein name',2) INQUIRE( FILE=trim(filein), EXIST=exist ) IF (.not. exist) CALL errore('sumpdos','file '//trim(filein)//' does not exist',3) OPEN( 10, FILE=trim(filein), IOSTAT=ios ) IF (ios/=0) CALL errore('sumpdos','opening '//trim(filein),abs(ios)) ! ! get the number of non-empty lines in the file ! (which is assumed to be the number of files to sum) ! ios = 0 nfile = 0 ! DO WHILE ( ios == 0 ) nfile = nfile + 1 READ(10, *, IOSTAT=ios ) cdum IF ( ios ==0 .and. len_trim(cdum)==0 ) nfile = nfile -1 ENDDO nfile = nfile -1 ! IF (nfile ==0 ) CALL errore('sumpdos','no file to sum in '//trim(filein),4) ! ALLOCATE( file(nfile), STAT=ierr ) IF (ierr/=0) CALL errore('sumpdos','allocating FILE',abs(ierr)) ! REWIND(10) DO i = 1, nfile file(i) = ' ' DO WHILE( len_trim(file(i)) == 0 ) READ(10,*, IOSTAT=ios) file(i) IF (ios /=0 ) CALL errore('sumpdos','reading from '//trim(filein),i) ENDDO ENDDO CASE DEFAULT ! ! get the names of the files ! here we use GETARG ! ALLOCATE( file(nfile), STAT=ierr ) IF (ierr/=0) CALL errore('sumpdos','allocating FILE',abs(ierr)) DO iarg = 1, nfile CALL getarg ( iarg, file(iarg) ) ENDDO END SELECT ! ! open the first file and get data about spin ! and grid dimensions ! INQUIRE( FILE=trim(file(1)), EXIST=exist ) IF (.not. exist) CALL errore('sumpdos','file '//trim(file(1))//' does not exist',3) ! WRITE(0,"('Reading dimensions from file: ',a)") trim(file(1)) ! OPEN(10, FILE=trim(file(1)), IOSTAT=ios) IF (ios/=0) CALL errore("sumpdos", "error opening "//trim(file(1)), 1) ! ! try to understand if we have 1 or 2 spin ! READ(10,*, IOSTAT=ios) cdum, cdum, cdum, str1, str2 IF (ios/=0) CALL errore("sumpdos", "reading first line of "//trim(file(1)), 1) ! IF ( trim(str1) == 'ldos(E)' ) THEN nspin = 1 ELSEIF ( trim(str1) == 'ldosup(E)' .and. trim(str2) == 'ldosdw(E)' ) THEN nspin = 2 ELSE CALL errore("sumpdos", "wrong fmf in the first line of "//trim(file(1)), 1) ENDIF ! ! determine the dimension fo the energy mesh ! no further control will be done on the consistency of the energy ! grid of each file ! ie = 0 DO WHILE ( .true. ) READ( 10, *, IOSTAT=ios ) IF ( ios /= 0 ) exit ie = ie + 1 ENDDO ngrid = ie CLOSE(10) ! ! allocations ! ALLOCATE( pdos( ngrid, nspin, nfile), STAT=ierr ) IF (ierr/=0) CALL errore("sumpdos", "allocating pdos", ierr) ALLOCATE( mysum( ngrid, nspin), STAT=ierr ) IF (ierr/=0) CALL errore("sumpdos", "allocating mysum", ierr) ALLOCATE( egrid( ngrid) ) IF (ierr/=0) CALL errore("sumpdos", "allocating egrid", ierr) ! ! get data ! WRITE(0,"('Reading the following ',i5,' files: ')") nfile ! DO ifile = 1, nfile ! INQUIRE( FILE=trim(file(ifile)), EXIST=exist ) IF (.not. exist) & CALL errore('sumpdos','file '//trim(file(ifile))//' does not exist',ifile) ! WRITE(0,"(2x,'Reading file: ',a)") trim(file(ifile)) OPEN(10, FILE=trim(file(ifile)), IOSTAT=ios) IF (ios/=0) CALL errore("sumpdos", "error opening "//trim(file(ifile)), ios ) ! READ(10,*, IOSTAT=ios) IF (ios/=0) & CALL errore("sumpdos", "reading first line in "//trim(file(ifile)), ios ) ! ! egrid is overwritten every time ! DO ie = 1, ngrid READ(10, *, IOSTAT=ios ) egrid(ie), pdos(ie, 1:nspin, ifile) IF (ios/=0) & CALL errore("sumpdos", "reading first line in "//trim(file(ifile)), ie ) ENDDO CLOSE(10) ENDDO ! ! perform the sum and write ! IF ( nspin == 1 ) THEN WRITE(6,"('# E (eV) pdos(E) ')") ELSEIF ( nspin == 2) THEN WRITE(6,"('# E (eV) pdos_UP(E) pdos_DW(E) ')") ELSE CALL errore("sunpdos", "really sure NSPIN /= 1 or 2 ???", 3 ) ENDIF mysum = 0.0d0 DO ie=1,ngrid DO isp=1,nspin mysum(ie,isp) = sum( pdos(ie,isp,:) ) ENDDO WRITE(6,"(3f15.9)") egrid(ie) - efermi, mysum(ie,1:nspin) ENDDO ! ! clean ! DEALLOCATE( file, STAT=ierr ) IF (ierr/=0) CALL errore("sumpdos", "deallocating file", ierr) DEALLOCATE( pdos, STAT=ierr ) IF (ierr/=0) CALL errore("sumpdos", "deallocating pdos", ierr) DEALLOCATE( mysum, STAT=ierr ) IF (ierr/=0) CALL errore("sumpdos", "deallocating mysum", ierr) DEALLOCATE( egrid, STAT=ierr ) IF (ierr/=0) CALL errore("sumpdos", "deallocating egrid", ierr) CONTAINS !************************************************* SUBROUTINE errore(routine, msg, ierr) !************************************************* IMPLICIT NONE CHARACTER(*), INTENT(in) :: routine, msg INTEGER, INTENT(in) :: ierr ! WRITE( UNIT = 0, FMT = '(/,1X,78("*"))') WRITE( UNIT = 0, & FMT = '(5X,"from ",A," : error #",I10)' ) routine, ierr WRITE( UNIT = 0, FMT = '(5X,A)' ) msg WRITE( UNIT = 0, FMT = '(1X,78("*"),/)' ) ! STOP RETURN END SUBROUTINE errore END PROGRAM sumpdos espresso-5.1/PP/src/write_proj.f900000644000175000017500000001161612341372773015132 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE write_proj (filename, lbinary, projs, lwrite_ovp, ovps ) !----------------------------------------------------------------------- ! USE kinds USE io_files, ONLY : iun => iunsat, prefix, tmp_dir USE basis, ONLY : natomwfc USE cell_base USE klist, ONLY : wk, xk, nkstot, nelec USE noncollin_module, ONLY : noncolin USE lsda_mod, ONLY : nspin, isk USE ener, ONLY : ef USE wvfct, ONLY : et, nbnd USE iotk_module IMPLICIT NONE CHARACTER(*), INTENT(IN) :: filename LOGICAL, INTENT(IN) :: lbinary COMPLEX(DP), INTENT(IN) :: projs(natomwfc,nbnd,nkstot) LOGICAL, INTENT(IN) :: lwrite_ovp COMPLEX(DP), INTENT(IN) :: ovps(natomwfc,natomwfc,nkstot) ! CHARACTER(256) :: tmp CHARACTER(iotk_attlenx) :: attr INTEGER :: ik, ik_eff, isp, ia, ierr, num_k_points ! ! subroutine body ! tmp = trim( tmp_dir ) // trim( prefix ) // '.save/' //trim(filename) ! IF ( lbinary ) THEN tmp = TRIM(tmp) // ".dat" ELSE tmp = TRIM(tmp) // ".xml" ENDIF ! CALL iotk_open_write(iun, FILE=trim(tmp), ROOT="ATOMIC_PROJECTIONS", & BINARY=lbinary, IERR=ierr ) IF ( ierr /= 0 ) RETURN ! ! num_k_points = nkstot IF ( nspin == 2 ) num_k_points = nkstot / 2 ! CALL iotk_write_begin(iun, "HEADER") ! CALL iotk_write_dat(iun, "NUMBER_OF_BANDS", nbnd) CALL iotk_write_dat(iun, "NUMBER_OF_K-POINTS", num_k_points ) CALL iotk_write_dat(iun, "NUMBER_OF_SPIN_COMPONENTS", nspin) CALL iotk_write_dat(iun, "NON-COLINEAR_CALCULATION",noncolin) CALL iotk_write_dat(iun, "NUMBER_OF_ATOMIC_WFC", natomwfc) CALL iotk_write_dat(iun, "NUMBER_OF_ELECTRONS", nelec ) CALL iotk_write_attr(attr, "UNITS", " 2 pi / a", FIRST=.true. ) CALL iotk_write_empty (iun, "UNITS_FOR_K-POINTS", ATTR=attr) CALL iotk_write_attr(attr, "UNITS", "Rydberg", FIRST=.true. ) CALL iotk_write_empty (iun, "UNITS_FOR_ENERGY", ATTR=attr) CALL iotk_write_dat(iun, "FERMI_ENERGY", ef ) ! CALL iotk_write_end(iun, "HEADER") ! ! CALL iotk_write_dat(iun, "K-POINTS", xk(:,1:num_k_points) , COLUMNS=3 ) CALL iotk_write_dat(iun, "WEIGHT_OF_K-POINTS", wk(1:num_k_points), COLUMNS=8 ) ! CALL iotk_write_begin(iun, "EIGENVALUES") ! DO ik=1,num_k_points ! CALL iotk_write_begin( iun, "K-POINT"//trim(iotk_index(ik)) ) ! IF ( nspin == 2 ) THEN ! ik_eff = ik + num_k_points ! CALL iotk_write_dat( iun, "EIG.1", et(:,ik) ) CALL iotk_write_dat( iun, "EIG.2", et(:,ik_eff) ) ! ELSE ! CALL iotk_write_dat( iun, "EIG", et(:,ik) ) ! ENDIF ! CALL iotk_write_end( iun, "K-POINT"//trim(iotk_index(ik)) ) ! ENDDO ! CALL iotk_write_end(iun, "EIGENVALUES") ! ! main loop atomic wfc ! CALL iotk_write_begin(iun, "PROJECTIONS") ! DO ik=1,num_k_points ! CALL iotk_write_begin( iun, "K-POINT"//trim(iotk_index(ik)) ) ! IF ( nspin == 2 ) THEN ! CALL iotk_write_begin ( iun, "SPIN.1" ) ! DO ia = 1, natomwfc CALL iotk_write_dat(iun, "ATMWFC"//trim(iotk_index(ia)), projs(ia,:,ik) ) ENDDO ! CALL iotk_write_end ( iun, "SPIN.1" ) ! ik_eff = ik + num_k_points ! CALL iotk_write_begin ( iun, "SPIN.2" ) ! DO ia = 1, natomwfc CALL iotk_write_dat(iun, "ATMWFC"//trim(iotk_index(ia)), projs(ia,:,ik_eff) ) ENDDO ! CALL iotk_write_end ( iun, "SPIN.2" ) ! ELSE ! DO ia = 1,natomwfc CALL iotk_write_dat(iun, "ATMWFC"//trim(iotk_index(ia)), projs(ia,:,ik) ) ENDDO ! ENDIF ! CALL iotk_write_end( iun, "K-POINT"//trim(iotk_index(ik)) ) ! ENDDO ! CALL iotk_write_end(iun, "PROJECTIONS") ! ! overlaps ! IF ( lwrite_ovp ) THEN ! CALL iotk_write_begin(iun, "OVERLAPS") ! DO ik=1,num_k_points ! CALL iotk_write_begin( iun, "K-POINT"//trim(iotk_index(ik)) ) ! DO isp = 1, nspin ! ik_eff = ik + num_k_points * ( isp -1 ) ! CALL iotk_write_dat(iun, "OVERLAP"//trim(iotk_index(isp)), ovps(:,:,ik_eff) ) ! ! ENDDO ! CALL iotk_write_end( iun, "K-POINT"//trim(iotk_index(ik)) ) ! ENDDO ! CALL iotk_write_end(iun, "OVERLAPS") ! ENDIF ! ! closing the file ! CALL iotk_close_write(iun) END SUBROUTINE write_proj espresso-5.1/PP/src/initial_state.f900000644000175000017500000000475612341372773015606 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- PROGRAM initial_state !----------------------------------------------------------------------- ! ! compute initial-state contribution to core level shift ! ! input: namelist "&inputpp", with variables ! prefix prefix of input files saved by program pwscf ! outdir temporary directory where files resides ! USE io_global, ONLY : stdout, ionode, ionode_id USE kinds, ONLY : DP USE io_files, ONLY : prefix, tmp_dir, iunwfc, nwordwfc USE ions_base, ONLY : nat USE klist, ONLY : nks, xk USE wvfct, ONLY : npw, igk USE uspp, ONLY : nkb, vkb USE wavefunctions_module, ONLY : evc USE parameters, ONLY : ntypx USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE mp_global, ONLY : mp_startup USE environment,ONLY : environment_start ! IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! CHARACTER(len=256) :: outdir INTEGER :: ios, ik, excite(ntypx) NAMELIST / inputpp / outdir, prefix, excite ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'initstate' ) ! ! set default values for variables in namelist ! excite(:) = 0 prefix = 'pwscf' CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( trim( outdir ) == ' ' ) outdir = './' ! ios = 0 ! IF ( ionode ) THEN ! CALL input_from_file ( ) ! READ (5, inputpp, iostat = ios) ! tmp_dir = trimcheck (outdir) ! ENDIF ! CALL mp_bcast ( ios, ionode_id, world_comm ) ! IF ( ios /= 0) & CALL errore ('postforces', 'reading inputpp namelist', abs (ios) ) ! ! ... Broadcast variables ! CALL mp_bcast( tmp_dir, ionode_id, world_comm ) CALL mp_bcast( prefix, ionode_id, world_comm ) CALL mp_bcast( excite, ionode_id, world_comm ) ! ! Now allocate space for pwscf variables, read and check them. ! CALL read_file CALL openfil_pp CALL hinit0 CALL hinit1 IF ( nks == 1 ) THEN ik = 1 CALL davcio( evc, 2*nwordwfc, iunwfc, ik, -1 ) IF ( nkb > 0 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ENDIF !CALL sum_band ! CALL do_initial_state (excite) ! CALL stop_pp ! END PROGRAM initial_state espresso-5.1/PP/src/Makefile0000644000175000017500000001307112341372773014063 0ustar mbamba# Makefile for postprocessing (PP) include ../../make.sys # location of needed modules and included files (if any) MODFLAGS= $(MOD_FLAG)../../iotk/src $(MOD_FLAG)../../Modules \ $(MOD_FLAG)../../PW/src $(MOD_FLAG). IFLAGS= PPOBJS = \ addusdens1d.o \ add_shift_cc.o \ add_shift_lc.o \ add_shift_us.o \ atomic_wfc_nc_proj.o \ cft.o \ cgracsc.o \ chdens.o \ chdens_bspline.o \ compute_ppsi.o \ compute_sigma_avg.o \ cube.o \ spinsym.o \ dosg.o \ do_initial_state.o \ do_shift_ew.o \ d_matrix_nc.o \ d_matrix_so.o \ elf.o \ ggen1d.o \ local_dos.o \ local_dos_mag.o \ local_dos1d.o \ openfil_pp.o\ partialdos.o \ paw_postproc.o \ plot_whole_cell.o \ projwfc_box.o \ punch_plot.o \ smallgk.o \ stm.o \ stop_pp.o \ sym_band.o \ work_function.o \ write_p_avg.o \ write_proj.o \ xsf.o \ xk_et_collect.o \ write_io_header.o \ wannier_hamiltonians.o \ wannier_umatrix_subroutines.o \ wannier_u_matrix.o PWOBJS = ../../PW/src/libpw.a QEOBJS = ../../Modules/libqemod.a MODULES = $(PWOBJS) $(QEOBJS) TLDEPS= bindir mods libs pw LIBOBJS = ../../flib/ptools.a ../../flib/flib.a ../../clib/clib.a ../../iotk/src/libiotk.a all : tldeps average.x bands.x dos.x epsilon.x initial_state.x \ plan_avg.x plotband.x plotproj.x plotrho.x pmw.x pp.x projwfc.x \ pawplot.x sumpdos.x pw2wannier90.x pw_export.x pw2gw.x \ wannier_ham.x wannier_plot.x \ pw2bgw.x bgw2pw.x wfck2r.x libpp.a : $(PPOBJS) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ qexml.x: qexml.o qexml_example.o $(LD) $(LDFLAGS) -o $@ qexml_example.o qexml.o $(QEOBJS) $(LIBOBJS) average.x : average.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ average.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) bands.x : bands.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ bands.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) dos.x : dos.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ dos.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) pawplot.x : pawplot.o libpp.a libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ pawplot.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) plan_avg.x : plan_avg.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ plan_avg.o libpp.a $(MODULES) \ $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) plotband.x : plotband.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ plotband.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) plotproj.x : plotproj.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ plotproj.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) plotrho.x : plotrho.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ plotrho.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) pmw.x : poormanwannier.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ poormanwannier.o libpp.a $(MODULES) \ $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) xctest.x : xctest.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ xctest.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) pp.x : postproc.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ postproc.o libpp.a $(MODULES) \ $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) projwfc.x : projwfc.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ projwfc.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) pw2wannier90.x : pw2wannier90.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ pw2wannier90.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) wfck2r.x : wfck2r.o libpp.a $(PHOBJS) $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ wfck2r.o libpp.a $(PHOBJS) $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) initial_state.x : initial_state.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ initial_state.o libpp.a $(MODULES) \ $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) pw2gw.x : pw2gw.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ pw2gw.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) pw_export.x : pw_export.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ pw_export.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) sumpdos.x : sumpdos.o $(LD) $(LDFLAGS) -o $@ sumpdos.o - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) epsilon.x : epsilon.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ epsilon.o libpp.a $(MODULES) \ $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) wannier_ham.x : wannier_ham.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ wannier_ham.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) wannier_plot.x : wannier_plot.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ wannier_plot.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) pw2bgw.x : pw2bgw.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ pw2bgw.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) bgw2pw.x : bgw2pw.o libpp.a $(MODULES) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ bgw2pw.o libpp.a $(MODULES) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PP/src/$@ . ) tldeps : if test -n "$(TLDEPS)" ; then \ ( cd ../.. ; $(MAKE) $(TLDEPS) || exit 1 ) ; fi clean : - /bin/rm -f *.x *.o *~ *.F90 *.d *.mod *.i *.L libpp.a include make.depend espresso-5.1/PP/src/stm.f900000644000175000017500000001724612341372773013556 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- SUBROUTINE stm (sample_bias, stmdos, istates) !-------------------------------------------------------------------- ! ! This routine calculates an stm image defined as the local density ! of states at the fermi energy. ! The bias of the sample is decided by sample_bias, states between ! ef and ef + sample_bias are taken into account. ! On output istates is the number of states used to compute the image. ! The slab must be oriented with the main axis along celldm(3). ! It may not properly work if the slab has two symmetric surfaces. ! USE kinds, ONLY: DP USE constants, ONLY: tpi, rytoev USE io_global, ONLY : stdout USE cell_base, ONLY: tpiba2, tpiba, omega, at USE fft_base, ONLY: dfftp USE fft_interfaces, ONLY : fwfft, invfft USE gvect, ONLY: ngm, g, nl, nlm USE klist, ONLY: xk, lgauss, degauss, ngauss, wk, nks, nelec USE ener, ONLY: ef USE symme, ONLY : sym_rho, sym_rho_init USE scf, ONLY: rho USE wvfct, ONLY: npwx, npw, nbnd, wg, et, g2kin, igk, ecutwfc USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : evc, psic USE io_files, ONLY: iunwfc, nwordwfc USE constants, ONLY : degspin USE mp, ONLY : mp_max, mp_min, mp_sum USE mp_global, ONLY : inter_pool_comm USE fft_base, ONLY : grid_gather ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: sample_bias REAL(DP), INTENT(OUT):: stmdos (dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) ! the stm density of states INTEGER, INTENT(OUT):: istates ! the number of states to compute the image ! ! And here the local variables ! INTEGER :: ir, ig, ibnd, ik, nbnd_ocp, first_band, last_band ! counters on 3D r points ! counter on g vectors ! counter on bands ! counter on k points ! number of occupied bands ! first band close enough to the specified energy range [down1:up1] ! last band close enough to the specified energy range [down1:up1] real(DP) :: emin, emax, x, y, & w1, w2, up, up1, down, down1, t0, scnds COMPLEX(DP), PARAMETER :: i= (0.d0, 1.d0) real(DP), ALLOCATABLE :: gs (:,:) COMPLEX(DP), ALLOCATABLE :: psi (:,:) ! plane stm wfc real(DP), EXTERNAL :: w0gauss t0 = scnds () ALLOCATE (gs( 2, npwx)) ALLOCATE (psi(dfftp%nr1x, dfftp%nr2x)) ! stmdos(:) = 0.d0 rho%of_r(:,:) = 0.d0 WRITE( stdout, '(5x,"Use the true wfcs")') WRITE( stdout, '(5x,"Sample bias =",f8.4, & & " eV")') sample_bias * rytoev ! IF (.not.lgauss) THEN ! ! for semiconductors, add small broadening ! nbnd_ocp = nint (nelec) / degspin IF (nbnd<=nbnd_ocp + 1) CALL errore ('stm', 'not enough bands', 1) emin = et (nbnd_ocp + 1, 1) DO ik = 2, nks emin = min (emin, et (nbnd_ocp + 1, ik) ) ENDDO #ifdef __MPI ! find the minimum across pools CALL mp_min( emin, inter_pool_comm ) #endif emax = et (nbnd_ocp, 1) DO ik = 2, nks emax = max (emax, et (nbnd_ocp, ik) ) ENDDO #ifdef __MPI ! find the maximum across pools CALL mp_max( emax, inter_pool_comm ) #endif ef = (emin + emax) * 0.5d0 degauss = 0.00001d0 ngauss = 0 WRITE( stdout, '(/5x,"Occupied bands: ",i6)') nbnd_ocp WRITE( stdout, '(/5x," Fermi energy: ",f10.2," eV")') ef * rytoev WRITE( stdout, '(/5x," Gap energy: ",f10.2," eV")') (emax - emin) * rytoev ENDIF ! ! take only the states in the energy window above or below the fermi ! energy as determined by the bias of the sample ! IF (sample_bias>0) THEN up = ef + sample_bias down = ef ELSE up = ef down = ef + sample_bias ENDIF up1 = up + 3.d0 * degauss down1 = down - 3.d0 * degauss DO ik = 1, nks DO ibnd = 1, nbnd IF (et (ibnd, ik) > down .and. et (ibnd, ik) < up) THEN wg (ibnd, ik) = wk (ik) ELSEIF (et (ibnd, ik) < down) THEN wg (ibnd, ik) = wk (ik) * w0gauss ( (down - et (ibnd, ik) ) & / degauss, ngauss) ELSEIF (et (ibnd, ik) > up) THEN wg (ibnd, ik) = wk (ik) * w0gauss ( (up - et (ibnd, ik) ) & / degauss, ngauss) ENDIF ENDDO ENDDO ! istates = 0 ! ! here we sum for each k point the contribution ! of the wavefunctions to the stm dos ! DO ik = 1, nks DO ibnd = 1, nbnd IF (et(ibnd,ik) < down1) first_band= ibnd+1 IF (et(ibnd,ik) < up1) last_band = ibnd ENDDO istates = istates + (last_band - first_band + 1) CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) ! IF (gamma_only) THEN ! ! gamma only version of STM. ! Two bands computed in a single FT as in the main (PW) code ! DO ibnd = first_band, last_band, 2 w1 = wg (ibnd, ik) / omega !!! WRITE( stdout, * ) w1, ibnd, ik IF ( ibnd < last_band ) THEN w2 = wg (ibnd+1, ik) / omega !!! WRITE( stdout, * ) w2, ibnd+1, ik ELSE w2= 0.d0 ENDIF ! ! Compute the contribution of these states only if needed ! psic(:) = (0.d0, 0.d0) IF ( ibnd < last_band ) THEN DO ig = 1, npw psic(nl(igk(ig))) = & evc(ig,ibnd) + (0.D0,1.D0) * evc(ig,ibnd+1) psic(nlm(igk(ig))) = & conjg( evc(ig,ibnd) - (0.D0,1.D0) * evc(ig,ibnd+1) ) ENDDO ELSE DO ig = 1, npw psic(nl (igk(ig))) = evc(ig,ibnd) psic(nlm(igk(ig))) = conjg( evc(ig,ibnd) ) ENDDO ENDIF CALL invfft ('Dense', psic, dfftp) DO ir = 1, dfftp%nnr rho%of_r (ir, 1) = rho%of_r (ir, 1) + w1* dble( psic(ir) )**2 + & w2*aimag( psic(ir) )**2 ENDDO ENDDO ELSE ! ! k-point version of STM. ! DO ibnd = first_band, last_band w1 = wg (ibnd, ik) / omega !!! WRITE( stdout, * ) w1, ibnd, ik ! ! Compute the contribution of this state only if needed ! psic(:) = (0.d0, 0.d0) DO ig = 1, npw psic(nl(igk(ig))) = evc(ig,ibnd) ENDDO CALL invfft ('Dense', psic, dfftp) DO ir = 1, dfftp%nnr rho%of_r (ir, 1) = rho%of_r (ir, 1) + w1 * & ( dble(psic (ir) ) **2 + aimag(psic (ir) ) **2) ENDDO ENDDO ENDIF ENDDO #ifdef __MPI CALL mp_sum( rho%of_r, inter_pool_comm ) #endif ! ! symmetrization of the stm dos ! IF ( .not. gamma_only) THEN ! CALL sym_rho_init (gamma_only) ! psic(:) = cmplx ( rho%of_r(:,1), 0.0_dp, kind=dp) CALL fwfft ('Dense', psic, dfftp) rho%of_g(:,1) = psic(nl(:)) CALL sym_rho (1, rho%of_g) psic(:) = (0.0_dp, 0.0_dp) psic(nl(:)) = rho%of_g(:,1) CALL invfft ('Dense', psic, dfftp) rho%of_r(:,1) = dble(psic(:)) ENDIF #ifdef __MPI CALL grid_gather (rho%of_r(:,1), stmdos) #else stmdos(:) = rho%of_r(:,1) #endif DEALLOCATE(psi) DEALLOCATE(gs) WRITE( stdout, '(/5x,"STM:",f10.2,"s cpu time")') scnds ()-t0 ! #ifdef __MPI CALL mp_sum( istates, inter_pool_comm ) #endif RETURN END SUBROUTINE stm espresso-5.1/PP/src/bands.f900000644000175000017500000004613412341372773014040 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- PROGRAM do_bands !----------------------------------------------------------------------- ! ! See files INPUT_BANDS.* in Doc/ directory for usage ! IMPORTANT: since v.5 namelist name is &bands and no longer &inputpp ! USE io_files, ONLY : prefix, tmp_dir USE mp_global, ONLY : npool, nproc_pool, nproc_file, & nproc_pool_file, mp_startup USE control_flags, ONLY : twfcollect, gamma_only USE environment, ONLY : environment_start USE wvfct, ONLY : nbnd USE klist, ONLY : nkstot, two_fermi_energies USE noncollin_module, ONLY : i_cons USE io_global, ONLY : ionode, ionode_id, stdout USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm ! IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! CHARACTER (len=256) :: filband, filp, outdir LOGICAL :: lsigma(4), lsym, lp, no_overlap, plot_2d INTEGER :: spin_component, firstk, lastk INTEGER :: ios ! NAMELIST / bands / outdir, prefix, filband, filp, spin_component, lsigma,& lsym, lp, filp, firstk, lastk, no_overlap, plot_2d ! ! initialise environment ! #ifdef __MPI CALL mp_startup ( ) #endif CALL environment_start ( 'BANDS' ) ! ! set default values for variables in namelist ! prefix = 'pwscf' CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( trim( outdir ) == ' ' ) outdir = './' filband = 'bands.out' lsym=.false. lsigma=.false. filp='p_avg.dat' lp=.false. firstk=0 lastk=10000000 spin_component = 1 plot_2d=.false. no_overlap=.false. ! ios = 0 ! IF ( ionode ) THEN ! CALL input_from_file ( ) ! READ (5, bands, iostat = ios) ! lsigma(4)=.false. tmp_dir = trimcheck (outdir) ! ENDIF ! ! CALL mp_bcast( ios, ionode_id, world_comm ) IF (ios /= 0) WRITE (stdout, & '("*** namelist &inputpp no longer valid: please use &bands instead")') IF (ios /= 0) CALL errore ('bands', 'reading bands namelist', abs(ios) ) ! ! ... Broadcast variables ! CALL mp_bcast( tmp_dir, ionode_id, world_comm ) CALL mp_bcast( prefix, ionode_id, world_comm ) CALL mp_bcast( filband, ionode_id, world_comm ) CALL mp_bcast( filp, ionode_id, world_comm ) CALL mp_bcast( spin_component, ionode_id, world_comm ) CALL mp_bcast( firstk, ionode_id, world_comm ) CALL mp_bcast( lastk, ionode_id, world_comm ) CALL mp_bcast( lp, ionode_id, world_comm ) CALL mp_bcast( lsym, ionode_id, world_comm ) CALL mp_bcast( lsigma, ionode_id, world_comm ) CALL mp_bcast( no_overlap, ionode_id, world_comm ) CALL mp_bcast( plot_2d, ionode_id, world_comm ) IF (plot_2d) THEN lsym=.false. lp=.false. no_overlap=.true. ENDIF IF ( npool > 1 .and..not.(lsym.or.no_overlap)) CALL errore('bands', & 'pools not implemented',npool) ! ! Now allocate space for pwscf variables, read and check them. ! CALL read_file() ! IF (gamma_only) CALL errore('bands','gamma_only case not implemented',1) IF (nproc_pool /= nproc_pool_file .and. .not. twfcollect) & CALL errore('bands',& 'pw.x run with a different number of procs/pools. Use wf_collect=.true.',1) IF (two_fermi_energies.or.i_cons /= 0) & CALL errore('bands',& 'The bands code with constrained magnetization has not been tested',1) ! CALL openfil_pp() ! IF (lsym) no_overlap=.true. IF (plot_2d) THEN CALL punch_band_2d(filband,spin_component) ELSE CALL punch_band(filband,spin_component,lsigma,no_overlap) IF (lsym) CALL sym_band(filband,spin_component,firstk,lastk) IF (lp) CALL write_p_avg(filp,spin_component,firstk,lastk) END IF ! CALL stop_pp STOP END PROGRAM do_bands ! !----------------------------------------------------------------------- SUBROUTINE punch_band (filband, spin_component, lsigma, no_overlap) !----------------------------------------------------------------------- ! ! This routine writes the band energies on a file. The routine orders ! the eigenvalues using the overlap of the eigenvectors to give ! an estimate crossing and anticrossing of the bands. This simplified ! method works in many, but not in all the cases. ! ! USE kinds, ONLY : dp USE ions_base, ONLY : nat, ityp, ntyp => nsp USE cell_base, ONLY : at, tpiba2 USE constants, ONLY : rytoev USE gvect, ONLY : g, ngm USE lsda_mod, ONLY : nspin USE klist, ONLY : xk, nks, nkstot USE io_files, ONLY : iunpun, nwordwfc, iunwfc USE wvfct, ONLY : nbnd, et, ecutwfc, igk, npw, npwx, g2kin USE uspp, ONLY : nkb, vkb, qq USE uspp_param, ONLY : upf, nh, nhm USE noncollin_module, ONLY : noncolin, npol USE wavefunctions_module, ONLY : evc USE io_global, ONLY : ionode, ionode_id USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE becmod, ONLY : calbec, bec_type, allocate_bec_type, & deallocate_bec_type IMPLICIT NONE CHARACTER (len=*) :: filband COMPLEX(DP) :: pro ! the product of wavefunctions INTEGER :: spin_component LOGICAL :: lsigma(4) COMPLEX(DP), ALLOCATABLE :: psiold (:,:), old (:), new (:) ! psiold: eigenfunctions at previous k-point, ordered ! old, new: contain one band resp. at previous and current k-point TYPE(bec_type):: becp, becpold ! becp : at current k-point ! becpold: at previous k-point COMPLEX(DP), ALLOCATABLE :: psiold_nc (:,:), old_nc(:,:), new_nc(:,:) LOGICAL :: no_overlap ! as above for the noncolinear case INTEGER :: ibnd, jbnd, ik, ikb, ig, npwold, nks1, nks2, ipol INTEGER :: nks1tot, nks2tot ! counters INTEGER, ALLOCATABLE :: ok (:), igkold (:), il (:,:), ilold(:) ! ok: keeps track of which bands have been already ordered ! igkold: indices of k+G at previous k-point ! il: band ordering INTEGER :: maxdeg ! maxdeg : max allowed degeneracy INTEGER :: ndeg, deg, nd ! ndeg : number of degenerate states INTEGER, ALLOCATABLE :: degeneracy(:), degbands(:,:), idx(:) ! degbands keeps track of which states are degenerate INTEGER :: iunpun_sigma(4), ios(0:4), indjbnd CHARACTER(len=256) :: nomefile REAL(DP), ALLOCATABLE:: edeg(:) REAL(DP), ALLOCATABLE:: sigma_avg(:,:,:) ! expectation value of sigma REAL(DP), PARAMETER :: eps = 0.00001d0 ! threshold (Ry) for degenerate states REAL(DP) :: minene COMPLEX(DP), EXTERNAL :: cgracsc, cgracsc_nc ! scalar product with the S matrix IF (filband == ' ') RETURN DO ipol=1,4 IF (lsigma(ipol).and..not.noncolin) THEN CALL errore ('punch_band', 'lsigma requires noncollinear run', & ipol ) lsigma=.false. ENDIF ENDDO iunpun = 18 maxdeg = 30 * npol ! ios(:) = 0 IF ( ionode ) THEN ! OPEN (unit = iunpun, file = filband, status = 'unknown', form = & 'formatted', iostat = ios(0)) REWIND (iunpun) DO ipol=1,4 IF (lsigma(ipol)) THEN iunpun_sigma(ipol)=iunpun+ipol WRITE(nomefile,'(".",i1)') ipol OPEN (unit = iunpun_sigma(ipol), & file = trim(filband)//trim(nomefile), & status = 'unknown', form='formatted', iostat = ios(ipol)) REWIND (iunpun_sigma(ipol)) ENDIF ENDDO ! ENDIF ! CALL mp_bcast( ios, ionode_id, world_comm ) IF ( ios(0) /= 0 ) & CALL errore ('punch_band', 'Opening filband file', abs(ios(0)) ) DO ipol=1,4 IF ( ios(ipol) /= 0 ) & CALL errore ('punch_band', 'Opening filband.N file ', ipol) ENDDO ! CALL allocate_bec_type(nkb, nbnd, becp) CALL allocate_bec_type(nkb, nbnd, becpold) IF (noncolin) THEN ALLOCATE (psiold_nc( npwx*npol, nbnd)) ALLOCATE (old_nc(ngm,npol), new_nc(ngm,npol)) ALLOCATE (sigma_avg(4,nbnd,nkstot)) ELSE ALLOCATE (psiold( npwx, nbnd)) ALLOCATE (old(ngm), new(ngm)) ENDIF ALLOCATE (igkold (npwx)) ALLOCATE (ok (nbnd), il (nbnd,nkstot), ilold(nbnd) ) ALLOCATE (degeneracy(nbnd), edeg(nbnd)) ALLOCATE (idx(nbnd), degbands(nbnd,maxdeg)) ! IF (spin_component/=1.and.nspin/=2) & CALL errore('punch_bands','incorrect spin_component',1) IF (spin_component<1.or.spin_component>2) & CALL errore('punch_bands','incorrect lsda spin_component',1) CALL find_nks1nks2(1,nkstot,nks1tot,nks1,nks2tot,nks2,spin_component) il=0 DO ik=nks1,nks2 DO ibnd = 1, nbnd il (ibnd,ik) = ibnd ENDDO ENDDO DO ik = nks1, nks2 ! ! prepare the indices of this k point ! IF (.not.no_overlap.or.lsigma(1).or.lsigma(2).or.lsigma(3).or.lsigma(4)) THEN CALL gk_sort (xk (1, ik), ngm, g, ecutwfc / tpiba2, npw, & igk, g2kin) ! ! read eigenfunctions ! CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) ! ! calculate becp = ! CALL init_us_2 (npw, igk, xk (1, ik), vkb) CALL calbec ( npw, vkb, evc, becp ) IF (noncolin) & CALL compute_sigma_avg(sigma_avg(1,1,ik),becp%nc,ik,lsigma) ENDIF ! IF (ik==nks1.or.no_overlap) THEN ! ! first k-point in the list: ! save eigenfunctions in the current order (increasing energy) ! DO ibnd = 1, nbnd il (ibnd,ik) = ibnd ENDDO ELSE ! ! following k-points in the list: ! determine eigenfunction order in array il ! DO ibnd = 1, nbnd ok (ibnd) = 0 ENDDO ! ! The bands are checked in order of increasing energy. ! DO ibnd=1,nbnd idx(ibnd)=ibnd edeg(ibnd)=et(il(ibnd,ik),ik-1) ENDDO CALL hpsort(nbnd, edeg, idx) DO ibnd = 1, nbnd IF (noncolin) THEN old_nc = (0.d0, 0.d0) DO ig = 1, npwold old_nc(igkold(ig), 1)=psiold_nc(ig ,idx(ibnd)) old_nc(igkold(ig), 2)=psiold_nc(ig+npwx,idx(ibnd)) ENDDO ELSE old = (0.d0, 0.d0) DO ig = 1, npwold old (igkold (ig) ) = psiold (ig, idx(ibnd)) ENDDO ENDIF DO jbnd = 1, nbnd IF (ok (jbnd) == 0) THEN IF (noncolin) THEN new_nc = (0.d0, 0.d0) DO ig = 1, npw new_nc (igk (ig), 1) = evc (ig , jbnd) new_nc (igk (ig), 2) = evc (ig+npwx, jbnd) ENDDO pro = cgracsc_nc (nkb,becp%nc(1,1,jbnd), & becpold%nc(1,1,idx(ibnd)), nhm, ntyp, nh, & nat, ityp, ngm, npol, new_nc, old_nc, upf) ELSE new (:) = (0.d0, 0.d0) DO ig = 1, npw new (igk (ig) ) = evc (ig, jbnd) ENDDO pro=cgracsc(nkb,becp%k(:,jbnd),becpold%k(:,idx(ibnd)), & nhm, ntyp, nh, qq, nat, ityp, ngm, NEW, old, upf) ENDIF ! write(6,'(3i5,f15.10)') ik,idx(ibnd), jbnd, abs(pro) IF (abs (pro) > 1.d-2 ) THEN il (idx(ibnd),ik) = jbnd GOTO 10 ENDIF ENDIF ENDDO ! WRITE(6,*) ' no band found', ik, ilold(idx(ibnd)), & ! et(ilold(idx(ibnd)),ik-1)*rytoev ! ! no band found. Takes the closest in energy. NB: This should happen only ! for high energy bands. ! minene=1.d10 DO jbnd = 1, nbnd IF (ok (jbnd) == 0) THEN IF (abs(et(idx(ibnd),ik)-et(jbnd,ik)) maxdeg) CALL errore ('punch_band', & ' increase maxdeg', deg) degbands(nd,deg) = ibnd ENDIF ENDDO degeneracy (nd) = deg ENDDO ENDIF ENDDO #ifdef __MPI IF (noncolin) CALL poolrecover(sigma_avg,4*nbnd,nkstot,nks) CALL ipoolrecover(il,nbnd,nkstot,nks) #endif ! IF ( ionode ) THEN ! DO ik=nks1tot,nks2tot IF (ik == nks1) THEN WRITE (iunpun, '(" &plot nbnd=",i4,", nks=",i6," /")') & nbnd, nks2tot-nks1tot+1 DO ipol=1,4 IF (lsigma(ipol)) WRITE(iunpun_sigma(ipol), & '(" &plot nbnd=",i4,", nks=",i6," /")') & nbnd, nks2tot-nks1tot+1 ENDDO ENDIF WRITE (iunpun, '(10x,3f10.6)') xk(1,ik),xk(2,ik),xk(3,ik) WRITE (iunpun, '(10f8.3)') (et (il(ibnd,ik), ik) & * rytoev, ibnd = 1, nbnd) DO ipol=1,4 IF (lsigma(ipol)) THEN WRITE (iunpun_sigma(ipol), '(10x,3f10.6)') & xk(1,ik),xk(2,ik),xk(3,ik) WRITE (iunpun_sigma(ipol), '(10f8.3)') & (sigma_avg(ipol, il(ibnd,ik) , ik), ibnd = 1, nbnd) ENDIF ENDDO ! ENDDO ENDIF ! DEALLOCATE (idx, degbands) DEALLOCATE (edeg, degeneracy) DEALLOCATE (ilold, il, ok) DEALLOCATE (igkold) CALL deallocate_bec_type(becp) CALL deallocate_bec_type(becpold) IF (noncolin) THEN DEALLOCATE (sigma_avg) DEALLOCATE (new_nc, old_nc) DEALLOCATE (psiold_nc) ELSE DEALLOCATE (new, old) DEALLOCATE (psiold) ENDIF ! IF ( ionode ) THEN CLOSE (iunpun) DO ipol=1,4 IF (lsigma(ipol)) CLOSE(iunpun_sigma(ipol)) ENDDO ENDIF ! RETURN ! END SUBROUTINE punch_band SUBROUTINE punch_band_2d(filband,spin_component) ! ! This routine opens a file for each band and writes on output ! kx, ky, energy, ! kx, ky, energy ! .., .., .. ! where kx and ky are proportional to the length ! of the vectors k_1 and k_2 specified in the input of the 2d plot. ! ! The k points are supposed to be in the form ! xk(i,j) = xk_0 + dkx *(i-1) + dky * (j-1) 1eps8.OR. & ABS(xk_collect(2,j)-xkdum(2))>eps8.OR. & ABS(xk_collect(3,j)-xkdum(3))>eps8) THEN n2=j-1 dkx(:)=xk_collect(:,j)-xk0(:) EXIT loop_k ENDIF ENDDO loop_k n1=nks_eff/n2 IF (n1*n2 /= nks_eff) CALL errore('punch_band_2d',& 'Problems with k points',1) mdkx = sqrt( dkx(1)**2 + dkx(2)**2 + dkx(3)**2 ) mdky = sqrt( dky(1)**2 + dky(2)**2 + dky(3)**2 ) ! ! write the output, a band per file ! DO ibnd=1,nbnd filename=TRIM(filband) // '.' // TRIM(int_to_char(ibnd)) IF (ionode) & open(unit=iuntmp,file=filename,status='unknown', err=100, iostat=ios) CALL mp_bcast(ios,ionode_id, world_comm) 100 CALL errore('punch_band_2d','Problem opening outputfile',ios) ijk=0 DO i1=1,n1 DO i2=1,n2 ijk=ijk+1 IF (ionode) & WRITE(iuntmp,'(3f16.6)') mdkx*(i1-1), mdky*(i2-1), & et_collect(ibnd,ijk)*rytoev ENDDO ENDDO IF (ionode) CLOSE(unit=iuntmp,status='KEEP') ENDDO DEALLOCATE(xk_collect) DEALLOCATE(et_collect) RETURN END espresso-5.1/PP/src/addusdens1d.f900000644000175000017500000000765312341372773015153 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE addusdens1d (plan, prho) !---------------------------------------------------------------------- ! ! This routine adds to the charge density the part which is due to ! the US augmentation. This is done only along the G_z direction in ! reciprocal space. The output of the routine is the planar average ! of the charge density. ! USE kinds, ONLY: DP USE cell_base, ONLY: alat, omega, celldm USE ions_base, ONLY: nat, ntyp => nsp, ityp USE fft_base, ONLY: dfftp USE gvect, ONLY: nl, eigts1, eigts2, eigts3, mill USE lsda_mod, ONLY: current_spin USE uspp, ONLY: becsum USE uspp_param, ONLY: upf, lmaxq, nh USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! ! here the local variables ! IMPLICIT NONE INTEGER :: ig, na, nt, ih, jh, ijh, ngm1d, ig1dto3d (dfftp%nr3), & igtongl1d (dfftp%nr3), nl1d (dfftp%nr3) ! counter on G vectors ! counter on atoms ! counter on atomic types ! counter on beta functions ! counter on beta functions ! composite index ih jh ! the number of 1D G vectors on this processor ! correspondence 1D with 3D G vectors ! the correspondence 1D with the 3D shells ! correspondence 1D FFT mesh G with array G real(DP) :: plan (dfftp%nr3), dimz, g1d (3, dfftp%nr3), gg1d (dfftp%nr3), qmod (dfftp%nr3), & qgr (dfftp%nr3), qgi (dfftp%nr3), ylmk0 (dfftp%nr3, lmaxq * lmaxq) ! the planar average ! dimension along z ! ngm1d 3D vectors with the 1D G of this proc ! ngm1d scalars with the modulus of 1D G ! the modulus of G ! real and ! imaginary part of qg ! the spherical harmonics COMPLEX(DP) :: skk, prho (dfftp%nnr), qg (dfftp%nr3x) ! auxiliary variable ! auxiliary space for the charge ! auxiliary variable for FFT ! auxiliary variable for rho(G,nspin) COMPLEX(DP), ALLOCATABLE :: qgm(:), aux (:) CALL ggen1d (ngm1d, g1d, gg1d, ig1dto3d, nl1d, igtongl1d) ALLOCATE (qgm(ngm1d), aux(ngm1d)) DO ig = 1, ngm1d qmod (ig) = sqrt (gg1d (ig) ) ENDDO aux(:) = (0.d0, 0.d0) IF (ngm1d > 0) THEN CALL ylmr2 (lmaxq * lmaxq, ngm1d, g1d, gg1d, ylmk0) DO nt = 1, ntyp IF (upf(nt)%tvanp ) THEN ijh = 0 DO ih = 1, nh (nt) DO jh = ih, nh (nt) CALL qvan2 (ngm1d, ih, jh, nt, qmod, qgm, ylmk0) ijh = ijh + 1 DO na = 1, nat IF (ityp (na) == nt) THEN ! ! Multiply becsum and qg with the correct structure factor ! DO ig = 1, ngm1d skk = eigts1 (mill(1,ig1dto3d (ig) ), na) * & eigts2 (mill(2,ig1dto3d (ig) ), na) * & eigts3 (mill(3,ig1dto3d (ig) ), na) aux (ig) = aux (ig) + qgm (ig) * skk * & becsum (ijh, na, current_spin) ENDDO ENDIF ENDDO ENDDO ENDDO ENDIF ENDDO ! ! adds to the charge density and converts to real space ! qg(:) = (0.d0, 0.d0) DO ig = 1, ngm1d qg (nl1d (ig) ) = aux (ig) + prho (nl (ig1dto3d (ig) ) ) ENDDO ELSE qg(:) = (0.d0, 0.d0) ENDIF CALL mp_sum( qg, intra_bgrp_comm ) dimz = alat * celldm (3) DO ig = 1, dfftp%nr3 qgr (ig) = dble (qg (ig) ) qgi (ig) = aimag (qg (ig) ) ENDDO CALL cft (qgr, qgi, dfftp%nr3, dfftp%nr3, dfftp%nr3, 1) DO ig = 1, dfftp%nr3 plan (ig) = qgr (ig) * omega / dimz ENDDO DEALLOCATE (aux, qgm) RETURN END SUBROUTINE addusdens1d espresso-5.1/PP/src/stop_pp.f900000644000175000017500000000157212341372773014432 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------- SUBROUTINE stop_pp !-------------------------------------------------------------------- ! ! Synchronize processes before stopping. ! USE control_flags, ONLY: twfcollect USE io_files, ONLY: iunwfc USE mp_global, ONLY: mp_global_end USE parallel_include #ifdef __MPI INTEGER :: info LOGICAL :: op INQUIRE ( iunwfc, opened = op ) IF ( op ) THEN IF (twfcollect) THEN CLOSE (unit = iunwfc, status = 'delete') ELSE CLOSE (unit = iunwfc, status = 'keep') ENDIF ENDIF CALL mp_global_end() #endif STOP END SUBROUTINE stop_pp espresso-5.1/PP/src/make.depend0000644000175000017500000006373712341372773014537 0ustar mbambaadd_shift_cc.o : ../../Modules/atom.o add_shift_cc.o : ../../Modules/cell_base.o add_shift_cc.o : ../../Modules/constants.o add_shift_cc.o : ../../Modules/control_flags.o add_shift_cc.o : ../../Modules/fft_base.o add_shift_cc.o : ../../Modules/fft_interfaces.o add_shift_cc.o : ../../Modules/ions_base.o add_shift_cc.o : ../../Modules/kind.o add_shift_cc.o : ../../Modules/mp.o add_shift_cc.o : ../../Modules/mp_global.o add_shift_cc.o : ../../Modules/recvec.o add_shift_cc.o : ../../Modules/uspp.o add_shift_cc.o : ../../Modules/wavefunctions.o add_shift_cc.o : ../../PW/src/pwcom.o add_shift_cc.o : ../../PW/src/scf_mod.o add_shift_lc.o : ../../Modules/constants.o add_shift_lc.o : ../../Modules/fft_base.o add_shift_lc.o : ../../Modules/fft_interfaces.o add_shift_lc.o : ../../Modules/kind.o add_shift_lc.o : ../../Modules/mp.o add_shift_lc.o : ../../Modules/mp_global.o add_shift_us.o : ../../Modules/becmod.o add_shift_us.o : ../../Modules/cell_base.o add_shift_us.o : ../../Modules/control_flags.o add_shift_us.o : ../../Modules/io_files.o add_shift_us.o : ../../Modules/ions_base.o add_shift_us.o : ../../Modules/kind.o add_shift_us.o : ../../Modules/mp.o add_shift_us.o : ../../Modules/mp_global.o add_shift_us.o : ../../Modules/recvec.o add_shift_us.o : ../../Modules/uspp.o add_shift_us.o : ../../Modules/wavefunctions.o add_shift_us.o : ../../PW/src/pwcom.o add_shift_us.o : ../../PW/src/symme.o addusdens1d.o : ../../Modules/cell_base.o addusdens1d.o : ../../Modules/fft_base.o addusdens1d.o : ../../Modules/ions_base.o addusdens1d.o : ../../Modules/kind.o addusdens1d.o : ../../Modules/mp.o addusdens1d.o : ../../Modules/mp_global.o addusdens1d.o : ../../Modules/recvec.o addusdens1d.o : ../../Modules/uspp.o addusdens1d.o : ../../PW/src/pwcom.o atomic_wfc_nc_proj.o : ../../Modules/cell_base.o atomic_wfc_nc_proj.o : ../../Modules/constants.o atomic_wfc_nc_proj.o : ../../Modules/ions_base.o atomic_wfc_nc_proj.o : ../../Modules/kind.o atomic_wfc_nc_proj.o : ../../Modules/noncol.o atomic_wfc_nc_proj.o : ../../Modules/recvec.o atomic_wfc_nc_proj.o : ../../Modules/uspp.o atomic_wfc_nc_proj.o : ../../PW/src/atomic_wfc_mod.o atomic_wfc_nc_proj.o : ../../PW/src/pwcom.o average.o : ../../Modules/cell_base.o average.o : ../../Modules/constants.o average.o : ../../Modules/environment.o average.o : ../../Modules/fft_base.o average.o : ../../Modules/griddim.o average.o : ../../Modules/io_files.o average.o : ../../Modules/io_global.o average.o : ../../Modules/ions_base.o average.o : ../../Modules/kind.o average.o : ../../Modules/mp_global.o average.o : ../../Modules/parameters.o average.o : ../../Modules/recvec.o average.o : ../../Modules/run_info.o average.o : ../../Modules/wavefunctions.o average.o : ../../PW/src/pwcom.o average.o : ../../PW/src/scf_mod.o bands.o : ../../Modules/becmod.o bands.o : ../../Modules/cell_base.o bands.o : ../../Modules/constants.o bands.o : ../../Modules/control_flags.o bands.o : ../../Modules/environment.o bands.o : ../../Modules/io_files.o bands.o : ../../Modules/io_global.o bands.o : ../../Modules/ions_base.o bands.o : ../../Modules/kind.o bands.o : ../../Modules/mp.o bands.o : ../../Modules/mp_global.o bands.o : ../../Modules/mp_world.o bands.o : ../../Modules/noncol.o bands.o : ../../Modules/recvec.o bands.o : ../../Modules/uspp.o bands.o : ../../Modules/wavefunctions.o bands.o : ../../PW/src/pwcom.o bgw2pw.o : ../../Modules/cell_base.o bgw2pw.o : ../../Modules/constants.o bgw2pw.o : ../../Modules/environment.o bgw2pw.o : ../../Modules/fft_base.o bgw2pw.o : ../../Modules/fft_interfaces.o bgw2pw.o : ../../Modules/io_files.o bgw2pw.o : ../../Modules/io_global.o bgw2pw.o : ../../Modules/ions_base.o bgw2pw.o : ../../Modules/kind.o bgw2pw.o : ../../Modules/mp.o bgw2pw.o : ../../Modules/mp_global.o bgw2pw.o : ../../Modules/mp_pools.o bgw2pw.o : ../../Modules/mp_world.o bgw2pw.o : ../../Modules/parallel_include.o bgw2pw.o : ../../Modules/qexml.o bgw2pw.o : ../../Modules/recvec.o bgw2pw.o : ../../Modules/wavefunctions.o bgw2pw.o : ../../Modules/xml_io_base.o bgw2pw.o : ../../PW/src/io_rho_xml.o bgw2pw.o : ../../PW/src/pwcom.o bgw2pw.o : ../../PW/src/scf_mod.o bgw2pw.o : ../../PW/src/symm_base.o bgw2pw.o : ../../iotk/src/iotk_module.o cft.o : ../../Modules/kind.o cgracsc.o : ../../Modules/kind.o cgracsc.o : ../../Modules/mp.o cgracsc.o : ../../Modules/mp_global.o cgracsc.o : ../../Modules/pseudo_types.o cgracsc.o : ../../Modules/uspp.o cgracsc.o : ../../PW/src/pwcom.o chdens.o : ../../Modules/cell_base.o chdens.o : ../../Modules/constants.o chdens.o : ../../Modules/control_flags.o chdens.o : ../../Modules/fft_base.o chdens.o : ../../Modules/fft_interfaces.o chdens.o : ../../Modules/griddim.o chdens.o : ../../Modules/io_files.o chdens.o : ../../Modules/io_global.o chdens.o : ../../Modules/ions_base.o chdens.o : ../../Modules/kind.o chdens.o : ../../Modules/mp.o chdens.o : ../../Modules/mp_global.o chdens.o : ../../Modules/mp_world.o chdens.o : ../../Modules/parameters.o chdens.o : ../../Modules/recvec.o chdens.o : ../../Modules/recvec_subs.o chdens.o : ../../Modules/run_info.o chdens.o : ../../Modules/wavefunctions.o chdens.o : ../../PW/src/pwcom.o chdens_bspline.o : ../../Modules/bspline.o chdens_bspline.o : ../../Modules/cell_base.o chdens_bspline.o : ../../Modules/fft_base.o chdens_bspline.o : ../../Modules/io_global.o chdens_bspline.o : ../../Modules/kind.o compute_ppsi.o : ../../Modules/becmod.o compute_ppsi.o : ../../Modules/cell_base.o compute_ppsi.o : ../../Modules/io_global.o compute_ppsi.o : ../../Modules/ions_base.o compute_ppsi.o : ../../Modules/kind.o compute_ppsi.o : ../../Modules/noncol.o compute_ppsi.o : ../../Modules/recvec.o compute_ppsi.o : ../../Modules/uspp.o compute_ppsi.o : ../../Modules/wavefunctions.o compute_ppsi.o : ../../PW/src/pwcom.o compute_sigma_avg.o : ../../Modules/cell_base.o compute_sigma_avg.o : ../../Modules/fft_base.o compute_sigma_avg.o : ../../Modules/fft_interfaces.o compute_sigma_avg.o : ../../Modules/ions_base.o compute_sigma_avg.o : ../../Modules/kind.o compute_sigma_avg.o : ../../Modules/mp.o compute_sigma_avg.o : ../../Modules/mp_global.o compute_sigma_avg.o : ../../Modules/noncol.o compute_sigma_avg.o : ../../Modules/recvec.o compute_sigma_avg.o : ../../Modules/uspp.o compute_sigma_avg.o : ../../Modules/wavefunctions.o compute_sigma_avg.o : ../../PW/src/pwcom.o compute_sigma_avg.o : ../../PW/src/scf_mod.o cube.o : ../../Modules/cell_base.o cube.o : ../../Modules/io_global.o cube.o : ../../Modules/kind.o d_matrix_nc.o : ../../Modules/kind.o d_matrix_nc.o : ../../Modules/random_numbers.o d_matrix_nc.o : ../../PW/src/symm_base.o d_matrix_so.o : ../../Modules/kind.o d_matrix_so.o : ../../Modules/random_numbers.o d_matrix_so.o : ../../PW/src/pwcom.o d_matrix_so.o : ../../PW/src/symm_base.o do_initial_state.o : ../../Modules/cell_base.o do_initial_state.o : ../../Modules/constants.o do_initial_state.o : ../../Modules/control_flags.o do_initial_state.o : ../../Modules/fft_base.o do_initial_state.o : ../../Modules/io_global.o do_initial_state.o : ../../Modules/ions_base.o do_initial_state.o : ../../Modules/kind.o do_initial_state.o : ../../Modules/parameters.o do_initial_state.o : ../../Modules/recvec.o do_initial_state.o : ../../Modules/uspp.o do_initial_state.o : ../../PW/src/ldaU.o do_initial_state.o : ../../PW/src/newd.o do_initial_state.o : ../../PW/src/pwcom.o do_initial_state.o : ../../PW/src/scf_mod.o do_initial_state.o : ../../PW/src/symme.o do_shift_ew.o : ../../Modules/constants.o do_shift_ew.o : ../../Modules/kind.o do_shift_ew.o : ../../Modules/mp.o do_shift_ew.o : ../../Modules/mp_global.o dos.o : ../../Modules/constants.o dos.o : ../../Modules/environment.o dos.o : ../../Modules/io_files.o dos.o : ../../Modules/io_global.o dos.o : ../../Modules/kind.o dos.o : ../../Modules/mp.o dos.o : ../../Modules/mp_global.o dos.o : ../../Modules/mp_world.o dos.o : ../../Modules/noncol.o dos.o : ../../PW/src/pwcom.o dosg.o : ../../Modules/kind.o elf.o : ../../Modules/cell_base.o elf.o : ../../Modules/constants.o elf.o : ../../Modules/control_flags.o elf.o : ../../Modules/fft_base.o elf.o : ../../Modules/fft_interfaces.o elf.o : ../../Modules/io_files.o elf.o : ../../Modules/kind.o elf.o : ../../Modules/mp.o elf.o : ../../Modules/mp_global.o elf.o : ../../Modules/recvec.o elf.o : ../../Modules/wavefunctions.o elf.o : ../../PW/src/pwcom.o elf.o : ../../PW/src/scf_mod.o elf.o : ../../PW/src/symme.o epsilon.o : ../../Modules/cell_base.o epsilon.o : ../../Modules/constants.o epsilon.o : ../../Modules/environment.o epsilon.o : ../../Modules/io_files.o epsilon.o : ../../Modules/io_global.o epsilon.o : ../../Modules/kind.o epsilon.o : ../../Modules/mp.o epsilon.o : ../../Modules/mp_global.o epsilon.o : ../../Modules/mp_world.o epsilon.o : ../../Modules/recvec.o epsilon.o : ../../Modules/uspp.o epsilon.o : ../../Modules/wavefunctions.o epsilon.o : ../../Modules/xml_io_base.o epsilon.o : ../../PW/src/pwcom.o epsilon.o : ../../iotk/src/iotk_module.o ggen1d.o : ../../Modules/cell_base.o ggen1d.o : ../../Modules/fft_base.o ggen1d.o : ../../Modules/kind.o ggen1d.o : ../../Modules/recvec.o initial_state.o : ../../Modules/environment.o initial_state.o : ../../Modules/io_files.o initial_state.o : ../../Modules/io_global.o initial_state.o : ../../Modules/ions_base.o initial_state.o : ../../Modules/kind.o initial_state.o : ../../Modules/mp.o initial_state.o : ../../Modules/mp_global.o initial_state.o : ../../Modules/mp_world.o initial_state.o : ../../Modules/parameters.o initial_state.o : ../../Modules/uspp.o initial_state.o : ../../Modules/wavefunctions.o initial_state.o : ../../PW/src/pwcom.o local_dos.o : ../../Modules/becmod.o local_dos.o : ../../Modules/cell_base.o local_dos.o : ../../Modules/control_flags.o local_dos.o : ../../Modules/fft_base.o local_dos.o : ../../Modules/fft_interfaces.o local_dos.o : ../../Modules/io_files.o local_dos.o : ../../Modules/ions_base.o local_dos.o : ../../Modules/kind.o local_dos.o : ../../Modules/mp.o local_dos.o : ../../Modules/mp_global.o local_dos.o : ../../Modules/noncol.o local_dos.o : ../../Modules/recvec.o local_dos.o : ../../Modules/uspp.o local_dos.o : ../../Modules/wavefunctions.o local_dos.o : ../../PW/src/pwcom.o local_dos.o : ../../PW/src/realus.o local_dos.o : ../../PW/src/scf_mod.o local_dos.o : ../../PW/src/symme.o local_dos1d.o : ../../Modules/becmod.o local_dos1d.o : ../../Modules/cell_base.o local_dos1d.o : ../../Modules/fft_base.o local_dos1d.o : ../../Modules/fft_interfaces.o local_dos1d.o : ../../Modules/ions_base.o local_dos1d.o : ../../Modules/kind.o local_dos1d.o : ../../Modules/noncol.o local_dos1d.o : ../../Modules/recvec.o local_dos1d.o : ../../Modules/uspp.o local_dos1d.o : ../../Modules/wavefunctions.o local_dos1d.o : ../../PW/src/pwcom.o local_dos_mag.o : ../../Modules/becmod.o local_dos_mag.o : ../../Modules/cell_base.o local_dos_mag.o : ../../Modules/fft_base.o local_dos_mag.o : ../../Modules/fft_interfaces.o local_dos_mag.o : ../../Modules/io_files.o local_dos_mag.o : ../../Modules/ions_base.o local_dos_mag.o : ../../Modules/kind.o local_dos_mag.o : ../../Modules/noncol.o local_dos_mag.o : ../../Modules/recvec.o local_dos_mag.o : ../../Modules/uspp.o local_dos_mag.o : ../../Modules/wavefunctions.o local_dos_mag.o : ../../PW/src/pwcom.o local_dos_mag.o : ../../PW/src/scf_mod.o openfil_pp.o : ../../Modules/control_flags.o openfil_pp.o : ../../Modules/io_files.o openfil_pp.o : ../../Modules/kind.o openfil_pp.o : ../../Modules/noncol.o openfil_pp.o : ../../PW/src/pwcom.o partialdos.o : ../../Modules/constants.o partialdos.o : ../../Modules/io_global.o partialdos.o : ../../Modules/ions_base.o partialdos.o : ../../PW/src/atomic_wfc_mod.o partialdos.o : ../../PW/src/pwcom.o partialdos.o : projwfc.o paw_postproc.o : ../../Modules/atom.o paw_postproc.o : ../../Modules/cell_base.o paw_postproc.o : ../../Modules/fft_base.o paw_postproc.o : ../../Modules/ions_base.o paw_postproc.o : ../../Modules/kind.o paw_postproc.o : ../../Modules/mp_global.o paw_postproc.o : ../../Modules/paw_variables.o paw_postproc.o : ../../Modules/splinelib.o paw_postproc.o : ../../Modules/uspp.o paw_postproc.o : ../../PW/src/paw_onecenter.o paw_postproc.o : ../../PW/src/pwcom.o paw_postproc.o : ../../PW/src/scf_mod.o pawplot.o : ../../Modules/atom.o pawplot.o : ../../Modules/cell_base.o pawplot.o : ../../Modules/constants.o pawplot.o : ../../Modules/control_flags.o pawplot.o : ../../Modules/environment.o pawplot.o : ../../Modules/fft_base.o pawplot.o : ../../Modules/io_files.o pawplot.o : ../../Modules/io_global.o pawplot.o : ../../Modules/ions_base.o pawplot.o : ../../Modules/kind.o pawplot.o : ../../Modules/mp.o pawplot.o : ../../Modules/mp_global.o pawplot.o : ../../Modules/mp_world.o pawplot.o : ../../Modules/noncol.o pawplot.o : ../../Modules/paw_variables.o pawplot.o : ../../Modules/recvec.o pawplot.o : ../../Modules/splinelib.o pawplot.o : ../../Modules/uspp.o pawplot.o : ../../PW/src/paw_onecenter.o pawplot.o : ../../PW/src/pwcom.o pawplot.o : ../../PW/src/scf_mod.o plan_avg.o : ../../Modules/becmod.o plan_avg.o : ../../Modules/cell_base.o plan_avg.o : ../../Modules/control_flags.o plan_avg.o : ../../Modules/environment.o plan_avg.o : ../../Modules/fft_base.o plan_avg.o : ../../Modules/io_files.o plan_avg.o : ../../Modules/io_global.o plan_avg.o : ../../Modules/ions_base.o plan_avg.o : ../../Modules/kind.o plan_avg.o : ../../Modules/mp.o plan_avg.o : ../../Modules/mp_global.o plan_avg.o : ../../Modules/mp_world.o plan_avg.o : ../../Modules/noncol.o plan_avg.o : ../../Modules/recvec.o plan_avg.o : ../../Modules/run_info.o plan_avg.o : ../../Modules/uspp.o plan_avg.o : ../../Modules/wavefunctions.o plan_avg.o : ../../PW/src/pwcom.o plot_whole_cell.o : ../../Modules/kind.o poormanwannier.o : ../../Modules/becmod.o poormanwannier.o : ../../Modules/cell_base.o poormanwannier.o : ../../Modules/constants.o poormanwannier.o : ../../Modules/control_flags.o poormanwannier.o : ../../Modules/environment.o poormanwannier.o : ../../Modules/io_files.o poormanwannier.o : ../../Modules/io_global.o poormanwannier.o : ../../Modules/ions_base.o poormanwannier.o : ../../Modules/kind.o poormanwannier.o : ../../Modules/mp.o poormanwannier.o : ../../Modules/mp_global.o poormanwannier.o : ../../Modules/mp_world.o poormanwannier.o : ../../Modules/recvec.o poormanwannier.o : ../../Modules/uspp.o poormanwannier.o : ../../Modules/wavefunctions.o poormanwannier.o : ../../PW/src/atomic_wfc_mod.o poormanwannier.o : ../../PW/src/ldaU.o poormanwannier.o : ../../PW/src/pwcom.o poormanwannier.o : ../../PW/src/symm_base.o postproc.o : ../../Modules/cell_base.o postproc.o : ../../Modules/constants.o postproc.o : ../../Modules/control_flags.o postproc.o : ../../Modules/environment.o postproc.o : ../../Modules/fft_base.o postproc.o : ../../Modules/io_files.o postproc.o : ../../Modules/io_global.o postproc.o : ../../Modules/ions_base.o postproc.o : ../../Modules/kind.o postproc.o : ../../Modules/mp.o postproc.o : ../../Modules/mp_global.o postproc.o : ../../Modules/mp_world.o postproc.o : ../../Modules/noncol.o postproc.o : ../../Modules/paw_variables.o postproc.o : ../../Modules/recvec.o postproc.o : ../../PW/src/pwcom.o projwfc.o : ../../Modules/becmod.o projwfc.o : ../../Modules/cell_base.o projwfc.o : ../../Modules/constants.o projwfc.o : ../../Modules/control_flags.o projwfc.o : ../../Modules/descriptors.o projwfc.o : ../../Modules/environment.o projwfc.o : ../../Modules/fft_base.o projwfc.o : ../../Modules/io_files.o projwfc.o : ../../Modules/io_global.o projwfc.o : ../../Modules/ions_base.o projwfc.o : ../../Modules/kind.o projwfc.o : ../../Modules/mp.o projwfc.o : ../../Modules/mp_global.o projwfc.o : ../../Modules/mp_world.o projwfc.o : ../../Modules/noncol.o projwfc.o : ../../Modules/ptoolkit.o projwfc.o : ../../Modules/recvec.o projwfc.o : ../../Modules/run_info.o projwfc.o : ../../Modules/uspp.o projwfc.o : ../../Modules/wavefunctions.o projwfc.o : ../../Modules/zhpev_drv.o projwfc.o : ../../PW/src/atomic_wfc_mod.o projwfc.o : ../../PW/src/pwcom.o projwfc.o : ../../PW/src/symm_base.o projwfc.o : ../../iotk/src/iotk_module.o projwfc_box.o : ../../Modules/atom.o projwfc_box.o : ../../Modules/cell_base.o projwfc_box.o : ../../Modules/constants.o projwfc_box.o : ../../Modules/control_flags.o projwfc_box.o : ../../Modules/fft_base.o projwfc_box.o : ../../Modules/fft_interfaces.o projwfc_box.o : ../../Modules/io_files.o projwfc_box.o : ../../Modules/io_global.o projwfc_box.o : ../../Modules/ions_base.o projwfc_box.o : ../../Modules/kind.o projwfc_box.o : ../../Modules/mp.o projwfc_box.o : ../../Modules/mp_global.o projwfc_box.o : ../../Modules/noncol.o projwfc_box.o : ../../Modules/recvec.o projwfc_box.o : ../../Modules/run_info.o projwfc_box.o : ../../Modules/uspp.o projwfc_box.o : ../../Modules/wavefunctions.o projwfc_box.o : ../../PW/src/atomic_wfc_mod.o projwfc_box.o : ../../PW/src/pwcom.o projwfc_box.o : ../../PW/src/scf_mod.o punch_plot.o : ../../Modules/cell_base.o punch_plot.o : ../../Modules/constants.o punch_plot.o : ../../Modules/control_flags.o punch_plot.o : ../../Modules/fft_base.o punch_plot.o : ../../Modules/fft_interfaces.o punch_plot.o : ../../Modules/io_global.o punch_plot.o : ../../Modules/ions_base.o punch_plot.o : ../../Modules/kind.o punch_plot.o : ../../Modules/noncol.o punch_plot.o : ../../Modules/recvec.o punch_plot.o : ../../Modules/run_info.o punch_plot.o : ../../Modules/wavefunctions.o punch_plot.o : ../../PW/src/pwcom.o punch_plot.o : ../../PW/src/scf_mod.o punch_plot.o : paw_postproc.o pw2bgw.o : ../../Modules/cell_base.o pw2bgw.o : ../../Modules/constants.o pw2bgw.o : ../../Modules/control_flags.o pw2bgw.o : ../../Modules/environment.o pw2bgw.o : ../../Modules/fft_base.o pw2bgw.o : ../../Modules/fft_interfaces.o pw2bgw.o : ../../Modules/funct.o pw2bgw.o : ../../Modules/io_files.o pw2bgw.o : ../../Modules/io_global.o pw2bgw.o : ../../Modules/ions_base.o pw2bgw.o : ../../Modules/kind.o pw2bgw.o : ../../Modules/mp.o pw2bgw.o : ../../Modules/mp_global.o pw2bgw.o : ../../Modules/mp_pools.o pw2bgw.o : ../../Modules/mp_wave.o pw2bgw.o : ../../Modules/mp_world.o pw2bgw.o : ../../Modules/noncol.o pw2bgw.o : ../../Modules/parallel_include.o pw2bgw.o : ../../Modules/paw_variables.o pw2bgw.o : ../../Modules/recvec.o pw2bgw.o : ../../Modules/uspp.o pw2bgw.o : ../../Modules/wavefunctions.o pw2bgw.o : ../../PW/src/exx.o pw2bgw.o : ../../PW/src/pwcom.o pw2bgw.o : ../../PW/src/scf_mod.o pw2bgw.o : ../../PW/src/start_k.o pw2bgw.o : ../../PW/src/symm_base.o pw2bgw.o : ../../PW/src/symme.o pw2gw.o : ../../Modules/cell_base.o pw2gw.o : ../../Modules/constants.o pw2gw.o : ../../Modules/control_flags.o pw2gw.o : ../../Modules/environment.o pw2gw.o : ../../Modules/fft_base.o pw2gw.o : ../../Modules/fft_interfaces.o pw2gw.o : ../../Modules/io_files.o pw2gw.o : ../../Modules/io_global.o pw2gw.o : ../../Modules/ions_base.o pw2gw.o : ../../Modules/kind.o pw2gw.o : ../../Modules/mp.o pw2gw.o : ../../Modules/mp_global.o pw2gw.o : ../../Modules/mp_images.o pw2gw.o : ../../Modules/mp_pools.o pw2gw.o : ../../Modules/mp_wave.o pw2gw.o : ../../Modules/mp_world.o pw2gw.o : ../../Modules/parallel_include.o pw2gw.o : ../../Modules/recvec.o pw2gw.o : ../../Modules/splinelib.o pw2gw.o : ../../Modules/uspp.o pw2gw.o : ../../Modules/wavefunctions.o pw2gw.o : ../../PW/src/pwcom.o pw2gw.o : ../../PW/src/scf_mod.o pw2gw.o : ../../PW/src/symm_base.o pw2wannier90.o : ../../Modules/becmod.o pw2wannier90.o : ../../Modules/cell_base.o pw2wannier90.o : ../../Modules/constants.o pw2wannier90.o : ../../Modules/control_flags.o pw2wannier90.o : ../../Modules/environment.o pw2wannier90.o : ../../Modules/fft_base.o pw2wannier90.o : ../../Modules/fft_interfaces.o pw2wannier90.o : ../../Modules/io_files.o pw2wannier90.o : ../../Modules/io_global.o pw2wannier90.o : ../../Modules/ions_base.o pw2wannier90.o : ../../Modules/kind.o pw2wannier90.o : ../../Modules/mp.o pw2wannier90.o : ../../Modules/mp_global.o pw2wannier90.o : ../../Modules/mp_world.o pw2wannier90.o : ../../Modules/noncol.o pw2wannier90.o : ../../Modules/random_numbers.o pw2wannier90.o : ../../Modules/recvec.o pw2wannier90.o : ../../Modules/uspp.o pw2wannier90.o : ../../Modules/wavefunctions.o pw2wannier90.o : ../../PW/src/pwcom.o pw2wannier90.o : ../../PW/src/scf_mod.o pw_export.o : ../../Modules/becmod.o pw_export.o : ../../Modules/control_flags.o pw_export.o : ../../Modules/environment.o pw_export.o : ../../Modules/fft_base.o pw_export.o : ../../Modules/io_files.o pw_export.o : ../../Modules/io_global.o pw_export.o : ../../Modules/ions_base.o pw_export.o : ../../Modules/kind.o pw_export.o : ../../Modules/mp.o pw_export.o : ../../Modules/mp_global.o pw_export.o : ../../Modules/mp_pools.o pw_export.o : ../../Modules/mp_wave.o pw_export.o : ../../Modules/mp_world.o pw_export.o : ../../Modules/parameters.o pw_export.o : ../../Modules/uspp.o pw_export.o : ../../Modules/version.o pw_export.o : ../../Modules/wavefunctions.o pw_export.o : ../../Modules/wrappers.o pw_export.o : ../../PW/src/pwcom.o pw_export.o : ../../PW/src/start_k.o pw_export.o : ../../PW/src/symm_base.o pw_export.o : ../../iotk/src/iotk_module.o smallgk.o : ../../Modules/kind.o spinsym.o : ../../Modules/kind.o spinsym.o : ../../PW/src/symm_base.o stm.o : ../../Modules/cell_base.o stm.o : ../../Modules/constants.o stm.o : ../../Modules/control_flags.o stm.o : ../../Modules/fft_base.o stm.o : ../../Modules/fft_interfaces.o stm.o : ../../Modules/io_files.o stm.o : ../../Modules/io_global.o stm.o : ../../Modules/kind.o stm.o : ../../Modules/mp.o stm.o : ../../Modules/mp_global.o stm.o : ../../Modules/recvec.o stm.o : ../../Modules/wavefunctions.o stm.o : ../../PW/src/pwcom.o stm.o : ../../PW/src/scf_mod.o stm.o : ../../PW/src/symme.o stop_pp.o : ../../Modules/control_flags.o stop_pp.o : ../../Modules/io_files.o stop_pp.o : ../../Modules/mp_global.o stop_pp.o : ../../Modules/parallel_include.o sym_band.o : ../../Modules/becmod.o sym_band.o : ../../Modules/cell_base.o sym_band.o : ../../Modules/constants.o sym_band.o : ../../Modules/fft_base.o sym_band.o : ../../Modules/fft_interfaces.o sym_band.o : ../../Modules/io_files.o sym_band.o : ../../Modules/io_global.o sym_band.o : ../../Modules/ions_base.o sym_band.o : ../../Modules/kind.o sym_band.o : ../../Modules/mp.o sym_band.o : ../../Modules/mp_global.o sym_band.o : ../../Modules/mp_images.o sym_band.o : ../../Modules/noncol.o sym_band.o : ../../Modules/recvec.o sym_band.o : ../../Modules/uspp.o sym_band.o : ../../Modules/wavefunctions.o sym_band.o : ../../PW/src/pwcom.o sym_band.o : ../../PW/src/symm_base.o wannier_ham.o : ../../Modules/cell_base.o wannier_ham.o : ../../Modules/constants.o wannier_ham.o : ../../Modules/environment.o wannier_ham.o : ../../Modules/io_files.o wannier_ham.o : ../../Modules/io_global.o wannier_ham.o : ../../Modules/kind.o wannier_ham.o : ../../Modules/mp.o wannier_ham.o : ../../Modules/mp_global.o wannier_ham.o : ../../Modules/mp_world.o wannier_ham.o : ../../Modules/read_cards.o wannier_ham.o : ../../Modules/recvec.o wannier_ham.o : ../../Modules/wannier_new.o wannier_ham.o : ../../PW/src/buffers.o wannier_ham.o : ../../PW/src/pwcom.o wannier_ham.o : ../../PW/src/symm_base.o wannier_hamiltonians.o : ../../Modules/constants.o wannier_hamiltonians.o : ../../Modules/io_global.o wannier_hamiltonians.o : ../../Modules/kind.o wannier_hamiltonians.o : ../../PW/src/pwcom.o wannier_plot.o : ../../Modules/cell_base.o wannier_plot.o : ../../Modules/constants.o wannier_plot.o : ../../Modules/environment.o wannier_plot.o : ../../Modules/fft_base.o wannier_plot.o : ../../Modules/fft_interfaces.o wannier_plot.o : ../../Modules/io_files.o wannier_plot.o : ../../Modules/io_global.o wannier_plot.o : ../../Modules/ions_base.o wannier_plot.o : ../../Modules/kind.o wannier_plot.o : ../../Modules/mp.o wannier_plot.o : ../../Modules/mp_global.o wannier_plot.o : ../../Modules/mp_world.o wannier_plot.o : ../../Modules/recvec.o wannier_plot.o : ../../Modules/wannier_new.o wannier_plot.o : ../../PW/src/atomic_wfc_mod.o wannier_plot.o : ../../PW/src/buffers.o wannier_plot.o : ../../PW/src/pwcom.o wannier_plot.o : ../../PW/src/symm_base.o wannier_u_matrix.o : ../../Modules/io_files.o wannier_u_matrix.o : ../../Modules/io_global.o wannier_u_matrix.o : ../../Modules/kind.o wannier_u_matrix.o : ../../Modules/wannier_new.o wfck2r.o : ../../Modules/cell_base.o wfck2r.o : ../../Modules/environment.o wfck2r.o : ../../Modules/fft_base.o wfck2r.o : ../../Modules/fft_interfaces.o wfck2r.o : ../../Modules/io_files.o wfck2r.o : ../../Modules/io_global.o wfck2r.o : ../../Modules/kind.o wfck2r.o : ../../Modules/mp.o wfck2r.o : ../../Modules/mp_global.o wfck2r.o : ../../Modules/mp_world.o wfck2r.o : ../../Modules/noncol.o wfck2r.o : ../../Modules/recvec.o wfck2r.o : ../../Modules/wavefunctions.o wfck2r.o : ../../PW/src/pwcom.o work_function.o : ../../Modules/cell_base.o work_function.o : ../../Modules/constants.o work_function.o : ../../Modules/fft_base.o work_function.o : ../../Modules/io_files.o work_function.o : ../../Modules/io_global.o work_function.o : ../../Modules/mp.o work_function.o : ../../Modules/mp_world.o work_function.o : ../../Modules/recvec.o work_function.o : ../../PW/src/pwcom.o work_function.o : ../../PW/src/scf_mod.o write_io_header.o : ../../Modules/ions_base.o write_io_header.o : ../../Modules/kind.o write_io_header.o : ../../Modules/noncol.o write_io_header.o : ../../PW/src/pwcom.o write_p_avg.o : ../../Modules/becmod.o write_p_avg.o : ../../Modules/cell_base.o write_p_avg.o : ../../Modules/constants.o write_p_avg.o : ../../Modules/io_files.o write_p_avg.o : ../../Modules/io_global.o write_p_avg.o : ../../Modules/ions_base.o write_p_avg.o : ../../Modules/kind.o write_p_avg.o : ../../Modules/mp.o write_p_avg.o : ../../Modules/mp_global.o write_p_avg.o : ../../Modules/mp_world.o write_p_avg.o : ../../Modules/noncol.o write_p_avg.o : ../../Modules/recvec.o write_p_avg.o : ../../Modules/uspp.o write_p_avg.o : ../../Modules/wavefunctions.o write_p_avg.o : ../../PW/src/ldaU.o write_p_avg.o : ../../PW/src/pwcom.o write_proj.o : ../../Modules/cell_base.o write_proj.o : ../../Modules/io_files.o write_proj.o : ../../Modules/kind.o write_proj.o : ../../Modules/noncol.o write_proj.o : ../../PW/src/atomic_wfc_mod.o write_proj.o : ../../PW/src/pwcom.o write_proj.o : ../../iotk/src/iotk_module.o xctest.o : ../../Modules/funct.o xctest.o : ../../Modules/io_global.o xctest.o : ../../Modules/kind.o xctest.o : ../../Modules/mp_global.o xk_et_collect.o : ../../Modules/kind.o xk_et_collect.o : ../../Modules/mp.o xk_et_collect.o : ../../Modules/mp_global.o xsf.o : ../../Modules/constants.o xsf.o : ../../Modules/kind.o espresso-5.1/PP/src/pw2bgw.f900000644000175000017500000025473112341372773014165 0ustar mbamba! ! Copyright (C) 2008-2012 Georgy Samsonidze ! ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Converts the output files produced by pw.x to the input files for BerkeleyGW. ! !------------------------------------------------------------------------------- ! ! BerkeleyGW, Copyright (c) 2011, The Regents of the University of ! California, through Lawrence Berkeley National Laboratory (subject to ! receipt of any required approvals from the U.S. Dept. of Energy). ! All rights reserved. ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions are ! met: ! ! (1) Redistributions of source code must retain the above copyright ! notice, this list of conditions and the following disclaimer. ! ! (2) Redistributions in binary form must reproduce the above copyright ! notice, this list of conditions and the following disclaimer in the ! documentation and/or other materials provided with the distribution. ! ! (3) Neither the name of the University of California, Lawrence ! Berkeley National Laboratory, U.S. Dept. of Energy nor the names of ! its contributors may be used to endorse or promote products derived ! from this software without specific prior written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ! "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ! LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ! A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ! OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ! LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ! DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ! THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ! You are under no obligation whatsoever to provide any bug fixes, ! patches, or upgrades to the features, functionality or performance of ! the source code ("Enhancements") to anyone; however, if you choose to ! make your Enhancements available either publicly, or directly to ! Lawrence Berkeley National Laboratory, without imposing a separate ! written license agreement for such Enhancements, then you hereby grant ! the following license: a non-exclusive, royalty-free perpetual ! license to install, use, modify, prepare derivative works, incorporate ! into other computer software, distribute, and sublicense such ! enhancements or derivative works thereof, in binary and source code ! form. ! !------------------------------------------------------------------------------- ! ! pw2bgw subroutines: ! ! write_wfng - generates complex wavefunctions in G-space (normalized to 1) ! real_wfng - constructs real wavefunctions by applying the Gram-Schmidt ! process (called from write_wfng) ! write_rhog - generates real/complex charge density in G-space ! (units of the number of electronic states per unit cell) ! calc_rhog - computes charge density by summing over a subset of occupied ! bands (called from write_rhog), destroys charge density ! write_vxcg - generates real/complex exchange-correlation potential in ! G-space (units of Rydberg) [only local part of Vxc] ! write_vxc0 - prints real/complex exchange-correlation potential at G=0 ! (units of eV) [only local part of Vxc] ! write_vxc_r - calculates matrix elements of exchange-correlation potential ! in R-space (units of eV) [only local part of Vxc] ! write_vxc_g - calculates matrix elements of exchange-correlation potential ! in G-space (units of eV) [supports non-local Vxc] ! write_vscg - generates real/complex self-consistent potential in G-space ! (units of Rydberg) [only local part of Vsc] ! write_vkbg - generates complex Kleinman-Bylander projectors in G-space ! (units of Rydberg) ! check_inversion - checks whether real/complex version is appropriate ! (called from everywhere) ! ! Quantum ESPRESSO stores the wavefunctions in is-ik-ib-ig order ! BerkeleyGW stores the wavefunctions in ik-ib-is-ig order ! the outer loop is over is(QE)/ik(BGW) and the inner loop is over ig ! ik = k-point index, is = spin index, ib = band index, ig = G-vector index ! ! write_wfng reverts the order of is and ik using smap and kmap arrays, ! distributes wavefunctions over processors by ig (either real case or ! spin-polarized case), calls real_wfng that applies the Gram-Schmidt ! process (real case), reverts the order of is and ib (spin-polarized ! case), and writes wavefunctions to disk ! !------------------------------------------------------------------------------- PROGRAM pw2bgw USE constants, ONLY : eps12 USE control_flags, ONLY : gamma_only USE environment, ONLY : environment_start, environment_end USE io_files, ONLY : prefix, tmp_dir, outdir USE io_global, ONLY : ionode, ionode_id USE kinds, ONLY : DP USE lsda_mod, ONLY : nspin USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm USE mp_global, ONLY : mp_startup USE paw_variables, ONLY : okpaw USE scf, ONLY : rho_core, rhog_core USE uspp, ONLY : okvan IMPLICIT NONE character(len=6) :: codename = 'PW2BGW' integer :: real_or_complex character ( len = 9 ) :: symm_type logical :: wfng_flag character ( len = 256 ) :: wfng_file logical :: wfng_kgrid integer :: wfng_nk1 integer :: wfng_nk2 integer :: wfng_nk3 real (DP) :: wfng_dk1 real (DP) :: wfng_dk2 real (DP) :: wfng_dk3 logical :: wfng_occupation integer :: wfng_nvmin integer :: wfng_nvmax logical :: rhog_flag character ( len = 256 ) :: rhog_file integer :: rhog_nvmin integer :: rhog_nvmax logical :: vxcg_flag character ( len = 256 ) :: vxcg_file logical :: vxc0_flag character ( len = 256 ) :: vxc0_file logical :: vxc_flag character ( len = 256 ) :: vxc_file character :: vxc_integral integer :: vxc_diag_nmin integer :: vxc_diag_nmax integer :: vxc_offdiag_nmin integer :: vxc_offdiag_nmax logical :: vxc_zero_rho_core logical :: vscg_flag character ( len = 256 ) :: vscg_file logical :: vkbg_flag character ( len = 256 ) :: vkbg_file NAMELIST / input_pw2bgw / prefix, outdir, & real_or_complex, symm_type, wfng_flag, wfng_file, wfng_kgrid, & wfng_nk1, wfng_nk2, wfng_nk3, wfng_dk1, wfng_dk2, wfng_dk3, & wfng_occupation, wfng_nvmin, wfng_nvmax, rhog_flag, rhog_file, & rhog_nvmin, rhog_nvmax, vxcg_flag, vxcg_file, vxc0_flag, vxc0_file, & vxc_flag, vxc_file, vxc_integral, vxc_diag_nmin, vxc_diag_nmax, & vxc_offdiag_nmin, vxc_offdiag_nmax, vxc_zero_rho_core, & vscg_flag, vscg_file, vkbg_flag, vkbg_file integer :: ii, ios character ( len = 256 ) :: output_file_name character (len=256), external :: trimcheck character (len=1), external :: lowercase #ifdef __PARA CALL mp_startup ( world_comm ) #endif CALL environment_start ( codename ) prefix = 'prefix' CALL get_env ( 'ESPRESSO_TMPDIR', outdir ) IF ( TRIM ( outdir ) == ' ' ) outdir = './' real_or_complex = 2 symm_type = 'cubic' wfng_flag = .FALSE. wfng_file = 'WFN' wfng_kgrid = .FALSE. wfng_nk1 = 0 wfng_nk2 = 0 wfng_nk3 = 0 wfng_dk1 = 0.0D0 wfng_dk2 = 0.0D0 wfng_dk3 = 0.0D0 wfng_occupation = .FALSE. wfng_nvmin = 0 wfng_nvmax = 0 rhog_flag = .FALSE. rhog_file = 'RHO' rhog_nvmin = 0 rhog_nvmax = 0 vxcg_flag = .FALSE. vxcg_file = 'VXC' vxc0_flag = .FALSE. vxc0_file = 'vxc0.dat' vxc_flag = .FALSE. vxc_file = 'vxc.dat' vxc_integral = 'g' vxc_diag_nmin = 0 vxc_diag_nmax = 0 vxc_offdiag_nmin = 0 vxc_offdiag_nmax = 0 vxc_zero_rho_core = .TRUE. vscg_flag = .FALSE. vscg_file = 'VSC' vkbg_flag = .FALSE. vkbg_file = 'VKB' IF ( ionode ) THEN CALL input_from_file ( ) READ ( 5, input_pw2bgw, iostat = ios ) IF ( ios /= 0 ) CALL errore ( codename, 'input_pw2bgw', abs ( ios ) ) DO ii = 1, LEN_TRIM (symm_type) symm_type(ii:ii) = lowercase (symm_type(ii:ii)) END DO DO ii = 1, LEN_TRIM (vxc_integral) vxc_integral(ii:ii) = lowercase (vxc_integral(ii:ii)) END DO IF ( real_or_complex /= 1 .AND. real_or_complex /= 2 ) & CALL errore ( codename, 'real_or_complex', 1 ) IF ( symm_type /= 'cubic' .AND. symm_type /= 'hexagonal' ) & CALL errore ( codename, 'symm_type', 1 ) IF ( vxc_integral /= 'r' .AND. vxc_integral /= 'g' ) & CALL errore ( codename, 'vxc_integral', 1 ) ENDIF tmp_dir = trimcheck ( outdir ) CALL mp_bcast ( outdir, ionode_id, world_comm ) CALL mp_bcast ( tmp_dir, ionode_id, world_comm ) CALL mp_bcast ( prefix, ionode_id, world_comm ) CALL mp_bcast ( real_or_complex, ionode_id, world_comm ) CALL mp_bcast ( symm_type, ionode_id, world_comm ) CALL mp_bcast ( wfng_flag, ionode_id, world_comm ) CALL mp_bcast ( wfng_file, ionode_id, world_comm ) CALL mp_bcast ( wfng_kgrid, ionode_id, world_comm ) CALL mp_bcast ( wfng_nk1, ionode_id, world_comm ) CALL mp_bcast ( wfng_nk2, ionode_id, world_comm ) CALL mp_bcast ( wfng_nk3, ionode_id, world_comm ) CALL mp_bcast ( wfng_dk1, ionode_id, world_comm ) CALL mp_bcast ( wfng_dk2, ionode_id, world_comm ) CALL mp_bcast ( wfng_dk3, ionode_id, world_comm ) CALL mp_bcast ( wfng_occupation, ionode_id, world_comm ) CALL mp_bcast ( wfng_nvmin, ionode_id, world_comm ) CALL mp_bcast ( wfng_nvmax, ionode_id, world_comm ) CALL mp_bcast ( rhog_flag, ionode_id, world_comm ) CALL mp_bcast ( rhog_file, ionode_id, world_comm ) CALL mp_bcast ( rhog_nvmin, ionode_id, world_comm ) CALL mp_bcast ( rhog_nvmax, ionode_id, world_comm ) CALL mp_bcast ( vxcg_flag, ionode_id, world_comm ) CALL mp_bcast ( vxcg_file, ionode_id, world_comm ) CALL mp_bcast ( vxc0_flag, ionode_id, world_comm ) CALL mp_bcast ( vxc0_file, ionode_id, world_comm ) CALL mp_bcast ( vxc_flag, ionode_id, world_comm ) CALL mp_bcast ( vxc_integral, ionode_id, world_comm ) CALL mp_bcast ( vxc_file, ionode_id, world_comm ) CALL mp_bcast ( vxc_diag_nmin, ionode_id, world_comm ) CALL mp_bcast ( vxc_diag_nmax, ionode_id, world_comm ) CALL mp_bcast ( vxc_offdiag_nmin, ionode_id, world_comm ) CALL mp_bcast ( vxc_offdiag_nmax, ionode_id, world_comm ) CALL mp_bcast ( vxc_zero_rho_core, ionode_id, world_comm ) CALL mp_bcast ( vscg_flag, ionode_id, world_comm ) CALL mp_bcast ( vscg_file, ionode_id, world_comm ) CALL mp_bcast ( vkbg_flag, ionode_id, world_comm ) CALL mp_bcast ( vkbg_file, ionode_id, world_comm ) CALL read_file ( ) if (ionode) then if (MAX (MAXVAL (ABS (rho_core (:) ) ), MAXVAL (ABS (rhog_core (:) ) ) ) & .LT. eps12) then WRITE ( 6, '(/,5x,"NLCC is absent")' ) else WRITE ( 6, '(/,5x,"NLCC is present")' ) endif endif if (okvan) call errore ( 'pw2bgw', 'BGW cannot use USPP.', 3 ) if (okpaw) call errore ( 'pw2bgw', 'BGW cannot use PAW.', 4 ) if (gamma_only) call errore ( 'pw2bgw', 'BGW cannot use gamma-only run.', 5 ) if (nspin == 4) call errore ( 'pw2bgw', 'BGW cannot use spinors.', 6 ) CALL openfil_pp ( ) if ( ionode ) WRITE ( 6, '("")' ) IF ( wfng_flag ) THEN output_file_name = TRIM ( outdir ) // '/' // TRIM ( wfng_file ) IF ( ionode ) WRITE ( 6, '(5x,"call write_wfng")' ) CALL start_clock ( 'write_wfng' ) CALL write_wfng ( output_file_name, real_or_complex, symm_type, & wfng_kgrid, wfng_nk1, wfng_nk2, wfng_nk3, wfng_dk1, wfng_dk2, & wfng_dk3, wfng_occupation, wfng_nvmin, wfng_nvmax ) CALL stop_clock ( 'write_wfng' ) IF ( ionode ) WRITE ( 6, '(5x,"done write_wfng",/)' ) ENDIF IF ( vxcg_flag ) THEN output_file_name = TRIM ( outdir ) // '/' // TRIM ( vxcg_file ) IF ( ionode ) WRITE ( 6, '(5x,"call write_vxcg")' ) CALL start_clock ( 'write_vxcg' ) CALL write_vxcg ( output_file_name, real_or_complex, symm_type, & vxc_zero_rho_core ) CALL stop_clock ( 'write_vxcg' ) IF ( ionode ) WRITE ( 6, '(5x,"done write_vxcg",/)' ) ENDIF IF ( vxc0_flag ) THEN output_file_name = TRIM ( outdir ) // '/' // TRIM ( vxc0_file ) IF ( ionode ) WRITE ( 6, '(5x,"call write_vxc0")' ) CALL start_clock ( 'write_vxc0' ) CALL write_vxc0 ( output_file_name, vxc_zero_rho_core ) CALL stop_clock ( 'write_vxc0' ) IF ( ionode ) WRITE ( 6, '(5x,"done write_vxc0",/)' ) ENDIF IF ( vxc_flag ) THEN output_file_name = TRIM ( outdir ) // '/' // TRIM ( vxc_file ) IF ( vxc_integral .EQ. 'r' ) THEN IF ( ionode ) WRITE ( 6, '(5x,"call write_vxc_r")' ) CALL start_clock ( 'write_vxc_r' ) CALL write_vxc_r ( output_file_name, & vxc_diag_nmin, vxc_diag_nmax, & vxc_offdiag_nmin, vxc_offdiag_nmax, & vxc_zero_rho_core ) CALL stop_clock ( 'write_vxc_r' ) IF ( ionode ) WRITE ( 6, '(5x,"done write_vxc_r",/)' ) ENDIF IF ( vxc_integral .EQ. 'g' ) THEN IF ( ionode ) WRITE ( 6, '(5x,"call write_vxc_g")' ) CALL start_clock ( 'write_vxc_g' ) CALL write_vxc_g ( output_file_name, & vxc_diag_nmin, vxc_diag_nmax, & vxc_offdiag_nmin, vxc_offdiag_nmax, & vxc_zero_rho_core ) CALL stop_clock ( 'write_vxc_g' ) IF ( ionode ) WRITE ( 6, '(5x,"done write_vxc_g",/)' ) ENDIF ENDIF IF ( vscg_flag ) THEN output_file_name = TRIM ( outdir ) // '/' // TRIM ( vscg_file ) IF ( ionode ) WRITE ( 6, '(5x,"call write_vscg")' ) CALL start_clock ( 'write_vscg' ) CALL write_vscg ( output_file_name, real_or_complex, symm_type ) CALL stop_clock ( 'write_vscg' ) IF ( ionode ) WRITE ( 6, '(5x,"done write_vscg",/)' ) ENDIF IF ( vkbg_flag ) THEN output_file_name = TRIM ( outdir ) // '/' // TRIM ( vkbg_file ) IF ( ionode ) WRITE ( 6, '(5x,"call write_vkbg")' ) CALL start_clock ( 'write_vkbg' ) CALL write_vkbg ( output_file_name, symm_type, wfng_kgrid, wfng_nk1, & wfng_nk2, wfng_nk3, wfng_dk1, wfng_dk2, wfng_dk3 ) CALL stop_clock ( 'write_vkbg' ) IF ( ionode ) WRITE ( 6, '(5x,"done write_vkbg",/)' ) ENDIF ! since calc_rhog (called from write_rhog) destroys charge density, ! it must be called after v_xc (called from write_vxcg, write_vxc0, ! write_vxc_r, write_vxc_g) IF ( rhog_flag ) THEN output_file_name = TRIM ( outdir ) // '/' // TRIM ( rhog_file ) IF ( ionode ) WRITE ( 6, '(5x,"call write_rhog")' ) CALL start_clock ( 'write_rhog' ) CALL write_rhog ( output_file_name, real_or_complex, symm_type, & rhog_nvmin, rhog_nvmax ) CALL stop_clock ( 'write_rhog' ) IF ( ionode ) WRITE ( 6, '(5x,"done write_rhog",/)' ) ENDIF IF ( ionode ) WRITE ( 6, * ) IF ( wfng_flag ) CALL print_clock ( 'write_wfng' ) IF ( rhog_flag ) CALL print_clock ( 'write_rhog' ) IF ( vxcg_flag ) CALL print_clock ( 'write_vxcg' ) IF ( vxc0_flag ) CALL print_clock ( 'write_vxc0' ) IF ( vxc_flag ) THEN IF ( vxc_integral .EQ. 'r' ) CALL print_clock ( 'write_vxc_r' ) IF ( vxc_integral .EQ. 'g' ) CALL print_clock ( 'write_vxc_g' ) ENDIF IF ( vscg_flag ) CALL print_clock ( 'write_vscg' ) IF ( vkbg_flag ) CALL print_clock ( 'write_vkbg' ) IF ( wfng_flag .AND. real_or_complex .EQ. 1 ) THEN IF ( ionode ) WRITE ( 6, '(/,5x,"Called by write_wfng:")' ) CALL print_clock ( 'real_wfng' ) ENDIF CALL environment_end ( codename ) CALL stop_pp ( ) STOP CONTAINS !------------------------------------------------------------------------------- SUBROUTINE write_wfng ( output_file_name, real_or_complex, symm_type, & wfng_kgrid, wfng_nk1, wfng_nk2, wfng_nk3, wfng_dk1, wfng_dk2, & wfng_dk3, wfng_occupation, wfng_nvmin, wfng_nvmax ) USE cell_base, ONLY : omega, alat, tpiba, tpiba2, at, bg, ibrav USE constants, ONLY : pi, tpi, eps6 USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, ngm_g, ig_l2g, g, mill, ecutrho USE io_files, ONLY : iunwfc, nwordwfc USE io_global, ONLY : ionode, ionode_id USE ions_base, ONLY : nat, atm, ityp, tau USE kinds, ONLY : DP USE klist, ONLY : xk, wk, ngk, nks, nkstot USE lsda_mod, ONLY : nspin, isk USE mp, ONLY : mp_sum, mp_max, mp_get, mp_bcast, mp_barrier USE mp_pools, ONLY : kunit, me_pool, & root_pool, my_pool_id, npool, nproc_pool, intra_pool_comm USE mp_wave, ONLY : mergewf USE mp_world, ONLY : mpime, nproc, world_comm USE start_k, ONLY : nk1, nk2, nk3, k1, k2, k3 USE symm_base, ONLY : s, ftau, nsym USE wavefunctions_module, ONLY : evc USE wvfct, ONLY : npwx, nbnd, npw, et, wg, g2kin, ecutwfc #ifdef __PARA USE parallel_include, ONLY : MPI_DOUBLE_COMPLEX #endif IMPLICIT NONE character ( len = 256 ), intent (in) :: output_file_name integer, intent (in) :: real_or_complex character ( len = 9 ), intent (in) :: symm_type logical, intent (in) :: wfng_kgrid integer, intent (in) :: wfng_nk1 integer, intent (in) :: wfng_nk2 integer, intent (in) :: wfng_nk3 real (DP), intent (in) :: wfng_dk1 real (DP), intent (in) :: wfng_dk2 real (DP), intent (in) :: wfng_dk3 logical, intent (in) :: wfng_occupation integer, intent (in) :: wfng_nvmin integer, intent (in) :: wfng_nvmax character :: cdate*9, ctime*9, sdate*32, stime*32, stitle*32 logical :: proc_wf, bad_kgrid integer :: unit, i, j, k, cell_symmetry, nrecord integer :: id, ib, ik, iks, ike, is, ig, ierr integer :: nd, ntran, nb, nk_l, nk_g, ns, ng_l, ng_g integer :: nkbl, nkl, nkr, ngg, npw_g, npwx_g integer :: local_pw, ipsour, igwx, ngkdist_g, ngkdist_l real (DP) :: alat2, recvol, dr1, t1 ( 3 ), t2 ( 3 ) real (DP) :: r1 ( 3, 3 ), r2 ( 3, 3 ), adot ( 3, 3 ) real (DP) :: bdot ( 3, 3 ), translation ( 3, 48 ) integer, allocatable :: kmap ( : ) integer, allocatable :: smap ( : ) integer, allocatable :: ifmin ( : ) integer, allocatable :: ifmax ( : ) integer, allocatable :: itmp ( : ) integer, allocatable :: ngk_g ( : ) integer, allocatable :: ipmask ( : ) integer, allocatable :: igwk ( : ) integer, allocatable :: igwf_l2g ( : ) integer, allocatable :: g_g ( :, : ) integer, allocatable :: igk_l2g ( :, : ) real (DP), allocatable :: et_g ( :, : ) real (DP), allocatable :: wg_g ( :, : ) real (DP), allocatable :: energy ( :, : ) complex (DP), allocatable :: wfng ( : ) complex (DP), allocatable :: wfng_buf ( :, : ) complex (DP), allocatable :: wfng_dist ( :, :, : ) INTEGER, EXTERNAL :: atomic_number IF ( real_or_complex .EQ. 1 .OR. nspin .GT. 1 ) THEN proc_wf = .TRUE. ELSE proc_wf = .FALSE. ENDIF bad_kgrid = .FALSE. IF ( wfng_kgrid ) THEN IF ( wfng_nk1 .LE. 0 .OR. wfng_nk2 .LE. 0 .OR. wfng_nk3 .LE. 0 ) & bad_kgrid = .TRUE. ELSE IF ( nk1 .LE. 0 .OR. nk2 .LE. 0 .OR. nk3 .LE. 0 ) & bad_kgrid = .TRUE. ENDIF IF ( bad_kgrid .AND. ionode ) THEN WRITE ( 6, 101 ) ENDIF CALL date_and_tim ( cdate, ctime ) WRITE ( sdate, '(A2,"-",A3,"-",A4,21X)' ) cdate(1:2), cdate(3:5), cdate(6:9) WRITE ( stime, '(A8,24X)' ) ctime(1:8) IF ( real_or_complex .EQ. 1 ) THEN WRITE ( stitle, '("WFN-Real",24X)' ) ELSE WRITE ( stitle, '("WFN-Complex",21X)' ) ENDIF unit = 4 nrecord = 1 nd = 3 nb = nbnd nk_l = nks nk_g = nkstot ns = nspin ng_l = ngm ng_g = ngm_g nkbl = nkstot / kunit nkl = kunit * ( nkbl / npool ) nkr = ( nkstot - nkl * npool ) / kunit IF ( my_pool_id .LT. nkr ) nkl = nkl + kunit iks = nkl * my_pool_id + 1 IF ( my_pool_id .GE. nkr ) iks = iks + nkr * kunit ike = iks + nkl - 1 ALLOCATE ( kmap ( nk_g ) ) ALLOCATE ( smap ( nk_g ) ) DO i = 1, nk_g j = ( i - 1 ) / ns k = i - 1 - j * ns kmap ( i ) = j + k * ( nk_g / ns ) + 1 smap ( i ) = k + 1 ENDDO ierr = 0 DO i = 1, nk_g ik = kmap ( i ) is = smap ( i ) IF ( ik .GE. iks .AND. ik .LE. ike .AND. is .NE. isk ( ik ) ) & ierr = ierr + 1 ENDDO CALL mp_max ( ierr, world_comm ) IF ( ierr .GT. 0 ) & CALL errore ( 'write_wfng', 'smap', ierr ) alat2 = alat ** 2 recvol = 8.0D0 * pi**3 / omega DO i = 1, nd DO j = 1, nd adot ( j, i ) = 0.0D0 ENDDO ENDDO DO i = 1, nd DO j = 1, nd DO k = 1, nd adot ( j, i ) = adot ( j, i ) + & at ( k, j ) * at ( k, i ) * alat2 ENDDO ENDDO ENDDO DO i = 1, nd DO j = 1, nd bdot ( j, i ) = 0.0D0 ENDDO ENDDO DO i = 1, nd DO j = 1, nd DO k = 1, nd bdot ( j, i ) = bdot ( j, i ) + & bg ( k, j ) * bg ( k, i ) * tpiba2 ENDDO ENDDO ENDDO ierr = 0 IF ( ibrav .EQ. 0 ) THEN IF ( TRIM ( symm_type ) .EQ. 'cubic' ) THEN cell_symmetry = 0 ELSEIF ( TRIM ( symm_type ) .EQ. 'hexagonal' ) THEN cell_symmetry = 1 ELSE ierr = 1 ENDIF ELSEIF ( abs ( ibrav ) .GE. 1 .AND. abs ( ibrav ) .LE. 3 ) THEN cell_symmetry = 0 ELSEIF ( abs ( ibrav ) .GE. 4 .AND. abs ( ibrav ) .LE. 5 ) THEN cell_symmetry = 1 ELSEIF ( abs ( ibrav ) .GE. 6 .AND. abs ( ibrav ) .LE. 14 ) THEN cell_symmetry = 0 ELSE ierr = 1 ENDIF IF ( ierr .GT. 0 ) & CALL errore ( 'write_wfng', 'cell_symmetry', ierr ) ntran = nsym DO i = 1, ntran DO j = 1, nd DO k = 1, nd r1 ( k, j ) = dble ( s ( k, j, i ) ) ENDDO ENDDO CALL invmat ( 3, r1, r2, dr1 ) t1 ( 1 ) = dble ( ftau ( 1, i ) ) / dble ( dfftp%nr1 ) t1 ( 2 ) = dble ( ftau ( 2, i ) ) / dble ( dfftp%nr2 ) t1 ( 3 ) = dble ( ftau ( 3, i ) ) / dble ( dfftp%nr3 ) DO j = 1, nd t2 ( j ) = 0.0D0 DO k = 1, nd t2 ( j ) = t2 ( j ) + r2 ( k, j ) * t1 ( k ) ENDDO IF ( t2 ( j ) .GE. eps6 + 0.5D0 ) & t2 ( j ) = t2 ( j ) - dble ( int ( t2 ( j ) + 0.5D0 ) ) IF ( t2 ( j ) .LT. eps6 - 0.5D0 ) & t2 ( j ) = t2 ( j ) - dble ( int ( t2 ( j ) - 0.5D0 ) ) ENDDO DO j = 1, nd translation ( j, i ) = t2 ( j ) * tpi ENDDO ENDDO CALL check_inversion ( real_or_complex, nsym, s, nspin, .true., .true., translation ) ALLOCATE ( et_g ( nb, nk_g ) ) DO ik = 1, nk_l DO ib = 1, nb et_g ( ib, ik ) = et ( ib, ik ) ENDDO ENDDO #ifdef __PARA CALL poolrecover ( et_g, nb, nk_g, nk_l ) CALL mp_bcast ( et_g, ionode_id, world_comm ) #endif ALLOCATE ( wg_g ( nb, nk_g ) ) ALLOCATE ( ifmin ( nk_g ) ) ALLOCATE ( ifmax ( nk_g ) ) IF ( wfng_occupation ) THEN DO ik = 1, nk_g DO ib = 1, nb IF ( ib .GE. wfng_nvmin .AND. ib .LE. wfng_nvmax ) THEN wg_g ( ib, ik ) = 1.0D0 ELSE wg_g ( ib, ik ) = 0.0D0 ENDIF ENDDO ENDDO DO ik = 1, nk_g ifmin ( ik ) = wfng_nvmin ENDDO DO ik = 1, nk_g ifmax ( ik ) = wfng_nvmax ENDDO ELSE DO ik = 1, nk_l DO ib = 1, nb wg_g ( ib, ik ) = wg ( ib, ik ) IF ( abs ( wk ( ik ) ) .GT. eps6 ) THEN wg_g ( ib, ik ) = wg_g ( ib, ik ) / wk ( ik ) ENDIF ENDDO ENDDO #ifdef __PARA CALL poolrecover ( wg_g, nb, nk_g, nk_l ) #endif DO ik = 1, nk_g ifmin ( ik ) = 0 ENDDO DO ik = 1, nk_g ifmax ( ik ) = 0 ENDDO DO ik = 1, nk_g DO ib = 1, nb IF ( wg_g( ib, ik ) .GT. 0.5D0 ) THEN IF ( ifmin ( ik ) .EQ. 0 ) ifmin ( ik ) = ib ifmax ( ik ) = ib ENDIF ENDDO ENDDO ENDIF ALLOCATE ( g_g ( nd, ng_g ) ) DO ig = 1, ng_g DO id = 1, nd g_g ( id, ig ) = 0 ENDDO ENDDO DO ig = 1, ng_l g_g ( 1, ig_l2g ( ig ) ) = mill ( 1, ig ) g_g ( 2, ig_l2g ( ig ) ) = mill ( 2, ig ) g_g ( 3, ig_l2g ( ig ) ) = mill ( 3, ig ) ENDDO CALL mp_sum ( g_g, intra_pool_comm ) ALLOCATE ( igk_l2g ( npwx, nk_l ) ) ALLOCATE ( itmp ( npwx ) ) DO ik = 1, nk_l DO i = 1, npwx itmp ( i ) = 0 ENDDO npw = npwx CALL gk_sort ( xk ( 1, ik + iks - 1 ), ng_l, g, ecutwfc / tpiba2, & npw, itmp ( 1 ), g2kin ) DO ig = 1, npw igk_l2g ( ig, ik ) = ig_l2g ( itmp ( ig ) ) ENDDO DO ig = npw + 1, npwx igk_l2g ( ig, ik ) = 0 ENDDO ngk ( ik ) = npw ENDDO DEALLOCATE ( itmp ) ALLOCATE ( ngk_g ( nk_g ) ) DO ik = 1, nk_g ngk_g ( ik ) = 0 ENDDO DO ik = 1, nk_l ngk_g ( ik + iks - 1 ) = ngk ( ik ) ENDDO CALL mp_sum ( ngk_g, world_comm ) npw_g = MAXVAL ( igk_l2g ( :, : ) ) CALL mp_max ( npw_g, world_comm ) npwx_g = MAXVAL ( ngk_g ( : ) ) CALL cryst_to_cart ( nk_g / ns, xk, at, - 1 ) IF ( ionode ) THEN OPEN ( unit = unit, file = TRIM ( output_file_name ), & form = 'unformatted', status = 'replace' ) WRITE ( unit ) stitle, sdate, stime WRITE ( unit ) ns, ng_g, ntran, cell_symmetry, nat, ecutrho, & nk_g / ns, nb, npwx_g, ecutwfc IF ( wfng_kgrid ) THEN WRITE ( unit ) dfftp%nr1, dfftp%nr2, dfftp%nr3, wfng_nk1, wfng_nk2, wfng_nk3, & wfng_dk1, wfng_dk2, wfng_dk3 ELSE WRITE ( unit ) dfftp%nr1, dfftp%nr2, dfftp%nr3, nk1, nk2, nk3, & 0.5D0 * dble ( k1 ), 0.5D0 * dble ( k2 ), 0.5D0 * dble ( k3 ) ENDIF WRITE ( unit ) omega, alat, ( ( at ( j, i ), j = 1, nd ), i = 1, nd ), & ( ( adot ( j, i ), j = 1, nd ), i = 1, nd ) WRITE ( unit ) recvol, tpiba, ( ( bg ( j, i ), j = 1, nd ), i = 1, nd ), & ( ( bdot ( j, i ), j = 1, nd ), i = 1, nd ) WRITE ( unit ) ( ( ( s ( k, j, i ), k = 1, nd ), j = 1, nd ), i = 1, ntran ) WRITE ( unit ) ( ( translation ( j, i ), j = 1, nd ), i = 1, ntran ) WRITE ( unit ) ( ( tau ( j, i ), j = 1, nd ), atomic_number ( atm ( ityp ( i ) ) ), i = 1, nat ) WRITE ( unit ) ( ngk_g ( ik ), ik = 1, nk_g / ns ) WRITE ( unit ) ( wk ( ik ) * dble ( ns ) / 2.0D0, ik = 1, nk_g / ns ) WRITE ( unit ) ( ( xk ( id, ik ), id = 1, nd ), ik = 1, nk_g / ns ) WRITE ( unit ) ( ifmin ( ik ), ik = 1, nk_g ) WRITE ( unit ) ( ifmax ( ik ), ik = 1, nk_g ) WRITE ( unit ) ( ( et_g ( ib, ik ), ib = 1, nb ), ik = 1, nk_g ) WRITE ( unit ) ( ( wg_g ( ib, ik ), ib = 1, nb ), ik = 1, nk_g ) WRITE ( unit ) nrecord WRITE ( unit ) ng_g WRITE ( unit ) ( ( g_g ( id, ig ), id = 1, nd ), ig = 1, ng_g ) ENDIF CALL cryst_to_cart ( nk_g / ns, xk, bg, 1 ) DEALLOCATE ( wg_g ) DEALLOCATE ( ifmax ) DEALLOCATE ( ifmin ) ALLOCATE ( igwk ( npwx_g ) ) IF ( proc_wf ) THEN IF ( MOD ( npwx_g, nproc ) .EQ. 0 ) THEN ngkdist_l = npwx_g / nproc ELSE ngkdist_l = npwx_g / nproc + 1 ENDIF ngkdist_g = ngkdist_l * nproc IF ( real_or_complex .EQ. 1 ) & ALLOCATE ( energy ( nb, ns ) ) ALLOCATE ( wfng_buf ( ngkdist_g, ns ) ) ALLOCATE ( wfng_dist ( ngkdist_l, nb, ns ) ) ENDIF DO i = 1, nk_g ik = kmap ( i ) is = smap ( i ) IF ( real_or_complex .EQ. 1 ) THEN DO ib = 1, nb energy ( ib, is ) = et_g ( ib, i ) ENDDO ENDIF DO j = 1, npwx_g igwk ( j ) = 0 ENDDO ALLOCATE ( itmp ( npw_g ) ) DO j = 1, npw_g itmp ( j ) = 0 ENDDO IF ( ik .GE. iks .AND. ik .LE. ike ) THEN DO ig = 1, ngk ( ik - iks + 1 ) itmp ( igk_l2g ( ig, ik - iks + 1 ) ) = igk_l2g ( ig, ik - iks + 1 ) ENDDO ENDIF CALL mp_sum ( itmp, world_comm ) ngg = 0 DO ig = 1, npw_g IF ( itmp ( ig ) .EQ. ig ) THEN ngg = ngg + 1 igwk ( ngg ) = ig ENDIF ENDDO DEALLOCATE ( itmp ) IF ( ionode ) THEN IF ( is .EQ. 1 ) THEN WRITE ( unit ) nrecord WRITE ( unit ) ngk_g ( ik ) WRITE ( unit ) ( ( g_g ( id, igwk ( ig ) ), id = 1, nd ), & ig = 1, ngk_g ( ik ) ) ENDIF ENDIF local_pw = 0 IF ( ik .GE. iks .AND. ik .LE. ike ) THEN CALL davcio ( evc, 2*nwordwfc, iunwfc, ik - iks + 1, - 1 ) local_pw = ngk ( ik - iks + 1 ) ENDIF ALLOCATE ( igwf_l2g ( local_pw ) ) DO ig = 1, local_pw igwf_l2g ( ig ) = 0 ENDDO DO ig = 1, local_pw ngg = igk_l2g ( ig, ik - iks + 1 ) DO j = 1, ngk_g ( ik ) IF ( ngg .EQ. igwk ( j ) ) THEN igwf_l2g ( ig ) = j EXIT ENDIF ENDDO ENDDO ALLOCATE ( ipmask ( nproc ) ) DO j = 1, nproc ipmask ( j ) = 0 ENDDO ipsour = ionode_id IF ( npool .GT. 1 ) THEN IF ( ( ik .GE. iks ) .AND. ( ik .LE. ike ) ) THEN IF ( me_pool .EQ. root_pool ) ipmask ( mpime + 1 ) = 1 ENDIF CALL mp_sum ( ipmask, world_comm ) DO j = 1, nproc IF ( ipmask ( j ) .EQ. 1 ) ipsour = j - 1 ENDDO ENDIF DEALLOCATE ( ipmask ) igwx = 0 ierr = 0 IF ( ik .GE. iks .AND. ik .LE. ike ) & igwx = MAXVAL ( igwf_l2g ( 1 : local_pw ) ) CALL mp_max ( igwx, intra_pool_comm ) IF ( ipsour .NE. ionode_id ) & CALL mp_get ( igwx, igwx, mpime, ionode_id, ipsour, 1, world_comm ) ierr = 0 IF ( ik .GE. iks .AND. ik .LE. ike .AND. igwx .NE. ngk_g ( ik ) ) & ierr = 1 CALL mp_max ( ierr, world_comm ) IF ( ierr .GT. 0 ) & CALL errore ( 'write_wfng', 'igwx ngk_g', ierr ) ALLOCATE ( wfng ( MAX ( 1, igwx ) ) ) DO ib = 1, nb DO j = 1, igwx wfng ( j ) = ( 0.0D0, 0.0D0 ) ENDDO IF ( npool .GT. 1 ) THEN IF ( ( ik .GE. iks ) .AND. ( ik .LE. ike ) ) THEN CALL mergewf ( evc ( :, ib ), wfng, local_pw, igwf_l2g, & me_pool, nproc_pool, root_pool, intra_pool_comm ) ENDIF IF ( ipsour .NE. ionode_id ) THEN CALL mp_get ( wfng, wfng, mpime, ionode_id, ipsour, ib, & world_comm ) ENDIF ELSE CALL mergewf ( evc ( :, ib ), wfng, local_pw, igwf_l2g, & mpime, nproc, ionode_id, world_comm ) ENDIF IF ( proc_wf ) THEN DO ig = 1, igwx wfng_buf ( ig, is ) = wfng ( ig ) ENDDO DO ig = igwx + 1, ngkdist_g wfng_buf ( ig, is ) = ( 0.0D0, 0.0D0 ) ENDDO #ifdef __PARA CALL mp_barrier ( world_comm ) CALL MPI_Scatter ( wfng_buf ( :, is ), ngkdist_l, MPI_DOUBLE_COMPLEX, & wfng_dist ( :, ib, is ), ngkdist_l, MPI_DOUBLE_COMPLEX, & ionode_id, world_comm, ierr ) IF ( ierr .GT. 0 ) & CALL errore ( 'write_wfng', 'mpi_scatter', ierr ) #else DO ig = 1, ngkdist_g wfng_dist ( ig, ib, is ) = wfng_buf ( ig, is ) ENDDO #endif ELSE IF ( ionode ) THEN WRITE ( unit ) nrecord WRITE ( unit ) ngk_g ( ik ) WRITE ( unit ) ( wfng ( ig ), ig = 1, igwx ) ENDIF ENDIF ENDDO DEALLOCATE ( wfng ) DEALLOCATE ( igwf_l2g ) IF ( proc_wf .AND. is .EQ. ns ) THEN IF ( real_or_complex .EQ. 1 ) THEN CALL start_clock ( 'real_wfng' ) CALL real_wfng ( ik, ngkdist_l, nb, ns, energy, wfng_dist ) CALL stop_clock ( 'real_wfng' ) ENDIF DO ib = 1, nb DO is = 1, ns #ifdef __PARA CALL mp_barrier ( world_comm ) CALL MPI_Gather ( wfng_dist ( :, ib, is ), ngkdist_l, & MPI_DOUBLE_COMPLEX, wfng_buf ( :, is ), ngkdist_l, & MPI_DOUBLE_COMPLEX, ionode_id, world_comm, ierr ) IF ( ierr .GT. 0 ) & CALL errore ( 'write_wfng', 'mpi_gather', ierr ) #else DO ig = 1, ngkdist_g wfng_buf ( ig, is ) = wfng_dist ( ig, ib, is ) ENDDO #endif ENDDO IF ( ionode ) THEN WRITE ( unit ) nrecord WRITE ( unit ) ngk_g ( ik ) IF ( real_or_complex .EQ. 1 ) THEN WRITE ( unit ) ( ( dble ( wfng_buf ( ig, is ) ), & ig = 1, igwx ), is = 1, ns ) ELSE WRITE ( unit ) ( ( wfng_buf ( ig, is ), & ig = 1, igwx ), is = 1, ns ) ENDIF ENDIF ENDDO ENDIF ENDDO DEALLOCATE ( igwk ) DEALLOCATE ( ngk_g ) DEALLOCATE ( igk_l2g ) DEALLOCATE ( et_g ) IF ( proc_wf ) THEN IF ( real_or_complex .EQ. 1 ) & DEALLOCATE ( energy ) DEALLOCATE ( wfng_buf ) DEALLOCATE ( wfng_dist ) ENDIF IF ( ionode ) THEN CLOSE ( unit = unit, status = 'keep' ) ENDIF DEALLOCATE ( g_g ) DEALLOCATE ( smap ) DEALLOCATE ( kmap ) CALL mp_barrier ( world_comm ) RETURN 101 FORMAT ( /, 5X, "WARNING: kgrid is set to zero in the wavefunction file.", & /, 14X, "The resulting file will only be usable as the fine grid in inteqp.", / ) END SUBROUTINE write_wfng !------------------------------------------------------------------------------- SUBROUTINE real_wfng ( ik, ngkdist_l, nb, ns, energy, wfng_dist ) USE kinds, ONLY : DP USE io_global, ONLY : ionode USE mp, ONLY : mp_sum USE mp_world, ONLY : world_comm IMPLICIT NONE integer, intent (in) :: ik, ngkdist_l, nb, ns real (DP), intent (in) :: energy ( :, : ) ! ( nb, ns ) complex (DP), intent (inout) :: wfng_dist ( :, :, : ) ! ( ngkdist_l, nb, ns ) real (DP), PARAMETER :: eps2 = 1.0D-2 real (DP), PARAMETER :: eps5 = 1.0D-5 real (DP), PARAMETER :: eps6 = 1.0D-6 character :: tmpstr*80 integer :: i, j, k, is, ib, jb, ig, inum, deg, mdeg, inc integer :: dimension_span, reduced_span, ierr real (DP) :: x integer, allocatable :: imap ( :, : ) integer, allocatable :: inums ( : ) integer, allocatable :: inull ( : ) integer, allocatable :: null_map ( :, : ) real (DP), allocatable :: psi ( :, : ) real (DP), allocatable :: phi ( :, : ) real (DP), allocatable :: vec ( : ) complex (DP), allocatable :: wfc ( : ) mdeg = 1 DO is = 1, ns DO ib = 1, nb - 1 deg = 1 DO jb = ib + 1, nb IF ( abs ( energy ( ib, is ) - energy ( jb, is ) ) & .LT. eps5 * dble ( jb - ib + 1 ) ) deg = deg + 1 ENDDO IF ( deg .GT. mdeg ) mdeg = deg ENDDO ENDDO mdeg = mdeg * 2 ALLOCATE ( imap ( nb, ns ) ) ALLOCATE ( inums ( ns ) ) ALLOCATE ( inull ( nb ) ) ALLOCATE ( null_map ( mdeg, nb ) ) DO is = 1, ns inum = 1 DO ib = 1, nb IF ( ib .EQ. nb ) THEN imap ( inum, is ) = ib inum = inum + 1 ELSEIF ( abs ( energy ( ib, is ) - & energy ( ib + 1, is ) ) .GT. eps5 ) THEN imap ( inum, is ) = ib inum = inum + 1 ENDIF ENDDO inum = inum - 1 inums ( is ) = inum ENDDO ALLOCATE ( wfc ( ngkdist_l ) ) ALLOCATE ( psi ( ngkdist_l, mdeg ) ) ALLOCATE ( phi ( ngkdist_l, mdeg ) ) ALLOCATE ( vec ( ngkdist_l ) ) DO is = 1, ns inc = 1 inum = inums ( is ) DO i = 1, inum inull ( i ) = 1 DO ib = inc, imap ( i, is ) DO ig = 1, ngkdist_l wfc ( ig ) = wfng_dist ( ig, ib, is ) ENDDO x = 0.0D0 DO ig = 1, ngkdist_l x = x + dble ( wfc ( ig ) ) **2 ENDDO CALL mp_sum ( x, world_comm ) IF ( x .LT. eps2 ) null_map ( inull ( i ), i ) = 0 IF ( x .GT. eps2 ) null_map ( inull ( i ), i ) = 1 inull ( i ) = inull ( i ) + 1 x = 0.0D0 DO ig = 1, ngkdist_l x = x + aimag ( wfc ( ig ) ) **2 ENDDO CALL mp_sum ( x, world_comm ) IF ( x .LT. eps2 ) null_map ( inull ( i ), i ) = 0 IF ( x .GT. eps2 ) null_map ( inull ( i ), i ) = 1 inull ( i ) = inull ( i ) + 1 ENDDO inull ( i ) = inull ( i ) - 1 inc = imap ( i, is ) + 1 ENDDO inc = 1 ib = 1 DO i = 1, inum k = 1 DO j = 1, 2 * ( imap ( i, is ) - inc ) + 1, 2 IF ( null_map ( j, i ) .EQ. 1 .OR. & null_map ( j + 1, i ) .EQ. 1 ) THEN DO ig = 1, ngkdist_l wfc ( ig ) = wfng_dist ( ig, ib, is ) ENDDO IF ( null_map ( j, i ) .EQ. 1 ) THEN DO ig = 1, ngkdist_l phi ( ig, k ) = dble ( wfc ( ig ) ) ENDDO k = k + 1 ENDIF IF ( null_map ( j + 1, i ) .EQ. 1 ) THEN DO ig = 1, ngkdist_l phi ( ig, k ) = aimag ( wfc ( ig ) ) ENDDO k = k + 1 ENDIF ib = ib + 1 ENDIF ENDDO dimension_span = k - 1 IF ( dimension_span .EQ. 0 ) THEN ierr = 201 WRITE ( tmpstr, 201 ) ik, is, inc CALL errore ( 'real_wfng', tmpstr, ierr ) ENDIF DO j = 1, dimension_span x = 0.0D0 DO ig = 1, ngkdist_l x = x + phi ( ig, j ) **2 ENDDO CALL mp_sum ( x, world_comm ) x = sqrt ( x ) DO ig = 1, ngkdist_l phi ( ig, j ) = phi ( ig, j ) / x ENDDO ENDDO ! ! the Gram-Schmidt process begins ! reduced_span = 1 DO ig = 1, ngkdist_l psi ( ig, 1 ) = phi ( ig, 1 ) ENDDO DO j = 1, dimension_span - 1 DO ig = 1, ngkdist_l vec ( ig ) = phi ( ig, j + 1 ) ENDDO DO k = 1, reduced_span x = 0.0D0 DO ig = 1, ngkdist_l x = x + phi ( ig, j + 1 ) * psi ( ig, k ) ENDDO CALL mp_sum ( x, world_comm ) DO ig = 1, ngkdist_l vec ( ig ) = vec ( ig ) - psi ( ig, k ) * x ENDDO ENDDO x = 0.0D0 DO ig = 1, ngkdist_l x = x + vec ( ig ) **2 ENDDO CALL mp_sum ( x, world_comm ) x = sqrt ( x ) IF ( x .GT. eps6 ) THEN reduced_span = reduced_span + 1 DO ig = 1, ngkdist_l psi ( ig, reduced_span ) = vec ( ig ) / x ENDDO ENDIF ENDDO ! ! the Gram-Schmidt process ends ! IF ( reduced_span .LT. imap ( i, is ) - inc + 1 ) THEN ierr = 202 WRITE ( tmpstr, 202 ) ik, is, inc CALL errore ( 'real_wfng', tmpstr, ierr ) ENDIF DO ib = inc, imap ( i, is ) DO ig = 1, ngkdist_l wfng_dist ( ig, ib, is ) = & CMPLX ( psi ( ig, ib - inc + 1 ), 0.0D0 ) ENDDO ENDDO inc = imap ( i, is ) + 1 ENDDO ENDDO DEALLOCATE ( vec ) DEALLOCATE ( phi ) DEALLOCATE ( psi ) DEALLOCATE ( wfc ) DEALLOCATE ( null_map ) DEALLOCATE ( inull ) DEALLOCATE ( inums ) DEALLOCATE ( imap ) RETURN 201 FORMAT("failed Gram-Schmidt dimension span for kpoint =",i6," spin =",i2," band =",i6) 202 FORMAT("failed Gram-Schmidt reduced span for kpoint =",i6," spin =",i2," band =",i6) END SUBROUTINE real_wfng !------------------------------------------------------------------------------- SUBROUTINE write_rhog ( output_file_name, real_or_complex, symm_type, & rhog_nvmin, rhog_nvmax ) USE cell_base, ONLY : omega, alat, tpiba, tpiba2, at, bg, ibrav USE constants, ONLY : pi, tpi, eps6 USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, ngm_g, ig_l2g, mill, ecutrho USE io_global, ONLY : ionode USE ions_base, ONLY : nat, atm, ityp, tau USE kinds, ONLY : DP USE lsda_mod, ONLY : nspin USE mp, ONLY : mp_sum USE mp_world, ONLY : world_comm USE mp_pools, ONLY : intra_pool_comm USE scf, ONLY : rho USE symm_base, ONLY : s, ftau, nsym IMPLICIT NONE character ( len = 256 ), intent (in) :: output_file_name integer, intent (in) :: real_or_complex character ( len = 9 ), intent (in) :: symm_type integer, intent (in) :: rhog_nvmin integer, intent (in) :: rhog_nvmax character :: cdate*9, ctime*9, sdate*32, stime*32, stitle*32 integer :: unit, id, is, ig, i, j, k, ierr integer :: nd, ns, ng_l, ng_g integer :: ntran, cell_symmetry, nrecord real (DP) :: alat2, recvol, dr1, t1 ( 3 ), t2 ( 3 ) real (DP) :: r1 ( 3, 3 ), r2 ( 3, 3 ), adot ( 3, 3 ) real (DP) :: bdot ( 3, 3 ), translation ( 3, 48 ) integer, allocatable :: g_g ( :, : ) complex (DP), allocatable :: rhog_g ( :, : ) INTEGER, EXTERNAL :: atomic_number CALL date_and_tim ( cdate, ctime ) WRITE ( sdate, '(A2,"-",A3,"-",A4,21X)' ) cdate(1:2), cdate(3:5), cdate(6:9) WRITE ( stime, '(A8,24X)' ) ctime(1:8) IF ( real_or_complex .EQ. 1 ) THEN WRITE ( stitle, '("RHO-Real",24X)' ) ELSE WRITE ( stitle, '("RHO-Complex",21X)' ) ENDIF unit = 4 nrecord = 1 nd = 3 ns = nspin ng_l = ngm ng_g = ngm_g ierr = 0 IF ( ibrav .EQ. 0 ) THEN IF ( TRIM ( symm_type ) .EQ. 'cubic' ) THEN cell_symmetry = 0 ELSEIF ( TRIM ( symm_type ) .EQ. 'hexagonal' ) THEN cell_symmetry = 1 ELSE ierr = 1 ENDIF ELSEIF ( abs ( ibrav ) .GE. 1 .AND. abs ( ibrav ) .LE. 3 ) THEN cell_symmetry = 0 ELSEIF ( abs ( ibrav ) .GE. 4 .AND. abs ( ibrav ) .LE. 5 ) THEN cell_symmetry = 1 ELSEIF ( abs ( ibrav ) .GE. 6 .AND. abs ( ibrav ) .LE. 14 ) THEN cell_symmetry = 0 ELSE ierr = 1 ENDIF IF ( ierr .GT. 0 ) & CALL errore ( 'write_rhog', 'cell_symmetry', ierr ) ntran = nsym DO i = 1, ntran DO j = 1, nd DO k = 1, nd r1 ( k, j ) = dble ( s ( k, j, i ) ) ENDDO ENDDO CALL invmat ( 3, r1, r2, dr1 ) t1 ( 1 ) = dble ( ftau ( 1, i ) ) / dble ( dfftp%nr1 ) t1 ( 2 ) = dble ( ftau ( 2, i ) ) / dble ( dfftp%nr2 ) t1 ( 3 ) = dble ( ftau ( 3, i ) ) / dble ( dfftp%nr3 ) DO j = 1, nd t2 ( j ) = 0.0D0 DO k = 1, nd t2 ( j ) = t2 ( j ) + r2 ( k, j ) * t1 ( k ) ENDDO IF ( t2 ( j ) .GE. eps6 + 0.5D0 ) & t2 ( j ) = t2 ( j ) - dble ( int ( t2 ( j ) + 0.5D0 ) ) IF ( t2 ( j ) .LT. eps6 - 0.5D0 ) & t2 ( j ) = t2 ( j ) - dble ( int ( t2 ( j ) - 0.5D0 ) ) ENDDO DO j = 1, nd translation ( j, i ) = t2 ( j ) * tpi ENDDO ENDDO CALL check_inversion ( real_or_complex, nsym, s, nspin, .true., .true., translation ) alat2 = alat ** 2 recvol = 8.0D0 * pi**3 / omega DO i = 1, nd DO j = 1, nd adot ( j, i ) = 0.0D0 ENDDO ENDDO DO i = 1, nd DO j = 1, nd DO k = 1, nd adot ( j, i ) = adot ( j, i ) + & at ( k, j ) * at ( k, i ) * alat2 ENDDO ENDDO ENDDO DO i = 1, nd DO j = 1, nd bdot ( j, i ) = 0.0D0 ENDDO ENDDO DO i = 1, nd DO j = 1, nd DO k = 1, nd bdot ( j, i ) = bdot ( j, i ) + & bg ( k, j ) * bg ( k, i ) * tpiba2 ENDDO ENDDO ENDDO IF ( rhog_nvmin .NE. 0 .AND. rhog_nvmax .NE. 0 ) & CALL calc_rhog ( rhog_nvmin, rhog_nvmax ) ALLOCATE ( g_g ( nd, ng_g ) ) ALLOCATE ( rhog_g ( ng_g, ns ) ) DO ig = 1, ng_g DO id = 1, nd g_g ( id, ig ) = 0 ENDDO ENDDO DO is = 1, ns DO ig = 1, ng_g rhog_g ( ig, is ) = ( 0.0D0, 0.0D0 ) ENDDO ENDDO DO ig = 1, ng_l g_g ( 1, ig_l2g ( ig ) ) = mill ( 1, ig ) g_g ( 2, ig_l2g ( ig ) ) = mill ( 2, ig ) g_g ( 3, ig_l2g ( ig ) ) = mill ( 3, ig ) ENDDO DO is = 1, ns DO ig = 1, ng_l rhog_g ( ig_l2g ( ig ), is ) = rho%of_g ( ig, is ) ENDDO ENDDO CALL mp_sum ( g_g, intra_pool_comm ) CALL mp_sum ( rhog_g, intra_pool_comm ) DO is = 1, ns DO ig = 1, ng_g rhog_g ( ig, is ) = rhog_g ( ig, is ) * CMPLX ( omega, 0.0D0 ) ENDDO ENDDO IF ( ionode ) THEN OPEN ( unit = unit, file = TRIM ( output_file_name ), & form = 'unformatted', status = 'replace' ) WRITE ( unit ) stitle, sdate, stime WRITE ( unit ) ns, ng_g, ntran, cell_symmetry, nat, ecutrho WRITE ( unit ) dfftp%nr1, dfftp%nr2, dfftp%nr3 WRITE ( unit ) omega, alat, ( ( at ( j, i ), j = 1, nd ), i = 1, nd ), & ( ( adot ( j, i ), j = 1, nd ), i = 1, nd ) WRITE ( unit ) recvol, tpiba, ( ( bg ( j, i ), j = 1, nd ), i = 1, nd ), & ( ( bdot ( j, i ), j = 1, nd ), i = 1, nd ) WRITE ( unit ) ( ( ( s ( k, j, i ), k = 1, nd ), j = 1, nd ), i = 1, ntran ) WRITE ( unit ) ( ( translation ( j, i ), j = 1, nd ), i = 1, ntran ) WRITE ( unit ) ( ( tau ( j, i ), j = 1, nd ), atomic_number ( atm ( ityp ( i ) ) ), i = 1, nat ) WRITE ( unit ) nrecord WRITE ( unit ) ng_g WRITE ( unit ) ( ( g_g ( id, ig ), id = 1, nd ), ig = 1, ng_g ) WRITE ( unit ) nrecord WRITE ( unit ) ng_g IF ( real_or_complex .EQ. 1 ) THEN WRITE ( unit ) ( ( dble ( rhog_g ( ig, is ) ), & ig = 1, ng_g ), is = 1, ns ) ELSE WRITE ( unit ) ( ( rhog_g ( ig, is ), & ig = 1, ng_g ), is = 1, ns ) ENDIF CLOSE ( unit = unit, status = 'keep' ) ENDIF DEALLOCATE ( rhog_g ) DEALLOCATE ( g_g ) RETURN END SUBROUTINE write_rhog !------------------------------------------------------------------------------- SUBROUTINE calc_rhog (rhog_nvmin, rhog_nvmax) ! calc_rhog Originally By Brad D. Malone Last Modified (night before his thesis defense) ! Computes charge density by summing over a subset of occupied bands USE cell_base, ONLY : omega, tpiba2 USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft, invfft USE gvect, ONLY : ngm, g, nl USE io_files, ONLY : nwordwfc, iunwfc USE klist, ONLY : xk, nkstot USE lsda_mod, ONLY : nspin, isk USE mp, ONLY : mp_sum USE mp_world, ONLY : world_comm USE mp_pools, ONLY : kunit, my_pool_id, inter_pool_comm, npool USE noncollin_module, ONLY : nspin_mag USE scf, ONLY : rho USE symme, ONLY : sym_rho, sym_rho_init USE wavefunctions_module, ONLY : evc, psic USE wvfct, ONLY : npw, igk, wg, g2kin, ecutwfc IMPLICIT NONE integer, intent (in) :: rhog_nvmin integer, intent (in) :: rhog_nvmax integer :: ik, is, ib, ig, ir, nkbl, nkl, nkr, iks, ike nkbl = nkstot / kunit nkl = kunit * (nkbl / npool) nkr = (nkstot - nkl * npool) / kunit IF (my_pool_id .LT. nkr) nkl = nkl + kunit iks = nkl * my_pool_id + 1 IF (my_pool_id .GE. nkr) iks = iks + nkr * kunit ike = iks + nkl - 1 CALL weights () rho%of_r (:, :) = 0.0D0 ! take psi to R-space, compute rho in R-space DO ik = iks, ike is = isk (ik) CALL gk_sort (xk (1, ik - iks + 1), ngm, g, ecutwfc & / tpiba2, npw, igk, g2kin) CALL davcio (evc, 2*nwordwfc, iunwfc, ik - iks + 1, -1) DO ib = rhog_nvmin, rhog_nvmax psic (:) = (0.0D0, 0.0D0) DO ig = 1, npw psic (nl (igk (ig))) = evc (ig, ib) ENDDO CALL invfft ('Dense', psic, dfftp) DO ir = 1, dfftp%nnr rho%of_r (ir, is) = rho%of_r (ir, is) + wg (ib, ik) / omega & * (dble (psic (ir)) **2 + aimag (psic (ir)) **2) ENDDO ENDDO ENDDO CALL mp_sum (rho%of_r, inter_pool_comm) ! take rho to G-space DO is = 1, nspin psic (:) = (0.0D0, 0.0D0) psic (:) = rho%of_r (:, is) CALL fwfft ('Dense', psic, dfftp) rho%of_g (:, is) = psic (nl (:)) ENDDO ! symmetrize rho (didn`t make a difference) CALL sym_rho_init (.False.) CALL sym_rho (nspin_mag, rho%of_g) RETURN END SUBROUTINE calc_rhog !------------------------------------------------------------------------------- SUBROUTINE write_vxcg ( output_file_name, real_or_complex, symm_type, & vxc_zero_rho_core ) USE cell_base, ONLY : omega, alat, tpiba, tpiba2, at, bg, ibrav USE constants, ONLY : pi, tpi, eps6 USE ener, ONLY : etxc, vtxc USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, ngm_g, ig_l2g, nl, mill, ecutrho USE io_global, ONLY : ionode USE ions_base, ONLY : nat, atm, ityp, tau USE kinds, ONLY : DP USE lsda_mod, ONLY : nspin USE mp, ONLY : mp_sum USE mp_pools, ONLY : intra_pool_comm USE scf, ONLY : rho, rho_core, rhog_core USE symm_base, ONLY : s, ftau, nsym USE wavefunctions_module, ONLY : psic IMPLICIT NONE character ( len = 256 ), intent (in) :: output_file_name integer, intent (in) :: real_or_complex character ( len = 9 ), intent (in) :: symm_type logical, intent (in) :: vxc_zero_rho_core character :: cdate*9, ctime*9, sdate*32, stime*32, stitle*32 integer :: unit, id, is, ir, ig, i, j, k, ierr integer :: nd, ns, nr, ng_l, ng_g integer :: ntran, cell_symmetry, nrecord real (DP) :: alat2, recvol, dr1, t1 ( 3 ), t2 ( 3 ) real (DP) :: r1 ( 3, 3 ), r2 ( 3, 3 ), adot ( 3, 3 ) real (DP) :: bdot ( 3, 3 ), translation ( 3, 48 ) integer, allocatable :: g_g ( :, : ) real (DP), allocatable :: vxcr_g ( :, : ) complex (DP), allocatable :: vxcg_g ( :, : ) INTEGER, EXTERNAL :: atomic_number CALL date_and_tim ( cdate, ctime ) WRITE ( sdate, '(A2,"-",A3,"-",A4,21X)' ) cdate(1:2), cdate(3:5), cdate(6:9) WRITE ( stime, '(A8,24X)' ) ctime(1:8) IF ( real_or_complex .EQ. 1 ) THEN WRITE ( stitle, '("VXC-Real",24X)' ) ELSE WRITE ( stitle, '("VXC-Complex",21X)' ) ENDIF unit = 4 nrecord = 1 nd = 3 ns = nspin nr = dfftp%nnr ng_l = ngm ng_g = ngm_g ierr = 0 IF ( ibrav .EQ. 0 ) THEN IF ( TRIM ( symm_type ) .EQ. 'cubic' ) THEN cell_symmetry = 0 ELSEIF ( TRIM ( symm_type ) .EQ. 'hexagonal' ) THEN cell_symmetry = 1 ELSE ierr = 1 ENDIF ELSEIF ( abs ( ibrav ) .GE. 1 .AND. abs ( ibrav ) .LE. 3 ) THEN cell_symmetry = 0 ELSEIF ( abs ( ibrav ) .GE. 4 .AND. abs ( ibrav ) .LE. 5 ) THEN cell_symmetry = 1 ELSEIF ( abs ( ibrav ) .GE. 6 .AND. abs ( ibrav ) .LE. 14 ) THEN cell_symmetry = 0 ELSE ierr = 1 ENDIF IF ( ierr .GT. 0 ) & CALL errore ( 'write_vxcg', 'cell_symmetry', ierr ) ntran = nsym DO i = 1, ntran DO j = 1, nd DO k = 1, nd r1 ( k, j ) = dble ( s ( k, j, i ) ) ENDDO ENDDO CALL invmat ( 3, r1, r2, dr1 ) t1 ( 1 ) = dble ( ftau ( 1, i ) ) / dble ( dfftp%nr1 ) t1 ( 2 ) = dble ( ftau ( 2, i ) ) / dble ( dfftp%nr2 ) t1 ( 3 ) = dble ( ftau ( 3, i ) ) / dble ( dfftp%nr3 ) DO j = 1, nd t2 ( j ) = 0.0D0 DO k = 1, nd t2 ( j ) = t2 ( j ) + r2 ( k, j ) * t1 ( k ) ENDDO IF ( t2 ( j ) .GE. eps6 + 0.5D0 ) & t2 ( j ) = t2 ( j ) - dble ( int ( t2 ( j ) + 0.5D0 ) ) IF ( t2 ( j ) .LT. eps6 - 0.5D0 ) & t2 ( j ) = t2 ( j ) - dble ( int ( t2 ( j ) - 0.5D0 ) ) ENDDO DO j = 1, nd translation ( j, i ) = t2 ( j ) * tpi ENDDO ENDDO CALL check_inversion ( real_or_complex, nsym, s, nspin, .true., .true., translation ) alat2 = alat ** 2 recvol = 8.0D0 * pi**3 / omega DO i = 1, nd DO j = 1, nd adot ( j, i ) = 0.0D0 ENDDO ENDDO DO i = 1, nd DO j = 1, nd DO k = 1, nd adot ( j, i ) = adot ( j, i ) + & at ( k, j ) * at ( k, i ) * alat2 ENDDO ENDDO ENDDO DO i = 1, nd DO j = 1, nd bdot ( j, i ) = 0.0D0 ENDDO ENDDO DO i = 1, nd DO j = 1, nd DO k = 1, nd bdot ( j, i ) = bdot ( j, i ) + & bg ( k, j ) * bg ( k, i ) * tpiba2 ENDDO ENDDO ENDDO ALLOCATE ( g_g ( nd, ng_g ) ) ALLOCATE ( vxcr_g ( nr, ns ) ) ALLOCATE ( vxcg_g ( ng_g, ns ) ) DO ig = 1, ng_g DO id = 1, nd g_g ( id, ig ) = 0 ENDDO ENDDO DO is = 1, ns DO ig = 1, ng_g vxcg_g ( ig, is ) = ( 0.0D0, 0.0D0 ) ENDDO ENDDO DO ig = 1, ng_l g_g ( 1, ig_l2g ( ig ) ) = mill ( 1, ig ) g_g ( 2, ig_l2g ( ig ) ) = mill ( 2, ig ) g_g ( 3, ig_l2g ( ig ) ) = mill ( 3, ig ) ENDDO vxcr_g ( :, : ) = 0.0D0 IF ( vxc_zero_rho_core ) THEN rho_core ( : ) = 0.0D0 rhog_core ( : ) = ( 0.0D0, 0.0D0 ) ENDIF CALL v_xc ( rho, rho_core, rhog_core, etxc, vtxc, vxcr_g ) DO is = 1, ns DO ir = 1, nr psic ( ir ) = CMPLX ( vxcr_g ( ir, is ), 0.0D0 ) ENDDO CALL fwfft ( 'Dense', psic, dfftp ) DO ig = 1, ng_l vxcg_g ( ig_l2g ( ig ), is ) = psic ( nl ( ig ) ) ENDDO ENDDO CALL mp_sum ( g_g, intra_pool_comm ) CALL mp_sum ( vxcg_g, intra_pool_comm ) IF ( ionode ) THEN OPEN ( unit = unit, file = TRIM ( output_file_name ), & form = 'unformatted', status = 'replace' ) WRITE ( unit ) stitle, sdate, stime WRITE ( unit ) ns, ng_g, ntran, cell_symmetry, nat, ecutrho WRITE ( unit ) dfftp%nr1, dfftp%nr2, dfftp%nr3 WRITE ( unit ) omega, alat, ( ( at ( j, i ), j = 1, nd ), i = 1, nd ), & ( ( adot ( j, i ), j = 1, nd ), i = 1, nd ) WRITE ( unit ) recvol, tpiba, ( ( bg ( j, i ), j = 1, nd ), i = 1, nd ), & ( ( bdot ( j, i ), j = 1, nd ), i = 1, nd ) WRITE ( unit ) ( ( ( s ( k, j, i ), k = 1, nd ), j = 1, nd ), i = 1, ntran ) WRITE ( unit ) ( ( translation ( j, i ), j = 1, nd ), i = 1, ntran ) WRITE ( unit ) ( ( tau ( j, i ), j = 1, nd ), atomic_number ( atm ( ityp ( i ) ) ), i = 1, nat ) WRITE ( unit ) nrecord WRITE ( unit ) ng_g WRITE ( unit ) ( ( g_g ( id, ig ), id = 1, nd ), ig = 1, ng_g ) WRITE ( unit ) nrecord WRITE ( unit ) ng_g IF ( real_or_complex .EQ. 1 ) THEN WRITE ( unit ) ( ( dble ( vxcg_g ( ig, is ) ), & ig = 1, ng_g ), is = 1, ns ) ELSE WRITE ( unit ) ( ( vxcg_g ( ig, is ), & ig = 1, ng_g ), is = 1, ns ) ENDIF CLOSE ( unit = unit, status = 'keep' ) ENDIF DEALLOCATE ( vxcg_g ) DEALLOCATE ( vxcr_g ) DEALLOCATE ( g_g ) RETURN END SUBROUTINE write_vxcg !------------------------------------------------------------------------------- SUBROUTINE write_vxc0 ( output_file_name, vxc_zero_rho_core ) USE constants, ONLY : RYTOEV USE ener, ONLY : etxc, vtxc USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, nl, mill USE io_global, ONLY : ionode USE kinds, ONLY : DP USE lsda_mod, ONLY : nspin USE mp, ONLY : mp_sum USE mp_pools, ONLY : intra_pool_comm USE scf, ONLY : rho, rho_core, rhog_core USE wavefunctions_module, ONLY : psic IMPLICIT NONE character ( len = 256 ), intent (in) :: output_file_name logical, intent (in) :: vxc_zero_rho_core integer :: unit integer :: is, ir, ig integer :: nd, ns, nr, ng_l real (DP), allocatable :: vxcr_g ( :, : ) complex (DP), allocatable :: vxc0_g ( : ) unit = 4 nd = 3 ns = nspin nr = dfftp%nnr ng_l = ngm ALLOCATE ( vxcr_g ( nr, ns ) ) ALLOCATE ( vxc0_g ( ns ) ) DO is = 1, ns vxc0_g ( is ) = ( 0.0D0, 0.0D0 ) ENDDO vxcr_g ( :, : ) = 0.0D0 IF ( vxc_zero_rho_core ) THEN rho_core ( : ) = 0.0D0 rhog_core ( : ) = ( 0.0D0, 0.0D0 ) ENDIF CALL v_xc ( rho, rho_core, rhog_core, etxc, vtxc, vxcr_g ) DO is = 1, ns DO ir = 1, nr psic ( ir ) = CMPLX ( vxcr_g ( ir, is ), 0.0D0 ) ENDDO CALL fwfft ( 'Dense', psic, dfftp ) DO ig = 1, ng_l IF ( mill ( 1, ig ) .EQ. 0 .AND. mill ( 2, ig ) .EQ. 0 .AND. & mill ( 3, ig ) .EQ. 0 ) vxc0_g ( is ) = psic ( nl ( ig ) ) ENDDO ENDDO CALL mp_sum ( vxc0_g, intra_pool_comm ) DO is = 1, ns vxc0_g ( is ) = vxc0_g ( is ) * CMPLX ( RYTOEV, 0.0D0 ) ENDDO IF ( ionode ) THEN OPEN (unit = unit, file = TRIM (output_file_name), & form = 'formatted', status = 'replace') WRITE ( unit, 101 ) DO is = 1, ns WRITE ( unit, 102 ) is, vxc0_g ( is ) ENDDO WRITE ( unit, 103 ) CLOSE (unit = unit, status = 'keep') ENDIF DEALLOCATE ( vxcr_g ) DEALLOCATE ( vxc0_g ) RETURN 101 FORMAT ( /, 5X, "--------------------------------------------", & /, 5X, "spin Re Vxc(G=0) [eV] Im Vxc(G=0) [eV]", & /, 5X, "--------------------------------------------" ) 102 FORMAT ( 5X, I1, 3X, 2F20.15 ) 103 FORMAT ( 5X, "--------------------------------------------", / ) END SUBROUTINE write_vxc0 !------------------------------------------------------------------------------- SUBROUTINE write_vxc_r (output_file_name, diag_nmin, diag_nmax, & offdiag_nmin, offdiag_nmax, vxc_zero_rho_core) USE kinds, ONLY : DP USE constants, ONLY : rytoev USE cell_base, ONLY : tpiba2, at, bg USE ener, ONLY : etxc, vtxc USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : invfft USE gvect, ONLY : ngm, g, nl USE io_files, ONLY : nwordwfc, iunwfc USE io_global, ONLY : ionode USE klist, ONLY : xk, nkstot USE lsda_mod, ONLY : nspin, isk USE mp, ONLY : mp_sum USE mp_pools, ONLY : kunit, my_pool_id, intra_pool_comm, & inter_pool_comm, npool USE scf, ONLY : rho, rho_core, rhog_core USE wavefunctions_module, ONLY : evc, psic USE wvfct, ONLY : npw, nbnd, igk, g2kin, ecutwfc IMPLICIT NONE character (len = 256), intent (in) :: output_file_name integer, intent (inout) :: diag_nmin integer, intent (inout) :: diag_nmax integer, intent (inout) :: offdiag_nmin integer, intent (inout) :: offdiag_nmax logical, intent (in) :: vxc_zero_rho_core integer :: ik, is, ib, ig, ir, unit, nkbl, nkl, nkr, iks, ike, & ndiag, noffdiag, ib2 real (DP) :: dummyr complex (DP) :: dummyc real (DP), allocatable :: mtxeld (:, :) complex (DP), allocatable :: mtxelo (:, :, :) real (DP), allocatable :: vxcr (:, :) complex (DP), allocatable :: psic2 (:) if(diag_nmin > diag_nmax) then call errore ( 'write_vxc_r', 'diag_nmin > diag_nmax', diag_nmin ) endif IF (diag_nmin .LT. 1) diag_nmin = 1 IF (diag_nmax .GT. nbnd) then write(0,'(a,i6)') 'WARNING: resetting diag_nmax to max number of bands', nbnd diag_nmax = nbnd ENDIF ndiag = MAX (diag_nmax - diag_nmin + 1, 0) if(offdiag_nmin > offdiag_nmax) then call errore ( 'write_vxc_r', 'offdiag_nmin > offdiag_nmax', offdiag_nmin ) endif IF (offdiag_nmin .LT. 1) offdiag_nmin = 1 IF (offdiag_nmax .GT. nbnd) then write(0,'(a,i6)') 'WARNING: resetting offdiag_nmax to max number of bands', nbnd offdiag_nmax = nbnd ENDIF noffdiag = MAX (offdiag_nmax - offdiag_nmin + 1, 0) IF (ndiag .EQ. 0 .AND. noffdiag .EQ. 0) RETURN unit = 4 nkbl = nkstot / kunit nkl = kunit * (nkbl / npool) nkr = (nkstot - nkl * npool) / kunit IF (my_pool_id .LT. nkr) nkl = nkl + kunit iks = nkl * my_pool_id + 1 IF (my_pool_id .GE. nkr) iks = iks + nkr * kunit ike = iks + nkl - 1 IF (ndiag .GT. 0) THEN ALLOCATE (mtxeld (ndiag, nkstot)) mtxeld (:, :) = 0.0D0 ENDIF IF (noffdiag .GT. 0) THEN ALLOCATE (mtxelo (noffdiag, noffdiag, nkstot)) mtxelo (:, :, :) = (0.0D0, 0.0D0) ENDIF ALLOCATE (vxcr (dfftp%nnr, nspin)) IF (noffdiag .GT. 0) ALLOCATE (psic2 (dfftp%nnr)) vxcr (:, :) = 0.0D0 IF ( vxc_zero_rho_core ) THEN rho_core ( : ) = 0.0D0 rhog_core ( : ) = ( 0.0D0, 0.0D0 ) ENDIF CALL v_xc (rho, rho_core, rhog_core, etxc, vtxc, vxcr) DO ik = iks, ike CALL gk_sort (xk (1, ik - iks + 1), ngm, g, ecutwfc & / tpiba2, npw, igk, g2kin) CALL davcio (evc, 2*nwordwfc, iunwfc, ik - iks + 1, -1) IF (ndiag .GT. 0) THEN DO ib = diag_nmin, diag_nmax psic (:) = (0.0D0, 0.0D0) DO ig = 1, npw psic (nl (igk (ig))) = evc (ig, ib) ENDDO CALL invfft ('Dense', psic, dfftp) dummyr = 0.0D0 DO ir = 1, dfftp%nnr dummyr = dummyr + vxcr (ir, isk (ik)) & * (dble (psic (ir)) **2 + aimag (psic (ir)) **2) ENDDO dummyr = dummyr * rytoev / dble (dfftp%nr1x * dfftp%nr2x * dfftp%nr3x) CALL mp_sum (dummyr, intra_pool_comm) mtxeld (ib - diag_nmin + 1, ik) = dummyr ENDDO ENDIF IF (noffdiag .GT. 0) THEN DO ib = offdiag_nmin, offdiag_nmax psic (:) = (0.0D0, 0.0D0) DO ig = 1, npw psic (nl (igk (ig))) = evc (ig, ib) ENDDO CALL invfft ('Dense', psic, dfftp) DO ib2 = offdiag_nmin, offdiag_nmax psic2 (:) = (0.0D0, 0.0D0) DO ig = 1, npw psic2 (nl (igk (ig))) = evc (ig, ib2) ENDDO CALL invfft ('Dense', psic2, dfftp) dummyc = (0.0D0, 0.0D0) DO ir = 1, dfftp%nnr dummyc = dummyc + CMPLX (vxcr (ir, isk (ik)), 0.0D0) & * conjg (psic2 (ir)) * psic (ir) ENDDO dummyc = dummyc & * CMPLX (rytoev / dble (dfftp%nr1x * dfftp%nr2x * dfftp%nr3x), 0.0D0) CALL mp_sum (dummyc, intra_pool_comm) mtxelo (ib2 - offdiag_nmin + 1, ib - offdiag_nmin & + 1, ik) = dummyc ENDDO ENDDO ENDIF ENDDO DEALLOCATE (vxcr) IF (noffdiag .GT. 0) DEALLOCATE (psic2) IF (ndiag .GT. 0) CALL mp_sum (mtxeld, inter_pool_comm) IF (noffdiag .GT. 0) CALL mp_sum (mtxelo, inter_pool_comm) CALL cryst_to_cart (nkstot, xk, at, -1) IF (ionode) THEN OPEN (unit = unit, file = TRIM (output_file_name), & form = 'formatted', status = 'replace') DO ik = 1, nkstot / nspin WRITE (unit, 101) xk(:, ik), nspin * ndiag, & nspin * noffdiag **2 DO is = 1, nspin IF (ndiag .GT. 0) THEN DO ib = diag_nmin, diag_nmax WRITE (unit, 102) is, ib, mtxeld & (ib - diag_nmin + 1, ik + (is - 1) * nkstot / nspin), & 0.0D0 ENDDO ENDIF IF (noffdiag .GT. 0) THEN DO ib = offdiag_nmin, offdiag_nmax DO ib2 = offdiag_nmin, offdiag_nmax WRITE (unit, 103) is, ib2, ib, mtxelo & (ib2 - offdiag_nmin + 1, ib - offdiag_nmin + 1, & ik + (is - 1) * nkstot / nspin) ENDDO ENDDO ENDIF ENDDO ENDDO CLOSE (unit = unit, status = 'keep') ENDIF CALL cryst_to_cart (nkstot, xk, bg, 1) IF (ndiag .GT. 0) DEALLOCATE (mtxeld) IF (noffdiag .GT. 0) DEALLOCATE (mtxelo) RETURN 101 FORMAT (3F13.9, 2I8) 102 FORMAT (2I8, 2F15.9) 103 FORMAT (3I8, 2F15.9) END SUBROUTINE write_vxc_r !------------------------------------------------------------------------------- SUBROUTINE write_vxc_g (output_file_name, diag_nmin, diag_nmax, & offdiag_nmin, offdiag_nmax, vxc_zero_rho_core) USE constants, ONLY : rytoev USE cell_base, ONLY : tpiba2, at, bg USE ener, ONLY : etxc, vtxc USE exx, ONLY : vexx USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft, invfft USE funct, ONLY : exx_is_active USE gvect, ONLY : ngm, g, nl USE io_files, ONLY : nwordwfc, iunwfc USE io_global, ONLY : ionode USE kinds, ONLY : DP USE klist, ONLY : xk, nkstot USE lsda_mod, ONLY : nspin, isk USE mp, ONLY : mp_sum USE mp_pools, ONLY : kunit, my_pool_id, intra_pool_comm, & inter_pool_comm, npool USE scf, ONLY : rho, rho_core, rhog_core USE wavefunctions_module, ONLY : evc, psic USE wvfct, ONLY : npwx, npw, nbnd, igk, g2kin, ecutwfc IMPLICIT NONE character (len = 256), intent (in) :: output_file_name integer, intent (inout) :: diag_nmin integer, intent (inout) :: diag_nmax integer, intent (inout) :: offdiag_nmin integer, intent (inout) :: offdiag_nmax logical, intent (in) :: vxc_zero_rho_core integer :: ik, is, ib, ig, ir, unit, nkbl, nkl, nkr, iks, ike, & ndiag, noffdiag, ib2 complex (DP) :: dummy complex (DP), allocatable :: mtxeld (:, :) complex (DP), allocatable :: mtxelo (:, :, :) real (DP), allocatable :: vxcr (:, :) complex (DP), allocatable :: psic2 (:) complex (DP), allocatable :: hpsi (:) if(diag_nmin > diag_nmax) then call errore ( 'write_vxc_g', 'diag_nmin > diag_nmax', diag_nmin ) endif IF (diag_nmin .LT. 1) diag_nmin = 1 IF (diag_nmax .GT. nbnd) then write(0,'(a,i6)') 'WARNING: resetting diag_nmax to max number of bands', nbnd diag_nmax = nbnd ENDIF ndiag = MAX (diag_nmax - diag_nmin + 1, 0) if(offdiag_nmin > offdiag_nmax) then call errore ( 'write_vxc_g', 'offdiag_nmin > offdiag_nmax', offdiag_nmin ) endif IF (offdiag_nmin .LT. 1) offdiag_nmin = 1 IF (offdiag_nmax .GT. nbnd) then write(0,'(a,i6)') 'WARNING: resetting offdiag_nmax to max number of bands', nbnd offdiag_nmax = nbnd ENDIF noffdiag = MAX (offdiag_nmax - offdiag_nmin + 1, 0) IF (ndiag .EQ. 0 .AND. noffdiag .EQ. 0) RETURN unit = 4 nkbl = nkstot / kunit nkl = kunit * (nkbl / npool) nkr = (nkstot - nkl * npool) / kunit IF (my_pool_id .LT. nkr) nkl = nkl + kunit iks = nkl * my_pool_id + 1 IF (my_pool_id .GE. nkr) iks = iks + nkr * kunit ike = iks + nkl - 1 IF (ndiag .GT. 0) THEN ALLOCATE (mtxeld (ndiag, nkstot)) mtxeld (:, :) = (0.0D0, 0.0D0) ENDIF IF (noffdiag .GT. 0) THEN ALLOCATE (mtxelo (noffdiag, noffdiag, nkstot)) mtxelo (:, :, :) = (0.0D0, 0.0D0) ENDIF ALLOCATE (vxcr (dfftp%nnr, nspin)) IF (noffdiag .GT. 0) ALLOCATE (psic2 (dfftp%nnr)) ALLOCATE (hpsi (dfftp%nnr)) vxcr (:, :) = 0.0D0 IF ( vxc_zero_rho_core ) THEN rho_core ( : ) = 0.0D0 rhog_core ( : ) = ( 0.0D0, 0.0D0 ) ENDIF CALL v_xc (rho, rho_core, rhog_core, etxc, vtxc, vxcr) DO ik = iks, ike CALL gk_sort (xk (1, ik - iks + 1), ngm, g, ecutwfc & / tpiba2, npw, igk, g2kin) CALL davcio (evc, 2*nwordwfc, iunwfc, ik - iks + 1, -1) IF (ndiag .GT. 0) THEN DO ib = diag_nmin, diag_nmax psic (:) = (0.0D0, 0.0D0) DO ig = 1, npw psic (nl (igk (ig))) = evc (ig, ib) ENDDO CALL invfft ('Dense', psic, dfftp) DO ir = 1, dfftp%nnr psic (ir) = psic (ir) * vxcr (ir, isk (ik)) ENDDO CALL fwfft ('Dense', psic, dfftp) hpsi (:) = (0.0D0, 0.0D0) DO ig = 1, npw hpsi (ig) = psic (nl (igk (ig))) ENDDO psic (:) = (0.0D0, 0.0D0) DO ig = 1, npw psic (ig) = evc (ig, ib) ENDDO IF (exx_is_active ()) CALL vexx (npwx, npw, 1, & psic, hpsi) dummy = (0.0D0, 0.0D0) DO ig = 1, npw dummy = dummy + conjg (psic (ig)) * hpsi (ig) ENDDO dummy = dummy * CMPLX (rytoev, 0.0D0) CALL mp_sum (dummy, intra_pool_comm) mtxeld (ib - diag_nmin + 1, ik) = dummy ENDDO ENDIF IF (noffdiag .GT. 0) THEN DO ib = offdiag_nmin, offdiag_nmax psic (:) = (0.0D0, 0.0D0) DO ig = 1, npw psic (nl (igk (ig))) = evc (ig, ib) ENDDO CALL invfft ('Dense', psic, dfftp) DO ir = 1, dfftp%nnr psic (ir) = psic (ir) * vxcr (ir, isk (ik)) ENDDO CALL fwfft ('Dense', psic, dfftp) hpsi (:) = (0.0D0, 0.0D0) DO ig = 1, npw hpsi (ig) = psic (nl (igk (ig))) ENDDO psic (:) = (0.0D0, 0.0D0) DO ig = 1, npw psic (ig) = evc (ig, ib) ENDDO IF (exx_is_active ()) CALL vexx (npwx, npw, 1, & psic, hpsi) DO ib2 = offdiag_nmin, offdiag_nmax psic2 (:) = (0.0D0, 0.0D0) DO ig = 1, npw psic2 (ig) = evc (ig, ib2) ENDDO dummy = (0.0D0, 0.0D0) DO ig = 1, npw dummy = dummy + conjg (psic2 (ig)) * hpsi (ig) ENDDO dummy = dummy * CMPLX (rytoev, 0.0D0) CALL mp_sum (dummy, intra_pool_comm) mtxelo (ib2 - offdiag_nmin + 1, ib - offdiag_nmin & + 1, ik) = dummy ENDDO ENDDO ENDIF ENDDO DEALLOCATE (vxcr) IF (noffdiag .GT. 0) DEALLOCATE (psic2) DEALLOCATE (hpsi) IF (ndiag .GT. 0) CALL mp_sum (mtxeld, inter_pool_comm) IF (noffdiag .GT. 0) CALL mp_sum (mtxelo, inter_pool_comm) CALL cryst_to_cart (nkstot, xk, at, -1) IF (ionode) THEN OPEN (unit = unit, file = TRIM (output_file_name), & form = 'formatted', status = 'replace') DO ik = 1, nkstot / nspin WRITE (unit, 101) xk(:, ik), nspin * ndiag, & nspin * noffdiag **2 DO is = 1, nspin IF (ndiag .GT. 0) THEN DO ib = diag_nmin, diag_nmax WRITE (unit, 102) is, ib, mtxeld & (ib - diag_nmin + 1, ik + (is - 1) * nkstot / nspin) ENDDO ENDIF IF (noffdiag .GT. 0) THEN DO ib = offdiag_nmin, offdiag_nmax DO ib2 = offdiag_nmin, offdiag_nmax WRITE (unit, 103) is, ib2, ib, mtxelo & (ib2 - offdiag_nmin + 1, ib - offdiag_nmin + 1, & ik + (is - 1) * nkstot / nspin) ENDDO ENDDO ENDIF ENDDO ENDDO CLOSE (unit = unit, status = 'keep') ENDIF CALL cryst_to_cart (nkstot, xk, bg, 1) IF (ndiag .GT. 0) DEALLOCATE (mtxeld) IF (noffdiag .GT. 0) DEALLOCATE (mtxelo) RETURN 101 FORMAT (3F13.9, 2I8) 102 FORMAT (2I8, 2F15.9) 103 FORMAT (3I8, 2F15.9) END SUBROUTINE write_vxc_g !------------------------------------------------------------------------------- SUBROUTINE write_vscg ( output_file_name, real_or_complex, symm_type ) USE cell_base, ONLY : omega, alat, tpiba, tpiba2, at, bg, ibrav USE constants, ONLY : pi, tpi, eps6 USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, ngm_g, ig_l2g, nl, mill, ecutrho USE io_global, ONLY : ionode USE ions_base, ONLY : nat, atm, ityp, tau USE kinds, ONLY : DP USE lsda_mod, ONLY : nspin USE mp, ONLY : mp_sum USE mp_pools, ONLY : intra_pool_comm USE scf, ONLY : vltot, v USE symm_base, ONLY : s, ftau, nsym USE wavefunctions_module, ONLY : psic IMPLICIT NONE character ( len = 256 ), intent (in) :: output_file_name integer, intent (in) :: real_or_complex character ( len = 9 ), intent (in) :: symm_type character :: cdate*9, ctime*9, sdate*32, stime*32, stitle*32 integer :: unit, id, is, ir, ig, i, j, k, ierr integer :: nd, ns, nr, ng_l, ng_g integer :: ntran, cell_symmetry, nrecord real (DP) :: alat2, recvol, dr1, t1 ( 3 ), t2 ( 3 ) real (DP) :: r1 ( 3, 3 ), r2 ( 3, 3 ), adot ( 3, 3 ) real (DP) :: bdot ( 3, 3 ), translation ( 3, 48 ) integer, allocatable :: g_g ( :, : ) real (DP), allocatable :: vscr_g ( :, : ) complex (DP), allocatable :: vscg_g ( :, : ) INTEGER, EXTERNAL :: atomic_number CALL date_and_tim ( cdate, ctime ) WRITE ( sdate, '(A2,"-",A3,"-",A4,21X)' ) cdate(1:2), cdate(3:5), cdate(6:9) WRITE ( stime, '(A8,24X)' ) ctime(1:8) ! this is supposed to be VSC-Real/Complex but BGW wfn_rho_vxc IO ! does not recognize VSC header so we are using VXC instead IF ( real_or_complex .EQ. 1 ) THEN WRITE ( stitle, '("VXC-Real",24X)' ) ELSE WRITE ( stitle, '("VXC-Complex",21X)' ) ENDIF unit = 4 nrecord = 1 nd = 3 ns = nspin nr = dfftp%nnr ng_l = ngm ng_g = ngm_g ierr = 0 IF ( ibrav .EQ. 0 ) THEN IF ( TRIM ( symm_type ) .EQ. 'cubic' ) THEN cell_symmetry = 0 ELSEIF ( TRIM ( symm_type ) .EQ. 'hexagonal' ) THEN cell_symmetry = 1 ELSE ierr = 1 ENDIF ELSEIF ( abs ( ibrav ) .GE. 1 .AND. abs ( ibrav ) .LE. 3 ) THEN cell_symmetry = 0 ELSEIF ( abs ( ibrav ) .GE. 4 .AND. abs ( ibrav ) .LE. 5 ) THEN cell_symmetry = 1 ELSEIF ( abs ( ibrav ) .GE. 6 .AND. abs ( ibrav ) .LE. 14 ) THEN cell_symmetry = 0 ELSE ierr = 1 ENDIF IF ( ierr .GT. 0 ) & CALL errore ( 'write_vscg', 'cell_symmetry', ierr ) ntran = nsym DO i = 1, ntran DO j = 1, nd DO k = 1, nd r1 ( k, j ) = dble ( s ( k, j, i ) ) ENDDO ENDDO CALL invmat ( 3, r1, r2, dr1 ) t1 ( 1 ) = dble ( ftau ( 1, i ) ) / dble ( dfftp%nr1 ) t1 ( 2 ) = dble ( ftau ( 2, i ) ) / dble ( dfftp%nr2 ) t1 ( 3 ) = dble ( ftau ( 3, i ) ) / dble ( dfftp%nr3 ) DO j = 1, nd t2 ( j ) = 0.0D0 DO k = 1, nd t2 ( j ) = t2 ( j ) + r2 ( k, j ) * t1 ( k ) ENDDO IF ( t2 ( j ) .GE. eps6 + 0.5D0 ) & t2 ( j ) = t2 ( j ) - dble ( int ( t2 ( j ) + 0.5D0 ) ) IF ( t2 ( j ) .LT. eps6 - 0.5D0 ) & t2 ( j ) = t2 ( j ) - dble ( int ( t2 ( j ) - 0.5D0 ) ) ENDDO DO j = 1, nd translation ( j, i ) = t2 ( j ) * tpi ENDDO ENDDO CALL check_inversion ( real_or_complex, nsym, s, nspin, .true., .true., translation ) alat2 = alat ** 2 recvol = 8.0D0 * pi**3 / omega DO i = 1, nd DO j = 1, nd adot ( j, i ) = 0.0D0 ENDDO ENDDO DO i = 1, nd DO j = 1, nd DO k = 1, nd adot ( j, i ) = adot ( j, i ) + & at ( k, j ) * at ( k, i ) * alat2 ENDDO ENDDO ENDDO DO i = 1, nd DO j = 1, nd bdot ( j, i ) = 0.0D0 ENDDO ENDDO DO i = 1, nd DO j = 1, nd DO k = 1, nd bdot ( j, i ) = bdot ( j, i ) + & bg ( k, j ) * bg ( k, i ) * tpiba2 ENDDO ENDDO ENDDO ALLOCATE ( g_g ( nd, ng_g ) ) ALLOCATE ( vscr_g ( ng_g, ns ) ) ALLOCATE ( vscg_g ( ng_g, ns ) ) DO ig = 1, ng_g DO id = 1, nd g_g ( id, ig ) = 0 ENDDO ENDDO DO is = 1, ns DO ig = 1, ng_g vscg_g ( ig, is ) = ( 0.0D0, 0.0D0 ) ENDDO ENDDO DO ig = 1, ng_l g_g ( 1, ig_l2g ( ig ) ) = mill ( 1, ig ) g_g ( 2, ig_l2g ( ig ) ) = mill ( 2, ig ) g_g ( 3, ig_l2g ( ig ) ) = mill ( 3, ig ) ENDDO vscr_g ( :, : ) = 0.0D0 DO is = 1, ns DO ir = 1, nr psic ( ir ) = CMPLX ( v%of_r ( ir, is ) + vltot ( ir ), 0.0D0 ) ENDDO CALL fwfft ( 'Dense', psic, dfftp ) DO ig = 1, ng_l vscg_g ( ig_l2g ( ig ), is ) = psic ( nl ( ig ) ) ENDDO ENDDO CALL mp_sum ( g_g, intra_pool_comm ) CALL mp_sum ( vscg_g, intra_pool_comm ) IF ( ionode ) THEN OPEN ( unit = unit, file = TRIM ( output_file_name ), & form = 'unformatted', status = 'replace' ) WRITE ( unit ) stitle, sdate, stime WRITE ( unit ) ns, ng_g, ntran, cell_symmetry, nat, ecutrho WRITE ( unit ) dfftp%nr1, dfftp%nr2, dfftp%nr3 WRITE ( unit ) omega, alat, ( ( at ( j, i ), j = 1, nd ), i = 1, nd ), & ( ( adot ( j, i ), j = 1, nd ), i = 1, nd ) WRITE ( unit ) recvol, tpiba, ( ( bg ( j, i ), j = 1, nd ), i = 1, nd ), & ( ( bdot ( j, i ), j = 1, nd ), i = 1, nd ) WRITE ( unit ) ( ( ( s ( k, j, i ), k = 1, nd ), j = 1, nd ), i = 1, ntran ) WRITE ( unit ) ( ( translation ( j, i ), j = 1, nd ), i = 1, ntran ) WRITE ( unit ) ( ( tau ( j, i ), j = 1, nd ), atomic_number ( atm ( ityp ( i ) ) ), i = 1, nat ) WRITE ( unit ) nrecord WRITE ( unit ) ng_g WRITE ( unit ) ( ( g_g ( id, ig ), id = 1, nd ), ig = 1, ng_g ) WRITE ( unit ) nrecord WRITE ( unit ) ng_g IF ( real_or_complex .EQ. 1 ) THEN WRITE ( unit ) ( ( dble ( vscg_g ( ig, is ) ), & ig = 1, ng_g ), is = 1, ns ) ELSE WRITE ( unit ) ( ( vscg_g ( ig, is ), & ig = 1, ng_g ), is = 1, ns ) ENDIF CLOSE ( unit = unit, status = 'keep' ) ENDIF DEALLOCATE ( vscg_g ) DEALLOCATE ( vscr_g ) DEALLOCATE ( g_g ) RETURN END SUBROUTINE write_vscg !------------------------------------------------------------------------------- SUBROUTINE write_vkbg (output_file_name, symm_type, wfng_kgrid, & wfng_nk1, wfng_nk2, wfng_nk3, wfng_dk1, wfng_dk2, wfng_dk3) USE cell_base, ONLY : omega, alat, tpiba, tpiba2, at, bg, ibrav USE constants, ONLY : pi, tpi, eps6 USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, ngm_g, ig_l2g, g, mill, ecutrho USE io_global, ONLY : ionode, ionode_id USE ions_base, ONLY : nat, atm, ityp, tau, nsp USE kinds, ONLY : DP USE klist, ONLY : xk, wk, ngk, nks, nkstot USE lsda_mod, ONLY : nspin, isk USE mp, ONLY : mp_sum, mp_max, mp_get, mp_barrier USE mp_world, ONLY : mpime, nproc, world_comm USE mp_pools, ONLY : kunit, me_pool, root_pool, my_pool_id, npool, & nproc_pool, intra_pool_comm USE mp_wave, ONLY : mergewf USE start_k, ONLY : nk1, nk2, nk3, k1, k2, k3 USE symm_base, ONLY : s, ftau, nsym USE uspp, ONLY : nkb, vkb, deeq USE uspp_param, ONLY : nhm, nh USE wvfct, ONLY : npwx, npw, g2kin, ecutwfc IMPLICIT NONE character (len = 256), intent (in) :: output_file_name character ( len = 9 ), intent (in) :: symm_type logical, intent (in) :: wfng_kgrid integer, intent (in) :: wfng_nk1 integer, intent (in) :: wfng_nk2 integer, intent (in) :: wfng_nk3 real (DP), intent (in) :: wfng_dk1 real (DP), intent (in) :: wfng_dk2 real (DP), intent (in) :: wfng_dk3 character :: cdate*9, ctime*9, sdate*32, stime*32, stitle*32 integer :: i, j, k, ierr, ik, is, ig, ikb, iat, isp, ih, jh, & unit, nkbl, nkl, nkr, iks, ike, npw_g, npwx_g, ngg, ipsour, & igwx, local_pw, id, nd, ntran, cell_symmetry, nrecord real (DP) :: alat2, recvol, dr1, t1 ( 3 ), t2 ( 3 ) real (DP) :: r1 ( 3, 3 ), r2 ( 3, 3 ), adot ( 3, 3 ) real (DP) :: bdot ( 3, 3 ), translation ( 3, 48 ) integer, allocatable :: kmap ( : ) integer, allocatable :: smap ( : ) integer, allocatable :: gvec ( :, : ) integer, allocatable :: ngk_g ( : ) integer, allocatable :: igk_l2g ( :, : ) integer, allocatable :: itmp ( : ) integer, allocatable :: igwk ( : ) integer, allocatable :: igwf_l2g ( : ) integer, allocatable :: ipmask ( : ) complex (DP), allocatable :: vkb_g ( : ) INTEGER, EXTERNAL :: atomic_number IF ( nkb == 0 ) RETURN CALL date_and_tim ( cdate, ctime ) WRITE ( sdate, '(A2,"-",A3,"-",A4,21X)' ) cdate(1:2), cdate(3:5), cdate(6:9) WRITE ( stime, '(A8,24X)' ) ctime(1:8) ! BGW wfn_rho_vxc IO does not recognize VKB header so this file ! is read directly by SAPO code in BerkeleyGW WRITE ( stitle, '("VKB-Complex",21X)' ) unit = 4 nrecord = 1 nd = 3 nkbl = nkstot / kunit nkl = kunit * ( nkbl / npool ) nkr = ( nkstot - nkl * npool ) / kunit IF ( my_pool_id .LT. nkr ) nkl = nkl + kunit iks = nkl * my_pool_id + 1 IF ( my_pool_id .GE. nkr ) iks = iks + nkr * kunit ike = iks + nkl - 1 ierr = 0 IF ( ibrav .EQ. 0 ) THEN IF ( TRIM ( symm_type ) .EQ. 'cubic' ) THEN cell_symmetry = 0 ELSEIF ( TRIM ( symm_type ) .EQ. 'hexagonal' ) THEN cell_symmetry = 1 ELSE ierr = 1 ENDIF ELSEIF ( abs ( ibrav ) .GE. 1 .AND. abs ( ibrav ) .LE. 3 ) THEN cell_symmetry = 0 ELSEIF ( abs ( ibrav ) .GE. 4 .AND. abs ( ibrav ) .LE. 5 ) THEN cell_symmetry = 1 ELSEIF ( abs ( ibrav ) .GE. 6 .AND. abs ( ibrav ) .LE. 14 ) THEN cell_symmetry = 0 ELSE ierr = 1 ENDIF IF ( ierr .GT. 0 ) & CALL errore ( 'write_vkbg', 'cell_symmetry', ierr ) ntran = nsym DO i = 1, ntran DO j = 1, nd DO k = 1, nd r1 ( k, j ) = dble ( s ( k, j, i ) ) ENDDO ENDDO CALL invmat ( 3, r1, r2, dr1 ) t1 ( 1 ) = dble ( ftau ( 1, i ) ) / dble ( dfftp%nr1 ) t1 ( 2 ) = dble ( ftau ( 2, i ) ) / dble ( dfftp%nr2 ) t1 ( 3 ) = dble ( ftau ( 3, i ) ) / dble ( dfftp%nr3 ) DO j = 1, nd t2 ( j ) = 0.0D0 DO k = 1, nd t2 ( j ) = t2 ( j ) + r2 ( k, j ) * t1 ( k ) ENDDO IF ( t2 ( j ) .GE. eps6 + 0.5D0 ) & t2 ( j ) = t2 ( j ) - dble ( int ( t2 ( j ) + 0.5D0 ) ) IF ( t2 ( j ) .LT. eps6 - 0.5D0 ) & t2 ( j ) = t2 ( j ) - dble ( int ( t2 ( j ) - 0.5D0 ) ) ENDDO DO j = 1, nd translation ( j, i ) = t2 ( j ) * tpi ENDDO ENDDO alat2 = alat ** 2 recvol = 8.0D0 * pi**3 / omega DO i = 1, nd DO j = 1, nd adot ( j, i ) = 0.0D0 ENDDO ENDDO DO i = 1, nd DO j = 1, nd DO k = 1, nd adot ( j, i ) = adot ( j, i ) + & at ( k, j ) * at ( k, i ) * alat2 ENDDO ENDDO ENDDO DO i = 1, nd DO j = 1, nd bdot ( j, i ) = 0.0D0 ENDDO ENDDO DO i = 1, nd DO j = 1, nd DO k = 1, nd bdot ( j, i ) = bdot ( j, i ) + & bg ( k, j ) * bg ( k, i ) * tpiba2 ENDDO ENDDO ENDDO ALLOCATE ( kmap ( nkstot ) ) ALLOCATE ( smap ( nkstot ) ) DO i = 1, nkstot j = ( i - 1 ) / nspin k = i - 1 - j * nspin kmap ( i ) = j + k * ( nkstot / nspin ) + 1 smap ( i ) = k + 1 ENDDO ierr = 0 DO i = 1, nkstot ik = kmap ( i ) is = smap ( i ) IF ( ik .GE. iks .AND. ik .LE. ike .AND. is .NE. isk ( ik ) ) & ierr = ierr + 1 ENDDO CALL mp_max ( ierr, world_comm ) IF ( ierr .GT. 0 ) & CALL errore ( 'write_vkbg', 'smap', ierr ) ALLOCATE ( gvec ( 3, ngm_g ) ) gvec = 0 DO ig = 1, ngm gvec ( 1, ig_l2g ( ig ) ) = mill ( 1, ig ) gvec ( 2, ig_l2g ( ig ) ) = mill ( 2, ig ) gvec ( 3, ig_l2g ( ig ) ) = mill ( 3, ig ) ENDDO CALL mp_sum ( gvec, intra_pool_comm ) ALLOCATE ( ngk_g ( nkstot ) ) ALLOCATE ( igk_l2g ( npwx, nks ) ) ngk_g = 0 igk_l2g = 0 ALLOCATE ( itmp ( npwx ) ) DO ik = 1, nks itmp = 0 npw = npwx CALL gk_sort ( xk ( 1, ik + iks - 1 ), ngm, g, ecutwfc / tpiba2, & npw, itmp ( 1 ), g2kin ) DO ig = 1, npw igk_l2g ( ig, ik ) = ig_l2g ( itmp ( ig ) ) ENDDO ngk ( ik ) = npw ENDDO DEALLOCATE ( itmp ) DO ik = 1, nks ngk_g ( ik + iks - 1 ) = ngk ( ik ) ENDDO CALL mp_sum ( ngk_g, world_comm ) npw_g = MAXVAL ( igk_l2g ( :, : ) ) CALL mp_max ( npw_g, world_comm ) npwx_g = MAXVAL ( ngk_g ( : ) ) CALL cryst_to_cart (nkstot, xk, at, -1) IF (ionode) THEN OPEN (unit = unit, file = TRIM (output_file_name), & form = 'unformatted', status = 'replace') WRITE ( unit ) stitle, sdate, stime WRITE ( unit ) nspin, ngm_g, ntran, cell_symmetry, nat, ecutrho, & nkstot / nspin, nsp, nkb, nhm, npwx_g, ecutwfc IF ( wfng_kgrid ) THEN WRITE ( unit ) dfftp%nr1, dfftp%nr2, dfftp%nr3, wfng_nk1, wfng_nk2, wfng_nk3, & wfng_dk1, wfng_dk2, wfng_dk3 ELSE WRITE ( unit ) dfftp%nr1, dfftp%nr2, dfftp%nr3, nk1, nk2, nk3, & 0.5D0 * dble ( k1 ), 0.5D0 * dble ( k2 ), 0.5D0 * dble ( k3 ) ENDIF WRITE ( unit ) omega, alat, ( ( at ( j, i ), j = 1, nd ), i = 1, nd ), & ( ( adot ( j, i ), j = 1, nd ), i = 1, nd ) WRITE ( unit ) recvol, tpiba, ( ( bg ( j, i ), j = 1, nd ), i = 1, nd ), & ( ( bdot ( j, i ), j = 1, nd ), i = 1, nd ) WRITE ( unit ) ( ( ( s ( k, j, i ), k = 1, nd ), j = 1, nd ), i = 1, ntran ) WRITE ( unit ) ( ( translation ( j, i ), j = 1, nd ), i = 1, ntran ) WRITE ( unit ) ( ( tau ( j, i ), j = 1, nd ), atomic_number ( atm ( ityp ( i ) ) ), i = 1, nat ) WRITE ( unit ) ( ngk_g ( ik ), ik = 1, nkstot / nspin ) WRITE ( unit ) ( wk ( ik ) * dble ( nspin ) / 2.0D0, ik = 1, nkstot / nspin ) WRITE ( unit ) ( ( xk ( id, ik ), id = 1, nd ), ik = 1, nkstot / nspin ) WRITE ( unit ) ( ityp ( iat ), iat = 1, nat ) WRITE ( unit ) ( nh ( isp ), isp = 1, nsp ) WRITE ( unit ) ( ( ( ( deeq ( jh, ih, iat, is ), & jh = 1, nhm ), ih = 1, nhm ), iat = 1, nat ), is = 1, nspin ) WRITE ( unit ) nrecord WRITE ( unit ) ngm_g WRITE ( unit ) ( ( gvec ( id, ig ), id = 1, nd ), ig = 1, ngm_g ) ENDIF CALL cryst_to_cart (nkstot, xk, bg, 1) ALLOCATE ( igwk ( npwx_g ) ) DO i = 1, nkstot ik = kmap ( i ) is = smap ( i ) igwk = 0 ALLOCATE ( itmp ( npw_g ) ) itmp = 0 IF ( ik .GE. iks .AND. ik .LE. ike ) THEN DO ig = 1, ngk ( ik - iks + 1 ) itmp ( igk_l2g ( ig, ik - iks + 1 ) ) = igk_l2g ( ig, ik - iks + 1 ) ENDDO ENDIF CALL mp_sum ( itmp, world_comm ) ngg = 0 DO ig = 1, npw_g IF ( itmp ( ig ) .EQ. ig ) THEN ngg = ngg + 1 igwk ( ngg ) = ig ENDIF ENDDO DEALLOCATE ( itmp ) IF ( ionode ) THEN IF ( is .EQ. 1 ) THEN WRITE ( unit ) nrecord WRITE ( unit ) ngk_g ( ik ) WRITE ( unit ) ( ( gvec ( j, igwk ( ig ) ), j = 1, 3 ), & ig = 1, ngk_g ( ik ) ) ENDIF ENDIF local_pw = 0 IF ( ik .GE. iks .AND. ik .LE. ike ) THEN ALLOCATE ( itmp ( npwx ) ) npw = npwx CALL gk_sort ( xk ( 1, ik ), ngm, g, ecutwfc / tpiba2, & npw, itmp ( 1 ), g2kin ) CALL init_us_2 ( npw, itmp, xk ( 1, ik ), vkb ) local_pw = ngk ( ik - iks + 1 ) DEALLOCATE ( itmp ) ENDIF ALLOCATE ( igwf_l2g ( local_pw ) ) igwf_l2g = 0 DO ig = 1, local_pw ngg = igk_l2g ( ig, ik - iks + 1 ) DO j = 1, ngk_g ( ik ) IF ( ngg .EQ. igwk ( j ) ) THEN igwf_l2g ( ig ) = j EXIT ENDIF ENDDO ENDDO ALLOCATE ( ipmask ( nproc ) ) ipmask = 0 ipsour = ionode_id IF ( npool .GT. 1 ) THEN IF ( ( ik .GE. iks ) .AND. ( ik .LE. ike ) ) THEN IF ( me_pool .EQ. root_pool ) ipmask ( mpime + 1 ) = 1 ENDIF CALL mp_sum ( ipmask, world_comm ) DO j = 1, nproc IF ( ipmask ( j ) .EQ. 1 ) ipsour = j - 1 ENDDO ENDIF DEALLOCATE ( ipmask ) igwx = 0 ierr = 0 IF ( ik .GE. iks .AND. ik .LE. ike ) & igwx = MAXVAL ( igwf_l2g ( 1 : local_pw ) ) CALL mp_max ( igwx, intra_pool_comm ) IF ( ipsour .NE. ionode_id ) & CALL mp_get ( igwx, igwx, mpime, ionode_id, ipsour, 1, world_comm ) ierr = 0 IF ( ik .GE. iks .AND. ik .LE. ike .AND. igwx .NE. ngk_g ( ik ) ) & ierr = 1 CALL mp_max ( ierr, world_comm ) IF ( ierr .GT. 0 ) & CALL errore ( 'write_vkbg', 'igwx ngk_g', ierr ) ALLOCATE ( vkb_g ( MAX ( 1, igwx ) ) ) DO ikb = 1, nkb vkb_g = ( 0.0D0, 0.0D0 ) IF ( npool .GT. 1 ) THEN IF ( ( ik .GE. iks ) .AND. ( ik .LE. ike ) ) THEN CALL mergewf ( vkb ( :, ikb ), vkb_g, local_pw, igwf_l2g, & me_pool, nproc_pool, root_pool, intra_pool_comm ) ENDIF IF ( ipsour .NE. ionode_id ) THEN CALL mp_get ( vkb_g, vkb_g, mpime, ionode_id, ipsour, ikb, & world_comm ) ENDIF ELSE CALL mergewf ( vkb ( :, ikb ), vkb_g, local_pw, igwf_l2g, & mpime, nproc, ionode_id, world_comm ) ENDIF IF ( ionode ) THEN WRITE ( unit ) nrecord WRITE ( unit ) igwx WRITE ( unit ) ( vkb_g ( ig ), ig = 1, igwx ) ENDIF ENDDO DEALLOCATE ( vkb_g ) DEALLOCATE ( igwf_l2g ) ENDDO IF ( ionode ) THEN CLOSE ( unit = unit, status = 'keep' ) ENDIF DEALLOCATE ( igwk ) DEALLOCATE ( igk_l2g ) DEALLOCATE ( ngk_g ) DEALLOCATE ( gvec ) DEALLOCATE ( smap ) DEALLOCATE ( kmap ) RETURN END SUBROUTINE write_vkbg !------------------------------------------------------------------------------- subroutine check_inversion(real_or_complex, ntran, mtrx, nspin, warn, real_need_inv, tnp) ! check_inversion Originally By David A. Strubbe Last Modified 11/18/2013 ! Check whether our choice of real/complex version is appropriate given the ! presence or absence of inversion symmetry. USE constants, ONLY : eps6 USE io_global, ONLY : ionode USE kinds, ONLY : DP implicit none integer, intent(in) :: real_or_complex integer, intent(in) :: ntran integer, intent(in) :: mtrx(3, 3, 48) !< symmetry operations matrices integer, intent(in) :: nspin logical, intent(in) :: warn !< set to false to suppress warnings, for converters logical, intent(in) :: real_need_inv !< use for generating routines to block real without inversion !! this is not always true so that it is possible to run real without using symmetries real(DP), intent(in) :: tnp(3, 48) !< fractional translations. !! optional only to avoid changing external interface for library. integer :: invflag, isym, ii, jj, itest logical :: origin_inv invflag = 0 origin_inv = .false. do isym = 1, ntran itest = 0 do ii = 1, 3 do jj = 1, 3 if(ii .eq. jj) then itest = itest + (mtrx(ii, jj, isym) + 1)**2 else itest = itest + mtrx(ii, jj, isym)**2 endif enddo enddo if(itest .eq. 0) then invflag = invflag + 1 !if(present(tnp)) then if(sum(abs(tnp(1:3, isym))) < eps6) origin_inv = .true. !else ! origin_inv = .true. !endif endif enddo if(invflag > 0 .and. .not. origin_inv) then write(0, '(a)') "WARNING: Inversion symmetry is present only with a fractional translation." write(0, '(a)') "Apply the translation so inversion is about the origin, to be able to use the real version." endif if(invflag .gt. 1) write(0, '(a)') "WARNING: More than one inversion symmetry operation is present." ! if(invflag > 0 .and. .not. present(tnp)) then ! write(0, '(a)') "WARNING: check_inversion did not receive fractional translations." ! write(0, '(a)') "Cannot confirm that inversion symmetry is about the origin for use of real version." ! endif if(real_or_complex .eq. 2) then if(origin_inv .and. warn .and. nspin == 1) then if(ionode) & write(0, '(a)') "WARNING: Inversion symmetry about the origin is present. The real version would be faster." endif else if(.not. origin_inv) then if(real_need_inv) then call errore("check_inversion", "The real version cannot be used without inversion symmetry about the origin.", -1) endif if(ionode) then write(0, '(a)') "WARNING: Inversion symmetry about the origin is absent in symmetries used to reduce k-grid." write(0, '(a)') "Be sure inversion about the origin is still a spatial symmetry, or you must use complex version instead." endif endif if(nspin > 1) then call errore("check_inversion", "Real version may only be used for spin-unpolarized calculations.", nspin) endif endif return end subroutine check_inversion !------------------------------------------------------------------------------- END PROGRAM pw2bgw espresso-5.1/PP/src/plotband.f900000644000175000017500000004715512341372773014560 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! PROGRAM plotband ! reads data files produced by "bands.x", produces ! * data file ready for plotting with gnuplot, xmgr or the like ! * a postscript file that can be directly printed ! Important notice: ! - k-points processed by bands.x should be along a continuous path ! - no two consecutive k-points should be equal (i.e.: a k-point, ! e.g. 0,0,0, can appear more than once but not in sequence) ! If these rules are violated, unpredictable results may follow IMPLICIT NONE INTEGER, PARAMETER :: stdout=6 real, ALLOCATABLE :: e(:,:), k(:,:), e_in(:), kx(:) real :: k1(3), k2(3), ps real, ALLOCATABLE :: e_rap(:,:), k_rap(:,:) INTEGER, ALLOCATABLE :: nbnd_rapk(:), rap(:,:) INTEGER, ALLOCATABLE :: npoints(:) INTEGER :: nks = 0, nbnd = 0, ios, nlines, n,i,j,ni,nf,nl INTEGER :: nks_rap = 0, nbnd_rap = 0 LOGICAL, ALLOCATABLE :: high_symmetry(:), is_in_range(:), is_in_range_rap(:) CHARACTER(len=256) :: filename, filename1 NAMELIST /plot/ nks, nbnd NAMELIST /plot_rap/ nks_rap, nbnd_rap INTEGER :: n_interp real, ALLOCATABLE :: k_interp(:), e_interp(:), coef_interp(:,:) real :: emin = 1.e10, emax =-1.e10, etic, eref, deltaE, Ef INTEGER, PARAMETER :: max_lines=99 real :: mine, dxmod, dxmod_save INTEGER :: point(max_lines+1), nrap(max_lines) INTEGER :: ilines, irap, ibnd, ipoint, jnow real, PARAMETER :: cm=28.453, xdim=15.0*cm, ydim=10.0*cm, & x0=2.0*cm, y0=2.0*cm, eps=1.e-4 LOGICAL :: exist_rap LOGICAL, ALLOCATABLE :: todo(:,:) CHARACTER(LEN=6), EXTERNAL :: int_to_char CALL get_file ( filename ) OPEN(unit=1,file=filename,form='formatted') READ (1, plot, iostat=ios) ! IF (nks <= 0 .or. nbnd <= 0 .or. ios /= 0) THEN STOP 'Error reading file header' ELSE PRINT '("Reading ",i4," bands at ",i6," k-points")', nbnd, nks ENDIF filename1=trim(filename)//".rap" exist_rap=.true. OPEN(unit=21,file=filename1,form='formatted',status='old',err=100,iostat=ios) 100 IF (ios /= 0) THEN exist_rap=.false. ENDIF IF (exist_rap) THEN READ (21, plot_rap, iostat=ios) IF (nks_rap/=nks.or.nbnd_rap/=nbnd.or.ios/=0) THEN WRITE(6,'("file with representations not compatible with bands")') exist_rap=.false. ENDIF ENDIF ! ALLOCATE (e(nbnd,nks)) ALLOCATE (k(3,nks), e_in(nks), kx(nks), npoints(nks), high_symmetry(nks)) ALLOCATE (is_in_range(nbnd)) IF (exist_rap) THEN ALLOCATE(nbnd_rapk(nks)) ALLOCATE(e_rap(nbnd,nks)) ALLOCATE(rap(nbnd,nks)) ALLOCATE(k_rap(3,nks)) ALLOCATE(todo(nbnd,2)) ALLOCATE (is_in_range_rap(nbnd)) ENDIF high_symmetry=.false. DO n=1,nks READ(1,*,end=20,err=20) ( k(i,n), i=1,3 ) READ(1,*,end=20,err=20) (e(i,n),i=1,nbnd) IF (exist_rap) THEN READ(21,*,end=20,err=20) (k_rap(i,n),i=1,3), high_symmetry(n) READ(21,*,end=20,err=20) (rap(i,n),i=1,nbnd) IF (abs(k(1,n)-k_rap(1,n))+abs(k(2,n)-k_rap(2,n))+ & abs(k(3,n)-k_rap(3,n)) > eps ) THEN WRITE(stdout,'("Incompatible k points in rap file")') DEALLOCATE(nbnd_rapk) DEALLOCATE(e_rap) DEALLOCATE(rap) DEALLOCATE(k_rap) DEALLOCATE(todo) DEALLOCATE(is_in_range_rap) CLOSE(unit=21) exist_rap=.false. ENDIF ENDIF ENDDO CLOSE(unit=1) IF (exist_rap) CLOSE(unit=21) ! ! Now find the high symmetry points in addition to those already identified ! in the representation file ! DO n=1,nks IF (n==1 .OR. n==nks) THEN high_symmetry(n) = .true. ELSE k1(:) = k(:,n) - k(:,n-1) k2(:) = k(:,n+1) - k(:,n) ps = ( k1(1)*k2(1) + k1(2)*k2(2) + k1(3)*k2(3) ) / & sqrt( k1(1)*k1(1) + k1(2)*k1(2) + k1(3)*k1(3) ) / & sqrt( k2(1)*k2(1) + k2(2)*k2(2) + k2(3)*k2(3) ) high_symmetry(n) = (ABS(ps-1.d0) >1.0d-4).OR.high_symmetry(n) ! ! The gamma point is a high symmetry point ! IF (k(1,n)**2+k(2,n)**2+k(3,n)**2 < 1.0d-9) high_symmetry(n)=.true. ! ! save the typical length of dk ! IF (n==2) dxmod_save = sqrt( k1(1)**2 + k1(2)**2 + k1(3)**2) ENDIF ENDDO kx(1) = 0.d0 DO n=2,nks dxmod=sqrt ( (k(1,n)-k(1,n-1))**2 + & (k(2,n)-k(2,n-1))**2 + & (k(3,n)-k(3,n-1))**2 ) IF (dxmod > 5*dxmod_save) THEN ! ! A big jump in dxmod is a sign that the point k(:,n) and k(:,n-1) ! are quite distant and belong to two different lines. We put them on ! the same point in the graph ! kx(n)=kx(n-1) ELSEIF (dxmod > 1.d-5) THEN ! ! This is the usual case. The two points k(:,n) and k(:,n-1) are in the ! same path. ! kx(n) = kx(n-1) + dxmod dxmod_save = dxmod ELSE ! ! This is the case in which dxmod is almost zero. The two points coincide ! in the graph, but we do not save dxmod. ! kx(n) = kx(n-1) + dxmod ENDIF ENDDO DO n=1,nks DO i=1,nbnd emin = min(emin, e(i,n)) emax = max(emax, e(i,n)) ENDDO ENDDO PRINT '("Range:",2f10.4,"eV Emin, Emax > ",$)', emin, emax READ(5,*) emin, emax ! ! Since the minimum and miximum energies are given in input we can ! sign the bands that are completely outside this range. ! is_in_range = .false. DO i=1,nbnd is_in_range(i) = any (e(i,1:nks) >= emin .and. e(i,1:nks) <= emax) ENDDO ! ! Now we compute how many paths there are: nlines ! The first point of this path: point(iline) ! How many points are in each path: npoints(iline) ! DO n=1,nks IF (high_symmetry(n)) THEN IF (n==1) THEN ! ! first point. Initialize the number of lines, and the number of point ! and say that this line start at the first point ! nlines=1 npoints(1)=1 point(1)=1 ELSEIF (n==nks) THEN ! ! Last point. Here we save the last point of this line, but ! do not increase the number of lines ! npoints(nlines) = npoints(nlines)+1 point(nlines+1)=n ELSE ! ! Middle line. The current line has one more points, and there is a new ! line that has to be initialized. It has one point and its first point ! is the current k. ! npoints(nlines) = npoints(nlines)+1 nlines=nlines+1 IF (nlines>max_lines) CALL errore('plotband','too many lines',1) npoints(nlines) = 1 point(nlines)=n ENDIF IF (n==1) THEN WRITE( stdout,'("high-symmetry point: ",3f7.4,& &" x coordinate 0.0000")') (k(i,n),i=1,3) ELSE WRITE( stdout,'("high-symmetry point: ",3f7.4,& &" x coordinate",f9.4)') (k(i,n),i=1,3), kx(n) ENDIF ELSE ! ! This k is not an high symmetry line so we just increase the number of ! points of this line. ! npoints(nlines) = npoints(nlines)+1 ENDIF ENDDO ! PRINT '("output file (xmgr) > ",$)' READ(5,'(a)', end=25, err=25) filename IF (filename == ' ' ) THEN PRINT '("skipping ...")' GOTO 25 ENDIF IF (.NOT.exist_rap) THEN ! ! Here the symmetry analysis has not been done. So simply save the bands ! on output. The odd one from left to right, the even one from right to ! left. ! OPEN (unit=2,file=filename,form='formatted',status='unknown',& iostat=ios) ! draw bands DO i=1,nbnd IF (is_in_range(i)) THEN IF ( mod(i,2) /= 0) THEN WRITE (2,'(2f10.4)') (kx(n), e(i,n),n=1,nks) ELSE WRITE (2,'(2f10.4)') (kx(n), e(i,n),n=nks,1,-1) ENDIF ENDIF ENDDO CLOSE (unit = 2) ELSE ! ! In this case we write a diffent file for each line and for each ! representation. Each file contains the bands of that representation. ! The file is called filename.#line.#rap ! ! First determine for each line how many representations are there ! in each line ! DO ilines=1,nlines nrap(ilines)=0 DO ipoint=1,npoints(ilines)-2 n=point(ilines) + ipoint DO ibnd=1,nbnd nrap(ilines)=max(nrap(ilines),rap(ibnd,n)) ENDDO ENDDO IF (nrap(ilines) > 12) CALL errore("plotband",& "Too many representations",1) ENDDO ! ! Then, for each line and for each representation along that line ! DO ilines=1,nlines IF (nrap(ilines)==0) THEN ! ! Along this line the symmetry decomposition has not been done. ! Plot all the bands as in the standard case ! filename1=TRIM(filename) // "." // TRIM(int_to_char(ilines)) OPEN (unit=2,file=filename1,form='formatted',status='unknown',& iostat=ios) ! draw bands DO i=1,nbnd IF (is_in_range(i)) THEN IF ( mod(i,2) /= 0) THEN WRITE (2,'(2f10.4)') (kx(n), e(i,n),n=point(ilines),& point(ilines+1)) ELSE WRITE (2,'(2f10.4)') (kx(n), e(i,n),n=point(ilines+1), & point(ilines),-1 ) ENDIF ENDIF ENDDO CLOSE (unit = 2) ENDIF todo=.true. DO irap=1, nrap(ilines) ! ! open a file ! filename1=TRIM(filename) // "." // TRIM(int_to_char(ilines)) & // "." // TRIM(int_to_char(irap)) OPEN (unit=2,file=filename1,form='formatted',status='unknown',& iostat=ios) IF (ios /= 0) CALL errore("plotband","opening file" & //TRIM(filename1),1) ! For each k point along this line selects only the bands which belong ! to the irap representation nbnd_rapk=100000 DO n=point(ilines)+1, point(ilines+1)-1 nbnd_rapk(n)=0 DO i=1,nbnd IF (rap(i,n)==irap) THEN nbnd_rapk(n) = nbnd_rapk(n) + 1 e_rap(nbnd_rapk(n),n)=e(i,n) ENDIF ENDDO ENDDO ! ! on the two high symmetry points the representation is different. So for each ! band choose the closest eigenvalue available. ! DO i=1,nbnd_rapk(point(ilines)+1) mine=1.e8 DO j=1,nbnd IF (abs(e_rap(i,point(ilines)+1)-e(j,point(ilines)))= emin .and. e(i,point(ilines):point(ilines+1)) <= emax) ENDDO DO i=1,minval(nbnd_rapk) IF (is_in_range_rap(i)) THEN IF ( mod(i,2) /= 0) THEN WRITE (2,'(2f10.4)') (kx(n), e_rap(i,n), & n=point(ilines),point(ilines+1)) ELSE WRITE (2,'(2f10.4)') (kx(n), e_rap(i,n), & n=point(ilines+1),point(ilines),-1) ENDIF ENDIF ENDDO IF (minval(nbnd_rapk)==0) THEN CLOSE (unit = 2,status='delete') ELSE CLOSE (unit = 2,status='keep') ENDIF ENDDO ENDDO ENDIF PRINT '("bands in xmgr format written to file ",a)', filename ! 25 CONTINUE IF (exist_rap) THEN DEALLOCATE(nbnd_rapk) DEALLOCATE(e_rap) DEALLOCATE(rap) DEALLOCATE(k_rap) DEALLOCATE(todo) DEALLOCATE(is_in_range_rap) ENDIF PRINT '("output file (ps) > ",$)' READ(5,'(a)',end=30,err=30) filename IF (filename == ' ' ) THEN PRINT '("stopping ...")' GOTO 30 ENDIF OPEN (unit=1,file=TRIM(filename),form='formatted',status='unknown',& iostat=ios) PRINT '("Efermi > ",$)' READ(5,*) Ef PRINT '("deltaE, reference E (for tics) ",$)' READ(5,*) deltaE, eref ! WRITE (1,'(a)') '%! PS-Adobe-1.0' WRITE (1,*) '/localdict 100 dict def' WRITE (1,*) 'localdict begin' WRITE (1,*) '% delete next line for insertion in a LaTeX file' WRITE (1,*) ' 0 0 moveto' WRITE (1,*) 'gsave' WRITE (1,*) '/nm {newpath moveto} def' WRITE (1,*) '/riga {newpath moveto lineto stroke} def' WRITE (1,*) '/banda {3 1 roll moveto {lineto} repeat stroke} def' WRITE (1,*) '/dot {newpath 1 0 360 arc fill} def' WRITE (1,*) '/Times-Roman findfont 12 scalefont setfont' WRITE (1,*) 'currentpoint translate' WRITE (1,*) '% Landscape: uncomment next line' WRITE (1,*) ' 90 rotate 0 21 neg 28.451 mul translate 1.5 1.5 scale' WRITE (1,*) '% Landscape: comment next line' WRITE (1,*) '% 1.2 1.2 scale' WRITE (1,'(2(f8.3,1x)," translate")') x0, y0 WRITE (1,*) '0 setgray 0.5 setlinewidth' ! draw tics on axis ni=nint((eref-emin)/deltaE)+1 nf=nint((emax-eref)/deltaE)+1 DO i=-ni,nf etic=eref+i*deltaE IF (etic >= emin .and. etic <= emax) THEN WRITE (1,'(2(f8.3,1x)," moveto -5 0 rlineto stroke")') & 0.0,(etic-emin)*ydim/(emax-emin) WRITE (1,'(2(f8.3,1x)," moveto (",f5.1,") show")') & -30.,(etic-emin)*ydim/(emax-emin), etic-eref ENDIF ENDDO ! draw the Fermi Energy IF (Ef > emin .and. Ef < emax) THEN WRITE (1,'("[2 4] 0 setdash newpath ",2(f8.3,1x), " moveto ")') & 0.0, (Ef-emin)/(emax-emin)*ydim WRITE (1,'(2(f8.3,1x)," lineto stroke [] 0 setdash")') & xdim, (Ef-emin)/(emax-emin)*ydim ENDIF ! draw axis and set clipping region WRITE (1,*) '1 setlinewidth' WRITE (1,'(8(f8.3,1x))') 0.0,0.0,0.0,ydim,xdim,ydim,xdim,0.0 WRITE (1,*) 'newpath moveto lineto lineto lineto closepath clip stroke' WRITE (1,*) '0.5 setlinewidth' ! draw high-symmetry lines DO n=1,nks IF (high_symmetry(n)) THEN WRITE (1,'(4(f8.3,1x)," riga")') & kx(n)*xdim/kx(nks), 0.0, kx(n)*xdim/kx(nks), ydim ENDIF DO i=1,nbnd IF (is_in_range(i)) WRITE (1,'(2(f8.3,1x)," dot")' ) & kx(n)*xdim/kx(nks), (e(i,n)-emin)*ydim/(emax-emin) ENDDO ENDDO ! draw bands ALLOCATE (k_interp(4*nks), e_interp(4*nks), coef_interp(nks,4)) DO i=1,nbnd IF (is_in_range(i)) THEN ! No interpolation: ! write (1,'(9(f8.3,1x))') ( kx(n)*xdim/kx(nks), & ! (e(i,n)-emin)*ydim/(emax-emin),n=nks,1,-1) ! write (1,'(i4," banda")' ) nks-1 ! Spline interpolation with twice as many points: ! ni=1 nf=1 DO nl=1,nlines ni=nf nf=nf + npoints(nl)-1 n_interp= 2*(nf-ni)+1 IF (n_interp < 7) CYCLE DO n=1,n_interp k_interp(n)=kx(ni)+(n-1)*(kx(nf)-kx(ni))/(n_interp-1) ENDDO DO n=ni,nf e_in(n-ni+1)=e(i,n) ENDDO CALL spline_interpol ( kx(ni), e_in, nf-ni+1, & k_interp, e_interp, n_interp ) WRITE (1,'(9(f8.3,1x))') ( k_interp(n)*xdim/kx(nks), & (e_interp(n)-emin)*ydim/(emax-emin),n=n_interp,1,-1) WRITE (1,'(i4," banda")' ) n_interp-1 ENDDO ENDIF ENDDO WRITE (1,*) 'grestore' WRITE (1,*) '% delete next lines for insertion in a tex file' WRITE (1,'(a)') '%%Page' WRITE (1,*) 'showpage' CLOSE (unit=1) PRINT '("bands in PostScript format written to file ",a)', filename 30 CONTINUE STOP 20 PRINT '("Error reading k-point # ",i4)', n STOP CONTAINS SUBROUTINE spline_interpol (xin, yin, nin, xout, yout, nout) ! xin and xout should be in increasing order, with ! xout(1) <= xin(1), xout(nout) <= xin(nin) IMPLICIT NONE INTEGER, INTENT(in) :: nin, nout real, INTENT(in) :: xin(nin), yin(nin), xout(nout) real, INTENT(out) :: yout(nout) ! work space (automatically allocated) real :: d2y(nin) real :: dy1, dyn dy1 = (yin(2)-yin(1))/(xin(2)-xin(1)) dyn = 0.0 CALL spline( xin, yin, nin, dy1, dyn, d2y) CALL splint( nin, xin, yin, d2y, nout, xout, yout) RETURN END SUBROUTINE spline_interpol SUBROUTINE spline(x, y, n, yp1, ypn, d2y) IMPLICIT NONE INTEGER, INTENT(in) :: n real, INTENT(in) :: x(n), y(n), yp1, ypn real, INTENT(out):: d2y(n) ! work space (automatically allocated) real :: work(n) INTEGER :: i, k real :: sig, p, qn, un d2y(1)=-0.5 work(1)=(3.0/(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1) DO i=2,n-1 sig=(x(i)-x(i-1))/(x(i+1)-x(i-1)) p=sig*d2y(i-1)+2.0 d2y(i)=(sig-1.0)/p work(i)=(6.0*((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1)) & /(x(i)-x(i-1)))/(x(i+1)-x(i-1))-sig*work(i-1))/p ENDDO qn=0.5 un=(3.0/(x(n)-x(n-1)))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1))) d2y(n)=(un-qn*work(n-1))/(qn*d2y(n-1)+1.0) DO k=n-1,1,-1 d2y(k)=d2y(k)*d2y(k+1)+work(k) ENDDO RETURN END SUBROUTINE spline SUBROUTINE splint (nspline, xspline, yspline, d2y, nfit, xfit, yfit) IMPLICIT NONE ! input INTEGER, INTENT(in) :: nspline, nfit real, INTENT(in) :: xspline(nspline), yspline(nspline), xfit(nfit), & d2y(nspline) real, INTENT(out) :: yfit(nfit) INTEGER :: klo, khi, i real :: a, b, h if (nspline==2) THEN print *, "n=",nspline,nfit print *, xspline print *, yspline print *, d2y end if klo=1 DO i=1,nfit DO khi=klo+1, nspline IF(xspline(khi) >= xfit(i)) THEN IF(xspline(khi-1) <= xfit(i)) THEN klo = khi-1 ELSE IF (klo == 1 .and. khi-1 == 1) THEN ! the case xfit(i) < xspline(1) should not happen ! but since it may be due to a numerical artifact ! we just continue PRINT *, ' SPLINT WARNING: xfit(i) < xspline(1)', & xfit(i), xspline(1) ELSE STOP ' SPLINT ERROR: xfit not properly ordered' ENDIF ENDIF h= xspline(khi) - xspline(klo) a= (xspline(khi)-xfit(i))/h b= (xfit(i)-xspline(klo))/h yfit(i) = a*yspline(klo) + b*yspline(khi) & + ( (a**3-a)*d2y(klo) + (b**3-b)*d2y(khi) )*h*h/6.0 GOTO 10 ENDIF ENDDO ! the case xfit(i) > xspline(nspline) should also not happen ! but again it may be due to a numerical artifact ! A properly chosen extrapolation formula should be used here ! (and in the case xfit(i) < xspline(1) above as well) but ! I am too lazy to write one - PG PRINT *, ' SPLINT WARNING: xfit(i) > xspline(nspline)', & xfit(i), xspline(nspline) khi = klo+1 h= xspline(khi) - xspline(klo) a= (xspline(khi)-xfit(i))/h b= (xfit(i)-xspline(klo))/h yfit(i) = a*yspline(klo) + b*yspline(khi) & + ( (a**3-a)*d2y(klo) + (b**3-b)*d2y(khi) )*h*h/6.0 ! 10 CONTINUE ENDDO RETURN END SUBROUTINE splint END PROGRAM plotband espresso-5.1/PP/examples/0000755000175000017500000000000012341373041013435 5ustar mbambaespresso-5.1/PP/examples/QExml_example/0000755000175000017500000000000012341373041016176 5ustar mbambaespresso-5.1/PP/examples/QExml_example/README.txt0000644000175000017500000000154412341372774017714 0ustar mbamba =========================================== QEXML example (courtesy of Andrea Ferretti) =========================================== list of actions to perform (~espresso = root directory of QE): - compile pw.x - go to ~espresso/PP/, compile qexml.x (type "make qexml.x") - come back to this directory - run scf.in using pw.x to produce a .save dir (verify that pseudo_dir points to the directory containing pseudopotentials) - run qexml.x: : ~espresso/PP/qexml.x < example.in - convert to textual some of the *.dat files to double check that everything is consistent; in particular silicon.save/gvectors.dat silicon.save/K00002/gkvectors.dat silicon.save/K00002/evc.dat to do this run the iotk script ~espresso/bin/iotk convert file.dat file.xml - have a look at ~espresso/PP/qexml_example.f90 to see the use of qexml.f90 routines espresso-5.1/PP/examples/QExml_example/example.in0000644000175000017500000000011412341372774020171 0ustar mbamba &INPUT prefix='silicon' work_dir='./' ib = 4 ik = 2 / espresso-5.1/PP/examples/QExml_example/scf.in0000644000175000017500000000105712341372774017320 0ustar mbamba &control calculation = 'scf' restart_mode='from_scratch', prefix='silicon', tprnfor = .true. pseudo_dir = '../../../pseudo/' outdir = './' wf_collect = .TRUE. / &system ibrav= 2, celldm(1) =10.599478, nat= 2, ntyp= 1, ecutwfc =30.0, nbnd = 16 nr1 = 32 nr2 = 32 nr3 = 32 / &electrons mixing_mode = 'plain' mixing_beta = 0.7 conv_thr = 1.0d-8 / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.1/PP/examples/WorkFct_example/0000755000175000017500000000000012341373041016527 5ustar mbambaespresso-5.1/PP/examples/WorkFct_example/run_example0000755000175000017500000001766512341372774021027 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether ECHO has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x, pp.x, and average.x to" $ECHO "compute the work function of a metal using the slab-supercell" $ECHO "approximation. This example is of a 4 layer unrelaxed Al(100) slab" $ECHO "with 5 equivalent layers of vacuum between the surfaces." $ECHO $ECHO "The work function will be computed two ways:" $ECHO "1) Calculating directly the difference between the potential in" $ECHO " the vacuum region and the Fermi energy of the slab." $ECHO $ECHO "2) By referencing the macroscopic average of the potential" $ECHO " of the interior of the slab to that of a bulk calculation, and" $ECHO " taking the difference of the V_vacuum of the slab and E_Fermi" $ECHO " of the bulk." $ECHO $ECHO "The work functions will be written in a file Al100.wf.data" $ECHO "If gnuplot is detected, a plot will be generated Al100.wf.eps" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x pp.x average.x" PSEUDO_LIST=" Al.pbe-rrkj.UPF " $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for gnuplot GP_COMMAND=`which gnuplot 2>/dev/null` if [ "$GP_COMMAND" = "" ]; then $ECHO $ECHO "gnuplot not in PATH" $ECHO "Results will not be plotted" fi # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" PP_COMMAND="$PARA_PREFIX $BIN_DIR/pp.x $PARA_POSTFIX" AVG_COMMAND="$BIN_DIR/average.x" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running pp.x as: $PP_COMMAND" $ECHO " running average.x as: $AVG_COMMAND" $ECHO " running gnuplot as: $GP_COMMAND" $ECHO # self-consistent calculation for Al(100) cat > Al100.in << EOF &CONTROL calculation = "scf", pseudo_dir = "$PSEUDO_DIR", outdir = "$TMP_DIR", / &SYSTEM ibrav = 6, celldm(1) = 5.4235090117D0, celldm(3) = 6.3639610306789276D0, nat = 4, ntyp = 1, ecutwfc = 15.D0, occupations = "smearing", smearing = "m-v", degauss = 0.05D0, nr3 = 144, / &ELECTRONS conv_thr = 1.D-10, mixing_beta = 0.7D0, / ATOMIC_SPECIES Al 1.0 Al.pbe-rrkj.UPF ATOMIC_POSITIONS Al 0.00000000 0.00000000 4.2426406871192848 Al 0.50000000 0.50000000 3.5355339059327378 Al 0.00000000 0.00000000 2.8284271247461898 Al 0.50000000 0.50000000 2.1213203435596428 K_POINTS {automatic} 3 3 1 1 1 0 EOF $ECHO " running the scf calculation for Al(100) ...\c" $PW_COMMAND < Al100.in > Al100.out $ECHO " done" # post-processing for potential cat > Al100.pp.in << EOF &inputPP outdir='$TMP_DIR', plot_num=11 filplot = 'Al100.pot' / &plot iflag=3, output_format=3 / EOF $ECHO " running pp.x to obtain 3D potential file ...\c" $PP_COMMAND < Al100.pp.in > Al100.pp.out $ECHO " done" # calculating macroscopic averages of Au(100) cat > Al100.avg.in < Al100.avg.out $ECHO " done" # self-consistent calculation for Al bulk ref cat > Al.bulkref.in << EOF &CONTROL calculation = "scf", pseudo_dir = "$PSEUDO_DIR", outdir = "$TMP_DIR", / &SYSTEM ibrav = 1, celldm(1) = 7.67000000D0, nat = 4, ntyp = 1, ecutwfc = 25.D0, occupations = "smearing", smearing = "m-v", degauss = 0.05D0, / &ELECTRONS conv_thr = 1.D-10, mixing_beta = 0.7D0, / ATOMIC_SPECIES Al 1.0 Al.pbe-rrkj.UPF ATOMIC_POSITIONS Al 0.0000000 0.0000000 0.000000 Al 0.5000000 0.5000000 0.000000 Al 0.0000000 0.5000000 0.500000 Al 0.5000000 0.0000000 0.500000 K_POINTS {automatic} 3 3 3 1 1 1 EOF $ECHO " running the scf calculation for the Al bulk reference ...\c" $PW_COMMAND < Al.bulkref.in > Al.bulkref.out $ECHO " done" # post-processing for potential cat > Al.bulkref.pp.in << EOF &inputPP outdir='$TMP_DIR', plot_num=11 filplot = 'Albulkrefpot' / &plot iflag=3, output_format=3 / EOF $ECHO " running pp.x to obtain 3D Bulk potential file ...\c" $PP_COMMAND < Al.bulkref.pp.in > Al.bulkref.pp.out $ECHO " done" # calculating macroscopic averages of Au(100) cat > Al.bulkref.avg.in < Al.bulkref.avg.out $ECHO " done" # Extract the Fermi energies and V references # script written specific to this example eFermiSlab=`grep "Fermi" Al100.out | cut -d \ -f 14` eFermiBulk=`grep "Fermi" Al.bulkref.out | cut -d \ -f 14` vVac=`grep "0.000000000" Al100.avg.out | cut -d \ -f 13` vBulk=`grep "0.000000000" Al.bulkref.avg.out | cut -d \ -f 12` vSlab=`grep "17.8087" Al100.avg.out | cut -d \ -f 10` vVac=`awk "BEGIN{print $vVac*13.6058}"` vBulk=`awk "BEGIN{print $vBulk*13.6058}"` vSlab=`awk "BEGIN{print $vSlab*13.6058}"` eFermiBulk=`awk "BEGIN{print $eFermiBulk-$vBulk+$vSlab}"` wf1=`awk "BEGIN{ print $vVac-$eFermiSlab }"` wf2=`awk "BEGIN{ print $vVac-$eFermiBulk }"` # # if gnuplot was found, the results are plotted # if [ "$GP_COMMAND" = "" ]; then break else cat > gnuplot.tmp < Al100.wf.data < matrix 0.00 Mb ( 32, 10) Arrays for rho mixing 1.91 Mb ( 15625, 8) Initial potential from superposition of free atoms starting charge 11.98964, renormalised to 12.00000 Starting wfc are 16 atomic wfcs total cpu time spent up to now is 0.20 secs per-process dynamical memory: 11.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.86E-04, avg # of iterations = 1.2 total cpu time spent up to now is 0.50 secs total energy = -16.59824712 Ry Harris-Foulkes estimate = -16.59888968 Ry estimated scf accuracy < 0.02185657 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.82E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.62 secs total energy = -16.59851051 Ry Harris-Foulkes estimate = -16.59840323 Ry estimated scf accuracy < 0.00181386 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-05, avg # of iterations = 1.0 total cpu time spent up to now is 0.75 secs total energy = -16.59853814 Ry Harris-Foulkes estimate = -16.59853662 Ry estimated scf accuracy < 0.00000101 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.43E-09, avg # of iterations = 3.5 total cpu time spent up to now is 0.93 secs total energy = -16.59854103 Ry Harris-Foulkes estimate = -16.59854104 Ry estimated scf accuracy < 0.00000007 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.60E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.07 secs total energy = -16.59854103 Ry Harris-Foulkes estimate = -16.59854103 Ry estimated scf accuracy < 1.8E-09 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-11, avg # of iterations = 2.0 total cpu time spent up to now is 1.23 secs total energy = -16.59854104 Ry Harris-Foulkes estimate = -16.59854104 Ry estimated scf accuracy < 3.8E-10 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.15E-12, avg # of iterations = 1.0 total cpu time spent up to now is 1.35 secs End of self-consistent calculation k = 0.1667 0.1667 0.1667 ( 943 PWs) bands (ev): -2.4333 3.3724 3.3724 3.3724 8.8754 8.8754 8.8754 9.3357 9.3357 9.3357 k = 0.1667 0.1667-0.5000 ( 950 PWs) bands (ev): -0.4654 -0.4654 5.1376 5.1376 5.4005 5.4005 10.8230 10.8230 10.8313 10.8313 k = 0.1667-0.5000-0.5000 ( 976 PWs) bands (ev): 1.4776 1.4776 1.4776 1.4777 7.1520 7.1520 7.1520 7.1520 12.9055 12.9055 k =-0.5000-0.5000-0.5000 ( 968 PWs) bands (ev): 3.2953 3.2953 3.2953 3.2953 3.5097 3.5097 3.5097 3.5097 19.0941 19.0941 the Fermi energy is 7.9888 ev ! total energy = -16.59854104 Ry Harris-Foulkes estimate = -16.59854104 Ry estimated scf accuracy < 6.4E-11 Ry The total energy is the sum of the following terms: one-electron contribution = 11.27736161 Ry hartree contribution = 0.03346972 Ry xc contribution = -6.40260489 Ry ewald contribution = -21.51956124 Ry smearing contrib. (-TS) = 0.01279376 Ry convergence has been achieved in 7 iterations Writing output data file pwscf.save PWSCF : 1.41s CPU time, 1.55s wall time init_run : 0.18s CPU electrons : 1.15s CPU Called by init_run: wfcinit : 0.07s CPU potinit : 0.02s CPU Called by electrons: c_bands : 0.85s CPU ( 8 calls, 0.106 s avg) sum_band : 0.17s CPU ( 8 calls, 0.021 s avg) v_of_rho : 0.12s CPU ( 8 calls, 0.015 s avg) mix_rho : 0.02s CPU ( 8 calls, 0.002 s avg) Called by c_bands: init_us_2 : 0.03s CPU ( 68 calls, 0.000 s avg) cegterg : 0.80s CPU ( 32 calls, 0.025 s avg) Called by *egterg: h_psi : 0.71s CPU ( 90 calls, 0.008 s avg) g_psi : 0.01s CPU ( 54 calls, 0.000 s avg) cdiaghg : 0.03s CPU ( 82 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.03s CPU ( 90 calls, 0.000 s avg) General routines calbec : 0.05s CPU ( 90 calls, 0.001 s avg) cft3 : 0.05s CPU ( 81 calls, 0.001 s avg) cft3s : 0.69s CPU ( 1952 calls, 0.000 s avg) davcio : 0.00s CPU ( 100 calls, 0.000 s avg) espresso-5.1/PP/examples/WorkFct_example/reference/Al100.avg.in0000644000175000017500000000004412341372774022360 0ustar mbamba1 Al100.pot 1.D0 1440 3 3.835000000 espresso-5.1/PP/examples/WorkFct_example/reference/Al.bulkref.avg.in0000644000175000017500000000004712341372774023573 0ustar mbamba1 Albulkrefpot 1.D0 25 3 7.67000000000 espresso-5.1/PP/examples/WorkFct_example/reference/Al.bulkref.pp.in0000644000175000017500000000020012341372774023424 0ustar mbamba&inputPP outdir='/home/giannozz/tmp', plot_num=11 filplot = 'Albulkrefpot' / &plot iflag=3, output_format=3 / espresso-5.1/PP/examples/WorkFct_example/reference/Al100.wf.eps0000644000175000017500000012507112341372774022410 0ustar mbamba%!PS-Adobe-2.0 EPSF-2.0 %%Title: Al100.wf.eps %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Tue Apr 29 18:04:39 2008 %%DocumentFonts: (atend) %%BoundingBox: 50 50 410 302 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext false def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -46 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (Al100.wf.eps) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Paolo Giannozzi) % /Producer (gnuplot) % /Keywords () /CreationDate (Tue Apr 29 18:04:39 2008) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop /MFshow { { dup 5 get 3 ge { 5 get 3 eq {gsave} {grestore} ifelse } {dup dup 0 get findfont exch 1 get scalefont setfont [ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6 get exch 4 get {show} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq {dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5 get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop pop aload pop M} ifelse }ifelse }ifelse } ifelse } forall} bind def /MFwidth {0 exch { dup 5 get 3 ge { 5 get 3 eq { 0 } { pop } ifelse } {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont 6 get stringwidth pop add} {pop} ifelse} ifelse} forall} bind def /MLshow { currentpoint stroke M 0 exch R Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def /MRshow { currentpoint stroke M exch dup MFwidth neg 3 -1 roll R Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def /MCshow { currentpoint stroke M exch dup MFwidth -2 div 3 -1 roll R Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def /XYsave { [( ) 1 2 true false 3 ()] } bind def /XYrestore { [( ) 1 2 true false 4 ()] } bind def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 140 scalefont setfont 1.000 UL LTb 1570 420 M 63 0 V 4389 0 R -63 0 V stroke 1486 420 M [ [(Helvetica) 140.0 0.0 true true 0 (-12)] ] -46.7 MRshow 1.000 UL LTb 1570 632 M 63 0 V 4389 0 R -63 0 V stroke 1486 632 M [ [(Helvetica) 140.0 0.0 true true 0 (-11)] ] -46.7 MRshow 1.000 UL LTb 1570 844 M 63 0 V 4389 0 R -63 0 V stroke 1486 844 M [ [(Helvetica) 140.0 0.0 true true 0 (-10)] ] -46.7 MRshow 1.000 UL LTb 1570 1056 M 63 0 V 4389 0 R -63 0 V stroke 1486 1056 M [ [(Helvetica) 140.0 0.0 true true 0 (-9)] ] -46.7 MRshow 1.000 UL LTb 1570 1268 M 63 0 V 4389 0 R -63 0 V stroke 1486 1268 M [ [(Helvetica) 140.0 0.0 true true 0 (-8)] ] -46.7 MRshow 1.000 UL LTb 1570 1480 M 63 0 V 4389 0 R -63 0 V stroke 1486 1480 M [ [(Helvetica) 140.0 0.0 true true 0 (-7)] ] -46.7 MRshow 1.000 UL LTb 1570 1692 M 63 0 V 4389 0 R -63 0 V stroke 1486 1692 M [ [(Helvetica) 140.0 0.0 true true 0 (-6)] ] -46.7 MRshow 1.000 UL LTb 1570 1904 M 63 0 V 4389 0 R -63 0 V stroke 1486 1904 M [ [(Helvetica) 140.0 0.0 true true 0 (-5)] ] -46.7 MRshow 1.000 UL LTb 1570 2116 M 63 0 V 4389 0 R -63 0 V stroke 1486 2116 M [ [(Helvetica) 140.0 0.0 true true 0 (-4)] ] -46.7 MRshow 1.000 UL LTb 1570 2328 M 63 0 V 4389 0 R -63 0 V stroke 1486 2328 M [ [(Helvetica) 140.0 0.0 true true 0 (-3)] ] -46.7 MRshow 1.000 UL LTb 1570 2540 M 63 0 V 4389 0 R -63 0 V stroke 1486 2540 M [ [(Helvetica) 140.0 0.0 true true 0 (-2)] ] -46.7 MRshow 1.000 UL LTb 1570 2752 M 63 0 V 4389 0 R -63 0 V stroke 1486 2752 M [ [(Helvetica) 140.0 0.0 true true 0 (-1)] ] -46.7 MRshow 1.000 UL LTb 1570 2964 M 63 0 V 4389 0 R -63 0 V stroke 1486 2964 M [ [(Helvetica) 140.0 0.0 true true 0 ( 0)] ] -46.7 MRshow 1.000 UL LTb 1570 3176 M 63 0 V 4389 0 R -63 0 V stroke 1486 3176 M [ [(Helvetica) 140.0 0.0 true true 0 ( 1)] ] -46.7 MRshow 1.000 UL LTb 1570 3388 M 63 0 V 4389 0 R -63 0 V stroke 1486 3388 M [ [(Helvetica) 140.0 0.0 true true 0 ( 2)] ] -46.7 MRshow 1.000 UL LTb 1570 3600 M 63 0 V 4389 0 R -63 0 V stroke 1486 3600 M [ [(Helvetica) 140.0 0.0 true true 0 ( 3)] ] -46.7 MRshow 1.000 UL LTb 1570 3812 M 63 0 V 4389 0 R -63 0 V stroke 1486 3812 M [ [(Helvetica) 140.0 0.0 true true 0 ( 4)] ] -46.7 MRshow 1.000 UL LTb 1570 4024 M 63 0 V 4389 0 R -63 0 V stroke 1486 4024 M [ [(Helvetica) 140.0 0.0 true true 0 ( 5)] ] -46.7 MRshow 1.000 UL LTb 1570 4236 M 63 0 V 4389 0 R -63 0 V stroke 1486 4236 M [ [(Helvetica) 140.0 0.0 true true 0 ( 6)] ] -46.7 MRshow 1.000 UL LTb 1570 4448 M 63 0 V 4389 0 R -63 0 V stroke 1486 4448 M [ [(Helvetica) 140.0 0.0 true true 0 ( 7)] ] -46.7 MRshow 1.000 UL LTb 1570 4660 M 63 0 V 4389 0 R -63 0 V stroke 1486 4660 M [ [(Helvetica) 140.0 0.0 true true 0 ( 8)] ] -46.7 MRshow 1.000 UL LTb 1570 4872 M 63 0 V 4389 0 R -63 0 V stroke 1486 4872 M [ [(Helvetica) 140.0 0.0 true true 0 ( 9)] ] -46.7 MRshow 1.000 UL LTb 1570 420 M 0 63 V 0 4389 R 0 -63 V stroke 1570 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 0)] ] -46.7 MCshow 1.000 UL LTb 2065 420 M 0 63 V 0 4389 R 0 -63 V stroke 2065 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 2)] ] -46.7 MCshow 1.000 UL LTb 2559 420 M 0 63 V 0 4389 R 0 -63 V stroke 2559 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 4)] ] -46.7 MCshow 1.000 UL LTb 3054 420 M 0 63 V 0 4389 R 0 -63 V stroke 3054 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 6)] ] -46.7 MCshow 1.000 UL LTb 3549 420 M 0 63 V 0 4389 R 0 -63 V stroke 3549 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 8)] ] -46.7 MCshow 1.000 UL LTb 4043 420 M 0 63 V 0 4389 R 0 -63 V stroke 4043 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 10)] ] -46.7 MCshow 1.000 UL LTb 4538 420 M 0 63 V 0 4389 R 0 -63 V stroke 4538 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 12)] ] -46.7 MCshow 1.000 UL LTb 5033 420 M 0 63 V 0 4389 R 0 -63 V stroke 5033 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 14)] ] -46.7 MCshow 1.000 UL LTb 5527 420 M 0 63 V 0 4389 R 0 -63 V stroke 5527 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 16)] ] -46.7 MCshow 1.000 UL LTb 6022 420 M 0 63 V 0 4389 R 0 -63 V stroke 6022 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 18)] ] -46.7 MCshow 1.000 UL LTb 1.000 UL LTb 1570 4872 N 0 -4452 V 4452 0 V 0 4452 V -4452 0 V Z stroke LCb setrgbcolor 1080 2646 M currentpoint gsave translate 90 rotate 0 0 moveto [ [(Helvetica) 140.0 0.0 true true 0 (Energy \(eV\))] ] -46.7 MCshow grestore LTb LCb setrgbcolor 3796 70 M [ [(Helvetica) 140.0 0.0 true true 0 (Length \(Angstroms\))] ] -46.7 MCshow LTb 1.000 UP 6071 4109 M [ [(Helvetica) 140.0 0.0 true true 0 (V)] [(Helvetica) 112.0 -42.0 true true 0 (Vacuum)] ] -32.7 MLshow 6071 3303 M [ [(Helvetica) 140.0 0.0 true true 0 (E)] [(Helvetica) 112.0 -42.0 true true 0 (Fermi, Slab)] ] -32.7 MLshow 6071 3091 M [ [(Helvetica) 140.0 0.0 true true 0 (E)] [(Helvetica) 112.0 -42.0 true true 0 (Fermi, Bulk)] ] -32.7 MLshow 6071 1607 M [ [(Helvetica) 140.0 0.0 true true 0 (V)] [(Helvetica) 112.0 -42.0 true true 0 (Bulk)] ] -32.7 MLshow 6269 2816 M [ [(Helvetica) 140.0 0.0 true true 0 (Work function calculated )] ] -46.7 MLshow 6269 2676 M [ [(Helvetica) 140.0 0.0 true true 0 ( with no bulk reference )] ] -46.7 MLshow 6269 2536 M [ [(Helvetica) 140.0 0.0 true true 0 ( )] [(Symbol) 140.0 0.0 true true 0 (F)] [(Helvetica) 140.0 0.0 true true 0 ( = 4.15219 eV)] ] -46.7 MLshow 6269 2116 M [ [(Helvetica) 140.0 0.0 true true 0 (Work function calculated )] ] -46.7 MLshow 6269 1976 M [ [(Helvetica) 140.0 0.0 true true 0 ( with bulk reference )] ] -46.7 MLshow 6269 1836 M [ [(Helvetica) 140.0 0.0 true true 0 ( )] [(Symbol) 140.0 0.0 true true 0 (F)] [(Helvetica) 140.0 0.0 true true 0 ( = 4.54641 eV)] ] -46.7 MLshow 1.000 UL LTb 5.000 UL LT0 LTb 3724 4272 M [ [(Helvetica) 140.0 0.0 true true 0 (V)] [(Helvetica) 112.0 -42.0 true true 0 (Macroscopic Average, Slab)] ] -32.7 MRshow LT0 3808 4272 M 399 0 V 1570 4152 M 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 1893 4152 L 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 -1 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 -1 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 -1 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 -1 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 2223 4148 L 3 0 V 3 -1 V 3 0 V 3 0 V 3 0 V 3 0 V 3 -1 V 4 0 V 3 0 V 3 0 V 3 0 V 3 -1 V 3 0 V 3 0 V 4 0 V 3 0 V 3 -1 V 3 0 V 3 0 V 3 -1 V 3 0 V 4 0 V 3 0 V 3 -1 V 3 0 V 3 0 V 3 -1 V 3 0 V 3 -1 V 4 0 V 3 0 V 3 -1 V 3 0 V 3 -1 V 3 0 V 3 -1 V 4 0 V 3 -1 V 3 0 V 3 -1 V 3 0 V 3 -1 V 3 0 V 4 -1 V 3 -1 V 3 0 V 3 -1 V 3 -1 V 3 0 V 3 -1 V 4 -1 V 3 -1 V 3 0 V 3 -1 V 3 -1 V 3 -1 V 3 -1 V 3 -1 V 4 -1 V 3 -1 V 3 -1 V 3 -1 V 3 -1 V 3 -1 V 3 -1 V 4 -1 V 3 -2 V 3 -1 V 3 -1 V 3 -2 V 3 -1 V 3 -2 V 4 -1 V 3 -2 V 3 -1 V 3 -2 V 3 -2 V 3 -1 V 3 -2 V 3 -2 V 4 -2 V 3 -2 V 3 -2 V 3 -2 V 3 -2 V 3 -2 V 3 -2 V 4 -3 V 3 -2 V 3 -2 V 3 -3 V 3 -2 V 3 -3 V 3 -3 V 4 -2 V 3 -3 V 3 -3 V 3 -3 V 3 -3 V 3 -3 V 3 -3 V 4 -4 V 3 -3 V 3 -4 V 2552 4026 L 3 -4 V 3 -4 V 3 -4 V 3 -4 V 4 -4 V 3 -5 V 3 -4 V 3 -5 V 3 -5 V 3 -5 V 3 -6 V 4 -5 V 3 -6 V 3 -6 V 3 -6 V 3 -6 V 3 -7 V 3 -7 V 4 -7 V 3 -7 V 3 -8 V 3 -7 V 3 -8 V 3 -9 V 3 -8 V 3 -9 V 4 -9 V 3 -10 V 3 -9 V 3 -10 V 3 -11 V 3 -10 V 3 -11 V 4 -11 V 3 -12 V 3 -11 V 3 -12 V 3 -13 V 3 -12 V 3 -13 V 4 -13 V 3 -14 V 3 -14 V 3 -14 V 3 -14 V 3 -15 V 3 -15 V 4 -15 V 3 -16 V 3 -15 V 3 -17 V 3 -16 V 3 -17 V 3 -17 V 3 -17 V 4 -17 V 3 -18 V 3 -18 V 3 -19 V 3 -18 V 3 -19 V 3 -19 V 4 -19 V 3 -20 V 3 -19 V 3 -20 V 3 -20 V 3 -21 V 3 -20 V 4 -21 V 3 -21 V 3 -21 V 3 -21 V 3 -21 V 3 -22 V 3 -21 V 3 -22 V 4 -22 V 3 -21 V 3 -22 V 3 -22 V 3 -22 V 3 -22 V 3 -22 V 4 -23 V 3 -22 V 3 -22 V 3 -22 V 3 -22 V 3 -22 V 3 -22 V 4 -22 V 3 -22 V 3 -22 V 3 -22 V 3 -21 V 3 -22 V 3 -21 V 3 -22 V 4 -21 V 3 -21 V 3 -21 V 3 -20 V 3 -21 V 2881 2444 L 3 -20 V 4 -20 V 3 -20 V 3 -19 V 3 -20 V 3 -19 V 3 -18 V 3 -19 V 4 -18 V 3 -18 V 3 -18 V 3 -17 V 3 -18 V 3 -17 V 3 -16 V 4 -16 V 3 -16 V 3 -16 V 3 -16 V 3 -15 V 3 -15 V 3 -14 V 3 -14 V 4 -14 V 3 -14 V 3 -13 V 3 -13 V 3 -13 V 3 -12 V 3 -12 V 4 -12 V 3 -11 V 3 -11 V 3 -11 V 3 -10 V 3 -10 V 3 -10 V 4 -10 V 3 -9 V 3 -9 V 3 -8 V 3 -9 V 3 -8 V 3 -8 V 3 -7 V 4 -7 V 3 -7 V 3 -7 V 3 -6 V 3 -7 V 3 -6 V 3 -5 V 4 -6 V 3 -5 V 3 -5 V 3 -5 V 3 -4 V 3 -5 V 3 -4 V 4 -4 V 3 -4 V 3 -3 V 3 -4 V 3 -3 V 3 -3 V 3 -3 V 4 -3 V 3 -3 V 3 -3 V 3 -2 V 3 -3 V 3 -2 V 3 -2 V 3 -2 V 4 -2 V 3 -2 V 3 -2 V 3 -2 V 3 -2 V 3 -2 V 3 -1 V 4 -2 V 3 -1 V 3 -2 V 3 -1 V 3 -2 V 3 -1 V 3 -2 V 4 -1 V 3 -1 V 3 -1 V 3 -2 V 3 -1 V 3 -1 V 3 -1 V 3 -1 V 4 -1 V 3 -1 V 3 -1 V 3 -1 V 3 -1 V 3 -1 V 3 -1 V 4 -1 V 3211 1646 L 3 -1 V 3 0 V 3 -1 V 3 -1 V 3 -1 V 4 0 V 3 -1 V 3 -1 V 3 -1 V 3 0 V 3 -1 V 3 -1 V 3 0 V 4 -1 V 3 0 V 3 -1 V 3 -1 V 3 0 V 3 -1 V 3 0 V 4 -1 V 3 -1 V 3 0 V 3 -1 V 3 0 V 3 -1 V 3 -1 V 4 0 V 3 -1 V 3 0 V 3 -1 V 3 0 V 3 -1 V 3 0 V 4 -1 V 3 -1 V 3 0 V 3 -1 V 3 0 V 3 -1 V 3 0 V 3 -1 V 4 0 V 3 -1 V 3 0 V 3 -1 V 3 0 V 3 -1 V 3 0 V 4 -1 V 3 0 V 3 -1 V 3 0 V 3 -1 V 3 0 V 3 -1 V 4 0 V 3 0 V 3 -1 V 3 0 V 3 -1 V 3 0 V 3 -1 V 3 0 V 4 0 V 3 -1 V 3 0 V 3 -1 V 3 0 V 3 0 V 3 -1 V 4 0 V 3 0 V 3 -1 V 3 0 V 3 0 V 3 -1 V 3 0 V 4 0 V 3 -1 V 3 0 V 3 0 V 3 0 V 3 -1 V 3 0 V 4 0 V 3 0 V 3 -1 V 3 0 V 3 0 V 3 0 V 3 0 V 3 -1 V 4 0 V 3 0 V 3 0 V 3 0 V 3 -1 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3540 1599 L 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 -1 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 -1 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3870 1597 L 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 1 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 1 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 1 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 1 V 4 0 V 3 0 V 3 0 V 3 0 V 3 1 V 3 0 V 3 0 V 4 0 V 3 0 V 3 1 V 3 0 V 3 0 V 3 0 V 3 1 V 3 0 V 4 0 V 3 0 V 4199 1605 L 3 0 V 3 0 V 3 1 V 3 0 V 4 0 V 3 1 V 3 0 V 3 0 V 3 1 V 3 0 V 3 0 V 4 1 V 3 0 V 3 1 V 3 0 V 3 0 V 3 1 V 3 0 V 4 1 V 3 0 V 3 1 V 3 0 V 3 0 V 3 1 V 3 0 V 3 1 V 4 0 V 3 1 V 3 0 V 3 1 V 3 0 V 3 1 V 3 0 V 4 1 V 3 0 V 3 1 V 3 0 V 3 1 V 3 0 V 3 1 V 4 0 V 3 1 V 3 0 V 3 1 V 3 1 V 3 0 V 3 1 V 3 0 V 4 1 V 3 0 V 3 1 V 3 0 V 3 1 V 3 1 V 3 0 V 4 1 V 3 0 V 3 1 V 3 1 V 3 0 V 3 1 V 3 0 V 4 1 V 3 1 V 3 0 V 3 1 V 3 0 V 3 1 V 3 1 V 4 0 V 3 1 V 3 1 V 3 1 V 3 0 V 3 1 V 3 1 V 3 1 V 4 0 V 3 1 V 3 1 V 3 1 V 3 1 V 3 1 V 3 1 V 4 1 V 3 1 V 3 1 V 3 1 V 3 1 V 3 1 V 3 1 V 4 1 V 3 2 V 3 1 V 3 1 V 3 1 V 3 2 V 3 1 V 3 2 V 4 1 V 3 1 V 3 2 V 3 2 V 3 1 V 4528 1678 L 3 2 V 4 2 V 3 2 V 3 2 V 3 2 V 3 2 V 3 2 V 3 2 V 4 3 V 3 2 V 3 3 V 3 3 V 3 3 V 3 3 V 3 3 V 4 3 V 3 4 V 3 3 V 3 4 V 3 4 V 3 4 V 3 5 V 3 4 V 4 5 V 3 5 V 3 5 V 3 6 V 3 5 V 3 6 V 3 7 V 4 6 V 3 7 V 3 7 V 3 7 V 3 7 V 3 8 V 3 8 V 4 9 V 3 8 V 3 9 V 3 9 V 3 10 V 3 10 V 3 10 V 3 10 V 4 11 V 3 11 V 3 11 V 3 12 V 3 12 V 3 12 V 3 13 V 4 13 V 3 13 V 3 14 V 3 14 V 3 14 V 3 14 V 3 15 V 4 15 V 3 16 V 3 16 V 3 16 V 3 16 V 3 16 V 3 17 V 3 18 V 4 17 V 3 18 V 3 18 V 3 18 V 3 19 V 3 18 V 3 19 V 4 20 V 3 19 V 3 20 V 3 20 V 3 20 V 3 20 V 3 21 V 4 20 V 3 21 V 3 21 V 3 21 V 3 22 V 3 21 V 3 22 V 4 21 V 3 22 V 3 22 V 3 22 V 3 22 V 3 22 V 3 22 V 3 22 V 4 22 V 3 22 V 3 22 V 3 23 V 3 22 V 3 22 V 3 22 V 4 22 V 4858 3007 L 3 21 V 3 22 V 3 22 V 3 21 V 3 22 V 4 21 V 3 21 V 3 21 V 3 21 V 3 21 V 3 20 V 3 21 V 3 20 V 4 20 V 3 19 V 3 20 V 3 19 V 3 19 V 3 19 V 3 18 V 4 19 V 3 18 V 3 18 V 3 17 V 3 17 V 3 17 V 3 17 V 4 16 V 3 17 V 3 15 V 3 16 V 3 15 V 3 15 V 3 15 V 4 14 V 3 14 V 3 14 V 3 14 V 3 13 V 3 13 V 3 12 V 3 13 V 4 12 V 3 11 V 3 12 V 3 11 V 3 11 V 3 10 V 3 11 V 4 10 V 3 9 V 3 10 V 3 9 V 3 9 V 3 8 V 3 9 V 4 8 V 3 7 V 3 8 V 3 7 V 3 7 V 3 7 V 3 7 V 3 6 V 4 6 V 3 6 V 3 6 V 3 5 V 3 6 V 3 5 V 3 5 V 4 5 V 3 4 V 3 5 V 3 4 V 3 4 V 3 4 V 3 4 V 4 4 V 3 3 V 3 4 V 3 3 V 3 4 V 3 3 V 3 3 V 3 3 V 4 3 V 3 3 V 3 3 V 3 2 V 3 3 V 3 3 V 3 2 V 4 3 V 3 2 V 3 2 V 3 3 V 3 2 V 3 2 V 3 2 V 4 2 V 3 2 V 3 2 V 3 2 V 5187 4094 L 3 2 V 3 1 V 4 2 V 3 2 V 3 1 V 3 2 V 3 1 V 3 2 V 3 1 V 3 2 V 4 1 V 3 1 V 3 2 V 3 1 V 3 1 V 3 1 V 3 1 V 4 1 V 3 1 V 3 1 V 3 1 V 3 1 V 3 1 V 3 1 V 4 1 V 3 1 V 3 0 V 3 1 V 3 1 V 3 1 V 3 0 V 3 1 V 4 1 V 3 0 V 3 1 V 3 1 V 3 0 V 3 1 V 3 0 V 4 1 V 3 0 V 3 1 V 3 0 V 3 1 V 3 0 V 3 1 V 4 0 V 3 1 V 3 0 V 3 0 V 3 1 V 3 0 V 3 1 V 4 0 V 3 0 V 3 1 V 3 0 V 3 0 V 3 0 V 3 1 V 3 0 V 4 0 V 3 1 V 3 0 V 3 0 V 3 0 V 3 0 V 3 1 V 4 0 V 3 0 V 3 0 V 3 0 V 3 1 V 3 0 V 3 0 V 4 0 V 3 0 V 3 1 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 1 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 1 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 5516 4150 L 4 0 V 3 0 V 3 1 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 1 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 5846 4152 L 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V stroke 1.000 UL LT1 LTb 3724 4132 M [ [(Helvetica) 140.0 0.0 true true 0 (V)] [(Helvetica) 112.0 -42.0 true true 0 (Planar Average, Slab)] ] -32.7 MRshow LT1 3808 4132 M 399 0 V -2637 20 R 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 1893 4152 L 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 -1 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 2223 4151 L 3 0 V 3 -1 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 -1 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 -1 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 -1 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 -1 V 3 0 V 3 0 V 3 0 V 3 0 V 3 -1 V 3 0 V 4 0 V 3 0 V 3 -1 V 3 0 V 3 0 V 3 -1 V 3 0 V 4 0 V 3 -1 V 3 0 V 3 0 V 3 -1 V 3 0 V 3 0 V 3 -1 V 4 0 V 3 0 V 3 -1 V 3 0 V 3 -1 V 3 0 V 3 -1 V 4 0 V 3 0 V 3 -1 V 3 -1 V 3 0 V 3 -1 V 3 0 V 4 -1 V 3 -1 V 3 0 V 3 -1 V 3 -1 V 3 0 V 3 -1 V 3 -1 V 4 -1 V 3 -1 V 3 -1 V 3 0 V 3 -1 V 3 -1 V 3 -1 V 4 -1 V 3 -1 V 3 -1 V 3 -1 V 3 -1 V 3 -2 V 3 -1 V 4 -1 V 3 -1 V 3 -1 V 3 -2 V 3 -1 V 3 -2 V 3 -1 V 4 -2 V 3 -1 V 3 -2 V 2552 4098 L 3 -1 V 3 -2 V 3 -2 V 3 -2 V 4 -2 V 3 -2 V 3 -2 V 3 -3 V 3 -2 V 3 -2 V 3 -3 V 4 -2 V 3 -3 V 3 -3 V 3 -2 V 3 -3 V 3 -3 V 3 -3 V 4 -3 V 3 -3 V 3 -4 V 3 -3 V 3 -3 V 3 -4 V 3 -3 V 3 -4 V 4 -4 V 3 -4 V 3 -4 V 3 -4 V 3 -5 V 3 -5 V 3 -4 V 4 -5 V 3 -5 V 3 -6 V 3 -5 V 3 -6 V 3 -6 V 3 -6 V 4 -6 V 3 -7 V 3 -6 V 3 -7 V 3 -7 V 3 -7 V 3 -7 V 4 -8 V 3 -7 V 3 -8 V 3 -8 V 3 -7 V 3 -8 V 3 -8 V 3 -8 V 4 -9 V 3 -8 V 3 -8 V 3 -9 V 3 -8 V 3 -9 V 3 -9 V 4 -9 V 3 -9 V 3 -10 V 3 -10 V 3 -10 V 3 -11 V 3 -11 V 4 -12 V 3 -12 V 3 -12 V 3 -14 V 3 -13 V 3 -15 V 3 -16 V 3 -16 V 4 -17 V 3 -18 V 3 -19 V 3 -20 V 3 -21 V 3 -22 V 3 -23 V 4 -24 V 3 -25 V 3 -26 V 3 -28 V 3 -28 V 3 -30 V 3 -31 V 4 -32 V 3 -33 V 3 -33 V 3 -35 V 3 -36 V 3 -37 V 3 -38 V 3 -39 V 4 -39 V 3 -41 V 3 -41 V 3 -42 V 3 -42 V 2881 2748 L 3 -44 V 4 -44 V 3 -45 V 3 -46 V 3 -45 V 3 -47 V 3 -46 V 3 -47 V 4 -47 V 3 -48 V 3 -48 V 3 -48 V 3 -48 V 3 -48 V 3 -48 V 4 -48 V 3 -49 V 3 -48 V 3 -48 V 3 -48 V 3 -48 V 3 -47 V 3 -48 V 4 -47 V 3 -46 V 3 -47 V 3 -46 V 3 -45 V 3 -45 V 3 -44 V 4 -43 V 3 -43 V 3 -42 V 3 -41 V 3 -40 V 3 -40 V 3 -38 V 4 -37 V 3 -37 V 3 -35 V 3 -34 V 3 -32 V 3 -32 V 3 -30 V 3 -29 V 4 -27 V 3 -26 V 3 -24 V 3 -23 V 3 -22 V 3 -19 V 3 -19 V 4 -16 V 3 -16 V 3 -13 V 3 -12 V 3 -10 V 3 -8 V 3 -7 V 4 -5 V 3 -3 V 3 -1 V 3 0 V 3 2 V 3 4 V 3 5 V 4 7 V 3 9 V 3 11 V 3 12 V 3 14 V 3 15 V 3 17 V 3 19 V 4 20 V 3 21 V 3 23 V 3 25 V 3 26 V 3 27 V 3 28 V 4 30 V 3 31 V 3 32 V 3 33 V 3 33 V 3 35 V 3 36 V 4 37 V 3 37 V 3 38 V 3 39 V 3 39 V 3 40 V 3 40 V 3 40 V 4 42 V 3 41 V 3 42 V 3 42 V 3 42 V 3 42 V 3 42 V 4 43 V 3211 1744 L 3 43 V 3 42 V 3 43 V 3 42 V 3 42 V 4 42 V 3 42 V 3 41 V 3 41 V 3 41 V 3 40 V 3 40 V 3 39 V 4 38 V 3 37 V 3 37 V 3 36 V 3 35 V 3 34 V 3 32 V 4 32 V 3 30 V 3 28 V 3 28 V 3 25 V 3 24 V 3 22 V 4 20 V 3 18 V 3 16 V 3 14 V 3 12 V 3 10 V 3 7 V 4 5 V 3 3 V 3 1 V 3 -2 V 3 -4 V 3 -7 V 3 -8 V 3 -11 V 4 -13 V 3 -15 V 3 -18 V 3 -19 V 3 -21 V 3 -24 V 3 -25 V 4 -26 V 3 -29 V 3 -29 V 3 -32 V 3 -32 V 3 -34 V 3 -35 V 4 -37 V 3 -37 V 3 -38 V 3 -39 V 3 -39 V 3 -40 V 3 -41 V 3 -42 V 4 -41 V 3 -43 V 3 -42 V 3 -43 V 3 -43 V 3 -44 V 3 -43 V 4 -44 V 3 -43 V 3 -44 V 3 -44 V 3 -44 V 3 -43 V 3 -44 V 4 -43 V 3 -43 V 3 -43 V 3 -43 V 3 -42 V 3 -42 V 3 -41 V 4 -41 V 3 -41 V 3 -39 V 3 -39 V 3 -39 V 3 -37 V 3 -37 V 3 -36 V 4 -35 V 3 -34 V 3 -33 V 3 -31 V 3 -31 V 3 -29 V 3 -28 V 4 -27 V 3 -25 V 3 -24 V 3 -22 V 3540 578 L 3 -19 V 3 -18 V 4 -16 V 3 -15 V 3 -12 V 3 -12 V 3 -9 V 3 -8 V 3 -6 V 3 -4 V 4 -3 V 3 -1 V 3 1 V 3 3 V 3 4 V 3 6 V 3 8 V 4 9 V 3 11 V 3 13 V 3 15 V 3 16 V 3 17 V 3 20 V 4 20 V 3 23 V 3 24 V 3 25 V 3 26 V 3 28 V 3 30 V 4 30 V 3 32 V 3 33 V 3 34 V 3 34 V 3 36 V 3 37 V 3 38 V 4 38 V 3 39 V 3 40 V 3 40 V 3 41 V 3 42 V 3 42 V 4 42 V 3 42 V 3 43 V 3 43 V 3 44 V 3 43 V 3 44 V 4 43 V 3 44 V 3 44 V 3 44 V 3 43 V 3 44 V 3 43 V 3 43 V 4 43 V 3 42 V 3 42 V 3 42 V 3 41 V 3 41 V 3 40 V 4 40 V 3 38 V 3 38 V 3 37 V 3 36 V 3 35 V 3 34 V 4 32 V 3 31 V 3 29 V 3 28 V 3 27 V 3 24 V 3 23 V 3 21 V 4 19 V 3 17 V 3 15 V 3 12 V 3 11 V 3 8 V 3 6 V 4 3 V 3 1 V 3 -1 V 3 -3 V 3 -6 V 3 -8 V 3 -11 V 4 -12 V 3 -15 V 3 -17 V 3 -19 V 3 -21 V 3 -23 V 3 -24 V 3870 2628 L 3 -28 V 3 -29 V 3 -31 V 3 -32 V 3 -34 V 3 -35 V 3 -36 V 4 -37 V 3 -38 V 3 -38 V 3 -40 V 3 -40 V 3 -41 V 3 -41 V 4 -42 V 3 -42 V 3 -42 V 3 -43 V 3 -43 V 3 -43 V 3 -44 V 4 -43 V 3 -44 V 3 -44 V 3 -44 V 3 -43 V 3 -44 V 3 -43 V 3 -44 V 4 -43 V 3 -43 V 3 -42 V 3 -42 V 3 -42 V 3 -42 V 3 -41 V 4 -40 V 3 -40 V 3 -39 V 3 -38 V 3 -38 V 3 -37 V 3 -36 V 4 -34 V 3 -34 V 3 -33 V 3 -32 V 3 -30 V 3 -30 V 3 -28 V 4 -26 V 3 -25 V 3 -24 V 3 -23 V 3 -20 V 3 -20 V 3 -17 V 3 -16 V 4 -15 V 3 -13 V 3 -11 V 3 -9 V 3 -8 V 3 -6 V 3 -4 V 4 -3 V 3 -1 V 3 1 V 3 3 V 3 4 V 3 6 V 3 8 V 4 9 V 3 12 V 3 12 V 3 15 V 3 16 V 3 18 V 3 19 V 3 21 V 4 22 V 3 24 V 3 25 V 3 27 V 3 28 V 3 29 V 3 31 V 4 31 V 3 33 V 3 34 V 3 35 V 3 36 V 3 37 V 3 37 V 4 39 V 3 39 V 3 39 V 3 41 V 3 41 V 3 41 V 3 42 V 3 42 V 4 43 V 3 43 V 4199 1481 L 3 43 V 3 44 V 3 43 V 3 44 V 4 44 V 3 44 V 3 43 V 3 44 V 3 43 V 3 44 V 3 43 V 4 43 V 3 42 V 3 42 V 3 42 V 3 42 V 3 41 V 3 40 V 4 39 V 3 39 V 3 38 V 3 37 V 3 37 V 3 35 V 3 34 V 3 32 V 4 32 V 3 29 V 3 29 V 3 26 V 3 25 V 3 24 V 3 21 V 4 19 V 3 18 V 3 15 V 3 13 V 3 11 V 3 8 V 3 7 V 4 4 V 3 2 V 3 -1 V 3 -3 V 3 -5 V 3 -7 V 3 -10 V 3 -12 V 4 -14 V 3 -16 V 3 -18 V 3 -20 V 3 -22 V 3 -24 V 3 -26 V 4 -27 V 3 -28 V 3 -30 V 3 -32 V 3 -32 V 3 -34 V 3 -35 V 4 -36 V 3 -37 V 3 -37 V 3 -38 V 3 -39 V 3 -40 V 3 -40 V 4 -41 V 3 -41 V 3 -41 V 3 -42 V 3 -42 V 3 -42 V 3 -42 V 3 -43 V 4 -42 V 3 -43 V 3 -42 V 3 -43 V 3 -42 V 3 -42 V 3 -42 V 4 -42 V 3 -42 V 3 -41 V 3 -42 V 3 -40 V 3 -40 V 3 -40 V 4 -39 V 3 -39 V 3 -38 V 3 -37 V 3 -37 V 3 -36 V 3 -35 V 3 -33 V 4 -33 V 3 -32 V 3 -31 V 3 -30 V 3 -28 V 4528 771 L 3 -26 V 4 -25 V 3 -23 V 3 -21 V 3 -20 V 3 -19 V 3 -17 V 3 -15 V 4 -14 V 3 -12 V 3 -11 V 3 -9 V 3 -7 V 3 -5 V 3 -4 V 4 -2 V 3 0 V 3 1 V 3 3 V 3 5 V 3 7 V 3 8 V 3 10 V 4 12 V 3 13 V 3 16 V 3 16 V 3 18 V 3 20 V 3 22 V 4 23 V 3 24 V 3 26 V 3 27 V 3 29 V 3 30 V 3 32 V 4 32 V 3 34 V 3 35 V 3 37 V 3 37 V 3 38 V 3 40 V 3 40 V 4 41 V 3 42 V 3 43 V 3 43 V 3 44 V 3 45 V 3 45 V 4 46 V 3 47 V 3 46 V 3 47 V 3 48 V 3 47 V 3 48 V 4 48 V 3 48 V 3 48 V 3 49 V 3 48 V 3 48 V 3 48 V 3 48 V 4 48 V 3 48 V 3 48 V 3 47 V 3 47 V 3 46 V 3 47 V 4 45 V 3 46 V 3 45 V 3 44 V 3 44 V 3 43 V 3 42 V 4 42 V 3 41 V 3 41 V 3 39 V 3 39 V 3 38 V 3 37 V 4 36 V 3 35 V 3 33 V 3 33 V 3 32 V 3 31 V 3 30 V 3 28 V 4 28 V 3 26 V 3 25 V 3 24 V 3 23 V 3 22 V 3 21 V 4 20 V 4858 3576 L 3 18 V 3 17 V 3 16 V 3 16 V 3 15 V 4 13 V 3 14 V 3 12 V 3 12 V 3 12 V 3 11 V 3 11 V 3 10 V 4 10 V 3 10 V 3 9 V 3 9 V 3 9 V 3 9 V 3 8 V 4 9 V 3 8 V 3 8 V 3 9 V 3 8 V 3 8 V 3 8 V 4 7 V 3 8 V 3 8 V 3 7 V 3 8 V 3 7 V 3 7 V 4 7 V 3 7 V 3 6 V 3 7 V 3 6 V 3 6 V 3 6 V 3 6 V 4 5 V 3 6 V 3 5 V 3 5 V 3 4 V 3 5 V 3 5 V 4 4 V 3 4 V 3 4 V 3 4 V 3 4 V 3 3 V 3 4 V 4 3 V 3 3 V 3 4 V 3 3 V 3 3 V 3 3 V 3 3 V 3 3 V 4 2 V 3 3 V 3 3 V 3 2 V 3 3 V 3 2 V 3 2 V 4 3 V 3 2 V 3 2 V 3 2 V 3 2 V 3 2 V 3 2 V 4 1 V 3 2 V 3 2 V 3 1 V 3 2 V 3 1 V 3 2 V 3 1 V 4 2 V 3 1 V 3 1 V 3 1 V 3 1 V 3 2 V 3 1 V 4 1 V 3 1 V 3 1 V 3 1 V 3 1 V 3 1 V 3 1 V 4 0 V 3 1 V 3 1 V 3 1 V 5187 4129 L 3 1 V 3 0 V 4 1 V 3 1 V 3 0 V 3 1 V 3 1 V 3 0 V 3 1 V 3 0 V 4 1 V 3 1 V 3 0 V 3 0 V 3 1 V 3 0 V 3 1 V 4 0 V 3 1 V 3 0 V 3 0 V 3 1 V 3 0 V 3 0 V 4 1 V 3 0 V 3 0 V 3 1 V 3 0 V 3 0 V 3 1 V 3 0 V 4 0 V 3 1 V 3 0 V 3 0 V 3 0 V 3 1 V 3 0 V 4 0 V 3 0 V 3 0 V 3 1 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 1 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 1 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 1 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 1 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 1 V 3 0 V 5516 4152 L 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 5846 4152 L 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 3 0 V 4 0 V stroke 2.000 UL LT2 1570 1597 M 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 44 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 44 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 44 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V stroke LT3 1570 3272 M 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 44 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 44 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 44 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V stroke LT4 1570 3188 M 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 44 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 44 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 44 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V 45 0 V stroke 1.000 UL LTb 1570 4872 N 0 -4452 V 4452 0 V 0 4452 V -4452 0 V Z stroke 1.000 UP 1.000 UL LTb stroke grestore end showpage %%Trailer %%DocumentFonts: Symbol Helvetica espresso-5.1/PP/examples/WorkFct_example/reference/Al100.wf.data0000644000175000017500000000021012341372774022515 0ustar mbamba The work function calculated without a bulk reference: WF = 4.15219 The work function calculated with a bulk reference: WF = 4.54641 espresso-5.1/PP/examples/WorkFct_example/reference/Al.bulkref.avg.out0000644000175000017500000000244512341372774024000 0ustar mbamba Program POST-PROC v.4.0 starts ... Today is 29Apr2008 at 18: 4:39 Reading header from file Albulkrefpot Reading data from file Albulkrefpot 0.000000000 -0.355697922 0.035574033 0.306800000 -0.307399823 0.035574033 0.613600000 -0.177800802 0.035574033 0.920400000 0.002038793 0.035574033 1.227200000 0.190543126 0.035574033 1.534000000 0.358877722 0.035574033 1.840800000 0.447834304 0.035574033 2.147600000 0.417197272 0.035574033 2.454400000 0.280147268 0.035574033 2.761200000 0.096902541 0.035574033 3.068000000 -0.091340497 0.035574033 3.374800000 -0.251228510 0.035574033 3.681600000 -0.343247022 0.035574033 3.988400000 -0.343247022 0.035574033 4.295200000 -0.251228510 0.035574033 4.602000000 -0.091340497 0.035574033 4.908800000 0.096902541 0.035574033 5.215600000 0.280147268 0.035574033 5.522400000 0.417197272 0.035574033 5.829200000 0.447834304 0.035574033 6.136000000 0.358877722 0.035574033 6.442800000 0.190543126 0.035574033 6.749600000 0.002038793 0.035574033 7.056400000 -0.177800802 0.035574033 7.363200000 -0.307399823 0.035574033 espresso-5.1/PP/examples/WorkFct_example/reference/Al100.out0000644000175000017500000002663412341372774022022 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 29Apr2008 at 18: 4:33 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 warning: symmetry operation # 3 not allowed. fractional translation: 0.5000000 -0.5000000 0.0000000 in crystal coordinates warning: symmetry operation # 4 not allowed. fractional translation: -0.5000000 0.5000000 0.0000000 in crystal coordinates warning: symmetry operation # 5 not allowed. fractional translation: -0.5000000 -0.5000000 0.0000000 in crystal coordinates warning: symmetry operation # 6 not allowed. fractional translation: 0.5000000 0.5000000 0.0000000 in crystal coordinates warning: symmetry operation # 9 not allowed. fractional translation: 0.5000000 0.5000000 0.0000000 in crystal coordinates warning: symmetry operation # 10 not allowed. fractional translation: -0.5000000 -0.5000000 0.0000000 in crystal coordinates warning: symmetry operation # 15 not allowed. fractional translation: 0.5000000 -0.5000000 0.0000000 in crystal coordinates warning: symmetry operation # 16 not allowed. fractional translation: -0.5000000 0.5000000 0.0000000 in crystal coordinates bravais-lattice index = 6 lattice parameter (a_0) = 5.4235 a.u. unit-cell volume = 1015.2397 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 12.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-10 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) celldm(1)= 5.423509 celldm(2)= 0.000000 celldm(3)= 6.363961 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 6.363961 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.157135 ) PseudoPot. # 1 for Al read from file Al.pbe-rrkj.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 879 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential Al 3.00 1.00000 Al( 1.00) 8 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.0000000 0.0000000 4.2426407 ) 2 Al tau( 2) = ( 0.5000000 0.5000000 3.5355339 ) 3 Al tau( 3) = ( 0.0000000 0.0000000 2.8284271 ) 4 Al tau( 4) = ( 0.5000000 0.5000000 2.1213203 ) number of k points= 3 gaussian broad. (Ry)= 0.0500 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1666667 0.1666667 0.0000000), wk = 0.8888889 k( 2) = ( 0.1666667 -0.5000000 0.0000000), wk = 0.8888889 k( 3) = ( -0.5000000 -0.5000000 0.0000000), wk = 0.2222222 G cutoff = 44.7046 ( 7973 G-vectors) FFT grid: ( 15, 15,144) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.15 Mb ( 1012, 10) NL pseudopotentials 0.49 Mb ( 1012, 32) Each V/rho on FFT grid 0.49 Mb ( 32400) Each G-vector array 0.06 Mb ( 7973) G-vector shells 0.00 Mb ( 600) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.62 Mb ( 1012, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 32, 10) Arrays for rho mixing 3.96 Mb ( 32400, 8) Initial potential from superposition of free atoms starting charge 11.98964, renormalised to 12.00000 negative rho (up, down): 0.647E-05 0.000E+00 Starting wfc are 16 atomic wfcs total cpu time spent up to now is 0.20 secs per-process dynamical memory: 12.7 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 total cpu time spent up to now is 0.43 secs total energy = -16.38556127 Ry Harris-Foulkes estimate = -16.54119573 Ry estimated scf accuracy < 0.20239009 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-03, avg # of iterations = 4.7 total cpu time spent up to now is 0.70 secs total energy = -15.96519401 Ry Harris-Foulkes estimate = -17.00481588 Ry estimated scf accuracy < 5.34319016 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-03, avg # of iterations = 3.7 total cpu time spent up to now is 0.95 secs total energy = -16.51263027 Ry Harris-Foulkes estimate = -16.51835784 Ry estimated scf accuracy < 0.02584502 Ry iteration # 4 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.15E-04, avg # of iterations = 2.0 total cpu time spent up to now is 1.13 secs total energy = -16.51477777 Ry Harris-Foulkes estimate = -16.51565297 Ry estimated scf accuracy < 0.00215602 Ry iteration # 5 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.80E-05, avg # of iterations = 2.7 total cpu time spent up to now is 1.34 secs total energy = -16.51523511 Ry Harris-Foulkes estimate = -16.51526274 Ry estimated scf accuracy < 0.00008562 Ry iteration # 6 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.13E-07, avg # of iterations = 3.0 total cpu time spent up to now is 1.55 secs total energy = -16.51518061 Ry Harris-Foulkes estimate = -16.51532594 Ry estimated scf accuracy < 0.00138048 Ry iteration # 7 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.13E-07, avg # of iterations = 4.7 total cpu time spent up to now is 1.76 secs total energy = -16.51525511 Ry Harris-Foulkes estimate = -16.51525633 Ry estimated scf accuracy < 0.00000777 Ry iteration # 8 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.47E-08, avg # of iterations = 1.7 total cpu time spent up to now is 1.93 secs total energy = -16.51525568 Ry Harris-Foulkes estimate = -16.51525572 Ry estimated scf accuracy < 0.00000017 Ry iteration # 9 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.41E-09, avg # of iterations = 3.7 total cpu time spent up to now is 2.16 secs total energy = -16.51525571 Ry Harris-Foulkes estimate = -16.51525575 Ry estimated scf accuracy < 0.00000009 Ry iteration # 10 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.61E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.36 secs total energy = -16.51525572 Ry Harris-Foulkes estimate = -16.51525573 Ry estimated scf accuracy < 6.7E-09 Ry iteration # 11 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.57E-11, avg # of iterations = 2.7 total cpu time spent up to now is 2.55 secs total energy = -16.51525573 Ry Harris-Foulkes estimate = -16.51525573 Ry estimated scf accuracy < 1.1E-10 Ry iteration # 12 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.55E-13, avg # of iterations = 3.0 total cpu time spent up to now is 2.75 secs End of self-consistent calculation k = 0.1667 0.1667 0.0000 ( 997 PWs) bands (ev): -8.6032 -7.1753 -5.0325 -2.2071 0.0725 2.1655 3.2560 3.4986 3.9825 4.9550 k = 0.1667-0.5000 0.0000 ( 1012 PWs) bands (ev): -4.7127 -4.7126 -3.3073 -3.3073 -1.2217 -1.2216 1.5627 1.5627 3.8850 3.8850 k =-0.5000-0.5000 0.0000 ( 976 PWs) bands (ev): -1.5067 -1.5067 -0.1710 -0.1710 -0.1610 -0.1610 1.3182 1.3182 1.8529 1.8529 the Fermi energy is 1.4531 ev ! total energy = -16.51525573 Ry Harris-Foulkes estimate = -16.51525573 Ry estimated scf accuracy < 5.2E-12 Ry The total energy is the sum of the following terms: one-electron contribution = -97.92595021 Ry hartree contribution = 51.64736885 Ry xc contribution = -6.17931759 Ry ewald contribution = 35.95830393 Ry smearing contrib. (-TS) = -0.01566071 Ry convergence has been achieved in 12 iterations Writing output data file pwscf.save PWSCF : 2.78s CPU time, 3.31s wall time init_run : 0.19s CPU electrons : 2.55s CPU Called by init_run: wfcinit : 0.07s CPU potinit : 0.03s CPU Called by electrons: c_bands : 1.78s CPU ( 12 calls, 0.148 s avg) sum_band : 0.33s CPU ( 12 calls, 0.027 s avg) v_of_rho : 0.34s CPU ( 13 calls, 0.026 s avg) mix_rho : 0.05s CPU ( 12 calls, 0.004 s avg) Called by c_bands: init_us_2 : 0.04s CPU ( 75 calls, 0.001 s avg) cegterg : 1.71s CPU ( 36 calls, 0.047 s avg) Called by *egterg: h_psi : 1.53s CPU ( 149 calls, 0.010 s avg) g_psi : 0.03s CPU ( 110 calls, 0.000 s avg) cdiaghg : 0.05s CPU ( 146 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.05s CPU ( 149 calls, 0.000 s avg) General routines calbec : 0.08s CPU ( 149 calls, 0.001 s avg) cft3 : 0.11s CPU ( 130 calls, 0.001 s avg) cft3s : 1.41s CPU ( 2520 calls, 0.001 s avg) davcio : 0.00s CPU ( 111 calls, 0.000 s avg) espresso-5.1/PP/examples/WorkFct_example/reference/Al100.in0000644000175000017500000000130512341372774021605 0ustar mbamba&CONTROL calculation = "scf", pseudo_dir = "/home/giannozz/espresso/pseudo", outdir = "/home/giannozz/tmp", / &SYSTEM ibrav = 6, celldm(1) = 5.4235090117D0, celldm(3) = 6.3639610306789276D0, nat = 4, ntyp = 1, ecutwfc = 15.D0, occupations = "smearing", smearing = "m-v", degauss = 0.05D0, nr3 = 144, / &ELECTRONS conv_thr = 1.D-10, mixing_beta = 0.7D0, / ATOMIC_SPECIES Al 1.0 Al.pbe-rrkj.UPF ATOMIC_POSITIONS Al 0.00000000 0.00000000 4.2426406871192848 Al 0.50000000 0.50000000 3.5355339059327378 Al 0.00000000 0.00000000 2.8284271247461898 Al 0.50000000 0.50000000 2.1213203435596428 K_POINTS {automatic} 3 3 1 1 1 0 espresso-5.1/PP/examples/WannierHam_example/0000755000175000017500000000000012341373041017201 5ustar mbambaespresso-5.1/PP/examples/WannierHam_example/README0000644000175000017500000001237012341372775020101 0ustar mbambaThis example shows how to generate a model Hamiltonian in Wannier functions basis. Detailes of the method are described in: [1] Dm. Korotin, A. V. Kozhevnikov, S. L. Skornyakov, I. Leonov, N. Binggeli, V. I. Anisimov, and G. Trimarchi, The European Physical Journal B 65, 91-98 (2008). Generation of a model Hamiltonian consists of three steps: 1. Typical scf calculation. We need converged charge density. 2. Nscf calculation on a regular and dense k-points grid (at least 12x12x12 for reasonable Hamiltonian). Please set nosym=.true. noinv=.true. integration='smearing' degauss=0.01 wf_collect=.true. (if you run parallel job) in &control namelist From nscf calculation we need eigenvalues and eigenvectors of full Hamiltonian on every k-point and the Fermi energy (for Wannier functions occupation calculation). 3. Before you will start the model Hamiltonian generation you should know a symmetry of trial atomic orbitals that will be used for projection. And you should know numbers of bands (or energy interval) that you are going to reproduce with the model Hamiltonian. In the current example of NiO we will generate 8 Wannier functions (5 with Ni-d orbitals symmetry and 3 with O-p orbitals symmetry). The code wannier_ham.x will produce file 'hamilt' with the Hamiltonian for every k-point Structure of the input data: =============================================================================== &INPUTPP ... / WANNIER_AC Wannier# 1 2 9 atom 1 d 2 Wannier# 2 2 9 atom 1 d 3 Wannier# 3 2 9 atom 1 d 5 ... ======================================================================== NAMELIST: &INPUTPP +-------------------------------------------------------------------- Variable: prefix Type: CHARACTER Default: ' ' Description: as usual +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: CHARACTER Default: ' ' Description: as usual +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nwan Type: INTEGER Default: ' ' Description: Number of Wannier functions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: use_energy_int Type: LOGICAL Default: '.FALSE.' Description: If .true. bands will be defined not by numbers, but by energy range (in eV)! +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: plot_bands Type: LOGICAL Default: '.FALSE.' Description: If .true. bands structures of original and model hamiltonian will be plotted for comparison +-------------------------------------------------------------------- ======================================================================== CARD: WANNIER_AC Definition of trial atomic functions and bands for Wannier generation ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// Wannier# 1 bands_from bands_to atom iatom l m Wannier# 2 bands_from bands_to atom iatom l m ... ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variables: bands_from, bands_to Type: REAL or INTEGER Description: Defines Block functions subspace for projection procedure. If use_energy_interval=.true. these are energy values in eV. Otherwise these are bands numbers. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: iatom Type: INTEGER Description: Number of site on that Wannier function centered +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: l Type: CHARACTER Description: Angular channel for trial wavefunction. 's', 'p' or 'd' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: m Type: INTEGER Description: Magnetic quantum number of trial orbital (from 1 to 5) for d-orbitals +-------------------------------------------------------------------- ===END OF CARD========================================================== Format of 'hamilt' file: =============================================================================== num_of_k-points dimention_of_Hamiltonian k-point_weight Real(H(1,1)) Imag(H(1,1)) Real(H(2,1)) Imag(H(2,1)) .... k-point_weight Real(H(1,1)) Imag(H(1,1)) Real(H(2,1)) Imag(H(2,1)) .... espresso-5.1/PP/examples/WannierHam_example/run_example0000755000175000017500000001022112341372775021457 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to produce a model hamiltonian in Wannier " $ECHO "functions basis. The system under consideration is Nickel oxide" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x wannier_ham.x" PSEUDO_LIST="O.pz-rrkjus.UPF Ni.pz-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" HAM_COMMAND="$BIN_DIR/wannier_ham.x" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running wannier_ham.x as: $HAM_COMMAND" $ECHO # self-consistent calculation cat > NiO.scf.in << EOF &control calculation = 'scf' prefix='NiO', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav=0, celldm(1)=7.92664836, nat=2, ntyp=2, ecutwfc = 45.0, occupations='smearing', degauss = 0.01 nbnd=11 / &electrons conv_thr = 1.0d-5 / CELL_PARAMETERS 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 ATOMIC_SPECIES Ni 1. Ni.pz-nd-rrkjus.UPF O 1. O.pz-rrkjus.UPF ATOMIC_POSITIONS crystal Ni 0.00 0.00 0.00 O 0.50 0.50 0.50 K_POINTS automatic 4 4 4 0 0 0 EOF $ECHO " running the scf calculation for NiO...\c" $PW_COMMAND < NiO.scf.in > NiO.scf.out check_failure $? $ECHO " done" # nscf calculation cat > NiO.nscf.in << EOF &control calculation = 'nscf' prefix='NiO', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', wf_collect=.true. / &system ibrav=0, celldm(1)=7.92664836, nat=2, ntyp=2, ecutwfc = 45.0, occupations='smearing', degauss = 0.01 nosym = .true. noinv = .true. nbnd=11 / &electrons / CELL_PARAMETERS 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 ATOMIC_SPECIES Ni 1. Ni.pz-nd-rrkjus.UPF O 1. O.pz-rrkjus.UPF ATOMIC_POSITIONS crystal Ni 0.00 0.00 0.00 O 0.50 0.50 0.50 K_POINTS automatic 12 12 12 0 0 0 EOF $ECHO " running the nscf calculation for NiO...\c" $PW_COMMAND < NiO.nscf.in > NiO.nscf.out check_failure $? $ECHO " done" cat > wannier_hamilt.in << EOF &inputpp prefix='NiO' outdir='$TMP_DIR/' nwan = 8 / WANNIER_AC Wannier# 1 2 9 atom 1 d 1 1.0 Wannier# 2 2 9 atom 1 d 2 1.0 Wannier# 3 2 9 atom 1 d 3 1.0 Wannier# 4 2 9 atom 1 d 4 1.0 Wannier# 5 2 9 atom 1 d 5 1.0 Wannier# 6 2 9 atom 2 p 1 1.0 Wannier# 7 2 9 atom 2 p 2 1.0 Wannier# 8 2 9 atom 2 p 3 1.0 / EOF $ECHO " running the hamiltonian generation...\c" $HAM_COMMAND < wannier_hamilt.in > wannier_hamilt.out $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/NiO.* $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PP/examples/WannierHam_example/reference/0000755000175000017500000000000012341373041021137 5ustar mbambaespresso-5.1/PP/examples/WannierHam_example/reference/NiO.scf.out0000644000175000017500000002605712341372775023156 0ustar mbamba Program PWSCF v.4.2 starts on 6May2010 at 17:41:51 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized bravais-lattice index = 0 lattice parameter (a_0) = 7.9266 a.u. unit-cell volume = 124.5113 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 16.00 number of Kohn-Sham states= 11 kinetic-energy cutoff = 45.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-05 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) EXX-fraction = 0.00 celldm(1)= 7.926648 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.000000 0.500000 0.500000 ) a(2) = ( 0.500000 0.000000 0.500000 ) a(3) = ( 0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 1.000000 1.000000 ) b(2) = ( 1.000000 -1.000000 1.000000 ) b(3) = ( 1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file Ni.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 1.00000 Ni( 1.00) O 6.00 1.00000 O ( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 O tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0100 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( 0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.5000000 0.0000000 0.0000000), wk = 0.1875000 k( 5) = ( -0.2500000 -0.7500000 0.7500000), wk = 0.7500000 k( 6) = ( 0.0000000 -0.5000000 0.5000000), wk = 0.3750000 k( 7) = ( -1.0000000 0.0000000 0.0000000), wk = 0.0937500 k( 8) = ( -1.0000000 0.5000000 0.0000000), wk = 0.1875000 G cutoff = 286.4784 ( 5029 G-vectors) FFT grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.11 Mb ( 648, 11) NL pseudopotentials 0.26 Mb ( 648, 26) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.04 Mb ( 5029) G-vector shells 0.00 Mb ( 97) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.44 Mb ( 648, 44) Each subspace H/S matrix 0.03 Mb ( 44, 44) Each matrix 0.00 Mb ( 26, 11) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000114 0.000000 Initial potential from superposition of free atoms starting charge 15.99966, renormalised to 16.00000 Starting wfc are 10 atomic + 1 random wfc total cpu time spent up to now is 1.84 secs per-process dynamical memory: 6.6 Mb Self-consistent Calculation iteration # 1 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.1 negative rho (up, down): 0.699E-05 0.000E+00 total cpu time spent up to now is 2.39 secs total energy = -117.04135098 Ry Harris-Foulkes estimate = -117.68337739 Ry estimated scf accuracy < 0.78620869 Ry iteration # 2 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.91E-03, avg # of iterations = 2.1 total cpu time spent up to now is 2.98 secs total energy = -116.87983195 Ry Harris-Foulkes estimate = -118.44136995 Ry estimated scf accuracy < 4.62574430 Ry iteration # 3 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.91E-03, avg # of iterations = 2.2 total cpu time spent up to now is 3.52 secs total energy = -117.50977438 Ry Harris-Foulkes estimate = -117.51568285 Ry estimated scf accuracy < 0.01489485 Ry iteration # 4 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.31E-05, avg # of iterations = 2.8 total cpu time spent up to now is 4.03 secs total energy = -117.51300228 Ry Harris-Foulkes estimate = -117.51366179 Ry estimated scf accuracy < 0.00202405 Ry iteration # 5 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-05, avg # of iterations = 2.4 negative rho (up, down): 0.647E-06 0.000E+00 total cpu time spent up to now is 4.51 secs total energy = -117.51329993 Ry Harris-Foulkes estimate = -117.51330517 Ry estimated scf accuracy < 0.00001065 Ry iteration # 6 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-08, avg # of iterations = 2.4 negative rho (up, down): 0.322E-05 0.000E+00 total cpu time spent up to now is 5.07 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 609 PWs) bands (ev): -8.6487 8.3204 8.3204 8.3204 9.5802 9.5802 9.5802 9.7123 9.7123 12.9829 29.1480 k = 0.2500 0.2500-0.2500 ( 631 PWs) bands (ev): -8.0189 5.3311 6.7884 6.7884 9.9767 9.9767 10.1721 11.4704 11.4704 15.6162 23.5531 k =-0.5000-0.5000 0.5000 ( 628 PWs) bands (ev): -7.2635 3.2935 5.9944 5.9944 10.3876 10.3876 10.7557 12.5522 12.5522 17.0004 21.1680 k = 0.5000 0.0000 0.0000 ( 632 PWs) bands (ev): -7.8814 5.0372 7.3497 7.3497 9.0886 9.9027 10.5883 10.5883 10.9536 16.7435 24.4619 k =-0.2500-0.7500 0.7500 ( 637 PWs) bands (ev): -7.2334 4.3024 5.7537 6.4202 9.7098 10.4982 10.6957 11.3831 11.3987 18.8073 21.0765 k = 0.0000-0.5000 0.5000 ( 636 PWs) bands (ev): -7.3889 4.3084 5.9754 6.1189 10.1718 10.3059 10.6306 10.8169 12.4713 18.3311 22.2541 k =-1.0000 0.0000 0.0000 ( 636 PWs) bands (ev): -7.1888 4.5161 7.0609 7.0609 8.6158 10.0965 10.6292 10.6630 10.6630 17.5597 21.7360 k =-1.0000 0.5000 0.0000 ( 648 PWs) bands (ev): -7.0829 5.3209 5.3209 5.6996 10.2582 10.2582 10.4988 10.6637 11.3116 19.8026 21.9687 the Fermi energy is 11.3675 ev ! total energy = -117.51330163 Ry Harris-Foulkes estimate = -117.51330598 Ry estimated scf accuracy < 0.00000509 Ry The total energy is the sum of the following terms: one-electron contribution = -7.96029278 Ry hartree contribution = 21.97709721 Ry xc contribution = -36.36359053 Ry ewald contribution = -95.16117712 Ry smearing contrib. (-TS) = -0.00533841 Ry convergence has been achieved in 6 iterations Writing output data file NiO.save init_run : 1.74s CPU 1.75s WALL ( 1 calls) electrons : 3.20s CPU 3.23s WALL ( 1 calls) Called by init_run: wfcinit : 0.14s CPU 0.14s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 2.37s CPU 2.38s WALL ( 6 calls) sum_band : 0.62s CPU 0.63s WALL ( 6 calls) v_of_rho : 0.02s CPU 0.02s WALL ( 7 calls) newd : 0.20s CPU 0.20s WALL ( 7 calls) mix_rho : 0.02s CPU 0.01s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.05s WALL ( 104 calls) cegterg : 2.26s CPU 2.26s WALL ( 48 calls) Called by *egterg: h_psi : 2.09s CPU 2.07s WALL ( 176 calls) s_psi : 0.04s CPU 0.04s WALL ( 176 calls) g_psi : 0.01s CPU 0.02s WALL ( 120 calls) cdiaghg : 0.10s CPU 0.09s WALL ( 168 calls) Called by h_psi: add_vuspsi : 0.04s CPU 0.05s WALL ( 176 calls) General routines calbec : 0.06s CPU 0.07s WALL ( 224 calls) cft3 : 0.06s CPU 0.05s WALL ( 41 calls) cft3s : 2.22s CPU 2.21s WALL ( 3384 calls) davcio : 0.00s CPU 0.01s WALL ( 152 calls) PWSCF : 5.16s CPU time, 5.26s WALL time This run was terminated on: 17:41:56 6May2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PP/examples/WannierHam_example/reference/wannier_hamilt.out0000644000175000017500000000730312341372775024711 0ustar mbamba Program WANNIER_HAM v.4.2 starts on 6May2010 at 17:47:34 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized Check: negative/imaginary core charge= -0.000114 0.000000 negative rho (up, down): 0.322E-05 0.000E+00 Spin 1 Wannier # 1 centered on atom Ni (position 0.00000 0.00000 0.00000 ) Bands for generation: from 2 to 9 Trial wavefunction ingredients: 1.0000000000 of l=2, m=1 Wannier # 2 centered on atom Ni (position 0.00000 0.00000 0.00000 ) Bands for generation: from 2 to 9 Trial wavefunction ingredients: 1.0000000000 of l=2, m=2 Wannier # 3 centered on atom Ni (position 0.00000 0.00000 0.00000 ) Bands for generation: from 2 to 9 Trial wavefunction ingredients: 1.0000000000 of l=2, m=3 Wannier # 4 centered on atom Ni (position 0.00000 0.00000 0.00000 ) Bands for generation: from 2 to 9 Trial wavefunction ingredients: 1.0000000000 of l=2, m=4 Wannier # 5 centered on atom Ni (position 0.00000 0.00000 0.00000 ) Bands for generation: from 2 to 9 Trial wavefunction ingredients: 1.0000000000 of l=2, m=5 Wannier # 6 centered on atom O (position 0.50000 0.50000 0.50000 ) Bands for generation: from 2 to 9 Trial wavefunction ingredients: 1.0000000000 of l=1, m=1 Wannier # 7 centered on atom O (position 0.50000 0.50000 0.50000 ) Bands for generation: from 2 to 9 Trial wavefunction ingredients: 1.0000000000 of l=1, m=2 Wannier # 8 centered on atom O (position 0.50000 0.50000 0.50000 ) Bands for generation: from 2 to 9 Trial wavefunction ingredients: 1.0000000000 of l=1, m=3 Atomic wfc used for LDA+U Projector are orthogonalized Spin 1: Wannier# 1 occupation:0.653 energy: 10.268 eV Wannier# 2 occupation:0.989 energy: 9.947 eV Wannier# 3 occupation:0.989 energy: 9.947 eV Wannier# 4 occupation:0.653 energy: 10.268 eV Wannier# 5 occupation:0.989 energy: 9.947 eV Wannier# 6 occupation:0.909 energy: 6.721 eV Wannier# 7 occupation:0.909 energy: 6.721 eV Wannier# 8 occupation:0.909 energy: 6.721 eV Wannier occupation matrix: 0.653 0.000 0.000 0.000 0.000 -0.005 -0.003 -0.003 0.000 0.989 0.000 0.000 0.000 0.001 -0.001 -0.012 0.000 0.000 0.989 0.000 0.000 0.001 -0.012 -0.001 0.000 0.000 0.000 0.653 0.000 0.000 0.005 -0.005 0.000 0.000 0.000 0.000 0.989 -0.012 0.001 0.001 -0.005 0.001 0.001 0.000 -0.012 0.909 0.000 0.000 -0.003 -0.001 -0.012 0.005 0.001 0.000 0.909 0.000 -0.003 -0.012 -0.001 -0.005 0.001 0.000 0.000 0.909 Hamiltonian is in the JK format, 1728 k-points ATTENTION: All k-points weights are real weights Projected Hamiltonian eigenvalues (eV): spin1 6.7185 6.7208 6.7208 9.9473 9.9473 9.9496 10.2681 10.2681 espresso-5.1/PP/examples/WannierHam_example/reference/NiO.nscf.out0000644000175000017500000107501712341372775023335 0ustar mbamba Program PWSCF v.4.2 starts on 6May2010 at 17:41:56 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized Atomic positions and unit cell read from directory: /home/dkorotin/tmp/NiO.save/ bravais-lattice index = 0 lattice parameter (a_0) = 7.9266 a.u. unit-cell volume = 124.5113 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 16.00 number of Kohn-Sham states= 11 kinetic-energy cutoff = 45.0000 Ry charge density cutoff = 180.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC (1100) EXX-fraction = 0.00 celldm(1)= 7.926648 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.000000 0.500000 0.500000 ) a(2) = ( 0.500000 0.000000 0.500000 ) a(3) = ( 0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 1.000000 1.000000 ) b(2) = ( 1.000000 -1.000000 1.000000 ) b(3) = ( 1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file Ni.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 1.00000 Ni( 1.00) O 6.00 1.00000 O ( 1.00) No symmetry found Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 O tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) number of k points= 1728 gaussian broad. (Ry)= 0.0100 ngauss = 0 Number of k-points >= 100: set verbosity='high' to print them. G cutoff = 286.4784 ( 5029 G-vectors) FFT grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.11 Mb ( 650, 11) NL pseudopotentials 0.26 Mb ( 650, 26) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.04 Mb ( 5029) G-vector shells 0.00 Mb ( 97) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.44 Mb ( 650, 44) Each subspace H/S matrix 0.03 Mb ( 44, 44) Each matrix 0.00 Mb ( 26, 11) Check: negative/imaginary core charge= -0.000114 0.000000 The potential is recalculated from file : /home/dkorotin/tmp/NiO.save/charge-density.dat negative rho (up, down): 0.322E-05 0.000E+00 Starting wfc are 10 atomic + 1 random wfc total cpu time spent up to now is 1.95 secs per-process dynamical memory: 6.8 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 6.25E-09, avg # of iterations = 13.1 total cpu time spent up to now is 325.81 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -8.6301 8.3428 8.3428 8.3428 9.5583 9.5583 9.5583 9.6890 9.6890 12.9887 29.1485 k = 0.0833 0.0833-0.0833 band energies (ev): -8.5510 7.7392 7.9733 7.9733 9.6196 9.6196 9.7176 10.0768 10.0768 13.4617 27.5870 k = 0.1667 0.1667-0.1667 band energies (ev): -8.3269 6.5694 7.3576 7.3576 9.7593 9.7593 9.9277 10.7759 10.7759 14.5070 25.4533 k = 0.2500 0.2500-0.2500 band energies (ev): -7.9990 5.3428 6.7955 6.7955 9.9539 9.9539 10.1544 11.4618 11.4618 15.6253 23.5533 k = 0.3333 0.3333-0.3333 band energies (ev): -7.6403 4.2855 6.3628 6.3628 10.1551 10.1551 10.4114 12.0303 12.0303 16.4927 22.1414 k = 0.4167 0.4167-0.4167 band energies (ev): -7.3531 3.5615 6.0920 6.0920 10.3071 10.3071 10.6406 12.4100 12.4100 16.9175 21.3811 k =-0.5000-0.5000 0.5000 band energies (ev): -7.2417 3.3021 6.0000 6.0000 10.3638 10.3638 10.7367 12.5444 12.5444 17.0034 21.1782 k =-0.4167-0.4167 0.4167 band energies (ev): -7.3531 3.5615 6.0920 6.0920 10.3071 10.3071 10.6406 12.4100 12.4100 16.9175 21.3811 k =-0.3333-0.3333 0.3333 band energies (ev): -7.6403 4.2855 6.3628 6.3628 10.1551 10.1551 10.4114 12.0303 12.0303 16.4927 22.1414 k =-0.2500-0.2500 0.2500 band energies (ev): -7.9990 5.3428 6.7955 6.7955 9.9539 9.9539 10.1544 11.4618 11.4618 15.6253 23.5533 k =-0.1667-0.1667 0.1667 band energies (ev): -8.3269 6.5694 7.3576 7.3576 9.7593 9.7593 9.9277 10.7759 10.7759 14.5070 25.4533 k =-0.0833-0.0833 0.0833 band energies (ev): -8.5510 7.7392 7.9733 7.9733 9.6196 9.6196 9.7176 10.0768 10.0768 13.4617 27.5870 k = 0.0833-0.0833 0.0833 band energies (ev): -8.5510 7.7392 7.9733 7.9733 9.6196 9.6196 9.7176 10.0768 10.0768 13.4617 27.5870 k = 0.1667 0.0000 0.0000 band energies (ev): -8.5257 7.3486 8.0914 8.0914 9.4916 9.7142 9.8288 9.8288 10.2695 13.6494 27.6461 k = 0.2500 0.0833-0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.3333 0.1667-0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k = 0.4167 0.2500-0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k = 0.5000 0.3333-0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.4167-0.5833 0.5833 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.3333-0.5000 0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.2500-0.4167 0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.1667-0.3333 0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k =-0.0833-0.2500 0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.0000-0.1667 0.1667 band energies (ev): -8.4246 6.9732 7.4811 7.8433 9.6425 9.7753 9.8835 10.1015 10.7257 14.1295 26.4794 k = 0.1667-0.1667 0.1667 band energies (ev): -8.3269 6.5694 7.3576 7.3576 9.7593 9.7593 9.9277 10.7759 10.7759 14.5070 25.4533 k = 0.2500-0.0833 0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.3333 0.0000 0.0000 band energies (ev): -8.2417 6.0191 7.6840 7.6840 9.3111 9.7835 10.2661 10.2661 10.7253 15.1847 26.1392 k = 0.4167 0.0833-0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.5000 0.1667-0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k = 0.5833 0.2500-0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.3333-0.6667 0.6667 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.2500-0.5833 0.5833 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.1667-0.5000 0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.0833-0.4167 0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.0000-0.3333 0.3333 band energies (ev): -7.9082 5.2253 6.5642 6.9246 9.8647 10.0918 10.3330 10.5502 11.9854 16.2083 23.9453 k = 0.0833-0.2500 0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.2500-0.2500 0.2500 band energies (ev): -7.9990 5.3428 6.7955 6.7955 9.9539 9.9539 10.1544 11.4618 11.4618 15.6253 23.5533 k = 0.3333-0.1667 0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k = 0.4167-0.0833 0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.5000 0.0000 0.0000 band energies (ev): -7.8613 5.0470 7.3652 7.3652 9.0684 9.8789 10.5702 10.5702 10.9371 16.7527 24.4593 k = 0.5833 0.0833-0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.6667 0.1667-0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.2500-0.7500 0.7500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.1667-0.6667 0.6667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-0.0833-0.5833 0.5833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k = 0.0000-0.5000 0.5000 band energies (ev): -7.3677 4.3180 5.9866 6.1252 10.1483 10.2825 10.6158 10.7980 12.4624 18.3400 22.2538 k = 0.0833-0.4167 0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.1667-0.3333 0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k = 0.3333-0.3333 0.3333 band energies (ev): -7.6403 4.2855 6.3628 6.3628 10.1551 10.1551 10.4114 12.0303 12.0303 16.4927 22.1414 k = 0.4167-0.2500 0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k = 0.5000-0.1667 0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k = 0.5833-0.0833 0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.6667 0.0000 0.0000 band energies (ev): -7.4988 4.5669 7.1783 7.1783 8.8303 9.9751 10.6787 10.6787 10.9376 17.6793 22.4504 k = 0.7500 0.0833-0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k =-0.1667-0.8333 0.8333 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.0833-0.7500 0.7500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k = 0.0000-0.6667 0.6667 band energies (ev): -7.1075 4.6546 5.2098 6.2114 9.9975 10.4069 10.6956 10.8096 11.8627 20.0840 20.5730 k = 0.0833-0.5833 0.5833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k = 0.1667-0.5000 0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k = 0.2500-0.4167 0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k = 0.4167-0.4167 0.4167 band energies (ev): -7.3531 3.5615 6.0920 6.0920 10.3071 10.3071 10.6406 12.4100 12.4100 16.9175 21.3811 k = 0.5000-0.3333 0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k = 0.5833-0.2500 0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k = 0.6667-0.1667 0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k = 0.7500-0.0833 0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.8333 0.0000 0.0000 band energies (ev): -7.2522 4.4904 7.0988 7.0988 8.6591 10.0461 10.6624 10.6624 10.7441 17.7027 21.7973 k =-0.0833-0.9167 0.9167 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 0.0000-0.8333 0.8333 band energies (ev): -7.1216 4.7045 5.9862 6.7019 9.2429 10.5791 10.6642 10.7246 10.7249 18.3431 21.7315 k = 0.0833-0.7500 0.7500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k = 0.1667-0.6667 0.6667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k = 0.2500-0.5833 0.5833 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k = 0.3333-0.5000 0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.5000 0.5000-0.5000 band energies (ev): -7.2417 3.3021 6.0000 6.0000 10.3638 10.3638 10.7367 12.5444 12.5444 17.0034 21.1782 k =-0.4167 0.5833-0.5833 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.3333 0.6667-0.6667 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.2500 0.7500-0.7500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.1667 0.8333-0.8333 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.0833 0.9167-0.9167 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k =-1.0000 0.0000 0.0000 band energies (ev): -7.1673 4.5297 7.0802 7.0802 8.5970 10.0722 10.6067 10.6383 10.6383 17.5561 21.7489 k =-0.9167 0.0833-0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k =-0.8333 0.1667-0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.7500 0.2500-0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.6667 0.3333-0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.5833 0.4167-0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.4167 0.4167-0.4167 band energies (ev): -7.3531 3.5615 6.0920 6.0920 10.3071 10.3071 10.6406 12.4100 12.4100 16.9175 21.3811 k =-0.3333 0.5000-0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.2500 0.5833-0.5833 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.1667 0.6667-0.6667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-0.0833 0.7500-0.7500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k = 0.0000 0.8333-0.8333 band energies (ev): -7.1216 4.7045 5.9862 6.7019 9.2429 10.5791 10.6642 10.7246 10.7249 18.3431 21.7315 k =-0.9167-0.0833 0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k =-0.8333 0.0000 0.0000 band energies (ev): -7.2522 4.4904 7.0988 7.0988 8.6591 10.0461 10.6624 10.6624 10.7441 17.7027 21.7973 k =-0.7500 0.0833-0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k =-0.6667 0.1667-0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.5833 0.2500-0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.5000 0.3333-0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.3333 0.3333-0.3333 band energies (ev): -7.6403 4.2855 6.3628 6.3628 10.1551 10.1551 10.4114 12.0303 12.0303 16.4927 22.1414 k =-0.2500 0.4167-0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.1667 0.5000-0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.0833 0.5833-0.5833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k = 0.0000 0.6667-0.6667 band energies (ev): -7.1075 4.6546 5.2098 6.2114 9.9975 10.4069 10.6956 10.8096 11.8627 20.0840 20.5730 k = 0.0833 0.7500-0.7500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k =-0.8333-0.1667 0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.7500-0.0833 0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k =-0.6667 0.0000 0.0000 band energies (ev): -7.4988 4.5669 7.1783 7.1783 8.8303 9.9751 10.6787 10.6787 10.9376 17.6793 22.4504 k =-0.5833 0.0833-0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k =-0.5000 0.1667-0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k =-0.4167 0.2500-0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k =-0.2500 0.2500-0.2500 band energies (ev): -7.9990 5.3428 6.7955 6.7955 9.9539 9.9539 10.1544 11.4618 11.4618 15.6253 23.5533 k =-0.1667 0.3333-0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k =-0.0833 0.4167-0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.0000 0.5000-0.5000 band energies (ev): -7.3677 4.3180 5.9866 6.1252 10.1483 10.2825 10.6158 10.7980 12.4624 18.3400 22.2538 k = 0.0833 0.5833-0.5833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k = 0.1667 0.6667-0.6667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-0.7500-0.2500 0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.6667-0.1667 0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.5833-0.0833 0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k =-0.5000 0.0000 0.0000 band energies (ev): -7.8613 5.0470 7.3652 7.3652 9.0684 9.8789 10.5702 10.5702 10.9371 16.7527 24.4593 k =-0.4167 0.0833-0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k =-0.3333 0.1667-0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k =-0.1667 0.1667-0.1667 band energies (ev): -8.3269 6.5694 7.3576 7.3576 9.7593 9.7593 9.9277 10.7759 10.7759 14.5070 25.4533 k =-0.0833 0.2500-0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.0000 0.3333-0.3333 band energies (ev): -7.9082 5.2253 6.5642 6.9246 9.8647 10.0918 10.3330 10.5502 11.9854 16.2083 23.9453 k = 0.0833 0.4167-0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.1667 0.5000-0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k = 0.2500 0.5833-0.5833 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.6667-0.3333 0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.5833-0.2500 0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.5000-0.1667 0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k =-0.4167-0.0833 0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k =-0.3333 0.0000 0.0000 band energies (ev): -8.2417 6.0191 7.6840 7.6840 9.3111 9.7835 10.2661 10.2661 10.7253 15.1847 26.1392 k =-0.2500 0.0833-0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k =-0.0833 0.0833-0.0833 band energies (ev): -8.5510 7.7392 7.9733 7.9733 9.6196 9.6196 9.7176 10.0768 10.0768 13.4617 27.5870 k = 0.0000 0.1667-0.1667 band energies (ev): -8.4246 6.9732 7.4811 7.8433 9.6425 9.7753 9.8835 10.1015 10.7257 14.1295 26.4794 k = 0.0833 0.2500-0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.1667 0.3333-0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k = 0.2500 0.4167-0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k = 0.3333 0.5000-0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.5833-0.4167 0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.5000-0.3333 0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.4167-0.2500 0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k =-0.3333-0.1667 0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k =-0.2500-0.0833 0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k =-0.1667 0.0000 0.0000 band energies (ev): -8.5257 7.3486 8.0914 8.0914 9.4916 9.7142 9.8288 9.8288 10.2695 13.6494 27.6461 k =-0.0833 0.0833 0.0833 band energies (ev): -8.5510 7.7392 7.9733 7.9733 9.6196 9.6196 9.7176 10.0768 10.0768 13.4617 27.5870 k = 0.0000 0.1667 0.0000 band energies (ev): -8.5257 7.3486 8.0914 8.0914 9.4916 9.7142 9.8288 9.8288 10.2695 13.6494 27.6461 k = 0.0833 0.2500-0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.1667 0.3333-0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k = 0.2500 0.4167-0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k = 0.3333 0.5000-0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.5833-0.4167 0.5833 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.5000-0.3333 0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.4167-0.2500 0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.3333-0.1667 0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k =-0.2500-0.0833 0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k =-0.1667 0.0000 0.1667 band energies (ev): -8.4246 6.9732 7.4811 7.8433 9.6425 9.7753 9.8835 10.1015 10.7257 14.1295 26.4794 k = 0.0000 0.0000 0.1667 band energies (ev): -8.5257 7.3486 8.0914 8.0914 9.4916 9.7142 9.8288 9.8288 10.2695 13.6494 27.6461 k = 0.0833 0.0833 0.0833 band energies (ev): -8.5510 7.7392 7.9733 7.9733 9.6196 9.6196 9.7176 10.0768 10.0768 13.4617 27.5870 k = 0.1667 0.1667 0.0000 band energies (ev): -8.4246 6.9732 7.4811 7.8433 9.6425 9.7753 9.8835 10.1015 10.7257 14.1295 26.4794 k = 0.2500 0.2500-0.0833 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.3333 0.3333-0.1667 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k = 0.4167 0.4167-0.2500 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.5000-0.5000 0.6667 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.4167-0.4167 0.5833 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.3333-0.3333 0.5000 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.2500-0.2500 0.4167 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k =-0.1667-0.1667 0.3333 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k =-0.0833-0.0833 0.2500 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.0833-0.0833 0.2500 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.1667 0.0000 0.1667 band energies (ev): -8.4246 6.9732 7.4811 7.8433 9.6425 9.7753 9.8835 10.1015 10.7257 14.1295 26.4794 k = 0.2500 0.0833 0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.3333 0.1667 0.0000 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.4167 0.2500-0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.5000 0.3333-0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.4167-0.5833 0.7500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.3333-0.5000 0.6667 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.2500-0.4167 0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.1667-0.3333 0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.0833-0.2500 0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.0000-0.1667 0.3333 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.1667-0.1667 0.3333 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k = 0.2500-0.0833 0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.3333 0.0000 0.1667 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.4167 0.0833 0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.5000 0.1667 0.0000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.5833 0.2500-0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.3333-0.6667 0.8333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.2500-0.5833 0.7500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.1667-0.5000 0.6667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.0833-0.4167 0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.0000-0.3333 0.5000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.0833-0.2500 0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.2500-0.2500 0.4167 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k = 0.3333-0.1667 0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k = 0.4167-0.0833 0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.5000 0.0000 0.1667 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.5833 0.0833 0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.6667 0.1667 0.0000 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k =-0.2500-0.7500 0.9167 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.1667-0.6667 0.8333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.0833-0.5833 0.7500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.0000-0.5000 0.6667 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k = 0.0833-0.4167 0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.1667-0.3333 0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.3333-0.3333 0.5000 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k = 0.4167-0.2500 0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k = 0.5000-0.1667 0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.5833-0.0833 0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.6667 0.0000 0.1667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.7500 0.0833 0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k =-0.1667-0.8333 1.0000 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k =-0.0833-0.7500 0.9167 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.0000-0.6667 0.8333 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k = 0.0833-0.5833 0.7500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.1667-0.5000 0.6667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.2500-0.4167 0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.5833 0.5833-0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.5000 0.6667-0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.4167 0.7500-0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.3333 0.8333-0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.2500 0.9167-0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.1667 1.0000-0.8333 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k =-1.0833 0.0833 0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k =-1.0000 0.1667 0.0000 band energies (ev): -7.1412 4.6181 6.6476 6.6476 9.0342 10.3239 10.6193 10.6385 10.7294 17.9787 21.7386 k =-0.9167 0.2500-0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.8333 0.3333-0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.7500 0.4167-0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.6667 0.5000-0.3333 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.5000 0.5000-0.3333 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.4167 0.5833-0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.3333 0.6667-0.5000 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.2500 0.7500-0.5833 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.1667 0.8333-0.6667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.0833 0.9167-0.7500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-1.0000 0.0000 0.1667 band energies (ev): -7.1412 4.6181 6.6476 6.6476 9.0342 10.3239 10.6193 10.6385 10.7294 17.9787 21.7386 k =-0.9167 0.0833 0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k =-0.8333 0.1667 0.0000 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k =-0.7500 0.2500-0.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.6667 0.3333-0.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.5833 0.4167-0.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.4167 0.4167-0.2500 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.3333 0.5000-0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.2500 0.5833-0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.1667 0.6667-0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.0833 0.7500-0.5833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.0000 0.8333-0.6667 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k =-0.9167-0.0833 0.2500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.8333 0.0000 0.1667 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k =-0.7500 0.0833 0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k =-0.6667 0.1667 0.0000 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k =-0.5833 0.2500-0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.5000 0.3333-0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.3333 0.3333-0.1667 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k =-0.2500 0.4167-0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k =-0.1667 0.5000-0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.0833 0.5833-0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.0000 0.6667-0.5000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k = 0.0833 0.7500-0.5833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.8333-0.1667 0.3333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.7500-0.0833 0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.6667 0.0000 0.1667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k =-0.5833 0.0833 0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k =-0.5000 0.1667 0.0000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k =-0.4167 0.2500-0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.2500 0.2500-0.0833 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k =-0.1667 0.3333-0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k =-0.0833 0.4167-0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.0000 0.5000-0.3333 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.0833 0.5833-0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.1667 0.6667-0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.7500-0.2500 0.4167 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.6667-0.1667 0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.5833-0.0833 0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.5000 0.0000 0.1667 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k =-0.4167 0.0833 0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k =-0.3333 0.1667 0.0000 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k =-0.1667 0.1667 0.0000 band energies (ev): -8.4246 6.9732 7.4811 7.8433 9.6425 9.7753 9.8835 10.1015 10.7257 14.1295 26.4794 k =-0.0833 0.2500-0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.0000 0.3333-0.1667 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.0833 0.4167-0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.1667 0.5000-0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.2500 0.5833-0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.6667-0.3333 0.5000 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.5833-0.2500 0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.5000-0.1667 0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.4167-0.0833 0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.3333 0.0000 0.1667 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k =-0.2500 0.0833 0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k =-0.1667 0.1667 0.1667 band energies (ev): -8.3269 6.5694 7.3576 7.3576 9.7593 9.7593 9.9277 10.7759 10.7759 14.5070 25.4533 k =-0.0833 0.2500 0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.0000 0.3333 0.0000 band energies (ev): -8.2417 6.0191 7.6840 7.6840 9.3111 9.7835 10.2661 10.2661 10.7253 15.1847 26.1392 k = 0.0833 0.4167-0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.1667 0.5000-0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k = 0.2500 0.5833-0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.6667-0.3333 0.6667 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.5833-0.2500 0.5833 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.5000-0.1667 0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.4167-0.0833 0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k =-0.3333 0.0000 0.3333 band energies (ev): -7.9082 5.2253 6.5642 6.9246 9.8647 10.0918 10.3330 10.5502 11.9854 16.2083 23.9453 k =-0.2500 0.0833 0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k =-0.0833 0.0833 0.2500 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.0000 0.1667 0.1667 band energies (ev): -8.4246 6.9732 7.4811 7.8433 9.6425 9.7753 9.8835 10.1015 10.7257 14.1295 26.4794 k = 0.0833 0.2500 0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.1667 0.3333 0.0000 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.2500 0.4167-0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.3333 0.5000-0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.5833-0.4167 0.7500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.5000-0.3333 0.6667 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.4167-0.2500 0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.3333-0.1667 0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.2500-0.0833 0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.1667 0.0000 0.3333 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.0000 0.0000 0.3333 band energies (ev): -8.2417 6.0191 7.6840 7.6840 9.3111 9.7835 10.2661 10.2661 10.7253 15.1847 26.1392 k = 0.0833 0.0833 0.2500 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.1667 0.1667 0.1667 band energies (ev): -8.3269 6.5694 7.3576 7.3576 9.7593 9.7593 9.9277 10.7759 10.7759 14.5070 25.4533 k = 0.2500 0.2500 0.0833 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.3333 0.3333 0.0000 band energies (ev): -7.9082 5.2253 6.5642 6.9246 9.8647 10.0918 10.3330 10.5502 11.9854 16.2083 23.9453 k = 0.4167 0.4167-0.0833 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k =-0.5000-0.5000 0.8333 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.4167-0.4167 0.7500 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.3333-0.3333 0.6667 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.2500-0.2500 0.5833 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.1667-0.1667 0.5000 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k =-0.0833-0.0833 0.4167 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.0833-0.0833 0.4167 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.1667 0.0000 0.3333 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.2500 0.0833 0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.3333 0.1667 0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k = 0.4167 0.2500 0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.5000 0.3333 0.0000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k =-0.4167-0.5833 0.9167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.3333-0.5000 0.8333 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.2500-0.4167 0.7500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.1667-0.3333 0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.0833-0.2500 0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.0000-0.1667 0.5000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.1667-0.1667 0.5000 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k = 0.2500-0.0833 0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.3333 0.0000 0.3333 band energies (ev): -7.9082 5.2253 6.5642 6.9246 9.8647 10.0918 10.3330 10.5502 11.9854 16.2083 23.9453 k = 0.4167 0.0833 0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.5000 0.1667 0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k = 0.5833 0.2500 0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.3333-0.6667 1.0000 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k =-0.2500-0.5833 0.9167 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.1667-0.5000 0.8333 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k =-0.0833-0.4167 0.7500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.0000-0.3333 0.6667 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k = 0.0833-0.2500 0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.2500-0.2500 0.5833 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k = 0.3333-0.1667 0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.4167-0.0833 0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.5000 0.0000 0.3333 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.5833 0.0833 0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.6667 0.1667 0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.2500-0.7500 1.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.1667-0.6667 1.0000 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-0.0833-0.5833 0.9167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.0000-0.5000 0.8333 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k = 0.0833-0.4167 0.7500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.1667-0.3333 0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.6667 0.6667-0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.5833 0.7500-0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.5000 0.8333-0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.4167 0.9167-0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.3333 1.0000-0.6667 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k =-0.2500 1.0833-0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-1.1667 0.1667 0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-1.0833 0.2500 0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-1.0000 0.3333 0.0000 band energies (ev): -7.0880 4.8857 5.9459 5.9852 9.7194 10.4561 10.5190 10.6389 11.1190 19.0536 21.7656 k =-0.9167 0.4167-0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-0.8333 0.5000-0.1667 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k =-0.7500 0.5833-0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.5833 0.5833-0.2500 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.5000 0.6667-0.3333 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.4167 0.7500-0.4167 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.3333 0.8333-0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.2500 0.9167-0.5833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.1667 1.0000-0.6667 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-1.0833 0.0833 0.2500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-1.0000 0.1667 0.1667 band energies (ev): -7.1216 4.7045 5.9862 6.7019 9.2429 10.5791 10.6642 10.7246 10.7249 18.3431 21.7315 k =-0.9167 0.2500 0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.8333 0.3333 0.0000 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-0.7500 0.4167-0.0833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.6667 0.5000-0.1667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.5000 0.5000-0.1667 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.4167 0.5833-0.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.3333 0.6667-0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.2500 0.7500-0.4167 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.1667 0.8333-0.5000 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k =-0.0833 0.9167-0.5833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-1.0000 0.0000 0.3333 band energies (ev): -7.0880 4.8857 5.9459 5.9852 9.7194 10.4561 10.5190 10.6389 11.1190 19.0536 21.7656 k =-0.9167 0.0833 0.2500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.8333 0.1667 0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.7500 0.2500 0.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.6667 0.3333 0.0000 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k =-0.5833 0.4167-0.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.4167 0.4167-0.0833 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k =-0.3333 0.5000-0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.2500 0.5833-0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.1667 0.6667-0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.0833 0.7500-0.4167 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.0000 0.8333-0.5000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k =-0.9167-0.0833 0.4167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-0.8333 0.0000 0.3333 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-0.7500 0.0833 0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.6667 0.1667 0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.5833 0.2500 0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.5000 0.3333 0.0000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k =-0.3333 0.3333 0.0000 band energies (ev): -7.9082 5.2253 6.5642 6.9246 9.8647 10.0918 10.3330 10.5502 11.9854 16.2083 23.9453 k =-0.2500 0.4167-0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.1667 0.5000-0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k =-0.0833 0.5833-0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.0000 0.6667-0.3333 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k = 0.0833 0.7500-0.4167 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.8333-0.1667 0.5000 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k =-0.7500-0.0833 0.4167 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.6667 0.0000 0.3333 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k =-0.5833 0.0833 0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.5000 0.1667 0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k =-0.4167 0.2500 0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.2500 0.2500 0.0833 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k =-0.1667 0.3333 0.0000 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k =-0.0833 0.4167-0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.0000 0.5000-0.1667 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.0833 0.5833-0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.1667 0.6667-0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.7500-0.2500 0.5833 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.6667-0.1667 0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.5833-0.0833 0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.5000 0.0000 0.3333 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k =-0.4167 0.0833 0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.3333 0.1667 0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k =-0.2500 0.2500 0.2500 band energies (ev): -7.9990 5.3428 6.7955 6.7955 9.9539 9.9539 10.1544 11.4618 11.4618 15.6253 23.5533 k =-0.1667 0.3333 0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k =-0.0833 0.4167 0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.0000 0.5000 0.0000 band energies (ev): -7.8613 5.0470 7.3652 7.3652 9.0684 9.8789 10.5702 10.5702 10.9371 16.7527 24.4593 k = 0.0833 0.5833-0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.1667 0.6667-0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.7500-0.2500 0.7500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.6667-0.1667 0.6667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-0.5833-0.0833 0.5833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k =-0.5000 0.0000 0.5000 band energies (ev): -7.3677 4.3180 5.9866 6.1252 10.1483 10.2825 10.6158 10.7980 12.4624 18.3400 22.2538 k =-0.4167 0.0833 0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k =-0.3333 0.1667 0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k =-0.1667 0.1667 0.3333 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k =-0.0833 0.2500 0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.0000 0.3333 0.1667 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.0833 0.4167 0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.1667 0.5000 0.0000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.2500 0.5833-0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.6667-0.3333 0.8333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.5833-0.2500 0.7500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.5000-0.1667 0.6667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.4167-0.0833 0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.3333 0.0000 0.5000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k =-0.2500 0.0833 0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.0833 0.0833 0.4167 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.0000 0.1667 0.3333 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.0833 0.2500 0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.1667 0.3333 0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k = 0.2500 0.4167 0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.3333 0.5000 0.0000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k =-0.5833-0.4167 0.9167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.5000-0.3333 0.8333 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.4167-0.2500 0.7500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.3333-0.1667 0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.2500-0.0833 0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.1667 0.0000 0.5000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.0000 0.0000 0.5000 band energies (ev): -7.8613 5.0470 7.3652 7.3652 9.0684 9.8789 10.5702 10.5702 10.9371 16.7527 24.4593 k = 0.0833 0.0833 0.4167 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.1667 0.1667 0.3333 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k = 0.2500 0.2500 0.2500 band energies (ev): -7.9990 5.3428 6.7955 6.7955 9.9539 9.9539 10.1544 11.4618 11.4618 15.6253 23.5533 k = 0.3333 0.3333 0.1667 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k = 0.4167 0.4167 0.0833 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k =-0.5000-0.5000 1.0000 band energies (ev): -7.3677 4.3180 5.9866 6.1252 10.1483 10.2825 10.6158 10.7980 12.4624 18.3400 22.2538 k =-0.4167-0.4167 0.9167 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k =-0.3333-0.3333 0.8333 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-0.2500-0.2500 0.7500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.1667-0.1667 0.6667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.0833-0.0833 0.5833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.0833-0.0833 0.5833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.1667 0.0000 0.5000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.2500 0.0833 0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.3333 0.1667 0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k = 0.4167 0.2500 0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k = 0.5000 0.3333 0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.4167-0.5833 1.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.3333-0.5000 1.0000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k =-0.2500-0.4167 0.9167 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.1667-0.3333 0.8333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.0833-0.2500 0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.0000-0.1667 0.6667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.1667-0.1667 0.6667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k = 0.2500-0.0833 0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.3333 0.0000 0.5000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.4167 0.0833 0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.5000 0.1667 0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.5833 0.2500 0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.3333-0.6667 1.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.2500-0.5833 1.0833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.1667-0.5000 1.0000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k =-0.0833-0.4167 0.9167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.0000-0.3333 0.8333 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k = 0.0833-0.2500 0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.7500 0.7500-0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.6667 0.8333-0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.5833 0.9167-0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.5000 1.0000-0.5000 band energies (ev): -7.3677 4.3180 5.9866 6.1252 10.1483 10.2825 10.6158 10.7980 12.4624 18.3400 22.2538 k =-0.4167 1.0833-0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.3333 1.1667-0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-1.2500 0.2500 0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-1.1667 0.3333 0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-1.0833 0.4167 0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-1.0000 0.5000 0.0000 band energies (ev): -7.0610 5.3333 5.3333 5.7094 10.2399 10.2399 10.4758 10.6390 11.2943 19.8046 21.9749 k =-0.9167 0.5833-0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-0.8333 0.6667-0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.6667 0.6667-0.1667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-0.5833 0.7500-0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.5000 0.8333-0.3333 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.4167 0.9167-0.4167 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k =-0.3333 1.0000-0.5000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k =-0.2500 1.0833-0.5833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-1.1667 0.1667 0.3333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-1.0833 0.2500 0.2500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k =-1.0000 0.3333 0.1667 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7681 k =-0.9167 0.4167 0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-0.8333 0.5000 0.0000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k =-0.7500 0.5833-0.0833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.5833 0.5833-0.0833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k =-0.5000 0.6667-0.1667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.4167 0.7500-0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.3333 0.8333-0.3333 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-0.2500 0.9167-0.4167 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.1667 1.0000-0.5000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k =-1.0833 0.0833 0.4167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-1.0000 0.1667 0.3333 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k =-0.9167 0.2500 0.2500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k =-0.8333 0.3333 0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.7500 0.4167 0.0833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.6667 0.5000 0.0000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k =-0.5000 0.5000 0.0000 band energies (ev): -7.3677 4.3180 5.9866 6.1252 10.1483 10.2825 10.6158 10.7980 12.4624 18.3400 22.2538 k =-0.4167 0.5833-0.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.3333 0.6667-0.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.2500 0.7500-0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.1667 0.8333-0.3333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.0833 0.9167-0.4167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-1.0000 0.0000 0.5000 band energies (ev): -7.0610 5.3333 5.3333 5.7094 10.2399 10.2399 10.4758 10.6390 11.2943 19.8046 21.9749 k =-0.9167 0.0833 0.4167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-0.8333 0.1667 0.3333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.7500 0.2500 0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.6667 0.3333 0.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.5833 0.4167 0.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.4167 0.4167 0.0833 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k =-0.3333 0.5000 0.0000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k =-0.2500 0.5833-0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.1667 0.6667-0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.0833 0.7500-0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.0000 0.8333-0.3333 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-0.9167-0.0833 0.5833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-0.8333 0.0000 0.5000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k =-0.7500 0.0833 0.4167 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.6667 0.1667 0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.5833 0.2500 0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.5000 0.3333 0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.3333 0.3333 0.1667 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k =-0.2500 0.4167 0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.1667 0.5000 0.0000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k =-0.0833 0.5833-0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.0000 0.6667-0.1667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.0833 0.7500-0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.8333-0.1667 0.6667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.7500-0.0833 0.5833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.6667 0.0000 0.5000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k =-0.5833 0.0833 0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.5000 0.1667 0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.4167 0.2500 0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k =-0.3333 0.3333 0.3333 band energies (ev): -7.6403 4.2855 6.3628 6.3628 10.1551 10.1551 10.4114 12.0303 12.0303 16.4927 22.1414 k =-0.2500 0.4167 0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k =-0.1667 0.5000 0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k =-0.0833 0.5833 0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.0000 0.6667 0.0000 band energies (ev): -7.4988 4.5669 7.1783 7.1783 8.8303 9.9751 10.6787 10.6787 10.9376 17.6793 22.4504 k = 0.0833 0.7500-0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k =-0.8333-0.1667 0.8333 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.7500-0.0833 0.7500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k =-0.6667 0.0000 0.6667 band energies (ev): -7.1075 4.6546 5.2098 6.2114 9.9975 10.4069 10.6956 10.8096 11.8627 20.0840 20.5730 k =-0.5833 0.0833 0.5833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k =-0.5000 0.1667 0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.4167 0.2500 0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.2500 0.2500 0.4167 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k =-0.1667 0.3333 0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k =-0.0833 0.4167 0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.0000 0.5000 0.1667 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.0833 0.5833 0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.1667 0.6667 0.0000 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k =-0.7500-0.2500 0.9167 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.6667-0.1667 0.8333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.5833-0.0833 0.7500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.5000 0.0000 0.6667 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k =-0.4167 0.0833 0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.3333 0.1667 0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.1667 0.1667 0.5000 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k =-0.0833 0.2500 0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.0000 0.3333 0.3333 band energies (ev): -7.9082 5.2253 6.5642 6.9246 9.8647 10.0918 10.3330 10.5502 11.9854 16.2083 23.9453 k = 0.0833 0.4167 0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.1667 0.5000 0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k = 0.2500 0.5833 0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.6667-0.3333 1.0000 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k =-0.5833-0.2500 0.9167 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.5000-0.1667 0.8333 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k =-0.4167-0.0833 0.7500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.3333 0.0000 0.6667 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k =-0.2500 0.0833 0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.0833 0.0833 0.5833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.0000 0.1667 0.5000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.0833 0.2500 0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.1667 0.3333 0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k = 0.2500 0.4167 0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k = 0.3333 0.5000 0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.5833-0.4167 1.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.5000-0.3333 1.0000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k =-0.4167-0.2500 0.9167 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.3333-0.1667 0.8333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.2500-0.0833 0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.1667 0.0000 0.6667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.0000 0.0000 0.6667 band energies (ev): -7.4988 4.5669 7.1783 7.1783 8.8303 9.9751 10.6787 10.6787 10.9376 17.6793 22.4504 k = 0.0833 0.0833 0.5833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.1667 0.1667 0.5000 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k = 0.2500 0.2500 0.4167 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k = 0.3333 0.3333 0.3333 band energies (ev): -7.6403 4.2855 6.3628 6.3628 10.1551 10.1551 10.4114 12.0303 12.0303 16.4927 22.1414 k = 0.4167 0.4167 0.2500 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.5000-0.5000 1.1667 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.4167-0.4167 1.0833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k =-0.3333-0.3333 1.0000 band energies (ev): -7.1075 4.6546 5.2098 6.2114 9.9975 10.4069 10.6956 10.8096 11.8627 20.0840 20.5730 k =-0.2500-0.2500 0.9167 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k =-0.1667-0.1667 0.8333 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.0833-0.0833 0.7500 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.0833-0.0833 0.7500 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.1667 0.0000 0.6667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.2500 0.0833 0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.3333 0.1667 0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.4167 0.2500 0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k = 0.5000 0.3333 0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.4167-0.5833 1.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.3333-0.5000 1.1667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.2500-0.4167 1.0833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.1667-0.3333 1.0000 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k =-0.0833-0.2500 0.9167 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.0000-0.1667 0.8333 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k =-0.8333 0.8333-0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.7500 0.9167-0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.6667 1.0000-0.3333 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k =-0.5833 1.0833-0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.5000 1.1667-0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.4167 1.2500-0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-1.3333 0.3333 0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-1.2500 0.4167 0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-1.1667 0.5000 0.1667 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k =-1.0833 0.5833 0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-1.0000 0.6667 0.0000 band energies (ev): -7.0880 4.8857 5.9459 5.9852 9.7194 10.4561 10.5190 10.6389 11.1190 19.0536 21.7656 k =-0.9167 0.7500-0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.7500 0.7500-0.0833 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k =-0.6667 0.8333-0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.5833 0.9167-0.2500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.5000 1.0000-0.3333 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k =-0.4167 1.0833-0.4167 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k =-0.3333 1.1667-0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-1.2500 0.2500 0.4167 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-1.1667 0.3333 0.3333 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-1.0833 0.4167 0.2500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-1.0000 0.5000 0.1667 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k =-0.9167 0.5833 0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-0.8333 0.6667 0.0000 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7681 k =-0.6667 0.6667 0.0000 band energies (ev): -7.1075 4.6546 5.2098 6.2114 9.9975 10.4069 10.6956 10.8096 11.8627 20.0840 20.5730 k =-0.5833 0.7500-0.0833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.5000 0.8333-0.1667 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k =-0.4167 0.9167-0.2500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.3333 1.0000-0.3333 band energies (ev): -7.1075 4.6546 5.2098 6.2114 9.9975 10.4069 10.6956 10.8096 11.8627 20.0840 20.5730 k =-0.2500 1.0833-0.4167 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-1.1667 0.1667 0.5000 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k =-1.0833 0.2500 0.4167 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-1.0000 0.3333 0.3333 band energies (ev): -7.1075 4.6546 5.2098 6.2114 9.9975 10.4069 10.6956 10.8096 11.8627 20.0840 20.5730 k =-0.9167 0.4167 0.2500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.8333 0.5000 0.1667 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k =-0.7500 0.5833 0.0833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.5833 0.5833 0.0833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k =-0.5000 0.6667 0.0000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k =-0.4167 0.7500-0.0833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.3333 0.8333-0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.2500 0.9167-0.2500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k =-0.1667 1.0000-0.3333 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k =-1.0833 0.0833 0.5833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-1.0000 0.1667 0.5000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k =-0.9167 0.2500 0.4167 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.8333 0.3333 0.3333 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-0.7500 0.4167 0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.6667 0.5000 0.1667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.5000 0.5000 0.1667 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.4167 0.5833 0.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.3333 0.6667 0.0000 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k =-0.2500 0.7500-0.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.1667 0.8333-0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.0833 0.9167-0.2500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-1.0000 0.0000 0.6667 band energies (ev): -7.0880 4.8857 5.9459 5.9852 9.7194 10.4561 10.5190 10.6389 11.1190 19.0536 21.7656 k =-0.9167 0.0833 0.5833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-0.8333 0.1667 0.5000 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k =-0.7500 0.2500 0.4167 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.6667 0.3333 0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.5833 0.4167 0.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.4167 0.4167 0.2500 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.3333 0.5000 0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.2500 0.5833 0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.1667 0.6667 0.0000 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k =-0.0833 0.7500-0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.0000 0.8333-0.1667 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k =-0.9167-0.0833 0.7500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.8333 0.0000 0.6667 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k =-0.7500 0.0833 0.5833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.6667 0.1667 0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.5833 0.2500 0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.5000 0.3333 0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.4167 0.4167 0.4167 band energies (ev): -7.3531 3.5615 6.0920 6.0920 10.3071 10.3071 10.6406 12.4100 12.4100 16.9175 21.3811 k =-0.3333 0.5000 0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.2500 0.5833 0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.1667 0.6667 0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.0833 0.7500 0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.0000 0.8333 0.0000 band energies (ev): -7.2522 4.4904 7.0988 7.0988 8.6591 10.0461 10.6624 10.6624 10.7441 17.7027 21.7973 k =-0.9167-0.0833 0.9167 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k =-0.8333 0.0000 0.8333 band energies (ev): -7.1216 4.7045 5.9862 6.7019 9.2429 10.5791 10.6642 10.7246 10.7249 18.3431 21.7315 k =-0.7500 0.0833 0.7500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k =-0.6667 0.1667 0.6667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-0.5833 0.2500 0.5833 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.5000 0.3333 0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.3333 0.3333 0.5000 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.2500 0.4167 0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.1667 0.5000 0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.0833 0.5833 0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.0000 0.6667 0.1667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.0833 0.7500 0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k =-0.8333-0.1667 1.0000 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k =-0.7500-0.0833 0.9167 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.6667 0.0000 0.8333 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k =-0.5833 0.0833 0.7500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.5000 0.1667 0.6667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.4167 0.2500 0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.2500 0.2500 0.5833 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.1667 0.3333 0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.0833 0.4167 0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.0000 0.5000 0.3333 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.0833 0.5833 0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.1667 0.6667 0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.7500-0.2500 1.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.6667-0.1667 1.0000 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-0.5833-0.0833 0.9167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-0.5000 0.0000 0.8333 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k =-0.4167 0.0833 0.7500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.3333 0.1667 0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.1667 0.1667 0.6667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.0833 0.2500 0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.0000 0.3333 0.5000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.0833 0.4167 0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.1667 0.5000 0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.2500 0.5833 0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.6667-0.3333 1.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.5833-0.2500 1.0833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.5000-0.1667 1.0000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k =-0.4167-0.0833 0.9167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-0.3333 0.0000 0.8333 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-0.2500 0.0833 0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.0833 0.0833 0.7500 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.0000 0.1667 0.6667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.0833 0.2500 0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.1667 0.3333 0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.2500 0.4167 0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k = 0.3333 0.5000 0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.5833-0.4167 1.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.5000-0.3333 1.1667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.4167-0.2500 1.0833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.3333-0.1667 1.0000 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7681 k =-0.2500-0.0833 0.9167 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.1667 0.0000 0.8333 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k = 0.0000 0.0000 0.8333 band energies (ev): -7.2522 4.4904 7.0988 7.0988 8.6591 10.0461 10.6624 10.6624 10.7441 17.7027 21.7973 k = 0.0833 0.0833 0.7500 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.1667 0.1667 0.6667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k = 0.2500 0.2500 0.5833 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k = 0.3333 0.3333 0.5000 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k = 0.4167 0.4167 0.4167 band energies (ev): -7.3531 3.5615 6.0920 6.0920 10.3071 10.3071 10.6406 12.4100 12.4100 16.9175 21.3811 k =-0.5000-0.5000 1.3333 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.4167-0.4167 1.2500 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.3333-0.3333 1.1667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-0.2500-0.2500 1.0833 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k =-0.1667-0.1667 1.0000 band energies (ev): -7.1216 4.7045 5.9862 6.7019 9.2429 10.5791 10.6642 10.7246 10.7249 18.3431 21.7315 k =-0.0833-0.0833 0.9167 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k =-0.9167 0.9167-0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k =-0.8333 1.0000-0.1667 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k =-0.7500 1.0833-0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.6667 1.1667-0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.5833 1.2500-0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.5000 1.3333-0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-1.4167 0.4167 0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-1.3333 0.5000 0.3333 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-1.2500 0.5833 0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-1.1667 0.6667 0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-1.0833 0.7500 0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-1.0000 0.8333 0.0000 band energies (ev): -7.1412 4.6181 6.6476 6.6476 9.0342 10.3239 10.6193 10.6385 10.7294 17.9787 21.7386 k =-0.8333 0.8333 0.0000 band energies (ev): -7.1216 4.7045 5.9862 6.7019 9.2429 10.5791 10.6642 10.7246 10.7249 18.3431 21.7315 k =-0.7500 0.9167-0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.6667 1.0000-0.1667 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-0.5833 1.0833-0.2500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.5000 1.1667-0.3333 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.4167 1.2500-0.4167 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-1.3333 0.3333 0.5000 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-1.2500 0.4167 0.4167 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-1.1667 0.5000 0.3333 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-1.0833 0.5833 0.2500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-1.0000 0.6667 0.1667 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-0.9167 0.7500 0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.7500 0.7500 0.0833 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k =-0.6667 0.8333 0.0000 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k =-0.5833 0.9167-0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-0.5000 1.0000-0.1667 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k =-0.4167 1.0833-0.2500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.3333 1.1667-0.3333 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-1.2500 0.2500 0.5833 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-1.1667 0.3333 0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-1.0833 0.4167 0.4167 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k =-1.0000 0.5000 0.3333 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k =-0.9167 0.5833 0.2500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.8333 0.6667 0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.6667 0.6667 0.1667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-0.5833 0.7500 0.0833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.5000 0.8333 0.0000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k =-0.4167 0.9167-0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k =-0.3333 1.0000-0.1667 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k =-0.2500 1.0833-0.2500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k =-1.1667 0.1667 0.6667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-1.0833 0.2500 0.5833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-1.0000 0.3333 0.5000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k =-0.9167 0.4167 0.4167 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k =-0.8333 0.5000 0.3333 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.7500 0.5833 0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.5833 0.5833 0.2500 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.5000 0.6667 0.1667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.4167 0.7500 0.0833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.3333 0.8333 0.0000 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-0.2500 0.9167-0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.1667 1.0000-0.1667 band energies (ev): -7.1216 4.7045 5.9862 6.7019 9.2429 10.5791 10.6642 10.7246 10.7249 18.3431 21.7315 k =-1.0833 0.0833 0.7500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-1.0000 0.1667 0.6667 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-0.9167 0.2500 0.5833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.8333 0.3333 0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.7500 0.4167 0.4167 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.6667 0.5000 0.3333 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.5000 0.5000 0.3333 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.4167 0.5833 0.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.3333 0.6667 0.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.2500 0.7500 0.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.1667 0.8333 0.0000 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k =-0.0833 0.9167-0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k =-1.0000 0.0000 0.8333 band energies (ev): -7.1412 4.6181 6.6476 6.6476 9.0342 10.3239 10.6193 10.6385 10.7294 17.9787 21.7386 k =-0.9167 0.0833 0.7500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.8333 0.1667 0.6667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.7500 0.2500 0.5833 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.6667 0.3333 0.5000 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.5833 0.4167 0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k = 0.5000-0.5000-0.5000 band energies (ev): -7.2417 3.3021 6.0000 6.0000 10.3638 10.3638 10.7367 12.5444 12.5444 17.0034 21.1782 k = 0.5833-0.4167-0.5833 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k = 0.6667-0.3333-0.6667 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k = 0.7500-0.2500-0.7500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k = 0.8333-0.1667-0.8333 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k = 0.9167-0.0833-0.9167 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 0.0000-1.0000 0.0000 band energies (ev): -7.1673 4.5297 7.0802 7.0802 8.5970 10.0722 10.6067 10.6383 10.6383 17.5561 21.7489 k = 0.0833-0.9167-0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 0.1667-0.8333-0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k = 0.2500-0.7500-0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k = 0.3333-0.6667-0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k = 0.4167-0.5833-0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k = 0.5833-0.5833-0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k = 0.6667-0.5000-0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k = 0.7500-0.4167-0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.8333-0.3333-0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.9167-0.2500-0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 1.0000-0.1667-0.8333 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k = 0.0833-1.0833 0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 0.1667-1.0000 0.0000 band energies (ev): -7.1412 4.6181 6.6476 6.6476 9.0342 10.3239 10.6193 10.6385 10.7294 17.9787 21.7386 k = 0.2500-0.9167-0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.3333-0.8333-0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.4167-0.7500-0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.5000-0.6667-0.3333 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k = 0.6667-0.6667-0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k = 0.7500-0.5833-0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.8333-0.5000-0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k = 0.9167-0.4167-0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 1.0000-0.3333-0.6667 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k = 1.0833-0.2500-0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.1667-1.1667 0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k = 0.2500-1.0833 0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.3333-1.0000 0.0000 band energies (ev): -7.0880 4.8857 5.9459 5.9852 9.7194 10.4561 10.5190 10.6389 11.1190 19.0536 21.7656 k = 0.4167-0.9167-0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.5000-0.8333-0.1667 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k = 0.5833-0.7500-0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.7500-0.7500-0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k = 0.8333-0.6667-0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.9167-0.5833-0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 1.0000-0.5000-0.5000 band energies (ev): -7.3677 4.3180 5.9866 6.1252 10.1483 10.2825 10.6158 10.7980 12.4624 18.3400 22.2538 k = 1.0833-0.4167-0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 1.1667-0.3333-0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.2500-1.2500 0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k = 0.3333-1.1667 0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.4167-1.0833 0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.5000-1.0000 0.0000 band energies (ev): -7.0610 5.3333 5.3333 5.7094 10.2399 10.2399 10.4758 10.6390 11.2943 19.8046 21.9749 k = 0.5833-0.9167-0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.6667-0.8333-0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.8333-0.8333-0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k = 0.9167-0.7500-0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 1.0000-0.6667-0.3333 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k = 1.0833-0.5833-0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 1.1667-0.5000-0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k = 1.2500-0.4167-0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.3333-1.3333 0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k = 0.4167-1.2500 0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.5000-1.1667 0.1667 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k = 0.5833-1.0833 0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.6667-1.0000 0.0000 band energies (ev): -7.0880 4.8857 5.9459 5.9852 9.7194 10.4561 10.5190 10.6389 11.1190 19.0536 21.7656 k = 0.7500-0.9167-0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.9167-0.9167-0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 1.0000-0.8333-0.1667 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k = 1.0833-0.7500-0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 1.1667-0.6667-0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 1.2500-0.5833-0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 1.3333-0.5000-0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k = 0.4167-1.4167 0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k = 0.5000-1.3333 0.3333 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k = 0.5833-1.2500 0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.6667-1.1667 0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.7500-1.0833 0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.8333-1.0000 0.0000 band energies (ev): -7.1412 4.6181 6.6476 6.6476 9.0342 10.3239 10.6193 10.6385 10.7294 17.9787 21.7386 k = 0.0000 0.0000-1.0000 band energies (ev): -7.1673 4.5297 7.0802 7.0802 8.5970 10.0722 10.6067 10.6383 10.6383 17.5561 21.7489 k = 0.0833 0.0833-1.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 0.1667 0.1667-1.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k = 0.2500 0.2500-1.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k = 0.3333 0.3333-1.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k = 0.4167 0.4167-1.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.5000-0.5000-0.5000 band energies (ev): -7.2417 3.3021 6.0000 6.0000 10.3638 10.3638 10.7367 12.5444 12.5444 17.0034 21.1782 k =-0.4167-0.4167-0.5833 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.3333-0.3333-0.6667 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.2500-0.2500-0.7500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.1667-0.1667-0.8333 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.0833-0.0833-0.9167 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 0.0833-0.0833-0.9167 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 0.1667 0.0000-1.0000 band energies (ev): -7.1412 4.6181 6.6476 6.6476 9.0342 10.3239 10.6193 10.6385 10.7294 17.9787 21.7386 k = 0.2500 0.0833-1.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.3333 0.1667-1.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.4167 0.2500-1.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.5000 0.3333-1.3333 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.4167-0.5833-0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.3333-0.5000-0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.2500-0.4167-0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.1667-0.3333-0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.0833-0.2500-0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.0000-0.1667-0.8333 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k = 0.1667-0.1667-0.8333 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k = 0.2500-0.0833-0.9167 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.3333 0.0000-1.0000 band energies (ev): -7.0880 4.8857 5.9459 5.9852 9.7194 10.4561 10.5190 10.6389 11.1190 19.0536 21.7656 k = 0.4167 0.0833-1.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.5000 0.1667-1.1667 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k = 0.5833 0.2500-1.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.3333-0.6667-0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.2500-0.5833-0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.1667-0.5000-0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.0833-0.4167-0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.0000-0.3333-0.6667 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k = 0.0833-0.2500-0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.2500-0.2500-0.7500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k = 0.3333-0.1667-0.8333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.4167-0.0833-0.9167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.5000 0.0000-1.0000 band energies (ev): -7.0610 5.3333 5.3333 5.7094 10.2399 10.2399 10.4758 10.6390 11.2943 19.8046 21.9749 k = 0.5833 0.0833-1.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.6667 0.1667-1.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.2500-0.7500-0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.1667-0.6667-0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.0833-0.5833-0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.0000-0.5000-0.5000 band energies (ev): -7.3677 4.3180 5.9866 6.1252 10.1483 10.2825 10.6158 10.7980 12.4624 18.3400 22.2538 k = 0.0833-0.4167-0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.1667-0.3333-0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.3333-0.3333-0.6667 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k = 0.4167-0.2500-0.7500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.5000-0.1667-0.8333 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k = 0.5833-0.0833-0.9167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.6667 0.0000-1.0000 band energies (ev): -7.0880 4.8857 5.9459 5.9852 9.7194 10.4561 10.5190 10.6389 11.1190 19.0536 21.7656 k = 0.7500 0.0833-1.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.1667-0.8333-0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.0833-0.7500-0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.0000-0.6667-0.3333 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k = 0.0833-0.5833-0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.1667-0.5000-0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k = 0.2500-0.4167-0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.4167-0.4167-0.5833 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k = 0.5000-0.3333-0.6667 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k = 0.5833-0.2500-0.7500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.6667-0.1667-0.8333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.7500-0.0833-0.9167 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.8333 0.0000-1.0000 band energies (ev): -7.1412 4.6181 6.6476 6.6476 9.0342 10.3239 10.6193 10.6385 10.7294 17.9787 21.7386 k =-0.0833-0.9167-0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 0.0000-0.8333-0.1667 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k = 0.0833-0.7500-0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.1667-0.6667-0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.2500-0.5833-0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.3333-0.5000-0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k = 0.4167-0.4167-0.4167 band energies (ev): -7.3531 3.5615 6.0920 6.0920 10.3071 10.3071 10.6406 12.4100 12.4100 16.9175 21.3811 k = 0.5000-0.3333-0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k = 0.5833-0.2500-0.5833 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k = 0.6667-0.1667-0.6667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k = 0.7500-0.0833-0.7500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k = 0.8333 0.0000-0.8333 band energies (ev): -7.1216 4.7045 5.9862 6.7019 9.2429 10.5791 10.6642 10.7246 10.7249 18.3431 21.7315 k =-0.0833-0.9167 0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 0.0000-0.8333 0.0000 band energies (ev): -7.2522 4.4904 7.0988 7.0988 8.6591 10.0461 10.6624 10.6624 10.7441 17.7027 21.7973 k = 0.0833-0.7500-0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.1667-0.6667-0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k = 0.2500-0.5833-0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k = 0.3333-0.5000-0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k = 0.5000-0.5000-0.3333 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k = 0.5833-0.4167-0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k = 0.6667-0.3333-0.5000 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k = 0.7500-0.2500-0.5833 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.8333-0.1667-0.6667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.9167-0.0833-0.7500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.0000-1.0000 0.1667 band energies (ev): -7.1412 4.6181 6.6476 6.6476 9.0342 10.3239 10.6193 10.6385 10.7294 17.9787 21.7386 k = 0.0833-0.9167 0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 0.1667-0.8333 0.0000 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k = 0.2500-0.7500-0.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.3333-0.6667-0.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.4167-0.5833-0.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.5833-0.5833-0.2500 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k = 0.6667-0.5000-0.3333 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k = 0.7500-0.4167-0.4167 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k = 0.8333-0.3333-0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.9167-0.2500-0.5833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 1.0000-0.1667-0.6667 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k = 0.0833-1.0833 0.2500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.1667-1.0000 0.1667 band energies (ev): -7.1216 4.7045 5.9862 6.7019 9.2429 10.5791 10.6642 10.7246 10.7249 18.3431 21.7315 k = 0.2500-0.9167 0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.3333-0.8333 0.0000 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k = 0.4167-0.7500-0.0833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.5000-0.6667-0.1667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.6667-0.6667-0.1667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k = 0.7500-0.5833-0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.8333-0.5000-0.3333 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.9167-0.4167-0.4167 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k = 1.0000-0.3333-0.5000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k = 1.0833-0.2500-0.5833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.1667-1.1667 0.3333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.2500-1.0833 0.2500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k = 0.3333-1.0000 0.1667 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k = 0.4167-0.9167 0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.5000-0.8333 0.0000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k = 0.5833-0.7500-0.0833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.7500-0.7500-0.0833 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k = 0.8333-0.6667-0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.9167-0.5833-0.2500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 1.0000-0.5000-0.3333 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k = 1.0833-0.4167-0.4167 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k = 1.1667-0.3333-0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.2500-1.2500 0.4167 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.3333-1.1667 0.3333 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k = 0.4167-1.0833 0.2500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.5000-1.0000 0.1667 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k = 0.5833-0.9167 0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.6667-0.8333 0.0000 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k = 0.8333-0.8333 0.0000 band energies (ev): -7.1216 4.7045 5.9862 6.7019 9.2429 10.5791 10.6642 10.7246 10.7249 18.3431 21.7315 k = 0.9167-0.7500-0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 1.0000-0.6667-0.1667 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k = 1.0833-0.5833-0.2500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 1.1667-0.5000-0.3333 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 1.2500-0.4167-0.4167 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k = 0.3333-1.3333 0.5000 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k = 0.4167-1.2500 0.4167 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k = 0.5000-1.1667 0.3333 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.5833-1.0833 0.2500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.6667-1.0000 0.1667 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k = 0.7500-0.9167 0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.0833 0.0833-0.9167 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 0.0000 0.1667-1.0000 band energies (ev): -7.1412 4.6181 6.6476 6.6476 9.0342 10.3239 10.6193 10.6385 10.7294 17.9787 21.7386 k = 0.0833 0.2500-1.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.1667 0.3333-1.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.2500 0.4167-1.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.3333 0.5000-1.3333 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.5833-0.4167-0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.5000-0.3333-0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.4167-0.2500-0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.3333-0.1667-0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.2500-0.0833-0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.1667 0.0000-0.8333 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k = 0.0000 0.0000-0.8333 band energies (ev): -7.2522 4.4904 7.0988 7.0988 8.6591 10.0461 10.6624 10.6624 10.7441 17.7027 21.7973 k = 0.0833 0.0833-0.9167 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 0.1667 0.1667-1.0000 band energies (ev): -7.1216 4.7045 5.9862 6.7019 9.2429 10.5791 10.6642 10.7246 10.7249 18.3431 21.7315 k = 0.2500 0.2500-1.0833 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k = 0.3333 0.3333-1.1667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k = 0.4167 0.4167-1.2500 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.5000-0.5000-0.3333 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.4167-0.4167-0.4167 band energies (ev): -7.3531 3.5615 6.0920 6.0920 10.3071 10.3071 10.6406 12.4100 12.4100 16.9175 21.3811 k =-0.3333-0.3333-0.5000 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.2500-0.2500-0.5833 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.1667-0.1667-0.6667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.0833-0.0833-0.7500 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.0833-0.0833-0.7500 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.1667 0.0000-0.8333 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k = 0.2500 0.0833-0.9167 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.3333 0.1667-1.0000 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k = 0.4167 0.2500-1.0833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.5000 0.3333-1.1667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.4167-0.5833-0.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.3333-0.5000-0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.2500-0.4167-0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.1667-0.3333-0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.0833-0.2500-0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.0000-0.1667-0.6667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.1667-0.1667-0.6667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k = 0.2500-0.0833-0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.3333 0.0000-0.8333 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k = 0.4167 0.0833-0.9167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.5000 0.1667-1.0000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k = 0.5833 0.2500-1.0833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.3333-0.6667-0.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.2500-0.5833-0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.1667-0.5000-0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.0833-0.4167-0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.0000-0.3333-0.5000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.0833-0.2500-0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.2500-0.2500-0.5833 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k = 0.3333-0.1667-0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.4167-0.0833-0.7500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.5000 0.0000-0.8333 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k = 0.5833 0.0833-0.9167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.6667 0.1667-1.0000 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-0.2500-0.7500-0.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.1667-0.6667-0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.0833-0.5833-0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.0000-0.5000-0.3333 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.0833-0.4167-0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.1667-0.3333-0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.3333-0.3333-0.5000 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k = 0.4167-0.2500-0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.5000-0.1667-0.6667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.5833-0.0833-0.7500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.6667 0.0000-0.8333 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k = 0.7500 0.0833-0.9167 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.1667-0.8333 0.0000 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k =-0.0833-0.7500-0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.0000-0.6667-0.1667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.0833-0.5833-0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.1667-0.5000-0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.2500-0.4167-0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k = 0.3333-0.3333-0.3333 band energies (ev): -7.6403 4.2855 6.3628 6.3628 10.1551 10.1551 10.4114 12.0303 12.0303 16.4927 22.1414 k = 0.4167-0.2500-0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k = 0.5000-0.1667-0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k = 0.5833-0.0833-0.5833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k = 0.6667 0.0000-0.6667 band energies (ev): -7.1075 4.6546 5.2098 6.2114 9.9975 10.4069 10.6956 10.8096 11.8627 20.0840 20.5730 k = 0.7500 0.0833-0.7500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k =-0.1667-0.8333 0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.0833-0.7500 0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.0000-0.6667 0.0000 band energies (ev): -7.4988 4.5669 7.1783 7.1783 8.8303 9.9751 10.6787 10.6787 10.9376 17.6793 22.4504 k = 0.0833-0.5833-0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.1667-0.5000-0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k = 0.2500-0.4167-0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k = 0.4167-0.4167-0.2500 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k = 0.5000-0.3333-0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k = 0.5833-0.2500-0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.6667-0.1667-0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.7500-0.0833-0.5833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.8333 0.0000-0.6667 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k =-0.0833-0.9167 0.2500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.0000-0.8333 0.1667 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k = 0.0833-0.7500 0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.1667-0.6667 0.0000 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.2500-0.5833-0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.3333-0.5000-0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.5000-0.5000-0.1667 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k = 0.5833-0.4167-0.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.6667-0.3333-0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k = 0.7500-0.2500-0.4167 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.8333-0.1667-0.5000 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k = 0.9167-0.0833-0.5833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.0000-1.0000 0.3333 band energies (ev): -7.0880 4.8857 5.9459 5.9852 9.7194 10.4561 10.5190 10.6389 11.1190 19.0536 21.7656 k = 0.0833-0.9167 0.2500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.1667-0.8333 0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k = 0.2500-0.7500 0.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.3333-0.6667 0.0000 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k = 0.4167-0.5833-0.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.5833-0.5833-0.0833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k = 0.6667-0.5000-0.1667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.7500-0.4167-0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.8333-0.3333-0.3333 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k = 0.9167-0.2500-0.4167 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 1.0000-0.1667-0.5000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k = 0.0833-1.0833 0.4167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.1667-1.0000 0.3333 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k = 0.2500-0.9167 0.2500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k = 0.3333-0.8333 0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.4167-0.7500 0.0833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.5000-0.6667 0.0000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k = 0.6667-0.6667 0.0000 band energies (ev): -7.1075 4.6546 5.2098 6.2114 9.9975 10.4069 10.6956 10.8096 11.8627 20.0840 20.5730 k = 0.7500-0.5833-0.0833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.8333-0.5000-0.1667 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k = 0.9167-0.4167-0.2500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 1.0000-0.3333-0.3333 band energies (ev): -7.1075 4.6546 5.2098 6.2114 9.9975 10.4069 10.6956 10.8096 11.8627 20.0840 20.5730 k = 1.0833-0.2500-0.4167 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.1667-1.1667 0.5000 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k = 0.2500-1.0833 0.4167 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.3333-1.0000 0.3333 band energies (ev): -7.1075 4.6546 5.2098 6.2114 9.9975 10.4069 10.6956 10.8096 11.8627 20.0840 20.5730 k = 0.4167-0.9167 0.2500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.5000-0.8333 0.1667 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k = 0.5833-0.7500 0.0833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.7500-0.7500 0.0833 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k = 0.8333-0.6667 0.0000 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k = 0.9167-0.5833-0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 1.0000-0.5000-0.1667 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k = 1.0833-0.4167-0.2500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 1.1667-0.3333-0.3333 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k = 0.2500-1.2500 0.5833 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.3333-1.1667 0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.4167-1.0833 0.4167 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k = 0.5000-1.0000 0.3333 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k = 0.5833-0.9167 0.2500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.6667-0.8333 0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.1667 0.1667-0.8333 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.0833 0.2500-0.9167 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.0000 0.3333-1.0000 band energies (ev): -7.0880 4.8857 5.9459 5.9852 9.7194 10.4561 10.5190 10.6389 11.1190 19.0536 21.7656 k = 0.0833 0.4167-1.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.1667 0.5000-1.1667 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k = 0.2500 0.5833-1.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.6667-0.3333-0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.5833-0.2500-0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.5000-0.1667-0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.4167-0.0833-0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.3333 0.0000-0.6667 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k =-0.2500 0.0833-0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.0833 0.0833-0.7500 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.0000 0.1667-0.8333 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k = 0.0833 0.2500-0.9167 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.1667 0.3333-1.0000 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k = 0.2500 0.4167-1.0833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.3333 0.5000-1.1667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.5833-0.4167-0.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.5000-0.3333-0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.4167-0.2500-0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.3333-0.1667-0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.2500-0.0833-0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.1667 0.0000-0.6667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.0000 0.0000-0.6667 band energies (ev): -7.4988 4.5669 7.1783 7.1783 8.8303 9.9751 10.6787 10.6787 10.9376 17.6793 22.4504 k = 0.0833 0.0833-0.7500 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.1667 0.1667-0.8333 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k = 0.2500 0.2500-0.9167 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k = 0.3333 0.3333-1.0000 band energies (ev): -7.1075 4.6546 5.2098 6.2114 9.9975 10.4069 10.6956 10.8096 11.8627 20.0840 20.5730 k = 0.4167 0.4167-1.0833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k =-0.5000-0.5000-0.1667 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.4167-0.4167-0.2500 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.3333-0.3333-0.3333 band energies (ev): -7.6403 4.2855 6.3628 6.3628 10.1551 10.1551 10.4114 12.0303 12.0303 16.4927 22.1414 k =-0.2500-0.2500-0.4167 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k =-0.1667-0.1667-0.5000 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k =-0.0833-0.0833-0.5833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.0833-0.0833-0.5833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.1667 0.0000-0.6667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.2500 0.0833-0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.3333 0.1667-0.8333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.4167 0.2500-0.9167 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.5000 0.3333-1.0000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k =-0.4167-0.5833-0.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.3333-0.5000-0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.2500-0.4167-0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k =-0.1667-0.3333-0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k =-0.0833-0.2500-0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.0000-0.1667-0.5000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.1667-0.1667-0.5000 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k = 0.2500-0.0833-0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.3333 0.0000-0.6667 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k = 0.4167 0.0833-0.7500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.5000 0.1667-0.8333 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k = 0.5833 0.2500-0.9167 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.3333-0.6667 0.0000 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k =-0.2500-0.5833-0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.1667-0.5000-0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k =-0.0833-0.4167-0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.0000-0.3333-0.3333 band energies (ev): -7.9082 5.2253 6.5642 6.9246 9.8647 10.0918 10.3330 10.5502 11.9854 16.2083 23.9453 k = 0.0833-0.2500-0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.2500-0.2500-0.4167 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k = 0.3333-0.1667-0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.4167-0.0833-0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.5000 0.0000-0.6667 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k = 0.5833 0.0833-0.7500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.6667 0.1667-0.8333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.2500-0.7500 0.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.1667-0.6667 0.0000 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k =-0.0833-0.5833-0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.0000-0.5000-0.1667 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.0833-0.4167-0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.1667-0.3333-0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k = 0.2500-0.2500-0.2500 band energies (ev): -7.9990 5.3428 6.7955 6.7955 9.9539 9.9539 10.1544 11.4618 11.4618 15.6253 23.5533 k = 0.3333-0.1667-0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k = 0.4167-0.0833-0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.5000 0.0000-0.5000 band energies (ev): -7.3677 4.3180 5.9866 6.1252 10.1483 10.2825 10.6158 10.7980 12.4624 18.3400 22.2538 k = 0.5833 0.0833-0.5833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k = 0.6667 0.1667-0.6667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k =-0.2500-0.7500 0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.1667-0.6667 0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.0833-0.5833 0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.0000-0.5000 0.0000 band energies (ev): -7.8613 5.0470 7.3652 7.3652 9.0684 9.8789 10.5702 10.5702 10.9371 16.7527 24.4593 k = 0.0833-0.4167-0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.1667-0.3333-0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k = 0.3333-0.3333-0.1667 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k = 0.4167-0.2500-0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k = 0.5000-0.1667-0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.5833-0.0833-0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.6667 0.0000-0.5000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k = 0.7500 0.0833-0.5833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k =-0.1667-0.8333 0.3333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.0833-0.7500 0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.0000-0.6667 0.1667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.0833-0.5833 0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.1667-0.5000 0.0000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.2500-0.4167-0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.4167-0.4167-0.0833 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.5000-0.3333-0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.5833-0.2500-0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k = 0.6667-0.1667-0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.7500-0.0833-0.4167 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.8333 0.0000-0.5000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k =-0.0833-0.9167 0.4167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.0000-0.8333 0.3333 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k = 0.0833-0.7500 0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.1667-0.6667 0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k = 0.2500-0.5833 0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.3333-0.5000 0.0000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.5000-0.5000 0.0000 band energies (ev): -7.3677 4.3180 5.9866 6.1252 10.1483 10.2825 10.6158 10.7980 12.4624 18.3400 22.2538 k = 0.5833-0.4167-0.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.6667-0.3333-0.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.7500-0.2500-0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k = 0.8333-0.1667-0.3333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.9167-0.0833-0.4167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.0000-1.0000 0.5000 band energies (ev): -7.0610 5.3333 5.3333 5.7094 10.2399 10.2399 10.4758 10.6390 11.2943 19.8046 21.9749 k = 0.0833-0.9167 0.4167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.1667-0.8333 0.3333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.2500-0.7500 0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k = 0.3333-0.6667 0.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.4167-0.5833 0.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.5833-0.5833 0.0833 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k = 0.6667-0.5000 0.0000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k = 0.7500-0.4167-0.0833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.8333-0.3333-0.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.9167-0.2500-0.2500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k = 1.0000-0.1667-0.3333 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k = 0.0833-1.0833 0.5833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.1667-1.0000 0.5000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k = 0.2500-0.9167 0.4167 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.3333-0.8333 0.3333 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k = 0.4167-0.7500 0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.5000-0.6667 0.1667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.6667-0.6667 0.1667 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k = 0.7500-0.5833 0.0833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.8333-0.5000 0.0000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k = 0.9167-0.4167-0.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 1.0000-0.3333-0.1667 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k = 1.0833-0.2500-0.2500 band energies (ev): -7.1073 4.7565 5.3853 6.4235 9.6534 10.5041 10.6624 10.8884 11.3152 19.1441 21.3369 k = 0.1667-1.1667 0.6667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.2500-1.0833 0.5833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.3333-1.0000 0.5000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k = 0.4167-0.9167 0.4167 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k = 0.5000-0.8333 0.3333 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.5833-0.7500 0.2500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.2500 0.2500-0.7500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.1667 0.3333-0.8333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.0833 0.4167-0.9167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.0000 0.5000-1.0000 band energies (ev): -7.0610 5.3333 5.3333 5.7094 10.2399 10.2399 10.4758 10.6390 11.2943 19.8046 21.9749 k = 0.0833 0.5833-1.0833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.1667 0.6667-1.1667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.7500-0.2500-0.2500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k =-0.6667-0.1667-0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.5833-0.0833-0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.5000 0.0000-0.5000 band energies (ev): -7.3677 4.3180 5.9866 6.1252 10.1483 10.2825 10.6158 10.7980 12.4624 18.3400 22.2538 k =-0.4167 0.0833-0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.3333 0.1667-0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.1667 0.1667-0.6667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.0833 0.2500-0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.0000 0.3333-0.8333 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k = 0.0833 0.4167-0.9167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.1667 0.5000-1.0000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k = 0.2500 0.5833-1.0833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.6667-0.3333-0.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.5833-0.2500-0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.5000-0.1667-0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.4167-0.0833-0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k =-0.3333 0.0000-0.5000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k =-0.2500 0.0833-0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.0833 0.0833-0.5833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.0000 0.1667-0.6667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.0833 0.2500-0.7500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.1667 0.3333-0.8333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.2500 0.4167-0.9167 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.3333 0.5000-1.0000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k =-0.5833-0.4167-0.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.5000-0.3333-0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.4167-0.2500-0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k =-0.3333-0.1667-0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k =-0.2500-0.0833-0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.1667 0.0000-0.5000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.0000 0.0000-0.5000 band energies (ev): -7.8613 5.0470 7.3652 7.3652 9.0684 9.8789 10.5702 10.5702 10.9371 16.7527 24.4593 k = 0.0833 0.0833-0.5833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.1667 0.1667-0.6667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k = 0.2500 0.2500-0.7500 band energies (ev): -7.2118 4.3131 5.7636 6.4298 9.6906 10.4739 10.6744 11.3671 11.3854 18.8122 21.0798 k = 0.3333 0.3333-0.8333 band energies (ev): -7.1336 4.2470 5.5071 6.2019 10.0041 10.4215 10.6426 11.2166 11.8911 19.5469 20.4606 k = 0.4167 0.4167-0.9167 band energies (ev): -7.1922 4.2331 5.6151 6.0999 10.2187 10.2954 10.6328 10.9728 12.2864 19.3136 20.9498 k =-0.5000-0.5000 0.0000 band energies (ev): -7.3677 4.3180 5.9866 6.1252 10.1483 10.2825 10.6158 10.7980 12.4624 18.3400 22.2538 k =-0.4167-0.4167-0.0833 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k =-0.3333-0.3333-0.1667 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k =-0.2500-0.2500-0.2500 band energies (ev): -7.9990 5.3428 6.7955 6.7955 9.9539 9.9539 10.1544 11.4618 11.4618 15.6253 23.5533 k =-0.1667-0.1667-0.3333 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k =-0.0833-0.0833-0.4167 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.0833-0.0833-0.4167 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.1667 0.0000-0.5000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.2500 0.0833-0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.3333 0.1667-0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.4167 0.2500-0.7500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.5000 0.3333-0.8333 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.4167-0.5833 0.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.3333-0.5000 0.0000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k =-0.2500-0.4167-0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.1667-0.3333-0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k =-0.0833-0.2500-0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.0000-0.1667-0.3333 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.1667-0.1667-0.3333 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k = 0.2500-0.0833-0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.3333 0.0000-0.5000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.4167 0.0833-0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.5000 0.1667-0.6667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.5833 0.2500-0.7500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.3333-0.6667 0.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.2500-0.5833 0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.1667-0.5000 0.0000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k =-0.0833-0.4167-0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.0000-0.3333-0.1667 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.0833-0.2500-0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.1667-0.1667-0.1667 band energies (ev): -8.3269 6.5694 7.3576 7.3576 9.7593 9.7593 9.9277 10.7759 10.7759 14.5070 25.4533 k = 0.2500-0.0833-0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.3333 0.0000-0.3333 band energies (ev): -7.9082 5.2253 6.5642 6.9246 9.8647 10.0918 10.3330 10.5502 11.9854 16.2083 23.9453 k = 0.4167 0.0833-0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.5000 0.1667-0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k = 0.5833 0.2500-0.5833 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.3333-0.6667 0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.2500-0.5833 0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.1667-0.5000 0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k =-0.0833-0.4167 0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.0000-0.3333 0.0000 band energies (ev): -8.2417 6.0191 7.6840 7.6840 9.3111 9.7835 10.2661 10.2661 10.7253 15.1847 26.1392 k = 0.0833-0.2500-0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.2500-0.2500-0.0833 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.3333-0.1667-0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k = 0.4167-0.0833-0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.5000 0.0000-0.3333 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.5833 0.0833-0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.6667 0.1667-0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.2500-0.7500 0.4167 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.1667-0.6667 0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.0833-0.5833 0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.0000-0.5000 0.1667 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.0833-0.4167 0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.1667-0.3333 0.0000 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.3333-0.3333 0.0000 band energies (ev): -7.9082 5.2253 6.5642 6.9246 9.8647 10.0918 10.3330 10.5502 11.9854 16.2083 23.9453 k = 0.4167-0.2500-0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.5000-0.1667-0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k = 0.5833-0.0833-0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.6667 0.0000-0.3333 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k = 0.7500 0.0833-0.4167 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.1667-0.8333 0.5000 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k =-0.0833-0.7500 0.4167 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.0000-0.6667 0.3333 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k = 0.0833-0.5833 0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.1667-0.5000 0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k = 0.2500-0.4167 0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.4167-0.4167 0.0833 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k = 0.5000-0.3333 0.0000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.5833-0.2500-0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.6667-0.1667-0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k = 0.7500-0.0833-0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.8333 0.0000-0.3333 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-0.0833-0.9167 0.5833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.0000-0.8333 0.5000 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k = 0.0833-0.7500 0.4167 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.1667-0.6667 0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.2500-0.5833 0.2500 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k = 0.3333-0.5000 0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.5000-0.5000 0.1667 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k = 0.5833-0.4167 0.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.6667-0.3333 0.0000 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k = 0.7500-0.2500-0.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.8333-0.1667-0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k = 0.9167-0.0833-0.2500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.0000-1.0000 0.6667 band energies (ev): -7.0880 4.8857 5.9459 5.9852 9.7194 10.4561 10.5190 10.6389 11.1190 19.0536 21.7656 k = 0.0833-0.9167 0.5833 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.1667-0.8333 0.5000 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k = 0.2500-0.7500 0.4167 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.3333-0.6667 0.3333 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k = 0.4167-0.5833 0.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.5833-0.5833 0.2500 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k = 0.6667-0.5000 0.1667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.7500-0.4167 0.0833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.8333-0.3333 0.0000 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k = 0.9167-0.2500-0.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 1.0000-0.1667-0.1667 band energies (ev): -7.1216 4.7045 5.9862 6.7019 9.2429 10.5791 10.6642 10.7246 10.7249 18.3431 21.7315 k = 0.0833-1.0833 0.7500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.1667-1.0000 0.6667 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k = 0.2500-0.9167 0.5833 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.3333-0.8333 0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.4167-0.7500 0.4167 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k = 0.5000-0.6667 0.3333 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.3333 0.3333-0.6667 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k =-0.2500 0.4167-0.7500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.1667 0.5000-0.8333 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k =-0.0833 0.5833-0.9167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.0000 0.6667-1.0000 band energies (ev): -7.0880 4.8857 5.9459 5.9852 9.7194 10.4561 10.5190 10.6389 11.1190 19.0536 21.7656 k = 0.0833 0.7500-1.0833 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.8333-0.1667-0.1667 band energies (ev): -7.1913 4.5582 6.1013 6.7104 9.2753 10.4991 10.6663 10.8180 10.9531 18.3945 21.6021 k =-0.7500-0.0833-0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.6667 0.0000-0.3333 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k =-0.5833 0.0833-0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.5000 0.1667-0.5000 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.4167 0.2500-0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.2500 0.2500-0.5833 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k =-0.1667 0.3333-0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.0833 0.4167-0.7500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.0000 0.5000-0.8333 band energies (ev): -7.0884 4.8547 5.4040 5.9755 10.1782 10.2310 10.6640 10.6885 11.5352 19.9823 21.2350 k = 0.0833 0.5833-0.9167 band energies (ev): -7.0809 4.9445 5.4736 5.9852 9.9874 10.3623 10.6440 10.6533 11.3506 19.6622 21.5294 k = 0.1667 0.6667-1.0000 band energies (ev): -7.1445 4.6595 6.0028 6.1013 9.7356 10.3704 10.6612 10.6732 11.3389 19.0705 21.5688 k =-0.7500-0.2500-0.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.6667-0.1667-0.1667 band energies (ev): -7.3998 4.4570 6.3127 6.7584 9.3722 10.3669 10.6680 10.9398 11.3394 18.0892 21.9827 k =-0.5833-0.0833-0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.5000 0.0000-0.3333 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k =-0.4167 0.0833-0.4167 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k =-0.3333 0.1667-0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.1667 0.1667-0.5000 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k =-0.0833 0.2500-0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.0000 0.3333-0.6667 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k = 0.0833 0.4167-0.7500 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k = 0.1667 0.5000-0.8333 band energies (ev): -7.1074 4.5122 5.5096 6.0538 10.1265 10.2752 10.6554 10.9894 11.6747 20.1867 20.3783 k = 0.2500 0.5833-0.9167 band energies (ev): -7.1649 4.4598 5.7236 6.0980 9.9995 10.3349 10.6600 10.8668 11.7711 19.4601 21.0918 k =-0.6667-0.3333 0.0000 band energies (ev): -7.3187 4.4323 6.1804 6.2301 9.7891 10.3127 10.6706 10.7611 11.8375 18.5920 21.9308 k =-0.5833-0.2500-0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.5000-0.1667-0.1667 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k =-0.4167-0.0833-0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.3333 0.0000-0.3333 band energies (ev): -7.9082 5.2253 6.5642 6.9246 9.8647 10.0918 10.3330 10.5502 11.9854 16.2083 23.9453 k =-0.2500 0.0833-0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.0833 0.0833-0.4167 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.0000 0.1667-0.5000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.0833 0.2500-0.5833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.1667 0.3333-0.6667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.2500 0.4167-0.7500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.3333 0.5000-0.8333 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.5833-0.4167 0.0833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k =-0.5000-0.3333 0.0000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k =-0.4167-0.2500-0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.3333-0.1667-0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k =-0.2500-0.0833-0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k =-0.1667 0.0000-0.3333 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.0000 0.0000-0.3333 band energies (ev): -8.2417 6.0191 7.6840 7.6840 9.3111 9.7835 10.2661 10.2661 10.7253 15.1847 26.1392 k = 0.0833 0.0833-0.4167 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.1667 0.1667-0.5000 band energies (ev): -7.7184 4.7750 6.5663 6.8866 9.5211 10.2003 10.5254 10.9737 11.5545 17.0084 23.0927 k = 0.2500 0.2500-0.5833 band energies (ev): -7.4272 4.2120 6.0636 6.4808 9.7767 10.3732 10.6369 11.4729 11.8421 17.7926 21.7164 k = 0.3333 0.3333-0.6667 band energies (ev): -7.2286 3.8341 5.8093 6.1986 10.0457 10.4201 10.6818 11.8672 11.9613 18.3149 20.9323 k = 0.4167 0.4167-0.7500 band energies (ev): -7.1940 3.7604 5.7992 6.0673 10.2353 10.3521 10.6545 11.6624 12.3296 18.4298 20.8394 k =-0.5000-0.5000 0.1667 band energies (ev): -7.3369 4.0217 6.0144 6.0928 10.2040 10.2524 10.6149 11.3040 12.4813 18.0451 21.4545 k =-0.4167-0.4167 0.0833 band energies (ev): -7.6039 4.5479 6.2659 6.4225 10.0243 10.1773 10.5233 10.8807 12.3631 17.2381 22.6515 k =-0.3333-0.3333 0.0000 band energies (ev): -7.9082 5.2253 6.5642 6.9246 9.8647 10.0918 10.3330 10.5502 11.9854 16.2083 23.9453 k =-0.2500-0.2500-0.0833 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k =-0.1667-0.1667-0.1667 band energies (ev): -8.3269 6.5694 7.3576 7.3576 9.7593 9.7593 9.9277 10.7759 10.7759 14.5070 25.4533 k =-0.0833-0.0833-0.2500 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.0833-0.0833-0.2500 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.1667 0.0000-0.3333 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.2500 0.0833-0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.3333 0.1667-0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.4167 0.2500-0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.5000 0.3333-0.6667 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.4167-0.5833 0.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.3333-0.5000 0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.2500-0.4167 0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.1667-0.3333 0.0000 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k =-0.0833-0.2500-0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.0000-0.1667-0.1667 band energies (ev): -8.4246 6.9732 7.4811 7.8433 9.6425 9.7753 9.8835 10.1015 10.7257 14.1295 26.4794 k = 0.0833-0.0833-0.0833 band energies (ev): -8.5510 7.7392 7.9733 7.9733 9.6196 9.6196 9.7176 10.0768 10.0768 13.4617 27.5870 k = 0.1667 0.0000-0.1667 band energies (ev): -8.4246 6.9732 7.4811 7.8433 9.6425 9.7753 9.8835 10.1015 10.7257 14.1295 26.4794 k = 0.2500 0.0833-0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.3333 0.1667-0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k = 0.4167 0.2500-0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k = 0.5000 0.3333-0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.4167-0.5833 0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.3333-0.5000 0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.2500-0.4167 0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k =-0.1667-0.3333 0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k =-0.0833-0.2500 0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.0000-0.1667 0.0000 band energies (ev): -8.5257 7.3486 8.0914 8.0914 9.4916 9.7142 9.8288 9.8288 10.2695 13.6494 27.6461 k = 0.1667-0.1667 0.0000 band energies (ev): -8.4246 6.9732 7.4811 7.8433 9.6425 9.7753 9.8835 10.1015 10.7257 14.1295 26.4794 k = 0.2500-0.0833-0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.3333 0.0000-0.1667 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.4167 0.0833-0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.5000 0.1667-0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.5833 0.2500-0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.3333-0.6667 0.5000 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.2500-0.5833 0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.1667-0.5000 0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.0833-0.4167 0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.0000-0.3333 0.1667 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.0833-0.2500 0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.2500-0.2500 0.0833 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k = 0.3333-0.1667 0.0000 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.4167-0.0833-0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k = 0.5000 0.0000-0.1667 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.5833 0.0833-0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.6667 0.1667-0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.2500-0.7500 0.5833 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.1667-0.6667 0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.0833-0.5833 0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.0000-0.5000 0.3333 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.0833-0.4167 0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.1667-0.3333 0.1667 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k = 0.3333-0.3333 0.1667 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k = 0.4167-0.2500 0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.5000-0.1667 0.0000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k = 0.5833-0.0833-0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k = 0.6667 0.0000-0.1667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.7500 0.0833-0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.1667-0.8333 0.6667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.0833-0.7500 0.5833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.0000-0.6667 0.5000 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k = 0.0833-0.5833 0.4167 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.1667-0.5000 0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.2500-0.4167 0.2500 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k = 0.4167-0.4167 0.2500 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k = 0.5000-0.3333 0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.5833-0.2500 0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k = 0.6667-0.1667 0.0000 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k = 0.7500-0.0833-0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k = 0.8333 0.0000-0.1667 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k =-0.0833-0.9167 0.7500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.0000-0.8333 0.6667 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k = 0.0833-0.7500 0.5833 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.1667-0.6667 0.5000 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.2500-0.5833 0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.3333-0.5000 0.3333 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k = 0.5000-0.5000 0.3333 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k = 0.5833-0.4167 0.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.6667-0.3333 0.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k = 0.7500-0.2500 0.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k = 0.8333-0.1667 0.0000 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k = 0.9167-0.0833-0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k = 0.0000-1.0000 0.8333 band energies (ev): -7.1412 4.6181 6.6476 6.6476 9.0342 10.3239 10.6193 10.6385 10.7294 17.9787 21.7386 k = 0.0833-0.9167 0.7500 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.1667-0.8333 0.6667 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k = 0.2500-0.7500 0.5833 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k = 0.3333-0.6667 0.5000 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k = 0.4167-0.5833 0.4167 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.4167 0.4167-0.5833 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.3333 0.5000-0.6667 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.2500 0.5833-0.7500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.1667 0.6667-0.8333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.0833 0.7500-0.9167 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k = 0.0000 0.8333-1.0000 band energies (ev): -7.1412 4.6181 6.6476 6.6476 9.0342 10.3239 10.6193 10.6385 10.7294 17.9787 21.7386 k =-0.9167-0.0833-0.0833 band energies (ev): -7.1741 4.5538 6.7251 6.9681 8.8429 10.2484 10.6356 10.6481 10.6941 17.8051 21.7387 k =-0.8333 0.0000-0.1667 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k =-0.7500 0.0833-0.2500 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.6667 0.1667-0.3333 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.5833 0.2500-0.4167 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.5000 0.3333-0.5000 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.3333 0.3333-0.5000 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k =-0.2500 0.4167-0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.1667 0.5000-0.6667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k =-0.0833 0.5833-0.7500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.0000 0.6667-0.8333 band energies (ev): -7.0874 4.9660 5.2786 6.2900 9.7478 10.4841 10.6714 10.7099 11.3055 19.3162 21.7602 k = 0.0833 0.7500-0.9167 band energies (ev): -7.1280 4.7001 6.0125 6.4880 9.4069 10.4851 10.6326 10.6564 10.9870 18.5637 21.6859 k =-0.8333-0.1667 0.0000 band energies (ev): -7.2186 4.5372 6.6835 6.6853 9.0755 10.2810 10.6618 10.6663 10.9078 18.0792 21.7423 k =-0.7500-0.0833-0.0833 band energies (ev): -7.3352 4.4958 6.8050 7.0054 8.9408 10.1778 10.6772 10.6980 10.9458 17.9301 21.9290 k =-0.6667 0.0000-0.1667 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k =-0.5833 0.0833-0.2500 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.5000 0.1667-0.3333 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.4167 0.2500-0.4167 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.2500 0.2500-0.4167 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k =-0.1667 0.3333-0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.0833 0.4167-0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.0000 0.5000-0.6667 band energies (ev): -7.1858 4.3842 5.6200 6.0862 10.2145 10.2445 10.6795 10.7962 12.1271 19.5093 21.1347 k = 0.0833 0.5833-0.7500 band energies (ev): -7.1075 4.5733 5.3583 6.1441 10.0464 10.3620 10.6552 10.9078 11.7751 20.1262 20.4773 k = 0.1667 0.6667-0.8333 band energies (ev): -7.1357 4.5587 5.6027 6.3033 9.7611 10.4513 10.6601 10.9629 11.4307 19.2503 21.1069 k =-0.7500-0.2500 0.0833 band energies (ev): -7.2615 4.4866 6.1829 6.5373 9.4618 10.3917 10.6733 10.7858 11.3336 18.5084 21.6696 k =-0.6667-0.1667 0.0000 band energies (ev): -7.4464 4.5348 6.7670 6.8110 9.1961 10.1848 10.6753 10.7076 11.2259 17.9213 22.3234 k =-0.5833-0.0833-0.0833 band energies (ev): -7.6383 4.7077 6.9630 7.1188 9.1190 10.0710 10.6268 10.7043 11.1324 17.4196 23.1491 k =-0.5000 0.0000-0.1667 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k =-0.4167 0.0833-0.2500 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.3333 0.1667-0.3333 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k =-0.1667 0.1667-0.3333 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k =-0.0833 0.2500-0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.0000 0.3333-0.5000 band energies (ev): -7.5966 4.6175 6.3401 6.4900 9.8663 10.2213 10.5586 10.7185 12.1607 17.4301 23.1461 k = 0.0833 0.4167-0.5833 band energies (ev): -7.3465 4.2765 6.0047 6.1687 10.0355 10.3073 10.6292 10.9358 12.2845 18.3901 21.7840 k = 0.1667 0.5000-0.6667 band energies (ev): -7.1827 4.0836 5.7094 6.0875 10.1703 10.3206 10.6404 11.2471 12.1590 19.1172 20.7708 k = 0.2500 0.5833-0.7500 band energies (ev): -7.1610 4.0707 5.6703 6.1466 10.0612 10.3855 10.6609 11.4161 11.9272 19.1624 20.6133 k =-0.6667-0.3333 0.1667 band energies (ev): -7.2891 4.2349 5.9151 6.3413 9.8128 10.4062 10.6644 11.1783 11.8557 18.5369 21.3436 k =-0.5833-0.2500 0.0833 band energies (ev): -7.5222 4.5374 6.3923 6.6528 9.5707 10.2702 10.6265 10.8361 11.7111 17.7487 22.5559 k =-0.5000-0.1667 0.0000 band energies (ev): -7.7875 4.9385 6.9079 7.0506 9.3744 10.0641 10.5621 10.6104 11.3812 16.9122 24.1526 k =-0.4167-0.0833-0.0833 band energies (ev): -8.0144 5.4000 7.2213 7.3448 9.3355 9.9468 10.4009 10.5548 11.0900 16.0923 24.8500 k =-0.3333 0.0000-0.1667 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k =-0.2500 0.0833-0.2500 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k =-0.0833 0.0833-0.2500 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.0000 0.1667-0.3333 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k = 0.0833 0.2500-0.4167 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k = 0.1667 0.3333-0.5000 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k = 0.2500 0.4167-0.5833 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k = 0.3333 0.5000-0.6667 band energies (ev): -7.1978 3.6393 5.8440 6.0582 10.2451 10.3627 10.6825 11.9104 12.2927 18.1465 20.8837 k =-0.5833-0.4167 0.2500 band energies (ev): -7.2932 3.8322 5.9337 6.1576 10.1163 10.3639 10.6559 11.6845 12.3165 17.9476 21.1995 k =-0.5000-0.3333 0.1667 band energies (ev): -7.5421 4.3547 6.2006 6.4496 9.9016 10.2660 10.5670 11.2372 12.1804 17.3458 22.1570 k =-0.4167-0.2500 0.0833 band energies (ev): -7.8579 5.0691 6.6227 6.9079 9.7063 10.1022 10.4162 10.7475 11.7999 16.4406 23.6383 k =-0.3333-0.1667 0.0000 band energies (ev): -8.1508 5.8314 7.1334 7.4131 9.5596 9.9287 10.2578 10.3657 11.2479 15.4219 25.1487 k =-0.2500-0.0833-0.0833 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k =-0.1667 0.0000-0.1667 band energies (ev): -8.4246 6.9732 7.4811 7.8433 9.6425 9.7753 9.8835 10.1015 10.7257 14.1295 26.4794 k = 0.0000 0.0000-0.1667 band energies (ev): -8.5257 7.3486 8.0914 8.0914 9.4916 9.7142 9.8288 9.8288 10.2695 13.6494 27.6461 k = 0.0833 0.0833-0.2500 band energies (ev): -8.3529 6.5420 7.5719 7.6710 9.5282 9.8009 10.0292 10.2772 10.7663 14.5258 26.0933 k = 0.1667 0.1667-0.3333 band energies (ev): -8.0638 5.5748 6.8955 7.1065 9.6799 9.9899 10.2184 10.8920 11.4121 15.6067 24.1791 k = 0.2500 0.2500-0.4167 band energies (ev): -7.7192 4.6026 6.3810 6.6088 9.8915 10.1892 10.4257 11.5008 11.9549 16.5727 22.5621 k = 0.3333 0.3333-0.5000 band energies (ev): -7.4098 3.8357 6.0637 6.2472 10.1183 10.3340 10.6112 12.0227 12.2772 17.1958 21.5144 k = 0.4167 0.4167-0.5833 band energies (ev): -7.2386 3.4447 5.9417 6.0506 10.2867 10.3789 10.7100 12.3321 12.3865 17.4174 21.1005 k =-0.5000-0.5000 0.3333 band energies (ev): -7.2739 3.5224 6.0139 6.0302 10.3117 10.3242 10.6814 12.1315 12.5223 17.3770 21.1844 k =-0.4167-0.4167 0.2500 band energies (ev): -7.5010 4.0516 6.1844 6.2762 10.1550 10.2160 10.5497 11.7242 12.3899 17.0249 21.8016 k =-0.3333-0.3333 0.1667 band energies (ev): -7.8334 4.9167 6.4998 6.7162 9.9557 10.0399 10.3533 11.1746 12.0019 16.2496 23.0480 k =-0.2500-0.2500 0.0833 band energies (ev): -8.1684 5.9516 6.9492 7.2928 9.7685 9.8890 10.1253 10.5660 11.4169 15.1938 24.7558 k =-0.1667-0.1667 0.0000 band energies (ev): -8.4246 6.9732 7.4811 7.8433 9.6425 9.7753 9.8835 10.1015 10.7257 14.1295 26.4794 k =-0.0833-0.0833-0.0833 band energies (ev): -8.5510 7.7392 7.9733 7.9733 9.6196 9.6196 9.7176 10.0768 10.0768 13.4617 27.5870 the Fermi energy is 11.2814 ev Writing output data file NiO.save init_run : 1.77s CPU 1.79s WALL ( 1 calls) electrons : 316.66s CPU 323.90s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 316.60s CPU 323.82s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) newd : 0.03s CPU 0.03s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.97s CPU 0.91s WALL ( 1728 calls) cegterg : 280.67s CPU 284.32s WALL ( 1737 calls) Called by *egterg: h_psi : 256.96s CPU 259.27s WALL ( 26060 calls) s_psi : 5.37s CPU 5.38s WALL ( 26060 calls) g_psi : 2.40s CPU 2.46s WALL ( 22595 calls) cdiaghg : 17.51s CPU 17.44s WALL ( 24323 calls) Called by h_psi: add_vuspsi : 5.39s CPU 5.52s WALL ( 26060 calls) General routines calbec : 6.08s CPU 5.95s WALL ( 26060 calls) cft3 : 0.01s CPU 0.02s WALL ( 5 calls) cft3s : 233.26s CPU 234.49s WALL ( 333150 calls) davcio : 0.03s CPU 0.42s WALL ( 3456 calls) PWSCF : 5m26.96s CPU time, 5m37.25s WALL time This run was terminated on: 17:47:34 6May2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PP/examples/WannierHam_example/reference/hamilt.gz0000644000175000017500000215153312341372775023006 0ustar mbambazKhamilt̽]*5zߣ`T_OH `IU9;SNg76k?By?}jkC{Ji}RڟK_=.Go>>H_+|~cZV[_/Su#\$W~:{%=O+o?TCivѿ︎ͥ\Dh%h A'^-4E(5I/ s[_7j|ڿo(_ˍt7j׋g+.Hu F=KJRI!>Cq ]@A{;&,B#Dvn*)[X7Oa/,Y' Qrń1G^q2v[@LFӻ>_DD<1oyt㗿B OkhEn^DIit eJ~rb:$rn-)#Fw9d_>E;DA ˬp PX]e϶[KaӖ|=n 2.PfnC4P~iE5Mo9pWdrR:ҽ6ƖNrR7qu [wma67F}.φo[]ofžM~aKGI3Bn0^\~ސPױ)(gY/Ͽ%8o૚a4wnݍm&U ^9/J+\O.p 7V([kwH(K4+ &6o(;*Vߩ\`+L/c94Q oѤFjI?#|L<簼yv ~ė˼|y/5vUBKJucclj:ڶ$ٟoìTnGNh0MC,;pPj(i0/xlo0sjkQW{@0h*iQ ->?Wkpϥ;X&!h~bbebglNK[;--n-RߩM>:NT[l$.evv֢ڳj ӃOԫ&MT}% p%Ok EqnQx{0\R1[gޝ}99EU@qE K5䡸;+ʔ-T4c/1$: h;eqPWJqk{o 7-e;a]6]Ǿs֎1^ti͓X=!Zu<\XNhQ~&?\qg: <7<C%#AE㑻͂ZOpM3kFXϘ< O)=,_3!ih; 3&h#z T)Gqɂس[w;? O25S'+TwKu@/FMX+]U ;dcFe=ӯ81'vF0ܳ_n 6͵J,OC}1H_A0qd^fd̫QKu:7w3GNf8ߩ[$F8zB ~9U%TYv4˨t ;d?n=ߩAò4Dgtp]Yr|U6-zn~N+UjzuƾKw.9 }{O'zDDɾmSPxRQW=+\ 6ff# oZػL? FտW܉j\u .`T˘v7@_G2oFx֟{w$^F5=r I>|r /?9SkjQ3#"X*"|xZ<hn NKj~_?X,.KTqWCwT?ؑR[|/惷c(w sη:bOd^Hm`W'sj]KjyF^h\KQWO/#u\'-Li<Pޯ\~Ȇ+.u]CO(+I>\z`4"z,9k0 CqK~+ShE.!%KQ~710Czc֥Tgu(. E>xn耞25R7J]zw#Vv(S0YI(CQ2yߕwkR/< 9FjmESƘ&? 8bTeRP{Z #}@_>K]/ޯ4s'Pp1dɵtEH=r2F&`E^QZ $=GmIR(L^ TnZAQ˜JU$[W6S;4rq_UIb_QZr%4Y(Qn)`e0wYL9k0 CqKK;ZpR)N@ ҰEezلОr,47f]J_u(.?mm3^jXp,@tg j%ڔh8R)$zS9#R%XCRP K2R(6G!Tȡ)Č2 MGM$KB 7rhuOyi$=1/'|[먋$ }r_Wޘ ҎϿ +rxkR'ThhFs}heB w`Qhi̟1ؾIA%2$Za`ahVzm>|^$8pP@tN)Rj@G"K_`eKhʯ)7/&hG^ d)!gqFu(.Om^л_*l}@s;1~KKhx |߽`sFsK&C&$oo:`:˚HLV\=(/HhDKFqcGJAu ʇA#|]46۲4!/@; , v0P86BpX׈"='BКvX847C2MGެ>X7ȲBy"^"Y=L@wixbJi#n~4|P}sQˇi^3+Z}6BVR/(/Q,JS(r(zV4]rR]5kcߔ_F5UuЉ+~3-Is} ͌pvmG{tVoh+ c[1DZ92@ģSsDŽ;m-R!HiZ/(%R֞g,y ihF]:%Q\!xܡuf-{.h2 84|ߩ #XWz ÜR{rbe<2ƣ .2GӣRR*m߬_u&Ӕ3luy#:7NDwn'ͽ'Jx]^41N Z1(|e9գǓ=)}NooX4okvyo‹1!j#ZS|@ +f]5my-`8Nzr>BC\5>ቬy Saǐ1Rq5Bw%qlDzFa3*䧏r5eD0-D=ڄw_0΀}= 5=Z5Ps(WxV!fh"!V1 D6k%&ĜG̡}WNu 7q@'3`ˌ/`x/vg-¦Y=UP(Gqy47Z1 %Ǽ4(qIo\r?@|hhg R*֝U7>Pq@o*{xt7p\׆:%hQEi|%4 gGB>@A KqrJLo"''>qc $Ynߋ(Nj)E|ܴ8-mSԀʅOTAh"onqqhӖwiR:gZ9D^ =6>g2'qPg&V_A22/O@(QLXMqLnkd.imexZf9=C"vbf !hy^4 *)c|@ [ga;A h< Pa(Gq97YlAԊ9-ye)o}j"?^fxdeQ2zhYJ >˵dž3߶eش[̯`LÄu=WNYT~"Ta|k]|;Z"%TJ,k;8m/z԰7KvZ`ЏC@ !o\mR4A N "4!SŨR]oA7 IQza14JE@z[BOrc "!6 lI)%j=9)Fik*@P4wJEYgdb w!` _@[?/t3UCYhڈfD=VT-S. uxORYJڬޘOiqy/ Ä-e!|wq+~aյ磀z螟F:J!3\˦d/2Rp((kp/bNi[9 X8܋EwFҬ[iJ㾎ˤ\=bE]{iXTK\XmКy_Qh4vPF/f*Dp%_V/St?Cc?AzRsdͭ:W+j󾍫g!B\UA0hڻ`'ROVߏ f\Vo.z= U?[1 5ԑ*H&'u8+#S˿URJJ@S8 =d >ؔ,_[۽N%}7F2 }")o9CtOGYi}< tVZjݘ'6gLș剬xX{* Kn^'!6[D7AnݎY iWBèJa-a#Z)Qnhp=F-kYkN9Tx6N]OSLJ,ĉzw^jhMotijIJ39"T:k Ou5ԜOY*-~ =o% YB[Plmr.k]?1YJu_5{/6jGr z M S i~qgZl+XStsȜO=)Q((m4p)zHoGRxYJreb~%sIޞ gHa_4 D-uIɴ ѐƇ ew_ ,~'h,۝&9TJ翗={1IEH]0ȄJX9S8ʒi5eD»ջ( Lfrw!c}HYR4(./e(3~P43惁̓(\ w%R 51[,t4?iFᄋu.ߟ\Jސ%\jXRi=_OSs.`J&|L"9 !HYTh_T1BL)À>䌳4H̓ȄĔsh}sLLѸ'p,zD!)C\Rz:c2{7DH$;uLŢ]Y(Z|ң.Q\NaʐVɕ5Xb cDY#/_W&.=-A^)(.ټDRa+pqA*{W{4=*+]scqMgt#c|.&H}PnHad׌lM _x'kf{WQڷ2E\5%F c<өZl7s8Fo[s-q+C8PVkqI:AK0,Yf[E\HI7= h72$~y5!í ^&xbRL;4=*W͠{-p+)TN[JQ~B@M)ۨ 'c7) wA=ZsVK8uLF 9oc:V'JCnFAd6*1S…AMԗB+UWmxy]%~!y/%rmC1} avT%8~@è `)8oըwj@mƣ5QUzYh y'Z+kitobb#z).q=cޫ|w2rWOqޣQvX!rګܙ :Aװ&D%Vߥoz{fl<`nYL wP[efg$o‹*7| R6/~YCFWBau/f8諶;̯龌1p S~m&C4c7(APv N{߉s 7pd3l UpN픀;D^+|7%2~uHRAd;&w׊YzayV_T'7 {Ev;nVͳ2# N4& !'slt4Y0@"֍gŒ0ʤ81]+!dXr|5eO/sƽBG}R ~ 97A3o/ =-}- av7c 2Hx}5(u2OӇ)EϼM-lezBP ΧVL[f#e9sFF_ClK&btzȧY b @cyZEѪNp5lĊc%Ç v<{6{Mn(&Fr֧&/8WF]* Ok ]*˿Z%-R` uG]M l1,T7Vi}ƣl<*7G*Ko),s$f%]3RwGZH]W9j1G'l:hYN=YQv\ۤY=H?}@W9pAN袧)2n 텾"v5_Di39q눷К-дa r QvٕZTi_EzT!딸k*疶n.KNMxN 퍡/_]vy/Ïtۭ}ţ =M JC0̰y[xGwG~{.Hy($^Әg7iiϲAŖvekd^DH)TRHS8Q\Z%Ny)x~\ȧZQv03\h:^Ǭ^A| yvҋ7W(XQhENxyĠ0r[ga{Fm2&CyT딸6Y&ՍQۺk&+9J)ʃk*T_eU2<-h{6#F VU𽺡~|heBZI=|@||>3|T?.yQpMO1;f/*9G֛1*1|ʾ<+!rKc8W R^f6YJ[D'aG5S1mz<W)v4L_jt?hO[+r&cdk@)6 !Q%۩y D%jͮy2[8¡JEI |L#s~߼Lk%zc)%j)j{)BR_I"/ʥd|֟|_IdJSLS|ufj^׾]52\?1/܅PvuuEhMk*oDCa \oԘBdoe0^{ϢYN,nÎ[Zdy.=h$N9iyr{L1yFKJ $ edN=Ln żV8Fr~0 Ԗ5ԥG]^a+nϞSY+- Ϡi_M(R JiGskyR;5/VN)0pKf`L'L~8,BtP9#+j02ax{>1'SOJ>DK`8"t}K}a%lLr&:dɖ1a) }m);[Ö_X_nHBaӾtKףE>KQ럍OQ# r0EH%nQJ{`YyC_CF587pwX \(}g= wpzܥ̡%y)?1-yge<^gWE"j~7.P]94 aY*<0B\R&a3DEX*piHﱆ돯J\"BN9L,{9Pv^'w¨4jV1NL3E½!/wP,Yb'NDOAQ{ԩ%,;<#PhySgVYƫe.e͋”L-pPuUX֯X!^b|"]^99)qsJ}ʆU7TLoYr ԖY1ҥG]Z)OƮp5:x;:Lt7x s1vРKDqs viaCi7Iq?immq\*͝icQüPyeI|DQ?Ȣ ^> os˰ x+b >qq myVZAQz4LmDf /FwuEf6\ŃOx9MvNM#$Gqw[/{p;4V9ᕷhCgrI/u+(pS gߛeH^Z(6X;M$ܘD}]K4cT3*Tm_#lQ/B,Q/Qښ )Zw?dRt-x7$m+<:t_%[C]ᇺ{X6 b|]4(F 9))_.?&jRQ* g:vʾW=Z\{^~o;&&N)aB(BBJuTW {|~i 8LڲI Lf3cg(B;ßZYe.sy㜍gB띙7~L},8虋)qL_ν-}B$9xd\28WӁ' BJN E ZsЁ1Qj| AuUw=đF.DneU'ȧQO eb4أ}>3ݹ$7Qdi5{Í4j3TqmF!%,-+RY?/DKѨwa"lգYQU:%'yj _,V+ywoN?&+CRW:Ph+_TA##֭WGA8z#)ӃRuLz%W1Bv:?vӰIM&+n61A=Ҝ}9 +玗QNnZtg]J`v9t{ i3ml if)l}YyQ{z׃k;utTV3# 惗>,ӬGH=5p-z7Nθk8Q*6wL?0s o>@3\Q s|vtP(*Fs]=X_ G0W]Z_ZRj{ֵMN5c.oZ.8 yKWI ?kT6FMYxB{xB{pEɏ WwZ-2 V0bKes=νTJƑ(T.rQ 'SOVUbUv ?OeZHe׭Z'U:VZ"t:O/g٣rFBL$` X!(8Y>=a jJUuFy/Uv'؝?*~ǚ{z_ռZϭxT|hqo,ti-Ǿ}z,s!ɭIsF/LlcKg hd;ª~GSe)5& l ׳vR2#X?"^2i;0o6mњ0 Cq=۫#Ņew]4`|7.5PCk:cͥKotnfZ?΃}p5px8IAk?.0 =Z%ufvfd>ԀG &(tr,ώ1BZ.YhOŽ ퟷ̖$F YQO?܋@6pw=*/=oXOHMe tVȁi"h=@ڟ/ayIJ2F4:Jf٠cO6dzyszFBl>3iuxЅp?gd=\0!z.&;LlH})`⊠x6(J@vFh9TQ\p¼Q65'Kt7om#afuƬK(u{F 9ܮA㠀.%>oLTo+4kœD;Z|}L7t T:PR%?Ne-b ~yaQ֙EYnbΒeݍx(vw8`[Mz4jΡP\X)?y!&z!Cݟ Cr[ovz?ڿEK-NĦvhKWWkK@鎟h-ѻTxj N>C;`:`@c9n#CR+# JdM:s|u >{vRT=?d~;V7PiG, un0ϖ;p~*jVOZ(C,}rpc` hco ȋL%}97;Ș"J*Z8%ei me0:v$cbSPx{cC4Cs }FBɭaf(^*ba]Ys|0ҡ.Q\ĥf5dJq;=[Ϙ(t `h T_esS5ol ..mq"^# zҡ.Q\=4LğF -'â (oTk1q+Ӗ9OV>ypQ/Q>D'ӱ1S \ Iomi1b5>'I'cCOFM~|U jh;'wSZa6X:%J-m4ȧӯ,\ Ԗ1EwE2߫^ oN/CůʅPH7~ƗH}%*I8׍hf" 7Rjw8w?j++@:q8_v7^{XrS8ԚqWj~GQf.c맾fPA%AF1ғ3zR2k %gؙLdĨu4~xbsVCpBfϓÄ;)|¸>F<ՖtcF)i9u.kփkdEQ2A'%,w:4;gm_E:)5 v/汁Ɣ' j^es#&sHk2 70hzWzFrt4.\Rڹ]0t>e;SƔEuBoQ8-KDq٬H!0BɎ׍FvdoyiY_ `q,~U,~8Q`W݃58;L^*{z!.^P(~et>-l."w:wNmy4'nۛΦ!s뀾\BCNQvK^,ޭkCWju(ƣҴjŊ"tH0ZrfLi' y@;,K\WZVj)&5D%|1O7#Z($N݄Ep=F0-WC`XbDQPa(W{`Iw4hY%hz 5Ps54fJVS\z~la8L8hzTJڨK0_>ǘ.ZlB+^dSu=]L1ZRz자(jΕ~W/T gh)Hhk1V|WfU3DF>>%;yo%.GsL83"Lꆉc.; ,g5Y.uJ6'of oDg=q[O9eqo,Q(6lCn{xb8.EqwT5~eߕC4_`Rט^zU>U|b>N]6@ XSEs 7?.ZJg܎~ߦആ]F~|DNԘ)|exaf&3ɛH$UM.*T#p|{UݚXw4jD'*\ШB-Jr`c-h]=54W|zւrl'ʜX5~4-n[.)o`+"~!늘*/+D(Su:%.EorL_fr\ȍ=-⭯L8:GWzT*k~X;꽒aqqgz3ƣ .=MR=*uJikj5 ba N5f-lȹ:)]^bF$Vߘi(e]4_ViECz)`pssєӳ3&Gܠq>عɁ h-)(c4|g2+[j<{Y;)]s Rc^ }uk/3D>ԾOdx˜UPv<^R!a')0ƽSQ+YSYԑNH`i$3/4F^sƬŒ(H[èqB1_ g࿠,Ԧ5RCN[ii\M$X)FęPf:Ԅ?B0 Y1P\~,%0x3,um3 G2=(գRQ\; u{5h'iOlz'TFk. @?$̄gQŸ)M*` ct_gES4ΐnJ>ե\t& 7A>,P'aգx  {Krpj惶zu`!;g.(I@>2_i5%EP/lzo' Z-%9̨Ve0thG8#uƚ슶eY5 dF'h_>n ᇣ'@wチ'ζ$e10si# ރOLǼB >1\1]GKھ,U{tRðS58w[N|~U,8 cW2ZV|L3!B+\gZ(HݒZ@np?L{M>-7}{<EUOa9o57TDn׸H,eʇHwm8}/9} dspE]j0f.)ƇP O{7 ŝҥG]^\Hg\1e{T].⬋L\zeqg,P(6,ؓ~QƙQf9W {qT=+dc eb;3MxO ՖL@#, 9el0)aō8U{:mg=Z\||xrz['U5 ^ۅ#cѷ obc)G:+_u|#% ^53;p͂>r0 rsIV|.M`o<17}"P"bJi̽s5ES*NR|a ̥{;rzIs"h1tF+/s8AEA\8fү!''~F:\Of>v\SOVBMݞR4 &r !P&iEw9k2XWR=ٯ_A#7[rsԸnUGYZfYi#mڶm5?li { 虖pDs5z%.qH4Vy.*a7xoi- ˼mg= Y1ҥC]Z)]SL>x?w;U, jvl/zT!}vBFXYoA5Uf| sQ#J^M53UѮ]HoVͦc!M9g4rF}OYv[~tӭUbKNjTDx5h#z4"*)0vwm[zV lCMFG8Zƪv hVB$-u X7TV; o|vhhTG^:K+Ya^9;~Iq= 1U۝oy/KC;Yơ M/o?-Dϣ*8[(ծkpY~l(L3K-%RdЋxbkϫ5RMW9\\RrqtjŊKkwރ9Eg#^!ߒ+>q8*ݴ+V~UgJ%*uRXFebEjŊr+U})E 1e?`+h"Qa(WzQ~Q0 e7R,+- ;|o0Ftֈgt8E>&q v{Hr,4fEJ]nߩ bEdb  kAI ί̼7I˭A(/z;WHSSp1oɸh0(ZV(,[T턁 =jy(V(? E~p禞#by0/D|g /jgi51EnL xEϏ8#]E['etxՠ@ GdR<5-igCӘwa{ܯ-5USJR-K5c,8bG#,ݜaTg3`z95Ck>TS4p=V(4kU?NjpiVP}X +/>E~YK ' xĖr^b t3(X2 ZGf&Da:%:gvt.-r3q4s9#/eM?#.UUKǢuXтA;yh{;B#Nڨnڢ/Gn%$dEU)<#wL=.⍙(YmFHky' d~dInOvHv*zo6ؒ A8vͽF #+j4&{^ccD,j:T*Ⱍmnj317 T7FޤmY*No+ҒıMoUjo\C]"!'4Fl,Ωi$=K !ܾmBpҫ@E+j{Ⱍ8BPR3PKV6rnM: izoM?P(SKMS9U|`hgwٗyF NLoi+3̦J/%ɿ,?=$y3$-g_*-7FPE;cTJEqxU~vS)X$ۯڐAc>jCz=.Hb_g\ϐWKPJ[VM̅g(Y Q EadJؒu{>-f.US)Pls21N2U7YWMQ9;B/)=Jʧ[>1W̽^3jf"-MGu49.ueCsF $`fckePi5gvqZs5:%-n/DRyCou[Cx|΀o^*%^^#5KYoƔXR5 F*!VvdW G^Ѻ}ˣa\lpi<:?l/R=:Wu08oX)wWw'.}hOr`Yu5:_G{q9o4oay,[~DOYl*[p ?qQ|_4YOK7 ܈X7,MMl4ƽ?U{땸_]ܫƢC23fwJ"0wװ.w/9Ĝ"i]^? ."iR'k3 dj(zJAg_ک(3*Tfeڑ#M;N{f™YSJiLDL#j(ӲzL}$+}$;j Mth]:%]! < L`u4[CA $4(&S}OШBgU8;BήȃҸYL5J:O A-w&ӑG.841SމLчӶf*05j7P- 1ҥG]^,S[pho="["pU-6d*Yׇay3h<=7.^".^P(Wƴ9qw=f>y\[Jݑ !=Nτ (MـRvN>l̮zC_4TկCI))R#s2[fpo= ؊*2OEdP5Qa*l (F;_SjRR4#I&7GQݯ d썾sk_z-VaG$9rіk5JA2T0Ph4Rځ\#[w~|49s{Fyut{aM2/h)7ZAh6}rL=&sRKgޚI8sˬ՜"jU 6`.?Լ4f9+qW)z<ʢz:!|˾w)աRQ\;Zg&rSS.E! ޘ~)h^o>ћW޵~I \_~6K[SKDuN-y֒ׯΩYM7// ѻjc{*FӠ6]!иFS/ l4J ja:57lol;H%Lo^w7zcz>dR |(J6słn%P\u]}/u]fLH~Wf15mEeR٥cS"fa^*|F f|⬨]&ɏ"]k_I/(]Y˕K+3w/\(8Mj#SzBW; 3YU_0k6Z\z <"|/w*=Ƙ gvy9 9?EΠHks)ٟ3{ %m0S;(ypROlGdieSS'33n횅rdբZְ}P?т2)'amϾPԙB[4J9ugP&dZs\zz2Š&FZ3nBޑ6-J\GxBv#D)lc( ívYi QeG.D#v\ 0eD0鯰+p(zgQ?,¦Y5ԜG͡N!Mih7Y[7 }RG lLN{AAM^uGAzD!/y UӶh{oMq|Be‡>@HV ;Ʊb k6q+Sٻy?eNFA#$4I' B~H{LjO=wC >z)"JJ1E-XQ34bGb.y^7EZ/ ^<\ƏqtZJ Bf >}YR?imdƈ)/{_@c tъ`'oHφ@4~h2TGN^w-44Q.]S/L,rƹEēSxkzcWO]5 rΌrݜqG2Q!eeтtfW-ی-:RB7#b\c q2͆$tdZf&=r9cL\ۨnj<ѽ+D(.>6@}$P2t6{d3^^|YZُ(䏾y&rzs4IRwFJwuq& 9J=,TiwEp2F~dB#y"'b(ھ*tVSJNm'p_'^|5':gɔ~k8SE"9ÖkI{<5^ ].)` v{GI!S#1c"κD(hqԥG]NK+T6#1֗0}yNGvƑx+N,AP\'E eUo[eI{GA\z%)ӃR*Ji37>1r:Q))_噛m{ݫFR3rL*5.ƿ }O`SЇʻk gƮUYf=_'k(JG/}s?TL~ fea1cG>ko )k4gtebc:]O$[F7œQؒRi}fG8v28PHMKm#i$8]P12]i]ʚQcXw  /j Ps X*q>EÄ[>y^ j|ʰY?(˾֌K7@\5bp Gl2"ȰPvtiAV?fCYߖdq"[c5cro$J?9>:&2G)׍xc& '9YfC2$LX7L\N +ԏ@Y+7U 5>K2[dz)xbN#Z /Yo^R*n #V ŸR:rl~]d-:~rt3tJۑ;B)ҭ+*>Ynʫ,,.2kYZÍXIz0x1ui% X{G @G+C gq?-ӻrYzwhqT㗸F/_>-K,F3HOuZ6 t]$K2O7u,~,.%?2Aaf_P'岟;,.K+q턖<+,YܚΒfǽ=zĥW;eqPC)?}jxroّhhѸt˟D:T*iԦjӜC/Ns5*{H3C'FR%¼Hkt&p'K}w̨VZ~2/:[j3S\jc2h{7@vnU9Vz7Jqܲe2[\^2Tg=ŨYp-8aR`Z>pBBk^:A5SolkLwOħUUi5g% ;K<{=pkwf. R:20Qj3MzFg-L7 &ʾ.Ri!ju3⽛YN4/hPZ=!u >o =J%qTSѿ`3,(n[p7 8 팡/_U:7($}h eV(͓yfa ~A~ oA3Mɦ<* Jʜ LxN 3YD;'o5.JIoZ ݇Cr;Ɩzt7om/9l֥PP\5LL_3Ce`=Rq]R|*QLȜ1.q>~N3wuf;t6?Z=fXٞ niX >E(rNy1Jk.߱hn_J[3Yc +(LKY~f~z(((#k*B!o-h-w=$wFG?X30pTݵvP>@c'SXsM1%ȴb3K'd$=L-d{Y85:ZYEfD7;mRۈ26\LQ6$Pw8M`痉Eysi[ O9 kaTG=QhZNBBi ;exRC#< 5/_kqDw s`nYܡ/\RYdU ҹuR,QFQ8zWbQw 56+/C% .o5phCFΒSf!m 4# :swD_-em9ɓiV}xx;ߧ.-=}X xөDأ{?gq_T( .R -'Oh`JK72M2*N#T2^L7$b~6K+XZ=$*s{Hy~|liC}o+>EOha hD&;bѩ s4iP&--aM#QqL Lg~!EJ}qȴEFd=)Q,6,0@5E30ZFhDTGN!he]`/ݜuo1>X*QL;dx%|׷!C֋AG#<" } uj4AaLj}%VP{=c Ӝur6·\,{ׇI8Цj{gj{#|5"hgW匤R\2"4Mq8tio()i$ *g Qs<;V1.jϊD `_E:) 1Z̩Ƭ"5":2jBb hCtc?Ss0iVS Sl]dx5 wtZuQ(WQsrj5x/U_+[ƥWRm U/R5qm1g( ~&OڮF^` g];.t Fˉٲ`SbTI<9giǡ|%c泀dEaٽ!]9`zBI b -z5Ps(W_sr|XF!؃mp7ombYOy0SBqU|&K5(8;(*{8DC iQ7~f N|R32MCݺVxr.4"}ZʴX]HuhF}ZJ=~4@}EOUf!u-m}c\EycHɇTŊD9W "JAOSicA,Z/]I%y^ TFǝÆE=wTW!ho}~C#>+^n$8d: ՞1k/N/a6Sf~U:w,g  ze >WIZj ibk.sR@LO"nay)?X _fC+$Z|H3(DcOpKN!t^!SQsTb2 qnkrVP>+Ҍ[U܎5DEMy賲zBGF~>>KeV(wD0F~4l7Y&sdSaz%n*\N_*[vXk.:T*&s;Ka?  ,ʔI7KG%uґ4:MЈ9Cqx H#.Ygr@w8YO9.:%&oGˉpt@tWKd,ŵ@vn#:|DpTsP{yy8e3096 ^'ӸolArb^5{0'YRN4^y3Tޕ$ q KkPoW#87{lВO7 OZܡ %&b b~rL_E6!chu 5ŕMƈG$7”p=[ܾ1bW-1>T ,܋@AN ~N &ŽXN=8inTAh{Prh_TGNab|*޹@\czℿs947f]*tFJ8W瘎./5Zsp8Lo:kSQc̝jUKJO[ CZ#,'M% }ztzfJZZ6tJ|iop=;nb=dDƺ{3:N!Q;h=:ruz؁<ޮp=ñ߫z(cx_}{kzBK8_m)ekKOO0ޜ$}=bВVam_K!>@y\=&2xW٨ Tho=pOӚ9ס\-Nq#}Ā/]P~3,'B Y.ѥm]K-w Ԝi- Qr٢>y` .0M~ʩvrVۛ}dzGMY#yt0rad:)vMQM{^oIj(j(9'GC儼WT汒<}KgtGj*nL6s]?%hap,Oo M&Uu"怄}fu4j6Yq듕gVNzJ3,_,z>yokDZ2KviԲNo\!R'Y4I0+fST}gn5>Rj̓&0|&<^ŽSJuM4$NN{y'\t#')KyM~=mN~~I_BAZzZZPjʬ.F-u'Rn<|BУ-`nڡQUz%UU;K{Ii/&I['8zG03^JuTWazG>s Ύ mQw=Zjd> wMs挀3G@ }{K@}vn)#}Qu,piuMcĥQ*VKy.|oW={~BtNIC "?GɩĹ~r6!S+V>t5͵Q5l>9KZd2| t RdD2Ϻ̙0_{RMmtXHkycp-%>[*K]ԳdR3ÆPtv`@1 U /y iD&A9땸Q2TˣK gCbw/{yeSb|"+Y1嫂R|Pi]ٶ>g  'z-ō.QJisLm<Ӵ;Qvb|5$/Re8Si~pj(I{oʈq#^D2gm?ݢsJs\sw%%9lݘջV𧬨[pJAh%@sYɺLAe|F7iaYN  FvƦ؜Ȱ\vqh^II1MKs!%2+a57N8:΄y1ҥR#^{O ktA! K^Hiם[EX)aA!/!J̽)l1})/Yjʤ䚹wOM|/2K[ݞgFg4<48c&͌H[.㸺/fS.S-UEAR_yAM_7R 22m%ԙV%iſM0Uo y ['7jm Gg+(r(=xIvS|),%4+~c3:|9;g cCp1*'.JJPq3 `!kI Y|<ɜmc6QVi>),PiKJwi 7fGrXbE7>X577_D'iV߹"GnIc:,VndJp3lt@ mY[N8e2̀ H́LY'7C`Y1ϯZ]q3 h*j;D=b7C{֥3TRnn} /aEEA߅6V'ѲS4IEu&zL3r`5Rf8nw98s=Q+gd;gjq4 JAl~M 9vЗ2Wnuȧz FLrpz}9s/gofN!_֥C]Z){0'H+z=h%>26l9YIŵN"|~ }SHU7z>ɩjG9iHҘ5޹/X<99-d?Zгpi8 `QzX2#F@T03 PF:N3q .5TGe Юriŗ 8<| gκwIK(uP\>gS9`  R]n-:ezmHP3J]J?8d`)4 BPSoqzo0Yh(x fq=t[jl?kTu_/v WxfD^|zΠ ̒[4x-*K゙M` 4ȴ'Zʔ4 ^ o?l9腟5QԜ pfi +dEd^V kOJe4H k)YPs5_5m|n`$H/saӬ͊*Bס<Pi 1$o9+u8pRg`!^R:ʫ JhP[Er3p\whzT3J]zV'Z ۩HIK5^e2xD=΢e1QkHx9ðh.ji΢Y &>-Gq9.$`'Zn_I5 %] -tj1 C/'xB:iLƶ&0ZT|IGrк<\%%gCFƁI;.q [9US$#'!Є]<f1͌tN7wʙ]&r^˺+eN|p.t㉲ufWC TxSJL^_†_^+l'89ƾ ٽZuRo0/Z]/CC11BHDL}][(tZ|ҡ.Q\YTRyjq(&Io8҄2qhq,~ŵcaZ( Aq-=nI"Y_W)K]ԣE1v*`}!B=vn*̡P\mGȄz>l3}ynrX˚Xsҡ.QJRr:ϼN3AAa:79C{cqKR)}Yzc}S_Vz?ix+/ l~utя _OMrC.BbЅSd`bXʕbufDgg}OeXQVK_$h Ox(CI`}Lda8 F8nXoO6hզHmU*9%\cgƫ{!~9*mUxq:A_[NK[H?{FBY{[_>~d#$.:s/x/b.njӪVMZf;a?|vZ&G|PCWי{ZN,|4{7PwVᬒ'CkV]__]784ƒ>Ss/7'1-P?ע>L-47:?yt0MLJA ?oEEB"t~qQ.4HA2 D.'\`WBi'H1UU$ם! kV(GD(c<"2扑5>'#br3je6y$$iyD'ŅGĠɡG:=2n)$@ +M!ЈDN6}H%rowAuH!zќ^4?pkyb$2A/Y;u&qJE kgV|ÙV9|kcI&7fg#O!ⲑ\;Jk42?rh#eCP!grnt\OR2Q Ss(鵹 ;?qȃ [z3=7sFH 4h[͡{P\6K!ZDcZ P1x~_׳~~9%\`4f]*8^ ٴRq%7%R NZ؇=4\㷐&d$ĬH4kc9?.i@327 "Һjr dx[noZ!淄gr*4":d 0ƒK׷js&t@VWImKjiA+x"7x9 NUzO=lR-opx]ĉ?8ixGI7}M8T)Fz2lلEFaF2zrI0A{,gЈ0 Cq9Pfkg)l=SR4)HBt%CY1R3J]*q\3RMÁԡC8>\JcW^W?yMj{s Y$;bkXnJ#c-gtgvdn/Ѹף%w*Bx-FXl|ṞO?MxbJcb1~v'A!;NBwDvidjd?SVI.\e&+LmE :f6+pĎfW;2.ۣSb!/JS706D8a9=E2sek=Si~!iOL;+Hԃ,SkIɛ ~Yh۩妰)i!Ӄ @'w"SO== - c)0'% &ۄr%F &vXk[#NyTQ\:H5@9pJAnֹyE;8-' 5AصC!dwcܥC,6w\;і\?53igO 4M+( +z{t`\~9ea'V.:Z(lABSI@ kغ{?رG@TG` 5I-=LM\:ׄО,43f=NNqP0)<w[/y!V]-qՍ!`k\3I|K6+6uXv߈e{QdRQ1eK*FPѯ(E[h]5mZu\D78zHQ|@s%ąϏ'f-BGEV~/#~F\9Z؏"ד{+ g቞eeC9a6Ѳ,"B@vȶuwmTGŵ~W P X死]k{afuƬK(uO[htTXq,@WƜ7[hqԥUreJHߍ/3͔~cTQ ۰Pq3x#z!JP3J$'.T CB}*'<%h{ 5gЬ9Cqs;ۻ#r^suUQK:!u >Cze_'(j{S:` t[n.Q'2.zS~03ҭv3҆%.H40253PW zeeMZޑEJMQh̑:S]ҩ+NJITԨ{4)\!Ic!%Q) gX]DYY\?!uIIҞ'%&J#_flH(<1g#g,V~:chOǹDFG.$)TmmJ톯djLZ\=kV̀V3ˁ{@UIlo[_R*zh _6`hMݍ˖43U *ڵss^7ezI$ҟy NMmRBJ }P_һBEEBoPxU|9 gcTE Mtm}Eڢ}/8.ZJRtD9@(㬦#{M*B;(C [|]5Q#Q '\ I&(Q^(}rW*J=TLQ.յ8tWHAo|Q)֫vV6Rzmd8ce{{oT˰+_R(K^+r Wy^&C=y)OLfKW\*3WJ-a>3Iip/.P\ju( eR~3P`z*oQ'4؝D7[fƬKs5zw՜>+⸔K9Z5?\R[?>3]JF"瓗b Vފ.EZ<ضQv>ka>X=vRL:NctiYAIQt4> H2$ik1k:9zp~$-Nv:} :ǪeoYF& Ӎ*d w#$8{0az,s B!)"A)6P8˿#SGŠ3aL:-4-}$$<ae*X0M͝q3HM8 @r(9V jfP j`Vo̺tQ(Gq7˚# .f`AmIrRp8#NYRew.Dk(8zt[t\p.MJ=")+ޫ1G#hu~vw; N'cn VaTu)lIA8h !  ܱH;y![bo ´pO4p'#oc|{;xQؒj~PcF֍%~R8=!삃T~\9XŦDZ CV`nH/z/GLfos7~ǣ=̬s-hd՛MW4NԃJb~>ߛ,h^7L0{HѮtqرGf)ծɘyN|jZC ;KMɦ<* (H_;9P8n޸!G`Y1R7J]Ig(E6T2(x=z"/_/mqWJ,n냎捣-X2ެPNٗu#K:RAxl'7_/&=:Uѯ ޫq7wͮ&£MoğthLeQ;EE%htM\ch#fЪX-yꭒ]IstgE"» EuR'J.LK׿s@"؞@6KT vFy VUxV Yw>Rr$1]q6Nj[ ukw}.hh+{F^(\?w*Z0Z4U-pVz Uד:Ȱ: 6緞'_1't,] NTfbq)z1o¨]_`,yc{.ldeZFZxrO/}0s䫴x޿SR[1X& r&4r!7ޓ~Gɒ'i5W=z_k_; ih IaTKnDF8m3뎳 |sKeVInB`ơPΨ&-sFh|Lky7Z+,=9}H{+z3 [.d8e;wYSs׷(. b,򜾊 Bge?㨐kszAadd7Bn}#>Q΍*\x õ?!#thZjr~Z9D=FEѷ? dѤW#(SIeuVS$F`C\8f##Qn1- ir17aKs6ף`k{ o$} ~zAϲCY;_~n=SB#ZN'К^YT k_}(IDwn 5g{[(G#(rqh..={n,e`G) .>z%7eV{> )9}56W*Ìi}Uha  EQv:4nJz/1)/>Ƒ?Ǽژ{`ʵ ^~lɵM&}˘Aƌd/蔗zyE屄XXC[a9ިZqb9rB:g) %a6 7@=dޘ27$-GqwM7G#7}ӹY䍗-h;3\WmM JFL gSj]~Pj . fu5ɰHAG [UD&hPK]SW|hrTޱMV6a(3?ZJU]YcmZ|l5γ cm_d'yHzI^GI<̩#u~V#}!o:VRToS\N9;|-7ܮ)5?sb*6)L!׊8 jmYSpAq=VN!3K zIux.]zKҡk= W=xJR =Z%G)sؓ" xEx FԈ_aPM{AEzg= EE'yἑ ތj'SaV)ҟ A{e^d#mUeG,ZJK(CKcN$vQ&/2ΰID˨~<BGL |\[R7F.'V]P7N ;r|9Vj)qh:B ;oG1Cn;r|Ӓ'Ғ}ޥĹ~ Do# Ls5uҝmݗ焣# ;.fq&-!x}hSZS\U 3yJ֠D|F7E&g/hx]e7%5<*+R@?d̩l(gjRtxoҽe@E iIJAL |d_GnCuゕ19 ՆGw,77]9n ZE너7Yv!Gi딸Պ.]20|S-FAZk.y!]ѣ̰!/{8b΂_ߨE\j?T`c,ot^.tj@N5kapn!Z"q8J:8JVQ̘#tG(ٌqG+ʧ(,Y0_zoµ~Zc}(n0>臼GvzWs fR tOE+HJPfW{{h Zr ,4"u/P2(. +zm}ZzG=J~qe>@V+J; V(p iȴV((H>>e8#Z +9TXhEr ya  !h/¼RQ\;Ab @WrJd@F9#07F\*tCh6 ߅ӽ7:V_a`-:4EsZssic7ZdIVc=D$f/.Ǟ,3܃3x RRg o!RP@=MFiD@ke^̓?[}s-$SƐrEc0' a1ҥSU#7) K,. jJ,d89n}iY6 ~K%࠭Ä{NboAg~3#ml<54v;kByYlRg擐"4H4R0^&(ᮕiN-hJۇX5M^rH]^$6Z@DNnʅ0- F ߹rWKkzomu!&Ih|%ҋ-V1~9*o oJ.{ɘNGJh*ev)I Y4ہI S`H G/Oܷ҂ofIW晕b_B;wv7w ,o5 =(.7B h +gAn,4 ]˹\juʾKot#N 7$d䔸cu GD!ޠpYܣ]zhz j;Kq:<~L%:#paHk$,J%Ϟz}:XQ- w~oP^YI61hxbP\6-(,iִ*=S> d&RlW7$E3Z Z6rR~JpBqQHM s^)4=!OGd^@yCoBiv]эr#7]hzTA\Cx X[J (?Qez+\ЇQ9h M/ɲZ& LF3~OQإ^נC a{c(v+\j7Zʇ#fkob q^EᓉW 2 g,h[^6giCq=;MT>3q-q;izLjLeH'k5Ut%NLT~=b3Ssb2%ʨHJQDZj i^ǵPPJ#t׏3@^0Fvm s0ףZ]h7uWv\8ׂОx'4SFzB% 6E_CiK=Σ!ؽ; -zBR4!J xy~|lQSK9 y0 ݘ y{rh`o Gq $D2AS*-.O yh;qRieiKNݴdȁNAj.քu5e9F%܏֦=UJhY4zXꌉQ&W4db"sp i&jey_9^@v=ޠgΣPs5zwĶeL"70 <" }RQW3/k#ٺr D~ޠpޣQ6[qW{n%71U.λaŴ<9?{BR,wvF='[4N[D04Z8eBjׅ/OeҮ&E1dqdZ{׼ (nQ8R5/ښ7=MvSmSl  z \R= hyQ?F0h0rԡeПצ05z~*xp֓A#<Td\e[vN֣%/eJ;D{ К櫔.OmeKB[1G5oTGԏZk9xmhԥR[,wO(] rW&-2[|9Xx.Πēl\g1IGΌ}j$ 9h/3}:1|?DC8\y&.E7 ܬ5̏/qm~8f}^=9\)rD< iVT(\_SB[r ,r\YRL44$ɶN/o eCƩ03+v laaԑJ0d Aq82#D^s^ݖ8j@mYӣ5QUz%MQX { ?O7' 0C:c֥B*t(dXkv.K.{5PCzeVCM#}oe+};?.yn8'#"1?qզו" GKc疱);"LՃKp8Ê-MtLsrPQֲA!GOV^×Trjϴ:sUE7&7"a5F*ĝǒ}$:r!Shl_+a=lFVġ2(Y |-ͲBA !ym(CI8~thWtWR(ˎx aau`I)s=l=Edom-#ƍ 62AƲG}3tƱh0ތ顕M s!(?Cn)4MnQJCm@ibE45sٙɩB:J*=Sέ"4M+J)Kfvρh4r^5/ 7hO zB1?MS9cV(^ۨ.uOKG.8e2 0)qW͵s"M+@[JθҥS0#zcĥBzJHsCl{rah_kTR_umV-xP®} zW=>.ͯR0\M~[1Yoߩ]ZYJA,vS[g_4+W0=%Hg;1]URF7魶ԝCN{Uf80Cs3gq9+ßavb&`uoc!sAvz"cJWS : _Q5fe auV6nF /qi_u݂|ƝgYֹ(ՖQn e8Ve G(jyE+.Rh/PhV9%4UR L sr[@R1:_%#bͫWqx|쎃я¨keAR%xRzwUAuˍv&sD5Wvhף?fJxI6l-M[[ep)zL/Psu_R3h2kb|#bk-> _7PDqz]V ;#o`4jXy,`O~7lM$tX%*qNA1͚EV {%ھaB[ PWM\Ҋk Se> Z"iIc>T,%Q2?w67w&{Qoe}﹯oxϫ-%^-@Ϫ_-zTW*Ӈ@/@"92wLDI_lXYT/Vo]c>xzm[Vpv˸yԪ^%ǂ`ο%-BT j֍FR'B#0 =Yji*9` ;87%JVUX;˅v&my?hg =5Xs,gqkoq :<{N~c7~7P-;VFKl_#1΂1+ev!cBAٳ4XgnD`:d Z)K(qlbt)ř1e *taH;D!POr_yn:0D E_쨞UO.>3̕?G }U'SR^#hZ+3iMnZ']=Lu%`bqM@EA]PֶZ4+'Gnw,NJ]"?RaWWbeʪWN~26tJz&T1%Tu=ޠgγXaz֨z欌M RM_<2oc[wyFz!yɺS6 r5ތ!` {8Ɩ8.B~uS1s唹3z=bN!@$!bRւ7v̐"Nsm"̉.\-Cx"ee*~DDnl/!,W7-5wge,ù6bH@C"EAPH*xޙhLY†Zo<$X끑_o vlf5,Aw9P%_@=V2(>Zk.>c CH4sM^8Fb{~7e8D^im߾o$ M(0aEA8:ay `N P Wl* <k2Q0bvl0b/,Sh4'񪇢v"9 Q%o=Vf2k- :t!Lu]e2on27_qK*ىa%.13$B|5Y}«닻z(uSL=>+ J+N2i{J-lFA!֫Ն 7#lLNz-\ s;U - )g}OP7ғQx7z]J,Y=YQ|+󜒡 H11YYxj#mV< OjDFd9Vq_|+Tc w94死u 0ck:c͡KϺRbWBW9ŊYmXX=OjƆIv;]㴂4EFY4h.= wE$툰֧izc}8KtH^Sc[! |*>ܕw>d n NdjWQ*OF 3sC+$- /#˒Z%_%jRz`yPX`rbu/%ajD{c?-uHlS%ZBp/nZǦMcva_Zq (~2$˨Yf]k_=T9cVٺ!J*ou=.:7@ 톞i]ߧ+ypEɻ %8G׃>b'pj.~274T~ېc[bO3ڵZ tCi׫ZEYGB+obBRZ1)𵊂qJzVLJR w\YP,G7P(J[;hcV~p<fRAB` HtW:߁g3Lɺ+uav%4 2v ʂQ2gcoW`9aVo:Y,:h Ya!@s1wCuI9x ~%._ʽdi* E(Zs?m2K%ڑ3Q]7ߌ޸W.hfDk8R Zz <r*_-?qiL XqK&Ș젞!'§S].5Fl7|Yh; ^5Xs,_5~n,'K~_-=7~7,;023ftK+etxqBDoFOe˂uMȌ\|m!wʩ<^q; ܇|BldMf|e޿",]Uw7͕߬Xhu~ʶ@n +g(vˠd8$ܻ9Gyv*i 9$:,kU=Vس{ JY޴mzy|O,;zlr cȳX=ID?.$ C7; qE}ư3{ADEbf7>VXkڳJRyPM ̠;VKgqDr~P!-gWK݆Rdbu:$<95|}4`ÄKvU 'UMXd(ɳk 88m_dGUu iO2VW%Fm{2eHpuKᇼq_K_TlUFhF\A˃AҀ}|k/=lLYsH;L9A:pgaa8r 976w$zğQPg3[vBh<`7.g!1 ZVL0Χ0>r<_|:xGgGn߃҆:&ۼXVjVjpuBZ3mTtWj1AO?8r[mϷkY)vN{o+r0FƈCs5E@ >=a`lG9eb# ŬKϺd)סp=Cƞ03 s1džvЋ 7ϘO>J$P뇚Blf8P]0}c z7jbf?H$h#y=1Gg a=E7q|2a?<6cZR4 )pn%uD|60/Y3h LSʘ]}M!؞I柖ZzVO]Qߛ`{Ղ $\M¼.Fv= QVK`7 2:zW%0h7ﳈ&-ZD)Xʚ-,Ek@7>Kr.g:07& [`zk)66C{Y堌'xbkډjr^-R|#r0%Ty%o,(-PV|sm]i"<5^x9V|'[} d>oy8y+##)%!d qi%põ~>COi!DO^_oNrd~` m- zG%SI@XHRuG$z9+X_#w4uCuW1]޳ O"oY4F)~Q-` ䷹uB |f]nxr1&J.ֈd-83G,KǺdq"n;׮l Ȗ{D^ՐiuKop9,R+]^s' 2Ό2õGCqJFv%sDDQҋncD{ 5GQĢDK m&/uWrlP8ְDxז[ԫ 3ٗ7/4-4{O]]nhΎp5ֽջ.'b[C|KLKۇe]4^S2|pX݇p;~_om SE , + }EF 2ݭ{o{dvio;oŜsAO ƏK{ckk}EkƚzAF`wa~AYke7_9Z)7Do#f R'}Co87N:7u袖 Y= hFg42^/XNJ z}:<ŝ[s:?bcd1aF@īX[܁°Ecu?  P(u*[&3Dz)eo4Z{υ?<*\>"j= NOM%Tř.=.ȆIUo4^Qg-eea]`.N/U8\4!.A%[ [D;4vuȕߎ`dmg2ar4a&Ss3zێjF&`Wh{ ,bkz&k qL i>i䀞9o07}R=+] 5-K^Ke&<Ceʆ><(MJuFC\N{>[2yQǢԢ א w*ߗxT;_O)#r>0ExG٩Su# LMfR_==河8^FA7.c(fP{'iA8odMEkA!skѶ<}jY?mbo ~gι!J.s/A@^j nj>IBM!%]YO%7klԳ$o^8v@9Ϣ؛]e$"S'ޯSE槻O+ w52ԅ Z|K9%ȡ=̉s# R߫;$-O^ybă†L 0[G,m` ={iQ|^ƑjVfK T]ԑV;0o67k:u OV;@|ŗBᎻqg9]z%KIVshy!xT)6cÄ߆ uRo{g`y[/d)"e~' ;YQB@UwWN{&Vʍ/s4PYfd8 c>vBRϻF 7yk{ĸn60b}[;#E=jKk*mLOs~Ub/0q? ҏxuϯnd\QrDk%)6g0ΌL] Ҙh TjFCZ~3SB}Io^7t.eY2AZ5FS$ӵ()إkpzqR,+or"YIWj&"omm]"*ۡ|^-1z&qV"JFn^;k vNJ29,R;=uʣ%pz}u=Πg 9Vq;L=P;OtrƧEtǓ3xFƈCUh T;W) F8[?^挗 {83جΘu&K_7# ߡ]~]!וgѮ!n`*+@yt-zQ^\4DFS'=.E I409~\_,k{h .jm5y i4Qu?^'/6ŰLh ѡ~ CfYFg 9W˪HG$;D dee$¯WfY=-2:;ƽ =DKBCSGY4=ݖ`Җ$@=؉:mݦ'#:#11)*hu+@bF̋,S~BYCpxvOn#9qK#1<ۆi-"N> m-;[P-;ԜZ7JTw O߄2s ZhodHѡ3.90<-Ň.r )$xCj:1upZYdwDwk>=ldр$_.sMhM)VqiF j bo'PnҘ%>AͤN_ؗ&b&w}.`^欂*{DsS(K`Ӌi 7l$ Ke| ,$ w VkZ'օ@ojIgaP_\xF͟ R׿mB~3׵CUEx{_}&n#VIU+߄!d,mFmC|48 V;9g07} uÈ4gYiuRgtxpCzV*}'Mf¾¶C7C_/_|lzX,_ĕ*;9dJIʹIm?߆ȑBOEA ZT7\}+b덶 7.Sp&O1=⽷.J̕6cEg ZtO3T/L[T>*Gw<7 >KʞOR!:HǨUH_'uo-uαp0a Z_G5De!*E76BԌ+Ԭ^ߗ|KAJiWeSvDbpƍkE7a݈ s0/[t,%$Iȶj%kMo|s; jìΘYZ(@QFX1#3#Vx+9c`9?bZY,΁zAs[1G(qp!YĸWܘӭ!7xh/"63(h6TLj…owyx'Ϲ6 ǧN1Z_w+u'jb|*9'uW>jTs[l2eAsz2[ #d `&4.T&YMg$Вaj'p*9R 5~NEmQ}::>M(ֽ\uِPV3Y5gg!r"\[MpV5>}"7_Ukpk Ⱦ˺tK/Pq2=<k'~qR yTJeq3^vKg~_Ǿ¸tK6_LOJuTw!o4F>~ߡvCvbkhWhQi %"VzݦS6k-A{yd.LAv[έJ~#Dk@_ڵotߢ]_œ 7WsO} 1{e=TC ~zpW֣GVxhҮ_cM/]aY:Z#i4O<YXQ4H{u޿ b$Kyި-)rkUC@{< 9+̱X\dWF5mZcOyh4wa l:V*YFƾ+摕9ÄDMo|sc?`9/'Zo7c!CCPJ 7z]Q=Z]9͆L)@ؠMW] Z3ŀBo[:WY˗cёgܨ`[z8jZ?&Z$OWՙ6$_V?jϾ}p+ sxzk~M#d<=ž&7{kMmIz6RKx[*"Se-]jayY[qϸj45Y7QVh;63F*6k@~2:iQ`ͬJ}A"!&ߜV{D+࢜^bQm+Oͮ[* 3sAIu^2_2)\魌j. ' }e= "@~T&DQ~*EL+]@AR/&.8iepT #c{2l9~7RPjm5z- j'wV\.1Ci)6?e}5:NxS$ǫ%c(Ж.w'+Y .=S1O1r"ֈ J"J6D;'+u=? (UTP59߿.s^/#{, = '#WgSbshf{F=#3ؾnQ!KMSe ߕЪ9Z/1>|rĚ^3~k[Y3;@ q0P+{eW|0gb@ߞeŁL1C$} +l}XI@yDy.jg4E-m"V"$K*sYdV(V/2PB:aæ 0)cx<3rEGġ~o1٦i}PlzGǞI@^FB7&!'IHHe) [:/۠m`4l'i}}>EFhVn|c8F$=YOmc=޵G^ y 2GA3D oghQp(WtB5hNFl2-/7ƨyg-<?4tmҢv>?\/õV,]jE`eKձ"RۖAJyIk½$Kˉ:Uv"R.8=7l&0u5KDț74ooE!8CJRkf> 58LmaYoW+B Ьm0E^֧QggcbZ=ξ0dqg,~(wVq (^ț5gƝxpNøtK67?(U\՛ƟFGfδWgkm@YOx4/l|2` =wZkcl]$MYp:x#wTHkGzH!ՠl9*lɒ1K=)v?-k=T_9z{ چ^Ոw nH|1עŒBK6 !WiCX :N`^?ʛ ?}>nmRY Y8;l,MTЫUS o1 憡UX,_U8Z 7:DG_PHu}IuRQ ̘D MjH 2=/(tBk%K);_K]~ آ=qtc]U 챾в*yr7M(ESVY]54άja JkF=dJgG|i}(6or-֕92(UEMU^.$ț*;ejmzrVO,\f'϶ jZgHju K"qN+!nel֖ݪS>78*XweX fB5ىLm,zi/y$io҅[n:W۹:rfϷ/k$$յb֠KbcȪJ0s 3KU{Tq6"Rre!dGFK$|_vV MUۍE& R ex c fZ-ެaU ob4&&cͭ2f.j"s(ā{exYM+UߩdGeX`.[vSkL}{OѤt`5+ W\k*Ɋ@2nˢzQ4k߭{cѢ}u}Ua&cqFBmG/؀G!6obo6q5Va]僵8.~- ֙rQrq/oEӺ{<dD'qm&˽voo}jLYaXÈ 0׳5Zn9|Z+œAذ3vr;:(8={"Yw9cUV*d)mӸ+>T>y ,%л"CW4c=?gk.%=)RZ%'^+Hu~I9'rk}G90a2C߆bD. ܋hƖwcsysnkV[߂#l |,#̌o zX=u@)uEц_!g^+Eu%"SV6Q7%7Ϗ]Ljwi`ǵfn? t䷘?Sg~ug30'p#GX-ZLrqdq٧ _l4A&l2V7 E`("f10\ɱ+{kc1}?an[LWhw>~s2ol`1auƾEHr-N%sz,1m ɖ ͝RXiX0)ݯ[sB!?0Mc ~[159]kyD_P"54fd/f|\hM0oAV*$|yޞwn靠O&y7Q xAau++*غUgd-(5)8 ӳ>o/9Oo9^H9f#C Nty+v˃dIJ&NPbc4ȣ=vK33]ŬTJeq+Rd?Fblb\ gx‿c3MӓR+]+ySbo5OϚU='j6Rդ$5V-:Ȑd[? a*2Ȩ!R,Ut/# ݬ`\BGoU8XfJ WdWFBTݡKotHYGH<<' y||ieS[/,YiRR*Ԥ%ݧn_gyЎCeLI( Jllh'dl=?cy[7E|;Ał:gWuEVi ⨃&{jRX Du0UŭbNUC yn_gUY,_}УBx>;mmg8ޠpC:V*X^!SM>m7;|_pt G67J][wwu^Èun )ӱ6hlK9Cu!IcD{sǵ E+ݪ-78C4 UѶ6Y~h+V+ 8\DK;Rے>iis@uKLKwlv%}אUf][&6Փ7kSbxXۦ%v&M'qo@ Y-lqE5WMWMmM ]r?FhY#vyVqyD(ʶ3XeDn޺[ǸaݚXsұ.Y5t[4пyk  c̱bqKҙQVwf~K@ؘg2wʩZ@loE4J1N/z:NQG/& 2 fj1gjO~!z"E~uIw` G~ؤ*fr%cRGԦ~F޲>;,j!v(jAkz@4uE'Y?KmoAb+ VtK5.D(g˷eɸ/SNZ/6P9GVtnT"+#G.P~`Np;H"l w6PJza1 `}+[%=Mi ]A4vu#)AM/1RZOͬɇh;7R=;K,,S5Oy{ɚFmb#Qf]Xf퇸A@g+2M>2d=4U~7AO1`w[Vr:V4 ͗NQŲ ޯ ݠQ}aڧ?kkBu `HshnH %7'. Ě;+ܞ|cjk_AP+ 6+ϦsH5geLCsd%J z/kpPݲ, ]H J; { 5o6YӵQV/K۾`q~[۔Rw[D/Y[6Z?}A軞575(?5'R;|[j!" ^c#پ="' ,U}f5qTTNJd<՞~}cхa .9ffU;V5bd. ӴGFt( 9FUzg_{2??ɞӬp1NZ9h5)Og]@;ChtW?6 s#: ~b;ks1FTaiR;P{Ql]0{eZچ/j,tYEԥ&P I{>Zs[@jLjĸ]bȚЯu-eF4K-걢Xa*0ݚ׺ U{P&^ ~zAϰl 0ױ#"G>a*d>O D;F43؈qYpM4J#D];s2^wXkձY[l K ׉Hdv@ƫ4ـh^G}"j+#mMܟ7KyЅ;F,-/ Z^pp> eZ9Uf:[y`B hԟ~T]Cfcik__Uނ[˱_(ÇVZk :!1:YӃg]>ݰ37e+߱ *CDʀNz!iabo$Bsaz]̋s /Yd+O(eOH0+"Ĉ81DsnQj ik4OB;<dA:^걸Yep"?:LW]̸`y[bg? 9qRF=,J<Sn@+[YЮ-U颢~c@c-hŊrBBS/vk4˾=&d]anQq "DEduUVVvc/seqg`9z!2\m>  'N >63JN=^}GtnJt'KTaF ,E6C-ߕI> )_FSQx# ApH#jƏ(gtԉ|-`X-#DZ|Z6oϫ!|n>VТ@,!5[lUį@oN`X/H 0+fDhN-VTחޟ,0{Ā3p^. h$̀ע/B_~h@ZIG /B.^VJEڮp8 8;8+ձRY\.'EʤX k{iuKLӓR+, 4gI LKA1W{?D$ǯ+WAB.Lʏ- mgDrnYTYs?)谊w%8`nm/"^_@7쭚.7sᗙf1JU2YD}f(`_W> Y$oߒU"Sĸ+6)پ9Dtٛ#z+(Y mLg0۫(>Ubq²:71 UX,_}eKg<ꍷp3: B[KtKr @:&DB-ccJ_owc_a:F![/7d)85.8}~lv*#oyxkŦST4 0`y_=Jhw4=hJ:z"n̾@$DJiK<ϝ bmjyhmr$pP].epGt}젻7'±*,8^n臌Һ.~pXv1qOHT>~qY]*Bmc .4n2oh/*eDbWf ])l󅁴74}b,vCڍ[ֻW:6벥REGC+dtsqzwD}@m:V#s@K;;ftp.i~s1־]uE^%HY?9;']2Vهph n֥(ŔEfx$QTP%^BwԔnyW98bȂSb Z$>87e}&IEm&n7ںUotYS@Gk1> ɋ JE{ZJp27FGtw vۣ?{Jf]4˚sFsC%jGnkvO1!eCX֟DQ_k~*9J@_+3Zp6ތTzJ#y:'NuchCx|ނYCwzV!qx$KIKuWD!\x7mEqC:V*X^aT#  ..ݑq48̀c8bzR7wљ/'I ǥt;=/F2k! 8D{A݊]`h*@14yAu0c%&PV\M^,\G nz`ӕi 2,p2=E֐'ʱ!eZn||Hhdx5[XY ^`гeZ`9F]Nb5|6to^.ѳMf,3գ򐩯la օsŠ)#0=볥/,zZd;*TY*gW[XMD3zEbDҜ71RZ'? CD~?5sSϾc&="FN0=>cBk97m>OH$]Ӌ(kx ]D^MIߠ=ӚV;4 AmLv3\Aje+R:Ѕ eԚqlezkv#K8V ۗ@'(uWJ2ƼR ^+p?f۷qW2Kˣ~6>0VNbXQ*DAȑ\NDZq'z b^mgL^a-l;h0& 0׳ iwz^i}q!%ns 7w֧:EtǓ7xtƚCrHLYx LZ}My{>gc;F=cYu{AC5)>d}D?&@"M7Z& %: 8V=OZ>ggNS#S.ֹ:D_V/XFf6b`_rM8keByB:lvS}~ 2lL5}Z{@U:Q']Ë\RG I"`s*bjK k_YGA#fA,S-QJIFጢx9 ;07޲ KЖ2@X# Tɱ#v@1:e8VR5Cc>gb1ꎭ޿ht`q|rwdh(x{u:*PN׆$4#?Rqz /MiE}o^]c4a4w^4\_[uLe\Hg՜42 ":G(:y#c\NOʄg۵`n;z} D$YSvYFaFƈCΨpmUdfwoع@{`~Gͭ6Mn"Or=;36.TYwTH}'1 4Z6Z!ycnc8OQi/Ӥs@Uf~ h_cK]C]~O}OockSy[.y36ъMtGqWlyoYM! QyfS'/~gunJ=<ː,0!H|< ]Wl- WZƞݲ ֘U嶟!Q ݦZsEz|QJ9/x QJ)O/^j-Bw06>lHGqy4<틱W=ța hܠaDo6p5\~Z887K4\֯vZ-$Djzk mcGw5 †5jCr F A * tW<82,;e6v CVh۶2}K^د >i*Ay/ݾldEQNoEh^N@=C ؞4o[;N"<]ɶaSTj_MDѶdcjmZ/J}y=Πg1AOL[#sףõ*d,aRVGJvuO@FhѱYs5E v~cG2Syeb#/#ŬKǺR9Y¤g04j4mPß1slho =ti"'qrsrL. H*iIꌌU?{{RF 6;sq@uh9ZRn4 /JwtKz:OQu):YJԣ:co.N^&> vXQS4sM&)D{? $A&[d~lVhİ3:ޅC+knF}ezlo1ZFaf YeWas!Lo&2wIITLPAA cw={7MFL]I]2}3<YqEV+P$KЪoڍ%2ͷNˣgK?, HU$I@tO2䎄&DDUO6. g:":dR=HX q~LFcmů3DX UNҳQg1Z6l@+jQu,ɨUfJhzr?c#K23%hZ{ҽJ 3s˷r\Ps@OmGџȧ%2;-e'S򦹶=z3]*2h,' ȺExvo^*'uWvdZ\ f&!DBb2rd$oD\mf>䙵qBFPj 5VQ k'OBMݪGvL1kO a"Y#vyVYܱN49V'}[~6?Py nVg:R3h3S[!;Yu{6=+qaWfՖ@3=pW59OTgu)U28B0H-S+/rUly=J S4iekrc}@VFTʥ_<)#)J4ժ>x*I$|bح!*j܀m=_nw (%ڋ>t(+3`>DuYą]n>^DŽ5b$Y()t4:~!WmUwMmb9nF"˗/?ݐQn@1d}PH"F0 IJh޲"$zV J2ˈO%ff@b޺6\xٴKj9~]tuk;jVm#19(ѥh\)lj;@im}Y v)Zr/WH^m ;./.)}*ęeI7:8;S *\rJ[[R/k=Zd פV^+n7pCuzv;-"{)ƣx4wC*X\۝nu^핵_ny{]k^xnLzti$BHdb^>tZӱH_{ Oeڨ(gԳJ= /b44GYY۵~19zkoԦ)[ud O+ uN̻w uoQגAc-YE9!ڦfȚX ׊_g;= H\pٞ 2Mx{eTٹQ ,bk:c̓疈s;~2jlho =tLz,: |,XVoi6(΀4vx9 * J_|G|u-XM`}oB@IO45ՉiLu˜M0'jC]TX:Rmed %7 {9GALސDwߥVcȏRɼЅnfVP*ѿT&xxX } w|`98`96[;tq|$ ɼ羃;³S,̫m  x~ &n\:Q&wxr'6g87x%q_,׳d,Q[;iGtgo7ˊVP!O)hcJư6{U"ntb l\ `]wϣģcTEH%ni\r)P6vK?EPߣciJ)ҍJ' p_:gf@bkBD_M/-e -9YJLh2]k UA旧wcМ,eԳ2Իt-=z^Z-~wܫ}FWgŕqzO>XBӝ>PE)o|u'o4 -M^TX¸\̱1c,Y=E8Y? y~mdsY LmR%% hzW6 e6HͺN畓/2K·k( 5=Ԝ-ٱ;.Ӳ%Qβ6FA|6`s]X%)@_u;qa v,9\y-v^ AzYsl;֓?)ұ.=uU3}7fs)j8CaFZZnŌh}Z82l\ #t)46gFCg^6M7ӵf~B ](FG4emR4޵Bך@V7~9V(aF@zFw'Xƽ6]tv2yxd,.oy ^#%-hךގ:X9hcS\D1 U!a/uLW g@3Ld0 cq;f7Fd0z)3 çhgN_J99 g_cW^!̱1c †}ۗUhgEɩzk2^7yi?$)^S=W# vDzw5"V} Y0Hme-\NWu{iT|Vi|Le~PFCݲJ#_PҒ-2.jn<6ɦ)MvSiUEXn5p>p[5~߫HI- ,߹U[/F:`D!bP'P"cVe)r gdehX~QXkrZʩHa"[ӱ5Ys5:W'X؀Zq"rgAǜc̱}b_R3J!Sg[ xx`ou=Q Rc9nyk%Y[<?ynʡF:P,vZT}ߋ/("{8xE/9e@ÐP=JiݬbEq.#4eюLG/-3^̽uX&1ȌR?xd=Y* gMeHLKx['YSWcZf@]nK[|W$j2;n=͖$@V#eAe@XahЇwOέSby*hxiELɈRAS])U};6o̠L \|GbBE z #:6"+̳X\VNAY} 2099e@{1؈q.A^Y|ǞrXìz jhYoA"|ic7Law/t6$oh`l>6<=Ue&y.g^ +e\~ l]v2`l=P6~~?ee:9ch5F4v쑍vh?e׭gnc- [T6:'aD{mKnq`67]Cl 5ءm5\9T'C^;evgޡjLJF]ި--nEt3S^Mϒy.%!! ڱC©d~ah٭_9 CUՀnꨨrqra9f.kI#Um'Q0kDk&j@ր][TZtC=aAYFEH,vճ4J0QyZe"Ƥ{d;~ZΐLaK;s|ɾ)A[ M5=jN["a`PY=uV[@R-7vrlБWh [[Y٦k q"(NJ?{ 3ؚX.p8iXXp qc}/\1flqS3X y`m$o@)Y `J GSz4QvQ*xS |:W|0\G@Ķ#6' 5KVG QmcB$@q@V+,V#pI5Q+qhI7o!be1T܂H SyzzYv$xh= qS; ?'PpH{UqكR8F#]:%K) |ү̱_3P;!uk-1G ڤ, 򰇮;da뼋rZ\BKc;<:1"|C+C$㿡5Ēmt=Z:^Z>jE'-:~EB{4kAw~-׽8Y}oTC嗂/ꑁ Z<Èױ#ʡZ͔˳sV`9[k^:7B4+؛6Wwn vo4 †YqsƤsŒO=8hHHM;Jx=:-_ PAuODp>3T-l$C<^WcQR][NK?=fUE`*r"6HՉ>fHK8~n1~X ֕+k7eeΕ1rSODҒ_s[8oM믮[V:EdΕ(qu>zlܟ[W~_mEz(;FWmՍbNOZXRgbc uVPV t5vg24)^疩 t 29auF| =)Y\`p5g!֝tA62+-Zڔr_XkVzg@3d0 cq{mDeЕ~w%g\im@V9/F<޵ g)STؽٹ;C1XkձY[<}nr7ZXV3C`֡ ]E!(W MRhW7*W۾gqŜ_0B*R"5t}^ɬbeynҁG3o:3جΘ'j3u7Tj @ix~|ce5t.T2c@DZ0]Wk9vMѷ. 4;KG#,rQomE\ޢR(C|J J€(Vq"7 탳ֵTRV ^z#]D쩳 {dWBV@`K3}$Vrr]JIBC{s|۷(}W3 QwuB>~́<':RI"(_q4 ujJ3<.g)@fyխ-U"koRz^]p -κtK׳5_]tfZyP*n?I_/4G&i:.=-ŇRQ׳fF?pv$pîٵ{<{\{6=+q1>w*6|tZ9SIi"U(:@t5Mw#SWRDz QZ!aiCIEĉm.1<ݲ~2beܸ{N6@ۻ3D.`[PE#Z=YVk+eU50.+MQa_Y䆴Z|Hץ}wyac&uL iㆿ20 PڎZt-zϻr \R. f2S6hsmdR5R$(X|ҳ.Y\bO‹,ɂ(\nrmo\{x73plqX5ҚYq @ q>ِKop9L~RRF+<2HQ}Q_;aPcUll/ĥJh>3'*|n toL-^gd}n i}b%lV븃q7#lUe]fa|cnQ,ZWrz7.#8 QWr*#AD=<:F3ݔM?g_&/>գ^w+ns^ԋm+ЬB:CJ hޙoqoo3hBƇ6up`XzBeHejRFDiׅ:+J7p]uz'[81Oѡ2] yգ4:Mg8bqR_J:w7$ 4w<;t:ga\zazϦgZ.?dT볏9gtT۵{/394(םbNr^ E',u>ߣ_)lʭE^4X*BUek唲D׌}2|6l~pJjQM+qǍAN VzE8@ f>yЋMz` BK#bÎyU#mR.x[)agƢE({k6=+_YJuќij )cr;W>f@ zk֮9Ϛcq=q.ԝA'J!~qN#$8'OW|l_g;vk5T]J<%춞ݖ](CV!:b!K+P4hAB&"jE 7hRB@tʞ \*)Lf\FzdFQn.Y } xgmu-%.4L,[g:>Zֺ|`In mdLm(-1б;P`s ظl$ A$І-ީ2?W;Y08O2QJU-"a\͢GHi[ʄ\WurP/:ٮdO)ZDz}H΀}` yk9Ϛcq=PBʃ%-xXˑv޸䀿03JRI\WO:px8I=;)7~0P 7RqW\>﹟c3rqE< -fAw$BЯ҂rAcN 6A}{3}3^T|ł^4d}'Bumޯ,hoͮJR6KN]oӆ}dG4maiM/Z{y~a[ {FeT8BZ̋ju+c*x q%>lA3!ɠƈ ̞'V}߇0 b@gsL2꫆!IdZimu_F{mOn}YSYLT Ŷ+Z00e l7N㎼50Ä]aL8d@/aSP;m"/yD( 2V BWŪ-n!`lPVVf d$"}˥Yd<A| v)H<ɚiy4Uu=?TcvFaplDV7 :W<dyJ906qgc 0ck:c=]vH)댁IM}Pp<(:v@7PsjО }R! l%_^5%P'D~0H$0],lyl#k rVG}Y[SUg-Sg-k#BJz)|iH;xk!gϢޔ=ɬVXH#3M5z>ج`ɬZ2m tfט̮rjd: "u(J=*u:T/k +ʙ ɫr: SV퉦YxW96+ qbK3:aWܓVr\o7fYIQrL3Cۆu@ 3wlzw *cq'oƢ:rw($8_Pg;3L2 rVKGUh;{YƋ9綟?eoXel>\Q5Xf2|XwP3=?f6}{^?,6鄄yzv/8bQuV/^j'O{W o__8c5]8nӁs UvDY_V9(lC30]G#%sD.?_ ă\'w,%L oa~^L(/~hg;[@t@&[H'FFyFN",bizcVR.m?1A oU 1&Qu{SQW(O;$iI-2Q{i҆e*|(JA1DžsWvҺM@^dixARf@yԃl֠F>9eSJMŦ"/ܵm$4&[dePH❡o{GbeI61mm,Dz.@30 ȈȚs9׳O;N߽Bbkvoޡjl_ؗR:85'GvI.!ޠp޳Yvcq)|Gn+W Z s9> (sWhTp*v16fc淥?WJC*zGuZk7Qʚ55mNl{6(jNOZZbl๬_]@bz6.P ƞ|_;i`ݙ&)v$oM4.q6rXIQ܈iQ9 %VX"VfݯHѡ=dY7F[lmJݣױ%j1 [1-D뷤`B[9jiugf\{6=+ձRY\e\´NgaY|;pmo\{xlzRvoޑ7}J1y=8g7bzazϦgE$26y7 nG@-rõsOC؍gj:W:q?ijZŸp#JhWS+ `S2Pv}W; v\n޼ H앺rbBA$t^k-^DζׯW_qW㰸K׳p{Gf kn?<Nt\z%[-'zCciGd=cG\+QYʢsvV7d%\yˋM.,8uR$N u.cC UkADD__͂ʴRG ֓s2P!IAt1'q}uBM I۠9#߰&;jD !).wr}>Ct IJOOz0b-40_ǖd@XhbY z9׳2tZ㓄{>>>C捻 {0c:cߡT(ĵ[Oy˼vc籀г2߰g.K#eN\eg:̑% t#B|gvC%!@OZ:#deԄ;eġ[]l }A3 X:' O99h*ąW^`Ci;jeet$'+gk<:~y\rMhNգ@FKk^KG82A+(Dۆ-3?ǎrc H~JKE΋,*h+ԭ53Xwm@V(sD{u[Dn;DVo<, ] [gaA-hɼ5YWg5,F4W[ٳԁ7 +<È B# Oqc;{{vov.XkճY[ksnQ9@56ط9u wnX>껎(atĖH65^6xh,Qغ~:}DSr\K7Nm_|.h5g %CsPfpZOoeFֻA+EE4&pfD[PlR4u,l~|+= T?B%u(~VDo]5\oЁx Ǝ] =}5>`Dj}|cj m`[Oo\Nфt+d&2-XOiȴ}o~2a%OV aꋰ ‘9njH"RnqjWI[>WqƂ\'|!7B?2-c{cuAM.7f&ɹ+ %*Q׉ufF9ClӃ :/2ovRͮ/q&g."̀ol$6Kͧ-({P$4';J;3(&gTStY+K Hn[8 4ZaBOՂRXePa$5uuCz7Hv>[g`; DHH<뉥=si緾g`gLOyS$ÈltԢH}o^׬gu.zڞ[^ ЬKot9]G{ q Jm+X!d8w;yDٻni2zvV1NJmSE%pzr<%jcdL.kqX`l59!7M;]ΰ{i{eoևe%-X6F)-YJD֛fb6hPXD95EomfKeʄ&я/ޫhTQ&OِyY>{.zc`c?fѸ'6(2X\oy,2lݴ/`4k۴?d=3Bk2mdd:=x4ݤMQ nE8)o S)oԊx}0Z$FǻZT{/Dnj;v@h& a0Q(i՜gͱ05I[ȳș3:x%7~hal_o;t*]+?pP ggo^aUޗ?dn=0¤TX z`FU /;f]%Nx4P]0m6jwۇ"˴5${/ @N,2eOcEWzҭ p|1߂d #~ 7aUgԏ[\_2eYGR.7Յ#2O}ϻ ﹳRm7:@IdHuze¤>n5O4K[~˵T}Toex-gU\[p#+y h,ab:_o?Hz(ճRYuvEW-t6/EgYGoGClƳ0=ÑMR+u8 yϧs1cKfx 3:]m `(|c5WGn2o dnyf3"x5[8g/"ވeJABJ/pAbh[]s,2ͷ zX 6*lcUaɤIU&-ko^zo5fmKiV2W钂,Ca+Ufia njG1AsC(_e ^p~ =LWe$!FΫC8s`n׳}Ys5E܂#`%d8l܋8\z!!aY.=J Q=FkɄţu\ox oL_CЋ63iQfxS-J׹\DzݗH\wՓ 32γѮ#:&;EƁ~3%-ӧ]k:#}yg̳9~T,HZ8׿nΠu@ ./R1I:*ayS6!{74`ϰUXa9c)*R&A5Ȳ+W+J˸1PR7 nt~.?GPgFߣӘ!|-|IhdtUUO~auFF7dle1(&Atak44OF}lTA23>ԵqјdːlYeyug\d8{6=+:w] {f'm:P:oB|'J<-kvUuug YtL_8>;#/FV?9k!^k쑖&׺` HVv 7~ 4ΜʎP4^pi!SyVFpRVHw}fIEtՆ:k`tK 1m[Ppn\+h9XꠞE&K|P"ӮKZ j۵Y_o;=l;om5͑ŝlc=3̳1ƝxG[Fu}IEZ&1w>c籀=ѱ'ޠp޳Ym}?O..>Ig(&|@{_ՈX oR Ndi2@0A̮3G<5gA36b[)'&5]nOzSrX: uUsЙAcX 6XMˍ/p ^\n0ABjOEwFTVwaŦeX}ȴh;zeh(ފAywC/8WdxF̟Mp9[`9jwr~v;<{of.GfuƬCUR. C <]uqa z?{0sþlߝ|H쑡AU?sXCmIH.=A=ˆElLeER28uS[E9 d5mz> a@o$rE߻I"[HrghYE'ܱbk,_) *UNi`Ľ*~#W/D6jn `F0:jDii4fODG\P䢹h{嚚yְCVMmQE‰+Y,j{2Cp,emXB+[ߣz]iVp‹\v y6+̱X\ʡRȓsɾwFUùqmo݁XlVg:R C]1"53qcxggwzoP?0 =[uiEJXSD'<}]W3@]p M(fbh1h%ȹ{¯/b4xS|H|f)pua':4YqOGRJrߤkGG*Ϊ|dqzf-o~z}MNh.mC³,)!Woo1/2d%+C$ Eңm v&^qwޘ1t:@>ʩ=tF=a<^lVPчX;3WG*럼%zvBiq )#32T@Uo$ w,赧=73" 9䡿0B:`F LZVZ "]όQ^Q]ekx0'.$'}T441OE/6tGI"&tXxa;϶c9q ːn8 w>|"8l}[OtƚCUhV^)x\vr> ?ϻye1067f]4 W-|׏>Iu|q@1m^4^ݙkpHLh1 " WUvES1+d܎ g D{ }]m_O|/*S=5N[M^L \4g#N袱z(1ELd|H+O2om{n#c}Lk5mOOJ0j=d\4[fc,WE/r1 _]ҳ}{3i +8͏K#`F(8QtYwԅ( =RB~"Dt]N:L}:h3iu]"=+1| z\h#_$\ʦlPH*1P³wlCPgkk2z. DHX,F༟|mpHlH 7$^n\HtX 72X*xh@x"C Y惉baQP2ȷJXI'D6R$3o(0Tj)6hI(gAM/6t(*tO6DיKFHY&͸C*}ۗU=Kv#Ɩ{lw[_ñЍL.a wM`GIb2xŻɖ$vaiCeuY :c0 ۤT.2O=QD>*NܫCiŜ5IkEzwjtC\ʥgcLn.&s1cPd,[OgJDC A{"M؉p}RVEJi(΅T9qΑ M6*)jMR]*-MCxM&髝m XB{":&,EN2ZL^kZC@9BeJ,{I_YXO7_ΟXv">,M"/#<ݯr+G.HOmBeyIK~C[KX--+@V+(&iM@ۨx{?Wb;iN( I\^v 96+̱X\;#}\8׀۠XìΘu(ձRYux׳hߞ' w~;Bc3c-.JsrP:N<> EY5+AsܶkɬߢkdiRq'g*k%]%mW۳߇Ve5Ikk{qwQ7"Lⴭ&sr%Gݱ巫]- lRf(jx]TK/ -9ə{S5G&~+.gX[`y1L[]WT{. \6vql.V)uE^]?e7XoH+˚{KtT!ӶX2NPi^*fLd =Ю? c%n׽cJ{ V^eK% AuTU,3?"VQTU~RUZA^k~YD9B\h19L-Ն~ l2.S'SJ9 aEMXRq Nwo7,])׀#ūvy:Dn{ُ8J~BDaH>!RC[<tgW]SFUe~Es\B:˻[#9M#d--yDd=2=뮫F~ٖYZtnIº3L#iYv9.%M 7|ݏ,ڨ rT+~b~j&ͯO+F|Q-BGskaz";K834wףvXԀs{ 5Pczk֮9g47u,Smn9Xvuַ:g'ep!6}߰3JT/=`ˇox(<:v[vg\d{6=+qI3O]C`i1n*%uQ&_̵X8%x +(A(ӕv!C~,rFɘzd$'T!˨ւ./[pNxXd18r;r 23V Ss`&]t~NBA%G>FWnͽӝp6 ĴdwNHM\э2u>JB;F+^\'SLהW.1VZYDYT{{ o^[Dᵒj+%UЀ 6L sFaC\|q+5릮mY(_"* $1Xp/WVfID>LT=ֲ>ߴnA}HlTZ7p`x&17v]෎i`6G{6t]ؖstРI&Suxg4L-.2sm>޳3(a#F@l=.%MZʟ߫E҃-:kDiWVe֬Y#=YdZHK׿ꋤ y `9q_g:l&P֝жv5C]_Y}/pəNd v Y{Os&+=u,\"p}_ )sy -oq7QřR߆l֑~cl*+^7wq37qg ?pܻ*̟6J]ؓ[zvKge/%yCaۤw4ϕ¥QR1Շ$T$h7 ҂ts%PVCKP\R`8C>$<Ŧ\zJ*v<8OzZ/֣4pGlyӆ`iPO99aE{(8E;T8{wԳ290hG3`DQ[@|}QڪNY%=#eqE:KԳ4hEfu;mZs檥vgPTst3@0r vڮkαX\;P=1.Hor|sw# 0g6R=+]cOv<1x;tOtgŝХW)Iw=~DYqgW՝ e ʚ--,\ĕ4JxcN7Zz#UeluCyFtDxmE|Ko!q&[j/J qW BHK"%QR9ҹﳫ{-5oR=J^~gԽ*qmLJf$֗MAU$-MһlzCCR%_V!#fTYo4[7 @Κ+ձRY\[GFÈ컻Qwuv8;;Θ azX,6"@97P{ˍ!!;2ՍFPeu@E^7'|{dpD0UaUO̲YR={Gŋ.y kʤ)"vc+j}Iե\:2yM$jLVu W_p|ҥdvzSD3 JzSW6ƳL~`IxtIz!"X>줶#Çv'(s*F9#FBQ& *JNd% Cl&V+4̪g[Վœw=\8'mq*6BݼNĠYѨzE_M0Fvmǚs9/▿;z'I[ť 3 w}Pcŭ# P}$}64:8;:t%8FcbzR2v]vMxYk3;Q~tA"-3>2dEYo yR Q>Vͬ\&eloK~Zݼ^?p _G:PE@8Op6\;S~ph$qmٴ?n?Y#k\l0V =@GF@ t&kj~םxE^7|!&yCv۱zܦ).`ifa3[wnCrDWXZYhւdEw`‘XWTQH6I vo> YUX,_-u+$Wb]޸䀿 z(ձRY\|(<1p8;pt'I8vc8bzR9}K$^Q}(R"F͆䄔Z=v弴VA_=csT(F4B6ʼnSYگ~=i ۑ@T,eܰ7?5tۓoecȰZaց>ZLxQ'exj7p&~Yl\kS`m6ήU3Vp߳ nX5ӌ\[KH6NS HA. Xus'?a:;5[:GwiT˘Yn:yAfqh?\dARإoD.Q+*d Bە0'ūw;+<rU0F=۶?*_JPQA|A]hԣjnp+l)_*"=uE&R=6Ƚ!8*(bgcVKުK|QY({=Y^^֮ j%+)4Te~P)iAj$l Eu0Dۜ K+}XH;Q]p?%mWkWn6V.!wcFo߮46ZN 罎.x-:BZbhꭑ=#, |fjK2LR h7zt=D)쿁]$x|fҤ=;Ѻ`J iy3u\3,雚 jD+ٌDr﫵]We@tO./tLSHTHWXyVھJ03~%e^Ez N"齿ʲ/+b +TX[G6Wc/0v;fN;0J7}.gbdywĀst١ J'fVep l#`%G5wWˡ])zW_l:|;ӑip$FQ D7XҨq?+X;ȈĨ&U ӳ7(oItue%hv_o\O-o N`+eGF{x(BH5(`JMg(bX[[ $.hggް@؈ZR޽VXʆKsoKmKC1$NBkqutpo I:IUU  ;hn02t kR{xmt5D ,Xa) E6Ѐ#iDtgsȮ@ FȌMѩp.L=F)xi;߷.ϣe{Yx`3"#}'a,ޘ_8O\TʞQ_Sh'w?ٲYiӁ e LT:(\9>s K~#ᙏ0 _Zw,nlE/kXNl JZ|dLm/A"QnW7&t,5}q;'NoS@n:(Hk82ͫxglȪZY7}&utXFbJyp:7Db: ;*n?Ka7 lfGVu%LyA ԴcKuh*Um,$1}w׀|FYYm aYc-h;O賲U'0ԵQUQLۃD_ћ}P%1,E;vM_6U а>Y&M}~SnH'ex{$1Y^̐I=+#WZU}~:dEa$<vŌ '=@?k%"),s1 aqB5YYs5I܂s9'dA_bmvs< z? >op5FV*;Kբ33HBs~Dw<#g0"-M')?a~w% ~'mg|X8]5X>Yf-FrAG *l&>7tU6xNS. ZhɑmL ګ%޿?24lҹ]ELTJnYRFyGNgRȮG$_בݮӿ)~-Su%0^7#_=7ǒ8G%-]CYdmS+q_M_Nw3//bF "2 6 C6?J 16$ UR_l46=HE0z~8]2#.{- +9uQ3T)DUFY69=TXE_Ǎ'UW)CUۘ02nFՖJz5-xL2 J@q=O T|]bQL\InJbZ޶ S7o@q ?&k'.LF,h&),X0kpC2 +LEЎXˬ5Mu$㎣C[wn=2a }IsLRv8eTnt,lпϒqj5vhd ~(yZ݊ARUĂyG !#Pgwu"K=[FN@0ThyExbқYdt4g~Ȃ=UڲiLԭ)UXF8Sj6(7?nck;%zaE5Y~/h͚%21CY*lAun$pgh8 j"1ַoCtZ695 7kl$|?9^x[tA1sfaHIϐl`MTX6@,N[y?k]-շ|s:0YARAŝX09UVBlΝnįS;^ÙqRmӛ?T"tYqګfPaNPz_\={_ DM|mjj,KR~^xͦJ^]0$%ߞ,AH!í^dvڙUdYLS`NF%RJ*=Gޘ$}ؒ-NR[?hyn@>8ӛR7N~2v@e տ٣wFaF 6dzRj`H?0+%ra1=\H2g͍40@q2=)u7LRL37y,1y$=(+\ҕFݎg]շWQXBj;~I d_tPD|]nZt&YwJ{[ٞlk;k>ZiW&F^hbߗ[JysiV{`T&>7PhyoI\Vm2R D'%M(:[t[T˃bQҝTsϤ'8y,|0WkS$ܫGSI,ר>a=l;h,XaI܂+@y 1{=B8 ݧ)CtxȚa&2.Y9ѐSJF-oJU${~PcN,Quη[(>b3CC Υ";,ԁ aWO׿:59\)l&a^~6>qejCsqg3d|0RbtDpKÊj׹'N">xY?soTWd|z(b.CtP=o]σ1_^1ZA9xC)xb*&w=u&Qc_*MB)ƒo'Ϩ"lV ݂"k)ezcE7*`-3ƣø!,:w6+k.X8[=b.$c&j}-Fי9`th;O2(̬u,uFR&Isҍ/n}d)-H\矝1ȿ10]|OԒ=;ZN0$+fI wX̰/-uKheM19!}6K#&< ^|,`[ԧHblz[FudV(_yblii 7^R%xvrbܾ .EXQ#zwZ]G#H"C0MMmMDk%w`3&/}K<iSk=p؁o#dh4fl='d)VGVǍ#<}R=ԉi=8iu۳I_O&P.IEYo~޽5? ~@]-'h_XȰfy[JE:B{?n|~B4KԿhw>sWi}phm4Q]:4ع$ru3&Yb4}ϭm3ޗ^O7z4#~o(hjW)z ۴9@[z^ Sclsn&D电_NokU݄Gk8cd@^+,J{ǶFɢ&ojZlB}K%OYv}Ø-M[XY ¢lPqMڸֳڇjv[^y޵2l&2hdћ+,8azL/S}D+ÓY38k.ӥI9o׎DXb{~.83i9x\GDomFuof@_ԋ+-b`A0~mUZd!~1- f?d\}9ddr2ɐ=C0RSU I1>‚xSKҲzg-d+ϘEQ=oꡞ~2.HkanϮK[KM}mENݫseN}lRa{Z j7;ߝMFV׳U$ NZO<%cx {4r}oz^LϺghR9fKo) _Z +#Lݓ%{/=RYY*9ψцxbkFoͮ4gIyN `(v_Y{K~QϘsfkJN&n͈|JXn7M(B6}t7<č+W^g5jnkr),.R>>>NkDqm9/a Gl ydmJ=: EPIm Vzf!?4f~~M+e]NEwhiGXR*\umA)tݜΕ({†7Isκ XZqZJ wm 8D)/(}uƓAWNֈ dhJx l{e¬@ibwarD]BIeF< ׈w2O=dl#{'#sYl[ BKF}?H_kJ~=y ijTL'oytܽƤӞ'|YUj݆'#ԅ[~'IAiGn-$o? ۻ[$XAMјqVu׻8EƐJIyو)D7u?mp<;„'2bF 07L+Ȗ*82k^&/#GeFΈ*y`kÛC@wPcgI,FNKY 0hy}}"wʕ>u\^i-8ǺC(rDz 2am~ilm6~_`qpM?7*oŏA{Vh%iV^ubCtߛq?}1qwW\'rhsU|Qѭ\iQƲ0YԿ{?};Lc~BPp E/.-:&RM8qgӷ z O/'Av;i[tѰgYVG.fd3J=4W:r,E`}O0O6r{CE1hv1-qX;PW-lYy< YH2qD;wp#@w_s$?jz'/ A"h]5i #+5g^ء;鉦^6>lL2[ߑBEugte_̿(yQGT֦~ )ztvCE_;z=9jsvh ·RVW@, ((NzpW[*S Fq1x#vE'q #ZVݱ]\dz\s8=85op5V*;I n{79(%sIs( B6}LOJS27LD)ie0OJ[ lwr,4^Cpj3])Ir/~8={] Yt$ghs=? w ^scv^7W9ѫ<,eRjY^qf* N&\d:C ?J婦XC0|m n*<ō*eʁ܌FkA<8tD4hlhVjdq`up-IYصsmsw43}LOJ Tw8pzXnst*M}(]{XQ7ڼOpΣNYxY$I.V> wucN!ngwVI57l[*=t\FKx`R+ō=+>%ͤ)]=xt>nt\FK3}p7V*YܑZ<-3G#Q|ܼ'81(>:ӛR+ }ij qL 1+ֱRf{YXsdMQT{LmN~}qӑ3+/*n+::]:xXļl} zw\-ŕJ'?96V%?}amYmU䅿bQ[yַҒ292'1zvkG˦L&,5a"Jax뒓 oH͹9W{h#T`K5 =L3Kka~L7|>ë:T 4AfzLiFuyG0Oʸh)yF;m]Ze'J]~]^o"FG,* wF̚^Љ?E3*Io:v[MݗbݼGF޾߫z(;v>vkgrwۚ+ozۄT>-5j妔ɖԅ[ nBA3UG%S D!m\m;^^vXݬS&Xլ&y-7oFtxOfFdVYnzP:1~ivEX Κt9Ii<#RvȨfl_V,T S:_*j\VA1Wz_=,~vP$Y}5o{{8fpoͬCe&4&~+:w-ISP,Eo^FA5Wo<2I/Sn|'6je`3O]~'$:l$>>h2rX+gd|2^e(>w7&Oz tFl \#IO:1<?F62n;͠&p@ r=8(kն'Ww)}ֲL3zj)=lQts˦kSYa+OPqoEk*'OF0~ַXݎو^a])~ՎMɇ˜A^g]$Okx֣:9mL7tNZ4Mmi/?kjv|i;1 XFUa) 6ZzZ6;`ddF=#,:52z]v)$/!̢Cѡdp.=fE:Ip ;3pYT.xts] ucdebFt0X>iU=ʦRborh=xֆ1.w@w͇:kϤqĦ"w K]EsN4cRhY:/rϔi5@t{}Mv# E#!S T܀}ZihkwpEXLNY` B-s[ _Zp%H(OFREv0֪_l )pVgL4$fTaT&XX$iuQDգ5W0QKQwQʁqdŅ$_&s< mQ+i "N~pj>E zQ,#*5CE$im(Sq,bNV¾ߧwz1֭仱Ğ9'h_9'(W~*K~bk{ó5(16={eE5ET6%`԰PI%i㷣'0zvm Na&nĵPjֱIhz2'sv.v`h35MҤW-ᅞ {x]t~gzZd3E8˶sbCF>;撷`6V; +GNl˳63M5^O}68'i # ^2LHҝn9OӳL֏~E~YO_}a\K"NVHp4YG:J\B~Y=r/~7Xq73|O T~Z͚\ۭ(!&hc:ՁڪW.۶qrV7$\Vdq[MQMv._(0|h灒Aɚ]8{H3l"OkzͱpS jߏWUX2ce{Q73N+fFV!'qnnmwwn4I}Sxgߌ778 MN`Ǚ@Y͞֐"HmtnkWȦJeqϸ˖#.R0#{6/ &R_B.Q߄&j=O=tV.};;GV, Ү6L ۵~h^ehQ xFe[p^~ɽٽɋ+xp,Mčߧ>EɧRu۷2ߧCGԛԅlY1l5Tb0u YueMIA34eEMouPϥa&F,׭d?/f(I\TܱF+N"koͮȚcq$UYRkFP<;52kpf5]%K9+AcZ%hBw\ 0c 'C;.WFR$<Ltߌ773|Y|wdPq-:B'^ُ$^c,[;NqR?/ˣS_1,DKMpxtU8M7@K}vy$oH6uz&Qqn}5t?*9Hm0{EfT3ckZ|feZC2(Q'[[wWgt=@;7tUdDZ O#V2Ѽ[,CYO,S8[ǻD tڏMm-o_?EZ2DGhSx lM\`ͱqGB6{C[Hm 0w:؃{ZtP3gVe`]>,to[u +Bw\"80[<:Od)ꡳI[GC.|tq܈* .1ӖjR||u,"_w܋5mS-52ẈnX=ѩgv${Ӿ1q(zpwj~NRlsʏ6gcI=^ mlulzm\P9< bq^3rGOt1+,XzF@ԙrlq(֝+:2D莧ԍMphJ|#o"{c<0X٬Mw~vaF~,XsQ[_D[\SZ]4HD,!W7rb:+ǥ7)Y胁_4op w /ʖRv*2ńodCxtZ预cN0t󋰥W˗{I?胴BdcIT ʲ*a@ -!Ugi;/}24:DeΦݤ,`^6 AL6 zV~3IL-Fhc$~Np x?i*w;[o-HkSy*qj g]Q=MΘ=CM}uVͦSb^:f`܊$M=7sqY?Si}}ΫXklR~G~Ӑ ßh}'p{k{V˓?ilDk_2ՆkVF?e<+o]W+gu;cd *e7 'z^L'_F a'b;UXdŵY8ٲd9:c.N~G XqY38k.ӥI9pTThOd!pt`O o sfҤåM=\+nBa _Bvy(V }N}Pp;|_3&m,:Y_}`aЁOm4={מ>rſ816%sd;oTDem8icd_o9k#("8PL_yp˟7%KC`W+ EOg8{E'5fI-{Wv46=›Pv2@ʥ@Mm$ @;~[ԧjعge;:tIR]U]Զ-zX03)^rsum(9wQ{bKKзg=/*^jJTBߺ v~3~ï'0zvm Na&nĵ1z#m[>{c<0afάv<;EM#v,- 䉿:w|ǦI^*w6H쓆 .|ht#-Nr.n֒􇴈-S7ʿ06]iIg9)cvȐAvRT 5q[y}!c]lP݇c*ltәYDp+Y,kpH&˝?#C6Oz/zKytQW(j}8lTseK.6j$_vtx؝Un0;QJb˯ f.Y-{!ɲ=F+WkWz$h#k>k '! ?bX.(L ^o0o4'Tt%{߷VDbO ϪEcԛG7&NOrGGZl4E{NOy+}\Dμ R'"\T* w޻{!$:1)vKs)Q>J]jY#gI=^z+Т DQf݈)pyVBꊕIC"Bop5DF.xuͅIs$ną׾8WffY.Xu;WdbhGbɬt9KQyJjn,x9y~.83GF=c.0t郱;ԣ|~T٪++Ac1.$q`o9x4fhQ8o5RL<+'߯ka,L+'/G\sT8[dOZNjx#fOz9rK)s-Ќ8=lB|iH< r> > 'o9VLu{9, Tv$Uʥ1'ْ=s`c86P̾yJ`m^ސO!(n0مX=_lM⢞_Nd_Щ?1ӫmuܢp)onVQꭃq'O D:Ȓ7I:[2eӁ*W:Pg wת/ 3fd&D>q.$^#$]h&]βaEܗ5om}ɖwhE8Wx~uA3YjiJjg DUҶg;Legݐܨ ۞g GdQt02#oĮȚcq$.*%}Th9\9A;xhw` Xd0YTX^8\k޸n/v f=]t~gzZ`}Brl4hjAݷ&HZ:H641yij/^}ge`u9Gu` qCZ4G^ ܲ07xY6N:nPR ?uK0a-Mh2~DXDe5LSPGIpN%)>aɰ,W(D։Ԗ֜4OGT͎(#o{mj` AhAt~137,U]. I%UZ⟭L[g":Ń;nR&bЄ #Scv.p ǸZ|{#ewBpO51la*]5㤫Df \)[R\chv.;u~ΰ'_Q>~ړʒT1t_@fJM/s;WqIK[a2& =1$[FY)( ̸#Y:I*xqVZzfI(HMߧ`68).T+!{E'B(Hak["haV?vckT`T5 4}G7C FsxJߋS&[r4llarSkI\hsaCA{9[܇Xs5R@#~Bu^#ӟP{1\-Mw:DZ7?ڜd JCwk%k|1FͨqC[>(p^\FF_%T^9W]+1.\0xavU`9O-z1&M(>/]͞}8A6(1`odn47 WЍŃrҭۛRu8 1(ɺp-w0P[a["4bBcS5?zwEnUY,ndqkxC[/H.^{cMS9iN"x蘋sf mJ N&ndqR[%C mde hlzVjpJ5qUԲ+~?bvo8rkY/-+-W I*3zgT%hwuf̙p ,Fz$]訨|V.p swADn+HF]h S?5bSNMpڿ~Y`6jѩծ~)77`:<)uxLc~v%L/g*ߔwŹu^PYS+@_kZW0jA ЬKp6G{8v0t >E"ٴ"gj|gױl]Ln@v[%Zc4)HH՞$U5g[\y.OD}d幣DEE2ٻt 1utGsSO`xᰥr5].˱/ 8&cyo.W&~b$nCC?f?TbѨp(6>TZV~O'jګ`zpY?bt>Wi&~x1`ŜVفlUH ۇOOop|߉V&Qb44R!zcrH Lv}Sc.'2@;(߂Ń k l>])fG؋0becI+^ou'v#"ZȽ݋+GW1&lmt5Є 4d&cEVX\( 91NԜ+LE XfάjNRٻQH|={>]`cz\p38+yr[YOi[w;Q2k_l JP7GJw`ʒGAt(Ce@:>,S`̲;<+Z?\훙5݈ʔ$;N9q3ʬ.+UEmYMiy6n _%X][Rļrm3uN8]{'"5XR}_7\mEqL[Xr ¢`aD̉w?ud}Wz#Vje0*hcOXY 4iŋ>< W.mZqe۵A/& j H0k{bC ؁])+1vJ3bpF4p)wݝ+8t3+:inun#L}s{<϶vK!;|*0H>ҲH4?I /Z-lG$]}?KV;*YEy#U&s]\LH'eTh%'@6Ǜ,g,2}M^kO~/[F跒/{oԅgeV禲ztj @v@H>tI]ޭ PO($eV4[Mctcvp6(Ҟ10^>몎 Ӈ~ڥ u&NyF o%m-ߦ =aǕjZ!Op 6*\ݷ`98&K7cV G;d0Jݞx{4^l1Ծkp;Iu6+vgੂ0L&++S{n3\3=k[xZqA{~fzT[w|^ׅ;:/%z=+12MJRI0V y_*kղ.ͣ#{4;MNl0RM幾k'iy/;ǝ9ۀun P6}t7ΡĝAdS9~/$9kQ. r$-1ntd5E5b>e#qQ2'A$-&)f\x @gQ7L_Hv7^f}_.%mĄY<wZOR&01C*Dl5 ;kŤpZoȧgvs%e(e}ݚ>Y|Ӹ% aۅV$w޳vW? )vȎnu ξ*k*7Z8o7s|o^ثVJ\f7}p>rSzc渀##c7V"ӼL5߿l/h{vc^T,̗Dt|%UTO?sx$T.>O_Jー7.w)Gblz7|me߫#8ǟv!2VV^ {p?X~ߠoR$Bu ŵz1~U_Ls"_P,ˆ Lp$FcF>%bgQi;̓ W!gM$t&vĕSmLjI6k>ܛ]0O{#fz0q[r2n o9eyFCLt`hA[a-|08Ny&uxdzI^[˺":0E>o*B7x H=.>1(g[;mEwPhЦjFkt(|,\vȎ̾WLjh.Ɉ訦\hƴi:aA^*ϝOi<*%#?~2$bf਽(%tgmj'=z٪gDŽTRƬv{b;Qgzphez|-{pa;݇2giOkc*ޏWl 4iŋ2(=xY˂3~oMt1g2SXdŵ1S}ݏҗ\9!:xDwKie ::ӏTFR듏┡q34kOe,tw|C\eԿSz*ÃKLiEfG;([{u Z*X+q۪+yM:] ȓH=a"ߢG5z|f7'84LF_/#[Prl # vWX`^j[2JZ]E]z Ve9Tlވb#w a015$@9ӵP!$_L0Lg6U+^AbAUD#!G%_g+vͭ J g5F+?+F~6nb@Vܽl^(2aec I]QދNG8Jٜ\Z%+Ft3R3lmM@C& l2VXdVA$4 &W" 0b#ɈUyhvnؽٹ;C;0XجM ^=79^RLY>] yCSg 4|'y9QvDnI-բu'?Po<_ɨs .v4PҒ~ΛRE6Fg$ tW<JntIzmM?31qPV~-3^/`>s m{'l7)v+7\_tC]ޱ\c#o eKTCSk,䶤LĶ$^˺0v6;$qŞ<'OfWƙV3] %V &=yQFD=jB$!^OZO gkFtp6 FdYa,ndq7Ӓ/-NFa ܤS ]NRZ.2>U{=BG}t7E0od }ؘt 31uz3SE:/ O7ſDo㟛i ~_ŃiU3"|*m=93=hd*}{;Dk .N_ȪfDRk^,Bxe5y%#2GMI2p l;Lu! se <Z*vY+\PщrBEQA snP8v-:O{[UK:kIowZTO'ȩVz؁\fNI\딣Ve* :zQaz})}) ôCkǭ2x]v)7S+uPD1=_RohZ]oۉ>8 7Nܤ?n{iz2վftM zR|L0β]]޳4K;U.u']alyH>Q kGvmv蝦10Yܔ&qI ~w@Dve`\dzR]~VծR$=V4?zĎZEǁW]N]QŐO K;kV/ Fm)k|Us9ZaZji}(Gjd;Q-L+E-9283RZ'EZ$Y{}Z*tSX+UUxg.bWw}rJ7G$5UBD: D:z+kՋר9VյVUwkn lQ+Nn+⾓vUIs1 l_Vat*4q$USVLkJ)E4,m#-{FQl VRM8kՄJPm\.W" 10љޔX,nĵ}> 0fZufpIPgkfh/(X8[CZe]8w|I޾ţܮ1!}>{U"2B mKn5S(ej i7$-hD CT2Stx jvM(W[ ARK'4:h\[qN5E@abj) zvmǚNs&nĵΡ'Q\FU5 g\ @[Xl̺oZhIdȨg:j|']kkԵlY}J#+_G.ԋG  J?pS)Fҵq6A* ze1FJ܃)'&%y OIg6Jʟʼn[eeu3~AyVfQVQU4J鶨f.ekEAU0K2y?d6ww}"~=aexl1I~* y%r||}@,n&kӬ58VARvd]RG1BJ*8Ga4[]p3y=aslS8h6EэPPto~'d 6P-޷Әς֝"SolLf* Bn ^`6nwPص̾qoߴ7"~͔/T=_8!y`N~b;a& }g{ʂ.L{#n$~,'QX5%}FCcOs>% i[L_߅GflQh}0WK~Vr}2ds_nOs 2˪>2܂[^2kU{xZlQV z&Qzf7]3 UxgF HlmYa,ndq{ XsSR5kyYt^3#,:YdVRjpJ5qoeWZ#;`16sϺmRb-<-7\P&KOPn̰N/H$aueBbAۇbFu Nasɮ0,FrzO\XjzR-a)K’$-|zd}e덆KjU9]& MPbnWbT k[[go娩sZi\zf'斷-Fa A((~V뽞1tR:ziv\P< }ۗUY,n`qGiFNf͎&G&_ W:  M+;v݊f MpأW 188RMڥ5`;oTQj3ଣkMSWjn"WN*$]AɩF"/D7F<+)(.E6_ _|%ǥiQTkId5Գ2ura4j ಞ3Mgy[?݅ U/2]\KmfE"kcD0)zM3x>1PbhIDVNО񴬴݈"YOˢ¡]KhTOy{ڹjyfkobM~QXZU.5Y.u wB FȬX]a)lvIFJj:&Xk{ouTGW[̟OԢ"Y|22K`h&.5hu%}zt8ћq /$-D3X%>Qd%t&K}(26o|9))Y߀GU.eĪOw c=yud|>*#>} ƽdM< h&CN-@_m£XO&#NZ$Ƕv=Ͽ}8>s>1J)gJ a#zLKLM)/tڈe3%TN)\}F* @ B}Ȭћk.X~HnT݇)GY%1sl0t.')QԱcѨbSs/7#&;Dd`E93tdC.ۚsFSjCT.4w4}܍eO!+*ߋ}@I4 Q'KLDL'dˈ'8 XFY>5,ҾSTm>J"t <43%%ԞARciV䫅WN9|* 9Y){n}"gIaY6Aƞ!(1DUbiPy&Z8!v([JWi JѴW2z6E96s^G>ȶPzX>.}ȎS]k%C;J{rp@6 =dlg 07 >)$\#55 ̹\")2؈T':piQiy3Ϗnݍ a!پsW0&>}u> 2ē|QI<\s%M|EZm_D:jYH}4JE_2"ݛ{պSԬseE\OX2jdDs3 7\Ym%g;VYs&$5`aƟYxShp($>YDXPu~`)hлJqlHu;W^P!KʢRet֜es2'xwMӈ<֡ :>;vCXt3kFgM\dͱ~R:qC{ ;[ι G^0j.Ks1 ξ8)č,.fuۜ4A¢x:9pD쭑=#:0FB3}dӳRa/p,=ώM0`ֲ#8 yɶجydd/sbtƊ}-~3KYvw3%v}ϑ=|sQ.^(ڴQhrnuۆSW)6BMެ ?t._>dF[ߋ9`Vyp) z/7kO,wZչ}g&s-/mteo jTJI qi YgQFT*XABJkYίצ8x-ZaQzG}p/6i}fȠa6+,:m6DR6~nhٹq+0ج<2w8l$7=tz\`̱ţF/u-+*lAJjp|/rP0jZOjѩX&WwI^[gYd!X>A@_yL:p򭯾|1RFYqx2Y^'k\fW/>Oj`yܿ1Y=~AI$ WA-ߥa0ڛ+2k,yl4lxp 7( |cZDdDFݸNc\8 [x(~kf5v靭g9d 鋇25dr6}~[y^ YbrӳJ vޞNKU?8KA7QF C}mp䵞/?|7=UaLFe<'%—vFS?~hd]%Źu8_fל[#wfH60>sagbP(YS dq>]WʲKvU웑}3lWf7L%]zo1&9pC{f |f"28]ŵJ珷ܑ&ԄiДnS'3=V݈kK㕫n  ֣w0egΫ6R 9U|id i^x_>hAs:T&yt-j%Rrj\b&s8iӭ {zوK cFJǂ59t#j):7ݰe.;;+ OFӂ6Bߟ T U4<*UQ<;"#Y SX\.[5[{4䛑} z? >6t MJ Tw-q33AG.ELT7qk)W -Bs֭4V^;ӯ% GRUѫNyrp&ڌvzAwxO?>>_e!z&Qvԭ/܌[sm7Ƞ*S!.t 4u>>{ԲzL{թDH`{mַ=lMTS\Ze oz&Qz ZUK/&w @b v]a) ,ܒ: &>xb#Ɉ*\Y*<2xd35Y7}迳[/CaPP;$5Fj9}:)K<|?{g|yBI~k^ťݶ^epKXk5C eɿЇoH&n魼ӱ ) xgl&{y-b퍃{~,ޡv[+KeLHOGW$O}Tf;QD>8ԝ☥"/=+:q+~!rֹ+(62}ŜfP=H=>bٴԔkUZ1 o`6D f%ڲ(ܗqО0ڛP#빸$RaSWgJ:$x^I?w3~ï$:"ێXa,ndq+״؈#*TΧ6^3&#ɈT8 7?~ k~"{)2Xkya%^JJKYCU`ux LRXAC+Q#;P5R%k^c\ۯ=ediwZsS? O #KB0PnSHͿ?xdK:o}x$ym'NYS࿳Bm^y ФvU8$pjpw+lA()>1wJ#XKŝ>-VFԶ7qDD \.XI>j^VZ+-yF"3rA~rBy;ےnjcXOb\\#6#ի$zpJў{TwvC̰9Y Isc@V!P?xw#a[٩p]E;k36tPwVa?޻6+pCYo%)eYle.ŝ>@$z_}ۭBv=0ث]g$xfIUmP| )]$818FGxﺌK78?:H0T!41oD+ȆЦtiR^g$*e"G&0Y<74)Ȗ1R⯈.\7gcik8HS/x(KV~׭|[!%NE79&ÖHzI9o>48ܙjF.qId>_>(A),+GX Wg&H*S%\< JC۫17n>M0"AHvdQd-a X\w7t%FCv?8BH51?G [Lߨ̡yt5&LpRaMB#,:5f\dͱŕ`ACSz?^lt ;oD0Za ξ8) ,xt"H[3"{0:#/]г3ZΈQQ[ @W9aROVS)n|,RW Ty\wgSϋ6v j7}SnTg=obGM TNE|A|vש#eĎe>uV3_2o_(W m~PlBN:ړe)8Ygժ'nxTv$E޺G4u%q=y불FL,@ `?N2`-AqR 7axhꛪa_5H =Y7kWadEWs FT[<>%sIEcCghSjJN^]͘^ {kdoeE LT/;i-(~Ȏ$1/Ow?G]L֗P-̫;-+lAVa _Qa~›IFO60sB%'nysҌhwNM>0~2j:IzF), 7?|3 싃,جEo޼+YS" ADm3&ԛŋ5D"hl.Slt0vW$>qK#BzRa1υB2ʾ5\fSt<(NF]YNIzQ0wqcUmÑM= 7}g~+ Ń%s'&ڡ'*w@}#oNxJ]EX26xMoۇ'.O/ֹ%rl ^=,S%Ixy&b{鄊j@ U_jvQozfQLCԦcVyR_&=m Na&nTڠ^2jb 1B"c<.W;3kpf]_XTQ2[ſ2v {b`Od? |LԽou 2M=@T%_H=9KQRhhALNmO-jAiTl`Im-ЁEfp4dDF%xt=ٶXACbgoѰcqqۖ{h؈t9asz ށݛ+smZpP3{(x]X;$&"Dk>o Vm|%gqE$J_cT?dxm22@u<̣ՠzA zg@f[Mdаɂ3),8'zʩ_D|=sEv.v\ ,6kJJ Twz1qGl1wQ0glqet4UM8zOk\NH 8qxM\u` Ĺ~%Hޯ?1鹓c 0dљ8:&a'i y5D|Y%BZAI[+#zetQRr䟗{eI 8* *9ۑYAeo 0ҋ+a 4,ӵi^ϖbDVOUhQR#t=PwҊKf@N+?ȇ\om&Q٫r 2;KV~}}@T>gkurZXx6(o#m&Jj A~ۘWQ<>_**ƞ $nE[?ha![Q~5tB:Xz&VX5B|8(ʡ!qh([8t!Z_a&gy ff=lzl G [97}8 /JV$Ev7 o컥9gqh5!uX9'Dac_t3G828]NR͒/Ll?cfvb̯Z>H6~=[F8d]S'k{M-=!T}ֳ4SE}r| 2Ղ)\ҵ&|Dr ^cNS0+y[ݞAN{ִ?؞v6$\H>D60=|Dc6ʤ{?ܭ=3v¼LF3>Eg|qLg~$)mg-1hmStx2kF&k.X_ JZycx;{`P 56kJN&={yK;#U*!rt`-蒤,%daY&"L/ak%qH%#pjJ[nY/ ozKvq}~fweHT{#'>D'q͖=ylu jEqcw)nppDy.nEAO86q+;Z8pv Rh-eŇ]zlae+f [ȲЪWo+5u뱼3*Ow8#zpѽKhxo!B6.M}@W J|xp7E03kf*B7A}C Mc&zs9`ths1 ξu٥©]V_u B&wa"r`'=Q -蒤,*wq[ SǏxG$~ΩVϑ!U¾mu&S']e}@~IEAw&ܜ}S<[# dc5A3Ê"\ b;E/I0P}2oIr[S3| 2^+A(n8'|FvElﯷa\Oh1Vs΂vN l-,x QOIWyeq[ޚh3-(|7PV > sddd glzVjtJ5qD+YY( X/`)G{,s㫰Q]<&TRT&ݱSMv6e# p+_Sf璠HdGpqR`3o%=إ>U__%*'xL2GTv{ :dǘV8]#}3z^w6/_i4L|{ x}g=x z/"Y6۫ڿ"'n 7v%H0Tuo$YKup-+8pEg:7Y9]>\R'^ŖXodT'pC]@k[qV=//Q(a*M"M}ip4zFLrI^Ev̖|ʲ{7/cq.Nppv ђ~[}dsmhh,3u~JTwsc3>%X߃t$Ǩl9[qf)Z&xx߶-Z %Cc'^$`6oP8Q1.Ĕ*,ݛ :)ޣ(x[; q7Yt]C2ܜ螷|Е xp[x /ffۼ_KDINn}=fȈe pXÁ5<|D(ڻ0=(d+DBv^RW6?{#yiIst[7]$so:Y9¶>ɞ]D\\ ղM_5' &,xv\(2GނkkK5C70tJ?m_|z8r.N7'POuz;uo^5xZ7d^=,JEnOGE>h1"i:qᮕza4뉅:.tchihir^!<'蠽xfkFU'&ZG" f 1&̑dhRjdqnwrs D0N:3t/JpfȦg;%[۸~_ꁦN›e>kO]wsjUuI>q΋3gšB该Gouᙖ-l^g Ln% +`w3.%LҞYݛҝλ<+3OR i8d^J?H }!S$Jg/CB>hDsȘ 7*գ8k?$ZLkѫVjuA$2D nFչ\aqUwDܽņY*8K"iT^C+k:Q#;*[68z1D3Ye2/\d8+sPJXё>p@&6mɓT8:Ki&̠(.-kTJԙJvH_I-07 gem|o:e}Tdjj5Fge)N(MԂ £Ukvm~a*+&\e aR64o s3R'8cKUhK}5z[WXPvװ:^6ZֱѰGʢ`??~m.6}>wWc!]ruoM_B ˦Q}&bzUW_DqS5vˠ}xgyRtj~ȯ>ufֵy0Ƭ? 5TO܈ËNcH(3հs}uKuetRSs&?FcbqI˻! ~:.s8Dr|KXJ#" FEt>JgL4V LCڅZr:i#jBc9ipQ2&8S42`64ڤNz92蠔i[6.?}bk7tzI8@? )PC)i!ȋ>;IUݭ5:4cPh+>Asܘ[2k'V.T؍PNm 窫_6#̓JDNb7 I1tL#( 6scw3 fp 'sؙ6Jg3^O>-Qcd5?c~(& uֲ>[W)9 9TkD+rr*CB3ߏ] 5ղ Wxq'sX<} aV{_2޲N6۫}+nϿoaD'k,sOu=^dx::at\\ }utaɾ~8+ӖwG;kOwCSybT/iԚϭ|Vy>m0y>/82ܾsCfTYvo=OZr7 CO}@fȠ~Й¢SX`'m{,1Lf άyywjp#֍vX, ф _oFtqeE;u^`" iYK-zLѷ~dRog?(t`s=]uS?pnޣ$3zLT"]ii l~2]{L2a3769I.P˾Nz(>h oRzj-mSX6n @%]d۱¢Sئjk2hgzTQkU[dwc=ƹ).f άJeq'|]]sPN3G}GXdY7<X\쿌DACn=~}3o,78R#+ O-ի^#HjR*Hp.b(fȦgα ,;6cWi$>>^+IJj˹|Kq~Qi%2AU&lqxqLCȋyoS-}qs'*VCzJo\Wz(^E[Fښ,cT? Q.>{6Yp&[Mk\Π7ގkXHh}GU?+6zDw`WVn/׃3kSH}F~^ !OlĸQW,78%:y5O׺Y!:Z(rFJ$?t?{촶NoXeL}E ,;8Zkp!iyjC{>φ]_n|U畎Z`2C|߮MT,I#&Ц&%r!x%kw:C=z!p_?!LۤaViCp$WXHƛE9II1Mճ&z)fg5LuMhi)l`={5~ӟzdK;Gkt x8ݲhAP֤dm >3ƃø+:`5#[s)")$ew7Or~6?6w qqmbkgM\dyдyG4 ׷XXvGF=C-2جљuR!K9^=X2tF$KJ]q=Z'I4A0nxOfȶYK')3"EgAE{ؚYtY,>&J@8â^ʃ>͗8*_ЙҥU^!8/DCene<'J&?^?]uɸPx ϣbwsRehFXdg]%&q~VZJZ _۳o /(()/IiP+B/]O?[iADFNeb>2υNѬlˣ-Ez"j+~/uT<޶>OZEDʎ"Ab`~sV@|x?J g hy^^a**ݕ/@i4q2ef.g$:71=Hu!& d8) $ՋOM k62lF_p]?xZk{5^#~P_P ޴nXB)4R# " ᅂRZi NO+e2)F<{XDQY3+ B0>Ь/h!]?aRub @]O$X8i^>g@O@z̈q]Yt3Xlr#-e^8vp!,0 W7L{uz0Еe[_yl4!%=hm;`mTb'!i6P Wvs$,0fr*!(szMii&Z Mne&nY`ټљ  6fPh(+7EF9lJ ,0P[~jf9P|iO>DĹH,&J8qt{ o;J`y+ ]}->[7>U1[kj.w,-k,0mn{=MtS/bMՁuk~zVNkK$O gJ&m4$2?DfP0upH<'9\soT}eZ}{N3gdf,+s:L{*sßΒk31 X֌ޚ] ,lֳh#3҈]dc슰f ξ*\qsJͥ "vȨ0gfl֍& ;'O@>rEfu~⇳ z7iW$ Z_']ߤUAnq`RUN?(\t=a>T F|^O)l^6TFfM? 1K'Ƭw.v=(5UEcj+i|jx? }gi6O$e.O? E"*xF >`ݔ)**B@ރRK]t:]uZ7tM6=+02 [+58uwڰFZ-n {;_Q\K3}pߴ~q "ŝq=:G=|fF';}0<)+Ei0`|뀃}~wliS u^-y2-pv_25jG"RA#{1^b4='F5",Z$Oz.,<# "ݳU$ ƁܵnhٽFꩿ?D /M%/G[/KҐ>wBh-¢5o/yjFjVrk{;N:̑^SA.dz&hhlvGn֪e/{q'2zvۮk.8͙ÍTZz-%\"{c<,W0op5FV*'q?T|.~*{; ?8YCaa}QD%B<]6aRK{c==vuէ/j,]wݤj/"+TXj@3X/pj|_RX.d_iw`|޼E rnS(fSag$(h3_v8Mlj_=ަ6"l/VDALJڟU\|}[ܽ 2C{Lhul|b! GҭQig&*q^^仲P>wtu̷u1I8\ۍѳF"ש-֩Z>_cWQ`Sxpq ~c(pY;Azkj+Gomljel㞩+iË[cUќg>Lm#RzT)|aup"| nS:VK8oam7eg6&>4xw53kpf5]Fuqk[ѡ6EԦw{PKPP %4 '.$ߓ. [%U  HQ0Ptܛ6bdYEZ%x|-t(0g_yD#ph8|׷=Qֶvݲ{km:I,($4珣qSzcn䭌N׎S*H3pN]P Z6/:RIe a}t.\mqᒑ}"o'NfcUGV5keL0ٿ<-t#CwqS~O:N#=D='\W/^=_c곎pLKQܼUR/{dE$\`Id]uNVϩ_g0'̑#UX,n~b0TRbc9itNjCtFF!7L%]F%K9a;gXp)#9Em$P6:5_+(dGgI,k6;gc>19ˎ{>TYRyh.:%h=-0=^XRmv2!$*lj 8,x*/yŋ<{ZIQ#,[g+2_cmM;d=%L`HS3fKwF ?"Wj_ݸ!>R\${)N=,J R;],* ϰNXۤ[l^OUJUm \"{=oقf׊=_+wi RKD,g!d|DLI3~ï'N!E6+,X8eVR+qh̏(xpsvSd<52.`>q|ԲL`2ỻEngEF7: pȟTo8s%]f3yAt+vyػET_Y@_gTʌr &y0dDwf\s8*ƒ^BA: buLd lӦ)I%3Ѿ߸9lrөKЍNnj&|,GDjz&Qp- tA^DQ&2s4ALj׏ϸ+3=̫˄2w%v%Hv2 ;b/r}xPɈ`dl;\`ͱq7#_/ǟ;+9ψW#nѹa<.W`E5Lf%]F֥gx$">zcA;`th s1džI&AxpA|e!X4&xsY rIJKs֣|{q|M;Dt[/A8)XshX?4$.%fd.Zbj&j_IrS袐_ɾ,{* 1^I3ϵk;W\Aeg/1EpYa7Xϭ jI/o\-4)ёZ WK{`}jø.ahkh{F9*Ce\^Ղn)_IώdC2q8*A]a啸VexQmĬ_\-D{Yj-Z|N Ŝ݉a|z]&}pmR'z6r\yi4;q~.zbq$njʂ2";NtaDnİg=9gy)('Ԝ9,ά+Xl]9R:ƙM,Tixrs~oyzm8}~HPvߞ !E֟[&hӑ92CLCF[^TnJj:!- `ǃ_j:@<NjQrTqK'P%rk}|fYR;(g͕cV~>Kgt}֚ﹰA>=PirV/ZD cit 5dDFƎ)J-W~R_INɋlON0_ AFu l;,ed)I,߳ÂC aՌوǿڳ( Sye]ۜQhM'T0O_sp:[Y7ONg0TL$[g-uވSfqxLyff;lE7մP}pѨET?Y˂RnGaNpN76m`?qD纱}=LaQJ9$7bX2Iضt_~r>O6QW.Y:t LT<YC-0c.l}ţxepL;oL~fq3}Wȑ}%x_YYܔY,nĵv{Ѿ&ra=y2:\iJĝqQy~^؈q`VK.: {em-tQ'XaUmNΫjڲ5k#x, ˾zm-MM^V(;ӷ^D+;Կx`y,ʚI9冽y~3 L.Q@@=f%&t˶;6^ Gi#֒Vp JREPjdL2;ToC3AVq6IN;֩j%S3`$?>{( ܨj~흃g(hD#xZ7AGR M/_d~]ԅ󹬤8NZDl9v0oR@KQ퐪U}o5xez&LI$aǓ7b.b۫ȖZҬ%^Ҍ`\alָU5L0p+:q]~>e's怑<;Ü58.ӥI9wSA@8{t>:t 7!;c.2zR"\!}6AFԽ!e46RyϹnVQ"2ڡtFNa~ +]OL1"27d.V>]3jT8%Q"W*f?@^O,­|l(akОvэ D]%Y7;^x-zbZ3%,=Y.ϫbł.t`m{%(ucu0 v V ^z1 Jxm+;6 D[1=;"ٚtiI܂awQEuP/(1 L17O 1YܔRM9/.`G=pzoq9yF``\F%>.WΉ;k gT^m# 9=LJ*D2_e$[wҳފdx瞠p8^z^ wJq'g`팧]Q@%Vgpd~+m6Ʉ3,ۅK䯾b 5 .b}sOBr2cvhζ%r8նՂtQ7b~~97|JnلJs&oYaN{м*1}KU}nXUu;g qH=C;:h"㉭ٚ8i _;ﱕ:qF}0~"=xw jd0t.g)wn~֝CPP>(tO c.2t97N⢿dw?Z+_%͖@㌯{ū8Te0[:kk[9ϣsptvEM}8.3-dA.7<`X hʼns `%}UAy >̓^J Mz$}l&N!E6+,X8daz(6ʺ}Zf>OGtSd<52.}\q5ϣeya<2aξ*\xywǷvjC"\4홆ʬZ; tc}!vyFm. 8-2gM-+`7e1HLi*w+E"><*%G*eÇ/fzHx/UOx/A%&9מɂuw^};XWcl5 lE$žC!*A@gϮ/7+Zy$izR)ddkzXSۧ*gP 67B_u+±忈oޛH6v@I*z@ara[gikb7XY).V&Q<_BK._j}>Y `_| le×7 4q| mb%S{h&A]iC0Ff0qK9 QJy~wݝ+:2h bɬNspƅFDk7SqqTG|rSӞ> :PY/3?Ԑ:p O~h g|ʃKs噥-5&U+^!1F!fRq9Ipv}NvZaQj1>?rװEW6:MhO>o ʼ`SG Y 6q}nCk<6:h,xuM'q} G,+1~qsE\a틞٬a2+)5RY9Sy`BNcEwg[S&\E_ܽa|@ŧSM1rY"J='"~SR{gJ#Yb樛⦞II*|ůCK_fakxA3UOMtMS^>tS brkۿx es_̒0f ÜY<+s evIRL0'x ߏl jϯX()>_vwrKeA]t!It|L)UEтm\wY)/ZȍV72$ƮI,_-ţ6^NCǓ׹w9/U1dZɺvyg ?{69/He#N='9?pWP?R_b"si>%Z$Գ7٢'ed4rɚz*~g,< FaF9),8m h:m).1؃٬ufq%#$o3Gú{m|ǦetҹS߅ik)gzGmT ;;7s C3ݿv@ᷓh:{)Z7Qɟ N: ^d.%#!yLKf[7M#'v<&ArDN:S֣LG??e( Wv^MYt kR{{%EE>JY{`~7fjDI t;88Z^?r ?a܀XlmL0kgcP;s\GbȞrYMqR*&qw̾iǓ~rŋEw 0"/\`HlI\;= č=6Ls>4p]4Qov6IJ>Jڰ=f[侞c߾Ҧy{neB\{Vr,ݗRr(\^_jХ]Fq&7s5tG}.tFFa]^<2:]a EW_oZn9#+,7u0,lqE 7чѦ2høK6}LOJ Tw6U}~USY2Iӡz ~xJ|m!i=ݛj`m.W>2;HVQCݨVw;n(k:kem^u X)pV+|G H|\ZDb4Ni Ui
rڸSνVX:kԅ:/"-/Vˑ0U .be9iʼn2&X fhm5 ns/xA :bާaA4l9¢S&qmJ'Ц|*O1GtSpx2kgMet~Bf Xw[pf` vZd3rJXyWlߙ=7hE37 Ǖօw" P=>0cfm X8ƤGEf4HVW[$jZ^ ~>ޏQޭ&QF nG wGؾ=E+M heݲzM0)tPvܹ%X l\b~*u JcuY3g[BABP{Ze!E,_B' !e?%eljtEd&:7YV03i1 -J?uvb2JS&^%YԷ??{G"Ƚis%m\7y,Eveͩs2pPh/qMYj%xPzˬǫq(h h:PqT?7Xڍś >臛}RAN:qEh/Y89N^yb-+˖gc7 Pl!auh}_P8<<)l 7kߖX ?дCfhiJEz0nvlUY,niyj˯\%TƘ9&͘sfk Kr#X=#L908xttRQ&3q>ڰI`tX2')TI[ʇ6)EvtLzzVZ^lxI]KVQe /$7PCgTZ^Ϩe @kŋ2N((/Ck:jѤy4@;(S`HBAT!jL 81QVzQ!\-~3o2z8QƩ0EP%pllqb:փV@'Аɂ7YWXdq k'kŎTt>eOɬ5MNRSKN ͺ W]i1j ]pJ/툄CRWtwt4mL@v>F1 i0nނɹG0a Mt}%tdz-OY k29U2W^~gW_c|Ї:M(̾z,3h3ңtqИi3b6^}p~Ԣ5Y .n/7)CzAt#|[Vsu=`})5RY O[{qbsL kLin;g "(dGoJeqfu _޶]܁ipɶDLt$+_3>\݁Vs}cL-`V=XWκte\D*HP$V, qy F*?M=SVG3RtPABPŔtE+&iTlAsVxDY9$Z*ty7tbvot5Dnc'q ι?t$(lk>OÂhStx2kgMSa`zjx[cKe 3?ϻEe0n 06ktf4W0T~rILWB;tI Bƙc|\:pNjkU} Y7OL18]`~gH;%HH ]$96zͽϿ:q-F9eNGT[1 (PpVU7/jy(#ۗBѮ̺D} XŇDX]u_}pdQ[Ρ*Y e.@Yyظi^Zc#(G8j$ I 2#zX)iAg$Ӈ6RLY {~1ԦITg|օAKIQuoGL`ڠ[//#e!AU,v{9FC M/fY(?9W۱p^;RuEdyZ;"J M4pLu0lm=kcEO,WP5՛WwV=1=;Ó}G`#+ō,.2əXC)z7luv.]0:4f Κf)K_%6 GȞfl ' 3 1}GN> I֚{12E $Y=Q8LΏ bV+2͑_Dy,W0`uQ6JǣpSC"6cC) |U`M 2=Tbfn$V6̿A)Ubթ-`_j ʼnEОY98_}|)MI*<-zuG:鼿hd}W^_F\Iތ(Yk8FMwcz`aF(+?|V*~w؈z$6LC,zS5a_\fQN@f(g=--8ge˿p(ӗy4FU 2W}_zC.~:s/L#nzN{Mcl"Q$i%?u]gDYwl]a^rd|';htJ,Ok`ڳj̵Z}V.2קs?P/kzM2mo{*_ iHόPo06kf Ns&nm@ڐf~监} ,~ Ⱦw34NnnybtA ["]Ql8:-,^$̟D7ЇC1BR.TM;Κ&kMW5uǺPJ)Dh$#8K7puSpu ZE1Ya) ZXI.]NJE.1G}ZpP3ɬŝF|wgs E_|C!}9D``E_4gI\g]MCm$[̑_hb9͟l1Si2!TSi!A+צP~no<01~Bc6sro ;Vl s~|/ LZ#FanNH(`6V0> hcJiE" :hZO"&wbk7'_0}-Ih[r}h-2fsW׈ Tnzôpmm`eEk9V1{Ǭnu]'5)ՍY*zKyLc4*A)*Ƀ5vx(CAkϪ ہf~e,XK*wTO#omؾ<~2.xu07LZ![P }OsЎdହ2tIJ#ðآ ;|-8w3G;#,0ؾr`]l=gJҟO0Q8:r ,M?R 0 ]Ki@LU=_1֫7Z[sou ga Y [} [> џ%9y!y-߁fC|(?a e%oĎ%ygHqQ5 sa웢} 3N\ T\y};~:O"m$77!RtMξ˄D)ǔ|fP+cI1 ϧw.(LBxwD)Sx@ik(=Ƚi)A)~|W%Q<\7-~2zeyl-^Y͸r@O rǚaԞ;#\l+jh1GWUc|*mm/}sE᧰M@،šLRB̷@YU!?2u]K1#ù5bx>) u6F̙Rp =rd#_nJgR,A=#3B;PI9*k(ޤTZ6m334@S0ҩ ōa['kC/6-ݷkR-`J⃸ɉ;ꡛVh;6–ՌZ^Go}aVNz#Dae 64dkYݠ?f;&tMM =r `٦jImMdr Kf+8mݎJc݈KT:@ zp%C%m <&D-h(#2dZ4d$D.ɧ֒Jڱ[nvЧa3dL+_o?K?oTLp=}A-@hD9^R?gnM[J Xq0Kb3q&G+GPÅ[dO:Oo&״mDnFHxicN ks>mR":8`O>n7䭁@O`'xJ,#Rܪljc`FᏁdc;1K;@SU32w~I$?°;LrCP]m< k?5%̍Yʴ[TzsSĮXʩ',QW@IWAqcC2މ%o5䈞Oy%TQȗOaFx+2heLtiR Tqz>]FCԧbPKjf茆ި g!8DP=/Y/miWZ$rXCq_?C:>LC'_g`ɡ"}"F9uZ`,GWVTJL-enYup-3y2%9+%X)FlgŒ@YwNfy(HMn;oȭRʉ )ܮv[(tr@}w$R|__LA'>YUʨHRm/;휞P8ĨvEӦjX9ˬ;P UfxW}ޗ H983y5o 5]D)/MY&FtɌ. S! gx8NIfr5Q/f.xHTzpɳ^Ӳ-m>Nr{83ETqp ʜ)/<8籸( dއ]"^fs5~ vyV#rYߧR&y! q#=Jџ@;)_2pyʖkQ}><Ԗ֌3ᖷYW%٩\];aѺyi^ Ufn\TݯfT| -~|`kLN }ڎh$aAoyw ),]>2ɃdܸM)qԕ#{wXTJ䑟ǣPY\ʰ&䞯XEnߋ:ζǑ8ͩ?ZhF렳<:mU㏷\Ҽ=\j\˭?Y>6,b4vegA1HK~K#UةV!јeJP)hx'A,kO%D'!pvo-Ea`O ώBCrQ(v(LCl$>=HW>'A'zG?)\9?x eLV' %JRWU@beܽDZEcVZXYov Z*_Ճ2q8;*I}ջjU; L ߑqo`ycosb.P@o$Uߪ7줗V0=Ρ]^\ݴЬZg(;а36X`Z`z=Ae4*,mnWMZ/G1(_+.ʆn+.DŽpDgg-f0{;T&˙8Uڦ529b<Vz&9ֶOk/)`cF|$87tzmKCyq]l Q|O^f#}LƦW/Bx$F£1xeּd zT"?P!4bVaH=  /S4uȨTȨ7PFhBB$EWoi;/rKBj4`e$* sNd=(msM sYwbe]`O˛5EB79qox F9_E9_BS0)5n '?[H1^A(LBx7]Fxz):/oiI + ̙P-HLbPCݐMyy-n񬛔C'aoirW-gi!C!Wc (\ں-U*/OcЖhΑX[ىIGZi5f*k&[SzB%=@rx[1,~#Lriϟ@"w9[x7]K9?.-ǃde]g^'4jV3et.4?{N4t8?g UsJ۹?8'o+X8f tobmvo>_Lyi' xs~;ᘖD:k/FQWЇ6hh)H\u3[FSP qѸbSxc}sv;V͐ӻAڸ<5&(:Gg2 ,p*<~`h۸[`G_{h*38\6 c-_#M_RwBI&T_?= R@2MZNgi(CZǎMS_)E\Ƹv6P8~4Vک׍( ϫ'f6{a~9Ϛ$k={;Q+ס%EOJHg\G^fn[8QLc2T'}dq^jǓ1Ujf2$Em8WpR"y{zQtnfjZIdv8׷bec' kT\0P6^ut~q| &d8ZU+BPi}RFK60ls&И Pa(nFqG?|YQvWΝs2S9!:ED<'f 4]!:!MziMX -! 0GVƅhpix'W3r\oh˲^w^E>{>)v&-}Fe r,$0- _7mTϥo}r2fˮƯz&x+ Q|m(c)_+V.JFd1,pwyy^^j`QaT ' O-դ@-ΝU_%ѼOSoY2+zg[Sk.Pa4w,<"(L6mV:.fΆ0Ҿ|gLO||sUA~`sf脆F&T*Q\]}kv V"<#EpfLoJMQC\}z4=kvlPSߌNi)LTA܄;}ɘea SΏ:܍N3=gFzgޯC8k!g T8PssAEx|V;&-P9V+NeT+2>L>؅Y}q -l<@j >!y5N+(Jo}φSHBzoO?@W8YA]dCXi%2 s^B|VUXYfZϷm]1%4*,P܌rL-ztl||28/rz̕rpF9ȌM) 7\5{'totΕFzx>en |(ʮKJ/K^UHݟ(kH4;Гzv m K07s 8;NMDΧNFLTG Y(,3?Oe 1efh֍psSz\PmJfC`|t?rc-G캖101HL;ާvin; $@oroN#;_8zZii9zJfZN7i`o0ƿwO}vAQfφ,\F[t%LݏIнxޏXi%{1tJc:JRiI:`@=١Ld Cq3;{l_kͱ~jчfX`jJMQC\aLf\3hY,H 3: >!s)`n3w\|́cJxtcb_ox`:b{w3,-|t #-ʫhC++U'_De?5|.ț}Q]0ŃvY[|u/[-MZiIQBtQ{"Evd+/W0p{$M+QQ?36]Ў=6EêWHN#nݠz)BugՏd8I&wdz/X_\X:i/1+a\  A?n#EDJXu{kˋѶ ԓos`]PܲZ\ᘉz#.(ߓ4#i ;;$TBz<-zPOQ'ate4ì Nmxʈ'4bZKAs9v 2ΙL4 cPm PC`_Sj J[6w2p-Ok5"C MA.>FY&s;G}h'졟uTrɰdI+6ɒNT`*x#kic֏# :~'2qS\RI^ճ;U2>>ҿЏ"zvy-q7il;J!џ² 7G)'oF휞(t'aם&#:DkmRPئN*][@iXez<B-m$jƸ'vr'lp\  b.oKUPnO~ U|v9hrjN5^9Q]XE3b]wq=Px鴲b0_o*2^w K/{M・zLKLzlKv=a}YΖy2XN2hʔ.LW%\pDg'wJrj.ͭE :%zoH-{_a vj}"],7H1 L QK|A*ZW\L9q;I;$UxBтh[;)|UXЙBg:F %Չvˡ~:^UR6CzM2Kݻge-zriSZP9cSmMg=7MzP&|,1}5g蕉2@+oD#:pNftS")T*o* R-)R-0"2" ͚Y SPZizkA}\yMzMgucČ~5؏7t 6T׃iTd6cWT>^%^୛1!y1*5R,U>*C;43u6s˿o2#LF!q(+D+Ze]Jɺ[؟3O~Hn9im?izQkF԰?HN9|N7}Ih1 a,dUp L7̍BztW"]-l5vrumA-DUpt[$VFڄM~b;UX 3q:݂tl.ie3/˱;q`˵m,-s\E}ԒIR%nO'rJ+Ur F=[5| ?crt?ġ4Z+3'`QaϮ:y07xx\LDp&¨.jO{a.r7LoޚQUs \?Q|V q6'/AzWwF\Os0Ơ;WZI,.tڼ|p)}0nxʈ']BۡrМP\ʨN>~Ff̀:0"JveB`VeB]>~՚e0txEyma6Us.4wTs֗Yeж]wΡThR:D@?3xS,°?ÕfL+q0Ohzog s@:EC]f%Q\P1xciOyWROj8=%apAG+ }-LNAtqj vwRlvul,2 =Qz5yG/i|}޲whdCEݵyqT;I+cpD%TQ&\:_R>';04e dfһ= 7]O793hmzEKjסi3kB47tf׹n6kxsCs̔U3>ٳt;勔uRAs+9No`.h_S )c*gV46ŞkpP )z2.Q܌r2zrH(z؊]/65_IWsY<9RSPP^QQ\N LfzfVM\=G"Upr/;<#Hd8,?Q|J*}w9%'/ЏY崑#||]OHuNhC/'8r-l&)i|RN[lZ)[gl8Qz={7Z;;)('s <~.ciowcN XWmD۰>|4uD!4.U y^bec (J=ʨ bЇ_ {)c-ʄ<0@c&KdCafoy :-߇|gN2W )y(3"0:e,{'tot΅NmV 2f4Ns(EUiW)6tXs Åۂ?,a}G?V̟?M:ޟ]yJ<޲'ee^-84[a8}Oy0RDz_a"!Q} үq0ԘPlQ:P/s4dd^.gh5YLߖQt {PEnK_+k3 5;h4Q7߾8"#($yo{w`c3yѽ޻:q=.{\dFs W"յmͭӳGW¹e~y)@mSo]]% 8#ًbp&go/S=p4N5w]ѺwnślmT9BD HByqQd\t8m\9Bt6?8B_qX9?_[ Cw^:Fwޥ[Ѯ.olQa(nFqgD l7rݴoX`\ahִˋ=7pD]7A!cP@O6]Wj J5q{Y'o.;xj["C'A߯ |q29dUY V3(XԁV=zi'9NJoŚƑYJLyDUzIu>jMYpǹ]W@;螏[ōI|sTb>/3E~ǰooϳty#K8"EP ke2a9.طsf]CPdEުx&T*'ym K/i+?o^@?X:#Q+\ּy>E{3^#-Z^_S\T4m}g-;ɼ(REl:ۏǷp~I'ɺMdz2jMڐ٦VeU" 0sl+ CuК6syx0xKh=$i%x&$ra pOPԗ)E< hVK9DQLK]vU avllfy{_COFLs𚥵q ԋ8\ h+ 5M)Ki3 ٵ /\oSw>#j Р(fHivI}|pSf|q˿pv?]}$ ͏wjw+$G}׹4@/<?"ȬYˑJ琜IИ'QRoeQ=N/ɧ{׸@=-2 pHm.i5Kz{ֈ-mkzn&)G=pRw7\T>"f9v7/z.zjUWM<ޱv8&[(ӵ+Tu*DM FaFLhDTX [⺸3mBY :^tue~9}@-!Ь)ՔRAϼKy7BAaxb vꝊa.!9̐1]FR":jZU+ =op||FMY#?-NEx.޾엷UG C}Rņۋ*ϔ C;˸>HjL}%NXғw\#=ۀ$eF].RRli0ȀGٻq%%6E1h4;$N bM& =^ws9䑁_[i%euϪd1zcnHM|wcR/ёWr˄D`qSj J5q7|.S 7)Ѧޓ{ qԌJEqWU4>USfrͭ(L6ݔ']90\Z{ddV?Q_TcTL;Qz[m()%*Ni;J=N.>+C|/w@lHwƇi##WܱZ>ܤJ׃ ^RΣ7F b:]}LYkTR͊_<߳Kz,Y9Z!je O~yv1/##yM6HM@_4rIN}}Y廧wn"К4rRN=&nn GL83O2=WB˥)zP7dQ*?='.ٜ8X{ [ [DIXO{Wᢨ.AdH|}Ӷ1?G\d=Z/랡VGx9NzLmv-0TvfToE&x놵[Felc_#2NQu pz2p@J . w~__pfTNe> Ft ߂vGqAڝM=z.f6P#X+!‘N>gfЛ/!nBqɳom\.Bޠ'fD_PkC`_eB].R>L&>h,L$  }"C R:Q1^K.y.` XP9K6}wi>+[Y^LUbsg9/?Y2|p9+EIV)gݟPDϺ^[xQ>.)Cvd' WJALk)`x u|#7b|2| zs=o0Eʫ,ey^xKgS4ѧ9"z)!КYtP&cI1:<[BwCg;B-3uq'7/sЦ~W3¢3iSamgwit|TƕJ/aVA ̏kv! U~&r?Ŀe(iw,b2vA!K%3}X C;Jx8o@s#S^?uM5] B1[|±LZhDA=QiQi<ҒSVׂoCm ӄ iYimI6מ>9S{.qe4x) u^\(p-G/:e(J5q[vRD')AwL˗C)~~͗oer'S}ܲ~p$;ň>8퐂6 KAaN&>g.jIofSZ9X=%.y2QN\lCOffy[3vRf7+\Ѩr 0͡C{oJG 3A\𦽘* Wgoje6L(et *`Y=#]%ֵ^ PhNCuf3E9f)|2<8yޚ9,A)(M(LUoŔ1=:GӘ!q.MJ٩|{iK} rbY'<϶+q<vO=ɂ`a՜+2>(nFySc k/,nژ1 x:I[??)3f78E2oc {?}|"Vu:_~3@7 +ngܠ}sJ`fh4C@o<~7^ߗA?m,+̮[T#ɛ44 fat#2ml[IWo<[ĿA5 ۱UX݂0νV2{ۺtIۺk ?+6Fz=__EoW~iB SoRtܤzZԁ2PC,t;3>eOϥ$KZ&v}Evg[3נ!{91!47BW?|:SO6.}}xq̉ST1(itcD2o(~y塝"1G#eTQ\8鰾5AS]v~aLtiR,#g#fFD?0gh.MJ\]ycj;v/ڛ#ۣ-HɽB:IWZYqV~sf'ǥ "{뛵ă[}JM}4M?̌Y^,byp૬ɇ7b57tpmհQ&y-Y~q1l";nTz|-}0pY]S aY{W(>H,GT w@c!+ǩ7lRŃ(a;YtΟC i@n>6Yg«+b}_ܮ e=SۥA2|y:ドڽ0R▊'E Cf4d/(EvA'-DΈaTFL-ꄪ!Ϭ#PmЋ"eQѢ(;?tp!D屶mtnbOhL&9_`Š$O!rTw\sJt Ki-/;ɾ2 P:X7K|aaOad̡S1<0κ3,P"$CO`(tb\6ybOħO;>׶2wp/:R>#/d#0 7L}<- gp5=RN=Q9r~XE2N'tW9&_))Г=hC079qm]H 7Ɇset.DtxJ'4b F4&( }2p-1OYF`vDXB} BһǘY~HF p{UA!&E(rX#'7G ?,CJ'l+W};uv n7FCJE_}Ի>0E&j'zk]Aͣj z]]_%mc ŨjzZ!~< [e67X{)a|ݲJz 7x-Z3j-;tݨ܋v\([#B1xʈ'](6S=wjL¶MGl%qDX#<Pa(kGtix,}'FOvcJ,y* O~i=W:KjZk9f`ދ2_N[õP7;>DIFC9nqdUWͲ<>  r[}uqMVM̮,#OyVtf#A&eD+z>>U8L^S_dRO*),3@8iU>R~Uk7R~ݛliYpjFb>RxkK+(W.!X0W/J$d&aGgj<_]2 ,t[`s<3Z]ahքfE97*N@|-+MYw;6m]2/!о)K1>\.냑RG:UvyE )L ^3`fYܚ!XƳسTn%)L}'1:uvmʞKiҧ>߿++lT-6{ߕnR9>-G=c>~FBHZg5NUxv-{_\Tn=p:/]k^f]rTh:NA |w%v K>+}Qr4L{ҊFM?x@{F1Ph脆NM(dҴN[B(g$?Cz6"Et훜}A uH)o6Ը/o>$) w:|) Шt -ֱ]Lz&$=5lRYkZ ,Ö,QWe=~ȾN:4r!/v$^3Hָ3̕Xi S =*LANwJV9(]E= Y57ޚKt [. l)ܛI(c=0Lm\kjV!e{<¢q_deۢw;PԴB(xBkh͡4&ײޚA(t.%_s 1MԄJEq7"L|ǀv0p&tR􌌞(Lf'կFcq܌uz!ZG͗)VPյsuADGLb~i$%(3q}&Cum#Y;jۿRWxs~49'S?,?*y 'ҘO2τZRi` Lft[SX 3)3JǮ]H/uSp_@u?5WK|?0dDͭ{FnhYON_TDoDߠjhj*LN ^\M@YۈYۍtzfN:#83BwCξ(erRTHS"T]=c x4tܗ sPIq|gEHp$/X_ CC=eWoV 5z`_]?!{z֭9epNo ׳y7p%Pn|jJW]nYҨ.Ҩ~Kdpѵ[omu*\?Pq]*UF'zEVC9(((ij׼]&_)u(̈Bxv]f%JQn@t-ʠGghf? ~C{#V5$]@hQEX.74^SZS7 z 䉣})>Ww}\/y77 YFmgQka_՗ӽ,r[k1^4 ʃl{!6un[bs,5V-^Eg!9%.(wfABLjn߽/F{+&@r4tAQdƼ Q/ 2-ֽJh8w.~(@r^9GNG9ˮrl n9VϡwZ<1/ 1ˈ0f 4B'y|~ψzDX3f4FsNԘ6#_G3T3 iA̾I5e\'2$3kNg$ow?GiҐ/? ]rn2\O~x^?Cvs&~IR3bB඘J>L̀W|ZUF>zfA%-\~8Yar=y gEn5PO1K0{T<[s9Vl/%^EPo|$Rnz2a#FL) M @7 h:@G} 703kf˨97ӥ2)|鏷k[Jr4t\C`VeD)wo!R uɄ.~j9@ѾT,g/Nf{mvv39[Zt3؞ q/;Jǵg9z6k֐|{9K@|M ب'|`ܔ Ayq_Ut8VA%n# <xl.0,B#dnZBrr3 |>k p}?>xqgo}sR>?D{`ϳâse}/PjLoӏ % l>o6xnRZ?zl.=:/k ?OV[ ~zU&ChuTBF,d.CQ!:O 2G6p%:ڨKg6/xhɍl(wB mg0N-]%oG&٧ܟ\zJ Ho#jϽx_`y^<ҀW+.tOQ5G[ń+ە뒏wQQiJGӻbTyHYڹ5g w(Sy`z@噬06%i{ <_Y!; WxTiFߚFQ};(SxZ:Fэz혪)"z'#zv m Aa&nBq{⹘Z iF I)xsX L˄D)R_;>g a,@KwPoPKjf茆ި ;~r:kL!PNnNZ+oZ+Ls}o ͥ!W 9v|ܣrcsywrҚ˼p>&<{UwvW I kwvO+8icfؘz=^et"7!„(DC'ghPjB𩰼$cX0&t[|MJA&_4s$W?0=*ᄑ/<'KwTZE!J^eBGwA֮M=mسxw:h(~|V(Sg+Z6hd%ݐ-S`\8+,[);]!,"JP &-n.BBJKTFbV%:p)yT $Q8r)8 Jfu2kLKGѶ>!̲h-c>{qAhFQKz6gݜqcyFV[D):H|9e؃tԓdzL%PB?ܒ,! Nf =juxnե^Q-eeo')٥ķpjР4;M%sm7Z|(A삗/Xш=L~xGܗGx*#R탾KgIWʎQ\sǃ=G%DZ3krМQ\nd^̻`.p?W&eգXh3OL?jhj̨Kz !,s"qċ4C$t_3'F& ާ<%$ZB;>ӠxĈqo;/15@*\Φ{_>HI7nigpEEh'Ke{) ImN|b^M|$o/fàeWFmcz> {ӟmAT mNS> `T)؜\?3TQ8~;4j|L*u]͔Y_HZf֌R&҈@rQ56|A[u ?iIYp7ȳ }x,Ejqt*\!=;vV(V$~s]Իy3? Qhhe4q; 3=YcRupykFoE_I(SY<9R3*MN\5]ŷBIP<_+ }- ?8,/-~,}tb06\`|[I#% k~!A=}|)> ^FPym, ]GU{[\UΣwdL\C :iJsY&Yy@'Jګ%Nxޓ*4z_=/f9c#xtͼw}bBUgTjOnxֵ/` aTM򜔲Yͻepr^pqx/6fTe2bSJ~ =sp3ITzj[gHU))(s*@>]y#SKn8}\Fxm6NvoHN>!f͔ڷW:N#yӯ=fץdGG:=Ezh5( \9.ɍT[66j!:Dr1/FTeQMy;p,y:'-m-e@[Xhi*Q(EP~ ҭj! c@wG5oFnThR.1]H?T Ouf$.z:D&7AJh_EvD^=I{!]gNʏ-K/腂*_JH?ЗqJAsO=WX_2({Sʁ<hr*<=W5ikx/܃LXfgebO&X(4\ać%Դ&ng{O-o0ZMz2 'X$en㺿BϦъIѓ=:qkzB2 G1 w<ŴGb8)uxYF/ ڄvLhM}OS!JQJz27^_b./lPnX+2"Ut(O,qō]pX >o#s9j|LC&-C?I'{ʢ-[Nƽތ_Dea R >x>_(y~KYMi~?ݚߴ/-f Q6;NU+Q^J4紇%y Y6pṍu"ϛ|%O<`U+ Jߜ߃cKN u;8?-d|uJ4F+^7z_֘rIuTdO+ YcZϷm 5d ,Pa) M(.“֝o2sRԏ$zP>ѧ9"z)!К)XtP~&;Y;IdD~zb<R@7}QqqRon9&Or7s{nzL}n[Cn5=!3y)܍wI!}jf |$ǻ' 2!eB);9<١S}\ϙآI9;k)}FO,qMbnfjR|o -[6%0Qϔfby<#GKGJG rcPo"s]d[-AQz`Q\ݪ24}:94\0C:fRa( 22E}hzL!}<pdQשg\߈}Sot0D'hQF5@܄v&nw/< Mh6{_Aw]ahkJMT׹~=;.Jtq9B 9-NAJ&mp֯[q'v܁"qKz_ՑV>>‰l$bZh 8wy)KnHr%_c-D:+A~٘2 p=m4.Nly>NGXxx(Pa *4)3~9i| ϭUცmT<sBFF͡L1a* Ux-632@ "a‚6}qɘF2xkBCL>9` 5qwLQy,̿м ˆ0gaJMA&nBqmg7yqR&(>ybAvZ_e SG{Ѧp/JCry(hQ|5(ȉm4)a4am஽VP}pGpk MXc4 QLx镓n+7 䣥zL~y+Dغ$PWX@Kv"bSC,ƨ@-qeͮ=ZqsۣptڴT҃ăy MmLs9h(싳1i[.nd4wKn]ahm.^\0縶[P%3$AB?@B3}BӣRj.ӟY2M1p.~g"ӏ+RA;yxׂ,?Ny"[NMx뿗r: O)ЍpA"]OLA5$O[:&ONifP{B#0RA)#6hpO()nbCu`--WH1gΓDoPyg4OEe@脛iS,1Lu8!R{nV7Lׇ\1҄95cSx8.isቀaWLPCL !)R fTzJIZ#QϯWX>b(v9]bho0 @^?]|ohvzBdFLшCs9hnfl9Y"EaBy]R2Hbw`qPfCg6I+؟iii!ДHVO s1h_\3q;JO704g)웜}Aӽ慖@!d %W9L2q39yg'd|o=D+ 7RwYFw9F:rS[5lG[׀CK`Bnxz^S/ܱO2&U>Թ$FhLUg3\|'zc\F_YDil|i1x])-咽ᓰpckJjѾCK4u. R \ڬw^L+'|s|:Y@ SF. |QeiPaLGp(pšIݔLtcDr}$*9Da>oF sPP\;w'zy*ۻmFEIE S@:CR3*NqXfſ%cpAGN+ }MJA&nFq|cb2SnA3hg>B!G.Ѳ wrF{i|WQx$͛ n;~=>(I= GW[m]>BSj2k1c*j%·SIt}^uzzUv{ecFYG䒟Rq$r/ZAQ S Ǩ Ib?xV1sOε&k̩nh#YHC)WGADEDQ9Z K 09U+ \@(^nx[MFР2 L܄r{aPVW-lѕi(S00 xp߇Qsu+s!B̬ͺh..l_m?{J+S1kGk]Seִr&LX﹎+)<ONvh߬PQNd@o{0c>2O2NH;"K|8\}.#>T);^\\*;+ ƗF&TMyMs0="ǿ=< lxн`˽Բ($QR` go5WCC/RX&h}; w Uqi3L_g -:0^ |4Gdy)'*9ىZ}*ʪ(JL}rwsFEEL=R m̡Hs|ֆr2xԬ!,#FL?[﵇4 cS22ZiQx*;2ơ{of½|CTٽs¹*+e?ۏKguykM'm%Nxn^OK,@f $-gÿB^ԗ|cZUOѣ>߫vAQz@:!ϥƕ||TY/|7p>)oq}NydL#}!Ur|ɭOIꁜ =9LLaf'nȄ,e&mn^sSF<5S2.3OuЮr r;{`7e:;CJQ\þbevX^ -l r${hpJ/Z^7?N1#]m@r3-bɓ 7syrW<.qZoT)_SO>ʔ,rh2p%YSOdU'<$#2>BXh͋f|zOC, PiY $M!0Bzo+dBTFeLs޳;p?qߪ/- ۉ>?*w茠Dr%c |9eFÙcLTy^&T}5$t⽤,7MV꽋T}GH,R[E.x~[E0kQVA4!KU*LY[*jEC0.HnksN~۟ҁg%R:ZbyƉb:R4@xQb6Ko4}XNfQrYq=~S&#hd M Na nBqvB~{GӸfkwW^ X fMԄJEq]2,/I&!.!s@a.̙3ZuSɞg-'N-mـoT['4fϰ< 7ˁm@=ᅋ;uN Qx1̋SF* _5Rl>Y㡎^gK$e,2Œ0fȘ3E T՛,Ec&smog> QxWDDtptQH#yz=_4-CbpzU kޓ2sv,"q+17{4bF4]f%cM]&;E^6<=B -~&7&r{*r*p5}UYyfVqJ}1TLm˜sOsnZK&#LMӁ<<5nPE՟*_lfqqpW%wd^,Y:_Ah7>1 CV>ݚ7kʨ+|ywicyzQѼ(<$yoیyOS"PnSz <rYa'{mR{8&-͡>e}7wZi yb߹v{H+<޶-ڝ#aWWDQ~3̟Lj޺rAKsMbvyVvͶG)KxQ.:=1A=sF v<˱çCrX hV@c[#N:kt;e6ryn9@4h&C07qNngRitΕ~5!RY3k.sRZ, v{0 %CcZGs6,i$'g<"apLuHEy߮+HkKGjPKy|lnfST"0i7\\bmMۘ(d|x#(|BSzdÛl^ON={*}1]jn}~[Ppam,DEDQvZEF^:jt#WRs5=es[O8574 =9{,13X*d l㹦L1mVGw 2eiIΕSH9Г=hm74Lĵ (Vk'cʻx9WFBhefMui4ո=?G~ ԧz\F̡s0ҁ 9 gO;]<8ŽQ9<ruJ|qPD[kf^$&e`ݎ ٘"{{1 p~StCWℓb2HȻ4YS>QɥSC...s`$?1c*T'U?qSEfFh$TlOQlhˈhZT~ _gNra~na7jVGIN~sW(2YѸg0z]k|yMz'L,;I-gg\WQx.z;L֙泄d.)yU=Q9۞QB\KE\H'vm00NgŒ(D`qK2;boJ; ߘݶI\q:gn{Q83c%n#haxԛdǶ(JϺh c5nm1ʦRZT5@jTZ1^+(JpWE\d}^VYBn:T\Hie@@;(|PZ8ga;pu~KȠ%&}^[;ͤx ȯu7/`V(_a0U,O*>\+z@ƇkеFi0#`k4fM6Qa(nv^7ؙ{{-\fߓT>e OLˌD)}`|ލIf>G3jh Tw>?iźl_ad95'E} l6 A?3fsn}/ƾg0sGSˢ=w 7v5(E]W\$_+(B62E'e#¤{S3= oe\n1Fײ?-Dev_'_. TZŠ_{~f9یoowC'H< ϡ&d}߾'|:yA=gwW?z1qEh^{F;!/Z嘃bE0N vNhg4@Cեڂ>x#/{[exft@ts#-1?lBَghC<}ל9J鄙3?euqg#=j?f^%w T'R/Lh6P?<DյY\#2 Mdd&w Qv9_p8`FDHFflg*̨EdYҍCtpG`,oFnThRfrr!A*@CgGHJ5O_[ 5淕Z^ӔG6փU> ^`ΉرhfʺpAItP.ؤ1UDPά\T6uIxPKt T5J=T M䤤Ә{&KpA ?^ߥq:apː`8ƅ:p\!t0B{~\$1fD!:GCB7s*YGw!*/pt}%m}MQ{S0)5RQ\1Emȸ5t&cA6)`3'x8G3}FӣRsT76㙍"0muw\Y]⦩3_!cJy#|5,7_FƑI ^?(^zJxR#>;vYi%Kd)vnQ+Q6?-E"ڦ@AN>6ݱgժ/dž2'0E"7:hP۰$XK½Lϴ |!Zs@?zLʄRZ׸L3Fe mu5oh*̨EJ 4p޽37T:|!:vGr@7}QQ*'k=G3lrNB@'> Rh҇ǟU}%,p)Qåxȍ '(v?v}ُ~)LQgE()jQri%N&Ck8^:)sg-uAu8`S<&4JUS3_a>"ځ$S𧧞6XrFCi-(O±ͽmQN/h;%!ƚlu}Ac<1N"#H z@9[@~>]9tAЮx쾇F[Be7I}eMǼc#>Ir꽎㺱*Y(.`ʢv~=inIaic:S\pSxkž[=/dAB[.=zadr~gP-nE&&Da:ޥ2ǭP~S> )| K܃KbF6t=܁)'|P?zPCf4kN&nr>5nY\}.`W9xAΪ̙}S2]Iywח>pD[SV󌄞(̈BxwD)r;Vx?O<|\wޯF%F hQAL̘{9rPc>'=}X!r;֌ r )}I$JdꉢLQg}xmD7xҦ(J |,2i?ԣ2P'ܩ/|>J1oy+xHJ??x).LшQa&E9>pV`Lq&PVl*1 afhV9ɉ{.:6+|7s` A^JlFi3at1: L7!:/#9tWE7;q{zi O.N9ܰ@4&\5oj<;\zd|,Lݓᆸ{ y:iXhY<߳oxV< [ x{x'S9al~b 2RT_n0έ=SvQxiU!ZPJA@?ox?׵VE\ #-jE2GE}`fpyMN\|k_}_\%sW~r%{^QJt{.wD|pg*Xh]/ v :GK<5zZtrq˗.pÿ~w1恡ߪ( ]hD(A1 qe>>/c ;V!ƙ!hg"ýF>|󿁧p%x{/w0OpOf~} ?[6cH'.cSlRAd-d>p]M7Hbc 0̴.-'" ]FW6Yj4@Å&(lѤ΄9*W+93A s&ZK&߽jy<heKo17bj~/&n/s~Tzb$Al6@C*hQ'Ѵh]Dk  ~쳑36sBβR[~yfոɖhB?h@W?COqsګU"ڢM7w='bA˺~pxHaHhgRf'es}+މ`h8[/fE0s0,.Q\/t<&{(Z^nޕpTK}x]F%{)-~K,&fqN6,+_=ٳJL;F2ړ_y[ohDQf W:g͟Ukkݾ2 x1'!OqN 9f.(7e~6g;(3:.گ)ei~ | Aƺ8XP;(y#APu?}=6s@F0$F=&erR蘆ꃆ78۴8ИS02.Q܄θ2g}J 3aнSt\98A;hB -A.L~#h.Gx|z'<{:Oa Z+QL!! h'y({㹄OTR@:jƓtݞ=0맯bf3+yUg|?kgf|̝${6qK/?Κ=ߗLKYcT:j8" ܗwź1el_{Mބ9ƨsӽt.]uN޺x. vI.Ճ2eIxa^, 3:ex"2u:)#&bN1;޵"FR'1̡P5_]~3lX{9՛<8t8tp4I7u1{FbUΝ{) UoF)N UfDo4aegM 8K쑯fI}o\LlQĩ lQڢ^\Nn,8dKrg&zWtg]dэ97K7fМ J tio{y! |o{zM!/2xA m3-H.2P )ڔ^MNǘs .9)8J41#9)5U7=>L̳ffc jY9E%WiA:Nb6="S/wS~݊R3de]#: %}^c:³pC2ף )H7-R- pBux}]K'eHm&[}Fj|wpџ>EE" ɿq=޾ˊ=T=ܤ{[ 1f£[KpN#7>vי5>sgTI:7~١ #TLe 0>M1;B0%W1U"QC)MN\S)D[c.@;ӃR*ō1^҇ I|(Q5c1 ' 1sh Y S,ͣ(ϛ_yσӾxcٓ{eBhG>! <MH3U9v|VXygm3-ZlO&i:1@3x\56Q{eAw(cu!։ 3MES-h CH0]vCa)0ɟNQVIX4DtN W 5=L=v(6Q8 ɦl"<[c&_Ǩl=;^|b'Z<+͇?}:;]J2<K6g}\'uSZм^鯓 y $9^@8rYGfeMV:ZCۢǙ,'µc!k#Pd8mpiQK~'j9`v m Aa&nv^}` rVnΕsmSB<s00 p@=c~9w{&KHN=\?O1GȨ V{D$NɾMrfBl[~@9 S,<̳&LigBDIV`kIs"c]T>*k14 05Gi{tí$LuZ.Jr8N{YEU IhIuR6FWYe͡%|,*EF:BMh&2N 2_.Deg%0 _}Q^}po_#id|*ǰQ& ը2U>9@ )#ǤLN@񓌘&4Ig`o5_ZʃX1[`DeB]?ip^W T/>x{Mi~;*x+fX?7P4rvqP <:zI\w5iExOikoݕv %&< Plo ep^Ŋ3P"׷gN^s~G0/rP}VQ6דl9v&И Pa(nv^̇Xxْ@wEp?̧r)CtZxOfiLKGȇ{8xRKStn9=!j Np/\Dt⒙+\#Bi7#[^J%o'o sְkIlG=MZKȯ5vwnƇ]5"w7sNjpzόsk;Vs(G 3gWAdwL --MY2vnʷSK?xucϑK{A/mSȫ2~~wgNQ{sƔx󏝱s;=ȹ'flQP8^wIȞW-,E뿵Cӽ#m )]0L \Vp'{C;bpɱVhy2 C ?jC&uYEe| {89O{7GM ANvI_jc4aԼLjιZyB+erYxFUzոRQ=N|*^Zn;a =уvCa)(l3QjLs6.B72KJn 1v03k f5fTקcg.Kx+>C֡$]^8iuouq+|7F aF^g=yiug2I+<^8g09z"=K/gwEJ#5Ϧl}Q>y]՜ |k2nBc6|[SbĤLٷ],)vlfQsN~ј6vױ!ߠXynC\ڞ/-7:%\絁X3*4lR6Qec>?ݛ;Daˡ웣}.kSnpJ J45=#E(L`,JN _nFGl藎9bJ1em nk.EۦζҺCr3'/}^0C}ݜs5acPI ?Wt;FZ+Swn/id!{(Yv21׼R.npB/@=tҶ|5A5Mspj;N wEW͵vC=9{dHW:e~LO2zX5 ߥ)'ߐ;NA-DQ(^gՅL3:=[Jf"qY.%Yss̛;1=ɜzP&6`([(XNU[ֆ8Gtxʈ'4bF#uUJ`jub3ok)ət.?碦a|VY!Ge7 c~T[\'F8\iŸ3209QA{%+O|unCއfd3]*J;1fQB93O2Ls^Ɯ2pIw{|;fvI{,@䌣C}}L)@Ͱx]Yw^sqYr2KIc͡ߔ~0mn s -մ[+wtOb0.掜\CQ W\;]QPieQɥMr ϥsɝn69a7 2jsW<3K[\]zSRt,ߧwq]h<֤σ=GeDZ35QsiMNܻ [)l¾cj.%R\r`_SjJ5q}V~^˪:o>p8[SV󌄞(̈B4}v'&n2 DkBE/;28.c^b_f]gm^ub(A/H΋Op(C)l3L}x=˴ >ܻ? Wd?5!sΟחr儋`&2%*{gP4/7yvnu+gUAcQQC)hd%gǴ[+uR2gM=\tax%gZp /(8Qδ-_}<Ex8hyӭBȕj0d/44H8hAMoZPlcj%U3󁄞|L1)){%)邐sw$e2]|}Fm+;ʩEim)i"/ÍZ|< K:>)PX C^z^&6xupjܦ:;)_1|@>\ T554D5bF C:^w/xrjOQP$4H]uī{ˡӸ;E8A8Xњ%WRȿo`9ǕI˻辴ٽ>`2N۷ڴ]P s 1Mh_e 4q[O&;9 }=#G(f,nJMA&%7߼Wn>zYRV )F9JF_A\&%>ӛRɉۧ;aSЮ Ȓ/~7;Xkߠ ͧ`fB~H2׺[c:`64wH]G)9xrxW _9ۢhZ_\4tW6kZ\ ?bq$IJ z 1R_kFJ7]^eZWC(xG_yzr}Y&5N8%oŇ'ІE&(.eL{xwև ayi A=>LS'x.Fv2&QXbEk29vQ`ToSx'R=QaKdR:.ҠRޒJ{]jɭi+8|AӬQ(\r}*wN^1j.&٘|ȟD>f[D? s9` ШdMĽP)dZܝA%T<Ź WR|6gE >1LtAy`lve!Io.`⡈^+(J8x)Yf[&?j2܁ƅ0F*3=N.0N+(2#N_H&yb{QVEr;f}x6#}gp}P`YAԢ!SWn/57y+2/i$%m)hg@`dFLhD\B͡ťrd _}O2͹rp.vXfi*LAN8}V+P{K On 숰ffh֍p|L(6I: |E 4Lc^Dꦅ$ӢW٥_ǔ)J0x=šy  ćgEK63+P_n3^AƼ\&ZcZ )}n/:!5y?#GiacQ|\AJ$[PJx>9qz?rI+n#Gt #e4mͼƨ;+b}BXY`~FXf%#!:64}>QW1WP(?#YT]?;w%u~_W7`h8HuChaJVY -GYe+#PQ+ U8!(Z=󍬇?sd~?[Ң0ߴsq]z92~e$s>yjnoFq * 7]W'jm,Dx=s+#К9XT Aĥ홅'{ͯ`qr:iF'E0NЦ &'xVk,J =hLJu1ōW c6.Z_̔_SosR>͠l<}3 %|=UT2?\.^7eCnL #'gy:6>X>*Vy2Ld@Mg h}\@նy-yʴdxEB7p;p 0yn??ogEUDICT1i fIy44Iʚ:Är6&q2mfZ,:t^~ң!۩m0#]3%979qmq鼽L< .! vAX 3`_SjvJq]ZhC9~K*lY(e>q= _1NחkM7v'JoR=v}c}~vNdW -pQ/Xnx-#4Plv6q{j*A&W͜.SHGx7;`Y0&WG?[* 1PPzPXe.'b?Λ?J尳ջ0\ ;.IV|pk=#jLM3.P{ H1V ǣ'6Wqwlf!];dAʝ%+ɯY:X&b_yH-$q,YL`ɔo#v@m`Oa fMhVTa *4q&nwIm5FϻdBD?r:CRSP>!}Imfzŋpt3x&D!Z<.3rI[7u7NNР2rXHn>c"f=7 YdoM_sZ]ĽbKo5ݳ=k?[.X:7jnEbeX+ZPcޫ}qg|سr]ȡ"j`&g=K@?ڷ@B/F/w*i[yL* / E 5Q&U׿8e}G={<.$f \i1V̡tuGuPGI!;2 Z^:HI=R6`,oY뵲! /b~J9A ȳvy*llֈ0Y5+* >kE;H?JI6 uU"lL;Ż)_6C].!1{^2ߦ1$Vt?_ޚ)*hhn`haXEn!꠼MG/C\$_ϣ0v`.En829)R]YkS6Ky5wZEɝ)w""0fD!ZAOBuWPC-7[kC EBTVt,r PHI0S:w>)ϪZ'ge˲;R->&@Toy3$yN+(,M܌joGÛK+Oj{LMTArH%jpMsãp37^wU+gX8HmFmrޖRR4E?{mXbĢYћɻ( hiÜ _jqk]햒tiק G{G~zb(gTMi{ֆ1 O:s4\rqjWAҼ$)O3z">E5o 5fT׭1,Xa"01\29V7Ku|2["q%KpUk?=Sv$t1kl`~~ + &Q:4s}lj˫Ow+ȼ2AQZ%Uvy"> ";y!^u6^5^tfa (-8Bq[WLESix^'v}o~kUVAz7;lSUiopK'{LCS4/;5 ׻ʏD^O.^Y%^zgs?B(r]RxͥEsxQ\3+ F f¸ޚˆ:(la7q/Y.LQOdM6 ]aWL!ALq 3;S|!~ov{ `gḧ́Dͥ97;q-SԒ]%~0Gf˲D! #ǚbbXN{]{_ͦۋẀv-gY\4qC\_="âZk85 疒Xi([U9{ЁPOVgՏ p5{Sz:ys9ϫ׹S|ՋT;,+MGĩwJs3qh97;Lssy%) 1%]P؞VڽH?{Q 92Dc-Eli+Á7͓XDftԄoF"2R@?EËpºsȜjE.ɛv<(bsWu/7aݟNs.yKx{z\SOo-~~7Ơ1dXH‹G} fM}Us)hMNܟPk fFDȋC,uo a#2"Hdmn;|% MM~zZsIz36噹,N-[gz 2된 ZS)\JCB!}6@>(LAG˜n.%,!Ikx` bN0B#&4"]p }⤢xduIe Ж3^Z3k  lT^,(oł0"{R:QnBq;wE=_ҍR0U f%ySwX®72C+C[J{Sb[>aW:qʰGW޽ u0p]

2/ۛlqܜ"g_<|u3lg Ty֒vюI)|yDd]P k(xs}Jӎ1Q_ XfքfE&T!Q9|7Hr;C}s` LA&nG緯=F͌3),]>^ʕ ]|Af(!A/J,hߔ?s5R dL$/Zt>秓Q39ps:Q>IRS]I^ ϻ SOK?{z <7Jbc'S3?Vӗy$S^Q_Aʗzo]#}ZRN>Opdf(iCL= ת=)iSnRXFɂP&gҙo}Ó=KSĠ2/hsZ)vv<'fBkj(.ϹU6̮=KRw>)t.=V6aх tX,H 3: ?!jA Ѿ˜9:))^|uvEs^DPIJŴ\LРd8GQ#72dminH72}jyxr!мO\Ezϡgz Ezγk悔qHaavGl=U>xW1*m y:/dSR|3 a^r3(Ģ=f6ȓ}+gGcV6er>۳fc)(T/Tt-?DZ>9O5k=fC%TQ\*@=K`޼n-׮1|*2D聧FLT脛Kv ? l7NhAⱜd 0l=Rwmy9]᫽vXmD>V9.+Z7`6Q F=o;\8 B~/vj6Aai(q1P;ߧzk4Ei7g5(H>d*]<܏~6MX mXĸr/%2yHCY̟>Z7ąiE;))")y9=9nThu8mڡz(sHz"B3S$>;9={n*ebzDѸ6P\<;VP 0orN0hG&uȺWo="FpJ u\݁f5J%kw8 :)XF&e3KGrV")w&!hdicAa&nv⎩-9wYgI0+s!hSvxk`MeRh3uˆj5Snٹ=B l{IA>2=;JQZ!).06DǴҍp2`=`8^KfZˌD'o] {Q 'DݿC-r?#Tp-w `( ܬj0cXh/Rx%m}`*(Gt\fz%8QПS̠ #`H`#w Wt(u 05N~ڶbYW^CTYinwP(U K,vꃵdm9r6o4)gk UPp?I# ~LٳFQד4t6]&%ʪ3Ӧ"P`8qi}wT0|vys h#C;5x-.5<.eZmFˮ@;u_sy߼vխu\ljҧH?_M=M.9.D|Hz].!q?igÓގX_h꡼P @4.3n &H~7{o\ўuaH +s+o{P_fA41-h,Gk//>&f T3Гf֙bK6F+RIсq"^=#E>o*LA&nrľFvֽzۗrDcc]$G(LB4t 6T79q)Zٓ+<>ʤ5ʈ#OW2 1!ٙTC\W}y<~z`_t»7_vrSC+espsp~"ën0(fvn J<𛸋4 }j uyX !UphgJMtB)5}ZqF ` jɝ mOM.rʾ[E8Qzmp8[ʃSk?7ǢjweMϚLZ_ \/8kb%i%»,کpIdoMxq$J9ShDޫ6\Lal 4A&KdCa)(MNܛE }1=Ca Õ29G %1# SP7a"GǼ7Nѽs\F`%5:-qEOG7Tqnkϧ̇j/ƍFX_}9ZIP NBZoj7:.Z8qx}b#ͼNu=sN.wby :_%}$wӎÛ"oKg-cc#+釽9GGe,|z|y$t6CMч(1((!-GﭠqCzhp .YqaWp#4/?Ow@@9C_ƴ2yܦƍ@1r/K9jbȌ4w4iŋE6l"VD1#A3Kq͔*YF!N׿^N@*ngM;hdpCc9p,߾^)t¼ =Nʵe͵Mvz2_1g=WQgʤ5y iз8>MP)}UU?>mX@ s.lm-/@z+rSzuY[=.:P$T?xq;S5ϣ'fDЬətP(nv/ ۊuζu:<>^$&eCdt_ 3g8*՟ŵ#1}-(oq,y ib[Z9%gy?[,ƳئuJ)ꈹ cܥp}1J{ʪ=Tu:'|V#hׅ>L\zHC&I8 N4^fS}\PW? Rr1UnZkׇNUي,Tw9+6k6зV QІFeQčsw P6N9QI2 Op2a7 B5r+dS;v>7/_K..qgPp H.Zߪ^bj0=W1$b(SsUdC\r˄v6 rۇ,7|yfR@F0%*,9ER\9NQ /eKAK02.9ہRМg15>x_e? [G cGm'?ξ([rUG P`f{ gwO)K!!@ YL?7.Ie*I ۻe w;g̃d}l˴ٺ] rN QecO$qMVȈ*F/UG*i7ОxOӚɚs9׳>0ĵ/l7~7,52JtF96e1'dT֞=(8 쉞=04gC.w[d$B8e];+$Ջ t)?jjmKja11 ŭRQwX?bUPxb 'b4яe%ꇄ<*@#5 6~ö8Їp Qh;n捏w:iPECZQq -[uӇLLWN3f}Tʂi3C {0Y5Ȓ}ZF-PwߪX4d:"1j`f2݀ Wsg8y P&3nC+q8SO<}nSuussޞ1*f׭-9[a):^rq0,܆'g۱<+u,.%dIP\%'ynu~6#{;m"kzcͩKotI;|YS63#zv@g3¼Aشc _f)eQ9qt+8#7d%y1GUK;*s.e7h%1?Ѐ/6m 8 5\BK R*9T2Q=h_NFKB?1 ];:ggNjC;W]\׿1:'(ƞ>)>Pb- xOQox^|JzP0w_ %o7^=L17e's۹ne:( O JGV`d Yq۔ e)$bŠ^(؉ i)/Ʃ֢]מXvDڍg*Y^1ո=]a C]0òTKѳ< +0{9b{e= =ƾa#YL9c|9#ΈBU/9Nxi>;ar-gc{ ]þ18)* ďb>c{cKw).hRgܕ=,g.bz--iϳ]ukd5yroq}0ɛ[ }q3u,n+esβ'f͟wkzE#}\~*](j)P}.ҴK\A޿bۘ?ڣ4cm@/E[ZU oGRP.96WƠHC.YWmzZy%8 "4\J^nXZN&4 z#.lb;EyRl2]kWQY0脭 6& sFaS\G8(.JG1˳s1c`Y1Tc{ύjrzNy{>cc{9g07-meR:9ަ%O-ު?ю`m! r I;@z];??*}^aVabR+_!ܽ"O Jjw=9pS#GcaY@7Eǜ&;SL6Mx|zִw5ՓRB{8̡zG5L{}b# C.k6l:.z:%dLUe^^QBŹ־*mzIDt_\W&JܽDV"yZ޶՝Zrgb3zm*$q]1h=`v9g pm=-.2lhX,&yN(oU[\ރŽؑi<; 8N{6=+oJ%qw3?w;WJ#zv?qr<`('TL|egiO@ݭʼnG!1z"/dU"ShK)qpT|#l@;9(5JپYJߠ!Yo=pk,;6QiWyQDھI4T:'|$rQ67F +1[;YM6䭞X[KrybՈ@m.9kg[O^\I܃Y0bŦ'#SA]2h۪p#,[ t +|@{3؈qhm#q+ ub5 7a!x~b| 1جn3+ұ.)-D !QVLf8(:v@g34gC.lIA;u i >.Do81yVGټ'`8X}{_kiGN3I(LZhJ/R'fidK`Ze_.ڔcüU#Q$:bzvC=Ѯm W硎.˲kHڰu*ʺ;)|ĔuzkSR(ىo-/i1ʓ]I^؊v%#YDy*9A7#MKn|M˘l E|..m0N)DW8`m.K #ߙ׽VeSjqJzNK}iEi+$CWZSRЃ kNDFQ'kgQ@V(KrFr֔:{ʠuiMҎ_gdޚl(̱X\b(] ^@^hwe3>p30FIިpn `8?{g/c{8#M: t3x\ێ}A"Z2E9bhصY 6W<(Ft,`sf%1Ѥ>ܨjSRi䷡@" [Q?Kr%Îi۷˦J=qE5BmJ_ӈ..1«pkAn|1EҿF#(_cC'clB Վ坱Ugk9Zꈸǰ I%L||?~ёXm7q -?z(a s#?"yԱ!q|tlUeƘ2[js/LA@?4ϣYk0nofBy0kC=(`d0%`1 M̺;}{u=ޠgSyVYְ8=P΁" ƹ&=CXlMg9u.\ :!B:_gu@ Ɯ7l]N)7 8N*JfM32H2{zRAyZ'~ Jt#|c_Q@$u>O-;EY=WLg Y% 61 "c!u^K?V <:;o>ަG+-]Ҳ>ˆ(P8p&Z$oNY~<ڧ \E77F/Ew,kxSFhdttbQ!FKu["9&l=+ctE}gpu2DgI6j܇5Xs8wB`ƞ2/˘g5`;qz`xS:!cqk\\s jTHq|g2.xNJ3,ԦV'xkNc.Z9$[dSʩ^x~[{ 6G}c>$ؔ[!҉3^"msy5%Ɗ1Ǧ 1LKQUm,%1H𬌋iqw0F%K=>Gq<;1vq.2_=GX 4cx?_(I֊UecFQ&õwTP.nNF~Yvq3%48&;X@Zf.( &j`MSv,#w6)ɖ\v:9奖#=4ִevQPYR[ܜG7ց~t)Sozʫi ڵ/1%C,8Od#ɸ4rdNP+y~Z5/4@ZDYm^~4*zU}Vn=^׎_g;A4l2&cy^*ol7Ҿ'Cf-A"/e mo}v=Y1TH]u6pz{8߹?P 'ܴg.7)gO`*K:(q~P$lX_7h#pP `f݆$%w 6nz^aQ<2^b?go$?P'{0+9ۃ"/8A+?]uyH)(j"U2Thsooݗ8Tno!(mYE+<}8_} l6h$ srsd8;qܭ -_T"(S;&.;iϴ3{Vq)b `~:BzBTfLEuB(d;8+NqqcU@%RzBe #{vdo}e1.Θ~*uw;m?%~1o\nhL:izϦgM$^X@z(RPM\c?`׳G8qJ yhMԌ5(<R֓vzr ϕgE>pBż A-z>I025g4 H6 >9H:QɄ ˧6̷qmïhE[De.3[ = 7A*>ꡪM'EAhU֋,=QhY=!D/|¶uu,.Jr0)\66u~`<=0nVgyw2G[eew|l_RQnĞ[kkK>,h>қ`"ƟZt"O9BwRl>dκ\Ya][Z&^,KECdR M"TwZ z{FkR:<ںXYJָR[f$j!pG7Hy@(BtZ̴ۛt58JO7.2lqo->t7]m| [s{ؿP'yؑiuKϸd{cTJeq&x28ŷK 7 gfq=Kop9MR_9(f_1>:)T#,'R7-n {K&ˣje-S&5,/t44A\p;:: 7Zپ]ER +jxr[.84\i#lM3dRTq0 Je2AÕOQk]4&eGVw34xbjC+(SbE9ZԔ"oSUITky7q 6& FaS\ⶶC(4=`؝&KTLrShg=OlMYtYu%&*\Ч{s2^wqF7ul_V3*ܤtͰu~ux/ ɏE;Pzu*teVN Ğ{ٜ_VͣA)~-t1P 4kW3پ?zSQﯞAx=&olD sN=KY(ܶzC~gu%yĝtm{s }ǪϪe`iI]W]ȈOFֈCshnYʽ {r~cc;F=C3ؾw*ճRY} :kQ%EDMǾ!' A4.4RUQdm ^O;L~r ɶ!IȰm+Glꛌ4{X/`m߮Vʃ> kyvL3uߔʣ?P& CF&>tY'Vdey~}b۞XhxVc7uxNll6>p{~1#blgoyU ARfC?êMZgW^1GQl5rjBvJgKEU3EQ\??oE($]FVҜwKZ_3Sd}IWN$N4 )\q. Z4&Q> ugR<] 1TBqESsCQxZt} mĝ$p=WϘ ҺCck~#c@)5 gM0h-TTy IyG06c Qm%(wf]%7"x6!{V0gx7=&?@1Tc~w:_fO #{coe" Gg8MTTSme f-3ZgtzQ#ӼdвlX4UTܠ&:UYrS^oܛPw' Kv RhV@QC 6 v\vmy]v>2 { EW!GAp&PѻN!`靖xn{ٯ ZӁQ2a; !Y^+$:+D m%hUy_>Oٷh'jx:jm@\zB ̬T^ k],jbY`yձYYިpX\<=Q`y(={"[9CO:V*G^kc⟗y3^8줎]ij04gӳRUwv^T c(CDLP&rRiDLFs`?0.ޜ_a缋'U}!v{-!5PVeׯF F}Uhvw6>3.3CQH'zօEctK򊖼ϻYN9)vQl.$h ?Zߞ^w7 x՟_L1sW~p g#e*lϤ~~C8cdžvlhVTH:Y)xR8 'din^t魞[Km%]:%K6),6ڔsLqS/g_a:iqr 0wZy6tX0uʦ&xxaw"RTcw \icQʗ#fمM5i߻w7\13 R|[V-1VWkA XI/c8Txo5aP0h#zkm_I/%%~#9RDv(wN 0Մn#~[ Ꮀ6td0GrO4pVdZkcAuھ$4jnn`]u^ʯ|iugYU7nwƨPX@%Q;ԳC!|0lhX, ћ3įsg:#[~~ BP/|]nRQF|+ԿdYz Ct2L$7r=MntV PLg-;,mDtM&glaK;۴Vs}1I_6=tnjJ(iM2oLaDՓz2m6UL9M :E^%(Ǜ>zjٚ 2=~DG촚liGDض ~Xs*m 3­uһ,9)D?=O1ԜDRMJg& I3>gP.>8PȾ~r_6H\NgA@Ky|MB`rzSn-0Le:IhAӽ7bfKR;=$h0rrw^}FSl.j\G}׺a,{ԩ "%Q 51V"[K3ƦNe ZГE0}ɟͱ`[  dp$L{d(%T@1slVoR|U?'1 gd?p 5o6ؾBlRN[?;P}F˂iEs&>Dr"m S\:?AEzҒ fU]]pjܥt&Zw,<-)߼0:vG'H$/z{[HދrhXX&@:[t{sfQ^zHCM~Wҙm͡0+αp-$@Kڵ5kF|em时 q/( d@qcj5myN0 4iύ|Y > ^=n!ܞULCQ!?/p# z+XIҟc_:ZsF0σhzЙ:7$oOs>o]$&PZ,ڟWF^s 6=pkKN),nqbgNZZ&C饁9!WΣמ:6 } ٢LpdCoF`3\`<*5'i*-cIxi"@`@{~viÑ 퍡.׳)/QkB$#e-CصiuGpdTJeqm;d-)yO9y@YLq4Kop9MTo:ݷ=I^ֈIfQSD8(xOprL#{XgW!q;[49s@bpfXy~U7,HW2l٣fq:hLU~6-x~0W,؇Jz!~fمsD!2GI9^U ZL˻b5\DortM?&%.RUgZ=_[A-*KH Gĝcl^:L>9L?gcDc=ؚrlY8O|4WY6ICZ;GB#X o$xPdѹ( ٣y=-inkYJ܃AHr8)ݭq9>#dm? ferkA9ƚ7nyDIٶAq*=UXB~}m0zbq HRH 逞`|h3ʭ!v#zCshnXkBu|w} ¦Y1ԥ7`ݥ4o?e=(#(zv@c30gC.mAۂ|wrv29E6TM˅a΍Ϫ[ w8`;J &ȭ$۲wcsk^#N@?)>͜Sy]qtѣKmWuKoz 4 XbKZ}0U5ft]{*hg5~$tS=zjǎ[cVw" kرFc{c+kNSW>gOmiQϧ/wDϟ=߿9$^Ջcn7dRZ)3JTwC!H+ۮ"ꬷE =MR=++!FJ3àp'Noظ\+.v5:Cz;`M,_8UYŸV&(x HK?'ZT?W@+ ҃'ՃTXZɹlwhElrv }}+C0p!9*v9/^^/$ G[9A|/`W4X[fm˲f ykM8i?:yY%U:'&,=Ò?:w:?(EA(u&>7M 7pVw+UM8Ȩ3j ]k|QZ$)T*(WN zHd<(~Z }>]b-7ևtQRM ܵЌCdsV$,_7: W whn@T$gjБ]e87|[jEf`ԣPhy0> }˪ :`9c-e2mx-~J!q\Zٟ+uzo˽˵#DOyѱYs~X\_`gQĜ]*⻈.nݍ1-#Y.뒥/tB)f<m#{.6VPQgf#ۦ7kr˅ƞVϖ->#=9Ƙ&Bt#ͭE14]Ҭ@rOL)wc'kl@(Js6* Q+z>tZY8R:!3qX…F'CEeW9li#F(Am.Z6ՌZ\zYq*[ȍ|ޭ5>*]mrw%v  *MnʦvLomz$QvbΚCsS&@^ׅXY7|P eۥMyU4SL,vOL?p& oz@c}Tc;kP5/lY5nS_˾WnC!޳Yh{kGt"Vh67bi\լ:o&4?T:2\wBtD[Ӿ+\(: ~m4Up!;-^ڳ}x50ޱY@%b^N++JcGUeMS (~)hmlJ=zQQb=zw]jNA0OYlE#VQ;EYy|c`$+6 K cb4unMj?*8k3h>3eW*zMQFe-{}=[IݏkR;1Y yѱYs~X\x_3mG"fbƕװe1-#6.뒥,[/z0/bDZ=ѱ'|nYܳ]ߧ"Sxڬ'p^k͜ޠQo1f$QEd- _`P)%d|\)~%ɈǬO7v5p7cgx|džlOŝ)mhc,GJ>-㿎]}9Mto&zV*6q4cG)U>eZG/{kLJFc!cO}n6]㔊]Ὑ f8PcC$MgCM eT>v|\ֻe3~usa\0\;nSik4ĥ{݋ ѷL8?Q76Ȉ'^-x^ J8fidEY[{OD+gʳ+nqn˲O9F#Ny)gqmu7&;g*4JJs6q? -md2A; <6Yv(0f~3t"u05a-U?m]$kzg\0T7Y0y *ɕFZ4qߩZkìCs sRD& %MOeʫ,ʥK$I8ZiL (6A g9pLnLkdQ1f =»jI(gx|l_V7*:wp{:XJapw"pE3(vSyjX],# 2 ;cGf_q+ Go8LTg:1;$׀1Ы_L!ՓBq^XgWq!.k`&zO%W 8S8ߘ+ weONh?/ʨX64W?xWZß"Y^LӯQ44G sߖcPaTP}U0' c J WHXڴbEirʉ2 @ C;4&iVv3hd0*Mq&n[.BmygWb  #g`4 U&\ny:xf+O{s9\@{3جޘu!\/J#~?XV^p,A퐑AWVq&ܙ1hSvx=<N/d_rq v"c=vnHeoqkЭ+8ž(@\LYlZVojtBi0v,26HmuA_/:eHxٶM}q?,eTqF^,+w ?ɉi6o6b̆H'2)gݲK/E}NpA>f2>Dv@a!վ3݀#uи>iny(YsY֞1QMuc@a5SY+9I粛̱ɾ25GYJĪD4s 5E# #З'z6KYj#KCM;[σD̗uNg@v =ޢg[ yV7q3e\wn%Lm_B~O^捗Mh{ ,bk:cͩKϺRU6-Q Foݙz?w`aƾS[t9L2b XU?7ڧqg{yNB%|}]#8/FK | VaKzS'1:#N x?"bI=b3BͻF$X#Kp;V[&J%9D TXl3.p c9@A{/|KD 63p$M~o|Sñ풭^LyiyayVc5.5m/t(0&lK=|$ r+$Fy×.ERM&ь k̈́N7Δq} n#FTde^bg./Q6=N}1h(=@NWfUI-9ԋt ҫ)?}]>(0҃0QKW.0 ODžΤZ-{F! c‡ #xQVu oJɈ!$enW7UG>gy6,Ŭդ䥯^.FezVY?`&.So,e- *wT{ܯD=K0{NOpx-VE5qB2Lh; #0b#:6"ko#q+PJz+3:)mkgc{0c:c֩KǺ<̨U'K<ϘsО ͺܤbqw%gYidP@;4 >1(Dɳ3onW6^UGgOQ{_Q_6vX1,ym`5UT1fGղ+ k kZg{Wv~(U>y GzDiU)jE+kpid.irm:?ZEI ,*(#@  .LZS=Bt)+;l'JVI.3ĮGfĠaKٓ 4,܎A &̬-aA z܆cCO$|Y_2NuD {c~߰#U=#_0?CQУC/Hb?~ܻp6jz^Y@͈7-I^0.$dmFVт6ZgJ, 2ȎK* F`Oap.l%EvD!5xum{dʱ!@7R>x ,k;k"&W!+װlEź+Zu.m@[aFl2oM6t!gqW-,Vwsn m ڞaĶv҄*m`cX-\1 ,oa)g)87qyo1 O+``o5xn|*Y/6o+Y/}QY&hDљxkG )ԇzٟy ?-&33l?ɼ5Г֓gkYzٵ1*=zXkN]o]&a8ݴ1aaIV‘dm'lP68N`ǍNWAM9VUdӢCD o~tzG㍉j>4Q@]}104 J K-]AA^DVozw^.b^łRE<+z!A5Zi?Mv6gHFfhX_:}_d]":w۝2zdZT6Z#I/"4zBAo^BxyknoURi 3>ԳE:rlܐ4jho=g<ێ¦ŝfR Ωܝ !=y;#M:cywqm&g<oM];ß1-)ԥM6)u}tw- ]{_L`uuD \TbRyXCz 8kԞzL"ǡs.(_Xr1b8tbȳM`xis]^o 4f?QvUy_&Ơ:A&W:F YK =&U6HnPS)Ʉkp_T@oF AKjTQ>diNL?ad=H%73];"yI8=#ZI~5] m4ٷ\k&M^E}y ˹OM< ;hcUh95܍ڌo3ߌI/R:r1`py2T, z0!m mbNígPZ y j|?8:P;=hdŌ봋XH;,Wn_G V$9N~>4蠭Co:]js `.J,cMO WWk;-RO:)Vπ j3S2NgOK~(BIz& d~я7XlZCO]irS5ԭ.]7Y#(D \J%.2lqg]z)̶2ҙέ:i.wG4:3wS(u6q{M{Ls}p3\מL\z%O:V*6qs& |LlkhWOz%kdjCUK }P)E)czF?mC|F4oCV#FdX-Oz+Eȓr_FҋA_*V2ϰV3 '<㉭5mjѽ[Z4/6{e`w vg> ԦY1ԥܤ]3(x':9ϘcC{k$Qy~w4_+m:؅lβë~M?zt{J*OV<~rNV B g}=v]XA1&s:cEl+Ij5b;Yxw*X2'$wKyk) `P$XOW6zן;1\o^a:=ɌXV Op+IR}f x7D<㉭kܦ9m Rtvhxnݍ,52JFS}emXF,G,POts1džЛ FGMJ^)sݷ˫$jd(l8z`5NFb{ƹ (Oy2~7T~n5hcXψ5:"; ʰ7BM6ozgM1=xvWJ G(/j2a"5qEP~. 3dYTewW-&>4V֩VLhPtNJ7tV(gX^1˦;̦d ǖ621W1b)}[ rsu2e9+_5 ;N(`5~켂̳_YV j|IgSnwT^z&T}`-e@ BP9dGh0KdOԧmF7dYy3\Pۙ/ǽG:FsS1&&5ˬU#T :]!%m/dߖZaQJAY-tbW\Y,~e $&\WՄJ+[=x@=4@ZE|Б-OTGƊWEv ~'hMd0),!%SjsYK;˱s1݁hœg<5ԥg]{9c={>gwc; 5o6 * m'(bzB­0M#Go'lqө0IZG[M[1~}NB+ϻV@qMVbE9E+,yO1g!<%#_aQB[lSm9G=U=8ï=cMfcerq+It*cdo<`Fl;N>2u,{@YD :~F{c¸g`1ԥg]RZ9\!{ov`ؾBM99n~юPGyW9ee\x+%t.H OwbC%EBJrpyx~핖/&⽶<8PSϯ:!!i/00kI>_ZAF6ESh*Z-ݳy$Xx{5 R/KL@usb= mΒ /&+ŜeF1A }"kTwމ>.޶6-}k쐇L[f3jh]j+kƦw͓h7ڕl^go^eׁ/N׼ZCJ6ޭM,c~|h>e]h3Kv9!ߕ+ ?f^{D&.}--4 A f'~garlw|UhאM8Ğ+l/cEPl{\u)H/Pv6gC Qmf3̵ )IĜ˷l0zv[vg]d8NC;cTo:=-z}Ng2GNL8z#o':V*o*I8` .]Ɏyr:( @cm B^Ҽ"r?ȗm;)V1eJcjkZ_c1Ϣ ah[wn_W6׺a\AozԊ!-ׂ]_Ul]ܭyDIߥlATWw;]43.+t4iߨ9?1L~򇪾΃ƾSGn`l=w81,'[_s_ZGDƪ 6X CΎ>zT+Iѵm(< =uy3CJ:n{w~Y54w_z=N.⍋L8z#[ܳYr6q% Ѳ +Wy#[Szݑ=;2;N3p .ŝT7JM\}2vL#umg\{z33qlzoL?Y,r@k͗T+L 5q"U  Bp*&ɢ/PTf~Gu{Y_OqZx ~'zN^\bR{iI@*UwlQ٘$OZ٘펤Vy &;3dSbl_z.赯hȡ;xSA,tG| }gmgdeW:kghȋ/G_ZR7D<㉍ܦ9mKdBЃUUYZӀt砊y;FPsȾn/)oJ%qxNOγ#(!|~mtoNpC =M7ӓRmM܋w%.yt@A{F@EU߲0:~ݿc@'^VSFmZ -9ʖ{hj{Λ.j7t;QE#r~x~F5z#zd.Jf_$=YQwE'MhWϵnPrgDœF% a`.<oK_$p^j6 7Bh=ԏ;[{\ՠm5Kd覻Ǽc>Q9` v=pgVUx^xda݃F#LZ  TD ;m“g<5aMUTHM$c) q=,٧IF<Y jd_ٗt7]%u}0.揖%qnsBgŽKr<*d?:6/hr*DWql-4+ {dr:.iAd7m~+wVDnƆꉽ?l,ʪ6ፍwd\yVb:A?@D}dS^O3Ĕ)|p¡\] S?E;ql2&E&(ֿĞ`K b_$b/~tlgrel-ڱ~}_(0@)v| Uڻw}W=nO7[?7vAl~yoqHG#kHY܇Y}5|v\Z>>cu`bS&ٲR2~QXl}z#`!(à}N ִ6b$:aN>&屛_CDS+V%8FjDK1nK. W9}l d¢X6Z9ճ⧵Qr>h X`LcX|)% jD;δ2Ek}0f zցXaKyeFw 븰S%8y ƯƯ.RaDg8UY(;[իW{j)ODooXì*tFS7*^&jlh>0̛~ FU0N'WV6'Wg}02p m'27#+z vuˆ,{Bd)Ah _׮,Ӓy!FEI|rȜlL0asl`GS*c:a?,nE.F6?=c?ppyׁc e\``X.e,%/j^ҽ/@5R)]zwz z}m{gV}z&+)ӖZ?]lZ U|PH^‡Ԃ, g 3/\c&w?|e>gy )7g+L!i1t8tV=,y^a}4X5m4X *moq¹s1&4.MM%+}М3L)BW v]K;>}T탹:־Ǡ!Fw@Vj vf\Yx]sw3~ 9> p6q4ڷmaH.=z_v"}ihg }NTNq84]]]Q(3yJ4lzoL?m⎩gĝ%ծ/ԙ\X0{^Ds ϊh8z}AMN]7+Ep јM3XWihKQl2ûz/QbDeTɴd^]Mnniɤ-v֨†p[5$vwb*L7鄽,۷Qjm?f[O~LjS&4.>wqڢw;ؽGTA5榸nwG<=5Rۚ==ѳ'O?}43f.IJI9&V8{6^ ou[gl >g]ے: ­{%q$q fL`~dx,7cs"糆uJy&٨ygg`]iWo7v,[Q*՟YFPOv]:)~Oӥ>/HYt77y9j[Ux*写<,rbrGq3H璷zS! [;u]yW$Mq&nAINpT[Klò;gG^68fhR o5S|sƛp243W`ZOq풥nt_'74{`?X%7f['J]7 t8\q5Ѧz8 \';$bF=RO/t?s)N}5p ڏW6ꉅ;W+Y~| aUdz-B]oA|c2m `ogƸ`sΩ<}M6;ۉy3{Q{^r}/ &_]胲co'y lꉤtU-`y e'/N2逞11 OdMg9u.{|ʲxВ8x+m`„7abz38Q9Ϙc{c=C$qw |Bwf>710V=)˦ m  7cp!Izgi`tl Tk5VC8!%F؛ $ٲL-zsv{)H9tݔӳ 6B]ho|C5˴ǃvgbDkÝ*(At}o;0sl_ey6qm\kb 1v3J p6nm3ܧghB!NM$(tm f9-ś2Ǿ(B6LOJTm?zYlSLޒQvz̹v{(n9Qy9>(}]#ec|YMh{M QcHOJx$7ܙ |4Zuǜ ퟚR@w>$V-U]@_@~w-})s;c½~Pyv[7.FhIpZB]&sC 2HqPG`X5 s1"kiL-VM"EKh*A% *ɬMlZ &Jpw*v%]=L:L?1`kezØMJ^Ss( VR(?7P&Ac[*~Rk%gXyj:3>4GmOdMY4猂vpIWLi$[ynPs 56!]uFAeyGTm$. >SlPpZ?x都<1@ǟ=o{ 1ꞻrG }uJmfoFglpzN>N#jzQA k`\r.J`?i$g4>EyT2*{}ń3X<2FԁcƔpGBTيTI>~gXZ6ఱKS;AUK,|!lٯWy&RѮAYʪ`yy\1FYB>?CwL9+Mq&.MC|/c)ߦc}pL/s&7#}77fJuTw N!S$b<{g,pG,PO$w?5|lzgL?j=uz+t({(Ui?90#3P/B`}p@L WjixSzsROr'idhalzNeXQSS-8Ko /4Aic~~"]AFT{Q{{@@Mo9 22gqM/?f[Naql4FtKr_f8YӧF7^}z#l 퍡7M{x| ,:酲|mJhz-KW Q6`|30~ YzfNha+1Ud9촺b;O{xLJNv+/g`ykI>wz_=t/kR0QyY㵜y-ݷv7ipv6f`Xzy/LC:V̜e'TOzaZm/Yh"1Br;ŮR*p7jԊԞr_tD䛘qJr{LL[!d9ӅH` a"6%]qh8Fg_B%|ǥbtK]=,Jspq(IەxO/ݮa^!⇓oKY(8NWnѯb,ۤ`AԈ:2`kmz'h(蔗Ct=y\-b"#pk,T ݦh:K`[x [ 9)M8nŖ|ؐ=kDt.ňvOiZkN]z)B97,j(&Ub!px?w`w vg1CVMnK)ЄV.(1[hxilaMawb{}x딬Qۙe[{d|1(?INpهB؍`?Z)\@;=7e_ O*Xo+ŷ_\?˿^nzQ:t}+ejsBc0ZtA2!J0 1Ŕn\ +@{&s)$W9k'艄k5fqB xhCGF=mOD:jDY}sǓ3x dB<2:&`"u/$Qt=ȓ[YMNwmo=OlMo94榸n7ILא, s=lQw:gdԻ9g07}RTH=d+0moNpB(d{cTKS\z~Y3cwnn4RH40ͭQ@f/.Z26 /ӟ%REs̢.k䶉sܥ~TICAr!tDM M|KM5TpqbTYi6ЍIi󈣘VG^_9Fz: yryԺF٦~֞dE P'eNY=m|̙Qt7=% 9\}Nvh{ s^ݻ[#Ma$¬st4<cY adMYt7]st\>8;c`3~7Q0c;-RIp^aU9j>{%u S=HD.L#'DRZ*n}Ohʊ>kD%i*c>ױjX"S?述zTo h=m]wRv=ўIju5uY1Ma۶7馲iȺ/M}+jYZnJ74V1F^ݣf]⫹^ƨ}W =j!PЛ:~ho$ԥ]7)uJ+!>QJ;N3lho =u6]nwYޚtCH6AKGٵgi fqR7JM{Qb @ӵ_ թK6LOJݣ+)Yż&E[8e m! [ު콷po ,.ij{y|oΦQѤnѳmՍ.QEU HRF91Wjw87F@.ЎcEϯ1wLWPvF~vᇄtW@+1C(/JF -zTY;Ys,,fLF0=`&N$B3ؾX~%6q%;ySܻ⃄zozM|΀oC.5t9P+f~_xPM6o%ٜlqY蒥:?stW^_-,NS;w|017V 辶[c:(LvQCmhU%ZX +$7qMI1L^sЊl.itlX&d]i5- B<Wzp!hhŦ(}#w .)ơ R(_W@X}'K|?C#zhEٱ3՛uzES6XKZv^Qp< @prӕ60C/n;َf?u_9UŷO/;^1xù5"inw /7ןu~w~2n{_ g͒`2.)`nqoIh%2NȚY>«B+)S+@^%(t{Nv2gC訊YI,ۿZb(q]elpS=(y]9azHt0gE{:#sidz}O)u`|}[hec~ÕDY2JB$=ypSN}w& S|SvXjS!S#qjBxE$Fx2tTO-w1zvmǚsH\Q={u ~7Mo<}ʱO1AēDƚSΨp.IX*Um4&r:3?w` vc}f_BvxO +ֹdTm@nwTPD4T)-S{K:=\1eJ܏6yu kZ(b$cPh~WBGb}x zA VFA;b&'f&zL-]žT,YT6Q1@G^ N_ ҍMvVO,Sk6یI~&P4d5oVHٽeS_=dzQTa-"xf\m 0 \DT b8܁ 'Èmv0g6OB@Zwm4O4 (0\M|:cbh{ 'o4 Q. NuF+I}ҘLwyws03TR15f4|Tc3yxG?"`ity(>k>Z ?(sNk]û11,2*!>rdS`zX5}2kL^ӫXGx3^xѼw"B(d;cTkNq&H8<4]~]`sK: S$]AIKi,[AbunhCd_C͖^\n9ڧ8?/;,َ KJy*.]7^'N=Ƭ1Xiazqދۋmm:bᘯ1Π"YjW*dyſaob)' 6TB́: mth{k~'ho߹u /R/QQo],d5Q? ېcYPْw>uF0qƥ_prF/jco94A3n?k!~) QǐPGDOih 1ne9z]nth{`쎝ِlǭF (IXXqX]X=Oi5KK;o+]o.0OG8V~1H-WV;DRb`uluH q~R-%{89<;zk\A'Sl2Pk.p4:â ;jGJ@Vj}Y EVW6 ~'zEϰc۱œQױszFg?w g2ol`ܝaӬΘu*Yq<}C`/198쉞=04gӳRQw`~% ImAn3T0sj?O*@zNzTo ־N91rGT~X%j~0ALR1"$f'6 jOت]+ki7o|E?OݵwD6_jg`LpڮhIzۻqZ+~JHϯ͠&(* )=y7&lq6϶ 9k}hi Կ':Ckv~iJ8%2nhD籸!19^pi! *%~֓* O OQP3Co 00Raxm{yֳh!>Zzޅ7F`ZG\y-/_ ns6 A&*爴Q=k؟{:8 ==3p#+V6Q@xhI@UeixO+O`>v3hdޘl*m #q&.:/_4LWJ dg<`61TTh%8³J"q\Mýu\8ׄ3О ,6j4wH^7 W2=[-q0]c 2: cGGߨ87Oj/64*64OegZ COHDXq5Ym^AܻL660gȔZ|4_ArQM#+jKɂۿ2~PYX&y d(@fцrO`]P+7EjA?£'>`dMvgs1򔴧A &Thkd\˩C`(˹bdND{ #0byc0)uS<*Q2 lyA{gc; 0!YRQoJ}! 9DCTaDA]~Lyo'n?wMY2`|H fIsW0a>!\$l&jIk8xQ;G/F UQI$#UXI]AF茊@w)K1OoϿa:6yo|o0 I}0xH5=ǠTnێ+Ŀť6*?g12M16ŬWrFgtFSM~n2^wkNQF:f# A/HջatD/Zal~ti<^xcn6&&FYx뇅kpy3plqo->6nw̔dtsn>=8{33q .fzR7JM^+i{Ջ"h|mC P6S[cq08g6sSasِ+Cp#'EӲtP$tȔcU#+j:uu+Y^4Q<]\yvyjz:~qn {vϖ=Rp dġ'TLnNLs!>N.pA>wۑz6j_AN>;b9-l0-u'鉄i\k*+ -047FhHU[Lg[o:)ce_4q$/h%=%妤@@:zemR]_Z.fzR9?@{1ؚɚsFsS\;4{uD,CzoQ? ԦY1Gi!yg2A,Jzw?9ǘcCФmcq(D;C kػ˚'4ŗ[`[|5:n6-3mu[Ռ*о I2-TzYoo}+"YBh_v:ۈ2g W/Xgi  OuEwSV%kD[E[B@E%Rגz7 BPCЏNqJmר~|0GV)/ i+ІUcxA5ݛ%1)#$Nx[..cFxy^|t{?LI qdSs5wH)Fη:iq(B_|4XxH=S lMV Û-_*E? USo7uiǩ+[#)t=Ykӣ Q(L,mY$ wPڇLs#?\յ]C>Cw ?xאG[O.s 8uH^S P){ы:3~N9i,cy0JeW.K{)bZ^YgeKfpuCJ!ŭRݽ[ԳE f|±{@U(q@O՞QmQa3s9+<w.i:x@4gW v-†}ۗUX,gq%K\;C+;K0O+z΢~`o#:c֩B&Y\[1(,qqt`16̑}=CS= gYq{_qmp3_7&NAzR2}-\K077))`lOgl(z/Mȝ^@ ch-YhE 9X>A+f=wNxVSj*]j^Tc*J1gF6pT?+1?֞3;( gk}7> W{ϣ=s"Xz%1^cݷόq Mybg(ms;7?;E.I>{o+P]zahE^Y4I*c ;ʁ"gZG={BZ}9SiR]g~0^l%_^~cNru7hoj G]% 킴 :Q@(eF}: ǵŗFgQ׿2˨*n%ĜލQM`ZP cS#SӸ=#}\BⲜ?ޖ% ([pď)1}Ia&7#YB[hް$&U@-8K:ݥ3J vo>XlMo956͑n7 nGB[G=ѳ'2E۠FfuƬSrJ6)sL[B~0„ab3.9?96 mTx'K6O\H,"S\Y}:[#]V9o q1XuAXS>'u%=ڽ'{q1R Ϩhke8na~@_d74zYs ?dtlS>(J9e13Lͳ$CpOygߣ3F}a_9қAlט2I3߅ >o!m8d+3վTz,2 Qx&6~b-œ5U婙=auui~P/WsʞЇ]z!\LSG8Žг Y_HB#8$Xϲ8Լ@tMvkWᑖpY.ljöpغKvT64vfu֬CstrqD܌TУPY%'|ZI$tMpmc 'sV]5geqmlnŦ:޷ufulV֜3Mj9n~j]ξ7&MƜ0GfYIrrt$i=m]<fp6pM~sœc̱1ԥSt|0`٨ksqF|J[+f1||8:{k\9ksesҥ_}ng ,7cT]f,qCׁw]7U_T^&NsFy9T+R^AJ.J)ĐWR֫ü=ǡ i*ܞ[a~̨g9T7\˃𠊳;>w˅hڈXвadíݦ'n ttX a.\mg=XlMd:)8uo_#ʭZ; [yihR;$b`L_alVg:T nw2CSι0l^г2c̱}ԥ3ܥ\33ןA}ߜ!|džSu?Ւlߟµy;iB6y zژۏՋLOc1]uE:tjſ.s҂Ud; ЬYV~T]K,1&5;TlS:CG'>O#0(rN?ŠūnSޕ7f Za{R?Yֿ=T/>.ZAZ|CFF|C*4ً{}F;{m$/8@oqv!k~dJ|ꢌpmGeq~d 3C1D.dX,e'@lO4 rKif ǠQ6LVx?/q|?P{يl:$~k^ P2 |֬VaGb#nIJ$5Z06V~2g7M`b(uX^?e/R ҞPnY6(U#K`h=>kSpq[grsO+yv%@0r #6یH*tCQcN^o;s2^qF3lC$tjL޿Kgw9sqU~x$Βj4⡀I .0ژh cV'|$(cYKwSb{QA_, #F~ѬjFha%'So*HsFrn /bqو~KwwZo~jǪfelۺQ𥉉Xψ8ֹ3:`XvLM3}n:ś~V%?Z@g#_f]2)0Zx~7GE uQt.u4jOSdV6I8Խ^8&Jw dbœCDɛt7A L^^daYQC'G6Y1+1H qF#jafno\1W6jyP d ׫pօA6[((셟W'lKn)#0+ (ʴS(,RQfozFilTw:C~ND :mo= 5[5Xs,gq'B4c=6&;onY jdVg:u6]_Y3~GvI.!|nYܳ]Z1J9e胻) e7*W5 $YG#(Q$~JCڍ4[PҊ\#KȂ5Js<~ P+,e%gGúӫ%@RV(cӻ-fcX},|ЭVDFW(!l ȲH]u*g &*ffTDzr 7M)*|L\S@6V̟uv#'-5v"̏: w8Jᩣ3Ai+HsXʗ]T<>u=*rüLI?^ /V{{)06[˰Zu xcl<%PnLdKлYYmz2يɕYY1J3m7ehkJ 1,㉍o:ybVp̋9;FPȾw*Nqc,^slt7$!& M6ӓR߬o9g 5" I˶&/\A8}Hkcz4}w_6%ɲYrR~p%,_x?Sni_7X6o>ű쪹 X 5*i-ӱjfdYV_BG7 a}_?ώzgQ?jlVfe9wx83oeLtp_}T3Jˬ֜hWAA&x"QȦwIT,Q ߊ67½-t(A)sG4jp=Jp[pr/G׏yq(ػ>H{73a/}v:p_:ygxA hZ}Yt`C.l,o&_T%AK:!Jvu:םryR&TZt:X^b5™w~wlVĻ ǀمd9Ho!RR6B0 spցwmME6h M̨ 2g9IGe[Ʋ/F5P3 YtrL` $c\BXlƾ[|wV+aY&T Y;|`a &a; ,6F sFaS\;;yak_J={"[9F[kN]:]צLhlt82Ƈ{0c;B*ۭ枷4=&5>7;SKԖF DYs!&v+^7"rQ<^ƞ X\{Gb۠XD:fXM 2NF XD[$W|S-t3[@T4-bbzSʞQA8V:,:m|NCʚhаv/;Ǝx2>ũ*:YrL꣛rgP2`t ;L(oݫs唝б(S Hz$1 X=v0ۓV~VAaA<#f%$1'ψTBVc1a-5.Ku_PIIJfjݾ|Rz5[nyNkR[@:fn;Nܿӈ>3,i1R4FUt*۹ MT}h?WWZQM:j{ΒvkZa¦pAiD5(˘x}m4Omx⊩ Zaǡ/[*E[ Mo5N5DjB V6&؝Dg5aM՜3:ACaʴzRMŜc̱}Tcj0k sk9p8쭎=Ϙ(tMJ=bvQ߷U,gjT+?<(YFCQ~v!SNٟ$E% "`phd/xV$s #Tig22Nj_Soçɦ<ۜYoƑz;|q5%`=HB<'?թBtsgmF9n4tv;0c:6T黋X\dqD V]UcH*ygOdOĂ?mfT!%i$hDv>f„0~90 >v],| :* 8J-fʮݶ:~L / _5wh7i?$m/l12rɾ}1eUz 6k:pT&D|EgePdAYSFB9dg/gԡ/ g#!mNl3khб D%J1D6 ;9u閳$=('wgVQ m&L!αp4Ibbg)ߝ??B`w jul_VTH:w﬙ J; \ҳKCxQȆvIM8 ]VŁq`u+}68=R? $xM9mTۧR$Piyml;=JRc?v?8#D"!1Edkmo09p}MH_lpVWОg5>#Islu2NkD컝]mL`ޭ?tŭUYk]dWWʌx@ܻui_}CNگivĞg`dźMEWT4tpp}c 9>WSR3PZ~}G h!^n-*gۥ }1A kL$߾Kan_Oa4D?}P<G#+dz`Lw(YԾ=nfڨG߲sLIF6zo3ୌN6d-C4\YVz:"`pGV85D IeY%e<=pS5y孫,cM"Ό{D#Hp_kxx:lg2m+@; LX(dKdvaOdmm [Ġ0?vn8`Mz6+kγX\K(gOWuU8:QϘsȬޘuo4R"Vܟ L a.%!<;co#C;64]Nq<(S!~aLg5%/ yw@ܡ))e5^<H\̲D}S*9SʢDd.vIswa+C!ҒpbILJ7Eʨ$S^_Նi` stfF݋m\>W\]3FA~ͿIbaoVA5_;L4cY+~co̹}>`S s3^꧆=kkJzjeGW#@ DbQG'"hUWDgjV/~{#zݛGڳ.<}:T*>S$#!q|Fҩ2u`@wU;@_󰛨Yu{~NXQV@TY ڲsgՁlxgx,:Qr}^R/ʃ+TYG,5Fe:OzhNKm걢|`=w ?k_ej{:[:dk 6?0n%Jh@o z"\PmY0O(F[h x 뒞Dko|0CAm0O Ի^Wxsx5&"W)C lOa'-j~wta ;;S۴K}.NcxܘwL[ ;l[gаɜ5P3 MyǷXIcgWb  #0b#:cďpuyP{rƹ~r ,67f4w7N0C|[|M yBo^4 A hjLC}w{֌0ڥYgP)%|@D2kF8MY(F5f\,w3{ZYMO[Þm. ʔi}}T\~h;a9 ij۳oNv7fXq+VܡeU@އe5zүv7mѫ;ZŅւJ S=j [|u3-|.@ c/uQRp"r㘃iH C:peox8cAs9eOF=AvW vX3DhQi]p_̝ ڳ|pe L9.U-6LWTtvFlZրQ~^+Uq3jW).uupGIw'h۟Ȕ8|YEl*yJFGD{AU1~DKa #ӐO׫UF9&A4#Mu?57;@97 ;'jaIFۃ֯A_ѝQbe0}=QpFv"ZɊꮮk*8\#OyFY#9)۬6;uz|k_BA1a>[d'zDsFeӚn&Ҿ.}H=חGvI.ɨa lwOH%if4bZy4_o`(~F(K-Ui]V=;f=4Ge'h O=WAgVH8b?cgzgP?1sl_eM$cqËt0@`by"=}ӳogxQȆvS$s€ῢ&Cqau+}68=R;sWQb4A̲|{)`N7nEG@~sQUi|Nu–0C3$*|z60W}9<$S5$oz~BHVO,RZ>7] r/jcc =NRz20TGٴ7Kʎ#oEF)>'zl&z ;Kَ&~N)i[7vIwX&lڎS]/Hۊh$xӪUVn _0v̓YfVҜSS]zǮp {}؃_Ÿv:[5g>e<|~UHtf́_~$屈?,V{ͭ dTshfmz`FW_BYb)Wʚqˋ|`\S D/J'RI07곶s22(0 |[ \0F9񊠬(XA{NOpКEV춳m鈲,\㶆6\6x<M|ƱF_;--wE%{ &X0Esa!,*ugcF\@h\$t(erԙW83'ēc<5=[56͑Ewuh{v˒b@mc9cd;9Ϙc;TJeq@Rhnٵσ=t09LozM Ǟ(MJeY\Ġsf3_x.g㘭Kҟ#Q&'9&`K 4Т!}Ge`ʩ9%L`͜ r-YD3MT6i [y#BH{ď)IFXo-3gHa_O<$7ܲ!PJ i R#0p+lQ8gs-cImmwp9ilg= 'NMql`_4f_8v՟'P_b)Mz]3'@O'wĊ7X&s&[Zپ=jџwɊ2Ahn6X>jhCeLSy|8@{_qe]}1|1xb%xO7>/+GH?!/MjШkkSaL1)c{1IG,Mi\-QчgI/9춳0d&\ 8&."1yσ$=Xd{+J{C_@e%\N<}lӓyk0tձ3)XCYh9iDFdyVX\sťF?D`eq v`g9iVo:Rnj44:#:'zD~s-κtFws^ed1gEb:"7bgtI,:gj5Țj:VBsiȳN~Qv_Qtw:YK{z@"]_ŝ3Qwu*OG/:[8V/N}hqlg=6nGT_V I=28|V;iAy_v_5hܒԱj|Zۧ`˳DD} `ܝ?LIl*.P}P +IuF#._u⦞M6BwDJPHTIz02Q3Tx Rnt)abC5y,AJwN#msi_wWU \D ,Y8͍Aٱ xz`G,+6yGvOf cQZo}׸BcLy:Y?P 5ck¼Qm~27[(B eV!s1fuƬS(u7q'Ʋ֖8z3>c{c}C}uI=j=Qw /H "RsDyܻ΅x?sFXXdi%>%p''XmniQsŨtw{X ֊Qc^}vxA1pMS9<5Pf;ޠ3@թm:?}u@I l}Ev,[ZQ.|Z*Jt"]O>N/57.)s؛7vŭW=J?@\Cy*&lwG @{/XIv5X|F8) _=aa%hhYMx?8A`m(Ć+Q~5\Ot+O>q 7aqZuz˾ AwD{R{An 3,k|1;M)ݽ,hDyIg*>>N'cM_lJdLb7"^NqNqBP8#Z%^YwOֈVOV5?sΜ-_-}}n[=;73>m(Ɂn +gt@jfuƬSn5qڳNLg ;c'eE'4gӳR MqF`P0"&MDbyBEEH`8/hR&4V)˸-ju];z}CSl}AgY퉄_g{ip&sdFOSJR޹\gَ J]e3lMS޸`v?w\ڻw'L`9iVfPҳ3^/*g,8fLsZ6ʛ- |ߎU6y6HI/o|sK4`}Yڋ5sܥt,eohMJATۊ{rvay˾*  ϡiܱlU,rLrn6HQr?} кc_nDo8XS%1Iso+]B]Q{/HBa@aֈVa, Ձwӳwz%w_xF4R56͑ŭ.40\0J>AwsD钞]-c6.wO")7a Wނ3((Ga1O e?fazV{\4ŧ޻kD?][,K`!q S ۘ2?8A`݆o[(nO;66C=Mv0 _۾3>ؚiq~Hm@:HER9S=o1ä kg3:Kq0L fߙ늎#͚ۓ#~4\'=-# 2G㦤7o -I!(lLeާp+[d*3:bwYw'OҦhم7M?TP_mDm]a^H--{xdB% ] F2'n>Pֺ݈SsG(Rgak{q&%4k-Pۋ*R@֚qOY#6<|e]4>/Rq-cپ9i,ʍ&&UkfdO@VMǾC yN]z!xq+9pzV ǞЎ ͺܨcFBCjgW)bf`\NP%Khi_ :%GŌ{s*}0NXe׬?}Uy4PX} ^kT+gLMx(?h9mgT RnlQ&!M?"Ѓ )bm cO`YZYQқ7vL ;ƽc`50g6,ncGwE𮥏hJ!~{"YyNz)V?ŏx9^{c`yizǦg88ݵ0DaG6h uoɅw%3UE`lu|u `+EKtdKD$cKNzyϖ OB0`b" ;N&.ύS%84)О4Fb2zDiE`JT+M&v$Tɼ{zV{TBf^R([UfX1 "i2gMf2^!R[~..0k%h;aݭ0z$;zMfdeZzצUY)b=f O9F ѳYshnYہ2E}ǟ&k (L݊?jl_o;Y,{ o8(#(K:vIv(MJۊ)eb3[_<@sڈU?v63gƏT VBLA TlA;$&ےZviG; й}qs֚$ LbSZWqABneM/|`eڕ-QON]w66w.z*]2x%^r ⤿;5z(,)2u Q0B#f4"*,ŝ3"mQo>T]BC';B-#Ь9ՔQ(_6콠Μw ۯyY%$:DB@>3}BӣRsT7/h/ /*}GPA3 }]HjNA(Z˯r̿+[/i8^d\#!п)+ ¿ywJJ[vbfcA[ܯ!:Ju^Pl0*:o MZ:w 㺰# ޒ6HrXWX?\\Ǥ9eI>1 A B|oD66zaiaUaVPZ [Ȭ[f<`3:VDH]s-Z;vMCaLli1B A\mRFW {y)3b F4H/\> ^vFh#R5ok/܌i~J&}ËX/JC4r 2s E/)]O$zJW~`깩u^>'E{2?1žŒm''6eô;{!dXnDHf"noe KQaCJwڴ:F`$N$U{vϙXXшQaQY=-7=4}R1 XLhMTX 3q;zM g][M7r,p/n< exGիHy{r*Ys4kܐҽtH˛QwD_w“0Icg4T3t5q xq[uWwPh脆F]K7vk3F䚸 ŵj/<\6,k[؈z <ץW'6/X7Ȍ)ӽPރoha*_(WMXz\ǘ,E97cg "m3K+f@XhaoQ",u[ׂ\4@iTzi%6WoE@a*\( =dS?")IE 7>5Pav*q27-_B}SH9ba)+N%32z/9mOm6]KGC# 4<i(boj]*︬U:ҿ52 ߊzqc@Y9MR_,Ο/:7 ].3tJD-ߑ]2'06jNk,|U.Ps\4dA߯Eo[ =#l7kf5ͭPq3k+eMuA bk[Yove7L\^XWi+z_0W ۡu{fB0}BӣRSPm;(%Zct:0 x9?QL!Z}ot_3gޙ;ZL}oOѴl$dw^>oR(<OjFBkWrgijflrP3jh7Jkz1L*IRhwƒ5. ):B {Ȃ^>[7MC{N}/| w]|[1_К6 "7H<'/YUBH9LV/n*PE#Aক6n(72&(>ӛRS*Q\擬\?nyYk OQ_ (-nP4}7zq}vEܓ%?8 cIʸ$gtvtnfG&T7^/̷?/$㦢T\͍s&f檪Z@N&\7*rgM_6 =Y*[|}.Y7}ӂʌ,~Ɣ*zzyPJ1>;h8'iL+ǡа <9Ydj(q{}†pkha=h=b:B:E=b7/$[Ea?t.*vXeyS+"> hV資v6`%1G#e07b<t!2{=|2zݜ[: ?Ee5;R3*#ߕQ13`7O)Xu>Uw z^4&}AżcI ^jjUq~ޫ W9V0ˬXtibC73 .R_θ:/Ҥtɘ"7roQ~y1{ !,2&_2XH=n@h; R:hhS/)^rmPFNkpGrǎ|)<u}e1!9z2]27+uCkO=:GӤ4ԌJEqmޒg2#=ϯ;t팮Ni9Lx5qm*pww/y`⶞bצ\iB{3I26(|>xƻik;Ci=5P&Zy,5e&۵ ZEwt8qp3UXs.NǶxT̈1<׭z(,?"_qԓ`w?V5"! F&dŬ^v\l ]xʦr[C^c 27Uv0z:rFW?"Op}I0|$#V=Oh8L܌{723'U/}I|r{CK:-!vEXF5s2.)j|Bq-ȸ'fDB#r0tBC.cgW_l/[:3/{'[B[^ȣcmfջU /7./nPY~A_M-j%j:SώZϋC)k9?j롾o?8V[6A'H Ci?}ѲZw@-/qd?G:<}CԓLX@F4bF#2i"x[՝V G5 {A4bF#PS^Jpa^< OMmV{ ;o8d1I;l܃+|}҃_y>$[z궪Q:>e,$w`>@`|i>@л[۪(ʿ&_uĖ-l{!۠X-уӸӮh8l:4RKg=z+]1Riߧ KAaC^ٱh6tMJ^u{h'6+E` k` r CԳ2WçncKQ͉Un,f tQ,EnW>:l⌿-19_bx/XZ(aFZٕI; C +8C_]~O2Hz og8.TOQ{ xMr$ب~̨O7.OC3CR \_@L^Z2G\6/(6 5qUZϺ'iX0W 2en:# rq$Gzv賂wgk!?cV=NVXMcugɥK (HӜ\ #&ϯrZ2rv)8,ʠx^UY{hz( Q9(ge(\, \(c|y_COFL܄rSi u<%&qSaNrO͹2:B;#X L˄D)p-QgA/޽N)N\\iW"hy}HntЖFi-0ґbʷAyx/:oM14GeE}RO[4w6Sfp%iAON{J/Eߥ߄2VӢоf:a"ytQu}Eng~7dw,:~.ݯu>SXN&ڗ_hyRza`88b:mxNEX e+|I9p xsg]\a!Rɵ)*կU×;)3@K7fu*̳= 8^/&̳|j/X i<\DLʧ|f5EprL.uC{)tSr :ZEG2/5/;ZhP[d֌ 2-! JU^ik:͞Bသ5xQN;W| ?H jfMhVevqK-qm?5j7o"0%Z<9R*3\~+dR$\Sm-HFA\&K0}FӣRS*qyjp.<~s0-zs:{p@{jrr\)ųoQ$ i=>(h!BQB+3wzLy}LQ%bGv,-ܫg8 NE7 ϘǬҟ1M zR|*>ꋄ(4N$a V$%7 5uFAT> :exUnqcɼ9ͱh%AAkhWKlhaʈv:|{GH[sMD Գ.**|쯫3Uk/gxGgs|xt{3n^7RD uH|wON&TܭLaJ#\DHB¥*BETtNpUa(dF(QhDFTKѓ{M)Je->Mx6 hM\R&gzSL/@y; GkI)~\ `"Yu-d$omJ ;7~9a.!о94lC܌A0=kGިykBoEH;PҪBovfT*5X&y[S2)}%9_B3}BӣRwŵքFaa NwܱH>kמ51{>J"HU7G]Z!-ĝ[8g1tIKvK,Պe)6j~4lgY>; X*g %`>ˍQf:[egi\v6Y}n+zɢz(wOYAo2ї~M<`Fhm7@܌. i'\3\?=EeD5;RDM\XWXJguE!㢀.%/o&nBqgLm{0q'dE&걡8v^:wFNQT^RpFW)lg^di )=ވFNMK!_T$ :6$f΢:񝲎 8jR '*Gֲ^W9x} .Nch رv-?k_A2 =#g r>Q)(M(=i>>g2&@| i,?0iFb^}= xFf5]SN2ݼp~Š(m]S@Mni. 8T /FFeVU\ xuY@ϓYH[F4)5Mv׀|qMu'+Gн'qn:$"טݺc<SZz?y|Gڪ?IQӐB9Za ఀN,.w[j/,w44 --lёh2_4㋢(cЊu*x) VQ [˫.z6//`X|͝ൢ^-CB90/w q`ԙOф(\@}1fZ^a6k@ݫ$ ZEoo aO >TR+TP_DQ&̗ {& ŸRRiC>iX_+8Q&,R]a F)EFItfҁk, < N[tt=l 'l-i 9v&#hdM Aa:෰2G֣ kr|*O!ӖB7RP4]K/eFaoa~?W/K )`ah߼Xy)LI2ڴ=pCW8)7:S5ߧbNS1GKL|mGqPD~t] v>s8Z.g`>^ESRתO~j={q's=55 )m}`KvQ=(B=l`Yo$pUmRЩcKt2'v7iM~x9pq2T <"cMɦV0n,4kf*LA&nrW|EG9ČO_ 3C`hSjJ&'V^d\/IspՐ"njpL;T&_mbϹ(A Mܭyÿ{ U (]wgoolӌ6iX{ivm ^E:J{_swngAzs]E@ѻ5apnot>lycu{y0ysQ4:HwŒM y>B϶q7 erx=1:bBI#i OњCs)hMN\)ҭijn iSq@̚YM9Ҥ)-vͺ;:d.iC2-ŝ.QJY{ ID3Ag(4ާYp:LX>AMqf.cZ(l'3B_G=QɃ"BIApJ7frf#9VgM{-p>xы<YM F ,VsN=U3.f (_fW|Oq tXGNv!yވd [($ qcݾ,?B>Kn1K䴢y\r# =aheE͡p~]xKZȟ1K/ 03T`[~O\ȱy[) )ah߄EfB7|x}QщL\AsCʘY) Wwι6^k^.d ܪ; }߆Pebi$ie?cGuoDOI՜,y-LzϿϝ-}y|?>Sg5Z4J[f!pAc/ΎoH,85nH+WUW_m4sy -kI Lv.Bc/_$XVF+aNpCGύ~u$0e>?O1C ELkяԾ7Z ߕ: Z"}3oJ}:h=)/O~ }qlW=9 `r؁.pvs欅g&V5HVLsH{>mz>@.S`bѽѹ/h'^:Q)(x.XFg٫nX2_yE~O=}?mӗ>d.ϕ֦ 7G> Rx2lJ1o=s9<1>ʛ&.E(vx#_^k1 &׿AiH FiY FðbԠ0y_u|@ )C%̢h]'*dh^~?`Rνr&Q֌ C d@̫>O\ZJ%X-"-j%=ԒfѬCs9h(MB baq.,dBDHC(2훃}M-_'4B+r иpd\8m3-HBAB3}BӣR5&jJd2'`3s Wyg7#IU3&4{&Iz [:jm`"z6se4@Mݛ>ᐽkTH{ʚ)CK- pTwdrY0i+:ٜ&Rdn=_ݸ.zJe4RQ=QwBvLr_B^^W;o^4]v9n(,hg=fs26}ç":-VrE( <tї[pE[, N\. 焟\ɑ ~pE<>De*,m)4 GbX nJAm^quKK|fM{7F.М:ւׂ)xO|h|l$E7R1_ 5WqP_;] {roqzZKWzz+=L:^v]i5gu~J2NC\rJmYs*̜fDBɟ(=,$/t}3/4nj% U hz| cw:1=k%atiaO,/ >4t*4)QM L~i撌a?t<\T췌^۽z24FQ LB)smщjQ(z,JS =z}!rtw`֌fEB79qGVoV*i0V~[׻mFEIER0t 6T7;q- ;#$]+)8jhM?(nv⎬% %O4d8"ȑrŹzxwz{$lGX*Ӽkqr$ӱ a~[\๮z2XHƐ$ת|MEVfl &7ْBzZ.S|$d]|V|+|~6\ly@OP+X@RNZ{9`|כ5Gͥ979qE%az>9ftu0gfMtiR.!-<*Ӗ)Nze_ܫ.QJX%lu̜ 2$ᐻ)}"YWr量R\A繂:@&IӜN;W%L`9Kyy7 F%6VG~>QDJG^Z&S?ǧx d>}?vJ,RrK["./t>y7 :"? ?=S xxC!Wd ^soɽBgQ<Ηuh~60Kߏ`gj>?,_Av?TժZwr̉]6Vfgq7;l.۰iHiS{JPOuxh&Ka\ 8;S!k2`ZpP.8*g1c̅s&*lj/7՛,-& AzI񘕩ݛWU59PNyW)i"`5%)%UQ4Y6y ^`ʇQ2AOh͌D%97cE"u223n~)}@-#Ь9tQ(gwOC]r;DB@e-ѻOڏM u^}o[7 E=l{zcKݤJIP*S[9z-U(N4.XM\̞"aȉ=VJ)dIJ ϭf&e\53:{$:|quȸ:KftIO!uiRƕX Il9:`[ݙi-5VޮVO2t}1ea~">*[@dUj}[;*:;%Yz,Z@5GzVrAv2wdlCFEy2>oSxCYzPF(h/#T)|EP>h(Y!Jm fN?Nsj_@n`k1KE4–xPɂn^(t鎝Yo/j9WBBh-5XYs0)5RQ5z[6_2.Q?3 MJA'%6.sA{¦sǜ}({qp/-gzk3a=E$YصlD͈t߷d9 uEshx>)r(K(\6.]}w8@ex ZwG7c^ ˔(a88ܣ)4)Aη;iHi6kB(4$i!pt!!6$ޫV(8 $UHF9g6F А\? _G`HP~5s''(%I\1n$=}mVQy乛POGPE}dg6/]t^a9(MN\cgۖ}DsqJy7#pax:;G^gom,4kvf [O?A$/Hy>߆m>z_`°+SrE!Þ'rW!weЛͣ)f쵗Z$a:l~Idv(cTo[< (yL_xV$2j>Vr 52u$œ!ۑ/NF1{U\鋏Ymt R\/koĠ'Y=o~y@#V,|Q -i3$-xB㠪rƈNOLdeӄM@ҹhF xo35LĽg%LeG0/}bYHjP <ɳ6s(#vmNs nrjtߍ> ),wm&et7{`Ka` JA&nrr[&֗;0)Ar~(̈B4}7&T*ћ>kĿu#ݗO*[iX+u>"(X=U$F8xhmU;ߏ[I0*T$p &ϵ4`&߄>1"=p翴B>y7uoT]ҙN2.NHGu_~M\30>Nƍ1§6 #/tDe.:C.㗛 9=htg>:cU>&>麣G.߄sy8fGPFu^uSC]ɚ*fDɢ}aRi q &'.ǠL3niNEC4^Wx=)x493=(5;ɉ;k".r O͍s#hF3=(50q:SfKun %orº,4)"j=ht=?'w ϩ% ݝ1|V椢d#8!\g.Z֌OMBQ=Q9 dڑ-<2sHFHq1ڑ25 EJEQpPrnCɞ-e9Y !;v ybQϔWǛGo^$ *A`+XLl8G]o @)Tw35zuÅ0ZdO.ZEىemQ ђv$(2.A^ hbtPf2أxQw@T ]Q|' w QW-lPTpK1_2_iVM r/My>kh>у fsMt4} {@MK&|6!47)Lk3Bl~'\9 jfGHQ7_4_oG뤈4E]dc1ED5:/T܂[Or6Co5 A~Yziǭ{Dia|g[Y<(2b)QjM{}I@6ێ>&/` ;tUOdtXՠ8~i%jݙE}/Z_8ĀSofB'?9ũ Uk-o M@d?q*Hkct?bSAS!o ={4˖ ^'KxZO SA`DǠвSAG~8+_9y;3\~ 4YFrPƩ0/$q*XDѕiOFÈ)qOcpGR% kO,4kfu[/ tgϿkߴ}̵gNr꡿ \xr]Si-sX34g}Ohnk&FId:Nz/`w FVpnߚ[׺pɴcx8Ou`wo֠9+)|w1m6|LbGG~p㭲V*+rp`.*웂}#0Q\l'ZЧv>]Q WayFa(̈B4tFCRsPf`͹q20Wݏf_18S0)5^O}Clig]gKg5dsf<f4Ua41q!$Y EFm:1-F zBt'pN)ʛ 7z+|Ag""\xZ'ȤmB.Mڹ!o'<[s4E]R~vxʈ'4bF#lV4I3Z־N0耈Q?RMĵ@[ypvO_Fs2zrtluN{-a?.qwփ{r%G̃{[z֫$XSt {M}qYED]ENXl-(8IXhNtz'K =[\:=zLfAls!m߹m_DVU\~=cT+tO-7S4[?z)V] GN&):웢}Rܐ2!t$ Bm,z($'>MP>% &҇QuÃoלYLS XQ|̑蚕D`@-#Ь94@ĥ䪡<.v>`fVtb/}S)5K,UǂǙ䰦&"ɹ0# ٙM yGzZPo6 \P8u,?X;QIlK'q9HιvWe߼MP@/<7y"5g+7o-1+ou6{۹2 8nX-}_ m`<`DϘ^ۥh%I2qh c8b{pFN~E_^wxLG7%ٙ,)4a26=b  =K7lwESb!G i6X0ޫ^5t~"ӈ1LQ&_RL>A~pbD}m4j߷J4Ъ'd(Lh >nh$Z6,6`ؒ&^a) NVF!Uٚ+%t%r@6e#0bvF&•A((JWa7Nѽ" J=L]5g +e dp#tDClHa)s{JlPO.I$F4gHΛa!i|u柎3桏S>V x`]d`ݻ'2GG1#Me;>2OGnFG(+#OS/3ƙf%Mv1(};>95}cVUԪ'ʜ >Q>qt_)Җ)@xy&_@OBRPXv q&Fھ'ۻ 7|*O!sDSvx#`DSar*|I\·<çrp7{`7%D7:~RzA+v hvpT>[-[N6wSxkCZw0y~hUJgE¼ bj.{' }Cko\?ۤފg$iK [2[h:|cKV]ϗ^⚷]2/m˽_Ke׎A9gMy}綅Q4YTeBXoTg-pEajS@(!v)n(,P0Cc j6/Ke@[̈9T rfvpcQw6+!ЬiYY3;.:c1-51sJIMp[g ޓ) ?0h^zlMCFfvA=9oCq70J -2 5ъ,v)ne>6l_=A+m5;z3W>$۝x)85xWVl|ðІA¹'kk'tUUSSָ}LFC ǿ)_ tLohu317xJdEtɋDLQ>VhMT $8*HpN"s;ɖ%e*ו ?۱}\[x~Pg` R6Ճ2= svl1 i3"e>kTU 2Жvi<ۇ\x~ =уv/nr6K:Ҙ{O:GM<3"h*G:k-&ß9< k^~a<92k/jn.Y/)bW8&(1hyրUqQ"{ C5ڇ/ȕ|0N(̤2^ESBDGɬ*+S:Q&jyJ&_.ùLʄRʙ.ugRi#N;uT5okQC܌v*^ t5o?-UZEx1p -|09h?9:L!37NZd ~ t JbpGxF.Q1IGz\=:GӤ'.YRK+*XFayu'u\;6I=ˌDggzP6~gXydP4 u%Rb \XŤp|эQxDvXJWGmi, ʹC7vH=thok75]yxƘԤtי *|ԚA8VuH=惪U6}m^pqMĩm'+RH)T`TZ;Ps^w6jB/dメt_;2i̼gCf/j-p(nr~9L.tt쯻lmFEH;mu)umY}^/<̶ĶYX\rX\_p\|k%J\fv 8q}P\> 3SS\$ ۖk}>m yfUrB{\>vUfX E`Lx_<ޭ. Qo~5^qf%>97 !>k~0>~_ nE/!7ֱA,' yՁKÄ'gp[xGTϢ&o1G3%m5B\X`{p~ }}4yb)ƿ%dyZ΍Paspo􂞢L>b]mCڈO|ӿKV%~^?81cBBpVaZ)K,;|OGfMhVgK#+i8jAhALyx8}s2'_ apm+H +y Qs{z }yYy,63? U5 *}Ki;Ib:|Ad߆\39c9In$vhj@ S.9uI }R_ )[=Do]F]N\U n=LmkRb@xY%%gQAFLޠpoζ>It>lSR+.9wt6H3̌ h.&nv⎼3$:1o^fPξ%,fl`k댭2)2ees_&D!>9ӃR:&'xcU&@CZj qz{…wsFEWZ !3^g,HH㹔 h DA+4_dEekOrm"K/(3WY7]y>xʚ* OD8MԺ+,ƻN&~V=Ua6YDٔ{E(pVDM@?[|^O˺l2_ZiPrj )]\)`܀Xi[~߼ɉk5r{-"xbBOD=e@mJ#W/VުUFbEp(妶pLG4} 7Ɲ⨲-?ƴ tq+a)Z>xk{Wla(_FQ]\.K?wq߷S \#+*po]\X~kK ~*+b3:ӲO4JmǮX{bbњZ6R}Խ޻Ѷשj R2ſ鿭|.cᨄiƶdktf3{ևm,JSӽ>?1+29ǵ&m b3lܜmѨ'~19;_hbx VNq pM4}d[lŇ%0;j_WeքcWvdL,'R.o7۴*m6o= c#%^Fӌ: +/R߇8;6JAW; ټ#j/~f$;A'`3)˜3F#sGg"~ϣE{@U{o>k$\!wJx>eP},hʎiϱȴBWY 1ۍςU%A{ƴ7C|*>:;5ҖiOx{Ah Cqw0nc)q>ѧiA)<5S2)p$QziwK6jBTg{?z:ŷDv"][IkO *$퉠:Btܑ.bAЙi6wfoJ7Oc%%FȄv'URN;,:77lNo ԆY:q0`k\ycGϺtBe /~%UQAHVmvݲoM6@5g3R,s^©wr@0JF`Ĵ~%jFټRMxsX:W eNB`VE8c{]ݧT$sɑmXeEP2(G߹@dߧLOd i >a\xED(2c^x |3ձtȅ@A+(ʜ&KRϴS2tz:V1}"N^po@-dJ.p"2}1cp -8(Vx7_D (#Ј94_P|Y֮#h[MtN.2zskbg扞LsXof2m3Se)V84TO\]Ls<иI]Ѻldx93f?Fzm 4-i0I} h{@+X4%}Q2o\ˆ=ɢz@_=A2{ ^x dL+)ˋ&́pCn\{e)Ox\#TI֍v=wDpE\SO XTQ(ðNqgd(*xC_hev`fn+}sX!乱OdJ&U6t@6MQKr3yC9*C翥M1ֱmg.:Yl,1G#Fpsp3!ɐT ? }4 `_%z⑹>`xr_ .j~-%LM# 1LTmîͭ&i) =1'm19zZzqHȗE ykv pLǟMԄJEqhݡ淒xҟ㢔jmzbN[Ղ^0$[5lu͵Syx+v}V?"#:drK>7l{>&2'\eoNOT1j,x+ag=?LIH(ϫz(qjPT^·$Op] ɳ&hrCjxdA=(Sv\6:\ ic窧@ԅb< 5*V\60ZMfzJC8|(NFp򬴰O% Y[uB}>=קZex=7p ל0{p߀׋IoF2ъ̵2?"NJ"{_XEyY*xkV__mu{fY)ؓt(2?",yB_mP[ DŞ^|o8ˁվhw:qgEVXrZYDpw0OM)z.ͫ,r>]̱2Zydcؐ6hMdff'nX:.%]/9.\ h+r5RSPJ9kIn󳓏y~Z<_.3z\B̡œ8.8BG7)yήGݍ7^3k~`Nv9RKٴs)򣯢=,(s'y1I 19>NZ~}l5glth%kguֺ`勯k&|6qG)Yf'7IDxGϷU_z/#sWCG2O-_usx[Us}-Wgo:^S잡 殃 u<H*pl&y*8X)is_f՞9v6H*o|1U+S{\(rbA)f;Y6 Mz&z^if~`ѸSn|@+10i:fw7P na Ei$3RH:T)p@f*" S|"/XX(UTnڍ|A{Nz9}Jx!eҸ7s{WpөIg |`ㅃ\6SExC,gP3}FӣRbayϬt?bi9Lϕ?2]v+BԬYxwK{3έ{1[Vh +-؍}w 6QZx*ܝ5*3zַ2#sw#TYE`YgoeM[3eg~o;uHVxU红'Zj/ 5!|7<쐬)Г=hCeTQ\된p{V1Tve@[XhiLK/Cr"H7uc-H&t@F#RܦUnuiR:3;J뤑J_ϒ"uD=ϓ']Ph| D1%^ٙFLdсNt4`Gpy9|,uV  *g:þ}2PiJx>B@ k:aO%rƯ?o}#x2APW u4 ejkE5;, }>O+v]E ݩLB:׮qvKiPikf|yO hŐuP}`먹r[vB-CyK93{q^nԛGO:uhYAo= wkgL=$zm)¯/ҩbz Ê͸ {1(~fmp 2lg!SZWL?Q>=^6r|gDkO `XcJi^y^ͨa^bB{nfɗ6Tl"; YlGoϳhÜg/s|j͜nLؓg-:%1! <p|̶I $܏aD[g$11ef gҤ)eMt7X 345wσZ5i״<ڜՅwZd7p~A[&C*y4^|Oe1۪xX:PזK{ijY&$}~8,q{ `7%D5YQsiN5CMMg9~@-;5&0zᬛBK[muHqu.KdPC`VgRzѼX$͑58/SE"$hޅ~s9rɤ:>H$in3^]=8s`S-tYnEExz($uqMS'r=VPOQ&a8)8)w9vzXA;0c hMdEFeXCQۭff^W5qV%6L^:YM؉y%3To8=SQBK 07;q?KH!%O m_Y& %t7{ށ}p: `VSj J5q[ngb?8siY sDJ7%Z<.ڿHi}o;0"_߄g ]D+KGU_iu yaru˘k2&B{W/Ss;`U6!=>[70?z]'B;•wzג߹ !+H7=\AeCPLr TFx H˾KjhExxYY7Y&EWbǻ emO -`&#% h(x䙛Hde7a}Dtxʈ'4bF KAa&nBq'ćPz)a3xYF/C-Ј)qϻg sΠ6 [. Q6 "cbݭB E<;H]yu,1bck9wV{Ǒ6Cሔg Ϗ2~PlT&h{Ie~ 03GR덯>kZ?.:LQKm(Z6nx~A!}xh\9}@4Bw/~y,{vP7ė|O)uLg9:0:(w,Z)@4hM6@܄0x14l-Mt>X}e2IB[959R*MN*~U= 6$\ :Ã/3RM\dEqO-I>].Jfi D 'Z:N[l*)520AuIXFL'W:nCfzAQ~X^}t^-mwgi☍l\woF,x乆8сy+\ʘ>Is>Q5rڜ=d=p>ΰ6L_ԋ^!ˠ꿙2Sxyk&&0; ŵ鋳/Pne 1/wQ#b M 3/C_6sW_ ]"C C!XqR 󗽫:Ev׻Hf/4Ij7)Mi!V+iΒ5M/ 4Se/4gh.|'L|76mm@/2ja̚¶}5{*g7)޴OkKN]Hzc6I˚,-k.iYYQ8Ai/[m$l iZokz6:YxXM2z8?HsSe)2vCm톺j#ߡFC;9h2Ј&wpZaBQ($\: ?#jA :f渜XWYptAt~=(> 2D'Lx1͝%;~򪅓c3,UKy,0 W][ {[oao_7ddRx YJ;[bJqy3à!Pk BPzT?0TV^21_ǃRz p_Ka0Hr:`|:'ko)>yfZC>m+zf*\\t_.^"}+7h-ޒ`}r[x}ފUOQ}GUu,;lģo7y-[HT$-aw%R|M$sOZ8B{ Jm7Y}B03[Ň!FpRD\NچxBkh͡4f'C]B1Q&t@D~_0 z_'(qV@!a 98/!)X|ÁR6RVݺLΦ+Q7x,}׫J3ڧ 7Ws=\~$,O_cX fMѬC٩N\ˢ4 =gwCfTD]is,).sp]塖jjnndq<tTH'mK{Or3D4f~`郛9(?$3% p~_$5w2bHcSO r?$rWG=JCF7 y(`કy& Fmg}x=mzPΓ^:I3IH|-zg~#3W#B;wg#lLeS]emn&X) `Fh84Lĵ{m[SCV-7HbGʟzʝO҃OLl\u32MJ9X>} Lm)8]QstZ" Ohqe 4qwLkh)\R#'tdtf2G\`qSj J5qW1Unhrr3\;6{ qOC z3ݡpr<`5d6ޕdl/|R*w/ CQZ&.S®L2{rZx2[!Hzhui a:# ACl V(aNhiU.kvc{Vwo'*^p V(*YbZr>-!^гpbeDQv]wPAzpo :;5 ;;Oa;@4h&C07;qG jn3>O9ɬ5M)Ki-i.~o{d9`ah *r?cb h& E\|vC^AϏ .m5/{z}ylC/JEz\{6Z)Qv |g+Cvv.*saP6 Ƿ7xY(b])Bq~v7NrSߧmUx=xhq0P bLn;}j5-^)Fr? {x&h(.|m%xI5GB<&KdCa)(M(2(f /@ !#`ğ'/msu'|s{3BٹL8W9fhvw Ps:{ ,ݏD4t5꺤c#x R*fƿtϗ:0%BJaTՃL$ o}\H ]~U"ODO{K&KdAO&-/eUFLNe|Ys<,KhFo|{3Y[VEE=EQvyk8ݐq0A& \kNћ,単RPPܙXso_xxw^jhjJMԼͽ)Zg͕α:$\7&:DF@>3}FӣRSP+7 Y4srnpK B㭃5{ofPjoܸǢj3|p`L9&$sҢ̚e\awt[ Zf! !V@&QsˑvHPI>.5”1X3H96s#z8YMs9jnT7`<͡HG.uzPQ1ѓQ`DT8A;C yy?H6Fkޚ +(eB)'w!7A2u49y&gVeB]L~T*)~K zkBoEghqTjvJq3kubZ\,nm}F0 ܻ#g(T6 u9BjW'Ej֖ ~Eٴ s  f82ȬnBG/{z(Q}lЋG?M{t#~pO9D snoX*e*t\s*>Ϫx,̄槔+\JV.TZ,켟))`9wڨNjbcæ!Yd vD@$Sw)w3C*L)Jh;TXv q;}JLSm/\  k&gMeB].R (N{ -!3¶Wa<;)m:o{ I4(`cIb裛00J0g?BP9sR2}d]Od_E:~ o7d }LaNEC;7hce쐂i11*nCW({so%o ɶ^] xZ|ԗ OsG.> cݟҼ_lB'IYeޤ{ F*6yjBUF o{/?>Z@f´;o%(|sk=U7Y<[,..7>(uJFa<"Lzln EϏX@x`*GEG,;_ 6hMɆrP <&{415=n2JS茈F<'f4]K/,!QVå!:|BGwK 9ݠjh m!o3g)YNB-؀Za|#CGGcߧVt`X2RJ* J{A`;y2rwD#(SOq6HަhCğ}~:iϴ,: (Ep+Q- y6>dzۥhv}ЃKa3E{ZC z@HJ( +ҳ-¢(SѲ^[CMSZ" U6 Pa<"~̚)Zs(,ى·}wV7}n4ybBODG093kf5!nr&>z׋:i Nj iK>4}%SjBɉۘ宛+ř,cɷS\t~\^ pp<7K0-݊kN|㖾7>k~\UdӁ5O˂~.1e0wN۪(ʜe^E:Ĥ15zqg\#=2Y󖊻vTI|oEn<ֆ:~m.Rjo R(J$0dbĞ7E$D.Pa)(N\+cz4Elzs%t.v^Xfula?qR9|Z^-w3vCXB}SOciiDgff=-?6#|6oot¥~1W#L0 7q(ޏ 9jd{{N{v6޷W],ƕ Yu9B基Z{nH&~S [,$&E۠W^4Tӱa20^AaS6*&T/ Oj~}>Z?y`\`[cFfaz |ҵQ[dk9xVQbw}l/Q+YOfg]>vC}Go2XJF./ZAQrI. $}So^z팗qSt? b%(j%GcC`i)66a+,mZL*sgs/2@AoӃS0;莕Εйq'AFn4焛Ӻ{~'K'LF uMGx]旫"#rz16efzhlgpR˿?j*,\}sVrD7·\I9[t3׸QU+ *闓cdwRsTE(Ap+y\Wzlt2_NȭYD8$$c{'lq-NQxr'<&Q{>CE/W$Z ?L¸VPeX> ;B̹6:5=K9ŭsoA7Tg(?|pM+z;/~'/y߁Aۥh4&[* \}otΕѹ9B{+!ЬətP([ :g.&Ǘmn" =.!31 QoLXї`>,\  l8ɼ.\ t-y'>2@Abt.s@n1lYN/O+kCO<>n 2o(W'+|K'-Aȩeqs +Ӱ 5k2'r(u3* CJ.p=%ra4\-rEsǩNR@B Es ǻ[ڜ5Ůъh/֌ފ{h mJMThUg.qMI&t{1983RM܄:}zؤps;"ZNX+Ʌgu@˲P;H\`4kĀMڃ/'=VON5Tֻ.sw:X6d7Y\LR4]p5P^@wgT3/Q~ +/m eYd\8{dlpq/Z \Jq Fqgl@X!9m %97+0\X7LŻ[BwCvZF}/(5oq0O a$[ 2=  ߖx]FT:)y'=*)V)MKw}h(8.B=H:zhgmQB3@܌Ik?q d~)b| ,#К9Xs)濎|+DFjᢐqQ@Ge50tBC.=ml qJW'\VJ9vu¼@ԳߴǩkW^84̮N(VDܿW48@)6,ϢU{]Uyj?vuL4׿Ep;_n(;`ꭔP ƍa!Π9޿:Z4ڿ E]}gOZ;Gfoˎ|{[MBР2 L܌ήNq_rL: mfꁜm|s0179g/tGy^\,!b̾ QIK獳}qL:OIF+[%p?yw宛6՜l}7ٵq_|.fK/LL畆@K]55LQy/ f~ y@%]\5"i9-x ׻_* 'l2j/J%G#xBϣ>8?TBdmun㹈jK'}@zsQo3{O^ܜNk ǟ܃sGא)LH?7rJ|>g9{1iRI=ϑլHELk$ߤ+%2vFh#r0kf5E*[M`qBkAµ04/K>4}tS[Q\*{LޗTR>76Vx:dQ ](CpyC|~ujVG` /yB'ܜcxJB a}1 NiaX({ʤMѾCV?uYtpKZX;Qrl&/С<1tz$ tQWC.0(SruK '2Mk(t>0c|{y]$EpGxLA&nBqmqׁZL+w䌎N,Fx 7&T*6bxhrpAN=q.MԧJ5qdşwS.0k~bs޻8I:wkŠ7yq}e>klA֟@^;y<Z’PK6%6Jo;Gs`ouFƦ@'u BCcᡋ﹘#;*JaƠ*-0) 60B-!о)ɉ{ĕNpu@L- N9~O:U3R=a"[_cn(ɳOtsƣo Eo$U\:bS?8 ]긱i;95[tj|qmo"P [ 1=-#i\r~V÷h['. C&Z 8at><=KXKȃ:*r~ [B!arx/P =s!S/=Xc*Xh7>pQU.%>4t6 RދreC?5.wh?mJg{ϼD8ptx:==V7`t&[(A(A\}fdg|=^\ۈGNK¾HSk}1xC(Jj(v:~!K-^zH p>E.;7m+[ی+iADhxB4]K'wVP F(4U~&GY`茆F]&K73w\;kn?unQ+5RQĵfu'㺃C$+;5(PW))bpo%\p~}}cze\$~V 1g}>R&Jo-K;,?eͶ3l@ڦփ #%՟XrӯDW"qxޓ{9LE 7_ZUt3ϗ VuT=7]ڍ{cԯ3ng"[ZfWꍸ]J@1I,4_cNxf.? j y|0N8|{u' 4P^;KLku'僓'2G(f ~ݮܽI׹jf%hNtu|~a#'D>ֻZ:de~ܟg(ny;(Cʸu`VW7U$jgu~!rt„(DCg442]cʝTRfBI\dxkBoEIE 3 MuR&'ά?Ñהk :rFGF_I~hO]):(m|rWN։i b~[h[ 1ϕ`ڠT:XH/zrcp#$Ẉ…tzK!b0(%|yu>[xg4{Qx}G] "NR9A1#{H6EsҹQ"9^x@ǿ }R؅լh՚@Eɳ֦ۮբW~nΜ'-Kʻ/'L aK(D-?MC^V6>4]Q'(j hMTa *4q3QUN\.X?c.% PC`_eF]~i3qTɆ;֋:iF'E?HgNh A8ZI9OdqNzоzͼ!GM~ g3fJqw;&p|l}M{yjkORs4z5./yN;Posqup0~Mc;_brvĂyPd)6bc䦹:n`*i CchtXC5̦)L&󰩬F;%Cn+#"<8@gK_poݤ%}Նp4=[%֣ʖôu#ܿ:UΚJBh @RZO]Wůڵ &{k\iF׸7k+$7j 6jވ [։!H7L83&z2ض;Rf \bw^_E\+M <ǤT.wŦy-23=5-fU%P~0k9:@2?~K |hkJMRU܄.> GZ֌ފ.E)p - 'Ðj=~<f_,N'>ʴ?X E;JM*Ze5lXÐތ_q$YY9+qnu]k7=891z$о}>VQ: t ;+')?4-vZq_UgX{r9\]crPTާ³&fm*y)_<_{E(Ά-T[ף-zϚ eJZJ%j3UKkm 5d ,E 079[>ϟjjƢL.:c%TFBDgD4)5S2.)- 5:/iqxufvZ Pu77| syyy T,gvM#LZ|)1|$&tS;V8T=di|((P9,78ΉjU{'^>R/FέmP 62;}U?i$ knX/e#Ǹa/əq\[=tt4bՃ27IK2j(83zhFWN>?ZNʶ.+z6qLZwZ)Г=)n(,WҿdW6x7I&uiset.Dt~519#n_gŸAX;'tx^FHp}bۉ^с0kw $遽?ʡǗ):.ٯF+9qɀr!Vf<\rzq!&"̛]{VMۤq|uz>Н?8'l@(I.s%J95,r5p}I[nyTh|q e^ep˟"a M)uJ<%㳢a|LȽiWj$u:I&<<ܱRv{8HPk@uڞ+9YFhO4)82#.;R4PjrJq'돔 皁fؐu~_ѵ{rЄEӧ`5)g&'xf]f%\8QF7BP3}FӣRsP28};jW] mSƤu΋J2䖐^в||di'[L&?}JJۣ", yԦ CB{ v[o(}53C >Ц Ϙ<-}<˪c'Jw Zf¹ 9 ?rL5H%[\ _%aX7Ɂx[-/vM|T1EXhTa) $jTi^Lu* xoS9G}Pk`MӜ_YA$.uW).HZsQ◲mKArP/ ߣ}&b1O:XƉl•JR.I'7&3>W{N/n{>OiAW|z!.H(mZ mS9 vZ;4tJA\7k\͡p=a/]-l/y,pfݩQ%kr֕TKd#:Fza/$'fl5Rf9y90f6@<: =]7cݨE2UbʖdFD'O R 1[ix2r|W]Qs#ͱx>G2:2!\{w"y ^%gezt7&`^vLv B}eirpeB\s)5;U^f zM< xU ͻvBFI{.3MAAĽ@`j{[w2;]&9\KxB.})Hi9~w>s+ŷpP(Y$˝s/O1(ўF/YCy@L OO3mK`31q7s΄0f{kM Y^GZp|UCsK$뤴ք+ +M"25ޚCsވqC FrwSI):H Um'S(^:i^ɽmCPǘ{G\l9~+!Ј2c +cwd/K&tIKڣ^;C7nTV޻?w,kImȸ^Kft<|9o2z/+qs@5QeXEgzv|=B:|tpsqߘH1K#&@ G웴Nz' ld<~2}aFAFQ5Rה<%YNj}@F8QzI.*NGq㖏ohRWk]Rzg| StY EXN>GYK {tx8O}ND՗-2LRCJ/gr{ýK~6;+mEfԞG}Fga6hMSB=ilkV6g ߴ)R2Ӵw6'( v0]F0L p7` f(axbFOt~PoO3FsN(=is8OJ㖍̂{#\x3ɳ>^+]%dp9Cgs7sU0_[#rpjj?;^:ts?DLև"kyBQ#" ͚Ѭ4gf'.-ދAqI5LGe5.sХIViHM1MYUlȸp)z_FS%JwgZi-3n3 :ȴALaU^y\qN;}mkݩDLJpа|Cuߥ@ڵNFټ!['5ڌ[ydEtndN/ϴY' ͒Y,(iH7/7n/15`o+(?Mt'mІ{3+g[su)6M,`.SGlj|Vt-a\Q{ah?f)?tk֘v'xK]G籿2ga?*xoify6ʣs YsfU= Qzg@{>iƭr55Dl,E͠PuXg 9w'Pa(nFqEcC!)$^b̬)ՔRM\&.>=Z@=1'$_ 3g4=*5 5&Yij0^Y~ ?Vy]8k2&L)P廕Wyg.͜KCȔB);w]Іwm=pdU:ymBU4\;p9 ʡb/A,5y_2Lz x<6 _sTL~d 5$Iв|{H“4\75RF#>u}2>Jl޿0#4l'_yR=z]\XEIޗ@GL){p~/<[klQEwD)d s%E&{A-Ew#:[2}3y.Dg'blIF}#}Ko;o 5dD.Pa) M(.S<_`qNJoΕѹ9B{+!КYtP]=o"9|BGwKn`G0oF BL{}w~ȁ:[xd60ۜ.n6l!d}9j]P{Rsp= G}/axG1]Zj֛ 9x>_{ gzi3v䵄Im@Rx80 ,3bYjQ ]gú,qx_+]5p.,1&COT\%u7OWM_-|C)zl+hNA:8kI^k$&o:Kib9E y|"P|\c #, _ ڋ=0XL~Qjxr7W<9aGNcd'zN=.ҹTQt-+])UslOS. ' -_Ѓ YQ`E<;4$j’z>蒫^}39Q4Iy^Zqt>NK -| |֎ɑtSǠH8VyRШ.D8z&m jD@ no{ /YKgͿ7&kd\UŽa%hJEE 5ZQT.]2k(D* ~4q`kI4YF’SQ\^/Ko̬3'.\hRBWB dQFs00 Hn7[fa>;{set.vBh#5Y7s1RuuWu;==+}We?4.Q9OԶw̃>>ױoRdAuw-z@9wꉢLQ ,%GBF@̂T% Zq-\?o*Ag@ME{N81U>z@5Ь'TTN6Vt&{4C*g ]9Г=hm74@܌9vׁk}~`q9WBB=+ܛ5;.3LNJSi:0,tۃ/Z|%H#NN3PNI;ޥgvKmGzͬ<>ppK?r*^;IOV}&hk |*ZJ{XkDG2Kfe^ũSa:JͨTףrD'.ҿ0 xb 穙*UY\ytTot=ܤfrC}yuWJΙ;x^ssI+o&0Bq \vaq^Q({xZuB*^uyp4)YtuX_ Z_,i:l&(P9(#(~WPD!h ksSB7wrh{~`5t! :@khȈw3PP5 HPӲ}@kj/)K_Z)5꼱ckޣ^a&,K3uVݙ٢?9ԒKz* "=_Kr47"@CWC)O[y?*W~WcUzS;vӎzQ+( sN0Mۘ0s7{Ψ2 NR3/g)w~(=& 򓛀{8Q:輱BHsDoi#Q"Qk&.wQKNJgs@A+Nޔ#1`ԗuY([hy|X@.{^Z=ۼVA4hM6LܜDxϏ+tCWJJYaFhh*A^}~Lc?s{8WeNB`VE8GN> m4%iᖋ/*m_>u6 -n]&9yrH/wn)9&+I0sU+@P|3NV<rxb$Z#du䩏NUx7G ߐ2(s2k0zK&ϊ׮}| ^a;@4hLLU2+et%rB #R1# sT8+[A(:G?e9xa<2" 훝}7CJ >}|mCs}=hclLBuȕz#|SIS~wvn{ ŝABC.0X7bk#yZnlMpJ|=s^qܽ7ba+>Mwޫ =7~S =Q[#tlT6GQeU X<>33oUs0<G|i?)@\r.aX6>ibWΘi.Sz43N\\pGAj#yoXW/Dc]Sd,BWKXѮΟ`NȆ=w:$3ηUeh[ٸ䋄ChdF:`UKzZG]|xI*N0 Z|?\-7hW:F{uy!OT Rk,Dы 9I\SWifcKh;TXBōKf*)+2h'6+;`5S29]ˊރ9 U#Cy~Z<_.! QnF]so#0zsE窫NFA`.u>۵Aw)e`Oll[bgñ:$~M -4ypFCkKPD\M’֗2p'M%^󚞯>ͣsj_=b%@uig/]4xPy p?O!ȋ`r1i%z+$amiW*J ~esmD1Y&/-E(l{;ߡ)\ %7\Hv EB{SP'KJ4PJe,\n/G9&I >ϗ\a`o1~r'C!0O~7<@W!p?ڞרc v?:ՖGi +!P8VV8oHc&[} HL>xfC _`쀰Cf/09ŝlsa5 ="2훝}AuHi%pV:d\%3$:DB@e9oB W*󮟕y TѪ(%8'*.i5T K 7h9nBzr# 3:͋vvNaZ&͔Qspi6Ɲ J4egtni..N)e']Ey@델=LT-,dž_/IAI/Ѳɢz:|"xL ~j\Ve"#4lDhQB2n02Q1$W s2iP%&%t7xc\Xh̺QY⺓6|{C; Scz45C|VS*Ӝ62 q,:xIu*q2[M8 )ʴ)ن]0ly[Fj':1n)=pqx]_\<axĭ`NREC)o-O 7 `ՈQaQ8αkQi:nTtŁ5`< krМQ9A&b9W9gw =/^o컙yy{qklEA \[/2=#0u,śRSP??*E̕AW^ݡZKVOlx U}[ (k ;o܅9{2Yc;fk?ڮQgŻf[,À;=k4+`e-`W~&obrs&]R|gTNa>8'wdjD4GT"JH4^wlrؕ#1$pg'<'XU̙C%0_wN@wD+`c^KS̻HsFPكT# P=q1)c|Kam%asO{ኅ!y#4L={F/^Tu2' TȥM7rpajm뇲_L<ɇGvuKq-;Գ?LtدKHKjh}?N%x8/~˝۹_B~mo')L!iׇC G#[^ *wN0C&yTb'b[a넶8#:/V<%.G 07;qoNS&0p~Ѭw3LN鈍n -R+#К9Xs7`M, K@Kp aMξŒ*\xF^}|qA7:١DLz΢-|`Op؂ƚ˕?؇REoLڵ/}g,/S+%B\;bJ_+2ASIVƶ=A+&?գ_S?.RL!+'aZCx,i@3Wg-z3\wc{ pC/q(?3~K|eR6uǴi%'y{0@zYQdw͑.@p';:- ? Ş5_3Ysո2UX|svEf~O*,&Qo^x[N|V  t>ꉢ2z,ަq0IvNǬ!{[}Yr3Ǜ,.QO&\\̔VqE#S15tIgsh]+7P+}+]ϊvqo=OhČFD079qDz%FdT~%w^̬)ՔRMܸkV*9Ae, yY%SpI0sh,))/.30z}ݫnǹ7~x,?^O/N&z;zq%S5FLę<8TN{hc#ѡ<;$ͭHM*Ƭx[E\#XuYe߷pꭼܽDAr KU)* W"3ٲF= Uq f#Rۥ%_uª\EI)\AgvNOQ>.86TuW(hy:dXwzmrY0BM 9"z)#Ј9q(,ɉ˫y0끭>܍P=2n "’CX3k.sХIO+7VCɣ?Bp\ ?0eZ<;]^ n';/ т~!tM`b.2oTmyfRˠ8^~_1{G#*=SVQeG>H}@E1糲O(~EoMKwNzج#QߦIo(SuсJ]k*wrEGfKH(llZBYuv{,)ԕ8e<ђV$_7^!]ߖC2P^ w=KLfr~:.M}u-5c"/3i%-UkZzc&cS_?+y(2vnh.͑+yJkDRź ۾3+s1S0x"kgͩTh¯N.tw &ƃDXdY1&I3^bEy25}#"g^ީ~R0eiR` 8MZs/~'\T^\G~ɿƒ[ك&G].{cĝa>ZHIju;t!ܿY.EZ>I`۵?2}<]cfYr֗&bvT]ܻb(~K`\QpOx7r(7::_xPA{ l0?6W'WkK9I_T;.Bg N`d0vLAҮ|QAgF7RQ8ެ3d{$;s4Rr#*^r|LjҸ"P|3!(Kts5ч@E1rXKM=,S'> Y!qUʎ Ȭљu2]:){jwq9v@d3Ԣ7}Y~Sc ^O_1cD*N&Ĵ5[<^d˜ ˧x0(7?W/l$}\FQC?x0!((Ը%[o:*eiL}!C1z߯d=:~f0Qn2LkovKm,yh2%ItLlm*6:F~a$2 & |ω/|STFde|Ћ XW<#X~8·ҧG[F. *xYW]G1X΍6$7籑6PU抉*svCO~2µ](;$h=EDG*4LR?ek5׭TnջjJ֟u.k?O[ϲP!`섰cF/0ŅHZ`ѴL4su'D >o4%]F&Tu10i&Xʳ09LoFM|Ё ͺS\A s?#34#1c5wY̯GꧤYY4r r _с?Sc! ;%}@a,61/Gǹ8riGe8N[^%эv+2.ceQ%Je5ꙶPT&;m}{^u䒗OnܬxxKy \RbvܥkѺՃ?L}MCAaot TdK|FןbǏ#uu7߱0vTadnY_"^ mVt lN)ܺ|d0n&Gf;D]w*~)7R+kWFq$k±Ո`9&5j} X X5bw$=y> ^VRf [>xNN[Iܫ-stnCaCJS/ ! W$y햫\8708[-VMJo֡a/)˿ 1p{D--,k;zDCœSYc=\ve^=oz"?0(jNeM\dmʗUFKdxym&A}8=6lͩ9)e0Rκq=8])eևKdU6N]rLyI)O.946>4Zs].AL_>XkZ\x\*J_x]a^np%d3īP1e!D {ޒ5顰-b )d qW*ԦuUhG/=P70WhN Y>THM-iM9+NAIAFIHт=z6ͺANsع&%MD^{"?xE5:N]FK+ ܔ6L-LoFC*\ḏ3ed]ַF'.sFEk\.>G>3*EO57}_kzgSky+Ym3?^DN|{k`Ʊo2_s V/e-^4K0v'Y$ѻEW[? ق+~6ݫXQ=X|4{`wk8V|p_q O:w_S:s@ԵS$σ% s5 2|yq G8 }\˴x&S&Gٚ$ J8y(7NzaozyoTH*w/~KY?oK!@n2I*6*rlMό_=OlFdE)n0jo}]{Fي>"]ԄZpP ƾT;Ыע}toN!QȦS\..:32טiEAڵܒL*ti#2۰ y>uhL`Pe\${EX,QҘI*<:On;'pU.Z,-Юf^xVU;y7?8o9Qz5%E3 :⏷5WuCPS p 3WB[ZdAZxh/0 Mdr}r@5YɢfՅJ-J])~҄ ``DF ƈ!4y~>,/>,"#} Ym?G@|?,.˪tBU=G}'Ƣ .Gà+髟l:)e t :,b$FjK 8 ]a38[`/̔ rƸWgv=y+>|o䰓*/_k6pjYFvn(,8M) :Ez1־NS҉EsvԞ@JL\={!$XݚFs,^gUNPd uW΁s Uqfѣ~@-2ؾwh.͑EDGIV*}KFvI`/8McVetRåz5QS!ln=Gcxk0J."-ŝ.YJK+K2h*qӴ,(.fDyFvgWPkMIn*Vjkz{OȶX+vA[#kǾe![6ݪ_sXg4dIrg n'QYi 8rNB[:ǭAAJ_;h̖lFKo{跦T/>& ݺiVa$8NS}7)̑fD/`EiM4|K郫|o$y><8 }Ϗa?МOpVcĜZeSFp8OhCQ~l ~P=EĽ^[Ipx-i0iH/xpuˮT\~$"N>:0+AUJy$rH=ɳlߏI&}CSPѴNl :ZY+rhvr&,Òa&iIÑ5iŋ2{ 6V ~e\`OV{"Qֳ~KY)ݠSjS)zҥdRp9}7W]@5b\lE`|hv<:gߞӷXILc =g7*)$oy=K'6mEcMd_aZPͨG@7zzt Tc~Y^:?Fw9p( "/NVc<+;&IAv0&`afeFV!X\+&MAAuwD} sd;u.aL8̠9(Kd"C0:Yrkb*d h81]~WSJ[GEF^< 7~ZDo#"iqɮF޿SJ}jű>R޲Nyć·4ƈ|PbȆܫ 9˜G1 $Lr@ǩs~.d2z *[ ~ί\lm*6bfx28XNNUGꩌ"{h\[+YW¥jl<|`(*\~2qܟ^ V?߽mB} gcFN HĶ'Ux>K/ Kj_oX㵠ms2 o?7p &׿{J޿T8<٥sPlCumz(2߻IjՆ [U2ڕ^%l* 7zF.nSEP1eḷYTzP7Vʯسboc?Ji={ܺ6^w|bT$7>.}ZPP{TP=Y9U:JX#q0@Yb4Ōmmxx q}ZZG~)R%f=N'۫S( \ʏ|A~޸QLG#?.07/V"keLVGcM5,}``2" s'zXJkRd:Z~rmlnVӶC7g-oP+XϩR~MW} 3ӱUGAzoMz¶2FFAf?D塕6銞R'x?#Z;^Jz%GV|bI7\ 6U4WQU}ϊ>+m>K,a֌lM\t#_!l*;|#~07}RSiGd#f>^=QlhLّ&Rx?kwQْ {ֻeajAmI:[4`=sF= G 'Au]EsVLh^V۟="4M3hoJ):$ro{0jՆ!VYՇFi,ˏ_6$ybofç[?m2)yVqbr4Y"=eWч:[ pH:[ЪjI qӜ90mgԳ՚Z{iϬӽ챈OĶl;VXt #솚Ѷ):\r]dcWf άפΫimEhSO):Do/2љ~*o[N; wf^J?!a R XԷ5> #)uH+5*qNN, 28]Nq-z@B[g_" V)rqdTjb}꿡ŧ.$//Q֊z;ZU9*]/]ْ9[o#dw-{RzI1:I3q .~32uiދ5,(?0 TR1eBX{&.#-hJ#.*$жxj+ > Z <}<=r>8OF) I%\?mDǃq P6}4'V*k7^|L_0|~asSۑyʹ&sI5ܺV{6]YK^^V$DO 囜#}Rf$PC /(z}LRh#~4aL%G[Tz[tNgÚ[shn CJcֿ"9z}϶KvW1əy~Yy|.:3{W G uqH(pC~jbnSlVVbp8eR!x=ׂz/{CDiۇcGe0y=I`$C!Ço%+Ӗ[uW;c?><{~,'}]X_~^jٵ_9 NxXlw~07"P/DЦg= 8fQI6 ~Nc wl5Yp& Fa$;l~z0όgع#z)<5k FqлXtDx}z~<_-:wb::vn Mf7)HP!rwtm{F.Gذ7QJ`0w2OT 1nsA gWiPqq6!_+葌Xo;'igPI+H{Vֽ@7;S9@ ܟœR}657 VnVYl;Pq]W'MW1}.%{F%*9ܑ#{b`OdGhGSK9' ,V>`M!0\2:(*|%;S>Y)gIaƗ[as)n@6VtY],ڴ` W'MUSkJ{[`k~u>uuVطĽ9ʝ⣰~ÐV7^kUns-zjOZj`U\7/>uPŖ2L4[`}hV֘_x KIt0 PSÑ5U;DZU<1;xm0 d?7 wQ~ֶ`D{ EˇzZ2)Xfoc1=- |co!1 i쾢_3͉hg&NXb{oz+ID68Na&cE)ndq}UBzmxZ}j :x OӚYs2~1{+2D+-1#{NK*4­5-g{aD{`c&|tznyv fh&>Zq(MԜuBuPP:*S/,գխf=}RQ 9ýkŋE'ZS.Zb . }s2@_Z1|C+PkV#[? ߫SHQvJƥY9l_^Qc> !c%v1RF#9L$4cZv[8asmf]i8tiT7< ɘ,+_JK!ëSK":2aƆ MIZf_jSP Jo0cHJSrmT YDzvO*[9f:/kP8:p(Q83sHSd_?_csĐjnD!=׍Ud9Tc,2~@Mi|[+F-jY+H,EEFJ" N/f$Zyo0zl-6K'2 !UדG}6/g_gÚfA}~>A-eԳvaނQ!m>k3[7dlϚOF߉aE+,Xh0c?q^,Q3(6CeMOtIE(?"*20 B4er7.JYEUY[R[_p>Kmԫe7ҍ ]b&*AɰTU~h Xϫ /_z }Eg=8|[ʨg: -@FQJ^sADb׬|,)YF߉aE+,:Mq7v%Qyz LWOE)Ftx Oӈq0:Z [V.8NZG˂g`E5:m4d'Ch%Ө 5cDnӤ"c{w*p6zJ.tsq+u4 zbR™]uFmHZUymU?s:ztmƎ'9@OvɈ9"Y"}CJu#m2^mɜV(*ƌ=+8{䩍h% USO0&]OccRF=Lsj"M oѴġ GSB>yo`Ͱk}m'z"mvh4G#r>-9m&"{C;8hL{Y3etRڠ0ޭL:o]~$s96t4v*܄: c!N*/ϩؘ*}l딵\&;@᭱"a}(AbY>w>fNk, 龎jc*nv+gveh}u}nElo};W6sjVsŭs|i6ԁXf&y)Bj|upΝ6Ql#Pqg$VV`e /lZ:{ՙM]_{?OkjD .kcݜ08' ɀ^@^fM6|wмl`<>@wJIpue,;?zʫ%rHjpٗYkNɵf7T]Ժ`>1|θ\Z9ݲ*xGꮑ^2tL3kN=L;\ݳ{08NᬗU?I\Wۘ^nTTW=WM9v7nk573O)Qt۷}(Rk+B v^\*JtZ)--:|;}X8څෛY71:B2ACL_Sa0*$qu! J:3BsZ0ߞwnmEwP8 RS7q%"k)ŔM%"]Ql`,NaK9X >ˬCЃ~k]qXmZb&vM\8U U ;+4=J^=]d)wP60Y溭fh%'9 _(Dֿ~uK:L@U@''CVKH) *lN"Pod0ӓRS7qU||@(4}<'7F eczRYQY`E柼"3|V<+Z|esL+^׹x7nBdw9[w>+Usܥ}Vnob|JWX{NV8wzF% t,dms̽s3|j_ƳwYo۳/`SOF̺%^#K$! G]lf[c?k{~ٚ,8yZõ,sTjݵ = };s瓸2jkԟ1fFɼLv[f:NHs'; ;=C{)0ؚ[sh.͑ш[$V}IcjN ؿw=Ԣ5.%IiWR T`&׼󨨞eF%s|l`,tRTB^|Z]QH((}/רɎh.ZFO?64cH;z6vm_q.CdLpց:ۗޒ)N&ѥz9D6E1I~W kDĸE2:l8bpPV)pJ?xRz/׈'$T$ޝek_~~t}E^__)GPD2ʣ?Ȇ lwyȲδu/dgiȆP,sYG%?ZlW~E?G}4٣|`ZI=?]vnzo?{q2fQQv;h!OI||kD~v,AGV)3{ Ϲ%jH?NzΟF#?*Xi<-nb8M~n:* (~ZK7_]bbwWzzc%ƿ5N,VޢlŢt-[EtHz#prT7nh˨֝+bǂԝZSmjh=?8VTbX=0I?1ny>2p v .Sa)jռtYU*39NEOfD.wl9[?o2N[$w \7W%7^}6L2CO>uF˵>x^> A ε|qHqoIVlUFWzĤUK7Yt6} m8rzKXЅQ= |˔z +,n SC4iC{b] SAOy#z=Y?҉zM?EvUwxz,{Tm1Gق=:O`E1z#M ׺,$?9D}`F ƚti, w0ʣhl_FRo  Zd3ԥS\ 䦹閾{; yeTX}#,"E?G9Uٲ|r2v~]J8*,&;kn )~u/pŞ.dM*JdQZoo8߳:<yyS2˻odE*nV\kܰI]wdLlЛ(:zd2IepRMg'pP*{PX]ܿ;[x[Muѱ C7q{>AP)$}$uT ?苖$W JV;<0d.7}PA.:qK&̮>ۘij{VS~(hA<+[m bָ03r&å^6L'd⠷H֚)e`)[J.O#E:Й_:J@^ےRLypZz͑L9̾Gyk4)A`s7}MKs :*̯seɾ7!CX#FgߩfMqm3>Yf .| EqBa`Ń8)8r|>^s7F(R[4h{Րc3'YAL.?z QU}2һs9бsm5G4) <߫CE[VMcoI17(7R-꬐&r܄ZT}Im#KDcIy'~kW[|2x惖,^~ϯz_,T0W @c]`#x@,.Xt:iUTF(__Ѭ0v`plF#*k[ښxAt?G.Y|*58NqwI>q^||zO4C K6}pJ)n0/ًlN6HD|Pxywחw|'&8'σ:N=!:K?H냧µXxZVp~o (X(翑,˖r}_xF\CgP'F%3&v-)L- km-^aC8 )lEX`optcX[&&6_]97Z98 :TE#܃Pd<}(#g \ 0FdhH* NSS\+x7P.L'#jFJ5fqW-U*=;oNM`D(D_^ rT(c~eЮA?o^+ي%XD_{ޑxz v` e'/ w(gI ㆻc_=Iˇ H< . RؤVNzuzm0ѫpW_u[U{7'#ي%9>_dR+Q' ^JZ:P\ a:u?~L6[0=ōFY8(oې)^zk`oeQ{d$MFg֩`J5Wj$^h/KpicJ1emtn;=#g0MR+ōF\}z$sLk?˘cgt`_1K^|uE<\}H?x mg֐ULa pOge9hnu rdH{tUAGwWiדen*q5ઌd1Q ;J%/d#>{` 06kfYSF#niS70Ra(@pwcO䒁] ~ 3TjpJڔJb(UƳɧuHt.2lL?)n0 ;]۸ zom MckU  7o-םb rm|WwEn6i`pv]aSl]yNL u訮毢NE|[ّ$S/~L8@ِQ]q#~9l}8ާXp y+]/ D̿Պ o4^ۧM_ R F.ZrieAI./ tk–{Gto`R^OS&okF*;5n/2#9*1$^FsKr{>gҘta`(gԁϭf d詝!4UL{=z2ʜ_|VDD ^+,ƅ'2VY$8~6}5m#ː@^WVw7?xvh+&s&lˣt""ٝ8Ma68X\2O^{ zl6a=(17~3.rq%=59aVՁ}jtz+x` / FFZt }lDOXdw>^z =*oIFCV& ԃ%(5-J}#-}2ɍ;yxzAC/ʿeO_d_Z_=mCo9hGHKgj=R%Z:-6Dd@9[UXu_" <~T]p*"ϸB[c^ͮؕ^a!lzC.eō3PobѴHpD:54Y.O"+mڿxQl\9CF={yyZl˪8tz_Spٴ)aK YywNx>Hmf"Km֥C6JIGN5uA_Joxw}k{P CxQcZ+>^=W7x8ylSO|F'%~XʵLJEg#Ș6fGV>Gs s2[&2e\m LR'yHJ^ v&PtZc9Iz^Bqn[6Z0itT 츾<>S*" >C ub zEs{6aE_Bs qЍ]H*=*#wo^,FjXճdZM+-1F$ Q|o|oA(sv6Oǹ1Uo*/ "CBc70aߝN`K=vn(,;fg/dUùwA[Xl9uY,MSVԋgx~?.:jƆFpsϪcq8]7_c 7OJ^kL^N8;%)X<N*&g?0D~1.ipleo Īu8Kj? ^ 'IgDcg_B2)4d]C\v Q}gěZbGuqzI|@rٚxVs#%S c ZO\dx OHV&">o:Ƒ:1;d1>r)kL H fB[n<hg=a\'SY'<Ѓ:'#sꃯrZaS! g_iѤ% @lN;eU]9H=һAb" :xCFB7q˟;#&@QN}o|&4e sm*,8Mqw׭ޔְ6tȨ0Ԧ5epRu|5J00o~>s1F,_4zW8T%/mF[(͞=+ϕq.q@ګ6z{bixmT.$ 2`xDk[S׽11?͗1-n7¼56luZR;~fTa<#,|鶚 NsShĕwu/P#w.(R~0]2KOM 7}?\*[qm}pX.?U[Nj]Snh̙uzoAqs [^>32وQUG|0bt5Ju+ ~I4je]OS&<Z|ω&rR?f>:'e?A6/9mqჼspѻDbIf}*I6VJi^q٠#yp]82 ǮȖE e]-GIҋ H Ћt2nLLh*q[Y67FBg! q(ueQ@Co VoV0#$> 5_Z;jp.g ܫp "f65mu^RNm(lMVO/T7\t|Vt<`]Bψ"?78&}A~00slfe])ndqCq'XS : T'9[{+{F=/:MGgJeq} pb%L8)쿑]$0.0}`ӳRSLq''dV[֥jVԇiWzet}U1[P^L1L}F۫$,PXFI`MozDf-V|)e8LȝE#yχ IhY7{Eƕlcx\vio5߈ֳG} 19<{gyJ Z4MiE'fp~7\(xg"2(ZZE<יض}qc9uc8?F^HH4"1vJ ܃_49:}Sy|bֿ;KzKG'u45ĂG `T>v=yQD#h&%vTګeZ\6$~Y-H@_Q=Xtا!z+8`}D)ndqh`tH}ЦI3Z'8$W]`p{e  mZ5!kZp2FWVG9sUz˲UZߒK^dD|bz#/:P̖ImnʷJEX#[wxQZ!mtUD N{Z QE1{$^Ip1)~[kEa+?( b@\5K#9'Ђspd)@iͰi܂R2v>4?hh {&^|EfѮrHKmw'2zvmǚFs$n`qI ⊿]d:Wdbh bg֩d)v |Y3ńOv|oZDmJlP T_&Y]_rk*0'mtm]2#̅?LgMf֙l(.M 'n3Z x$̕-={:%_c4R^=(&F.ל%?nMsh? Dj ~ =g.x V/:184` Yx(T>5<㉍  X'pM 8wn{p` 0op5*d)}&$;D AeeJ5hGISB(UͰ#4;#6\xcM2`py0\g=CgЗt@ \-A4)0ؚaj.͑ш[$6]y+H`Q(Og wQ?0 ȾؗR>y//b BP蠾h8ךb={k#*iu_F07KJ9{\=ek Ǝң$ àWN߭SlLCq䝼TҒw༸~t8V6x =d2xĭ5H l#e"{htz`nۿVr1|*&M8HXq*,:w1µ3E^hQq=ϑe[OpY7K\}uz^EXu=8OF[3xkF)n4bƴʴIǔ9cmæKvI``.:MCGg: FkՍ栩EmSRm>p o[gDȦC6G%qZv.,=9( ە7>F sNIgkW91S?8iܲ׹_.} g'(:f}~ǜ6KGQyc_N|czT5`Ɯu1g0uoOl/,F?q"ƃ%{6k5nF>S>hRF;]ԜG} jᵵV tav2Qp+sXCڄctpyT׿6qWCf1S۴nx[ i.MwL)n49o댭 xF> %ֵ6{O޳ ZGgiG^ԋq'3\;:iqnK7)l>QIqiA63CW{T3Fʐ$Ey/^UTڱvWZ~\\}\|[v9L;V GoEƟ &sxVK}왢P:&tRz-ٟsTzͅl󞟀0Z̾ =[5-\&k0|`uXmH0[hAGsXC Cp! iZQ:6{&Z]|5rKAX v bs.ɦ]kz8{F4L(ozڱh%n25n1씗gɍQ Q2cD5t9'j֩$N/h(V~nJ( ŎNb(Gv rE#kybL&ܻbR|<\~qȲv8qAP%r/r5*cΣj7U3siD<3^6G{4:ROaֵ[C+F pdIa8-0.B@=& l2VXp FgWW%YW!)(mp>5Q-4ktfpNJk:Hs=k.`93( 쉑= 7LTev;5U~\`$t*w}E46 ɣO׌Ii,ANmtz{ɯ 2=o_0=1욫\''ͽE|_s5[b`".s_I-8|]O^, xN1:u6,38}-¹sagu")@l)Nfѿ4*%fN ҠOF*|aFNpa~o$6{`2zw]CĄRd(qyF |`H#kC{0+2شM?p~*C%lGsJ:6+SEdkh5ˈ"(;y7^в٧qC)0ؚYs2.7)Zou߱vxv` vZpPlh֥_,6OQ2+ZK>oN8? WOMz49qݒ?1^7E'j?\Wz>S)י&^+qZT#(_I?/ĴNxXoYVy ]VX^k{=|3G).Ktt`;nYѩp gt{v>@cCxzZwa:[qz9zOp5㩒w^7zOWN-dM"pFÐgszӬuzXy̟f8p{݁ީٺ2r$?G ܨ|RCq5כ*4 k7*qF,ٹYr~c:ĖY14))Q96SW} .f c"щ?~ާES^wS\ҭf{^M+͟͠:l_z'}` C'㥒R~ B`T6IF%<-/':![/zA'%}Οp6{F0JR3\",8S24hXl},`5I9 Zct b^;4cG/$_a}!qa[1/K,pZa?±agczpѨ$"95~ rNk:6dz2(Լ2;%1L.94% Zޞ<"::DO1Yshč,`_(u5 e<"5 #pεPȞadf4[?r=8dG#:?vwAL5`*VA o2k`f/-={R>isjl y?+g2WCW㏗h0? 1*hsO\^oĚL/GUimlcm'&m>/sFD3Y'c4Q7{8w)c=0?.\?tX׏{ !DN*ti'16-ɗ6ocoYuQWׇL/_GT {eT?EzџG+ʲCԽ gNj23h K!cgO.YusYknޫџ_k)oaZ a_`FOWԖʍ;YoT =d^O,ŪtD//pR9):peb&A4)x< ko͡cqw7,~N@c1@4,8/a֌ΚSU腛\^613B-0ؾר1u{֚Wm_o";y_zQqt" P$÷J{yV"'q|ealjV^>rBåa$ Qy{ZbQ"}F珷in$183*%d|*R겅N9Gsѳz|þ5hN& -u_罜:|7>; NhŚ,zyLK Y37}Ƭ1]Axzgmirc-s8 =dFO^&LZqN,kĨ0jj<:J>rp@0 #6b،NsShu<=DyZՙ1t/ ea\¦Y3eiU%efR:ُ  _`Ń%Kic=:URTs+9422Rn U޻HTd EpeI_D^l|}ӎpc~q?t)x3 RQuw#)(Jmy&+UƜӜ};ذ%ĠdOuENLuU?r e󋬕6e$z.,m@tHSD?rˤ&t)LL "{@kthX /a/Mi?w(*2δΘSJhסMl` nOMhdI\}8%p[&{')ۤfGUPrs>j`zW}zp8L%XJ6P OӴ4;̀c`8u.ŝ5ҫT_kU~pֵ6;MܜFţTj`IFM;1wnY)uXqp=W>UL>~+t{󼮾Ȃ 6[3}*joYϾg<+5п΃_}~Y>OK0ԟD*A(wiֺLjvKݟv N=SȢ4$8I&GmtBwWʯUxYZiqk{R?V)h_lGHo2 @Z1zʭ=//H Z>W=[g+pO]z%Oq F̃|*:gDGϩwYo,_SWN|1J}1N GlohVG>e{03! NR.ʜ^#*)[ E& #} S7ṃihtȎ̾w_( B6t0&V*J=*Qw8d7 {t`f_+ 8MTMq;i"SW`>qM-'H^Oȣ=| ҕOʎK4&f&( fM뙎| )ɝ0cS`IZK_(D&*NQ;;Q@> ؙ2-uj۾Ab|s'%){ gm]qN!pW? }j|p9SFq[¢Q^'Ja#%-Azu_ϓ?~.8Mg**AxrְXyϬ9504) }73^W8 ~پfG``ߧ%liKe=gkU]/XjG nK+{.N+eYP')y-Ǩoa7 ^e0?(C!k?5flV=FV֜* W]=[%پ|MٹG^ GꐈH G88G^`~}@-2جјtY,`#S]z4C.%!q_4#K҆py w1đgHÕgխxy. rWJQaW:s3K&V:Wl؅C j9N?y={A G(<SKo- 4G?r{$Gu0ZL-Ɇ&?]QX<'T|kxǩYN ]chvn)x=pʏwNǫgh켟_}W& hݷO>}($%~`T9OWqK2AEE·*YQoA{)0ؚɚ Fs$ndqq9I'3!su ;{`P 56ktfK҄St(PpsΪ6C.%!;/[|%Ii]JVEQE_gX;@᏿KFHjČJ7rڿ5Lafx[Y^g845FVJ*{<u3_uguwړV}>hn]Yݮ4E缥FZ.Vswpm! "MBr["[VF N. ڽҞo#=mf6ʼnZNԎk;BV2ِEGE :OF5YYč,.bQ#ԧb{Pg\r*7cCGgJeq/+j~>fA[#{+H`a8FG2}`ӳR=Nֻ2*?. :$0П鏤G5̈w>ѿyJaYt G%:yrqYvrzw{El/l~1ޤ~Q"&R7y_tsVKMEWxqsի> ŋmjϏZ $o(ͨ$^,:CǴV`k}h]Ϣj&Y}?zs',ÒaL YՑU1H PpbWr>[pp3Vg6Jx^;kFOm79VrْrF?jIs% ͨsO3S9ػP2r3F7K!i&*Iy;L"=k/R^{X^-/(Ggk2d iדQ3{3xc9A!+&M2 Stuoh$!ڟwj2r'-6?xAZ=xAqy[O<yLej7UB gIjY!A(JKJ0?pmP)YG56k F\=FR-š/(y4rp>0s1fάSu皒$=d.9"x 96tp2 F܌\(ɺhWf&l\\+ی)$6^p"cQ>-J˖,9Ulh_ѳG.oga$ֿ򃹭e]e~$SHVy6ڂǻovtzC@~t7K`?]}9y[iHK*wW*U/z/+BkzQ<[Lל!a,8}~GT[tuJ*iʪX 'v{z{ sETqfc2"9sfZ^ c>N<_:mo3^ؼǶu/'/8qv*Xoc>c)xc\%<f/jnfHZVBcX"=LX̹ӳ\cY҇ܢg xk0 O>?PuE 纵\bV#ϑZH6x\(v`0oQ۵tPYk?z+kW_GGS M'ic)ndq[C4[# uٺd`do0¦Y3Tj`;k fNcGf`d? 7L: ,faglFy0-K9CV$Y^cW׫p瘇~iςm΄*:Ax+BgW02Z"~"}мC>oYJv/ygt#hƀT#1-4b'Ԯ45g?<|1 њ1Ď@q\ՏVp؛/}R/)oҿj]uvB ^`~Ȇ=%>bPN~#2:>z=|DJZL1cO aCoCNl@g"9_L6ֵLr,b3Npp{@tH.{Tp?/zV8W k.#9"|y0 O֫l6ꔺ/3pFœ]#cgטwLuS4L܇ ^Y}=f?(KN+IKzt;3V|?+:R=V*5ּ{G/p{!ffh#2xG ǘ. FF!:8CO)n`q'Q _?  ;rdGf_WÑ I͜ZWwaU37с=&04}dӳR}<ŵLvߛN=[\svb[F[O]x=U0%;|dԉ7DCJ]X2sJ0u}BRQZPʹű4bZݹ*,8f'Iu֗ 1"t-@ڒ֜ۘmD!>szN%.1B"&r9O6,w/½S+$\ՊAxkd=y|'jW@B7A8zj__[BuXF ΈSsinXuSޞvٽǶCѣ~k,5k0f%]&>ul qA=1'2#Ԧ}#ۗUH9;6꽄e<6"4`׉٭+;d]KLqSJ=EV۹ Y?z1=et~vwqJ3h lCa>02@I):݌Xu49KĴwǁr~C:?dq_XnoPӅ?cVy"Ҿ"˫hf5e a*U=xFdlhHӟt/^xiTt0>alͰYSU IC"rS eEUZZ_IoɎ‚=1'Ds1džSF#R2Yxaⷦ!";08NG8H9Lug)tWZ]~86h{U+ j&IN[#k=Hp= A_lӉJ${쒫8Whg }0h ˪08Zu,1b$”)Le:-2kͺ-Cs[Rng ctn@ὯC }!rb g9#2H+)dgRyj=oZO¸ӊYܞ%sc:nFXZa~@ޫSv ǂ/2ؾŊkQk?w3D 쭑5||VIoѺzwoAS̞{}ĽMZ5t:4=k *OmϯGJWg2O0_?81ëX}~.[yNbJY@|V|FtٟIҥw"POæfyi=2[#ovuY)0S}j_LX}>q )ܖnm4J/6EFx~XE&  Ь`THFgxqj8qjާ#vd}e12Y,n4}L qnأ2!8FǏ(V@bYܵYu~16Ft ]wN_ILh;rjl &Z77EQbCǟ`) Yv@ Z :}pv< Cc.^ ׻g* m%3p,섾Kbv&A־Ia:_`k+E¶n12w2n|*f ,(0S3֮,?ZzB'A& FW߇z(NZ鵻bN}<=lȶc)ndq[YӘ$4|zǺ.2v֚Ys2.YJ֏׹&UjX9Fv@p😋s7t9g1O5yQ`dӢ/}Ц *Ͻ( nQ:dޫ-L{֧ƨJiWeMm]4ݡIʶ䭌Up @ncubE/}0jj+w׉hpZmkFI Kch'l<ΟV9;TTEXr}qi;`)IJ2Sy̩h {2X%R Mύ5:[S>zoT`SO,3wqyu]lXHxx 'Fd)ndqэY1陑'W; =x2֬љ=O+Os.Ǒddd?&ߴx`rJi707oGv*L󺆮#w(ks?u ;FuoK }M8`j-{%>z{Evw{QyUnZfp^,8/XfάSrJjR5q!021榡S$ܘq^|zlx1ab{@rUKf Ls *K}*.h 8ŐN<1b#ʼn"?W^c1}[<Fwbk?ڂn( uZ_:Y<0' BļuIy}1XKg(?l/(ս 3]X)b0nΫ༇T$$%1D|X0׊ei՚r )du^Kzصv6:NiM6Xa,n`qzَ^¢p4s-jӧh/S`<5eRuԏ'E;F}`3ܴx`rJiK3h?Tv}z6wc{e\3#R>EnrSvϷ% EcHkɋқ[qX0 9ׄL@RY1/ ud}ɢW˴ Mcrsj3z=k L~Oaa_ J̚~9Ra'Ӵf`k"k ,G/&ޣ;nK=jl:u.-N+uˋfP[PPOl~ sqX]F)n`qW8. n瘭u?pn"ɏN0g'~iU6%%܅U^c\zrcٽ؇`gh0{93瘒W4,?*,=s׹/β,A. me\(97^ w}cz{QrV}zI'6Y42JiG|mʍŪ\Tݜ~Ă$ߩzZ*/X »k%i=MJXJOy?~^uX'NqT2ƆUMHLJ_$E"/ĢsWϟiJ}좄x ^,̯8}ib#Zɽ@]Hsr_Z1_ժue'V"+bzk@Ϥ4zPq7_)e\qbH⨮y~e xt͐d~ܚq)&[pSzݫ QV]9)buVRZ+Kk `;A4lM6¦ŕ#υUxeQAdWJ <`Fl`H* M!sXa~{vovЎ mVpfl$:ޏȖϟẺXPv?֏wQ;Z#Vn;pt;BMyPy Gkޠ k Wㄼfhl2yM? xMhl5o*,zWBQ(Ulf='zq衹ό vǍp&mTOnuErWmI>1v2^_Z`yafYa{O-,L p) `4lJ|ga?O[-A9QQsD0WON)N: .5؎F֟>wd{&ԢWȰwBSJJfG$]c_Ga`ԧ%eHm gDaK1y/w1d ;0\F'vY1Y쮧A'CO46>% Uw~R?x %c +^:i ϋEMez,F\79qV4>q8-bD$7z6cdk߲VOvy\Aկ%^\LqBWߦ@bj].RK/=#z(0;7\4#q#۶x4Osˋ;Q ~}@-2ؾ_+MK{sv?Z(dddCvFat(*=6R?F=](#N(;'{8>]Md Z^˧fqTC87nlnz6{/1 o Gމ*lˀp=]+5~U]S?.Y<RakWO=GaKŽ<eth>R[}^u) U`ٕw7_?Ueg0NeU#ÝEz%HGԐ~$ᚓ6RS>{A@n4jNKUFы6ͨOOP3cf"&\G[ 1_\T^mR)<5-7~8#nМ`Ji6*nlbwݗJQ"jY5k]wyzͱL @Cn,YP~!7cپ47ō,.XC0ڼ ]w7'YI;){F1Pl;Y,Ea#;* 3uP9F_|e0:~J5k΃수>k[NvJO%4Gm_25 &4*T%󀿱aT6zM ?vLqQkf--jZ-mLS}RfEqYM;˃s'8[l%#SbnIS'X^o*9vgVZd_EAHVXdVOS&2Nu3L4;0tqFK&cD60eRdpgrVC6CJ JYQȱ!OĶl;VXp FY(OXl9uY,quv0qKPfΠ9(KFvIp😋s-)_=Yk#rҭlN. 7{=]96Ew&mB5xTt5 QQV-+]k1<zya؛x{,~ &;#;+IDzW*gYFՊVI| uNd0=2@T6Bo4%b#PQP揣aM2e2j]r9tp:K6bltM簀H*漃RzTF#^wOqr{e"jz [4Ml2VOp,Fk*<3lu4S5S} ޕ㎞oEV&Jr,T"0gCJ*/I plsA3޸rNICUvGjjS.Q7f9R6a_P} QϢ,`YD,H.B[+cr9ܢ܏cӃqS ߻u_`hŋQiM)F ƾ˴Wy> J6z ,Xa)ldzѨ6yMLe.Lv?X6|*O1ÆhSd<5e4$)m`0^~ 4>zM PcCghM >֌NTt*i|>n^cյg h`޸ex wX @v6>N"y}#h"pLDuFA[/[yq+K.Wn AT{4XKOAs38z-HJ`,~1DFo9(x>RiDI qBMp1 Zdg"j> F0,ÒaLF4?ˢ=)0e>uD?K`٧w$JF]h67L,:M cתesrmkygKcO{guj>+e0Rd_1 #+~q)rv} Yfodztkd}x&! ]ijrym~ڳJ+7z+=gkMu64;[C J2 -˳?{/;I *s8Ϲc?l1gBY p$/+}dc#ڳ6>BCWbv;S07 6C  ,.;5 Is|.,E( !;00 پw2x])-< ]\fF$lD6۲Fap(l]N)mʭwK_Ѻ5'39UϪM`1}ObPym*VYI`-EcxͅկO~H,N6XDfB&UO~%AM(_=iIbd\+PҾ&cnn4w +]0 MV,_[}sG(,/W՜I~qp ⇆2S4[P$<]%| c*0F`3ѤnD҉L),Vt|⠬ z9H}jD\FY1LW8*pX?gU:nES{Ҍ5KqJX&:&-DOVzq\{̧e-Uq\]ϷVX3囧rb룘&mqp`6ލ\RPPWOvvheԦɠ f?F *v}%(zTd6n_X/ȔҡMjy(0؈qh.͑Eȑ\Mtwy繳o"/ e1>alhJMʧd<&-aq^ C;`dd?c.:MC64҆N׮}7a 'r=f>T&U`f~$_GvoC\Jك';?Jq=2aNB}LПsX1(?|),M?_ot>|#6"|>/=.{1j9$4)ti.sz((x.o'WLH˺ U,}+RiA,n㴤oV? dzLA}tR*p1X&"^OAh[C_qjk::]CaS8$azysw/qO*\Ccĕ@&3[#\S?&a<:OF5zFB7ؗ՚u“FbVGf{"A~0|lh MJTmZ-ڴӈĒ>#g/[#{+H`a8FigT7mynwӞRz 3\f&U޻OLCOPQ uupA} e[Q*nȁ5r.(MJ⓸]S7ʊqj2hwkG,;ZBΎg\,]Z|&yiMz7MpnVeq`w>( *̦):r>qRd5}JGF}F\[ƽoٵ2 GWx-+ZkIeޚňO֌ΚS{tJ \Imo7>óEv7{p`PjЁ 7;YfcMkμ-ʀ9佨v}DW[ %C$BXqJYFKT[tɄH>8B3(o #m\O}TG&hLf4Hg6#?:JZ}q[D<~,vn ?3 lWS*j 8={ꭣ {L}fNفmĢ^hLӄu:T["j 02mN=kkB Lq}^x Fg/^֧M3J',K(V_GncȞ͗a3"(~ڦZVkygڗ m`oYp|vS Y?Io?$TlqTg;X*|mW꣜_HqcEĂ-F|E`l;Ey#)y-E2 :a!̓AܮMD+4+wؔڔLݲ]Lj__eYykhz!Tr12!^^7n|)YȬq.{bޠ"bJl+Q$V-}.4@PoxKxQze8N8oVpdt, oL$o ] NaSh-8,\2 8Joɹ`T S=Ol8U pѭHDYe+EX|xYt^61 bgVM؅sIzqԝP}:YxN=)A#z>=` 'Fjx=/w.<^8 oZEy ʲܟGOh#y+#ooL ă@_V^&5{pY1<,I0@V~&v?^O,Sb\ɼZa2-Y:[P<=mꄿ\?г̫Ljz},<}> ZFLVX=y(0vm NaShmS9VL>DV_a",2جљu*5:NqT^42Ae|%#K Dp😋9x0']z%[)󟂁ʩ\MA f/܍1x(笷Uve&M687yozrySv=>k$a*_e-}[5z5ǏiMWqZG}2ֵP2,|>K1S& _ 6̀-7X7X[:EF1]1yBŠ/[KOCm+ʜ ]yQ"9% &v13w /QUYXraD'/bP+&бݥkԥ>Gc|+`5Xs,ndq¹Ε:7AqG:} Ȭu28]N)/O:#VnT.%Ϙ sБ B#K >Uh7g;_t\]7.q{O(ne~W_Sd)R,5ЈA`~LV><{לvju L^6Y,־QU6绊h^Ύmugm$SmMn.'O73jWIV%Wz@ }X8#<B *?\*NQطfݍ*3BW_k{{ Lk{tOC,}RZ]Y]g30o뫲OCT:,%"1ge: `:s#s6fݶ+g. ql::%eE[@'@ 3I t*gER"sioPQrc: >Z~+ ;ʋz!mHʨeKvkEi.~npD?:g0:++Ӻ8:ٗM=}LQQYe[/n;}ЩyhTA>Wkkʬ3WaY^nS`yΣ7J νKM?]&巕O+Z;puܫ^+h>+P;ksŶIS|LjnJ({ C>&K`ceFmL/Z*d7&%Lqd*ouQj:nSMm2ux>_4R1u$7ZpԟG\|Ku&*&Q|YF߉aE+,mu)>$L>F?zEitX֌ƚȺd)mlב̌ WO9f#; ?0sanZ<7]pUSEm[1])ȿFuJ&$aV!K{d%탢9|0.ݒ_ 탄-c8zm[E_n/c}wJ2>H΃Dw}RLm2.mIp|/«ǟQZ(шbOVLq~\ 5?xMfbLJpW%Qi:^Zt D!N*9gz,n0h6TojT6Ku2}I\}VȨߨRṈ3TjdvYz,oЂװ3q>Y։H*?s W 3 $=y"\V zϧ%"+$%y|΅=Zs|VJ#Fm\wjoOgU.:lkґjU`Nm|+Vܘ[f ,Fes,ܷ6-fėXl84榸ш;zߜ3 vjd8``d5fά}2)Gj=3LD&A`?`E[<8]|8B(o7&& pFtBQԝtBH,wfyP JWM|1EPOSuGxDaLP* %) SV^Okfj# Q>긿U R$kJz1c~!7ok)d9g!߾2P8i)6 ޻5ohk;3(-|f5c @ZKS6mM놉NN2 !Z?c} S7q [$WY5)kb5gQȆS)ukEqpL{LkTƾWȦJeqΟs$kSӜWO3zLmzmV Jpײ N{vQ >ye}j?u^v=+X{~pkee&6ccW Ȱjg*Jypy|Uϔɇ.MJmZQte\\zzl\ٓ5McDYSԠy{yhɻ>.r@0 #] NaShSo3k _붾ϛa\6h+"㉍ Sn>n3w{`3"#} YJٍ޿*@7`Ƃ&Ϧ:DW?KMpKۀ$I{ʪI㯛(j^pJfClG,7&yT"*7L羛K96ۏnYUlR$t\q…O)ž#+H}Fbn{QwjEE舿Ԅ ˣP  眝x *;?{ A!hZ4~[ԼVQ*/~ mybnvdPp-bx%+Z]Q8@޾|EyPpߢѸ$>6#7V7Jޜ]ƨ־5&V|_QAtpD?/>*J F~Mv &UU+'^ tHY}uu57>5p`DMxjy%% Bu1l-}⟧G]PHvk=yQ<F{}HqbO8^; =(Yxb="#?¦80$ aȞa 5.@oQ_;N*U"x14'%?&"c-ŝ.YJ(B@ZSd-7+wID>ƲT=#w]lةhI>>[)K,q8ռ;EŽC >_7N FETCpq,Ia”{oc3 vwKxqYL$/zf[yX>L|#0fqҨ]5ӳ#uJiܫ-XBN8: &TTmedl9ejGiMjb{XNؾT tVZ;pz2@ϯq7Q)5ueI9:;~S4 V=ib Y\ɶlxSԈA\Gd򒼬U*_.0@\V%Xz[]`dt&3z2-=/zYǦ`cec@Fh1w"k ,nϟdӶ qh9zqgCMG]7:NF)ndq{B.9(KvIv(MJ NS\Ah\a;.ߓx(~+u~^|C-F FW@@Bgmn2UoL2^q=}Cm0SRΖZЌWGBshABt7tO=Zu9qst۟q*W6i2 ]zՉCQ-ف=KB-d2V϶frlI=Ew1yQB\hvG᥵/NHs#Sp~gmF7S"aEֲ`"R=Džʉ67`{`Y#UY,n`qq3([,Vrczu=.8`j@Y Q$e;2f, ; ?2j@ج3IL͸iM>O(& Y0'y [ b՞I[KC.98K>QjSQ&,?Nԩ#¹{k*;V69xQ&{E?J-ݿĂg:c~g ``K 4dM 07ʋlz#4u-5;W>OMDG聧`D֌ƚt94_bqHoȞ~QϘs-)M3*g0*, ^U}Q#(TQk+ÖPs!30VeS^Z{Kcij ^6zyTQ,F'Sw{ q=.F;X6lcB®n͍ġO!F,7d0Y+>395a$3"{`Div?zH&GZd-ݒ3;÷̭urV_iI%pn ܘ5\M ;Z];YJ`u?41{jn k>meŋ 1{._,qf}}rv`([$KJVeˍe%ܰ>Zq 4д+\2.lI $c|oe|l/γWpOOi}w;ysW!>]$ndq{#x9=SЖ sk7KSp_S܀@ޜ9p>FF&)X1Q̚xb1գ([i;X8gLQĈ7n:rU69BhDx=FԈӌHF~P؞pSK')ЎmzPat*1Ѝǘ7ӌ%dw n >Y3mM/'tsQNE58uN{Fb@*`>MxK!(jf^؞WoF<7=*ILϣQ~YSVk_oqO^~4x^!;춶vSsin# \f-[\"֗O\I+"s+ׅ|HQ9?=Q,+ro)'4};:zˮ1spAh-hUދKbRr:W{vNm1D1yc”y7%ݷIՇ39=m v?+:l$eLH[iހ-{ۿhSd=}CApU}hNJ7,#z.8MEܷ=h_Z?7]O\vZFS"&Ӎj@, dYy:R sB]9fQ^G*WK7fbdX(ҚNplğ,l9ӴFSΩN_9mo^ l2&x?Iz|#ztfCs~YR{@?l_[~P:UN58@ٹ,nf(!?2Ko`3~E@SA`b.2ؾ˚NsS`ĝպ 55g}I)9q;O-?Ɣc`|%0 #MI>Q/ڟkavi F i/'|֓y;ޡs;PkŤ~?AΌ1-VJIװw6eLd]j>ʶ>#Ѓ>tSٺObl8IsӘ]5 d}=1_=o𫠳RL }Q0_p6n/yܿ2rZ{]0dEq_Q߼|;ƂpewGwq^R"Wg=-pՄ)mlmYM ם|XB^`~=ϣc`}n_a- ma[LBr#Giwu݉jկr^^a?_>e"_W=1E븆n~l,˧{p` XӚɚ97v~6Yь`Ľc~''~Y3e)uMS0[/]EOSFUsF֕7R橨M^Z]-^ZC[aԻYQ> @ ?߫!]+J+zAZۡ$Z`J.IӚ>~Qaݦn~ſ!2:=2ŀl/(f'eo}=)Yga/ Umey^ko `;Ah~$OEV ܩ^y 8Jx<`Utr QϣH~]]aK ~V"O'd|VU>غE4l"z#ACg9s#ت{QiآˏmgU;&>:Aʧz|kG8~4k J-=nj2cl--մaf#^#:5@rn}%</sScԱR[/UnYvn-z)in(,X,'P]4]7eyx0֬љuJifNb{b`Od? WR簸f-X;lMYV|t|0;Sos_JHDXmOε *NW޷?F6.jVCN;\~MRgF>p}Gj;uMoz۟YtظVa^5Kw]`>I-}(% kzO>ODɇb#+8oi~^d}^[;J[ٽ۝2ћrtFu':U>P=qwl̿Eox~1g2f-``hn*5L SfzǼmll_d+[͎d۔;OBmߝҘ۴"#sϾzCu_ʊUX 3]%BevRd um@p1lF Ey-aDZ2 E=}zu'YK: (:{@)N(w \UL}:`=AeuƣVd`_5Ԭ]UP% #{"?xjf άS)ukqrg0}ػ'`1 s1s`, U>x0D^xff}DT<-( d|ޮiܸ1l)Uz/AHG[ Iϛos~76E3_&?_Ucrg+~\fGP(5_jļW掸tRpq~TO_z Yʧ򛞆LVx o$՛-x=V6)S);(w- RhFHp7咀$[wCz%fc+ZȞV+_(eB~ &pS׷"+Y-K{_/0#uH#eâ w| K @Ru̙dYA3(+ϭ `۹P~L~B".Y(K=Έt[Km^cdj0_tIk'bx9s!? 邞]B}4x+R^=F^{̓!E :C91m$C;eDⲏop ]`۱‚QT#yC'8GBXVF.^a!l5RS׮UP6˄m X0<1O$? cczRj`>'Ks=f4W"jKp y[H bࡷsƹQQ-5DO-/}ub`jbpJs$˙kp10jGGX>pucaPgCr!}^%I% ۖ!34~[ml#B͓ҸN3$;t2,<&A}A"먴m˷‚WμU$|ą]]|p81T?ֳO9wX$ eGNה7οlkۀC_oM 8y$@dL}h7s1 ξSѨčF܂ 9: > IeU4}3oC!:ߴot F$Ea0gr{bB0,6-F"]Ql`,tR#es#\?on[!f {[lK3Aܧ,lO^ٟG{dQ뭀Y  ==iϏ.n\ҧrcEZ g-=FPk,[JO߷%rs{mGǨAi3l2 kH2ry, gɎEyd|voZ HQ}yt~S~;:(Iu%S:hN[җIzX2?/ok>:љr@A=YOpc21$>@ dSpxlOՐr߼߿;C;nVE18#ίNs@| >r\WYJs9OIv+gD:Z*ˏpZ ż-f#/O  zl*+`Ncz# mSaQ̽^)tAi'z,nرU{\l4A: 0s&QaV;%'W|OMc{c /St 9cm-9Can%Ԛ_~w_ٞSo撅xI}e3GyE9%OĢ|VxI{䗯w4CUh&4ϱnςIwA{)8R@}/6])+goe;+Q02' $~U:k-K!!@ FƯOaFmTKis46EieTSD>ènɇ5# *dQؑ2cᣎS̋ey BW3a$_+y@ |m a/7-wi̘&F1ܲ>]Uhd~^h/_Nh{u6'#Liԩ2b<8a5]huvl?7uסlz'%o" FgơJeq j.vmm>^toRψ3 lL?>čF^f4ȂRgH&]Q'myKOw ?Okg7/[*V;BzVQj)qid(STG@`vХF0tYܒf 6]]מ2a/J0S`sQlBΤbz Z>$^2ds9Jç>vZaQR3|%5GfGRjηͥ-X1hň*)xʻ>.Nn\GBmˍz=mp 4dћ+,8 q7dKz=׭Βs\q+8` Fg֡JeqmRQ=ǃ]hܟ4Gy Ϗϯ~ GF=c.2Y|ҧBVJI%˥5]O6m~QY?0{VmL5 F j>qh[_,,?f.6IF{JnrnHƚ}71y`{B{ݚҲrFMWl";b{R?: ҹm5V(-}W/SO?L}x Qac>G7yc5n:0Z٨P=HǕoI v|tU6ݚ a5aD'P(~"W˃;dS2 /wnlJ^Y*'9D,QzE0pѫE3i, :Zg ^IP~sPVKo~z(ݾJ R{Ryb׸4Qy+:?NZ2,F$YǮ*|q}8nP{hz(9|k0[_[ GJW4X*VSlw'2zvm NaC`FWNllVç"#:xDw<a8T p0#yl`<0XfάFsp>q*guD^qG'r\ߦk*.-Y;ϭ(;pU'?`c2ՙzW7MqnAPqF;ՑT<œ~l;:S$ˢoLADz[ӿ@wlU y{L6;0P_+yuŃzu6 Fu;qC[ ցV;9x{U/^)OKm159)|?'Tywxdh5h̽6UO%_(=4oshSqwa툛ےj#ZZܫNmNwq5.8ZwZ*NFm%ø.mғ}.GWz,@Z]p־Ks*R.|DSr{Z-z0QO-E[^kK/Abr=:v5vl[gjc"x Վؾ`tIF#n;Z)hZx {[ "ѹ3Y>k,>RшLnzA .9Ⱦ¸ K6}0'WՒ:Es:Dxd 䖝~P)(2G]M|tU,bG>Mo6Qqq/V k:>XZ/ϙIh?>p9 l]ԣQ \$6}塚%M@ 4^82w7]K#e N:|eJǥ%|W;2zFN; AJ_^߻A7tetFx4N}N3W w :ߺ;lZt7,(7 ?pdK>k|ajKqE\1nn3PWNt\%>Y(čF܂n'rWȄ3g&C];kD=LI)u?KeNk #GÍ"40@~(5RY\x^o+cJC]N(4gܮAFPSsPgVR*p=!/ߜ|,uiKt%{OLjِ>[ySkgF8_PUs >{vw"q}eHtJ{na[Rmya2Ӓ²Luw;On z$}V֞70ZMcDw]DnL&lx{nq7/\Kի>7|ʯگXD0bohFF#q)O$fYgz&2;<_v7xXdhI F$OFΙl8|B*ç$(r/=SUK G+U/8<'Y5ŒL^SoeM~u Ph ~ ,0ؚ[k.: qL=6gt&GLe}3oĝhܰotJ F$n0W*f4\ GyƐEa`/eTY\Tȉ%%U"-l)DSXˉaTlwPGؤ  ڪ JQDYs. ,:3X$]tñ|sFM("^ yr$sL1su^nC}k?m'anmwIdM!^O,SʃL~ċ d θ"V*͋[4_vף'h=h:*b v YJ bɯFqI__-vݽOb(·pҢ|˷7٢'gGI=M EO_kqǐH9 AyNRBi<;È¢S7q JqߋώƧ RH@~qB-: Fg֡`JF#n5uu"k 9:KF!";/0~(G!]w%=x5}1J`6!7:DMck%/2Mm:G6!W]\_T~L\(NzV'[t4q)Y^:wrbx3A{Dރ>4CT& l4>un ofWȮAYЀ'N󶟍SQ䷙SQXH%Iעx)IoE/eEV6&= %|QWT gK)F|;ٜPCJgQf KH\SVNJ#א(509Q'!ˋΑvJ,'hŋR@KKZ='gE_+6 =񀱤_ Q@l}@;(^Ԋrzk΢g7:t?Ta7n',VVQpݧ[O}.N2"/nm 4dM 07q3/ϛw8#I`Yݧ Z5ed]D)gz&{ӔG݂s`gE:8C.¡s)ҙ^ s\si[fgscoN1r&ѳ*YY$(B9.1#AF*Ν{b^R'鳖Zs=Y</uFŚ$Z$z>X/h%Up*^gMv:u[g@d}ys__zII}/e_zCcÂ4xva-NOChĽquvvj{Pp4Uz3ed]vHv>ȝw`v޽s\ڑ06t0v*\ cJp>C }+_\V' ſ74Q蜩W=vJ_3+gP\tzE5A-A>.+u6 ܎dsɛaåIcĞ_ݫsX'"Jq<]ErE[ի_x_Bʷ6Chrme( uczܘ#zsteV g$s|Q b,;H̏\P6#c!"l 4 = 9?5ljedܫ㴰4AFI"܃ҵ[ω>f^5BbL&׭iC-N.%<鼌^\_!),$i]<hW8M>KOx/}ٍߛ Ewe4LcF s#ЄH:U>80^m,|d[2 ]%zmxΣB9V[YeA~qh\zohz(ښA^q, ^=2aұp =Ѡlv6 F\Pw֠?}XQrk@;.V`E[38k]F֥rp3̛Ge=X +ȨgE::C].]\:[.$ÞTLk(_[ [oP@Twg<8G%OJQɈvG,Z<f+IC90VqN6e0ތV/0=|Aqx~uzXpZݪ;%z MnTd^XPU!+R:*w[8#>I|tp,6ӋFc67M2򞓅=#},!SK2Z UDl:'Ԣ75/,ʜp= yq = TdЦM}N4I:X+b3EWݠNѽZ193=x6<6d։W~maN{y(DD}x#|I}^cֈuxih6/nH:8xӫY1.&/`Vӏ `;@4l907qDUu:OyiR`Wb Gh`DFΈ p}voSGp{wι6V``Y3"\L}ZG,ymEʛ>[TYը=u~=yq~+qj2.Y6瘸A|9ֲ??NgiY^o3c tFsF9fpP&6YѪ:͍|^o v- ݬuh.xuq h}N ٛzMky/ez%L`ΈHm,!#e|>\Х4 ,ԣ T:.l KňO5IJw[S;|wm=2jƆФKVɮpA%Խ"e_͸MIi.zC.Z`vՓL0m$TmJ.!`MoMd~NS|"fo.pHV9mX?'p/I @.uݍ3}~a&Yv5+BߌiE_':bHY漂p!F4&k'L&BI"Uj?Q~W-|65煛.jsRe֏R/ 06kf*NCh}DSHC8' Zʹ<vҸc3ƥ7q˿3/t,($Pҽ5:o.EȦJeq-N^o9ͥАULFQNclΕ%㰽^Q@6`ZуBܿ;'qpfI/n^atH *=cR>'~zf규V~}&ڦ3(vp?ݥD'jk[n_Z=t|X$$"RGˠd3sh6T2A/58 9dNt%ˬȲ>z>hLzc䴗wp1X{{),hbX9Q[Ԣ,E$%8GǨߵѯs-)Y2doEgURֹ_hUJ$dwuT4*f߉nN]USzPX\}t^]b֥4Q/U$AC 4/F >j =|81OW6T6I^>e7Gyzu#K8̝bIoB0ɫ=uZ > ~m]{=߲v.I6k)؇Pe«x^Wze :j/IYą1dHm ;=/0ؾ۷2:]q#tL?0Z)x!p%E" ѡpX<:V*6jFJҴ"L(ÎّWp9Lŵ8%.^kbޭVb #lj1/8١J:rCݟqnSFawpcFJ$Hs !gDV(dT4Z_\Yw_S_R3] 6nj}nVX4o BZ.^ 'Rr48w+G\Ax}3yPt47d4l9tH\"3Dø:YeȈfEz/VY)9.^fS{>\_^~۟οOĶW+ Ȕϋ ϜߔU0!MaQOUgϕg0w̟]j)]DF{N'ڎuCE2/ZwG=?k2bom?s7[)߿1mnٛL~r] eC>'^s/ Zyr*upZpc·2~|?׉|T& M>2yl'X,Ez2xXΙu(6bH8TO:pNжQ/*>x֯ƩՋ޻?ߙ9+&%ɪ1cpmmբ-=hY^}bj v.4j\իc:|\?[?m &+qcJ"KzCf2-u~ѡu`%8 o VK OV'8 [,cMHs)FTc?L&{H چWݧd:xb:/RUcے {5zb,VyQ stY1N`\g4sKda8Pw0gjV7L iVcx  \ȟ_V^CuE]G~w^̩j^4GSki N:#w$NǓj`+ufM~3vQ?i @ao W17Pj.*)n9]PX`50d4 u^Ʀ/ķF =b%0V؈ӷ~v/\Sd|̲ v g{[K lAp#so͘xN{~}pԡT<#(>ljRh3+<mE"PHDOy d:'*d|d|Hl?O9]2%=h+53$|>_,W/]=R^+ط>+WsX[$OjEtp0 #]`ōF\I;az5>X^`iGadhK N?B4A;r$ uEu\r}/n( ½fq6߫gk_OSh-FI?\aN 4 :-&}7Y9m6-k#Lqt|?Q_>¬]f NCSޣ:*lHis -No}HGZ_ڌH^]4[E|P)! x?|2lz7oxu>ȭ~Š|þ^SC?|{ɹghs冽Q=s^^1s3 һ"fx#:xCF#nD7'yu׵e#vd p$GcqRjpJɁL?-=nGO)4qlLg%-Kurged]d,ǥ?)Ԥ~Њ,ϖLao3}grX2:(5ѡhjijGY+4;ʸ6BXH̢)Va^!Vҽg ͻX2;ZMpZiP204jZ?;n in7}Vht(|N7sa:t.)rÄz8itNyb.0z@zZq9KKRK7.hv?޳7}?95j>駯9胼JY@V6Au@b3f})Z#Kѽ^p OhWOwLSVDewRnI2KvXFc;'#@r.^2}BjZ<-*c57&5j=U~V5ZHf`kT!KP+P=GlB䉁=q za`پn*d)IE.#g0 440 YhlzX_"v HLJ?;UvLδ_t֎r^Ou\])xQ-dkvAMյTyt[. -_IhݽI~_~vyQ5H$YQJ?k$SϐɧByW=될9Qyt7zd.Z[Vxul~|ɳRiVsӇV EU*E7I|n|>098 .xQ!Y\mq~ BH01I%e1! a9tX,ZgfEr/ Ȟ \pl.vsf\y6 =J֦2kEBwh@hmeBPGYwhUoLҡȏYIdV;eAo(tvkEBI32gV[Oz I!3QWюX=$NQ_›,TE@׵ u3ۘWsЎ)c9">(}+z6Z| F ƧT^o/$ǫ'Z},@O`ɂ7YWXt FWO4̲+uf_{=&qK)Xݬљu(5RY\(<1nKvX=쀑p:07,KFJ}[*Ĵz4jr1v/i> $w$:=kdj;Q Y)F3D|-[f<:w3k ,Oo^sVσDl'=_Vs~6MiJv?ߥ)p8I{u*Ra3ƅFZ7-g* 8x|8j?K~$ hZ>MA~ЭsdU w+{{,<4CĝC1Qgbn7:]"%JfY񥧔 ۈ #{k<[!s7 Ь]]ۢC 5rNq|Uv嫸&-UVOpY?(eq%=$h=þ}0m328G[}n1MjRy1 Wu V ;x3*e)MkΔzIF&uR,I%~^*, cQfH?n8:hv gv3tV&[oّU"3м>f:YhK_FKӆt+{[WaXP5Q kSLT٥$43. Y^!,N3(v6qb VVI:1V+G]jNeVm#?Sozӕq>OG6O_u_Qb̅1#/W;%z/p eYwyh^hRa#r(ж[ωݬg{uLܩ-nu~]ҁrgdwuWR* L{s DZr\ kVgE.%LJWV"-~j}N,/כȕq":"K>}7*Y|v}(+Xeu}`JZ!r⏴#+rY!0t* B7q3"q:+cLrYp10z(5RY\=~4C)F]=K;rp<&0ÑMIkkT??Hl/q  _{F35R |E֛UWYܡ_Ҿ]ua#/=l}z2Hr݋e-/ K#`zP m''N&J%bxQj. *Ձ<;È  ͻi`[[\\9׀vp ,6kpf5[+HXNi3^9[fo C)]u@Gk gmJE=]jg_kSs/d,efV|OWe%Ve ǩxV/='Y3w!r:`-m :/S4k>hz}W۱y:ڞ 7݋ -{?[GzZpP }UU#nz?'FY4w%sA_`}/2.s w<//Ic=# :8C]ZTu%io +qyÖIެS8B6Q}[D1Oю\1..ZőDTHC;H>m+laFb-2Q*eO~f6'ˈAh%e_\ sEҔۼ󼮷uIYu8fO}$|1dyxOJڒ^ (ɶ[`ccr$'FjM`۰b+a{)wATCNCuпOBE{vrӱ^ Ї D6iYuߘ%CL5I4@r#ӑ[r1ŕ]Gg͘Yve(z~j3AԊS0j6 >1og~P(('0ځ %~Y gedzY-aHqGF₝ ҊG?U_8*T,bbt/'CNХ6 0W2#Bc5Ъu߲7ʙ O@@ۮ`Rio'ރZB,-VV(u=iIGI^__bnz>lu]/i(  4A& d]a)l(Gi1Oy8֟es|~v])+1rQt0FΈCWw"z6x4N^ww蝫C;:h`58-It+A֛d$ |ד\A&}:{xśup7^Xg >DUچ|3dQQU&xG,A0J$;9F7xoRrG=ߛ en|@JkJ1!3 ;|{U\*xn1/znq 5&­5m{khfܙ}?o{QJ=wPIƘ돚0> ;%Fs)u{jN(j/ԃhٷ'i&.4=ޭd{K0X-$m%.飙91{nSZ*kYr~Bu߸_E]$?ߟj2 ݠ//}4 ( {rvq bD&T+7.}zX.DX/d#'{m^^mϊ^y:Xhň20j/T͓z)t5hl- Lx,lM`а†E:xh)'{%8bPe9 S Z5e`].R> vχ?e1㌰6ؾTh@*JJ~ݔr:Go̲7JbY׮xc#&}WɢOmkϺo~0\o]E jTTS HyP6'[%oZӓvl:,:8V6K֢ҜJau?ŵ2V/[P6x`{۰k/yQP!rwJHz@Gܠcsq7ﳫ ]ұ6XgD [4-}?,_L1TAUX6]u^#W5YpD庲'b+ ge*vɲ:ej.uN)aEq̈hwB5]f8{ #$q0~9T휆#[Ńƍ\=2Qo2Fd \6 y2L#R s/Vz5b71qIYVFT*vY=aed\3Pjdшȟ= n@;l~{H9Gqg4:6=+58qBN?WG(g+Aq4ǝd )+Aʋ9MU+GL,Զ:#oV}/f)=ڟۻDhUP=;N Hә6 TWS+pP \6r cwa'E=;]8 z~J!Q A+t9tDnď7ƓA)8?.jtX%$0L<:V({#f%6P %Z!+7e؟{]x^ќ7gkG|[ g\I^X7kn*P ,#@~>6}v 㳷h]*Tc3Ll0f vhXlP'Y+ys ]OKca!6 G@u>m]{> vFZ+ڜmxr&ɊճPa Xudzcʑ`b{]-Ũϧvt0 FÈq(,X`']{ɡ"t ƃxGX`5e`]z)k=iql9BA;`p8C I/V@k^q̠Ѧ~Q3f,T,=JrФ\w߫YosW]eBrY)syYe"s\?Xh%o>:#زi"u1(y5*(]ENY5tDmFd =~JiE( 5<2L@B0"]V JK1ʮY@oT/.YAW"C_vR˞d,0~gX",PE"o]-ll%DrsSTGtx 'ft* B/ %)gxg]H9v?@vsi: ΑI\&ynR6D0VE6NG撋kV}_g2/!2ϡmUFC.q'bsꊴ] _l4`Ncm:G8Ԇ&oZ >/ *ʼĜ* kM@d?J;N]]k|4 U+^y-NWI7>}2E\k;teL( "GxshŴ^VXL:*8sOI繥u'.BZsrQlVuč ˵k+VV(2Nk5c.z_ۚ[= =tmp 6Y`‚S7Vtkק}UY7O)Ft\xOÚYs2.)κo]ns1B"=2jAm:YfbqB7j ~q Enפ Id#(jO]p;r(GDvSY˲<8 kgQFc6OɪkiXM/ql_lusA;j%Ndk{ȖUO^YIT,c3'=`VZUCY<::S,stb%™o!!NT00!v,+k- I-^2_OH: gϴLdsjRwM}~aQCؾT8č,IZiq?E#%$A~}e`]H_gT:#p쭑5 Cfx2sfcoDbAgE:>lc$-tDxe|nlJC۳,T*}ֲyYȏz(>WQfQ^]$sLgkoi>kJz6c'=_V(#{ZtLTxm5zl-o=_{9QjR)^V&q >z=#=ks~ПcŊ7׊ŷV#MkaT;N~uca.mkٚ,6č,gDn[IEJ?Q@ӆV-EQ"RWL X֍~a%ַ/Tr0Os]E^Wo>#'T@hܿgmi=jwsL {p1:eV|/ɦ5inCXf0v^ܣ9Y K~9#־\Q6;jp] X :?(*;b UvPW,0O` i)xF;=}"[ϖc#䊖W0:tÞb^f@vO05Z!&V9SLF]z`TA,ʵaUniG.Aƕӛz Z"<[^ZgsFSV11ϿEOFf?kUdY/AYy]YFFd=ȴ<3aV{9éBZ)A{9$MG,؃@Xd3\pwf0.e8yh4P?02zV``5&0 F8 }[n#:쒁]Q 6پ)_-٠5:F^}^ gJj<;j|o|mxKAy&rt@R]ay^gdX?89<#1L;OlhJJT條t+ {bdOܿgR웛{_+gjkIw{Yd,A6SQƐ YT{LZГO,աq H$CVQ6OlcL#jekXv޷CP#ͤDպԖ__˹jŋ2ΉL[i7FGjs#MpǴ]od"#SJ@VXJɔa.Dͬ`X]Nx'%v_=؜ZݢG?VxmbEh rvY/ DBv͚q2?[3艄5E~}$V'1AI=4A zUue}$f6{7FOVuqJ[x}h#R]gNL|[DG0b#F6"+,ŝs\WVwqtv7x0ftKƫ1Sgv;yA=1'sanX<7RZOrvQB}69Oe/~' :\j) *`[n_>^Ʒ%;2/smAsЄ-JlSڜS#c^^E\p8UU𚽤xQWa> c u.ncjvdLEn#d'z6Cud׃IQ (#Q:\Fb\(IDC 3ܨyA%|TEYmu9cRH:H+i,ŧjCVS&75&,u0oW7XmN\E\G㟺%q(E?oK]DڢIboՓi?u=ճ}OFѮVhtƝnu'hbg<K5 =E +mKTwfQ,p쉮E}[y=yQDr2Va 8RdvA::0vJAdGtQp0F ވ]a#YpcgԚ^ vZ`Y3Pj`&l,3 j"ՠ|P'?c-Ň.k_INR>j󔄕Ǣ1~sLҲP 0@~wr^;E-(vDfQ W6bFXX-#гzLDbA)$1ߧw _bGu ĿQQy:Y1keY{X#Nh5WݏbejUWABjD` 2,g(8%8$`<[y Z /L`ʅ6X/R!a߲o\e ,,Ϯ0:#O!a_Lt^/ÕWO _dh0FOV/W Ds!X#)\!JGO!ۈTowwAWwoަ7[Qz/{F-NN̊WɛҠ5Їb> CSk*[3 QSגSOX+^EG6L`ܼ'&8V `>c1*fD e  ٠J:ha]h%!*ҀuWo J砧`F.7uZR8]RaH2uyV(L%^]@ P3h$S@1{Õs+[k F!kMjCb5"J/:&tVYk(!ȵzy X{=jnz\`Fzյ~? }ɔa)0RpFj FvEd:|1"/a/_%\kYEv4\7 9 ~z.dG:Gl~%R"VDbQU(jUwL< .kXa^z/|\2Wns3.llGv 8?H(U}Zoz4鍶hKY: tYa—ԫ| Jsnב|&P3eV!Ki´ RcœAAp~e Ьt9č,nm M|(y>5+ž`ywG>Փ" P(Ag:kklVQv#t8 [sIEKkhM[F;t%Ui382mi7c$HN"%RjP@C:Sg)!S8l X n0<-<%oEI#R`wV\{eu0id`;?MN&'e[{:qa 6ۤ N kח.p4B+l{'BѰ( Fէȟ~M-$0¼zXM!r\6Ӣtq Od~I F=N844I)'6V6s-Ϸ՜7wno 9Zѝ>,M2ʃzψ߅[lC- PulNA*mFP[/ ]eW%INЗ~鶨HiX3zkv-x7]EK1 $ǕumܩpaNkhKJTD^#6֚93{0:6=+58q;'ӸQf㶥Lt,oEō΋hѾ[Hze SiX$}K5K{##>,Kqy- }M VmݥF_2RyM(y:kTo {=p y+ՕTwI%o!,OVX._a"Y;.Mu*J jؒ?6nkDdo,~Ii(C$*G;r,Ώ֊mt 6Yd‚S7#Fq.0r=?|*O1ÂhSd<5ed]xA_gLR6>óEv7{p`PjЁ Qn?1ﺉϾ$Jܚ0v$mhѮ~kWk쉆y0k#>O:J/~패VOO^QD/31⺷>cJ-' @(_?70rU/QŝI/VxDUAwĐvy21⩣9xЇԶF\{=% Nơ96awᢾgnci2!=+lǕzycr;W'=Y25qŢ9#< j _S`bߤ5{fP?alfe!ndqQKbz n#%|D?\2K2\ḏ}ed]H_grȁ4gѡpXi܉m=!H~sƅF;Vh=UvoKz{^-/l%ϭMz W|raF4בԬ5G]?LpD˸OȪd]e4p&ZUdUd̹Β.DQ R$ߠ+im8FƈFO^p▭H]/_xZG5#x#vVX\~茙 ?DC1Q=$fāQal謹yJY:s;ӤeB=L쒁]Ԃ_[*ڕq3p^4Y;֦OsT*Bq10f^WAj~ }Gq=es^sŵ30j :86\89is"Ue˧z5zo Ew# Mp[R2DA70.g Ѳ9~0;̅We+.gȡ~!uݾ âB,ѵ@@Q(+pVt-WAk\OF Kt>i[4Ƽ`QM\?xydĜ|Z_N9@3Eyd-G=@ZJ;HϚFVX~Y䂲C"sY R+Hc ޵TPX蹇OFgnzevVl bDiUBωfBZ+Nk`;@hɂ7YWX`Eв&x@5TֆS@tx 'ft NF^<2x`k1‚CذC>0Rs-,", @vR%'&cXd{a5$.嚿 c=`@,)Vaҕ9 ~xE^W>[?޵_M JYn%g4-G{ks-,n//4s$IV@-LA!h:t>L%)xk2;=um9CP7qmpsTrФF梤Ѳ0ɋSxSW/ZӛFdEVX\OKR#_B~)kY+f,pm=xwF[3kSu9 ,xI RbĂ=1'2ԆXUhC_%hwUy&?;ՈKzw?BYzîK:0< 5R*R+֘!) hu_XOoض F~`8:FSZ=-rNԈEާ(2| ,\J犞Za\x@4䃫6)\mWz&$5JY_]Z"e!K@mPؐxpLK4XG5#YYUw6S n_Kz{xbpS2}=O+1|}8a4;/8mųU~}.[QYT1Wt}a}Yr?!f n*@i}\i{p}udսO6/nJ_6IRțϙ뻯Ɇ|?h/ iɭ?n#NC}рy!B}}|u.}cGg EpGv ;n2Μ]rQtjpF~^#?DQ%A#c Su4Tmz| =JzޭVW2uQ ^<>LF/fz♳6p5u=&R"wio _;&)Mۃc͓NHJ쩇&lΐׅDseŊF+F՟٫3ialh#zuE!n4|2.K~IsT{NyÕ9,@}51#n_/mٽ#7;Wdb#6+:`mŹ՜6S֩+++u:BC9 )ʯdR'Guj}|Nſj,-S~>픖z ާډі[k6?l g *I(6L &nt*o9S^#/MEB9W`y#ndD 12)T?xXGb#FoĮ6č,.ү*3MYo(ቁ=q/ajlhJJT7q{ V_^/" vNʆ  UO߇H6GbF9tzE,QO8?h/۸mwẍ{3poIڹ[J!i%نQ;M[Ҥ,mXcbV,6Ιhqۄu`NջۢIq!xo@y=A•k7j7?:@+sԪVʦĨkgz`qKr@khe=YR..?Ã-:);7Fш8Gb"{wMCt`D30k` Qrm5NfQ) {mYyxw'z;oCb}eoQ$:+_it@/+ @XVur/j O0L>u֙1R] v]peU=(czX;{X06ktfJ~s#QtFC.%7LTnv{uA yXsTEKvnDQT .|Hzd;qޟ'$>ݘAp2q;äO{&3CpYu KϪ0Zf̜2Dyfx2aX(U7 o%8^-F ^a]&$"MH-# _saI6Jj;fBM{ &ڕ)Q gBQp*R3K*34Zr,`FOSc3#LxlrSa=!0|,\l8t ۷F=6T۽5ݿ v}@ύ&eLjzc9ihVj`E;.H{_PNw 7Eb 7ާ|<#Q]#q*z{B0FbPkrϜ ׮U_c70_|o zxcIޫ\]bF у[劓\~:V,Hgϔ)(֣Z>>_WtVm`xn hE+QC FMTᣭ4}It[Ts>;s:M =гgǘg dE"zL|vCJJ(LNkV, ,/ `;@4l&c!n4upnx;2.9ç#:xDwm*lcUW?%_?ȗ9kĪH. #S~|0 S#:GG[>s>uW'=ti3~Je7o|ߓ+V$Ĺ W@M%K*zU](̛P/]&tHϭ+7\>k;EO]8GQXo:"{Zi?Y[W}uWg,>SX#L-!`zY5s?DeY`a"ۂ=zwa5Xs,n`qZ,{h-87mhcW.K?(}RQ*k7k~@k6s҇wvx8^vR |-κ􋚑7^ u6`f^,jFr+E}07΋ \vK-9nM_I^r`dz(h)0<7yj 3*Gz:ȍe]ES7V0T0m݃f~PvNc8O?QMWK¢:[k1n x1t .(.>Wv1 V(unxu#M>A^ 5Ѕq:( "u^%҅1~oM0!o cq vDȞIߦo8s\Ol9t.෸3bb)=0jAm:Y>Pe.qGPjT7j ̞aL~,iޡSCu`KKacYG?2} gWh${a,uz- j`(mJ`y/à4SBbIE(aE:]:f^WR&Gסw–ܴKdKq7Ey\lĠmI#QGS[ x]{akz h1~0ThZ4h*\GqNjAm7}Ys57<{4j$_:Uf/zDdM[tFh kFǗ^:K;Z{g>{\7hNs;4 s[]) 2fkGBm/ץukQ;vݻ@;(auށj8ւSno򍊤v@[ѵ`ec #T3ܿԙ.M `G& 07*UNa֝?D+J{30b4Fܾ^^<a;ޑݛ+sŭVt8ñ՜n]*,?0 c9X*yO"[Nǫk (>zL@@rPC6t~Ȅc7}!Q5G8]= 2ƕ-MݕrdH n#wlඒmlztT%0/REiVUz+'Do/zqpNlesĽ9h򕍑g_tCw91i%VQDTɲgND~ʃ+g"KՑ2@iɢ3㱏i^ hi'06ßSL2\h1=fG܁qn{|9>U&c<~/g+At,UΈZRZ}`C+A>w''`+kOzwӒz +f2$Wg|^9mĶ.~;P\OP6Wg6^ /zB |(lB.ߙ& jL}'A`ڱ>ẒiYysjfެ]shč,.)tc>]*>Nt~='Wm|m-'o[EW Ň6ް~U͈1mY$. =oV7Pxv$~'-EF$!RsZ3ig#x ٬nJ@/j79arֈCaK*߅ q޳öӌKj-,"^Q*H ɟո{zG2XG,?Qnя  Na?ֹ rFy#t{">B}d5:B97ǸqoXl/R&16Fۡ˸MKjIƯiMyG4h& =z}d6hy0.8l6ѠARYU(5c밢]yBZ9OvU<4ɩsS2/MtĘV~M_;NPE-o"쳰mnld1=-zǛl0n-skT+P4!h;&u߀ވ: +7 )vo7E9S}J37n ~ !6nuXD0〤Ia. MzvXuR暯~|UC_C=[ F&B$K(Hb6Pl1 bWgWg@I>Lz;+d|Dq$K΃(j|.j:8AP&*,V1W޳V!p>7f/FozOm*HJP!}FdʻWf]ٮ%u)-P <"+O z ̭+`ؕn1][3Jݲ".\Df֎_F3BPz,! 0tdC S7q!Dk  %h7.pNv[v]12z(5:q;γ6)EOC%ನ8 4 pd{CV*^T8UkbNJnT޴JTM,V>z5PpA!?ZGll"6.NL|^<׉gmz1f2Yw!ٖ J ZK]֭?ǔu"ZtN85L5qgkW7*Z>/zdY7n=[-&ZaQlc\&ğ oEo<.޷*eusVWx0f/=,ee:fǖ(K >EѾIvzmv47čFܧ6*KR=$,[/1:ֳnݍ1<;"#}RQ*kSG@ sgE[<.%) Z~ExuLi:$+kʆ#g7~ε@SzYw%=b{qqAϚ< ²p>SbK\gEk'E@QzxгȞ>/@/ezZp#WyBdI(Y"Ɋr?P.q+:;=kcyIϷ] Qr,roMHBp V#=yQj3Еχ6!gM\kY{W˟ЎXFlDVXp F#.:l^9Cu/Sd^s*y[ _jl:R6!G9!S$L #LD&F|l`LOJod2b`>nbʞξ3D @ej7JbsvA ,RQz= ʗAJ7w҇>l/ΙͲ/fS|wki dI6N"qQX~Wʉ]#.2bt"ݵۮצʿ/QϏRy^໹A %ztߦn}h+ygȉ~50P8![a*jg P> b0<ֿpYAqN("_~$P<{s vBKU܉5#퓭ѥh,W;?8™VTMϠZ 1?US',J:d7+-Dk%R{Y}*!]OeX&pqXE$dKdWq ktWOA0RujzXT([b /F׏Zd{*8fadj;{cmgzVl,bDAxPs~DIv)Ѷv5/`uv.6_+r@ =d1YOWX\DG q@Q'x=ݺ0˂2vXx 'ft ^]J`ѵu{=0jAm:7*4:P$OH^ڦݰ<ǒ?ZMa*aLVa'(SpUZwB׋]ѥ_ v&eQͺ &O~/e9ЦI '-x ~ V~]7/nA`N^VvLDڂcRRõLB[{ڞ[ֶő"ԯ&>idP| [zmКG; =mE\-!20~Kf2~bR5ϡj߭۲~?6Z1LncX`4ޠ|~55y@F+^jPSitm4ZZ;Z ߚ?mX Mp&d]aw RYz]Tp>5=;ӆഺNFIo0~4W=2jAm:[c#2Rpu)DaK0f]7_(kOjČK'HY٨Ps0 Y(Y{?W9>I^"GZsY:|#HTGʟ탤z/oN_DA(CɶUdDèK{dw"B|J._ݘA/ua2;=umSmXEK95qvsWSv@ q0څSУ.:VY6"q3ZO צ~ XX:큞Tᬅd8)Ž疏29Ѐsg/h.r,D6/J( Eɭvmn뜴!u!PoDg*WU`P>Yk&QQϝlҸ톜CE s{>.ys> ؝AAaae+DBbxei cSBl`n)[ΣAdL1Σ2 :7#nãm|vCI}{qȰE@ĘST/KyCUc>((BEUY"' +Ef4MPGt,WOp8V/ϯ _6xyLeCVMĨ鯱ЪX߅暥dIW ޘ3ҽU~?Gk vL;-^P^vݰڦEƿKd\pO%Ϙ~*{SyNrzVo:!blW,t $|/UcMy7ϙO,f,9C5<`W"{3^8vmP[Nzk%)j'GqDnD O[F]cΦ.;: V%3mkU+(cz`8֦=ky:m-0NZB`vA"1K?Zk쟗@_eҌzP<+@^+F9>NbpC 3{jmtYm¢S:%&C']:mr(wW J aFl茸(lCD7qqou蝫C;0Xf άFsp}nwlg͵zx(꣏yHѕw4h Ηf(- rbܫP@zKOx2[fHjVu+NӾ䶟AtE Mt^-ZiN窕EDGWG~W1UcY+S}9A}z<:6ZzK-2lk_8#8'tIp*_MX_T/uK]Ǒ v #o;' :-_ZjV KI֮~Q޶C[,vV``5f\tF#vpמ0Wÿc.2ؾwӎZqm~&Ϧa".aB4:'3QȦUmlC޿T/.+/8oرd^kz#dJ7=I*S͹@.IbAGlD>LVg=ż6gQߍX:SZճaN8 ?YQ wWby?o KGgb>k2EO]8.DbV~^dQ( kY@{4v+}n{e?{>+j;'/Z'YME0bk*,: qWn Vg%Q4n;F}P 56ktfJNC\Dj#r ѹs\deK쬔:糶rskzm#(o l7v2O" 35yQ`| 6nMs^hf݊9XozN[l7ЦT+uaPJkeYL,]%ʶ9sm|{ueФnڒLam;u\ΞXX%Yo'Q|J ΍ըu ^V{t`_"2YfamLͤ@#|g<;"cY7r m,T3C0}Xdu96t0pn.ʮ݆hCkFmb,喩Y魍DvQ/EE]LOf>>>DD/CmkXckkJ;zo!:FhJwϩgeA2U׮(Ij6qm-.R 8ԲxLgC* ]WC󷾮O?AoS[@ZʨNj2z ySmwzWFQNhcF߁av6čF[8[ۀQ{\h+"5.ӥwa}ڛMwnѸ=0aq //JVWMq]_1'n0m# nw^RKb^K Ͼ=U>r%)3NxDEd.ɗW?g`gQ1ooه\v3ц?g;:&Dv>:tW5Z|3!VJa\ox۷b_@ &+@h%1)3<^6}oRf7ΨNjYBOuOMume*iW58)(c)<"ێYa,n`qGf6,Ordh/'[f",YYOdvq;ƱfAx/7h lX.nŵґ۠4̏Fֳ+x;o'0|\P~~`]& q=6۝LqsЙWPܝ髞tmcDG3cs;MVt9,jXMSOy2rDa;܎487=iasRs;ZG1:%a]0~G`a YR.9~]n)r.%"/: 6=+/fC\!qЉE] SMbU:B6ӥqzm:=ޞzH~Zwda,>_+`rtE[~W^"z73kkʽo7d{~]ysheޏSLш+^M~צzn @F+^02sץZ$Z@3Ld cqñ 7L>OS#)8=Gq*I C/P)kUcZ] d>z5Sa9Tl̝K.gLhU:\s?8ae]F%XQ!:7ut8DQ ţZ],l3-M% Q%C m`e_+p9LT~9[(9ym1׌Ae6c x/0(knkGg i=~4JlZ1+:EPIGsRw`-~45ZT@[(o6 2Qp\t''框c@^+FٷDwHSMK`ӍZMGeMd cq;Ɗ6C*4zNb=;0btFtxpg]-y6BVtͭ}Ktz6q北W^q:,!ܶvy}e8XkH@u@G&|\`;`hgU"3^=[Y?\ojw|=> n=aŪvE#u!㼆2qHOS]-WO,5^Ti^ڙj6l}2zy(6;07EO]cW9hiEft-{[ c)+'P |E9έb& (THҖ̙DIi q"͡<Åad\,(,r?6.}t8;ۚ%a|=ȒԼ^Yu]l 'Ξ &Ski3f%2"+cb=و/' )|<-nU+(3l!c"Nwܩ1 vio) )G^- *7RlSg-F14N;r7?7_'LX9[ Gbmc6kCR{;#,2ؾw;U6:tpG,>tO7S8_dŃХuJ/ex;z*D/+Kڿhx_ bD (p%}@! OҪ-57IK[g*Tohŋ2@їN ˆl`7>m5|*O1GtSd<5&2z]v)RǓaGǚ:>z [ E:C;. [/SzO ZqANӓ\krɟc`\{p5nׇ.>ke.6 NRdѥ,2Fq*Hxe U/e Zl%: π$ϜbZߜ+=uqٲaj':?4梨 zQ|$aڭ͎3LK"ϙÝ~p =F+˫YxJJ:MeO;wh/W9$Z]PZ~v/'rhGixr|U>װߥƬQ<腅ӽDU]'ON7}--LkQ4*lq=O[Mo?!;ڥcjaZjP V-]ֶٚD=ڏEY;vpx '6b`#‚S7q{sb;AFvoNk謹BH-*4TYcA;`4ke~ L}/;,R?OHQ pX YnzV{[g5PS T: 1_FrM, ߅etaUQPp3/`w_l8>cy#dZGSK`n%:/diI&[q'`=uUhQM/C](S8Zcn|>jg<ՃV X8*I<1{.2pu{¯b)q Bbd$n>SOF oQuy?}aZ* 1tow؇xS~ !XӴT 2/' ƸJ {m\{{&)8kϷ7q?Y|t- wנ/yx~H Kvx }$Y|b㞹|RƬh)crJw8ӜE;ÇSgmۘls0Wh  |zzơF>k'xj>+kKFV",}p{oh!\pF6(GT=jND/"HGap(lhVadEK2]YĒZϻE"`PHξC蒤,%71X. 徻ˋX&\^I@=-87MK9ay/-Ienj 6)w+r:1!H5CPXXFR>tE9ؐJ&vhOKHWyABݒ}zC*5МOptX_V;U>fHצϢ>xwafeFV!X\ܡ?JT9JM3Kÿc.8 FgߡhtIRrμqlR/" !|сo:w*dS>s(j_Tӛs^V&C28ڀ~H%L#M0ag: * F8I'9 U;;gܽΛKˇvTb HMj ^vۗ.{Vד}#SLtS L`mMSϗŎbUp7"={i*jzXZb tzGeo݉[n$[ MۺPQdhɀ팞X8u-mRo{$I D^j@=%3|NV֌lMVadDbvNV29 sz(5:q͆V$.a"r`' =! E4|'GUd}} ;yw4xG!$-9=CO3߳"-oPPmdD'fMu͈yv>A1UR 6sWSOd~naT([JR1(؞F8CY 9 UwkspیUy]}/&gx܁Qkq{,`r-`2 2t~XU2Iqδ:1d+ze(-"$)w~k&lv '$2i}ɎEՕ1zo$PZ hP0Acێf [hD!.Z+с693v<]/*%yI,ڭΤec_-μܻls|-lo6z-Uk[v;.::WS2uJCz`2EStYf0.*T)u~ag> v8 mq6þ>C0*>X~g=m+=~Ѿ.g5}rp:V!}OJ^سb}- GΑĭ(%q::CFV*k3AA?k' &9Ry8MtN3lMߕj"qi~rcl@@D=zS7s]7夘QW6$ J`3obzDozW̽ɋ2/ؘ2Uᷛy'r[WBZ2|Y-٫e"CIKr=@k2ErFKnьX͛ZBrk]-. =7=GϏvp֬ћ0 Y`u4A/to=֛u~ G`0GƾȺd)ouۚŌ}tXo=Ql,ntRF:zGwqWt &_CÃ(5ڜb̉,'_FGSوudY.ӥrӥ2z!}3:~s1džCu׻$ɓϯG0&" 98f% 'YJ6@rl?Z~6^.|-IQ<]W%k Kh6~ܡGvQ~4_xy@`Qi5h[Y<*8]mft6nh/CxPI$|lQU hl cИ .w@\P*'&]kv(6UTgR=BQ&-l|l󼵨L+E4{WjRtёK7EF\zZb 7*ТB^[P*ηNͱ*kC)kg_ 32MJ~8°u5ÂqT-S憸ш ] ñeHB-: FcVe4R_2Y$ -m1s[i8ti2k=gX7[9&m6}0'`7ĵKcs]\4%rZdmZ!G# he)]?8U9=\vx5z5f@qg,7鷛A$n,Ų\jxVqߨ^,\n /IÚ_%ʱc,X_;X>6mwu@C Aݢ-roQbG܂u@ppތh({wG9}|=50h~& lZ&f…v{X^]7>'n/&a8qN7v57V6 S֙Oc0nZtӳEoNVJ1ʼn(y*Ҋ8~qr?9X}hPftZy3. 6,좩mޓM&l?/Si&+Cwg0De[_ ե8n;:rǣ7 I%4T-L:k. cg|oz;Ho/MxebW,G}GXpٚȚcq;&OdfYt{7:z7:n^w( Ch8I;iOs/:.?K)nj?:c0UN[Ȍ6y e;y۟c8sŽFôα~g}_.:] lk}]gU@11iT-*]]%.?$j2X5eF{^U_l4LI{+U2 δU~/[9TfqmD]޾x46fUGȯE{yd@ⷹfgӠi?ecsdʰ[O!sO;Q;fφ6IlW/)KPj9ߣM_E9/uP> #/+f4O^Ϫpl)T@57mᵱ][jc{\\9R#ܤ -yrK9oߠijMVX -yCt+uS)%W~pX;1*8Lp2:{m;hL [d"S$p)&݇2$I!AX6"E}p aݚɚ97qM%))˾o?"ؾw(5RY\Ք+s`#DAVzzFt1PlL?X,?pPn77G.'^7]#G~ߏ+QKi|Kn7=UR&4[E:|< ֧>k.wW֩U^)jrOBm!|,AY$hrlM2X|qfvW?3p ut:~7B=?z~B28Hn^9",`)2 e7{#:Is*{GfcBdhLF9/Ob~~?jINqxl\7m%?0X[u78nz5Y& 07qGDOulB>O DG`4N1rfjkZu4>z G8#,2ؾר{֧wAh>tC^ 3Y>%wat|WWn e E;z!PXV~|OyylڿXSt3{i\-',*(k88 {<Ǎ:qAjIƋ7Y= x,F| iD66/9H6uS|/0ov[!5%KSάљu@׹ׁэbg*G6| ?^K2`d >rE|:W:.@h ffO-+JuZ,'<h4ӷ-!D v h @ܽ 4b,,e1? qZǕ@+ʤuá-k=u'dC9gz&wAOJB;xh<Z35Ysin#!u ~aK}|2]`Ԣ0ktf NVJ1ĂcADycG?C-0ؾwW+&zN4ό3\@*zЅA](G?;5| gs IN iDٵ/so(Cۡ3~$[Q=ϙ2ρڄڏ!ޑ}`oJřӷNj@^+,JN&@o> /\J7r iEvg;1x%X\{o(.$<&Fz֢qEKodanZ^=,S-Dar KLP*dYGPeT}Z_ hVK-, 6Tў_5_\ߵ@"Yw<†шmibӋNO _v \ ݁5epR g[<;]V:?P3|LA f|..Pmmuqց ~]gie8tDϩJ;8:TsHi)p/.UaqKY]56^B1˒Y3MzRXBp涪 9"N6I^"ۡKo03$" Ys\cjWYM5AJ[} xAHXjdMy /j6r-";% ,j ޾]ѩpO  bijme5CDѡp::CT7q?^'+il)SFW" 10jkP0KxⷘxqPrsNIB1Cߛ\if9R:E^md@Ӷ[du}=u`h(ɢDs I}+؛x}X,}q.bГλeқ~z(qA9]0,">d3b_ $=:/X|J?T~Ѡ%߲g=yXGE=,S=Vq1[DJJ+jq(39A^Y g4RzX )[m]E4ЗgIk˫EA4 -1/AWw'0zvۮ+,: qWF5RI(QFGUg/{c$O셉tlebe˕|63im|!8nTlDJGxߞ?좻ŭGUjD3773g6\?p//<8;vg}<鿮g-eޙFZojkm4`6?E%{,lÖ+cO語oahQ6g<1#gzFܴsL0(ii )LCA s +-oW[8 XxtCv':;q^тV:x4rb) \Բ:];tDӧ'գ4&,qҵZk)8xyKsy1kŋ˄@3jkCkw[raKoVHzR0ČX!]emB3oܭ5Q%d_[y,}#~e4-ylZ° 4f,Xa4\uΒ+f<Öç zIok9ti@, i=]vqw@ E[oȌ.YJA5yA8Y6k 6V^kU_dY?=mzvʻ[cڰL`un یdw_cr=\T:5m;k7loUnw><8vԮMSoY>۱ħc=-.T>K}(H\s"s0zߥ|u )>Tt_a]2fuFi4R#z&LS#SYgc|cX6پȺdqw;Kv@9/ʕ0\28 |o::C]F֥r czNymG>^Ȟ(B6tpKע?YkW7L'`Ǎ"Lqu\QIstzCYb{=|r>G>Tz{Q* wssy/Q^%Ⱦ%(uaG c),ϕzfΎqbY9iFF;K2.cg2Q RH3MOg%y=Lt*o>Œ[Ш$F~^aNބV9\㨖3LmU[6I_wkD+ѰǗQKYrɂ6rz;t]9-8w[0Xݬљu2.Y\Oͪz?kQ q yt >x0'H< zJ73?/5Qd7*~%pGT.ݔdB\elzO%vzyLi ɘ~Y,J=PK{~AլfI%?F@Hkzlnx hE)B'nAvs{?T@% @}d j{! hvk<;?'h#JWnQ!q)s~{:gEtx}V뾴SKI.0W`h# BSEL՗K]~Wq'o߫ZX@3Lɺ+ F܌M8^ M16hTp>5D+Ӱf4$]F֥9|s)uGwn{4`'E:C.m$qM.]6oz~QґdglW0~঍$ڒ 8Ju3\T /AG7j^<:=*][tlO"R9?rzlZKg)@տg5ގ(1 -!痾 eb!f[A6gh8ƕ < {t[*hgwk60hs{Tz ^OFHX31wc66hi_[ lk^?neJ ڛd/x=LɃ AABY1v35֮XI t{YhgR`vi$Qf+mjPܽ2=hnezHy(ێYa,n0B)nn=~\9׀vx '6btF\PQ6 7G}uwnx`3YzǝFY%<؃Se +i= R*XHUo(7ʕݔyl 99[N"ME=8hfM_|z)E>U KǸ|Tra#Xpjq}${Ďմ0R_{E!18ڮ1bP6+Qȟ-pl6fs9VJelg8vx.e(,?%1Uvs8'Мiy.Xa#_FTPd }')A#ޓV6wajN|0 }R>y[R%>Lsޜjޒupd] w7~ݷѓ 8F,RN:34#pD,1د~5î'pPx*hzYn$x>vф3oB5_k +g+ srx #[9T59}-95jy'Ҟ/0WY5HhuS ۠-f?}}I)ǔ1}qثi=\#L&s*3"{/0Y|VJ7sw-TDdY 3BdAF:73pq s=t! n5h(P΃ª'/GysE *,] .0c!.} G[lXVf1U3ăF^4ġQFUut/ })Mu) =?f-ٲcHNQqߵM;^5=E7[gοm:ihkZ+i_G^(:z֣2QC־* NsT+;Y嬵!zԆd`d!:߰ot NC5Y$@g]?4p%pFkP9- -.YJ ^Ot:GwI'F]y/͢R0~E|:-<j9ԡwu4**1i|ږbw Sq5H;'||G,WF!n4>/`fu‰ Jv`f{:@0}tJ NC`-S"dPQQd7b(>8V*^o& >CH)t}{^cetAHڌQZh`@[o*P8*%.sE7{wp\ж9R$&4ëVaCh(VKRp?'u*&R)a8̭zzd{r=dxVm6YFg֡5ׅ3В8^u,#n:1/{Z-^s*ěQf<|}=* YRֺ+aW .~ ֢J+mkN):Ğ&nhVad:aHJ("C|.36[!";02 پt;UH<&l_6%z&==#: sݬu08)%c3SvM5`cP \kFX/o? rQfhoSfёܲȈdL8+|*~<`OݩQ9b|}LkLf8$tS۪ly9BIAk1^ cf^Ђ+W [bw:\O<β)VlglZ.^::y,{k+v^FEg*@M]+ zlic177b\tF砨T,,(*6ڒ}߷^, O aB-: FgߡJeq߫P!uUEx7!sP8LT/fVh{+Q}Y1E-Q QhCY]a ƚaNm4 mtl7˝$I!;9i5O]mK;J,дS ,->)0PtY @q>>Za~N=8i`jPuNy4/fpjo2@*OePFj^$m!Еp n؁Me]+iňYe즺;2[dMц]"kŋdK<p VQ. 0P0˥DӍy&Q CH. {wʽF/:Wu ӮYyQۧSOzNVeSy8>s>qzкޠ2IʌpzƎ֓4%>wg\ܥ4  L#("{_> |ȧj瞧wXQ|D{7}fU|Πhoge>-Ymb4RZ|bJʅ!z3E+:=YEC ae]F%$ȷkd9PyPJ)msq Eap(C_ tf(+ .Ⱦ¸K6}0'FV*kP5_o~t22Foal}bٸ[Pz za/ModEYۗaJɦ= 6ͲZ>yzנjZdv"uV9/uFCNI0D(v,I\,G2N" #: M4S[.Oiӧ~pgKQN3;j0/hpA8>8,$Ap8VlS܄ F,&꫼g $mxGp1  dљlJ)1C]7dFӕud42HFaf> eoe%*aLIVՆ^t^Át\L㷃C1毑{ٱnw9xcPs>ƷaV5bb-ۿY5fy=G?\ѳkw(K&B8:HtO ßjlkTRZOqOt?U eFݍ;uP@t=ti~wԩJbdCMA~resXu=|_68FDžd_ϟo~6bZ.nod8%FdO>M]zF -^bQjMnOnk Za ,}^>`L]Z1&TIҬZ-&(-Lɰ_`o 1L'1:qPl47KUN$'9xI9)ZE[UXl~DqY{LZ?!AV>]Y2-K! d8# dN(* 0 nxN{n r8R}ojDcU2i҅M׶"C黊2,$#\}#:ﺤU v16Z[6MQPiB5Z˼39ZB`KVRn*'MHtJ'XC+TGSh(ܟR{$!ibw4f?ri z=PN `ݶ#+,8m:},DېsֆduW J 聼vŹ37 ΂]aq]#vdh3YFǟIVzFt|Ou<,hv(gnr2QSl)1{j~VQ|AQtHUrw[ 8UD&ʔc֡Պ}u[:C {. \}^-ɩ+Η NZĻd]-~Cܔ^M_Ϊ% +TD=q աEY`76%iTϯYYY4)Pn[Үa0'^wq^vZ)g*E ZqWgZ. 0$$`"CΖ1²pvŧvNÞe),,iA^F /(7g4oVN'ׁZ&kuSJϚٶ^gTK/JMuBJ5&/w9~%l9g|J̈́2RV֕#S $ jňx.,Xs&xϔddQfSCĉS7 `Ʒ7 6mF $}Ȥ+w`WȂ$kB**H%= ʇbh#'y ']t4f@P7! l4}c,xuE!ndqG\_SJR=U!O)Ft\xOÚYs2.)exTFIXS+pс}@-8 CCV*Pu uE?>63h|j{U. -kVlڶU:BJڥ [ki cgJi&d CћvNneIՃ0QwYU z271JΔF!}o& y5+E#rʨ$O7{ݦ鑔ZVrǀ2¤K1+˖ҦEn1*mLƃV``5fWat*F%#s| Pzu#qb.: CGgJeqWc<^FvR~|K` 4Z#Eط: JTM^~3A/??E׏! G^|rqAE)NiUNؓ|[kz]HtCO,NԜ<;7.Q޳ABVu|y}GFzocdeŋ*g =.p]+˪{yy'k6S+zQ?PE xItwIJblz],C@O`킷]WXt F,7X/Ox2cec<.WEa:X,7?7vp FL+d;:#{"At~0R&BŸ[oY-87zE&5-h[Bˈ \t =zLŝkE1*WӠ_T+e%88;1.fY Brjqm 1q EQv;FiytEy˱-Qc`5y9;+#QdU% u@iT~^o| a~+iJCYG_g߱|=tWv`VodY(e}/*5F) /-iޘ{#j 3e"ƌlLֻْٿ??O5oP j`?꧉Asv1d>nFlUMZ-RH膲Ye%s2oaWt2Ϟɇо%FŪC=aQPHd;Bj}VK*~Yrj lLi5]hMHۍwc)p{5w5 V|?S)n<5:q%' 7q{9ZE7^d !Fl9WŵÞ'ҭZ43<?<_.{`3cMC a.GeO`).b:svMsuY;̌%TmhkR_}C{քڍ=Rbf zWfjj2RfQ뮉 j>j^j۪0zv)p<$p%Rg+Ԛ¨E8}<_%.cU =keM&G\28[+@[3:k]֥/ VTR)",fg:C.q_*%GY̙xCف H_ ,ҮM7IkP2YP)HI/*i~|jLm']?^,?oDLQvh3* |Xi` jZ|<-.;siuV[Mtmc%y:%yku!N=B`lF́1.',n0X\m{Q%R  ރ:~:J 5&)5ݑE-N<4?zmwX[+8жCP 5WG+x82Q T63%h@C`?kD7N6Rte9,qf7)u! nU/sϬ;˛z^t|ȶI=WHP&[˔̳!Luߣ}}8.ްG(Ox`,Dy*+mŎKdvaDs1$=@W$9SQ8첨d>؅2͈Tۉjym'YvVZcdҶH';ySgCޗ\Ey0ݜmmT%S[?9 ) +s($;|ZHڍ+7z^?sbmSh8%Vl|`vp0 #6Y`m3,59mkpЎPa`.Rm࠶@Ij nXx, wZG8+8` /ο$ndqgǶy`v"ɝqM˃ vKE#ƻ䫡(ڐk {W+?hL[/ZO;?9VthQaiKiG: KLM5JU_?\'Z{1aMĦ!whRnM224|ףdOrC w ؚ1e6U]JReix-&FP 56b%NsCRyvʸHㆉ7&A)†}e`]RNSM7`#HuJbak⚩dS+\7o]طj 7%,c#u^~l& }j7'A͋QЙ;_|sޘ'M/E)3 vj2&,J{evzb&H|Ճϙ麅C*/r4^ 0b-f6xRT0?UX₟ΏZE[Qݸ=/\}(l1~ 5IwK~m5G,!?Ъ/3FlRŝyFr;#}+7 y]#ZO"#߽WcUn< #QMg2DzA7`Cbvs ʡiwTjxjN{.M=X^)*{mE"<$Afd'NEWxG#[io@]jNѰn+ aFˉ< P'XB5( iSAF CYg)#KL$Yq R5m7X 7 ҸDPa`~P|#F;RdWb barHgi<3 ݆][_9X?M]Kr}ߕ;*i{"LpJndvV83א( r>)IQ7vY9{͸. a7bWX`{)`~!Mւq[[v9`p8+CYR+ŵ|k!]&7p >6}pJ#7qz/8T.}~H?*yp^2AMMV6Eo8C!7o8@g3YD7ݦDg2+c' ʌ&u4{ÂOb4vϭC=HU[Cz'ynk57#Sɽ<{? |3j/FI!+HTÏqXZ$~\Ƨmtlw.oO A5ԺיtY`E,cč†p##C$dFAk˞3F#/lӓс} ,xuŬ*dqk}a=~^ Dg)>Ta %|džCZT[{,Cm88EspdgTC\?Z( z|ue*, :˭ݟϝ MU=VOZtPʶUxgC+q]c3|\17 ȝL2R˽(?p: W#Ϛ8q(l# |/hErJy"#=-uSSa+I&沚uL]s=n@wjl#kYT *11=1hzbb5aB*0p=CJwS "@ƪ FfьsmGXV|ָk/-oA4lҷZa QB"G.XT2;s`gz>[ wƊZbXEN­ػ4(T1Sh}Nw RWWVYkG^Q\{/\Z3+P{rk=vԗŔ.=" V6Z:C(;AkmVٽuP=/-mt 4dlŝg:_|˳Hw\i9x w1:#BӖz4S G9%,1c6F$]NOOY_0ϦV9LY"y Ҽ=b S 3{]ӋI-K[:C/gچJ<9yΛ<7u}dL4L?ϭLl*u {Fl 2Va+xeZӝ1ZX(P:6`=1b`SS7L]WVqh1" ,Y+,YsԚɂL2->73@҂Oޒg,VʰTe)| roxPpś/.k84Xsl&bc7]^>;{3Oi1Mli4G-c!(^~ˍ"e0?=P0p/8}ʵ:]T+?z6ݮσ-] i^sګAK]]>mеv8h."U=^ޅ/s' k]F zo,{-͇F-".oM)2ȴ֨}!7523Zٹ=Te>|iN9Zd؊tiNIkƬ5d:{ՓiWdxɛ~NC_()]QTJq-K'|t3 RX5b\__0kz)mJB{z}XhŊ;M9vEۓGmt 뼃†ŝstn!$Õ9,@ޝ-3Pad.#uΞf[ޑݛ+s1Vt n4g|ݨ1`CjAy}u!ޝ=̅ R@YQsSAHuxGnEq& vӓb&b)l0,Z$ .Wx%KW-%I]ۄ3TX FV5׆gqpg2S-[vo#;(%4~7Ƌ(#celkjk_!sp`^sJa' E;+2Mf8.?tvqj4| CYygw%>%Nz ґpOˤ85O/ xs=,4s١BMh4Wy"5Y25q~(VީE&c9F)-|?Sdr=kyM?nd%2ߔV" BUC*{zBQWUH넾d4R;QFY.!Y7[:o-Йz-,8-~oGOp٧<+ Fܑ97+8 l57Jigg>5} {Bg:8C }+١$Y&FExtOnz$vz9[P,M̘ra-ؒ9ɚ"º'YiTцyr[ަQ9i<~Ueea =k(i,2ଌ%P2p\i E͟=U 8:n%(F EY2XQjSS:HG5a'qiJ`:QF˹Huue$87 haKE+,RF2q31}~X1uj%Vg_1!܀5@>>ˢM39aIV5<;㉭5.>Qq<|~Ǩz\pslt9 ,dqc[' / kNNrۏIeuH3: .WnÆΕ7dCz/z{Y@ξegɅEêcVVvzK x+eURnUw?έT\mT\0k 7h@5F 7W⶧/?鋁KUyt[yŔ gqvW׋`!"9P&}]>j Y 2W~ .+vQŒLPxeS4'L5p=:< c5Xs,n`q;9g 7ѓCp\r>xw7:ԕC7η~b88웁}=#g0 Cូjf׮:G};IE٭@ ^=EN~z<'ׁe^FB2UAc#̶Dјp7 Q%"AR?t\u4]vS0\7bqU뱫Td/(W^Ӽ=^{g\v%R<b) ӕӂ~`] JDq}~ 5L K6}pJ5CkP4(Ѫ,=2jz% W2|{:LJeq;8|gd*=?pݨ40@јR9GɜW#Q=v#hplzVj4J%qǙZ%EsjLGh,&Oomο )8Bn:*Z\d}J Ҋ0eId _[lF5Jg^{">F.AԲ韛'Vz fV(ͫX@Fe!&>ܩ/+@^+^mZ:a-l}Fp Na~S-qF{?ar`Yu{`K])+-o `4"~vw`f\ mk$Vpڴ[͙ϣ'ڽA y[XU,Am ={2Z'јF}C,1ZK _ èɟ6 )xսv>{o"1Sq^֩: pt,sg6V`QRSAIuV ۄ?s.G>-sX2zэ3Ԓ-Zd͇~7O{wVs VyO|D7ع02w+oeaTaUrm򧬢 ey~h!vA!YT(kZ ߻Kz쵲gS6DqTŷCJ"hz.ahm,7Y#nZ7]Mt!7b7-+V6Z1xL\~7Ѹ%IC'Ts2W>ݗ%6vU73hn%Q6ŢGuQilj͈X ^iκ)3+%^Zj`ae\ ҍ;uu0FuS4^C5>=6;2##2lZq# HܻTMy@ nX]t*E.LWai`W=<(-ުi7U:hMYBg6voKW:!NO#P hV,V83 3VHG?޺Cm&ӯo5oEǖF$7)}V4vķ`I&(FH<[o2MF=(<676CQJ^-ճ&-=׃ V߱o9: F.Xa)lYM= i@}(^Rd5ed]vE2/5~ǨljAm|cBy?sb,>|xVpOv:%jﳏFq}u9>6x$:L>x%\sWZt=ty 'OSdD@Wd3qg)`xގ猆}zxk%F`u]w Y۩dJf>ř9OW5㫅wE"L"i7EqXO^y^եg*M]LwXV=>ԣ; G`4k ,.,fKOM3-ec#,0جљu2]:)[<7I@|~ǨjAm7}YѫD`ЌvlZ=Z'L H(h@xN*J?fάC(ĵslO1; /87uRVzf"]T)֎ڂfQS&{~HIb϶7 y_߼=p|z݉"L]ϊΓЛVҦ^$QtNn7{+Kk*Z'$A'GY+kk,}vzus j9ιHOPfk5{pe CX_$;4\ZD}Hit>*n4UsdU ׇ3_Dr+WMh7IRч`kbt}ed]L 4sZ{@ }Y3_I:B eoYab>ݞ}ݹR3z9ʘōo.ÇLuSE3eD=QϣH2b_aeQp̥%l^22.7!͚ Эr5FNt=rnJisp9,Ň. ,n&Q ^`HQ r1sbֵs=ye`\ţ8)55w<8{O`a\agF! d{.uB哏y2&Hꨠau@W ZI=4|%krl9_]\3(ӫq%&A!~Zc0 oq##znmWpCH(8ݺfԁ6@P5YN~ 3XcI-.\Ok6b{J$U; |c]ѩpkRC ` Q`q^'̭xRk-?'o/( \v@ύRL4[{5z)&Es`Hlqed]!':N3V51^ i9G& i:.0d,>R5OW7v{r>Y)uX\><›wȼ|7e;?ԍy|15vGՖRE?DݗoSN[ESVR', 2gzxLy5yf^+@QVrnR3թlzXk6: ,zuE!ndq1 LK C._@ç#:0O֌ΚCuH=cd~?W/ e5†}ThDN.Edv11^ϛȭy>:E*<{ ݅-sڍ[EK*{VX8dkդ0[fh V 1j\Y]XFeE7(}ij-V֪ؐ"QN4ft\+ l.0E,$84;1  /ְE꼬PadGU~+4-ײ^>٧ea!l:7Rry;sTfpH=T(.RV/ڛbD-~hiobGpПjH4w+ k"wR݂Iwkt6աyQG}A+QGoQk}vV\lH ]i߸)Ki0Z-%1h>pFLaiEwʷm 豞XވqdFYCkfG,#c}qوq6 PM9&zRGZĈ_78##; gQ)0i z~h`{# Cs~hF+ؼ먳Z.C|us˧a:Hg=HձN2їrBO>3,yp~VLIh OBH5ޕ nIQs3O^Pռk-VZ76\K%=@+,%i{8>kEiErbaCӪTr\{<{T-pWAf[py*NJ7ТF|xkf$ K8#K=[q,w4A&l2VXp F#F,2|n6|Ǫ+v%rX0 #6btF*F^ϲE2|ֻNzϣeyx`3"#} YJ;ˊ~V 媧-C)f:};eU_RZ'mtUKK+Q^fCw X8SS1:lR']Kn"T;NH^>fem(>w)ls "n>E^lIv~4|┯F϶C=GTx֋Z6[vf޺3kVJ%Oes"lMDD"_ nV+ay"D6:˱ih}#`0i8 S߰o^|f1M,ntIR-exGn ۣ1:7Õtyt~2+.3z>w*7;t5̻ ^ɼ1lWN ܦv9XZReQ+oa M|G/A)׮5ѵe^fe؊ )u [F<#$C<"6-W?,>Ҵ Ͳ]t}]771YsPԥ47js_5ät45Awҵ!{nSzVmiEgq&kqM׽tIׇ{t` aÚYs(,Xb\H>\<.TZb.0جљu(56p8%,gS/줁"8 s-κVVݲb>*m9G/Zj]73UdgÞm,@7<ڔ$wꧬ,(^#ϐ閷߹A-ZJXICxK_`"vr!K3TB$JAdk$S5|nPK(;[':ˍ_V0^q\K2L=76 [AlMf鍞pƶ]3ޔ_E5ʶP+-=C w(Y6(OvFO^JHȚ5eɘq¢qAE[|^0XN]*Ettx Od8Xa,n`q0uLQe} 85j~ÊPcFg֡`Jڈ +<[(4 \{GC ag(ikQ'星pP΄K`\}A9U6e+_+o(3T%`jJwRu $uP}g*σUoγWLefFؤ9HPԫU'@8ƤAR2 z(UŇSpf!p3SZ#X;N&UDezʢqzLe%Z<\@(߽4-­$_D+I܀fc)#JE/R-ekM9{.dXM7zv] 07e@hLu=2 ݧ)Btx '6b4F$B#va1@6~{c<0Xk5Y73¡m)K J1ֈ21H5wsR1ʒڸ|oj&/ti"'~,f}_Ns(!mKY?`-_~ko6b ^=^J!~txI+3yw}3eV DiPD KЅn~85K_dWڃss_1Y悔DAڑ]VX&+ TwQ?YI-u׳hm8|m5XaK-ӓ \?8,"v}{ao8d'zO#)O9d({sS,2ٝԱ(w&^ѹ3aN7EV:̈zHlS6j-o&cl>j2[$֥P (tNeִƪS|V(u IuzT KJL!cQc9 b23hňQ2@`L;޸3J|to>!㫼V!^1׊򰟏<6i6Y+ uͳ)*׌'|z]WNe r'ZSWH9ui: ľ*{TX|t|?h2[mv/':||wHp>}ԃ 4{;X): ^0Vkw}DF"'E̫w<ߡ{C2^\ysΠ #/A0zjayRc'/FƑ?Ȏu /~~i`޸f0'Aāʜ0XKTFqexkzݾL^+tn;68>pl*afɇ`*]kD󽮽]oc# [I6?7Ux}YB˓{>u#3!*]AXy ɼL~TS$t5J<5k\4JLB;8h<a5Xs,n`q'%NnF,nx\0 aÚXT 71f&fǂc; ][G?C-: FCJ02vq4_9?sh i\7/lVQ?zOQku^.7سSkδ2Tʽeڱk3j ^<̜߉nbJ^}g(g>2A<AFw $hq Q֥m;c?-^2N0\"0 .zEJ˨F[>ւ6t_XfyLɆӜ C%GdIbquݸw]O+iYެ78%`k|Ԟ4+E >>4r?|\o^T29LĽ~LUzMiʹƼDjdP1PCVZRF>?Z7ˆ5Gd2Gb:RC?BZ!: GVot^:iXi})Za @1D=#C. ~3Q'RX64蘥 -Q{W:]F:{r"׽)r,c)ߚeIN[ZbK׵jeeBK3f$jVVkyWK^h]@VHZj-  cLqH<z:ꀾim05 h0&Spbkň2 ,YT_KƥάmK,gV7Yd‚Sئ 'Z5wk׽Vkج>اaA)2ؚYs->']J;;mkFE;ceϏJDgE[<8]H٫_*M}PjTveX7f]kkU]ǗV[0hG$uLL -}B"ME,P6LE쪶js'EJzD>2DmPZԩ@5?=uh.8?9&z 2tpǥtڈsT*>m'Gy~l'(ڿ~X#z[ 0nn? Wb꾋hỴQN ]ydPY8zOqΈ^aF{&O'9h5r4H\a c+0ؚɚ NsChDYi>JvMXO 1sl;R~UX=Sq>;^D?^t'Ig Fad3Pj`۩B;{5bS[sCz? rF^pjӓR4ĵQqSBnJ&rw1ww>[Ϥt>K ;acI|ć΅Z~pR~ѥhCݓ\%D" [/;oeT!LݠlmM|Ct}GMi/5N-ȢaUת8oʛ߲,kmČ*;.Eô%0BE‰%)g1H~/-ۡ/r֊Y>uR(_30>&>47f -#dwN0&lN ]enX#+jg;^xSb%?vD-?(lHܨo_LHcOP@KUr;Yzk^`* I،V(/I]gM8[(zIfܭw g>/Rz2|5u}fr7&ƾx'> ZueSj.hلZW;-n Qa`c/ƀY.|8Ks;KDF.-YiO=yQRK9)a7Rߒ?io`i pA{)<7bWX`ŭ5o k͔׎"Jm嚽〄Qߡjl:RŭU3Ġ cЃЇGFwzj.* 4Kf5Y}< _4 ֚m57oeQvћ&c< MgMXwX?Fo f$@{`adFdVY [m≾Q㤵ph\ z?X,5k0fFWLyrCj5cl{kdoeq|MJG?:ͽ2턍ʼnn}wEʮ^{:LAnY΍^Ew7Wcmwt ΁?7ܼutKygے2)qW~jx8M8KA;N_Cogcu8\Cڎ4=p(#6?DvM>ؤ{$/o m@YfiǠ\0ʯg_#Qyt=8IMq^QCe CT=RvݢvҲ$uL=.Wjb3ߜ|,YjZIW >hCWOX=2Au?]~}tXhŋףŬsQN!^^c6kקm 4*,X)i])8W@Fh1# W! 7&W~;Kٽٹ;C;2Xk5Y73s۟_&ك~ |~ogTfF7\RNlI?5:9˩*5MqwM3)|՛4+/|"&ҩ޸qOJVѫ-z0rr oZ'?j"Y˫|«I^ξ*CJ]vE]jn tf.ū]x*x:m;T`d& i"ݷ68NC9&޾]UwdՖG8J:زWnE: C0ttJNC2Q'_Inp<#vdȾpMJNCo+lZ DKg{czW|bcS5^'W^ F?|TZDB;\zD-͛FRU*LM\UPu}w^}rk UU4G!6_/z**/DپkuIojoeVve.^r ]TХ)c@1t ъLZCe0>†Y} cq;r%L =ZY<08 san5:]F!jF/&"줁=#_tlE$e`)gϳf!;źJ e^\T2'<4 DIo%K*I:PC)`z9ӥ};i=޸n<!z)8< #ň93ְ+C}Ȁr$ϳIl`heE.mfn2){:4_OϭfRII.A L75 t(Ȼ$Qڵɏ?Wmzگvu2 sVcTt[/OH4ɨԉj]U=(`l<_r5T1U(,z<骤ǼmPp)\_'nM0#OgAK0I׭1hy0_@8ٷ‚Sn] 45DצǢ>:wV3٬`THF#n?I$q ]a웁}"x >6t4&F!]7 я ms"]lL?jhN52&'8=s?$M 9}$|ë:͗=[#-* eRypb7R*լP-H7xu:+F?3S#G"o_FJ-,˲=O'K[0\sӖa'%ht6w\kӱ,嫃:K%ѥUѲ7v:p5I_oc| Ã$dvooȣ)Cֱœj;0# eriZNH֭fHB;:h<[fh.͑ш+Q:וFe,z6zѱ~[ 쀌Q1sl;R2OW1LePߌ7gx_(B6}0'V*k5<,+\ IE?5dq17m-5Q%S-kMVJ/ƈR%4atF?GZ\K4Ʃ2~Lv#o$2ʷg髛DkF5;O%iQ{πuɌmG7$̐ozԺ-M}[q'Ske'_kÆtm$m#}¡h7Y-eE@hG=qk^yLz^U s6,ܞz-rGO`"ێHh}"ž7V7ʨ΅{C;xhw`E[3:k]FK+卽 h>}=[t6쌰cc_Rw+{Z}Y}PۼZ7>eY,%kLZ Qҁ'J?D]&d @"쭎Qe;b=-xm֊13hďzx(CBٟ]uί6^ tNt\h|IV 7NȁqkuCoB4,@(^4<g3H}K_\E&0:yо7b_~yjwD(?,S{uEσ#{ԗzNDg;;~YrF9>Jfn7$4F/.5Rfx\AM'=%AäiMƄ@Ys!0~{GUY'#yǕRƮYWGyuyLcmnC*)J2ʏc,va0<'g|{~~Qi/jߖ-;=R A÷gc)/J;k QI˗GzXc>nI܁`80X 䁞hCl;VX`EE9/ 2Bgq exA;.V`E[38k]FK# 2ʴD8[1D">:EaȆf]F! Sa<0b:'}D-ճ?OD"SmysT7P~&iʻ*2YgM-ޡYyh2xN)f:"YWnexu4DglB|h~uF\AQmeדVzeY Jz9!މ7:};(n/0zbQpd ~Y(+*~h ^q:ISBʈ|EggeQ6lcokI wg;E,vt ܩF\d5Ku*{V d3l^`]e#㷨!ޯaat9ڪVVa%vԮ5:OukEo$,9,=^mkrWKmԳc,0AMɈ't#j׽on9H;VlLfEo+Z3x~f=kōX/ a vۮ+,X f6 ˂2x\0 XÚYs2:])'SLLo.GC;``dGF=C-: C6428]qLcn| շ S&,lp>mɄ]ɃRT<_]4>qՎo6PR:cd)C筕E.G+ HBo1 tNoӰɸӫ>齥;ɛLCLiTȥxt,^q2u}DqT2nh?ʥ?;:N/Caˍ.$&DE }]Oڪ-2dH]}JUЀl!g+64cLܓr͸|W5#V`K4]֑m.\,s}.C-8 Fo߮cqsoM2 t m}3xCtn;RfYI>0 qn#[E"/: 828])H l[fK't8ީR@4yz^X=iu|墧)?Xqj#CA(9MRTuuG6}RSJknk0ȃd`d?P8LT?qM]I2-f-n|pMQ@XOcs2WFhnNk橥w =g gaϝhe X5ٮq LvF(FGeNH*;zVd`_0z2gxޣ7 LNZ=+AM2);گC1 :+/V6-&s.xtO5-j#{@z2b+,dzt,W4Eƒ ɒ'vdp`cag573&5{II-jR:R~.}`4č,.Fbټ`6TaBV'^zxt<ƍ8(*[,eeHr/D&mD̺m2Eq[_ Wxd.# F\Y#- V>waԾGi/ dh,NJT78Ó y}AՔN?9?;D?,R^^ȸdgTшtgp Y( Nlw(@&}eHV2 3lk{D TU; DE_|Eǰ'3;[֫`9Z2#Djŋ"4 =qyAI:\b՝4mIuOۭw5V+$JwQ,L顈8bBk-?5aQkŊ1F+FZ%e*^/KF 9e n~,lMp&d]a#.LK3Bd$y}N2Vups hG`EfƬJeq}4L:Y_.<^xy~G?/2~(JEF^_ݺ?wk2"Hr["v/kE?TsV[ 'Ҙ'G 9"DMMEض+4/3ߑhj/Fm^i ZyY?B -yѢ[Fv4Ez;x"Q&JSrWx2ÿIkl .i=xZŽhIk~P.?_2T4"EVi-Qy5źed` 0bkuBRF#e'?~WAjl?0!3LfΛ725*NҠ\G2l1 {(7-{_t`ߊF)}ӜVuYK}f[^絲2  <Zu:j>TRkEVON4G,iϾ: [HOHfEs~OF+BT-VV(V6sl/ ?[-ckBɵvSOWɢ7YWX4 #qUQgoJ]<;"ÈFQ8ZQѻ bgVEQw{}8rfDᙪőks$`)h U`';)zp.,S&LMc}ĆC5dZ5ډ7hu/Ç'yY3P'Х FʻvcM姗a|ԳC{0kppY8w'R6m3tqT*S$ϹR~Ȕ$}]mm];lia|hƮKq ^"l`Q x|>%7Z.u QI"U26[Ћ'FfqgI7mttJpMC6K\@yp엱 ߏW,1СS{bzduKvBw=-2H^d=\B2ԊG5Hj::Ȁ+E?&cX 䁞a+,8 qAKG f!y]s:JK{!n^Ў mVd`5eRF#Sbifԧ6w>2jƆNp;a'Y{{q L{_;~n,sL-OfE5"QS?jQ>YྺE 頊͟M^=_?I]n=P!;mTkV,*eth|JATFǣ?(EP:O" p+v\j:@tnAC~VexQS4AEG׈ ̴N,A- G9Jn( ˸ h7+W'6t[}7@3ۉ})ZJ H1aXxcc-ڳc``3fp&d?yP"gy ƕ&@y Qt0ڛy9#8wXT|sQE _{Jr֦B7(Nק|$\T¶lD$Htn\I2)x=)ke5#TYtxtQL2 ^J2d-|^+,J툜fW K4*)7Iynr_{_/;JO'\-Qϐxqe1]lbFUd5o>ϷD2)tLc#gc2/JEuvUK/A4@lgc4Oz2)jxNMшULzI.G5ťU-{bn0^݀ h{#^`Xg ͭ "jʼE`hr"0p{Ul6ͽeoD;ojn07k.zuq tRK+sg$C4AXO;o^?ZRn[E>c_e`aXJsct{ClȺtDqL3b~I ?eIS;Q{Fw{a7L~Q&(+;G헗{7s NCJ;?8,ǓYc2]Z.pameA~L |+5F~*uݏ0m(/鐇\nlw.ް֖>wm'?f fϬs*c fIKW3/()_k[fdGJ $S12ip|`^1-! th'dm،.#niv3%H$ɣCh7-=QqhȔ%EQ0 Fd^=^ZNHW:%t\2}Wk|,Ϩtek%YDamvȚcqWT 0\rK.NԘ]~=;‚CذotJTHzz@9vt~t.K? #MRmTB⚀Ge4M\<vu~22^'r#l-?힤 ]V&N•=0^J,7"޴2˲MV[Wך;q?2k>+.>a5!^7Vϕ/~"뾣$K,1hN  [k{qO2 ׄk&#.FitlPH Z 28|M)92׮UҶ)z!m}%8_( þ۷,n0>ސcD<_|TZΣĽ40Mţ8)5RY\b/ޱT8nLӎ;я;ݣȾ¸K6}0'ؚčF^h.L)%^@o:=p.lOin:L^mRJ}_{mi_[ۊiM Z:ߕΫc? Zop\x\xС6etK|o˲mGF-I> O"@a0($GoJeqAc*܏᫒m͹9}2\3Pjd6Z5s14JLnXpp=:8{ʦT3`NfĬKY{7mh,u*=Xr;\h9 S|筧uAY߬2m .9\Mkz&r{fSF[4K'7uC?Obvz(A\]ty&#D,hەؑJ "2uA^xR~Z2A=r]k!fD ZSWLq-+toѳ4`=L న^Ģ 4-`]JO5k F?7Vz=Tϱ~ G`0GξCڨ.}A+MMlIFMcy%:O7+-3A"s$e܄![Wg+XV{ m%O׃h'QJ)Ēv,dSe{G\E#@57™ ]zvLHgMZo@1YgQC S7q5^!γb2^S·oMv( z(5xvq 2yXMS1?ta}%0ÑMIZ3X7ꈑ65l䟮K'bK&34 ؐ>7, $t06wjs`030ʏN^cwp_p 7v l{3 sug&kGow^!Mءn4Þ ׂڑ%ݦYk/_4235<7ao]gdJYK/9GDj諽u;;WxQy+ ,ID"yk;8 &^ n:o2tJ ߧ) mZ( [17fY$ 7dj8]4K-zFȍzذъvnYߎ3lv cq;fL;z.+pk@;.V`n9t.,uVClfϏwQԢ0t`C.;ĵ7<[Bvf͔(RLY뾉h9y. g!J+0j^nSsLBid s6f&׌ա⩀{*G˴]_q5YZ8i2f&3-iUsوԪ˸wj;lFaĖlV]O,6h:Zޠɪqg#eJ ޑу_pF 2E#S<"#=9_%Jt(k ]O8]_jBTk - 2ժ~T0wKʯ,}]E=h2hoyb⠠dPJ[1V9tVA˺ e׳&m L&mta4cP;3FIuwf ЇUf`_UxrF5s\ zgG_pn}\"0!o ʲOP2:\.뒥X5ݞۛZה.P~X i:.xd.# FQ2SSתS32Giw8 .#r_E<:D 4D?tεD4F,h{UYy!Dmmnӛpl>鏡7kNq]ȏ Uɣ9dGKzT %[O8qJm}T$el?0UO^-*NvM7WYDelu{YS5L`1֍3c=!Y+SB:<A-kǞc#XVLYc\nI/PkVs$i5o<{gQelarjbN&ekeRUTۢ>85o* B7q;Lol6V=7Mrb03Pjd%EP WOEE#Ht#pvJd_a8F#>ӓRGqm=xsVM[֭%2ȜDPӟ ūsZ݃z\Ӈ/1/8H׏w|L_|˼E;1I(wVEEJ]E2P{l_<Ev\yjp@@M c}f  s~oHO~yS?y]sb rUyNV-P7q/k^?χߎj (v÷s6#hШnEIYȠ{Jq{0qـ'IYDY)me^茦e0kel Z]yL Nst؎=33jIVqi[ږB:{z(6K1g[W8d悆WNLE"퐂TlS띩<(f|/[xEAme&b3a?(Ћe4FE1dѦkD>Yki|y+v+Y Y7P s :zDwVʴ+[fہV_8߻&u^o)Co=bYnw]ſj]W^MwvApW2,A{WGȍ(~UV5ѱ׵R>-p|ſA=-}j<гXFQl/EZ;П2UPa 50":&S47omb鵞viTz}J|F?FiQ dh:1]}Om)+;1Ulkz"jRk j][[{Kui2UC_ ,;r>{=zybX5Fd^OC&8BAt}]TiISVAΙB;8h<SVf47čF]1!&Bl;.1#ԆY3epR:8!6 a1sl =t郡!wjC3鋕JB>BAO9szxաJW0buR4H ;]Y2M/^JXs+8t[3<5qIj' bTOy mV1`9;Of(G췴T'qK1H,;5,ͣoMZ*xKyL5'%WTG/H 5(}=7ֈ24R^=Fb6vNY-{^e3c!O,㷣'0zva*,8 q|tX7mrq{u \ f`a9t.fc]?|7}G?c.0Y蒥}3RD}pܤAfJD>3&/diE(v؋>bEB<-XîYEq4Iz@]>g5}{=`V+FY#c<>(VRMsG4x ¢¹9lIFd/V}:afs"SdV1?l=+VX:j\'z>ħVkGF=~7^Hj 4A& d]a)lo:3H%n0rΧkFw@ Fh1:#B+܍Q<L"ڼwwk@;2Xf άFsp6<}?ގ,uyve$jV8ϝe}p{oOWpNQo 5w][EKuOp/j~O<tISiJy}ךamX-+7vY_k_ھ%iL ^ͽ|S|uOPFsԯCnyV|`k%0OFFOg +:pF:`Ef׭&M$ 6-#Q9]D%qy͘ SQ{HNkq[i3j6dTZ'C6?bAmtDȦI=^&$f&ch2,%G@򡧩s׭ eF0=R^=^z!'Wf@ `]{~wm=2a ξCfXD߫\hw.dP*x&͋FJǼ$Ba:+r#s4B$I[Դt̾| 9#<jtKgN8jY-3J,,㥜qF=^dRJ3d@#t!=h G<8gH85S[Dԛ=Qxk ίevZaQ*[BqYS4sHeEInjJ]ݛpJzsw)Б*=ae馒 %YP}XhQ-笫W;` >mtN?&C}jdVvh )סBVIHzfo6E"ᔬ oξ>* NCJ[BWm}B'+đj.0?y.9n6D, ro A (C49sN [ji"x sdf/KOMBfdn'a7.RMzk0J[P>30k4f%]F%XboI֒/?iwSS)waŃ8)čF\}t/F_݇R޻A+sp'nW|)͗Wm41Hg1 ^Ve R- @$ڔ@'j3[&VLÅ&?ԊCץո]XGT=*Wc!+ӁeՉM&CSxn&glz(~=X͡M N6kJHͳK} j#n@LZY~]&kU'-f rQrnlk d @F+`Ej=ks$Tydȴ@dzc V'Q'}ɪHPQ2kn-45ƠǙlQd' Z N캌i18#E)}&lnқ_6uOV~G}ZtP ξf)} dtu( B6}4'hkqGUu645<22)4_9jZd.3D[U-jc7t{6EEcֹA~|?fV-l ]Z0b3}ЫMWʅcQ8m_cj؍=/nTc)O|ea&KV.D/h#{'.^[|ImBd,,"}'q75@ Z&])v 8$>u@\A6g28Cozt`8| a@k?v|'hSofl9 ˷k  |u7\?*ܠ Rùp!ӕ^n2׺$`ySQm~@P^R\XO%:`bWu Kyj+DvmSXμ`(, "k-ŵ<ݗ26a8Ux[7[h k6Hk7GB:L Xu:0?xABNCu0#Emi8jY>!?x24ll sݨ%Ds/,#7߼|Oe~x*@]E%aG%NW^ 4s sg4+QsP(0jaI{^>zQ$>g d H1w:/8(~_hrFo9k 쥼^jM{eg!0`Rc]Ԫ00o=jT3NLbYrr,{{kf`_0oIhG6)_{!=P%Nnd@eXQ2s2]62ݗ7ZȍL%!8j$:Դ 'P\:`lVQj3:Q=HNY!xTٺNThrIOmߣZ/a[ GӊJ;&$~lC㷔y"S+(1OE7gA#uVXV ܢ (3SW~eA~hoK∧ԡAOi(WQެ EhLBCw]N*L䁢ꚯbm6xv ,xuE!ndqGYi^φڪy`?g/e1†}w!e`)a l6_jyCM=As$4 buv,rns x+QW21S(EQ)(Y@[`YQPnX?5U]-:vv ;҆n2%7-al)fn7}. &,4hnmpLD?Lt %#ß1sl`,NJ)#D*HBCKݣOONfQ(Q>LSyQ"}N U!G#VIۄ T4R/$YP) .Pv|[qul?,uܢn"Cs2!z3<Voc|z6w] @ţ";QV&+ʖb,+f c ~KݕЄb=3] K5qYDB%A.́ +︌ѻX@e{>`)hl =g.Xa#g%֎3=t&/  wE!`5ed]z)kE 5U~ȨY>! !]p~7P PcCch"U(+ϕ~ݕ}R.ŴguIo`[g厺nƺ/|(+ ^)ddh:3<FC8|rl~Ff:?%ٷIsi;֪yS[(+2<ȴ;&a+t:3"ɨxz1:-RwY;Ю-ԂZ7ХGxQ]tJ?0a0wW0K2)| ,&K_yN$΂lJH6v5E2٧s-ϳIsRA6q')AݨO.{o3,qMUwӧqD}3F)>=2}-Bb̩G_?34nt@GG-Ox;JEt#/ l;VXdre>nx~Kx`yWiwJ8(׼ep߸-A=+0 a5灶y66gČWÎ?r)J``;4kQ#:'Z*,%skE(w) x=D]WTe ݂`t\2k(n 8^=hE>buHA>A{!)Sĵ]]+9VӮ{wP]olQeOPJ ^Gn zug8S~,MeG㪥z\*ǵVhBFh.Xs5#5aosNw#,0ؾw(5RY\; Ήٰ8L1(?(tO ß|l`,jbr0L̿NY&jSas~yQ=Nh≮\ Uae)"qC[l}IjdJ =J2_q?gYi'e];%A~mqҼ<*V,>/55*ri3!.t_l5$dZK-3WT B)V,Hܮn52:W%6͚uD{褷QF=F޿i:Ң;@H?Ya,n0>Í0t}e+ݧFΈCpUyP<,~^ 6+0جhnt}gfD/'(7/ۑ_,Lݧ"B%Xo`XO}Rmw= }R8Hih,&*Qxכida>mYzg+UOTKzL[=YQFDkzߏ`Tyjv!cUtHZZJtg7Y`2U:J<@`~4 n-=s? _^q,d־1%ܞ]\_S"?Qp0Z†pfzZ>WN/:\_ӸV8LFWJA{+8` 6+0 Y`XPk7Ia=.8s1ξCuy  dw >6tp4.85:2BL^2 oߌ⸒DC p=Ϯh%e}`}V~bv,V^uw~(ݰ '_F5]8Y[8kF/QҏfzLyRKi]ɠ*p8ͱp@H$Qn?lUW෇03IX5溔Rk_(0qQL_k*ⅵ蕕* XSp`X4"uW:H#"s*jzjGKfn1vP"x 9oX쫺NC YJ)yD v<믻Vv8/: CGg赔[㆔fI [;Ɣc mdeEx`/$)Z⟕سx_2@\ SK?D=g }p踇^pK/h(bgۂ[N*&TKh~>P??}SiYT F^1't0?fn%qꜭ`S^uG@dɜzEƣumX\ dIGPka֍ԧI"+61eiň232g<'6kVrYx-Z 2>lnm]kVo)/ӎW6G碪N2@=^''Uzێ5Ys,n0$mTGK:|j :,V<[3:kVn& i aỻn}@-0ؾר FJ͠ɛ- +s"ntt^WVITt_kEq V#\E,o}"_/Ym}/Rvϩ O{eth"ޓ14lp|J7Z(,Jg-`xUDLCaeȨϺwm[gW.,ns/ڶBDy?kDn!YE)P>';m%@A`Zp.+KBԫ qd?/[`2 gR%?7:1hE"$s kjb:$ւmcƿg=\san7}YU#.NTY{9vږ$px00 z(5RY\vEn [`s%q[yͬ3j9t=oOռ+1r{ W^¤ ^j}HAS[Ƚ'_^{z2#GM3]& BYui8wH*78 -w-H&[VN=Fƚ]Ǿ)r QFRt7kWόl.vCoaX8?K0& uc4tFwn.+ΌhŹvt Xì*B7qJ%$^2jݗ0_`|̝w]G}XP 9ot KEa^s9sct~to(dgqKҢu-{虶#@}h~6Y |L{L2i iz9r3by$&BU]ɢzJ'ex]L:<(QYݝ2C`YާhBw5ջ;NޏV :ݝw?֘YN ic /JjE'#^ C3wʬcTQ!1غ1#ZNeE3yʩ-5,Yϗ@f ) $Od8s b"@t&*?6أLM DCVVX?Hа<奜6GD>Ayf Avvnt~8HԂÄ^yZj'˚?ἏWVyiKC0hߧ |bZz;}}iK'Y+/3?,ۀ~L?odE.(:.dG 2Gxe׺%YT*ս﫱yNZ{Yt)zcǶm#}QzԄg^eQ.o~&Vҹ=Y(dVKdoZd}ZW=W>Ǒ.*.v5k;2i'kdkCI 3?ѣ?fʫ2ꁭ?1;4r@i?{=cw]Vӊi|^`czl^7[a&['+n`qG{"r|+ vJ2cZh8z\ĄZVрjlZretYl|Z/92]Ǐ8~]VD}h,;zi#]y̝hPIZx^Do&kAnf7]{-Z!QHV Y} !XZ&-麕,aݸV؁ew^=FY2@ (\tuy 䁞aoh4GFwf 3Y3Z|8W`bDG莧hD֌ƚJpo$d8|`g/eh0N aìZ9f,=ӘTV 7+)q7 *oT5,Sm(jeIhdDn[@PD232`3;@{GBJ\eb=fWJhH>ݡ=[kň"81wLdFQǭ! rdNC6e$;GUah+FM9T٨ШS֒mp ~Fp& Fa$ndqG[;<) y}Slr6 [ S Z ȚYs󞇕2)sI=>óEv5a6*4ExjԬ_iIު_[Rga92U l }Q2'MϫU&ח/W._, /lWQ@ T~Cm6mR?믦k5y)@IL~ ĸ =/ƃM 1n^kͧjŋoE;IK2ovZ2p' k>PЯ'"_t2ܽ]7;oeh/7сt@$8 @A F0 <\n֕s ȁa֌ΚCw莤3먭 $^yσUu<ύ-~gB}߹WFLBsprr6(}{n$m Šϼ.+ˁ#Ft4<)`Pٖxdl=.l>I2Rʤd--\d!9?dmv$wl;XYCozCBeH0ii9QuJܒטYyyJѡ~eOV`mhO;s2)ܡԴNy{؂]w'؈q0 zNLi+C}`3#}IuF#`YktQ[&ՏBE?(-l~,m)ǣuX 6]ʯ7qN*^i]0BO䱦6je%Y?J3)}[( (K&˘Dp =|D24|9dԵY?HT¹*{/mv28Fa3VLuZZ&tt t:< Ykĩc_M`2_^S"m`C~7G7t~H.<:n͖Ɖخ|+ϗX' Gޑӄ(#::CV*X\~׈k#ܞn ~=4ȦC>F#ncrz 4i5eviW6p'~Ϸh*+!8}.ځPH~gyrE̓`3M IDc? r ޫwol$oCLTn.7hJE6ܼ`T˂$F LohVVϰ72Í!8W?!(OtQ>% /A-9QTAC]r?}`Z8qrXftQ{m|y<#fo_O0J^AH%Qh{z]eH'*X}e BۆLf75*!?Dߺ&J%3h9T|1.% wRv=!9}>"^~۾n+ ?3lʋꁿTTuΖI=Wg`ޝ8ۀngF/+p/?kw rmE$7nYG5"+ ,.*r,?4tۼaO ; y@YRS78BmngG)+z֌1^/I;);7LT"q#;GuH8bO-х??w/4EpxH5(?yжe"~\nd'j;:h'QfPK70յ_ͅ'%!ȭřoMu,LO*;EmVV27>K\qZkqR)Fӥ7򊧍5Zs+R;ގ1K]:.]&ythm3TՈ*̀ .WnaЀFƈ47s `?p{H|ݯ^簈{"?0jAm7}]fsp +>_n'sKwNQ=NYt}'_7Qdz}эCW9)LT9a:O,(3:NȠV}ԂJw߮u;D6f^U=(C6'e1t}]3lDR5 r=I͖w?[0>i^w FdCO2Uulv~QkMDs_ly^ka@tt OTlDuqXPxgj݂sbC5.ҏEB4%jg o v.~|oX<]>m΀ĩwl%fC\~T)}%,otn*_ܶrs|co~G>4l  Gn`!`@{,3[FǥuQohVѹel햟GZih7o\tc ~eyOv4Fv0 Gazzz݆1\l= 3uX!JRs۹07Ӕ>r[=rAW>ꑨ!uuZ/(gR7((n NSk_Q֪LcLjьrrZX+^)*VђqE!3o8yQ@t7(cz!/c-Jo+ S.: רEE+rdplWt~vpU" 7NLW:6d!70H/F]4UuPu$8jFy?UEXpOVܰ>#&#a?NĿзe0%G7c1f9VcyEr(kݿ)LΗ܁<CO ~5 юAEMuh82>wGJh_oPG,䬲 NeKŪ?227n应FHȰLo^J?{ip[ sdipo/ 5vt"s*RƭQd: -G8~^ y $O; ˲qՍRq,7((ZteHb~?|qz]wyo;N,B0P~dj֊eJU_Dh6$He~d #8.vmY{\h ͝vqR"Td/w|L@N{/VF*xA "!l V2avq#= ^ <_b@ +Ery IFìzCu ՆE2cPY(KLϽ˦pbܼc΃qX<^]-exf_mo,1U:̧o*A@"\xg"ڧ]UR:c_] {B^k\d<XzC#{AҜdAy^k@z-<pvc82zq{(Dل6YlI1#NZ3ٮ(tv:1^vJ* 5yGkg?Ca7 P.'zbq˕]?<ȱ1~7~+]݈qrWr+Ԍ;.}zgfS d@f`yi_k)(R7>Ws9+ֿ;iU_t_1~S#W/1zfn5wcxSzYV{` 8;w}eı{>Idvfkg[YafoRp,rֻ?CI"̪砕Vq^gn8YVn~wX8#4]6[}Vd4἟Y^ &d2u& L>a l'Vc-R0 4S7? dAxЄm߶ _o-v:9o_߈;#ؚ/}[9q~݄BF( ن8NA+7 '6c/@>J|bE~Bw\hQ pEY+ +MLy&yMxMUYAcĞ) RPw9Q0l\ܠ>3{'ľDߗqRRD- bu5:i/(FD]` Bֈ}Fvz5[)Y9(#o \7@_ZD. 1rb'g4 i|BL[.H'l3&sdCaMI mٗ<)]v)g|j"ڝxr'7֜tKr&Yjɥن;ݜq v`g9Co*<?K6)ڦm"9SPPqPZMc[Q C} !jLvSwm(rL'BC2 K2˘F*PsC; gp ŒEy՚_nYxh/ڃɜDDGn;;OcQZ^`@HK(;2UWmв_ {64_dM'd㠙z[]ə&[U6`j]#wǸg3Z7O# u,.H,@JRBGqDǞojl_=.I=F YuUK_C}n01 '0`Ny)6"k 8џ;1)wVTp}t1,LGρĒ)` #q 0ӊ=^%!uȅb qi")Qݍx8t]T~-1q]=A"0Bwk!irB@ (bhm2UDD^Zr^+Q> ~+ E jw5xe+TMoz[]T?VOLl|cn~z^[e+6̽p+OI!O͉#TnMa,D 8m[Ǭ|kШ(-n~1hrxw{ 0g6Y u,.(/xǰ:V4W5qDg=qW9N]MFօ@,/5m$;U° MǾCL9ihdžf]@a^AϚ,z! UdbzGkr,e5p6ܭ8ʑ$"{J'0Qa4K:]#j8xͽrX,MJ,oApk@HzEEEUN-(7O][5n‚N7GsYX yW-yڸ܃!ncOZ@4"l=0R C+co](/)"M)~s%Y'%ݑpx@ !fz_"!0;bcMs,%?jx %uPEнO̹sj_g;TX,cq녬E!U~z&=o9y39=Y(tB67JuRImvϽrw8ߚXO:iqg]nNesoyX/(ܨM}ꍂ-0jM^=#z#$tt>D͢ױQ6ph85eF#7xkbAsǵFIt c!" ۢ/=KuAr$ ;E|}ZcGMV*Kn$ s!,v=*"6 ]0뉞K&Zy8zAuYsx: Gܫz7@q=vn(̱X\⮈j\C9hv^挗Mh; ,bk͚KgtIY>a;!~QPsjЎ ͺ܇ w2jd!h2nݜeud`~N{HrؼJpjSNE8.(ĩA}ѐ2Psin}'v{,D$\u,J8k<m/d3LX=VK*cT`=Z.)ik+qOK?;# ={R_ZaQ0 2d§-\h,{5&|Y(a[!6wci,m3!átߡ w ?;zYmzb/JzCttBb?wǃgsdD;a DO<9iMdzV!XܱxǺxv%|wDs96 MJuFS^kwVaְhtp<:o:M ǞptMJow|];wninhR'x%Py5m(Aݥ6p8{E{o܊lz&Z]s\u~];.P 73w.mX8W?NUv:lz,n- cV/oZ% Nj,1[Cu߷,slkL4 #1D$nGEy2Ocvckղ:P5a7ОxrȈȚ9ױ󜝸sF}l}d8DPs 5KJuFSm~̮,sn MǾ!ΠpޱY63QܬEIEb[A"hA=]+OAO4}$Ϛʶ :~nMlwj[,ӽ+k/uZWPٙ꫙5`wt&Y5o$-OQِa{H}N f~[4"P;8vL6ڒ,O΀p-|CS3uCdW;NwVvH:1bLgo K{nvbu]G،Y|e%= .dzlYsJXZl,)PAG܂P)WmDgxh5wp۲הv-0걮IҨ/a~ֽhM >G:-oڪE+a2!>_ڋ^[D9US*MGC/{ } #k;+W ZR"-]I//U"yg۱¼Qױvg=LWA*gsv9iV]}1UԳ?FT7~|ހo޳Y6޾k:$!Q:-JD]MsBD? $g|G`Y0{ s+[= w 8mokVrJo $4?о ŀ}N*b*3ʒ9џc *ں?El~@>nf"Ѧ>!b0G e {072~H)탏xdHwrif3EdKmZ|i+'r :k-do< zɜ5PcE8ʚ?z0S"ﰧ6ws&݁qc`Y1T۔Jzjup?J(uPp<(':D3s|MR_޼:W5%\$+ ql)o㮄 < fq0ڌ/*&Zw`_3/P_+FNvm:`iK~@5o/ VN|ݕqK+*[wZņߚ Hn4-KA][q ܯ5}G{ڗ5gb RF]/@3UAkoʗ2CYחIy]FY7YZU8ڭt) e?&Ԝڴs9ױdRd̼} LZL'uI8j dVt6]\JJ%쭎mAs|θұrg;6\< T^p W1rl%b/WߩˀGW 5ՅRdHa/}r*T8KN{enEK^t'<ګH(ٽ]~<a\XڂW NwH9eˈY?Yշ9g([S?/D=ͯH f8Y])7aP; NCiw$(LF^5Fbul@L?uOڑ6X8unuRzKv"{.݆K3JuTױȺY 1b{$2aYnqwx1.~3=)NqkU7998{ۼ6R;@eDQ9&'xw#r{ˠ(x[Ak Dք9s}>?x*h)@[vB]‘l}(e#v҃}_& D 4 Z[dۡ9ۄx>lMlèEp8SyН,oEV_CrW{rX ZnV?7q]a=~YDGPy^r'(hYz)-5^xr34r2XoP{n ["k98eص6{ca\ dzǦgz)]ܗKb ' Ƃ7q2jeU>|TEH>d0?B79pJ]-QIŹuԈC\O1|+rǭ/6] l7=SpSP]nµZQ3 D!c!h*<#NB3(#ìʇܐұSB΍Ttdmx}c*ۺ-QE Z?sڇ}HdU\oKʹӍw.]rҳ.o۳nYhY'c8:ynzҎ2S\Z/}p90_" >o7{}CY8 Td :kV"mMn@kvѿۆ"oY"<-cgk'.t?Ի8KS*Sm\yzQYx|5342aW/ejg(28y7 LfcTЎZq2ț*C 4ңWӭљ10&(ňB~Թ;1%#vc m=>ǬJ>“ڶA>),L XR|h`wH~CճYYUz P}yգ>u#K%~0|lhg =R4+U= ;g'ey F7(FمKM[ϱ[J*@uA;fЃv}Z@FJIۥIJ .pIVw)wa^YdoxgYҷ]H\;C?%*wߨtct5P  3NPPIy~[Ty=&-fPQqJ 9F-MFNaTMdhdnF-Z=~% `팎IEC`F ܇Y7ͱL~آk&33{VqHag``Mz/kαX\ʨZԴkYa NꍓN!<6.&zk:g,su%O_.)8@k|F}]y>/Pӫa 5tN./e;2 XFSS+(f~.n(3O54JEHdI#EPV@V+,ZA~FqÝ+KfIۃ)TklS9~bʿy1̣ݠ}I 2?`qdœQoH{cWb ;21؈q~؋;2g?χ-W0<#kZYEPiU|ć+~uP9t_.Yh-"V9Y &hB6D%8XGIM !n1wqi óL& huVi2&Zwnv4j%:cl-zBUՖ/GPs{]8/ך'h5 뽓Ư ge-pzFJ߱1c&iQa>46k}b?xޘJ\y\'c[L`(8;ϼ~^4]׵&dڎGg';hYY=m2}["գՎ:N 3:guܡ-43Fs9ױ/?jN@oZɸew@gpY9NM$cq'_: cdp!& A4cӳRQw"F߆`"*.4&:8$HFnCvc>s#pgkB^_"e7g9)n)X^!Qg ˵O?w=}*wDb}&F1Q.lEӈE?Jzh #=g?wuḱ4T{6l5w¬O) P2Q2Qx&|h5 c|J]q^QOhRpsY7pZ-]kWq -Mhnhߒ.hkm0 榡1TckU}rRֻ겆'ou[g8ȆSnSg^+;O>wսUǍ.:8S/;3N3 j=u,1~ d.ֺP>Eac,G}lP32gqJkjZ7NL.c$K)PFZ]2)kyb7!{oE}V4&ZKw=X}N{Ɨh,./;kzeC?BMT "$;4ӑX z4NL;;E+m+G (.vS[z/Y!٧0:LfcEYxWeDUde; N=&{\[%YVLFnM9VXiuBW[٢Newn;3`s06JJuFS=>VgZ9:8%$6juSm}'GuHC]~ͼaIbHeTZ6ׯi0^$25I- |Q1$gY fY$ac#A*| X&-< Aưe#uHUBWq,D,yg%Kʳ;c専yu࠾}1?jDoJlZ+Od󫟫{V DFj 7HlOl?+ QSD4: 6NXQVL|-QӪKJɳrPpA5ЗVX;RU hGBiŎ)77 k>ʢGa]+F;S *c8ALϽNxi2&c9VY;:=AVNJl@7x's,whJ4L=γ1uaM{.Ό\:ہkD=w\GZXsJPѡuJ{ ξNco]5?w\ITyM,zfN0l{ߛ?tk(֐ vu5ꡰs56*%1eo;IWGvm:aDM{6be)Wٴywh ,oq s0׳ktYVݕ,GG7${ 5PseW7JXG4? ;{:|MbCVwwWA?+?fh8qWb:㼵 ykhwYt~qLߎG8+PYV}\ЯH,ڎ]uuڎ]SO,fq?ʃ^2Pszvf:c=d q~LK{񹎻zۡOs_NNG/dzQ~}~hz 'kI?o:'gh #o`4mv0 cq=;s G*v &ƽGӚn&]~g:_)6zVyt`O gyiq}fFC}-Ӕ8G>j_#3rλw5+޳QszZK-fFr$3K*vH2ȷIki['3?${fLΞ횥[!K1jtYۃW~^[-'i&f?8F "g%pš(ZY?U>s KG>iC=c\2{n(ϲ;&HO]Xg&ܙ:5?<Xaphɳzf**~cu F3wZw]6{h=8C"[z* o21]F? 7uըTod @_ZD1F\si$Ѯ}t^9{g!R>e []o)rC9?N*M/ugKMɆ+u,qq8fl(3>5Aʆ5-?(<_,ʻui'H7HR `tum~1 'F/âv7J5oy|H`6˙~bp+e[r6yWoao'mE +ʏS4gDsS_$M2oN*c@D,=5r{3FGwR*mS_-G6ٽt"$N8ܪe2M ;'F,wW+`å?h}QFY=wS%Nz=L(bTN22Q[^W^Stb\іk0>oxƗzܡ5P%Б*D{&exdoVqSDU&ʂlu}GFX ׎7@q?-16~<y2KSg92; ,7֜FPBI{sv~ 5PcC[M] |;̴nb^ʿ]ys(my#kݲ.y:'tE3ۢ`A#Ȫm>wV} hhy1"808c7έ"sk]Vॲyu-3c_գ[lG-K~\[@G͛|~=es̿K Ĝ5 Wo%.5kivplq6 l%*&[\넓c8I{C{Vr6R ߊXp:Vb=}@NZ#MF7zڮ5t?x2ބFkCMXZK@cYWVA)^{.fu[,R#[rtz.+{ a+AQrRK4νh?W#tײ #ue(g)%|%X(e׆Tu!&SN Dʎ=,.IJR:!s_D̂/Z>EQ@}͕b$[qlݬs-uIQ=|9[h{S#:ߦѓH7|tAfY_yղ_}a!ңI:6eF5l& hQGaKYL"Gɘ%_P#uxOiMVfk/4][aQrM'2EX%~pD"UBx_4T8|4v"C@]~d¢F:Re^}* I8wXce:iPNӸ&"XV)"CJecjeGK-t,Yc*4Sώx:-jJqf8d*byʶYC=S&;,(&*tz?º\JP.;u\W;e=&cEi9v/"H]Ӌz}m!aT{dg2aJ`ka AsCF$#~݇K_߃&=&z2m0l{؀/,#^kp%Z\2p"zΕ B[̂0 CޟV` UI3n@mXBEX duVS{ɢ`KRZ96Ţa5tU-!GiDHgX-Osx6DZz~`Ĭ,m&>bL ϘSo&hP d^'어ˑ;{@ =CpHAV`eXnLYщ%X' RҦ'"I$YfJ+5jt6uUeO+Odnw|t,;I&Yͽ7ugo_K9u)od^d{6e+Sm|IT2#{T%EGh=Ǐt>$空=,u"Pֽ)˪CFH=d 4 k$4\*f$sƾ"DcZ`.m4i+2#:%AOZdճbE)ڄVbx$KXH2ccUݖ7~cp2.n]^Q֍V|U!XѓU>jli bWE RoM~t ce WpnNl]QZH18;tݝO)_wttB{^?c?l@hO<9iMdy6q7?atzMt?h ܆9KJTwǐYoϦ>LcL̏vuGg1Tw?Z޼9㕈Uю0VL=3W<- 9#9κ#QGZJ]Cob tE@7O$ .,5M/v|1h sH\{#;0?{3AJ]wvy#>؅+;edZ{ýչ:m Xm|jnho09W&k#,|jM`K_,:Q}=?L[@dY3$?\!\[x|ퟤWE:P~y~Y/gm#?7:ʱXvD -lPJt4cB̼ LGT kcwڕ!%y alBV꿾r6AGtpоs戧L2tZJFEq2m|@GvYYS9/mooY8RdM OQݫA =bHtm21(L+kRۉJbP^ej tU22z]ʂ=qzH"W (uzz>_WSS@_ZaQzQ Vb.2Q2Xa雲hdBːNVDe&V> iŊQQigȡnX-Y?h25J>2%;l7&dCazΨ\PYkvLz8}OtƚSrJPoZ9Yͳ1ؽ7Plnk".@4UZDJFYĴZ 4|UNq4B'<iIϋ$G^m8YF!qSBΠx{o"VҊHA+:E>#=!YSP>ϧVvQRGu8atuߢ)?ߙ"#;Ueiui/(J.xI‚i]OLBQ.˙;%[F;ՖV> iŊ*jZB:jA3`SX|v: Ld0 cq=ꚣ,:dDE%To\-<È Q&eMb.Pޞݛ˳s17flm¡4XHHY΀""w*c gqk1;_yX:OiYZ+QLT~Ԟrۖ8h5)MDYː )dC{kmC;8$W:=L/r#GVEU[G2Δ˄o?*ZTk,1꨺˷α>6s,*l-9]Z(zuQipEZC=uv=-OFzD`:I1in]5VףnE^;߀EFlDVcny# Om3FoHjfuƬS(u9 NS. *Lw~W9:x7=&7~01 =[u.7)Q}ٹ>'>E ,IfMS ؼj\AGZJ;˝wcم֙F X ]ˣInLjP#.>٦'MH!C}CZAhn^Xee/^M}97#zQnsj2Q%?J*|2ޘǮxVX5;|*0CMSmefئ]`/b6T~j>c׳}YSGEmAO,yS-Y ^P.SpoZg3ߺ|h٥c(<]=g$Ҝ\vO"h$6 e|2CPB`ASd6~VS.sR1WaX&wכ(Bmmm5@ 5*v~C8Y~ncu 1 ZQ|k&"X9L>5-Ӵ7֜Fz5b ̱1=c-†}ۗU 7) (I,VcXHo ˫&Y:@Ƴ+!#|HSEC}Dz"} B~8 fT%%JFm^P*Th$j?F!H|7łri+!,("+eN" )dŻk7&>[b2Vv#1L"]>B`FڔSphB3H1_l홬]F,n4#s]ӏ`X &a4İu e)o6ہ{7ԩHά2MW2B2qͰlGz#&V:=" Jd:`4'+?8N[]c)FaB GF@jd۶mf7yGbdGţ72"S~oNzc>nzՊpLUY:[SɓM-)7rC\͢%σr-4C}oM/@Nl2:NQ_`M}?6PW5wr]FZYηɜn%DS])o;6=Z=LvPx[yV%CM]qxrOÚZshαX\{pExK$;aw?PsjӬޘuҳ.-VJ:0<O~Lym&]9y<#NFZ}@)2oh@F+,JKOLκ81 O ݩokZjE~'V6XQ M ͠C";lgаɜ5PFM\Y!1tk:KLShψfM\iYt3'h>,NJ'd:Y y_"oz^wLv0 cq= F_%-o-%:Mƹ&=CXlMg9u.YJY>7N@v8ցtxހ}"Mz/YJdFgm!Mm޴ABgKvkRlVUXG6O삋 !gL;6VQ+`s1Oa rZ y0.#Vf4w;5dyASyn,@w1$㴶F ↌轱k}?{S_rbі~b`$;_ 00԰g W@af)i7} l?M3>1_ƎoSOĿ Pze??;wbz oa3ճ͊66FA;=m_/OO lrػD}뽣UNz4%Et9=xG!E,AAāvڔ'J;9"'l o mb*]9UPw:Vn1LPAhb|50+Iv /:[3q>j=sjq`$qu~cLӠ 3krl$c[U7gG߿ڗUYDm,uՁtc |E}zzuܳv$Ըy:1 5Pc],Ԡuh Tvou[g3ΠpN]zM96ȗPy(au"޸vlh֥3` k ~+51~v)fsqyGqVzvq[յPD L{2<6Tc6`ۡN6 >>Ժoz:3y  ^$>OžE/qћY6@w`Jp aR6Bno>S ':VGFY}(#ׁRV=,y}zeJuX޳I7@װ|(#xDZz4<` 7*aw֦Dr\2$b,&V.26 Q"ǯjOx0հ4FA=Heex 9*>3pe FFطF T۝ƆVL&oY !~+<޻1CVbѥI} xG+>s 5(e0]8;ޏDPJ^!ͩ)L(1jxu %w*KYdzaE)FsVSJgXTQe߇'dQ[!a2&!!SlF 5}1ٳYYshµ},{n>)koYZW;m&KcoȘ8s pz'lQ.jt$Sc@ÓD{X~v zr^F;^Ze"\Z0,œA4Fs9msgvoj,X'KtRgt~0,Ԇ}Tg{ Gڲ>x; ou[CxQȦwI6Pz^CRT э}#j69*:bA6HԗRjn|ۣL2;Pu.&}v:j$dI\vqwc-CQq\bџa׼ؔŶ\oTku%~۽3[& *_Q Z^=ims-qL5$29UW1=bUTݝnqM XXid%:v)m@ЍNT; M V:NGS *Lk?u[}P6z.8"qX[]:%6qo Rh^/2a>f^+L0Y⭯2zҳ.YJRuT*uy9UG2xtof3X|%K6)?U,n /Oud}8[ݲS|PfoN\˅HS =io+2iVQԤrcLRawSDj=CDr,y=s,Ӱi}{2DR;,ntR۱uȢܭx.pre0ނ0oa eA}R栛׳oe]׈yb nۧx褫$ZD}:/Nj=ƊZ*Z4$}ܮٔa%UO.|͊n˶BsPQ^}sm ,!]E-¤ܸO=٨rv™k3J& er+p-"{}Px-8|ClnsZBxA E3 DsvCOYj0x iv؏47FPy@("ĕqxDxÈFO(wBVGT1rYJk(Y-LXƾ%.<ˌNO?tAO0f$|l4yU0Smiw8oƵ>}} utaz(I$(uEֶGYed٣-u:Q{HyYl4ڇHxC*^ڀG3 RV=VvTzm";MoY90 ~'zAGҺ+̳X\;;4NhPmtx3t.okBYh2nMYtXV$3αDi+zNwzc118qi2Sgd) p&'dsvBV`FO7#WEՉKzVN;qs UAn^+Wv*:e/3ZxJ@DfY9Q`+s~yӧmvm^SlՍ(O(h*\|_`#y6kرY[sd"%'Axzj Ww㋣,shĺE[ԱEYި#5lO:Q]ؚ! uw9\t%ףotu)wB2~pKˤu8ejwmOlO[ , 嚽Iu9YVoUC:9Dyd ~3zJζE1W֥Āĵn*}M= 6j՘$vuTc~d̶}(Fv( ֺeߞ;D+<㉍؈0g6u7hPe2k:' )ܥwQ 5Pc:c֩Tg:׬p]l|NCxvc1T1 qw3 {=OSPs&c,4IkuA6(ңS>6ϵ$VX狄wTPUh~ 齿3i{ڥ&SEcP{u_,vcvA)pވ?^c=h~^uӼyeAxip?pQf‰@0-&:ALJ oe̼7EfiwDPD#g^w6{Ŝm'I΋1tdYDCQɴ+ #'mH#>/CY[mB_1w6I=Ab@oG;zNJ+DpB&дI)kwKfY9icHaw$v3fg]g$)# qn3(g-+wES;~h7S4nT)!w:߁g3mv0 cq;+LgNO9SўxOӈqnMʊEdkI6ܳ92ƸXì9n1U9e$ӟ1TP,1m0 yL ]G xK)P'?-~cԜP'x>ؽ̑9V2c ~ r>,! c{gx;1C=(*PT- /$:_ےH採7{;w Bw =6LfcejxXL|K~ ,S'w_: t0IWD{yMyk9ǚcq&.BP/+Ѣ"KuۨI9nނ} Y zcߩTJeqaD Ű^_(oc,v,'N{?3X|ұ.)k=EjP%Be !SfJB9K7Z/ Y&9$ZMOzqȔS(h.$}J^s%%Lkr w\a{EMdϣUAu%I[J鬛7^o),ܝ31E46K،yQ)-ē$JJ)*/`}x'uv:V!K龇?ҥ> aT.ߥ\:^ p_'3ؾBgU8,e;ՓH zTwLܱσeݥƍ27s߱_q ۤ6s{s9׎Zl=~~o?p&07f9m`kF_7B޽o=g0}Tg'Y2GSSEbzF!m?]4Y8jނ/%۴/€yGX')XEwl'%AValάOtvcgp8@|}׆#jw*fY'2'PQjT` On]\ĸ45 gB5K `ΟKj5klՍKuQE2cSGeηW?}{| 7uݦx_v0 ,=pwr::==v`w' 67u>ڔ,2}QIUߏpk7>`lzێtҎE4 d' )ܦ@-R(]mUP6=XGÃvܑPFQjCXƈVa,~;loُ8CĦ瑷M8֓(M'T;ؽ@Ffu֬Cs5MyRb{Eo\?Ⱦw*ձRY9֊W5T>Ľd/,9Ǎ] QJBUڝQ_A~GFp> z 6BtJibܞD|(馍` lCb-q> &л qWcNV;`ѓ92.SEU;NhJb =3i( PnDkCaCZ\ԩV\^FX'8N^ }Z{t H4ߦP¬L6-DBӫwF 5κZQ6Seud;ƽ@Ft֚Cs5Mܙ+ROz.js;78,Լ43ftK+Z|=C+stpvtoN?p9ǘcC{c='q7Zp{HC}Xo WݘL5)>H֡é39ZɓQKTBvRѪp_i=m:6^4ܛx5FkxgI05)b^@u/&eHnо7 :!g;@a*h} sFaS\kNm:Wp%Ǯ@>{Y #zkġBgjn-ܴs9_wow:7 yc`Y5+knj.SXsͽl2*9$*[K=tmGlxLD0Kn0_mϣ$mWD:(Ok$Wpg6n q.\{~ۦ_"& 3@IK [¾,@egXC20P1-;|"z1[.*ƴvdٴ{7,.ޗ_qݾpeܒ8S?JNf@/ |m} .ӻ3ܯ. 1M>)bizX+voc\5̝J+>+)5s#Y,zlq~w&A v# 30m# kf]rvS#OK}E' ] mnTkb^r"W(\ʞ >~fՊ25xtvj\QTvBN]h쌛R8w:߉g3Md0 cq&dŤSf瘜)g|j"V9iDo8UYVIӹjƓ4so|x3^6 ,b:cMsp)w@-圾,c=_UI ¤2#e&}ڕ Yn [`8m2,ok"hxi{yЍ{ٚ~eʕI6 K8hh'8D=՞;T:oL:d4K9{Śz 2rtqCa&j) xrRj؜wZ(QicR Yfuqw=o~;Ѿ'l^,','@DWA^煥{QSw;'g4mv9Ϛcq&2Y| <;{c3.9Q-œAش7JTwj1w>Mg|sg?`zF!m'!'tgGژzзͮ5^oa5F*RzQOWw7^Sl =B`f~izE旮u_S=V&ƺ}\^!lj1q\ޱhӪ~Eb鋍q}ZsW,jCZ+s|D;OkpCu@Ue5ZJH~ f_zmڵ?hUz3@q=vm 0m;3gV=;/XnYo$]z֥r=H'9wQP 56 MRMqvt,@殡# ji%*vG{:ƣkDHz_{,Y:5FkhjI5; QQa[}4߸; ]@FVpEElYT0{!i74ڨqC Z  2z>شgձYYsvlRzc +#cZZhr[4Fj6jeB!b`΢ʚ2n@|rҬ}v; 5A9Ϛcq&v=喉3 nsRr8M;I\Z5*2mi{gO_zv]k=\'%Ư1}93 goǞCL+-bG~P_Pèm7 ޥ܄YMѩRU_Ee2>؍}(*WH?#"Jp۸g߂u,.]`L yk[ -]{;6,0~Uک#yn9KjdWvP&FƈSamT\;n*miB Ooع|s Ԧ5jrnTΣ܄~@|o8֍7'`5 7FSYH*t-ybaL? *^!~˫#.d'Bۢ.nDLȤާL_%eHkکN5xw짶F5 zQ&Zi$O+8[>c(DG܀XjC:[OK}Ek`\[1BOhu{"iM'\nn \t=07|XЊvo5g5jX;'w9cK±ݷm[~D7 0ougc]>4)o|j"YDyiDg8UXVҺEW8t7am'9Fo5*d)wO;Eu*:M"d1@]dWyKXe;w972vC`K^sTc[A(ͳ+טDD^phQE_4̂cIV2Y2^@e,iT! ujŊz4fh9}YĔ{N 1+גD|Y7y5k:>I/ e 0*īޜ%8h[D}HA b>@c,ud}PRYk}.^ {yj:(";`DFtƈSs5MsbA>l|rx'S2yaYyaVg:uXVJE"ĺe+0w Ɯc̱1ԥ n\ sWl|։J0Շ\|E Kc(c_Vo}ϣ{zl˗ߎ9v)7aZ-aB\]bur;N/+ +۷@U__]a&I&[nh<7^;\L`ړPGCˣ+~}COS x|A-繂kzt~IQ c5H.Qhu܁u,وVOVЦ0?R) c~=v,ک ǵDZUiǸ7XӈqjγX\+#U(+;?aC9֭='N; 5o6}R+c 3M2f+xx1'!QȦSxv ̼7x|=O$!o Z1\H/ ,!cR BZa5vn= @┗xC/auCi޺z,%ʉQ38?[FKSļyWACch!ӀdL7ISzP*קt^ja#CY'/yB#3>4X_tUaxוpRk\7:d{k,G׵9, {X|HFu4}NXNr,1q^8q RWzr3Bppk:-MQHYYےAygh"Ʊb?Q~ݘe~? W3GT!Uk!<6,迩%׫o]?9@BK~ d:ȯeo/]Ӡy0/ڸ܋Xc#)L.sz,iK"B8G|'{H,vw[Mp;SLs~C7"]rrM6`י8EkbEjVҿNf![iT Կ|ؾ~hEi[@ŬAј.>Ql̂tMnGju1VV( ->v\|i`Cw O/j%wc07xз!ʓA$+'F- *5fz}7ef]/NF,2v8 a$FED1RGE Ls=FgtHM {0m Q/_$v8! vh J?s4By0Í5!?1s@u` "'^a^"vJdٮu)`t]OB[Fd[_EY jgW/Z]/cwnQ)E* ;!x7Dʦxnv#aH̐5uhx}&kY Pp׍U`l31]@Y}=4,>/]׾Ӻ$aΘ*eLВc*UFDlzW M{/ ךM5Y?ssӬʚ9m4ƗNꌓN!܆927fKҳ2?q.$M|s(v(nN >cF,16l~_c3%tJ 俬 Mbb[0j e׶_ ]%Q|5tQdHH~^M#jFv$@Њ&Udu8uRG5,U> ^-1cZp+}|a,F^Iʅ4R!hZd!9#3ȻK+,J#{j|zDpŠ^Zڷbz Gp눉EF&,r]VV(ѸQ,U2a.yXI$ѪkC=~))z`Kq4dM 0m޲#1 +"&2Ƕ3>5-܆'7֜Kr_oW\o>6(wDg3yGqhJx4I.TIUQIyu$*hPuZk )߯0@63~~#M(68fVnQJQ mGPV [G ^K@6^:ݾ_k#hu.@+ &J4(R)W#~w-nBgT8t۹COI-~b(D-r~]+RvnoAvv^yi24XsV8*2Q޵%Y}]Yc~ƓcD!fpjp>Y]qx7caH(ci4z}K=,J=]40,VDmIvcby0:U݇pv$!\B0Xp۵?RiH^+P XkXkNzV!7q+'ldNM|lt/YZzgQ? Ԧ}f_ҥc]xRV<(*(6^4:8;: 7C!Q.YJg_'c!w,d.T˼VZ^$=胘Dξ8$d\" )pD7Q24EymRTV"^-gcr5TPA %ܱ=f)URGp?-"g/dcǏ R%"?Y~iMVKA*dI+d`߲'p<rQ|co|HPx>VB Dp;2: 7p9S+@9NÝwn1]Hf=T_ f ִ UZ>ֱC =I^ zc# ~ uBK1dzL8->kH8g񩠬&cϤ{?NJG9=[r2f&NY︎Q *N}$ W-^;tw;2ʻ3FcB2cU{,b7"/o,@`TɄpGrӮ;Ml"R'gI/"Ȝr|l!Zd>ܑz9i^'6׺ɡph2>4eZ;vkѵNݾqg0>O6yל4GzW<[,*{%b:cd 5AY.򐲀s6kwn v@>PsjӾ*F i'jg:C_ZrqiX1-kCw>XW ܐ)TG9FCFٷ"-wN?,"dDfP)E#:#Vͬm5 /B+,?BfZFByjqk=O"~$,rv+5o'`ytrAâ-'S~lE/bG_9 0&\ &A{> i)Y')(;viԝch-p4"%GRAdg[cJY;kv UF%BU3:/)Jܗg0YIQN[?R)IQʹo0b2j~xhK6LG%7(}V'kŊ8OX#_{nŧ1 )^JŃԨmo.ޢ=bDͬ%}iEḅf-QRnucO1~(K|hyV>bM ,!l7Y1l)Bϗq\y>u(KD-چqm%8i2&cyV6qoI;TRD$ #XerƧ&EDƚSuRnsyrwѽLᇻ9nP 56 mTx's! ǁ  _t 2}Gn PgX;Yͫ(%vv()5,ǣ_`۹vFs,c[.l->mLll8.P5-,pcDmmH颈i=׺Dm@3PQQ:9RAb־@{~2]otV~?ZGu"u-ۗs!Et R5P&筝k(`af'Oێ8bEYޟ)V6qov4y \J޹m4aAјld??`m@зQL \b~$>m ;YZ92b^Z`J?l}4fCU K,KB VȘwKkcYWFAkHM66Ή| ՞oMdqJ9 f鿱s86++cEK=_OeϺkne9Cp[ՓEa>z9^gN8FN]o]bOP(AbPѾl2X\%6//qcWsmRzXk~bڣ֯>l<|pv!"QϜ{6cXQbu[.OWoAfk\J%;Ccʃ R4hU?/<HP:EjR3"iwi)XV(WYƆ[K㓑֤<=+X+e{T$Q96+̳X\;y{kž.Jκ;0r #67F*tB+bX<> vֽs9\@{1جn3Iİ 79~vjU"+ȥ!E|4x#o%w~iSD[}(Q;L ĹG5;( Y1~~y/޴cy5bx[mt͋UgJ\xQ2Tf0qN @m^4ؓAs+ 6>hk:< ]Z ;u^]<Т^" .aa܀5Zrllv\%ol%y@~C)g4؝T opB29Ugt֊\c7VA|*?V P j [N|;oh.!kb]ľ)>1|q J݅,ߪy K!&5jɦ{yG`dZ1ߊE>=y U.r7[J]4ʞchRCMOu6E2{7M?zxdSm"5ڼq(!c ȡ'T&DѧQCB'R7{ˢ6buwZs ˣJGZ-ު{Ρ ̶N%F o? Ԧ}ۗUY,cq(KtJEB;h|7+9Y?s >7tF2ӡ8_[ƁpH=;c'ep3&4cC.Nq"X7_kP)% Vp}ü/zcsawa+7[f)w)MtU5"5NLDHWxbm0 D"f'P+V&tQLȈ~X*A6rj kͱ1Ɨ0!5.Jdb[vCҋA7saӾ8TW譔QV2( Sw Td=H:Wb+UJЎs|UB2GؖCWbn׼}P,}u޷өn3 vxVZ2rR8kSE mut(N }AgBl$3|v.&t3_۴})DlT$lg˂g )ߛ'laQvW0P?Z~;H88g6A-cӇ$(hsAC&A9 pes%OQ$RPab[\|h(qrإ 1SV$Z.fI2&۟D20!o,qÏ#Ois+` gm^bE, L.+SZSQ *M:"8`0sdxXw( Y8->Ȣߕ֢Yi'T7v+ XVvQ>|+R2V=Mqo0~>ñYaM$T_"^waزz〧L2\5{]JRY%՛<:8;: OPs 5XaegYb1PKyh0??w & >yT?v=dC Ƴyf$Znߔke9z<[qrjŊDMF4F3O&1_49@Oi"$ [?65IunL:غA-S,7 zd?C`s"dLlRMQ>_G"Tlzcl72Zz73F*tBrÃZGE׮E0άd@^al_רosߏ:H|Ple2/<Кǰڞ\2!\{tE+EB8WXX>aw9U7)㽢]]+XxO+Q%8-yO :5wLdTnI]G-|k%sJ-1M9 =YphN`egցgROf$rix2:MHz&J9zzlXraϱ7:u [ M9֜\9̻>\w ; , ,bg7@~D9cSP5 ] k07dIRp0aH.?2e#v5S, |D?x2ܲ|ޯSLZm|x+ʢǠeLAlc{X̖mP9.BNs'iD_wVŦxC+(@5NDw<9[kN]:֥r2^&8w;ݜq vg>jlhti)ƋZ#v7x{TLj}c}h &H:vqO},S5$dRw賹̊5t߭̎6(f)C)pGۄ-B'ÆҎKXaK9dzzX8Hުux˔9hjvO/UhsF6;NLe,g%۱{ciMғ)c8?ˌ.\7z)>ֵC@j.e-3F[ƈDoѣVt%4HHfk)Pߋ*HZaJZe_ChL(ť{oJFiqbm^#D꩏h]򦱕Z<|\҃@uhV9hUb*2Nȫ%K#(ӣ UtiȬ))JIoRN4؃ / rɒb@V+(-6`80Z(etڕ২:|5/ ] T?vL96+̳X\>BǓtNju䤤HSD;xr'7֜tFS= U}og8cgwsn v`g9ihdžP&\ceV= t@ƍ?8jGd|^w}skGrA ~AT(-wqmlpNU<75 s𳹿v.pw>x^tSLoyrnnPy]&,o,gn;8$&D pV:VEW'\@HN7 ì ! ,]qN;*yx-+?C ٪5jf;Mi ;h K Sٗ4w{9g07B*dqft 27:c̱}f_RnqzԆG#cepg Aᴸc$)=KMn۟:؃ڣ;gN 3HS=(3 Ղ6kϷtK[&Sk@Zw il`py-Q/gfSvt ?t׬Y봃ƎRV=L,3]w>u] >u ~'zAϴc۱C%|Ǟ~nC=aMC;6B#܌wG Bn@# V!ؖ)->vys_گ^X:i f :dw]94]8 ޱh?_ذEhң[lv'O2?|d>u qd,FkĚhp=mlq%NL݈;IaG88njq 5@FMWb]AA) FƫSM*t/T'Ԏ1Un ׶71 ^ɂPP%@ݍ҅7$m_uO.b׏})lTji-ԼKd̗ &޼xf;R!I@T}hlBzdݳQo`lXw:k֡KǺdqq^Ckp@gpY9o)*܄[)Sstp<:K:vIM:BrR2R|l~T਀;C\5 ²̶BFvq|~cRƩ{[jR+${_é󧈍F.tPY}-yJ߲7K6wSnnpo >-[NlkY3 W|eg݇YΨqIXQ1:N5Yg$3*(JTԘ?V9{UM#\KgyB2_ק_2A/eUX_"@{/dm\sG V ϫ7V|Lo#mH70CHm }ìߘd`*d*7 ʯ:8.ʈ8f0 gdp"9tlXv(_lW>1'~ ]đо=ZB .7'V,X*4:ӍN8Bޢu@L\{Ѵ7q'4gR3>5><=lMo9X, vA {;<_mIw;8c1ΚdqHnwZV&7r}L:pL'Ƽ-􏖏ܒ)W%Bۚc߸ɕxM.)XmH^fٷ081HւaWS5luҿKCK׫"߁zA!͆J1ux~X8Juf u塺 >1`Z7aPvyO Z2<rMywnͱյmZA+XSM2Hc)nsCMw4r]E)7@f';7O)dNɟwћd ӯv1w-TVōhn4C[7~(yCHt9|Gb G,yI)ZOXj%-BFC9*ipKKq  [{u I&2z[c a,>n.CM7YKX0ַUEhisBKAg1$4ez=G:PIg~O9iMd.8u, 7s2Ǟ{ZDPt9}*O̱Y1T۔Jz~/bJOyb=HtOo]R3 >g7M-~81ŝ Ͷ߰α[#q"3nh̋QPp+^bZ$AE+ނb]C SH!3sj76nEg,m{!@%= "Y#畡vN - 痰a_)Lޢg( CF덅6CCkmdS eAkvUvc||vf4mnghBwG(%$p'@Tn6lF F)Cxӌ`ƻг Y\⢼ Nr@^и2 j[κ m4^(dC{cT)u,.2QQh\718\/c_a8:izǦgz)gq{В(ھ > ۍbh:ɐvЮB[!Q!zB֍Ѝww5zeiX2͗sTQTth4@F|w2B;G = _#® 5˔X>~Bnz$3o)Z̠iGxFP稜#Xk\\׵pM`4f4wϰz N3ת@љ7no? ԦYH.cq[* g;?o:ܷ$96ԥtIRn sqI",Y-[3{}χ.Ilu}f:yNT[pȔϿ Yc9{F Y(2%e̓lӖݷF>vw{׻X#X;>r$ⓨ k'Hs=jߪu22 > 34dTe<)~x2vQ2J,Oᷓ֩o=d3\>HaҮrPvc * C]en0i"'j?,JW1"V%EWn;m“lEFnXl=$X q=ͦ9w/J?fƬSr#<-wWF;쒎]>,T)#^?6awI58?YCq2W 4zR3wk Fz~΄'>KlY2Pӻv呺M9X%dik`@7 0hvo+x!c! RICzFTrVbא7sɚ>݂ijƘq6{Ig`KY5DOg7B7<.|#Z57܆92cCGiױF괺(t*dŚĔvnB7t.-R(Q{'$׏sp ,]]Lq;+pH؎쩄B^ijy^ lw6) Kk5eDL_| 3kҏv{ٟn73N$4D{|t2ͬBNᜱN%!B}e *OXTqZT,tNJgԸt1DmrI7~xh|'j_\6v6kI_u΂h(߽ Eh*A]̦VfKEK+,Jk+{+6Y,vleyWQFF:eS nh^yQ΀gcynu[ős"dNzsn⍛Lo"r@M6}vgNlEO wa!tώ0F?;Zm­ߙ =Ipy h 3̜ =ěnkTmm5W_AWM՗ߥ\iv' "8,D|,4{JG;FDn\}"^ ќK+4YUzU%`&X?oYZ17|geOzotC(|8Bm~1<;17|>QN 7VH2 1?ͳ N9&`}b\1-غ.F:5/q!8Z X~,xӮ5QG ZWV?ʊh.ڷna{/=4f]z8?C' ڿy0՗_[U:߀a)fs5*b^+x_ 2ɜ17dDFMd~Ž44g+"espresso-5.1/PP/examples/CLS_IS_example/0000755000175000017500000000000012341373041016164 5ustar mbambaespresso-5.1/PP/examples/CLS_IS_example/run_xml_example0000755000175000017500000001442312341372774021331 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example will calculate the initial state contribution for a Rh011 slab" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x initial_state.x" PSEUDO_LIST="Rh.pbe-rrkjus_lb.UPF Rhs.pbe-rrkjus_lb.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" IS_COMMAND="$PARA_PREFIX $BIN_DIR/initial_state.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running initial_state.x as: $IS_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # # self-consistent calculation. Note the definitions in atomic_species and ntyp in &system # cat > rh011slab.scf.xml << EOF 0.50000000 0.00000000 0.00000000 0.00000000 0.70710678 0.00000000 0.00000000 0.00000000 3.00000000 1.0 Rh.pbe-rrkjus_lb.UPF 1.0 Rhs.pbe-rrkjus_lb.UPF 0.25000000 0.35000000 0.50000000 0.00000000 0.00000000 0.25000000 0.25000000 0.35000000 0.00000000 0.00000000 0.00000000 -0.25000000 0.25000000 0.35000000 -0.50000000 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 25.0 0.3 1.0d-6 smearing mp 0.03 EOF $ECHO $ECHO " running pw.x for Rh011 slab...\c" $PW_COMMAND < rh011slab.scf.xml > rh011slab.scf.out check_failure $? $ECHO " done" # Initial state calculation as a post-processing tool # cat > rh011slab.istate.in << EOF &inputpp prefix='Rh011', outdir='$TMP_DIR' excite(1) = 2, / EOF $ECHO $ECHO " running initial_state.x for RhUS->RhsUS ...\c" $IS_COMMAND < rh011slab.istate.in > rh011slab.istate.out check_failure $? $ECHO " done" # # Extract data and write results # enbulk=$(grep "atom 3 type 1" rh011slab.istate.out | head -n1 | cut -d" " -f 19) enlay1=$(grep "atom 2 type 1" rh011slab.istate.out | head -n1 | cut -d" " -f 19) ensurf=$(grep "atom 1 type 1" rh011slab.istate.out | head -n1 | cut -d" " -f 19) clssurfry=$(echo "scale=5; ($enbulk)-($ensurf)" | bc) clssurfev=$(echo "scale=5; (($enbulk)-($ensurf))*13.6" | bc) clslay1ry=$(echo "scale=5; ($enbulk)-($enlay1)" | bc) clslay1ev=$(echo "scale=5; (($enbulk)-($enlay1))*13.6" | bc) $ECHO "" > initial-state.txt $ECHO "IS contribution for the bulk atom: $enbulk (Ry)" >> initial-state.txt $ECHO "IS contribution for the surface atom: $ensurf (Ry)" >> initial-state.txt $ECHO "IS contribution for the layer(-1) atom: $enlay1 (Ry)" >> initial-state.txt $ECHO "" >> initial-state.txt $ECHO "------------------------------------------" >> initial-state.txt $ECHO "" >> initial-state.txt $ECHO "IS shift surface: $clssurfev (eV)" >> initial-state.txt $ECHO "IS shift layer(-1): $clslay1ev (eV)" >> initial-state.txt $ECHO $ECHO " Results written in results/initial-state.txt !" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PP/examples/CLS_IS_example/README0000644000175000017500000000676712341372774017100 0ustar mbambaThis example shows how to calculate the initial state core level shift using the core-exited pseudo-potential technique. Defining the normal PP as V and the core-exited PP as V*, initial_state.x will calculate for each atom the expectation value defined by with Psi the ground state wave function (in DFT this is implemented with several integrals concerning both the pseudo and the GS charge distribution). The example calculates the IS contribution in a rhodium [011] slab composed of 5 layer. What is necessary are - a normal PP for rhodium - a core-exited PP for rhodium The two potentials have to be consistent with each other (functional, parameters, ecc..), being the core-exited one a PP for the same atomic type with a different, core-exited, electronic configuration. The calculation proceeds as follows: 1) make a self-consistent calculation for Rh [011] slab adding the core-exited PP in the ATOMIC_SPECIES. All the atomic positions will be defined by the normal PP, the addition of the exited PP in the list is needed for the next step. Notice that in &system the ntyp variable counts also the core-exited PP. (input=rh011slab.scf.in, output=rh011slab.scf.out) 2) make the initial state calculation. In this step it is necessary to define which PP is the excited version of the normal one. As explained below (see "Several PP case") in the ATOMIC_SPECIES a long list of pseudo for other atoms in the calculation can appear and the PPs are defined in initial_state.x with numbers, starting from 1 up to the last pseudo. In the example are used only two PPs. The first one is the regular PP used to define the atoms in ATOMIC_POSITIONS. The second is the core-exited PP, which appear only in the ATOMIC_SPECIES card. Then the way to specify that atomic type 1 is exited to atomic type 2 is "exited(1)=2". (input=rh011slab.istate.in, output=rh011slab.istate.out). The output will show the IS contributions, the full result first and its decomposition in each part after (ionic contribution, non local contribution, ecc...). As usual, taking an atom as the reference the differences of the IS contributions are the IS core-level shift. -------------------------------------------------------------------------------- NOTE: Case with several PP In bigger calculations with several atomic species the strategy will be identical. - First make a SCF calculation with the regular PP and adding all the different core-exited versions one wants to check. ATOMIC_SPECIES Rh 1.0 Rh.pbe-rrkjus_lb.UPF (used) O 1.0 O.pbe-rrkjus.UPF (used) Rhs 1.0 Rhs.pbe-rrkjus_lb.UPF (core-ex. [s], NOT USED in ATOMIC_POSITIONS) Rhp 1.0 Rhs.pbe-rrkjus_lb.UPF (core-ex. [p], NOT USED in ATOMIC_POSITIONS) Os 1.0 Rhs.pbe-rrkjus_lb.UPF (core-ex. NOT USED in ATOMIC_POSITIONS) - Once the SCF is finished it is possible to define several different initial_state runs, each testing a different IS contribution. In every run one has to defined just ONE core-excited configuration per atomic type while excitations of different atomic types can be defined in a single run. - Run only for rhodium (s) excite(1)=3 (IS contribution for Rh atoms with [s]PP) - Run only for rhodium (p) excite(1)=4 (IS contribution for Rh atoms with [p]PP) - Run for rhodium AND oxygen in ONE run excite(1)=3 (IS contribution only for Rh atoms with [s]PP) excite(2)=5 (IS contribution only for Ox atoms) espresso-5.1/PP/examples/CLS_IS_example/run_example0000755000175000017500000001106712341372774020452 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example will calculate the initial state contribution for a Rh011 slab" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x initial_state.x" PSEUDO_LIST="Rh.pbe-rrkjus_lb.UPF Rhs.pbe-rrkjus_lb.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" IS_COMMAND="$PARA_PREFIX $BIN_DIR/initial_state.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running initial_state.x as: $IS_COMMAND" $ECHO # # self-consistent calculation. Note the definitions in ATOMIC_SPECIES and ntyp in &system # cat > rh011slab.scf.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Rh011', pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' / &system nat=5, ntyp=2, ibrav=0, celldm(1)=10.31510000, ecutwfc = 25, occupations='smearing', degauss = 0.03, smearing='mp', / &electrons mixing_beta = 0.3 conv_thr = 1.0d-6 / CELL_PARAMETERS 0.50000000 0.00000000 0.00000000 0.00000000 0.70710678 0.00000000 0.00000000 0.00000000 3.00000000 ATOMIC_SPECIES Rh 1.0 Rh.pbe-rrkjus_lb.UPF Rhs 1.0 Rhs.pbe-rrkjus_lb.UPF ATOMIC_POSITIONS (alat) Rh 0.25000000 0.35000000 0.50000000 Rh 0.00000000 0.00000000 0.25000000 Rh 0.25000000 0.35000000 0.00000000 Rh 0.00000000 0.00000000 -0.25000000 Rh 0.25000000 0.35000000 -0.50000000 K_POINTS {gamma} EOF $ECHO $ECHO " running pw.x for Rh011 slab...\c" $PW_COMMAND < rh011slab.scf.in > rh011slab.scf.out check_failure $? $ECHO " done" # Initial state calculation as a post-processing tool # cat > rh011slab.istate.in << EOF &inputpp prefix='Rh011', outdir='$TMP_DIR' excite(1) = 2, / EOF $ECHO $ECHO " running initial_state.x for RhUS->RhsUS ...\c" $IS_COMMAND < rh011slab.istate.in > rh011slab.istate.out check_failure $? $ECHO " done" # # Extract data and write results # enbulk=$(grep "atom 3 type 1" rh011slab.istate.out | head -n1 | cut -d" " -f 19) enlay1=$(grep "atom 2 type 1" rh011slab.istate.out | head -n1 | cut -d" " -f 19) ensurf=$(grep "atom 1 type 1" rh011slab.istate.out | head -n1 | cut -d" " -f 19) clssurfry=$(echo "scale=5; ($enbulk)-($ensurf)" | bc) clssurfev=$(echo "scale=5; (($enbulk)-($ensurf))*13.6" | bc) clslay1ry=$(echo "scale=5; ($enbulk)-($enlay1)" | bc) clslay1ev=$(echo "scale=5; (($enbulk)-($enlay1))*13.6" | bc) $ECHO "" > initial-state.txt $ECHO "IS contribution for the bulk atom: $enbulk (Ry)" >> initial-state.txt $ECHO "IS contribution for the surface atom: $ensurf (Ry)" >> initial-state.txt $ECHO "IS contribution for the layer(-1) atom: $enlay1 (Ry)" >> initial-state.txt $ECHO "" >> initial-state.txt $ECHO "------------------------------------------" >> initial-state.txt $ECHO "" >> initial-state.txt $ECHO "IS shift surface: $clssurfev (eV)" >> initial-state.txt $ECHO "IS shift layer(-1): $clslay1ev (eV)" >> initial-state.txt $ECHO $ECHO " Results written in results/initial-state.txt !" $ECHO $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/Rh011.* $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PP/examples/CLS_IS_example/reference/0000755000175000017500000000000012341373041020122 5ustar mbambaespresso-5.1/PP/examples/CLS_IS_example/reference/initial-state.txt0000644000175000017500000000041712341372774023450 0ustar mbamba IS contribution for the bulk atom: -12.579390 (Ry) IS contribution for the surface atom: -12.608858 (Ry) IS contribution for the layer(-1) atom: -12.596998 (Ry) ------------------------------------------ IS shift surface: .400764 (eV) IS shift layer(-1): .239468 (eV) espresso-5.1/PP/examples/CLS_IS_example/reference/rh011slab.scf.out0000644000175000017500000003527012341372774023145 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 12May2009 at 9:47:40 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 file Rh.pbe-rrkjus_lb.UPF: wavefunction(s) 4D renormalized file Rhs.pbe-rrkjus_lb.UPF: wavefunction(s) 4D 5S renormalized gamma-point specific algorithms are used bravais-lattice index = 0 lattice parameter (a_0) = 10.3151 a.u. unit-cell volume = 1164.1169 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 45.00 number of Kohn-Sham states= 28 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) celldm(1)= 10.315100 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.000000 0.000000 ) a(2) = ( 0.000000 0.707107 0.000000 ) a(3) = ( 0.000000 0.000000 3.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 2.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.414214 0.000000 ) b(3) = ( 0.000000 0.000000 0.333333 ) PseudoPot. # 1 for Rh read from file Rh.pbe-rrkjus_lb.UPF Pseudo is Ultrasoft, Zval = 9.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1491 points, 3 beta functions with: l(1) = 1 l(2) = 2 l(3) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Rh read from file Rhs.pbe-rrkjus_lb.UPF Pseudo is Ultrasoft, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1491 points, 3 beta functions with: l(1) = 1 l(2) = 2 l(3) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Rh 9.00 1.00000 Rh( 1.00) Rhs 10.00 1.00000 Rh( 1.00) 4 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 Rh tau( 1) = ( 0.2500000 0.3500000 0.5000000 ) 2 Rh tau( 2) = ( 0.0000000 0.0000000 0.2500000 ) 3 Rh tau( 3) = ( 0.2500000 0.3500000 0.0000000 ) 4 Rh tau( 4) = ( 0.0000000 0.0000000 -0.2500000 ) 5 Rh tau( 5) = ( 0.2500000 0.3500000 -0.5000000 ) number of k points= 1 gaussian broad. (Ry)= 0.0300 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 269.5176 ( 9857 G-vectors) FFT grid: ( 18, 24,100) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.52 Mb ( 1214, 28) NL pseudopotentials 1.20 Mb ( 1214, 65) Each V/rho on FFT grid 0.66 Mb ( 43200) Each G-vector array 0.08 Mb ( 9857) G-vector shells 0.02 Mb ( 2285) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.04 Mb ( 1214, 112) Each subspace H/S matrix 0.10 Mb ( 112, 112) Each matrix 0.01 Mb ( 65, 28) Arrays for rho mixing 5.27 Mb ( 43200, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.008981 starting charge 44.94023, renormalised to 45.00000 negative rho (up, down): 0.899E-02 0.000E+00 Starting wfc are 30 atomic wfcs total cpu time spent up to now is 7.07 secs per-process dynamical memory: 9.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.102E-01 0.000E+00 total cpu time spent up to now is 8.56 secs total energy = -217.12318961 Ry Harris-Foulkes estimate = -222.22936011 Ry estimated scf accuracy < 10.54517522 Ry iteration # 2 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 8.0 negative rho (up, down): 0.112E-02 0.000E+00 total cpu time spent up to now is 10.63 secs total energy = -211.87552792 Ry Harris-Foulkes estimate = -233.67027992 Ry estimated scf accuracy < 224.55511414 Ry iteration # 3 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 negative rho (up, down): 0.117E-02 0.000E+00 total cpu time spent up to now is 12.41 secs total energy = -221.57711484 Ry Harris-Foulkes estimate = -222.38024868 Ry estimated scf accuracy < 9.84993344 Ry iteration # 4 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.127E-02 0.000E+00 total cpu time spent up to now is 13.74 secs total energy = -221.33657109 Ry Harris-Foulkes estimate = -221.68088708 Ry estimated scf accuracy < 4.06970382 Ry iteration # 5 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.04E-03, avg # of iterations = 1.0 negative rho (up, down): 0.140E-02 0.000E+00 total cpu time spent up to now is 15.08 secs total energy = -221.31608986 Ry Harris-Foulkes estimate = -221.40995037 Ry estimated scf accuracy < 1.12689418 Ry iteration # 6 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.50E-03, avg # of iterations = 7.0 negative rho (up, down): 0.158E-02 0.000E+00 total cpu time spent up to now is 16.67 secs total energy = -221.67041557 Ry Harris-Foulkes estimate = -221.70100821 Ry estimated scf accuracy < 2.61020675 Ry iteration # 7 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.50E-03, avg # of iterations = 1.0 negative rho (up, down): 0.155E-02 0.000E+00 total cpu time spent up to now is 18.01 secs total energy = -221.56018796 Ry Harris-Foulkes estimate = -221.74494284 Ry estimated scf accuracy < 6.61295764 Ry iteration # 8 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.50E-03, avg # of iterations = 1.0 negative rho (up, down): 0.160E-02 0.000E+00 total cpu time spent up to now is 19.35 secs total energy = -221.59599984 Ry Harris-Foulkes estimate = -221.61966134 Ry estimated scf accuracy < 1.22684762 Ry iteration # 9 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.50E-03, avg # of iterations = 1.0 negative rho (up, down): 0.192E-02 0.000E+00 total cpu time spent up to now is 20.70 secs total energy = -221.57789172 Ry Harris-Foulkes estimate = -221.60038927 Ry estimated scf accuracy < 0.58364826 Ry iteration # 10 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.30E-03, avg # of iterations = 1.0 negative rho (up, down): 0.513E-02 0.000E+00 total cpu time spent up to now is 22.05 secs total energy = -221.56633648 Ry Harris-Foulkes estimate = -221.58223380 Ry estimated scf accuracy < 0.20934376 Ry iteration # 11 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.65E-04, avg # of iterations = 3.0 negative rho (up, down): 0.843E-02 0.000E+00 total cpu time spent up to now is 23.45 secs total energy = -221.57506991 Ry Harris-Foulkes estimate = -221.57523984 Ry estimated scf accuracy < 0.00360709 Ry iteration # 12 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.02E-06, avg # of iterations = 4.0 negative rho (up, down): 0.111E-01 0.000E+00 total cpu time spent up to now is 24.92 secs total energy = -221.57254896 Ry Harris-Foulkes estimate = -221.57622909 Ry estimated scf accuracy < 0.02655778 Ry iteration # 13 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.02E-06, avg # of iterations = 3.0 negative rho (up, down): 0.125E-01 0.000E+00 total cpu time spent up to now is 26.44 secs total energy = -221.57326813 Ry Harris-Foulkes estimate = -221.57638996 Ry estimated scf accuracy < 0.02164871 Ry iteration # 14 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.02E-06, avg # of iterations = 2.0 negative rho (up, down): 0.137E-01 0.000E+00 total cpu time spent up to now is 27.83 secs total energy = -221.57482002 Ry Harris-Foulkes estimate = -221.57505679 Ry estimated scf accuracy < 0.00191290 Ry iteration # 15 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.25E-06, avg # of iterations = 1.0 negative rho (up, down): 0.140E-01 0.000E+00 total cpu time spent up to now is 29.18 secs total energy = -221.57495045 Ry Harris-Foulkes estimate = -221.57500752 Ry estimated scf accuracy < 0.00086244 Ry iteration # 16 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.92E-06, avg # of iterations = 1.0 negative rho (up, down): 0.142E-01 0.000E+00 total cpu time spent up to now is 30.54 secs total energy = -221.57494586 Ry Harris-Foulkes estimate = -221.57497018 Ry estimated scf accuracy < 0.00014383 Ry iteration # 17 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.20E-07, avg # of iterations = 2.0 negative rho (up, down): 0.142E-01 0.000E+00 total cpu time spent up to now is 31.91 secs total energy = -221.57495505 Ry Harris-Foulkes estimate = -221.57495822 Ry estimated scf accuracy < 0.00002617 Ry iteration # 18 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.82E-08, avg # of iterations = 1.0 negative rho (up, down): 0.143E-01 0.000E+00 total cpu time spent up to now is 33.26 secs total energy = -221.57495655 Ry Harris-Foulkes estimate = -221.57495698 Ry estimated scf accuracy < 0.00000238 Ry iteration # 19 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.29E-09, avg # of iterations = 4.0 negative rho (up, down): 0.143E-01 0.000E+00 total cpu time spent up to now is 34.77 secs total energy = -221.57495699 Ry Harris-Foulkes estimate = -221.57495735 Ry estimated scf accuracy < 0.00000110 Ry iteration # 20 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.44E-09, avg # of iterations = 4.0 negative rho (up, down): 0.143E-01 0.000E+00 total cpu time spent up to now is 36.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1214 PWs) bands (ev): -3.4296 -2.0461 -1.6545 -1.5153 -0.9518 -0.2578 -0.2485 -0.1816 -0.0245 0.4483 0.5556 0.9660 1.0064 1.0693 1.4870 1.7743 1.8683 2.0502 2.2136 2.5035 2.5725 2.7766 2.8354 3.1314 3.5742 3.5794 3.7173 4.2917 the Fermi energy is 2.9072 ev ! total energy = -221.57495708 Ry Harris-Foulkes estimate = -221.57495719 Ry estimated scf accuracy < 0.00000016 Ry The total energy is the sum of the following terms: one-electron contribution = -1139.41311874 Ry hartree contribution = 597.16357077 Ry xc contribution = -40.83042194 Ry ewald contribution = 361.50730390 Ry smearing contrib. (-TS) = -0.00229107 Ry convergence has been achieved in 20 iterations Writing output data file Rh011.save PWSCF : 36.30s CPU time, 37.53s wall time init_run : 6.96s CPU electrons : 29.10s CPU Called by init_run: wfcinit : 0.20s CPU potinit : 0.72s CPU Called by electrons: c_bands : 10.72s CPU ( 20 calls, 0.536 s avg) sum_band : 8.42s CPU ( 20 calls, 0.421 s avg) v_of_rho : 3.16s CPU ( 21 calls, 0.151 s avg) newd : 6.51s CPU ( 21 calls, 0.310 s avg) mix_rho : 0.43s CPU ( 20 calls, 0.022 s avg) Called by c_bands: init_us_2 : 0.12s CPU ( 41 calls, 0.003 s avg) regterg : 10.27s CPU ( 20 calls, 0.514 s avg) Called by *egterg: h_psi : 8.95s CPU ( 73 calls, 0.123 s avg) s_psi : 0.23s CPU ( 73 calls, 0.003 s avg) g_psi : 0.12s CPU ( 52 calls, 0.002 s avg) rdiaghg : 0.38s CPU ( 72 calls, 0.005 s avg) Called by h_psi: add_vuspsi : 0.23s CPU ( 73 calls, 0.003 s avg) General routines calbec : 0.35s CPU ( 93 calls, 0.004 s avg) cft3 : 2.16s CPU ( 251 calls, 0.009 s avg) cft3s : 9.70s CPU ( 1686 calls, 0.006 s avg) davcio : 0.00s CPU ( 20 calls, 0.000 s avg) espresso-5.1/PP/examples/CLS_IS_example/reference/rh011slab.istate.out0000644000175000017500000000567612341372774023672 0ustar mbamba Program POST-PROC v.4.1CVS starts ... Today is 12May2009 at 9:48:17 file Rh.pbe-rrkjus_lb.UPF: wavefunction(s) 4D renormalized file Rhs.pbe-rrkjus_lb.UPF: wavefunction(s) 4D 5S renormalized negative rho (up, down): 0.143E-01 0.000E+00 charge density from previous step negative rho (up, down): 0.143E-01 0.000E+00 INITIAL STATE CONTRIBUTION TO CORE LEVEL SHIFT ON ATOMS: atom 1 type 1 shift = -12.608858 Ry, = -171.55360 eV atom 2 type 1 shift = -12.596998 Ry, = -171.39224 eV atom 3 type 1 shift = -12.579390 Ry, = -171.15266 eV atom 4 type 1 shift = -12.596998 Ry, = -171.39224 eV atom 5 type 1 shift = -12.608858 Ry, = -171.55360 eV The FERMI ENERGY contribution to shift atom 1 type 1 shift = 0.213675 Ry, = 2.90722 eV atom 2 type 1 shift = 0.213675 Ry, = 2.90722 eV atom 3 type 1 shift = 0.213675 Ry, = 2.90722 eV atom 4 type 1 shift = 0.213675 Ry, = 2.90722 eV atom 5 type 1 shift = 0.213675 Ry, = 2.90722 eV The NON LOCAL contribution to shift atom 1 type 1 shift = -0.694904 Ry, = -9.45472 eV atom 2 type 1 shift = -0.687366 Ry, = -9.35217 eV atom 3 type 1 shift = -0.685454 Ry, = -9.32615 eV atom 4 type 1 shift = -0.687366 Ry, = -9.35217 eV atom 5 type 1 shift = -0.694904 Ry, = -9.45472 eV The LOCAL contribution to shift atom 1 type 1 shift = -19.598344 Ry, = -266.65115 eV atom 2 type 1 shift = -32.378705 Ry, = -440.53819 eV atom 3 type 1 shift = -36.990341 Ry, = -503.28318 eV atom 4 type 1 shift = -32.378705 Ry, = -440.53819 eV atom 5 type 1 shift = -19.598344 Ry, = -266.65115 eV The IONIC contribution to shift atom 1 type 1 shift = 7.470715 Ry, = 101.64505 eV atom 2 type 1 shift = 20.255398 Ry, = 275.59090 eV atom 3 type 1 shift = 24.882731 Ry, = 338.54946 eV atom 4 type 1 shift = 20.255398 Ry, = 275.59090 eV atom 5 type 1 shift = 7.470715 Ry, = 101.64505 eV The CC contribution to shift atom 1 type 1 shift = 0.000000 Ry, = 0.00000 eV atom 2 type 1 shift = 0.000000 Ry, = 0.00000 eV atom 3 type 1 shift = 0.000000 Ry, = 0.00000 eV atom 4 type 1 shift = 0.000000 Ry, = 0.00000 eV atom 5 type 1 shift = 0.000000 Ry, = 0.00000 eV The Hubbard contribution to shift atom 1 type 1 shift = 0.000000 Ry, = 0.00000 eV atom 2 type 1 shift = 0.000000 Ry, = 0.00000 eV atom 3 type 1 shift = 0.000000 Ry, = 0.00000 eV atom 4 type 1 shift = 0.000000 Ry, = 0.00000 eV atom 5 type 1 shift = 0.000000 Ry, = 0.00000 eV espresso-5.1/PP/examples/example06/0000755000175000017500000000000012341373041015236 5ustar mbambaespresso-5.1/PP/examples/example06/run_xml_example0000644000175000017500000002111112341372774020370 0ustar mbamba#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example calculates the band structure of ferromagnetic bcc-Fe." $ECHO "in the noncollinear spin-orbit case." $ECHO # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x bands.x plotband.x" PSEUDO_LIST="Fe.rel-pbe-kjpaw.UPF Au.rel-pz-kjpaw.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" BAND_COMMAND="$PARA_PREFIX $BIN_DIR/bands.x $PARA_POSTFIX" PLOTBAND_COMMAND="$BIN_DIR/plotband.x" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running bands.x as: $BAND_COMMAND" $ECHO " running plotband.x as: $PLOTBAND_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.scf_pbe.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Fe.rel-pbe-kjpaw.UPF 0.5 0.0000000 0.00000000 0.0 $PSEUDO_DIR/ $TMP_DIR/ 45.0 300.0 1.0d-10 smearing mp 0.04 true true 8 8 8 1 1 1 EOF $ECHO " running the scf calculation for Fe with PAW spin-orbit...\c" $PW_COMMAND < Fe.scf_pbe.xml > Fe.scf_pbe.out check_failure $? $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.band_pbe.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Fe.rel-pbe-kjpaw.UPF 0.5 0.0000000 0.00000000 0.0 $PSEUDO_DIR/ $TMP_DIR/ 45.0 300.0 1.0d-10 smearing mp 0.04 true true 1.0 0.0 0.0 40.0 0.0 0.0 0.0 40.0 0.0 0.0 1.0 1.0 EOF $ECHO " running the band calculation for Fe with PAW and spin-orbit...\c" $PW_COMMAND < Fe.band_pbe.xml > Fe.band_pbe.out check_failure $? $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.bands.in << EOF &inputpp prefix='Fe', outdir='$TMP_DIR/' filband='fe.band' lsym=.true., / EOF $ECHO " checking band symmetry of bcc-Fe with PAW and spin-orbit...\c" $BAND_COMMAND < Fe.bands.in > Fe.bands.out check_failure $? $ECHO " done" cat > plotband.in << EOF fe.band 0 50 ciao EOF $ECHO " Plotting the bands...\c" $PLOTBAND_COMMAND < plotband.in > plotband.out check_failure $? $ECHO " done" cat > plot.gnu << EOF set encoding iso_8859_15 set terminal postscript enhanced color "Helvetica" 24 set output "gnuplot.ps" # set key off set xrange [0:2] set yrange [-.5:0.5] set arrow from 1,-0.5 to 1,0.5 nohead lw 2 lt -1 front set xzeroaxis lw 2 lt -1 set border lw 2 unset xtics set size 0.85,1.0 set ylabel "Energy (eV)" set label "{/Symbol G}" at -.02,-0.535 set label "{/Symbol G}" at 1.97,-0.535 set label "(1,0,0) H (0,0,1)" at 1.0,-0.535 center set label " M//(0,0,1) " at 1.47,0.43 set label " D_{4h} [C_{4h}] " at -0.12,0.535 font ",16" set label " D_{4h} [C_{4h}] " at 0.90,0.535 font ",16" set label " D_{4h} [C_{4h}] " at 1.82,0.535 font ",16" set label " C_{2v} [C_{s}] " at 0.4,0.535 font ",16" set label " D_{4} [C_{4}] " at 1.4,0.535 font ",16" set label " {/Symbol G}_4 " at 0.55,-0.45 font ",16" tc rgb "blue" set label " {/Symbol G}_3 " at 0.24,-0.45 font ",16" tc rgb "red" set label " {/Symbol G}_6 " at 1.08,-0.45 font ",16" tc rgb "black" set label " {/Symbol G}_7 " at 1.32,-0.45 font ",16" tc rgb "green" set label " {/Symbol G}_8 " at 1.2,-0.45 font ",16" tc rgb "blue" set label " {/Symbol G}_5 " at 1.62,-0.45 font ",16" tc rgb "red" ef=12.5628 plot 'ciao.1.1' u (1.-\$1):(\$2-ef) w l lw 3 lt 1 lc rgb "red", 'ciao.1.2' u (1.-\$1):(\$2-ef) w l lw 3 lt 5 lc rgb "blue", 'ciao.2.1' u (3.-\$1):(\$2-ef) w l lw 3 lt 1 lc rgb "red", 'ciao.2.2' u (3.-\$1):(\$2-ef) w l lw 3 lt 4 lc rgb "black", 'ciao.2.3' u (3.-\$1):(\$2-ef) w l lw 3 lt 1 lc rgb "green", 'ciao.2.4' u (3.-\$1):(\$2-ef) w l lw 3 lt 5 lc rgb "blue" EOF gnuplot plot.gnu $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PP/examples/example06/README0000644000175000017500000000065212341372774016135 0ustar mbambaThis example tests pw.x and ph.x for the noncollinear/spin-orbit case and PAW. The calculation proceeds as follows: 1) make a self-consistent calculation for bcc-Fe (input=Fe.scf_pbe.in, output=Fe.scf_pbe.out). 2) make a band calculation for bcc-Fe (input=Fe.band_pbe.in, output=Fe.band_pbe.out). 3) make a band plot for bcc-Fe (input=Fe.bands.in, output=Fe.bands.out). The band plot is in reference/gnuplot.ps. espresso-5.1/PP/examples/example06/run_example0000755000175000017500000001464412341372774017530 0ustar mbamba#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example calculates the band structure of ferromagnetic bcc-Fe." $ECHO "in the noncollinear spin-orbit case." $ECHO # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x bands.x plotband.x" PSEUDO_LIST="Fe.rel-pbe-kjpaw.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for gnuplot GP_COMMAND=`which gnuplot 2>/dev/null` if [ "$GP_COMMAND" = "" ]; then $ECHO $ECHO "gnuplot not in PATH" $ECHO "Results will not be plotted" fi # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" BAND_COMMAND="$PARA_PREFIX $BIN_DIR/bands.x $PARA_POSTFIX" PLOTBAND_COMMAND="$BIN_DIR/plotband.x" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running bands.x as: $BAND_COMMAND" $ECHO " running plotband.x as: $PLOTBAND_COMMAND" $ECHO # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.scf_pbe.in << EOF &control calculation = 'scf' prefix='Fe', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 3, celldm(1) =5.42, nat= 1, ntyp= 1, nr1=27, nr2=27, nr3=27, noncolin=.true. lspinorb=.true. starting_magnetization(1)=0.5, occupations='smearing', smearing='mp', degauss=0.04, ecutwfc =45.0, ecutrho =300.0 / &electrons conv_thr = 1.0d-10 / ATOMIC_SPECIES Fe 0.0 Fe.rel-pbe-kjpaw.UPF ATOMIC_POSITIONS Fe 0.0000000 0.00000000 0.0 K_POINTS AUTOMATIC 8 8 8 1 1 1 EOF $ECHO " running the scf calculation for Fe with PAW spin-orbit...\c" $PW_COMMAND < Fe.scf_pbe.in > Fe.scf_pbe.out check_failure $? $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.band_pbe.in << EOF &control calculation = 'bands' prefix='Fe', point_label_type='BI' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 3, celldm(1) =5.42, nat= 1, ntyp= 1, nr1=27, nr2=27, nr3=27, noncolin=.true. lspinorb=.true. starting_magnetization(1)=0.5, occupations='smearing', smearing='mp', degauss=0.04, ecutwfc =45.0, ecutrho =300.0 / &electrons conv_thr = 1.0d-10 / ATOMIC_SPECIES Fe 0.0 Fe.rel-pbe-kjpaw.UPF ATOMIC_POSITIONS Fe 0.0000000 0.00000000 0.0 K_POINTS tpiba_b 3 H1 40 gG 40 0.0 0.0 1.0 1 EOF $ECHO " running the band calculation for Fe with PAW and spin-orbit...\c" $PW_COMMAND < Fe.band_pbe.in > Fe.band_pbe.out check_failure $? $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.bands.in << EOF &bands prefix='Fe', outdir='$TMP_DIR/' filband='fe.band' lsym=.true., / EOF $ECHO " checking band symmetry of bcc-Fe with PAW and spin-orbit...\c" $BAND_COMMAND < Fe.bands.in > Fe.bands.out check_failure $? $ECHO " done" cat > plotband.in << EOF fe.band 0 50 ciao EOF $ECHO " Plotting the bands...\c" $PLOTBAND_COMMAND < plotband.in > plotband.out check_failure $? $ECHO " done" # # if gnuplot was found, the results are plotted # if [ "$GP_COMMAND" = "" ]; then break else cat > plot.gnu << EOF set encoding iso_8859_15 set terminal postscript enhanced color "Helvetica" 24 set output "fe.bands.ps" # set key off set xrange [0:2] set yrange [-.5:0.5] set arrow from 1,-0.5 to 1,0.5 nohead lw 2 lt -1 front set xzeroaxis lw 2 lt -1 set border lw 2 unset xtics set size 0.85,1.0 set ylabel "Energy (eV)" set label "{/Symbol G}" at -.02,-0.535 set label "{/Symbol G}" at 1.97,-0.535 set label "(1,0,0) H (0,0,1)" at 1.0,-0.535 center set label " M//(0,0,1) " at 1.47,0.43 set label " D_{4h} [C_{4h}] " at -0.12,0.535 font ",16" set label " D_{4h} [C_{4h}] " at 0.90,0.535 font ",16" set label " D_{4h} [C_{4h}] " at 1.82,0.535 font ",16" set label " C_{2v} [C_{s}] " at 0.4,0.535 font ",16" set label " D_{4} [C_{4}] " at 1.4,0.535 font ",16" set label " {/Symbol G}_4 " at 0.55,-0.45 font ",16" tc rgb "blue" set label " {/Symbol G}_3 " at 0.24,-0.45 font ",16" tc rgb "red" set label " {/Symbol G}_6 " at 1.08,-0.45 font ",16" tc rgb "black" set label " {/Symbol G}_7 " at 1.32,-0.45 font ",16" tc rgb "green" set label " {/Symbol G}_8 " at 1.2,-0.45 font ",16" tc rgb "blue" set label " {/Symbol G}_5 " at 1.62,-0.45 font ",16" tc rgb "red" ef=12.5628 plot 'ciao.1.1' u (1.-\$1):(\$2-ef) w l lw 3 lt 1 lc rgb "red", 'ciao.1.2' u (1.-\$1):(\$2-ef) w l lw 3 lt 5 lc rgb "blue", 'ciao.2.1' u (3.-\$1):(\$2-ef) w l lw 3 lt 1 lc rgb "red", 'ciao.2.2' u (3.-\$1):(\$2-ef) w l lw 3 lt 4 lc rgb "black", 'ciao.2.3' u (3.-\$1):(\$2-ef) w l lw 3 lt 1 lc rgb "green", 'ciao.2.4' u (3.-\$1):(\$2-ef) w l lw 3 lt 5 lc rgb "blue" EOF $ECHO " Writing the bands on file fe.bands.ps...\c" gnuplot plot.gnu check_failure $? $ECHO " done" fi $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/Fe.* $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PP/examples/example06/reference/0000755000175000017500000000000012341373041017174 5ustar mbambaespresso-5.1/PP/examples/example06/reference/plotband.out0000644000175000017500000000114712341372774021547 0ustar mbambaInput file > Reading 16 bands at 81 k-points Range: 4.2700 37.1710eV Emin, Emax > high-symmetry point: 1.0000 0.0000 0.0000 high-symmetry point: 0.0000 0.0000 0.0000 high-symmetry point: 0.0000 0.0000 1.0000 output file (xmgr) > line # 1 nrap 2 line # 2 nrap 4 bands in xmgr format written to file ciao output file (ps) > espresso-5.1/PP/examples/example06/reference/Fe.band_pbe.out0000644000175000017500000007314512341372774022036 0ustar mbamba Program PWSCF v.4.2 starts on 23May2010 at 11: 6:24 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 1 processors Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.rel-pbe-paw_kj.UPF: wavefunction(s) 3D renormalized Atomic positions and unit cell read from directory: /home/dalcorso/tmp/Fe.save/ Fixed quantization axis for GGA: 0.000000 0.000000 1.000000 Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm: we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 24 npps= 24 ncplanes= 576 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 487 6963 24 291 3151 99 675 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.4200 a.u. unit-cell volume = 79.6100 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 45.0000 Ry charge density cutoff = 300.0000 Ry Exchange-correlation = SLA PW PBX PBC (1434) EXX-fraction = 0.00 Noncollinear calculation with spin-orbit celldm(1)= 5.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.rel-pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 8.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: PSQ Using radial grid of 1191 points, 10 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 1 l(6) = 1 l(7) = 2 l(8) = 2 l(9) = 2 l(10) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84500 Fe( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 81 gaussian broad. (Ry)= 0.0400 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 1.0000000 0.0000000 0.0000000), wk = 0.0123457 k( 2) = ( 0.9750000 0.0000000 0.0000000), wk = 0.0082305 k( 3) = ( 0.9500000 0.0000000 0.0000000), wk = 0.0082305 k( 4) = ( 0.9250000 0.0000000 0.0000000), wk = 0.0082305 k( 5) = ( 0.9000000 0.0000000 0.0000000), wk = 0.0082305 k( 6) = ( 0.8750000 0.0000000 0.0000000), wk = 0.0082305 k( 7) = ( 0.8500000 0.0000000 0.0000000), wk = 0.0082305 k( 8) = ( 0.8250000 0.0000000 0.0000000), wk = 0.0082305 k( 9) = ( 0.8000000 0.0000000 0.0000000), wk = 0.0082305 k( 10) = ( 0.7750000 0.0000000 0.0000000), wk = 0.0082305 k( 11) = ( 0.7500000 0.0000000 0.0000000), wk = 0.0082305 k( 12) = ( 0.7250000 0.0000000 0.0000000), wk = 0.0082305 k( 13) = ( 0.7000000 0.0000000 0.0000000), wk = 0.0082305 k( 14) = ( 0.6750000 0.0000000 0.0000000), wk = 0.0082305 k( 15) = ( 0.6500000 0.0000000 0.0000000), wk = 0.0082305 k( 16) = ( 0.6250000 0.0000000 0.0000000), wk = 0.0082305 k( 17) = ( 0.6000000 0.0000000 0.0000000), wk = 0.0082305 k( 18) = ( 0.5750000 0.0000000 0.0000000), wk = 0.0082305 k( 19) = ( 0.5500000 0.0000000 0.0000000), wk = 0.0082305 k( 20) = ( 0.5250000 0.0000000 0.0000000), wk = 0.0082305 k( 21) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0082305 k( 22) = ( 0.4750000 0.0000000 0.0000000), wk = 0.0082305 k( 23) = ( 0.4500000 0.0000000 0.0000000), wk = 0.0082305 k( 24) = ( 0.4250000 0.0000000 0.0000000), wk = 0.0082305 k( 25) = ( 0.4000000 0.0000000 0.0000000), wk = 0.0082305 k( 26) = ( 0.3750000 0.0000000 0.0000000), wk = 0.0082305 k( 27) = ( 0.3500000 0.0000000 0.0000000), wk = 0.0082305 k( 28) = ( 0.3250000 0.0000000 0.0000000), wk = 0.0082305 k( 29) = ( 0.3000000 0.0000000 0.0000000), wk = 0.0082305 k( 30) = ( 0.2750000 0.0000000 0.0000000), wk = 0.0082305 k( 31) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0082305 k( 32) = ( 0.2250000 0.0000000 0.0000000), wk = 0.0082305 k( 33) = ( 0.2000000 0.0000000 0.0000000), wk = 0.0082305 k( 34) = ( 0.1750000 0.0000000 0.0000000), wk = 0.0082305 k( 35) = ( 0.1500000 0.0000000 0.0000000), wk = 0.0082305 k( 36) = ( 0.1250000 0.0000000 0.0000000), wk = 0.0082305 k( 37) = ( 0.1000000 0.0000000 0.0000000), wk = 0.0082305 k( 38) = ( 0.0750000 0.0000000 0.0000000), wk = 0.0082305 k( 39) = ( 0.0500000 0.0000000 0.0000000), wk = 0.0082305 k( 40) = ( 0.0250000 0.0000000 0.0000000), wk = 0.0082305 k( 41) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0123457 k( 42) = ( 0.0000000 0.0000000 0.0250000), wk = 0.0041152 k( 43) = ( 0.0000000 0.0000000 0.0500000), wk = 0.0041152 k( 44) = ( 0.0000000 0.0000000 0.0750000), wk = 0.0041152 k( 45) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0041152 k( 46) = ( 0.0000000 0.0000000 0.1250000), wk = 0.0041152 k( 47) = ( 0.0000000 0.0000000 0.1500000), wk = 0.0041152 k( 48) = ( 0.0000000 0.0000000 0.1750000), wk = 0.0041152 k( 49) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0041152 k( 50) = ( 0.0000000 0.0000000 0.2250000), wk = 0.0041152 k( 51) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0041152 k( 52) = ( 0.0000000 0.0000000 0.2750000), wk = 0.0041152 k( 53) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0041152 k( 54) = ( 0.0000000 0.0000000 0.3250000), wk = 0.0041152 k( 55) = ( 0.0000000 0.0000000 0.3500000), wk = 0.0041152 k( 56) = ( 0.0000000 0.0000000 0.3750000), wk = 0.0041152 k( 57) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0041152 k( 58) = ( 0.0000000 0.0000000 0.4250000), wk = 0.0041152 k( 59) = ( 0.0000000 0.0000000 0.4500000), wk = 0.0041152 k( 60) = ( 0.0000000 0.0000000 0.4750000), wk = 0.0041152 k( 61) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0041152 k( 62) = ( 0.0000000 0.0000000 0.5250000), wk = 0.0041152 k( 63) = ( 0.0000000 0.0000000 0.5500000), wk = 0.0041152 k( 64) = ( 0.0000000 0.0000000 0.5750000), wk = 0.0041152 k( 65) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0041152 k( 66) = ( 0.0000000 0.0000000 0.6250000), wk = 0.0041152 k( 67) = ( 0.0000000 0.0000000 0.6500000), wk = 0.0041152 k( 68) = ( 0.0000000 0.0000000 0.6750000), wk = 0.0041152 k( 69) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0041152 k( 70) = ( 0.0000000 0.0000000 0.7250000), wk = 0.0041152 k( 71) = ( 0.0000000 0.0000000 0.7500000), wk = 0.0041152 k( 72) = ( 0.0000000 0.0000000 0.7750000), wk = 0.0041152 k( 73) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0041152 k( 74) = ( 0.0000000 0.0000000 0.8250000), wk = 0.0041152 k( 75) = ( 0.0000000 0.0000000 0.8500000), wk = 0.0041152 k( 76) = ( 0.0000000 0.0000000 0.8750000), wk = 0.0041152 k( 77) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0041152 k( 78) = ( 0.0000000 0.0000000 0.9250000), wk = 0.0041152 k( 79) = ( 0.0000000 0.0000000 0.9500000), wk = 0.0041152 k( 80) = ( 0.0000000 0.0000000 0.9750000), wk = 0.0041152 k( 81) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0123457 G cutoff = 223.2339 ( 6963 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 133.9403 ( 3151 G-vectors) smooth grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 836, 16) NL pseudopotentials 0.22 Mb ( 418, 34) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6963) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.82 Mb ( 836, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.02 Mb ( 34, 2, 16) The potential is recalculated from file : /home/dalcorso/tmp/Fe.save/charge-density.dat 0.000000 0.000000 1.000000 Starting wfc are 18 atomic wfcs Checking if some PAW data can be deallocated... total cpu time spent up to now is 6.36 secs per-process dynamical memory: 29.0 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-12, avg # of iterations = 15.9 total cpu time spent up to now is 48.23 secs End of band structure calculation k = 1.0000 0.0000 0.0000 band energies (ev): 7.9076 7.9079 9.7430 9.7438 12.6190 12.6535 12.6884 14.8161 14.8527 14.8872 22.0440 22.1053 22.2569 22.3940 22.4537 22.4986 k = 0.9750 0.0000 0.0000 band energies (ev): 7.9129 7.9134 9.7477 9.7496 12.6117 12.6428 12.6814 14.8065 14.8382 14.8782 21.9956 22.1145 22.2320 22.3610 22.4768 22.4921 k = 0.9500 0.0000 0.0000 band energies (ev): 7.9289 7.9299 9.7606 9.7687 12.5881 12.6114 12.6625 14.7741 14.7957 14.8555 21.7569 22.0407 22.2612 22.2905 22.5543 22.5569 k = 0.9250 0.0000 0.0000 band energies (ev): 7.9556 7.9566 9.7807 9.8008 12.5451 12.5605 12.6364 14.7141 14.7274 14.8266 21.3464 21.7260 22.3680 22.3735 22.6866 22.6872 k = 0.9000 0.0000 0.0000 band energies (ev): 7.9924 7.9930 9.8071 9.8452 12.4811 12.4911 12.6055 14.6270 14.6356 14.7930 20.8346 21.2951 22.5273 22.5293 22.8692 22.8693 k = 0.8750 0.0000 0.0000 band energies (ev): 8.0380 8.0400 9.8384 9.9023 12.3994 12.4063 12.5702 14.5188 14.5250 14.7542 20.2632 20.8034 22.7310 22.7319 23.0977 23.0977 k = 0.8500 0.0000 0.0000 band energies (ev): 8.0902 8.0970 9.8721 9.9711 12.3031 12.3080 12.5291 14.3943 14.3990 14.7083 19.6587 20.2785 22.9746 22.9752 23.3678 23.3679 k = 0.8250 0.0000 0.0000 band energies (ev): 8.1477 8.1637 9.9052 10.0516 12.1952 12.1989 12.4822 14.2577 14.2615 14.6556 19.0380 19.7389 23.2548 23.2551 23.6754 23.6754 k = 0.8000 0.0000 0.0000 band energies (ev): 8.2092 8.2397 9.9350 10.1437 12.0797 12.0826 12.4295 14.1139 14.1172 14.5963 18.4131 19.1986 23.5684 23.5686 24.0163 24.0164 k = 0.7750 0.0000 0.0000 band energies (ev): 8.2721 8.3246 9.9575 10.2467 11.9587 11.9611 12.3718 13.9660 13.9689 14.5311 17.7924 18.6682 23.9125 23.9126 24.3870 24.3871 k = 0.7500 0.0000 0.0000 band energies (ev): 8.3335 8.4180 9.9677 10.3603 11.8347 11.8366 12.3083 13.8167 13.8193 14.4593 17.1822 18.1563 24.2844 24.2845 24.7842 24.7843 k = 0.7250 0.0000 0.0000 band energies (ev): 8.3902 8.5187 9.9610 10.4832 11.7093 11.7110 12.2397 13.6681 13.6706 14.3819 16.5881 17.6704 24.6816 24.6817 25.2050 25.2051 k = 0.7000 0.0000 0.0000 band energies (ev): 8.4387 8.6274 9.9319 10.6159 11.5854 11.5867 12.1669 13.5231 13.5255 14.2995 16.0148 17.2171 25.1021 25.1022 25.6470 25.6470 k = 0.6750 0.0000 0.0000 band energies (ev): 8.4744 8.7428 9.8750 10.7571 11.4641 11.4650 12.0900 13.3829 13.3853 14.2125 15.4667 16.8016 25.5436 25.5437 26.1078 26.1078 k = 0.6500 0.0000 0.0000 band energies (ev): 8.4937 8.8642 9.7863 10.9057 11.3470 11.3471 12.0098 13.2488 13.2514 14.1216 14.9489 16.4293 26.0045 26.0045 26.5856 26.5856 k = 0.6250 0.0000 0.0000 band energies (ev): 8.4912 8.9910 9.6622 11.0590 11.2342 11.2370 11.9268 13.1219 13.1247 14.0273 14.4658 16.1027 26.4829 26.4830 27.0785 27.0785 k = 0.6000 0.0000 0.0000 band energies (ev): 8.4618 9.1223 9.5011 11.1178 11.1272 11.2329 11.8420 13.0028 13.0062 13.9303 14.0222 15.8227 26.9775 26.9776 27.5850 27.5851 k = 0.5750 0.0000 0.0000 band energies (ev): 8.4009 9.2575 9.3037 11.0227 11.0267 11.3924 11.7575 12.8920 12.8962 13.6225 13.8312 15.5879 27.4867 27.4868 28.1036 28.1037 k = 0.5500 0.0000 0.0000 band energies (ev): 8.3050 9.0732 9.3955 10.9303 10.9333 11.5454 11.6870 12.7895 12.7956 13.2709 13.7305 15.3950 28.0092 28.0093 28.6328 28.6330 k = 0.5250 0.0000 0.0000 band energies (ev): 8.1716 8.8138 9.5356 10.8446 10.8472 11.5523 11.7654 12.6939 12.7041 12.9698 13.6290 15.2383 28.5438 28.5439 29.1709 29.1715 k = 0.5000 0.0000 0.0000 band energies (ev): 8.0015 8.5317 9.6767 10.7664 10.7688 11.4708 11.9343 12.5978 12.6221 12.7264 13.5273 15.1119 29.0891 29.0893 29.6870 29.7177 k = 0.4750 0.0000 0.0000 band energies (ev): 7.7979 8.2330 9.8181 10.6958 10.6981 11.3830 12.1107 12.4624 12.5496 12.5764 13.4260 15.0096 29.6437 29.6442 29.9315 30.2696 k = 0.4500 0.0000 0.0000 band energies (ev): 7.5664 7.9239 9.9587 10.6334 10.6357 11.2947 12.2873 12.3047 12.4880 12.4981 13.3259 14.9260 30.1838 30.2071 30.2119 30.6841 k = 0.4250 0.0000 0.0000 band energies (ev): 7.3134 7.6099 10.0975 10.5778 10.5805 11.2073 12.1693 12.4175 12.4389 12.4804 13.2274 14.8557 30.4655 30.7762 30.7772 30.9178 k = 0.4000 0.0000 0.0000 band energies (ev): 7.0464 7.2960 10.2331 10.5295 10.5332 11.1215 12.0585 12.3809 12.3905 12.6456 13.1310 14.7948 30.7637 31.1685 31.3517 31.3525 k = 0.3750 0.0000 0.0000 band energies (ev): 6.7721 6.9866 10.3625 10.4881 10.4957 11.0381 11.9685 12.3435 12.3510 12.8162 13.0375 14.7410 31.0830 31.4419 31.9293 31.9298 k = 0.3500 0.0000 0.0000 band energies (ev): 6.4967 6.6851 10.4395 10.4531 10.5127 10.9575 11.8934 12.3127 12.3191 12.9474 12.9827 14.6908 31.4241 31.7367 32.5074 32.5079 k = 0.3250 0.0000 0.0000 band energies (ev): 6.2253 6.3947 10.4212 10.4244 10.6264 10.8806 11.8291 12.2888 12.2944 12.8614 13.1434 14.6424 31.7874 32.0535 33.0829 33.0834 k = 0.3000 0.0000 0.0000 band energies (ev): 5.9624 6.1179 10.3995 10.4008 10.7425 10.8073 11.7748 12.2706 12.2756 12.7796 13.2969 14.5970 32.1731 32.3930 33.6517 33.6522 k = 0.2750 0.0000 0.0000 band energies (ev): 5.7113 5.8569 10.3817 10.3821 10.7384 10.8530 11.7272 12.2579 12.2623 12.7027 13.4422 14.5532 32.5811 32.7549 34.2081 34.2086 k = 0.2500 0.0000 0.0000 band energies (ev): 5.4750 5.6136 10.3677 10.3680 10.6741 10.9563 11.6851 12.2497 12.2536 12.6312 13.5783 14.5111 33.0109 33.1390 34.7446 34.7451 k = 0.2250 0.0000 0.0000 band energies (ev): 5.2557 5.3895 10.3568 10.3579 10.6151 11.0518 11.6474 12.2453 12.2487 12.5653 13.7042 14.4709 33.4616 33.5443 35.2513 35.2518 k = 0.2000 0.0000 0.0000 band energies (ev): 5.0554 5.1859 10.3489 10.3508 10.5616 11.1387 11.6139 12.2440 12.2468 12.5057 13.8191 14.4331 33.9316 33.9688 35.7155 35.7160 k = 0.1750 0.0000 0.0000 band energies (ev): 4.8757 5.0038 10.3429 10.3459 10.5140 11.2164 11.5839 12.2447 12.2467 12.4526 13.9220 14.3979 34.4096 34.4180 36.1220 36.1225 k = 0.1500 0.0000 0.0000 band energies (ev): 4.7176 4.8443 10.3386 10.3432 10.4730 11.2847 11.5576 12.2473 12.2481 12.4066 14.0127 14.3660 34.8616 34.9163 36.4279 36.4283 k = 0.1250 0.0000 0.0000 band energies (ev): 4.5824 4.7081 10.3350 10.3419 10.4388 11.3430 11.5350 12.2498 12.2508 12.3680 14.0903 14.3380 35.3168 35.4190 36.6033 36.6034 k = 0.1000 0.0000 0.0000 band energies (ev): 4.4707 4.5959 10.3311 10.3416 10.4122 11.3911 11.5163 12.2508 12.2545 12.3375 14.1544 14.3144 35.7621 35.9139 36.7189 36.7189 k = 0.0750 0.0000 0.0000 band energies (ev): 4.3832 4.5081 10.3272 10.3425 10.3941 11.4290 11.5016 12.2508 12.2587 12.3164 14.2051 14.2955 36.1767 36.3799 36.7910 36.7910 k = 0.0500 0.0000 0.0000 band energies (ev): 4.3204 4.4451 10.3224 10.3434 10.3830 11.4559 11.4914 12.2484 12.2620 12.3037 14.2413 14.2821 36.5282 36.7818 36.8325 36.8325 k = 0.0250 0.0000 0.0000 band energies (ev): 4.2826 4.4071 10.3183 10.3437 10.3773 11.4714 11.4857 12.2451 12.2638 12.2976 14.2630 14.2738 36.7714 36.8533 36.8534 37.0659 k = 0.0000 0.0000 0.0000 band energies (ev): 4.2700 4.3945 10.3167 10.3439 10.3756 11.4757 11.4846 12.2436 12.2645 12.2960 14.2700 14.2712 36.8596 36.8596 36.8596 37.1706 k = 0.0000 0.0000 0.0250 band energies (ev): 4.2826 4.4071 10.3166 10.3472 10.3755 11.4779 11.4792 12.2430 12.2682 12.2953 14.2640 14.2728 36.7714 36.8535 37.0661 37.1581 k = 0.0000 0.0000 0.0500 band energies (ev): 4.3204 4.4451 10.3162 10.3574 10.3751 11.4629 11.4843 12.2413 12.2795 12.2935 14.2422 14.2812 36.5282 36.7820 36.8318 36.8332 k = 0.0000 0.0000 0.0750 band energies (ev): 4.3832 4.5080 10.3153 10.3740 10.3742 11.4358 11.4946 12.2380 12.2901 12.2982 14.2061 14.2946 36.1767 36.3801 36.7928 37.0397 k = 0.0000 0.0000 0.1000 band energies (ev): 4.4707 4.5959 10.3144 10.3734 10.3968 11.3977 11.5093 12.2340 12.2859 12.3237 14.1554 14.3135 35.7621 35.9141 36.7153 36.7226 k = 0.0000 0.0000 0.1250 band energies (ev): 4.5824 4.7081 10.3147 10.3737 10.4266 11.3496 11.5280 12.2304 12.2820 12.3571 14.0914 14.3372 35.3168 35.4193 36.6105 36.7189 k = 0.0000 0.0000 0.1500 band energies (ev): 4.7177 4.8443 10.3159 10.3751 10.4626 11.2914 11.5505 12.2272 12.2785 12.3975 14.0138 14.3652 34.8617 34.9165 36.4213 36.4438 k = 0.0000 0.0000 0.1750 band energies (ev): 4.8757 5.0038 10.3185 10.3778 10.5046 11.2235 11.5767 12.2249 12.2759 12.4447 13.9233 14.3970 34.4097 34.4182 36.1046 36.1507 k = 0.0000 0.0000 0.2000 band energies (ev): 5.0554 5.1858 10.3235 10.3829 10.5521 11.1466 11.6065 12.2245 12.2752 12.4985 13.8206 14.4323 33.9318 33.9689 35.6892 35.7511 k = 0.0000 0.0000 0.2250 band energies (ev): 5.2557 5.3895 10.3305 10.3901 10.6043 11.0614 11.6398 12.2262 12.2765 12.5586 13.7060 14.4701 33.4619 33.5443 35.2178 35.2947 k = 0.0000 0.0000 0.2500 band energies (ev): 5.4750 5.6136 10.3408 10.4005 10.6597 10.9698 11.6772 12.2310 12.2809 12.6244 13.5805 14.5103 33.0112 33.1391 34.7049 34.7953 k = 0.0000 0.0000 0.2750 band energies (ev): 5.7113 5.8569 10.3547 10.4147 10.7104 10.8799 11.7191 12.2397 12.2891 12.6955 13.4452 14.5525 32.5814 32.7550 34.1631 34.2652 k = 0.0000 0.0000 0.3000 band energies (ev): 5.9624 6.1179 10.3729 10.4333 10.7044 10.8440 11.7663 12.2531 12.3021 12.7711 13.3015 14.5962 32.1734 32.3930 33.6022 33.7143 k = 0.0000 0.0000 0.3250 band energies (ev): 6.2253 6.3946 10.3961 10.4568 10.6097 10.8943 11.8202 12.2720 12.3204 12.8485 13.1524 14.6417 31.7877 32.0536 33.0298 33.1502 k = 0.0000 0.0000 0.3500 band energies (ev): 6.4967 6.6850 10.4245 10.4855 10.4916 10.9656 11.8839 12.2971 12.3447 12.9044 13.0216 14.6901 31.4244 31.7367 32.4511 32.5787 k = 0.0000 0.0000 0.3750 band energies (ev): 6.7721 6.9865 10.3650 10.4592 10.5205 11.0440 11.9582 12.3295 12.3760 12.8004 13.0489 14.7403 31.0833 31.4419 31.8703 32.0041 k = 0.0000 0.0000 0.4000 band energies (ev): 7.0463 7.2959 10.2330 10.5003 10.5621 11.1265 12.0470 12.3701 12.4148 12.6354 13.1356 14.7941 30.7641 31.1683 31.2904 31.4300 k = 0.0000 0.0000 0.4250 band energies (ev): 7.3134 7.6098 10.0971 10.5484 10.6106 11.2119 12.1555 12.4205 12.4616 12.4620 13.2299 14.8550 30.4661 30.7139 30.8515 30.9226 k = 0.0000 0.0000 0.4500 band energies (ev): 7.5663 7.9238 9.9584 10.6037 10.6663 11.2995 12.2849 12.2859 12.4844 12.5168 13.3275 14.9254 30.1426 30.1887 30.2882 30.6865 k = 0.0000 0.0000 0.4750 band energies (ev): 7.7979 8.2329 9.8179 10.6659 10.7289 11.3885 12.1061 12.4307 12.5754 12.5805 13.4270 15.0090 29.5783 29.7275 29.9311 30.1895 k = 0.0000 0.0000 0.5000 band energies (ev): 8.0015 8.5315 9.6766 10.7363 10.7997 11.4786 11.9271 12.5557 12.6537 12.7357 13.5280 15.1112 29.0223 29.1745 29.6350 29.6902 k = 0.0000 0.0000 0.5250 band energies (ev): 8.1715 8.8137 9.5355 10.8144 10.8780 11.5690 11.7492 12.6555 12.7363 12.9752 13.6295 15.2377 28.4759 28.6308 29.0870 29.2358 k = 0.0000 0.0000 0.5500 band energies (ev): 8.3049 9.0730 9.3955 10.9001 10.9636 11.5738 11.6593 12.7535 12.8283 13.2738 13.7308 15.3944 27.9406 28.0976 28.5469 28.6990 k = 0.0000 0.0000 0.5750 band energies (ev): 8.4008 9.2575 9.3035 10.9932 11.0553 11.4028 11.7487 12.8570 12.9294 13.6242 13.8313 15.5873 27.4174 27.5764 28.0163 28.1706 k = 0.0000 0.0000 0.6000 band energies (ev): 8.4617 9.1224 9.5008 11.0935 11.1435 11.2468 11.8368 12.9683 13.0397 13.9304 14.0232 15.8222 26.9077 27.0685 27.4964 27.6525 k = 0.0000 0.0000 0.6250 band energies (ev): 8.4911 8.9911 9.6618 11.0598 11.2003 11.2746 11.9229 13.0876 13.1586 14.0273 14.4664 16.1022 26.4128 26.5751 26.9886 27.1464 k = 0.0000 0.0000 0.6500 band energies (ev): 8.4936 8.8643 9.7859 10.9069 11.3131 11.3837 12.0066 13.2146 13.2855 14.1215 14.9493 16.4289 25.9342 26.0978 26.4945 26.6537 k = 0.0000 0.0000 0.6750 band energies (ev): 8.4743 8.7429 9.8745 10.7582 11.4308 11.5007 12.0871 13.3486 13.4197 14.2123 15.4670 16.8012 25.4733 25.6381 26.0156 26.1760 k = 0.0000 0.0000 0.7000 band energies (ev): 8.4386 8.6276 9.9313 10.6169 11.5524 11.6221 12.1641 13.4888 13.5602 14.2991 16.0150 17.2167 25.0318 25.1977 25.5537 25.7151 k = 0.0000 0.0000 0.7250 band energies (ev): 8.3900 8.5189 9.9604 10.4841 11.6766 11.7463 12.2370 13.6337 13.7054 14.3813 16.5883 17.6700 24.6116 24.7784 25.1106 25.2730 k = 0.0000 0.0000 0.7500 band energies (ev): 8.3333 8.4182 9.9671 10.3611 11.8022 11.8719 12.3054 13.7824 13.8543 14.4586 17.1824 18.1559 24.2148 24.3823 24.6886 24.8518 k = 0.0000 0.0000 0.7750 band energies (ev): 8.2719 8.3249 9.9568 10.2475 11.9265 11.9963 12.3687 13.9318 14.0040 14.5301 17.7925 18.6679 23.8435 24.0116 24.2901 24.4540 k = 0.0000 0.0000 0.8000 band energies (ev): 8.2090 8.2399 9.9344 10.1444 12.0480 12.1178 12.4259 14.0801 14.1523 14.5949 18.4132 19.1983 23.5004 23.6688 23.9180 24.0825 k = 0.0000 0.0000 0.8250 band energies (ev): 8.1474 8.1639 9.9046 10.0523 12.1643 12.2342 12.4779 14.2244 14.2967 14.6537 19.0382 19.7385 23.1880 23.3566 23.5757 23.7406 k = 0.0000 0.0000 0.8500 band energies (ev): 8.0900 8.0973 9.8715 9.9718 12.2734 12.3433 12.5237 14.3619 14.4341 14.7056 19.6589 20.2780 22.9096 23.0776 23.2668 23.4317 k = 0.0000 0.0000 0.8750 band energies (ev): 8.0377 8.0402 9.8378 9.9029 12.3716 12.4414 12.5630 14.4880 14.5600 14.7500 20.2636 20.8027 22.6683 22.8349 22.9954 23.1600 k = 0.0000 0.0000 0.9000 band energies (ev): 7.9927 7.9927 9.8065 9.8458 12.4565 12.5262 12.5950 14.5987 14.6705 14.7864 20.8352 21.2937 22.4685 22.6313 22.7664 22.9295 k = 0.0000 0.0000 0.9250 band energies (ev): 7.9559 7.9564 9.7801 9.8014 12.5260 12.5956 12.6205 14.6906 14.7622 14.8153 21.3480 21.7220 22.3184 22.4696 22.5851 22.7446 k = 0.0000 0.0000 0.9500 band energies (ev): 7.9292 7.9296 9.7600 9.7693 12.5768 12.6388 12.6464 14.7590 14.8303 14.8360 21.7629 22.0154 22.2618 22.3521 22.4591 22.6092 k = 0.0000 0.0000 0.9750 band energies (ev): 7.9130 7.9132 9.7472 9.7502 12.6083 12.6498 12.6778 14.8016 14.8485 14.8728 22.0256 22.0556 22.2808 22.3839 22.3995 22.5264 k = 0.0000 0.0000 1.0000 band energies (ev): 7.9076 7.9079 9.7430 9.7438 12.6190 12.6535 12.6884 14.8161 14.8527 14.8872 22.0440 22.1053 22.2569 22.3940 22.4537 22.4986 Writing output data file Fe.save init_run : 4.72s CPU 4.78s WALL ( 1 calls) electrons : 41.42s CPU 41.87s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 2.61s CPU 2.67s WALL ( 1 calls) Called by electrons: c_bands : 41.42s CPU 41.87s WALL ( 1 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 1 calls) newd : 0.25s CPU 0.25s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.04s WALL ( 81 calls) cegterg : 37.47s CPU 37.65s WALL ( 95 calls) Called by *egterg: h_psi : 28.01s CPU 28.17s WALL ( 1463 calls) s_psi : 1.61s CPU 1.64s WALL ( 1463 calls) g_psi : 0.56s CPU 0.56s WALL ( 1287 calls) cdiaghg : 3.03s CPU 3.03s WALL ( 1368 calls) Called by h_psi: add_vuspsi : 1.54s CPU 1.53s WALL ( 1463 calls) General routines calbec : 1.45s CPU 1.44s WALL ( 1463 calls) cft3s : 21.82s CPU 21.93s WALL ( 57383 calls) interpolate : 0.01s CPU 0.01s WALL ( 4 calls) davcio : 0.00s CPU 0.03s WALL ( 81 calls) Parallel routines PAW routines PAW_pot : 2.51s CPU 2.57s WALL ( 1 calls) PWSCF : 48.09s CPU time, 48.80s WALL time This run was terminated on: 11: 7:12 23May2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PP/examples/example06/reference/gnuplot.ps0000644000175000017500000006545412341372774021262 0ustar mbamba%!PS-Adobe-2.0 %%Title: gnuplot.ps %%Creator: gnuplot 4.2 patchlevel 0 %%CreationDate: Sun May 23 11:41:22 2010 %%DocumentFonts: (atend) %%BoundingBox: 50 50 554 662 %%Orientation: Landscape %%Pages: (atend) %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color true def /Blacktext false def /Solid false def /Dashlength 1 def /Landscape true def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -80 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (gnuplot.ps) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 0) /Author (Unknown,Trieste,040-3787428,040-2070056) % /Producer (gnuplot) % /Keywords () /CreationDate (Sun May 23 11:41:22 2010) /DOCINFO pdfmark end } ifelse /reencodeISO15 { dup dup findfont dup length dict begin { 1 index /FID ne { def }{ pop pop } ifelse } forall currentdict /CharStrings known { CharStrings /Idieresis known { /Encoding ISOLatin15Encoding def } if } if currentdict end definefont } def /ISOLatin15Encoding [ /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright /parenleft/parenright/asterisk/plus/comma/minus/period/slash /zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon /less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N /O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright /asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m /n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/dotlessi/grave/acute/circumflex/tilde/macron/breve /dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut /ogonek/caron/space/exclamdown/cent/sterling/Euro/yen/Scaron /section/scaron/copyright/ordfeminine/guillemotleft/logicalnot /hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior /Zcaron/mu/paragraph/periodcentered/zcaron/onesuperior/ordmasculine /guillemotright/OE/oe/Ydieresis/questiondown /Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla /Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex /Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis /multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute /Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis /aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave /iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex /otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis /yacute/thorn/ydieresis ] def % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop /MFshow { { dup 5 get 3 ge { 5 get 3 eq {gsave} {grestore} ifelse } {dup dup 0 get findfont exch 1 get scalefont setfont [ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6 get exch 4 get {show} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq {dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5 get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop pop aload pop M} ifelse }ifelse }ifelse } ifelse } forall} bind def /MFwidth {0 exch { dup 5 get 3 ge { 5 get 3 eq { 0 } { pop } ifelse } {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont 6 get stringwidth pop add} {pop} ifelse} ifelse} forall} bind def /MLshow { currentpoint stroke M 0 exch R Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def /MRshow { currentpoint stroke M exch dup MFwidth neg 3 -1 roll R Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def /MCshow { currentpoint stroke M exch dup MFwidth -2 div 3 -1 roll R Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def /XYsave { [( ) 1 2 true false 3 ()] } bind def /XYrestore { [( ) 1 2 true false 4 ()] } bind def /Helvetica reencodeISO15 def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 90 rotate 0 -5040 translate 0 setgray newpath (Helvetica) findfont 240 scalefont setfont gsave % colour palette begin /maxcolors 0 def /HSV2RGB { exch dup 0.0 eq {pop exch pop dup dup} % achromatic gray { /HSVs exch def /HSVv exch def 6.0 mul dup floor dup 3 1 roll sub /HSVf exch def /HSVi exch cvi def /HSVp HSVv 1.0 HSVs sub mul def /HSVq HSVv 1.0 HSVs HSVf mul sub mul def /HSVt HSVv 1.0 HSVs 1.0 HSVf sub mul sub mul def /HSVi HSVi 6 mod def 0 HSVi eq {HSVv HSVt HSVp} {1 HSVi eq {HSVq HSVv HSVp}{2 HSVi eq {HSVp HSVv HSVt} {3 HSVi eq {HSVp HSVq HSVv}{4 HSVi eq {HSVt HSVp HSVv} {HSVv HSVp HSVq} ifelse} ifelse} ifelse} ifelse} ifelse } ifelse} def /Constrain { dup 0 lt {0 exch pop}{dup 1 gt {1 exch pop} if} ifelse} def /YIQ2RGB { 3 copy -1.702 mul exch -1.105 mul add add Constrain 4 1 roll 3 copy -0.647 mul exch -0.272 mul add add Constrain 5 1 roll 0.621 mul exch -0.956 mul add add Constrain 3 1 roll } def /CMY2RGB { 1 exch sub exch 1 exch sub 3 2 roll 1 exch sub 3 1 roll exch } def /XYZ2RGB { 3 copy -0.9017 mul exch -0.1187 mul add exch 0.0585 mul exch add Constrain 4 1 roll 3 copy -0.0279 mul exch 1.999 mul add exch -0.9844 mul add Constrain 5 1 roll -0.2891 mul exch -0.5338 mul add exch 1.91 mul exch add Constrain 3 1 roll} def /SelectSpace {ColorSpace (HSV) eq {HSV2RGB}{ColorSpace (XYZ) eq { XYZ2RGB}{ColorSpace (CMY) eq {CMY2RGB}{ColorSpace (YIQ) eq {YIQ2RGB} if} ifelse} ifelse} ifelse} def /InterpolatedColor false def /cF7 {sqrt} bind def % sqrt(x) /cF5 {dup dup mul mul} bind def % x^3 /cF15 {360 mul sin} bind def % sin(360x) /pm3dround {maxcolors 0 gt {dup 1 ge {pop 1} {maxcolors mul floor maxcolors 1 sub div} ifelse} if} def /pm3dGamma 1.0 1.5 div def /ColorSpace (RGB) def Color true and { % COLOUR vs. GRAY map InterpolatedColor { %% Interpolation vs. RGB-Formula /g {stroke pm3dround /grayv exch def interpolate SelectSpace setrgbcolor} bind def }{ /g {stroke pm3dround dup cF7 Constrain exch dup cF5 Constrain exch cF15 Constrain SelectSpace setrgbcolor} bind def } ifelse }{ /g {stroke pm3dround pm3dGamma exp setgray} bind def } ifelse 2.000 UL LTb 1224 734 M 63 0 V 4425 0 R -63 0 V stroke 1080 734 M [ [(Helvetica) 240.0 0.0 true true 0 (-0.4)] ] -80.0 MRshow 2.000 UL LTb 1224 1627 M 63 0 V 4425 0 R -63 0 V stroke 1080 1627 M [ [(Helvetica) 240.0 0.0 true true 0 (-0.2)] ] -80.0 MRshow 2.000 UL LTb 1224 2520 M 63 0 V 4425 0 R -63 0 V stroke 1080 2520 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0)] ] -80.0 MRshow 2.000 UL LTb 1224 3413 M 63 0 V 4425 0 R -63 0 V stroke 1080 3413 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.2)] ] -80.0 MRshow 2.000 UL LTb 1224 4306 M 63 0 V 4425 0 R -63 0 V stroke 1080 4306 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.4)] ] -80.0 MRshow 2.000 UL LTb 2.000 UL LTb 1224 2520 M 4488 0 V stroke 1224 4752 N 0 -4464 V 4488 0 V 0 4464 V -4488 0 V Z stroke LCb setrgbcolor 240 2520 M currentpoint gsave translate 90 rotate 0 0 moveto [ [(Helvetica) 240.0 0.0 true true 0 (Energy \(eV\))] ] -80.0 MCshow grestore LTb 1.000 UP 1179 132 M [ /Symbol reencodeISO15 def [(Symbol) 240.0 0.0 true true 0 (G)] ] -80.0 MLshow 5645 132 M [ [(Symbol) 240.0 0.0 true true 0 (G)] ] -80.0 MLshow 3468 132 M [ [(Helvetica) 240.0 0.0 true true 0 (\(1,0,0\) H \(0,0,1\))] ] -80.0 MCshow 4523 4440 M [ [(Helvetica) 240.0 0.0 true true 0 ( M//\(0,0,1\) )] ] -80.0 MLshow 955 4908 M [ [(Helvetica) 160.0 0.0 true true 0 ( D)] [(Helvetica) 128.0 -48.0 true true 0 (4h)] [(Helvetica) 160.0 0.0 true true 0 ( [C)] [(Helvetica) 128.0 -48.0 true true 0 (4h)] [(Helvetica) 160.0 0.0 true true 0 (] )] ] -37.3 MLshow 3244 4908 M [ [(Helvetica) 160.0 0.0 true true 0 ( D)] [(Helvetica) 128.0 -48.0 true true 0 (4h)] [(Helvetica) 160.0 0.0 true true 0 ( [C)] [(Helvetica) 128.0 -48.0 true true 0 (4h)] [(Helvetica) 160.0 0.0 true true 0 (] )] ] -37.3 MLshow 5308 4908 M [ [(Helvetica) 160.0 0.0 true true 0 ( D)] [(Helvetica) 128.0 -48.0 true true 0 (4h)] [(Helvetica) 160.0 0.0 true true 0 ( [C)] [(Helvetica) 128.0 -48.0 true true 0 (4h)] [(Helvetica) 160.0 0.0 true true 0 (] )] ] -37.3 MLshow 2122 4908 M [ [(Helvetica) 160.0 0.0 true true 0 ( C)] [(Helvetica) 128.0 -48.0 true true 0 (2v)] [(Helvetica) 160.0 0.0 true true 0 ( [C)] [(Helvetica) 128.0 -48.0 true true 0 (s)] [(Helvetica) 160.0 0.0 true true 0 (] )] ] -37.3 MLshow 4366 4908 M [ [(Helvetica) 160.0 0.0 true true 0 ( D)] [(Helvetica) 128.0 -48.0 true true 0 (4)] [(Helvetica) 160.0 0.0 true true 0 ( [C)] [(Helvetica) 128.0 -48.0 true true 0 (4)] [(Helvetica) 160.0 0.0 true true 0 (] )] ] -37.3 MLshow 0.00 0.00 1.00 C 2458 511 M [ [(Helvetica) 160.0 0.0 true true 0 ( )] [(Symbol) 160.0 0.0 true true 0 (G)] [(Helvetica) 128.0 -48.0 true true 0 (4)] [(Helvetica) 160.0 0.0 true true 0 ( )] ] -37.3 MLshow 1.00 0.00 0.00 C 1763 511 M [ [(Helvetica) 160.0 0.0 true true 0 ( )] [(Symbol) 160.0 0.0 true true 0 (G)] [(Helvetica) 128.0 -48.0 true true 0 (3)] [(Helvetica) 160.0 0.0 true true 0 ( )] ] -37.3 MLshow 0.00 0.00 0.00 C 3648 511 M [ [(Helvetica) 160.0 0.0 true true 0 ( )] [(Symbol) 160.0 0.0 true true 0 (G)] [(Helvetica) 128.0 -48.0 true true 0 (6)] [(Helvetica) 160.0 0.0 true true 0 ( )] ] -37.3 MLshow 0.00 1.00 0.00 C 4186 511 M [ [(Helvetica) 160.0 0.0 true true 0 ( )] [(Symbol) 160.0 0.0 true true 0 (G)] [(Helvetica) 128.0 -48.0 true true 0 (7)] [(Helvetica) 160.0 0.0 true true 0 ( )] ] -37.3 MLshow 0.00 0.00 1.00 C 3917 511 M [ [(Helvetica) 160.0 0.0 true true 0 ( )] [(Symbol) 160.0 0.0 true true 0 (G)] [(Helvetica) 128.0 -48.0 true true 0 (8)] [(Helvetica) 160.0 0.0 true true 0 ( )] ] -37.3 MLshow 1.00 0.00 0.00 C 4859 511 M [ [(Helvetica) 160.0 0.0 true true 0 ( )] [(Symbol) 160.0 0.0 true true 0 (G)] [(Helvetica) 128.0 -48.0 true true 0 (5)] [(Helvetica) 160.0 0.0 true true 0 ( )] ] -37.3 MLshow 2.000 UL LTb 3.000 UL LT0 1.00 0.00 0.00 C /Helvetica findfont 240 scalefont setfont 3468 288 M 0 2639 V -56 -49 V -56 -143 V -56 -223 V -56 -313 V -56 -379 V -57 -437 V 3075 896 L 3019 378 L -9 -90 V -886 0 R 54 474 V 56 607 V 56 701 V 56 607 V 56 429 V 56 428 V 56 456 V 56 495 V 29 267 V -180 0 R -17 -414 V 2346 3249 L -56 -670 V -56 -348 V -56 -264 V -56 -214 V -56 -178 V -57 -143 V -56 -112 V -56 -80 V -56 -63 V -56 -35 V -56 -23 V -56 -9 V -56 0 V -56 5 V -56 9 V -57 4 V -56 0 V -56 -13 V -56 -14 V -56 -4 V 0 232 V 56 9 V 56 27 V 56 53 V 56 98 V 57 134 V 56 175 V 56 205 V 56 236 V 56 264 V 56 294 V 56 322 V 56 344 V 56 361 V 56 384 V 57 406 V 14 111 V stroke LT4 0.00 0.00 1.00 C /Helvetica findfont 240 scalefont setfont 3468 288 M 0 2483 V -56 -31 V -56 -108 V -56 -191 V -56 -286 V -56 -366 V -57 -429 V 3075 878 L 3019 365 L -8 -77 V -1787 0 R 0 898 V 56 0 V 56 -9 V 56 -13 V 56 -18 V 57 -18 V 56 -18 V 56 -9 V 56 -4 V 56 4 V 56 23 V 56 35 V 56 58 V 56 81 V 56 107 V 57 134 V 56 169 V 56 161 V 56 -580 V 56 -786 V 15 -215 V 415 0 R 19 121 V 56 344 V 56 326 V 56 304 V 56 285 V 56 255 V 56 236 V 56 210 V 57 183 V 56 156 V 56 139 V 56 116 V 56 85 V 56 31 V 0 1673 V -871 0 R -27 -254 V -56 -491 V -56 -446 V -56 -411 V -56 -366 V -56 -321 V -56 -277 V -56 -36 V -56 741 V -56 759 V -57 746 V -28 356 V stroke LT0 1.00 0.00 0.00 C /Helvetica findfont 240 scalefont setfont 4321 4752 M 45 -423 V 56 -496 V 56 -464 V 56 -433 V 56 -446 V 56 -558 V 56 -648 V 56 -580 V 48 -416 V 906 0 R 0 809 V -56 -5 V -56 -9 V -56 -13 V -56 -18 V -56 -18 V -57 -13 V -56 -9 V -56 0 V -56 5 V -56 22 V -56 40 V -56 58 V -56 85 V -56 111 V -56 143 V -57 183 V -56 224 V -56 285 V -56 406 V -56 719 V -56 1067 V -17 392 V stroke LT3 0.00 0.00 0.00 C /Helvetica findfont 240 scalefont setfont 3468 288 M 0 2483 V 56 -49 V 56 -139 V 56 -227 V 56 -313 V 57 -375 V 56 -442 V 56 -486 V 49 -452 V stroke LT0 0.00 1.00 0.00 C /Helvetica findfont 240 scalefont setfont 3468 288 M 0 2639 V 56 -18 V 56 -49 V 56 -80 V 56 -116 V 57 -143 V 56 -174 V 56 -206 V 56 -232 V 56 -254 V 56 -286 V 56 -303 V 56 -326 V 56 -344 V 17 -108 V 1498 0 R 0 1041 V -56 -4 V -56 -9 V -56 -14 V -56 -18 V -56 -17 V -57 -14 V -56 -13 V -56 -5 V -56 5 V -56 22 V -56 36 V -56 58 V -56 80 V -56 112 V -56 138 V -57 174 V -56 210 V -56 246 V -56 281 V -56 330 V -56 366 V -56 411 V -56 451 V -56 495 V -11 102 V stroke LT4 0.00 0.00 1.00 C /Helvetica findfont 240 scalefont setfont 3468 288 M 0 2791 V 56 -45 V 56 -143 V 56 -223 V 56 -312 V 57 -380 V 56 -437 V 56 -487 V 56 -518 V 25 -246 V 691 0 R 13 193 V 56 799 V 56 790 V 56 772 V 57 737 V 56 464 V 56 -250 V 56 -344 V 56 -334 V 56 -322 V 56 -290 V 56 -268 V 56 -241 V 56 -214 V 57 -179 V 56 -147 V 56 -116 V 56 -80 V 56 -54 V 56 -18 V 0 3566 V -768 0 R -17 -182 V -56 120 V -9 62 V stroke 2.000 UL LTb 1224 4752 N 0 -4464 V 4488 0 V 0 4464 V -4488 0 V Z stroke 1.000 UP 2.000 UL LTb 3468 288 M 0 4464 V stroke grestore end showpage %%Trailer %%DocumentFonts: Symbol Helvetica %%Pages: 1 espresso-5.1/PP/examples/example06/reference/Fe.scf_pbe.out0000644000175000017500000010735212341372774021703 0ustar mbamba Program PWSCF v.4.2 starts on 23May2010 at 11: 4:11 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 1 processors Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.rel-pbe-paw_kj.UPF: wavefunction(s) 3D renormalized Fixed quantization axis for GGA: 0.000000 0.000000 1.000000 Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm: we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 24 npps= 24 ncplanes= 576 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 487 6963 24 291 3151 99 627 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.4200 a.u. unit-cell volume = 79.6100 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 45.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-10 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) EXX-fraction = 0.00 Noncollinear calculation with spin-orbit celldm(1)= 5.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.rel-pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 8.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: PSQ Using radial grid of 1191 points, 10 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 1 l(6) = 1 l(7) = 2 l(8) = 2 l(9) = 2 l(10) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84500 Fe( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 56 gaussian broad. (Ry)= 0.0400 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.1250000), wk = 0.0039062 k( 2) = ( 0.0000000 -0.1250000 0.2500000), wk = 0.0156250 k( 3) = ( 0.0000000 -0.2500000 0.3750000), wk = 0.0156250 k( 4) = ( 0.0000000 -0.3750000 0.5000000), wk = 0.0156250 k( 5) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0156250 k( 6) = ( -0.1250000 -0.1250000 0.3750000), wk = 0.0156250 k( 7) = ( -0.1250000 -0.2500000 0.5000000), wk = 0.0312500 k( 8) = ( -0.1250000 0.6250000 -0.3750000), wk = 0.0312500 k( 9) = ( -0.2500000 0.2500000 0.1250000), wk = 0.0156250 k( 10) = ( -0.2500000 0.7500000 -0.3750000), wk = 0.0156250 k( 11) = ( -0.3750000 0.3750000 0.1250000), wk = 0.0156250 k( 12) = ( -0.3750000 0.2500000 0.2500000), wk = 0.0312500 k( 13) = ( 0.5000000 -0.5000000 0.1250000), wk = 0.0078125 k( 14) = ( 0.5000000 -0.6250000 0.2500000), wk = 0.0312500 k( 15) = ( 0.3750000 -0.6250000 0.3750000), wk = 0.0156250 k( 16) = ( 0.0000000 0.0000000 0.3750000), wk = 0.0039062 k( 17) = ( 0.0000000 -0.1250000 0.5000000), wk = 0.0156250 k( 18) = ( 0.0000000 -0.2500000 0.6250000), wk = 0.0156250 k( 19) = ( -0.1250000 -0.1250000 0.6250000), wk = 0.0156250 k( 20) = ( -0.1250000 0.7500000 -0.2500000), wk = 0.0312500 k( 21) = ( 0.6250000 -0.6250000 0.3750000), wk = 0.0156250 k( 22) = ( 0.5000000 -0.5000000 0.3750000), wk = 0.0078125 k( 23) = ( 0.0000000 0.0000000 0.6250000), wk = 0.0039062 k( 24) = ( 0.0000000 -0.1250000 0.7500000), wk = 0.0156250 k( 25) = ( -0.1250000 0.8750000 -0.1250000), wk = 0.0156250 k( 26) = ( 0.0000000 0.0000000 0.8750000), wk = 0.0039062 k( 27) = ( 0.0000000 0.1250000 0.0000000), wk = 0.0078125 k( 28) = ( -0.1250000 0.2500000 0.0000000), wk = 0.0156250 k( 29) = ( 0.2500000 0.0000000 -0.1250000), wk = 0.0156250 k( 30) = ( -0.2500000 0.3750000 0.0000000), wk = 0.0156250 k( 31) = ( 0.3750000 0.0000000 -0.2500000), wk = 0.0156250 k( 32) = ( -0.3750000 0.5000000 0.0000000), wk = 0.0156250 k( 33) = ( 0.5000000 0.0000000 -0.3750000), wk = 0.0156250 k( 34) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0312500 k( 35) = ( -0.2500000 0.5000000 -0.1250000), wk = 0.0312500 k( 36) = ( 0.5000000 -0.1250000 -0.2500000), wk = 0.0312500 k( 37) = ( 0.6250000 -0.3750000 -0.1250000), wk = 0.0156250 k( 38) = ( 0.2500000 0.1250000 -0.2500000), wk = 0.0312500 k( 39) = ( 0.7500000 -0.3750000 -0.2500000), wk = 0.0312500 k( 40) = ( 0.3750000 0.1250000 -0.3750000), wk = 0.0312500 k( 41) = ( 0.2500000 0.2500000 -0.3750000), wk = 0.0156250 k( 42) = ( -0.5000000 0.1250000 0.5000000), wk = 0.0156250 k( 43) = ( -0.6250000 0.2500000 0.5000000), wk = 0.0312500 k( 44) = ( 0.2500000 0.5000000 -0.6250000), wk = 0.0312500 k( 45) = ( 0.0000000 0.3750000 0.0000000), wk = 0.0078125 k( 46) = ( -0.1250000 0.5000000 0.0000000), wk = 0.0156250 k( 47) = ( 0.5000000 0.0000000 -0.1250000), wk = 0.0156250 k( 48) = ( -0.2500000 0.6250000 0.0000000), wk = 0.0156250 k( 49) = ( 0.6250000 0.0000000 -0.2500000), wk = 0.0156250 k( 50) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0312500 k( 51) = ( 0.7500000 -0.2500000 -0.1250000), wk = 0.0156250 k( 52) = ( -0.5000000 0.3750000 0.5000000), wk = 0.0156250 k( 53) = ( 0.0000000 0.6250000 0.0000000), wk = 0.0078125 k( 54) = ( -0.1250000 0.7500000 0.0000000), wk = 0.0156250 k( 55) = ( 0.7500000 0.0000000 -0.1250000), wk = 0.0156250 k( 56) = ( 0.0000000 0.8750000 0.0000000), wk = 0.0078125 G cutoff = 223.2339 ( 6963 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 133.9403 ( 3151 G-vectors) smooth grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 832, 16) NL pseudopotentials 0.22 Mb ( 416, 34) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6963) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.81 Mb ( 832, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.02 Mb ( 34, 2, 16) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 7.99946, renormalised to 8.00000 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.589433 magnetization : 0.000000 0.000000 3.294716 magnetization/charge: 0.000000 0.000000 0.500000 polar coord.: r, theta, phi [deg] : 3.294716 0.000000 360.000000 ============================================================================== Starting wfc are 18 atomic wfcs Checking if some PAW data can be deallocated... total cpu time spent up to now is 8.56 secs per-process dynamical memory: 29.0 Mb Self-consistent Calculation iteration # 1 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.3 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.395219 magnetization : 0.000000 0.000000 2.740181 magnetization/charge: 0.000000 0.000000 0.428473 polar coord.: r, theta, phi [deg] : 2.740181 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 19.14 secs total energy = -141.77799319 Ry Harris-Foulkes estimate = -141.80275211 Ry estimated scf accuracy < 0.09508976 Ry total magnetization = 0.00 0.00 2.64 Bohr mag/cell absolute magnetization = 2.64 Bohr mag/cell iteration # 2 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 2.2 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.485986 magnetization : 0.000000 0.000000 2.669744 magnetization/charge: 0.000000 0.000000 0.411617 polar coord.: r, theta, phi [deg] : 2.669744 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 29.63 secs total energy = -141.79047858 Ry Harris-Foulkes estimate = -141.86766618 Ry estimated scf accuracy < 0.18744050 Ry total magnetization = 0.00 0.00 2.52 Bohr mag/cell absolute magnetization = 2.54 Bohr mag/cell iteration # 3 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 2.0 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.453062 magnetization : 0.000000 0.000000 2.314585 magnetization/charge: 0.000000 0.000000 0.358680 polar coord.: r, theta, phi [deg] : 2.314585 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 39.63 secs total energy = -141.83249796 Ry Harris-Foulkes estimate = -141.82866620 Ry estimated scf accuracy < 0.00413691 Ry total magnetization = 0.00 0.00 2.38 Bohr mag/cell absolute magnetization = 2.43 Bohr mag/cell iteration # 4 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.17E-05, avg # of iterations = 2.5 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.461072 magnetization : 0.000000 0.000000 2.274492 magnetization/charge: 0.000000 0.000000 0.352030 polar coord.: r, theta, phi [deg] : 2.274492 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 49.84 secs total energy = -141.83538308 Ry Harris-Foulkes estimate = -141.83540842 Ry estimated scf accuracy < 0.00019826 Ry total magnetization = 0.00 0.00 2.23 Bohr mag/cell absolute magnetization = 2.36 Bohr mag/cell iteration # 5 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-06, avg # of iterations = 3.5 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.457677 magnetization : 0.000000 0.000000 2.253943 magnetization/charge: 0.000000 0.000000 0.349033 polar coord.: r, theta, phi [deg] : 2.253943 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 61.04 secs total energy = -141.83546572 Ry Harris-Foulkes estimate = -141.83552566 Ry estimated scf accuracy < 0.00014478 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.34 Bohr mag/cell iteration # 6 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-06, avg # of iterations = 1.4 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458279 magnetization : 0.000000 0.000000 2.260820 magnetization/charge: 0.000000 0.000000 0.350065 polar coord.: r, theta, phi [deg] : 2.260820 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 70.49 secs total energy = -141.83550085 Ry Harris-Foulkes estimate = -141.83549948 Ry estimated scf accuracy < 0.00000367 Ry total magnetization = 0.00 0.00 2.19 Bohr mag/cell absolute magnetization = 2.34 Bohr mag/cell iteration # 7 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.59E-08, avg # of iterations = 2.1 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458319 magnetization : 0.000000 0.000000 2.259362 magnetization/charge: 0.000000 0.000000 0.349838 polar coord.: r, theta, phi [deg] : 2.259362 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 81.15 secs total energy = -141.83550424 Ry Harris-Foulkes estimate = -141.83550412 Ry estimated scf accuracy < 0.00000029 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.34 Bohr mag/cell iteration # 8 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.61E-09, avg # of iterations = 1.3 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458316 magnetization : 0.000000 0.000000 2.257372 magnetization/charge: 0.000000 0.000000 0.349529 polar coord.: r, theta, phi [deg] : 2.257372 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 90.70 secs total energy = -141.83550435 Ry Harris-Foulkes estimate = -141.83550427 Ry estimated scf accuracy < 0.00000016 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell iteration # 9 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-09, avg # of iterations = 1.2 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458323 magnetization : 0.000000 0.000000 2.256428 magnetization/charge: 0.000000 0.000000 0.349383 polar coord.: r, theta, phi [deg] : 2.256428 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 100.27 secs total energy = -141.83550442 Ry Harris-Foulkes estimate = -141.83550439 Ry estimated scf accuracy < 0.00000002 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell iteration # 10 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.09E-10, avg # of iterations = 2.0 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458327 magnetization : 0.000000 0.000000 2.256301 magnetization/charge: 0.000000 0.000000 0.349363 polar coord.: r, theta, phi [deg] : 2.256301 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 110.67 secs total energy = -141.83550444 Ry Harris-Foulkes estimate = -141.83550443 Ry estimated scf accuracy < 7.9E-10 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell iteration # 11 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.91E-12, avg # of iterations = 2.0 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458329 magnetization : 0.000000 0.000000 2.256189 magnetization/charge: 0.000000 0.000000 0.349346 polar coord.: r, theta, phi [deg] : 2.256189 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 121.28 secs total energy = -141.83550444 Ry Harris-Foulkes estimate = -141.83550444 Ry estimated scf accuracy < 1.5E-10 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell iteration # 12 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.84E-12, avg # of iterations = 2.0 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458327 magnetization : 0.000000 0.000000 2.256194 magnetization/charge: 0.000000 0.000000 0.349347 polar coord.: r, theta, phi [deg] : 2.256194 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 131.63 secs End of self-consistent calculation k = 0.0000 0.0000 0.1250 ( 401 PWs) bands (ev): 4.5824 4.7081 10.3147 10.3737 10.4266 11.3496 11.5280 12.2304 12.2820 12.3571 14.0914 14.3372 35.3168 35.4193 36.5971 36.7189 k = 0.0000-0.1250 0.2500 ( 402 PWs) bands (ev): 5.7473 5.8967 10.0863 10.2612 11.0110 11.1409 11.6188 11.9454 12.1380 13.0079 13.7399 14.4404 30.9076 31.3262 34.2785 34.3988 k = 0.0000-0.2500 0.3750 ( 407 PWs) bands (ev): 7.3885 7.8279 9.7049 10.2704 11.3361 11.4862 11.7808 11.8795 12.0072 13.7821 14.0993 14.5540 25.1877 25.9717 31.9154 32.0402 k = 0.0000-0.3750 0.5000 ( 406 PWs) bands (ev): 7.8946 9.0784 9.4460 11.0051 11.1687 11.5010 12.3986 12.7835 13.1148 13.9887 14.8960 14.9950 20.5053 21.7052 30.5721 30.6619 k =-0.1250 0.1250 0.1250 ( 393 PWs) bands (ev): 5.1839 5.3159 10.1382 10.1542 10.9188 11.4065 11.4298 12.0161 12.0338 12.8867 14.1654 14.1801 33.4373 33.4643 33.6280 33.6528 k =-0.1250-0.1250 0.3750 ( 399 PWs) bands (ev): 7.1811 7.4598 9.8535 10.0706 11.0255 11.6886 11.7282 11.8456 12.0255 13.4522 13.8435 14.6605 28.1461 28.7476 29.0670 29.6199 k =-0.1250-0.2500 0.5000 ( 405 PWs) bands (ev): 8.2740 9.1905 9.5617 10.0973 11.2752 11.3415 11.6712 12.0714 13.6780 13.7092 14.5232 15.5765 23.0407 23.9391 26.8861 27.4829 k =-0.1250 0.6250-0.3750 ( 404 PWs) bands (ev): 8.3330 9.5713 9.7117 10.2416 11.2750 11.4245 11.7522 12.4290 13.8446 14.7350 15.6502 16.9212 19.7153 20.9799 26.2036 26.7888 k =-0.2500 0.2500 0.1250 ( 400 PWs) bands (ev): 6.7530 6.9673 9.7528 9.9384 11.3501 11.5275 11.5706 11.6981 11.9109 13.9069 14.0156 14.3277 28.0579 28.6448 31.1322 31.4304 k =-0.2500 0.7500-0.3750 ( 406 PWs) bands (ev): 9.0118 9.2466 9.7776 10.3936 10.9130 11.3847 11.6216 12.0554 13.9679 14.4376 16.8509 18.1580 21.1692 22.1470 22.4289 23.2331 k =-0.3750 0.3750 0.1250 ( 406 PWs) bands (ev): 7.9398 8.7852 9.4162 10.6450 11.1210 11.5150 11.6379 11.7897 13.2589 14.1000 14.4641 15.1550 22.6685 23.6053 29.4655 29.7443 k =-0.3750 0.2500 0.2500 ( 402 PWs) bands (ev): 8.2376 8.7421 9.4649 9.6599 11.1528 11.2422 11.4627 11.6684 13.4551 14.0922 14.4513 15.3430 25.6062 26.2781 26.3670 26.9804 k = 0.5000-0.5000 0.1250 ( 406 PWs) bands (ev): 8.0202 9.2862 9.3000 10.9660 11.5680 11.6342 11.6774 12.5121 14.1670 14.5140 14.5993 15.9882 19.6132 20.9413 28.8569 29.1110 k = 0.5000-0.6250 0.2500 ( 410 PWs) bands (ev): 8.6315 9.3121 9.8904 10.2493 10.9175 11.4586 11.5933 11.7668 14.2239 14.5187 15.8285 17.2208 21.0236 22.0339 24.8215 25.4615 k = 0.3750-0.6250 0.3750 ( 408 PWs) bands (ev): 8.9667 9.6171 9.6507 10.4558 11.0247 11.0389 11.7027 11.7415 14.3832 14.4182 19.2580 19.2806 20.2818 20.2862 21.6219 22.5080 k = 0.0000 0.0000 0.3750 ( 398 PWs) bands (ev): 6.7721 6.9865 10.3650 10.4592 10.5206 11.0440 11.9582 12.3295 12.3760 12.8004 13.0489 14.7403 31.0833 31.4419 31.8703 32.0041 k = 0.0000-0.1250 0.5000 ( 408 PWs) bands (ev): 8.0858 8.6891 9.6377 10.3552 10.9797 11.6700 11.8876 12.1811 12.7877 13.0429 13.9712 15.1307 26.0250 26.7657 29.3692 29.9732 k = 0.0000-0.2500 0.6250 ( 416 PWs) bands (ev): 8.4181 9.5570 9.8125 10.1653 11.1660 11.2611 11.9565 12.7061 13.3765 14.9007 15.2180 16.6198 21.0164 22.0718 27.7847 28.3432 k =-0.1250-0.1250 0.6250 ( 414 PWs) bands (ev): 8.7063 9.0369 9.9259 10.4255 10.9694 11.3706 12.2339 12.3061 13.4143 14.4722 15.0973 16.6364 23.9255 24.5052 24.7640 25.1787 k =-0.1250 0.7500-0.2500 ( 410 PWs) bands (ev): 8.6824 9.0359 10.2380 10.3982 10.7474 11.6637 11.9931 12.5152 13.7703 14.7017 18.0470 19.0913 20.1823 21.2279 23.5428 24.2443 k = 0.6250-0.6250 0.3750 ( 408 PWs) bands (ev): 9.2928 9.2950 9.4112 10.2522 10.8421 10.8440 11.6354 11.6651 14.4349 14.4614 15.8141 17.2973 23.9717 24.0199 24.6779 24.7243 k = 0.5000-0.5000 0.3750 ( 408 PWs) bands (ev): 9.1693 9.2600 9.8796 10.5314 10.7535 11.1300 11.6677 11.7073 14.4759 14.5558 18.5827 19.5897 20.3388 21.3443 23.4460 24.1432 k = 0.0000 0.0000 0.6250 ( 414 PWs) bands (ev): 8.4911 8.9911 9.6618 11.0598 11.2004 11.2746 11.9230 13.0876 13.1586 14.0273 14.4664 16.1022 26.4128 26.5751 26.9886 27.1464 k = 0.0000-0.1250 0.7500 ( 410 PWs) bands (ev): 8.4211 8.5479 10.1096 10.4143 11.3663 11.6403 12.5961 13.2979 13.6010 14.7811 17.5242 18.5233 22.1884 22.9276 24.7204 25.2043 k =-0.1250 0.8750-0.1250 ( 415 PWs) bands (ev): 8.2874 8.2904 10.1110 10.1127 11.4702 12.4322 12.4557 13.3800 14.5697 14.5909 20.8303 20.8978 21.5326 21.5993 21.9599 22.5348 k = 0.0000 0.0000 0.8750 ( 398 PWs) bands (ev): 8.0377 8.0402 9.8378 9.9029 12.3716 12.4414 12.5630 14.4880 14.5600 14.7500 20.2636 20.8027 22.6683 22.8349 22.9954 23.1600 k = 0.0000 0.1250 0.0000 ( 401 PWs) bands (ev): 4.5824 4.7081 10.3350 10.3419 10.4388 11.3430 11.5350 12.2498 12.2508 12.3680 14.0903 14.3380 35.3168 35.4190 36.7273 36.7273 k =-0.1250 0.2500 0.0000 ( 402 PWs) bands (ev): 5.7473 5.8967 10.0871 10.2606 11.0224 11.1231 11.6281 11.9466 12.1326 13.0106 13.7373 14.4415 30.9075 31.3262 34.2786 34.3989 k = 0.2500 0.0000-0.1250 ( 402 PWs) bands (ev): 5.7473 5.8967 10.0866 10.2612 11.0206 11.1255 11.6280 11.9416 12.1377 13.0094 13.7381 14.4412 30.9076 31.3261 34.2780 34.3994 k =-0.2500 0.3750 0.0000 ( 407 PWs) bands (ev): 7.3885 7.8280 9.7054 10.2700 11.3228 11.4990 11.8078 11.8464 12.0140 13.7824 14.0971 14.5554 25.1877 25.9718 31.9158 32.0399 k = 0.3750 0.0000-0.2500 ( 407 PWs) bands (ev): 7.3885 7.8280 9.7051 10.2702 11.3338 11.4910 11.7709 11.8807 12.0137 13.7842 14.0946 14.5561 25.1877 25.9717 31.9150 32.0406 k =-0.3750 0.5000 0.0000 ( 406 PWs) bands (ev): 7.8945 9.0785 9.4462 10.9989 11.1715 11.5052 12.3968 12.7838 13.1157 13.9873 14.8992 14.9926 20.5052 21.7053 30.5731 30.6610 k = 0.5000 0.0000-0.3750 ( 406 PWs) bands (ev): 7.8946 9.0784 9.4461 11.0010 11.1747 11.4991 12.3968 12.7836 13.1170 13.9888 14.8884 15.0017 20.5053 21.7051 30.5719 30.6621 k =-0.1250 0.3750-0.1250 ( 399 PWs) bands (ev): 7.1811 7.4599 9.8539 10.0709 11.0224 11.6763 11.7482 11.8408 12.0254 13.4537 13.8405 14.6617 28.1460 28.7471 29.0674 29.6200 k =-0.2500 0.5000-0.1250 ( 405 PWs) bands (ev): 8.2740 9.1908 9.5623 10.0966 11.2708 11.3424 11.6750 12.0713 13.6822 13.7050 14.5226 15.5769 23.0406 23.9392 26.8862 27.4828 k = 0.5000-0.1250-0.2500 ( 405 PWs) bands (ev): 8.2741 9.1907 9.5621 10.0966 11.2844 11.3295 11.6736 12.0717 13.6755 13.7134 14.5211 15.5772 23.0407 23.9390 26.8861 27.4829 k = 0.6250-0.3750-0.1250 ( 404 PWs) bands (ev): 8.3329 9.5715 9.7125 10.2404 11.2678 11.4344 11.7504 12.4285 13.8444 14.7350 15.6504 16.9212 19.7152 20.9801 26.2037 26.7887 k = 0.2500 0.1250-0.2500 ( 400 PWs) bands (ev): 6.7530 6.9673 9.7526 9.9386 11.3627 11.5140 11.5573 11.7145 11.9088 13.9018 14.0227 14.3257 28.0580 28.6447 31.1320 31.4305 k = 0.7500-0.3750-0.2500 ( 406 PWs) bands (ev): 9.0113 9.2475 9.7773 10.3936 10.9130 11.3827 11.6237 12.0553 13.9677 14.4377 16.8509 18.1582 21.1692 22.1462 22.4298 23.2330 k = 0.3750 0.1250-0.3750 ( 406 PWs) bands (ev): 7.9398 8.7851 9.4160 10.6449 11.1252 11.5208 11.6225 11.7949 13.2593 14.1027 14.4611 15.1556 22.6685 23.6052 29.4651 29.7447 k = 0.2500 0.2500-0.3750 ( 402 PWs) bands (ev): 8.2376 8.7421 9.4646 9.6600 11.1509 11.2494 11.4581 11.6676 13.4552 14.0926 14.4512 15.3429 25.6067 26.2729 26.3723 26.9799 k =-0.5000 0.1250 0.5000 ( 406 PWs) bands (ev): 8.0202 9.2867 9.2991 10.9682 11.5733 11.6302 11.6739 12.5117 14.1711 14.5156 14.5941 15.9886 19.6133 20.9411 28.8562 29.1117 k =-0.6250 0.2500 0.5000 ( 410 PWs) bands (ev): 8.6315 9.3120 9.8900 10.2492 10.9190 11.4625 11.5925 11.7625 14.2267 14.5163 15.8285 17.2208 21.0237 22.0338 24.8215 25.4616 k = 0.2500 0.5000-0.6250 ( 410 PWs) bands (ev): 8.6315 9.3121 9.8900 10.2492 10.9196 11.4568 11.5959 11.7640 14.2258 14.5172 15.8284 17.2209 21.0236 22.0338 24.8215 25.4616 k = 0.0000 0.3750 0.0000 ( 398 PWs) bands (ev): 6.7721 6.9866 10.3625 10.4881 10.4957 11.0381 11.9685 12.3435 12.3510 12.8162 13.0375 14.7410 31.0830 31.4419 31.9293 31.9298 k =-0.1250 0.5000 0.0000 ( 408 PWs) bands (ev): 8.0858 8.6893 9.6381 10.3555 10.9778 11.6597 11.8999 12.1806 12.7937 13.0362 13.9706 15.1314 26.0251 26.7656 29.3694 29.9729 k = 0.5000 0.0000-0.1250 ( 408 PWs) bands (ev): 8.0859 8.6892 9.6380 10.3548 10.9795 11.6615 11.8944 12.1837 12.7879 13.0431 13.9690 15.1316 26.0251 26.7654 29.3694 29.9733 k =-0.2500 0.6250 0.0000 ( 416 PWs) bands (ev): 8.4179 9.5583 9.8117 10.1649 11.1732 11.2519 11.9597 12.7052 13.3764 14.9005 15.2180 16.6201 21.0164 22.0719 27.7846 28.3430 k = 0.6250 0.0000-0.2500 ( 416 PWs) bands (ev): 8.4182 9.5573 9.8129 10.1641 11.1673 11.2603 11.9561 12.7064 13.3766 14.9025 15.2159 16.6202 21.0164 22.0717 27.7847 28.3432 k =-0.1250 0.6250-0.1250 ( 414 PWs) bands (ev): 8.7062 9.0372 9.9263 10.4249 10.9697 11.3688 12.2426 12.2992 13.4141 14.4725 15.0966 16.6368 23.9272 24.4952 24.7751 25.1758 k = 0.7500-0.2500-0.1250 ( 410 PWs) bands (ev): 8.6821 9.0363 10.2373 10.3987 10.7483 11.6591 11.9986 12.5138 13.7701 14.7017 18.0471 19.0916 20.1822 21.2278 23.5428 24.2442 k =-0.5000 0.3750 0.5000 ( 408 PWs) bands (ev): 9.1693 9.2600 9.8794 10.5299 10.7549 11.1310 11.6835 11.6903 14.4802 14.5516 18.5826 19.5898 20.3390 21.3441 23.4455 24.1462 k = 0.0000 0.6250 0.0000 ( 414 PWs) bands (ev): 8.4912 8.9910 9.6622 11.0590 11.2343 11.2370 11.9268 13.1219 13.1247 14.0273 14.4658 16.1027 26.4829 26.4830 27.0785 27.0785 k =-0.1250 0.7500 0.0000 ( 410 PWs) bands (ev): 8.4209 8.5481 10.1100 10.4137 11.3693 11.6359 12.5981 13.3001 13.5982 14.7812 17.5241 18.5236 22.1886 22.9271 24.7209 25.2038 k = 0.7500 0.0000-0.1250 ( 410 PWs) bands (ev): 8.4213 8.5477 10.1104 10.4132 11.3673 11.6392 12.5965 13.2989 13.6001 14.7811 17.5241 18.5236 22.1886 22.9270 24.7210 25.2039 k = 0.0000 0.8750 0.0000 ( 398 PWs) bands (ev): 8.0380 8.0400 9.8384 9.9023 12.3995 12.4063 12.5703 14.5188 14.5250 14.7542 20.2632 20.8034 22.7310 22.7319 23.0977 23.0977 the Fermi energy is 12.5628 ev ! total energy = -141.83550444 Ry Harris-Foulkes estimate = -141.83550444 Ry estimated scf accuracy < 2.4E-12 Ry total all-electron energy = -2545.618681 Ry The total energy is the sum of the following terms: one-electron contribution = 4.44316678 Ry hartree contribution = 8.53527956 Ry xc contribution = -30.82722931 Ry ewald contribution = -42.97249830 Ry one-center paw contrib. = -81.01691342 Ry smearing contrib. (-TS) = 0.00269024 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell convergence has been achieved in 12 iterations Writing output data file Fe.save init_run : 7.05s CPU 7.14s WALL ( 1 calls) electrons : 121.80s CPU 123.07s WALL ( 1 calls) Called by init_run: wfcinit : 2.35s CPU 2.39s WALL ( 1 calls) potinit : 2.52s CPU 2.56s WALL ( 1 calls) Called by electrons: c_bands : 69.35s CPU 70.10s WALL ( 12 calls) sum_band : 16.22s CPU 16.34s WALL ( 12 calls) v_of_rho : 0.94s CPU 0.96s WALL ( 13 calls) newd : 3.27s CPU 3.27s WALL ( 13 calls) mix_rho : 2.88s CPU 2.91s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.62s CPU 0.60s WALL ( 1400 calls) cegterg : 64.24s CPU 64.78s WALL ( 672 calls) Called by *egterg: h_psi : 52.40s CPU 52.87s WALL ( 2160 calls) s_psi : 2.96s CPU 2.97s WALL ( 2160 calls) g_psi : 0.72s CPU 0.72s WALL ( 1432 calls) cdiaghg : 2.27s CPU 2.32s WALL ( 2104 calls) Called by h_psi: add_vuspsi : 2.85s CPU 2.84s WALL ( 2160 calls) General routines calbec : 3.68s CPU 3.76s WALL ( 2832 calls) cft3s : 49.62s CPU 49.99s WALL ( 127311 calls) interpolate : 0.18s CPU 0.18s WALL ( 100 calls) davcio : 0.03s CPU 0.30s WALL ( 2072 calls) Parallel routines PAW routines PAW_pot : 31.52s CPU 31.70s WALL ( 13 calls) PAW_ddot : 2.71s CPU 2.73s WALL ( 256 calls) PAW_symme : 0.17s CPU 0.17s WALL ( 25 calls) PWSCF : 2m10.61s CPU time, 2m12.24s WALL time This run was terminated on: 11: 6:24 23May2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PP/examples/example06/reference/Fe.bands.out0000644000175000017500000035123712341372774021374 0ustar mbamba Program BANDS v.4.2 starts on 23May2010 at 11: 7:12 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 1 processors file Fe.rel-pbe-paw_kj.UPF: wavefunction(s) 3D renormalized Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 24 npps= 24 ncplanes= 576 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 487 6963 24 291 3151 99 675 0.000000 0.000000 1.000000 ************************************************************************** xk=( 1.00000, 0.00000, 0.00000 ) the magnetic double point group is D_4h(4/mmm) [C_4h (4/m) ] using the double point group C_4h (4/m) there are 16 classes and 8 irreducible representations the character table: E -E C4 -C4 C4^2 -C4^2 C4^3 -C4^3 i -i S4^3 -S4^3 G_5+ 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 1.00 -1.00 0.71 -0.71 G_6+ 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 1.00 -1.00 0.71 -0.71 G_7+ 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 1.00 -1.00 -0.71 0.71 G_8+ 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 1.00 -1.00 -0.71 0.71 G_5- 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 -1.00 1.00 -0.71 0.71 G_6- 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 -1.00 1.00 -0.71 0.71 G_7- 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 -1.00 1.00 0.71 -0.71 G_8- 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 -1.00 1.00 0.71 -0.71 s_h -s_h S4 -S4 G_5+ 0.00 0.00 0.71 -0.71 G_6+ 0.00 0.00 0.71 -0.71 G_7+ 0.00 0.00 -0.71 0.71 G_8+ 0.00 0.00 -0.71 0.71 G_5- 0.00 0.00 -0.71 0.71 G_6- 0.00 0.00 -0.71 0.71 G_7- 0.00 0.00 0.71 -0.71 G_8- 0.00 0.00 0.71 -0.71 imaginary part E -E C4 -C4 C4^2 -C4^2 C4^3 -C4^3 i -i S4^3 -S4^3 G_5+ 0.00 0.00 0.71 -0.71 1.00 -1.00 -0.71 0.71 0.00 0.00 0.71 -0.71 G_6+ 0.00 0.00 -0.71 0.71 -1.00 1.00 0.71 -0.71 0.00 0.00 -0.71 0.71 G_7+ 0.00 0.00 -0.71 0.71 1.00 -1.00 0.71 -0.71 0.00 0.00 -0.71 0.71 G_8+ 0.00 0.00 0.71 -0.71 -1.00 1.00 -0.71 0.71 0.00 0.00 0.71 -0.71 G_5- 0.00 0.00 0.71 -0.71 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 G_6- 0.00 0.00 -0.71 0.71 -1.00 1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 G_7- 0.00 0.00 -0.71 0.71 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 G_8- 0.00 0.00 0.71 -0.71 -1.00 1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 s_h -s_h S4 -S4 G_5+ 1.00 -1.00 -0.71 0.71 G_6+ -1.00 1.00 0.71 -0.71 G_7+ 1.00 -1.00 0.71 -0.71 G_8+ -1.00 1.00 -0.71 0.71 G_5- -1.00 1.00 0.71 -0.71 G_6- 1.00 -1.00 -0.71 0.71 G_7- -1.00 1.00 -0.71 0.71 G_8- 1.00 -1.00 0.71 -0.71 the symmetry operations in each class: E 1 C4^2 2 C4^3 3 C4 4 i 5 s_h 6 S4 7 S4^3 8 -E -1 -C4^2 -2 -C4^3 -3 -C4 -4 -i -5 -s_h -6 -S4 -7 -S4^3 -8 Band symmetry, D_4h(4/mmm) [C_4h (4/m) ] magnetic double point group, using C_4h (4/m) e( 1 - 1) = 7.90757 eV 1 --> G_5+ e( 2 - 2) = 7.90792 eV 1 --> G_7+ e( 3 - 3) = 9.74298 eV 1 --> G_6+ e( 4 - 4) = 9.74377 eV 1 --> G_8+ e( 5 - 5) = 12.61899 eV 1 --> G_6+ e( 6 - 6) = 12.65352 eV 1 --> G_7+ e( 7 - 7) = 12.68845 eV 1 --> G_8+ e( 8 - 8) = 14.81611 eV 1 --> G_5+ e( 9 - 9) = 14.85265 eV 1 --> G_8+ e( 10 - 10) = 14.88722 eV 1 --> G_7+ e( 11 - 11) = 22.04401 eV 1 --> G_6- e( 12 - 12) = 22.10528 eV 1 --> G_5- e( 13 - 13) = 22.25691 eV 1 --> G_8- e( 14 - 14) = 22.39403 eV 1 --> G_5- e( 15 - 15) = 22.45368 eV 1 --> G_6- e( 16 - 16) = 22.49861 eV 1 --> G_7- ************************************************************************** ************************************************************************** xk=( 0.97500, 0.00000, 0.00000 ) the magnetic double point group is C_2v (mm2) [C_s (m) ] using the double point group C_s (m) there are 4 classes and 2 irreducible representations the character table: E -E s -s G_3 1.00 -1.00 0.00 0.00 G_4 1.00 -1.00 0.00 0.00 imaginary part E -E s -s G_3 0.00 0.00 1.00 -1.00 G_4 0.00 0.00 -1.00 1.00 the symmetry operations in each class: E 1 s 2 -E -1 -s -2 Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 7.91292 eV 1 --> G_3 e( 2 - 2) = 7.91337 eV 1 --> G_3 e( 3 - 3) = 9.74775 eV 1 --> G_4 e( 4 - 4) = 9.74963 eV 1 --> G_4 e( 5 - 5) = 12.61167 eV 1 --> G_4 e( 6 - 6) = 12.64283 eV 1 --> G_3 e( 7 - 7) = 12.68140 eV 1 --> G_4 e( 8 - 8) = 14.80645 eV 1 --> G_3 e( 9 - 9) = 14.83816 eV 1 --> G_4 e( 10 - 10) = 14.87820 eV 1 --> G_3 e( 11 - 11) = 21.99559 eV 1 --> G_3 e( 12 - 12) = 22.11448 eV 1 --> G_4 e( 13 - 13) = 22.23198 eV 1 --> G_3 e( 14 - 14) = 22.36101 eV 1 --> G_4 e( 15 - 15) = 22.47675 eV 1 --> G_3 e( 16 - 16) = 22.49210 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.95000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 7.92890 eV 1 --> G_3 e( 2 - 2) = 7.92992 eV 1 --> G_3 e( 3 - 3) = 9.76056 eV 1 --> G_4 e( 4 - 4) = 9.76874 eV 1 --> G_4 e( 5 - 5) = 12.58810 eV 1 --> G_4 e( 6 - 6) = 12.61138 eV 1 --> G_3 e( 7 - 7) = 12.66249 eV 1 --> G_4 e( 8 - 8) = 14.77415 eV 1 --> G_3 e( 9 - 9) = 14.79565 eV 1 --> G_4 e( 10 - 10) = 14.85553 eV 1 --> G_3 e( 11 - 11) = 21.75692 eV 1 --> G_3 e( 12 - 12) = 22.04067 eV 1 --> G_4 e( 13 - 13) = 22.26122 eV 1 --> G_3 e( 14 - 14) = 22.29055 eV 1 --> G_4 e( 15 - 15) = 22.55428 eV 1 --> G_3 e( 16 - 16) = 22.55686 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.92500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 7.95557 eV 1 --> G_3 e( 2 - 2) = 7.95665 eV 1 --> G_3 e( 3 - 3) = 9.78070 eV 1 --> G_4 e( 4 - 4) = 9.80078 eV 1 --> G_4 e( 5 - 5) = 12.54511 eV 1 --> G_4 e( 6 - 6) = 12.56054 eV 1 --> G_3 e( 7 - 7) = 12.63639 eV 1 --> G_4 e( 8 - 8) = 14.71410 eV 1 --> G_3 e( 9 - 9) = 14.72738 eV 1 --> G_4 e( 10 - 10) = 14.82659 eV 1 --> G_3 e( 11 - 11) = 21.34638 eV 1 --> G_3 e( 12 - 12) = 21.72605 eV 1 --> G_4 e( 13 - 13) = 22.36801 eV 1 --> G_3 e( 14 - 14) = 22.37353 eV 1 --> G_4 e( 15 - 15) = 22.68658 eV 1 --> G_3 e( 16 - 16) = 22.68720 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.90000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 7.99242 eV 1 --> G_3 e( 2 - 2) = 7.99297 eV 1 --> G_3 e( 3 - 3) = 9.80715 eV 1 --> G_4 e( 4 - 4) = 9.84516 eV 1 --> G_4 e( 5 - 5) = 12.48109 eV 1 --> G_4 e( 6 - 6) = 12.49111 eV 1 --> G_3 e( 7 - 7) = 12.60549 eV 1 --> G_4 e( 8 - 8) = 14.62697 eV 1 --> G_3 e( 9 - 9) = 14.63558 eV 1 --> G_4 e( 10 - 10) = 14.79304 eV 1 --> G_3 e( 11 - 11) = 20.83456 eV 1 --> G_3 e( 12 - 12) = 21.29508 eV 1 --> G_4 e( 13 - 13) = 22.52731 eV 1 --> G_3 e( 14 - 14) = 22.52928 eV 1 --> G_4 e( 15 - 15) = 22.86917 eV 1 --> G_3 e( 16 - 16) = 22.86932 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.87500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.03797 eV 1 --> G_3 e( 2 - 2) = 8.03999 eV 1 --> G_3 e( 3 - 3) = 9.83841 eV 1 --> G_4 e( 4 - 4) = 9.90226 eV 1 --> G_4 e( 5 - 5) = 12.39944 eV 1 --> G_4 e( 6 - 6) = 12.40626 eV 1 --> G_3 e( 7 - 7) = 12.57024 eV 1 --> G_4 e( 8 - 8) = 14.51884 eV 1 --> G_3 e( 9 - 9) = 14.52495 eV 1 --> G_4 e( 10 - 10) = 14.75421 eV 1 --> G_3 e( 11 - 11) = 20.26323 eV 1 --> G_3 e( 12 - 12) = 20.80339 eV 1 --> G_4 e( 13 - 13) = 22.73097 eV 1 --> G_3 e( 14 - 14) = 22.73193 eV 1 --> G_4 e( 15 - 16) = 23.09772 eV 2 --> G_3 e( 15 - 16) = 23.09772 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.85000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.09020 eV 1 --> G_3 e( 2 - 2) = 8.09703 eV 1 --> G_3 e( 3 - 3) = 9.87207 eV 1 --> G_4 e( 4 - 4) = 9.97109 eV 1 --> G_4 e( 5 - 5) = 12.30314 eV 1 --> G_4 e( 6 - 6) = 12.30805 eV 1 --> G_3 e( 7 - 7) = 12.52912 eV 1 --> G_4 e( 8 - 8) = 14.39431 eV 1 --> G_3 e( 9 - 9) = 14.39901 eV 1 --> G_4 e( 10 - 10) = 14.70835 eV 1 --> G_3 e( 11 - 11) = 19.65866 eV 1 --> G_3 e( 12 - 12) = 20.27846 eV 1 --> G_4 e( 13 - 13) = 22.97462 eV 1 --> G_3 e( 14 - 14) = 22.97517 eV 1 --> G_4 e( 15 - 16) = 23.36783 eV 2 --> G_3 e( 15 - 16) = 23.36783 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.82500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.14765 eV 1 --> G_3 e( 2 - 2) = 8.16368 eV 1 --> G_3 e( 3 - 3) = 9.90518 eV 1 --> G_4 e( 4 - 4) = 10.05165 eV 1 --> G_4 e( 5 - 5) = 12.19522 eV 1 --> G_4 e( 6 - 6) = 12.19893 eV 1 --> G_3 e( 7 - 7) = 12.48217 eV 1 --> G_4 e( 8 - 8) = 14.25767 eV 1 --> G_3 e( 9 - 9) = 14.26151 eV 1 --> G_4 e( 10 - 10) = 14.65564 eV 1 --> G_3 e( 11 - 11) = 19.03800 eV 1 --> G_3 e( 12 - 12) = 19.73888 eV 1 --> G_4 e( 13 - 13) = 23.25480 eV 1 --> G_3 e( 14 - 14) = 23.25515 eV 1 --> G_4 e( 15 - 16) = 23.67536 eV 2 --> G_3 e( 15 - 16) = 23.67536 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.80000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.20919 eV 1 --> G_3 e( 2 - 2) = 8.23970 eV 1 --> G_3 e( 3 - 3) = 9.93503 eV 1 --> G_4 e( 4 - 4) = 10.14369 eV 1 --> G_4 e( 5 - 5) = 12.07967 eV 1 --> G_4 e( 6 - 6) = 12.08259 eV 1 --> G_3 e( 7 - 7) = 12.42950 eV 1 --> G_4 e( 8 - 8) = 14.11390 eV 1 --> G_3 e( 9 - 9) = 14.11719 eV 1 --> G_4 e( 10 - 10) = 14.59630 eV 1 --> G_3 e( 11 - 11) = 18.41310 eV 1 --> G_3 e( 12 - 12) = 19.19861 eV 1 --> G_4 e( 13 - 13) = 23.56837 eV 1 --> G_3 e( 14 - 14) = 23.56861 eV 1 --> G_4 e( 15 - 16) = 24.01629 eV 2 --> G_3 e( 15 - 16) = 24.01629 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.77500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.27214 eV 1 --> G_3 e( 2 - 2) = 8.32463 eV 1 --> G_3 e( 3 - 3) = 9.95747 eV 1 --> G_4 e( 4 - 4) = 10.24673 eV 1 --> G_4 e( 5 - 5) = 11.95872 eV 1 --> G_4 e( 6 - 6) = 11.96108 eV 1 --> G_3 e( 7 - 7) = 12.37181 eV 1 --> G_4 e( 8 - 8) = 13.96595 eV 1 --> G_3 e( 9 - 9) = 13.96887 eV 1 --> G_4 e( 10 - 10) = 14.53110 eV 1 --> G_3 e( 11 - 11) = 17.79236 eV 1 --> G_3 e( 12 - 12) = 18.66818 eV 1 --> G_4 e( 13 - 13) = 23.91246 eV 1 --> G_3 e( 14 - 14) = 23.91262 eV 1 --> G_4 e( 15 - 16) = 24.38700 eV 2 --> G_3 e( 15 - 16) = 24.38700 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.75000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.33352 eV 1 --> G_3 e( 2 - 2) = 8.41800 eV 1 --> G_3 e( 3 - 3) = 9.96775 eV 1 --> G_4 e( 4 - 4) = 10.36026 eV 1 --> G_4 e( 5 - 5) = 11.83469 eV 1 --> G_4 e( 6 - 6) = 11.83664 eV 1 --> G_3 e( 7 - 7) = 12.30828 eV 1 --> G_4 e( 8 - 8) = 13.81665 eV 1 --> G_3 e( 9 - 9) = 13.81933 eV 1 --> G_4 e( 10 - 10) = 14.45934 eV 1 --> G_3 e( 11 - 11) = 17.18224 eV 1 --> G_3 e( 12 - 12) = 18.15626 eV 1 --> G_4 e( 13 - 13) = 24.28436 eV 1 --> G_3 e( 14 - 14) = 24.28449 eV 1 --> G_4 e( 15 - 16) = 24.78420 eV 2 --> G_3 e( 15 - 16) = 24.78420 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.72500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.39021 eV 1 --> G_3 e( 2 - 2) = 8.51873 eV 1 --> G_3 e( 3 - 3) = 9.96096 eV 1 --> G_4 e( 4 - 4) = 10.48319 eV 1 --> G_4 e( 5 - 5) = 11.70935 eV 1 --> G_4 e( 6 - 6) = 11.71096 eV 1 --> G_3 e( 7 - 7) = 12.23974 eV 1 --> G_4 e( 8 - 8) = 13.66806 eV 1 --> G_3 e( 9 - 9) = 13.67058 eV 1 --> G_4 e( 10 - 10) = 14.38188 eV 1 --> G_3 e( 11 - 11) = 16.58813 eV 1 --> G_3 e( 12 - 12) = 17.67036 eV 1 --> G_4 e( 13 - 14) = 24.68165 eV 2 --> G_3 e( 13 - 14) = 24.68165 eV 2 --> G_4 e( 15 - 16) = 25.20503 eV 2 --> G_3 e( 15 - 16) = 25.20503 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.70000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.43871 eV 1 --> G_3 e( 2 - 2) = 8.62738 eV 1 --> G_3 e( 3 - 3) = 9.93190 eV 1 --> G_4 e( 4 - 4) = 10.61589 eV 1 --> G_4 e( 5 - 5) = 11.58541 eV 1 --> G_4 e( 6 - 6) = 11.58670 eV 1 --> G_3 e( 7 - 7) = 12.16686 eV 1 --> G_4 e( 8 - 8) = 13.52307 eV 1 --> G_3 e( 9 - 9) = 13.52553 eV 1 --> G_4 e( 10 - 10) = 14.29947 eV 1 --> G_3 e( 11 - 11) = 16.01484 eV 1 --> G_3 e( 12 - 12) = 17.21705 eV 1 --> G_4 e( 13 - 14) = 25.10208 eV 2 --> G_3 e( 13 - 14) = 25.10208 eV 2 --> G_4 e( 15 - 16) = 25.64697 eV 2 --> G_3 e( 15 - 16) = 25.64697 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.67500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.47441 eV 1 --> G_3 e( 2 - 2) = 8.74276 eV 1 --> G_3 e( 3 - 3) = 9.87499 eV 1 --> G_4 e( 4 - 4) = 10.75706 eV 1 --> G_4 e( 5 - 5) = 11.46408 eV 1 --> G_4 e( 6 - 6) = 11.46497 eV 1 --> G_3 e( 7 - 7) = 12.09002 eV 1 --> G_4 e( 8 - 8) = 13.38286 eV 1 --> G_3 e( 9 - 9) = 13.38533 eV 1 --> G_4 e( 10 - 10) = 14.21253 eV 1 --> G_3 e( 11 - 11) = 15.46674 eV 1 --> G_3 e( 12 - 12) = 16.80162 eV 1 --> G_4 e( 13 - 14) = 25.54364 eV 2 --> G_3 e( 13 - 14) = 25.54364 eV 2 --> G_4 e( 15 - 16) = 26.10781 eV 2 --> G_3 e( 15 - 16) = 26.10781 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.65000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.49368 eV 1 --> G_3 e( 2 - 2) = 8.86420 eV 1 --> G_3 e( 3 - 3) = 9.78633 eV 1 --> G_4 e( 4 - 4) = 10.90566 eV 1 --> G_4 e( 5 - 5) = 11.34700 eV 1 --> G_4 e( 6 - 6) = 11.34713 eV 1 --> G_3 e( 7 - 7) = 12.00978 eV 1 --> G_4 e( 8 - 8) = 13.24882 eV 1 --> G_3 e( 9 - 9) = 13.25139 eV 1 --> G_4 e( 10 - 10) = 14.12162 eV 1 --> G_3 e( 11 - 11) = 14.94889 eV 1 --> G_3 e( 12 - 12) = 16.42931 eV 1 --> G_4 e( 13 - 14) = 26.00448 eV 2 --> G_3 e( 13 - 14) = 26.00448 eV 2 --> G_4 e( 15 - 16) = 26.58558 eV 2 --> G_3 e( 15 - 16) = 26.58558 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.62500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.49115 eV 1 --> G_3 e( 2 - 2) = 8.99098 eV 1 --> G_3 e( 3 - 3) = 9.66221 eV 1 --> G_4 e( 4 - 4) = 11.05896 eV 1 --> G_4 e( 5 - 5) = 11.23425 eV 1 --> G_3 e( 6 - 6) = 11.23700 eV 1 --> G_4 e( 7 - 7) = 11.92682 eV 1 --> G_4 e( 8 - 8) = 13.12190 eV 1 --> G_3 e( 9 - 9) = 13.12473 eV 1 --> G_4 e( 10 - 10) = 14.02734 eV 1 --> G_3 e( 11 - 11) = 14.46580 eV 1 --> G_3 e( 12 - 12) = 16.10272 eV 1 --> G_4 e( 13 - 14) = 26.48295 eV 2 --> G_3 e( 13 - 14) = 26.48295 eV 2 --> G_4 e( 15 - 16) = 27.07852 eV 2 --> G_3 e( 15 - 16) = 27.07852 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.60000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.46179 eV 1 --> G_3 e( 2 - 2) = 9.12234 eV 1 --> G_3 e( 3 - 3) = 9.50111 eV 1 --> G_4 e( 4 - 4) = 11.11778 eV 1 --> G_4 e( 5 - 5) = 11.12720 eV 1 --> G_3 e( 6 - 6) = 11.23291 eV 1 --> G_4 e( 7 - 7) = 11.84204 eV 1 --> G_4 e( 8 - 8) = 13.00282 eV 1 --> G_3 e( 9 - 9) = 13.00615 eV 1 --> G_4 e( 10 - 10) = 13.93030 eV 1 --> G_3 e( 11 - 11) = 14.02221 eV 1 --> G_3 e( 12 - 12) = 15.82270 eV 1 --> G_4 e( 13 - 14) = 26.97749 eV 2 --> G_3 e( 13 - 14) = 26.97749 eV 2 --> G_4 e( 15 - 16) = 27.58502 eV 2 --> G_3 e( 15 - 16) = 27.58502 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.57500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.40088 eV 1 --> G_3 e( 2 - 2) = 9.25745 eV 1 --> G_3 e( 3 - 3) = 9.30373 eV 1 --> G_4 e( 4 - 4) = 11.02266 eV 1 --> G_4 e( 5 - 5) = 11.02666 eV 1 --> G_3 e( 6 - 6) = 11.39245 eV 1 --> G_4 e( 7 - 7) = 11.75751 eV 1 --> G_4 e( 8 - 8) = 12.89201 eV 1 --> G_3 e( 9 - 9) = 12.89625 eV 1 --> G_4 e( 10 - 10) = 13.62254 eV 1 --> G_3 e( 11 - 11) = 13.83115 eV 1 --> G_3 e( 12 - 12) = 15.58785 eV 1 --> G_4 e( 13 - 14) = 27.48670 eV 2 --> G_3 e( 13 - 14) = 27.48670 eV 2 --> G_4 e( 15 - 15) = 28.10358 eV 1 --> G_3 e( 16 - 16) = 28.10369 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.55000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.30497 eV 1 --> G_3 e( 2 - 2) = 9.07317 eV 1 --> G_4 e( 3 - 3) = 9.39549 eV 1 --> G_3 e( 4 - 4) = 10.93027 eV 1 --> G_4 e( 5 - 5) = 10.93328 eV 1 --> G_3 e( 6 - 6) = 11.54536 eV 1 --> G_4 e( 7 - 7) = 11.68700 eV 1 --> G_4 e( 8 - 8) = 12.78954 eV 1 --> G_3 e( 9 - 9) = 12.79555 eV 1 --> G_4 e( 10 - 10) = 13.27090 eV 1 --> G_3 e( 11 - 11) = 13.73050 eV 1 --> G_3 e( 12 - 12) = 15.39504 eV 1 --> G_4 e( 13 - 13) = 28.00922 eV 1 --> G_3 e( 14 - 14) = 28.00934 eV 1 --> G_4 e( 15 - 15) = 28.63275 eV 1 --> G_3 e( 16 - 16) = 28.63296 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.52500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.17157 eV 1 --> G_3 e( 2 - 2) = 8.81381 eV 1 --> G_4 e( 3 - 3) = 9.53556 eV 1 --> G_3 e( 4 - 4) = 10.84463 eV 1 --> G_4 e( 5 - 5) = 10.84720 eV 1 --> G_3 e( 6 - 6) = 11.55230 eV 1 --> G_4 e( 7 - 7) = 11.76542 eV 1 --> G_4 e( 8 - 8) = 12.69395 eV 1 --> G_3 e( 9 - 9) = 12.70407 eV 1 --> G_4 e( 10 - 10) = 12.96976 eV 1 --> G_3 e( 11 - 11) = 13.62900 eV 1 --> G_3 e( 12 - 12) = 15.23828 eV 1 --> G_4 e( 13 - 13) = 28.54378 eV 1 --> G_3 e( 14 - 14) = 28.54393 eV 1 --> G_4 e( 15 - 15) = 29.17092 eV 1 --> G_3 e( 16 - 16) = 29.17145 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.50000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 8.00151 eV 1 --> G_3 e( 2 - 2) = 8.53165 eV 1 --> G_4 e( 3 - 3) = 9.67674 eV 1 --> G_3 e( 4 - 4) = 10.76643 eV 1 --> G_4 e( 5 - 5) = 10.76876 eV 1 --> G_3 e( 6 - 6) = 11.47079 eV 1 --> G_4 e( 7 - 7) = 11.93432 eV 1 --> G_4 e( 8 - 8) = 12.59779 eV 1 --> G_3 e( 9 - 9) = 12.62205 eV 1 --> G_4 e( 10 - 10) = 12.72642 eV 1 --> G_3 e( 11 - 11) = 13.52729 eV 1 --> G_3 e( 12 - 12) = 15.11187 eV 1 --> G_4 e( 13 - 13) = 29.08909 eV 1 --> G_3 e( 14 - 14) = 29.08931 eV 1 --> G_4 e( 15 - 15) = 29.68701 eV 1 --> G_3 e( 16 - 16) = 29.71767 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.47500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 7.79795 eV 1 --> G_3 e( 2 - 2) = 8.23296 eV 1 --> G_4 e( 3 - 3) = 9.81811 eV 1 --> G_3 e( 4 - 4) = 10.69584 eV 1 --> G_4 e( 5 - 5) = 10.69808 eV 1 --> G_3 e( 6 - 6) = 11.38296 eV 1 --> G_4 e( 7 - 7) = 12.11074 eV 1 --> G_4 e( 8 - 8) = 12.46238 eV 1 --> G_3 e( 9 - 9) = 12.54961 eV 1 --> G_4 e( 10 - 10) = 12.57637 eV 1 --> G_3 e( 11 - 11) = 13.42601 eV 1 --> G_3 e( 12 - 12) = 15.00963 eV 1 --> G_4 e( 13 - 13) = 29.64375 eV 1 --> G_3 e( 14 - 14) = 29.64416 eV 1 --> G_4 e( 15 - 15) = 29.93145 eV 1 --> G_3 e( 16 - 16) = 30.26961 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.45000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 7.56636 eV 1 --> G_3 e( 2 - 2) = 7.92385 eV 1 --> G_4 e( 3 - 3) = 9.95872 eV 1 --> G_3 e( 4 - 4) = 10.63338 eV 1 --> G_4 e( 5 - 5) = 10.63572 eV 1 --> G_3 e( 6 - 6) = 11.29474 eV 1 --> G_4 e( 7 - 7) = 12.28730 eV 1 --> G_4 e( 8 - 8) = 12.30468 eV 1 --> G_3 e( 9 - 9) = 12.48803 eV 1 --> G_4 e( 10 - 10) = 12.49812 eV 1 --> G_3 e( 11 - 11) = 13.32594 eV 1 --> G_3 e( 12 - 12) = 14.92605 eV 1 --> G_4 e( 13 - 13) = 30.18380 eV 1 --> G_3 e( 14 - 14) = 30.20709 eV 1 --> G_4 e( 15 - 15) = 30.21194 eV 1 --> G_3 e( 16 - 16) = 30.68411 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.42500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 7.31341 eV 1 --> G_3 e( 2 - 2) = 7.60987 eV 1 --> G_4 e( 3 - 3) = 10.09746 eV 1 --> G_3 e( 4 - 4) = 10.57783 eV 1 --> G_4 e( 5 - 5) = 10.58054 eV 1 --> G_3 e( 6 - 6) = 11.20728 eV 1 --> G_4 e( 7 - 7) = 12.16934 eV 1 --> G_3 e( 8 - 8) = 12.41748 eV 1 --> G_4 e( 9 - 9) = 12.43893 eV 1 --> G_3 e( 10 - 10) = 12.48036 eV 1 --> G_4 e( 11 - 11) = 13.22735 eV 1 --> G_3 e( 12 - 12) = 14.85569 eV 1 --> G_4 e( 13 - 13) = 30.46555 eV 1 --> G_3 e( 14 - 14) = 30.77618 eV 1 --> G_4 e( 15 - 15) = 30.77718 eV 1 --> G_3 e( 16 - 16) = 30.91783 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.40000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 7.04636 eV 1 --> G_3 e( 2 - 2) = 7.29600 eV 1 --> G_4 e( 3 - 3) = 10.23310 eV 1 --> G_3 e( 4 - 4) = 10.52948 eV 1 --> G_4 e( 5 - 5) = 10.53322 eV 1 --> G_3 e( 6 - 6) = 11.12152 eV 1 --> G_4 e( 7 - 7) = 12.05855 eV 1 --> G_3 e( 8 - 8) = 12.38093 eV 1 --> G_4 e( 9 - 9) = 12.39051 eV 1 --> G_3 e( 10 - 10) = 12.64560 eV 1 --> G_4 e( 11 - 11) = 13.13102 eV 1 --> G_3 e( 12 - 12) = 14.79480 eV 1 --> G_4 e( 13 - 13) = 30.76366 eV 1 --> G_3 e( 14 - 14) = 31.16846 eV 1 --> G_4 e( 15 - 15) = 31.35167 eV 1 --> G_3 e( 16 - 16) = 31.35248 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.37500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 6.77212 eV 1 --> G_3 e( 2 - 2) = 6.98655 eV 1 --> G_4 e( 3 - 3) = 10.36253 eV 1 --> G_3 e( 4 - 4) = 10.48807 eV 1 --> G_4 e( 5 - 5) = 10.49565 eV 1 --> G_3 e( 6 - 6) = 11.03808 eV 1 --> G_4 e( 7 - 7) = 11.96850 eV 1 --> G_3 e( 8 - 8) = 12.34349 eV 1 --> G_4 e( 9 - 9) = 12.35095 eV 1 --> G_3 e( 10 - 10) = 12.81621 eV 1 --> G_4 e( 11 - 11) = 13.03752 eV 1 --> G_3 e( 12 - 12) = 14.74100 eV 1 --> G_4 e( 13 - 13) = 31.08298 eV 1 --> G_3 e( 14 - 14) = 31.44191 eV 1 --> G_4 e( 15 - 15) = 31.92926 eV 1 --> G_3 e( 16 - 16) = 31.92975 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.35000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 6.49670 eV 1 --> G_3 e( 2 - 2) = 6.68507 eV 1 --> G_4 e( 3 - 3) = 10.43954 eV 1 --> G_3 e( 4 - 4) = 10.45307 eV 1 --> G_4 e( 5 - 5) = 10.51266 eV 1 --> G_3 e( 6 - 6) = 10.95753 eV 1 --> G_4 e( 7 - 7) = 11.89342 eV 1 --> G_3 e( 8 - 8) = 12.31273 eV 1 --> G_4 e( 9 - 9) = 12.31908 eV 1 --> G_3 e( 10 - 10) = 12.94740 eV 1 --> G_3 e( 11 - 11) = 12.98266 eV 1 --> G_4 e( 12 - 12) = 14.69078 eV 1 --> G_4 e( 13 - 13) = 31.42410 eV 1 --> G_3 e( 14 - 14) = 31.73665 eV 1 --> G_4 e( 15 - 15) = 32.50740 eV 1 --> G_3 e( 16 - 16) = 32.50788 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.32500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 6.22535 eV 1 --> G_3 e( 2 - 2) = 6.39465 eV 1 --> G_4 e( 3 - 3) = 10.42116 eV 1 --> G_3 e( 4 - 4) = 10.42436 eV 1 --> G_4 e( 5 - 5) = 10.62639 eV 1 --> G_3 e( 6 - 6) = 10.88063 eV 1 --> G_4 e( 7 - 7) = 11.82914 eV 1 --> G_3 e( 8 - 8) = 12.28878 eV 1 --> G_4 e( 9 - 9) = 12.29436 eV 1 --> G_3 e( 10 - 10) = 12.86145 eV 1 --> G_3 e( 11 - 11) = 13.14341 eV 1 --> G_4 e( 12 - 12) = 14.64240 eV 1 --> G_4 e( 13 - 13) = 31.78741 eV 1 --> G_3 e( 14 - 14) = 32.05354 eV 1 --> G_4 e( 15 - 15) = 33.08292 eV 1 --> G_3 e( 16 - 16) = 33.08342 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.30000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 5.96237 eV 1 --> G_3 e( 2 - 2) = 6.11788 eV 1 --> G_4 e( 3 - 3) = 10.39949 eV 1 --> G_3 e( 4 - 4) = 10.40080 eV 1 --> G_4 e( 5 - 5) = 10.74252 eV 1 --> G_3 e( 6 - 6) = 10.80733 eV 1 --> G_4 e( 7 - 7) = 11.77476 eV 1 --> G_3 e( 8 - 8) = 12.27065 eV 1 --> G_4 e( 9 - 9) = 12.27564 eV 1 --> G_3 e( 10 - 10) = 12.77965 eV 1 --> G_3 e( 11 - 11) = 13.29693 eV 1 --> G_4 e( 12 - 12) = 14.59699 eV 1 --> G_4 e( 13 - 13) = 32.17310 eV 1 --> G_3 e( 14 - 14) = 32.39295 eV 1 --> G_4 e( 15 - 15) = 33.65166 eV 1 --> G_3 e( 16 - 16) = 33.65218 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.27500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 5.71129 eV 1 --> G_3 e( 2 - 2) = 5.85692 eV 1 --> G_4 e( 3 - 3) = 10.38172 eV 1 --> G_3 e( 4 - 4) = 10.38211 eV 1 --> G_4 e( 5 - 5) = 10.73835 eV 1 --> G_4 e( 6 - 6) = 10.85298 eV 1 --> G_3 e( 7 - 7) = 11.72720 eV 1 --> G_3 e( 8 - 8) = 12.25786 eV 1 --> G_4 e( 9 - 9) = 12.26233 eV 1 --> G_3 e( 10 - 10) = 12.70273 eV 1 --> G_3 e( 11 - 11) = 13.44224 eV 1 --> G_4 e( 12 - 12) = 14.55323 eV 1 --> G_4 e( 13 - 13) = 32.58109 eV 1 --> G_3 e( 14 - 14) = 32.75491 eV 1 --> G_4 e( 15 - 15) = 34.20805 eV 1 --> G_3 e( 16 - 16) = 34.20858 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.25000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 5.47497 eV 1 --> G_3 e( 2 - 2) = 5.61361 eV 1 --> G_4 e( 3 - 3) = 10.36768 eV 1 --> G_4 e( 4 - 4) = 10.36799 eV 1 --> G_3 e( 5 - 5) = 10.67413 eV 1 --> G_4 e( 6 - 6) = 10.95635 eV 1 --> G_3 e( 7 - 7) = 11.68505 eV 1 --> G_3 e( 8 - 8) = 12.24968 eV 1 --> G_4 e( 9 - 9) = 12.25363 eV 1 --> G_3 e( 10 - 10) = 12.63115 eV 1 --> G_3 e( 11 - 11) = 13.57832 eV 1 --> G_4 e( 12 - 12) = 14.51111 eV 1 --> G_4 e( 13 - 13) = 33.01092 eV 1 --> G_3 e( 14 - 14) = 33.13901 eV 1 --> G_4 e( 15 - 15) = 34.74459 eV 1 --> G_3 e( 16 - 16) = 34.74510 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.22500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 5.25572 eV 1 --> G_3 e( 2 - 2) = 5.38948 eV 1 --> G_4 e( 3 - 3) = 10.35684 eV 1 --> G_4 e( 4 - 4) = 10.35786 eV 1 --> G_3 e( 5 - 5) = 10.61506 eV 1 --> G_4 e( 6 - 6) = 11.05181 eV 1 --> G_3 e( 7 - 7) = 11.64740 eV 1 --> G_3 e( 8 - 8) = 12.24533 eV 1 --> G_4 e( 9 - 9) = 12.24873 eV 1 --> G_3 e( 10 - 10) = 12.56535 eV 1 --> G_3 e( 11 - 11) = 13.70422 eV 1 --> G_4 e( 12 - 12) = 14.47087 eV 1 --> G_4 e( 13 - 13) = 33.46164 eV 1 --> G_3 e( 14 - 14) = 33.54427 eV 1 --> G_4 e( 15 - 15) = 35.25131 eV 1 --> G_3 e( 16 - 16) = 35.25178 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.20000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 5.05544 eV 1 --> G_3 e( 2 - 2) = 5.18585 eV 1 --> G_4 e( 3 - 3) = 10.34892 eV 1 --> G_4 e( 4 - 4) = 10.35078 eV 1 --> G_3 e( 5 - 5) = 10.56157 eV 1 --> G_4 e( 6 - 6) = 11.13872 eV 1 --> G_3 e( 7 - 7) = 11.61390 eV 1 --> G_3 e( 8 - 8) = 12.24404 eV 1 --> G_4 e( 9 - 9) = 12.24679 eV 1 --> G_3 e( 10 - 10) = 12.50571 eV 1 --> G_3 e( 11 - 11) = 13.81909 eV 1 --> G_4 e( 12 - 12) = 14.43312 eV 1 --> G_4 e( 13 - 13) = 33.93158 eV 1 --> G_3 e( 14 - 14) = 33.96883 eV 1 --> G_4 e( 15 - 15) = 35.71551 eV 1 --> G_3 e( 16 - 16) = 35.71596 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.17500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 4.87567 eV 1 --> G_3 e( 2 - 2) = 5.00382 eV 1 --> G_4 e( 3 - 3) = 10.34289 eV 1 --> G_4 e( 4 - 4) = 10.34587 eV 1 --> G_3 e( 5 - 5) = 10.51404 eV 1 --> G_4 e( 6 - 6) = 11.21641 eV 1 --> G_3 e( 7 - 7) = 11.58387 eV 1 --> G_3 e( 8 - 8) = 12.24474 eV 1 --> G_4 e( 9 - 9) = 12.24667 eV 1 --> G_3 e( 10 - 10) = 12.45265 eV 1 --> G_3 e( 11 - 11) = 13.92202 eV 1 --> G_4 e( 12 - 12) = 14.39787 eV 1 --> G_4 e( 13 - 13) = 34.40962 eV 1 --> G_4 e( 14 - 14) = 34.41797 eV 1 --> G_3 e( 15 - 15) = 36.12203 eV 1 --> G_3 e( 16 - 16) = 36.12250 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.15000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 4.71765 eV 1 --> G_3 e( 2 - 2) = 4.84432 eV 1 --> G_4 e( 3 - 3) = 10.33862 eV 1 --> G_4 e( 4 - 4) = 10.34319 eV 1 --> G_3 e( 5 - 5) = 10.47295 eV 1 --> G_4 e( 6 - 6) = 11.28468 eV 1 --> G_3 e( 7 - 7) = 11.55757 eV 1 --> G_3 e( 8 - 8) = 12.24731 eV 1 --> G_4 e( 9 - 9) = 12.24809 eV 1 --> G_3 e( 10 - 10) = 12.40659 eV 1 --> G_3 e( 11 - 11) = 14.01267 eV 1 --> G_4 e( 12 - 12) = 14.36601 eV 1 --> G_4 e( 13 - 13) = 34.86161 eV 1 --> G_4 e( 14 - 14) = 34.91625 eV 1 --> G_3 e( 15 - 15) = 36.42794 eV 1 --> G_3 e( 16 - 16) = 36.42831 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.12500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 4.58240 eV 1 --> G_3 e( 2 - 2) = 4.70813 eV 1 --> G_4 e( 3 - 3) = 10.33499 eV 1 --> G_4 e( 4 - 4) = 10.34192 eV 1 --> G_3 e( 5 - 5) = 10.43882 eV 1 --> G_4 e( 6 - 6) = 11.34301 eV 1 --> G_3 e( 7 - 7) = 11.53499 eV 1 --> G_3 e( 8 - 8) = 12.24982 eV 1 --> G_3 e( 9 - 9) = 12.25076 eV 1 --> G_4 e( 10 - 10) = 12.36801 eV 1 --> G_3 e( 11 - 11) = 14.09030 eV 1 --> G_4 e( 12 - 12) = 14.33801 eV 1 --> G_4 e( 13 - 13) = 35.31675 eV 1 --> G_4 e( 14 - 14) = 35.41903 eV 1 --> G_3 e( 15 - 15) = 36.60330 eV 1 --> G_3 e( 16 - 16) = 36.60341 eV 1 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.10000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 4.47071 eV 1 --> G_3 e( 2 - 2) = 4.59587 eV 1 --> G_4 e( 3 - 3) = 10.33114 eV 1 --> G_4 e( 4 - 4) = 10.34158 eV 1 --> G_3 e( 5 - 5) = 10.41221 eV 1 --> G_4 e( 6 - 6) = 11.39108 eV 1 --> G_3 e( 7 - 7) = 11.51625 eV 1 --> G_3 e( 8 - 8) = 12.25084 eV 1 --> G_3 e( 9 - 9) = 12.25450 eV 1 --> G_4 e( 10 - 10) = 12.33753 eV 1 --> G_3 e( 11 - 11) = 14.15444 eV 1 --> G_4 e( 12 - 12) = 14.31436 eV 1 --> G_4 e( 13 - 13) = 35.76207 eV 1 --> G_4 e( 14 - 14) = 35.91390 eV 1 --> G_3 e( 15 - 16) = 36.71889 eV 2 --> G_3 e( 15 - 16) = 36.71889 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.07500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 4.38323 eV 1 --> G_3 e( 2 - 2) = 4.50805 eV 1 --> G_4 e( 3 - 3) = 10.32716 eV 1 --> G_4 e( 4 - 4) = 10.34247 eV 1 --> G_3 e( 5 - 5) = 10.39412 eV 1 --> G_4 e( 6 - 6) = 11.42904 eV 1 --> G_3 e( 7 - 7) = 11.50158 eV 1 --> G_3 e( 8 - 8) = 12.25077 eV 1 --> G_3 e( 9 - 9) = 12.25867 eV 1 --> G_4 e( 10 - 10) = 12.31642 eV 1 --> G_3 e( 11 - 11) = 14.20514 eV 1 --> G_4 e( 12 - 12) = 14.29551 eV 1 --> G_4 e( 13 - 13) = 36.17671 eV 1 --> G_4 e( 14 - 14) = 36.37989 eV 1 --> G_3 e( 15 - 16) = 36.79102 eV 2 --> G_3 e( 15 - 16) = 36.79102 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.05000, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 4.32042 eV 1 --> G_3 e( 2 - 2) = 4.44506 eV 1 --> G_4 e( 3 - 3) = 10.32243 eV 1 --> G_4 e( 4 - 4) = 10.34340 eV 1 --> G_3 e( 5 - 5) = 10.38300 eV 1 --> G_4 e( 6 - 6) = 11.45586 eV 1 --> G_3 e( 7 - 7) = 11.49144 eV 1 --> G_3 e( 8 - 8) = 12.24839 eV 1 --> G_3 e( 9 - 9) = 12.26202 eV 1 --> G_4 e( 10 - 10) = 12.30370 eV 1 --> G_3 e( 11 - 11) = 14.24131 eV 1 --> G_4 e( 12 - 12) = 14.28209 eV 1 --> G_4 e( 13 - 13) = 36.52818 eV 1 --> G_4 e( 14 - 14) = 36.78180 eV 1 --> G_3 e( 15 - 16) = 36.83253 eV 2 --> G_3 e( 15 - 16) = 36.83253 eV 2 --> G_4 ************************************************************************** ************************************************************************** xk=( 0.02500, 0.00000, 0.00000 ) Band symmetry, C_2v (mm2) [C_s (m) ] magnetic double point group, using C_s (m) e( 1 - 1) = 4.28260 eV 1 --> G_3 e( 2 - 2) = 4.40715 eV 1 --> G_4 e( 3 - 3) = 10.31827 eV 1 --> G_4 e( 4 - 4) = 10.34373 eV 1 --> G_3 e( 5 - 5) = 10.37728 eV 1 --> G_4 e( 6 - 6) = 11.47140 eV 1 --> G_3 e( 7 - 7) = 11.48568 eV 1 --> G_3 e( 8 - 8) = 12.24507 eV 1 --> G_3 e( 9 - 9) = 12.26383 eV 1 --> G_4 e( 10 - 10) = 12.29764 eV 1 --> G_3 e( 11 - 11) = 14.26304 eV 1 --> G_4 e( 12 - 12) = 14.27376 eV 1 --> G_4 e( 13 - 13) = 36.77140 eV 1 --> G_4 e( 14 - 15) = 36.85335 eV 2 --> G_3 e( 14 - 15) = 36.85335 eV 2 --> G_4 e( 16 - 16) = 37.06591 eV 1 --> G_3 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) the magnetic double point group is D_4h(4/mmm) [C_4h (4/m) ] using the double point group C_4h (4/m) there are 16 classes and 8 irreducible representations the character table: E -E C4 -C4 C4^2 -C4^2 C4^3 -C4^3 i -i S4^3 -S4^3 G_5+ 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 1.00 -1.00 0.71 -0.71 G_6+ 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 1.00 -1.00 0.71 -0.71 G_7+ 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 1.00 -1.00 -0.71 0.71 G_8+ 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 1.00 -1.00 -0.71 0.71 G_5- 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 -1.00 1.00 -0.71 0.71 G_6- 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 -1.00 1.00 -0.71 0.71 G_7- 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 -1.00 1.00 0.71 -0.71 G_8- 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 -1.00 1.00 0.71 -0.71 s_h -s_h S4 -S4 G_5+ 0.00 0.00 0.71 -0.71 G_6+ 0.00 0.00 0.71 -0.71 G_7+ 0.00 0.00 -0.71 0.71 G_8+ 0.00 0.00 -0.71 0.71 G_5- 0.00 0.00 -0.71 0.71 G_6- 0.00 0.00 -0.71 0.71 G_7- 0.00 0.00 0.71 -0.71 G_8- 0.00 0.00 0.71 -0.71 imaginary part E -E C4 -C4 C4^2 -C4^2 C4^3 -C4^3 i -i S4^3 -S4^3 G_5+ 0.00 0.00 0.71 -0.71 1.00 -1.00 -0.71 0.71 0.00 0.00 0.71 -0.71 G_6+ 0.00 0.00 -0.71 0.71 -1.00 1.00 0.71 -0.71 0.00 0.00 -0.71 0.71 G_7+ 0.00 0.00 -0.71 0.71 1.00 -1.00 0.71 -0.71 0.00 0.00 -0.71 0.71 G_8+ 0.00 0.00 0.71 -0.71 -1.00 1.00 -0.71 0.71 0.00 0.00 0.71 -0.71 G_5- 0.00 0.00 0.71 -0.71 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 G_6- 0.00 0.00 -0.71 0.71 -1.00 1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 G_7- 0.00 0.00 -0.71 0.71 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 G_8- 0.00 0.00 0.71 -0.71 -1.00 1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 s_h -s_h S4 -S4 G_5+ 1.00 -1.00 -0.71 0.71 G_6+ -1.00 1.00 0.71 -0.71 G_7+ 1.00 -1.00 0.71 -0.71 G_8+ -1.00 1.00 -0.71 0.71 G_5- -1.00 1.00 0.71 -0.71 G_6- 1.00 -1.00 -0.71 0.71 G_7- -1.00 1.00 -0.71 0.71 G_8- 1.00 -1.00 0.71 -0.71 the symmetry operations in each class: E 1 C4^2 2 C4^3 3 C4 4 i 5 s_h 6 S4 7 S4^3 8 -E -1 -C4^2 -2 -C4^3 -3 -C4 -4 -i -5 -s_h -6 -S4 -7 -S4^3 -8 Band symmetry, D_4h(4/mmm) [C_4h (4/m) ] magnetic double point group, using C_4h (4/m) e( 1 - 1) = 4.26997 eV 1 --> G_5+ e( 2 - 2) = 4.39450 eV 1 --> G_6+ e( 3 - 3) = 10.31669 eV 1 --> G_6+ e( 4 - 4) = 10.34385 eV 1 --> G_7+ e( 5 - 5) = 10.37558 eV 1 --> G_8+ e( 6 - 6) = 11.47572 eV 1 --> G_5+ e( 7 - 7) = 11.48462 eV 1 --> G_7+ e( 8 - 8) = 12.24363 eV 1 --> G_5+ e( 9 - 9) = 12.26446 eV 1 --> G_8+ e( 10 - 10) = 12.29597 eV 1 --> G_7+ e( 11 - 11) = 14.27004 eV 1 --> G_6+ e( 12 - 12) = 14.27123 eV 1 --> G_8+ e( 13 - 15) = 36.85961 eV 3 --> G_5- e( 13 - 15) = 36.85961 eV 3 --> G_7- e( 13 - 15) = 36.85961 eV 3 --> G_8- e( 16 - 16) = 37.17063 eV 1 --> G_6- ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.02500 ) the magnetic double point group is D_4 (422) [C_4 (4) ] using the double point group C_4 (4) there are 8 classes and 4 irreducible representations the character table: E -E C4 -C4 C4^2 -C4^2 C4^3 -C4^3 G_5 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 G_6 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 G_7 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 G_8 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 imaginary part E -E C4 -C4 C4^2 -C4^2 C4^3 -C4^3 G_5 0.00 0.00 0.71 -0.71 1.00 -1.00 -0.71 0.71 G_6 0.00 0.00 -0.71 0.71 -1.00 1.00 0.71 -0.71 G_7 0.00 0.00 -0.71 0.71 1.00 -1.00 0.71 -0.71 G_8 0.00 0.00 0.71 -0.71 -1.00 1.00 -0.71 0.71 the symmetry operations in each class: E 1 C4^2 2 C4^3 3 C4 4 -E -1 -C4^2 -2 -C4^3 -3 -C4 -4 Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 4.28260 eV 1 --> G_5 e( 2 - 2) = 4.40715 eV 1 --> G_6 e( 3 - 3) = 10.31656 eV 1 --> G_6 e( 4 - 4) = 10.34724 eV 1 --> G_7 e( 5 - 5) = 10.37546 eV 1 --> G_8 e( 6 - 6) = 11.47787 eV 1 --> G_5 e( 7 - 7) = 11.47917 eV 1 --> G_7 e( 8 - 8) = 12.24302 eV 1 --> G_5 e( 9 - 9) = 12.26823 eV 1 --> G_8 e( 10 - 10) = 12.29533 eV 1 --> G_7 e( 11 - 11) = 14.26397 eV 1 --> G_8 e( 12 - 12) = 14.27284 eV 1 --> G_6 e( 13 - 13) = 36.77142 eV 1 --> G_8 e( 14 - 14) = 36.85350 eV 1 --> G_7 e( 15 - 15) = 37.06610 eV 1 --> G_7 e( 16 - 16) = 37.15806 eV 1 --> G_6 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.05000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 4.32042 eV 1 --> G_5 e( 2 - 2) = 4.44505 eV 1 --> G_6 e( 3 - 3) = 10.31622 eV 1 --> G_6 e( 4 - 4) = 10.35737 eV 1 --> G_7 e( 5 - 5) = 10.37514 eV 1 --> G_8 e( 6 - 6) = 11.46287 eV 1 --> G_7 e( 7 - 7) = 11.48431 eV 1 --> G_5 e( 8 - 8) = 12.24127 eV 1 --> G_5 e( 9 - 9) = 12.27954 eV 1 --> G_8 e( 10 - 10) = 12.29349 eV 1 --> G_7 e( 11 - 11) = 14.24224 eV 1 --> G_8 e( 12 - 12) = 14.28120 eV 1 --> G_6 e( 13 - 13) = 36.52820 eV 1 --> G_8 e( 14 - 14) = 36.78197 eV 1 --> G_7 e( 15 - 15) = 36.83185 eV 1 --> G_5 e( 16 - 16) = 36.83322 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.07500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 4.38323 eV 1 --> G_5 e( 2 - 2) = 4.50805 eV 1 --> G_6 e( 3 - 3) = 10.31527 eV 1 --> G_6 e( 4 - 4) = 10.37402 eV 1 --> G_7 e( 5 - 5) = 10.37422 eV 1 --> G_8 e( 6 - 6) = 11.43576 eV 1 --> G_7 e( 7 - 7) = 11.49462 eV 1 --> G_5 e( 8 - 8) = 12.23802 eV 1 --> G_5 e( 9 - 9) = 12.29009 eV 1 --> G_7 e( 10 - 10) = 12.29816 eV 1 --> G_8 e( 11 - 11) = 14.20609 eV 1 --> G_8 e( 12 - 12) = 14.29463 eV 1 --> G_6 e( 13 - 13) = 36.17674 eV 1 --> G_8 e( 14 - 14) = 36.38009 eV 1 --> G_7 e( 15 - 15) = 36.79276 eV 1 --> G_7 e( 16 - 16) = 37.03968 eV 1 --> G_6 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.10000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 4.47071 eV 1 --> G_5 e( 2 - 2) = 4.59586 eV 1 --> G_6 e( 3 - 3) = 10.31435 eV 1 --> G_6 e( 4 - 4) = 10.37336 eV 1 --> G_8 e( 5 - 5) = 10.39677 eV 1 --> G_7 e( 6 - 6) = 11.39766 eV 1 --> G_7 e( 7 - 7) = 11.50932 eV 1 --> G_5 e( 8 - 8) = 12.23399 eV 1 --> G_5 e( 9 - 9) = 12.28585 eV 1 --> G_7 e( 10 - 10) = 12.32370 eV 1 --> G_8 e( 11 - 11) = 14.15544 eV 1 --> G_8 e( 12 - 12) = 14.31349 eV 1 --> G_6 e( 13 - 13) = 35.76211 eV 1 --> G_8 e( 14 - 14) = 35.91412 eV 1 --> G_7 e( 15 - 15) = 36.71532 eV 1 --> G_5 e( 16 - 16) = 36.72260 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.12500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 4.58240 eV 1 --> G_5 e( 2 - 2) = 4.70812 eV 1 --> G_6 e( 3 - 3) = 10.31466 eV 1 --> G_6 e( 4 - 4) = 10.37374 eV 1 --> G_8 e( 5 - 5) = 10.42659 eV 1 --> G_7 e( 6 - 6) = 11.34957 eV 1 --> G_7 e( 7 - 7) = 11.52801 eV 1 --> G_5 e( 8 - 8) = 12.23044 eV 1 --> G_5 e( 9 - 9) = 12.28205 eV 1 --> G_7 e( 10 - 10) = 12.35707 eV 1 --> G_8 e( 11 - 11) = 14.09135 eV 1 --> G_8 e( 12 - 12) = 14.33716 eV 1 --> G_6 e( 13 - 13) = 35.31680 eV 1 --> G_8 e( 14 - 14) = 35.41926 eV 1 --> G_7 e( 15 - 15) = 36.61050 eV 1 --> G_7 e( 16 - 16) = 36.71890 eV 1 --> G_6 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.15000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 4.71765 eV 1 --> G_5 e( 2 - 2) = 4.84432 eV 1 --> G_6 e( 3 - 3) = 10.31590 eV 1 --> G_6 e( 4 - 4) = 10.37507 eV 1 --> G_8 e( 5 - 5) = 10.46263 eV 1 --> G_7 e( 6 - 6) = 11.29137 eV 1 --> G_7 e( 7 - 7) = 11.55050 eV 1 --> G_5 e( 8 - 8) = 12.22720 eV 1 --> G_5 e( 9 - 9) = 12.27852 eV 1 --> G_7 e( 10 - 10) = 12.39749 eV 1 --> G_8 e( 11 - 11) = 14.01381 eV 1 --> G_8 e( 12 - 12) = 14.36517 eV 1 --> G_6 e( 13 - 13) = 34.86166 eV 1 --> G_8 e( 14 - 14) = 34.91650 eV 1 --> G_7 e( 15 - 15) = 36.42132 eV 1 --> G_5 e( 16 - 16) = 36.44380 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.17500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 4.87567 eV 1 --> G_5 e( 2 - 2) = 5.00381 eV 1 --> G_6 e( 3 - 3) = 10.31855 eV 1 --> G_6 e( 4 - 4) = 10.37783 eV 1 --> G_8 e( 5 - 5) = 10.50459 eV 1 --> G_7 e( 6 - 6) = 11.22349 eV 1 --> G_7 e( 7 - 7) = 11.57667 eV 1 --> G_5 e( 8 - 8) = 12.22491 eV 1 --> G_5 e( 9 - 9) = 12.27590 eV 1 --> G_7 e( 10 - 10) = 12.44474 eV 1 --> G_8 e( 11 - 11) = 13.92330 eV 1 --> G_8 e( 12 - 12) = 14.39704 eV 1 --> G_6 e( 13 - 13) = 34.40967 eV 1 --> G_8 e( 14 - 14) = 34.41822 eV 1 --> G_7 e( 15 - 15) = 36.10459 eV 1 --> G_6 e( 16 - 16) = 36.15074 eV 1 --> G_8 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.20000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 5.05545 eV 1 --> G_5 e( 2 - 2) = 5.18584 eV 1 --> G_6 e( 3 - 3) = 10.32345 eV 1 --> G_6 e( 4 - 4) = 10.38287 eV 1 --> G_8 e( 5 - 5) = 10.55207 eV 1 --> G_7 e( 6 - 6) = 11.14660 eV 1 --> G_7 e( 7 - 7) = 11.60653 eV 1 --> G_5 e( 8 - 8) = 12.22452 eV 1 --> G_5 e( 9 - 9) = 12.27517 eV 1 --> G_7 e( 10 - 10) = 12.49854 eV 1 --> G_8 e( 11 - 11) = 13.82055 eV 1 --> G_8 e( 12 - 12) = 14.43231 eV 1 --> G_6 e( 13 - 13) = 33.93185 eV 1 --> G_7 e( 14 - 14) = 33.96890 eV 1 --> G_8 e( 15 - 15) = 35.68920 eV 1 --> G_6 e( 16 - 16) = 35.75106 eV 1 --> G_8 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.22500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 5.25573 eV 1 --> G_5 e( 2 - 2) = 5.38946 eV 1 --> G_6 e( 3 - 3) = 10.33055 eV 1 --> G_6 e( 4 - 4) = 10.39014 eV 1 --> G_8 e( 5 - 5) = 10.60434 eV 1 --> G_7 e( 6 - 6) = 11.06136 eV 1 --> G_7 e( 7 - 7) = 11.63982 eV 1 --> G_5 e( 8 - 8) = 12.22618 eV 1 --> G_5 e( 9 - 9) = 12.27646 eV 1 --> G_7 e( 10 - 10) = 12.55856 eV 1 --> G_8 e( 11 - 11) = 13.70596 eV 1 --> G_8 e( 12 - 12) = 14.47007 eV 1 --> G_6 e( 13 - 13) = 33.46191 eV 1 --> G_7 e( 14 - 14) = 33.54434 eV 1 --> G_8 e( 15 - 15) = 35.21780 eV 1 --> G_6 e( 16 - 16) = 35.29469 eV 1 --> G_8 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.25000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 5.47497 eV 1 --> G_5 e( 2 - 2) = 5.61359 eV 1 --> G_6 e( 3 - 3) = 10.34075 eV 1 --> G_6 e( 4 - 4) = 10.40055 eV 1 --> G_8 e( 5 - 5) = 10.65966 eV 1 --> G_7 e( 6 - 6) = 10.96983 eV 1 --> G_7 e( 7 - 7) = 11.67722 eV 1 --> G_5 e( 8 - 8) = 12.23097 eV 1 --> G_5 e( 9 - 9) = 12.28085 eV 1 --> G_7 e( 10 - 10) = 12.62440 eV 1 --> G_8 e( 11 - 11) = 13.58050 eV 1 --> G_8 e( 12 - 12) = 14.51033 eV 1 --> G_6 e( 13 - 13) = 33.01119 eV 1 --> G_7 e( 14 - 14) = 33.13908 eV 1 --> G_8 e( 15 - 15) = 34.70489 eV 1 --> G_6 e( 16 - 16) = 34.79528 eV 1 --> G_8 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.27500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 5.71130 eV 1 --> G_5 e( 2 - 2) = 5.85690 eV 1 --> G_6 e( 3 - 3) = 10.35468 eV 1 --> G_6 e( 4 - 4) = 10.41472 eV 1 --> G_8 e( 5 - 5) = 10.71042 eV 1 --> G_7 e( 6 - 6) = 10.87987 eV 1 --> G_7 e( 7 - 7) = 11.71907 eV 1 --> G_5 e( 8 - 8) = 12.23966 eV 1 --> G_5 e( 9 - 9) = 12.28912 eV 1 --> G_7 e( 10 - 10) = 12.69553 eV 1 --> G_8 e( 11 - 11) = 13.44521 eV 1 --> G_8 e( 12 - 12) = 14.55247 eV 1 --> G_6 e( 13 - 13) = 32.58137 eV 1 --> G_7 e( 14 - 14) = 32.75498 eV 1 --> G_8 e( 15 - 15) = 34.16307 eV 1 --> G_6 e( 16 - 16) = 34.26516 eV 1 --> G_8 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.30000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 5.96238 eV 1 --> G_5 e( 2 - 2) = 6.11785 eV 1 --> G_6 e( 3 - 3) = 10.37294 eV 1 --> G_6 e( 4 - 4) = 10.43325 eV 1 --> G_8 e( 5 - 5) = 10.70440 eV 1 --> G_7 e( 6 - 6) = 10.84398 eV 1 --> G_7 e( 7 - 7) = 11.76627 eV 1 --> G_5 e( 8 - 8) = 12.25307 eV 1 --> G_5 e( 9 - 9) = 12.30206 eV 1 --> G_7 e( 10 - 10) = 12.77105 eV 1 --> G_8 e( 11 - 11) = 13.30148 eV 1 --> G_8 e( 12 - 12) = 14.59624 eV 1 --> G_6 e( 13 - 13) = 32.17340 eV 1 --> G_7 e( 14 - 14) = 32.39302 eV 1 --> G_8 e( 15 - 15) = 33.60224 eV 1 --> G_6 e( 16 - 16) = 33.71427 eV 1 --> G_8 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.32500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 6.22535 eV 1 --> G_5 e( 2 - 2) = 6.39462 eV 1 --> G_6 e( 3 - 3) = 10.39612 eV 1 --> G_6 e( 4 - 4) = 10.45675 eV 1 --> G_8 e( 5 - 5) = 10.60970 eV 1 --> G_7 e( 6 - 6) = 10.89434 eV 1 --> G_7 e( 7 - 7) = 11.82021 eV 1 --> G_5 e( 8 - 8) = 12.27198 eV 1 --> G_5 e( 9 - 9) = 12.32041 eV 1 --> G_7 e( 10 - 10) = 12.84848 eV 1 --> G_8 e( 11 - 11) = 13.15241 eV 1 --> G_8 e( 12 - 12) = 14.64166 eV 1 --> G_6 e( 13 - 13) = 31.78772 eV 1 --> G_7 e( 14 - 14) = 32.05361 eV 1 --> G_8 e( 15 - 15) = 33.02977 eV 1 --> G_6 e( 16 - 16) = 33.15021 eV 1 --> G_8 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.35000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 6.49670 eV 1 --> G_5 e( 2 - 2) = 6.68503 eV 1 --> G_6 e( 3 - 3) = 10.42449 eV 1 --> G_6 e( 4 - 4) = 10.48548 eV 1 --> G_8 e( 5 - 5) = 10.49157 eV 1 --> G_7 e( 6 - 6) = 10.96565 eV 1 --> G_7 e( 7 - 7) = 11.88389 eV 1 --> G_5 e( 8 - 8) = 12.29705 eV 1 --> G_5 e( 9 - 9) = 12.34471 eV 1 --> G_7 e( 10 - 10) = 12.90443 eV 1 --> G_8 e( 11 - 11) = 13.02156 eV 1 --> G_8 e( 12 - 12) = 14.69005 eV 1 --> G_6 e( 13 - 13) = 31.42442 eV 1 --> G_7 e( 14 - 14) = 31.73671 eV 1 --> G_8 e( 15 - 15) = 32.45110 eV 1 --> G_6 e( 16 - 16) = 32.57870 eV 1 --> G_8 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.37500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 6.77212 eV 1 --> G_5 e( 2 - 2) = 6.98650 eV 1 --> G_6 e( 3 - 3) = 10.36503 eV 1 --> G_7 e( 4 - 4) = 10.45918 eV 1 --> G_6 e( 5 - 5) = 10.52054 eV 1 --> G_8 e( 6 - 6) = 11.04401 eV 1 --> G_7 e( 7 - 7) = 11.95817 eV 1 --> G_5 e( 8 - 8) = 12.32949 eV 1 --> G_5 e( 9 - 9) = 12.37605 eV 1 --> G_7 e( 10 - 10) = 12.80038 eV 1 --> G_8 e( 11 - 11) = 13.04889 eV 1 --> G_8 e( 12 - 12) = 14.74028 eV 1 --> G_6 e( 13 - 13) = 31.08333 eV 1 --> G_7 e( 14 - 14) = 31.44191 eV 1 --> G_8 e( 15 - 15) = 31.87030 eV 1 --> G_6 e( 16 - 16) = 32.00407 eV 1 --> G_8 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.40000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 7.04635 eV 1 --> G_5 e( 2 - 2) = 7.29594 eV 1 --> G_6 e( 3 - 3) = 10.23305 eV 1 --> G_7 e( 4 - 4) = 10.50029 eV 1 --> G_6 e( 5 - 5) = 10.56207 eV 1 --> G_8 e( 6 - 6) = 11.12645 eV 1 --> G_7 e( 7 - 7) = 12.04698 eV 1 --> G_5 e( 8 - 8) = 12.37005 eV 1 --> G_5 e( 9 - 9) = 12.41477 eV 1 --> G_7 e( 10 - 10) = 12.63537 eV 1 --> G_8 e( 11 - 11) = 13.13562 eV 1 --> G_8 e( 12 - 12) = 14.79409 eV 1 --> G_6 e( 13 - 13) = 30.76406 eV 1 --> G_7 e( 14 - 14) = 31.16829 eV 1 --> G_8 e( 15 - 15) = 31.29043 eV 1 --> G_6 e( 16 - 16) = 31.42997 eV 1 --> G_8 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.42500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 7.31339 eV 1 --> G_5 e( 2 - 2) = 7.60980 eV 1 --> G_6 e( 3 - 3) = 10.09712 eV 1 --> G_7 e( 4 - 4) = 10.54835 eV 1 --> G_6 e( 5 - 5) = 10.61056 eV 1 --> G_8 e( 6 - 6) = 11.21185 eV 1 --> G_7 e( 7 - 7) = 12.15553 eV 1 --> G_5 e( 8 - 8) = 12.42049 eV 1 --> G_5 e( 9 - 9) = 12.46157 eV 1 --> G_7 e( 10 - 10) = 12.46195 eV 1 --> G_8 e( 11 - 11) = 13.22987 eV 1 --> G_8 e( 12 - 12) = 14.85500 eV 1 --> G_6 e( 13 - 13) = 30.46609 eV 1 --> G_7 e( 14 - 14) = 30.71388 eV 1 --> G_6 e( 15 - 15) = 30.85148 eV 1 --> G_8 e( 16 - 16) = 30.92260 eV 1 --> G_8 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.45000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 7.56633 eV 1 --> G_5 e( 2 - 2) = 7.92377 eV 1 --> G_6 e( 3 - 3) = 9.95839 eV 1 --> G_7 e( 4 - 4) = 10.60365 eV 1 --> G_6 e( 5 - 5) = 10.66629 eV 1 --> G_8 e( 6 - 6) = 11.29945 eV 1 --> G_7 e( 7 - 7) = 12.28490 eV 1 --> G_8 e( 8 - 8) = 12.28594 eV 1 --> G_5 e( 9 - 9) = 12.48441 eV 1 --> G_5 e( 10 - 10) = 12.51685 eV 1 --> G_7 e( 11 - 11) = 13.32749 eV 1 --> G_8 e( 12 - 12) = 14.92537 eV 1 --> G_6 e( 13 - 13) = 30.14262 eV 1 --> G_6 e( 14 - 14) = 30.18875 eV 1 --> G_7 e( 15 - 15) = 30.28818 eV 1 --> G_8 e( 16 - 16) = 30.68647 eV 1 --> G_8 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.47500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 7.79791 eV 1 --> G_5 e( 2 - 2) = 8.23286 eV 1 --> G_6 e( 3 - 3) = 9.81787 eV 1 --> G_7 e( 4 - 4) = 10.66587 eV 1 --> G_6 e( 5 - 5) = 10.72893 eV 1 --> G_8 e( 6 - 6) = 11.38846 eV 1 --> G_7 e( 7 - 7) = 12.10612 eV 1 --> G_8 e( 8 - 8) = 12.43069 eV 1 --> G_5 e( 9 - 9) = 12.57541 eV 1 --> G_5 e( 10 - 10) = 12.58047 eV 1 --> G_7 e( 11 - 11) = 13.42703 eV 1 --> G_8 e( 12 - 12) = 15.00897 eV 1 --> G_6 e( 13 - 13) = 29.57826 eV 1 --> G_6 e( 14 - 14) = 29.72749 eV 1 --> G_8 e( 15 - 15) = 29.93115 eV 1 --> G_7 e( 16 - 16) = 30.18947 eV 1 --> G_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.50000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.00146 eV 1 --> G_5 e( 2 - 2) = 8.53153 eV 1 --> G_6 e( 3 - 3) = 9.67658 eV 1 --> G_7 e( 4 - 4) = 10.73629 eV 1 --> G_6 e( 5 - 5) = 10.79969 eV 1 --> G_8 e( 6 - 6) = 11.47857 eV 1 --> G_7 e( 7 - 7) = 11.92713 eV 1 --> G_8 e( 8 - 8) = 12.55569 eV 1 --> G_5 e( 9 - 9) = 12.65375 eV 1 --> G_7 e( 10 - 10) = 12.73569 eV 1 --> G_5 e( 11 - 11) = 13.52798 eV 1 --> G_8 e( 12 - 12) = 15.11123 eV 1 --> G_6 e( 13 - 13) = 29.02226 eV 1 --> G_6 e( 14 - 14) = 29.17450 eV 1 --> G_8 e( 15 - 15) = 29.63497 eV 1 --> G_5 e( 16 - 16) = 29.69021 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.52500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.17152 eV 1 --> G_5 e( 2 - 2) = 8.81365 eV 1 --> G_6 e( 3 - 3) = 9.53547 eV 1 --> G_7 e( 4 - 4) = 10.81440 eV 1 --> G_6 e( 5 - 5) = 10.87799 eV 1 --> G_8 e( 6 - 6) = 11.56904 eV 1 --> G_7 e( 7 - 7) = 11.74923 eV 1 --> G_8 e( 8 - 8) = 12.65552 eV 1 --> G_5 e( 9 - 9) = 12.73634 eV 1 --> G_7 e( 10 - 10) = 12.97521 eV 1 --> G_5 e( 11 - 11) = 13.62946 eV 1 --> G_8 e( 12 - 12) = 15.23765 eV 1 --> G_6 e( 13 - 13) = 28.47595 eV 1 --> G_6 e( 14 - 14) = 28.63076 eV 1 --> G_8 e( 15 - 15) = 29.08696 eV 1 --> G_5 e( 16 - 16) = 29.23585 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.55000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.30491 eV 1 --> G_5 e( 2 - 2) = 9.07298 eV 1 --> G_6 e( 3 - 3) = 9.39546 eV 1 --> G_7 e( 4 - 4) = 10.90015 eV 1 --> G_6 e( 5 - 5) = 10.96357 eV 1 --> G_8 e( 6 - 6) = 11.57382 eV 1 --> G_8 e( 7 - 7) = 11.65929 eV 1 --> G_7 e( 8 - 8) = 12.75346 eV 1 --> G_5 e( 9 - 9) = 12.82830 eV 1 --> G_7 e( 10 - 10) = 13.27383 eV 1 --> G_5 e( 11 - 11) = 13.73080 eV 1 --> G_8 e( 12 - 12) = 15.39444 eV 1 --> G_6 e( 13 - 13) = 27.94058 eV 1 --> G_6 e( 14 - 14) = 28.09765 eV 1 --> G_8 e( 15 - 15) = 28.54693 eV 1 --> G_5 e( 16 - 16) = 28.69897 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.57500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.40081 eV 1 --> G_5 e( 2 - 2) = 9.25748 eV 1 --> G_7 e( 3 - 3) = 9.30348 eV 1 --> G_6 e( 4 - 4) = 10.99322 eV 1 --> G_6 e( 5 - 5) = 11.05531 eV 1 --> G_8 e( 6 - 6) = 11.40279 eV 1 --> G_8 e( 7 - 7) = 11.74874 eV 1 --> G_7 e( 8 - 8) = 12.85703 eV 1 --> G_5 e( 9 - 9) = 12.92940 eV 1 --> G_7 e( 10 - 10) = 13.62421 eV 1 --> G_5 e( 11 - 11) = 13.83132 eV 1 --> G_8 e( 12 - 12) = 15.58729 eV 1 --> G_6 e( 13 - 13) = 27.41741 eV 1 --> G_6 e( 14 - 14) = 27.57645 eV 1 --> G_8 e( 15 - 15) = 28.01626 eV 1 --> G_5 e( 16 - 16) = 28.17056 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.60000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.46171 eV 1 --> G_5 e( 2 - 2) = 9.12240 eV 1 --> G_7 e( 3 - 3) = 9.50080 eV 1 --> G_6 e( 4 - 4) = 11.09349 eV 1 --> G_6 e( 5 - 5) = 11.14348 eV 1 --> G_8 e( 6 - 6) = 11.24684 eV 1 --> G_8 e( 7 - 7) = 11.83682 eV 1 --> G_7 e( 8 - 8) = 12.96834 eV 1 --> G_5 e( 9 - 9) = 13.03967 eV 1 --> G_7 e( 10 - 10) = 13.93036 eV 1 --> G_8 e( 11 - 11) = 14.02320 eV 1 --> G_5 e( 12 - 12) = 15.82218 eV 1 --> G_6 e( 13 - 13) = 26.90771 eV 1 --> G_6 e( 14 - 14) = 27.06849 eV 1 --> G_8 e( 15 - 15) = 27.49637 eV 1 --> G_5 e( 16 - 16) = 27.65253 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.62500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.49106 eV 1 --> G_5 e( 2 - 2) = 8.99108 eV 1 --> G_7 e( 3 - 3) = 9.66183 eV 1 --> G_6 e( 4 - 4) = 11.05984 eV 1 --> G_8 e( 5 - 5) = 11.20035 eV 1 --> G_6 e( 6 - 6) = 11.27455 eV 1 --> G_8 e( 7 - 7) = 11.92295 eV 1 --> G_7 e( 8 - 8) = 13.08761 eV 1 --> G_5 e( 9 - 9) = 13.15857 eV 1 --> G_7 e( 10 - 10) = 14.02730 eV 1 --> G_8 e( 11 - 11) = 14.46642 eV 1 --> G_5 e( 12 - 12) = 16.10224 eV 1 --> G_6 e( 13 - 13) = 26.41282 eV 1 --> G_6 e( 14 - 14) = 26.57513 eV 1 --> G_8 e( 15 - 15) = 26.98863 eV 1 --> G_5 e( 16 - 16) = 27.14640 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.65000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.49357 eV 1 --> G_5 e( 2 - 2) = 8.86433 eV 1 --> G_7 e( 3 - 3) = 9.78589 eV 1 --> G_6 e( 4 - 4) = 10.90686 eV 1 --> G_8 e( 5 - 5) = 11.31308 eV 1 --> G_6 e( 6 - 6) = 11.38372 eV 1 --> G_8 e( 7 - 7) = 12.00657 eV 1 --> G_7 e( 8 - 8) = 13.21457 eV 1 --> G_5 e( 9 - 9) = 13.28553 eV 1 --> G_7 e( 10 - 10) = 14.12147 eV 1 --> G_8 e( 11 - 11) = 14.94929 eV 1 --> G_5 e( 12 - 12) = 16.42888 eV 1 --> G_6 e( 13 - 13) = 25.93416 eV 1 --> G_6 e( 14 - 14) = 26.09781 eV 1 --> G_8 e( 15 - 15) = 26.49453 eV 1 --> G_5 e( 16 - 16) = 26.65369 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.67500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.47428 eV 1 --> G_5 e( 2 - 2) = 8.74291 eV 1 --> G_7 e( 3 - 3) = 9.87447 eV 1 --> G_6 e( 4 - 4) = 10.75821 eV 1 --> G_8 e( 5 - 5) = 11.43079 eV 1 --> G_6 e( 6 - 6) = 11.50067 eV 1 --> G_8 e( 7 - 7) = 12.08714 eV 1 --> G_7 e( 8 - 8) = 13.34859 eV 1 --> G_5 e( 9 - 9) = 13.41972 eV 1 --> G_7 e( 10 - 10) = 14.21227 eV 1 --> G_8 e( 11 - 11) = 15.46701 eV 1 --> G_5 e( 12 - 12) = 16.80122 eV 1 --> G_6 e( 13 - 13) = 25.47325 eV 1 --> G_6 e( 14 - 14) = 25.63809 eV 1 --> G_8 e( 15 - 15) = 26.01563 eV 1 --> G_5 e( 16 - 16) = 26.17601 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.70000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.43857 eV 1 --> G_5 e( 2 - 2) = 8.62755 eV 1 --> G_7 e( 3 - 3) = 9.93133 eV 1 --> G_6 e( 4 - 4) = 10.61693 eV 1 --> G_8 e( 5 - 5) = 11.55243 eV 1 --> G_6 e( 6 - 6) = 11.62210 eV 1 --> G_8 e( 7 - 7) = 12.16412 eV 1 --> G_7 e( 8 - 8) = 13.48876 eV 1 --> G_5 e( 9 - 9) = 13.56015 eV 1 --> G_7 e( 10 - 10) = 14.29909 eV 1 --> G_8 e( 11 - 11) = 16.01504 eV 1 --> G_5 e( 12 - 12) = 17.21669 eV 1 --> G_6 e( 13 - 13) = 25.03179 eV 1 --> G_6 e( 14 - 14) = 25.19766 eV 1 --> G_8 e( 15 - 15) = 25.55367 eV 1 --> G_5 e( 16 - 16) = 25.71511 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.72500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.39005 eV 1 --> G_5 e( 2 - 2) = 8.51892 eV 1 --> G_7 e( 3 - 3) = 9.96036 eV 1 --> G_6 e( 4 - 4) = 10.48413 eV 1 --> G_8 e( 5 - 5) = 11.67659 eV 1 --> G_6 e( 6 - 6) = 11.74625 eV 1 --> G_8 e( 7 - 7) = 12.23701 eV 1 --> G_7 e( 8 - 8) = 13.63372 eV 1 --> G_5 e( 9 - 9) = 13.70540 eV 1 --> G_7 e( 10 - 10) = 14.38134 eV 1 --> G_8 e( 11 - 11) = 16.58828 eV 1 --> G_5 e( 12 - 12) = 17.67002 eV 1 --> G_6 e( 13 - 13) = 24.61161 eV 1 --> G_6 e( 14 - 14) = 24.77837 eV 1 --> G_8 e( 15 - 15) = 25.11058 eV 1 --> G_5 e( 16 - 16) = 25.27296 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.75000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.33334 eV 1 --> G_5 e( 2 - 2) = 8.41821 eV 1 --> G_7 e( 3 - 3) = 9.96713 eV 1 --> G_6 e( 4 - 4) = 10.36112 eV 1 --> G_8 e( 5 - 5) = 11.80218 eV 1 --> G_6 e( 6 - 6) = 11.87190 eV 1 --> G_8 e( 7 - 7) = 12.30542 eV 1 --> G_7 e( 8 - 8) = 13.78237 eV 1 --> G_5 e( 9 - 9) = 13.85430 eV 1 --> G_7 e( 10 - 10) = 14.45860 eV 1 --> G_8 e( 11 - 11) = 17.18237 eV 1 --> G_5 e( 12 - 12) = 18.15594 eV 1 --> G_6 e( 13 - 13) = 24.21477 eV 1 --> G_6 e( 14 - 14) = 24.38228 eV 1 --> G_8 e( 15 - 15) = 24.68856 eV 1 --> G_5 e( 16 - 16) = 24.85175 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.77500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.27194 eV 1 --> G_5 e( 2 - 2) = 8.32485 eV 1 --> G_7 e( 3 - 3) = 9.95684 eV 1 --> G_6 e( 4 - 4) = 10.24753 eV 1 --> G_8 e( 5 - 5) = 11.92654 eV 1 --> G_6 e( 6 - 6) = 11.99634 eV 1 --> G_8 e( 7 - 7) = 12.36869 eV 1 --> G_7 e( 8 - 8) = 13.93183 eV 1 --> G_5 e( 9 - 9) = 14.00396 eV 1 --> G_7 e( 10 - 10) = 14.53009 eV 1 --> G_8 e( 11 - 11) = 17.79249 eV 1 --> G_5 e( 12 - 12) = 18.66786 eV 1 --> G_6 e( 13 - 13) = 23.84353 eV 1 --> G_6 e( 14 - 14) = 24.01161 eV 1 --> G_8 e( 15 - 15) = 24.29010 eV 1 --> G_5 e( 16 - 16) = 24.45399 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.80000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.20898 eV 1 --> G_5 e( 2 - 2) = 8.23993 eV 1 --> G_7 e( 3 - 3) = 9.93440 eV 1 --> G_6 e( 4 - 4) = 10.14444 eV 1 --> G_8 e( 5 - 5) = 12.04799 eV 1 --> G_6 e( 6 - 6) = 12.11785 eV 1 --> G_8 e( 7 - 7) = 12.42593 eV 1 --> G_7 e( 8 - 8) = 14.08008 eV 1 --> G_5 e( 9 - 9) = 14.15233 eV 1 --> G_7 e( 10 - 10) = 14.59491 eV 1 --> G_8 e( 11 - 11) = 18.41324 eV 1 --> G_5 e( 12 - 12) = 19.19827 eV 1 --> G_6 e( 13 - 13) = 23.50037 eV 1 --> G_6 e( 14 - 14) = 23.66882 eV 1 --> G_8 e( 15 - 15) = 23.91804 eV 1 --> G_5 e( 16 - 16) = 24.08251 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.82500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.14743 eV 1 --> G_5 e( 2 - 2) = 8.16392 eV 1 --> G_7 e( 3 - 3) = 9.90455 eV 1 --> G_6 e( 4 - 4) = 10.05235 eV 1 --> G_8 e( 5 - 5) = 12.16429 eV 1 --> G_6 e( 6 - 6) = 12.23418 eV 1 --> G_8 e( 7 - 7) = 12.47789 eV 1 --> G_7 e( 8 - 8) = 14.22440 eV 1 --> G_5 e( 9 - 9) = 14.29667 eV 1 --> G_7 e( 10 - 10) = 14.65370 eV 1 --> G_8 e( 11 - 11) = 19.03816 eV 1 --> G_5 e( 12 - 12) = 19.73851 eV 1 --> G_6 e( 13 - 13) = 23.18805 eV 1 --> G_6 e( 14 - 14) = 23.35655 eV 1 --> G_8 e( 15 - 15) = 23.57570 eV 1 --> G_5 e( 16 - 16) = 23.74055 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.85000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.08997 eV 1 --> G_5 e( 2 - 2) = 8.09727 eV 1 --> G_7 e( 3 - 3) = 9.87145 eV 1 --> G_6 e( 4 - 4) = 9.97176 eV 1 --> G_8 e( 5 - 5) = 12.27339 eV 1 --> G_6 e( 6 - 6) = 12.34327 eV 1 --> G_8 e( 7 - 7) = 12.52369 eV 1 --> G_7 e( 8 - 8) = 14.36194 eV 1 --> G_5 e( 9 - 9) = 14.43413 eV 1 --> G_7 e( 10 - 10) = 14.70555 eV 1 --> G_8 e( 11 - 11) = 19.65889 eV 1 --> G_5 e( 12 - 12) = 20.27799 eV 1 --> G_6 e( 13 - 13) = 22.90956 eV 1 --> G_6 e( 14 - 14) = 23.07762 eV 1 --> G_8 e( 15 - 15) = 23.26677 eV 1 --> G_5 e( 16 - 16) = 23.43173 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.87500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 8.03774 eV 1 --> G_5 e( 2 - 2) = 8.04024 eV 1 --> G_7 e( 3 - 3) = 9.83780 eV 1 --> G_6 e( 4 - 4) = 9.90290 eV 1 --> G_8 e( 5 - 5) = 12.37161 eV 1 --> G_6 e( 6 - 6) = 12.44142 eV 1 --> G_8 e( 7 - 7) = 12.56295 eV 1 --> G_7 e( 8 - 8) = 14.48796 eV 1 --> G_5 e( 9 - 9) = 14.55999 eV 1 --> G_7 e( 10 - 10) = 14.75001 eV 1 --> G_8 e( 11 - 11) = 20.26358 eV 1 --> G_5 e( 12 - 12) = 20.80270 eV 1 --> G_6 e( 13 - 13) = 22.66829 eV 1 --> G_6 e( 14 - 14) = 22.83491 eV 1 --> G_8 e( 15 - 15) = 22.99544 eV 1 --> G_5 e( 16 - 16) = 23.15999 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.90000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 2) = 7.99267 eV 2 --> G_5 e( 1 - 2) = 7.99267 eV 2 --> G_7 e( 3 - 3) = 9.80655 eV 1 --> G_6 e( 4 - 4) = 9.84578 eV 1 --> G_8 e( 5 - 5) = 12.45649 eV 1 --> G_6 e( 6 - 6) = 12.52622 eV 1 --> G_8 e( 7 - 7) = 12.59503 eV 1 --> G_7 e( 8 - 8) = 14.59869 eV 1 --> G_5 e( 9 - 9) = 14.67050 eV 1 --> G_7 e( 10 - 10) = 14.78637 eV 1 --> G_8 e( 11 - 11) = 20.83523 eV 1 --> G_5 e( 12 - 12) = 21.29374 eV 1 --> G_6 e( 13 - 13) = 22.46846 eV 1 --> G_6 e( 14 - 14) = 22.63132 eV 1 --> G_8 e( 15 - 15) = 22.76639 eV 1 --> G_5 e( 16 - 16) = 22.92953 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.92500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 7.95585 eV 1 --> G_7 e( 2 - 2) = 7.95637 eV 1 --> G_5 e( 3 - 3) = 9.78011 eV 1 --> G_6 e( 4 - 4) = 9.80139 eV 1 --> G_8 e( 5 - 5) = 12.52595 eV 1 --> G_6 e( 6 - 6) = 12.59559 eV 1 --> G_8 e( 7 - 7) = 12.62053 eV 1 --> G_7 e( 8 - 8) = 14.69061 eV 1 --> G_5 e( 9 - 9) = 14.76217 eV 1 --> G_7 e( 10 - 10) = 14.81527 eV 1 --> G_8 e( 11 - 11) = 21.34803 eV 1 --> G_5 e( 12 - 12) = 21.72198 eV 1 --> G_6 e( 13 - 13) = 22.31837 eV 1 --> G_6 e( 14 - 14) = 22.46958 eV 1 --> G_8 e( 15 - 15) = 22.58515 eV 1 --> G_5 e( 16 - 16) = 22.74462 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.95000 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 7.92918 eV 1 --> G_7 e( 2 - 2) = 7.92964 eV 1 --> G_5 e( 3 - 3) = 9.75997 eV 1 --> G_6 e( 4 - 4) = 9.76933 eV 1 --> G_8 e( 5 - 5) = 12.57683 eV 1 --> G_6 e( 6 - 6) = 12.63880 eV 1 --> G_7 e( 7 - 7) = 12.64637 eV 1 --> G_8 e( 8 - 8) = 14.75900 eV 1 --> G_5 e( 9 - 9) = 14.83033 eV 1 --> G_7 e( 10 - 10) = 14.83598 eV 1 --> G_8 e( 11 - 11) = 21.76292 eV 1 --> G_5 e( 12 - 12) = 22.01539 eV 1 --> G_6 e( 13 - 13) = 22.26181 eV 1 --> G_6 e( 14 - 14) = 22.35211 eV 1 --> G_8 e( 15 - 15) = 22.45910 eV 1 --> G_5 e( 16 - 16) = 22.60915 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.97500 ) Band symmetry, D_4 (422) [C_4 (4) ] magnetic double point group, using C_4 (4) e( 1 - 1) = 7.91305 eV 1 --> G_5 e( 2 - 2) = 7.91324 eV 1 --> G_7 e( 3 - 3) = 9.74722 eV 1 --> G_6 e( 4 - 4) = 9.75016 eV 1 --> G_8 e( 5 - 5) = 12.60829 eV 1 --> G_6 e( 6 - 6) = 12.64982 eV 1 --> G_7 e( 7 - 7) = 12.67778 eV 1 --> G_8 e( 8 - 8) = 14.80159 eV 1 --> G_5 e( 9 - 9) = 14.84847 eV 1 --> G_8 e( 10 - 10) = 14.87276 eV 1 --> G_7 e( 11 - 11) = 22.02561 eV 1 --> G_5 e( 12 - 12) = 22.05561 eV 1 --> G_6 e( 13 - 13) = 22.28081 eV 1 --> G_8 e( 14 - 14) = 22.38389 eV 1 --> G_6 e( 15 - 15) = 22.39955 eV 1 --> G_5 e( 16 - 16) = 22.52643 eV 1 --> G_7 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 1.00000 ) the magnetic double point group is D_4h(4/mmm) [C_4h (4/m) ] using the double point group C_4h (4/m) there are 16 classes and 8 irreducible representations the character table: E -E C4 -C4 C4^2 -C4^2 C4^3 -C4^3 i -i S4^3 -S4^3 G_5+ 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 1.00 -1.00 0.71 -0.71 G_6+ 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 1.00 -1.00 0.71 -0.71 G_7+ 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 1.00 -1.00 -0.71 0.71 G_8+ 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 1.00 -1.00 -0.71 0.71 G_5- 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 -1.00 1.00 -0.71 0.71 G_6- 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 -1.00 1.00 -0.71 0.71 G_7- 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 -1.00 1.00 0.71 -0.71 G_8- 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 -1.00 1.00 0.71 -0.71 s_h -s_h S4 -S4 G_5+ 0.00 0.00 0.71 -0.71 G_6+ 0.00 0.00 0.71 -0.71 G_7+ 0.00 0.00 -0.71 0.71 G_8+ 0.00 0.00 -0.71 0.71 G_5- 0.00 0.00 -0.71 0.71 G_6- 0.00 0.00 -0.71 0.71 G_7- 0.00 0.00 0.71 -0.71 G_8- 0.00 0.00 0.71 -0.71 imaginary part E -E C4 -C4 C4^2 -C4^2 C4^3 -C4^3 i -i S4^3 -S4^3 G_5+ 0.00 0.00 0.71 -0.71 1.00 -1.00 -0.71 0.71 0.00 0.00 0.71 -0.71 G_6+ 0.00 0.00 -0.71 0.71 -1.00 1.00 0.71 -0.71 0.00 0.00 -0.71 0.71 G_7+ 0.00 0.00 -0.71 0.71 1.00 -1.00 0.71 -0.71 0.00 0.00 -0.71 0.71 G_8+ 0.00 0.00 0.71 -0.71 -1.00 1.00 -0.71 0.71 0.00 0.00 0.71 -0.71 G_5- 0.00 0.00 0.71 -0.71 1.00 -1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 G_6- 0.00 0.00 -0.71 0.71 -1.00 1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 G_7- 0.00 0.00 -0.71 0.71 1.00 -1.00 0.71 -0.71 0.00 0.00 0.71 -0.71 G_8- 0.00 0.00 0.71 -0.71 -1.00 1.00 -0.71 0.71 0.00 0.00 -0.71 0.71 s_h -s_h S4 -S4 G_5+ 1.00 -1.00 -0.71 0.71 G_6+ -1.00 1.00 0.71 -0.71 G_7+ 1.00 -1.00 0.71 -0.71 G_8+ -1.00 1.00 -0.71 0.71 G_5- -1.00 1.00 0.71 -0.71 G_6- 1.00 -1.00 -0.71 0.71 G_7- -1.00 1.00 -0.71 0.71 G_8- 1.00 -1.00 0.71 -0.71 the symmetry operations in each class: E 1 C4^2 2 C4^3 3 C4 4 i 5 s_h 6 S4 7 S4^3 8 -E -1 -C4^2 -2 -C4^3 -3 -C4 -4 -i -5 -s_h -6 -S4 -7 -S4^3 -8 Band symmetry, D_4h(4/mmm) [C_4h (4/m) ] magnetic double point group, using C_4h (4/m) e( 1 - 1) = 7.90757 eV 1 --> G_5+ e( 2 - 2) = 7.90792 eV 1 --> G_7+ e( 3 - 3) = 9.74298 eV 1 --> G_6+ e( 4 - 4) = 9.74377 eV 1 --> G_8+ e( 5 - 5) = 12.61899 eV 1 --> G_6+ e( 6 - 6) = 12.65352 eV 1 --> G_7+ e( 7 - 7) = 12.68845 eV 1 --> G_8+ e( 8 - 8) = 14.81611 eV 1 --> G_5+ e( 9 - 9) = 14.85265 eV 1 --> G_8+ e( 10 - 10) = 14.88722 eV 1 --> G_7+ e( 11 - 11) = 22.04401 eV 1 --> G_6- e( 12 - 12) = 22.10528 eV 1 --> G_5- e( 13 - 13) = 22.25691 eV 1 --> G_8- e( 14 - 14) = 22.39403 eV 1 --> G_5- e( 15 - 15) = 22.45368 eV 1 --> G_6- e( 16 - 16) = 22.49861 eV 1 --> G_7- ************************************************************************** espresso-5.1/PP/examples/example03/0000755000175000017500000000000012341373041015233 5ustar mbambaespresso-5.1/PP/examples/example03/run_xml_example0000755000175000017500000003650412341372774020404 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows a calculation of STM maps." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x pp.x plotrho.x projwfc.x sumpdos.x" PSEUDO_LIST="Al.pz-vbc.UPF As.pz-bhs.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for gnuplot GP_COMMAND=`which gnuplot 2>/dev/null` if [ "$GP_COMMAND" = "" ]; then $ECHO $ECHO "gnuplot not in PATH" $ECHO "Results will not be plotted" fi # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" PP_COMMAND="$PARA_PREFIX $BIN_DIR/pp.x $PARA_POSTFIX" PLOTRHO_COMMAND="$BIN_DIR/plotrho.x" PROJWFC_COMMAND="$PARA_PREFIX $BIN_DIR/projwfc.x $PARA_POSTFIX" SUMPDOS_COMMAND="$BIN_DIR/sumpdos.x" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running pp.x as: $PP_COMMAND" $ECHO " running plotrho.x as: $PLOTRHO_COMMAND" $ECHO " running projwfc.x as: $PROJWFC_COMMAND" $ECHO " running sumpdos.x as: $SUMPDOS_COMMAND" $ECHO " running gnuplot as: $GP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > AlAs110re.scf.xml << EOF 1.414213576 6.00000 0.0 0.0 0.0 26.98 Al.pz-vbc.UPF 74.92 As.pz-bhs.UPF 0.000000000 -0.044777195 -0.058158722 0.500000000 0.251460333 0.113525468 0.500000000 0.712279009 0.504183885 0.000000000 1.067633546 0.480460620 0.000000000 -0.003937059 0.995826731 0.500000000 0.351400965 1.004220212 0.000000000 -0.003937059 2.004173269 0.500000000 0.351400965 1.995779788 0.500000000 0.712279009 2.495816115 0.000000000 1.067633546 2.519539380 0.000000000 -0.044777195 3.058158722 0.500000000 0.251460333 2.886474532 0.500000000 0.707106800 1.500000000 0.000000000 1.060660200 1.500000000 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 14.0 plain 0.7 1.0d-6 6 2 1 0 0 0 EOF $ECHO " running the scf calculation...\c" $PW_COMMAND < AlAs110re.scf.xml > AlAs110re.scf.out check_failure $? $ECHO " done" cat > AlAs110re.nonscf.xml << EOF 1.414213576 6.00000 0.0 0.0 0.0 26.98 Al.pz-vbc.UPF 74.92 As.pz-bhs.UPF 0.000000000 -0.044777195 -0.058158722 0.500000000 0.251460333 0.113525468 0.500000000 0.712279009 0.504183885 0.000000000 1.067633546 0.480460620 0.000000000 -0.003937059 0.995826731 0.500000000 0.351400965 1.004220212 0.000000000 -0.003937059 2.004173269 0.500000000 0.351400965 1.995779788 0.500000000 0.712279009 2.495816115 0.000000000 1.067633546 2.519539380 0.000000000 -0.044777195 3.058158722 0.500000000 0.251460333 2.886474532 0.500000000 0.707106800 1.500000000 0.000000000 1.060660200 1.500000000 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 14.0 plain 0.7 1.0d-6 smearing gaussian 0.01 34 12 4 1 0 0 0 EOF $ECHO " running the non-scf calculation...\c" $PW_COMMAND < AlAs110re.nonscf.xml > AlAs110re.nonscf.out check_failure $? $ECHO " done" # post-processing for stm images (sample bias given in Ry!) cat > AlAs110.pp_stm-.in << EOF &inputpp prefix = 'AlAs110' outdir='$TMP_DIR/', filplot = 'AlAsresm-1.0' sample_bias=-0.0735d0, plot_num= 5 / &plot nfile=1 filepp(1)='AlAsresm-1.0' weight(1)=1.0 iflag=2 output_format=2 e1(1)=7.0, e1(2)=0.0, e1(3)=0.0 e2(1)=0.0, e2(2)=7.07107, e2(3)=0.0 x0(1)=0.0, x0(2)=-0.18, x0(3)=3.25 nx=36 ,ny=56 fileout='AlAs110-1.0' / EOF $ECHO $ECHO " running the post-processing phase, negative bias...\c" $PP_COMMAND < AlAs110.pp_stm-.in > AlAs110.pp_stm-.out check_failure $? $ECHO " done" # run plotrho to do the figure cat > AlAs110.plotrho-.in << EOF AlAs110-1.0 AlAs110-1.0eV.ps n 0.00005 0.0078 8 EOF $ECHO " running plotrho on negative bias data...\c" $PLOTRHO_COMMAND < AlAs110.plotrho-.in > AlAs110.plotrho-.out check_failure $? $ECHO " done" # post-processing for stm images (as before, but positive bias) cat > AlAs110.pp_stm+.in << EOF &inputpp prefix = 'AlAs110' outdir='$TMP_DIR/', filplot = 'AlAsresm+1.0' sample_bias=0.0735d0, plot_num= 5 / &plot nfile=1 filepp(1)='AlAsresm+1.0' weight(1)=1.0 iflag=2 output_format=2 e1(1)=7.0, e1(2)=0.0, e1(3)=0.0 e2(1)=0.0, e2(2)=7.07107, e2(3)=0.0 x0(1)=0.0, x0(2)=-0.18, x0(3)=3.25 nx=36 ,ny=56 fileout='AlAs110+1.0' / EOF $ECHO " running the post-processing phase, positive bias...\c" $PP_COMMAND < AlAs110.pp_stm+.in > AlAs110.pp_stm+.out check_failure $? $ECHO " done" # plotrho cat > AlAs110.plotrho+.in << EOF AlAs110+1.0 AlAs110+1.0eV.ps n 0.00002 0.0021 8 EOF $ECHO " running plotrho on positive bias data...\c" $PLOTRHO_COMMAND < AlAs110.plotrho+.in > AlAs110.plotrho+.out check_failure $? $ECHO " done" # Projection of the DOS on volumes (boxes) cat > AlAs110.box.projwfc.in << EOF &inputpp prefix = 'AlAs110' outdir='$TMP_DIR/', ngauss=0 degauss=0.01 DeltaE=0.02 tdosinboxes=.true. plotboxes=.true. n_proj_boxes=8 !! Boxes centered on the first vacuum layer: !! 1) above the surface Al irmin(1,1)= 0, irmax(1,1)= 2, irmin(2,1)= 0, irmax(2,1)= 2, irmin(3,1)=63, irmax(3,1)=65, !! 2) above the surface As irmin(1,2)= 9, irmax(1,2)=11, irmin(2,2)= 5, irmax(2,2)= 7, irmin(3,2)=63, irmax(3,2)=65, !! 3) above the 2nd layer Al irmin(1,3)= 9, irmax(1,3)=11, irmin(2,3)=14, irmax(2,3)=16, irmin(3,3)=63, irmax(3,3)=65, !! 4) as large as the surface unit cell irmin(1,4)= 1, irmax(1,4)=18, irmin(2,4)= 1, irmax(2,4)=27, irmin(3,4)=63, irmax(3,4)=65, !! Same as above, centered on the second vacuum layer: irmin(1,5)= 0, irmax(1,5)= 2, irmin(2,5)= 0, irmax(2,5)= 2, irmin(3,5)=72, irmax(3,5)=74, irmin(1,6)= 9, irmax(1,6)=11, irmin(2,6)= 5, irmax(2,6)= 7, irmin(3,6)=72, irmax(3,6)=74, irmin(1,7)= 9, irmax(1,7)=11, irmin(2,7)=14, irmax(2,7)=16, irmin(3,7)=72, irmax(3,7)=74, irmin(1,8)= 1, irmax(1,8)=18, irmin(2,8)= 1, irmax(2,8)=27, irmin(3,8)=72, irmax(3,8)=74, / EOF $ECHO $ECHO " running local DOS calculation...\c" $PROJWFC_COMMAND < AlAs110.box.projwfc.in > AlAs110.box.projwfc.out check_failure $? $ECHO " done" # Projection of the DOS on atomic wavefunctions cat > AlAs110.projwfc.in << EOF &inputpp prefix = 'AlAs110' outdir='$TMP_DIR/', ngauss=0 degauss=0.01 DeltaE=0.02 tdosinboxes=.false. / EOF $ECHO $ECHO " running projected DOS calculation...\c" $PROJWFC_COMMAND < AlAs110.projwfc.in > AlAs110.projwfc.out check_failure $? $ECHO " done" $ECHO $ECHO " summing the atomic PDOS...\c" $SUMPDOS_COMMAND AlAs110.pdos_atm\#10\(Al\)_wfc* > "AlAs110.pdos_atm#10(Al)" 2> /dev/null $SUMPDOS_COMMAND AlAs110.pdos_atm\#11\(As\)_wfc* > "AlAs110.pdos_atm#11(As)" 2> /dev/null $ECHO " done" # # if gnuplot was found, the results are plotted # if [ "$GP_COMMAND" = "" ]; then break else eFermi=`grep "Fermi" AlAs110re.nonscf.out | cut -d \ -f 14` cat > gnuplot.tmp <.xsf' with XCrySDen structure files. (input=AlAs110.box.projwfc.in, output=AlAs110.box.projwfc.out) 8) computes the projected density of states (see example08), for comparison. (input=AlAs110.projwfc.in, output=AlAs110.projwfc.out) 9) plot the LDOS and PDOS by using 'gnuplot', if available. This generate the PostScript file 'AlAs110.box.projwfc.ps' espresso-5.1/PP/examples/example03/run_example0000755000175000017500000003066512341372774017526 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows a calculation of STM maps." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x pp.x plotrho.x projwfc.x sumpdos.x" PSEUDO_LIST="Al.pz-vbc.UPF As.pz-bhs.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for gnuplot GP_COMMAND=`which gnuplot 2>/dev/null` if [ "$GP_COMMAND" = "" ]; then $ECHO $ECHO "gnuplot not in PATH" $ECHO "Results will not be plotted" fi # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" PP_COMMAND="$PARA_PREFIX $BIN_DIR/pp.x $PARA_POSTFIX" PLOTRHO_COMMAND="$BIN_DIR/plotrho.x" PROJWFC_COMMAND="$PARA_PREFIX $BIN_DIR/projwfc.x $PARA_POSTFIX" SUMPDOS_COMMAND="$BIN_DIR/sumpdos.x" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running pp.x as: $PP_COMMAND" $ECHO " running plotrho.x as: $PLOTRHO_COMMAND" $ECHO " running projwfc.x as: $PROJWFC_COMMAND" $ECHO " running sumpdos.x as: $SUMPDOS_COMMAND" $ECHO " running gnuplot as: $GP_COMMAND" $ECHO # self-consistent calculation cat > AlAs110re.scf.in << EOF &control calculation = 'scf' restart_mode='from_scratch', title='AlAs 110 surface slab, relaxed (central plane fixed)' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='AlAs110' / &system ibrav= 8, celldm(1) =7.424621202, celldm(2)=1.414213576, celldm(3)= 6.00000, nat= 14, ntyp= 2, ecutwfc =14.0, / &electrons mixing_mode = 'plain' mixing_beta = 0.7 conv_thr = 1.0d-6 / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF As 74.92 As.pz-bhs.UPF ATOMIC_POSITIONS As 0.000000000 -0.044777195 -0.058158722 Al 0.500000000 0.251460333 0.113525468 As 0.500000000 0.712279009 0.504183885 Al 0.000000000 1.067633546 0.480460620 As 0.000000000 -0.003937059 0.995826731 Al 0.500000000 0.351400965 1.004220212 As 0.000000000 -0.003937059 2.004173269 Al 0.500000000 0.351400965 1.995779788 As 0.500000000 0.712279009 2.495816115 Al 0.000000000 1.067633546 2.519539380 As 0.000000000 -0.044777195 3.058158722 Al 0.500000000 0.251460333 2.886474532 As 0.500000000 0.707106800 1.500000000 Al 0.000000000 1.060660200 1.500000000 K_POINTS {automatic} 6 2 1 0 0 0 EOF $ECHO " running the scf calculation...\c" $PW_COMMAND < AlAs110re.scf.in > AlAs110re.scf.out check_failure $? $ECHO " done" cat > AlAs110re.nonscf.in << EOF &control calculation = 'nscf' restart_mode='from_scratch', title='AlAs 110 surface slab, relaxed (central plane fixed)' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='AlAs110' / &system ibrav= 8, celldm(1) =7.424621202, celldm(2)=1.414213576, celldm(3)= 6.00000, nat= 14, ntyp= 2, occupations='smearing', smearing='gaussian', degauss=0.01, nbnd=34, ecutwfc =14.0, / &electrons mixing_mode = 'plain' mixing_beta = 0.7 conv_thr = 1.0d-6 / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF As 74.92 As.pz-bhs.UPF ATOMIC_POSITIONS As 0.000000000 -0.044777195 -0.058158722 Al 0.500000000 0.251460333 0.113525468 As 0.500000000 0.712279009 0.504183885 Al 0.000000000 1.067633546 0.480460620 As 0.000000000 -0.003937059 0.995826731 Al 0.500000000 0.351400965 1.004220212 As 0.000000000 -0.003937059 2.004173269 Al 0.500000000 0.351400965 1.995779788 As 0.500000000 0.712279009 2.495816115 Al 0.000000000 1.067633546 2.519539380 As 0.000000000 -0.044777195 3.058158722 Al 0.500000000 0.251460333 2.886474532 As 0.500000000 0.707106800 1.500000000 Al 0.000000000 1.060660200 1.500000000 K_POINTS {automatic} 12 4 1 0 0 0 EOF $ECHO " running the non-scf calculation...\c" $PW_COMMAND < AlAs110re.nonscf.in > AlAs110re.nonscf.out check_failure $? $ECHO " done" # post-processing for stm images (sample bias given in Ry!) cat > AlAs110.pp_stm-.in << EOF &inputpp prefix = 'AlAs110' outdir='$TMP_DIR/', filplot = 'AlAsresm-1.0' sample_bias=-0.0735d0, plot_num= 5 / &plot nfile=1 filepp(1)='AlAsresm-1.0' weight(1)=1.0 iflag=2 output_format=2 e1(1)=7.0, e1(2)=0.0, e1(3)=0.0 e2(1)=0.0, e2(2)=7.07107, e2(3)=0.0 x0(1)=0.0, x0(2)=-0.18, x0(3)=3.25 nx=36 ,ny=56 fileout='AlAs110-1.0' / EOF $ECHO $ECHO " running the post-processing phase, negative bias...\c" $PP_COMMAND < AlAs110.pp_stm-.in > AlAs110.pp_stm-.out check_failure $? $ECHO " done" # run plotrho to do the figure cat > AlAs110.plotrho-.in << EOF AlAs110-1.0 AlAs110-1.0eV.ps n 0.00005 0.0078 8 EOF $ECHO " running plotrho on negative bias data...\c" $PLOTRHO_COMMAND < AlAs110.plotrho-.in > AlAs110.plotrho-.out check_failure $? $ECHO " done" # post-processing for stm images (negative bias, constant current) cat > AlAs110.pp_isostm-.in << EOF &inputpp / &plot nfile=1 filepp(1)='AlAsresm-1.0' weight(1)=1.0 iflag=2 output_format=7 fileout='AlAs110.pp_isostm-.dat' e1(1)=7.0, e1(2)=0.0, e1(3)=0.0 e2(1)=0.0, e2(2)=7.07107, e2(3)=0.0 nx=150, ny=150 isostm_flag=.true. isovalue=0.00005 heightmin=0.4 heightmax=0.75 direction=1 / EOF $ECHO $ECHO " STM image, negative bias and constant current...\c" $PP_COMMAND < AlAs110.pp_isostm-.in > AlAs110.pp_isostm-.out check_failure $? $ECHO " done" # run gnuplot to do the figure if [ "$GP_COMMAND" = "" ]; then break else cat > gnuplot.tmp < AlAs110.pp_stm+.in << EOF &inputpp prefix = 'AlAs110' outdir='$TMP_DIR/', filplot = 'AlAsresm+1.0' sample_bias=0.0735d0, plot_num= 5 / &plot nfile=1 filepp(1)='AlAsresm+1.0' weight(1)=1.0 iflag=2 output_format=2 e1(1)=7.0, e1(2)=0.0, e1(3)=0.0 e2(1)=0.0, e2(2)=7.07107, e2(3)=0.0 x0(1)=0.0, x0(2)=-0.18, x0(3)=3.25 nx=36 ,ny=56 fileout='AlAs110+1.0' / EOF $ECHO " running the post-processing phase, positive bias...\c" $PP_COMMAND < AlAs110.pp_stm+.in > AlAs110.pp_stm+.out check_failure $? $ECHO " done" # plotrho cat > AlAs110.plotrho+.in << EOF AlAs110+1.0 AlAs110+1.0eV.ps n 0.00002 0.0021 8 EOF $ECHO " running plotrho on positive bias data...\c" $PLOTRHO_COMMAND < AlAs110.plotrho+.in > AlAs110.plotrho+.out check_failure $? $ECHO " done" # post-processing for stm images (positive bias, constant current) cat > AlAs110.pp_isostm+.in << EOF &inputpp / &plot nfile=1 filepp(1)='AlAsresm+1.0' weight(1)=1.0 iflag=2 output_format=7 fileout='AlAs110.pp_isostm+.dat' e1(1)=7.0, e1(2)=0.0, e1(3)=0.0 e2(1)=0.0, e2(2)=7.07107, e2(3)=0.0 nx=150, ny=150 isostm_flag=.true. isovalue=0.00005 heightmin=0.4 heightmax=0.75 direction=1 / EOF $ECHO $ECHO " STM image, positive bias and constant current...\c" $PP_COMMAND < AlAs110.pp_isostm+.in > AlAs110.pp_isostm+.out check_failure $? $ECHO " done" # run gnuplot to do the figure if [ "$GP_COMMAND" = "" ]; then break else cat > gnuplot.tmp < AlAs110.box.projwfc.in << EOF &projwfc prefix = 'AlAs110' outdir='$TMP_DIR/', ngauss=0 degauss=0.01 DeltaE=0.02 tdosinboxes=.true. plotboxes=.true. n_proj_boxes=8 !! Boxes centered on the first vacuum layer: !! 1) above the surface Al irmin(1,1)= 0, irmax(1,1)= 2, irmin(2,1)= 0, irmax(2,1)= 2, irmin(3,1)=63, irmax(3,1)=65, !! 2) above the surface As irmin(1,2)= 9, irmax(1,2)=11, irmin(2,2)= 5, irmax(2,2)= 7, irmin(3,2)=63, irmax(3,2)=65, !! 3) above the 2nd layer Al irmin(1,3)= 9, irmax(1,3)=11, irmin(2,3)=14, irmax(2,3)=16, irmin(3,3)=63, irmax(3,3)=65, !! 4) as large as the surface unit cell irmin(1,4)= 1, irmax(1,4)=18, irmin(2,4)= 1, irmax(2,4)=27, irmin(3,4)=63, irmax(3,4)=65, !! Same as above, centered on the second vacuum layer: irmin(1,5)= 0, irmax(1,5)= 2, irmin(2,5)= 0, irmax(2,5)= 2, irmin(3,5)=72, irmax(3,5)=74, irmin(1,6)= 9, irmax(1,6)=11, irmin(2,6)= 5, irmax(2,6)= 7, irmin(3,6)=72, irmax(3,6)=74, irmin(1,7)= 9, irmax(1,7)=11, irmin(2,7)=14, irmax(2,7)=16, irmin(3,7)=72, irmax(3,7)=74, irmin(1,8)= 1, irmax(1,8)=18, irmin(2,8)= 1, irmax(2,8)=27, irmin(3,8)=72, irmax(3,8)=74, / EOF $ECHO $ECHO " running local DOS calculation...\c" $PROJWFC_COMMAND < AlAs110.box.projwfc.in > AlAs110.box.projwfc.out check_failure $? $ECHO " done" # Projection of the DOS on atomic wavefunctions cat > AlAs110.projwfc.in << EOF &projwfc prefix = 'AlAs110' outdir='$TMP_DIR/', ngauss=0 degauss=0.01 DeltaE=0.02 tdosinboxes=.false. / EOF $ECHO $ECHO " running projected DOS calculation...\c" $PROJWFC_COMMAND < AlAs110.projwfc.in > AlAs110.projwfc.out check_failure $? $ECHO " done" $ECHO $ECHO " summing the atomic PDOS...\c" $SUMPDOS_COMMAND AlAs110.pdos_atm\#10\(Al\)_wfc* > "AlAs110.pdos_atm#10(Al)" 2> /dev/null $SUMPDOS_COMMAND AlAs110.pdos_atm\#11\(As\)_wfc* > "AlAs110.pdos_atm#11(As)" 2> /dev/null $ECHO " done" # # if gnuplot was found, the results are plotted # if [ "$GP_COMMAND" = "" ]; then break else eFermi=`grep "Fermi" AlAs110re.nonscf.out | cut -d \ -f 14` cat > gnuplot.tmp < matrix 0.02 Mb ( 56, 28) Arrays for rho mixing 6.41 Mb ( 52488, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001946 starting charge 55.98419, renormalised to 56.00000 negative rho (up, down): 0.195E-02 0.000E+00 Starting wfc are 91 atomic wfcs total cpu time spent up to now is 4.47 secs per-process dynamical memory: 21.1 Mb Self-consistent Calculation iteration # 1 ecut= 14.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.418E-03 0.000E+00 total cpu time spent up to now is 8.14 secs total energy = -118.51607329 Ry Harris-Foulkes estimate = -118.79487629 Ry estimated scf accuracy < 0.56747234 Ry iteration # 2 ecut= 14.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-03, avg # of iterations = 3.0 negative rho (up, down): 0.151E-03 0.000E+00 total cpu time spent up to now is 13.13 secs total energy = -118.62232455 Ry Harris-Foulkes estimate = -118.71238931 Ry estimated scf accuracy < 0.15528816 Ry iteration # 3 ecut= 14.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.77E-04, avg # of iterations = 3.8 negative rho (up, down): 0.925E-04 0.000E+00 total cpu time spent up to now is 18.06 secs total energy = -118.60226561 Ry Harris-Foulkes estimate = -118.73038729 Ry estimated scf accuracy < 0.43613570 Ry iteration # 4 ecut= 14.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.77E-04, avg # of iterations = 3.6 negative rho (up, down): 0.157E-05 0.000E+00 total cpu time spent up to now is 22.77 secs total energy = -118.66992121 Ry Harris-Foulkes estimate = -118.67997980 Ry estimated scf accuracy < 0.03679963 Ry iteration # 5 ecut= 14.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.57E-05, avg # of iterations = 2.1 total cpu time spent up to now is 26.71 secs total energy = -118.67431272 Ry Harris-Foulkes estimate = -118.67533444 Ry estimated scf accuracy < 0.00233735 Ry iteration # 6 ecut= 14.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.17E-06, avg # of iterations = 4.0 total cpu time spent up to now is 31.56 secs total energy = -118.67503767 Ry Harris-Foulkes estimate = -118.67507787 Ry estimated scf accuracy < 0.00008662 Ry iteration # 7 ecut= 14.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-07, avg # of iterations = 3.1 total cpu time spent up to now is 36.49 secs total energy = -118.67505798 Ry Harris-Foulkes estimate = -118.67507018 Ry estimated scf accuracy < 0.00003099 Ry iteration # 8 ecut= 14.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.53E-08, avg # of iterations = 2.9 total cpu time spent up to now is 40.91 secs total energy = -118.67506345 Ry Harris-Foulkes estimate = -118.67506639 Ry estimated scf accuracy < 0.00000713 Ry iteration # 9 ecut= 14.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-08, avg # of iterations = 2.1 total cpu time spent up to now is 45.15 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 3109 PWs) bands (ev): -11.3324 -10.9794 -10.4126 -9.7722 -9.3948 -9.2152 -9.1950 -4.8429 -4.5600 -4.0422 -3.5069 -2.9279 -2.5709 -2.4557 -1.8613 -1.5434 -1.4441 -1.2938 -1.1270 -0.6391 -0.5778 -0.3197 -0.0980 0.3074 0.3430 0.4720 0.5791 0.6738 k = 0.0000-0.3536 0.0000 ( 3100 PWs) bands (ev): -10.5641 -10.4826 -10.3309 -10.1892 -10.0691 -9.6556 -9.6039 -4.9030 -4.6859 -4.1704 -3.6933 -3.1365 -2.5625 -2.2162 -0.8111 -0.6443 -0.6409 -0.6006 -0.5776 -0.4625 -0.4125 -0.3660 -0.3242 -0.2553 -0.0538 -0.0095 0.0739 0.2515 k = 0.1667 0.0000 0.0000 ( 3105 PWs) bands (ev): -11.1461 -10.7904 -10.2388 -9.6333 -9.3259 -9.1566 -9.1301 -4.7113 -4.4877 -4.0710 -3.5461 -2.8888 -2.5402 -2.4403 -2.3523 -2.0757 -1.7428 -1.5559 -1.5516 -1.3250 -0.9773 -0.8438 -0.5522 -0.5103 -0.2678 -0.0992 0.1809 0.3548 k = 0.1667-0.3536 0.0000 ( 3090 PWs) bands (ev): -10.4248 -10.3357 -10.1961 -10.0390 -9.9259 -9.5019 -9.4486 -4.7460 -4.5309 -4.1343 -3.6517 -3.4843 -2.8992 -2.8446 -1.7002 -1.6058 -1.5018 -1.4941 -1.2296 -1.2229 -0.7114 -0.5196 -0.3473 -0.2617 -0.1677 -0.1631 0.2207 0.2518 k = 0.3333 0.0000 0.0000 ( 3055 PWs) bands (ev): -10.6113 -10.2793 -9.8030 -9.3940 -9.3792 -9.0177 -8.9877 -4.5318 -4.5313 -4.3855 -4.0346 -3.5641 -3.0932 -2.9683 -2.7598 -2.7302 -2.2502 -1.9005 -1.8191 -1.4674 -1.2491 -1.1962 -1.0832 -0.7778 -0.6688 -0.3961 -0.0926 0.2375 k = 0.3333-0.3536 0.0000 ( 3056 PWs) bands (ev): -10.0832 -9.9690 -9.8700 -9.6826 -9.6134 -9.1319 -9.0951 -4.6354 -4.5342 -4.4281 -4.3373 -4.2755 -3.8955 -3.7898 -2.6096 -2.5831 -2.2845 -2.2805 -1.3325 -1.2996 -1.0726 -0.9946 -0.6426 -0.3770 -0.3204 -0.1748 0.0965 0.2944 k =-0.5000 0.0000 0.0000 ( 3048 PWs) bands (ev): -9.9800 -9.8386 -9.7689 -9.5263 -9.4775 -8.9378 -8.9045 -4.6748 -4.6562 -4.2301 -4.1565 -4.0615 -4.0373 -3.9625 -2.4863 -2.3858 -2.1178 -1.9091 -1.7401 -1.5757 -1.4910 -1.2227 -1.1382 -0.7666 -0.6435 -0.5172 -0.0802 0.1754 k =-0.5000-0.3536 0.0000 ( 3076 PWs) bands (ev): -9.8863 -9.7539 -9.6801 -9.4656 -9.4244 -8.9026 -8.8743 -5.1745 -4.9858 -4.9345 -4.5650 -4.4121 -4.3646 -4.2308 -2.5958 -2.5913 -2.1169 -2.0227 -1.7818 -1.6319 -1.2808 -0.9922 -0.7745 -0.5130 -0.4459 -0.2643 0.1475 0.2907 ! total energy = -118.67506457 Ry Harris-Foulkes estimate = -118.67506491 Ry estimated scf accuracy < 0.00000039 Ry The total energy is the sum of the following terms: one-electron contribution = -632.56836632 Ry hartree contribution = 330.04425371 Ry xc contribution = -33.43117868 Ry ewald contribution = 217.28022672 Ry convergence has been achieved in 9 iterations Writing output data file AlAs110.save PWSCF : 45.25s CPU time, 47.55s wall time init_run : 4.44s CPU electrons : 40.68s CPU Called by init_run: wfcinit : 4.23s CPU potinit : 0.07s CPU Called by electrons: c_bands : 35.75s CPU ( 9 calls, 3.973 s avg) sum_band : 4.59s CPU ( 9 calls, 0.510 s avg) v_of_rho : 0.14s CPU ( 10 calls, 0.014 s avg) mix_rho : 0.12s CPU ( 9 calls, 0.013 s avg) Called by c_bands: init_us_2 : 0.48s CPU ( 152 calls, 0.003 s avg) cegterg : 35.13s CPU ( 72 calls, 0.488 s avg) Called by *egterg: h_psi : 31.11s CPU ( 293 calls, 0.106 s avg) g_psi : 0.68s CPU ( 213 calls, 0.003 s avg) cdiaghg : 1.27s CPU ( 285 calls, 0.004 s avg) Called by h_psi: add_vuspsi : 1.54s CPU ( 293 calls, 0.005 s avg) General routines calbec : 1.64s CPU ( 293 calls, 0.006 s avg) cft3s : 29.80s CPU ( 14866 calls, 0.002 s avg) davcio : 0.00s CPU ( 224 calls, 0.000 s avg) Parallel routines espresso-5.1/PP/examples/example03/reference/AlAs110re.nonscf.out0000644000175000017500000003665412341372774022632 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16: 1:48 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Title: AlAs 110 surface slab, relaxed (central plane fixed) bravais-lattice index = 8 lattice parameter (a_0) = 7.4246 a.u. unit-cell volume = 3472.8750 (a.u.)^3 number of atoms/cell = 14 number of atomic types = 2 number of electrons = 56.00 number of Kohn-Sham states= 34 kinetic-energy cutoff = 14.0000 Ry charge density cutoff = 56.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 7.424621 celldm(2)= 1.414214 celldm(3)= 6.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.414214 0.000000 ) a(3) = ( 0.000000 0.000000 6.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 0.707107 0.000000 ) b(3) = ( 0.000000 0.000000 0.166667 ) PseudoPot. # 1 for Al read from file Al.vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 PseudoPot. # 2 for As read from file As.gon.UPF Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) As 5.00 74.92000 As( 1.00) 4 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 As tau( 1) = ( 0.0000000 -0.0447772 -0.0581587 ) 2 Al tau( 2) = ( 0.5000000 0.2514603 0.1135255 ) 3 As tau( 3) = ( 0.5000000 0.7122790 0.5041839 ) 4 Al tau( 4) = ( 0.0000000 1.0676335 0.4804606 ) 5 As tau( 5) = ( 0.0000000 -0.0039371 0.9958267 ) 6 Al tau( 6) = ( 0.5000000 0.3514010 1.0042202 ) 7 As tau( 7) = ( 0.0000000 -0.0039371 2.0041733 ) 8 Al tau( 8) = ( 0.5000000 0.3514010 1.9957798 ) 9 As tau( 9) = ( 0.5000000 0.7122790 2.4958161 ) 10 Al tau( 10) = ( 0.0000000 1.0676335 2.5195394 ) 11 As tau( 11) = ( 0.0000000 -0.0447772 3.0581587 ) 12 Al tau( 12) = ( 0.5000000 0.2514603 2.8864745 ) 13 As tau( 13) = ( 0.5000000 0.7071068 1.5000000 ) 14 Al tau( 14) = ( 0.0000000 1.0606602 1.5000000 ) number of k points= 21 gaussian broad. (Ry)= 0.0100 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0416667 k( 2) = ( 0.0000000 0.1767767 0.0000000), wk = 0.0833333 k( 3) = ( 0.0000000 -0.3535534 0.0000000), wk = 0.0416667 k( 4) = ( 0.0833333 0.0000000 0.0000000), wk = 0.0833333 k( 5) = ( 0.0833333 0.1767767 0.0000000), wk = 0.1666667 k( 6) = ( 0.0833333 -0.3535534 0.0000000), wk = 0.0833333 k( 7) = ( 0.1666667 0.0000000 0.0000000), wk = 0.0833333 k( 8) = ( 0.1666667 0.1767767 0.0000000), wk = 0.1666667 k( 9) = ( 0.1666667 -0.3535534 0.0000000), wk = 0.0833333 k( 10) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0833333 k( 11) = ( 0.2500000 0.1767767 0.0000000), wk = 0.1666667 k( 12) = ( 0.2500000 -0.3535534 0.0000000), wk = 0.0833333 k( 13) = ( 0.3333333 0.0000000 0.0000000), wk = 0.0833333 k( 14) = ( 0.3333333 0.1767767 0.0000000), wk = 0.1666667 k( 15) = ( 0.3333333 -0.3535534 0.0000000), wk = 0.0833333 k( 16) = ( 0.4166667 0.0000000 0.0000000), wk = 0.0833333 k( 17) = ( 0.4166667 0.1767767 0.0000000), wk = 0.1666667 k( 18) = ( 0.4166667 -0.3535534 0.0000000), wk = 0.0833333 k( 19) = ( -0.5000000 0.0000000 0.0000000), wk = 0.0416667 k( 20) = ( -0.5000000 0.1767767 0.0000000), wk = 0.0833333 k( 21) = ( -0.5000000 -0.3535534 0.0000000), wk = 0.0416667 G cutoff = 78.1946 ( 24607 G-vectors) FFT grid: ( 18, 27,108) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.61 Mb ( 3109, 34) NL pseudopotentials 2.66 Mb ( 3109, 56) Each V/rho on FFT grid 0.80 Mb ( 52488) Each G-vector array 0.19 Mb ( 24607) G-vector shells 0.02 Mb ( 2793) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 6.45 Mb ( 3109, 136) Each subspace H/S matrix 0.28 Mb ( 136, 136) Each matrix 0.03 Mb ( 56, 34) Arrays for rho mixing 6.41 Mb ( 52488, 8) The potential is recalculated from file : AlAs110.save/charge-density.dat Starting wfc are 91 atomic wfcs total cpu time spent up to now is 0.12 secs per-process dynamical memory: 14.9 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.79E-09, avg # of iterations = 26.6 total cpu time spent up to now is 58.85 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -11.3370 -10.9809 -10.4148 -9.7744 -9.3992 -9.2158 -9.1948 -4.8471 -4.5620 -4.0443 -3.5100 -2.9306 -2.5731 -2.4574 -1.8631 -1.5456 -1.4483 -1.2941 -1.1282 -0.6407 -0.5790 -0.3206 -0.0997 0.3058 0.3420 0.4692 0.5786 0.6703 2.1633 2.5810 2.8670 3.2531 3.4667 3.5050 k = 0.0000 0.1768 0.0000 band energies (ev): -11.1314 -10.7859 -10.2794 -9.7875 -9.7384 -9.4631 -9.4388 -4.6265 -4.6264 -4.2660 -3.9194 -3.0454 -2.3268 -1.7969 -1.7651 -1.4111 -1.2320 -0.9641 -0.9353 -0.5085 -0.4475 -0.2992 -0.0746 0.1506 0.2355 0.2577 0.2640 0.4220 2.4821 2.8626 3.2567 3.4485 3.4808 3.7839 k = 0.0000-0.3536 0.0000 band energies (ev): -10.5687 -10.4872 -10.3313 -10.1930 -10.0731 -9.6542 -9.6032 -4.9061 -4.6902 -4.1711 -3.6952 -3.1397 -2.5628 -2.2179 -0.8139 -0.6470 -0.6445 -0.6058 -0.5825 -0.4630 -0.4129 -0.3687 -0.3266 -0.2582 -0.0531 -0.0097 0.0737 0.2512 2.7660 3.0830 3.2750 3.5080 3.5912 3.7092 k = 0.0833 0.0000 0.0000 band energies (ev): -11.2931 -10.9330 -10.3708 -9.7395 -9.3757 -9.1998 -9.1771 -4.8109 -4.5393 -4.0439 -3.5099 -2.9074 -2.5555 -2.4458 -1.8290 -1.7614 -1.5647 -1.4213 -1.3028 -0.9434 -0.5796 -0.4856 -0.2664 0.0164 0.2212 0.2442 0.3845 0.4229 2.4460 2.9716 3.1533 3.5818 3.6239 3.8275 k = 0.0833 0.1768 0.0000 band energies (ev): -11.0839 -10.7403 -10.2394 -9.7541 -9.7150 -9.4324 -9.4032 -4.5969 -4.5921 -4.2687 -3.9023 -3.0457 -2.3870 -1.8876 -1.7841 -1.5801 -1.3984 -1.1396 -1.0331 -0.7329 -0.6427 -0.3936 -0.3091 -0.1842 -0.0488 0.0567 0.3856 0.4744 2.7233 3.1669 3.5044 3.6640 3.7997 4.0179 k = 0.0833-0.3536 0.0000 band energies (ev): -10.5290 -10.4468 -10.2942 -10.1515 -10.0325 -9.6107 -9.5589 -4.8637 -4.6486 -4.1548 -3.6730 -3.2125 -2.6014 -2.4046 -1.1108 -1.0688 -1.0048 -0.8306 -0.6777 -0.6184 -0.6044 -0.4052 -0.3165 -0.2652 -0.1626 -0.1322 0.1930 0.2522 2.9964 3.2777 3.6440 3.7832 3.8792 4.0799 k = 0.1667 0.0000 0.0000 band energies (ev): -11.1507 -10.7919 -10.2411 -9.6358 -9.3316 -9.1559 -9.1297 -4.7155 -4.4900 -4.0730 -3.5487 -2.8906 -2.5424 -2.4436 -2.3553 -2.0767 -1.7451 -1.5579 -1.5530 -1.3268 -0.9789 -0.8454 -0.5534 -0.5118 -0.2710 -0.0995 0.1794 0.3534 2.7382 3.2539 3.6683 3.9697 3.9976 4.1188 k = 0.1667 0.1768 0.0000 band energies (ev): -10.9486 -10.6080 -10.1201 -9.6658 -9.6584 -9.3442 -9.3131 -4.5295 -4.5081 -4.3144 -3.8787 -3.0997 -2.6614 -2.2473 -2.0843 -1.9660 -1.7525 -1.4460 -1.2795 -1.0457 -0.9603 -0.8169 -0.7325 -0.5802 -0.2292 -0.0255 0.3469 0.4348 2.8905 3.2924 3.7288 3.8439 3.9864 4.3178 k = 0.1667-0.3536 0.0000 band energies (ev): -10.4294 -10.3404 -10.1966 -10.0428 -9.9300 -9.5004 -9.4478 -4.7489 -4.5354 -4.1350 -3.6545 -3.4881 -2.9001 -2.8443 -1.7033 -1.6082 -1.5065 -1.4966 -1.2302 -1.2226 -0.7134 -0.5210 -0.3508 -0.2660 -0.1695 -0.1638 0.2199 0.2521 3.2378 3.4103 4.1235 4.1280 4.2026 4.4656 k = 0.2500 0.0000 0.0000 band energies (ev): -10.9114 -10.5665 -10.0444 -9.4934 -9.3156 -9.0734 -9.0700 -4.6018 -4.4755 -4.1942 -3.7185 -3.0974 -2.8480 -2.6740 -2.5310 -2.3749 -1.9477 -1.9162 -1.8336 -1.5108 -1.2611 -1.1945 -0.7759 -0.7595 -0.4725 -0.2568 -0.0519 0.3096 2.7014 2.8336 3.4004 3.8337 3.8344 3.9304 k = 0.2500 0.1768 0.0000 band energies (ev): -10.7300 -10.4027 -9.9399 -9.5994 -9.5484 -9.2154 -9.1818 -4.5139 -4.4934 -4.3831 -3.9316 -3.3333 -3.1162 -2.8665 -2.5333 -2.3790 -2.0862 -1.8666 -1.4522 -1.2612 -1.1222 -1.0504 -0.7767 -0.7140 -0.2899 -0.1425 0.1806 0.3437 2.6930 3.0653 3.5427 3.5603 3.7493 4.4243 k = 0.2500-0.3536 0.0000 band energies (ev): -10.2686 -10.1682 -10.0430 -9.8748 -9.7812 -9.3273 -9.2837 -4.6016 -4.4026 -4.2014 -4.0040 -3.8572 -3.3840 -3.3736 -2.2231 -2.1933 -2.1294 -2.0173 -1.4872 -1.4025 -0.6980 -0.5858 -0.5719 -0.4468 -0.2087 -0.1534 0.1543 0.2829 3.1839 3.2740 4.1241 4.2098 4.2522 4.3229 k = 0.3333 0.0000 0.0000 band energies (ev): -10.6159 -10.2808 -9.8056 -9.4000 -9.3828 -9.0162 -8.9866 -4.5367 -4.5352 -4.3863 -4.0351 -3.5645 -3.0937 -2.9720 -2.7632 -2.7312 -2.2531 -1.9045 -1.8221 -1.4708 -1.2514 -1.1968 -1.0888 -0.7785 -0.6689 -0.3966 -0.0917 0.2367 2.2004 2.3682 3.2285 3.2864 3.4002 3.6617 k = 0.3333 0.1768 0.0000 band energies (ev): -10.4526 -10.1447 -9.7333 -9.5729 -9.4556 -9.0662 -9.0482 -4.7258 -4.5813 -4.4071 -4.1074 -3.7410 -3.6234 -3.5902 -2.6655 -2.6171 -2.1430 -2.0478 -1.5714 -1.2617 -1.1958 -1.1354 -0.8140 -0.7334 -0.3920 -0.3330 0.0395 0.2647 2.4312 2.7276 3.2385 3.3282 3.7744 4.1755 k = 0.3333-0.3536 0.0000 band energies (ev): -10.0877 -9.9738 -9.8705 -9.6867 -9.6177 -9.1303 -9.0940 -4.6376 -4.5366 -4.4339 -4.3400 -4.2779 -3.8954 -3.7898 -2.6125 -2.5864 -2.2860 -2.2818 -1.3334 -1.3019 -1.0761 -0.9976 -0.6443 -0.3811 -0.3210 -0.1755 0.0962 0.2944 2.9496 3.0936 3.9020 4.0510 4.1132 4.3239 k = 0.4167 0.0000 0.0000 band energies (ev): -10.2779 -9.9778 -9.6361 -9.5485 -9.4116 -8.9412 -8.9401 -4.6188 -4.6171 -4.3366 -4.2525 -4.0096 -3.6837 -3.4792 -2.7576 -2.5484 -2.1115 -1.7237 -1.6495 -1.5979 -1.5746 -1.2123 -1.1391 -0.7302 -0.7198 -0.4727 -0.0905 0.1848 1.7004 2.0567 2.7739 3.1634 3.1701 3.2592 k = 0.4167 0.1768 0.0000 band energies (ev): -10.1557 -9.8792 -9.6672 -9.5262 -9.4450 -8.9486 -8.9374 -4.8229 -4.6822 -4.5177 -4.3211 -4.1957 -4.1104 -4.1042 -2.5244 -2.4914 -1.9478 -1.9049 -1.7696 -1.5266 -1.2652 -1.2110 -0.9327 -0.6601 -0.5920 -0.3831 0.0186 0.2360 2.2750 2.4011 3.1794 3.2312 3.7161 3.8814 k = 0.4167-0.3536 0.0000 band energies (ev): -9.9460 -9.8190 -9.7330 -9.5314 -9.4834 -8.9654 -8.9370 -5.0233 -4.8503 -4.7893 -4.4491 -4.4147 -4.1799 -4.1564 -2.6980 -2.6775 -2.1367 -2.1203 -1.6645 -1.4725 -1.0835 -0.9642 -0.8988 -0.6310 -0.2577 -0.1878 0.0856 0.2862 2.6659 2.9885 3.6527 4.0505 4.1035 4.4921 k =-0.5000 0.0000 0.0000 band energies (ev): -9.9844 -9.8433 -9.7695 -9.5304 -9.4821 -8.9362 -8.9033 -4.6792 -4.6596 -4.2317 -4.1567 -4.0609 -4.0393 -3.9654 -2.4880 -2.3861 -2.1230 -1.9146 -1.7443 -1.5809 -1.4947 -1.2248 -1.1400 -0.7653 -0.6426 -0.5200 -0.0790 0.1758 1.4925 1.9615 2.5599 2.9728 3.2137 3.2553 k =-0.5000 0.1768 0.0000 band energies (ev): -9.9359 -9.7992 -9.7261 -9.5010 -9.4564 -8.9179 -8.8865 -4.7472 -4.6888 -4.6166 -4.4760 -4.3896 -4.3640 -4.2759 -2.2436 -2.1924 -2.1626 -2.0102 -1.6438 -1.6118 -1.3293 -1.3223 -1.1086 -0.6412 -0.5618 -0.4014 0.0312 0.2298 2.2344 2.2593 3.1976 3.2565 3.6114 3.6224 k =-0.5000-0.3536 0.0000 band energies (ev): -9.8908 -9.7587 -9.6807 -9.4698 -9.4290 -8.9009 -8.8730 -5.1777 -4.9874 -4.9391 -4.5654 -4.4138 -4.3654 -4.2330 -2.5995 -2.5949 -2.1200 -2.0255 -1.7823 -1.6340 -1.2820 -0.9933 -0.7776 -0.5175 -0.4469 -0.2640 0.1470 0.2907 2.5263 2.9580 3.6024 4.0709 4.1920 4.5696 the Fermi energy is 1.0815 ev Writing output data file AlAs110.save PWSCF : 0m58.97s CPU time, 1m 0.74s wall time init_run : 0.11s CPU electrons : 58.72s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.02s CPU Called by electrons: c_bands : 58.72s CPU v_of_rho : 0.01s CPU Called by c_bands: init_us_2 : 0.06s CPU ( 21 calls, 0.003 s avg) cegterg : 50.62s CPU ( 42 calls, 1.205 s avg) Called by *egterg: h_psi : 38.73s CPU ( 622 calls, 0.062 s avg) g_psi : 0.96s CPU ( 559 calls, 0.002 s avg) cdiaghg : 3.52s CPU ( 580 calls, 0.006 s avg) Called by h_psi: add_vuspsi : 2.50s CPU ( 622 calls, 0.004 s avg) General routines calbec : 2.28s CPU ( 622 calls, 0.004 s avg) cft3 : 0.01s CPU ( 3 calls, 0.002 s avg) cft3s : 29.84s CPU ( 22050 calls, 0.001 s avg) davcio : 0.00s CPU ( 21 calls, 0.000 s avg) espresso-5.1/PP/examples/example03/reference/AlAs110.box.projwfc.out0000644000175000017500000000302612341372774023241 0ustar mbamba Program PROJWFC v.4.2 starts on 4Jun2010 at 13: 2:14 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 1 processors Planes per process (thick) : nr3 = 108 npp = 108 ncplane = 486 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 108 349 24607 108 349 24607 109 4469 Gaussian broadening (read from input): ngauss,degauss= 0 0.010000 Calling projwave_boxes .... Box # 1 : vol 0.051440 % = 1.786458 (a.u.)^3; 0.120646E-01 elec Box # 2 : vol 0.051440 % = 1.786458 (a.u.)^3; 0.144389E-02 elec Box # 3 : vol 0.051440 % = 1.786458 (a.u.)^3; 0.204444E-03 elec Box # 4 : vol 2.777778 % = 96.468751 (a.u.)^3; 0.140278E+00 elec Box # 5 : vol 0.051440 % = 1.786458 (a.u.)^3; 0.263548E-04 elec Box # 6 : vol 0.051440 % = 1.786458 (a.u.)^3; 0.739011E-05 elec Box # 7 : vol 0.051440 % = 1.786458 (a.u.)^3; 0.359637E-05 elec Box # 8 : vol 2.777778 % = 96.468751 (a.u.)^3; 0.588339E-03 elec espresso-5.1/PP/examples/example03/reference/AlAs110.pp_stm-.out0000644000175000017500000000124712341372774022362 0ustar mbamba Program POST-PROC v.4.0 starts ... Today is 28Apr2008 at 16: 2:49 Calling punch_plot, plot_num = 5 workfunction = -12.9661 +- 13.9602 eV without exchcorr = -4.4391 +- 12.7455 eV Work function written on file workf Planar mean charge written on file charge Use the true wfcs Sample bias = -1.0000 eV STM: 0.20s cpu time Writing data to file AlAsresm-1.0 Reading data from file AlAsresm-1.0 Writing data to be plotted to file AlAs110-1.0 Min, Max, imaginary charge: 0.000099 0.025796 0.000000 Plot Type: 2D contour Output format: plotrho.x espresso-5.1/PP/examples/example03/reference/AlAs110+1.0eV.ps0000644000175000017500000141371712341372774021416 0ustar mbamba%! PS-Adobe-1.0 %%BoundingBox: 113.8 85.4 414.1 388.7 /localdict 100 dict def localdict begin /cm {28.453 mul} def /title {(AlAs110+1.0 )} def /Times-Roman findfont 12 scalefont setfont % cshow prints a centered string at current position /cshow {gsave dup stringwidth pop 2 div neg 0 rmoveto show grestore} def % x1 y1 x2 y2 p : draws a segment from point 1 to point 2 /p {0 setgray newpath moveto lineto stroke} def % x1 y1 x2 y2 x3 y3 x4 y4 sn : % fills the region bounded by points 1 to 4 % with greyscale n /s0 {1.00 setgray newpath moveto lineto lineto lineto fill} def /t0 {1.00 setgray newpath moveto lineto lineto fill} def /s1 {0.91 setgray newpath moveto lineto lineto lineto fill} def /t1 {0.91 setgray newpath moveto lineto lineto fill} def /s2 {0.82 setgray newpath moveto lineto lineto lineto fill} def /t2 {0.82 setgray newpath moveto lineto lineto fill} def /s3 {0.74 setgray newpath moveto lineto lineto lineto fill} def /t3 {0.74 setgray newpath moveto lineto lineto fill} def /s4 {0.65 setgray newpath moveto lineto lineto lineto fill} def /t4 {0.65 setgray newpath moveto lineto lineto fill} def /s5 {0.56 setgray newpath moveto lineto lineto lineto fill} def /t5 {0.56 setgray newpath moveto lineto lineto fill} def /s6 {0.48 setgray newpath moveto lineto lineto lineto fill} def /t6 {0.48 setgray newpath moveto lineto lineto fill} def /s7 {0.39 setgray newpath moveto lineto lineto lineto fill} def /t7 {0.39 setgray newpath moveto lineto lineto fill} def /s8 {0.30 setgray newpath moveto lineto lineto lineto fill} def /t8 {0.30 setgray newpath moveto lineto lineto fill} def %%EndPreamble gsave 4.00 cm 3.00 cm translate % Uncomment next line if you want a big picture % 1.8 1.8 scale 0.500 setlinewidth % Comment the next line to remove the title 5.28 cm 12.16 cm moveto title cshow % Beginning of hatching gsave newpath 0.0 0.0 moveto 300.3 0.0 lineto 300.3 303.3 lineto 0.0 303.3 lineto closepath clip 0.0 0.0 303.3 303.3 p 0.0 0.0 303.3 303.3 p 5.7 0.0 303.3 297.6 p 0.0 5.7 297.6 303.3 p 11.4 0.0 303.3 291.9 p 0.0 11.4 291.9 303.3 p 17.1 0.0 303.3 286.2 p 0.0 17.1 286.2 303.3 p 22.8 0.0 303.3 280.5 p 0.0 22.8 280.5 303.3 p 28.5 0.0 303.3 274.9 p 0.0 28.5 274.9 303.3 p 34.1 0.0 303.3 269.2 p 0.0 34.1 269.2 303.3 p 39.8 0.0 303.3 263.5 p 0.0 39.8 263.5 303.3 p 45.5 0.0 303.3 257.8 p 0.0 45.5 257.8 303.3 p 51.2 0.0 303.3 252.1 p 0.0 51.2 252.1 303.3 p 56.9 0.0 303.3 246.4 p 0.0 56.9 246.4 303.3 p 62.6 0.0 303.3 240.7 p 0.0 62.6 240.7 303.3 p 68.3 0.0 303.3 235.0 p 0.0 68.3 235.0 303.3 p 74.0 0.0 303.3 229.3 p 0.0 74.0 229.3 303.3 p 79.7 0.0 303.3 223.6 p 0.0 79.7 223.6 303.3 p 85.4 0.0 303.3 218.0 p 0.0 85.4 218.0 303.3 p 91.0 0.0 303.3 212.3 p 0.0 91.0 212.3 303.3 p 96.7 0.0 303.3 206.6 p 0.0 96.7 206.6 303.3 p 102.4 0.0 303.3 200.9 p 0.0 102.4 200.9 303.3 p 108.1 0.0 303.3 195.2 p 0.0 108.1 195.2 303.3 p 113.8 0.0 303.3 189.5 p 0.0 113.8 189.5 303.3 p 119.5 0.0 303.3 183.8 p 0.0 119.5 183.8 303.3 p 125.2 0.0 303.3 178.1 p 0.0 125.2 178.1 303.3 p 130.9 0.0 303.3 172.4 p 0.0 130.9 172.4 303.3 p 136.6 0.0 303.3 166.7 p 0.0 136.6 166.7 303.3 p 142.3 0.0 303.3 161.0 p 0.0 142.3 161.0 303.3 p 148.0 0.0 303.3 155.4 p 0.0 148.0 155.4 303.3 p 153.6 0.0 303.3 149.7 p 0.0 153.6 149.7 303.3 p 159.3 0.0 303.3 144.0 p 0.0 159.3 144.0 303.3 p 165.0 0.0 303.3 138.3 p 0.0 165.0 138.3 303.3 p 170.7 0.0 303.3 132.6 p 0.0 170.7 132.6 303.3 p 176.4 0.0 303.3 126.9 p 0.0 176.4 126.9 303.3 p 182.1 0.0 303.3 121.2 p 0.0 182.1 121.2 303.3 p 187.8 0.0 303.3 115.5 p 0.0 187.8 115.5 303.3 p 193.5 0.0 303.3 109.8 p 0.0 193.5 109.8 303.3 p 199.2 0.0 303.3 104.1 p 0.0 199.2 104.1 303.3 p 204.9 0.0 303.3 98.4 p 0.0 204.9 98.4 303.3 p 210.6 0.0 303.3 92.8 p 0.0 210.6 92.8 303.3 p 216.2 0.0 303.3 87.1 p 0.0 216.2 87.1 303.3 p 221.9 0.0 303.3 81.4 p 0.0 221.9 81.4 303.3 p 227.6 0.0 303.3 75.7 p 0.0 227.6 75.7 303.3 p 233.3 0.0 303.3 70.0 p 0.0 233.3 70.0 303.3 p 239.0 0.0 303.3 64.3 p 0.0 239.0 64.3 303.3 p 244.7 0.0 303.3 58.6 p 0.0 244.7 58.6 303.3 p 250.4 0.0 303.3 52.9 p 0.0 250.4 52.9 303.3 p 256.1 0.0 303.3 47.2 p 0.0 256.1 47.2 303.3 p 261.8 0.0 303.3 41.5 p 0.0 261.8 41.5 303.3 p 267.5 0.0 303.3 35.9 p 0.0 267.5 35.9 303.3 p 273.1 0.0 303.3 30.2 p 0.0 273.1 30.2 303.3 p 278.8 0.0 303.3 24.5 p 0.0 278.8 24.5 303.3 p 284.5 0.0 303.3 18.8 p 0.0 284.5 18.8 303.3 p 290.2 0.0 303.3 13.1 p 0.0 290.2 13.1 303.3 p 295.9 0.0 303.3 7.4 p 0.0 295.9 7.4 303.3 p grestore % End of hatching % Start of Color Code % Beginning of hatching gsave newpath 328.7 0.0 moveto 342.9 0.0 lineto 342.9 303.3 lineto 328.7 303.3 lineto closepath clip 328.7 0.0 632.0 303.3 p 328.7 0.0 632.0 303.3 p 334.4 0.0 632.0 297.6 p 328.7 5.7 626.3 303.3 p 340.1 0.0 632.0 291.9 p 328.7 11.4 620.6 303.3 p 345.8 0.0 632.0 286.2 p 328.7 17.1 615.0 303.3 p 351.5 0.0 632.0 280.5 p 328.7 22.8 609.3 303.3 p 357.2 0.0 632.0 274.9 p 328.7 28.5 603.6 303.3 p 362.9 0.0 632.0 269.2 p 328.7 34.1 597.9 303.3 p 368.5 0.0 632.0 263.5 p 328.7 39.8 592.2 303.3 p 374.2 0.0 632.0 257.8 p 328.7 45.5 586.5 303.3 p 379.9 0.0 632.0 252.1 p 328.7 51.2 580.8 303.3 p 385.6 0.0 632.0 246.4 p 328.7 56.9 575.1 303.3 p 391.3 0.0 632.0 240.7 p 328.7 62.6 569.4 303.3 p 397.0 0.0 632.0 235.0 p 328.7 68.3 563.7 303.3 p 402.7 0.0 632.0 229.3 p 328.7 74.0 558.0 303.3 p 408.4 0.0 632.0 223.6 p 328.7 79.7 552.4 303.3 p 414.1 0.0 632.0 218.0 p 328.7 85.4 546.7 303.3 p 419.8 0.0 632.0 212.3 p 328.7 91.0 541.0 303.3 p 425.5 0.0 632.0 206.6 p 328.7 96.7 535.3 303.3 p 431.1 0.0 632.0 200.9 p 328.7 102.4 529.6 303.3 p 436.8 0.0 632.0 195.2 p 328.7 108.1 523.9 303.3 p 442.5 0.0 632.0 189.5 p 328.7 113.8 518.2 303.3 p 448.2 0.0 632.0 183.8 p 328.7 119.5 512.5 303.3 p 453.9 0.0 632.0 178.1 p 328.7 125.2 506.8 303.3 p 459.6 0.0 632.0 172.4 p 328.7 130.9 501.1 303.3 p 465.3 0.0 632.0 166.7 p 328.7 136.6 495.5 303.3 p 471.0 0.0 632.0 161.0 p 328.7 142.3 489.8 303.3 p 476.7 0.0 632.0 155.4 p 328.7 148.0 484.1 303.3 p 482.4 0.0 632.0 149.7 p 328.7 153.6 478.4 303.3 p 488.1 0.0 632.0 144.0 p 328.7 159.3 472.7 303.3 p 493.7 0.0 632.0 138.3 p 328.7 165.0 467.0 303.3 p 499.4 0.0 632.0 132.6 p 328.7 170.7 461.3 303.3 p 505.1 0.0 632.0 126.9 p 328.7 176.4 455.6 303.3 p 510.8 0.0 632.0 121.2 p 328.7 182.1 449.9 303.3 p 516.5 0.0 632.0 115.5 p 328.7 187.8 444.2 303.3 p 522.2 0.0 632.0 109.8 p 328.7 193.5 438.5 303.3 p 527.9 0.0 632.0 104.1 p 328.7 199.2 432.9 303.3 p 533.6 0.0 632.0 98.4 p 328.7 204.9 427.2 303.3 p 539.3 0.0 632.0 92.8 p 328.7 210.6 421.5 303.3 p 545.0 0.0 632.0 87.1 p 328.7 216.2 415.8 303.3 p 550.6 0.0 632.0 81.4 p 328.7 221.9 410.1 303.3 p 556.3 0.0 632.0 75.7 p 328.7 227.6 404.4 303.3 p 562.0 0.0 632.0 70.0 p 328.7 233.3 398.7 303.3 p 567.7 0.0 632.0 64.3 p 328.7 239.0 393.0 303.3 p 573.4 0.0 632.0 58.6 p 328.7 244.7 387.3 303.3 p 579.1 0.0 632.0 52.9 p 328.7 250.4 381.6 303.3 p 584.8 0.0 632.0 47.2 p 328.7 256.1 375.9 303.3 p 590.5 0.0 632.0 41.5 p 328.7 261.8 370.3 303.3 p 596.2 0.0 632.0 35.9 p 328.7 267.5 364.6 303.3 p 601.9 0.0 632.0 30.2 p 328.7 273.1 358.9 303.3 p 607.6 0.0 632.0 24.5 p 328.7 278.8 353.2 303.3 p 613.2 0.0 632.0 18.8 p 328.7 284.5 347.5 303.3 p 618.9 0.0 632.0 13.1 p 328.7 290.2 341.8 303.3 p 624.6 0.0 632.0 7.4 p 328.7 295.9 336.1 303.3 p grestore % End of hatching 328.7 303.3 342.9 303.3 342.9 269.6 328.7 269.6 s0 0 setgray newpath 328.7 303.3 moveto 342.9 303.3 lineto 342.9 269.6 lineto 328.7 269.6 lineto closepath stroke 357.2 286.5 moveto (z<0.00002) show 328.7 269.6 342.9 269.6 342.9 235.9 328.7 235.9 s1 0 setgray newpath 328.7 269.6 moveto 342.9 269.6 lineto 342.9 235.9 lineto 328.7 235.9 lineto closepath stroke 357.2 252.8 moveto (0.000020.00210) show % End of Color Code 0.0 297.8 8.6 297.8 8.6 303.3 0.0 303.3 s1 8.6 297.8 17.2 297.8 17.2 303.3 8.6 303.3 s1 17.2 297.8 25.7 297.8 25.7 303.3 17.2 303.3 s1 25.7 297.8 34.3 297.8 34.3 303.3 25.7 303.3 s1 34.3 297.8 42.9 297.8 42.9 303.3 34.3 303.3 s1 42.9 297.8 51.5 297.8 51.5 303.3 42.9 303.3 s1 51.5 297.8 60.1 297.8 60.1 303.3 51.5 303.3 s1 60.1 297.8 68.6 297.8 68.6 303.3 60.1 303.3 s1 68.6 297.8 77.2 297.8 77.2 303.3 68.6 303.3 s1 77.2 297.8 85.8 297.8 85.8 303.3 77.2 303.3 s1 85.8 297.8 94.4 297.8 94.4 303.3 85.8 303.3 s1 94.4 297.8 102.9 297.8 102.9 303.3 94.4 303.3 s1 102.9 297.8 111.5 297.8 111.5 303.3 102.9 303.3 s1 111.5 297.8 120.1 297.8 120.1 303.3 111.5 303.3 s1 120.1 297.8 128.7 297.8 128.7 303.3 120.1 303.3 s1 128.7 297.8 137.3 297.8 137.3 303.3 128.7 303.3 s1 137.3 297.8 145.8 297.8 145.8 303.3 137.3 303.3 s1 145.8 297.8 154.4 297.8 154.4 303.3 145.8 303.3 s1 154.4 297.8 163.0 297.8 163.0 303.3 154.4 303.3 s1 163.0 297.8 171.6 297.8 171.6 303.3 163.0 303.3 s1 171.6 297.8 180.2 297.8 180.2 303.3 171.6 303.3 s1 180.2 297.8 188.7 297.8 188.7 303.3 180.2 303.3 s1 188.7 297.8 197.3 297.8 197.3 303.3 188.7 303.3 s1 197.3 297.8 205.9 297.8 205.9 303.3 197.3 303.3 s1 205.9 297.8 214.5 297.8 214.5 303.3 205.9 303.3 s1 214.5 297.8 223.1 297.8 223.1 303.3 214.5 303.3 s1 223.1 297.8 231.6 297.8 231.6 303.3 223.1 303.3 s1 231.6 297.8 240.2 297.8 240.2 303.3 231.6 303.3 s1 240.2 297.8 248.8 297.8 248.8 303.3 240.2 303.3 s1 248.8 297.8 257.4 297.8 257.4 303.3 248.8 303.3 s1 257.4 297.8 265.9 297.8 265.9 303.3 257.4 303.3 s1 265.9 297.8 274.5 297.8 274.5 303.3 265.9 303.3 s1 274.5 297.8 283.1 297.8 283.1 303.3 274.5 303.3 s1 283.1 297.8 291.7 297.8 291.7 303.3 283.1 303.3 s1 291.7 297.8 300.3 297.8 300.3 303.3 291.7 303.3 s1 0.0 292.3 8.6 292.3 8.6 297.8 0.0 297.8 s0 2.6 294.0 6.7 293.5 4.3 295.0 t1 2.6 294.0 6.7 293.5 p 8.6 293.3 6.7 293.5 4.3 295.0 8.6 297.8 s1 8.6 293.3 6.7 293.5 p 8.6 297.8 4.3 295.0 0.0 297.8 t1 2.6 294.0 0.0 294.2 0.0 297.8 4.3 295.0 s1 2.6 294.0 0.0 294.2 p 8.6 292.3 17.2 292.3 17.2 297.8 8.6 297.8 s0 10.4 293.4 16.4 292.8 12.9 295.0 t1 10.4 293.4 16.4 292.8 p 17.2 292.9 16.4 292.8 12.9 295.0 17.2 297.8 s1 17.2 292.9 16.4 292.8 p 17.2 297.8 12.9 295.0 8.6 297.8 t1 10.4 293.4 8.6 293.3 8.6 297.8 12.9 295.0 s1 10.4 293.4 8.6 293.3 p 17.2 292.3 25.7 292.3 25.7 297.8 17.2 297.8 s0 18.1 292.9 24.8 292.9 21.4 295.0 t1 18.1 292.9 24.8 292.9 p 25.7 292.9 24.8 292.9 21.4 295.0 25.7 297.8 s1 25.7 292.9 24.8 292.9 p 25.7 297.8 21.4 295.0 17.2 297.8 t1 18.1 292.9 17.2 292.9 17.2 297.8 21.4 295.0 s1 18.1 292.9 17.2 292.9 p 25.7 292.3 34.3 292.3 34.3 297.8 25.7 297.8 s0 26.5 292.8 32.5 293.4 30.0 295.0 t1 26.5 292.8 32.5 293.4 p 34.3 293.3 32.5 293.4 30.0 295.0 34.3 297.8 s1 34.3 293.3 32.5 293.4 p 34.3 297.8 30.0 295.0 25.7 297.8 t1 26.5 292.8 25.7 292.9 25.7 297.8 30.0 295.0 s1 26.5 292.8 25.7 292.9 p 34.3 292.3 42.9 292.3 42.9 297.8 34.3 297.8 s0 36.2 293.5 40.2 294.0 38.6 295.0 t1 36.2 293.5 40.2 294.0 p 42.9 294.2 40.2 294.0 38.6 295.0 42.9 297.8 s1 42.9 294.2 40.2 294.0 p 42.9 297.8 38.6 295.0 34.3 297.8 t1 36.2 293.5 34.3 293.3 34.3 297.8 38.6 295.0 s1 36.2 293.5 34.3 293.3 p 42.9 292.3 51.5 292.3 51.5 297.8 42.9 297.8 s0 45.5 294.0 49.6 293.5 47.2 295.0 t1 45.5 294.0 49.6 293.5 p 51.5 293.3 49.6 293.5 47.2 295.0 51.5 297.8 s1 51.5 293.3 49.6 293.5 p 51.5 297.8 47.2 295.0 42.9 297.8 t1 45.5 294.0 42.9 294.2 42.9 297.8 47.2 295.0 s1 45.5 294.0 42.9 294.2 p 51.5 292.3 60.1 292.3 60.1 297.8 51.5 297.8 s0 53.3 293.4 59.3 292.8 55.8 295.0 t1 53.3 293.4 59.3 292.8 p 60.1 292.9 59.3 292.8 55.8 295.0 60.1 297.8 s1 60.1 292.9 59.3 292.8 p 60.1 297.8 55.8 295.0 51.5 297.8 t1 53.3 293.4 51.5 293.3 51.5 297.8 55.8 295.0 s1 53.3 293.4 51.5 293.3 p 60.1 292.3 68.6 292.3 68.6 297.8 60.1 297.8 s0 61.0 292.9 67.7 292.9 64.3 295.0 t1 61.0 292.9 67.7 292.9 p 68.6 292.9 67.7 292.9 64.3 295.0 68.6 297.8 s1 68.6 292.9 67.7 292.9 p 68.6 297.8 64.3 295.0 60.1 297.8 t1 61.0 292.9 60.1 292.9 60.1 297.8 64.3 295.0 s1 61.0 292.9 60.1 292.9 p 68.6 292.3 77.2 292.3 77.2 297.8 68.6 297.8 s0 69.4 292.8 75.4 293.4 72.9 295.0 t1 69.4 292.8 75.4 293.4 p 77.2 293.3 75.4 293.4 72.9 295.0 77.2 297.8 s1 77.2 293.3 75.4 293.4 p 77.2 297.8 72.9 295.0 68.6 297.8 t1 69.4 292.8 68.6 292.9 68.6 297.8 72.9 295.0 s1 69.4 292.8 68.6 292.9 p 77.2 292.3 85.8 292.3 85.8 297.8 77.2 297.8 s0 79.1 293.5 83.1 294.0 81.5 295.0 t1 79.1 293.5 83.1 294.0 p 85.8 294.2 83.1 294.0 81.5 295.0 85.8 297.8 s1 85.8 294.2 83.1 294.0 p 85.8 297.8 81.5 295.0 77.2 297.8 t1 79.1 293.5 77.2 293.3 77.2 297.8 81.5 295.0 s1 79.1 293.5 77.2 293.3 p 85.8 292.3 94.4 292.3 94.4 297.8 85.8 297.8 s0 88.4 294.0 92.5 293.5 90.1 295.0 t1 88.4 294.0 92.5 293.5 p 94.4 293.3 92.5 293.5 90.1 295.0 94.4 297.8 s1 94.4 293.3 92.5 293.5 p 94.4 297.8 90.1 295.0 85.8 297.8 t1 88.4 294.0 85.8 294.2 85.8 297.8 90.1 295.0 s1 88.4 294.0 85.8 294.2 p 94.4 292.3 102.9 292.3 102.9 297.8 94.4 297.8 s0 96.2 293.4 102.2 292.8 98.7 295.0 t1 96.2 293.4 102.2 292.8 p 102.9 292.9 102.2 292.8 98.7 295.0 102.9 297.8 s1 102.9 292.9 102.2 292.8 p 102.9 297.8 98.7 295.0 94.4 297.8 t1 96.2 293.4 94.4 293.3 94.4 297.8 98.7 295.0 s1 96.2 293.4 94.4 293.3 p 102.9 292.3 111.5 292.3 111.5 297.8 102.9 297.8 s0 103.9 292.9 110.6 292.9 107.2 295.0 t1 103.9 292.9 110.6 292.9 p 111.5 292.9 110.6 292.9 107.2 295.0 111.5 297.8 s1 111.5 292.9 110.6 292.9 p 111.5 297.8 107.2 295.0 102.9 297.8 t1 103.9 292.9 102.9 292.9 102.9 297.8 107.2 295.0 s1 103.9 292.9 102.9 292.9 p 111.5 292.3 120.1 292.3 120.1 297.8 111.5 297.8 s0 112.3 292.8 118.3 293.4 115.8 295.0 t1 112.3 292.8 118.3 293.4 p 120.1 293.3 118.3 293.4 115.8 295.0 120.1 297.8 s1 120.1 293.3 118.3 293.4 p 120.1 297.8 115.8 295.0 111.5 297.8 t1 112.3 292.8 111.5 292.9 111.5 297.8 115.8 295.0 s1 112.3 292.8 111.5 292.9 p 120.1 292.3 128.7 292.3 128.7 297.8 120.1 297.8 s0 122.0 293.5 126.0 294.0 124.4 295.0 t1 122.0 293.5 126.0 294.0 p 128.7 294.2 126.0 294.0 124.4 295.0 128.7 297.8 s1 128.7 294.2 126.0 294.0 p 128.7 297.8 124.4 295.0 120.1 297.8 t1 122.0 293.5 120.1 293.3 120.1 297.8 124.4 295.0 s1 122.0 293.5 120.1 293.3 p 128.7 292.3 137.3 292.3 137.3 297.8 128.7 297.8 s0 131.3 294.0 135.4 293.5 133.0 295.0 t1 131.3 294.0 135.4 293.5 p 137.3 293.3 135.4 293.5 133.0 295.0 137.3 297.8 s1 137.3 293.3 135.4 293.5 p 137.3 297.8 133.0 295.0 128.7 297.8 t1 131.3 294.0 128.7 294.2 128.7 297.8 133.0 295.0 s1 131.3 294.0 128.7 294.2 p 137.3 292.3 145.8 292.3 145.8 297.8 137.3 297.8 s0 139.1 293.4 145.0 292.8 141.6 295.0 t1 139.1 293.4 145.0 292.8 p 145.8 292.9 145.0 292.8 141.6 295.0 145.8 297.8 s1 145.8 292.9 145.0 292.8 p 145.8 297.8 141.6 295.0 137.3 297.8 t1 139.1 293.4 137.3 293.3 137.3 297.8 141.6 295.0 s1 139.1 293.4 137.3 293.3 p 145.8 292.3 154.4 292.3 154.4 297.8 145.8 297.8 s0 146.8 292.9 153.5 292.9 150.1 295.0 t1 146.8 292.9 153.5 292.9 p 154.4 292.9 153.5 292.9 150.1 295.0 154.4 297.8 s1 154.4 292.9 153.5 292.9 p 154.4 297.8 150.1 295.0 145.8 297.8 t1 146.8 292.9 145.8 292.9 145.8 297.8 150.1 295.0 s1 146.8 292.9 145.8 292.9 p 154.4 292.3 163.0 292.3 163.0 297.8 154.4 297.8 s0 155.2 292.8 161.2 293.4 158.7 295.0 t1 155.2 292.8 161.2 293.4 p 163.0 293.3 161.2 293.4 158.7 295.0 163.0 297.8 s1 163.0 293.3 161.2 293.4 p 163.0 297.8 158.7 295.0 154.4 297.8 t1 155.2 292.8 154.4 292.9 154.4 297.8 158.7 295.0 s1 155.2 292.8 154.4 292.9 p 163.0 292.3 171.6 292.3 171.6 297.8 163.0 297.8 s0 164.9 293.5 168.9 294.0 167.3 295.0 t1 164.9 293.5 168.9 294.0 p 171.6 294.2 168.9 294.0 167.3 295.0 171.6 297.8 s1 171.6 294.2 168.9 294.0 p 171.6 297.8 167.3 295.0 163.0 297.8 t1 164.9 293.5 163.0 293.3 163.0 297.8 167.3 295.0 s1 164.9 293.5 163.0 293.3 p 171.6 292.3 180.2 292.3 180.2 297.8 171.6 297.8 s0 174.2 294.0 178.3 293.5 175.9 295.0 t1 174.2 294.0 178.3 293.5 p 180.2 293.3 178.3 293.5 175.9 295.0 180.2 297.8 s1 180.2 293.3 178.3 293.5 p 180.2 297.8 175.9 295.0 171.6 297.8 t1 174.2 294.0 171.6 294.2 171.6 297.8 175.9 295.0 s1 174.2 294.0 171.6 294.2 p 180.2 292.3 188.7 292.3 188.7 297.8 180.2 297.8 s0 181.9 293.4 187.9 292.8 184.4 295.0 t1 181.9 293.4 187.9 292.8 p 188.7 292.9 187.9 292.8 184.4 295.0 188.7 297.8 s1 188.7 292.9 187.9 292.8 p 188.7 297.8 184.4 295.0 180.2 297.8 t1 181.9 293.4 180.2 293.3 180.2 297.8 184.4 295.0 s1 181.9 293.4 180.2 293.3 p 188.7 292.3 197.3 292.3 197.3 297.8 188.7 297.8 s0 189.7 292.9 196.4 292.9 193.0 295.0 t1 189.7 292.9 196.4 292.9 p 197.3 292.9 196.4 292.9 193.0 295.0 197.3 297.8 s1 197.3 292.9 196.4 292.9 p 197.3 297.8 193.0 295.0 188.7 297.8 t1 189.7 292.9 188.7 292.9 188.7 297.8 193.0 295.0 s1 189.7 292.9 188.7 292.9 p 197.3 292.3 205.9 292.3 205.9 297.8 197.3 297.8 s0 198.1 292.8 204.1 293.4 201.6 295.0 t1 198.1 292.8 204.1 293.4 p 205.9 293.3 204.1 293.4 201.6 295.0 205.9 297.8 s1 205.9 293.3 204.1 293.4 p 205.9 297.8 201.6 295.0 197.3 297.8 t1 198.1 292.8 197.3 292.9 197.3 297.8 201.6 295.0 s1 198.1 292.8 197.3 292.9 p 205.9 292.3 214.5 292.3 214.5 297.8 205.9 297.8 s0 207.8 293.5 211.8 294.0 210.2 295.0 t1 207.8 293.5 211.8 294.0 p 214.5 294.2 211.8 294.0 210.2 295.0 214.5 297.8 s1 214.5 294.2 211.8 294.0 p 214.5 297.8 210.2 295.0 205.9 297.8 t1 207.8 293.5 205.9 293.3 205.9 297.8 210.2 295.0 s1 207.8 293.5 205.9 293.3 p 214.5 292.3 223.1 292.3 223.1 297.8 214.5 297.8 s0 217.1 294.0 221.2 293.5 218.8 295.0 t1 217.1 294.0 221.2 293.5 p 223.1 293.3 221.2 293.5 218.8 295.0 223.1 297.8 s1 223.1 293.3 221.2 293.5 p 223.1 297.8 218.8 295.0 214.5 297.8 t1 217.1 294.0 214.5 294.2 214.5 297.8 218.8 295.0 s1 217.1 294.0 214.5 294.2 p 223.1 292.3 231.6 292.3 231.6 297.8 223.1 297.8 s0 224.8 293.4 230.8 292.8 227.3 295.0 t1 224.8 293.4 230.8 292.8 p 231.6 292.9 230.8 292.8 227.3 295.0 231.6 297.8 s1 231.6 292.9 230.8 292.8 p 231.6 297.8 227.3 295.0 223.1 297.8 t1 224.8 293.4 223.1 293.3 223.1 297.8 227.3 295.0 s1 224.8 293.4 223.1 293.3 p 231.6 292.3 240.2 292.3 240.2 297.8 231.6 297.8 s0 232.6 292.9 239.3 292.9 235.9 295.0 t1 232.6 292.9 239.3 292.9 p 240.2 292.9 239.3 292.9 235.9 295.0 240.2 297.8 s1 240.2 292.9 239.3 292.9 p 240.2 297.8 235.9 295.0 231.6 297.8 t1 232.6 292.9 231.6 292.9 231.6 297.8 235.9 295.0 s1 232.6 292.9 231.6 292.9 p 240.2 292.3 248.8 292.3 248.8 297.8 240.2 297.8 s0 241.0 292.8 247.0 293.4 244.5 295.0 t1 241.0 292.8 247.0 293.4 p 248.8 293.3 247.0 293.4 244.5 295.0 248.8 297.8 s1 248.8 293.3 247.0 293.4 p 248.8 297.8 244.5 295.0 240.2 297.8 t1 241.0 292.8 240.2 292.9 240.2 297.8 244.5 295.0 s1 241.0 292.8 240.2 292.9 p 248.8 292.3 257.4 292.3 257.4 297.8 248.8 297.8 s0 250.7 293.5 254.7 294.0 253.1 295.0 t1 250.7 293.5 254.7 294.0 p 257.4 294.2 254.7 294.0 253.1 295.0 257.4 297.8 s1 257.4 294.2 254.7 294.0 p 257.4 297.8 253.1 295.0 248.8 297.8 t1 250.7 293.5 248.8 293.3 248.8 297.8 253.1 295.0 s1 250.7 293.5 248.8 293.3 p 257.4 292.3 265.9 292.3 265.9 297.8 257.4 297.8 s0 260.0 294.0 264.1 293.5 261.7 295.0 t1 260.0 294.0 264.1 293.5 p 265.9 293.3 264.1 293.5 261.7 295.0 265.9 297.8 s1 265.9 293.3 264.1 293.5 p 265.9 297.8 261.7 295.0 257.4 297.8 t1 260.0 294.0 257.4 294.2 257.4 297.8 261.7 295.0 s1 260.0 294.0 257.4 294.2 p 265.9 292.3 274.5 292.3 274.5 297.8 265.9 297.8 s0 267.7 293.4 273.7 292.8 270.2 295.0 t1 267.7 293.4 273.7 292.8 p 274.5 292.9 273.7 292.8 270.2 295.0 274.5 297.8 s1 274.5 292.9 273.7 292.8 p 274.5 297.8 270.2 295.0 265.9 297.8 t1 267.7 293.4 265.9 293.3 265.9 297.8 270.2 295.0 s1 267.7 293.4 265.9 293.3 p 274.5 292.3 283.1 292.3 283.1 297.8 274.5 297.8 s0 275.5 292.9 282.2 292.9 278.8 295.0 t1 275.5 292.9 282.2 292.9 p 283.1 292.9 282.2 292.9 278.8 295.0 283.1 297.8 s1 283.1 292.9 282.2 292.9 p 283.1 297.8 278.8 295.0 274.5 297.8 t1 275.5 292.9 274.5 292.9 274.5 297.8 278.8 295.0 s1 275.5 292.9 274.5 292.9 p 283.1 292.3 291.7 292.3 291.7 297.8 283.1 297.8 s0 283.9 292.8 289.9 293.4 287.4 295.0 t1 283.9 292.8 289.9 293.4 p 291.7 293.3 289.9 293.4 287.4 295.0 291.7 297.8 s1 291.7 293.3 289.9 293.4 p 291.7 297.8 287.4 295.0 283.1 297.8 t1 283.9 292.8 283.1 292.9 283.1 297.8 287.4 295.0 s1 283.9 292.8 283.1 292.9 p 291.7 292.3 300.3 292.3 300.3 297.8 291.7 297.8 s0 293.6 293.5 297.6 294.0 296.0 295.0 t1 293.6 293.5 297.6 294.0 p 300.3 294.2 297.6 294.0 296.0 295.0 300.3 297.8 s1 300.3 294.2 297.6 294.0 p 300.3 297.8 296.0 295.0 291.7 297.8 t1 293.6 293.5 291.7 293.3 291.7 297.8 296.0 295.0 s1 293.6 293.5 291.7 293.3 p 0.0 286.8 8.6 286.8 8.6 292.3 0.0 292.3 s0 8.6 286.8 17.2 286.8 17.2 292.3 8.6 292.3 s0 16.2 287.4 16.2 286.8 17.2 286.8 t1 16.2 287.4 16.2 286.8 p 17.2 289.0 16.2 287.4 17.2 286.8 t1 17.2 289.0 16.2 287.4 p 17.2 286.8 25.7 286.8 25.7 292.3 17.2 292.3 s0 20.6 289.0 22.3 289.0 25.7 286.8 17.2 286.8 s1 20.6 289.0 22.3 289.0 p 25.7 289.0 22.3 289.0 25.7 286.8 t1 25.7 289.0 22.3 289.0 p 20.6 289.0 17.2 289.0 17.2 286.8 t1 20.6 289.0 17.2 289.0 p 25.7 286.8 34.3 286.8 34.3 292.3 25.7 292.3 s0 26.7 286.8 26.7 287.4 25.7 286.8 t1 26.7 286.8 26.7 287.4 p 26.7 287.4 25.7 289.0 25.7 286.8 t1 26.7 287.4 25.7 289.0 p 34.3 286.8 42.9 286.8 42.9 292.3 34.3 292.3 s0 42.9 286.8 51.5 286.8 51.5 292.3 42.9 292.3 s0 51.5 286.8 60.1 286.8 60.1 292.3 51.5 292.3 s0 59.1 287.4 59.1 286.8 60.1 286.8 t1 59.1 287.4 59.1 286.8 p 60.1 289.0 59.1 287.4 60.1 286.8 t1 60.1 289.0 59.1 287.4 p 60.1 286.8 68.6 286.8 68.6 292.3 60.1 292.3 s0 63.5 289.0 65.2 289.0 68.6 286.8 60.1 286.8 s1 63.5 289.0 65.2 289.0 p 68.6 289.0 65.2 289.0 68.6 286.8 t1 68.6 289.0 65.2 289.0 p 63.5 289.0 60.1 289.0 60.1 286.8 t1 63.5 289.0 60.1 289.0 p 68.6 286.8 77.2 286.8 77.2 292.3 68.6 292.3 s0 69.6 286.8 69.6 287.4 68.6 286.8 t1 69.6 286.8 69.6 287.4 p 69.6 287.4 68.6 289.0 68.6 286.8 t1 69.6 287.4 68.6 289.0 p 77.2 286.8 85.8 286.8 85.8 292.3 77.2 292.3 s0 85.8 286.8 94.4 286.8 94.4 292.3 85.8 292.3 s0 94.4 286.8 102.9 286.8 102.9 292.3 94.4 292.3 s0 101.9 287.4 102.0 286.8 102.9 286.8 t1 101.9 287.4 102.0 286.8 p 102.9 289.0 101.9 287.4 102.9 286.8 t1 102.9 289.0 101.9 287.4 p 102.9 286.8 111.5 286.8 111.5 292.3 102.9 292.3 s0 106.4 289.0 108.1 289.0 111.5 286.8 102.9 286.8 s1 106.4 289.0 108.1 289.0 p 111.5 289.0 108.1 289.0 111.5 286.8 t1 111.5 289.0 108.1 289.0 p 106.4 289.0 102.9 289.0 102.9 286.8 t1 106.4 289.0 102.9 289.0 p 111.5 286.8 120.1 286.8 120.1 292.3 111.5 292.3 s0 112.5 286.8 112.5 287.4 111.5 286.8 t1 112.5 286.8 112.5 287.4 p 112.5 287.4 111.5 289.0 111.5 286.8 t1 112.5 287.4 111.5 289.0 p 120.1 286.8 128.7 286.8 128.7 292.3 120.1 292.3 s0 128.7 286.8 137.3 286.8 137.3 292.3 128.7 292.3 s0 137.3 286.8 145.8 286.8 145.8 292.3 137.3 292.3 s0 144.8 287.4 144.9 286.8 145.8 286.8 t1 144.8 287.4 144.9 286.8 p 145.8 289.0 144.8 287.4 145.8 286.8 t1 145.8 289.0 144.8 287.4 p 145.8 286.8 154.4 286.8 154.4 292.3 145.8 292.3 s0 149.3 289.0 151.0 289.0 154.4 286.8 145.8 286.8 s1 149.3 289.0 151.0 289.0 p 154.4 289.0 151.0 289.0 154.4 286.8 t1 154.4 289.0 151.0 289.0 p 149.3 289.0 145.8 289.0 145.8 286.8 t1 149.3 289.0 145.8 289.0 p 154.4 286.8 163.0 286.8 163.0 292.3 154.4 292.3 s0 155.4 286.8 155.4 287.4 154.4 286.8 t1 155.4 286.8 155.4 287.4 p 155.4 287.4 154.4 289.0 154.4 286.8 t1 155.4 287.4 154.4 289.0 p 163.0 286.8 171.6 286.8 171.6 292.3 163.0 292.3 s0 171.6 286.8 180.2 286.8 180.2 292.3 171.6 292.3 s0 180.2 286.8 188.7 286.8 188.7 292.3 180.2 292.3 s0 187.7 287.4 187.8 286.8 188.7 286.8 t1 187.7 287.4 187.8 286.8 p 188.7 289.0 187.7 287.4 188.7 286.8 t1 188.7 289.0 187.7 287.4 p 188.7 286.8 197.3 286.8 197.3 292.3 188.7 292.3 s0 192.2 289.0 193.9 289.0 197.3 286.8 188.7 286.8 s1 192.2 289.0 193.9 289.0 p 197.3 289.0 193.9 289.0 197.3 286.8 t1 197.3 289.0 193.9 289.0 p 192.2 289.0 188.7 289.0 188.7 286.8 t1 192.2 289.0 188.7 289.0 p 197.3 286.8 205.9 286.8 205.9 292.3 197.3 292.3 s0 198.3 286.8 198.3 287.4 197.3 286.8 t1 198.3 286.8 198.3 287.4 p 198.3 287.4 197.3 289.0 197.3 286.8 t1 198.3 287.4 197.3 289.0 p 205.9 286.8 214.5 286.8 214.5 292.3 205.9 292.3 s0 214.5 286.8 223.1 286.8 223.1 292.3 214.5 292.3 s0 223.1 286.8 231.6 286.8 231.6 292.3 223.1 292.3 s0 230.6 287.4 230.7 286.8 231.6 286.8 t1 230.6 287.4 230.7 286.8 p 231.6 289.0 230.6 287.4 231.6 286.8 t1 231.6 289.0 230.6 287.4 p 231.6 286.8 240.2 286.8 240.2 292.3 231.6 292.3 s0 235.0 289.0 236.8 289.0 240.2 286.8 231.6 286.8 s1 235.0 289.0 236.8 289.0 p 240.2 289.0 236.8 289.0 240.2 286.8 t1 240.2 289.0 236.8 289.0 p 235.0 289.0 231.6 289.0 231.6 286.8 t1 235.0 289.0 231.6 289.0 p 240.2 286.8 248.8 286.8 248.8 292.3 240.2 292.3 s0 241.2 286.8 241.2 287.4 240.2 286.8 t1 241.2 286.8 241.2 287.4 p 241.2 287.4 240.2 289.0 240.2 286.8 t1 241.2 287.4 240.2 289.0 p 248.8 286.8 257.4 286.8 257.4 292.3 248.8 292.3 s0 257.4 286.8 265.9 286.8 265.9 292.3 257.4 292.3 s0 265.9 286.8 274.5 286.8 274.5 292.3 265.9 292.3 s0 273.5 287.4 273.6 286.8 274.5 286.8 t1 273.5 287.4 273.6 286.8 p 274.5 289.0 273.5 287.4 274.5 286.8 t1 274.5 289.0 273.5 287.4 p 274.5 286.8 283.1 286.8 283.1 292.3 274.5 292.3 s0 277.9 289.0 279.7 289.0 283.1 286.8 274.5 286.8 s1 277.9 289.0 279.7 289.0 p 283.1 289.0 279.7 289.0 283.1 286.8 t1 283.1 289.0 279.7 289.0 p 277.9 289.0 274.5 289.0 274.5 286.8 t1 277.9 289.0 274.5 289.0 p 283.1 286.8 291.7 286.8 291.7 292.3 283.1 292.3 s0 284.1 286.8 284.1 287.4 283.1 286.8 t1 284.1 286.8 284.1 287.4 p 284.1 287.4 283.1 289.0 283.1 286.8 t1 284.1 287.4 283.1 289.0 p 291.7 286.8 300.3 286.8 300.3 292.3 291.7 292.3 s0 0.0 281.3 8.6 281.3 8.6 286.8 0.0 286.8 s0 8.6 281.3 17.2 281.3 17.2 286.8 8.6 286.8 s0 9.4 281.3 10.5 282.5 12.9 284.0 17.2 281.3 s1 9.4 281.3 10.5 282.5 p 17.2 281.3 12.9 284.0 17.2 286.8 t1 11.7 284.7 16.2 286.8 17.2 286.8 12.9 284.0 s1 11.7 284.7 16.2 286.8 p 11.7 284.7 10.5 282.5 12.9 284.0 t1 11.7 284.7 10.5 282.5 p 17.2 281.3 25.7 281.3 25.7 286.8 17.2 286.8 s1 25.7 281.3 34.3 281.3 34.3 286.8 25.7 286.8 s0 32.4 282.5 33.5 281.3 25.7 281.3 30.0 284.0 s1 32.4 282.5 33.5 281.3 p 32.4 282.5 31.2 284.7 30.0 284.0 t1 32.4 282.5 31.2 284.7 p 26.7 286.8 31.2 284.7 30.0 284.0 25.7 286.8 s1 26.7 286.8 31.2 284.7 p 25.7 286.8 30.0 284.0 25.7 281.3 t1 34.3 281.3 42.9 281.3 42.9 286.8 34.3 286.8 s0 42.9 281.3 51.5 281.3 51.5 286.8 42.9 286.8 s0 51.5 281.3 60.1 281.3 60.1 286.8 51.5 286.8 s0 52.3 281.3 53.4 282.5 55.8 284.0 60.1 281.3 s1 52.3 281.3 53.4 282.5 p 60.1 281.3 55.8 284.0 60.1 286.8 t1 54.6 284.7 59.1 286.8 60.1 286.8 55.8 284.0 s1 54.6 284.7 59.1 286.8 p 54.6 284.7 53.4 282.5 55.8 284.0 t1 54.6 284.7 53.4 282.5 p 60.1 281.3 68.6 281.3 68.6 286.8 60.1 286.8 s1 68.6 281.3 77.2 281.3 77.2 286.8 68.6 286.8 s0 75.3 282.5 76.4 281.3 68.6 281.3 72.9 284.0 s1 75.3 282.5 76.4 281.3 p 75.3 282.5 74.1 284.7 72.9 284.0 t1 75.3 282.5 74.1 284.7 p 69.6 286.8 74.1 284.7 72.9 284.0 68.6 286.8 s1 69.6 286.8 74.1 284.7 p 68.6 286.8 72.9 284.0 68.6 281.3 t1 77.2 281.3 85.8 281.3 85.8 286.8 77.2 286.8 s0 85.8 281.3 94.4 281.3 94.4 286.8 85.8 286.8 s0 94.4 281.3 102.9 281.3 102.9 286.8 94.4 286.8 s0 95.2 281.3 96.3 282.5 98.7 284.0 102.9 281.3 s1 95.2 281.3 96.3 282.5 p 102.9 281.3 98.7 284.0 102.9 286.8 t1 97.5 284.7 102.0 286.8 102.9 286.8 98.7 284.0 s1 97.5 284.7 102.0 286.8 p 97.5 284.7 96.3 282.5 98.7 284.0 t1 97.5 284.7 96.3 282.5 p 102.9 281.3 111.5 281.3 111.5 286.8 102.9 286.8 s1 111.5 281.3 120.1 281.3 120.1 286.8 111.5 286.8 s0 118.2 282.5 119.3 281.3 111.5 281.3 115.8 284.0 s1 118.2 282.5 119.3 281.3 p 118.2 282.5 117.0 284.7 115.8 284.0 t1 118.2 282.5 117.0 284.7 p 112.5 286.8 117.0 284.7 115.8 284.0 111.5 286.8 s1 112.5 286.8 117.0 284.7 p 111.5 286.8 115.8 284.0 111.5 281.3 t1 120.1 281.3 128.7 281.3 128.7 286.8 120.1 286.8 s0 128.7 281.3 137.3 281.3 137.3 286.8 128.7 286.8 s0 137.3 281.3 145.8 281.3 145.8 286.8 137.3 286.8 s0 138.1 281.3 139.1 282.5 141.6 284.0 145.8 281.3 s1 138.1 281.3 139.1 282.5 p 145.8 281.3 141.6 284.0 145.8 286.8 t1 140.4 284.7 144.9 286.8 145.8 286.8 141.6 284.0 s1 140.4 284.7 144.9 286.8 p 140.4 284.7 139.1 282.5 141.6 284.0 t1 140.4 284.7 139.1 282.5 p 145.8 281.3 154.4 281.3 154.4 286.8 145.8 286.8 s1 154.4 281.3 163.0 281.3 163.0 286.8 154.4 286.8 s0 161.1 282.5 162.2 281.3 154.4 281.3 158.7 284.0 s1 161.1 282.5 162.2 281.3 p 161.1 282.5 159.8 284.7 158.7 284.0 t1 161.1 282.5 159.8 284.7 p 155.4 286.8 159.8 284.7 158.7 284.0 154.4 286.8 s1 155.4 286.8 159.8 284.7 p 154.4 286.8 158.7 284.0 154.4 281.3 t1 163.0 281.3 171.6 281.3 171.6 286.8 163.0 286.8 s0 171.6 281.3 180.2 281.3 180.2 286.8 171.6 286.8 s0 180.2 281.3 188.7 281.3 188.7 286.8 180.2 286.8 s0 181.0 281.3 182.0 282.5 184.4 284.0 188.7 281.3 s1 181.0 281.3 182.0 282.5 p 188.7 281.3 184.4 284.0 188.7 286.8 t1 183.3 284.7 187.8 286.8 188.7 286.8 184.4 284.0 s1 183.3 284.7 187.8 286.8 p 183.3 284.7 182.0 282.5 184.4 284.0 t1 183.3 284.7 182.0 282.5 p 188.7 281.3 197.3 281.3 197.3 286.8 188.7 286.8 s1 197.3 281.3 205.9 281.3 205.9 286.8 197.3 286.8 s0 204.0 282.5 205.1 281.3 197.3 281.3 201.6 284.0 s1 204.0 282.5 205.1 281.3 p 204.0 282.5 202.7 284.7 201.6 284.0 t1 204.0 282.5 202.7 284.7 p 198.3 286.8 202.7 284.7 201.6 284.0 197.3 286.8 s1 198.3 286.8 202.7 284.7 p 197.3 286.8 201.6 284.0 197.3 281.3 t1 205.9 281.3 214.5 281.3 214.5 286.8 205.9 286.8 s0 214.5 281.3 223.1 281.3 223.1 286.8 214.5 286.8 s0 223.1 281.3 231.6 281.3 231.6 286.8 223.1 286.8 s0 223.9 281.3 224.9 282.5 227.3 284.0 231.6 281.3 s1 223.9 281.3 224.9 282.5 p 231.6 281.3 227.3 284.0 231.6 286.8 t1 226.2 284.7 230.7 286.8 231.6 286.8 227.3 284.0 s1 226.2 284.7 230.7 286.8 p 226.2 284.7 224.9 282.5 227.3 284.0 t1 226.2 284.7 224.9 282.5 p 231.6 281.3 240.2 281.3 240.2 286.8 231.6 286.8 s1 240.2 281.3 248.8 281.3 248.8 286.8 240.2 286.8 s0 246.9 282.5 247.9 281.3 240.2 281.3 244.5 284.0 s1 246.9 282.5 247.9 281.3 p 246.9 282.5 245.6 284.7 244.5 284.0 t1 246.9 282.5 245.6 284.7 p 241.2 286.8 245.6 284.7 244.5 284.0 240.2 286.8 s1 241.2 286.8 245.6 284.7 p 240.2 286.8 244.5 284.0 240.2 281.3 t1 248.8 281.3 257.4 281.3 257.4 286.8 248.8 286.8 s0 257.4 281.3 265.9 281.3 265.9 286.8 257.4 286.8 s0 265.9 281.3 274.5 281.3 274.5 286.8 265.9 286.8 s0 266.8 281.3 267.8 282.5 270.2 284.0 274.5 281.3 s1 266.8 281.3 267.8 282.5 p 274.5 281.3 270.2 284.0 274.5 286.8 t1 269.1 284.7 273.6 286.8 274.5 286.8 270.2 284.0 s1 269.1 284.7 273.6 286.8 p 269.1 284.7 267.8 282.5 270.2 284.0 t1 269.1 284.7 267.8 282.5 p 274.5 281.3 283.1 281.3 283.1 286.8 274.5 286.8 s1 283.1 281.3 291.7 281.3 291.7 286.8 283.1 286.8 s0 289.8 282.5 290.8 281.3 283.1 281.3 287.4 284.0 s1 289.8 282.5 290.8 281.3 p 289.8 282.5 288.5 284.7 287.4 284.0 t1 289.8 282.5 288.5 284.7 p 284.1 286.8 288.5 284.7 287.4 284.0 283.1 286.8 s1 284.1 286.8 288.5 284.7 p 283.1 286.8 287.4 284.0 283.1 281.3 t1 291.7 281.3 300.3 281.3 300.3 286.8 291.7 286.8 s0 0.0 275.7 8.6 275.7 8.6 281.3 0.0 281.3 s0 5.1 277.9 4.1 275.7 8.6 275.7 t1 5.1 277.9 4.1 275.7 p 8.6 280.5 5.1 277.9 8.6 275.7 t1 8.6 280.5 5.1 277.9 p 8.6 275.7 17.2 275.7 17.2 281.3 8.6 281.3 s0 8.6 275.7 12.9 278.5 17.2 275.7 t1 17.2 275.7 12.9 278.5 17.2 281.3 t1 8.9 281.0 9.4 281.3 17.2 281.3 12.9 278.5 s1 8.9 281.0 9.4 281.3 p 8.6 280.5 8.9 281.0 12.9 278.5 8.6 275.7 s1 8.6 280.5 8.9 281.0 p 17.2 275.7 25.7 275.7 25.7 281.3 17.2 281.3 s1 25.7 275.7 34.3 275.7 34.3 281.3 25.7 281.3 s0 25.7 275.7 30.0 278.5 34.3 275.7 t1 34.0 281.0 34.3 280.5 34.3 275.7 30.0 278.5 s1 34.0 281.0 34.3 280.5 p 33.5 281.3 34.0 281.0 30.0 278.5 25.7 281.3 s1 33.5 281.3 34.0 281.0 p 25.7 281.3 30.0 278.5 25.7 275.7 t1 34.3 275.7 42.9 275.7 42.9 281.3 34.3 281.3 s0 38.8 275.7 37.8 277.9 34.3 275.7 t1 38.8 275.7 37.8 277.9 p 37.8 277.9 34.3 280.5 34.3 275.7 t1 37.8 277.9 34.3 280.5 p 42.9 275.7 51.5 275.7 51.5 281.3 42.9 281.3 s0 48.0 277.9 47.0 275.7 51.5 275.7 t1 48.0 277.9 47.0 275.7 p 51.5 280.5 48.0 277.9 51.5 275.7 t1 51.5 280.5 48.0 277.9 p 51.5 275.7 60.1 275.7 60.1 281.3 51.5 281.3 s0 51.5 275.7 55.8 278.5 60.1 275.7 t1 60.1 275.7 55.8 278.5 60.1 281.3 t1 51.8 281.0 52.3 281.3 60.1 281.3 55.8 278.5 s1 51.8 281.0 52.3 281.3 p 51.5 280.5 51.8 281.0 55.8 278.5 51.5 275.7 s1 51.5 280.5 51.8 281.0 p 60.1 275.7 68.6 275.7 68.6 281.3 60.1 281.3 s1 68.6 275.7 77.2 275.7 77.2 281.3 68.6 281.3 s0 68.6 275.7 72.9 278.5 77.2 275.7 t1 76.9 281.0 77.2 280.5 77.2 275.7 72.9 278.5 s1 76.9 281.0 77.2 280.5 p 76.4 281.3 76.9 281.0 72.9 278.5 68.6 281.3 s1 76.4 281.3 76.9 281.0 p 68.6 281.3 72.9 278.5 68.6 275.7 t1 77.2 275.7 85.8 275.7 85.8 281.3 77.2 281.3 s0 81.7 275.7 80.6 277.9 77.2 275.7 t1 81.7 275.7 80.6 277.9 p 80.6 277.9 77.2 280.5 77.2 275.7 t1 80.6 277.9 77.2 280.5 p 85.8 275.7 94.4 275.7 94.4 281.3 85.8 281.3 s0 90.9 277.9 89.8 275.7 94.4 275.7 t1 90.9 277.9 89.8 275.7 p 94.4 280.5 90.9 277.9 94.4 275.7 t1 94.4 280.5 90.9 277.9 p 94.4 275.7 102.9 275.7 102.9 281.3 94.4 281.3 s0 94.4 275.7 98.7 278.5 102.9 275.7 t1 102.9 275.7 98.7 278.5 102.9 281.3 t1 94.7 281.0 95.2 281.3 102.9 281.3 98.7 278.5 s1 94.7 281.0 95.2 281.3 p 94.4 280.5 94.7 281.0 98.7 278.5 94.4 275.7 s1 94.4 280.5 94.7 281.0 p 102.9 275.7 111.5 275.7 111.5 281.3 102.9 281.3 s1 111.5 275.7 120.1 275.7 120.1 281.3 111.5 281.3 s0 111.5 275.7 115.8 278.5 120.1 275.7 t1 119.8 281.0 120.1 280.5 120.1 275.7 115.8 278.5 s1 119.8 281.0 120.1 280.5 p 119.3 281.3 119.8 281.0 115.8 278.5 111.5 281.3 s1 119.3 281.3 119.8 281.0 p 111.5 281.3 115.8 278.5 111.5 275.7 t1 120.1 275.7 128.7 275.7 128.7 281.3 120.1 281.3 s0 124.6 275.7 123.5 277.9 120.1 275.7 t1 124.6 275.7 123.5 277.9 p 123.5 277.9 120.1 280.5 120.1 275.7 t1 123.5 277.9 120.1 280.5 p 128.7 275.7 137.3 275.7 137.3 281.3 128.7 281.3 s0 133.8 277.9 132.7 275.7 137.3 275.7 t1 133.8 277.9 132.7 275.7 p 137.3 280.5 133.8 277.9 137.3 275.7 t1 137.3 280.5 133.8 277.9 p 137.3 275.7 145.8 275.7 145.8 281.3 137.3 281.3 s0 137.3 275.7 141.6 278.5 145.8 275.7 t1 145.8 275.7 141.6 278.5 145.8 281.3 t1 137.6 281.0 138.1 281.3 145.8 281.3 141.6 278.5 s1 137.6 281.0 138.1 281.3 p 137.3 280.5 137.6 281.0 141.6 278.5 137.3 275.7 s1 137.3 280.5 137.6 281.0 p 145.8 275.7 154.4 275.7 154.4 281.3 145.8 281.3 s1 154.4 275.7 163.0 275.7 163.0 281.3 154.4 281.3 s0 154.4 275.7 158.7 278.5 163.0 275.7 t1 162.7 281.0 163.0 280.5 163.0 275.7 158.7 278.5 s1 162.7 281.0 163.0 280.5 p 162.2 281.3 162.7 281.0 158.7 278.5 154.4 281.3 s1 162.2 281.3 162.7 281.0 p 154.4 281.3 158.7 278.5 154.4 275.7 t1 163.0 275.7 171.6 275.7 171.6 281.3 163.0 281.3 s0 167.5 275.7 166.4 277.9 163.0 275.7 t1 167.5 275.7 166.4 277.9 p 166.4 277.9 163.0 280.5 163.0 275.7 t1 166.4 277.9 163.0 280.5 p 171.6 275.7 180.2 275.7 180.2 281.3 171.6 281.3 s0 176.7 277.9 175.6 275.7 180.2 275.7 t1 176.7 277.9 175.6 275.7 p 180.2 280.5 176.7 277.9 180.2 275.7 t1 180.2 280.5 176.7 277.9 p 180.2 275.7 188.7 275.7 188.7 281.3 180.2 281.3 s0 180.2 275.7 184.4 278.5 188.7 275.7 t1 188.7 275.7 184.4 278.5 188.7 281.3 t1 180.5 281.0 181.0 281.3 188.7 281.3 184.4 278.5 s1 180.5 281.0 181.0 281.3 p 180.2 280.5 180.5 281.0 184.4 278.5 180.2 275.7 s1 180.2 280.5 180.5 281.0 p 188.7 275.7 197.3 275.7 197.3 281.3 188.7 281.3 s1 197.3 275.7 205.9 275.7 205.9 281.3 197.3 281.3 s0 197.3 275.7 201.6 278.5 205.9 275.7 t1 205.6 281.0 205.9 280.5 205.9 275.7 201.6 278.5 s1 205.6 281.0 205.9 280.5 p 205.1 281.3 205.6 281.0 201.6 278.5 197.3 281.3 s1 205.1 281.3 205.6 281.0 p 197.3 281.3 201.6 278.5 197.3 275.7 t1 205.9 275.7 214.5 275.7 214.5 281.3 205.9 281.3 s0 210.4 275.7 209.3 277.9 205.9 275.7 t1 210.4 275.7 209.3 277.9 p 209.3 277.9 205.9 280.5 205.9 275.7 t1 209.3 277.9 205.9 280.5 p 214.5 275.7 223.1 275.7 223.1 281.3 214.5 281.3 s0 219.6 277.9 218.5 275.7 223.1 275.7 t1 219.6 277.9 218.5 275.7 p 223.1 280.5 219.6 277.9 223.1 275.7 t1 223.1 280.5 219.6 277.9 p 223.1 275.7 231.6 275.7 231.6 281.3 223.1 281.3 s0 223.1 275.7 227.3 278.5 231.6 275.7 t1 231.6 275.7 227.3 278.5 231.6 281.3 t1 223.4 281.0 223.9 281.3 231.6 281.3 227.3 278.5 s1 223.4 281.0 223.9 281.3 p 223.1 280.5 223.4 281.0 227.3 278.5 223.1 275.7 s1 223.1 280.5 223.4 281.0 p 231.6 275.7 240.2 275.7 240.2 281.3 231.6 281.3 s1 240.2 275.7 248.8 275.7 248.8 281.3 240.2 281.3 s0 240.2 275.7 244.5 278.5 248.8 275.7 t1 248.5 281.0 248.8 280.5 248.8 275.7 244.5 278.5 s1 248.5 281.0 248.8 280.5 p 247.9 281.3 248.5 281.0 244.5 278.5 240.2 281.3 s1 247.9 281.3 248.5 281.0 p 240.2 281.3 244.5 278.5 240.2 275.7 t1 248.8 275.7 257.4 275.7 257.4 281.3 248.8 281.3 s0 253.3 275.7 252.2 277.9 248.8 275.7 t1 253.3 275.7 252.2 277.9 p 252.2 277.9 248.8 280.5 248.8 275.7 t1 252.2 277.9 248.8 280.5 p 257.4 275.7 265.9 275.7 265.9 281.3 257.4 281.3 s0 262.5 277.9 261.4 275.7 265.9 275.7 t1 262.5 277.9 261.4 275.7 p 265.9 280.5 262.5 277.9 265.9 275.7 t1 265.9 280.5 262.5 277.9 p 265.9 275.7 274.5 275.7 274.5 281.3 265.9 281.3 s0 265.9 275.7 270.2 278.5 274.5 275.7 t1 274.5 275.7 270.2 278.5 274.5 281.3 t1 266.3 281.0 266.8 281.3 274.5 281.3 270.2 278.5 s1 266.3 281.0 266.8 281.3 p 265.9 280.5 266.3 281.0 270.2 278.5 265.9 275.7 s1 265.9 280.5 266.3 281.0 p 274.5 275.7 283.1 275.7 283.1 281.3 274.5 281.3 s1 283.1 275.7 291.7 275.7 291.7 281.3 283.1 281.3 s0 283.1 275.7 287.4 278.5 291.7 275.7 t1 291.4 281.0 291.7 280.5 291.7 275.7 287.4 278.5 s1 291.4 281.0 291.7 280.5 p 290.8 281.3 291.4 281.0 287.4 278.5 283.1 281.3 s1 290.8 281.3 291.4 281.0 p 283.1 281.3 287.4 278.5 283.1 275.7 t1 291.7 275.7 300.3 275.7 300.3 281.3 291.7 281.3 s0 296.2 275.7 295.1 277.9 291.7 275.7 t1 296.2 275.7 295.1 277.9 p 295.1 277.9 291.7 280.5 291.7 275.7 t1 295.1 277.9 291.7 280.5 p 0.0 270.2 8.6 270.2 8.6 275.7 0.0 275.7 s0 1.8 270.2 2.5 271.8 4.3 273.0 8.6 270.2 s1 1.8 270.2 2.5 271.8 p 8.6 270.2 4.3 273.0 8.6 275.7 t1 2.5 274.1 4.1 275.7 8.6 275.7 4.3 273.0 s1 2.5 274.1 4.1 275.7 p 2.5 274.1 2.5 271.8 4.3 273.0 t1 2.5 274.1 2.5 271.8 p 8.6 270.2 17.2 270.2 17.2 275.7 8.6 275.7 s1 17.2 270.2 25.7 270.2 25.7 275.7 17.2 275.7 s1 25.7 270.2 34.3 270.2 34.3 275.7 25.7 275.7 s1 34.3 270.2 42.9 270.2 42.9 275.7 34.3 275.7 s0 40.4 271.8 41.1 270.2 34.3 270.2 38.6 273.0 s1 40.4 271.8 41.1 270.2 p 40.4 271.8 40.4 274.1 38.6 273.0 t1 40.4 271.8 40.4 274.1 p 38.8 275.7 40.4 274.1 38.6 273.0 34.3 275.7 s1 38.8 275.7 40.4 274.1 p 34.3 275.7 38.6 273.0 34.3 270.2 t1 42.9 270.2 51.5 270.2 51.5 275.7 42.9 275.7 s0 44.7 270.2 45.4 271.8 47.2 273.0 51.5 270.2 s1 44.7 270.2 45.4 271.8 p 51.5 270.2 47.2 273.0 51.5 275.7 t1 45.4 274.1 47.0 275.7 51.5 275.7 47.2 273.0 s1 45.4 274.1 47.0 275.7 p 45.4 274.1 45.4 271.8 47.2 273.0 t1 45.4 274.1 45.4 271.8 p 51.5 270.2 60.1 270.2 60.1 275.7 51.5 275.7 s1 60.1 270.2 68.6 270.2 68.6 275.7 60.1 275.7 s1 68.6 270.2 77.2 270.2 77.2 275.7 68.6 275.7 s1 77.2 270.2 85.8 270.2 85.8 275.7 77.2 275.7 s0 83.3 271.8 84.0 270.2 77.2 270.2 81.5 273.0 s1 83.3 271.8 84.0 270.2 p 83.3 271.8 83.3 274.1 81.5 273.0 t1 83.3 271.8 83.3 274.1 p 81.7 275.7 83.3 274.1 81.5 273.0 77.2 275.7 s1 81.7 275.7 83.3 274.1 p 77.2 275.7 81.5 273.0 77.2 270.2 t1 85.8 270.2 94.4 270.2 94.4 275.7 85.8 275.7 s0 87.6 270.2 88.3 271.8 90.1 273.0 94.4 270.2 s1 87.6 270.2 88.3 271.8 p 94.4 270.2 90.1 273.0 94.4 275.7 t1 88.3 274.1 89.8 275.7 94.4 275.7 90.1 273.0 s1 88.3 274.1 89.8 275.7 p 88.3 274.1 88.3 271.8 90.1 273.0 t1 88.3 274.1 88.3 271.8 p 94.4 270.2 102.9 270.2 102.9 275.7 94.4 275.7 s1 102.9 270.2 111.5 270.2 111.5 275.7 102.9 275.7 s1 111.5 270.2 120.1 270.2 120.1 275.7 111.5 275.7 s1 120.1 270.2 128.7 270.2 128.7 275.7 120.1 275.7 s0 126.2 271.8 126.9 270.2 120.1 270.2 124.4 273.0 s1 126.2 271.8 126.9 270.2 p 126.2 271.8 126.2 274.1 124.4 273.0 t1 126.2 271.8 126.2 274.1 p 124.6 275.7 126.2 274.1 124.4 273.0 120.1 275.7 s1 124.6 275.7 126.2 274.1 p 120.1 275.7 124.4 273.0 120.1 270.2 t1 128.7 270.2 137.3 270.2 137.3 275.7 128.7 275.7 s0 130.5 270.2 131.2 271.8 133.0 273.0 137.3 270.2 s1 130.5 270.2 131.2 271.8 p 137.3 270.2 133.0 273.0 137.3 275.7 t1 131.2 274.1 132.7 275.7 137.3 275.7 133.0 273.0 s1 131.2 274.1 132.7 275.7 p 131.2 274.1 131.2 271.8 133.0 273.0 t1 131.2 274.1 131.2 271.8 p 137.3 270.2 145.8 270.2 145.8 275.7 137.3 275.7 s1 145.8 270.2 154.4 270.2 154.4 275.7 145.8 275.7 s1 154.4 270.2 163.0 270.2 163.0 275.7 154.4 275.7 s1 163.0 270.2 171.6 270.2 171.6 275.7 163.0 275.7 s0 169.1 271.8 169.8 270.2 163.0 270.2 167.3 273.0 s1 169.1 271.8 169.8 270.2 p 169.1 271.8 169.1 274.1 167.3 273.0 t1 169.1 271.8 169.1 274.1 p 167.5 275.7 169.1 274.1 167.3 273.0 163.0 275.7 s1 167.5 275.7 169.1 274.1 p 163.0 275.7 167.3 273.0 163.0 270.2 t1 171.6 270.2 180.2 270.2 180.2 275.7 171.6 275.7 s0 173.4 270.2 174.1 271.8 175.9 273.0 180.2 270.2 s1 173.4 270.2 174.1 271.8 p 180.2 270.2 175.9 273.0 180.2 275.7 t1 174.1 274.1 175.6 275.7 180.2 275.7 175.9 273.0 s1 174.1 274.1 175.6 275.7 p 174.1 274.1 174.1 271.8 175.9 273.0 t1 174.1 274.1 174.1 271.8 p 180.2 270.2 188.7 270.2 188.7 275.7 180.2 275.7 s1 188.7 270.2 197.3 270.2 197.3 275.7 188.7 275.7 s1 197.3 270.2 205.9 270.2 205.9 275.7 197.3 275.7 s1 205.9 270.2 214.5 270.2 214.5 275.7 205.9 275.7 s0 212.0 271.8 212.7 270.2 205.9 270.2 210.2 273.0 s1 212.0 271.8 212.7 270.2 p 212.0 271.8 212.0 274.1 210.2 273.0 t1 212.0 271.8 212.0 274.1 p 210.4 275.7 212.0 274.1 210.2 273.0 205.9 275.7 s1 210.4 275.7 212.0 274.1 p 205.9 275.7 210.2 273.0 205.9 270.2 t1 214.5 270.2 223.1 270.2 223.1 275.7 214.5 275.7 s0 216.3 270.2 217.0 271.8 218.8 273.0 223.1 270.2 s1 216.3 270.2 217.0 271.8 p 223.1 270.2 218.8 273.0 223.1 275.7 t1 217.0 274.1 218.5 275.7 223.1 275.7 218.8 273.0 s1 217.0 274.1 218.5 275.7 p 217.0 274.1 217.0 271.8 218.8 273.0 t1 217.0 274.1 217.0 271.8 p 223.1 270.2 231.6 270.2 231.6 275.7 223.1 275.7 s1 231.6 270.2 240.2 270.2 240.2 275.7 231.6 275.7 s1 240.2 270.2 248.8 270.2 248.8 275.7 240.2 275.7 s1 248.8 270.2 257.4 270.2 257.4 275.7 248.8 275.7 s0 254.9 271.8 255.6 270.2 248.8 270.2 253.1 273.0 s1 254.9 271.8 255.6 270.2 p 254.9 271.8 254.9 274.1 253.1 273.0 t1 254.9 271.8 254.9 274.1 p 253.3 275.7 254.9 274.1 253.1 273.0 248.8 275.7 s1 253.3 275.7 254.9 274.1 p 248.8 275.7 253.1 273.0 248.8 270.2 t1 257.4 270.2 265.9 270.2 265.9 275.7 257.4 275.7 s0 259.2 270.2 259.9 271.8 261.7 273.0 265.9 270.2 s1 259.2 270.2 259.9 271.8 p 265.9 270.2 261.7 273.0 265.9 275.7 t1 259.9 274.1 261.4 275.7 265.9 275.7 261.7 273.0 s1 259.9 274.1 261.4 275.7 p 259.9 274.1 259.9 271.8 261.7 273.0 t1 259.9 274.1 259.9 271.8 p 265.9 270.2 274.5 270.2 274.5 275.7 265.9 275.7 s1 274.5 270.2 283.1 270.2 283.1 275.7 274.5 275.7 s1 283.1 270.2 291.7 270.2 291.7 275.7 283.1 275.7 s1 291.7 270.2 300.3 270.2 300.3 275.7 291.7 275.7 s0 297.8 271.8 298.5 270.2 291.7 270.2 296.0 273.0 s1 297.8 271.8 298.5 270.2 p 297.8 271.8 297.8 274.1 296.0 273.0 t1 297.8 271.8 297.8 274.1 p 296.2 275.7 297.8 274.1 296.0 273.0 291.7 275.7 s1 296.2 275.7 297.8 274.1 p 291.7 275.7 296.0 273.0 291.7 270.2 t1 0.0 264.7 8.6 264.7 8.6 270.2 0.0 270.2 s0 1.0 264.7 1.3 265.5 4.3 267.5 8.6 264.7 s1 1.0 264.7 1.3 265.5 p 8.6 264.7 4.3 267.5 8.6 270.2 t1 1.3 269.4 1.8 270.2 8.6 270.2 4.3 267.5 s1 1.3 269.4 1.8 270.2 p 1.3 269.4 1.3 265.5 4.3 267.5 t1 1.3 269.4 1.3 265.5 p 8.6 264.7 17.2 264.7 17.2 270.2 8.6 270.2 s1 14.4 266.5 13.3 264.7 17.2 264.7 t2 14.4 266.5 13.3 264.7 p 17.2 268.7 14.4 266.5 17.2 264.7 t2 17.2 268.7 14.4 266.5 p 17.2 264.7 25.7 264.7 25.7 270.2 17.2 270.2 s1 17.2 264.7 21.4 267.5 25.7 264.7 t2 23.3 268.7 25.7 268.7 25.7 264.7 21.4 267.5 s2 23.3 268.7 25.7 268.7 p 23.3 268.7 19.6 268.7 21.4 267.5 t2 23.3 268.7 19.6 268.7 p 17.2 268.7 19.6 268.7 21.4 267.5 17.2 264.7 s2 17.2 268.7 19.6 268.7 p 25.7 264.7 34.3 264.7 34.3 270.2 25.7 270.2 s1 29.6 264.7 28.4 266.5 25.7 264.7 t2 29.6 264.7 28.4 266.5 p 28.4 266.5 25.7 268.7 25.7 264.7 t2 28.4 266.5 25.7 268.7 p 34.3 264.7 42.9 264.7 42.9 270.2 34.3 270.2 s0 41.6 265.5 41.9 264.7 34.3 264.7 38.6 267.5 s1 41.6 265.5 41.9 264.7 p 41.6 265.5 41.6 269.4 38.6 267.5 t1 41.6 265.5 41.6 269.4 p 41.1 270.2 41.6 269.4 38.6 267.5 34.3 270.2 s1 41.1 270.2 41.6 269.4 p 34.3 270.2 38.6 267.5 34.3 264.7 t1 42.9 264.7 51.5 264.7 51.5 270.2 42.9 270.2 s0 43.9 264.7 44.2 265.5 47.2 267.5 51.5 264.7 s1 43.9 264.7 44.2 265.5 p 51.5 264.7 47.2 267.5 51.5 270.2 t1 44.2 269.4 44.7 270.2 51.5 270.2 47.2 267.5 s1 44.2 269.4 44.7 270.2 p 44.2 269.4 44.2 265.5 47.2 267.5 t1 44.2 269.4 44.2 265.5 p 51.5 264.7 60.1 264.7 60.1 270.2 51.5 270.2 s1 57.3 266.5 56.2 264.7 60.1 264.7 t2 57.3 266.5 56.2 264.7 p 60.1 268.7 57.3 266.5 60.1 264.7 t2 60.1 268.7 57.3 266.5 p 60.1 264.7 68.6 264.7 68.6 270.2 60.1 270.2 s1 60.1 264.7 64.3 267.5 68.6 264.7 t2 66.2 268.7 68.6 268.7 68.6 264.7 64.3 267.5 s2 66.2 268.7 68.6 268.7 p 66.2 268.7 62.5 268.7 64.3 267.5 t2 66.2 268.7 62.5 268.7 p 60.1 268.7 62.5 268.7 64.3 267.5 60.1 264.7 s2 60.1 268.7 62.5 268.7 p 68.6 264.7 77.2 264.7 77.2 270.2 68.6 270.2 s1 72.5 264.7 71.3 266.5 68.6 264.7 t2 72.5 264.7 71.3 266.5 p 71.3 266.5 68.6 268.7 68.6 264.7 t2 71.3 266.5 68.6 268.7 p 77.2 264.7 85.8 264.7 85.8 270.2 77.2 270.2 s0 84.5 265.5 84.8 264.7 77.2 264.7 81.5 267.5 s1 84.5 265.5 84.8 264.7 p 84.5 265.5 84.5 269.4 81.5 267.5 t1 84.5 265.5 84.5 269.4 p 84.0 270.2 84.5 269.4 81.5 267.5 77.2 270.2 s1 84.0 270.2 84.5 269.4 p 77.2 270.2 81.5 267.5 77.2 264.7 t1 85.8 264.7 94.4 264.7 94.4 270.2 85.8 270.2 s0 86.8 264.7 87.1 265.5 90.1 267.5 94.4 264.7 s1 86.8 264.7 87.1 265.5 p 94.4 264.7 90.1 267.5 94.4 270.2 t1 87.1 269.4 87.6 270.2 94.4 270.2 90.1 267.5 s1 87.1 269.4 87.6 270.2 p 87.1 269.4 87.1 265.5 90.1 267.5 t1 87.1 269.4 87.1 265.5 p 94.4 264.7 102.9 264.7 102.9 270.2 94.4 270.2 s1 100.2 266.5 99.0 264.7 102.9 264.7 t2 100.2 266.5 99.0 264.7 p 102.9 268.7 100.2 266.5 102.9 264.7 t2 102.9 268.7 100.2 266.5 p 102.9 264.7 111.5 264.7 111.5 270.2 102.9 270.2 s1 102.9 264.7 107.2 267.5 111.5 264.7 t2 109.1 268.7 111.5 268.7 111.5 264.7 107.2 267.5 s2 109.1 268.7 111.5 268.7 p 109.1 268.7 105.4 268.7 107.2 267.5 t2 109.1 268.7 105.4 268.7 p 102.9 268.7 105.4 268.7 107.2 267.5 102.9 264.7 s2 102.9 268.7 105.4 268.7 p 111.5 264.7 120.1 264.7 120.1 270.2 111.5 270.2 s1 115.4 264.7 114.2 266.5 111.5 264.7 t2 115.4 264.7 114.2 266.5 p 114.2 266.5 111.5 268.7 111.5 264.7 t2 114.2 266.5 111.5 268.7 p 120.1 264.7 128.7 264.7 128.7 270.2 120.1 270.2 s0 127.4 265.5 127.7 264.7 120.1 264.7 124.4 267.5 s1 127.4 265.5 127.7 264.7 p 127.4 265.5 127.4 269.4 124.4 267.5 t1 127.4 265.5 127.4 269.4 p 126.9 270.2 127.4 269.4 124.4 267.5 120.1 270.2 s1 126.9 270.2 127.4 269.4 p 120.1 270.2 124.4 267.5 120.1 264.7 t1 128.7 264.7 137.3 264.7 137.3 270.2 128.7 270.2 s0 129.7 264.7 130.0 265.5 133.0 267.5 137.3 264.7 s1 129.7 264.7 130.0 265.5 p 137.3 264.7 133.0 267.5 137.3 270.2 t1 130.0 269.4 130.5 270.2 137.3 270.2 133.0 267.5 s1 130.0 269.4 130.5 270.2 p 130.0 269.4 130.0 265.5 133.0 267.5 t1 130.0 269.4 130.0 265.5 p 137.3 264.7 145.8 264.7 145.8 270.2 137.3 270.2 s1 143.1 266.5 141.9 264.7 145.8 264.7 t2 143.1 266.5 141.9 264.7 p 145.8 268.7 143.1 266.5 145.8 264.7 t2 145.8 268.7 143.1 266.5 p 145.8 264.7 154.4 264.7 154.4 270.2 145.8 270.2 s1 145.8 264.7 150.1 267.5 154.4 264.7 t2 152.0 268.7 154.4 268.7 154.4 264.7 150.1 267.5 s2 152.0 268.7 154.4 268.7 p 152.0 268.7 148.2 268.7 150.1 267.5 t2 152.0 268.7 148.2 268.7 p 145.8 268.7 148.2 268.7 150.1 267.5 145.8 264.7 s2 145.8 268.7 148.2 268.7 p 154.4 264.7 163.0 264.7 163.0 270.2 154.4 270.2 s1 158.3 264.7 157.1 266.5 154.4 264.7 t2 158.3 264.7 157.1 266.5 p 157.1 266.5 154.4 268.7 154.4 264.7 t2 157.1 266.5 154.4 268.7 p 163.0 264.7 171.6 264.7 171.6 270.2 163.0 270.2 s0 170.3 265.5 170.6 264.7 163.0 264.7 167.3 267.5 s1 170.3 265.5 170.6 264.7 p 170.3 265.5 170.3 269.4 167.3 267.5 t1 170.3 265.5 170.3 269.4 p 169.8 270.2 170.3 269.4 167.3 267.5 163.0 270.2 s1 169.8 270.2 170.3 269.4 p 163.0 270.2 167.3 267.5 163.0 264.7 t1 171.6 264.7 180.2 264.7 180.2 270.2 171.6 270.2 s0 172.6 264.7 172.9 265.5 175.9 267.5 180.2 264.7 s1 172.6 264.7 172.9 265.5 p 180.2 264.7 175.9 267.5 180.2 270.2 t1 172.9 269.4 173.4 270.2 180.2 270.2 175.9 267.5 s1 172.9 269.4 173.4 270.2 p 172.9 269.4 172.9 265.5 175.9 267.5 t1 172.9 269.4 172.9 265.5 p 180.2 264.7 188.7 264.7 188.7 270.2 180.2 270.2 s1 186.0 266.5 184.8 264.7 188.7 264.7 t2 186.0 266.5 184.8 264.7 p 188.7 268.7 186.0 266.5 188.7 264.7 t2 188.7 268.7 186.0 266.5 p 188.7 264.7 197.3 264.7 197.3 270.2 188.7 270.2 s1 188.7 264.7 193.0 267.5 197.3 264.7 t2 194.9 268.7 197.3 268.7 197.3 264.7 193.0 267.5 s2 194.9 268.7 197.3 268.7 p 194.9 268.7 191.1 268.7 193.0 267.5 t2 194.9 268.7 191.1 268.7 p 188.7 268.7 191.1 268.7 193.0 267.5 188.7 264.7 s2 188.7 268.7 191.1 268.7 p 197.3 264.7 205.9 264.7 205.9 270.2 197.3 270.2 s1 201.2 264.7 200.0 266.5 197.3 264.7 t2 201.2 264.7 200.0 266.5 p 200.0 266.5 197.3 268.7 197.3 264.7 t2 200.0 266.5 197.3 268.7 p 205.9 264.7 214.5 264.7 214.5 270.2 205.9 270.2 s0 213.2 265.5 213.5 264.7 205.9 264.7 210.2 267.5 s1 213.2 265.5 213.5 264.7 p 213.2 265.5 213.2 269.4 210.2 267.5 t1 213.2 265.5 213.2 269.4 p 212.7 270.2 213.2 269.4 210.2 267.5 205.9 270.2 s1 212.7 270.2 213.2 269.4 p 205.9 270.2 210.2 267.5 205.9 264.7 t1 214.5 264.7 223.1 264.7 223.1 270.2 214.5 270.2 s0 215.5 264.7 215.8 265.5 218.8 267.5 223.1 264.7 s1 215.5 264.7 215.8 265.5 p 223.1 264.7 218.8 267.5 223.1 270.2 t1 215.7 269.4 216.3 270.2 223.1 270.2 218.8 267.5 s1 215.7 269.4 216.3 270.2 p 215.7 269.4 215.8 265.5 218.8 267.5 t1 215.7 269.4 215.8 265.5 p 223.1 264.7 231.6 264.7 231.6 270.2 223.1 270.2 s1 228.9 266.5 227.7 264.7 231.6 264.7 t2 228.9 266.5 227.7 264.7 p 231.6 268.7 228.9 266.5 231.6 264.7 t2 231.6 268.7 228.9 266.5 p 231.6 264.7 240.2 264.7 240.2 270.2 231.6 270.2 s1 231.6 264.7 235.9 267.5 240.2 264.7 t2 237.8 268.7 240.2 268.7 240.2 264.7 235.9 267.5 s2 237.8 268.7 240.2 268.7 p 237.8 268.7 234.0 268.7 235.9 267.5 t2 237.8 268.7 234.0 268.7 p 231.6 268.7 234.0 268.7 235.9 267.5 231.6 264.7 s2 231.6 268.7 234.0 268.7 p 240.2 264.7 248.8 264.7 248.8 270.2 240.2 270.2 s1 244.1 264.7 242.9 266.5 240.2 264.7 t2 244.1 264.7 242.9 266.5 p 242.9 266.5 240.2 268.7 240.2 264.7 t2 242.9 266.5 240.2 268.7 p 248.8 264.7 257.4 264.7 257.4 270.2 248.8 270.2 s0 256.1 265.5 256.4 264.7 248.8 264.7 253.1 267.5 s1 256.1 265.5 256.4 264.7 p 256.1 265.5 256.1 269.4 253.1 267.5 t1 256.1 265.5 256.1 269.4 p 255.6 270.2 256.1 269.4 253.1 267.5 248.8 270.2 s1 255.6 270.2 256.1 269.4 p 248.8 270.2 253.1 267.5 248.8 264.7 t1 257.4 264.7 265.9 264.7 265.9 270.2 257.4 270.2 s0 258.4 264.7 258.7 265.5 261.7 267.5 265.9 264.7 s1 258.4 264.7 258.7 265.5 p 265.9 264.7 261.7 267.5 265.9 270.2 t1 258.6 269.4 259.2 270.2 265.9 270.2 261.7 267.5 s1 258.6 269.4 259.2 270.2 p 258.6 269.4 258.7 265.5 261.7 267.5 t1 258.6 269.4 258.7 265.5 p 265.9 264.7 274.5 264.7 274.5 270.2 265.9 270.2 s1 271.8 266.5 270.6 264.7 274.5 264.7 t2 271.8 266.5 270.6 264.7 p 274.5 268.7 271.8 266.5 274.5 264.7 t2 274.5 268.7 271.8 266.5 p 274.5 264.7 283.1 264.7 283.1 270.2 274.5 270.2 s1 274.5 264.7 278.8 267.5 283.1 264.7 t2 280.7 268.7 283.1 268.7 283.1 264.7 278.8 267.5 s2 280.7 268.7 283.1 268.7 p 280.7 268.7 276.9 268.7 278.8 267.5 t2 280.7 268.7 276.9 268.7 p 274.5 268.7 276.9 268.7 278.8 267.5 274.5 264.7 s2 274.5 268.7 276.9 268.7 p 283.1 264.7 291.7 264.7 291.7 270.2 283.1 270.2 s1 287.0 264.7 285.8 266.5 283.1 264.7 t2 287.0 264.7 285.8 266.5 p 285.8 266.5 283.1 268.7 283.1 264.7 t2 285.8 266.5 283.1 268.7 p 291.7 264.7 300.3 264.7 300.3 270.2 291.7 270.2 s0 299.0 265.5 299.3 264.7 291.7 264.7 296.0 267.5 s1 299.0 265.5 299.3 264.7 p 299.0 265.5 299.0 269.4 296.0 267.5 t1 299.0 265.5 299.0 269.4 p 298.5 270.2 299.0 269.4 296.0 267.5 291.7 270.2 s1 298.5 270.2 299.0 269.4 p 291.7 270.2 296.0 267.5 291.7 264.7 t1 0.0 259.2 8.6 259.2 8.6 264.7 0.0 264.7 s0 0.0 259.2 4.3 262.0 8.6 259.2 t1 8.6 259.2 4.3 262.0 8.6 264.7 t1 0.7 264.2 1.0 264.7 8.6 264.7 4.3 262.0 s1 0.7 264.2 1.0 264.7 p 0.0 259.8 0.7 264.2 4.3 262.0 0.0 259.2 s1 0.0 259.8 0.7 264.2 p 8.6 259.2 17.2 259.2 17.2 264.7 8.6 264.7 s1 10.7 259.2 11.6 261.1 12.9 262.0 17.2 259.2 s2 10.7 259.2 11.6 261.1 p 17.2 259.2 12.9 262.0 17.2 264.7 t2 12.2 262.4 13.3 264.7 17.2 264.7 12.9 262.0 s2 12.2 262.4 13.3 264.7 p 12.2 262.4 11.6 261.1 12.9 262.0 t2 12.2 262.4 11.6 261.1 p 17.2 259.2 25.7 259.2 25.7 264.7 17.2 264.7 s2 25.7 259.2 34.3 259.2 34.3 264.7 25.7 264.7 s1 31.3 261.1 32.2 259.2 25.7 259.2 30.0 262.0 s2 31.3 261.1 32.2 259.2 p 31.3 261.1 30.7 262.4 30.0 262.0 t2 31.3 261.1 30.7 262.4 p 29.6 264.7 30.7 262.4 30.0 262.0 25.7 264.7 s2 29.6 264.7 30.7 262.4 p 25.7 264.7 30.0 262.0 25.7 259.2 t2 34.3 259.2 42.9 259.2 42.9 264.7 34.3 264.7 s0 34.3 259.2 38.6 262.0 42.9 259.2 t1 42.2 264.2 42.9 259.8 42.9 259.2 38.6 262.0 s1 42.2 264.2 42.9 259.8 p 41.9 264.7 42.2 264.2 38.6 262.0 34.3 264.7 s1 41.9 264.7 42.2 264.2 p 34.3 264.7 38.6 262.0 34.3 259.2 t1 42.9 259.2 51.5 259.2 51.5 264.7 42.9 264.7 s0 42.9 259.2 47.2 262.0 51.5 259.2 t1 51.5 259.2 47.2 262.0 51.5 264.7 t1 43.6 264.2 43.9 264.7 51.5 264.7 47.2 262.0 s1 43.6 264.2 43.9 264.7 p 42.9 259.8 43.6 264.2 47.2 262.0 42.9 259.2 s1 42.9 259.8 43.6 264.2 p 51.5 259.2 60.1 259.2 60.1 264.7 51.5 264.7 s1 53.6 259.2 54.5 261.1 55.8 262.0 60.1 259.2 s2 53.6 259.2 54.5 261.1 p 60.1 259.2 55.8 262.0 60.1 264.7 t2 55.1 262.4 56.2 264.7 60.1 264.7 55.8 262.0 s2 55.1 262.4 56.2 264.7 p 55.1 262.4 54.5 261.1 55.8 262.0 t2 55.1 262.4 54.5 261.1 p 60.1 259.2 68.6 259.2 68.6 264.7 60.1 264.7 s2 68.6 259.2 77.2 259.2 77.2 264.7 68.6 264.7 s1 74.2 261.1 75.1 259.2 68.6 259.2 72.9 262.0 s2 74.2 261.1 75.1 259.2 p 74.2 261.1 73.6 262.4 72.9 262.0 t2 74.2 261.1 73.6 262.4 p 72.5 264.7 73.6 262.4 72.9 262.0 68.6 264.7 s2 72.5 264.7 73.6 262.4 p 68.6 264.7 72.9 262.0 68.6 259.2 t2 77.2 259.2 85.8 259.2 85.8 264.7 77.2 264.7 s0 77.2 259.2 81.5 262.0 85.8 259.2 t1 85.1 264.2 85.8 259.8 85.8 259.2 81.5 262.0 s1 85.1 264.2 85.8 259.8 p 84.8 264.7 85.1 264.2 81.5 262.0 77.2 264.7 s1 84.8 264.7 85.1 264.2 p 77.2 264.7 81.5 262.0 77.2 259.2 t1 85.8 259.2 94.4 259.2 94.4 264.7 85.8 264.7 s0 85.8 259.2 90.1 262.0 94.4 259.2 t1 94.4 259.2 90.1 262.0 94.4 264.7 t1 86.5 264.2 86.8 264.7 94.4 264.7 90.1 262.0 s1 86.5 264.2 86.8 264.7 p 85.8 259.8 86.5 264.2 90.1 262.0 85.8 259.2 s1 85.8 259.8 86.5 264.2 p 94.4 259.2 102.9 259.2 102.9 264.7 94.4 264.7 s1 96.5 259.2 97.4 261.1 98.7 262.0 102.9 259.2 s2 96.5 259.2 97.4 261.1 p 102.9 259.2 98.7 262.0 102.9 264.7 t2 98.0 262.4 99.0 264.7 102.9 264.7 98.7 262.0 s2 98.0 262.4 99.0 264.7 p 98.0 262.4 97.4 261.1 98.7 262.0 t2 98.0 262.4 97.4 261.1 p 102.9 259.2 111.5 259.2 111.5 264.7 102.9 264.7 s2 111.5 259.2 120.1 259.2 120.1 264.7 111.5 264.7 s1 117.1 261.1 118.0 259.2 111.5 259.2 115.8 262.0 s2 117.1 261.1 118.0 259.2 p 117.1 261.1 116.5 262.4 115.8 262.0 t2 117.1 261.1 116.5 262.4 p 115.4 264.7 116.5 262.4 115.8 262.0 111.5 264.7 s2 115.4 264.7 116.5 262.4 p 111.5 264.7 115.8 262.0 111.5 259.2 t2 120.1 259.2 128.7 259.2 128.7 264.7 120.1 264.7 s0 120.1 259.2 124.4 262.0 128.7 259.2 t1 128.0 264.2 128.7 259.8 128.7 259.2 124.4 262.0 s1 128.0 264.2 128.7 259.8 p 127.7 264.7 128.0 264.2 124.4 262.0 120.1 264.7 s1 127.7 264.7 128.0 264.2 p 120.1 264.7 124.4 262.0 120.1 259.2 t1 128.7 259.2 137.3 259.2 137.3 264.7 128.7 264.7 s0 128.7 259.2 133.0 262.0 137.3 259.2 t1 137.3 259.2 133.0 262.0 137.3 264.7 t1 129.4 264.2 129.7 264.7 137.3 264.7 133.0 262.0 s1 129.4 264.2 129.7 264.7 p 128.7 259.8 129.4 264.2 133.0 262.0 128.7 259.2 s1 128.7 259.8 129.4 264.2 p 137.3 259.2 145.8 259.2 145.8 264.7 137.3 264.7 s1 139.4 259.2 140.3 261.1 141.6 262.0 145.8 259.2 s2 139.4 259.2 140.3 261.1 p 145.8 259.2 141.6 262.0 145.8 264.7 t2 140.9 262.4 141.9 264.7 145.8 264.7 141.6 262.0 s2 140.9 262.4 141.9 264.7 p 140.9 262.4 140.3 261.1 141.6 262.0 t2 140.9 262.4 140.3 261.1 p 145.8 259.2 154.4 259.2 154.4 264.7 145.8 264.7 s2 154.4 259.2 163.0 259.2 163.0 264.7 154.4 264.7 s1 160.0 261.1 160.9 259.2 154.4 259.2 158.7 262.0 s2 160.0 261.1 160.9 259.2 p 160.0 261.1 159.4 262.4 158.7 262.0 t2 160.0 261.1 159.4 262.4 p 158.3 264.7 159.4 262.4 158.7 262.0 154.4 264.7 s2 158.3 264.7 159.4 262.4 p 154.4 264.7 158.7 262.0 154.4 259.2 t2 163.0 259.2 171.6 259.2 171.6 264.7 163.0 264.7 s0 163.0 259.2 167.3 262.0 171.6 259.2 t1 170.8 264.2 171.6 259.8 171.6 259.2 167.3 262.0 s1 170.8 264.2 171.6 259.8 p 170.6 264.7 170.8 264.2 167.3 262.0 163.0 264.7 s1 170.6 264.7 170.8 264.2 p 163.0 264.7 167.3 262.0 163.0 259.2 t1 171.6 259.2 180.2 259.2 180.2 264.7 171.6 264.7 s0 171.6 259.2 175.9 262.0 180.2 259.2 t1 180.2 259.2 175.9 262.0 180.2 264.7 t1 172.3 264.2 172.6 264.7 180.2 264.7 175.9 262.0 s1 172.3 264.2 172.6 264.7 p 171.6 259.8 172.3 264.2 175.9 262.0 171.6 259.2 s1 171.6 259.8 172.3 264.2 p 180.2 259.2 188.7 259.2 188.7 264.7 180.2 264.7 s1 182.3 259.2 183.2 261.1 184.4 262.0 188.7 259.2 s2 182.3 259.2 183.2 261.1 p 188.7 259.2 184.4 262.0 188.7 264.7 t2 183.8 262.4 184.8 264.7 188.7 264.7 184.4 262.0 s2 183.8 262.4 184.8 264.7 p 183.8 262.4 183.2 261.1 184.4 262.0 t2 183.8 262.4 183.2 261.1 p 188.7 259.2 197.3 259.2 197.3 264.7 188.7 264.7 s2 197.3 259.2 205.9 259.2 205.9 264.7 197.3 264.7 s1 202.9 261.1 203.8 259.2 197.3 259.2 201.6 262.0 s2 202.9 261.1 203.8 259.2 p 202.9 261.1 202.3 262.4 201.6 262.0 t2 202.9 261.1 202.3 262.4 p 201.2 264.7 202.3 262.4 201.6 262.0 197.3 264.7 s2 201.2 264.7 202.3 262.4 p 197.3 264.7 201.6 262.0 197.3 259.2 t2 205.9 259.2 214.5 259.2 214.5 264.7 205.9 264.7 s0 205.9 259.2 210.2 262.0 214.5 259.2 t1 213.7 264.2 214.5 259.8 214.5 259.2 210.2 262.0 s1 213.7 264.2 214.5 259.8 p 213.5 264.7 213.7 264.2 210.2 262.0 205.9 264.7 s1 213.5 264.7 213.7 264.2 p 205.9 264.7 210.2 262.0 205.9 259.2 t1 214.5 259.2 223.1 259.2 223.1 264.7 214.5 264.7 s0 214.5 259.2 218.8 262.0 223.1 259.2 t1 223.1 259.2 218.8 262.0 223.1 264.7 t1 215.2 264.2 215.5 264.7 223.1 264.7 218.8 262.0 s1 215.2 264.2 215.5 264.7 p 214.5 259.8 215.2 264.2 218.8 262.0 214.5 259.2 s1 214.5 259.8 215.2 264.2 p 223.1 259.2 231.6 259.2 231.6 264.7 223.1 264.7 s1 225.2 259.2 226.1 261.1 227.3 262.0 231.6 259.2 s2 225.2 259.2 226.1 261.1 p 231.6 259.2 227.3 262.0 231.6 264.7 t2 226.7 262.4 227.7 264.7 231.6 264.7 227.3 262.0 s2 226.7 262.4 227.7 264.7 p 226.7 262.4 226.1 261.1 227.3 262.0 t2 226.7 262.4 226.1 261.1 p 231.6 259.2 240.2 259.2 240.2 264.7 231.6 264.7 s2 240.2 259.2 248.8 259.2 248.8 264.7 240.2 264.7 s1 245.8 261.1 246.7 259.2 240.2 259.2 244.5 262.0 s2 245.8 261.1 246.7 259.2 p 245.8 261.1 245.1 262.4 244.5 262.0 t2 245.8 261.1 245.1 262.4 p 244.1 264.7 245.1 262.4 244.5 262.0 240.2 264.7 s2 244.1 264.7 245.1 262.4 p 240.2 264.7 244.5 262.0 240.2 259.2 t2 248.8 259.2 257.4 259.2 257.4 264.7 248.8 264.7 s0 248.8 259.2 253.1 262.0 257.4 259.2 t1 256.6 264.2 257.4 259.8 257.4 259.2 253.1 262.0 s1 256.6 264.2 257.4 259.8 p 256.4 264.7 256.6 264.2 253.1 262.0 248.8 264.7 s1 256.4 264.7 256.6 264.2 p 248.8 264.7 253.1 262.0 248.8 259.2 t1 257.4 259.2 265.9 259.2 265.9 264.7 257.4 264.7 s0 257.4 259.2 261.7 262.0 265.9 259.2 t1 265.9 259.2 261.7 262.0 265.9 264.7 t1 258.1 264.2 258.4 264.7 265.9 264.7 261.7 262.0 s1 258.1 264.2 258.4 264.7 p 257.4 259.8 258.1 264.2 261.7 262.0 257.4 259.2 s1 257.4 259.8 258.1 264.2 p 265.9 259.2 274.5 259.2 274.5 264.7 265.9 264.7 s1 268.0 259.2 269.0 261.1 270.2 262.0 274.5 259.2 s2 268.0 259.2 269.0 261.1 p 274.5 259.2 270.2 262.0 274.5 264.7 t2 269.6 262.4 270.6 264.7 274.5 264.7 270.2 262.0 s2 269.6 262.4 270.6 264.7 p 269.6 262.4 269.0 261.1 270.2 262.0 t2 269.6 262.4 269.0 261.1 p 274.5 259.2 283.1 259.2 283.1 264.7 274.5 264.7 s2 283.1 259.2 291.7 259.2 291.7 264.7 283.1 264.7 s1 288.7 261.1 289.6 259.2 283.1 259.2 287.4 262.0 s2 288.7 261.1 289.6 259.2 p 288.7 261.1 288.0 262.4 287.4 262.0 t2 288.7 261.1 288.0 262.4 p 287.0 264.7 288.0 262.4 287.4 262.0 283.1 264.7 s2 287.0 264.7 288.0 262.4 p 283.1 264.7 287.4 262.0 283.1 259.2 t2 291.7 259.2 300.3 259.2 300.3 264.7 291.7 264.7 s0 291.7 259.2 296.0 262.0 300.3 259.2 t1 299.5 264.2 300.3 259.8 300.3 259.2 296.0 262.0 s1 299.5 264.2 300.3 259.8 p 299.3 264.7 299.5 264.2 296.0 262.0 291.7 264.7 s1 299.3 264.7 299.5 264.2 p 291.7 264.7 296.0 262.0 291.7 259.2 t1 0.0 253.7 8.6 253.7 8.6 259.2 0.0 259.2 s1 7.5 254.3 7.1 253.7 8.6 253.7 t2 7.5 254.3 7.1 253.7 p 8.6 255.8 7.5 254.3 8.6 253.7 t2 8.6 255.8 7.5 254.3 p 8.6 253.7 17.2 253.7 17.2 259.2 8.6 259.2 s1 8.6 253.7 12.9 256.4 17.2 253.7 t2 17.2 253.7 12.9 256.4 17.2 259.2 t2 10.7 257.8 10.7 259.2 17.2 259.2 12.9 256.4 s2 10.7 257.8 10.7 259.2 p 8.6 255.8 10.7 257.8 12.9 256.4 8.6 253.7 s2 8.6 255.8 10.7 257.8 p 17.2 253.7 25.7 253.7 25.7 259.2 17.2 259.2 s2 25.7 253.7 34.3 253.7 34.3 259.2 25.7 259.2 s1 25.7 253.7 30.0 256.4 34.3 253.7 t2 32.2 257.8 34.3 255.8 34.3 253.7 30.0 256.4 s2 32.2 257.8 34.3 255.8 p 32.2 259.2 32.2 257.8 30.0 256.4 25.7 259.2 s2 32.2 259.2 32.2 257.8 p 25.7 259.2 30.0 256.4 25.7 253.7 t2 34.3 253.7 42.9 253.7 42.9 259.2 34.3 259.2 s1 35.8 253.7 35.3 254.3 34.3 253.7 t2 35.8 253.7 35.3 254.3 p 35.3 254.3 34.3 255.8 34.3 253.7 t2 35.3 254.3 34.3 255.8 p 42.9 253.7 51.5 253.7 51.5 259.2 42.9 259.2 s1 50.4 254.3 50.0 253.7 51.5 253.7 t2 50.4 254.3 50.0 253.7 p 51.5 255.8 50.4 254.3 51.5 253.7 t2 51.5 255.8 50.4 254.3 p 51.5 253.7 60.1 253.7 60.1 259.2 51.5 259.2 s1 51.5 253.7 55.8 256.4 60.1 253.7 t2 60.1 253.7 55.8 256.4 60.1 259.2 t2 53.6 257.8 53.6 259.2 60.1 259.2 55.8 256.4 s2 53.6 257.8 53.6 259.2 p 51.5 255.8 53.6 257.8 55.8 256.4 51.5 253.7 s2 51.5 255.8 53.6 257.8 p 60.1 253.7 68.6 253.7 68.6 259.2 60.1 259.2 s2 68.6 253.7 77.2 253.7 77.2 259.2 68.6 259.2 s1 68.6 253.7 72.9 256.4 77.2 253.7 t2 75.1 257.8 77.2 255.8 77.2 253.7 72.9 256.4 s2 75.1 257.8 77.2 255.8 p 75.1 259.2 75.1 257.8 72.9 256.4 68.6 259.2 s2 75.1 259.2 75.1 257.8 p 68.6 259.2 72.9 256.4 68.6 253.7 t2 77.2 253.7 85.8 253.7 85.8 259.2 77.2 259.2 s1 78.7 253.7 78.2 254.3 77.2 253.7 t2 78.7 253.7 78.2 254.3 p 78.2 254.3 77.2 255.8 77.2 253.7 t2 78.2 254.3 77.2 255.8 p 85.8 253.7 94.4 253.7 94.4 259.2 85.8 259.2 s1 93.3 254.3 92.9 253.7 94.4 253.7 t2 93.3 254.3 92.9 253.7 p 94.4 255.8 93.3 254.3 94.4 253.7 t2 94.4 255.8 93.3 254.3 p 94.4 253.7 102.9 253.7 102.9 259.2 94.4 259.2 s1 94.4 253.7 98.7 256.4 102.9 253.7 t2 102.9 253.7 98.7 256.4 102.9 259.2 t2 96.5 257.8 96.5 259.2 102.9 259.2 98.7 256.4 s2 96.5 257.8 96.5 259.2 p 94.4 255.8 96.5 257.8 98.7 256.4 94.4 253.7 s2 94.4 255.8 96.5 257.8 p 102.9 253.7 111.5 253.7 111.5 259.2 102.9 259.2 s2 111.5 253.7 120.1 253.7 120.1 259.2 111.5 259.2 s1 111.5 253.7 115.8 256.4 120.1 253.7 t2 118.0 257.8 120.1 255.8 120.1 253.7 115.8 256.4 s2 118.0 257.8 120.1 255.8 p 118.0 259.2 118.0 257.8 115.8 256.4 111.5 259.2 s2 118.0 259.2 118.0 257.8 p 111.5 259.2 115.8 256.4 111.5 253.7 t2 120.1 253.7 128.7 253.7 128.7 259.2 120.1 259.2 s1 121.6 253.7 121.1 254.3 120.1 253.7 t2 121.6 253.7 121.1 254.3 p 121.1 254.3 120.1 255.8 120.1 253.7 t2 121.1 254.3 120.1 255.8 p 128.7 253.7 137.3 253.7 137.3 259.2 128.7 259.2 s1 136.2 254.3 135.8 253.7 137.3 253.7 t2 136.2 254.3 135.8 253.7 p 137.3 255.8 136.2 254.3 137.3 253.7 t2 137.3 255.8 136.2 254.3 p 137.3 253.7 145.8 253.7 145.8 259.2 137.3 259.2 s1 137.3 253.7 141.6 256.4 145.8 253.7 t2 145.8 253.7 141.6 256.4 145.8 259.2 t2 139.4 257.8 139.4 259.2 145.8 259.2 141.6 256.4 s2 139.4 257.8 139.4 259.2 p 137.3 255.8 139.4 257.8 141.6 256.4 137.3 253.7 s2 137.3 255.8 139.4 257.8 p 145.8 253.7 154.4 253.7 154.4 259.2 145.8 259.2 s2 154.4 253.7 163.0 253.7 163.0 259.2 154.4 259.2 s1 154.4 253.7 158.7 256.4 163.0 253.7 t2 160.9 257.8 163.0 255.8 163.0 253.7 158.7 256.4 s2 160.9 257.8 163.0 255.8 p 160.9 259.2 160.9 257.8 158.7 256.4 154.4 259.2 s2 160.9 259.2 160.9 257.8 p 154.4 259.2 158.7 256.4 154.4 253.7 t2 163.0 253.7 171.6 253.7 171.6 259.2 163.0 259.2 s1 164.5 253.7 164.0 254.3 163.0 253.7 t2 164.5 253.7 164.0 254.3 p 164.0 254.3 163.0 255.8 163.0 253.7 t2 164.0 254.3 163.0 255.8 p 171.6 253.7 180.2 253.7 180.2 259.2 171.6 259.2 s1 179.1 254.3 178.7 253.7 180.2 253.7 t2 179.1 254.3 178.7 253.7 p 180.2 255.8 179.1 254.3 180.2 253.7 t2 180.2 255.8 179.1 254.3 p 180.2 253.7 188.7 253.7 188.7 259.2 180.2 259.2 s1 180.2 253.7 184.4 256.4 188.7 253.7 t2 188.7 253.7 184.4 256.4 188.7 259.2 t2 182.3 257.8 182.3 259.2 188.7 259.2 184.4 256.4 s2 182.3 257.8 182.3 259.2 p 180.2 255.8 182.3 257.8 184.4 256.4 180.2 253.7 s2 180.2 255.8 182.3 257.8 p 188.7 253.7 197.3 253.7 197.3 259.2 188.7 259.2 s2 197.3 253.7 205.9 253.7 205.9 259.2 197.3 259.2 s1 197.3 253.7 201.6 256.4 205.9 253.7 t2 203.7 257.8 205.9 255.8 205.9 253.7 201.6 256.4 s2 203.7 257.8 205.9 255.8 p 203.8 259.2 203.7 257.8 201.6 256.4 197.3 259.2 s2 203.8 259.2 203.7 257.8 p 197.3 259.2 201.6 256.4 197.3 253.7 t2 205.9 253.7 214.5 253.7 214.5 259.2 205.9 259.2 s1 207.4 253.7 206.9 254.3 205.9 253.7 t2 207.4 253.7 206.9 254.3 p 206.9 254.3 205.9 255.8 205.9 253.7 t2 206.9 254.3 205.9 255.8 p 214.5 253.7 223.1 253.7 223.1 259.2 214.5 259.2 s1 222.0 254.3 221.6 253.7 223.1 253.7 t2 222.0 254.3 221.6 253.7 p 223.1 255.8 222.0 254.3 223.1 253.7 t2 223.1 255.8 222.0 254.3 p 223.1 253.7 231.6 253.7 231.6 259.2 223.1 259.2 s1 223.1 253.7 227.3 256.4 231.6 253.7 t2 231.6 253.7 227.3 256.4 231.6 259.2 t2 225.2 257.8 225.2 259.2 231.6 259.2 227.3 256.4 s2 225.2 257.8 225.2 259.2 p 223.1 255.8 225.2 257.8 227.3 256.4 223.1 253.7 s2 223.1 255.8 225.2 257.8 p 231.6 253.7 240.2 253.7 240.2 259.2 231.6 259.2 s2 240.2 253.7 248.8 253.7 248.8 259.2 240.2 259.2 s1 240.2 253.7 244.5 256.4 248.8 253.7 t2 246.6 257.8 248.8 255.8 248.8 253.7 244.5 256.4 s2 246.6 257.8 248.8 255.8 p 246.7 259.2 246.6 257.8 244.5 256.4 240.2 259.2 s2 246.7 259.2 246.6 257.8 p 240.2 259.2 244.5 256.4 240.2 253.7 t2 248.8 253.7 257.4 253.7 257.4 259.2 248.8 259.2 s1 250.3 253.7 249.8 254.3 248.8 253.7 t2 250.3 253.7 249.8 254.3 p 249.8 254.3 248.8 255.8 248.8 253.7 t2 249.8 254.3 248.8 255.8 p 257.4 253.7 265.9 253.7 265.9 259.2 257.4 259.2 s1 264.9 254.3 264.5 253.7 265.9 253.7 t2 264.9 254.3 264.5 253.7 p 265.9 255.8 264.9 254.3 265.9 253.7 t2 265.9 255.8 264.9 254.3 p 265.9 253.7 274.5 253.7 274.5 259.2 265.9 259.2 s1 265.9 253.7 270.2 256.4 274.5 253.7 t2 274.5 253.7 270.2 256.4 274.5 259.2 t2 268.1 257.8 268.0 259.2 274.5 259.2 270.2 256.4 s2 268.1 257.8 268.0 259.2 p 265.9 255.8 268.1 257.8 270.2 256.4 265.9 253.7 s2 265.9 255.8 268.1 257.8 p 274.5 253.7 283.1 253.7 283.1 259.2 274.5 259.2 s2 283.1 253.7 291.7 253.7 291.7 259.2 283.1 259.2 s1 283.1 253.7 287.4 256.4 291.7 253.7 t2 289.5 257.8 291.7 255.8 291.7 253.7 287.4 256.4 s2 289.5 257.8 291.7 255.8 p 289.6 259.2 289.5 257.8 287.4 256.4 283.1 259.2 s2 289.6 259.2 289.5 257.8 p 283.1 259.2 287.4 256.4 283.1 253.7 t2 291.7 253.7 300.3 253.7 300.3 259.2 291.7 259.2 s1 293.2 253.7 292.7 254.3 291.7 253.7 t2 293.2 253.7 292.7 254.3 p 292.7 254.3 291.7 255.8 291.7 253.7 t2 292.7 254.3 291.7 255.8 p 0.0 248.2 8.6 248.2 8.6 253.7 0.0 253.7 s1 7.4 248.9 7.0 248.2 8.6 248.2 t2 7.4 248.9 7.0 248.2 p 7.4 248.9 6.8 252.5 8.6 253.7 8.6 248.2 s2 7.4 248.9 6.8 252.5 p 7.1 253.7 6.8 252.5 8.6 253.7 t2 7.1 253.7 6.8 252.5 p 8.6 248.2 17.2 248.2 17.2 253.7 8.6 253.7 s1 13.5 250.5 10.3 248.2 8.6 248.2 12.9 250.9 s2 13.5 250.5 10.3 248.2 p 17.2 250.9 13.5 250.5 12.9 250.9 17.2 253.7 s2 17.2 250.9 13.5 250.5 p 17.2 253.7 12.9 250.9 8.6 253.7 t2 8.6 253.7 12.9 250.9 8.6 248.2 t2 17.2 248.2 25.7 248.2 25.7 253.7 17.2 253.7 s1 21.5 250.9 25.7 250.9 25.7 253.7 t2 21.5 250.9 25.7 250.9 p 21.5 250.9 21.4 250.9 17.2 253.7 25.7 253.7 s2 21.5 250.9 21.4 250.9 p 17.2 250.9 21.4 250.9 17.2 253.7 t2 17.2 250.9 21.4 250.9 p 25.7 248.2 34.3 248.2 34.3 253.7 25.7 253.7 s1 32.6 248.2 29.4 250.5 30.0 250.9 34.3 248.2 s2 32.6 248.2 29.4 250.5 p 34.3 248.2 30.0 250.9 34.3 253.7 t2 34.3 253.7 30.0 250.9 25.7 253.7 t2 29.4 250.5 25.7 250.9 25.7 253.7 30.0 250.9 s2 29.4 250.5 25.7 250.9 p 34.3 248.2 42.9 248.2 42.9 253.7 34.3 253.7 s1 35.9 248.2 35.5 248.9 34.3 248.2 t2 35.9 248.2 35.5 248.9 p 36.1 252.5 35.8 253.7 34.3 253.7 t2 36.1 252.5 35.8 253.7 p 36.1 252.5 35.5 248.9 34.3 248.2 34.3 253.7 s2 36.1 252.5 35.5 248.9 p 42.9 248.2 51.5 248.2 51.5 253.7 42.9 253.7 s1 50.3 248.9 49.9 248.2 51.5 248.2 t2 50.3 248.9 49.9 248.2 p 50.3 248.9 49.7 252.5 51.5 253.7 51.5 248.2 s2 50.3 248.9 49.7 252.5 p 50.0 253.7 49.7 252.5 51.5 253.7 t2 50.0 253.7 49.7 252.5 p 51.5 248.2 60.1 248.2 60.1 253.7 51.5 253.7 s1 56.4 250.5 53.2 248.2 51.5 248.2 55.8 250.9 s2 56.4 250.5 53.2 248.2 p 60.1 250.9 56.4 250.5 55.8 250.9 60.1 253.7 s2 60.1 250.9 56.4 250.5 p 60.1 253.7 55.8 250.9 51.5 253.7 t2 51.5 253.7 55.8 250.9 51.5 248.2 t2 60.1 248.2 68.6 248.2 68.6 253.7 60.1 253.7 s1 64.4 250.9 68.6 250.9 68.6 253.7 t2 64.4 250.9 68.6 250.9 p 64.4 250.9 64.3 250.9 60.1 253.7 68.6 253.7 s2 64.4 250.9 64.3 250.9 p 60.1 250.9 64.3 250.9 60.1 253.7 t2 60.1 250.9 64.3 250.9 p 68.6 248.2 77.2 248.2 77.2 253.7 68.6 253.7 s1 75.5 248.2 72.3 250.5 72.9 250.9 77.2 248.2 s2 75.5 248.2 72.3 250.5 p 77.2 248.2 72.9 250.9 77.2 253.7 t2 77.2 253.7 72.9 250.9 68.6 253.7 t2 72.3 250.5 68.6 250.9 68.6 253.7 72.9 250.9 s2 72.3 250.5 68.6 250.9 p 77.2 248.2 85.8 248.2 85.8 253.7 77.2 253.7 s1 78.8 248.2 78.4 248.9 77.2 248.2 t2 78.8 248.2 78.4 248.9 p 79.0 252.5 78.7 253.7 77.2 253.7 t2 79.0 252.5 78.7 253.7 p 79.0 252.5 78.4 248.9 77.2 248.2 77.2 253.7 s2 79.0 252.5 78.4 248.9 p 85.8 248.2 94.4 248.2 94.4 253.7 85.8 253.7 s1 93.1 248.9 92.8 248.2 94.4 248.2 t2 93.1 248.9 92.8 248.2 p 93.1 248.9 92.6 252.5 94.4 253.7 94.4 248.2 s2 93.1 248.9 92.6 252.5 p 92.9 253.7 92.6 252.5 94.4 253.7 t2 92.9 253.7 92.6 252.5 p 94.4 248.2 102.9 248.2 102.9 253.7 94.4 253.7 s1 99.3 250.5 96.1 248.2 94.4 248.2 98.7 250.9 s2 99.3 250.5 96.1 248.2 p 102.9 250.9 99.3 250.5 98.7 250.9 102.9 253.7 s2 102.9 250.9 99.3 250.5 p 102.9 253.7 98.7 250.9 94.4 253.7 t2 94.4 253.7 98.7 250.9 94.4 248.2 t2 102.9 248.2 111.5 248.2 111.5 253.7 102.9 253.7 s1 107.3 250.9 111.5 250.9 111.5 253.7 t2 107.3 250.9 111.5 250.9 p 107.3 250.9 107.2 250.9 102.9 253.7 111.5 253.7 s2 107.3 250.9 107.2 250.9 p 102.9 250.9 107.2 250.9 102.9 253.7 t2 102.9 250.9 107.2 250.9 p 111.5 248.2 120.1 248.2 120.1 253.7 111.5 253.7 s1 118.4 248.2 115.2 250.5 115.8 250.9 120.1 248.2 s2 118.4 248.2 115.2 250.5 p 120.1 248.2 115.8 250.9 120.1 253.7 t2 120.1 253.7 115.8 250.9 111.5 253.7 t2 115.2 250.5 111.5 250.9 111.5 253.7 115.8 250.9 s2 115.2 250.5 111.5 250.9 p 120.1 248.2 128.7 248.2 128.7 253.7 120.1 253.7 s1 121.7 248.2 121.3 248.9 120.1 248.2 t2 121.7 248.2 121.3 248.9 p 121.9 252.5 121.6 253.7 120.1 253.7 t2 121.9 252.5 121.6 253.7 p 121.9 252.5 121.3 248.9 120.1 248.2 120.1 253.7 s2 121.9 252.5 121.3 248.9 p 128.7 248.2 137.3 248.2 137.3 253.7 128.7 253.7 s1 136.0 248.9 135.6 248.2 137.3 248.2 t2 136.0 248.9 135.6 248.2 p 136.0 248.9 135.5 252.5 137.3 253.7 137.3 248.2 s2 136.0 248.9 135.5 252.5 p 135.8 253.7 135.5 252.5 137.3 253.7 t2 135.8 253.7 135.5 252.5 p 137.3 248.2 145.8 248.2 145.8 253.7 137.3 253.7 s1 142.2 250.5 139.0 248.2 137.3 248.2 141.6 250.9 s2 142.2 250.5 139.0 248.2 p 145.8 250.9 142.2 250.5 141.6 250.9 145.8 253.7 s2 145.8 250.9 142.2 250.5 p 145.8 253.7 141.6 250.9 137.3 253.7 t2 137.3 253.7 141.6 250.9 137.3 248.2 t2 145.8 248.2 154.4 248.2 154.4 253.7 145.8 253.7 s1 150.2 250.9 154.4 250.9 154.4 253.7 t2 150.2 250.9 154.4 250.9 p 150.2 250.9 150.1 250.9 145.8 253.7 154.4 253.7 s2 150.2 250.9 150.1 250.9 p 145.8 250.9 150.1 250.9 145.8 253.7 t2 145.8 250.9 150.1 250.9 p 154.4 248.2 163.0 248.2 163.0 253.7 154.4 253.7 s1 161.3 248.2 158.1 250.5 158.7 250.9 163.0 248.2 s2 161.3 248.2 158.1 250.5 p 163.0 248.2 158.7 250.9 163.0 253.7 t2 163.0 253.7 158.7 250.9 154.4 253.7 t2 158.1 250.5 154.4 250.9 154.4 253.7 158.7 250.9 s2 158.1 250.5 154.4 250.9 p 163.0 248.2 171.6 248.2 171.6 253.7 163.0 253.7 s1 164.6 248.2 164.2 248.9 163.0 248.2 t2 164.6 248.2 164.2 248.9 p 164.8 252.5 164.5 253.7 163.0 253.7 t2 164.8 252.5 164.5 253.7 p 164.8 252.5 164.2 248.9 163.0 248.2 163.0 253.7 s2 164.8 252.5 164.2 248.9 p 171.6 248.2 180.2 248.2 180.2 253.7 171.6 253.7 s1 178.9 248.9 178.5 248.2 180.2 248.2 t2 178.9 248.9 178.5 248.2 p 178.9 248.9 178.4 252.5 180.2 253.7 180.2 248.2 s2 178.9 248.9 178.4 252.5 p 178.7 253.7 178.4 252.5 180.2 253.7 t2 178.7 253.7 178.4 252.5 p 180.2 248.2 188.7 248.2 188.7 253.7 180.2 253.7 s1 185.1 250.5 181.9 248.2 180.2 248.2 184.4 250.9 s2 185.1 250.5 181.9 248.2 p 188.7 250.9 185.1 250.5 184.4 250.9 188.7 253.7 s2 188.7 250.9 185.1 250.5 p 188.7 253.7 184.4 250.9 180.2 253.7 t2 180.2 253.7 184.4 250.9 180.2 248.2 t2 188.7 248.2 197.3 248.2 197.3 253.7 188.7 253.7 s1 193.1 250.9 197.3 250.9 197.3 253.7 t2 193.1 250.9 197.3 250.9 p 193.1 250.9 193.0 250.9 188.7 253.7 197.3 253.7 s2 193.1 250.9 193.0 250.9 p 188.7 250.9 193.0 250.9 188.7 253.7 t2 188.7 250.9 193.0 250.9 p 197.3 248.2 205.9 248.2 205.9 253.7 197.3 253.7 s1 204.1 248.2 201.0 250.5 201.6 250.9 205.9 248.2 s2 204.1 248.2 201.0 250.5 p 205.9 248.2 201.6 250.9 205.9 253.7 t2 205.9 253.7 201.6 250.9 197.3 253.7 t2 201.0 250.5 197.3 250.9 197.3 253.7 201.6 250.9 s2 201.0 250.5 197.3 250.9 p 205.9 248.2 214.5 248.2 214.5 253.7 205.9 253.7 s1 207.5 248.2 207.1 248.9 205.9 248.2 t2 207.5 248.2 207.1 248.9 p 207.7 252.5 207.4 253.7 205.9 253.7 t2 207.7 252.5 207.4 253.7 p 207.7 252.5 207.1 248.9 205.9 248.2 205.9 253.7 s2 207.7 252.5 207.1 248.9 p 214.5 248.2 223.1 248.2 223.1 253.7 214.5 253.7 s1 221.8 248.9 221.4 248.2 223.1 248.2 t2 221.8 248.9 221.4 248.2 p 221.8 248.9 221.3 252.5 223.1 253.7 223.1 248.2 s2 221.8 248.9 221.3 252.5 p 221.6 253.7 221.3 252.5 223.1 253.7 t2 221.6 253.7 221.3 252.5 p 223.1 248.2 231.6 248.2 231.6 253.7 223.1 253.7 s1 228.0 250.5 224.8 248.2 223.1 248.2 227.3 250.9 s2 228.0 250.5 224.8 248.2 p 231.6 250.9 228.0 250.5 227.3 250.9 231.6 253.7 s2 231.6 250.9 228.0 250.5 p 231.6 253.7 227.3 250.9 223.1 253.7 t2 223.1 253.7 227.3 250.9 223.1 248.2 t2 231.6 248.2 240.2 248.2 240.2 253.7 231.6 253.7 s1 235.9 250.9 240.2 250.9 240.2 253.7 t2 235.9 250.9 240.2 250.9 p 235.9 250.9 235.9 250.9 231.6 253.7 240.2 253.7 s2 235.9 250.9 235.9 250.9 p 231.6 250.9 235.9 250.9 231.6 253.7 t2 231.6 250.9 235.9 250.9 p 240.2 248.2 248.8 248.2 248.8 253.7 240.2 253.7 s1 247.0 248.2 243.9 250.5 244.5 250.9 248.8 248.2 s2 247.0 248.2 243.9 250.5 p 248.8 248.2 244.5 250.9 248.8 253.7 t2 248.8 253.7 244.5 250.9 240.2 253.7 t2 243.9 250.5 240.2 250.9 240.2 253.7 244.5 250.9 s2 243.9 250.5 240.2 250.9 p 248.8 248.2 257.4 248.2 257.4 253.7 248.8 253.7 s1 250.4 248.2 250.0 248.9 248.8 248.2 t2 250.4 248.2 250.0 248.9 p 250.6 252.5 250.3 253.7 248.8 253.7 t2 250.6 252.5 250.3 253.7 p 250.6 252.5 250.0 248.9 248.8 248.2 248.8 253.7 s2 250.6 252.5 250.0 248.9 p 257.4 248.2 265.9 248.2 265.9 253.7 257.4 253.7 s1 264.7 248.9 264.3 248.2 265.9 248.2 t2 264.7 248.9 264.3 248.2 p 264.7 248.9 264.2 252.5 265.9 253.7 265.9 248.2 s2 264.7 248.9 264.2 252.5 p 264.5 253.7 264.2 252.5 265.9 253.7 t2 264.5 253.7 264.2 252.5 p 265.9 248.2 274.5 248.2 274.5 253.7 265.9 253.7 s1 270.9 250.5 267.7 248.2 265.9 248.2 270.2 250.9 s2 270.9 250.5 267.7 248.2 p 274.5 250.9 270.9 250.5 270.2 250.9 274.5 253.7 s2 274.5 250.9 270.9 250.5 p 274.5 253.7 270.2 250.9 265.9 253.7 t2 265.9 253.7 270.2 250.9 265.9 248.2 t2 274.5 248.2 283.1 248.2 283.1 253.7 274.5 253.7 s1 278.8 250.9 283.1 250.9 283.1 253.7 t2 278.8 250.9 283.1 250.9 p 278.8 250.9 278.8 250.9 274.5 253.7 283.1 253.7 s2 278.8 250.9 278.8 250.9 p 274.5 250.9 278.8 250.9 274.5 253.7 t2 274.5 250.9 278.8 250.9 p 283.1 248.2 291.7 248.2 291.7 253.7 283.1 253.7 s1 289.9 248.2 286.8 250.5 287.4 250.9 291.7 248.2 s2 289.9 248.2 286.8 250.5 p 291.7 248.2 287.4 250.9 291.7 253.7 t2 291.7 253.7 287.4 250.9 283.1 253.7 t2 286.8 250.5 283.1 250.9 283.1 253.7 287.4 250.9 s2 286.8 250.5 283.1 250.9 p 291.7 248.2 300.3 248.2 300.3 253.7 291.7 253.7 s1 293.3 248.2 292.9 248.9 291.7 248.2 t2 293.3 248.2 292.9 248.9 p 293.5 252.5 293.2 253.7 291.7 253.7 t2 293.5 252.5 293.2 253.7 p 293.5 252.5 292.9 248.9 291.7 248.2 291.7 253.7 s2 293.5 252.5 292.9 248.9 p 0.0 242.6 8.6 242.6 8.6 248.2 0.0 248.2 s1 7.7 247.6 8.6 247.4 8.6 248.2 t2 7.7 247.6 8.6 247.4 p 7.0 248.2 7.7 247.6 8.6 248.2 t2 7.0 248.2 7.7 247.6 p 8.6 242.6 17.2 242.6 17.2 248.2 8.6 248.2 s1 9.3 247.7 10.3 248.2 8.6 248.2 t2 9.3 247.7 10.3 248.2 p 8.6 247.4 9.3 247.7 8.6 248.2 t2 8.6 247.4 9.3 247.7 p 17.2 242.6 25.7 242.6 25.7 248.2 17.2 248.2 s1 25.7 242.6 34.3 242.6 34.3 248.2 25.7 248.2 s1 33.6 247.7 34.3 247.4 34.3 248.2 t2 33.6 247.7 34.3 247.4 p 32.6 248.2 33.6 247.7 34.3 248.2 t2 32.6 248.2 33.6 247.7 p 34.3 242.6 42.9 242.6 42.9 248.2 34.3 248.2 s1 35.1 247.6 35.9 248.2 34.3 248.2 t2 35.1 247.6 35.9 248.2 p 34.3 247.4 35.1 247.6 34.3 248.2 t2 34.3 247.4 35.1 247.6 p 42.9 242.6 51.5 242.6 51.5 248.2 42.9 248.2 s1 50.6 247.6 51.5 247.4 51.5 248.2 t2 50.6 247.6 51.5 247.4 p 49.9 248.2 50.6 247.6 51.5 248.2 t2 49.9 248.2 50.6 247.6 p 51.5 242.6 60.1 242.6 60.1 248.2 51.5 248.2 s1 52.2 247.7 53.2 248.2 51.5 248.2 t2 52.2 247.7 53.2 248.2 p 51.5 247.4 52.2 247.7 51.5 248.2 t2 51.5 247.4 52.2 247.7 p 60.1 242.6 68.6 242.6 68.6 248.2 60.1 248.2 s1 68.6 242.6 77.2 242.6 77.2 248.2 68.6 248.2 s1 76.5 247.7 77.2 247.4 77.2 248.2 t2 76.5 247.7 77.2 247.4 p 75.5 248.2 76.5 247.7 77.2 248.2 t2 75.5 248.2 76.5 247.7 p 77.2 242.6 85.8 242.6 85.8 248.2 77.2 248.2 s1 78.0 247.6 78.8 248.2 77.2 248.2 t2 78.0 247.6 78.8 248.2 p 77.2 247.4 78.0 247.6 77.2 248.2 t2 77.2 247.4 78.0 247.6 p 85.8 242.6 94.4 242.6 94.4 248.2 85.8 248.2 s1 93.5 247.6 94.4 247.4 94.4 248.2 t2 93.5 247.6 94.4 247.4 p 92.8 248.2 93.5 247.6 94.4 248.2 t2 92.8 248.2 93.5 247.6 p 94.4 242.6 102.9 242.6 102.9 248.2 94.4 248.2 s1 95.1 247.7 96.1 248.2 94.4 248.2 t2 95.1 247.7 96.1 248.2 p 94.4 247.4 95.1 247.7 94.4 248.2 t2 94.4 247.4 95.1 247.7 p 102.9 242.6 111.5 242.6 111.5 248.2 102.9 248.2 s1 111.5 242.6 120.1 242.6 120.1 248.2 111.5 248.2 s1 119.4 247.7 120.1 247.4 120.1 248.2 t2 119.4 247.7 120.1 247.4 p 118.4 248.2 119.4 247.7 120.1 248.2 t2 118.4 248.2 119.4 247.7 p 120.1 242.6 128.7 242.6 128.7 248.2 120.1 248.2 s1 120.9 247.6 121.7 248.2 120.1 248.2 t2 120.9 247.6 121.7 248.2 p 120.1 247.4 120.9 247.6 120.1 248.2 t2 120.1 247.4 120.9 247.6 p 128.7 242.6 137.3 242.6 137.3 248.2 128.7 248.2 s1 136.4 247.6 137.3 247.4 137.3 248.2 t2 136.4 247.6 137.3 247.4 p 135.6 248.2 136.4 247.6 137.3 248.2 t2 135.6 248.2 136.4 247.6 p 137.3 242.6 145.8 242.6 145.8 248.2 137.3 248.2 s1 138.0 247.7 139.0 248.2 137.3 248.2 t2 138.0 247.7 139.0 248.2 p 137.3 247.4 138.0 247.7 137.3 248.2 t2 137.3 247.4 138.0 247.7 p 145.8 242.6 154.4 242.6 154.4 248.2 145.8 248.2 s1 154.4 242.6 163.0 242.6 163.0 248.2 154.4 248.2 s1 162.3 247.7 163.0 247.4 163.0 248.2 t2 162.3 247.7 163.0 247.4 p 161.3 248.2 162.3 247.7 163.0 248.2 t2 161.3 248.2 162.3 247.7 p 163.0 242.6 171.6 242.6 171.6 248.2 163.0 248.2 s1 163.8 247.6 164.6 248.2 163.0 248.2 t2 163.8 247.6 164.6 248.2 p 163.0 247.4 163.8 247.6 163.0 248.2 t2 163.0 247.4 163.8 247.6 p 171.6 242.6 180.2 242.6 180.2 248.2 171.6 248.2 s1 179.3 247.6 180.2 247.4 180.2 248.2 t2 179.3 247.6 180.2 247.4 p 178.5 248.2 179.3 247.6 180.2 248.2 t2 178.5 248.2 179.3 247.6 p 180.2 242.6 188.7 242.6 188.7 248.2 180.2 248.2 s1 180.9 247.7 181.9 248.2 180.2 248.2 t2 180.9 247.7 181.9 248.2 p 180.2 247.4 180.9 247.7 180.2 248.2 t2 180.2 247.4 180.9 247.7 p 188.7 242.6 197.3 242.6 197.3 248.2 188.7 248.2 s1 197.3 242.6 205.9 242.6 205.9 248.2 197.3 248.2 s1 205.1 247.7 205.9 247.4 205.9 248.2 t2 205.1 247.7 205.9 247.4 p 204.1 248.2 205.1 247.7 205.9 248.2 t2 204.1 248.2 205.1 247.7 p 205.9 242.6 214.5 242.6 214.5 248.2 205.9 248.2 s1 206.7 247.6 207.5 248.2 205.9 248.2 t2 206.7 247.6 207.5 248.2 p 205.9 247.4 206.7 247.6 205.9 248.2 t2 205.9 247.4 206.7 247.6 p 214.5 242.6 223.1 242.6 223.1 248.2 214.5 248.2 s1 222.2 247.6 223.1 247.4 223.1 248.2 t2 222.2 247.6 223.1 247.4 p 221.4 248.2 222.2 247.6 223.1 248.2 t2 221.4 248.2 222.2 247.6 p 223.1 242.6 231.6 242.6 231.6 248.2 223.1 248.2 s1 223.8 247.7 224.8 248.2 223.1 248.2 t2 223.8 247.7 224.8 248.2 p 223.1 247.4 223.8 247.7 223.1 248.2 t2 223.1 247.4 223.8 247.7 p 231.6 242.6 240.2 242.6 240.2 248.2 231.6 248.2 s1 240.2 242.6 248.8 242.6 248.8 248.2 240.2 248.2 s1 248.0 247.7 248.8 247.4 248.8 248.2 t2 248.0 247.7 248.8 247.4 p 247.0 248.2 248.0 247.7 248.8 248.2 t2 247.0 248.2 248.0 247.7 p 248.8 242.6 257.4 242.6 257.4 248.2 248.8 248.2 s1 249.6 247.6 250.4 248.2 248.8 248.2 t2 249.6 247.6 250.4 248.2 p 248.8 247.4 249.6 247.6 248.8 248.2 t2 248.8 247.4 249.6 247.6 p 257.4 242.6 265.9 242.6 265.9 248.2 257.4 248.2 s1 265.1 247.6 265.9 247.4 265.9 248.2 t2 265.1 247.6 265.9 247.4 p 264.3 248.2 265.1 247.6 265.9 248.2 t2 264.3 248.2 265.1 247.6 p 265.9 242.6 274.5 242.6 274.5 248.2 265.9 248.2 s1 266.7 247.7 267.7 248.2 265.9 248.2 t2 266.7 247.7 267.7 248.2 p 265.9 247.4 266.7 247.7 265.9 248.2 t2 265.9 247.4 266.7 247.7 p 274.5 242.6 283.1 242.6 283.1 248.2 274.5 248.2 s1 283.1 242.6 291.7 242.6 291.7 248.2 283.1 248.2 s1 290.9 247.7 291.7 247.4 291.7 248.2 t2 290.9 247.7 291.7 247.4 p 289.9 248.2 290.9 247.7 291.7 248.2 t2 289.9 248.2 290.9 247.7 p 291.7 242.6 300.3 242.6 300.3 248.2 291.7 248.2 s1 292.5 247.6 293.3 248.2 291.7 248.2 t2 292.5 247.6 293.3 248.2 p 291.7 247.4 292.5 247.6 291.7 248.2 t2 291.7 247.4 292.5 247.6 p 0.0 237.1 8.6 237.1 8.6 242.6 0.0 242.6 s1 8.6 237.1 17.2 237.1 17.2 242.6 8.6 242.6 s1 17.2 237.1 25.7 237.1 25.7 242.6 17.2 242.6 s1 25.7 237.1 34.3 237.1 34.3 242.6 25.7 242.6 s1 34.3 237.1 42.9 237.1 42.9 242.6 34.3 242.6 s1 42.9 237.1 51.5 237.1 51.5 242.6 42.9 242.6 s1 51.5 237.1 60.1 237.1 60.1 242.6 51.5 242.6 s1 60.1 237.1 68.6 237.1 68.6 242.6 60.1 242.6 s1 68.6 237.1 77.2 237.1 77.2 242.6 68.6 242.6 s1 77.2 237.1 85.8 237.1 85.8 242.6 77.2 242.6 s1 85.8 237.1 94.4 237.1 94.4 242.6 85.8 242.6 s1 94.4 237.1 102.9 237.1 102.9 242.6 94.4 242.6 s1 102.9 237.1 111.5 237.1 111.5 242.6 102.9 242.6 s1 111.5 237.1 120.1 237.1 120.1 242.6 111.5 242.6 s1 120.1 237.1 128.7 237.1 128.7 242.6 120.1 242.6 s1 128.7 237.1 137.3 237.1 137.3 242.6 128.7 242.6 s1 137.3 237.1 145.8 237.1 145.8 242.6 137.3 242.6 s1 145.8 237.1 154.4 237.1 154.4 242.6 145.8 242.6 s1 154.4 237.1 163.0 237.1 163.0 242.6 154.4 242.6 s1 163.0 237.1 171.6 237.1 171.6 242.6 163.0 242.6 s1 171.6 237.1 180.2 237.1 180.2 242.6 171.6 242.6 s1 180.2 237.1 188.7 237.1 188.7 242.6 180.2 242.6 s1 188.7 237.1 197.3 237.1 197.3 242.6 188.7 242.6 s1 197.3 237.1 205.9 237.1 205.9 242.6 197.3 242.6 s1 205.9 237.1 214.5 237.1 214.5 242.6 205.9 242.6 s1 214.5 237.1 223.1 237.1 223.1 242.6 214.5 242.6 s1 223.1 237.1 231.6 237.1 231.6 242.6 223.1 242.6 s1 231.6 237.1 240.2 237.1 240.2 242.6 231.6 242.6 s1 240.2 237.1 248.8 237.1 248.8 242.6 240.2 242.6 s1 248.8 237.1 257.4 237.1 257.4 242.6 248.8 242.6 s1 257.4 237.1 265.9 237.1 265.9 242.6 257.4 242.6 s1 265.9 237.1 274.5 237.1 274.5 242.6 265.9 242.6 s1 274.5 237.1 283.1 237.1 283.1 242.6 274.5 242.6 s1 283.1 237.1 291.7 237.1 291.7 242.6 283.1 242.6 s1 291.7 237.1 300.3 237.1 300.3 242.6 291.7 242.6 s1 0.0 231.6 8.6 231.6 8.6 237.1 0.0 237.1 s0 2.6 233.3 6.7 232.8 4.3 234.4 t1 2.6 233.3 6.7 232.8 p 8.6 232.7 6.7 232.8 4.3 234.4 8.6 237.1 s1 8.6 232.7 6.7 232.8 p 8.6 237.1 4.3 234.4 0.0 237.1 t1 2.6 233.3 0.0 233.5 0.0 237.1 4.3 234.4 s1 2.6 233.3 0.0 233.5 p 8.6 231.6 17.2 231.6 17.2 237.1 8.6 237.1 s0 10.4 232.8 16.4 232.1 12.9 234.4 t1 10.4 232.8 16.4 232.1 p 17.2 232.2 16.4 232.1 12.9 234.4 17.2 237.1 s1 17.2 232.2 16.4 232.1 p 17.2 237.1 12.9 234.4 8.6 237.1 t1 10.4 232.8 8.6 232.7 8.6 237.1 12.9 234.4 s1 10.4 232.8 8.6 232.7 p 17.2 231.6 25.7 231.6 25.7 237.1 17.2 237.1 s0 18.1 232.2 24.8 232.2 21.4 234.4 t1 18.1 232.2 24.8 232.2 p 25.7 232.2 24.8 232.2 21.4 234.4 25.7 237.1 s1 25.7 232.2 24.8 232.2 p 25.7 237.1 21.4 234.4 17.2 237.1 t1 18.1 232.2 17.2 232.2 17.2 237.1 21.4 234.4 s1 18.1 232.2 17.2 232.2 p 25.7 231.6 34.3 231.6 34.3 237.1 25.7 237.1 s0 26.5 232.1 32.5 232.8 30.0 234.4 t1 26.5 232.1 32.5 232.8 p 34.3 232.7 32.5 232.8 30.0 234.4 34.3 237.1 s1 34.3 232.7 32.5 232.8 p 34.3 237.1 30.0 234.4 25.7 237.1 t1 26.5 232.1 25.7 232.2 25.7 237.1 30.0 234.4 s1 26.5 232.1 25.7 232.2 p 34.3 231.6 42.9 231.6 42.9 237.1 34.3 237.1 s0 36.2 232.8 40.2 233.3 38.6 234.4 t1 36.2 232.8 40.2 233.3 p 42.9 233.5 40.2 233.3 38.6 234.4 42.9 237.1 s1 42.9 233.5 40.2 233.3 p 42.9 237.1 38.6 234.4 34.3 237.1 t1 36.2 232.8 34.3 232.7 34.3 237.1 38.6 234.4 s1 36.2 232.8 34.3 232.7 p 42.9 231.6 51.5 231.6 51.5 237.1 42.9 237.1 s0 45.5 233.3 49.6 232.8 47.2 234.4 t1 45.5 233.3 49.6 232.8 p 51.5 232.7 49.6 232.8 47.2 234.4 51.5 237.1 s1 51.5 232.7 49.6 232.8 p 51.5 237.1 47.2 234.4 42.9 237.1 t1 45.5 233.3 42.9 233.5 42.9 237.1 47.2 234.4 s1 45.5 233.3 42.9 233.5 p 51.5 231.6 60.1 231.6 60.1 237.1 51.5 237.1 s0 53.3 232.8 59.3 232.1 55.8 234.4 t1 53.3 232.8 59.3 232.1 p 60.1 232.2 59.3 232.1 55.8 234.4 60.1 237.1 s1 60.1 232.2 59.3 232.1 p 60.1 237.1 55.8 234.4 51.5 237.1 t1 53.3 232.8 51.5 232.7 51.5 237.1 55.8 234.4 s1 53.3 232.8 51.5 232.7 p 60.1 231.6 68.6 231.6 68.6 237.1 60.1 237.1 s0 61.0 232.2 67.7 232.2 64.3 234.4 t1 61.0 232.2 67.7 232.2 p 68.6 232.2 67.7 232.2 64.3 234.4 68.6 237.1 s1 68.6 232.2 67.7 232.2 p 68.6 237.1 64.3 234.4 60.1 237.1 t1 61.0 232.2 60.1 232.2 60.1 237.1 64.3 234.4 s1 61.0 232.2 60.1 232.2 p 68.6 231.6 77.2 231.6 77.2 237.1 68.6 237.1 s0 69.4 232.1 75.4 232.8 72.9 234.4 t1 69.4 232.1 75.4 232.8 p 77.2 232.7 75.4 232.8 72.9 234.4 77.2 237.1 s1 77.2 232.7 75.4 232.8 p 77.2 237.1 72.9 234.4 68.6 237.1 t1 69.4 232.1 68.6 232.2 68.6 237.1 72.9 234.4 s1 69.4 232.1 68.6 232.2 p 77.2 231.6 85.8 231.6 85.8 237.1 77.2 237.1 s0 79.1 232.8 83.1 233.3 81.5 234.4 t1 79.1 232.8 83.1 233.3 p 85.8 233.5 83.1 233.3 81.5 234.4 85.8 237.1 s1 85.8 233.5 83.1 233.3 p 85.8 237.1 81.5 234.4 77.2 237.1 t1 79.1 232.8 77.2 232.7 77.2 237.1 81.5 234.4 s1 79.1 232.8 77.2 232.7 p 85.8 231.6 94.4 231.6 94.4 237.1 85.8 237.1 s0 88.4 233.3 92.5 232.8 90.1 234.4 t1 88.4 233.3 92.5 232.8 p 94.4 232.7 92.5 232.8 90.1 234.4 94.4 237.1 s1 94.4 232.7 92.5 232.8 p 94.4 237.1 90.1 234.4 85.8 237.1 t1 88.4 233.3 85.8 233.5 85.8 237.1 90.1 234.4 s1 88.4 233.3 85.8 233.5 p 94.4 231.6 102.9 231.6 102.9 237.1 94.4 237.1 s0 96.2 232.8 102.2 232.1 98.7 234.4 t1 96.2 232.8 102.2 232.1 p 102.9 232.2 102.2 232.1 98.7 234.4 102.9 237.1 s1 102.9 232.2 102.2 232.1 p 102.9 237.1 98.7 234.4 94.4 237.1 t1 96.2 232.8 94.4 232.7 94.4 237.1 98.7 234.4 s1 96.2 232.8 94.4 232.7 p 102.9 231.6 111.5 231.6 111.5 237.1 102.9 237.1 s0 103.9 232.2 110.6 232.2 107.2 234.4 t1 103.9 232.2 110.6 232.2 p 111.5 232.2 110.6 232.2 107.2 234.4 111.5 237.1 s1 111.5 232.2 110.6 232.2 p 111.5 237.1 107.2 234.4 102.9 237.1 t1 103.9 232.2 102.9 232.2 102.9 237.1 107.2 234.4 s1 103.9 232.2 102.9 232.2 p 111.5 231.6 120.1 231.6 120.1 237.1 111.5 237.1 s0 112.3 232.1 118.3 232.8 115.8 234.4 t1 112.3 232.1 118.3 232.8 p 120.1 232.7 118.3 232.8 115.8 234.4 120.1 237.1 s1 120.1 232.7 118.3 232.8 p 120.1 237.1 115.8 234.4 111.5 237.1 t1 112.3 232.1 111.5 232.2 111.5 237.1 115.8 234.4 s1 112.3 232.1 111.5 232.2 p 120.1 231.6 128.7 231.6 128.7 237.1 120.1 237.1 s0 122.0 232.8 126.0 233.3 124.4 234.4 t1 122.0 232.8 126.0 233.3 p 128.7 233.5 126.0 233.3 124.4 234.4 128.7 237.1 s1 128.7 233.5 126.0 233.3 p 128.7 237.1 124.4 234.4 120.1 237.1 t1 122.0 232.8 120.1 232.7 120.1 237.1 124.4 234.4 s1 122.0 232.8 120.1 232.7 p 128.7 231.6 137.3 231.6 137.3 237.1 128.7 237.1 s0 131.3 233.3 135.4 232.8 133.0 234.4 t1 131.3 233.3 135.4 232.8 p 137.3 232.7 135.4 232.8 133.0 234.4 137.3 237.1 s1 137.3 232.7 135.4 232.8 p 137.3 237.1 133.0 234.4 128.7 237.1 t1 131.3 233.3 128.7 233.5 128.7 237.1 133.0 234.4 s1 131.3 233.3 128.7 233.5 p 137.3 231.6 145.8 231.6 145.8 237.1 137.3 237.1 s0 139.1 232.8 145.0 232.1 141.6 234.4 t1 139.1 232.8 145.0 232.1 p 145.8 232.2 145.0 232.1 141.6 234.4 145.8 237.1 s1 145.8 232.2 145.0 232.1 p 145.8 237.1 141.6 234.4 137.3 237.1 t1 139.1 232.8 137.3 232.7 137.3 237.1 141.6 234.4 s1 139.1 232.8 137.3 232.7 p 145.8 231.6 154.4 231.6 154.4 237.1 145.8 237.1 s0 146.8 232.2 153.5 232.2 150.1 234.4 t1 146.8 232.2 153.5 232.2 p 154.4 232.2 153.5 232.2 150.1 234.4 154.4 237.1 s1 154.4 232.2 153.5 232.2 p 154.4 237.1 150.1 234.4 145.8 237.1 t1 146.8 232.2 145.8 232.2 145.8 237.1 150.1 234.4 s1 146.8 232.2 145.8 232.2 p 154.4 231.6 163.0 231.6 163.0 237.1 154.4 237.1 s0 155.2 232.1 161.2 232.8 158.7 234.4 t1 155.2 232.1 161.2 232.8 p 163.0 232.7 161.2 232.8 158.7 234.4 163.0 237.1 s1 163.0 232.7 161.2 232.8 p 163.0 237.1 158.7 234.4 154.4 237.1 t1 155.2 232.1 154.4 232.2 154.4 237.1 158.7 234.4 s1 155.2 232.1 154.4 232.2 p 163.0 231.6 171.6 231.6 171.6 237.1 163.0 237.1 s0 164.9 232.8 168.9 233.3 167.3 234.4 t1 164.9 232.8 168.9 233.3 p 171.6 233.5 168.9 233.3 167.3 234.4 171.6 237.1 s1 171.6 233.5 168.9 233.3 p 171.6 237.1 167.3 234.4 163.0 237.1 t1 164.9 232.8 163.0 232.7 163.0 237.1 167.3 234.4 s1 164.9 232.8 163.0 232.7 p 171.6 231.6 180.2 231.6 180.2 237.1 171.6 237.1 s0 174.2 233.3 178.3 232.8 175.9 234.4 t1 174.2 233.3 178.3 232.8 p 180.2 232.7 178.3 232.8 175.9 234.4 180.2 237.1 s1 180.2 232.7 178.3 232.8 p 180.2 237.1 175.9 234.4 171.6 237.1 t1 174.2 233.3 171.6 233.5 171.6 237.1 175.9 234.4 s1 174.2 233.3 171.6 233.5 p 180.2 231.6 188.7 231.6 188.7 237.1 180.2 237.1 s0 181.9 232.8 187.9 232.1 184.4 234.4 t1 181.9 232.8 187.9 232.1 p 188.7 232.2 187.9 232.1 184.4 234.4 188.7 237.1 s1 188.7 232.2 187.9 232.1 p 188.7 237.1 184.4 234.4 180.2 237.1 t1 181.9 232.8 180.2 232.7 180.2 237.1 184.4 234.4 s1 181.9 232.8 180.2 232.7 p 188.7 231.6 197.3 231.6 197.3 237.1 188.7 237.1 s0 189.7 232.2 196.4 232.2 193.0 234.4 t1 189.7 232.2 196.4 232.2 p 197.3 232.2 196.4 232.2 193.0 234.4 197.3 237.1 s1 197.3 232.2 196.4 232.2 p 197.3 237.1 193.0 234.4 188.7 237.1 t1 189.7 232.2 188.7 232.2 188.7 237.1 193.0 234.4 s1 189.7 232.2 188.7 232.2 p 197.3 231.6 205.9 231.6 205.9 237.1 197.3 237.1 s0 198.1 232.1 204.1 232.8 201.6 234.4 t1 198.1 232.1 204.1 232.8 p 205.9 232.7 204.1 232.8 201.6 234.4 205.9 237.1 s1 205.9 232.7 204.1 232.8 p 205.9 237.1 201.6 234.4 197.3 237.1 t1 198.1 232.1 197.3 232.2 197.3 237.1 201.6 234.4 s1 198.1 232.1 197.3 232.2 p 205.9 231.6 214.5 231.6 214.5 237.1 205.9 237.1 s0 207.8 232.8 211.8 233.3 210.2 234.4 t1 207.8 232.8 211.8 233.3 p 214.5 233.5 211.8 233.3 210.2 234.4 214.5 237.1 s1 214.5 233.5 211.8 233.3 p 214.5 237.1 210.2 234.4 205.9 237.1 t1 207.8 232.8 205.9 232.7 205.9 237.1 210.2 234.4 s1 207.8 232.8 205.9 232.7 p 214.5 231.6 223.1 231.6 223.1 237.1 214.5 237.1 s0 217.1 233.3 221.2 232.8 218.8 234.4 t1 217.1 233.3 221.2 232.8 p 223.1 232.7 221.2 232.8 218.8 234.4 223.1 237.1 s1 223.1 232.7 221.2 232.8 p 223.1 237.1 218.8 234.4 214.5 237.1 t1 217.1 233.3 214.5 233.5 214.5 237.1 218.8 234.4 s1 217.1 233.3 214.5 233.5 p 223.1 231.6 231.6 231.6 231.6 237.1 223.1 237.1 s0 224.8 232.8 230.8 232.1 227.3 234.4 t1 224.8 232.8 230.8 232.1 p 231.6 232.2 230.8 232.1 227.3 234.4 231.6 237.1 s1 231.6 232.2 230.8 232.1 p 231.6 237.1 227.3 234.4 223.1 237.1 t1 224.8 232.8 223.1 232.7 223.1 237.1 227.3 234.4 s1 224.8 232.8 223.1 232.7 p 231.6 231.6 240.2 231.6 240.2 237.1 231.6 237.1 s0 232.6 232.2 239.3 232.2 235.9 234.4 t1 232.6 232.2 239.3 232.2 p 240.2 232.2 239.3 232.2 235.9 234.4 240.2 237.1 s1 240.2 232.2 239.3 232.2 p 240.2 237.1 235.9 234.4 231.6 237.1 t1 232.6 232.2 231.6 232.2 231.6 237.1 235.9 234.4 s1 232.6 232.2 231.6 232.2 p 240.2 231.6 248.8 231.6 248.8 237.1 240.2 237.1 s0 241.0 232.1 247.0 232.8 244.5 234.4 t1 241.0 232.1 247.0 232.8 p 248.8 232.7 247.0 232.8 244.5 234.4 248.8 237.1 s1 248.8 232.7 247.0 232.8 p 248.8 237.1 244.5 234.4 240.2 237.1 t1 241.0 232.1 240.2 232.2 240.2 237.1 244.5 234.4 s1 241.0 232.1 240.2 232.2 p 248.8 231.6 257.4 231.6 257.4 237.1 248.8 237.1 s0 250.7 232.8 254.7 233.3 253.1 234.4 t1 250.7 232.8 254.7 233.3 p 257.4 233.5 254.7 233.3 253.1 234.4 257.4 237.1 s1 257.4 233.5 254.7 233.3 p 257.4 237.1 253.1 234.4 248.8 237.1 t1 250.7 232.8 248.8 232.7 248.8 237.1 253.1 234.4 s1 250.7 232.8 248.8 232.7 p 257.4 231.6 265.9 231.6 265.9 237.1 257.4 237.1 s0 260.0 233.3 264.1 232.8 261.7 234.4 t1 260.0 233.3 264.1 232.8 p 265.9 232.7 264.1 232.8 261.7 234.4 265.9 237.1 s1 265.9 232.7 264.1 232.8 p 265.9 237.1 261.7 234.4 257.4 237.1 t1 260.0 233.3 257.4 233.5 257.4 237.1 261.7 234.4 s1 260.0 233.3 257.4 233.5 p 265.9 231.6 274.5 231.6 274.5 237.1 265.9 237.1 s0 267.7 232.8 273.7 232.1 270.2 234.4 t1 267.7 232.8 273.7 232.1 p 274.5 232.2 273.7 232.1 270.2 234.4 274.5 237.1 s1 274.5 232.2 273.7 232.1 p 274.5 237.1 270.2 234.4 265.9 237.1 t1 267.7 232.8 265.9 232.7 265.9 237.1 270.2 234.4 s1 267.7 232.8 265.9 232.7 p 274.5 231.6 283.1 231.6 283.1 237.1 274.5 237.1 s0 275.5 232.2 282.2 232.2 278.8 234.4 t1 275.5 232.2 282.2 232.2 p 283.1 232.2 282.2 232.2 278.8 234.4 283.1 237.1 s1 283.1 232.2 282.2 232.2 p 283.1 237.1 278.8 234.4 274.5 237.1 t1 275.5 232.2 274.5 232.2 274.5 237.1 278.8 234.4 s1 275.5 232.2 274.5 232.2 p 283.1 231.6 291.7 231.6 291.7 237.1 283.1 237.1 s0 283.9 232.1 289.9 232.8 287.4 234.4 t1 283.9 232.1 289.9 232.8 p 291.7 232.7 289.9 232.8 287.4 234.4 291.7 237.1 s1 291.7 232.7 289.9 232.8 p 291.7 237.1 287.4 234.4 283.1 237.1 t1 283.9 232.1 283.1 232.2 283.1 237.1 287.4 234.4 s1 283.9 232.1 283.1 232.2 p 291.7 231.6 300.3 231.6 300.3 237.1 291.7 237.1 s0 293.6 232.8 297.6 233.3 296.0 234.4 t1 293.6 232.8 297.6 233.3 p 300.3 233.5 297.6 233.3 296.0 234.4 300.3 237.1 s1 300.3 233.5 297.6 233.3 p 300.3 237.1 296.0 234.4 291.7 237.1 t1 293.6 232.8 291.7 232.7 291.7 237.1 296.0 234.4 s1 293.6 232.8 291.7 232.7 p 0.0 226.1 8.6 226.1 8.6 231.6 0.0 231.6 s0 8.6 226.1 17.2 226.1 17.2 231.6 8.6 231.6 s0 16.2 226.7 16.2 226.1 17.2 226.1 t1 16.2 226.7 16.2 226.1 p 17.2 228.3 16.2 226.7 17.2 226.1 t1 17.2 228.3 16.2 226.7 p 17.2 226.1 25.7 226.1 25.7 231.6 17.2 231.6 s0 20.6 228.3 22.3 228.3 25.7 226.1 17.2 226.1 s1 20.6 228.3 22.3 228.3 p 25.7 228.3 22.3 228.3 25.7 226.1 t1 25.7 228.3 22.3 228.3 p 20.6 228.3 17.2 228.3 17.2 226.1 t1 20.6 228.3 17.2 228.3 p 25.7 226.1 34.3 226.1 34.3 231.6 25.7 231.6 s0 26.7 226.1 26.7 226.7 25.7 226.1 t1 26.7 226.1 26.7 226.7 p 26.7 226.7 25.7 228.3 25.7 226.1 t1 26.7 226.7 25.7 228.3 p 34.3 226.1 42.9 226.1 42.9 231.6 34.3 231.6 s0 42.9 226.1 51.5 226.1 51.5 231.6 42.9 231.6 s0 51.5 226.1 60.1 226.1 60.1 231.6 51.5 231.6 s0 59.1 226.7 59.1 226.1 60.1 226.1 t1 59.1 226.7 59.1 226.1 p 60.1 228.3 59.1 226.7 60.1 226.1 t1 60.1 228.3 59.1 226.7 p 60.1 226.1 68.6 226.1 68.6 231.6 60.1 231.6 s0 63.5 228.3 65.2 228.3 68.6 226.1 60.1 226.1 s1 63.5 228.3 65.2 228.3 p 68.6 228.3 65.2 228.3 68.6 226.1 t1 68.6 228.3 65.2 228.3 p 63.5 228.3 60.1 228.3 60.1 226.1 t1 63.5 228.3 60.1 228.3 p 68.6 226.1 77.2 226.1 77.2 231.6 68.6 231.6 s0 69.6 226.1 69.6 226.7 68.6 226.1 t1 69.6 226.1 69.6 226.7 p 69.6 226.7 68.6 228.3 68.6 226.1 t1 69.6 226.7 68.6 228.3 p 77.2 226.1 85.8 226.1 85.8 231.6 77.2 231.6 s0 85.8 226.1 94.4 226.1 94.4 231.6 85.8 231.6 s0 94.4 226.1 102.9 226.1 102.9 231.6 94.4 231.6 s0 101.9 226.7 102.0 226.1 102.9 226.1 t1 101.9 226.7 102.0 226.1 p 102.9 228.3 101.9 226.7 102.9 226.1 t1 102.9 228.3 101.9 226.7 p 102.9 226.1 111.5 226.1 111.5 231.6 102.9 231.6 s0 106.4 228.3 108.1 228.3 111.5 226.1 102.9 226.1 s1 106.4 228.3 108.1 228.3 p 111.5 228.3 108.1 228.3 111.5 226.1 t1 111.5 228.3 108.1 228.3 p 106.4 228.3 102.9 228.3 102.9 226.1 t1 106.4 228.3 102.9 228.3 p 111.5 226.1 120.1 226.1 120.1 231.6 111.5 231.6 s0 112.5 226.1 112.5 226.7 111.5 226.1 t1 112.5 226.1 112.5 226.7 p 112.5 226.7 111.5 228.3 111.5 226.1 t1 112.5 226.7 111.5 228.3 p 120.1 226.1 128.7 226.1 128.7 231.6 120.1 231.6 s0 128.7 226.1 137.3 226.1 137.3 231.6 128.7 231.6 s0 137.3 226.1 145.8 226.1 145.8 231.6 137.3 231.6 s0 144.8 226.7 144.9 226.1 145.8 226.1 t1 144.8 226.7 144.9 226.1 p 145.8 228.3 144.8 226.7 145.8 226.1 t1 145.8 228.3 144.8 226.7 p 145.8 226.1 154.4 226.1 154.4 231.6 145.8 231.6 s0 149.3 228.3 151.0 228.3 154.4 226.1 145.8 226.1 s1 149.3 228.3 151.0 228.3 p 154.4 228.3 151.0 228.3 154.4 226.1 t1 154.4 228.3 151.0 228.3 p 149.3 228.3 145.8 228.3 145.8 226.1 t1 149.3 228.3 145.8 228.3 p 154.4 226.1 163.0 226.1 163.0 231.6 154.4 231.6 s0 155.4 226.1 155.4 226.7 154.4 226.1 t1 155.4 226.1 155.4 226.7 p 155.4 226.7 154.4 228.3 154.4 226.1 t1 155.4 226.7 154.4 228.3 p 163.0 226.1 171.6 226.1 171.6 231.6 163.0 231.6 s0 171.6 226.1 180.2 226.1 180.2 231.6 171.6 231.6 s0 180.2 226.1 188.7 226.1 188.7 231.6 180.2 231.6 s0 187.7 226.7 187.8 226.1 188.7 226.1 t1 187.7 226.7 187.8 226.1 p 188.7 228.3 187.7 226.7 188.7 226.1 t1 188.7 228.3 187.7 226.7 p 188.7 226.1 197.3 226.1 197.3 231.6 188.7 231.6 s0 192.2 228.3 193.9 228.3 197.3 226.1 188.7 226.1 s1 192.2 228.3 193.9 228.3 p 197.3 228.3 193.9 228.3 197.3 226.1 t1 197.3 228.3 193.9 228.3 p 192.2 228.3 188.7 228.3 188.7 226.1 t1 192.2 228.3 188.7 228.3 p 197.3 226.1 205.9 226.1 205.9 231.6 197.3 231.6 s0 198.3 226.1 198.3 226.7 197.3 226.1 t1 198.3 226.1 198.3 226.7 p 198.3 226.7 197.3 228.3 197.3 226.1 t1 198.3 226.7 197.3 228.3 p 205.9 226.1 214.5 226.1 214.5 231.6 205.9 231.6 s0 214.5 226.1 223.1 226.1 223.1 231.6 214.5 231.6 s0 223.1 226.1 231.6 226.1 231.6 231.6 223.1 231.6 s0 230.6 226.7 230.7 226.1 231.6 226.1 t1 230.6 226.7 230.7 226.1 p 231.6 228.3 230.6 226.7 231.6 226.1 t1 231.6 228.3 230.6 226.7 p 231.6 226.1 240.2 226.1 240.2 231.6 231.6 231.6 s0 235.0 228.3 236.8 228.3 240.2 226.1 231.6 226.1 s1 235.0 228.3 236.8 228.3 p 240.2 228.3 236.8 228.3 240.2 226.1 t1 240.2 228.3 236.8 228.3 p 235.0 228.3 231.6 228.3 231.6 226.1 t1 235.0 228.3 231.6 228.3 p 240.2 226.1 248.8 226.1 248.8 231.6 240.2 231.6 s0 241.2 226.1 241.2 226.7 240.2 226.1 t1 241.2 226.1 241.2 226.7 p 241.2 226.7 240.2 228.3 240.2 226.1 t1 241.2 226.7 240.2 228.3 p 248.8 226.1 257.4 226.1 257.4 231.6 248.8 231.6 s0 257.4 226.1 265.9 226.1 265.9 231.6 257.4 231.6 s0 265.9 226.1 274.5 226.1 274.5 231.6 265.9 231.6 s0 273.5 226.7 273.6 226.1 274.5 226.1 t1 273.5 226.7 273.6 226.1 p 274.5 228.3 273.5 226.7 274.5 226.1 t1 274.5 228.3 273.5 226.7 p 274.5 226.1 283.1 226.1 283.1 231.6 274.5 231.6 s0 277.9 228.3 279.7 228.3 283.1 226.1 274.5 226.1 s1 277.9 228.3 279.7 228.3 p 283.1 228.3 279.7 228.3 283.1 226.1 t1 283.1 228.3 279.7 228.3 p 277.9 228.3 274.5 228.3 274.5 226.1 t1 277.9 228.3 274.5 228.3 p 283.1 226.1 291.7 226.1 291.7 231.6 283.1 231.6 s0 284.1 226.1 284.1 226.7 283.1 226.1 t1 284.1 226.1 284.1 226.7 p 284.1 226.7 283.1 228.3 283.1 226.1 t1 284.1 226.7 283.1 228.3 p 291.7 226.1 300.3 226.1 300.3 231.6 291.7 231.6 s0 0.0 220.6 8.6 220.6 8.6 226.1 0.0 226.1 s0 8.6 220.6 17.2 220.6 17.2 226.1 8.6 226.1 s0 9.4 220.6 10.5 221.8 12.9 223.3 17.2 220.6 s1 9.4 220.6 10.5 221.8 p 17.2 220.6 12.9 223.3 17.2 226.1 t1 11.7 224.1 16.2 226.1 17.2 226.1 12.9 223.3 s1 11.7 224.1 16.2 226.1 p 11.7 224.1 10.5 221.8 12.9 223.3 t1 11.7 224.1 10.5 221.8 p 17.2 220.6 25.7 220.6 25.7 226.1 17.2 226.1 s1 25.7 220.6 34.3 220.6 34.3 226.1 25.7 226.1 s0 32.4 221.8 33.5 220.6 25.7 220.6 30.0 223.3 s1 32.4 221.8 33.5 220.6 p 32.4 221.8 31.2 224.1 30.0 223.3 t1 32.4 221.8 31.2 224.1 p 26.7 226.1 31.2 224.1 30.0 223.3 25.7 226.1 s1 26.7 226.1 31.2 224.1 p 25.7 226.1 30.0 223.3 25.7 220.6 t1 34.3 220.6 42.9 220.6 42.9 226.1 34.3 226.1 s0 42.9 220.6 51.5 220.6 51.5 226.1 42.9 226.1 s0 51.5 220.6 60.1 220.6 60.1 226.1 51.5 226.1 s0 52.3 220.6 53.4 221.8 55.8 223.3 60.1 220.6 s1 52.3 220.6 53.4 221.8 p 60.1 220.6 55.8 223.3 60.1 226.1 t1 54.6 224.1 59.1 226.1 60.1 226.1 55.8 223.3 s1 54.6 224.1 59.1 226.1 p 54.6 224.1 53.4 221.8 55.8 223.3 t1 54.6 224.1 53.4 221.8 p 60.1 220.6 68.6 220.6 68.6 226.1 60.1 226.1 s1 68.6 220.6 77.2 220.6 77.2 226.1 68.6 226.1 s0 75.3 221.8 76.4 220.6 68.6 220.6 72.9 223.3 s1 75.3 221.8 76.4 220.6 p 75.3 221.8 74.1 224.1 72.9 223.3 t1 75.3 221.8 74.1 224.1 p 69.6 226.1 74.1 224.1 72.9 223.3 68.6 226.1 s1 69.6 226.1 74.1 224.1 p 68.6 226.1 72.9 223.3 68.6 220.6 t1 77.2 220.6 85.8 220.6 85.8 226.1 77.2 226.1 s0 85.8 220.6 94.4 220.6 94.4 226.1 85.8 226.1 s0 94.4 220.6 102.9 220.6 102.9 226.1 94.4 226.1 s0 95.2 220.6 96.3 221.8 98.7 223.3 102.9 220.6 s1 95.2 220.6 96.3 221.8 p 102.9 220.6 98.7 223.3 102.9 226.1 t1 97.5 224.1 102.0 226.1 102.9 226.1 98.7 223.3 s1 97.5 224.1 102.0 226.1 p 97.5 224.1 96.3 221.8 98.7 223.3 t1 97.5 224.1 96.3 221.8 p 102.9 220.6 111.5 220.6 111.5 226.1 102.9 226.1 s1 111.5 220.6 120.1 220.6 120.1 226.1 111.5 226.1 s0 118.2 221.8 119.3 220.6 111.5 220.6 115.8 223.3 s1 118.2 221.8 119.3 220.6 p 118.2 221.8 117.0 224.1 115.8 223.3 t1 118.2 221.8 117.0 224.1 p 112.5 226.1 117.0 224.1 115.8 223.3 111.5 226.1 s1 112.5 226.1 117.0 224.1 p 111.5 226.1 115.8 223.3 111.5 220.6 t1 120.1 220.6 128.7 220.6 128.7 226.1 120.1 226.1 s0 128.7 220.6 137.3 220.6 137.3 226.1 128.7 226.1 s0 137.3 220.6 145.8 220.6 145.8 226.1 137.3 226.1 s0 138.1 220.6 139.1 221.8 141.6 223.3 145.8 220.6 s1 138.1 220.6 139.1 221.8 p 145.8 220.6 141.6 223.3 145.8 226.1 t1 140.4 224.1 144.9 226.1 145.8 226.1 141.6 223.3 s1 140.4 224.1 144.9 226.1 p 140.4 224.1 139.1 221.8 141.6 223.3 t1 140.4 224.1 139.1 221.8 p 145.8 220.6 154.4 220.6 154.4 226.1 145.8 226.1 s1 154.4 220.6 163.0 220.6 163.0 226.1 154.4 226.1 s0 161.1 221.8 162.2 220.6 154.4 220.6 158.7 223.3 s1 161.1 221.8 162.2 220.6 p 161.1 221.8 159.8 224.1 158.7 223.3 t1 161.1 221.8 159.8 224.1 p 155.4 226.1 159.8 224.1 158.7 223.3 154.4 226.1 s1 155.4 226.1 159.8 224.1 p 154.4 226.1 158.7 223.3 154.4 220.6 t1 163.0 220.6 171.6 220.6 171.6 226.1 163.0 226.1 s0 171.6 220.6 180.2 220.6 180.2 226.1 171.6 226.1 s0 180.2 220.6 188.7 220.6 188.7 226.1 180.2 226.1 s0 181.0 220.6 182.0 221.8 184.4 223.3 188.7 220.6 s1 181.0 220.6 182.0 221.8 p 188.7 220.6 184.4 223.3 188.7 226.1 t1 183.3 224.1 187.8 226.1 188.7 226.1 184.4 223.3 s1 183.3 224.1 187.8 226.1 p 183.3 224.1 182.0 221.8 184.4 223.3 t1 183.3 224.1 182.0 221.8 p 188.7 220.6 197.3 220.6 197.3 226.1 188.7 226.1 s1 197.3 220.6 205.9 220.6 205.9 226.1 197.3 226.1 s0 204.0 221.8 205.1 220.6 197.3 220.6 201.6 223.3 s1 204.0 221.8 205.1 220.6 p 204.0 221.8 202.7 224.1 201.6 223.3 t1 204.0 221.8 202.7 224.1 p 198.3 226.1 202.7 224.1 201.6 223.3 197.3 226.1 s1 198.3 226.1 202.7 224.1 p 197.3 226.1 201.6 223.3 197.3 220.6 t1 205.9 220.6 214.5 220.6 214.5 226.1 205.9 226.1 s0 214.5 220.6 223.1 220.6 223.1 226.1 214.5 226.1 s0 223.1 220.6 231.6 220.6 231.6 226.1 223.1 226.1 s0 223.9 220.6 224.9 221.8 227.3 223.3 231.6 220.6 s1 223.9 220.6 224.9 221.8 p 231.6 220.6 227.3 223.3 231.6 226.1 t1 226.2 224.1 230.7 226.1 231.6 226.1 227.3 223.3 s1 226.2 224.1 230.7 226.1 p 226.2 224.1 224.9 221.8 227.3 223.3 t1 226.2 224.1 224.9 221.8 p 231.6 220.6 240.2 220.6 240.2 226.1 231.6 226.1 s1 240.2 220.6 248.8 220.6 248.8 226.1 240.2 226.1 s0 246.9 221.8 247.9 220.6 240.2 220.6 244.5 223.3 s1 246.9 221.8 247.9 220.6 p 246.9 221.8 245.6 224.1 244.5 223.3 t1 246.9 221.8 245.6 224.1 p 241.2 226.1 245.6 224.1 244.5 223.3 240.2 226.1 s1 241.2 226.1 245.6 224.1 p 240.2 226.1 244.5 223.3 240.2 220.6 t1 248.8 220.6 257.4 220.6 257.4 226.1 248.8 226.1 s0 257.4 220.6 265.9 220.6 265.9 226.1 257.4 226.1 s0 265.9 220.6 274.5 220.6 274.5 226.1 265.9 226.1 s0 266.8 220.6 267.8 221.8 270.2 223.3 274.5 220.6 s1 266.8 220.6 267.8 221.8 p 274.5 220.6 270.2 223.3 274.5 226.1 t1 269.1 224.1 273.6 226.1 274.5 226.1 270.2 223.3 s1 269.1 224.1 273.6 226.1 p 269.1 224.1 267.8 221.8 270.2 223.3 t1 269.1 224.1 267.8 221.8 p 274.5 220.6 283.1 220.6 283.1 226.1 274.5 226.1 s1 283.1 220.6 291.7 220.6 291.7 226.1 283.1 226.1 s0 289.8 221.8 290.8 220.6 283.1 220.6 287.4 223.3 s1 289.8 221.8 290.8 220.6 p 289.8 221.8 288.5 224.1 287.4 223.3 t1 289.8 221.8 288.5 224.1 p 284.1 226.1 288.5 224.1 287.4 223.3 283.1 226.1 s1 284.1 226.1 288.5 224.1 p 283.1 226.1 287.4 223.3 283.1 220.6 t1 291.7 220.6 300.3 220.6 300.3 226.1 291.7 226.1 s0 0.0 215.1 8.6 215.1 8.6 220.6 0.0 220.6 s0 5.1 217.3 4.1 215.1 8.6 215.1 t1 5.1 217.3 4.1 215.1 p 8.6 219.9 5.1 217.3 8.6 215.1 t1 8.6 219.9 5.1 217.3 p 8.6 215.1 17.2 215.1 17.2 220.6 8.6 220.6 s0 8.6 215.1 12.9 217.8 17.2 215.1 t1 17.2 215.1 12.9 217.8 17.2 220.6 t1 8.9 220.4 9.4 220.6 17.2 220.6 12.9 217.8 s1 8.9 220.4 9.4 220.6 p 8.6 219.9 8.9 220.4 12.9 217.8 8.6 215.1 s1 8.6 219.9 8.9 220.4 p 17.2 215.1 25.7 215.1 25.7 220.6 17.2 220.6 s1 25.7 215.1 34.3 215.1 34.3 220.6 25.7 220.6 s0 25.7 215.1 30.0 217.8 34.3 215.1 t1 34.0 220.4 34.3 219.9 34.3 215.1 30.0 217.8 s1 34.0 220.4 34.3 219.9 p 33.5 220.6 34.0 220.4 30.0 217.8 25.7 220.6 s1 33.5 220.6 34.0 220.4 p 25.7 220.6 30.0 217.8 25.7 215.1 t1 34.3 215.1 42.9 215.1 42.9 220.6 34.3 220.6 s0 38.8 215.1 37.8 217.3 34.3 215.1 t1 38.8 215.1 37.8 217.3 p 37.8 217.3 34.3 219.9 34.3 215.1 t1 37.8 217.3 34.3 219.9 p 42.9 215.1 51.5 215.1 51.5 220.6 42.9 220.6 s0 48.0 217.3 47.0 215.1 51.5 215.1 t1 48.0 217.3 47.0 215.1 p 51.5 219.9 48.0 217.3 51.5 215.1 t1 51.5 219.9 48.0 217.3 p 51.5 215.1 60.1 215.1 60.1 220.6 51.5 220.6 s0 51.5 215.1 55.8 217.8 60.1 215.1 t1 60.1 215.1 55.8 217.8 60.1 220.6 t1 51.8 220.4 52.3 220.6 60.1 220.6 55.8 217.8 s1 51.8 220.4 52.3 220.6 p 51.5 219.9 51.8 220.4 55.8 217.8 51.5 215.1 s1 51.5 219.9 51.8 220.4 p 60.1 215.1 68.6 215.1 68.6 220.6 60.1 220.6 s1 68.6 215.1 77.2 215.1 77.2 220.6 68.6 220.6 s0 68.6 215.1 72.9 217.8 77.2 215.1 t1 76.9 220.4 77.2 219.9 77.2 215.1 72.9 217.8 s1 76.9 220.4 77.2 219.9 p 76.4 220.6 76.9 220.4 72.9 217.8 68.6 220.6 s1 76.4 220.6 76.9 220.4 p 68.6 220.6 72.9 217.8 68.6 215.1 t1 77.2 215.1 85.8 215.1 85.8 220.6 77.2 220.6 s0 81.7 215.1 80.6 217.3 77.2 215.1 t1 81.7 215.1 80.6 217.3 p 80.6 217.3 77.2 219.9 77.2 215.1 t1 80.6 217.3 77.2 219.9 p 85.8 215.1 94.4 215.1 94.4 220.6 85.8 220.6 s0 90.9 217.3 89.8 215.1 94.4 215.1 t1 90.9 217.3 89.8 215.1 p 94.4 219.9 90.9 217.3 94.4 215.1 t1 94.4 219.9 90.9 217.3 p 94.4 215.1 102.9 215.1 102.9 220.6 94.4 220.6 s0 94.4 215.1 98.7 217.8 102.9 215.1 t1 102.9 215.1 98.7 217.8 102.9 220.6 t1 94.7 220.4 95.2 220.6 102.9 220.6 98.7 217.8 s1 94.7 220.4 95.2 220.6 p 94.4 219.9 94.7 220.4 98.7 217.8 94.4 215.1 s1 94.4 219.9 94.7 220.4 p 102.9 215.1 111.5 215.1 111.5 220.6 102.9 220.6 s1 111.5 215.1 120.1 215.1 120.1 220.6 111.5 220.6 s0 111.5 215.1 115.8 217.8 120.1 215.1 t1 119.8 220.4 120.1 219.9 120.1 215.1 115.8 217.8 s1 119.8 220.4 120.1 219.9 p 119.3 220.6 119.8 220.4 115.8 217.8 111.5 220.6 s1 119.3 220.6 119.8 220.4 p 111.5 220.6 115.8 217.8 111.5 215.1 t1 120.1 215.1 128.7 215.1 128.7 220.6 120.1 220.6 s0 124.6 215.1 123.5 217.3 120.1 215.1 t1 124.6 215.1 123.5 217.3 p 123.5 217.3 120.1 219.9 120.1 215.1 t1 123.5 217.3 120.1 219.9 p 128.7 215.1 137.3 215.1 137.3 220.6 128.7 220.6 s0 133.8 217.3 132.7 215.1 137.3 215.1 t1 133.8 217.3 132.7 215.1 p 137.3 219.9 133.8 217.3 137.3 215.1 t1 137.3 219.9 133.8 217.3 p 137.3 215.1 145.8 215.1 145.8 220.6 137.3 220.6 s0 137.3 215.1 141.6 217.8 145.8 215.1 t1 145.8 215.1 141.6 217.8 145.8 220.6 t1 137.6 220.4 138.1 220.6 145.8 220.6 141.6 217.8 s1 137.6 220.4 138.1 220.6 p 137.3 219.9 137.6 220.4 141.6 217.8 137.3 215.1 s1 137.3 219.9 137.6 220.4 p 145.8 215.1 154.4 215.1 154.4 220.6 145.8 220.6 s1 154.4 215.1 163.0 215.1 163.0 220.6 154.4 220.6 s0 154.4 215.1 158.7 217.8 163.0 215.1 t1 162.7 220.4 163.0 219.9 163.0 215.1 158.7 217.8 s1 162.7 220.4 163.0 219.9 p 162.2 220.6 162.7 220.4 158.7 217.8 154.4 220.6 s1 162.2 220.6 162.7 220.4 p 154.4 220.6 158.7 217.8 154.4 215.1 t1 163.0 215.1 171.6 215.1 171.6 220.6 163.0 220.6 s0 167.5 215.1 166.4 217.3 163.0 215.1 t1 167.5 215.1 166.4 217.3 p 166.4 217.3 163.0 219.9 163.0 215.1 t1 166.4 217.3 163.0 219.9 p 171.6 215.1 180.2 215.1 180.2 220.6 171.6 220.6 s0 176.7 217.3 175.6 215.1 180.2 215.1 t1 176.7 217.3 175.6 215.1 p 180.2 219.9 176.7 217.3 180.2 215.1 t1 180.2 219.9 176.7 217.3 p 180.2 215.1 188.7 215.1 188.7 220.6 180.2 220.6 s0 180.2 215.1 184.4 217.8 188.7 215.1 t1 188.7 215.1 184.4 217.8 188.7 220.6 t1 180.5 220.4 181.0 220.6 188.7 220.6 184.4 217.8 s1 180.5 220.4 181.0 220.6 p 180.2 219.9 180.5 220.4 184.4 217.8 180.2 215.1 s1 180.2 219.9 180.5 220.4 p 188.7 215.1 197.3 215.1 197.3 220.6 188.7 220.6 s1 197.3 215.1 205.9 215.1 205.9 220.6 197.3 220.6 s0 197.3 215.1 201.6 217.8 205.9 215.1 t1 205.6 220.4 205.9 219.9 205.9 215.1 201.6 217.8 s1 205.6 220.4 205.9 219.9 p 205.1 220.6 205.6 220.4 201.6 217.8 197.3 220.6 s1 205.1 220.6 205.6 220.4 p 197.3 220.6 201.6 217.8 197.3 215.1 t1 205.9 215.1 214.5 215.1 214.5 220.6 205.9 220.6 s0 210.4 215.1 209.3 217.3 205.9 215.1 t1 210.4 215.1 209.3 217.3 p 209.3 217.3 205.9 219.9 205.9 215.1 t1 209.3 217.3 205.9 219.9 p 214.5 215.1 223.1 215.1 223.1 220.6 214.5 220.6 s0 219.6 217.3 218.5 215.1 223.1 215.1 t1 219.6 217.3 218.5 215.1 p 223.1 219.9 219.6 217.3 223.1 215.1 t1 223.1 219.9 219.6 217.3 p 223.1 215.1 231.6 215.1 231.6 220.6 223.1 220.6 s0 223.1 215.1 227.3 217.8 231.6 215.1 t1 231.6 215.1 227.3 217.8 231.6 220.6 t1 223.4 220.4 223.9 220.6 231.6 220.6 227.3 217.8 s1 223.4 220.4 223.9 220.6 p 223.1 219.9 223.4 220.4 227.3 217.8 223.1 215.1 s1 223.1 219.9 223.4 220.4 p 231.6 215.1 240.2 215.1 240.2 220.6 231.6 220.6 s1 240.2 215.1 248.8 215.1 248.8 220.6 240.2 220.6 s0 240.2 215.1 244.5 217.8 248.8 215.1 t1 248.5 220.4 248.8 219.9 248.8 215.1 244.5 217.8 s1 248.5 220.4 248.8 219.9 p 247.9 220.6 248.5 220.4 244.5 217.8 240.2 220.6 s1 247.9 220.6 248.5 220.4 p 240.2 220.6 244.5 217.8 240.2 215.1 t1 248.8 215.1 257.4 215.1 257.4 220.6 248.8 220.6 s0 253.3 215.1 252.2 217.3 248.8 215.1 t1 253.3 215.1 252.2 217.3 p 252.2 217.3 248.8 219.9 248.8 215.1 t1 252.2 217.3 248.8 219.9 p 257.4 215.1 265.9 215.1 265.9 220.6 257.4 220.6 s0 262.5 217.3 261.4 215.1 265.9 215.1 t1 262.5 217.3 261.4 215.1 p 265.9 219.9 262.5 217.3 265.9 215.1 t1 265.9 219.9 262.5 217.3 p 265.9 215.1 274.5 215.1 274.5 220.6 265.9 220.6 s0 265.9 215.1 270.2 217.8 274.5 215.1 t1 274.5 215.1 270.2 217.8 274.5 220.6 t1 266.3 220.4 266.8 220.6 274.5 220.6 270.2 217.8 s1 266.3 220.4 266.8 220.6 p 265.9 219.9 266.3 220.4 270.2 217.8 265.9 215.1 s1 265.9 219.9 266.3 220.4 p 274.5 215.1 283.1 215.1 283.1 220.6 274.5 220.6 s1 283.1 215.1 291.7 215.1 291.7 220.6 283.1 220.6 s0 283.1 215.1 287.4 217.8 291.7 215.1 t1 291.4 220.4 291.7 219.9 291.7 215.1 287.4 217.8 s1 291.4 220.4 291.7 219.9 p 290.8 220.6 291.4 220.4 287.4 217.8 283.1 220.6 s1 290.8 220.6 291.4 220.4 p 283.1 220.6 287.4 217.8 283.1 215.1 t1 291.7 215.1 300.3 215.1 300.3 220.6 291.7 220.6 s0 296.2 215.1 295.1 217.3 291.7 215.1 t1 296.2 215.1 295.1 217.3 p 295.1 217.3 291.7 219.9 291.7 215.1 t1 295.1 217.3 291.7 219.9 p 0.0 209.6 8.6 209.6 8.6 215.1 0.0 215.1 s0 1.8 209.6 2.5 211.2 4.3 212.3 8.6 209.6 s1 1.8 209.6 2.5 211.2 p 8.6 209.6 4.3 212.3 8.6 215.1 t1 2.5 213.5 4.1 215.1 8.6 215.1 4.3 212.3 s1 2.5 213.5 4.1 215.1 p 2.5 213.5 2.5 211.2 4.3 212.3 t1 2.5 213.5 2.5 211.2 p 8.6 209.6 17.2 209.6 17.2 215.1 8.6 215.1 s1 17.2 209.6 25.7 209.6 25.7 215.1 17.2 215.1 s1 25.7 209.6 34.3 209.6 34.3 215.1 25.7 215.1 s1 34.3 209.6 42.9 209.6 42.9 215.1 34.3 215.1 s0 40.4 211.2 41.1 209.6 34.3 209.6 38.6 212.3 s1 40.4 211.2 41.1 209.6 p 40.4 211.2 40.4 213.5 38.6 212.3 t1 40.4 211.2 40.4 213.5 p 38.8 215.1 40.4 213.5 38.6 212.3 34.3 215.1 s1 38.8 215.1 40.4 213.5 p 34.3 215.1 38.6 212.3 34.3 209.6 t1 42.9 209.6 51.5 209.6 51.5 215.1 42.9 215.1 s0 44.7 209.6 45.4 211.2 47.2 212.3 51.5 209.6 s1 44.7 209.6 45.4 211.2 p 51.5 209.6 47.2 212.3 51.5 215.1 t1 45.4 213.5 47.0 215.1 51.5 215.1 47.2 212.3 s1 45.4 213.5 47.0 215.1 p 45.4 213.5 45.4 211.2 47.2 212.3 t1 45.4 213.5 45.4 211.2 p 51.5 209.6 60.1 209.6 60.1 215.1 51.5 215.1 s1 60.1 209.6 68.6 209.6 68.6 215.1 60.1 215.1 s1 68.6 209.6 77.2 209.6 77.2 215.1 68.6 215.1 s1 77.2 209.6 85.8 209.6 85.8 215.1 77.2 215.1 s0 83.3 211.2 84.0 209.6 77.2 209.6 81.5 212.3 s1 83.3 211.2 84.0 209.6 p 83.3 211.2 83.3 213.5 81.5 212.3 t1 83.3 211.2 83.3 213.5 p 81.7 215.1 83.3 213.5 81.5 212.3 77.2 215.1 s1 81.7 215.1 83.3 213.5 p 77.2 215.1 81.5 212.3 77.2 209.6 t1 85.8 209.6 94.4 209.6 94.4 215.1 85.8 215.1 s0 87.6 209.6 88.3 211.2 90.1 212.3 94.4 209.6 s1 87.6 209.6 88.3 211.2 p 94.4 209.6 90.1 212.3 94.4 215.1 t1 88.3 213.5 89.8 215.1 94.4 215.1 90.1 212.3 s1 88.3 213.5 89.8 215.1 p 88.3 213.5 88.3 211.2 90.1 212.3 t1 88.3 213.5 88.3 211.2 p 94.4 209.6 102.9 209.6 102.9 215.1 94.4 215.1 s1 102.9 209.6 111.5 209.6 111.5 215.1 102.9 215.1 s1 111.5 209.6 120.1 209.6 120.1 215.1 111.5 215.1 s1 120.1 209.6 128.7 209.6 128.7 215.1 120.1 215.1 s0 126.2 211.2 126.9 209.6 120.1 209.6 124.4 212.3 s1 126.2 211.2 126.9 209.6 p 126.2 211.2 126.2 213.5 124.4 212.3 t1 126.2 211.2 126.2 213.5 p 124.6 215.1 126.2 213.5 124.4 212.3 120.1 215.1 s1 124.6 215.1 126.2 213.5 p 120.1 215.1 124.4 212.3 120.1 209.6 t1 128.7 209.6 137.3 209.6 137.3 215.1 128.7 215.1 s0 130.5 209.6 131.2 211.2 133.0 212.3 137.3 209.6 s1 130.5 209.6 131.2 211.2 p 137.3 209.6 133.0 212.3 137.3 215.1 t1 131.2 213.5 132.7 215.1 137.3 215.1 133.0 212.3 s1 131.2 213.5 132.7 215.1 p 131.2 213.5 131.2 211.2 133.0 212.3 t1 131.2 213.5 131.2 211.2 p 137.3 209.6 145.8 209.6 145.8 215.1 137.3 215.1 s1 145.8 209.6 154.4 209.6 154.4 215.1 145.8 215.1 s1 154.4 209.6 163.0 209.6 163.0 215.1 154.4 215.1 s1 163.0 209.6 171.6 209.6 171.6 215.1 163.0 215.1 s0 169.1 211.2 169.8 209.6 163.0 209.6 167.3 212.3 s1 169.1 211.2 169.8 209.6 p 169.1 211.2 169.1 213.5 167.3 212.3 t1 169.1 211.2 169.1 213.5 p 167.5 215.1 169.1 213.5 167.3 212.3 163.0 215.1 s1 167.5 215.1 169.1 213.5 p 163.0 215.1 167.3 212.3 163.0 209.6 t1 171.6 209.6 180.2 209.6 180.2 215.1 171.6 215.1 s0 173.4 209.6 174.1 211.2 175.9 212.3 180.2 209.6 s1 173.4 209.6 174.1 211.2 p 180.2 209.6 175.9 212.3 180.2 215.1 t1 174.1 213.5 175.6 215.1 180.2 215.1 175.9 212.3 s1 174.1 213.5 175.6 215.1 p 174.1 213.5 174.1 211.2 175.9 212.3 t1 174.1 213.5 174.1 211.2 p 180.2 209.6 188.7 209.6 188.7 215.1 180.2 215.1 s1 188.7 209.6 197.3 209.6 197.3 215.1 188.7 215.1 s1 197.3 209.6 205.9 209.6 205.9 215.1 197.3 215.1 s1 205.9 209.6 214.5 209.6 214.5 215.1 205.9 215.1 s0 212.0 211.2 212.7 209.6 205.9 209.6 210.2 212.3 s1 212.0 211.2 212.7 209.6 p 212.0 211.2 212.0 213.5 210.2 212.3 t1 212.0 211.2 212.0 213.5 p 210.4 215.1 212.0 213.5 210.2 212.3 205.9 215.1 s1 210.4 215.1 212.0 213.5 p 205.9 215.1 210.2 212.3 205.9 209.6 t1 214.5 209.6 223.1 209.6 223.1 215.1 214.5 215.1 s0 216.3 209.6 217.0 211.2 218.8 212.3 223.1 209.6 s1 216.3 209.6 217.0 211.2 p 223.1 209.6 218.8 212.3 223.1 215.1 t1 217.0 213.5 218.5 215.1 223.1 215.1 218.8 212.3 s1 217.0 213.5 218.5 215.1 p 217.0 213.5 217.0 211.2 218.8 212.3 t1 217.0 213.5 217.0 211.2 p 223.1 209.6 231.6 209.6 231.6 215.1 223.1 215.1 s1 231.6 209.6 240.2 209.6 240.2 215.1 231.6 215.1 s1 240.2 209.6 248.8 209.6 248.8 215.1 240.2 215.1 s1 248.8 209.6 257.4 209.6 257.4 215.1 248.8 215.1 s0 254.9 211.2 255.6 209.6 248.8 209.6 253.1 212.3 s1 254.9 211.2 255.6 209.6 p 254.9 211.2 254.9 213.5 253.1 212.3 t1 254.9 211.2 254.9 213.5 p 253.3 215.1 254.9 213.5 253.1 212.3 248.8 215.1 s1 253.3 215.1 254.9 213.5 p 248.8 215.1 253.1 212.3 248.8 209.6 t1 257.4 209.6 265.9 209.6 265.9 215.1 257.4 215.1 s0 259.2 209.6 259.9 211.2 261.7 212.3 265.9 209.6 s1 259.2 209.6 259.9 211.2 p 265.9 209.6 261.7 212.3 265.9 215.1 t1 259.9 213.5 261.4 215.1 265.9 215.1 261.7 212.3 s1 259.9 213.5 261.4 215.1 p 259.9 213.5 259.9 211.2 261.7 212.3 t1 259.9 213.5 259.9 211.2 p 265.9 209.6 274.5 209.6 274.5 215.1 265.9 215.1 s1 274.5 209.6 283.1 209.6 283.1 215.1 274.5 215.1 s1 283.1 209.6 291.7 209.6 291.7 215.1 283.1 215.1 s1 291.7 209.6 300.3 209.6 300.3 215.1 291.7 215.1 s0 297.8 211.2 298.5 209.6 291.7 209.6 296.0 212.3 s1 297.8 211.2 298.5 209.6 p 297.8 211.2 297.8 213.5 296.0 212.3 t1 297.8 211.2 297.8 213.5 p 296.2 215.1 297.8 213.5 296.0 212.3 291.7 215.1 s1 296.2 215.1 297.8 213.5 p 291.7 215.1 296.0 212.3 291.7 209.6 t1 0.0 204.0 8.6 204.0 8.6 209.6 0.0 209.6 s0 1.0 204.0 1.3 204.9 4.3 206.8 8.6 204.0 s1 1.0 204.0 1.3 204.9 p 8.6 204.0 4.3 206.8 8.6 209.6 t1 1.3 208.7 1.8 209.6 8.6 209.6 4.3 206.8 s1 1.3 208.7 1.8 209.6 p 1.3 208.7 1.3 204.9 4.3 206.8 t1 1.3 208.7 1.3 204.9 p 8.6 204.0 17.2 204.0 17.2 209.6 8.6 209.6 s1 14.4 205.8 13.3 204.0 17.2 204.0 t2 14.4 205.8 13.3 204.0 p 17.2 208.0 14.4 205.8 17.2 204.0 t2 17.2 208.0 14.4 205.8 p 17.2 204.0 25.7 204.0 25.7 209.6 17.2 209.6 s1 17.2 204.0 21.4 206.8 25.7 204.0 t2 23.3 208.0 25.7 208.0 25.7 204.0 21.4 206.8 s2 23.3 208.0 25.7 208.0 p 23.3 208.0 19.6 208.0 21.4 206.8 t2 23.3 208.0 19.6 208.0 p 17.2 208.0 19.6 208.0 21.4 206.8 17.2 204.0 s2 17.2 208.0 19.6 208.0 p 25.7 204.0 34.3 204.0 34.3 209.6 25.7 209.6 s1 29.6 204.0 28.4 205.8 25.7 204.0 t2 29.6 204.0 28.4 205.8 p 28.4 205.8 25.7 208.0 25.7 204.0 t2 28.4 205.8 25.7 208.0 p 34.3 204.0 42.9 204.0 42.9 209.6 34.3 209.6 s0 41.6 204.9 41.9 204.0 34.3 204.0 38.6 206.8 s1 41.6 204.9 41.9 204.0 p 41.6 204.9 41.6 208.7 38.6 206.8 t1 41.6 204.9 41.6 208.7 p 41.1 209.6 41.6 208.7 38.6 206.8 34.3 209.6 s1 41.1 209.6 41.6 208.7 p 34.3 209.6 38.6 206.8 34.3 204.0 t1 42.9 204.0 51.5 204.0 51.5 209.6 42.9 209.6 s0 43.9 204.0 44.2 204.9 47.2 206.8 51.5 204.0 s1 43.9 204.0 44.2 204.9 p 51.5 204.0 47.2 206.8 51.5 209.6 t1 44.2 208.7 44.7 209.6 51.5 209.6 47.2 206.8 s1 44.2 208.7 44.7 209.6 p 44.2 208.7 44.2 204.9 47.2 206.8 t1 44.2 208.7 44.2 204.9 p 51.5 204.0 60.1 204.0 60.1 209.6 51.5 209.6 s1 57.3 205.8 56.2 204.0 60.1 204.0 t2 57.3 205.8 56.2 204.0 p 60.1 208.0 57.3 205.8 60.1 204.0 t2 60.1 208.0 57.3 205.8 p 60.1 204.0 68.6 204.0 68.6 209.6 60.1 209.6 s1 60.1 204.0 64.3 206.8 68.6 204.0 t2 66.2 208.0 68.6 208.0 68.6 204.0 64.3 206.8 s2 66.2 208.0 68.6 208.0 p 66.2 208.0 62.5 208.0 64.3 206.8 t2 66.2 208.0 62.5 208.0 p 60.1 208.0 62.5 208.0 64.3 206.8 60.1 204.0 s2 60.1 208.0 62.5 208.0 p 68.6 204.0 77.2 204.0 77.2 209.6 68.6 209.6 s1 72.5 204.0 71.3 205.8 68.6 204.0 t2 72.5 204.0 71.3 205.8 p 71.3 205.8 68.6 208.0 68.6 204.0 t2 71.3 205.8 68.6 208.0 p 77.2 204.0 85.8 204.0 85.8 209.6 77.2 209.6 s0 84.5 204.9 84.8 204.0 77.2 204.0 81.5 206.8 s1 84.5 204.9 84.8 204.0 p 84.5 204.9 84.5 208.7 81.5 206.8 t1 84.5 204.9 84.5 208.7 p 84.0 209.6 84.5 208.7 81.5 206.8 77.2 209.6 s1 84.0 209.6 84.5 208.7 p 77.2 209.6 81.5 206.8 77.2 204.0 t1 85.8 204.0 94.4 204.0 94.4 209.6 85.8 209.6 s0 86.8 204.0 87.1 204.9 90.1 206.8 94.4 204.0 s1 86.8 204.0 87.1 204.9 p 94.4 204.0 90.1 206.8 94.4 209.6 t1 87.1 208.7 87.6 209.6 94.4 209.6 90.1 206.8 s1 87.1 208.7 87.6 209.6 p 87.1 208.7 87.1 204.9 90.1 206.8 t1 87.1 208.7 87.1 204.9 p 94.4 204.0 102.9 204.0 102.9 209.6 94.4 209.6 s1 100.2 205.8 99.0 204.0 102.9 204.0 t2 100.2 205.8 99.0 204.0 p 102.9 208.0 100.2 205.8 102.9 204.0 t2 102.9 208.0 100.2 205.8 p 102.9 204.0 111.5 204.0 111.5 209.6 102.9 209.6 s1 102.9 204.0 107.2 206.8 111.5 204.0 t2 109.1 208.0 111.5 208.0 111.5 204.0 107.2 206.8 s2 109.1 208.0 111.5 208.0 p 109.1 208.0 105.4 208.0 107.2 206.8 t2 109.1 208.0 105.4 208.0 p 102.9 208.0 105.4 208.0 107.2 206.8 102.9 204.0 s2 102.9 208.0 105.4 208.0 p 111.5 204.0 120.1 204.0 120.1 209.6 111.5 209.6 s1 115.4 204.0 114.2 205.8 111.5 204.0 t2 115.4 204.0 114.2 205.8 p 114.2 205.8 111.5 208.0 111.5 204.0 t2 114.2 205.8 111.5 208.0 p 120.1 204.0 128.7 204.0 128.7 209.6 120.1 209.6 s0 127.4 204.9 127.7 204.0 120.1 204.0 124.4 206.8 s1 127.4 204.9 127.7 204.0 p 127.4 204.9 127.4 208.7 124.4 206.8 t1 127.4 204.9 127.4 208.7 p 126.9 209.6 127.4 208.7 124.4 206.8 120.1 209.6 s1 126.9 209.6 127.4 208.7 p 120.1 209.6 124.4 206.8 120.1 204.0 t1 128.7 204.0 137.3 204.0 137.3 209.6 128.7 209.6 s0 129.7 204.0 130.0 204.9 133.0 206.8 137.3 204.0 s1 129.7 204.0 130.0 204.9 p 137.3 204.0 133.0 206.8 137.3 209.6 t1 130.0 208.7 130.5 209.6 137.3 209.6 133.0 206.8 s1 130.0 208.7 130.5 209.6 p 130.0 208.7 130.0 204.9 133.0 206.8 t1 130.0 208.7 130.0 204.9 p 137.3 204.0 145.8 204.0 145.8 209.6 137.3 209.6 s1 143.1 205.8 141.9 204.0 145.8 204.0 t2 143.1 205.8 141.9 204.0 p 145.8 208.0 143.1 205.8 145.8 204.0 t2 145.8 208.0 143.1 205.8 p 145.8 204.0 154.4 204.0 154.4 209.6 145.8 209.6 s1 145.8 204.0 150.1 206.8 154.4 204.0 t2 152.0 208.0 154.4 208.0 154.4 204.0 150.1 206.8 s2 152.0 208.0 154.4 208.0 p 152.0 208.0 148.2 208.0 150.1 206.8 t2 152.0 208.0 148.2 208.0 p 145.8 208.0 148.2 208.0 150.1 206.8 145.8 204.0 s2 145.8 208.0 148.2 208.0 p 154.4 204.0 163.0 204.0 163.0 209.6 154.4 209.6 s1 158.3 204.0 157.1 205.8 154.4 204.0 t2 158.3 204.0 157.1 205.8 p 157.1 205.8 154.4 208.0 154.4 204.0 t2 157.1 205.8 154.4 208.0 p 163.0 204.0 171.6 204.0 171.6 209.6 163.0 209.6 s0 170.3 204.9 170.6 204.0 163.0 204.0 167.3 206.8 s1 170.3 204.9 170.6 204.0 p 170.3 204.9 170.3 208.7 167.3 206.8 t1 170.3 204.9 170.3 208.7 p 169.8 209.6 170.3 208.7 167.3 206.8 163.0 209.6 s1 169.8 209.6 170.3 208.7 p 163.0 209.6 167.3 206.8 163.0 204.0 t1 171.6 204.0 180.2 204.0 180.2 209.6 171.6 209.6 s0 172.6 204.0 172.9 204.9 175.9 206.8 180.2 204.0 s1 172.6 204.0 172.9 204.9 p 180.2 204.0 175.9 206.8 180.2 209.6 t1 172.9 208.7 173.4 209.6 180.2 209.6 175.9 206.8 s1 172.9 208.7 173.4 209.6 p 172.9 208.7 172.9 204.9 175.9 206.8 t1 172.9 208.7 172.9 204.9 p 180.2 204.0 188.7 204.0 188.7 209.6 180.2 209.6 s1 186.0 205.8 184.8 204.0 188.7 204.0 t2 186.0 205.8 184.8 204.0 p 188.7 208.0 186.0 205.8 188.7 204.0 t2 188.7 208.0 186.0 205.8 p 188.7 204.0 197.3 204.0 197.3 209.6 188.7 209.6 s1 188.7 204.0 193.0 206.8 197.3 204.0 t2 194.9 208.0 197.3 208.0 197.3 204.0 193.0 206.8 s2 194.9 208.0 197.3 208.0 p 194.9 208.0 191.1 208.0 193.0 206.8 t2 194.9 208.0 191.1 208.0 p 188.7 208.0 191.1 208.0 193.0 206.8 188.7 204.0 s2 188.7 208.0 191.1 208.0 p 197.3 204.0 205.9 204.0 205.9 209.6 197.3 209.6 s1 201.2 204.0 200.0 205.8 197.3 204.0 t2 201.2 204.0 200.0 205.8 p 200.0 205.8 197.3 208.0 197.3 204.0 t2 200.0 205.8 197.3 208.0 p 205.9 204.0 214.5 204.0 214.5 209.6 205.9 209.6 s0 213.2 204.9 213.5 204.0 205.9 204.0 210.2 206.8 s1 213.2 204.9 213.5 204.0 p 213.2 204.9 213.2 208.7 210.2 206.8 t1 213.2 204.9 213.2 208.7 p 212.7 209.6 213.2 208.7 210.2 206.8 205.9 209.6 s1 212.7 209.6 213.2 208.7 p 205.9 209.6 210.2 206.8 205.9 204.0 t1 214.5 204.0 223.1 204.0 223.1 209.6 214.5 209.6 s0 215.5 204.0 215.8 204.9 218.8 206.8 223.1 204.0 s1 215.5 204.0 215.8 204.9 p 223.1 204.0 218.8 206.8 223.1 209.6 t1 215.7 208.7 216.3 209.6 223.1 209.6 218.8 206.8 s1 215.7 208.7 216.3 209.6 p 215.7 208.7 215.8 204.9 218.8 206.8 t1 215.7 208.7 215.8 204.9 p 223.1 204.0 231.6 204.0 231.6 209.6 223.1 209.6 s1 228.9 205.8 227.7 204.0 231.6 204.0 t2 228.9 205.8 227.7 204.0 p 231.6 208.0 228.9 205.8 231.6 204.0 t2 231.6 208.0 228.9 205.8 p 231.6 204.0 240.2 204.0 240.2 209.6 231.6 209.6 s1 231.6 204.0 235.9 206.8 240.2 204.0 t2 237.8 208.0 240.2 208.0 240.2 204.0 235.9 206.8 s2 237.8 208.0 240.2 208.0 p 237.8 208.0 234.0 208.0 235.9 206.8 t2 237.8 208.0 234.0 208.0 p 231.6 208.0 234.0 208.0 235.9 206.8 231.6 204.0 s2 231.6 208.0 234.0 208.0 p 240.2 204.0 248.8 204.0 248.8 209.6 240.2 209.6 s1 244.1 204.0 242.9 205.8 240.2 204.0 t2 244.1 204.0 242.9 205.8 p 242.9 205.8 240.2 208.0 240.2 204.0 t2 242.9 205.8 240.2 208.0 p 248.8 204.0 257.4 204.0 257.4 209.6 248.8 209.6 s0 256.1 204.9 256.4 204.0 248.8 204.0 253.1 206.8 s1 256.1 204.9 256.4 204.0 p 256.1 204.9 256.1 208.7 253.1 206.8 t1 256.1 204.9 256.1 208.7 p 255.6 209.6 256.1 208.7 253.1 206.8 248.8 209.6 s1 255.6 209.6 256.1 208.7 p 248.8 209.6 253.1 206.8 248.8 204.0 t1 257.4 204.0 265.9 204.0 265.9 209.6 257.4 209.6 s0 258.4 204.0 258.7 204.9 261.7 206.8 265.9 204.0 s1 258.4 204.0 258.7 204.9 p 265.9 204.0 261.7 206.8 265.9 209.6 t1 258.6 208.7 259.2 209.6 265.9 209.6 261.7 206.8 s1 258.6 208.7 259.2 209.6 p 258.6 208.7 258.7 204.9 261.7 206.8 t1 258.6 208.7 258.7 204.9 p 265.9 204.0 274.5 204.0 274.5 209.6 265.9 209.6 s1 271.8 205.8 270.6 204.0 274.5 204.0 t2 271.8 205.8 270.6 204.0 p 274.5 208.0 271.8 205.8 274.5 204.0 t2 274.5 208.0 271.8 205.8 p 274.5 204.0 283.1 204.0 283.1 209.6 274.5 209.6 s1 274.5 204.0 278.8 206.8 283.1 204.0 t2 280.7 208.0 283.1 208.0 283.1 204.0 278.8 206.8 s2 280.7 208.0 283.1 208.0 p 280.7 208.0 276.9 208.0 278.8 206.8 t2 280.7 208.0 276.9 208.0 p 274.5 208.0 276.9 208.0 278.8 206.8 274.5 204.0 s2 274.5 208.0 276.9 208.0 p 283.1 204.0 291.7 204.0 291.7 209.6 283.1 209.6 s1 287.0 204.0 285.8 205.8 283.1 204.0 t2 287.0 204.0 285.8 205.8 p 285.8 205.8 283.1 208.0 283.1 204.0 t2 285.8 205.8 283.1 208.0 p 291.7 204.0 300.3 204.0 300.3 209.6 291.7 209.6 s0 299.0 204.9 299.3 204.0 291.7 204.0 296.0 206.8 s1 299.0 204.9 299.3 204.0 p 299.0 204.9 299.0 208.7 296.0 206.8 t1 299.0 204.9 299.0 208.7 p 298.5 209.6 299.0 208.7 296.0 206.8 291.7 209.6 s1 298.5 209.6 299.0 208.7 p 291.7 209.6 296.0 206.8 291.7 204.0 t1 0.0 198.5 8.6 198.5 8.6 204.0 0.0 204.0 s0 0.0 198.5 4.3 201.3 8.6 198.5 t1 8.6 198.5 4.3 201.3 8.6 204.0 t1 0.7 203.6 1.0 204.0 8.6 204.0 4.3 201.3 s1 0.7 203.6 1.0 204.0 p 0.0 199.1 0.7 203.6 4.3 201.3 0.0 198.5 s1 0.0 199.1 0.7 203.6 p 8.6 198.5 17.2 198.5 17.2 204.0 8.6 204.0 s1 10.7 198.5 11.6 200.5 12.9 201.3 17.2 198.5 s2 10.7 198.5 11.6 200.5 p 17.2 198.5 12.9 201.3 17.2 204.0 t2 12.2 201.7 13.3 204.0 17.2 204.0 12.9 201.3 s2 12.2 201.7 13.3 204.0 p 12.2 201.7 11.6 200.5 12.9 201.3 t2 12.2 201.7 11.6 200.5 p 17.2 198.5 25.7 198.5 25.7 204.0 17.2 204.0 s2 25.7 198.5 34.3 198.5 34.3 204.0 25.7 204.0 s1 31.3 200.5 32.2 198.5 25.7 198.5 30.0 201.3 s2 31.3 200.5 32.2 198.5 p 31.3 200.5 30.7 201.7 30.0 201.3 t2 31.3 200.5 30.7 201.7 p 29.6 204.0 30.7 201.7 30.0 201.3 25.7 204.0 s2 29.6 204.0 30.7 201.7 p 25.7 204.0 30.0 201.3 25.7 198.5 t2 34.3 198.5 42.9 198.5 42.9 204.0 34.3 204.0 s0 34.3 198.5 38.6 201.3 42.9 198.5 t1 42.2 203.6 42.9 199.1 42.9 198.5 38.6 201.3 s1 42.2 203.6 42.9 199.1 p 41.9 204.0 42.2 203.6 38.6 201.3 34.3 204.0 s1 41.9 204.0 42.2 203.6 p 34.3 204.0 38.6 201.3 34.3 198.5 t1 42.9 198.5 51.5 198.5 51.5 204.0 42.9 204.0 s0 42.9 198.5 47.2 201.3 51.5 198.5 t1 51.5 198.5 47.2 201.3 51.5 204.0 t1 43.6 203.6 43.9 204.0 51.5 204.0 47.2 201.3 s1 43.6 203.6 43.9 204.0 p 42.9 199.1 43.6 203.6 47.2 201.3 42.9 198.5 s1 42.9 199.1 43.6 203.6 p 51.5 198.5 60.1 198.5 60.1 204.0 51.5 204.0 s1 53.6 198.5 54.5 200.5 55.8 201.3 60.1 198.5 s2 53.6 198.5 54.5 200.5 p 60.1 198.5 55.8 201.3 60.1 204.0 t2 55.1 201.7 56.2 204.0 60.1 204.0 55.8 201.3 s2 55.1 201.7 56.2 204.0 p 55.1 201.7 54.5 200.5 55.8 201.3 t2 55.1 201.7 54.5 200.5 p 60.1 198.5 68.6 198.5 68.6 204.0 60.1 204.0 s2 68.6 198.5 77.2 198.5 77.2 204.0 68.6 204.0 s1 74.2 200.5 75.1 198.5 68.6 198.5 72.9 201.3 s2 74.2 200.5 75.1 198.5 p 74.2 200.5 73.6 201.7 72.9 201.3 t2 74.2 200.5 73.6 201.7 p 72.5 204.0 73.6 201.7 72.9 201.3 68.6 204.0 s2 72.5 204.0 73.6 201.7 p 68.6 204.0 72.9 201.3 68.6 198.5 t2 77.2 198.5 85.8 198.5 85.8 204.0 77.2 204.0 s0 77.2 198.5 81.5 201.3 85.8 198.5 t1 85.1 203.6 85.8 199.1 85.8 198.5 81.5 201.3 s1 85.1 203.6 85.8 199.1 p 84.8 204.0 85.1 203.6 81.5 201.3 77.2 204.0 s1 84.8 204.0 85.1 203.6 p 77.2 204.0 81.5 201.3 77.2 198.5 t1 85.8 198.5 94.4 198.5 94.4 204.0 85.8 204.0 s0 85.8 198.5 90.1 201.3 94.4 198.5 t1 94.4 198.5 90.1 201.3 94.4 204.0 t1 86.5 203.6 86.8 204.0 94.4 204.0 90.1 201.3 s1 86.5 203.6 86.8 204.0 p 85.8 199.1 86.5 203.6 90.1 201.3 85.8 198.5 s1 85.8 199.1 86.5 203.6 p 94.4 198.5 102.9 198.5 102.9 204.0 94.4 204.0 s1 96.5 198.5 97.4 200.5 98.7 201.3 102.9 198.5 s2 96.5 198.5 97.4 200.5 p 102.9 198.5 98.7 201.3 102.9 204.0 t2 98.0 201.7 99.0 204.0 102.9 204.0 98.7 201.3 s2 98.0 201.7 99.0 204.0 p 98.0 201.7 97.4 200.5 98.7 201.3 t2 98.0 201.7 97.4 200.5 p 102.9 198.5 111.5 198.5 111.5 204.0 102.9 204.0 s2 111.5 198.5 120.1 198.5 120.1 204.0 111.5 204.0 s1 117.1 200.5 118.0 198.5 111.5 198.5 115.8 201.3 s2 117.1 200.5 118.0 198.5 p 117.1 200.5 116.5 201.7 115.8 201.3 t2 117.1 200.5 116.5 201.7 p 115.4 204.0 116.5 201.7 115.8 201.3 111.5 204.0 s2 115.4 204.0 116.5 201.7 p 111.5 204.0 115.8 201.3 111.5 198.5 t2 120.1 198.5 128.7 198.5 128.7 204.0 120.1 204.0 s0 120.1 198.5 124.4 201.3 128.7 198.5 t1 128.0 203.6 128.7 199.1 128.7 198.5 124.4 201.3 s1 128.0 203.6 128.7 199.1 p 127.7 204.0 128.0 203.6 124.4 201.3 120.1 204.0 s1 127.7 204.0 128.0 203.6 p 120.1 204.0 124.4 201.3 120.1 198.5 t1 128.7 198.5 137.3 198.5 137.3 204.0 128.7 204.0 s0 128.7 198.5 133.0 201.3 137.3 198.5 t1 137.3 198.5 133.0 201.3 137.3 204.0 t1 129.4 203.6 129.7 204.0 137.3 204.0 133.0 201.3 s1 129.4 203.6 129.7 204.0 p 128.7 199.1 129.4 203.6 133.0 201.3 128.7 198.5 s1 128.7 199.1 129.4 203.6 p 137.3 198.5 145.8 198.5 145.8 204.0 137.3 204.0 s1 139.4 198.5 140.3 200.5 141.6 201.3 145.8 198.5 s2 139.4 198.5 140.3 200.5 p 145.8 198.5 141.6 201.3 145.8 204.0 t2 140.9 201.7 141.9 204.0 145.8 204.0 141.6 201.3 s2 140.9 201.7 141.9 204.0 p 140.9 201.7 140.3 200.5 141.6 201.3 t2 140.9 201.7 140.3 200.5 p 145.8 198.5 154.4 198.5 154.4 204.0 145.8 204.0 s2 154.4 198.5 163.0 198.5 163.0 204.0 154.4 204.0 s1 160.0 200.5 160.9 198.5 154.4 198.5 158.7 201.3 s2 160.0 200.5 160.9 198.5 p 160.0 200.5 159.4 201.7 158.7 201.3 t2 160.0 200.5 159.4 201.7 p 158.3 204.0 159.4 201.7 158.7 201.3 154.4 204.0 s2 158.3 204.0 159.4 201.7 p 154.4 204.0 158.7 201.3 154.4 198.5 t2 163.0 198.5 171.6 198.5 171.6 204.0 163.0 204.0 s0 163.0 198.5 167.3 201.3 171.6 198.5 t1 170.8 203.6 171.6 199.1 171.6 198.5 167.3 201.3 s1 170.8 203.6 171.6 199.1 p 170.6 204.0 170.8 203.6 167.3 201.3 163.0 204.0 s1 170.6 204.0 170.8 203.6 p 163.0 204.0 167.3 201.3 163.0 198.5 t1 171.6 198.5 180.2 198.5 180.2 204.0 171.6 204.0 s0 171.6 198.5 175.9 201.3 180.2 198.5 t1 180.2 198.5 175.9 201.3 180.2 204.0 t1 172.3 203.6 172.6 204.0 180.2 204.0 175.9 201.3 s1 172.3 203.6 172.6 204.0 p 171.6 199.1 172.3 203.6 175.9 201.3 171.6 198.5 s1 171.6 199.1 172.3 203.6 p 180.2 198.5 188.7 198.5 188.7 204.0 180.2 204.0 s1 182.3 198.5 183.2 200.5 184.4 201.3 188.7 198.5 s2 182.3 198.5 183.2 200.5 p 188.7 198.5 184.4 201.3 188.7 204.0 t2 183.8 201.7 184.8 204.0 188.7 204.0 184.4 201.3 s2 183.8 201.7 184.8 204.0 p 183.8 201.7 183.2 200.5 184.4 201.3 t2 183.8 201.7 183.2 200.5 p 188.7 198.5 197.3 198.5 197.3 204.0 188.7 204.0 s2 197.3 198.5 205.9 198.5 205.9 204.0 197.3 204.0 s1 202.9 200.5 203.8 198.5 197.3 198.5 201.6 201.3 s2 202.9 200.5 203.8 198.5 p 202.9 200.5 202.3 201.7 201.6 201.3 t2 202.9 200.5 202.3 201.7 p 201.2 204.0 202.3 201.7 201.6 201.3 197.3 204.0 s2 201.2 204.0 202.3 201.7 p 197.3 204.0 201.6 201.3 197.3 198.5 t2 205.9 198.5 214.5 198.5 214.5 204.0 205.9 204.0 s0 205.9 198.5 210.2 201.3 214.5 198.5 t1 213.7 203.6 214.5 199.1 214.5 198.5 210.2 201.3 s1 213.7 203.6 214.5 199.1 p 213.5 204.0 213.7 203.6 210.2 201.3 205.9 204.0 s1 213.5 204.0 213.7 203.6 p 205.9 204.0 210.2 201.3 205.9 198.5 t1 214.5 198.5 223.1 198.5 223.1 204.0 214.5 204.0 s0 214.5 198.5 218.8 201.3 223.1 198.5 t1 223.1 198.5 218.8 201.3 223.1 204.0 t1 215.2 203.6 215.5 204.0 223.1 204.0 218.8 201.3 s1 215.2 203.6 215.5 204.0 p 214.5 199.1 215.2 203.6 218.8 201.3 214.5 198.5 s1 214.5 199.1 215.2 203.6 p 223.1 198.5 231.6 198.5 231.6 204.0 223.1 204.0 s1 225.2 198.5 226.1 200.5 227.3 201.3 231.6 198.5 s2 225.2 198.5 226.1 200.5 p 231.6 198.5 227.3 201.3 231.6 204.0 t2 226.7 201.7 227.7 204.0 231.6 204.0 227.3 201.3 s2 226.7 201.7 227.7 204.0 p 226.7 201.7 226.1 200.5 227.3 201.3 t2 226.7 201.7 226.1 200.5 p 231.6 198.5 240.2 198.5 240.2 204.0 231.6 204.0 s2 240.2 198.5 248.8 198.5 248.8 204.0 240.2 204.0 s1 245.8 200.5 246.7 198.5 240.2 198.5 244.5 201.3 s2 245.8 200.5 246.7 198.5 p 245.8 200.5 245.1 201.7 244.5 201.3 t2 245.8 200.5 245.1 201.7 p 244.1 204.0 245.1 201.7 244.5 201.3 240.2 204.0 s2 244.1 204.0 245.1 201.7 p 240.2 204.0 244.5 201.3 240.2 198.5 t2 248.8 198.5 257.4 198.5 257.4 204.0 248.8 204.0 s0 248.8 198.5 253.1 201.3 257.4 198.5 t1 256.6 203.6 257.4 199.1 257.4 198.5 253.1 201.3 s1 256.6 203.6 257.4 199.1 p 256.4 204.0 256.6 203.6 253.1 201.3 248.8 204.0 s1 256.4 204.0 256.6 203.6 p 248.8 204.0 253.1 201.3 248.8 198.5 t1 257.4 198.5 265.9 198.5 265.9 204.0 257.4 204.0 s0 257.4 198.5 261.7 201.3 265.9 198.5 t1 265.9 198.5 261.7 201.3 265.9 204.0 t1 258.1 203.6 258.4 204.0 265.9 204.0 261.7 201.3 s1 258.1 203.6 258.4 204.0 p 257.4 199.1 258.1 203.6 261.7 201.3 257.4 198.5 s1 257.4 199.1 258.1 203.6 p 265.9 198.5 274.5 198.5 274.5 204.0 265.9 204.0 s1 268.0 198.5 269.0 200.5 270.2 201.3 274.5 198.5 s2 268.0 198.5 269.0 200.5 p 274.5 198.5 270.2 201.3 274.5 204.0 t2 269.6 201.7 270.6 204.0 274.5 204.0 270.2 201.3 s2 269.6 201.7 270.6 204.0 p 269.6 201.7 269.0 200.5 270.2 201.3 t2 269.6 201.7 269.0 200.5 p 274.5 198.5 283.1 198.5 283.1 204.0 274.5 204.0 s2 283.1 198.5 291.7 198.5 291.7 204.0 283.1 204.0 s1 288.7 200.5 289.6 198.5 283.1 198.5 287.4 201.3 s2 288.7 200.5 289.6 198.5 p 288.7 200.5 288.0 201.7 287.4 201.3 t2 288.7 200.5 288.0 201.7 p 287.0 204.0 288.0 201.7 287.4 201.3 283.1 204.0 s2 287.0 204.0 288.0 201.7 p 283.1 204.0 287.4 201.3 283.1 198.5 t2 291.7 198.5 300.3 198.5 300.3 204.0 291.7 204.0 s0 291.7 198.5 296.0 201.3 300.3 198.5 t1 299.5 203.6 300.3 199.1 300.3 198.5 296.0 201.3 s1 299.5 203.6 300.3 199.1 p 299.3 204.0 299.5 203.6 296.0 201.3 291.7 204.0 s1 299.3 204.0 299.5 203.6 p 291.7 204.0 296.0 201.3 291.7 198.5 t1 0.0 193.0 8.6 193.0 8.6 198.5 0.0 198.5 s1 7.5 193.7 7.1 193.0 8.6 193.0 t2 7.5 193.7 7.1 193.0 p 8.6 195.1 7.5 193.7 8.6 193.0 t2 8.6 195.1 7.5 193.7 p 8.6 193.0 17.2 193.0 17.2 198.5 8.6 198.5 s1 8.6 193.0 12.9 195.8 17.2 193.0 t2 17.2 193.0 12.9 195.8 17.2 198.5 t2 10.7 197.2 10.7 198.5 17.2 198.5 12.9 195.8 s2 10.7 197.2 10.7 198.5 p 8.6 195.1 10.7 197.2 12.9 195.8 8.6 193.0 s2 8.6 195.1 10.7 197.2 p 17.2 193.0 25.7 193.0 25.7 198.5 17.2 198.5 s2 25.7 193.0 34.3 193.0 34.3 198.5 25.7 198.5 s1 25.7 193.0 30.0 195.8 34.3 193.0 t2 32.2 197.2 34.3 195.1 34.3 193.0 30.0 195.8 s2 32.2 197.2 34.3 195.1 p 32.2 198.5 32.2 197.2 30.0 195.8 25.7 198.5 s2 32.2 198.5 32.2 197.2 p 25.7 198.5 30.0 195.8 25.7 193.0 t2 34.3 193.0 42.9 193.0 42.9 198.5 34.3 198.5 s1 35.8 193.0 35.3 193.7 34.3 193.0 t2 35.8 193.0 35.3 193.7 p 35.3 193.7 34.3 195.1 34.3 193.0 t2 35.3 193.7 34.3 195.1 p 42.9 193.0 51.5 193.0 51.5 198.5 42.9 198.5 s1 50.4 193.7 50.0 193.0 51.5 193.0 t2 50.4 193.7 50.0 193.0 p 51.5 195.1 50.4 193.7 51.5 193.0 t2 51.5 195.1 50.4 193.7 p 51.5 193.0 60.1 193.0 60.1 198.5 51.5 198.5 s1 51.5 193.0 55.8 195.8 60.1 193.0 t2 60.1 193.0 55.8 195.8 60.1 198.5 t2 53.6 197.2 53.6 198.5 60.1 198.5 55.8 195.8 s2 53.6 197.2 53.6 198.5 p 51.5 195.1 53.6 197.2 55.8 195.8 51.5 193.0 s2 51.5 195.1 53.6 197.2 p 60.1 193.0 68.6 193.0 68.6 198.5 60.1 198.5 s2 68.6 193.0 77.2 193.0 77.2 198.5 68.6 198.5 s1 68.6 193.0 72.9 195.8 77.2 193.0 t2 75.1 197.2 77.2 195.1 77.2 193.0 72.9 195.8 s2 75.1 197.2 77.2 195.1 p 75.1 198.5 75.1 197.2 72.9 195.8 68.6 198.5 s2 75.1 198.5 75.1 197.2 p 68.6 198.5 72.9 195.8 68.6 193.0 t2 77.2 193.0 85.8 193.0 85.8 198.5 77.2 198.5 s1 78.7 193.0 78.2 193.7 77.2 193.0 t2 78.7 193.0 78.2 193.7 p 78.2 193.7 77.2 195.1 77.2 193.0 t2 78.2 193.7 77.2 195.1 p 85.8 193.0 94.4 193.0 94.4 198.5 85.8 198.5 s1 93.3 193.7 92.9 193.0 94.4 193.0 t2 93.3 193.7 92.9 193.0 p 94.4 195.1 93.3 193.7 94.4 193.0 t2 94.4 195.1 93.3 193.7 p 94.4 193.0 102.9 193.0 102.9 198.5 94.4 198.5 s1 94.4 193.0 98.7 195.8 102.9 193.0 t2 102.9 193.0 98.7 195.8 102.9 198.5 t2 96.5 197.2 96.5 198.5 102.9 198.5 98.7 195.8 s2 96.5 197.2 96.5 198.5 p 94.4 195.1 96.5 197.2 98.7 195.8 94.4 193.0 s2 94.4 195.1 96.5 197.2 p 102.9 193.0 111.5 193.0 111.5 198.5 102.9 198.5 s2 111.5 193.0 120.1 193.0 120.1 198.5 111.5 198.5 s1 111.5 193.0 115.8 195.8 120.1 193.0 t2 118.0 197.2 120.1 195.1 120.1 193.0 115.8 195.8 s2 118.0 197.2 120.1 195.1 p 118.0 198.5 118.0 197.2 115.8 195.8 111.5 198.5 s2 118.0 198.5 118.0 197.2 p 111.5 198.5 115.8 195.8 111.5 193.0 t2 120.1 193.0 128.7 193.0 128.7 198.5 120.1 198.5 s1 121.6 193.0 121.1 193.7 120.1 193.0 t2 121.6 193.0 121.1 193.7 p 121.1 193.7 120.1 195.1 120.1 193.0 t2 121.1 193.7 120.1 195.1 p 128.7 193.0 137.3 193.0 137.3 198.5 128.7 198.5 s1 136.2 193.7 135.8 193.0 137.3 193.0 t2 136.2 193.7 135.8 193.0 p 137.3 195.1 136.2 193.7 137.3 193.0 t2 137.3 195.1 136.2 193.7 p 137.3 193.0 145.8 193.0 145.8 198.5 137.3 198.5 s1 137.3 193.0 141.6 195.8 145.8 193.0 t2 145.8 193.0 141.6 195.8 145.8 198.5 t2 139.4 197.2 139.4 198.5 145.8 198.5 141.6 195.8 s2 139.4 197.2 139.4 198.5 p 137.3 195.1 139.4 197.2 141.6 195.8 137.3 193.0 s2 137.3 195.1 139.4 197.2 p 145.8 193.0 154.4 193.0 154.4 198.5 145.8 198.5 s2 154.4 193.0 163.0 193.0 163.0 198.5 154.4 198.5 s1 154.4 193.0 158.7 195.8 163.0 193.0 t2 160.9 197.2 163.0 195.1 163.0 193.0 158.7 195.8 s2 160.9 197.2 163.0 195.1 p 160.9 198.5 160.9 197.2 158.7 195.8 154.4 198.5 s2 160.9 198.5 160.9 197.2 p 154.4 198.5 158.7 195.8 154.4 193.0 t2 163.0 193.0 171.6 193.0 171.6 198.5 163.0 198.5 s1 164.5 193.0 164.0 193.7 163.0 193.0 t2 164.5 193.0 164.0 193.7 p 164.0 193.7 163.0 195.1 163.0 193.0 t2 164.0 193.7 163.0 195.1 p 171.6 193.0 180.2 193.0 180.2 198.5 171.6 198.5 s1 179.1 193.7 178.7 193.0 180.2 193.0 t2 179.1 193.7 178.7 193.0 p 180.2 195.1 179.1 193.7 180.2 193.0 t2 180.2 195.1 179.1 193.7 p 180.2 193.0 188.7 193.0 188.7 198.5 180.2 198.5 s1 180.2 193.0 184.4 195.8 188.7 193.0 t2 188.7 193.0 184.4 195.8 188.7 198.5 t2 182.3 197.2 182.3 198.5 188.7 198.5 184.4 195.8 s2 182.3 197.2 182.3 198.5 p 180.2 195.1 182.3 197.2 184.4 195.8 180.2 193.0 s2 180.2 195.1 182.3 197.2 p 188.7 193.0 197.3 193.0 197.3 198.5 188.7 198.5 s2 197.3 193.0 205.9 193.0 205.9 198.5 197.3 198.5 s1 197.3 193.0 201.6 195.8 205.9 193.0 t2 203.7 197.2 205.9 195.1 205.9 193.0 201.6 195.8 s2 203.7 197.2 205.9 195.1 p 203.8 198.5 203.7 197.2 201.6 195.8 197.3 198.5 s2 203.8 198.5 203.7 197.2 p 197.3 198.5 201.6 195.8 197.3 193.0 t2 205.9 193.0 214.5 193.0 214.5 198.5 205.9 198.5 s1 207.4 193.0 206.9 193.7 205.9 193.0 t2 207.4 193.0 206.9 193.7 p 206.9 193.7 205.9 195.1 205.9 193.0 t2 206.9 193.7 205.9 195.1 p 214.5 193.0 223.1 193.0 223.1 198.5 214.5 198.5 s1 222.0 193.7 221.6 193.0 223.1 193.0 t2 222.0 193.7 221.6 193.0 p 223.1 195.1 222.0 193.7 223.1 193.0 t2 223.1 195.1 222.0 193.7 p 223.1 193.0 231.6 193.0 231.6 198.5 223.1 198.5 s1 223.1 193.0 227.3 195.8 231.6 193.0 t2 231.6 193.0 227.3 195.8 231.6 198.5 t2 225.2 197.2 225.2 198.5 231.6 198.5 227.3 195.8 s2 225.2 197.2 225.2 198.5 p 223.1 195.1 225.2 197.2 227.3 195.8 223.1 193.0 s2 223.1 195.1 225.2 197.2 p 231.6 193.0 240.2 193.0 240.2 198.5 231.6 198.5 s2 240.2 193.0 248.8 193.0 248.8 198.5 240.2 198.5 s1 240.2 193.0 244.5 195.8 248.8 193.0 t2 246.6 197.2 248.8 195.1 248.8 193.0 244.5 195.8 s2 246.6 197.2 248.8 195.1 p 246.7 198.5 246.6 197.2 244.5 195.8 240.2 198.5 s2 246.7 198.5 246.6 197.2 p 240.2 198.5 244.5 195.8 240.2 193.0 t2 248.8 193.0 257.4 193.0 257.4 198.5 248.8 198.5 s1 250.3 193.0 249.8 193.7 248.8 193.0 t2 250.3 193.0 249.8 193.7 p 249.8 193.7 248.8 195.1 248.8 193.0 t2 249.8 193.7 248.8 195.1 p 257.4 193.0 265.9 193.0 265.9 198.5 257.4 198.5 s1 264.9 193.7 264.5 193.0 265.9 193.0 t2 264.9 193.7 264.5 193.0 p 265.9 195.1 264.9 193.7 265.9 193.0 t2 265.9 195.1 264.9 193.7 p 265.9 193.0 274.5 193.0 274.5 198.5 265.9 198.5 s1 265.9 193.0 270.2 195.8 274.5 193.0 t2 274.5 193.0 270.2 195.8 274.5 198.5 t2 268.1 197.2 268.0 198.5 274.5 198.5 270.2 195.8 s2 268.1 197.2 268.0 198.5 p 265.9 195.1 268.1 197.2 270.2 195.8 265.9 193.0 s2 265.9 195.1 268.1 197.2 p 274.5 193.0 283.1 193.0 283.1 198.5 274.5 198.5 s2 283.1 193.0 291.7 193.0 291.7 198.5 283.1 198.5 s1 283.1 193.0 287.4 195.8 291.7 193.0 t2 289.5 197.2 291.7 195.1 291.7 193.0 287.4 195.8 s2 289.5 197.2 291.7 195.1 p 289.6 198.5 289.5 197.2 287.4 195.8 283.1 198.5 s2 289.6 198.5 289.5 197.2 p 283.1 198.5 287.4 195.8 283.1 193.0 t2 291.7 193.0 300.3 193.0 300.3 198.5 291.7 198.5 s1 293.2 193.0 292.7 193.7 291.7 193.0 t2 293.2 193.0 292.7 193.7 p 292.7 193.7 291.7 195.1 291.7 193.0 t2 292.7 193.7 291.7 195.1 p 0.0 187.5 8.6 187.5 8.6 193.0 0.0 193.0 s1 7.4 188.3 7.0 187.5 8.6 187.5 t2 7.4 188.3 7.0 187.5 p 7.4 188.3 6.8 191.9 8.6 193.0 8.6 187.5 s2 7.4 188.3 6.8 191.9 p 7.1 193.0 6.8 191.9 8.6 193.0 t2 7.1 193.0 6.8 191.9 p 8.6 187.5 17.2 187.5 17.2 193.0 8.6 193.0 s1 13.5 189.8 10.3 187.5 8.6 187.5 12.9 190.3 s2 13.5 189.8 10.3 187.5 p 17.2 190.3 13.5 189.8 12.9 190.3 17.2 193.0 s2 17.2 190.3 13.5 189.8 p 17.2 193.0 12.9 190.3 8.6 193.0 t2 8.6 193.0 12.9 190.3 8.6 187.5 t2 17.2 187.5 25.7 187.5 25.7 193.0 17.2 193.0 s1 21.5 190.3 25.7 190.3 25.7 193.0 t2 21.5 190.3 25.7 190.3 p 21.5 190.3 21.4 190.3 17.2 193.0 25.7 193.0 s2 21.5 190.3 21.4 190.3 p 17.2 190.3 21.4 190.3 17.2 193.0 t2 17.2 190.3 21.4 190.3 p 25.7 187.5 34.3 187.5 34.3 193.0 25.7 193.0 s1 32.6 187.5 29.4 189.8 30.0 190.3 34.3 187.5 s2 32.6 187.5 29.4 189.8 p 34.3 187.5 30.0 190.3 34.3 193.0 t2 34.3 193.0 30.0 190.3 25.7 193.0 t2 29.4 189.8 25.7 190.3 25.7 193.0 30.0 190.3 s2 29.4 189.8 25.7 190.3 p 34.3 187.5 42.9 187.5 42.9 193.0 34.3 193.0 s1 35.9 187.5 35.5 188.3 34.3 187.5 t2 35.9 187.5 35.5 188.3 p 36.1 191.9 35.8 193.0 34.3 193.0 t2 36.1 191.9 35.8 193.0 p 36.1 191.9 35.5 188.3 34.3 187.5 34.3 193.0 s2 36.1 191.9 35.5 188.3 p 42.9 187.5 51.5 187.5 51.5 193.0 42.9 193.0 s1 50.3 188.3 49.9 187.5 51.5 187.5 t2 50.3 188.3 49.9 187.5 p 50.3 188.3 49.7 191.9 51.5 193.0 51.5 187.5 s2 50.3 188.3 49.7 191.9 p 50.0 193.0 49.7 191.9 51.5 193.0 t2 50.0 193.0 49.7 191.9 p 51.5 187.5 60.1 187.5 60.1 193.0 51.5 193.0 s1 56.4 189.8 53.2 187.5 51.5 187.5 55.8 190.3 s2 56.4 189.8 53.2 187.5 p 60.1 190.3 56.4 189.8 55.8 190.3 60.1 193.0 s2 60.1 190.3 56.4 189.8 p 60.1 193.0 55.8 190.3 51.5 193.0 t2 51.5 193.0 55.8 190.3 51.5 187.5 t2 60.1 187.5 68.6 187.5 68.6 193.0 60.1 193.0 s1 64.4 190.3 68.6 190.3 68.6 193.0 t2 64.4 190.3 68.6 190.3 p 64.4 190.3 64.3 190.3 60.1 193.0 68.6 193.0 s2 64.4 190.3 64.3 190.3 p 60.1 190.3 64.3 190.3 60.1 193.0 t2 60.1 190.3 64.3 190.3 p 68.6 187.5 77.2 187.5 77.2 193.0 68.6 193.0 s1 75.5 187.5 72.3 189.8 72.9 190.3 77.2 187.5 s2 75.5 187.5 72.3 189.8 p 77.2 187.5 72.9 190.3 77.2 193.0 t2 77.2 193.0 72.9 190.3 68.6 193.0 t2 72.3 189.8 68.6 190.3 68.6 193.0 72.9 190.3 s2 72.3 189.8 68.6 190.3 p 77.2 187.5 85.8 187.5 85.8 193.0 77.2 193.0 s1 78.8 187.5 78.4 188.3 77.2 187.5 t2 78.8 187.5 78.4 188.3 p 79.0 191.9 78.7 193.0 77.2 193.0 t2 79.0 191.9 78.7 193.0 p 79.0 191.9 78.4 188.3 77.2 187.5 77.2 193.0 s2 79.0 191.9 78.4 188.3 p 85.8 187.5 94.4 187.5 94.4 193.0 85.8 193.0 s1 93.1 188.3 92.8 187.5 94.4 187.5 t2 93.1 188.3 92.8 187.5 p 93.1 188.3 92.6 191.9 94.4 193.0 94.4 187.5 s2 93.1 188.3 92.6 191.9 p 92.9 193.0 92.6 191.9 94.4 193.0 t2 92.9 193.0 92.6 191.9 p 94.4 187.5 102.9 187.5 102.9 193.0 94.4 193.0 s1 99.3 189.8 96.1 187.5 94.4 187.5 98.7 190.3 s2 99.3 189.8 96.1 187.5 p 102.9 190.3 99.3 189.8 98.7 190.3 102.9 193.0 s2 102.9 190.3 99.3 189.8 p 102.9 193.0 98.7 190.3 94.4 193.0 t2 94.4 193.0 98.7 190.3 94.4 187.5 t2 102.9 187.5 111.5 187.5 111.5 193.0 102.9 193.0 s1 107.3 190.3 111.5 190.3 111.5 193.0 t2 107.3 190.3 111.5 190.3 p 107.3 190.3 107.2 190.3 102.9 193.0 111.5 193.0 s2 107.3 190.3 107.2 190.3 p 102.9 190.3 107.2 190.3 102.9 193.0 t2 102.9 190.3 107.2 190.3 p 111.5 187.5 120.1 187.5 120.1 193.0 111.5 193.0 s1 118.4 187.5 115.2 189.8 115.8 190.3 120.1 187.5 s2 118.4 187.5 115.2 189.8 p 120.1 187.5 115.8 190.3 120.1 193.0 t2 120.1 193.0 115.8 190.3 111.5 193.0 t2 115.2 189.8 111.5 190.3 111.5 193.0 115.8 190.3 s2 115.2 189.8 111.5 190.3 p 120.1 187.5 128.7 187.5 128.7 193.0 120.1 193.0 s1 121.7 187.5 121.3 188.3 120.1 187.5 t2 121.7 187.5 121.3 188.3 p 121.9 191.9 121.6 193.0 120.1 193.0 t2 121.9 191.9 121.6 193.0 p 121.9 191.9 121.3 188.3 120.1 187.5 120.1 193.0 s2 121.9 191.9 121.3 188.3 p 128.7 187.5 137.3 187.5 137.3 193.0 128.7 193.0 s1 136.0 188.3 135.6 187.5 137.3 187.5 t2 136.0 188.3 135.6 187.5 p 136.0 188.3 135.5 191.9 137.3 193.0 137.3 187.5 s2 136.0 188.3 135.5 191.9 p 135.8 193.0 135.5 191.9 137.3 193.0 t2 135.8 193.0 135.5 191.9 p 137.3 187.5 145.8 187.5 145.8 193.0 137.3 193.0 s1 142.2 189.8 139.0 187.5 137.3 187.5 141.6 190.3 s2 142.2 189.8 139.0 187.5 p 145.8 190.3 142.2 189.8 141.6 190.3 145.8 193.0 s2 145.8 190.3 142.2 189.8 p 145.8 193.0 141.6 190.3 137.3 193.0 t2 137.3 193.0 141.6 190.3 137.3 187.5 t2 145.8 187.5 154.4 187.5 154.4 193.0 145.8 193.0 s1 150.2 190.3 154.4 190.3 154.4 193.0 t2 150.2 190.3 154.4 190.3 p 150.2 190.3 150.1 190.3 145.8 193.0 154.4 193.0 s2 150.2 190.3 150.1 190.3 p 145.8 190.3 150.1 190.3 145.8 193.0 t2 145.8 190.3 150.1 190.3 p 154.4 187.5 163.0 187.5 163.0 193.0 154.4 193.0 s1 161.3 187.5 158.1 189.8 158.7 190.3 163.0 187.5 s2 161.3 187.5 158.1 189.8 p 163.0 187.5 158.7 190.3 163.0 193.0 t2 163.0 193.0 158.7 190.3 154.4 193.0 t2 158.1 189.8 154.4 190.3 154.4 193.0 158.7 190.3 s2 158.1 189.8 154.4 190.3 p 163.0 187.5 171.6 187.5 171.6 193.0 163.0 193.0 s1 164.6 187.5 164.2 188.3 163.0 187.5 t2 164.6 187.5 164.2 188.3 p 164.8 191.9 164.5 193.0 163.0 193.0 t2 164.8 191.9 164.5 193.0 p 164.8 191.9 164.2 188.3 163.0 187.5 163.0 193.0 s2 164.8 191.9 164.2 188.3 p 171.6 187.5 180.2 187.5 180.2 193.0 171.6 193.0 s1 178.9 188.3 178.5 187.5 180.2 187.5 t2 178.9 188.3 178.5 187.5 p 178.9 188.3 178.4 191.9 180.2 193.0 180.2 187.5 s2 178.9 188.3 178.4 191.9 p 178.7 193.0 178.4 191.9 180.2 193.0 t2 178.7 193.0 178.4 191.9 p 180.2 187.5 188.7 187.5 188.7 193.0 180.2 193.0 s1 185.1 189.8 181.9 187.5 180.2 187.5 184.4 190.3 s2 185.1 189.8 181.9 187.5 p 188.7 190.3 185.1 189.8 184.4 190.3 188.7 193.0 s2 188.7 190.3 185.1 189.8 p 188.7 193.0 184.4 190.3 180.2 193.0 t2 180.2 193.0 184.4 190.3 180.2 187.5 t2 188.7 187.5 197.3 187.5 197.3 193.0 188.7 193.0 s1 193.1 190.3 197.3 190.3 197.3 193.0 t2 193.1 190.3 197.3 190.3 p 193.1 190.3 193.0 190.3 188.7 193.0 197.3 193.0 s2 193.1 190.3 193.0 190.3 p 188.7 190.3 193.0 190.3 188.7 193.0 t2 188.7 190.3 193.0 190.3 p 197.3 187.5 205.9 187.5 205.9 193.0 197.3 193.0 s1 204.1 187.5 201.0 189.8 201.6 190.3 205.9 187.5 s2 204.1 187.5 201.0 189.8 p 205.9 187.5 201.6 190.3 205.9 193.0 t2 205.9 193.0 201.6 190.3 197.3 193.0 t2 201.0 189.8 197.3 190.3 197.3 193.0 201.6 190.3 s2 201.0 189.8 197.3 190.3 p 205.9 187.5 214.5 187.5 214.5 193.0 205.9 193.0 s1 207.5 187.5 207.1 188.3 205.9 187.5 t2 207.5 187.5 207.1 188.3 p 207.7 191.9 207.4 193.0 205.9 193.0 t2 207.7 191.9 207.4 193.0 p 207.7 191.9 207.1 188.3 205.9 187.5 205.9 193.0 s2 207.7 191.9 207.1 188.3 p 214.5 187.5 223.1 187.5 223.1 193.0 214.5 193.0 s1 221.8 188.3 221.4 187.5 223.1 187.5 t2 221.8 188.3 221.4 187.5 p 221.8 188.3 221.3 191.9 223.1 193.0 223.1 187.5 s2 221.8 188.3 221.3 191.9 p 221.6 193.0 221.3 191.9 223.1 193.0 t2 221.6 193.0 221.3 191.9 p 223.1 187.5 231.6 187.5 231.6 193.0 223.1 193.0 s1 228.0 189.8 224.8 187.5 223.1 187.5 227.3 190.3 s2 228.0 189.8 224.8 187.5 p 231.6 190.3 228.0 189.8 227.3 190.3 231.6 193.0 s2 231.6 190.3 228.0 189.8 p 231.6 193.0 227.3 190.3 223.1 193.0 t2 223.1 193.0 227.3 190.3 223.1 187.5 t2 231.6 187.5 240.2 187.5 240.2 193.0 231.6 193.0 s1 235.9 190.3 240.2 190.3 240.2 193.0 t2 235.9 190.3 240.2 190.3 p 235.9 190.3 235.9 190.3 231.6 193.0 240.2 193.0 s2 235.9 190.3 235.9 190.3 p 231.6 190.3 235.9 190.3 231.6 193.0 t2 231.6 190.3 235.9 190.3 p 240.2 187.5 248.8 187.5 248.8 193.0 240.2 193.0 s1 247.0 187.5 243.9 189.8 244.5 190.3 248.8 187.5 s2 247.0 187.5 243.9 189.8 p 248.8 187.5 244.5 190.3 248.8 193.0 t2 248.8 193.0 244.5 190.3 240.2 193.0 t2 243.9 189.8 240.2 190.3 240.2 193.0 244.5 190.3 s2 243.9 189.8 240.2 190.3 p 248.8 187.5 257.4 187.5 257.4 193.0 248.8 193.0 s1 250.4 187.5 250.0 188.3 248.8 187.5 t2 250.4 187.5 250.0 188.3 p 250.6 191.9 250.3 193.0 248.8 193.0 t2 250.6 191.9 250.3 193.0 p 250.6 191.9 250.0 188.3 248.8 187.5 248.8 193.0 s2 250.6 191.9 250.0 188.3 p 257.4 187.5 265.9 187.5 265.9 193.0 257.4 193.0 s1 264.7 188.3 264.3 187.5 265.9 187.5 t2 264.7 188.3 264.3 187.5 p 264.7 188.3 264.2 191.9 265.9 193.0 265.9 187.5 s2 264.7 188.3 264.2 191.9 p 264.5 193.0 264.2 191.9 265.9 193.0 t2 264.5 193.0 264.2 191.9 p 265.9 187.5 274.5 187.5 274.5 193.0 265.9 193.0 s1 270.9 189.8 267.7 187.5 265.9 187.5 270.2 190.3 s2 270.9 189.8 267.7 187.5 p 274.5 190.3 270.9 189.8 270.2 190.3 274.5 193.0 s2 274.5 190.3 270.9 189.8 p 274.5 193.0 270.2 190.3 265.9 193.0 t2 265.9 193.0 270.2 190.3 265.9 187.5 t2 274.5 187.5 283.1 187.5 283.1 193.0 274.5 193.0 s1 278.8 190.3 283.1 190.3 283.1 193.0 t2 278.8 190.3 283.1 190.3 p 278.8 190.3 278.8 190.3 274.5 193.0 283.1 193.0 s2 278.8 190.3 278.8 190.3 p 274.5 190.3 278.8 190.3 274.5 193.0 t2 274.5 190.3 278.8 190.3 p 283.1 187.5 291.7 187.5 291.7 193.0 283.1 193.0 s1 289.9 187.5 286.8 189.8 287.4 190.3 291.7 187.5 s2 289.9 187.5 286.8 189.8 p 291.7 187.5 287.4 190.3 291.7 193.0 t2 291.7 193.0 287.4 190.3 283.1 193.0 t2 286.8 189.8 283.1 190.3 283.1 193.0 287.4 190.3 s2 286.8 189.8 283.1 190.3 p 291.7 187.5 300.3 187.5 300.3 193.0 291.7 193.0 s1 293.3 187.5 292.9 188.3 291.7 187.5 t2 293.3 187.5 292.9 188.3 p 293.5 191.9 293.2 193.0 291.7 193.0 t2 293.5 191.9 293.2 193.0 p 293.5 191.9 292.9 188.3 291.7 187.5 291.7 193.0 s2 293.5 191.9 292.9 188.3 p 0.0 182.0 8.6 182.0 8.6 187.5 0.0 187.5 s1 7.7 187.0 8.6 186.8 8.6 187.5 t2 7.7 187.0 8.6 186.8 p 7.0 187.5 7.7 187.0 8.6 187.5 t2 7.0 187.5 7.7 187.0 p 8.6 182.0 17.2 182.0 17.2 187.5 8.6 187.5 s1 9.3 187.0 10.3 187.5 8.6 187.5 t2 9.3 187.0 10.3 187.5 p 8.6 186.8 9.3 187.0 8.6 187.5 t2 8.6 186.8 9.3 187.0 p 17.2 182.0 25.7 182.0 25.7 187.5 17.2 187.5 s1 25.7 182.0 34.3 182.0 34.3 187.5 25.7 187.5 s1 33.6 187.0 34.3 186.8 34.3 187.5 t2 33.6 187.0 34.3 186.8 p 32.6 187.5 33.6 187.0 34.3 187.5 t2 32.6 187.5 33.6 187.0 p 34.3 182.0 42.9 182.0 42.9 187.5 34.3 187.5 s1 35.1 187.0 35.9 187.5 34.3 187.5 t2 35.1 187.0 35.9 187.5 p 34.3 186.8 35.1 187.0 34.3 187.5 t2 34.3 186.8 35.1 187.0 p 42.9 182.0 51.5 182.0 51.5 187.5 42.9 187.5 s1 50.6 187.0 51.5 186.8 51.5 187.5 t2 50.6 187.0 51.5 186.8 p 49.9 187.5 50.6 187.0 51.5 187.5 t2 49.9 187.5 50.6 187.0 p 51.5 182.0 60.1 182.0 60.1 187.5 51.5 187.5 s1 52.2 187.0 53.2 187.5 51.5 187.5 t2 52.2 187.0 53.2 187.5 p 51.5 186.8 52.2 187.0 51.5 187.5 t2 51.5 186.8 52.2 187.0 p 60.1 182.0 68.6 182.0 68.6 187.5 60.1 187.5 s1 68.6 182.0 77.2 182.0 77.2 187.5 68.6 187.5 s1 76.5 187.0 77.2 186.8 77.2 187.5 t2 76.5 187.0 77.2 186.8 p 75.5 187.5 76.5 187.0 77.2 187.5 t2 75.5 187.5 76.5 187.0 p 77.2 182.0 85.8 182.0 85.8 187.5 77.2 187.5 s1 78.0 187.0 78.8 187.5 77.2 187.5 t2 78.0 187.0 78.8 187.5 p 77.2 186.8 78.0 187.0 77.2 187.5 t2 77.2 186.8 78.0 187.0 p 85.8 182.0 94.4 182.0 94.4 187.5 85.8 187.5 s1 93.5 187.0 94.4 186.8 94.4 187.5 t2 93.5 187.0 94.4 186.8 p 92.8 187.5 93.5 187.0 94.4 187.5 t2 92.8 187.5 93.5 187.0 p 94.4 182.0 102.9 182.0 102.9 187.5 94.4 187.5 s1 95.1 187.0 96.1 187.5 94.4 187.5 t2 95.1 187.0 96.1 187.5 p 94.4 186.8 95.1 187.0 94.4 187.5 t2 94.4 186.8 95.1 187.0 p 102.9 182.0 111.5 182.0 111.5 187.5 102.9 187.5 s1 111.5 182.0 120.1 182.0 120.1 187.5 111.5 187.5 s1 119.4 187.0 120.1 186.8 120.1 187.5 t2 119.4 187.0 120.1 186.8 p 118.4 187.5 119.4 187.0 120.1 187.5 t2 118.4 187.5 119.4 187.0 p 120.1 182.0 128.7 182.0 128.7 187.5 120.1 187.5 s1 120.9 187.0 121.7 187.5 120.1 187.5 t2 120.9 187.0 121.7 187.5 p 120.1 186.8 120.9 187.0 120.1 187.5 t2 120.1 186.8 120.9 187.0 p 128.7 182.0 137.3 182.0 137.3 187.5 128.7 187.5 s1 136.4 187.0 137.3 186.8 137.3 187.5 t2 136.4 187.0 137.3 186.8 p 135.6 187.5 136.4 187.0 137.3 187.5 t2 135.6 187.5 136.4 187.0 p 137.3 182.0 145.8 182.0 145.8 187.5 137.3 187.5 s1 138.0 187.0 139.0 187.5 137.3 187.5 t2 138.0 187.0 139.0 187.5 p 137.3 186.8 138.0 187.0 137.3 187.5 t2 137.3 186.8 138.0 187.0 p 145.8 182.0 154.4 182.0 154.4 187.5 145.8 187.5 s1 154.4 182.0 163.0 182.0 163.0 187.5 154.4 187.5 s1 162.3 187.0 163.0 186.8 163.0 187.5 t2 162.3 187.0 163.0 186.8 p 161.3 187.5 162.3 187.0 163.0 187.5 t2 161.3 187.5 162.3 187.0 p 163.0 182.0 171.6 182.0 171.6 187.5 163.0 187.5 s1 163.8 187.0 164.6 187.5 163.0 187.5 t2 163.8 187.0 164.6 187.5 p 163.0 186.8 163.8 187.0 163.0 187.5 t2 163.0 186.8 163.8 187.0 p 171.6 182.0 180.2 182.0 180.2 187.5 171.6 187.5 s1 179.3 187.0 180.2 186.8 180.2 187.5 t2 179.3 187.0 180.2 186.8 p 178.5 187.5 179.3 187.0 180.2 187.5 t2 178.5 187.5 179.3 187.0 p 180.2 182.0 188.7 182.0 188.7 187.5 180.2 187.5 s1 180.9 187.0 181.9 187.5 180.2 187.5 t2 180.9 187.0 181.9 187.5 p 180.2 186.8 180.9 187.0 180.2 187.5 t2 180.2 186.8 180.9 187.0 p 188.7 182.0 197.3 182.0 197.3 187.5 188.7 187.5 s1 197.3 182.0 205.9 182.0 205.9 187.5 197.3 187.5 s1 205.1 187.0 205.9 186.8 205.9 187.5 t2 205.1 187.0 205.9 186.8 p 204.1 187.5 205.1 187.0 205.9 187.5 t2 204.1 187.5 205.1 187.0 p 205.9 182.0 214.5 182.0 214.5 187.5 205.9 187.5 s1 206.7 187.0 207.5 187.5 205.9 187.5 t2 206.7 187.0 207.5 187.5 p 205.9 186.8 206.7 187.0 205.9 187.5 t2 205.9 186.8 206.7 187.0 p 214.5 182.0 223.1 182.0 223.1 187.5 214.5 187.5 s1 222.2 187.0 223.1 186.8 223.1 187.5 t2 222.2 187.0 223.1 186.8 p 221.4 187.5 222.2 187.0 223.1 187.5 t2 221.4 187.5 222.2 187.0 p 223.1 182.0 231.6 182.0 231.6 187.5 223.1 187.5 s1 223.8 187.0 224.8 187.5 223.1 187.5 t2 223.8 187.0 224.8 187.5 p 223.1 186.8 223.8 187.0 223.1 187.5 t2 223.1 186.8 223.8 187.0 p 231.6 182.0 240.2 182.0 240.2 187.5 231.6 187.5 s1 240.2 182.0 248.8 182.0 248.8 187.5 240.2 187.5 s1 248.0 187.0 248.8 186.8 248.8 187.5 t2 248.0 187.0 248.8 186.8 p 247.0 187.5 248.0 187.0 248.8 187.5 t2 247.0 187.5 248.0 187.0 p 248.8 182.0 257.4 182.0 257.4 187.5 248.8 187.5 s1 249.6 187.0 250.4 187.5 248.8 187.5 t2 249.6 187.0 250.4 187.5 p 248.8 186.8 249.6 187.0 248.8 187.5 t2 248.8 186.8 249.6 187.0 p 257.4 182.0 265.9 182.0 265.9 187.5 257.4 187.5 s1 265.1 187.0 265.9 186.8 265.9 187.5 t2 265.1 187.0 265.9 186.8 p 264.3 187.5 265.1 187.0 265.9 187.5 t2 264.3 187.5 265.1 187.0 p 265.9 182.0 274.5 182.0 274.5 187.5 265.9 187.5 s1 266.7 187.0 267.7 187.5 265.9 187.5 t2 266.7 187.0 267.7 187.5 p 265.9 186.8 266.7 187.0 265.9 187.5 t2 265.9 186.8 266.7 187.0 p 274.5 182.0 283.1 182.0 283.1 187.5 274.5 187.5 s1 283.1 182.0 291.7 182.0 291.7 187.5 283.1 187.5 s1 290.9 187.0 291.7 186.8 291.7 187.5 t2 290.9 187.0 291.7 186.8 p 289.9 187.5 290.9 187.0 291.7 187.5 t2 289.9 187.5 290.9 187.0 p 291.7 182.0 300.3 182.0 300.3 187.5 291.7 187.5 s1 292.5 187.0 293.3 187.5 291.7 187.5 t2 292.5 187.0 293.3 187.5 p 291.7 186.8 292.5 187.0 291.7 187.5 t2 291.7 186.8 292.5 187.0 p 0.0 176.5 8.6 176.5 8.6 182.0 0.0 182.0 s1 8.6 176.5 17.2 176.5 17.2 182.0 8.6 182.0 s1 17.2 176.5 25.7 176.5 25.7 182.0 17.2 182.0 s1 25.7 176.5 34.3 176.5 34.3 182.0 25.7 182.0 s1 34.3 176.5 42.9 176.5 42.9 182.0 34.3 182.0 s1 42.9 176.5 51.5 176.5 51.5 182.0 42.9 182.0 s1 51.5 176.5 60.1 176.5 60.1 182.0 51.5 182.0 s1 60.1 176.5 68.6 176.5 68.6 182.0 60.1 182.0 s1 68.6 176.5 77.2 176.5 77.2 182.0 68.6 182.0 s1 77.2 176.5 85.8 176.5 85.8 182.0 77.2 182.0 s1 85.8 176.5 94.4 176.5 94.4 182.0 85.8 182.0 s1 94.4 176.5 102.9 176.5 102.9 182.0 94.4 182.0 s1 102.9 176.5 111.5 176.5 111.5 182.0 102.9 182.0 s1 111.5 176.5 120.1 176.5 120.1 182.0 111.5 182.0 s1 120.1 176.5 128.7 176.5 128.7 182.0 120.1 182.0 s1 128.7 176.5 137.3 176.5 137.3 182.0 128.7 182.0 s1 137.3 176.5 145.8 176.5 145.8 182.0 137.3 182.0 s1 145.8 176.5 154.4 176.5 154.4 182.0 145.8 182.0 s1 154.4 176.5 163.0 176.5 163.0 182.0 154.4 182.0 s1 163.0 176.5 171.6 176.5 171.6 182.0 163.0 182.0 s1 171.6 176.5 180.2 176.5 180.2 182.0 171.6 182.0 s1 180.2 176.5 188.7 176.5 188.7 182.0 180.2 182.0 s1 188.7 176.5 197.3 176.5 197.3 182.0 188.7 182.0 s1 197.3 176.5 205.9 176.5 205.9 182.0 197.3 182.0 s1 205.9 176.5 214.5 176.5 214.5 182.0 205.9 182.0 s1 214.5 176.5 223.1 176.5 223.1 182.0 214.5 182.0 s1 223.1 176.5 231.6 176.5 231.6 182.0 223.1 182.0 s1 231.6 176.5 240.2 176.5 240.2 182.0 231.6 182.0 s1 240.2 176.5 248.8 176.5 248.8 182.0 240.2 182.0 s1 248.8 176.5 257.4 176.5 257.4 182.0 248.8 182.0 s1 257.4 176.5 265.9 176.5 265.9 182.0 257.4 182.0 s1 265.9 176.5 274.5 176.5 274.5 182.0 265.9 182.0 s1 274.5 176.5 283.1 176.5 283.1 182.0 274.5 182.0 s1 283.1 176.5 291.7 176.5 291.7 182.0 283.1 182.0 s1 291.7 176.5 300.3 176.5 300.3 182.0 291.7 182.0 s1 0.0 171.0 8.6 171.0 8.6 176.5 0.0 176.5 s0 2.6 172.7 6.7 172.2 4.3 173.7 t1 2.6 172.7 6.7 172.2 p 8.6 172.0 6.7 172.2 4.3 173.7 8.6 176.5 s1 8.6 172.0 6.7 172.2 p 8.6 176.5 4.3 173.7 0.0 176.5 t1 2.6 172.7 0.0 172.9 0.0 176.5 4.3 173.7 s1 2.6 172.7 0.0 172.9 p 8.6 171.0 17.2 171.0 17.2 176.5 8.6 176.5 s0 10.4 172.1 16.4 171.5 12.9 173.7 t1 10.4 172.1 16.4 171.5 p 17.2 171.6 16.4 171.5 12.9 173.7 17.2 176.5 s1 17.2 171.6 16.4 171.5 p 17.2 176.5 12.9 173.7 8.6 176.5 t1 10.4 172.1 8.6 172.0 8.6 176.5 12.9 173.7 s1 10.4 172.1 8.6 172.0 p 17.2 171.0 25.7 171.0 25.7 176.5 17.2 176.5 s0 18.1 171.6 24.8 171.6 21.4 173.7 t1 18.1 171.6 24.8 171.6 p 25.7 171.6 24.8 171.6 21.4 173.7 25.7 176.5 s1 25.7 171.6 24.8 171.6 p 25.7 176.5 21.4 173.7 17.2 176.5 t1 18.1 171.6 17.2 171.6 17.2 176.5 21.4 173.7 s1 18.1 171.6 17.2 171.6 p 25.7 171.0 34.3 171.0 34.3 176.5 25.7 176.5 s0 26.5 171.5 32.5 172.1 30.0 173.7 t1 26.5 171.5 32.5 172.1 p 34.3 172.0 32.5 172.1 30.0 173.7 34.3 176.5 s1 34.3 172.0 32.5 172.1 p 34.3 176.5 30.0 173.7 25.7 176.5 t1 26.5 171.5 25.7 171.6 25.7 176.5 30.0 173.7 s1 26.5 171.5 25.7 171.6 p 34.3 171.0 42.9 171.0 42.9 176.5 34.3 176.5 s0 36.2 172.2 40.2 172.7 38.6 173.7 t1 36.2 172.2 40.2 172.7 p 42.9 172.9 40.2 172.7 38.6 173.7 42.9 176.5 s1 42.9 172.9 40.2 172.7 p 42.9 176.5 38.6 173.7 34.3 176.5 t1 36.2 172.2 34.3 172.0 34.3 176.5 38.6 173.7 s1 36.2 172.2 34.3 172.0 p 42.9 171.0 51.5 171.0 51.5 176.5 42.9 176.5 s0 45.5 172.7 49.6 172.2 47.2 173.7 t1 45.5 172.7 49.6 172.2 p 51.5 172.0 49.6 172.2 47.2 173.7 51.5 176.5 s1 51.5 172.0 49.6 172.2 p 51.5 176.5 47.2 173.7 42.9 176.5 t1 45.5 172.7 42.9 172.9 42.9 176.5 47.2 173.7 s1 45.5 172.7 42.9 172.9 p 51.5 171.0 60.1 171.0 60.1 176.5 51.5 176.5 s0 53.3 172.1 59.3 171.5 55.8 173.7 t1 53.3 172.1 59.3 171.5 p 60.1 171.6 59.3 171.5 55.8 173.7 60.1 176.5 s1 60.1 171.6 59.3 171.5 p 60.1 176.5 55.8 173.7 51.5 176.5 t1 53.3 172.1 51.5 172.0 51.5 176.5 55.8 173.7 s1 53.3 172.1 51.5 172.0 p 60.1 171.0 68.6 171.0 68.6 176.5 60.1 176.5 s0 61.0 171.6 67.7 171.6 64.3 173.7 t1 61.0 171.6 67.7 171.6 p 68.6 171.6 67.7 171.6 64.3 173.7 68.6 176.5 s1 68.6 171.6 67.7 171.6 p 68.6 176.5 64.3 173.7 60.1 176.5 t1 61.0 171.6 60.1 171.6 60.1 176.5 64.3 173.7 s1 61.0 171.6 60.1 171.6 p 68.6 171.0 77.2 171.0 77.2 176.5 68.6 176.5 s0 69.4 171.5 75.4 172.1 72.9 173.7 t1 69.4 171.5 75.4 172.1 p 77.2 172.0 75.4 172.1 72.9 173.7 77.2 176.5 s1 77.2 172.0 75.4 172.1 p 77.2 176.5 72.9 173.7 68.6 176.5 t1 69.4 171.5 68.6 171.6 68.6 176.5 72.9 173.7 s1 69.4 171.5 68.6 171.6 p 77.2 171.0 85.8 171.0 85.8 176.5 77.2 176.5 s0 79.1 172.2 83.1 172.7 81.5 173.7 t1 79.1 172.2 83.1 172.7 p 85.8 172.9 83.1 172.7 81.5 173.7 85.8 176.5 s1 85.8 172.9 83.1 172.7 p 85.8 176.5 81.5 173.7 77.2 176.5 t1 79.1 172.2 77.2 172.0 77.2 176.5 81.5 173.7 s1 79.1 172.2 77.2 172.0 p 85.8 171.0 94.4 171.0 94.4 176.5 85.8 176.5 s0 88.4 172.7 92.5 172.2 90.1 173.7 t1 88.4 172.7 92.5 172.2 p 94.4 172.0 92.5 172.2 90.1 173.7 94.4 176.5 s1 94.4 172.0 92.5 172.2 p 94.4 176.5 90.1 173.7 85.8 176.5 t1 88.4 172.7 85.8 172.9 85.8 176.5 90.1 173.7 s1 88.4 172.7 85.8 172.9 p 94.4 171.0 102.9 171.0 102.9 176.5 94.4 176.5 s0 96.2 172.1 102.2 171.5 98.7 173.7 t1 96.2 172.1 102.2 171.5 p 102.9 171.6 102.2 171.5 98.7 173.7 102.9 176.5 s1 102.9 171.6 102.2 171.5 p 102.9 176.5 98.7 173.7 94.4 176.5 t1 96.2 172.1 94.4 172.0 94.4 176.5 98.7 173.7 s1 96.2 172.1 94.4 172.0 p 102.9 171.0 111.5 171.0 111.5 176.5 102.9 176.5 s0 103.9 171.6 110.6 171.6 107.2 173.7 t1 103.9 171.6 110.6 171.6 p 111.5 171.6 110.6 171.6 107.2 173.7 111.5 176.5 s1 111.5 171.6 110.6 171.6 p 111.5 176.5 107.2 173.7 102.9 176.5 t1 103.9 171.6 102.9 171.6 102.9 176.5 107.2 173.7 s1 103.9 171.6 102.9 171.6 p 111.5 171.0 120.1 171.0 120.1 176.5 111.5 176.5 s0 112.3 171.5 118.3 172.1 115.8 173.7 t1 112.3 171.5 118.3 172.1 p 120.1 172.0 118.3 172.1 115.8 173.7 120.1 176.5 s1 120.1 172.0 118.3 172.1 p 120.1 176.5 115.8 173.7 111.5 176.5 t1 112.3 171.5 111.5 171.6 111.5 176.5 115.8 173.7 s1 112.3 171.5 111.5 171.6 p 120.1 171.0 128.7 171.0 128.7 176.5 120.1 176.5 s0 122.0 172.2 126.0 172.7 124.4 173.7 t1 122.0 172.2 126.0 172.7 p 128.7 172.9 126.0 172.7 124.4 173.7 128.7 176.5 s1 128.7 172.9 126.0 172.7 p 128.7 176.5 124.4 173.7 120.1 176.5 t1 122.0 172.2 120.1 172.0 120.1 176.5 124.4 173.7 s1 122.0 172.2 120.1 172.0 p 128.7 171.0 137.3 171.0 137.3 176.5 128.7 176.5 s0 131.3 172.7 135.4 172.2 133.0 173.7 t1 131.3 172.7 135.4 172.2 p 137.3 172.0 135.4 172.2 133.0 173.7 137.3 176.5 s1 137.3 172.0 135.4 172.2 p 137.3 176.5 133.0 173.7 128.7 176.5 t1 131.3 172.7 128.7 172.9 128.7 176.5 133.0 173.7 s1 131.3 172.7 128.7 172.9 p 137.3 171.0 145.8 171.0 145.8 176.5 137.3 176.5 s0 139.1 172.1 145.0 171.5 141.6 173.7 t1 139.1 172.1 145.0 171.5 p 145.8 171.6 145.0 171.5 141.6 173.7 145.8 176.5 s1 145.8 171.6 145.0 171.5 p 145.8 176.5 141.6 173.7 137.3 176.5 t1 139.1 172.1 137.3 172.0 137.3 176.5 141.6 173.7 s1 139.1 172.1 137.3 172.0 p 145.8 171.0 154.4 171.0 154.4 176.5 145.8 176.5 s0 146.8 171.6 153.5 171.6 150.1 173.7 t1 146.8 171.6 153.5 171.6 p 154.4 171.6 153.5 171.6 150.1 173.7 154.4 176.5 s1 154.4 171.6 153.5 171.6 p 154.4 176.5 150.1 173.7 145.8 176.5 t1 146.8 171.6 145.8 171.6 145.8 176.5 150.1 173.7 s1 146.8 171.6 145.8 171.6 p 154.4 171.0 163.0 171.0 163.0 176.5 154.4 176.5 s0 155.2 171.5 161.2 172.1 158.7 173.7 t1 155.2 171.5 161.2 172.1 p 163.0 172.0 161.2 172.1 158.7 173.7 163.0 176.5 s1 163.0 172.0 161.2 172.1 p 163.0 176.5 158.7 173.7 154.4 176.5 t1 155.2 171.5 154.4 171.6 154.4 176.5 158.7 173.7 s1 155.2 171.5 154.4 171.6 p 163.0 171.0 171.6 171.0 171.6 176.5 163.0 176.5 s0 164.9 172.2 168.9 172.7 167.3 173.7 t1 164.9 172.2 168.9 172.7 p 171.6 172.9 168.9 172.7 167.3 173.7 171.6 176.5 s1 171.6 172.9 168.9 172.7 p 171.6 176.5 167.3 173.7 163.0 176.5 t1 164.9 172.2 163.0 172.0 163.0 176.5 167.3 173.7 s1 164.9 172.2 163.0 172.0 p 171.6 171.0 180.2 171.0 180.2 176.5 171.6 176.5 s0 174.2 172.7 178.3 172.2 175.9 173.7 t1 174.2 172.7 178.3 172.2 p 180.2 172.0 178.3 172.2 175.9 173.7 180.2 176.5 s1 180.2 172.0 178.3 172.2 p 180.2 176.5 175.9 173.7 171.6 176.5 t1 174.2 172.7 171.6 172.9 171.6 176.5 175.9 173.7 s1 174.2 172.7 171.6 172.9 p 180.2 171.0 188.7 171.0 188.7 176.5 180.2 176.5 s0 181.9 172.1 187.9 171.5 184.4 173.7 t1 181.9 172.1 187.9 171.5 p 188.7 171.6 187.9 171.5 184.4 173.7 188.7 176.5 s1 188.7 171.6 187.9 171.5 p 188.7 176.5 184.4 173.7 180.2 176.5 t1 181.9 172.1 180.2 172.0 180.2 176.5 184.4 173.7 s1 181.9 172.1 180.2 172.0 p 188.7 171.0 197.3 171.0 197.3 176.5 188.7 176.5 s0 189.7 171.6 196.4 171.6 193.0 173.7 t1 189.7 171.6 196.4 171.6 p 197.3 171.6 196.4 171.6 193.0 173.7 197.3 176.5 s1 197.3 171.6 196.4 171.6 p 197.3 176.5 193.0 173.7 188.7 176.5 t1 189.7 171.6 188.7 171.6 188.7 176.5 193.0 173.7 s1 189.7 171.6 188.7 171.6 p 197.3 171.0 205.9 171.0 205.9 176.5 197.3 176.5 s0 198.1 171.5 204.1 172.1 201.6 173.7 t1 198.1 171.5 204.1 172.1 p 205.9 172.0 204.1 172.1 201.6 173.7 205.9 176.5 s1 205.9 172.0 204.1 172.1 p 205.9 176.5 201.6 173.7 197.3 176.5 t1 198.1 171.5 197.3 171.6 197.3 176.5 201.6 173.7 s1 198.1 171.5 197.3 171.6 p 205.9 171.0 214.5 171.0 214.5 176.5 205.9 176.5 s0 207.8 172.2 211.8 172.7 210.2 173.7 t1 207.8 172.2 211.8 172.7 p 214.5 172.9 211.8 172.7 210.2 173.7 214.5 176.5 s1 214.5 172.9 211.8 172.7 p 214.5 176.5 210.2 173.7 205.9 176.5 t1 207.8 172.2 205.9 172.0 205.9 176.5 210.2 173.7 s1 207.8 172.2 205.9 172.0 p 214.5 171.0 223.1 171.0 223.1 176.5 214.5 176.5 s0 217.1 172.7 221.2 172.2 218.8 173.7 t1 217.1 172.7 221.2 172.2 p 223.1 172.0 221.2 172.2 218.8 173.7 223.1 176.5 s1 223.1 172.0 221.2 172.2 p 223.1 176.5 218.8 173.7 214.5 176.5 t1 217.1 172.7 214.5 172.9 214.5 176.5 218.8 173.7 s1 217.1 172.7 214.5 172.9 p 223.1 171.0 231.6 171.0 231.6 176.5 223.1 176.5 s0 224.8 172.1 230.8 171.5 227.3 173.7 t1 224.8 172.1 230.8 171.5 p 231.6 171.6 230.8 171.5 227.3 173.7 231.6 176.5 s1 231.6 171.6 230.8 171.5 p 231.6 176.5 227.3 173.7 223.1 176.5 t1 224.8 172.1 223.1 172.0 223.1 176.5 227.3 173.7 s1 224.8 172.1 223.1 172.0 p 231.6 171.0 240.2 171.0 240.2 176.5 231.6 176.5 s0 232.6 171.6 239.3 171.6 235.9 173.7 t1 232.6 171.6 239.3 171.6 p 240.2 171.6 239.3 171.6 235.9 173.7 240.2 176.5 s1 240.2 171.6 239.3 171.6 p 240.2 176.5 235.9 173.7 231.6 176.5 t1 232.6 171.6 231.6 171.6 231.6 176.5 235.9 173.7 s1 232.6 171.6 231.6 171.6 p 240.2 171.0 248.8 171.0 248.8 176.5 240.2 176.5 s0 241.0 171.5 247.0 172.1 244.5 173.7 t1 241.0 171.5 247.0 172.1 p 248.8 172.0 247.0 172.1 244.5 173.7 248.8 176.5 s1 248.8 172.0 247.0 172.1 p 248.8 176.5 244.5 173.7 240.2 176.5 t1 241.0 171.5 240.2 171.6 240.2 176.5 244.5 173.7 s1 241.0 171.5 240.2 171.6 p 248.8 171.0 257.4 171.0 257.4 176.5 248.8 176.5 s0 250.7 172.2 254.7 172.7 253.1 173.7 t1 250.7 172.2 254.7 172.7 p 257.4 172.9 254.7 172.7 253.1 173.7 257.4 176.5 s1 257.4 172.9 254.7 172.7 p 257.4 176.5 253.1 173.7 248.8 176.5 t1 250.7 172.2 248.8 172.0 248.8 176.5 253.1 173.7 s1 250.7 172.2 248.8 172.0 p 257.4 171.0 265.9 171.0 265.9 176.5 257.4 176.5 s0 260.0 172.7 264.1 172.2 261.7 173.7 t1 260.0 172.7 264.1 172.2 p 265.9 172.0 264.1 172.2 261.7 173.7 265.9 176.5 s1 265.9 172.0 264.1 172.2 p 265.9 176.5 261.7 173.7 257.4 176.5 t1 260.0 172.7 257.4 172.9 257.4 176.5 261.7 173.7 s1 260.0 172.7 257.4 172.9 p 265.9 171.0 274.5 171.0 274.5 176.5 265.9 176.5 s0 267.7 172.1 273.7 171.5 270.2 173.7 t1 267.7 172.1 273.7 171.5 p 274.5 171.6 273.7 171.5 270.2 173.7 274.5 176.5 s1 274.5 171.6 273.7 171.5 p 274.5 176.5 270.2 173.7 265.9 176.5 t1 267.7 172.1 265.9 172.0 265.9 176.5 270.2 173.7 s1 267.7 172.1 265.9 172.0 p 274.5 171.0 283.1 171.0 283.1 176.5 274.5 176.5 s0 275.5 171.6 282.2 171.6 278.8 173.7 t1 275.5 171.6 282.2 171.6 p 283.1 171.6 282.2 171.6 278.8 173.7 283.1 176.5 s1 283.1 171.6 282.2 171.6 p 283.1 176.5 278.8 173.7 274.5 176.5 t1 275.5 171.6 274.5 171.6 274.5 176.5 278.8 173.7 s1 275.5 171.6 274.5 171.6 p 283.1 171.0 291.7 171.0 291.7 176.5 283.1 176.5 s0 283.9 171.5 289.9 172.1 287.4 173.7 t1 283.9 171.5 289.9 172.1 p 291.7 172.0 289.9 172.1 287.4 173.7 291.7 176.5 s1 291.7 172.0 289.9 172.1 p 291.7 176.5 287.4 173.7 283.1 176.5 t1 283.9 171.5 283.1 171.6 283.1 176.5 287.4 173.7 s1 283.9 171.5 283.1 171.6 p 291.7 171.0 300.3 171.0 300.3 176.5 291.7 176.5 s0 293.6 172.2 297.6 172.7 296.0 173.7 t1 293.6 172.2 297.6 172.7 p 300.3 172.9 297.6 172.7 296.0 173.7 300.3 176.5 s1 300.3 172.9 297.6 172.7 p 300.3 176.5 296.0 173.7 291.7 176.5 t1 293.6 172.2 291.7 172.0 291.7 176.5 296.0 173.7 s1 293.6 172.2 291.7 172.0 p 0.0 165.4 8.6 165.4 8.6 171.0 0.0 171.0 s0 8.6 165.4 17.2 165.4 17.2 171.0 8.6 171.0 s0 16.2 166.1 16.2 165.4 17.2 165.4 t1 16.2 166.1 16.2 165.4 p 17.2 167.6 16.2 166.1 17.2 165.4 t1 17.2 167.6 16.2 166.1 p 17.2 165.4 25.7 165.4 25.7 171.0 17.2 171.0 s0 20.6 167.6 22.3 167.6 25.7 165.4 17.2 165.4 s1 20.6 167.6 22.3 167.6 p 25.7 167.6 22.3 167.6 25.7 165.4 t1 25.7 167.6 22.3 167.6 p 20.6 167.6 17.2 167.6 17.2 165.4 t1 20.6 167.6 17.2 167.6 p 25.7 165.4 34.3 165.4 34.3 171.0 25.7 171.0 s0 26.7 165.4 26.7 166.1 25.7 165.4 t1 26.7 165.4 26.7 166.1 p 26.7 166.1 25.7 167.6 25.7 165.4 t1 26.7 166.1 25.7 167.6 p 34.3 165.4 42.9 165.4 42.9 171.0 34.3 171.0 s0 42.9 165.4 51.5 165.4 51.5 171.0 42.9 171.0 s0 51.5 165.4 60.1 165.4 60.1 171.0 51.5 171.0 s0 59.1 166.1 59.1 165.4 60.1 165.4 t1 59.1 166.1 59.1 165.4 p 60.1 167.6 59.1 166.1 60.1 165.4 t1 60.1 167.6 59.1 166.1 p 60.1 165.4 68.6 165.4 68.6 171.0 60.1 171.0 s0 63.5 167.6 65.2 167.6 68.6 165.4 60.1 165.4 s1 63.5 167.6 65.2 167.6 p 68.6 167.6 65.2 167.6 68.6 165.4 t1 68.6 167.6 65.2 167.6 p 63.5 167.6 60.1 167.6 60.1 165.4 t1 63.5 167.6 60.1 167.6 p 68.6 165.4 77.2 165.4 77.2 171.0 68.6 171.0 s0 69.6 165.4 69.6 166.1 68.6 165.4 t1 69.6 165.4 69.6 166.1 p 69.6 166.1 68.6 167.6 68.6 165.4 t1 69.6 166.1 68.6 167.6 p 77.2 165.4 85.8 165.4 85.8 171.0 77.2 171.0 s0 85.8 165.4 94.4 165.4 94.4 171.0 85.8 171.0 s0 94.4 165.4 102.9 165.4 102.9 171.0 94.4 171.0 s0 101.9 166.1 102.0 165.4 102.9 165.4 t1 101.9 166.1 102.0 165.4 p 102.9 167.6 101.9 166.1 102.9 165.4 t1 102.9 167.6 101.9 166.1 p 102.9 165.4 111.5 165.4 111.5 171.0 102.9 171.0 s0 106.4 167.6 108.1 167.6 111.5 165.4 102.9 165.4 s1 106.4 167.6 108.1 167.6 p 111.5 167.6 108.1 167.6 111.5 165.4 t1 111.5 167.6 108.1 167.6 p 106.4 167.6 102.9 167.6 102.9 165.4 t1 106.4 167.6 102.9 167.6 p 111.5 165.4 120.1 165.4 120.1 171.0 111.5 171.0 s0 112.5 165.4 112.5 166.1 111.5 165.4 t1 112.5 165.4 112.5 166.1 p 112.5 166.1 111.5 167.6 111.5 165.4 t1 112.5 166.1 111.5 167.6 p 120.1 165.4 128.7 165.4 128.7 171.0 120.1 171.0 s0 128.7 165.4 137.3 165.4 137.3 171.0 128.7 171.0 s0 137.3 165.4 145.8 165.4 145.8 171.0 137.3 171.0 s0 144.8 166.1 144.9 165.4 145.8 165.4 t1 144.8 166.1 144.9 165.4 p 145.8 167.6 144.8 166.1 145.8 165.4 t1 145.8 167.6 144.8 166.1 p 145.8 165.4 154.4 165.4 154.4 171.0 145.8 171.0 s0 149.3 167.6 151.0 167.6 154.4 165.4 145.8 165.4 s1 149.3 167.6 151.0 167.6 p 154.4 167.6 151.0 167.6 154.4 165.4 t1 154.4 167.6 151.0 167.6 p 149.3 167.6 145.8 167.6 145.8 165.4 t1 149.3 167.6 145.8 167.6 p 154.4 165.4 163.0 165.4 163.0 171.0 154.4 171.0 s0 155.4 165.4 155.4 166.1 154.4 165.4 t1 155.4 165.4 155.4 166.1 p 155.4 166.1 154.4 167.6 154.4 165.4 t1 155.4 166.1 154.4 167.6 p 163.0 165.4 171.6 165.4 171.6 171.0 163.0 171.0 s0 171.6 165.4 180.2 165.4 180.2 171.0 171.6 171.0 s0 180.2 165.4 188.7 165.4 188.7 171.0 180.2 171.0 s0 187.7 166.1 187.8 165.4 188.7 165.4 t1 187.7 166.1 187.8 165.4 p 188.7 167.6 187.7 166.1 188.7 165.4 t1 188.7 167.6 187.7 166.1 p 188.7 165.4 197.3 165.4 197.3 171.0 188.7 171.0 s0 192.2 167.6 193.9 167.6 197.3 165.4 188.7 165.4 s1 192.2 167.6 193.9 167.6 p 197.3 167.6 193.9 167.6 197.3 165.4 t1 197.3 167.6 193.9 167.6 p 192.2 167.6 188.7 167.6 188.7 165.4 t1 192.2 167.6 188.7 167.6 p 197.3 165.4 205.9 165.4 205.9 171.0 197.3 171.0 s0 198.3 165.4 198.3 166.1 197.3 165.4 t1 198.3 165.4 198.3 166.1 p 198.3 166.1 197.3 167.6 197.3 165.4 t1 198.3 166.1 197.3 167.6 p 205.9 165.4 214.5 165.4 214.5 171.0 205.9 171.0 s0 214.5 165.4 223.1 165.4 223.1 171.0 214.5 171.0 s0 223.1 165.4 231.6 165.4 231.6 171.0 223.1 171.0 s0 230.6 166.1 230.7 165.4 231.6 165.4 t1 230.6 166.1 230.7 165.4 p 231.6 167.6 230.6 166.1 231.6 165.4 t1 231.6 167.6 230.6 166.1 p 231.6 165.4 240.2 165.4 240.2 171.0 231.6 171.0 s0 235.0 167.6 236.8 167.6 240.2 165.4 231.6 165.4 s1 235.0 167.6 236.8 167.6 p 240.2 167.6 236.8 167.6 240.2 165.4 t1 240.2 167.6 236.8 167.6 p 235.0 167.6 231.6 167.6 231.6 165.4 t1 235.0 167.6 231.6 167.6 p 240.2 165.4 248.8 165.4 248.8 171.0 240.2 171.0 s0 241.2 165.4 241.2 166.1 240.2 165.4 t1 241.2 165.4 241.2 166.1 p 241.2 166.1 240.2 167.6 240.2 165.4 t1 241.2 166.1 240.2 167.6 p 248.8 165.4 257.4 165.4 257.4 171.0 248.8 171.0 s0 257.4 165.4 265.9 165.4 265.9 171.0 257.4 171.0 s0 265.9 165.4 274.5 165.4 274.5 171.0 265.9 171.0 s0 273.5 166.1 273.6 165.4 274.5 165.4 t1 273.5 166.1 273.6 165.4 p 274.5 167.6 273.5 166.1 274.5 165.4 t1 274.5 167.6 273.5 166.1 p 274.5 165.4 283.1 165.4 283.1 171.0 274.5 171.0 s0 277.9 167.6 279.7 167.6 283.1 165.4 274.5 165.4 s1 277.9 167.6 279.7 167.6 p 283.1 167.6 279.7 167.6 283.1 165.4 t1 283.1 167.6 279.7 167.6 p 277.9 167.6 274.5 167.6 274.5 165.4 t1 277.9 167.6 274.5 167.6 p 283.1 165.4 291.7 165.4 291.7 171.0 283.1 171.0 s0 284.1 165.4 284.1 166.1 283.1 165.4 t1 284.1 165.4 284.1 166.1 p 284.1 166.1 283.1 167.6 283.1 165.4 t1 284.1 166.1 283.1 167.6 p 291.7 165.4 300.3 165.4 300.3 171.0 291.7 171.0 s0 0.0 159.9 8.6 159.9 8.6 165.4 0.0 165.4 s0 8.6 159.9 17.2 159.9 17.2 165.4 8.6 165.4 s0 9.4 159.9 10.5 161.1 12.9 162.7 17.2 159.9 s1 9.4 159.9 10.5 161.1 p 17.2 159.9 12.9 162.7 17.2 165.4 t1 11.7 163.4 16.2 165.4 17.2 165.4 12.9 162.7 s1 11.7 163.4 16.2 165.4 p 11.7 163.4 10.5 161.1 12.9 162.7 t1 11.7 163.4 10.5 161.1 p 17.2 159.9 25.7 159.9 25.7 165.4 17.2 165.4 s1 25.7 159.9 34.3 159.9 34.3 165.4 25.7 165.4 s0 32.4 161.1 33.5 159.9 25.7 159.9 30.0 162.7 s1 32.4 161.1 33.5 159.9 p 32.4 161.1 31.2 163.4 30.0 162.7 t1 32.4 161.1 31.2 163.4 p 26.7 165.4 31.2 163.4 30.0 162.7 25.7 165.4 s1 26.7 165.4 31.2 163.4 p 25.7 165.4 30.0 162.7 25.7 159.9 t1 34.3 159.9 42.9 159.9 42.9 165.4 34.3 165.4 s0 42.9 159.9 51.5 159.9 51.5 165.4 42.9 165.4 s0 51.5 159.9 60.1 159.9 60.1 165.4 51.5 165.4 s0 52.3 159.9 53.4 161.1 55.8 162.7 60.1 159.9 s1 52.3 159.9 53.4 161.1 p 60.1 159.9 55.8 162.7 60.1 165.4 t1 54.6 163.4 59.1 165.4 60.1 165.4 55.8 162.7 s1 54.6 163.4 59.1 165.4 p 54.6 163.4 53.4 161.1 55.8 162.7 t1 54.6 163.4 53.4 161.1 p 60.1 159.9 68.6 159.9 68.6 165.4 60.1 165.4 s1 68.6 159.9 77.2 159.9 77.2 165.4 68.6 165.4 s0 75.3 161.1 76.4 159.9 68.6 159.9 72.9 162.7 s1 75.3 161.1 76.4 159.9 p 75.3 161.1 74.1 163.4 72.9 162.7 t1 75.3 161.1 74.1 163.4 p 69.6 165.4 74.1 163.4 72.9 162.7 68.6 165.4 s1 69.6 165.4 74.1 163.4 p 68.6 165.4 72.9 162.7 68.6 159.9 t1 77.2 159.9 85.8 159.9 85.8 165.4 77.2 165.4 s0 85.8 159.9 94.4 159.9 94.4 165.4 85.8 165.4 s0 94.4 159.9 102.9 159.9 102.9 165.4 94.4 165.4 s0 95.2 159.9 96.3 161.1 98.7 162.7 102.9 159.9 s1 95.2 159.9 96.3 161.1 p 102.9 159.9 98.7 162.7 102.9 165.4 t1 97.5 163.4 102.0 165.4 102.9 165.4 98.7 162.7 s1 97.5 163.4 102.0 165.4 p 97.5 163.4 96.3 161.1 98.7 162.7 t1 97.5 163.4 96.3 161.1 p 102.9 159.9 111.5 159.9 111.5 165.4 102.9 165.4 s1 111.5 159.9 120.1 159.9 120.1 165.4 111.5 165.4 s0 118.2 161.1 119.3 159.9 111.5 159.9 115.8 162.7 s1 118.2 161.1 119.3 159.9 p 118.2 161.1 117.0 163.4 115.8 162.7 t1 118.2 161.1 117.0 163.4 p 112.5 165.4 117.0 163.4 115.8 162.7 111.5 165.4 s1 112.5 165.4 117.0 163.4 p 111.5 165.4 115.8 162.7 111.5 159.9 t1 120.1 159.9 128.7 159.9 128.7 165.4 120.1 165.4 s0 128.7 159.9 137.3 159.9 137.3 165.4 128.7 165.4 s0 137.3 159.9 145.8 159.9 145.8 165.4 137.3 165.4 s0 138.1 159.9 139.1 161.1 141.6 162.7 145.8 159.9 s1 138.1 159.9 139.1 161.1 p 145.8 159.9 141.6 162.7 145.8 165.4 t1 140.4 163.4 144.9 165.4 145.8 165.4 141.6 162.7 s1 140.4 163.4 144.9 165.4 p 140.4 163.4 139.1 161.1 141.6 162.7 t1 140.4 163.4 139.1 161.1 p 145.8 159.9 154.4 159.9 154.4 165.4 145.8 165.4 s1 154.4 159.9 163.0 159.9 163.0 165.4 154.4 165.4 s0 161.1 161.1 162.2 159.9 154.4 159.9 158.7 162.7 s1 161.1 161.1 162.2 159.9 p 161.1 161.1 159.8 163.4 158.7 162.7 t1 161.1 161.1 159.8 163.4 p 155.4 165.4 159.8 163.4 158.7 162.7 154.4 165.4 s1 155.4 165.4 159.8 163.4 p 154.4 165.4 158.7 162.7 154.4 159.9 t1 163.0 159.9 171.6 159.9 171.6 165.4 163.0 165.4 s0 171.6 159.9 180.2 159.9 180.2 165.4 171.6 165.4 s0 180.2 159.9 188.7 159.9 188.7 165.4 180.2 165.4 s0 181.0 159.9 182.0 161.1 184.4 162.7 188.7 159.9 s1 181.0 159.9 182.0 161.1 p 188.7 159.9 184.4 162.7 188.7 165.4 t1 183.3 163.4 187.8 165.4 188.7 165.4 184.4 162.7 s1 183.3 163.4 187.8 165.4 p 183.3 163.4 182.0 161.1 184.4 162.7 t1 183.3 163.4 182.0 161.1 p 188.7 159.9 197.3 159.9 197.3 165.4 188.7 165.4 s1 197.3 159.9 205.9 159.9 205.9 165.4 197.3 165.4 s0 204.0 161.1 205.1 159.9 197.3 159.9 201.6 162.7 s1 204.0 161.1 205.1 159.9 p 204.0 161.1 202.7 163.4 201.6 162.7 t1 204.0 161.1 202.7 163.4 p 198.3 165.4 202.7 163.4 201.6 162.7 197.3 165.4 s1 198.3 165.4 202.7 163.4 p 197.3 165.4 201.6 162.7 197.3 159.9 t1 205.9 159.9 214.5 159.9 214.5 165.4 205.9 165.4 s0 214.5 159.9 223.1 159.9 223.1 165.4 214.5 165.4 s0 223.1 159.9 231.6 159.9 231.6 165.4 223.1 165.4 s0 223.9 159.9 224.9 161.1 227.3 162.7 231.6 159.9 s1 223.9 159.9 224.9 161.1 p 231.6 159.9 227.3 162.7 231.6 165.4 t1 226.2 163.4 230.7 165.4 231.6 165.4 227.3 162.7 s1 226.2 163.4 230.7 165.4 p 226.2 163.4 224.9 161.1 227.3 162.7 t1 226.2 163.4 224.9 161.1 p 231.6 159.9 240.2 159.9 240.2 165.4 231.6 165.4 s1 240.2 159.9 248.8 159.9 248.8 165.4 240.2 165.4 s0 246.9 161.1 247.9 159.9 240.2 159.9 244.5 162.7 s1 246.9 161.1 247.9 159.9 p 246.9 161.1 245.6 163.4 244.5 162.7 t1 246.9 161.1 245.6 163.4 p 241.2 165.4 245.6 163.4 244.5 162.7 240.2 165.4 s1 241.2 165.4 245.6 163.4 p 240.2 165.4 244.5 162.7 240.2 159.9 t1 248.8 159.9 257.4 159.9 257.4 165.4 248.8 165.4 s0 257.4 159.9 265.9 159.9 265.9 165.4 257.4 165.4 s0 265.9 159.9 274.5 159.9 274.5 165.4 265.9 165.4 s0 266.8 159.9 267.8 161.1 270.2 162.7 274.5 159.9 s1 266.8 159.9 267.8 161.1 p 274.5 159.9 270.2 162.7 274.5 165.4 t1 269.1 163.4 273.6 165.4 274.5 165.4 270.2 162.7 s1 269.1 163.4 273.6 165.4 p 269.1 163.4 267.8 161.1 270.2 162.7 t1 269.1 163.4 267.8 161.1 p 274.5 159.9 283.1 159.9 283.1 165.4 274.5 165.4 s1 283.1 159.9 291.7 159.9 291.7 165.4 283.1 165.4 s0 289.8 161.1 290.8 159.9 283.1 159.9 287.4 162.7 s1 289.8 161.1 290.8 159.9 p 289.8 161.1 288.5 163.4 287.4 162.7 t1 289.8 161.1 288.5 163.4 p 284.1 165.4 288.5 163.4 287.4 162.7 283.1 165.4 s1 284.1 165.4 288.5 163.4 p 283.1 165.4 287.4 162.7 283.1 159.9 t1 291.7 159.9 300.3 159.9 300.3 165.4 291.7 165.4 s0 0.0 154.4 8.6 154.4 8.6 159.9 0.0 159.9 s0 5.1 156.6 4.1 154.4 8.6 154.4 t1 5.1 156.6 4.1 154.4 p 8.6 159.2 5.1 156.6 8.6 154.4 t1 8.6 159.2 5.1 156.6 p 8.6 154.4 17.2 154.4 17.2 159.9 8.6 159.9 s0 8.6 154.4 12.9 157.2 17.2 154.4 t1 17.2 154.4 12.9 157.2 17.2 159.9 t1 8.9 159.7 9.4 159.9 17.2 159.9 12.9 157.2 s1 8.9 159.7 9.4 159.9 p 8.6 159.2 8.9 159.7 12.9 157.2 8.6 154.4 s1 8.6 159.2 8.9 159.7 p 17.2 154.4 25.7 154.4 25.7 159.9 17.2 159.9 s1 25.7 154.4 34.3 154.4 34.3 159.9 25.7 159.9 s0 25.7 154.4 30.0 157.2 34.3 154.4 t1 34.0 159.7 34.3 159.2 34.3 154.4 30.0 157.2 s1 34.0 159.7 34.3 159.2 p 33.5 159.9 34.0 159.7 30.0 157.2 25.7 159.9 s1 33.5 159.9 34.0 159.7 p 25.7 159.9 30.0 157.2 25.7 154.4 t1 34.3 154.4 42.9 154.4 42.9 159.9 34.3 159.9 s0 38.8 154.4 37.8 156.6 34.3 154.4 t1 38.8 154.4 37.8 156.6 p 37.8 156.6 34.3 159.2 34.3 154.4 t1 37.8 156.6 34.3 159.2 p 42.9 154.4 51.5 154.4 51.5 159.9 42.9 159.9 s0 48.0 156.6 47.0 154.4 51.5 154.4 t1 48.0 156.6 47.0 154.4 p 51.5 159.2 48.0 156.6 51.5 154.4 t1 51.5 159.2 48.0 156.6 p 51.5 154.4 60.1 154.4 60.1 159.9 51.5 159.9 s0 51.5 154.4 55.8 157.2 60.1 154.4 t1 60.1 154.4 55.8 157.2 60.1 159.9 t1 51.8 159.7 52.3 159.9 60.1 159.9 55.8 157.2 s1 51.8 159.7 52.3 159.9 p 51.5 159.2 51.8 159.7 55.8 157.2 51.5 154.4 s1 51.5 159.2 51.8 159.7 p 60.1 154.4 68.6 154.4 68.6 159.9 60.1 159.9 s1 68.6 154.4 77.2 154.4 77.2 159.9 68.6 159.9 s0 68.6 154.4 72.9 157.2 77.2 154.4 t1 76.9 159.7 77.2 159.2 77.2 154.4 72.9 157.2 s1 76.9 159.7 77.2 159.2 p 76.4 159.9 76.9 159.7 72.9 157.2 68.6 159.9 s1 76.4 159.9 76.9 159.7 p 68.6 159.9 72.9 157.2 68.6 154.4 t1 77.2 154.4 85.8 154.4 85.8 159.9 77.2 159.9 s0 81.7 154.4 80.6 156.6 77.2 154.4 t1 81.7 154.4 80.6 156.6 p 80.6 156.6 77.2 159.2 77.2 154.4 t1 80.6 156.6 77.2 159.2 p 85.8 154.4 94.4 154.4 94.4 159.9 85.8 159.9 s0 90.9 156.6 89.8 154.4 94.4 154.4 t1 90.9 156.6 89.8 154.4 p 94.4 159.2 90.9 156.6 94.4 154.4 t1 94.4 159.2 90.9 156.6 p 94.4 154.4 102.9 154.4 102.9 159.9 94.4 159.9 s0 94.4 154.4 98.7 157.2 102.9 154.4 t1 102.9 154.4 98.7 157.2 102.9 159.9 t1 94.7 159.7 95.2 159.9 102.9 159.9 98.7 157.2 s1 94.7 159.7 95.2 159.9 p 94.4 159.2 94.7 159.7 98.7 157.2 94.4 154.4 s1 94.4 159.2 94.7 159.7 p 102.9 154.4 111.5 154.4 111.5 159.9 102.9 159.9 s1 111.5 154.4 120.1 154.4 120.1 159.9 111.5 159.9 s0 111.5 154.4 115.8 157.2 120.1 154.4 t1 119.8 159.7 120.1 159.2 120.1 154.4 115.8 157.2 s1 119.8 159.7 120.1 159.2 p 119.3 159.9 119.8 159.7 115.8 157.2 111.5 159.9 s1 119.3 159.9 119.8 159.7 p 111.5 159.9 115.8 157.2 111.5 154.4 t1 120.1 154.4 128.7 154.4 128.7 159.9 120.1 159.9 s0 124.6 154.4 123.5 156.6 120.1 154.4 t1 124.6 154.4 123.5 156.6 p 123.5 156.6 120.1 159.2 120.1 154.4 t1 123.5 156.6 120.1 159.2 p 128.7 154.4 137.3 154.4 137.3 159.9 128.7 159.9 s0 133.8 156.6 132.7 154.4 137.3 154.4 t1 133.8 156.6 132.7 154.4 p 137.3 159.2 133.8 156.6 137.3 154.4 t1 137.3 159.2 133.8 156.6 p 137.3 154.4 145.8 154.4 145.8 159.9 137.3 159.9 s0 137.3 154.4 141.6 157.2 145.8 154.4 t1 145.8 154.4 141.6 157.2 145.8 159.9 t1 137.6 159.7 138.1 159.9 145.8 159.9 141.6 157.2 s1 137.6 159.7 138.1 159.9 p 137.3 159.2 137.6 159.7 141.6 157.2 137.3 154.4 s1 137.3 159.2 137.6 159.7 p 145.8 154.4 154.4 154.4 154.4 159.9 145.8 159.9 s1 154.4 154.4 163.0 154.4 163.0 159.9 154.4 159.9 s0 154.4 154.4 158.7 157.2 163.0 154.4 t1 162.7 159.7 163.0 159.2 163.0 154.4 158.7 157.2 s1 162.7 159.7 163.0 159.2 p 162.2 159.9 162.7 159.7 158.7 157.2 154.4 159.9 s1 162.2 159.9 162.7 159.7 p 154.4 159.9 158.7 157.2 154.4 154.4 t1 163.0 154.4 171.6 154.4 171.6 159.9 163.0 159.9 s0 167.5 154.4 166.4 156.6 163.0 154.4 t1 167.5 154.4 166.4 156.6 p 166.4 156.6 163.0 159.2 163.0 154.4 t1 166.4 156.6 163.0 159.2 p 171.6 154.4 180.2 154.4 180.2 159.9 171.6 159.9 s0 176.7 156.6 175.6 154.4 180.2 154.4 t1 176.7 156.6 175.6 154.4 p 180.2 159.2 176.7 156.6 180.2 154.4 t1 180.2 159.2 176.7 156.6 p 180.2 154.4 188.7 154.4 188.7 159.9 180.2 159.9 s0 180.2 154.4 184.4 157.2 188.7 154.4 t1 188.7 154.4 184.4 157.2 188.7 159.9 t1 180.5 159.7 181.0 159.9 188.7 159.9 184.4 157.2 s1 180.5 159.7 181.0 159.9 p 180.2 159.2 180.5 159.7 184.4 157.2 180.2 154.4 s1 180.2 159.2 180.5 159.7 p 188.7 154.4 197.3 154.4 197.3 159.9 188.7 159.9 s1 197.3 154.4 205.9 154.4 205.9 159.9 197.3 159.9 s0 197.3 154.4 201.6 157.2 205.9 154.4 t1 205.6 159.7 205.9 159.2 205.9 154.4 201.6 157.2 s1 205.6 159.7 205.9 159.2 p 205.1 159.9 205.6 159.7 201.6 157.2 197.3 159.9 s1 205.1 159.9 205.6 159.7 p 197.3 159.9 201.6 157.2 197.3 154.4 t1 205.9 154.4 214.5 154.4 214.5 159.9 205.9 159.9 s0 210.4 154.4 209.3 156.6 205.9 154.4 t1 210.4 154.4 209.3 156.6 p 209.3 156.6 205.9 159.2 205.9 154.4 t1 209.3 156.6 205.9 159.2 p 214.5 154.4 223.1 154.4 223.1 159.9 214.5 159.9 s0 219.6 156.6 218.5 154.4 223.1 154.4 t1 219.6 156.6 218.5 154.4 p 223.1 159.2 219.6 156.6 223.1 154.4 t1 223.1 159.2 219.6 156.6 p 223.1 154.4 231.6 154.4 231.6 159.9 223.1 159.9 s0 223.1 154.4 227.3 157.2 231.6 154.4 t1 231.6 154.4 227.3 157.2 231.6 159.9 t1 223.4 159.7 223.9 159.9 231.6 159.9 227.3 157.2 s1 223.4 159.7 223.9 159.9 p 223.1 159.2 223.4 159.7 227.3 157.2 223.1 154.4 s1 223.1 159.2 223.4 159.7 p 231.6 154.4 240.2 154.4 240.2 159.9 231.6 159.9 s1 240.2 154.4 248.8 154.4 248.8 159.9 240.2 159.9 s0 240.2 154.4 244.5 157.2 248.8 154.4 t1 248.5 159.7 248.8 159.2 248.8 154.4 244.5 157.2 s1 248.5 159.7 248.8 159.2 p 247.9 159.9 248.5 159.7 244.5 157.2 240.2 159.9 s1 247.9 159.9 248.5 159.7 p 240.2 159.9 244.5 157.2 240.2 154.4 t1 248.8 154.4 257.4 154.4 257.4 159.9 248.8 159.9 s0 253.3 154.4 252.2 156.6 248.8 154.4 t1 253.3 154.4 252.2 156.6 p 252.2 156.6 248.8 159.2 248.8 154.4 t1 252.2 156.6 248.8 159.2 p 257.4 154.4 265.9 154.4 265.9 159.9 257.4 159.9 s0 262.5 156.6 261.4 154.4 265.9 154.4 t1 262.5 156.6 261.4 154.4 p 265.9 159.2 262.5 156.6 265.9 154.4 t1 265.9 159.2 262.5 156.6 p 265.9 154.4 274.5 154.4 274.5 159.9 265.9 159.9 s0 265.9 154.4 270.2 157.2 274.5 154.4 t1 274.5 154.4 270.2 157.2 274.5 159.9 t1 266.3 159.7 266.8 159.9 274.5 159.9 270.2 157.2 s1 266.3 159.7 266.8 159.9 p 265.9 159.2 266.3 159.7 270.2 157.2 265.9 154.4 s1 265.9 159.2 266.3 159.7 p 274.5 154.4 283.1 154.4 283.1 159.9 274.5 159.9 s1 283.1 154.4 291.7 154.4 291.7 159.9 283.1 159.9 s0 283.1 154.4 287.4 157.2 291.7 154.4 t1 291.4 159.7 291.7 159.2 291.7 154.4 287.4 157.2 s1 291.4 159.7 291.7 159.2 p 290.8 159.9 291.4 159.7 287.4 157.2 283.1 159.9 s1 290.8 159.9 291.4 159.7 p 283.1 159.9 287.4 157.2 283.1 154.4 t1 291.7 154.4 300.3 154.4 300.3 159.9 291.7 159.9 s0 296.2 154.4 295.1 156.6 291.7 154.4 t1 296.2 154.4 295.1 156.6 p 295.1 156.6 291.7 159.2 291.7 154.4 t1 295.1 156.6 291.7 159.2 p 0.0 148.9 8.6 148.9 8.6 154.4 0.0 154.4 s0 1.8 148.9 2.5 150.5 4.3 151.7 8.6 148.9 s1 1.8 148.9 2.5 150.5 p 8.6 148.9 4.3 151.7 8.6 154.4 t1 2.5 152.8 4.1 154.4 8.6 154.4 4.3 151.7 s1 2.5 152.8 4.1 154.4 p 2.5 152.8 2.5 150.5 4.3 151.7 t1 2.5 152.8 2.5 150.5 p 8.6 148.9 17.2 148.9 17.2 154.4 8.6 154.4 s1 17.2 148.9 25.7 148.9 25.7 154.4 17.2 154.4 s1 25.7 148.9 34.3 148.9 34.3 154.4 25.7 154.4 s1 34.3 148.9 42.9 148.9 42.9 154.4 34.3 154.4 s0 40.4 150.5 41.1 148.9 34.3 148.9 38.6 151.7 s1 40.4 150.5 41.1 148.9 p 40.4 150.5 40.4 152.8 38.6 151.7 t1 40.4 150.5 40.4 152.8 p 38.8 154.4 40.4 152.8 38.6 151.7 34.3 154.4 s1 38.8 154.4 40.4 152.8 p 34.3 154.4 38.6 151.7 34.3 148.9 t1 42.9 148.9 51.5 148.9 51.5 154.4 42.9 154.4 s0 44.7 148.9 45.4 150.5 47.2 151.7 51.5 148.9 s1 44.7 148.9 45.4 150.5 p 51.5 148.9 47.2 151.7 51.5 154.4 t1 45.4 152.8 47.0 154.4 51.5 154.4 47.2 151.7 s1 45.4 152.8 47.0 154.4 p 45.4 152.8 45.4 150.5 47.2 151.7 t1 45.4 152.8 45.4 150.5 p 51.5 148.9 60.1 148.9 60.1 154.4 51.5 154.4 s1 60.1 148.9 68.6 148.9 68.6 154.4 60.1 154.4 s1 68.6 148.9 77.2 148.9 77.2 154.4 68.6 154.4 s1 77.2 148.9 85.8 148.9 85.8 154.4 77.2 154.4 s0 83.3 150.5 84.0 148.9 77.2 148.9 81.5 151.7 s1 83.3 150.5 84.0 148.9 p 83.3 150.5 83.3 152.8 81.5 151.7 t1 83.3 150.5 83.3 152.8 p 81.7 154.4 83.3 152.8 81.5 151.7 77.2 154.4 s1 81.7 154.4 83.3 152.8 p 77.2 154.4 81.5 151.7 77.2 148.9 t1 85.8 148.9 94.4 148.9 94.4 154.4 85.8 154.4 s0 87.6 148.9 88.3 150.5 90.1 151.7 94.4 148.9 s1 87.6 148.9 88.3 150.5 p 94.4 148.9 90.1 151.7 94.4 154.4 t1 88.3 152.8 89.8 154.4 94.4 154.4 90.1 151.7 s1 88.3 152.8 89.8 154.4 p 88.3 152.8 88.3 150.5 90.1 151.7 t1 88.3 152.8 88.3 150.5 p 94.4 148.9 102.9 148.9 102.9 154.4 94.4 154.4 s1 102.9 148.9 111.5 148.9 111.5 154.4 102.9 154.4 s1 111.5 148.9 120.1 148.9 120.1 154.4 111.5 154.4 s1 120.1 148.9 128.7 148.9 128.7 154.4 120.1 154.4 s0 126.2 150.5 126.9 148.9 120.1 148.9 124.4 151.7 s1 126.2 150.5 126.9 148.9 p 126.2 150.5 126.2 152.8 124.4 151.7 t1 126.2 150.5 126.2 152.8 p 124.6 154.4 126.2 152.8 124.4 151.7 120.1 154.4 s1 124.6 154.4 126.2 152.8 p 120.1 154.4 124.4 151.7 120.1 148.9 t1 128.7 148.9 137.3 148.9 137.3 154.4 128.7 154.4 s0 130.5 148.9 131.2 150.5 133.0 151.7 137.3 148.9 s1 130.5 148.9 131.2 150.5 p 137.3 148.9 133.0 151.7 137.3 154.4 t1 131.2 152.8 132.7 154.4 137.3 154.4 133.0 151.7 s1 131.2 152.8 132.7 154.4 p 131.2 152.8 131.2 150.5 133.0 151.7 t1 131.2 152.8 131.2 150.5 p 137.3 148.9 145.8 148.9 145.8 154.4 137.3 154.4 s1 145.8 148.9 154.4 148.9 154.4 154.4 145.8 154.4 s1 154.4 148.9 163.0 148.9 163.0 154.4 154.4 154.4 s1 163.0 148.9 171.6 148.9 171.6 154.4 163.0 154.4 s0 169.1 150.5 169.8 148.9 163.0 148.9 167.3 151.7 s1 169.1 150.5 169.8 148.9 p 169.1 150.5 169.1 152.8 167.3 151.7 t1 169.1 150.5 169.1 152.8 p 167.5 154.4 169.1 152.8 167.3 151.7 163.0 154.4 s1 167.5 154.4 169.1 152.8 p 163.0 154.4 167.3 151.7 163.0 148.9 t1 171.6 148.9 180.2 148.9 180.2 154.4 171.6 154.4 s0 173.4 148.9 174.1 150.5 175.9 151.7 180.2 148.9 s1 173.4 148.9 174.1 150.5 p 180.2 148.9 175.9 151.7 180.2 154.4 t1 174.1 152.8 175.6 154.4 180.2 154.4 175.9 151.7 s1 174.1 152.8 175.6 154.4 p 174.1 152.8 174.1 150.5 175.9 151.7 t1 174.1 152.8 174.1 150.5 p 180.2 148.9 188.7 148.9 188.7 154.4 180.2 154.4 s1 188.7 148.9 197.3 148.9 197.3 154.4 188.7 154.4 s1 197.3 148.9 205.9 148.9 205.9 154.4 197.3 154.4 s1 205.9 148.9 214.5 148.9 214.5 154.4 205.9 154.4 s0 212.0 150.5 212.7 148.9 205.9 148.9 210.2 151.7 s1 212.0 150.5 212.7 148.9 p 212.0 150.5 212.0 152.8 210.2 151.7 t1 212.0 150.5 212.0 152.8 p 210.4 154.4 212.0 152.8 210.2 151.7 205.9 154.4 s1 210.4 154.4 212.0 152.8 p 205.9 154.4 210.2 151.7 205.9 148.9 t1 214.5 148.9 223.1 148.9 223.1 154.4 214.5 154.4 s0 216.3 148.9 217.0 150.5 218.8 151.7 223.1 148.9 s1 216.3 148.9 217.0 150.5 p 223.1 148.9 218.8 151.7 223.1 154.4 t1 217.0 152.8 218.5 154.4 223.1 154.4 218.8 151.7 s1 217.0 152.8 218.5 154.4 p 217.0 152.8 217.0 150.5 218.8 151.7 t1 217.0 152.8 217.0 150.5 p 223.1 148.9 231.6 148.9 231.6 154.4 223.1 154.4 s1 231.6 148.9 240.2 148.9 240.2 154.4 231.6 154.4 s1 240.2 148.9 248.8 148.9 248.8 154.4 240.2 154.4 s1 248.8 148.9 257.4 148.9 257.4 154.4 248.8 154.4 s0 254.9 150.5 255.6 148.9 248.8 148.9 253.1 151.7 s1 254.9 150.5 255.6 148.9 p 254.9 150.5 254.9 152.8 253.1 151.7 t1 254.9 150.5 254.9 152.8 p 253.3 154.4 254.9 152.8 253.1 151.7 248.8 154.4 s1 253.3 154.4 254.9 152.8 p 248.8 154.4 253.1 151.7 248.8 148.9 t1 257.4 148.9 265.9 148.9 265.9 154.4 257.4 154.4 s0 259.2 148.9 259.9 150.5 261.7 151.7 265.9 148.9 s1 259.2 148.9 259.9 150.5 p 265.9 148.9 261.7 151.7 265.9 154.4 t1 259.9 152.8 261.4 154.4 265.9 154.4 261.7 151.7 s1 259.9 152.8 261.4 154.4 p 259.9 152.8 259.9 150.5 261.7 151.7 t1 259.9 152.8 259.9 150.5 p 265.9 148.9 274.5 148.9 274.5 154.4 265.9 154.4 s1 274.5 148.9 283.1 148.9 283.1 154.4 274.5 154.4 s1 283.1 148.9 291.7 148.9 291.7 154.4 283.1 154.4 s1 291.7 148.9 300.3 148.9 300.3 154.4 291.7 154.4 s0 297.8 150.5 298.5 148.9 291.7 148.9 296.0 151.7 s1 297.8 150.5 298.5 148.9 p 297.8 150.5 297.8 152.8 296.0 151.7 t1 297.8 150.5 297.8 152.8 p 296.2 154.4 297.8 152.8 296.0 151.7 291.7 154.4 s1 296.2 154.4 297.8 152.8 p 291.7 154.4 296.0 151.7 291.7 148.9 t1 0.0 143.4 8.6 143.4 8.6 148.9 0.0 148.9 s0 1.0 143.4 1.3 144.2 4.3 146.1 8.6 143.4 s1 1.0 143.4 1.3 144.2 p 8.6 143.4 4.3 146.1 8.6 148.9 t1 1.3 148.1 1.8 148.9 8.6 148.9 4.3 146.1 s1 1.3 148.1 1.8 148.9 p 1.3 148.1 1.3 144.2 4.3 146.1 t1 1.3 148.1 1.3 144.2 p 8.6 143.4 17.2 143.4 17.2 148.9 8.6 148.9 s1 14.4 145.1 13.3 143.4 17.2 143.4 t2 14.4 145.1 13.3 143.4 p 17.2 147.4 14.4 145.1 17.2 143.4 t2 17.2 147.4 14.4 145.1 p 17.2 143.4 25.7 143.4 25.7 148.9 17.2 148.9 s1 17.2 143.4 21.4 146.1 25.7 143.4 t2 23.3 147.4 25.7 147.4 25.7 143.4 21.4 146.1 s2 23.3 147.4 25.7 147.4 p 23.3 147.4 19.6 147.4 21.4 146.1 t2 23.3 147.4 19.6 147.4 p 17.2 147.4 19.6 147.4 21.4 146.1 17.2 143.4 s2 17.2 147.4 19.6 147.4 p 25.7 143.4 34.3 143.4 34.3 148.9 25.7 148.9 s1 29.6 143.4 28.4 145.1 25.7 143.4 t2 29.6 143.4 28.4 145.1 p 28.4 145.1 25.7 147.4 25.7 143.4 t2 28.4 145.1 25.7 147.4 p 34.3 143.4 42.9 143.4 42.9 148.9 34.3 148.9 s0 41.6 144.2 41.9 143.4 34.3 143.4 38.6 146.1 s1 41.6 144.2 41.9 143.4 p 41.6 144.2 41.6 148.1 38.6 146.1 t1 41.6 144.2 41.6 148.1 p 41.1 148.9 41.6 148.1 38.6 146.1 34.3 148.9 s1 41.1 148.9 41.6 148.1 p 34.3 148.9 38.6 146.1 34.3 143.4 t1 42.9 143.4 51.5 143.4 51.5 148.9 42.9 148.9 s0 43.9 143.4 44.2 144.2 47.2 146.1 51.5 143.4 s1 43.9 143.4 44.2 144.2 p 51.5 143.4 47.2 146.1 51.5 148.9 t1 44.2 148.1 44.7 148.9 51.5 148.9 47.2 146.1 s1 44.2 148.1 44.7 148.9 p 44.2 148.1 44.2 144.2 47.2 146.1 t1 44.2 148.1 44.2 144.2 p 51.5 143.4 60.1 143.4 60.1 148.9 51.5 148.9 s1 57.3 145.1 56.2 143.4 60.1 143.4 t2 57.3 145.1 56.2 143.4 p 60.1 147.4 57.3 145.1 60.1 143.4 t2 60.1 147.4 57.3 145.1 p 60.1 143.4 68.6 143.4 68.6 148.9 60.1 148.9 s1 60.1 143.4 64.3 146.1 68.6 143.4 t2 66.2 147.4 68.6 147.4 68.6 143.4 64.3 146.1 s2 66.2 147.4 68.6 147.4 p 66.2 147.4 62.5 147.4 64.3 146.1 t2 66.2 147.4 62.5 147.4 p 60.1 147.4 62.5 147.4 64.3 146.1 60.1 143.4 s2 60.1 147.4 62.5 147.4 p 68.6 143.4 77.2 143.4 77.2 148.9 68.6 148.9 s1 72.5 143.4 71.3 145.1 68.6 143.4 t2 72.5 143.4 71.3 145.1 p 71.3 145.1 68.6 147.4 68.6 143.4 t2 71.3 145.1 68.6 147.4 p 77.2 143.4 85.8 143.4 85.8 148.9 77.2 148.9 s0 84.5 144.2 84.8 143.4 77.2 143.4 81.5 146.1 s1 84.5 144.2 84.8 143.4 p 84.5 144.2 84.5 148.1 81.5 146.1 t1 84.5 144.2 84.5 148.1 p 84.0 148.9 84.5 148.1 81.5 146.1 77.2 148.9 s1 84.0 148.9 84.5 148.1 p 77.2 148.9 81.5 146.1 77.2 143.4 t1 85.8 143.4 94.4 143.4 94.4 148.9 85.8 148.9 s0 86.8 143.4 87.1 144.2 90.1 146.1 94.4 143.4 s1 86.8 143.4 87.1 144.2 p 94.4 143.4 90.1 146.1 94.4 148.9 t1 87.1 148.1 87.6 148.9 94.4 148.9 90.1 146.1 s1 87.1 148.1 87.6 148.9 p 87.1 148.1 87.1 144.2 90.1 146.1 t1 87.1 148.1 87.1 144.2 p 94.4 143.4 102.9 143.4 102.9 148.9 94.4 148.9 s1 100.2 145.1 99.0 143.4 102.9 143.4 t2 100.2 145.1 99.0 143.4 p 102.9 147.4 100.2 145.1 102.9 143.4 t2 102.9 147.4 100.2 145.1 p 102.9 143.4 111.5 143.4 111.5 148.9 102.9 148.9 s1 102.9 143.4 107.2 146.1 111.5 143.4 t2 109.1 147.4 111.5 147.4 111.5 143.4 107.2 146.1 s2 109.1 147.4 111.5 147.4 p 109.1 147.4 105.4 147.4 107.2 146.1 t2 109.1 147.4 105.4 147.4 p 102.9 147.4 105.4 147.4 107.2 146.1 102.9 143.4 s2 102.9 147.4 105.4 147.4 p 111.5 143.4 120.1 143.4 120.1 148.9 111.5 148.9 s1 115.4 143.4 114.2 145.1 111.5 143.4 t2 115.4 143.4 114.2 145.1 p 114.2 145.1 111.5 147.4 111.5 143.4 t2 114.2 145.1 111.5 147.4 p 120.1 143.4 128.7 143.4 128.7 148.9 120.1 148.9 s0 127.4 144.2 127.7 143.4 120.1 143.4 124.4 146.1 s1 127.4 144.2 127.7 143.4 p 127.4 144.2 127.4 148.1 124.4 146.1 t1 127.4 144.2 127.4 148.1 p 126.9 148.9 127.4 148.1 124.4 146.1 120.1 148.9 s1 126.9 148.9 127.4 148.1 p 120.1 148.9 124.4 146.1 120.1 143.4 t1 128.7 143.4 137.3 143.4 137.3 148.9 128.7 148.9 s0 129.7 143.4 130.0 144.2 133.0 146.1 137.3 143.4 s1 129.7 143.4 130.0 144.2 p 137.3 143.4 133.0 146.1 137.3 148.9 t1 130.0 148.1 130.5 148.9 137.3 148.9 133.0 146.1 s1 130.0 148.1 130.5 148.9 p 130.0 148.1 130.0 144.2 133.0 146.1 t1 130.0 148.1 130.0 144.2 p 137.3 143.4 145.8 143.4 145.8 148.9 137.3 148.9 s1 143.1 145.1 141.9 143.4 145.8 143.4 t2 143.1 145.1 141.9 143.4 p 145.8 147.4 143.1 145.1 145.8 143.4 t2 145.8 147.4 143.1 145.1 p 145.8 143.4 154.4 143.4 154.4 148.9 145.8 148.9 s1 145.8 143.4 150.1 146.1 154.4 143.4 t2 152.0 147.4 154.4 147.4 154.4 143.4 150.1 146.1 s2 152.0 147.4 154.4 147.4 p 152.0 147.4 148.2 147.4 150.1 146.1 t2 152.0 147.4 148.2 147.4 p 145.8 147.4 148.2 147.4 150.1 146.1 145.8 143.4 s2 145.8 147.4 148.2 147.4 p 154.4 143.4 163.0 143.4 163.0 148.9 154.4 148.9 s1 158.3 143.4 157.1 145.1 154.4 143.4 t2 158.3 143.4 157.1 145.1 p 157.1 145.1 154.4 147.4 154.4 143.4 t2 157.1 145.1 154.4 147.4 p 163.0 143.4 171.6 143.4 171.6 148.9 163.0 148.9 s0 170.3 144.2 170.6 143.4 163.0 143.4 167.3 146.1 s1 170.3 144.2 170.6 143.4 p 170.3 144.2 170.3 148.1 167.3 146.1 t1 170.3 144.2 170.3 148.1 p 169.8 148.9 170.3 148.1 167.3 146.1 163.0 148.9 s1 169.8 148.9 170.3 148.1 p 163.0 148.9 167.3 146.1 163.0 143.4 t1 171.6 143.4 180.2 143.4 180.2 148.9 171.6 148.9 s0 172.6 143.4 172.9 144.2 175.9 146.1 180.2 143.4 s1 172.6 143.4 172.9 144.2 p 180.2 143.4 175.9 146.1 180.2 148.9 t1 172.9 148.1 173.4 148.9 180.2 148.9 175.9 146.1 s1 172.9 148.1 173.4 148.9 p 172.9 148.1 172.9 144.2 175.9 146.1 t1 172.9 148.1 172.9 144.2 p 180.2 143.4 188.7 143.4 188.7 148.9 180.2 148.9 s1 186.0 145.1 184.8 143.4 188.7 143.4 t2 186.0 145.1 184.8 143.4 p 188.7 147.4 186.0 145.1 188.7 143.4 t2 188.7 147.4 186.0 145.1 p 188.7 143.4 197.3 143.4 197.3 148.9 188.7 148.9 s1 188.7 143.4 193.0 146.1 197.3 143.4 t2 194.9 147.4 197.3 147.4 197.3 143.4 193.0 146.1 s2 194.9 147.4 197.3 147.4 p 194.9 147.4 191.1 147.4 193.0 146.1 t2 194.9 147.4 191.1 147.4 p 188.7 147.4 191.1 147.4 193.0 146.1 188.7 143.4 s2 188.7 147.4 191.1 147.4 p 197.3 143.4 205.9 143.4 205.9 148.9 197.3 148.9 s1 201.2 143.4 200.0 145.1 197.3 143.4 t2 201.2 143.4 200.0 145.1 p 200.0 145.1 197.3 147.4 197.3 143.4 t2 200.0 145.1 197.3 147.4 p 205.9 143.4 214.5 143.4 214.5 148.9 205.9 148.9 s0 213.2 144.2 213.5 143.4 205.9 143.4 210.2 146.1 s1 213.2 144.2 213.5 143.4 p 213.2 144.2 213.2 148.1 210.2 146.1 t1 213.2 144.2 213.2 148.1 p 212.7 148.9 213.2 148.1 210.2 146.1 205.9 148.9 s1 212.7 148.9 213.2 148.1 p 205.9 148.9 210.2 146.1 205.9 143.4 t1 214.5 143.4 223.1 143.4 223.1 148.9 214.5 148.9 s0 215.5 143.4 215.8 144.2 218.8 146.1 223.1 143.4 s1 215.5 143.4 215.8 144.2 p 223.1 143.4 218.8 146.1 223.1 148.9 t1 215.7 148.1 216.3 148.9 223.1 148.9 218.8 146.1 s1 215.7 148.1 216.3 148.9 p 215.7 148.1 215.8 144.2 218.8 146.1 t1 215.7 148.1 215.8 144.2 p 223.1 143.4 231.6 143.4 231.6 148.9 223.1 148.9 s1 228.9 145.1 227.7 143.4 231.6 143.4 t2 228.9 145.1 227.7 143.4 p 231.6 147.4 228.9 145.1 231.6 143.4 t2 231.6 147.4 228.9 145.1 p 231.6 143.4 240.2 143.4 240.2 148.9 231.6 148.9 s1 231.6 143.4 235.9 146.1 240.2 143.4 t2 237.8 147.4 240.2 147.4 240.2 143.4 235.9 146.1 s2 237.8 147.4 240.2 147.4 p 237.8 147.4 234.0 147.4 235.9 146.1 t2 237.8 147.4 234.0 147.4 p 231.6 147.4 234.0 147.4 235.9 146.1 231.6 143.4 s2 231.6 147.4 234.0 147.4 p 240.2 143.4 248.8 143.4 248.8 148.9 240.2 148.9 s1 244.1 143.4 242.9 145.1 240.2 143.4 t2 244.1 143.4 242.9 145.1 p 242.9 145.1 240.2 147.4 240.2 143.4 t2 242.9 145.1 240.2 147.4 p 248.8 143.4 257.4 143.4 257.4 148.9 248.8 148.9 s0 256.1 144.2 256.4 143.4 248.8 143.4 253.1 146.1 s1 256.1 144.2 256.4 143.4 p 256.1 144.2 256.1 148.1 253.1 146.1 t1 256.1 144.2 256.1 148.1 p 255.6 148.9 256.1 148.1 253.1 146.1 248.8 148.9 s1 255.6 148.9 256.1 148.1 p 248.8 148.9 253.1 146.1 248.8 143.4 t1 257.4 143.4 265.9 143.4 265.9 148.9 257.4 148.9 s0 258.4 143.4 258.7 144.2 261.7 146.1 265.9 143.4 s1 258.4 143.4 258.7 144.2 p 265.9 143.4 261.7 146.1 265.9 148.9 t1 258.6 148.1 259.2 148.9 265.9 148.9 261.7 146.1 s1 258.6 148.1 259.2 148.9 p 258.6 148.1 258.7 144.2 261.7 146.1 t1 258.6 148.1 258.7 144.2 p 265.9 143.4 274.5 143.4 274.5 148.9 265.9 148.9 s1 271.8 145.1 270.6 143.4 274.5 143.4 t2 271.8 145.1 270.6 143.4 p 274.5 147.4 271.8 145.1 274.5 143.4 t2 274.5 147.4 271.8 145.1 p 274.5 143.4 283.1 143.4 283.1 148.9 274.5 148.9 s1 274.5 143.4 278.8 146.1 283.1 143.4 t2 280.7 147.4 283.1 147.4 283.1 143.4 278.8 146.1 s2 280.7 147.4 283.1 147.4 p 280.7 147.4 276.9 147.4 278.8 146.1 t2 280.7 147.4 276.9 147.4 p 274.5 147.4 276.9 147.4 278.8 146.1 274.5 143.4 s2 274.5 147.4 276.9 147.4 p 283.1 143.4 291.7 143.4 291.7 148.9 283.1 148.9 s1 287.0 143.4 285.8 145.1 283.1 143.4 t2 287.0 143.4 285.8 145.1 p 285.8 145.1 283.1 147.4 283.1 143.4 t2 285.8 145.1 283.1 147.4 p 291.7 143.4 300.3 143.4 300.3 148.9 291.7 148.9 s0 299.0 144.2 299.3 143.4 291.7 143.4 296.0 146.1 s1 299.0 144.2 299.3 143.4 p 299.0 144.2 299.0 148.1 296.0 146.1 t1 299.0 144.2 299.0 148.1 p 298.5 148.9 299.0 148.1 296.0 146.1 291.7 148.9 s1 298.5 148.9 299.0 148.1 p 291.7 148.9 296.0 146.1 291.7 143.4 t1 0.0 137.9 8.6 137.9 8.6 143.4 0.0 143.4 s0 0.0 137.9 4.3 140.6 8.6 137.9 t1 8.6 137.9 4.3 140.6 8.6 143.4 t1 0.7 142.9 1.0 143.4 8.6 143.4 4.3 140.6 s1 0.7 142.9 1.0 143.4 p 0.0 138.4 0.7 142.9 4.3 140.6 0.0 137.9 s1 0.0 138.4 0.7 142.9 p 8.6 137.9 17.2 137.9 17.2 143.4 8.6 143.4 s1 10.7 137.9 11.6 139.8 12.9 140.6 17.2 137.9 s2 10.7 137.9 11.6 139.8 p 17.2 137.9 12.9 140.6 17.2 143.4 t2 12.2 141.0 13.3 143.4 17.2 143.4 12.9 140.6 s2 12.2 141.0 13.3 143.4 p 12.2 141.0 11.6 139.8 12.9 140.6 t2 12.2 141.0 11.6 139.8 p 17.2 137.9 25.7 137.9 25.7 143.4 17.2 143.4 s2 25.7 137.9 34.3 137.9 34.3 143.4 25.7 143.4 s1 31.3 139.8 32.2 137.9 25.7 137.9 30.0 140.6 s2 31.3 139.8 32.2 137.9 p 31.3 139.8 30.7 141.0 30.0 140.6 t2 31.3 139.8 30.7 141.0 p 29.6 143.4 30.7 141.0 30.0 140.6 25.7 143.4 s2 29.6 143.4 30.7 141.0 p 25.7 143.4 30.0 140.6 25.7 137.9 t2 34.3 137.9 42.9 137.9 42.9 143.4 34.3 143.4 s0 34.3 137.9 38.6 140.6 42.9 137.9 t1 42.2 142.9 42.9 138.4 42.9 137.9 38.6 140.6 s1 42.2 142.9 42.9 138.4 p 41.9 143.4 42.2 142.9 38.6 140.6 34.3 143.4 s1 41.9 143.4 42.2 142.9 p 34.3 143.4 38.6 140.6 34.3 137.9 t1 42.9 137.9 51.5 137.9 51.5 143.4 42.9 143.4 s0 42.9 137.9 47.2 140.6 51.5 137.9 t1 51.5 137.9 47.2 140.6 51.5 143.4 t1 43.6 142.9 43.9 143.4 51.5 143.4 47.2 140.6 s1 43.6 142.9 43.9 143.4 p 42.9 138.4 43.6 142.9 47.2 140.6 42.9 137.9 s1 42.9 138.4 43.6 142.9 p 51.5 137.9 60.1 137.9 60.1 143.4 51.5 143.4 s1 53.6 137.9 54.5 139.8 55.8 140.6 60.1 137.9 s2 53.6 137.9 54.5 139.8 p 60.1 137.9 55.8 140.6 60.1 143.4 t2 55.1 141.0 56.2 143.4 60.1 143.4 55.8 140.6 s2 55.1 141.0 56.2 143.4 p 55.1 141.0 54.5 139.8 55.8 140.6 t2 55.1 141.0 54.5 139.8 p 60.1 137.9 68.6 137.9 68.6 143.4 60.1 143.4 s2 68.6 137.9 77.2 137.9 77.2 143.4 68.6 143.4 s1 74.2 139.8 75.1 137.9 68.6 137.9 72.9 140.6 s2 74.2 139.8 75.1 137.9 p 74.2 139.8 73.6 141.0 72.9 140.6 t2 74.2 139.8 73.6 141.0 p 72.5 143.4 73.6 141.0 72.9 140.6 68.6 143.4 s2 72.5 143.4 73.6 141.0 p 68.6 143.4 72.9 140.6 68.6 137.9 t2 77.2 137.9 85.8 137.9 85.8 143.4 77.2 143.4 s0 77.2 137.9 81.5 140.6 85.8 137.9 t1 85.1 142.9 85.8 138.4 85.8 137.9 81.5 140.6 s1 85.1 142.9 85.8 138.4 p 84.8 143.4 85.1 142.9 81.5 140.6 77.2 143.4 s1 84.8 143.4 85.1 142.9 p 77.2 143.4 81.5 140.6 77.2 137.9 t1 85.8 137.9 94.4 137.9 94.4 143.4 85.8 143.4 s0 85.8 137.9 90.1 140.6 94.4 137.9 t1 94.4 137.9 90.1 140.6 94.4 143.4 t1 86.5 142.9 86.8 143.4 94.4 143.4 90.1 140.6 s1 86.5 142.9 86.8 143.4 p 85.8 138.4 86.5 142.9 90.1 140.6 85.8 137.9 s1 85.8 138.4 86.5 142.9 p 94.4 137.9 102.9 137.9 102.9 143.4 94.4 143.4 s1 96.5 137.9 97.4 139.8 98.7 140.6 102.9 137.9 s2 96.5 137.9 97.4 139.8 p 102.9 137.9 98.7 140.6 102.9 143.4 t2 98.0 141.0 99.0 143.4 102.9 143.4 98.7 140.6 s2 98.0 141.0 99.0 143.4 p 98.0 141.0 97.4 139.8 98.7 140.6 t2 98.0 141.0 97.4 139.8 p 102.9 137.9 111.5 137.9 111.5 143.4 102.9 143.4 s2 111.5 137.9 120.1 137.9 120.1 143.4 111.5 143.4 s1 117.1 139.8 118.0 137.9 111.5 137.9 115.8 140.6 s2 117.1 139.8 118.0 137.9 p 117.1 139.8 116.5 141.0 115.8 140.6 t2 117.1 139.8 116.5 141.0 p 115.4 143.4 116.5 141.0 115.8 140.6 111.5 143.4 s2 115.4 143.4 116.5 141.0 p 111.5 143.4 115.8 140.6 111.5 137.9 t2 120.1 137.9 128.7 137.9 128.7 143.4 120.1 143.4 s0 120.1 137.9 124.4 140.6 128.7 137.9 t1 128.0 142.9 128.7 138.4 128.7 137.9 124.4 140.6 s1 128.0 142.9 128.7 138.4 p 127.7 143.4 128.0 142.9 124.4 140.6 120.1 143.4 s1 127.7 143.4 128.0 142.9 p 120.1 143.4 124.4 140.6 120.1 137.9 t1 128.7 137.9 137.3 137.9 137.3 143.4 128.7 143.4 s0 128.7 137.9 133.0 140.6 137.3 137.9 t1 137.3 137.9 133.0 140.6 137.3 143.4 t1 129.4 142.9 129.7 143.4 137.3 143.4 133.0 140.6 s1 129.4 142.9 129.7 143.4 p 128.7 138.4 129.4 142.9 133.0 140.6 128.7 137.9 s1 128.7 138.4 129.4 142.9 p 137.3 137.9 145.8 137.9 145.8 143.4 137.3 143.4 s1 139.4 137.9 140.3 139.8 141.6 140.6 145.8 137.9 s2 139.4 137.9 140.3 139.8 p 145.8 137.9 141.6 140.6 145.8 143.4 t2 140.9 141.0 141.9 143.4 145.8 143.4 141.6 140.6 s2 140.9 141.0 141.9 143.4 p 140.9 141.0 140.3 139.8 141.6 140.6 t2 140.9 141.0 140.3 139.8 p 145.8 137.9 154.4 137.9 154.4 143.4 145.8 143.4 s2 154.4 137.9 163.0 137.9 163.0 143.4 154.4 143.4 s1 160.0 139.8 160.9 137.9 154.4 137.9 158.7 140.6 s2 160.0 139.8 160.9 137.9 p 160.0 139.8 159.4 141.0 158.7 140.6 t2 160.0 139.8 159.4 141.0 p 158.3 143.4 159.4 141.0 158.7 140.6 154.4 143.4 s2 158.3 143.4 159.4 141.0 p 154.4 143.4 158.7 140.6 154.4 137.9 t2 163.0 137.9 171.6 137.9 171.6 143.4 163.0 143.4 s0 163.0 137.9 167.3 140.6 171.6 137.9 t1 170.8 142.9 171.6 138.4 171.6 137.9 167.3 140.6 s1 170.8 142.9 171.6 138.4 p 170.6 143.4 170.8 142.9 167.3 140.6 163.0 143.4 s1 170.6 143.4 170.8 142.9 p 163.0 143.4 167.3 140.6 163.0 137.9 t1 171.6 137.9 180.2 137.9 180.2 143.4 171.6 143.4 s0 171.6 137.9 175.9 140.6 180.2 137.9 t1 180.2 137.9 175.9 140.6 180.2 143.4 t1 172.3 142.9 172.6 143.4 180.2 143.4 175.9 140.6 s1 172.3 142.9 172.6 143.4 p 171.6 138.4 172.3 142.9 175.9 140.6 171.6 137.9 s1 171.6 138.4 172.3 142.9 p 180.2 137.9 188.7 137.9 188.7 143.4 180.2 143.4 s1 182.3 137.9 183.2 139.8 184.4 140.6 188.7 137.9 s2 182.3 137.9 183.2 139.8 p 188.7 137.9 184.4 140.6 188.7 143.4 t2 183.8 141.0 184.8 143.4 188.7 143.4 184.4 140.6 s2 183.8 141.0 184.8 143.4 p 183.8 141.0 183.2 139.8 184.4 140.6 t2 183.8 141.0 183.2 139.8 p 188.7 137.9 197.3 137.9 197.3 143.4 188.7 143.4 s2 197.3 137.9 205.9 137.9 205.9 143.4 197.3 143.4 s1 202.9 139.8 203.8 137.9 197.3 137.9 201.6 140.6 s2 202.9 139.8 203.8 137.9 p 202.9 139.8 202.3 141.0 201.6 140.6 t2 202.9 139.8 202.3 141.0 p 201.2 143.4 202.3 141.0 201.6 140.6 197.3 143.4 s2 201.2 143.4 202.3 141.0 p 197.3 143.4 201.6 140.6 197.3 137.9 t2 205.9 137.9 214.5 137.9 214.5 143.4 205.9 143.4 s0 205.9 137.9 210.2 140.6 214.5 137.9 t1 213.7 142.9 214.5 138.4 214.5 137.9 210.2 140.6 s1 213.7 142.9 214.5 138.4 p 213.5 143.4 213.7 142.9 210.2 140.6 205.9 143.4 s1 213.5 143.4 213.7 142.9 p 205.9 143.4 210.2 140.6 205.9 137.9 t1 214.5 137.9 223.1 137.9 223.1 143.4 214.5 143.4 s0 214.5 137.9 218.8 140.6 223.1 137.9 t1 223.1 137.9 218.8 140.6 223.1 143.4 t1 215.2 142.9 215.5 143.4 223.1 143.4 218.8 140.6 s1 215.2 142.9 215.5 143.4 p 214.5 138.4 215.2 142.9 218.8 140.6 214.5 137.9 s1 214.5 138.4 215.2 142.9 p 223.1 137.9 231.6 137.9 231.6 143.4 223.1 143.4 s1 225.2 137.9 226.1 139.8 227.3 140.6 231.6 137.9 s2 225.2 137.9 226.1 139.8 p 231.6 137.9 227.3 140.6 231.6 143.4 t2 226.7 141.0 227.7 143.4 231.6 143.4 227.3 140.6 s2 226.7 141.0 227.7 143.4 p 226.7 141.0 226.1 139.8 227.3 140.6 t2 226.7 141.0 226.1 139.8 p 231.6 137.9 240.2 137.9 240.2 143.4 231.6 143.4 s2 240.2 137.9 248.8 137.9 248.8 143.4 240.2 143.4 s1 245.8 139.8 246.7 137.9 240.2 137.9 244.5 140.6 s2 245.8 139.8 246.7 137.9 p 245.8 139.8 245.1 141.0 244.5 140.6 t2 245.8 139.8 245.1 141.0 p 244.1 143.4 245.1 141.0 244.5 140.6 240.2 143.4 s2 244.1 143.4 245.1 141.0 p 240.2 143.4 244.5 140.6 240.2 137.9 t2 248.8 137.9 257.4 137.9 257.4 143.4 248.8 143.4 s0 248.8 137.9 253.1 140.6 257.4 137.9 t1 256.6 142.9 257.4 138.4 257.4 137.9 253.1 140.6 s1 256.6 142.9 257.4 138.4 p 256.4 143.4 256.6 142.9 253.1 140.6 248.8 143.4 s1 256.4 143.4 256.6 142.9 p 248.8 143.4 253.1 140.6 248.8 137.9 t1 257.4 137.9 265.9 137.9 265.9 143.4 257.4 143.4 s0 257.4 137.9 261.7 140.6 265.9 137.9 t1 265.9 137.9 261.7 140.6 265.9 143.4 t1 258.1 142.9 258.4 143.4 265.9 143.4 261.7 140.6 s1 258.1 142.9 258.4 143.4 p 257.4 138.4 258.1 142.9 261.7 140.6 257.4 137.9 s1 257.4 138.4 258.1 142.9 p 265.9 137.9 274.5 137.9 274.5 143.4 265.9 143.4 s1 268.0 137.9 269.0 139.8 270.2 140.6 274.5 137.9 s2 268.0 137.9 269.0 139.8 p 274.5 137.9 270.2 140.6 274.5 143.4 t2 269.6 141.0 270.6 143.4 274.5 143.4 270.2 140.6 s2 269.6 141.0 270.6 143.4 p 269.6 141.0 269.0 139.8 270.2 140.6 t2 269.6 141.0 269.0 139.8 p 274.5 137.9 283.1 137.9 283.1 143.4 274.5 143.4 s2 283.1 137.9 291.7 137.9 291.7 143.4 283.1 143.4 s1 288.7 139.8 289.6 137.9 283.1 137.9 287.4 140.6 s2 288.7 139.8 289.6 137.9 p 288.7 139.8 288.0 141.0 287.4 140.6 t2 288.7 139.8 288.0 141.0 p 287.0 143.4 288.0 141.0 287.4 140.6 283.1 143.4 s2 287.0 143.4 288.0 141.0 p 283.1 143.4 287.4 140.6 283.1 137.9 t2 291.7 137.9 300.3 137.9 300.3 143.4 291.7 143.4 s0 291.7 137.9 296.0 140.6 300.3 137.9 t1 299.5 142.9 300.3 138.4 300.3 137.9 296.0 140.6 s1 299.5 142.9 300.3 138.4 p 299.3 143.4 299.5 142.9 296.0 140.6 291.7 143.4 s1 299.3 143.4 299.5 142.9 p 291.7 143.4 296.0 140.6 291.7 137.9 t1 0.0 132.4 8.6 132.4 8.6 137.9 0.0 137.9 s1 7.5 133.0 7.1 132.4 8.6 132.4 t2 7.5 133.0 7.1 132.4 p 8.6 134.4 7.5 133.0 8.6 132.4 t2 8.6 134.4 7.5 133.0 p 8.6 132.4 17.2 132.4 17.2 137.9 8.6 137.9 s1 8.6 132.4 12.9 135.1 17.2 132.4 t2 17.2 132.4 12.9 135.1 17.2 137.9 t2 10.7 136.5 10.7 137.9 17.2 137.9 12.9 135.1 s2 10.7 136.5 10.7 137.9 p 8.6 134.4 10.7 136.5 12.9 135.1 8.6 132.4 s2 8.6 134.4 10.7 136.5 p 17.2 132.4 25.7 132.4 25.7 137.9 17.2 137.9 s2 25.7 132.4 34.3 132.4 34.3 137.9 25.7 137.9 s1 25.7 132.4 30.0 135.1 34.3 132.4 t2 32.2 136.5 34.3 134.4 34.3 132.4 30.0 135.1 s2 32.2 136.5 34.3 134.4 p 32.2 137.9 32.2 136.5 30.0 135.1 25.7 137.9 s2 32.2 137.9 32.2 136.5 p 25.7 137.9 30.0 135.1 25.7 132.4 t2 34.3 132.4 42.9 132.4 42.9 137.9 34.3 137.9 s1 35.8 132.4 35.3 133.0 34.3 132.4 t2 35.8 132.4 35.3 133.0 p 35.3 133.0 34.3 134.4 34.3 132.4 t2 35.3 133.0 34.3 134.4 p 42.9 132.4 51.5 132.4 51.5 137.9 42.9 137.9 s1 50.4 133.0 50.0 132.4 51.5 132.4 t2 50.4 133.0 50.0 132.4 p 51.5 134.4 50.4 133.0 51.5 132.4 t2 51.5 134.4 50.4 133.0 p 51.5 132.4 60.1 132.4 60.1 137.9 51.5 137.9 s1 51.5 132.4 55.8 135.1 60.1 132.4 t2 60.1 132.4 55.8 135.1 60.1 137.9 t2 53.6 136.5 53.6 137.9 60.1 137.9 55.8 135.1 s2 53.6 136.5 53.6 137.9 p 51.5 134.4 53.6 136.5 55.8 135.1 51.5 132.4 s2 51.5 134.4 53.6 136.5 p 60.1 132.4 68.6 132.4 68.6 137.9 60.1 137.9 s2 68.6 132.4 77.2 132.4 77.2 137.9 68.6 137.9 s1 68.6 132.4 72.9 135.1 77.2 132.4 t2 75.1 136.5 77.2 134.4 77.2 132.4 72.9 135.1 s2 75.1 136.5 77.2 134.4 p 75.1 137.9 75.1 136.5 72.9 135.1 68.6 137.9 s2 75.1 137.9 75.1 136.5 p 68.6 137.9 72.9 135.1 68.6 132.4 t2 77.2 132.4 85.8 132.4 85.8 137.9 77.2 137.9 s1 78.7 132.4 78.2 133.0 77.2 132.4 t2 78.7 132.4 78.2 133.0 p 78.2 133.0 77.2 134.4 77.2 132.4 t2 78.2 133.0 77.2 134.4 p 85.8 132.4 94.4 132.4 94.4 137.9 85.8 137.9 s1 93.3 133.0 92.9 132.4 94.4 132.4 t2 93.3 133.0 92.9 132.4 p 94.4 134.4 93.3 133.0 94.4 132.4 t2 94.4 134.4 93.3 133.0 p 94.4 132.4 102.9 132.4 102.9 137.9 94.4 137.9 s1 94.4 132.4 98.7 135.1 102.9 132.4 t2 102.9 132.4 98.7 135.1 102.9 137.9 t2 96.5 136.5 96.5 137.9 102.9 137.9 98.7 135.1 s2 96.5 136.5 96.5 137.9 p 94.4 134.4 96.5 136.5 98.7 135.1 94.4 132.4 s2 94.4 134.4 96.5 136.5 p 102.9 132.4 111.5 132.4 111.5 137.9 102.9 137.9 s2 111.5 132.4 120.1 132.4 120.1 137.9 111.5 137.9 s1 111.5 132.4 115.8 135.1 120.1 132.4 t2 118.0 136.5 120.1 134.4 120.1 132.4 115.8 135.1 s2 118.0 136.5 120.1 134.4 p 118.0 137.9 118.0 136.5 115.8 135.1 111.5 137.9 s2 118.0 137.9 118.0 136.5 p 111.5 137.9 115.8 135.1 111.5 132.4 t2 120.1 132.4 128.7 132.4 128.7 137.9 120.1 137.9 s1 121.6 132.4 121.1 133.0 120.1 132.4 t2 121.6 132.4 121.1 133.0 p 121.1 133.0 120.1 134.4 120.1 132.4 t2 121.1 133.0 120.1 134.4 p 128.7 132.4 137.3 132.4 137.3 137.9 128.7 137.9 s1 136.2 133.0 135.8 132.4 137.3 132.4 t2 136.2 133.0 135.8 132.4 p 137.3 134.4 136.2 133.0 137.3 132.4 t2 137.3 134.4 136.2 133.0 p 137.3 132.4 145.8 132.4 145.8 137.9 137.3 137.9 s1 137.3 132.4 141.6 135.1 145.8 132.4 t2 145.8 132.4 141.6 135.1 145.8 137.9 t2 139.4 136.5 139.4 137.9 145.8 137.9 141.6 135.1 s2 139.4 136.5 139.4 137.9 p 137.3 134.4 139.4 136.5 141.6 135.1 137.3 132.4 s2 137.3 134.4 139.4 136.5 p 145.8 132.4 154.4 132.4 154.4 137.9 145.8 137.9 s2 154.4 132.4 163.0 132.4 163.0 137.9 154.4 137.9 s1 154.4 132.4 158.7 135.1 163.0 132.4 t2 160.9 136.5 163.0 134.4 163.0 132.4 158.7 135.1 s2 160.9 136.5 163.0 134.4 p 160.9 137.9 160.9 136.5 158.7 135.1 154.4 137.9 s2 160.9 137.9 160.9 136.5 p 154.4 137.9 158.7 135.1 154.4 132.4 t2 163.0 132.4 171.6 132.4 171.6 137.9 163.0 137.9 s1 164.5 132.4 164.0 133.0 163.0 132.4 t2 164.5 132.4 164.0 133.0 p 164.0 133.0 163.0 134.4 163.0 132.4 t2 164.0 133.0 163.0 134.4 p 171.6 132.4 180.2 132.4 180.2 137.9 171.6 137.9 s1 179.1 133.0 178.7 132.4 180.2 132.4 t2 179.1 133.0 178.7 132.4 p 180.2 134.4 179.1 133.0 180.2 132.4 t2 180.2 134.4 179.1 133.0 p 180.2 132.4 188.7 132.4 188.7 137.9 180.2 137.9 s1 180.2 132.4 184.4 135.1 188.7 132.4 t2 188.7 132.4 184.4 135.1 188.7 137.9 t2 182.3 136.5 182.3 137.9 188.7 137.9 184.4 135.1 s2 182.3 136.5 182.3 137.9 p 180.2 134.4 182.3 136.5 184.4 135.1 180.2 132.4 s2 180.2 134.4 182.3 136.5 p 188.7 132.4 197.3 132.4 197.3 137.9 188.7 137.9 s2 197.3 132.4 205.9 132.4 205.9 137.9 197.3 137.9 s1 197.3 132.4 201.6 135.1 205.9 132.4 t2 203.7 136.5 205.9 134.4 205.9 132.4 201.6 135.1 s2 203.7 136.5 205.9 134.4 p 203.8 137.9 203.7 136.5 201.6 135.1 197.3 137.9 s2 203.8 137.9 203.7 136.5 p 197.3 137.9 201.6 135.1 197.3 132.4 t2 205.9 132.4 214.5 132.4 214.5 137.9 205.9 137.9 s1 207.4 132.4 206.9 133.0 205.9 132.4 t2 207.4 132.4 206.9 133.0 p 206.9 133.0 205.9 134.4 205.9 132.4 t2 206.9 133.0 205.9 134.4 p 214.5 132.4 223.1 132.4 223.1 137.9 214.5 137.9 s1 222.0 133.0 221.6 132.4 223.1 132.4 t2 222.0 133.0 221.6 132.4 p 223.1 134.4 222.0 133.0 223.1 132.4 t2 223.1 134.4 222.0 133.0 p 223.1 132.4 231.6 132.4 231.6 137.9 223.1 137.9 s1 223.1 132.4 227.3 135.1 231.6 132.4 t2 231.6 132.4 227.3 135.1 231.6 137.9 t2 225.2 136.5 225.2 137.9 231.6 137.9 227.3 135.1 s2 225.2 136.5 225.2 137.9 p 223.1 134.4 225.2 136.5 227.3 135.1 223.1 132.4 s2 223.1 134.4 225.2 136.5 p 231.6 132.4 240.2 132.4 240.2 137.9 231.6 137.9 s2 240.2 132.4 248.8 132.4 248.8 137.9 240.2 137.9 s1 240.2 132.4 244.5 135.1 248.8 132.4 t2 246.6 136.5 248.8 134.4 248.8 132.4 244.5 135.1 s2 246.6 136.5 248.8 134.4 p 246.7 137.9 246.6 136.5 244.5 135.1 240.2 137.9 s2 246.7 137.9 246.6 136.5 p 240.2 137.9 244.5 135.1 240.2 132.4 t2 248.8 132.4 257.4 132.4 257.4 137.9 248.8 137.9 s1 250.3 132.4 249.8 133.0 248.8 132.4 t2 250.3 132.4 249.8 133.0 p 249.8 133.0 248.8 134.4 248.8 132.4 t2 249.8 133.0 248.8 134.4 p 257.4 132.4 265.9 132.4 265.9 137.9 257.4 137.9 s1 264.9 133.0 264.5 132.4 265.9 132.4 t2 264.9 133.0 264.5 132.4 p 265.9 134.4 264.9 133.0 265.9 132.4 t2 265.9 134.4 264.9 133.0 p 265.9 132.4 274.5 132.4 274.5 137.9 265.9 137.9 s1 265.9 132.4 270.2 135.1 274.5 132.4 t2 274.5 132.4 270.2 135.1 274.5 137.9 t2 268.1 136.5 268.0 137.9 274.5 137.9 270.2 135.1 s2 268.1 136.5 268.0 137.9 p 265.9 134.4 268.1 136.5 270.2 135.1 265.9 132.4 s2 265.9 134.4 268.1 136.5 p 274.5 132.4 283.1 132.4 283.1 137.9 274.5 137.9 s2 283.1 132.4 291.7 132.4 291.7 137.9 283.1 137.9 s1 283.1 132.4 287.4 135.1 291.7 132.4 t2 289.5 136.5 291.7 134.4 291.7 132.4 287.4 135.1 s2 289.5 136.5 291.7 134.4 p 289.6 137.9 289.5 136.5 287.4 135.1 283.1 137.9 s2 289.6 137.9 289.5 136.5 p 283.1 137.9 287.4 135.1 283.1 132.4 t2 291.7 132.4 300.3 132.4 300.3 137.9 291.7 137.9 s1 293.2 132.4 292.7 133.0 291.7 132.4 t2 293.2 132.4 292.7 133.0 p 292.7 133.0 291.7 134.4 291.7 132.4 t2 292.7 133.0 291.7 134.4 p 0.0 126.8 8.6 126.8 8.6 132.4 0.0 132.4 s1 7.4 127.6 7.0 126.8 8.6 126.8 t2 7.4 127.6 7.0 126.8 p 7.4 127.6 6.8 131.2 8.6 132.4 8.6 126.8 s2 7.4 127.6 6.8 131.2 p 7.1 132.4 6.8 131.2 8.6 132.4 t2 7.1 132.4 6.8 131.2 p 8.6 126.8 17.2 126.8 17.2 132.4 8.6 132.4 s1 13.5 129.2 10.3 126.8 8.6 126.8 12.9 129.6 s2 13.5 129.2 10.3 126.8 p 17.2 129.6 13.5 129.2 12.9 129.6 17.2 132.4 s2 17.2 129.6 13.5 129.2 p 17.2 132.4 12.9 129.6 8.6 132.4 t2 8.6 132.4 12.9 129.6 8.6 126.8 t2 17.2 126.8 25.7 126.8 25.7 132.4 17.2 132.4 s1 21.5 129.6 25.7 129.6 25.7 132.4 t2 21.5 129.6 25.7 129.6 p 21.5 129.6 21.4 129.6 17.2 132.4 25.7 132.4 s2 21.5 129.6 21.4 129.6 p 17.2 129.6 21.4 129.6 17.2 132.4 t2 17.2 129.6 21.4 129.6 p 25.7 126.8 34.3 126.8 34.3 132.4 25.7 132.4 s1 32.6 126.8 29.4 129.2 30.0 129.6 34.3 126.8 s2 32.6 126.8 29.4 129.2 p 34.3 126.8 30.0 129.6 34.3 132.4 t2 34.3 132.4 30.0 129.6 25.7 132.4 t2 29.4 129.2 25.7 129.6 25.7 132.4 30.0 129.6 s2 29.4 129.2 25.7 129.6 p 34.3 126.8 42.9 126.8 42.9 132.4 34.3 132.4 s1 35.9 126.8 35.5 127.6 34.3 126.8 t2 35.9 126.8 35.5 127.6 p 36.1 131.2 35.8 132.4 34.3 132.4 t2 36.1 131.2 35.8 132.4 p 36.1 131.2 35.5 127.6 34.3 126.8 34.3 132.4 s2 36.1 131.2 35.5 127.6 p 42.9 126.8 51.5 126.8 51.5 132.4 42.9 132.4 s1 50.3 127.6 49.9 126.8 51.5 126.8 t2 50.3 127.6 49.9 126.8 p 50.3 127.6 49.7 131.2 51.5 132.4 51.5 126.8 s2 50.3 127.6 49.7 131.2 p 50.0 132.4 49.7 131.2 51.5 132.4 t2 50.0 132.4 49.7 131.2 p 51.5 126.8 60.1 126.8 60.1 132.4 51.5 132.4 s1 56.4 129.2 53.2 126.8 51.5 126.8 55.8 129.6 s2 56.4 129.2 53.2 126.8 p 60.1 129.6 56.4 129.2 55.8 129.6 60.1 132.4 s2 60.1 129.6 56.4 129.2 p 60.1 132.4 55.8 129.6 51.5 132.4 t2 51.5 132.4 55.8 129.6 51.5 126.8 t2 60.1 126.8 68.6 126.8 68.6 132.4 60.1 132.4 s1 64.4 129.6 68.6 129.6 68.6 132.4 t2 64.4 129.6 68.6 129.6 p 64.4 129.6 64.3 129.6 60.1 132.4 68.6 132.4 s2 64.4 129.6 64.3 129.6 p 60.1 129.6 64.3 129.6 60.1 132.4 t2 60.1 129.6 64.3 129.6 p 68.6 126.8 77.2 126.8 77.2 132.4 68.6 132.4 s1 75.5 126.8 72.3 129.2 72.9 129.6 77.2 126.8 s2 75.5 126.8 72.3 129.2 p 77.2 126.8 72.9 129.6 77.2 132.4 t2 77.2 132.4 72.9 129.6 68.6 132.4 t2 72.3 129.2 68.6 129.6 68.6 132.4 72.9 129.6 s2 72.3 129.2 68.6 129.6 p 77.2 126.8 85.8 126.8 85.8 132.4 77.2 132.4 s1 78.8 126.8 78.4 127.6 77.2 126.8 t2 78.8 126.8 78.4 127.6 p 79.0 131.2 78.7 132.4 77.2 132.4 t2 79.0 131.2 78.7 132.4 p 79.0 131.2 78.4 127.6 77.2 126.8 77.2 132.4 s2 79.0 131.2 78.4 127.6 p 85.8 126.8 94.4 126.8 94.4 132.4 85.8 132.4 s1 93.1 127.6 92.8 126.8 94.4 126.8 t2 93.1 127.6 92.8 126.8 p 93.1 127.6 92.6 131.2 94.4 132.4 94.4 126.8 s2 93.1 127.6 92.6 131.2 p 92.9 132.4 92.6 131.2 94.4 132.4 t2 92.9 132.4 92.6 131.2 p 94.4 126.8 102.9 126.8 102.9 132.4 94.4 132.4 s1 99.3 129.2 96.1 126.8 94.4 126.8 98.7 129.6 s2 99.3 129.2 96.1 126.8 p 102.9 129.6 99.3 129.2 98.7 129.6 102.9 132.4 s2 102.9 129.6 99.3 129.2 p 102.9 132.4 98.7 129.6 94.4 132.4 t2 94.4 132.4 98.7 129.6 94.4 126.8 t2 102.9 126.8 111.5 126.8 111.5 132.4 102.9 132.4 s1 107.3 129.6 111.5 129.6 111.5 132.4 t2 107.3 129.6 111.5 129.6 p 107.3 129.6 107.2 129.6 102.9 132.4 111.5 132.4 s2 107.3 129.6 107.2 129.6 p 102.9 129.6 107.2 129.6 102.9 132.4 t2 102.9 129.6 107.2 129.6 p 111.5 126.8 120.1 126.8 120.1 132.4 111.5 132.4 s1 118.4 126.8 115.2 129.2 115.8 129.6 120.1 126.8 s2 118.4 126.8 115.2 129.2 p 120.1 126.8 115.8 129.6 120.1 132.4 t2 120.1 132.4 115.8 129.6 111.5 132.4 t2 115.2 129.2 111.5 129.6 111.5 132.4 115.8 129.6 s2 115.2 129.2 111.5 129.6 p 120.1 126.8 128.7 126.8 128.7 132.4 120.1 132.4 s1 121.7 126.8 121.3 127.6 120.1 126.8 t2 121.7 126.8 121.3 127.6 p 121.9 131.2 121.6 132.4 120.1 132.4 t2 121.9 131.2 121.6 132.4 p 121.9 131.2 121.3 127.6 120.1 126.8 120.1 132.4 s2 121.9 131.2 121.3 127.6 p 128.7 126.8 137.3 126.8 137.3 132.4 128.7 132.4 s1 136.0 127.6 135.6 126.8 137.3 126.8 t2 136.0 127.6 135.6 126.8 p 136.0 127.6 135.5 131.2 137.3 132.4 137.3 126.8 s2 136.0 127.6 135.5 131.2 p 135.8 132.4 135.5 131.2 137.3 132.4 t2 135.8 132.4 135.5 131.2 p 137.3 126.8 145.8 126.8 145.8 132.4 137.3 132.4 s1 142.2 129.2 139.0 126.8 137.3 126.8 141.6 129.6 s2 142.2 129.2 139.0 126.8 p 145.8 129.6 142.2 129.2 141.6 129.6 145.8 132.4 s2 145.8 129.6 142.2 129.2 p 145.8 132.4 141.6 129.6 137.3 132.4 t2 137.3 132.4 141.6 129.6 137.3 126.8 t2 145.8 126.8 154.4 126.8 154.4 132.4 145.8 132.4 s1 150.2 129.6 154.4 129.6 154.4 132.4 t2 150.2 129.6 154.4 129.6 p 150.2 129.6 150.1 129.6 145.8 132.4 154.4 132.4 s2 150.2 129.6 150.1 129.6 p 145.8 129.6 150.1 129.6 145.8 132.4 t2 145.8 129.6 150.1 129.6 p 154.4 126.8 163.0 126.8 163.0 132.4 154.4 132.4 s1 161.3 126.8 158.1 129.2 158.7 129.6 163.0 126.8 s2 161.3 126.8 158.1 129.2 p 163.0 126.8 158.7 129.6 163.0 132.4 t2 163.0 132.4 158.7 129.6 154.4 132.4 t2 158.1 129.2 154.4 129.6 154.4 132.4 158.7 129.6 s2 158.1 129.2 154.4 129.6 p 163.0 126.8 171.6 126.8 171.6 132.4 163.0 132.4 s1 164.6 126.8 164.2 127.6 163.0 126.8 t2 164.6 126.8 164.2 127.6 p 164.8 131.2 164.5 132.4 163.0 132.4 t2 164.8 131.2 164.5 132.4 p 164.8 131.2 164.2 127.6 163.0 126.8 163.0 132.4 s2 164.8 131.2 164.2 127.6 p 171.6 126.8 180.2 126.8 180.2 132.4 171.6 132.4 s1 178.9 127.6 178.5 126.8 180.2 126.8 t2 178.9 127.6 178.5 126.8 p 178.9 127.6 178.4 131.2 180.2 132.4 180.2 126.8 s2 178.9 127.6 178.4 131.2 p 178.7 132.4 178.4 131.2 180.2 132.4 t2 178.7 132.4 178.4 131.2 p 180.2 126.8 188.7 126.8 188.7 132.4 180.2 132.4 s1 185.1 129.2 181.9 126.8 180.2 126.8 184.4 129.6 s2 185.1 129.2 181.9 126.8 p 188.7 129.6 185.1 129.2 184.4 129.6 188.7 132.4 s2 188.7 129.6 185.1 129.2 p 188.7 132.4 184.4 129.6 180.2 132.4 t2 180.2 132.4 184.4 129.6 180.2 126.8 t2 188.7 126.8 197.3 126.8 197.3 132.4 188.7 132.4 s1 193.1 129.6 197.3 129.6 197.3 132.4 t2 193.1 129.6 197.3 129.6 p 193.1 129.6 193.0 129.6 188.7 132.4 197.3 132.4 s2 193.1 129.6 193.0 129.6 p 188.7 129.6 193.0 129.6 188.7 132.4 t2 188.7 129.6 193.0 129.6 p 197.3 126.8 205.9 126.8 205.9 132.4 197.3 132.4 s1 204.1 126.8 201.0 129.2 201.6 129.6 205.9 126.8 s2 204.1 126.8 201.0 129.2 p 205.9 126.8 201.6 129.6 205.9 132.4 t2 205.9 132.4 201.6 129.6 197.3 132.4 t2 201.0 129.2 197.3 129.6 197.3 132.4 201.6 129.6 s2 201.0 129.2 197.3 129.6 p 205.9 126.8 214.5 126.8 214.5 132.4 205.9 132.4 s1 207.5 126.8 207.1 127.6 205.9 126.8 t2 207.5 126.8 207.1 127.6 p 207.7 131.2 207.4 132.4 205.9 132.4 t2 207.7 131.2 207.4 132.4 p 207.7 131.2 207.1 127.6 205.9 126.8 205.9 132.4 s2 207.7 131.2 207.1 127.6 p 214.5 126.8 223.1 126.8 223.1 132.4 214.5 132.4 s1 221.8 127.6 221.4 126.8 223.1 126.8 t2 221.8 127.6 221.4 126.8 p 221.8 127.6 221.3 131.2 223.1 132.4 223.1 126.8 s2 221.8 127.6 221.3 131.2 p 221.6 132.4 221.3 131.2 223.1 132.4 t2 221.6 132.4 221.3 131.2 p 223.1 126.8 231.6 126.8 231.6 132.4 223.1 132.4 s1 228.0 129.2 224.8 126.8 223.1 126.8 227.3 129.6 s2 228.0 129.2 224.8 126.8 p 231.6 129.6 228.0 129.2 227.3 129.6 231.6 132.4 s2 231.6 129.6 228.0 129.2 p 231.6 132.4 227.3 129.6 223.1 132.4 t2 223.1 132.4 227.3 129.6 223.1 126.8 t2 231.6 126.8 240.2 126.8 240.2 132.4 231.6 132.4 s1 235.9 129.6 240.2 129.6 240.2 132.4 t2 235.9 129.6 240.2 129.6 p 235.9 129.6 235.9 129.6 231.6 132.4 240.2 132.4 s2 235.9 129.6 235.9 129.6 p 231.6 129.6 235.9 129.6 231.6 132.4 t2 231.6 129.6 235.9 129.6 p 240.2 126.8 248.8 126.8 248.8 132.4 240.2 132.4 s1 247.0 126.8 243.9 129.2 244.5 129.6 248.8 126.8 s2 247.0 126.8 243.9 129.2 p 248.8 126.8 244.5 129.6 248.8 132.4 t2 248.8 132.4 244.5 129.6 240.2 132.4 t2 243.9 129.2 240.2 129.6 240.2 132.4 244.5 129.6 s2 243.9 129.2 240.2 129.6 p 248.8 126.8 257.4 126.8 257.4 132.4 248.8 132.4 s1 250.4 126.8 250.0 127.6 248.8 126.8 t2 250.4 126.8 250.0 127.6 p 250.6 131.2 250.3 132.4 248.8 132.4 t2 250.6 131.2 250.3 132.4 p 250.6 131.2 250.0 127.6 248.8 126.8 248.8 132.4 s2 250.6 131.2 250.0 127.6 p 257.4 126.8 265.9 126.8 265.9 132.4 257.4 132.4 s1 264.7 127.6 264.3 126.8 265.9 126.8 t2 264.7 127.6 264.3 126.8 p 264.7 127.6 264.2 131.2 265.9 132.4 265.9 126.8 s2 264.7 127.6 264.2 131.2 p 264.5 132.4 264.2 131.2 265.9 132.4 t2 264.5 132.4 264.2 131.2 p 265.9 126.8 274.5 126.8 274.5 132.4 265.9 132.4 s1 270.9 129.2 267.7 126.8 265.9 126.8 270.2 129.6 s2 270.9 129.2 267.7 126.8 p 274.5 129.6 270.9 129.2 270.2 129.6 274.5 132.4 s2 274.5 129.6 270.9 129.2 p 274.5 132.4 270.2 129.6 265.9 132.4 t2 265.9 132.4 270.2 129.6 265.9 126.8 t2 274.5 126.8 283.1 126.8 283.1 132.4 274.5 132.4 s1 278.8 129.6 283.1 129.6 283.1 132.4 t2 278.8 129.6 283.1 129.6 p 278.8 129.6 278.8 129.6 274.5 132.4 283.1 132.4 s2 278.8 129.6 278.8 129.6 p 274.5 129.6 278.8 129.6 274.5 132.4 t2 274.5 129.6 278.8 129.6 p 283.1 126.8 291.7 126.8 291.7 132.4 283.1 132.4 s1 289.9 126.8 286.8 129.2 287.4 129.6 291.7 126.8 s2 289.9 126.8 286.8 129.2 p 291.7 126.8 287.4 129.6 291.7 132.4 t2 291.7 132.4 287.4 129.6 283.1 132.4 t2 286.8 129.2 283.1 129.6 283.1 132.4 287.4 129.6 s2 286.8 129.2 283.1 129.6 p 291.7 126.8 300.3 126.8 300.3 132.4 291.7 132.4 s1 293.3 126.8 292.9 127.6 291.7 126.8 t2 293.3 126.8 292.9 127.6 p 293.5 131.2 293.2 132.4 291.7 132.4 t2 293.5 131.2 293.2 132.4 p 293.5 131.2 292.9 127.6 291.7 126.8 291.7 132.4 s2 293.5 131.2 292.9 127.6 p 0.0 121.3 8.6 121.3 8.6 126.8 0.0 126.8 s1 7.7 126.3 8.6 126.1 8.6 126.8 t2 7.7 126.3 8.6 126.1 p 7.0 126.8 7.7 126.3 8.6 126.8 t2 7.0 126.8 7.7 126.3 p 8.6 121.3 17.2 121.3 17.2 126.8 8.6 126.8 s1 9.3 126.4 10.3 126.8 8.6 126.8 t2 9.3 126.4 10.3 126.8 p 8.6 126.1 9.3 126.4 8.6 126.8 t2 8.6 126.1 9.3 126.4 p 17.2 121.3 25.7 121.3 25.7 126.8 17.2 126.8 s1 25.7 121.3 34.3 121.3 34.3 126.8 25.7 126.8 s1 33.6 126.4 34.3 126.1 34.3 126.8 t2 33.6 126.4 34.3 126.1 p 32.6 126.8 33.6 126.4 34.3 126.8 t2 32.6 126.8 33.6 126.4 p 34.3 121.3 42.9 121.3 42.9 126.8 34.3 126.8 s1 35.1 126.3 35.9 126.8 34.3 126.8 t2 35.1 126.3 35.9 126.8 p 34.3 126.1 35.1 126.3 34.3 126.8 t2 34.3 126.1 35.1 126.3 p 42.9 121.3 51.5 121.3 51.5 126.8 42.9 126.8 s1 50.6 126.3 51.5 126.1 51.5 126.8 t2 50.6 126.3 51.5 126.1 p 49.9 126.8 50.6 126.3 51.5 126.8 t2 49.9 126.8 50.6 126.3 p 51.5 121.3 60.1 121.3 60.1 126.8 51.5 126.8 s1 52.2 126.4 53.2 126.8 51.5 126.8 t2 52.2 126.4 53.2 126.8 p 51.5 126.1 52.2 126.4 51.5 126.8 t2 51.5 126.1 52.2 126.4 p 60.1 121.3 68.6 121.3 68.6 126.8 60.1 126.8 s1 68.6 121.3 77.2 121.3 77.2 126.8 68.6 126.8 s1 76.5 126.4 77.2 126.1 77.2 126.8 t2 76.5 126.4 77.2 126.1 p 75.5 126.8 76.5 126.4 77.2 126.8 t2 75.5 126.8 76.5 126.4 p 77.2 121.3 85.8 121.3 85.8 126.8 77.2 126.8 s1 78.0 126.3 78.8 126.8 77.2 126.8 t2 78.0 126.3 78.8 126.8 p 77.2 126.1 78.0 126.3 77.2 126.8 t2 77.2 126.1 78.0 126.3 p 85.8 121.3 94.4 121.3 94.4 126.8 85.8 126.8 s1 93.5 126.3 94.4 126.1 94.4 126.8 t2 93.5 126.3 94.4 126.1 p 92.8 126.8 93.5 126.3 94.4 126.8 t2 92.8 126.8 93.5 126.3 p 94.4 121.3 102.9 121.3 102.9 126.8 94.4 126.8 s1 95.1 126.4 96.1 126.8 94.4 126.8 t2 95.1 126.4 96.1 126.8 p 94.4 126.1 95.1 126.4 94.4 126.8 t2 94.4 126.1 95.1 126.4 p 102.9 121.3 111.5 121.3 111.5 126.8 102.9 126.8 s1 111.5 121.3 120.1 121.3 120.1 126.8 111.5 126.8 s1 119.4 126.4 120.1 126.1 120.1 126.8 t2 119.4 126.4 120.1 126.1 p 118.4 126.8 119.4 126.4 120.1 126.8 t2 118.4 126.8 119.4 126.4 p 120.1 121.3 128.7 121.3 128.7 126.8 120.1 126.8 s1 120.9 126.3 121.7 126.8 120.1 126.8 t2 120.9 126.3 121.7 126.8 p 120.1 126.1 120.9 126.3 120.1 126.8 t2 120.1 126.1 120.9 126.3 p 128.7 121.3 137.3 121.3 137.3 126.8 128.7 126.8 s1 136.4 126.3 137.3 126.1 137.3 126.8 t2 136.4 126.3 137.3 126.1 p 135.6 126.8 136.4 126.3 137.3 126.8 t2 135.6 126.8 136.4 126.3 p 137.3 121.3 145.8 121.3 145.8 126.8 137.3 126.8 s1 138.0 126.4 139.0 126.8 137.3 126.8 t2 138.0 126.4 139.0 126.8 p 137.3 126.1 138.0 126.4 137.3 126.8 t2 137.3 126.1 138.0 126.4 p 145.8 121.3 154.4 121.3 154.4 126.8 145.8 126.8 s1 154.4 121.3 163.0 121.3 163.0 126.8 154.4 126.8 s1 162.3 126.4 163.0 126.1 163.0 126.8 t2 162.3 126.4 163.0 126.1 p 161.3 126.8 162.3 126.4 163.0 126.8 t2 161.3 126.8 162.3 126.4 p 163.0 121.3 171.6 121.3 171.6 126.8 163.0 126.8 s1 163.8 126.3 164.6 126.8 163.0 126.8 t2 163.8 126.3 164.6 126.8 p 163.0 126.1 163.8 126.3 163.0 126.8 t2 163.0 126.1 163.8 126.3 p 171.6 121.3 180.2 121.3 180.2 126.8 171.6 126.8 s1 179.3 126.3 180.2 126.1 180.2 126.8 t2 179.3 126.3 180.2 126.1 p 178.5 126.8 179.3 126.3 180.2 126.8 t2 178.5 126.8 179.3 126.3 p 180.2 121.3 188.7 121.3 188.7 126.8 180.2 126.8 s1 180.9 126.4 181.9 126.8 180.2 126.8 t2 180.9 126.4 181.9 126.8 p 180.2 126.1 180.9 126.4 180.2 126.8 t2 180.2 126.1 180.9 126.4 p 188.7 121.3 197.3 121.3 197.3 126.8 188.7 126.8 s1 197.3 121.3 205.9 121.3 205.9 126.8 197.3 126.8 s1 205.1 126.4 205.9 126.1 205.9 126.8 t2 205.1 126.4 205.9 126.1 p 204.1 126.8 205.1 126.4 205.9 126.8 t2 204.1 126.8 205.1 126.4 p 205.9 121.3 214.5 121.3 214.5 126.8 205.9 126.8 s1 206.7 126.3 207.5 126.8 205.9 126.8 t2 206.7 126.3 207.5 126.8 p 205.9 126.1 206.7 126.3 205.9 126.8 t2 205.9 126.1 206.7 126.3 p 214.5 121.3 223.1 121.3 223.1 126.8 214.5 126.8 s1 222.2 126.3 223.1 126.1 223.1 126.8 t2 222.2 126.3 223.1 126.1 p 221.4 126.8 222.2 126.3 223.1 126.8 t2 221.4 126.8 222.2 126.3 p 223.1 121.3 231.6 121.3 231.6 126.8 223.1 126.8 s1 223.8 126.4 224.8 126.8 223.1 126.8 t2 223.8 126.4 224.8 126.8 p 223.1 126.1 223.8 126.4 223.1 126.8 t2 223.1 126.1 223.8 126.4 p 231.6 121.3 240.2 121.3 240.2 126.8 231.6 126.8 s1 240.2 121.3 248.8 121.3 248.8 126.8 240.2 126.8 s1 248.0 126.4 248.8 126.1 248.8 126.8 t2 248.0 126.4 248.8 126.1 p 247.0 126.8 248.0 126.4 248.8 126.8 t2 247.0 126.8 248.0 126.4 p 248.8 121.3 257.4 121.3 257.4 126.8 248.8 126.8 s1 249.6 126.3 250.4 126.8 248.8 126.8 t2 249.6 126.3 250.4 126.8 p 248.8 126.1 249.6 126.3 248.8 126.8 t2 248.8 126.1 249.6 126.3 p 257.4 121.3 265.9 121.3 265.9 126.8 257.4 126.8 s1 265.1 126.3 265.9 126.1 265.9 126.8 t2 265.1 126.3 265.9 126.1 p 264.3 126.8 265.1 126.3 265.9 126.8 t2 264.3 126.8 265.1 126.3 p 265.9 121.3 274.5 121.3 274.5 126.8 265.9 126.8 s1 266.7 126.4 267.7 126.8 265.9 126.8 t2 266.7 126.4 267.7 126.8 p 265.9 126.1 266.7 126.4 265.9 126.8 t2 265.9 126.1 266.7 126.4 p 274.5 121.3 283.1 121.3 283.1 126.8 274.5 126.8 s1 283.1 121.3 291.7 121.3 291.7 126.8 283.1 126.8 s1 290.9 126.4 291.7 126.1 291.7 126.8 t2 290.9 126.4 291.7 126.1 p 289.9 126.8 290.9 126.4 291.7 126.8 t2 289.9 126.8 290.9 126.4 p 291.7 121.3 300.3 121.3 300.3 126.8 291.7 126.8 s1 292.5 126.3 293.3 126.8 291.7 126.8 t2 292.5 126.3 293.3 126.8 p 291.7 126.1 292.5 126.3 291.7 126.8 t2 291.7 126.1 292.5 126.3 p 0.0 115.8 8.6 115.8 8.6 121.3 0.0 121.3 s1 8.6 115.8 17.2 115.8 17.2 121.3 8.6 121.3 s1 17.2 115.8 25.7 115.8 25.7 121.3 17.2 121.3 s1 25.7 115.8 34.3 115.8 34.3 121.3 25.7 121.3 s1 34.3 115.8 42.9 115.8 42.9 121.3 34.3 121.3 s1 42.9 115.8 51.5 115.8 51.5 121.3 42.9 121.3 s1 51.5 115.8 60.1 115.8 60.1 121.3 51.5 121.3 s1 60.1 115.8 68.6 115.8 68.6 121.3 60.1 121.3 s1 68.6 115.8 77.2 115.8 77.2 121.3 68.6 121.3 s1 77.2 115.8 85.8 115.8 85.8 121.3 77.2 121.3 s1 85.8 115.8 94.4 115.8 94.4 121.3 85.8 121.3 s1 94.4 115.8 102.9 115.8 102.9 121.3 94.4 121.3 s1 102.9 115.8 111.5 115.8 111.5 121.3 102.9 121.3 s1 111.5 115.8 120.1 115.8 120.1 121.3 111.5 121.3 s1 120.1 115.8 128.7 115.8 128.7 121.3 120.1 121.3 s1 128.7 115.8 137.3 115.8 137.3 121.3 128.7 121.3 s1 137.3 115.8 145.8 115.8 145.8 121.3 137.3 121.3 s1 145.8 115.8 154.4 115.8 154.4 121.3 145.8 121.3 s1 154.4 115.8 163.0 115.8 163.0 121.3 154.4 121.3 s1 163.0 115.8 171.6 115.8 171.6 121.3 163.0 121.3 s1 171.6 115.8 180.2 115.8 180.2 121.3 171.6 121.3 s1 180.2 115.8 188.7 115.8 188.7 121.3 180.2 121.3 s1 188.7 115.8 197.3 115.8 197.3 121.3 188.7 121.3 s1 197.3 115.8 205.9 115.8 205.9 121.3 197.3 121.3 s1 205.9 115.8 214.5 115.8 214.5 121.3 205.9 121.3 s1 214.5 115.8 223.1 115.8 223.1 121.3 214.5 121.3 s1 223.1 115.8 231.6 115.8 231.6 121.3 223.1 121.3 s1 231.6 115.8 240.2 115.8 240.2 121.3 231.6 121.3 s1 240.2 115.8 248.8 115.8 248.8 121.3 240.2 121.3 s1 248.8 115.8 257.4 115.8 257.4 121.3 248.8 121.3 s1 257.4 115.8 265.9 115.8 265.9 121.3 257.4 121.3 s1 265.9 115.8 274.5 115.8 274.5 121.3 265.9 121.3 s1 274.5 115.8 283.1 115.8 283.1 121.3 274.5 121.3 s1 283.1 115.8 291.7 115.8 291.7 121.3 283.1 121.3 s1 291.7 115.8 300.3 115.8 300.3 121.3 291.7 121.3 s1 0.0 110.3 8.6 110.3 8.6 115.8 0.0 115.8 s0 2.6 112.0 6.7 111.5 4.3 113.1 t1 2.6 112.0 6.7 111.5 p 8.6 111.3 6.7 111.5 4.3 113.1 8.6 115.8 s1 8.6 111.3 6.7 111.5 p 8.6 115.8 4.3 113.1 0.0 115.8 t1 2.6 112.0 0.0 112.2 0.0 115.8 4.3 113.1 s1 2.6 112.0 0.0 112.2 p 8.6 110.3 17.2 110.3 17.2 115.8 8.6 115.8 s0 10.4 111.4 16.4 110.8 12.9 113.1 t1 10.4 111.4 16.4 110.8 p 17.2 110.9 16.4 110.8 12.9 113.1 17.2 115.8 s1 17.2 110.9 16.4 110.8 p 17.2 115.8 12.9 113.1 8.6 115.8 t1 10.4 111.4 8.6 111.3 8.6 115.8 12.9 113.1 s1 10.4 111.4 8.6 111.3 p 17.2 110.3 25.7 110.3 25.7 115.8 17.2 115.8 s0 18.1 110.9 24.8 110.9 21.4 113.1 t1 18.1 110.9 24.8 110.9 p 25.7 110.9 24.8 110.9 21.4 113.1 25.7 115.8 s1 25.7 110.9 24.8 110.9 p 25.7 115.8 21.4 113.1 17.2 115.8 t1 18.1 110.9 17.2 110.9 17.2 115.8 21.4 113.1 s1 18.1 110.9 17.2 110.9 p 25.7 110.3 34.3 110.3 34.3 115.8 25.7 115.8 s0 26.5 110.8 32.5 111.4 30.0 113.1 t1 26.5 110.8 32.5 111.4 p 34.3 111.3 32.5 111.4 30.0 113.1 34.3 115.8 s1 34.3 111.3 32.5 111.4 p 34.3 115.8 30.0 113.1 25.7 115.8 t1 26.5 110.8 25.7 110.9 25.7 115.8 30.0 113.1 s1 26.5 110.8 25.7 110.9 p 34.3 110.3 42.9 110.3 42.9 115.8 34.3 115.8 s0 36.2 111.5 40.2 112.0 38.6 113.1 t1 36.2 111.5 40.2 112.0 p 42.9 112.2 40.2 112.0 38.6 113.1 42.9 115.8 s1 42.9 112.2 40.2 112.0 p 42.9 115.8 38.6 113.1 34.3 115.8 t1 36.2 111.5 34.3 111.3 34.3 115.8 38.6 113.1 s1 36.2 111.5 34.3 111.3 p 42.9 110.3 51.5 110.3 51.5 115.8 42.9 115.8 s0 45.5 112.0 49.6 111.5 47.2 113.1 t1 45.5 112.0 49.6 111.5 p 51.5 111.3 49.6 111.5 47.2 113.1 51.5 115.8 s1 51.5 111.3 49.6 111.5 p 51.5 115.8 47.2 113.1 42.9 115.8 t1 45.5 112.0 42.9 112.2 42.9 115.8 47.2 113.1 s1 45.5 112.0 42.9 112.2 p 51.5 110.3 60.1 110.3 60.1 115.8 51.5 115.8 s0 53.3 111.4 59.3 110.8 55.8 113.1 t1 53.3 111.4 59.3 110.8 p 60.1 110.9 59.3 110.8 55.8 113.1 60.1 115.8 s1 60.1 110.9 59.3 110.8 p 60.1 115.8 55.8 113.1 51.5 115.8 t1 53.3 111.4 51.5 111.3 51.5 115.8 55.8 113.1 s1 53.3 111.4 51.5 111.3 p 60.1 110.3 68.6 110.3 68.6 115.8 60.1 115.8 s0 61.0 110.9 67.7 110.9 64.3 113.1 t1 61.0 110.9 67.7 110.9 p 68.6 110.9 67.7 110.9 64.3 113.1 68.6 115.8 s1 68.6 110.9 67.7 110.9 p 68.6 115.8 64.3 113.1 60.1 115.8 t1 61.0 110.9 60.1 110.9 60.1 115.8 64.3 113.1 s1 61.0 110.9 60.1 110.9 p 68.6 110.3 77.2 110.3 77.2 115.8 68.6 115.8 s0 69.4 110.8 75.4 111.4 72.9 113.1 t1 69.4 110.8 75.4 111.4 p 77.2 111.3 75.4 111.4 72.9 113.1 77.2 115.8 s1 77.2 111.3 75.4 111.4 p 77.2 115.8 72.9 113.1 68.6 115.8 t1 69.4 110.8 68.6 110.9 68.6 115.8 72.9 113.1 s1 69.4 110.8 68.6 110.9 p 77.2 110.3 85.8 110.3 85.8 115.8 77.2 115.8 s0 79.1 111.5 83.1 112.0 81.5 113.1 t1 79.1 111.5 83.1 112.0 p 85.8 112.2 83.1 112.0 81.5 113.1 85.8 115.8 s1 85.8 112.2 83.1 112.0 p 85.8 115.8 81.5 113.1 77.2 115.8 t1 79.1 111.5 77.2 111.3 77.2 115.8 81.5 113.1 s1 79.1 111.5 77.2 111.3 p 85.8 110.3 94.4 110.3 94.4 115.8 85.8 115.8 s0 88.4 112.0 92.5 111.5 90.1 113.1 t1 88.4 112.0 92.5 111.5 p 94.4 111.3 92.5 111.5 90.1 113.1 94.4 115.8 s1 94.4 111.3 92.5 111.5 p 94.4 115.8 90.1 113.1 85.8 115.8 t1 88.4 112.0 85.8 112.2 85.8 115.8 90.1 113.1 s1 88.4 112.0 85.8 112.2 p 94.4 110.3 102.9 110.3 102.9 115.8 94.4 115.8 s0 96.2 111.4 102.2 110.8 98.7 113.1 t1 96.2 111.4 102.2 110.8 p 102.9 110.9 102.2 110.8 98.7 113.1 102.9 115.8 s1 102.9 110.9 102.2 110.8 p 102.9 115.8 98.7 113.1 94.4 115.8 t1 96.2 111.4 94.4 111.3 94.4 115.8 98.7 113.1 s1 96.2 111.4 94.4 111.3 p 102.9 110.3 111.5 110.3 111.5 115.8 102.9 115.8 s0 103.9 110.9 110.6 110.9 107.2 113.1 t1 103.9 110.9 110.6 110.9 p 111.5 110.9 110.6 110.9 107.2 113.1 111.5 115.8 s1 111.5 110.9 110.6 110.9 p 111.5 115.8 107.2 113.1 102.9 115.8 t1 103.9 110.9 102.9 110.9 102.9 115.8 107.2 113.1 s1 103.9 110.9 102.9 110.9 p 111.5 110.3 120.1 110.3 120.1 115.8 111.5 115.8 s0 112.3 110.8 118.3 111.4 115.8 113.1 t1 112.3 110.8 118.3 111.4 p 120.1 111.3 118.3 111.4 115.8 113.1 120.1 115.8 s1 120.1 111.3 118.3 111.4 p 120.1 115.8 115.8 113.1 111.5 115.8 t1 112.3 110.8 111.5 110.9 111.5 115.8 115.8 113.1 s1 112.3 110.8 111.5 110.9 p 120.1 110.3 128.7 110.3 128.7 115.8 120.1 115.8 s0 122.0 111.5 126.0 112.0 124.4 113.1 t1 122.0 111.5 126.0 112.0 p 128.7 112.2 126.0 112.0 124.4 113.1 128.7 115.8 s1 128.7 112.2 126.0 112.0 p 128.7 115.8 124.4 113.1 120.1 115.8 t1 122.0 111.5 120.1 111.3 120.1 115.8 124.4 113.1 s1 122.0 111.5 120.1 111.3 p 128.7 110.3 137.3 110.3 137.3 115.8 128.7 115.8 s0 131.3 112.0 135.4 111.5 133.0 113.1 t1 131.3 112.0 135.4 111.5 p 137.3 111.3 135.4 111.5 133.0 113.1 137.3 115.8 s1 137.3 111.3 135.4 111.5 p 137.3 115.8 133.0 113.1 128.7 115.8 t1 131.3 112.0 128.7 112.2 128.7 115.8 133.0 113.1 s1 131.3 112.0 128.7 112.2 p 137.3 110.3 145.8 110.3 145.8 115.8 137.3 115.8 s0 139.1 111.4 145.0 110.8 141.6 113.1 t1 139.1 111.4 145.0 110.8 p 145.8 110.9 145.0 110.8 141.6 113.1 145.8 115.8 s1 145.8 110.9 145.0 110.8 p 145.8 115.8 141.6 113.1 137.3 115.8 t1 139.1 111.4 137.3 111.3 137.3 115.8 141.6 113.1 s1 139.1 111.4 137.3 111.3 p 145.8 110.3 154.4 110.3 154.4 115.8 145.8 115.8 s0 146.8 110.9 153.5 110.9 150.1 113.1 t1 146.8 110.9 153.5 110.9 p 154.4 110.9 153.5 110.9 150.1 113.1 154.4 115.8 s1 154.4 110.9 153.5 110.9 p 154.4 115.8 150.1 113.1 145.8 115.8 t1 146.8 110.9 145.8 110.9 145.8 115.8 150.1 113.1 s1 146.8 110.9 145.8 110.9 p 154.4 110.3 163.0 110.3 163.0 115.8 154.4 115.8 s0 155.2 110.8 161.2 111.4 158.7 113.1 t1 155.2 110.8 161.2 111.4 p 163.0 111.3 161.2 111.4 158.7 113.1 163.0 115.8 s1 163.0 111.3 161.2 111.4 p 163.0 115.8 158.7 113.1 154.4 115.8 t1 155.2 110.8 154.4 110.9 154.4 115.8 158.7 113.1 s1 155.2 110.8 154.4 110.9 p 163.0 110.3 171.6 110.3 171.6 115.8 163.0 115.8 s0 164.9 111.5 168.9 112.0 167.3 113.1 t1 164.9 111.5 168.9 112.0 p 171.6 112.2 168.9 112.0 167.3 113.1 171.6 115.8 s1 171.6 112.2 168.9 112.0 p 171.6 115.8 167.3 113.1 163.0 115.8 t1 164.9 111.5 163.0 111.3 163.0 115.8 167.3 113.1 s1 164.9 111.5 163.0 111.3 p 171.6 110.3 180.2 110.3 180.2 115.8 171.6 115.8 s0 174.2 112.0 178.3 111.5 175.9 113.1 t1 174.2 112.0 178.3 111.5 p 180.2 111.3 178.3 111.5 175.9 113.1 180.2 115.8 s1 180.2 111.3 178.3 111.5 p 180.2 115.8 175.9 113.1 171.6 115.8 t1 174.2 112.0 171.6 112.2 171.6 115.8 175.9 113.1 s1 174.2 112.0 171.6 112.2 p 180.2 110.3 188.7 110.3 188.7 115.8 180.2 115.8 s0 181.9 111.4 187.9 110.8 184.4 113.1 t1 181.9 111.4 187.9 110.8 p 188.7 110.9 187.9 110.8 184.4 113.1 188.7 115.8 s1 188.7 110.9 187.9 110.8 p 188.7 115.8 184.4 113.1 180.2 115.8 t1 181.9 111.4 180.2 111.3 180.2 115.8 184.4 113.1 s1 181.9 111.4 180.2 111.3 p 188.7 110.3 197.3 110.3 197.3 115.8 188.7 115.8 s0 189.7 110.9 196.4 110.9 193.0 113.1 t1 189.7 110.9 196.4 110.9 p 197.3 110.9 196.4 110.9 193.0 113.1 197.3 115.8 s1 197.3 110.9 196.4 110.9 p 197.3 115.8 193.0 113.1 188.7 115.8 t1 189.7 110.9 188.7 110.9 188.7 115.8 193.0 113.1 s1 189.7 110.9 188.7 110.9 p 197.3 110.3 205.9 110.3 205.9 115.8 197.3 115.8 s0 198.1 110.8 204.1 111.4 201.6 113.1 t1 198.1 110.8 204.1 111.4 p 205.9 111.3 204.1 111.4 201.6 113.1 205.9 115.8 s1 205.9 111.3 204.1 111.4 p 205.9 115.8 201.6 113.1 197.3 115.8 t1 198.1 110.8 197.3 110.9 197.3 115.8 201.6 113.1 s1 198.1 110.8 197.3 110.9 p 205.9 110.3 214.5 110.3 214.5 115.8 205.9 115.8 s0 207.8 111.5 211.8 112.0 210.2 113.1 t1 207.8 111.5 211.8 112.0 p 214.5 112.2 211.8 112.0 210.2 113.1 214.5 115.8 s1 214.5 112.2 211.8 112.0 p 214.5 115.8 210.2 113.1 205.9 115.8 t1 207.8 111.5 205.9 111.3 205.9 115.8 210.2 113.1 s1 207.8 111.5 205.9 111.3 p 214.5 110.3 223.1 110.3 223.1 115.8 214.5 115.8 s0 217.1 112.0 221.2 111.5 218.8 113.1 t1 217.1 112.0 221.2 111.5 p 223.1 111.3 221.2 111.5 218.8 113.1 223.1 115.8 s1 223.1 111.3 221.2 111.5 p 223.1 115.8 218.8 113.1 214.5 115.8 t1 217.1 112.0 214.5 112.2 214.5 115.8 218.8 113.1 s1 217.1 112.0 214.5 112.2 p 223.1 110.3 231.6 110.3 231.6 115.8 223.1 115.8 s0 224.8 111.4 230.8 110.8 227.3 113.1 t1 224.8 111.4 230.8 110.8 p 231.6 110.9 230.8 110.8 227.3 113.1 231.6 115.8 s1 231.6 110.9 230.8 110.8 p 231.6 115.8 227.3 113.1 223.1 115.8 t1 224.8 111.4 223.1 111.3 223.1 115.8 227.3 113.1 s1 224.8 111.4 223.1 111.3 p 231.6 110.3 240.2 110.3 240.2 115.8 231.6 115.8 s0 232.6 110.9 239.3 110.9 235.9 113.1 t1 232.6 110.9 239.3 110.9 p 240.2 110.9 239.3 110.9 235.9 113.1 240.2 115.8 s1 240.2 110.9 239.3 110.9 p 240.2 115.8 235.9 113.1 231.6 115.8 t1 232.6 110.9 231.6 110.9 231.6 115.8 235.9 113.1 s1 232.6 110.9 231.6 110.9 p 240.2 110.3 248.8 110.3 248.8 115.8 240.2 115.8 s0 241.0 110.8 247.0 111.4 244.5 113.1 t1 241.0 110.8 247.0 111.4 p 248.8 111.3 247.0 111.4 244.5 113.1 248.8 115.8 s1 248.8 111.3 247.0 111.4 p 248.8 115.8 244.5 113.1 240.2 115.8 t1 241.0 110.8 240.2 110.9 240.2 115.8 244.5 113.1 s1 241.0 110.8 240.2 110.9 p 248.8 110.3 257.4 110.3 257.4 115.8 248.8 115.8 s0 250.7 111.5 254.7 112.0 253.1 113.1 t1 250.7 111.5 254.7 112.0 p 257.4 112.2 254.7 112.0 253.1 113.1 257.4 115.8 s1 257.4 112.2 254.7 112.0 p 257.4 115.8 253.1 113.1 248.8 115.8 t1 250.7 111.5 248.8 111.3 248.8 115.8 253.1 113.1 s1 250.7 111.5 248.8 111.3 p 257.4 110.3 265.9 110.3 265.9 115.8 257.4 115.8 s0 260.0 112.0 264.1 111.5 261.7 113.1 t1 260.0 112.0 264.1 111.5 p 265.9 111.3 264.1 111.5 261.7 113.1 265.9 115.8 s1 265.9 111.3 264.1 111.5 p 265.9 115.8 261.7 113.1 257.4 115.8 t1 260.0 112.0 257.4 112.2 257.4 115.8 261.7 113.1 s1 260.0 112.0 257.4 112.2 p 265.9 110.3 274.5 110.3 274.5 115.8 265.9 115.8 s0 267.7 111.4 273.7 110.8 270.2 113.1 t1 267.7 111.4 273.7 110.8 p 274.5 110.9 273.7 110.8 270.2 113.1 274.5 115.8 s1 274.5 110.9 273.7 110.8 p 274.5 115.8 270.2 113.1 265.9 115.8 t1 267.7 111.4 265.9 111.3 265.9 115.8 270.2 113.1 s1 267.7 111.4 265.9 111.3 p 274.5 110.3 283.1 110.3 283.1 115.8 274.5 115.8 s0 275.5 110.9 282.2 110.9 278.8 113.1 t1 275.5 110.9 282.2 110.9 p 283.1 110.9 282.2 110.9 278.8 113.1 283.1 115.8 s1 283.1 110.9 282.2 110.9 p 283.1 115.8 278.8 113.1 274.5 115.8 t1 275.5 110.9 274.5 110.9 274.5 115.8 278.8 113.1 s1 275.5 110.9 274.5 110.9 p 283.1 110.3 291.7 110.3 291.7 115.8 283.1 115.8 s0 283.9 110.8 289.9 111.4 287.4 113.1 t1 283.9 110.8 289.9 111.4 p 291.7 111.3 289.9 111.4 287.4 113.1 291.7 115.8 s1 291.7 111.3 289.9 111.4 p 291.7 115.8 287.4 113.1 283.1 115.8 t1 283.9 110.8 283.1 110.9 283.1 115.8 287.4 113.1 s1 283.9 110.8 283.1 110.9 p 291.7 110.3 300.3 110.3 300.3 115.8 291.7 115.8 s0 293.6 111.5 297.6 112.0 296.0 113.1 t1 293.6 111.5 297.6 112.0 p 300.3 112.2 297.6 112.0 296.0 113.1 300.3 115.8 s1 300.3 112.2 297.6 112.0 p 300.3 115.8 296.0 113.1 291.7 115.8 t1 293.6 111.5 291.7 111.3 291.7 115.8 296.0 113.1 s1 293.6 111.5 291.7 111.3 p 0.0 104.8 8.6 104.8 8.6 110.3 0.0 110.3 s0 8.6 104.8 17.2 104.8 17.2 110.3 8.6 110.3 s0 16.2 105.4 16.2 104.8 17.2 104.8 t1 16.2 105.4 16.2 104.8 p 17.2 107.0 16.2 105.4 17.2 104.8 t1 17.2 107.0 16.2 105.4 p 17.2 104.8 25.7 104.8 25.7 110.3 17.2 110.3 s0 20.6 107.0 22.3 107.0 25.7 104.8 17.2 104.8 s1 20.6 107.0 22.3 107.0 p 25.7 107.0 22.3 107.0 25.7 104.8 t1 25.7 107.0 22.3 107.0 p 20.6 107.0 17.2 107.0 17.2 104.8 t1 20.6 107.0 17.2 107.0 p 25.7 104.8 34.3 104.8 34.3 110.3 25.7 110.3 s0 26.7 104.8 26.7 105.4 25.7 104.8 t1 26.7 104.8 26.7 105.4 p 26.7 105.4 25.7 107.0 25.7 104.8 t1 26.7 105.4 25.7 107.0 p 34.3 104.8 42.9 104.8 42.9 110.3 34.3 110.3 s0 42.9 104.8 51.5 104.8 51.5 110.3 42.9 110.3 s0 51.5 104.8 60.1 104.8 60.1 110.3 51.5 110.3 s0 59.1 105.4 59.1 104.8 60.1 104.8 t1 59.1 105.4 59.1 104.8 p 60.1 107.0 59.1 105.4 60.1 104.8 t1 60.1 107.0 59.1 105.4 p 60.1 104.8 68.6 104.8 68.6 110.3 60.1 110.3 s0 63.5 107.0 65.2 107.0 68.6 104.8 60.1 104.8 s1 63.5 107.0 65.2 107.0 p 68.6 107.0 65.2 107.0 68.6 104.8 t1 68.6 107.0 65.2 107.0 p 63.5 107.0 60.1 107.0 60.1 104.8 t1 63.5 107.0 60.1 107.0 p 68.6 104.8 77.2 104.8 77.2 110.3 68.6 110.3 s0 69.6 104.8 69.6 105.4 68.6 104.8 t1 69.6 104.8 69.6 105.4 p 69.6 105.4 68.6 107.0 68.6 104.8 t1 69.6 105.4 68.6 107.0 p 77.2 104.8 85.8 104.8 85.8 110.3 77.2 110.3 s0 85.8 104.8 94.4 104.8 94.4 110.3 85.8 110.3 s0 94.4 104.8 102.9 104.8 102.9 110.3 94.4 110.3 s0 101.9 105.4 102.0 104.8 102.9 104.8 t1 101.9 105.4 102.0 104.8 p 102.9 107.0 101.9 105.4 102.9 104.8 t1 102.9 107.0 101.9 105.4 p 102.9 104.8 111.5 104.8 111.5 110.3 102.9 110.3 s0 106.4 107.0 108.1 107.0 111.5 104.8 102.9 104.8 s1 106.4 107.0 108.1 107.0 p 111.5 107.0 108.1 107.0 111.5 104.8 t1 111.5 107.0 108.1 107.0 p 106.4 107.0 102.9 107.0 102.9 104.8 t1 106.4 107.0 102.9 107.0 p 111.5 104.8 120.1 104.8 120.1 110.3 111.5 110.3 s0 112.5 104.8 112.5 105.4 111.5 104.8 t1 112.5 104.8 112.5 105.4 p 112.5 105.4 111.5 107.0 111.5 104.8 t1 112.5 105.4 111.5 107.0 p 120.1 104.8 128.7 104.8 128.7 110.3 120.1 110.3 s0 128.7 104.8 137.3 104.8 137.3 110.3 128.7 110.3 s0 137.3 104.8 145.8 104.8 145.8 110.3 137.3 110.3 s0 144.8 105.4 144.9 104.8 145.8 104.8 t1 144.8 105.4 144.9 104.8 p 145.8 107.0 144.8 105.4 145.8 104.8 t1 145.8 107.0 144.8 105.4 p 145.8 104.8 154.4 104.8 154.4 110.3 145.8 110.3 s0 149.3 107.0 151.0 107.0 154.4 104.8 145.8 104.8 s1 149.3 107.0 151.0 107.0 p 154.4 107.0 151.0 107.0 154.4 104.8 t1 154.4 107.0 151.0 107.0 p 149.3 107.0 145.8 107.0 145.8 104.8 t1 149.3 107.0 145.8 107.0 p 154.4 104.8 163.0 104.8 163.0 110.3 154.4 110.3 s0 155.4 104.8 155.4 105.4 154.4 104.8 t1 155.4 104.8 155.4 105.4 p 155.4 105.4 154.4 107.0 154.4 104.8 t1 155.4 105.4 154.4 107.0 p 163.0 104.8 171.6 104.8 171.6 110.3 163.0 110.3 s0 171.6 104.8 180.2 104.8 180.2 110.3 171.6 110.3 s0 180.2 104.8 188.7 104.8 188.7 110.3 180.2 110.3 s0 187.7 105.4 187.8 104.8 188.7 104.8 t1 187.7 105.4 187.8 104.8 p 188.7 107.0 187.7 105.4 188.7 104.8 t1 188.7 107.0 187.7 105.4 p 188.7 104.8 197.3 104.8 197.3 110.3 188.7 110.3 s0 192.2 107.0 193.9 107.0 197.3 104.8 188.7 104.8 s1 192.2 107.0 193.9 107.0 p 197.3 107.0 193.9 107.0 197.3 104.8 t1 197.3 107.0 193.9 107.0 p 192.2 107.0 188.7 107.0 188.7 104.8 t1 192.2 107.0 188.7 107.0 p 197.3 104.8 205.9 104.8 205.9 110.3 197.3 110.3 s0 198.3 104.8 198.3 105.4 197.3 104.8 t1 198.3 104.8 198.3 105.4 p 198.3 105.4 197.3 107.0 197.3 104.8 t1 198.3 105.4 197.3 107.0 p 205.9 104.8 214.5 104.8 214.5 110.3 205.9 110.3 s0 214.5 104.8 223.1 104.8 223.1 110.3 214.5 110.3 s0 223.1 104.8 231.6 104.8 231.6 110.3 223.1 110.3 s0 230.6 105.4 230.7 104.8 231.6 104.8 t1 230.6 105.4 230.7 104.8 p 231.6 107.0 230.6 105.4 231.6 104.8 t1 231.6 107.0 230.6 105.4 p 231.6 104.8 240.2 104.8 240.2 110.3 231.6 110.3 s0 235.0 107.0 236.8 107.0 240.2 104.8 231.6 104.8 s1 235.0 107.0 236.8 107.0 p 240.2 107.0 236.8 107.0 240.2 104.8 t1 240.2 107.0 236.8 107.0 p 235.0 107.0 231.6 107.0 231.6 104.8 t1 235.0 107.0 231.6 107.0 p 240.2 104.8 248.8 104.8 248.8 110.3 240.2 110.3 s0 241.2 104.8 241.2 105.4 240.2 104.8 t1 241.2 104.8 241.2 105.4 p 241.2 105.4 240.2 107.0 240.2 104.8 t1 241.2 105.4 240.2 107.0 p 248.8 104.8 257.4 104.8 257.4 110.3 248.8 110.3 s0 257.4 104.8 265.9 104.8 265.9 110.3 257.4 110.3 s0 265.9 104.8 274.5 104.8 274.5 110.3 265.9 110.3 s0 273.5 105.4 273.6 104.8 274.5 104.8 t1 273.5 105.4 273.6 104.8 p 274.5 107.0 273.5 105.4 274.5 104.8 t1 274.5 107.0 273.5 105.4 p 274.5 104.8 283.1 104.8 283.1 110.3 274.5 110.3 s0 277.9 107.0 279.7 107.0 283.1 104.8 274.5 104.8 s1 277.9 107.0 279.7 107.0 p 283.1 107.0 279.7 107.0 283.1 104.8 t1 283.1 107.0 279.7 107.0 p 277.9 107.0 274.5 107.0 274.5 104.8 t1 277.9 107.0 274.5 107.0 p 283.1 104.8 291.7 104.8 291.7 110.3 283.1 110.3 s0 284.1 104.8 284.1 105.4 283.1 104.8 t1 284.1 104.8 284.1 105.4 p 284.1 105.4 283.1 107.0 283.1 104.8 t1 284.1 105.4 283.1 107.0 p 291.7 104.8 300.3 104.8 300.3 110.3 291.7 110.3 s0 0.0 99.3 8.6 99.3 8.6 104.8 0.0 104.8 s0 8.6 99.3 17.2 99.3 17.2 104.8 8.6 104.8 s0 9.4 99.3 10.5 100.5 12.9 102.0 17.2 99.3 s1 9.4 99.3 10.5 100.5 p 17.2 99.3 12.9 102.0 17.2 104.8 t1 11.7 102.8 16.2 104.8 17.2 104.8 12.9 102.0 s1 11.7 102.8 16.2 104.8 p 11.7 102.8 10.5 100.5 12.9 102.0 t1 11.7 102.8 10.5 100.5 p 17.2 99.3 25.7 99.3 25.7 104.8 17.2 104.8 s1 25.7 99.3 34.3 99.3 34.3 104.8 25.7 104.8 s0 32.4 100.5 33.5 99.3 25.7 99.3 30.0 102.0 s1 32.4 100.5 33.5 99.3 p 32.4 100.5 31.2 102.8 30.0 102.0 t1 32.4 100.5 31.2 102.8 p 26.7 104.8 31.2 102.8 30.0 102.0 25.7 104.8 s1 26.7 104.8 31.2 102.8 p 25.7 104.8 30.0 102.0 25.7 99.3 t1 34.3 99.3 42.9 99.3 42.9 104.8 34.3 104.8 s0 42.9 99.3 51.5 99.3 51.5 104.8 42.9 104.8 s0 51.5 99.3 60.1 99.3 60.1 104.8 51.5 104.8 s0 52.3 99.3 53.4 100.5 55.8 102.0 60.1 99.3 s1 52.3 99.3 53.4 100.5 p 60.1 99.3 55.8 102.0 60.1 104.8 t1 54.6 102.8 59.1 104.8 60.1 104.8 55.8 102.0 s1 54.6 102.8 59.1 104.8 p 54.6 102.8 53.4 100.5 55.8 102.0 t1 54.6 102.8 53.4 100.5 p 60.1 99.3 68.6 99.3 68.6 104.8 60.1 104.8 s1 68.6 99.3 77.2 99.3 77.2 104.8 68.6 104.8 s0 75.3 100.5 76.4 99.3 68.6 99.3 72.9 102.0 s1 75.3 100.5 76.4 99.3 p 75.3 100.5 74.1 102.8 72.9 102.0 t1 75.3 100.5 74.1 102.8 p 69.6 104.8 74.1 102.8 72.9 102.0 68.6 104.8 s1 69.6 104.8 74.1 102.8 p 68.6 104.8 72.9 102.0 68.6 99.3 t1 77.2 99.3 85.8 99.3 85.8 104.8 77.2 104.8 s0 85.8 99.3 94.4 99.3 94.4 104.8 85.8 104.8 s0 94.4 99.3 102.9 99.3 102.9 104.8 94.4 104.8 s0 95.2 99.3 96.3 100.5 98.7 102.0 102.9 99.3 s1 95.2 99.3 96.3 100.5 p 102.9 99.3 98.7 102.0 102.9 104.8 t1 97.5 102.8 102.0 104.8 102.9 104.8 98.7 102.0 s1 97.5 102.8 102.0 104.8 p 97.5 102.8 96.3 100.5 98.7 102.0 t1 97.5 102.8 96.3 100.5 p 102.9 99.3 111.5 99.3 111.5 104.8 102.9 104.8 s1 111.5 99.3 120.1 99.3 120.1 104.8 111.5 104.8 s0 118.2 100.5 119.3 99.3 111.5 99.3 115.8 102.0 s1 118.2 100.5 119.3 99.3 p 118.2 100.5 117.0 102.8 115.8 102.0 t1 118.2 100.5 117.0 102.8 p 112.5 104.8 117.0 102.8 115.8 102.0 111.5 104.8 s1 112.5 104.8 117.0 102.8 p 111.5 104.8 115.8 102.0 111.5 99.3 t1 120.1 99.3 128.7 99.3 128.7 104.8 120.1 104.8 s0 128.7 99.3 137.3 99.3 137.3 104.8 128.7 104.8 s0 137.3 99.3 145.8 99.3 145.8 104.8 137.3 104.8 s0 138.1 99.3 139.1 100.5 141.6 102.0 145.8 99.3 s1 138.1 99.3 139.1 100.5 p 145.8 99.3 141.6 102.0 145.8 104.8 t1 140.4 102.8 144.9 104.8 145.8 104.8 141.6 102.0 s1 140.4 102.8 144.9 104.8 p 140.4 102.8 139.1 100.5 141.6 102.0 t1 140.4 102.8 139.1 100.5 p 145.8 99.3 154.4 99.3 154.4 104.8 145.8 104.8 s1 154.4 99.3 163.0 99.3 163.0 104.8 154.4 104.8 s0 161.1 100.5 162.2 99.3 154.4 99.3 158.7 102.0 s1 161.1 100.5 162.2 99.3 p 161.1 100.5 159.8 102.8 158.7 102.0 t1 161.1 100.5 159.8 102.8 p 155.4 104.8 159.8 102.8 158.7 102.0 154.4 104.8 s1 155.4 104.8 159.8 102.8 p 154.4 104.8 158.7 102.0 154.4 99.3 t1 163.0 99.3 171.6 99.3 171.6 104.8 163.0 104.8 s0 171.6 99.3 180.2 99.3 180.2 104.8 171.6 104.8 s0 180.2 99.3 188.7 99.3 188.7 104.8 180.2 104.8 s0 181.0 99.3 182.0 100.5 184.4 102.0 188.7 99.3 s1 181.0 99.3 182.0 100.5 p 188.7 99.3 184.4 102.0 188.7 104.8 t1 183.3 102.8 187.8 104.8 188.7 104.8 184.4 102.0 s1 183.3 102.8 187.8 104.8 p 183.3 102.8 182.0 100.5 184.4 102.0 t1 183.3 102.8 182.0 100.5 p 188.7 99.3 197.3 99.3 197.3 104.8 188.7 104.8 s1 197.3 99.3 205.9 99.3 205.9 104.8 197.3 104.8 s0 204.0 100.5 205.1 99.3 197.3 99.3 201.6 102.0 s1 204.0 100.5 205.1 99.3 p 204.0 100.5 202.7 102.8 201.6 102.0 t1 204.0 100.5 202.7 102.8 p 198.3 104.8 202.7 102.8 201.6 102.0 197.3 104.8 s1 198.3 104.8 202.7 102.8 p 197.3 104.8 201.6 102.0 197.3 99.3 t1 205.9 99.3 214.5 99.3 214.5 104.8 205.9 104.8 s0 214.5 99.3 223.1 99.3 223.1 104.8 214.5 104.8 s0 223.1 99.3 231.6 99.3 231.6 104.8 223.1 104.8 s0 223.9 99.3 224.9 100.5 227.3 102.0 231.6 99.3 s1 223.9 99.3 224.9 100.5 p 231.6 99.3 227.3 102.0 231.6 104.8 t1 226.2 102.8 230.7 104.8 231.6 104.8 227.3 102.0 s1 226.2 102.8 230.7 104.8 p 226.2 102.8 224.9 100.5 227.3 102.0 t1 226.2 102.8 224.9 100.5 p 231.6 99.3 240.2 99.3 240.2 104.8 231.6 104.8 s1 240.2 99.3 248.8 99.3 248.8 104.8 240.2 104.8 s0 246.9 100.5 247.9 99.3 240.2 99.3 244.5 102.0 s1 246.9 100.5 247.9 99.3 p 246.9 100.5 245.6 102.8 244.5 102.0 t1 246.9 100.5 245.6 102.8 p 241.2 104.8 245.6 102.8 244.5 102.0 240.2 104.8 s1 241.2 104.8 245.6 102.8 p 240.2 104.8 244.5 102.0 240.2 99.3 t1 248.8 99.3 257.4 99.3 257.4 104.8 248.8 104.8 s0 257.4 99.3 265.9 99.3 265.9 104.8 257.4 104.8 s0 265.9 99.3 274.5 99.3 274.5 104.8 265.9 104.8 s0 266.8 99.3 267.8 100.5 270.2 102.0 274.5 99.3 s1 266.8 99.3 267.8 100.5 p 274.5 99.3 270.2 102.0 274.5 104.8 t1 269.1 102.8 273.6 104.8 274.5 104.8 270.2 102.0 s1 269.1 102.8 273.6 104.8 p 269.1 102.8 267.8 100.5 270.2 102.0 t1 269.1 102.8 267.8 100.5 p 274.5 99.3 283.1 99.3 283.1 104.8 274.5 104.8 s1 283.1 99.3 291.7 99.3 291.7 104.8 283.1 104.8 s0 289.8 100.5 290.8 99.3 283.1 99.3 287.4 102.0 s1 289.8 100.5 290.8 99.3 p 289.8 100.5 288.5 102.8 287.4 102.0 t1 289.8 100.5 288.5 102.8 p 284.1 104.8 288.5 102.8 287.4 102.0 283.1 104.8 s1 284.1 104.8 288.5 102.8 p 283.1 104.8 287.4 102.0 283.1 99.3 t1 291.7 99.3 300.3 99.3 300.3 104.8 291.7 104.8 s0 0.0 93.8 8.6 93.8 8.6 99.3 0.0 99.3 s0 5.1 96.0 4.1 93.8 8.6 93.8 t1 5.1 96.0 4.1 93.8 p 8.6 98.5 5.1 96.0 8.6 93.8 t1 8.6 98.5 5.1 96.0 p 8.6 93.8 17.2 93.8 17.2 99.3 8.6 99.3 s0 8.6 93.8 12.9 96.5 17.2 93.8 t1 17.2 93.8 12.9 96.5 17.2 99.3 t1 8.9 99.1 9.4 99.3 17.2 99.3 12.9 96.5 s1 8.9 99.1 9.4 99.3 p 8.6 98.5 8.9 99.1 12.9 96.5 8.6 93.8 s1 8.6 98.5 8.9 99.1 p 17.2 93.8 25.7 93.8 25.7 99.3 17.2 99.3 s1 25.7 93.8 34.3 93.8 34.3 99.3 25.7 99.3 s0 25.7 93.8 30.0 96.5 34.3 93.8 t1 34.0 99.1 34.3 98.5 34.3 93.8 30.0 96.5 s1 34.0 99.1 34.3 98.5 p 33.5 99.3 34.0 99.1 30.0 96.5 25.7 99.3 s1 33.5 99.3 34.0 99.1 p 25.7 99.3 30.0 96.5 25.7 93.8 t1 34.3 93.8 42.9 93.8 42.9 99.3 34.3 99.3 s0 38.8 93.8 37.8 96.0 34.3 93.8 t1 38.8 93.8 37.8 96.0 p 37.8 96.0 34.3 98.5 34.3 93.8 t1 37.8 96.0 34.3 98.5 p 42.9 93.8 51.5 93.8 51.5 99.3 42.9 99.3 s0 48.0 96.0 47.0 93.8 51.5 93.8 t1 48.0 96.0 47.0 93.8 p 51.5 98.5 48.0 96.0 51.5 93.8 t1 51.5 98.5 48.0 96.0 p 51.5 93.8 60.1 93.8 60.1 99.3 51.5 99.3 s0 51.5 93.8 55.8 96.5 60.1 93.8 t1 60.1 93.8 55.8 96.5 60.1 99.3 t1 51.8 99.1 52.3 99.3 60.1 99.3 55.8 96.5 s1 51.8 99.1 52.3 99.3 p 51.5 98.5 51.8 99.1 55.8 96.5 51.5 93.8 s1 51.5 98.5 51.8 99.1 p 60.1 93.8 68.6 93.8 68.6 99.3 60.1 99.3 s1 68.6 93.8 77.2 93.8 77.2 99.3 68.6 99.3 s0 68.6 93.8 72.9 96.5 77.2 93.8 t1 76.9 99.1 77.2 98.5 77.2 93.8 72.9 96.5 s1 76.9 99.1 77.2 98.5 p 76.4 99.3 76.9 99.1 72.9 96.5 68.6 99.3 s1 76.4 99.3 76.9 99.1 p 68.6 99.3 72.9 96.5 68.6 93.8 t1 77.2 93.8 85.8 93.8 85.8 99.3 77.2 99.3 s0 81.7 93.8 80.6 96.0 77.2 93.8 t1 81.7 93.8 80.6 96.0 p 80.6 96.0 77.2 98.5 77.2 93.8 t1 80.6 96.0 77.2 98.5 p 85.8 93.8 94.4 93.8 94.4 99.3 85.8 99.3 s0 90.9 96.0 89.8 93.8 94.4 93.8 t1 90.9 96.0 89.8 93.8 p 94.4 98.5 90.9 96.0 94.4 93.8 t1 94.4 98.5 90.9 96.0 p 94.4 93.8 102.9 93.8 102.9 99.3 94.4 99.3 s0 94.4 93.8 98.7 96.5 102.9 93.8 t1 102.9 93.8 98.7 96.5 102.9 99.3 t1 94.7 99.1 95.2 99.3 102.9 99.3 98.7 96.5 s1 94.7 99.1 95.2 99.3 p 94.4 98.5 94.7 99.1 98.7 96.5 94.4 93.8 s1 94.4 98.5 94.7 99.1 p 102.9 93.8 111.5 93.8 111.5 99.3 102.9 99.3 s1 111.5 93.8 120.1 93.8 120.1 99.3 111.5 99.3 s0 111.5 93.8 115.8 96.5 120.1 93.8 t1 119.8 99.1 120.1 98.5 120.1 93.8 115.8 96.5 s1 119.8 99.1 120.1 98.5 p 119.3 99.3 119.8 99.1 115.8 96.5 111.5 99.3 s1 119.3 99.3 119.8 99.1 p 111.5 99.3 115.8 96.5 111.5 93.8 t1 120.1 93.8 128.7 93.8 128.7 99.3 120.1 99.3 s0 124.6 93.8 123.5 96.0 120.1 93.8 t1 124.6 93.8 123.5 96.0 p 123.5 96.0 120.1 98.5 120.1 93.8 t1 123.5 96.0 120.1 98.5 p 128.7 93.8 137.3 93.8 137.3 99.3 128.7 99.3 s0 133.8 96.0 132.7 93.8 137.3 93.8 t1 133.8 96.0 132.7 93.8 p 137.3 98.5 133.8 96.0 137.3 93.8 t1 137.3 98.5 133.8 96.0 p 137.3 93.8 145.8 93.8 145.8 99.3 137.3 99.3 s0 137.3 93.8 141.6 96.5 145.8 93.8 t1 145.8 93.8 141.6 96.5 145.8 99.3 t1 137.6 99.1 138.1 99.3 145.8 99.3 141.6 96.5 s1 137.6 99.1 138.1 99.3 p 137.3 98.5 137.6 99.1 141.6 96.5 137.3 93.8 s1 137.3 98.5 137.6 99.1 p 145.8 93.8 154.4 93.8 154.4 99.3 145.8 99.3 s1 154.4 93.8 163.0 93.8 163.0 99.3 154.4 99.3 s0 154.4 93.8 158.7 96.5 163.0 93.8 t1 162.7 99.1 163.0 98.5 163.0 93.8 158.7 96.5 s1 162.7 99.1 163.0 98.5 p 162.2 99.3 162.7 99.1 158.7 96.5 154.4 99.3 s1 162.2 99.3 162.7 99.1 p 154.4 99.3 158.7 96.5 154.4 93.8 t1 163.0 93.8 171.6 93.8 171.6 99.3 163.0 99.3 s0 167.5 93.8 166.4 96.0 163.0 93.8 t1 167.5 93.8 166.4 96.0 p 166.4 96.0 163.0 98.5 163.0 93.8 t1 166.4 96.0 163.0 98.5 p 171.6 93.8 180.2 93.8 180.2 99.3 171.6 99.3 s0 176.7 96.0 175.6 93.8 180.2 93.8 t1 176.7 96.0 175.6 93.8 p 180.2 98.5 176.7 96.0 180.2 93.8 t1 180.2 98.5 176.7 96.0 p 180.2 93.8 188.7 93.8 188.7 99.3 180.2 99.3 s0 180.2 93.8 184.4 96.5 188.7 93.8 t1 188.7 93.8 184.4 96.5 188.7 99.3 t1 180.5 99.1 181.0 99.3 188.7 99.3 184.4 96.5 s1 180.5 99.1 181.0 99.3 p 180.2 98.5 180.5 99.1 184.4 96.5 180.2 93.8 s1 180.2 98.5 180.5 99.1 p 188.7 93.8 197.3 93.8 197.3 99.3 188.7 99.3 s1 197.3 93.8 205.9 93.8 205.9 99.3 197.3 99.3 s0 197.3 93.8 201.6 96.5 205.9 93.8 t1 205.6 99.1 205.9 98.5 205.9 93.8 201.6 96.5 s1 205.6 99.1 205.9 98.5 p 205.1 99.3 205.6 99.1 201.6 96.5 197.3 99.3 s1 205.1 99.3 205.6 99.1 p 197.3 99.3 201.6 96.5 197.3 93.8 t1 205.9 93.8 214.5 93.8 214.5 99.3 205.9 99.3 s0 210.4 93.8 209.3 96.0 205.9 93.8 t1 210.4 93.8 209.3 96.0 p 209.3 96.0 205.9 98.5 205.9 93.8 t1 209.3 96.0 205.9 98.5 p 214.5 93.8 223.1 93.8 223.1 99.3 214.5 99.3 s0 219.6 96.0 218.5 93.8 223.1 93.8 t1 219.6 96.0 218.5 93.8 p 223.1 98.5 219.6 96.0 223.1 93.8 t1 223.1 98.5 219.6 96.0 p 223.1 93.8 231.6 93.8 231.6 99.3 223.1 99.3 s0 223.1 93.8 227.3 96.5 231.6 93.8 t1 231.6 93.8 227.3 96.5 231.6 99.3 t1 223.4 99.1 223.9 99.3 231.6 99.3 227.3 96.5 s1 223.4 99.1 223.9 99.3 p 223.1 98.5 223.4 99.1 227.3 96.5 223.1 93.8 s1 223.1 98.5 223.4 99.1 p 231.6 93.8 240.2 93.8 240.2 99.3 231.6 99.3 s1 240.2 93.8 248.8 93.8 248.8 99.3 240.2 99.3 s0 240.2 93.8 244.5 96.5 248.8 93.8 t1 248.5 99.1 248.8 98.5 248.8 93.8 244.5 96.5 s1 248.5 99.1 248.8 98.5 p 247.9 99.3 248.5 99.1 244.5 96.5 240.2 99.3 s1 247.9 99.3 248.5 99.1 p 240.2 99.3 244.5 96.5 240.2 93.8 t1 248.8 93.8 257.4 93.8 257.4 99.3 248.8 99.3 s0 253.3 93.8 252.2 96.0 248.8 93.8 t1 253.3 93.8 252.2 96.0 p 252.2 96.0 248.8 98.5 248.8 93.8 t1 252.2 96.0 248.8 98.5 p 257.4 93.8 265.9 93.8 265.9 99.3 257.4 99.3 s0 262.5 96.0 261.4 93.8 265.9 93.8 t1 262.5 96.0 261.4 93.8 p 265.9 98.5 262.5 96.0 265.9 93.8 t1 265.9 98.5 262.5 96.0 p 265.9 93.8 274.5 93.8 274.5 99.3 265.9 99.3 s0 265.9 93.8 270.2 96.5 274.5 93.8 t1 274.5 93.8 270.2 96.5 274.5 99.3 t1 266.3 99.1 266.8 99.3 274.5 99.3 270.2 96.5 s1 266.3 99.1 266.8 99.3 p 265.9 98.5 266.3 99.1 270.2 96.5 265.9 93.8 s1 265.9 98.5 266.3 99.1 p 274.5 93.8 283.1 93.8 283.1 99.3 274.5 99.3 s1 283.1 93.8 291.7 93.8 291.7 99.3 283.1 99.3 s0 283.1 93.8 287.4 96.5 291.7 93.8 t1 291.4 99.1 291.7 98.5 291.7 93.8 287.4 96.5 s1 291.4 99.1 291.7 98.5 p 290.8 99.3 291.4 99.1 287.4 96.5 283.1 99.3 s1 290.8 99.3 291.4 99.1 p 283.1 99.3 287.4 96.5 283.1 93.8 t1 291.7 93.8 300.3 93.8 300.3 99.3 291.7 99.3 s0 296.2 93.8 295.1 96.0 291.7 93.8 t1 296.2 93.8 295.1 96.0 p 295.1 96.0 291.7 98.5 291.7 93.8 t1 295.1 96.0 291.7 98.5 p 0.0 88.2 8.6 88.2 8.6 93.8 0.0 93.8 s0 1.8 88.2 2.5 89.8 4.3 91.0 8.6 88.2 s1 1.8 88.2 2.5 89.8 p 8.6 88.2 4.3 91.0 8.6 93.8 t1 2.5 92.2 4.1 93.8 8.6 93.8 4.3 91.0 s1 2.5 92.2 4.1 93.8 p 2.5 92.2 2.5 89.8 4.3 91.0 t1 2.5 92.2 2.5 89.8 p 8.6 88.2 17.2 88.2 17.2 93.8 8.6 93.8 s1 17.2 88.2 25.7 88.2 25.7 93.8 17.2 93.8 s1 25.7 88.2 34.3 88.2 34.3 93.8 25.7 93.8 s1 34.3 88.2 42.9 88.2 42.9 93.8 34.3 93.8 s0 40.4 89.8 41.1 88.2 34.3 88.2 38.6 91.0 s1 40.4 89.8 41.1 88.2 p 40.4 89.8 40.4 92.2 38.6 91.0 t1 40.4 89.8 40.4 92.2 p 38.8 93.8 40.4 92.2 38.6 91.0 34.3 93.8 s1 38.8 93.8 40.4 92.2 p 34.3 93.8 38.6 91.0 34.3 88.2 t1 42.9 88.2 51.5 88.2 51.5 93.8 42.9 93.8 s0 44.7 88.2 45.4 89.8 47.2 91.0 51.5 88.2 s1 44.7 88.2 45.4 89.8 p 51.5 88.2 47.2 91.0 51.5 93.8 t1 45.4 92.2 47.0 93.8 51.5 93.8 47.2 91.0 s1 45.4 92.2 47.0 93.8 p 45.4 92.2 45.4 89.8 47.2 91.0 t1 45.4 92.2 45.4 89.8 p 51.5 88.2 60.1 88.2 60.1 93.8 51.5 93.8 s1 60.1 88.2 68.6 88.2 68.6 93.8 60.1 93.8 s1 68.6 88.2 77.2 88.2 77.2 93.8 68.6 93.8 s1 77.2 88.2 85.8 88.2 85.8 93.8 77.2 93.8 s0 83.3 89.8 84.0 88.2 77.2 88.2 81.5 91.0 s1 83.3 89.8 84.0 88.2 p 83.3 89.8 83.3 92.2 81.5 91.0 t1 83.3 89.8 83.3 92.2 p 81.7 93.8 83.3 92.2 81.5 91.0 77.2 93.8 s1 81.7 93.8 83.3 92.2 p 77.2 93.8 81.5 91.0 77.2 88.2 t1 85.8 88.2 94.4 88.2 94.4 93.8 85.8 93.8 s0 87.6 88.2 88.3 89.8 90.1 91.0 94.4 88.2 s1 87.6 88.2 88.3 89.8 p 94.4 88.2 90.1 91.0 94.4 93.8 t1 88.3 92.2 89.8 93.8 94.4 93.8 90.1 91.0 s1 88.3 92.2 89.8 93.8 p 88.3 92.2 88.3 89.8 90.1 91.0 t1 88.3 92.2 88.3 89.8 p 94.4 88.2 102.9 88.2 102.9 93.8 94.4 93.8 s1 102.9 88.2 111.5 88.2 111.5 93.8 102.9 93.8 s1 111.5 88.2 120.1 88.2 120.1 93.8 111.5 93.8 s1 120.1 88.2 128.7 88.2 128.7 93.8 120.1 93.8 s0 126.2 89.8 126.9 88.2 120.1 88.2 124.4 91.0 s1 126.2 89.8 126.9 88.2 p 126.2 89.8 126.2 92.2 124.4 91.0 t1 126.2 89.8 126.2 92.2 p 124.6 93.8 126.2 92.2 124.4 91.0 120.1 93.8 s1 124.6 93.8 126.2 92.2 p 120.1 93.8 124.4 91.0 120.1 88.2 t1 128.7 88.2 137.3 88.2 137.3 93.8 128.7 93.8 s0 130.5 88.2 131.2 89.8 133.0 91.0 137.3 88.2 s1 130.5 88.2 131.2 89.8 p 137.3 88.2 133.0 91.0 137.3 93.8 t1 131.2 92.2 132.7 93.8 137.3 93.8 133.0 91.0 s1 131.2 92.2 132.7 93.8 p 131.2 92.2 131.2 89.8 133.0 91.0 t1 131.2 92.2 131.2 89.8 p 137.3 88.2 145.8 88.2 145.8 93.8 137.3 93.8 s1 145.8 88.2 154.4 88.2 154.4 93.8 145.8 93.8 s1 154.4 88.2 163.0 88.2 163.0 93.8 154.4 93.8 s1 163.0 88.2 171.6 88.2 171.6 93.8 163.0 93.8 s0 169.1 89.8 169.8 88.2 163.0 88.2 167.3 91.0 s1 169.1 89.8 169.8 88.2 p 169.1 89.8 169.1 92.2 167.3 91.0 t1 169.1 89.8 169.1 92.2 p 167.5 93.8 169.1 92.2 167.3 91.0 163.0 93.8 s1 167.5 93.8 169.1 92.2 p 163.0 93.8 167.3 91.0 163.0 88.2 t1 171.6 88.2 180.2 88.2 180.2 93.8 171.6 93.8 s0 173.4 88.2 174.1 89.8 175.9 91.0 180.2 88.2 s1 173.4 88.2 174.1 89.8 p 180.2 88.2 175.9 91.0 180.2 93.8 t1 174.1 92.2 175.6 93.8 180.2 93.8 175.9 91.0 s1 174.1 92.2 175.6 93.8 p 174.1 92.2 174.1 89.8 175.9 91.0 t1 174.1 92.2 174.1 89.8 p 180.2 88.2 188.7 88.2 188.7 93.8 180.2 93.8 s1 188.7 88.2 197.3 88.2 197.3 93.8 188.7 93.8 s1 197.3 88.2 205.9 88.2 205.9 93.8 197.3 93.8 s1 205.9 88.2 214.5 88.2 214.5 93.8 205.9 93.8 s0 212.0 89.8 212.7 88.2 205.9 88.2 210.2 91.0 s1 212.0 89.8 212.7 88.2 p 212.0 89.8 212.0 92.2 210.2 91.0 t1 212.0 89.8 212.0 92.2 p 210.4 93.8 212.0 92.2 210.2 91.0 205.9 93.8 s1 210.4 93.8 212.0 92.2 p 205.9 93.8 210.2 91.0 205.9 88.2 t1 214.5 88.2 223.1 88.2 223.1 93.8 214.5 93.8 s0 216.3 88.2 217.0 89.8 218.8 91.0 223.1 88.2 s1 216.3 88.2 217.0 89.8 p 223.1 88.2 218.8 91.0 223.1 93.8 t1 217.0 92.2 218.5 93.8 223.1 93.8 218.8 91.0 s1 217.0 92.2 218.5 93.8 p 217.0 92.2 217.0 89.8 218.8 91.0 t1 217.0 92.2 217.0 89.8 p 223.1 88.2 231.6 88.2 231.6 93.8 223.1 93.8 s1 231.6 88.2 240.2 88.2 240.2 93.8 231.6 93.8 s1 240.2 88.2 248.8 88.2 248.8 93.8 240.2 93.8 s1 248.8 88.2 257.4 88.2 257.4 93.8 248.8 93.8 s0 254.9 89.8 255.6 88.2 248.8 88.2 253.1 91.0 s1 254.9 89.8 255.6 88.2 p 254.9 89.8 254.9 92.2 253.1 91.0 t1 254.9 89.8 254.9 92.2 p 253.3 93.8 254.9 92.2 253.1 91.0 248.8 93.8 s1 253.3 93.8 254.9 92.2 p 248.8 93.8 253.1 91.0 248.8 88.2 t1 257.4 88.2 265.9 88.2 265.9 93.8 257.4 93.8 s0 259.2 88.2 259.9 89.8 261.7 91.0 265.9 88.2 s1 259.2 88.2 259.9 89.8 p 265.9 88.2 261.7 91.0 265.9 93.8 t1 259.9 92.2 261.4 93.8 265.9 93.8 261.7 91.0 s1 259.9 92.2 261.4 93.8 p 259.9 92.2 259.9 89.8 261.7 91.0 t1 259.9 92.2 259.9 89.8 p 265.9 88.2 274.5 88.2 274.5 93.8 265.9 93.8 s1 274.5 88.2 283.1 88.2 283.1 93.8 274.5 93.8 s1 283.1 88.2 291.7 88.2 291.7 93.8 283.1 93.8 s1 291.7 88.2 300.3 88.2 300.3 93.8 291.7 93.8 s0 297.8 89.8 298.5 88.2 291.7 88.2 296.0 91.0 s1 297.8 89.8 298.5 88.2 p 297.8 89.8 297.8 92.2 296.0 91.0 t1 297.8 89.8 297.8 92.2 p 296.2 93.8 297.8 92.2 296.0 91.0 291.7 93.8 s1 296.2 93.8 297.8 92.2 p 291.7 93.8 296.0 91.0 291.7 88.2 t1 0.0 82.7 8.6 82.7 8.6 88.2 0.0 88.2 s0 1.0 82.7 1.3 83.5 4.3 85.5 8.6 82.7 s1 1.0 82.7 1.3 83.5 p 8.6 82.7 4.3 85.5 8.6 88.2 t1 1.3 87.4 1.8 88.2 8.6 88.2 4.3 85.5 s1 1.3 87.4 1.8 88.2 p 1.3 87.4 1.3 83.5 4.3 85.5 t1 1.3 87.4 1.3 83.5 p 8.6 82.7 17.2 82.7 17.2 88.2 8.6 88.2 s1 14.4 84.5 13.3 82.7 17.2 82.7 t2 14.4 84.5 13.3 82.7 p 17.2 86.7 14.4 84.5 17.2 82.7 t2 17.2 86.7 14.4 84.5 p 17.2 82.7 25.7 82.7 25.7 88.2 17.2 88.2 s1 17.2 82.7 21.4 85.5 25.7 82.7 t2 23.3 86.7 25.7 86.7 25.7 82.7 21.4 85.5 s2 23.3 86.7 25.7 86.7 p 23.3 86.7 19.6 86.7 21.4 85.5 t2 23.3 86.7 19.6 86.7 p 17.2 86.7 19.6 86.7 21.4 85.5 17.2 82.7 s2 17.2 86.7 19.6 86.7 p 25.7 82.7 34.3 82.7 34.3 88.2 25.7 88.2 s1 29.6 82.7 28.4 84.5 25.7 82.7 t2 29.6 82.7 28.4 84.5 p 28.4 84.5 25.7 86.7 25.7 82.7 t2 28.4 84.5 25.7 86.7 p 34.3 82.7 42.9 82.7 42.9 88.2 34.3 88.2 s0 41.6 83.5 41.9 82.7 34.3 82.7 38.6 85.5 s1 41.6 83.5 41.9 82.7 p 41.6 83.5 41.6 87.4 38.6 85.5 t1 41.6 83.5 41.6 87.4 p 41.1 88.2 41.6 87.4 38.6 85.5 34.3 88.2 s1 41.1 88.2 41.6 87.4 p 34.3 88.2 38.6 85.5 34.3 82.7 t1 42.9 82.7 51.5 82.7 51.5 88.2 42.9 88.2 s0 43.9 82.7 44.2 83.5 47.2 85.5 51.5 82.7 s1 43.9 82.7 44.2 83.5 p 51.5 82.7 47.2 85.5 51.5 88.2 t1 44.2 87.4 44.7 88.2 51.5 88.2 47.2 85.5 s1 44.2 87.4 44.7 88.2 p 44.2 87.4 44.2 83.5 47.2 85.5 t1 44.2 87.4 44.2 83.5 p 51.5 82.7 60.1 82.7 60.1 88.2 51.5 88.2 s1 57.3 84.5 56.2 82.7 60.1 82.7 t2 57.3 84.5 56.2 82.7 p 60.1 86.7 57.3 84.5 60.1 82.7 t2 60.1 86.7 57.3 84.5 p 60.1 82.7 68.6 82.7 68.6 88.2 60.1 88.2 s1 60.1 82.7 64.3 85.5 68.6 82.7 t2 66.2 86.7 68.6 86.7 68.6 82.7 64.3 85.5 s2 66.2 86.7 68.6 86.7 p 66.2 86.7 62.5 86.7 64.3 85.5 t2 66.2 86.7 62.5 86.7 p 60.1 86.7 62.5 86.7 64.3 85.5 60.1 82.7 s2 60.1 86.7 62.5 86.7 p 68.6 82.7 77.2 82.7 77.2 88.2 68.6 88.2 s1 72.5 82.7 71.3 84.5 68.6 82.7 t2 72.5 82.7 71.3 84.5 p 71.3 84.5 68.6 86.7 68.6 82.7 t2 71.3 84.5 68.6 86.7 p 77.2 82.7 85.8 82.7 85.8 88.2 77.2 88.2 s0 84.5 83.5 84.8 82.7 77.2 82.7 81.5 85.5 s1 84.5 83.5 84.8 82.7 p 84.5 83.5 84.5 87.4 81.5 85.5 t1 84.5 83.5 84.5 87.4 p 84.0 88.2 84.5 87.4 81.5 85.5 77.2 88.2 s1 84.0 88.2 84.5 87.4 p 77.2 88.2 81.5 85.5 77.2 82.7 t1 85.8 82.7 94.4 82.7 94.4 88.2 85.8 88.2 s0 86.8 82.7 87.1 83.5 90.1 85.5 94.4 82.7 s1 86.8 82.7 87.1 83.5 p 94.4 82.7 90.1 85.5 94.4 88.2 t1 87.1 87.4 87.6 88.2 94.4 88.2 90.1 85.5 s1 87.1 87.4 87.6 88.2 p 87.1 87.4 87.1 83.5 90.1 85.5 t1 87.1 87.4 87.1 83.5 p 94.4 82.7 102.9 82.7 102.9 88.2 94.4 88.2 s1 100.2 84.5 99.0 82.7 102.9 82.7 t2 100.2 84.5 99.0 82.7 p 102.9 86.7 100.2 84.5 102.9 82.7 t2 102.9 86.7 100.2 84.5 p 102.9 82.7 111.5 82.7 111.5 88.2 102.9 88.2 s1 102.9 82.7 107.2 85.5 111.5 82.7 t2 109.1 86.7 111.5 86.7 111.5 82.7 107.2 85.5 s2 109.1 86.7 111.5 86.7 p 109.1 86.7 105.4 86.7 107.2 85.5 t2 109.1 86.7 105.4 86.7 p 102.9 86.7 105.4 86.7 107.2 85.5 102.9 82.7 s2 102.9 86.7 105.4 86.7 p 111.5 82.7 120.1 82.7 120.1 88.2 111.5 88.2 s1 115.4 82.7 114.2 84.5 111.5 82.7 t2 115.4 82.7 114.2 84.5 p 114.2 84.5 111.5 86.7 111.5 82.7 t2 114.2 84.5 111.5 86.7 p 120.1 82.7 128.7 82.7 128.7 88.2 120.1 88.2 s0 127.4 83.5 127.7 82.7 120.1 82.7 124.4 85.5 s1 127.4 83.5 127.7 82.7 p 127.4 83.5 127.4 87.4 124.4 85.5 t1 127.4 83.5 127.4 87.4 p 126.9 88.2 127.4 87.4 124.4 85.5 120.1 88.2 s1 126.9 88.2 127.4 87.4 p 120.1 88.2 124.4 85.5 120.1 82.7 t1 128.7 82.7 137.3 82.7 137.3 88.2 128.7 88.2 s0 129.7 82.7 130.0 83.5 133.0 85.5 137.3 82.7 s1 129.7 82.7 130.0 83.5 p 137.3 82.7 133.0 85.5 137.3 88.2 t1 130.0 87.4 130.5 88.2 137.3 88.2 133.0 85.5 s1 130.0 87.4 130.5 88.2 p 130.0 87.4 130.0 83.5 133.0 85.5 t1 130.0 87.4 130.0 83.5 p 137.3 82.7 145.8 82.7 145.8 88.2 137.3 88.2 s1 143.1 84.5 141.9 82.7 145.8 82.7 t2 143.1 84.5 141.9 82.7 p 145.8 86.7 143.1 84.5 145.8 82.7 t2 145.8 86.7 143.1 84.5 p 145.8 82.7 154.4 82.7 154.4 88.2 145.8 88.2 s1 145.8 82.7 150.1 85.5 154.4 82.7 t2 152.0 86.7 154.4 86.7 154.4 82.7 150.1 85.5 s2 152.0 86.7 154.4 86.7 p 152.0 86.7 148.2 86.7 150.1 85.5 t2 152.0 86.7 148.2 86.7 p 145.8 86.7 148.2 86.7 150.1 85.5 145.8 82.7 s2 145.8 86.7 148.2 86.7 p 154.4 82.7 163.0 82.7 163.0 88.2 154.4 88.2 s1 158.3 82.7 157.1 84.5 154.4 82.7 t2 158.3 82.7 157.1 84.5 p 157.1 84.5 154.4 86.7 154.4 82.7 t2 157.1 84.5 154.4 86.7 p 163.0 82.7 171.6 82.7 171.6 88.2 163.0 88.2 s0 170.3 83.5 170.6 82.7 163.0 82.7 167.3 85.5 s1 170.3 83.5 170.6 82.7 p 170.3 83.5 170.3 87.4 167.3 85.5 t1 170.3 83.5 170.3 87.4 p 169.8 88.2 170.3 87.4 167.3 85.5 163.0 88.2 s1 169.8 88.2 170.3 87.4 p 163.0 88.2 167.3 85.5 163.0 82.7 t1 171.6 82.7 180.2 82.7 180.2 88.2 171.6 88.2 s0 172.6 82.7 172.9 83.5 175.9 85.5 180.2 82.7 s1 172.6 82.7 172.9 83.5 p 180.2 82.7 175.9 85.5 180.2 88.2 t1 172.9 87.4 173.4 88.2 180.2 88.2 175.9 85.5 s1 172.9 87.4 173.4 88.2 p 172.9 87.4 172.9 83.5 175.9 85.5 t1 172.9 87.4 172.9 83.5 p 180.2 82.7 188.7 82.7 188.7 88.2 180.2 88.2 s1 186.0 84.5 184.8 82.7 188.7 82.7 t2 186.0 84.5 184.8 82.7 p 188.7 86.7 186.0 84.5 188.7 82.7 t2 188.7 86.7 186.0 84.5 p 188.7 82.7 197.3 82.7 197.3 88.2 188.7 88.2 s1 188.7 82.7 193.0 85.5 197.3 82.7 t2 194.9 86.7 197.3 86.7 197.3 82.7 193.0 85.5 s2 194.9 86.7 197.3 86.7 p 194.9 86.7 191.1 86.7 193.0 85.5 t2 194.9 86.7 191.1 86.7 p 188.7 86.7 191.1 86.7 193.0 85.5 188.7 82.7 s2 188.7 86.7 191.1 86.7 p 197.3 82.7 205.9 82.7 205.9 88.2 197.3 88.2 s1 201.2 82.7 200.0 84.5 197.3 82.7 t2 201.2 82.7 200.0 84.5 p 200.0 84.5 197.3 86.7 197.3 82.7 t2 200.0 84.5 197.3 86.7 p 205.9 82.7 214.5 82.7 214.5 88.2 205.9 88.2 s0 213.2 83.5 213.5 82.7 205.9 82.7 210.2 85.5 s1 213.2 83.5 213.5 82.7 p 213.2 83.5 213.2 87.4 210.2 85.5 t1 213.2 83.5 213.2 87.4 p 212.7 88.2 213.2 87.4 210.2 85.5 205.9 88.2 s1 212.7 88.2 213.2 87.4 p 205.9 88.2 210.2 85.5 205.9 82.7 t1 214.5 82.7 223.1 82.7 223.1 88.2 214.5 88.2 s0 215.5 82.7 215.8 83.5 218.8 85.5 223.1 82.7 s1 215.5 82.7 215.8 83.5 p 223.1 82.7 218.8 85.5 223.1 88.2 t1 215.7 87.4 216.3 88.2 223.1 88.2 218.8 85.5 s1 215.7 87.4 216.3 88.2 p 215.7 87.4 215.8 83.5 218.8 85.5 t1 215.7 87.4 215.8 83.5 p 223.1 82.7 231.6 82.7 231.6 88.2 223.1 88.2 s1 228.9 84.5 227.7 82.7 231.6 82.7 t2 228.9 84.5 227.7 82.7 p 231.6 86.7 228.9 84.5 231.6 82.7 t2 231.6 86.7 228.9 84.5 p 231.6 82.7 240.2 82.7 240.2 88.2 231.6 88.2 s1 231.6 82.7 235.9 85.5 240.2 82.7 t2 237.8 86.7 240.2 86.7 240.2 82.7 235.9 85.5 s2 237.8 86.7 240.2 86.7 p 237.8 86.7 234.0 86.7 235.9 85.5 t2 237.8 86.7 234.0 86.7 p 231.6 86.7 234.0 86.7 235.9 85.5 231.6 82.7 s2 231.6 86.7 234.0 86.7 p 240.2 82.7 248.8 82.7 248.8 88.2 240.2 88.2 s1 244.1 82.7 242.9 84.5 240.2 82.7 t2 244.1 82.7 242.9 84.5 p 242.9 84.5 240.2 86.7 240.2 82.7 t2 242.9 84.5 240.2 86.7 p 248.8 82.7 257.4 82.7 257.4 88.2 248.8 88.2 s0 256.1 83.5 256.4 82.7 248.8 82.7 253.1 85.5 s1 256.1 83.5 256.4 82.7 p 256.1 83.5 256.1 87.4 253.1 85.5 t1 256.1 83.5 256.1 87.4 p 255.6 88.2 256.1 87.4 253.1 85.5 248.8 88.2 s1 255.6 88.2 256.1 87.4 p 248.8 88.2 253.1 85.5 248.8 82.7 t1 257.4 82.7 265.9 82.7 265.9 88.2 257.4 88.2 s0 258.4 82.7 258.7 83.5 261.7 85.5 265.9 82.7 s1 258.4 82.7 258.7 83.5 p 265.9 82.7 261.7 85.5 265.9 88.2 t1 258.6 87.4 259.2 88.2 265.9 88.2 261.7 85.5 s1 258.6 87.4 259.2 88.2 p 258.6 87.4 258.7 83.5 261.7 85.5 t1 258.6 87.4 258.7 83.5 p 265.9 82.7 274.5 82.7 274.5 88.2 265.9 88.2 s1 271.8 84.5 270.6 82.7 274.5 82.7 t2 271.8 84.5 270.6 82.7 p 274.5 86.7 271.8 84.5 274.5 82.7 t2 274.5 86.7 271.8 84.5 p 274.5 82.7 283.1 82.7 283.1 88.2 274.5 88.2 s1 274.5 82.7 278.8 85.5 283.1 82.7 t2 280.7 86.7 283.1 86.7 283.1 82.7 278.8 85.5 s2 280.7 86.7 283.1 86.7 p 280.7 86.7 276.9 86.7 278.8 85.5 t2 280.7 86.7 276.9 86.7 p 274.5 86.7 276.9 86.7 278.8 85.5 274.5 82.7 s2 274.5 86.7 276.9 86.7 p 283.1 82.7 291.7 82.7 291.7 88.2 283.1 88.2 s1 287.0 82.7 285.8 84.5 283.1 82.7 t2 287.0 82.7 285.8 84.5 p 285.8 84.5 283.1 86.7 283.1 82.7 t2 285.8 84.5 283.1 86.7 p 291.7 82.7 300.3 82.7 300.3 88.2 291.7 88.2 s0 299.0 83.5 299.3 82.7 291.7 82.7 296.0 85.5 s1 299.0 83.5 299.3 82.7 p 299.0 83.5 299.0 87.4 296.0 85.5 t1 299.0 83.5 299.0 87.4 p 298.5 88.2 299.0 87.4 296.0 85.5 291.7 88.2 s1 298.5 88.2 299.0 87.4 p 291.7 88.2 296.0 85.5 291.7 82.7 t1 0.0 77.2 8.6 77.2 8.6 82.7 0.0 82.7 s0 0.0 77.2 4.3 80.0 8.6 77.2 t1 8.6 77.2 4.3 80.0 8.6 82.7 t1 0.7 82.3 1.0 82.7 8.6 82.7 4.3 80.0 s1 0.7 82.3 1.0 82.7 p 0.0 77.8 0.7 82.3 4.3 80.0 0.0 77.2 s1 0.0 77.8 0.7 82.3 p 8.6 77.2 17.2 77.2 17.2 82.7 8.6 82.7 s1 10.7 77.2 11.6 79.1 12.9 80.0 17.2 77.2 s2 10.7 77.2 11.6 79.1 p 17.2 77.2 12.9 80.0 17.2 82.7 t2 12.2 80.4 13.3 82.7 17.2 82.7 12.9 80.0 s2 12.2 80.4 13.3 82.7 p 12.2 80.4 11.6 79.1 12.9 80.0 t2 12.2 80.4 11.6 79.1 p 17.2 77.2 25.7 77.2 25.7 82.7 17.2 82.7 s2 25.7 77.2 34.3 77.2 34.3 82.7 25.7 82.7 s1 31.3 79.1 32.2 77.2 25.7 77.2 30.0 80.0 s2 31.3 79.1 32.2 77.2 p 31.3 79.1 30.7 80.4 30.0 80.0 t2 31.3 79.1 30.7 80.4 p 29.6 82.7 30.7 80.4 30.0 80.0 25.7 82.7 s2 29.6 82.7 30.7 80.4 p 25.7 82.7 30.0 80.0 25.7 77.2 t2 34.3 77.2 42.9 77.2 42.9 82.7 34.3 82.7 s0 34.3 77.2 38.6 80.0 42.9 77.2 t1 42.2 82.3 42.9 77.8 42.9 77.2 38.6 80.0 s1 42.2 82.3 42.9 77.8 p 41.9 82.7 42.2 82.3 38.6 80.0 34.3 82.7 s1 41.9 82.7 42.2 82.3 p 34.3 82.7 38.6 80.0 34.3 77.2 t1 42.9 77.2 51.5 77.2 51.5 82.7 42.9 82.7 s0 42.9 77.2 47.2 80.0 51.5 77.2 t1 51.5 77.2 47.2 80.0 51.5 82.7 t1 43.6 82.3 43.9 82.7 51.5 82.7 47.2 80.0 s1 43.6 82.3 43.9 82.7 p 42.9 77.8 43.6 82.3 47.2 80.0 42.9 77.2 s1 42.9 77.8 43.6 82.3 p 51.5 77.2 60.1 77.2 60.1 82.7 51.5 82.7 s1 53.6 77.2 54.5 79.1 55.8 80.0 60.1 77.2 s2 53.6 77.2 54.5 79.1 p 60.1 77.2 55.8 80.0 60.1 82.7 t2 55.1 80.4 56.2 82.7 60.1 82.7 55.8 80.0 s2 55.1 80.4 56.2 82.7 p 55.1 80.4 54.5 79.1 55.8 80.0 t2 55.1 80.4 54.5 79.1 p 60.1 77.2 68.6 77.2 68.6 82.7 60.1 82.7 s2 68.6 77.2 77.2 77.2 77.2 82.7 68.6 82.7 s1 74.2 79.1 75.1 77.2 68.6 77.2 72.9 80.0 s2 74.2 79.1 75.1 77.2 p 74.2 79.1 73.6 80.4 72.9 80.0 t2 74.2 79.1 73.6 80.4 p 72.5 82.7 73.6 80.4 72.9 80.0 68.6 82.7 s2 72.5 82.7 73.6 80.4 p 68.6 82.7 72.9 80.0 68.6 77.2 t2 77.2 77.2 85.8 77.2 85.8 82.7 77.2 82.7 s0 77.2 77.2 81.5 80.0 85.8 77.2 t1 85.1 82.3 85.8 77.8 85.8 77.2 81.5 80.0 s1 85.1 82.3 85.8 77.8 p 84.8 82.7 85.1 82.3 81.5 80.0 77.2 82.7 s1 84.8 82.7 85.1 82.3 p 77.2 82.7 81.5 80.0 77.2 77.2 t1 85.8 77.2 94.4 77.2 94.4 82.7 85.8 82.7 s0 85.8 77.2 90.1 80.0 94.4 77.2 t1 94.4 77.2 90.1 80.0 94.4 82.7 t1 86.5 82.3 86.8 82.7 94.4 82.7 90.1 80.0 s1 86.5 82.3 86.8 82.7 p 85.8 77.8 86.5 82.3 90.1 80.0 85.8 77.2 s1 85.8 77.8 86.5 82.3 p 94.4 77.2 102.9 77.2 102.9 82.7 94.4 82.7 s1 96.5 77.2 97.4 79.1 98.7 80.0 102.9 77.2 s2 96.5 77.2 97.4 79.1 p 102.9 77.2 98.7 80.0 102.9 82.7 t2 98.0 80.4 99.0 82.7 102.9 82.7 98.7 80.0 s2 98.0 80.4 99.0 82.7 p 98.0 80.4 97.4 79.1 98.7 80.0 t2 98.0 80.4 97.4 79.1 p 102.9 77.2 111.5 77.2 111.5 82.7 102.9 82.7 s2 111.5 77.2 120.1 77.2 120.1 82.7 111.5 82.7 s1 117.1 79.1 118.0 77.2 111.5 77.2 115.8 80.0 s2 117.1 79.1 118.0 77.2 p 117.1 79.1 116.5 80.4 115.8 80.0 t2 117.1 79.1 116.5 80.4 p 115.4 82.7 116.5 80.4 115.8 80.0 111.5 82.7 s2 115.4 82.7 116.5 80.4 p 111.5 82.7 115.8 80.0 111.5 77.2 t2 120.1 77.2 128.7 77.2 128.7 82.7 120.1 82.7 s0 120.1 77.2 124.4 80.0 128.7 77.2 t1 128.0 82.3 128.7 77.8 128.7 77.2 124.4 80.0 s1 128.0 82.3 128.7 77.8 p 127.7 82.7 128.0 82.3 124.4 80.0 120.1 82.7 s1 127.7 82.7 128.0 82.3 p 120.1 82.7 124.4 80.0 120.1 77.2 t1 128.7 77.2 137.3 77.2 137.3 82.7 128.7 82.7 s0 128.7 77.2 133.0 80.0 137.3 77.2 t1 137.3 77.2 133.0 80.0 137.3 82.7 t1 129.4 82.3 129.7 82.7 137.3 82.7 133.0 80.0 s1 129.4 82.3 129.7 82.7 p 128.7 77.8 129.4 82.3 133.0 80.0 128.7 77.2 s1 128.7 77.8 129.4 82.3 p 137.3 77.2 145.8 77.2 145.8 82.7 137.3 82.7 s1 139.4 77.2 140.3 79.1 141.6 80.0 145.8 77.2 s2 139.4 77.2 140.3 79.1 p 145.8 77.2 141.6 80.0 145.8 82.7 t2 140.9 80.4 141.9 82.7 145.8 82.7 141.6 80.0 s2 140.9 80.4 141.9 82.7 p 140.9 80.4 140.3 79.1 141.6 80.0 t2 140.9 80.4 140.3 79.1 p 145.8 77.2 154.4 77.2 154.4 82.7 145.8 82.7 s2 154.4 77.2 163.0 77.2 163.0 82.7 154.4 82.7 s1 160.0 79.1 160.9 77.2 154.4 77.2 158.7 80.0 s2 160.0 79.1 160.9 77.2 p 160.0 79.1 159.4 80.4 158.7 80.0 t2 160.0 79.1 159.4 80.4 p 158.3 82.7 159.4 80.4 158.7 80.0 154.4 82.7 s2 158.3 82.7 159.4 80.4 p 154.4 82.7 158.7 80.0 154.4 77.2 t2 163.0 77.2 171.6 77.2 171.6 82.7 163.0 82.7 s0 163.0 77.2 167.3 80.0 171.6 77.2 t1 170.8 82.3 171.6 77.8 171.6 77.2 167.3 80.0 s1 170.8 82.3 171.6 77.8 p 170.6 82.7 170.8 82.3 167.3 80.0 163.0 82.7 s1 170.6 82.7 170.8 82.3 p 163.0 82.7 167.3 80.0 163.0 77.2 t1 171.6 77.2 180.2 77.2 180.2 82.7 171.6 82.7 s0 171.6 77.2 175.9 80.0 180.2 77.2 t1 180.2 77.2 175.9 80.0 180.2 82.7 t1 172.3 82.3 172.6 82.7 180.2 82.7 175.9 80.0 s1 172.3 82.3 172.6 82.7 p 171.6 77.8 172.3 82.3 175.9 80.0 171.6 77.2 s1 171.6 77.8 172.3 82.3 p 180.2 77.2 188.7 77.2 188.7 82.7 180.2 82.7 s1 182.3 77.2 183.2 79.1 184.4 80.0 188.7 77.2 s2 182.3 77.2 183.2 79.1 p 188.7 77.2 184.4 80.0 188.7 82.7 t2 183.8 80.4 184.8 82.7 188.7 82.7 184.4 80.0 s2 183.8 80.4 184.8 82.7 p 183.8 80.4 183.2 79.1 184.4 80.0 t2 183.8 80.4 183.2 79.1 p 188.7 77.2 197.3 77.2 197.3 82.7 188.7 82.7 s2 197.3 77.2 205.9 77.2 205.9 82.7 197.3 82.7 s1 202.9 79.1 203.8 77.2 197.3 77.2 201.6 80.0 s2 202.9 79.1 203.8 77.2 p 202.9 79.1 202.3 80.4 201.6 80.0 t2 202.9 79.1 202.3 80.4 p 201.2 82.7 202.3 80.4 201.6 80.0 197.3 82.7 s2 201.2 82.7 202.3 80.4 p 197.3 82.7 201.6 80.0 197.3 77.2 t2 205.9 77.2 214.5 77.2 214.5 82.7 205.9 82.7 s0 205.9 77.2 210.2 80.0 214.5 77.2 t1 213.7 82.3 214.5 77.8 214.5 77.2 210.2 80.0 s1 213.7 82.3 214.5 77.8 p 213.5 82.7 213.7 82.3 210.2 80.0 205.9 82.7 s1 213.5 82.7 213.7 82.3 p 205.9 82.7 210.2 80.0 205.9 77.2 t1 214.5 77.2 223.1 77.2 223.1 82.7 214.5 82.7 s0 214.5 77.2 218.8 80.0 223.1 77.2 t1 223.1 77.2 218.8 80.0 223.1 82.7 t1 215.2 82.3 215.5 82.7 223.1 82.7 218.8 80.0 s1 215.2 82.3 215.5 82.7 p 214.5 77.8 215.2 82.3 218.8 80.0 214.5 77.2 s1 214.5 77.8 215.2 82.3 p 223.1 77.2 231.6 77.2 231.6 82.7 223.1 82.7 s1 225.2 77.2 226.1 79.1 227.3 80.0 231.6 77.2 s2 225.2 77.2 226.1 79.1 p 231.6 77.2 227.3 80.0 231.6 82.7 t2 226.7 80.4 227.7 82.7 231.6 82.7 227.3 80.0 s2 226.7 80.4 227.7 82.7 p 226.7 80.4 226.1 79.1 227.3 80.0 t2 226.7 80.4 226.1 79.1 p 231.6 77.2 240.2 77.2 240.2 82.7 231.6 82.7 s2 240.2 77.2 248.8 77.2 248.8 82.7 240.2 82.7 s1 245.8 79.1 246.7 77.2 240.2 77.2 244.5 80.0 s2 245.8 79.1 246.7 77.2 p 245.8 79.1 245.1 80.4 244.5 80.0 t2 245.8 79.1 245.1 80.4 p 244.1 82.7 245.1 80.4 244.5 80.0 240.2 82.7 s2 244.1 82.7 245.1 80.4 p 240.2 82.7 244.5 80.0 240.2 77.2 t2 248.8 77.2 257.4 77.2 257.4 82.7 248.8 82.7 s0 248.8 77.2 253.1 80.0 257.4 77.2 t1 256.6 82.3 257.4 77.8 257.4 77.2 253.1 80.0 s1 256.6 82.3 257.4 77.8 p 256.4 82.7 256.6 82.3 253.1 80.0 248.8 82.7 s1 256.4 82.7 256.6 82.3 p 248.8 82.7 253.1 80.0 248.8 77.2 t1 257.4 77.2 265.9 77.2 265.9 82.7 257.4 82.7 s0 257.4 77.2 261.7 80.0 265.9 77.2 t1 265.9 77.2 261.7 80.0 265.9 82.7 t1 258.1 82.3 258.4 82.7 265.9 82.7 261.7 80.0 s1 258.1 82.3 258.4 82.7 p 257.4 77.8 258.1 82.3 261.7 80.0 257.4 77.2 s1 257.4 77.8 258.1 82.3 p 265.9 77.2 274.5 77.2 274.5 82.7 265.9 82.7 s1 268.0 77.2 269.0 79.1 270.2 80.0 274.5 77.2 s2 268.0 77.2 269.0 79.1 p 274.5 77.2 270.2 80.0 274.5 82.7 t2 269.6 80.4 270.6 82.7 274.5 82.7 270.2 80.0 s2 269.6 80.4 270.6 82.7 p 269.6 80.4 269.0 79.1 270.2 80.0 t2 269.6 80.4 269.0 79.1 p 274.5 77.2 283.1 77.2 283.1 82.7 274.5 82.7 s2 283.1 77.2 291.7 77.2 291.7 82.7 283.1 82.7 s1 288.7 79.1 289.6 77.2 283.1 77.2 287.4 80.0 s2 288.7 79.1 289.6 77.2 p 288.7 79.1 288.0 80.4 287.4 80.0 t2 288.7 79.1 288.0 80.4 p 287.0 82.7 288.0 80.4 287.4 80.0 283.1 82.7 s2 287.0 82.7 288.0 80.4 p 283.1 82.7 287.4 80.0 283.1 77.2 t2 291.7 77.2 300.3 77.2 300.3 82.7 291.7 82.7 s0 291.7 77.2 296.0 80.0 300.3 77.2 t1 299.5 82.3 300.3 77.8 300.3 77.2 296.0 80.0 s1 299.5 82.3 300.3 77.8 p 299.3 82.7 299.5 82.3 296.0 80.0 291.7 82.7 s1 299.3 82.7 299.5 82.3 p 291.7 82.7 296.0 80.0 291.7 77.2 t1 0.0 71.7 8.6 71.7 8.6 77.2 0.0 77.2 s1 7.5 72.4 7.1 71.7 8.6 71.7 t2 7.5 72.4 7.1 71.7 p 8.6 73.8 7.5 72.4 8.6 71.7 t2 8.6 73.8 7.5 72.4 p 8.6 71.7 17.2 71.7 17.2 77.2 8.6 77.2 s1 8.6 71.7 12.9 74.4 17.2 71.7 t2 17.2 71.7 12.9 74.4 17.2 77.2 t2 10.7 75.8 10.7 77.2 17.2 77.2 12.9 74.4 s2 10.7 75.8 10.7 77.2 p 8.6 73.8 10.7 75.8 12.9 74.4 8.6 71.7 s2 8.6 73.8 10.7 75.8 p 17.2 71.7 25.7 71.7 25.7 77.2 17.2 77.2 s2 25.7 71.7 34.3 71.7 34.3 77.2 25.7 77.2 s1 25.7 71.7 30.0 74.4 34.3 71.7 t2 32.2 75.8 34.3 73.8 34.3 71.7 30.0 74.4 s2 32.2 75.8 34.3 73.8 p 32.2 77.2 32.2 75.8 30.0 74.4 25.7 77.2 s2 32.2 77.2 32.2 75.8 p 25.7 77.2 30.0 74.4 25.7 71.7 t2 34.3 71.7 42.9 71.7 42.9 77.2 34.3 77.2 s1 35.8 71.7 35.3 72.4 34.3 71.7 t2 35.8 71.7 35.3 72.4 p 35.3 72.4 34.3 73.8 34.3 71.7 t2 35.3 72.4 34.3 73.8 p 42.9 71.7 51.5 71.7 51.5 77.2 42.9 77.2 s1 50.4 72.4 50.0 71.7 51.5 71.7 t2 50.4 72.4 50.0 71.7 p 51.5 73.8 50.4 72.4 51.5 71.7 t2 51.5 73.8 50.4 72.4 p 51.5 71.7 60.1 71.7 60.1 77.2 51.5 77.2 s1 51.5 71.7 55.8 74.4 60.1 71.7 t2 60.1 71.7 55.8 74.4 60.1 77.2 t2 53.6 75.8 53.6 77.2 60.1 77.2 55.8 74.4 s2 53.6 75.8 53.6 77.2 p 51.5 73.8 53.6 75.8 55.8 74.4 51.5 71.7 s2 51.5 73.8 53.6 75.8 p 60.1 71.7 68.6 71.7 68.6 77.2 60.1 77.2 s2 68.6 71.7 77.2 71.7 77.2 77.2 68.6 77.2 s1 68.6 71.7 72.9 74.4 77.2 71.7 t2 75.1 75.8 77.2 73.8 77.2 71.7 72.9 74.4 s2 75.1 75.8 77.2 73.8 p 75.1 77.2 75.1 75.8 72.9 74.4 68.6 77.2 s2 75.1 77.2 75.1 75.8 p 68.6 77.2 72.9 74.4 68.6 71.7 t2 77.2 71.7 85.8 71.7 85.8 77.2 77.2 77.2 s1 78.7 71.7 78.2 72.4 77.2 71.7 t2 78.7 71.7 78.2 72.4 p 78.2 72.4 77.2 73.8 77.2 71.7 t2 78.2 72.4 77.2 73.8 p 85.8 71.7 94.4 71.7 94.4 77.2 85.8 77.2 s1 93.3 72.4 92.9 71.7 94.4 71.7 t2 93.3 72.4 92.9 71.7 p 94.4 73.8 93.3 72.4 94.4 71.7 t2 94.4 73.8 93.3 72.4 p 94.4 71.7 102.9 71.7 102.9 77.2 94.4 77.2 s1 94.4 71.7 98.7 74.4 102.9 71.7 t2 102.9 71.7 98.7 74.4 102.9 77.2 t2 96.5 75.8 96.5 77.2 102.9 77.2 98.7 74.4 s2 96.5 75.8 96.5 77.2 p 94.4 73.8 96.5 75.8 98.7 74.4 94.4 71.7 s2 94.4 73.8 96.5 75.8 p 102.9 71.7 111.5 71.7 111.5 77.2 102.9 77.2 s2 111.5 71.7 120.1 71.7 120.1 77.2 111.5 77.2 s1 111.5 71.7 115.8 74.4 120.1 71.7 t2 118.0 75.8 120.1 73.8 120.1 71.7 115.8 74.4 s2 118.0 75.8 120.1 73.8 p 118.0 77.2 118.0 75.8 115.8 74.4 111.5 77.2 s2 118.0 77.2 118.0 75.8 p 111.5 77.2 115.8 74.4 111.5 71.7 t2 120.1 71.7 128.7 71.7 128.7 77.2 120.1 77.2 s1 121.6 71.7 121.1 72.4 120.1 71.7 t2 121.6 71.7 121.1 72.4 p 121.1 72.4 120.1 73.8 120.1 71.7 t2 121.1 72.4 120.1 73.8 p 128.7 71.7 137.3 71.7 137.3 77.2 128.7 77.2 s1 136.2 72.4 135.8 71.7 137.3 71.7 t2 136.2 72.4 135.8 71.7 p 137.3 73.8 136.2 72.4 137.3 71.7 t2 137.3 73.8 136.2 72.4 p 137.3 71.7 145.8 71.7 145.8 77.2 137.3 77.2 s1 137.3 71.7 141.6 74.4 145.8 71.7 t2 145.8 71.7 141.6 74.4 145.8 77.2 t2 139.4 75.8 139.4 77.2 145.8 77.2 141.6 74.4 s2 139.4 75.8 139.4 77.2 p 137.3 73.8 139.4 75.8 141.6 74.4 137.3 71.7 s2 137.3 73.8 139.4 75.8 p 145.8 71.7 154.4 71.7 154.4 77.2 145.8 77.2 s2 154.4 71.7 163.0 71.7 163.0 77.2 154.4 77.2 s1 154.4 71.7 158.7 74.4 163.0 71.7 t2 160.9 75.8 163.0 73.8 163.0 71.7 158.7 74.4 s2 160.9 75.8 163.0 73.8 p 160.9 77.2 160.9 75.8 158.7 74.4 154.4 77.2 s2 160.9 77.2 160.9 75.8 p 154.4 77.2 158.7 74.4 154.4 71.7 t2 163.0 71.7 171.6 71.7 171.6 77.2 163.0 77.2 s1 164.5 71.7 164.0 72.4 163.0 71.7 t2 164.5 71.7 164.0 72.4 p 164.0 72.4 163.0 73.8 163.0 71.7 t2 164.0 72.4 163.0 73.8 p 171.6 71.7 180.2 71.7 180.2 77.2 171.6 77.2 s1 179.1 72.4 178.7 71.7 180.2 71.7 t2 179.1 72.4 178.7 71.7 p 180.2 73.8 179.1 72.4 180.2 71.7 t2 180.2 73.8 179.1 72.4 p 180.2 71.7 188.7 71.7 188.7 77.2 180.2 77.2 s1 180.2 71.7 184.4 74.4 188.7 71.7 t2 188.7 71.7 184.4 74.4 188.7 77.2 t2 182.3 75.8 182.3 77.2 188.7 77.2 184.4 74.4 s2 182.3 75.8 182.3 77.2 p 180.2 73.8 182.3 75.8 184.4 74.4 180.2 71.7 s2 180.2 73.8 182.3 75.8 p 188.7 71.7 197.3 71.7 197.3 77.2 188.7 77.2 s2 197.3 71.7 205.9 71.7 205.9 77.2 197.3 77.2 s1 197.3 71.7 201.6 74.4 205.9 71.7 t2 203.7 75.8 205.9 73.8 205.9 71.7 201.6 74.4 s2 203.7 75.8 205.9 73.8 p 203.8 77.2 203.7 75.8 201.6 74.4 197.3 77.2 s2 203.8 77.2 203.7 75.8 p 197.3 77.2 201.6 74.4 197.3 71.7 t2 205.9 71.7 214.5 71.7 214.5 77.2 205.9 77.2 s1 207.4 71.7 206.9 72.4 205.9 71.7 t2 207.4 71.7 206.9 72.4 p 206.9 72.4 205.9 73.8 205.9 71.7 t2 206.9 72.4 205.9 73.8 p 214.5 71.7 223.1 71.7 223.1 77.2 214.5 77.2 s1 222.0 72.4 221.6 71.7 223.1 71.7 t2 222.0 72.4 221.6 71.7 p 223.1 73.8 222.0 72.4 223.1 71.7 t2 223.1 73.8 222.0 72.4 p 223.1 71.7 231.6 71.7 231.6 77.2 223.1 77.2 s1 223.1 71.7 227.3 74.4 231.6 71.7 t2 231.6 71.7 227.3 74.4 231.6 77.2 t2 225.2 75.8 225.2 77.2 231.6 77.2 227.3 74.4 s2 225.2 75.8 225.2 77.2 p 223.1 73.8 225.2 75.8 227.3 74.4 223.1 71.7 s2 223.1 73.8 225.2 75.8 p 231.6 71.7 240.2 71.7 240.2 77.2 231.6 77.2 s2 240.2 71.7 248.8 71.7 248.8 77.2 240.2 77.2 s1 240.2 71.7 244.5 74.4 248.8 71.7 t2 246.6 75.8 248.8 73.8 248.8 71.7 244.5 74.4 s2 246.6 75.8 248.8 73.8 p 246.7 77.2 246.6 75.8 244.5 74.4 240.2 77.2 s2 246.7 77.2 246.6 75.8 p 240.2 77.2 244.5 74.4 240.2 71.7 t2 248.8 71.7 257.4 71.7 257.4 77.2 248.8 77.2 s1 250.3 71.7 249.8 72.4 248.8 71.7 t2 250.3 71.7 249.8 72.4 p 249.8 72.4 248.8 73.8 248.8 71.7 t2 249.8 72.4 248.8 73.8 p 257.4 71.7 265.9 71.7 265.9 77.2 257.4 77.2 s1 264.9 72.4 264.5 71.7 265.9 71.7 t2 264.9 72.4 264.5 71.7 p 265.9 73.8 264.9 72.4 265.9 71.7 t2 265.9 73.8 264.9 72.4 p 265.9 71.7 274.5 71.7 274.5 77.2 265.9 77.2 s1 265.9 71.7 270.2 74.4 274.5 71.7 t2 274.5 71.7 270.2 74.4 274.5 77.2 t2 268.1 75.8 268.0 77.2 274.5 77.2 270.2 74.4 s2 268.1 75.8 268.0 77.2 p 265.9 73.8 268.1 75.8 270.2 74.4 265.9 71.7 s2 265.9 73.8 268.1 75.8 p 274.5 71.7 283.1 71.7 283.1 77.2 274.5 77.2 s2 283.1 71.7 291.7 71.7 291.7 77.2 283.1 77.2 s1 283.1 71.7 287.4 74.4 291.7 71.7 t2 289.5 75.8 291.7 73.8 291.7 71.7 287.4 74.4 s2 289.5 75.8 291.7 73.8 p 289.6 77.2 289.5 75.8 287.4 74.4 283.1 77.2 s2 289.6 77.2 289.5 75.8 p 283.1 77.2 287.4 74.4 283.1 71.7 t2 291.7 71.7 300.3 71.7 300.3 77.2 291.7 77.2 s1 293.2 71.7 292.7 72.4 291.7 71.7 t2 293.2 71.7 292.7 72.4 p 292.7 72.4 291.7 73.8 291.7 71.7 t2 292.7 72.4 291.7 73.8 p 0.0 66.2 8.6 66.2 8.6 71.7 0.0 71.7 s1 7.4 67.0 7.0 66.2 8.6 66.2 t2 7.4 67.0 7.0 66.2 p 7.4 67.0 6.8 70.5 8.6 71.7 8.6 66.2 s2 7.4 67.0 6.8 70.5 p 7.1 71.7 6.8 70.5 8.6 71.7 t2 7.1 71.7 6.8 70.5 p 8.6 66.2 17.2 66.2 17.2 71.7 8.6 71.7 s1 13.5 68.5 10.3 66.2 8.6 66.2 12.9 68.9 s2 13.5 68.5 10.3 66.2 p 17.2 69.0 13.5 68.5 12.9 68.9 17.2 71.7 s2 17.2 69.0 13.5 68.5 p 17.2 71.7 12.9 68.9 8.6 71.7 t2 8.6 71.7 12.9 68.9 8.6 66.2 t2 17.2 66.2 25.7 66.2 25.7 71.7 17.2 71.7 s1 21.5 69.0 25.7 69.0 25.7 71.7 t2 21.5 69.0 25.7 69.0 p 21.5 69.0 21.4 69.0 17.2 71.7 25.7 71.7 s2 21.5 69.0 21.4 69.0 p 17.2 69.0 21.4 69.0 17.2 71.7 t2 17.2 69.0 21.4 69.0 p 25.7 66.2 34.3 66.2 34.3 71.7 25.7 71.7 s1 32.6 66.2 29.4 68.5 30.0 68.9 34.3 66.2 s2 32.6 66.2 29.4 68.5 p 34.3 66.2 30.0 68.9 34.3 71.7 t2 34.3 71.7 30.0 68.9 25.7 71.7 t2 29.4 68.5 25.7 69.0 25.7 71.7 30.0 68.9 s2 29.4 68.5 25.7 69.0 p 34.3 66.2 42.9 66.2 42.9 71.7 34.3 71.7 s1 35.9 66.2 35.5 67.0 34.3 66.2 t2 35.9 66.2 35.5 67.0 p 36.1 70.5 35.8 71.7 34.3 71.7 t2 36.1 70.5 35.8 71.7 p 36.1 70.5 35.5 67.0 34.3 66.2 34.3 71.7 s2 36.1 70.5 35.5 67.0 p 42.9 66.2 51.5 66.2 51.5 71.7 42.9 71.7 s1 50.3 67.0 49.9 66.2 51.5 66.2 t2 50.3 67.0 49.9 66.2 p 50.3 67.0 49.7 70.5 51.5 71.7 51.5 66.2 s2 50.3 67.0 49.7 70.5 p 50.0 71.7 49.7 70.5 51.5 71.7 t2 50.0 71.7 49.7 70.5 p 51.5 66.2 60.1 66.2 60.1 71.7 51.5 71.7 s1 56.4 68.5 53.2 66.2 51.5 66.2 55.8 68.9 s2 56.4 68.5 53.2 66.2 p 60.1 69.0 56.4 68.5 55.8 68.9 60.1 71.7 s2 60.1 69.0 56.4 68.5 p 60.1 71.7 55.8 68.9 51.5 71.7 t2 51.5 71.7 55.8 68.9 51.5 66.2 t2 60.1 66.2 68.6 66.2 68.6 71.7 60.1 71.7 s1 64.4 69.0 68.6 69.0 68.6 71.7 t2 64.4 69.0 68.6 69.0 p 64.4 69.0 64.3 69.0 60.1 71.7 68.6 71.7 s2 64.4 69.0 64.3 69.0 p 60.1 69.0 64.3 69.0 60.1 71.7 t2 60.1 69.0 64.3 69.0 p 68.6 66.2 77.2 66.2 77.2 71.7 68.6 71.7 s1 75.5 66.2 72.3 68.5 72.9 68.9 77.2 66.2 s2 75.5 66.2 72.3 68.5 p 77.2 66.2 72.9 68.9 77.2 71.7 t2 77.2 71.7 72.9 68.9 68.6 71.7 t2 72.3 68.5 68.6 69.0 68.6 71.7 72.9 68.9 s2 72.3 68.5 68.6 69.0 p 77.2 66.2 85.8 66.2 85.8 71.7 77.2 71.7 s1 78.8 66.2 78.4 67.0 77.2 66.2 t2 78.8 66.2 78.4 67.0 p 79.0 70.5 78.7 71.7 77.2 71.7 t2 79.0 70.5 78.7 71.7 p 79.0 70.5 78.4 67.0 77.2 66.2 77.2 71.7 s2 79.0 70.5 78.4 67.0 p 85.8 66.2 94.4 66.2 94.4 71.7 85.8 71.7 s1 93.1 67.0 92.8 66.2 94.4 66.2 t2 93.1 67.0 92.8 66.2 p 93.1 67.0 92.6 70.5 94.4 71.7 94.4 66.2 s2 93.1 67.0 92.6 70.5 p 92.9 71.7 92.6 70.5 94.4 71.7 t2 92.9 71.7 92.6 70.5 p 94.4 66.2 102.9 66.2 102.9 71.7 94.4 71.7 s1 99.3 68.5 96.1 66.2 94.4 66.2 98.7 68.9 s2 99.3 68.5 96.1 66.2 p 102.9 69.0 99.3 68.5 98.7 68.9 102.9 71.7 s2 102.9 69.0 99.3 68.5 p 102.9 71.7 98.7 68.9 94.4 71.7 t2 94.4 71.7 98.7 68.9 94.4 66.2 t2 102.9 66.2 111.5 66.2 111.5 71.7 102.9 71.7 s1 107.3 69.0 111.5 69.0 111.5 71.7 t2 107.3 69.0 111.5 69.0 p 107.3 69.0 107.2 69.0 102.9 71.7 111.5 71.7 s2 107.3 69.0 107.2 69.0 p 102.9 69.0 107.2 69.0 102.9 71.7 t2 102.9 69.0 107.2 69.0 p 111.5 66.2 120.1 66.2 120.1 71.7 111.5 71.7 s1 118.4 66.2 115.2 68.5 115.8 68.9 120.1 66.2 s2 118.4 66.2 115.2 68.5 p 120.1 66.2 115.8 68.9 120.1 71.7 t2 120.1 71.7 115.8 68.9 111.5 71.7 t2 115.2 68.5 111.5 69.0 111.5 71.7 115.8 68.9 s2 115.2 68.5 111.5 69.0 p 120.1 66.2 128.7 66.2 128.7 71.7 120.1 71.7 s1 121.7 66.2 121.3 67.0 120.1 66.2 t2 121.7 66.2 121.3 67.0 p 121.9 70.5 121.6 71.7 120.1 71.7 t2 121.9 70.5 121.6 71.7 p 121.9 70.5 121.3 67.0 120.1 66.2 120.1 71.7 s2 121.9 70.5 121.3 67.0 p 128.7 66.2 137.3 66.2 137.3 71.7 128.7 71.7 s1 136.0 67.0 135.6 66.2 137.3 66.2 t2 136.0 67.0 135.6 66.2 p 136.0 67.0 135.5 70.5 137.3 71.7 137.3 66.2 s2 136.0 67.0 135.5 70.5 p 135.8 71.7 135.5 70.5 137.3 71.7 t2 135.8 71.7 135.5 70.5 p 137.3 66.2 145.8 66.2 145.8 71.7 137.3 71.7 s1 142.2 68.5 139.0 66.2 137.3 66.2 141.6 68.9 s2 142.2 68.5 139.0 66.2 p 145.8 69.0 142.2 68.5 141.6 68.9 145.8 71.7 s2 145.8 69.0 142.2 68.5 p 145.8 71.7 141.6 68.9 137.3 71.7 t2 137.3 71.7 141.6 68.9 137.3 66.2 t2 145.8 66.2 154.4 66.2 154.4 71.7 145.8 71.7 s1 150.2 69.0 154.4 69.0 154.4 71.7 t2 150.2 69.0 154.4 69.0 p 150.2 69.0 150.1 69.0 145.8 71.7 154.4 71.7 s2 150.2 69.0 150.1 69.0 p 145.8 69.0 150.1 69.0 145.8 71.7 t2 145.8 69.0 150.1 69.0 p 154.4 66.2 163.0 66.2 163.0 71.7 154.4 71.7 s1 161.3 66.2 158.1 68.5 158.7 68.9 163.0 66.2 s2 161.3 66.2 158.1 68.5 p 163.0 66.2 158.7 68.9 163.0 71.7 t2 163.0 71.7 158.7 68.9 154.4 71.7 t2 158.1 68.5 154.4 69.0 154.4 71.7 158.7 68.9 s2 158.1 68.5 154.4 69.0 p 163.0 66.2 171.6 66.2 171.6 71.7 163.0 71.7 s1 164.6 66.2 164.2 67.0 163.0 66.2 t2 164.6 66.2 164.2 67.0 p 164.8 70.5 164.5 71.7 163.0 71.7 t2 164.8 70.5 164.5 71.7 p 164.8 70.5 164.2 67.0 163.0 66.2 163.0 71.7 s2 164.8 70.5 164.2 67.0 p 171.6 66.2 180.2 66.2 180.2 71.7 171.6 71.7 s1 178.9 67.0 178.5 66.2 180.2 66.2 t2 178.9 67.0 178.5 66.2 p 178.9 67.0 178.4 70.5 180.2 71.7 180.2 66.2 s2 178.9 67.0 178.4 70.5 p 178.7 71.7 178.4 70.5 180.2 71.7 t2 178.7 71.7 178.4 70.5 p 180.2 66.2 188.7 66.2 188.7 71.7 180.2 71.7 s1 185.1 68.5 181.9 66.2 180.2 66.2 184.4 68.9 s2 185.1 68.5 181.9 66.2 p 188.7 69.0 185.1 68.5 184.4 68.9 188.7 71.7 s2 188.7 69.0 185.1 68.5 p 188.7 71.7 184.4 68.9 180.2 71.7 t2 180.2 71.7 184.4 68.9 180.2 66.2 t2 188.7 66.2 197.3 66.2 197.3 71.7 188.7 71.7 s1 193.1 69.0 197.3 69.0 197.3 71.7 t2 193.1 69.0 197.3 69.0 p 193.1 69.0 193.0 69.0 188.7 71.7 197.3 71.7 s2 193.1 69.0 193.0 69.0 p 188.7 69.0 193.0 69.0 188.7 71.7 t2 188.7 69.0 193.0 69.0 p 197.3 66.2 205.9 66.2 205.9 71.7 197.3 71.7 s1 204.1 66.2 201.0 68.5 201.6 68.9 205.9 66.2 s2 204.1 66.2 201.0 68.5 p 205.9 66.2 201.6 68.9 205.9 71.7 t2 205.9 71.7 201.6 68.9 197.3 71.7 t2 201.0 68.5 197.3 69.0 197.3 71.7 201.6 68.9 s2 201.0 68.5 197.3 69.0 p 205.9 66.2 214.5 66.2 214.5 71.7 205.9 71.7 s1 207.5 66.2 207.1 67.0 205.9 66.2 t2 207.5 66.2 207.1 67.0 p 207.7 70.5 207.4 71.7 205.9 71.7 t2 207.7 70.5 207.4 71.7 p 207.7 70.5 207.1 67.0 205.9 66.2 205.9 71.7 s2 207.7 70.5 207.1 67.0 p 214.5 66.2 223.1 66.2 223.1 71.7 214.5 71.7 s1 221.8 67.0 221.4 66.2 223.1 66.2 t2 221.8 67.0 221.4 66.2 p 221.8 67.0 221.3 70.5 223.1 71.7 223.1 66.2 s2 221.8 67.0 221.3 70.5 p 221.6 71.7 221.3 70.5 223.1 71.7 t2 221.6 71.7 221.3 70.5 p 223.1 66.2 231.6 66.2 231.6 71.7 223.1 71.7 s1 228.0 68.5 224.8 66.2 223.1 66.2 227.3 68.9 s2 228.0 68.5 224.8 66.2 p 231.6 69.0 228.0 68.5 227.3 68.9 231.6 71.7 s2 231.6 69.0 228.0 68.5 p 231.6 71.7 227.3 68.9 223.1 71.7 t2 223.1 71.7 227.3 68.9 223.1 66.2 t2 231.6 66.2 240.2 66.2 240.2 71.7 231.6 71.7 s1 235.9 69.0 240.2 69.0 240.2 71.7 t2 235.9 69.0 240.2 69.0 p 235.9 69.0 235.9 69.0 231.6 71.7 240.2 71.7 s2 235.9 69.0 235.9 69.0 p 231.6 69.0 235.9 69.0 231.6 71.7 t2 231.6 69.0 235.9 69.0 p 240.2 66.2 248.8 66.2 248.8 71.7 240.2 71.7 s1 247.0 66.2 243.9 68.5 244.5 68.9 248.8 66.2 s2 247.0 66.2 243.9 68.5 p 248.8 66.2 244.5 68.9 248.8 71.7 t2 248.8 71.7 244.5 68.9 240.2 71.7 t2 243.9 68.5 240.2 69.0 240.2 71.7 244.5 68.9 s2 243.9 68.5 240.2 69.0 p 248.8 66.2 257.4 66.2 257.4 71.7 248.8 71.7 s1 250.4 66.2 250.0 67.0 248.8 66.2 t2 250.4 66.2 250.0 67.0 p 250.6 70.5 250.3 71.7 248.8 71.7 t2 250.6 70.5 250.3 71.7 p 250.6 70.5 250.0 67.0 248.8 66.2 248.8 71.7 s2 250.6 70.5 250.0 67.0 p 257.4 66.2 265.9 66.2 265.9 71.7 257.4 71.7 s1 264.7 67.0 264.3 66.2 265.9 66.2 t2 264.7 67.0 264.3 66.2 p 264.7 67.0 264.2 70.5 265.9 71.7 265.9 66.2 s2 264.7 67.0 264.2 70.5 p 264.5 71.7 264.2 70.5 265.9 71.7 t2 264.5 71.7 264.2 70.5 p 265.9 66.2 274.5 66.2 274.5 71.7 265.9 71.7 s1 270.9 68.5 267.7 66.2 265.9 66.2 270.2 68.9 s2 270.9 68.5 267.7 66.2 p 274.5 69.0 270.9 68.5 270.2 68.9 274.5 71.7 s2 274.5 69.0 270.9 68.5 p 274.5 71.7 270.2 68.9 265.9 71.7 t2 265.9 71.7 270.2 68.9 265.9 66.2 t2 274.5 66.2 283.1 66.2 283.1 71.7 274.5 71.7 s1 278.8 69.0 283.1 69.0 283.1 71.7 t2 278.8 69.0 283.1 69.0 p 278.8 69.0 278.8 69.0 274.5 71.7 283.1 71.7 s2 278.8 69.0 278.8 69.0 p 274.5 69.0 278.8 69.0 274.5 71.7 t2 274.5 69.0 278.8 69.0 p 283.1 66.2 291.7 66.2 291.7 71.7 283.1 71.7 s1 289.9 66.2 286.8 68.5 287.4 68.9 291.7 66.2 s2 289.9 66.2 286.8 68.5 p 291.7 66.2 287.4 68.9 291.7 71.7 t2 291.7 71.7 287.4 68.9 283.1 71.7 t2 286.8 68.5 283.1 69.0 283.1 71.7 287.4 68.9 s2 286.8 68.5 283.1 69.0 p 291.7 66.2 300.3 66.2 300.3 71.7 291.7 71.7 s1 293.3 66.2 292.9 67.0 291.7 66.2 t2 293.3 66.2 292.9 67.0 p 293.5 70.5 293.2 71.7 291.7 71.7 t2 293.5 70.5 293.2 71.7 p 293.5 70.5 292.9 67.0 291.7 66.2 291.7 71.7 s2 293.5 70.5 292.9 67.0 p 0.0 60.7 8.6 60.7 8.6 66.2 0.0 66.2 s1 7.7 65.6 8.6 65.4 8.6 66.2 t2 7.7 65.6 8.6 65.4 p 7.0 66.2 7.7 65.6 8.6 66.2 t2 7.0 66.2 7.7 65.6 p 8.6 60.7 17.2 60.7 17.2 66.2 8.6 66.2 s1 9.3 65.7 10.3 66.2 8.6 66.2 t2 9.3 65.7 10.3 66.2 p 8.6 65.4 9.3 65.7 8.6 66.2 t2 8.6 65.4 9.3 65.7 p 17.2 60.7 25.7 60.7 25.7 66.2 17.2 66.2 s1 25.7 60.7 34.3 60.7 34.3 66.2 25.7 66.2 s1 33.6 65.7 34.3 65.4 34.3 66.2 t2 33.6 65.7 34.3 65.4 p 32.6 66.2 33.6 65.7 34.3 66.2 t2 32.6 66.2 33.6 65.7 p 34.3 60.7 42.9 60.7 42.9 66.2 34.3 66.2 s1 35.1 65.6 35.9 66.2 34.3 66.2 t2 35.1 65.6 35.9 66.2 p 34.3 65.4 35.1 65.6 34.3 66.2 t2 34.3 65.4 35.1 65.6 p 42.9 60.7 51.5 60.7 51.5 66.2 42.9 66.2 s1 50.6 65.6 51.5 65.4 51.5 66.2 t2 50.6 65.6 51.5 65.4 p 49.9 66.2 50.6 65.6 51.5 66.2 t2 49.9 66.2 50.6 65.6 p 51.5 60.7 60.1 60.7 60.1 66.2 51.5 66.2 s1 52.2 65.7 53.2 66.2 51.5 66.2 t2 52.2 65.7 53.2 66.2 p 51.5 65.4 52.2 65.7 51.5 66.2 t2 51.5 65.4 52.2 65.7 p 60.1 60.7 68.6 60.7 68.6 66.2 60.1 66.2 s1 68.6 60.7 77.2 60.7 77.2 66.2 68.6 66.2 s1 76.5 65.7 77.2 65.4 77.2 66.2 t2 76.5 65.7 77.2 65.4 p 75.5 66.2 76.5 65.7 77.2 66.2 t2 75.5 66.2 76.5 65.7 p 77.2 60.7 85.8 60.7 85.8 66.2 77.2 66.2 s1 78.0 65.6 78.8 66.2 77.2 66.2 t2 78.0 65.6 78.8 66.2 p 77.2 65.4 78.0 65.6 77.2 66.2 t2 77.2 65.4 78.0 65.6 p 85.8 60.7 94.4 60.7 94.4 66.2 85.8 66.2 s1 93.5 65.6 94.4 65.4 94.4 66.2 t2 93.5 65.6 94.4 65.4 p 92.8 66.2 93.5 65.6 94.4 66.2 t2 92.8 66.2 93.5 65.6 p 94.4 60.7 102.9 60.7 102.9 66.2 94.4 66.2 s1 95.1 65.7 96.1 66.2 94.4 66.2 t2 95.1 65.7 96.1 66.2 p 94.4 65.4 95.1 65.7 94.4 66.2 t2 94.4 65.4 95.1 65.7 p 102.9 60.7 111.5 60.7 111.5 66.2 102.9 66.2 s1 111.5 60.7 120.1 60.7 120.1 66.2 111.5 66.2 s1 119.4 65.7 120.1 65.4 120.1 66.2 t2 119.4 65.7 120.1 65.4 p 118.4 66.2 119.4 65.7 120.1 66.2 t2 118.4 66.2 119.4 65.7 p 120.1 60.7 128.7 60.7 128.7 66.2 120.1 66.2 s1 120.9 65.6 121.7 66.2 120.1 66.2 t2 120.9 65.6 121.7 66.2 p 120.1 65.4 120.9 65.6 120.1 66.2 t2 120.1 65.4 120.9 65.6 p 128.7 60.7 137.3 60.7 137.3 66.2 128.7 66.2 s1 136.4 65.6 137.3 65.4 137.3 66.2 t2 136.4 65.6 137.3 65.4 p 135.6 66.2 136.4 65.6 137.3 66.2 t2 135.6 66.2 136.4 65.6 p 137.3 60.7 145.8 60.7 145.8 66.2 137.3 66.2 s1 138.0 65.7 139.0 66.2 137.3 66.2 t2 138.0 65.7 139.0 66.2 p 137.3 65.4 138.0 65.7 137.3 66.2 t2 137.3 65.4 138.0 65.7 p 145.8 60.7 154.4 60.7 154.4 66.2 145.8 66.2 s1 154.4 60.7 163.0 60.7 163.0 66.2 154.4 66.2 s1 162.3 65.7 163.0 65.4 163.0 66.2 t2 162.3 65.7 163.0 65.4 p 161.3 66.2 162.3 65.7 163.0 66.2 t2 161.3 66.2 162.3 65.7 p 163.0 60.7 171.6 60.7 171.6 66.2 163.0 66.2 s1 163.8 65.6 164.6 66.2 163.0 66.2 t2 163.8 65.6 164.6 66.2 p 163.0 65.4 163.8 65.6 163.0 66.2 t2 163.0 65.4 163.8 65.6 p 171.6 60.7 180.2 60.7 180.2 66.2 171.6 66.2 s1 179.3 65.6 180.2 65.4 180.2 66.2 t2 179.3 65.6 180.2 65.4 p 178.5 66.2 179.3 65.6 180.2 66.2 t2 178.5 66.2 179.3 65.6 p 180.2 60.7 188.7 60.7 188.7 66.2 180.2 66.2 s1 180.9 65.7 181.9 66.2 180.2 66.2 t2 180.9 65.7 181.9 66.2 p 180.2 65.4 180.9 65.7 180.2 66.2 t2 180.2 65.4 180.9 65.7 p 188.7 60.7 197.3 60.7 197.3 66.2 188.7 66.2 s1 197.3 60.7 205.9 60.7 205.9 66.2 197.3 66.2 s1 205.1 65.7 205.9 65.4 205.9 66.2 t2 205.1 65.7 205.9 65.4 p 204.1 66.2 205.1 65.7 205.9 66.2 t2 204.1 66.2 205.1 65.7 p 205.9 60.7 214.5 60.7 214.5 66.2 205.9 66.2 s1 206.7 65.6 207.5 66.2 205.9 66.2 t2 206.7 65.6 207.5 66.2 p 205.9 65.4 206.7 65.6 205.9 66.2 t2 205.9 65.4 206.7 65.6 p 214.5 60.7 223.1 60.7 223.1 66.2 214.5 66.2 s1 222.2 65.6 223.1 65.4 223.1 66.2 t2 222.2 65.6 223.1 65.4 p 221.4 66.2 222.2 65.6 223.1 66.2 t2 221.4 66.2 222.2 65.6 p 223.1 60.7 231.6 60.7 231.6 66.2 223.1 66.2 s1 223.8 65.7 224.8 66.2 223.1 66.2 t2 223.8 65.7 224.8 66.2 p 223.1 65.4 223.8 65.7 223.1 66.2 t2 223.1 65.4 223.8 65.7 p 231.6 60.7 240.2 60.7 240.2 66.2 231.6 66.2 s1 240.2 60.7 248.8 60.7 248.8 66.2 240.2 66.2 s1 248.0 65.7 248.8 65.4 248.8 66.2 t2 248.0 65.7 248.8 65.4 p 247.0 66.2 248.0 65.7 248.8 66.2 t2 247.0 66.2 248.0 65.7 p 248.8 60.7 257.4 60.7 257.4 66.2 248.8 66.2 s1 249.6 65.6 250.4 66.2 248.8 66.2 t2 249.6 65.6 250.4 66.2 p 248.8 65.4 249.6 65.6 248.8 66.2 t2 248.8 65.4 249.6 65.6 p 257.4 60.7 265.9 60.7 265.9 66.2 257.4 66.2 s1 265.1 65.6 265.9 65.4 265.9 66.2 t2 265.1 65.6 265.9 65.4 p 264.3 66.2 265.1 65.6 265.9 66.2 t2 264.3 66.2 265.1 65.6 p 265.9 60.7 274.5 60.7 274.5 66.2 265.9 66.2 s1 266.7 65.7 267.7 66.2 265.9 66.2 t2 266.7 65.7 267.7 66.2 p 265.9 65.4 266.7 65.7 265.9 66.2 t2 265.9 65.4 266.7 65.7 p 274.5 60.7 283.1 60.7 283.1 66.2 274.5 66.2 s1 283.1 60.7 291.7 60.7 291.7 66.2 283.1 66.2 s1 290.9 65.7 291.7 65.4 291.7 66.2 t2 290.9 65.7 291.7 65.4 p 289.9 66.2 290.9 65.7 291.7 66.2 t2 289.9 66.2 290.9 65.7 p 291.7 60.7 300.3 60.7 300.3 66.2 291.7 66.2 s1 292.5 65.6 293.3 66.2 291.7 66.2 t2 292.5 65.6 293.3 66.2 p 291.7 65.4 292.5 65.6 291.7 66.2 t2 291.7 65.4 292.5 65.6 p 0.0 55.1 8.6 55.1 8.6 60.7 0.0 60.7 s1 8.6 55.1 17.2 55.1 17.2 60.7 8.6 60.7 s1 17.2 55.1 25.7 55.1 25.7 60.7 17.2 60.7 s1 25.7 55.1 34.3 55.1 34.3 60.7 25.7 60.7 s1 34.3 55.1 42.9 55.1 42.9 60.7 34.3 60.7 s1 42.9 55.1 51.5 55.1 51.5 60.7 42.9 60.7 s1 51.5 55.1 60.1 55.1 60.1 60.7 51.5 60.7 s1 60.1 55.1 68.6 55.1 68.6 60.7 60.1 60.7 s1 68.6 55.1 77.2 55.1 77.2 60.7 68.6 60.7 s1 77.2 55.1 85.8 55.1 85.8 60.7 77.2 60.7 s1 85.8 55.1 94.4 55.1 94.4 60.7 85.8 60.7 s1 94.4 55.1 102.9 55.1 102.9 60.7 94.4 60.7 s1 102.9 55.1 111.5 55.1 111.5 60.7 102.9 60.7 s1 111.5 55.1 120.1 55.1 120.1 60.7 111.5 60.7 s1 120.1 55.1 128.7 55.1 128.7 60.7 120.1 60.7 s1 128.7 55.1 137.3 55.1 137.3 60.7 128.7 60.7 s1 137.3 55.1 145.8 55.1 145.8 60.7 137.3 60.7 s1 145.8 55.1 154.4 55.1 154.4 60.7 145.8 60.7 s1 154.4 55.1 163.0 55.1 163.0 60.7 154.4 60.7 s1 163.0 55.1 171.6 55.1 171.6 60.7 163.0 60.7 s1 171.6 55.1 180.2 55.1 180.2 60.7 171.6 60.7 s1 180.2 55.1 188.7 55.1 188.7 60.7 180.2 60.7 s1 188.7 55.1 197.3 55.1 197.3 60.7 188.7 60.7 s1 197.3 55.1 205.9 55.1 205.9 60.7 197.3 60.7 s1 205.9 55.1 214.5 55.1 214.5 60.7 205.9 60.7 s1 214.5 55.1 223.1 55.1 223.1 60.7 214.5 60.7 s1 223.1 55.1 231.6 55.1 231.6 60.7 223.1 60.7 s1 231.6 55.1 240.2 55.1 240.2 60.7 231.6 60.7 s1 240.2 55.1 248.8 55.1 248.8 60.7 240.2 60.7 s1 248.8 55.1 257.4 55.1 257.4 60.7 248.8 60.7 s1 257.4 55.1 265.9 55.1 265.9 60.7 257.4 60.7 s1 265.9 55.1 274.5 55.1 274.5 60.7 265.9 60.7 s1 274.5 55.1 283.1 55.1 283.1 60.7 274.5 60.7 s1 283.1 55.1 291.7 55.1 291.7 60.7 283.1 60.7 s1 291.7 55.1 300.3 55.1 300.3 60.7 291.7 60.7 s1 0.0 49.6 8.6 49.6 8.6 55.1 0.0 55.1 s0 2.6 51.3 6.7 50.8 4.3 52.4 t1 2.6 51.3 6.7 50.8 p 8.6 50.7 6.7 50.8 4.3 52.4 8.6 55.1 s1 8.6 50.7 6.7 50.8 p 8.6 55.1 4.3 52.4 0.0 55.1 t1 2.6 51.3 0.0 51.5 0.0 55.1 4.3 52.4 s1 2.6 51.3 0.0 51.5 p 8.6 49.6 17.2 49.6 17.2 55.1 8.6 55.1 s0 10.4 50.8 16.4 50.1 12.9 52.4 t1 10.4 50.8 16.4 50.1 p 17.2 50.2 16.4 50.1 12.9 52.4 17.2 55.1 s1 17.2 50.2 16.4 50.1 p 17.2 55.1 12.9 52.4 8.6 55.1 t1 10.4 50.8 8.6 50.7 8.6 55.1 12.9 52.4 s1 10.4 50.8 8.6 50.7 p 17.2 49.6 25.7 49.6 25.7 55.1 17.2 55.1 s0 18.1 50.2 24.8 50.2 21.4 52.4 t1 18.1 50.2 24.8 50.2 p 25.7 50.2 24.8 50.2 21.4 52.4 25.7 55.1 s1 25.7 50.2 24.8 50.2 p 25.7 55.1 21.4 52.4 17.2 55.1 t1 18.1 50.2 17.2 50.2 17.2 55.1 21.4 52.4 s1 18.1 50.2 17.2 50.2 p 25.7 49.6 34.3 49.6 34.3 55.1 25.7 55.1 s0 26.5 50.1 32.5 50.8 30.0 52.4 t1 26.5 50.1 32.5 50.8 p 34.3 50.7 32.5 50.8 30.0 52.4 34.3 55.1 s1 34.3 50.7 32.5 50.8 p 34.3 55.1 30.0 52.4 25.7 55.1 t1 26.5 50.1 25.7 50.2 25.7 55.1 30.0 52.4 s1 26.5 50.1 25.7 50.2 p 34.3 49.6 42.9 49.6 42.9 55.1 34.3 55.1 s0 36.2 50.8 40.2 51.3 38.6 52.4 t1 36.2 50.8 40.2 51.3 p 42.9 51.5 40.2 51.3 38.6 52.4 42.9 55.1 s1 42.9 51.5 40.2 51.3 p 42.9 55.1 38.6 52.4 34.3 55.1 t1 36.2 50.8 34.3 50.7 34.3 55.1 38.6 52.4 s1 36.2 50.8 34.3 50.7 p 42.9 49.6 51.5 49.6 51.5 55.1 42.9 55.1 s0 45.5 51.3 49.6 50.8 47.2 52.4 t1 45.5 51.3 49.6 50.8 p 51.5 50.7 49.6 50.8 47.2 52.4 51.5 55.1 s1 51.5 50.7 49.6 50.8 p 51.5 55.1 47.2 52.4 42.9 55.1 t1 45.5 51.3 42.9 51.5 42.9 55.1 47.2 52.4 s1 45.5 51.3 42.9 51.5 p 51.5 49.6 60.1 49.6 60.1 55.1 51.5 55.1 s0 53.3 50.8 59.3 50.1 55.8 52.4 t1 53.3 50.8 59.3 50.1 p 60.1 50.2 59.3 50.1 55.8 52.4 60.1 55.1 s1 60.1 50.2 59.3 50.1 p 60.1 55.1 55.8 52.4 51.5 55.1 t1 53.3 50.8 51.5 50.7 51.5 55.1 55.8 52.4 s1 53.3 50.8 51.5 50.7 p 60.1 49.6 68.6 49.6 68.6 55.1 60.1 55.1 s0 61.0 50.2 67.7 50.2 64.3 52.4 t1 61.0 50.2 67.7 50.2 p 68.6 50.2 67.7 50.2 64.3 52.4 68.6 55.1 s1 68.6 50.2 67.7 50.2 p 68.6 55.1 64.3 52.4 60.1 55.1 t1 61.0 50.2 60.1 50.2 60.1 55.1 64.3 52.4 s1 61.0 50.2 60.1 50.2 p 68.6 49.6 77.2 49.6 77.2 55.1 68.6 55.1 s0 69.4 50.1 75.4 50.8 72.9 52.4 t1 69.4 50.1 75.4 50.8 p 77.2 50.7 75.4 50.8 72.9 52.4 77.2 55.1 s1 77.2 50.7 75.4 50.8 p 77.2 55.1 72.9 52.4 68.6 55.1 t1 69.4 50.1 68.6 50.2 68.6 55.1 72.9 52.4 s1 69.4 50.1 68.6 50.2 p 77.2 49.6 85.8 49.6 85.8 55.1 77.2 55.1 s0 79.1 50.8 83.1 51.3 81.5 52.4 t1 79.1 50.8 83.1 51.3 p 85.8 51.5 83.1 51.3 81.5 52.4 85.8 55.1 s1 85.8 51.5 83.1 51.3 p 85.8 55.1 81.5 52.4 77.2 55.1 t1 79.1 50.8 77.2 50.7 77.2 55.1 81.5 52.4 s1 79.1 50.8 77.2 50.7 p 85.8 49.6 94.4 49.6 94.4 55.1 85.8 55.1 s0 88.4 51.3 92.5 50.8 90.1 52.4 t1 88.4 51.3 92.5 50.8 p 94.4 50.7 92.5 50.8 90.1 52.4 94.4 55.1 s1 94.4 50.7 92.5 50.8 p 94.4 55.1 90.1 52.4 85.8 55.1 t1 88.4 51.3 85.8 51.5 85.8 55.1 90.1 52.4 s1 88.4 51.3 85.8 51.5 p 94.4 49.6 102.9 49.6 102.9 55.1 94.4 55.1 s0 96.2 50.8 102.2 50.1 98.7 52.4 t1 96.2 50.8 102.2 50.1 p 102.9 50.2 102.2 50.1 98.7 52.4 102.9 55.1 s1 102.9 50.2 102.2 50.1 p 102.9 55.1 98.7 52.4 94.4 55.1 t1 96.2 50.8 94.4 50.7 94.4 55.1 98.7 52.4 s1 96.2 50.8 94.4 50.7 p 102.9 49.6 111.5 49.6 111.5 55.1 102.9 55.1 s0 103.9 50.2 110.6 50.2 107.2 52.4 t1 103.9 50.2 110.6 50.2 p 111.5 50.2 110.6 50.2 107.2 52.4 111.5 55.1 s1 111.5 50.2 110.6 50.2 p 111.5 55.1 107.2 52.4 102.9 55.1 t1 103.9 50.2 102.9 50.2 102.9 55.1 107.2 52.4 s1 103.9 50.2 102.9 50.2 p 111.5 49.6 120.1 49.6 120.1 55.1 111.5 55.1 s0 112.3 50.1 118.3 50.8 115.8 52.4 t1 112.3 50.1 118.3 50.8 p 120.1 50.7 118.3 50.8 115.8 52.4 120.1 55.1 s1 120.1 50.7 118.3 50.8 p 120.1 55.1 115.8 52.4 111.5 55.1 t1 112.3 50.1 111.5 50.2 111.5 55.1 115.8 52.4 s1 112.3 50.1 111.5 50.2 p 120.1 49.6 128.7 49.6 128.7 55.1 120.1 55.1 s0 122.0 50.8 126.0 51.3 124.4 52.4 t1 122.0 50.8 126.0 51.3 p 128.7 51.5 126.0 51.3 124.4 52.4 128.7 55.1 s1 128.7 51.5 126.0 51.3 p 128.7 55.1 124.4 52.4 120.1 55.1 t1 122.0 50.8 120.1 50.7 120.1 55.1 124.4 52.4 s1 122.0 50.8 120.1 50.7 p 128.7 49.6 137.3 49.6 137.3 55.1 128.7 55.1 s0 131.3 51.3 135.4 50.8 133.0 52.4 t1 131.3 51.3 135.4 50.8 p 137.3 50.7 135.4 50.8 133.0 52.4 137.3 55.1 s1 137.3 50.7 135.4 50.8 p 137.3 55.1 133.0 52.4 128.7 55.1 t1 131.3 51.3 128.7 51.5 128.7 55.1 133.0 52.4 s1 131.3 51.3 128.7 51.5 p 137.3 49.6 145.8 49.6 145.8 55.1 137.3 55.1 s0 139.1 50.8 145.0 50.1 141.6 52.4 t1 139.1 50.8 145.0 50.1 p 145.8 50.2 145.0 50.1 141.6 52.4 145.8 55.1 s1 145.8 50.2 145.0 50.1 p 145.8 55.1 141.6 52.4 137.3 55.1 t1 139.1 50.8 137.3 50.7 137.3 55.1 141.6 52.4 s1 139.1 50.8 137.3 50.7 p 145.8 49.6 154.4 49.6 154.4 55.1 145.8 55.1 s0 146.8 50.2 153.5 50.2 150.1 52.4 t1 146.8 50.2 153.5 50.2 p 154.4 50.2 153.5 50.2 150.1 52.4 154.4 55.1 s1 154.4 50.2 153.5 50.2 p 154.4 55.1 150.1 52.4 145.8 55.1 t1 146.8 50.2 145.8 50.2 145.8 55.1 150.1 52.4 s1 146.8 50.2 145.8 50.2 p 154.4 49.6 163.0 49.6 163.0 55.1 154.4 55.1 s0 155.2 50.1 161.2 50.8 158.7 52.4 t1 155.2 50.1 161.2 50.8 p 163.0 50.7 161.2 50.8 158.7 52.4 163.0 55.1 s1 163.0 50.7 161.2 50.8 p 163.0 55.1 158.7 52.4 154.4 55.1 t1 155.2 50.1 154.4 50.2 154.4 55.1 158.7 52.4 s1 155.2 50.1 154.4 50.2 p 163.0 49.6 171.6 49.6 171.6 55.1 163.0 55.1 s0 164.9 50.8 168.9 51.3 167.3 52.4 t1 164.9 50.8 168.9 51.3 p 171.6 51.5 168.9 51.3 167.3 52.4 171.6 55.1 s1 171.6 51.5 168.9 51.3 p 171.6 55.1 167.3 52.4 163.0 55.1 t1 164.9 50.8 163.0 50.7 163.0 55.1 167.3 52.4 s1 164.9 50.8 163.0 50.7 p 171.6 49.6 180.2 49.6 180.2 55.1 171.6 55.1 s0 174.2 51.3 178.3 50.8 175.9 52.4 t1 174.2 51.3 178.3 50.8 p 180.2 50.7 178.3 50.8 175.9 52.4 180.2 55.1 s1 180.2 50.7 178.3 50.8 p 180.2 55.1 175.9 52.4 171.6 55.1 t1 174.2 51.3 171.6 51.5 171.6 55.1 175.9 52.4 s1 174.2 51.3 171.6 51.5 p 180.2 49.6 188.7 49.6 188.7 55.1 180.2 55.1 s0 181.9 50.8 187.9 50.1 184.4 52.4 t1 181.9 50.8 187.9 50.1 p 188.7 50.2 187.9 50.1 184.4 52.4 188.7 55.1 s1 188.7 50.2 187.9 50.1 p 188.7 55.1 184.4 52.4 180.2 55.1 t1 181.9 50.8 180.2 50.7 180.2 55.1 184.4 52.4 s1 181.9 50.8 180.2 50.7 p 188.7 49.6 197.3 49.6 197.3 55.1 188.7 55.1 s0 189.7 50.2 196.4 50.2 193.0 52.4 t1 189.7 50.2 196.4 50.2 p 197.3 50.2 196.4 50.2 193.0 52.4 197.3 55.1 s1 197.3 50.2 196.4 50.2 p 197.3 55.1 193.0 52.4 188.7 55.1 t1 189.7 50.2 188.7 50.2 188.7 55.1 193.0 52.4 s1 189.7 50.2 188.7 50.2 p 197.3 49.6 205.9 49.6 205.9 55.1 197.3 55.1 s0 198.1 50.1 204.1 50.8 201.6 52.4 t1 198.1 50.1 204.1 50.8 p 205.9 50.7 204.1 50.8 201.6 52.4 205.9 55.1 s1 205.9 50.7 204.1 50.8 p 205.9 55.1 201.6 52.4 197.3 55.1 t1 198.1 50.1 197.3 50.2 197.3 55.1 201.6 52.4 s1 198.1 50.1 197.3 50.2 p 205.9 49.6 214.5 49.6 214.5 55.1 205.9 55.1 s0 207.8 50.8 211.8 51.3 210.2 52.4 t1 207.8 50.8 211.8 51.3 p 214.5 51.5 211.8 51.3 210.2 52.4 214.5 55.1 s1 214.5 51.5 211.8 51.3 p 214.5 55.1 210.2 52.4 205.9 55.1 t1 207.8 50.8 205.9 50.7 205.9 55.1 210.2 52.4 s1 207.8 50.8 205.9 50.7 p 214.5 49.6 223.1 49.6 223.1 55.1 214.5 55.1 s0 217.1 51.3 221.2 50.8 218.8 52.4 t1 217.1 51.3 221.2 50.8 p 223.1 50.7 221.2 50.8 218.8 52.4 223.1 55.1 s1 223.1 50.7 221.2 50.8 p 223.1 55.1 218.8 52.4 214.5 55.1 t1 217.1 51.3 214.5 51.5 214.5 55.1 218.8 52.4 s1 217.1 51.3 214.5 51.5 p 223.1 49.6 231.6 49.6 231.6 55.1 223.1 55.1 s0 224.8 50.8 230.8 50.1 227.3 52.4 t1 224.8 50.8 230.8 50.1 p 231.6 50.2 230.8 50.1 227.3 52.4 231.6 55.1 s1 231.6 50.2 230.8 50.1 p 231.6 55.1 227.3 52.4 223.1 55.1 t1 224.8 50.8 223.1 50.7 223.1 55.1 227.3 52.4 s1 224.8 50.8 223.1 50.7 p 231.6 49.6 240.2 49.6 240.2 55.1 231.6 55.1 s0 232.6 50.2 239.3 50.2 235.9 52.4 t1 232.6 50.2 239.3 50.2 p 240.2 50.2 239.3 50.2 235.9 52.4 240.2 55.1 s1 240.2 50.2 239.3 50.2 p 240.2 55.1 235.9 52.4 231.6 55.1 t1 232.6 50.2 231.6 50.2 231.6 55.1 235.9 52.4 s1 232.6 50.2 231.6 50.2 p 240.2 49.6 248.8 49.6 248.8 55.1 240.2 55.1 s0 241.0 50.1 247.0 50.8 244.5 52.4 t1 241.0 50.1 247.0 50.8 p 248.8 50.7 247.0 50.8 244.5 52.4 248.8 55.1 s1 248.8 50.7 247.0 50.8 p 248.8 55.1 244.5 52.4 240.2 55.1 t1 241.0 50.1 240.2 50.2 240.2 55.1 244.5 52.4 s1 241.0 50.1 240.2 50.2 p 248.8 49.6 257.4 49.6 257.4 55.1 248.8 55.1 s0 250.7 50.8 254.7 51.3 253.1 52.4 t1 250.7 50.8 254.7 51.3 p 257.4 51.5 254.7 51.3 253.1 52.4 257.4 55.1 s1 257.4 51.5 254.7 51.3 p 257.4 55.1 253.1 52.4 248.8 55.1 t1 250.7 50.8 248.8 50.7 248.8 55.1 253.1 52.4 s1 250.7 50.8 248.8 50.7 p 257.4 49.6 265.9 49.6 265.9 55.1 257.4 55.1 s0 260.0 51.3 264.1 50.8 261.7 52.4 t1 260.0 51.3 264.1 50.8 p 265.9 50.7 264.1 50.8 261.7 52.4 265.9 55.1 s1 265.9 50.7 264.1 50.8 p 265.9 55.1 261.7 52.4 257.4 55.1 t1 260.0 51.3 257.4 51.5 257.4 55.1 261.7 52.4 s1 260.0 51.3 257.4 51.5 p 265.9 49.6 274.5 49.6 274.5 55.1 265.9 55.1 s0 267.7 50.8 273.7 50.1 270.2 52.4 t1 267.7 50.8 273.7 50.1 p 274.5 50.2 273.7 50.1 270.2 52.4 274.5 55.1 s1 274.5 50.2 273.7 50.1 p 274.5 55.1 270.2 52.4 265.9 55.1 t1 267.7 50.8 265.9 50.7 265.9 55.1 270.2 52.4 s1 267.7 50.8 265.9 50.7 p 274.5 49.6 283.1 49.6 283.1 55.1 274.5 55.1 s0 275.5 50.2 282.2 50.2 278.8 52.4 t1 275.5 50.2 282.2 50.2 p 283.1 50.2 282.2 50.2 278.8 52.4 283.1 55.1 s1 283.1 50.2 282.2 50.2 p 283.1 55.1 278.8 52.4 274.5 55.1 t1 275.5 50.2 274.5 50.2 274.5 55.1 278.8 52.4 s1 275.5 50.2 274.5 50.2 p 283.1 49.6 291.7 49.6 291.7 55.1 283.1 55.1 s0 283.9 50.1 289.9 50.8 287.4 52.4 t1 283.9 50.1 289.9 50.8 p 291.7 50.7 289.9 50.8 287.4 52.4 291.7 55.1 s1 291.7 50.7 289.9 50.8 p 291.7 55.1 287.4 52.4 283.1 55.1 t1 283.9 50.1 283.1 50.2 283.1 55.1 287.4 52.4 s1 283.9 50.1 283.1 50.2 p 291.7 49.6 300.3 49.6 300.3 55.1 291.7 55.1 s0 293.6 50.8 297.6 51.3 296.0 52.4 t1 293.6 50.8 297.6 51.3 p 300.3 51.5 297.6 51.3 296.0 52.4 300.3 55.1 s1 300.3 51.5 297.6 51.3 p 300.3 55.1 296.0 52.4 291.7 55.1 t1 293.6 50.8 291.7 50.7 291.7 55.1 296.0 52.4 s1 293.6 50.8 291.7 50.7 p 0.0 44.1 8.6 44.1 8.6 49.6 0.0 49.6 s0 8.6 44.1 17.2 44.1 17.2 49.6 8.6 49.6 s0 16.2 44.8 16.2 44.1 17.2 44.1 t1 16.2 44.8 16.2 44.1 p 17.2 46.3 16.2 44.8 17.2 44.1 t1 17.2 46.3 16.2 44.8 p 17.2 44.1 25.7 44.1 25.7 49.6 17.2 49.6 s0 20.6 46.3 22.3 46.3 25.7 44.1 17.2 44.1 s1 20.6 46.3 22.3 46.3 p 25.7 46.3 22.3 46.3 25.7 44.1 t1 25.7 46.3 22.3 46.3 p 20.6 46.3 17.2 46.3 17.2 44.1 t1 20.6 46.3 17.2 46.3 p 25.7 44.1 34.3 44.1 34.3 49.6 25.7 49.6 s0 26.7 44.1 26.7 44.8 25.7 44.1 t1 26.7 44.1 26.7 44.8 p 26.7 44.8 25.7 46.3 25.7 44.1 t1 26.7 44.8 25.7 46.3 p 34.3 44.1 42.9 44.1 42.9 49.6 34.3 49.6 s0 42.9 44.1 51.5 44.1 51.5 49.6 42.9 49.6 s0 51.5 44.1 60.1 44.1 60.1 49.6 51.5 49.6 s0 59.1 44.8 59.1 44.1 60.1 44.1 t1 59.1 44.8 59.1 44.1 p 60.1 46.3 59.1 44.8 60.1 44.1 t1 60.1 46.3 59.1 44.8 p 60.1 44.1 68.6 44.1 68.6 49.6 60.1 49.6 s0 63.5 46.3 65.2 46.3 68.6 44.1 60.1 44.1 s1 63.5 46.3 65.2 46.3 p 68.6 46.3 65.2 46.3 68.6 44.1 t1 68.6 46.3 65.2 46.3 p 63.5 46.3 60.1 46.3 60.1 44.1 t1 63.5 46.3 60.1 46.3 p 68.6 44.1 77.2 44.1 77.2 49.6 68.6 49.6 s0 69.6 44.1 69.6 44.8 68.6 44.1 t1 69.6 44.1 69.6 44.8 p 69.6 44.8 68.6 46.3 68.6 44.1 t1 69.6 44.8 68.6 46.3 p 77.2 44.1 85.8 44.1 85.8 49.6 77.2 49.6 s0 85.8 44.1 94.4 44.1 94.4 49.6 85.8 49.6 s0 94.4 44.1 102.9 44.1 102.9 49.6 94.4 49.6 s0 101.9 44.8 102.0 44.1 102.9 44.1 t1 101.9 44.8 102.0 44.1 p 102.9 46.3 101.9 44.8 102.9 44.1 t1 102.9 46.3 101.9 44.8 p 102.9 44.1 111.5 44.1 111.5 49.6 102.9 49.6 s0 106.4 46.3 108.1 46.3 111.5 44.1 102.9 44.1 s1 106.4 46.3 108.1 46.3 p 111.5 46.3 108.1 46.3 111.5 44.1 t1 111.5 46.3 108.1 46.3 p 106.4 46.3 102.9 46.3 102.9 44.1 t1 106.4 46.3 102.9 46.3 p 111.5 44.1 120.1 44.1 120.1 49.6 111.5 49.6 s0 112.5 44.1 112.5 44.8 111.5 44.1 t1 112.5 44.1 112.5 44.8 p 112.5 44.8 111.5 46.3 111.5 44.1 t1 112.5 44.8 111.5 46.3 p 120.1 44.1 128.7 44.1 128.7 49.6 120.1 49.6 s0 128.7 44.1 137.3 44.1 137.3 49.6 128.7 49.6 s0 137.3 44.1 145.8 44.1 145.8 49.6 137.3 49.6 s0 144.8 44.8 144.9 44.1 145.8 44.1 t1 144.8 44.8 144.9 44.1 p 145.8 46.3 144.8 44.8 145.8 44.1 t1 145.8 46.3 144.8 44.8 p 145.8 44.1 154.4 44.1 154.4 49.6 145.8 49.6 s0 149.3 46.3 151.0 46.3 154.4 44.1 145.8 44.1 s1 149.3 46.3 151.0 46.3 p 154.4 46.3 151.0 46.3 154.4 44.1 t1 154.4 46.3 151.0 46.3 p 149.3 46.3 145.8 46.3 145.8 44.1 t1 149.3 46.3 145.8 46.3 p 154.4 44.1 163.0 44.1 163.0 49.6 154.4 49.6 s0 155.4 44.1 155.4 44.8 154.4 44.1 t1 155.4 44.1 155.4 44.8 p 155.4 44.8 154.4 46.3 154.4 44.1 t1 155.4 44.8 154.4 46.3 p 163.0 44.1 171.6 44.1 171.6 49.6 163.0 49.6 s0 171.6 44.1 180.2 44.1 180.2 49.6 171.6 49.6 s0 180.2 44.1 188.7 44.1 188.7 49.6 180.2 49.6 s0 187.7 44.8 187.8 44.1 188.7 44.1 t1 187.7 44.8 187.8 44.1 p 188.7 46.3 187.7 44.8 188.7 44.1 t1 188.7 46.3 187.7 44.8 p 188.7 44.1 197.3 44.1 197.3 49.6 188.7 49.6 s0 192.2 46.3 193.9 46.3 197.3 44.1 188.7 44.1 s1 192.2 46.3 193.9 46.3 p 197.3 46.3 193.9 46.3 197.3 44.1 t1 197.3 46.3 193.9 46.3 p 192.2 46.3 188.7 46.3 188.7 44.1 t1 192.2 46.3 188.7 46.3 p 197.3 44.1 205.9 44.1 205.9 49.6 197.3 49.6 s0 198.3 44.1 198.3 44.8 197.3 44.1 t1 198.3 44.1 198.3 44.8 p 198.3 44.8 197.3 46.3 197.3 44.1 t1 198.3 44.8 197.3 46.3 p 205.9 44.1 214.5 44.1 214.5 49.6 205.9 49.6 s0 214.5 44.1 223.1 44.1 223.1 49.6 214.5 49.6 s0 223.1 44.1 231.6 44.1 231.6 49.6 223.1 49.6 s0 230.6 44.8 230.7 44.1 231.6 44.1 t1 230.6 44.8 230.7 44.1 p 231.6 46.3 230.6 44.8 231.6 44.1 t1 231.6 46.3 230.6 44.8 p 231.6 44.1 240.2 44.1 240.2 49.6 231.6 49.6 s0 235.0 46.3 236.8 46.3 240.2 44.1 231.6 44.1 s1 235.0 46.3 236.8 46.3 p 240.2 46.3 236.8 46.3 240.2 44.1 t1 240.2 46.3 236.8 46.3 p 235.0 46.3 231.6 46.3 231.6 44.1 t1 235.0 46.3 231.6 46.3 p 240.2 44.1 248.8 44.1 248.8 49.6 240.2 49.6 s0 241.2 44.1 241.2 44.8 240.2 44.1 t1 241.2 44.1 241.2 44.8 p 241.2 44.8 240.2 46.3 240.2 44.1 t1 241.2 44.8 240.2 46.3 p 248.8 44.1 257.4 44.1 257.4 49.6 248.8 49.6 s0 257.4 44.1 265.9 44.1 265.9 49.6 257.4 49.6 s0 265.9 44.1 274.5 44.1 274.5 49.6 265.9 49.6 s0 273.5 44.8 273.6 44.1 274.5 44.1 t1 273.5 44.8 273.6 44.1 p 274.5 46.3 273.5 44.8 274.5 44.1 t1 274.5 46.3 273.5 44.8 p 274.5 44.1 283.1 44.1 283.1 49.6 274.5 49.6 s0 277.9 46.3 279.7 46.3 283.1 44.1 274.5 44.1 s1 277.9 46.3 279.7 46.3 p 283.1 46.3 279.7 46.3 283.1 44.1 t1 283.1 46.3 279.7 46.3 p 277.9 46.3 274.5 46.3 274.5 44.1 t1 277.9 46.3 274.5 46.3 p 283.1 44.1 291.7 44.1 291.7 49.6 283.1 49.6 s0 284.1 44.1 284.1 44.8 283.1 44.1 t1 284.1 44.1 284.1 44.8 p 284.1 44.8 283.1 46.3 283.1 44.1 t1 284.1 44.8 283.1 46.3 p 291.7 44.1 300.3 44.1 300.3 49.6 291.7 49.6 s0 0.0 38.6 8.6 38.6 8.6 44.1 0.0 44.1 s0 8.6 38.6 17.2 38.6 17.2 44.1 8.6 44.1 s0 9.4 38.6 10.5 39.8 12.9 41.4 17.2 38.6 s1 9.4 38.6 10.5 39.8 p 17.2 38.6 12.9 41.4 17.2 44.1 t1 11.7 42.1 16.2 44.1 17.2 44.1 12.9 41.4 s1 11.7 42.1 16.2 44.1 p 11.7 42.1 10.5 39.8 12.9 41.4 t1 11.7 42.1 10.5 39.8 p 17.2 38.6 25.7 38.6 25.7 44.1 17.2 44.1 s1 25.7 38.6 34.3 38.6 34.3 44.1 25.7 44.1 s0 32.4 39.8 33.5 38.6 25.7 38.6 30.0 41.4 s1 32.4 39.8 33.5 38.6 p 32.4 39.8 31.2 42.1 30.0 41.4 t1 32.4 39.8 31.2 42.1 p 26.7 44.1 31.2 42.1 30.0 41.4 25.7 44.1 s1 26.7 44.1 31.2 42.1 p 25.7 44.1 30.0 41.4 25.7 38.6 t1 34.3 38.6 42.9 38.6 42.9 44.1 34.3 44.1 s0 42.9 38.6 51.5 38.6 51.5 44.1 42.9 44.1 s0 51.5 38.6 60.1 38.6 60.1 44.1 51.5 44.1 s0 52.3 38.6 53.4 39.8 55.8 41.4 60.1 38.6 s1 52.3 38.6 53.4 39.8 p 60.1 38.6 55.8 41.4 60.1 44.1 t1 54.6 42.1 59.1 44.1 60.1 44.1 55.8 41.4 s1 54.6 42.1 59.1 44.1 p 54.6 42.1 53.4 39.8 55.8 41.4 t1 54.6 42.1 53.4 39.8 p 60.1 38.6 68.6 38.6 68.6 44.1 60.1 44.1 s1 68.6 38.6 77.2 38.6 77.2 44.1 68.6 44.1 s0 75.3 39.8 76.4 38.6 68.6 38.6 72.9 41.4 s1 75.3 39.8 76.4 38.6 p 75.3 39.8 74.1 42.1 72.9 41.4 t1 75.3 39.8 74.1 42.1 p 69.6 44.1 74.1 42.1 72.9 41.4 68.6 44.1 s1 69.6 44.1 74.1 42.1 p 68.6 44.1 72.9 41.4 68.6 38.6 t1 77.2 38.6 85.8 38.6 85.8 44.1 77.2 44.1 s0 85.8 38.6 94.4 38.6 94.4 44.1 85.8 44.1 s0 94.4 38.6 102.9 38.6 102.9 44.1 94.4 44.1 s0 95.2 38.6 96.3 39.8 98.7 41.4 102.9 38.6 s1 95.2 38.6 96.3 39.8 p 102.9 38.6 98.7 41.4 102.9 44.1 t1 97.5 42.1 102.0 44.1 102.9 44.1 98.7 41.4 s1 97.5 42.1 102.0 44.1 p 97.5 42.1 96.3 39.8 98.7 41.4 t1 97.5 42.1 96.3 39.8 p 102.9 38.6 111.5 38.6 111.5 44.1 102.9 44.1 s1 111.5 38.6 120.1 38.6 120.1 44.1 111.5 44.1 s0 118.2 39.8 119.3 38.6 111.5 38.6 115.8 41.4 s1 118.2 39.8 119.3 38.6 p 118.2 39.8 117.0 42.1 115.8 41.4 t1 118.2 39.8 117.0 42.1 p 112.5 44.1 117.0 42.1 115.8 41.4 111.5 44.1 s1 112.5 44.1 117.0 42.1 p 111.5 44.1 115.8 41.4 111.5 38.6 t1 120.1 38.6 128.7 38.6 128.7 44.1 120.1 44.1 s0 128.7 38.6 137.3 38.6 137.3 44.1 128.7 44.1 s0 137.3 38.6 145.8 38.6 145.8 44.1 137.3 44.1 s0 138.1 38.6 139.1 39.8 141.6 41.4 145.8 38.6 s1 138.1 38.6 139.1 39.8 p 145.8 38.6 141.6 41.4 145.8 44.1 t1 140.4 42.1 144.9 44.1 145.8 44.1 141.6 41.4 s1 140.4 42.1 144.9 44.1 p 140.4 42.1 139.1 39.8 141.6 41.4 t1 140.4 42.1 139.1 39.8 p 145.8 38.6 154.4 38.6 154.4 44.1 145.8 44.1 s1 154.4 38.6 163.0 38.6 163.0 44.1 154.4 44.1 s0 161.1 39.8 162.2 38.6 154.4 38.6 158.7 41.4 s1 161.1 39.8 162.2 38.6 p 161.1 39.8 159.8 42.1 158.7 41.4 t1 161.1 39.8 159.8 42.1 p 155.4 44.1 159.8 42.1 158.7 41.4 154.4 44.1 s1 155.4 44.1 159.8 42.1 p 154.4 44.1 158.7 41.4 154.4 38.6 t1 163.0 38.6 171.6 38.6 171.6 44.1 163.0 44.1 s0 171.6 38.6 180.2 38.6 180.2 44.1 171.6 44.1 s0 180.2 38.6 188.7 38.6 188.7 44.1 180.2 44.1 s0 181.0 38.6 182.0 39.8 184.4 41.4 188.7 38.6 s1 181.0 38.6 182.0 39.8 p 188.7 38.6 184.4 41.4 188.7 44.1 t1 183.3 42.1 187.8 44.1 188.7 44.1 184.4 41.4 s1 183.3 42.1 187.8 44.1 p 183.3 42.1 182.0 39.8 184.4 41.4 t1 183.3 42.1 182.0 39.8 p 188.7 38.6 197.3 38.6 197.3 44.1 188.7 44.1 s1 197.3 38.6 205.9 38.6 205.9 44.1 197.3 44.1 s0 204.0 39.8 205.1 38.6 197.3 38.6 201.6 41.4 s1 204.0 39.8 205.1 38.6 p 204.0 39.8 202.7 42.1 201.6 41.4 t1 204.0 39.8 202.7 42.1 p 198.3 44.1 202.7 42.1 201.6 41.4 197.3 44.1 s1 198.3 44.1 202.7 42.1 p 197.3 44.1 201.6 41.4 197.3 38.6 t1 205.9 38.6 214.5 38.6 214.5 44.1 205.9 44.1 s0 214.5 38.6 223.1 38.6 223.1 44.1 214.5 44.1 s0 223.1 38.6 231.6 38.6 231.6 44.1 223.1 44.1 s0 223.9 38.6 224.9 39.8 227.3 41.4 231.6 38.6 s1 223.9 38.6 224.9 39.8 p 231.6 38.6 227.3 41.4 231.6 44.1 t1 226.2 42.1 230.7 44.1 231.6 44.1 227.3 41.4 s1 226.2 42.1 230.7 44.1 p 226.2 42.1 224.9 39.8 227.3 41.4 t1 226.2 42.1 224.9 39.8 p 231.6 38.6 240.2 38.6 240.2 44.1 231.6 44.1 s1 240.2 38.6 248.8 38.6 248.8 44.1 240.2 44.1 s0 246.9 39.8 247.9 38.6 240.2 38.6 244.5 41.4 s1 246.9 39.8 247.9 38.6 p 246.9 39.8 245.6 42.1 244.5 41.4 t1 246.9 39.8 245.6 42.1 p 241.2 44.1 245.6 42.1 244.5 41.4 240.2 44.1 s1 241.2 44.1 245.6 42.1 p 240.2 44.1 244.5 41.4 240.2 38.6 t1 248.8 38.6 257.4 38.6 257.4 44.1 248.8 44.1 s0 257.4 38.6 265.9 38.6 265.9 44.1 257.4 44.1 s0 265.9 38.6 274.5 38.6 274.5 44.1 265.9 44.1 s0 266.8 38.6 267.8 39.8 270.2 41.4 274.5 38.6 s1 266.8 38.6 267.8 39.8 p 274.5 38.6 270.2 41.4 274.5 44.1 t1 269.1 42.1 273.6 44.1 274.5 44.1 270.2 41.4 s1 269.1 42.1 273.6 44.1 p 269.1 42.1 267.8 39.8 270.2 41.4 t1 269.1 42.1 267.8 39.8 p 274.5 38.6 283.1 38.6 283.1 44.1 274.5 44.1 s1 283.1 38.6 291.7 38.6 291.7 44.1 283.1 44.1 s0 289.8 39.8 290.8 38.6 283.1 38.6 287.4 41.4 s1 289.8 39.8 290.8 38.6 p 289.8 39.8 288.5 42.1 287.4 41.4 t1 289.8 39.8 288.5 42.1 p 284.1 44.1 288.5 42.1 287.4 41.4 283.1 44.1 s1 284.1 44.1 288.5 42.1 p 283.1 44.1 287.4 41.4 283.1 38.6 t1 291.7 38.6 300.3 38.6 300.3 44.1 291.7 44.1 s0 0.0 33.1 8.6 33.1 8.6 38.6 0.0 38.6 s0 5.1 35.3 4.1 33.1 8.6 33.1 t1 5.1 35.3 4.1 33.1 p 8.6 37.9 5.1 35.3 8.6 33.1 t1 8.6 37.9 5.1 35.3 p 8.6 33.1 17.2 33.1 17.2 38.6 8.6 38.6 s0 8.6 33.1 12.9 35.8 17.2 33.1 t1 17.2 33.1 12.9 35.8 17.2 38.6 t1 8.9 38.4 9.4 38.6 17.2 38.6 12.9 35.8 s1 8.9 38.4 9.4 38.6 p 8.6 37.9 8.9 38.4 12.9 35.8 8.6 33.1 s1 8.6 37.9 8.9 38.4 p 17.2 33.1 25.7 33.1 25.7 38.6 17.2 38.6 s1 25.7 33.1 34.3 33.1 34.3 38.6 25.7 38.6 s0 25.7 33.1 30.0 35.8 34.3 33.1 t1 34.0 38.4 34.3 37.9 34.3 33.1 30.0 35.8 s1 34.0 38.4 34.3 37.9 p 33.5 38.6 34.0 38.4 30.0 35.8 25.7 38.6 s1 33.5 38.6 34.0 38.4 p 25.7 38.6 30.0 35.8 25.7 33.1 t1 34.3 33.1 42.9 33.1 42.9 38.6 34.3 38.6 s0 38.8 33.1 37.8 35.3 34.3 33.1 t1 38.8 33.1 37.8 35.3 p 37.8 35.3 34.3 37.9 34.3 33.1 t1 37.8 35.3 34.3 37.9 p 42.9 33.1 51.5 33.1 51.5 38.6 42.9 38.6 s0 48.0 35.3 47.0 33.1 51.5 33.1 t1 48.0 35.3 47.0 33.1 p 51.5 37.9 48.0 35.3 51.5 33.1 t1 51.5 37.9 48.0 35.3 p 51.5 33.1 60.1 33.1 60.1 38.6 51.5 38.6 s0 51.5 33.1 55.8 35.8 60.1 33.1 t1 60.1 33.1 55.8 35.8 60.1 38.6 t1 51.8 38.4 52.3 38.6 60.1 38.6 55.8 35.8 s1 51.8 38.4 52.3 38.6 p 51.5 37.9 51.8 38.4 55.8 35.8 51.5 33.1 s1 51.5 37.9 51.8 38.4 p 60.1 33.1 68.6 33.1 68.6 38.6 60.1 38.6 s1 68.6 33.1 77.2 33.1 77.2 38.6 68.6 38.6 s0 68.6 33.1 72.9 35.8 77.2 33.1 t1 76.9 38.4 77.2 37.9 77.2 33.1 72.9 35.8 s1 76.9 38.4 77.2 37.9 p 76.4 38.6 76.9 38.4 72.9 35.8 68.6 38.6 s1 76.4 38.6 76.9 38.4 p 68.6 38.6 72.9 35.8 68.6 33.1 t1 77.2 33.1 85.8 33.1 85.8 38.6 77.2 38.6 s0 81.7 33.1 80.6 35.3 77.2 33.1 t1 81.7 33.1 80.6 35.3 p 80.6 35.3 77.2 37.9 77.2 33.1 t1 80.6 35.3 77.2 37.9 p 85.8 33.1 94.4 33.1 94.4 38.6 85.8 38.6 s0 90.9 35.3 89.8 33.1 94.4 33.1 t1 90.9 35.3 89.8 33.1 p 94.4 37.9 90.9 35.3 94.4 33.1 t1 94.4 37.9 90.9 35.3 p 94.4 33.1 102.9 33.1 102.9 38.6 94.4 38.6 s0 94.4 33.1 98.7 35.8 102.9 33.1 t1 102.9 33.1 98.7 35.8 102.9 38.6 t1 94.7 38.4 95.2 38.6 102.9 38.6 98.7 35.8 s1 94.7 38.4 95.2 38.6 p 94.4 37.9 94.7 38.4 98.7 35.8 94.4 33.1 s1 94.4 37.9 94.7 38.4 p 102.9 33.1 111.5 33.1 111.5 38.6 102.9 38.6 s1 111.5 33.1 120.1 33.1 120.1 38.6 111.5 38.6 s0 111.5 33.1 115.8 35.8 120.1 33.1 t1 119.8 38.4 120.1 37.9 120.1 33.1 115.8 35.8 s1 119.8 38.4 120.1 37.9 p 119.3 38.6 119.8 38.4 115.8 35.8 111.5 38.6 s1 119.3 38.6 119.8 38.4 p 111.5 38.6 115.8 35.8 111.5 33.1 t1 120.1 33.1 128.7 33.1 128.7 38.6 120.1 38.6 s0 124.6 33.1 123.5 35.3 120.1 33.1 t1 124.6 33.1 123.5 35.3 p 123.5 35.3 120.1 37.9 120.1 33.1 t1 123.5 35.3 120.1 37.9 p 128.7 33.1 137.3 33.1 137.3 38.6 128.7 38.6 s0 133.8 35.3 132.7 33.1 137.3 33.1 t1 133.8 35.3 132.7 33.1 p 137.3 37.9 133.8 35.3 137.3 33.1 t1 137.3 37.9 133.8 35.3 p 137.3 33.1 145.8 33.1 145.8 38.6 137.3 38.6 s0 137.3 33.1 141.6 35.8 145.8 33.1 t1 145.8 33.1 141.6 35.8 145.8 38.6 t1 137.6 38.4 138.1 38.6 145.8 38.6 141.6 35.8 s1 137.6 38.4 138.1 38.6 p 137.3 37.9 137.6 38.4 141.6 35.8 137.3 33.1 s1 137.3 37.9 137.6 38.4 p 145.8 33.1 154.4 33.1 154.4 38.6 145.8 38.6 s1 154.4 33.1 163.0 33.1 163.0 38.6 154.4 38.6 s0 154.4 33.1 158.7 35.8 163.0 33.1 t1 162.7 38.4 163.0 37.9 163.0 33.1 158.7 35.8 s1 162.7 38.4 163.0 37.9 p 162.2 38.6 162.7 38.4 158.7 35.8 154.4 38.6 s1 162.2 38.6 162.7 38.4 p 154.4 38.6 158.7 35.8 154.4 33.1 t1 163.0 33.1 171.6 33.1 171.6 38.6 163.0 38.6 s0 167.5 33.1 166.4 35.3 163.0 33.1 t1 167.5 33.1 166.4 35.3 p 166.4 35.3 163.0 37.9 163.0 33.1 t1 166.4 35.3 163.0 37.9 p 171.6 33.1 180.2 33.1 180.2 38.6 171.6 38.6 s0 176.7 35.3 175.6 33.1 180.2 33.1 t1 176.7 35.3 175.6 33.1 p 180.2 37.9 176.7 35.3 180.2 33.1 t1 180.2 37.9 176.7 35.3 p 180.2 33.1 188.7 33.1 188.7 38.6 180.2 38.6 s0 180.2 33.1 184.4 35.8 188.7 33.1 t1 188.7 33.1 184.4 35.8 188.7 38.6 t1 180.5 38.4 181.0 38.6 188.7 38.6 184.4 35.8 s1 180.5 38.4 181.0 38.6 p 180.2 37.9 180.5 38.4 184.4 35.8 180.2 33.1 s1 180.2 37.9 180.5 38.4 p 188.7 33.1 197.3 33.1 197.3 38.6 188.7 38.6 s1 197.3 33.1 205.9 33.1 205.9 38.6 197.3 38.6 s0 197.3 33.1 201.6 35.8 205.9 33.1 t1 205.6 38.4 205.9 37.9 205.9 33.1 201.6 35.8 s1 205.6 38.4 205.9 37.9 p 205.1 38.6 205.6 38.4 201.6 35.8 197.3 38.6 s1 205.1 38.6 205.6 38.4 p 197.3 38.6 201.6 35.8 197.3 33.1 t1 205.9 33.1 214.5 33.1 214.5 38.6 205.9 38.6 s0 210.4 33.1 209.3 35.3 205.9 33.1 t1 210.4 33.1 209.3 35.3 p 209.3 35.3 205.9 37.9 205.9 33.1 t1 209.3 35.3 205.9 37.9 p 214.5 33.1 223.1 33.1 223.1 38.6 214.5 38.6 s0 219.6 35.3 218.5 33.1 223.1 33.1 t1 219.6 35.3 218.5 33.1 p 223.1 37.9 219.6 35.3 223.1 33.1 t1 223.1 37.9 219.6 35.3 p 223.1 33.1 231.6 33.1 231.6 38.6 223.1 38.6 s0 223.1 33.1 227.3 35.8 231.6 33.1 t1 231.6 33.1 227.3 35.8 231.6 38.6 t1 223.4 38.4 223.9 38.6 231.6 38.6 227.3 35.8 s1 223.4 38.4 223.9 38.6 p 223.1 37.9 223.4 38.4 227.3 35.8 223.1 33.1 s1 223.1 37.9 223.4 38.4 p 231.6 33.1 240.2 33.1 240.2 38.6 231.6 38.6 s1 240.2 33.1 248.8 33.1 248.8 38.6 240.2 38.6 s0 240.2 33.1 244.5 35.8 248.8 33.1 t1 248.5 38.4 248.8 37.9 248.8 33.1 244.5 35.8 s1 248.5 38.4 248.8 37.9 p 247.9 38.6 248.5 38.4 244.5 35.8 240.2 38.6 s1 247.9 38.6 248.5 38.4 p 240.2 38.6 244.5 35.8 240.2 33.1 t1 248.8 33.1 257.4 33.1 257.4 38.6 248.8 38.6 s0 253.3 33.1 252.2 35.3 248.8 33.1 t1 253.3 33.1 252.2 35.3 p 252.2 35.3 248.8 37.9 248.8 33.1 t1 252.2 35.3 248.8 37.9 p 257.4 33.1 265.9 33.1 265.9 38.6 257.4 38.6 s0 262.5 35.3 261.4 33.1 265.9 33.1 t1 262.5 35.3 261.4 33.1 p 265.9 37.9 262.5 35.3 265.9 33.1 t1 265.9 37.9 262.5 35.3 p 265.9 33.1 274.5 33.1 274.5 38.6 265.9 38.6 s0 265.9 33.1 270.2 35.8 274.5 33.1 t1 274.5 33.1 270.2 35.8 274.5 38.6 t1 266.3 38.4 266.8 38.6 274.5 38.6 270.2 35.8 s1 266.3 38.4 266.8 38.6 p 265.9 37.9 266.3 38.4 270.2 35.8 265.9 33.1 s1 265.9 37.9 266.3 38.4 p 274.5 33.1 283.1 33.1 283.1 38.6 274.5 38.6 s1 283.1 33.1 291.7 33.1 291.7 38.6 283.1 38.6 s0 283.1 33.1 287.4 35.8 291.7 33.1 t1 291.4 38.4 291.7 37.9 291.7 33.1 287.4 35.8 s1 291.4 38.4 291.7 37.9 p 290.8 38.6 291.4 38.4 287.4 35.8 283.1 38.6 s1 290.8 38.6 291.4 38.4 p 283.1 38.6 287.4 35.8 283.1 33.1 t1 291.7 33.1 300.3 33.1 300.3 38.6 291.7 38.6 s0 296.2 33.1 295.1 35.3 291.7 33.1 t1 296.2 33.1 295.1 35.3 p 295.1 35.3 291.7 37.9 291.7 33.1 t1 295.1 35.3 291.7 37.9 p 0.0 27.6 8.6 27.6 8.6 33.1 0.0 33.1 s0 1.8 27.6 2.5 29.2 4.3 30.3 8.6 27.6 s1 1.8 27.6 2.5 29.2 p 8.6 27.6 4.3 30.3 8.6 33.1 t1 2.5 31.5 4.1 33.1 8.6 33.1 4.3 30.3 s1 2.5 31.5 4.1 33.1 p 2.5 31.5 2.5 29.2 4.3 30.3 t1 2.5 31.5 2.5 29.2 p 8.6 27.6 17.2 27.6 17.2 33.1 8.6 33.1 s1 17.2 27.6 25.7 27.6 25.7 33.1 17.2 33.1 s1 25.7 27.6 34.3 27.6 34.3 33.1 25.7 33.1 s1 34.3 27.6 42.9 27.6 42.9 33.1 34.3 33.1 s0 40.4 29.2 41.1 27.6 34.3 27.6 38.6 30.3 s1 40.4 29.2 41.1 27.6 p 40.4 29.2 40.4 31.5 38.6 30.3 t1 40.4 29.2 40.4 31.5 p 38.8 33.1 40.4 31.5 38.6 30.3 34.3 33.1 s1 38.8 33.1 40.4 31.5 p 34.3 33.1 38.6 30.3 34.3 27.6 t1 42.9 27.6 51.5 27.6 51.5 33.1 42.9 33.1 s0 44.7 27.6 45.4 29.2 47.2 30.3 51.5 27.6 s1 44.7 27.6 45.4 29.2 p 51.5 27.6 47.2 30.3 51.5 33.1 t1 45.4 31.5 47.0 33.1 51.5 33.1 47.2 30.3 s1 45.4 31.5 47.0 33.1 p 45.4 31.5 45.4 29.2 47.2 30.3 t1 45.4 31.5 45.4 29.2 p 51.5 27.6 60.1 27.6 60.1 33.1 51.5 33.1 s1 60.1 27.6 68.6 27.6 68.6 33.1 60.1 33.1 s1 68.6 27.6 77.2 27.6 77.2 33.1 68.6 33.1 s1 77.2 27.6 85.8 27.6 85.8 33.1 77.2 33.1 s0 83.3 29.2 84.0 27.6 77.2 27.6 81.5 30.3 s1 83.3 29.2 84.0 27.6 p 83.3 29.2 83.3 31.5 81.5 30.3 t1 83.3 29.2 83.3 31.5 p 81.7 33.1 83.3 31.5 81.5 30.3 77.2 33.1 s1 81.7 33.1 83.3 31.5 p 77.2 33.1 81.5 30.3 77.2 27.6 t1 85.8 27.6 94.4 27.6 94.4 33.1 85.8 33.1 s0 87.6 27.6 88.3 29.2 90.1 30.3 94.4 27.6 s1 87.6 27.6 88.3 29.2 p 94.4 27.6 90.1 30.3 94.4 33.1 t1 88.3 31.5 89.8 33.1 94.4 33.1 90.1 30.3 s1 88.3 31.5 89.8 33.1 p 88.3 31.5 88.3 29.2 90.1 30.3 t1 88.3 31.5 88.3 29.2 p 94.4 27.6 102.9 27.6 102.9 33.1 94.4 33.1 s1 102.9 27.6 111.5 27.6 111.5 33.1 102.9 33.1 s1 111.5 27.6 120.1 27.6 120.1 33.1 111.5 33.1 s1 120.1 27.6 128.7 27.6 128.7 33.1 120.1 33.1 s0 126.2 29.2 126.9 27.6 120.1 27.6 124.4 30.3 s1 126.2 29.2 126.9 27.6 p 126.2 29.2 126.2 31.5 124.4 30.3 t1 126.2 29.2 126.2 31.5 p 124.6 33.1 126.2 31.5 124.4 30.3 120.1 33.1 s1 124.6 33.1 126.2 31.5 p 120.1 33.1 124.4 30.3 120.1 27.6 t1 128.7 27.6 137.3 27.6 137.3 33.1 128.7 33.1 s0 130.5 27.6 131.2 29.2 133.0 30.3 137.3 27.6 s1 130.5 27.6 131.2 29.2 p 137.3 27.6 133.0 30.3 137.3 33.1 t1 131.2 31.5 132.7 33.1 137.3 33.1 133.0 30.3 s1 131.2 31.5 132.7 33.1 p 131.2 31.5 131.2 29.2 133.0 30.3 t1 131.2 31.5 131.2 29.2 p 137.3 27.6 145.8 27.6 145.8 33.1 137.3 33.1 s1 145.8 27.6 154.4 27.6 154.4 33.1 145.8 33.1 s1 154.4 27.6 163.0 27.6 163.0 33.1 154.4 33.1 s1 163.0 27.6 171.6 27.6 171.6 33.1 163.0 33.1 s0 169.1 29.2 169.8 27.6 163.0 27.6 167.3 30.3 s1 169.1 29.2 169.8 27.6 p 169.1 29.2 169.1 31.5 167.3 30.3 t1 169.1 29.2 169.1 31.5 p 167.5 33.1 169.1 31.5 167.3 30.3 163.0 33.1 s1 167.5 33.1 169.1 31.5 p 163.0 33.1 167.3 30.3 163.0 27.6 t1 171.6 27.6 180.2 27.6 180.2 33.1 171.6 33.1 s0 173.4 27.6 174.1 29.2 175.9 30.3 180.2 27.6 s1 173.4 27.6 174.1 29.2 p 180.2 27.6 175.9 30.3 180.2 33.1 t1 174.1 31.5 175.6 33.1 180.2 33.1 175.9 30.3 s1 174.1 31.5 175.6 33.1 p 174.1 31.5 174.1 29.2 175.9 30.3 t1 174.1 31.5 174.1 29.2 p 180.2 27.6 188.7 27.6 188.7 33.1 180.2 33.1 s1 188.7 27.6 197.3 27.6 197.3 33.1 188.7 33.1 s1 197.3 27.6 205.9 27.6 205.9 33.1 197.3 33.1 s1 205.9 27.6 214.5 27.6 214.5 33.1 205.9 33.1 s0 212.0 29.2 212.7 27.6 205.9 27.6 210.2 30.3 s1 212.0 29.2 212.7 27.6 p 212.0 29.2 212.0 31.5 210.2 30.3 t1 212.0 29.2 212.0 31.5 p 210.4 33.1 212.0 31.5 210.2 30.3 205.9 33.1 s1 210.4 33.1 212.0 31.5 p 205.9 33.1 210.2 30.3 205.9 27.6 t1 214.5 27.6 223.1 27.6 223.1 33.1 214.5 33.1 s0 216.3 27.6 217.0 29.2 218.8 30.3 223.1 27.6 s1 216.3 27.6 217.0 29.2 p 223.1 27.6 218.8 30.3 223.1 33.1 t1 217.0 31.5 218.5 33.1 223.1 33.1 218.8 30.3 s1 217.0 31.5 218.5 33.1 p 217.0 31.5 217.0 29.2 218.8 30.3 t1 217.0 31.5 217.0 29.2 p 223.1 27.6 231.6 27.6 231.6 33.1 223.1 33.1 s1 231.6 27.6 240.2 27.6 240.2 33.1 231.6 33.1 s1 240.2 27.6 248.8 27.6 248.8 33.1 240.2 33.1 s1 248.8 27.6 257.4 27.6 257.4 33.1 248.8 33.1 s0 254.9 29.2 255.6 27.6 248.8 27.6 253.1 30.3 s1 254.9 29.2 255.6 27.6 p 254.9 29.2 254.9 31.5 253.1 30.3 t1 254.9 29.2 254.9 31.5 p 253.3 33.1 254.9 31.5 253.1 30.3 248.8 33.1 s1 253.3 33.1 254.9 31.5 p 248.8 33.1 253.1 30.3 248.8 27.6 t1 257.4 27.6 265.9 27.6 265.9 33.1 257.4 33.1 s0 259.2 27.6 259.9 29.2 261.7 30.3 265.9 27.6 s1 259.2 27.6 259.9 29.2 p 265.9 27.6 261.7 30.3 265.9 33.1 t1 259.9 31.5 261.4 33.1 265.9 33.1 261.7 30.3 s1 259.9 31.5 261.4 33.1 p 259.9 31.5 259.9 29.2 261.7 30.3 t1 259.9 31.5 259.9 29.2 p 265.9 27.6 274.5 27.6 274.5 33.1 265.9 33.1 s1 274.5 27.6 283.1 27.6 283.1 33.1 274.5 33.1 s1 283.1 27.6 291.7 27.6 291.7 33.1 283.1 33.1 s1 291.7 27.6 300.3 27.6 300.3 33.1 291.7 33.1 s0 297.8 29.2 298.5 27.6 291.7 27.6 296.0 30.3 s1 297.8 29.2 298.5 27.6 p 297.8 29.2 297.8 31.5 296.0 30.3 t1 297.8 29.2 297.8 31.5 p 296.2 33.1 297.8 31.5 296.0 30.3 291.7 33.1 s1 296.2 33.1 297.8 31.5 p 291.7 33.1 296.0 30.3 291.7 27.6 t1 0.0 22.1 8.6 22.1 8.6 27.6 0.0 27.6 s0 1.0 22.1 1.3 22.9 4.3 24.8 8.6 22.1 s1 1.0 22.1 1.3 22.9 p 8.6 22.1 4.3 24.8 8.6 27.6 t1 1.3 26.8 1.8 27.6 8.6 27.6 4.3 24.8 s1 1.3 26.8 1.8 27.6 p 1.3 26.8 1.3 22.9 4.3 24.8 t1 1.3 26.8 1.3 22.9 p 8.6 22.1 17.2 22.1 17.2 27.6 8.6 27.6 s1 14.4 23.8 13.3 22.1 17.2 22.1 t2 14.4 23.8 13.3 22.1 p 17.2 26.0 14.4 23.8 17.2 22.1 t2 17.2 26.0 14.4 23.8 p 17.2 22.1 25.7 22.1 25.7 27.6 17.2 27.6 s1 17.2 22.1 21.4 24.8 25.7 22.1 t2 23.3 26.0 25.7 26.0 25.7 22.1 21.4 24.8 s2 23.3 26.0 25.7 26.0 p 23.3 26.0 19.6 26.0 21.4 24.8 t2 23.3 26.0 19.6 26.0 p 17.2 26.0 19.6 26.0 21.4 24.8 17.2 22.1 s2 17.2 26.0 19.6 26.0 p 25.7 22.1 34.3 22.1 34.3 27.6 25.7 27.6 s1 29.6 22.1 28.4 23.8 25.7 22.1 t2 29.6 22.1 28.4 23.8 p 28.4 23.8 25.7 26.0 25.7 22.1 t2 28.4 23.8 25.7 26.0 p 34.3 22.1 42.9 22.1 42.9 27.6 34.3 27.6 s0 41.6 22.9 41.9 22.1 34.3 22.1 38.6 24.8 s1 41.6 22.9 41.9 22.1 p 41.6 22.9 41.6 26.8 38.6 24.8 t1 41.6 22.9 41.6 26.8 p 41.1 27.6 41.6 26.8 38.6 24.8 34.3 27.6 s1 41.1 27.6 41.6 26.8 p 34.3 27.6 38.6 24.8 34.3 22.1 t1 42.9 22.1 51.5 22.1 51.5 27.6 42.9 27.6 s0 43.9 22.1 44.2 22.9 47.2 24.8 51.5 22.1 s1 43.9 22.1 44.2 22.9 p 51.5 22.1 47.2 24.8 51.5 27.6 t1 44.2 26.8 44.7 27.6 51.5 27.6 47.2 24.8 s1 44.2 26.8 44.7 27.6 p 44.2 26.8 44.2 22.9 47.2 24.8 t1 44.2 26.8 44.2 22.9 p 51.5 22.1 60.1 22.1 60.1 27.6 51.5 27.6 s1 57.3 23.8 56.2 22.1 60.1 22.1 t2 57.3 23.8 56.2 22.1 p 60.1 26.0 57.3 23.8 60.1 22.1 t2 60.1 26.0 57.3 23.8 p 60.1 22.1 68.6 22.1 68.6 27.6 60.1 27.6 s1 60.1 22.1 64.3 24.8 68.6 22.1 t2 66.2 26.0 68.6 26.0 68.6 22.1 64.3 24.8 s2 66.2 26.0 68.6 26.0 p 66.2 26.0 62.5 26.0 64.3 24.8 t2 66.2 26.0 62.5 26.0 p 60.1 26.0 62.5 26.0 64.3 24.8 60.1 22.1 s2 60.1 26.0 62.5 26.0 p 68.6 22.1 77.2 22.1 77.2 27.6 68.6 27.6 s1 72.5 22.1 71.3 23.8 68.6 22.1 t2 72.5 22.1 71.3 23.8 p 71.3 23.8 68.6 26.0 68.6 22.1 t2 71.3 23.8 68.6 26.0 p 77.2 22.1 85.8 22.1 85.8 27.6 77.2 27.6 s0 84.5 22.9 84.8 22.1 77.2 22.1 81.5 24.8 s1 84.5 22.9 84.8 22.1 p 84.5 22.9 84.5 26.8 81.5 24.8 t1 84.5 22.9 84.5 26.8 p 84.0 27.6 84.5 26.8 81.5 24.8 77.2 27.6 s1 84.0 27.6 84.5 26.8 p 77.2 27.6 81.5 24.8 77.2 22.1 t1 85.8 22.1 94.4 22.1 94.4 27.6 85.8 27.6 s0 86.8 22.1 87.1 22.9 90.1 24.8 94.4 22.1 s1 86.8 22.1 87.1 22.9 p 94.4 22.1 90.1 24.8 94.4 27.6 t1 87.1 26.8 87.6 27.6 94.4 27.6 90.1 24.8 s1 87.1 26.8 87.6 27.6 p 87.1 26.8 87.1 22.9 90.1 24.8 t1 87.1 26.8 87.1 22.9 p 94.4 22.1 102.9 22.1 102.9 27.6 94.4 27.6 s1 100.2 23.8 99.0 22.1 102.9 22.1 t2 100.2 23.8 99.0 22.1 p 102.9 26.0 100.2 23.8 102.9 22.1 t2 102.9 26.0 100.2 23.8 p 102.9 22.1 111.5 22.1 111.5 27.6 102.9 27.6 s1 102.9 22.1 107.2 24.8 111.5 22.1 t2 109.1 26.0 111.5 26.0 111.5 22.1 107.2 24.8 s2 109.1 26.0 111.5 26.0 p 109.1 26.0 105.4 26.0 107.2 24.8 t2 109.1 26.0 105.4 26.0 p 102.9 26.0 105.4 26.0 107.2 24.8 102.9 22.1 s2 102.9 26.0 105.4 26.0 p 111.5 22.1 120.1 22.1 120.1 27.6 111.5 27.6 s1 115.4 22.1 114.2 23.8 111.5 22.1 t2 115.4 22.1 114.2 23.8 p 114.2 23.8 111.5 26.0 111.5 22.1 t2 114.2 23.8 111.5 26.0 p 120.1 22.1 128.7 22.1 128.7 27.6 120.1 27.6 s0 127.4 22.9 127.7 22.1 120.1 22.1 124.4 24.8 s1 127.4 22.9 127.7 22.1 p 127.4 22.9 127.4 26.8 124.4 24.8 t1 127.4 22.9 127.4 26.8 p 126.9 27.6 127.4 26.8 124.4 24.8 120.1 27.6 s1 126.9 27.6 127.4 26.8 p 120.1 27.6 124.4 24.8 120.1 22.1 t1 128.7 22.1 137.3 22.1 137.3 27.6 128.7 27.6 s0 129.7 22.1 130.0 22.9 133.0 24.8 137.3 22.1 s1 129.7 22.1 130.0 22.9 p 137.3 22.1 133.0 24.8 137.3 27.6 t1 130.0 26.8 130.5 27.6 137.3 27.6 133.0 24.8 s1 130.0 26.8 130.5 27.6 p 130.0 26.8 130.0 22.9 133.0 24.8 t1 130.0 26.8 130.0 22.9 p 137.3 22.1 145.8 22.1 145.8 27.6 137.3 27.6 s1 143.1 23.8 141.9 22.1 145.8 22.1 t2 143.1 23.8 141.9 22.1 p 145.8 26.0 143.1 23.8 145.8 22.1 t2 145.8 26.0 143.1 23.8 p 145.8 22.1 154.4 22.1 154.4 27.6 145.8 27.6 s1 145.8 22.1 150.1 24.8 154.4 22.1 t2 152.0 26.0 154.4 26.0 154.4 22.1 150.1 24.8 s2 152.0 26.0 154.4 26.0 p 152.0 26.0 148.2 26.0 150.1 24.8 t2 152.0 26.0 148.2 26.0 p 145.8 26.0 148.2 26.0 150.1 24.8 145.8 22.1 s2 145.8 26.0 148.2 26.0 p 154.4 22.1 163.0 22.1 163.0 27.6 154.4 27.6 s1 158.3 22.1 157.1 23.8 154.4 22.1 t2 158.3 22.1 157.1 23.8 p 157.1 23.8 154.4 26.0 154.4 22.1 t2 157.1 23.8 154.4 26.0 p 163.0 22.1 171.6 22.1 171.6 27.6 163.0 27.6 s0 170.3 22.9 170.6 22.1 163.0 22.1 167.3 24.8 s1 170.3 22.9 170.6 22.1 p 170.3 22.9 170.3 26.8 167.3 24.8 t1 170.3 22.9 170.3 26.8 p 169.8 27.6 170.3 26.8 167.3 24.8 163.0 27.6 s1 169.8 27.6 170.3 26.8 p 163.0 27.6 167.3 24.8 163.0 22.1 t1 171.6 22.1 180.2 22.1 180.2 27.6 171.6 27.6 s0 172.6 22.1 172.9 22.9 175.9 24.8 180.2 22.1 s1 172.6 22.1 172.9 22.9 p 180.2 22.1 175.9 24.8 180.2 27.6 t1 172.9 26.8 173.4 27.6 180.2 27.6 175.9 24.8 s1 172.9 26.8 173.4 27.6 p 172.9 26.8 172.9 22.9 175.9 24.8 t1 172.9 26.8 172.9 22.9 p 180.2 22.1 188.7 22.1 188.7 27.6 180.2 27.6 s1 186.0 23.8 184.8 22.1 188.7 22.1 t2 186.0 23.8 184.8 22.1 p 188.7 26.0 186.0 23.8 188.7 22.1 t2 188.7 26.0 186.0 23.8 p 188.7 22.1 197.3 22.1 197.3 27.6 188.7 27.6 s1 188.7 22.1 193.0 24.8 197.3 22.1 t2 194.9 26.0 197.3 26.0 197.3 22.1 193.0 24.8 s2 194.9 26.0 197.3 26.0 p 194.9 26.0 191.1 26.0 193.0 24.8 t2 194.9 26.0 191.1 26.0 p 188.7 26.0 191.1 26.0 193.0 24.8 188.7 22.1 s2 188.7 26.0 191.1 26.0 p 197.3 22.1 205.9 22.1 205.9 27.6 197.3 27.6 s1 201.2 22.1 200.0 23.8 197.3 22.1 t2 201.2 22.1 200.0 23.8 p 200.0 23.8 197.3 26.0 197.3 22.1 t2 200.0 23.8 197.3 26.0 p 205.9 22.1 214.5 22.1 214.5 27.6 205.9 27.6 s0 213.2 22.9 213.5 22.1 205.9 22.1 210.2 24.8 s1 213.2 22.9 213.5 22.1 p 213.2 22.9 213.2 26.8 210.2 24.8 t1 213.2 22.9 213.2 26.8 p 212.7 27.6 213.2 26.8 210.2 24.8 205.9 27.6 s1 212.7 27.6 213.2 26.8 p 205.9 27.6 210.2 24.8 205.9 22.1 t1 214.5 22.1 223.1 22.1 223.1 27.6 214.5 27.6 s0 215.5 22.1 215.8 22.9 218.8 24.8 223.1 22.1 s1 215.5 22.1 215.8 22.9 p 223.1 22.1 218.8 24.8 223.1 27.6 t1 215.7 26.8 216.3 27.6 223.1 27.6 218.8 24.8 s1 215.7 26.8 216.3 27.6 p 215.7 26.8 215.8 22.9 218.8 24.8 t1 215.7 26.8 215.8 22.9 p 223.1 22.1 231.6 22.1 231.6 27.6 223.1 27.6 s1 228.9 23.8 227.7 22.1 231.6 22.1 t2 228.9 23.8 227.7 22.1 p 231.6 26.0 228.9 23.8 231.6 22.1 t2 231.6 26.0 228.9 23.8 p 231.6 22.1 240.2 22.1 240.2 27.6 231.6 27.6 s1 231.6 22.1 235.9 24.8 240.2 22.1 t2 237.8 26.0 240.2 26.0 240.2 22.1 235.9 24.8 s2 237.8 26.0 240.2 26.0 p 237.8 26.0 234.0 26.0 235.9 24.8 t2 237.8 26.0 234.0 26.0 p 231.6 26.0 234.0 26.0 235.9 24.8 231.6 22.1 s2 231.6 26.0 234.0 26.0 p 240.2 22.1 248.8 22.1 248.8 27.6 240.2 27.6 s1 244.1 22.1 242.9 23.8 240.2 22.1 t2 244.1 22.1 242.9 23.8 p 242.9 23.8 240.2 26.0 240.2 22.1 t2 242.9 23.8 240.2 26.0 p 248.8 22.1 257.4 22.1 257.4 27.6 248.8 27.6 s0 256.1 22.9 256.4 22.1 248.8 22.1 253.1 24.8 s1 256.1 22.9 256.4 22.1 p 256.1 22.9 256.1 26.8 253.1 24.8 t1 256.1 22.9 256.1 26.8 p 255.6 27.6 256.1 26.8 253.1 24.8 248.8 27.6 s1 255.6 27.6 256.1 26.8 p 248.8 27.6 253.1 24.8 248.8 22.1 t1 257.4 22.1 265.9 22.1 265.9 27.6 257.4 27.6 s0 258.4 22.1 258.7 22.9 261.7 24.8 265.9 22.1 s1 258.4 22.1 258.7 22.9 p 265.9 22.1 261.7 24.8 265.9 27.6 t1 258.6 26.8 259.2 27.6 265.9 27.6 261.7 24.8 s1 258.6 26.8 259.2 27.6 p 258.6 26.8 258.7 22.9 261.7 24.8 t1 258.6 26.8 258.7 22.9 p 265.9 22.1 274.5 22.1 274.5 27.6 265.9 27.6 s1 271.8 23.8 270.6 22.1 274.5 22.1 t2 271.8 23.8 270.6 22.1 p 274.5 26.0 271.8 23.8 274.5 22.1 t2 274.5 26.0 271.8 23.8 p 274.5 22.1 283.1 22.1 283.1 27.6 274.5 27.6 s1 274.5 22.1 278.8 24.8 283.1 22.1 t2 280.7 26.0 283.1 26.0 283.1 22.1 278.8 24.8 s2 280.7 26.0 283.1 26.0 p 280.7 26.0 276.9 26.0 278.8 24.8 t2 280.7 26.0 276.9 26.0 p 274.5 26.0 276.9 26.0 278.8 24.8 274.5 22.1 s2 274.5 26.0 276.9 26.0 p 283.1 22.1 291.7 22.1 291.7 27.6 283.1 27.6 s1 287.0 22.1 285.8 23.8 283.1 22.1 t2 287.0 22.1 285.8 23.8 p 285.8 23.8 283.1 26.0 283.1 22.1 t2 285.8 23.8 283.1 26.0 p 291.7 22.1 300.3 22.1 300.3 27.6 291.7 27.6 s0 299.0 22.9 299.3 22.1 291.7 22.1 296.0 24.8 s1 299.0 22.9 299.3 22.1 p 299.0 22.9 299.0 26.8 296.0 24.8 t1 299.0 22.9 299.0 26.8 p 298.5 27.6 299.0 26.8 296.0 24.8 291.7 27.6 s1 298.5 27.6 299.0 26.8 p 291.7 27.6 296.0 24.8 291.7 22.1 t1 0.0 16.5 8.6 16.5 8.6 22.1 0.0 22.1 s0 0.0 16.5 4.3 19.3 8.6 16.5 t1 8.6 16.5 4.3 19.3 8.6 22.1 t1 0.7 21.6 1.0 22.1 8.6 22.1 4.3 19.3 s1 0.7 21.6 1.0 22.1 p 0.0 17.1 0.7 21.6 4.3 19.3 0.0 16.5 s1 0.0 17.1 0.7 21.6 p 8.6 16.5 17.2 16.5 17.2 22.1 8.6 22.1 s1 10.7 16.5 11.6 18.5 12.9 19.3 17.2 16.5 s2 10.7 16.5 11.6 18.5 p 17.2 16.5 12.9 19.3 17.2 22.1 t2 12.2 19.7 13.3 22.1 17.2 22.1 12.9 19.3 s2 12.2 19.7 13.3 22.1 p 12.2 19.7 11.6 18.5 12.9 19.3 t2 12.2 19.7 11.6 18.5 p 17.2 16.5 25.7 16.5 25.7 22.1 17.2 22.1 s2 25.7 16.5 34.3 16.5 34.3 22.1 25.7 22.1 s1 31.3 18.5 32.2 16.5 25.7 16.5 30.0 19.3 s2 31.3 18.5 32.2 16.5 p 31.3 18.5 30.7 19.7 30.0 19.3 t2 31.3 18.5 30.7 19.7 p 29.6 22.1 30.7 19.7 30.0 19.3 25.7 22.1 s2 29.6 22.1 30.7 19.7 p 25.7 22.1 30.0 19.3 25.7 16.5 t2 34.3 16.5 42.9 16.5 42.9 22.1 34.3 22.1 s0 34.3 16.5 38.6 19.3 42.9 16.5 t1 42.2 21.6 42.9 17.1 42.9 16.5 38.6 19.3 s1 42.2 21.6 42.9 17.1 p 41.9 22.1 42.2 21.6 38.6 19.3 34.3 22.1 s1 41.9 22.1 42.2 21.6 p 34.3 22.1 38.6 19.3 34.3 16.5 t1 42.9 16.5 51.5 16.5 51.5 22.1 42.9 22.1 s0 42.9 16.5 47.2 19.3 51.5 16.5 t1 51.5 16.5 47.2 19.3 51.5 22.1 t1 43.6 21.6 43.9 22.1 51.5 22.1 47.2 19.3 s1 43.6 21.6 43.9 22.1 p 42.9 17.1 43.6 21.6 47.2 19.3 42.9 16.5 s1 42.9 17.1 43.6 21.6 p 51.5 16.5 60.1 16.5 60.1 22.1 51.5 22.1 s1 53.6 16.5 54.5 18.5 55.8 19.3 60.1 16.5 s2 53.6 16.5 54.5 18.5 p 60.1 16.5 55.8 19.3 60.1 22.1 t2 55.1 19.7 56.2 22.1 60.1 22.1 55.8 19.3 s2 55.1 19.7 56.2 22.1 p 55.1 19.7 54.5 18.5 55.8 19.3 t2 55.1 19.7 54.5 18.5 p 60.1 16.5 68.6 16.5 68.6 22.1 60.1 22.1 s2 68.6 16.5 77.2 16.5 77.2 22.1 68.6 22.1 s1 74.2 18.5 75.1 16.5 68.6 16.5 72.9 19.3 s2 74.2 18.5 75.1 16.5 p 74.2 18.5 73.6 19.7 72.9 19.3 t2 74.2 18.5 73.6 19.7 p 72.5 22.1 73.6 19.7 72.9 19.3 68.6 22.1 s2 72.5 22.1 73.6 19.7 p 68.6 22.1 72.9 19.3 68.6 16.5 t2 77.2 16.5 85.8 16.5 85.8 22.1 77.2 22.1 s0 77.2 16.5 81.5 19.3 85.8 16.5 t1 85.1 21.6 85.8 17.1 85.8 16.5 81.5 19.3 s1 85.1 21.6 85.8 17.1 p 84.8 22.1 85.1 21.6 81.5 19.3 77.2 22.1 s1 84.8 22.1 85.1 21.6 p 77.2 22.1 81.5 19.3 77.2 16.5 t1 85.8 16.5 94.4 16.5 94.4 22.1 85.8 22.1 s0 85.8 16.5 90.1 19.3 94.4 16.5 t1 94.4 16.5 90.1 19.3 94.4 22.1 t1 86.5 21.6 86.8 22.1 94.4 22.1 90.1 19.3 s1 86.5 21.6 86.8 22.1 p 85.8 17.1 86.5 21.6 90.1 19.3 85.8 16.5 s1 85.8 17.1 86.5 21.6 p 94.4 16.5 102.9 16.5 102.9 22.1 94.4 22.1 s1 96.5 16.5 97.4 18.5 98.7 19.3 102.9 16.5 s2 96.5 16.5 97.4 18.5 p 102.9 16.5 98.7 19.3 102.9 22.1 t2 98.0 19.7 99.0 22.1 102.9 22.1 98.7 19.3 s2 98.0 19.7 99.0 22.1 p 98.0 19.7 97.4 18.5 98.7 19.3 t2 98.0 19.7 97.4 18.5 p 102.9 16.5 111.5 16.5 111.5 22.1 102.9 22.1 s2 111.5 16.5 120.1 16.5 120.1 22.1 111.5 22.1 s1 117.1 18.5 118.0 16.5 111.5 16.5 115.8 19.3 s2 117.1 18.5 118.0 16.5 p 117.1 18.5 116.5 19.7 115.8 19.3 t2 117.1 18.5 116.5 19.7 p 115.4 22.1 116.5 19.7 115.8 19.3 111.5 22.1 s2 115.4 22.1 116.5 19.7 p 111.5 22.1 115.8 19.3 111.5 16.5 t2 120.1 16.5 128.7 16.5 128.7 22.1 120.1 22.1 s0 120.1 16.5 124.4 19.3 128.7 16.5 t1 128.0 21.6 128.7 17.1 128.7 16.5 124.4 19.3 s1 128.0 21.6 128.7 17.1 p 127.7 22.1 128.0 21.6 124.4 19.3 120.1 22.1 s1 127.7 22.1 128.0 21.6 p 120.1 22.1 124.4 19.3 120.1 16.5 t1 128.7 16.5 137.3 16.5 137.3 22.1 128.7 22.1 s0 128.7 16.5 133.0 19.3 137.3 16.5 t1 137.3 16.5 133.0 19.3 137.3 22.1 t1 129.4 21.6 129.7 22.1 137.3 22.1 133.0 19.3 s1 129.4 21.6 129.7 22.1 p 128.7 17.1 129.4 21.6 133.0 19.3 128.7 16.5 s1 128.7 17.1 129.4 21.6 p 137.3 16.5 145.8 16.5 145.8 22.1 137.3 22.1 s1 139.4 16.5 140.3 18.5 141.6 19.3 145.8 16.5 s2 139.4 16.5 140.3 18.5 p 145.8 16.5 141.6 19.3 145.8 22.1 t2 140.9 19.7 141.9 22.1 145.8 22.1 141.6 19.3 s2 140.9 19.7 141.9 22.1 p 140.9 19.7 140.3 18.5 141.6 19.3 t2 140.9 19.7 140.3 18.5 p 145.8 16.5 154.4 16.5 154.4 22.1 145.8 22.1 s2 154.4 16.5 163.0 16.5 163.0 22.1 154.4 22.1 s1 160.0 18.5 160.9 16.5 154.4 16.5 158.7 19.3 s2 160.0 18.5 160.9 16.5 p 160.0 18.5 159.4 19.7 158.7 19.3 t2 160.0 18.5 159.4 19.7 p 158.3 22.1 159.4 19.7 158.7 19.3 154.4 22.1 s2 158.3 22.1 159.4 19.7 p 154.4 22.1 158.7 19.3 154.4 16.5 t2 163.0 16.5 171.6 16.5 171.6 22.1 163.0 22.1 s0 163.0 16.5 167.3 19.3 171.6 16.5 t1 170.8 21.6 171.6 17.1 171.6 16.5 167.3 19.3 s1 170.8 21.6 171.6 17.1 p 170.6 22.1 170.8 21.6 167.3 19.3 163.0 22.1 s1 170.6 22.1 170.8 21.6 p 163.0 22.1 167.3 19.3 163.0 16.5 t1 171.6 16.5 180.2 16.5 180.2 22.1 171.6 22.1 s0 171.6 16.5 175.9 19.3 180.2 16.5 t1 180.2 16.5 175.9 19.3 180.2 22.1 t1 172.3 21.6 172.6 22.1 180.2 22.1 175.9 19.3 s1 172.3 21.6 172.6 22.1 p 171.6 17.1 172.3 21.6 175.9 19.3 171.6 16.5 s1 171.6 17.1 172.3 21.6 p 180.2 16.5 188.7 16.5 188.7 22.1 180.2 22.1 s1 182.3 16.5 183.2 18.5 184.4 19.3 188.7 16.5 s2 182.3 16.5 183.2 18.5 p 188.7 16.5 184.4 19.3 188.7 22.1 t2 183.8 19.7 184.8 22.1 188.7 22.1 184.4 19.3 s2 183.8 19.7 184.8 22.1 p 183.8 19.7 183.2 18.5 184.4 19.3 t2 183.8 19.7 183.2 18.5 p 188.7 16.5 197.3 16.5 197.3 22.1 188.7 22.1 s2 197.3 16.5 205.9 16.5 205.9 22.1 197.3 22.1 s1 202.9 18.5 203.8 16.5 197.3 16.5 201.6 19.3 s2 202.9 18.5 203.8 16.5 p 202.9 18.5 202.3 19.7 201.6 19.3 t2 202.9 18.5 202.3 19.7 p 201.2 22.1 202.3 19.7 201.6 19.3 197.3 22.1 s2 201.2 22.1 202.3 19.7 p 197.3 22.1 201.6 19.3 197.3 16.5 t2 205.9 16.5 214.5 16.5 214.5 22.1 205.9 22.1 s0 205.9 16.5 210.2 19.3 214.5 16.5 t1 213.7 21.6 214.5 17.1 214.5 16.5 210.2 19.3 s1 213.7 21.6 214.5 17.1 p 213.5 22.1 213.7 21.6 210.2 19.3 205.9 22.1 s1 213.5 22.1 213.7 21.6 p 205.9 22.1 210.2 19.3 205.9 16.5 t1 214.5 16.5 223.1 16.5 223.1 22.1 214.5 22.1 s0 214.5 16.5 218.8 19.3 223.1 16.5 t1 223.1 16.5 218.8 19.3 223.1 22.1 t1 215.2 21.6 215.5 22.1 223.1 22.1 218.8 19.3 s1 215.2 21.6 215.5 22.1 p 214.5 17.1 215.2 21.6 218.8 19.3 214.5 16.5 s1 214.5 17.1 215.2 21.6 p 223.1 16.5 231.6 16.5 231.6 22.1 223.1 22.1 s1 225.2 16.5 226.1 18.5 227.3 19.3 231.6 16.5 s2 225.2 16.5 226.1 18.5 p 231.6 16.5 227.3 19.3 231.6 22.1 t2 226.7 19.7 227.7 22.1 231.6 22.1 227.3 19.3 s2 226.7 19.7 227.7 22.1 p 226.7 19.7 226.1 18.5 227.3 19.3 t2 226.7 19.7 226.1 18.5 p 231.6 16.5 240.2 16.5 240.2 22.1 231.6 22.1 s2 240.2 16.5 248.8 16.5 248.8 22.1 240.2 22.1 s1 245.8 18.5 246.7 16.5 240.2 16.5 244.5 19.3 s2 245.8 18.5 246.7 16.5 p 245.8 18.5 245.1 19.7 244.5 19.3 t2 245.8 18.5 245.1 19.7 p 244.1 22.1 245.1 19.7 244.5 19.3 240.2 22.1 s2 244.1 22.1 245.1 19.7 p 240.2 22.1 244.5 19.3 240.2 16.5 t2 248.8 16.5 257.4 16.5 257.4 22.1 248.8 22.1 s0 248.8 16.5 253.1 19.3 257.4 16.5 t1 256.6 21.6 257.4 17.1 257.4 16.5 253.1 19.3 s1 256.6 21.6 257.4 17.1 p 256.4 22.1 256.6 21.6 253.1 19.3 248.8 22.1 s1 256.4 22.1 256.6 21.6 p 248.8 22.1 253.1 19.3 248.8 16.5 t1 257.4 16.5 265.9 16.5 265.9 22.1 257.4 22.1 s0 257.4 16.5 261.7 19.3 265.9 16.5 t1 265.9 16.5 261.7 19.3 265.9 22.1 t1 258.1 21.6 258.4 22.1 265.9 22.1 261.7 19.3 s1 258.1 21.6 258.4 22.1 p 257.4 17.1 258.1 21.6 261.7 19.3 257.4 16.5 s1 257.4 17.1 258.1 21.6 p 265.9 16.5 274.5 16.5 274.5 22.1 265.9 22.1 s1 268.0 16.5 269.0 18.5 270.2 19.3 274.5 16.5 s2 268.0 16.5 269.0 18.5 p 274.5 16.5 270.2 19.3 274.5 22.1 t2 269.6 19.7 270.6 22.1 274.5 22.1 270.2 19.3 s2 269.6 19.7 270.6 22.1 p 269.6 19.7 269.0 18.5 270.2 19.3 t2 269.6 19.7 269.0 18.5 p 274.5 16.5 283.1 16.5 283.1 22.1 274.5 22.1 s2 283.1 16.5 291.7 16.5 291.7 22.1 283.1 22.1 s1 288.7 18.5 289.6 16.5 283.1 16.5 287.4 19.3 s2 288.7 18.5 289.6 16.5 p 288.7 18.5 288.0 19.7 287.4 19.3 t2 288.7 18.5 288.0 19.7 p 287.0 22.1 288.0 19.7 287.4 19.3 283.1 22.1 s2 287.0 22.1 288.0 19.7 p 283.1 22.1 287.4 19.3 283.1 16.5 t2 291.7 16.5 300.3 16.5 300.3 22.1 291.7 22.1 s0 291.7 16.5 296.0 19.3 300.3 16.5 t1 299.5 21.6 300.3 17.1 300.3 16.5 296.0 19.3 s1 299.5 21.6 300.3 17.1 p 299.3 22.1 299.5 21.6 296.0 19.3 291.7 22.1 s1 299.3 22.1 299.5 21.6 p 291.7 22.1 296.0 19.3 291.7 16.5 t1 0.0 11.0 8.6 11.0 8.6 16.5 0.0 16.5 s1 7.5 11.7 7.1 11.0 8.6 11.0 t2 7.5 11.7 7.1 11.0 p 8.6 13.1 7.5 11.7 8.6 11.0 t2 8.6 13.1 7.5 11.7 p 8.6 11.0 17.2 11.0 17.2 16.5 8.6 16.5 s1 8.6 11.0 12.9 13.8 17.2 11.0 t2 17.2 11.0 12.9 13.8 17.2 16.5 t2 10.7 15.2 10.7 16.5 17.2 16.5 12.9 13.8 s2 10.7 15.2 10.7 16.5 p 8.6 13.1 10.7 15.2 12.9 13.8 8.6 11.0 s2 8.6 13.1 10.7 15.2 p 17.2 11.0 25.7 11.0 25.7 16.5 17.2 16.5 s2 25.7 11.0 34.3 11.0 34.3 16.5 25.7 16.5 s1 25.7 11.0 30.0 13.8 34.3 11.0 t2 32.2 15.2 34.3 13.1 34.3 11.0 30.0 13.8 s2 32.2 15.2 34.3 13.1 p 32.2 16.5 32.2 15.2 30.0 13.8 25.7 16.5 s2 32.2 16.5 32.2 15.2 p 25.7 16.5 30.0 13.8 25.7 11.0 t2 34.3 11.0 42.9 11.0 42.9 16.5 34.3 16.5 s1 35.8 11.0 35.3 11.7 34.3 11.0 t2 35.8 11.0 35.3 11.7 p 35.3 11.7 34.3 13.1 34.3 11.0 t2 35.3 11.7 34.3 13.1 p 42.9 11.0 51.5 11.0 51.5 16.5 42.9 16.5 s1 50.4 11.7 50.0 11.0 51.5 11.0 t2 50.4 11.7 50.0 11.0 p 51.5 13.1 50.4 11.7 51.5 11.0 t2 51.5 13.1 50.4 11.7 p 51.5 11.0 60.1 11.0 60.1 16.5 51.5 16.5 s1 51.5 11.0 55.8 13.8 60.1 11.0 t2 60.1 11.0 55.8 13.8 60.1 16.5 t2 53.6 15.2 53.6 16.5 60.1 16.5 55.8 13.8 s2 53.6 15.2 53.6 16.5 p 51.5 13.1 53.6 15.2 55.8 13.8 51.5 11.0 s2 51.5 13.1 53.6 15.2 p 60.1 11.0 68.6 11.0 68.6 16.5 60.1 16.5 s2 68.6 11.0 77.2 11.0 77.2 16.5 68.6 16.5 s1 68.6 11.0 72.9 13.8 77.2 11.0 t2 75.1 15.2 77.2 13.1 77.2 11.0 72.9 13.8 s2 75.1 15.2 77.2 13.1 p 75.1 16.5 75.1 15.2 72.9 13.8 68.6 16.5 s2 75.1 16.5 75.1 15.2 p 68.6 16.5 72.9 13.8 68.6 11.0 t2 77.2 11.0 85.8 11.0 85.8 16.5 77.2 16.5 s1 78.7 11.0 78.2 11.7 77.2 11.0 t2 78.7 11.0 78.2 11.7 p 78.2 11.7 77.2 13.1 77.2 11.0 t2 78.2 11.7 77.2 13.1 p 85.8 11.0 94.4 11.0 94.4 16.5 85.8 16.5 s1 93.3 11.7 92.9 11.0 94.4 11.0 t2 93.3 11.7 92.9 11.0 p 94.4 13.1 93.3 11.7 94.4 11.0 t2 94.4 13.1 93.3 11.7 p 94.4 11.0 102.9 11.0 102.9 16.5 94.4 16.5 s1 94.4 11.0 98.7 13.8 102.9 11.0 t2 102.9 11.0 98.7 13.8 102.9 16.5 t2 96.5 15.2 96.5 16.5 102.9 16.5 98.7 13.8 s2 96.5 15.2 96.5 16.5 p 94.4 13.1 96.5 15.2 98.7 13.8 94.4 11.0 s2 94.4 13.1 96.5 15.2 p 102.9 11.0 111.5 11.0 111.5 16.5 102.9 16.5 s2 111.5 11.0 120.1 11.0 120.1 16.5 111.5 16.5 s1 111.5 11.0 115.8 13.8 120.1 11.0 t2 118.0 15.2 120.1 13.1 120.1 11.0 115.8 13.8 s2 118.0 15.2 120.1 13.1 p 118.0 16.5 118.0 15.2 115.8 13.8 111.5 16.5 s2 118.0 16.5 118.0 15.2 p 111.5 16.5 115.8 13.8 111.5 11.0 t2 120.1 11.0 128.7 11.0 128.7 16.5 120.1 16.5 s1 121.6 11.0 121.1 11.7 120.1 11.0 t2 121.6 11.0 121.1 11.7 p 121.1 11.7 120.1 13.1 120.1 11.0 t2 121.1 11.7 120.1 13.1 p 128.7 11.0 137.3 11.0 137.3 16.5 128.7 16.5 s1 136.2 11.7 135.8 11.0 137.3 11.0 t2 136.2 11.7 135.8 11.0 p 137.3 13.1 136.2 11.7 137.3 11.0 t2 137.3 13.1 136.2 11.7 p 137.3 11.0 145.8 11.0 145.8 16.5 137.3 16.5 s1 137.3 11.0 141.6 13.8 145.8 11.0 t2 145.8 11.0 141.6 13.8 145.8 16.5 t2 139.4 15.2 139.4 16.5 145.8 16.5 141.6 13.8 s2 139.4 15.2 139.4 16.5 p 137.3 13.1 139.4 15.2 141.6 13.8 137.3 11.0 s2 137.3 13.1 139.4 15.2 p 145.8 11.0 154.4 11.0 154.4 16.5 145.8 16.5 s2 154.4 11.0 163.0 11.0 163.0 16.5 154.4 16.5 s1 154.4 11.0 158.7 13.8 163.0 11.0 t2 160.9 15.2 163.0 13.1 163.0 11.0 158.7 13.8 s2 160.9 15.2 163.0 13.1 p 160.9 16.5 160.9 15.2 158.7 13.8 154.4 16.5 s2 160.9 16.5 160.9 15.2 p 154.4 16.5 158.7 13.8 154.4 11.0 t2 163.0 11.0 171.6 11.0 171.6 16.5 163.0 16.5 s1 164.5 11.0 164.0 11.7 163.0 11.0 t2 164.5 11.0 164.0 11.7 p 164.0 11.7 163.0 13.1 163.0 11.0 t2 164.0 11.7 163.0 13.1 p 171.6 11.0 180.2 11.0 180.2 16.5 171.6 16.5 s1 179.1 11.7 178.7 11.0 180.2 11.0 t2 179.1 11.7 178.7 11.0 p 180.2 13.1 179.1 11.7 180.2 11.0 t2 180.2 13.1 179.1 11.7 p 180.2 11.0 188.7 11.0 188.7 16.5 180.2 16.5 s1 180.2 11.0 184.4 13.8 188.7 11.0 t2 188.7 11.0 184.4 13.8 188.7 16.5 t2 182.3 15.2 182.3 16.5 188.7 16.5 184.4 13.8 s2 182.3 15.2 182.3 16.5 p 180.2 13.1 182.3 15.2 184.4 13.8 180.2 11.0 s2 180.2 13.1 182.3 15.2 p 188.7 11.0 197.3 11.0 197.3 16.5 188.7 16.5 s2 197.3 11.0 205.9 11.0 205.9 16.5 197.3 16.5 s1 197.3 11.0 201.6 13.8 205.9 11.0 t2 203.7 15.2 205.9 13.1 205.9 11.0 201.6 13.8 s2 203.7 15.2 205.9 13.1 p 203.8 16.5 203.7 15.2 201.6 13.8 197.3 16.5 s2 203.8 16.5 203.7 15.2 p 197.3 16.5 201.6 13.8 197.3 11.0 t2 205.9 11.0 214.5 11.0 214.5 16.5 205.9 16.5 s1 207.4 11.0 206.9 11.7 205.9 11.0 t2 207.4 11.0 206.9 11.7 p 206.9 11.7 205.9 13.1 205.9 11.0 t2 206.9 11.7 205.9 13.1 p 214.5 11.0 223.1 11.0 223.1 16.5 214.5 16.5 s1 222.0 11.7 221.6 11.0 223.1 11.0 t2 222.0 11.7 221.6 11.0 p 223.1 13.1 222.0 11.7 223.1 11.0 t2 223.1 13.1 222.0 11.7 p 223.1 11.0 231.6 11.0 231.6 16.5 223.1 16.5 s1 223.1 11.0 227.3 13.8 231.6 11.0 t2 231.6 11.0 227.3 13.8 231.6 16.5 t2 225.2 15.2 225.2 16.5 231.6 16.5 227.3 13.8 s2 225.2 15.2 225.2 16.5 p 223.1 13.1 225.2 15.2 227.3 13.8 223.1 11.0 s2 223.1 13.1 225.2 15.2 p 231.6 11.0 240.2 11.0 240.2 16.5 231.6 16.5 s2 240.2 11.0 248.8 11.0 248.8 16.5 240.2 16.5 s1 240.2 11.0 244.5 13.8 248.8 11.0 t2 246.6 15.2 248.8 13.1 248.8 11.0 244.5 13.8 s2 246.6 15.2 248.8 13.1 p 246.7 16.5 246.6 15.2 244.5 13.8 240.2 16.5 s2 246.7 16.5 246.6 15.2 p 240.2 16.5 244.5 13.8 240.2 11.0 t2 248.8 11.0 257.4 11.0 257.4 16.5 248.8 16.5 s1 250.3 11.0 249.8 11.7 248.8 11.0 t2 250.3 11.0 249.8 11.7 p 249.8 11.7 248.8 13.1 248.8 11.0 t2 249.8 11.7 248.8 13.1 p 257.4 11.0 265.9 11.0 265.9 16.5 257.4 16.5 s1 264.9 11.7 264.5 11.0 265.9 11.0 t2 264.9 11.7 264.5 11.0 p 265.9 13.1 264.9 11.7 265.9 11.0 t2 265.9 13.1 264.9 11.7 p 265.9 11.0 274.5 11.0 274.5 16.5 265.9 16.5 s1 265.9 11.0 270.2 13.8 274.5 11.0 t2 274.5 11.0 270.2 13.8 274.5 16.5 t2 268.1 15.2 268.0 16.5 274.5 16.5 270.2 13.8 s2 268.1 15.2 268.0 16.5 p 265.9 13.1 268.1 15.2 270.2 13.8 265.9 11.0 s2 265.9 13.1 268.1 15.2 p 274.5 11.0 283.1 11.0 283.1 16.5 274.5 16.5 s2 283.1 11.0 291.7 11.0 291.7 16.5 283.1 16.5 s1 283.1 11.0 287.4 13.8 291.7 11.0 t2 289.5 15.2 291.7 13.1 291.7 11.0 287.4 13.8 s2 289.5 15.2 291.7 13.1 p 289.6 16.5 289.5 15.2 287.4 13.8 283.1 16.5 s2 289.6 16.5 289.5 15.2 p 283.1 16.5 287.4 13.8 283.1 11.0 t2 291.7 11.0 300.3 11.0 300.3 16.5 291.7 16.5 s1 293.2 11.0 292.7 11.7 291.7 11.0 t2 293.2 11.0 292.7 11.7 p 292.7 11.7 291.7 13.1 291.7 11.0 t2 292.7 11.7 291.7 13.1 p 0.0 5.5 8.6 5.5 8.6 11.0 0.0 11.0 s1 7.4 6.3 7.0 5.5 8.6 5.5 t2 7.4 6.3 7.0 5.5 p 7.4 6.3 6.8 9.9 8.6 11.0 8.6 5.5 s2 7.4 6.3 6.8 9.9 p 7.1 11.0 6.8 9.9 8.6 11.0 t2 7.1 11.0 6.8 9.9 p 8.6 5.5 17.2 5.5 17.2 11.0 8.6 11.0 s1 13.5 7.9 10.3 5.5 8.6 5.5 12.9 8.3 s2 13.5 7.9 10.3 5.5 p 17.2 8.3 13.5 7.9 12.9 8.3 17.2 11.0 s2 17.2 8.3 13.5 7.9 p 17.2 11.0 12.9 8.3 8.6 11.0 t2 8.6 11.0 12.9 8.3 8.6 5.5 t2 17.2 5.5 25.7 5.5 25.7 11.0 17.2 11.0 s1 21.5 8.3 25.7 8.3 25.7 11.0 t2 21.5 8.3 25.7 8.3 p 21.5 8.3 21.4 8.3 17.2 11.0 25.7 11.0 s2 21.5 8.3 21.4 8.3 p 17.2 8.3 21.4 8.3 17.2 11.0 t2 17.2 8.3 21.4 8.3 p 25.7 5.5 34.3 5.5 34.3 11.0 25.7 11.0 s1 32.6 5.5 29.4 7.9 30.0 8.3 34.3 5.5 s2 32.6 5.5 29.4 7.9 p 34.3 5.5 30.0 8.3 34.3 11.0 t2 34.3 11.0 30.0 8.3 25.7 11.0 t2 29.4 7.9 25.7 8.3 25.7 11.0 30.0 8.3 s2 29.4 7.9 25.7 8.3 p 34.3 5.5 42.9 5.5 42.9 11.0 34.3 11.0 s1 35.9 5.5 35.5 6.3 34.3 5.5 t2 35.9 5.5 35.5 6.3 p 36.1 9.9 35.8 11.0 34.3 11.0 t2 36.1 9.9 35.8 11.0 p 36.1 9.9 35.5 6.3 34.3 5.5 34.3 11.0 s2 36.1 9.9 35.5 6.3 p 42.9 5.5 51.5 5.5 51.5 11.0 42.9 11.0 s1 50.3 6.3 49.9 5.5 51.5 5.5 t2 50.3 6.3 49.9 5.5 p 50.3 6.3 49.7 9.9 51.5 11.0 51.5 5.5 s2 50.3 6.3 49.7 9.9 p 50.0 11.0 49.7 9.9 51.5 11.0 t2 50.0 11.0 49.7 9.9 p 51.5 5.5 60.1 5.5 60.1 11.0 51.5 11.0 s1 56.4 7.9 53.2 5.5 51.5 5.5 55.8 8.3 s2 56.4 7.9 53.2 5.5 p 60.1 8.3 56.4 7.9 55.8 8.3 60.1 11.0 s2 60.1 8.3 56.4 7.9 p 60.1 11.0 55.8 8.3 51.5 11.0 t2 51.5 11.0 55.8 8.3 51.5 5.5 t2 60.1 5.5 68.6 5.5 68.6 11.0 60.1 11.0 s1 64.4 8.3 68.6 8.3 68.6 11.0 t2 64.4 8.3 68.6 8.3 p 64.4 8.3 64.3 8.3 60.1 11.0 68.6 11.0 s2 64.4 8.3 64.3 8.3 p 60.1 8.3 64.3 8.3 60.1 11.0 t2 60.1 8.3 64.3 8.3 p 68.6 5.5 77.2 5.5 77.2 11.0 68.6 11.0 s1 75.5 5.5 72.3 7.9 72.9 8.3 77.2 5.5 s2 75.5 5.5 72.3 7.9 p 77.2 5.5 72.9 8.3 77.2 11.0 t2 77.2 11.0 72.9 8.3 68.6 11.0 t2 72.3 7.9 68.6 8.3 68.6 11.0 72.9 8.3 s2 72.3 7.9 68.6 8.3 p 77.2 5.5 85.8 5.5 85.8 11.0 77.2 11.0 s1 78.8 5.5 78.4 6.3 77.2 5.5 t2 78.8 5.5 78.4 6.3 p 79.0 9.9 78.7 11.0 77.2 11.0 t2 79.0 9.9 78.7 11.0 p 79.0 9.9 78.4 6.3 77.2 5.5 77.2 11.0 s2 79.0 9.9 78.4 6.3 p 85.8 5.5 94.4 5.5 94.4 11.0 85.8 11.0 s1 93.1 6.3 92.8 5.5 94.4 5.5 t2 93.1 6.3 92.8 5.5 p 93.1 6.3 92.6 9.9 94.4 11.0 94.4 5.5 s2 93.1 6.3 92.6 9.9 p 92.9 11.0 92.6 9.9 94.4 11.0 t2 92.9 11.0 92.6 9.9 p 94.4 5.5 102.9 5.5 102.9 11.0 94.4 11.0 s1 99.3 7.9 96.1 5.5 94.4 5.5 98.7 8.3 s2 99.3 7.9 96.1 5.5 p 102.9 8.3 99.3 7.9 98.7 8.3 102.9 11.0 s2 102.9 8.3 99.3 7.9 p 102.9 11.0 98.7 8.3 94.4 11.0 t2 94.4 11.0 98.7 8.3 94.4 5.5 t2 102.9 5.5 111.5 5.5 111.5 11.0 102.9 11.0 s1 107.3 8.3 111.5 8.3 111.5 11.0 t2 107.3 8.3 111.5 8.3 p 107.3 8.3 107.2 8.3 102.9 11.0 111.5 11.0 s2 107.3 8.3 107.2 8.3 p 102.9 8.3 107.2 8.3 102.9 11.0 t2 102.9 8.3 107.2 8.3 p 111.5 5.5 120.1 5.5 120.1 11.0 111.5 11.0 s1 118.4 5.5 115.2 7.9 115.8 8.3 120.1 5.5 s2 118.4 5.5 115.2 7.9 p 120.1 5.5 115.8 8.3 120.1 11.0 t2 120.1 11.0 115.8 8.3 111.5 11.0 t2 115.2 7.9 111.5 8.3 111.5 11.0 115.8 8.3 s2 115.2 7.9 111.5 8.3 p 120.1 5.5 128.7 5.5 128.7 11.0 120.1 11.0 s1 121.7 5.5 121.3 6.3 120.1 5.5 t2 121.7 5.5 121.3 6.3 p 121.9 9.9 121.6 11.0 120.1 11.0 t2 121.9 9.9 121.6 11.0 p 121.9 9.9 121.3 6.3 120.1 5.5 120.1 11.0 s2 121.9 9.9 121.3 6.3 p 128.7 5.5 137.3 5.5 137.3 11.0 128.7 11.0 s1 136.0 6.3 135.6 5.5 137.3 5.5 t2 136.0 6.3 135.6 5.5 p 136.0 6.3 135.5 9.9 137.3 11.0 137.3 5.5 s2 136.0 6.3 135.5 9.9 p 135.8 11.0 135.5 9.9 137.3 11.0 t2 135.8 11.0 135.5 9.9 p 137.3 5.5 145.8 5.5 145.8 11.0 137.3 11.0 s1 142.2 7.9 139.0 5.5 137.3 5.5 141.6 8.3 s2 142.2 7.9 139.0 5.5 p 145.8 8.3 142.2 7.9 141.6 8.3 145.8 11.0 s2 145.8 8.3 142.2 7.9 p 145.8 11.0 141.6 8.3 137.3 11.0 t2 137.3 11.0 141.6 8.3 137.3 5.5 t2 145.8 5.5 154.4 5.5 154.4 11.0 145.8 11.0 s1 150.2 8.3 154.4 8.3 154.4 11.0 t2 150.2 8.3 154.4 8.3 p 150.2 8.3 150.1 8.3 145.8 11.0 154.4 11.0 s2 150.2 8.3 150.1 8.3 p 145.8 8.3 150.1 8.3 145.8 11.0 t2 145.8 8.3 150.1 8.3 p 154.4 5.5 163.0 5.5 163.0 11.0 154.4 11.0 s1 161.3 5.5 158.1 7.9 158.7 8.3 163.0 5.5 s2 161.3 5.5 158.1 7.9 p 163.0 5.5 158.7 8.3 163.0 11.0 t2 163.0 11.0 158.7 8.3 154.4 11.0 t2 158.1 7.9 154.4 8.3 154.4 11.0 158.7 8.3 s2 158.1 7.9 154.4 8.3 p 163.0 5.5 171.6 5.5 171.6 11.0 163.0 11.0 s1 164.6 5.5 164.2 6.3 163.0 5.5 t2 164.6 5.5 164.2 6.3 p 164.8 9.9 164.5 11.0 163.0 11.0 t2 164.8 9.9 164.5 11.0 p 164.8 9.9 164.2 6.3 163.0 5.5 163.0 11.0 s2 164.8 9.9 164.2 6.3 p 171.6 5.5 180.2 5.5 180.2 11.0 171.6 11.0 s1 178.9 6.3 178.5 5.5 180.2 5.5 t2 178.9 6.3 178.5 5.5 p 178.9 6.3 178.4 9.9 180.2 11.0 180.2 5.5 s2 178.9 6.3 178.4 9.9 p 178.7 11.0 178.4 9.9 180.2 11.0 t2 178.7 11.0 178.4 9.9 p 180.2 5.5 188.7 5.5 188.7 11.0 180.2 11.0 s1 185.1 7.9 181.9 5.5 180.2 5.5 184.4 8.3 s2 185.1 7.9 181.9 5.5 p 188.7 8.3 185.1 7.9 184.4 8.3 188.7 11.0 s2 188.7 8.3 185.1 7.9 p 188.7 11.0 184.4 8.3 180.2 11.0 t2 180.2 11.0 184.4 8.3 180.2 5.5 t2 188.7 5.5 197.3 5.5 197.3 11.0 188.7 11.0 s1 193.1 8.3 197.3 8.3 197.3 11.0 t2 193.1 8.3 197.3 8.3 p 193.1 8.3 193.0 8.3 188.7 11.0 197.3 11.0 s2 193.1 8.3 193.0 8.3 p 188.7 8.3 193.0 8.3 188.7 11.0 t2 188.7 8.3 193.0 8.3 p 197.3 5.5 205.9 5.5 205.9 11.0 197.3 11.0 s1 204.1 5.5 201.0 7.9 201.6 8.3 205.9 5.5 s2 204.1 5.5 201.0 7.9 p 205.9 5.5 201.6 8.3 205.9 11.0 t2 205.9 11.0 201.6 8.3 197.3 11.0 t2 201.0 7.9 197.3 8.3 197.3 11.0 201.6 8.3 s2 201.0 7.9 197.3 8.3 p 205.9 5.5 214.5 5.5 214.5 11.0 205.9 11.0 s1 207.5 5.5 207.1 6.3 205.9 5.5 t2 207.5 5.5 207.1 6.3 p 207.7 9.9 207.4 11.0 205.9 11.0 t2 207.7 9.9 207.4 11.0 p 207.7 9.9 207.1 6.3 205.9 5.5 205.9 11.0 s2 207.7 9.9 207.1 6.3 p 214.5 5.5 223.1 5.5 223.1 11.0 214.5 11.0 s1 221.8 6.3 221.4 5.5 223.1 5.5 t2 221.8 6.3 221.4 5.5 p 221.8 6.3 221.3 9.9 223.1 11.0 223.1 5.5 s2 221.8 6.3 221.3 9.9 p 221.6 11.0 221.3 9.9 223.1 11.0 t2 221.6 11.0 221.3 9.9 p 223.1 5.5 231.6 5.5 231.6 11.0 223.1 11.0 s1 228.0 7.9 224.8 5.5 223.1 5.5 227.3 8.3 s2 228.0 7.9 224.8 5.5 p 231.6 8.3 228.0 7.9 227.3 8.3 231.6 11.0 s2 231.6 8.3 228.0 7.9 p 231.6 11.0 227.3 8.3 223.1 11.0 t2 223.1 11.0 227.3 8.3 223.1 5.5 t2 231.6 5.5 240.2 5.5 240.2 11.0 231.6 11.0 s1 235.9 8.3 240.2 8.3 240.2 11.0 t2 235.9 8.3 240.2 8.3 p 235.9 8.3 235.9 8.3 231.6 11.0 240.2 11.0 s2 235.9 8.3 235.9 8.3 p 231.6 8.3 235.9 8.3 231.6 11.0 t2 231.6 8.3 235.9 8.3 p 240.2 5.5 248.8 5.5 248.8 11.0 240.2 11.0 s1 247.0 5.5 243.9 7.9 244.5 8.3 248.8 5.5 s2 247.0 5.5 243.9 7.9 p 248.8 5.5 244.5 8.3 248.8 11.0 t2 248.8 11.0 244.5 8.3 240.2 11.0 t2 243.9 7.9 240.2 8.3 240.2 11.0 244.5 8.3 s2 243.9 7.9 240.2 8.3 p 248.8 5.5 257.4 5.5 257.4 11.0 248.8 11.0 s1 250.4 5.5 250.0 6.3 248.8 5.5 t2 250.4 5.5 250.0 6.3 p 250.6 9.9 250.3 11.0 248.8 11.0 t2 250.6 9.9 250.3 11.0 p 250.6 9.9 250.0 6.3 248.8 5.5 248.8 11.0 s2 250.6 9.9 250.0 6.3 p 257.4 5.5 265.9 5.5 265.9 11.0 257.4 11.0 s1 264.7 6.3 264.3 5.5 265.9 5.5 t2 264.7 6.3 264.3 5.5 p 264.7 6.3 264.2 9.9 265.9 11.0 265.9 5.5 s2 264.7 6.3 264.2 9.9 p 264.5 11.0 264.2 9.9 265.9 11.0 t2 264.5 11.0 264.2 9.9 p 265.9 5.5 274.5 5.5 274.5 11.0 265.9 11.0 s1 270.9 7.9 267.7 5.5 265.9 5.5 270.2 8.3 s2 270.9 7.9 267.7 5.5 p 274.5 8.3 270.9 7.9 270.2 8.3 274.5 11.0 s2 274.5 8.3 270.9 7.9 p 274.5 11.0 270.2 8.3 265.9 11.0 t2 265.9 11.0 270.2 8.3 265.9 5.5 t2 274.5 5.5 283.1 5.5 283.1 11.0 274.5 11.0 s1 278.8 8.3 283.1 8.3 283.1 11.0 t2 278.8 8.3 283.1 8.3 p 278.8 8.3 278.8 8.3 274.5 11.0 283.1 11.0 s2 278.8 8.3 278.8 8.3 p 274.5 8.3 278.8 8.3 274.5 11.0 t2 274.5 8.3 278.8 8.3 p 283.1 5.5 291.7 5.5 291.7 11.0 283.1 11.0 s1 289.9 5.5 286.8 7.9 287.4 8.3 291.7 5.5 s2 289.9 5.5 286.8 7.9 p 291.7 5.5 287.4 8.3 291.7 11.0 t2 291.7 11.0 287.4 8.3 283.1 11.0 t2 286.8 7.9 283.1 8.3 283.1 11.0 287.4 8.3 s2 286.8 7.9 283.1 8.3 p 291.7 5.5 300.3 5.5 300.3 11.0 291.7 11.0 s1 293.3 5.5 292.9 6.3 291.7 5.5 t2 293.3 5.5 292.9 6.3 p 293.5 9.9 293.2 11.0 291.7 11.0 t2 293.5 9.9 293.2 11.0 p 293.5 9.9 292.9 6.3 291.7 5.5 291.7 11.0 s2 293.5 9.9 292.9 6.3 p 0.0 0.0 8.6 0.0 8.6 5.5 0.0 5.5 s1 7.7 5.0 8.6 4.8 8.6 5.5 t2 7.7 5.0 8.6 4.8 p 7.0 5.5 7.7 5.0 8.6 5.5 t2 7.0 5.5 7.7 5.0 p 8.6 0.0 17.2 0.0 17.2 5.5 8.6 5.5 s1 9.3 5.0 10.3 5.5 8.6 5.5 t2 9.3 5.0 10.3 5.5 p 8.6 4.8 9.3 5.0 8.6 5.5 t2 8.6 4.8 9.3 5.0 p 17.2 0.0 25.7 0.0 25.7 5.5 17.2 5.5 s1 25.7 0.0 34.3 0.0 34.3 5.5 25.7 5.5 s1 33.6 5.0 34.3 4.8 34.3 5.5 t2 33.6 5.0 34.3 4.8 p 32.6 5.5 33.6 5.0 34.3 5.5 t2 32.6 5.5 33.6 5.0 p 34.3 0.0 42.9 0.0 42.9 5.5 34.3 5.5 s1 35.1 5.0 35.9 5.5 34.3 5.5 t2 35.1 5.0 35.9 5.5 p 34.3 4.8 35.1 5.0 34.3 5.5 t2 34.3 4.8 35.1 5.0 p 42.9 0.0 51.5 0.0 51.5 5.5 42.9 5.5 s1 50.6 5.0 51.5 4.8 51.5 5.5 t2 50.6 5.0 51.5 4.8 p 49.9 5.5 50.6 5.0 51.5 5.5 t2 49.9 5.5 50.6 5.0 p 51.5 0.0 60.1 0.0 60.1 5.5 51.5 5.5 s1 52.2 5.0 53.2 5.5 51.5 5.5 t2 52.2 5.0 53.2 5.5 p 51.5 4.8 52.2 5.0 51.5 5.5 t2 51.5 4.8 52.2 5.0 p 60.1 0.0 68.6 0.0 68.6 5.5 60.1 5.5 s1 68.6 0.0 77.2 0.0 77.2 5.5 68.6 5.5 s1 76.5 5.0 77.2 4.8 77.2 5.5 t2 76.5 5.0 77.2 4.8 p 75.5 5.5 76.5 5.0 77.2 5.5 t2 75.5 5.5 76.5 5.0 p 77.2 0.0 85.8 0.0 85.8 5.5 77.2 5.5 s1 78.0 5.0 78.8 5.5 77.2 5.5 t2 78.0 5.0 78.8 5.5 p 77.2 4.8 78.0 5.0 77.2 5.5 t2 77.2 4.8 78.0 5.0 p 85.8 0.0 94.4 0.0 94.4 5.5 85.8 5.5 s1 93.5 5.0 94.4 4.8 94.4 5.5 t2 93.5 5.0 94.4 4.8 p 92.8 5.5 93.5 5.0 94.4 5.5 t2 92.8 5.5 93.5 5.0 p 94.4 0.0 102.9 0.0 102.9 5.5 94.4 5.5 s1 95.1 5.0 96.1 5.5 94.4 5.5 t2 95.1 5.0 96.1 5.5 p 94.4 4.8 95.1 5.0 94.4 5.5 t2 94.4 4.8 95.1 5.0 p 102.9 0.0 111.5 0.0 111.5 5.5 102.9 5.5 s1 111.5 0.0 120.1 0.0 120.1 5.5 111.5 5.5 s1 119.4 5.0 120.1 4.8 120.1 5.5 t2 119.4 5.0 120.1 4.8 p 118.4 5.5 119.4 5.0 120.1 5.5 t2 118.4 5.5 119.4 5.0 p 120.1 0.0 128.7 0.0 128.7 5.5 120.1 5.5 s1 120.9 5.0 121.7 5.5 120.1 5.5 t2 120.9 5.0 121.7 5.5 p 120.1 4.8 120.9 5.0 120.1 5.5 t2 120.1 4.8 120.9 5.0 p 128.7 0.0 137.3 0.0 137.3 5.5 128.7 5.5 s1 136.4 5.0 137.3 4.8 137.3 5.5 t2 136.4 5.0 137.3 4.8 p 135.6 5.5 136.4 5.0 137.3 5.5 t2 135.6 5.5 136.4 5.0 p 137.3 0.0 145.8 0.0 145.8 5.5 137.3 5.5 s1 138.0 5.0 139.0 5.5 137.3 5.5 t2 138.0 5.0 139.0 5.5 p 137.3 4.8 138.0 5.0 137.3 5.5 t2 137.3 4.8 138.0 5.0 p 145.8 0.0 154.4 0.0 154.4 5.5 145.8 5.5 s1 154.4 0.0 163.0 0.0 163.0 5.5 154.4 5.5 s1 162.3 5.0 163.0 4.8 163.0 5.5 t2 162.3 5.0 163.0 4.8 p 161.3 5.5 162.3 5.0 163.0 5.5 t2 161.3 5.5 162.3 5.0 p 163.0 0.0 171.6 0.0 171.6 5.5 163.0 5.5 s1 163.8 5.0 164.6 5.5 163.0 5.5 t2 163.8 5.0 164.6 5.5 p 163.0 4.8 163.8 5.0 163.0 5.5 t2 163.0 4.8 163.8 5.0 p 171.6 0.0 180.2 0.0 180.2 5.5 171.6 5.5 s1 179.3 5.0 180.2 4.8 180.2 5.5 t2 179.3 5.0 180.2 4.8 p 178.5 5.5 179.3 5.0 180.2 5.5 t2 178.5 5.5 179.3 5.0 p 180.2 0.0 188.7 0.0 188.7 5.5 180.2 5.5 s1 180.9 5.0 181.9 5.5 180.2 5.5 t2 180.9 5.0 181.9 5.5 p 180.2 4.8 180.9 5.0 180.2 5.5 t2 180.2 4.8 180.9 5.0 p 188.7 0.0 197.3 0.0 197.3 5.5 188.7 5.5 s1 197.3 0.0 205.9 0.0 205.9 5.5 197.3 5.5 s1 205.1 5.0 205.9 4.8 205.9 5.5 t2 205.1 5.0 205.9 4.8 p 204.1 5.5 205.1 5.0 205.9 5.5 t2 204.1 5.5 205.1 5.0 p 205.9 0.0 214.5 0.0 214.5 5.5 205.9 5.5 s1 206.7 5.0 207.5 5.5 205.9 5.5 t2 206.7 5.0 207.5 5.5 p 205.9 4.8 206.7 5.0 205.9 5.5 t2 205.9 4.8 206.7 5.0 p 214.5 0.0 223.1 0.0 223.1 5.5 214.5 5.5 s1 222.2 5.0 223.1 4.8 223.1 5.5 t2 222.2 5.0 223.1 4.8 p 221.4 5.5 222.2 5.0 223.1 5.5 t2 221.4 5.5 222.2 5.0 p 223.1 0.0 231.6 0.0 231.6 5.5 223.1 5.5 s1 223.8 5.0 224.8 5.5 223.1 5.5 t2 223.8 5.0 224.8 5.5 p 223.1 4.8 223.8 5.0 223.1 5.5 t2 223.1 4.8 223.8 5.0 p 231.6 0.0 240.2 0.0 240.2 5.5 231.6 5.5 s1 240.2 0.0 248.8 0.0 248.8 5.5 240.2 5.5 s1 248.0 5.0 248.8 4.8 248.8 5.5 t2 248.0 5.0 248.8 4.8 p 247.0 5.5 248.0 5.0 248.8 5.5 t2 247.0 5.5 248.0 5.0 p 248.8 0.0 257.4 0.0 257.4 5.5 248.8 5.5 s1 249.6 5.0 250.4 5.5 248.8 5.5 t2 249.6 5.0 250.4 5.5 p 248.8 4.8 249.6 5.0 248.8 5.5 t2 248.8 4.8 249.6 5.0 p 257.4 0.0 265.9 0.0 265.9 5.5 257.4 5.5 s1 265.1 5.0 265.9 4.8 265.9 5.5 t2 265.1 5.0 265.9 4.8 p 264.3 5.5 265.1 5.0 265.9 5.5 t2 264.3 5.5 265.1 5.0 p 265.9 0.0 274.5 0.0 274.5 5.5 265.9 5.5 s1 266.7 5.0 267.7 5.5 265.9 5.5 t2 266.7 5.0 267.7 5.5 p 265.9 4.8 266.7 5.0 265.9 5.5 t2 265.9 4.8 266.7 5.0 p 274.5 0.0 283.1 0.0 283.1 5.5 274.5 5.5 s1 283.1 0.0 291.7 0.0 291.7 5.5 283.1 5.5 s1 290.9 5.0 291.7 4.8 291.7 5.5 t2 290.9 5.0 291.7 4.8 p 289.9 5.5 290.9 5.0 291.7 5.5 t2 289.9 5.5 290.9 5.0 p 291.7 0.0 300.3 0.0 300.3 5.5 291.7 5.5 s1 292.5 5.0 293.3 5.5 291.7 5.5 t2 292.5 5.0 293.3 5.5 p 291.7 4.8 292.5 5.0 291.7 5.5 t2 291.7 4.8 292.5 5.0 p 1 setlinewidth 0 setgray newpath 0.0 0.0 moveto 300.3 0.0 lineto 300.3 303.3 lineto 0.0 303.3 lineto closepath stroke gsave newpath 0.0 0.0 moveto 300.3 0.0 lineto 300.3 303.3 lineto 0.0 303.3 lineto closepath clip stroke grestore grestore %%Trailer showpage espresso-5.1/PP/examples/example03/reference/AlAs110.box.projwfc.ps0000644000175000017500000021643012341372774023061 0ustar mbamba%!PS-Adobe-2.0 %%Title: AlAs110.box.projwfc.ps %%Creator: gnuplot 4.2 patchlevel 5 %%CreationDate: Fri Jun 4 13:02:22 2010 %%DocumentFonts: (atend) %%BoundingBox: 50 50 554 770 %%Orientation: Landscape %%Pages: (atend) %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color true def /Blacktext false def /Solid true def /Dashlength 1 def /Landscape true def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 15.000 def /userlinewidth gnulinewidth def % /vshift -80 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (AlAs110.box.projwfc.ps) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 5 ) /Author (Guido Fratesi,,,) % /Producer (gnuplot) % /Keywords () /CreationDate (Fri Jun 4 13:02:22 2010) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave closepath fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop /MFshow { { dup 5 get 3 ge { 5 get 3 eq {gsave} {grestore} ifelse } {dup dup 0 get findfont exch 1 get scalefont setfont [ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6 get exch 4 get {show} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq {dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5 get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop pop aload pop M} ifelse }ifelse }ifelse } ifelse } forall} bind def /MFwidth {0 exch { dup 5 get 3 ge { 5 get 3 eq { 0 } { pop } ifelse } {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont 6 get stringwidth pop add} {pop} ifelse} ifelse} forall} bind def /MLshow { currentpoint stroke M 0 exch R Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def /MRshow { currentpoint stroke M exch dup MFwidth neg 3 -1 roll R Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def /MCshow { currentpoint stroke M exch dup MFwidth -2 div 3 -1 roll R Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def /XYsave { [( ) 1 2 true false 3 ()] } bind def /XYrestore { [( ) 1 2 true false 4 ()] } bind def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 90 rotate 0 -5040 translate 0 setgray newpath (Helvetica) findfont 240 scalefont setfont 0.200 UL LTb 1464 1008 M 63 0 V 5313 0 R -63 0 V stroke 1320 1008 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0)] ] -80.0 MRshow 0.200 UL LTb 1464 1339 M 63 0 V 5313 0 R -63 0 V stroke 1320 1339 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.2)] ] -80.0 MRshow 0.200 UL LTb 1464 1670 M 63 0 V 5313 0 R -63 0 V stroke 1320 1670 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.4)] ] -80.0 MRshow 0.200 UL LTb 1464 2002 M 63 0 V 5313 0 R -63 0 V stroke 1320 2002 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.6)] ] -80.0 MRshow 0.200 UL LTb 1464 2333 M 63 0 V 5313 0 R -63 0 V stroke 1320 2333 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.8)] ] -80.0 MRshow 0.200 UL LTb 1464 2664 M 63 0 V 5313 0 R -63 0 V stroke 1320 2664 M [ [(Helvetica) 240.0 0.0 true true 0 ( 1)] ] -80.0 MRshow 0.200 UL LTb 1464 2995 M 63 0 V 5313 0 R -63 0 V stroke 1320 2995 M [ [(Helvetica) 240.0 0.0 true true 0 ( 1.2)] ] -80.0 MRshow 0.200 UL LTb 1464 3326 M 63 0 V 5313 0 R -63 0 V stroke 1320 3326 M [ [(Helvetica) 240.0 0.0 true true 0 ( 1.4)] ] -80.0 MRshow 0.200 UL LTb 1464 3658 M 63 0 V 5313 0 R -63 0 V stroke 1320 3658 M [ [(Helvetica) 240.0 0.0 true true 0 ( 1.6)] ] -80.0 MRshow 0.200 UL LTb 1464 3989 M 63 0 V 5313 0 R -63 0 V stroke 1320 3989 M [ [(Helvetica) 240.0 0.0 true true 0 ( 1.8)] ] -80.0 MRshow 0.200 UL LTb 1464 4320 M 63 0 V 5313 0 R -63 0 V stroke 1320 4320 M [ [(Helvetica) 240.0 0.0 true true 0 ( 2)] ] -80.0 MRshow 0.200 UL LTb 1464 1008 M 0 63 V 0 3249 R 0 -63 V stroke 1464 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-14)] ] -80.0 MCshow 0.200 UL LTb 2061 1008 M 0 63 V 0 3249 R 0 -63 V stroke 2061 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-12)] ] -80.0 MCshow 0.200 UL LTb 2659 1008 M 0 63 V 0 3249 R 0 -63 V stroke 2659 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-10)] ] -80.0 MCshow 0.200 UL LTb 3256 1008 M 0 63 V 0 3249 R 0 -63 V stroke 3256 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-8)] ] -80.0 MCshow 0.200 UL LTb 3853 1008 M 0 63 V 0 3249 R 0 -63 V stroke 3853 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-6)] ] -80.0 MCshow 0.200 UL LTb 4451 1008 M 0 63 V 0 3249 R 0 -63 V stroke 4451 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-4)] ] -80.0 MCshow 0.200 UL LTb 5048 1008 M 0 63 V 0 3249 R 0 -63 V stroke 5048 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-2)] ] -80.0 MCshow 0.200 UL LTb 5645 1008 M 0 63 V 0 3249 R 0 -63 V stroke 5645 768 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0)] ] -80.0 MCshow 0.200 UL LTb 6243 1008 M 0 63 V 0 3249 R 0 -63 V stroke 6243 768 M [ [(Helvetica) 240.0 0.0 true true 0 ( 2)] ] -80.0 MCshow 0.200 UL LTb 6840 1008 M 0 63 V 0 3249 R 0 -63 V stroke 6840 768 M [ [(Helvetica) 240.0 0.0 true true 0 ( 4)] ] -80.0 MCshow 0.200 UL LTb 0.200 UL LTb 1464 4320 N 0 -3312 V 5376 0 V 0 3312 V -5376 0 V Z stroke LCb setrgbcolor 480 2664 M currentpoint gsave translate 90 rotate 0 0 moveto [ [(Helvetica) 240.0 0.0 true true 0 (Local DOS \(states/eV\))] ] -80.0 MCshow grestore LTb LCb setrgbcolor 4152 408 M [ [(Helvetica) 240.0 0.0 true true 0 (Energy - E)] [(Helvetica) 192.0 -72.0 true true 0 (F)] [(Helvetica) 240.0 0.0 true true 0 ( \(eV\))] ] -56.0 MCshow LTb 4152 4680 M [ [(Helvetica) 240.0 0.0 true true 0 (Projected DOS)] ] -80.0 MCshow 1.000 UP 0.200 UL LTb 1.000 UL LT0 LTb 2535 4137 M [ [(Helvetica) 240.0 0.0 true true 0 (Surface Al)] ] -80.0 MLshow LT0 1752 4137 M 639 0 V 1814 1008 M 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 1 V 6 1 V 6 1 V 6 1 V 6 2 V 6 3 V 6 4 V 6 5 V 6 6 V 6 6 V 6 8 V 6 7 V 6 7 V 6 8 V 6 7 V 6 8 V 6 9 V 6 9 V 6 11 V 6 11 V 6 13 V 6 12 V 6 13 V 6 12 V 6 11 V 6 10 V 6 10 V 6 9 V 6 8 V 5 9 V 6 7 V 6 7 V 6 7 V 6 7 V 6 6 V 6 8 V 6 9 V 6 11 V 6 12 V 6 13 V 6 13 V 6 10 V 6 8 V 6 8 V 6 4 V 6 3 V 6 3 V 6 2 V 6 5 V 6 6 V 6 8 V 6 11 V 6 14 V 6 17 V 6 19 V 6 23 V 6 25 V 6 26 V 6 25 V 6 27 V 6 27 V 6 28 V 6 28 V 6 28 V 6 27 V 6 23 V 6 25 V 5 20 V 6 18 V 6 10 V 6 8 V 6 2 V 6 -4 V 6 -8 V 6 -7 V 6 -8 V 6 -5 V 6 -3 V 6 3 V 6 8 V 6 15 V 6 20 V 6 24 V 6 30 V 6 34 V 6 40 V 6 44 V 6 50 V 6 51 V 6 57 V 6 54 V 6 50 V 6 42 V 6 32 V 6 21 V stroke 2424 2358 M 6 10 V 6 2 V 6 -6 V 6 -5 V 6 -4 V 6 1 V 6 8 V 6 14 V 6 15 V 5 15 V 6 10 V 6 1 V 6 -14 V 6 -30 V 6 -45 V 6 -57 V 6 -66 V 6 -70 V 6 -65 V 6 -61 V 6 -50 V 6 -37 V 6 -26 V 6 -14 V 6 -6 V 6 2 V 6 4 V 6 7 V 6 7 V 6 6 V 6 3 V 6 2 V 6 -3 V 6 -9 V 6 -14 V 6 -23 V 6 -34 V 6 -47 V 6 -59 V 6 -70 V 6 -78 V 6 -82 V 6 -85 V 6 -79 V 6 -73 V 6 -62 V 6 -52 V 5 -40 V 6 -30 V 6 -22 V 6 -15 V 6 -10 V 6 -6 V 6 -3 V 6 -3 V 6 -1 V 6 0 V 6 -1 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V stroke 3045 1008 M 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V stroke 3666 1008 M 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 1 V 6 0 V 6 1 V 6 1 V 6 2 V 6 2 V 6 2 V 6 3 V 6 4 V 6 4 V 6 5 V 6 5 V 6 5 V 6 7 V 6 7 V 6 9 V 6 10 V 6 12 V 6 14 V 6 16 V 6 19 V 5 21 V 6 24 V 6 28 V 6 31 V 6 34 V 6 38 V 6 42 V 6 45 V 6 48 V 6 53 V 6 59 V 6 66 V 6 73 V 6 81 V 6 91 V 6 101 V 6 107 V 6 113 V 6 111 V 6 108 V 6 94 V 6 81 V 6 63 V 6 43 V 6 17 V 6 -4 V 6 -23 V 6 -35 V 6 -48 V 6 -54 V 6 -62 V 6 -56 V 6 -57 V 6 -53 V 6 -48 V 6 -43 V 6 -33 V 6 -25 V 5 -20 V 6 -14 V 6 -10 V 6 -15 V 6 -16 V 6 -22 V 6 -30 V 6 -38 V 6 -42 V 6 -49 V 6 -48 V 6 -49 V 6 -45 V 6 -38 V 6 -34 V 6 -32 V 6 -28 V 6 -28 V 6 -30 V 6 -26 V 6 -27 V 6 -23 V 6 -15 V 6 -9 V 6 -2 V 6 4 V 6 11 V 6 14 V 6 14 V 6 9 V 6 3 V 6 -2 V 6 -11 V 6 -18 V 6 -24 V 6 -26 V 6 -29 V 5 -29 V 6 -24 V 6 -22 V stroke 4287 1348 M 6 -19 V 6 -15 V 6 -14 V 6 -12 V 6 -12 V 6 -12 V 6 -10 V 6 -7 V 6 -2 V 6 5 V 6 14 V 6 23 V 6 30 V 6 37 V 6 40 V 6 38 V 6 32 V 6 25 V 6 14 V 6 5 V 6 -4 V 6 -8 V 6 -11 V 6 -10 V 6 -7 V 6 -5 V 6 1 V 6 4 V 6 6 V 6 10 V 6 11 V 6 17 V 6 22 V 6 27 V 6 36 V 5 43 V 6 46 V 6 49 V 6 53 V 6 48 V 6 41 V 6 32 V 6 23 V 6 10 V 6 0 V 6 -13 V 6 -19 V 6 -28 V 6 -31 V 6 -30 V 6 -32 V 6 -28 V 6 -24 V 6 -23 V 6 -15 V 6 -14 V 6 -8 V 6 -1 V 6 3 V 6 10 V 6 16 V 6 20 V 6 23 V 6 27 V 6 25 V 6 20 V 6 15 V 6 7 V 6 -1 V 6 -4 V 6 -11 V 6 -12 V 5 -10 V 6 -6 V 6 -3 V 6 5 V 6 10 V 6 10 V 6 12 V 6 10 V 6 7 V 6 0 V 6 -4 V 6 -11 V 6 -12 V 6 -16 V 6 -12 V 6 -6 V 6 1 V 6 13 V 6 21 V 6 31 V 6 34 V 6 36 V 6 31 V 6 27 V 6 16 V 6 8 V 6 -1 V 6 -6 V 6 -11 V 6 -7 V 6 -1 V 6 7 V stroke 4909 1987 M 6 19 V 6 30 V 6 40 V 6 44 V 6 42 V 6 39 V 5 29 V 6 19 V 6 6 V 6 -9 V 6 -17 V 6 -27 V 6 -32 V 6 -37 V 6 -36 V 6 -39 V 6 -39 V 6 -40 V 6 -37 V 6 -35 V 6 -31 V 6 -24 V 6 -18 V 6 -2 V 6 14 V 6 31 V 6 43 V 6 57 V 6 65 V 6 68 V 6 65 V 6 56 V 6 43 V 6 28 V 6 10 V 6 -7 V 6 -20 V 6 -37 V 6 -47 V 6 -53 V 6 -54 V 6 -49 V 6 -44 V 5 -34 V 6 -18 V 6 -6 V 6 5 V 6 13 V 6 18 V 6 21 V 6 16 V 6 14 V 6 3 V 6 -2 V 6 -12 V 6 -17 V 6 -26 V 6 -28 V 6 -32 V 6 -35 V 6 -31 V 6 -31 V 6 -30 V 6 -27 V 6 -23 V 6 -22 V 6 -18 V 6 -18 V 6 -13 V 6 -15 V 6 -9 V 6 -5 V 6 0 V 6 9 V 6 14 V 6 24 V 6 30 V 6 33 V 6 32 V 6 29 V 6 22 V 5 9 V 6 -4 V 6 -15 V 6 -30 V 6 -41 V 6 -49 V 6 -55 V 6 -58 V 6 -61 V 6 -63 V 6 -60 V 6 -57 V 6 -55 V 6 -48 V 6 -44 V 6 -38 V 6 -31 V 6 -26 V 6 -21 V 6 -17 V 6 -12 V 6 -11 V 6 -8 V stroke 5530 1037 M 6 -6 V 6 -5 V 6 -4 V 6 -4 V 6 -3 V 6 -2 V 6 -1 V 6 -2 V 6 -1 V 6 0 V 6 0 V 6 -1 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 1 V 6 0 V 6 1 V 6 1 V 6 1 V 6 2 V 6 3 V 6 4 V 6 4 V 6 4 V 6 5 V 6 5 V 6 4 V 6 4 V 6 3 V 6 3 V 6 3 V 6 3 V 6 3 V 6 4 V 6 5 V 6 4 V 6 4 V 6 3 V 6 1 V 6 -2 V 6 -4 V 5 -5 V 6 -6 V 6 -5 V 6 -5 V 6 -3 V 6 0 V 6 2 V 6 5 V 6 8 V 6 9 V 6 11 V 6 12 V 6 13 V 6 14 V 6 15 V 6 17 V 6 19 V 6 21 V 6 25 V 6 28 V 6 31 V 6 30 V 6 32 V 6 31 V 6 27 V 6 26 V 6 21 V 6 21 V 6 20 V 6 16 V 6 15 V 6 9 V 6 6 V 6 -3 V 6 -9 V 6 -14 V 6 -21 V 5 -20 V 6 -18 V 6 -9 V 6 1 V 6 13 V 6 27 V 6 41 V 6 48 V 6 53 V 6 52 V 6 43 V 6 33 V 6 20 V 6 6 V 6 -5 V stroke 6151 1775 M 6 -16 V 6 -21 V 6 -20 V 6 -19 V 6 -17 V 6 -11 V 6 -8 V 6 0 V 6 6 V 6 12 V 6 25 V 6 31 V 6 46 V 6 58 V 6 71 V 6 86 V 6 91 V 6 95 V 6 88 V 6 77 V 6 57 V 6 29 V 6 0 V 5 -31 V 6 -58 V 6 -83 V 6 -94 V 6 -98 V 6 -96 V 6 -84 V 6 -68 V 6 -48 V 6 -28 V 6 -7 V 6 7 V 6 19 V 6 32 V 6 38 V 6 43 V 6 45 V 6 48 V 6 49 V 6 48 V 6 45 V 6 43 V 6 38 V 6 30 V 6 18 V 6 7 V 6 -7 V 6 -15 V 6 -29 V 6 -35 V 6 -42 V 6 -41 V 6 -35 V 6 -28 V 6 -23 V 6 -13 V 6 -5 V 5 0 V 6 0 V 6 1 V 6 -6 V 6 -12 V 6 -18 V 6 -27 V 6 -38 V 6 -43 V 6 -49 V 6 -53 V 6 -55 V 6 -53 V 6 -50 V 6 -46 V 6 -40 V 6 -36 V 6 -30 V 6 -25 V 6 -23 V 6 -19 V 6 -19 V 6 -18 V 6 -19 V 6 -21 V 6 -23 V 6 -24 V 6 -26 V 6 -26 V 6 -26 V 6 -25 V 6 -23 V 6 -21 V 6 -18 V 6 -15 V 6 -12 V 6 -9 V 6 -7 V 5 -5 V 6 -4 V 6 -2 V 6 -2 V 6 -1 V 6 0 V stroke 6772 1009 M 6 -1 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V stroke LT1 LTb 2535 3897 M [ [(Helvetica) 240.0 0.0 true true 0 (Surface As)] ] -80.0 MLshow LT1 1752 3897 M 639 0 V 1814 1008 M 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 1 V 6 0 V 6 1 V 6 0 V 6 1 V 6 2 V 6 1 V 6 2 V 6 2 V 6 2 V 6 1 V 6 2 V 6 2 V 6 2 V 6 1 V 6 2 V 6 3 V 6 2 V 6 3 V 6 4 V 6 3 V 6 4 V 6 3 V 6 4 V 6 4 V 6 5 V 6 4 V 5 5 V 6 4 V 6 4 V 6 4 V 6 4 V 6 4 V 6 5 V 6 5 V 6 5 V 6 5 V 6 5 V 6 4 V 6 3 V 6 1 V 6 0 V 6 -1 V 6 -2 V 6 -3 V 6 -2 V 6 -2 V 6 -2 V 6 -1 V 6 1 V 6 2 V 6 4 V 6 6 V 6 8 V 6 10 V 6 11 V 6 12 V 6 13 V 6 13 V 6 14 V 6 12 V 6 13 V 6 11 V 6 11 V 6 7 V 5 7 V 6 2 V 6 2 V 6 -2 V 6 -5 V 6 -7 V 6 -9 V 6 -10 V 6 -11 V 6 -11 V 6 -11 V 6 -9 V 6 -6 V 6 -4 V 6 -2 V 6 1 V 6 5 V 6 9 V 6 13 V 6 16 V 6 22 V 6 25 V 6 30 V 6 33 V 6 37 V 6 40 V 6 45 V 6 49 V stroke 2424 1511 M 6 52 V 6 56 V 6 60 V 6 64 V 6 71 V 6 74 V 6 81 V 6 84 V 6 88 V 5 88 V 6 85 V 6 78 V 6 65 V 6 54 V 6 37 V 6 24 V 6 10 V 6 2 V 6 -2 V 6 -1 V 6 5 V 6 11 V 6 26 V 6 34 V 6 45 V 6 56 V 6 51 V 6 68 V 6 68 V 6 84 V 6 67 V 6 67 V 6 67 V 6 50 V 6 33 V 6 -17 V 6 -36 V 6 -85 V 6 -136 V 6 -170 V 6 -205 V 6 -231 V 6 -236 V 6 -234 V 6 -213 V 6 -186 V 6 -156 V 5 -121 V 6 -93 V 6 -66 V 6 -46 V 6 -30 V 6 -19 V 6 -11 V 6 -7 V 6 -3 V 6 -2 V 6 -1 V 6 -1 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V stroke 3045 1008 M 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V stroke 3666 1008 M 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 1 V 6 0 V 6 0 V 6 1 V 6 1 V 6 1 V 6 1 V 6 2 V 6 1 V 6 2 V 6 3 V 6 2 V 6 3 V 6 3 V 6 4 V 6 5 V 6 5 V 6 6 V 6 6 V 6 7 V 5 7 V 6 9 V 6 8 V 6 10 V 6 10 V 6 10 V 6 12 V 6 11 V 6 13 V 6 13 V 6 16 V 6 17 V 6 19 V 6 22 V 6 26 V 6 27 V 6 29 V 6 32 V 6 30 V 6 29 V 6 28 V 6 24 V 6 21 V 6 18 V 6 15 V 6 14 V 6 13 V 6 13 V 6 14 V 6 15 V 6 15 V 6 16 V 6 17 V 6 17 V 6 18 V 6 17 V 6 20 V 6 19 V 5 22 V 6 22 V 6 21 V 6 15 V 6 13 V 6 3 V 6 -5 V 6 -15 V 6 -26 V 6 -35 V 6 -39 V 6 -45 V 6 -44 V 6 -43 V 6 -39 V 6 -34 V 6 -28 V 6 -23 V 6 -16 V 6 -11 V 6 -7 V 6 -1 V 6 3 V 6 5 V 6 7 V 6 8 V 6 5 V 6 2 V 6 0 V 6 -6 V 6 -10 V 6 -14 V 6 -18 V 6 -19 V 6 -19 V 6 -21 V 6 -17 V 5 -15 V 6 -12 V 6 -7 V stroke 4287 1283 M 6 -3 V 6 -3 V 6 -1 V 6 0 V 6 -2 V 6 -6 V 6 -6 V 6 -5 V 6 -3 V 6 2 V 6 9 V 6 19 V 6 25 V 6 33 V 6 35 V 6 35 V 6 30 V 6 19 V 6 9 V 6 -1 V 6 -12 V 6 -18 V 6 -23 V 6 -22 V 6 -22 V 6 -18 V 6 -14 V 6 -10 V 6 -7 V 6 -6 V 6 -3 V 6 1 V 6 6 V 6 13 V 6 21 V 5 28 V 6 38 V 6 43 V 6 48 V 6 47 V 6 43 V 6 36 V 6 28 V 6 18 V 6 10 V 6 1 V 6 -6 V 6 -9 V 6 -11 V 6 -12 V 6 -9 V 6 -11 V 6 -9 V 6 -10 V 6 -11 V 6 -12 V 6 -12 V 6 -13 V 6 -9 V 6 -5 V 6 0 V 6 7 V 6 11 V 6 17 V 6 21 V 6 23 V 6 22 V 6 20 V 6 16 V 6 11 V 6 5 V 6 4 V 5 0 V 6 -2 V 6 -3 V 6 -6 V 6 -8 V 6 -10 V 6 -11 V 6 -14 V 6 -17 V 6 -19 V 6 -20 V 6 -17 V 6 -15 V 6 -9 V 6 0 V 6 9 V 6 20 V 6 30 V 6 41 V 6 47 V 6 52 V 6 53 V 6 52 V 6 47 V 6 39 V 6 34 V 6 26 V 6 20 V 6 17 V 6 15 V 6 14 V 6 16 V stroke 4909 2094 M 6 18 V 6 20 V 6 20 V 6 21 V 6 16 V 6 11 V 5 4 V 6 -1 V 6 -9 V 6 -11 V 6 -13 V 6 -10 V 6 -8 V 6 -5 V 6 -4 V 6 0 V 6 -3 V 6 -4 V 6 -7 V 6 -10 V 6 -5 V 6 2 V 6 17 V 6 38 V 6 64 V 6 94 V 6 119 V 6 140 V 6 158 V 6 152 V 6 135 V 6 119 V 6 85 V 6 68 V 6 17 V 6 0 V 6 -33 V 6 -50 V 6 -68 V 6 -67 V 6 -68 V 6 -51 V 6 -18 V 5 -18 V 6 17 V 6 50 V 6 50 V 6 51 V 6 67 V 6 51 V 6 52 V 6 34 V 6 19 V 6 2 V 6 2 V 6 2 V 6 3 V 6 3 V 6 20 V 6 20 V 6 21 V 6 37 V 6 38 V 6 38 V 6 37 V 6 21 V 6 4 V 6 4 V 6 -14 V 6 -13 V 6 -14 V 6 -14 V 6 3 V 6 36 V 6 38 V 6 88 V 6 89 V 6 105 V 6 104 V 6 69 V 6 34 V 5 -18 V 6 -71 V 6 -124 V 6 -176 V 6 -211 V 6 -244 V 6 -246 V 6 -245 V 6 -237 V 6 -222 V 6 -202 V 6 -183 V 6 -164 V 6 -145 V 6 -124 V 6 -106 V 6 -88 V 6 -71 V 6 -55 V 6 -44 V 6 -32 V 6 -24 V 6 -18 V stroke 5530 1053 M 6 -13 V 6 -9 V 6 -7 V 6 -5 V 6 -3 V 6 -3 V 6 -1 V 6 -2 V 6 -1 V 6 0 V 6 -1 V 6 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 1 V 6 0 V 6 1 V 6 0 V 6 1 V 6 1 V 6 1 V 6 1 V 6 0 V 6 1 V 6 1 V 6 1 V 6 1 V 6 1 V 6 2 V 6 1 V 6 2 V 6 1 V 6 2 V 6 1 V 6 0 V 6 0 V 6 -1 V 5 -1 V 6 -2 V 6 -2 V 6 -2 V 6 -1 V 6 0 V 6 0 V 6 2 V 6 2 V 6 2 V 6 3 V 6 4 V 6 4 V 6 4 V 6 5 V 6 5 V 6 4 V 6 6 V 6 5 V 6 6 V 6 5 V 6 5 V 6 5 V 6 5 V 6 5 V 6 5 V 6 6 V 6 6 V 6 7 V 6 7 V 6 7 V 6 6 V 6 4 V 6 2 V 6 -1 V 6 -3 V 6 -5 V 5 -5 V 6 -3 V 6 -1 V 6 4 V 6 8 V 6 14 V 6 19 V 6 23 V 6 23 V 6 22 V 6 18 V 6 15 V 6 7 V 6 3 V 6 -3 V stroke 6151 1281 M 6 -8 V 6 -11 V 6 -12 V 6 -13 V 6 -14 V 6 -12 V 6 -13 V 6 -11 V 6 -10 V 6 -6 V 6 -3 V 6 1 V 6 6 V 6 11 V 6 16 V 6 21 V 6 23 V 6 26 V 6 25 V 6 22 V 6 18 V 6 10 V 6 5 V 5 -3 V 6 -11 V 6 -16 V 6 -20 V 6 -20 V 6 -17 V 6 -13 V 6 -5 V 6 3 V 6 9 V 6 16 V 6 25 V 6 29 V 6 33 V 6 34 V 6 37 V 6 36 V 6 35 V 6 32 V 6 32 V 6 27 V 6 20 V 6 18 V 6 11 V 6 4 V 6 -4 V 6 -11 V 6 -18 V 6 -24 V 6 -29 V 6 -31 V 6 -32 V 6 -32 V 6 -29 V 6 -25 V 6 -21 V 6 -16 V 5 -11 V 6 -9 V 6 -5 V 6 -6 V 6 -4 V 6 -7 V 6 -7 V 6 -9 V 6 -10 V 6 -12 V 6 -12 V 6 -12 V 6 -13 V 6 -10 V 6 -11 V 6 -8 V 6 -11 V 6 -8 V 6 -10 V 6 -9 V 6 -11 V 6 -11 V 6 -12 V 6 -14 V 6 -14 V 6 -15 V 6 -14 V 6 -15 V 6 -13 V 6 -13 V 6 -11 V 6 -9 V 6 -8 V 6 -6 V 6 -5 V 6 -4 V 6 -3 V 6 -2 V 5 -2 V 6 0 V 6 -1 V 6 0 V 6 -1 V 6 0 V stroke 6772 1008 M 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V 6 0 V stroke 0.200 UL LTb 1464 4320 N 0 -3312 V 5376 0 V 0 3312 V -5376 0 V Z stroke 1.000 UP 0.200 UL LTb stroke grestore end showpage %%Page: 2 2 gnudict begin gsave 50 50 translate 0.100 0.100 scale 90 rotate 0 -5040 translate 0 setgray newpath (Helvetica) findfont 240 scalefont setfont 0.200 UL LTb 1752 1008 M 63 0 V 5025 0 R -63 0 V stroke 1608 1008 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0)] ] -80.0 MRshow 0.200 UL LTb 1752 1376 M 63 0 V 5025 0 R -63 0 V stroke 1608 1376 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.001)] ] -80.0 MRshow 0.200 UL LTb 1752 1744 M 63 0 V 5025 0 R -63 0 V stroke 1608 1744 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.002)] ] -80.0 MRshow 0.200 UL LTb 1752 2112 M 63 0 V 5025 0 R -63 0 V stroke 1608 2112 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.003)] ] -80.0 MRshow 0.200 UL LTb 1752 2480 M 63 0 V 5025 0 R -63 0 V stroke 1608 2480 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.004)] ] -80.0 MRshow 0.200 UL LTb 1752 2848 M 63 0 V 5025 0 R -63 0 V stroke 1608 2848 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.005)] ] -80.0 MRshow 0.200 UL LTb 1752 3216 M 63 0 V 5025 0 R -63 0 V stroke 1608 3216 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.006)] ] -80.0 MRshow 0.200 UL LTb 1752 3584 M 63 0 V 5025 0 R -63 0 V stroke 1608 3584 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.007)] ] -80.0 MRshow 0.200 UL LTb 1752 3952 M 63 0 V 5025 0 R -63 0 V stroke 1608 3952 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.008)] ] -80.0 MRshow 0.200 UL LTb 1752 4320 M 63 0 V 5025 0 R -63 0 V stroke 1608 4320 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.009)] ] -80.0 MRshow 0.200 UL LTb 1752 1008 M 0 63 V 0 3249 R 0 -63 V stroke 1752 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-14)] ] -80.0 MCshow 0.200 UL LTb 2317 1008 M 0 63 V 0 3249 R 0 -63 V stroke 2317 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-12)] ] -80.0 MCshow 0.200 UL LTb 2883 1008 M 0 63 V 0 3249 R 0 -63 V stroke 2883 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-10)] ] -80.0 MCshow 0.200 UL LTb 3448 1008 M 0 63 V 0 3249 R 0 -63 V stroke 3448 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-8)] ] -80.0 MCshow 0.200 UL LTb 4013 1008 M 0 63 V 0 3249 R 0 -63 V stroke 4013 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-6)] ] -80.0 MCshow 0.200 UL LTb 4579 1008 M 0 63 V 0 3249 R 0 -63 V stroke 4579 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-4)] ] -80.0 MCshow 0.200 UL LTb 5144 1008 M 0 63 V 0 3249 R 0 -63 V stroke 5144 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-2)] ] -80.0 MCshow 0.200 UL LTb 5709 1008 M 0 63 V 0 3249 R 0 -63 V stroke 5709 768 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0)] ] -80.0 MCshow 0.200 UL LTb 6275 1008 M 0 63 V 0 3249 R 0 -63 V stroke 6275 768 M [ [(Helvetica) 240.0 0.0 true true 0 ( 2)] ] -80.0 MCshow 0.200 UL LTb 6840 1008 M 0 63 V 0 3249 R 0 -63 V stroke 6840 768 M [ [(Helvetica) 240.0 0.0 true true 0 ( 4)] ] -80.0 MCshow 0.200 UL LTb 0.200 UL LTb 1752 4320 N 0 -3312 V 5088 0 V 0 3312 V -5088 0 V Z stroke LCb setrgbcolor 480 2664 M currentpoint gsave translate 90 rotate 0 0 moveto [ [(Helvetica) 240.0 0.0 true true 0 (Local DOS \(states/eV\))] ] -80.0 MCshow grestore LTb LCb setrgbcolor 4296 408 M [ [(Helvetica) 240.0 0.0 true true 0 (Energy - E)] [(Helvetica) 192.0 -72.0 true true 0 (F)] [(Helvetica) 240.0 0.0 true true 0 ( \(eV\))] ] -56.0 MCshow LTb 4296 4680 M [ [(Helvetica) 240.0 0.0 true true 0 (Local DOS centered in the first vacuum layer)] ] -80.0 MCshow 1.000 UP 0.200 UL LTb 1.000 UL LT0 LTb 2823 4137 M [ [(Helvetica) 240.0 0.0 true true 0 (Above Al)] ] -80.0 MLshow LT0 2040 4137 M 639 0 V 2084 1008 M 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 1 V 5 0 V 6 0 V 6 0 V 5 1 V 6 0 V 6 0 V 5 1 V 6 0 V 6 1 V 5 0 V 6 1 V 6 0 V 5 1 V 6 0 V 6 1 V 5 1 V 6 0 V 5 1 V 6 1 V 6 0 V 5 1 V 6 1 V 6 1 V 5 0 V 6 1 V 6 1 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 -1 V 5 0 V 6 0 V 6 0 V 5 1 V 6 0 V 6 1 V 5 2 V 6 1 V 6 2 V 5 3 V 6 2 V 5 3 V 6 3 V 6 3 V 5 3 V 6 3 V 6 3 V 5 2 V 6 2 V 6 1 V 5 2 V 6 0 V 6 0 V 5 -2 V 6 -1 V 6 -2 V 5 -1 V 6 -2 V 6 -2 V 5 -2 V 6 -1 V 6 -1 V 5 -1 V 6 1 V 6 1 V 5 1 V 6 4 V 5 4 V 6 5 V 6 7 V 5 8 V 6 9 V 6 10 V 5 12 V 6 13 V 6 13 V 5 16 V stroke 2660 1149 M 6 16 V 6 18 V 5 19 V 6 21 V 6 23 V 5 25 V 6 26 V 6 29 V 5 29 V 6 32 V 6 29 V 5 26 V 6 22 V 5 22 V 6 15 V 6 11 V 5 4 V 6 4 V 6 3 V 5 4 V 6 4 V 6 7 V 5 11 V 6 15 V 6 18 V 5 22 V 6 22 V 6 26 V 5 26 V 6 26 V 6 25 V 5 26 V 6 26 V 6 18 V 5 11 V 6 0 V 6 -14 V 5 -30 V 6 -44 V 5 -59 V 6 -74 V 6 -81 V 5 -84 V 6 -80 V 6 -75 V 5 -65 V 6 -55 V 6 -43 V 5 -32 V 6 -24 V 6 -16 V 5 -10 V 6 -7 V 6 -4 V 5 -2 V 6 -2 V 6 0 V 5 -1 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V stroke 3248 1008 M 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V stroke 3836 1008 M 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 1 V 6 0 V 5 1 V 6 0 V 6 1 V 5 2 V 6 2 V 6 2 V 5 4 V 6 4 V 6 4 V 5 5 V 6 6 V 5 5 V 6 6 V 6 5 V 5 5 V 6 6 V 6 7 V 5 7 V 6 10 V 6 12 V 5 15 V 6 18 V 6 21 V 5 23 V 6 25 V 6 25 V 5 23 V 6 21 V 6 17 V 5 11 V 6 7 V 6 1 V 5 -3 V 6 -7 V 6 -9 V 5 -11 V 6 -11 V 5 -10 V 6 -9 V 6 -7 V 5 -4 V 6 -2 V 6 2 V 5 4 V 6 6 V 6 7 V 5 7 V 6 5 V 6 2 V 5 -3 V 6 -7 V 6 -13 V 5 -17 V 6 -20 V 6 -21 V 5 -22 V 6 -20 V 6 -16 V 5 -15 V 6 -11 V 6 -8 V 5 -7 V 6 -5 V 5 -3 V 6 -3 V 6 -3 V 5 -1 V 6 1 V 6 2 V 5 2 V 6 5 V 6 6 V 5 6 V 6 6 V 6 6 V 5 4 V 6 3 V 6 1 V 5 0 V 6 -3 V 6 -5 V 5 -5 V 6 -7 V 6 -7 V 5 -7 V stroke 4424 1083 M 6 -7 V 5 -6 V 6 -4 V 6 -2 V 5 -1 V 6 2 V 6 4 V 5 7 V 6 10 V 6 13 V 5 15 V 6 17 V 6 18 V 5 18 V 6 15 V 6 13 V 5 8 V 6 3 V 6 -3 V 5 -7 V 6 -11 V 6 -12 V 5 -13 V 6 -11 V 6 -10 V 5 -7 V 6 -6 V 5 -5 V 6 -3 V 6 -2 V 5 -1 V 6 1 V 6 3 V 5 6 V 6 11 V 6 13 V 5 18 V 6 20 V 6 22 V 5 23 V 6 23 V 6 23 V 5 20 V 6 19 V 6 15 V 5 13 V 6 9 V 6 6 V 5 3 V 6 0 V 6 -2 V 5 -6 V 6 -7 V 5 -10 V 6 -11 V 6 -13 V 5 -13 V 6 -14 V 6 -12 V 5 -11 V 6 -9 V 6 -7 V 5 -3 V 6 -1 V 6 1 V 5 3 V 6 4 V 6 5 V 5 5 V 6 5 V 6 4 V 5 5 V 6 4 V 6 4 V 5 2 V 6 2 V 5 0 V 6 -1 V 6 -4 V 5 -5 V 6 -6 V 6 -7 V 5 -7 V 6 -5 V 6 -1 V 5 4 V 6 12 V 6 21 V 5 29 V 6 37 V 6 43 V 5 48 V 6 48 V 6 44 V 5 37 V 6 33 V 6 26 V 5 22 V 6 14 V 6 19 V 5 15 V 6 18 V 5 15 V 6 18 V stroke 5012 1755 M 6 11 V 5 11 V 6 7 V 6 4 V 5 0 V 6 -4 V 6 -7 V 5 -7 V 6 -8 V 6 -3 V 5 0 V 6 3 V 6 11 V 5 11 V 6 12 V 6 11 V 5 7 V 6 0 V 6 0 V 5 -4 V 6 4 V 6 15 V 5 29 V 6 55 V 5 78 V 6 103 V 6 121 V 5 133 V 6 132 V 6 125 V 5 107 V 6 77 V 6 55 V 5 22 V 6 -3 V 6 -26 V 5 -44 V 6 -59 V 6 -63 V 5 -62 V 6 -59 V 6 -44 V 5 -22 V 6 -4 V 6 26 V 5 51 V 6 74 V 5 92 V 6 107 V 6 110 V 5 110 V 6 103 V 6 92 V 5 81 V 6 63 V 6 48 V 5 26 V 6 7 V 6 -15 V 5 -29 V 6 -52 V 6 -59 V 5 -73 V 6 -78 V 6 -73 V 5 -70 V 6 -59 V 6 -48 V 5 -33 V 6 -11 V 6 11 V 5 37 V 6 70 V 5 99 V 6 129 V 6 155 V 5 169 V 6 169 V 6 151 V 5 114 V 6 63 V 6 -4 V 5 -70 V 6 -136 V 6 -195 V 5 -236 V 6 -265 V 6 -272 V 5 -276 V 6 -258 V 6 -239 V 5 -210 V 6 -184 V 6 -154 V 5 -129 V 6 -103 V 6 -82 V 5 -63 V 6 -48 V 5 -34 V 6 -25 V 6 -17 V 5 -11 V 6 -7 V stroke 5600 1019 M 6 -5 V 5 -2 V 6 -2 V 6 -1 V 5 0 V 6 -1 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 1 V 6 0 V 5 0 V 6 1 V 6 0 V 5 1 V 6 1 V 6 2 V 5 2 V 6 2 V 5 2 V 6 3 V 6 2 V 5 2 V 6 2 V 6 0 V 5 0 V 6 -1 V 6 -2 V 5 -2 V 6 -2 V 6 -2 V 5 -2 V 6 -1 V 6 -1 V 5 1 V 6 2 V 6 2 V 5 4 V 6 5 V 6 6 V 5 8 V 6 9 V 6 10 V 5 11 V 6 11 V 5 11 V 6 11 V 6 9 V 5 8 V 6 7 V 6 5 V 5 6 V 6 6 V 6 9 V 5 11 V 6 15 V 6 17 V 5 19 V 6 19 V 6 16 V 5 12 V 6 8 V 6 2 V 5 -1 V 6 -2 V 6 0 V 5 6 V 6 16 V 5 29 V 6 41 V 6 51 V 5 63 V 6 63 V 6 58 V 5 52 V 6 37 V 6 18 V 5 0 V 6 -11 V stroke 6188 1696 M 6 -26 V 5 -36 V 6 -41 V 6 -40 V 5 -41 V 6 -40 V 6 -41 V 5 -37 V 6 -32 V 6 -29 V 5 -23 V 6 -16 V 6 -9 V 5 -1 V 6 8 V 5 16 V 6 23 V 6 29 V 5 31 V 6 29 V 6 30 V 5 18 V 6 11 V 6 0 V 5 -11 V 6 -22 V 6 -26 V 5 -33 V 6 -30 V 6 -24 V 5 -16 V 6 -4 V 6 10 V 5 21 V 6 36 V 6 44 V 5 55 V 6 63 V 6 70 V 5 77 V 6 84 V 5 89 V 6 92 V 6 92 V 5 84 V 6 70 V 6 52 V 5 29 V 6 0 V 6 -29 V 5 -52 V 6 -73 V 6 -85 V 5 -88 V 6 -85 V 6 -77 V 5 -63 V 6 -44 V 6 -33 V 5 -18 V 6 -11 V 6 -4 V 5 0 V 6 0 V 5 -4 V 6 -7 V 6 -11 V 5 -19 V 6 -22 V 6 -25 V 5 -34 V 6 -33 V 6 -33 V 5 -37 V 6 -33 V 6 -31 V 5 -29 V 6 -26 V 6 -23 V 5 -20 V 6 -18 V 6 -15 V 5 -15 V 6 -14 V 6 -14 V 5 -14 V 6 -13 V 6 -14 V 5 -13 V 6 -13 V 5 -12 V 6 -12 V 6 -10 V 5 -10 V 6 -9 V 6 -7 V 5 -6 V 6 -4 V 6 -4 V 5 -2 V 6 -2 V 6 -1 V 5 -1 V 6 0 V stroke 6776 1009 M 6 -1 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V stroke LT1 LTb 2823 3897 M [ [(Helvetica) 240.0 0.0 true true 0 (Above As)] ] -80.0 MLshow LT1 2040 3897 M 639 0 V 2084 1008 M 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 1 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 1 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 -1 V 5 0 V 6 0 V 6 0 V 5 0 V 6 1 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 6 0 V 5 0 V 6 1 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 -1 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 6 1 V 5 0 V 6 1 V 6 1 V 5 1 V 6 1 V 6 1 V 5 1 V stroke 2660 1019 M 6 2 V 6 1 V 5 1 V 6 2 V 6 1 V 5 2 V 6 2 V 6 2 V 5 2 V 6 2 V 6 3 V 5 1 V 6 2 V 5 1 V 6 1 V 6 0 V 5 0 V 6 -1 V 6 0 V 5 -1 V 6 -1 V 6 -1 V 5 0 V 6 -1 V 6 0 V 5 -1 V 6 0 V 6 -1 V 5 -1 V 6 -1 V 6 -2 V 5 -1 V 6 -2 V 6 -2 V 5 -2 V 6 -2 V 6 -2 V 5 -1 V 6 -2 V 5 -2 V 6 -2 V 6 -1 V 5 -1 V 6 -1 V 6 -1 V 5 -1 V 6 -1 V 6 0 V 5 0 V 6 -1 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V stroke 3248 1008 M 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V stroke 3836 1008 M 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 1 V 5 0 V 6 0 V 6 0 V 5 0 V 6 1 V 6 0 V 5 0 V 6 1 V 6 0 V 5 0 V 6 1 V 6 1 V 5 0 V 6 1 V 6 0 V 5 1 V 6 1 V 5 1 V 6 1 V 6 0 V 5 1 V 6 1 V 6 1 V 5 1 V 6 2 V 6 1 V 5 2 V 6 1 V 6 2 V 5 2 V 6 2 V 6 3 V 5 2 V 6 2 V 6 2 V 5 3 V 6 2 V 6 2 V 5 3 V 6 4 V 6 3 V 5 4 V 6 4 V 5 5 V 6 5 V 6 4 V 5 4 V 6 4 V 6 4 V 5 3 V 6 4 V 6 3 V 5 3 V 6 3 V 6 3 V 5 2 V 6 1 V 6 1 V 5 -1 V 6 -2 V 6 -4 V 5 -4 V 6 -6 V 6 -6 V 5 -5 V 6 -6 V 6 -5 V 5 -5 V 6 -3 V 5 -3 V 6 -2 V 6 -1 V 5 -1 V 6 -1 V 6 0 V 5 0 V 6 0 V 6 -1 V 5 -1 V 6 -2 V 6 -2 V 5 -2 V 6 -3 V 6 -4 V 5 -2 V 6 -3 V 6 -2 V 5 -1 V 6 -1 V 6 0 V 5 1 V stroke 4424 1039 M 6 1 V 5 1 V 6 2 V 6 1 V 5 0 V 6 -1 V 6 -1 V 5 -1 V 6 -2 V 6 -1 V 5 0 V 6 0 V 6 1 V 5 3 V 6 2 V 6 3 V 5 3 V 6 2 V 6 1 V 5 0 V 6 -2 V 6 -1 V 5 -3 V 6 -2 V 6 -2 V 5 -2 V 6 -1 V 5 -1 V 6 0 V 6 0 V 5 1 V 6 1 V 6 2 V 5 3 V 6 5 V 6 5 V 5 7 V 6 8 V 6 8 V 5 8 V 6 7 V 6 7 V 5 4 V 6 3 V 6 0 V 5 0 V 6 -1 V 6 -3 V 5 -2 V 6 -2 V 6 -1 V 5 -2 V 6 -1 V 5 -2 V 6 -1 V 6 -2 V 5 -2 V 6 -2 V 6 -2 V 5 -1 V 6 -1 V 6 1 V 5 1 V 6 1 V 6 1 V 5 2 V 6 1 V 6 0 V 5 0 V 6 0 V 6 -1 V 5 -1 V 6 -1 V 6 -1 V 5 0 V 6 -1 V 5 -2 V 6 -1 V 6 -2 V 5 -2 V 6 -3 V 6 -2 V 5 -2 V 6 -2 V 6 -1 V 5 0 V 6 1 V 6 2 V 5 3 V 6 4 V 6 5 V 5 5 V 6 6 V 6 5 V 5 6 V 6 5 V 6 6 V 5 6 V 6 7 V 6 8 V 5 9 V 6 9 V 5 10 V 6 10 V stroke 5012 1175 M 6 9 V 5 8 V 6 7 V 6 4 V 5 3 V 6 0 V 6 -2 V 5 -4 V 6 -3 V 6 -4 V 5 -4 V 6 -3 V 6 -1 V 5 -2 V 6 -2 V 6 -2 V 5 -3 V 6 -4 V 6 -5 V 5 -5 V 6 -4 V 6 -2 V 5 0 V 6 5 V 5 7 V 6 12 V 6 13 V 5 15 V 6 15 V 6 12 V 5 10 V 6 7 V 6 4 V 5 0 V 6 -3 V 6 -3 V 5 -5 V 6 -5 V 6 -5 V 5 -4 V 6 -3 V 6 -3 V 5 0 V 6 0 V 6 2 V 5 3 V 6 4 V 5 4 V 6 3 V 6 3 V 5 1 V 6 0 V 6 -3 V 5 -5 V 6 -8 V 6 -11 V 5 -12 V 6 -14 V 6 -15 V 5 -16 V 6 -16 V 6 -16 V 5 -15 V 6 -14 V 6 -12 V 5 -11 V 6 -9 V 6 -7 V 5 -6 V 6 -5 V 6 -3 V 5 -2 V 6 0 V 5 0 V 6 2 V 6 3 V 5 3 V 6 4 V 6 4 V 5 4 V 6 3 V 6 2 V 5 1 V 6 0 V 6 -1 V 5 -2 V 6 -3 V 6 -4 V 5 -4 V 6 -4 V 6 -5 V 5 -5 V 6 -5 V 6 -4 V 5 -5 V 6 -4 V 6 -3 V 5 -4 V 6 -2 V 5 -3 V 6 -1 V 6 -1 V 5 -1 V 6 -1 V stroke 5600 1009 M 6 0 V 5 -1 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 1 V 5 0 V 6 1 V 6 1 V 5 1 V 6 2 V 6 3 V 5 3 V 6 3 V 6 3 V 5 3 V 6 3 V 6 3 V 5 2 V 6 2 V 6 1 V 5 2 V 6 2 V 5 2 V 6 2 V 6 3 V 5 2 V 6 2 V 6 0 V 5 -1 V 6 -1 V 6 -3 V 5 -3 V 6 -2 V 6 -1 V 5 1 V 6 3 V 6 5 V 5 7 V 6 8 V 6 10 V 5 10 V 6 10 V 6 9 V 5 10 V 6 10 V 6 11 V 5 14 V 6 16 V 5 21 V 6 26 V 6 30 V 5 33 V 6 34 V 6 35 V 5 29 V 6 29 V 6 23 V 5 14 V 6 8 V 6 3 V 5 0 V 6 -11 V 6 -14 V 5 -19 V 6 -26 V 6 -27 V 5 -28 V 6 -26 V 6 -22 V 5 -13 V 6 -5 V 5 5 V 6 15 V 6 21 V 5 24 V 6 25 V 6 22 V 5 17 V 6 7 V 6 0 V 5 -7 V 6 -8 V stroke 6188 1383 M 6 -7 V 5 -3 V 6 2 V 6 12 V 5 18 V 6 23 V 6 33 V 5 29 V 6 33 V 6 33 V 5 26 V 6 26 V 6 26 V 5 22 V 6 25 V 5 30 V 6 29 V 6 37 V 5 37 V 6 37 V 6 29 V 5 22 V 6 11 V 6 -3 V 5 -22 V 6 -30 V 6 -44 V 5 -44 V 6 -44 V 6 -37 V 5 -30 V 6 -18 V 6 -7 V 5 0 V 6 7 V 6 15 V 5 22 V 6 26 V 6 29 V 5 29 V 6 30 V 5 29 V 6 19 V 6 11 V 5 0 V 6 -15 V 6 -29 V 5 -37 V 6 -41 V 6 -44 V 5 -40 V 6 -37 V 6 -30 V 5 -18 V 6 -15 V 6 -11 V 5 -3 V 6 -4 V 6 -4 V 5 -7 V 6 -8 V 6 -11 V 5 -18 V 6 -18 V 5 -19 V 6 -26 V 6 -22 V 5 -26 V 6 -24 V 6 -22 V 5 -19 V 6 -16 V 6 -12 V 5 -9 V 6 -6 V 6 -4 V 5 -5 V 6 -6 V 6 -8 V 5 -12 V 6 -14 V 6 -17 V 5 -20 V 6 -21 V 6 -22 V 5 -21 V 6 -20 V 6 -18 V 5 -16 V 6 -13 V 5 -10 V 6 -8 V 6 -6 V 5 -4 V 6 -3 V 6 -1 V 5 -2 V 6 0 V 6 -1 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V stroke 6776 1008 M 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V stroke LT2 LTb 2823 3657 M [ [(Helvetica) 240.0 0.0 true true 0 (Surface average)] ] -80.0 MLshow LT2 2040 3657 M 639 0 V 2084 1008 M 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 1 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 1 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 1 V 6 0 V 5 0 V 6 1 V 5 0 V 6 1 V 6 0 V 5 1 V 6 0 V 6 1 V 5 0 V 6 0 V 6 1 V 5 0 V 6 0 V 6 0 V 5 0 V 6 -1 V 6 0 V 5 0 V 6 -1 V 6 0 V 5 0 V 6 -1 V 6 0 V 5 0 V 6 0 V 6 0 V 5 1 V 6 0 V 5 1 V 6 1 V 6 1 V 5 1 V 6 2 V 6 2 V 5 2 V 6 2 V 6 2 V 5 3 V stroke 2660 1032 M 6 2 V 6 3 V 5 3 V 6 4 V 6 4 V 5 3 V 6 5 V 6 4 V 5 5 V 6 5 V 6 5 V 5 5 V 6 3 V 5 3 V 6 2 V 6 2 V 5 1 V 6 0 V 6 0 V 5 0 V 6 1 V 6 1 V 5 1 V 6 2 V 6 2 V 5 3 V 6 2 V 6 4 V 5 3 V 6 3 V 6 3 V 5 3 V 6 3 V 6 2 V 5 1 V 6 -1 V 6 -3 V 5 -5 V 6 -6 V 5 -9 V 6 -11 V 6 -11 V 5 -12 V 6 -12 V 6 -10 V 5 -10 V 6 -7 V 6 -6 V 5 -5 V 6 -3 V 6 -2 V 5 -2 V 6 -1 V 6 0 V 5 -1 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V stroke 3248 1008 M 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V stroke 3836 1008 M 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 1 V 6 0 V 5 0 V 6 0 V 6 0 V 5 1 V 6 0 V 6 1 V 5 0 V 6 1 V 6 1 V 5 1 V 6 1 V 5 1 V 6 1 V 6 1 V 5 1 V 6 1 V 6 2 V 5 1 V 6 2 V 6 2 V 5 3 V 6 3 V 6 3 V 5 4 V 6 4 V 6 4 V 5 4 V 6 4 V 6 2 V 5 3 V 6 1 V 6 1 V 5 0 V 6 0 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 1 V 6 0 V 5 1 V 6 1 V 6 1 V 5 2 V 6 2 V 6 2 V 5 2 V 6 1 V 6 2 V 5 0 V 6 -1 V 6 -1 V 5 -3 V 6 -3 V 6 -4 V 5 -4 V 6 -4 V 6 -4 V 5 -4 V 6 -3 V 6 -2 V 5 -3 V 6 -1 V 5 -2 V 6 -1 V 6 -1 V 5 0 V 6 -1 V 6 1 V 5 0 V 6 0 V 6 1 V 5 0 V 6 1 V 6 0 V 5 0 V 6 -1 V 6 -1 V 5 -1 V 6 -1 V 6 -1 V 5 -2 V 6 -1 V 6 -1 V 5 -1 V stroke 4424 1028 M 6 -1 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 1 V 6 2 V 5 2 V 6 3 V 6 3 V 5 3 V 6 3 V 6 3 V 5 3 V 6 1 V 6 0 V 5 -1 V 6 -1 V 6 -2 V 5 -2 V 6 -2 V 6 -2 V 5 -2 V 6 -1 V 5 0 V 6 -1 V 6 0 V 5 0 V 6 0 V 6 1 V 5 2 V 6 4 V 6 4 V 5 5 V 6 6 V 6 6 V 5 7 V 6 6 V 6 5 V 5 5 V 6 3 V 6 3 V 5 1 V 6 0 V 6 0 V 5 0 V 6 -2 V 6 0 V 5 -3 V 6 -1 V 5 -2 V 6 -1 V 6 -2 V 5 -3 V 6 -2 V 6 -2 V 5 -1 V 6 -1 V 6 -1 V 5 1 V 6 0 V 6 1 V 5 2 V 6 1 V 6 1 V 5 1 V 6 1 V 6 0 V 5 0 V 6 1 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 6 -1 V 5 -1 V 6 -2 V 6 -1 V 5 -2 V 6 -1 V 6 -1 V 5 0 V 6 2 V 6 4 V 5 5 V 6 6 V 6 9 V 5 8 V 6 9 V 6 9 V 5 8 V 6 7 V 6 6 V 5 6 V 6 5 V 6 5 V 5 5 V 6 5 V 5 6 V 6 5 V stroke 5012 1183 M 6 5 V 5 4 V 6 3 V 6 2 V 5 2 V 6 -1 V 6 -1 V 5 -2 V 6 -3 V 6 -2 V 5 -2 V 6 -1 V 6 0 V 5 0 V 6 1 V 6 1 V 5 -1 V 6 -1 V 6 -2 V 5 -1 V 6 -1 V 6 2 V 5 6 V 6 11 V 5 15 V 6 21 V 6 25 V 5 28 V 6 28 V 6 26 V 5 23 V 6 18 V 6 13 V 5 7 V 6 2 V 6 -3 V 5 -6 V 6 -8 V 6 -10 V 5 -11 V 6 -10 V 6 -7 V 5 -4 V 6 0 V 6 4 V 5 9 V 6 13 V 5 16 V 6 18 V 6 17 V 5 17 V 6 15 V 6 11 V 5 9 V 6 6 V 6 2 V 5 -1 V 6 -3 V 6 -6 V 5 -7 V 6 -8 V 6 -9 V 5 -9 V 6 -8 V 6 -9 V 5 -6 V 6 -6 V 6 -3 V 5 -2 V 6 1 V 6 4 V 5 9 V 6 14 V 5 19 V 6 26 V 6 30 V 5 34 V 6 34 V 6 32 V 5 24 V 6 15 V 6 2 V 5 -11 V 6 -23 V 6 -36 V 5 -45 V 6 -50 V 6 -55 V 5 -54 V 6 -53 V 6 -50 V 5 -47 V 6 -41 V 6 -36 V 5 -32 V 6 -25 V 6 -22 V 5 -18 V 6 -13 V 5 -11 V 6 -7 V 6 -5 V 5 -4 V 6 -3 V stroke 5600 1012 M 6 -1 V 5 -1 V 6 -1 V 6 0 V 5 -1 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 1 V 6 0 V 5 0 V 6 1 V 6 1 V 5 0 V 6 1 V 6 1 V 5 1 V 6 1 V 6 1 V 5 0 V 6 1 V 6 1 V 5 0 V 6 1 V 5 1 V 6 1 V 6 1 V 5 1 V 6 0 V 6 1 V 5 -1 V 6 0 V 6 -1 V 5 -1 V 6 -1 V 6 -1 V 5 0 V 6 1 V 6 1 V 5 2 V 6 3 V 6 3 V 5 3 V 6 3 V 6 4 V 5 3 V 6 4 V 6 4 V 5 4 V 6 5 V 5 7 V 6 7 V 6 7 V 5 8 V 6 9 V 6 8 V 5 9 V 6 7 V 6 6 V 5 6 V 6 5 V 6 4 V 5 3 V 6 2 V 6 0 V 5 -2 V 6 -4 V 6 -6 V 5 -6 V 6 -6 V 6 -5 V 5 -2 V 6 2 V 5 5 V 6 10 V 6 13 V 5 16 V 6 16 V 6 15 V 5 13 V 6 8 V 6 5 V 5 1 V 6 -3 V stroke 6188 1217 M 6 -4 V 5 -5 V 6 -4 V 6 -4 V 5 -1 V 6 0 V 6 3 V 5 2 V 6 4 V 6 5 V 5 6 V 6 8 V 6 9 V 5 11 V 6 13 V 5 17 V 6 18 V 6 20 V 5 21 V 6 19 V 6 16 V 5 12 V 6 5 V 6 -2 V 5 -8 V 6 -14 V 6 -17 V 5 -20 V 6 -18 V 6 -15 V 5 -10 V 6 -5 V 6 2 V 5 6 V 6 13 V 6 16 V 5 20 V 6 24 V 6 26 V 5 27 V 6 29 V 5 27 V 6 26 V 6 20 V 5 16 V 6 8 V 6 1 V 5 -7 V 6 -13 V 6 -19 V 5 -22 V 6 -24 V 6 -24 V 5 -22 V 6 -19 V 6 -16 V 5 -11 V 6 -8 V 6 -6 V 5 -4 V 6 -2 V 6 -4 V 5 -5 V 6 -6 V 5 -7 V 6 -8 V 6 -11 V 5 -10 V 6 -11 V 6 -11 V 5 -11 V 6 -11 V 6 -11 V 5 -10 V 6 -8 V 6 -9 V 5 -8 V 6 -9 V 6 -8 V 5 -9 V 6 -9 V 6 -11 V 5 -12 V 6 -13 V 6 -14 V 5 -14 V 6 -14 V 6 -13 V 5 -13 V 6 -11 V 5 -10 V 6 -8 V 6 -7 V 5 -5 V 6 -4 V 6 -3 V 5 -3 V 6 -1 V 6 -1 V 5 -1 V 6 0 V 6 -1 V 5 0 V 6 0 V stroke 6776 1008 M 6 0 V 5 0 V 6 0 V 6 0 V 5 0 V 6 0 V 6 0 V stroke 0.200 UL LTb 1752 4320 N 0 -3312 V 5088 0 V 0 3312 V -5088 0 V Z stroke 1.000 UP 0.200 UL LTb stroke grestore end showpage %%Page: 3 3 gnudict begin gsave 50 50 translate 0.100 0.100 scale 90 rotate 0 -5040 translate 0 setgray newpath (Helvetica) findfont 240 scalefont setfont 0.200 UL LTb 1896 1008 M 63 0 V 4881 0 R -63 0 V stroke 1752 1008 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0)] ] -80.0 MRshow 0.200 UL LTb 1896 1339 M 63 0 V 4881 0 R -63 0 V stroke 1752 1339 M [ [(Helvetica) 240.0 0.0 true true 0 ( 1e-05)] ] -80.0 MRshow 0.200 UL LTb 1896 1670 M 63 0 V 4881 0 R -63 0 V stroke 1752 1670 M [ [(Helvetica) 240.0 0.0 true true 0 ( 2e-05)] ] -80.0 MRshow 0.200 UL LTb 1896 2002 M 63 0 V 4881 0 R -63 0 V stroke 1752 2002 M [ [(Helvetica) 240.0 0.0 true true 0 ( 3e-05)] ] -80.0 MRshow 0.200 UL LTb 1896 2333 M 63 0 V 4881 0 R -63 0 V stroke 1752 2333 M [ [(Helvetica) 240.0 0.0 true true 0 ( 4e-05)] ] -80.0 MRshow 0.200 UL LTb 1896 2664 M 63 0 V 4881 0 R -63 0 V stroke 1752 2664 M [ [(Helvetica) 240.0 0.0 true true 0 ( 5e-05)] ] -80.0 MRshow 0.200 UL LTb 1896 2995 M 63 0 V 4881 0 R -63 0 V stroke 1752 2995 M [ [(Helvetica) 240.0 0.0 true true 0 ( 6e-05)] ] -80.0 MRshow 0.200 UL LTb 1896 3326 M 63 0 V 4881 0 R -63 0 V stroke 1752 3326 M [ [(Helvetica) 240.0 0.0 true true 0 ( 7e-05)] ] -80.0 MRshow 0.200 UL LTb 1896 3658 M 63 0 V 4881 0 R -63 0 V stroke 1752 3658 M [ [(Helvetica) 240.0 0.0 true true 0 ( 8e-05)] ] -80.0 MRshow 0.200 UL LTb 1896 3989 M 63 0 V 4881 0 R -63 0 V stroke 1752 3989 M [ [(Helvetica) 240.0 0.0 true true 0 ( 9e-05)] ] -80.0 MRshow 0.200 UL LTb 1896 4320 M 63 0 V 4881 0 R -63 0 V stroke 1752 4320 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0.0001)] ] -80.0 MRshow 0.200 UL LTb 1896 1008 M 0 63 V 0 3249 R 0 -63 V stroke 1896 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-14)] ] -80.0 MCshow 0.200 UL LTb 2445 1008 M 0 63 V 0 3249 R 0 -63 V stroke 2445 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-12)] ] -80.0 MCshow 0.200 UL LTb 2995 1008 M 0 63 V 0 3249 R 0 -63 V stroke 2995 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-10)] ] -80.0 MCshow 0.200 UL LTb 3544 1008 M 0 63 V 0 3249 R 0 -63 V stroke 3544 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-8)] ] -80.0 MCshow 0.200 UL LTb 4093 1008 M 0 63 V 0 3249 R 0 -63 V stroke 4093 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-6)] ] -80.0 MCshow 0.200 UL LTb 4643 1008 M 0 63 V 0 3249 R 0 -63 V stroke 4643 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-4)] ] -80.0 MCshow 0.200 UL LTb 5192 1008 M 0 63 V 0 3249 R 0 -63 V stroke 5192 768 M [ [(Helvetica) 240.0 0.0 true true 0 (-2)] ] -80.0 MCshow 0.200 UL LTb 5741 1008 M 0 63 V 0 3249 R 0 -63 V stroke 5741 768 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0)] ] -80.0 MCshow 0.200 UL LTb 6291 1008 M 0 63 V 0 3249 R 0 -63 V stroke 6291 768 M [ [(Helvetica) 240.0 0.0 true true 0 ( 2)] ] -80.0 MCshow 0.200 UL LTb 6840 1008 M 0 63 V 0 3249 R 0 -63 V stroke 6840 768 M [ [(Helvetica) 240.0 0.0 true true 0 ( 4)] ] -80.0 MCshow 0.200 UL LTb 0.200 UL LTb 1896 4320 N 0 -3312 V 4944 0 V 0 3312 V -4944 0 V Z stroke LCb setrgbcolor 480 2664 M currentpoint gsave translate 90 rotate 0 0 moveto [ [(Helvetica) 240.0 0.0 true true 0 (Local DOS \(states/eV\))] ] -80.0 MCshow grestore LTb LCb setrgbcolor 4368 408 M [ [(Helvetica) 240.0 0.0 true true 0 (Energy - E)] [(Helvetica) 192.0 -72.0 true true 0 (F)] [(Helvetica) 240.0 0.0 true true 0 ( \(eV\))] ] -56.0 MCshow LTb 4368 4680 M [ [(Helvetica) 240.0 0.0 true true 0 (Local DOS centered in the second vacuum layer)] ] -80.0 MCshow 1.000 UP 0.200 UL LTb 1.000 UL LT0 LTb 2967 4137 M [ [(Helvetica) 240.0 0.0 true true 0 (Above Al)] ] -80.0 MLshow LT0 2184 4137 M 639 0 V 2218 1008 M 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 1 V 5 1 V 6 1 V 5 1 V 6 1 V stroke 2779 1019 M 5 1 V 6 1 V 5 1 V 6 2 V 5 1 V 6 1 V 5 2 V 6 1 V 5 2 V 6 1 V 5 1 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 -1 V 5 0 V 6 -1 V 5 0 V 5 -1 V 6 0 V 5 1 V 6 0 V 5 1 V 6 0 V 5 1 V 6 0 V 5 1 V 6 0 V 5 0 V 6 -1 V 5 -1 V 6 0 V 5 -2 V 6 -1 V 5 -2 V 6 -1 V 5 -2 V 6 -3 V 5 -2 V 6 -2 V 5 -2 V 6 -1 V 5 -2 V 6 -1 V 5 -1 V 6 -1 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V stroke 3350 1008 M 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V stroke 3921 1008 M 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 5 1 V 6 1 V 5 1 V 6 2 V 5 2 V 6 1 V 5 2 V 6 2 V 5 1 V 6 2 V 5 0 V 6 1 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 -1 V 6 -1 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 1 V 6 1 V 5 0 V 6 0 V 5 0 V 6 -1 V 5 -1 V 6 -1 V 5 -2 V 6 -2 V 5 -1 V 6 -2 V 5 -1 V 6 -1 V 5 -1 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 1 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V stroke 4493 1016 M 5 -1 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 1 V 5 1 V 6 2 V 5 1 V 6 2 V 5 2 V 6 1 V 5 1 V 6 1 V 5 1 V 6 -1 V 5 0 V 6 -1 V 5 -1 V 6 -1 V 5 0 V 6 -1 V 5 0 V 6 -1 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 2 V 5 2 V 6 2 V 5 3 V 6 3 V 5 3 V 6 3 V 5 3 V 6 3 V 5 3 V 6 2 V 5 2 V 6 1 V 5 1 V 6 1 V 5 1 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 -1 V 5 -2 V 6 -2 V 5 -3 V 6 -2 V 5 -2 V 6 -2 V 5 -1 V 6 -1 V 5 -1 V 6 0 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 1 V 5 1 V 6 0 V 5 0 V 6 1 V 5 -1 V 6 0 V 5 0 V 6 -1 V 5 0 V 5 0 V 6 2 V 5 3 V 6 4 V 5 6 V 6 7 V 5 8 V 6 9 V 5 8 V 6 8 V 5 7 V 6 7 V 5 5 V 6 4 V 5 4 V 6 3 V 5 4 V 6 3 V 5 3 V 6 4 V stroke 5064 1143 M 5 2 V 6 2 V 5 2 V 6 0 V 5 0 V 6 -1 V 5 -2 V 6 -1 V 5 -1 V 6 0 V 5 1 V 6 2 V 5 3 V 6 3 V 5 3 V 6 2 V 5 2 V 6 0 V 5 0 V 6 -1 V 5 1 V 6 4 V 5 7 V 6 12 V 5 17 V 6 23 V 5 26 V 6 28 V 5 28 V 6 27 V 5 24 V 6 16 V 5 14 V 6 10 V 5 3 V 6 0 V 5 -7 V 6 -6 V 5 -7 V 6 -10 V 5 -7 V 6 -3 V 5 0 V 6 3 V 5 10 V 6 14 V 5 19 V 6 27 V 5 26 V 6 27 V 5 30 V 6 23 V 5 23 V 6 17 V 5 13 V 5 10 V 6 3 V 5 -3 V 6 -7 V 5 -10 V 6 -16 V 5 -17 V 6 -20 V 5 -20 V 6 -23 V 5 -16 V 6 -17 V 5 -13 V 6 -10 V 5 -3 V 6 3 V 5 13 V 6 17 V 5 30 V 6 36 V 5 46 V 6 47 V 5 53 V 6 46 V 5 40 V 6 26 V 5 10 V 6 -3 V 5 -23 V 6 -37 V 5 -53 V 6 -59 V 5 -67 V 6 -69 V 5 -70 V 6 -66 V 5 -59 V 6 -55 V 5 -48 V 6 -42 V 5 -34 V 6 -27 V 5 -22 V 6 -17 V 5 -12 V 6 -8 V 5 -7 V 6 -4 V 5 -2 V stroke 5635 1012 M 6 -2 V 5 -1 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 2 V 6 2 V 5 2 V 6 3 V 5 4 V 6 4 V 5 5 V 6 5 V 5 5 V 6 4 V 5 3 V 6 2 V 5 1 V 6 1 V 5 1 V 6 2 V 5 3 V 6 5 V 5 8 V 6 11 V 5 12 V 6 13 V 5 14 V 6 12 V 5 10 V 6 7 V 5 5 V 6 2 V 5 2 V 6 2 V 5 5 V 6 9 V 5 13 V 6 19 V 5 22 V 6 24 V 5 24 V 6 22 V 5 17 V 5 10 V 6 5 V 5 -1 V stroke 6206 1332 M 6 -6 V 5 -10 V 6 -11 V 5 -13 V 6 -13 V 5 -14 V 6 -14 V 5 -14 V 6 -13 V 5 -11 V 6 -8 V 5 -4 V 6 2 V 5 9 V 6 15 V 5 21 V 6 25 V 5 27 V 6 27 V 5 25 V 6 17 V 5 13 V 6 4 V 5 0 V 6 -7 V 5 -7 V 6 0 V 5 10 V 6 23 V 5 43 V 6 67 V 5 86 V 6 109 V 5 126 V 6 146 V 5 162 V 6 172 V 5 186 V 6 195 V 5 205 V 6 212 V 5 209 V 6 209 V 5 189 V 6 162 V 5 122 V 6 80 V 5 20 V 6 -33 V 5 -80 V 6 -119 V 5 -139 V 6 -143 V 5 -132 V 6 -109 V 5 -77 V 6 -46 V 5 -20 V 6 -10 V 5 -3 V 6 -13 V 5 -30 V 6 -53 V 5 -73 V 6 -89 V 5 -100 V 6 -106 V 5 -106 V 6 -99 V 5 -86 V 6 -76 V 5 -63 V 5 -53 V 6 -43 V 5 -40 V 6 -40 V 5 -40 V 6 -43 V 5 -53 V 6 -63 V 5 -66 V 6 -79 V 5 -80 V 6 -86 V 5 -83 V 6 -83 V 5 -76 V 6 -70 V 5 -60 V 6 -52 V 5 -42 V 6 -34 V 5 -27 V 6 -21 V 5 -16 V 6 -12 V 5 -9 V 6 -7 V 5 -5 V 6 -3 V 5 -2 V 6 -2 V 5 -1 V 6 0 V stroke 6778 1009 M 5 -1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V stroke LT1 LTb 2967 3897 M [ [(Helvetica) 240.0 0.0 true true 0 (Above As)] ] -80.0 MLshow LT1 2184 3897 M 639 0 V 2218 1008 M 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V stroke 2779 1015 M 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 1 V 6 0 V 5 1 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 -1 V 6 0 V 5 -1 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 -1 V 5 0 V 6 -1 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V stroke 3350 1008 M 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V stroke 3921 1008 M 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 -1 V 6 -1 V 5 0 V 6 -1 V 5 0 V 6 -1 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V stroke 4493 1011 M 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 1 V 6 0 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 1 V 6 1 V 5 1 V 6 2 V 5 2 V 6 1 V 5 2 V 6 2 V 5 1 V 6 1 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 -1 V 6 0 V 5 -1 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 -1 V 5 0 V 5 0 V 6 1 V 5 0 V 6 2 V 5 2 V 6 2 V 5 3 V 6 3 V 5 3 V 6 3 V 5 3 V 6 3 V 5 2 V 6 3 V 5 3 V 6 3 V 5 3 V 6 4 V 5 3 V 6 4 V stroke 5064 1076 M 5 2 V 6 3 V 5 1 V 6 0 V 5 0 V 6 -1 V 5 -2 V 6 -2 V 5 -2 V 6 -2 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 -1 V 5 -1 V 6 0 V 5 -1 V 6 1 V 5 2 V 6 4 V 5 6 V 6 7 V 5 9 V 6 10 V 5 9 V 6 9 V 5 8 V 6 5 V 5 4 V 6 2 V 5 1 V 6 0 V 5 -1 V 6 -1 V 5 -2 V 6 -1 V 5 -1 V 6 -1 V 5 1 V 6 2 V 5 3 V 6 4 V 5 6 V 6 6 V 5 7 V 6 7 V 5 6 V 6 5 V 5 2 V 6 1 V 5 -1 V 5 -4 V 6 -7 V 5 -8 V 6 -10 V 5 -11 V 6 -12 V 5 -12 V 6 -13 V 5 -12 V 6 -11 V 5 -10 V 6 -10 V 5 -8 V 6 -6 V 5 -5 V 6 -3 V 5 -2 V 6 1 V 5 2 V 6 4 V 5 5 V 6 8 V 5 8 V 6 9 V 5 9 V 6 8 V 5 8 V 6 6 V 5 3 V 6 1 V 5 -1 V 6 -4 V 5 -7 V 6 -9 V 5 -10 V 6 -10 V 5 -11 V 6 -11 V 5 -10 V 6 -8 V 5 -7 V 6 -6 V 5 -5 V 6 -3 V 5 -2 V 6 -2 V 5 -1 V 6 -1 V 5 0 V stroke 5635 1009 M 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 1 V 6 1 V 5 1 V 6 1 V 5 2 V 6 1 V 5 2 V 6 1 V 5 1 V 6 1 V 5 1 V 6 0 V 5 1 V 6 1 V 5 0 V 6 1 V 5 1 V 6 1 V 5 1 V 6 0 V 5 0 V 6 -1 V 5 -1 V 6 0 V 5 -1 V 6 1 V 5 1 V 6 2 V 5 4 V 6 4 V 5 5 V 6 6 V 5 6 V 6 6 V 5 6 V 6 5 V 5 6 V 6 6 V 5 7 V 6 10 V 5 11 V 6 14 V 5 15 V 6 17 V 5 19 V 6 18 V 5 17 V 6 16 V 5 13 V 6 11 V 5 9 V 6 6 V 5 4 V 6 0 V 5 -3 V 6 -7 V 5 -10 V 6 -12 V 5 -15 V 6 -14 V 5 -13 V 6 -8 V 5 -4 V 6 2 V 5 7 V 6 12 V 5 15 V 6 16 V 5 14 V 6 11 V 5 7 V 5 3 V 6 0 V 5 -1 V stroke 6206 1270 M 6 0 V 5 3 V 6 7 V 5 12 V 6 18 V 5 23 V 6 26 V 5 30 V 6 30 V 5 29 V 6 34 V 5 29 V 6 34 V 5 36 V 6 40 V 5 43 V 6 49 V 5 47 V 6 50 V 5 46 V 6 36 V 5 27 V 6 16 V 5 0 V 6 -6 V 5 -17 V 6 -16 V 5 -14 V 6 4 V 5 16 V 6 40 V 5 56 V 6 76 V 5 93 V 6 106 V 5 116 V 6 126 V 5 136 V 6 142 V 5 146 V 6 146 V 5 142 V 6 123 V 5 102 V 6 66 V 5 30 V 6 -13 V 5 -46 V 6 -83 V 5 -99 V 6 -110 V 5 -106 V 6 -86 V 5 -63 V 6 -40 V 5 -9 V 6 9 V 5 20 V 6 20 V 5 10 V 6 -10 V 5 -30 V 6 -56 V 5 -79 V 6 -96 V 5 -106 V 6 -110 V 5 -106 V 6 -96 V 5 -83 V 6 -66 V 5 -46 V 5 -37 V 6 -19 V 5 -17 V 6 -10 V 5 -13 V 6 -23 V 5 -30 V 6 -47 V 5 -59 V 6 -70 V 5 -79 V 6 -86 V 5 -86 V 6 -87 V 5 -82 V 6 -72 V 5 -62 V 6 -51 V 5 -40 V 6 -30 V 5 -22 V 6 -14 V 5 -10 V 6 -6 V 5 -3 V 6 -3 V 5 -1 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 0 V stroke 6778 1008 M 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V stroke LT2 LTb 2967 3657 M [ [(Helvetica) 240.0 0.0 true true 0 (Surface average)] ] -80.0 MLshow LT2 2184 3657 M 639 0 V 2218 1008 M 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 0 V stroke 2779 1015 M 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 1 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 -1 V 5 -1 V 6 -1 V 5 -1 V 6 -1 V 5 -1 V 6 -1 V 5 -1 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V stroke 3350 1008 M 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V stroke 3921 1008 M 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 5 0 V 6 1 V 5 0 V 6 1 V 5 1 V 6 0 V 5 1 V 6 1 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V stroke 4493 1011 M 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 1 V 6 2 V 5 1 V 6 2 V 5 1 V 6 2 V 5 1 V 6 2 V 5 1 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 -1 V 5 0 V 6 -1 V 5 -1 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 0 V 6 0 V 5 1 V 6 2 V 5 2 V 6 3 V 5 3 V 6 3 V 5 3 V 6 4 V 5 2 V 6 3 V 5 2 V 6 2 V 5 2 V 6 3 V 5 2 V 6 2 V 5 3 V 6 2 V stroke 5064 1069 M 5 3 V 6 2 V 5 1 V 6 0 V 5 0 V 6 0 V 5 -1 V 6 -1 V 5 -1 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 2 V 5 3 V 6 5 V 5 8 V 6 9 V 5 11 V 6 13 V 5 12 V 6 12 V 5 10 V 6 8 V 5 6 V 6 4 V 5 3 V 6 1 V 5 -1 V 6 -2 V 5 -2 V 6 -3 V 5 -2 V 6 -2 V 5 0 V 6 1 V 5 4 V 6 5 V 5 8 V 6 8 V 5 10 V 6 9 V 5 9 V 6 8 V 5 6 V 6 4 V 5 1 V 5 -1 V 6 -4 V 5 -5 V 6 -7 V 5 -7 V 6 -9 V 5 -8 V 6 -8 V 5 -8 V 6 -7 V 5 -6 V 6 -5 V 5 -3 V 6 -2 V 5 0 V 6 3 V 5 6 V 6 8 V 5 13 V 6 15 V 5 20 V 6 20 V 5 22 V 6 21 V 5 17 V 6 15 V 5 8 V 6 1 V 5 -5 V 6 -11 V 5 -16 V 6 -22 V 5 -24 V 6 -27 V 5 -28 V 6 -27 V 5 -27 V 6 -24 V 5 -23 V 6 -19 V 5 -16 V 6 -14 V 5 -11 V 6 -8 V 5 -6 V 6 -4 V 5 -4 V 6 -2 V 5 -1 V stroke 5635 1010 M 6 -1 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 5 0 V 6 0 V 5 0 V 6 1 V 5 0 V 6 0 V 5 1 V 6 0 V 5 1 V 6 0 V 5 1 V 6 0 V 5 1 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 1 V 6 0 V 5 1 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 -1 V 5 0 V 6 0 V 5 0 V 6 1 V 5 1 V 6 2 V 5 2 V 6 2 V 5 3 V 6 2 V 5 3 V 6 3 V 5 2 V 6 4 V 5 3 V 6 4 V 5 5 V 6 5 V 5 5 V 6 6 V 5 5 V 6 6 V 5 6 V 6 5 V 5 5 V 6 6 V 5 5 V 6 6 V 5 6 V 6 5 V 5 4 V 6 2 V 5 1 V 6 -1 V 5 -3 V 6 -3 V 5 -3 V 6 -2 V 5 2 V 6 4 V 5 8 V 6 11 V 5 13 V 6 15 V 5 15 V 6 14 V 5 11 V 5 8 V 6 6 V 5 3 V stroke 6206 1228 M 6 1 V 5 1 V 6 2 V 5 2 V 6 5 V 5 6 V 6 7 V 5 9 V 6 11 V 5 12 V 6 15 V 5 19 V 6 23 V 5 27 V 6 32 V 5 36 V 6 39 V 5 40 V 6 40 V 5 36 V 6 30 V 5 19 V 6 12 V 5 6 V 6 -6 V 5 -12 V 6 -6 V 5 -7 V 6 13 V 5 18 V 6 37 V 5 61 V 6 68 V 5 92 V 6 98 V 5 110 V 6 117 V 5 129 V 6 135 V 5 134 V 6 135 V 5 135 V 6 117 V 5 98 V 6 74 V 5 43 V 6 6 V 5 -31 V 6 -61 V 5 -86 V 6 -98 V 5 -98 V 6 -86 V 5 -68 V 6 -49 V 5 -24 V 6 -7 V 5 7 V 6 6 V 5 6 V 6 -12 V 5 -31 V 6 -55 V 5 -68 V 6 -86 V 5 -92 V 6 -92 V 5 -79 V 6 -74 V 5 -61 V 6 -43 V 5 -31 V 5 -18 V 6 -6 V 5 -7 V 6 -6 V 5 -6 V 6 -18 V 5 -25 V 6 -37 V 5 -49 V 6 -61 V 5 -67 V 6 -72 V 5 -76 V 6 -77 V 5 -73 V 6 -67 V 5 -59 V 6 -50 V 5 -40 V 6 -32 V 5 -25 V 6 -18 V 5 -12 V 6 -9 V 5 -6 V 6 -4 V 5 -2 V 6 -2 V 5 -1 V 6 0 V 5 -1 V 6 0 V stroke 6778 1008 M 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V 6 0 V 5 0 V stroke 0.200 UL LTb 1896 4320 N 0 -3312 V 4944 0 V 0 3312 V -4944 0 V Z stroke 1.000 UP 0.200 UL LTb stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%Pages: 3 espresso-5.1/PP/examples/example03/reference/AlAs110.pp_stm+.out0000644000175000017500000000124712341372774022360 0ustar mbamba Program POST-PROC v.4.0 starts ... Today is 28Apr2008 at 16: 2:50 Calling punch_plot, plot_num = 5 workfunction = -12.9661 +- 13.9602 eV without exchcorr = -4.4391 +- 12.7455 eV Work function written on file workf Planar mean charge written on file charge Use the true wfcs Sample bias = 1.0000 eV STM: 0.04s cpu time Writing data to file AlAsresm+1.0 Reading data from file AlAsresm+1.0 Writing data to be plotted to file AlAs110+1.0 Min, Max, imaginary charge: 0.000001 0.000524 0.000000 Plot Type: 2D contour Output format: plotrho.x espresso-5.1/PP/examples/example03/reference/AlAs110-1.0eV.ps0000644000175000017500000315343512341372774021420 0ustar mbamba%! PS-Adobe-1.0 %%BoundingBox: 113.8 85.4 414.1 388.7 /localdict 100 dict def localdict begin /cm {28.453 mul} def /title {(AlAs110-1.0 )} def /Times-Roman findfont 12 scalefont setfont % cshow prints a centered string at current position /cshow {gsave dup stringwidth pop 2 div neg 0 rmoveto show grestore} def % x1 y1 x2 y2 p : draws a segment from point 1 to point 2 /p {0 setgray newpath moveto lineto stroke} def % x1 y1 x2 y2 x3 y3 x4 y4 sn : % fills the region bounded by points 1 to 4 % with greyscale n /s0 {1.00 setgray newpath moveto lineto lineto lineto fill} def /t0 {1.00 setgray newpath moveto lineto lineto fill} def /s1 {0.91 setgray newpath moveto lineto lineto lineto fill} def /t1 {0.91 setgray newpath moveto lineto lineto fill} def /s2 {0.82 setgray newpath moveto lineto lineto lineto fill} def /t2 {0.82 setgray newpath moveto lineto lineto fill} def /s3 {0.74 setgray newpath moveto lineto lineto lineto fill} def /t3 {0.74 setgray newpath moveto lineto lineto fill} def /s4 {0.65 setgray newpath moveto lineto lineto lineto fill} def /t4 {0.65 setgray newpath moveto lineto lineto fill} def /s5 {0.56 setgray newpath moveto lineto lineto lineto fill} def /t5 {0.56 setgray newpath moveto lineto lineto fill} def /s6 {0.48 setgray newpath moveto lineto lineto lineto fill} def /t6 {0.48 setgray newpath moveto lineto lineto fill} def /s7 {0.39 setgray newpath moveto lineto lineto lineto fill} def /t7 {0.39 setgray newpath moveto lineto lineto fill} def /s8 {0.30 setgray newpath moveto lineto lineto lineto fill} def /t8 {0.30 setgray newpath moveto lineto lineto fill} def %%EndPreamble gsave 4.00 cm 3.00 cm translate % Uncomment next line if you want a big picture % 1.8 1.8 scale 0.500 setlinewidth % Comment the next line to remove the title 5.28 cm 12.16 cm moveto title cshow % Beginning of hatching gsave newpath 0.0 0.0 moveto 300.3 0.0 lineto 300.3 303.3 lineto 0.0 303.3 lineto closepath clip 0.0 0.0 303.3 303.3 p 0.0 0.0 303.3 303.3 p 5.7 0.0 303.3 297.6 p 0.0 5.7 297.6 303.3 p 11.4 0.0 303.3 291.9 p 0.0 11.4 291.9 303.3 p 17.1 0.0 303.3 286.2 p 0.0 17.1 286.2 303.3 p 22.8 0.0 303.3 280.5 p 0.0 22.8 280.5 303.3 p 28.5 0.0 303.3 274.9 p 0.0 28.5 274.9 303.3 p 34.1 0.0 303.3 269.2 p 0.0 34.1 269.2 303.3 p 39.8 0.0 303.3 263.5 p 0.0 39.8 263.5 303.3 p 45.5 0.0 303.3 257.8 p 0.0 45.5 257.8 303.3 p 51.2 0.0 303.3 252.1 p 0.0 51.2 252.1 303.3 p 56.9 0.0 303.3 246.4 p 0.0 56.9 246.4 303.3 p 62.6 0.0 303.3 240.7 p 0.0 62.6 240.7 303.3 p 68.3 0.0 303.3 235.0 p 0.0 68.3 235.0 303.3 p 74.0 0.0 303.3 229.3 p 0.0 74.0 229.3 303.3 p 79.7 0.0 303.3 223.6 p 0.0 79.7 223.6 303.3 p 85.4 0.0 303.3 218.0 p 0.0 85.4 218.0 303.3 p 91.0 0.0 303.3 212.3 p 0.0 91.0 212.3 303.3 p 96.7 0.0 303.3 206.6 p 0.0 96.7 206.6 303.3 p 102.4 0.0 303.3 200.9 p 0.0 102.4 200.9 303.3 p 108.1 0.0 303.3 195.2 p 0.0 108.1 195.2 303.3 p 113.8 0.0 303.3 189.5 p 0.0 113.8 189.5 303.3 p 119.5 0.0 303.3 183.8 p 0.0 119.5 183.8 303.3 p 125.2 0.0 303.3 178.1 p 0.0 125.2 178.1 303.3 p 130.9 0.0 303.3 172.4 p 0.0 130.9 172.4 303.3 p 136.6 0.0 303.3 166.7 p 0.0 136.6 166.7 303.3 p 142.3 0.0 303.3 161.0 p 0.0 142.3 161.0 303.3 p 148.0 0.0 303.3 155.4 p 0.0 148.0 155.4 303.3 p 153.6 0.0 303.3 149.7 p 0.0 153.6 149.7 303.3 p 159.3 0.0 303.3 144.0 p 0.0 159.3 144.0 303.3 p 165.0 0.0 303.3 138.3 p 0.0 165.0 138.3 303.3 p 170.7 0.0 303.3 132.6 p 0.0 170.7 132.6 303.3 p 176.4 0.0 303.3 126.9 p 0.0 176.4 126.9 303.3 p 182.1 0.0 303.3 121.2 p 0.0 182.1 121.2 303.3 p 187.8 0.0 303.3 115.5 p 0.0 187.8 115.5 303.3 p 193.5 0.0 303.3 109.8 p 0.0 193.5 109.8 303.3 p 199.2 0.0 303.3 104.1 p 0.0 199.2 104.1 303.3 p 204.9 0.0 303.3 98.4 p 0.0 204.9 98.4 303.3 p 210.6 0.0 303.3 92.8 p 0.0 210.6 92.8 303.3 p 216.2 0.0 303.3 87.1 p 0.0 216.2 87.1 303.3 p 221.9 0.0 303.3 81.4 p 0.0 221.9 81.4 303.3 p 227.6 0.0 303.3 75.7 p 0.0 227.6 75.7 303.3 p 233.3 0.0 303.3 70.0 p 0.0 233.3 70.0 303.3 p 239.0 0.0 303.3 64.3 p 0.0 239.0 64.3 303.3 p 244.7 0.0 303.3 58.6 p 0.0 244.7 58.6 303.3 p 250.4 0.0 303.3 52.9 p 0.0 250.4 52.9 303.3 p 256.1 0.0 303.3 47.2 p 0.0 256.1 47.2 303.3 p 261.8 0.0 303.3 41.5 p 0.0 261.8 41.5 303.3 p 267.5 0.0 303.3 35.9 p 0.0 267.5 35.9 303.3 p 273.1 0.0 303.3 30.2 p 0.0 273.1 30.2 303.3 p 278.8 0.0 303.3 24.5 p 0.0 278.8 24.5 303.3 p 284.5 0.0 303.3 18.8 p 0.0 284.5 18.8 303.3 p 290.2 0.0 303.3 13.1 p 0.0 290.2 13.1 303.3 p 295.9 0.0 303.3 7.4 p 0.0 295.9 7.4 303.3 p grestore % End of hatching % Start of Color Code % Beginning of hatching gsave newpath 328.7 0.0 moveto 342.9 0.0 lineto 342.9 303.3 lineto 328.7 303.3 lineto closepath clip 328.7 0.0 632.0 303.3 p 328.7 0.0 632.0 303.3 p 334.4 0.0 632.0 297.6 p 328.7 5.7 626.3 303.3 p 340.1 0.0 632.0 291.9 p 328.7 11.4 620.6 303.3 p 345.8 0.0 632.0 286.2 p 328.7 17.1 615.0 303.3 p 351.5 0.0 632.0 280.5 p 328.7 22.8 609.3 303.3 p 357.2 0.0 632.0 274.9 p 328.7 28.5 603.6 303.3 p 362.9 0.0 632.0 269.2 p 328.7 34.1 597.9 303.3 p 368.5 0.0 632.0 263.5 p 328.7 39.8 592.2 303.3 p 374.2 0.0 632.0 257.8 p 328.7 45.5 586.5 303.3 p 379.9 0.0 632.0 252.1 p 328.7 51.2 580.8 303.3 p 385.6 0.0 632.0 246.4 p 328.7 56.9 575.1 303.3 p 391.3 0.0 632.0 240.7 p 328.7 62.6 569.4 303.3 p 397.0 0.0 632.0 235.0 p 328.7 68.3 563.7 303.3 p 402.7 0.0 632.0 229.3 p 328.7 74.0 558.0 303.3 p 408.4 0.0 632.0 223.6 p 328.7 79.7 552.4 303.3 p 414.1 0.0 632.0 218.0 p 328.7 85.4 546.7 303.3 p 419.8 0.0 632.0 212.3 p 328.7 91.0 541.0 303.3 p 425.5 0.0 632.0 206.6 p 328.7 96.7 535.3 303.3 p 431.1 0.0 632.0 200.9 p 328.7 102.4 529.6 303.3 p 436.8 0.0 632.0 195.2 p 328.7 108.1 523.9 303.3 p 442.5 0.0 632.0 189.5 p 328.7 113.8 518.2 303.3 p 448.2 0.0 632.0 183.8 p 328.7 119.5 512.5 303.3 p 453.9 0.0 632.0 178.1 p 328.7 125.2 506.8 303.3 p 459.6 0.0 632.0 172.4 p 328.7 130.9 501.1 303.3 p 465.3 0.0 632.0 166.7 p 328.7 136.6 495.5 303.3 p 471.0 0.0 632.0 161.0 p 328.7 142.3 489.8 303.3 p 476.7 0.0 632.0 155.4 p 328.7 148.0 484.1 303.3 p 482.4 0.0 632.0 149.7 p 328.7 153.6 478.4 303.3 p 488.1 0.0 632.0 144.0 p 328.7 159.3 472.7 303.3 p 493.7 0.0 632.0 138.3 p 328.7 165.0 467.0 303.3 p 499.4 0.0 632.0 132.6 p 328.7 170.7 461.3 303.3 p 505.1 0.0 632.0 126.9 p 328.7 176.4 455.6 303.3 p 510.8 0.0 632.0 121.2 p 328.7 182.1 449.9 303.3 p 516.5 0.0 632.0 115.5 p 328.7 187.8 444.2 303.3 p 522.2 0.0 632.0 109.8 p 328.7 193.5 438.5 303.3 p 527.9 0.0 632.0 104.1 p 328.7 199.2 432.9 303.3 p 533.6 0.0 632.0 98.4 p 328.7 204.9 427.2 303.3 p 539.3 0.0 632.0 92.8 p 328.7 210.6 421.5 303.3 p 545.0 0.0 632.0 87.1 p 328.7 216.2 415.8 303.3 p 550.6 0.0 632.0 81.4 p 328.7 221.9 410.1 303.3 p 556.3 0.0 632.0 75.7 p 328.7 227.6 404.4 303.3 p 562.0 0.0 632.0 70.0 p 328.7 233.3 398.7 303.3 p 567.7 0.0 632.0 64.3 p 328.7 239.0 393.0 303.3 p 573.4 0.0 632.0 58.6 p 328.7 244.7 387.3 303.3 p 579.1 0.0 632.0 52.9 p 328.7 250.4 381.6 303.3 p 584.8 0.0 632.0 47.2 p 328.7 256.1 375.9 303.3 p 590.5 0.0 632.0 41.5 p 328.7 261.8 370.3 303.3 p 596.2 0.0 632.0 35.9 p 328.7 267.5 364.6 303.3 p 601.9 0.0 632.0 30.2 p 328.7 273.1 358.9 303.3 p 607.6 0.0 632.0 24.5 p 328.7 278.8 353.2 303.3 p 613.2 0.0 632.0 18.8 p 328.7 284.5 347.5 303.3 p 618.9 0.0 632.0 13.1 p 328.7 290.2 341.8 303.3 p 624.6 0.0 632.0 7.4 p 328.7 295.9 336.1 303.3 p grestore % End of hatching 328.7 303.3 342.9 303.3 342.9 269.6 328.7 269.6 s0 0 setgray newpath 328.7 303.3 moveto 342.9 303.3 lineto 342.9 269.6 lineto 328.7 269.6 lineto closepath stroke 357.2 286.5 moveto (z<0.00005) show 328.7 269.6 342.9 269.6 342.9 235.9 328.7 235.9 s1 0 setgray newpath 328.7 269.6 moveto 342.9 269.6 lineto 342.9 235.9 lineto 328.7 235.9 lineto closepath stroke 357.2 252.8 moveto (0.000050.00780) show % End of Color Code 0.0 297.8 8.6 297.8 8.6 303.3 0.0 303.3 s5 8.3 298.0 7.9 297.8 0.0 297.8 4.3 300.6 s6 8.3 298.0 7.9 297.8 p 8.6 298.4 8.3 298.0 4.3 300.6 8.6 303.3 s6 8.6 298.4 8.3 298.0 p 8.6 303.3 4.3 300.6 0.0 303.3 t6 0.0 303.3 4.3 300.6 0.0 297.8 t6 7.7 298.3 6.6 297.8 0.0 297.8 4.3 300.6 s7 7.7 298.3 6.6 297.8 p 8.6 299.7 7.7 298.3 4.3 300.6 8.6 303.3 s7 8.6 299.7 7.7 298.3 p 8.6 303.3 4.3 300.6 0.0 303.3 t7 0.0 303.3 4.3 300.6 0.0 297.8 t7 7.1 298.7 5.3 297.8 0.0 297.8 4.3 300.6 s8 7.1 298.7 5.3 297.8 p 8.6 301.0 7.1 298.7 4.3 300.6 8.6 303.3 s8 8.6 301.0 7.1 298.7 p 8.6 303.3 4.3 300.6 0.0 303.3 t8 0.0 303.3 4.3 300.6 0.0 297.8 t8 8.6 297.8 17.2 297.8 17.2 303.3 8.6 303.3 s1 16.7 298.1 16.4 297.8 8.6 297.8 12.9 300.6 s2 16.7 298.1 16.4 297.8 p 16.7 298.1 16.9 303.1 12.9 300.6 t2 16.7 298.1 16.9 303.1 p 17.0 303.3 16.9 303.1 12.9 300.6 8.6 303.3 s2 17.0 303.3 16.9 303.1 p 8.6 303.3 12.9 300.6 8.6 297.8 t2 15.3 299.0 14.2 297.8 8.6 297.8 12.9 300.6 s3 15.3 299.0 14.2 297.8 p 15.3 299.0 15.4 302.2 12.9 300.6 t3 15.3 299.0 15.4 302.2 p 15.9 303.3 15.4 302.2 12.9 300.6 8.6 303.3 s3 15.9 303.3 15.4 302.2 p 8.6 303.3 12.9 300.6 8.6 297.8 t3 13.9 299.9 11.9 297.8 8.6 297.8 12.9 300.6 s4 13.9 299.9 11.9 297.8 p 13.9 299.9 13.9 301.2 12.9 300.6 t4 13.9 299.9 13.9 301.2 p 14.8 303.3 13.9 301.2 12.9 300.6 8.6 303.3 s4 14.8 303.3 13.9 301.2 p 8.6 303.3 12.9 300.6 8.6 297.8 t4 9.7 297.8 11.3 299.6 8.6 297.8 t5 9.7 297.8 11.3 299.6 p 12.6 300.7 13.8 303.3 8.6 303.3 t5 12.6 300.7 13.8 303.3 p 12.6 300.7 11.3 299.6 8.6 297.8 8.6 303.3 s5 12.6 300.7 11.3 299.6 p 11.8 301.2 12.7 303.3 8.6 303.3 t6 11.8 301.2 12.7 303.3 p 8.6 298.4 11.8 301.2 8.6 303.3 t6 8.6 298.4 11.8 301.2 p 11.0 301.8 11.6 303.3 8.6 303.3 t7 11.0 301.8 11.6 303.3 p 8.6 299.7 11.0 301.8 8.6 303.3 t7 8.6 299.7 11.0 301.8 p 10.1 302.3 10.5 303.3 8.6 303.3 t8 10.1 302.3 10.5 303.3 p 8.6 301.0 10.1 302.3 8.6 303.3 t8 8.6 301.0 10.1 302.3 p 17.2 297.8 25.7 297.8 25.7 303.3 17.2 303.3 s1 25.7 297.8 34.3 297.8 34.3 303.3 25.7 303.3 s1 26.5 297.8 26.2 298.1 30.0 300.6 34.3 297.8 s2 26.5 297.8 26.2 298.1 p 34.3 297.8 30.0 300.6 34.3 303.3 t2 26.0 303.1 25.9 303.3 34.3 303.3 30.0 300.6 s2 26.0 303.1 25.9 303.3 p 26.0 303.1 26.2 298.1 30.0 300.6 t2 26.0 303.1 26.2 298.1 p 28.7 297.8 27.6 299.0 30.0 300.6 34.3 297.8 s3 28.7 297.8 27.6 299.0 p 34.3 297.8 30.0 300.6 34.3 303.3 t3 27.5 302.2 27.0 303.3 34.3 303.3 30.0 300.6 s3 27.5 302.2 27.0 303.3 p 27.5 302.2 27.6 299.0 30.0 300.6 t3 27.5 302.2 27.6 299.0 p 31.0 297.8 29.0 299.9 30.0 300.6 34.3 297.8 s4 31.0 297.8 29.0 299.9 p 34.3 297.8 30.0 300.6 34.3 303.3 t4 29.0 301.2 28.1 303.3 34.3 303.3 30.0 300.6 s4 29.0 301.2 28.1 303.3 p 29.0 301.2 29.0 299.9 30.0 300.6 t4 29.0 301.2 29.0 299.9 p 31.6 299.6 33.2 297.8 34.3 297.8 t5 31.6 299.6 33.2 297.8 p 31.6 299.6 30.3 300.7 34.3 303.3 34.3 297.8 s5 31.6 299.6 30.3 300.7 p 29.1 303.3 30.3 300.7 34.3 303.3 t5 29.1 303.3 30.3 300.7 p 31.1 301.2 34.3 298.4 34.3 303.3 t6 31.1 301.2 34.3 298.4 p 30.2 303.3 31.1 301.2 34.3 303.3 t6 30.2 303.3 31.1 301.2 p 31.9 301.8 34.3 299.7 34.3 303.3 t7 31.9 301.8 34.3 299.7 p 31.3 303.3 31.9 301.8 34.3 303.3 t7 31.3 303.3 31.9 301.8 p 32.8 302.3 34.3 301.0 34.3 303.3 t8 32.8 302.3 34.3 301.0 p 32.3 303.3 32.8 302.3 34.3 303.3 t8 32.3 303.3 32.8 302.3 p 34.3 297.8 42.9 297.8 42.9 303.3 34.3 303.3 s5 35.0 297.8 34.6 298.0 38.6 300.6 42.9 297.8 s6 35.0 297.8 34.6 298.0 p 42.9 297.8 38.6 300.6 42.9 303.3 t6 42.9 303.3 38.6 300.6 34.3 303.3 t6 34.6 298.0 34.3 298.4 34.3 303.3 38.6 300.6 s6 34.6 298.0 34.3 298.4 p 36.3 297.8 35.2 298.3 38.6 300.6 42.9 297.8 s7 36.3 297.8 35.2 298.3 p 42.9 297.8 38.6 300.6 42.9 303.3 t7 42.9 303.3 38.6 300.6 34.3 303.3 t7 35.2 298.3 34.3 299.7 34.3 303.3 38.6 300.6 s7 35.2 298.3 34.3 299.7 p 37.6 297.8 35.8 298.7 38.6 300.6 42.9 297.8 s8 37.6 297.8 35.8 298.7 p 42.9 297.8 38.6 300.6 42.9 303.3 t8 42.9 303.3 38.6 300.6 34.3 303.3 t8 35.8 298.7 34.3 301.0 34.3 303.3 38.6 300.6 s8 35.8 298.7 34.3 301.0 p 42.9 297.8 51.5 297.8 51.5 303.3 42.9 303.3 s5 51.2 298.0 50.8 297.8 42.9 297.8 47.2 300.6 s6 51.2 298.0 50.8 297.8 p 51.5 298.4 51.2 298.0 47.2 300.6 51.5 303.3 s6 51.5 298.4 51.2 298.0 p 51.5 303.3 47.2 300.6 42.9 303.3 t6 42.9 303.3 47.2 300.6 42.9 297.8 t6 50.6 298.3 49.5 297.8 42.9 297.8 47.2 300.6 s7 50.6 298.3 49.5 297.8 p 51.5 299.7 50.6 298.3 47.2 300.6 51.5 303.3 s7 51.5 299.7 50.6 298.3 p 51.5 303.3 47.2 300.6 42.9 303.3 t7 42.9 303.3 47.2 300.6 42.9 297.8 t7 50.0 298.7 48.2 297.8 42.9 297.8 47.2 300.6 s8 50.0 298.7 48.2 297.8 p 51.5 301.0 50.0 298.7 47.2 300.6 51.5 303.3 s8 51.5 301.0 50.0 298.7 p 51.5 303.3 47.2 300.6 42.9 303.3 t8 42.9 303.3 47.2 300.6 42.9 297.8 t8 51.5 297.8 60.1 297.8 60.1 303.3 51.5 303.3 s1 59.6 298.1 59.3 297.8 51.5 297.8 55.8 300.6 s2 59.6 298.1 59.3 297.8 p 59.6 298.1 59.8 303.1 55.8 300.6 t2 59.6 298.1 59.8 303.1 p 59.9 303.3 59.8 303.1 55.8 300.6 51.5 303.3 s2 59.9 303.3 59.8 303.1 p 51.5 303.3 55.8 300.6 51.5 297.8 t2 58.2 299.0 57.1 297.8 51.5 297.8 55.8 300.6 s3 58.2 299.0 57.1 297.8 p 58.2 299.0 58.3 302.2 55.8 300.6 t3 58.2 299.0 58.3 302.2 p 58.8 303.3 58.3 302.2 55.8 300.6 51.5 303.3 s3 58.8 303.3 58.3 302.2 p 51.5 303.3 55.8 300.6 51.5 297.8 t3 56.8 299.9 54.8 297.8 51.5 297.8 55.8 300.6 s4 56.8 299.9 54.8 297.8 p 56.8 299.9 56.8 301.2 55.8 300.6 t4 56.8 299.9 56.8 301.2 p 57.7 303.3 56.8 301.2 55.8 300.6 51.5 303.3 s4 57.7 303.3 56.8 301.2 p 51.5 303.3 55.8 300.6 51.5 297.8 t4 52.6 297.8 54.2 299.6 51.5 297.8 t5 52.6 297.8 54.2 299.6 p 55.5 300.7 56.6 303.3 51.5 303.3 t5 55.5 300.7 56.6 303.3 p 55.5 300.7 54.2 299.6 51.5 297.8 51.5 303.3 s5 55.5 300.7 54.2 299.6 p 54.7 301.2 55.6 303.3 51.5 303.3 t6 54.7 301.2 55.6 303.3 p 51.5 298.4 54.7 301.2 51.5 303.3 t6 51.5 298.4 54.7 301.2 p 53.8 301.8 54.5 303.3 51.5 303.3 t7 53.8 301.8 54.5 303.3 p 51.5 299.7 53.8 301.8 51.5 303.3 t7 51.5 299.7 53.8 301.8 p 53.0 302.3 53.4 303.3 51.5 303.3 t8 53.0 302.3 53.4 303.3 p 51.5 301.0 53.0 302.3 51.5 303.3 t8 51.5 301.0 53.0 302.3 p 60.1 297.8 68.6 297.8 68.6 303.3 60.1 303.3 s1 68.6 297.8 77.2 297.8 77.2 303.3 68.6 303.3 s1 69.4 297.8 69.1 298.1 72.9 300.6 77.2 297.8 s2 69.4 297.8 69.1 298.1 p 77.2 297.8 72.9 300.6 77.2 303.3 t2 68.9 303.1 68.8 303.3 77.2 303.3 72.9 300.6 s2 68.9 303.1 68.8 303.3 p 68.9 303.1 69.1 298.1 72.9 300.6 t2 68.9 303.1 69.1 298.1 p 71.6 297.8 70.5 299.0 72.9 300.6 77.2 297.8 s3 71.6 297.8 70.5 299.0 p 77.2 297.8 72.9 300.6 77.2 303.3 t3 70.4 302.2 69.9 303.3 77.2 303.3 72.9 300.6 s3 70.4 302.2 69.9 303.3 p 70.4 302.2 70.5 299.0 72.9 300.6 t3 70.4 302.2 70.5 299.0 p 73.8 297.8 71.9 299.9 72.9 300.6 77.2 297.8 s4 73.8 297.8 71.9 299.9 p 77.2 297.8 72.9 300.6 77.2 303.3 t4 71.9 301.2 71.0 303.3 77.2 303.3 72.9 300.6 s4 71.9 301.2 71.0 303.3 p 71.9 301.2 71.9 299.9 72.9 300.6 t4 71.9 301.2 71.9 299.9 p 74.5 299.6 76.1 297.8 77.2 297.8 t5 74.5 299.6 76.1 297.8 p 74.5 299.6 73.2 300.7 77.2 303.3 77.2 297.8 s5 74.5 299.6 73.2 300.7 p 72.0 303.3 73.2 300.7 77.2 303.3 t5 72.0 303.3 73.2 300.7 p 74.0 301.2 77.2 298.4 77.2 303.3 t6 74.0 301.2 77.2 298.4 p 73.1 303.3 74.0 301.2 77.2 303.3 t6 73.1 303.3 74.0 301.2 p 74.8 301.8 77.2 299.7 77.2 303.3 t7 74.8 301.8 77.2 299.7 p 74.2 303.3 74.8 301.8 77.2 303.3 t7 74.2 303.3 74.8 301.8 p 75.7 302.3 77.2 301.0 77.2 303.3 t8 75.7 302.3 77.2 301.0 p 75.2 303.3 75.7 302.3 77.2 303.3 t8 75.2 303.3 75.7 302.3 p 77.2 297.8 85.8 297.8 85.8 303.3 77.2 303.3 s5 77.8 297.8 77.5 298.0 81.5 300.6 85.8 297.8 s6 77.8 297.8 77.5 298.0 p 85.8 297.8 81.5 300.6 85.8 303.3 t6 85.8 303.3 81.5 300.6 77.2 303.3 t6 77.5 298.0 77.2 298.4 77.2 303.3 81.5 300.6 s6 77.5 298.0 77.2 298.4 p 79.2 297.8 78.1 298.3 81.5 300.6 85.8 297.8 s7 79.2 297.8 78.1 298.3 p 85.8 297.8 81.5 300.6 85.8 303.3 t7 85.8 303.3 81.5 300.6 77.2 303.3 t7 78.1 298.3 77.2 299.7 77.2 303.3 81.5 300.6 s7 78.1 298.3 77.2 299.7 p 80.5 297.8 78.6 298.7 81.5 300.6 85.8 297.8 s8 80.5 297.8 78.6 298.7 p 85.8 297.8 81.5 300.6 85.8 303.3 t8 85.8 303.3 81.5 300.6 77.2 303.3 t8 78.6 298.7 77.2 301.0 77.2 303.3 81.5 300.6 s8 78.6 298.7 77.2 301.0 p 85.8 297.8 94.4 297.8 94.4 303.3 85.8 303.3 s5 94.1 298.0 93.7 297.8 85.8 297.8 90.1 300.6 s6 94.1 298.0 93.7 297.8 p 94.4 298.4 94.1 298.0 90.1 300.6 94.4 303.3 s6 94.4 298.4 94.1 298.0 p 94.4 303.3 90.1 300.6 85.8 303.3 t6 85.8 303.3 90.1 300.6 85.8 297.8 t6 93.5 298.3 92.4 297.8 85.8 297.8 90.1 300.6 s7 93.5 298.3 92.4 297.8 p 94.4 299.7 93.5 298.3 90.1 300.6 94.4 303.3 s7 94.4 299.7 93.5 298.3 p 94.4 303.3 90.1 300.6 85.8 303.3 t7 85.8 303.3 90.1 300.6 85.8 297.8 t7 92.9 298.7 91.1 297.8 85.8 297.8 90.1 300.6 s8 92.9 298.7 91.1 297.8 p 94.4 301.0 92.9 298.7 90.1 300.6 94.4 303.3 s8 94.4 301.0 92.9 298.7 p 94.4 303.3 90.1 300.6 85.8 303.3 t8 85.8 303.3 90.1 300.6 85.8 297.8 t8 94.4 297.8 102.9 297.8 102.9 303.3 94.4 303.3 s1 102.5 298.1 102.2 297.8 94.4 297.8 98.7 300.6 s2 102.5 298.1 102.2 297.8 p 102.5 298.1 102.7 303.1 98.7 300.6 t2 102.5 298.1 102.7 303.1 p 102.7 303.3 102.7 303.1 98.7 300.6 94.4 303.3 s2 102.7 303.3 102.7 303.1 p 94.4 303.3 98.7 300.6 94.4 297.8 t2 101.1 299.0 100.0 297.8 94.4 297.8 98.7 300.6 s3 101.1 299.0 100.0 297.8 p 101.1 299.0 101.2 302.2 98.7 300.6 t3 101.1 299.0 101.2 302.2 p 101.7 303.3 101.2 302.2 98.7 300.6 94.4 303.3 s3 101.7 303.3 101.2 302.2 p 94.4 303.3 98.7 300.6 94.4 297.8 t3 99.6 299.9 97.7 297.8 94.4 297.8 98.7 300.6 s4 99.6 299.9 97.7 297.8 p 99.6 299.9 99.7 301.2 98.7 300.6 t4 99.6 299.9 99.7 301.2 p 100.6 303.3 99.7 301.2 98.7 300.6 94.4 303.3 s4 100.6 303.3 99.7 301.2 p 94.4 303.3 98.7 300.6 94.4 297.8 t4 95.5 297.8 97.1 299.6 94.4 297.8 t5 95.5 297.8 97.1 299.6 p 98.4 300.7 99.5 303.3 94.4 303.3 t5 98.4 300.7 99.5 303.3 p 98.4 300.7 97.1 299.6 94.4 297.8 94.4 303.3 s5 98.4 300.7 97.1 299.6 p 97.6 301.2 98.5 303.3 94.4 303.3 t6 97.6 301.2 98.5 303.3 p 94.4 298.4 97.6 301.2 94.4 303.3 t6 94.4 298.4 97.6 301.2 p 96.7 301.8 97.4 303.3 94.4 303.3 t7 96.7 301.8 97.4 303.3 p 94.4 299.7 96.7 301.8 94.4 303.3 t7 94.4 299.7 96.7 301.8 p 95.9 302.3 96.3 303.3 94.4 303.3 t8 95.9 302.3 96.3 303.3 p 94.4 301.0 95.9 302.3 94.4 303.3 t8 94.4 301.0 95.9 302.3 p 102.9 297.8 111.5 297.8 111.5 303.3 102.9 303.3 s1 111.5 297.8 120.1 297.8 120.1 303.3 111.5 303.3 s1 112.3 297.8 112.0 298.1 115.8 300.6 120.1 297.8 s2 112.3 297.8 112.0 298.1 p 120.1 297.8 115.8 300.6 120.1 303.3 t2 111.8 303.1 111.7 303.3 120.1 303.3 115.8 300.6 s2 111.8 303.1 111.7 303.3 p 111.8 303.1 112.0 298.1 115.8 300.6 t2 111.8 303.1 112.0 298.1 p 114.5 297.8 113.4 299.0 115.8 300.6 120.1 297.8 s3 114.5 297.8 113.4 299.0 p 120.1 297.8 115.8 300.6 120.1 303.3 t3 113.3 302.2 112.8 303.3 120.1 303.3 115.8 300.6 s3 113.3 302.2 112.8 303.3 p 113.3 302.2 113.4 299.0 115.8 300.6 t3 113.3 302.2 113.4 299.0 p 116.7 297.8 114.8 299.9 115.8 300.6 120.1 297.8 s4 116.7 297.8 114.8 299.9 p 120.1 297.8 115.8 300.6 120.1 303.3 t4 114.8 301.2 113.9 303.3 120.1 303.3 115.8 300.6 s4 114.8 301.2 113.9 303.3 p 114.8 301.2 114.8 299.9 115.8 300.6 t4 114.8 301.2 114.8 299.9 p 117.4 299.6 119.0 297.8 120.1 297.8 t5 117.4 299.6 119.0 297.8 p 117.4 299.6 116.1 300.7 120.1 303.3 120.1 297.8 s5 117.4 299.6 116.1 300.7 p 114.9 303.3 116.1 300.7 120.1 303.3 t5 114.9 303.3 116.1 300.7 p 116.9 301.2 120.1 298.4 120.1 303.3 t6 116.9 301.2 120.1 298.4 p 116.0 303.3 116.9 301.2 120.1 303.3 t6 116.0 303.3 116.9 301.2 p 117.7 301.8 120.1 299.7 120.1 303.3 t7 117.7 301.8 120.1 299.7 p 117.1 303.3 117.7 301.8 120.1 303.3 t7 117.1 303.3 117.7 301.8 p 118.6 302.3 120.1 301.0 120.1 303.3 t8 118.6 302.3 120.1 301.0 p 118.1 303.3 118.6 302.3 120.1 303.3 t8 118.1 303.3 118.6 302.3 p 120.1 297.8 128.7 297.8 128.7 303.3 120.1 303.3 s5 120.7 297.8 120.4 298.0 124.4 300.6 128.7 297.8 s6 120.7 297.8 120.4 298.0 p 128.7 297.8 124.4 300.6 128.7 303.3 t6 128.7 303.3 124.4 300.6 120.1 303.3 t6 120.4 298.0 120.1 298.4 120.1 303.3 124.4 300.6 s6 120.4 298.0 120.1 298.4 p 122.1 297.8 121.0 298.3 124.4 300.6 128.7 297.8 s7 122.1 297.8 121.0 298.3 p 128.7 297.8 124.4 300.6 128.7 303.3 t7 128.7 303.3 124.4 300.6 120.1 303.3 t7 121.0 298.3 120.1 299.7 120.1 303.3 124.4 300.6 s7 121.0 298.3 120.1 299.7 p 123.4 297.8 121.5 298.7 124.4 300.6 128.7 297.8 s8 123.4 297.8 121.5 298.7 p 128.7 297.8 124.4 300.6 128.7 303.3 t8 128.7 303.3 124.4 300.6 120.1 303.3 t8 121.5 298.7 120.1 301.0 120.1 303.3 124.4 300.6 s8 121.5 298.7 120.1 301.0 p 128.7 297.8 137.3 297.8 137.3 303.3 128.7 303.3 s5 137.0 298.0 136.6 297.8 128.7 297.8 133.0 300.6 s6 137.0 298.0 136.6 297.8 p 137.3 298.4 137.0 298.0 133.0 300.6 137.3 303.3 s6 137.3 298.4 137.0 298.0 p 137.3 303.3 133.0 300.6 128.7 303.3 t6 128.7 303.3 133.0 300.6 128.7 297.8 t6 136.4 298.3 135.3 297.8 128.7 297.8 133.0 300.6 s7 136.4 298.3 135.3 297.8 p 137.3 299.7 136.4 298.3 133.0 300.6 137.3 303.3 s7 137.3 299.7 136.4 298.3 p 137.3 303.3 133.0 300.6 128.7 303.3 t7 128.7 303.3 133.0 300.6 128.7 297.8 t7 135.8 298.7 134.0 297.8 128.7 297.8 133.0 300.6 s8 135.8 298.7 134.0 297.8 p 137.3 301.0 135.8 298.7 133.0 300.6 137.3 303.3 s8 137.3 301.0 135.8 298.7 p 137.3 303.3 133.0 300.6 128.7 303.3 t8 128.7 303.3 133.0 300.6 128.7 297.8 t8 137.3 297.8 145.8 297.8 145.8 303.3 137.3 303.3 s1 145.4 298.1 145.1 297.8 137.3 297.8 141.6 300.6 s2 145.4 298.1 145.1 297.8 p 145.4 298.1 145.6 303.1 141.6 300.6 t2 145.4 298.1 145.6 303.1 p 145.6 303.3 145.6 303.1 141.6 300.6 137.3 303.3 s2 145.6 303.3 145.6 303.1 p 137.3 303.3 141.6 300.6 137.3 297.8 t2 143.9 299.0 142.8 297.8 137.3 297.8 141.6 300.6 s3 143.9 299.0 142.8 297.8 p 143.9 299.0 144.1 302.2 141.6 300.6 t3 143.9 299.0 144.1 302.2 p 144.6 303.3 144.1 302.2 141.6 300.6 137.3 303.3 s3 144.6 303.3 144.1 302.2 p 137.3 303.3 141.6 300.6 137.3 297.8 t3 142.5 299.9 140.6 297.8 137.3 297.8 141.6 300.6 s4 142.5 299.9 140.6 297.8 p 142.5 299.9 142.6 301.2 141.6 300.6 t4 142.5 299.9 142.6 301.2 p 143.5 303.3 142.6 301.2 141.6 300.6 137.3 303.3 s4 143.5 303.3 142.6 301.2 p 137.3 303.3 141.6 300.6 137.3 297.8 t4 138.4 297.8 140.0 299.6 137.3 297.8 t5 138.4 297.8 140.0 299.6 p 141.3 300.7 142.4 303.3 137.3 303.3 t5 141.3 300.7 142.4 303.3 p 141.3 300.7 140.0 299.6 137.3 297.8 137.3 303.3 s5 141.3 300.7 140.0 299.6 p 140.5 301.2 141.4 303.3 137.3 303.3 t6 140.5 301.2 141.4 303.3 p 137.3 298.4 140.5 301.2 137.3 303.3 t6 137.3 298.4 140.5 301.2 p 139.6 301.8 140.3 303.3 137.3 303.3 t7 139.6 301.8 140.3 303.3 p 137.3 299.7 139.6 301.8 137.3 303.3 t7 137.3 299.7 139.6 301.8 p 138.8 302.3 139.2 303.3 137.3 303.3 t8 138.8 302.3 139.2 303.3 p 137.3 301.0 138.8 302.3 137.3 303.3 t8 137.3 301.0 138.8 302.3 p 145.8 297.8 154.4 297.8 154.4 303.3 145.8 303.3 s1 154.4 297.8 163.0 297.8 163.0 303.3 154.4 303.3 s1 155.2 297.8 154.9 298.1 158.7 300.6 163.0 297.8 s2 155.2 297.8 154.9 298.1 p 163.0 297.8 158.7 300.6 163.0 303.3 t2 154.7 303.1 154.6 303.3 163.0 303.3 158.7 300.6 s2 154.7 303.1 154.6 303.3 p 154.7 303.1 154.9 298.1 158.7 300.6 t2 154.7 303.1 154.9 298.1 p 157.4 297.8 156.3 299.0 158.7 300.6 163.0 297.8 s3 157.4 297.8 156.3 299.0 p 163.0 297.8 158.7 300.6 163.0 303.3 t3 156.2 302.2 155.7 303.3 163.0 303.3 158.7 300.6 s3 156.2 302.2 155.7 303.3 p 156.2 302.2 156.3 299.0 158.7 300.6 t3 156.2 302.2 156.3 299.0 p 159.6 297.8 157.7 299.9 158.7 300.6 163.0 297.8 s4 159.6 297.8 157.7 299.9 p 163.0 297.8 158.7 300.6 163.0 303.3 t4 157.7 301.2 156.8 303.3 163.0 303.3 158.7 300.6 s4 157.7 301.2 156.8 303.3 p 157.7 301.2 157.7 299.9 158.7 300.6 t4 157.7 301.2 157.7 299.9 p 160.3 299.6 161.9 297.8 163.0 297.8 t5 160.3 299.6 161.9 297.8 p 160.3 299.6 159.0 300.7 163.0 303.3 163.0 297.8 s5 160.3 299.6 159.0 300.7 p 157.8 303.3 159.0 300.7 163.0 303.3 t5 157.8 303.3 159.0 300.7 p 159.8 301.2 163.0 298.4 163.0 303.3 t6 159.8 301.2 163.0 298.4 p 158.9 303.3 159.8 301.2 163.0 303.3 t6 158.9 303.3 159.8 301.2 p 160.6 301.8 163.0 299.7 163.0 303.3 t7 160.6 301.8 163.0 299.7 p 160.0 303.3 160.6 301.8 163.0 303.3 t7 160.0 303.3 160.6 301.8 p 161.5 302.3 163.0 301.0 163.0 303.3 t8 161.5 302.3 163.0 301.0 p 161.0 303.3 161.5 302.3 163.0 303.3 t8 161.0 303.3 161.5 302.3 p 163.0 297.8 171.6 297.8 171.6 303.3 163.0 303.3 s5 163.6 297.8 163.3 298.0 167.3 300.6 171.6 297.8 s6 163.6 297.8 163.3 298.0 p 171.6 297.8 167.3 300.6 171.6 303.3 t6 171.6 303.3 167.3 300.6 163.0 303.3 t6 163.3 298.0 163.0 298.4 163.0 303.3 167.3 300.6 s6 163.3 298.0 163.0 298.4 p 164.9 297.8 163.9 298.3 167.3 300.6 171.6 297.8 s7 164.9 297.8 163.9 298.3 p 171.6 297.8 167.3 300.6 171.6 303.3 t7 171.6 303.3 167.3 300.6 163.0 303.3 t7 163.9 298.3 163.0 299.7 163.0 303.3 167.3 300.6 s7 163.9 298.3 163.0 299.7 p 166.3 297.8 164.4 298.7 167.3 300.6 171.6 297.8 s8 166.3 297.8 164.4 298.7 p 171.6 297.8 167.3 300.6 171.6 303.3 t8 171.6 303.3 167.3 300.6 163.0 303.3 t8 164.4 298.7 163.0 301.0 163.0 303.3 167.3 300.6 s8 164.4 298.7 163.0 301.0 p 171.6 297.8 180.2 297.8 180.2 303.3 171.6 303.3 s5 179.9 298.0 179.5 297.8 171.6 297.8 175.9 300.6 s6 179.9 298.0 179.5 297.8 p 180.2 298.4 179.9 298.0 175.9 300.6 180.2 303.3 s6 180.2 298.4 179.9 298.0 p 180.2 303.3 175.9 300.6 171.6 303.3 t6 171.6 303.3 175.9 300.6 171.6 297.8 t6 179.3 298.3 178.2 297.8 171.6 297.8 175.9 300.6 s7 179.3 298.3 178.2 297.8 p 180.2 299.7 179.3 298.3 175.9 300.6 180.2 303.3 s7 180.2 299.7 179.3 298.3 p 180.2 303.3 175.9 300.6 171.6 303.3 t7 171.6 303.3 175.9 300.6 171.6 297.8 t7 178.7 298.7 176.9 297.8 171.6 297.8 175.9 300.6 s8 178.7 298.7 176.9 297.8 p 180.2 301.0 178.7 298.7 175.9 300.6 180.2 303.3 s8 180.2 301.0 178.7 298.7 p 180.2 303.3 175.9 300.6 171.6 303.3 t8 171.6 303.3 175.9 300.6 171.6 297.8 t8 180.2 297.8 188.7 297.8 188.7 303.3 180.2 303.3 s1 188.2 298.1 188.0 297.8 180.2 297.8 184.4 300.6 s2 188.2 298.1 188.0 297.8 p 188.2 298.1 188.5 303.1 184.4 300.6 t2 188.2 298.1 188.5 303.1 p 188.5 303.3 188.5 303.1 184.4 300.6 180.2 303.3 s2 188.5 303.3 188.5 303.1 p 180.2 303.3 184.4 300.6 180.2 297.8 t2 186.8 299.0 185.7 297.8 180.2 297.8 184.4 300.6 s3 186.8 299.0 185.7 297.8 p 186.8 299.0 187.0 302.2 184.4 300.6 t3 186.8 299.0 187.0 302.2 p 187.5 303.3 187.0 302.2 184.4 300.6 180.2 303.3 s3 187.5 303.3 187.0 302.2 p 180.2 303.3 184.4 300.6 180.2 297.8 t3 185.4 299.9 183.5 297.8 180.2 297.8 184.4 300.6 s4 185.4 299.9 183.5 297.8 p 185.4 299.9 185.5 301.2 184.4 300.6 t4 185.4 299.9 185.5 301.2 p 186.4 303.3 185.5 301.2 184.4 300.6 180.2 303.3 s4 186.4 303.3 185.5 301.2 p 180.2 303.3 184.4 300.6 180.2 297.8 t4 181.3 297.8 182.9 299.6 180.2 297.8 t5 181.3 297.8 182.9 299.6 p 184.2 300.7 185.3 303.3 180.2 303.3 t5 184.2 300.7 185.3 303.3 p 184.2 300.7 182.9 299.6 180.2 297.8 180.2 303.3 s5 184.2 300.7 182.9 299.6 p 183.4 301.2 184.3 303.3 180.2 303.3 t6 183.4 301.2 184.3 303.3 p 180.2 298.4 183.4 301.2 180.2 303.3 t6 180.2 298.4 183.4 301.2 p 182.5 301.8 183.2 303.3 180.2 303.3 t7 182.5 301.8 183.2 303.3 p 180.2 299.7 182.5 301.8 180.2 303.3 t7 180.2 299.7 182.5 301.8 p 181.7 302.3 182.1 303.3 180.2 303.3 t8 181.7 302.3 182.1 303.3 p 180.2 301.0 181.7 302.3 180.2 303.3 t8 180.2 301.0 181.7 302.3 p 188.7 297.8 197.3 297.8 197.3 303.3 188.7 303.3 s1 197.3 297.8 205.9 297.8 205.9 303.3 197.3 303.3 s1 198.1 297.8 197.8 298.1 201.6 300.6 205.9 297.8 s2 198.1 297.8 197.8 298.1 p 205.9 297.8 201.6 300.6 205.9 303.3 t2 197.6 303.1 197.5 303.3 205.9 303.3 201.6 300.6 s2 197.6 303.1 197.5 303.3 p 197.6 303.1 197.8 298.1 201.6 300.6 t2 197.6 303.1 197.8 298.1 p 200.3 297.8 199.2 299.0 201.6 300.6 205.9 297.8 s3 200.3 297.8 199.2 299.0 p 205.9 297.8 201.6 300.6 205.9 303.3 t3 199.1 302.2 198.6 303.3 205.9 303.3 201.6 300.6 s3 199.1 302.2 198.6 303.3 p 199.1 302.2 199.2 299.0 201.6 300.6 t3 199.1 302.2 199.2 299.0 p 202.5 297.8 200.6 299.9 201.6 300.6 205.9 297.8 s4 202.5 297.8 200.6 299.9 p 205.9 297.8 201.6 300.6 205.9 303.3 t4 200.6 301.2 199.7 303.3 205.9 303.3 201.6 300.6 s4 200.6 301.2 199.7 303.3 p 200.6 301.2 200.6 299.9 201.6 300.6 t4 200.6 301.2 200.6 299.9 p 203.2 299.6 204.7 297.8 205.9 297.8 t5 203.2 299.6 204.7 297.8 p 203.2 299.6 201.9 300.7 205.9 303.3 205.9 297.8 s5 203.2 299.6 201.9 300.7 p 200.7 303.3 201.9 300.7 205.9 303.3 t5 200.7 303.3 201.9 300.7 p 202.7 301.2 205.9 298.4 205.9 303.3 t6 202.7 301.2 205.9 298.4 p 201.8 303.3 202.7 301.2 205.9 303.3 t6 201.8 303.3 202.7 301.2 p 203.5 301.8 205.9 299.7 205.9 303.3 t7 203.5 301.8 205.9 299.7 p 202.9 303.3 203.5 301.8 205.9 303.3 t7 202.9 303.3 203.5 301.8 p 204.4 302.3 205.9 301.0 205.9 303.3 t8 204.4 302.3 205.9 301.0 p 203.9 303.3 204.4 302.3 205.9 303.3 t8 203.9 303.3 204.4 302.3 p 205.9 297.8 214.5 297.8 214.5 303.3 205.9 303.3 s5 206.5 297.8 206.2 298.0 210.2 300.6 214.5 297.8 s6 206.5 297.8 206.2 298.0 p 214.5 297.8 210.2 300.6 214.5 303.3 t6 214.5 303.3 210.2 300.6 205.9 303.3 t6 206.2 298.0 205.9 298.4 205.9 303.3 210.2 300.6 s6 206.2 298.0 205.9 298.4 p 207.8 297.8 206.8 298.3 210.2 300.6 214.5 297.8 s7 207.8 297.8 206.8 298.3 p 214.5 297.8 210.2 300.6 214.5 303.3 t7 214.5 303.3 210.2 300.6 205.9 303.3 t7 206.8 298.3 205.9 299.7 205.9 303.3 210.2 300.6 s7 206.8 298.3 205.9 299.7 p 209.2 297.8 207.3 298.7 210.2 300.6 214.5 297.8 s8 209.2 297.8 207.3 298.7 p 214.5 297.8 210.2 300.6 214.5 303.3 t8 214.5 303.3 210.2 300.6 205.9 303.3 t8 207.3 298.7 205.9 301.0 205.9 303.3 210.2 300.6 s8 207.3 298.7 205.9 301.0 p 214.5 297.8 223.1 297.8 223.1 303.3 214.5 303.3 s5 222.8 298.0 222.4 297.8 214.5 297.8 218.8 300.6 s6 222.8 298.0 222.4 297.8 p 223.1 298.4 222.8 298.0 218.8 300.6 223.1 303.3 s6 223.1 298.4 222.8 298.0 p 223.1 303.3 218.8 300.6 214.5 303.3 t6 214.5 303.3 218.8 300.6 214.5 297.8 t6 222.2 298.3 221.1 297.8 214.5 297.8 218.8 300.6 s7 222.2 298.3 221.1 297.8 p 223.1 299.7 222.2 298.3 218.8 300.6 223.1 303.3 s7 223.1 299.7 222.2 298.3 p 223.1 303.3 218.8 300.6 214.5 303.3 t7 214.5 303.3 218.8 300.6 214.5 297.8 t7 221.6 298.7 219.8 297.8 214.5 297.8 218.8 300.6 s8 221.6 298.7 219.8 297.8 p 223.1 301.0 221.6 298.7 218.8 300.6 223.1 303.3 s8 223.1 301.0 221.6 298.7 p 223.1 303.3 218.8 300.6 214.5 303.3 t8 214.5 303.3 218.8 300.6 214.5 297.8 t8 223.1 297.8 231.6 297.8 231.6 303.3 223.1 303.3 s1 231.1 298.1 230.9 297.8 223.1 297.8 227.3 300.6 s2 231.1 298.1 230.9 297.8 p 231.1 298.1 231.4 303.1 227.3 300.6 t2 231.1 298.1 231.4 303.1 p 231.4 303.3 231.4 303.1 227.3 300.6 223.1 303.3 s2 231.4 303.3 231.4 303.1 p 223.1 303.3 227.3 300.6 223.1 297.8 t2 229.7 299.0 228.6 297.8 223.1 297.8 227.3 300.6 s3 229.7 299.0 228.6 297.8 p 229.7 299.0 229.9 302.2 227.3 300.6 t3 229.7 299.0 229.9 302.2 p 230.4 303.3 229.9 302.2 227.3 300.6 223.1 303.3 s3 230.4 303.3 229.9 302.2 p 223.1 303.3 227.3 300.6 223.1 297.8 t3 228.3 299.9 226.4 297.8 223.1 297.8 227.3 300.6 s4 228.3 299.9 226.4 297.8 p 228.3 299.9 228.4 301.2 227.3 300.6 t4 228.3 299.9 228.4 301.2 p 229.3 303.3 228.4 301.2 227.3 300.6 223.1 303.3 s4 229.3 303.3 228.4 301.2 p 223.1 303.3 227.3 300.6 223.1 297.8 t4 224.2 297.8 225.8 299.6 223.1 297.8 t5 224.2 297.8 225.8 299.6 p 227.1 300.7 228.2 303.3 223.1 303.3 t5 227.1 300.7 228.2 303.3 p 227.1 300.7 225.8 299.6 223.1 297.8 223.1 303.3 s5 227.1 300.7 225.8 299.6 p 226.3 301.2 227.2 303.3 223.1 303.3 t6 226.3 301.2 227.2 303.3 p 223.1 298.4 226.3 301.2 223.1 303.3 t6 223.1 298.4 226.3 301.2 p 225.4 301.8 226.1 303.3 223.1 303.3 t7 225.4 301.8 226.1 303.3 p 223.1 299.7 225.4 301.8 223.1 303.3 t7 223.1 299.7 225.4 301.8 p 224.6 302.3 225.0 303.3 223.1 303.3 t8 224.6 302.3 225.0 303.3 p 223.1 301.0 224.6 302.3 223.1 303.3 t8 223.1 301.0 224.6 302.3 p 231.6 297.8 240.2 297.8 240.2 303.3 231.6 303.3 s1 240.2 297.8 248.8 297.8 248.8 303.3 240.2 303.3 s1 241.0 297.8 240.7 298.1 244.5 300.6 248.8 297.8 s2 241.0 297.8 240.7 298.1 p 248.8 297.8 244.5 300.6 248.8 303.3 t2 240.5 303.1 240.4 303.3 248.8 303.3 244.5 300.6 s2 240.5 303.1 240.4 303.3 p 240.5 303.1 240.7 298.1 244.5 300.6 t2 240.5 303.1 240.7 298.1 p 243.2 297.8 242.1 299.0 244.5 300.6 248.8 297.8 s3 243.2 297.8 242.1 299.0 p 248.8 297.8 244.5 300.6 248.8 303.3 t3 242.0 302.2 241.5 303.3 248.8 303.3 244.5 300.6 s3 242.0 302.2 241.5 303.3 p 242.0 302.2 242.1 299.0 244.5 300.6 t3 242.0 302.2 242.1 299.0 p 245.4 297.8 243.5 299.9 244.5 300.6 248.8 297.8 s4 245.4 297.8 243.5 299.9 p 248.8 297.8 244.5 300.6 248.8 303.3 t4 243.5 301.2 242.5 303.3 248.8 303.3 244.5 300.6 s4 243.5 301.2 242.5 303.3 p 243.5 301.2 243.5 299.9 244.5 300.6 t4 243.5 301.2 243.5 299.9 p 246.1 299.6 247.6 297.8 248.8 297.8 t5 246.1 299.6 247.6 297.8 p 246.1 299.6 244.7 300.7 248.8 303.3 248.8 297.8 s5 246.1 299.6 244.7 300.7 p 243.6 303.3 244.7 300.7 248.8 303.3 t5 243.6 303.3 244.7 300.7 p 245.6 301.2 248.8 298.4 248.8 303.3 t6 245.6 301.2 248.8 298.4 p 244.7 303.3 245.6 301.2 248.8 303.3 t6 244.7 303.3 245.6 301.2 p 246.4 301.8 248.8 299.7 248.8 303.3 t7 246.4 301.8 248.8 299.7 p 245.8 303.3 246.4 301.8 248.8 303.3 t7 245.8 303.3 246.4 301.8 p 247.3 302.3 248.8 301.0 248.8 303.3 t8 247.3 302.3 248.8 301.0 p 246.8 303.3 247.3 302.3 248.8 303.3 t8 246.8 303.3 247.3 302.3 p 248.8 297.8 257.4 297.8 257.4 303.3 248.8 303.3 s5 249.4 297.8 249.1 298.0 253.1 300.6 257.4 297.8 s6 249.4 297.8 249.1 298.0 p 257.4 297.8 253.1 300.6 257.4 303.3 t6 257.4 303.3 253.1 300.6 248.8 303.3 t6 249.1 298.0 248.8 298.4 248.8 303.3 253.1 300.6 s6 249.1 298.0 248.8 298.4 p 250.7 297.8 249.6 298.3 253.1 300.6 257.4 297.8 s7 250.7 297.8 249.6 298.3 p 257.4 297.8 253.1 300.6 257.4 303.3 t7 257.4 303.3 253.1 300.6 248.8 303.3 t7 249.6 298.3 248.8 299.7 248.8 303.3 253.1 300.6 s7 249.6 298.3 248.8 299.7 p 252.0 297.8 250.2 298.7 253.1 300.6 257.4 297.8 s8 252.0 297.8 250.2 298.7 p 257.4 297.8 253.1 300.6 257.4 303.3 t8 257.4 303.3 253.1 300.6 248.8 303.3 t8 250.2 298.7 248.8 301.0 248.8 303.3 253.1 300.6 s8 250.2 298.7 248.8 301.0 p 257.4 297.8 265.9 297.8 265.9 303.3 257.4 303.3 s5 265.7 298.0 265.3 297.8 257.4 297.8 261.7 300.6 s6 265.7 298.0 265.3 297.8 p 265.9 298.4 265.7 298.0 261.7 300.6 265.9 303.3 s6 265.9 298.4 265.7 298.0 p 265.9 303.3 261.7 300.6 257.4 303.3 t6 257.4 303.3 261.7 300.6 257.4 297.8 t6 265.1 298.3 264.0 297.8 257.4 297.8 261.7 300.6 s7 265.1 298.3 264.0 297.8 p 265.9 299.7 265.1 298.3 261.7 300.6 265.9 303.3 s7 265.9 299.7 265.1 298.3 p 265.9 303.3 261.7 300.6 257.4 303.3 t7 257.4 303.3 261.7 300.6 257.4 297.8 t7 264.5 298.7 262.7 297.8 257.4 297.8 261.7 300.6 s8 264.5 298.7 262.7 297.8 p 265.9 301.0 264.5 298.7 261.7 300.6 265.9 303.3 s8 265.9 301.0 264.5 298.7 p 265.9 303.3 261.7 300.6 257.4 303.3 t8 257.4 303.3 261.7 300.6 257.4 297.8 t8 265.9 297.8 274.5 297.8 274.5 303.3 265.9 303.3 s1 274.0 298.1 273.7 297.8 265.9 297.8 270.2 300.6 s2 274.0 298.1 273.7 297.8 p 274.0 298.1 274.2 303.1 270.2 300.6 t2 274.0 298.1 274.2 303.1 p 274.3 303.3 274.2 303.1 270.2 300.6 265.9 303.3 s2 274.3 303.3 274.2 303.1 p 265.9 303.3 270.2 300.6 265.9 297.8 t2 272.6 299.0 271.5 297.8 265.9 297.8 270.2 300.6 s3 272.6 299.0 271.5 297.8 p 272.6 299.0 272.8 302.2 270.2 300.6 t3 272.6 299.0 272.8 302.2 p 273.3 303.3 272.8 302.2 270.2 300.6 265.9 303.3 s3 273.3 303.3 272.8 302.2 p 265.9 303.3 270.2 300.6 265.9 297.8 t3 271.2 299.9 269.3 297.8 265.9 297.8 270.2 300.6 s4 271.2 299.9 269.3 297.8 p 271.2 299.9 271.3 301.2 270.2 300.6 t4 271.2 299.9 271.3 301.2 p 272.2 303.3 271.3 301.2 270.2 300.6 265.9 303.3 s4 272.2 303.3 271.3 301.2 p 265.9 303.3 270.2 300.6 265.9 297.8 t4 267.1 297.8 268.7 299.6 265.9 297.8 t5 267.1 297.8 268.7 299.6 p 270.0 300.7 271.1 303.3 265.9 303.3 t5 270.0 300.7 271.1 303.3 p 270.0 300.7 268.7 299.6 265.9 297.8 265.9 303.3 s5 270.0 300.7 268.7 299.6 p 269.2 301.2 270.0 303.3 265.9 303.3 t6 269.2 301.2 270.0 303.3 p 265.9 298.4 269.2 301.2 265.9 303.3 t6 265.9 298.4 269.2 301.2 p 268.3 301.8 269.0 303.3 265.9 303.3 t7 268.3 301.8 269.0 303.3 p 265.9 299.7 268.3 301.8 265.9 303.3 t7 265.9 299.7 268.3 301.8 p 267.5 302.3 267.9 303.3 265.9 303.3 t8 267.5 302.3 267.9 303.3 p 265.9 301.0 267.5 302.3 265.9 303.3 t8 265.9 301.0 267.5 302.3 p 274.5 297.8 283.1 297.8 283.1 303.3 274.5 303.3 s1 283.1 297.8 291.7 297.8 291.7 303.3 283.1 303.3 s1 283.9 297.8 283.6 298.1 287.4 300.6 291.7 297.8 s2 283.9 297.8 283.6 298.1 p 291.7 297.8 287.4 300.6 291.7 303.3 t2 283.4 303.1 283.3 303.3 291.7 303.3 287.4 300.6 s2 283.4 303.1 283.3 303.3 p 283.4 303.1 283.6 298.1 287.4 300.6 t2 283.4 303.1 283.6 298.1 p 286.1 297.8 285.0 299.0 287.4 300.6 291.7 297.8 s3 286.1 297.8 285.0 299.0 p 291.7 297.8 287.4 300.6 291.7 303.3 t3 284.9 302.2 284.4 303.3 291.7 303.3 287.4 300.6 s3 284.9 302.2 284.4 303.3 p 284.9 302.2 285.0 299.0 287.4 300.6 t3 284.9 302.2 285.0 299.0 p 288.3 297.8 286.4 299.9 287.4 300.6 291.7 297.8 s4 288.3 297.8 286.4 299.9 p 291.7 297.8 287.4 300.6 291.7 303.3 t4 286.3 301.2 285.4 303.3 291.7 303.3 287.4 300.6 s4 286.3 301.2 285.4 303.3 p 286.3 301.2 286.4 299.9 287.4 300.6 t4 286.3 301.2 286.4 299.9 p 289.0 299.6 290.5 297.8 291.7 297.8 t5 289.0 299.6 290.5 297.8 p 289.0 299.6 287.6 300.7 291.7 303.3 291.7 297.8 s5 289.0 299.6 287.6 300.7 p 286.5 303.3 287.6 300.7 291.7 303.3 t5 286.5 303.3 287.6 300.7 p 288.5 301.2 291.7 298.4 291.7 303.3 t6 288.5 301.2 291.7 298.4 p 287.6 303.3 288.5 301.2 291.7 303.3 t6 287.6 303.3 288.5 301.2 p 289.3 301.8 291.7 299.7 291.7 303.3 t7 289.3 301.8 291.7 299.7 p 288.6 303.3 289.3 301.8 291.7 303.3 t7 288.6 303.3 289.3 301.8 p 290.1 302.3 291.7 301.0 291.7 303.3 t8 290.1 302.3 291.7 301.0 p 289.7 303.3 290.1 302.3 291.7 303.3 t8 289.7 303.3 290.1 302.3 p 291.7 297.8 300.3 297.8 300.3 303.3 291.7 303.3 s5 292.3 297.8 292.0 298.0 296.0 300.6 300.3 297.8 s6 292.3 297.8 292.0 298.0 p 300.3 297.8 296.0 300.6 300.3 303.3 t6 300.3 303.3 296.0 300.6 291.7 303.3 t6 292.0 298.0 291.7 298.4 291.7 303.3 296.0 300.6 s6 292.0 298.0 291.7 298.4 p 293.6 297.8 292.5 298.3 296.0 300.6 300.3 297.8 s7 293.6 297.8 292.5 298.3 p 300.3 297.8 296.0 300.6 300.3 303.3 t7 300.3 303.3 296.0 300.6 291.7 303.3 t7 292.5 298.3 291.7 299.7 291.7 303.3 296.0 300.6 s7 292.5 298.3 291.7 299.7 p 294.9 297.8 293.1 298.7 296.0 300.6 300.3 297.8 s8 294.9 297.8 293.1 298.7 p 300.3 297.8 296.0 300.6 300.3 303.3 t8 300.3 303.3 296.0 300.6 291.7 303.3 t8 293.1 298.7 291.7 301.0 291.7 303.3 296.0 300.6 s8 293.1 298.7 291.7 301.0 p 0.0 292.3 8.6 292.3 8.6 297.8 0.0 297.8 s2 8.1 292.6 6.3 292.3 0.0 292.3 4.3 295.0 s3 8.1 292.6 6.3 292.3 p 8.6 293.0 8.1 292.6 4.3 295.0 8.6 297.8 s3 8.6 293.0 8.1 292.6 p 8.6 297.8 4.3 295.0 0.0 297.8 t3 0.0 297.8 4.3 295.0 0.0 292.3 t3 6.9 293.4 0.2 292.3 0.0 292.3 4.3 295.0 s4 6.9 293.4 0.2 292.3 p 8.6 294.9 6.9 293.4 4.3 295.0 8.6 297.8 s4 8.6 294.9 6.9 293.4 p 8.6 297.8 4.3 295.0 0.0 297.8 t4 0.0 297.8 4.3 295.0 0.0 292.3 t4 2.0 293.6 5.6 294.2 4.3 295.0 t5 2.0 293.6 5.6 294.2 p 8.6 296.8 5.6 294.2 4.3 295.0 8.6 297.8 s5 8.6 296.8 5.6 294.2 p 8.6 297.8 4.3 295.0 0.0 297.8 t5 2.0 293.6 0.0 292.9 0.0 297.8 4.3 295.0 s5 2.0 293.6 0.0 292.9 p 4.2 295.0 4.4 295.0 4.3 295.0 t6 4.2 295.0 4.4 295.0 p 4.4 295.0 4.8 295.3 4.3 295.0 t6 4.4 295.0 4.8 295.3 p 7.9 297.8 4.8 295.3 4.3 295.0 0.0 297.8 s6 7.9 297.8 4.8 295.3 p 4.2 295.0 0.0 293.6 0.0 297.8 4.3 295.0 s6 4.2 295.0 0.0 293.6 p 3.6 295.5 6.6 297.8 0.0 297.8 t7 3.6 295.5 6.6 297.8 p 0.0 294.3 3.6 295.5 0.0 297.8 t7 0.0 294.3 3.6 295.5 p 2.9 295.9 5.3 297.8 0.0 297.8 t8 2.9 295.9 5.3 297.8 p 0.0 295.0 2.9 295.9 0.0 297.8 t8 0.0 295.0 2.9 295.9 p 8.6 292.3 17.2 292.3 17.2 297.8 8.6 297.8 s1 15.1 293.6 12.7 292.3 8.6 292.3 12.9 295.0 s2 15.1 293.6 12.7 292.3 p 15.1 293.6 15.8 296.9 12.9 295.0 t2 15.1 293.6 15.8 296.9 p 16.4 297.8 15.8 296.9 12.9 295.0 8.6 297.8 s2 16.4 297.8 15.8 296.9 p 8.6 297.8 12.9 295.0 8.6 292.3 t2 12.5 295.3 14.2 297.8 8.6 297.8 t3 12.5 295.3 14.2 297.8 p 8.6 293.0 12.5 295.3 8.6 297.8 t3 8.6 293.0 12.5 295.3 p 11.0 296.3 11.9 297.8 8.6 297.8 t4 11.0 296.3 11.9 297.8 p 8.6 294.9 11.0 296.3 8.6 297.8 t4 8.6 294.9 11.0 296.3 p 9.4 297.3 9.7 297.8 8.6 297.8 t5 9.4 297.3 9.7 297.8 p 8.6 296.8 9.4 297.3 8.6 297.8 t5 8.6 296.8 9.4 297.3 p 17.2 292.3 25.7 292.3 25.7 297.8 17.2 297.8 s1 25.7 292.3 34.3 292.3 34.3 297.8 25.7 297.8 s1 30.2 292.3 27.8 293.6 30.0 295.0 34.3 292.3 s2 30.2 292.3 27.8 293.6 p 34.3 292.3 30.0 295.0 34.3 297.8 t2 27.1 296.9 26.5 297.8 34.3 297.8 30.0 295.0 s2 27.1 296.9 26.5 297.8 p 27.1 296.9 27.8 293.6 30.0 295.0 t2 27.1 296.9 27.8 293.6 p 30.4 295.3 34.3 293.0 34.3 297.8 t3 30.4 295.3 34.3 293.0 p 28.7 297.8 30.4 295.3 34.3 297.8 t3 28.7 297.8 30.4 295.3 p 31.9 296.3 34.3 294.9 34.3 297.8 t4 31.9 296.3 34.3 294.9 p 31.0 297.8 31.9 296.3 34.3 297.8 t4 31.0 297.8 31.9 296.3 p 33.5 297.3 34.3 296.8 34.3 297.8 t5 33.5 297.3 34.3 296.8 p 33.2 297.8 33.5 297.3 34.3 297.8 t5 33.2 297.8 33.5 297.3 p 34.3 292.3 42.9 292.3 42.9 297.8 34.3 297.8 s2 36.6 292.3 34.8 292.6 38.6 295.0 42.9 292.3 s3 36.6 292.3 34.8 292.6 p 42.9 292.3 38.6 295.0 42.9 297.8 t3 42.9 297.8 38.6 295.0 34.3 297.8 t3 34.8 292.6 34.3 293.0 34.3 297.8 38.6 295.0 s3 34.8 292.6 34.3 293.0 p 42.7 292.3 36.0 293.4 38.6 295.0 42.9 292.3 s4 42.7 292.3 36.0 293.4 p 42.9 292.3 38.6 295.0 42.9 297.8 t4 42.9 297.8 38.6 295.0 34.3 297.8 t4 36.0 293.4 34.3 294.9 34.3 297.8 38.6 295.0 s4 36.0 293.4 34.3 294.9 p 37.3 294.2 40.8 293.6 38.6 295.0 t5 37.3 294.2 40.8 293.6 p 42.9 292.9 40.8 293.6 38.6 295.0 42.9 297.8 s5 42.9 292.9 40.8 293.6 p 42.9 297.8 38.6 295.0 34.3 297.8 t5 37.3 294.2 34.3 296.8 34.3 297.8 38.6 295.0 s5 37.3 294.2 34.3 296.8 p 38.5 295.0 38.7 295.0 38.6 295.0 t6 38.5 295.0 38.7 295.0 p 42.9 293.6 38.7 295.0 38.6 295.0 42.9 297.8 s6 42.9 293.6 38.7 295.0 p 38.1 295.3 35.0 297.8 42.9 297.8 38.6 295.0 s6 38.1 295.3 35.0 297.8 p 38.1 295.3 38.5 295.0 38.6 295.0 t6 38.1 295.3 38.5 295.0 p 39.3 295.5 42.9 294.3 42.9 297.8 t7 39.3 295.5 42.9 294.3 p 36.3 297.8 39.3 295.5 42.9 297.8 t7 36.3 297.8 39.3 295.5 p 40.0 295.9 42.9 295.0 42.9 297.8 t8 40.0 295.9 42.9 295.0 p 37.6 297.8 40.0 295.9 42.9 297.8 t8 37.6 297.8 40.0 295.9 p 42.9 292.3 51.5 292.3 51.5 297.8 42.9 297.8 s2 51.0 292.6 49.2 292.3 42.9 292.3 47.2 295.0 s3 51.0 292.6 49.2 292.3 p 51.5 293.0 51.0 292.6 47.2 295.0 51.5 297.8 s3 51.5 293.0 51.0 292.6 p 51.5 297.8 47.2 295.0 42.9 297.8 t3 42.9 297.8 47.2 295.0 42.9 292.3 t3 49.8 293.4 43.1 292.3 42.9 292.3 47.2 295.0 s4 49.8 293.4 43.1 292.3 p 51.5 294.9 49.8 293.4 47.2 295.0 51.5 297.8 s4 51.5 294.9 49.8 293.4 p 51.5 297.8 47.2 295.0 42.9 297.8 t4 42.9 297.8 47.2 295.0 42.9 292.3 t4 44.9 293.6 48.5 294.2 47.2 295.0 t5 44.9 293.6 48.5 294.2 p 51.5 296.8 48.5 294.2 47.2 295.0 51.5 297.8 s5 51.5 296.8 48.5 294.2 p 51.5 297.8 47.2 295.0 42.9 297.8 t5 44.9 293.6 42.9 292.9 42.9 297.8 47.2 295.0 s5 44.9 293.6 42.9 292.9 p 47.1 295.0 47.3 295.0 47.2 295.0 t6 47.1 295.0 47.3 295.0 p 47.3 295.0 47.7 295.3 47.2 295.0 t6 47.3 295.0 47.7 295.3 p 50.8 297.8 47.7 295.3 47.2 295.0 42.9 297.8 s6 50.8 297.8 47.7 295.3 p 47.1 295.0 42.9 293.6 42.9 297.8 47.2 295.0 s6 47.1 295.0 42.9 293.6 p 46.5 295.5 49.5 297.8 42.9 297.8 t7 46.5 295.5 49.5 297.8 p 42.9 294.3 46.5 295.5 42.9 297.8 t7 42.9 294.3 46.5 295.5 p 45.8 295.9 48.2 297.8 42.9 297.8 t8 45.8 295.9 48.2 297.8 p 42.9 295.0 45.8 295.9 42.9 297.8 t8 42.9 295.0 45.8 295.9 p 51.5 292.3 60.1 292.3 60.1 297.8 51.5 297.8 s1 58.0 293.6 55.6 292.3 51.5 292.3 55.8 295.0 s2 58.0 293.6 55.6 292.3 p 58.0 293.6 58.7 296.9 55.8 295.0 t2 58.0 293.6 58.7 296.9 p 59.3 297.8 58.7 296.9 55.8 295.0 51.5 297.8 s2 59.3 297.8 58.7 296.9 p 51.5 297.8 55.8 295.0 51.5 292.3 t2 55.4 295.3 57.1 297.8 51.5 297.8 t3 55.4 295.3 57.1 297.8 p 51.5 293.0 55.4 295.3 51.5 297.8 t3 51.5 293.0 55.4 295.3 p 53.8 296.3 54.8 297.8 51.5 297.8 t4 53.8 296.3 54.8 297.8 p 51.5 294.9 53.8 296.3 51.5 297.8 t4 51.5 294.9 53.8 296.3 p 52.3 297.3 52.6 297.8 51.5 297.8 t5 52.3 297.3 52.6 297.8 p 51.5 296.8 52.3 297.3 51.5 297.8 t5 51.5 296.8 52.3 297.3 p 60.1 292.3 68.6 292.3 68.6 297.8 60.1 297.8 s1 68.6 292.3 77.2 292.3 77.2 297.8 68.6 297.8 s1 73.1 292.3 70.6 293.6 72.9 295.0 77.2 292.3 s2 73.1 292.3 70.6 293.6 p 77.2 292.3 72.9 295.0 77.2 297.8 t2 70.0 296.9 69.4 297.8 77.2 297.8 72.9 295.0 s2 70.0 296.9 69.4 297.8 p 70.0 296.9 70.6 293.6 72.9 295.0 t2 70.0 296.9 70.6 293.6 p 73.3 295.3 77.2 293.0 77.2 297.8 t3 73.3 295.3 77.2 293.0 p 71.6 297.8 73.3 295.3 77.2 297.8 t3 71.6 297.8 73.3 295.3 p 74.8 296.3 77.2 294.9 77.2 297.8 t4 74.8 296.3 77.2 294.9 p 73.8 297.8 74.8 296.3 77.2 297.8 t4 73.8 297.8 74.8 296.3 p 76.4 297.3 77.2 296.8 77.2 297.8 t5 76.4 297.3 77.2 296.8 p 76.1 297.8 76.4 297.3 77.2 297.8 t5 76.1 297.8 76.4 297.3 p 77.2 292.3 85.8 292.3 85.8 297.8 77.2 297.8 s2 79.5 292.3 77.7 292.6 81.5 295.0 85.8 292.3 s3 79.5 292.3 77.7 292.6 p 85.8 292.3 81.5 295.0 85.8 297.8 t3 85.8 297.8 81.5 295.0 77.2 297.8 t3 77.7 292.6 77.2 293.0 77.2 297.8 81.5 295.0 s3 77.7 292.6 77.2 293.0 p 85.6 292.3 78.9 293.4 81.5 295.0 85.8 292.3 s4 85.6 292.3 78.9 293.4 p 85.8 292.3 81.5 295.0 85.8 297.8 t4 85.8 297.8 81.5 295.0 77.2 297.8 t4 78.9 293.4 77.2 294.9 77.2 297.8 81.5 295.0 s4 78.9 293.4 77.2 294.9 p 80.2 294.2 83.7 293.6 81.5 295.0 t5 80.2 294.2 83.7 293.6 p 85.8 292.9 83.7 293.6 81.5 295.0 85.8 297.8 s5 85.8 292.9 83.7 293.6 p 85.8 297.8 81.5 295.0 77.2 297.8 t5 80.2 294.2 77.2 296.8 77.2 297.8 81.5 295.0 s5 80.2 294.2 77.2 296.8 p 81.4 295.0 81.6 295.0 81.5 295.0 t6 81.4 295.0 81.6 295.0 p 85.8 293.6 81.6 295.0 81.5 295.0 85.8 297.8 s6 85.8 293.6 81.6 295.0 p 81.0 295.3 77.8 297.8 85.8 297.8 81.5 295.0 s6 81.0 295.3 77.8 297.8 p 81.0 295.3 81.4 295.0 81.5 295.0 t6 81.0 295.3 81.4 295.0 p 82.2 295.5 85.8 294.3 85.8 297.8 t7 82.2 295.5 85.8 294.3 p 79.2 297.8 82.2 295.5 85.8 297.8 t7 79.2 297.8 82.2 295.5 p 82.9 295.9 85.8 295.0 85.8 297.8 t8 82.9 295.9 85.8 295.0 p 80.5 297.8 82.9 295.9 85.8 297.8 t8 80.5 297.8 82.9 295.9 p 85.8 292.3 94.4 292.3 94.4 297.8 85.8 297.8 s2 93.9 292.6 92.1 292.3 85.8 292.3 90.1 295.0 s3 93.9 292.6 92.1 292.3 p 94.4 293.0 93.9 292.6 90.1 295.0 94.4 297.8 s3 94.4 293.0 93.9 292.6 p 94.4 297.8 90.1 295.0 85.8 297.8 t3 85.8 297.8 90.1 295.0 85.8 292.3 t3 92.7 293.4 86.0 292.3 85.8 292.3 90.1 295.0 s4 92.7 293.4 86.0 292.3 p 94.4 294.9 92.7 293.4 90.1 295.0 94.4 297.8 s4 94.4 294.9 92.7 293.4 p 94.4 297.8 90.1 295.0 85.8 297.8 t4 85.8 297.8 90.1 295.0 85.8 292.3 t4 87.8 293.6 91.4 294.2 90.1 295.0 t5 87.8 293.6 91.4 294.2 p 94.4 296.8 91.4 294.2 90.1 295.0 94.4 297.8 s5 94.4 296.8 91.4 294.2 p 94.4 297.8 90.1 295.0 85.8 297.8 t5 87.8 293.6 85.8 292.9 85.8 297.8 90.1 295.0 s5 87.8 293.6 85.8 292.9 p 90.0 295.0 90.2 295.0 90.1 295.0 t6 90.0 295.0 90.2 295.0 p 90.2 295.0 90.5 295.3 90.1 295.0 t6 90.2 295.0 90.5 295.3 p 93.7 297.8 90.5 295.3 90.1 295.0 85.8 297.8 s6 93.7 297.8 90.5 295.3 p 90.0 295.0 85.8 293.6 85.8 297.8 90.1 295.0 s6 90.0 295.0 85.8 293.6 p 89.4 295.5 92.4 297.8 85.8 297.8 t7 89.4 295.5 92.4 297.8 p 85.8 294.3 89.4 295.5 85.8 297.8 t7 85.8 294.3 89.4 295.5 p 88.7 295.9 91.1 297.8 85.8 297.8 t8 88.7 295.9 91.1 297.8 p 85.8 295.0 88.7 295.9 85.8 297.8 t8 85.8 295.0 88.7 295.9 p 94.4 292.3 102.9 292.3 102.9 297.8 94.4 297.8 s1 100.9 293.6 98.5 292.3 94.4 292.3 98.7 295.0 s2 100.9 293.6 98.5 292.3 p 100.9 293.6 101.6 296.9 98.7 295.0 t2 100.9 293.6 101.6 296.9 p 102.2 297.8 101.6 296.9 98.7 295.0 94.4 297.8 s2 102.2 297.8 101.6 296.9 p 94.4 297.8 98.7 295.0 94.4 292.3 t2 98.3 295.3 100.0 297.8 94.4 297.8 t3 98.3 295.3 100.0 297.8 p 94.4 293.0 98.3 295.3 94.4 297.8 t3 94.4 293.0 98.3 295.3 p 96.7 296.3 97.7 297.8 94.4 297.8 t4 96.7 296.3 97.7 297.8 p 94.4 294.9 96.7 296.3 94.4 297.8 t4 94.4 294.9 96.7 296.3 p 95.2 297.3 95.5 297.8 94.4 297.8 t5 95.2 297.3 95.5 297.8 p 94.4 296.8 95.2 297.3 94.4 297.8 t5 94.4 296.8 95.2 297.3 p 102.9 292.3 111.5 292.3 111.5 297.8 102.9 297.8 s1 111.5 292.3 120.1 292.3 120.1 297.8 111.5 297.8 s1 116.0 292.3 113.5 293.6 115.8 295.0 120.1 292.3 s2 116.0 292.3 113.5 293.6 p 120.1 292.3 115.8 295.0 120.1 297.8 t2 112.9 296.9 112.3 297.8 120.1 297.8 115.8 295.0 s2 112.9 296.9 112.3 297.8 p 112.9 296.9 113.5 293.6 115.8 295.0 t2 112.9 296.9 113.5 293.6 p 116.2 295.3 120.1 293.0 120.1 297.8 t3 116.2 295.3 120.1 293.0 p 114.5 297.8 116.2 295.3 120.1 297.8 t3 114.5 297.8 116.2 295.3 p 117.7 296.3 120.1 294.9 120.1 297.8 t4 117.7 296.3 120.1 294.9 p 116.7 297.8 117.7 296.3 120.1 297.8 t4 116.7 297.8 117.7 296.3 p 119.3 297.3 120.1 296.8 120.1 297.8 t5 119.3 297.3 120.1 296.8 p 119.0 297.8 119.3 297.3 120.1 297.8 t5 119.0 297.8 119.3 297.3 p 120.1 292.3 128.7 292.3 128.7 297.8 120.1 297.8 s2 122.3 292.3 120.6 292.6 124.4 295.0 128.7 292.3 s3 122.3 292.3 120.6 292.6 p 128.7 292.3 124.4 295.0 128.7 297.8 t3 128.7 297.8 124.4 295.0 120.1 297.8 t3 120.6 292.6 120.1 293.0 120.1 297.8 124.4 295.0 s3 120.6 292.6 120.1 293.0 p 128.5 292.3 121.8 293.4 124.4 295.0 128.7 292.3 s4 128.5 292.3 121.8 293.4 p 128.7 292.3 124.4 295.0 128.7 297.8 t4 128.7 297.8 124.4 295.0 120.1 297.8 t4 121.8 293.4 120.1 294.9 120.1 297.8 124.4 295.0 s4 121.8 293.4 120.1 294.9 p 123.1 294.2 126.6 293.6 124.4 295.0 t5 123.1 294.2 126.6 293.6 p 128.7 292.9 126.6 293.6 124.4 295.0 128.7 297.8 s5 128.7 292.9 126.6 293.6 p 128.7 297.8 124.4 295.0 120.1 297.8 t5 123.1 294.2 120.1 296.8 120.1 297.8 124.4 295.0 s5 123.1 294.2 120.1 296.8 p 124.3 295.0 124.5 295.0 124.4 295.0 t6 124.3 295.0 124.5 295.0 p 128.7 293.6 124.5 295.0 124.4 295.0 128.7 297.8 s6 128.7 293.6 124.5 295.0 p 123.9 295.3 120.7 297.8 128.7 297.8 124.4 295.0 s6 123.9 295.3 120.7 297.8 p 123.9 295.3 124.3 295.0 124.4 295.0 t6 123.9 295.3 124.3 295.0 p 125.1 295.5 128.7 294.3 128.7 297.8 t7 125.1 295.5 128.7 294.3 p 122.1 297.8 125.1 295.5 128.7 297.8 t7 122.1 297.8 125.1 295.5 p 125.8 295.9 128.7 295.0 128.7 297.8 t8 125.8 295.9 128.7 295.0 p 123.4 297.8 125.8 295.9 128.7 297.8 t8 123.4 297.8 125.8 295.9 p 128.7 292.3 137.3 292.3 137.3 297.8 128.7 297.8 s2 136.8 292.6 135.0 292.3 128.7 292.3 133.0 295.0 s3 136.8 292.6 135.0 292.3 p 137.3 293.0 136.8 292.6 133.0 295.0 137.3 297.8 s3 137.3 293.0 136.8 292.6 p 137.3 297.8 133.0 295.0 128.7 297.8 t3 128.7 297.8 133.0 295.0 128.7 292.3 t3 135.6 293.4 128.9 292.3 128.7 292.3 133.0 295.0 s4 135.6 293.4 128.9 292.3 p 137.3 294.9 135.6 293.4 133.0 295.0 137.3 297.8 s4 137.3 294.9 135.6 293.4 p 137.3 297.8 133.0 295.0 128.7 297.8 t4 128.7 297.8 133.0 295.0 128.7 292.3 t4 130.7 293.6 134.3 294.2 133.0 295.0 t5 130.7 293.6 134.3 294.2 p 137.3 296.8 134.3 294.2 133.0 295.0 137.3 297.8 s5 137.3 296.8 134.3 294.2 p 137.3 297.8 133.0 295.0 128.7 297.8 t5 130.7 293.6 128.7 292.9 128.7 297.8 133.0 295.0 s5 130.7 293.6 128.7 292.9 p 132.8 295.0 133.0 295.0 133.0 295.0 t6 132.8 295.0 133.0 295.0 p 133.0 295.0 133.4 295.3 133.0 295.0 t6 133.0 295.0 133.4 295.3 p 136.6 297.8 133.4 295.3 133.0 295.0 128.7 297.8 s6 136.6 297.8 133.4 295.3 p 132.8 295.0 128.7 293.6 128.7 297.8 133.0 295.0 s6 132.8 295.0 128.7 293.6 p 132.3 295.5 135.3 297.8 128.7 297.8 t7 132.3 295.5 135.3 297.8 p 128.7 294.3 132.3 295.5 128.7 297.8 t7 128.7 294.3 132.3 295.5 p 131.6 295.9 134.0 297.8 128.7 297.8 t8 131.6 295.9 134.0 297.8 p 128.7 295.0 131.6 295.9 128.7 297.8 t8 128.7 295.0 131.6 295.9 p 137.3 292.3 145.8 292.3 145.8 297.8 137.3 297.8 s1 143.8 293.6 141.4 292.3 137.3 292.3 141.6 295.0 s2 143.8 293.6 141.4 292.3 p 143.8 293.6 144.5 296.9 141.6 295.0 t2 143.8 293.6 144.5 296.9 p 145.1 297.8 144.5 296.9 141.6 295.0 137.3 297.8 s2 145.1 297.8 144.5 296.9 p 137.3 297.8 141.6 295.0 137.3 292.3 t2 141.2 295.3 142.8 297.8 137.3 297.8 t3 141.2 295.3 142.8 297.8 p 137.3 293.0 141.2 295.3 137.3 297.8 t3 137.3 293.0 141.2 295.3 p 139.6 296.3 140.6 297.8 137.3 297.8 t4 139.6 296.3 140.6 297.8 p 137.3 294.9 139.6 296.3 137.3 297.8 t4 137.3 294.9 139.6 296.3 p 138.1 297.3 138.4 297.8 137.3 297.8 t5 138.1 297.3 138.4 297.8 p 137.3 296.8 138.1 297.3 137.3 297.8 t5 137.3 296.8 138.1 297.3 p 145.8 292.3 154.4 292.3 154.4 297.8 145.8 297.8 s1 154.4 292.3 163.0 292.3 163.0 297.8 154.4 297.8 s1 158.9 292.3 156.4 293.6 158.7 295.0 163.0 292.3 s2 158.9 292.3 156.4 293.6 p 163.0 292.3 158.7 295.0 163.0 297.8 t2 155.7 296.9 155.2 297.8 163.0 297.8 158.7 295.0 s2 155.7 296.9 155.2 297.8 p 155.7 296.9 156.4 293.6 158.7 295.0 t2 155.7 296.9 156.4 293.6 p 159.1 295.3 163.0 293.0 163.0 297.8 t3 159.1 295.3 163.0 293.0 p 157.4 297.8 159.1 295.3 163.0 297.8 t3 157.4 297.8 159.1 295.3 p 160.6 296.3 163.0 294.9 163.0 297.8 t4 160.6 296.3 163.0 294.9 p 159.6 297.8 160.6 296.3 163.0 297.8 t4 159.6 297.8 160.6 296.3 p 162.2 297.3 163.0 296.8 163.0 297.8 t5 162.2 297.3 163.0 296.8 p 161.9 297.8 162.2 297.3 163.0 297.8 t5 161.9 297.8 162.2 297.3 p 163.0 292.3 171.6 292.3 171.6 297.8 163.0 297.8 s2 165.2 292.3 163.5 292.6 167.3 295.0 171.6 292.3 s3 165.2 292.3 163.5 292.6 p 171.6 292.3 167.3 295.0 171.6 297.8 t3 171.6 297.8 167.3 295.0 163.0 297.8 t3 163.5 292.6 163.0 293.0 163.0 297.8 167.3 295.0 s3 163.5 292.6 163.0 293.0 p 171.4 292.3 164.7 293.4 167.3 295.0 171.6 292.3 s4 171.4 292.3 164.7 293.4 p 171.6 292.3 167.3 295.0 171.6 297.8 t4 171.6 297.8 167.3 295.0 163.0 297.8 t4 164.7 293.4 163.0 294.9 163.0 297.8 167.3 295.0 s4 164.7 293.4 163.0 294.9 p 166.0 294.2 169.5 293.6 167.3 295.0 t5 166.0 294.2 169.5 293.6 p 171.6 292.9 169.5 293.6 167.3 295.0 171.6 297.8 s5 171.6 292.9 169.5 293.6 p 171.6 297.8 167.3 295.0 163.0 297.8 t5 166.0 294.2 163.0 296.8 163.0 297.8 167.3 295.0 s5 166.0 294.2 163.0 296.8 p 167.2 295.0 167.4 295.0 167.3 295.0 t6 167.2 295.0 167.4 295.0 p 171.6 293.6 167.4 295.0 167.3 295.0 171.6 297.8 s6 171.6 293.6 167.4 295.0 p 166.8 295.3 163.6 297.8 171.6 297.8 167.3 295.0 s6 166.8 295.3 163.6 297.8 p 166.8 295.3 167.2 295.0 167.3 295.0 t6 166.8 295.3 167.2 295.0 p 168.0 295.5 171.6 294.3 171.6 297.8 t7 168.0 295.5 171.6 294.3 p 164.9 297.8 168.0 295.5 171.6 297.8 t7 164.9 297.8 168.0 295.5 p 168.7 295.9 171.6 295.0 171.6 297.8 t8 168.7 295.9 171.6 295.0 p 166.3 297.8 168.7 295.9 171.6 297.8 t8 166.3 297.8 168.7 295.9 p 171.6 292.3 180.2 292.3 180.2 297.8 171.6 297.8 s2 179.7 292.6 177.9 292.3 171.6 292.3 175.9 295.0 s3 179.7 292.6 177.9 292.3 p 180.2 293.0 179.7 292.6 175.9 295.0 180.2 297.8 s3 180.2 293.0 179.7 292.6 p 180.2 297.8 175.9 295.0 171.6 297.8 t3 171.6 297.8 175.9 295.0 171.6 292.3 t3 178.4 293.4 171.8 292.3 171.6 292.3 175.9 295.0 s4 178.4 293.4 171.8 292.3 p 180.2 294.9 178.4 293.4 175.9 295.0 180.2 297.8 s4 180.2 294.9 178.4 293.4 p 180.2 297.8 175.9 295.0 171.6 297.8 t4 171.6 297.8 175.9 295.0 171.6 292.3 t4 173.6 293.6 177.2 294.2 175.9 295.0 t5 173.6 293.6 177.2 294.2 p 180.2 296.8 177.2 294.2 175.9 295.0 180.2 297.8 s5 180.2 296.8 177.2 294.2 p 180.2 297.8 175.9 295.0 171.6 297.8 t5 173.6 293.6 171.6 292.9 171.6 297.8 175.9 295.0 s5 173.6 293.6 171.6 292.9 p 175.7 295.0 175.9 295.0 175.9 295.0 t6 175.7 295.0 175.9 295.0 p 175.9 295.0 176.3 295.3 175.9 295.0 t6 175.9 295.0 176.3 295.3 p 179.5 297.8 176.3 295.3 175.9 295.0 171.6 297.8 s6 179.5 297.8 176.3 295.3 p 175.7 295.0 171.6 293.6 171.6 297.8 175.9 295.0 s6 175.7 295.0 171.6 293.6 p 175.2 295.5 178.2 297.8 171.6 297.8 t7 175.2 295.5 178.2 297.8 p 171.6 294.3 175.2 295.5 171.6 297.8 t7 171.6 294.3 175.2 295.5 p 174.5 295.9 176.9 297.8 171.6 297.8 t8 174.5 295.9 176.9 297.8 p 171.6 295.0 174.5 295.9 171.6 297.8 t8 171.6 295.0 174.5 295.9 p 180.2 292.3 188.7 292.3 188.7 297.8 180.2 297.8 s1 186.7 293.6 184.3 292.3 180.2 292.3 184.4 295.0 s2 186.7 293.6 184.3 292.3 p 186.7 293.6 187.4 296.9 184.4 295.0 t2 186.7 293.6 187.4 296.9 p 188.0 297.8 187.4 296.9 184.4 295.0 180.2 297.8 s2 188.0 297.8 187.4 296.9 p 180.2 297.8 184.4 295.0 180.2 292.3 t2 184.1 295.3 185.7 297.8 180.2 297.8 t3 184.1 295.3 185.7 297.8 p 180.2 293.0 184.1 295.3 180.2 297.8 t3 180.2 293.0 184.1 295.3 p 182.5 296.3 183.5 297.8 180.2 297.8 t4 182.5 296.3 183.5 297.8 p 180.2 294.9 182.5 296.3 180.2 297.8 t4 180.2 294.9 182.5 296.3 p 181.0 297.3 181.3 297.8 180.2 297.8 t5 181.0 297.3 181.3 297.8 p 180.2 296.8 181.0 297.3 180.2 297.8 t5 180.2 296.8 181.0 297.3 p 188.7 292.3 197.3 292.3 197.3 297.8 188.7 297.8 s1 197.3 292.3 205.9 292.3 205.9 297.8 197.3 297.8 s1 201.8 292.3 199.3 293.6 201.6 295.0 205.9 292.3 s2 201.8 292.3 199.3 293.6 p 205.9 292.3 201.6 295.0 205.9 297.8 t2 198.6 296.9 198.1 297.8 205.9 297.8 201.6 295.0 s2 198.6 296.9 198.1 297.8 p 198.6 296.9 199.3 293.6 201.6 295.0 t2 198.6 296.9 199.3 293.6 p 202.0 295.3 205.9 293.0 205.9 297.8 t3 202.0 295.3 205.9 293.0 p 200.3 297.8 202.0 295.3 205.9 297.8 t3 200.3 297.8 202.0 295.3 p 203.5 296.3 205.9 294.9 205.9 297.8 t4 203.5 296.3 205.9 294.9 p 202.5 297.8 203.5 296.3 205.9 297.8 t4 202.5 297.8 203.5 296.3 p 205.1 297.3 205.9 296.8 205.9 297.8 t5 205.1 297.3 205.9 296.8 p 204.7 297.8 205.1 297.3 205.9 297.8 t5 204.7 297.8 205.1 297.3 p 205.9 292.3 214.5 292.3 214.5 297.8 205.9 297.8 s2 208.1 292.3 206.3 292.6 210.2 295.0 214.5 292.3 s3 208.1 292.3 206.3 292.6 p 214.5 292.3 210.2 295.0 214.5 297.8 t3 214.5 297.8 210.2 295.0 205.9 297.8 t3 206.3 292.6 205.9 293.0 205.9 297.8 210.2 295.0 s3 206.3 292.6 205.9 293.0 p 214.3 292.3 207.6 293.4 210.2 295.0 214.5 292.3 s4 214.3 292.3 207.6 293.4 p 214.5 292.3 210.2 295.0 214.5 297.8 t4 214.5 297.8 210.2 295.0 205.9 297.8 t4 207.6 293.4 205.9 294.9 205.9 297.8 210.2 295.0 s4 207.6 293.4 205.9 294.9 p 208.9 294.2 212.4 293.6 210.2 295.0 t5 208.9 294.2 212.4 293.6 p 214.5 292.9 212.4 293.6 210.2 295.0 214.5 297.8 s5 214.5 292.9 212.4 293.6 p 214.5 297.8 210.2 295.0 205.9 297.8 t5 208.9 294.2 205.9 296.8 205.9 297.8 210.2 295.0 s5 208.9 294.2 205.9 296.8 p 210.1 295.0 210.3 295.0 210.2 295.0 t6 210.1 295.0 210.3 295.0 p 214.5 293.6 210.3 295.0 210.2 295.0 214.5 297.8 s6 214.5 293.6 210.3 295.0 p 209.7 295.3 206.5 297.8 214.5 297.8 210.2 295.0 s6 209.7 295.3 206.5 297.8 p 209.7 295.3 210.1 295.0 210.2 295.0 t6 209.7 295.3 210.1 295.0 p 210.9 295.5 214.5 294.3 214.5 297.8 t7 210.9 295.5 214.5 294.3 p 207.8 297.8 210.9 295.5 214.5 297.8 t7 207.8 297.8 210.9 295.5 p 211.6 295.9 214.5 295.0 214.5 297.8 t8 211.6 295.9 214.5 295.0 p 209.2 297.8 211.6 295.9 214.5 297.8 t8 209.2 297.8 211.6 295.9 p 214.5 292.3 223.1 292.3 223.1 297.8 214.5 297.8 s2 222.6 292.6 220.8 292.3 214.5 292.3 218.8 295.0 s3 222.6 292.6 220.8 292.3 p 223.1 293.0 222.6 292.6 218.8 295.0 223.1 297.8 s3 223.1 293.0 222.6 292.6 p 223.1 297.8 218.8 295.0 214.5 297.8 t3 214.5 297.8 218.8 295.0 214.5 292.3 t3 221.3 293.4 214.7 292.3 214.5 292.3 218.8 295.0 s4 221.3 293.4 214.7 292.3 p 223.1 294.9 221.3 293.4 218.8 295.0 223.1 297.8 s4 223.1 294.9 221.3 293.4 p 223.1 297.8 218.8 295.0 214.5 297.8 t4 214.5 297.8 218.8 295.0 214.5 292.3 t4 216.5 293.6 220.1 294.2 218.8 295.0 t5 216.5 293.6 220.1 294.2 p 223.1 296.8 220.1 294.2 218.8 295.0 223.1 297.8 s5 223.1 296.8 220.1 294.2 p 223.1 297.8 218.8 295.0 214.5 297.8 t5 216.5 293.6 214.5 292.9 214.5 297.8 218.8 295.0 s5 216.5 293.6 214.5 292.9 p 218.6 295.0 218.8 295.0 218.8 295.0 t6 218.6 295.0 218.8 295.0 p 218.8 295.0 219.2 295.3 218.8 295.0 t6 218.8 295.0 219.2 295.3 p 222.4 297.8 219.2 295.3 218.8 295.0 214.5 297.8 s6 222.4 297.8 219.2 295.3 p 218.6 295.0 214.5 293.6 214.5 297.8 218.8 295.0 s6 218.6 295.0 214.5 293.6 p 218.1 295.5 221.1 297.8 214.5 297.8 t7 218.1 295.5 221.1 297.8 p 214.5 294.3 218.1 295.5 214.5 297.8 t7 214.5 294.3 218.1 295.5 p 217.4 295.9 219.8 297.8 214.5 297.8 t8 217.4 295.9 219.8 297.8 p 214.5 295.0 217.4 295.9 214.5 297.8 t8 214.5 295.0 217.4 295.9 p 223.1 292.3 231.6 292.3 231.6 297.8 223.1 297.8 s1 229.6 293.6 227.2 292.3 223.1 292.3 227.3 295.0 s2 229.6 293.6 227.2 292.3 p 229.6 293.6 230.3 296.9 227.3 295.0 t2 229.6 293.6 230.3 296.9 p 230.9 297.8 230.3 296.9 227.3 295.0 223.1 297.8 s2 230.9 297.8 230.3 296.9 p 223.1 297.8 227.3 295.0 223.1 292.3 t2 227.0 295.3 228.6 297.8 223.1 297.8 t3 227.0 295.3 228.6 297.8 p 223.1 293.0 227.0 295.3 223.1 297.8 t3 223.1 293.0 227.0 295.3 p 225.4 296.3 226.4 297.8 223.1 297.8 t4 225.4 296.3 226.4 297.8 p 223.1 294.9 225.4 296.3 223.1 297.8 t4 223.1 294.9 225.4 296.3 p 223.9 297.3 224.2 297.8 223.1 297.8 t5 223.9 297.3 224.2 297.8 p 223.1 296.8 223.9 297.3 223.1 297.8 t5 223.1 296.8 223.9 297.3 p 231.6 292.3 240.2 292.3 240.2 297.8 231.6 297.8 s1 240.2 292.3 248.8 292.3 248.8 297.8 240.2 297.8 s1 244.7 292.3 242.2 293.6 244.5 295.0 248.8 292.3 s2 244.7 292.3 242.2 293.6 p 248.8 292.3 244.5 295.0 248.8 297.8 t2 241.5 296.9 241.0 297.8 248.8 297.8 244.5 295.0 s2 241.5 296.9 241.0 297.8 p 241.5 296.9 242.2 293.6 244.5 295.0 t2 241.5 296.9 242.2 293.6 p 244.8 295.3 248.8 293.0 248.8 297.8 t3 244.8 295.3 248.8 293.0 p 243.2 297.8 244.8 295.3 248.8 297.8 t3 243.2 297.8 244.8 295.3 p 246.4 296.3 248.8 294.9 248.8 297.8 t4 246.4 296.3 248.8 294.9 p 245.4 297.8 246.4 296.3 248.8 297.8 t4 245.4 297.8 246.4 296.3 p 248.0 297.3 248.8 296.8 248.8 297.8 t5 248.0 297.3 248.8 296.8 p 247.6 297.8 248.0 297.3 248.8 297.8 t5 247.6 297.8 248.0 297.3 p 248.8 292.3 257.4 292.3 257.4 297.8 248.8 297.8 s2 251.0 292.3 249.2 292.6 253.1 295.0 257.4 292.3 s3 251.0 292.3 249.2 292.6 p 257.4 292.3 253.1 295.0 257.4 297.8 t3 257.4 297.8 253.1 295.0 248.8 297.8 t3 249.2 292.6 248.8 293.0 248.8 297.8 253.1 295.0 s3 249.2 292.6 248.8 293.0 p 257.2 292.3 250.5 293.4 253.1 295.0 257.4 292.3 s4 257.2 292.3 250.5 293.4 p 257.4 292.3 253.1 295.0 257.4 297.8 t4 257.4 297.8 253.1 295.0 248.8 297.8 t4 250.5 293.4 248.8 294.9 248.8 297.8 253.1 295.0 s4 250.5 293.4 248.8 294.9 p 251.7 294.2 255.3 293.6 253.1 295.0 t5 251.7 294.2 255.3 293.6 p 257.4 292.9 255.3 293.6 253.1 295.0 257.4 297.8 s5 257.4 292.9 255.3 293.6 p 257.4 297.8 253.1 295.0 248.8 297.8 t5 251.7 294.2 248.8 296.8 248.8 297.8 253.1 295.0 s5 251.7 294.2 248.8 296.8 p 253.0 295.0 253.2 295.0 253.1 295.0 t6 253.0 295.0 253.2 295.0 p 257.4 293.6 253.2 295.0 253.1 295.0 257.4 297.8 s6 257.4 293.6 253.2 295.0 p 252.6 295.3 249.4 297.8 257.4 297.8 253.1 295.0 s6 252.6 295.3 249.4 297.8 p 252.6 295.3 253.0 295.0 253.1 295.0 t6 252.6 295.3 253.0 295.0 p 253.7 295.5 257.4 294.3 257.4 297.8 t7 253.7 295.5 257.4 294.3 p 250.7 297.8 253.7 295.5 257.4 297.8 t7 250.7 297.8 253.7 295.5 p 254.5 295.9 257.4 295.0 257.4 297.8 t8 254.5 295.9 257.4 295.0 p 252.0 297.8 254.5 295.9 257.4 297.8 t8 252.0 297.8 254.5 295.9 p 257.4 292.3 265.9 292.3 265.9 297.8 257.4 297.8 s2 265.5 292.6 263.7 292.3 257.4 292.3 261.7 295.0 s3 265.5 292.6 263.7 292.3 p 265.9 293.0 265.5 292.6 261.7 295.0 265.9 297.8 s3 265.9 293.0 265.5 292.6 p 265.9 297.8 261.7 295.0 257.4 297.8 t3 257.4 297.8 261.7 295.0 257.4 292.3 t3 264.2 293.4 257.6 292.3 257.4 292.3 261.7 295.0 s4 264.2 293.4 257.6 292.3 p 265.9 294.9 264.2 293.4 261.7 295.0 265.9 297.8 s4 265.9 294.9 264.2 293.4 p 265.9 297.8 261.7 295.0 257.4 297.8 t4 257.4 297.8 261.7 295.0 257.4 292.3 t4 259.4 293.6 263.0 294.2 261.7 295.0 t5 259.4 293.6 263.0 294.2 p 265.9 296.8 263.0 294.2 261.7 295.0 265.9 297.8 s5 265.9 296.8 263.0 294.2 p 265.9 297.8 261.7 295.0 257.4 297.8 t5 259.4 293.6 257.4 292.9 257.4 297.8 261.7 295.0 s5 259.4 293.6 257.4 292.9 p 261.5 295.0 261.7 295.0 261.7 295.0 t6 261.5 295.0 261.7 295.0 p 261.7 295.0 262.1 295.3 261.7 295.0 t6 261.7 295.0 262.1 295.3 p 265.3 297.8 262.1 295.3 261.7 295.0 257.4 297.8 s6 265.3 297.8 262.1 295.3 p 261.5 295.0 257.4 293.6 257.4 297.8 261.7 295.0 s6 261.5 295.0 257.4 293.6 p 261.0 295.5 264.0 297.8 257.4 297.8 t7 261.0 295.5 264.0 297.8 p 257.4 294.3 261.0 295.5 257.4 297.8 t7 257.4 294.3 261.0 295.5 p 260.3 295.9 262.7 297.8 257.4 297.8 t8 260.3 295.9 262.7 297.8 p 257.4 295.0 260.3 295.9 257.4 297.8 t8 257.4 295.0 260.3 295.9 p 265.9 292.3 274.5 292.3 274.5 297.8 265.9 297.8 s1 272.5 293.6 270.1 292.3 265.9 292.3 270.2 295.0 s2 272.5 293.6 270.1 292.3 p 272.5 293.6 273.2 296.9 270.2 295.0 t2 272.5 293.6 273.2 296.9 p 273.7 297.8 273.2 296.9 270.2 295.0 265.9 297.8 s2 273.7 297.8 273.2 296.9 p 265.9 297.8 270.2 295.0 265.9 292.3 t2 269.9 295.3 271.5 297.8 265.9 297.8 t3 269.9 295.3 271.5 297.8 p 265.9 293.0 269.9 295.3 265.9 297.8 t3 265.9 293.0 269.9 295.3 p 268.3 296.3 269.3 297.8 265.9 297.8 t4 268.3 296.3 269.3 297.8 p 265.9 294.9 268.3 296.3 265.9 297.8 t4 265.9 294.9 268.3 296.3 p 266.8 297.3 267.1 297.8 265.9 297.8 t5 266.8 297.3 267.1 297.8 p 265.9 296.8 266.8 297.3 265.9 297.8 t5 265.9 296.8 266.8 297.3 p 274.5 292.3 283.1 292.3 283.1 297.8 274.5 297.8 s1 283.1 292.3 291.7 292.3 291.7 297.8 283.1 297.8 s1 287.6 292.3 285.1 293.6 287.4 295.0 291.7 292.3 s2 287.6 292.3 285.1 293.6 p 291.7 292.3 287.4 295.0 291.7 297.8 t2 284.4 296.9 283.9 297.8 291.7 297.8 287.4 295.0 s2 284.4 296.9 283.9 297.8 p 284.4 296.9 285.1 293.6 287.4 295.0 t2 284.4 296.9 285.1 293.6 p 287.7 295.3 291.7 293.0 291.7 297.8 t3 287.7 295.3 291.7 293.0 p 286.1 297.8 287.7 295.3 291.7 297.8 t3 286.1 297.8 287.7 295.3 p 289.3 296.3 291.7 294.9 291.7 297.8 t4 289.3 296.3 291.7 294.9 p 288.3 297.8 289.3 296.3 291.7 297.8 t4 288.3 297.8 289.3 296.3 p 290.9 297.3 291.7 296.8 291.7 297.8 t5 290.9 297.3 291.7 296.8 p 290.5 297.8 290.9 297.3 291.7 297.8 t5 290.5 297.8 290.9 297.3 p 291.7 292.3 300.3 292.3 300.3 297.8 291.7 297.8 s2 293.9 292.3 292.1 292.6 296.0 295.0 300.3 292.3 s3 293.9 292.3 292.1 292.6 p 300.3 292.3 296.0 295.0 300.3 297.8 t3 300.3 297.8 296.0 295.0 291.7 297.8 t3 292.1 292.6 291.7 293.0 291.7 297.8 296.0 295.0 s3 292.1 292.6 291.7 293.0 p 300.1 292.3 293.4 293.4 296.0 295.0 300.3 292.3 s4 300.1 292.3 293.4 293.4 p 300.3 292.3 296.0 295.0 300.3 297.8 t4 300.3 297.8 296.0 295.0 291.7 297.8 t4 293.4 293.4 291.7 294.9 291.7 297.8 296.0 295.0 s4 293.4 293.4 291.7 294.9 p 294.6 294.2 298.2 293.6 296.0 295.0 t5 294.6 294.2 298.2 293.6 p 300.3 292.9 298.2 293.6 296.0 295.0 300.3 297.8 s5 300.3 292.9 298.2 293.6 p 300.3 297.8 296.0 295.0 291.7 297.8 t5 294.6 294.2 291.7 296.8 291.7 297.8 296.0 295.0 s5 294.6 294.2 291.7 296.8 p 295.9 295.0 296.1 295.0 296.0 295.0 t6 295.9 295.0 296.1 295.0 p 300.3 293.6 296.1 295.0 296.0 295.0 300.3 297.8 s6 300.3 293.6 296.1 295.0 p 295.5 295.3 292.3 297.8 300.3 297.8 296.0 295.0 s6 295.5 295.3 292.3 297.8 p 295.5 295.3 295.9 295.0 296.0 295.0 t6 295.5 295.3 295.9 295.0 p 296.6 295.5 300.3 294.3 300.3 297.8 t7 296.6 295.5 300.3 294.3 p 293.6 297.8 296.6 295.5 300.3 297.8 t7 293.6 297.8 296.6 295.5 p 297.4 295.9 300.3 295.0 300.3 297.8 t8 297.4 295.9 300.3 295.0 p 294.9 297.8 297.4 295.9 300.3 297.8 t8 294.9 297.8 297.4 295.9 p 0.0 286.8 8.6 286.8 8.6 292.3 0.0 292.3 s1 1.5 287.7 6.2 288.3 4.3 289.5 t2 1.5 287.7 6.2 288.3 p 8.6 289.4 6.2 288.3 4.3 289.5 8.6 292.3 s2 8.6 289.4 6.2 288.3 p 8.6 292.3 4.3 289.5 0.0 292.3 t2 1.5 287.7 0.0 287.4 0.0 292.3 4.3 289.5 s2 1.5 287.7 0.0 287.4 p 2.8 290.5 6.3 292.3 0.0 292.3 t3 2.8 290.5 6.3 292.3 p 0.0 289.8 2.8 290.5 0.0 292.3 t3 0.0 289.8 2.8 290.5 p 0.1 292.2 0.2 292.3 0.0 292.3 t4 0.1 292.2 0.2 292.3 p 0.0 292.2 0.1 292.2 0.0 292.3 t4 0.0 292.2 0.1 292.2 p 8.6 286.8 17.2 286.8 17.2 292.3 8.6 292.3 s1 11.3 290.5 12.7 292.3 8.6 292.3 t2 11.3 290.5 12.7 292.3 p 8.6 289.4 11.3 290.5 8.6 292.3 t2 8.6 289.4 11.3 290.5 p 17.2 286.8 25.7 286.8 25.7 292.3 17.2 292.3 s1 25.7 286.8 34.3 286.8 34.3 292.3 25.7 292.3 s1 31.6 290.5 34.3 289.4 34.3 292.3 t2 31.6 290.5 34.3 289.4 p 30.2 292.3 31.6 290.5 34.3 292.3 t2 30.2 292.3 31.6 290.5 p 34.3 286.8 42.9 286.8 42.9 292.3 34.3 292.3 s1 36.7 288.3 41.4 287.7 38.6 289.5 t2 36.7 288.3 41.4 287.7 p 42.9 287.4 41.4 287.7 38.6 289.5 42.9 292.3 s2 42.9 287.4 41.4 287.7 p 42.9 292.3 38.6 289.5 34.3 292.3 t2 36.7 288.3 34.3 289.4 34.3 292.3 38.6 289.5 s2 36.7 288.3 34.3 289.4 p 40.1 290.5 42.9 289.8 42.9 292.3 t3 40.1 290.5 42.9 289.8 p 36.6 292.3 40.1 290.5 42.9 292.3 t3 36.6 292.3 40.1 290.5 p 42.8 292.2 42.9 292.2 42.9 292.3 t4 42.8 292.2 42.9 292.2 p 42.7 292.3 42.8 292.2 42.9 292.3 t4 42.7 292.3 42.8 292.2 p 42.9 286.8 51.5 286.8 51.5 292.3 42.9 292.3 s1 44.4 287.7 49.1 288.3 47.2 289.5 t2 44.4 287.7 49.1 288.3 p 51.5 289.4 49.1 288.3 47.2 289.5 51.5 292.3 s2 51.5 289.4 49.1 288.3 p 51.5 292.3 47.2 289.5 42.9 292.3 t2 44.4 287.7 42.9 287.4 42.9 292.3 47.2 289.5 s2 44.4 287.7 42.9 287.4 p 45.7 290.5 49.2 292.3 42.9 292.3 t3 45.7 290.5 49.2 292.3 p 42.9 289.8 45.7 290.5 42.9 292.3 t3 42.9 289.8 45.7 290.5 p 43.0 292.2 43.1 292.3 42.9 292.3 t4 43.0 292.2 43.1 292.3 p 42.9 292.2 43.0 292.2 42.9 292.3 t4 42.9 292.2 43.0 292.2 p 51.5 286.8 60.1 286.8 60.1 292.3 51.5 292.3 s1 54.2 290.5 55.6 292.3 51.5 292.3 t2 54.2 290.5 55.6 292.3 p 51.5 289.4 54.2 290.5 51.5 292.3 t2 51.5 289.4 54.2 290.5 p 60.1 286.8 68.6 286.8 68.6 292.3 60.1 292.3 s1 68.6 286.8 77.2 286.8 77.2 292.3 68.6 292.3 s1 74.5 290.5 77.2 289.4 77.2 292.3 t2 74.5 290.5 77.2 289.4 p 73.1 292.3 74.5 290.5 77.2 292.3 t2 73.1 292.3 74.5 290.5 p 77.2 286.8 85.8 286.8 85.8 292.3 77.2 292.3 s1 79.6 288.3 84.3 287.7 81.5 289.5 t2 79.6 288.3 84.3 287.7 p 85.8 287.4 84.3 287.7 81.5 289.5 85.8 292.3 s2 85.8 287.4 84.3 287.7 p 85.8 292.3 81.5 289.5 77.2 292.3 t2 79.6 288.3 77.2 289.4 77.2 292.3 81.5 289.5 s2 79.6 288.3 77.2 289.4 p 83.0 290.5 85.8 289.8 85.8 292.3 t3 83.0 290.5 85.8 289.8 p 79.5 292.3 83.0 290.5 85.8 292.3 t3 79.5 292.3 83.0 290.5 p 85.7 292.2 85.8 292.2 85.8 292.3 t4 85.7 292.2 85.8 292.2 p 85.6 292.3 85.7 292.2 85.8 292.3 t4 85.6 292.3 85.7 292.2 p 85.8 286.8 94.4 286.8 94.4 292.3 85.8 292.3 s1 87.3 287.7 92.0 288.3 90.1 289.5 t2 87.3 287.7 92.0 288.3 p 94.4 289.4 92.0 288.3 90.1 289.5 94.4 292.3 s2 94.4 289.4 92.0 288.3 p 94.4 292.3 90.1 289.5 85.8 292.3 t2 87.3 287.7 85.8 287.4 85.8 292.3 90.1 289.5 s2 87.3 287.7 85.8 287.4 p 88.6 290.5 92.1 292.3 85.8 292.3 t3 88.6 290.5 92.1 292.3 p 85.8 289.8 88.6 290.5 85.8 292.3 t3 85.8 289.8 88.6 290.5 p 85.9 292.2 86.0 292.3 85.8 292.3 t4 85.9 292.2 86.0 292.3 p 85.8 292.2 85.9 292.2 85.8 292.3 t4 85.8 292.2 85.9 292.2 p 94.4 286.8 102.9 286.8 102.9 292.3 94.4 292.3 s1 97.1 290.5 98.5 292.3 94.4 292.3 t2 97.1 290.5 98.5 292.3 p 94.4 289.4 97.1 290.5 94.4 292.3 t2 94.4 289.4 97.1 290.5 p 102.9 286.8 111.5 286.8 111.5 292.3 102.9 292.3 s1 111.5 286.8 120.1 286.8 120.1 292.3 111.5 292.3 s1 117.4 290.5 120.1 289.4 120.1 292.3 t2 117.4 290.5 120.1 289.4 p 116.0 292.3 117.4 290.5 120.1 292.3 t2 116.0 292.3 117.4 290.5 p 120.1 286.8 128.7 286.8 128.7 292.3 120.1 292.3 s1 122.5 288.3 127.2 287.7 124.4 289.5 t2 122.5 288.3 127.2 287.7 p 128.7 287.4 127.2 287.7 124.4 289.5 128.7 292.3 s2 128.7 287.4 127.2 287.7 p 128.7 292.3 124.4 289.5 120.1 292.3 t2 122.5 288.3 120.1 289.4 120.1 292.3 124.4 289.5 s2 122.5 288.3 120.1 289.4 p 125.9 290.5 128.7 289.8 128.7 292.3 t3 125.9 290.5 128.7 289.8 p 122.3 292.3 125.9 290.5 128.7 292.3 t3 122.3 292.3 125.9 290.5 p 128.6 292.2 128.7 292.2 128.7 292.3 t4 128.6 292.2 128.7 292.2 p 128.5 292.3 128.6 292.2 128.7 292.3 t4 128.5 292.3 128.6 292.2 p 128.7 286.8 137.3 286.8 137.3 292.3 128.7 292.3 s1 130.2 287.7 134.9 288.3 133.0 289.5 t2 130.2 287.7 134.9 288.3 p 137.3 289.4 134.9 288.3 133.0 289.5 137.3 292.3 s2 137.3 289.4 134.9 288.3 p 137.3 292.3 133.0 289.5 128.7 292.3 t2 130.2 287.7 128.7 287.4 128.7 292.3 133.0 289.5 s2 130.2 287.7 128.7 287.4 p 131.5 290.5 135.0 292.3 128.7 292.3 t3 131.5 290.5 135.0 292.3 p 128.7 289.8 131.5 290.5 128.7 292.3 t3 128.7 289.8 131.5 290.5 p 128.8 292.2 128.9 292.3 128.7 292.3 t4 128.8 292.2 128.9 292.3 p 128.7 292.2 128.8 292.2 128.7 292.3 t4 128.7 292.2 128.8 292.2 p 137.3 286.8 145.8 286.8 145.8 292.3 137.3 292.3 s1 140.0 290.5 141.4 292.3 137.3 292.3 t2 140.0 290.5 141.4 292.3 p 137.3 289.4 140.0 290.5 137.3 292.3 t2 137.3 289.4 140.0 290.5 p 145.8 286.8 154.4 286.8 154.4 292.3 145.8 292.3 s1 154.4 286.8 163.0 286.8 163.0 292.3 154.4 292.3 s1 160.3 290.5 163.0 289.4 163.0 292.3 t2 160.3 290.5 163.0 289.4 p 158.9 292.3 160.3 290.5 163.0 292.3 t2 158.9 292.3 160.3 290.5 p 163.0 286.8 171.6 286.8 171.6 292.3 163.0 292.3 s1 165.4 288.3 170.1 287.7 167.3 289.5 t2 165.4 288.3 170.1 287.7 p 171.6 287.4 170.1 287.7 167.3 289.5 171.6 292.3 s2 171.6 287.4 170.1 287.7 p 171.6 292.3 167.3 289.5 163.0 292.3 t2 165.4 288.3 163.0 289.4 163.0 292.3 167.3 289.5 s2 165.4 288.3 163.0 289.4 p 168.8 290.5 171.6 289.8 171.6 292.3 t3 168.8 290.5 171.6 289.8 p 165.2 292.3 168.8 290.5 171.6 292.3 t3 165.2 292.3 168.8 290.5 p 171.5 292.2 171.6 292.2 171.6 292.3 t4 171.5 292.2 171.6 292.2 p 171.4 292.3 171.5 292.2 171.6 292.3 t4 171.4 292.3 171.5 292.2 p 171.6 286.8 180.2 286.8 180.2 292.3 171.6 292.3 s1 173.1 287.7 177.8 288.3 175.9 289.5 t2 173.1 287.7 177.8 288.3 p 180.2 289.4 177.8 288.3 175.9 289.5 180.2 292.3 s2 180.2 289.4 177.8 288.3 p 180.2 292.3 175.9 289.5 171.6 292.3 t2 173.1 287.7 171.6 287.4 171.6 292.3 175.9 289.5 s2 173.1 287.7 171.6 287.4 p 174.4 290.5 177.9 292.3 171.6 292.3 t3 174.4 290.5 177.9 292.3 p 171.6 289.8 174.4 290.5 171.6 292.3 t3 171.6 289.8 174.4 290.5 p 171.7 292.2 171.8 292.3 171.6 292.3 t4 171.7 292.2 171.8 292.3 p 171.6 292.2 171.7 292.2 171.6 292.3 t4 171.6 292.2 171.7 292.2 p 180.2 286.8 188.7 286.8 188.7 292.3 180.2 292.3 s1 182.9 290.5 184.3 292.3 180.2 292.3 t2 182.9 290.5 184.3 292.3 p 180.2 289.4 182.9 290.5 180.2 292.3 t2 180.2 289.4 182.9 290.5 p 188.7 286.8 197.3 286.8 197.3 292.3 188.7 292.3 s1 197.3 286.8 205.9 286.8 205.9 292.3 197.3 292.3 s1 203.2 290.5 205.9 289.4 205.9 292.3 t2 203.2 290.5 205.9 289.4 p 201.8 292.3 203.2 290.5 205.9 292.3 t2 201.8 292.3 203.2 290.5 p 205.9 286.8 214.5 286.8 214.5 292.3 205.9 292.3 s1 208.2 288.3 213.0 287.7 210.2 289.5 t2 208.2 288.3 213.0 287.7 p 214.5 287.4 213.0 287.7 210.2 289.5 214.5 292.3 s2 214.5 287.4 213.0 287.7 p 214.5 292.3 210.2 289.5 205.9 292.3 t2 208.2 288.3 205.9 289.4 205.9 292.3 210.2 289.5 s2 208.2 288.3 205.9 289.4 p 211.7 290.5 214.5 289.8 214.5 292.3 t3 211.7 290.5 214.5 289.8 p 208.1 292.3 211.7 290.5 214.5 292.3 t3 208.1 292.3 211.7 290.5 p 214.4 292.2 214.5 292.2 214.5 292.3 t4 214.4 292.2 214.5 292.2 p 214.3 292.3 214.4 292.2 214.5 292.3 t4 214.3 292.3 214.4 292.2 p 214.5 286.8 223.1 286.8 223.1 292.3 214.5 292.3 s1 216.0 287.7 220.7 288.3 218.8 289.5 t2 216.0 287.7 220.7 288.3 p 223.1 289.4 220.7 288.3 218.8 289.5 223.1 292.3 s2 223.1 289.4 220.7 288.3 p 223.1 292.3 218.8 289.5 214.5 292.3 t2 216.0 287.7 214.5 287.4 214.5 292.3 218.8 289.5 s2 216.0 287.7 214.5 287.4 p 217.3 290.5 220.8 292.3 214.5 292.3 t3 217.3 290.5 220.8 292.3 p 214.5 289.8 217.3 290.5 214.5 292.3 t3 214.5 289.8 217.3 290.5 p 214.6 292.2 214.7 292.3 214.5 292.3 t4 214.6 292.2 214.7 292.3 p 214.5 292.2 214.6 292.2 214.5 292.3 t4 214.5 292.2 214.6 292.2 p 223.1 286.8 231.6 286.8 231.6 292.3 223.1 292.3 s1 225.8 290.5 227.2 292.3 223.1 292.3 t2 225.8 290.5 227.2 292.3 p 223.1 289.4 225.8 290.5 223.1 292.3 t2 223.1 289.4 225.8 290.5 p 231.6 286.8 240.2 286.8 240.2 292.3 231.6 292.3 s1 240.2 286.8 248.8 286.8 248.8 292.3 240.2 292.3 s1 246.1 290.5 248.8 289.4 248.8 292.3 t2 246.1 290.5 248.8 289.4 p 244.7 292.3 246.1 290.5 248.8 292.3 t2 244.7 292.3 246.1 290.5 p 248.8 286.8 257.4 286.8 257.4 292.3 248.8 292.3 s1 251.1 288.3 255.9 287.7 253.1 289.5 t2 251.1 288.3 255.9 287.7 p 257.4 287.4 255.9 287.7 253.1 289.5 257.4 292.3 s2 257.4 287.4 255.9 287.7 p 257.4 292.3 253.1 289.5 248.8 292.3 t2 251.1 288.3 248.8 289.4 248.8 292.3 253.1 289.5 s2 251.1 288.3 248.8 289.4 p 254.5 290.5 257.4 289.8 257.4 292.3 t3 254.5 290.5 257.4 289.8 p 251.0 292.3 254.5 290.5 257.4 292.3 t3 251.0 292.3 254.5 290.5 p 257.3 292.2 257.4 292.2 257.4 292.3 t4 257.3 292.2 257.4 292.2 p 257.2 292.3 257.3 292.2 257.4 292.3 t4 257.2 292.3 257.3 292.2 p 257.4 286.8 265.9 286.8 265.9 292.3 257.4 292.3 s1 258.9 287.7 263.6 288.3 261.7 289.5 t2 258.9 287.7 263.6 288.3 p 265.9 289.4 263.6 288.3 261.7 289.5 265.9 292.3 s2 265.9 289.4 263.6 288.3 p 265.9 292.3 261.7 289.5 257.4 292.3 t2 258.9 287.7 257.4 287.4 257.4 292.3 261.7 289.5 s2 258.9 287.7 257.4 287.4 p 260.2 290.5 263.7 292.3 257.4 292.3 t3 260.2 290.5 263.7 292.3 p 257.4 289.8 260.2 290.5 257.4 292.3 t3 257.4 289.8 260.2 290.5 p 257.4 292.2 257.6 292.3 257.4 292.3 t4 257.4 292.2 257.6 292.3 p 257.4 292.2 257.4 292.2 257.4 292.3 t4 257.4 292.2 257.4 292.2 p 265.9 286.8 274.5 286.8 274.5 292.3 265.9 292.3 s1 268.6 290.5 270.1 292.3 265.9 292.3 t2 268.6 290.5 270.1 292.3 p 265.9 289.4 268.6 290.5 265.9 292.3 t2 265.9 289.4 268.6 290.5 p 274.5 286.8 283.1 286.8 283.1 292.3 274.5 292.3 s1 283.1 286.8 291.7 286.8 291.7 292.3 283.1 292.3 s1 289.0 290.5 291.7 289.4 291.7 292.3 t2 289.0 290.5 291.7 289.4 p 287.6 292.3 289.0 290.5 291.7 292.3 t2 287.6 292.3 289.0 290.5 p 291.7 286.8 300.3 286.8 300.3 292.3 291.7 292.3 s1 294.0 288.3 298.8 287.7 296.0 289.5 t2 294.0 288.3 298.8 287.7 p 300.3 287.4 298.8 287.7 296.0 289.5 300.3 292.3 s2 300.3 287.4 298.8 287.7 p 300.3 292.3 296.0 289.5 291.7 292.3 t2 294.0 288.3 291.7 289.4 291.7 292.3 296.0 289.5 s2 294.0 288.3 291.7 289.4 p 297.4 290.5 300.3 289.8 300.3 292.3 t3 297.4 290.5 300.3 289.8 p 293.9 292.3 297.4 290.5 300.3 292.3 t3 293.9 292.3 297.4 290.5 p 300.2 292.2 300.3 292.2 300.3 292.3 t4 300.2 292.2 300.3 292.2 p 300.1 292.3 300.2 292.2 300.3 292.3 t4 300.1 292.3 300.2 292.2 p 0.0 281.3 8.6 281.3 8.6 286.8 0.0 286.8 s1 8.6 281.3 17.2 281.3 17.2 286.8 8.6 286.8 s1 17.2 281.3 25.7 281.3 25.7 286.8 17.2 286.8 s1 25.7 281.3 34.3 281.3 34.3 286.8 25.7 286.8 s1 34.3 281.3 42.9 281.3 42.9 286.8 34.3 286.8 s1 42.9 281.3 51.5 281.3 51.5 286.8 42.9 286.8 s1 51.5 281.3 60.1 281.3 60.1 286.8 51.5 286.8 s1 60.1 281.3 68.6 281.3 68.6 286.8 60.1 286.8 s1 68.6 281.3 77.2 281.3 77.2 286.8 68.6 286.8 s1 77.2 281.3 85.8 281.3 85.8 286.8 77.2 286.8 s1 85.8 281.3 94.4 281.3 94.4 286.8 85.8 286.8 s1 94.4 281.3 102.9 281.3 102.9 286.8 94.4 286.8 s1 102.9 281.3 111.5 281.3 111.5 286.8 102.9 286.8 s1 111.5 281.3 120.1 281.3 120.1 286.8 111.5 286.8 s1 120.1 281.3 128.7 281.3 128.7 286.8 120.1 286.8 s1 128.7 281.3 137.3 281.3 137.3 286.8 128.7 286.8 s1 137.3 281.3 145.8 281.3 145.8 286.8 137.3 286.8 s1 145.8 281.3 154.4 281.3 154.4 286.8 145.8 286.8 s1 154.4 281.3 163.0 281.3 163.0 286.8 154.4 286.8 s1 163.0 281.3 171.6 281.3 171.6 286.8 163.0 286.8 s1 171.6 281.3 180.2 281.3 180.2 286.8 171.6 286.8 s1 180.2 281.3 188.7 281.3 188.7 286.8 180.2 286.8 s1 188.7 281.3 197.3 281.3 197.3 286.8 188.7 286.8 s1 197.3 281.3 205.9 281.3 205.9 286.8 197.3 286.8 s1 205.9 281.3 214.5 281.3 214.5 286.8 205.9 286.8 s1 214.5 281.3 223.1 281.3 223.1 286.8 214.5 286.8 s1 223.1 281.3 231.6 281.3 231.6 286.8 223.1 286.8 s1 231.6 281.3 240.2 281.3 240.2 286.8 231.6 286.8 s1 240.2 281.3 248.8 281.3 248.8 286.8 240.2 286.8 s1 248.8 281.3 257.4 281.3 257.4 286.8 248.8 286.8 s1 257.4 281.3 265.9 281.3 265.9 286.8 257.4 286.8 s1 265.9 281.3 274.5 281.3 274.5 286.8 265.9 286.8 s1 274.5 281.3 283.1 281.3 283.1 286.8 274.5 286.8 s1 283.1 281.3 291.7 281.3 291.7 286.8 283.1 286.8 s1 291.7 281.3 300.3 281.3 300.3 286.8 291.7 286.8 s1 0.0 275.7 8.6 275.7 8.6 281.3 0.0 281.3 s1 8.6 275.7 17.2 275.7 17.2 281.3 8.6 281.3 s1 17.2 275.7 25.7 275.7 25.7 281.3 17.2 281.3 s1 25.7 275.7 34.3 275.7 34.3 281.3 25.7 281.3 s1 34.3 275.7 42.9 275.7 42.9 281.3 34.3 281.3 s1 42.9 275.7 51.5 275.7 51.5 281.3 42.9 281.3 s1 51.5 275.7 60.1 275.7 60.1 281.3 51.5 281.3 s1 60.1 275.7 68.6 275.7 68.6 281.3 60.1 281.3 s1 68.6 275.7 77.2 275.7 77.2 281.3 68.6 281.3 s1 77.2 275.7 85.8 275.7 85.8 281.3 77.2 281.3 s1 85.8 275.7 94.4 275.7 94.4 281.3 85.8 281.3 s1 94.4 275.7 102.9 275.7 102.9 281.3 94.4 281.3 s1 102.9 275.7 111.5 275.7 111.5 281.3 102.9 281.3 s1 111.5 275.7 120.1 275.7 120.1 281.3 111.5 281.3 s1 120.1 275.7 128.7 275.7 128.7 281.3 120.1 281.3 s1 128.7 275.7 137.3 275.7 137.3 281.3 128.7 281.3 s1 137.3 275.7 145.8 275.7 145.8 281.3 137.3 281.3 s1 145.8 275.7 154.4 275.7 154.4 281.3 145.8 281.3 s1 154.4 275.7 163.0 275.7 163.0 281.3 154.4 281.3 s1 163.0 275.7 171.6 275.7 171.6 281.3 163.0 281.3 s1 171.6 275.7 180.2 275.7 180.2 281.3 171.6 281.3 s1 180.2 275.7 188.7 275.7 188.7 281.3 180.2 281.3 s1 188.7 275.7 197.3 275.7 197.3 281.3 188.7 281.3 s1 197.3 275.7 205.9 275.7 205.9 281.3 197.3 281.3 s1 205.9 275.7 214.5 275.7 214.5 281.3 205.9 281.3 s1 214.5 275.7 223.1 275.7 223.1 281.3 214.5 281.3 s1 223.1 275.7 231.6 275.7 231.6 281.3 223.1 281.3 s1 231.6 275.7 240.2 275.7 240.2 281.3 231.6 281.3 s1 240.2 275.7 248.8 275.7 248.8 281.3 240.2 281.3 s1 248.8 275.7 257.4 275.7 257.4 281.3 248.8 281.3 s1 257.4 275.7 265.9 275.7 265.9 281.3 257.4 281.3 s1 265.9 275.7 274.5 275.7 274.5 281.3 265.9 281.3 s1 274.5 275.7 283.1 275.7 283.1 281.3 274.5 281.3 s1 283.1 275.7 291.7 275.7 291.7 281.3 283.1 281.3 s1 291.7 275.7 300.3 275.7 300.3 281.3 291.7 281.3 s1 0.0 270.2 8.6 270.2 8.6 275.7 0.0 275.7 s1 8.6 270.2 17.2 270.2 17.2 275.7 8.6 275.7 s1 17.2 270.2 25.7 270.2 25.7 275.7 17.2 275.7 s1 25.7 270.2 34.3 270.2 34.3 275.7 25.7 275.7 s1 34.3 270.2 42.9 270.2 42.9 275.7 34.3 275.7 s1 42.9 270.2 51.5 270.2 51.5 275.7 42.9 275.7 s1 51.5 270.2 60.1 270.2 60.1 275.7 51.5 275.7 s1 60.1 270.2 68.6 270.2 68.6 275.7 60.1 275.7 s1 68.6 270.2 77.2 270.2 77.2 275.7 68.6 275.7 s1 77.2 270.2 85.8 270.2 85.8 275.7 77.2 275.7 s1 85.8 270.2 94.4 270.2 94.4 275.7 85.8 275.7 s1 94.4 270.2 102.9 270.2 102.9 275.7 94.4 275.7 s1 102.9 270.2 111.5 270.2 111.5 275.7 102.9 275.7 s1 111.5 270.2 120.1 270.2 120.1 275.7 111.5 275.7 s1 120.1 270.2 128.7 270.2 128.7 275.7 120.1 275.7 s1 128.7 270.2 137.3 270.2 137.3 275.7 128.7 275.7 s1 137.3 270.2 145.8 270.2 145.8 275.7 137.3 275.7 s1 145.8 270.2 154.4 270.2 154.4 275.7 145.8 275.7 s1 154.4 270.2 163.0 270.2 163.0 275.7 154.4 275.7 s1 163.0 270.2 171.6 270.2 171.6 275.7 163.0 275.7 s1 171.6 270.2 180.2 270.2 180.2 275.7 171.6 275.7 s1 180.2 270.2 188.7 270.2 188.7 275.7 180.2 275.7 s1 188.7 270.2 197.3 270.2 197.3 275.7 188.7 275.7 s1 197.3 270.2 205.9 270.2 205.9 275.7 197.3 275.7 s1 205.9 270.2 214.5 270.2 214.5 275.7 205.9 275.7 s1 214.5 270.2 223.1 270.2 223.1 275.7 214.5 275.7 s1 223.1 270.2 231.6 270.2 231.6 275.7 223.1 275.7 s1 231.6 270.2 240.2 270.2 240.2 275.7 231.6 275.7 s1 240.2 270.2 248.8 270.2 248.8 275.7 240.2 275.7 s1 248.8 270.2 257.4 270.2 257.4 275.7 248.8 275.7 s1 257.4 270.2 265.9 270.2 265.9 275.7 257.4 275.7 s1 265.9 270.2 274.5 270.2 274.5 275.7 265.9 275.7 s1 274.5 270.2 283.1 270.2 283.1 275.7 274.5 275.7 s1 283.1 270.2 291.7 270.2 291.7 275.7 283.1 275.7 s1 291.7 270.2 300.3 270.2 300.3 275.7 291.7 275.7 s1 0.0 264.7 8.6 264.7 8.6 270.2 0.0 270.2 s1 8.6 264.7 17.2 264.7 17.2 270.2 8.6 270.2 s1 17.2 264.7 25.7 264.7 25.7 270.2 17.2 270.2 s1 25.7 264.7 34.3 264.7 34.3 270.2 25.7 270.2 s1 34.3 264.7 42.9 264.7 42.9 270.2 34.3 270.2 s1 42.9 264.7 51.5 264.7 51.5 270.2 42.9 270.2 s1 51.5 264.7 60.1 264.7 60.1 270.2 51.5 270.2 s1 60.1 264.7 68.6 264.7 68.6 270.2 60.1 270.2 s1 68.6 264.7 77.2 264.7 77.2 270.2 68.6 270.2 s1 77.2 264.7 85.8 264.7 85.8 270.2 77.2 270.2 s1 85.8 264.7 94.4 264.7 94.4 270.2 85.8 270.2 s1 94.4 264.7 102.9 264.7 102.9 270.2 94.4 270.2 s1 102.9 264.7 111.5 264.7 111.5 270.2 102.9 270.2 s1 111.5 264.7 120.1 264.7 120.1 270.2 111.5 270.2 s1 120.1 264.7 128.7 264.7 128.7 270.2 120.1 270.2 s1 128.7 264.7 137.3 264.7 137.3 270.2 128.7 270.2 s1 137.3 264.7 145.8 264.7 145.8 270.2 137.3 270.2 s1 145.8 264.7 154.4 264.7 154.4 270.2 145.8 270.2 s1 154.4 264.7 163.0 264.7 163.0 270.2 154.4 270.2 s1 163.0 264.7 171.6 264.7 171.6 270.2 163.0 270.2 s1 171.6 264.7 180.2 264.7 180.2 270.2 171.6 270.2 s1 180.2 264.7 188.7 264.7 188.7 270.2 180.2 270.2 s1 188.7 264.7 197.3 264.7 197.3 270.2 188.7 270.2 s1 197.3 264.7 205.9 264.7 205.9 270.2 197.3 270.2 s1 205.9 264.7 214.5 264.7 214.5 270.2 205.9 270.2 s1 214.5 264.7 223.1 264.7 223.1 270.2 214.5 270.2 s1 223.1 264.7 231.6 264.7 231.6 270.2 223.1 270.2 s1 231.6 264.7 240.2 264.7 240.2 270.2 231.6 270.2 s1 240.2 264.7 248.8 264.7 248.8 270.2 240.2 270.2 s1 248.8 264.7 257.4 264.7 257.4 270.2 248.8 270.2 s1 257.4 264.7 265.9 264.7 265.9 270.2 257.4 270.2 s1 265.9 264.7 274.5 264.7 274.5 270.2 265.9 270.2 s1 274.5 264.7 283.1 264.7 283.1 270.2 274.5 270.2 s1 283.1 264.7 291.7 264.7 291.7 270.2 283.1 270.2 s1 291.7 264.7 300.3 264.7 300.3 270.2 291.7 270.2 s1 0.0 259.2 8.6 259.2 8.6 264.7 0.0 264.7 s1 3.0 259.2 0.7 259.6 0.0 259.2 t2 3.0 259.2 0.7 259.6 p 0.7 259.6 0.0 259.7 0.0 259.2 t2 0.7 259.6 0.0 259.7 p 8.6 259.2 17.2 259.2 17.2 264.7 8.6 264.7 s1 17.2 259.2 25.7 259.2 25.7 264.7 17.2 264.7 s1 25.7 259.2 34.3 259.2 34.3 264.7 25.7 264.7 s1 34.3 259.2 42.9 259.2 42.9 264.7 34.3 264.7 s1 42.2 259.6 39.9 259.2 42.9 259.2 t2 42.2 259.6 39.9 259.2 p 42.9 259.7 42.2 259.6 42.9 259.2 t2 42.9 259.7 42.2 259.6 p 42.9 259.2 51.5 259.2 51.5 264.7 42.9 264.7 s1 45.9 259.2 43.6 259.6 42.9 259.2 t2 45.9 259.2 43.6 259.6 p 43.6 259.6 42.9 259.7 42.9 259.2 t2 43.6 259.6 42.9 259.7 p 51.5 259.2 60.1 259.2 60.1 264.7 51.5 264.7 s1 60.1 259.2 68.6 259.2 68.6 264.7 60.1 264.7 s1 68.6 259.2 77.2 259.2 77.2 264.7 68.6 264.7 s1 77.2 259.2 85.8 259.2 85.8 264.7 77.2 264.7 s1 85.1 259.6 82.8 259.2 85.8 259.2 t2 85.1 259.6 82.8 259.2 p 85.8 259.7 85.1 259.6 85.8 259.2 t2 85.8 259.7 85.1 259.6 p 85.8 259.2 94.4 259.2 94.4 264.7 85.8 264.7 s1 88.8 259.2 86.4 259.6 85.8 259.2 t2 88.8 259.2 86.4 259.6 p 86.4 259.6 85.8 259.7 85.8 259.2 t2 86.4 259.6 85.8 259.7 p 94.4 259.2 102.9 259.2 102.9 264.7 94.4 264.7 s1 102.9 259.2 111.5 259.2 111.5 264.7 102.9 264.7 s1 111.5 259.2 120.1 259.2 120.1 264.7 111.5 264.7 s1 120.1 259.2 128.7 259.2 128.7 264.7 120.1 264.7 s1 128.0 259.6 125.7 259.2 128.7 259.2 t2 128.0 259.6 125.7 259.2 p 128.7 259.7 128.0 259.6 128.7 259.2 t2 128.7 259.7 128.0 259.6 p 128.7 259.2 137.3 259.2 137.3 264.7 128.7 264.7 s1 131.7 259.2 129.3 259.6 128.7 259.2 t2 131.7 259.2 129.3 259.6 p 129.3 259.6 128.7 259.7 128.7 259.2 t2 129.3 259.6 128.7 259.7 p 137.3 259.2 145.8 259.2 145.8 264.7 137.3 264.7 s1 145.8 259.2 154.4 259.2 154.4 264.7 145.8 264.7 s1 154.4 259.2 163.0 259.2 163.0 264.7 154.4 264.7 s1 163.0 259.2 171.6 259.2 171.6 264.7 163.0 264.7 s1 170.9 259.6 168.6 259.2 171.6 259.2 t2 170.9 259.6 168.6 259.2 p 171.6 259.7 170.9 259.6 171.6 259.2 t2 171.6 259.7 170.9 259.6 p 171.6 259.2 180.2 259.2 180.2 264.7 171.6 264.7 s1 174.6 259.2 172.2 259.6 171.6 259.2 t2 174.6 259.2 172.2 259.6 p 172.2 259.6 171.6 259.7 171.6 259.2 t2 172.2 259.6 171.6 259.7 p 180.2 259.2 188.7 259.2 188.7 264.7 180.2 264.7 s1 188.7 259.2 197.3 259.2 197.3 264.7 188.7 264.7 s1 197.3 259.2 205.9 259.2 205.9 264.7 197.3 264.7 s1 205.9 259.2 214.5 259.2 214.5 264.7 205.9 264.7 s1 213.8 259.6 211.5 259.2 214.5 259.2 t2 213.8 259.6 211.5 259.2 p 214.5 259.7 213.8 259.6 214.5 259.2 t2 214.5 259.7 213.8 259.6 p 214.5 259.2 223.1 259.2 223.1 264.7 214.5 264.7 s1 217.5 259.2 215.1 259.6 214.5 259.2 t2 217.5 259.2 215.1 259.6 p 215.1 259.6 214.5 259.7 214.5 259.2 t2 215.1 259.6 214.5 259.7 p 223.1 259.2 231.6 259.2 231.6 264.7 223.1 264.7 s1 231.6 259.2 240.2 259.2 240.2 264.7 231.6 264.7 s1 240.2 259.2 248.8 259.2 248.8 264.7 240.2 264.7 s1 248.8 259.2 257.4 259.2 257.4 264.7 248.8 264.7 s1 256.7 259.6 254.4 259.2 257.4 259.2 t2 256.7 259.6 254.4 259.2 p 257.4 259.7 256.7 259.6 257.4 259.2 t2 257.4 259.7 256.7 259.6 p 257.4 259.2 265.9 259.2 265.9 264.7 257.4 264.7 s1 260.4 259.2 258.0 259.6 257.4 259.2 t2 260.4 259.2 258.0 259.6 p 258.0 259.6 257.4 259.7 257.4 259.2 t2 258.0 259.6 257.4 259.7 p 265.9 259.2 274.5 259.2 274.5 264.7 265.9 264.7 s1 274.5 259.2 283.1 259.2 283.1 264.7 274.5 264.7 s1 283.1 259.2 291.7 259.2 291.7 264.7 283.1 264.7 s1 291.7 259.2 300.3 259.2 300.3 264.7 291.7 264.7 s1 299.6 259.6 297.3 259.2 300.3 259.2 t2 299.6 259.6 297.3 259.2 p 300.3 259.7 299.6 259.6 300.3 259.2 t2 300.3 259.7 299.6 259.6 p 0.0 253.7 8.6 253.7 8.6 259.2 0.0 259.2 s1 0.0 253.7 4.3 256.4 8.6 253.7 t2 8.3 259.0 8.6 258.9 8.6 253.7 4.3 256.4 s2 8.3 259.0 8.6 258.9 p 3.0 259.2 8.3 259.0 4.3 256.4 0.0 259.2 s2 3.0 259.2 8.3 259.0 p 0.0 259.2 4.3 256.4 0.0 253.7 t2 0.0 253.7 4.3 256.4 8.6 253.7 t3 4.9 256.8 8.6 255.3 8.6 253.7 4.3 256.4 s3 4.9 256.8 8.6 255.3 p 4.9 256.8 3.6 256.9 4.3 256.4 t3 4.9 256.8 3.6 256.9 p 0.0 257.6 3.6 256.9 4.3 256.4 0.0 253.7 s3 0.0 257.6 3.6 256.9 p 6.0 253.7 2.7 255.4 0.0 253.7 t4 6.0 253.7 2.7 255.4 p 2.7 255.4 0.0 255.9 0.0 253.7 t4 2.7 255.4 0.0 255.9 p 1.6 253.7 0.7 254.1 0.0 253.7 t5 1.6 253.7 0.7 254.1 p 0.7 254.1 0.0 254.3 0.0 253.7 t5 0.7 254.1 0.0 254.3 p 8.6 253.7 17.2 253.7 17.2 259.2 8.6 259.2 s1 12.9 256.4 14.4 253.7 8.6 253.7 12.9 256.4 s2 12.9 256.4 14.4 253.7 p 12.9 256.4 12.9 256.5 12.9 256.4 t2 12.9 256.4 12.9 256.5 p 12.9 256.5 12.4 256.7 12.9 256.4 t2 12.9 256.5 12.4 256.7 p 8.6 258.9 12.4 256.7 12.9 256.4 8.6 253.7 s2 8.6 258.9 12.4 256.7 p 10.3 253.7 9.9 254.5 8.6 253.7 t3 10.3 253.7 9.9 254.5 p 9.9 254.5 8.6 255.3 8.6 253.7 t3 9.9 254.5 8.6 255.3 p 17.2 253.7 25.7 253.7 25.7 259.2 17.2 259.2 s1 25.7 253.7 34.3 253.7 34.3 259.2 25.7 259.2 s1 28.5 253.7 30.0 256.4 30.0 256.4 34.3 253.7 s2 28.5 253.7 30.0 256.4 p 30.5 256.7 34.3 258.9 34.3 253.7 30.0 256.4 s2 30.5 256.7 34.3 258.9 p 30.5 256.7 30.0 256.5 30.0 256.4 t2 30.5 256.7 30.0 256.5 p 30.0 256.5 30.0 256.4 30.0 256.4 t2 30.0 256.5 30.0 256.4 p 33.0 254.5 32.6 253.7 34.3 253.7 t3 33.0 254.5 32.6 253.7 p 34.3 255.3 33.0 254.5 34.3 253.7 t3 34.3 255.3 33.0 254.5 p 34.3 253.7 42.9 253.7 42.9 259.2 34.3 259.2 s1 34.3 253.7 38.6 256.4 42.9 253.7 t2 42.9 253.7 38.6 256.4 42.9 259.2 t2 34.6 259.0 39.9 259.2 42.9 259.2 38.6 256.4 s2 34.6 259.0 39.9 259.2 p 34.3 258.9 34.6 259.0 38.6 256.4 34.3 253.7 s2 34.3 258.9 34.6 259.0 p 34.3 253.7 38.6 256.4 42.9 253.7 t3 39.3 256.9 42.9 257.6 42.9 253.7 38.6 256.4 s3 39.3 256.9 42.9 257.6 p 39.3 256.9 38.0 256.8 38.6 256.4 t3 39.3 256.9 38.0 256.8 p 34.3 255.3 38.0 256.8 38.6 256.4 34.3 253.7 s3 34.3 255.3 38.0 256.8 p 40.2 255.4 36.8 253.7 42.9 253.7 t4 40.2 255.4 36.8 253.7 p 42.9 255.9 40.2 255.4 42.9 253.7 t4 42.9 255.9 40.2 255.4 p 42.2 254.1 41.3 253.7 42.9 253.7 t5 42.2 254.1 41.3 253.7 p 42.9 254.3 42.2 254.1 42.9 253.7 t5 42.9 254.3 42.2 254.1 p 42.9 253.7 51.5 253.7 51.5 259.2 42.9 259.2 s1 42.9 253.7 47.2 256.4 51.5 253.7 t2 51.2 259.0 51.5 258.9 51.5 253.7 47.2 256.4 s2 51.2 259.0 51.5 258.9 p 45.9 259.2 51.2 259.0 47.2 256.4 42.9 259.2 s2 45.9 259.2 51.2 259.0 p 42.9 259.2 47.2 256.4 42.9 253.7 t2 42.9 253.7 47.2 256.4 51.5 253.7 t3 47.8 256.8 51.5 255.3 51.5 253.7 47.2 256.4 s3 47.8 256.8 51.5 255.3 p 47.8 256.8 46.5 256.9 47.2 256.4 t3 47.8 256.8 46.5 256.9 p 42.9 257.6 46.5 256.9 47.2 256.4 42.9 253.7 s3 42.9 257.6 46.5 256.9 p 48.9 253.7 45.6 255.4 42.9 253.7 t4 48.9 253.7 45.6 255.4 p 45.6 255.4 42.9 255.9 42.9 253.7 t4 45.6 255.4 42.9 255.9 p 44.5 253.7 43.6 254.1 42.9 253.7 t5 44.5 253.7 43.6 254.1 p 43.6 254.1 42.9 254.3 42.9 253.7 t5 43.6 254.1 42.9 254.3 p 51.5 253.7 60.1 253.7 60.1 259.2 51.5 259.2 s1 55.8 256.4 57.3 253.7 51.5 253.7 55.8 256.4 s2 55.8 256.4 57.3 253.7 p 55.8 256.4 55.8 256.5 55.8 256.4 t2 55.8 256.4 55.8 256.5 p 55.8 256.5 55.3 256.7 55.8 256.4 t2 55.8 256.5 55.3 256.7 p 51.5 258.9 55.3 256.7 55.8 256.4 51.5 253.7 s2 51.5 258.9 55.3 256.7 p 53.2 253.7 52.8 254.5 51.5 253.7 t3 53.2 253.7 52.8 254.5 p 52.8 254.5 51.5 255.3 51.5 253.7 t3 52.8 254.5 51.5 255.3 p 60.1 253.7 68.6 253.7 68.6 259.2 60.1 259.2 s1 68.6 253.7 77.2 253.7 77.2 259.2 68.6 259.2 s1 71.4 253.7 72.9 256.4 72.9 256.4 77.2 253.7 s2 71.4 253.7 72.9 256.4 p 73.4 256.7 77.2 258.9 77.2 253.7 72.9 256.4 s2 73.4 256.7 77.2 258.9 p 73.4 256.7 72.9 256.5 72.9 256.4 t2 73.4 256.7 72.9 256.5 p 72.9 256.5 72.9 256.4 72.9 256.4 t2 72.9 256.5 72.9 256.4 p 75.9 254.5 75.5 253.7 77.2 253.7 t3 75.9 254.5 75.5 253.7 p 77.2 255.3 75.9 254.5 77.2 253.7 t3 77.2 255.3 75.9 254.5 p 77.2 253.7 85.8 253.7 85.8 259.2 77.2 259.2 s1 77.2 253.7 81.5 256.4 85.8 253.7 t2 85.8 253.7 81.5 256.4 85.8 259.2 t2 77.5 259.0 82.8 259.2 85.8 259.2 81.5 256.4 s2 77.5 259.0 82.8 259.2 p 77.2 258.9 77.5 259.0 81.5 256.4 77.2 253.7 s2 77.2 258.9 77.5 259.0 p 77.2 253.7 81.5 256.4 85.8 253.7 t3 82.2 256.9 85.8 257.6 85.8 253.7 81.5 256.4 s3 82.2 256.9 85.8 257.6 p 82.2 256.9 80.9 256.8 81.5 256.4 t3 82.2 256.9 80.9 256.8 p 77.2 255.3 80.9 256.8 81.5 256.4 77.2 253.7 s3 77.2 255.3 80.9 256.8 p 83.1 255.4 79.7 253.7 85.8 253.7 t4 83.1 255.4 79.7 253.7 p 85.8 255.9 83.1 255.4 85.8 253.7 t4 85.8 255.9 83.1 255.4 p 85.1 254.1 84.2 253.7 85.8 253.7 t5 85.1 254.1 84.2 253.7 p 85.8 254.3 85.1 254.1 85.8 253.7 t5 85.8 254.3 85.1 254.1 p 85.8 253.7 94.4 253.7 94.4 259.2 85.8 259.2 s1 85.8 253.7 90.1 256.4 94.4 253.7 t2 94.1 259.0 94.4 258.9 94.4 253.7 90.1 256.4 s2 94.1 259.0 94.4 258.9 p 88.8 259.2 94.1 259.0 90.1 256.4 85.8 259.2 s2 88.8 259.2 94.1 259.0 p 85.8 259.2 90.1 256.4 85.8 253.7 t2 85.8 253.7 90.1 256.4 94.4 253.7 t3 90.7 256.8 94.4 255.3 94.4 253.7 90.1 256.4 s3 90.7 256.8 94.4 255.3 p 90.7 256.8 89.4 256.9 90.1 256.4 t3 90.7 256.8 89.4 256.9 p 85.8 257.6 89.4 256.9 90.1 256.4 85.8 253.7 s3 85.8 257.6 89.4 256.9 p 91.8 253.7 88.5 255.4 85.8 253.7 t4 91.8 253.7 88.5 255.4 p 88.5 255.4 85.8 255.9 85.8 253.7 t4 88.5 255.4 85.8 255.9 p 87.4 253.7 86.5 254.1 85.8 253.7 t5 87.4 253.7 86.5 254.1 p 86.5 254.1 85.8 254.3 85.8 253.7 t5 86.5 254.1 85.8 254.3 p 94.4 253.7 102.9 253.7 102.9 259.2 94.4 259.2 s1 98.7 256.4 100.2 253.7 94.4 253.7 98.7 256.4 s2 98.7 256.4 100.2 253.7 p 98.7 256.4 98.7 256.5 98.7 256.4 t2 98.7 256.4 98.7 256.5 p 98.7 256.5 98.2 256.7 98.7 256.4 t2 98.7 256.5 98.2 256.7 p 94.4 258.9 98.2 256.7 98.7 256.4 94.4 253.7 s2 94.4 258.9 98.2 256.7 p 96.1 253.7 95.7 254.5 94.4 253.7 t3 96.1 253.7 95.7 254.5 p 95.7 254.5 94.4 255.3 94.4 253.7 t3 95.7 254.5 94.4 255.3 p 102.9 253.7 111.5 253.7 111.5 259.2 102.9 259.2 s1 111.5 253.7 120.1 253.7 120.1 259.2 111.5 259.2 s1 114.3 253.7 115.8 256.4 115.8 256.4 120.1 253.7 s2 114.3 253.7 115.8 256.4 p 116.3 256.7 120.1 258.9 120.1 253.7 115.8 256.4 s2 116.3 256.7 120.1 258.9 p 116.3 256.7 115.8 256.5 115.8 256.4 t2 116.3 256.7 115.8 256.5 p 115.8 256.5 115.8 256.4 115.8 256.4 t2 115.8 256.5 115.8 256.4 p 118.8 254.5 118.3 253.7 120.1 253.7 t3 118.8 254.5 118.3 253.7 p 120.1 255.3 118.8 254.5 120.1 253.7 t3 120.1 255.3 118.8 254.5 p 120.1 253.7 128.7 253.7 128.7 259.2 120.1 259.2 s1 120.1 253.7 124.4 256.4 128.7 253.7 t2 128.7 253.7 124.4 256.4 128.7 259.2 t2 120.4 259.0 125.7 259.2 128.7 259.2 124.4 256.4 s2 120.4 259.0 125.7 259.2 p 120.1 258.9 120.4 259.0 124.4 256.4 120.1 253.7 s2 120.1 258.9 120.4 259.0 p 120.1 253.7 124.4 256.4 128.7 253.7 t3 125.1 256.9 128.7 257.6 128.7 253.7 124.4 256.4 s3 125.1 256.9 128.7 257.6 p 125.1 256.9 123.8 256.8 124.4 256.4 t3 125.1 256.9 123.8 256.8 p 120.1 255.3 123.8 256.8 124.4 256.4 120.1 253.7 s3 120.1 255.3 123.8 256.8 p 126.0 255.4 122.6 253.7 128.7 253.7 t4 126.0 255.4 122.6 253.7 p 128.7 255.9 126.0 255.4 128.7 253.7 t4 128.7 255.9 126.0 255.4 p 128.0 254.1 127.1 253.7 128.7 253.7 t5 128.0 254.1 127.1 253.7 p 128.7 254.3 128.0 254.1 128.7 253.7 t5 128.7 254.3 128.0 254.1 p 128.7 253.7 137.3 253.7 137.3 259.2 128.7 259.2 s1 128.7 253.7 133.0 256.4 137.3 253.7 t2 137.0 259.0 137.3 258.9 137.3 253.7 133.0 256.4 s2 137.0 259.0 137.3 258.9 p 131.7 259.2 137.0 259.0 133.0 256.4 128.7 259.2 s2 131.7 259.2 137.0 259.0 p 128.7 259.2 133.0 256.4 128.7 253.7 t2 128.7 253.7 133.0 256.4 137.3 253.7 t3 133.6 256.8 137.3 255.3 137.3 253.7 133.0 256.4 s3 133.6 256.8 137.3 255.3 p 133.6 256.8 132.3 256.9 133.0 256.4 t3 133.6 256.8 132.3 256.9 p 128.7 257.6 132.3 256.9 133.0 256.4 128.7 253.7 s3 128.7 257.6 132.3 256.9 p 134.7 253.7 131.4 255.4 128.7 253.7 t4 134.7 253.7 131.4 255.4 p 131.4 255.4 128.7 255.9 128.7 253.7 t4 131.4 255.4 128.7 255.9 p 130.3 253.7 129.4 254.1 128.7 253.7 t5 130.3 253.7 129.4 254.1 p 129.4 254.1 128.7 254.3 128.7 253.7 t5 129.4 254.1 128.7 254.3 p 137.3 253.7 145.8 253.7 145.8 259.2 137.3 259.2 s1 141.6 256.4 143.1 253.7 137.3 253.7 141.6 256.4 s2 141.6 256.4 143.1 253.7 p 141.6 256.4 141.6 256.5 141.6 256.4 t2 141.6 256.4 141.6 256.5 p 141.6 256.5 141.1 256.7 141.6 256.4 t2 141.6 256.5 141.1 256.7 p 137.3 258.9 141.1 256.7 141.6 256.4 137.3 253.7 s2 137.3 258.9 141.1 256.7 p 139.0 253.7 138.6 254.5 137.3 253.7 t3 139.0 253.7 138.6 254.5 p 138.6 254.5 137.3 255.3 137.3 253.7 t3 138.6 254.5 137.3 255.3 p 145.8 253.7 154.4 253.7 154.4 259.2 145.8 259.2 s1 154.4 253.7 163.0 253.7 163.0 259.2 154.4 259.2 s1 157.2 253.7 158.7 256.4 158.7 256.4 163.0 253.7 s2 157.2 253.7 158.7 256.4 p 159.1 256.7 163.0 258.9 163.0 253.7 158.7 256.4 s2 159.1 256.7 163.0 258.9 p 159.1 256.7 158.6 256.5 158.7 256.4 t2 159.1 256.7 158.6 256.5 p 158.6 256.5 158.7 256.4 158.7 256.4 t2 158.6 256.5 158.7 256.4 p 161.7 254.5 161.2 253.7 163.0 253.7 t3 161.7 254.5 161.2 253.7 p 163.0 255.3 161.7 254.5 163.0 253.7 t3 163.0 255.3 161.7 254.5 p 163.0 253.7 171.6 253.7 171.6 259.2 163.0 259.2 s1 163.0 253.7 167.3 256.4 171.6 253.7 t2 171.6 253.7 167.3 256.4 171.6 259.2 t2 163.3 259.0 168.6 259.2 171.6 259.2 167.3 256.4 s2 163.3 259.0 168.6 259.2 p 163.0 258.9 163.3 259.0 167.3 256.4 163.0 253.7 s2 163.0 258.9 163.3 259.0 p 163.0 253.7 167.3 256.4 171.6 253.7 t3 168.0 256.9 171.6 257.6 171.6 253.7 167.3 256.4 s3 168.0 256.9 171.6 257.6 p 168.0 256.9 166.7 256.8 167.3 256.4 t3 168.0 256.9 166.7 256.8 p 163.0 255.3 166.7 256.8 167.3 256.4 163.0 253.7 s3 163.0 255.3 166.7 256.8 p 168.9 255.4 165.5 253.7 171.6 253.7 t4 168.9 255.4 165.5 253.7 p 171.6 255.9 168.9 255.4 171.6 253.7 t4 171.6 255.9 168.9 255.4 p 170.9 254.1 170.0 253.7 171.6 253.7 t5 170.9 254.1 170.0 253.7 p 171.6 254.3 170.9 254.1 171.6 253.7 t5 171.6 254.3 170.9 254.1 p 171.6 253.7 180.2 253.7 180.2 259.2 171.6 259.2 s1 171.6 253.7 175.9 256.4 180.2 253.7 t2 179.9 259.0 180.2 258.9 180.2 253.7 175.9 256.4 s2 179.9 259.0 180.2 258.9 p 174.6 259.2 179.9 259.0 175.9 256.4 171.6 259.2 s2 174.6 259.2 179.9 259.0 p 171.6 259.2 175.9 256.4 171.6 253.7 t2 171.6 253.7 175.9 256.4 180.2 253.7 t3 176.5 256.8 180.2 255.3 180.2 253.7 175.9 256.4 s3 176.5 256.8 180.2 255.3 p 176.5 256.8 175.2 256.9 175.9 256.4 t3 176.5 256.8 175.2 256.9 p 171.6 257.6 175.2 256.9 175.9 256.4 171.6 253.7 s3 171.6 257.6 175.2 256.9 p 177.6 253.7 174.3 255.4 171.6 253.7 t4 177.6 253.7 174.3 255.4 p 174.3 255.4 171.6 255.9 171.6 253.7 t4 174.3 255.4 171.6 255.9 p 173.2 253.7 172.3 254.1 171.6 253.7 t5 173.2 253.7 172.3 254.1 p 172.3 254.1 171.6 254.3 171.6 253.7 t5 172.3 254.1 171.6 254.3 p 180.2 253.7 188.7 253.7 188.7 259.2 180.2 259.2 s1 184.5 256.4 186.0 253.7 180.2 253.7 184.4 256.4 s2 184.5 256.4 186.0 253.7 p 184.5 256.4 184.5 256.5 184.4 256.4 t2 184.5 256.4 184.5 256.5 p 184.5 256.5 184.0 256.7 184.4 256.4 t2 184.5 256.5 184.0 256.7 p 180.2 258.9 184.0 256.7 184.4 256.4 180.2 253.7 s2 180.2 258.9 184.0 256.7 p 181.9 253.7 181.5 254.5 180.2 253.7 t3 181.9 253.7 181.5 254.5 p 181.5 254.5 180.2 255.3 180.2 253.7 t3 181.5 254.5 180.2 255.3 p 188.7 253.7 197.3 253.7 197.3 259.2 188.7 259.2 s1 197.3 253.7 205.9 253.7 205.9 259.2 197.3 259.2 s1 200.1 253.7 201.5 256.4 201.6 256.4 205.9 253.7 s2 200.1 253.7 201.5 256.4 p 202.0 256.7 205.9 258.9 205.9 253.7 201.6 256.4 s2 202.0 256.7 205.9 258.9 p 202.0 256.7 201.5 256.5 201.6 256.4 t2 202.0 256.7 201.5 256.5 p 201.5 256.5 201.5 256.4 201.6 256.4 t2 201.5 256.5 201.5 256.4 p 204.6 254.5 204.1 253.7 205.9 253.7 t3 204.6 254.5 204.1 253.7 p 205.9 255.3 204.6 254.5 205.9 253.7 t3 205.9 255.3 204.6 254.5 p 205.9 253.7 214.5 253.7 214.5 259.2 205.9 259.2 s1 205.9 253.7 210.2 256.4 214.5 253.7 t2 214.5 253.7 210.2 256.4 214.5 259.2 t2 206.2 259.0 211.5 259.2 214.5 259.2 210.2 256.4 s2 206.2 259.0 211.5 259.2 p 205.9 258.9 206.2 259.0 210.2 256.4 205.9 253.7 s2 205.9 258.9 206.2 259.0 p 205.9 253.7 210.2 256.4 214.5 253.7 t3 210.9 256.9 214.5 257.6 214.5 253.7 210.2 256.4 s3 210.9 256.9 214.5 257.6 p 210.9 256.9 209.5 256.8 210.2 256.4 t3 210.9 256.9 209.5 256.8 p 205.9 255.3 209.5 256.8 210.2 256.4 205.9 253.7 s3 205.9 255.3 209.5 256.8 p 211.8 255.4 208.4 253.7 214.5 253.7 t4 211.8 255.4 208.4 253.7 p 214.5 255.9 211.8 255.4 214.5 253.7 t4 214.5 255.9 211.8 255.4 p 213.8 254.1 212.9 253.7 214.5 253.7 t5 213.8 254.1 212.9 253.7 p 214.5 254.3 213.8 254.1 214.5 253.7 t5 214.5 254.3 213.8 254.1 p 214.5 253.7 223.1 253.7 223.1 259.2 214.5 259.2 s1 214.5 253.7 218.8 256.4 223.1 253.7 t2 222.8 259.0 223.1 258.9 223.1 253.7 218.8 256.4 s2 222.8 259.0 223.1 258.9 p 217.5 259.2 222.8 259.0 218.8 256.4 214.5 259.2 s2 217.5 259.2 222.8 259.0 p 214.5 259.2 218.8 256.4 214.5 253.7 t2 214.5 253.7 218.8 256.4 223.1 253.7 t3 219.4 256.8 223.1 255.3 223.1 253.7 218.8 256.4 s3 219.4 256.8 223.1 255.3 p 219.4 256.8 218.1 256.9 218.8 256.4 t3 219.4 256.8 218.1 256.9 p 214.5 257.6 218.1 256.9 218.8 256.4 214.5 253.7 s3 214.5 257.6 218.1 256.9 p 220.5 253.7 217.2 255.4 214.5 253.7 t4 220.5 253.7 217.2 255.4 p 217.2 255.4 214.5 255.9 214.5 253.7 t4 217.2 255.4 214.5 255.9 p 216.1 253.7 215.2 254.1 214.5 253.7 t5 216.1 253.7 215.2 254.1 p 215.2 254.1 214.5 254.3 214.5 253.7 t5 215.2 254.1 214.5 254.3 p 223.1 253.7 231.6 253.7 231.6 259.2 223.1 259.2 s1 227.4 256.4 228.9 253.7 223.1 253.7 227.3 256.4 s2 227.4 256.4 228.9 253.7 p 227.4 256.4 227.4 256.5 227.3 256.4 t2 227.4 256.4 227.4 256.5 p 227.4 256.5 226.9 256.7 227.3 256.4 t2 227.4 256.5 226.9 256.7 p 223.1 258.9 226.9 256.7 227.3 256.4 223.1 253.7 s2 223.1 258.9 226.9 256.7 p 224.8 253.7 224.4 254.5 223.1 253.7 t3 224.8 253.7 224.4 254.5 p 224.4 254.5 223.1 255.3 223.1 253.7 t3 224.4 254.5 223.1 255.3 p 231.6 253.7 240.2 253.7 240.2 259.2 231.6 259.2 s1 240.2 253.7 248.8 253.7 248.8 259.2 240.2 259.2 s1 243.0 253.7 244.4 256.4 244.5 256.4 248.8 253.7 s2 243.0 253.7 244.4 256.4 p 244.9 256.7 248.8 258.9 248.8 253.7 244.5 256.4 s2 244.9 256.7 248.8 258.9 p 244.9 256.7 244.4 256.5 244.5 256.4 t2 244.9 256.7 244.4 256.5 p 244.4 256.5 244.4 256.4 244.5 256.4 t2 244.4 256.5 244.4 256.4 p 247.5 254.5 247.0 253.7 248.8 253.7 t3 247.5 254.5 247.0 253.7 p 248.8 255.3 247.5 254.5 248.8 253.7 t3 248.8 255.3 247.5 254.5 p 248.8 253.7 257.4 253.7 257.4 259.2 248.8 259.2 s1 248.8 253.7 253.1 256.4 257.4 253.7 t2 257.4 253.7 253.1 256.4 257.4 259.2 t2 249.1 259.0 254.4 259.2 257.4 259.2 253.1 256.4 s2 249.1 259.0 254.4 259.2 p 248.8 258.9 249.1 259.0 253.1 256.4 248.8 253.7 s2 248.8 258.9 249.1 259.0 p 248.8 253.7 253.1 256.4 257.4 253.7 t3 253.8 256.9 257.4 257.6 257.4 253.7 253.1 256.4 s3 253.8 256.9 257.4 257.6 p 253.8 256.9 252.4 256.8 253.1 256.4 t3 253.8 256.9 252.4 256.8 p 248.8 255.3 252.4 256.8 253.1 256.4 248.8 253.7 s3 248.8 255.3 252.4 256.8 p 254.7 255.4 251.3 253.7 257.4 253.7 t4 254.7 255.4 251.3 253.7 p 257.4 255.9 254.7 255.4 257.4 253.7 t4 257.4 255.9 254.7 255.4 p 256.7 254.1 255.8 253.7 257.4 253.7 t5 256.7 254.1 255.8 253.7 p 257.4 254.3 256.7 254.1 257.4 253.7 t5 257.4 254.3 256.7 254.1 p 257.4 253.7 265.9 253.7 265.9 259.2 257.4 259.2 s1 257.4 253.7 261.7 256.4 265.9 253.7 t2 265.7 259.0 265.9 258.9 265.9 253.7 261.7 256.4 s2 265.7 259.0 265.9 258.9 p 260.4 259.2 265.7 259.0 261.7 256.4 257.4 259.2 s2 260.4 259.2 265.7 259.0 p 257.4 259.2 261.7 256.4 257.4 253.7 t2 257.4 253.7 261.7 256.4 265.9 253.7 t3 262.3 256.8 265.9 255.3 265.9 253.7 261.7 256.4 s3 262.3 256.8 265.9 255.3 p 262.3 256.8 261.0 256.9 261.7 256.4 t3 262.3 256.8 261.0 256.9 p 257.4 257.6 261.0 256.9 261.7 256.4 257.4 253.7 s3 257.4 257.6 261.0 256.9 p 263.4 253.7 260.1 255.4 257.4 253.7 t4 263.4 253.7 260.1 255.4 p 260.1 255.4 257.4 255.9 257.4 253.7 t4 260.1 255.4 257.4 255.9 p 259.0 253.7 258.1 254.1 257.4 253.7 t5 259.0 253.7 258.1 254.1 p 258.1 254.1 257.4 254.3 257.4 253.7 t5 258.1 254.1 257.4 254.3 p 265.9 253.7 274.5 253.7 274.5 259.2 265.9 259.2 s1 270.3 256.4 271.8 253.7 265.9 253.7 270.2 256.4 s2 270.3 256.4 271.8 253.7 p 270.3 256.4 270.3 256.5 270.2 256.4 t2 270.3 256.4 270.3 256.5 p 270.3 256.5 269.8 256.7 270.2 256.4 t2 270.3 256.5 269.8 256.7 p 265.9 258.9 269.8 256.7 270.2 256.4 265.9 253.7 s2 265.9 258.9 269.8 256.7 p 267.7 253.7 267.2 254.5 265.9 253.7 t3 267.7 253.7 267.2 254.5 p 267.2 254.5 265.9 255.3 265.9 253.7 t3 267.2 254.5 265.9 255.3 p 274.5 253.7 283.1 253.7 283.1 259.2 274.5 259.2 s1 283.1 253.7 291.7 253.7 291.7 259.2 283.1 259.2 s1 285.9 253.7 287.3 256.4 287.4 256.4 291.7 253.7 s2 285.9 253.7 287.3 256.4 p 287.8 256.7 291.7 258.9 291.7 253.7 287.4 256.4 s2 287.8 256.7 291.7 258.9 p 287.8 256.7 287.3 256.5 287.4 256.4 t2 287.8 256.7 287.3 256.5 p 287.3 256.5 287.3 256.4 287.4 256.4 t2 287.3 256.5 287.3 256.4 p 290.4 254.5 289.9 253.7 291.7 253.7 t3 290.4 254.5 289.9 253.7 p 291.7 255.3 290.4 254.5 291.7 253.7 t3 291.7 255.3 290.4 254.5 p 291.7 253.7 300.3 253.7 300.3 259.2 291.7 259.2 s1 291.7 253.7 296.0 256.4 300.3 253.7 t2 300.3 253.7 296.0 256.4 300.3 259.2 t2 292.0 259.0 297.3 259.2 300.3 259.2 296.0 256.4 s2 292.0 259.0 297.3 259.2 p 291.7 258.9 292.0 259.0 296.0 256.4 291.7 253.7 s2 291.7 258.9 292.0 259.0 p 291.7 253.7 296.0 256.4 300.3 253.7 t3 296.7 256.9 300.3 257.6 300.3 253.7 296.0 256.4 s3 296.7 256.9 300.3 257.6 p 296.7 256.9 295.3 256.8 296.0 256.4 t3 296.7 256.9 295.3 256.8 p 291.7 255.3 295.3 256.8 296.0 256.4 291.7 253.7 s3 291.7 255.3 295.3 256.8 p 297.6 255.4 294.2 253.7 300.3 253.7 t4 297.6 255.4 294.2 253.7 p 300.3 255.9 297.6 255.4 300.3 253.7 t4 300.3 255.9 297.6 255.4 p 299.6 254.1 298.7 253.7 300.3 253.7 t5 299.6 254.1 298.7 253.7 p 300.3 254.3 299.6 254.1 300.3 253.7 t5 300.3 254.3 299.6 254.1 p 0.0 248.2 8.6 248.2 8.6 253.7 0.0 253.7 s3 0.0 248.2 4.3 250.9 8.6 248.2 t4 8.1 253.4 8.6 253.0 8.6 248.2 4.3 250.9 s4 8.1 253.4 8.6 253.0 p 6.0 253.7 8.1 253.4 4.3 250.9 0.0 253.7 s4 6.0 253.7 8.1 253.4 p 0.0 253.7 4.3 250.9 0.0 248.2 t4 0.0 248.2 4.3 250.9 8.6 248.2 t5 7.3 252.8 8.6 251.9 8.6 248.2 4.3 250.9 s5 7.3 252.8 8.6 251.9 p 1.6 253.7 7.3 252.8 4.3 250.9 0.0 253.7 s5 1.6 253.7 7.3 252.8 p 0.0 253.7 4.3 250.9 0.0 248.2 t5 0.0 248.2 4.3 250.9 8.6 248.2 t6 6.4 252.3 8.6 250.7 8.6 248.2 4.3 250.9 s6 6.4 252.3 8.6 250.7 p 6.4 252.3 0.9 253.1 4.3 250.9 t6 6.4 252.3 0.9 253.1 p 0.0 253.4 0.9 253.1 4.3 250.9 0.0 248.2 s6 0.0 253.4 0.9 253.1 p 0.0 248.2 4.3 250.9 8.6 248.2 t7 5.6 251.7 8.6 249.5 8.6 248.2 4.3 250.9 s7 5.6 251.7 8.6 249.5 p 5.6 251.7 2.2 252.3 4.3 250.9 t7 5.6 251.7 2.2 252.3 p 0.0 252.9 2.2 252.3 4.3 250.9 0.0 248.2 s7 0.0 252.9 2.2 252.3 p 0.0 248.2 4.3 250.9 8.6 248.2 t8 4.7 251.2 8.6 248.4 8.6 248.2 4.3 250.9 s8 4.7 251.2 8.6 248.4 p 4.7 251.2 3.6 251.4 4.3 250.9 t8 4.7 251.2 3.6 251.4 p 0.0 252.4 3.6 251.4 4.3 250.9 0.0 248.2 s8 0.0 252.4 3.6 251.4 p 8.6 248.2 17.2 248.2 17.2 253.7 8.6 253.7 s1 16.2 248.8 16.6 248.2 8.6 248.2 12.9 250.9 s2 16.2 248.8 16.6 248.2 p 16.2 248.8 15.9 252.9 12.9 250.9 t2 16.2 248.8 15.9 252.9 p 14.4 253.7 15.9 252.9 12.9 250.9 8.6 253.7 s2 14.4 253.7 15.9 252.9 p 8.6 253.7 12.9 250.9 8.6 248.2 t2 14.2 250.1 15.3 248.2 8.6 248.2 12.9 250.9 s3 14.2 250.1 15.3 248.2 p 14.2 250.1 14.0 251.7 12.9 250.9 t3 14.2 250.1 14.0 251.7 p 10.3 253.7 14.0 251.7 12.9 250.9 8.6 253.7 s3 10.3 253.7 14.0 251.7 p 8.6 253.7 12.9 250.9 8.6 248.2 t3 14.0 248.2 12.5 250.7 8.6 248.2 t4 14.0 248.2 12.5 250.7 p 12.5 250.7 8.6 253.0 8.6 248.2 t4 12.5 250.7 8.6 253.0 p 12.7 248.2 11.6 250.1 8.6 248.2 t5 12.7 248.2 11.6 250.1 p 11.6 250.1 8.6 251.9 8.6 248.2 t5 11.6 250.1 8.6 251.9 p 11.4 248.2 10.6 249.5 8.6 248.2 t6 11.4 248.2 10.6 249.5 p 10.6 249.5 8.6 250.7 8.6 248.2 t6 10.6 249.5 8.6 250.7 p 10.1 248.2 9.7 248.9 8.6 248.2 t7 10.1 248.2 9.7 248.9 p 9.7 248.9 8.6 249.5 8.6 248.2 t7 9.7 248.9 8.6 249.5 p 8.8 248.2 8.8 248.3 8.6 248.2 t8 8.8 248.2 8.8 248.3 p 8.8 248.3 8.6 248.4 8.6 248.2 t8 8.8 248.3 8.6 248.4 p 17.2 248.2 25.7 248.2 25.7 253.7 17.2 253.7 s1 25.7 248.2 34.3 248.2 34.3 253.7 25.7 253.7 s1 26.3 248.2 26.7 248.8 30.0 250.9 34.3 248.2 s2 26.3 248.2 26.7 248.8 p 34.3 248.2 30.0 250.9 34.3 253.7 t2 27.0 252.9 28.5 253.7 34.3 253.7 30.0 250.9 s2 27.0 252.9 28.5 253.7 p 27.0 252.9 26.7 248.8 30.0 250.9 t2 27.0 252.9 26.7 248.8 p 27.6 248.2 28.7 250.1 30.0 250.9 34.3 248.2 s3 27.6 248.2 28.7 250.1 p 34.3 248.2 30.0 250.9 34.3 253.7 t3 28.9 251.7 32.6 253.7 34.3 253.7 30.0 250.9 s3 28.9 251.7 32.6 253.7 p 28.9 251.7 28.7 250.1 30.0 250.9 t3 28.9 251.7 28.7 250.1 p 30.4 250.7 28.9 248.2 34.3 248.2 t4 30.4 250.7 28.9 248.2 p 34.3 253.0 30.4 250.7 34.3 248.2 t4 34.3 253.0 30.4 250.7 p 31.3 250.1 30.2 248.2 34.3 248.2 t5 31.3 250.1 30.2 248.2 p 34.3 251.9 31.3 250.1 34.3 248.2 t5 34.3 251.9 31.3 250.1 p 32.3 249.5 31.5 248.2 34.3 248.2 t6 32.3 249.5 31.5 248.2 p 34.3 250.7 32.3 249.5 34.3 248.2 t6 34.3 250.7 32.3 249.5 p 33.2 248.9 32.8 248.2 34.3 248.2 t7 33.2 248.9 32.8 248.2 p 34.3 249.5 33.2 248.9 34.3 248.2 t7 34.3 249.5 33.2 248.9 p 34.1 248.3 34.1 248.2 34.3 248.2 t8 34.1 248.3 34.1 248.2 p 34.3 248.4 34.1 248.3 34.3 248.2 t8 34.3 248.4 34.1 248.3 p 34.3 248.2 42.9 248.2 42.9 253.7 34.3 253.7 s3 34.3 248.2 38.6 250.9 42.9 248.2 t4 42.9 248.2 38.6 250.9 42.9 253.7 t4 34.8 253.4 36.8 253.7 42.9 253.7 38.6 250.9 s4 34.8 253.4 36.8 253.7 p 34.3 253.0 34.8 253.4 38.6 250.9 34.3 248.2 s4 34.3 253.0 34.8 253.4 p 34.3 248.2 38.6 250.9 42.9 248.2 t5 42.9 248.2 38.6 250.9 42.9 253.7 t5 35.6 252.8 41.3 253.7 42.9 253.7 38.6 250.9 s5 35.6 252.8 41.3 253.7 p 34.3 251.9 35.6 252.8 38.6 250.9 34.3 248.2 s5 34.3 251.9 35.6 252.8 p 34.3 248.2 38.6 250.9 42.9 248.2 t6 42.0 253.1 42.9 253.4 42.9 248.2 38.6 250.9 s6 42.0 253.1 42.9 253.4 p 42.0 253.1 36.5 252.3 38.6 250.9 t6 42.0 253.1 36.5 252.3 p 34.3 250.7 36.5 252.3 38.6 250.9 34.3 248.2 s6 34.3 250.7 36.5 252.3 p 34.3 248.2 38.6 250.9 42.9 248.2 t7 40.7 252.3 42.9 252.9 42.9 248.2 38.6 250.9 s7 40.7 252.3 42.9 252.9 p 40.7 252.3 37.3 251.7 38.6 250.9 t7 40.7 252.3 37.3 251.7 p 34.3 249.5 37.3 251.7 38.6 250.9 34.3 248.2 s7 34.3 249.5 37.3 251.7 p 34.3 248.2 38.6 250.9 42.9 248.2 t8 39.3 251.4 42.9 252.4 42.9 248.2 38.6 250.9 s8 39.3 251.4 42.9 252.4 p 39.3 251.4 38.2 251.2 38.6 250.9 t8 39.3 251.4 38.2 251.2 p 34.3 248.4 38.2 251.2 38.6 250.9 34.3 248.2 s8 34.3 248.4 38.2 251.2 p 42.9 248.2 51.5 248.2 51.5 253.7 42.9 253.7 s3 42.9 248.2 47.2 250.9 51.5 248.2 t4 51.0 253.4 51.5 253.0 51.5 248.2 47.2 250.9 s4 51.0 253.4 51.5 253.0 p 48.9 253.7 51.0 253.4 47.2 250.9 42.9 253.7 s4 48.9 253.7 51.0 253.4 p 42.9 253.7 47.2 250.9 42.9 248.2 t4 42.9 248.2 47.2 250.9 51.5 248.2 t5 50.2 252.8 51.5 251.9 51.5 248.2 47.2 250.9 s5 50.2 252.8 51.5 251.9 p 44.5 253.7 50.2 252.8 47.2 250.9 42.9 253.7 s5 44.5 253.7 50.2 252.8 p 42.9 253.7 47.2 250.9 42.9 248.2 t5 42.9 248.2 47.2 250.9 51.5 248.2 t6 49.3 252.3 51.5 250.7 51.5 248.2 47.2 250.9 s6 49.3 252.3 51.5 250.7 p 49.3 252.3 43.8 253.1 47.2 250.9 t6 49.3 252.3 43.8 253.1 p 42.9 253.4 43.8 253.1 47.2 250.9 42.9 248.2 s6 42.9 253.4 43.8 253.1 p 42.9 248.2 47.2 250.9 51.5 248.2 t7 48.5 251.7 51.5 249.5 51.5 248.2 47.2 250.9 s7 48.5 251.7 51.5 249.5 p 48.5 251.7 45.1 252.3 47.2 250.9 t7 48.5 251.7 45.1 252.3 p 42.9 252.9 45.1 252.3 47.2 250.9 42.9 248.2 s7 42.9 252.9 45.1 252.3 p 42.9 248.2 47.2 250.9 51.5 248.2 t8 47.6 251.2 51.5 248.4 51.5 248.2 47.2 250.9 s8 47.6 251.2 51.5 248.4 p 47.6 251.2 46.5 251.4 47.2 250.9 t8 47.6 251.2 46.5 251.4 p 42.9 252.4 46.5 251.4 47.2 250.9 42.9 248.2 s8 42.9 252.4 46.5 251.4 p 51.5 248.2 60.1 248.2 60.1 253.7 51.5 253.7 s1 59.1 248.8 59.5 248.2 51.5 248.2 55.8 250.9 s2 59.1 248.8 59.5 248.2 p 59.1 248.8 58.8 252.9 55.8 250.9 t2 59.1 248.8 58.8 252.9 p 57.3 253.7 58.8 252.9 55.8 250.9 51.5 253.7 s2 57.3 253.7 58.8 252.9 p 51.5 253.7 55.8 250.9 51.5 248.2 t2 57.1 250.1 58.2 248.2 51.5 248.2 55.8 250.9 s3 57.1 250.1 58.2 248.2 p 57.1 250.1 56.9 251.7 55.8 250.9 t3 57.1 250.1 56.9 251.7 p 53.2 253.7 56.9 251.7 55.8 250.9 51.5 253.7 s3 53.2 253.7 56.9 251.7 p 51.5 253.7 55.8 250.9 51.5 248.2 t3 56.9 248.2 55.4 250.7 51.5 248.2 t4 56.9 248.2 55.4 250.7 p 55.4 250.7 51.5 253.0 51.5 248.2 t4 55.4 250.7 51.5 253.0 p 55.6 248.2 54.5 250.1 51.5 248.2 t5 55.6 248.2 54.5 250.1 p 54.5 250.1 51.5 251.9 51.5 248.2 t5 54.5 250.1 51.5 251.9 p 54.3 248.2 53.5 249.5 51.5 248.2 t6 54.3 248.2 53.5 249.5 p 53.5 249.5 51.5 250.7 51.5 248.2 t6 53.5 249.5 51.5 250.7 p 53.0 248.2 52.6 248.9 51.5 248.2 t7 53.0 248.2 52.6 248.9 p 52.6 248.9 51.5 249.5 51.5 248.2 t7 52.6 248.9 51.5 249.5 p 51.7 248.2 51.7 248.3 51.5 248.2 t8 51.7 248.2 51.7 248.3 p 51.7 248.3 51.5 248.4 51.5 248.2 t8 51.7 248.3 51.5 248.4 p 60.1 248.2 68.6 248.2 68.6 253.7 60.1 253.7 s1 68.6 248.2 77.2 248.2 77.2 253.7 68.6 253.7 s1 69.2 248.2 69.6 248.8 72.9 250.9 77.2 248.2 s2 69.2 248.2 69.6 248.8 p 77.2 248.2 72.9 250.9 77.2 253.7 t2 69.9 252.9 71.4 253.7 77.2 253.7 72.9 250.9 s2 69.9 252.9 71.4 253.7 p 69.9 252.9 69.6 248.8 72.9 250.9 t2 69.9 252.9 69.6 248.8 p 70.5 248.2 71.6 250.1 72.9 250.9 77.2 248.2 s3 70.5 248.2 71.6 250.1 p 77.2 248.2 72.9 250.9 77.2 253.7 t3 71.8 251.7 75.5 253.7 77.2 253.7 72.9 250.9 s3 71.8 251.7 75.5 253.7 p 71.8 251.7 71.6 250.1 72.9 250.9 t3 71.8 251.7 71.6 250.1 p 73.3 250.7 71.8 248.2 77.2 248.2 t4 73.3 250.7 71.8 248.2 p 77.2 253.0 73.3 250.7 77.2 248.2 t4 77.2 253.0 73.3 250.7 p 74.2 250.1 73.1 248.2 77.2 248.2 t5 74.2 250.1 73.1 248.2 p 77.2 251.9 74.2 250.1 77.2 248.2 t5 77.2 251.9 74.2 250.1 p 75.1 249.5 74.4 248.2 77.2 248.2 t6 75.1 249.5 74.4 248.2 p 77.2 250.7 75.1 249.5 77.2 248.2 t6 77.2 250.7 75.1 249.5 p 76.1 248.9 75.7 248.2 77.2 248.2 t7 76.1 248.9 75.7 248.2 p 77.2 249.5 76.1 248.9 77.2 248.2 t7 77.2 249.5 76.1 248.9 p 77.0 248.3 77.0 248.2 77.2 248.2 t8 77.0 248.3 77.0 248.2 p 77.2 248.4 77.0 248.3 77.2 248.2 t8 77.2 248.4 77.0 248.3 p 77.2 248.2 85.8 248.2 85.8 253.7 77.2 253.7 s3 77.2 248.2 81.5 250.9 85.8 248.2 t4 85.8 248.2 81.5 250.9 85.8 253.7 t4 77.7 253.4 79.7 253.7 85.8 253.7 81.5 250.9 s4 77.7 253.4 79.7 253.7 p 77.2 253.0 77.7 253.4 81.5 250.9 77.2 248.2 s4 77.2 253.0 77.7 253.4 p 77.2 248.2 81.5 250.9 85.8 248.2 t5 85.8 248.2 81.5 250.9 85.8 253.7 t5 78.5 252.8 84.2 253.7 85.8 253.7 81.5 250.9 s5 78.5 252.8 84.2 253.7 p 77.2 251.9 78.5 252.8 81.5 250.9 77.2 248.2 s5 77.2 251.9 78.5 252.8 p 77.2 248.2 81.5 250.9 85.8 248.2 t6 84.9 253.1 85.8 253.4 85.8 248.2 81.5 250.9 s6 84.9 253.1 85.8 253.4 p 84.9 253.1 79.4 252.3 81.5 250.9 t6 84.9 253.1 79.4 252.3 p 77.2 250.7 79.4 252.3 81.5 250.9 77.2 248.2 s6 77.2 250.7 79.4 252.3 p 77.2 248.2 81.5 250.9 85.8 248.2 t7 83.6 252.3 85.8 252.9 85.8 248.2 81.5 250.9 s7 83.6 252.3 85.8 252.9 p 83.6 252.3 80.2 251.7 81.5 250.9 t7 83.6 252.3 80.2 251.7 p 77.2 249.5 80.2 251.7 81.5 250.9 77.2 248.2 s7 77.2 249.5 80.2 251.7 p 77.2 248.2 81.5 250.9 85.8 248.2 t8 82.2 251.4 85.8 252.4 85.8 248.2 81.5 250.9 s8 82.2 251.4 85.8 252.4 p 82.2 251.4 81.1 251.2 81.5 250.9 t8 82.2 251.4 81.1 251.2 p 77.2 248.4 81.1 251.2 81.5 250.9 77.2 248.2 s8 77.2 248.4 81.1 251.2 p 85.8 248.2 94.4 248.2 94.4 253.7 85.8 253.7 s3 85.8 248.2 90.1 250.9 94.4 248.2 t4 93.9 253.4 94.4 253.0 94.4 248.2 90.1 250.9 s4 93.9 253.4 94.4 253.0 p 91.8 253.7 93.9 253.4 90.1 250.9 85.8 253.7 s4 91.8 253.7 93.9 253.4 p 85.8 253.7 90.1 250.9 85.8 248.2 t4 85.8 248.2 90.1 250.9 94.4 248.2 t5 93.0 252.8 94.4 251.9 94.4 248.2 90.1 250.9 s5 93.0 252.8 94.4 251.9 p 87.4 253.7 93.0 252.8 90.1 250.9 85.8 253.7 s5 87.4 253.7 93.0 252.8 p 85.8 253.7 90.1 250.9 85.8 248.2 t5 85.8 248.2 90.1 250.9 94.4 248.2 t6 92.2 252.3 94.4 250.7 94.4 248.2 90.1 250.9 s6 92.2 252.3 94.4 250.7 p 92.2 252.3 86.7 253.1 90.1 250.9 t6 92.2 252.3 86.7 253.1 p 85.8 253.4 86.7 253.1 90.1 250.9 85.8 248.2 s6 85.8 253.4 86.7 253.1 p 85.8 248.2 90.1 250.9 94.4 248.2 t7 91.4 251.7 94.4 249.5 94.4 248.2 90.1 250.9 s7 91.4 251.7 94.4 249.5 p 91.4 251.7 88.0 252.3 90.1 250.9 t7 91.4 251.7 88.0 252.3 p 85.8 252.9 88.0 252.3 90.1 250.9 85.8 248.2 s7 85.8 252.9 88.0 252.3 p 85.8 248.2 90.1 250.9 94.4 248.2 t8 90.5 251.2 94.4 248.4 94.4 248.2 90.1 250.9 s8 90.5 251.2 94.4 248.4 p 90.5 251.2 89.4 251.4 90.1 250.9 t8 90.5 251.2 89.4 251.4 p 85.8 252.4 89.4 251.4 90.1 250.9 85.8 248.2 s8 85.8 252.4 89.4 251.4 p 94.4 248.2 102.9 248.2 102.9 253.7 94.4 253.7 s1 102.0 248.8 102.4 248.2 94.4 248.2 98.7 250.9 s2 102.0 248.8 102.4 248.2 p 102.0 248.8 101.7 252.9 98.7 250.9 t2 102.0 248.8 101.7 252.9 p 100.2 253.7 101.7 252.9 98.7 250.9 94.4 253.7 s2 100.2 253.7 101.7 252.9 p 94.4 253.7 98.7 250.9 94.4 248.2 t2 100.0 250.1 101.1 248.2 94.4 248.2 98.7 250.9 s3 100.0 250.1 101.1 248.2 p 100.0 250.1 99.8 251.7 98.7 250.9 t3 100.0 250.1 99.8 251.7 p 96.1 253.7 99.8 251.7 98.7 250.9 94.4 253.7 s3 96.1 253.7 99.8 251.7 p 94.4 253.7 98.7 250.9 94.4 248.2 t3 99.8 248.2 98.3 250.7 94.4 248.2 t4 99.8 248.2 98.3 250.7 p 98.3 250.7 94.4 253.0 94.4 248.2 t4 98.3 250.7 94.4 253.0 p 98.5 248.2 97.4 250.1 94.4 248.2 t5 98.5 248.2 97.4 250.1 p 97.4 250.1 94.4 251.9 94.4 248.2 t5 97.4 250.1 94.4 251.9 p 97.2 248.2 96.4 249.5 94.4 248.2 t6 97.2 248.2 96.4 249.5 p 96.4 249.5 94.4 250.7 94.4 248.2 t6 96.4 249.5 94.4 250.7 p 95.9 248.2 95.5 248.9 94.4 248.2 t7 95.9 248.2 95.5 248.9 p 95.5 248.9 94.4 249.5 94.4 248.2 t7 95.5 248.9 94.4 249.5 p 94.6 248.2 94.6 248.3 94.4 248.2 t8 94.6 248.2 94.6 248.3 p 94.6 248.3 94.4 248.4 94.4 248.2 t8 94.6 248.3 94.4 248.4 p 102.9 248.2 111.5 248.2 111.5 253.7 102.9 253.7 s1 111.5 248.2 120.1 248.2 120.1 253.7 111.5 253.7 s1 112.1 248.2 112.4 248.8 115.8 250.9 120.1 248.2 s2 112.1 248.2 112.4 248.8 p 120.1 248.2 115.8 250.9 120.1 253.7 t2 112.8 252.9 114.3 253.7 120.1 253.7 115.8 250.9 s2 112.8 252.9 114.3 253.7 p 112.8 252.9 112.4 248.8 115.8 250.9 t2 112.8 252.9 112.4 248.8 p 113.4 248.2 114.5 250.1 115.8 250.9 120.1 248.2 s3 113.4 248.2 114.5 250.1 p 120.1 248.2 115.8 250.9 120.1 253.7 t3 114.6 251.7 118.3 253.7 120.1 253.7 115.8 250.9 s3 114.6 251.7 118.3 253.7 p 114.6 251.7 114.5 250.1 115.8 250.9 t3 114.6 251.7 114.5 250.1 p 116.2 250.7 114.7 248.2 120.1 248.2 t4 116.2 250.7 114.7 248.2 p 120.1 253.0 116.2 250.7 120.1 248.2 t4 120.1 253.0 116.2 250.7 p 117.1 250.1 116.0 248.2 120.1 248.2 t5 117.1 250.1 116.0 248.2 p 120.1 251.9 117.1 250.1 120.1 248.2 t5 120.1 251.9 117.1 250.1 p 118.0 249.5 117.3 248.2 120.1 248.2 t6 118.0 249.5 117.3 248.2 p 120.1 250.7 118.0 249.5 120.1 248.2 t6 120.1 250.7 118.0 249.5 p 119.0 248.9 118.6 248.2 120.1 248.2 t7 119.0 248.9 118.6 248.2 p 120.1 249.5 119.0 248.9 120.1 248.2 t7 120.1 249.5 119.0 248.9 p 119.9 248.3 119.9 248.2 120.1 248.2 t8 119.9 248.3 119.9 248.2 p 120.1 248.4 119.9 248.3 120.1 248.2 t8 120.1 248.4 119.9 248.3 p 120.1 248.2 128.7 248.2 128.7 253.7 120.1 253.7 s3 120.1 248.2 124.4 250.9 128.7 248.2 t4 128.7 248.2 124.4 250.9 128.7 253.7 t4 120.6 253.4 122.6 253.7 128.7 253.7 124.4 250.9 s4 120.6 253.4 122.6 253.7 p 120.1 253.0 120.6 253.4 124.4 250.9 120.1 248.2 s4 120.1 253.0 120.6 253.4 p 120.1 248.2 124.4 250.9 128.7 248.2 t5 128.7 248.2 124.4 250.9 128.7 253.7 t5 121.4 252.8 127.1 253.7 128.7 253.7 124.4 250.9 s5 121.4 252.8 127.1 253.7 p 120.1 251.9 121.4 252.8 124.4 250.9 120.1 248.2 s5 120.1 251.9 121.4 252.8 p 120.1 248.2 124.4 250.9 128.7 248.2 t6 127.8 253.1 128.7 253.4 128.7 248.2 124.4 250.9 s6 127.8 253.1 128.7 253.4 p 127.8 253.1 122.3 252.3 124.4 250.9 t6 127.8 253.1 122.3 252.3 p 120.1 250.7 122.3 252.3 124.4 250.9 120.1 248.2 s6 120.1 250.7 122.3 252.3 p 120.1 248.2 124.4 250.9 128.7 248.2 t7 126.5 252.3 128.7 252.9 128.7 248.2 124.4 250.9 s7 126.5 252.3 128.7 252.9 p 126.5 252.3 123.1 251.7 124.4 250.9 t7 126.5 252.3 123.1 251.7 p 120.1 249.5 123.1 251.7 124.4 250.9 120.1 248.2 s7 120.1 249.5 123.1 251.7 p 120.1 248.2 124.4 250.9 128.7 248.2 t8 125.1 251.4 128.7 252.4 128.7 248.2 124.4 250.9 s8 125.1 251.4 128.7 252.4 p 125.1 251.4 123.9 251.2 124.4 250.9 t8 125.1 251.4 123.9 251.2 p 120.1 248.4 123.9 251.2 124.4 250.9 120.1 248.2 s8 120.1 248.4 123.9 251.2 p 128.7 248.2 137.3 248.2 137.3 253.7 128.7 253.7 s3 128.7 248.2 133.0 250.9 137.3 248.2 t4 136.8 253.4 137.3 253.0 137.3 248.2 133.0 250.9 s4 136.8 253.4 137.3 253.0 p 134.7 253.7 136.8 253.4 133.0 250.9 128.7 253.7 s4 134.7 253.7 136.8 253.4 p 128.7 253.7 133.0 250.9 128.7 248.2 t4 128.7 248.2 133.0 250.9 137.3 248.2 t5 135.9 252.8 137.3 251.9 137.3 248.2 133.0 250.9 s5 135.9 252.8 137.3 251.9 p 130.3 253.7 135.9 252.8 133.0 250.9 128.7 253.7 s5 130.3 253.7 135.9 252.8 p 128.7 253.7 133.0 250.9 128.7 248.2 t5 128.7 248.2 133.0 250.9 137.3 248.2 t6 135.1 252.3 137.3 250.7 137.3 248.2 133.0 250.9 s6 135.1 252.3 137.3 250.7 p 135.1 252.3 129.6 253.1 133.0 250.9 t6 135.1 252.3 129.6 253.1 p 128.7 253.4 129.6 253.1 133.0 250.9 128.7 248.2 s6 128.7 253.4 129.6 253.1 p 128.7 248.2 133.0 250.9 137.3 248.2 t7 134.3 251.7 137.3 249.5 137.3 248.2 133.0 250.9 s7 134.3 251.7 137.3 249.5 p 134.3 251.7 130.9 252.3 133.0 250.9 t7 134.3 251.7 130.9 252.3 p 128.7 252.9 130.9 252.3 133.0 250.9 128.7 248.2 s7 128.7 252.9 130.9 252.3 p 128.7 248.2 133.0 250.9 137.3 248.2 t8 133.4 251.2 137.3 248.4 137.3 248.2 133.0 250.9 s8 133.4 251.2 137.3 248.4 p 133.4 251.2 132.3 251.4 133.0 250.9 t8 133.4 251.2 132.3 251.4 p 128.7 252.4 132.3 251.4 133.0 250.9 128.7 248.2 s8 128.7 252.4 132.3 251.4 p 137.3 248.2 145.8 248.2 145.8 253.7 137.3 253.7 s1 144.9 248.8 145.3 248.2 137.3 248.2 141.6 250.9 s2 144.9 248.8 145.3 248.2 p 144.9 248.8 144.6 252.9 141.6 250.9 t2 144.9 248.8 144.6 252.9 p 143.1 253.7 144.6 252.9 141.6 250.9 137.3 253.7 s2 143.1 253.7 144.6 252.9 p 137.3 253.7 141.6 250.9 137.3 248.2 t2 142.8 250.1 144.0 248.2 137.3 248.2 141.6 250.9 s3 142.8 250.1 144.0 248.2 p 142.8 250.1 142.7 251.7 141.6 250.9 t3 142.8 250.1 142.7 251.7 p 139.0 253.7 142.7 251.7 141.6 250.9 137.3 253.7 s3 139.0 253.7 142.7 251.7 p 137.3 253.7 141.6 250.9 137.3 248.2 t3 142.7 248.2 141.2 250.7 137.3 248.2 t4 142.7 248.2 141.2 250.7 p 141.2 250.7 137.3 253.0 137.3 248.2 t4 141.2 250.7 137.3 253.0 p 141.4 248.2 140.3 250.1 137.3 248.2 t5 141.4 248.2 140.3 250.1 p 140.3 250.1 137.3 251.9 137.3 248.2 t5 140.3 250.1 137.3 251.9 p 140.1 248.2 139.3 249.5 137.3 248.2 t6 140.1 248.2 139.3 249.5 p 139.3 249.5 137.3 250.7 137.3 248.2 t6 139.3 249.5 137.3 250.7 p 138.8 248.2 138.4 248.9 137.3 248.2 t7 138.8 248.2 138.4 248.9 p 138.4 248.9 137.3 249.5 137.3 248.2 t7 138.4 248.9 137.3 249.5 p 137.5 248.2 137.4 248.3 137.3 248.2 t8 137.5 248.2 137.4 248.3 p 137.4 248.3 137.3 248.4 137.3 248.2 t8 137.4 248.3 137.3 248.4 p 145.8 248.2 154.4 248.2 154.4 253.7 145.8 253.7 s1 154.4 248.2 163.0 248.2 163.0 253.7 154.4 253.7 s1 155.0 248.2 155.3 248.8 158.7 250.9 163.0 248.2 s2 155.0 248.2 155.3 248.8 p 163.0 248.2 158.7 250.9 163.0 253.7 t2 155.7 252.9 157.2 253.7 163.0 253.7 158.7 250.9 s2 155.7 252.9 157.2 253.7 p 155.7 252.9 155.3 248.8 158.7 250.9 t2 155.7 252.9 155.3 248.8 p 156.3 248.2 157.4 250.1 158.7 250.9 163.0 248.2 s3 156.3 248.2 157.4 250.1 p 163.0 248.2 158.7 250.9 163.0 253.7 t3 157.5 251.7 161.2 253.7 163.0 253.7 158.7 250.9 s3 157.5 251.7 161.2 253.7 p 157.5 251.7 157.4 250.1 158.7 250.9 t3 157.5 251.7 157.4 250.1 p 159.1 250.7 157.6 248.2 163.0 248.2 t4 159.1 250.7 157.6 248.2 p 163.0 253.0 159.1 250.7 163.0 248.2 t4 163.0 253.0 159.1 250.7 p 160.0 250.1 158.9 248.2 163.0 248.2 t5 160.0 250.1 158.9 248.2 p 163.0 251.9 160.0 250.1 163.0 248.2 t5 163.0 251.9 160.0 250.1 p 160.9 249.5 160.2 248.2 163.0 248.2 t6 160.9 249.5 160.2 248.2 p 163.0 250.7 160.9 249.5 163.0 248.2 t6 163.0 250.7 160.9 249.5 p 161.9 248.9 161.5 248.2 163.0 248.2 t7 161.9 248.9 161.5 248.2 p 163.0 249.5 161.9 248.9 163.0 248.2 t7 163.0 249.5 161.9 248.9 p 162.8 248.3 162.7 248.2 163.0 248.2 t8 162.8 248.3 162.7 248.2 p 163.0 248.4 162.8 248.3 163.0 248.2 t8 163.0 248.4 162.8 248.3 p 163.0 248.2 171.6 248.2 171.6 253.7 163.0 253.7 s3 163.0 248.2 167.3 250.9 171.6 248.2 t4 171.6 248.2 167.3 250.9 171.6 253.7 t4 163.5 253.4 165.5 253.7 171.6 253.7 167.3 250.9 s4 163.5 253.4 165.5 253.7 p 163.0 253.0 163.5 253.4 167.3 250.9 163.0 248.2 s4 163.0 253.0 163.5 253.4 p 163.0 248.2 167.3 250.9 171.6 248.2 t5 171.6 248.2 167.3 250.9 171.6 253.7 t5 164.3 252.8 170.0 253.7 171.6 253.7 167.3 250.9 s5 164.3 252.8 170.0 253.7 p 163.0 251.9 164.3 252.8 167.3 250.9 163.0 248.2 s5 163.0 251.9 164.3 252.8 p 163.0 248.2 167.3 250.9 171.6 248.2 t6 170.7 253.1 171.6 253.4 171.6 248.2 167.3 250.9 s6 170.7 253.1 171.6 253.4 p 170.7 253.1 165.2 252.3 167.3 250.9 t6 170.7 253.1 165.2 252.3 p 163.0 250.7 165.2 252.3 167.3 250.9 163.0 248.2 s6 163.0 250.7 165.2 252.3 p 163.0 248.2 167.3 250.9 171.6 248.2 t7 169.4 252.3 171.6 252.9 171.6 248.2 167.3 250.9 s7 169.4 252.3 171.6 252.9 p 169.4 252.3 166.0 251.7 167.3 250.9 t7 169.4 252.3 166.0 251.7 p 163.0 249.5 166.0 251.7 167.3 250.9 163.0 248.2 s7 163.0 249.5 166.0 251.7 p 163.0 248.2 167.3 250.9 171.6 248.2 t8 168.0 251.4 171.6 252.4 171.6 248.2 167.3 250.9 s8 168.0 251.4 171.6 252.4 p 168.0 251.4 166.8 251.2 167.3 250.9 t8 168.0 251.4 166.8 251.2 p 163.0 248.4 166.8 251.2 167.3 250.9 163.0 248.2 s8 163.0 248.4 166.8 251.2 p 171.6 248.2 180.2 248.2 180.2 253.7 171.6 253.7 s3 171.6 248.2 175.9 250.9 180.2 248.2 t4 179.7 253.4 180.2 253.0 180.2 248.2 175.9 250.9 s4 179.7 253.4 180.2 253.0 p 177.6 253.7 179.7 253.4 175.9 250.9 171.6 253.7 s4 177.6 253.7 179.7 253.4 p 171.6 253.7 175.9 250.9 171.6 248.2 t4 171.6 248.2 175.9 250.9 180.2 248.2 t5 178.8 252.8 180.2 251.9 180.2 248.2 175.9 250.9 s5 178.8 252.8 180.2 251.9 p 173.2 253.7 178.8 252.8 175.9 250.9 171.6 253.7 s5 173.2 253.7 178.8 252.8 p 171.6 253.7 175.9 250.9 171.6 248.2 t5 171.6 248.2 175.9 250.9 180.2 248.2 t6 178.0 252.3 180.2 250.7 180.2 248.2 175.9 250.9 s6 178.0 252.3 180.2 250.7 p 178.0 252.3 172.4 253.1 175.9 250.9 t6 178.0 252.3 172.4 253.1 p 171.6 253.4 172.4 253.1 175.9 250.9 171.6 248.2 s6 171.6 253.4 172.4 253.1 p 171.6 248.2 175.9 250.9 180.2 248.2 t7 177.2 251.7 180.2 249.5 180.2 248.2 175.9 250.9 s7 177.2 251.7 180.2 249.5 p 177.2 251.7 173.8 252.3 175.9 250.9 t7 177.2 251.7 173.8 252.3 p 171.6 252.9 173.8 252.3 175.9 250.9 171.6 248.2 s7 171.6 252.9 173.8 252.3 p 171.6 248.2 175.9 250.9 180.2 248.2 t8 176.3 251.2 180.2 248.4 180.2 248.2 175.9 250.9 s8 176.3 251.2 180.2 248.4 p 176.3 251.2 175.1 251.4 175.9 250.9 t8 176.3 251.2 175.1 251.4 p 171.6 252.4 175.1 251.4 175.9 250.9 171.6 248.2 s8 171.6 252.4 175.1 251.4 p 180.2 248.2 188.7 248.2 188.7 253.7 180.2 253.7 s1 187.8 248.8 188.2 248.2 180.2 248.2 184.4 250.9 s2 187.8 248.8 188.2 248.2 p 187.8 248.8 187.5 252.9 184.4 250.9 t2 187.8 248.8 187.5 252.9 p 186.0 253.7 187.5 252.9 184.4 250.9 180.2 253.7 s2 186.0 253.7 187.5 252.9 p 180.2 253.7 184.4 250.9 180.2 248.2 t2 185.7 250.1 186.9 248.2 180.2 248.2 184.4 250.9 s3 185.7 250.1 186.9 248.2 p 185.7 250.1 185.6 251.7 184.4 250.9 t3 185.7 250.1 185.6 251.7 p 181.9 253.7 185.6 251.7 184.4 250.9 180.2 253.7 s3 181.9 253.7 185.6 251.7 p 180.2 253.7 184.4 250.9 180.2 248.2 t3 185.6 248.2 184.1 250.7 180.2 248.2 t4 185.6 248.2 184.1 250.7 p 184.1 250.7 180.2 253.0 180.2 248.2 t4 184.1 250.7 180.2 253.0 p 184.3 248.2 183.2 250.1 180.2 248.2 t5 184.3 248.2 183.2 250.1 p 183.2 250.1 180.2 251.9 180.2 248.2 t5 183.2 250.1 180.2 251.9 p 183.0 248.2 182.2 249.5 180.2 248.2 t6 183.0 248.2 182.2 249.5 p 182.2 249.5 180.2 250.7 180.2 248.2 t6 182.2 249.5 180.2 250.7 p 181.7 248.2 181.3 248.9 180.2 248.2 t7 181.7 248.2 181.3 248.9 p 181.3 248.9 180.2 249.5 180.2 248.2 t7 181.3 248.9 180.2 249.5 p 180.4 248.2 180.3 248.3 180.2 248.2 t8 180.4 248.2 180.3 248.3 p 180.3 248.3 180.2 248.4 180.2 248.2 t8 180.3 248.3 180.2 248.4 p 188.7 248.2 197.3 248.2 197.3 253.7 188.7 253.7 s1 197.3 248.2 205.9 248.2 205.9 253.7 197.3 253.7 s1 197.9 248.2 198.2 248.8 201.6 250.9 205.9 248.2 s2 197.9 248.2 198.2 248.8 p 205.9 248.2 201.6 250.9 205.9 253.7 t2 198.6 252.9 200.1 253.7 205.9 253.7 201.6 250.9 s2 198.6 252.9 200.1 253.7 p 198.6 252.9 198.2 248.8 201.6 250.9 t2 198.6 252.9 198.2 248.8 p 199.2 248.2 200.3 250.1 201.6 250.9 205.9 248.2 s3 199.2 248.2 200.3 250.1 p 205.9 248.2 201.6 250.9 205.9 253.7 t3 200.4 251.7 204.1 253.7 205.9 253.7 201.6 250.9 s3 200.4 251.7 204.1 253.7 p 200.4 251.7 200.3 250.1 201.6 250.9 t3 200.4 251.7 200.3 250.1 p 202.0 250.7 200.5 248.2 205.9 248.2 t4 202.0 250.7 200.5 248.2 p 205.9 253.0 202.0 250.7 205.9 248.2 t4 205.9 253.0 202.0 250.7 p 202.9 250.1 201.8 248.2 205.9 248.2 t5 202.9 250.1 201.8 248.2 p 205.9 251.9 202.9 250.1 205.9 248.2 t5 205.9 251.9 202.9 250.1 p 203.8 249.5 203.1 248.2 205.9 248.2 t6 203.8 249.5 203.1 248.2 p 205.9 250.7 203.8 249.5 205.9 248.2 t6 205.9 250.7 203.8 249.5 p 204.8 248.9 204.3 248.2 205.9 248.2 t7 204.8 248.9 204.3 248.2 p 205.9 249.5 204.8 248.9 205.9 248.2 t7 205.9 249.5 204.8 248.9 p 205.7 248.3 205.6 248.2 205.9 248.2 t8 205.7 248.3 205.6 248.2 p 205.9 248.4 205.7 248.3 205.9 248.2 t8 205.9 248.4 205.7 248.3 p 205.9 248.2 214.5 248.2 214.5 253.7 205.9 253.7 s3 205.9 248.2 210.2 250.9 214.5 248.2 t4 214.5 248.2 210.2 250.9 214.5 253.7 t4 206.4 253.4 208.4 253.7 214.5 253.7 210.2 250.9 s4 206.4 253.4 208.4 253.7 p 205.9 253.0 206.4 253.4 210.2 250.9 205.9 248.2 s4 205.9 253.0 206.4 253.4 p 205.9 248.2 210.2 250.9 214.5 248.2 t5 214.5 248.2 210.2 250.9 214.5 253.7 t5 207.2 252.8 212.9 253.7 214.5 253.7 210.2 250.9 s5 207.2 252.8 212.9 253.7 p 205.9 251.9 207.2 252.8 210.2 250.9 205.9 248.2 s5 205.9 251.9 207.2 252.8 p 205.9 248.2 210.2 250.9 214.5 248.2 t6 213.6 253.1 214.5 253.4 214.5 248.2 210.2 250.9 s6 213.6 253.1 214.5 253.4 p 213.6 253.1 208.1 252.3 210.2 250.9 t6 213.6 253.1 208.1 252.3 p 205.9 250.7 208.1 252.3 210.2 250.9 205.9 248.2 s6 205.9 250.7 208.1 252.3 p 205.9 248.2 210.2 250.9 214.5 248.2 t7 212.3 252.3 214.5 252.9 214.5 248.2 210.2 250.9 s7 212.3 252.3 214.5 252.9 p 212.3 252.3 208.9 251.7 210.2 250.9 t7 212.3 252.3 208.9 251.7 p 205.9 249.5 208.9 251.7 210.2 250.9 205.9 248.2 s7 205.9 249.5 208.9 251.7 p 205.9 248.2 210.2 250.9 214.5 248.2 t8 210.9 251.4 214.5 252.4 214.5 248.2 210.2 250.9 s8 210.9 251.4 214.5 252.4 p 210.9 251.4 209.7 251.2 210.2 250.9 t8 210.9 251.4 209.7 251.2 p 205.9 248.4 209.7 251.2 210.2 250.9 205.9 248.2 s8 205.9 248.4 209.7 251.2 p 214.5 248.2 223.1 248.2 223.1 253.7 214.5 253.7 s3 214.5 248.2 218.8 250.9 223.1 248.2 t4 222.6 253.4 223.1 253.0 223.1 248.2 218.8 250.9 s4 222.6 253.4 223.1 253.0 p 220.5 253.7 222.6 253.4 218.8 250.9 214.5 253.7 s4 220.5 253.7 222.6 253.4 p 214.5 253.7 218.8 250.9 214.5 248.2 t4 214.5 248.2 218.8 250.9 223.1 248.2 t5 221.7 252.8 223.1 251.9 223.1 248.2 218.8 250.9 s5 221.7 252.8 223.1 251.9 p 216.1 253.7 221.7 252.8 218.8 250.9 214.5 253.7 s5 216.1 253.7 221.7 252.8 p 214.5 253.7 218.8 250.9 214.5 248.2 t5 214.5 248.2 218.8 250.9 223.1 248.2 t6 220.9 252.3 223.1 250.7 223.1 248.2 218.8 250.9 s6 220.9 252.3 223.1 250.7 p 220.9 252.3 215.3 253.1 218.8 250.9 t6 220.9 252.3 215.3 253.1 p 214.5 253.4 215.3 253.1 218.8 250.9 214.5 248.2 s6 214.5 253.4 215.3 253.1 p 214.5 248.2 218.8 250.9 223.1 248.2 t7 220.1 251.7 223.1 249.5 223.1 248.2 218.8 250.9 s7 220.1 251.7 223.1 249.5 p 220.1 251.7 216.7 252.3 218.8 250.9 t7 220.1 251.7 216.7 252.3 p 214.5 252.9 216.7 252.3 218.8 250.9 214.5 248.2 s7 214.5 252.9 216.7 252.3 p 214.5 248.2 218.8 250.9 223.1 248.2 t8 219.2 251.2 223.1 248.4 223.1 248.2 218.8 250.9 s8 219.2 251.2 223.1 248.4 p 219.2 251.2 218.0 251.4 218.8 250.9 t8 219.2 251.2 218.0 251.4 p 214.5 252.4 218.0 251.4 218.8 250.9 214.5 248.2 s8 214.5 252.4 218.0 251.4 p 223.1 248.2 231.6 248.2 231.6 253.7 223.1 253.7 s1 230.7 248.8 231.1 248.2 223.1 248.2 227.3 250.9 s2 230.7 248.8 231.1 248.2 p 230.7 248.8 230.4 252.9 227.3 250.9 t2 230.7 248.8 230.4 252.9 p 228.9 253.7 230.4 252.9 227.3 250.9 223.1 253.7 s2 228.9 253.7 230.4 252.9 p 223.1 253.7 227.3 250.9 223.1 248.2 t2 228.6 250.1 229.8 248.2 223.1 248.2 227.3 250.9 s3 228.6 250.1 229.8 248.2 p 228.6 250.1 228.5 251.7 227.3 250.9 t3 228.6 250.1 228.5 251.7 p 224.8 253.7 228.5 251.7 227.3 250.9 223.1 253.7 s3 224.8 253.7 228.5 251.7 p 223.1 253.7 227.3 250.9 223.1 248.2 t3 228.5 248.2 227.0 250.7 223.1 248.2 t4 228.5 248.2 227.0 250.7 p 227.0 250.7 223.1 253.0 223.1 248.2 t4 227.0 250.7 223.1 253.0 p 227.2 248.2 226.1 250.1 223.1 248.2 t5 227.2 248.2 226.1 250.1 p 226.1 250.1 223.1 251.9 223.1 248.2 t5 226.1 250.1 223.1 251.9 p 225.9 248.2 225.1 249.5 223.1 248.2 t6 225.9 248.2 225.1 249.5 p 225.1 249.5 223.1 250.7 223.1 248.2 t6 225.1 249.5 223.1 250.7 p 224.6 248.2 224.2 248.9 223.1 248.2 t7 224.6 248.2 224.2 248.9 p 224.2 248.9 223.1 249.5 223.1 248.2 t7 224.2 248.9 223.1 249.5 p 223.3 248.2 223.2 248.3 223.1 248.2 t8 223.3 248.2 223.2 248.3 p 223.2 248.3 223.1 248.4 223.1 248.2 t8 223.2 248.3 223.1 248.4 p 231.6 248.2 240.2 248.2 240.2 253.7 231.6 253.7 s1 240.2 248.2 248.8 248.2 248.8 253.7 240.2 253.7 s1 240.8 248.2 241.1 248.8 244.5 250.9 248.8 248.2 s2 240.8 248.2 241.1 248.8 p 248.8 248.2 244.5 250.9 248.8 253.7 t2 241.5 252.9 243.0 253.7 248.8 253.7 244.5 250.9 s2 241.5 252.9 243.0 253.7 p 241.5 252.9 241.1 248.8 244.5 250.9 t2 241.5 252.9 241.1 248.8 p 242.1 248.2 243.2 250.1 244.5 250.9 248.8 248.2 s3 242.1 248.2 243.2 250.1 p 248.8 248.2 244.5 250.9 248.8 253.7 t3 243.3 251.7 247.0 253.7 248.8 253.7 244.5 250.9 s3 243.3 251.7 247.0 253.7 p 243.3 251.7 243.2 250.1 244.5 250.9 t3 243.3 251.7 243.2 250.1 p 244.8 250.7 243.4 248.2 248.8 248.2 t4 244.8 250.7 243.4 248.2 p 248.8 253.0 244.8 250.7 248.8 248.2 t4 248.8 253.0 244.8 250.7 p 245.8 250.1 244.7 248.2 248.8 248.2 t5 245.8 250.1 244.7 248.2 p 248.8 251.9 245.8 250.1 248.8 248.2 t5 248.8 251.9 245.8 250.1 p 246.7 249.5 246.0 248.2 248.8 248.2 t6 246.7 249.5 246.0 248.2 p 248.8 250.7 246.7 249.5 248.8 248.2 t6 248.8 250.7 246.7 249.5 p 247.7 248.9 247.2 248.2 248.8 248.2 t7 247.7 248.9 247.2 248.2 p 248.8 249.5 247.7 248.9 248.8 248.2 t7 248.8 249.5 247.7 248.9 p 248.6 248.3 248.5 248.2 248.8 248.2 t8 248.6 248.3 248.5 248.2 p 248.8 248.4 248.6 248.3 248.8 248.2 t8 248.8 248.4 248.6 248.3 p 248.8 248.2 257.4 248.2 257.4 253.7 248.8 253.7 s3 248.8 248.2 253.1 250.9 257.4 248.2 t4 257.4 248.2 253.1 250.9 257.4 253.7 t4 249.3 253.4 251.3 253.7 257.4 253.7 253.1 250.9 s4 249.3 253.4 251.3 253.7 p 248.8 253.0 249.3 253.4 253.1 250.9 248.8 248.2 s4 248.8 253.0 249.3 253.4 p 248.8 248.2 253.1 250.9 257.4 248.2 t5 257.4 248.2 253.1 250.9 257.4 253.7 t5 250.1 252.8 255.8 253.7 257.4 253.7 253.1 250.9 s5 250.1 252.8 255.8 253.7 p 248.8 251.9 250.1 252.8 253.1 250.9 248.8 248.2 s5 248.8 251.9 250.1 252.8 p 248.8 248.2 253.1 250.9 257.4 248.2 t6 256.5 253.1 257.4 253.4 257.4 248.2 253.1 250.9 s6 256.5 253.1 257.4 253.4 p 256.5 253.1 250.9 252.3 253.1 250.9 t6 256.5 253.1 250.9 252.3 p 248.8 250.7 250.9 252.3 253.1 250.9 248.8 248.2 s6 248.8 250.7 250.9 252.3 p 248.8 248.2 253.1 250.9 257.4 248.2 t7 255.1 252.3 257.4 252.9 257.4 248.2 253.1 250.9 s7 255.1 252.3 257.4 252.9 p 255.1 252.3 251.8 251.7 253.1 250.9 t7 255.1 252.3 251.8 251.7 p 248.8 249.5 251.8 251.7 253.1 250.9 248.8 248.2 s7 248.8 249.5 251.8 251.7 p 248.8 248.2 253.1 250.9 257.4 248.2 t8 253.8 251.4 257.4 252.4 257.4 248.2 253.1 250.9 s8 253.8 251.4 257.4 252.4 p 253.8 251.4 252.6 251.2 253.1 250.9 t8 253.8 251.4 252.6 251.2 p 248.8 248.4 252.6 251.2 253.1 250.9 248.8 248.2 s8 248.8 248.4 252.6 251.2 p 257.4 248.2 265.9 248.2 265.9 253.7 257.4 253.7 s3 257.4 248.2 261.7 250.9 265.9 248.2 t4 265.5 253.4 265.9 253.0 265.9 248.2 261.7 250.9 s4 265.5 253.4 265.9 253.0 p 263.4 253.7 265.5 253.4 261.7 250.9 257.4 253.7 s4 263.4 253.7 265.5 253.4 p 257.4 253.7 261.7 250.9 257.4 248.2 t4 257.4 248.2 261.7 250.9 265.9 248.2 t5 264.6 252.8 265.9 251.9 265.9 248.2 261.7 250.9 s5 264.6 252.8 265.9 251.9 p 259.0 253.7 264.6 252.8 261.7 250.9 257.4 253.7 s5 259.0 253.7 264.6 252.8 p 257.4 253.7 261.7 250.9 257.4 248.2 t5 257.4 248.2 261.7 250.9 265.9 248.2 t6 263.8 252.3 265.9 250.7 265.9 248.2 261.7 250.9 s6 263.8 252.3 265.9 250.7 p 263.8 252.3 258.2 253.1 261.7 250.9 t6 263.8 252.3 258.2 253.1 p 257.4 253.4 258.2 253.1 261.7 250.9 257.4 248.2 s6 257.4 253.4 258.2 253.1 p 257.4 248.2 261.7 250.9 265.9 248.2 t7 262.9 251.7 265.9 249.5 265.9 248.2 261.7 250.9 s7 262.9 251.7 265.9 249.5 p 262.9 251.7 259.6 252.3 261.7 250.9 t7 262.9 251.7 259.6 252.3 p 257.4 252.9 259.6 252.3 261.7 250.9 257.4 248.2 s7 257.4 252.9 259.6 252.3 p 257.4 248.2 261.7 250.9 265.9 248.2 t8 262.1 251.2 265.9 248.4 265.9 248.2 261.7 250.9 s8 262.1 251.2 265.9 248.4 p 262.1 251.2 260.9 251.4 261.7 250.9 t8 262.1 251.2 260.9 251.4 p 257.4 252.4 260.9 251.4 261.7 250.9 257.4 248.2 s8 257.4 252.4 260.9 251.4 p 265.9 248.2 274.5 248.2 274.5 253.7 265.9 253.7 s1 273.6 248.8 274.0 248.2 265.9 248.2 270.2 250.9 s2 273.6 248.8 274.0 248.2 p 273.6 248.8 273.3 252.9 270.2 250.9 t2 273.6 248.8 273.3 252.9 p 271.8 253.7 273.3 252.9 270.2 250.9 265.9 253.7 s2 271.8 253.7 273.3 252.9 p 265.9 253.7 270.2 250.9 265.9 248.2 t2 271.5 250.1 272.7 248.2 265.9 248.2 270.2 250.9 s3 271.5 250.1 272.7 248.2 p 271.5 250.1 271.4 251.7 270.2 250.9 t3 271.5 250.1 271.4 251.7 p 267.7 253.7 271.4 251.7 270.2 250.9 265.9 253.7 s3 267.7 253.7 271.4 251.7 p 265.9 253.7 270.2 250.9 265.9 248.2 t3 271.4 248.2 269.9 250.7 265.9 248.2 t4 271.4 248.2 269.9 250.7 p 269.9 250.7 265.9 253.0 265.9 248.2 t4 269.9 250.7 265.9 253.0 p 270.1 248.2 268.9 250.1 265.9 248.2 t5 270.1 248.2 268.9 250.1 p 268.9 250.1 265.9 251.9 265.9 248.2 t5 268.9 250.1 265.9 251.9 p 268.8 248.2 268.0 249.5 265.9 248.2 t6 268.8 248.2 268.0 249.5 p 268.0 249.5 265.9 250.7 265.9 248.2 t6 268.0 249.5 265.9 250.7 p 267.5 248.2 267.1 248.9 265.9 248.2 t7 267.5 248.2 267.1 248.9 p 267.1 248.9 265.9 249.5 265.9 248.2 t7 267.1 248.9 265.9 249.5 p 266.2 248.2 266.1 248.3 265.9 248.2 t8 266.2 248.2 266.1 248.3 p 266.1 248.3 265.9 248.4 265.9 248.2 t8 266.1 248.3 265.9 248.4 p 274.5 248.2 283.1 248.2 283.1 253.7 274.5 253.7 s1 283.1 248.2 291.7 248.2 291.7 253.7 283.1 253.7 s1 283.7 248.2 284.0 248.8 287.4 250.9 291.7 248.2 s2 283.7 248.2 284.0 248.8 p 291.7 248.2 287.4 250.9 291.7 253.7 t2 284.4 252.9 285.9 253.7 291.7 253.7 287.4 250.9 s2 284.4 252.9 285.9 253.7 p 284.4 252.9 284.0 248.8 287.4 250.9 t2 284.4 252.9 284.0 248.8 p 285.0 248.2 286.1 250.1 287.4 250.9 291.7 248.2 s3 285.0 248.2 286.1 250.1 p 291.7 248.2 287.4 250.9 291.7 253.7 t3 286.2 251.7 289.9 253.7 291.7 253.7 287.4 250.9 s3 286.2 251.7 289.9 253.7 p 286.2 251.7 286.1 250.1 287.4 250.9 t3 286.2 251.7 286.1 250.1 p 287.7 250.7 286.3 248.2 291.7 248.2 t4 287.7 250.7 286.3 248.2 p 291.7 253.0 287.7 250.7 291.7 248.2 t4 291.7 253.0 287.7 250.7 p 288.7 250.1 287.6 248.2 291.7 248.2 t5 288.7 250.1 287.6 248.2 p 291.7 251.9 288.7 250.1 291.7 248.2 t5 291.7 251.9 288.7 250.1 p 289.6 249.5 288.8 248.2 291.7 248.2 t6 289.6 249.5 288.8 248.2 p 291.7 250.7 289.6 249.5 291.7 248.2 t6 291.7 250.7 289.6 249.5 p 290.6 248.9 290.1 248.2 291.7 248.2 t7 290.6 248.9 290.1 248.2 p 291.7 249.5 290.6 248.9 291.7 248.2 t7 291.7 249.5 290.6 248.9 p 291.5 248.3 291.4 248.2 291.7 248.2 t8 291.5 248.3 291.4 248.2 p 291.7 248.4 291.5 248.3 291.7 248.2 t8 291.7 248.4 291.5 248.3 p 291.7 248.2 300.3 248.2 300.3 253.7 291.7 253.7 s3 291.7 248.2 296.0 250.9 300.3 248.2 t4 300.3 248.2 296.0 250.9 300.3 253.7 t4 292.2 253.4 294.2 253.7 300.3 253.7 296.0 250.9 s4 292.2 253.4 294.2 253.7 p 291.7 253.0 292.2 253.4 296.0 250.9 291.7 248.2 s4 291.7 253.0 292.2 253.4 p 291.7 248.2 296.0 250.9 300.3 248.2 t5 300.3 248.2 296.0 250.9 300.3 253.7 t5 293.0 252.8 298.7 253.7 300.3 253.7 296.0 250.9 s5 293.0 252.8 298.7 253.7 p 291.7 251.9 293.0 252.8 296.0 250.9 291.7 248.2 s5 291.7 251.9 293.0 252.8 p 291.7 248.2 296.0 250.9 300.3 248.2 t6 299.4 253.1 300.3 253.4 300.3 248.2 296.0 250.9 s6 299.4 253.1 300.3 253.4 p 299.4 253.1 293.8 252.3 296.0 250.9 t6 299.4 253.1 293.8 252.3 p 291.7 250.7 293.8 252.3 296.0 250.9 291.7 248.2 s6 291.7 250.7 293.8 252.3 p 291.7 248.2 296.0 250.9 300.3 248.2 t7 298.0 252.3 300.3 252.9 300.3 248.2 296.0 250.9 s7 298.0 252.3 300.3 252.9 p 298.0 252.3 294.7 251.7 296.0 250.9 t7 298.0 252.3 294.7 251.7 p 291.7 249.5 294.7 251.7 296.0 250.9 291.7 248.2 s7 291.7 249.5 294.7 251.7 p 291.7 248.2 296.0 250.9 300.3 248.2 t8 296.7 251.4 300.3 252.4 300.3 248.2 296.0 250.9 s8 296.7 251.4 300.3 252.4 p 296.7 251.4 295.5 251.2 296.0 250.9 t8 296.7 251.4 295.5 251.2 p 291.7 248.4 295.5 251.2 296.0 250.9 291.7 248.2 s8 291.7 248.4 295.5 251.2 p 0.0 242.6 8.6 242.6 8.6 248.2 0.0 248.2 s8 8.6 242.6 17.2 242.6 17.2 248.2 8.6 248.2 s1 16.9 242.8 17.0 242.6 8.6 242.6 12.9 245.4 s2 16.9 242.8 17.0 242.6 p 16.9 242.8 16.7 247.8 12.9 245.4 t2 16.9 242.8 16.7 247.8 p 16.6 248.2 16.7 247.8 12.9 245.4 8.6 248.2 s2 16.6 248.2 16.7 247.8 p 8.6 248.2 12.9 245.4 8.6 242.6 t2 15.7 243.6 15.9 242.6 8.6 242.6 12.9 245.4 s3 15.7 243.6 15.9 242.6 p 15.7 243.6 15.5 247.1 12.9 245.4 t3 15.7 243.6 15.5 247.1 p 15.3 248.2 15.5 247.1 12.9 245.4 8.6 248.2 s3 15.3 248.2 15.5 247.1 p 8.6 248.2 12.9 245.4 8.6 242.6 t3 14.5 244.4 14.8 242.6 8.6 242.6 12.9 245.4 s4 14.5 244.4 14.8 242.6 p 14.5 244.4 14.4 246.4 12.9 245.4 t4 14.5 244.4 14.4 246.4 p 14.0 248.2 14.4 246.4 12.9 245.4 8.6 248.2 s4 14.0 248.2 14.4 246.4 p 8.6 248.2 12.9 245.4 8.6 242.6 t4 13.3 245.1 13.8 242.6 8.6 242.6 12.9 245.4 s5 13.3 245.1 13.8 242.6 p 13.3 245.1 13.3 245.7 12.9 245.4 t5 13.3 245.1 13.3 245.7 p 12.7 248.2 13.3 245.7 12.9 245.4 8.6 248.2 s5 12.7 248.2 13.3 245.7 p 8.6 248.2 12.9 245.4 8.6 242.6 t5 12.7 242.6 12.2 245.0 8.6 242.6 t6 12.7 242.6 12.2 245.0 p 11.9 246.0 11.4 248.2 8.6 248.2 t6 11.9 246.0 11.4 248.2 p 11.9 246.0 12.2 245.0 8.6 242.6 8.6 248.2 s6 11.9 246.0 12.2 245.0 p 11.6 242.6 11.3 244.4 8.6 242.6 t7 11.6 242.6 11.3 244.4 p 10.4 247.0 10.1 248.2 8.6 248.2 t7 10.4 247.0 10.1 248.2 p 10.4 247.0 11.3 244.4 8.6 242.6 8.6 248.2 s7 10.4 247.0 11.3 244.4 p 10.5 242.6 10.3 243.8 8.6 242.6 t8 10.5 242.6 10.3 243.8 p 8.9 248.0 8.8 248.2 8.6 248.2 t8 8.9 248.0 8.8 248.2 p 8.9 248.0 10.3 243.8 8.6 242.6 8.6 248.2 s8 8.9 248.0 10.3 243.8 p 17.2 242.6 25.7 242.6 25.7 248.2 17.2 248.2 s1 25.7 242.6 34.3 242.6 34.3 248.2 25.7 248.2 s1 25.9 242.6 26.0 242.8 30.0 245.4 34.3 242.6 s2 25.9 242.6 26.0 242.8 p 34.3 242.6 30.0 245.4 34.3 248.2 t2 26.2 247.8 26.3 248.2 34.3 248.2 30.0 245.4 s2 26.2 247.8 26.3 248.2 p 26.2 247.8 26.0 242.8 30.0 245.4 t2 26.2 247.8 26.0 242.8 p 27.0 242.6 27.2 243.6 30.0 245.4 34.3 242.6 s3 27.0 242.6 27.2 243.6 p 34.3 242.6 30.0 245.4 34.3 248.2 t3 27.4 247.1 27.6 248.2 34.3 248.2 30.0 245.4 s3 27.4 247.1 27.6 248.2 p 27.4 247.1 27.2 243.6 30.0 245.4 t3 27.4 247.1 27.2 243.6 p 28.1 242.6 28.4 244.4 30.0 245.4 34.3 242.6 s4 28.1 242.6 28.4 244.4 p 34.3 242.6 30.0 245.4 34.3 248.2 t4 28.5 246.4 28.9 248.2 34.3 248.2 30.0 245.4 s4 28.5 246.4 28.9 248.2 p 28.5 246.4 28.4 244.4 30.0 245.4 t4 28.5 246.4 28.4 244.4 p 29.1 242.6 29.6 245.1 30.0 245.4 34.3 242.6 s5 29.1 242.6 29.6 245.1 p 34.3 242.6 30.0 245.4 34.3 248.2 t5 29.6 245.7 30.2 248.2 34.3 248.2 30.0 245.4 s5 29.6 245.7 30.2 248.2 p 29.6 245.7 29.6 245.1 30.0 245.4 t5 29.6 245.7 29.6 245.1 p 30.6 245.0 30.2 242.6 34.3 242.6 t6 30.6 245.0 30.2 242.6 p 30.6 245.0 31.0 246.0 34.3 248.2 34.3 242.6 s6 30.6 245.0 31.0 246.0 p 31.5 248.2 31.0 246.0 34.3 248.2 t6 31.5 248.2 31.0 246.0 p 31.6 244.4 31.3 242.6 34.3 242.6 t7 31.6 244.4 31.3 242.6 p 31.6 244.4 32.5 247.0 34.3 248.2 34.3 242.6 s7 31.6 244.4 32.5 247.0 p 32.8 248.2 32.5 247.0 34.3 248.2 t7 32.8 248.2 32.5 247.0 p 32.6 243.8 32.3 242.6 34.3 242.6 t8 32.6 243.8 32.3 242.6 p 32.6 243.8 34.0 248.0 34.3 248.2 34.3 242.6 s8 32.6 243.8 34.0 248.0 p 34.1 248.2 34.0 248.0 34.3 248.2 t8 34.1 248.2 34.0 248.0 p 34.3 242.6 42.9 242.6 42.9 248.2 34.3 248.2 s8 42.9 242.6 51.5 242.6 51.5 248.2 42.9 248.2 s8 51.5 242.6 60.1 242.6 60.1 248.2 51.5 248.2 s1 59.8 242.8 59.9 242.6 51.5 242.6 55.8 245.4 s2 59.8 242.8 59.9 242.6 p 59.8 242.8 59.6 247.8 55.8 245.4 t2 59.8 242.8 59.6 247.8 p 59.5 248.2 59.6 247.8 55.8 245.4 51.5 248.2 s2 59.5 248.2 59.6 247.8 p 51.5 248.2 55.8 245.4 51.5 242.6 t2 58.6 243.6 58.8 242.6 51.5 242.6 55.8 245.4 s3 58.6 243.6 58.8 242.6 p 58.6 243.6 58.4 247.1 55.8 245.4 t3 58.6 243.6 58.4 247.1 p 58.2 248.2 58.4 247.1 55.8 245.4 51.5 248.2 s3 58.2 248.2 58.4 247.1 p 51.5 248.2 55.8 245.4 51.5 242.6 t3 57.4 244.4 57.7 242.6 51.5 242.6 55.8 245.4 s4 57.4 244.4 57.7 242.6 p 57.4 244.4 57.3 246.4 55.8 245.4 t4 57.4 244.4 57.3 246.4 p 56.9 248.2 57.3 246.4 55.8 245.4 51.5 248.2 s4 56.9 248.2 57.3 246.4 p 51.5 248.2 55.8 245.4 51.5 242.6 t4 56.2 245.1 56.6 242.6 51.5 242.6 55.8 245.4 s5 56.2 245.1 56.6 242.6 p 56.2 245.1 56.2 245.7 55.8 245.4 t5 56.2 245.1 56.2 245.7 p 55.6 248.2 56.2 245.7 55.8 245.4 51.5 248.2 s5 55.6 248.2 56.2 245.7 p 51.5 248.2 55.8 245.4 51.5 242.6 t5 55.6 242.6 55.1 245.0 51.5 242.6 t6 55.6 242.6 55.1 245.0 p 54.8 246.0 54.3 248.2 51.5 248.2 t6 54.8 246.0 54.3 248.2 p 54.8 246.0 55.1 245.0 51.5 242.6 51.5 248.2 s6 54.8 246.0 55.1 245.0 p 54.5 242.6 54.2 244.4 51.5 242.6 t7 54.5 242.6 54.2 244.4 p 53.3 247.0 53.0 248.2 51.5 248.2 t7 53.3 247.0 53.0 248.2 p 53.3 247.0 54.2 244.4 51.5 242.6 51.5 248.2 s7 53.3 247.0 54.2 244.4 p 53.4 242.6 53.2 243.8 51.5 242.6 t8 53.4 242.6 53.2 243.8 p 51.8 248.0 51.7 248.2 51.5 248.2 t8 51.8 248.0 51.7 248.2 p 51.8 248.0 53.2 243.8 51.5 242.6 51.5 248.2 s8 51.8 248.0 53.2 243.8 p 60.1 242.6 68.6 242.6 68.6 248.2 60.1 248.2 s1 68.6 242.6 77.2 242.6 77.2 248.2 68.6 248.2 s1 68.8 242.6 68.9 242.8 72.9 245.4 77.2 242.6 s2 68.8 242.6 68.9 242.8 p 77.2 242.6 72.9 245.4 77.2 248.2 t2 69.1 247.8 69.2 248.2 77.2 248.2 72.9 245.4 s2 69.1 247.8 69.2 248.2 p 69.1 247.8 68.9 242.8 72.9 245.4 t2 69.1 247.8 68.9 242.8 p 69.9 242.6 70.1 243.6 72.9 245.4 77.2 242.6 s3 69.9 242.6 70.1 243.6 p 77.2 242.6 72.9 245.4 77.2 248.2 t3 70.3 247.1 70.5 248.2 77.2 248.2 72.9 245.4 s3 70.3 247.1 70.5 248.2 p 70.3 247.1 70.1 243.6 72.9 245.4 t3 70.3 247.1 70.1 243.6 p 71.0 242.6 71.3 244.4 72.9 245.4 77.2 242.6 s4 71.0 242.6 71.3 244.4 p 77.2 242.6 72.9 245.4 77.2 248.2 t4 71.4 246.4 71.8 248.2 77.2 248.2 72.9 245.4 s4 71.4 246.4 71.8 248.2 p 71.4 246.4 71.3 244.4 72.9 245.4 t4 71.4 246.4 71.3 244.4 p 72.0 242.6 72.5 245.1 72.9 245.4 77.2 242.6 s5 72.0 242.6 72.5 245.1 p 77.2 242.6 72.9 245.4 77.2 248.2 t5 72.5 245.7 73.1 248.2 77.2 248.2 72.9 245.4 s5 72.5 245.7 73.1 248.2 p 72.5 245.7 72.5 245.1 72.9 245.4 t5 72.5 245.7 72.5 245.1 p 73.5 245.0 73.1 242.6 77.2 242.6 t6 73.5 245.0 73.1 242.6 p 73.5 245.0 73.9 246.0 77.2 248.2 77.2 242.6 s6 73.5 245.0 73.9 246.0 p 74.4 248.2 73.9 246.0 77.2 248.2 t6 74.4 248.2 73.9 246.0 p 74.5 244.4 74.2 242.6 77.2 242.6 t7 74.5 244.4 74.2 242.6 p 74.5 244.4 75.4 247.0 77.2 248.2 77.2 242.6 s7 74.5 244.4 75.4 247.0 p 75.7 248.2 75.4 247.0 77.2 248.2 t7 75.7 248.2 75.4 247.0 p 75.5 243.8 75.2 242.6 77.2 242.6 t8 75.5 243.8 75.2 242.6 p 75.5 243.8 76.9 248.0 77.2 248.2 77.2 242.6 s8 75.5 243.8 76.9 248.0 p 77.0 248.2 76.9 248.0 77.2 248.2 t8 77.0 248.2 76.9 248.0 p 77.2 242.6 85.8 242.6 85.8 248.2 77.2 248.2 s8 85.8 242.6 94.4 242.6 94.4 248.2 85.8 248.2 s8 94.4 242.6 102.9 242.6 102.9 248.2 94.4 248.2 s1 102.7 242.8 102.7 242.6 94.4 242.6 98.7 245.4 s2 102.7 242.8 102.7 242.6 p 102.7 242.8 102.4 247.8 98.7 245.4 t2 102.7 242.8 102.4 247.8 p 102.4 248.2 102.4 247.8 98.7 245.4 94.4 248.2 s2 102.4 248.2 102.4 247.8 p 94.4 248.2 98.7 245.4 94.4 242.6 t2 101.5 243.6 101.7 242.6 94.4 242.6 98.7 245.4 s3 101.5 243.6 101.7 242.6 p 101.5 243.6 101.3 247.1 98.7 245.4 t3 101.5 243.6 101.3 247.1 p 101.1 248.2 101.3 247.1 98.7 245.4 94.4 248.2 s3 101.1 248.2 101.3 247.1 p 94.4 248.2 98.7 245.4 94.4 242.6 t3 100.3 244.4 100.6 242.6 94.4 242.6 98.7 245.4 s4 100.3 244.4 100.6 242.6 p 100.3 244.4 100.2 246.4 98.7 245.4 t4 100.3 244.4 100.2 246.4 p 99.8 248.2 100.2 246.4 98.7 245.4 94.4 248.2 s4 99.8 248.2 100.2 246.4 p 94.4 248.2 98.7 245.4 94.4 242.6 t4 99.1 245.1 99.5 242.6 94.4 242.6 98.7 245.4 s5 99.1 245.1 99.5 242.6 p 99.1 245.1 99.1 245.7 98.7 245.4 t5 99.1 245.1 99.1 245.7 p 98.5 248.2 99.1 245.7 98.7 245.4 94.4 248.2 s5 98.5 248.2 99.1 245.7 p 94.4 248.2 98.7 245.4 94.4 242.6 t5 98.5 242.6 98.0 245.0 94.4 242.6 t6 98.5 242.6 98.0 245.0 p 97.7 246.0 97.2 248.2 94.4 248.2 t6 97.7 246.0 97.2 248.2 p 97.7 246.0 98.0 245.0 94.4 242.6 94.4 248.2 s6 97.7 246.0 98.0 245.0 p 97.4 242.6 97.1 244.4 94.4 242.6 t7 97.4 242.6 97.1 244.4 p 96.2 247.0 95.9 248.2 94.4 248.2 t7 96.2 247.0 95.9 248.2 p 96.2 247.0 97.1 244.4 94.4 242.6 94.4 248.2 s7 96.2 247.0 97.1 244.4 p 96.3 242.6 96.1 243.8 94.4 242.6 t8 96.3 242.6 96.1 243.8 p 94.7 248.0 94.6 248.2 94.4 248.2 t8 94.7 248.0 94.6 248.2 p 94.7 248.0 96.1 243.8 94.4 242.6 94.4 248.2 s8 94.7 248.0 96.1 243.8 p 102.9 242.6 111.5 242.6 111.5 248.2 102.9 248.2 s1 111.5 242.6 120.1 242.6 120.1 248.2 111.5 248.2 s1 111.7 242.6 111.8 242.8 115.8 245.4 120.1 242.6 s2 111.7 242.6 111.8 242.8 p 120.1 242.6 115.8 245.4 120.1 248.2 t2 112.0 247.8 112.1 248.2 120.1 248.2 115.8 245.4 s2 112.0 247.8 112.1 248.2 p 112.0 247.8 111.8 242.8 115.8 245.4 t2 112.0 247.8 111.8 242.8 p 112.8 242.6 113.0 243.6 115.8 245.4 120.1 242.6 s3 112.8 242.6 113.0 243.6 p 120.1 242.6 115.8 245.4 120.1 248.2 t3 113.2 247.1 113.4 248.2 120.1 248.2 115.8 245.4 s3 113.2 247.1 113.4 248.2 p 113.2 247.1 113.0 243.6 115.8 245.4 t3 113.2 247.1 113.0 243.6 p 113.9 242.6 114.2 244.4 115.8 245.4 120.1 242.6 s4 113.9 242.6 114.2 244.4 p 120.1 242.6 115.8 245.4 120.1 248.2 t4 114.3 246.4 114.7 248.2 120.1 248.2 115.8 245.4 s4 114.3 246.4 114.7 248.2 p 114.3 246.4 114.2 244.4 115.8 245.4 t4 114.3 246.4 114.2 244.4 p 114.9 242.6 115.4 245.1 115.8 245.4 120.1 242.6 s5 114.9 242.6 115.4 245.1 p 120.1 242.6 115.8 245.4 120.1 248.2 t5 115.4 245.7 116.0 248.2 120.1 248.2 115.8 245.4 s5 115.4 245.7 116.0 248.2 p 115.4 245.7 115.4 245.1 115.8 245.4 t5 115.4 245.7 115.4 245.1 p 116.4 245.0 116.0 242.6 120.1 242.6 t6 116.4 245.0 116.0 242.6 p 116.4 245.0 116.8 246.0 120.1 248.2 120.1 242.6 s6 116.4 245.0 116.8 246.0 p 117.3 248.2 116.8 246.0 120.1 248.2 t6 117.3 248.2 116.8 246.0 p 117.4 244.4 117.1 242.6 120.1 242.6 t7 117.4 244.4 117.1 242.6 p 117.4 244.4 118.3 247.0 120.1 248.2 120.1 242.6 s7 117.4 244.4 118.3 247.0 p 118.6 248.2 118.3 247.0 120.1 248.2 t7 118.6 248.2 118.3 247.0 p 118.3 243.8 118.1 242.6 120.1 242.6 t8 118.3 243.8 118.1 242.6 p 118.3 243.8 119.8 248.0 120.1 248.2 120.1 242.6 s8 118.3 243.8 119.8 248.0 p 119.9 248.2 119.8 248.0 120.1 248.2 t8 119.9 248.2 119.8 248.0 p 120.1 242.6 128.7 242.6 128.7 248.2 120.1 248.2 s8 128.7 242.6 137.3 242.6 137.3 248.2 128.7 248.2 s8 137.3 242.6 145.8 242.6 145.8 248.2 137.3 248.2 s1 145.6 242.8 145.6 242.6 137.3 242.6 141.6 245.4 s2 145.6 242.8 145.6 242.6 p 145.6 242.8 145.3 247.8 141.6 245.4 t2 145.6 242.8 145.3 247.8 p 145.3 248.2 145.3 247.8 141.6 245.4 137.3 248.2 s2 145.3 248.2 145.3 247.8 p 137.3 248.2 141.6 245.4 137.3 242.6 t2 144.4 243.6 144.6 242.6 137.3 242.6 141.6 245.4 s3 144.4 243.6 144.6 242.6 p 144.4 243.6 144.2 247.1 141.6 245.4 t3 144.4 243.6 144.2 247.1 p 144.0 248.2 144.2 247.1 141.6 245.4 137.3 248.2 s3 144.0 248.2 144.2 247.1 p 137.3 248.2 141.6 245.4 137.3 242.6 t3 143.2 244.4 143.5 242.6 137.3 242.6 141.6 245.4 s4 143.2 244.4 143.5 242.6 p 143.2 244.4 143.1 246.4 141.6 245.4 t4 143.2 244.4 143.1 246.4 p 142.7 248.2 143.1 246.4 141.6 245.4 137.3 248.2 s4 142.7 248.2 143.1 246.4 p 137.3 248.2 141.6 245.4 137.3 242.6 t4 142.0 245.1 142.4 242.6 137.3 242.6 141.6 245.4 s5 142.0 245.1 142.4 242.6 p 142.0 245.1 141.9 245.7 141.6 245.4 t5 142.0 245.1 141.9 245.7 p 141.4 248.2 141.9 245.7 141.6 245.4 137.3 248.2 s5 141.4 248.2 141.9 245.7 p 137.3 248.2 141.6 245.4 137.3 242.6 t5 141.4 242.6 140.9 245.0 137.3 242.6 t6 141.4 242.6 140.9 245.0 p 140.6 246.0 140.1 248.2 137.3 248.2 t6 140.6 246.0 140.1 248.2 p 140.6 246.0 140.9 245.0 137.3 242.6 137.3 248.2 s6 140.6 246.0 140.9 245.0 p 140.3 242.6 140.0 244.4 137.3 242.6 t7 140.3 242.6 140.0 244.4 p 139.1 247.0 138.8 248.2 137.3 248.2 t7 139.1 247.0 138.8 248.2 p 139.1 247.0 140.0 244.4 137.3 242.6 137.3 248.2 s7 139.1 247.0 140.0 244.4 p 139.2 242.6 139.0 243.8 137.3 242.6 t8 139.2 242.6 139.0 243.8 p 137.6 248.0 137.5 248.2 137.3 248.2 t8 137.6 248.0 137.5 248.2 p 137.6 248.0 139.0 243.8 137.3 242.6 137.3 248.2 s8 137.6 248.0 139.0 243.8 p 145.8 242.6 154.4 242.6 154.4 248.2 145.8 248.2 s1 154.4 242.6 163.0 242.6 163.0 248.2 154.4 248.2 s1 154.6 242.6 154.6 242.8 158.7 245.4 163.0 242.6 s2 154.6 242.6 154.6 242.8 p 163.0 242.6 158.7 245.4 163.0 248.2 t2 154.9 247.8 155.0 248.2 163.0 248.2 158.7 245.4 s2 154.9 247.8 155.0 248.2 p 154.9 247.8 154.6 242.8 158.7 245.4 t2 154.9 247.8 154.6 242.8 p 155.7 242.6 155.9 243.6 158.7 245.4 163.0 242.6 s3 155.7 242.6 155.9 243.6 p 163.0 242.6 158.7 245.4 163.0 248.2 t3 156.1 247.1 156.3 248.2 163.0 248.2 158.7 245.4 s3 156.1 247.1 156.3 248.2 p 156.1 247.1 155.9 243.6 158.7 245.4 t3 156.1 247.1 155.9 243.6 p 156.8 242.6 157.1 244.4 158.7 245.4 163.0 242.6 s4 156.8 242.6 157.1 244.4 p 163.0 242.6 158.7 245.4 163.0 248.2 t4 157.2 246.4 157.6 248.2 163.0 248.2 158.7 245.4 s4 157.2 246.4 157.6 248.2 p 157.2 246.4 157.1 244.4 158.7 245.4 t4 157.2 246.4 157.1 244.4 p 157.8 242.6 158.3 245.1 158.7 245.4 163.0 242.6 s5 157.8 242.6 158.3 245.1 p 163.0 242.6 158.7 245.4 163.0 248.2 t5 158.3 245.7 158.9 248.2 163.0 248.2 158.7 245.4 s5 158.3 245.7 158.9 248.2 p 158.3 245.7 158.3 245.1 158.7 245.4 t5 158.3 245.7 158.3 245.1 p 159.3 245.0 158.9 242.6 163.0 242.6 t6 159.3 245.0 158.9 242.6 p 159.3 245.0 159.7 246.0 163.0 248.2 163.0 242.6 s6 159.3 245.0 159.7 246.0 p 160.2 248.2 159.7 246.0 163.0 248.2 t6 160.2 248.2 159.7 246.0 p 160.3 244.4 160.0 242.6 163.0 242.6 t7 160.3 244.4 160.0 242.6 p 160.3 244.4 161.2 247.0 163.0 248.2 163.0 242.6 s7 160.3 244.4 161.2 247.0 p 161.5 248.2 161.2 247.0 163.0 248.2 t7 161.5 248.2 161.2 247.0 p 161.2 243.8 161.0 242.6 163.0 242.6 t8 161.2 243.8 161.0 242.6 p 161.2 243.8 162.7 248.0 163.0 248.2 163.0 242.6 s8 161.2 243.8 162.7 248.0 p 162.7 248.2 162.7 248.0 163.0 248.2 t8 162.7 248.2 162.7 248.0 p 163.0 242.6 171.6 242.6 171.6 248.2 163.0 248.2 s8 171.6 242.6 180.2 242.6 180.2 248.2 171.6 248.2 s8 180.2 242.6 188.7 242.6 188.7 248.2 180.2 248.2 s1 188.5 242.8 188.5 242.6 180.2 242.6 184.4 245.4 s2 188.5 242.8 188.5 242.6 p 188.5 242.8 188.2 247.8 184.4 245.4 t2 188.5 242.8 188.2 247.8 p 188.2 248.2 188.2 247.8 184.4 245.4 180.2 248.2 s2 188.2 248.2 188.2 247.8 p 180.2 248.2 184.4 245.4 180.2 242.6 t2 187.3 243.6 187.5 242.6 180.2 242.6 184.4 245.4 s3 187.3 243.6 187.5 242.6 p 187.3 243.6 187.1 247.1 184.4 245.4 t3 187.3 243.6 187.1 247.1 p 186.9 248.2 187.1 247.1 184.4 245.4 180.2 248.2 s3 186.9 248.2 187.1 247.1 p 180.2 248.2 184.4 245.4 180.2 242.6 t3 186.1 244.4 186.4 242.6 180.2 242.6 184.4 245.4 s4 186.1 244.4 186.4 242.6 p 186.1 244.4 186.0 246.4 184.4 245.4 t4 186.1 244.4 186.0 246.4 p 185.6 248.2 186.0 246.4 184.4 245.4 180.2 248.2 s4 185.6 248.2 186.0 246.4 p 180.2 248.2 184.4 245.4 180.2 242.6 t4 184.9 245.1 185.3 242.6 180.2 242.6 184.4 245.4 s5 184.9 245.1 185.3 242.6 p 184.9 245.1 184.8 245.7 184.4 245.4 t5 184.9 245.1 184.8 245.7 p 184.3 248.2 184.8 245.7 184.4 245.4 180.2 248.2 s5 184.3 248.2 184.8 245.7 p 180.2 248.2 184.4 245.4 180.2 242.6 t5 184.3 242.6 183.8 245.0 180.2 242.6 t6 184.3 242.6 183.8 245.0 p 183.5 246.0 183.0 248.2 180.2 248.2 t6 183.5 246.0 183.0 248.2 p 183.5 246.0 183.8 245.0 180.2 242.6 180.2 248.2 s6 183.5 246.0 183.8 245.0 p 183.2 242.6 182.9 244.4 180.2 242.6 t7 183.2 242.6 182.9 244.4 p 182.0 247.0 181.7 248.2 180.2 248.2 t7 182.0 247.0 181.7 248.2 p 182.0 247.0 182.9 244.4 180.2 242.6 180.2 248.2 s7 182.0 247.0 182.9 244.4 p 182.1 242.6 181.9 243.8 180.2 242.6 t8 182.1 242.6 181.9 243.8 p 180.4 248.0 180.4 248.2 180.2 248.2 t8 180.4 248.0 180.4 248.2 p 180.4 248.0 181.9 243.8 180.2 242.6 180.2 248.2 s8 180.4 248.0 181.9 243.8 p 188.7 242.6 197.3 242.6 197.3 248.2 188.7 248.2 s1 197.3 242.6 205.9 242.6 205.9 248.2 197.3 248.2 s1 197.5 242.6 197.5 242.8 201.6 245.4 205.9 242.6 s2 197.5 242.6 197.5 242.8 p 205.9 242.6 201.6 245.4 205.9 248.2 t2 197.8 247.8 197.9 248.2 205.9 248.2 201.6 245.4 s2 197.8 247.8 197.9 248.2 p 197.8 247.8 197.5 242.8 201.6 245.4 t2 197.8 247.8 197.5 242.8 p 198.6 242.6 198.8 243.6 201.6 245.4 205.9 242.6 s3 198.6 242.6 198.8 243.6 p 205.9 242.6 201.6 245.4 205.9 248.2 t3 198.9 247.1 199.2 248.2 205.9 248.2 201.6 245.4 s3 198.9 247.1 199.2 248.2 p 198.9 247.1 198.8 243.6 201.6 245.4 t3 198.9 247.1 198.8 243.6 p 199.7 242.6 200.0 244.4 201.6 245.4 205.9 242.6 s4 199.7 242.6 200.0 244.4 p 205.9 242.6 201.6 245.4 205.9 248.2 t4 200.1 246.4 200.5 248.2 205.9 248.2 201.6 245.4 s4 200.1 246.4 200.5 248.2 p 200.1 246.4 200.0 244.4 201.6 245.4 t4 200.1 246.4 200.0 244.4 p 200.7 242.6 201.2 245.1 201.6 245.4 205.9 242.6 s5 200.7 242.6 201.2 245.1 p 205.9 242.6 201.6 245.4 205.9 248.2 t5 201.2 245.7 201.8 248.2 205.9 248.2 201.6 245.4 s5 201.2 245.7 201.8 248.2 p 201.2 245.7 201.2 245.1 201.6 245.4 t5 201.2 245.7 201.2 245.1 p 202.2 245.0 201.8 242.6 205.9 242.6 t6 202.2 245.0 201.8 242.6 p 202.2 245.0 202.6 246.0 205.9 248.2 205.9 242.6 s6 202.2 245.0 202.6 246.0 p 203.1 248.2 202.6 246.0 205.9 248.2 t6 203.1 248.2 202.6 246.0 p 203.2 244.4 202.9 242.6 205.9 242.6 t7 203.2 244.4 202.9 242.6 p 203.2 244.4 204.1 247.0 205.9 248.2 205.9 242.6 s7 203.2 244.4 204.1 247.0 p 204.3 248.2 204.1 247.0 205.9 248.2 t7 204.3 248.2 204.1 247.0 p 204.1 243.8 203.9 242.6 205.9 242.6 t8 204.1 243.8 203.9 242.6 p 204.1 243.8 205.6 248.0 205.9 248.2 205.9 242.6 s8 204.1 243.8 205.6 248.0 p 205.6 248.2 205.6 248.0 205.9 248.2 t8 205.6 248.2 205.6 248.0 p 205.9 242.6 214.5 242.6 214.5 248.2 205.9 248.2 s8 214.5 242.6 223.1 242.6 223.1 248.2 214.5 248.2 s8 223.1 242.6 231.6 242.6 231.6 248.2 223.1 248.2 s1 231.4 242.8 231.4 242.6 223.1 242.6 227.3 245.4 s2 231.4 242.8 231.4 242.6 p 231.4 242.8 231.1 247.8 227.3 245.4 t2 231.4 242.8 231.1 247.8 p 231.1 248.2 231.1 247.8 227.3 245.4 223.1 248.2 s2 231.1 248.2 231.1 247.8 p 223.1 248.2 227.3 245.4 223.1 242.6 t2 230.2 243.6 230.4 242.6 223.1 242.6 227.3 245.4 s3 230.2 243.6 230.4 242.6 p 230.2 243.6 230.0 247.1 227.3 245.4 t3 230.2 243.6 230.0 247.1 p 229.8 248.2 230.0 247.1 227.3 245.4 223.1 248.2 s3 229.8 248.2 230.0 247.1 p 223.1 248.2 227.3 245.4 223.1 242.6 t3 229.0 244.4 229.3 242.6 223.1 242.6 227.3 245.4 s4 229.0 244.4 229.3 242.6 p 229.0 244.4 228.9 246.4 227.3 245.4 t4 229.0 244.4 228.9 246.4 p 228.5 248.2 228.9 246.4 227.3 245.4 223.1 248.2 s4 228.5 248.2 228.9 246.4 p 223.1 248.2 227.3 245.4 223.1 242.6 t4 227.8 245.1 228.2 242.6 223.1 242.6 227.3 245.4 s5 227.8 245.1 228.2 242.6 p 227.8 245.1 227.7 245.7 227.3 245.4 t5 227.8 245.1 227.7 245.7 p 227.2 248.2 227.7 245.7 227.3 245.4 223.1 248.2 s5 227.2 248.2 227.7 245.7 p 223.1 248.2 227.3 245.4 223.1 242.6 t5 227.2 242.6 226.7 245.0 223.1 242.6 t6 227.2 242.6 226.7 245.0 p 226.4 246.0 225.9 248.2 223.1 248.2 t6 226.4 246.0 225.9 248.2 p 226.4 246.0 226.7 245.0 223.1 242.6 223.1 248.2 s6 226.4 246.0 226.7 245.0 p 226.1 242.6 225.8 244.4 223.1 242.6 t7 226.1 242.6 225.8 244.4 p 224.9 247.0 224.6 248.2 223.1 248.2 t7 224.9 247.0 224.6 248.2 p 224.9 247.0 225.8 244.4 223.1 242.6 223.1 248.2 s7 224.9 247.0 225.8 244.4 p 225.0 242.6 224.8 243.8 223.1 242.6 t8 225.0 242.6 224.8 243.8 p 223.3 248.0 223.3 248.2 223.1 248.2 t8 223.3 248.0 223.3 248.2 p 223.3 248.0 224.8 243.8 223.1 242.6 223.1 248.2 s8 223.3 248.0 224.8 243.8 p 231.6 242.6 240.2 242.6 240.2 248.2 231.6 248.2 s1 240.2 242.6 248.8 242.6 248.8 248.2 240.2 248.2 s1 240.4 242.6 240.4 242.8 244.5 245.4 248.8 242.6 s2 240.4 242.6 240.4 242.8 p 248.8 242.6 244.5 245.4 248.8 248.2 t2 240.7 247.8 240.8 248.2 248.8 248.2 244.5 245.4 s2 240.7 247.8 240.8 248.2 p 240.7 247.8 240.4 242.8 244.5 245.4 t2 240.7 247.8 240.4 242.8 p 241.5 242.6 241.6 243.6 244.5 245.4 248.8 242.6 s3 241.5 242.6 241.6 243.6 p 248.8 242.6 244.5 245.4 248.8 248.2 t3 241.8 247.1 242.1 248.2 248.8 248.2 244.5 245.4 s3 241.8 247.1 242.1 248.2 p 241.8 247.1 241.6 243.6 244.5 245.4 t3 241.8 247.1 241.6 243.6 p 242.5 242.6 242.9 244.4 244.5 245.4 248.8 242.6 s4 242.5 242.6 242.9 244.4 p 248.8 242.6 244.5 245.4 248.8 248.2 t4 243.0 246.4 243.4 248.2 248.8 248.2 244.5 245.4 s4 243.0 246.4 243.4 248.2 p 243.0 246.4 242.9 244.4 244.5 245.4 t4 243.0 246.4 242.9 244.4 p 243.6 242.6 244.1 245.1 244.5 245.4 248.8 242.6 s5 243.6 242.6 244.1 245.1 p 248.8 242.6 244.5 245.4 248.8 248.2 t5 244.1 245.7 244.7 248.2 248.8 248.2 244.5 245.4 s5 244.1 245.7 244.7 248.2 p 244.1 245.7 244.1 245.1 244.5 245.4 t5 244.1 245.7 244.1 245.1 p 245.1 245.0 244.7 242.6 248.8 242.6 t6 245.1 245.0 244.7 242.6 p 245.1 245.0 245.5 246.0 248.8 248.2 248.8 242.6 s6 245.1 245.0 245.5 246.0 p 246.0 248.2 245.5 246.0 248.8 248.2 t6 246.0 248.2 245.5 246.0 p 246.1 244.4 245.8 242.6 248.8 242.6 t7 246.1 244.4 245.8 242.6 p 246.1 244.4 247.0 247.0 248.8 248.2 248.8 242.6 s7 246.1 244.4 247.0 247.0 p 247.2 248.2 247.0 247.0 248.8 248.2 t7 247.2 248.2 247.0 247.0 p 247.0 243.8 246.8 242.6 248.8 242.6 t8 247.0 243.8 246.8 242.6 p 247.0 243.8 248.5 248.0 248.8 248.2 248.8 242.6 s8 247.0 243.8 248.5 248.0 p 248.5 248.2 248.5 248.0 248.8 248.2 t8 248.5 248.2 248.5 248.0 p 248.8 242.6 257.4 242.6 257.4 248.2 248.8 248.2 s8 257.4 242.6 265.9 242.6 265.9 248.2 257.4 248.2 s8 265.9 242.6 274.5 242.6 274.5 248.2 265.9 248.2 s1 274.3 242.8 274.3 242.6 265.9 242.6 270.2 245.4 s2 274.3 242.8 274.3 242.6 p 274.3 242.8 274.0 247.8 270.2 245.4 t2 274.3 242.8 274.0 247.8 p 274.0 248.2 274.0 247.8 270.2 245.4 265.9 248.2 s2 274.0 248.2 274.0 247.8 p 265.9 248.2 270.2 245.4 265.9 242.6 t2 273.1 243.6 273.3 242.6 265.9 242.6 270.2 245.4 s3 273.1 243.6 273.3 242.6 p 273.1 243.6 272.9 247.1 270.2 245.4 t3 273.1 243.6 272.9 247.1 p 272.7 248.2 272.9 247.1 270.2 245.4 265.9 248.2 s3 272.7 248.2 272.9 247.1 p 265.9 248.2 270.2 245.4 265.9 242.6 t3 271.9 244.4 272.2 242.6 265.9 242.6 270.2 245.4 s4 271.9 244.4 272.2 242.6 p 271.9 244.4 271.8 246.4 270.2 245.4 t4 271.9 244.4 271.8 246.4 p 271.4 248.2 271.8 246.4 270.2 245.4 265.9 248.2 s4 271.4 248.2 271.8 246.4 p 265.9 248.2 270.2 245.4 265.9 242.6 t4 270.7 245.1 271.1 242.6 265.9 242.6 270.2 245.4 s5 270.7 245.1 271.1 242.6 p 270.7 245.1 270.6 245.7 270.2 245.4 t5 270.7 245.1 270.6 245.7 p 270.1 248.2 270.6 245.7 270.2 245.4 265.9 248.2 s5 270.1 248.2 270.6 245.7 p 265.9 248.2 270.2 245.4 265.9 242.6 t5 270.0 242.6 269.6 245.0 265.9 242.6 t6 270.0 242.6 269.6 245.0 p 269.3 246.0 268.8 248.2 265.9 248.2 t6 269.3 246.0 268.8 248.2 p 269.3 246.0 269.6 245.0 265.9 242.6 265.9 248.2 s6 269.3 246.0 269.6 245.0 p 269.0 242.6 268.7 244.4 265.9 242.6 t7 269.0 242.6 268.7 244.4 p 267.7 247.0 267.5 248.2 265.9 248.2 t7 267.7 247.0 267.5 248.2 p 267.7 247.0 268.7 244.4 265.9 242.6 265.9 248.2 s7 267.7 247.0 268.7 244.4 p 267.9 242.6 267.7 243.8 265.9 242.6 t8 267.9 242.6 267.7 243.8 p 266.2 248.0 266.2 248.2 265.9 248.2 t8 266.2 248.0 266.2 248.2 p 266.2 248.0 267.7 243.8 265.9 242.6 265.9 248.2 s8 266.2 248.0 267.7 243.8 p 274.5 242.6 283.1 242.6 283.1 248.2 274.5 248.2 s1 283.1 242.6 291.7 242.6 291.7 248.2 283.1 248.2 s1 283.3 242.6 283.3 242.8 287.4 245.4 291.7 242.6 s2 283.3 242.6 283.3 242.8 p 291.7 242.6 287.4 245.4 291.7 248.2 t2 283.6 247.8 283.7 248.2 291.7 248.2 287.4 245.4 s2 283.6 247.8 283.7 248.2 p 283.6 247.8 283.3 242.8 287.4 245.4 t2 283.6 247.8 283.3 242.8 p 284.4 242.6 284.5 243.6 287.4 245.4 291.7 242.6 s3 284.4 242.6 284.5 243.6 p 291.7 242.6 287.4 245.4 291.7 248.2 t3 284.7 247.1 285.0 248.2 291.7 248.2 287.4 245.4 s3 284.7 247.1 285.0 248.2 p 284.7 247.1 284.5 243.6 287.4 245.4 t3 284.7 247.1 284.5 243.6 p 285.4 242.6 285.8 244.4 287.4 245.4 291.7 242.6 s4 285.4 242.6 285.8 244.4 p 291.7 242.6 287.4 245.4 291.7 248.2 t4 285.9 246.4 286.3 248.2 291.7 248.2 287.4 245.4 s4 285.9 246.4 286.3 248.2 p 285.9 246.4 285.8 244.4 287.4 245.4 t4 285.9 246.4 285.8 244.4 p 286.5 242.6 287.0 245.1 287.4 245.4 291.7 242.6 s5 286.5 242.6 287.0 245.1 p 291.7 242.6 287.4 245.4 291.7 248.2 t5 287.0 245.7 287.6 248.2 291.7 248.2 287.4 245.4 s5 287.0 245.7 287.6 248.2 p 287.0 245.7 287.0 245.1 287.4 245.4 t5 287.0 245.7 287.0 245.1 p 288.0 245.0 287.6 242.6 291.7 242.6 t6 288.0 245.0 287.6 242.6 p 288.0 245.0 288.4 246.0 291.7 248.2 291.7 242.6 s6 288.0 245.0 288.4 246.0 p 288.8 248.2 288.4 246.0 291.7 248.2 t6 288.8 248.2 288.4 246.0 p 289.0 244.4 288.6 242.6 291.7 242.6 t7 289.0 244.4 288.6 242.6 p 289.0 244.4 289.9 247.0 291.7 248.2 291.7 242.6 s7 289.0 244.4 289.9 247.0 p 290.1 248.2 289.9 247.0 291.7 248.2 t7 290.1 248.2 289.9 247.0 p 289.9 243.8 289.7 242.6 291.7 242.6 t8 289.9 243.8 289.7 242.6 p 289.9 243.8 291.4 248.0 291.7 248.2 291.7 242.6 s8 289.9 243.8 291.4 248.0 p 291.4 248.2 291.4 248.0 291.7 248.2 t8 291.4 248.2 291.4 248.0 p 291.7 242.6 300.3 242.6 300.3 248.2 291.7 248.2 s8 0.0 237.1 8.6 237.1 8.6 242.6 0.0 242.6 s5 8.3 237.3 7.9 237.1 0.0 237.1 4.3 239.9 s6 8.3 237.3 7.9 237.1 p 8.6 237.8 8.3 237.3 4.3 239.9 8.6 242.6 s6 8.6 237.8 8.3 237.3 p 8.6 242.6 4.3 239.9 0.0 242.6 t6 0.0 242.6 4.3 239.9 0.0 237.1 t6 7.7 237.7 6.6 237.1 0.0 237.1 4.3 239.9 s7 7.7 237.7 6.6 237.1 p 8.6 239.0 7.7 237.7 4.3 239.9 8.6 242.6 s7 8.6 239.0 7.7 237.7 p 8.6 242.6 4.3 239.9 0.0 242.6 t7 0.0 242.6 4.3 239.9 0.0 237.1 t7 7.1 238.1 5.3 237.1 0.0 237.1 4.3 239.9 s8 7.1 238.1 5.3 237.1 p 8.6 240.3 7.1 238.1 4.3 239.9 8.6 242.6 s8 8.6 240.3 7.1 238.1 p 8.6 242.6 4.3 239.9 0.0 242.6 t8 0.0 242.6 4.3 239.9 0.0 237.1 t8 8.6 237.1 17.2 237.1 17.2 242.6 8.6 242.6 s1 16.7 237.4 16.4 237.1 8.6 237.1 12.9 239.9 s2 16.7 237.4 16.4 237.1 p 16.7 237.4 16.9 242.5 12.9 239.9 t2 16.7 237.4 16.9 242.5 p 17.0 242.6 16.9 242.5 12.9 239.9 8.6 242.6 s2 17.0 242.6 16.9 242.5 p 8.6 242.6 12.9 239.9 8.6 237.1 t2 15.3 238.4 14.2 237.1 8.6 237.1 12.9 239.9 s3 15.3 238.4 14.2 237.1 p 15.3 238.4 15.4 241.5 12.9 239.9 t3 15.3 238.4 15.4 241.5 p 15.9 242.6 15.4 241.5 12.9 239.9 8.6 242.6 s3 15.9 242.6 15.4 241.5 p 8.6 242.6 12.9 239.9 8.6 237.1 t3 13.9 239.3 11.9 237.1 8.6 237.1 12.9 239.9 s4 13.9 239.3 11.9 237.1 p 13.9 239.3 13.9 240.6 12.9 239.9 t4 13.9 239.3 13.9 240.6 p 14.8 242.6 13.9 240.6 12.9 239.9 8.6 242.6 s4 14.8 242.6 13.9 240.6 p 8.6 242.6 12.9 239.9 8.6 237.1 t4 9.7 237.1 11.3 238.9 8.6 237.1 t5 9.7 237.1 11.3 238.9 p 12.6 240.0 13.8 242.6 8.6 242.6 t5 12.6 240.0 13.8 242.6 p 12.6 240.0 11.3 238.9 8.6 237.1 8.6 242.6 s5 12.6 240.0 11.3 238.9 p 11.8 240.6 12.7 242.6 8.6 242.6 t6 11.8 240.6 12.7 242.6 p 8.6 237.8 11.8 240.6 8.6 242.6 t6 8.6 237.8 11.8 240.6 p 11.0 241.1 11.6 242.6 8.6 242.6 t7 11.0 241.1 11.6 242.6 p 8.6 239.0 11.0 241.1 8.6 242.6 t7 8.6 239.0 11.0 241.1 p 10.1 241.7 10.5 242.6 8.6 242.6 t8 10.1 241.7 10.5 242.6 p 8.6 240.3 10.1 241.7 8.6 242.6 t8 8.6 240.3 10.1 241.7 p 17.2 237.1 25.7 237.1 25.7 242.6 17.2 242.6 s1 25.7 237.1 34.3 237.1 34.3 242.6 25.7 242.6 s1 26.5 237.1 26.2 237.4 30.0 239.9 34.3 237.1 s2 26.5 237.1 26.2 237.4 p 34.3 237.1 30.0 239.9 34.3 242.6 t2 26.0 242.5 25.9 242.6 34.3 242.6 30.0 239.9 s2 26.0 242.5 25.9 242.6 p 26.0 242.5 26.2 237.4 30.0 239.9 t2 26.0 242.5 26.2 237.4 p 28.7 237.1 27.6 238.4 30.0 239.9 34.3 237.1 s3 28.7 237.1 27.6 238.4 p 34.3 237.1 30.0 239.9 34.3 242.6 t3 27.5 241.5 27.0 242.6 34.3 242.6 30.0 239.9 s3 27.5 241.5 27.0 242.6 p 27.5 241.5 27.6 238.4 30.0 239.9 t3 27.5 241.5 27.6 238.4 p 31.0 237.1 29.0 239.3 30.0 239.9 34.3 237.1 s4 31.0 237.1 29.0 239.3 p 34.3 237.1 30.0 239.9 34.3 242.6 t4 29.0 240.6 28.1 242.6 34.3 242.6 30.0 239.9 s4 29.0 240.6 28.1 242.6 p 29.0 240.6 29.0 239.3 30.0 239.9 t4 29.0 240.6 29.0 239.3 p 31.6 238.9 33.2 237.1 34.3 237.1 t5 31.6 238.9 33.2 237.1 p 31.6 238.9 30.3 240.0 34.3 242.6 34.3 237.1 s5 31.6 238.9 30.3 240.0 p 29.1 242.6 30.3 240.0 34.3 242.6 t5 29.1 242.6 30.3 240.0 p 31.1 240.6 34.3 237.8 34.3 242.6 t6 31.1 240.6 34.3 237.8 p 30.2 242.6 31.1 240.6 34.3 242.6 t6 30.2 242.6 31.1 240.6 p 31.9 241.1 34.3 239.0 34.3 242.6 t7 31.9 241.1 34.3 239.0 p 31.3 242.6 31.9 241.1 34.3 242.6 t7 31.3 242.6 31.9 241.1 p 32.8 241.7 34.3 240.3 34.3 242.6 t8 32.8 241.7 34.3 240.3 p 32.3 242.6 32.8 241.7 34.3 242.6 t8 32.3 242.6 32.8 241.7 p 34.3 237.1 42.9 237.1 42.9 242.6 34.3 242.6 s5 35.0 237.1 34.6 237.3 38.6 239.9 42.9 237.1 s6 35.0 237.1 34.6 237.3 p 42.9 237.1 38.6 239.9 42.9 242.6 t6 42.9 242.6 38.6 239.9 34.3 242.6 t6 34.6 237.3 34.3 237.8 34.3 242.6 38.6 239.9 s6 34.6 237.3 34.3 237.8 p 36.3 237.1 35.2 237.7 38.6 239.9 42.9 237.1 s7 36.3 237.1 35.2 237.7 p 42.9 237.1 38.6 239.9 42.9 242.6 t7 42.9 242.6 38.6 239.9 34.3 242.6 t7 35.2 237.7 34.3 239.0 34.3 242.6 38.6 239.9 s7 35.2 237.7 34.3 239.0 p 37.6 237.1 35.8 238.1 38.6 239.9 42.9 237.1 s8 37.6 237.1 35.8 238.1 p 42.9 237.1 38.6 239.9 42.9 242.6 t8 42.9 242.6 38.6 239.9 34.3 242.6 t8 35.8 238.1 34.3 240.3 34.3 242.6 38.6 239.9 s8 35.8 238.1 34.3 240.3 p 42.9 237.1 51.5 237.1 51.5 242.6 42.9 242.6 s5 51.2 237.3 50.8 237.1 42.9 237.1 47.2 239.9 s6 51.2 237.3 50.8 237.1 p 51.5 237.8 51.2 237.3 47.2 239.9 51.5 242.6 s6 51.5 237.8 51.2 237.3 p 51.5 242.6 47.2 239.9 42.9 242.6 t6 42.9 242.6 47.2 239.9 42.9 237.1 t6 50.6 237.7 49.5 237.1 42.9 237.1 47.2 239.9 s7 50.6 237.7 49.5 237.1 p 51.5 239.0 50.6 237.7 47.2 239.9 51.5 242.6 s7 51.5 239.0 50.6 237.7 p 51.5 242.6 47.2 239.9 42.9 242.6 t7 42.9 242.6 47.2 239.9 42.9 237.1 t7 50.0 238.1 48.2 237.1 42.9 237.1 47.2 239.9 s8 50.0 238.1 48.2 237.1 p 51.5 240.3 50.0 238.1 47.2 239.9 51.5 242.6 s8 51.5 240.3 50.0 238.1 p 51.5 242.6 47.2 239.9 42.9 242.6 t8 42.9 242.6 47.2 239.9 42.9 237.1 t8 51.5 237.1 60.1 237.1 60.1 242.6 51.5 242.6 s1 59.6 237.4 59.3 237.1 51.5 237.1 55.8 239.9 s2 59.6 237.4 59.3 237.1 p 59.6 237.4 59.8 242.5 55.8 239.9 t2 59.6 237.4 59.8 242.5 p 59.9 242.6 59.8 242.5 55.8 239.9 51.5 242.6 s2 59.9 242.6 59.8 242.5 p 51.5 242.6 55.8 239.9 51.5 237.1 t2 58.2 238.4 57.1 237.1 51.5 237.1 55.8 239.9 s3 58.2 238.4 57.1 237.1 p 58.2 238.4 58.3 241.5 55.8 239.9 t3 58.2 238.4 58.3 241.5 p 58.8 242.6 58.3 241.5 55.8 239.9 51.5 242.6 s3 58.8 242.6 58.3 241.5 p 51.5 242.6 55.8 239.9 51.5 237.1 t3 56.8 239.3 54.8 237.1 51.5 237.1 55.8 239.9 s4 56.8 239.3 54.8 237.1 p 56.8 239.3 56.8 240.6 55.8 239.9 t4 56.8 239.3 56.8 240.6 p 57.7 242.6 56.8 240.6 55.8 239.9 51.5 242.6 s4 57.7 242.6 56.8 240.6 p 51.5 242.6 55.8 239.9 51.5 237.1 t4 52.6 237.1 54.2 238.9 51.5 237.1 t5 52.6 237.1 54.2 238.9 p 55.5 240.0 56.6 242.6 51.5 242.6 t5 55.5 240.0 56.6 242.6 p 55.5 240.0 54.2 238.9 51.5 237.1 51.5 242.6 s5 55.5 240.0 54.2 238.9 p 54.7 240.6 55.6 242.6 51.5 242.6 t6 54.7 240.6 55.6 242.6 p 51.5 237.8 54.7 240.6 51.5 242.6 t6 51.5 237.8 54.7 240.6 p 53.8 241.1 54.5 242.6 51.5 242.6 t7 53.8 241.1 54.5 242.6 p 51.5 239.0 53.8 241.1 51.5 242.6 t7 51.5 239.0 53.8 241.1 p 53.0 241.7 53.4 242.6 51.5 242.6 t8 53.0 241.7 53.4 242.6 p 51.5 240.3 53.0 241.7 51.5 242.6 t8 51.5 240.3 53.0 241.7 p 60.1 237.1 68.6 237.1 68.6 242.6 60.1 242.6 s1 68.6 237.1 77.2 237.1 77.2 242.6 68.6 242.6 s1 69.4 237.1 69.1 237.4 72.9 239.9 77.2 237.1 s2 69.4 237.1 69.1 237.4 p 77.2 237.1 72.9 239.9 77.2 242.6 t2 68.9 242.5 68.8 242.6 77.2 242.6 72.9 239.9 s2 68.9 242.5 68.8 242.6 p 68.9 242.5 69.1 237.4 72.9 239.9 t2 68.9 242.5 69.1 237.4 p 71.6 237.1 70.5 238.4 72.9 239.9 77.2 237.1 s3 71.6 237.1 70.5 238.4 p 77.2 237.1 72.9 239.9 77.2 242.6 t3 70.4 241.5 69.9 242.6 77.2 242.6 72.9 239.9 s3 70.4 241.5 69.9 242.6 p 70.4 241.5 70.5 238.4 72.9 239.9 t3 70.4 241.5 70.5 238.4 p 73.8 237.1 71.9 239.3 72.9 239.9 77.2 237.1 s4 73.8 237.1 71.9 239.3 p 77.2 237.1 72.9 239.9 77.2 242.6 t4 71.9 240.6 71.0 242.6 77.2 242.6 72.9 239.9 s4 71.9 240.6 71.0 242.6 p 71.9 240.6 71.9 239.3 72.9 239.9 t4 71.9 240.6 71.9 239.3 p 74.5 238.9 76.1 237.1 77.2 237.1 t5 74.5 238.9 76.1 237.1 p 74.5 238.9 73.2 240.0 77.2 242.6 77.2 237.1 s5 74.5 238.9 73.2 240.0 p 72.0 242.6 73.2 240.0 77.2 242.6 t5 72.0 242.6 73.2 240.0 p 74.0 240.6 77.2 237.8 77.2 242.6 t6 74.0 240.6 77.2 237.8 p 73.1 242.6 74.0 240.6 77.2 242.6 t6 73.1 242.6 74.0 240.6 p 74.8 241.1 77.2 239.0 77.2 242.6 t7 74.8 241.1 77.2 239.0 p 74.2 242.6 74.8 241.1 77.2 242.6 t7 74.2 242.6 74.8 241.1 p 75.7 241.7 77.2 240.3 77.2 242.6 t8 75.7 241.7 77.2 240.3 p 75.2 242.6 75.7 241.7 77.2 242.6 t8 75.2 242.6 75.7 241.7 p 77.2 237.1 85.8 237.1 85.8 242.6 77.2 242.6 s5 77.8 237.1 77.5 237.3 81.5 239.9 85.8 237.1 s6 77.8 237.1 77.5 237.3 p 85.8 237.1 81.5 239.9 85.8 242.6 t6 85.8 242.6 81.5 239.9 77.2 242.6 t6 77.5 237.3 77.2 237.8 77.2 242.6 81.5 239.9 s6 77.5 237.3 77.2 237.8 p 79.2 237.1 78.1 237.7 81.5 239.9 85.8 237.1 s7 79.2 237.1 78.1 237.7 p 85.8 237.1 81.5 239.9 85.8 242.6 t7 85.8 242.6 81.5 239.9 77.2 242.6 t7 78.1 237.7 77.2 239.0 77.2 242.6 81.5 239.9 s7 78.1 237.7 77.2 239.0 p 80.5 237.1 78.6 238.1 81.5 239.9 85.8 237.1 s8 80.5 237.1 78.6 238.1 p 85.8 237.1 81.5 239.9 85.8 242.6 t8 85.8 242.6 81.5 239.9 77.2 242.6 t8 78.6 238.1 77.2 240.3 77.2 242.6 81.5 239.9 s8 78.6 238.1 77.2 240.3 p 85.8 237.1 94.4 237.1 94.4 242.6 85.8 242.6 s5 94.1 237.3 93.7 237.1 85.8 237.1 90.1 239.9 s6 94.1 237.3 93.7 237.1 p 94.4 237.8 94.1 237.3 90.1 239.9 94.4 242.6 s6 94.4 237.8 94.1 237.3 p 94.4 242.6 90.1 239.9 85.8 242.6 t6 85.8 242.6 90.1 239.9 85.8 237.1 t6 93.5 237.7 92.4 237.1 85.8 237.1 90.1 239.9 s7 93.5 237.7 92.4 237.1 p 94.4 239.0 93.5 237.7 90.1 239.9 94.4 242.6 s7 94.4 239.0 93.5 237.7 p 94.4 242.6 90.1 239.9 85.8 242.6 t7 85.8 242.6 90.1 239.9 85.8 237.1 t7 92.9 238.1 91.1 237.1 85.8 237.1 90.1 239.9 s8 92.9 238.1 91.1 237.1 p 94.4 240.3 92.9 238.1 90.1 239.9 94.4 242.6 s8 94.4 240.3 92.9 238.1 p 94.4 242.6 90.1 239.9 85.8 242.6 t8 85.8 242.6 90.1 239.9 85.8 237.1 t8 94.4 237.1 102.9 237.1 102.9 242.6 94.4 242.6 s1 102.5 237.4 102.2 237.1 94.4 237.1 98.7 239.9 s2 102.5 237.4 102.2 237.1 p 102.5 237.4 102.7 242.5 98.7 239.9 t2 102.5 237.4 102.7 242.5 p 102.7 242.6 102.7 242.5 98.7 239.9 94.4 242.6 s2 102.7 242.6 102.7 242.5 p 94.4 242.6 98.7 239.9 94.4 237.1 t2 101.1 238.4 100.0 237.1 94.4 237.1 98.7 239.9 s3 101.1 238.4 100.0 237.1 p 101.1 238.4 101.2 241.5 98.7 239.9 t3 101.1 238.4 101.2 241.5 p 101.7 242.6 101.2 241.5 98.7 239.9 94.4 242.6 s3 101.7 242.6 101.2 241.5 p 94.4 242.6 98.7 239.9 94.4 237.1 t3 99.6 239.3 97.7 237.1 94.4 237.1 98.7 239.9 s4 99.6 239.3 97.7 237.1 p 99.6 239.3 99.7 240.6 98.7 239.9 t4 99.6 239.3 99.7 240.6 p 100.6 242.6 99.7 240.6 98.7 239.9 94.4 242.6 s4 100.6 242.6 99.7 240.6 p 94.4 242.6 98.7 239.9 94.4 237.1 t4 95.5 237.1 97.1 238.9 94.4 237.1 t5 95.5 237.1 97.1 238.9 p 98.4 240.0 99.5 242.6 94.4 242.6 t5 98.4 240.0 99.5 242.6 p 98.4 240.0 97.1 238.9 94.4 237.1 94.4 242.6 s5 98.4 240.0 97.1 238.9 p 97.6 240.6 98.5 242.6 94.4 242.6 t6 97.6 240.6 98.5 242.6 p 94.4 237.8 97.6 240.6 94.4 242.6 t6 94.4 237.8 97.6 240.6 p 96.7 241.1 97.4 242.6 94.4 242.6 t7 96.7 241.1 97.4 242.6 p 94.4 239.0 96.7 241.1 94.4 242.6 t7 94.4 239.0 96.7 241.1 p 95.9 241.7 96.3 242.6 94.4 242.6 t8 95.9 241.7 96.3 242.6 p 94.4 240.3 95.9 241.7 94.4 242.6 t8 94.4 240.3 95.9 241.7 p 102.9 237.1 111.5 237.1 111.5 242.6 102.9 242.6 s1 111.5 237.1 120.1 237.1 120.1 242.6 111.5 242.6 s1 112.3 237.1 112.0 237.4 115.8 239.9 120.1 237.1 s2 112.3 237.1 112.0 237.4 p 120.1 237.1 115.8 239.9 120.1 242.6 t2 111.8 242.5 111.7 242.6 120.1 242.6 115.8 239.9 s2 111.8 242.5 111.7 242.6 p 111.8 242.5 112.0 237.4 115.8 239.9 t2 111.8 242.5 112.0 237.4 p 114.5 237.1 113.4 238.4 115.8 239.9 120.1 237.1 s3 114.5 237.1 113.4 238.4 p 120.1 237.1 115.8 239.9 120.1 242.6 t3 113.3 241.5 112.8 242.6 120.1 242.6 115.8 239.9 s3 113.3 241.5 112.8 242.6 p 113.3 241.5 113.4 238.4 115.8 239.9 t3 113.3 241.5 113.4 238.4 p 116.7 237.1 114.8 239.3 115.8 239.9 120.1 237.1 s4 116.7 237.1 114.8 239.3 p 120.1 237.1 115.8 239.9 120.1 242.6 t4 114.8 240.6 113.9 242.6 120.1 242.6 115.8 239.9 s4 114.8 240.6 113.9 242.6 p 114.8 240.6 114.8 239.3 115.8 239.9 t4 114.8 240.6 114.8 239.3 p 117.4 238.9 119.0 237.1 120.1 237.1 t5 117.4 238.9 119.0 237.1 p 117.4 238.9 116.1 240.0 120.1 242.6 120.1 237.1 s5 117.4 238.9 116.1 240.0 p 114.9 242.6 116.1 240.0 120.1 242.6 t5 114.9 242.6 116.1 240.0 p 116.9 240.6 120.1 237.8 120.1 242.6 t6 116.9 240.6 120.1 237.8 p 116.0 242.6 116.9 240.6 120.1 242.6 t6 116.0 242.6 116.9 240.6 p 117.7 241.1 120.1 239.0 120.1 242.6 t7 117.7 241.1 120.1 239.0 p 117.1 242.6 117.7 241.1 120.1 242.6 t7 117.1 242.6 117.7 241.1 p 118.6 241.7 120.1 240.3 120.1 242.6 t8 118.6 241.7 120.1 240.3 p 118.1 242.6 118.6 241.7 120.1 242.6 t8 118.1 242.6 118.6 241.7 p 120.1 237.1 128.7 237.1 128.7 242.6 120.1 242.6 s5 120.7 237.1 120.4 237.3 124.4 239.9 128.7 237.1 s6 120.7 237.1 120.4 237.3 p 128.7 237.1 124.4 239.9 128.7 242.6 t6 128.7 242.6 124.4 239.9 120.1 242.6 t6 120.4 237.3 120.1 237.8 120.1 242.6 124.4 239.9 s6 120.4 237.3 120.1 237.8 p 122.1 237.1 121.0 237.7 124.4 239.9 128.7 237.1 s7 122.1 237.1 121.0 237.7 p 128.7 237.1 124.4 239.9 128.7 242.6 t7 128.7 242.6 124.4 239.9 120.1 242.6 t7 121.0 237.7 120.1 239.0 120.1 242.6 124.4 239.9 s7 121.0 237.7 120.1 239.0 p 123.4 237.1 121.5 238.1 124.4 239.9 128.7 237.1 s8 123.4 237.1 121.5 238.1 p 128.7 237.1 124.4 239.9 128.7 242.6 t8 128.7 242.6 124.4 239.9 120.1 242.6 t8 121.5 238.1 120.1 240.3 120.1 242.6 124.4 239.9 s8 121.5 238.1 120.1 240.3 p 128.7 237.1 137.3 237.1 137.3 242.6 128.7 242.6 s5 137.0 237.3 136.6 237.1 128.7 237.1 133.0 239.9 s6 137.0 237.3 136.6 237.1 p 137.3 237.8 137.0 237.3 133.0 239.9 137.3 242.6 s6 137.3 237.8 137.0 237.3 p 137.3 242.6 133.0 239.9 128.7 242.6 t6 128.7 242.6 133.0 239.9 128.7 237.1 t6 136.4 237.7 135.3 237.1 128.7 237.1 133.0 239.9 s7 136.4 237.7 135.3 237.1 p 137.3 239.0 136.4 237.7 133.0 239.9 137.3 242.6 s7 137.3 239.0 136.4 237.7 p 137.3 242.6 133.0 239.9 128.7 242.6 t7 128.7 242.6 133.0 239.9 128.7 237.1 t7 135.8 238.1 134.0 237.1 128.7 237.1 133.0 239.9 s8 135.8 238.1 134.0 237.1 p 137.3 240.3 135.8 238.1 133.0 239.9 137.3 242.6 s8 137.3 240.3 135.8 238.1 p 137.3 242.6 133.0 239.9 128.7 242.6 t8 128.7 242.6 133.0 239.9 128.7 237.1 t8 137.3 237.1 145.8 237.1 145.8 242.6 137.3 242.6 s1 145.4 237.4 145.1 237.1 137.3 237.1 141.6 239.9 s2 145.4 237.4 145.1 237.1 p 145.4 237.4 145.6 242.5 141.6 239.9 t2 145.4 237.4 145.6 242.5 p 145.6 242.6 145.6 242.5 141.6 239.9 137.3 242.6 s2 145.6 242.6 145.6 242.5 p 137.3 242.6 141.6 239.9 137.3 237.1 t2 143.9 238.4 142.8 237.1 137.3 237.1 141.6 239.9 s3 143.9 238.4 142.8 237.1 p 143.9 238.4 144.1 241.5 141.6 239.9 t3 143.9 238.4 144.1 241.5 p 144.6 242.6 144.1 241.5 141.6 239.9 137.3 242.6 s3 144.6 242.6 144.1 241.5 p 137.3 242.6 141.6 239.9 137.3 237.1 t3 142.5 239.3 140.6 237.1 137.3 237.1 141.6 239.9 s4 142.5 239.3 140.6 237.1 p 142.5 239.3 142.6 240.6 141.6 239.9 t4 142.5 239.3 142.6 240.6 p 143.5 242.6 142.6 240.6 141.6 239.9 137.3 242.6 s4 143.5 242.6 142.6 240.6 p 137.3 242.6 141.6 239.9 137.3 237.1 t4 138.4 237.1 140.0 238.9 137.3 237.1 t5 138.4 237.1 140.0 238.9 p 141.3 240.0 142.4 242.6 137.3 242.6 t5 141.3 240.0 142.4 242.6 p 141.3 240.0 140.0 238.9 137.3 237.1 137.3 242.6 s5 141.3 240.0 140.0 238.9 p 140.5 240.6 141.4 242.6 137.3 242.6 t6 140.5 240.6 141.4 242.6 p 137.3 237.8 140.5 240.6 137.3 242.6 t6 137.3 237.8 140.5 240.6 p 139.6 241.1 140.3 242.6 137.3 242.6 t7 139.6 241.1 140.3 242.6 p 137.3 239.0 139.6 241.1 137.3 242.6 t7 137.3 239.0 139.6 241.1 p 138.8 241.7 139.2 242.6 137.3 242.6 t8 138.8 241.7 139.2 242.6 p 137.3 240.3 138.8 241.7 137.3 242.6 t8 137.3 240.3 138.8 241.7 p 145.8 237.1 154.4 237.1 154.4 242.6 145.8 242.6 s1 154.4 237.1 163.0 237.1 163.0 242.6 154.4 242.6 s1 155.2 237.1 154.9 237.4 158.7 239.9 163.0 237.1 s2 155.2 237.1 154.9 237.4 p 163.0 237.1 158.7 239.9 163.0 242.6 t2 154.7 242.5 154.6 242.6 163.0 242.6 158.7 239.9 s2 154.7 242.5 154.6 242.6 p 154.7 242.5 154.9 237.4 158.7 239.9 t2 154.7 242.5 154.9 237.4 p 157.4 237.1 156.3 238.4 158.7 239.9 163.0 237.1 s3 157.4 237.1 156.3 238.4 p 163.0 237.1 158.7 239.9 163.0 242.6 t3 156.2 241.5 155.7 242.6 163.0 242.6 158.7 239.9 s3 156.2 241.5 155.7 242.6 p 156.2 241.5 156.3 238.4 158.7 239.9 t3 156.2 241.5 156.3 238.4 p 159.6 237.1 157.7 239.3 158.7 239.9 163.0 237.1 s4 159.6 237.1 157.7 239.3 p 163.0 237.1 158.7 239.9 163.0 242.6 t4 157.7 240.6 156.8 242.6 163.0 242.6 158.7 239.9 s4 157.7 240.6 156.8 242.6 p 157.7 240.6 157.7 239.3 158.7 239.9 t4 157.7 240.6 157.7 239.3 p 160.3 238.9 161.9 237.1 163.0 237.1 t5 160.3 238.9 161.9 237.1 p 160.3 238.9 159.0 240.0 163.0 242.6 163.0 237.1 s5 160.3 238.9 159.0 240.0 p 157.8 242.6 159.0 240.0 163.0 242.6 t5 157.8 242.6 159.0 240.0 p 159.8 240.6 163.0 237.8 163.0 242.6 t6 159.8 240.6 163.0 237.8 p 158.9 242.6 159.8 240.6 163.0 242.6 t6 158.9 242.6 159.8 240.6 p 160.6 241.1 163.0 239.0 163.0 242.6 t7 160.6 241.1 163.0 239.0 p 160.0 242.6 160.6 241.1 163.0 242.6 t7 160.0 242.6 160.6 241.1 p 161.5 241.7 163.0 240.3 163.0 242.6 t8 161.5 241.7 163.0 240.3 p 161.0 242.6 161.5 241.7 163.0 242.6 t8 161.0 242.6 161.5 241.7 p 163.0 237.1 171.6 237.1 171.6 242.6 163.0 242.6 s5 163.6 237.1 163.3 237.3 167.3 239.9 171.6 237.1 s6 163.6 237.1 163.3 237.3 p 171.6 237.1 167.3 239.9 171.6 242.6 t6 171.6 242.6 167.3 239.9 163.0 242.6 t6 163.3 237.3 163.0 237.8 163.0 242.6 167.3 239.9 s6 163.3 237.3 163.0 237.8 p 164.9 237.1 163.9 237.7 167.3 239.9 171.6 237.1 s7 164.9 237.1 163.9 237.7 p 171.6 237.1 167.3 239.9 171.6 242.6 t7 171.6 242.6 167.3 239.9 163.0 242.6 t7 163.9 237.7 163.0 239.0 163.0 242.6 167.3 239.9 s7 163.9 237.7 163.0 239.0 p 166.3 237.1 164.4 238.1 167.3 239.9 171.6 237.1 s8 166.3 237.1 164.4 238.1 p 171.6 237.1 167.3 239.9 171.6 242.6 t8 171.6 242.6 167.3 239.9 163.0 242.6 t8 164.4 238.1 163.0 240.3 163.0 242.6 167.3 239.9 s8 164.4 238.1 163.0 240.3 p 171.6 237.1 180.2 237.1 180.2 242.6 171.6 242.6 s5 179.9 237.3 179.5 237.1 171.6 237.1 175.9 239.9 s6 179.9 237.3 179.5 237.1 p 180.2 237.8 179.9 237.3 175.9 239.9 180.2 242.6 s6 180.2 237.8 179.9 237.3 p 180.2 242.6 175.9 239.9 171.6 242.6 t6 171.6 242.6 175.9 239.9 171.6 237.1 t6 179.3 237.7 178.2 237.1 171.6 237.1 175.9 239.9 s7 179.3 237.7 178.2 237.1 p 180.2 239.0 179.3 237.7 175.9 239.9 180.2 242.6 s7 180.2 239.0 179.3 237.7 p 180.2 242.6 175.9 239.9 171.6 242.6 t7 171.6 242.6 175.9 239.9 171.6 237.1 t7 178.7 238.1 176.9 237.1 171.6 237.1 175.9 239.9 s8 178.7 238.1 176.9 237.1 p 180.2 240.3 178.7 238.1 175.9 239.9 180.2 242.6 s8 180.2 240.3 178.7 238.1 p 180.2 242.6 175.9 239.9 171.6 242.6 t8 171.6 242.6 175.9 239.9 171.6 237.1 t8 180.2 237.1 188.7 237.1 188.7 242.6 180.2 242.6 s1 188.2 237.4 188.0 237.1 180.2 237.1 184.4 239.9 s2 188.2 237.4 188.0 237.1 p 188.2 237.4 188.5 242.5 184.4 239.9 t2 188.2 237.4 188.5 242.5 p 188.5 242.6 188.5 242.5 184.4 239.9 180.2 242.6 s2 188.5 242.6 188.5 242.5 p 180.2 242.6 184.4 239.9 180.2 237.1 t2 186.8 238.4 185.7 237.1 180.2 237.1 184.4 239.9 s3 186.8 238.4 185.7 237.1 p 186.8 238.4 187.0 241.5 184.4 239.9 t3 186.8 238.4 187.0 241.5 p 187.5 242.6 187.0 241.5 184.4 239.9 180.2 242.6 s3 187.5 242.6 187.0 241.5 p 180.2 242.6 184.4 239.9 180.2 237.1 t3 185.4 239.3 183.5 237.1 180.2 237.1 184.4 239.9 s4 185.4 239.3 183.5 237.1 p 185.4 239.3 185.5 240.6 184.4 239.9 t4 185.4 239.3 185.5 240.6 p 186.4 242.6 185.5 240.6 184.4 239.9 180.2 242.6 s4 186.4 242.6 185.5 240.6 p 180.2 242.6 184.4 239.9 180.2 237.1 t4 181.3 237.1 182.9 238.9 180.2 237.1 t5 181.3 237.1 182.9 238.9 p 184.2 240.0 185.3 242.6 180.2 242.6 t5 184.2 240.0 185.3 242.6 p 184.2 240.0 182.9 238.9 180.2 237.1 180.2 242.6 s5 184.2 240.0 182.9 238.9 p 183.4 240.6 184.3 242.6 180.2 242.6 t6 183.4 240.6 184.3 242.6 p 180.2 237.8 183.4 240.6 180.2 242.6 t6 180.2 237.8 183.4 240.6 p 182.5 241.1 183.2 242.6 180.2 242.6 t7 182.5 241.1 183.2 242.6 p 180.2 239.0 182.5 241.1 180.2 242.6 t7 180.2 239.0 182.5 241.1 p 181.7 241.7 182.1 242.6 180.2 242.6 t8 181.7 241.7 182.1 242.6 p 180.2 240.3 181.7 241.7 180.2 242.6 t8 180.2 240.3 181.7 241.7 p 188.7 237.1 197.3 237.1 197.3 242.6 188.7 242.6 s1 197.3 237.1 205.9 237.1 205.9 242.6 197.3 242.6 s1 198.1 237.1 197.8 237.4 201.6 239.9 205.9 237.1 s2 198.1 237.1 197.8 237.4 p 205.9 237.1 201.6 239.9 205.9 242.6 t2 197.6 242.5 197.5 242.6 205.9 242.6 201.6 239.9 s2 197.6 242.5 197.5 242.6 p 197.6 242.5 197.8 237.4 201.6 239.9 t2 197.6 242.5 197.8 237.4 p 200.3 237.1 199.2 238.4 201.6 239.9 205.9 237.1 s3 200.3 237.1 199.2 238.4 p 205.9 237.1 201.6 239.9 205.9 242.6 t3 199.1 241.5 198.6 242.6 205.9 242.6 201.6 239.9 s3 199.1 241.5 198.6 242.6 p 199.1 241.5 199.2 238.4 201.6 239.9 t3 199.1 241.5 199.2 238.4 p 202.5 237.1 200.6 239.3 201.6 239.9 205.9 237.1 s4 202.5 237.1 200.6 239.3 p 205.9 237.1 201.6 239.9 205.9 242.6 t4 200.6 240.6 199.7 242.6 205.9 242.6 201.6 239.9 s4 200.6 240.6 199.7 242.6 p 200.6 240.6 200.6 239.3 201.6 239.9 t4 200.6 240.6 200.6 239.3 p 203.2 238.9 204.7 237.1 205.9 237.1 t5 203.2 238.9 204.7 237.1 p 203.2 238.9 201.9 240.0 205.9 242.6 205.9 237.1 s5 203.2 238.9 201.9 240.0 p 200.7 242.6 201.9 240.0 205.9 242.6 t5 200.7 242.6 201.9 240.0 p 202.7 240.6 205.9 237.8 205.9 242.6 t6 202.7 240.6 205.9 237.8 p 201.8 242.6 202.7 240.6 205.9 242.6 t6 201.8 242.6 202.7 240.6 p 203.5 241.1 205.9 239.0 205.9 242.6 t7 203.5 241.1 205.9 239.0 p 202.9 242.6 203.5 241.1 205.9 242.6 t7 202.9 242.6 203.5 241.1 p 204.4 241.7 205.9 240.3 205.9 242.6 t8 204.4 241.7 205.9 240.3 p 203.9 242.6 204.4 241.7 205.9 242.6 t8 203.9 242.6 204.4 241.7 p 205.9 237.1 214.5 237.1 214.5 242.6 205.9 242.6 s5 206.5 237.1 206.2 237.3 210.2 239.9 214.5 237.1 s6 206.5 237.1 206.2 237.3 p 214.5 237.1 210.2 239.9 214.5 242.6 t6 214.5 242.6 210.2 239.9 205.9 242.6 t6 206.2 237.3 205.9 237.8 205.9 242.6 210.2 239.9 s6 206.2 237.3 205.9 237.8 p 207.8 237.1 206.8 237.7 210.2 239.9 214.5 237.1 s7 207.8 237.1 206.8 237.7 p 214.5 237.1 210.2 239.9 214.5 242.6 t7 214.5 242.6 210.2 239.9 205.9 242.6 t7 206.8 237.7 205.9 239.0 205.9 242.6 210.2 239.9 s7 206.8 237.7 205.9 239.0 p 209.2 237.1 207.3 238.1 210.2 239.9 214.5 237.1 s8 209.2 237.1 207.3 238.1 p 214.5 237.1 210.2 239.9 214.5 242.6 t8 214.5 242.6 210.2 239.9 205.9 242.6 t8 207.3 238.1 205.9 240.3 205.9 242.6 210.2 239.9 s8 207.3 238.1 205.9 240.3 p 214.5 237.1 223.1 237.1 223.1 242.6 214.5 242.6 s5 222.8 237.3 222.4 237.1 214.5 237.1 218.8 239.9 s6 222.8 237.3 222.4 237.1 p 223.1 237.8 222.8 237.3 218.8 239.9 223.1 242.6 s6 223.1 237.8 222.8 237.3 p 223.1 242.6 218.8 239.9 214.5 242.6 t6 214.5 242.6 218.8 239.9 214.5 237.1 t6 222.2 237.7 221.1 237.1 214.5 237.1 218.8 239.9 s7 222.2 237.7 221.1 237.1 p 223.1 239.0 222.2 237.7 218.8 239.9 223.1 242.6 s7 223.1 239.0 222.2 237.7 p 223.1 242.6 218.8 239.9 214.5 242.6 t7 214.5 242.6 218.8 239.9 214.5 237.1 t7 221.6 238.1 219.8 237.1 214.5 237.1 218.8 239.9 s8 221.6 238.1 219.8 237.1 p 223.1 240.3 221.6 238.1 218.8 239.9 223.1 242.6 s8 223.1 240.3 221.6 238.1 p 223.1 242.6 218.8 239.9 214.5 242.6 t8 214.5 242.6 218.8 239.9 214.5 237.1 t8 223.1 237.1 231.6 237.1 231.6 242.6 223.1 242.6 s1 231.1 237.4 230.9 237.1 223.1 237.1 227.3 239.9 s2 231.1 237.4 230.9 237.1 p 231.1 237.4 231.4 242.5 227.3 239.9 t2 231.1 237.4 231.4 242.5 p 231.4 242.6 231.4 242.5 227.3 239.9 223.1 242.6 s2 231.4 242.6 231.4 242.5 p 223.1 242.6 227.3 239.9 223.1 237.1 t2 229.7 238.4 228.6 237.1 223.1 237.1 227.3 239.9 s3 229.7 238.4 228.6 237.1 p 229.7 238.4 229.9 241.5 227.3 239.9 t3 229.7 238.4 229.9 241.5 p 230.4 242.6 229.9 241.5 227.3 239.9 223.1 242.6 s3 230.4 242.6 229.9 241.5 p 223.1 242.6 227.3 239.9 223.1 237.1 t3 228.3 239.3 226.4 237.1 223.1 237.1 227.3 239.9 s4 228.3 239.3 226.4 237.1 p 228.3 239.3 228.4 240.6 227.3 239.9 t4 228.3 239.3 228.4 240.6 p 229.3 242.6 228.4 240.6 227.3 239.9 223.1 242.6 s4 229.3 242.6 228.4 240.6 p 223.1 242.6 227.3 239.9 223.1 237.1 t4 224.2 237.1 225.8 238.9 223.1 237.1 t5 224.2 237.1 225.8 238.9 p 227.1 240.0 228.2 242.6 223.1 242.6 t5 227.1 240.0 228.2 242.6 p 227.1 240.0 225.8 238.9 223.1 237.1 223.1 242.6 s5 227.1 240.0 225.8 238.9 p 226.3 240.6 227.2 242.6 223.1 242.6 t6 226.3 240.6 227.2 242.6 p 223.1 237.8 226.3 240.6 223.1 242.6 t6 223.1 237.8 226.3 240.6 p 225.4 241.1 226.1 242.6 223.1 242.6 t7 225.4 241.1 226.1 242.6 p 223.1 239.0 225.4 241.1 223.1 242.6 t7 223.1 239.0 225.4 241.1 p 224.6 241.7 225.0 242.6 223.1 242.6 t8 224.6 241.7 225.0 242.6 p 223.1 240.3 224.6 241.7 223.1 242.6 t8 223.1 240.3 224.6 241.7 p 231.6 237.1 240.2 237.1 240.2 242.6 231.6 242.6 s1 240.2 237.1 248.8 237.1 248.8 242.6 240.2 242.6 s1 241.0 237.1 240.7 237.4 244.5 239.9 248.8 237.1 s2 241.0 237.1 240.7 237.4 p 248.8 237.1 244.5 239.9 248.8 242.6 t2 240.5 242.5 240.4 242.6 248.8 242.6 244.5 239.9 s2 240.5 242.5 240.4 242.6 p 240.5 242.5 240.7 237.4 244.5 239.9 t2 240.5 242.5 240.7 237.4 p 243.2 237.1 242.1 238.4 244.5 239.9 248.8 237.1 s3 243.2 237.1 242.1 238.4 p 248.8 237.1 244.5 239.9 248.8 242.6 t3 242.0 241.5 241.5 242.6 248.8 242.6 244.5 239.9 s3 242.0 241.5 241.5 242.6 p 242.0 241.5 242.1 238.4 244.5 239.9 t3 242.0 241.5 242.1 238.4 p 245.4 237.1 243.5 239.3 244.5 239.9 248.8 237.1 s4 245.4 237.1 243.5 239.3 p 248.8 237.1 244.5 239.9 248.8 242.6 t4 243.5 240.6 242.5 242.6 248.8 242.6 244.5 239.9 s4 243.5 240.6 242.5 242.6 p 243.5 240.6 243.5 239.3 244.5 239.9 t4 243.5 240.6 243.5 239.3 p 246.1 238.9 247.6 237.1 248.8 237.1 t5 246.1 238.9 247.6 237.1 p 246.1 238.9 244.7 240.0 248.8 242.6 248.8 237.1 s5 246.1 238.9 244.7 240.0 p 243.6 242.6 244.7 240.0 248.8 242.6 t5 243.6 242.6 244.7 240.0 p 245.6 240.6 248.8 237.8 248.8 242.6 t6 245.6 240.6 248.8 237.8 p 244.7 242.6 245.6 240.6 248.8 242.6 t6 244.7 242.6 245.6 240.6 p 246.4 241.1 248.8 239.0 248.8 242.6 t7 246.4 241.1 248.8 239.0 p 245.8 242.6 246.4 241.1 248.8 242.6 t7 245.8 242.6 246.4 241.1 p 247.3 241.7 248.8 240.3 248.8 242.6 t8 247.3 241.7 248.8 240.3 p 246.8 242.6 247.3 241.7 248.8 242.6 t8 246.8 242.6 247.3 241.7 p 248.8 237.1 257.4 237.1 257.4 242.6 248.8 242.6 s5 249.4 237.1 249.1 237.3 253.1 239.9 257.4 237.1 s6 249.4 237.1 249.1 237.3 p 257.4 237.1 253.1 239.9 257.4 242.6 t6 257.4 242.6 253.1 239.9 248.8 242.6 t6 249.1 237.3 248.8 237.8 248.8 242.6 253.1 239.9 s6 249.1 237.3 248.8 237.8 p 250.7 237.1 249.6 237.7 253.1 239.9 257.4 237.1 s7 250.7 237.1 249.6 237.7 p 257.4 237.1 253.1 239.9 257.4 242.6 t7 257.4 242.6 253.1 239.9 248.8 242.6 t7 249.6 237.7 248.8 239.0 248.8 242.6 253.1 239.9 s7 249.6 237.7 248.8 239.0 p 252.0 237.1 250.2 238.1 253.1 239.9 257.4 237.1 s8 252.0 237.1 250.2 238.1 p 257.4 237.1 253.1 239.9 257.4 242.6 t8 257.4 242.6 253.1 239.9 248.8 242.6 t8 250.2 238.1 248.8 240.3 248.8 242.6 253.1 239.9 s8 250.2 238.1 248.8 240.3 p 257.4 237.1 265.9 237.1 265.9 242.6 257.4 242.6 s5 265.7 237.3 265.3 237.1 257.4 237.1 261.7 239.9 s6 265.7 237.3 265.3 237.1 p 265.9 237.8 265.7 237.3 261.7 239.9 265.9 242.6 s6 265.9 237.8 265.7 237.3 p 265.9 242.6 261.7 239.9 257.4 242.6 t6 257.4 242.6 261.7 239.9 257.4 237.1 t6 265.1 237.7 264.0 237.1 257.4 237.1 261.7 239.9 s7 265.1 237.7 264.0 237.1 p 265.9 239.0 265.1 237.7 261.7 239.9 265.9 242.6 s7 265.9 239.0 265.1 237.7 p 265.9 242.6 261.7 239.9 257.4 242.6 t7 257.4 242.6 261.7 239.9 257.4 237.1 t7 264.5 238.1 262.7 237.1 257.4 237.1 261.7 239.9 s8 264.5 238.1 262.7 237.1 p 265.9 240.3 264.5 238.1 261.7 239.9 265.9 242.6 s8 265.9 240.3 264.5 238.1 p 265.9 242.6 261.7 239.9 257.4 242.6 t8 257.4 242.6 261.7 239.9 257.4 237.1 t8 265.9 237.1 274.5 237.1 274.5 242.6 265.9 242.6 s1 274.0 237.4 273.7 237.1 265.9 237.1 270.2 239.9 s2 274.0 237.4 273.7 237.1 p 274.0 237.4 274.2 242.5 270.2 239.9 t2 274.0 237.4 274.2 242.5 p 274.3 242.6 274.2 242.5 270.2 239.9 265.9 242.6 s2 274.3 242.6 274.2 242.5 p 265.9 242.6 270.2 239.9 265.9 237.1 t2 272.6 238.4 271.5 237.1 265.9 237.1 270.2 239.9 s3 272.6 238.4 271.5 237.1 p 272.6 238.4 272.8 241.5 270.2 239.9 t3 272.6 238.4 272.8 241.5 p 273.3 242.6 272.8 241.5 270.2 239.9 265.9 242.6 s3 273.3 242.6 272.8 241.5 p 265.9 242.6 270.2 239.9 265.9 237.1 t3 271.2 239.3 269.3 237.1 265.9 237.1 270.2 239.9 s4 271.2 239.3 269.3 237.1 p 271.2 239.3 271.3 240.6 270.2 239.9 t4 271.2 239.3 271.3 240.6 p 272.2 242.6 271.3 240.6 270.2 239.9 265.9 242.6 s4 272.2 242.6 271.3 240.6 p 265.9 242.6 270.2 239.9 265.9 237.1 t4 267.1 237.1 268.7 238.9 265.9 237.1 t5 267.1 237.1 268.7 238.9 p 270.0 240.0 271.1 242.6 265.9 242.6 t5 270.0 240.0 271.1 242.6 p 270.0 240.0 268.7 238.9 265.9 237.1 265.9 242.6 s5 270.0 240.0 268.7 238.9 p 269.2 240.6 270.0 242.6 265.9 242.6 t6 269.2 240.6 270.0 242.6 p 265.9 237.8 269.2 240.6 265.9 242.6 t6 265.9 237.8 269.2 240.6 p 268.3 241.1 269.0 242.6 265.9 242.6 t7 268.3 241.1 269.0 242.6 p 265.9 239.0 268.3 241.1 265.9 242.6 t7 265.9 239.0 268.3 241.1 p 267.5 241.7 267.9 242.6 265.9 242.6 t8 267.5 241.7 267.9 242.6 p 265.9 240.3 267.5 241.7 265.9 242.6 t8 265.9 240.3 267.5 241.7 p 274.5 237.1 283.1 237.1 283.1 242.6 274.5 242.6 s1 283.1 237.1 291.7 237.1 291.7 242.6 283.1 242.6 s1 283.9 237.1 283.6 237.4 287.4 239.9 291.7 237.1 s2 283.9 237.1 283.6 237.4 p 291.7 237.1 287.4 239.9 291.7 242.6 t2 283.4 242.5 283.3 242.6 291.7 242.6 287.4 239.9 s2 283.4 242.5 283.3 242.6 p 283.4 242.5 283.6 237.4 287.4 239.9 t2 283.4 242.5 283.6 237.4 p 286.1 237.1 285.0 238.4 287.4 239.9 291.7 237.1 s3 286.1 237.1 285.0 238.4 p 291.7 237.1 287.4 239.9 291.7 242.6 t3 284.9 241.5 284.4 242.6 291.7 242.6 287.4 239.9 s3 284.9 241.5 284.4 242.6 p 284.9 241.5 285.0 238.4 287.4 239.9 t3 284.9 241.5 285.0 238.4 p 288.3 237.1 286.4 239.3 287.4 239.9 291.7 237.1 s4 288.3 237.1 286.4 239.3 p 291.7 237.1 287.4 239.9 291.7 242.6 t4 286.3 240.6 285.4 242.6 291.7 242.6 287.4 239.9 s4 286.3 240.6 285.4 242.6 p 286.3 240.6 286.4 239.3 287.4 239.9 t4 286.3 240.6 286.4 239.3 p 289.0 238.9 290.5 237.1 291.7 237.1 t5 289.0 238.9 290.5 237.1 p 289.0 238.9 287.6 240.0 291.7 242.6 291.7 237.1 s5 289.0 238.9 287.6 240.0 p 286.5 242.6 287.6 240.0 291.7 242.6 t5 286.5 242.6 287.6 240.0 p 288.5 240.6 291.7 237.8 291.7 242.6 t6 288.5 240.6 291.7 237.8 p 287.6 242.6 288.5 240.6 291.7 242.6 t6 287.6 242.6 288.5 240.6 p 289.3 241.1 291.7 239.0 291.7 242.6 t7 289.3 241.1 291.7 239.0 p 288.6 242.6 289.3 241.1 291.7 242.6 t7 288.6 242.6 289.3 241.1 p 290.1 241.7 291.7 240.3 291.7 242.6 t8 290.1 241.7 291.7 240.3 p 289.7 242.6 290.1 241.7 291.7 242.6 t8 289.7 242.6 290.1 241.7 p 291.7 237.1 300.3 237.1 300.3 242.6 291.7 242.6 s5 292.3 237.1 292.0 237.3 296.0 239.9 300.3 237.1 s6 292.3 237.1 292.0 237.3 p 300.3 237.1 296.0 239.9 300.3 242.6 t6 300.3 242.6 296.0 239.9 291.7 242.6 t6 292.0 237.3 291.7 237.8 291.7 242.6 296.0 239.9 s6 292.0 237.3 291.7 237.8 p 293.6 237.1 292.5 237.7 296.0 239.9 300.3 237.1 s7 293.6 237.1 292.5 237.7 p 300.3 237.1 296.0 239.9 300.3 242.6 t7 300.3 242.6 296.0 239.9 291.7 242.6 t7 292.5 237.7 291.7 239.0 291.7 242.6 296.0 239.9 s7 292.5 237.7 291.7 239.0 p 294.9 237.1 293.1 238.1 296.0 239.9 300.3 237.1 s8 294.9 237.1 293.1 238.1 p 300.3 237.1 296.0 239.9 300.3 242.6 t8 300.3 242.6 296.0 239.9 291.7 242.6 t8 293.1 238.1 291.7 240.3 291.7 242.6 296.0 239.9 s8 293.1 238.1 291.7 240.3 p 0.0 231.6 8.6 231.6 8.6 237.1 0.0 237.1 s2 8.1 231.9 6.3 231.6 0.0 231.6 4.3 234.4 s3 8.1 231.9 6.3 231.6 p 8.6 232.3 8.1 231.9 4.3 234.4 8.6 237.1 s3 8.6 232.3 8.1 231.9 p 8.6 237.1 4.3 234.4 0.0 237.1 t3 0.0 237.1 4.3 234.4 0.0 231.6 t3 6.9 232.7 0.2 231.6 0.0 231.6 4.3 234.4 s4 6.9 232.7 0.2 231.6 p 8.6 234.2 6.9 232.7 4.3 234.4 8.6 237.1 s4 8.6 234.2 6.9 232.7 p 8.6 237.1 4.3 234.4 0.0 237.1 t4 0.0 237.1 4.3 234.4 0.0 231.6 t4 2.0 232.9 5.6 233.5 4.3 234.4 t5 2.0 232.9 5.6 233.5 p 8.6 236.1 5.6 233.5 4.3 234.4 8.6 237.1 s5 8.6 236.1 5.6 233.5 p 8.6 237.1 4.3 234.4 0.0 237.1 t5 2.0 232.9 0.0 232.3 0.0 237.1 4.3 234.4 s5 2.0 232.9 0.0 232.3 p 4.2 234.3 4.4 234.3 4.3 234.4 t6 4.2 234.3 4.4 234.3 p 4.4 234.3 4.8 234.7 4.3 234.4 t6 4.4 234.3 4.8 234.7 p 7.9 237.1 4.8 234.7 4.3 234.4 0.0 237.1 s6 7.9 237.1 4.8 234.7 p 4.2 234.3 0.0 233.0 0.0 237.1 4.3 234.4 s6 4.2 234.3 0.0 233.0 p 3.6 234.8 6.6 237.1 0.0 237.1 t7 3.6 234.8 6.6 237.1 p 0.0 233.7 3.6 234.8 0.0 237.1 t7 0.0 233.7 3.6 234.8 p 2.9 235.3 5.3 237.1 0.0 237.1 t8 2.9 235.3 5.3 237.1 p 0.0 234.3 2.9 235.3 0.0 237.1 t8 0.0 234.3 2.9 235.3 p 8.6 231.6 17.2 231.6 17.2 237.1 8.6 237.1 s1 15.1 232.9 12.7 231.6 8.6 231.6 12.9 234.4 s2 15.1 232.9 12.7 231.6 p 15.1 232.9 15.8 236.3 12.9 234.4 t2 15.1 232.9 15.8 236.3 p 16.4 237.1 15.8 236.3 12.9 234.4 8.6 237.1 s2 16.4 237.1 15.8 236.3 p 8.6 237.1 12.9 234.4 8.6 231.6 t2 12.5 234.6 14.2 237.1 8.6 237.1 t3 12.5 234.6 14.2 237.1 p 8.6 232.3 12.5 234.6 8.6 237.1 t3 8.6 232.3 12.5 234.6 p 11.0 235.6 11.9 237.1 8.6 237.1 t4 11.0 235.6 11.9 237.1 p 8.6 234.2 11.0 235.6 8.6 237.1 t4 8.6 234.2 11.0 235.6 p 9.4 236.6 9.7 237.1 8.6 237.1 t5 9.4 236.6 9.7 237.1 p 8.6 236.1 9.4 236.6 8.6 237.1 t5 8.6 236.1 9.4 236.6 p 17.2 231.6 25.7 231.6 25.7 237.1 17.2 237.1 s1 25.7 231.6 34.3 231.6 34.3 237.1 25.7 237.1 s1 30.2 231.6 27.8 232.9 30.0 234.4 34.3 231.6 s2 30.2 231.6 27.8 232.9 p 34.3 231.6 30.0 234.4 34.3 237.1 t2 27.1 236.3 26.5 237.1 34.3 237.1 30.0 234.4 s2 27.1 236.3 26.5 237.1 p 27.1 236.3 27.8 232.9 30.0 234.4 t2 27.1 236.3 27.8 232.9 p 30.4 234.6 34.3 232.3 34.3 237.1 t3 30.4 234.6 34.3 232.3 p 28.7 237.1 30.4 234.6 34.3 237.1 t3 28.7 237.1 30.4 234.6 p 31.9 235.6 34.3 234.2 34.3 237.1 t4 31.9 235.6 34.3 234.2 p 31.0 237.1 31.9 235.6 34.3 237.1 t4 31.0 237.1 31.9 235.6 p 33.5 236.6 34.3 236.1 34.3 237.1 t5 33.5 236.6 34.3 236.1 p 33.2 237.1 33.5 236.6 34.3 237.1 t5 33.2 237.1 33.5 236.6 p 34.3 231.6 42.9 231.6 42.9 237.1 34.3 237.1 s2 36.6 231.6 34.8 231.9 38.6 234.4 42.9 231.6 s3 36.6 231.6 34.8 231.9 p 42.9 231.6 38.6 234.4 42.9 237.1 t3 42.9 237.1 38.6 234.4 34.3 237.1 t3 34.8 231.9 34.3 232.3 34.3 237.1 38.6 234.4 s3 34.8 231.9 34.3 232.3 p 42.7 231.6 36.0 232.7 38.6 234.4 42.9 231.6 s4 42.7 231.6 36.0 232.7 p 42.9 231.6 38.6 234.4 42.9 237.1 t4 42.9 237.1 38.6 234.4 34.3 237.1 t4 36.0 232.7 34.3 234.2 34.3 237.1 38.6 234.4 s4 36.0 232.7 34.3 234.2 p 37.3 233.5 40.8 232.9 38.6 234.4 t5 37.3 233.5 40.8 232.9 p 42.9 232.3 40.8 232.9 38.6 234.4 42.9 237.1 s5 42.9 232.3 40.8 232.9 p 42.9 237.1 38.6 234.4 34.3 237.1 t5 37.3 233.5 34.3 236.1 34.3 237.1 38.6 234.4 s5 37.3 233.5 34.3 236.1 p 38.5 234.3 38.7 234.3 38.6 234.4 t6 38.5 234.3 38.7 234.3 p 42.9 233.0 38.7 234.3 38.6 234.4 42.9 237.1 s6 42.9 233.0 38.7 234.3 p 38.1 234.7 35.0 237.1 42.9 237.1 38.6 234.4 s6 38.1 234.7 35.0 237.1 p 38.1 234.7 38.5 234.3 38.6 234.4 t6 38.1 234.7 38.5 234.3 p 39.3 234.8 42.9 233.7 42.9 237.1 t7 39.3 234.8 42.9 233.7 p 36.3 237.1 39.3 234.8 42.9 237.1 t7 36.3 237.1 39.3 234.8 p 40.0 235.3 42.9 234.3 42.9 237.1 t8 40.0 235.3 42.9 234.3 p 37.6 237.1 40.0 235.3 42.9 237.1 t8 37.6 237.1 40.0 235.3 p 42.9 231.6 51.5 231.6 51.5 237.1 42.9 237.1 s2 51.0 231.9 49.2 231.6 42.9 231.6 47.2 234.4 s3 51.0 231.9 49.2 231.6 p 51.5 232.3 51.0 231.9 47.2 234.4 51.5 237.1 s3 51.5 232.3 51.0 231.9 p 51.5 237.1 47.2 234.4 42.9 237.1 t3 42.9 237.1 47.2 234.4 42.9 231.6 t3 49.8 232.7 43.1 231.6 42.9 231.6 47.2 234.4 s4 49.8 232.7 43.1 231.6 p 51.5 234.2 49.8 232.7 47.2 234.4 51.5 237.1 s4 51.5 234.2 49.8 232.7 p 51.5 237.1 47.2 234.4 42.9 237.1 t4 42.9 237.1 47.2 234.4 42.9 231.6 t4 44.9 232.9 48.5 233.5 47.2 234.4 t5 44.9 232.9 48.5 233.5 p 51.5 236.1 48.5 233.5 47.2 234.4 51.5 237.1 s5 51.5 236.1 48.5 233.5 p 51.5 237.1 47.2 234.4 42.9 237.1 t5 44.9 232.9 42.9 232.3 42.9 237.1 47.2 234.4 s5 44.9 232.9 42.9 232.3 p 47.1 234.3 47.3 234.3 47.2 234.4 t6 47.1 234.3 47.3 234.3 p 47.3 234.3 47.7 234.7 47.2 234.4 t6 47.3 234.3 47.7 234.7 p 50.8 237.1 47.7 234.7 47.2 234.4 42.9 237.1 s6 50.8 237.1 47.7 234.7 p 47.1 234.3 42.9 233.0 42.9 237.1 47.2 234.4 s6 47.1 234.3 42.9 233.0 p 46.5 234.8 49.5 237.1 42.9 237.1 t7 46.5 234.8 49.5 237.1 p 42.9 233.7 46.5 234.8 42.9 237.1 t7 42.9 233.7 46.5 234.8 p 45.8 235.3 48.2 237.1 42.9 237.1 t8 45.8 235.3 48.2 237.1 p 42.9 234.3 45.8 235.3 42.9 237.1 t8 42.9 234.3 45.8 235.3 p 51.5 231.6 60.1 231.6 60.1 237.1 51.5 237.1 s1 58.0 232.9 55.6 231.6 51.5 231.6 55.8 234.4 s2 58.0 232.9 55.6 231.6 p 58.0 232.9 58.7 236.3 55.8 234.4 t2 58.0 232.9 58.7 236.3 p 59.3 237.1 58.7 236.3 55.8 234.4 51.5 237.1 s2 59.3 237.1 58.7 236.3 p 51.5 237.1 55.8 234.4 51.5 231.6 t2 55.4 234.6 57.1 237.1 51.5 237.1 t3 55.4 234.6 57.1 237.1 p 51.5 232.3 55.4 234.6 51.5 237.1 t3 51.5 232.3 55.4 234.6 p 53.8 235.6 54.8 237.1 51.5 237.1 t4 53.8 235.6 54.8 237.1 p 51.5 234.2 53.8 235.6 51.5 237.1 t4 51.5 234.2 53.8 235.6 p 52.3 236.6 52.6 237.1 51.5 237.1 t5 52.3 236.6 52.6 237.1 p 51.5 236.1 52.3 236.6 51.5 237.1 t5 51.5 236.1 52.3 236.6 p 60.1 231.6 68.6 231.6 68.6 237.1 60.1 237.1 s1 68.6 231.6 77.2 231.6 77.2 237.1 68.6 237.1 s1 73.1 231.6 70.6 232.9 72.9 234.4 77.2 231.6 s2 73.1 231.6 70.6 232.9 p 77.2 231.6 72.9 234.4 77.2 237.1 t2 70.0 236.3 69.4 237.1 77.2 237.1 72.9 234.4 s2 70.0 236.3 69.4 237.1 p 70.0 236.3 70.6 232.9 72.9 234.4 t2 70.0 236.3 70.6 232.9 p 73.3 234.6 77.2 232.3 77.2 237.1 t3 73.3 234.6 77.2 232.3 p 71.6 237.1 73.3 234.6 77.2 237.1 t3 71.6 237.1 73.3 234.6 p 74.8 235.6 77.2 234.2 77.2 237.1 t4 74.8 235.6 77.2 234.2 p 73.8 237.1 74.8 235.6 77.2 237.1 t4 73.8 237.1 74.8 235.6 p 76.4 236.6 77.2 236.1 77.2 237.1 t5 76.4 236.6 77.2 236.1 p 76.1 237.1 76.4 236.6 77.2 237.1 t5 76.1 237.1 76.4 236.6 p 77.2 231.6 85.8 231.6 85.8 237.1 77.2 237.1 s2 79.5 231.6 77.7 231.9 81.5 234.4 85.8 231.6 s3 79.5 231.6 77.7 231.9 p 85.8 231.6 81.5 234.4 85.8 237.1 t3 85.8 237.1 81.5 234.4 77.2 237.1 t3 77.7 231.9 77.2 232.3 77.2 237.1 81.5 234.4 s3 77.7 231.9 77.2 232.3 p 85.6 231.6 78.9 232.7 81.5 234.4 85.8 231.6 s4 85.6 231.6 78.9 232.7 p 85.8 231.6 81.5 234.4 85.8 237.1 t4 85.8 237.1 81.5 234.4 77.2 237.1 t4 78.9 232.7 77.2 234.2 77.2 237.1 81.5 234.4 s4 78.9 232.7 77.2 234.2 p 80.2 233.5 83.7 232.9 81.5 234.4 t5 80.2 233.5 83.7 232.9 p 85.8 232.3 83.7 232.9 81.5 234.4 85.8 237.1 s5 85.8 232.3 83.7 232.9 p 85.8 237.1 81.5 234.4 77.2 237.1 t5 80.2 233.5 77.2 236.1 77.2 237.1 81.5 234.4 s5 80.2 233.5 77.2 236.1 p 81.4 234.3 81.6 234.3 81.5 234.4 t6 81.4 234.3 81.6 234.3 p 85.8 233.0 81.6 234.3 81.5 234.4 85.8 237.1 s6 85.8 233.0 81.6 234.3 p 81.0 234.7 77.8 237.1 85.8 237.1 81.5 234.4 s6 81.0 234.7 77.8 237.1 p 81.0 234.7 81.4 234.3 81.5 234.4 t6 81.0 234.7 81.4 234.3 p 82.2 234.8 85.8 233.7 85.8 237.1 t7 82.2 234.8 85.8 233.7 p 79.2 237.1 82.2 234.8 85.8 237.1 t7 79.2 237.1 82.2 234.8 p 82.9 235.3 85.8 234.3 85.8 237.1 t8 82.9 235.3 85.8 234.3 p 80.5 237.1 82.9 235.3 85.8 237.1 t8 80.5 237.1 82.9 235.3 p 85.8 231.6 94.4 231.6 94.4 237.1 85.8 237.1 s2 93.9 231.9 92.1 231.6 85.8 231.6 90.1 234.4 s3 93.9 231.9 92.1 231.6 p 94.4 232.3 93.9 231.9 90.1 234.4 94.4 237.1 s3 94.4 232.3 93.9 231.9 p 94.4 237.1 90.1 234.4 85.8 237.1 t3 85.8 237.1 90.1 234.4 85.8 231.6 t3 92.7 232.7 86.0 231.6 85.8 231.6 90.1 234.4 s4 92.7 232.7 86.0 231.6 p 94.4 234.2 92.7 232.7 90.1 234.4 94.4 237.1 s4 94.4 234.2 92.7 232.7 p 94.4 237.1 90.1 234.4 85.8 237.1 t4 85.8 237.1 90.1 234.4 85.8 231.6 t4 87.8 232.9 91.4 233.5 90.1 234.4 t5 87.8 232.9 91.4 233.5 p 94.4 236.1 91.4 233.5 90.1 234.4 94.4 237.1 s5 94.4 236.1 91.4 233.5 p 94.4 237.1 90.1 234.4 85.8 237.1 t5 87.8 232.9 85.8 232.3 85.8 237.1 90.1 234.4 s5 87.8 232.9 85.8 232.3 p 90.0 234.3 90.2 234.3 90.1 234.4 t6 90.0 234.3 90.2 234.3 p 90.2 234.3 90.5 234.7 90.1 234.4 t6 90.2 234.3 90.5 234.7 p 93.7 237.1 90.5 234.7 90.1 234.4 85.8 237.1 s6 93.7 237.1 90.5 234.7 p 90.0 234.3 85.8 233.0 85.8 237.1 90.1 234.4 s6 90.0 234.3 85.8 233.0 p 89.4 234.8 92.4 237.1 85.8 237.1 t7 89.4 234.8 92.4 237.1 p 85.8 233.7 89.4 234.8 85.8 237.1 t7 85.8 233.7 89.4 234.8 p 88.7 235.3 91.1 237.1 85.8 237.1 t8 88.7 235.3 91.1 237.1 p 85.8 234.3 88.7 235.3 85.8 237.1 t8 85.8 234.3 88.7 235.3 p 94.4 231.6 102.9 231.6 102.9 237.1 94.4 237.1 s1 100.9 232.9 98.5 231.6 94.4 231.6 98.7 234.4 s2 100.9 232.9 98.5 231.6 p 100.9 232.9 101.6 236.3 98.7 234.4 t2 100.9 232.9 101.6 236.3 p 102.2 237.1 101.6 236.3 98.7 234.4 94.4 237.1 s2 102.2 237.1 101.6 236.3 p 94.4 237.1 98.7 234.4 94.4 231.6 t2 98.3 234.6 100.0 237.1 94.4 237.1 t3 98.3 234.6 100.0 237.1 p 94.4 232.3 98.3 234.6 94.4 237.1 t3 94.4 232.3 98.3 234.6 p 96.7 235.6 97.7 237.1 94.4 237.1 t4 96.7 235.6 97.7 237.1 p 94.4 234.2 96.7 235.6 94.4 237.1 t4 94.4 234.2 96.7 235.6 p 95.2 236.6 95.5 237.1 94.4 237.1 t5 95.2 236.6 95.5 237.1 p 94.4 236.1 95.2 236.6 94.4 237.1 t5 94.4 236.1 95.2 236.6 p 102.9 231.6 111.5 231.6 111.5 237.1 102.9 237.1 s1 111.5 231.6 120.1 231.6 120.1 237.1 111.5 237.1 s1 116.0 231.6 113.5 232.9 115.8 234.4 120.1 231.6 s2 116.0 231.6 113.5 232.9 p 120.1 231.6 115.8 234.4 120.1 237.1 t2 112.9 236.3 112.3 237.1 120.1 237.1 115.8 234.4 s2 112.9 236.3 112.3 237.1 p 112.9 236.3 113.5 232.9 115.8 234.4 t2 112.9 236.3 113.5 232.9 p 116.2 234.6 120.1 232.3 120.1 237.1 t3 116.2 234.6 120.1 232.3 p 114.5 237.1 116.2 234.6 120.1 237.1 t3 114.5 237.1 116.2 234.6 p 117.7 235.6 120.1 234.2 120.1 237.1 t4 117.7 235.6 120.1 234.2 p 116.7 237.1 117.7 235.6 120.1 237.1 t4 116.7 237.1 117.7 235.6 p 119.3 236.6 120.1 236.1 120.1 237.1 t5 119.3 236.6 120.1 236.1 p 119.0 237.1 119.3 236.6 120.1 237.1 t5 119.0 237.1 119.3 236.6 p 120.1 231.6 128.7 231.6 128.7 237.1 120.1 237.1 s2 122.3 231.6 120.6 231.9 124.4 234.4 128.7 231.6 s3 122.3 231.6 120.6 231.9 p 128.7 231.6 124.4 234.4 128.7 237.1 t3 128.7 237.1 124.4 234.4 120.1 237.1 t3 120.6 231.9 120.1 232.3 120.1 237.1 124.4 234.4 s3 120.6 231.9 120.1 232.3 p 128.5 231.6 121.8 232.7 124.4 234.4 128.7 231.6 s4 128.5 231.6 121.8 232.7 p 128.7 231.6 124.4 234.4 128.7 237.1 t4 128.7 237.1 124.4 234.4 120.1 237.1 t4 121.8 232.7 120.1 234.2 120.1 237.1 124.4 234.4 s4 121.8 232.7 120.1 234.2 p 123.1 233.5 126.6 232.9 124.4 234.4 t5 123.1 233.5 126.6 232.9 p 128.7 232.3 126.6 232.9 124.4 234.4 128.7 237.1 s5 128.7 232.3 126.6 232.9 p 128.7 237.1 124.4 234.4 120.1 237.1 t5 123.1 233.5 120.1 236.1 120.1 237.1 124.4 234.4 s5 123.1 233.5 120.1 236.1 p 124.3 234.3 124.5 234.3 124.4 234.4 t6 124.3 234.3 124.5 234.3 p 128.7 233.0 124.5 234.3 124.4 234.4 128.7 237.1 s6 128.7 233.0 124.5 234.3 p 123.9 234.7 120.7 237.1 128.7 237.1 124.4 234.4 s6 123.9 234.7 120.7 237.1 p 123.9 234.7 124.3 234.3 124.4 234.4 t6 123.9 234.7 124.3 234.3 p 125.1 234.8 128.7 233.7 128.7 237.1 t7 125.1 234.8 128.7 233.7 p 122.1 237.1 125.1 234.8 128.7 237.1 t7 122.1 237.1 125.1 234.8 p 125.8 235.3 128.7 234.3 128.7 237.1 t8 125.8 235.3 128.7 234.3 p 123.4 237.1 125.8 235.3 128.7 237.1 t8 123.4 237.1 125.8 235.3 p 128.7 231.6 137.3 231.6 137.3 237.1 128.7 237.1 s2 136.8 231.9 135.0 231.6 128.7 231.6 133.0 234.4 s3 136.8 231.9 135.0 231.6 p 137.3 232.3 136.8 231.9 133.0 234.4 137.3 237.1 s3 137.3 232.3 136.8 231.9 p 137.3 237.1 133.0 234.4 128.7 237.1 t3 128.7 237.1 133.0 234.4 128.7 231.6 t3 135.6 232.7 128.9 231.6 128.7 231.6 133.0 234.4 s4 135.6 232.7 128.9 231.6 p 137.3 234.2 135.6 232.7 133.0 234.4 137.3 237.1 s4 137.3 234.2 135.6 232.7 p 137.3 237.1 133.0 234.4 128.7 237.1 t4 128.7 237.1 133.0 234.4 128.7 231.6 t4 130.7 232.9 134.3 233.5 133.0 234.4 t5 130.7 232.9 134.3 233.5 p 137.3 236.1 134.3 233.5 133.0 234.4 137.3 237.1 s5 137.3 236.1 134.3 233.5 p 137.3 237.1 133.0 234.4 128.7 237.1 t5 130.7 232.9 128.7 232.3 128.7 237.1 133.0 234.4 s5 130.7 232.9 128.7 232.3 p 132.8 234.3 133.0 234.3 133.0 234.4 t6 132.8 234.3 133.0 234.3 p 133.0 234.3 133.4 234.7 133.0 234.4 t6 133.0 234.3 133.4 234.7 p 136.6 237.1 133.4 234.7 133.0 234.4 128.7 237.1 s6 136.6 237.1 133.4 234.7 p 132.8 234.3 128.7 233.0 128.7 237.1 133.0 234.4 s6 132.8 234.3 128.7 233.0 p 132.3 234.8 135.3 237.1 128.7 237.1 t7 132.3 234.8 135.3 237.1 p 128.7 233.7 132.3 234.8 128.7 237.1 t7 128.7 233.7 132.3 234.8 p 131.6 235.3 134.0 237.1 128.7 237.1 t8 131.6 235.3 134.0 237.1 p 128.7 234.3 131.6 235.3 128.7 237.1 t8 128.7 234.3 131.6 235.3 p 137.3 231.6 145.8 231.6 145.8 237.1 137.3 237.1 s1 143.8 232.9 141.4 231.6 137.3 231.6 141.6 234.4 s2 143.8 232.9 141.4 231.6 p 143.8 232.9 144.5 236.3 141.6 234.4 t2 143.8 232.9 144.5 236.3 p 145.1 237.1 144.5 236.3 141.6 234.4 137.3 237.1 s2 145.1 237.1 144.5 236.3 p 137.3 237.1 141.6 234.4 137.3 231.6 t2 141.2 234.6 142.8 237.1 137.3 237.1 t3 141.2 234.6 142.8 237.1 p 137.3 232.3 141.2 234.6 137.3 237.1 t3 137.3 232.3 141.2 234.6 p 139.6 235.6 140.6 237.1 137.3 237.1 t4 139.6 235.6 140.6 237.1 p 137.3 234.2 139.6 235.6 137.3 237.1 t4 137.3 234.2 139.6 235.6 p 138.1 236.6 138.4 237.1 137.3 237.1 t5 138.1 236.6 138.4 237.1 p 137.3 236.1 138.1 236.6 137.3 237.1 t5 137.3 236.1 138.1 236.6 p 145.8 231.6 154.4 231.6 154.4 237.1 145.8 237.1 s1 154.4 231.6 163.0 231.6 163.0 237.1 154.4 237.1 s1 158.9 231.6 156.4 232.9 158.7 234.4 163.0 231.6 s2 158.9 231.6 156.4 232.9 p 163.0 231.6 158.7 234.4 163.0 237.1 t2 155.7 236.3 155.2 237.1 163.0 237.1 158.7 234.4 s2 155.7 236.3 155.2 237.1 p 155.7 236.3 156.4 232.9 158.7 234.4 t2 155.7 236.3 156.4 232.9 p 159.1 234.6 163.0 232.3 163.0 237.1 t3 159.1 234.6 163.0 232.3 p 157.4 237.1 159.1 234.6 163.0 237.1 t3 157.4 237.1 159.1 234.6 p 160.6 235.6 163.0 234.2 163.0 237.1 t4 160.6 235.6 163.0 234.2 p 159.6 237.1 160.6 235.6 163.0 237.1 t4 159.6 237.1 160.6 235.6 p 162.2 236.6 163.0 236.1 163.0 237.1 t5 162.2 236.6 163.0 236.1 p 161.9 237.1 162.2 236.6 163.0 237.1 t5 161.9 237.1 162.2 236.6 p 163.0 231.6 171.6 231.6 171.6 237.1 163.0 237.1 s2 165.2 231.6 163.5 231.9 167.3 234.4 171.6 231.6 s3 165.2 231.6 163.5 231.9 p 171.6 231.6 167.3 234.4 171.6 237.1 t3 171.6 237.1 167.3 234.4 163.0 237.1 t3 163.5 231.9 163.0 232.3 163.0 237.1 167.3 234.4 s3 163.5 231.9 163.0 232.3 p 171.4 231.6 164.7 232.7 167.3 234.4 171.6 231.6 s4 171.4 231.6 164.7 232.7 p 171.6 231.6 167.3 234.4 171.6 237.1 t4 171.6 237.1 167.3 234.4 163.0 237.1 t4 164.7 232.7 163.0 234.2 163.0 237.1 167.3 234.4 s4 164.7 232.7 163.0 234.2 p 166.0 233.5 169.5 232.9 167.3 234.4 t5 166.0 233.5 169.5 232.9 p 171.6 232.3 169.5 232.9 167.3 234.4 171.6 237.1 s5 171.6 232.3 169.5 232.9 p 171.6 237.1 167.3 234.4 163.0 237.1 t5 166.0 233.5 163.0 236.1 163.0 237.1 167.3 234.4 s5 166.0 233.5 163.0 236.1 p 167.2 234.3 167.4 234.3 167.3 234.4 t6 167.2 234.3 167.4 234.3 p 171.6 233.0 167.4 234.3 167.3 234.4 171.6 237.1 s6 171.6 233.0 167.4 234.3 p 166.8 234.7 163.6 237.1 171.6 237.1 167.3 234.4 s6 166.8 234.7 163.6 237.1 p 166.8 234.7 167.2 234.3 167.3 234.4 t6 166.8 234.7 167.2 234.3 p 168.0 234.8 171.6 233.7 171.6 237.1 t7 168.0 234.8 171.6 233.7 p 164.9 237.1 168.0 234.8 171.6 237.1 t7 164.9 237.1 168.0 234.8 p 168.7 235.3 171.6 234.3 171.6 237.1 t8 168.7 235.3 171.6 234.3 p 166.3 237.1 168.7 235.3 171.6 237.1 t8 166.3 237.1 168.7 235.3 p 171.6 231.6 180.2 231.6 180.2 237.1 171.6 237.1 s2 179.7 231.9 177.9 231.6 171.6 231.6 175.9 234.4 s3 179.7 231.9 177.9 231.6 p 180.2 232.3 179.7 231.9 175.9 234.4 180.2 237.1 s3 180.2 232.3 179.7 231.9 p 180.2 237.1 175.9 234.4 171.6 237.1 t3 171.6 237.1 175.9 234.4 171.6 231.6 t3 178.4 232.7 171.8 231.6 171.6 231.6 175.9 234.4 s4 178.4 232.7 171.8 231.6 p 180.2 234.2 178.4 232.7 175.9 234.4 180.2 237.1 s4 180.2 234.2 178.4 232.7 p 180.2 237.1 175.9 234.4 171.6 237.1 t4 171.6 237.1 175.9 234.4 171.6 231.6 t4 173.6 232.9 177.2 233.5 175.9 234.4 t5 173.6 232.9 177.2 233.5 p 180.2 236.1 177.2 233.5 175.9 234.4 180.2 237.1 s5 180.2 236.1 177.2 233.5 p 180.2 237.1 175.9 234.4 171.6 237.1 t5 173.6 232.9 171.6 232.3 171.6 237.1 175.9 234.4 s5 173.6 232.9 171.6 232.3 p 175.7 234.3 175.9 234.3 175.9 234.4 t6 175.7 234.3 175.9 234.3 p 175.9 234.3 176.3 234.7 175.9 234.4 t6 175.9 234.3 176.3 234.7 p 179.5 237.1 176.3 234.7 175.9 234.4 171.6 237.1 s6 179.5 237.1 176.3 234.7 p 175.7 234.3 171.6 233.0 171.6 237.1 175.9 234.4 s6 175.7 234.3 171.6 233.0 p 175.2 234.8 178.2 237.1 171.6 237.1 t7 175.2 234.8 178.2 237.1 p 171.6 233.7 175.2 234.8 171.6 237.1 t7 171.6 233.7 175.2 234.8 p 174.5 235.3 176.9 237.1 171.6 237.1 t8 174.5 235.3 176.9 237.1 p 171.6 234.3 174.5 235.3 171.6 237.1 t8 171.6 234.3 174.5 235.3 p 180.2 231.6 188.7 231.6 188.7 237.1 180.2 237.1 s1 186.7 232.9 184.3 231.6 180.2 231.6 184.4 234.4 s2 186.7 232.9 184.3 231.6 p 186.7 232.9 187.4 236.3 184.4 234.4 t2 186.7 232.9 187.4 236.3 p 188.0 237.1 187.4 236.3 184.4 234.4 180.2 237.1 s2 188.0 237.1 187.4 236.3 p 180.2 237.1 184.4 234.4 180.2 231.6 t2 184.1 234.6 185.7 237.1 180.2 237.1 t3 184.1 234.6 185.7 237.1 p 180.2 232.3 184.1 234.6 180.2 237.1 t3 180.2 232.3 184.1 234.6 p 182.5 235.6 183.5 237.1 180.2 237.1 t4 182.5 235.6 183.5 237.1 p 180.2 234.2 182.5 235.6 180.2 237.1 t4 180.2 234.2 182.5 235.6 p 181.0 236.6 181.3 237.1 180.2 237.1 t5 181.0 236.6 181.3 237.1 p 180.2 236.1 181.0 236.6 180.2 237.1 t5 180.2 236.1 181.0 236.6 p 188.7 231.6 197.3 231.6 197.3 237.1 188.7 237.1 s1 197.3 231.6 205.9 231.6 205.9 237.1 197.3 237.1 s1 201.8 231.6 199.3 232.9 201.6 234.4 205.9 231.6 s2 201.8 231.6 199.3 232.9 p 205.9 231.6 201.6 234.4 205.9 237.1 t2 198.6 236.3 198.1 237.1 205.9 237.1 201.6 234.4 s2 198.6 236.3 198.1 237.1 p 198.6 236.3 199.3 232.9 201.6 234.4 t2 198.6 236.3 199.3 232.9 p 202.0 234.6 205.9 232.3 205.9 237.1 t3 202.0 234.6 205.9 232.3 p 200.3 237.1 202.0 234.6 205.9 237.1 t3 200.3 237.1 202.0 234.6 p 203.5 235.6 205.9 234.2 205.9 237.1 t4 203.5 235.6 205.9 234.2 p 202.5 237.1 203.5 235.6 205.9 237.1 t4 202.5 237.1 203.5 235.6 p 205.1 236.6 205.9 236.1 205.9 237.1 t5 205.1 236.6 205.9 236.1 p 204.7 237.1 205.1 236.6 205.9 237.1 t5 204.7 237.1 205.1 236.6 p 205.9 231.6 214.5 231.6 214.5 237.1 205.9 237.1 s2 208.1 231.6 206.3 231.9 210.2 234.4 214.5 231.6 s3 208.1 231.6 206.3 231.9 p 214.5 231.6 210.2 234.4 214.5 237.1 t3 214.5 237.1 210.2 234.4 205.9 237.1 t3 206.3 231.9 205.9 232.3 205.9 237.1 210.2 234.4 s3 206.3 231.9 205.9 232.3 p 214.3 231.6 207.6 232.7 210.2 234.4 214.5 231.6 s4 214.3 231.6 207.6 232.7 p 214.5 231.6 210.2 234.4 214.5 237.1 t4 214.5 237.1 210.2 234.4 205.9 237.1 t4 207.6 232.7 205.9 234.2 205.9 237.1 210.2 234.4 s4 207.6 232.7 205.9 234.2 p 208.9 233.5 212.4 232.9 210.2 234.4 t5 208.9 233.5 212.4 232.9 p 214.5 232.3 212.4 232.9 210.2 234.4 214.5 237.1 s5 214.5 232.3 212.4 232.9 p 214.5 237.1 210.2 234.4 205.9 237.1 t5 208.9 233.5 205.9 236.1 205.9 237.1 210.2 234.4 s5 208.9 233.5 205.9 236.1 p 210.1 234.3 210.3 234.3 210.2 234.4 t6 210.1 234.3 210.3 234.3 p 214.5 233.0 210.3 234.3 210.2 234.4 214.5 237.1 s6 214.5 233.0 210.3 234.3 p 209.7 234.7 206.5 237.1 214.5 237.1 210.2 234.4 s6 209.7 234.7 206.5 237.1 p 209.7 234.7 210.1 234.3 210.2 234.4 t6 209.7 234.7 210.1 234.3 p 210.9 234.8 214.5 233.7 214.5 237.1 t7 210.9 234.8 214.5 233.7 p 207.8 237.1 210.9 234.8 214.5 237.1 t7 207.8 237.1 210.9 234.8 p 211.6 235.3 214.5 234.3 214.5 237.1 t8 211.6 235.3 214.5 234.3 p 209.2 237.1 211.6 235.3 214.5 237.1 t8 209.2 237.1 211.6 235.3 p 214.5 231.6 223.1 231.6 223.1 237.1 214.5 237.1 s2 222.6 231.9 220.8 231.6 214.5 231.6 218.8 234.4 s3 222.6 231.9 220.8 231.6 p 223.1 232.3 222.6 231.9 218.8 234.4 223.1 237.1 s3 223.1 232.3 222.6 231.9 p 223.1 237.1 218.8 234.4 214.5 237.1 t3 214.5 237.1 218.8 234.4 214.5 231.6 t3 221.3 232.7 214.7 231.6 214.5 231.6 218.8 234.4 s4 221.3 232.7 214.7 231.6 p 223.1 234.2 221.3 232.7 218.8 234.4 223.1 237.1 s4 223.1 234.2 221.3 232.7 p 223.1 237.1 218.8 234.4 214.5 237.1 t4 214.5 237.1 218.8 234.4 214.5 231.6 t4 216.5 232.9 220.1 233.5 218.8 234.4 t5 216.5 232.9 220.1 233.5 p 223.1 236.1 220.1 233.5 218.8 234.4 223.1 237.1 s5 223.1 236.1 220.1 233.5 p 223.1 237.1 218.8 234.4 214.5 237.1 t5 216.5 232.9 214.5 232.3 214.5 237.1 218.8 234.4 s5 216.5 232.9 214.5 232.3 p 218.6 234.3 218.8 234.3 218.8 234.4 t6 218.6 234.3 218.8 234.3 p 218.8 234.3 219.2 234.7 218.8 234.4 t6 218.8 234.3 219.2 234.7 p 222.4 237.1 219.2 234.7 218.8 234.4 214.5 237.1 s6 222.4 237.1 219.2 234.7 p 218.6 234.3 214.5 233.0 214.5 237.1 218.8 234.4 s6 218.6 234.3 214.5 233.0 p 218.1 234.8 221.1 237.1 214.5 237.1 t7 218.1 234.8 221.1 237.1 p 214.5 233.7 218.1 234.8 214.5 237.1 t7 214.5 233.7 218.1 234.8 p 217.4 235.3 219.8 237.1 214.5 237.1 t8 217.4 235.3 219.8 237.1 p 214.5 234.3 217.4 235.3 214.5 237.1 t8 214.5 234.3 217.4 235.3 p 223.1 231.6 231.6 231.6 231.6 237.1 223.1 237.1 s1 229.6 232.9 227.2 231.6 223.1 231.6 227.3 234.4 s2 229.6 232.9 227.2 231.6 p 229.6 232.9 230.3 236.3 227.3 234.4 t2 229.6 232.9 230.3 236.3 p 230.9 237.1 230.3 236.3 227.3 234.4 223.1 237.1 s2 230.9 237.1 230.3 236.3 p 223.1 237.1 227.3 234.4 223.1 231.6 t2 227.0 234.6 228.6 237.1 223.1 237.1 t3 227.0 234.6 228.6 237.1 p 223.1 232.3 227.0 234.6 223.1 237.1 t3 223.1 232.3 227.0 234.6 p 225.4 235.6 226.4 237.1 223.1 237.1 t4 225.4 235.6 226.4 237.1 p 223.1 234.2 225.4 235.6 223.1 237.1 t4 223.1 234.2 225.4 235.6 p 223.9 236.6 224.2 237.1 223.1 237.1 t5 223.9 236.6 224.2 237.1 p 223.1 236.1 223.9 236.6 223.1 237.1 t5 223.1 236.1 223.9 236.6 p 231.6 231.6 240.2 231.6 240.2 237.1 231.6 237.1 s1 240.2 231.6 248.8 231.6 248.8 237.1 240.2 237.1 s1 244.7 231.6 242.2 232.9 244.5 234.4 248.8 231.6 s2 244.7 231.6 242.2 232.9 p 248.8 231.6 244.5 234.4 248.8 237.1 t2 241.5 236.3 241.0 237.1 248.8 237.1 244.5 234.4 s2 241.5 236.3 241.0 237.1 p 241.5 236.3 242.2 232.9 244.5 234.4 t2 241.5 236.3 242.2 232.9 p 244.8 234.6 248.8 232.3 248.8 237.1 t3 244.8 234.6 248.8 232.3 p 243.2 237.1 244.8 234.6 248.8 237.1 t3 243.2 237.1 244.8 234.6 p 246.4 235.6 248.8 234.2 248.8 237.1 t4 246.4 235.6 248.8 234.2 p 245.4 237.1 246.4 235.6 248.8 237.1 t4 245.4 237.1 246.4 235.6 p 248.0 236.6 248.8 236.1 248.8 237.1 t5 248.0 236.6 248.8 236.1 p 247.6 237.1 248.0 236.6 248.8 237.1 t5 247.6 237.1 248.0 236.6 p 248.8 231.6 257.4 231.6 257.4 237.1 248.8 237.1 s2 251.0 231.6 249.2 231.9 253.1 234.4 257.4 231.6 s3 251.0 231.6 249.2 231.9 p 257.4 231.6 253.1 234.4 257.4 237.1 t3 257.4 237.1 253.1 234.4 248.8 237.1 t3 249.2 231.9 248.8 232.3 248.8 237.1 253.1 234.4 s3 249.2 231.9 248.8 232.3 p 257.2 231.6 250.5 232.7 253.1 234.4 257.4 231.6 s4 257.2 231.6 250.5 232.7 p 257.4 231.6 253.1 234.4 257.4 237.1 t4 257.4 237.1 253.1 234.4 248.8 237.1 t4 250.5 232.7 248.8 234.2 248.8 237.1 253.1 234.4 s4 250.5 232.7 248.8 234.2 p 251.7 233.5 255.3 232.9 253.1 234.4 t5 251.7 233.5 255.3 232.9 p 257.4 232.3 255.3 232.9 253.1 234.4 257.4 237.1 s5 257.4 232.3 255.3 232.9 p 257.4 237.1 253.1 234.4 248.8 237.1 t5 251.7 233.5 248.8 236.1 248.8 237.1 253.1 234.4 s5 251.7 233.5 248.8 236.1 p 253.0 234.3 253.2 234.3 253.1 234.4 t6 253.0 234.3 253.2 234.3 p 257.4 233.0 253.2 234.3 253.1 234.4 257.4 237.1 s6 257.4 233.0 253.2 234.3 p 252.6 234.7 249.4 237.1 257.4 237.1 253.1 234.4 s6 252.6 234.7 249.4 237.1 p 252.6 234.7 253.0 234.3 253.1 234.4 t6 252.6 234.7 253.0 234.3 p 253.7 234.8 257.4 233.7 257.4 237.1 t7 253.7 234.8 257.4 233.7 p 250.7 237.1 253.7 234.8 257.4 237.1 t7 250.7 237.1 253.7 234.8 p 254.5 235.3 257.4 234.3 257.4 237.1 t8 254.5 235.3 257.4 234.3 p 252.0 237.1 254.5 235.3 257.4 237.1 t8 252.0 237.1 254.5 235.3 p 257.4 231.6 265.9 231.6 265.9 237.1 257.4 237.1 s2 265.5 231.9 263.7 231.6 257.4 231.6 261.7 234.4 s3 265.5 231.9 263.7 231.6 p 265.9 232.3 265.5 231.9 261.7 234.4 265.9 237.1 s3 265.9 232.3 265.5 231.9 p 265.9 237.1 261.7 234.4 257.4 237.1 t3 257.4 237.1 261.7 234.4 257.4 231.6 t3 264.2 232.7 257.6 231.6 257.4 231.6 261.7 234.4 s4 264.2 232.7 257.6 231.6 p 265.9 234.2 264.2 232.7 261.7 234.4 265.9 237.1 s4 265.9 234.2 264.2 232.7 p 265.9 237.1 261.7 234.4 257.4 237.1 t4 257.4 237.1 261.7 234.4 257.4 231.6 t4 259.4 232.9 263.0 233.5 261.7 234.4 t5 259.4 232.9 263.0 233.5 p 265.9 236.1 263.0 233.5 261.7 234.4 265.9 237.1 s5 265.9 236.1 263.0 233.5 p 265.9 237.1 261.7 234.4 257.4 237.1 t5 259.4 232.9 257.4 232.3 257.4 237.1 261.7 234.4 s5 259.4 232.9 257.4 232.3 p 261.5 234.3 261.7 234.3 261.7 234.4 t6 261.5 234.3 261.7 234.3 p 261.7 234.3 262.1 234.7 261.7 234.4 t6 261.7 234.3 262.1 234.7 p 265.3 237.1 262.1 234.7 261.7 234.4 257.4 237.1 s6 265.3 237.1 262.1 234.7 p 261.5 234.3 257.4 233.0 257.4 237.1 261.7 234.4 s6 261.5 234.3 257.4 233.0 p 261.0 234.8 264.0 237.1 257.4 237.1 t7 261.0 234.8 264.0 237.1 p 257.4 233.7 261.0 234.8 257.4 237.1 t7 257.4 233.7 261.0 234.8 p 260.3 235.3 262.7 237.1 257.4 237.1 t8 260.3 235.3 262.7 237.1 p 257.4 234.3 260.3 235.3 257.4 237.1 t8 257.4 234.3 260.3 235.3 p 265.9 231.6 274.5 231.6 274.5 237.1 265.9 237.1 s1 272.5 232.9 270.1 231.6 265.9 231.6 270.2 234.4 s2 272.5 232.9 270.1 231.6 p 272.5 232.9 273.2 236.3 270.2 234.4 t2 272.5 232.9 273.2 236.3 p 273.7 237.1 273.2 236.3 270.2 234.4 265.9 237.1 s2 273.7 237.1 273.2 236.3 p 265.9 237.1 270.2 234.4 265.9 231.6 t2 269.9 234.6 271.5 237.1 265.9 237.1 t3 269.9 234.6 271.5 237.1 p 265.9 232.3 269.9 234.6 265.9 237.1 t3 265.9 232.3 269.9 234.6 p 268.3 235.6 269.3 237.1 265.9 237.1 t4 268.3 235.6 269.3 237.1 p 265.9 234.2 268.3 235.6 265.9 237.1 t4 265.9 234.2 268.3 235.6 p 266.8 236.6 267.1 237.1 265.9 237.1 t5 266.8 236.6 267.1 237.1 p 265.9 236.1 266.8 236.6 265.9 237.1 t5 265.9 236.1 266.8 236.6 p 274.5 231.6 283.1 231.6 283.1 237.1 274.5 237.1 s1 283.1 231.6 291.7 231.6 291.7 237.1 283.1 237.1 s1 287.6 231.6 285.1 232.9 287.4 234.4 291.7 231.6 s2 287.6 231.6 285.1 232.9 p 291.7 231.6 287.4 234.4 291.7 237.1 t2 284.4 236.3 283.9 237.1 291.7 237.1 287.4 234.4 s2 284.4 236.3 283.9 237.1 p 284.4 236.3 285.1 232.9 287.4 234.4 t2 284.4 236.3 285.1 232.9 p 287.7 234.6 291.7 232.3 291.7 237.1 t3 287.7 234.6 291.7 232.3 p 286.1 237.1 287.7 234.6 291.7 237.1 t3 286.1 237.1 287.7 234.6 p 289.3 235.6 291.7 234.2 291.7 237.1 t4 289.3 235.6 291.7 234.2 p 288.3 237.1 289.3 235.6 291.7 237.1 t4 288.3 237.1 289.3 235.6 p 290.9 236.6 291.7 236.1 291.7 237.1 t5 290.9 236.6 291.7 236.1 p 290.5 237.1 290.9 236.6 291.7 237.1 t5 290.5 237.1 290.9 236.6 p 291.7 231.6 300.3 231.6 300.3 237.1 291.7 237.1 s2 293.9 231.6 292.1 231.9 296.0 234.4 300.3 231.6 s3 293.9 231.6 292.1 231.9 p 300.3 231.6 296.0 234.4 300.3 237.1 t3 300.3 237.1 296.0 234.4 291.7 237.1 t3 292.1 231.9 291.7 232.3 291.7 237.1 296.0 234.4 s3 292.1 231.9 291.7 232.3 p 300.1 231.6 293.4 232.7 296.0 234.4 300.3 231.6 s4 300.1 231.6 293.4 232.7 p 300.3 231.6 296.0 234.4 300.3 237.1 t4 300.3 237.1 296.0 234.4 291.7 237.1 t4 293.4 232.7 291.7 234.2 291.7 237.1 296.0 234.4 s4 293.4 232.7 291.7 234.2 p 294.6 233.5 298.2 232.9 296.0 234.4 t5 294.6 233.5 298.2 232.9 p 300.3 232.3 298.2 232.9 296.0 234.4 300.3 237.1 s5 300.3 232.3 298.2 232.9 p 300.3 237.1 296.0 234.4 291.7 237.1 t5 294.6 233.5 291.7 236.1 291.7 237.1 296.0 234.4 s5 294.6 233.5 291.7 236.1 p 295.9 234.3 296.1 234.3 296.0 234.4 t6 295.9 234.3 296.1 234.3 p 300.3 233.0 296.1 234.3 296.0 234.4 300.3 237.1 s6 300.3 233.0 296.1 234.3 p 295.5 234.7 292.3 237.1 300.3 237.1 296.0 234.4 s6 295.5 234.7 292.3 237.1 p 295.5 234.7 295.9 234.3 296.0 234.4 t6 295.5 234.7 295.9 234.3 p 296.6 234.8 300.3 233.7 300.3 237.1 t7 296.6 234.8 300.3 233.7 p 293.6 237.1 296.6 234.8 300.3 237.1 t7 293.6 237.1 296.6 234.8 p 297.4 235.3 300.3 234.3 300.3 237.1 t8 297.4 235.3 300.3 234.3 p 294.9 237.1 297.4 235.3 300.3 237.1 t8 294.9 237.1 297.4 235.3 p 0.0 226.1 8.6 226.1 8.6 231.6 0.0 231.6 s1 1.5 227.1 6.2 227.6 4.3 228.9 t2 1.5 227.1 6.2 227.6 p 8.6 228.7 6.2 227.6 4.3 228.9 8.6 231.6 s2 8.6 228.7 6.2 227.6 p 8.6 231.6 4.3 228.9 0.0 231.6 t2 1.5 227.1 0.0 226.7 0.0 231.6 4.3 228.9 s2 1.5 227.1 0.0 226.7 p 2.8 229.8 6.3 231.6 0.0 231.6 t3 2.8 229.8 6.3 231.6 p 0.0 229.1 2.8 229.8 0.0 231.6 t3 0.0 229.1 2.8 229.8 p 0.1 231.6 0.2 231.6 0.0 231.6 t4 0.1 231.6 0.2 231.6 p 0.0 231.5 0.1 231.6 0.0 231.6 t4 0.0 231.5 0.1 231.6 p 8.6 226.1 17.2 226.1 17.2 231.6 8.6 231.6 s1 11.3 229.9 12.7 231.6 8.6 231.6 t2 11.3 229.9 12.7 231.6 p 8.6 228.7 11.3 229.9 8.6 231.6 t2 8.6 228.7 11.3 229.9 p 17.2 226.1 25.7 226.1 25.7 231.6 17.2 231.6 s1 25.7 226.1 34.3 226.1 34.3 231.6 25.7 231.6 s1 31.6 229.9 34.3 228.7 34.3 231.6 t2 31.6 229.9 34.3 228.7 p 30.2 231.6 31.6 229.9 34.3 231.6 t2 30.2 231.6 31.6 229.9 p 34.3 226.1 42.9 226.1 42.9 231.6 34.3 231.6 s1 36.7 227.6 41.4 227.1 38.6 228.9 t2 36.7 227.6 41.4 227.1 p 42.9 226.7 41.4 227.1 38.6 228.9 42.9 231.6 s2 42.9 226.7 41.4 227.1 p 42.9 231.6 38.6 228.9 34.3 231.6 t2 36.7 227.6 34.3 228.7 34.3 231.6 38.6 228.9 s2 36.7 227.6 34.3 228.7 p 40.1 229.8 42.9 229.1 42.9 231.6 t3 40.1 229.8 42.9 229.1 p 36.6 231.6 40.1 229.8 42.9 231.6 t3 36.6 231.6 40.1 229.8 p 42.8 231.6 42.9 231.5 42.9 231.6 t4 42.8 231.6 42.9 231.5 p 42.7 231.6 42.8 231.6 42.9 231.6 t4 42.7 231.6 42.8 231.6 p 42.9 226.1 51.5 226.1 51.5 231.6 42.9 231.6 s1 44.4 227.1 49.1 227.6 47.2 228.9 t2 44.4 227.1 49.1 227.6 p 51.5 228.7 49.1 227.6 47.2 228.9 51.5 231.6 s2 51.5 228.7 49.1 227.6 p 51.5 231.6 47.2 228.9 42.9 231.6 t2 44.4 227.1 42.9 226.7 42.9 231.6 47.2 228.9 s2 44.4 227.1 42.9 226.7 p 45.7 229.8 49.2 231.6 42.9 231.6 t3 45.7 229.8 49.2 231.6 p 42.9 229.1 45.7 229.8 42.9 231.6 t3 42.9 229.1 45.7 229.8 p 43.0 231.6 43.1 231.6 42.9 231.6 t4 43.0 231.6 43.1 231.6 p 42.9 231.5 43.0 231.6 42.9 231.6 t4 42.9 231.5 43.0 231.6 p 51.5 226.1 60.1 226.1 60.1 231.6 51.5 231.6 s1 54.2 229.9 55.6 231.6 51.5 231.6 t2 54.2 229.9 55.6 231.6 p 51.5 228.7 54.2 229.9 51.5 231.6 t2 51.5 228.7 54.2 229.9 p 60.1 226.1 68.6 226.1 68.6 231.6 60.1 231.6 s1 68.6 226.1 77.2 226.1 77.2 231.6 68.6 231.6 s1 74.5 229.9 77.2 228.7 77.2 231.6 t2 74.5 229.9 77.2 228.7 p 73.1 231.6 74.5 229.9 77.2 231.6 t2 73.1 231.6 74.5 229.9 p 77.2 226.1 85.8 226.1 85.8 231.6 77.2 231.6 s1 79.6 227.6 84.3 227.1 81.5 228.9 t2 79.6 227.6 84.3 227.1 p 85.8 226.7 84.3 227.1 81.5 228.9 85.8 231.6 s2 85.8 226.7 84.3 227.1 p 85.8 231.6 81.5 228.9 77.2 231.6 t2 79.6 227.6 77.2 228.7 77.2 231.6 81.5 228.9 s2 79.6 227.6 77.2 228.7 p 83.0 229.8 85.8 229.1 85.8 231.6 t3 83.0 229.8 85.8 229.1 p 79.5 231.6 83.0 229.8 85.8 231.6 t3 79.5 231.6 83.0 229.8 p 85.7 231.6 85.8 231.5 85.8 231.6 t4 85.7 231.6 85.8 231.5 p 85.6 231.6 85.7 231.6 85.8 231.6 t4 85.6 231.6 85.7 231.6 p 85.8 226.1 94.4 226.1 94.4 231.6 85.8 231.6 s1 87.3 227.1 92.0 227.6 90.1 228.9 t2 87.3 227.1 92.0 227.6 p 94.4 228.7 92.0 227.6 90.1 228.9 94.4 231.6 s2 94.4 228.7 92.0 227.6 p 94.4 231.6 90.1 228.9 85.8 231.6 t2 87.3 227.1 85.8 226.7 85.8 231.6 90.1 228.9 s2 87.3 227.1 85.8 226.7 p 88.6 229.8 92.1 231.6 85.8 231.6 t3 88.6 229.8 92.1 231.6 p 85.8 229.1 88.6 229.8 85.8 231.6 t3 85.8 229.1 88.6 229.8 p 85.9 231.6 86.0 231.6 85.8 231.6 t4 85.9 231.6 86.0 231.6 p 85.8 231.5 85.9 231.6 85.8 231.6 t4 85.8 231.5 85.9 231.6 p 94.4 226.1 102.9 226.1 102.9 231.6 94.4 231.6 s1 97.1 229.9 98.5 231.6 94.4 231.6 t2 97.1 229.9 98.5 231.6 p 94.4 228.7 97.1 229.9 94.4 231.6 t2 94.4 228.7 97.1 229.9 p 102.9 226.1 111.5 226.1 111.5 231.6 102.9 231.6 s1 111.5 226.1 120.1 226.1 120.1 231.6 111.5 231.6 s1 117.4 229.9 120.1 228.7 120.1 231.6 t2 117.4 229.9 120.1 228.7 p 116.0 231.6 117.4 229.9 120.1 231.6 t2 116.0 231.6 117.4 229.9 p 120.1 226.1 128.7 226.1 128.7 231.6 120.1 231.6 s1 122.5 227.6 127.2 227.1 124.4 228.9 t2 122.5 227.6 127.2 227.1 p 128.7 226.7 127.2 227.1 124.4 228.9 128.7 231.6 s2 128.7 226.7 127.2 227.1 p 128.7 231.6 124.4 228.9 120.1 231.6 t2 122.5 227.6 120.1 228.7 120.1 231.6 124.4 228.9 s2 122.5 227.6 120.1 228.7 p 125.9 229.8 128.7 229.1 128.7 231.6 t3 125.9 229.8 128.7 229.1 p 122.3 231.6 125.9 229.8 128.7 231.6 t3 122.3 231.6 125.9 229.8 p 128.6 231.6 128.7 231.5 128.7 231.6 t4 128.6 231.6 128.7 231.5 p 128.5 231.6 128.6 231.6 128.7 231.6 t4 128.5 231.6 128.6 231.6 p 128.7 226.1 137.3 226.1 137.3 231.6 128.7 231.6 s1 130.2 227.1 134.9 227.6 133.0 228.9 t2 130.2 227.1 134.9 227.6 p 137.3 228.7 134.9 227.6 133.0 228.9 137.3 231.6 s2 137.3 228.7 134.9 227.6 p 137.3 231.6 133.0 228.9 128.7 231.6 t2 130.2 227.1 128.7 226.7 128.7 231.6 133.0 228.9 s2 130.2 227.1 128.7 226.7 p 131.5 229.8 135.0 231.6 128.7 231.6 t3 131.5 229.8 135.0 231.6 p 128.7 229.1 131.5 229.8 128.7 231.6 t3 128.7 229.1 131.5 229.8 p 128.8 231.6 128.9 231.6 128.7 231.6 t4 128.8 231.6 128.9 231.6 p 128.7 231.5 128.8 231.6 128.7 231.6 t4 128.7 231.5 128.8 231.6 p 137.3 226.1 145.8 226.1 145.8 231.6 137.3 231.6 s1 140.0 229.9 141.4 231.6 137.3 231.6 t2 140.0 229.9 141.4 231.6 p 137.3 228.7 140.0 229.9 137.3 231.6 t2 137.3 228.7 140.0 229.9 p 145.8 226.1 154.4 226.1 154.4 231.6 145.8 231.6 s1 154.4 226.1 163.0 226.1 163.0 231.6 154.4 231.6 s1 160.3 229.9 163.0 228.7 163.0 231.6 t2 160.3 229.9 163.0 228.7 p 158.9 231.6 160.3 229.9 163.0 231.6 t2 158.9 231.6 160.3 229.9 p 163.0 226.1 171.6 226.1 171.6 231.6 163.0 231.6 s1 165.4 227.6 170.1 227.1 167.3 228.9 t2 165.4 227.6 170.1 227.1 p 171.6 226.7 170.1 227.1 167.3 228.9 171.6 231.6 s2 171.6 226.7 170.1 227.1 p 171.6 231.6 167.3 228.9 163.0 231.6 t2 165.4 227.6 163.0 228.7 163.0 231.6 167.3 228.9 s2 165.4 227.6 163.0 228.7 p 168.8 229.8 171.6 229.1 171.6 231.6 t3 168.8 229.8 171.6 229.1 p 165.2 231.6 168.8 229.8 171.6 231.6 t3 165.2 231.6 168.8 229.8 p 171.5 231.6 171.6 231.5 171.6 231.6 t4 171.5 231.6 171.6 231.5 p 171.4 231.6 171.5 231.6 171.6 231.6 t4 171.4 231.6 171.5 231.6 p 171.6 226.1 180.2 226.1 180.2 231.6 171.6 231.6 s1 173.1 227.1 177.8 227.6 175.9 228.9 t2 173.1 227.1 177.8 227.6 p 180.2 228.7 177.8 227.6 175.9 228.9 180.2 231.6 s2 180.2 228.7 177.8 227.6 p 180.2 231.6 175.9 228.9 171.6 231.6 t2 173.1 227.1 171.6 226.7 171.6 231.6 175.9 228.9 s2 173.1 227.1 171.6 226.7 p 174.4 229.8 177.9 231.6 171.6 231.6 t3 174.4 229.8 177.9 231.6 p 171.6 229.1 174.4 229.8 171.6 231.6 t3 171.6 229.1 174.4 229.8 p 171.7 231.6 171.8 231.6 171.6 231.6 t4 171.7 231.6 171.8 231.6 p 171.6 231.5 171.7 231.6 171.6 231.6 t4 171.6 231.5 171.7 231.6 p 180.2 226.1 188.7 226.1 188.7 231.6 180.2 231.6 s1 182.9 229.9 184.3 231.6 180.2 231.6 t2 182.9 229.9 184.3 231.6 p 180.2 228.7 182.9 229.9 180.2 231.6 t2 180.2 228.7 182.9 229.9 p 188.7 226.1 197.3 226.1 197.3 231.6 188.7 231.6 s1 197.3 226.1 205.9 226.1 205.9 231.6 197.3 231.6 s1 203.2 229.9 205.9 228.7 205.9 231.6 t2 203.2 229.9 205.9 228.7 p 201.8 231.6 203.2 229.9 205.9 231.6 t2 201.8 231.6 203.2 229.9 p 205.9 226.1 214.5 226.1 214.5 231.6 205.9 231.6 s1 208.2 227.6 213.0 227.1 210.2 228.9 t2 208.2 227.6 213.0 227.1 p 214.5 226.7 213.0 227.1 210.2 228.9 214.5 231.6 s2 214.5 226.7 213.0 227.1 p 214.5 231.6 210.2 228.9 205.9 231.6 t2 208.2 227.6 205.9 228.7 205.9 231.6 210.2 228.9 s2 208.2 227.6 205.9 228.7 p 211.7 229.8 214.5 229.1 214.5 231.6 t3 211.7 229.8 214.5 229.1 p 208.1 231.6 211.7 229.8 214.5 231.6 t3 208.1 231.6 211.7 229.8 p 214.4 231.6 214.5 231.5 214.5 231.6 t4 214.4 231.6 214.5 231.5 p 214.3 231.6 214.4 231.6 214.5 231.6 t4 214.3 231.6 214.4 231.6 p 214.5 226.1 223.1 226.1 223.1 231.6 214.5 231.6 s1 216.0 227.1 220.7 227.6 218.8 228.9 t2 216.0 227.1 220.7 227.6 p 223.1 228.7 220.7 227.6 218.8 228.9 223.1 231.6 s2 223.1 228.7 220.7 227.6 p 223.1 231.6 218.8 228.9 214.5 231.6 t2 216.0 227.1 214.5 226.7 214.5 231.6 218.8 228.9 s2 216.0 227.1 214.5 226.7 p 217.3 229.8 220.8 231.6 214.5 231.6 t3 217.3 229.8 220.8 231.6 p 214.5 229.1 217.3 229.8 214.5 231.6 t3 214.5 229.1 217.3 229.8 p 214.6 231.6 214.7 231.6 214.5 231.6 t4 214.6 231.6 214.7 231.6 p 214.5 231.5 214.6 231.6 214.5 231.6 t4 214.5 231.5 214.6 231.6 p 223.1 226.1 231.6 226.1 231.6 231.6 223.1 231.6 s1 225.8 229.9 227.2 231.6 223.1 231.6 t2 225.8 229.9 227.2 231.6 p 223.1 228.7 225.8 229.9 223.1 231.6 t2 223.1 228.7 225.8 229.9 p 231.6 226.1 240.2 226.1 240.2 231.6 231.6 231.6 s1 240.2 226.1 248.8 226.1 248.8 231.6 240.2 231.6 s1 246.1 229.9 248.8 228.7 248.8 231.6 t2 246.1 229.9 248.8 228.7 p 244.7 231.6 246.1 229.9 248.8 231.6 t2 244.7 231.6 246.1 229.9 p 248.8 226.1 257.4 226.1 257.4 231.6 248.8 231.6 s1 251.1 227.6 255.9 227.1 253.1 228.9 t2 251.1 227.6 255.9 227.1 p 257.4 226.7 255.9 227.1 253.1 228.9 257.4 231.6 s2 257.4 226.7 255.9 227.1 p 257.4 231.6 253.1 228.9 248.8 231.6 t2 251.1 227.6 248.8 228.7 248.8 231.6 253.1 228.9 s2 251.1 227.6 248.8 228.7 p 254.5 229.8 257.4 229.1 257.4 231.6 t3 254.5 229.8 257.4 229.1 p 251.0 231.6 254.5 229.8 257.4 231.6 t3 251.0 231.6 254.5 229.8 p 257.3 231.6 257.4 231.5 257.4 231.6 t4 257.3 231.6 257.4 231.5 p 257.2 231.6 257.3 231.6 257.4 231.6 t4 257.2 231.6 257.3 231.6 p 257.4 226.1 265.9 226.1 265.9 231.6 257.4 231.6 s1 258.9 227.1 263.6 227.6 261.7 228.9 t2 258.9 227.1 263.6 227.6 p 265.9 228.7 263.6 227.6 261.7 228.9 265.9 231.6 s2 265.9 228.7 263.6 227.6 p 265.9 231.6 261.7 228.9 257.4 231.6 t2 258.9 227.1 257.4 226.7 257.4 231.6 261.7 228.9 s2 258.9 227.1 257.4 226.7 p 260.2 229.8 263.7 231.6 257.4 231.6 t3 260.2 229.8 263.7 231.6 p 257.4 229.1 260.2 229.8 257.4 231.6 t3 257.4 229.1 260.2 229.8 p 257.4 231.6 257.6 231.6 257.4 231.6 t4 257.4 231.6 257.6 231.6 p 257.4 231.5 257.4 231.6 257.4 231.6 t4 257.4 231.5 257.4 231.6 p 265.9 226.1 274.5 226.1 274.5 231.6 265.9 231.6 s1 268.6 229.9 270.1 231.6 265.9 231.6 t2 268.6 229.9 270.1 231.6 p 265.9 228.7 268.6 229.9 265.9 231.6 t2 265.9 228.7 268.6 229.9 p 274.5 226.1 283.1 226.1 283.1 231.6 274.5 231.6 s1 283.1 226.1 291.7 226.1 291.7 231.6 283.1 231.6 s1 289.0 229.9 291.7 228.7 291.7 231.6 t2 289.0 229.9 291.7 228.7 p 287.6 231.6 289.0 229.9 291.7 231.6 t2 287.6 231.6 289.0 229.9 p 291.7 226.1 300.3 226.1 300.3 231.6 291.7 231.6 s1 294.0 227.6 298.8 227.1 296.0 228.9 t2 294.0 227.6 298.8 227.1 p 300.3 226.7 298.8 227.1 296.0 228.9 300.3 231.6 s2 300.3 226.7 298.8 227.1 p 300.3 231.6 296.0 228.9 291.7 231.6 t2 294.0 227.6 291.7 228.7 291.7 231.6 296.0 228.9 s2 294.0 227.6 291.7 228.7 p 297.4 229.8 300.3 229.1 300.3 231.6 t3 297.4 229.8 300.3 229.1 p 293.9 231.6 297.4 229.8 300.3 231.6 t3 293.9 231.6 297.4 229.8 p 300.2 231.6 300.3 231.5 300.3 231.6 t4 300.2 231.6 300.3 231.5 p 300.1 231.6 300.2 231.6 300.3 231.6 t4 300.1 231.6 300.2 231.6 p 0.0 220.6 8.6 220.6 8.6 226.1 0.0 226.1 s1 8.6 220.6 17.2 220.6 17.2 226.1 8.6 226.1 s1 17.2 220.6 25.7 220.6 25.7 226.1 17.2 226.1 s1 25.7 220.6 34.3 220.6 34.3 226.1 25.7 226.1 s1 34.3 220.6 42.9 220.6 42.9 226.1 34.3 226.1 s1 42.9 220.6 51.5 220.6 51.5 226.1 42.9 226.1 s1 51.5 220.6 60.1 220.6 60.1 226.1 51.5 226.1 s1 60.1 220.6 68.6 220.6 68.6 226.1 60.1 226.1 s1 68.6 220.6 77.2 220.6 77.2 226.1 68.6 226.1 s1 77.2 220.6 85.8 220.6 85.8 226.1 77.2 226.1 s1 85.8 220.6 94.4 220.6 94.4 226.1 85.8 226.1 s1 94.4 220.6 102.9 220.6 102.9 226.1 94.4 226.1 s1 102.9 220.6 111.5 220.6 111.5 226.1 102.9 226.1 s1 111.5 220.6 120.1 220.6 120.1 226.1 111.5 226.1 s1 120.1 220.6 128.7 220.6 128.7 226.1 120.1 226.1 s1 128.7 220.6 137.3 220.6 137.3 226.1 128.7 226.1 s1 137.3 220.6 145.8 220.6 145.8 226.1 137.3 226.1 s1 145.8 220.6 154.4 220.6 154.4 226.1 145.8 226.1 s1 154.4 220.6 163.0 220.6 163.0 226.1 154.4 226.1 s1 163.0 220.6 171.6 220.6 171.6 226.1 163.0 226.1 s1 171.6 220.6 180.2 220.6 180.2 226.1 171.6 226.1 s1 180.2 220.6 188.7 220.6 188.7 226.1 180.2 226.1 s1 188.7 220.6 197.3 220.6 197.3 226.1 188.7 226.1 s1 197.3 220.6 205.9 220.6 205.9 226.1 197.3 226.1 s1 205.9 220.6 214.5 220.6 214.5 226.1 205.9 226.1 s1 214.5 220.6 223.1 220.6 223.1 226.1 214.5 226.1 s1 223.1 220.6 231.6 220.6 231.6 226.1 223.1 226.1 s1 231.6 220.6 240.2 220.6 240.2 226.1 231.6 226.1 s1 240.2 220.6 248.8 220.6 248.8 226.1 240.2 226.1 s1 248.8 220.6 257.4 220.6 257.4 226.1 248.8 226.1 s1 257.4 220.6 265.9 220.6 265.9 226.1 257.4 226.1 s1 265.9 220.6 274.5 220.6 274.5 226.1 265.9 226.1 s1 274.5 220.6 283.1 220.6 283.1 226.1 274.5 226.1 s1 283.1 220.6 291.7 220.6 291.7 226.1 283.1 226.1 s1 291.7 220.6 300.3 220.6 300.3 226.1 291.7 226.1 s1 0.0 215.1 8.6 215.1 8.6 220.6 0.0 220.6 s1 8.6 215.1 17.2 215.1 17.2 220.6 8.6 220.6 s1 17.2 215.1 25.7 215.1 25.7 220.6 17.2 220.6 s1 25.7 215.1 34.3 215.1 34.3 220.6 25.7 220.6 s1 34.3 215.1 42.9 215.1 42.9 220.6 34.3 220.6 s1 42.9 215.1 51.5 215.1 51.5 220.6 42.9 220.6 s1 51.5 215.1 60.1 215.1 60.1 220.6 51.5 220.6 s1 60.1 215.1 68.6 215.1 68.6 220.6 60.1 220.6 s1 68.6 215.1 77.2 215.1 77.2 220.6 68.6 220.6 s1 77.2 215.1 85.8 215.1 85.8 220.6 77.2 220.6 s1 85.8 215.1 94.4 215.1 94.4 220.6 85.8 220.6 s1 94.4 215.1 102.9 215.1 102.9 220.6 94.4 220.6 s1 102.9 215.1 111.5 215.1 111.5 220.6 102.9 220.6 s1 111.5 215.1 120.1 215.1 120.1 220.6 111.5 220.6 s1 120.1 215.1 128.7 215.1 128.7 220.6 120.1 220.6 s1 128.7 215.1 137.3 215.1 137.3 220.6 128.7 220.6 s1 137.3 215.1 145.8 215.1 145.8 220.6 137.3 220.6 s1 145.8 215.1 154.4 215.1 154.4 220.6 145.8 220.6 s1 154.4 215.1 163.0 215.1 163.0 220.6 154.4 220.6 s1 163.0 215.1 171.6 215.1 171.6 220.6 163.0 220.6 s1 171.6 215.1 180.2 215.1 180.2 220.6 171.6 220.6 s1 180.2 215.1 188.7 215.1 188.7 220.6 180.2 220.6 s1 188.7 215.1 197.3 215.1 197.3 220.6 188.7 220.6 s1 197.3 215.1 205.9 215.1 205.9 220.6 197.3 220.6 s1 205.9 215.1 214.5 215.1 214.5 220.6 205.9 220.6 s1 214.5 215.1 223.1 215.1 223.1 220.6 214.5 220.6 s1 223.1 215.1 231.6 215.1 231.6 220.6 223.1 220.6 s1 231.6 215.1 240.2 215.1 240.2 220.6 231.6 220.6 s1 240.2 215.1 248.8 215.1 248.8 220.6 240.2 220.6 s1 248.8 215.1 257.4 215.1 257.4 220.6 248.8 220.6 s1 257.4 215.1 265.9 215.1 265.9 220.6 257.4 220.6 s1 265.9 215.1 274.5 215.1 274.5 220.6 265.9 220.6 s1 274.5 215.1 283.1 215.1 283.1 220.6 274.5 220.6 s1 283.1 215.1 291.7 215.1 291.7 220.6 283.1 220.6 s1 291.7 215.1 300.3 215.1 300.3 220.6 291.7 220.6 s1 0.0 209.6 8.6 209.6 8.6 215.1 0.0 215.1 s1 8.6 209.6 17.2 209.6 17.2 215.1 8.6 215.1 s1 17.2 209.6 25.7 209.6 25.7 215.1 17.2 215.1 s1 25.7 209.6 34.3 209.6 34.3 215.1 25.7 215.1 s1 34.3 209.6 42.9 209.6 42.9 215.1 34.3 215.1 s1 42.9 209.6 51.5 209.6 51.5 215.1 42.9 215.1 s1 51.5 209.6 60.1 209.6 60.1 215.1 51.5 215.1 s1 60.1 209.6 68.6 209.6 68.6 215.1 60.1 215.1 s1 68.6 209.6 77.2 209.6 77.2 215.1 68.6 215.1 s1 77.2 209.6 85.8 209.6 85.8 215.1 77.2 215.1 s1 85.8 209.6 94.4 209.6 94.4 215.1 85.8 215.1 s1 94.4 209.6 102.9 209.6 102.9 215.1 94.4 215.1 s1 102.9 209.6 111.5 209.6 111.5 215.1 102.9 215.1 s1 111.5 209.6 120.1 209.6 120.1 215.1 111.5 215.1 s1 120.1 209.6 128.7 209.6 128.7 215.1 120.1 215.1 s1 128.7 209.6 137.3 209.6 137.3 215.1 128.7 215.1 s1 137.3 209.6 145.8 209.6 145.8 215.1 137.3 215.1 s1 145.8 209.6 154.4 209.6 154.4 215.1 145.8 215.1 s1 154.4 209.6 163.0 209.6 163.0 215.1 154.4 215.1 s1 163.0 209.6 171.6 209.6 171.6 215.1 163.0 215.1 s1 171.6 209.6 180.2 209.6 180.2 215.1 171.6 215.1 s1 180.2 209.6 188.7 209.6 188.7 215.1 180.2 215.1 s1 188.7 209.6 197.3 209.6 197.3 215.1 188.7 215.1 s1 197.3 209.6 205.9 209.6 205.9 215.1 197.3 215.1 s1 205.9 209.6 214.5 209.6 214.5 215.1 205.9 215.1 s1 214.5 209.6 223.1 209.6 223.1 215.1 214.5 215.1 s1 223.1 209.6 231.6 209.6 231.6 215.1 223.1 215.1 s1 231.6 209.6 240.2 209.6 240.2 215.1 231.6 215.1 s1 240.2 209.6 248.8 209.6 248.8 215.1 240.2 215.1 s1 248.8 209.6 257.4 209.6 257.4 215.1 248.8 215.1 s1 257.4 209.6 265.9 209.6 265.9 215.1 257.4 215.1 s1 265.9 209.6 274.5 209.6 274.5 215.1 265.9 215.1 s1 274.5 209.6 283.1 209.6 283.1 215.1 274.5 215.1 s1 283.1 209.6 291.7 209.6 291.7 215.1 283.1 215.1 s1 291.7 209.6 300.3 209.6 300.3 215.1 291.7 215.1 s1 0.0 204.0 8.6 204.0 8.6 209.6 0.0 209.6 s1 8.6 204.0 17.2 204.0 17.2 209.6 8.6 209.6 s1 17.2 204.0 25.7 204.0 25.7 209.6 17.2 209.6 s1 25.7 204.0 34.3 204.0 34.3 209.6 25.7 209.6 s1 34.3 204.0 42.9 204.0 42.9 209.6 34.3 209.6 s1 42.9 204.0 51.5 204.0 51.5 209.6 42.9 209.6 s1 51.5 204.0 60.1 204.0 60.1 209.6 51.5 209.6 s1 60.1 204.0 68.6 204.0 68.6 209.6 60.1 209.6 s1 68.6 204.0 77.2 204.0 77.2 209.6 68.6 209.6 s1 77.2 204.0 85.8 204.0 85.8 209.6 77.2 209.6 s1 85.8 204.0 94.4 204.0 94.4 209.6 85.8 209.6 s1 94.4 204.0 102.9 204.0 102.9 209.6 94.4 209.6 s1 102.9 204.0 111.5 204.0 111.5 209.6 102.9 209.6 s1 111.5 204.0 120.1 204.0 120.1 209.6 111.5 209.6 s1 120.1 204.0 128.7 204.0 128.7 209.6 120.1 209.6 s1 128.7 204.0 137.3 204.0 137.3 209.6 128.7 209.6 s1 137.3 204.0 145.8 204.0 145.8 209.6 137.3 209.6 s1 145.8 204.0 154.4 204.0 154.4 209.6 145.8 209.6 s1 154.4 204.0 163.0 204.0 163.0 209.6 154.4 209.6 s1 163.0 204.0 171.6 204.0 171.6 209.6 163.0 209.6 s1 171.6 204.0 180.2 204.0 180.2 209.6 171.6 209.6 s1 180.2 204.0 188.7 204.0 188.7 209.6 180.2 209.6 s1 188.7 204.0 197.3 204.0 197.3 209.6 188.7 209.6 s1 197.3 204.0 205.9 204.0 205.9 209.6 197.3 209.6 s1 205.9 204.0 214.5 204.0 214.5 209.6 205.9 209.6 s1 214.5 204.0 223.1 204.0 223.1 209.6 214.5 209.6 s1 223.1 204.0 231.6 204.0 231.6 209.6 223.1 209.6 s1 231.6 204.0 240.2 204.0 240.2 209.6 231.6 209.6 s1 240.2 204.0 248.8 204.0 248.8 209.6 240.2 209.6 s1 248.8 204.0 257.4 204.0 257.4 209.6 248.8 209.6 s1 257.4 204.0 265.9 204.0 265.9 209.6 257.4 209.6 s1 265.9 204.0 274.5 204.0 274.5 209.6 265.9 209.6 s1 274.5 204.0 283.1 204.0 283.1 209.6 274.5 209.6 s1 283.1 204.0 291.7 204.0 291.7 209.6 283.1 209.6 s1 291.7 204.0 300.3 204.0 300.3 209.6 291.7 209.6 s1 0.0 198.5 8.6 198.5 8.6 204.0 0.0 204.0 s1 3.0 198.5 0.7 199.0 0.0 198.5 t2 3.0 198.5 0.7 199.0 p 0.7 199.0 0.0 199.0 0.0 198.5 t2 0.7 199.0 0.0 199.0 p 8.6 198.5 17.2 198.5 17.2 204.0 8.6 204.0 s1 17.2 198.5 25.7 198.5 25.7 204.0 17.2 204.0 s1 25.7 198.5 34.3 198.5 34.3 204.0 25.7 204.0 s1 34.3 198.5 42.9 198.5 42.9 204.0 34.3 204.0 s1 42.2 199.0 39.9 198.5 42.9 198.5 t2 42.2 199.0 39.9 198.5 p 42.9 199.0 42.2 199.0 42.9 198.5 t2 42.9 199.0 42.2 199.0 p 42.9 198.5 51.5 198.5 51.5 204.0 42.9 204.0 s1 45.9 198.5 43.6 199.0 42.9 198.5 t2 45.9 198.5 43.6 199.0 p 43.6 199.0 42.9 199.0 42.9 198.5 t2 43.6 199.0 42.9 199.0 p 51.5 198.5 60.1 198.5 60.1 204.0 51.5 204.0 s1 60.1 198.5 68.6 198.5 68.6 204.0 60.1 204.0 s1 68.6 198.5 77.2 198.5 77.2 204.0 68.6 204.0 s1 77.2 198.5 85.8 198.5 85.8 204.0 77.2 204.0 s1 85.1 199.0 82.8 198.5 85.8 198.5 t2 85.1 199.0 82.8 198.5 p 85.8 199.0 85.1 199.0 85.8 198.5 t2 85.8 199.0 85.1 199.0 p 85.8 198.5 94.4 198.5 94.4 204.0 85.8 204.0 s1 88.8 198.5 86.4 199.0 85.8 198.5 t2 88.8 198.5 86.4 199.0 p 86.4 199.0 85.8 199.0 85.8 198.5 t2 86.4 199.0 85.8 199.0 p 94.4 198.5 102.9 198.5 102.9 204.0 94.4 204.0 s1 102.9 198.5 111.5 198.5 111.5 204.0 102.9 204.0 s1 111.5 198.5 120.1 198.5 120.1 204.0 111.5 204.0 s1 120.1 198.5 128.7 198.5 128.7 204.0 120.1 204.0 s1 128.0 199.0 125.7 198.5 128.7 198.5 t2 128.0 199.0 125.7 198.5 p 128.7 199.0 128.0 199.0 128.7 198.5 t2 128.7 199.0 128.0 199.0 p 128.7 198.5 137.3 198.5 137.3 204.0 128.7 204.0 s1 131.7 198.5 129.3 199.0 128.7 198.5 t2 131.7 198.5 129.3 199.0 p 129.3 199.0 128.7 199.0 128.7 198.5 t2 129.3 199.0 128.7 199.0 p 137.3 198.5 145.8 198.5 145.8 204.0 137.3 204.0 s1 145.8 198.5 154.4 198.5 154.4 204.0 145.8 204.0 s1 154.4 198.5 163.0 198.5 163.0 204.0 154.4 204.0 s1 163.0 198.5 171.6 198.5 171.6 204.0 163.0 204.0 s1 170.9 199.0 168.6 198.5 171.6 198.5 t2 170.9 199.0 168.6 198.5 p 171.6 199.0 170.9 199.0 171.6 198.5 t2 171.6 199.0 170.9 199.0 p 171.6 198.5 180.2 198.5 180.2 204.0 171.6 204.0 s1 174.6 198.5 172.2 199.0 171.6 198.5 t2 174.6 198.5 172.2 199.0 p 172.2 199.0 171.6 199.0 171.6 198.5 t2 172.2 199.0 171.6 199.0 p 180.2 198.5 188.7 198.5 188.7 204.0 180.2 204.0 s1 188.7 198.5 197.3 198.5 197.3 204.0 188.7 204.0 s1 197.3 198.5 205.9 198.5 205.9 204.0 197.3 204.0 s1 205.9 198.5 214.5 198.5 214.5 204.0 205.9 204.0 s1 213.8 199.0 211.5 198.5 214.5 198.5 t2 213.8 199.0 211.5 198.5 p 214.5 199.0 213.8 199.0 214.5 198.5 t2 214.5 199.0 213.8 199.0 p 214.5 198.5 223.1 198.5 223.1 204.0 214.5 204.0 s1 217.5 198.5 215.1 199.0 214.5 198.5 t2 217.5 198.5 215.1 199.0 p 215.1 199.0 214.5 199.0 214.5 198.5 t2 215.1 199.0 214.5 199.0 p 223.1 198.5 231.6 198.5 231.6 204.0 223.1 204.0 s1 231.6 198.5 240.2 198.5 240.2 204.0 231.6 204.0 s1 240.2 198.5 248.8 198.5 248.8 204.0 240.2 204.0 s1 248.8 198.5 257.4 198.5 257.4 204.0 248.8 204.0 s1 256.7 199.0 254.4 198.5 257.4 198.5 t2 256.7 199.0 254.4 198.5 p 257.4 199.0 256.7 199.0 257.4 198.5 t2 257.4 199.0 256.7 199.0 p 257.4 198.5 265.9 198.5 265.9 204.0 257.4 204.0 s1 260.4 198.5 258.0 199.0 257.4 198.5 t2 260.4 198.5 258.0 199.0 p 258.0 199.0 257.4 199.0 257.4 198.5 t2 258.0 199.0 257.4 199.0 p 265.9 198.5 274.5 198.5 274.5 204.0 265.9 204.0 s1 274.5 198.5 283.1 198.5 283.1 204.0 274.5 204.0 s1 283.1 198.5 291.7 198.5 291.7 204.0 283.1 204.0 s1 291.7 198.5 300.3 198.5 300.3 204.0 291.7 204.0 s1 299.6 199.0 297.3 198.5 300.3 198.5 t2 299.6 199.0 297.3 198.5 p 300.3 199.0 299.6 199.0 300.3 198.5 t2 300.3 199.0 299.6 199.0 p 0.0 193.0 8.6 193.0 8.6 198.5 0.0 198.5 s1 0.0 193.0 4.3 195.8 8.6 193.0 t2 8.3 198.4 8.6 198.2 8.6 193.0 4.3 195.8 s2 8.3 198.4 8.6 198.2 p 3.0 198.5 8.3 198.4 4.3 195.8 0.0 198.5 s2 3.0 198.5 8.3 198.4 p 0.0 198.5 4.3 195.8 0.0 193.0 t2 0.0 193.0 4.3 195.8 8.6 193.0 t3 4.9 196.2 8.6 194.6 8.6 193.0 4.3 195.8 s3 4.9 196.2 8.6 194.6 p 4.9 196.2 3.6 196.2 4.3 195.8 t3 4.9 196.2 3.6 196.2 p 0.0 196.9 3.6 196.2 4.3 195.8 0.0 193.0 s3 0.0 196.9 3.6 196.2 p 6.0 193.0 2.7 194.7 0.0 193.0 t4 6.0 193.0 2.7 194.7 p 2.7 194.7 0.0 195.3 0.0 193.0 t4 2.7 194.7 0.0 195.3 p 1.6 193.0 0.7 193.5 0.0 193.0 t5 1.6 193.0 0.7 193.5 p 0.7 193.5 0.0 193.6 0.0 193.0 t5 0.7 193.5 0.0 193.6 p 8.6 193.0 17.2 193.0 17.2 198.5 8.6 198.5 s1 12.9 195.7 14.4 193.0 8.6 193.0 12.9 195.8 s2 12.9 195.7 14.4 193.0 p 12.9 195.7 12.9 195.8 12.9 195.8 t2 12.9 195.7 12.9 195.8 p 12.9 195.8 12.4 196.1 12.9 195.8 t2 12.9 195.8 12.4 196.1 p 8.6 198.2 12.4 196.1 12.9 195.8 8.6 193.0 s2 8.6 198.2 12.4 196.1 p 10.3 193.0 9.9 193.9 8.6 193.0 t3 10.3 193.0 9.9 193.9 p 9.9 193.9 8.6 194.6 8.6 193.0 t3 9.9 193.9 8.6 194.6 p 17.2 193.0 25.7 193.0 25.7 198.5 17.2 198.5 s1 25.7 193.0 34.3 193.0 34.3 198.5 25.7 198.5 s1 28.5 193.0 30.0 195.7 30.0 195.8 34.3 193.0 s2 28.5 193.0 30.0 195.7 p 30.5 196.1 34.3 198.2 34.3 193.0 30.0 195.8 s2 30.5 196.1 34.3 198.2 p 30.5 196.1 30.0 195.8 30.0 195.8 t2 30.5 196.1 30.0 195.8 p 30.0 195.8 30.0 195.7 30.0 195.8 t2 30.0 195.8 30.0 195.7 p 33.0 193.9 32.6 193.0 34.3 193.0 t3 33.0 193.9 32.6 193.0 p 34.3 194.6 33.0 193.9 34.3 193.0 t3 34.3 194.6 33.0 193.9 p 34.3 193.0 42.9 193.0 42.9 198.5 34.3 198.5 s1 34.3 193.0 38.6 195.8 42.9 193.0 t2 42.9 193.0 38.6 195.8 42.9 198.5 t2 34.6 198.4 39.9 198.5 42.9 198.5 38.6 195.8 s2 34.6 198.4 39.9 198.5 p 34.3 198.2 34.6 198.4 38.6 195.8 34.3 193.0 s2 34.3 198.2 34.6 198.4 p 34.3 193.0 38.6 195.8 42.9 193.0 t3 39.3 196.2 42.9 196.9 42.9 193.0 38.6 195.8 s3 39.3 196.2 42.9 196.9 p 39.3 196.2 38.0 196.2 38.6 195.8 t3 39.3 196.2 38.0 196.2 p 34.3 194.6 38.0 196.2 38.6 195.8 34.3 193.0 s3 34.3 194.6 38.0 196.2 p 40.2 194.7 36.8 193.0 42.9 193.0 t4 40.2 194.7 36.8 193.0 p 42.9 195.3 40.2 194.7 42.9 193.0 t4 42.9 195.3 40.2 194.7 p 42.2 193.5 41.3 193.0 42.9 193.0 t5 42.2 193.5 41.3 193.0 p 42.9 193.6 42.2 193.5 42.9 193.0 t5 42.9 193.6 42.2 193.5 p 42.9 193.0 51.5 193.0 51.5 198.5 42.9 198.5 s1 42.9 193.0 47.2 195.8 51.5 193.0 t2 51.2 198.4 51.5 198.2 51.5 193.0 47.2 195.8 s2 51.2 198.4 51.5 198.2 p 45.9 198.5 51.2 198.4 47.2 195.8 42.9 198.5 s2 45.9 198.5 51.2 198.4 p 42.9 198.5 47.2 195.8 42.9 193.0 t2 42.9 193.0 47.2 195.8 51.5 193.0 t3 47.8 196.2 51.5 194.6 51.5 193.0 47.2 195.8 s3 47.8 196.2 51.5 194.6 p 47.8 196.2 46.5 196.2 47.2 195.8 t3 47.8 196.2 46.5 196.2 p 42.9 196.9 46.5 196.2 47.2 195.8 42.9 193.0 s3 42.9 196.9 46.5 196.2 p 48.9 193.0 45.6 194.7 42.9 193.0 t4 48.9 193.0 45.6 194.7 p 45.6 194.7 42.9 195.3 42.9 193.0 t4 45.6 194.7 42.9 195.3 p 44.5 193.0 43.6 193.5 42.9 193.0 t5 44.5 193.0 43.6 193.5 p 43.6 193.5 42.9 193.6 42.9 193.0 t5 43.6 193.5 42.9 193.6 p 51.5 193.0 60.1 193.0 60.1 198.5 51.5 198.5 s1 55.8 195.7 57.3 193.0 51.5 193.0 55.8 195.8 s2 55.8 195.7 57.3 193.0 p 55.8 195.7 55.8 195.8 55.8 195.8 t2 55.8 195.7 55.8 195.8 p 55.8 195.8 55.3 196.1 55.8 195.8 t2 55.8 195.8 55.3 196.1 p 51.5 198.2 55.3 196.1 55.8 195.8 51.5 193.0 s2 51.5 198.2 55.3 196.1 p 53.2 193.0 52.8 193.9 51.5 193.0 t3 53.2 193.0 52.8 193.9 p 52.8 193.9 51.5 194.6 51.5 193.0 t3 52.8 193.9 51.5 194.6 p 60.1 193.0 68.6 193.0 68.6 198.5 60.1 198.5 s1 68.6 193.0 77.2 193.0 77.2 198.5 68.6 198.5 s1 71.4 193.0 72.9 195.7 72.9 195.8 77.2 193.0 s2 71.4 193.0 72.9 195.7 p 73.4 196.1 77.2 198.2 77.2 193.0 72.9 195.8 s2 73.4 196.1 77.2 198.2 p 73.4 196.1 72.9 195.8 72.9 195.8 t2 73.4 196.1 72.9 195.8 p 72.9 195.8 72.9 195.7 72.9 195.8 t2 72.9 195.8 72.9 195.7 p 75.9 193.9 75.5 193.0 77.2 193.0 t3 75.9 193.9 75.5 193.0 p 77.2 194.6 75.9 193.9 77.2 193.0 t3 77.2 194.6 75.9 193.9 p 77.2 193.0 85.8 193.0 85.8 198.5 77.2 198.5 s1 77.2 193.0 81.5 195.8 85.8 193.0 t2 85.8 193.0 81.5 195.8 85.8 198.5 t2 77.5 198.4 82.8 198.5 85.8 198.5 81.5 195.8 s2 77.5 198.4 82.8 198.5 p 77.2 198.2 77.5 198.4 81.5 195.8 77.2 193.0 s2 77.2 198.2 77.5 198.4 p 77.2 193.0 81.5 195.8 85.8 193.0 t3 82.2 196.2 85.8 196.9 85.8 193.0 81.5 195.8 s3 82.2 196.2 85.8 196.9 p 82.2 196.2 80.9 196.2 81.5 195.8 t3 82.2 196.2 80.9 196.2 p 77.2 194.6 80.9 196.2 81.5 195.8 77.2 193.0 s3 77.2 194.6 80.9 196.2 p 83.1 194.7 79.7 193.0 85.8 193.0 t4 83.1 194.7 79.7 193.0 p 85.8 195.3 83.1 194.7 85.8 193.0 t4 85.8 195.3 83.1 194.7 p 85.1 193.5 84.2 193.0 85.8 193.0 t5 85.1 193.5 84.2 193.0 p 85.8 193.6 85.1 193.5 85.8 193.0 t5 85.8 193.6 85.1 193.5 p 85.8 193.0 94.4 193.0 94.4 198.5 85.8 198.5 s1 85.8 193.0 90.1 195.8 94.4 193.0 t2 94.1 198.4 94.4 198.2 94.4 193.0 90.1 195.8 s2 94.1 198.4 94.4 198.2 p 88.8 198.5 94.1 198.4 90.1 195.8 85.8 198.5 s2 88.8 198.5 94.1 198.4 p 85.8 198.5 90.1 195.8 85.8 193.0 t2 85.8 193.0 90.1 195.8 94.4 193.0 t3 90.7 196.2 94.4 194.6 94.4 193.0 90.1 195.8 s3 90.7 196.2 94.4 194.6 p 90.7 196.2 89.4 196.2 90.1 195.8 t3 90.7 196.2 89.4 196.2 p 85.8 196.9 89.4 196.2 90.1 195.8 85.8 193.0 s3 85.8 196.9 89.4 196.2 p 91.8 193.0 88.5 194.7 85.8 193.0 t4 91.8 193.0 88.5 194.7 p 88.5 194.7 85.8 195.3 85.8 193.0 t4 88.5 194.7 85.8 195.3 p 87.4 193.0 86.5 193.5 85.8 193.0 t5 87.4 193.0 86.5 193.5 p 86.5 193.5 85.8 193.6 85.8 193.0 t5 86.5 193.5 85.8 193.6 p 94.4 193.0 102.9 193.0 102.9 198.5 94.4 198.5 s1 98.7 195.7 100.2 193.0 94.4 193.0 98.7 195.8 s2 98.7 195.7 100.2 193.0 p 98.7 195.7 98.7 195.8 98.7 195.8 t2 98.7 195.7 98.7 195.8 p 98.7 195.8 98.2 196.1 98.7 195.8 t2 98.7 195.8 98.2 196.1 p 94.4 198.2 98.2 196.1 98.7 195.8 94.4 193.0 s2 94.4 198.2 98.2 196.1 p 96.1 193.0 95.7 193.9 94.4 193.0 t3 96.1 193.0 95.7 193.9 p 95.7 193.9 94.4 194.6 94.4 193.0 t3 95.7 193.9 94.4 194.6 p 102.9 193.0 111.5 193.0 111.5 198.5 102.9 198.5 s1 111.5 193.0 120.1 193.0 120.1 198.5 111.5 198.5 s1 114.3 193.0 115.8 195.7 115.8 195.8 120.1 193.0 s2 114.3 193.0 115.8 195.7 p 116.3 196.1 120.1 198.2 120.1 193.0 115.8 195.8 s2 116.3 196.1 120.1 198.2 p 116.3 196.1 115.8 195.8 115.8 195.8 t2 116.3 196.1 115.8 195.8 p 115.8 195.8 115.8 195.7 115.8 195.8 t2 115.8 195.8 115.8 195.7 p 118.8 193.9 118.3 193.0 120.1 193.0 t3 118.8 193.9 118.3 193.0 p 120.1 194.6 118.8 193.9 120.1 193.0 t3 120.1 194.6 118.8 193.9 p 120.1 193.0 128.7 193.0 128.7 198.5 120.1 198.5 s1 120.1 193.0 124.4 195.8 128.7 193.0 t2 128.7 193.0 124.4 195.8 128.7 198.5 t2 120.4 198.4 125.7 198.5 128.7 198.5 124.4 195.8 s2 120.4 198.4 125.7 198.5 p 120.1 198.2 120.4 198.4 124.4 195.8 120.1 193.0 s2 120.1 198.2 120.4 198.4 p 120.1 193.0 124.4 195.8 128.7 193.0 t3 125.1 196.2 128.7 196.9 128.7 193.0 124.4 195.8 s3 125.1 196.2 128.7 196.9 p 125.1 196.2 123.8 196.2 124.4 195.8 t3 125.1 196.2 123.8 196.2 p 120.1 194.6 123.8 196.2 124.4 195.8 120.1 193.0 s3 120.1 194.6 123.8 196.2 p 126.0 194.7 122.6 193.0 128.7 193.0 t4 126.0 194.7 122.6 193.0 p 128.7 195.3 126.0 194.7 128.7 193.0 t4 128.7 195.3 126.0 194.7 p 128.0 193.5 127.1 193.0 128.7 193.0 t5 128.0 193.5 127.1 193.0 p 128.7 193.6 128.0 193.5 128.7 193.0 t5 128.7 193.6 128.0 193.5 p 128.7 193.0 137.3 193.0 137.3 198.5 128.7 198.5 s1 128.7 193.0 133.0 195.8 137.3 193.0 t2 137.0 198.4 137.3 198.2 137.3 193.0 133.0 195.8 s2 137.0 198.4 137.3 198.2 p 131.7 198.5 137.0 198.4 133.0 195.8 128.7 198.5 s2 131.7 198.5 137.0 198.4 p 128.7 198.5 133.0 195.8 128.7 193.0 t2 128.7 193.0 133.0 195.8 137.3 193.0 t3 133.6 196.2 137.3 194.6 137.3 193.0 133.0 195.8 s3 133.6 196.2 137.3 194.6 p 133.6 196.2 132.3 196.2 133.0 195.8 t3 133.6 196.2 132.3 196.2 p 128.7 196.9 132.3 196.2 133.0 195.8 128.7 193.0 s3 128.7 196.9 132.3 196.2 p 134.7 193.0 131.4 194.7 128.7 193.0 t4 134.7 193.0 131.4 194.7 p 131.4 194.7 128.7 195.3 128.7 193.0 t4 131.4 194.7 128.7 195.3 p 130.3 193.0 129.4 193.5 128.7 193.0 t5 130.3 193.0 129.4 193.5 p 129.4 193.5 128.7 193.6 128.7 193.0 t5 129.4 193.5 128.7 193.6 p 137.3 193.0 145.8 193.0 145.8 198.5 137.3 198.5 s1 141.6 195.7 143.1 193.0 137.3 193.0 141.6 195.8 s2 141.6 195.7 143.1 193.0 p 141.6 195.7 141.6 195.8 141.6 195.8 t2 141.6 195.7 141.6 195.8 p 141.6 195.8 141.1 196.1 141.6 195.8 t2 141.6 195.8 141.1 196.1 p 137.3 198.2 141.1 196.1 141.6 195.8 137.3 193.0 s2 137.3 198.2 141.1 196.1 p 139.0 193.0 138.6 193.9 137.3 193.0 t3 139.0 193.0 138.6 193.9 p 138.6 193.9 137.3 194.6 137.3 193.0 t3 138.6 193.9 137.3 194.6 p 145.8 193.0 154.4 193.0 154.4 198.5 145.8 198.5 s1 154.4 193.0 163.0 193.0 163.0 198.5 154.4 198.5 s1 157.2 193.0 158.7 195.7 158.7 195.8 163.0 193.0 s2 157.2 193.0 158.7 195.7 p 159.1 196.1 163.0 198.2 163.0 193.0 158.7 195.8 s2 159.1 196.1 163.0 198.2 p 159.1 196.1 158.6 195.8 158.7 195.8 t2 159.1 196.1 158.6 195.8 p 158.6 195.8 158.7 195.7 158.7 195.8 t2 158.6 195.8 158.7 195.7 p 161.7 193.9 161.2 193.0 163.0 193.0 t3 161.7 193.9 161.2 193.0 p 163.0 194.6 161.7 193.9 163.0 193.0 t3 163.0 194.6 161.7 193.9 p 163.0 193.0 171.6 193.0 171.6 198.5 163.0 198.5 s1 163.0 193.0 167.3 195.8 171.6 193.0 t2 171.6 193.0 167.3 195.8 171.6 198.5 t2 163.3 198.4 168.6 198.5 171.6 198.5 167.3 195.8 s2 163.3 198.4 168.6 198.5 p 163.0 198.2 163.3 198.4 167.3 195.8 163.0 193.0 s2 163.0 198.2 163.3 198.4 p 163.0 193.0 167.3 195.8 171.6 193.0 t3 168.0 196.2 171.6 196.9 171.6 193.0 167.3 195.8 s3 168.0 196.2 171.6 196.9 p 168.0 196.2 166.7 196.2 167.3 195.8 t3 168.0 196.2 166.7 196.2 p 163.0 194.6 166.7 196.2 167.3 195.8 163.0 193.0 s3 163.0 194.6 166.7 196.2 p 168.9 194.7 165.5 193.0 171.6 193.0 t4 168.9 194.7 165.5 193.0 p 171.6 195.3 168.9 194.7 171.6 193.0 t4 171.6 195.3 168.9 194.7 p 170.9 193.5 170.0 193.0 171.6 193.0 t5 170.9 193.5 170.0 193.0 p 171.6 193.6 170.9 193.5 171.6 193.0 t5 171.6 193.6 170.9 193.5 p 171.6 193.0 180.2 193.0 180.2 198.5 171.6 198.5 s1 171.6 193.0 175.9 195.8 180.2 193.0 t2 179.9 198.4 180.2 198.2 180.2 193.0 175.9 195.8 s2 179.9 198.4 180.2 198.2 p 174.6 198.5 179.9 198.4 175.9 195.8 171.6 198.5 s2 174.6 198.5 179.9 198.4 p 171.6 198.5 175.9 195.8 171.6 193.0 t2 171.6 193.0 175.9 195.8 180.2 193.0 t3 176.5 196.2 180.2 194.6 180.2 193.0 175.9 195.8 s3 176.5 196.2 180.2 194.6 p 176.5 196.2 175.2 196.2 175.9 195.8 t3 176.5 196.2 175.2 196.2 p 171.6 196.9 175.2 196.2 175.9 195.8 171.6 193.0 s3 171.6 196.9 175.2 196.2 p 177.6 193.0 174.3 194.7 171.6 193.0 t4 177.6 193.0 174.3 194.7 p 174.3 194.7 171.6 195.3 171.6 193.0 t4 174.3 194.7 171.6 195.3 p 173.2 193.0 172.3 193.5 171.6 193.0 t5 173.2 193.0 172.3 193.5 p 172.3 193.5 171.6 193.6 171.6 193.0 t5 172.3 193.5 171.6 193.6 p 180.2 193.0 188.7 193.0 188.7 198.5 180.2 198.5 s1 184.5 195.7 186.0 193.0 180.2 193.0 184.4 195.8 s2 184.5 195.7 186.0 193.0 p 184.5 195.7 184.5 195.8 184.4 195.8 t2 184.5 195.7 184.5 195.8 p 184.5 195.8 184.0 196.1 184.4 195.8 t2 184.5 195.8 184.0 196.1 p 180.2 198.2 184.0 196.1 184.4 195.8 180.2 193.0 s2 180.2 198.2 184.0 196.1 p 181.9 193.0 181.5 193.9 180.2 193.0 t3 181.9 193.0 181.5 193.9 p 181.5 193.9 180.2 194.6 180.2 193.0 t3 181.5 193.9 180.2 194.6 p 188.7 193.0 197.3 193.0 197.3 198.5 188.7 198.5 s1 197.3 193.0 205.9 193.0 205.9 198.5 197.3 198.5 s1 200.1 193.0 201.5 195.7 201.6 195.8 205.9 193.0 s2 200.1 193.0 201.5 195.7 p 202.0 196.1 205.9 198.2 205.9 193.0 201.6 195.8 s2 202.0 196.1 205.9 198.2 p 202.0 196.1 201.5 195.8 201.6 195.8 t2 202.0 196.1 201.5 195.8 p 201.5 195.8 201.5 195.7 201.6 195.8 t2 201.5 195.8 201.5 195.7 p 204.6 193.9 204.1 193.0 205.9 193.0 t3 204.6 193.9 204.1 193.0 p 205.9 194.6 204.6 193.9 205.9 193.0 t3 205.9 194.6 204.6 193.9 p 205.9 193.0 214.5 193.0 214.5 198.5 205.9 198.5 s1 205.9 193.0 210.2 195.8 214.5 193.0 t2 214.5 193.0 210.2 195.8 214.5 198.5 t2 206.2 198.4 211.5 198.5 214.5 198.5 210.2 195.8 s2 206.2 198.4 211.5 198.5 p 205.9 198.2 206.2 198.4 210.2 195.8 205.9 193.0 s2 205.9 198.2 206.2 198.4 p 205.9 193.0 210.2 195.8 214.5 193.0 t3 210.9 196.2 214.5 196.9 214.5 193.0 210.2 195.8 s3 210.9 196.2 214.5 196.9 p 210.9 196.2 209.5 196.2 210.2 195.8 t3 210.9 196.2 209.5 196.2 p 205.9 194.6 209.5 196.2 210.2 195.8 205.9 193.0 s3 205.9 194.6 209.5 196.2 p 211.8 194.7 208.4 193.0 214.5 193.0 t4 211.8 194.7 208.4 193.0 p 214.5 195.3 211.8 194.7 214.5 193.0 t4 214.5 195.3 211.8 194.7 p 213.8 193.5 212.9 193.0 214.5 193.0 t5 213.8 193.5 212.9 193.0 p 214.5 193.6 213.8 193.5 214.5 193.0 t5 214.5 193.6 213.8 193.5 p 214.5 193.0 223.1 193.0 223.1 198.5 214.5 198.5 s1 214.5 193.0 218.8 195.8 223.1 193.0 t2 222.8 198.4 223.1 198.2 223.1 193.0 218.8 195.8 s2 222.8 198.4 223.1 198.2 p 217.5 198.5 222.8 198.4 218.8 195.8 214.5 198.5 s2 217.5 198.5 222.8 198.4 p 214.5 198.5 218.8 195.8 214.5 193.0 t2 214.5 193.0 218.8 195.8 223.1 193.0 t3 219.4 196.2 223.1 194.6 223.1 193.0 218.8 195.8 s3 219.4 196.2 223.1 194.6 p 219.4 196.2 218.1 196.2 218.8 195.8 t3 219.4 196.2 218.1 196.2 p 214.5 196.9 218.1 196.2 218.8 195.8 214.5 193.0 s3 214.5 196.9 218.1 196.2 p 220.5 193.0 217.2 194.7 214.5 193.0 t4 220.5 193.0 217.2 194.7 p 217.2 194.7 214.5 195.3 214.5 193.0 t4 217.2 194.7 214.5 195.3 p 216.1 193.0 215.2 193.5 214.5 193.0 t5 216.1 193.0 215.2 193.5 p 215.2 193.5 214.5 193.6 214.5 193.0 t5 215.2 193.5 214.5 193.6 p 223.1 193.0 231.6 193.0 231.6 198.5 223.1 198.5 s1 227.4 195.7 228.9 193.0 223.1 193.0 227.3 195.8 s2 227.4 195.7 228.9 193.0 p 227.4 195.7 227.4 195.8 227.3 195.8 t2 227.4 195.7 227.4 195.8 p 227.4 195.8 226.9 196.1 227.3 195.8 t2 227.4 195.8 226.9 196.1 p 223.1 198.2 226.9 196.1 227.3 195.8 223.1 193.0 s2 223.1 198.2 226.9 196.1 p 224.8 193.0 224.4 193.9 223.1 193.0 t3 224.8 193.0 224.4 193.9 p 224.4 193.9 223.1 194.6 223.1 193.0 t3 224.4 193.9 223.1 194.6 p 231.6 193.0 240.2 193.0 240.2 198.5 231.6 198.5 s1 240.2 193.0 248.8 193.0 248.8 198.5 240.2 198.5 s1 243.0 193.0 244.4 195.7 244.5 195.8 248.8 193.0 s2 243.0 193.0 244.4 195.7 p 244.9 196.1 248.8 198.2 248.8 193.0 244.5 195.8 s2 244.9 196.1 248.8 198.2 p 244.9 196.1 244.4 195.8 244.5 195.8 t2 244.9 196.1 244.4 195.8 p 244.4 195.8 244.4 195.7 244.5 195.8 t2 244.4 195.8 244.4 195.7 p 247.5 193.9 247.0 193.0 248.8 193.0 t3 247.5 193.9 247.0 193.0 p 248.8 194.6 247.5 193.9 248.8 193.0 t3 248.8 194.6 247.5 193.9 p 248.8 193.0 257.4 193.0 257.4 198.5 248.8 198.5 s1 248.8 193.0 253.1 195.8 257.4 193.0 t2 257.4 193.0 253.1 195.8 257.4 198.5 t2 249.1 198.4 254.4 198.5 257.4 198.5 253.1 195.8 s2 249.1 198.4 254.4 198.5 p 248.8 198.2 249.1 198.4 253.1 195.8 248.8 193.0 s2 248.8 198.2 249.1 198.4 p 248.8 193.0 253.1 195.8 257.4 193.0 t3 253.8 196.2 257.4 196.9 257.4 193.0 253.1 195.8 s3 253.8 196.2 257.4 196.9 p 253.8 196.2 252.4 196.2 253.1 195.8 t3 253.8 196.2 252.4 196.2 p 248.8 194.6 252.4 196.2 253.1 195.8 248.8 193.0 s3 248.8 194.6 252.4 196.2 p 254.7 194.7 251.3 193.0 257.4 193.0 t4 254.7 194.7 251.3 193.0 p 257.4 195.3 254.7 194.7 257.4 193.0 t4 257.4 195.3 254.7 194.7 p 256.7 193.5 255.8 193.0 257.4 193.0 t5 256.7 193.5 255.8 193.0 p 257.4 193.6 256.7 193.5 257.4 193.0 t5 257.4 193.6 256.7 193.5 p 257.4 193.0 265.9 193.0 265.9 198.5 257.4 198.5 s1 257.4 193.0 261.7 195.8 265.9 193.0 t2 265.7 198.4 265.9 198.2 265.9 193.0 261.7 195.8 s2 265.7 198.4 265.9 198.2 p 260.4 198.5 265.7 198.4 261.7 195.8 257.4 198.5 s2 260.4 198.5 265.7 198.4 p 257.4 198.5 261.7 195.8 257.4 193.0 t2 257.4 193.0 261.7 195.8 265.9 193.0 t3 262.3 196.2 265.9 194.6 265.9 193.0 261.7 195.8 s3 262.3 196.2 265.9 194.6 p 262.3 196.2 261.0 196.2 261.7 195.8 t3 262.3 196.2 261.0 196.2 p 257.4 196.9 261.0 196.2 261.7 195.8 257.4 193.0 s3 257.4 196.9 261.0 196.2 p 263.4 193.0 260.1 194.7 257.4 193.0 t4 263.4 193.0 260.1 194.7 p 260.1 194.7 257.4 195.3 257.4 193.0 t4 260.1 194.7 257.4 195.3 p 259.0 193.0 258.1 193.5 257.4 193.0 t5 259.0 193.0 258.1 193.5 p 258.1 193.5 257.4 193.6 257.4 193.0 t5 258.1 193.5 257.4 193.6 p 265.9 193.0 274.5 193.0 274.5 198.5 265.9 198.5 s1 270.3 195.7 271.8 193.0 265.9 193.0 270.2 195.8 s2 270.3 195.7 271.8 193.0 p 270.3 195.7 270.3 195.8 270.2 195.8 t2 270.3 195.7 270.3 195.8 p 270.3 195.8 269.8 196.1 270.2 195.8 t2 270.3 195.8 269.8 196.1 p 265.9 198.2 269.8 196.1 270.2 195.8 265.9 193.0 s2 265.9 198.2 269.8 196.1 p 267.7 193.0 267.2 193.9 265.9 193.0 t3 267.7 193.0 267.2 193.9 p 267.2 193.9 265.9 194.6 265.9 193.0 t3 267.2 193.9 265.9 194.6 p 274.5 193.0 283.1 193.0 283.1 198.5 274.5 198.5 s1 283.1 193.0 291.7 193.0 291.7 198.5 283.1 198.5 s1 285.9 193.0 287.3 195.7 287.4 195.8 291.7 193.0 s2 285.9 193.0 287.3 195.7 p 287.8 196.1 291.7 198.2 291.7 193.0 287.4 195.8 s2 287.8 196.1 291.7 198.2 p 287.8 196.1 287.3 195.8 287.4 195.8 t2 287.8 196.1 287.3 195.8 p 287.3 195.8 287.3 195.7 287.4 195.8 t2 287.3 195.8 287.3 195.7 p 290.4 193.9 289.9 193.0 291.7 193.0 t3 290.4 193.9 289.9 193.0 p 291.7 194.6 290.4 193.9 291.7 193.0 t3 291.7 194.6 290.4 193.9 p 291.7 193.0 300.3 193.0 300.3 198.5 291.7 198.5 s1 291.7 193.0 296.0 195.8 300.3 193.0 t2 300.3 193.0 296.0 195.8 300.3 198.5 t2 292.0 198.4 297.3 198.5 300.3 198.5 296.0 195.8 s2 292.0 198.4 297.3 198.5 p 291.7 198.2 292.0 198.4 296.0 195.8 291.7 193.0 s2 291.7 198.2 292.0 198.4 p 291.7 193.0 296.0 195.8 300.3 193.0 t3 296.7 196.2 300.3 196.9 300.3 193.0 296.0 195.8 s3 296.7 196.2 300.3 196.9 p 296.7 196.2 295.3 196.2 296.0 195.8 t3 296.7 196.2 295.3 196.2 p 291.7 194.6 295.3 196.2 296.0 195.8 291.7 193.0 s3 291.7 194.6 295.3 196.2 p 297.6 194.7 294.2 193.0 300.3 193.0 t4 297.6 194.7 294.2 193.0 p 300.3 195.3 297.6 194.7 300.3 193.0 t4 300.3 195.3 297.6 194.7 p 299.6 193.5 298.7 193.0 300.3 193.0 t5 299.6 193.5 298.7 193.0 p 300.3 193.6 299.6 193.5 300.3 193.0 t5 300.3 193.6 299.6 193.5 p 0.0 187.5 8.6 187.5 8.6 193.0 0.0 193.0 s3 0.0 187.5 4.3 190.3 8.6 187.5 t4 8.1 192.7 8.6 192.4 8.6 187.5 4.3 190.3 s4 8.1 192.7 8.6 192.4 p 6.0 193.0 8.1 192.7 4.3 190.3 0.0 193.0 s4 6.0 193.0 8.1 192.7 p 0.0 193.0 4.3 190.3 0.0 187.5 t4 0.0 187.5 4.3 190.3 8.6 187.5 t5 7.3 192.2 8.6 191.2 8.6 187.5 4.3 190.3 s5 7.3 192.2 8.6 191.2 p 1.6 193.0 7.3 192.2 4.3 190.3 0.0 193.0 s5 1.6 193.0 7.3 192.2 p 0.0 193.0 4.3 190.3 0.0 187.5 t5 0.0 187.5 4.3 190.3 8.6 187.5 t6 6.4 191.6 8.6 190.0 8.6 187.5 4.3 190.3 s6 6.4 191.6 8.6 190.0 p 6.4 191.6 0.9 192.5 4.3 190.3 t6 6.4 191.6 0.9 192.5 p 0.0 192.7 0.9 192.5 4.3 190.3 0.0 187.5 s6 0.0 192.7 0.9 192.5 p 0.0 187.5 4.3 190.3 8.6 187.5 t7 5.6 191.1 8.6 188.9 8.6 187.5 4.3 190.3 s7 5.6 191.1 8.6 188.9 p 5.6 191.1 2.2 191.6 4.3 190.3 t7 5.6 191.1 2.2 191.6 p 0.0 192.2 2.2 191.6 4.3 190.3 0.0 187.5 s7 0.0 192.2 2.2 191.6 p 0.0 187.5 4.3 190.3 8.6 187.5 t8 4.7 190.5 8.6 187.7 8.6 187.5 4.3 190.3 s8 4.7 190.5 8.6 187.7 p 4.7 190.5 3.6 190.7 4.3 190.3 t8 4.7 190.5 3.6 190.7 p 0.0 191.8 3.6 190.7 4.3 190.3 0.0 187.5 s8 0.0 191.8 3.6 190.7 p 8.6 187.5 17.2 187.5 17.2 193.0 8.6 193.0 s1 16.2 188.1 16.6 187.5 8.6 187.5 12.9 190.3 s2 16.2 188.1 16.6 187.5 p 16.2 188.1 15.9 192.2 12.9 190.3 t2 16.2 188.1 15.9 192.2 p 14.4 193.0 15.9 192.2 12.9 190.3 8.6 193.0 s2 14.4 193.0 15.9 192.2 p 8.6 193.0 12.9 190.3 8.6 187.5 t2 14.2 189.4 15.3 187.5 8.6 187.5 12.9 190.3 s3 14.2 189.4 15.3 187.5 p 14.2 189.4 14.0 191.0 12.9 190.3 t3 14.2 189.4 14.0 191.0 p 10.3 193.0 14.0 191.0 12.9 190.3 8.6 193.0 s3 10.3 193.0 14.0 191.0 p 8.6 193.0 12.9 190.3 8.6 187.5 t3 14.0 187.5 12.5 190.0 8.6 187.5 t4 14.0 187.5 12.5 190.0 p 12.5 190.0 8.6 192.4 8.6 187.5 t4 12.5 190.0 8.6 192.4 p 12.7 187.5 11.6 189.4 8.6 187.5 t5 12.7 187.5 11.6 189.4 p 11.6 189.4 8.6 191.2 8.6 187.5 t5 11.6 189.4 8.6 191.2 p 11.4 187.5 10.6 188.8 8.6 187.5 t6 11.4 187.5 10.6 188.8 p 10.6 188.8 8.6 190.0 8.6 187.5 t6 10.6 188.8 8.6 190.0 p 10.1 187.5 9.7 188.2 8.6 187.5 t7 10.1 187.5 9.7 188.2 p 9.7 188.2 8.6 188.9 8.6 187.5 t7 9.7 188.2 8.6 188.9 p 8.8 187.5 8.8 187.6 8.6 187.5 t8 8.8 187.5 8.8 187.6 p 8.8 187.6 8.6 187.7 8.6 187.5 t8 8.8 187.6 8.6 187.7 p 17.2 187.5 25.7 187.5 25.7 193.0 17.2 193.0 s1 25.7 187.5 34.3 187.5 34.3 193.0 25.7 193.0 s1 26.3 187.5 26.7 188.1 30.0 190.3 34.3 187.5 s2 26.3 187.5 26.7 188.1 p 34.3 187.5 30.0 190.3 34.3 193.0 t2 27.0 192.2 28.5 193.0 34.3 193.0 30.0 190.3 s2 27.0 192.2 28.5 193.0 p 27.0 192.2 26.7 188.1 30.0 190.3 t2 27.0 192.2 26.7 188.1 p 27.6 187.5 28.7 189.4 30.0 190.3 34.3 187.5 s3 27.6 187.5 28.7 189.4 p 34.3 187.5 30.0 190.3 34.3 193.0 t3 28.9 191.0 32.6 193.0 34.3 193.0 30.0 190.3 s3 28.9 191.0 32.6 193.0 p 28.9 191.0 28.7 189.4 30.0 190.3 t3 28.9 191.0 28.7 189.4 p 30.4 190.0 28.9 187.5 34.3 187.5 t4 30.4 190.0 28.9 187.5 p 34.3 192.4 30.4 190.0 34.3 187.5 t4 34.3 192.4 30.4 190.0 p 31.3 189.4 30.2 187.5 34.3 187.5 t5 31.3 189.4 30.2 187.5 p 34.3 191.2 31.3 189.4 34.3 187.5 t5 34.3 191.2 31.3 189.4 p 32.3 188.8 31.5 187.5 34.3 187.5 t6 32.3 188.8 31.5 187.5 p 34.3 190.0 32.3 188.8 34.3 187.5 t6 34.3 190.0 32.3 188.8 p 33.2 188.2 32.8 187.5 34.3 187.5 t7 33.2 188.2 32.8 187.5 p 34.3 188.9 33.2 188.2 34.3 187.5 t7 34.3 188.9 33.2 188.2 p 34.1 187.6 34.1 187.5 34.3 187.5 t8 34.1 187.6 34.1 187.5 p 34.3 187.7 34.1 187.6 34.3 187.5 t8 34.3 187.7 34.1 187.6 p 34.3 187.5 42.9 187.5 42.9 193.0 34.3 193.0 s3 34.3 187.5 38.6 190.3 42.9 187.5 t4 42.9 187.5 38.6 190.3 42.9 193.0 t4 34.8 192.7 36.8 193.0 42.9 193.0 38.6 190.3 s4 34.8 192.7 36.8 193.0 p 34.3 192.4 34.8 192.7 38.6 190.3 34.3 187.5 s4 34.3 192.4 34.8 192.7 p 34.3 187.5 38.6 190.3 42.9 187.5 t5 42.9 187.5 38.6 190.3 42.9 193.0 t5 35.6 192.2 41.3 193.0 42.9 193.0 38.6 190.3 s5 35.6 192.2 41.3 193.0 p 34.3 191.2 35.6 192.2 38.6 190.3 34.3 187.5 s5 34.3 191.2 35.6 192.2 p 34.3 187.5 38.6 190.3 42.9 187.5 t6 42.0 192.5 42.9 192.7 42.9 187.5 38.6 190.3 s6 42.0 192.5 42.9 192.7 p 42.0 192.5 36.5 191.6 38.6 190.3 t6 42.0 192.5 36.5 191.6 p 34.3 190.0 36.5 191.6 38.6 190.3 34.3 187.5 s6 34.3 190.0 36.5 191.6 p 34.3 187.5 38.6 190.3 42.9 187.5 t7 40.7 191.6 42.9 192.2 42.9 187.5 38.6 190.3 s7 40.7 191.6 42.9 192.2 p 40.7 191.6 37.3 191.1 38.6 190.3 t7 40.7 191.6 37.3 191.1 p 34.3 188.9 37.3 191.1 38.6 190.3 34.3 187.5 s7 34.3 188.9 37.3 191.1 p 34.3 187.5 38.6 190.3 42.9 187.5 t8 39.3 190.7 42.9 191.8 42.9 187.5 38.6 190.3 s8 39.3 190.7 42.9 191.8 p 39.3 190.7 38.2 190.5 38.6 190.3 t8 39.3 190.7 38.2 190.5 p 34.3 187.7 38.2 190.5 38.6 190.3 34.3 187.5 s8 34.3 187.7 38.2 190.5 p 42.9 187.5 51.5 187.5 51.5 193.0 42.9 193.0 s3 42.9 187.5 47.2 190.3 51.5 187.5 t4 51.0 192.7 51.5 192.4 51.5 187.5 47.2 190.3 s4 51.0 192.7 51.5 192.4 p 48.9 193.0 51.0 192.7 47.2 190.3 42.9 193.0 s4 48.9 193.0 51.0 192.7 p 42.9 193.0 47.2 190.3 42.9 187.5 t4 42.9 187.5 47.2 190.3 51.5 187.5 t5 50.2 192.2 51.5 191.2 51.5 187.5 47.2 190.3 s5 50.2 192.2 51.5 191.2 p 44.5 193.0 50.2 192.2 47.2 190.3 42.9 193.0 s5 44.5 193.0 50.2 192.2 p 42.9 193.0 47.2 190.3 42.9 187.5 t5 42.9 187.5 47.2 190.3 51.5 187.5 t6 49.3 191.6 51.5 190.0 51.5 187.5 47.2 190.3 s6 49.3 191.6 51.5 190.0 p 49.3 191.6 43.8 192.5 47.2 190.3 t6 49.3 191.6 43.8 192.5 p 42.9 192.7 43.8 192.5 47.2 190.3 42.9 187.5 s6 42.9 192.7 43.8 192.5 p 42.9 187.5 47.2 190.3 51.5 187.5 t7 48.5 191.1 51.5 188.9 51.5 187.5 47.2 190.3 s7 48.5 191.1 51.5 188.9 p 48.5 191.1 45.1 191.6 47.2 190.3 t7 48.5 191.1 45.1 191.6 p 42.9 192.2 45.1 191.6 47.2 190.3 42.9 187.5 s7 42.9 192.2 45.1 191.6 p 42.9 187.5 47.2 190.3 51.5 187.5 t8 47.6 190.5 51.5 187.7 51.5 187.5 47.2 190.3 s8 47.6 190.5 51.5 187.7 p 47.6 190.5 46.5 190.7 47.2 190.3 t8 47.6 190.5 46.5 190.7 p 42.9 191.8 46.5 190.7 47.2 190.3 42.9 187.5 s8 42.9 191.8 46.5 190.7 p 51.5 187.5 60.1 187.5 60.1 193.0 51.5 193.0 s1 59.1 188.1 59.5 187.5 51.5 187.5 55.8 190.3 s2 59.1 188.1 59.5 187.5 p 59.1 188.1 58.8 192.2 55.8 190.3 t2 59.1 188.1 58.8 192.2 p 57.3 193.0 58.8 192.2 55.8 190.3 51.5 193.0 s2 57.3 193.0 58.8 192.2 p 51.5 193.0 55.8 190.3 51.5 187.5 t2 57.1 189.4 58.2 187.5 51.5 187.5 55.8 190.3 s3 57.1 189.4 58.2 187.5 p 57.1 189.4 56.9 191.0 55.8 190.3 t3 57.1 189.4 56.9 191.0 p 53.2 193.0 56.9 191.0 55.8 190.3 51.5 193.0 s3 53.2 193.0 56.9 191.0 p 51.5 193.0 55.8 190.3 51.5 187.5 t3 56.9 187.5 55.4 190.0 51.5 187.5 t4 56.9 187.5 55.4 190.0 p 55.4 190.0 51.5 192.4 51.5 187.5 t4 55.4 190.0 51.5 192.4 p 55.6 187.5 54.5 189.4 51.5 187.5 t5 55.6 187.5 54.5 189.4 p 54.5 189.4 51.5 191.2 51.5 187.5 t5 54.5 189.4 51.5 191.2 p 54.3 187.5 53.5 188.8 51.5 187.5 t6 54.3 187.5 53.5 188.8 p 53.5 188.8 51.5 190.0 51.5 187.5 t6 53.5 188.8 51.5 190.0 p 53.0 187.5 52.6 188.2 51.5 187.5 t7 53.0 187.5 52.6 188.2 p 52.6 188.2 51.5 188.9 51.5 187.5 t7 52.6 188.2 51.5 188.9 p 51.7 187.5 51.7 187.6 51.5 187.5 t8 51.7 187.5 51.7 187.6 p 51.7 187.6 51.5 187.7 51.5 187.5 t8 51.7 187.6 51.5 187.7 p 60.1 187.5 68.6 187.5 68.6 193.0 60.1 193.0 s1 68.6 187.5 77.2 187.5 77.2 193.0 68.6 193.0 s1 69.2 187.5 69.6 188.1 72.9 190.3 77.2 187.5 s2 69.2 187.5 69.6 188.1 p 77.2 187.5 72.9 190.3 77.2 193.0 t2 69.9 192.2 71.4 193.0 77.2 193.0 72.9 190.3 s2 69.9 192.2 71.4 193.0 p 69.9 192.2 69.6 188.1 72.9 190.3 t2 69.9 192.2 69.6 188.1 p 70.5 187.5 71.6 189.4 72.9 190.3 77.2 187.5 s3 70.5 187.5 71.6 189.4 p 77.2 187.5 72.9 190.3 77.2 193.0 t3 71.8 191.0 75.5 193.0 77.2 193.0 72.9 190.3 s3 71.8 191.0 75.5 193.0 p 71.8 191.0 71.6 189.4 72.9 190.3 t3 71.8 191.0 71.6 189.4 p 73.3 190.0 71.8 187.5 77.2 187.5 t4 73.3 190.0 71.8 187.5 p 77.2 192.4 73.3 190.0 77.2 187.5 t4 77.2 192.4 73.3 190.0 p 74.2 189.4 73.1 187.5 77.2 187.5 t5 74.2 189.4 73.1 187.5 p 77.2 191.2 74.2 189.4 77.2 187.5 t5 77.2 191.2 74.2 189.4 p 75.1 188.8 74.4 187.5 77.2 187.5 t6 75.1 188.8 74.4 187.5 p 77.2 190.0 75.1 188.8 77.2 187.5 t6 77.2 190.0 75.1 188.8 p 76.1 188.2 75.7 187.5 77.2 187.5 t7 76.1 188.2 75.7 187.5 p 77.2 188.9 76.1 188.2 77.2 187.5 t7 77.2 188.9 76.1 188.2 p 77.0 187.6 77.0 187.5 77.2 187.5 t8 77.0 187.6 77.0 187.5 p 77.2 187.7 77.0 187.6 77.2 187.5 t8 77.2 187.7 77.0 187.6 p 77.2 187.5 85.8 187.5 85.8 193.0 77.2 193.0 s3 77.2 187.5 81.5 190.3 85.8 187.5 t4 85.8 187.5 81.5 190.3 85.8 193.0 t4 77.7 192.7 79.7 193.0 85.8 193.0 81.5 190.3 s4 77.7 192.7 79.7 193.0 p 77.2 192.4 77.7 192.7 81.5 190.3 77.2 187.5 s4 77.2 192.4 77.7 192.7 p 77.2 187.5 81.5 190.3 85.8 187.5 t5 85.8 187.5 81.5 190.3 85.8 193.0 t5 78.5 192.2 84.2 193.0 85.8 193.0 81.5 190.3 s5 78.5 192.2 84.2 193.0 p 77.2 191.2 78.5 192.2 81.5 190.3 77.2 187.5 s5 77.2 191.2 78.5 192.2 p 77.2 187.5 81.5 190.3 85.8 187.5 t6 84.9 192.5 85.8 192.7 85.8 187.5 81.5 190.3 s6 84.9 192.5 85.8 192.7 p 84.9 192.5 79.4 191.6 81.5 190.3 t6 84.9 192.5 79.4 191.6 p 77.2 190.0 79.4 191.6 81.5 190.3 77.2 187.5 s6 77.2 190.0 79.4 191.6 p 77.2 187.5 81.5 190.3 85.8 187.5 t7 83.6 191.6 85.8 192.2 85.8 187.5 81.5 190.3 s7 83.6 191.6 85.8 192.2 p 83.6 191.6 80.2 191.1 81.5 190.3 t7 83.6 191.6 80.2 191.1 p 77.2 188.9 80.2 191.1 81.5 190.3 77.2 187.5 s7 77.2 188.9 80.2 191.1 p 77.2 187.5 81.5 190.3 85.8 187.5 t8 82.2 190.7 85.8 191.8 85.8 187.5 81.5 190.3 s8 82.2 190.7 85.8 191.8 p 82.2 190.7 81.1 190.5 81.5 190.3 t8 82.2 190.7 81.1 190.5 p 77.2 187.7 81.1 190.5 81.5 190.3 77.2 187.5 s8 77.2 187.7 81.1 190.5 p 85.8 187.5 94.4 187.5 94.4 193.0 85.8 193.0 s3 85.8 187.5 90.1 190.3 94.4 187.5 t4 93.9 192.7 94.4 192.4 94.4 187.5 90.1 190.3 s4 93.9 192.7 94.4 192.4 p 91.8 193.0 93.9 192.7 90.1 190.3 85.8 193.0 s4 91.8 193.0 93.9 192.7 p 85.8 193.0 90.1 190.3 85.8 187.5 t4 85.8 187.5 90.1 190.3 94.4 187.5 t5 93.0 192.2 94.4 191.2 94.4 187.5 90.1 190.3 s5 93.0 192.2 94.4 191.2 p 87.4 193.0 93.0 192.2 90.1 190.3 85.8 193.0 s5 87.4 193.0 93.0 192.2 p 85.8 193.0 90.1 190.3 85.8 187.5 t5 85.8 187.5 90.1 190.3 94.4 187.5 t6 92.2 191.6 94.4 190.0 94.4 187.5 90.1 190.3 s6 92.2 191.6 94.4 190.0 p 92.2 191.6 86.7 192.5 90.1 190.3 t6 92.2 191.6 86.7 192.5 p 85.8 192.7 86.7 192.5 90.1 190.3 85.8 187.5 s6 85.8 192.7 86.7 192.5 p 85.8 187.5 90.1 190.3 94.4 187.5 t7 91.4 191.1 94.4 188.9 94.4 187.5 90.1 190.3 s7 91.4 191.1 94.4 188.9 p 91.4 191.1 88.0 191.6 90.1 190.3 t7 91.4 191.1 88.0 191.6 p 85.8 192.2 88.0 191.6 90.1 190.3 85.8 187.5 s7 85.8 192.2 88.0 191.6 p 85.8 187.5 90.1 190.3 94.4 187.5 t8 90.5 190.5 94.4 187.7 94.4 187.5 90.1 190.3 s8 90.5 190.5 94.4 187.7 p 90.5 190.5 89.4 190.7 90.1 190.3 t8 90.5 190.5 89.4 190.7 p 85.8 191.8 89.4 190.7 90.1 190.3 85.8 187.5 s8 85.8 191.8 89.4 190.7 p 94.4 187.5 102.9 187.5 102.9 193.0 94.4 193.0 s1 102.0 188.1 102.4 187.5 94.4 187.5 98.7 190.3 s2 102.0 188.1 102.4 187.5 p 102.0 188.1 101.7 192.2 98.7 190.3 t2 102.0 188.1 101.7 192.2 p 100.2 193.0 101.7 192.2 98.7 190.3 94.4 193.0 s2 100.2 193.0 101.7 192.2 p 94.4 193.0 98.7 190.3 94.4 187.5 t2 100.0 189.4 101.1 187.5 94.4 187.5 98.7 190.3 s3 100.0 189.4 101.1 187.5 p 100.0 189.4 99.8 191.0 98.7 190.3 t3 100.0 189.4 99.8 191.0 p 96.1 193.0 99.8 191.0 98.7 190.3 94.4 193.0 s3 96.1 193.0 99.8 191.0 p 94.4 193.0 98.7 190.3 94.4 187.5 t3 99.8 187.5 98.3 190.0 94.4 187.5 t4 99.8 187.5 98.3 190.0 p 98.3 190.0 94.4 192.4 94.4 187.5 t4 98.3 190.0 94.4 192.4 p 98.5 187.5 97.4 189.4 94.4 187.5 t5 98.5 187.5 97.4 189.4 p 97.4 189.4 94.4 191.2 94.4 187.5 t5 97.4 189.4 94.4 191.2 p 97.2 187.5 96.4 188.8 94.4 187.5 t6 97.2 187.5 96.4 188.8 p 96.4 188.8 94.4 190.0 94.4 187.5 t6 96.4 188.8 94.4 190.0 p 95.9 187.5 95.5 188.2 94.4 187.5 t7 95.9 187.5 95.5 188.2 p 95.5 188.2 94.4 188.9 94.4 187.5 t7 95.5 188.2 94.4 188.9 p 94.6 187.5 94.6 187.6 94.4 187.5 t8 94.6 187.5 94.6 187.6 p 94.6 187.6 94.4 187.7 94.4 187.5 t8 94.6 187.6 94.4 187.7 p 102.9 187.5 111.5 187.5 111.5 193.0 102.9 193.0 s1 111.5 187.5 120.1 187.5 120.1 193.0 111.5 193.0 s1 112.1 187.5 112.4 188.1 115.8 190.3 120.1 187.5 s2 112.1 187.5 112.4 188.1 p 120.1 187.5 115.8 190.3 120.1 193.0 t2 112.8 192.2 114.3 193.0 120.1 193.0 115.8 190.3 s2 112.8 192.2 114.3 193.0 p 112.8 192.2 112.4 188.1 115.8 190.3 t2 112.8 192.2 112.4 188.1 p 113.4 187.5 114.5 189.4 115.8 190.3 120.1 187.5 s3 113.4 187.5 114.5 189.4 p 120.1 187.5 115.8 190.3 120.1 193.0 t3 114.6 191.0 118.3 193.0 120.1 193.0 115.8 190.3 s3 114.6 191.0 118.3 193.0 p 114.6 191.0 114.5 189.4 115.8 190.3 t3 114.6 191.0 114.5 189.4 p 116.2 190.0 114.7 187.5 120.1 187.5 t4 116.2 190.0 114.7 187.5 p 120.1 192.4 116.2 190.0 120.1 187.5 t4 120.1 192.4 116.2 190.0 p 117.1 189.4 116.0 187.5 120.1 187.5 t5 117.1 189.4 116.0 187.5 p 120.1 191.2 117.1 189.4 120.1 187.5 t5 120.1 191.2 117.1 189.4 p 118.0 188.8 117.3 187.5 120.1 187.5 t6 118.0 188.8 117.3 187.5 p 120.1 190.0 118.0 188.8 120.1 187.5 t6 120.1 190.0 118.0 188.8 p 119.0 188.2 118.6 187.5 120.1 187.5 t7 119.0 188.2 118.6 187.5 p 120.1 188.9 119.0 188.2 120.1 187.5 t7 120.1 188.9 119.0 188.2 p 119.9 187.6 119.9 187.5 120.1 187.5 t8 119.9 187.6 119.9 187.5 p 120.1 187.7 119.9 187.6 120.1 187.5 t8 120.1 187.7 119.9 187.6 p 120.1 187.5 128.7 187.5 128.7 193.0 120.1 193.0 s3 120.1 187.5 124.4 190.3 128.7 187.5 t4 128.7 187.5 124.4 190.3 128.7 193.0 t4 120.6 192.7 122.6 193.0 128.7 193.0 124.4 190.3 s4 120.6 192.7 122.6 193.0 p 120.1 192.4 120.6 192.7 124.4 190.3 120.1 187.5 s4 120.1 192.4 120.6 192.7 p 120.1 187.5 124.4 190.3 128.7 187.5 t5 128.7 187.5 124.4 190.3 128.7 193.0 t5 121.4 192.2 127.1 193.0 128.7 193.0 124.4 190.3 s5 121.4 192.2 127.1 193.0 p 120.1 191.2 121.4 192.2 124.4 190.3 120.1 187.5 s5 120.1 191.2 121.4 192.2 p 120.1 187.5 124.4 190.3 128.7 187.5 t6 127.8 192.5 128.7 192.7 128.7 187.5 124.4 190.3 s6 127.8 192.5 128.7 192.7 p 127.8 192.5 122.3 191.6 124.4 190.3 t6 127.8 192.5 122.3 191.6 p 120.1 190.0 122.3 191.6 124.4 190.3 120.1 187.5 s6 120.1 190.0 122.3 191.6 p 120.1 187.5 124.4 190.3 128.7 187.5 t7 126.5 191.6 128.7 192.2 128.7 187.5 124.4 190.3 s7 126.5 191.6 128.7 192.2 p 126.5 191.6 123.1 191.1 124.4 190.3 t7 126.5 191.6 123.1 191.1 p 120.1 188.9 123.1 191.1 124.4 190.3 120.1 187.5 s7 120.1 188.9 123.1 191.1 p 120.1 187.5 124.4 190.3 128.7 187.5 t8 125.1 190.7 128.7 191.8 128.7 187.5 124.4 190.3 s8 125.1 190.7 128.7 191.8 p 125.1 190.7 123.9 190.5 124.4 190.3 t8 125.1 190.7 123.9 190.5 p 120.1 187.7 123.9 190.5 124.4 190.3 120.1 187.5 s8 120.1 187.7 123.9 190.5 p 128.7 187.5 137.3 187.5 137.3 193.0 128.7 193.0 s3 128.7 187.5 133.0 190.3 137.3 187.5 t4 136.8 192.7 137.3 192.4 137.3 187.5 133.0 190.3 s4 136.8 192.7 137.3 192.4 p 134.7 193.0 136.8 192.7 133.0 190.3 128.7 193.0 s4 134.7 193.0 136.8 192.7 p 128.7 193.0 133.0 190.3 128.7 187.5 t4 128.7 187.5 133.0 190.3 137.3 187.5 t5 135.9 192.2 137.3 191.2 137.3 187.5 133.0 190.3 s5 135.9 192.2 137.3 191.2 p 130.3 193.0 135.9 192.2 133.0 190.3 128.7 193.0 s5 130.3 193.0 135.9 192.2 p 128.7 193.0 133.0 190.3 128.7 187.5 t5 128.7 187.5 133.0 190.3 137.3 187.5 t6 135.1 191.6 137.3 190.0 137.3 187.5 133.0 190.3 s6 135.1 191.6 137.3 190.0 p 135.1 191.6 129.6 192.5 133.0 190.3 t6 135.1 191.6 129.6 192.5 p 128.7 192.7 129.6 192.5 133.0 190.3 128.7 187.5 s6 128.7 192.7 129.6 192.5 p 128.7 187.5 133.0 190.3 137.3 187.5 t7 134.3 191.1 137.3 188.9 137.3 187.5 133.0 190.3 s7 134.3 191.1 137.3 188.9 p 134.3 191.1 130.9 191.6 133.0 190.3 t7 134.3 191.1 130.9 191.6 p 128.7 192.2 130.9 191.6 133.0 190.3 128.7 187.5 s7 128.7 192.2 130.9 191.6 p 128.7 187.5 133.0 190.3 137.3 187.5 t8 133.4 190.5 137.3 187.7 137.3 187.5 133.0 190.3 s8 133.4 190.5 137.3 187.7 p 133.4 190.5 132.3 190.7 133.0 190.3 t8 133.4 190.5 132.3 190.7 p 128.7 191.8 132.3 190.7 133.0 190.3 128.7 187.5 s8 128.7 191.8 132.3 190.7 p 137.3 187.5 145.8 187.5 145.8 193.0 137.3 193.0 s1 144.9 188.1 145.3 187.5 137.3 187.5 141.6 190.3 s2 144.9 188.1 145.3 187.5 p 144.9 188.1 144.6 192.2 141.6 190.3 t2 144.9 188.1 144.6 192.2 p 143.1 193.0 144.6 192.2 141.6 190.3 137.3 193.0 s2 143.1 193.0 144.6 192.2 p 137.3 193.0 141.6 190.3 137.3 187.5 t2 142.8 189.4 144.0 187.5 137.3 187.5 141.6 190.3 s3 142.8 189.4 144.0 187.5 p 142.8 189.4 142.7 191.0 141.6 190.3 t3 142.8 189.4 142.7 191.0 p 139.0 193.0 142.7 191.0 141.6 190.3 137.3 193.0 s3 139.0 193.0 142.7 191.0 p 137.3 193.0 141.6 190.3 137.3 187.5 t3 142.7 187.5 141.2 190.0 137.3 187.5 t4 142.7 187.5 141.2 190.0 p 141.2 190.0 137.3 192.4 137.3 187.5 t4 141.2 190.0 137.3 192.4 p 141.4 187.5 140.3 189.4 137.3 187.5 t5 141.4 187.5 140.3 189.4 p 140.3 189.4 137.3 191.2 137.3 187.5 t5 140.3 189.4 137.3 191.2 p 140.1 187.5 139.3 188.8 137.3 187.5 t6 140.1 187.5 139.3 188.8 p 139.3 188.8 137.3 190.0 137.3 187.5 t6 139.3 188.8 137.3 190.0 p 138.8 187.5 138.4 188.2 137.3 187.5 t7 138.8 187.5 138.4 188.2 p 138.4 188.2 137.3 188.9 137.3 187.5 t7 138.4 188.2 137.3 188.9 p 137.5 187.5 137.4 187.6 137.3 187.5 t8 137.5 187.5 137.4 187.6 p 137.4 187.6 137.3 187.7 137.3 187.5 t8 137.4 187.6 137.3 187.7 p 145.8 187.5 154.4 187.5 154.4 193.0 145.8 193.0 s1 154.4 187.5 163.0 187.5 163.0 193.0 154.4 193.0 s1 155.0 187.5 155.3 188.1 158.7 190.3 163.0 187.5 s2 155.0 187.5 155.3 188.1 p 163.0 187.5 158.7 190.3 163.0 193.0 t2 155.7 192.2 157.2 193.0 163.0 193.0 158.7 190.3 s2 155.7 192.2 157.2 193.0 p 155.7 192.2 155.3 188.1 158.7 190.3 t2 155.7 192.2 155.3 188.1 p 156.3 187.5 157.4 189.4 158.7 190.3 163.0 187.5 s3 156.3 187.5 157.4 189.4 p 163.0 187.5 158.7 190.3 163.0 193.0 t3 157.5 191.0 161.2 193.0 163.0 193.0 158.7 190.3 s3 157.5 191.0 161.2 193.0 p 157.5 191.0 157.4 189.4 158.7 190.3 t3 157.5 191.0 157.4 189.4 p 159.1 190.0 157.6 187.5 163.0 187.5 t4 159.1 190.0 157.6 187.5 p 163.0 192.4 159.1 190.0 163.0 187.5 t4 163.0 192.4 159.1 190.0 p 160.0 189.4 158.9 187.5 163.0 187.5 t5 160.0 189.4 158.9 187.5 p 163.0 191.2 160.0 189.4 163.0 187.5 t5 163.0 191.2 160.0 189.4 p 160.9 188.8 160.2 187.5 163.0 187.5 t6 160.9 188.8 160.2 187.5 p 163.0 190.0 160.9 188.8 163.0 187.5 t6 163.0 190.0 160.9 188.8 p 161.9 188.2 161.5 187.5 163.0 187.5 t7 161.9 188.2 161.5 187.5 p 163.0 188.9 161.9 188.2 163.0 187.5 t7 163.0 188.9 161.9 188.2 p 162.8 187.6 162.7 187.5 163.0 187.5 t8 162.8 187.6 162.7 187.5 p 163.0 187.7 162.8 187.6 163.0 187.5 t8 163.0 187.7 162.8 187.6 p 163.0 187.5 171.6 187.5 171.6 193.0 163.0 193.0 s3 163.0 187.5 167.3 190.3 171.6 187.5 t4 171.6 187.5 167.3 190.3 171.6 193.0 t4 163.5 192.7 165.5 193.0 171.6 193.0 167.3 190.3 s4 163.5 192.7 165.5 193.0 p 163.0 192.4 163.5 192.7 167.3 190.3 163.0 187.5 s4 163.0 192.4 163.5 192.7 p 163.0 187.5 167.3 190.3 171.6 187.5 t5 171.6 187.5 167.3 190.3 171.6 193.0 t5 164.3 192.2 170.0 193.0 171.6 193.0 167.3 190.3 s5 164.3 192.2 170.0 193.0 p 163.0 191.2 164.3 192.2 167.3 190.3 163.0 187.5 s5 163.0 191.2 164.3 192.2 p 163.0 187.5 167.3 190.3 171.6 187.5 t6 170.7 192.5 171.6 192.7 171.6 187.5 167.3 190.3 s6 170.7 192.5 171.6 192.7 p 170.7 192.5 165.2 191.6 167.3 190.3 t6 170.7 192.5 165.2 191.6 p 163.0 190.0 165.2 191.6 167.3 190.3 163.0 187.5 s6 163.0 190.0 165.2 191.6 p 163.0 187.5 167.3 190.3 171.6 187.5 t7 169.4 191.6 171.6 192.2 171.6 187.5 167.3 190.3 s7 169.4 191.6 171.6 192.2 p 169.4 191.6 166.0 191.1 167.3 190.3 t7 169.4 191.6 166.0 191.1 p 163.0 188.9 166.0 191.1 167.3 190.3 163.0 187.5 s7 163.0 188.9 166.0 191.1 p 163.0 187.5 167.3 190.3 171.6 187.5 t8 168.0 190.7 171.6 191.8 171.6 187.5 167.3 190.3 s8 168.0 190.7 171.6 191.8 p 168.0 190.7 166.8 190.5 167.3 190.3 t8 168.0 190.7 166.8 190.5 p 163.0 187.7 166.8 190.5 167.3 190.3 163.0 187.5 s8 163.0 187.7 166.8 190.5 p 171.6 187.5 180.2 187.5 180.2 193.0 171.6 193.0 s3 171.6 187.5 175.9 190.3 180.2 187.5 t4 179.7 192.7 180.2 192.4 180.2 187.5 175.9 190.3 s4 179.7 192.7 180.2 192.4 p 177.6 193.0 179.7 192.7 175.9 190.3 171.6 193.0 s4 177.6 193.0 179.7 192.7 p 171.6 193.0 175.9 190.3 171.6 187.5 t4 171.6 187.5 175.9 190.3 180.2 187.5 t5 178.8 192.2 180.2 191.2 180.2 187.5 175.9 190.3 s5 178.8 192.2 180.2 191.2 p 173.2 193.0 178.8 192.2 175.9 190.3 171.6 193.0 s5 173.2 193.0 178.8 192.2 p 171.6 193.0 175.9 190.3 171.6 187.5 t5 171.6 187.5 175.9 190.3 180.2 187.5 t6 178.0 191.6 180.2 190.0 180.2 187.5 175.9 190.3 s6 178.0 191.6 180.2 190.0 p 178.0 191.6 172.4 192.5 175.9 190.3 t6 178.0 191.6 172.4 192.5 p 171.6 192.7 172.4 192.5 175.9 190.3 171.6 187.5 s6 171.6 192.7 172.4 192.5 p 171.6 187.5 175.9 190.3 180.2 187.5 t7 177.2 191.1 180.2 188.9 180.2 187.5 175.9 190.3 s7 177.2 191.1 180.2 188.9 p 177.2 191.1 173.8 191.6 175.9 190.3 t7 177.2 191.1 173.8 191.6 p 171.6 192.2 173.8 191.6 175.9 190.3 171.6 187.5 s7 171.6 192.2 173.8 191.6 p 171.6 187.5 175.9 190.3 180.2 187.5 t8 176.3 190.5 180.2 187.7 180.2 187.5 175.9 190.3 s8 176.3 190.5 180.2 187.7 p 176.3 190.5 175.1 190.7 175.9 190.3 t8 176.3 190.5 175.1 190.7 p 171.6 191.8 175.1 190.7 175.9 190.3 171.6 187.5 s8 171.6 191.8 175.1 190.7 p 180.2 187.5 188.7 187.5 188.7 193.0 180.2 193.0 s1 187.8 188.1 188.2 187.5 180.2 187.5 184.4 190.3 s2 187.8 188.1 188.2 187.5 p 187.8 188.1 187.5 192.2 184.4 190.3 t2 187.8 188.1 187.5 192.2 p 186.0 193.0 187.5 192.2 184.4 190.3 180.2 193.0 s2 186.0 193.0 187.5 192.2 p 180.2 193.0 184.4 190.3 180.2 187.5 t2 185.7 189.4 186.9 187.5 180.2 187.5 184.4 190.3 s3 185.7 189.4 186.9 187.5 p 185.7 189.4 185.6 191.0 184.4 190.3 t3 185.7 189.4 185.6 191.0 p 181.9 193.0 185.6 191.0 184.4 190.3 180.2 193.0 s3 181.9 193.0 185.6 191.0 p 180.2 193.0 184.4 190.3 180.2 187.5 t3 185.6 187.5 184.1 190.0 180.2 187.5 t4 185.6 187.5 184.1 190.0 p 184.1 190.0 180.2 192.4 180.2 187.5 t4 184.1 190.0 180.2 192.4 p 184.3 187.5 183.2 189.4 180.2 187.5 t5 184.3 187.5 183.2 189.4 p 183.2 189.4 180.2 191.2 180.2 187.5 t5 183.2 189.4 180.2 191.2 p 183.0 187.5 182.2 188.8 180.2 187.5 t6 183.0 187.5 182.2 188.8 p 182.2 188.8 180.2 190.0 180.2 187.5 t6 182.2 188.8 180.2 190.0 p 181.7 187.5 181.3 188.2 180.2 187.5 t7 181.7 187.5 181.3 188.2 p 181.3 188.2 180.2 188.9 180.2 187.5 t7 181.3 188.2 180.2 188.9 p 180.4 187.5 180.3 187.6 180.2 187.5 t8 180.4 187.5 180.3 187.6 p 180.3 187.6 180.2 187.7 180.2 187.5 t8 180.3 187.6 180.2 187.7 p 188.7 187.5 197.3 187.5 197.3 193.0 188.7 193.0 s1 197.3 187.5 205.9 187.5 205.9 193.0 197.3 193.0 s1 197.9 187.5 198.2 188.1 201.6 190.3 205.9 187.5 s2 197.9 187.5 198.2 188.1 p 205.9 187.5 201.6 190.3 205.9 193.0 t2 198.6 192.2 200.1 193.0 205.9 193.0 201.6 190.3 s2 198.6 192.2 200.1 193.0 p 198.6 192.2 198.2 188.1 201.6 190.3 t2 198.6 192.2 198.2 188.1 p 199.2 187.5 200.3 189.4 201.6 190.3 205.9 187.5 s3 199.2 187.5 200.3 189.4 p 205.9 187.5 201.6 190.3 205.9 193.0 t3 200.4 191.0 204.1 193.0 205.9 193.0 201.6 190.3 s3 200.4 191.0 204.1 193.0 p 200.4 191.0 200.3 189.4 201.6 190.3 t3 200.4 191.0 200.3 189.4 p 202.0 190.0 200.5 187.5 205.9 187.5 t4 202.0 190.0 200.5 187.5 p 205.9 192.4 202.0 190.0 205.9 187.5 t4 205.9 192.4 202.0 190.0 p 202.9 189.4 201.8 187.5 205.9 187.5 t5 202.9 189.4 201.8 187.5 p 205.9 191.2 202.9 189.4 205.9 187.5 t5 205.9 191.2 202.9 189.4 p 203.8 188.8 203.1 187.5 205.9 187.5 t6 203.8 188.8 203.1 187.5 p 205.9 190.0 203.8 188.8 205.9 187.5 t6 205.9 190.0 203.8 188.8 p 204.8 188.2 204.3 187.5 205.9 187.5 t7 204.8 188.2 204.3 187.5 p 205.9 188.9 204.8 188.2 205.9 187.5 t7 205.9 188.9 204.8 188.2 p 205.7 187.6 205.6 187.5 205.9 187.5 t8 205.7 187.6 205.6 187.5 p 205.9 187.7 205.7 187.6 205.9 187.5 t8 205.9 187.7 205.7 187.6 p 205.9 187.5 214.5 187.5 214.5 193.0 205.9 193.0 s3 205.9 187.5 210.2 190.3 214.5 187.5 t4 214.5 187.5 210.2 190.3 214.5 193.0 t4 206.4 192.7 208.4 193.0 214.5 193.0 210.2 190.3 s4 206.4 192.7 208.4 193.0 p 205.9 192.4 206.4 192.7 210.2 190.3 205.9 187.5 s4 205.9 192.4 206.4 192.7 p 205.9 187.5 210.2 190.3 214.5 187.5 t5 214.5 187.5 210.2 190.3 214.5 193.0 t5 207.2 192.2 212.9 193.0 214.5 193.0 210.2 190.3 s5 207.2 192.2 212.9 193.0 p 205.9 191.2 207.2 192.2 210.2 190.3 205.9 187.5 s5 205.9 191.2 207.2 192.2 p 205.9 187.5 210.2 190.3 214.5 187.5 t6 213.6 192.5 214.5 192.7 214.5 187.5 210.2 190.3 s6 213.6 192.5 214.5 192.7 p 213.6 192.5 208.1 191.6 210.2 190.3 t6 213.6 192.5 208.1 191.6 p 205.9 190.0 208.1 191.6 210.2 190.3 205.9 187.5 s6 205.9 190.0 208.1 191.6 p 205.9 187.5 210.2 190.3 214.5 187.5 t7 212.3 191.6 214.5 192.2 214.5 187.5 210.2 190.3 s7 212.3 191.6 214.5 192.2 p 212.3 191.6 208.9 191.1 210.2 190.3 t7 212.3 191.6 208.9 191.1 p 205.9 188.9 208.9 191.1 210.2 190.3 205.9 187.5 s7 205.9 188.9 208.9 191.1 p 205.9 187.5 210.2 190.3 214.5 187.5 t8 210.9 190.7 214.5 191.8 214.5 187.5 210.2 190.3 s8 210.9 190.7 214.5 191.8 p 210.9 190.7 209.7 190.5 210.2 190.3 t8 210.9 190.7 209.7 190.5 p 205.9 187.7 209.7 190.5 210.2 190.3 205.9 187.5 s8 205.9 187.7 209.7 190.5 p 214.5 187.5 223.1 187.5 223.1 193.0 214.5 193.0 s3 214.5 187.5 218.8 190.3 223.1 187.5 t4 222.6 192.7 223.1 192.4 223.1 187.5 218.8 190.3 s4 222.6 192.7 223.1 192.4 p 220.5 193.0 222.6 192.7 218.8 190.3 214.5 193.0 s4 220.5 193.0 222.6 192.7 p 214.5 193.0 218.8 190.3 214.5 187.5 t4 214.5 187.5 218.8 190.3 223.1 187.5 t5 221.7 192.2 223.1 191.2 223.1 187.5 218.8 190.3 s5 221.7 192.2 223.1 191.2 p 216.1 193.0 221.7 192.2 218.8 190.3 214.5 193.0 s5 216.1 193.0 221.7 192.2 p 214.5 193.0 218.8 190.3 214.5 187.5 t5 214.5 187.5 218.8 190.3 223.1 187.5 t6 220.9 191.6 223.1 190.0 223.1 187.5 218.8 190.3 s6 220.9 191.6 223.1 190.0 p 220.9 191.6 215.3 192.5 218.8 190.3 t6 220.9 191.6 215.3 192.5 p 214.5 192.7 215.3 192.5 218.8 190.3 214.5 187.5 s6 214.5 192.7 215.3 192.5 p 214.5 187.5 218.8 190.3 223.1 187.5 t7 220.1 191.1 223.1 188.9 223.1 187.5 218.8 190.3 s7 220.1 191.1 223.1 188.9 p 220.1 191.1 216.7 191.6 218.8 190.3 t7 220.1 191.1 216.7 191.6 p 214.5 192.2 216.7 191.6 218.8 190.3 214.5 187.5 s7 214.5 192.2 216.7 191.6 p 214.5 187.5 218.8 190.3 223.1 187.5 t8 219.2 190.5 223.1 187.7 223.1 187.5 218.8 190.3 s8 219.2 190.5 223.1 187.7 p 219.2 190.5 218.0 190.7 218.8 190.3 t8 219.2 190.5 218.0 190.7 p 214.5 191.8 218.0 190.7 218.8 190.3 214.5 187.5 s8 214.5 191.8 218.0 190.7 p 223.1 187.5 231.6 187.5 231.6 193.0 223.1 193.0 s1 230.7 188.1 231.1 187.5 223.1 187.5 227.3 190.3 s2 230.7 188.1 231.1 187.5 p 230.7 188.1 230.4 192.2 227.3 190.3 t2 230.7 188.1 230.4 192.2 p 228.9 193.0 230.4 192.2 227.3 190.3 223.1 193.0 s2 228.9 193.0 230.4 192.2 p 223.1 193.0 227.3 190.3 223.1 187.5 t2 228.6 189.4 229.8 187.5 223.1 187.5 227.3 190.3 s3 228.6 189.4 229.8 187.5 p 228.6 189.4 228.5 191.0 227.3 190.3 t3 228.6 189.4 228.5 191.0 p 224.8 193.0 228.5 191.0 227.3 190.3 223.1 193.0 s3 224.8 193.0 228.5 191.0 p 223.1 193.0 227.3 190.3 223.1 187.5 t3 228.5 187.5 227.0 190.0 223.1 187.5 t4 228.5 187.5 227.0 190.0 p 227.0 190.0 223.1 192.4 223.1 187.5 t4 227.0 190.0 223.1 192.4 p 227.2 187.5 226.1 189.4 223.1 187.5 t5 227.2 187.5 226.1 189.4 p 226.1 189.4 223.1 191.2 223.1 187.5 t5 226.1 189.4 223.1 191.2 p 225.9 187.5 225.1 188.8 223.1 187.5 t6 225.9 187.5 225.1 188.8 p 225.1 188.8 223.1 190.0 223.1 187.5 t6 225.1 188.8 223.1 190.0 p 224.6 187.5 224.2 188.2 223.1 187.5 t7 224.6 187.5 224.2 188.2 p 224.2 188.2 223.1 188.9 223.1 187.5 t7 224.2 188.2 223.1 188.9 p 223.3 187.5 223.2 187.6 223.1 187.5 t8 223.3 187.5 223.2 187.6 p 223.2 187.6 223.1 187.7 223.1 187.5 t8 223.2 187.6 223.1 187.7 p 231.6 187.5 240.2 187.5 240.2 193.0 231.6 193.0 s1 240.2 187.5 248.8 187.5 248.8 193.0 240.2 193.0 s1 240.8 187.5 241.1 188.1 244.5 190.3 248.8 187.5 s2 240.8 187.5 241.1 188.1 p 248.8 187.5 244.5 190.3 248.8 193.0 t2 241.5 192.2 243.0 193.0 248.8 193.0 244.5 190.3 s2 241.5 192.2 243.0 193.0 p 241.5 192.2 241.1 188.1 244.5 190.3 t2 241.5 192.2 241.1 188.1 p 242.1 187.5 243.2 189.4 244.5 190.3 248.8 187.5 s3 242.1 187.5 243.2 189.4 p 248.8 187.5 244.5 190.3 248.8 193.0 t3 243.3 191.0 247.0 193.0 248.8 193.0 244.5 190.3 s3 243.3 191.0 247.0 193.0 p 243.3 191.0 243.2 189.4 244.5 190.3 t3 243.3 191.0 243.2 189.4 p 244.8 190.0 243.4 187.5 248.8 187.5 t4 244.8 190.0 243.4 187.5 p 248.8 192.4 244.8 190.0 248.8 187.5 t4 248.8 192.4 244.8 190.0 p 245.8 189.4 244.7 187.5 248.8 187.5 t5 245.8 189.4 244.7 187.5 p 248.8 191.2 245.8 189.4 248.8 187.5 t5 248.8 191.2 245.8 189.4 p 246.7 188.8 246.0 187.5 248.8 187.5 t6 246.7 188.8 246.0 187.5 p 248.8 190.0 246.7 188.8 248.8 187.5 t6 248.8 190.0 246.7 188.8 p 247.7 188.2 247.2 187.5 248.8 187.5 t7 247.7 188.2 247.2 187.5 p 248.8 188.9 247.7 188.2 248.8 187.5 t7 248.8 188.9 247.7 188.2 p 248.6 187.6 248.5 187.5 248.8 187.5 t8 248.6 187.6 248.5 187.5 p 248.8 187.7 248.6 187.6 248.8 187.5 t8 248.8 187.7 248.6 187.6 p 248.8 187.5 257.4 187.5 257.4 193.0 248.8 193.0 s3 248.8 187.5 253.1 190.3 257.4 187.5 t4 257.4 187.5 253.1 190.3 257.4 193.0 t4 249.3 192.7 251.3 193.0 257.4 193.0 253.1 190.3 s4 249.3 192.7 251.3 193.0 p 248.8 192.4 249.3 192.7 253.1 190.3 248.8 187.5 s4 248.8 192.4 249.3 192.7 p 248.8 187.5 253.1 190.3 257.4 187.5 t5 257.4 187.5 253.1 190.3 257.4 193.0 t5 250.1 192.2 255.8 193.0 257.4 193.0 253.1 190.3 s5 250.1 192.2 255.8 193.0 p 248.8 191.2 250.1 192.2 253.1 190.3 248.8 187.5 s5 248.8 191.2 250.1 192.2 p 248.8 187.5 253.1 190.3 257.4 187.5 t6 256.5 192.5 257.4 192.7 257.4 187.5 253.1 190.3 s6 256.5 192.5 257.4 192.7 p 256.5 192.5 250.9 191.6 253.1 190.3 t6 256.5 192.5 250.9 191.6 p 248.8 190.0 250.9 191.6 253.1 190.3 248.8 187.5 s6 248.8 190.0 250.9 191.6 p 248.8 187.5 253.1 190.3 257.4 187.5 t7 255.1 191.6 257.4 192.2 257.4 187.5 253.1 190.3 s7 255.1 191.6 257.4 192.2 p 255.1 191.6 251.8 191.1 253.1 190.3 t7 255.1 191.6 251.8 191.1 p 248.8 188.9 251.8 191.1 253.1 190.3 248.8 187.5 s7 248.8 188.9 251.8 191.1 p 248.8 187.5 253.1 190.3 257.4 187.5 t8 253.8 190.7 257.4 191.8 257.4 187.5 253.1 190.3 s8 253.8 190.7 257.4 191.8 p 253.8 190.7 252.6 190.5 253.1 190.3 t8 253.8 190.7 252.6 190.5 p 248.8 187.7 252.6 190.5 253.1 190.3 248.8 187.5 s8 248.8 187.7 252.6 190.5 p 257.4 187.5 265.9 187.5 265.9 193.0 257.4 193.0 s3 257.4 187.5 261.7 190.3 265.9 187.5 t4 265.5 192.7 265.9 192.4 265.9 187.5 261.7 190.3 s4 265.5 192.7 265.9 192.4 p 263.4 193.0 265.5 192.7 261.7 190.3 257.4 193.0 s4 263.4 193.0 265.5 192.7 p 257.4 193.0 261.7 190.3 257.4 187.5 t4 257.4 187.5 261.7 190.3 265.9 187.5 t5 264.6 192.2 265.9 191.2 265.9 187.5 261.7 190.3 s5 264.6 192.2 265.9 191.2 p 259.0 193.0 264.6 192.2 261.7 190.3 257.4 193.0 s5 259.0 193.0 264.6 192.2 p 257.4 193.0 261.7 190.3 257.4 187.5 t5 257.4 187.5 261.7 190.3 265.9 187.5 t6 263.8 191.6 265.9 190.0 265.9 187.5 261.7 190.3 s6 263.8 191.6 265.9 190.0 p 263.8 191.6 258.2 192.5 261.7 190.3 t6 263.8 191.6 258.2 192.5 p 257.4 192.7 258.2 192.5 261.7 190.3 257.4 187.5 s6 257.4 192.7 258.2 192.5 p 257.4 187.5 261.7 190.3 265.9 187.5 t7 262.9 191.1 265.9 188.9 265.9 187.5 261.7 190.3 s7 262.9 191.1 265.9 188.9 p 262.9 191.1 259.6 191.6 261.7 190.3 t7 262.9 191.1 259.6 191.6 p 257.4 192.2 259.6 191.6 261.7 190.3 257.4 187.5 s7 257.4 192.2 259.6 191.6 p 257.4 187.5 261.7 190.3 265.9 187.5 t8 262.1 190.5 265.9 187.7 265.9 187.5 261.7 190.3 s8 262.1 190.5 265.9 187.7 p 262.1 190.5 260.9 190.7 261.7 190.3 t8 262.1 190.5 260.9 190.7 p 257.4 191.8 260.9 190.7 261.7 190.3 257.4 187.5 s8 257.4 191.8 260.9 190.7 p 265.9 187.5 274.5 187.5 274.5 193.0 265.9 193.0 s1 273.6 188.1 274.0 187.5 265.9 187.5 270.2 190.3 s2 273.6 188.1 274.0 187.5 p 273.6 188.1 273.3 192.2 270.2 190.3 t2 273.6 188.1 273.3 192.2 p 271.8 193.0 273.3 192.2 270.2 190.3 265.9 193.0 s2 271.8 193.0 273.3 192.2 p 265.9 193.0 270.2 190.3 265.9 187.5 t2 271.5 189.4 272.7 187.5 265.9 187.5 270.2 190.3 s3 271.5 189.4 272.7 187.5 p 271.5 189.4 271.4 191.0 270.2 190.3 t3 271.5 189.4 271.4 191.0 p 267.7 193.0 271.4 191.0 270.2 190.3 265.9 193.0 s3 267.7 193.0 271.4 191.0 p 265.9 193.0 270.2 190.3 265.9 187.5 t3 271.4 187.5 269.9 190.0 265.9 187.5 t4 271.4 187.5 269.9 190.0 p 269.9 190.0 265.9 192.4 265.9 187.5 t4 269.9 190.0 265.9 192.4 p 270.1 187.5 268.9 189.4 265.9 187.5 t5 270.1 187.5 268.9 189.4 p 268.9 189.4 265.9 191.2 265.9 187.5 t5 268.9 189.4 265.9 191.2 p 268.8 187.5 268.0 188.8 265.9 187.5 t6 268.8 187.5 268.0 188.8 p 268.0 188.8 265.9 190.0 265.9 187.5 t6 268.0 188.8 265.9 190.0 p 267.5 187.5 267.1 188.2 265.9 187.5 t7 267.5 187.5 267.1 188.2 p 267.1 188.2 265.9 188.9 265.9 187.5 t7 267.1 188.2 265.9 188.9 p 266.2 187.5 266.1 187.6 265.9 187.5 t8 266.2 187.5 266.1 187.6 p 266.1 187.6 265.9 187.7 265.9 187.5 t8 266.1 187.6 265.9 187.7 p 274.5 187.5 283.1 187.5 283.1 193.0 274.5 193.0 s1 283.1 187.5 291.7 187.5 291.7 193.0 283.1 193.0 s1 283.7 187.5 284.0 188.1 287.4 190.3 291.7 187.5 s2 283.7 187.5 284.0 188.1 p 291.7 187.5 287.4 190.3 291.7 193.0 t2 284.4 192.2 285.9 193.0 291.7 193.0 287.4 190.3 s2 284.4 192.2 285.9 193.0 p 284.4 192.2 284.0 188.1 287.4 190.3 t2 284.4 192.2 284.0 188.1 p 285.0 187.5 286.1 189.4 287.4 190.3 291.7 187.5 s3 285.0 187.5 286.1 189.4 p 291.7 187.5 287.4 190.3 291.7 193.0 t3 286.2 191.0 289.9 193.0 291.7 193.0 287.4 190.3 s3 286.2 191.0 289.9 193.0 p 286.2 191.0 286.1 189.4 287.4 190.3 t3 286.2 191.0 286.1 189.4 p 287.7 190.0 286.3 187.5 291.7 187.5 t4 287.7 190.0 286.3 187.5 p 291.7 192.4 287.7 190.0 291.7 187.5 t4 291.7 192.4 287.7 190.0 p 288.7 189.4 287.6 187.5 291.7 187.5 t5 288.7 189.4 287.6 187.5 p 291.7 191.2 288.7 189.4 291.7 187.5 t5 291.7 191.2 288.7 189.4 p 289.6 188.8 288.8 187.5 291.7 187.5 t6 289.6 188.8 288.8 187.5 p 291.7 190.0 289.6 188.8 291.7 187.5 t6 291.7 190.0 289.6 188.8 p 290.6 188.2 290.1 187.5 291.7 187.5 t7 290.6 188.2 290.1 187.5 p 291.7 188.9 290.6 188.2 291.7 187.5 t7 291.7 188.9 290.6 188.2 p 291.5 187.6 291.4 187.5 291.7 187.5 t8 291.5 187.6 291.4 187.5 p 291.7 187.7 291.5 187.6 291.7 187.5 t8 291.7 187.7 291.5 187.6 p 291.7 187.5 300.3 187.5 300.3 193.0 291.7 193.0 s3 291.7 187.5 296.0 190.3 300.3 187.5 t4 300.3 187.5 296.0 190.3 300.3 193.0 t4 292.2 192.7 294.2 193.0 300.3 193.0 296.0 190.3 s4 292.2 192.7 294.2 193.0 p 291.7 192.4 292.2 192.7 296.0 190.3 291.7 187.5 s4 291.7 192.4 292.2 192.7 p 291.7 187.5 296.0 190.3 300.3 187.5 t5 300.3 187.5 296.0 190.3 300.3 193.0 t5 293.0 192.2 298.7 193.0 300.3 193.0 296.0 190.3 s5 293.0 192.2 298.7 193.0 p 291.7 191.2 293.0 192.2 296.0 190.3 291.7 187.5 s5 291.7 191.2 293.0 192.2 p 291.7 187.5 296.0 190.3 300.3 187.5 t6 299.4 192.5 300.3 192.7 300.3 187.5 296.0 190.3 s6 299.4 192.5 300.3 192.7 p 299.4 192.5 293.8 191.6 296.0 190.3 t6 299.4 192.5 293.8 191.6 p 291.7 190.0 293.8 191.6 296.0 190.3 291.7 187.5 s6 291.7 190.0 293.8 191.6 p 291.7 187.5 296.0 190.3 300.3 187.5 t7 298.0 191.6 300.3 192.2 300.3 187.5 296.0 190.3 s7 298.0 191.6 300.3 192.2 p 298.0 191.6 294.7 191.1 296.0 190.3 t7 298.0 191.6 294.7 191.1 p 291.7 188.9 294.7 191.1 296.0 190.3 291.7 187.5 s7 291.7 188.9 294.7 191.1 p 291.7 187.5 296.0 190.3 300.3 187.5 t8 296.7 190.7 300.3 191.8 300.3 187.5 296.0 190.3 s8 296.7 190.7 300.3 191.8 p 296.7 190.7 295.5 190.5 296.0 190.3 t8 296.7 190.7 295.5 190.5 p 291.7 187.7 295.5 190.5 296.0 190.3 291.7 187.5 s8 291.7 187.7 295.5 190.5 p 0.0 182.0 8.6 182.0 8.6 187.5 0.0 187.5 s8 8.6 182.0 17.2 182.0 17.2 187.5 8.6 187.5 s1 16.9 182.1 17.0 182.0 8.6 182.0 12.9 184.7 s2 16.9 182.1 17.0 182.0 p 16.9 182.1 16.7 187.2 12.9 184.7 t2 16.9 182.1 16.7 187.2 p 16.6 187.5 16.7 187.2 12.9 184.7 8.6 187.5 s2 16.6 187.5 16.7 187.2 p 8.6 187.5 12.9 184.7 8.6 182.0 t2 15.7 182.9 15.9 182.0 8.6 182.0 12.9 184.7 s3 15.7 182.9 15.9 182.0 p 15.7 182.9 15.5 186.5 12.9 184.7 t3 15.7 182.9 15.5 186.5 p 15.3 187.5 15.5 186.5 12.9 184.7 8.6 187.5 s3 15.3 187.5 15.5 186.5 p 8.6 187.5 12.9 184.7 8.6 182.0 t3 14.5 183.7 14.8 182.0 8.6 182.0 12.9 184.7 s4 14.5 183.7 14.8 182.0 p 14.5 183.7 14.4 185.7 12.9 184.7 t4 14.5 183.7 14.4 185.7 p 14.0 187.5 14.4 185.7 12.9 184.7 8.6 187.5 s4 14.0 187.5 14.4 185.7 p 8.6 187.5 12.9 184.7 8.6 182.0 t4 13.3 184.5 13.8 182.0 8.6 182.0 12.9 184.7 s5 13.3 184.5 13.8 182.0 p 13.3 184.5 13.3 185.0 12.9 184.7 t5 13.3 184.5 13.3 185.0 p 12.7 187.5 13.3 185.0 12.9 184.7 8.6 187.5 s5 12.7 187.5 13.3 185.0 p 8.6 187.5 12.9 184.7 8.6 182.0 t5 12.7 182.0 12.2 184.3 8.6 182.0 t6 12.7 182.0 12.2 184.3 p 11.9 185.4 11.4 187.5 8.6 187.5 t6 11.9 185.4 11.4 187.5 p 11.9 185.4 12.2 184.3 8.6 182.0 8.6 187.5 s6 11.9 185.4 12.2 184.3 p 11.6 182.0 11.3 183.7 8.6 182.0 t7 11.6 182.0 11.3 183.7 p 10.4 186.3 10.1 187.5 8.6 187.5 t7 10.4 186.3 10.1 187.5 p 10.4 186.3 11.3 183.7 8.6 182.0 8.6 187.5 s7 10.4 186.3 11.3 183.7 p 10.5 182.0 10.3 183.1 8.6 182.0 t8 10.5 182.0 10.3 183.1 p 8.9 187.3 8.8 187.5 8.6 187.5 t8 8.9 187.3 8.8 187.5 p 8.9 187.3 10.3 183.1 8.6 182.0 8.6 187.5 s8 8.9 187.3 10.3 183.1 p 17.2 182.0 25.7 182.0 25.7 187.5 17.2 187.5 s1 25.7 182.0 34.3 182.0 34.3 187.5 25.7 187.5 s1 25.9 182.0 26.0 182.1 30.0 184.7 34.3 182.0 s2 25.9 182.0 26.0 182.1 p 34.3 182.0 30.0 184.7 34.3 187.5 t2 26.2 187.2 26.3 187.5 34.3 187.5 30.0 184.7 s2 26.2 187.2 26.3 187.5 p 26.2 187.2 26.0 182.1 30.0 184.7 t2 26.2 187.2 26.0 182.1 p 27.0 182.0 27.2 182.9 30.0 184.7 34.3 182.0 s3 27.0 182.0 27.2 182.9 p 34.3 182.0 30.0 184.7 34.3 187.5 t3 27.4 186.5 27.6 187.5 34.3 187.5 30.0 184.7 s3 27.4 186.5 27.6 187.5 p 27.4 186.5 27.2 182.9 30.0 184.7 t3 27.4 186.5 27.2 182.9 p 28.1 182.0 28.4 183.7 30.0 184.7 34.3 182.0 s4 28.1 182.0 28.4 183.7 p 34.3 182.0 30.0 184.7 34.3 187.5 t4 28.5 185.7 28.9 187.5 34.3 187.5 30.0 184.7 s4 28.5 185.7 28.9 187.5 p 28.5 185.7 28.4 183.7 30.0 184.7 t4 28.5 185.7 28.4 183.7 p 29.1 182.0 29.6 184.5 30.0 184.7 34.3 182.0 s5 29.1 182.0 29.6 184.5 p 34.3 182.0 30.0 184.7 34.3 187.5 t5 29.6 185.0 30.2 187.5 34.3 187.5 30.0 184.7 s5 29.6 185.0 30.2 187.5 p 29.6 185.0 29.6 184.5 30.0 184.7 t5 29.6 185.0 29.6 184.5 p 30.6 184.3 30.2 182.0 34.3 182.0 t6 30.6 184.3 30.2 182.0 p 30.6 184.3 31.0 185.4 34.3 187.5 34.3 182.0 s6 30.6 184.3 31.0 185.4 p 31.5 187.5 31.0 185.4 34.3 187.5 t6 31.5 187.5 31.0 185.4 p 31.6 183.7 31.3 182.0 34.3 182.0 t7 31.6 183.7 31.3 182.0 p 31.6 183.7 32.5 186.3 34.3 187.5 34.3 182.0 s7 31.6 183.7 32.5 186.3 p 32.8 187.5 32.5 186.3 34.3 187.5 t7 32.8 187.5 32.5 186.3 p 32.6 183.1 32.3 182.0 34.3 182.0 t8 32.6 183.1 32.3 182.0 p 32.6 183.1 34.0 187.3 34.3 187.5 34.3 182.0 s8 32.6 183.1 34.0 187.3 p 34.1 187.5 34.0 187.3 34.3 187.5 t8 34.1 187.5 34.0 187.3 p 34.3 182.0 42.9 182.0 42.9 187.5 34.3 187.5 s8 42.9 182.0 51.5 182.0 51.5 187.5 42.9 187.5 s8 51.5 182.0 60.1 182.0 60.1 187.5 51.5 187.5 s1 59.8 182.1 59.9 182.0 51.5 182.0 55.8 184.7 s2 59.8 182.1 59.9 182.0 p 59.8 182.1 59.6 187.2 55.8 184.7 t2 59.8 182.1 59.6 187.2 p 59.5 187.5 59.6 187.2 55.8 184.7 51.5 187.5 s2 59.5 187.5 59.6 187.2 p 51.5 187.5 55.8 184.7 51.5 182.0 t2 58.6 182.9 58.8 182.0 51.5 182.0 55.8 184.7 s3 58.6 182.9 58.8 182.0 p 58.6 182.9 58.4 186.5 55.8 184.7 t3 58.6 182.9 58.4 186.5 p 58.2 187.5 58.4 186.5 55.8 184.7 51.5 187.5 s3 58.2 187.5 58.4 186.5 p 51.5 187.5 55.8 184.7 51.5 182.0 t3 57.4 183.7 57.7 182.0 51.5 182.0 55.8 184.7 s4 57.4 183.7 57.7 182.0 p 57.4 183.7 57.3 185.7 55.8 184.7 t4 57.4 183.7 57.3 185.7 p 56.9 187.5 57.3 185.7 55.8 184.7 51.5 187.5 s4 56.9 187.5 57.3 185.7 p 51.5 187.5 55.8 184.7 51.5 182.0 t4 56.2 184.5 56.6 182.0 51.5 182.0 55.8 184.7 s5 56.2 184.5 56.6 182.0 p 56.2 184.5 56.2 185.0 55.8 184.7 t5 56.2 184.5 56.2 185.0 p 55.6 187.5 56.2 185.0 55.8 184.7 51.5 187.5 s5 55.6 187.5 56.2 185.0 p 51.5 187.5 55.8 184.7 51.5 182.0 t5 55.6 182.0 55.1 184.3 51.5 182.0 t6 55.6 182.0 55.1 184.3 p 54.8 185.4 54.3 187.5 51.5 187.5 t6 54.8 185.4 54.3 187.5 p 54.8 185.4 55.1 184.3 51.5 182.0 51.5 187.5 s6 54.8 185.4 55.1 184.3 p 54.5 182.0 54.2 183.7 51.5 182.0 t7 54.5 182.0 54.2 183.7 p 53.3 186.3 53.0 187.5 51.5 187.5 t7 53.3 186.3 53.0 187.5 p 53.3 186.3 54.2 183.7 51.5 182.0 51.5 187.5 s7 53.3 186.3 54.2 183.7 p 53.4 182.0 53.2 183.1 51.5 182.0 t8 53.4 182.0 53.2 183.1 p 51.8 187.3 51.7 187.5 51.5 187.5 t8 51.8 187.3 51.7 187.5 p 51.8 187.3 53.2 183.1 51.5 182.0 51.5 187.5 s8 51.8 187.3 53.2 183.1 p 60.1 182.0 68.6 182.0 68.6 187.5 60.1 187.5 s1 68.6 182.0 77.2 182.0 77.2 187.5 68.6 187.5 s1 68.8 182.0 68.9 182.1 72.9 184.7 77.2 182.0 s2 68.8 182.0 68.9 182.1 p 77.2 182.0 72.9 184.7 77.2 187.5 t2 69.1 187.2 69.2 187.5 77.2 187.5 72.9 184.7 s2 69.1 187.2 69.2 187.5 p 69.1 187.2 68.9 182.1 72.9 184.7 t2 69.1 187.2 68.9 182.1 p 69.9 182.0 70.1 182.9 72.9 184.7 77.2 182.0 s3 69.9 182.0 70.1 182.9 p 77.2 182.0 72.9 184.7 77.2 187.5 t3 70.3 186.5 70.5 187.5 77.2 187.5 72.9 184.7 s3 70.3 186.5 70.5 187.5 p 70.3 186.5 70.1 182.9 72.9 184.7 t3 70.3 186.5 70.1 182.9 p 71.0 182.0 71.3 183.7 72.9 184.7 77.2 182.0 s4 71.0 182.0 71.3 183.7 p 77.2 182.0 72.9 184.7 77.2 187.5 t4 71.4 185.7 71.8 187.5 77.2 187.5 72.9 184.7 s4 71.4 185.7 71.8 187.5 p 71.4 185.7 71.3 183.7 72.9 184.7 t4 71.4 185.7 71.3 183.7 p 72.0 182.0 72.5 184.5 72.9 184.7 77.2 182.0 s5 72.0 182.0 72.5 184.5 p 77.2 182.0 72.9 184.7 77.2 187.5 t5 72.5 185.0 73.1 187.5 77.2 187.5 72.9 184.7 s5 72.5 185.0 73.1 187.5 p 72.5 185.0 72.5 184.5 72.9 184.7 t5 72.5 185.0 72.5 184.5 p 73.5 184.3 73.1 182.0 77.2 182.0 t6 73.5 184.3 73.1 182.0 p 73.5 184.3 73.9 185.4 77.2 187.5 77.2 182.0 s6 73.5 184.3 73.9 185.4 p 74.4 187.5 73.9 185.4 77.2 187.5 t6 74.4 187.5 73.9 185.4 p 74.5 183.7 74.2 182.0 77.2 182.0 t7 74.5 183.7 74.2 182.0 p 74.5 183.7 75.4 186.3 77.2 187.5 77.2 182.0 s7 74.5 183.7 75.4 186.3 p 75.7 187.5 75.4 186.3 77.2 187.5 t7 75.7 187.5 75.4 186.3 p 75.5 183.1 75.2 182.0 77.2 182.0 t8 75.5 183.1 75.2 182.0 p 75.5 183.1 76.9 187.3 77.2 187.5 77.2 182.0 s8 75.5 183.1 76.9 187.3 p 77.0 187.5 76.9 187.3 77.2 187.5 t8 77.0 187.5 76.9 187.3 p 77.2 182.0 85.8 182.0 85.8 187.5 77.2 187.5 s8 85.8 182.0 94.4 182.0 94.4 187.5 85.8 187.5 s8 94.4 182.0 102.9 182.0 102.9 187.5 94.4 187.5 s1 102.7 182.1 102.7 182.0 94.4 182.0 98.7 184.7 s2 102.7 182.1 102.7 182.0 p 102.7 182.1 102.4 187.2 98.7 184.7 t2 102.7 182.1 102.4 187.2 p 102.4 187.5 102.4 187.2 98.7 184.7 94.4 187.5 s2 102.4 187.5 102.4 187.2 p 94.4 187.5 98.7 184.7 94.4 182.0 t2 101.5 182.9 101.7 182.0 94.4 182.0 98.7 184.7 s3 101.5 182.9 101.7 182.0 p 101.5 182.9 101.3 186.5 98.7 184.7 t3 101.5 182.9 101.3 186.5 p 101.1 187.5 101.3 186.5 98.7 184.7 94.4 187.5 s3 101.1 187.5 101.3 186.5 p 94.4 187.5 98.7 184.7 94.4 182.0 t3 100.3 183.7 100.6 182.0 94.4 182.0 98.7 184.7 s4 100.3 183.7 100.6 182.0 p 100.3 183.7 100.2 185.7 98.7 184.7 t4 100.3 183.7 100.2 185.7 p 99.8 187.5 100.2 185.7 98.7 184.7 94.4 187.5 s4 99.8 187.5 100.2 185.7 p 94.4 187.5 98.7 184.7 94.4 182.0 t4 99.1 184.5 99.5 182.0 94.4 182.0 98.7 184.7 s5 99.1 184.5 99.5 182.0 p 99.1 184.5 99.1 185.0 98.7 184.7 t5 99.1 184.5 99.1 185.0 p 98.5 187.5 99.1 185.0 98.7 184.7 94.4 187.5 s5 98.5 187.5 99.1 185.0 p 94.4 187.5 98.7 184.7 94.4 182.0 t5 98.5 182.0 98.0 184.3 94.4 182.0 t6 98.5 182.0 98.0 184.3 p 97.7 185.4 97.2 187.5 94.4 187.5 t6 97.7 185.4 97.2 187.5 p 97.7 185.4 98.0 184.3 94.4 182.0 94.4 187.5 s6 97.7 185.4 98.0 184.3 p 97.4 182.0 97.1 183.7 94.4 182.0 t7 97.4 182.0 97.1 183.7 p 96.2 186.3 95.9 187.5 94.4 187.5 t7 96.2 186.3 95.9 187.5 p 96.2 186.3 97.1 183.7 94.4 182.0 94.4 187.5 s7 96.2 186.3 97.1 183.7 p 96.3 182.0 96.1 183.1 94.4 182.0 t8 96.3 182.0 96.1 183.1 p 94.7 187.3 94.6 187.5 94.4 187.5 t8 94.7 187.3 94.6 187.5 p 94.7 187.3 96.1 183.1 94.4 182.0 94.4 187.5 s8 94.7 187.3 96.1 183.1 p 102.9 182.0 111.5 182.0 111.5 187.5 102.9 187.5 s1 111.5 182.0 120.1 182.0 120.1 187.5 111.5 187.5 s1 111.7 182.0 111.8 182.1 115.8 184.7 120.1 182.0 s2 111.7 182.0 111.8 182.1 p 120.1 182.0 115.8 184.7 120.1 187.5 t2 112.0 187.2 112.1 187.5 120.1 187.5 115.8 184.7 s2 112.0 187.2 112.1 187.5 p 112.0 187.2 111.8 182.1 115.8 184.7 t2 112.0 187.2 111.8 182.1 p 112.8 182.0 113.0 182.9 115.8 184.7 120.1 182.0 s3 112.8 182.0 113.0 182.9 p 120.1 182.0 115.8 184.7 120.1 187.5 t3 113.2 186.5 113.4 187.5 120.1 187.5 115.8 184.7 s3 113.2 186.5 113.4 187.5 p 113.2 186.5 113.0 182.9 115.8 184.7 t3 113.2 186.5 113.0 182.9 p 113.9 182.0 114.2 183.7 115.8 184.7 120.1 182.0 s4 113.9 182.0 114.2 183.7 p 120.1 182.0 115.8 184.7 120.1 187.5 t4 114.3 185.7 114.7 187.5 120.1 187.5 115.8 184.7 s4 114.3 185.7 114.7 187.5 p 114.3 185.7 114.2 183.7 115.8 184.7 t4 114.3 185.7 114.2 183.7 p 114.9 182.0 115.4 184.5 115.8 184.7 120.1 182.0 s5 114.9 182.0 115.4 184.5 p 120.1 182.0 115.8 184.7 120.1 187.5 t5 115.4 185.0 116.0 187.5 120.1 187.5 115.8 184.7 s5 115.4 185.0 116.0 187.5 p 115.4 185.0 115.4 184.5 115.8 184.7 t5 115.4 185.0 115.4 184.5 p 116.4 184.3 116.0 182.0 120.1 182.0 t6 116.4 184.3 116.0 182.0 p 116.4 184.3 116.8 185.4 120.1 187.5 120.1 182.0 s6 116.4 184.3 116.8 185.4 p 117.3 187.5 116.8 185.4 120.1 187.5 t6 117.3 187.5 116.8 185.4 p 117.4 183.7 117.1 182.0 120.1 182.0 t7 117.4 183.7 117.1 182.0 p 117.4 183.7 118.3 186.3 120.1 187.5 120.1 182.0 s7 117.4 183.7 118.3 186.3 p 118.6 187.5 118.3 186.3 120.1 187.5 t7 118.6 187.5 118.3 186.3 p 118.3 183.1 118.1 182.0 120.1 182.0 t8 118.3 183.1 118.1 182.0 p 118.3 183.1 119.8 187.3 120.1 187.5 120.1 182.0 s8 118.3 183.1 119.8 187.3 p 119.9 187.5 119.8 187.3 120.1 187.5 t8 119.9 187.5 119.8 187.3 p 120.1 182.0 128.7 182.0 128.7 187.5 120.1 187.5 s8 128.7 182.0 137.3 182.0 137.3 187.5 128.7 187.5 s8 137.3 182.0 145.8 182.0 145.8 187.5 137.3 187.5 s1 145.6 182.1 145.6 182.0 137.3 182.0 141.6 184.7 s2 145.6 182.1 145.6 182.0 p 145.6 182.1 145.3 187.2 141.6 184.7 t2 145.6 182.1 145.3 187.2 p 145.3 187.5 145.3 187.2 141.6 184.7 137.3 187.5 s2 145.3 187.5 145.3 187.2 p 137.3 187.5 141.6 184.7 137.3 182.0 t2 144.4 182.9 144.6 182.0 137.3 182.0 141.6 184.7 s3 144.4 182.9 144.6 182.0 p 144.4 182.9 144.2 186.5 141.6 184.7 t3 144.4 182.9 144.2 186.5 p 144.0 187.5 144.2 186.5 141.6 184.7 137.3 187.5 s3 144.0 187.5 144.2 186.5 p 137.3 187.5 141.6 184.7 137.3 182.0 t3 143.2 183.7 143.5 182.0 137.3 182.0 141.6 184.7 s4 143.2 183.7 143.5 182.0 p 143.2 183.7 143.1 185.7 141.6 184.7 t4 143.2 183.7 143.1 185.7 p 142.7 187.5 143.1 185.7 141.6 184.7 137.3 187.5 s4 142.7 187.5 143.1 185.7 p 137.3 187.5 141.6 184.7 137.3 182.0 t4 142.0 184.5 142.4 182.0 137.3 182.0 141.6 184.7 s5 142.0 184.5 142.4 182.0 p 142.0 184.5 141.9 185.0 141.6 184.7 t5 142.0 184.5 141.9 185.0 p 141.4 187.5 141.9 185.0 141.6 184.7 137.3 187.5 s5 141.4 187.5 141.9 185.0 p 137.3 187.5 141.6 184.7 137.3 182.0 t5 141.4 182.0 140.9 184.3 137.3 182.0 t6 141.4 182.0 140.9 184.3 p 140.6 185.4 140.1 187.5 137.3 187.5 t6 140.6 185.4 140.1 187.5 p 140.6 185.4 140.9 184.3 137.3 182.0 137.3 187.5 s6 140.6 185.4 140.9 184.3 p 140.3 182.0 140.0 183.7 137.3 182.0 t7 140.3 182.0 140.0 183.7 p 139.1 186.3 138.8 187.5 137.3 187.5 t7 139.1 186.3 138.8 187.5 p 139.1 186.3 140.0 183.7 137.3 182.0 137.3 187.5 s7 139.1 186.3 140.0 183.7 p 139.2 182.0 139.0 183.1 137.3 182.0 t8 139.2 182.0 139.0 183.1 p 137.6 187.3 137.5 187.5 137.3 187.5 t8 137.6 187.3 137.5 187.5 p 137.6 187.3 139.0 183.1 137.3 182.0 137.3 187.5 s8 137.6 187.3 139.0 183.1 p 145.8 182.0 154.4 182.0 154.4 187.5 145.8 187.5 s1 154.4 182.0 163.0 182.0 163.0 187.5 154.4 187.5 s1 154.6 182.0 154.6 182.1 158.7 184.7 163.0 182.0 s2 154.6 182.0 154.6 182.1 p 163.0 182.0 158.7 184.7 163.0 187.5 t2 154.9 187.2 155.0 187.5 163.0 187.5 158.7 184.7 s2 154.9 187.2 155.0 187.5 p 154.9 187.2 154.6 182.1 158.7 184.7 t2 154.9 187.2 154.6 182.1 p 155.7 182.0 155.9 182.9 158.7 184.7 163.0 182.0 s3 155.7 182.0 155.9 182.9 p 163.0 182.0 158.7 184.7 163.0 187.5 t3 156.1 186.5 156.3 187.5 163.0 187.5 158.7 184.7 s3 156.1 186.5 156.3 187.5 p 156.1 186.5 155.9 182.9 158.7 184.7 t3 156.1 186.5 155.9 182.9 p 156.8 182.0 157.1 183.7 158.7 184.7 163.0 182.0 s4 156.8 182.0 157.1 183.7 p 163.0 182.0 158.7 184.7 163.0 187.5 t4 157.2 185.7 157.6 187.5 163.0 187.5 158.7 184.7 s4 157.2 185.7 157.6 187.5 p 157.2 185.7 157.1 183.7 158.7 184.7 t4 157.2 185.7 157.1 183.7 p 157.8 182.0 158.3 184.5 158.7 184.7 163.0 182.0 s5 157.8 182.0 158.3 184.5 p 163.0 182.0 158.7 184.7 163.0 187.5 t5 158.3 185.0 158.9 187.5 163.0 187.5 158.7 184.7 s5 158.3 185.0 158.9 187.5 p 158.3 185.0 158.3 184.5 158.7 184.7 t5 158.3 185.0 158.3 184.5 p 159.3 184.3 158.9 182.0 163.0 182.0 t6 159.3 184.3 158.9 182.0 p 159.3 184.3 159.7 185.4 163.0 187.5 163.0 182.0 s6 159.3 184.3 159.7 185.4 p 160.2 187.5 159.7 185.4 163.0 187.5 t6 160.2 187.5 159.7 185.4 p 160.3 183.7 160.0 182.0 163.0 182.0 t7 160.3 183.7 160.0 182.0 p 160.3 183.7 161.2 186.3 163.0 187.5 163.0 182.0 s7 160.3 183.7 161.2 186.3 p 161.5 187.5 161.2 186.3 163.0 187.5 t7 161.5 187.5 161.2 186.3 p 161.2 183.1 161.0 182.0 163.0 182.0 t8 161.2 183.1 161.0 182.0 p 161.2 183.1 162.7 187.3 163.0 187.5 163.0 182.0 s8 161.2 183.1 162.7 187.3 p 162.7 187.5 162.7 187.3 163.0 187.5 t8 162.7 187.5 162.7 187.3 p 163.0 182.0 171.6 182.0 171.6 187.5 163.0 187.5 s8 171.6 182.0 180.2 182.0 180.2 187.5 171.6 187.5 s8 180.2 182.0 188.7 182.0 188.7 187.5 180.2 187.5 s1 188.5 182.1 188.5 182.0 180.2 182.0 184.4 184.7 s2 188.5 182.1 188.5 182.0 p 188.5 182.1 188.2 187.2 184.4 184.7 t2 188.5 182.1 188.2 187.2 p 188.2 187.5 188.2 187.2 184.4 184.7 180.2 187.5 s2 188.2 187.5 188.2 187.2 p 180.2 187.5 184.4 184.7 180.2 182.0 t2 187.3 182.9 187.5 182.0 180.2 182.0 184.4 184.7 s3 187.3 182.9 187.5 182.0 p 187.3 182.9 187.1 186.5 184.4 184.7 t3 187.3 182.9 187.1 186.5 p 186.9 187.5 187.1 186.5 184.4 184.7 180.2 187.5 s3 186.9 187.5 187.1 186.5 p 180.2 187.5 184.4 184.7 180.2 182.0 t3 186.1 183.7 186.4 182.0 180.2 182.0 184.4 184.7 s4 186.1 183.7 186.4 182.0 p 186.1 183.7 186.0 185.7 184.4 184.7 t4 186.1 183.7 186.0 185.7 p 185.6 187.5 186.0 185.7 184.4 184.7 180.2 187.5 s4 185.6 187.5 186.0 185.7 p 180.2 187.5 184.4 184.7 180.2 182.0 t4 184.9 184.5 185.3 182.0 180.2 182.0 184.4 184.7 s5 184.9 184.5 185.3 182.0 p 184.9 184.5 184.8 185.0 184.4 184.7 t5 184.9 184.5 184.8 185.0 p 184.3 187.5 184.8 185.0 184.4 184.7 180.2 187.5 s5 184.3 187.5 184.8 185.0 p 180.2 187.5 184.4 184.7 180.2 182.0 t5 184.3 182.0 183.8 184.3 180.2 182.0 t6 184.3 182.0 183.8 184.3 p 183.5 185.4 183.0 187.5 180.2 187.5 t6 183.5 185.4 183.0 187.5 p 183.5 185.4 183.8 184.3 180.2 182.0 180.2 187.5 s6 183.5 185.4 183.8 184.3 p 183.2 182.0 182.9 183.7 180.2 182.0 t7 183.2 182.0 182.9 183.7 p 182.0 186.3 181.7 187.5 180.2 187.5 t7 182.0 186.3 181.7 187.5 p 182.0 186.3 182.9 183.7 180.2 182.0 180.2 187.5 s7 182.0 186.3 182.9 183.7 p 182.1 182.0 181.9 183.1 180.2 182.0 t8 182.1 182.0 181.9 183.1 p 180.5 187.3 180.4 187.5 180.2 187.5 t8 180.5 187.3 180.4 187.5 p 180.5 187.3 181.9 183.1 180.2 182.0 180.2 187.5 s8 180.5 187.3 181.9 183.1 p 188.7 182.0 197.3 182.0 197.3 187.5 188.7 187.5 s1 197.3 182.0 205.9 182.0 205.9 187.5 197.3 187.5 s1 197.5 182.0 197.5 182.1 201.6 184.7 205.9 182.0 s2 197.5 182.0 197.5 182.1 p 205.9 182.0 201.6 184.7 205.9 187.5 t2 197.8 187.2 197.9 187.5 205.9 187.5 201.6 184.7 s2 197.8 187.2 197.9 187.5 p 197.8 187.2 197.5 182.1 201.6 184.7 t2 197.8 187.2 197.5 182.1 p 198.6 182.0 198.8 182.9 201.6 184.7 205.9 182.0 s3 198.6 182.0 198.8 182.9 p 205.9 182.0 201.6 184.7 205.9 187.5 t3 198.9 186.5 199.2 187.5 205.9 187.5 201.6 184.7 s3 198.9 186.5 199.2 187.5 p 198.9 186.5 198.8 182.9 201.6 184.7 t3 198.9 186.5 198.8 182.9 p 199.7 182.0 200.0 183.7 201.6 184.7 205.9 182.0 s4 199.7 182.0 200.0 183.7 p 205.9 182.0 201.6 184.7 205.9 187.5 t4 200.1 185.7 200.5 187.5 205.9 187.5 201.6 184.7 s4 200.1 185.7 200.5 187.5 p 200.1 185.7 200.0 183.7 201.6 184.7 t4 200.1 185.7 200.0 183.7 p 200.7 182.0 201.2 184.5 201.6 184.7 205.9 182.0 s5 200.7 182.0 201.2 184.5 p 205.9 182.0 201.6 184.7 205.9 187.5 t5 201.2 185.0 201.8 187.5 205.9 187.5 201.6 184.7 s5 201.2 185.0 201.8 187.5 p 201.2 185.0 201.2 184.5 201.6 184.7 t5 201.2 185.0 201.2 184.5 p 202.2 184.3 201.8 182.0 205.9 182.0 t6 202.2 184.3 201.8 182.0 p 202.2 184.3 202.6 185.4 205.9 187.5 205.9 182.0 s6 202.2 184.3 202.6 185.4 p 203.1 187.5 202.6 185.4 205.9 187.5 t6 203.1 187.5 202.6 185.4 p 203.2 183.7 202.9 182.0 205.9 182.0 t7 203.2 183.7 202.9 182.0 p 203.2 183.7 204.1 186.3 205.9 187.5 205.9 182.0 s7 203.2 183.7 204.1 186.3 p 204.3 187.5 204.1 186.3 205.9 187.5 t7 204.3 187.5 204.1 186.3 p 204.1 183.1 203.9 182.0 205.9 182.0 t8 204.1 183.1 203.9 182.0 p 204.1 183.1 205.6 187.3 205.9 187.5 205.9 182.0 s8 204.1 183.1 205.6 187.3 p 205.6 187.5 205.6 187.3 205.9 187.5 t8 205.6 187.5 205.6 187.3 p 205.9 182.0 214.5 182.0 214.5 187.5 205.9 187.5 s8 214.5 182.0 223.1 182.0 223.1 187.5 214.5 187.5 s8 223.1 182.0 231.6 182.0 231.6 187.5 223.1 187.5 s1 231.4 182.1 231.4 182.0 223.1 182.0 227.3 184.7 s2 231.4 182.1 231.4 182.0 p 231.4 182.1 231.1 187.2 227.3 184.7 t2 231.4 182.1 231.1 187.2 p 231.1 187.5 231.1 187.2 227.3 184.7 223.1 187.5 s2 231.1 187.5 231.1 187.2 p 223.1 187.5 227.3 184.7 223.1 182.0 t2 230.2 182.9 230.4 182.0 223.1 182.0 227.3 184.7 s3 230.2 182.9 230.4 182.0 p 230.2 182.9 230.0 186.5 227.3 184.7 t3 230.2 182.9 230.0 186.5 p 229.8 187.5 230.0 186.5 227.3 184.7 223.1 187.5 s3 229.8 187.5 230.0 186.5 p 223.1 187.5 227.3 184.7 223.1 182.0 t3 229.0 183.7 229.3 182.0 223.1 182.0 227.3 184.7 s4 229.0 183.7 229.3 182.0 p 229.0 183.7 228.9 185.7 227.3 184.7 t4 229.0 183.7 228.9 185.7 p 228.5 187.5 228.9 185.7 227.3 184.7 223.1 187.5 s4 228.5 187.5 228.9 185.7 p 223.1 187.5 227.3 184.7 223.1 182.0 t4 227.8 184.5 228.2 182.0 223.1 182.0 227.3 184.7 s5 227.8 184.5 228.2 182.0 p 227.8 184.5 227.7 185.0 227.3 184.7 t5 227.8 184.5 227.7 185.0 p 227.2 187.5 227.7 185.0 227.3 184.7 223.1 187.5 s5 227.2 187.5 227.7 185.0 p 223.1 187.5 227.3 184.7 223.1 182.0 t5 227.2 182.0 226.7 184.3 223.1 182.0 t6 227.2 182.0 226.7 184.3 p 226.4 185.4 225.9 187.5 223.1 187.5 t6 226.4 185.4 225.9 187.5 p 226.4 185.4 226.7 184.3 223.1 182.0 223.1 187.5 s6 226.4 185.4 226.7 184.3 p 226.1 182.0 225.8 183.7 223.1 182.0 t7 226.1 182.0 225.8 183.7 p 224.9 186.3 224.6 187.5 223.1 187.5 t7 224.9 186.3 224.6 187.5 p 224.9 186.3 225.8 183.7 223.1 182.0 223.1 187.5 s7 224.9 186.3 225.8 183.7 p 225.0 182.0 224.8 183.1 223.1 182.0 t8 225.0 182.0 224.8 183.1 p 223.3 187.3 223.3 187.5 223.1 187.5 t8 223.3 187.3 223.3 187.5 p 223.3 187.3 224.8 183.1 223.1 182.0 223.1 187.5 s8 223.3 187.3 224.8 183.1 p 231.6 182.0 240.2 182.0 240.2 187.5 231.6 187.5 s1 240.2 182.0 248.8 182.0 248.8 187.5 240.2 187.5 s1 240.4 182.0 240.4 182.1 244.5 184.7 248.8 182.0 s2 240.4 182.0 240.4 182.1 p 248.8 182.0 244.5 184.7 248.8 187.5 t2 240.7 187.2 240.8 187.5 248.8 187.5 244.5 184.7 s2 240.7 187.2 240.8 187.5 p 240.7 187.2 240.4 182.1 244.5 184.7 t2 240.7 187.2 240.4 182.1 p 241.5 182.0 241.6 182.9 244.5 184.7 248.8 182.0 s3 241.5 182.0 241.6 182.9 p 248.8 182.0 244.5 184.7 248.8 187.5 t3 241.8 186.5 242.1 187.5 248.8 187.5 244.5 184.7 s3 241.8 186.5 242.1 187.5 p 241.8 186.5 241.6 182.9 244.5 184.7 t3 241.8 186.5 241.6 182.9 p 242.5 182.0 242.9 183.7 244.5 184.7 248.8 182.0 s4 242.5 182.0 242.9 183.7 p 248.8 182.0 244.5 184.7 248.8 187.5 t4 243.0 185.7 243.4 187.5 248.8 187.5 244.5 184.7 s4 243.0 185.7 243.4 187.5 p 243.0 185.7 242.9 183.7 244.5 184.7 t4 243.0 185.7 242.9 183.7 p 243.6 182.0 244.1 184.5 244.5 184.7 248.8 182.0 s5 243.6 182.0 244.1 184.5 p 248.8 182.0 244.5 184.7 248.8 187.5 t5 244.1 185.0 244.7 187.5 248.8 187.5 244.5 184.7 s5 244.1 185.0 244.7 187.5 p 244.1 185.0 244.1 184.5 244.5 184.7 t5 244.1 185.0 244.1 184.5 p 245.1 184.3 244.7 182.0 248.8 182.0 t6 245.1 184.3 244.7 182.0 p 245.1 184.3 245.5 185.4 248.8 187.5 248.8 182.0 s6 245.1 184.3 245.5 185.4 p 246.0 187.5 245.5 185.4 248.8 187.5 t6 246.0 187.5 245.5 185.4 p 246.1 183.7 245.8 182.0 248.8 182.0 t7 246.1 183.7 245.8 182.0 p 246.1 183.7 247.0 186.3 248.8 187.5 248.8 182.0 s7 246.1 183.7 247.0 186.3 p 247.2 187.5 247.0 186.3 248.8 187.5 t7 247.2 187.5 247.0 186.3 p 247.0 183.1 246.8 182.0 248.8 182.0 t8 247.0 183.1 246.8 182.0 p 247.0 183.1 248.5 187.3 248.8 187.5 248.8 182.0 s8 247.0 183.1 248.5 187.3 p 248.5 187.5 248.5 187.3 248.8 187.5 t8 248.5 187.5 248.5 187.3 p 248.8 182.0 257.4 182.0 257.4 187.5 248.8 187.5 s8 257.4 182.0 265.9 182.0 265.9 187.5 257.4 187.5 s8 265.9 182.0 274.5 182.0 274.5 187.5 265.9 187.5 s1 274.3 182.1 274.3 182.0 265.9 182.0 270.2 184.7 s2 274.3 182.1 274.3 182.0 p 274.3 182.1 274.0 187.2 270.2 184.7 t2 274.3 182.1 274.0 187.2 p 274.0 187.5 274.0 187.2 270.2 184.7 265.9 187.5 s2 274.0 187.5 274.0 187.2 p 265.9 187.5 270.2 184.7 265.9 182.0 t2 273.1 182.9 273.3 182.0 265.9 182.0 270.2 184.7 s3 273.1 182.9 273.3 182.0 p 273.1 182.9 272.9 186.5 270.2 184.7 t3 273.1 182.9 272.9 186.5 p 272.7 187.5 272.9 186.5 270.2 184.7 265.9 187.5 s3 272.7 187.5 272.9 186.5 p 265.9 187.5 270.2 184.7 265.9 182.0 t3 271.9 183.7 272.2 182.0 265.9 182.0 270.2 184.7 s4 271.9 183.7 272.2 182.0 p 271.9 183.7 271.8 185.7 270.2 184.7 t4 271.9 183.7 271.8 185.7 p 271.4 187.5 271.8 185.7 270.2 184.7 265.9 187.5 s4 271.4 187.5 271.8 185.7 p 265.9 187.5 270.2 184.7 265.9 182.0 t4 270.7 184.5 271.1 182.0 265.9 182.0 270.2 184.7 s5 270.7 184.5 271.1 182.0 p 270.7 184.5 270.6 185.0 270.2 184.7 t5 270.7 184.5 270.6 185.0 p 270.1 187.5 270.6 185.0 270.2 184.7 265.9 187.5 s5 270.1 187.5 270.6 185.0 p 265.9 187.5 270.2 184.7 265.9 182.0 t5 270.0 182.0 269.6 184.3 265.9 182.0 t6 270.0 182.0 269.6 184.3 p 269.3 185.4 268.8 187.5 265.9 187.5 t6 269.3 185.4 268.8 187.5 p 269.3 185.4 269.6 184.3 265.9 182.0 265.9 187.5 s6 269.3 185.4 269.6 184.3 p 269.0 182.0 268.7 183.7 265.9 182.0 t7 269.0 182.0 268.7 183.7 p 267.7 186.3 267.5 187.5 265.9 187.5 t7 267.7 186.3 267.5 187.5 p 267.7 186.3 268.7 183.7 265.9 182.0 265.9 187.5 s7 267.7 186.3 268.7 183.7 p 267.9 182.0 267.7 183.1 265.9 182.0 t8 267.9 182.0 267.7 183.1 p 266.2 187.3 266.2 187.5 265.9 187.5 t8 266.2 187.3 266.2 187.5 p 266.2 187.3 267.7 183.1 265.9 182.0 265.9 187.5 s8 266.2 187.3 267.7 183.1 p 274.5 182.0 283.1 182.0 283.1 187.5 274.5 187.5 s1 283.1 182.0 291.7 182.0 291.7 187.5 283.1 187.5 s1 283.3 182.0 283.3 182.1 287.4 184.7 291.7 182.0 s2 283.3 182.0 283.3 182.1 p 291.7 182.0 287.4 184.7 291.7 187.5 t2 283.6 187.2 283.7 187.5 291.7 187.5 287.4 184.7 s2 283.6 187.2 283.7 187.5 p 283.6 187.2 283.3 182.1 287.4 184.7 t2 283.6 187.2 283.3 182.1 p 284.4 182.0 284.5 182.9 287.4 184.7 291.7 182.0 s3 284.4 182.0 284.5 182.9 p 291.7 182.0 287.4 184.7 291.7 187.5 t3 284.7 186.5 285.0 187.5 291.7 187.5 287.4 184.7 s3 284.7 186.5 285.0 187.5 p 284.7 186.5 284.5 182.9 287.4 184.7 t3 284.7 186.5 284.5 182.9 p 285.4 182.0 285.8 183.7 287.4 184.7 291.7 182.0 s4 285.4 182.0 285.8 183.7 p 291.7 182.0 287.4 184.7 291.7 187.5 t4 285.9 185.7 286.3 187.5 291.7 187.5 287.4 184.7 s4 285.9 185.7 286.3 187.5 p 285.9 185.7 285.8 183.7 287.4 184.7 t4 285.9 185.7 285.8 183.7 p 286.5 182.0 287.0 184.5 287.4 184.7 291.7 182.0 s5 286.5 182.0 287.0 184.5 p 291.7 182.0 287.4 184.7 291.7 187.5 t5 287.0 185.0 287.6 187.5 291.7 187.5 287.4 184.7 s5 287.0 185.0 287.6 187.5 p 287.0 185.0 287.0 184.5 287.4 184.7 t5 287.0 185.0 287.0 184.5 p 288.0 184.3 287.6 182.0 291.7 182.0 t6 288.0 184.3 287.6 182.0 p 288.0 184.3 288.4 185.4 291.7 187.5 291.7 182.0 s6 288.0 184.3 288.4 185.4 p 288.8 187.5 288.4 185.4 291.7 187.5 t6 288.8 187.5 288.4 185.4 p 289.0 183.7 288.6 182.0 291.7 182.0 t7 289.0 183.7 288.6 182.0 p 289.0 183.7 289.9 186.3 291.7 187.5 291.7 182.0 s7 289.0 183.7 289.9 186.3 p 290.1 187.5 289.9 186.3 291.7 187.5 t7 290.1 187.5 289.9 186.3 p 289.9 183.1 289.7 182.0 291.7 182.0 t8 289.9 183.1 289.7 182.0 p 289.9 183.1 291.4 187.3 291.7 187.5 291.7 182.0 s8 289.9 183.1 291.4 187.3 p 291.4 187.5 291.4 187.3 291.7 187.5 t8 291.4 187.5 291.4 187.3 p 291.7 182.0 300.3 182.0 300.3 187.5 291.7 187.5 s8 0.0 176.5 8.6 176.5 8.6 182.0 0.0 182.0 s5 8.3 176.7 7.9 176.5 0.0 176.5 4.3 179.2 s6 8.3 176.7 7.9 176.5 p 8.6 177.1 8.3 176.7 4.3 179.2 8.6 182.0 s6 8.6 177.1 8.3 176.7 p 8.6 182.0 4.3 179.2 0.0 182.0 t6 0.0 182.0 4.3 179.2 0.0 176.5 t6 7.7 177.0 6.6 176.5 0.0 176.5 4.3 179.2 s7 7.7 177.0 6.6 176.5 p 8.6 178.4 7.7 177.0 4.3 179.2 8.6 182.0 s7 8.6 178.4 7.7 177.0 p 8.6 182.0 4.3 179.2 0.0 182.0 t7 0.0 182.0 4.3 179.2 0.0 176.5 t7 7.1 177.4 5.3 176.5 0.0 176.5 4.3 179.2 s8 7.1 177.4 5.3 176.5 p 8.6 179.6 7.1 177.4 4.3 179.2 8.6 182.0 s8 8.6 179.6 7.1 177.4 p 8.6 182.0 4.3 179.2 0.0 182.0 t8 0.0 182.0 4.3 179.2 0.0 176.5 t8 8.6 176.5 17.2 176.5 17.2 182.0 8.6 182.0 s1 16.7 176.8 16.4 176.5 8.6 176.5 12.9 179.2 s2 16.7 176.8 16.4 176.5 p 16.7 176.8 16.9 181.8 12.9 179.2 t2 16.7 176.8 16.9 181.8 p 17.0 182.0 16.9 181.8 12.9 179.2 8.6 182.0 s2 17.0 182.0 16.9 181.8 p 8.6 182.0 12.9 179.2 8.6 176.5 t2 15.3 177.7 14.2 176.5 8.6 176.5 12.9 179.2 s3 15.3 177.7 14.2 176.5 p 15.3 177.7 15.4 180.9 12.9 179.2 t3 15.3 177.7 15.4 180.9 p 15.9 182.0 15.4 180.9 12.9 179.2 8.6 182.0 s3 15.9 182.0 15.4 180.9 p 8.6 182.0 12.9 179.2 8.6 176.5 t3 13.9 178.6 11.9 176.5 8.6 176.5 12.9 179.2 s4 13.9 178.6 11.9 176.5 p 13.9 178.6 13.9 179.9 12.9 179.2 t4 13.9 178.6 13.9 179.9 p 14.8 182.0 13.9 179.9 12.9 179.2 8.6 182.0 s4 14.8 182.0 13.9 179.9 p 8.6 182.0 12.9 179.2 8.6 176.5 t4 9.7 176.5 11.3 178.2 8.6 176.5 t5 9.7 176.5 11.3 178.2 p 12.6 179.4 13.8 182.0 8.6 182.0 t5 12.6 179.4 13.8 182.0 p 12.6 179.4 11.3 178.2 8.6 176.5 8.6 182.0 s5 12.6 179.4 11.3 178.2 p 11.8 179.9 12.7 182.0 8.6 182.0 t6 11.8 179.9 12.7 182.0 p 8.6 177.1 11.8 179.9 8.6 182.0 t6 8.6 177.1 11.8 179.9 p 11.0 180.5 11.6 182.0 8.6 182.0 t7 11.0 180.5 11.6 182.0 p 8.6 178.4 11.0 180.5 8.6 182.0 t7 8.6 178.4 11.0 180.5 p 10.1 181.0 10.5 182.0 8.6 182.0 t8 10.1 181.0 10.5 182.0 p 8.6 179.6 10.1 181.0 8.6 182.0 t8 8.6 179.6 10.1 181.0 p 17.2 176.5 25.7 176.5 25.7 182.0 17.2 182.0 s1 25.7 176.5 34.3 176.5 34.3 182.0 25.7 182.0 s1 26.5 176.5 26.2 176.8 30.0 179.2 34.3 176.5 s2 26.5 176.5 26.2 176.8 p 34.3 176.5 30.0 179.2 34.3 182.0 t2 26.0 181.8 25.9 182.0 34.3 182.0 30.0 179.2 s2 26.0 181.8 25.9 182.0 p 26.0 181.8 26.2 176.8 30.0 179.2 t2 26.0 181.8 26.2 176.8 p 28.7 176.5 27.6 177.7 30.0 179.2 34.3 176.5 s3 28.7 176.5 27.6 177.7 p 34.3 176.5 30.0 179.2 34.3 182.0 t3 27.5 180.9 27.0 182.0 34.3 182.0 30.0 179.2 s3 27.5 180.9 27.0 182.0 p 27.5 180.9 27.6 177.7 30.0 179.2 t3 27.5 180.9 27.6 177.7 p 31.0 176.5 29.0 178.6 30.0 179.2 34.3 176.5 s4 31.0 176.5 29.0 178.6 p 34.3 176.5 30.0 179.2 34.3 182.0 t4 29.0 179.9 28.1 182.0 34.3 182.0 30.0 179.2 s4 29.0 179.9 28.1 182.0 p 29.0 179.9 29.0 178.6 30.0 179.2 t4 29.0 179.9 29.0 178.6 p 31.6 178.2 33.2 176.5 34.3 176.5 t5 31.6 178.2 33.2 176.5 p 31.6 178.2 30.3 179.4 34.3 182.0 34.3 176.5 s5 31.6 178.2 30.3 179.4 p 29.1 182.0 30.3 179.4 34.3 182.0 t5 29.1 182.0 30.3 179.4 p 31.1 179.9 34.3 177.1 34.3 182.0 t6 31.1 179.9 34.3 177.1 p 30.2 182.0 31.1 179.9 34.3 182.0 t6 30.2 182.0 31.1 179.9 p 31.9 180.5 34.3 178.4 34.3 182.0 t7 31.9 180.5 34.3 178.4 p 31.3 182.0 31.9 180.5 34.3 182.0 t7 31.3 182.0 31.9 180.5 p 32.8 181.0 34.3 179.6 34.3 182.0 t8 32.8 181.0 34.3 179.6 p 32.3 182.0 32.8 181.0 34.3 182.0 t8 32.3 182.0 32.8 181.0 p 34.3 176.5 42.9 176.5 42.9 182.0 34.3 182.0 s5 35.0 176.5 34.6 176.7 38.6 179.2 42.9 176.5 s6 35.0 176.5 34.6 176.7 p 42.9 176.5 38.6 179.2 42.9 182.0 t6 42.9 182.0 38.6 179.2 34.3 182.0 t6 34.6 176.7 34.3 177.1 34.3 182.0 38.6 179.2 s6 34.6 176.7 34.3 177.1 p 36.3 176.5 35.2 177.0 38.6 179.2 42.9 176.5 s7 36.3 176.5 35.2 177.0 p 42.9 176.5 38.6 179.2 42.9 182.0 t7 42.9 182.0 38.6 179.2 34.3 182.0 t7 35.2 177.0 34.3 178.4 34.3 182.0 38.6 179.2 s7 35.2 177.0 34.3 178.4 p 37.6 176.5 35.8 177.4 38.6 179.2 42.9 176.5 s8 37.6 176.5 35.8 177.4 p 42.9 176.5 38.6 179.2 42.9 182.0 t8 42.9 182.0 38.6 179.2 34.3 182.0 t8 35.8 177.4 34.3 179.6 34.3 182.0 38.6 179.2 s8 35.8 177.4 34.3 179.6 p 42.9 176.5 51.5 176.5 51.5 182.0 42.9 182.0 s5 51.2 176.7 50.8 176.5 42.9 176.5 47.2 179.2 s6 51.2 176.7 50.8 176.5 p 51.5 177.1 51.2 176.7 47.2 179.2 51.5 182.0 s6 51.5 177.1 51.2 176.7 p 51.5 182.0 47.2 179.2 42.9 182.0 t6 42.9 182.0 47.2 179.2 42.9 176.5 t6 50.6 177.0 49.5 176.5 42.9 176.5 47.2 179.2 s7 50.6 177.0 49.5 176.5 p 51.5 178.4 50.6 177.0 47.2 179.2 51.5 182.0 s7 51.5 178.4 50.6 177.0 p 51.5 182.0 47.2 179.2 42.9 182.0 t7 42.9 182.0 47.2 179.2 42.9 176.5 t7 50.0 177.4 48.2 176.5 42.9 176.5 47.2 179.2 s8 50.0 177.4 48.2 176.5 p 51.5 179.6 50.0 177.4 47.2 179.2 51.5 182.0 s8 51.5 179.6 50.0 177.4 p 51.5 182.0 47.2 179.2 42.9 182.0 t8 42.9 182.0 47.2 179.2 42.9 176.5 t8 51.5 176.5 60.1 176.5 60.1 182.0 51.5 182.0 s1 59.6 176.8 59.3 176.5 51.5 176.5 55.8 179.2 s2 59.6 176.8 59.3 176.5 p 59.6 176.8 59.8 181.8 55.8 179.2 t2 59.6 176.8 59.8 181.8 p 59.9 182.0 59.8 181.8 55.8 179.2 51.5 182.0 s2 59.9 182.0 59.8 181.8 p 51.5 182.0 55.8 179.2 51.5 176.5 t2 58.2 177.7 57.1 176.5 51.5 176.5 55.8 179.2 s3 58.2 177.7 57.1 176.5 p 58.2 177.7 58.3 180.9 55.8 179.2 t3 58.2 177.7 58.3 180.9 p 58.8 182.0 58.3 180.9 55.8 179.2 51.5 182.0 s3 58.8 182.0 58.3 180.9 p 51.5 182.0 55.8 179.2 51.5 176.5 t3 56.8 178.6 54.8 176.5 51.5 176.5 55.8 179.2 s4 56.8 178.6 54.8 176.5 p 56.8 178.6 56.8 179.9 55.8 179.2 t4 56.8 178.6 56.8 179.9 p 57.7 182.0 56.8 179.9 55.8 179.2 51.5 182.0 s4 57.7 182.0 56.8 179.9 p 51.5 182.0 55.8 179.2 51.5 176.5 t4 52.6 176.5 54.2 178.2 51.5 176.5 t5 52.6 176.5 54.2 178.2 p 55.5 179.4 56.6 182.0 51.5 182.0 t5 55.5 179.4 56.6 182.0 p 55.5 179.4 54.2 178.2 51.5 176.5 51.5 182.0 s5 55.5 179.4 54.2 178.2 p 54.7 179.9 55.6 182.0 51.5 182.0 t6 54.7 179.9 55.6 182.0 p 51.5 177.1 54.7 179.9 51.5 182.0 t6 51.5 177.1 54.7 179.9 p 53.8 180.5 54.5 182.0 51.5 182.0 t7 53.8 180.5 54.5 182.0 p 51.5 178.4 53.8 180.5 51.5 182.0 t7 51.5 178.4 53.8 180.5 p 53.0 181.0 53.4 182.0 51.5 182.0 t8 53.0 181.0 53.4 182.0 p 51.5 179.6 53.0 181.0 51.5 182.0 t8 51.5 179.6 53.0 181.0 p 60.1 176.5 68.6 176.5 68.6 182.0 60.1 182.0 s1 68.6 176.5 77.2 176.5 77.2 182.0 68.6 182.0 s1 69.4 176.5 69.1 176.8 72.9 179.2 77.2 176.5 s2 69.4 176.5 69.1 176.8 p 77.2 176.5 72.9 179.2 77.2 182.0 t2 68.9 181.8 68.8 182.0 77.2 182.0 72.9 179.2 s2 68.9 181.8 68.8 182.0 p 68.9 181.8 69.1 176.8 72.9 179.2 t2 68.9 181.8 69.1 176.8 p 71.6 176.5 70.5 177.7 72.9 179.2 77.2 176.5 s3 71.6 176.5 70.5 177.7 p 77.2 176.5 72.9 179.2 77.2 182.0 t3 70.4 180.9 69.9 182.0 77.2 182.0 72.9 179.2 s3 70.4 180.9 69.9 182.0 p 70.4 180.9 70.5 177.7 72.9 179.2 t3 70.4 180.9 70.5 177.7 p 73.8 176.5 71.9 178.6 72.9 179.2 77.2 176.5 s4 73.8 176.5 71.9 178.6 p 77.2 176.5 72.9 179.2 77.2 182.0 t4 71.9 179.9 71.0 182.0 77.2 182.0 72.9 179.2 s4 71.9 179.9 71.0 182.0 p 71.9 179.9 71.9 178.6 72.9 179.2 t4 71.9 179.9 71.9 178.6 p 74.5 178.2 76.1 176.5 77.2 176.5 t5 74.5 178.2 76.1 176.5 p 74.5 178.2 73.2 179.4 77.2 182.0 77.2 176.5 s5 74.5 178.2 73.2 179.4 p 72.0 182.0 73.2 179.4 77.2 182.0 t5 72.0 182.0 73.2 179.4 p 74.0 179.9 77.2 177.1 77.2 182.0 t6 74.0 179.9 77.2 177.1 p 73.1 182.0 74.0 179.9 77.2 182.0 t6 73.1 182.0 74.0 179.9 p 74.8 180.5 77.2 178.4 77.2 182.0 t7 74.8 180.5 77.2 178.4 p 74.2 182.0 74.8 180.5 77.2 182.0 t7 74.2 182.0 74.8 180.5 p 75.7 181.0 77.2 179.6 77.2 182.0 t8 75.7 181.0 77.2 179.6 p 75.2 182.0 75.7 181.0 77.2 182.0 t8 75.2 182.0 75.7 181.0 p 77.2 176.5 85.8 176.5 85.8 182.0 77.2 182.0 s5 77.8 176.5 77.5 176.7 81.5 179.2 85.8 176.5 s6 77.8 176.5 77.5 176.7 p 85.8 176.5 81.5 179.2 85.8 182.0 t6 85.8 182.0 81.5 179.2 77.2 182.0 t6 77.5 176.7 77.2 177.1 77.2 182.0 81.5 179.2 s6 77.5 176.7 77.2 177.1 p 79.2 176.5 78.1 177.0 81.5 179.2 85.8 176.5 s7 79.2 176.5 78.1 177.0 p 85.8 176.5 81.5 179.2 85.8 182.0 t7 85.8 182.0 81.5 179.2 77.2 182.0 t7 78.1 177.0 77.2 178.4 77.2 182.0 81.5 179.2 s7 78.1 177.0 77.2 178.4 p 80.5 176.5 78.6 177.4 81.5 179.2 85.8 176.5 s8 80.5 176.5 78.6 177.4 p 85.8 176.5 81.5 179.2 85.8 182.0 t8 85.8 182.0 81.5 179.2 77.2 182.0 t8 78.6 177.4 77.2 179.6 77.2 182.0 81.5 179.2 s8 78.6 177.4 77.2 179.6 p 85.8 176.5 94.4 176.5 94.4 182.0 85.8 182.0 s5 94.1 176.7 93.7 176.5 85.8 176.5 90.1 179.2 s6 94.1 176.7 93.7 176.5 p 94.4 177.1 94.1 176.7 90.1 179.2 94.4 182.0 s6 94.4 177.1 94.1 176.7 p 94.4 182.0 90.1 179.2 85.8 182.0 t6 85.8 182.0 90.1 179.2 85.8 176.5 t6 93.5 177.0 92.4 176.5 85.8 176.5 90.1 179.2 s7 93.5 177.0 92.4 176.5 p 94.4 178.4 93.5 177.0 90.1 179.2 94.4 182.0 s7 94.4 178.4 93.5 177.0 p 94.4 182.0 90.1 179.2 85.8 182.0 t7 85.8 182.0 90.1 179.2 85.8 176.5 t7 92.9 177.4 91.1 176.5 85.8 176.5 90.1 179.2 s8 92.9 177.4 91.1 176.5 p 94.4 179.6 92.9 177.4 90.1 179.2 94.4 182.0 s8 94.4 179.6 92.9 177.4 p 94.4 182.0 90.1 179.2 85.8 182.0 t8 85.8 182.0 90.1 179.2 85.8 176.5 t8 94.4 176.5 102.9 176.5 102.9 182.0 94.4 182.0 s1 102.5 176.8 102.2 176.5 94.4 176.5 98.7 179.2 s2 102.5 176.8 102.2 176.5 p 102.5 176.8 102.7 181.8 98.7 179.2 t2 102.5 176.8 102.7 181.8 p 102.7 182.0 102.7 181.8 98.7 179.2 94.4 182.0 s2 102.7 182.0 102.7 181.8 p 94.4 182.0 98.7 179.2 94.4 176.5 t2 101.1 177.7 100.0 176.5 94.4 176.5 98.7 179.2 s3 101.1 177.7 100.0 176.5 p 101.1 177.7 101.2 180.9 98.7 179.2 t3 101.1 177.7 101.2 180.9 p 101.7 182.0 101.2 180.9 98.7 179.2 94.4 182.0 s3 101.7 182.0 101.2 180.9 p 94.4 182.0 98.7 179.2 94.4 176.5 t3 99.6 178.6 97.7 176.5 94.4 176.5 98.7 179.2 s4 99.6 178.6 97.7 176.5 p 99.6 178.6 99.7 179.9 98.7 179.2 t4 99.6 178.6 99.7 179.9 p 100.6 182.0 99.7 179.9 98.7 179.2 94.4 182.0 s4 100.6 182.0 99.7 179.9 p 94.4 182.0 98.7 179.2 94.4 176.5 t4 95.5 176.5 97.1 178.2 94.4 176.5 t5 95.5 176.5 97.1 178.2 p 98.4 179.4 99.5 182.0 94.4 182.0 t5 98.4 179.4 99.5 182.0 p 98.4 179.4 97.1 178.2 94.4 176.5 94.4 182.0 s5 98.4 179.4 97.1 178.2 p 97.6 179.9 98.5 182.0 94.4 182.0 t6 97.6 179.9 98.5 182.0 p 94.4 177.1 97.6 179.9 94.4 182.0 t6 94.4 177.1 97.6 179.9 p 96.7 180.5 97.4 182.0 94.4 182.0 t7 96.7 180.5 97.4 182.0 p 94.4 178.4 96.7 180.5 94.4 182.0 t7 94.4 178.4 96.7 180.5 p 95.9 181.0 96.3 182.0 94.4 182.0 t8 95.9 181.0 96.3 182.0 p 94.4 179.6 95.9 181.0 94.4 182.0 t8 94.4 179.6 95.9 181.0 p 102.9 176.5 111.5 176.5 111.5 182.0 102.9 182.0 s1 111.5 176.5 120.1 176.5 120.1 182.0 111.5 182.0 s1 112.3 176.5 112.0 176.8 115.8 179.2 120.1 176.5 s2 112.3 176.5 112.0 176.8 p 120.1 176.5 115.8 179.2 120.1 182.0 t2 111.8 181.8 111.7 182.0 120.1 182.0 115.8 179.2 s2 111.8 181.8 111.7 182.0 p 111.8 181.8 112.0 176.8 115.8 179.2 t2 111.8 181.8 112.0 176.8 p 114.5 176.5 113.4 177.7 115.8 179.2 120.1 176.5 s3 114.5 176.5 113.4 177.7 p 120.1 176.5 115.8 179.2 120.1 182.0 t3 113.3 180.9 112.8 182.0 120.1 182.0 115.8 179.2 s3 113.3 180.9 112.8 182.0 p 113.3 180.9 113.4 177.7 115.8 179.2 t3 113.3 180.9 113.4 177.7 p 116.7 176.5 114.8 178.6 115.8 179.2 120.1 176.5 s4 116.7 176.5 114.8 178.6 p 120.1 176.5 115.8 179.2 120.1 182.0 t4 114.8 179.9 113.9 182.0 120.1 182.0 115.8 179.2 s4 114.8 179.9 113.9 182.0 p 114.8 179.9 114.8 178.6 115.8 179.2 t4 114.8 179.9 114.8 178.6 p 117.4 178.2 119.0 176.5 120.1 176.5 t5 117.4 178.2 119.0 176.5 p 117.4 178.2 116.1 179.4 120.1 182.0 120.1 176.5 s5 117.4 178.2 116.1 179.4 p 114.9 182.0 116.1 179.4 120.1 182.0 t5 114.9 182.0 116.1 179.4 p 116.9 179.9 120.1 177.1 120.1 182.0 t6 116.9 179.9 120.1 177.1 p 116.0 182.0 116.9 179.9 120.1 182.0 t6 116.0 182.0 116.9 179.9 p 117.7 180.5 120.1 178.4 120.1 182.0 t7 117.7 180.5 120.1 178.4 p 117.1 182.0 117.7 180.5 120.1 182.0 t7 117.1 182.0 117.7 180.5 p 118.6 181.0 120.1 179.6 120.1 182.0 t8 118.6 181.0 120.1 179.6 p 118.1 182.0 118.6 181.0 120.1 182.0 t8 118.1 182.0 118.6 181.0 p 120.1 176.5 128.7 176.5 128.7 182.0 120.1 182.0 s5 120.7 176.5 120.4 176.7 124.4 179.2 128.7 176.5 s6 120.7 176.5 120.4 176.7 p 128.7 176.5 124.4 179.2 128.7 182.0 t6 128.7 182.0 124.4 179.2 120.1 182.0 t6 120.4 176.7 120.1 177.1 120.1 182.0 124.4 179.2 s6 120.4 176.7 120.1 177.1 p 122.1 176.5 121.0 177.0 124.4 179.2 128.7 176.5 s7 122.1 176.5 121.0 177.0 p 128.7 176.5 124.4 179.2 128.7 182.0 t7 128.7 182.0 124.4 179.2 120.1 182.0 t7 121.0 177.0 120.1 178.4 120.1 182.0 124.4 179.2 s7 121.0 177.0 120.1 178.4 p 123.4 176.5 121.5 177.4 124.4 179.2 128.7 176.5 s8 123.4 176.5 121.5 177.4 p 128.7 176.5 124.4 179.2 128.7 182.0 t8 128.7 182.0 124.4 179.2 120.1 182.0 t8 121.5 177.4 120.1 179.6 120.1 182.0 124.4 179.2 s8 121.5 177.4 120.1 179.6 p 128.7 176.5 137.3 176.5 137.3 182.0 128.7 182.0 s5 137.0 176.7 136.6 176.5 128.7 176.5 133.0 179.2 s6 137.0 176.7 136.6 176.5 p 137.3 177.1 137.0 176.7 133.0 179.2 137.3 182.0 s6 137.3 177.1 137.0 176.7 p 137.3 182.0 133.0 179.2 128.7 182.0 t6 128.7 182.0 133.0 179.2 128.7 176.5 t6 136.4 177.0 135.3 176.5 128.7 176.5 133.0 179.2 s7 136.4 177.0 135.3 176.5 p 137.3 178.4 136.4 177.0 133.0 179.2 137.3 182.0 s7 137.3 178.4 136.4 177.0 p 137.3 182.0 133.0 179.2 128.7 182.0 t7 128.7 182.0 133.0 179.2 128.7 176.5 t7 135.8 177.4 134.0 176.5 128.7 176.5 133.0 179.2 s8 135.8 177.4 134.0 176.5 p 137.3 179.6 135.8 177.4 133.0 179.2 137.3 182.0 s8 137.3 179.6 135.8 177.4 p 137.3 182.0 133.0 179.2 128.7 182.0 t8 128.7 182.0 133.0 179.2 128.7 176.5 t8 137.3 176.5 145.8 176.5 145.8 182.0 137.3 182.0 s1 145.4 176.8 145.1 176.5 137.3 176.5 141.6 179.2 s2 145.4 176.8 145.1 176.5 p 145.4 176.8 145.6 181.8 141.6 179.2 t2 145.4 176.8 145.6 181.8 p 145.6 182.0 145.6 181.8 141.6 179.2 137.3 182.0 s2 145.6 182.0 145.6 181.8 p 137.3 182.0 141.6 179.2 137.3 176.5 t2 143.9 177.7 142.8 176.5 137.3 176.5 141.6 179.2 s3 143.9 177.7 142.8 176.5 p 143.9 177.7 144.1 180.9 141.6 179.2 t3 143.9 177.7 144.1 180.9 p 144.6 182.0 144.1 180.9 141.6 179.2 137.3 182.0 s3 144.6 182.0 144.1 180.9 p 137.3 182.0 141.6 179.2 137.3 176.5 t3 142.5 178.6 140.6 176.5 137.3 176.5 141.6 179.2 s4 142.5 178.6 140.6 176.5 p 142.5 178.6 142.6 179.9 141.6 179.2 t4 142.5 178.6 142.6 179.9 p 143.5 182.0 142.6 179.9 141.6 179.2 137.3 182.0 s4 143.5 182.0 142.6 179.9 p 137.3 182.0 141.6 179.2 137.3 176.5 t4 138.4 176.5 140.0 178.2 137.3 176.5 t5 138.4 176.5 140.0 178.2 p 141.3 179.4 142.4 182.0 137.3 182.0 t5 141.3 179.4 142.4 182.0 p 141.3 179.4 140.0 178.2 137.3 176.5 137.3 182.0 s5 141.3 179.4 140.0 178.2 p 140.5 179.9 141.4 182.0 137.3 182.0 t6 140.5 179.9 141.4 182.0 p 137.3 177.1 140.5 179.9 137.3 182.0 t6 137.3 177.1 140.5 179.9 p 139.6 180.5 140.3 182.0 137.3 182.0 t7 139.6 180.5 140.3 182.0 p 137.3 178.4 139.6 180.5 137.3 182.0 t7 137.3 178.4 139.6 180.5 p 138.8 181.0 139.2 182.0 137.3 182.0 t8 138.8 181.0 139.2 182.0 p 137.3 179.6 138.8 181.0 137.3 182.0 t8 137.3 179.6 138.8 181.0 p 145.8 176.5 154.4 176.5 154.4 182.0 145.8 182.0 s1 154.4 176.5 163.0 176.5 163.0 182.0 154.4 182.0 s1 155.2 176.5 154.9 176.8 158.7 179.2 163.0 176.5 s2 155.2 176.5 154.9 176.8 p 163.0 176.5 158.7 179.2 163.0 182.0 t2 154.7 181.8 154.6 182.0 163.0 182.0 158.7 179.2 s2 154.7 181.8 154.6 182.0 p 154.7 181.8 154.9 176.8 158.7 179.2 t2 154.7 181.8 154.9 176.8 p 157.4 176.5 156.3 177.7 158.7 179.2 163.0 176.5 s3 157.4 176.5 156.3 177.7 p 163.0 176.5 158.7 179.2 163.0 182.0 t3 156.2 180.9 155.7 182.0 163.0 182.0 158.7 179.2 s3 156.2 180.9 155.7 182.0 p 156.2 180.9 156.3 177.7 158.7 179.2 t3 156.2 180.9 156.3 177.7 p 159.6 176.5 157.7 178.6 158.7 179.2 163.0 176.5 s4 159.6 176.5 157.7 178.6 p 163.0 176.5 158.7 179.2 163.0 182.0 t4 157.7 179.9 156.8 182.0 163.0 182.0 158.7 179.2 s4 157.7 179.9 156.8 182.0 p 157.7 179.9 157.7 178.6 158.7 179.2 t4 157.7 179.9 157.7 178.6 p 160.3 178.2 161.9 176.5 163.0 176.5 t5 160.3 178.2 161.9 176.5 p 160.3 178.2 159.0 179.4 163.0 182.0 163.0 176.5 s5 160.3 178.2 159.0 179.4 p 157.8 182.0 159.0 179.4 163.0 182.0 t5 157.8 182.0 159.0 179.4 p 159.8 179.9 163.0 177.1 163.0 182.0 t6 159.8 179.9 163.0 177.1 p 158.9 182.0 159.8 179.9 163.0 182.0 t6 158.9 182.0 159.8 179.9 p 160.6 180.5 163.0 178.4 163.0 182.0 t7 160.6 180.5 163.0 178.4 p 160.0 182.0 160.6 180.5 163.0 182.0 t7 160.0 182.0 160.6 180.5 p 161.5 181.0 163.0 179.6 163.0 182.0 t8 161.5 181.0 163.0 179.6 p 161.0 182.0 161.5 181.0 163.0 182.0 t8 161.0 182.0 161.5 181.0 p 163.0 176.5 171.6 176.5 171.6 182.0 163.0 182.0 s5 163.6 176.5 163.3 176.7 167.3 179.2 171.6 176.5 s6 163.6 176.5 163.3 176.7 p 171.6 176.5 167.3 179.2 171.6 182.0 t6 171.6 182.0 167.3 179.2 163.0 182.0 t6 163.3 176.7 163.0 177.1 163.0 182.0 167.3 179.2 s6 163.3 176.7 163.0 177.1 p 164.9 176.5 163.9 177.0 167.3 179.2 171.6 176.5 s7 164.9 176.5 163.9 177.0 p 171.6 176.5 167.3 179.2 171.6 182.0 t7 171.6 182.0 167.3 179.2 163.0 182.0 t7 163.9 177.0 163.0 178.4 163.0 182.0 167.3 179.2 s7 163.9 177.0 163.0 178.4 p 166.3 176.5 164.4 177.4 167.3 179.2 171.6 176.5 s8 166.3 176.5 164.4 177.4 p 171.6 176.5 167.3 179.2 171.6 182.0 t8 171.6 182.0 167.3 179.2 163.0 182.0 t8 164.4 177.4 163.0 179.6 163.0 182.0 167.3 179.2 s8 164.4 177.4 163.0 179.6 p 171.6 176.5 180.2 176.5 180.2 182.0 171.6 182.0 s5 179.9 176.7 179.5 176.5 171.6 176.5 175.9 179.2 s6 179.9 176.7 179.5 176.5 p 180.2 177.1 179.9 176.7 175.9 179.2 180.2 182.0 s6 180.2 177.1 179.9 176.7 p 180.2 182.0 175.9 179.2 171.6 182.0 t6 171.6 182.0 175.9 179.2 171.6 176.5 t6 179.3 177.0 178.2 176.5 171.6 176.5 175.9 179.2 s7 179.3 177.0 178.2 176.5 p 180.2 178.4 179.3 177.0 175.9 179.2 180.2 182.0 s7 180.2 178.4 179.3 177.0 p 180.2 182.0 175.9 179.2 171.6 182.0 t7 171.6 182.0 175.9 179.2 171.6 176.5 t7 178.7 177.4 176.9 176.5 171.6 176.5 175.9 179.2 s8 178.7 177.4 176.9 176.5 p 180.2 179.6 178.7 177.4 175.9 179.2 180.2 182.0 s8 180.2 179.6 178.7 177.4 p 180.2 182.0 175.9 179.2 171.6 182.0 t8 171.6 182.0 175.9 179.2 171.6 176.5 t8 180.2 176.5 188.7 176.5 188.7 182.0 180.2 182.0 s1 188.2 176.8 188.0 176.5 180.2 176.5 184.4 179.2 s2 188.2 176.8 188.0 176.5 p 188.2 176.8 188.5 181.8 184.4 179.2 t2 188.2 176.8 188.5 181.8 p 188.5 182.0 188.5 181.8 184.4 179.2 180.2 182.0 s2 188.5 182.0 188.5 181.8 p 180.2 182.0 184.4 179.2 180.2 176.5 t2 186.8 177.7 185.7 176.5 180.2 176.5 184.4 179.2 s3 186.8 177.7 185.7 176.5 p 186.8 177.7 187.0 180.9 184.4 179.2 t3 186.8 177.7 187.0 180.9 p 187.5 182.0 187.0 180.9 184.4 179.2 180.2 182.0 s3 187.5 182.0 187.0 180.9 p 180.2 182.0 184.4 179.2 180.2 176.5 t3 185.4 178.6 183.5 176.5 180.2 176.5 184.4 179.2 s4 185.4 178.6 183.5 176.5 p 185.4 178.6 185.5 179.9 184.4 179.2 t4 185.4 178.6 185.5 179.9 p 186.4 182.0 185.5 179.9 184.4 179.2 180.2 182.0 s4 186.4 182.0 185.5 179.9 p 180.2 182.0 184.4 179.2 180.2 176.5 t4 181.3 176.5 182.9 178.2 180.2 176.5 t5 181.3 176.5 182.9 178.2 p 184.2 179.4 185.3 182.0 180.2 182.0 t5 184.2 179.4 185.3 182.0 p 184.2 179.4 182.9 178.2 180.2 176.5 180.2 182.0 s5 184.2 179.4 182.9 178.2 p 183.4 179.9 184.3 182.0 180.2 182.0 t6 183.4 179.9 184.3 182.0 p 180.2 177.1 183.4 179.9 180.2 182.0 t6 180.2 177.1 183.4 179.9 p 182.5 180.5 183.2 182.0 180.2 182.0 t7 182.5 180.5 183.2 182.0 p 180.2 178.4 182.5 180.5 180.2 182.0 t7 180.2 178.4 182.5 180.5 p 181.7 181.0 182.1 182.0 180.2 182.0 t8 181.7 181.0 182.1 182.0 p 180.2 179.6 181.7 181.0 180.2 182.0 t8 180.2 179.6 181.7 181.0 p 188.7 176.5 197.3 176.5 197.3 182.0 188.7 182.0 s1 197.3 176.5 205.9 176.5 205.9 182.0 197.3 182.0 s1 198.1 176.5 197.8 176.8 201.6 179.2 205.9 176.5 s2 198.1 176.5 197.8 176.8 p 205.9 176.5 201.6 179.2 205.9 182.0 t2 197.6 181.8 197.5 182.0 205.9 182.0 201.6 179.2 s2 197.6 181.8 197.5 182.0 p 197.6 181.8 197.8 176.8 201.6 179.2 t2 197.6 181.8 197.8 176.8 p 200.3 176.5 199.2 177.7 201.6 179.2 205.9 176.5 s3 200.3 176.5 199.2 177.7 p 205.9 176.5 201.6 179.2 205.9 182.0 t3 199.1 180.9 198.6 182.0 205.9 182.0 201.6 179.2 s3 199.1 180.9 198.6 182.0 p 199.1 180.9 199.2 177.7 201.6 179.2 t3 199.1 180.9 199.2 177.7 p 202.5 176.5 200.6 178.6 201.6 179.2 205.9 176.5 s4 202.5 176.5 200.6 178.6 p 205.9 176.5 201.6 179.2 205.9 182.0 t4 200.6 179.9 199.7 182.0 205.9 182.0 201.6 179.2 s4 200.6 179.9 199.7 182.0 p 200.6 179.9 200.6 178.6 201.6 179.2 t4 200.6 179.9 200.6 178.6 p 203.2 178.2 204.7 176.5 205.9 176.5 t5 203.2 178.2 204.7 176.5 p 203.2 178.2 201.9 179.4 205.9 182.0 205.9 176.5 s5 203.2 178.2 201.9 179.4 p 200.7 182.0 201.9 179.4 205.9 182.0 t5 200.7 182.0 201.9 179.4 p 202.7 179.9 205.9 177.1 205.9 182.0 t6 202.7 179.9 205.9 177.1 p 201.8 182.0 202.7 179.9 205.9 182.0 t6 201.8 182.0 202.7 179.9 p 203.5 180.5 205.9 178.4 205.9 182.0 t7 203.5 180.5 205.9 178.4 p 202.9 182.0 203.5 180.5 205.9 182.0 t7 202.9 182.0 203.5 180.5 p 204.4 181.0 205.9 179.6 205.9 182.0 t8 204.4 181.0 205.9 179.6 p 203.9 182.0 204.4 181.0 205.9 182.0 t8 203.9 182.0 204.4 181.0 p 205.9 176.5 214.5 176.5 214.5 182.0 205.9 182.0 s5 206.5 176.5 206.2 176.7 210.2 179.2 214.5 176.5 s6 206.5 176.5 206.2 176.7 p 214.5 176.5 210.2 179.2 214.5 182.0 t6 214.5 182.0 210.2 179.2 205.9 182.0 t6 206.2 176.7 205.9 177.1 205.9 182.0 210.2 179.2 s6 206.2 176.7 205.9 177.1 p 207.8 176.5 206.8 177.0 210.2 179.2 214.5 176.5 s7 207.8 176.5 206.8 177.0 p 214.5 176.5 210.2 179.2 214.5 182.0 t7 214.5 182.0 210.2 179.2 205.9 182.0 t7 206.8 177.0 205.9 178.4 205.9 182.0 210.2 179.2 s7 206.8 177.0 205.9 178.4 p 209.2 176.5 207.3 177.4 210.2 179.2 214.5 176.5 s8 209.2 176.5 207.3 177.4 p 214.5 176.5 210.2 179.2 214.5 182.0 t8 214.5 182.0 210.2 179.2 205.9 182.0 t8 207.3 177.4 205.9 179.6 205.9 182.0 210.2 179.2 s8 207.3 177.4 205.9 179.6 p 214.5 176.5 223.1 176.5 223.1 182.0 214.5 182.0 s5 222.8 176.7 222.4 176.5 214.5 176.5 218.8 179.2 s6 222.8 176.7 222.4 176.5 p 223.1 177.1 222.8 176.7 218.8 179.2 223.1 182.0 s6 223.1 177.1 222.8 176.7 p 223.1 182.0 218.8 179.2 214.5 182.0 t6 214.5 182.0 218.8 179.2 214.5 176.5 t6 222.2 177.0 221.1 176.5 214.5 176.5 218.8 179.2 s7 222.2 177.0 221.1 176.5 p 223.1 178.4 222.2 177.0 218.8 179.2 223.1 182.0 s7 223.1 178.4 222.2 177.0 p 223.1 182.0 218.8 179.2 214.5 182.0 t7 214.5 182.0 218.8 179.2 214.5 176.5 t7 221.6 177.4 219.8 176.5 214.5 176.5 218.8 179.2 s8 221.6 177.4 219.8 176.5 p 223.1 179.6 221.6 177.4 218.8 179.2 223.1 182.0 s8 223.1 179.6 221.6 177.4 p 223.1 182.0 218.8 179.2 214.5 182.0 t8 214.5 182.0 218.8 179.2 214.5 176.5 t8 223.1 176.5 231.6 176.5 231.6 182.0 223.1 182.0 s1 231.1 176.8 230.9 176.5 223.1 176.5 227.3 179.2 s2 231.1 176.8 230.9 176.5 p 231.1 176.8 231.4 181.8 227.3 179.2 t2 231.1 176.8 231.4 181.8 p 231.4 182.0 231.4 181.8 227.3 179.2 223.1 182.0 s2 231.4 182.0 231.4 181.8 p 223.1 182.0 227.3 179.2 223.1 176.5 t2 229.7 177.7 228.6 176.5 223.1 176.5 227.3 179.2 s3 229.7 177.7 228.6 176.5 p 229.7 177.7 229.9 180.9 227.3 179.2 t3 229.7 177.7 229.9 180.9 p 230.4 182.0 229.9 180.9 227.3 179.2 223.1 182.0 s3 230.4 182.0 229.9 180.9 p 223.1 182.0 227.3 179.2 223.1 176.5 t3 228.3 178.6 226.4 176.5 223.1 176.5 227.3 179.2 s4 228.3 178.6 226.4 176.5 p 228.3 178.6 228.4 179.9 227.3 179.2 t4 228.3 178.6 228.4 179.9 p 229.3 182.0 228.4 179.9 227.3 179.2 223.1 182.0 s4 229.3 182.0 228.4 179.9 p 223.1 182.0 227.3 179.2 223.1 176.5 t4 224.2 176.5 225.8 178.2 223.1 176.5 t5 224.2 176.5 225.8 178.2 p 227.1 179.4 228.2 182.0 223.1 182.0 t5 227.1 179.4 228.2 182.0 p 227.1 179.4 225.8 178.2 223.1 176.5 223.1 182.0 s5 227.1 179.4 225.8 178.2 p 226.3 179.9 227.2 182.0 223.1 182.0 t6 226.3 179.9 227.2 182.0 p 223.1 177.1 226.3 179.9 223.1 182.0 t6 223.1 177.1 226.3 179.9 p 225.4 180.5 226.1 182.0 223.1 182.0 t7 225.4 180.5 226.1 182.0 p 223.1 178.4 225.4 180.5 223.1 182.0 t7 223.1 178.4 225.4 180.5 p 224.6 181.0 225.0 182.0 223.1 182.0 t8 224.6 181.0 225.0 182.0 p 223.1 179.6 224.6 181.0 223.1 182.0 t8 223.1 179.6 224.6 181.0 p 231.6 176.5 240.2 176.5 240.2 182.0 231.6 182.0 s1 240.2 176.5 248.8 176.5 248.8 182.0 240.2 182.0 s1 241.0 176.5 240.7 176.8 244.5 179.2 248.8 176.5 s2 241.0 176.5 240.7 176.8 p 248.8 176.5 244.5 179.2 248.8 182.0 t2 240.5 181.8 240.4 182.0 248.8 182.0 244.5 179.2 s2 240.5 181.8 240.4 182.0 p 240.5 181.8 240.7 176.8 244.5 179.2 t2 240.5 181.8 240.7 176.8 p 243.2 176.5 242.1 177.7 244.5 179.2 248.8 176.5 s3 243.2 176.5 242.1 177.7 p 248.8 176.5 244.5 179.2 248.8 182.0 t3 242.0 180.9 241.5 182.0 248.8 182.0 244.5 179.2 s3 242.0 180.9 241.5 182.0 p 242.0 180.9 242.1 177.7 244.5 179.2 t3 242.0 180.9 242.1 177.7 p 245.4 176.5 243.5 178.6 244.5 179.2 248.8 176.5 s4 245.4 176.5 243.5 178.6 p 248.8 176.5 244.5 179.2 248.8 182.0 t4 243.5 179.9 242.5 182.0 248.8 182.0 244.5 179.2 s4 243.5 179.9 242.5 182.0 p 243.5 179.9 243.5 178.6 244.5 179.2 t4 243.5 179.9 243.5 178.6 p 246.1 178.2 247.6 176.5 248.8 176.5 t5 246.1 178.2 247.6 176.5 p 246.1 178.2 244.7 179.4 248.8 182.0 248.8 176.5 s5 246.1 178.2 244.7 179.4 p 243.6 182.0 244.7 179.4 248.8 182.0 t5 243.6 182.0 244.7 179.4 p 245.6 179.9 248.8 177.1 248.8 182.0 t6 245.6 179.9 248.8 177.1 p 244.7 182.0 245.6 179.9 248.8 182.0 t6 244.7 182.0 245.6 179.9 p 246.4 180.5 248.8 178.4 248.8 182.0 t7 246.4 180.5 248.8 178.4 p 245.8 182.0 246.4 180.5 248.8 182.0 t7 245.8 182.0 246.4 180.5 p 247.3 181.0 248.8 179.6 248.8 182.0 t8 247.3 181.0 248.8 179.6 p 246.8 182.0 247.3 181.0 248.8 182.0 t8 246.8 182.0 247.3 181.0 p 248.8 176.5 257.4 176.5 257.4 182.0 248.8 182.0 s5 249.4 176.5 249.1 176.7 253.1 179.2 257.4 176.5 s6 249.4 176.5 249.1 176.7 p 257.4 176.5 253.1 179.2 257.4 182.0 t6 257.4 182.0 253.1 179.2 248.8 182.0 t6 249.1 176.7 248.8 177.1 248.8 182.0 253.1 179.2 s6 249.1 176.7 248.8 177.1 p 250.7 176.5 249.6 177.0 253.1 179.2 257.4 176.5 s7 250.7 176.5 249.6 177.0 p 257.4 176.5 253.1 179.2 257.4 182.0 t7 257.4 182.0 253.1 179.2 248.8 182.0 t7 249.6 177.0 248.8 178.4 248.8 182.0 253.1 179.2 s7 249.6 177.0 248.8 178.4 p 252.0 176.5 250.2 177.4 253.1 179.2 257.4 176.5 s8 252.0 176.5 250.2 177.4 p 257.4 176.5 253.1 179.2 257.4 182.0 t8 257.4 182.0 253.1 179.2 248.8 182.0 t8 250.2 177.4 248.8 179.6 248.8 182.0 253.1 179.2 s8 250.2 177.4 248.8 179.6 p 257.4 176.5 265.9 176.5 265.9 182.0 257.4 182.0 s5 265.7 176.7 265.3 176.5 257.4 176.5 261.7 179.2 s6 265.7 176.7 265.3 176.5 p 265.9 177.1 265.7 176.7 261.7 179.2 265.9 182.0 s6 265.9 177.1 265.7 176.7 p 265.9 182.0 261.7 179.2 257.4 182.0 t6 257.4 182.0 261.7 179.2 257.4 176.5 t6 265.1 177.0 264.0 176.5 257.4 176.5 261.7 179.2 s7 265.1 177.0 264.0 176.5 p 265.9 178.4 265.1 177.0 261.7 179.2 265.9 182.0 s7 265.9 178.4 265.1 177.0 p 265.9 182.0 261.7 179.2 257.4 182.0 t7 257.4 182.0 261.7 179.2 257.4 176.5 t7 264.5 177.4 262.7 176.5 257.4 176.5 261.7 179.2 s8 264.5 177.4 262.7 176.5 p 265.9 179.6 264.5 177.4 261.7 179.2 265.9 182.0 s8 265.9 179.6 264.5 177.4 p 265.9 182.0 261.7 179.2 257.4 182.0 t8 257.4 182.0 261.7 179.2 257.4 176.5 t8 265.9 176.5 274.5 176.5 274.5 182.0 265.9 182.0 s1 274.0 176.8 273.7 176.5 265.9 176.5 270.2 179.2 s2 274.0 176.8 273.7 176.5 p 274.0 176.8 274.2 181.8 270.2 179.2 t2 274.0 176.8 274.2 181.8 p 274.3 182.0 274.2 181.8 270.2 179.2 265.9 182.0 s2 274.3 182.0 274.2 181.8 p 265.9 182.0 270.2 179.2 265.9 176.5 t2 272.6 177.7 271.5 176.5 265.9 176.5 270.2 179.2 s3 272.6 177.7 271.5 176.5 p 272.6 177.7 272.8 180.9 270.2 179.2 t3 272.6 177.7 272.8 180.9 p 273.3 182.0 272.8 180.9 270.2 179.2 265.9 182.0 s3 273.3 182.0 272.8 180.9 p 265.9 182.0 270.2 179.2 265.9 176.5 t3 271.2 178.6 269.3 176.5 265.9 176.5 270.2 179.2 s4 271.2 178.6 269.3 176.5 p 271.2 178.6 271.3 179.9 270.2 179.2 t4 271.2 178.6 271.3 179.9 p 272.2 182.0 271.3 179.9 270.2 179.2 265.9 182.0 s4 272.2 182.0 271.3 179.9 p 265.9 182.0 270.2 179.2 265.9 176.5 t4 267.1 176.5 268.7 178.2 265.9 176.5 t5 267.1 176.5 268.7 178.2 p 270.0 179.4 271.1 182.0 265.9 182.0 t5 270.0 179.4 271.1 182.0 p 270.0 179.4 268.7 178.2 265.9 176.5 265.9 182.0 s5 270.0 179.4 268.7 178.2 p 269.2 179.9 270.0 182.0 265.9 182.0 t6 269.2 179.9 270.0 182.0 p 265.9 177.1 269.2 179.9 265.9 182.0 t6 265.9 177.1 269.2 179.9 p 268.3 180.5 269.0 182.0 265.9 182.0 t7 268.3 180.5 269.0 182.0 p 265.9 178.4 268.3 180.5 265.9 182.0 t7 265.9 178.4 268.3 180.5 p 267.5 181.0 267.9 182.0 265.9 182.0 t8 267.5 181.0 267.9 182.0 p 265.9 179.6 267.5 181.0 265.9 182.0 t8 265.9 179.6 267.5 181.0 p 274.5 176.5 283.1 176.5 283.1 182.0 274.5 182.0 s1 283.1 176.5 291.7 176.5 291.7 182.0 283.1 182.0 s1 283.9 176.5 283.6 176.8 287.4 179.2 291.7 176.5 s2 283.9 176.5 283.6 176.8 p 291.7 176.5 287.4 179.2 291.7 182.0 t2 283.4 181.8 283.3 182.0 291.7 182.0 287.4 179.2 s2 283.4 181.8 283.3 182.0 p 283.4 181.8 283.6 176.8 287.4 179.2 t2 283.4 181.8 283.6 176.8 p 286.1 176.5 285.0 177.7 287.4 179.2 291.7 176.5 s3 286.1 176.5 285.0 177.7 p 291.7 176.5 287.4 179.2 291.7 182.0 t3 284.9 180.9 284.4 182.0 291.7 182.0 287.4 179.2 s3 284.9 180.9 284.4 182.0 p 284.9 180.9 285.0 177.7 287.4 179.2 t3 284.9 180.9 285.0 177.7 p 288.3 176.5 286.4 178.6 287.4 179.2 291.7 176.5 s4 288.3 176.5 286.4 178.6 p 291.7 176.5 287.4 179.2 291.7 182.0 t4 286.3 179.9 285.4 182.0 291.7 182.0 287.4 179.2 s4 286.3 179.9 285.4 182.0 p 286.3 179.9 286.4 178.6 287.4 179.2 t4 286.3 179.9 286.4 178.6 p 289.0 178.2 290.5 176.5 291.7 176.5 t5 289.0 178.2 290.5 176.5 p 289.0 178.2 287.6 179.4 291.7 182.0 291.7 176.5 s5 289.0 178.2 287.6 179.4 p 286.5 182.0 287.6 179.4 291.7 182.0 t5 286.5 182.0 287.6 179.4 p 288.5 179.9 291.7 177.1 291.7 182.0 t6 288.5 179.9 291.7 177.1 p 287.6 182.0 288.5 179.9 291.7 182.0 t6 287.6 182.0 288.5 179.9 p 289.3 180.5 291.7 178.4 291.7 182.0 t7 289.3 180.5 291.7 178.4 p 288.6 182.0 289.3 180.5 291.7 182.0 t7 288.6 182.0 289.3 180.5 p 290.1 181.0 291.7 179.6 291.7 182.0 t8 290.1 181.0 291.7 179.6 p 289.7 182.0 290.1 181.0 291.7 182.0 t8 289.7 182.0 290.1 181.0 p 291.7 176.5 300.3 176.5 300.3 182.0 291.7 182.0 s5 292.3 176.5 292.0 176.7 296.0 179.2 300.3 176.5 s6 292.3 176.5 292.0 176.7 p 300.3 176.5 296.0 179.2 300.3 182.0 t6 300.3 182.0 296.0 179.2 291.7 182.0 t6 292.0 176.7 291.7 177.1 291.7 182.0 296.0 179.2 s6 292.0 176.7 291.7 177.1 p 293.6 176.5 292.5 177.0 296.0 179.2 300.3 176.5 s7 293.6 176.5 292.5 177.0 p 300.3 176.5 296.0 179.2 300.3 182.0 t7 300.3 182.0 296.0 179.2 291.7 182.0 t7 292.5 177.0 291.7 178.4 291.7 182.0 296.0 179.2 s7 292.5 177.0 291.7 178.4 p 294.9 176.5 293.1 177.4 296.0 179.2 300.3 176.5 s8 294.9 176.5 293.1 177.4 p 300.3 176.5 296.0 179.2 300.3 182.0 t8 300.3 182.0 296.0 179.2 291.7 182.0 t8 293.1 177.4 291.7 179.6 291.7 182.0 296.0 179.2 s8 293.1 177.4 291.7 179.6 p 0.0 171.0 8.6 171.0 8.6 176.5 0.0 176.5 s2 8.1 171.3 6.3 171.0 0.0 171.0 4.3 173.7 s3 8.1 171.3 6.3 171.0 p 8.6 171.7 8.1 171.3 4.3 173.7 8.6 176.5 s3 8.6 171.7 8.1 171.3 p 8.6 176.5 4.3 173.7 0.0 176.5 t3 0.0 176.5 4.3 173.7 0.0 171.0 t3 6.9 172.1 0.2 171.0 0.0 171.0 4.3 173.7 s4 6.9 172.1 0.2 171.0 p 8.6 173.6 6.9 172.1 4.3 173.7 8.6 176.5 s4 8.6 173.6 6.9 172.1 p 8.6 176.5 4.3 173.7 0.0 176.5 t4 0.0 176.5 4.3 173.7 0.0 171.0 t4 2.0 172.3 5.6 172.9 4.3 173.7 t5 2.0 172.3 5.6 172.9 p 8.6 175.5 5.6 172.9 4.3 173.7 8.6 176.5 s5 8.6 175.5 5.6 172.9 p 8.6 176.5 4.3 173.7 0.0 176.5 t5 2.0 172.3 0.0 171.6 0.0 176.5 4.3 173.7 s5 2.0 172.3 0.0 171.6 p 4.2 173.6 4.4 173.7 4.3 173.7 t6 4.2 173.6 4.4 173.7 p 4.4 173.7 4.8 174.0 4.3 173.7 t6 4.4 173.7 4.8 174.0 p 7.9 176.5 4.8 174.0 4.3 173.7 0.0 176.5 s6 7.9 176.5 4.8 174.0 p 4.2 173.6 0.0 172.3 0.0 176.5 4.3 173.7 s6 4.2 173.6 0.0 172.3 p 3.6 174.1 6.6 176.5 0.0 176.5 t7 3.6 174.1 6.6 176.5 p 0.0 173.0 3.6 174.1 0.0 176.5 t7 0.0 173.0 3.6 174.1 p 2.9 174.6 5.3 176.5 0.0 176.5 t8 2.9 174.6 5.3 176.5 p 0.0 173.7 2.9 174.6 0.0 176.5 t8 0.0 173.7 2.9 174.6 p 8.6 171.0 17.2 171.0 17.2 176.5 8.6 176.5 s1 15.1 172.3 12.7 171.0 8.6 171.0 12.9 173.7 s2 15.1 172.3 12.7 171.0 p 15.1 172.3 15.8 175.6 12.9 173.7 t2 15.1 172.3 15.8 175.6 p 16.4 176.5 15.8 175.6 12.9 173.7 8.6 176.5 s2 16.4 176.5 15.8 175.6 p 8.6 176.5 12.9 173.7 8.6 171.0 t2 12.5 173.9 14.2 176.5 8.6 176.5 t3 12.5 173.9 14.2 176.5 p 8.6 171.7 12.5 173.9 8.6 176.5 t3 8.6 171.7 12.5 173.9 p 11.0 174.9 11.9 176.5 8.6 176.5 t4 11.0 174.9 11.9 176.5 p 8.6 173.6 11.0 174.9 8.6 176.5 t4 8.6 173.6 11.0 174.9 p 9.4 176.0 9.7 176.5 8.6 176.5 t5 9.4 176.0 9.7 176.5 p 8.6 175.5 9.4 176.0 8.6 176.5 t5 8.6 175.5 9.4 176.0 p 17.2 171.0 25.7 171.0 25.7 176.5 17.2 176.5 s1 25.7 171.0 34.3 171.0 34.3 176.5 25.7 176.5 s1 30.2 171.0 27.8 172.3 30.0 173.7 34.3 171.0 s2 30.2 171.0 27.8 172.3 p 34.3 171.0 30.0 173.7 34.3 176.5 t2 27.1 175.6 26.5 176.5 34.3 176.5 30.0 173.7 s2 27.1 175.6 26.5 176.5 p 27.1 175.6 27.8 172.3 30.0 173.7 t2 27.1 175.6 27.8 172.3 p 30.4 173.9 34.3 171.7 34.3 176.5 t3 30.4 173.9 34.3 171.7 p 28.7 176.5 30.4 173.9 34.3 176.5 t3 28.7 176.5 30.4 173.9 p 31.9 174.9 34.3 173.6 34.3 176.5 t4 31.9 174.9 34.3 173.6 p 31.0 176.5 31.9 174.9 34.3 176.5 t4 31.0 176.5 31.9 174.9 p 33.5 176.0 34.3 175.5 34.3 176.5 t5 33.5 176.0 34.3 175.5 p 33.2 176.5 33.5 176.0 34.3 176.5 t5 33.2 176.5 33.5 176.0 p 34.3 171.0 42.9 171.0 42.9 176.5 34.3 176.5 s2 36.6 171.0 34.8 171.3 38.6 173.7 42.9 171.0 s3 36.6 171.0 34.8 171.3 p 42.9 171.0 38.6 173.7 42.9 176.5 t3 42.9 176.5 38.6 173.7 34.3 176.5 t3 34.8 171.3 34.3 171.7 34.3 176.5 38.6 173.7 s3 34.8 171.3 34.3 171.7 p 42.7 171.0 36.0 172.1 38.6 173.7 42.9 171.0 s4 42.7 171.0 36.0 172.1 p 42.9 171.0 38.6 173.7 42.9 176.5 t4 42.9 176.5 38.6 173.7 34.3 176.5 t4 36.0 172.1 34.3 173.6 34.3 176.5 38.6 173.7 s4 36.0 172.1 34.3 173.6 p 37.3 172.9 40.8 172.3 38.6 173.7 t5 37.3 172.9 40.8 172.3 p 42.9 171.6 40.8 172.3 38.6 173.7 42.9 176.5 s5 42.9 171.6 40.8 172.3 p 42.9 176.5 38.6 173.7 34.3 176.5 t5 37.3 172.9 34.3 175.5 34.3 176.5 38.6 173.7 s5 37.3 172.9 34.3 175.5 p 38.5 173.7 38.7 173.6 38.6 173.7 t6 38.5 173.7 38.7 173.6 p 42.9 172.3 38.7 173.6 38.6 173.7 42.9 176.5 s6 42.9 172.3 38.7 173.6 p 38.1 174.0 35.0 176.5 42.9 176.5 38.6 173.7 s6 38.1 174.0 35.0 176.5 p 38.1 174.0 38.5 173.7 38.6 173.7 t6 38.1 174.0 38.5 173.7 p 39.3 174.1 42.9 173.0 42.9 176.5 t7 39.3 174.1 42.9 173.0 p 36.3 176.5 39.3 174.1 42.9 176.5 t7 36.3 176.5 39.3 174.1 p 40.0 174.6 42.9 173.7 42.9 176.5 t8 40.0 174.6 42.9 173.7 p 37.6 176.5 40.0 174.6 42.9 176.5 t8 37.6 176.5 40.0 174.6 p 42.9 171.0 51.5 171.0 51.5 176.5 42.9 176.5 s2 51.0 171.3 49.2 171.0 42.9 171.0 47.2 173.7 s3 51.0 171.3 49.2 171.0 p 51.5 171.7 51.0 171.3 47.2 173.7 51.5 176.5 s3 51.5 171.7 51.0 171.3 p 51.5 176.5 47.2 173.7 42.9 176.5 t3 42.9 176.5 47.2 173.7 42.9 171.0 t3 49.8 172.1 43.1 171.0 42.9 171.0 47.2 173.7 s4 49.8 172.1 43.1 171.0 p 51.5 173.6 49.8 172.1 47.2 173.7 51.5 176.5 s4 51.5 173.6 49.8 172.1 p 51.5 176.5 47.2 173.7 42.9 176.5 t4 42.9 176.5 47.2 173.7 42.9 171.0 t4 44.9 172.3 48.5 172.9 47.2 173.7 t5 44.9 172.3 48.5 172.9 p 51.5 175.5 48.5 172.9 47.2 173.7 51.5 176.5 s5 51.5 175.5 48.5 172.9 p 51.5 176.5 47.2 173.7 42.9 176.5 t5 44.9 172.3 42.9 171.6 42.9 176.5 47.2 173.7 s5 44.9 172.3 42.9 171.6 p 47.1 173.6 47.3 173.7 47.2 173.7 t6 47.1 173.6 47.3 173.7 p 47.3 173.7 47.7 174.0 47.2 173.7 t6 47.3 173.7 47.7 174.0 p 50.8 176.5 47.7 174.0 47.2 173.7 42.9 176.5 s6 50.8 176.5 47.7 174.0 p 47.1 173.6 42.9 172.3 42.9 176.5 47.2 173.7 s6 47.1 173.6 42.9 172.3 p 46.5 174.1 49.5 176.5 42.9 176.5 t7 46.5 174.1 49.5 176.5 p 42.9 173.0 46.5 174.1 42.9 176.5 t7 42.9 173.0 46.5 174.1 p 45.8 174.6 48.2 176.5 42.9 176.5 t8 45.8 174.6 48.2 176.5 p 42.9 173.7 45.8 174.6 42.9 176.5 t8 42.9 173.7 45.8 174.6 p 51.5 171.0 60.1 171.0 60.1 176.5 51.5 176.5 s1 58.0 172.3 55.6 171.0 51.5 171.0 55.8 173.7 s2 58.0 172.3 55.6 171.0 p 58.0 172.3 58.7 175.6 55.8 173.7 t2 58.0 172.3 58.7 175.6 p 59.3 176.5 58.7 175.6 55.8 173.7 51.5 176.5 s2 59.3 176.5 58.7 175.6 p 51.5 176.5 55.8 173.7 51.5 171.0 t2 55.4 173.9 57.1 176.5 51.5 176.5 t3 55.4 173.9 57.1 176.5 p 51.5 171.7 55.4 173.9 51.5 176.5 t3 51.5 171.7 55.4 173.9 p 53.8 174.9 54.8 176.5 51.5 176.5 t4 53.8 174.9 54.8 176.5 p 51.5 173.6 53.8 174.9 51.5 176.5 t4 51.5 173.6 53.8 174.9 p 52.3 176.0 52.6 176.5 51.5 176.5 t5 52.3 176.0 52.6 176.5 p 51.5 175.5 52.3 176.0 51.5 176.5 t5 51.5 175.5 52.3 176.0 p 60.1 171.0 68.6 171.0 68.6 176.5 60.1 176.5 s1 68.6 171.0 77.2 171.0 77.2 176.5 68.6 176.5 s1 73.1 171.0 70.6 172.3 72.9 173.7 77.2 171.0 s2 73.1 171.0 70.6 172.3 p 77.2 171.0 72.9 173.7 77.2 176.5 t2 70.0 175.6 69.4 176.5 77.2 176.5 72.9 173.7 s2 70.0 175.6 69.4 176.5 p 70.0 175.6 70.6 172.3 72.9 173.7 t2 70.0 175.6 70.6 172.3 p 73.3 173.9 77.2 171.7 77.2 176.5 t3 73.3 173.9 77.2 171.7 p 71.6 176.5 73.3 173.9 77.2 176.5 t3 71.6 176.5 73.3 173.9 p 74.8 174.9 77.2 173.6 77.2 176.5 t4 74.8 174.9 77.2 173.6 p 73.8 176.5 74.8 174.9 77.2 176.5 t4 73.8 176.5 74.8 174.9 p 76.4 176.0 77.2 175.5 77.2 176.5 t5 76.4 176.0 77.2 175.5 p 76.1 176.5 76.4 176.0 77.2 176.5 t5 76.1 176.5 76.4 176.0 p 77.2 171.0 85.8 171.0 85.8 176.5 77.2 176.5 s2 79.5 171.0 77.7 171.3 81.5 173.7 85.8 171.0 s3 79.5 171.0 77.7 171.3 p 85.8 171.0 81.5 173.7 85.8 176.5 t3 85.8 176.5 81.5 173.7 77.2 176.5 t3 77.7 171.3 77.2 171.7 77.2 176.5 81.5 173.7 s3 77.7 171.3 77.2 171.7 p 85.6 171.0 78.9 172.1 81.5 173.7 85.8 171.0 s4 85.6 171.0 78.9 172.1 p 85.8 171.0 81.5 173.7 85.8 176.5 t4 85.8 176.5 81.5 173.7 77.2 176.5 t4 78.9 172.1 77.2 173.6 77.2 176.5 81.5 173.7 s4 78.9 172.1 77.2 173.6 p 80.2 172.9 83.7 172.3 81.5 173.7 t5 80.2 172.9 83.7 172.3 p 85.8 171.6 83.7 172.3 81.5 173.7 85.8 176.5 s5 85.8 171.6 83.7 172.3 p 85.8 176.5 81.5 173.7 77.2 176.5 t5 80.2 172.9 77.2 175.5 77.2 176.5 81.5 173.7 s5 80.2 172.9 77.2 175.5 p 81.4 173.7 81.6 173.6 81.5 173.7 t6 81.4 173.7 81.6 173.6 p 85.8 172.3 81.6 173.6 81.5 173.7 85.8 176.5 s6 85.8 172.3 81.6 173.6 p 81.0 174.0 77.8 176.5 85.8 176.5 81.5 173.7 s6 81.0 174.0 77.8 176.5 p 81.0 174.0 81.4 173.7 81.5 173.7 t6 81.0 174.0 81.4 173.7 p 82.2 174.1 85.8 173.0 85.8 176.5 t7 82.2 174.1 85.8 173.0 p 79.2 176.5 82.2 174.1 85.8 176.5 t7 79.2 176.5 82.2 174.1 p 82.9 174.6 85.8 173.7 85.8 176.5 t8 82.9 174.6 85.8 173.7 p 80.5 176.5 82.9 174.6 85.8 176.5 t8 80.5 176.5 82.9 174.6 p 85.8 171.0 94.4 171.0 94.4 176.5 85.8 176.5 s2 93.9 171.3 92.1 171.0 85.8 171.0 90.1 173.7 s3 93.9 171.3 92.1 171.0 p 94.4 171.7 93.9 171.3 90.1 173.7 94.4 176.5 s3 94.4 171.7 93.9 171.3 p 94.4 176.5 90.1 173.7 85.8 176.5 t3 85.8 176.5 90.1 173.7 85.8 171.0 t3 92.7 172.1 86.0 171.0 85.8 171.0 90.1 173.7 s4 92.7 172.1 86.0 171.0 p 94.4 173.6 92.7 172.1 90.1 173.7 94.4 176.5 s4 94.4 173.6 92.7 172.1 p 94.4 176.5 90.1 173.7 85.8 176.5 t4 85.8 176.5 90.1 173.7 85.8 171.0 t4 87.8 172.3 91.4 172.9 90.1 173.7 t5 87.8 172.3 91.4 172.9 p 94.4 175.5 91.4 172.9 90.1 173.7 94.4 176.5 s5 94.4 175.5 91.4 172.9 p 94.4 176.5 90.1 173.7 85.8 176.5 t5 87.8 172.3 85.8 171.6 85.8 176.5 90.1 173.7 s5 87.8 172.3 85.8 171.6 p 90.0 173.6 90.2 173.7 90.1 173.7 t6 90.0 173.6 90.2 173.7 p 90.2 173.7 90.5 174.0 90.1 173.7 t6 90.2 173.7 90.5 174.0 p 93.7 176.5 90.5 174.0 90.1 173.7 85.8 176.5 s6 93.7 176.5 90.5 174.0 p 90.0 173.6 85.8 172.3 85.8 176.5 90.1 173.7 s6 90.0 173.6 85.8 172.3 p 89.4 174.1 92.4 176.5 85.8 176.5 t7 89.4 174.1 92.4 176.5 p 85.8 173.0 89.4 174.1 85.8 176.5 t7 85.8 173.0 89.4 174.1 p 88.7 174.6 91.1 176.5 85.8 176.5 t8 88.7 174.6 91.1 176.5 p 85.8 173.7 88.7 174.6 85.8 176.5 t8 85.8 173.7 88.7 174.6 p 94.4 171.0 102.9 171.0 102.9 176.5 94.4 176.5 s1 100.9 172.3 98.5 171.0 94.4 171.0 98.7 173.7 s2 100.9 172.3 98.5 171.0 p 100.9 172.3 101.6 175.6 98.7 173.7 t2 100.9 172.3 101.6 175.6 p 102.2 176.5 101.6 175.6 98.7 173.7 94.4 176.5 s2 102.2 176.5 101.6 175.6 p 94.4 176.5 98.7 173.7 94.4 171.0 t2 98.3 173.9 100.0 176.5 94.4 176.5 t3 98.3 173.9 100.0 176.5 p 94.4 171.7 98.3 173.9 94.4 176.5 t3 94.4 171.7 98.3 173.9 p 96.7 174.9 97.7 176.5 94.4 176.5 t4 96.7 174.9 97.7 176.5 p 94.4 173.6 96.7 174.9 94.4 176.5 t4 94.4 173.6 96.7 174.9 p 95.2 176.0 95.5 176.5 94.4 176.5 t5 95.2 176.0 95.5 176.5 p 94.4 175.5 95.2 176.0 94.4 176.5 t5 94.4 175.5 95.2 176.0 p 102.9 171.0 111.5 171.0 111.5 176.5 102.9 176.5 s1 111.5 171.0 120.1 171.0 120.1 176.5 111.5 176.5 s1 116.0 171.0 113.5 172.3 115.8 173.7 120.1 171.0 s2 116.0 171.0 113.5 172.3 p 120.1 171.0 115.8 173.7 120.1 176.5 t2 112.9 175.6 112.3 176.5 120.1 176.5 115.8 173.7 s2 112.9 175.6 112.3 176.5 p 112.9 175.6 113.5 172.3 115.8 173.7 t2 112.9 175.6 113.5 172.3 p 116.2 173.9 120.1 171.7 120.1 176.5 t3 116.2 173.9 120.1 171.7 p 114.5 176.5 116.2 173.9 120.1 176.5 t3 114.5 176.5 116.2 173.9 p 117.7 174.9 120.1 173.6 120.1 176.5 t4 117.7 174.9 120.1 173.6 p 116.7 176.5 117.7 174.9 120.1 176.5 t4 116.7 176.5 117.7 174.9 p 119.3 176.0 120.1 175.5 120.1 176.5 t5 119.3 176.0 120.1 175.5 p 119.0 176.5 119.3 176.0 120.1 176.5 t5 119.0 176.5 119.3 176.0 p 120.1 171.0 128.7 171.0 128.7 176.5 120.1 176.5 s2 122.3 171.0 120.6 171.3 124.4 173.7 128.7 171.0 s3 122.3 171.0 120.6 171.3 p 128.7 171.0 124.4 173.7 128.7 176.5 t3 128.7 176.5 124.4 173.7 120.1 176.5 t3 120.6 171.3 120.1 171.7 120.1 176.5 124.4 173.7 s3 120.6 171.3 120.1 171.7 p 128.5 171.0 121.8 172.1 124.4 173.7 128.7 171.0 s4 128.5 171.0 121.8 172.1 p 128.7 171.0 124.4 173.7 128.7 176.5 t4 128.7 176.5 124.4 173.7 120.1 176.5 t4 121.8 172.1 120.1 173.6 120.1 176.5 124.4 173.7 s4 121.8 172.1 120.1 173.6 p 123.1 172.9 126.6 172.3 124.4 173.7 t5 123.1 172.9 126.6 172.3 p 128.7 171.6 126.6 172.3 124.4 173.7 128.7 176.5 s5 128.7 171.6 126.6 172.3 p 128.7 176.5 124.4 173.7 120.1 176.5 t5 123.1 172.9 120.1 175.5 120.1 176.5 124.4 173.7 s5 123.1 172.9 120.1 175.5 p 124.3 173.7 124.5 173.6 124.4 173.7 t6 124.3 173.7 124.5 173.6 p 128.7 172.3 124.5 173.6 124.4 173.7 128.7 176.5 s6 128.7 172.3 124.5 173.6 p 123.9 174.0 120.7 176.5 128.7 176.5 124.4 173.7 s6 123.9 174.0 120.7 176.5 p 123.9 174.0 124.3 173.7 124.4 173.7 t6 123.9 174.0 124.3 173.7 p 125.1 174.1 128.7 173.0 128.7 176.5 t7 125.1 174.1 128.7 173.0 p 122.1 176.5 125.1 174.1 128.7 176.5 t7 122.1 176.5 125.1 174.1 p 125.8 174.6 128.7 173.7 128.7 176.5 t8 125.8 174.6 128.7 173.7 p 123.4 176.5 125.8 174.6 128.7 176.5 t8 123.4 176.5 125.8 174.6 p 128.7 171.0 137.3 171.0 137.3 176.5 128.7 176.5 s2 136.8 171.3 135.0 171.0 128.7 171.0 133.0 173.7 s3 136.8 171.3 135.0 171.0 p 137.3 171.7 136.8 171.3 133.0 173.7 137.3 176.5 s3 137.3 171.7 136.8 171.3 p 137.3 176.5 133.0 173.7 128.7 176.5 t3 128.7 176.5 133.0 173.7 128.7 171.0 t3 135.6 172.1 128.9 171.0 128.7 171.0 133.0 173.7 s4 135.6 172.1 128.9 171.0 p 137.3 173.6 135.6 172.1 133.0 173.7 137.3 176.5 s4 137.3 173.6 135.6 172.1 p 137.3 176.5 133.0 173.7 128.7 176.5 t4 128.7 176.5 133.0 173.7 128.7 171.0 t4 130.7 172.3 134.3 172.9 133.0 173.7 t5 130.7 172.3 134.3 172.9 p 137.3 175.5 134.3 172.9 133.0 173.7 137.3 176.5 s5 137.3 175.5 134.3 172.9 p 137.3 176.5 133.0 173.7 128.7 176.5 t5 130.7 172.3 128.7 171.6 128.7 176.5 133.0 173.7 s5 130.7 172.3 128.7 171.6 p 132.8 173.6 133.0 173.7 133.0 173.7 t6 132.8 173.6 133.0 173.7 p 133.0 173.7 133.4 174.0 133.0 173.7 t6 133.0 173.7 133.4 174.0 p 136.6 176.5 133.4 174.0 133.0 173.7 128.7 176.5 s6 136.6 176.5 133.4 174.0 p 132.8 173.6 128.7 172.3 128.7 176.5 133.0 173.7 s6 132.8 173.6 128.7 172.3 p 132.3 174.1 135.3 176.5 128.7 176.5 t7 132.3 174.1 135.3 176.5 p 128.7 173.0 132.3 174.1 128.7 176.5 t7 128.7 173.0 132.3 174.1 p 131.6 174.6 134.0 176.5 128.7 176.5 t8 131.6 174.6 134.0 176.5 p 128.7 173.7 131.6 174.6 128.7 176.5 t8 128.7 173.7 131.6 174.6 p 137.3 171.0 145.8 171.0 145.8 176.5 137.3 176.5 s1 143.8 172.3 141.4 171.0 137.3 171.0 141.6 173.7 s2 143.8 172.3 141.4 171.0 p 143.8 172.3 144.5 175.6 141.6 173.7 t2 143.8 172.3 144.5 175.6 p 145.1 176.5 144.5 175.6 141.6 173.7 137.3 176.5 s2 145.1 176.5 144.5 175.6 p 137.3 176.5 141.6 173.7 137.3 171.0 t2 141.2 173.9 142.8 176.5 137.3 176.5 t3 141.2 173.9 142.8 176.5 p 137.3 171.7 141.2 173.9 137.3 176.5 t3 137.3 171.7 141.2 173.9 p 139.6 174.9 140.6 176.5 137.3 176.5 t4 139.6 174.9 140.6 176.5 p 137.3 173.6 139.6 174.9 137.3 176.5 t4 137.3 173.6 139.6 174.9 p 138.1 176.0 138.4 176.5 137.3 176.5 t5 138.1 176.0 138.4 176.5 p 137.3 175.5 138.1 176.0 137.3 176.5 t5 137.3 175.5 138.1 176.0 p 145.8 171.0 154.4 171.0 154.4 176.5 145.8 176.5 s1 154.4 171.0 163.0 171.0 163.0 176.5 154.4 176.5 s1 158.9 171.0 156.4 172.3 158.7 173.7 163.0 171.0 s2 158.9 171.0 156.4 172.3 p 163.0 171.0 158.7 173.7 163.0 176.5 t2 155.7 175.6 155.2 176.5 163.0 176.5 158.7 173.7 s2 155.7 175.6 155.2 176.5 p 155.7 175.6 156.4 172.3 158.7 173.7 t2 155.7 175.6 156.4 172.3 p 159.1 173.9 163.0 171.7 163.0 176.5 t3 159.1 173.9 163.0 171.7 p 157.4 176.5 159.1 173.9 163.0 176.5 t3 157.4 176.5 159.1 173.9 p 160.6 174.9 163.0 173.6 163.0 176.5 t4 160.6 174.9 163.0 173.6 p 159.6 176.5 160.6 174.9 163.0 176.5 t4 159.6 176.5 160.6 174.9 p 162.2 176.0 163.0 175.5 163.0 176.5 t5 162.2 176.0 163.0 175.5 p 161.9 176.5 162.2 176.0 163.0 176.5 t5 161.9 176.5 162.2 176.0 p 163.0 171.0 171.6 171.0 171.6 176.5 163.0 176.5 s2 165.2 171.0 163.5 171.3 167.3 173.7 171.6 171.0 s3 165.2 171.0 163.5 171.3 p 171.6 171.0 167.3 173.7 171.6 176.5 t3 171.6 176.5 167.3 173.7 163.0 176.5 t3 163.5 171.3 163.0 171.7 163.0 176.5 167.3 173.7 s3 163.5 171.3 163.0 171.7 p 171.4 171.0 164.7 172.1 167.3 173.7 171.6 171.0 s4 171.4 171.0 164.7 172.1 p 171.6 171.0 167.3 173.7 171.6 176.5 t4 171.6 176.5 167.3 173.7 163.0 176.5 t4 164.7 172.1 163.0 173.6 163.0 176.5 167.3 173.7 s4 164.7 172.1 163.0 173.6 p 166.0 172.9 169.5 172.3 167.3 173.7 t5 166.0 172.9 169.5 172.3 p 171.6 171.6 169.5 172.3 167.3 173.7 171.6 176.5 s5 171.6 171.6 169.5 172.3 p 171.6 176.5 167.3 173.7 163.0 176.5 t5 166.0 172.9 163.0 175.5 163.0 176.5 167.3 173.7 s5 166.0 172.9 163.0 175.5 p 167.2 173.7 167.4 173.6 167.3 173.7 t6 167.2 173.7 167.4 173.6 p 171.6 172.3 167.4 173.6 167.3 173.7 171.6 176.5 s6 171.6 172.3 167.4 173.6 p 166.8 174.0 163.6 176.5 171.6 176.5 167.3 173.7 s6 166.8 174.0 163.6 176.5 p 166.8 174.0 167.2 173.7 167.3 173.7 t6 166.8 174.0 167.2 173.7 p 168.0 174.1 171.6 173.0 171.6 176.5 t7 168.0 174.1 171.6 173.0 p 164.9 176.5 168.0 174.1 171.6 176.5 t7 164.9 176.5 168.0 174.1 p 168.7 174.6 171.6 173.7 171.6 176.5 t8 168.7 174.6 171.6 173.7 p 166.3 176.5 168.7 174.6 171.6 176.5 t8 166.3 176.5 168.7 174.6 p 171.6 171.0 180.2 171.0 180.2 176.5 171.6 176.5 s2 179.7 171.3 177.9 171.0 171.6 171.0 175.9 173.7 s3 179.7 171.3 177.9 171.0 p 180.2 171.7 179.7 171.3 175.9 173.7 180.2 176.5 s3 180.2 171.7 179.7 171.3 p 180.2 176.5 175.9 173.7 171.6 176.5 t3 171.6 176.5 175.9 173.7 171.6 171.0 t3 178.4 172.1 171.8 171.0 171.6 171.0 175.9 173.7 s4 178.4 172.1 171.8 171.0 p 180.2 173.6 178.4 172.1 175.9 173.7 180.2 176.5 s4 180.2 173.6 178.4 172.1 p 180.2 176.5 175.9 173.7 171.6 176.5 t4 171.6 176.5 175.9 173.7 171.6 171.0 t4 173.6 172.3 177.2 172.9 175.9 173.7 t5 173.6 172.3 177.2 172.9 p 180.2 175.5 177.2 172.9 175.9 173.7 180.2 176.5 s5 180.2 175.5 177.2 172.9 p 180.2 176.5 175.9 173.7 171.6 176.5 t5 173.6 172.3 171.6 171.6 171.6 176.5 175.9 173.7 s5 173.6 172.3 171.6 171.6 p 175.7 173.6 175.9 173.7 175.9 173.7 t6 175.7 173.6 175.9 173.7 p 175.9 173.7 176.3 174.0 175.9 173.7 t6 175.9 173.7 176.3 174.0 p 179.5 176.5 176.3 174.0 175.9 173.7 171.6 176.5 s6 179.5 176.5 176.3 174.0 p 175.7 173.6 171.6 172.3 171.6 176.5 175.9 173.7 s6 175.7 173.6 171.6 172.3 p 175.2 174.1 178.2 176.5 171.6 176.5 t7 175.2 174.1 178.2 176.5 p 171.6 173.0 175.2 174.1 171.6 176.5 t7 171.6 173.0 175.2 174.1 p 174.5 174.6 176.9 176.5 171.6 176.5 t8 174.5 174.6 176.9 176.5 p 171.6 173.7 174.5 174.6 171.6 176.5 t8 171.6 173.7 174.5 174.6 p 180.2 171.0 188.7 171.0 188.7 176.5 180.2 176.5 s1 186.7 172.3 184.3 171.0 180.2 171.0 184.4 173.7 s2 186.7 172.3 184.3 171.0 p 186.7 172.3 187.4 175.6 184.4 173.7 t2 186.7 172.3 187.4 175.6 p 188.0 176.5 187.4 175.6 184.4 173.7 180.2 176.5 s2 188.0 176.5 187.4 175.6 p 180.2 176.5 184.4 173.7 180.2 171.0 t2 184.1 173.9 185.7 176.5 180.2 176.5 t3 184.1 173.9 185.7 176.5 p 180.2 171.7 184.1 173.9 180.2 176.5 t3 180.2 171.7 184.1 173.9 p 182.5 174.9 183.5 176.5 180.2 176.5 t4 182.5 174.9 183.5 176.5 p 180.2 173.6 182.5 174.9 180.2 176.5 t4 180.2 173.6 182.5 174.9 p 181.0 176.0 181.3 176.5 180.2 176.5 t5 181.0 176.0 181.3 176.5 p 180.2 175.5 181.0 176.0 180.2 176.5 t5 180.2 175.5 181.0 176.0 p 188.7 171.0 197.3 171.0 197.3 176.5 188.7 176.5 s1 197.3 171.0 205.9 171.0 205.9 176.5 197.3 176.5 s1 201.8 171.0 199.3 172.3 201.6 173.7 205.9 171.0 s2 201.8 171.0 199.3 172.3 p 205.9 171.0 201.6 173.7 205.9 176.5 t2 198.6 175.6 198.1 176.5 205.9 176.5 201.6 173.7 s2 198.6 175.6 198.1 176.5 p 198.6 175.6 199.3 172.3 201.6 173.7 t2 198.6 175.6 199.3 172.3 p 202.0 173.9 205.9 171.7 205.9 176.5 t3 202.0 173.9 205.9 171.7 p 200.3 176.5 202.0 173.9 205.9 176.5 t3 200.3 176.5 202.0 173.9 p 203.5 174.9 205.9 173.6 205.9 176.5 t4 203.5 174.9 205.9 173.6 p 202.5 176.5 203.5 174.9 205.9 176.5 t4 202.5 176.5 203.5 174.9 p 205.1 176.0 205.9 175.5 205.9 176.5 t5 205.1 176.0 205.9 175.5 p 204.7 176.5 205.1 176.0 205.9 176.5 t5 204.7 176.5 205.1 176.0 p 205.9 171.0 214.5 171.0 214.5 176.5 205.9 176.5 s2 208.1 171.0 206.3 171.3 210.2 173.7 214.5 171.0 s3 208.1 171.0 206.3 171.3 p 214.5 171.0 210.2 173.7 214.5 176.5 t3 214.5 176.5 210.2 173.7 205.9 176.5 t3 206.3 171.3 205.9 171.7 205.9 176.5 210.2 173.7 s3 206.3 171.3 205.9 171.7 p 214.3 171.0 207.6 172.1 210.2 173.7 214.5 171.0 s4 214.3 171.0 207.6 172.1 p 214.5 171.0 210.2 173.7 214.5 176.5 t4 214.5 176.5 210.2 173.7 205.9 176.5 t4 207.6 172.1 205.9 173.6 205.9 176.5 210.2 173.7 s4 207.6 172.1 205.9 173.6 p 208.9 172.9 212.4 172.3 210.2 173.7 t5 208.9 172.9 212.4 172.3 p 214.5 171.6 212.4 172.3 210.2 173.7 214.5 176.5 s5 214.5 171.6 212.4 172.3 p 214.5 176.5 210.2 173.7 205.9 176.5 t5 208.9 172.9 205.9 175.5 205.9 176.5 210.2 173.7 s5 208.9 172.9 205.9 175.5 p 210.1 173.7 210.3 173.6 210.2 173.7 t6 210.1 173.7 210.3 173.6 p 214.5 172.3 210.3 173.6 210.2 173.7 214.5 176.5 s6 214.5 172.3 210.3 173.6 p 209.7 174.0 206.5 176.5 214.5 176.5 210.2 173.7 s6 209.7 174.0 206.5 176.5 p 209.7 174.0 210.1 173.7 210.2 173.7 t6 209.7 174.0 210.1 173.7 p 210.9 174.1 214.5 173.0 214.5 176.5 t7 210.9 174.1 214.5 173.0 p 207.8 176.5 210.9 174.1 214.5 176.5 t7 207.8 176.5 210.9 174.1 p 211.6 174.6 214.5 173.7 214.5 176.5 t8 211.6 174.6 214.5 173.7 p 209.2 176.5 211.6 174.6 214.5 176.5 t8 209.2 176.5 211.6 174.6 p 214.5 171.0 223.1 171.0 223.1 176.5 214.5 176.5 s2 222.6 171.3 220.8 171.0 214.5 171.0 218.8 173.7 s3 222.6 171.3 220.8 171.0 p 223.1 171.7 222.6 171.3 218.8 173.7 223.1 176.5 s3 223.1 171.7 222.6 171.3 p 223.1 176.5 218.8 173.7 214.5 176.5 t3 214.5 176.5 218.8 173.7 214.5 171.0 t3 221.3 172.1 214.7 171.0 214.5 171.0 218.8 173.7 s4 221.3 172.1 214.7 171.0 p 223.1 173.6 221.3 172.1 218.8 173.7 223.1 176.5 s4 223.1 173.6 221.3 172.1 p 223.1 176.5 218.8 173.7 214.5 176.5 t4 214.5 176.5 218.8 173.7 214.5 171.0 t4 216.5 172.3 220.1 172.9 218.8 173.7 t5 216.5 172.3 220.1 172.9 p 223.1 175.5 220.1 172.9 218.8 173.7 223.1 176.5 s5 223.1 175.5 220.1 172.9 p 223.1 176.5 218.8 173.7 214.5 176.5 t5 216.5 172.3 214.5 171.6 214.5 176.5 218.8 173.7 s5 216.5 172.3 214.5 171.6 p 218.6 173.6 218.8 173.7 218.8 173.7 t6 218.6 173.6 218.8 173.7 p 218.8 173.7 219.2 174.0 218.8 173.7 t6 218.8 173.7 219.2 174.0 p 222.4 176.5 219.2 174.0 218.8 173.7 214.5 176.5 s6 222.4 176.5 219.2 174.0 p 218.6 173.6 214.5 172.3 214.5 176.5 218.8 173.7 s6 218.6 173.6 214.5 172.3 p 218.1 174.1 221.1 176.5 214.5 176.5 t7 218.1 174.1 221.1 176.5 p 214.5 173.0 218.1 174.1 214.5 176.5 t7 214.5 173.0 218.1 174.1 p 217.4 174.6 219.8 176.5 214.5 176.5 t8 217.4 174.6 219.8 176.5 p 214.5 173.7 217.4 174.6 214.5 176.5 t8 214.5 173.7 217.4 174.6 p 223.1 171.0 231.6 171.0 231.6 176.5 223.1 176.5 s1 229.6 172.3 227.2 171.0 223.1 171.0 227.3 173.7 s2 229.6 172.3 227.2 171.0 p 229.6 172.3 230.3 175.6 227.3 173.7 t2 229.6 172.3 230.3 175.6 p 230.9 176.5 230.3 175.6 227.3 173.7 223.1 176.5 s2 230.9 176.5 230.3 175.6 p 223.1 176.5 227.3 173.7 223.1 171.0 t2 227.0 173.9 228.6 176.5 223.1 176.5 t3 227.0 173.9 228.6 176.5 p 223.1 171.7 227.0 173.9 223.1 176.5 t3 223.1 171.7 227.0 173.9 p 225.4 174.9 226.4 176.5 223.1 176.5 t4 225.4 174.9 226.4 176.5 p 223.1 173.6 225.4 174.9 223.1 176.5 t4 223.1 173.6 225.4 174.9 p 223.9 176.0 224.2 176.5 223.1 176.5 t5 223.9 176.0 224.2 176.5 p 223.1 175.5 223.9 176.0 223.1 176.5 t5 223.1 175.5 223.9 176.0 p 231.6 171.0 240.2 171.0 240.2 176.5 231.6 176.5 s1 240.2 171.0 248.8 171.0 248.8 176.5 240.2 176.5 s1 244.7 171.0 242.2 172.3 244.5 173.7 248.8 171.0 s2 244.7 171.0 242.2 172.3 p 248.8 171.0 244.5 173.7 248.8 176.5 t2 241.5 175.6 241.0 176.5 248.8 176.5 244.5 173.7 s2 241.5 175.6 241.0 176.5 p 241.5 175.6 242.2 172.3 244.5 173.7 t2 241.5 175.6 242.2 172.3 p 244.8 173.9 248.8 171.7 248.8 176.5 t3 244.8 173.9 248.8 171.7 p 243.2 176.5 244.8 173.9 248.8 176.5 t3 243.2 176.5 244.8 173.9 p 246.4 174.9 248.8 173.6 248.8 176.5 t4 246.4 174.9 248.8 173.6 p 245.4 176.5 246.4 174.9 248.8 176.5 t4 245.4 176.5 246.4 174.9 p 248.0 176.0 248.8 175.5 248.8 176.5 t5 248.0 176.0 248.8 175.5 p 247.6 176.5 248.0 176.0 248.8 176.5 t5 247.6 176.5 248.0 176.0 p 248.8 171.0 257.4 171.0 257.4 176.5 248.8 176.5 s2 251.0 171.0 249.2 171.3 253.1 173.7 257.4 171.0 s3 251.0 171.0 249.2 171.3 p 257.4 171.0 253.1 173.7 257.4 176.5 t3 257.4 176.5 253.1 173.7 248.8 176.5 t3 249.2 171.3 248.8 171.7 248.8 176.5 253.1 173.7 s3 249.2 171.3 248.8 171.7 p 257.2 171.0 250.5 172.1 253.1 173.7 257.4 171.0 s4 257.2 171.0 250.5 172.1 p 257.4 171.0 253.1 173.7 257.4 176.5 t4 257.4 176.5 253.1 173.7 248.8 176.5 t4 250.5 172.1 248.8 173.6 248.8 176.5 253.1 173.7 s4 250.5 172.1 248.8 173.6 p 251.7 172.9 255.3 172.3 253.1 173.7 t5 251.7 172.9 255.3 172.3 p 257.4 171.6 255.3 172.3 253.1 173.7 257.4 176.5 s5 257.4 171.6 255.3 172.3 p 257.4 176.5 253.1 173.7 248.8 176.5 t5 251.7 172.9 248.8 175.5 248.8 176.5 253.1 173.7 s5 251.7 172.9 248.8 175.5 p 253.0 173.7 253.2 173.6 253.1 173.7 t6 253.0 173.7 253.2 173.6 p 257.4 172.3 253.2 173.6 253.1 173.7 257.4 176.5 s6 257.4 172.3 253.2 173.6 p 252.6 174.0 249.4 176.5 257.4 176.5 253.1 173.7 s6 252.6 174.0 249.4 176.5 p 252.6 174.0 253.0 173.7 253.1 173.7 t6 252.6 174.0 253.0 173.7 p 253.7 174.1 257.4 173.0 257.4 176.5 t7 253.7 174.1 257.4 173.0 p 250.7 176.5 253.7 174.1 257.4 176.5 t7 250.7 176.5 253.7 174.1 p 254.5 174.6 257.4 173.7 257.4 176.5 t8 254.5 174.6 257.4 173.7 p 252.0 176.5 254.5 174.6 257.4 176.5 t8 252.0 176.5 254.5 174.6 p 257.4 171.0 265.9 171.0 265.9 176.5 257.4 176.5 s2 265.5 171.3 263.7 171.0 257.4 171.0 261.7 173.7 s3 265.5 171.3 263.7 171.0 p 265.9 171.7 265.5 171.3 261.7 173.7 265.9 176.5 s3 265.9 171.7 265.5 171.3 p 265.9 176.5 261.7 173.7 257.4 176.5 t3 257.4 176.5 261.7 173.7 257.4 171.0 t3 264.2 172.1 257.6 171.0 257.4 171.0 261.7 173.7 s4 264.2 172.1 257.6 171.0 p 265.9 173.6 264.2 172.1 261.7 173.7 265.9 176.5 s4 265.9 173.6 264.2 172.1 p 265.9 176.5 261.7 173.7 257.4 176.5 t4 257.4 176.5 261.7 173.7 257.4 171.0 t4 259.4 172.3 263.0 172.9 261.7 173.7 t5 259.4 172.3 263.0 172.9 p 265.9 175.5 263.0 172.9 261.7 173.7 265.9 176.5 s5 265.9 175.5 263.0 172.9 p 265.9 176.5 261.7 173.7 257.4 176.5 t5 259.4 172.3 257.4 171.6 257.4 176.5 261.7 173.7 s5 259.4 172.3 257.4 171.6 p 261.5 173.6 261.7 173.7 261.7 173.7 t6 261.5 173.6 261.7 173.7 p 261.7 173.7 262.1 174.0 261.7 173.7 t6 261.7 173.7 262.1 174.0 p 265.3 176.5 262.1 174.0 261.7 173.7 257.4 176.5 s6 265.3 176.5 262.1 174.0 p 261.5 173.6 257.4 172.3 257.4 176.5 261.7 173.7 s6 261.5 173.6 257.4 172.3 p 261.0 174.1 264.0 176.5 257.4 176.5 t7 261.0 174.1 264.0 176.5 p 257.4 173.0 261.0 174.1 257.4 176.5 t7 257.4 173.0 261.0 174.1 p 260.3 174.6 262.7 176.5 257.4 176.5 t8 260.3 174.6 262.7 176.5 p 257.4 173.7 260.3 174.6 257.4 176.5 t8 257.4 173.7 260.3 174.6 p 265.9 171.0 274.5 171.0 274.5 176.5 265.9 176.5 s1 272.5 172.3 270.1 171.0 265.9 171.0 270.2 173.7 s2 272.5 172.3 270.1 171.0 p 272.5 172.3 273.2 175.6 270.2 173.7 t2 272.5 172.3 273.2 175.6 p 273.7 176.5 273.2 175.6 270.2 173.7 265.9 176.5 s2 273.7 176.5 273.2 175.6 p 265.9 176.5 270.2 173.7 265.9 171.0 t2 269.9 173.9 271.5 176.5 265.9 176.5 t3 269.9 173.9 271.5 176.5 p 265.9 171.7 269.9 173.9 265.9 176.5 t3 265.9 171.7 269.9 173.9 p 268.3 174.9 269.3 176.5 265.9 176.5 t4 268.3 174.9 269.3 176.5 p 265.9 173.6 268.3 174.9 265.9 176.5 t4 265.9 173.6 268.3 174.9 p 266.8 176.0 267.1 176.5 265.9 176.5 t5 266.8 176.0 267.1 176.5 p 265.9 175.5 266.8 176.0 265.9 176.5 t5 265.9 175.5 266.8 176.0 p 274.5 171.0 283.1 171.0 283.1 176.5 274.5 176.5 s1 283.1 171.0 291.7 171.0 291.7 176.5 283.1 176.5 s1 287.6 171.0 285.1 172.3 287.4 173.7 291.7 171.0 s2 287.6 171.0 285.1 172.3 p 291.7 171.0 287.4 173.7 291.7 176.5 t2 284.4 175.6 283.9 176.5 291.7 176.5 287.4 173.7 s2 284.4 175.6 283.9 176.5 p 284.4 175.6 285.1 172.3 287.4 173.7 t2 284.4 175.6 285.1 172.3 p 287.7 173.9 291.7 171.7 291.7 176.5 t3 287.7 173.9 291.7 171.7 p 286.1 176.5 287.7 173.9 291.7 176.5 t3 286.1 176.5 287.7 173.9 p 289.3 174.9 291.7 173.6 291.7 176.5 t4 289.3 174.9 291.7 173.6 p 288.3 176.5 289.3 174.9 291.7 176.5 t4 288.3 176.5 289.3 174.9 p 290.9 176.0 291.7 175.5 291.7 176.5 t5 290.9 176.0 291.7 175.5 p 290.5 176.5 290.9 176.0 291.7 176.5 t5 290.5 176.5 290.9 176.0 p 291.7 171.0 300.3 171.0 300.3 176.5 291.7 176.5 s2 293.9 171.0 292.1 171.3 296.0 173.7 300.3 171.0 s3 293.9 171.0 292.1 171.3 p 300.3 171.0 296.0 173.7 300.3 176.5 t3 300.3 176.5 296.0 173.7 291.7 176.5 t3 292.1 171.3 291.7 171.7 291.7 176.5 296.0 173.7 s3 292.1 171.3 291.7 171.7 p 300.1 171.0 293.4 172.1 296.0 173.7 300.3 171.0 s4 300.1 171.0 293.4 172.1 p 300.3 171.0 296.0 173.7 300.3 176.5 t4 300.3 176.5 296.0 173.7 291.7 176.5 t4 293.4 172.1 291.7 173.6 291.7 176.5 296.0 173.7 s4 293.4 172.1 291.7 173.6 p 294.6 172.9 298.2 172.3 296.0 173.7 t5 294.6 172.9 298.2 172.3 p 300.3 171.6 298.2 172.3 296.0 173.7 300.3 176.5 s5 300.3 171.6 298.2 172.3 p 300.3 176.5 296.0 173.7 291.7 176.5 t5 294.6 172.9 291.7 175.5 291.7 176.5 296.0 173.7 s5 294.6 172.9 291.7 175.5 p 295.9 173.7 296.1 173.6 296.0 173.7 t6 295.9 173.7 296.1 173.6 p 300.3 172.3 296.1 173.6 296.0 173.7 300.3 176.5 s6 300.3 172.3 296.1 173.6 p 295.5 174.0 292.3 176.5 300.3 176.5 296.0 173.7 s6 295.5 174.0 292.3 176.5 p 295.5 174.0 295.9 173.7 296.0 173.7 t6 295.5 174.0 295.9 173.7 p 296.6 174.1 300.3 173.0 300.3 176.5 t7 296.6 174.1 300.3 173.0 p 293.6 176.5 296.6 174.1 300.3 176.5 t7 293.6 176.5 296.6 174.1 p 297.4 174.6 300.3 173.7 300.3 176.5 t8 297.4 174.6 300.3 173.7 p 294.9 176.5 297.4 174.6 300.3 176.5 t8 294.9 176.5 297.4 174.6 p 0.0 165.4 8.6 165.4 8.6 171.0 0.0 171.0 s1 1.5 166.4 6.2 167.0 4.3 168.2 t2 1.5 166.4 6.2 167.0 p 8.6 168.0 6.2 167.0 4.3 168.2 8.6 171.0 s2 8.6 168.0 6.2 167.0 p 8.6 171.0 4.3 168.2 0.0 171.0 t2 1.5 166.4 0.0 166.0 0.0 171.0 4.3 168.2 s2 1.5 166.4 0.0 166.0 p 2.8 169.1 6.3 171.0 0.0 171.0 t3 2.8 169.1 6.3 171.0 p 0.0 168.5 2.8 169.1 0.0 171.0 t3 0.0 168.5 2.8 169.1 p 0.1 170.9 0.2 171.0 0.0 171.0 t4 0.1 170.9 0.2 171.0 p 0.0 170.9 0.1 170.9 0.0 171.0 t4 0.0 170.9 0.1 170.9 p 8.6 165.4 17.2 165.4 17.2 171.0 8.6 171.0 s1 11.3 169.2 12.7 171.0 8.6 171.0 t2 11.3 169.2 12.7 171.0 p 8.6 168.0 11.3 169.2 8.6 171.0 t2 8.6 168.0 11.3 169.2 p 17.2 165.4 25.7 165.4 25.7 171.0 17.2 171.0 s1 25.7 165.4 34.3 165.4 34.3 171.0 25.7 171.0 s1 31.6 169.2 34.3 168.0 34.3 171.0 t2 31.6 169.2 34.3 168.0 p 30.2 171.0 31.6 169.2 34.3 171.0 t2 30.2 171.0 31.6 169.2 p 34.3 165.4 42.9 165.4 42.9 171.0 34.3 171.0 s1 36.7 167.0 41.4 166.4 38.6 168.2 t2 36.7 167.0 41.4 166.4 p 42.9 166.0 41.4 166.4 38.6 168.2 42.9 171.0 s2 42.9 166.0 41.4 166.4 p 42.9 171.0 38.6 168.2 34.3 171.0 t2 36.7 167.0 34.3 168.0 34.3 171.0 38.6 168.2 s2 36.7 167.0 34.3 168.0 p 40.1 169.1 42.9 168.5 42.9 171.0 t3 40.1 169.1 42.9 168.5 p 36.6 171.0 40.1 169.1 42.9 171.0 t3 36.6 171.0 40.1 169.1 p 42.8 170.9 42.9 170.9 42.9 171.0 t4 42.8 170.9 42.9 170.9 p 42.7 171.0 42.8 170.9 42.9 171.0 t4 42.7 171.0 42.8 170.9 p 42.9 165.4 51.5 165.4 51.5 171.0 42.9 171.0 s1 44.4 166.4 49.1 167.0 47.2 168.2 t2 44.4 166.4 49.1 167.0 p 51.5 168.0 49.1 167.0 47.2 168.2 51.5 171.0 s2 51.5 168.0 49.1 167.0 p 51.5 171.0 47.2 168.2 42.9 171.0 t2 44.4 166.4 42.9 166.0 42.9 171.0 47.2 168.2 s2 44.4 166.4 42.9 166.0 p 45.7 169.1 49.2 171.0 42.9 171.0 t3 45.7 169.1 49.2 171.0 p 42.9 168.5 45.7 169.1 42.9 171.0 t3 42.9 168.5 45.7 169.1 p 43.0 170.9 43.1 171.0 42.9 171.0 t4 43.0 170.9 43.1 171.0 p 42.9 170.9 43.0 170.9 42.9 171.0 t4 42.9 170.9 43.0 170.9 p 51.5 165.4 60.1 165.4 60.1 171.0 51.5 171.0 s1 54.2 169.2 55.6 171.0 51.5 171.0 t2 54.2 169.2 55.6 171.0 p 51.5 168.0 54.2 169.2 51.5 171.0 t2 51.5 168.0 54.2 169.2 p 60.1 165.4 68.6 165.4 68.6 171.0 60.1 171.0 s1 68.6 165.4 77.2 165.4 77.2 171.0 68.6 171.0 s1 74.5 169.2 77.2 168.0 77.2 171.0 t2 74.5 169.2 77.2 168.0 p 73.1 171.0 74.5 169.2 77.2 171.0 t2 73.1 171.0 74.5 169.2 p 77.2 165.4 85.8 165.4 85.8 171.0 77.2 171.0 s1 79.6 167.0 84.3 166.4 81.5 168.2 t2 79.6 167.0 84.3 166.4 p 85.8 166.0 84.3 166.4 81.5 168.2 85.8 171.0 s2 85.8 166.0 84.3 166.4 p 85.8 171.0 81.5 168.2 77.2 171.0 t2 79.6 167.0 77.2 168.0 77.2 171.0 81.5 168.2 s2 79.6 167.0 77.2 168.0 p 83.0 169.1 85.8 168.5 85.8 171.0 t3 83.0 169.1 85.8 168.5 p 79.5 171.0 83.0 169.1 85.8 171.0 t3 79.5 171.0 83.0 169.1 p 85.7 170.9 85.8 170.9 85.8 171.0 t4 85.7 170.9 85.8 170.9 p 85.6 171.0 85.7 170.9 85.8 171.0 t4 85.6 171.0 85.7 170.9 p 85.8 165.4 94.4 165.4 94.4 171.0 85.8 171.0 s1 87.3 166.4 92.0 167.0 90.1 168.2 t2 87.3 166.4 92.0 167.0 p 94.4 168.0 92.0 167.0 90.1 168.2 94.4 171.0 s2 94.4 168.0 92.0 167.0 p 94.4 171.0 90.1 168.2 85.8 171.0 t2 87.3 166.4 85.8 166.0 85.8 171.0 90.1 168.2 s2 87.3 166.4 85.8 166.0 p 88.6 169.1 92.1 171.0 85.8 171.0 t3 88.6 169.1 92.1 171.0 p 85.8 168.5 88.6 169.1 85.8 171.0 t3 85.8 168.5 88.6 169.1 p 85.9 170.9 86.0 171.0 85.8 171.0 t4 85.9 170.9 86.0 171.0 p 85.8 170.9 85.9 170.9 85.8 171.0 t4 85.8 170.9 85.9 170.9 p 94.4 165.4 102.9 165.4 102.9 171.0 94.4 171.0 s1 97.1 169.2 98.5 171.0 94.4 171.0 t2 97.1 169.2 98.5 171.0 p 94.4 168.0 97.1 169.2 94.4 171.0 t2 94.4 168.0 97.1 169.2 p 102.9 165.4 111.5 165.4 111.5 171.0 102.9 171.0 s1 111.5 165.4 120.1 165.4 120.1 171.0 111.5 171.0 s1 117.4 169.2 120.1 168.0 120.1 171.0 t2 117.4 169.2 120.1 168.0 p 116.0 171.0 117.4 169.2 120.1 171.0 t2 116.0 171.0 117.4 169.2 p 120.1 165.4 128.7 165.4 128.7 171.0 120.1 171.0 s1 122.5 167.0 127.2 166.4 124.4 168.2 t2 122.5 167.0 127.2 166.4 p 128.7 166.0 127.2 166.4 124.4 168.2 128.7 171.0 s2 128.7 166.0 127.2 166.4 p 128.7 171.0 124.4 168.2 120.1 171.0 t2 122.5 167.0 120.1 168.0 120.1 171.0 124.4 168.2 s2 122.5 167.0 120.1 168.0 p 125.9 169.1 128.7 168.5 128.7 171.0 t3 125.9 169.1 128.7 168.5 p 122.3 171.0 125.9 169.1 128.7 171.0 t3 122.3 171.0 125.9 169.1 p 128.6 170.9 128.7 170.9 128.7 171.0 t4 128.6 170.9 128.7 170.9 p 128.5 171.0 128.6 170.9 128.7 171.0 t4 128.5 171.0 128.6 170.9 p 128.7 165.4 137.3 165.4 137.3 171.0 128.7 171.0 s1 130.2 166.4 134.9 167.0 133.0 168.2 t2 130.2 166.4 134.9 167.0 p 137.3 168.0 134.9 167.0 133.0 168.2 137.3 171.0 s2 137.3 168.0 134.9 167.0 p 137.3 171.0 133.0 168.2 128.7 171.0 t2 130.2 166.4 128.7 166.0 128.7 171.0 133.0 168.2 s2 130.2 166.4 128.7 166.0 p 131.5 169.1 135.0 171.0 128.7 171.0 t3 131.5 169.1 135.0 171.0 p 128.7 168.5 131.5 169.1 128.7 171.0 t3 128.7 168.5 131.5 169.1 p 128.8 170.9 128.9 171.0 128.7 171.0 t4 128.8 170.9 128.9 171.0 p 128.7 170.9 128.8 170.9 128.7 171.0 t4 128.7 170.9 128.8 170.9 p 137.3 165.4 145.8 165.4 145.8 171.0 137.3 171.0 s1 140.0 169.2 141.4 171.0 137.3 171.0 t2 140.0 169.2 141.4 171.0 p 137.3 168.0 140.0 169.2 137.3 171.0 t2 137.3 168.0 140.0 169.2 p 145.8 165.4 154.4 165.4 154.4 171.0 145.8 171.0 s1 154.4 165.4 163.0 165.4 163.0 171.0 154.4 171.0 s1 160.3 169.2 163.0 168.0 163.0 171.0 t2 160.3 169.2 163.0 168.0 p 158.9 171.0 160.3 169.2 163.0 171.0 t2 158.9 171.0 160.3 169.2 p 163.0 165.4 171.6 165.4 171.6 171.0 163.0 171.0 s1 165.4 167.0 170.1 166.4 167.3 168.2 t2 165.4 167.0 170.1 166.4 p 171.6 166.0 170.1 166.4 167.3 168.2 171.6 171.0 s2 171.6 166.0 170.1 166.4 p 171.6 171.0 167.3 168.2 163.0 171.0 t2 165.4 167.0 163.0 168.0 163.0 171.0 167.3 168.2 s2 165.4 167.0 163.0 168.0 p 168.8 169.1 171.6 168.5 171.6 171.0 t3 168.8 169.1 171.6 168.5 p 165.2 171.0 168.8 169.1 171.6 171.0 t3 165.2 171.0 168.8 169.1 p 171.5 170.9 171.6 170.9 171.6 171.0 t4 171.5 170.9 171.6 170.9 p 171.4 171.0 171.5 170.9 171.6 171.0 t4 171.4 171.0 171.5 170.9 p 171.6 165.4 180.2 165.4 180.2 171.0 171.6 171.0 s1 173.1 166.4 177.8 167.0 175.9 168.2 t2 173.1 166.4 177.8 167.0 p 180.2 168.0 177.8 167.0 175.9 168.2 180.2 171.0 s2 180.2 168.0 177.8 167.0 p 180.2 171.0 175.9 168.2 171.6 171.0 t2 173.1 166.4 171.6 166.0 171.6 171.0 175.9 168.2 s2 173.1 166.4 171.6 166.0 p 174.4 169.1 177.9 171.0 171.6 171.0 t3 174.4 169.1 177.9 171.0 p 171.6 168.5 174.4 169.1 171.6 171.0 t3 171.6 168.5 174.4 169.1 p 171.7 170.9 171.8 171.0 171.6 171.0 t4 171.7 170.9 171.8 171.0 p 171.6 170.9 171.7 170.9 171.6 171.0 t4 171.6 170.9 171.7 170.9 p 180.2 165.4 188.7 165.4 188.7 171.0 180.2 171.0 s1 182.9 169.2 184.3 171.0 180.2 171.0 t2 182.9 169.2 184.3 171.0 p 180.2 168.0 182.9 169.2 180.2 171.0 t2 180.2 168.0 182.9 169.2 p 188.7 165.4 197.3 165.4 197.3 171.0 188.7 171.0 s1 197.3 165.4 205.9 165.4 205.9 171.0 197.3 171.0 s1 203.2 169.2 205.9 168.0 205.9 171.0 t2 203.2 169.2 205.9 168.0 p 201.8 171.0 203.2 169.2 205.9 171.0 t2 201.8 171.0 203.2 169.2 p 205.9 165.4 214.5 165.4 214.5 171.0 205.9 171.0 s1 208.2 167.0 213.0 166.4 210.2 168.2 t2 208.2 167.0 213.0 166.4 p 214.5 166.0 213.0 166.4 210.2 168.2 214.5 171.0 s2 214.5 166.0 213.0 166.4 p 214.5 171.0 210.2 168.2 205.9 171.0 t2 208.2 167.0 205.9 168.0 205.9 171.0 210.2 168.2 s2 208.2 167.0 205.9 168.0 p 211.7 169.1 214.5 168.5 214.5 171.0 t3 211.7 169.1 214.5 168.5 p 208.1 171.0 211.7 169.1 214.5 171.0 t3 208.1 171.0 211.7 169.1 p 214.4 170.9 214.5 170.9 214.5 171.0 t4 214.4 170.9 214.5 170.9 p 214.3 171.0 214.4 170.9 214.5 171.0 t4 214.3 171.0 214.4 170.9 p 214.5 165.4 223.1 165.4 223.1 171.0 214.5 171.0 s1 216.0 166.4 220.7 167.0 218.8 168.2 t2 216.0 166.4 220.7 167.0 p 223.1 168.0 220.7 167.0 218.8 168.2 223.1 171.0 s2 223.1 168.0 220.7 167.0 p 223.1 171.0 218.8 168.2 214.5 171.0 t2 216.0 166.4 214.5 166.0 214.5 171.0 218.8 168.2 s2 216.0 166.4 214.5 166.0 p 217.3 169.1 220.8 171.0 214.5 171.0 t3 217.3 169.1 220.8 171.0 p 214.5 168.5 217.3 169.1 214.5 171.0 t3 214.5 168.5 217.3 169.1 p 214.6 170.9 214.7 171.0 214.5 171.0 t4 214.6 170.9 214.7 171.0 p 214.5 170.9 214.6 170.9 214.5 171.0 t4 214.5 170.9 214.6 170.9 p 223.1 165.4 231.6 165.4 231.6 171.0 223.1 171.0 s1 225.8 169.2 227.2 171.0 223.1 171.0 t2 225.8 169.2 227.2 171.0 p 223.1 168.0 225.8 169.2 223.1 171.0 t2 223.1 168.0 225.8 169.2 p 231.6 165.4 240.2 165.4 240.2 171.0 231.6 171.0 s1 240.2 165.4 248.8 165.4 248.8 171.0 240.2 171.0 s1 246.1 169.2 248.8 168.0 248.8 171.0 t2 246.1 169.2 248.8 168.0 p 244.7 171.0 246.1 169.2 248.8 171.0 t2 244.7 171.0 246.1 169.2 p 248.8 165.4 257.4 165.4 257.4 171.0 248.8 171.0 s1 251.1 167.0 255.9 166.4 253.1 168.2 t2 251.1 167.0 255.9 166.4 p 257.4 166.0 255.9 166.4 253.1 168.2 257.4 171.0 s2 257.4 166.0 255.9 166.4 p 257.4 171.0 253.1 168.2 248.8 171.0 t2 251.1 167.0 248.8 168.0 248.8 171.0 253.1 168.2 s2 251.1 167.0 248.8 168.0 p 254.5 169.1 257.4 168.5 257.4 171.0 t3 254.5 169.1 257.4 168.5 p 251.0 171.0 254.5 169.1 257.4 171.0 t3 251.0 171.0 254.5 169.1 p 257.3 170.9 257.4 170.9 257.4 171.0 t4 257.3 170.9 257.4 170.9 p 257.2 171.0 257.3 170.9 257.4 171.0 t4 257.2 171.0 257.3 170.9 p 257.4 165.4 265.9 165.4 265.9 171.0 257.4 171.0 s1 258.9 166.4 263.6 167.0 261.7 168.2 t2 258.9 166.4 263.6 167.0 p 265.9 168.0 263.6 167.0 261.7 168.2 265.9 171.0 s2 265.9 168.0 263.6 167.0 p 265.9 171.0 261.7 168.2 257.4 171.0 t2 258.9 166.4 257.4 166.0 257.4 171.0 261.7 168.2 s2 258.9 166.4 257.4 166.0 p 260.2 169.1 263.7 171.0 257.4 171.0 t3 260.2 169.1 263.7 171.0 p 257.4 168.5 260.2 169.1 257.4 171.0 t3 257.4 168.5 260.2 169.1 p 257.4 170.9 257.6 171.0 257.4 171.0 t4 257.4 170.9 257.6 171.0 p 257.4 170.9 257.4 170.9 257.4 171.0 t4 257.4 170.9 257.4 170.9 p 265.9 165.4 274.5 165.4 274.5 171.0 265.9 171.0 s1 268.6 169.2 270.1 171.0 265.9 171.0 t2 268.6 169.2 270.1 171.0 p 265.9 168.0 268.6 169.2 265.9 171.0 t2 265.9 168.0 268.6 169.2 p 274.5 165.4 283.1 165.4 283.1 171.0 274.5 171.0 s1 283.1 165.4 291.7 165.4 291.7 171.0 283.1 171.0 s1 289.0 169.2 291.7 168.0 291.7 171.0 t2 289.0 169.2 291.7 168.0 p 287.6 171.0 289.0 169.2 291.7 171.0 t2 287.6 171.0 289.0 169.2 p 291.7 165.4 300.3 165.4 300.3 171.0 291.7 171.0 s1 294.0 167.0 298.8 166.4 296.0 168.2 t2 294.0 167.0 298.8 166.4 p 300.3 166.0 298.8 166.4 296.0 168.2 300.3 171.0 s2 300.3 166.0 298.8 166.4 p 300.3 171.0 296.0 168.2 291.7 171.0 t2 294.0 167.0 291.7 168.0 291.7 171.0 296.0 168.2 s2 294.0 167.0 291.7 168.0 p 297.4 169.1 300.3 168.5 300.3 171.0 t3 297.4 169.1 300.3 168.5 p 293.9 171.0 297.4 169.1 300.3 171.0 t3 293.9 171.0 297.4 169.1 p 300.2 170.9 300.3 170.9 300.3 171.0 t4 300.2 170.9 300.3 170.9 p 300.1 171.0 300.2 170.9 300.3 171.0 t4 300.1 171.0 300.2 170.9 p 0.0 159.9 8.6 159.9 8.6 165.4 0.0 165.4 s1 8.6 159.9 17.2 159.9 17.2 165.4 8.6 165.4 s1 17.2 159.9 25.7 159.9 25.7 165.4 17.2 165.4 s1 25.7 159.9 34.3 159.9 34.3 165.4 25.7 165.4 s1 34.3 159.9 42.9 159.9 42.9 165.4 34.3 165.4 s1 42.9 159.9 51.5 159.9 51.5 165.4 42.9 165.4 s1 51.5 159.9 60.1 159.9 60.1 165.4 51.5 165.4 s1 60.1 159.9 68.6 159.9 68.6 165.4 60.1 165.4 s1 68.6 159.9 77.2 159.9 77.2 165.4 68.6 165.4 s1 77.2 159.9 85.8 159.9 85.8 165.4 77.2 165.4 s1 85.8 159.9 94.4 159.9 94.4 165.4 85.8 165.4 s1 94.4 159.9 102.9 159.9 102.9 165.4 94.4 165.4 s1 102.9 159.9 111.5 159.9 111.5 165.4 102.9 165.4 s1 111.5 159.9 120.1 159.9 120.1 165.4 111.5 165.4 s1 120.1 159.9 128.7 159.9 128.7 165.4 120.1 165.4 s1 128.7 159.9 137.3 159.9 137.3 165.4 128.7 165.4 s1 137.3 159.9 145.8 159.9 145.8 165.4 137.3 165.4 s1 145.8 159.9 154.4 159.9 154.4 165.4 145.8 165.4 s1 154.4 159.9 163.0 159.9 163.0 165.4 154.4 165.4 s1 163.0 159.9 171.6 159.9 171.6 165.4 163.0 165.4 s1 171.6 159.9 180.2 159.9 180.2 165.4 171.6 165.4 s1 180.2 159.9 188.7 159.9 188.7 165.4 180.2 165.4 s1 188.7 159.9 197.3 159.9 197.3 165.4 188.7 165.4 s1 197.3 159.9 205.9 159.9 205.9 165.4 197.3 165.4 s1 205.9 159.9 214.5 159.9 214.5 165.4 205.9 165.4 s1 214.5 159.9 223.1 159.9 223.1 165.4 214.5 165.4 s1 223.1 159.9 231.6 159.9 231.6 165.4 223.1 165.4 s1 231.6 159.9 240.2 159.9 240.2 165.4 231.6 165.4 s1 240.2 159.9 248.8 159.9 248.8 165.4 240.2 165.4 s1 248.8 159.9 257.4 159.9 257.4 165.4 248.8 165.4 s1 257.4 159.9 265.9 159.9 265.9 165.4 257.4 165.4 s1 265.9 159.9 274.5 159.9 274.5 165.4 265.9 165.4 s1 274.5 159.9 283.1 159.9 283.1 165.4 274.5 165.4 s1 283.1 159.9 291.7 159.9 291.7 165.4 283.1 165.4 s1 291.7 159.9 300.3 159.9 300.3 165.4 291.7 165.4 s1 0.0 154.4 8.6 154.4 8.6 159.9 0.0 159.9 s1 8.6 154.4 17.2 154.4 17.2 159.9 8.6 159.9 s1 17.2 154.4 25.7 154.4 25.7 159.9 17.2 159.9 s1 25.7 154.4 34.3 154.4 34.3 159.9 25.7 159.9 s1 34.3 154.4 42.9 154.4 42.9 159.9 34.3 159.9 s1 42.9 154.4 51.5 154.4 51.5 159.9 42.9 159.9 s1 51.5 154.4 60.1 154.4 60.1 159.9 51.5 159.9 s1 60.1 154.4 68.6 154.4 68.6 159.9 60.1 159.9 s1 68.6 154.4 77.2 154.4 77.2 159.9 68.6 159.9 s1 77.2 154.4 85.8 154.4 85.8 159.9 77.2 159.9 s1 85.8 154.4 94.4 154.4 94.4 159.9 85.8 159.9 s1 94.4 154.4 102.9 154.4 102.9 159.9 94.4 159.9 s1 102.9 154.4 111.5 154.4 111.5 159.9 102.9 159.9 s1 111.5 154.4 120.1 154.4 120.1 159.9 111.5 159.9 s1 120.1 154.4 128.7 154.4 128.7 159.9 120.1 159.9 s1 128.7 154.4 137.3 154.4 137.3 159.9 128.7 159.9 s1 137.3 154.4 145.8 154.4 145.8 159.9 137.3 159.9 s1 145.8 154.4 154.4 154.4 154.4 159.9 145.8 159.9 s1 154.4 154.4 163.0 154.4 163.0 159.9 154.4 159.9 s1 163.0 154.4 171.6 154.4 171.6 159.9 163.0 159.9 s1 171.6 154.4 180.2 154.4 180.2 159.9 171.6 159.9 s1 180.2 154.4 188.7 154.4 188.7 159.9 180.2 159.9 s1 188.7 154.4 197.3 154.4 197.3 159.9 188.7 159.9 s1 197.3 154.4 205.9 154.4 205.9 159.9 197.3 159.9 s1 205.9 154.4 214.5 154.4 214.5 159.9 205.9 159.9 s1 214.5 154.4 223.1 154.4 223.1 159.9 214.5 159.9 s1 223.1 154.4 231.6 154.4 231.6 159.9 223.1 159.9 s1 231.6 154.4 240.2 154.4 240.2 159.9 231.6 159.9 s1 240.2 154.4 248.8 154.4 248.8 159.9 240.2 159.9 s1 248.8 154.4 257.4 154.4 257.4 159.9 248.8 159.9 s1 257.4 154.4 265.9 154.4 265.9 159.9 257.4 159.9 s1 265.9 154.4 274.5 154.4 274.5 159.9 265.9 159.9 s1 274.5 154.4 283.1 154.4 283.1 159.9 274.5 159.9 s1 283.1 154.4 291.7 154.4 291.7 159.9 283.1 159.9 s1 291.7 154.4 300.3 154.4 300.3 159.9 291.7 159.9 s1 0.0 148.9 8.6 148.9 8.6 154.4 0.0 154.4 s1 8.6 148.9 17.2 148.9 17.2 154.4 8.6 154.4 s1 17.2 148.9 25.7 148.9 25.7 154.4 17.2 154.4 s1 25.7 148.9 34.3 148.9 34.3 154.4 25.7 154.4 s1 34.3 148.9 42.9 148.9 42.9 154.4 34.3 154.4 s1 42.9 148.9 51.5 148.9 51.5 154.4 42.9 154.4 s1 51.5 148.9 60.1 148.9 60.1 154.4 51.5 154.4 s1 60.1 148.9 68.6 148.9 68.6 154.4 60.1 154.4 s1 68.6 148.9 77.2 148.9 77.2 154.4 68.6 154.4 s1 77.2 148.9 85.8 148.9 85.8 154.4 77.2 154.4 s1 85.8 148.9 94.4 148.9 94.4 154.4 85.8 154.4 s1 94.4 148.9 102.9 148.9 102.9 154.4 94.4 154.4 s1 102.9 148.9 111.5 148.9 111.5 154.4 102.9 154.4 s1 111.5 148.9 120.1 148.9 120.1 154.4 111.5 154.4 s1 120.1 148.9 128.7 148.9 128.7 154.4 120.1 154.4 s1 128.7 148.9 137.3 148.9 137.3 154.4 128.7 154.4 s1 137.3 148.9 145.8 148.9 145.8 154.4 137.3 154.4 s1 145.8 148.9 154.4 148.9 154.4 154.4 145.8 154.4 s1 154.4 148.9 163.0 148.9 163.0 154.4 154.4 154.4 s1 163.0 148.9 171.6 148.9 171.6 154.4 163.0 154.4 s1 171.6 148.9 180.2 148.9 180.2 154.4 171.6 154.4 s1 180.2 148.9 188.7 148.9 188.7 154.4 180.2 154.4 s1 188.7 148.9 197.3 148.9 197.3 154.4 188.7 154.4 s1 197.3 148.9 205.9 148.9 205.9 154.4 197.3 154.4 s1 205.9 148.9 214.5 148.9 214.5 154.4 205.9 154.4 s1 214.5 148.9 223.1 148.9 223.1 154.4 214.5 154.4 s1 223.1 148.9 231.6 148.9 231.6 154.4 223.1 154.4 s1 231.6 148.9 240.2 148.9 240.2 154.4 231.6 154.4 s1 240.2 148.9 248.8 148.9 248.8 154.4 240.2 154.4 s1 248.8 148.9 257.4 148.9 257.4 154.4 248.8 154.4 s1 257.4 148.9 265.9 148.9 265.9 154.4 257.4 154.4 s1 265.9 148.9 274.5 148.9 274.5 154.4 265.9 154.4 s1 274.5 148.9 283.1 148.9 283.1 154.4 274.5 154.4 s1 283.1 148.9 291.7 148.9 291.7 154.4 283.1 154.4 s1 291.7 148.9 300.3 148.9 300.3 154.4 291.7 154.4 s1 0.0 143.4 8.6 143.4 8.6 148.9 0.0 148.9 s1 8.6 143.4 17.2 143.4 17.2 148.9 8.6 148.9 s1 17.2 143.4 25.7 143.4 25.7 148.9 17.2 148.9 s1 25.7 143.4 34.3 143.4 34.3 148.9 25.7 148.9 s1 34.3 143.4 42.9 143.4 42.9 148.9 34.3 148.9 s1 42.9 143.4 51.5 143.4 51.5 148.9 42.9 148.9 s1 51.5 143.4 60.1 143.4 60.1 148.9 51.5 148.9 s1 60.1 143.4 68.6 143.4 68.6 148.9 60.1 148.9 s1 68.6 143.4 77.2 143.4 77.2 148.9 68.6 148.9 s1 77.2 143.4 85.8 143.4 85.8 148.9 77.2 148.9 s1 85.8 143.4 94.4 143.4 94.4 148.9 85.8 148.9 s1 94.4 143.4 102.9 143.4 102.9 148.9 94.4 148.9 s1 102.9 143.4 111.5 143.4 111.5 148.9 102.9 148.9 s1 111.5 143.4 120.1 143.4 120.1 148.9 111.5 148.9 s1 120.1 143.4 128.7 143.4 128.7 148.9 120.1 148.9 s1 128.7 143.4 137.3 143.4 137.3 148.9 128.7 148.9 s1 137.3 143.4 145.8 143.4 145.8 148.9 137.3 148.9 s1 145.8 143.4 154.4 143.4 154.4 148.9 145.8 148.9 s1 154.4 143.4 163.0 143.4 163.0 148.9 154.4 148.9 s1 163.0 143.4 171.6 143.4 171.6 148.9 163.0 148.9 s1 171.6 143.4 180.2 143.4 180.2 148.9 171.6 148.9 s1 180.2 143.4 188.7 143.4 188.7 148.9 180.2 148.9 s1 188.7 143.4 197.3 143.4 197.3 148.9 188.7 148.9 s1 197.3 143.4 205.9 143.4 205.9 148.9 197.3 148.9 s1 205.9 143.4 214.5 143.4 214.5 148.9 205.9 148.9 s1 214.5 143.4 223.1 143.4 223.1 148.9 214.5 148.9 s1 223.1 143.4 231.6 143.4 231.6 148.9 223.1 148.9 s1 231.6 143.4 240.2 143.4 240.2 148.9 231.6 148.9 s1 240.2 143.4 248.8 143.4 248.8 148.9 240.2 148.9 s1 248.8 143.4 257.4 143.4 257.4 148.9 248.8 148.9 s1 257.4 143.4 265.9 143.4 265.9 148.9 257.4 148.9 s1 265.9 143.4 274.5 143.4 274.5 148.9 265.9 148.9 s1 274.5 143.4 283.1 143.4 283.1 148.9 274.5 148.9 s1 283.1 143.4 291.7 143.4 291.7 148.9 283.1 148.9 s1 291.7 143.4 300.3 143.4 300.3 148.9 291.7 148.9 s1 0.0 137.9 8.6 137.9 8.6 143.4 0.0 143.4 s1 3.0 137.9 0.7 138.3 0.0 137.9 t2 3.0 137.9 0.7 138.3 p 0.7 138.3 0.0 138.3 0.0 137.9 t2 0.7 138.3 0.0 138.3 p 8.6 137.9 17.2 137.9 17.2 143.4 8.6 143.4 s1 17.2 137.9 25.7 137.9 25.7 143.4 17.2 143.4 s1 25.7 137.9 34.3 137.9 34.3 143.4 25.7 143.4 s1 34.3 137.9 42.9 137.9 42.9 143.4 34.3 143.4 s1 42.2 138.3 39.9 137.9 42.9 137.9 t2 42.2 138.3 39.9 137.9 p 42.9 138.3 42.2 138.3 42.9 137.9 t2 42.9 138.3 42.2 138.3 p 42.9 137.9 51.5 137.9 51.5 143.4 42.9 143.4 s1 45.9 137.9 43.6 138.3 42.9 137.9 t2 45.9 137.9 43.6 138.3 p 43.6 138.3 42.9 138.3 42.9 137.9 t2 43.6 138.3 42.9 138.3 p 51.5 137.9 60.1 137.9 60.1 143.4 51.5 143.4 s1 60.1 137.9 68.6 137.9 68.6 143.4 60.1 143.4 s1 68.6 137.9 77.2 137.9 77.2 143.4 68.6 143.4 s1 77.2 137.9 85.8 137.9 85.8 143.4 77.2 143.4 s1 85.1 138.3 82.8 137.9 85.8 137.9 t2 85.1 138.3 82.8 137.9 p 85.8 138.3 85.1 138.3 85.8 137.9 t2 85.8 138.3 85.1 138.3 p 85.8 137.9 94.4 137.9 94.4 143.4 85.8 143.4 s1 88.8 137.9 86.4 138.3 85.8 137.9 t2 88.8 137.9 86.4 138.3 p 86.4 138.3 85.8 138.3 85.8 137.9 t2 86.4 138.3 85.8 138.3 p 94.4 137.9 102.9 137.9 102.9 143.4 94.4 143.4 s1 102.9 137.9 111.5 137.9 111.5 143.4 102.9 143.4 s1 111.5 137.9 120.1 137.9 120.1 143.4 111.5 143.4 s1 120.1 137.9 128.7 137.9 128.7 143.4 120.1 143.4 s1 128.0 138.3 125.7 137.9 128.7 137.9 t2 128.0 138.3 125.7 137.9 p 128.7 138.3 128.0 138.3 128.7 137.9 t2 128.7 138.3 128.0 138.3 p 128.7 137.9 137.3 137.9 137.3 143.4 128.7 143.4 s1 131.7 137.9 129.3 138.3 128.7 137.9 t2 131.7 137.9 129.3 138.3 p 129.3 138.3 128.7 138.3 128.7 137.9 t2 129.3 138.3 128.7 138.3 p 137.3 137.9 145.8 137.9 145.8 143.4 137.3 143.4 s1 145.8 137.9 154.4 137.9 154.4 143.4 145.8 143.4 s1 154.4 137.9 163.0 137.9 163.0 143.4 154.4 143.4 s1 163.0 137.9 171.6 137.9 171.6 143.4 163.0 143.4 s1 170.9 138.3 168.6 137.9 171.6 137.9 t2 170.9 138.3 168.6 137.9 p 171.6 138.3 170.9 138.3 171.6 137.9 t2 171.6 138.3 170.9 138.3 p 171.6 137.9 180.2 137.9 180.2 143.4 171.6 143.4 s1 174.6 137.9 172.2 138.3 171.6 137.9 t2 174.6 137.9 172.2 138.3 p 172.2 138.3 171.6 138.3 171.6 137.9 t2 172.2 138.3 171.6 138.3 p 180.2 137.9 188.7 137.9 188.7 143.4 180.2 143.4 s1 188.7 137.9 197.3 137.9 197.3 143.4 188.7 143.4 s1 197.3 137.9 205.9 137.9 205.9 143.4 197.3 143.4 s1 205.9 137.9 214.5 137.9 214.5 143.4 205.9 143.4 s1 213.8 138.3 211.5 137.9 214.5 137.9 t2 213.8 138.3 211.5 137.9 p 214.5 138.3 213.8 138.3 214.5 137.9 t2 214.5 138.3 213.8 138.3 p 214.5 137.9 223.1 137.9 223.1 143.4 214.5 143.4 s1 217.5 137.9 215.1 138.3 214.5 137.9 t2 217.5 137.9 215.1 138.3 p 215.1 138.3 214.5 138.3 214.5 137.9 t2 215.1 138.3 214.5 138.3 p 223.1 137.9 231.6 137.9 231.6 143.4 223.1 143.4 s1 231.6 137.9 240.2 137.9 240.2 143.4 231.6 143.4 s1 240.2 137.9 248.8 137.9 248.8 143.4 240.2 143.4 s1 248.8 137.9 257.4 137.9 257.4 143.4 248.8 143.4 s1 256.7 138.3 254.4 137.9 257.4 137.9 t2 256.7 138.3 254.4 137.9 p 257.4 138.3 256.7 138.3 257.4 137.9 t2 257.4 138.3 256.7 138.3 p 257.4 137.9 265.9 137.9 265.9 143.4 257.4 143.4 s1 260.4 137.9 258.0 138.3 257.4 137.9 t2 260.4 137.9 258.0 138.3 p 258.0 138.3 257.4 138.3 257.4 137.9 t2 258.0 138.3 257.4 138.3 p 265.9 137.9 274.5 137.9 274.5 143.4 265.9 143.4 s1 274.5 137.9 283.1 137.9 283.1 143.4 274.5 143.4 s1 283.1 137.9 291.7 137.9 291.7 143.4 283.1 143.4 s1 291.7 137.9 300.3 137.9 300.3 143.4 291.7 143.4 s1 299.6 138.3 297.3 137.9 300.3 137.9 t2 299.6 138.3 297.3 137.9 p 300.3 138.3 299.6 138.3 300.3 137.9 t2 300.3 138.3 299.6 138.3 p 0.0 132.4 8.6 132.4 8.6 137.9 0.0 137.9 s1 0.0 132.4 4.3 135.1 8.6 132.4 t2 8.3 137.7 8.6 137.6 8.6 132.4 4.3 135.1 s2 8.3 137.7 8.6 137.6 p 3.0 137.9 8.3 137.7 4.3 135.1 0.0 137.9 s2 3.0 137.9 8.3 137.7 p 0.0 137.9 4.3 135.1 0.0 132.4 t2 0.0 132.4 4.3 135.1 8.6 132.4 t3 4.9 135.5 8.6 133.9 8.6 132.4 4.3 135.1 s3 4.9 135.5 8.6 133.9 p 4.9 135.5 3.6 135.6 4.3 135.1 t3 4.9 135.5 3.6 135.6 p 0.0 136.3 3.6 135.6 4.3 135.1 0.0 132.4 s3 0.0 136.3 3.6 135.6 p 6.0 132.4 2.7 134.1 0.0 132.4 t4 6.0 132.4 2.7 134.1 p 2.7 134.1 0.0 134.6 0.0 132.4 t4 2.7 134.1 0.0 134.6 p 1.6 132.4 0.7 132.8 0.0 132.4 t5 1.6 132.4 0.7 132.8 p 0.7 132.8 0.0 132.9 0.0 132.4 t5 0.7 132.8 0.0 132.9 p 8.6 132.4 17.2 132.4 17.2 137.9 8.6 137.9 s1 12.9 135.1 14.4 132.4 8.6 132.4 12.9 135.1 s2 12.9 135.1 14.4 132.4 p 12.9 135.1 12.9 135.2 12.9 135.1 t2 12.9 135.1 12.9 135.2 p 12.9 135.2 12.4 135.4 12.9 135.1 t2 12.9 135.2 12.4 135.4 p 8.6 137.6 12.4 135.4 12.9 135.1 8.6 132.4 s2 8.6 137.6 12.4 135.4 p 10.3 132.4 9.9 133.2 8.6 132.4 t3 10.3 132.4 9.9 133.2 p 9.9 133.2 8.6 133.9 8.6 132.4 t3 9.9 133.2 8.6 133.9 p 17.2 132.4 25.7 132.4 25.7 137.9 17.2 137.9 s1 25.7 132.4 34.3 132.4 34.3 137.9 25.7 137.9 s1 28.5 132.4 30.0 135.1 30.0 135.1 34.3 132.4 s2 28.5 132.4 30.0 135.1 p 30.5 135.4 34.3 137.6 34.3 132.4 30.0 135.1 s2 30.5 135.4 34.3 137.6 p 30.5 135.4 30.0 135.2 30.0 135.1 t2 30.5 135.4 30.0 135.2 p 30.0 135.2 30.0 135.1 30.0 135.1 t2 30.0 135.2 30.0 135.1 p 33.0 133.2 32.6 132.4 34.3 132.4 t3 33.0 133.2 32.6 132.4 p 34.3 133.9 33.0 133.2 34.3 132.4 t3 34.3 133.9 33.0 133.2 p 34.3 132.4 42.9 132.4 42.9 137.9 34.3 137.9 s1 34.3 132.4 38.6 135.1 42.9 132.4 t2 42.9 132.4 38.6 135.1 42.9 137.9 t2 34.6 137.7 39.9 137.9 42.9 137.9 38.6 135.1 s2 34.6 137.7 39.9 137.9 p 34.3 137.6 34.6 137.7 38.6 135.1 34.3 132.4 s2 34.3 137.6 34.6 137.7 p 34.3 132.4 38.6 135.1 42.9 132.4 t3 39.3 135.6 42.9 136.3 42.9 132.4 38.6 135.1 s3 39.3 135.6 42.9 136.3 p 39.3 135.6 38.0 135.5 38.6 135.1 t3 39.3 135.6 38.0 135.5 p 34.3 133.9 38.0 135.5 38.6 135.1 34.3 132.4 s3 34.3 133.9 38.0 135.5 p 40.2 134.1 36.8 132.4 42.9 132.4 t4 40.2 134.1 36.8 132.4 p 42.9 134.6 40.2 134.1 42.9 132.4 t4 42.9 134.6 40.2 134.1 p 42.2 132.8 41.3 132.4 42.9 132.4 t5 42.2 132.8 41.3 132.4 p 42.9 132.9 42.2 132.8 42.9 132.4 t5 42.9 132.9 42.2 132.8 p 42.9 132.4 51.5 132.4 51.5 137.9 42.9 137.9 s1 42.9 132.4 47.2 135.1 51.5 132.4 t2 51.2 137.7 51.5 137.6 51.5 132.4 47.2 135.1 s2 51.2 137.7 51.5 137.6 p 45.9 137.9 51.2 137.7 47.2 135.1 42.9 137.9 s2 45.9 137.9 51.2 137.7 p 42.9 137.9 47.2 135.1 42.9 132.4 t2 42.9 132.4 47.2 135.1 51.5 132.4 t3 47.8 135.5 51.5 133.9 51.5 132.4 47.2 135.1 s3 47.8 135.5 51.5 133.9 p 47.8 135.5 46.5 135.6 47.2 135.1 t3 47.8 135.5 46.5 135.6 p 42.9 136.3 46.5 135.6 47.2 135.1 42.9 132.4 s3 42.9 136.3 46.5 135.6 p 48.9 132.4 45.6 134.1 42.9 132.4 t4 48.9 132.4 45.6 134.1 p 45.6 134.1 42.9 134.6 42.9 132.4 t4 45.6 134.1 42.9 134.6 p 44.5 132.4 43.6 132.8 42.9 132.4 t5 44.5 132.4 43.6 132.8 p 43.6 132.8 42.9 132.9 42.9 132.4 t5 43.6 132.8 42.9 132.9 p 51.5 132.4 60.1 132.4 60.1 137.9 51.5 137.9 s1 55.8 135.1 57.3 132.4 51.5 132.4 55.8 135.1 s2 55.8 135.1 57.3 132.4 p 55.8 135.1 55.8 135.2 55.8 135.1 t2 55.8 135.1 55.8 135.2 p 55.8 135.2 55.3 135.4 55.8 135.1 t2 55.8 135.2 55.3 135.4 p 51.5 137.6 55.3 135.4 55.8 135.1 51.5 132.4 s2 51.5 137.6 55.3 135.4 p 53.2 132.4 52.8 133.2 51.5 132.4 t3 53.2 132.4 52.8 133.2 p 52.8 133.2 51.5 133.9 51.5 132.4 t3 52.8 133.2 51.5 133.9 p 60.1 132.4 68.6 132.4 68.6 137.9 60.1 137.9 s1 68.6 132.4 77.2 132.4 77.2 137.9 68.6 137.9 s1 71.4 132.4 72.9 135.1 72.9 135.1 77.2 132.4 s2 71.4 132.4 72.9 135.1 p 73.4 135.4 77.2 137.6 77.2 132.4 72.9 135.1 s2 73.4 135.4 77.2 137.6 p 73.4 135.4 72.9 135.2 72.9 135.1 t2 73.4 135.4 72.9 135.2 p 72.9 135.2 72.9 135.1 72.9 135.1 t2 72.9 135.2 72.9 135.1 p 75.9 133.2 75.5 132.4 77.2 132.4 t3 75.9 133.2 75.5 132.4 p 77.2 133.9 75.9 133.2 77.2 132.4 t3 77.2 133.9 75.9 133.2 p 77.2 132.4 85.8 132.4 85.8 137.9 77.2 137.9 s1 77.2 132.4 81.5 135.1 85.8 132.4 t2 85.8 132.4 81.5 135.1 85.8 137.9 t2 77.5 137.7 82.8 137.9 85.8 137.9 81.5 135.1 s2 77.5 137.7 82.8 137.9 p 77.2 137.6 77.5 137.7 81.5 135.1 77.2 132.4 s2 77.2 137.6 77.5 137.7 p 77.2 132.4 81.5 135.1 85.8 132.4 t3 82.2 135.6 85.8 136.3 85.8 132.4 81.5 135.1 s3 82.2 135.6 85.8 136.3 p 82.2 135.6 80.9 135.5 81.5 135.1 t3 82.2 135.6 80.9 135.5 p 77.2 133.9 80.9 135.5 81.5 135.1 77.2 132.4 s3 77.2 133.9 80.9 135.5 p 83.1 134.1 79.7 132.4 85.8 132.4 t4 83.1 134.1 79.7 132.4 p 85.8 134.6 83.1 134.1 85.8 132.4 t4 85.8 134.6 83.1 134.1 p 85.1 132.8 84.2 132.4 85.8 132.4 t5 85.1 132.8 84.2 132.4 p 85.8 132.9 85.1 132.8 85.8 132.4 t5 85.8 132.9 85.1 132.8 p 85.8 132.4 94.4 132.4 94.4 137.9 85.8 137.9 s1 85.8 132.4 90.1 135.1 94.4 132.4 t2 94.1 137.7 94.4 137.6 94.4 132.4 90.1 135.1 s2 94.1 137.7 94.4 137.6 p 88.8 137.9 94.1 137.7 90.1 135.1 85.8 137.9 s2 88.8 137.9 94.1 137.7 p 85.8 137.9 90.1 135.1 85.8 132.4 t2 85.8 132.4 90.1 135.1 94.4 132.4 t3 90.7 135.5 94.4 133.9 94.4 132.4 90.1 135.1 s3 90.7 135.5 94.4 133.9 p 90.7 135.5 89.4 135.6 90.1 135.1 t3 90.7 135.5 89.4 135.6 p 85.8 136.3 89.4 135.6 90.1 135.1 85.8 132.4 s3 85.8 136.3 89.4 135.6 p 91.8 132.4 88.5 134.1 85.8 132.4 t4 91.8 132.4 88.5 134.1 p 88.5 134.1 85.8 134.6 85.8 132.4 t4 88.5 134.1 85.8 134.6 p 87.4 132.4 86.5 132.8 85.8 132.4 t5 87.4 132.4 86.5 132.8 p 86.5 132.8 85.8 132.9 85.8 132.4 t5 86.5 132.8 85.8 132.9 p 94.4 132.4 102.9 132.4 102.9 137.9 94.4 137.9 s1 98.7 135.1 100.2 132.4 94.4 132.4 98.7 135.1 s2 98.7 135.1 100.2 132.4 p 98.7 135.1 98.7 135.2 98.7 135.1 t2 98.7 135.1 98.7 135.2 p 98.7 135.2 98.2 135.4 98.7 135.1 t2 98.7 135.2 98.2 135.4 p 94.4 137.6 98.2 135.4 98.7 135.1 94.4 132.4 s2 94.4 137.6 98.2 135.4 p 96.1 132.4 95.7 133.2 94.4 132.4 t3 96.1 132.4 95.7 133.2 p 95.7 133.2 94.4 133.9 94.4 132.4 t3 95.7 133.2 94.4 133.9 p 102.9 132.4 111.5 132.4 111.5 137.9 102.9 137.9 s1 111.5 132.4 120.1 132.4 120.1 137.9 111.5 137.9 s1 114.3 132.4 115.8 135.1 115.8 135.1 120.1 132.4 s2 114.3 132.4 115.8 135.1 p 116.3 135.4 120.1 137.6 120.1 132.4 115.8 135.1 s2 116.3 135.4 120.1 137.6 p 116.3 135.4 115.8 135.2 115.8 135.1 t2 116.3 135.4 115.8 135.2 p 115.8 135.2 115.8 135.1 115.8 135.1 t2 115.8 135.2 115.8 135.1 p 118.8 133.2 118.3 132.4 120.1 132.4 t3 118.8 133.2 118.3 132.4 p 120.1 133.9 118.8 133.2 120.1 132.4 t3 120.1 133.9 118.8 133.2 p 120.1 132.4 128.7 132.4 128.7 137.9 120.1 137.9 s1 120.1 132.4 124.4 135.1 128.7 132.4 t2 128.7 132.4 124.4 135.1 128.7 137.9 t2 120.4 137.7 125.7 137.9 128.7 137.9 124.4 135.1 s2 120.4 137.7 125.7 137.9 p 120.1 137.6 120.4 137.7 124.4 135.1 120.1 132.4 s2 120.1 137.6 120.4 137.7 p 120.1 132.4 124.4 135.1 128.7 132.4 t3 125.1 135.6 128.7 136.3 128.7 132.4 124.4 135.1 s3 125.1 135.6 128.7 136.3 p 125.1 135.6 123.8 135.5 124.4 135.1 t3 125.1 135.6 123.8 135.5 p 120.1 133.9 123.8 135.5 124.4 135.1 120.1 132.4 s3 120.1 133.9 123.8 135.5 p 126.0 134.1 122.6 132.4 128.7 132.4 t4 126.0 134.1 122.6 132.4 p 128.7 134.6 126.0 134.1 128.7 132.4 t4 128.7 134.6 126.0 134.1 p 128.0 132.8 127.1 132.4 128.7 132.4 t5 128.0 132.8 127.1 132.4 p 128.7 132.9 128.0 132.8 128.7 132.4 t5 128.7 132.9 128.0 132.8 p 128.7 132.4 137.3 132.4 137.3 137.9 128.7 137.9 s1 128.7 132.4 133.0 135.1 137.3 132.4 t2 137.0 137.7 137.3 137.6 137.3 132.4 133.0 135.1 s2 137.0 137.7 137.3 137.6 p 131.7 137.9 137.0 137.7 133.0 135.1 128.7 137.9 s2 131.7 137.9 137.0 137.7 p 128.7 137.9 133.0 135.1 128.7 132.4 t2 128.7 132.4 133.0 135.1 137.3 132.4 t3 133.6 135.5 137.3 133.9 137.3 132.4 133.0 135.1 s3 133.6 135.5 137.3 133.9 p 133.6 135.5 132.3 135.6 133.0 135.1 t3 133.6 135.5 132.3 135.6 p 128.7 136.3 132.3 135.6 133.0 135.1 128.7 132.4 s3 128.7 136.3 132.3 135.6 p 134.7 132.4 131.4 134.1 128.7 132.4 t4 134.7 132.4 131.4 134.1 p 131.4 134.1 128.7 134.6 128.7 132.4 t4 131.4 134.1 128.7 134.6 p 130.3 132.4 129.4 132.8 128.7 132.4 t5 130.3 132.4 129.4 132.8 p 129.4 132.8 128.7 132.9 128.7 132.4 t5 129.4 132.8 128.7 132.9 p 137.3 132.4 145.8 132.4 145.8 137.9 137.3 137.9 s1 141.6 135.1 143.1 132.4 137.3 132.4 141.6 135.1 s2 141.6 135.1 143.1 132.4 p 141.6 135.1 141.6 135.2 141.6 135.1 t2 141.6 135.1 141.6 135.2 p 141.6 135.2 141.1 135.4 141.6 135.1 t2 141.6 135.2 141.1 135.4 p 137.3 137.6 141.1 135.4 141.6 135.1 137.3 132.4 s2 137.3 137.6 141.1 135.4 p 139.0 132.4 138.6 133.2 137.3 132.4 t3 139.0 132.4 138.6 133.2 p 138.6 133.2 137.3 133.9 137.3 132.4 t3 138.6 133.2 137.3 133.9 p 145.8 132.4 154.4 132.4 154.4 137.9 145.8 137.9 s1 154.4 132.4 163.0 132.4 163.0 137.9 154.4 137.9 s1 157.2 132.4 158.7 135.1 158.7 135.1 163.0 132.4 s2 157.2 132.4 158.7 135.1 p 159.1 135.4 163.0 137.6 163.0 132.4 158.7 135.1 s2 159.1 135.4 163.0 137.6 p 159.1 135.4 158.6 135.2 158.7 135.1 t2 159.1 135.4 158.6 135.2 p 158.6 135.2 158.7 135.1 158.7 135.1 t2 158.6 135.2 158.7 135.1 p 161.7 133.2 161.2 132.4 163.0 132.4 t3 161.7 133.2 161.2 132.4 p 163.0 133.9 161.7 133.2 163.0 132.4 t3 163.0 133.9 161.7 133.2 p 163.0 132.4 171.6 132.4 171.6 137.9 163.0 137.9 s1 163.0 132.4 167.3 135.1 171.6 132.4 t2 171.6 132.4 167.3 135.1 171.6 137.9 t2 163.3 137.7 168.6 137.9 171.6 137.9 167.3 135.1 s2 163.3 137.7 168.6 137.9 p 163.0 137.6 163.3 137.7 167.3 135.1 163.0 132.4 s2 163.0 137.6 163.3 137.7 p 163.0 132.4 167.3 135.1 171.6 132.4 t3 168.0 135.6 171.6 136.3 171.6 132.4 167.3 135.1 s3 168.0 135.6 171.6 136.3 p 168.0 135.6 166.7 135.5 167.3 135.1 t3 168.0 135.6 166.7 135.5 p 163.0 133.9 166.7 135.5 167.3 135.1 163.0 132.4 s3 163.0 133.9 166.7 135.5 p 168.9 134.1 165.5 132.4 171.6 132.4 t4 168.9 134.1 165.5 132.4 p 171.6 134.6 168.9 134.1 171.6 132.4 t4 171.6 134.6 168.9 134.1 p 170.9 132.8 170.0 132.4 171.6 132.4 t5 170.9 132.8 170.0 132.4 p 171.6 132.9 170.9 132.8 171.6 132.4 t5 171.6 132.9 170.9 132.8 p 171.6 132.4 180.2 132.4 180.2 137.9 171.6 137.9 s1 171.6 132.4 175.9 135.1 180.2 132.4 t2 179.9 137.7 180.2 137.6 180.2 132.4 175.9 135.1 s2 179.9 137.7 180.2 137.6 p 174.6 137.9 179.9 137.7 175.9 135.1 171.6 137.9 s2 174.6 137.9 179.9 137.7 p 171.6 137.9 175.9 135.1 171.6 132.4 t2 171.6 132.4 175.9 135.1 180.2 132.4 t3 176.5 135.5 180.2 133.9 180.2 132.4 175.9 135.1 s3 176.5 135.5 180.2 133.9 p 176.5 135.5 175.2 135.6 175.9 135.1 t3 176.5 135.5 175.2 135.6 p 171.6 136.3 175.2 135.6 175.9 135.1 171.6 132.4 s3 171.6 136.3 175.2 135.6 p 177.6 132.4 174.3 134.1 171.6 132.4 t4 177.6 132.4 174.3 134.1 p 174.3 134.1 171.6 134.6 171.6 132.4 t4 174.3 134.1 171.6 134.6 p 173.2 132.4 172.3 132.8 171.6 132.4 t5 173.2 132.4 172.3 132.8 p 172.3 132.8 171.6 132.9 171.6 132.4 t5 172.3 132.8 171.6 132.9 p 180.2 132.4 188.7 132.4 188.7 137.9 180.2 137.9 s1 184.5 135.1 186.0 132.4 180.2 132.4 184.4 135.1 s2 184.5 135.1 186.0 132.4 p 184.5 135.1 184.5 135.2 184.4 135.1 t2 184.5 135.1 184.5 135.2 p 184.5 135.2 184.0 135.4 184.4 135.1 t2 184.5 135.2 184.0 135.4 p 180.2 137.6 184.0 135.4 184.4 135.1 180.2 132.4 s2 180.2 137.6 184.0 135.4 p 181.9 132.4 181.5 133.2 180.2 132.4 t3 181.9 132.4 181.5 133.2 p 181.5 133.2 180.2 133.9 180.2 132.4 t3 181.5 133.2 180.2 133.9 p 188.7 132.4 197.3 132.4 197.3 137.9 188.7 137.9 s1 197.3 132.4 205.9 132.4 205.9 137.9 197.3 137.9 s1 200.1 132.4 201.5 135.1 201.6 135.1 205.9 132.4 s2 200.1 132.4 201.5 135.1 p 202.0 135.4 205.9 137.6 205.9 132.4 201.6 135.1 s2 202.0 135.4 205.9 137.6 p 202.0 135.4 201.5 135.2 201.6 135.1 t2 202.0 135.4 201.5 135.2 p 201.5 135.2 201.5 135.1 201.6 135.1 t2 201.5 135.2 201.5 135.1 p 204.6 133.2 204.1 132.4 205.9 132.4 t3 204.6 133.2 204.1 132.4 p 205.9 133.9 204.6 133.2 205.9 132.4 t3 205.9 133.9 204.6 133.2 p 205.9 132.4 214.5 132.4 214.5 137.9 205.9 137.9 s1 205.9 132.4 210.2 135.1 214.5 132.4 t2 214.5 132.4 210.2 135.1 214.5 137.9 t2 206.2 137.7 211.5 137.9 214.5 137.9 210.2 135.1 s2 206.2 137.7 211.5 137.9 p 205.9 137.6 206.2 137.7 210.2 135.1 205.9 132.4 s2 205.9 137.6 206.2 137.7 p 205.9 132.4 210.2 135.1 214.5 132.4 t3 210.9 135.6 214.5 136.3 214.5 132.4 210.2 135.1 s3 210.9 135.6 214.5 136.3 p 210.9 135.6 209.5 135.5 210.2 135.1 t3 210.9 135.6 209.5 135.5 p 205.9 133.9 209.5 135.5 210.2 135.1 205.9 132.4 s3 205.9 133.9 209.5 135.5 p 211.8 134.1 208.4 132.4 214.5 132.4 t4 211.8 134.1 208.4 132.4 p 214.5 134.6 211.8 134.1 214.5 132.4 t4 214.5 134.6 211.8 134.1 p 213.8 132.8 212.9 132.4 214.5 132.4 t5 213.8 132.8 212.9 132.4 p 214.5 132.9 213.8 132.8 214.5 132.4 t5 214.5 132.9 213.8 132.8 p 214.5 132.4 223.1 132.4 223.1 137.9 214.5 137.9 s1 214.5 132.4 218.8 135.1 223.1 132.4 t2 222.8 137.7 223.1 137.6 223.1 132.4 218.8 135.1 s2 222.8 137.7 223.1 137.6 p 217.5 137.9 222.8 137.7 218.8 135.1 214.5 137.9 s2 217.5 137.9 222.8 137.7 p 214.5 137.9 218.8 135.1 214.5 132.4 t2 214.5 132.4 218.8 135.1 223.1 132.4 t3 219.4 135.5 223.1 133.9 223.1 132.4 218.8 135.1 s3 219.4 135.5 223.1 133.9 p 219.4 135.5 218.1 135.6 218.8 135.1 t3 219.4 135.5 218.1 135.6 p 214.5 136.3 218.1 135.6 218.8 135.1 214.5 132.4 s3 214.5 136.3 218.1 135.6 p 220.5 132.4 217.2 134.1 214.5 132.4 t4 220.5 132.4 217.2 134.1 p 217.2 134.1 214.5 134.6 214.5 132.4 t4 217.2 134.1 214.5 134.6 p 216.1 132.4 215.2 132.8 214.5 132.4 t5 216.1 132.4 215.2 132.8 p 215.2 132.8 214.5 132.9 214.5 132.4 t5 215.2 132.8 214.5 132.9 p 223.1 132.4 231.6 132.4 231.6 137.9 223.1 137.9 s1 227.4 135.1 228.9 132.4 223.1 132.4 227.3 135.1 s2 227.4 135.1 228.9 132.4 p 227.4 135.1 227.4 135.2 227.3 135.1 t2 227.4 135.1 227.4 135.2 p 227.4 135.2 226.9 135.4 227.3 135.1 t2 227.4 135.2 226.9 135.4 p 223.1 137.6 226.9 135.4 227.3 135.1 223.1 132.4 s2 223.1 137.6 226.9 135.4 p 224.8 132.4 224.4 133.2 223.1 132.4 t3 224.8 132.4 224.4 133.2 p 224.4 133.2 223.1 133.9 223.1 132.4 t3 224.4 133.2 223.1 133.9 p 231.6 132.4 240.2 132.4 240.2 137.9 231.6 137.9 s1 240.2 132.4 248.8 132.4 248.8 137.9 240.2 137.9 s1 243.0 132.4 244.4 135.1 244.5 135.1 248.8 132.4 s2 243.0 132.4 244.4 135.1 p 244.9 135.4 248.8 137.6 248.8 132.4 244.5 135.1 s2 244.9 135.4 248.8 137.6 p 244.9 135.4 244.4 135.2 244.5 135.1 t2 244.9 135.4 244.4 135.2 p 244.4 135.2 244.4 135.1 244.5 135.1 t2 244.4 135.2 244.4 135.1 p 247.5 133.2 247.0 132.4 248.8 132.4 t3 247.5 133.2 247.0 132.4 p 248.8 133.9 247.5 133.2 248.8 132.4 t3 248.8 133.9 247.5 133.2 p 248.8 132.4 257.4 132.4 257.4 137.9 248.8 137.9 s1 248.8 132.4 253.1 135.1 257.4 132.4 t2 257.4 132.4 253.1 135.1 257.4 137.9 t2 249.1 137.7 254.4 137.9 257.4 137.9 253.1 135.1 s2 249.1 137.7 254.4 137.9 p 248.8 137.6 249.1 137.7 253.1 135.1 248.8 132.4 s2 248.8 137.6 249.1 137.7 p 248.8 132.4 253.1 135.1 257.4 132.4 t3 253.8 135.6 257.4 136.3 257.4 132.4 253.1 135.1 s3 253.8 135.6 257.4 136.3 p 253.8 135.6 252.4 135.5 253.1 135.1 t3 253.8 135.6 252.4 135.5 p 248.8 133.9 252.4 135.5 253.1 135.1 248.8 132.4 s3 248.8 133.9 252.4 135.5 p 254.7 134.1 251.3 132.4 257.4 132.4 t4 254.7 134.1 251.3 132.4 p 257.4 134.6 254.7 134.1 257.4 132.4 t4 257.4 134.6 254.7 134.1 p 256.7 132.8 255.8 132.4 257.4 132.4 t5 256.7 132.8 255.8 132.4 p 257.4 132.9 256.7 132.8 257.4 132.4 t5 257.4 132.9 256.7 132.8 p 257.4 132.4 265.9 132.4 265.9 137.9 257.4 137.9 s1 257.4 132.4 261.7 135.1 265.9 132.4 t2 265.7 137.7 265.9 137.6 265.9 132.4 261.7 135.1 s2 265.7 137.7 265.9 137.6 p 260.4 137.9 265.7 137.7 261.7 135.1 257.4 137.9 s2 260.4 137.9 265.7 137.7 p 257.4 137.9 261.7 135.1 257.4 132.4 t2 257.4 132.4 261.7 135.1 265.9 132.4 t3 262.3 135.5 265.9 133.9 265.9 132.4 261.7 135.1 s3 262.3 135.5 265.9 133.9 p 262.3 135.5 261.0 135.6 261.7 135.1 t3 262.3 135.5 261.0 135.6 p 257.4 136.3 261.0 135.6 261.7 135.1 257.4 132.4 s3 257.4 136.3 261.0 135.6 p 263.4 132.4 260.1 134.1 257.4 132.4 t4 263.4 132.4 260.1 134.1 p 260.1 134.1 257.4 134.6 257.4 132.4 t4 260.1 134.1 257.4 134.6 p 259.0 132.4 258.1 132.8 257.4 132.4 t5 259.0 132.4 258.1 132.8 p 258.1 132.8 257.4 132.9 257.4 132.4 t5 258.1 132.8 257.4 132.9 p 265.9 132.4 274.5 132.4 274.5 137.9 265.9 137.9 s1 270.3 135.1 271.8 132.4 265.9 132.4 270.2 135.1 s2 270.3 135.1 271.8 132.4 p 270.3 135.1 270.3 135.2 270.2 135.1 t2 270.3 135.1 270.3 135.2 p 270.3 135.2 269.8 135.4 270.2 135.1 t2 270.3 135.2 269.8 135.4 p 265.9 137.6 269.8 135.4 270.2 135.1 265.9 132.4 s2 265.9 137.6 269.8 135.4 p 267.7 132.4 267.2 133.2 265.9 132.4 t3 267.7 132.4 267.2 133.2 p 267.2 133.2 265.9 133.9 265.9 132.4 t3 267.2 133.2 265.9 133.9 p 274.5 132.4 283.1 132.4 283.1 137.9 274.5 137.9 s1 283.1 132.4 291.7 132.4 291.7 137.9 283.1 137.9 s1 285.9 132.4 287.3 135.1 287.4 135.1 291.7 132.4 s2 285.9 132.4 287.3 135.1 p 287.8 135.4 291.7 137.6 291.7 132.4 287.4 135.1 s2 287.8 135.4 291.7 137.6 p 287.8 135.4 287.3 135.2 287.4 135.1 t2 287.8 135.4 287.3 135.2 p 287.3 135.2 287.3 135.1 287.4 135.1 t2 287.3 135.2 287.3 135.1 p 290.4 133.2 289.9 132.4 291.7 132.4 t3 290.4 133.2 289.9 132.4 p 291.7 133.9 290.4 133.2 291.7 132.4 t3 291.7 133.9 290.4 133.2 p 291.7 132.4 300.3 132.4 300.3 137.9 291.7 137.9 s1 291.7 132.4 296.0 135.1 300.3 132.4 t2 300.3 132.4 296.0 135.1 300.3 137.9 t2 292.0 137.7 297.3 137.9 300.3 137.9 296.0 135.1 s2 292.0 137.7 297.3 137.9 p 291.7 137.6 292.0 137.7 296.0 135.1 291.7 132.4 s2 291.7 137.6 292.0 137.7 p 291.7 132.4 296.0 135.1 300.3 132.4 t3 296.7 135.6 300.3 136.3 300.3 132.4 296.0 135.1 s3 296.7 135.6 300.3 136.3 p 296.7 135.6 295.3 135.5 296.0 135.1 t3 296.7 135.6 295.3 135.5 p 291.7 133.9 295.3 135.5 296.0 135.1 291.7 132.4 s3 291.7 133.9 295.3 135.5 p 297.6 134.1 294.2 132.4 300.3 132.4 t4 297.6 134.1 294.2 132.4 p 300.3 134.6 297.6 134.1 300.3 132.4 t4 300.3 134.6 297.6 134.1 p 299.6 132.8 298.7 132.4 300.3 132.4 t5 299.6 132.8 298.7 132.4 p 300.3 132.9 299.6 132.8 300.3 132.4 t5 300.3 132.9 299.6 132.8 p 0.0 126.8 8.6 126.8 8.6 132.4 0.0 132.4 s3 0.0 126.8 4.3 129.6 8.6 126.8 t4 8.1 132.0 8.6 131.7 8.6 126.8 4.3 129.6 s4 8.1 132.0 8.6 131.7 p 6.0 132.4 8.1 132.0 4.3 129.6 0.0 132.4 s4 6.0 132.4 8.1 132.0 p 0.0 132.4 4.3 129.6 0.0 126.8 t4 0.0 126.8 4.3 129.6 8.6 126.8 t5 7.3 131.5 8.6 130.5 8.6 126.8 4.3 129.6 s5 7.3 131.5 8.6 130.5 p 1.6 132.4 7.3 131.5 4.3 129.6 0.0 132.4 s5 1.6 132.4 7.3 131.5 p 0.0 132.4 4.3 129.6 0.0 126.8 t5 0.0 126.8 4.3 129.6 8.6 126.8 t6 6.4 131.0 8.6 129.4 8.6 126.8 4.3 129.6 s6 6.4 131.0 8.6 129.4 p 6.4 131.0 0.9 131.8 4.3 129.6 t6 6.4 131.0 0.9 131.8 p 0.0 132.1 0.9 131.8 4.3 129.6 0.0 126.8 s6 0.0 132.1 0.9 131.8 p 0.0 126.8 4.3 129.6 8.6 126.8 t7 5.6 130.4 8.6 128.2 8.6 126.8 4.3 129.6 s7 5.6 130.4 8.6 128.2 p 5.6 130.4 2.2 130.9 4.3 129.6 t7 5.6 130.4 2.2 130.9 p 0.0 131.6 2.2 130.9 4.3 129.6 0.0 126.8 s7 0.0 131.6 2.2 130.9 p 0.0 126.8 4.3 129.6 8.6 126.8 t8 4.7 129.9 8.6 127.1 8.6 126.8 4.3 129.6 s8 4.7 129.9 8.6 127.1 p 4.7 129.9 3.6 130.1 4.3 129.6 t8 4.7 129.9 3.6 130.1 p 0.0 131.1 3.6 130.1 4.3 129.6 0.0 126.8 s8 0.0 131.1 3.6 130.1 p 8.6 126.8 17.2 126.8 17.2 132.4 8.6 132.4 s1 16.2 127.4 16.6 126.8 8.6 126.8 12.9 129.6 s2 16.2 127.4 16.6 126.8 p 16.2 127.4 15.9 131.5 12.9 129.6 t2 16.2 127.4 15.9 131.5 p 14.4 132.4 15.9 131.5 12.9 129.6 8.6 132.4 s2 14.4 132.4 15.9 131.5 p 8.6 132.4 12.9 129.6 8.6 126.8 t2 14.2 128.8 15.3 126.8 8.6 126.8 12.9 129.6 s3 14.2 128.8 15.3 126.8 p 14.2 128.8 14.0 130.3 12.9 129.6 t3 14.2 128.8 14.0 130.3 p 10.3 132.4 14.0 130.3 12.9 129.6 8.6 132.4 s3 10.3 132.4 14.0 130.3 p 8.6 132.4 12.9 129.6 8.6 126.8 t3 14.0 126.8 12.5 129.4 8.6 126.8 t4 14.0 126.8 12.5 129.4 p 12.5 129.4 8.6 131.7 8.6 126.8 t4 12.5 129.4 8.6 131.7 p 12.7 126.8 11.6 128.8 8.6 126.8 t5 12.7 126.8 11.6 128.8 p 11.6 128.8 8.6 130.5 8.6 126.8 t5 11.6 128.8 8.6 130.5 p 11.4 126.8 10.6 128.2 8.6 126.8 t6 11.4 126.8 10.6 128.2 p 10.6 128.2 8.6 129.4 8.6 126.8 t6 10.6 128.2 8.6 129.4 p 10.1 126.8 9.7 127.6 8.6 126.8 t7 10.1 126.8 9.7 127.6 p 9.7 127.6 8.6 128.2 8.6 126.8 t7 9.7 127.6 8.6 128.2 p 8.8 126.8 8.8 127.0 8.6 126.8 t8 8.8 126.8 8.8 127.0 p 8.8 127.0 8.6 127.1 8.6 126.8 t8 8.8 127.0 8.6 127.1 p 17.2 126.8 25.7 126.8 25.7 132.4 17.2 132.4 s1 25.7 126.8 34.3 126.8 34.3 132.4 25.7 132.4 s1 26.3 126.8 26.7 127.4 30.0 129.6 34.3 126.8 s2 26.3 126.8 26.7 127.4 p 34.3 126.8 30.0 129.6 34.3 132.4 t2 27.0 131.5 28.5 132.4 34.3 132.4 30.0 129.6 s2 27.0 131.5 28.5 132.4 p 27.0 131.5 26.7 127.4 30.0 129.6 t2 27.0 131.5 26.7 127.4 p 27.6 126.8 28.7 128.8 30.0 129.6 34.3 126.8 s3 27.6 126.8 28.7 128.8 p 34.3 126.8 30.0 129.6 34.3 132.4 t3 28.9 130.3 32.6 132.4 34.3 132.4 30.0 129.6 s3 28.9 130.3 32.6 132.4 p 28.9 130.3 28.7 128.8 30.0 129.6 t3 28.9 130.3 28.7 128.8 p 30.4 129.4 28.9 126.8 34.3 126.8 t4 30.4 129.4 28.9 126.8 p 34.3 131.7 30.4 129.4 34.3 126.8 t4 34.3 131.7 30.4 129.4 p 31.3 128.8 30.2 126.8 34.3 126.8 t5 31.3 128.8 30.2 126.8 p 34.3 130.5 31.3 128.8 34.3 126.8 t5 34.3 130.5 31.3 128.8 p 32.3 128.2 31.5 126.8 34.3 126.8 t6 32.3 128.2 31.5 126.8 p 34.3 129.4 32.3 128.2 34.3 126.8 t6 34.3 129.4 32.3 128.2 p 33.2 127.6 32.8 126.8 34.3 126.8 t7 33.2 127.6 32.8 126.8 p 34.3 128.2 33.2 127.6 34.3 126.8 t7 34.3 128.2 33.2 127.6 p 34.1 127.0 34.1 126.8 34.3 126.8 t8 34.1 127.0 34.1 126.8 p 34.3 127.1 34.1 127.0 34.3 126.8 t8 34.3 127.1 34.1 127.0 p 34.3 126.8 42.9 126.8 42.9 132.4 34.3 132.4 s3 34.3 126.8 38.6 129.6 42.9 126.8 t4 42.9 126.8 38.6 129.6 42.9 132.4 t4 34.8 132.0 36.8 132.4 42.9 132.4 38.6 129.6 s4 34.8 132.0 36.8 132.4 p 34.3 131.7 34.8 132.0 38.6 129.6 34.3 126.8 s4 34.3 131.7 34.8 132.0 p 34.3 126.8 38.6 129.6 42.9 126.8 t5 42.9 126.8 38.6 129.6 42.9 132.4 t5 35.6 131.5 41.3 132.4 42.9 132.4 38.6 129.6 s5 35.6 131.5 41.3 132.4 p 34.3 130.5 35.6 131.5 38.6 129.6 34.3 126.8 s5 34.3 130.5 35.6 131.5 p 34.3 126.8 38.6 129.6 42.9 126.8 t6 42.0 131.8 42.9 132.1 42.9 126.8 38.6 129.6 s6 42.0 131.8 42.9 132.1 p 42.0 131.8 36.5 131.0 38.6 129.6 t6 42.0 131.8 36.5 131.0 p 34.3 129.4 36.5 131.0 38.6 129.6 34.3 126.8 s6 34.3 129.4 36.5 131.0 p 34.3 126.8 38.6 129.6 42.9 126.8 t7 40.7 130.9 42.9 131.6 42.9 126.8 38.6 129.6 s7 40.7 130.9 42.9 131.6 p 40.7 130.9 37.3 130.4 38.6 129.6 t7 40.7 130.9 37.3 130.4 p 34.3 128.2 37.3 130.4 38.6 129.6 34.3 126.8 s7 34.3 128.2 37.3 130.4 p 34.3 126.8 38.6 129.6 42.9 126.8 t8 39.3 130.1 42.9 131.1 42.9 126.8 38.6 129.6 s8 39.3 130.1 42.9 131.1 p 39.3 130.1 38.2 129.9 38.6 129.6 t8 39.3 130.1 38.2 129.9 p 34.3 127.1 38.2 129.9 38.6 129.6 34.3 126.8 s8 34.3 127.1 38.2 129.9 p 42.9 126.8 51.5 126.8 51.5 132.4 42.9 132.4 s3 42.9 126.8 47.2 129.6 51.5 126.8 t4 51.0 132.0 51.5 131.7 51.5 126.8 47.2 129.6 s4 51.0 132.0 51.5 131.7 p 48.9 132.4 51.0 132.0 47.2 129.6 42.9 132.4 s4 48.9 132.4 51.0 132.0 p 42.9 132.4 47.2 129.6 42.9 126.8 t4 42.9 126.8 47.2 129.6 51.5 126.8 t5 50.2 131.5 51.5 130.5 51.5 126.8 47.2 129.6 s5 50.2 131.5 51.5 130.5 p 44.5 132.4 50.2 131.5 47.2 129.6 42.9 132.4 s5 44.5 132.4 50.2 131.5 p 42.9 132.4 47.2 129.6 42.9 126.8 t5 42.9 126.8 47.2 129.6 51.5 126.8 t6 49.3 131.0 51.5 129.4 51.5 126.8 47.2 129.6 s6 49.3 131.0 51.5 129.4 p 49.3 131.0 43.8 131.8 47.2 129.6 t6 49.3 131.0 43.8 131.8 p 42.9 132.1 43.8 131.8 47.2 129.6 42.9 126.8 s6 42.9 132.1 43.8 131.8 p 42.9 126.8 47.2 129.6 51.5 126.8 t7 48.5 130.4 51.5 128.2 51.5 126.8 47.2 129.6 s7 48.5 130.4 51.5 128.2 p 48.5 130.4 45.1 130.9 47.2 129.6 t7 48.5 130.4 45.1 130.9 p 42.9 131.6 45.1 130.9 47.2 129.6 42.9 126.8 s7 42.9 131.6 45.1 130.9 p 42.9 126.8 47.2 129.6 51.5 126.8 t8 47.6 129.9 51.5 127.1 51.5 126.8 47.2 129.6 s8 47.6 129.9 51.5 127.1 p 47.6 129.9 46.5 130.1 47.2 129.6 t8 47.6 129.9 46.5 130.1 p 42.9 131.1 46.5 130.1 47.2 129.6 42.9 126.8 s8 42.9 131.1 46.5 130.1 p 51.5 126.8 60.1 126.8 60.1 132.4 51.5 132.4 s1 59.1 127.4 59.5 126.8 51.5 126.8 55.8 129.6 s2 59.1 127.4 59.5 126.8 p 59.1 127.4 58.8 131.5 55.8 129.6 t2 59.1 127.4 58.8 131.5 p 57.3 132.4 58.8 131.5 55.8 129.6 51.5 132.4 s2 57.3 132.4 58.8 131.5 p 51.5 132.4 55.8 129.6 51.5 126.8 t2 57.1 128.8 58.2 126.8 51.5 126.8 55.8 129.6 s3 57.1 128.8 58.2 126.8 p 57.1 128.8 56.9 130.3 55.8 129.6 t3 57.1 128.8 56.9 130.3 p 53.2 132.4 56.9 130.3 55.8 129.6 51.5 132.4 s3 53.2 132.4 56.9 130.3 p 51.5 132.4 55.8 129.6 51.5 126.8 t3 56.9 126.8 55.4 129.4 51.5 126.8 t4 56.9 126.8 55.4 129.4 p 55.4 129.4 51.5 131.7 51.5 126.8 t4 55.4 129.4 51.5 131.7 p 55.6 126.8 54.5 128.8 51.5 126.8 t5 55.6 126.8 54.5 128.8 p 54.5 128.8 51.5 130.5 51.5 126.8 t5 54.5 128.8 51.5 130.5 p 54.3 126.8 53.5 128.2 51.5 126.8 t6 54.3 126.8 53.5 128.2 p 53.5 128.2 51.5 129.4 51.5 126.8 t6 53.5 128.2 51.5 129.4 p 53.0 126.8 52.6 127.6 51.5 126.8 t7 53.0 126.8 52.6 127.6 p 52.6 127.6 51.5 128.2 51.5 126.8 t7 52.6 127.6 51.5 128.2 p 51.7 126.8 51.7 127.0 51.5 126.8 t8 51.7 126.8 51.7 127.0 p 51.7 127.0 51.5 127.1 51.5 126.8 t8 51.7 127.0 51.5 127.1 p 60.1 126.8 68.6 126.8 68.6 132.4 60.1 132.4 s1 68.6 126.8 77.2 126.8 77.2 132.4 68.6 132.4 s1 69.2 126.8 69.6 127.4 72.9 129.6 77.2 126.8 s2 69.2 126.8 69.6 127.4 p 77.2 126.8 72.9 129.6 77.2 132.4 t2 69.9 131.5 71.4 132.4 77.2 132.4 72.9 129.6 s2 69.9 131.5 71.4 132.4 p 69.9 131.5 69.6 127.4 72.9 129.6 t2 69.9 131.5 69.6 127.4 p 70.5 126.8 71.6 128.8 72.9 129.6 77.2 126.8 s3 70.5 126.8 71.6 128.8 p 77.2 126.8 72.9 129.6 77.2 132.4 t3 71.8 130.3 75.5 132.4 77.2 132.4 72.9 129.6 s3 71.8 130.3 75.5 132.4 p 71.8 130.3 71.6 128.8 72.9 129.6 t3 71.8 130.3 71.6 128.8 p 73.3 129.4 71.8 126.8 77.2 126.8 t4 73.3 129.4 71.8 126.8 p 77.2 131.7 73.3 129.4 77.2 126.8 t4 77.2 131.7 73.3 129.4 p 74.2 128.8 73.1 126.8 77.2 126.8 t5 74.2 128.8 73.1 126.8 p 77.2 130.5 74.2 128.8 77.2 126.8 t5 77.2 130.5 74.2 128.8 p 75.1 128.2 74.4 126.8 77.2 126.8 t6 75.1 128.2 74.4 126.8 p 77.2 129.4 75.1 128.2 77.2 126.8 t6 77.2 129.4 75.1 128.2 p 76.1 127.6 75.7 126.8 77.2 126.8 t7 76.1 127.6 75.7 126.8 p 77.2 128.2 76.1 127.6 77.2 126.8 t7 77.2 128.2 76.1 127.6 p 77.0 127.0 77.0 126.8 77.2 126.8 t8 77.0 127.0 77.0 126.8 p 77.2 127.1 77.0 127.0 77.2 126.8 t8 77.2 127.1 77.0 127.0 p 77.2 126.8 85.8 126.8 85.8 132.4 77.2 132.4 s3 77.2 126.8 81.5 129.6 85.8 126.8 t4 85.8 126.8 81.5 129.6 85.8 132.4 t4 77.7 132.0 79.7 132.4 85.8 132.4 81.5 129.6 s4 77.7 132.0 79.7 132.4 p 77.2 131.7 77.7 132.0 81.5 129.6 77.2 126.8 s4 77.2 131.7 77.7 132.0 p 77.2 126.8 81.5 129.6 85.8 126.8 t5 85.8 126.8 81.5 129.6 85.8 132.4 t5 78.5 131.5 84.2 132.4 85.8 132.4 81.5 129.6 s5 78.5 131.5 84.2 132.4 p 77.2 130.5 78.5 131.5 81.5 129.6 77.2 126.8 s5 77.2 130.5 78.5 131.5 p 77.2 126.8 81.5 129.6 85.8 126.8 t6 84.9 131.8 85.8 132.1 85.8 126.8 81.5 129.6 s6 84.9 131.8 85.8 132.1 p 84.9 131.8 79.4 131.0 81.5 129.6 t6 84.9 131.8 79.4 131.0 p 77.2 129.4 79.4 131.0 81.5 129.6 77.2 126.8 s6 77.2 129.4 79.4 131.0 p 77.2 126.8 81.5 129.6 85.8 126.8 t7 83.6 130.9 85.8 131.6 85.8 126.8 81.5 129.6 s7 83.6 130.9 85.8 131.6 p 83.6 130.9 80.2 130.4 81.5 129.6 t7 83.6 130.9 80.2 130.4 p 77.2 128.2 80.2 130.4 81.5 129.6 77.2 126.8 s7 77.2 128.2 80.2 130.4 p 77.2 126.8 81.5 129.6 85.8 126.8 t8 82.2 130.1 85.8 131.1 85.8 126.8 81.5 129.6 s8 82.2 130.1 85.8 131.1 p 82.2 130.1 81.1 129.9 81.5 129.6 t8 82.2 130.1 81.1 129.9 p 77.2 127.1 81.1 129.9 81.5 129.6 77.2 126.8 s8 77.2 127.1 81.1 129.9 p 85.8 126.8 94.4 126.8 94.4 132.4 85.8 132.4 s3 85.8 126.8 90.1 129.6 94.4 126.8 t4 93.9 132.0 94.4 131.7 94.4 126.8 90.1 129.6 s4 93.9 132.0 94.4 131.7 p 91.8 132.4 93.9 132.0 90.1 129.6 85.8 132.4 s4 91.8 132.4 93.9 132.0 p 85.8 132.4 90.1 129.6 85.8 126.8 t4 85.8 126.8 90.1 129.6 94.4 126.8 t5 93.0 131.5 94.4 130.5 94.4 126.8 90.1 129.6 s5 93.0 131.5 94.4 130.5 p 87.4 132.4 93.0 131.5 90.1 129.6 85.8 132.4 s5 87.4 132.4 93.0 131.5 p 85.8 132.4 90.1 129.6 85.8 126.8 t5 85.8 126.8 90.1 129.6 94.4 126.8 t6 92.2 131.0 94.4 129.4 94.4 126.8 90.1 129.6 s6 92.2 131.0 94.4 129.4 p 92.2 131.0 86.7 131.8 90.1 129.6 t6 92.2 131.0 86.7 131.8 p 85.8 132.1 86.7 131.8 90.1 129.6 85.8 126.8 s6 85.8 132.1 86.7 131.8 p 85.8 126.8 90.1 129.6 94.4 126.8 t7 91.4 130.4 94.4 128.2 94.4 126.8 90.1 129.6 s7 91.4 130.4 94.4 128.2 p 91.4 130.4 88.0 130.9 90.1 129.6 t7 91.4 130.4 88.0 130.9 p 85.8 131.6 88.0 130.9 90.1 129.6 85.8 126.8 s7 85.8 131.6 88.0 130.9 p 85.8 126.8 90.1 129.6 94.4 126.8 t8 90.5 129.9 94.4 127.1 94.4 126.8 90.1 129.6 s8 90.5 129.9 94.4 127.1 p 90.5 129.9 89.4 130.1 90.1 129.6 t8 90.5 129.9 89.4 130.1 p 85.8 131.1 89.4 130.1 90.1 129.6 85.8 126.8 s8 85.8 131.1 89.4 130.1 p 94.4 126.8 102.9 126.8 102.9 132.4 94.4 132.4 s1 102.0 127.4 102.4 126.8 94.4 126.8 98.7 129.6 s2 102.0 127.4 102.4 126.8 p 102.0 127.4 101.7 131.5 98.7 129.6 t2 102.0 127.4 101.7 131.5 p 100.2 132.4 101.7 131.5 98.7 129.6 94.4 132.4 s2 100.2 132.4 101.7 131.5 p 94.4 132.4 98.7 129.6 94.4 126.8 t2 100.0 128.8 101.1 126.8 94.4 126.8 98.7 129.6 s3 100.0 128.8 101.1 126.8 p 100.0 128.8 99.8 130.3 98.7 129.6 t3 100.0 128.8 99.8 130.3 p 96.1 132.4 99.8 130.3 98.7 129.6 94.4 132.4 s3 96.1 132.4 99.8 130.3 p 94.4 132.4 98.7 129.6 94.4 126.8 t3 99.8 126.8 98.3 129.4 94.4 126.8 t4 99.8 126.8 98.3 129.4 p 98.3 129.4 94.4 131.7 94.4 126.8 t4 98.3 129.4 94.4 131.7 p 98.5 126.8 97.4 128.8 94.4 126.8 t5 98.5 126.8 97.4 128.8 p 97.4 128.8 94.4 130.5 94.4 126.8 t5 97.4 128.8 94.4 130.5 p 97.2 126.8 96.4 128.2 94.4 126.8 t6 97.2 126.8 96.4 128.2 p 96.4 128.2 94.4 129.4 94.4 126.8 t6 96.4 128.2 94.4 129.4 p 95.9 126.8 95.5 127.6 94.4 126.8 t7 95.9 126.8 95.5 127.6 p 95.5 127.6 94.4 128.2 94.4 126.8 t7 95.5 127.6 94.4 128.2 p 94.6 126.8 94.6 127.0 94.4 126.8 t8 94.6 126.8 94.6 127.0 p 94.6 127.0 94.4 127.1 94.4 126.8 t8 94.6 127.0 94.4 127.1 p 102.9 126.8 111.5 126.8 111.5 132.4 102.9 132.4 s1 111.5 126.8 120.1 126.8 120.1 132.4 111.5 132.4 s1 112.1 126.8 112.4 127.4 115.8 129.6 120.1 126.8 s2 112.1 126.8 112.4 127.4 p 120.1 126.8 115.8 129.6 120.1 132.4 t2 112.8 131.5 114.3 132.4 120.1 132.4 115.8 129.6 s2 112.8 131.5 114.3 132.4 p 112.8 131.5 112.4 127.4 115.8 129.6 t2 112.8 131.5 112.4 127.4 p 113.4 126.8 114.5 128.8 115.8 129.6 120.1 126.8 s3 113.4 126.8 114.5 128.8 p 120.1 126.8 115.8 129.6 120.1 132.4 t3 114.6 130.3 118.3 132.4 120.1 132.4 115.8 129.6 s3 114.6 130.3 118.3 132.4 p 114.6 130.3 114.5 128.8 115.8 129.6 t3 114.6 130.3 114.5 128.8 p 116.2 129.4 114.7 126.8 120.1 126.8 t4 116.2 129.4 114.7 126.8 p 120.1 131.7 116.2 129.4 120.1 126.8 t4 120.1 131.7 116.2 129.4 p 117.1 128.8 116.0 126.8 120.1 126.8 t5 117.1 128.8 116.0 126.8 p 120.1 130.5 117.1 128.8 120.1 126.8 t5 120.1 130.5 117.1 128.8 p 118.0 128.2 117.3 126.8 120.1 126.8 t6 118.0 128.2 117.3 126.8 p 120.1 129.4 118.0 128.2 120.1 126.8 t6 120.1 129.4 118.0 128.2 p 119.0 127.6 118.6 126.8 120.1 126.8 t7 119.0 127.6 118.6 126.8 p 120.1 128.2 119.0 127.6 120.1 126.8 t7 120.1 128.2 119.0 127.6 p 119.9 127.0 119.9 126.8 120.1 126.8 t8 119.9 127.0 119.9 126.8 p 120.1 127.1 119.9 127.0 120.1 126.8 t8 120.1 127.1 119.9 127.0 p 120.1 126.8 128.7 126.8 128.7 132.4 120.1 132.4 s3 120.1 126.8 124.4 129.6 128.7 126.8 t4 128.7 126.8 124.4 129.6 128.7 132.4 t4 120.6 132.0 122.6 132.4 128.7 132.4 124.4 129.6 s4 120.6 132.0 122.6 132.4 p 120.1 131.7 120.6 132.0 124.4 129.6 120.1 126.8 s4 120.1 131.7 120.6 132.0 p 120.1 126.8 124.4 129.6 128.7 126.8 t5 128.7 126.8 124.4 129.6 128.7 132.4 t5 121.4 131.5 127.1 132.4 128.7 132.4 124.4 129.6 s5 121.4 131.5 127.1 132.4 p 120.1 130.5 121.4 131.5 124.4 129.6 120.1 126.8 s5 120.1 130.5 121.4 131.5 p 120.1 126.8 124.4 129.6 128.7 126.8 t6 127.8 131.8 128.7 132.1 128.7 126.8 124.4 129.6 s6 127.8 131.8 128.7 132.1 p 127.8 131.8 122.3 131.0 124.4 129.6 t6 127.8 131.8 122.3 131.0 p 120.1 129.4 122.3 131.0 124.4 129.6 120.1 126.8 s6 120.1 129.4 122.3 131.0 p 120.1 126.8 124.4 129.6 128.7 126.8 t7 126.5 130.9 128.7 131.6 128.7 126.8 124.4 129.6 s7 126.5 130.9 128.7 131.6 p 126.5 130.9 123.1 130.4 124.4 129.6 t7 126.5 130.9 123.1 130.4 p 120.1 128.2 123.1 130.4 124.4 129.6 120.1 126.8 s7 120.1 128.2 123.1 130.4 p 120.1 126.8 124.4 129.6 128.7 126.8 t8 125.1 130.1 128.7 131.1 128.7 126.8 124.4 129.6 s8 125.1 130.1 128.7 131.1 p 125.1 130.1 123.9 129.9 124.4 129.6 t8 125.1 130.1 123.9 129.9 p 120.1 127.1 123.9 129.9 124.4 129.6 120.1 126.8 s8 120.1 127.1 123.9 129.9 p 128.7 126.8 137.3 126.8 137.3 132.4 128.7 132.4 s3 128.7 126.8 133.0 129.6 137.3 126.8 t4 136.8 132.0 137.3 131.7 137.3 126.8 133.0 129.6 s4 136.8 132.0 137.3 131.7 p 134.7 132.4 136.8 132.0 133.0 129.6 128.7 132.4 s4 134.7 132.4 136.8 132.0 p 128.7 132.4 133.0 129.6 128.7 126.8 t4 128.7 126.8 133.0 129.6 137.3 126.8 t5 135.9 131.5 137.3 130.5 137.3 126.8 133.0 129.6 s5 135.9 131.5 137.3 130.5 p 130.3 132.4 135.9 131.5 133.0 129.6 128.7 132.4 s5 130.3 132.4 135.9 131.5 p 128.7 132.4 133.0 129.6 128.7 126.8 t5 128.7 126.8 133.0 129.6 137.3 126.8 t6 135.1 131.0 137.3 129.4 137.3 126.8 133.0 129.6 s6 135.1 131.0 137.3 129.4 p 135.1 131.0 129.6 131.8 133.0 129.6 t6 135.1 131.0 129.6 131.8 p 128.7 132.1 129.6 131.8 133.0 129.6 128.7 126.8 s6 128.7 132.1 129.6 131.8 p 128.7 126.8 133.0 129.6 137.3 126.8 t7 134.3 130.4 137.3 128.2 137.3 126.8 133.0 129.6 s7 134.3 130.4 137.3 128.2 p 134.3 130.4 130.9 130.9 133.0 129.6 t7 134.3 130.4 130.9 130.9 p 128.7 131.6 130.9 130.9 133.0 129.6 128.7 126.8 s7 128.7 131.6 130.9 130.9 p 128.7 126.8 133.0 129.6 137.3 126.8 t8 133.4 129.9 137.3 127.1 137.3 126.8 133.0 129.6 s8 133.4 129.9 137.3 127.1 p 133.4 129.9 132.3 130.1 133.0 129.6 t8 133.4 129.9 132.3 130.1 p 128.7 131.1 132.3 130.1 133.0 129.6 128.7 126.8 s8 128.7 131.1 132.3 130.1 p 137.3 126.8 145.8 126.8 145.8 132.4 137.3 132.4 s1 144.9 127.4 145.3 126.8 137.3 126.8 141.6 129.6 s2 144.9 127.4 145.3 126.8 p 144.9 127.4 144.6 131.5 141.6 129.6 t2 144.9 127.4 144.6 131.5 p 143.1 132.4 144.6 131.5 141.6 129.6 137.3 132.4 s2 143.1 132.4 144.6 131.5 p 137.3 132.4 141.6 129.6 137.3 126.8 t2 142.8 128.8 144.0 126.8 137.3 126.8 141.6 129.6 s3 142.8 128.8 144.0 126.8 p 142.8 128.8 142.7 130.3 141.6 129.6 t3 142.8 128.8 142.7 130.3 p 139.0 132.4 142.7 130.3 141.6 129.6 137.3 132.4 s3 139.0 132.4 142.7 130.3 p 137.3 132.4 141.6 129.6 137.3 126.8 t3 142.7 126.8 141.2 129.4 137.3 126.8 t4 142.7 126.8 141.2 129.4 p 141.2 129.4 137.3 131.7 137.3 126.8 t4 141.2 129.4 137.3 131.7 p 141.4 126.8 140.3 128.8 137.3 126.8 t5 141.4 126.8 140.3 128.8 p 140.3 128.8 137.3 130.5 137.3 126.8 t5 140.3 128.8 137.3 130.5 p 140.1 126.8 139.3 128.2 137.3 126.8 t6 140.1 126.8 139.3 128.2 p 139.3 128.2 137.3 129.4 137.3 126.8 t6 139.3 128.2 137.3 129.4 p 138.8 126.8 138.4 127.6 137.3 126.8 t7 138.8 126.8 138.4 127.6 p 138.4 127.6 137.3 128.2 137.3 126.8 t7 138.4 127.6 137.3 128.2 p 137.5 126.8 137.4 127.0 137.3 126.8 t8 137.5 126.8 137.4 127.0 p 137.4 127.0 137.3 127.1 137.3 126.8 t8 137.4 127.0 137.3 127.1 p 145.8 126.8 154.4 126.8 154.4 132.4 145.8 132.4 s1 154.4 126.8 163.0 126.8 163.0 132.4 154.4 132.4 s1 155.0 126.8 155.3 127.4 158.7 129.6 163.0 126.8 s2 155.0 126.8 155.3 127.4 p 163.0 126.8 158.7 129.6 163.0 132.4 t2 155.7 131.5 157.2 132.4 163.0 132.4 158.7 129.6 s2 155.7 131.5 157.2 132.4 p 155.7 131.5 155.3 127.4 158.7 129.6 t2 155.7 131.5 155.3 127.4 p 156.3 126.8 157.4 128.8 158.7 129.6 163.0 126.8 s3 156.3 126.8 157.4 128.8 p 163.0 126.8 158.7 129.6 163.0 132.4 t3 157.5 130.3 161.2 132.4 163.0 132.4 158.7 129.6 s3 157.5 130.3 161.2 132.4 p 157.5 130.3 157.4 128.8 158.7 129.6 t3 157.5 130.3 157.4 128.8 p 159.1 129.4 157.6 126.8 163.0 126.8 t4 159.1 129.4 157.6 126.8 p 163.0 131.7 159.1 129.4 163.0 126.8 t4 163.0 131.7 159.1 129.4 p 160.0 128.8 158.9 126.8 163.0 126.8 t5 160.0 128.8 158.9 126.8 p 163.0 130.5 160.0 128.8 163.0 126.8 t5 163.0 130.5 160.0 128.8 p 160.9 128.2 160.2 126.8 163.0 126.8 t6 160.9 128.2 160.2 126.8 p 163.0 129.4 160.9 128.2 163.0 126.8 t6 163.0 129.4 160.9 128.2 p 161.9 127.6 161.5 126.8 163.0 126.8 t7 161.9 127.6 161.5 126.8 p 163.0 128.2 161.9 127.6 163.0 126.8 t7 163.0 128.2 161.9 127.6 p 162.8 127.0 162.7 126.8 163.0 126.8 t8 162.8 127.0 162.7 126.8 p 163.0 127.1 162.8 127.0 163.0 126.8 t8 163.0 127.1 162.8 127.0 p 163.0 126.8 171.6 126.8 171.6 132.4 163.0 132.4 s3 163.0 126.8 167.3 129.6 171.6 126.8 t4 171.6 126.8 167.3 129.6 171.6 132.4 t4 163.5 132.0 165.5 132.4 171.6 132.4 167.3 129.6 s4 163.5 132.0 165.5 132.4 p 163.0 131.7 163.5 132.0 167.3 129.6 163.0 126.8 s4 163.0 131.7 163.5 132.0 p 163.0 126.8 167.3 129.6 171.6 126.8 t5 171.6 126.8 167.3 129.6 171.6 132.4 t5 164.3 131.5 170.0 132.4 171.6 132.4 167.3 129.6 s5 164.3 131.5 170.0 132.4 p 163.0 130.5 164.3 131.5 167.3 129.6 163.0 126.8 s5 163.0 130.5 164.3 131.5 p 163.0 126.8 167.3 129.6 171.6 126.8 t6 170.7 131.8 171.6 132.1 171.6 126.8 167.3 129.6 s6 170.7 131.8 171.6 132.1 p 170.7 131.8 165.2 131.0 167.3 129.6 t6 170.7 131.8 165.2 131.0 p 163.0 129.4 165.2 131.0 167.3 129.6 163.0 126.8 s6 163.0 129.4 165.2 131.0 p 163.0 126.8 167.3 129.6 171.6 126.8 t7 169.4 130.9 171.6 131.6 171.6 126.8 167.3 129.6 s7 169.4 130.9 171.6 131.6 p 169.4 130.9 166.0 130.4 167.3 129.6 t7 169.4 130.9 166.0 130.4 p 163.0 128.2 166.0 130.4 167.3 129.6 163.0 126.8 s7 163.0 128.2 166.0 130.4 p 163.0 126.8 167.3 129.6 171.6 126.8 t8 168.0 130.1 171.6 131.1 171.6 126.8 167.3 129.6 s8 168.0 130.1 171.6 131.1 p 168.0 130.1 166.8 129.9 167.3 129.6 t8 168.0 130.1 166.8 129.9 p 163.0 127.1 166.8 129.9 167.3 129.6 163.0 126.8 s8 163.0 127.1 166.8 129.9 p 171.6 126.8 180.2 126.8 180.2 132.4 171.6 132.4 s3 171.6 126.8 175.9 129.6 180.2 126.8 t4 179.7 132.0 180.2 131.7 180.2 126.8 175.9 129.6 s4 179.7 132.0 180.2 131.7 p 177.6 132.4 179.7 132.0 175.9 129.6 171.6 132.4 s4 177.6 132.4 179.7 132.0 p 171.6 132.4 175.9 129.6 171.6 126.8 t4 171.6 126.8 175.9 129.6 180.2 126.8 t5 178.8 131.5 180.2 130.5 180.2 126.8 175.9 129.6 s5 178.8 131.5 180.2 130.5 p 173.2 132.4 178.8 131.5 175.9 129.6 171.6 132.4 s5 173.2 132.4 178.8 131.5 p 171.6 132.4 175.9 129.6 171.6 126.8 t5 171.6 126.8 175.9 129.6 180.2 126.8 t6 178.0 131.0 180.2 129.4 180.2 126.8 175.9 129.6 s6 178.0 131.0 180.2 129.4 p 178.0 131.0 172.4 131.8 175.9 129.6 t6 178.0 131.0 172.4 131.8 p 171.6 132.1 172.4 131.8 175.9 129.6 171.6 126.8 s6 171.6 132.1 172.4 131.8 p 171.6 126.8 175.9 129.6 180.2 126.8 t7 177.2 130.4 180.2 128.2 180.2 126.8 175.9 129.6 s7 177.2 130.4 180.2 128.2 p 177.2 130.4 173.8 130.9 175.9 129.6 t7 177.2 130.4 173.8 130.9 p 171.6 131.6 173.8 130.9 175.9 129.6 171.6 126.8 s7 171.6 131.6 173.8 130.9 p 171.6 126.8 175.9 129.6 180.2 126.8 t8 176.3 129.9 180.2 127.1 180.2 126.8 175.9 129.6 s8 176.3 129.9 180.2 127.1 p 176.3 129.9 175.1 130.1 175.9 129.6 t8 176.3 129.9 175.1 130.1 p 171.6 131.1 175.1 130.1 175.9 129.6 171.6 126.8 s8 171.6 131.1 175.1 130.1 p 180.2 126.8 188.7 126.8 188.7 132.4 180.2 132.4 s1 187.8 127.4 188.2 126.8 180.2 126.8 184.4 129.6 s2 187.8 127.4 188.2 126.8 p 187.8 127.4 187.5 131.5 184.4 129.6 t2 187.8 127.4 187.5 131.5 p 186.0 132.4 187.5 131.5 184.4 129.6 180.2 132.4 s2 186.0 132.4 187.5 131.5 p 180.2 132.4 184.4 129.6 180.2 126.8 t2 185.7 128.8 186.9 126.8 180.2 126.8 184.4 129.6 s3 185.7 128.8 186.9 126.8 p 185.7 128.8 185.6 130.3 184.4 129.6 t3 185.7 128.8 185.6 130.3 p 181.9 132.4 185.6 130.3 184.4 129.6 180.2 132.4 s3 181.9 132.4 185.6 130.3 p 180.2 132.4 184.4 129.6 180.2 126.8 t3 185.6 126.8 184.1 129.4 180.2 126.8 t4 185.6 126.8 184.1 129.4 p 184.1 129.4 180.2 131.7 180.2 126.8 t4 184.1 129.4 180.2 131.7 p 184.3 126.8 183.2 128.8 180.2 126.8 t5 184.3 126.8 183.2 128.8 p 183.2 128.8 180.2 130.5 180.2 126.8 t5 183.2 128.8 180.2 130.5 p 183.0 126.8 182.2 128.2 180.2 126.8 t6 183.0 126.8 182.2 128.2 p 182.2 128.2 180.2 129.4 180.2 126.8 t6 182.2 128.2 180.2 129.4 p 181.7 126.8 181.3 127.6 180.2 126.8 t7 181.7 126.8 181.3 127.6 p 181.3 127.6 180.2 128.2 180.2 126.8 t7 181.3 127.6 180.2 128.2 p 180.4 126.8 180.3 127.0 180.2 126.8 t8 180.4 126.8 180.3 127.0 p 180.3 127.0 180.2 127.1 180.2 126.8 t8 180.3 127.0 180.2 127.1 p 188.7 126.8 197.3 126.8 197.3 132.4 188.7 132.4 s1 197.3 126.8 205.9 126.8 205.9 132.4 197.3 132.4 s1 197.9 126.8 198.2 127.4 201.6 129.6 205.9 126.8 s2 197.9 126.8 198.2 127.4 p 205.9 126.8 201.6 129.6 205.9 132.4 t2 198.6 131.5 200.1 132.4 205.9 132.4 201.6 129.6 s2 198.6 131.5 200.1 132.4 p 198.6 131.5 198.2 127.4 201.6 129.6 t2 198.6 131.5 198.2 127.4 p 199.2 126.8 200.3 128.8 201.6 129.6 205.9 126.8 s3 199.2 126.8 200.3 128.8 p 205.9 126.8 201.6 129.6 205.9 132.4 t3 200.4 130.3 204.1 132.4 205.9 132.4 201.6 129.6 s3 200.4 130.3 204.1 132.4 p 200.4 130.3 200.3 128.8 201.6 129.6 t3 200.4 130.3 200.3 128.8 p 202.0 129.4 200.5 126.8 205.9 126.8 t4 202.0 129.4 200.5 126.8 p 205.9 131.7 202.0 129.4 205.9 126.8 t4 205.9 131.7 202.0 129.4 p 202.9 128.8 201.8 126.8 205.9 126.8 t5 202.9 128.8 201.8 126.8 p 205.9 130.5 202.9 128.8 205.9 126.8 t5 205.9 130.5 202.9 128.8 p 203.8 128.2 203.1 126.8 205.9 126.8 t6 203.8 128.2 203.1 126.8 p 205.9 129.4 203.8 128.2 205.9 126.8 t6 205.9 129.4 203.8 128.2 p 204.8 127.6 204.3 126.8 205.9 126.8 t7 204.8 127.6 204.3 126.8 p 205.9 128.2 204.8 127.6 205.9 126.8 t7 205.9 128.2 204.8 127.6 p 205.7 127.0 205.6 126.8 205.9 126.8 t8 205.7 127.0 205.6 126.8 p 205.9 127.1 205.7 127.0 205.9 126.8 t8 205.9 127.1 205.7 127.0 p 205.9 126.8 214.5 126.8 214.5 132.4 205.9 132.4 s3 205.9 126.8 210.2 129.6 214.5 126.8 t4 214.5 126.8 210.2 129.6 214.5 132.4 t4 206.4 132.0 208.4 132.4 214.5 132.4 210.2 129.6 s4 206.4 132.0 208.4 132.4 p 205.9 131.7 206.4 132.0 210.2 129.6 205.9 126.8 s4 205.9 131.7 206.4 132.0 p 205.9 126.8 210.2 129.6 214.5 126.8 t5 214.5 126.8 210.2 129.6 214.5 132.4 t5 207.2 131.5 212.9 132.4 214.5 132.4 210.2 129.6 s5 207.2 131.5 212.9 132.4 p 205.9 130.5 207.2 131.5 210.2 129.6 205.9 126.8 s5 205.9 130.5 207.2 131.5 p 205.9 126.8 210.2 129.6 214.5 126.8 t6 213.6 131.8 214.5 132.1 214.5 126.8 210.2 129.6 s6 213.6 131.8 214.5 132.1 p 213.6 131.8 208.1 131.0 210.2 129.6 t6 213.6 131.8 208.1 131.0 p 205.9 129.4 208.1 131.0 210.2 129.6 205.9 126.8 s6 205.9 129.4 208.1 131.0 p 205.9 126.8 210.2 129.6 214.5 126.8 t7 212.3 130.9 214.5 131.6 214.5 126.8 210.2 129.6 s7 212.3 130.9 214.5 131.6 p 212.3 130.9 208.9 130.4 210.2 129.6 t7 212.3 130.9 208.9 130.4 p 205.9 128.2 208.9 130.4 210.2 129.6 205.9 126.8 s7 205.9 128.2 208.9 130.4 p 205.9 126.8 210.2 129.6 214.5 126.8 t8 210.9 130.1 214.5 131.1 214.5 126.8 210.2 129.6 s8 210.9 130.1 214.5 131.1 p 210.9 130.1 209.7 129.9 210.2 129.6 t8 210.9 130.1 209.7 129.9 p 205.9 127.1 209.7 129.9 210.2 129.6 205.9 126.8 s8 205.9 127.1 209.7 129.9 p 214.5 126.8 223.1 126.8 223.1 132.4 214.5 132.4 s3 214.5 126.8 218.8 129.6 223.1 126.8 t4 222.6 132.0 223.1 131.7 223.1 126.8 218.8 129.6 s4 222.6 132.0 223.1 131.7 p 220.5 132.4 222.6 132.0 218.8 129.6 214.5 132.4 s4 220.5 132.4 222.6 132.0 p 214.5 132.4 218.8 129.6 214.5 126.8 t4 214.5 126.8 218.8 129.6 223.1 126.8 t5 221.7 131.5 223.1 130.5 223.1 126.8 218.8 129.6 s5 221.7 131.5 223.1 130.5 p 216.1 132.4 221.7 131.5 218.8 129.6 214.5 132.4 s5 216.1 132.4 221.7 131.5 p 214.5 132.4 218.8 129.6 214.5 126.8 t5 214.5 126.8 218.8 129.6 223.1 126.8 t6 220.9 131.0 223.1 129.4 223.1 126.8 218.8 129.6 s6 220.9 131.0 223.1 129.4 p 220.9 131.0 215.3 131.8 218.8 129.6 t6 220.9 131.0 215.3 131.8 p 214.5 132.1 215.3 131.8 218.8 129.6 214.5 126.8 s6 214.5 132.1 215.3 131.8 p 214.5 126.8 218.8 129.6 223.1 126.8 t7 220.1 130.4 223.1 128.2 223.1 126.8 218.8 129.6 s7 220.1 130.4 223.1 128.2 p 220.1 130.4 216.7 130.9 218.8 129.6 t7 220.1 130.4 216.7 130.9 p 214.5 131.6 216.7 130.9 218.8 129.6 214.5 126.8 s7 214.5 131.6 216.7 130.9 p 214.5 126.8 218.8 129.6 223.1 126.8 t8 219.2 129.9 223.1 127.1 223.1 126.8 218.8 129.6 s8 219.2 129.9 223.1 127.1 p 219.2 129.9 218.0 130.1 218.8 129.6 t8 219.2 129.9 218.0 130.1 p 214.5 131.1 218.0 130.1 218.8 129.6 214.5 126.8 s8 214.5 131.1 218.0 130.1 p 223.1 126.8 231.6 126.8 231.6 132.4 223.1 132.4 s1 230.7 127.4 231.1 126.8 223.1 126.8 227.3 129.6 s2 230.7 127.4 231.1 126.8 p 230.7 127.4 230.4 131.5 227.3 129.6 t2 230.7 127.4 230.4 131.5 p 228.9 132.4 230.4 131.5 227.3 129.6 223.1 132.4 s2 228.9 132.4 230.4 131.5 p 223.1 132.4 227.3 129.6 223.1 126.8 t2 228.6 128.8 229.8 126.8 223.1 126.8 227.3 129.6 s3 228.6 128.8 229.8 126.8 p 228.6 128.8 228.5 130.3 227.3 129.6 t3 228.6 128.8 228.5 130.3 p 224.8 132.4 228.5 130.3 227.3 129.6 223.1 132.4 s3 224.8 132.4 228.5 130.3 p 223.1 132.4 227.3 129.6 223.1 126.8 t3 228.5 126.8 227.0 129.4 223.1 126.8 t4 228.5 126.8 227.0 129.4 p 227.0 129.4 223.1 131.7 223.1 126.8 t4 227.0 129.4 223.1 131.7 p 227.2 126.8 226.1 128.8 223.1 126.8 t5 227.2 126.8 226.1 128.8 p 226.1 128.8 223.1 130.5 223.1 126.8 t5 226.1 128.8 223.1 130.5 p 225.9 126.8 225.1 128.2 223.1 126.8 t6 225.9 126.8 225.1 128.2 p 225.1 128.2 223.1 129.4 223.1 126.8 t6 225.1 128.2 223.1 129.4 p 224.6 126.8 224.2 127.6 223.1 126.8 t7 224.6 126.8 224.2 127.6 p 224.2 127.6 223.1 128.2 223.1 126.8 t7 224.2 127.6 223.1 128.2 p 223.3 126.8 223.2 127.0 223.1 126.8 t8 223.3 126.8 223.2 127.0 p 223.2 127.0 223.1 127.1 223.1 126.8 t8 223.2 127.0 223.1 127.1 p 231.6 126.8 240.2 126.8 240.2 132.4 231.6 132.4 s1 240.2 126.8 248.8 126.8 248.8 132.4 240.2 132.4 s1 240.8 126.8 241.1 127.4 244.5 129.6 248.8 126.8 s2 240.8 126.8 241.1 127.4 p 248.8 126.8 244.5 129.6 248.8 132.4 t2 241.5 131.5 243.0 132.4 248.8 132.4 244.5 129.6 s2 241.5 131.5 243.0 132.4 p 241.5 131.5 241.1 127.4 244.5 129.6 t2 241.5 131.5 241.1 127.4 p 242.1 126.8 243.2 128.8 244.5 129.6 248.8 126.8 s3 242.1 126.8 243.2 128.8 p 248.8 126.8 244.5 129.6 248.8 132.4 t3 243.3 130.3 247.0 132.4 248.8 132.4 244.5 129.6 s3 243.3 130.3 247.0 132.4 p 243.3 130.3 243.2 128.8 244.5 129.6 t3 243.3 130.3 243.2 128.8 p 244.8 129.4 243.4 126.8 248.8 126.8 t4 244.8 129.4 243.4 126.8 p 248.8 131.7 244.8 129.4 248.8 126.8 t4 248.8 131.7 244.8 129.4 p 245.8 128.8 244.7 126.8 248.8 126.8 t5 245.8 128.8 244.7 126.8 p 248.8 130.5 245.8 128.8 248.8 126.8 t5 248.8 130.5 245.8 128.8 p 246.7 128.2 246.0 126.8 248.8 126.8 t6 246.7 128.2 246.0 126.8 p 248.8 129.4 246.7 128.2 248.8 126.8 t6 248.8 129.4 246.7 128.2 p 247.7 127.6 247.2 126.8 248.8 126.8 t7 247.7 127.6 247.2 126.8 p 248.8 128.2 247.7 127.6 248.8 126.8 t7 248.8 128.2 247.7 127.6 p 248.6 127.0 248.5 126.8 248.8 126.8 t8 248.6 127.0 248.5 126.8 p 248.8 127.1 248.6 127.0 248.8 126.8 t8 248.8 127.1 248.6 127.0 p 248.8 126.8 257.4 126.8 257.4 132.4 248.8 132.4 s3 248.8 126.8 253.1 129.6 257.4 126.8 t4 257.4 126.8 253.1 129.6 257.4 132.4 t4 249.3 132.0 251.3 132.4 257.4 132.4 253.1 129.6 s4 249.3 132.0 251.3 132.4 p 248.8 131.7 249.3 132.0 253.1 129.6 248.8 126.8 s4 248.8 131.7 249.3 132.0 p 248.8 126.8 253.1 129.6 257.4 126.8 t5 257.4 126.8 253.1 129.6 257.4 132.4 t5 250.1 131.5 255.8 132.4 257.4 132.4 253.1 129.6 s5 250.1 131.5 255.8 132.4 p 248.8 130.5 250.1 131.5 253.1 129.6 248.8 126.8 s5 248.8 130.5 250.1 131.5 p 248.8 126.8 253.1 129.6 257.4 126.8 t6 256.5 131.8 257.4 132.1 257.4 126.8 253.1 129.6 s6 256.5 131.8 257.4 132.1 p 256.5 131.8 250.9 131.0 253.1 129.6 t6 256.5 131.8 250.9 131.0 p 248.8 129.4 250.9 131.0 253.1 129.6 248.8 126.8 s6 248.8 129.4 250.9 131.0 p 248.8 126.8 253.1 129.6 257.4 126.8 t7 255.1 130.9 257.4 131.6 257.4 126.8 253.1 129.6 s7 255.1 130.9 257.4 131.6 p 255.1 130.9 251.8 130.4 253.1 129.6 t7 255.1 130.9 251.8 130.4 p 248.8 128.2 251.8 130.4 253.1 129.6 248.8 126.8 s7 248.8 128.2 251.8 130.4 p 248.8 126.8 253.1 129.6 257.4 126.8 t8 253.8 130.1 257.4 131.1 257.4 126.8 253.1 129.6 s8 253.8 130.1 257.4 131.1 p 253.8 130.1 252.6 129.9 253.1 129.6 t8 253.8 130.1 252.6 129.9 p 248.8 127.1 252.6 129.9 253.1 129.6 248.8 126.8 s8 248.8 127.1 252.6 129.9 p 257.4 126.8 265.9 126.8 265.9 132.4 257.4 132.4 s3 257.4 126.8 261.7 129.6 265.9 126.8 t4 265.5 132.0 265.9 131.7 265.9 126.8 261.7 129.6 s4 265.5 132.0 265.9 131.7 p 263.4 132.4 265.5 132.0 261.7 129.6 257.4 132.4 s4 263.4 132.4 265.5 132.0 p 257.4 132.4 261.7 129.6 257.4 126.8 t4 257.4 126.8 261.7 129.6 265.9 126.8 t5 264.6 131.5 265.9 130.5 265.9 126.8 261.7 129.6 s5 264.6 131.5 265.9 130.5 p 259.0 132.4 264.6 131.5 261.7 129.6 257.4 132.4 s5 259.0 132.4 264.6 131.5 p 257.4 132.4 261.7 129.6 257.4 126.8 t5 257.4 126.8 261.7 129.6 265.9 126.8 t6 263.8 131.0 265.9 129.4 265.9 126.8 261.7 129.6 s6 263.8 131.0 265.9 129.4 p 263.8 131.0 258.2 131.8 261.7 129.6 t6 263.8 131.0 258.2 131.8 p 257.4 132.1 258.2 131.8 261.7 129.6 257.4 126.8 s6 257.4 132.1 258.2 131.8 p 257.4 126.8 261.7 129.6 265.9 126.8 t7 262.9 130.4 265.9 128.2 265.9 126.8 261.7 129.6 s7 262.9 130.4 265.9 128.2 p 262.9 130.4 259.6 130.9 261.7 129.6 t7 262.9 130.4 259.6 130.9 p 257.4 131.6 259.6 130.9 261.7 129.6 257.4 126.8 s7 257.4 131.6 259.6 130.9 p 257.4 126.8 261.7 129.6 265.9 126.8 t8 262.1 129.9 265.9 127.1 265.9 126.8 261.7 129.6 s8 262.1 129.9 265.9 127.1 p 262.1 129.9 260.9 130.1 261.7 129.6 t8 262.1 129.9 260.9 130.1 p 257.4 131.1 260.9 130.1 261.7 129.6 257.4 126.8 s8 257.4 131.1 260.9 130.1 p 265.9 126.8 274.5 126.8 274.5 132.4 265.9 132.4 s1 273.6 127.4 274.0 126.8 265.9 126.8 270.2 129.6 s2 273.6 127.4 274.0 126.8 p 273.6 127.4 273.3 131.5 270.2 129.6 t2 273.6 127.4 273.3 131.5 p 271.8 132.4 273.3 131.5 270.2 129.6 265.9 132.4 s2 271.8 132.4 273.3 131.5 p 265.9 132.4 270.2 129.6 265.9 126.8 t2 271.5 128.8 272.7 126.8 265.9 126.8 270.2 129.6 s3 271.5 128.8 272.7 126.8 p 271.5 128.8 271.4 130.3 270.2 129.6 t3 271.5 128.8 271.4 130.3 p 267.7 132.4 271.4 130.3 270.2 129.6 265.9 132.4 s3 267.7 132.4 271.4 130.3 p 265.9 132.4 270.2 129.6 265.9 126.8 t3 271.4 126.8 269.9 129.4 265.9 126.8 t4 271.4 126.8 269.9 129.4 p 269.9 129.4 265.9 131.7 265.9 126.8 t4 269.9 129.4 265.9 131.7 p 270.1 126.8 268.9 128.8 265.9 126.8 t5 270.1 126.8 268.9 128.8 p 268.9 128.8 265.9 130.5 265.9 126.8 t5 268.9 128.8 265.9 130.5 p 268.8 126.8 268.0 128.2 265.9 126.8 t6 268.8 126.8 268.0 128.2 p 268.0 128.2 265.9 129.4 265.9 126.8 t6 268.0 128.2 265.9 129.4 p 267.5 126.8 267.1 127.6 265.9 126.8 t7 267.5 126.8 267.1 127.6 p 267.1 127.6 265.9 128.2 265.9 126.8 t7 267.1 127.6 265.9 128.2 p 266.2 126.8 266.1 127.0 265.9 126.8 t8 266.2 126.8 266.1 127.0 p 266.1 127.0 265.9 127.1 265.9 126.8 t8 266.1 127.0 265.9 127.1 p 274.5 126.8 283.1 126.8 283.1 132.4 274.5 132.4 s1 283.1 126.8 291.7 126.8 291.7 132.4 283.1 132.4 s1 283.7 126.8 284.0 127.4 287.4 129.6 291.7 126.8 s2 283.7 126.8 284.0 127.4 p 291.7 126.8 287.4 129.6 291.7 132.4 t2 284.4 131.5 285.9 132.4 291.7 132.4 287.4 129.6 s2 284.4 131.5 285.9 132.4 p 284.4 131.5 284.0 127.4 287.4 129.6 t2 284.4 131.5 284.0 127.4 p 285.0 126.8 286.1 128.8 287.4 129.6 291.7 126.8 s3 285.0 126.8 286.1 128.8 p 291.7 126.8 287.4 129.6 291.7 132.4 t3 286.2 130.3 289.9 132.4 291.7 132.4 287.4 129.6 s3 286.2 130.3 289.9 132.4 p 286.2 130.3 286.1 128.8 287.4 129.6 t3 286.2 130.3 286.1 128.8 p 287.7 129.4 286.3 126.8 291.7 126.8 t4 287.7 129.4 286.3 126.8 p 291.7 131.7 287.7 129.4 291.7 126.8 t4 291.7 131.7 287.7 129.4 p 288.7 128.8 287.6 126.8 291.7 126.8 t5 288.7 128.8 287.6 126.8 p 291.7 130.5 288.7 128.8 291.7 126.8 t5 291.7 130.5 288.7 128.8 p 289.6 128.2 288.8 126.8 291.7 126.8 t6 289.6 128.2 288.8 126.8 p 291.7 129.4 289.6 128.2 291.7 126.8 t6 291.7 129.4 289.6 128.2 p 290.6 127.6 290.1 126.8 291.7 126.8 t7 290.6 127.6 290.1 126.8 p 291.7 128.2 290.6 127.6 291.7 126.8 t7 291.7 128.2 290.6 127.6 p 291.5 127.0 291.4 126.8 291.7 126.8 t8 291.5 127.0 291.4 126.8 p 291.7 127.1 291.5 127.0 291.7 126.8 t8 291.7 127.1 291.5 127.0 p 291.7 126.8 300.3 126.8 300.3 132.4 291.7 132.4 s3 291.7 126.8 296.0 129.6 300.3 126.8 t4 300.3 126.8 296.0 129.6 300.3 132.4 t4 292.2 132.0 294.2 132.4 300.3 132.4 296.0 129.6 s4 292.2 132.0 294.2 132.4 p 291.7 131.7 292.2 132.0 296.0 129.6 291.7 126.8 s4 291.7 131.7 292.2 132.0 p 291.7 126.8 296.0 129.6 300.3 126.8 t5 300.3 126.8 296.0 129.6 300.3 132.4 t5 293.0 131.5 298.7 132.4 300.3 132.4 296.0 129.6 s5 293.0 131.5 298.7 132.4 p 291.7 130.5 293.0 131.5 296.0 129.6 291.7 126.8 s5 291.7 130.5 293.0 131.5 p 291.7 126.8 296.0 129.6 300.3 126.8 t6 299.4 131.8 300.3 132.1 300.3 126.8 296.0 129.6 s6 299.4 131.8 300.3 132.1 p 299.4 131.8 293.8 131.0 296.0 129.6 t6 299.4 131.8 293.8 131.0 p 291.7 129.4 293.8 131.0 296.0 129.6 291.7 126.8 s6 291.7 129.4 293.8 131.0 p 291.7 126.8 296.0 129.6 300.3 126.8 t7 298.0 130.9 300.3 131.6 300.3 126.8 296.0 129.6 s7 298.0 130.9 300.3 131.6 p 298.0 130.9 294.7 130.4 296.0 129.6 t7 298.0 130.9 294.7 130.4 p 291.7 128.2 294.7 130.4 296.0 129.6 291.7 126.8 s7 291.7 128.2 294.7 130.4 p 291.7 126.8 296.0 129.6 300.3 126.8 t8 296.7 130.1 300.3 131.1 300.3 126.8 296.0 129.6 s8 296.7 130.1 300.3 131.1 p 296.7 130.1 295.5 129.9 296.0 129.6 t8 296.7 130.1 295.5 129.9 p 291.7 127.1 295.5 129.9 296.0 129.6 291.7 126.8 s8 291.7 127.1 295.5 129.9 p 0.0 121.3 8.6 121.3 8.6 126.8 0.0 126.8 s8 8.6 121.3 17.2 121.3 17.2 126.8 8.6 126.8 s1 16.9 121.5 17.0 121.3 8.6 121.3 12.9 124.1 s2 16.9 121.5 17.0 121.3 p 16.9 121.5 16.7 126.5 12.9 124.1 t2 16.9 121.5 16.7 126.5 p 16.6 126.8 16.7 126.5 12.9 124.1 8.6 126.8 s2 16.6 126.8 16.7 126.5 p 8.6 126.8 12.9 124.1 8.6 121.3 t2 15.7 122.3 15.9 121.3 8.6 121.3 12.9 124.1 s3 15.7 122.3 15.9 121.3 p 15.7 122.3 15.5 125.8 12.9 124.1 t3 15.7 122.3 15.5 125.8 p 15.3 126.8 15.5 125.8 12.9 124.1 8.6 126.8 s3 15.3 126.8 15.5 125.8 p 8.6 126.8 12.9 124.1 8.6 121.3 t3 14.5 123.0 14.8 121.3 8.6 121.3 12.9 124.1 s4 14.5 123.0 14.8 121.3 p 14.5 123.0 14.4 125.1 12.9 124.1 t4 14.5 123.0 14.4 125.1 p 14.0 126.8 14.4 125.1 12.9 124.1 8.6 126.8 s4 14.0 126.8 14.4 125.1 p 8.6 126.8 12.9 124.1 8.6 121.3 t4 13.3 123.8 13.8 121.3 8.6 121.3 12.9 124.1 s5 13.3 123.8 13.8 121.3 p 13.3 123.8 13.3 124.3 12.9 124.1 t5 13.3 123.8 13.3 124.3 p 12.7 126.8 13.3 124.3 12.9 124.1 8.6 126.8 s5 12.7 126.8 13.3 124.3 p 8.6 126.8 12.9 124.1 8.6 121.3 t5 12.7 121.3 12.2 123.7 8.6 121.3 t6 12.7 121.3 12.2 123.7 p 11.9 124.7 11.4 126.8 8.6 126.8 t6 11.9 124.7 11.4 126.8 p 11.9 124.7 12.2 123.7 8.6 121.3 8.6 126.8 s6 11.9 124.7 12.2 123.7 p 11.6 121.3 11.3 123.1 8.6 121.3 t7 11.6 121.3 11.3 123.1 p 10.4 125.7 10.1 126.8 8.6 126.8 t7 10.4 125.7 10.1 126.8 p 10.4 125.7 11.3 123.1 8.6 121.3 8.6 126.8 s7 10.4 125.7 11.3 123.1 p 10.5 121.3 10.3 122.5 8.6 121.3 t8 10.5 121.3 10.3 122.5 p 8.9 126.6 8.8 126.8 8.6 126.8 t8 8.9 126.6 8.8 126.8 p 8.9 126.6 10.3 122.5 8.6 121.3 8.6 126.8 s8 8.9 126.6 10.3 122.5 p 17.2 121.3 25.7 121.3 25.7 126.8 17.2 126.8 s1 25.7 121.3 34.3 121.3 34.3 126.8 25.7 126.8 s1 25.9 121.3 26.0 121.5 30.0 124.1 34.3 121.3 s2 25.9 121.3 26.0 121.5 p 34.3 121.3 30.0 124.1 34.3 126.8 t2 26.2 126.5 26.3 126.8 34.3 126.8 30.0 124.1 s2 26.2 126.5 26.3 126.8 p 26.2 126.5 26.0 121.5 30.0 124.1 t2 26.2 126.5 26.0 121.5 p 27.0 121.3 27.2 122.3 30.0 124.1 34.3 121.3 s3 27.0 121.3 27.2 122.3 p 34.3 121.3 30.0 124.1 34.3 126.8 t3 27.4 125.8 27.6 126.8 34.3 126.8 30.0 124.1 s3 27.4 125.8 27.6 126.8 p 27.4 125.8 27.2 122.3 30.0 124.1 t3 27.4 125.8 27.2 122.3 p 28.1 121.3 28.4 123.0 30.0 124.1 34.3 121.3 s4 28.1 121.3 28.4 123.0 p 34.3 121.3 30.0 124.1 34.3 126.8 t4 28.5 125.1 28.9 126.8 34.3 126.8 30.0 124.1 s4 28.5 125.1 28.9 126.8 p 28.5 125.1 28.4 123.0 30.0 124.1 t4 28.5 125.1 28.4 123.0 p 29.1 121.3 29.6 123.8 30.0 124.1 34.3 121.3 s5 29.1 121.3 29.6 123.8 p 34.3 121.3 30.0 124.1 34.3 126.8 t5 29.6 124.3 30.2 126.8 34.3 126.8 30.0 124.1 s5 29.6 124.3 30.2 126.8 p 29.6 124.3 29.6 123.8 30.0 124.1 t5 29.6 124.3 29.6 123.8 p 30.6 123.7 30.2 121.3 34.3 121.3 t6 30.6 123.7 30.2 121.3 p 30.6 123.7 31.0 124.7 34.3 126.8 34.3 121.3 s6 30.6 123.7 31.0 124.7 p 31.5 126.8 31.0 124.7 34.3 126.8 t6 31.5 126.8 31.0 124.7 p 31.6 123.1 31.3 121.3 34.3 121.3 t7 31.6 123.1 31.3 121.3 p 31.6 123.1 32.5 125.7 34.3 126.8 34.3 121.3 s7 31.6 123.1 32.5 125.7 p 32.8 126.8 32.5 125.7 34.3 126.8 t7 32.8 126.8 32.5 125.7 p 32.6 122.5 32.3 121.3 34.3 121.3 t8 32.6 122.5 32.3 121.3 p 32.6 122.5 34.0 126.6 34.3 126.8 34.3 121.3 s8 32.6 122.5 34.0 126.6 p 34.1 126.8 34.0 126.6 34.3 126.8 t8 34.1 126.8 34.0 126.6 p 34.3 121.3 42.9 121.3 42.9 126.8 34.3 126.8 s8 42.9 121.3 51.5 121.3 51.5 126.8 42.9 126.8 s8 51.5 121.3 60.1 121.3 60.1 126.8 51.5 126.8 s1 59.8 121.5 59.9 121.3 51.5 121.3 55.8 124.1 s2 59.8 121.5 59.9 121.3 p 59.8 121.5 59.6 126.5 55.8 124.1 t2 59.8 121.5 59.6 126.5 p 59.5 126.8 59.6 126.5 55.8 124.1 51.5 126.8 s2 59.5 126.8 59.6 126.5 p 51.5 126.8 55.8 124.1 51.5 121.3 t2 58.6 122.3 58.8 121.3 51.5 121.3 55.8 124.1 s3 58.6 122.3 58.8 121.3 p 58.6 122.3 58.4 125.8 55.8 124.1 t3 58.6 122.3 58.4 125.8 p 58.2 126.8 58.4 125.8 55.8 124.1 51.5 126.8 s3 58.2 126.8 58.4 125.8 p 51.5 126.8 55.8 124.1 51.5 121.3 t3 57.4 123.0 57.7 121.3 51.5 121.3 55.8 124.1 s4 57.4 123.0 57.7 121.3 p 57.4 123.0 57.3 125.1 55.8 124.1 t4 57.4 123.0 57.3 125.1 p 56.9 126.8 57.3 125.1 55.8 124.1 51.5 126.8 s4 56.9 126.8 57.3 125.1 p 51.5 126.8 55.8 124.1 51.5 121.3 t4 56.2 123.8 56.6 121.3 51.5 121.3 55.8 124.1 s5 56.2 123.8 56.6 121.3 p 56.2 123.8 56.2 124.3 55.8 124.1 t5 56.2 123.8 56.2 124.3 p 55.6 126.8 56.2 124.3 55.8 124.1 51.5 126.8 s5 55.6 126.8 56.2 124.3 p 51.5 126.8 55.8 124.1 51.5 121.3 t5 55.6 121.3 55.1 123.7 51.5 121.3 t6 55.6 121.3 55.1 123.7 p 54.8 124.7 54.3 126.8 51.5 126.8 t6 54.8 124.7 54.3 126.8 p 54.8 124.7 55.1 123.7 51.5 121.3 51.5 126.8 s6 54.8 124.7 55.1 123.7 p 54.5 121.3 54.2 123.1 51.5 121.3 t7 54.5 121.3 54.2 123.1 p 53.3 125.7 53.0 126.8 51.5 126.8 t7 53.3 125.7 53.0 126.8 p 53.3 125.7 54.2 123.1 51.5 121.3 51.5 126.8 s7 53.3 125.7 54.2 123.1 p 53.4 121.3 53.2 122.5 51.5 121.3 t8 53.4 121.3 53.2 122.5 p 51.8 126.6 51.7 126.8 51.5 126.8 t8 51.8 126.6 51.7 126.8 p 51.8 126.6 53.2 122.5 51.5 121.3 51.5 126.8 s8 51.8 126.6 53.2 122.5 p 60.1 121.3 68.6 121.3 68.6 126.8 60.1 126.8 s1 68.6 121.3 77.2 121.3 77.2 126.8 68.6 126.8 s1 68.8 121.3 68.9 121.5 72.9 124.1 77.2 121.3 s2 68.8 121.3 68.9 121.5 p 77.2 121.3 72.9 124.1 77.2 126.8 t2 69.1 126.5 69.2 126.8 77.2 126.8 72.9 124.1 s2 69.1 126.5 69.2 126.8 p 69.1 126.5 68.9 121.5 72.9 124.1 t2 69.1 126.5 68.9 121.5 p 69.9 121.3 70.1 122.3 72.9 124.1 77.2 121.3 s3 69.9 121.3 70.1 122.3 p 77.2 121.3 72.9 124.1 77.2 126.8 t3 70.3 125.8 70.5 126.8 77.2 126.8 72.9 124.1 s3 70.3 125.8 70.5 126.8 p 70.3 125.8 70.1 122.3 72.9 124.1 t3 70.3 125.8 70.1 122.3 p 71.0 121.3 71.3 123.0 72.9 124.1 77.2 121.3 s4 71.0 121.3 71.3 123.0 p 77.2 121.3 72.9 124.1 77.2 126.8 t4 71.4 125.1 71.8 126.8 77.2 126.8 72.9 124.1 s4 71.4 125.1 71.8 126.8 p 71.4 125.1 71.3 123.0 72.9 124.1 t4 71.4 125.1 71.3 123.0 p 72.0 121.3 72.5 123.8 72.9 124.1 77.2 121.3 s5 72.0 121.3 72.5 123.8 p 77.2 121.3 72.9 124.1 77.2 126.8 t5 72.5 124.3 73.1 126.8 77.2 126.8 72.9 124.1 s5 72.5 124.3 73.1 126.8 p 72.5 124.3 72.5 123.8 72.9 124.1 t5 72.5 124.3 72.5 123.8 p 73.5 123.7 73.1 121.3 77.2 121.3 t6 73.5 123.7 73.1 121.3 p 73.5 123.7 73.9 124.7 77.2 126.8 77.2 121.3 s6 73.5 123.7 73.9 124.7 p 74.4 126.8 73.9 124.7 77.2 126.8 t6 74.4 126.8 73.9 124.7 p 74.5 123.1 74.2 121.3 77.2 121.3 t7 74.5 123.1 74.2 121.3 p 74.5 123.1 75.4 125.7 77.2 126.8 77.2 121.3 s7 74.5 123.1 75.4 125.7 p 75.7 126.8 75.4 125.7 77.2 126.8 t7 75.7 126.8 75.4 125.7 p 75.5 122.5 75.2 121.3 77.2 121.3 t8 75.5 122.5 75.2 121.3 p 75.5 122.5 76.9 126.6 77.2 126.8 77.2 121.3 s8 75.5 122.5 76.9 126.6 p 77.0 126.8 76.9 126.6 77.2 126.8 t8 77.0 126.8 76.9 126.6 p 77.2 121.3 85.8 121.3 85.8 126.8 77.2 126.8 s8 85.8 121.3 94.4 121.3 94.4 126.8 85.8 126.8 s8 94.4 121.3 102.9 121.3 102.9 126.8 94.4 126.8 s1 102.7 121.5 102.7 121.3 94.4 121.3 98.7 124.1 s2 102.7 121.5 102.7 121.3 p 102.7 121.5 102.4 126.5 98.7 124.1 t2 102.7 121.5 102.4 126.5 p 102.4 126.8 102.4 126.5 98.7 124.1 94.4 126.8 s2 102.4 126.8 102.4 126.5 p 94.4 126.8 98.7 124.1 94.4 121.3 t2 101.5 122.3 101.7 121.3 94.4 121.3 98.7 124.1 s3 101.5 122.3 101.7 121.3 p 101.5 122.3 101.3 125.8 98.7 124.1 t3 101.5 122.3 101.3 125.8 p 101.1 126.8 101.3 125.8 98.7 124.1 94.4 126.8 s3 101.1 126.8 101.3 125.8 p 94.4 126.8 98.7 124.1 94.4 121.3 t3 100.3 123.0 100.6 121.3 94.4 121.3 98.7 124.1 s4 100.3 123.0 100.6 121.3 p 100.3 123.0 100.2 125.1 98.7 124.1 t4 100.3 123.0 100.2 125.1 p 99.8 126.8 100.2 125.1 98.7 124.1 94.4 126.8 s4 99.8 126.8 100.2 125.1 p 94.4 126.8 98.7 124.1 94.4 121.3 t4 99.1 123.8 99.5 121.3 94.4 121.3 98.7 124.1 s5 99.1 123.8 99.5 121.3 p 99.1 123.8 99.1 124.3 98.7 124.1 t5 99.1 123.8 99.1 124.3 p 98.5 126.8 99.1 124.3 98.7 124.1 94.4 126.8 s5 98.5 126.8 99.1 124.3 p 94.4 126.8 98.7 124.1 94.4 121.3 t5 98.5 121.3 98.0 123.7 94.4 121.3 t6 98.5 121.3 98.0 123.7 p 97.7 124.7 97.2 126.8 94.4 126.8 t6 97.7 124.7 97.2 126.8 p 97.7 124.7 98.0 123.7 94.4 121.3 94.4 126.8 s6 97.7 124.7 98.0 123.7 p 97.4 121.3 97.1 123.1 94.4 121.3 t7 97.4 121.3 97.1 123.1 p 96.2 125.7 95.9 126.8 94.4 126.8 t7 96.2 125.7 95.9 126.8 p 96.2 125.7 97.1 123.1 94.4 121.3 94.4 126.8 s7 96.2 125.7 97.1 123.1 p 96.3 121.3 96.1 122.5 94.4 121.3 t8 96.3 121.3 96.1 122.5 p 94.7 126.6 94.6 126.8 94.4 126.8 t8 94.7 126.6 94.6 126.8 p 94.7 126.6 96.1 122.5 94.4 121.3 94.4 126.8 s8 94.7 126.6 96.1 122.5 p 102.9 121.3 111.5 121.3 111.5 126.8 102.9 126.8 s1 111.5 121.3 120.1 121.3 120.1 126.8 111.5 126.8 s1 111.7 121.3 111.8 121.5 115.8 124.1 120.1 121.3 s2 111.7 121.3 111.8 121.5 p 120.1 121.3 115.8 124.1 120.1 126.8 t2 112.0 126.5 112.1 126.8 120.1 126.8 115.8 124.1 s2 112.0 126.5 112.1 126.8 p 112.0 126.5 111.8 121.5 115.8 124.1 t2 112.0 126.5 111.8 121.5 p 112.8 121.3 113.0 122.3 115.8 124.1 120.1 121.3 s3 112.8 121.3 113.0 122.3 p 120.1 121.3 115.8 124.1 120.1 126.8 t3 113.2 125.8 113.4 126.8 120.1 126.8 115.8 124.1 s3 113.2 125.8 113.4 126.8 p 113.2 125.8 113.0 122.3 115.8 124.1 t3 113.2 125.8 113.0 122.3 p 113.9 121.3 114.2 123.0 115.8 124.1 120.1 121.3 s4 113.9 121.3 114.2 123.0 p 120.1 121.3 115.8 124.1 120.1 126.8 t4 114.3 125.1 114.7 126.8 120.1 126.8 115.8 124.1 s4 114.3 125.1 114.7 126.8 p 114.3 125.1 114.2 123.0 115.8 124.1 t4 114.3 125.1 114.2 123.0 p 114.9 121.3 115.4 123.8 115.8 124.1 120.1 121.3 s5 114.9 121.3 115.4 123.8 p 120.1 121.3 115.8 124.1 120.1 126.8 t5 115.4 124.3 116.0 126.8 120.1 126.8 115.8 124.1 s5 115.4 124.3 116.0 126.8 p 115.4 124.3 115.4 123.8 115.8 124.1 t5 115.4 124.3 115.4 123.8 p 116.4 123.7 116.0 121.3 120.1 121.3 t6 116.4 123.7 116.0 121.3 p 116.4 123.7 116.8 124.7 120.1 126.8 120.1 121.3 s6 116.4 123.7 116.8 124.7 p 117.3 126.8 116.8 124.7 120.1 126.8 t6 117.3 126.8 116.8 124.7 p 117.4 123.1 117.1 121.3 120.1 121.3 t7 117.4 123.1 117.1 121.3 p 117.4 123.1 118.3 125.7 120.1 126.8 120.1 121.3 s7 117.4 123.1 118.3 125.7 p 118.6 126.8 118.3 125.7 120.1 126.8 t7 118.6 126.8 118.3 125.7 p 118.3 122.5 118.1 121.3 120.1 121.3 t8 118.3 122.5 118.1 121.3 p 118.3 122.5 119.8 126.6 120.1 126.8 120.1 121.3 s8 118.3 122.5 119.8 126.6 p 119.9 126.8 119.8 126.6 120.1 126.8 t8 119.9 126.8 119.8 126.6 p 120.1 121.3 128.7 121.3 128.7 126.8 120.1 126.8 s8 128.7 121.3 137.3 121.3 137.3 126.8 128.7 126.8 s8 137.3 121.3 145.8 121.3 145.8 126.8 137.3 126.8 s1 145.6 121.5 145.6 121.3 137.3 121.3 141.6 124.1 s2 145.6 121.5 145.6 121.3 p 145.6 121.5 145.3 126.5 141.6 124.1 t2 145.6 121.5 145.3 126.5 p 145.3 126.8 145.3 126.5 141.6 124.1 137.3 126.8 s2 145.3 126.8 145.3 126.5 p 137.3 126.8 141.6 124.1 137.3 121.3 t2 144.4 122.3 144.6 121.3 137.3 121.3 141.6 124.1 s3 144.4 122.3 144.6 121.3 p 144.4 122.3 144.2 125.8 141.6 124.1 t3 144.4 122.3 144.2 125.8 p 144.0 126.8 144.2 125.8 141.6 124.1 137.3 126.8 s3 144.0 126.8 144.2 125.8 p 137.3 126.8 141.6 124.1 137.3 121.3 t3 143.2 123.0 143.5 121.3 137.3 121.3 141.6 124.1 s4 143.2 123.0 143.5 121.3 p 143.2 123.0 143.1 125.1 141.6 124.1 t4 143.2 123.0 143.1 125.1 p 142.7 126.8 143.1 125.1 141.6 124.1 137.3 126.8 s4 142.7 126.8 143.1 125.1 p 137.3 126.8 141.6 124.1 137.3 121.3 t4 142.0 123.8 142.4 121.3 137.3 121.3 141.6 124.1 s5 142.0 123.8 142.4 121.3 p 142.0 123.8 141.9 124.3 141.6 124.1 t5 142.0 123.8 141.9 124.3 p 141.4 126.8 141.9 124.3 141.6 124.1 137.3 126.8 s5 141.4 126.8 141.9 124.3 p 137.3 126.8 141.6 124.1 137.3 121.3 t5 141.4 121.3 140.9 123.7 137.3 121.3 t6 141.4 121.3 140.9 123.7 p 140.6 124.7 140.1 126.8 137.3 126.8 t6 140.6 124.7 140.1 126.8 p 140.6 124.7 140.9 123.7 137.3 121.3 137.3 126.8 s6 140.6 124.7 140.9 123.7 p 140.3 121.3 140.0 123.1 137.3 121.3 t7 140.3 121.3 140.0 123.1 p 139.1 125.7 138.8 126.8 137.3 126.8 t7 139.1 125.7 138.8 126.8 p 139.1 125.7 140.0 123.1 137.3 121.3 137.3 126.8 s7 139.1 125.7 140.0 123.1 p 139.2 121.3 139.0 122.5 137.3 121.3 t8 139.2 121.3 139.0 122.5 p 137.6 126.6 137.5 126.8 137.3 126.8 t8 137.6 126.6 137.5 126.8 p 137.6 126.6 139.0 122.5 137.3 121.3 137.3 126.8 s8 137.6 126.6 139.0 122.5 p 145.8 121.3 154.4 121.3 154.4 126.8 145.8 126.8 s1 154.4 121.3 163.0 121.3 163.0 126.8 154.4 126.8 s1 154.6 121.3 154.6 121.5 158.7 124.1 163.0 121.3 s2 154.6 121.3 154.6 121.5 p 163.0 121.3 158.7 124.1 163.0 126.8 t2 154.9 126.5 155.0 126.8 163.0 126.8 158.7 124.1 s2 154.9 126.5 155.0 126.8 p 154.9 126.5 154.6 121.5 158.7 124.1 t2 154.9 126.5 154.6 121.5 p 155.7 121.3 155.9 122.3 158.7 124.1 163.0 121.3 s3 155.7 121.3 155.9 122.3 p 163.0 121.3 158.7 124.1 163.0 126.8 t3 156.1 125.8 156.3 126.8 163.0 126.8 158.7 124.1 s3 156.1 125.8 156.3 126.8 p 156.1 125.8 155.9 122.3 158.7 124.1 t3 156.1 125.8 155.9 122.3 p 156.8 121.3 157.1 123.0 158.7 124.1 163.0 121.3 s4 156.8 121.3 157.1 123.0 p 163.0 121.3 158.7 124.1 163.0 126.8 t4 157.2 125.1 157.6 126.8 163.0 126.8 158.7 124.1 s4 157.2 125.1 157.6 126.8 p 157.2 125.1 157.1 123.0 158.7 124.1 t4 157.2 125.1 157.1 123.0 p 157.8 121.3 158.3 123.8 158.7 124.1 163.0 121.3 s5 157.8 121.3 158.3 123.8 p 163.0 121.3 158.7 124.1 163.0 126.8 t5 158.3 124.3 158.9 126.8 163.0 126.8 158.7 124.1 s5 158.3 124.3 158.9 126.8 p 158.3 124.3 158.3 123.8 158.7 124.1 t5 158.3 124.3 158.3 123.8 p 159.3 123.7 158.9 121.3 163.0 121.3 t6 159.3 123.7 158.9 121.3 p 159.3 123.7 159.7 124.7 163.0 126.8 163.0 121.3 s6 159.3 123.7 159.7 124.7 p 160.2 126.8 159.7 124.7 163.0 126.8 t6 160.2 126.8 159.7 124.7 p 160.3 123.1 160.0 121.3 163.0 121.3 t7 160.3 123.1 160.0 121.3 p 160.3 123.1 161.2 125.7 163.0 126.8 163.0 121.3 s7 160.3 123.1 161.2 125.7 p 161.5 126.8 161.2 125.7 163.0 126.8 t7 161.5 126.8 161.2 125.7 p 161.2 122.5 161.0 121.3 163.0 121.3 t8 161.2 122.5 161.0 121.3 p 161.2 122.5 162.7 126.6 163.0 126.8 163.0 121.3 s8 161.2 122.5 162.7 126.6 p 162.7 126.8 162.7 126.6 163.0 126.8 t8 162.7 126.8 162.7 126.6 p 163.0 121.3 171.6 121.3 171.6 126.8 163.0 126.8 s8 171.6 121.3 180.2 121.3 180.2 126.8 171.6 126.8 s8 180.2 121.3 188.7 121.3 188.7 126.8 180.2 126.8 s1 188.5 121.5 188.5 121.3 180.2 121.3 184.4 124.1 s2 188.5 121.5 188.5 121.3 p 188.5 121.5 188.2 126.5 184.4 124.1 t2 188.5 121.5 188.2 126.5 p 188.2 126.8 188.2 126.5 184.4 124.1 180.2 126.8 s2 188.2 126.8 188.2 126.5 p 180.2 126.8 184.4 124.1 180.2 121.3 t2 187.3 122.3 187.5 121.3 180.2 121.3 184.4 124.1 s3 187.3 122.3 187.5 121.3 p 187.3 122.3 187.1 125.8 184.4 124.1 t3 187.3 122.3 187.1 125.8 p 186.9 126.8 187.1 125.8 184.4 124.1 180.2 126.8 s3 186.9 126.8 187.1 125.8 p 180.2 126.8 184.4 124.1 180.2 121.3 t3 186.1 123.0 186.4 121.3 180.2 121.3 184.4 124.1 s4 186.1 123.0 186.4 121.3 p 186.1 123.0 186.0 125.1 184.4 124.1 t4 186.1 123.0 186.0 125.1 p 185.6 126.8 186.0 125.1 184.4 124.1 180.2 126.8 s4 185.6 126.8 186.0 125.1 p 180.2 126.8 184.4 124.1 180.2 121.3 t4 184.9 123.8 185.3 121.3 180.2 121.3 184.4 124.1 s5 184.9 123.8 185.3 121.3 p 184.9 123.8 184.8 124.3 184.4 124.1 t5 184.9 123.8 184.8 124.3 p 184.3 126.8 184.8 124.3 184.4 124.1 180.2 126.8 s5 184.3 126.8 184.8 124.3 p 180.2 126.8 184.4 124.1 180.2 121.3 t5 184.3 121.3 183.8 123.7 180.2 121.3 t6 184.3 121.3 183.8 123.7 p 183.5 124.7 183.0 126.8 180.2 126.8 t6 183.5 124.7 183.0 126.8 p 183.5 124.7 183.8 123.7 180.2 121.3 180.2 126.8 s6 183.5 124.7 183.8 123.7 p 183.2 121.3 182.9 123.1 180.2 121.3 t7 183.2 121.3 182.9 123.1 p 182.0 125.7 181.7 126.8 180.2 126.8 t7 182.0 125.7 181.7 126.8 p 182.0 125.7 182.9 123.1 180.2 121.3 180.2 126.8 s7 182.0 125.7 182.9 123.1 p 182.1 121.3 181.9 122.5 180.2 121.3 t8 182.1 121.3 181.9 122.5 p 180.5 126.6 180.4 126.8 180.2 126.8 t8 180.5 126.6 180.4 126.8 p 180.5 126.6 181.9 122.5 180.2 121.3 180.2 126.8 s8 180.5 126.6 181.9 122.5 p 188.7 121.3 197.3 121.3 197.3 126.8 188.7 126.8 s1 197.3 121.3 205.9 121.3 205.9 126.8 197.3 126.8 s1 197.5 121.3 197.5 121.5 201.6 124.1 205.9 121.3 s2 197.5 121.3 197.5 121.5 p 205.9 121.3 201.6 124.1 205.9 126.8 t2 197.8 126.5 197.9 126.8 205.9 126.8 201.6 124.1 s2 197.8 126.5 197.9 126.8 p 197.8 126.5 197.5 121.5 201.6 124.1 t2 197.8 126.5 197.5 121.5 p 198.6 121.3 198.8 122.3 201.6 124.1 205.9 121.3 s3 198.6 121.3 198.8 122.3 p 205.9 121.3 201.6 124.1 205.9 126.8 t3 198.9 125.8 199.2 126.8 205.9 126.8 201.6 124.1 s3 198.9 125.8 199.2 126.8 p 198.9 125.8 198.8 122.3 201.6 124.1 t3 198.9 125.8 198.8 122.3 p 199.7 121.3 200.0 123.0 201.6 124.1 205.9 121.3 s4 199.7 121.3 200.0 123.0 p 205.9 121.3 201.6 124.1 205.9 126.8 t4 200.1 125.1 200.5 126.8 205.9 126.8 201.6 124.1 s4 200.1 125.1 200.5 126.8 p 200.1 125.1 200.0 123.0 201.6 124.1 t4 200.1 125.1 200.0 123.0 p 200.7 121.3 201.2 123.8 201.6 124.1 205.9 121.3 s5 200.7 121.3 201.2 123.8 p 205.9 121.3 201.6 124.1 205.9 126.8 t5 201.2 124.3 201.8 126.8 205.9 126.8 201.6 124.1 s5 201.2 124.3 201.8 126.8 p 201.2 124.3 201.2 123.8 201.6 124.1 t5 201.2 124.3 201.2 123.8 p 202.2 123.7 201.8 121.3 205.9 121.3 t6 202.2 123.7 201.8 121.3 p 202.2 123.7 202.6 124.7 205.9 126.8 205.9 121.3 s6 202.2 123.7 202.6 124.7 p 203.1 126.8 202.6 124.7 205.9 126.8 t6 203.1 126.8 202.6 124.7 p 203.2 123.1 202.9 121.3 205.9 121.3 t7 203.2 123.1 202.9 121.3 p 203.2 123.1 204.1 125.7 205.9 126.8 205.9 121.3 s7 203.2 123.1 204.1 125.7 p 204.3 126.8 204.1 125.7 205.9 126.8 t7 204.3 126.8 204.1 125.7 p 204.1 122.5 203.9 121.3 205.9 121.3 t8 204.1 122.5 203.9 121.3 p 204.1 122.5 205.6 126.6 205.9 126.8 205.9 121.3 s8 204.1 122.5 205.6 126.6 p 205.6 126.8 205.6 126.6 205.9 126.8 t8 205.6 126.8 205.6 126.6 p 205.9 121.3 214.5 121.3 214.5 126.8 205.9 126.8 s8 214.5 121.3 223.1 121.3 223.1 126.8 214.5 126.8 s8 223.1 121.3 231.6 121.3 231.6 126.8 223.1 126.8 s1 231.4 121.5 231.4 121.3 223.1 121.3 227.3 124.1 s2 231.4 121.5 231.4 121.3 p 231.4 121.5 231.1 126.5 227.3 124.1 t2 231.4 121.5 231.1 126.5 p 231.1 126.8 231.1 126.5 227.3 124.1 223.1 126.8 s2 231.1 126.8 231.1 126.5 p 223.1 126.8 227.3 124.1 223.1 121.3 t2 230.2 122.3 230.4 121.3 223.1 121.3 227.3 124.1 s3 230.2 122.3 230.4 121.3 p 230.2 122.3 230.0 125.8 227.3 124.1 t3 230.2 122.3 230.0 125.8 p 229.8 126.8 230.0 125.8 227.3 124.1 223.1 126.8 s3 229.8 126.8 230.0 125.8 p 223.1 126.8 227.3 124.1 223.1 121.3 t3 229.0 123.0 229.3 121.3 223.1 121.3 227.3 124.1 s4 229.0 123.0 229.3 121.3 p 229.0 123.0 228.9 125.1 227.3 124.1 t4 229.0 123.0 228.9 125.1 p 228.5 126.8 228.9 125.1 227.3 124.1 223.1 126.8 s4 228.5 126.8 228.9 125.1 p 223.1 126.8 227.3 124.1 223.1 121.3 t4 227.8 123.8 228.2 121.3 223.1 121.3 227.3 124.1 s5 227.8 123.8 228.2 121.3 p 227.8 123.8 227.7 124.3 227.3 124.1 t5 227.8 123.8 227.7 124.3 p 227.2 126.8 227.7 124.3 227.3 124.1 223.1 126.8 s5 227.2 126.8 227.7 124.3 p 223.1 126.8 227.3 124.1 223.1 121.3 t5 227.2 121.3 226.7 123.7 223.1 121.3 t6 227.2 121.3 226.7 123.7 p 226.4 124.7 225.9 126.8 223.1 126.8 t6 226.4 124.7 225.9 126.8 p 226.4 124.7 226.7 123.7 223.1 121.3 223.1 126.8 s6 226.4 124.7 226.7 123.7 p 226.1 121.3 225.8 123.1 223.1 121.3 t7 226.1 121.3 225.8 123.1 p 224.9 125.7 224.6 126.8 223.1 126.8 t7 224.9 125.7 224.6 126.8 p 224.9 125.7 225.8 123.1 223.1 121.3 223.1 126.8 s7 224.9 125.7 225.8 123.1 p 225.0 121.3 224.8 122.5 223.1 121.3 t8 225.0 121.3 224.8 122.5 p 223.3 126.6 223.3 126.8 223.1 126.8 t8 223.3 126.6 223.3 126.8 p 223.3 126.6 224.8 122.5 223.1 121.3 223.1 126.8 s8 223.3 126.6 224.8 122.5 p 231.6 121.3 240.2 121.3 240.2 126.8 231.6 126.8 s1 240.2 121.3 248.8 121.3 248.8 126.8 240.2 126.8 s1 240.4 121.3 240.4 121.5 244.5 124.1 248.8 121.3 s2 240.4 121.3 240.4 121.5 p 248.8 121.3 244.5 124.1 248.8 126.8 t2 240.7 126.5 240.8 126.8 248.8 126.8 244.5 124.1 s2 240.7 126.5 240.8 126.8 p 240.7 126.5 240.4 121.5 244.5 124.1 t2 240.7 126.5 240.4 121.5 p 241.5 121.3 241.6 122.3 244.5 124.1 248.8 121.3 s3 241.5 121.3 241.6 122.3 p 248.8 121.3 244.5 124.1 248.8 126.8 t3 241.8 125.8 242.1 126.8 248.8 126.8 244.5 124.1 s3 241.8 125.8 242.1 126.8 p 241.8 125.8 241.6 122.3 244.5 124.1 t3 241.8 125.8 241.6 122.3 p 242.5 121.3 242.9 123.0 244.5 124.1 248.8 121.3 s4 242.5 121.3 242.9 123.0 p 248.8 121.3 244.5 124.1 248.8 126.8 t4 243.0 125.1 243.4 126.8 248.8 126.8 244.5 124.1 s4 243.0 125.1 243.4 126.8 p 243.0 125.1 242.9 123.0 244.5 124.1 t4 243.0 125.1 242.9 123.0 p 243.6 121.3 244.1 123.8 244.5 124.1 248.8 121.3 s5 243.6 121.3 244.1 123.8 p 248.8 121.3 244.5 124.1 248.8 126.8 t5 244.1 124.3 244.7 126.8 248.8 126.8 244.5 124.1 s5 244.1 124.3 244.7 126.8 p 244.1 124.3 244.1 123.8 244.5 124.1 t5 244.1 124.3 244.1 123.8 p 245.1 123.7 244.7 121.3 248.8 121.3 t6 245.1 123.7 244.7 121.3 p 245.1 123.7 245.5 124.7 248.8 126.8 248.8 121.3 s6 245.1 123.7 245.5 124.7 p 246.0 126.8 245.5 124.7 248.8 126.8 t6 246.0 126.8 245.5 124.7 p 246.1 123.1 245.8 121.3 248.8 121.3 t7 246.1 123.1 245.8 121.3 p 246.1 123.1 247.0 125.7 248.8 126.8 248.8 121.3 s7 246.1 123.1 247.0 125.7 p 247.2 126.8 247.0 125.7 248.8 126.8 t7 247.2 126.8 247.0 125.7 p 247.0 122.5 246.8 121.3 248.8 121.3 t8 247.0 122.5 246.8 121.3 p 247.0 122.5 248.5 126.6 248.8 126.8 248.8 121.3 s8 247.0 122.5 248.5 126.6 p 248.5 126.8 248.5 126.6 248.8 126.8 t8 248.5 126.8 248.5 126.6 p 248.8 121.3 257.4 121.3 257.4 126.8 248.8 126.8 s8 257.4 121.3 265.9 121.3 265.9 126.8 257.4 126.8 s8 265.9 121.3 274.5 121.3 274.5 126.8 265.9 126.8 s1 274.3 121.5 274.3 121.3 265.9 121.3 270.2 124.1 s2 274.3 121.5 274.3 121.3 p 274.3 121.5 274.0 126.5 270.2 124.1 t2 274.3 121.5 274.0 126.5 p 274.0 126.8 274.0 126.5 270.2 124.1 265.9 126.8 s2 274.0 126.8 274.0 126.5 p 265.9 126.8 270.2 124.1 265.9 121.3 t2 273.1 122.3 273.3 121.3 265.9 121.3 270.2 124.1 s3 273.1 122.3 273.3 121.3 p 273.1 122.3 272.9 125.8 270.2 124.1 t3 273.1 122.3 272.9 125.8 p 272.7 126.8 272.9 125.8 270.2 124.1 265.9 126.8 s3 272.7 126.8 272.9 125.8 p 265.9 126.8 270.2 124.1 265.9 121.3 t3 271.9 123.0 272.2 121.3 265.9 121.3 270.2 124.1 s4 271.9 123.0 272.2 121.3 p 271.9 123.0 271.8 125.1 270.2 124.1 t4 271.9 123.0 271.8 125.1 p 271.4 126.8 271.8 125.1 270.2 124.1 265.9 126.8 s4 271.4 126.8 271.8 125.1 p 265.9 126.8 270.2 124.1 265.9 121.3 t4 270.7 123.8 271.1 121.3 265.9 121.3 270.2 124.1 s5 270.7 123.8 271.1 121.3 p 270.7 123.8 270.6 124.3 270.2 124.1 t5 270.7 123.8 270.6 124.3 p 270.1 126.8 270.6 124.3 270.2 124.1 265.9 126.8 s5 270.1 126.8 270.6 124.3 p 265.9 126.8 270.2 124.1 265.9 121.3 t5 270.0 121.3 269.6 123.7 265.9 121.3 t6 270.0 121.3 269.6 123.7 p 269.3 124.7 268.8 126.8 265.9 126.8 t6 269.3 124.7 268.8 126.8 p 269.3 124.7 269.6 123.7 265.9 121.3 265.9 126.8 s6 269.3 124.7 269.6 123.7 p 269.0 121.3 268.7 123.1 265.9 121.3 t7 269.0 121.3 268.7 123.1 p 267.7 125.7 267.5 126.8 265.9 126.8 t7 267.7 125.7 267.5 126.8 p 267.7 125.7 268.7 123.1 265.9 121.3 265.9 126.8 s7 267.7 125.7 268.7 123.1 p 267.9 121.3 267.7 122.5 265.9 121.3 t8 267.9 121.3 267.7 122.5 p 266.2 126.6 266.2 126.8 265.9 126.8 t8 266.2 126.6 266.2 126.8 p 266.2 126.6 267.7 122.5 265.9 121.3 265.9 126.8 s8 266.2 126.6 267.7 122.5 p 274.5 121.3 283.1 121.3 283.1 126.8 274.5 126.8 s1 283.1 121.3 291.7 121.3 291.7 126.8 283.1 126.8 s1 283.3 121.3 283.3 121.5 287.4 124.1 291.7 121.3 s2 283.3 121.3 283.3 121.5 p 291.7 121.3 287.4 124.1 291.7 126.8 t2 283.6 126.5 283.7 126.8 291.7 126.8 287.4 124.1 s2 283.6 126.5 283.7 126.8 p 283.6 126.5 283.3 121.5 287.4 124.1 t2 283.6 126.5 283.3 121.5 p 284.4 121.3 284.5 122.3 287.4 124.1 291.7 121.3 s3 284.4 121.3 284.5 122.3 p 291.7 121.3 287.4 124.1 291.7 126.8 t3 284.7 125.8 285.0 126.8 291.7 126.8 287.4 124.1 s3 284.7 125.8 285.0 126.8 p 284.7 125.8 284.5 122.3 287.4 124.1 t3 284.7 125.8 284.5 122.3 p 285.4 121.3 285.8 123.0 287.4 124.1 291.7 121.3 s4 285.4 121.3 285.8 123.0 p 291.7 121.3 287.4 124.1 291.7 126.8 t4 285.9 125.1 286.3 126.8 291.7 126.8 287.4 124.1 s4 285.9 125.1 286.3 126.8 p 285.9 125.1 285.8 123.0 287.4 124.1 t4 285.9 125.1 285.8 123.0 p 286.5 121.3 287.0 123.8 287.4 124.1 291.7 121.3 s5 286.5 121.3 287.0 123.8 p 291.7 121.3 287.4 124.1 291.7 126.8 t5 287.0 124.3 287.6 126.8 291.7 126.8 287.4 124.1 s5 287.0 124.3 287.6 126.8 p 287.0 124.3 287.0 123.8 287.4 124.1 t5 287.0 124.3 287.0 123.8 p 288.0 123.7 287.6 121.3 291.7 121.3 t6 288.0 123.7 287.6 121.3 p 288.0 123.7 288.4 124.7 291.7 126.8 291.7 121.3 s6 288.0 123.7 288.4 124.7 p 288.8 126.8 288.4 124.7 291.7 126.8 t6 288.8 126.8 288.4 124.7 p 289.0 123.1 288.6 121.3 291.7 121.3 t7 289.0 123.1 288.6 121.3 p 289.0 123.1 289.9 125.7 291.7 126.8 291.7 121.3 s7 289.0 123.1 289.9 125.7 p 290.1 126.8 289.9 125.7 291.7 126.8 t7 290.1 126.8 289.9 125.7 p 289.9 122.5 289.7 121.3 291.7 121.3 t8 289.9 122.5 289.7 121.3 p 289.9 122.5 291.4 126.6 291.7 126.8 291.7 121.3 s8 289.9 122.5 291.4 126.6 p 291.4 126.8 291.4 126.6 291.7 126.8 t8 291.4 126.8 291.4 126.6 p 291.7 121.3 300.3 121.3 300.3 126.8 291.7 126.8 s8 0.0 115.8 8.6 115.8 8.6 121.3 0.0 121.3 s5 8.3 116.0 7.9 115.8 0.0 115.8 4.3 118.6 s6 8.3 116.0 7.9 115.8 p 8.6 116.4 8.3 116.0 4.3 118.6 8.6 121.3 s6 8.6 116.4 8.3 116.0 p 8.6 121.3 4.3 118.6 0.0 121.3 t6 0.0 121.3 4.3 118.6 0.0 115.8 t6 7.7 116.4 6.6 115.8 0.0 115.8 4.3 118.6 s7 7.7 116.4 6.6 115.8 p 8.6 117.7 7.7 116.4 4.3 118.6 8.6 121.3 s7 8.6 117.7 7.7 116.4 p 8.6 121.3 4.3 118.6 0.0 121.3 t7 0.0 121.3 4.3 118.6 0.0 115.8 t7 7.1 116.7 5.3 115.8 0.0 115.8 4.3 118.6 s8 7.1 116.7 5.3 115.8 p 8.6 119.0 7.1 116.7 4.3 118.6 8.6 121.3 s8 8.6 119.0 7.1 116.7 p 8.6 121.3 4.3 118.6 0.0 121.3 t8 0.0 121.3 4.3 118.6 0.0 115.8 t8 8.6 115.8 17.2 115.8 17.2 121.3 8.6 121.3 s1 16.7 116.1 16.4 115.8 8.6 115.8 12.9 118.6 s2 16.7 116.1 16.4 115.8 p 16.7 116.1 16.9 121.1 12.9 118.6 t2 16.7 116.1 16.9 121.1 p 17.0 121.3 16.9 121.1 12.9 118.6 8.6 121.3 s2 17.0 121.3 16.9 121.1 p 8.6 121.3 12.9 118.6 8.6 115.8 t2 15.3 117.0 14.2 115.8 8.6 115.8 12.9 118.6 s3 15.3 117.0 14.2 115.8 p 15.3 117.0 15.4 120.2 12.9 118.6 t3 15.3 117.0 15.4 120.2 p 15.9 121.3 15.4 120.2 12.9 118.6 8.6 121.3 s3 15.9 121.3 15.4 120.2 p 8.6 121.3 12.9 118.6 8.6 115.8 t3 13.9 117.9 11.9 115.8 8.6 115.8 12.9 118.6 s4 13.9 117.9 11.9 115.8 p 13.9 117.9 13.9 119.2 12.9 118.6 t4 13.9 117.9 13.9 119.2 p 14.8 121.3 13.9 119.2 12.9 118.6 8.6 121.3 s4 14.8 121.3 13.9 119.2 p 8.6 121.3 12.9 118.6 8.6 115.8 t4 9.7 115.8 11.3 117.6 8.6 115.8 t5 9.7 115.8 11.3 117.6 p 12.6 118.7 13.8 121.3 8.6 121.3 t5 12.6 118.7 13.8 121.3 p 12.6 118.7 11.3 117.6 8.6 115.8 8.6 121.3 s5 12.6 118.7 11.3 117.6 p 11.8 119.3 12.7 121.3 8.6 121.3 t6 11.8 119.3 12.7 121.3 p 8.6 116.4 11.8 119.3 8.6 121.3 t6 8.6 116.4 11.8 119.3 p 11.0 119.8 11.6 121.3 8.6 121.3 t7 11.0 119.8 11.6 121.3 p 8.6 117.7 11.0 119.8 8.6 121.3 t7 8.6 117.7 11.0 119.8 p 10.1 120.3 10.5 121.3 8.6 121.3 t8 10.1 120.3 10.5 121.3 p 8.6 119.0 10.1 120.3 8.6 121.3 t8 8.6 119.0 10.1 120.3 p 17.2 115.8 25.7 115.8 25.7 121.3 17.2 121.3 s1 25.7 115.8 34.3 115.8 34.3 121.3 25.7 121.3 s1 26.5 115.8 26.2 116.1 30.0 118.6 34.3 115.8 s2 26.5 115.8 26.2 116.1 p 34.3 115.8 30.0 118.6 34.3 121.3 t2 26.0 121.1 25.9 121.3 34.3 121.3 30.0 118.6 s2 26.0 121.1 25.9 121.3 p 26.0 121.1 26.2 116.1 30.0 118.6 t2 26.0 121.1 26.2 116.1 p 28.7 115.8 27.6 117.0 30.0 118.6 34.3 115.8 s3 28.7 115.8 27.6 117.0 p 34.3 115.8 30.0 118.6 34.3 121.3 t3 27.5 120.2 27.0 121.3 34.3 121.3 30.0 118.6 s3 27.5 120.2 27.0 121.3 p 27.5 120.2 27.6 117.0 30.0 118.6 t3 27.5 120.2 27.6 117.0 p 31.0 115.8 29.0 117.9 30.0 118.6 34.3 115.8 s4 31.0 115.8 29.0 117.9 p 34.3 115.8 30.0 118.6 34.3 121.3 t4 29.0 119.2 28.1 121.3 34.3 121.3 30.0 118.6 s4 29.0 119.2 28.1 121.3 p 29.0 119.2 29.0 117.9 30.0 118.6 t4 29.0 119.2 29.0 117.9 p 31.6 117.6 33.2 115.8 34.3 115.8 t5 31.6 117.6 33.2 115.8 p 31.6 117.6 30.3 118.7 34.3 121.3 34.3 115.8 s5 31.6 117.6 30.3 118.7 p 29.1 121.3 30.3 118.7 34.3 121.3 t5 29.1 121.3 30.3 118.7 p 31.1 119.3 34.3 116.4 34.3 121.3 t6 31.1 119.3 34.3 116.4 p 30.2 121.3 31.1 119.3 34.3 121.3 t6 30.2 121.3 31.1 119.3 p 31.9 119.8 34.3 117.7 34.3 121.3 t7 31.9 119.8 34.3 117.7 p 31.3 121.3 31.9 119.8 34.3 121.3 t7 31.3 121.3 31.9 119.8 p 32.8 120.3 34.3 119.0 34.3 121.3 t8 32.8 120.3 34.3 119.0 p 32.3 121.3 32.8 120.3 34.3 121.3 t8 32.3 121.3 32.8 120.3 p 34.3 115.8 42.9 115.8 42.9 121.3 34.3 121.3 s5 35.0 115.8 34.6 116.0 38.6 118.6 42.9 115.8 s6 35.0 115.8 34.6 116.0 p 42.9 115.8 38.6 118.6 42.9 121.3 t6 42.9 121.3 38.6 118.6 34.3 121.3 t6 34.6 116.0 34.3 116.4 34.3 121.3 38.6 118.6 s6 34.6 116.0 34.3 116.4 p 36.3 115.8 35.2 116.4 38.6 118.6 42.9 115.8 s7 36.3 115.8 35.2 116.4 p 42.9 115.8 38.6 118.6 42.9 121.3 t7 42.9 121.3 38.6 118.6 34.3 121.3 t7 35.2 116.4 34.3 117.7 34.3 121.3 38.6 118.6 s7 35.2 116.4 34.3 117.7 p 37.6 115.8 35.8 116.7 38.6 118.6 42.9 115.8 s8 37.6 115.8 35.8 116.7 p 42.9 115.8 38.6 118.6 42.9 121.3 t8 42.9 121.3 38.6 118.6 34.3 121.3 t8 35.8 116.7 34.3 119.0 34.3 121.3 38.6 118.6 s8 35.8 116.7 34.3 119.0 p 42.9 115.8 51.5 115.8 51.5 121.3 42.9 121.3 s5 51.2 116.0 50.8 115.8 42.9 115.8 47.2 118.6 s6 51.2 116.0 50.8 115.8 p 51.5 116.4 51.2 116.0 47.2 118.6 51.5 121.3 s6 51.5 116.4 51.2 116.0 p 51.5 121.3 47.2 118.6 42.9 121.3 t6 42.9 121.3 47.2 118.6 42.9 115.8 t6 50.6 116.4 49.5 115.8 42.9 115.8 47.2 118.6 s7 50.6 116.4 49.5 115.8 p 51.5 117.7 50.6 116.4 47.2 118.6 51.5 121.3 s7 51.5 117.7 50.6 116.4 p 51.5 121.3 47.2 118.6 42.9 121.3 t7 42.9 121.3 47.2 118.6 42.9 115.8 t7 50.0 116.7 48.2 115.8 42.9 115.8 47.2 118.6 s8 50.0 116.7 48.2 115.8 p 51.5 119.0 50.0 116.7 47.2 118.6 51.5 121.3 s8 51.5 119.0 50.0 116.7 p 51.5 121.3 47.2 118.6 42.9 121.3 t8 42.9 121.3 47.2 118.6 42.9 115.8 t8 51.5 115.8 60.1 115.8 60.1 121.3 51.5 121.3 s1 59.6 116.1 59.3 115.8 51.5 115.8 55.8 118.6 s2 59.6 116.1 59.3 115.8 p 59.6 116.1 59.8 121.1 55.8 118.6 t2 59.6 116.1 59.8 121.1 p 59.9 121.3 59.8 121.1 55.8 118.6 51.5 121.3 s2 59.9 121.3 59.8 121.1 p 51.5 121.3 55.8 118.6 51.5 115.8 t2 58.2 117.0 57.1 115.8 51.5 115.8 55.8 118.6 s3 58.2 117.0 57.1 115.8 p 58.2 117.0 58.3 120.2 55.8 118.6 t3 58.2 117.0 58.3 120.2 p 58.8 121.3 58.3 120.2 55.8 118.6 51.5 121.3 s3 58.8 121.3 58.3 120.2 p 51.5 121.3 55.8 118.6 51.5 115.8 t3 56.8 117.9 54.8 115.8 51.5 115.8 55.8 118.6 s4 56.8 117.9 54.8 115.8 p 56.8 117.9 56.8 119.2 55.8 118.6 t4 56.8 117.9 56.8 119.2 p 57.7 121.3 56.8 119.2 55.8 118.6 51.5 121.3 s4 57.7 121.3 56.8 119.2 p 51.5 121.3 55.8 118.6 51.5 115.8 t4 52.6 115.8 54.2 117.6 51.5 115.8 t5 52.6 115.8 54.2 117.6 p 55.5 118.7 56.6 121.3 51.5 121.3 t5 55.5 118.7 56.6 121.3 p 55.5 118.7 54.2 117.6 51.5 115.8 51.5 121.3 s5 55.5 118.7 54.2 117.6 p 54.7 119.3 55.6 121.3 51.5 121.3 t6 54.7 119.3 55.6 121.3 p 51.5 116.4 54.7 119.3 51.5 121.3 t6 51.5 116.4 54.7 119.3 p 53.8 119.8 54.5 121.3 51.5 121.3 t7 53.8 119.8 54.5 121.3 p 51.5 117.7 53.8 119.8 51.5 121.3 t7 51.5 117.7 53.8 119.8 p 53.0 120.3 53.4 121.3 51.5 121.3 t8 53.0 120.3 53.4 121.3 p 51.5 119.0 53.0 120.3 51.5 121.3 t8 51.5 119.0 53.0 120.3 p 60.1 115.8 68.6 115.8 68.6 121.3 60.1 121.3 s1 68.6 115.8 77.2 115.8 77.2 121.3 68.6 121.3 s1 69.4 115.8 69.1 116.1 72.9 118.6 77.2 115.8 s2 69.4 115.8 69.1 116.1 p 77.2 115.8 72.9 118.6 77.2 121.3 t2 68.9 121.1 68.8 121.3 77.2 121.3 72.9 118.6 s2 68.9 121.1 68.8 121.3 p 68.9 121.1 69.1 116.1 72.9 118.6 t2 68.9 121.1 69.1 116.1 p 71.6 115.8 70.5 117.0 72.9 118.6 77.2 115.8 s3 71.6 115.8 70.5 117.0 p 77.2 115.8 72.9 118.6 77.2 121.3 t3 70.4 120.2 69.9 121.3 77.2 121.3 72.9 118.6 s3 70.4 120.2 69.9 121.3 p 70.4 120.2 70.5 117.0 72.9 118.6 t3 70.4 120.2 70.5 117.0 p 73.8 115.8 71.9 117.9 72.9 118.6 77.2 115.8 s4 73.8 115.8 71.9 117.9 p 77.2 115.8 72.9 118.6 77.2 121.3 t4 71.9 119.2 71.0 121.3 77.2 121.3 72.9 118.6 s4 71.9 119.2 71.0 121.3 p 71.9 119.2 71.9 117.9 72.9 118.6 t4 71.9 119.2 71.9 117.9 p 74.5 117.6 76.1 115.8 77.2 115.8 t5 74.5 117.6 76.1 115.8 p 74.5 117.6 73.2 118.7 77.2 121.3 77.2 115.8 s5 74.5 117.6 73.2 118.7 p 72.0 121.3 73.2 118.7 77.2 121.3 t5 72.0 121.3 73.2 118.7 p 74.0 119.3 77.2 116.4 77.2 121.3 t6 74.0 119.3 77.2 116.4 p 73.1 121.3 74.0 119.3 77.2 121.3 t6 73.1 121.3 74.0 119.3 p 74.8 119.8 77.2 117.7 77.2 121.3 t7 74.8 119.8 77.2 117.7 p 74.2 121.3 74.8 119.8 77.2 121.3 t7 74.2 121.3 74.8 119.8 p 75.7 120.3 77.2 119.0 77.2 121.3 t8 75.7 120.3 77.2 119.0 p 75.2 121.3 75.7 120.3 77.2 121.3 t8 75.2 121.3 75.7 120.3 p 77.2 115.8 85.8 115.8 85.8 121.3 77.2 121.3 s5 77.8 115.8 77.5 116.0 81.5 118.6 85.8 115.8 s6 77.8 115.8 77.5 116.0 p 85.8 115.8 81.5 118.6 85.8 121.3 t6 85.8 121.3 81.5 118.6 77.2 121.3 t6 77.5 116.0 77.2 116.4 77.2 121.3 81.5 118.6 s6 77.5 116.0 77.2 116.4 p 79.2 115.8 78.1 116.4 81.5 118.6 85.8 115.8 s7 79.2 115.8 78.1 116.4 p 85.8 115.8 81.5 118.6 85.8 121.3 t7 85.8 121.3 81.5 118.6 77.2 121.3 t7 78.1 116.4 77.2 117.7 77.2 121.3 81.5 118.6 s7 78.1 116.4 77.2 117.7 p 80.5 115.8 78.6 116.7 81.5 118.6 85.8 115.8 s8 80.5 115.8 78.6 116.7 p 85.8 115.8 81.5 118.6 85.8 121.3 t8 85.8 121.3 81.5 118.6 77.2 121.3 t8 78.6 116.7 77.2 119.0 77.2 121.3 81.5 118.6 s8 78.6 116.7 77.2 119.0 p 85.8 115.8 94.4 115.8 94.4 121.3 85.8 121.3 s5 94.1 116.0 93.7 115.8 85.8 115.8 90.1 118.6 s6 94.1 116.0 93.7 115.8 p 94.4 116.4 94.1 116.0 90.1 118.6 94.4 121.3 s6 94.4 116.4 94.1 116.0 p 94.4 121.3 90.1 118.6 85.8 121.3 t6 85.8 121.3 90.1 118.6 85.8 115.8 t6 93.5 116.4 92.4 115.8 85.8 115.8 90.1 118.6 s7 93.5 116.4 92.4 115.8 p 94.4 117.7 93.5 116.4 90.1 118.6 94.4 121.3 s7 94.4 117.7 93.5 116.4 p 94.4 121.3 90.1 118.6 85.8 121.3 t7 85.8 121.3 90.1 118.6 85.8 115.8 t7 92.9 116.7 91.1 115.8 85.8 115.8 90.1 118.6 s8 92.9 116.7 91.1 115.8 p 94.4 119.0 92.9 116.7 90.1 118.6 94.4 121.3 s8 94.4 119.0 92.9 116.7 p 94.4 121.3 90.1 118.6 85.8 121.3 t8 85.8 121.3 90.1 118.6 85.8 115.8 t8 94.4 115.8 102.9 115.8 102.9 121.3 94.4 121.3 s1 102.5 116.1 102.2 115.8 94.4 115.8 98.7 118.6 s2 102.5 116.1 102.2 115.8 p 102.5 116.1 102.7 121.1 98.7 118.6 t2 102.5 116.1 102.7 121.1 p 102.7 121.3 102.7 121.1 98.7 118.6 94.4 121.3 s2 102.7 121.3 102.7 121.1 p 94.4 121.3 98.7 118.6 94.4 115.8 t2 101.1 117.0 100.0 115.8 94.4 115.8 98.7 118.6 s3 101.1 117.0 100.0 115.8 p 101.1 117.0 101.2 120.2 98.7 118.6 t3 101.1 117.0 101.2 120.2 p 101.7 121.3 101.2 120.2 98.7 118.6 94.4 121.3 s3 101.7 121.3 101.2 120.2 p 94.4 121.3 98.7 118.6 94.4 115.8 t3 99.6 117.9 97.7 115.8 94.4 115.8 98.7 118.6 s4 99.6 117.9 97.7 115.8 p 99.6 117.9 99.7 119.2 98.7 118.6 t4 99.6 117.9 99.7 119.2 p 100.6 121.3 99.7 119.2 98.7 118.6 94.4 121.3 s4 100.6 121.3 99.7 119.2 p 94.4 121.3 98.7 118.6 94.4 115.8 t4 95.5 115.8 97.1 117.6 94.4 115.8 t5 95.5 115.8 97.1 117.6 p 98.4 118.7 99.5 121.3 94.4 121.3 t5 98.4 118.7 99.5 121.3 p 98.4 118.7 97.1 117.6 94.4 115.8 94.4 121.3 s5 98.4 118.7 97.1 117.6 p 97.6 119.3 98.5 121.3 94.4 121.3 t6 97.6 119.3 98.5 121.3 p 94.4 116.4 97.6 119.3 94.4 121.3 t6 94.4 116.4 97.6 119.3 p 96.7 119.8 97.4 121.3 94.4 121.3 t7 96.7 119.8 97.4 121.3 p 94.4 117.7 96.7 119.8 94.4 121.3 t7 94.4 117.7 96.7 119.8 p 95.9 120.3 96.3 121.3 94.4 121.3 t8 95.9 120.3 96.3 121.3 p 94.4 119.0 95.9 120.3 94.4 121.3 t8 94.4 119.0 95.9 120.3 p 102.9 115.8 111.5 115.8 111.5 121.3 102.9 121.3 s1 111.5 115.8 120.1 115.8 120.1 121.3 111.5 121.3 s1 112.3 115.8 112.0 116.1 115.8 118.6 120.1 115.8 s2 112.3 115.8 112.0 116.1 p 120.1 115.8 115.8 118.6 120.1 121.3 t2 111.8 121.1 111.7 121.3 120.1 121.3 115.8 118.6 s2 111.8 121.1 111.7 121.3 p 111.8 121.1 112.0 116.1 115.8 118.6 t2 111.8 121.1 112.0 116.1 p 114.5 115.8 113.4 117.0 115.8 118.6 120.1 115.8 s3 114.5 115.8 113.4 117.0 p 120.1 115.8 115.8 118.6 120.1 121.3 t3 113.3 120.2 112.8 121.3 120.1 121.3 115.8 118.6 s3 113.3 120.2 112.8 121.3 p 113.3 120.2 113.4 117.0 115.8 118.6 t3 113.3 120.2 113.4 117.0 p 116.7 115.8 114.8 117.9 115.8 118.6 120.1 115.8 s4 116.7 115.8 114.8 117.9 p 120.1 115.8 115.8 118.6 120.1 121.3 t4 114.8 119.2 113.9 121.3 120.1 121.3 115.8 118.6 s4 114.8 119.2 113.9 121.3 p 114.8 119.2 114.8 117.9 115.8 118.6 t4 114.8 119.2 114.8 117.9 p 117.4 117.6 119.0 115.8 120.1 115.8 t5 117.4 117.6 119.0 115.8 p 117.4 117.6 116.1 118.7 120.1 121.3 120.1 115.8 s5 117.4 117.6 116.1 118.7 p 114.9 121.3 116.1 118.7 120.1 121.3 t5 114.9 121.3 116.1 118.7 p 116.9 119.3 120.1 116.4 120.1 121.3 t6 116.9 119.3 120.1 116.4 p 116.0 121.3 116.9 119.3 120.1 121.3 t6 116.0 121.3 116.9 119.3 p 117.7 119.8 120.1 117.7 120.1 121.3 t7 117.7 119.8 120.1 117.7 p 117.1 121.3 117.7 119.8 120.1 121.3 t7 117.1 121.3 117.7 119.8 p 118.6 120.3 120.1 119.0 120.1 121.3 t8 118.6 120.3 120.1 119.0 p 118.1 121.3 118.6 120.3 120.1 121.3 t8 118.1 121.3 118.6 120.3 p 120.1 115.8 128.7 115.8 128.7 121.3 120.1 121.3 s5 120.7 115.8 120.4 116.0 124.4 118.6 128.7 115.8 s6 120.7 115.8 120.4 116.0 p 128.7 115.8 124.4 118.6 128.7 121.3 t6 128.7 121.3 124.4 118.6 120.1 121.3 t6 120.4 116.0 120.1 116.4 120.1 121.3 124.4 118.6 s6 120.4 116.0 120.1 116.4 p 122.1 115.8 121.0 116.4 124.4 118.6 128.7 115.8 s7 122.1 115.8 121.0 116.4 p 128.7 115.8 124.4 118.6 128.7 121.3 t7 128.7 121.3 124.4 118.6 120.1 121.3 t7 121.0 116.4 120.1 117.7 120.1 121.3 124.4 118.6 s7 121.0 116.4 120.1 117.7 p 123.4 115.8 121.5 116.7 124.4 118.6 128.7 115.8 s8 123.4 115.8 121.5 116.7 p 128.7 115.8 124.4 118.6 128.7 121.3 t8 128.7 121.3 124.4 118.6 120.1 121.3 t8 121.5 116.7 120.1 119.0 120.1 121.3 124.4 118.6 s8 121.5 116.7 120.1 119.0 p 128.7 115.8 137.3 115.8 137.3 121.3 128.7 121.3 s5 137.0 116.0 136.6 115.8 128.7 115.8 133.0 118.6 s6 137.0 116.0 136.6 115.8 p 137.3 116.4 137.0 116.0 133.0 118.6 137.3 121.3 s6 137.3 116.4 137.0 116.0 p 137.3 121.3 133.0 118.6 128.7 121.3 t6 128.7 121.3 133.0 118.6 128.7 115.8 t6 136.4 116.4 135.3 115.8 128.7 115.8 133.0 118.6 s7 136.4 116.4 135.3 115.8 p 137.3 117.7 136.4 116.4 133.0 118.6 137.3 121.3 s7 137.3 117.7 136.4 116.4 p 137.3 121.3 133.0 118.6 128.7 121.3 t7 128.7 121.3 133.0 118.6 128.7 115.8 t7 135.8 116.7 134.0 115.8 128.7 115.8 133.0 118.6 s8 135.8 116.7 134.0 115.8 p 137.3 119.0 135.8 116.7 133.0 118.6 137.3 121.3 s8 137.3 119.0 135.8 116.7 p 137.3 121.3 133.0 118.6 128.7 121.3 t8 128.7 121.3 133.0 118.6 128.7 115.8 t8 137.3 115.8 145.8 115.8 145.8 121.3 137.3 121.3 s1 145.4 116.1 145.1 115.8 137.3 115.8 141.6 118.6 s2 145.4 116.1 145.1 115.8 p 145.4 116.1 145.6 121.1 141.6 118.6 t2 145.4 116.1 145.6 121.1 p 145.6 121.3 145.6 121.1 141.6 118.6 137.3 121.3 s2 145.6 121.3 145.6 121.1 p 137.3 121.3 141.6 118.6 137.3 115.8 t2 143.9 117.0 142.8 115.8 137.3 115.8 141.6 118.6 s3 143.9 117.0 142.8 115.8 p 143.9 117.0 144.1 120.2 141.6 118.6 t3 143.9 117.0 144.1 120.2 p 144.6 121.3 144.1 120.2 141.6 118.6 137.3 121.3 s3 144.6 121.3 144.1 120.2 p 137.3 121.3 141.6 118.6 137.3 115.8 t3 142.5 117.9 140.6 115.8 137.3 115.8 141.6 118.6 s4 142.5 117.9 140.6 115.8 p 142.5 117.9 142.6 119.2 141.6 118.6 t4 142.5 117.9 142.6 119.2 p 143.5 121.3 142.6 119.2 141.6 118.6 137.3 121.3 s4 143.5 121.3 142.6 119.2 p 137.3 121.3 141.6 118.6 137.3 115.8 t4 138.4 115.8 140.0 117.6 137.3 115.8 t5 138.4 115.8 140.0 117.6 p 141.3 118.7 142.4 121.3 137.3 121.3 t5 141.3 118.7 142.4 121.3 p 141.3 118.7 140.0 117.6 137.3 115.8 137.3 121.3 s5 141.3 118.7 140.0 117.6 p 140.5 119.3 141.4 121.3 137.3 121.3 t6 140.5 119.3 141.4 121.3 p 137.3 116.4 140.5 119.3 137.3 121.3 t6 137.3 116.4 140.5 119.3 p 139.6 119.8 140.3 121.3 137.3 121.3 t7 139.6 119.8 140.3 121.3 p 137.3 117.7 139.6 119.8 137.3 121.3 t7 137.3 117.7 139.6 119.8 p 138.8 120.3 139.2 121.3 137.3 121.3 t8 138.8 120.3 139.2 121.3 p 137.3 119.0 138.8 120.3 137.3 121.3 t8 137.3 119.0 138.8 120.3 p 145.8 115.8 154.4 115.8 154.4 121.3 145.8 121.3 s1 154.4 115.8 163.0 115.8 163.0 121.3 154.4 121.3 s1 155.2 115.8 154.9 116.1 158.7 118.6 163.0 115.8 s2 155.2 115.8 154.9 116.1 p 163.0 115.8 158.7 118.6 163.0 121.3 t2 154.7 121.1 154.6 121.3 163.0 121.3 158.7 118.6 s2 154.7 121.1 154.6 121.3 p 154.7 121.1 154.9 116.1 158.7 118.6 t2 154.7 121.1 154.9 116.1 p 157.4 115.8 156.3 117.0 158.7 118.6 163.0 115.8 s3 157.4 115.8 156.3 117.0 p 163.0 115.8 158.7 118.6 163.0 121.3 t3 156.2 120.2 155.7 121.3 163.0 121.3 158.7 118.6 s3 156.2 120.2 155.7 121.3 p 156.2 120.2 156.3 117.0 158.7 118.6 t3 156.2 120.2 156.3 117.0 p 159.6 115.8 157.7 117.9 158.7 118.6 163.0 115.8 s4 159.6 115.8 157.7 117.9 p 163.0 115.8 158.7 118.6 163.0 121.3 t4 157.7 119.2 156.8 121.3 163.0 121.3 158.7 118.6 s4 157.7 119.2 156.8 121.3 p 157.7 119.2 157.7 117.9 158.7 118.6 t4 157.7 119.2 157.7 117.9 p 160.3 117.6 161.9 115.8 163.0 115.8 t5 160.3 117.6 161.9 115.8 p 160.3 117.6 159.0 118.7 163.0 121.3 163.0 115.8 s5 160.3 117.6 159.0 118.7 p 157.8 121.3 159.0 118.7 163.0 121.3 t5 157.8 121.3 159.0 118.7 p 159.8 119.3 163.0 116.4 163.0 121.3 t6 159.8 119.3 163.0 116.4 p 158.9 121.3 159.8 119.3 163.0 121.3 t6 158.9 121.3 159.8 119.3 p 160.6 119.8 163.0 117.7 163.0 121.3 t7 160.6 119.8 163.0 117.7 p 160.0 121.3 160.6 119.8 163.0 121.3 t7 160.0 121.3 160.6 119.8 p 161.5 120.3 163.0 119.0 163.0 121.3 t8 161.5 120.3 163.0 119.0 p 161.0 121.3 161.5 120.3 163.0 121.3 t8 161.0 121.3 161.5 120.3 p 163.0 115.8 171.6 115.8 171.6 121.3 163.0 121.3 s5 163.6 115.8 163.3 116.0 167.3 118.6 171.6 115.8 s6 163.6 115.8 163.3 116.0 p 171.6 115.8 167.3 118.6 171.6 121.3 t6 171.6 121.3 167.3 118.6 163.0 121.3 t6 163.3 116.0 163.0 116.4 163.0 121.3 167.3 118.6 s6 163.3 116.0 163.0 116.4 p 164.9 115.8 163.9 116.4 167.3 118.6 171.6 115.8 s7 164.9 115.8 163.9 116.4 p 171.6 115.8 167.3 118.6 171.6 121.3 t7 171.6 121.3 167.3 118.6 163.0 121.3 t7 163.9 116.4 163.0 117.7 163.0 121.3 167.3 118.6 s7 163.9 116.4 163.0 117.7 p 166.3 115.8 164.4 116.7 167.3 118.6 171.6 115.8 s8 166.3 115.8 164.4 116.7 p 171.6 115.8 167.3 118.6 171.6 121.3 t8 171.6 121.3 167.3 118.6 163.0 121.3 t8 164.4 116.7 163.0 119.0 163.0 121.3 167.3 118.6 s8 164.4 116.7 163.0 119.0 p 171.6 115.8 180.2 115.8 180.2 121.3 171.6 121.3 s5 179.9 116.0 179.5 115.8 171.6 115.8 175.9 118.6 s6 179.9 116.0 179.5 115.8 p 180.2 116.4 179.9 116.0 175.9 118.6 180.2 121.3 s6 180.2 116.4 179.9 116.0 p 180.2 121.3 175.9 118.6 171.6 121.3 t6 171.6 121.3 175.9 118.6 171.6 115.8 t6 179.3 116.4 178.2 115.8 171.6 115.8 175.9 118.6 s7 179.3 116.4 178.2 115.8 p 180.2 117.7 179.3 116.4 175.9 118.6 180.2 121.3 s7 180.2 117.7 179.3 116.4 p 180.2 121.3 175.9 118.6 171.6 121.3 t7 171.6 121.3 175.9 118.6 171.6 115.8 t7 178.7 116.7 176.9 115.8 171.6 115.8 175.9 118.6 s8 178.7 116.7 176.9 115.8 p 180.2 119.0 178.7 116.7 175.9 118.6 180.2 121.3 s8 180.2 119.0 178.7 116.7 p 180.2 121.3 175.9 118.6 171.6 121.3 t8 171.6 121.3 175.9 118.6 171.6 115.8 t8 180.2 115.8 188.7 115.8 188.7 121.3 180.2 121.3 s1 188.2 116.1 188.0 115.8 180.2 115.8 184.4 118.6 s2 188.2 116.1 188.0 115.8 p 188.2 116.1 188.5 121.1 184.4 118.6 t2 188.2 116.1 188.5 121.1 p 188.5 121.3 188.5 121.1 184.4 118.6 180.2 121.3 s2 188.5 121.3 188.5 121.1 p 180.2 121.3 184.4 118.6 180.2 115.8 t2 186.8 117.0 185.7 115.8 180.2 115.8 184.4 118.6 s3 186.8 117.0 185.7 115.8 p 186.8 117.0 187.0 120.2 184.4 118.6 t3 186.8 117.0 187.0 120.2 p 187.5 121.3 187.0 120.2 184.4 118.6 180.2 121.3 s3 187.5 121.3 187.0 120.2 p 180.2 121.3 184.4 118.6 180.2 115.8 t3 185.4 117.9 183.5 115.8 180.2 115.8 184.4 118.6 s4 185.4 117.9 183.5 115.8 p 185.4 117.9 185.5 119.2 184.4 118.6 t4 185.4 117.9 185.5 119.2 p 186.4 121.3 185.5 119.2 184.4 118.6 180.2 121.3 s4 186.4 121.3 185.5 119.2 p 180.2 121.3 184.4 118.6 180.2 115.8 t4 181.3 115.8 182.9 117.6 180.2 115.8 t5 181.3 115.8 182.9 117.6 p 184.2 118.7 185.3 121.3 180.2 121.3 t5 184.2 118.7 185.3 121.3 p 184.2 118.7 182.9 117.6 180.2 115.8 180.2 121.3 s5 184.2 118.7 182.9 117.6 p 183.4 119.3 184.3 121.3 180.2 121.3 t6 183.4 119.3 184.3 121.3 p 180.2 116.4 183.4 119.3 180.2 121.3 t6 180.2 116.4 183.4 119.3 p 182.5 119.8 183.2 121.3 180.2 121.3 t7 182.5 119.8 183.2 121.3 p 180.2 117.7 182.5 119.8 180.2 121.3 t7 180.2 117.7 182.5 119.8 p 181.7 120.3 182.1 121.3 180.2 121.3 t8 181.7 120.3 182.1 121.3 p 180.2 119.0 181.7 120.3 180.2 121.3 t8 180.2 119.0 181.7 120.3 p 188.7 115.8 197.3 115.8 197.3 121.3 188.7 121.3 s1 197.3 115.8 205.9 115.8 205.9 121.3 197.3 121.3 s1 198.1 115.8 197.8 116.1 201.6 118.6 205.9 115.8 s2 198.1 115.8 197.8 116.1 p 205.9 115.8 201.6 118.6 205.9 121.3 t2 197.6 121.1 197.5 121.3 205.9 121.3 201.6 118.6 s2 197.6 121.1 197.5 121.3 p 197.6 121.1 197.8 116.1 201.6 118.6 t2 197.6 121.1 197.8 116.1 p 200.3 115.8 199.2 117.0 201.6 118.6 205.9 115.8 s3 200.3 115.8 199.2 117.0 p 205.9 115.8 201.6 118.6 205.9 121.3 t3 199.1 120.2 198.6 121.3 205.9 121.3 201.6 118.6 s3 199.1 120.2 198.6 121.3 p 199.1 120.2 199.2 117.0 201.6 118.6 t3 199.1 120.2 199.2 117.0 p 202.5 115.8 200.6 117.9 201.6 118.6 205.9 115.8 s4 202.5 115.8 200.6 117.9 p 205.9 115.8 201.6 118.6 205.9 121.3 t4 200.6 119.2 199.7 121.3 205.9 121.3 201.6 118.6 s4 200.6 119.2 199.7 121.3 p 200.6 119.2 200.6 117.9 201.6 118.6 t4 200.6 119.2 200.6 117.9 p 203.2 117.6 204.7 115.8 205.9 115.8 t5 203.2 117.6 204.7 115.8 p 203.2 117.6 201.9 118.7 205.9 121.3 205.9 115.8 s5 203.2 117.6 201.9 118.7 p 200.7 121.3 201.9 118.7 205.9 121.3 t5 200.7 121.3 201.9 118.7 p 202.7 119.3 205.9 116.4 205.9 121.3 t6 202.7 119.3 205.9 116.4 p 201.8 121.3 202.7 119.3 205.9 121.3 t6 201.8 121.3 202.7 119.3 p 203.5 119.8 205.9 117.7 205.9 121.3 t7 203.5 119.8 205.9 117.7 p 202.9 121.3 203.5 119.8 205.9 121.3 t7 202.9 121.3 203.5 119.8 p 204.4 120.3 205.9 119.0 205.9 121.3 t8 204.4 120.3 205.9 119.0 p 203.9 121.3 204.4 120.3 205.9 121.3 t8 203.9 121.3 204.4 120.3 p 205.9 115.8 214.5 115.8 214.5 121.3 205.9 121.3 s5 206.5 115.8 206.2 116.0 210.2 118.6 214.5 115.8 s6 206.5 115.8 206.2 116.0 p 214.5 115.8 210.2 118.6 214.5 121.3 t6 214.5 121.3 210.2 118.6 205.9 121.3 t6 206.2 116.0 205.9 116.4 205.9 121.3 210.2 118.6 s6 206.2 116.0 205.9 116.4 p 207.8 115.8 206.8 116.4 210.2 118.6 214.5 115.8 s7 207.8 115.8 206.8 116.4 p 214.5 115.8 210.2 118.6 214.5 121.3 t7 214.5 121.3 210.2 118.6 205.9 121.3 t7 206.8 116.4 205.9 117.7 205.9 121.3 210.2 118.6 s7 206.8 116.4 205.9 117.7 p 209.2 115.8 207.3 116.7 210.2 118.6 214.5 115.8 s8 209.2 115.8 207.3 116.7 p 214.5 115.8 210.2 118.6 214.5 121.3 t8 214.5 121.3 210.2 118.6 205.9 121.3 t8 207.3 116.7 205.9 119.0 205.9 121.3 210.2 118.6 s8 207.3 116.7 205.9 119.0 p 214.5 115.8 223.1 115.8 223.1 121.3 214.5 121.3 s5 222.8 116.0 222.4 115.8 214.5 115.8 218.8 118.6 s6 222.8 116.0 222.4 115.8 p 223.1 116.4 222.8 116.0 218.8 118.6 223.1 121.3 s6 223.1 116.4 222.8 116.0 p 223.1 121.3 218.8 118.6 214.5 121.3 t6 214.5 121.3 218.8 118.6 214.5 115.8 t6 222.2 116.4 221.1 115.8 214.5 115.8 218.8 118.6 s7 222.2 116.4 221.1 115.8 p 223.1 117.7 222.2 116.4 218.8 118.6 223.1 121.3 s7 223.1 117.7 222.2 116.4 p 223.1 121.3 218.8 118.6 214.5 121.3 t7 214.5 121.3 218.8 118.6 214.5 115.8 t7 221.6 116.7 219.8 115.8 214.5 115.8 218.8 118.6 s8 221.6 116.7 219.8 115.8 p 223.1 119.0 221.6 116.7 218.8 118.6 223.1 121.3 s8 223.1 119.0 221.6 116.7 p 223.1 121.3 218.8 118.6 214.5 121.3 t8 214.5 121.3 218.8 118.6 214.5 115.8 t8 223.1 115.8 231.6 115.8 231.6 121.3 223.1 121.3 s1 231.1 116.1 230.9 115.8 223.1 115.8 227.3 118.6 s2 231.1 116.1 230.9 115.8 p 231.1 116.1 231.4 121.1 227.3 118.6 t2 231.1 116.1 231.4 121.1 p 231.4 121.3 231.4 121.1 227.3 118.6 223.1 121.3 s2 231.4 121.3 231.4 121.1 p 223.1 121.3 227.3 118.6 223.1 115.8 t2 229.7 117.0 228.6 115.8 223.1 115.8 227.3 118.6 s3 229.7 117.0 228.6 115.8 p 229.7 117.0 229.9 120.2 227.3 118.6 t3 229.7 117.0 229.9 120.2 p 230.4 121.3 229.9 120.2 227.3 118.6 223.1 121.3 s3 230.4 121.3 229.9 120.2 p 223.1 121.3 227.3 118.6 223.1 115.8 t3 228.3 117.9 226.4 115.8 223.1 115.8 227.3 118.6 s4 228.3 117.9 226.4 115.8 p 228.3 117.9 228.4 119.2 227.3 118.6 t4 228.3 117.9 228.4 119.2 p 229.3 121.3 228.4 119.2 227.3 118.6 223.1 121.3 s4 229.3 121.3 228.4 119.2 p 223.1 121.3 227.3 118.6 223.1 115.8 t4 224.2 115.8 225.8 117.6 223.1 115.8 t5 224.2 115.8 225.8 117.6 p 227.1 118.7 228.2 121.3 223.1 121.3 t5 227.1 118.7 228.2 121.3 p 227.1 118.7 225.8 117.6 223.1 115.8 223.1 121.3 s5 227.1 118.7 225.8 117.6 p 226.3 119.3 227.2 121.3 223.1 121.3 t6 226.3 119.3 227.2 121.3 p 223.1 116.4 226.3 119.3 223.1 121.3 t6 223.1 116.4 226.3 119.3 p 225.4 119.8 226.1 121.3 223.1 121.3 t7 225.4 119.8 226.1 121.3 p 223.1 117.7 225.4 119.8 223.1 121.3 t7 223.1 117.7 225.4 119.8 p 224.6 120.3 225.0 121.3 223.1 121.3 t8 224.6 120.3 225.0 121.3 p 223.1 119.0 224.6 120.3 223.1 121.3 t8 223.1 119.0 224.6 120.3 p 231.6 115.8 240.2 115.8 240.2 121.3 231.6 121.3 s1 240.2 115.8 248.8 115.8 248.8 121.3 240.2 121.3 s1 241.0 115.8 240.7 116.1 244.5 118.6 248.8 115.8 s2 241.0 115.8 240.7 116.1 p 248.8 115.8 244.5 118.6 248.8 121.3 t2 240.5 121.1 240.4 121.3 248.8 121.3 244.5 118.6 s2 240.5 121.1 240.4 121.3 p 240.5 121.1 240.7 116.1 244.5 118.6 t2 240.5 121.1 240.7 116.1 p 243.2 115.8 242.1 117.0 244.5 118.6 248.8 115.8 s3 243.2 115.8 242.1 117.0 p 248.8 115.8 244.5 118.6 248.8 121.3 t3 242.0 120.2 241.5 121.3 248.8 121.3 244.5 118.6 s3 242.0 120.2 241.5 121.3 p 242.0 120.2 242.1 117.0 244.5 118.6 t3 242.0 120.2 242.1 117.0 p 245.4 115.8 243.5 117.9 244.5 118.6 248.8 115.8 s4 245.4 115.8 243.5 117.9 p 248.8 115.8 244.5 118.6 248.8 121.3 t4 243.5 119.2 242.5 121.3 248.8 121.3 244.5 118.6 s4 243.5 119.2 242.5 121.3 p 243.5 119.2 243.5 117.9 244.5 118.6 t4 243.5 119.2 243.5 117.9 p 246.1 117.6 247.6 115.8 248.8 115.8 t5 246.1 117.6 247.6 115.8 p 246.1 117.6 244.7 118.7 248.8 121.3 248.8 115.8 s5 246.1 117.6 244.7 118.7 p 243.6 121.3 244.7 118.7 248.8 121.3 t5 243.6 121.3 244.7 118.7 p 245.6 119.3 248.8 116.4 248.8 121.3 t6 245.6 119.3 248.8 116.4 p 244.7 121.3 245.6 119.3 248.8 121.3 t6 244.7 121.3 245.6 119.3 p 246.4 119.8 248.8 117.7 248.8 121.3 t7 246.4 119.8 248.8 117.7 p 245.8 121.3 246.4 119.8 248.8 121.3 t7 245.8 121.3 246.4 119.8 p 247.3 120.3 248.8 119.0 248.8 121.3 t8 247.3 120.3 248.8 119.0 p 246.8 121.3 247.3 120.3 248.8 121.3 t8 246.8 121.3 247.3 120.3 p 248.8 115.8 257.4 115.8 257.4 121.3 248.8 121.3 s5 249.4 115.8 249.1 116.0 253.1 118.6 257.4 115.8 s6 249.4 115.8 249.1 116.0 p 257.4 115.8 253.1 118.6 257.4 121.3 t6 257.4 121.3 253.1 118.6 248.8 121.3 t6 249.1 116.0 248.8 116.4 248.8 121.3 253.1 118.6 s6 249.1 116.0 248.8 116.4 p 250.7 115.8 249.6 116.4 253.1 118.6 257.4 115.8 s7 250.7 115.8 249.6 116.4 p 257.4 115.8 253.1 118.6 257.4 121.3 t7 257.4 121.3 253.1 118.6 248.8 121.3 t7 249.6 116.4 248.8 117.7 248.8 121.3 253.1 118.6 s7 249.6 116.4 248.8 117.7 p 252.0 115.8 250.2 116.7 253.1 118.6 257.4 115.8 s8 252.0 115.8 250.2 116.7 p 257.4 115.8 253.1 118.6 257.4 121.3 t8 257.4 121.3 253.1 118.6 248.8 121.3 t8 250.2 116.7 248.8 119.0 248.8 121.3 253.1 118.6 s8 250.2 116.7 248.8 119.0 p 257.4 115.8 265.9 115.8 265.9 121.3 257.4 121.3 s5 265.7 116.0 265.3 115.8 257.4 115.8 261.7 118.6 s6 265.7 116.0 265.3 115.8 p 265.9 116.4 265.7 116.0 261.7 118.6 265.9 121.3 s6 265.9 116.4 265.7 116.0 p 265.9 121.3 261.7 118.6 257.4 121.3 t6 257.4 121.3 261.7 118.6 257.4 115.8 t6 265.1 116.4 264.0 115.8 257.4 115.8 261.7 118.6 s7 265.1 116.4 264.0 115.8 p 265.9 117.7 265.1 116.4 261.7 118.6 265.9 121.3 s7 265.9 117.7 265.1 116.4 p 265.9 121.3 261.7 118.6 257.4 121.3 t7 257.4 121.3 261.7 118.6 257.4 115.8 t7 264.5 116.7 262.7 115.8 257.4 115.8 261.7 118.6 s8 264.5 116.7 262.7 115.8 p 265.9 119.0 264.5 116.7 261.7 118.6 265.9 121.3 s8 265.9 119.0 264.5 116.7 p 265.9 121.3 261.7 118.6 257.4 121.3 t8 257.4 121.3 261.7 118.6 257.4 115.8 t8 265.9 115.8 274.5 115.8 274.5 121.3 265.9 121.3 s1 274.0 116.1 273.7 115.8 265.9 115.8 270.2 118.6 s2 274.0 116.1 273.7 115.8 p 274.0 116.1 274.2 121.1 270.2 118.6 t2 274.0 116.1 274.2 121.1 p 274.3 121.3 274.2 121.1 270.2 118.6 265.9 121.3 s2 274.3 121.3 274.2 121.1 p 265.9 121.3 270.2 118.6 265.9 115.8 t2 272.6 117.0 271.5 115.8 265.9 115.8 270.2 118.6 s3 272.6 117.0 271.5 115.8 p 272.6 117.0 272.8 120.2 270.2 118.6 t3 272.6 117.0 272.8 120.2 p 273.3 121.3 272.8 120.2 270.2 118.6 265.9 121.3 s3 273.3 121.3 272.8 120.2 p 265.9 121.3 270.2 118.6 265.9 115.8 t3 271.2 117.9 269.3 115.8 265.9 115.8 270.2 118.6 s4 271.2 117.9 269.3 115.8 p 271.2 117.9 271.3 119.2 270.2 118.6 t4 271.2 117.9 271.3 119.2 p 272.2 121.3 271.3 119.2 270.2 118.6 265.9 121.3 s4 272.2 121.3 271.3 119.2 p 265.9 121.3 270.2 118.6 265.9 115.8 t4 267.1 115.8 268.7 117.6 265.9 115.8 t5 267.1 115.8 268.7 117.6 p 270.0 118.7 271.1 121.3 265.9 121.3 t5 270.0 118.7 271.1 121.3 p 270.0 118.7 268.7 117.6 265.9 115.8 265.9 121.3 s5 270.0 118.7 268.7 117.6 p 269.2 119.3 270.0 121.3 265.9 121.3 t6 269.2 119.3 270.0 121.3 p 265.9 116.4 269.2 119.3 265.9 121.3 t6 265.9 116.4 269.2 119.3 p 268.3 119.8 269.0 121.3 265.9 121.3 t7 268.3 119.8 269.0 121.3 p 265.9 117.7 268.3 119.8 265.9 121.3 t7 265.9 117.7 268.3 119.8 p 267.5 120.3 267.9 121.3 265.9 121.3 t8 267.5 120.3 267.9 121.3 p 265.9 119.0 267.5 120.3 265.9 121.3 t8 265.9 119.0 267.5 120.3 p 274.5 115.8 283.1 115.8 283.1 121.3 274.5 121.3 s1 283.1 115.8 291.7 115.8 291.7 121.3 283.1 121.3 s1 283.9 115.8 283.6 116.1 287.4 118.6 291.7 115.8 s2 283.9 115.8 283.6 116.1 p 291.7 115.8 287.4 118.6 291.7 121.3 t2 283.4 121.1 283.3 121.3 291.7 121.3 287.4 118.6 s2 283.4 121.1 283.3 121.3 p 283.4 121.1 283.6 116.1 287.4 118.6 t2 283.4 121.1 283.6 116.1 p 286.1 115.8 285.0 117.0 287.4 118.6 291.7 115.8 s3 286.1 115.8 285.0 117.0 p 291.7 115.8 287.4 118.6 291.7 121.3 t3 284.9 120.2 284.4 121.3 291.7 121.3 287.4 118.6 s3 284.9 120.2 284.4 121.3 p 284.9 120.2 285.0 117.0 287.4 118.6 t3 284.9 120.2 285.0 117.0 p 288.3 115.8 286.4 117.9 287.4 118.6 291.7 115.8 s4 288.3 115.8 286.4 117.9 p 291.7 115.8 287.4 118.6 291.7 121.3 t4 286.3 119.2 285.4 121.3 291.7 121.3 287.4 118.6 s4 286.3 119.2 285.4 121.3 p 286.3 119.2 286.4 117.9 287.4 118.6 t4 286.3 119.2 286.4 117.9 p 289.0 117.6 290.5 115.8 291.7 115.8 t5 289.0 117.6 290.5 115.8 p 289.0 117.6 287.6 118.7 291.7 121.3 291.7 115.8 s5 289.0 117.6 287.6 118.7 p 286.5 121.3 287.6 118.7 291.7 121.3 t5 286.5 121.3 287.6 118.7 p 288.5 119.3 291.7 116.4 291.7 121.3 t6 288.5 119.3 291.7 116.4 p 287.6 121.3 288.5 119.3 291.7 121.3 t6 287.6 121.3 288.5 119.3 p 289.3 119.8 291.7 117.7 291.7 121.3 t7 289.3 119.8 291.7 117.7 p 288.6 121.3 289.3 119.8 291.7 121.3 t7 288.6 121.3 289.3 119.8 p 290.1 120.3 291.7 119.0 291.7 121.3 t8 290.1 120.3 291.7 119.0 p 289.7 121.3 290.1 120.3 291.7 121.3 t8 289.7 121.3 290.1 120.3 p 291.7 115.8 300.3 115.8 300.3 121.3 291.7 121.3 s5 292.3 115.8 292.0 116.0 296.0 118.6 300.3 115.8 s6 292.3 115.8 292.0 116.0 p 300.3 115.8 296.0 118.6 300.3 121.3 t6 300.3 121.3 296.0 118.6 291.7 121.3 t6 292.0 116.0 291.7 116.4 291.7 121.3 296.0 118.6 s6 292.0 116.0 291.7 116.4 p 293.6 115.8 292.5 116.4 296.0 118.6 300.3 115.8 s7 293.6 115.8 292.5 116.4 p 300.3 115.8 296.0 118.6 300.3 121.3 t7 300.3 121.3 296.0 118.6 291.7 121.3 t7 292.5 116.4 291.7 117.7 291.7 121.3 296.0 118.6 s7 292.5 116.4 291.7 117.7 p 294.9 115.8 293.1 116.7 296.0 118.6 300.3 115.8 s8 294.9 115.8 293.1 116.7 p 300.3 115.8 296.0 118.6 300.3 121.3 t8 300.3 121.3 296.0 118.6 291.7 121.3 t8 293.1 116.7 291.7 119.0 291.7 121.3 296.0 118.6 s8 293.1 116.7 291.7 119.0 p 0.0 110.3 8.6 110.3 8.6 115.8 0.0 115.8 s2 8.1 110.6 6.3 110.3 0.0 110.3 4.3 113.1 s3 8.1 110.6 6.3 110.3 p 8.6 111.0 8.1 110.6 4.3 113.1 8.6 115.8 s3 8.6 111.0 8.1 110.6 p 8.6 115.8 4.3 113.1 0.0 115.8 t3 0.0 115.8 4.3 113.1 0.0 110.3 t3 6.9 111.4 0.2 110.3 0.0 110.3 4.3 113.1 s4 6.9 111.4 0.2 110.3 p 8.6 112.9 6.9 111.4 4.3 113.1 8.6 115.8 s4 8.6 112.9 6.9 111.4 p 8.6 115.8 4.3 113.1 0.0 115.8 t4 0.0 115.8 4.3 113.1 0.0 110.3 t4 2.0 111.6 5.6 112.2 4.3 113.1 t5 2.0 111.6 5.6 112.2 p 8.6 114.8 5.6 112.2 4.3 113.1 8.6 115.8 s5 8.6 114.8 5.6 112.2 p 8.6 115.8 4.3 113.1 0.0 115.8 t5 2.0 111.6 0.0 111.0 0.0 115.8 4.3 113.1 s5 2.0 111.6 0.0 111.0 p 4.2 113.0 4.4 113.0 4.3 113.1 t6 4.2 113.0 4.4 113.0 p 4.4 113.0 4.8 113.4 4.3 113.1 t6 4.4 113.0 4.8 113.4 p 7.9 115.8 4.8 113.4 4.3 113.1 0.0 115.8 s6 7.9 115.8 4.8 113.4 p 4.2 113.0 0.0 111.6 0.0 115.8 4.3 113.1 s6 4.2 113.0 0.0 111.6 p 3.6 113.5 6.6 115.8 0.0 115.8 t7 3.6 113.5 6.6 115.8 p 0.0 112.3 3.6 113.5 0.0 115.8 t7 0.0 112.3 3.6 113.5 p 2.9 113.9 5.3 115.8 0.0 115.8 t8 2.9 113.9 5.3 115.8 p 0.0 113.0 2.9 113.9 0.0 115.8 t8 0.0 113.0 2.9 113.9 p 8.6 110.3 17.2 110.3 17.2 115.8 8.6 115.8 s1 15.1 111.6 12.7 110.3 8.6 110.3 12.9 113.1 s2 15.1 111.6 12.7 110.3 p 15.1 111.6 15.8 115.0 12.9 113.1 t2 15.1 111.6 15.8 115.0 p 16.4 115.8 15.8 115.0 12.9 113.1 8.6 115.8 s2 16.4 115.8 15.8 115.0 p 8.6 115.8 12.9 113.1 8.6 110.3 t2 12.5 113.3 14.2 115.8 8.6 115.8 t3 12.5 113.3 14.2 115.8 p 8.6 111.0 12.5 113.3 8.6 115.8 t3 8.6 111.0 12.5 113.3 p 11.0 114.3 11.9 115.8 8.6 115.8 t4 11.0 114.3 11.9 115.8 p 8.6 112.9 11.0 114.3 8.6 115.8 t4 8.6 112.9 11.0 114.3 p 9.4 115.3 9.7 115.8 8.6 115.8 t5 9.4 115.3 9.7 115.8 p 8.6 114.8 9.4 115.3 8.6 115.8 t5 8.6 114.8 9.4 115.3 p 17.2 110.3 25.7 110.3 25.7 115.8 17.2 115.8 s1 25.7 110.3 34.3 110.3 34.3 115.8 25.7 115.8 s1 30.2 110.3 27.8 111.6 30.0 113.1 34.3 110.3 s2 30.2 110.3 27.8 111.6 p 34.3 110.3 30.0 113.1 34.3 115.8 t2 27.1 115.0 26.5 115.8 34.3 115.8 30.0 113.1 s2 27.1 115.0 26.5 115.8 p 27.1 115.0 27.8 111.6 30.0 113.1 t2 27.1 115.0 27.8 111.6 p 30.4 113.3 34.3 111.0 34.3 115.8 t3 30.4 113.3 34.3 111.0 p 28.7 115.8 30.4 113.3 34.3 115.8 t3 28.7 115.8 30.4 113.3 p 31.9 114.3 34.3 112.9 34.3 115.8 t4 31.9 114.3 34.3 112.9 p 31.0 115.8 31.9 114.3 34.3 115.8 t4 31.0 115.8 31.9 114.3 p 33.5 115.3 34.3 114.8 34.3 115.8 t5 33.5 115.3 34.3 114.8 p 33.2 115.8 33.5 115.3 34.3 115.8 t5 33.2 115.8 33.5 115.3 p 34.3 110.3 42.9 110.3 42.9 115.8 34.3 115.8 s2 36.6 110.3 34.8 110.6 38.6 113.1 42.9 110.3 s3 36.6 110.3 34.8 110.6 p 42.9 110.3 38.6 113.1 42.9 115.8 t3 42.9 115.8 38.6 113.1 34.3 115.8 t3 34.8 110.6 34.3 111.0 34.3 115.8 38.6 113.1 s3 34.8 110.6 34.3 111.0 p 42.7 110.3 36.0 111.4 38.6 113.1 42.9 110.3 s4 42.7 110.3 36.0 111.4 p 42.9 110.3 38.6 113.1 42.9 115.8 t4 42.9 115.8 38.6 113.1 34.3 115.8 t4 36.0 111.4 34.3 112.9 34.3 115.8 38.6 113.1 s4 36.0 111.4 34.3 112.9 p 37.3 112.2 40.8 111.6 38.6 113.1 t5 37.3 112.2 40.8 111.6 p 42.9 111.0 40.8 111.6 38.6 113.1 42.9 115.8 s5 42.9 111.0 40.8 111.6 p 42.9 115.8 38.6 113.1 34.3 115.8 t5 37.3 112.2 34.3 114.8 34.3 115.8 38.6 113.1 s5 37.3 112.2 34.3 114.8 p 38.5 113.0 38.7 113.0 38.6 113.1 t6 38.5 113.0 38.7 113.0 p 42.9 111.6 38.7 113.0 38.6 113.1 42.9 115.8 s6 42.9 111.6 38.7 113.0 p 38.1 113.4 35.0 115.8 42.9 115.8 38.6 113.1 s6 38.1 113.4 35.0 115.8 p 38.1 113.4 38.5 113.0 38.6 113.1 t6 38.1 113.4 38.5 113.0 p 39.3 113.5 42.9 112.3 42.9 115.8 t7 39.3 113.5 42.9 112.3 p 36.3 115.8 39.3 113.5 42.9 115.8 t7 36.3 115.8 39.3 113.5 p 40.0 113.9 42.9 113.0 42.9 115.8 t8 40.0 113.9 42.9 113.0 p 37.6 115.8 40.0 113.9 42.9 115.8 t8 37.6 115.8 40.0 113.9 p 42.9 110.3 51.5 110.3 51.5 115.8 42.9 115.8 s2 51.0 110.6 49.2 110.3 42.9 110.3 47.2 113.1 s3 51.0 110.6 49.2 110.3 p 51.5 111.0 51.0 110.6 47.2 113.1 51.5 115.8 s3 51.5 111.0 51.0 110.6 p 51.5 115.8 47.2 113.1 42.9 115.8 t3 42.9 115.8 47.2 113.1 42.9 110.3 t3 49.8 111.4 43.1 110.3 42.9 110.3 47.2 113.1 s4 49.8 111.4 43.1 110.3 p 51.5 112.9 49.8 111.4 47.2 113.1 51.5 115.8 s4 51.5 112.9 49.8 111.4 p 51.5 115.8 47.2 113.1 42.9 115.8 t4 42.9 115.8 47.2 113.1 42.9 110.3 t4 44.9 111.6 48.5 112.2 47.2 113.1 t5 44.9 111.6 48.5 112.2 p 51.5 114.8 48.5 112.2 47.2 113.1 51.5 115.8 s5 51.5 114.8 48.5 112.2 p 51.5 115.8 47.2 113.1 42.9 115.8 t5 44.9 111.6 42.9 111.0 42.9 115.8 47.2 113.1 s5 44.9 111.6 42.9 111.0 p 47.1 113.0 47.3 113.0 47.2 113.1 t6 47.1 113.0 47.3 113.0 p 47.3 113.0 47.7 113.4 47.2 113.1 t6 47.3 113.0 47.7 113.4 p 50.8 115.8 47.7 113.4 47.2 113.1 42.9 115.8 s6 50.8 115.8 47.7 113.4 p 47.1 113.0 42.9 111.6 42.9 115.8 47.2 113.1 s6 47.1 113.0 42.9 111.6 p 46.5 113.5 49.5 115.8 42.9 115.8 t7 46.5 113.5 49.5 115.8 p 42.9 112.3 46.5 113.5 42.9 115.8 t7 42.9 112.3 46.5 113.5 p 45.8 113.9 48.2 115.8 42.9 115.8 t8 45.8 113.9 48.2 115.8 p 42.9 113.0 45.8 113.9 42.9 115.8 t8 42.9 113.0 45.8 113.9 p 51.5 110.3 60.1 110.3 60.1 115.8 51.5 115.8 s1 58.0 111.6 55.6 110.3 51.5 110.3 55.8 113.1 s2 58.0 111.6 55.6 110.3 p 58.0 111.6 58.7 115.0 55.8 113.1 t2 58.0 111.6 58.7 115.0 p 59.3 115.8 58.7 115.0 55.8 113.1 51.5 115.8 s2 59.3 115.8 58.7 115.0 p 51.5 115.8 55.8 113.1 51.5 110.3 t2 55.4 113.3 57.1 115.8 51.5 115.8 t3 55.4 113.3 57.1 115.8 p 51.5 111.0 55.4 113.3 51.5 115.8 t3 51.5 111.0 55.4 113.3 p 53.8 114.3 54.8 115.8 51.5 115.8 t4 53.8 114.3 54.8 115.8 p 51.5 112.9 53.8 114.3 51.5 115.8 t4 51.5 112.9 53.8 114.3 p 52.3 115.3 52.6 115.8 51.5 115.8 t5 52.3 115.3 52.6 115.8 p 51.5 114.8 52.3 115.3 51.5 115.8 t5 51.5 114.8 52.3 115.3 p 60.1 110.3 68.6 110.3 68.6 115.8 60.1 115.8 s1 68.6 110.3 77.2 110.3 77.2 115.8 68.6 115.8 s1 73.1 110.3 70.6 111.6 72.9 113.1 77.2 110.3 s2 73.1 110.3 70.6 111.6 p 77.2 110.3 72.9 113.1 77.2 115.8 t2 70.0 115.0 69.4 115.8 77.2 115.8 72.9 113.1 s2 70.0 115.0 69.4 115.8 p 70.0 115.0 70.6 111.6 72.9 113.1 t2 70.0 115.0 70.6 111.6 p 73.3 113.3 77.2 111.0 77.2 115.8 t3 73.3 113.3 77.2 111.0 p 71.6 115.8 73.3 113.3 77.2 115.8 t3 71.6 115.8 73.3 113.3 p 74.8 114.3 77.2 112.9 77.2 115.8 t4 74.8 114.3 77.2 112.9 p 73.8 115.8 74.8 114.3 77.2 115.8 t4 73.8 115.8 74.8 114.3 p 76.4 115.3 77.2 114.8 77.2 115.8 t5 76.4 115.3 77.2 114.8 p 76.1 115.8 76.4 115.3 77.2 115.8 t5 76.1 115.8 76.4 115.3 p 77.2 110.3 85.8 110.3 85.8 115.8 77.2 115.8 s2 79.5 110.3 77.7 110.6 81.5 113.1 85.8 110.3 s3 79.5 110.3 77.7 110.6 p 85.8 110.3 81.5 113.1 85.8 115.8 t3 85.8 115.8 81.5 113.1 77.2 115.8 t3 77.7 110.6 77.2 111.0 77.2 115.8 81.5 113.1 s3 77.7 110.6 77.2 111.0 p 85.6 110.3 78.9 111.4 81.5 113.1 85.8 110.3 s4 85.6 110.3 78.9 111.4 p 85.8 110.3 81.5 113.1 85.8 115.8 t4 85.8 115.8 81.5 113.1 77.2 115.8 t4 78.9 111.4 77.2 112.9 77.2 115.8 81.5 113.1 s4 78.9 111.4 77.2 112.9 p 80.2 112.2 83.7 111.6 81.5 113.1 t5 80.2 112.2 83.7 111.6 p 85.8 111.0 83.7 111.6 81.5 113.1 85.8 115.8 s5 85.8 111.0 83.7 111.6 p 85.8 115.8 81.5 113.1 77.2 115.8 t5 80.2 112.2 77.2 114.8 77.2 115.8 81.5 113.1 s5 80.2 112.2 77.2 114.8 p 81.4 113.0 81.6 113.0 81.5 113.1 t6 81.4 113.0 81.6 113.0 p 85.8 111.6 81.6 113.0 81.5 113.1 85.8 115.8 s6 85.8 111.6 81.6 113.0 p 81.0 113.4 77.8 115.8 85.8 115.8 81.5 113.1 s6 81.0 113.4 77.8 115.8 p 81.0 113.4 81.4 113.0 81.5 113.1 t6 81.0 113.4 81.4 113.0 p 82.2 113.5 85.8 112.3 85.8 115.8 t7 82.2 113.5 85.8 112.3 p 79.2 115.8 82.2 113.5 85.8 115.8 t7 79.2 115.8 82.2 113.5 p 82.9 113.9 85.8 113.0 85.8 115.8 t8 82.9 113.9 85.8 113.0 p 80.5 115.8 82.9 113.9 85.8 115.8 t8 80.5 115.8 82.9 113.9 p 85.8 110.3 94.4 110.3 94.4 115.8 85.8 115.8 s2 93.9 110.6 92.1 110.3 85.8 110.3 90.1 113.1 s3 93.9 110.6 92.1 110.3 p 94.4 111.0 93.9 110.6 90.1 113.1 94.4 115.8 s3 94.4 111.0 93.9 110.6 p 94.4 115.8 90.1 113.1 85.8 115.8 t3 85.8 115.8 90.1 113.1 85.8 110.3 t3 92.7 111.4 86.0 110.3 85.8 110.3 90.1 113.1 s4 92.7 111.4 86.0 110.3 p 94.4 112.9 92.7 111.4 90.1 113.1 94.4 115.8 s4 94.4 112.9 92.7 111.4 p 94.4 115.8 90.1 113.1 85.8 115.8 t4 85.8 115.8 90.1 113.1 85.8 110.3 t4 87.8 111.6 91.4 112.2 90.1 113.1 t5 87.8 111.6 91.4 112.2 p 94.4 114.8 91.4 112.2 90.1 113.1 94.4 115.8 s5 94.4 114.8 91.4 112.2 p 94.4 115.8 90.1 113.1 85.8 115.8 t5 87.8 111.6 85.8 111.0 85.8 115.8 90.1 113.1 s5 87.8 111.6 85.8 111.0 p 90.0 113.0 90.2 113.0 90.1 113.1 t6 90.0 113.0 90.2 113.0 p 90.2 113.0 90.5 113.4 90.1 113.1 t6 90.2 113.0 90.5 113.4 p 93.7 115.8 90.5 113.4 90.1 113.1 85.8 115.8 s6 93.7 115.8 90.5 113.4 p 90.0 113.0 85.8 111.6 85.8 115.8 90.1 113.1 s6 90.0 113.0 85.8 111.6 p 89.4 113.5 92.4 115.8 85.8 115.8 t7 89.4 113.5 92.4 115.8 p 85.8 112.3 89.4 113.5 85.8 115.8 t7 85.8 112.3 89.4 113.5 p 88.7 113.9 91.1 115.8 85.8 115.8 t8 88.7 113.9 91.1 115.8 p 85.8 113.0 88.7 113.9 85.8 115.8 t8 85.8 113.0 88.7 113.9 p 94.4 110.3 102.9 110.3 102.9 115.8 94.4 115.8 s1 100.9 111.6 98.5 110.3 94.4 110.3 98.7 113.1 s2 100.9 111.6 98.5 110.3 p 100.9 111.6 101.6 115.0 98.7 113.1 t2 100.9 111.6 101.6 115.0 p 102.2 115.8 101.6 115.0 98.7 113.1 94.4 115.8 s2 102.2 115.8 101.6 115.0 p 94.4 115.8 98.7 113.1 94.4 110.3 t2 98.3 113.3 100.0 115.8 94.4 115.8 t3 98.3 113.3 100.0 115.8 p 94.4 111.0 98.3 113.3 94.4 115.8 t3 94.4 111.0 98.3 113.3 p 96.7 114.3 97.7 115.8 94.4 115.8 t4 96.7 114.3 97.7 115.8 p 94.4 112.9 96.7 114.3 94.4 115.8 t4 94.4 112.9 96.7 114.3 p 95.2 115.3 95.5 115.8 94.4 115.8 t5 95.2 115.3 95.5 115.8 p 94.4 114.8 95.2 115.3 94.4 115.8 t5 94.4 114.8 95.2 115.3 p 102.9 110.3 111.5 110.3 111.5 115.8 102.9 115.8 s1 111.5 110.3 120.1 110.3 120.1 115.8 111.5 115.8 s1 116.0 110.3 113.5 111.6 115.8 113.1 120.1 110.3 s2 116.0 110.3 113.5 111.6 p 120.1 110.3 115.8 113.1 120.1 115.8 t2 112.9 115.0 112.3 115.8 120.1 115.8 115.8 113.1 s2 112.9 115.0 112.3 115.8 p 112.9 115.0 113.5 111.6 115.8 113.1 t2 112.9 115.0 113.5 111.6 p 116.2 113.3 120.1 111.0 120.1 115.8 t3 116.2 113.3 120.1 111.0 p 114.5 115.8 116.2 113.3 120.1 115.8 t3 114.5 115.8 116.2 113.3 p 117.7 114.3 120.1 112.9 120.1 115.8 t4 117.7 114.3 120.1 112.9 p 116.7 115.8 117.7 114.3 120.1 115.8 t4 116.7 115.8 117.7 114.3 p 119.3 115.3 120.1 114.8 120.1 115.8 t5 119.3 115.3 120.1 114.8 p 119.0 115.8 119.3 115.3 120.1 115.8 t5 119.0 115.8 119.3 115.3 p 120.1 110.3 128.7 110.3 128.7 115.8 120.1 115.8 s2 122.3 110.3 120.6 110.6 124.4 113.1 128.7 110.3 s3 122.3 110.3 120.6 110.6 p 128.7 110.3 124.4 113.1 128.7 115.8 t3 128.7 115.8 124.4 113.1 120.1 115.8 t3 120.6 110.6 120.1 111.0 120.1 115.8 124.4 113.1 s3 120.6 110.6 120.1 111.0 p 128.5 110.3 121.8 111.4 124.4 113.1 128.7 110.3 s4 128.5 110.3 121.8 111.4 p 128.7 110.3 124.4 113.1 128.7 115.8 t4 128.7 115.8 124.4 113.1 120.1 115.8 t4 121.8 111.4 120.1 112.9 120.1 115.8 124.4 113.1 s4 121.8 111.4 120.1 112.9 p 123.1 112.2 126.6 111.6 124.4 113.1 t5 123.1 112.2 126.6 111.6 p 128.7 111.0 126.6 111.6 124.4 113.1 128.7 115.8 s5 128.7 111.0 126.6 111.6 p 128.7 115.8 124.4 113.1 120.1 115.8 t5 123.1 112.2 120.1 114.8 120.1 115.8 124.4 113.1 s5 123.1 112.2 120.1 114.8 p 124.3 113.0 124.5 113.0 124.4 113.1 t6 124.3 113.0 124.5 113.0 p 128.7 111.6 124.5 113.0 124.4 113.1 128.7 115.8 s6 128.7 111.6 124.5 113.0 p 123.9 113.4 120.7 115.8 128.7 115.8 124.4 113.1 s6 123.9 113.4 120.7 115.8 p 123.9 113.4 124.3 113.0 124.4 113.1 t6 123.9 113.4 124.3 113.0 p 125.1 113.5 128.7 112.3 128.7 115.8 t7 125.1 113.5 128.7 112.3 p 122.1 115.8 125.1 113.5 128.7 115.8 t7 122.1 115.8 125.1 113.5 p 125.8 113.9 128.7 113.0 128.7 115.8 t8 125.8 113.9 128.7 113.0 p 123.4 115.8 125.8 113.9 128.7 115.8 t8 123.4 115.8 125.8 113.9 p 128.7 110.3 137.3 110.3 137.3 115.8 128.7 115.8 s2 136.8 110.6 135.0 110.3 128.7 110.3 133.0 113.1 s3 136.8 110.6 135.0 110.3 p 137.3 111.0 136.8 110.6 133.0 113.1 137.3 115.8 s3 137.3 111.0 136.8 110.6 p 137.3 115.8 133.0 113.1 128.7 115.8 t3 128.7 115.8 133.0 113.1 128.7 110.3 t3 135.6 111.4 128.9 110.3 128.7 110.3 133.0 113.1 s4 135.6 111.4 128.9 110.3 p 137.3 112.9 135.6 111.4 133.0 113.1 137.3 115.8 s4 137.3 112.9 135.6 111.4 p 137.3 115.8 133.0 113.1 128.7 115.8 t4 128.7 115.8 133.0 113.1 128.7 110.3 t4 130.7 111.6 134.3 112.2 133.0 113.1 t5 130.7 111.6 134.3 112.2 p 137.3 114.8 134.3 112.2 133.0 113.1 137.3 115.8 s5 137.3 114.8 134.3 112.2 p 137.3 115.8 133.0 113.1 128.7 115.8 t5 130.7 111.6 128.7 111.0 128.7 115.8 133.0 113.1 s5 130.7 111.6 128.7 111.0 p 132.8 113.0 133.0 113.0 133.0 113.1 t6 132.8 113.0 133.0 113.0 p 133.0 113.0 133.4 113.4 133.0 113.1 t6 133.0 113.0 133.4 113.4 p 136.6 115.8 133.4 113.4 133.0 113.1 128.7 115.8 s6 136.6 115.8 133.4 113.4 p 132.8 113.0 128.7 111.6 128.7 115.8 133.0 113.1 s6 132.8 113.0 128.7 111.6 p 132.3 113.5 135.3 115.8 128.7 115.8 t7 132.3 113.5 135.3 115.8 p 128.7 112.3 132.3 113.5 128.7 115.8 t7 128.7 112.3 132.3 113.5 p 131.6 113.9 134.0 115.8 128.7 115.8 t8 131.6 113.9 134.0 115.8 p 128.7 113.0 131.6 113.9 128.7 115.8 t8 128.7 113.0 131.6 113.9 p 137.3 110.3 145.8 110.3 145.8 115.8 137.3 115.8 s1 143.8 111.6 141.4 110.3 137.3 110.3 141.6 113.1 s2 143.8 111.6 141.4 110.3 p 143.8 111.6 144.5 115.0 141.6 113.1 t2 143.8 111.6 144.5 115.0 p 145.1 115.8 144.5 115.0 141.6 113.1 137.3 115.8 s2 145.1 115.8 144.5 115.0 p 137.3 115.8 141.6 113.1 137.3 110.3 t2 141.2 113.3 142.8 115.8 137.3 115.8 t3 141.2 113.3 142.8 115.8 p 137.3 111.0 141.2 113.3 137.3 115.8 t3 137.3 111.0 141.2 113.3 p 139.6 114.3 140.6 115.8 137.3 115.8 t4 139.6 114.3 140.6 115.8 p 137.3 112.9 139.6 114.3 137.3 115.8 t4 137.3 112.9 139.6 114.3 p 138.1 115.3 138.4 115.8 137.3 115.8 t5 138.1 115.3 138.4 115.8 p 137.3 114.8 138.1 115.3 137.3 115.8 t5 137.3 114.8 138.1 115.3 p 145.8 110.3 154.4 110.3 154.4 115.8 145.8 115.8 s1 154.4 110.3 163.0 110.3 163.0 115.8 154.4 115.8 s1 158.9 110.3 156.4 111.6 158.7 113.1 163.0 110.3 s2 158.9 110.3 156.4 111.6 p 163.0 110.3 158.7 113.1 163.0 115.8 t2 155.7 115.0 155.2 115.8 163.0 115.8 158.7 113.1 s2 155.7 115.0 155.2 115.8 p 155.7 115.0 156.4 111.6 158.7 113.1 t2 155.7 115.0 156.4 111.6 p 159.1 113.3 163.0 111.0 163.0 115.8 t3 159.1 113.3 163.0 111.0 p 157.4 115.8 159.1 113.3 163.0 115.8 t3 157.4 115.8 159.1 113.3 p 160.6 114.3 163.0 112.9 163.0 115.8 t4 160.6 114.3 163.0 112.9 p 159.6 115.8 160.6 114.3 163.0 115.8 t4 159.6 115.8 160.6 114.3 p 162.2 115.3 163.0 114.8 163.0 115.8 t5 162.2 115.3 163.0 114.8 p 161.9 115.8 162.2 115.3 163.0 115.8 t5 161.9 115.8 162.2 115.3 p 163.0 110.3 171.6 110.3 171.6 115.8 163.0 115.8 s2 165.2 110.3 163.5 110.6 167.3 113.1 171.6 110.3 s3 165.2 110.3 163.5 110.6 p 171.6 110.3 167.3 113.1 171.6 115.8 t3 171.6 115.8 167.3 113.1 163.0 115.8 t3 163.5 110.6 163.0 111.0 163.0 115.8 167.3 113.1 s3 163.5 110.6 163.0 111.0 p 171.4 110.3 164.7 111.4 167.3 113.1 171.6 110.3 s4 171.4 110.3 164.7 111.4 p 171.6 110.3 167.3 113.1 171.6 115.8 t4 171.6 115.8 167.3 113.1 163.0 115.8 t4 164.7 111.4 163.0 112.9 163.0 115.8 167.3 113.1 s4 164.7 111.4 163.0 112.9 p 166.0 112.2 169.5 111.6 167.3 113.1 t5 166.0 112.2 169.5 111.6 p 171.6 111.0 169.5 111.6 167.3 113.1 171.6 115.8 s5 171.6 111.0 169.5 111.6 p 171.6 115.8 167.3 113.1 163.0 115.8 t5 166.0 112.2 163.0 114.8 163.0 115.8 167.3 113.1 s5 166.0 112.2 163.0 114.8 p 167.2 113.0 167.4 113.0 167.3 113.1 t6 167.2 113.0 167.4 113.0 p 171.6 111.6 167.4 113.0 167.3 113.1 171.6 115.8 s6 171.6 111.6 167.4 113.0 p 166.8 113.4 163.6 115.8 171.6 115.8 167.3 113.1 s6 166.8 113.4 163.6 115.8 p 166.8 113.4 167.2 113.0 167.3 113.1 t6 166.8 113.4 167.2 113.0 p 168.0 113.5 171.6 112.3 171.6 115.8 t7 168.0 113.5 171.6 112.3 p 164.9 115.8 168.0 113.5 171.6 115.8 t7 164.9 115.8 168.0 113.5 p 168.7 113.9 171.6 113.0 171.6 115.8 t8 168.7 113.9 171.6 113.0 p 166.3 115.8 168.7 113.9 171.6 115.8 t8 166.3 115.8 168.7 113.9 p 171.6 110.3 180.2 110.3 180.2 115.8 171.6 115.8 s2 179.7 110.6 177.9 110.3 171.6 110.3 175.9 113.1 s3 179.7 110.6 177.9 110.3 p 180.2 111.0 179.7 110.6 175.9 113.1 180.2 115.8 s3 180.2 111.0 179.7 110.6 p 180.2 115.8 175.9 113.1 171.6 115.8 t3 171.6 115.8 175.9 113.1 171.6 110.3 t3 178.4 111.4 171.8 110.3 171.6 110.3 175.9 113.1 s4 178.4 111.4 171.8 110.3 p 180.2 112.9 178.4 111.4 175.9 113.1 180.2 115.8 s4 180.2 112.9 178.4 111.4 p 180.2 115.8 175.9 113.1 171.6 115.8 t4 171.6 115.8 175.9 113.1 171.6 110.3 t4 173.6 111.6 177.2 112.2 175.9 113.1 t5 173.6 111.6 177.2 112.2 p 180.2 114.8 177.2 112.2 175.9 113.1 180.2 115.8 s5 180.2 114.8 177.2 112.2 p 180.2 115.8 175.9 113.1 171.6 115.8 t5 173.6 111.6 171.6 111.0 171.6 115.8 175.9 113.1 s5 173.6 111.6 171.6 111.0 p 175.7 113.0 175.9 113.0 175.9 113.1 t6 175.7 113.0 175.9 113.0 p 175.9 113.0 176.3 113.4 175.9 113.1 t6 175.9 113.0 176.3 113.4 p 179.5 115.8 176.3 113.4 175.9 113.1 171.6 115.8 s6 179.5 115.8 176.3 113.4 p 175.7 113.0 171.6 111.6 171.6 115.8 175.9 113.1 s6 175.7 113.0 171.6 111.6 p 175.2 113.5 178.2 115.8 171.6 115.8 t7 175.2 113.5 178.2 115.8 p 171.6 112.3 175.2 113.5 171.6 115.8 t7 171.6 112.3 175.2 113.5 p 174.5 113.9 176.9 115.8 171.6 115.8 t8 174.5 113.9 176.9 115.8 p 171.6 113.0 174.5 113.9 171.6 115.8 t8 171.6 113.0 174.5 113.9 p 180.2 110.3 188.7 110.3 188.7 115.8 180.2 115.8 s1 186.7 111.6 184.3 110.3 180.2 110.3 184.4 113.1 s2 186.7 111.6 184.3 110.3 p 186.7 111.6 187.4 115.0 184.4 113.1 t2 186.7 111.6 187.4 115.0 p 188.0 115.8 187.4 115.0 184.4 113.1 180.2 115.8 s2 188.0 115.8 187.4 115.0 p 180.2 115.8 184.4 113.1 180.2 110.3 t2 184.1 113.3 185.7 115.8 180.2 115.8 t3 184.1 113.3 185.7 115.8 p 180.2 111.0 184.1 113.3 180.2 115.8 t3 180.2 111.0 184.1 113.3 p 182.5 114.3 183.5 115.8 180.2 115.8 t4 182.5 114.3 183.5 115.8 p 180.2 112.9 182.5 114.3 180.2 115.8 t4 180.2 112.9 182.5 114.3 p 181.0 115.3 181.3 115.8 180.2 115.8 t5 181.0 115.3 181.3 115.8 p 180.2 114.8 181.0 115.3 180.2 115.8 t5 180.2 114.8 181.0 115.3 p 188.7 110.3 197.3 110.3 197.3 115.8 188.7 115.8 s1 197.3 110.3 205.9 110.3 205.9 115.8 197.3 115.8 s1 201.8 110.3 199.3 111.6 201.6 113.1 205.9 110.3 s2 201.8 110.3 199.3 111.6 p 205.9 110.3 201.6 113.1 205.9 115.8 t2 198.6 115.0 198.1 115.8 205.9 115.8 201.6 113.1 s2 198.6 115.0 198.1 115.8 p 198.6 115.0 199.3 111.6 201.6 113.1 t2 198.6 115.0 199.3 111.6 p 202.0 113.3 205.9 111.0 205.9 115.8 t3 202.0 113.3 205.9 111.0 p 200.3 115.8 202.0 113.3 205.9 115.8 t3 200.3 115.8 202.0 113.3 p 203.5 114.3 205.9 112.9 205.9 115.8 t4 203.5 114.3 205.9 112.9 p 202.5 115.8 203.5 114.3 205.9 115.8 t4 202.5 115.8 203.5 114.3 p 205.1 115.3 205.9 114.8 205.9 115.8 t5 205.1 115.3 205.9 114.8 p 204.7 115.8 205.1 115.3 205.9 115.8 t5 204.7 115.8 205.1 115.3 p 205.9 110.3 214.5 110.3 214.5 115.8 205.9 115.8 s2 208.1 110.3 206.3 110.6 210.2 113.1 214.5 110.3 s3 208.1 110.3 206.3 110.6 p 214.5 110.3 210.2 113.1 214.5 115.8 t3 214.5 115.8 210.2 113.1 205.9 115.8 t3 206.3 110.6 205.9 111.0 205.9 115.8 210.2 113.1 s3 206.3 110.6 205.9 111.0 p 214.3 110.3 207.6 111.4 210.2 113.1 214.5 110.3 s4 214.3 110.3 207.6 111.4 p 214.5 110.3 210.2 113.1 214.5 115.8 t4 214.5 115.8 210.2 113.1 205.9 115.8 t4 207.6 111.4 205.9 112.9 205.9 115.8 210.2 113.1 s4 207.6 111.4 205.9 112.9 p 208.9 112.2 212.4 111.6 210.2 113.1 t5 208.9 112.2 212.4 111.6 p 214.5 111.0 212.4 111.6 210.2 113.1 214.5 115.8 s5 214.5 111.0 212.4 111.6 p 214.5 115.8 210.2 113.1 205.9 115.8 t5 208.9 112.2 205.9 114.8 205.9 115.8 210.2 113.1 s5 208.9 112.2 205.9 114.8 p 210.1 113.0 210.3 113.0 210.2 113.1 t6 210.1 113.0 210.3 113.0 p 214.5 111.6 210.3 113.0 210.2 113.1 214.5 115.8 s6 214.5 111.6 210.3 113.0 p 209.7 113.4 206.5 115.8 214.5 115.8 210.2 113.1 s6 209.7 113.4 206.5 115.8 p 209.7 113.4 210.1 113.0 210.2 113.1 t6 209.7 113.4 210.1 113.0 p 210.9 113.5 214.5 112.3 214.5 115.8 t7 210.9 113.5 214.5 112.3 p 207.8 115.8 210.9 113.5 214.5 115.8 t7 207.8 115.8 210.9 113.5 p 211.6 113.9 214.5 113.0 214.5 115.8 t8 211.6 113.9 214.5 113.0 p 209.2 115.8 211.6 113.9 214.5 115.8 t8 209.2 115.8 211.6 113.9 p 214.5 110.3 223.1 110.3 223.1 115.8 214.5 115.8 s2 222.6 110.6 220.8 110.3 214.5 110.3 218.8 113.1 s3 222.6 110.6 220.8 110.3 p 223.1 111.0 222.6 110.6 218.8 113.1 223.1 115.8 s3 223.1 111.0 222.6 110.6 p 223.1 115.8 218.8 113.1 214.5 115.8 t3 214.5 115.8 218.8 113.1 214.5 110.3 t3 221.3 111.4 214.7 110.3 214.5 110.3 218.8 113.1 s4 221.3 111.4 214.7 110.3 p 223.1 112.9 221.3 111.4 218.8 113.1 223.1 115.8 s4 223.1 112.9 221.3 111.4 p 223.1 115.8 218.8 113.1 214.5 115.8 t4 214.5 115.8 218.8 113.1 214.5 110.3 t4 216.5 111.6 220.1 112.2 218.8 113.1 t5 216.5 111.6 220.1 112.2 p 223.1 114.8 220.1 112.2 218.8 113.1 223.1 115.8 s5 223.1 114.8 220.1 112.2 p 223.1 115.8 218.8 113.1 214.5 115.8 t5 216.5 111.6 214.5 111.0 214.5 115.8 218.8 113.1 s5 216.5 111.6 214.5 111.0 p 218.6 113.0 218.8 113.0 218.8 113.1 t6 218.6 113.0 218.8 113.0 p 218.8 113.0 219.2 113.4 218.8 113.1 t6 218.8 113.0 219.2 113.4 p 222.4 115.8 219.2 113.4 218.8 113.1 214.5 115.8 s6 222.4 115.8 219.2 113.4 p 218.6 113.0 214.5 111.6 214.5 115.8 218.8 113.1 s6 218.6 113.0 214.5 111.6 p 218.1 113.5 221.1 115.8 214.5 115.8 t7 218.1 113.5 221.1 115.8 p 214.5 112.3 218.1 113.5 214.5 115.8 t7 214.5 112.3 218.1 113.5 p 217.4 113.9 219.8 115.8 214.5 115.8 t8 217.4 113.9 219.8 115.8 p 214.5 113.0 217.4 113.9 214.5 115.8 t8 214.5 113.0 217.4 113.9 p 223.1 110.3 231.6 110.3 231.6 115.8 223.1 115.8 s1 229.6 111.6 227.2 110.3 223.1 110.3 227.3 113.1 s2 229.6 111.6 227.2 110.3 p 229.6 111.6 230.3 115.0 227.3 113.1 t2 229.6 111.6 230.3 115.0 p 230.9 115.8 230.3 115.0 227.3 113.1 223.1 115.8 s2 230.9 115.8 230.3 115.0 p 223.1 115.8 227.3 113.1 223.1 110.3 t2 227.0 113.3 228.6 115.8 223.1 115.8 t3 227.0 113.3 228.6 115.8 p 223.1 111.0 227.0 113.3 223.1 115.8 t3 223.1 111.0 227.0 113.3 p 225.4 114.3 226.4 115.8 223.1 115.8 t4 225.4 114.3 226.4 115.8 p 223.1 112.9 225.4 114.3 223.1 115.8 t4 223.1 112.9 225.4 114.3 p 223.9 115.3 224.2 115.8 223.1 115.8 t5 223.9 115.3 224.2 115.8 p 223.1 114.8 223.9 115.3 223.1 115.8 t5 223.1 114.8 223.9 115.3 p 231.6 110.3 240.2 110.3 240.2 115.8 231.6 115.8 s1 240.2 110.3 248.8 110.3 248.8 115.8 240.2 115.8 s1 244.7 110.3 242.2 111.6 244.5 113.1 248.8 110.3 s2 244.7 110.3 242.2 111.6 p 248.8 110.3 244.5 113.1 248.8 115.8 t2 241.5 115.0 241.0 115.8 248.8 115.8 244.5 113.1 s2 241.5 115.0 241.0 115.8 p 241.5 115.0 242.2 111.6 244.5 113.1 t2 241.5 115.0 242.2 111.6 p 244.8 113.3 248.8 111.0 248.8 115.8 t3 244.8 113.3 248.8 111.0 p 243.2 115.8 244.8 113.3 248.8 115.8 t3 243.2 115.8 244.8 113.3 p 246.4 114.3 248.8 112.9 248.8 115.8 t4 246.4 114.3 248.8 112.9 p 245.4 115.8 246.4 114.3 248.8 115.8 t4 245.4 115.8 246.4 114.3 p 248.0 115.3 248.8 114.8 248.8 115.8 t5 248.0 115.3 248.8 114.8 p 247.6 115.8 248.0 115.3 248.8 115.8 t5 247.6 115.8 248.0 115.3 p 248.8 110.3 257.4 110.3 257.4 115.8 248.8 115.8 s2 251.0 110.3 249.2 110.6 253.1 113.1 257.4 110.3 s3 251.0 110.3 249.2 110.6 p 257.4 110.3 253.1 113.1 257.4 115.8 t3 257.4 115.8 253.1 113.1 248.8 115.8 t3 249.2 110.6 248.8 111.0 248.8 115.8 253.1 113.1 s3 249.2 110.6 248.8 111.0 p 257.2 110.3 250.5 111.4 253.1 113.1 257.4 110.3 s4 257.2 110.3 250.5 111.4 p 257.4 110.3 253.1 113.1 257.4 115.8 t4 257.4 115.8 253.1 113.1 248.8 115.8 t4 250.5 111.4 248.8 112.9 248.8 115.8 253.1 113.1 s4 250.5 111.4 248.8 112.9 p 251.7 112.2 255.3 111.6 253.1 113.1 t5 251.7 112.2 255.3 111.6 p 257.4 111.0 255.3 111.6 253.1 113.1 257.4 115.8 s5 257.4 111.0 255.3 111.6 p 257.4 115.8 253.1 113.1 248.8 115.8 t5 251.7 112.2 248.8 114.8 248.8 115.8 253.1 113.1 s5 251.7 112.2 248.8 114.8 p 253.0 113.0 253.2 113.0 253.1 113.1 t6 253.0 113.0 253.2 113.0 p 257.4 111.6 253.2 113.0 253.1 113.1 257.4 115.8 s6 257.4 111.6 253.2 113.0 p 252.6 113.4 249.4 115.8 257.4 115.8 253.1 113.1 s6 252.6 113.4 249.4 115.8 p 252.6 113.4 253.0 113.0 253.1 113.1 t6 252.6 113.4 253.0 113.0 p 253.7 113.5 257.4 112.3 257.4 115.8 t7 253.7 113.5 257.4 112.3 p 250.7 115.8 253.7 113.5 257.4 115.8 t7 250.7 115.8 253.7 113.5 p 254.5 113.9 257.4 113.0 257.4 115.8 t8 254.5 113.9 257.4 113.0 p 252.0 115.8 254.5 113.9 257.4 115.8 t8 252.0 115.8 254.5 113.9 p 257.4 110.3 265.9 110.3 265.9 115.8 257.4 115.8 s2 265.5 110.6 263.7 110.3 257.4 110.3 261.7 113.1 s3 265.5 110.6 263.7 110.3 p 265.9 111.0 265.5 110.6 261.7 113.1 265.9 115.8 s3 265.9 111.0 265.5 110.6 p 265.9 115.8 261.7 113.1 257.4 115.8 t3 257.4 115.8 261.7 113.1 257.4 110.3 t3 264.2 111.4 257.6 110.3 257.4 110.3 261.7 113.1 s4 264.2 111.4 257.6 110.3 p 265.9 112.9 264.2 111.4 261.7 113.1 265.9 115.8 s4 265.9 112.9 264.2 111.4 p 265.9 115.8 261.7 113.1 257.4 115.8 t4 257.4 115.8 261.7 113.1 257.4 110.3 t4 259.4 111.6 263.0 112.2 261.7 113.1 t5 259.4 111.6 263.0 112.2 p 265.9 114.8 263.0 112.2 261.7 113.1 265.9 115.8 s5 265.9 114.8 263.0 112.2 p 265.9 115.8 261.7 113.1 257.4 115.8 t5 259.4 111.6 257.4 111.0 257.4 115.8 261.7 113.1 s5 259.4 111.6 257.4 111.0 p 261.5 113.0 261.7 113.0 261.7 113.1 t6 261.5 113.0 261.7 113.0 p 261.7 113.0 262.1 113.4 261.7 113.1 t6 261.7 113.0 262.1 113.4 p 265.3 115.8 262.1 113.4 261.7 113.1 257.4 115.8 s6 265.3 115.8 262.1 113.4 p 261.5 113.0 257.4 111.6 257.4 115.8 261.7 113.1 s6 261.5 113.0 257.4 111.6 p 261.0 113.5 264.0 115.8 257.4 115.8 t7 261.0 113.5 264.0 115.8 p 257.4 112.3 261.0 113.5 257.4 115.8 t7 257.4 112.3 261.0 113.5 p 260.3 113.9 262.7 115.8 257.4 115.8 t8 260.3 113.9 262.7 115.8 p 257.4 113.0 260.3 113.9 257.4 115.8 t8 257.4 113.0 260.3 113.9 p 265.9 110.3 274.5 110.3 274.5 115.8 265.9 115.8 s1 272.5 111.6 270.1 110.3 265.9 110.3 270.2 113.1 s2 272.5 111.6 270.1 110.3 p 272.5 111.6 273.2 115.0 270.2 113.1 t2 272.5 111.6 273.2 115.0 p 273.7 115.8 273.2 115.0 270.2 113.1 265.9 115.8 s2 273.7 115.8 273.2 115.0 p 265.9 115.8 270.2 113.1 265.9 110.3 t2 269.9 113.3 271.5 115.8 265.9 115.8 t3 269.9 113.3 271.5 115.8 p 265.9 111.0 269.9 113.3 265.9 115.8 t3 265.9 111.0 269.9 113.3 p 268.3 114.3 269.3 115.8 265.9 115.8 t4 268.3 114.3 269.3 115.8 p 265.9 112.9 268.3 114.3 265.9 115.8 t4 265.9 112.9 268.3 114.3 p 266.8 115.3 267.1 115.8 265.9 115.8 t5 266.8 115.3 267.1 115.8 p 265.9 114.8 266.8 115.3 265.9 115.8 t5 265.9 114.8 266.8 115.3 p 274.5 110.3 283.1 110.3 283.1 115.8 274.5 115.8 s1 283.1 110.3 291.7 110.3 291.7 115.8 283.1 115.8 s1 287.6 110.3 285.1 111.6 287.4 113.1 291.7 110.3 s2 287.6 110.3 285.1 111.6 p 291.7 110.3 287.4 113.1 291.7 115.8 t2 284.4 115.0 283.9 115.8 291.7 115.8 287.4 113.1 s2 284.4 115.0 283.9 115.8 p 284.4 115.0 285.1 111.6 287.4 113.1 t2 284.4 115.0 285.1 111.6 p 287.7 113.3 291.7 111.0 291.7 115.8 t3 287.7 113.3 291.7 111.0 p 286.1 115.8 287.7 113.3 291.7 115.8 t3 286.1 115.8 287.7 113.3 p 289.3 114.3 291.7 112.9 291.7 115.8 t4 289.3 114.3 291.7 112.9 p 288.3 115.8 289.3 114.3 291.7 115.8 t4 288.3 115.8 289.3 114.3 p 290.9 115.3 291.7 114.8 291.7 115.8 t5 290.9 115.3 291.7 114.8 p 290.5 115.8 290.9 115.3 291.7 115.8 t5 290.5 115.8 290.9 115.3 p 291.7 110.3 300.3 110.3 300.3 115.8 291.7 115.8 s2 293.9 110.3 292.1 110.6 296.0 113.1 300.3 110.3 s3 293.9 110.3 292.1 110.6 p 300.3 110.3 296.0 113.1 300.3 115.8 t3 300.3 115.8 296.0 113.1 291.7 115.8 t3 292.1 110.6 291.7 111.0 291.7 115.8 296.0 113.1 s3 292.1 110.6 291.7 111.0 p 300.1 110.3 293.4 111.4 296.0 113.1 300.3 110.3 s4 300.1 110.3 293.4 111.4 p 300.3 110.3 296.0 113.1 300.3 115.8 t4 300.3 115.8 296.0 113.1 291.7 115.8 t4 293.4 111.4 291.7 112.9 291.7 115.8 296.0 113.1 s4 293.4 111.4 291.7 112.9 p 294.6 112.2 298.2 111.6 296.0 113.1 t5 294.6 112.2 298.2 111.6 p 300.3 111.0 298.2 111.6 296.0 113.1 300.3 115.8 s5 300.3 111.0 298.2 111.6 p 300.3 115.8 296.0 113.1 291.7 115.8 t5 294.6 112.2 291.7 114.8 291.7 115.8 296.0 113.1 s5 294.6 112.2 291.7 114.8 p 295.9 113.0 296.1 113.0 296.0 113.1 t6 295.9 113.0 296.1 113.0 p 300.3 111.6 296.1 113.0 296.0 113.1 300.3 115.8 s6 300.3 111.6 296.1 113.0 p 295.5 113.4 292.3 115.8 300.3 115.8 296.0 113.1 s6 295.5 113.4 292.3 115.8 p 295.5 113.4 295.9 113.0 296.0 113.1 t6 295.5 113.4 295.9 113.0 p 296.6 113.5 300.3 112.3 300.3 115.8 t7 296.6 113.5 300.3 112.3 p 293.6 115.8 296.6 113.5 300.3 115.8 t7 293.6 115.8 296.6 113.5 p 297.4 113.9 300.3 113.0 300.3 115.8 t8 297.4 113.9 300.3 113.0 p 294.9 115.8 297.4 113.9 300.3 115.8 t8 294.9 115.8 297.4 113.9 p 0.0 104.8 8.6 104.8 8.6 110.3 0.0 110.3 s1 1.5 105.7 6.2 106.3 4.3 107.5 t2 1.5 105.7 6.2 106.3 p 8.6 107.4 6.2 106.3 4.3 107.5 8.6 110.3 s2 8.6 107.4 6.2 106.3 p 8.6 110.3 4.3 107.5 0.0 110.3 t2 1.5 105.7 0.0 105.4 0.0 110.3 4.3 107.5 s2 1.5 105.7 0.0 105.4 p 2.8 108.5 6.3 110.3 0.0 110.3 t3 2.8 108.5 6.3 110.3 p 0.0 107.8 2.8 108.5 0.0 110.3 t3 0.0 107.8 2.8 108.5 p 0.1 110.2 0.2 110.3 0.0 110.3 t4 0.1 110.2 0.2 110.3 p 0.0 110.2 0.1 110.2 0.0 110.3 t4 0.0 110.2 0.1 110.2 p 8.6 104.8 17.2 104.8 17.2 110.3 8.6 110.3 s1 11.3 108.6 12.7 110.3 8.6 110.3 t2 11.3 108.6 12.7 110.3 p 8.6 107.4 11.3 108.6 8.6 110.3 t2 8.6 107.4 11.3 108.6 p 17.2 104.8 25.7 104.8 25.7 110.3 17.2 110.3 s1 25.7 104.8 34.3 104.8 34.3 110.3 25.7 110.3 s1 31.6 108.6 34.3 107.4 34.3 110.3 t2 31.6 108.6 34.3 107.4 p 30.2 110.3 31.6 108.6 34.3 110.3 t2 30.2 110.3 31.6 108.6 p 34.3 104.8 42.9 104.8 42.9 110.3 34.3 110.3 s1 36.7 106.3 41.4 105.7 38.6 107.5 t2 36.7 106.3 41.4 105.7 p 42.9 105.4 41.4 105.7 38.6 107.5 42.9 110.3 s2 42.9 105.4 41.4 105.7 p 42.9 110.3 38.6 107.5 34.3 110.3 t2 36.7 106.3 34.3 107.4 34.3 110.3 38.6 107.5 s2 36.7 106.3 34.3 107.4 p 40.1 108.5 42.9 107.8 42.9 110.3 t3 40.1 108.5 42.9 107.8 p 36.6 110.3 40.1 108.5 42.9 110.3 t3 36.6 110.3 40.1 108.5 p 42.8 110.2 42.9 110.2 42.9 110.3 t4 42.8 110.2 42.9 110.2 p 42.7 110.3 42.8 110.2 42.9 110.3 t4 42.7 110.3 42.8 110.2 p 42.9 104.8 51.5 104.8 51.5 110.3 42.9 110.3 s1 44.4 105.7 49.1 106.3 47.2 107.5 t2 44.4 105.7 49.1 106.3 p 51.5 107.4 49.1 106.3 47.2 107.5 51.5 110.3 s2 51.5 107.4 49.1 106.3 p 51.5 110.3 47.2 107.5 42.9 110.3 t2 44.4 105.7 42.9 105.4 42.9 110.3 47.2 107.5 s2 44.4 105.7 42.9 105.4 p 45.7 108.5 49.2 110.3 42.9 110.3 t3 45.7 108.5 49.2 110.3 p 42.9 107.8 45.7 108.5 42.9 110.3 t3 42.9 107.8 45.7 108.5 p 43.0 110.2 43.1 110.3 42.9 110.3 t4 43.0 110.2 43.1 110.3 p 42.9 110.2 43.0 110.2 42.9 110.3 t4 42.9 110.2 43.0 110.2 p 51.5 104.8 60.1 104.8 60.1 110.3 51.5 110.3 s1 54.2 108.6 55.6 110.3 51.5 110.3 t2 54.2 108.6 55.6 110.3 p 51.5 107.4 54.2 108.6 51.5 110.3 t2 51.5 107.4 54.2 108.6 p 60.1 104.8 68.6 104.8 68.6 110.3 60.1 110.3 s1 68.6 104.8 77.2 104.8 77.2 110.3 68.6 110.3 s1 74.5 108.6 77.2 107.4 77.2 110.3 t2 74.5 108.6 77.2 107.4 p 73.1 110.3 74.5 108.6 77.2 110.3 t2 73.1 110.3 74.5 108.6 p 77.2 104.8 85.8 104.8 85.8 110.3 77.2 110.3 s1 79.6 106.3 84.3 105.7 81.5 107.5 t2 79.6 106.3 84.3 105.7 p 85.8 105.4 84.3 105.7 81.5 107.5 85.8 110.3 s2 85.8 105.4 84.3 105.7 p 85.8 110.3 81.5 107.5 77.2 110.3 t2 79.6 106.3 77.2 107.4 77.2 110.3 81.5 107.5 s2 79.6 106.3 77.2 107.4 p 83.0 108.5 85.8 107.8 85.8 110.3 t3 83.0 108.5 85.8 107.8 p 79.5 110.3 83.0 108.5 85.8 110.3 t3 79.5 110.3 83.0 108.5 p 85.7 110.2 85.8 110.2 85.8 110.3 t4 85.7 110.2 85.8 110.2 p 85.6 110.3 85.7 110.2 85.8 110.3 t4 85.6 110.3 85.7 110.2 p 85.8 104.8 94.4 104.8 94.4 110.3 85.8 110.3 s1 87.3 105.7 92.0 106.3 90.1 107.5 t2 87.3 105.7 92.0 106.3 p 94.4 107.4 92.0 106.3 90.1 107.5 94.4 110.3 s2 94.4 107.4 92.0 106.3 p 94.4 110.3 90.1 107.5 85.8 110.3 t2 87.3 105.7 85.8 105.4 85.8 110.3 90.1 107.5 s2 87.3 105.7 85.8 105.4 p 88.6 108.5 92.1 110.3 85.8 110.3 t3 88.6 108.5 92.1 110.3 p 85.8 107.8 88.6 108.5 85.8 110.3 t3 85.8 107.8 88.6 108.5 p 85.9 110.2 86.0 110.3 85.8 110.3 t4 85.9 110.2 86.0 110.3 p 85.8 110.2 85.9 110.2 85.8 110.3 t4 85.8 110.2 85.9 110.2 p 94.4 104.8 102.9 104.8 102.9 110.3 94.4 110.3 s1 97.1 108.6 98.5 110.3 94.4 110.3 t2 97.1 108.6 98.5 110.3 p 94.4 107.4 97.1 108.6 94.4 110.3 t2 94.4 107.4 97.1 108.6 p 102.9 104.8 111.5 104.8 111.5 110.3 102.9 110.3 s1 111.5 104.8 120.1 104.8 120.1 110.3 111.5 110.3 s1 117.4 108.6 120.1 107.4 120.1 110.3 t2 117.4 108.6 120.1 107.4 p 116.0 110.3 117.4 108.6 120.1 110.3 t2 116.0 110.3 117.4 108.6 p 120.1 104.8 128.7 104.8 128.7 110.3 120.1 110.3 s1 122.5 106.3 127.2 105.7 124.4 107.5 t2 122.5 106.3 127.2 105.7 p 128.7 105.4 127.2 105.7 124.4 107.5 128.7 110.3 s2 128.7 105.4 127.2 105.7 p 128.7 110.3 124.4 107.5 120.1 110.3 t2 122.5 106.3 120.1 107.4 120.1 110.3 124.4 107.5 s2 122.5 106.3 120.1 107.4 p 125.9 108.5 128.7 107.8 128.7 110.3 t3 125.9 108.5 128.7 107.8 p 122.3 110.3 125.9 108.5 128.7 110.3 t3 122.3 110.3 125.9 108.5 p 128.6 110.2 128.7 110.2 128.7 110.3 t4 128.6 110.2 128.7 110.2 p 128.5 110.3 128.6 110.2 128.7 110.3 t4 128.5 110.3 128.6 110.2 p 128.7 104.8 137.3 104.8 137.3 110.3 128.7 110.3 s1 130.2 105.7 134.9 106.3 133.0 107.5 t2 130.2 105.7 134.9 106.3 p 137.3 107.4 134.9 106.3 133.0 107.5 137.3 110.3 s2 137.3 107.4 134.9 106.3 p 137.3 110.3 133.0 107.5 128.7 110.3 t2 130.2 105.7 128.7 105.4 128.7 110.3 133.0 107.5 s2 130.2 105.7 128.7 105.4 p 131.5 108.5 135.0 110.3 128.7 110.3 t3 131.5 108.5 135.0 110.3 p 128.7 107.8 131.5 108.5 128.7 110.3 t3 128.7 107.8 131.5 108.5 p 128.8 110.2 128.9 110.3 128.7 110.3 t4 128.8 110.2 128.9 110.3 p 128.7 110.2 128.8 110.2 128.7 110.3 t4 128.7 110.2 128.8 110.2 p 137.3 104.8 145.8 104.8 145.8 110.3 137.3 110.3 s1 140.0 108.6 141.4 110.3 137.3 110.3 t2 140.0 108.6 141.4 110.3 p 137.3 107.4 140.0 108.6 137.3 110.3 t2 137.3 107.4 140.0 108.6 p 145.8 104.8 154.4 104.8 154.4 110.3 145.8 110.3 s1 154.4 104.8 163.0 104.8 163.0 110.3 154.4 110.3 s1 160.3 108.6 163.0 107.4 163.0 110.3 t2 160.3 108.6 163.0 107.4 p 158.9 110.3 160.3 108.6 163.0 110.3 t2 158.9 110.3 160.3 108.6 p 163.0 104.8 171.6 104.8 171.6 110.3 163.0 110.3 s1 165.4 106.3 170.1 105.7 167.3 107.5 t2 165.4 106.3 170.1 105.7 p 171.6 105.4 170.1 105.7 167.3 107.5 171.6 110.3 s2 171.6 105.4 170.1 105.7 p 171.6 110.3 167.3 107.5 163.0 110.3 t2 165.4 106.3 163.0 107.4 163.0 110.3 167.3 107.5 s2 165.4 106.3 163.0 107.4 p 168.8 108.5 171.6 107.8 171.6 110.3 t3 168.8 108.5 171.6 107.8 p 165.2 110.3 168.8 108.5 171.6 110.3 t3 165.2 110.3 168.8 108.5 p 171.5 110.2 171.6 110.2 171.6 110.3 t4 171.5 110.2 171.6 110.2 p 171.4 110.3 171.5 110.2 171.6 110.3 t4 171.4 110.3 171.5 110.2 p 171.6 104.8 180.2 104.8 180.2 110.3 171.6 110.3 s1 173.1 105.7 177.8 106.3 175.9 107.5 t2 173.1 105.7 177.8 106.3 p 180.2 107.4 177.8 106.3 175.9 107.5 180.2 110.3 s2 180.2 107.4 177.8 106.3 p 180.2 110.3 175.9 107.5 171.6 110.3 t2 173.1 105.7 171.6 105.4 171.6 110.3 175.9 107.5 s2 173.1 105.7 171.6 105.4 p 174.4 108.5 177.9 110.3 171.6 110.3 t3 174.4 108.5 177.9 110.3 p 171.6 107.8 174.4 108.5 171.6 110.3 t3 171.6 107.8 174.4 108.5 p 171.7 110.2 171.8 110.3 171.6 110.3 t4 171.7 110.2 171.8 110.3 p 171.6 110.2 171.7 110.2 171.6 110.3 t4 171.6 110.2 171.7 110.2 p 180.2 104.8 188.7 104.8 188.7 110.3 180.2 110.3 s1 182.9 108.6 184.3 110.3 180.2 110.3 t2 182.9 108.6 184.3 110.3 p 180.2 107.4 182.9 108.6 180.2 110.3 t2 180.2 107.4 182.9 108.6 p 188.7 104.8 197.3 104.8 197.3 110.3 188.7 110.3 s1 197.3 104.8 205.9 104.8 205.9 110.3 197.3 110.3 s1 203.2 108.6 205.9 107.4 205.9 110.3 t2 203.2 108.6 205.9 107.4 p 201.8 110.3 203.2 108.6 205.9 110.3 t2 201.8 110.3 203.2 108.6 p 205.9 104.8 214.5 104.8 214.5 110.3 205.9 110.3 s1 208.2 106.3 213.0 105.7 210.2 107.5 t2 208.2 106.3 213.0 105.7 p 214.5 105.4 213.0 105.7 210.2 107.5 214.5 110.3 s2 214.5 105.4 213.0 105.7 p 214.5 110.3 210.2 107.5 205.9 110.3 t2 208.2 106.3 205.9 107.4 205.9 110.3 210.2 107.5 s2 208.2 106.3 205.9 107.4 p 211.7 108.5 214.5 107.8 214.5 110.3 t3 211.7 108.5 214.5 107.8 p 208.1 110.3 211.7 108.5 214.5 110.3 t3 208.1 110.3 211.7 108.5 p 214.4 110.2 214.5 110.2 214.5 110.3 t4 214.4 110.2 214.5 110.2 p 214.3 110.3 214.4 110.2 214.5 110.3 t4 214.3 110.3 214.4 110.2 p 214.5 104.8 223.1 104.8 223.1 110.3 214.5 110.3 s1 216.0 105.7 220.7 106.3 218.8 107.5 t2 216.0 105.7 220.7 106.3 p 223.1 107.4 220.7 106.3 218.8 107.5 223.1 110.3 s2 223.1 107.4 220.7 106.3 p 223.1 110.3 218.8 107.5 214.5 110.3 t2 216.0 105.7 214.5 105.4 214.5 110.3 218.8 107.5 s2 216.0 105.7 214.5 105.4 p 217.3 108.5 220.8 110.3 214.5 110.3 t3 217.3 108.5 220.8 110.3 p 214.5 107.8 217.3 108.5 214.5 110.3 t3 214.5 107.8 217.3 108.5 p 214.6 110.2 214.7 110.3 214.5 110.3 t4 214.6 110.2 214.7 110.3 p 214.5 110.2 214.6 110.2 214.5 110.3 t4 214.5 110.2 214.6 110.2 p 223.1 104.8 231.6 104.8 231.6 110.3 223.1 110.3 s1 225.8 108.6 227.2 110.3 223.1 110.3 t2 225.8 108.6 227.2 110.3 p 223.1 107.4 225.8 108.6 223.1 110.3 t2 223.1 107.4 225.8 108.6 p 231.6 104.8 240.2 104.8 240.2 110.3 231.6 110.3 s1 240.2 104.8 248.8 104.8 248.8 110.3 240.2 110.3 s1 246.1 108.6 248.8 107.4 248.8 110.3 t2 246.1 108.6 248.8 107.4 p 244.7 110.3 246.1 108.6 248.8 110.3 t2 244.7 110.3 246.1 108.6 p 248.8 104.8 257.4 104.8 257.4 110.3 248.8 110.3 s1 251.1 106.3 255.9 105.7 253.1 107.5 t2 251.1 106.3 255.9 105.7 p 257.4 105.4 255.9 105.7 253.1 107.5 257.4 110.3 s2 257.4 105.4 255.9 105.7 p 257.4 110.3 253.1 107.5 248.8 110.3 t2 251.1 106.3 248.8 107.4 248.8 110.3 253.1 107.5 s2 251.1 106.3 248.8 107.4 p 254.5 108.5 257.4 107.8 257.4 110.3 t3 254.5 108.5 257.4 107.8 p 251.0 110.3 254.5 108.5 257.4 110.3 t3 251.0 110.3 254.5 108.5 p 257.3 110.2 257.4 110.2 257.4 110.3 t4 257.3 110.2 257.4 110.2 p 257.2 110.3 257.3 110.2 257.4 110.3 t4 257.2 110.3 257.3 110.2 p 257.4 104.8 265.9 104.8 265.9 110.3 257.4 110.3 s1 258.9 105.7 263.6 106.3 261.7 107.5 t2 258.9 105.7 263.6 106.3 p 265.9 107.4 263.6 106.3 261.7 107.5 265.9 110.3 s2 265.9 107.4 263.6 106.3 p 265.9 110.3 261.7 107.5 257.4 110.3 t2 258.9 105.7 257.4 105.4 257.4 110.3 261.7 107.5 s2 258.9 105.7 257.4 105.4 p 260.2 108.5 263.7 110.3 257.4 110.3 t3 260.2 108.5 263.7 110.3 p 257.4 107.8 260.2 108.5 257.4 110.3 t3 257.4 107.8 260.2 108.5 p 257.4 110.2 257.6 110.3 257.4 110.3 t4 257.4 110.2 257.6 110.3 p 257.4 110.2 257.4 110.2 257.4 110.3 t4 257.4 110.2 257.4 110.2 p 265.9 104.8 274.5 104.8 274.5 110.3 265.9 110.3 s1 268.6 108.6 270.1 110.3 265.9 110.3 t2 268.6 108.6 270.1 110.3 p 265.9 107.4 268.6 108.6 265.9 110.3 t2 265.9 107.4 268.6 108.6 p 274.5 104.8 283.1 104.8 283.1 110.3 274.5 110.3 s1 283.1 104.8 291.7 104.8 291.7 110.3 283.1 110.3 s1 289.0 108.6 291.7 107.4 291.7 110.3 t2 289.0 108.6 291.7 107.4 p 287.6 110.3 289.0 108.6 291.7 110.3 t2 287.6 110.3 289.0 108.6 p 291.7 104.8 300.3 104.8 300.3 110.3 291.7 110.3 s1 294.0 106.3 298.8 105.7 296.0 107.5 t2 294.0 106.3 298.8 105.7 p 300.3 105.4 298.8 105.7 296.0 107.5 300.3 110.3 s2 300.3 105.4 298.8 105.7 p 300.3 110.3 296.0 107.5 291.7 110.3 t2 294.0 106.3 291.7 107.4 291.7 110.3 296.0 107.5 s2 294.0 106.3 291.7 107.4 p 297.4 108.5 300.3 107.8 300.3 110.3 t3 297.4 108.5 300.3 107.8 p 293.9 110.3 297.4 108.5 300.3 110.3 t3 293.9 110.3 297.4 108.5 p 300.2 110.2 300.3 110.2 300.3 110.3 t4 300.2 110.2 300.3 110.2 p 300.1 110.3 300.2 110.2 300.3 110.3 t4 300.1 110.3 300.2 110.2 p 0.0 99.3 8.6 99.3 8.6 104.8 0.0 104.8 s1 8.6 99.3 17.2 99.3 17.2 104.8 8.6 104.8 s1 17.2 99.3 25.7 99.3 25.7 104.8 17.2 104.8 s1 25.7 99.3 34.3 99.3 34.3 104.8 25.7 104.8 s1 34.3 99.3 42.9 99.3 42.9 104.8 34.3 104.8 s1 42.9 99.3 51.5 99.3 51.5 104.8 42.9 104.8 s1 51.5 99.3 60.1 99.3 60.1 104.8 51.5 104.8 s1 60.1 99.3 68.6 99.3 68.6 104.8 60.1 104.8 s1 68.6 99.3 77.2 99.3 77.2 104.8 68.6 104.8 s1 77.2 99.3 85.8 99.3 85.8 104.8 77.2 104.8 s1 85.8 99.3 94.4 99.3 94.4 104.8 85.8 104.8 s1 94.4 99.3 102.9 99.3 102.9 104.8 94.4 104.8 s1 102.9 99.3 111.5 99.3 111.5 104.8 102.9 104.8 s1 111.5 99.3 120.1 99.3 120.1 104.8 111.5 104.8 s1 120.1 99.3 128.7 99.3 128.7 104.8 120.1 104.8 s1 128.7 99.3 137.3 99.3 137.3 104.8 128.7 104.8 s1 137.3 99.3 145.8 99.3 145.8 104.8 137.3 104.8 s1 145.8 99.3 154.4 99.3 154.4 104.8 145.8 104.8 s1 154.4 99.3 163.0 99.3 163.0 104.8 154.4 104.8 s1 163.0 99.3 171.6 99.3 171.6 104.8 163.0 104.8 s1 171.6 99.3 180.2 99.3 180.2 104.8 171.6 104.8 s1 180.2 99.3 188.7 99.3 188.7 104.8 180.2 104.8 s1 188.7 99.3 197.3 99.3 197.3 104.8 188.7 104.8 s1 197.3 99.3 205.9 99.3 205.9 104.8 197.3 104.8 s1 205.9 99.3 214.5 99.3 214.5 104.8 205.9 104.8 s1 214.5 99.3 223.1 99.3 223.1 104.8 214.5 104.8 s1 223.1 99.3 231.6 99.3 231.6 104.8 223.1 104.8 s1 231.6 99.3 240.2 99.3 240.2 104.8 231.6 104.8 s1 240.2 99.3 248.8 99.3 248.8 104.8 240.2 104.8 s1 248.8 99.3 257.4 99.3 257.4 104.8 248.8 104.8 s1 257.4 99.3 265.9 99.3 265.9 104.8 257.4 104.8 s1 265.9 99.3 274.5 99.3 274.5 104.8 265.9 104.8 s1 274.5 99.3 283.1 99.3 283.1 104.8 274.5 104.8 s1 283.1 99.3 291.7 99.3 291.7 104.8 283.1 104.8 s1 291.7 99.3 300.3 99.3 300.3 104.8 291.7 104.8 s1 0.0 93.8 8.6 93.8 8.6 99.3 0.0 99.3 s1 8.6 93.8 17.2 93.8 17.2 99.3 8.6 99.3 s1 17.2 93.8 25.7 93.8 25.7 99.3 17.2 99.3 s1 25.7 93.8 34.3 93.8 34.3 99.3 25.7 99.3 s1 34.3 93.8 42.9 93.8 42.9 99.3 34.3 99.3 s1 42.9 93.8 51.5 93.8 51.5 99.3 42.9 99.3 s1 51.5 93.8 60.1 93.8 60.1 99.3 51.5 99.3 s1 60.1 93.8 68.6 93.8 68.6 99.3 60.1 99.3 s1 68.6 93.8 77.2 93.8 77.2 99.3 68.6 99.3 s1 77.2 93.8 85.8 93.8 85.8 99.3 77.2 99.3 s1 85.8 93.8 94.4 93.8 94.4 99.3 85.8 99.3 s1 94.4 93.8 102.9 93.8 102.9 99.3 94.4 99.3 s1 102.9 93.8 111.5 93.8 111.5 99.3 102.9 99.3 s1 111.5 93.8 120.1 93.8 120.1 99.3 111.5 99.3 s1 120.1 93.8 128.7 93.8 128.7 99.3 120.1 99.3 s1 128.7 93.8 137.3 93.8 137.3 99.3 128.7 99.3 s1 137.3 93.8 145.8 93.8 145.8 99.3 137.3 99.3 s1 145.8 93.8 154.4 93.8 154.4 99.3 145.8 99.3 s1 154.4 93.8 163.0 93.8 163.0 99.3 154.4 99.3 s1 163.0 93.8 171.6 93.8 171.6 99.3 163.0 99.3 s1 171.6 93.8 180.2 93.8 180.2 99.3 171.6 99.3 s1 180.2 93.8 188.7 93.8 188.7 99.3 180.2 99.3 s1 188.7 93.8 197.3 93.8 197.3 99.3 188.7 99.3 s1 197.3 93.8 205.9 93.8 205.9 99.3 197.3 99.3 s1 205.9 93.8 214.5 93.8 214.5 99.3 205.9 99.3 s1 214.5 93.8 223.1 93.8 223.1 99.3 214.5 99.3 s1 223.1 93.8 231.6 93.8 231.6 99.3 223.1 99.3 s1 231.6 93.8 240.2 93.8 240.2 99.3 231.6 99.3 s1 240.2 93.8 248.8 93.8 248.8 99.3 240.2 99.3 s1 248.8 93.8 257.4 93.8 257.4 99.3 248.8 99.3 s1 257.4 93.8 265.9 93.8 265.9 99.3 257.4 99.3 s1 265.9 93.8 274.5 93.8 274.5 99.3 265.9 99.3 s1 274.5 93.8 283.1 93.8 283.1 99.3 274.5 99.3 s1 283.1 93.8 291.7 93.8 291.7 99.3 283.1 99.3 s1 291.7 93.8 300.3 93.8 300.3 99.3 291.7 99.3 s1 0.0 88.2 8.6 88.2 8.6 93.8 0.0 93.8 s1 8.6 88.2 17.2 88.2 17.2 93.8 8.6 93.8 s1 17.2 88.2 25.7 88.2 25.7 93.8 17.2 93.8 s1 25.7 88.2 34.3 88.2 34.3 93.8 25.7 93.8 s1 34.3 88.2 42.9 88.2 42.9 93.8 34.3 93.8 s1 42.9 88.2 51.5 88.2 51.5 93.8 42.9 93.8 s1 51.5 88.2 60.1 88.2 60.1 93.8 51.5 93.8 s1 60.1 88.2 68.6 88.2 68.6 93.8 60.1 93.8 s1 68.6 88.2 77.2 88.2 77.2 93.8 68.6 93.8 s1 77.2 88.2 85.8 88.2 85.8 93.8 77.2 93.8 s1 85.8 88.2 94.4 88.2 94.4 93.8 85.8 93.8 s1 94.4 88.2 102.9 88.2 102.9 93.8 94.4 93.8 s1 102.9 88.2 111.5 88.2 111.5 93.8 102.9 93.8 s1 111.5 88.2 120.1 88.2 120.1 93.8 111.5 93.8 s1 120.1 88.2 128.7 88.2 128.7 93.8 120.1 93.8 s1 128.7 88.2 137.3 88.2 137.3 93.8 128.7 93.8 s1 137.3 88.2 145.8 88.2 145.8 93.8 137.3 93.8 s1 145.8 88.2 154.4 88.2 154.4 93.8 145.8 93.8 s1 154.4 88.2 163.0 88.2 163.0 93.8 154.4 93.8 s1 163.0 88.2 171.6 88.2 171.6 93.8 163.0 93.8 s1 171.6 88.2 180.2 88.2 180.2 93.8 171.6 93.8 s1 180.2 88.2 188.7 88.2 188.7 93.8 180.2 93.8 s1 188.7 88.2 197.3 88.2 197.3 93.8 188.7 93.8 s1 197.3 88.2 205.9 88.2 205.9 93.8 197.3 93.8 s1 205.9 88.2 214.5 88.2 214.5 93.8 205.9 93.8 s1 214.5 88.2 223.1 88.2 223.1 93.8 214.5 93.8 s1 223.1 88.2 231.6 88.2 231.6 93.8 223.1 93.8 s1 231.6 88.2 240.2 88.2 240.2 93.8 231.6 93.8 s1 240.2 88.2 248.8 88.2 248.8 93.8 240.2 93.8 s1 248.8 88.2 257.4 88.2 257.4 93.8 248.8 93.8 s1 257.4 88.2 265.9 88.2 265.9 93.8 257.4 93.8 s1 265.9 88.2 274.5 88.2 274.5 93.8 265.9 93.8 s1 274.5 88.2 283.1 88.2 283.1 93.8 274.5 93.8 s1 283.1 88.2 291.7 88.2 291.7 93.8 283.1 93.8 s1 291.7 88.2 300.3 88.2 300.3 93.8 291.7 93.8 s1 0.0 82.7 8.6 82.7 8.6 88.2 0.0 88.2 s1 8.6 82.7 17.2 82.7 17.2 88.2 8.6 88.2 s1 17.2 82.7 25.7 82.7 25.7 88.2 17.2 88.2 s1 25.7 82.7 34.3 82.7 34.3 88.2 25.7 88.2 s1 34.3 82.7 42.9 82.7 42.9 88.2 34.3 88.2 s1 42.9 82.7 51.5 82.7 51.5 88.2 42.9 88.2 s1 51.5 82.7 60.1 82.7 60.1 88.2 51.5 88.2 s1 60.1 82.7 68.6 82.7 68.6 88.2 60.1 88.2 s1 68.6 82.7 77.2 82.7 77.2 88.2 68.6 88.2 s1 77.2 82.7 85.8 82.7 85.8 88.2 77.2 88.2 s1 85.8 82.7 94.4 82.7 94.4 88.2 85.8 88.2 s1 94.4 82.7 102.9 82.7 102.9 88.2 94.4 88.2 s1 102.9 82.7 111.5 82.7 111.5 88.2 102.9 88.2 s1 111.5 82.7 120.1 82.7 120.1 88.2 111.5 88.2 s1 120.1 82.7 128.7 82.7 128.7 88.2 120.1 88.2 s1 128.7 82.7 137.3 82.7 137.3 88.2 128.7 88.2 s1 137.3 82.7 145.8 82.7 145.8 88.2 137.3 88.2 s1 145.8 82.7 154.4 82.7 154.4 88.2 145.8 88.2 s1 154.4 82.7 163.0 82.7 163.0 88.2 154.4 88.2 s1 163.0 82.7 171.6 82.7 171.6 88.2 163.0 88.2 s1 171.6 82.7 180.2 82.7 180.2 88.2 171.6 88.2 s1 180.2 82.7 188.7 82.7 188.7 88.2 180.2 88.2 s1 188.7 82.7 197.3 82.7 197.3 88.2 188.7 88.2 s1 197.3 82.7 205.9 82.7 205.9 88.2 197.3 88.2 s1 205.9 82.7 214.5 82.7 214.5 88.2 205.9 88.2 s1 214.5 82.7 223.1 82.7 223.1 88.2 214.5 88.2 s1 223.1 82.7 231.6 82.7 231.6 88.2 223.1 88.2 s1 231.6 82.7 240.2 82.7 240.2 88.2 231.6 88.2 s1 240.2 82.7 248.8 82.7 248.8 88.2 240.2 88.2 s1 248.8 82.7 257.4 82.7 257.4 88.2 248.8 88.2 s1 257.4 82.7 265.9 82.7 265.9 88.2 257.4 88.2 s1 265.9 82.7 274.5 82.7 274.5 88.2 265.9 88.2 s1 274.5 82.7 283.1 82.7 283.1 88.2 274.5 88.2 s1 283.1 82.7 291.7 82.7 291.7 88.2 283.1 88.2 s1 291.7 82.7 300.3 82.7 300.3 88.2 291.7 88.2 s1 0.0 77.2 8.6 77.2 8.6 82.7 0.0 82.7 s1 3.0 77.2 0.7 77.6 0.0 77.2 t2 3.0 77.2 0.7 77.6 p 0.7 77.6 0.0 77.7 0.0 77.2 t2 0.7 77.6 0.0 77.7 p 8.6 77.2 17.2 77.2 17.2 82.7 8.6 82.7 s1 17.2 77.2 25.7 77.2 25.7 82.7 17.2 82.7 s1 25.7 77.2 34.3 77.2 34.3 82.7 25.7 82.7 s1 34.3 77.2 42.9 77.2 42.9 82.7 34.3 82.7 s1 42.2 77.6 39.9 77.2 42.9 77.2 t2 42.2 77.6 39.9 77.2 p 42.9 77.7 42.2 77.6 42.9 77.2 t2 42.9 77.7 42.2 77.6 p 42.9 77.2 51.5 77.2 51.5 82.7 42.9 82.7 s1 45.9 77.2 43.6 77.6 42.9 77.2 t2 45.9 77.2 43.6 77.6 p 43.6 77.6 42.9 77.7 42.9 77.2 t2 43.6 77.6 42.9 77.7 p 51.5 77.2 60.1 77.2 60.1 82.7 51.5 82.7 s1 60.1 77.2 68.6 77.2 68.6 82.7 60.1 82.7 s1 68.6 77.2 77.2 77.2 77.2 82.7 68.6 82.7 s1 77.2 77.2 85.8 77.2 85.8 82.7 77.2 82.7 s1 85.1 77.6 82.8 77.2 85.8 77.2 t2 85.1 77.6 82.8 77.2 p 85.8 77.7 85.1 77.6 85.8 77.2 t2 85.8 77.7 85.1 77.6 p 85.8 77.2 94.4 77.2 94.4 82.7 85.8 82.7 s1 88.8 77.2 86.4 77.6 85.8 77.2 t2 88.8 77.2 86.4 77.6 p 86.4 77.6 85.8 77.7 85.8 77.2 t2 86.4 77.6 85.8 77.7 p 94.4 77.2 102.9 77.2 102.9 82.7 94.4 82.7 s1 102.9 77.2 111.5 77.2 111.5 82.7 102.9 82.7 s1 111.5 77.2 120.1 77.2 120.1 82.7 111.5 82.7 s1 120.1 77.2 128.7 77.2 128.7 82.7 120.1 82.7 s1 128.0 77.6 125.7 77.2 128.7 77.2 t2 128.0 77.6 125.7 77.2 p 128.7 77.7 128.0 77.6 128.7 77.2 t2 128.7 77.7 128.0 77.6 p 128.7 77.2 137.3 77.2 137.3 82.7 128.7 82.7 s1 131.7 77.2 129.3 77.6 128.7 77.2 t2 131.7 77.2 129.3 77.6 p 129.3 77.6 128.7 77.7 128.7 77.2 t2 129.3 77.6 128.7 77.7 p 137.3 77.2 145.8 77.2 145.8 82.7 137.3 82.7 s1 145.8 77.2 154.4 77.2 154.4 82.7 145.8 82.7 s1 154.4 77.2 163.0 77.2 163.0 82.7 154.4 82.7 s1 163.0 77.2 171.6 77.2 171.6 82.7 163.0 82.7 s1 170.9 77.6 168.6 77.2 171.6 77.2 t2 170.9 77.6 168.6 77.2 p 171.6 77.7 170.9 77.6 171.6 77.2 t2 171.6 77.7 170.9 77.6 p 171.6 77.2 180.2 77.2 180.2 82.7 171.6 82.7 s1 174.6 77.2 172.2 77.6 171.6 77.2 t2 174.6 77.2 172.2 77.6 p 172.2 77.6 171.6 77.7 171.6 77.2 t2 172.2 77.6 171.6 77.7 p 180.2 77.2 188.7 77.2 188.7 82.7 180.2 82.7 s1 188.7 77.2 197.3 77.2 197.3 82.7 188.7 82.7 s1 197.3 77.2 205.9 77.2 205.9 82.7 197.3 82.7 s1 205.9 77.2 214.5 77.2 214.5 82.7 205.9 82.7 s1 213.8 77.6 211.5 77.2 214.5 77.2 t2 213.8 77.6 211.5 77.2 p 214.5 77.7 213.8 77.6 214.5 77.2 t2 214.5 77.7 213.8 77.6 p 214.5 77.2 223.1 77.2 223.1 82.7 214.5 82.7 s1 217.5 77.2 215.1 77.6 214.5 77.2 t2 217.5 77.2 215.1 77.6 p 215.1 77.6 214.5 77.7 214.5 77.2 t2 215.1 77.6 214.5 77.7 p 223.1 77.2 231.6 77.2 231.6 82.7 223.1 82.7 s1 231.6 77.2 240.2 77.2 240.2 82.7 231.6 82.7 s1 240.2 77.2 248.8 77.2 248.8 82.7 240.2 82.7 s1 248.8 77.2 257.4 77.2 257.4 82.7 248.8 82.7 s1 256.7 77.6 254.4 77.2 257.4 77.2 t2 256.7 77.6 254.4 77.2 p 257.4 77.7 256.7 77.6 257.4 77.2 t2 257.4 77.7 256.7 77.6 p 257.4 77.2 265.9 77.2 265.9 82.7 257.4 82.7 s1 260.4 77.2 258.0 77.6 257.4 77.2 t2 260.4 77.2 258.0 77.6 p 258.0 77.6 257.4 77.7 257.4 77.2 t2 258.0 77.6 257.4 77.7 p 265.9 77.2 274.5 77.2 274.5 82.7 265.9 82.7 s1 274.5 77.2 283.1 77.2 283.1 82.7 274.5 82.7 s1 283.1 77.2 291.7 77.2 291.7 82.7 283.1 82.7 s1 291.7 77.2 300.3 77.2 300.3 82.7 291.7 82.7 s1 299.6 77.6 297.3 77.2 300.3 77.2 t2 299.6 77.6 297.3 77.2 p 300.3 77.7 299.6 77.6 300.3 77.2 t2 300.3 77.7 299.6 77.6 p 0.0 71.7 8.6 71.7 8.6 77.2 0.0 77.2 s1 0.0 71.7 4.3 74.4 8.6 71.7 t2 8.3 77.0 8.6 76.9 8.6 71.7 4.3 74.4 s2 8.3 77.0 8.6 76.9 p 3.0 77.2 8.3 77.0 4.3 74.4 0.0 77.2 s2 3.0 77.2 8.3 77.0 p 0.0 77.2 4.3 74.4 0.0 71.7 t2 0.0 71.7 4.3 74.4 8.6 71.7 t3 4.9 74.9 8.6 73.3 8.6 71.7 4.3 74.4 s3 4.9 74.9 8.6 73.3 p 4.9 74.9 3.6 74.9 4.3 74.4 t3 4.9 74.9 3.6 74.9 p 0.0 75.6 3.6 74.9 4.3 74.4 0.0 71.7 s3 0.0 75.6 3.6 74.9 p 6.0 71.7 2.7 73.4 0.0 71.7 t4 6.0 71.7 2.7 73.4 p 2.7 73.4 0.0 74.0 0.0 71.7 t4 2.7 73.4 0.0 74.0 p 1.6 71.7 0.7 72.1 0.0 71.7 t5 1.6 71.7 0.7 72.1 p 0.7 72.1 0.0 72.3 0.0 71.7 t5 0.7 72.1 0.0 72.3 p 8.6 71.7 17.2 71.7 17.2 77.2 8.6 77.2 s1 12.9 74.4 14.4 71.7 8.6 71.7 12.9 74.4 s2 12.9 74.4 14.4 71.7 p 12.9 74.4 12.9 74.5 12.9 74.4 t2 12.9 74.4 12.9 74.5 p 12.9 74.5 12.4 74.7 12.9 74.4 t2 12.9 74.5 12.4 74.7 p 8.6 76.9 12.4 74.7 12.9 74.4 8.6 71.7 s2 8.6 76.9 12.4 74.7 p 10.3 71.7 9.9 72.5 8.6 71.7 t3 10.3 71.7 9.9 72.5 p 9.9 72.5 8.6 73.3 8.6 71.7 t3 9.9 72.5 8.6 73.3 p 17.2 71.7 25.7 71.7 25.7 77.2 17.2 77.2 s1 25.7 71.7 34.3 71.7 34.3 77.2 25.7 77.2 s1 28.5 71.7 30.0 74.4 30.0 74.4 34.3 71.7 s2 28.5 71.7 30.0 74.4 p 30.5 74.7 34.3 76.9 34.3 71.7 30.0 74.4 s2 30.5 74.7 34.3 76.9 p 30.5 74.7 30.0 74.5 30.0 74.4 t2 30.5 74.7 30.0 74.5 p 30.0 74.5 30.0 74.4 30.0 74.4 t2 30.0 74.5 30.0 74.4 p 33.0 72.5 32.6 71.7 34.3 71.7 t3 33.0 72.5 32.6 71.7 p 34.3 73.3 33.0 72.5 34.3 71.7 t3 34.3 73.3 33.0 72.5 p 34.3 71.7 42.9 71.7 42.9 77.2 34.3 77.2 s1 34.3 71.7 38.6 74.4 42.9 71.7 t2 42.9 71.7 38.6 74.4 42.9 77.2 t2 34.6 77.0 39.9 77.2 42.9 77.2 38.6 74.4 s2 34.6 77.0 39.9 77.2 p 34.3 76.9 34.6 77.0 38.6 74.4 34.3 71.7 s2 34.3 76.9 34.6 77.0 p 34.3 71.7 38.6 74.4 42.9 71.7 t3 39.3 74.9 42.9 75.6 42.9 71.7 38.6 74.4 s3 39.3 74.9 42.9 75.6 p 39.3 74.9 38.0 74.9 38.6 74.4 t3 39.3 74.9 38.0 74.9 p 34.3 73.3 38.0 74.9 38.6 74.4 34.3 71.7 s3 34.3 73.3 38.0 74.9 p 40.2 73.4 36.8 71.7 42.9 71.7 t4 40.2 73.4 36.8 71.7 p 42.9 74.0 40.2 73.4 42.9 71.7 t4 42.9 74.0 40.2 73.4 p 42.2 72.1 41.3 71.7 42.9 71.7 t5 42.2 72.1 41.3 71.7 p 42.9 72.3 42.2 72.1 42.9 71.7 t5 42.9 72.3 42.2 72.1 p 42.9 71.7 51.5 71.7 51.5 77.2 42.9 77.2 s1 42.9 71.7 47.2 74.4 51.5 71.7 t2 51.2 77.0 51.5 76.9 51.5 71.7 47.2 74.4 s2 51.2 77.0 51.5 76.9 p 45.9 77.2 51.2 77.0 47.2 74.4 42.9 77.2 s2 45.9 77.2 51.2 77.0 p 42.9 77.2 47.2 74.4 42.9 71.7 t2 42.9 71.7 47.2 74.4 51.5 71.7 t3 47.8 74.9 51.5 73.3 51.5 71.7 47.2 74.4 s3 47.8 74.9 51.5 73.3 p 47.8 74.9 46.5 74.9 47.2 74.4 t3 47.8 74.9 46.5 74.9 p 42.9 75.6 46.5 74.9 47.2 74.4 42.9 71.7 s3 42.9 75.6 46.5 74.9 p 48.9 71.7 45.6 73.4 42.9 71.7 t4 48.9 71.7 45.6 73.4 p 45.6 73.4 42.9 74.0 42.9 71.7 t4 45.6 73.4 42.9 74.0 p 44.5 71.7 43.6 72.1 42.9 71.7 t5 44.5 71.7 43.6 72.1 p 43.6 72.1 42.9 72.3 42.9 71.7 t5 43.6 72.1 42.9 72.3 p 51.5 71.7 60.1 71.7 60.1 77.2 51.5 77.2 s1 55.8 74.4 57.3 71.7 51.5 71.7 55.8 74.4 s2 55.8 74.4 57.3 71.7 p 55.8 74.4 55.8 74.5 55.8 74.4 t2 55.8 74.4 55.8 74.5 p 55.8 74.5 55.3 74.7 55.8 74.4 t2 55.8 74.5 55.3 74.7 p 51.5 76.9 55.3 74.7 55.8 74.4 51.5 71.7 s2 51.5 76.9 55.3 74.7 p 53.2 71.7 52.8 72.5 51.5 71.7 t3 53.2 71.7 52.8 72.5 p 52.8 72.5 51.5 73.3 51.5 71.7 t3 52.8 72.5 51.5 73.3 p 60.1 71.7 68.6 71.7 68.6 77.2 60.1 77.2 s1 68.6 71.7 77.2 71.7 77.2 77.2 68.6 77.2 s1 71.4 71.7 72.9 74.4 72.9 74.4 77.2 71.7 s2 71.4 71.7 72.9 74.4 p 73.4 74.7 77.2 76.9 77.2 71.7 72.9 74.4 s2 73.4 74.7 77.2 76.9 p 73.4 74.7 72.9 74.5 72.9 74.4 t2 73.4 74.7 72.9 74.5 p 72.9 74.5 72.9 74.4 72.9 74.4 t2 72.9 74.5 72.9 74.4 p 75.9 72.5 75.5 71.7 77.2 71.7 t3 75.9 72.5 75.5 71.7 p 77.2 73.3 75.9 72.5 77.2 71.7 t3 77.2 73.3 75.9 72.5 p 77.2 71.7 85.8 71.7 85.8 77.2 77.2 77.2 s1 77.2 71.7 81.5 74.4 85.8 71.7 t2 85.8 71.7 81.5 74.4 85.8 77.2 t2 77.5 77.0 82.8 77.2 85.8 77.2 81.5 74.4 s2 77.5 77.0 82.8 77.2 p 77.2 76.9 77.5 77.0 81.5 74.4 77.2 71.7 s2 77.2 76.9 77.5 77.0 p 77.2 71.7 81.5 74.4 85.8 71.7 t3 82.2 74.9 85.8 75.6 85.8 71.7 81.5 74.4 s3 82.2 74.9 85.8 75.6 p 82.2 74.9 80.9 74.9 81.5 74.4 t3 82.2 74.9 80.9 74.9 p 77.2 73.3 80.9 74.9 81.5 74.4 77.2 71.7 s3 77.2 73.3 80.9 74.9 p 83.1 73.4 79.7 71.7 85.8 71.7 t4 83.1 73.4 79.7 71.7 p 85.8 74.0 83.1 73.4 85.8 71.7 t4 85.8 74.0 83.1 73.4 p 85.1 72.1 84.2 71.7 85.8 71.7 t5 85.1 72.1 84.2 71.7 p 85.8 72.3 85.1 72.1 85.8 71.7 t5 85.8 72.3 85.1 72.1 p 85.8 71.7 94.4 71.7 94.4 77.2 85.8 77.2 s1 85.8 71.7 90.1 74.4 94.4 71.7 t2 94.1 77.0 94.4 76.9 94.4 71.7 90.1 74.4 s2 94.1 77.0 94.4 76.9 p 88.8 77.2 94.1 77.0 90.1 74.4 85.8 77.2 s2 88.8 77.2 94.1 77.0 p 85.8 77.2 90.1 74.4 85.8 71.7 t2 85.8 71.7 90.1 74.4 94.4 71.7 t3 90.7 74.9 94.4 73.3 94.4 71.7 90.1 74.4 s3 90.7 74.9 94.4 73.3 p 90.7 74.9 89.4 74.9 90.1 74.4 t3 90.7 74.9 89.4 74.9 p 85.8 75.6 89.4 74.9 90.1 74.4 85.8 71.7 s3 85.8 75.6 89.4 74.9 p 91.8 71.7 88.5 73.4 85.8 71.7 t4 91.8 71.7 88.5 73.4 p 88.5 73.4 85.8 74.0 85.8 71.7 t4 88.5 73.4 85.8 74.0 p 87.4 71.7 86.5 72.1 85.8 71.7 t5 87.4 71.7 86.5 72.1 p 86.5 72.1 85.8 72.3 85.8 71.7 t5 86.5 72.1 85.8 72.3 p 94.4 71.7 102.9 71.7 102.9 77.2 94.4 77.2 s1 98.7 74.4 100.2 71.7 94.4 71.7 98.7 74.4 s2 98.7 74.4 100.2 71.7 p 98.7 74.4 98.7 74.5 98.7 74.4 t2 98.7 74.4 98.7 74.5 p 98.7 74.5 98.2 74.7 98.7 74.4 t2 98.7 74.5 98.2 74.7 p 94.4 76.9 98.2 74.7 98.7 74.4 94.4 71.7 s2 94.4 76.9 98.2 74.7 p 96.1 71.7 95.7 72.5 94.4 71.7 t3 96.1 71.7 95.7 72.5 p 95.7 72.5 94.4 73.3 94.4 71.7 t3 95.7 72.5 94.4 73.3 p 102.9 71.7 111.5 71.7 111.5 77.2 102.9 77.2 s1 111.5 71.7 120.1 71.7 120.1 77.2 111.5 77.2 s1 114.3 71.7 115.8 74.4 115.8 74.4 120.1 71.7 s2 114.3 71.7 115.8 74.4 p 116.3 74.7 120.1 76.9 120.1 71.7 115.8 74.4 s2 116.3 74.7 120.1 76.9 p 116.3 74.7 115.8 74.5 115.8 74.4 t2 116.3 74.7 115.8 74.5 p 115.8 74.5 115.8 74.4 115.8 74.4 t2 115.8 74.5 115.8 74.4 p 118.8 72.5 118.3 71.7 120.1 71.7 t3 118.8 72.5 118.3 71.7 p 120.1 73.3 118.8 72.5 120.1 71.7 t3 120.1 73.3 118.8 72.5 p 120.1 71.7 128.7 71.7 128.7 77.2 120.1 77.2 s1 120.1 71.7 124.4 74.4 128.7 71.7 t2 128.7 71.7 124.4 74.4 128.7 77.2 t2 120.4 77.0 125.7 77.2 128.7 77.2 124.4 74.4 s2 120.4 77.0 125.7 77.2 p 120.1 76.9 120.4 77.0 124.4 74.4 120.1 71.7 s2 120.1 76.9 120.4 77.0 p 120.1 71.7 124.4 74.4 128.7 71.7 t3 125.1 74.9 128.7 75.6 128.7 71.7 124.4 74.4 s3 125.1 74.9 128.7 75.6 p 125.1 74.9 123.8 74.9 124.4 74.4 t3 125.1 74.9 123.8 74.9 p 120.1 73.3 123.8 74.9 124.4 74.4 120.1 71.7 s3 120.1 73.3 123.8 74.9 p 126.0 73.4 122.6 71.7 128.7 71.7 t4 126.0 73.4 122.6 71.7 p 128.7 74.0 126.0 73.4 128.7 71.7 t4 128.7 74.0 126.0 73.4 p 128.0 72.1 127.1 71.7 128.7 71.7 t5 128.0 72.1 127.1 71.7 p 128.7 72.3 128.0 72.1 128.7 71.7 t5 128.7 72.3 128.0 72.1 p 128.7 71.7 137.3 71.7 137.3 77.2 128.7 77.2 s1 128.7 71.7 133.0 74.4 137.3 71.7 t2 137.0 77.0 137.3 76.9 137.3 71.7 133.0 74.4 s2 137.0 77.0 137.3 76.9 p 131.7 77.2 137.0 77.0 133.0 74.4 128.7 77.2 s2 131.7 77.2 137.0 77.0 p 128.7 77.2 133.0 74.4 128.7 71.7 t2 128.7 71.7 133.0 74.4 137.3 71.7 t3 133.6 74.9 137.3 73.3 137.3 71.7 133.0 74.4 s3 133.6 74.9 137.3 73.3 p 133.6 74.9 132.3 74.9 133.0 74.4 t3 133.6 74.9 132.3 74.9 p 128.7 75.6 132.3 74.9 133.0 74.4 128.7 71.7 s3 128.7 75.6 132.3 74.9 p 134.7 71.7 131.4 73.4 128.7 71.7 t4 134.7 71.7 131.4 73.4 p 131.4 73.4 128.7 74.0 128.7 71.7 t4 131.4 73.4 128.7 74.0 p 130.3 71.7 129.4 72.1 128.7 71.7 t5 130.3 71.7 129.4 72.1 p 129.4 72.1 128.7 72.3 128.7 71.7 t5 129.4 72.1 128.7 72.3 p 137.3 71.7 145.8 71.7 145.8 77.2 137.3 77.2 s1 141.6 74.4 143.1 71.7 137.3 71.7 141.6 74.4 s2 141.6 74.4 143.1 71.7 p 141.6 74.4 141.6 74.5 141.6 74.4 t2 141.6 74.4 141.6 74.5 p 141.6 74.5 141.1 74.7 141.6 74.4 t2 141.6 74.5 141.1 74.7 p 137.3 76.9 141.1 74.7 141.6 74.4 137.3 71.7 s2 137.3 76.9 141.1 74.7 p 139.0 71.7 138.6 72.5 137.3 71.7 t3 139.0 71.7 138.6 72.5 p 138.6 72.5 137.3 73.3 137.3 71.7 t3 138.6 72.5 137.3 73.3 p 145.8 71.7 154.4 71.7 154.4 77.2 145.8 77.2 s1 154.4 71.7 163.0 71.7 163.0 77.2 154.4 77.2 s1 157.2 71.7 158.7 74.4 158.7 74.4 163.0 71.7 s2 157.2 71.7 158.7 74.4 p 159.1 74.7 163.0 76.9 163.0 71.7 158.7 74.4 s2 159.1 74.7 163.0 76.9 p 159.1 74.7 158.6 74.5 158.7 74.4 t2 159.1 74.7 158.6 74.5 p 158.6 74.5 158.7 74.4 158.7 74.4 t2 158.6 74.5 158.7 74.4 p 161.7 72.5 161.2 71.7 163.0 71.7 t3 161.7 72.5 161.2 71.7 p 163.0 73.3 161.7 72.5 163.0 71.7 t3 163.0 73.3 161.7 72.5 p 163.0 71.7 171.6 71.7 171.6 77.2 163.0 77.2 s1 163.0 71.7 167.3 74.4 171.6 71.7 t2 171.6 71.7 167.3 74.4 171.6 77.2 t2 163.3 77.0 168.6 77.2 171.6 77.2 167.3 74.4 s2 163.3 77.0 168.6 77.2 p 163.0 76.9 163.3 77.0 167.3 74.4 163.0 71.7 s2 163.0 76.9 163.3 77.0 p 163.0 71.7 167.3 74.4 171.6 71.7 t3 168.0 74.9 171.6 75.6 171.6 71.7 167.3 74.4 s3 168.0 74.9 171.6 75.6 p 168.0 74.9 166.7 74.9 167.3 74.4 t3 168.0 74.9 166.7 74.9 p 163.0 73.3 166.7 74.9 167.3 74.4 163.0 71.7 s3 163.0 73.3 166.7 74.9 p 168.9 73.4 165.5 71.7 171.6 71.7 t4 168.9 73.4 165.5 71.7 p 171.6 74.0 168.9 73.4 171.6 71.7 t4 171.6 74.0 168.9 73.4 p 170.9 72.1 170.0 71.7 171.6 71.7 t5 170.9 72.1 170.0 71.7 p 171.6 72.3 170.9 72.1 171.6 71.7 t5 171.6 72.3 170.9 72.1 p 171.6 71.7 180.2 71.7 180.2 77.2 171.6 77.2 s1 171.6 71.7 175.9 74.4 180.2 71.7 t2 179.9 77.0 180.2 76.9 180.2 71.7 175.9 74.4 s2 179.9 77.0 180.2 76.9 p 174.6 77.2 179.9 77.0 175.9 74.4 171.6 77.2 s2 174.6 77.2 179.9 77.0 p 171.6 77.2 175.9 74.4 171.6 71.7 t2 171.6 71.7 175.9 74.4 180.2 71.7 t3 176.5 74.9 180.2 73.3 180.2 71.7 175.9 74.4 s3 176.5 74.9 180.2 73.3 p 176.5 74.9 175.2 74.9 175.9 74.4 t3 176.5 74.9 175.2 74.9 p 171.6 75.6 175.2 74.9 175.9 74.4 171.6 71.7 s3 171.6 75.6 175.2 74.9 p 177.6 71.7 174.3 73.4 171.6 71.7 t4 177.6 71.7 174.3 73.4 p 174.3 73.4 171.6 74.0 171.6 71.7 t4 174.3 73.4 171.6 74.0 p 173.2 71.7 172.3 72.1 171.6 71.7 t5 173.2 71.7 172.3 72.1 p 172.3 72.1 171.6 72.3 171.6 71.7 t5 172.3 72.1 171.6 72.3 p 180.2 71.7 188.7 71.7 188.7 77.2 180.2 77.2 s1 184.5 74.4 186.0 71.7 180.2 71.7 184.4 74.4 s2 184.5 74.4 186.0 71.7 p 184.5 74.4 184.5 74.5 184.4 74.4 t2 184.5 74.4 184.5 74.5 p 184.5 74.5 184.0 74.7 184.4 74.4 t2 184.5 74.5 184.0 74.7 p 180.2 76.9 184.0 74.7 184.4 74.4 180.2 71.7 s2 180.2 76.9 184.0 74.7 p 181.9 71.7 181.5 72.5 180.2 71.7 t3 181.9 71.7 181.5 72.5 p 181.5 72.5 180.2 73.3 180.2 71.7 t3 181.5 72.5 180.2 73.3 p 188.7 71.7 197.3 71.7 197.3 77.2 188.7 77.2 s1 197.3 71.7 205.9 71.7 205.9 77.2 197.3 77.2 s1 200.1 71.7 201.5 74.4 201.6 74.4 205.9 71.7 s2 200.1 71.7 201.5 74.4 p 202.0 74.7 205.9 76.9 205.9 71.7 201.6 74.4 s2 202.0 74.7 205.9 76.9 p 202.0 74.7 201.5 74.5 201.6 74.4 t2 202.0 74.7 201.5 74.5 p 201.5 74.5 201.5 74.4 201.6 74.4 t2 201.5 74.5 201.5 74.4 p 204.6 72.5 204.1 71.7 205.9 71.7 t3 204.6 72.5 204.1 71.7 p 205.9 73.3 204.6 72.5 205.9 71.7 t3 205.9 73.3 204.6 72.5 p 205.9 71.7 214.5 71.7 214.5 77.2 205.9 77.2 s1 205.9 71.7 210.2 74.4 214.5 71.7 t2 214.5 71.7 210.2 74.4 214.5 77.2 t2 206.2 77.0 211.5 77.2 214.5 77.2 210.2 74.4 s2 206.2 77.0 211.5 77.2 p 205.9 76.9 206.2 77.0 210.2 74.4 205.9 71.7 s2 205.9 76.9 206.2 77.0 p 205.9 71.7 210.2 74.4 214.5 71.7 t3 210.9 74.9 214.5 75.6 214.5 71.7 210.2 74.4 s3 210.9 74.9 214.5 75.6 p 210.9 74.9 209.5 74.9 210.2 74.4 t3 210.9 74.9 209.5 74.9 p 205.9 73.3 209.5 74.9 210.2 74.4 205.9 71.7 s3 205.9 73.3 209.5 74.9 p 211.8 73.4 208.4 71.7 214.5 71.7 t4 211.8 73.4 208.4 71.7 p 214.5 74.0 211.8 73.4 214.5 71.7 t4 214.5 74.0 211.8 73.4 p 213.8 72.1 212.9 71.7 214.5 71.7 t5 213.8 72.1 212.9 71.7 p 214.5 72.3 213.8 72.1 214.5 71.7 t5 214.5 72.3 213.8 72.1 p 214.5 71.7 223.1 71.7 223.1 77.2 214.5 77.2 s1 214.5 71.7 218.8 74.4 223.1 71.7 t2 222.8 77.0 223.1 76.9 223.1 71.7 218.8 74.4 s2 222.8 77.0 223.1 76.9 p 217.5 77.2 222.8 77.0 218.8 74.4 214.5 77.2 s2 217.5 77.2 222.8 77.0 p 214.5 77.2 218.8 74.4 214.5 71.7 t2 214.5 71.7 218.8 74.4 223.1 71.7 t3 219.4 74.9 223.1 73.3 223.1 71.7 218.8 74.4 s3 219.4 74.9 223.1 73.3 p 219.4 74.9 218.1 74.9 218.8 74.4 t3 219.4 74.9 218.1 74.9 p 214.5 75.6 218.1 74.9 218.8 74.4 214.5 71.7 s3 214.5 75.6 218.1 74.9 p 220.5 71.7 217.2 73.4 214.5 71.7 t4 220.5 71.7 217.2 73.4 p 217.2 73.4 214.5 74.0 214.5 71.7 t4 217.2 73.4 214.5 74.0 p 216.1 71.7 215.2 72.1 214.5 71.7 t5 216.1 71.7 215.2 72.1 p 215.2 72.1 214.5 72.3 214.5 71.7 t5 215.2 72.1 214.5 72.3 p 223.1 71.7 231.6 71.7 231.6 77.2 223.1 77.2 s1 227.4 74.4 228.9 71.7 223.1 71.7 227.3 74.4 s2 227.4 74.4 228.9 71.7 p 227.4 74.4 227.4 74.5 227.3 74.4 t2 227.4 74.4 227.4 74.5 p 227.4 74.5 226.9 74.7 227.3 74.4 t2 227.4 74.5 226.9 74.7 p 223.1 76.9 226.9 74.7 227.3 74.4 223.1 71.7 s2 223.1 76.9 226.9 74.7 p 224.8 71.7 224.4 72.5 223.1 71.7 t3 224.8 71.7 224.4 72.5 p 224.4 72.5 223.1 73.3 223.1 71.7 t3 224.4 72.5 223.1 73.3 p 231.6 71.7 240.2 71.7 240.2 77.2 231.6 77.2 s1 240.2 71.7 248.8 71.7 248.8 77.2 240.2 77.2 s1 243.0 71.7 244.4 74.4 244.5 74.4 248.8 71.7 s2 243.0 71.7 244.4 74.4 p 244.9 74.7 248.8 76.9 248.8 71.7 244.5 74.4 s2 244.9 74.7 248.8 76.9 p 244.9 74.7 244.4 74.5 244.5 74.4 t2 244.9 74.7 244.4 74.5 p 244.4 74.5 244.4 74.4 244.5 74.4 t2 244.4 74.5 244.4 74.4 p 247.5 72.5 247.0 71.7 248.8 71.7 t3 247.5 72.5 247.0 71.7 p 248.8 73.3 247.5 72.5 248.8 71.7 t3 248.8 73.3 247.5 72.5 p 248.8 71.7 257.4 71.7 257.4 77.2 248.8 77.2 s1 248.8 71.7 253.1 74.4 257.4 71.7 t2 257.4 71.7 253.1 74.4 257.4 77.2 t2 249.1 77.0 254.4 77.2 257.4 77.2 253.1 74.4 s2 249.1 77.0 254.4 77.2 p 248.8 76.9 249.1 77.0 253.1 74.4 248.8 71.7 s2 248.8 76.9 249.1 77.0 p 248.8 71.7 253.1 74.4 257.4 71.7 t3 253.8 74.9 257.4 75.6 257.4 71.7 253.1 74.4 s3 253.8 74.9 257.4 75.6 p 253.8 74.9 252.4 74.9 253.1 74.4 t3 253.8 74.9 252.4 74.9 p 248.8 73.3 252.4 74.9 253.1 74.4 248.8 71.7 s3 248.8 73.3 252.4 74.9 p 254.7 73.4 251.3 71.7 257.4 71.7 t4 254.7 73.4 251.3 71.7 p 257.4 74.0 254.7 73.4 257.4 71.7 t4 257.4 74.0 254.7 73.4 p 256.7 72.1 255.8 71.7 257.4 71.7 t5 256.7 72.1 255.8 71.7 p 257.4 72.3 256.7 72.1 257.4 71.7 t5 257.4 72.3 256.7 72.1 p 257.4 71.7 265.9 71.7 265.9 77.2 257.4 77.2 s1 257.4 71.7 261.7 74.4 265.9 71.7 t2 265.7 77.0 265.9 76.9 265.9 71.7 261.7 74.4 s2 265.7 77.0 265.9 76.9 p 260.4 77.2 265.7 77.0 261.7 74.4 257.4 77.2 s2 260.4 77.2 265.7 77.0 p 257.4 77.2 261.7 74.4 257.4 71.7 t2 257.4 71.7 261.7 74.4 265.9 71.7 t3 262.3 74.9 265.9 73.3 265.9 71.7 261.7 74.4 s3 262.3 74.9 265.9 73.3 p 262.3 74.9 261.0 74.9 261.7 74.4 t3 262.3 74.9 261.0 74.9 p 257.4 75.6 261.0 74.9 261.7 74.4 257.4 71.7 s3 257.4 75.6 261.0 74.9 p 263.4 71.7 260.1 73.4 257.4 71.7 t4 263.4 71.7 260.1 73.4 p 260.1 73.4 257.4 74.0 257.4 71.7 t4 260.1 73.4 257.4 74.0 p 259.0 71.7 258.1 72.1 257.4 71.7 t5 259.0 71.7 258.1 72.1 p 258.1 72.1 257.4 72.3 257.4 71.7 t5 258.1 72.1 257.4 72.3 p 265.9 71.7 274.5 71.7 274.5 77.2 265.9 77.2 s1 270.3 74.4 271.8 71.7 265.9 71.7 270.2 74.4 s2 270.3 74.4 271.8 71.7 p 270.3 74.4 270.3 74.5 270.2 74.4 t2 270.3 74.4 270.3 74.5 p 270.3 74.5 269.8 74.7 270.2 74.4 t2 270.3 74.5 269.8 74.7 p 265.9 76.9 269.8 74.7 270.2 74.4 265.9 71.7 s2 265.9 76.9 269.8 74.7 p 267.7 71.7 267.2 72.5 265.9 71.7 t3 267.7 71.7 267.2 72.5 p 267.2 72.5 265.9 73.3 265.9 71.7 t3 267.2 72.5 265.9 73.3 p 274.5 71.7 283.1 71.7 283.1 77.2 274.5 77.2 s1 283.1 71.7 291.7 71.7 291.7 77.2 283.1 77.2 s1 285.9 71.7 287.3 74.4 287.4 74.4 291.7 71.7 s2 285.9 71.7 287.3 74.4 p 287.8 74.7 291.7 76.9 291.7 71.7 287.4 74.4 s2 287.8 74.7 291.7 76.9 p 287.8 74.7 287.3 74.5 287.4 74.4 t2 287.8 74.7 287.3 74.5 p 287.3 74.5 287.3 74.4 287.4 74.4 t2 287.3 74.5 287.3 74.4 p 290.4 72.5 289.9 71.7 291.7 71.7 t3 290.4 72.5 289.9 71.7 p 291.7 73.3 290.4 72.5 291.7 71.7 t3 291.7 73.3 290.4 72.5 p 291.7 71.7 300.3 71.7 300.3 77.2 291.7 77.2 s1 291.7 71.7 296.0 74.4 300.3 71.7 t2 300.3 71.7 296.0 74.4 300.3 77.2 t2 292.0 77.0 297.3 77.2 300.3 77.2 296.0 74.4 s2 292.0 77.0 297.3 77.2 p 291.7 76.9 292.0 77.0 296.0 74.4 291.7 71.7 s2 291.7 76.9 292.0 77.0 p 291.7 71.7 296.0 74.4 300.3 71.7 t3 296.7 74.9 300.3 75.6 300.3 71.7 296.0 74.4 s3 296.7 74.9 300.3 75.6 p 296.7 74.9 295.3 74.9 296.0 74.4 t3 296.7 74.9 295.3 74.9 p 291.7 73.3 295.3 74.9 296.0 74.4 291.7 71.7 s3 291.7 73.3 295.3 74.9 p 297.6 73.4 294.2 71.7 300.3 71.7 t4 297.6 73.4 294.2 71.7 p 300.3 74.0 297.6 73.4 300.3 71.7 t4 300.3 74.0 297.6 73.4 p 299.6 72.1 298.7 71.7 300.3 71.7 t5 299.6 72.1 298.7 71.7 p 300.3 72.3 299.6 72.1 300.3 71.7 t5 300.3 72.3 299.6 72.1 p 0.0 66.2 8.6 66.2 8.6 71.7 0.0 71.7 s3 0.0 66.2 4.3 68.9 8.6 66.2 t4 8.1 71.4 8.6 71.0 8.6 66.2 4.3 68.9 s4 8.1 71.4 8.6 71.0 p 6.0 71.7 8.1 71.4 4.3 68.9 0.0 71.7 s4 6.0 71.7 8.1 71.4 p 0.0 71.7 4.3 68.9 0.0 66.2 t4 0.0 66.2 4.3 68.9 8.6 66.2 t5 7.3 70.8 8.6 69.9 8.6 66.2 4.3 68.9 s5 7.3 70.8 8.6 69.9 p 1.6 71.7 7.3 70.8 4.3 68.9 0.0 71.7 s5 1.6 71.7 7.3 70.8 p 0.0 71.7 4.3 68.9 0.0 66.2 t5 0.0 66.2 4.3 68.9 8.6 66.2 t6 6.4 70.3 8.6 68.7 8.6 66.2 4.3 68.9 s6 6.4 70.3 8.6 68.7 p 6.4 70.3 0.9 71.1 4.3 68.9 t6 6.4 70.3 0.9 71.1 p 0.0 71.4 0.9 71.1 4.3 68.9 0.0 66.2 s6 0.0 71.4 0.9 71.1 p 0.0 66.2 4.3 68.9 8.6 66.2 t7 5.6 69.8 8.6 67.6 8.6 66.2 4.3 68.9 s7 5.6 69.8 8.6 67.6 p 5.6 69.8 2.2 70.3 4.3 68.9 t7 5.6 69.8 2.2 70.3 p 0.0 70.9 2.2 70.3 4.3 68.9 0.0 66.2 s7 0.0 70.9 2.2 70.3 p 0.0 66.2 4.3 68.9 8.6 66.2 t8 4.7 69.2 8.6 66.4 8.6 66.2 4.3 68.9 s8 4.7 69.2 8.6 66.4 p 4.7 69.2 3.6 69.4 4.3 68.9 t8 4.7 69.2 3.6 69.4 p 0.0 70.5 3.6 69.4 4.3 68.9 0.0 66.2 s8 0.0 70.5 3.6 69.4 p 8.6 66.2 17.2 66.2 17.2 71.7 8.6 71.7 s1 16.2 66.8 16.6 66.2 8.6 66.2 12.9 68.9 s2 16.2 66.8 16.6 66.2 p 16.2 66.8 15.9 70.9 12.9 68.9 t2 16.2 66.8 15.9 70.9 p 14.4 71.7 15.9 70.9 12.9 68.9 8.6 71.7 s2 14.4 71.7 15.9 70.9 p 8.6 71.7 12.9 68.9 8.6 66.2 t2 14.2 68.1 15.3 66.2 8.6 66.2 12.9 68.9 s3 14.2 68.1 15.3 66.2 p 14.2 68.1 14.0 69.7 12.9 68.9 t3 14.2 68.1 14.0 69.7 p 10.3 71.7 14.0 69.7 12.9 68.9 8.6 71.7 s3 10.3 71.7 14.0 69.7 p 8.6 71.7 12.9 68.9 8.6 66.2 t3 14.0 66.2 12.5 68.7 8.6 66.2 t4 14.0 66.2 12.5 68.7 p 12.5 68.7 8.6 71.0 8.6 66.2 t4 12.5 68.7 8.6 71.0 p 12.7 66.2 11.6 68.1 8.6 66.2 t5 12.7 66.2 11.6 68.1 p 11.6 68.1 8.6 69.9 8.6 66.2 t5 11.6 68.1 8.6 69.9 p 11.4 66.2 10.6 67.5 8.6 66.2 t6 11.4 66.2 10.6 67.5 p 10.6 67.5 8.6 68.7 8.6 66.2 t6 10.6 67.5 8.6 68.7 p 10.1 66.2 9.7 66.9 8.6 66.2 t7 10.1 66.2 9.7 66.9 p 9.7 66.9 8.6 67.6 8.6 66.2 t7 9.7 66.9 8.6 67.6 p 8.8 66.2 8.8 66.3 8.6 66.2 t8 8.8 66.2 8.8 66.3 p 8.8 66.3 8.6 66.4 8.6 66.2 t8 8.8 66.3 8.6 66.4 p 17.2 66.2 25.7 66.2 25.7 71.7 17.2 71.7 s1 25.7 66.2 34.3 66.2 34.3 71.7 25.7 71.7 s1 26.3 66.2 26.7 66.8 30.0 68.9 34.3 66.2 s2 26.3 66.2 26.7 66.8 p 34.3 66.2 30.0 68.9 34.3 71.7 t2 27.0 70.9 28.5 71.7 34.3 71.7 30.0 68.9 s2 27.0 70.9 28.5 71.7 p 27.0 70.9 26.7 66.8 30.0 68.9 t2 27.0 70.9 26.7 66.8 p 27.6 66.2 28.7 68.1 30.0 68.9 34.3 66.2 s3 27.6 66.2 28.7 68.1 p 34.3 66.2 30.0 68.9 34.3 71.7 t3 28.9 69.7 32.6 71.7 34.3 71.7 30.0 68.9 s3 28.9 69.7 32.6 71.7 p 28.9 69.7 28.7 68.1 30.0 68.9 t3 28.9 69.7 28.7 68.1 p 30.4 68.7 28.9 66.2 34.3 66.2 t4 30.4 68.7 28.9 66.2 p 34.3 71.0 30.4 68.7 34.3 66.2 t4 34.3 71.0 30.4 68.7 p 31.3 68.1 30.2 66.2 34.3 66.2 t5 31.3 68.1 30.2 66.2 p 34.3 69.9 31.3 68.1 34.3 66.2 t5 34.3 69.9 31.3 68.1 p 32.3 67.5 31.5 66.2 34.3 66.2 t6 32.3 67.5 31.5 66.2 p 34.3 68.7 32.3 67.5 34.3 66.2 t6 34.3 68.7 32.3 67.5 p 33.2 66.9 32.8 66.2 34.3 66.2 t7 33.2 66.9 32.8 66.2 p 34.3 67.6 33.2 66.9 34.3 66.2 t7 34.3 67.6 33.2 66.9 p 34.1 66.3 34.1 66.2 34.3 66.2 t8 34.1 66.3 34.1 66.2 p 34.3 66.4 34.1 66.3 34.3 66.2 t8 34.3 66.4 34.1 66.3 p 34.3 66.2 42.9 66.2 42.9 71.7 34.3 71.7 s3 34.3 66.2 38.6 68.9 42.9 66.2 t4 42.9 66.2 38.6 68.9 42.9 71.7 t4 34.8 71.4 36.8 71.7 42.9 71.7 38.6 68.9 s4 34.8 71.4 36.8 71.7 p 34.3 71.0 34.8 71.4 38.6 68.9 34.3 66.2 s4 34.3 71.0 34.8 71.4 p 34.3 66.2 38.6 68.9 42.9 66.2 t5 42.9 66.2 38.6 68.9 42.9 71.7 t5 35.6 70.8 41.3 71.7 42.9 71.7 38.6 68.9 s5 35.6 70.8 41.3 71.7 p 34.3 69.9 35.6 70.8 38.6 68.9 34.3 66.2 s5 34.3 69.9 35.6 70.8 p 34.3 66.2 38.6 68.9 42.9 66.2 t6 42.0 71.1 42.9 71.4 42.9 66.2 38.6 68.9 s6 42.0 71.1 42.9 71.4 p 42.0 71.1 36.5 70.3 38.6 68.9 t6 42.0 71.1 36.5 70.3 p 34.3 68.7 36.5 70.3 38.6 68.9 34.3 66.2 s6 34.3 68.7 36.5 70.3 p 34.3 66.2 38.6 68.9 42.9 66.2 t7 40.7 70.3 42.9 70.9 42.9 66.2 38.6 68.9 s7 40.7 70.3 42.9 70.9 p 40.7 70.3 37.3 69.8 38.6 68.9 t7 40.7 70.3 37.3 69.8 p 34.3 67.6 37.3 69.8 38.6 68.9 34.3 66.2 s7 34.3 67.6 37.3 69.8 p 34.3 66.2 38.6 68.9 42.9 66.2 t8 39.3 69.4 42.9 70.5 42.9 66.2 38.6 68.9 s8 39.3 69.4 42.9 70.5 p 39.3 69.4 38.2 69.2 38.6 68.9 t8 39.3 69.4 38.2 69.2 p 34.3 66.4 38.2 69.2 38.6 68.9 34.3 66.2 s8 34.3 66.4 38.2 69.2 p 42.9 66.2 51.5 66.2 51.5 71.7 42.9 71.7 s3 42.9 66.2 47.2 68.9 51.5 66.2 t4 51.0 71.4 51.5 71.0 51.5 66.2 47.2 68.9 s4 51.0 71.4 51.5 71.0 p 48.9 71.7 51.0 71.4 47.2 68.9 42.9 71.7 s4 48.9 71.7 51.0 71.4 p 42.9 71.7 47.2 68.9 42.9 66.2 t4 42.9 66.2 47.2 68.9 51.5 66.2 t5 50.2 70.8 51.5 69.9 51.5 66.2 47.2 68.9 s5 50.2 70.8 51.5 69.9 p 44.5 71.7 50.2 70.8 47.2 68.9 42.9 71.7 s5 44.5 71.7 50.2 70.8 p 42.9 71.7 47.2 68.9 42.9 66.2 t5 42.9 66.2 47.2 68.9 51.5 66.2 t6 49.3 70.3 51.5 68.7 51.5 66.2 47.2 68.9 s6 49.3 70.3 51.5 68.7 p 49.3 70.3 43.8 71.1 47.2 68.9 t6 49.3 70.3 43.8 71.1 p 42.9 71.4 43.8 71.1 47.2 68.9 42.9 66.2 s6 42.9 71.4 43.8 71.1 p 42.9 66.2 47.2 68.9 51.5 66.2 t7 48.5 69.8 51.5 67.6 51.5 66.2 47.2 68.9 s7 48.5 69.8 51.5 67.6 p 48.5 69.8 45.1 70.3 47.2 68.9 t7 48.5 69.8 45.1 70.3 p 42.9 70.9 45.1 70.3 47.2 68.9 42.9 66.2 s7 42.9 70.9 45.1 70.3 p 42.9 66.2 47.2 68.9 51.5 66.2 t8 47.6 69.2 51.5 66.4 51.5 66.2 47.2 68.9 s8 47.6 69.2 51.5 66.4 p 47.6 69.2 46.5 69.4 47.2 68.9 t8 47.6 69.2 46.5 69.4 p 42.9 70.5 46.5 69.4 47.2 68.9 42.9 66.2 s8 42.9 70.5 46.5 69.4 p 51.5 66.2 60.1 66.2 60.1 71.7 51.5 71.7 s1 59.1 66.8 59.5 66.2 51.5 66.2 55.8 68.9 s2 59.1 66.8 59.5 66.2 p 59.1 66.8 58.8 70.9 55.8 68.9 t2 59.1 66.8 58.8 70.9 p 57.3 71.7 58.8 70.9 55.8 68.9 51.5 71.7 s2 57.3 71.7 58.8 70.9 p 51.5 71.7 55.8 68.9 51.5 66.2 t2 57.1 68.1 58.2 66.2 51.5 66.2 55.8 68.9 s3 57.1 68.1 58.2 66.2 p 57.1 68.1 56.9 69.7 55.8 68.9 t3 57.1 68.1 56.9 69.7 p 53.2 71.7 56.9 69.7 55.8 68.9 51.5 71.7 s3 53.2 71.7 56.9 69.7 p 51.5 71.7 55.8 68.9 51.5 66.2 t3 56.9 66.2 55.4 68.7 51.5 66.2 t4 56.9 66.2 55.4 68.7 p 55.4 68.7 51.5 71.0 51.5 66.2 t4 55.4 68.7 51.5 71.0 p 55.6 66.2 54.5 68.1 51.5 66.2 t5 55.6 66.2 54.5 68.1 p 54.5 68.1 51.5 69.9 51.5 66.2 t5 54.5 68.1 51.5 69.9 p 54.3 66.2 53.5 67.5 51.5 66.2 t6 54.3 66.2 53.5 67.5 p 53.5 67.5 51.5 68.7 51.5 66.2 t6 53.5 67.5 51.5 68.7 p 53.0 66.2 52.6 66.9 51.5 66.2 t7 53.0 66.2 52.6 66.9 p 52.6 66.9 51.5 67.6 51.5 66.2 t7 52.6 66.9 51.5 67.6 p 51.7 66.2 51.7 66.3 51.5 66.2 t8 51.7 66.2 51.7 66.3 p 51.7 66.3 51.5 66.4 51.5 66.2 t8 51.7 66.3 51.5 66.4 p 60.1 66.2 68.6 66.2 68.6 71.7 60.1 71.7 s1 68.6 66.2 77.2 66.2 77.2 71.7 68.6 71.7 s1 69.2 66.2 69.6 66.8 72.9 68.9 77.2 66.2 s2 69.2 66.2 69.6 66.8 p 77.2 66.2 72.9 68.9 77.2 71.7 t2 69.9 70.9 71.4 71.7 77.2 71.7 72.9 68.9 s2 69.9 70.9 71.4 71.7 p 69.9 70.9 69.6 66.8 72.9 68.9 t2 69.9 70.9 69.6 66.8 p 70.5 66.2 71.6 68.1 72.9 68.9 77.2 66.2 s3 70.5 66.2 71.6 68.1 p 77.2 66.2 72.9 68.9 77.2 71.7 t3 71.8 69.7 75.5 71.7 77.2 71.7 72.9 68.9 s3 71.8 69.7 75.5 71.7 p 71.8 69.7 71.6 68.1 72.9 68.9 t3 71.8 69.7 71.6 68.1 p 73.3 68.7 71.8 66.2 77.2 66.2 t4 73.3 68.7 71.8 66.2 p 77.2 71.0 73.3 68.7 77.2 66.2 t4 77.2 71.0 73.3 68.7 p 74.2 68.1 73.1 66.2 77.2 66.2 t5 74.2 68.1 73.1 66.2 p 77.2 69.9 74.2 68.1 77.2 66.2 t5 77.2 69.9 74.2 68.1 p 75.1 67.5 74.4 66.2 77.2 66.2 t6 75.1 67.5 74.4 66.2 p 77.2 68.7 75.1 67.5 77.2 66.2 t6 77.2 68.7 75.1 67.5 p 76.1 66.9 75.7 66.2 77.2 66.2 t7 76.1 66.9 75.7 66.2 p 77.2 67.6 76.1 66.9 77.2 66.2 t7 77.2 67.6 76.1 66.9 p 77.0 66.3 77.0 66.2 77.2 66.2 t8 77.0 66.3 77.0 66.2 p 77.2 66.4 77.0 66.3 77.2 66.2 t8 77.2 66.4 77.0 66.3 p 77.2 66.2 85.8 66.2 85.8 71.7 77.2 71.7 s3 77.2 66.2 81.5 68.9 85.8 66.2 t4 85.8 66.2 81.5 68.9 85.8 71.7 t4 77.7 71.4 79.7 71.7 85.8 71.7 81.5 68.9 s4 77.7 71.4 79.7 71.7 p 77.2 71.0 77.7 71.4 81.5 68.9 77.2 66.2 s4 77.2 71.0 77.7 71.4 p 77.2 66.2 81.5 68.9 85.8 66.2 t5 85.8 66.2 81.5 68.9 85.8 71.7 t5 78.5 70.8 84.2 71.7 85.8 71.7 81.5 68.9 s5 78.5 70.8 84.2 71.7 p 77.2 69.9 78.5 70.8 81.5 68.9 77.2 66.2 s5 77.2 69.9 78.5 70.8 p 77.2 66.2 81.5 68.9 85.8 66.2 t6 84.9 71.1 85.8 71.4 85.8 66.2 81.5 68.9 s6 84.9 71.1 85.8 71.4 p 84.9 71.1 79.4 70.3 81.5 68.9 t6 84.9 71.1 79.4 70.3 p 77.2 68.7 79.4 70.3 81.5 68.9 77.2 66.2 s6 77.2 68.7 79.4 70.3 p 77.2 66.2 81.5 68.9 85.8 66.2 t7 83.6 70.3 85.8 70.9 85.8 66.2 81.5 68.9 s7 83.6 70.3 85.8 70.9 p 83.6 70.3 80.2 69.8 81.5 68.9 t7 83.6 70.3 80.2 69.8 p 77.2 67.6 80.2 69.8 81.5 68.9 77.2 66.2 s7 77.2 67.6 80.2 69.8 p 77.2 66.2 81.5 68.9 85.8 66.2 t8 82.2 69.4 85.8 70.5 85.8 66.2 81.5 68.9 s8 82.2 69.4 85.8 70.5 p 82.2 69.4 81.1 69.2 81.5 68.9 t8 82.2 69.4 81.1 69.2 p 77.2 66.4 81.1 69.2 81.5 68.9 77.2 66.2 s8 77.2 66.4 81.1 69.2 p 85.8 66.2 94.4 66.2 94.4 71.7 85.8 71.7 s3 85.8 66.2 90.1 68.9 94.4 66.2 t4 93.9 71.4 94.4 71.0 94.4 66.2 90.1 68.9 s4 93.9 71.4 94.4 71.0 p 91.8 71.7 93.9 71.4 90.1 68.9 85.8 71.7 s4 91.8 71.7 93.9 71.4 p 85.8 71.7 90.1 68.9 85.8 66.2 t4 85.8 66.2 90.1 68.9 94.4 66.2 t5 93.0 70.8 94.4 69.9 94.4 66.2 90.1 68.9 s5 93.0 70.8 94.4 69.9 p 87.4 71.7 93.0 70.8 90.1 68.9 85.8 71.7 s5 87.4 71.7 93.0 70.8 p 85.8 71.7 90.1 68.9 85.8 66.2 t5 85.8 66.2 90.1 68.9 94.4 66.2 t6 92.2 70.3 94.4 68.7 94.4 66.2 90.1 68.9 s6 92.2 70.3 94.4 68.7 p 92.2 70.3 86.7 71.1 90.1 68.9 t6 92.2 70.3 86.7 71.1 p 85.8 71.4 86.7 71.1 90.1 68.9 85.8 66.2 s6 85.8 71.4 86.7 71.1 p 85.8 66.2 90.1 68.9 94.4 66.2 t7 91.4 69.8 94.4 67.6 94.4 66.2 90.1 68.9 s7 91.4 69.8 94.4 67.6 p 91.4 69.8 88.0 70.3 90.1 68.9 t7 91.4 69.8 88.0 70.3 p 85.8 70.9 88.0 70.3 90.1 68.9 85.8 66.2 s7 85.8 70.9 88.0 70.3 p 85.8 66.2 90.1 68.9 94.4 66.2 t8 90.5 69.2 94.4 66.4 94.4 66.2 90.1 68.9 s8 90.5 69.2 94.4 66.4 p 90.5 69.2 89.4 69.4 90.1 68.9 t8 90.5 69.2 89.4 69.4 p 85.8 70.5 89.4 69.4 90.1 68.9 85.8 66.2 s8 85.8 70.5 89.4 69.4 p 94.4 66.2 102.9 66.2 102.9 71.7 94.4 71.7 s1 102.0 66.8 102.4 66.2 94.4 66.2 98.7 68.9 s2 102.0 66.8 102.4 66.2 p 102.0 66.8 101.7 70.9 98.7 68.9 t2 102.0 66.8 101.7 70.9 p 100.2 71.7 101.7 70.9 98.7 68.9 94.4 71.7 s2 100.2 71.7 101.7 70.9 p 94.4 71.7 98.7 68.9 94.4 66.2 t2 100.0 68.1 101.1 66.2 94.4 66.2 98.7 68.9 s3 100.0 68.1 101.1 66.2 p 100.0 68.1 99.8 69.7 98.7 68.9 t3 100.0 68.1 99.8 69.7 p 96.1 71.7 99.8 69.7 98.7 68.9 94.4 71.7 s3 96.1 71.7 99.8 69.7 p 94.4 71.7 98.7 68.9 94.4 66.2 t3 99.8 66.2 98.3 68.7 94.4 66.2 t4 99.8 66.2 98.3 68.7 p 98.3 68.7 94.4 71.0 94.4 66.2 t4 98.3 68.7 94.4 71.0 p 98.5 66.2 97.4 68.1 94.4 66.2 t5 98.5 66.2 97.4 68.1 p 97.4 68.1 94.4 69.9 94.4 66.2 t5 97.4 68.1 94.4 69.9 p 97.2 66.2 96.4 67.5 94.4 66.2 t6 97.2 66.2 96.4 67.5 p 96.4 67.5 94.4 68.7 94.4 66.2 t6 96.4 67.5 94.4 68.7 p 95.9 66.2 95.5 66.9 94.4 66.2 t7 95.9 66.2 95.5 66.9 p 95.5 66.9 94.4 67.6 94.4 66.2 t7 95.5 66.9 94.4 67.6 p 94.6 66.2 94.6 66.3 94.4 66.2 t8 94.6 66.2 94.6 66.3 p 94.6 66.3 94.4 66.4 94.4 66.2 t8 94.6 66.3 94.4 66.4 p 102.9 66.2 111.5 66.2 111.5 71.7 102.9 71.7 s1 111.5 66.2 120.1 66.2 120.1 71.7 111.5 71.7 s1 112.1 66.2 112.4 66.8 115.8 68.9 120.1 66.2 s2 112.1 66.2 112.4 66.8 p 120.1 66.2 115.8 68.9 120.1 71.7 t2 112.8 70.9 114.3 71.7 120.1 71.7 115.8 68.9 s2 112.8 70.9 114.3 71.7 p 112.8 70.9 112.4 66.8 115.8 68.9 t2 112.8 70.9 112.4 66.8 p 113.4 66.2 114.5 68.1 115.8 68.9 120.1 66.2 s3 113.4 66.2 114.5 68.1 p 120.1 66.2 115.8 68.9 120.1 71.7 t3 114.6 69.7 118.3 71.7 120.1 71.7 115.8 68.9 s3 114.6 69.7 118.3 71.7 p 114.6 69.7 114.5 68.1 115.8 68.9 t3 114.6 69.7 114.5 68.1 p 116.2 68.7 114.7 66.2 120.1 66.2 t4 116.2 68.7 114.7 66.2 p 120.1 71.0 116.2 68.7 120.1 66.2 t4 120.1 71.0 116.2 68.7 p 117.1 68.1 116.0 66.2 120.1 66.2 t5 117.1 68.1 116.0 66.2 p 120.1 69.9 117.1 68.1 120.1 66.2 t5 120.1 69.9 117.1 68.1 p 118.0 67.5 117.3 66.2 120.1 66.2 t6 118.0 67.5 117.3 66.2 p 120.1 68.7 118.0 67.5 120.1 66.2 t6 120.1 68.7 118.0 67.5 p 119.0 66.9 118.6 66.2 120.1 66.2 t7 119.0 66.9 118.6 66.2 p 120.1 67.6 119.0 66.9 120.1 66.2 t7 120.1 67.6 119.0 66.9 p 119.9 66.3 119.9 66.2 120.1 66.2 t8 119.9 66.3 119.9 66.2 p 120.1 66.4 119.9 66.3 120.1 66.2 t8 120.1 66.4 119.9 66.3 p 120.1 66.2 128.7 66.2 128.7 71.7 120.1 71.7 s3 120.1 66.2 124.4 68.9 128.7 66.2 t4 128.7 66.2 124.4 68.9 128.7 71.7 t4 120.6 71.4 122.6 71.7 128.7 71.7 124.4 68.9 s4 120.6 71.4 122.6 71.7 p 120.1 71.0 120.6 71.4 124.4 68.9 120.1 66.2 s4 120.1 71.0 120.6 71.4 p 120.1 66.2 124.4 68.9 128.7 66.2 t5 128.7 66.2 124.4 68.9 128.7 71.7 t5 121.4 70.8 127.1 71.7 128.7 71.7 124.4 68.9 s5 121.4 70.8 127.1 71.7 p 120.1 69.9 121.4 70.8 124.4 68.9 120.1 66.2 s5 120.1 69.9 121.4 70.8 p 120.1 66.2 124.4 68.9 128.7 66.2 t6 127.8 71.1 128.7 71.4 128.7 66.2 124.4 68.9 s6 127.8 71.1 128.7 71.4 p 127.8 71.1 122.3 70.3 124.4 68.9 t6 127.8 71.1 122.3 70.3 p 120.1 68.7 122.3 70.3 124.4 68.9 120.1 66.2 s6 120.1 68.7 122.3 70.3 p 120.1 66.2 124.4 68.9 128.7 66.2 t7 126.5 70.3 128.7 70.9 128.7 66.2 124.4 68.9 s7 126.5 70.3 128.7 70.9 p 126.5 70.3 123.1 69.8 124.4 68.9 t7 126.5 70.3 123.1 69.8 p 120.1 67.6 123.1 69.8 124.4 68.9 120.1 66.2 s7 120.1 67.6 123.1 69.8 p 120.1 66.2 124.4 68.9 128.7 66.2 t8 125.1 69.4 128.7 70.5 128.7 66.2 124.4 68.9 s8 125.1 69.4 128.7 70.5 p 125.1 69.4 123.9 69.2 124.4 68.9 t8 125.1 69.4 123.9 69.2 p 120.1 66.4 123.9 69.2 124.4 68.9 120.1 66.2 s8 120.1 66.4 123.9 69.2 p 128.7 66.2 137.3 66.2 137.3 71.7 128.7 71.7 s3 128.7 66.2 133.0 68.9 137.3 66.2 t4 136.8 71.4 137.3 71.0 137.3 66.2 133.0 68.9 s4 136.8 71.4 137.3 71.0 p 134.7 71.7 136.8 71.4 133.0 68.9 128.7 71.7 s4 134.7 71.7 136.8 71.4 p 128.7 71.7 133.0 68.9 128.7 66.2 t4 128.7 66.2 133.0 68.9 137.3 66.2 t5 135.9 70.8 137.3 69.9 137.3 66.2 133.0 68.9 s5 135.9 70.8 137.3 69.9 p 130.3 71.7 135.9 70.8 133.0 68.9 128.7 71.7 s5 130.3 71.7 135.9 70.8 p 128.7 71.7 133.0 68.9 128.7 66.2 t5 128.7 66.2 133.0 68.9 137.3 66.2 t6 135.1 70.3 137.3 68.7 137.3 66.2 133.0 68.9 s6 135.1 70.3 137.3 68.7 p 135.1 70.3 129.6 71.1 133.0 68.9 t6 135.1 70.3 129.6 71.1 p 128.7 71.4 129.6 71.1 133.0 68.9 128.7 66.2 s6 128.7 71.4 129.6 71.1 p 128.7 66.2 133.0 68.9 137.3 66.2 t7 134.3 69.8 137.3 67.6 137.3 66.2 133.0 68.9 s7 134.3 69.8 137.3 67.6 p 134.3 69.8 130.9 70.3 133.0 68.9 t7 134.3 69.8 130.9 70.3 p 128.7 70.9 130.9 70.3 133.0 68.9 128.7 66.2 s7 128.7 70.9 130.9 70.3 p 128.7 66.2 133.0 68.9 137.3 66.2 t8 133.4 69.2 137.3 66.4 137.3 66.2 133.0 68.9 s8 133.4 69.2 137.3 66.4 p 133.4 69.2 132.3 69.4 133.0 68.9 t8 133.4 69.2 132.3 69.4 p 128.7 70.5 132.3 69.4 133.0 68.9 128.7 66.2 s8 128.7 70.5 132.3 69.4 p 137.3 66.2 145.8 66.2 145.8 71.7 137.3 71.7 s1 144.9 66.8 145.3 66.2 137.3 66.2 141.6 68.9 s2 144.9 66.8 145.3 66.2 p 144.9 66.8 144.6 70.9 141.6 68.9 t2 144.9 66.8 144.6 70.9 p 143.1 71.7 144.6 70.9 141.6 68.9 137.3 71.7 s2 143.1 71.7 144.6 70.9 p 137.3 71.7 141.6 68.9 137.3 66.2 t2 142.8 68.1 144.0 66.2 137.3 66.2 141.6 68.9 s3 142.8 68.1 144.0 66.2 p 142.8 68.1 142.7 69.7 141.6 68.9 t3 142.8 68.1 142.7 69.7 p 139.0 71.7 142.7 69.7 141.6 68.9 137.3 71.7 s3 139.0 71.7 142.7 69.7 p 137.3 71.7 141.6 68.9 137.3 66.2 t3 142.7 66.2 141.2 68.7 137.3 66.2 t4 142.7 66.2 141.2 68.7 p 141.2 68.7 137.3 71.0 137.3 66.2 t4 141.2 68.7 137.3 71.0 p 141.4 66.2 140.3 68.1 137.3 66.2 t5 141.4 66.2 140.3 68.1 p 140.3 68.1 137.3 69.9 137.3 66.2 t5 140.3 68.1 137.3 69.9 p 140.1 66.2 139.3 67.5 137.3 66.2 t6 140.1 66.2 139.3 67.5 p 139.3 67.5 137.3 68.7 137.3 66.2 t6 139.3 67.5 137.3 68.7 p 138.8 66.2 138.4 66.9 137.3 66.2 t7 138.8 66.2 138.4 66.9 p 138.4 66.9 137.3 67.6 137.3 66.2 t7 138.4 66.9 137.3 67.6 p 137.5 66.2 137.4 66.3 137.3 66.2 t8 137.5 66.2 137.4 66.3 p 137.4 66.3 137.3 66.4 137.3 66.2 t8 137.4 66.3 137.3 66.4 p 145.8 66.2 154.4 66.2 154.4 71.7 145.8 71.7 s1 154.4 66.2 163.0 66.2 163.0 71.7 154.4 71.7 s1 155.0 66.2 155.3 66.8 158.7 68.9 163.0 66.2 s2 155.0 66.2 155.3 66.8 p 163.0 66.2 158.7 68.9 163.0 71.7 t2 155.7 70.9 157.2 71.7 163.0 71.7 158.7 68.9 s2 155.7 70.9 157.2 71.7 p 155.7 70.9 155.3 66.8 158.7 68.9 t2 155.7 70.9 155.3 66.8 p 156.3 66.2 157.4 68.1 158.7 68.9 163.0 66.2 s3 156.3 66.2 157.4 68.1 p 163.0 66.2 158.7 68.9 163.0 71.7 t3 157.5 69.7 161.2 71.7 163.0 71.7 158.7 68.9 s3 157.5 69.7 161.2 71.7 p 157.5 69.7 157.4 68.1 158.7 68.9 t3 157.5 69.7 157.4 68.1 p 159.1 68.7 157.6 66.2 163.0 66.2 t4 159.1 68.7 157.6 66.2 p 163.0 71.0 159.1 68.7 163.0 66.2 t4 163.0 71.0 159.1 68.7 p 160.0 68.1 158.9 66.2 163.0 66.2 t5 160.0 68.1 158.9 66.2 p 163.0 69.9 160.0 68.1 163.0 66.2 t5 163.0 69.9 160.0 68.1 p 160.9 67.5 160.2 66.2 163.0 66.2 t6 160.9 67.5 160.2 66.2 p 163.0 68.7 160.9 67.5 163.0 66.2 t6 163.0 68.7 160.9 67.5 p 161.9 66.9 161.5 66.2 163.0 66.2 t7 161.9 66.9 161.5 66.2 p 163.0 67.6 161.9 66.9 163.0 66.2 t7 163.0 67.6 161.9 66.9 p 162.8 66.3 162.7 66.2 163.0 66.2 t8 162.8 66.3 162.7 66.2 p 163.0 66.4 162.8 66.3 163.0 66.2 t8 163.0 66.4 162.8 66.3 p 163.0 66.2 171.6 66.2 171.6 71.7 163.0 71.7 s3 163.0 66.2 167.3 68.9 171.6 66.2 t4 171.6 66.2 167.3 68.9 171.6 71.7 t4 163.5 71.4 165.5 71.7 171.6 71.7 167.3 68.9 s4 163.5 71.4 165.5 71.7 p 163.0 71.0 163.5 71.4 167.3 68.9 163.0 66.2 s4 163.0 71.0 163.5 71.4 p 163.0 66.2 167.3 68.9 171.6 66.2 t5 171.6 66.2 167.3 68.9 171.6 71.7 t5 164.3 70.8 170.0 71.7 171.6 71.7 167.3 68.9 s5 164.3 70.8 170.0 71.7 p 163.0 69.9 164.3 70.8 167.3 68.9 163.0 66.2 s5 163.0 69.9 164.3 70.8 p 163.0 66.2 167.3 68.9 171.6 66.2 t6 170.7 71.1 171.6 71.4 171.6 66.2 167.3 68.9 s6 170.7 71.1 171.6 71.4 p 170.7 71.1 165.2 70.3 167.3 68.9 t6 170.7 71.1 165.2 70.3 p 163.0 68.7 165.2 70.3 167.3 68.9 163.0 66.2 s6 163.0 68.7 165.2 70.3 p 163.0 66.2 167.3 68.9 171.6 66.2 t7 169.4 70.3 171.6 70.9 171.6 66.2 167.3 68.9 s7 169.4 70.3 171.6 70.9 p 169.4 70.3 166.0 69.8 167.3 68.9 t7 169.4 70.3 166.0 69.8 p 163.0 67.6 166.0 69.8 167.3 68.9 163.0 66.2 s7 163.0 67.6 166.0 69.8 p 163.0 66.2 167.3 68.9 171.6 66.2 t8 168.0 69.4 171.6 70.5 171.6 66.2 167.3 68.9 s8 168.0 69.4 171.6 70.5 p 168.0 69.4 166.8 69.2 167.3 68.9 t8 168.0 69.4 166.8 69.2 p 163.0 66.4 166.8 69.2 167.3 68.9 163.0 66.2 s8 163.0 66.4 166.8 69.2 p 171.6 66.2 180.2 66.2 180.2 71.7 171.6 71.7 s3 171.6 66.2 175.9 68.9 180.2 66.2 t4 179.7 71.4 180.2 71.0 180.2 66.2 175.9 68.9 s4 179.7 71.4 180.2 71.0 p 177.6 71.7 179.7 71.4 175.9 68.9 171.6 71.7 s4 177.6 71.7 179.7 71.4 p 171.6 71.7 175.9 68.9 171.6 66.2 t4 171.6 66.2 175.9 68.9 180.2 66.2 t5 178.8 70.8 180.2 69.9 180.2 66.2 175.9 68.9 s5 178.8 70.8 180.2 69.9 p 173.2 71.7 178.8 70.8 175.9 68.9 171.6 71.7 s5 173.2 71.7 178.8 70.8 p 171.6 71.7 175.9 68.9 171.6 66.2 t5 171.6 66.2 175.9 68.9 180.2 66.2 t6 178.0 70.3 180.2 68.7 180.2 66.2 175.9 68.9 s6 178.0 70.3 180.2 68.7 p 178.0 70.3 172.4 71.1 175.9 68.9 t6 178.0 70.3 172.4 71.1 p 171.6 71.4 172.4 71.1 175.9 68.9 171.6 66.2 s6 171.6 71.4 172.4 71.1 p 171.6 66.2 175.9 68.9 180.2 66.2 t7 177.2 69.8 180.2 67.6 180.2 66.2 175.9 68.9 s7 177.2 69.8 180.2 67.6 p 177.2 69.8 173.8 70.3 175.9 68.9 t7 177.2 69.8 173.8 70.3 p 171.6 70.9 173.8 70.3 175.9 68.9 171.6 66.2 s7 171.6 70.9 173.8 70.3 p 171.6 66.2 175.9 68.9 180.2 66.2 t8 176.3 69.2 180.2 66.4 180.2 66.2 175.9 68.9 s8 176.3 69.2 180.2 66.4 p 176.3 69.2 175.1 69.4 175.9 68.9 t8 176.3 69.2 175.1 69.4 p 171.6 70.5 175.1 69.4 175.9 68.9 171.6 66.2 s8 171.6 70.5 175.1 69.4 p 180.2 66.2 188.7 66.2 188.7 71.7 180.2 71.7 s1 187.8 66.8 188.2 66.2 180.2 66.2 184.4 68.9 s2 187.8 66.8 188.2 66.2 p 187.8 66.8 187.5 70.9 184.4 68.9 t2 187.8 66.8 187.5 70.9 p 186.0 71.7 187.5 70.9 184.4 68.9 180.2 71.7 s2 186.0 71.7 187.5 70.9 p 180.2 71.7 184.4 68.9 180.2 66.2 t2 185.7 68.1 186.9 66.2 180.2 66.2 184.4 68.9 s3 185.7 68.1 186.9 66.2 p 185.7 68.1 185.6 69.7 184.4 68.9 t3 185.7 68.1 185.6 69.7 p 181.9 71.7 185.6 69.7 184.4 68.9 180.2 71.7 s3 181.9 71.7 185.6 69.7 p 180.2 71.7 184.4 68.9 180.2 66.2 t3 185.6 66.2 184.1 68.7 180.2 66.2 t4 185.6 66.2 184.1 68.7 p 184.1 68.7 180.2 71.0 180.2 66.2 t4 184.1 68.7 180.2 71.0 p 184.3 66.2 183.2 68.1 180.2 66.2 t5 184.3 66.2 183.2 68.1 p 183.2 68.1 180.2 69.9 180.2 66.2 t5 183.2 68.1 180.2 69.9 p 183.0 66.2 182.2 67.5 180.2 66.2 t6 183.0 66.2 182.2 67.5 p 182.2 67.5 180.2 68.7 180.2 66.2 t6 182.2 67.5 180.2 68.7 p 181.7 66.2 181.3 66.9 180.2 66.2 t7 181.7 66.2 181.3 66.9 p 181.3 66.9 180.2 67.6 180.2 66.2 t7 181.3 66.9 180.2 67.6 p 180.4 66.2 180.3 66.3 180.2 66.2 t8 180.4 66.2 180.3 66.3 p 180.3 66.3 180.2 66.4 180.2 66.2 t8 180.3 66.3 180.2 66.4 p 188.7 66.2 197.3 66.2 197.3 71.7 188.7 71.7 s1 197.3 66.2 205.9 66.2 205.9 71.7 197.3 71.7 s1 197.9 66.2 198.2 66.8 201.6 68.9 205.9 66.2 s2 197.9 66.2 198.2 66.8 p 205.9 66.2 201.6 68.9 205.9 71.7 t2 198.6 70.9 200.1 71.7 205.9 71.7 201.6 68.9 s2 198.6 70.9 200.1 71.7 p 198.6 70.9 198.2 66.8 201.6 68.9 t2 198.6 70.9 198.2 66.8 p 199.2 66.2 200.3 68.1 201.6 68.9 205.9 66.2 s3 199.2 66.2 200.3 68.1 p 205.9 66.2 201.6 68.9 205.9 71.7 t3 200.4 69.7 204.1 71.7 205.9 71.7 201.6 68.9 s3 200.4 69.7 204.1 71.7 p 200.4 69.7 200.3 68.1 201.6 68.9 t3 200.4 69.7 200.3 68.1 p 202.0 68.7 200.5 66.2 205.9 66.2 t4 202.0 68.7 200.5 66.2 p 205.9 71.0 202.0 68.7 205.9 66.2 t4 205.9 71.0 202.0 68.7 p 202.9 68.1 201.8 66.2 205.9 66.2 t5 202.9 68.1 201.8 66.2 p 205.9 69.9 202.9 68.1 205.9 66.2 t5 205.9 69.9 202.9 68.1 p 203.8 67.5 203.1 66.2 205.9 66.2 t6 203.8 67.5 203.1 66.2 p 205.9 68.7 203.8 67.5 205.9 66.2 t6 205.9 68.7 203.8 67.5 p 204.8 66.9 204.3 66.2 205.9 66.2 t7 204.8 66.9 204.3 66.2 p 205.9 67.6 204.8 66.9 205.9 66.2 t7 205.9 67.6 204.8 66.9 p 205.7 66.3 205.6 66.2 205.9 66.2 t8 205.7 66.3 205.6 66.2 p 205.9 66.4 205.7 66.3 205.9 66.2 t8 205.9 66.4 205.7 66.3 p 205.9 66.2 214.5 66.2 214.5 71.7 205.9 71.7 s3 205.9 66.2 210.2 68.9 214.5 66.2 t4 214.5 66.2 210.2 68.9 214.5 71.7 t4 206.4 71.4 208.4 71.7 214.5 71.7 210.2 68.9 s4 206.4 71.4 208.4 71.7 p 205.9 71.0 206.4 71.4 210.2 68.9 205.9 66.2 s4 205.9 71.0 206.4 71.4 p 205.9 66.2 210.2 68.9 214.5 66.2 t5 214.5 66.2 210.2 68.9 214.5 71.7 t5 207.2 70.8 212.9 71.7 214.5 71.7 210.2 68.9 s5 207.2 70.8 212.9 71.7 p 205.9 69.9 207.2 70.8 210.2 68.9 205.9 66.2 s5 205.9 69.9 207.2 70.8 p 205.9 66.2 210.2 68.9 214.5 66.2 t6 213.6 71.1 214.5 71.4 214.5 66.2 210.2 68.9 s6 213.6 71.1 214.5 71.4 p 213.6 71.1 208.1 70.3 210.2 68.9 t6 213.6 71.1 208.1 70.3 p 205.9 68.7 208.1 70.3 210.2 68.9 205.9 66.2 s6 205.9 68.7 208.1 70.3 p 205.9 66.2 210.2 68.9 214.5 66.2 t7 212.3 70.3 214.5 70.9 214.5 66.2 210.2 68.9 s7 212.3 70.3 214.5 70.9 p 212.3 70.3 208.9 69.8 210.2 68.9 t7 212.3 70.3 208.9 69.8 p 205.9 67.6 208.9 69.8 210.2 68.9 205.9 66.2 s7 205.9 67.6 208.9 69.8 p 205.9 66.2 210.2 68.9 214.5 66.2 t8 210.9 69.4 214.5 70.5 214.5 66.2 210.2 68.9 s8 210.9 69.4 214.5 70.5 p 210.9 69.4 209.7 69.2 210.2 68.9 t8 210.9 69.4 209.7 69.2 p 205.9 66.4 209.7 69.2 210.2 68.9 205.9 66.2 s8 205.9 66.4 209.7 69.2 p 214.5 66.2 223.1 66.2 223.1 71.7 214.5 71.7 s3 214.5 66.2 218.8 68.9 223.1 66.2 t4 222.6 71.4 223.1 71.0 223.1 66.2 218.8 68.9 s4 222.6 71.4 223.1 71.0 p 220.5 71.7 222.6 71.4 218.8 68.9 214.5 71.7 s4 220.5 71.7 222.6 71.4 p 214.5 71.7 218.8 68.9 214.5 66.2 t4 214.5 66.2 218.8 68.9 223.1 66.2 t5 221.7 70.8 223.1 69.9 223.1 66.2 218.8 68.9 s5 221.7 70.8 223.1 69.9 p 216.1 71.7 221.7 70.8 218.8 68.9 214.5 71.7 s5 216.1 71.7 221.7 70.8 p 214.5 71.7 218.8 68.9 214.5 66.2 t5 214.5 66.2 218.8 68.9 223.1 66.2 t6 220.9 70.3 223.1 68.7 223.1 66.2 218.8 68.9 s6 220.9 70.3 223.1 68.7 p 220.9 70.3 215.3 71.1 218.8 68.9 t6 220.9 70.3 215.3 71.1 p 214.5 71.4 215.3 71.1 218.8 68.9 214.5 66.2 s6 214.5 71.4 215.3 71.1 p 214.5 66.2 218.8 68.9 223.1 66.2 t7 220.1 69.8 223.1 67.6 223.1 66.2 218.8 68.9 s7 220.1 69.8 223.1 67.6 p 220.1 69.8 216.7 70.3 218.8 68.9 t7 220.1 69.8 216.7 70.3 p 214.5 70.9 216.7 70.3 218.8 68.9 214.5 66.2 s7 214.5 70.9 216.7 70.3 p 214.5 66.2 218.8 68.9 223.1 66.2 t8 219.2 69.2 223.1 66.4 223.1 66.2 218.8 68.9 s8 219.2 69.2 223.1 66.4 p 219.2 69.2 218.0 69.4 218.8 68.9 t8 219.2 69.2 218.0 69.4 p 214.5 70.5 218.0 69.4 218.8 68.9 214.5 66.2 s8 214.5 70.5 218.0 69.4 p 223.1 66.2 231.6 66.2 231.6 71.7 223.1 71.7 s1 230.7 66.8 231.1 66.2 223.1 66.2 227.3 68.9 s2 230.7 66.8 231.1 66.2 p 230.7 66.8 230.4 70.9 227.3 68.9 t2 230.7 66.8 230.4 70.9 p 228.9 71.7 230.4 70.9 227.3 68.9 223.1 71.7 s2 228.9 71.7 230.4 70.9 p 223.1 71.7 227.3 68.9 223.1 66.2 t2 228.6 68.1 229.8 66.2 223.1 66.2 227.3 68.9 s3 228.6 68.1 229.8 66.2 p 228.6 68.1 228.5 69.7 227.3 68.9 t3 228.6 68.1 228.5 69.7 p 224.8 71.7 228.5 69.7 227.3 68.9 223.1 71.7 s3 224.8 71.7 228.5 69.7 p 223.1 71.7 227.3 68.9 223.1 66.2 t3 228.5 66.2 227.0 68.7 223.1 66.2 t4 228.5 66.2 227.0 68.7 p 227.0 68.7 223.1 71.0 223.1 66.2 t4 227.0 68.7 223.1 71.0 p 227.2 66.2 226.1 68.1 223.1 66.2 t5 227.2 66.2 226.1 68.1 p 226.1 68.1 223.1 69.9 223.1 66.2 t5 226.1 68.1 223.1 69.9 p 225.9 66.2 225.1 67.5 223.1 66.2 t6 225.9 66.2 225.1 67.5 p 225.1 67.5 223.1 68.7 223.1 66.2 t6 225.1 67.5 223.1 68.7 p 224.6 66.2 224.2 66.9 223.1 66.2 t7 224.6 66.2 224.2 66.9 p 224.2 66.9 223.1 67.6 223.1 66.2 t7 224.2 66.9 223.1 67.6 p 223.3 66.2 223.2 66.3 223.1 66.2 t8 223.3 66.2 223.2 66.3 p 223.2 66.3 223.1 66.4 223.1 66.2 t8 223.2 66.3 223.1 66.4 p 231.6 66.2 240.2 66.2 240.2 71.7 231.6 71.7 s1 240.2 66.2 248.8 66.2 248.8 71.7 240.2 71.7 s1 240.8 66.2 241.1 66.8 244.5 68.9 248.8 66.2 s2 240.8 66.2 241.1 66.8 p 248.8 66.2 244.5 68.9 248.8 71.7 t2 241.5 70.9 243.0 71.7 248.8 71.7 244.5 68.9 s2 241.5 70.9 243.0 71.7 p 241.5 70.9 241.1 66.8 244.5 68.9 t2 241.5 70.9 241.1 66.8 p 242.1 66.2 243.2 68.1 244.5 68.9 248.8 66.2 s3 242.1 66.2 243.2 68.1 p 248.8 66.2 244.5 68.9 248.8 71.7 t3 243.3 69.7 247.0 71.7 248.8 71.7 244.5 68.9 s3 243.3 69.7 247.0 71.7 p 243.3 69.7 243.2 68.1 244.5 68.9 t3 243.3 69.7 243.2 68.1 p 244.8 68.7 243.4 66.2 248.8 66.2 t4 244.8 68.7 243.4 66.2 p 248.8 71.0 244.8 68.7 248.8 66.2 t4 248.8 71.0 244.8 68.7 p 245.8 68.1 244.7 66.2 248.8 66.2 t5 245.8 68.1 244.7 66.2 p 248.8 69.9 245.8 68.1 248.8 66.2 t5 248.8 69.9 245.8 68.1 p 246.7 67.5 246.0 66.2 248.8 66.2 t6 246.7 67.5 246.0 66.2 p 248.8 68.7 246.7 67.5 248.8 66.2 t6 248.8 68.7 246.7 67.5 p 247.7 66.9 247.2 66.2 248.8 66.2 t7 247.7 66.9 247.2 66.2 p 248.8 67.6 247.7 66.9 248.8 66.2 t7 248.8 67.6 247.7 66.9 p 248.6 66.3 248.5 66.2 248.8 66.2 t8 248.6 66.3 248.5 66.2 p 248.8 66.4 248.6 66.3 248.8 66.2 t8 248.8 66.4 248.6 66.3 p 248.8 66.2 257.4 66.2 257.4 71.7 248.8 71.7 s3 248.8 66.2 253.1 68.9 257.4 66.2 t4 257.4 66.2 253.1 68.9 257.4 71.7 t4 249.3 71.4 251.3 71.7 257.4 71.7 253.1 68.9 s4 249.3 71.4 251.3 71.7 p 248.8 71.0 249.3 71.4 253.1 68.9 248.8 66.2 s4 248.8 71.0 249.3 71.4 p 248.8 66.2 253.1 68.9 257.4 66.2 t5 257.4 66.2 253.1 68.9 257.4 71.7 t5 250.1 70.8 255.8 71.7 257.4 71.7 253.1 68.9 s5 250.1 70.8 255.8 71.7 p 248.8 69.9 250.1 70.8 253.1 68.9 248.8 66.2 s5 248.8 69.9 250.1 70.8 p 248.8 66.2 253.1 68.9 257.4 66.2 t6 256.5 71.1 257.4 71.4 257.4 66.2 253.1 68.9 s6 256.5 71.1 257.4 71.4 p 256.5 71.1 250.9 70.3 253.1 68.9 t6 256.5 71.1 250.9 70.3 p 248.8 68.7 250.9 70.3 253.1 68.9 248.8 66.2 s6 248.8 68.7 250.9 70.3 p 248.8 66.2 253.1 68.9 257.4 66.2 t7 255.1 70.3 257.4 70.9 257.4 66.2 253.1 68.9 s7 255.1 70.3 257.4 70.9 p 255.1 70.3 251.8 69.8 253.1 68.9 t7 255.1 70.3 251.8 69.8 p 248.8 67.6 251.8 69.8 253.1 68.9 248.8 66.2 s7 248.8 67.6 251.8 69.8 p 248.8 66.2 253.1 68.9 257.4 66.2 t8 253.8 69.4 257.4 70.5 257.4 66.2 253.1 68.9 s8 253.8 69.4 257.4 70.5 p 253.8 69.4 252.6 69.2 253.1 68.9 t8 253.8 69.4 252.6 69.2 p 248.8 66.4 252.6 69.2 253.1 68.9 248.8 66.2 s8 248.8 66.4 252.6 69.2 p 257.4 66.2 265.9 66.2 265.9 71.7 257.4 71.7 s3 257.4 66.2 261.7 68.9 265.9 66.2 t4 265.5 71.4 265.9 71.0 265.9 66.2 261.7 68.9 s4 265.5 71.4 265.9 71.0 p 263.4 71.7 265.5 71.4 261.7 68.9 257.4 71.7 s4 263.4 71.7 265.5 71.4 p 257.4 71.7 261.7 68.9 257.4 66.2 t4 257.4 66.2 261.7 68.9 265.9 66.2 t5 264.6 70.8 265.9 69.9 265.9 66.2 261.7 68.9 s5 264.6 70.8 265.9 69.9 p 259.0 71.7 264.6 70.8 261.7 68.9 257.4 71.7 s5 259.0 71.7 264.6 70.8 p 257.4 71.7 261.7 68.9 257.4 66.2 t5 257.4 66.2 261.7 68.9 265.9 66.2 t6 263.8 70.3 265.9 68.7 265.9 66.2 261.7 68.9 s6 263.8 70.3 265.9 68.7 p 263.8 70.3 258.2 71.1 261.7 68.9 t6 263.8 70.3 258.2 71.1 p 257.4 71.4 258.2 71.1 261.7 68.9 257.4 66.2 s6 257.4 71.4 258.2 71.1 p 257.4 66.2 261.7 68.9 265.9 66.2 t7 262.9 69.8 265.9 67.6 265.9 66.2 261.7 68.9 s7 262.9 69.8 265.9 67.6 p 262.9 69.8 259.6 70.3 261.7 68.9 t7 262.9 69.8 259.6 70.3 p 257.4 70.9 259.6 70.3 261.7 68.9 257.4 66.2 s7 257.4 70.9 259.6 70.3 p 257.4 66.2 261.7 68.9 265.9 66.2 t8 262.1 69.2 265.9 66.4 265.9 66.2 261.7 68.9 s8 262.1 69.2 265.9 66.4 p 262.1 69.2 260.9 69.4 261.7 68.9 t8 262.1 69.2 260.9 69.4 p 257.4 70.5 260.9 69.4 261.7 68.9 257.4 66.2 s8 257.4 70.5 260.9 69.4 p 265.9 66.2 274.5 66.2 274.5 71.7 265.9 71.7 s1 273.6 66.8 274.0 66.2 265.9 66.2 270.2 68.9 s2 273.6 66.8 274.0 66.2 p 273.6 66.8 273.3 70.9 270.2 68.9 t2 273.6 66.8 273.3 70.9 p 271.8 71.7 273.3 70.9 270.2 68.9 265.9 71.7 s2 271.8 71.7 273.3 70.9 p 265.9 71.7 270.2 68.9 265.9 66.2 t2 271.5 68.1 272.7 66.2 265.9 66.2 270.2 68.9 s3 271.5 68.1 272.7 66.2 p 271.5 68.1 271.4 69.7 270.2 68.9 t3 271.5 68.1 271.4 69.7 p 267.7 71.7 271.4 69.7 270.2 68.9 265.9 71.7 s3 267.7 71.7 271.4 69.7 p 265.9 71.7 270.2 68.9 265.9 66.2 t3 271.4 66.2 269.9 68.7 265.9 66.2 t4 271.4 66.2 269.9 68.7 p 269.9 68.7 265.9 71.0 265.9 66.2 t4 269.9 68.7 265.9 71.0 p 270.1 66.2 268.9 68.1 265.9 66.2 t5 270.1 66.2 268.9 68.1 p 268.9 68.1 265.9 69.9 265.9 66.2 t5 268.9 68.1 265.9 69.9 p 268.8 66.2 268.0 67.5 265.9 66.2 t6 268.8 66.2 268.0 67.5 p 268.0 67.5 265.9 68.7 265.9 66.2 t6 268.0 67.5 265.9 68.7 p 267.5 66.2 267.1 66.9 265.9 66.2 t7 267.5 66.2 267.1 66.9 p 267.1 66.9 265.9 67.6 265.9 66.2 t7 267.1 66.9 265.9 67.6 p 266.2 66.2 266.1 66.3 265.9 66.2 t8 266.2 66.2 266.1 66.3 p 266.1 66.3 265.9 66.4 265.9 66.2 t8 266.1 66.3 265.9 66.4 p 274.5 66.2 283.1 66.2 283.1 71.7 274.5 71.7 s1 283.1 66.2 291.7 66.2 291.7 71.7 283.1 71.7 s1 283.7 66.2 284.0 66.8 287.4 68.9 291.7 66.2 s2 283.7 66.2 284.0 66.8 p 291.7 66.2 287.4 68.9 291.7 71.7 t2 284.4 70.9 285.9 71.7 291.7 71.7 287.4 68.9 s2 284.4 70.9 285.9 71.7 p 284.4 70.9 284.0 66.8 287.4 68.9 t2 284.4 70.9 284.0 66.8 p 285.0 66.2 286.1 68.1 287.4 68.9 291.7 66.2 s3 285.0 66.2 286.1 68.1 p 291.7 66.2 287.4 68.9 291.7 71.7 t3 286.2 69.7 289.9 71.7 291.7 71.7 287.4 68.9 s3 286.2 69.7 289.9 71.7 p 286.2 69.7 286.1 68.1 287.4 68.9 t3 286.2 69.7 286.1 68.1 p 287.7 68.7 286.3 66.2 291.7 66.2 t4 287.7 68.7 286.3 66.2 p 291.7 71.0 287.7 68.7 291.7 66.2 t4 291.7 71.0 287.7 68.7 p 288.7 68.1 287.6 66.2 291.7 66.2 t5 288.7 68.1 287.6 66.2 p 291.7 69.9 288.7 68.1 291.7 66.2 t5 291.7 69.9 288.7 68.1 p 289.6 67.5 288.8 66.2 291.7 66.2 t6 289.6 67.5 288.8 66.2 p 291.7 68.7 289.6 67.5 291.7 66.2 t6 291.7 68.7 289.6 67.5 p 290.6 66.9 290.1 66.2 291.7 66.2 t7 290.6 66.9 290.1 66.2 p 291.7 67.6 290.6 66.9 291.7 66.2 t7 291.7 67.6 290.6 66.9 p 291.5 66.3 291.4 66.2 291.7 66.2 t8 291.5 66.3 291.4 66.2 p 291.7 66.4 291.5 66.3 291.7 66.2 t8 291.7 66.4 291.5 66.3 p 291.7 66.2 300.3 66.2 300.3 71.7 291.7 71.7 s3 291.7 66.2 296.0 68.9 300.3 66.2 t4 300.3 66.2 296.0 68.9 300.3 71.7 t4 292.2 71.4 294.2 71.7 300.3 71.7 296.0 68.9 s4 292.2 71.4 294.2 71.7 p 291.7 71.0 292.2 71.4 296.0 68.9 291.7 66.2 s4 291.7 71.0 292.2 71.4 p 291.7 66.2 296.0 68.9 300.3 66.2 t5 300.3 66.2 296.0 68.9 300.3 71.7 t5 293.0 70.8 298.7 71.7 300.3 71.7 296.0 68.9 s5 293.0 70.8 298.7 71.7 p 291.7 69.9 293.0 70.8 296.0 68.9 291.7 66.2 s5 291.7 69.9 293.0 70.8 p 291.7 66.2 296.0 68.9 300.3 66.2 t6 299.4 71.1 300.3 71.4 300.3 66.2 296.0 68.9 s6 299.4 71.1 300.3 71.4 p 299.4 71.1 293.8 70.3 296.0 68.9 t6 299.4 71.1 293.8 70.3 p 291.7 68.7 293.8 70.3 296.0 68.9 291.7 66.2 s6 291.7 68.7 293.8 70.3 p 291.7 66.2 296.0 68.9 300.3 66.2 t7 298.0 70.3 300.3 70.9 300.3 66.2 296.0 68.9 s7 298.0 70.3 300.3 70.9 p 298.0 70.3 294.7 69.8 296.0 68.9 t7 298.0 70.3 294.7 69.8 p 291.7 67.6 294.7 69.8 296.0 68.9 291.7 66.2 s7 291.7 67.6 294.7 69.8 p 291.7 66.2 296.0 68.9 300.3 66.2 t8 296.7 69.4 300.3 70.5 300.3 66.2 296.0 68.9 s8 296.7 69.4 300.3 70.5 p 296.7 69.4 295.5 69.2 296.0 68.9 t8 296.7 69.4 295.5 69.2 p 291.7 66.4 295.5 69.2 296.0 68.9 291.7 66.2 s8 291.7 66.4 295.5 69.2 p 0.0 60.7 8.6 60.7 8.6 66.2 0.0 66.2 s8 8.6 60.7 17.2 60.7 17.2 66.2 8.6 66.2 s1 16.9 60.8 17.0 60.7 8.6 60.7 12.9 63.4 s2 16.9 60.8 17.0 60.7 p 16.9 60.8 16.7 65.9 12.9 63.4 t2 16.9 60.8 16.7 65.9 p 16.6 66.2 16.7 65.9 12.9 63.4 8.6 66.2 s2 16.6 66.2 16.7 65.9 p 8.6 66.2 12.9 63.4 8.6 60.7 t2 15.7 61.6 15.9 60.7 8.6 60.7 12.9 63.4 s3 15.7 61.6 15.9 60.7 p 15.7 61.6 15.5 65.1 12.9 63.4 t3 15.7 61.6 15.5 65.1 p 15.3 66.2 15.5 65.1 12.9 63.4 8.6 66.2 s3 15.3 66.2 15.5 65.1 p 8.6 66.2 12.9 63.4 8.6 60.7 t3 14.5 62.4 14.8 60.7 8.6 60.7 12.9 63.4 s4 14.5 62.4 14.8 60.7 p 14.5 62.4 14.4 64.4 12.9 63.4 t4 14.5 62.4 14.4 64.4 p 14.0 66.2 14.4 64.4 12.9 63.4 8.6 66.2 s4 14.0 66.2 14.4 64.4 p 8.6 66.2 12.9 63.4 8.6 60.7 t4 13.3 63.1 13.8 60.7 8.6 60.7 12.9 63.4 s5 13.3 63.1 13.8 60.7 p 13.3 63.1 13.3 63.7 12.9 63.4 t5 13.3 63.1 13.3 63.7 p 12.7 66.2 13.3 63.7 12.9 63.4 8.6 66.2 s5 12.7 66.2 13.3 63.7 p 8.6 66.2 12.9 63.4 8.6 60.7 t5 12.7 60.7 12.2 63.0 8.6 60.7 t6 12.7 60.7 12.2 63.0 p 11.9 64.0 11.4 66.2 8.6 66.2 t6 11.9 64.0 11.4 66.2 p 11.9 64.0 12.2 63.0 8.6 60.7 8.6 66.2 s6 11.9 64.0 12.2 63.0 p 11.6 60.7 11.3 62.4 8.6 60.7 t7 11.6 60.7 11.3 62.4 p 10.4 65.0 10.1 66.2 8.6 66.2 t7 10.4 65.0 10.1 66.2 p 10.4 65.0 11.3 62.4 8.6 60.7 8.6 66.2 s7 10.4 65.0 11.3 62.4 p 10.5 60.7 10.3 61.8 8.6 60.7 t8 10.5 60.7 10.3 61.8 p 8.9 66.0 8.8 66.2 8.6 66.2 t8 8.9 66.0 8.8 66.2 p 8.9 66.0 10.3 61.8 8.6 60.7 8.6 66.2 s8 8.9 66.0 10.3 61.8 p 17.2 60.7 25.7 60.7 25.7 66.2 17.2 66.2 s1 25.7 60.7 34.3 60.7 34.3 66.2 25.7 66.2 s1 25.9 60.7 26.0 60.8 30.0 63.4 34.3 60.7 s2 25.9 60.7 26.0 60.8 p 34.3 60.7 30.0 63.4 34.3 66.2 t2 26.2 65.9 26.3 66.2 34.3 66.2 30.0 63.4 s2 26.2 65.9 26.3 66.2 p 26.2 65.9 26.0 60.8 30.0 63.4 t2 26.2 65.9 26.0 60.8 p 27.0 60.7 27.2 61.6 30.0 63.4 34.3 60.7 s3 27.0 60.7 27.2 61.6 p 34.3 60.7 30.0 63.4 34.3 66.2 t3 27.4 65.1 27.6 66.2 34.3 66.2 30.0 63.4 s3 27.4 65.1 27.6 66.2 p 27.4 65.1 27.2 61.6 30.0 63.4 t3 27.4 65.1 27.2 61.6 p 28.1 60.7 28.4 62.4 30.0 63.4 34.3 60.7 s4 28.1 60.7 28.4 62.4 p 34.3 60.7 30.0 63.4 34.3 66.2 t4 28.5 64.4 28.9 66.2 34.3 66.2 30.0 63.4 s4 28.5 64.4 28.9 66.2 p 28.5 64.4 28.4 62.4 30.0 63.4 t4 28.5 64.4 28.4 62.4 p 29.1 60.7 29.6 63.1 30.0 63.4 34.3 60.7 s5 29.1 60.7 29.6 63.1 p 34.3 60.7 30.0 63.4 34.3 66.2 t5 29.6 63.7 30.2 66.2 34.3 66.2 30.0 63.4 s5 29.6 63.7 30.2 66.2 p 29.6 63.7 29.6 63.1 30.0 63.4 t5 29.6 63.7 29.6 63.1 p 30.6 63.0 30.2 60.7 34.3 60.7 t6 30.6 63.0 30.2 60.7 p 30.6 63.0 31.0 64.0 34.3 66.2 34.3 60.7 s6 30.6 63.0 31.0 64.0 p 31.5 66.2 31.0 64.0 34.3 66.2 t6 31.5 66.2 31.0 64.0 p 31.6 62.4 31.3 60.7 34.3 60.7 t7 31.6 62.4 31.3 60.7 p 31.6 62.4 32.5 65.0 34.3 66.2 34.3 60.7 s7 31.6 62.4 32.5 65.0 p 32.8 66.2 32.5 65.0 34.3 66.2 t7 32.8 66.2 32.5 65.0 p 32.6 61.8 32.3 60.7 34.3 60.7 t8 32.6 61.8 32.3 60.7 p 32.6 61.8 34.0 66.0 34.3 66.2 34.3 60.7 s8 32.6 61.8 34.0 66.0 p 34.1 66.2 34.0 66.0 34.3 66.2 t8 34.1 66.2 34.0 66.0 p 34.3 60.7 42.9 60.7 42.9 66.2 34.3 66.2 s8 42.9 60.7 51.5 60.7 51.5 66.2 42.9 66.2 s8 51.5 60.7 60.1 60.7 60.1 66.2 51.5 66.2 s1 59.8 60.8 59.9 60.7 51.5 60.7 55.8 63.4 s2 59.8 60.8 59.9 60.7 p 59.8 60.8 59.6 65.9 55.8 63.4 t2 59.8 60.8 59.6 65.9 p 59.5 66.2 59.6 65.9 55.8 63.4 51.5 66.2 s2 59.5 66.2 59.6 65.9 p 51.5 66.2 55.8 63.4 51.5 60.7 t2 58.6 61.6 58.8 60.7 51.5 60.7 55.8 63.4 s3 58.6 61.6 58.8 60.7 p 58.6 61.6 58.4 65.1 55.8 63.4 t3 58.6 61.6 58.4 65.1 p 58.2 66.2 58.4 65.1 55.8 63.4 51.5 66.2 s3 58.2 66.2 58.4 65.1 p 51.5 66.2 55.8 63.4 51.5 60.7 t3 57.4 62.4 57.7 60.7 51.5 60.7 55.8 63.4 s4 57.4 62.4 57.7 60.7 p 57.4 62.4 57.3 64.4 55.8 63.4 t4 57.4 62.4 57.3 64.4 p 56.9 66.2 57.3 64.4 55.8 63.4 51.5 66.2 s4 56.9 66.2 57.3 64.4 p 51.5 66.2 55.8 63.4 51.5 60.7 t4 56.2 63.1 56.6 60.7 51.5 60.7 55.8 63.4 s5 56.2 63.1 56.6 60.7 p 56.2 63.1 56.2 63.7 55.8 63.4 t5 56.2 63.1 56.2 63.7 p 55.6 66.2 56.2 63.7 55.8 63.4 51.5 66.2 s5 55.6 66.2 56.2 63.7 p 51.5 66.2 55.8 63.4 51.5 60.7 t5 55.6 60.7 55.1 63.0 51.5 60.7 t6 55.6 60.7 55.1 63.0 p 54.8 64.0 54.3 66.2 51.5 66.2 t6 54.8 64.0 54.3 66.2 p 54.8 64.0 55.1 63.0 51.5 60.7 51.5 66.2 s6 54.8 64.0 55.1 63.0 p 54.5 60.7 54.2 62.4 51.5 60.7 t7 54.5 60.7 54.2 62.4 p 53.3 65.0 53.0 66.2 51.5 66.2 t7 53.3 65.0 53.0 66.2 p 53.3 65.0 54.2 62.4 51.5 60.7 51.5 66.2 s7 53.3 65.0 54.2 62.4 p 53.4 60.7 53.2 61.8 51.5 60.7 t8 53.4 60.7 53.2 61.8 p 51.8 66.0 51.7 66.2 51.5 66.2 t8 51.8 66.0 51.7 66.2 p 51.8 66.0 53.2 61.8 51.5 60.7 51.5 66.2 s8 51.8 66.0 53.2 61.8 p 60.1 60.7 68.6 60.7 68.6 66.2 60.1 66.2 s1 68.6 60.7 77.2 60.7 77.2 66.2 68.6 66.2 s1 68.8 60.7 68.9 60.8 72.9 63.4 77.2 60.7 s2 68.8 60.7 68.9 60.8 p 77.2 60.7 72.9 63.4 77.2 66.2 t2 69.1 65.9 69.2 66.2 77.2 66.2 72.9 63.4 s2 69.1 65.9 69.2 66.2 p 69.1 65.9 68.9 60.8 72.9 63.4 t2 69.1 65.9 68.9 60.8 p 69.9 60.7 70.1 61.6 72.9 63.4 77.2 60.7 s3 69.9 60.7 70.1 61.6 p 77.2 60.7 72.9 63.4 77.2 66.2 t3 70.3 65.1 70.5 66.2 77.2 66.2 72.9 63.4 s3 70.3 65.1 70.5 66.2 p 70.3 65.1 70.1 61.6 72.9 63.4 t3 70.3 65.1 70.1 61.6 p 71.0 60.7 71.3 62.4 72.9 63.4 77.2 60.7 s4 71.0 60.7 71.3 62.4 p 77.2 60.7 72.9 63.4 77.2 66.2 t4 71.4 64.4 71.8 66.2 77.2 66.2 72.9 63.4 s4 71.4 64.4 71.8 66.2 p 71.4 64.4 71.3 62.4 72.9 63.4 t4 71.4 64.4 71.3 62.4 p 72.0 60.7 72.5 63.1 72.9 63.4 77.2 60.7 s5 72.0 60.7 72.5 63.1 p 77.2 60.7 72.9 63.4 77.2 66.2 t5 72.5 63.7 73.1 66.2 77.2 66.2 72.9 63.4 s5 72.5 63.7 73.1 66.2 p 72.5 63.7 72.5 63.1 72.9 63.4 t5 72.5 63.7 72.5 63.1 p 73.5 63.0 73.1 60.7 77.2 60.7 t6 73.5 63.0 73.1 60.7 p 73.5 63.0 73.9 64.0 77.2 66.2 77.2 60.7 s6 73.5 63.0 73.9 64.0 p 74.4 66.2 73.9 64.0 77.2 66.2 t6 74.4 66.2 73.9 64.0 p 74.5 62.4 74.2 60.7 77.2 60.7 t7 74.5 62.4 74.2 60.7 p 74.5 62.4 75.4 65.0 77.2 66.2 77.2 60.7 s7 74.5 62.4 75.4 65.0 p 75.7 66.2 75.4 65.0 77.2 66.2 t7 75.7 66.2 75.4 65.0 p 75.5 61.8 75.2 60.7 77.2 60.7 t8 75.5 61.8 75.2 60.7 p 75.5 61.8 76.9 66.0 77.2 66.2 77.2 60.7 s8 75.5 61.8 76.9 66.0 p 77.0 66.2 76.9 66.0 77.2 66.2 t8 77.0 66.2 76.9 66.0 p 77.2 60.7 85.8 60.7 85.8 66.2 77.2 66.2 s8 85.8 60.7 94.4 60.7 94.4 66.2 85.8 66.2 s8 94.4 60.7 102.9 60.7 102.9 66.2 94.4 66.2 s1 102.7 60.8 102.7 60.7 94.4 60.7 98.7 63.4 s2 102.7 60.8 102.7 60.7 p 102.7 60.8 102.4 65.9 98.7 63.4 t2 102.7 60.8 102.4 65.9 p 102.4 66.2 102.4 65.9 98.7 63.4 94.4 66.2 s2 102.4 66.2 102.4 65.9 p 94.4 66.2 98.7 63.4 94.4 60.7 t2 101.5 61.6 101.7 60.7 94.4 60.7 98.7 63.4 s3 101.5 61.6 101.7 60.7 p 101.5 61.6 101.3 65.1 98.7 63.4 t3 101.5 61.6 101.3 65.1 p 101.1 66.2 101.3 65.1 98.7 63.4 94.4 66.2 s3 101.1 66.2 101.3 65.1 p 94.4 66.2 98.7 63.4 94.4 60.7 t3 100.3 62.4 100.6 60.7 94.4 60.7 98.7 63.4 s4 100.3 62.4 100.6 60.7 p 100.3 62.4 100.2 64.4 98.7 63.4 t4 100.3 62.4 100.2 64.4 p 99.8 66.2 100.2 64.4 98.7 63.4 94.4 66.2 s4 99.8 66.2 100.2 64.4 p 94.4 66.2 98.7 63.4 94.4 60.7 t4 99.1 63.1 99.5 60.7 94.4 60.7 98.7 63.4 s5 99.1 63.1 99.5 60.7 p 99.1 63.1 99.1 63.7 98.7 63.4 t5 99.1 63.1 99.1 63.7 p 98.5 66.2 99.1 63.7 98.7 63.4 94.4 66.2 s5 98.5 66.2 99.1 63.7 p 94.4 66.2 98.7 63.4 94.4 60.7 t5 98.5 60.7 98.0 63.0 94.4 60.7 t6 98.5 60.7 98.0 63.0 p 97.7 64.0 97.2 66.2 94.4 66.2 t6 97.7 64.0 97.2 66.2 p 97.7 64.0 98.0 63.0 94.4 60.7 94.4 66.2 s6 97.7 64.0 98.0 63.0 p 97.4 60.7 97.1 62.4 94.4 60.7 t7 97.4 60.7 97.1 62.4 p 96.2 65.0 95.9 66.2 94.4 66.2 t7 96.2 65.0 95.9 66.2 p 96.2 65.0 97.1 62.4 94.4 60.7 94.4 66.2 s7 96.2 65.0 97.1 62.4 p 96.3 60.7 96.1 61.8 94.4 60.7 t8 96.3 60.7 96.1 61.8 p 94.7 66.0 94.6 66.2 94.4 66.2 t8 94.7 66.0 94.6 66.2 p 94.7 66.0 96.1 61.8 94.4 60.7 94.4 66.2 s8 94.7 66.0 96.1 61.8 p 102.9 60.7 111.5 60.7 111.5 66.2 102.9 66.2 s1 111.5 60.7 120.1 60.7 120.1 66.2 111.5 66.2 s1 111.7 60.7 111.8 60.8 115.8 63.4 120.1 60.7 s2 111.7 60.7 111.8 60.8 p 120.1 60.7 115.8 63.4 120.1 66.2 t2 112.0 65.9 112.1 66.2 120.1 66.2 115.8 63.4 s2 112.0 65.9 112.1 66.2 p 112.0 65.9 111.8 60.8 115.8 63.4 t2 112.0 65.9 111.8 60.8 p 112.8 60.7 113.0 61.6 115.8 63.4 120.1 60.7 s3 112.8 60.7 113.0 61.6 p 120.1 60.7 115.8 63.4 120.1 66.2 t3 113.2 65.1 113.4 66.2 120.1 66.2 115.8 63.4 s3 113.2 65.1 113.4 66.2 p 113.2 65.1 113.0 61.6 115.8 63.4 t3 113.2 65.1 113.0 61.6 p 113.9 60.7 114.2 62.4 115.8 63.4 120.1 60.7 s4 113.9 60.7 114.2 62.4 p 120.1 60.7 115.8 63.4 120.1 66.2 t4 114.3 64.4 114.7 66.2 120.1 66.2 115.8 63.4 s4 114.3 64.4 114.7 66.2 p 114.3 64.4 114.2 62.4 115.8 63.4 t4 114.3 64.4 114.2 62.4 p 114.9 60.7 115.4 63.1 115.8 63.4 120.1 60.7 s5 114.9 60.7 115.4 63.1 p 120.1 60.7 115.8 63.4 120.1 66.2 t5 115.4 63.7 116.0 66.2 120.1 66.2 115.8 63.4 s5 115.4 63.7 116.0 66.2 p 115.4 63.7 115.4 63.1 115.8 63.4 t5 115.4 63.7 115.4 63.1 p 116.4 63.0 116.0 60.7 120.1 60.7 t6 116.4 63.0 116.0 60.7 p 116.4 63.0 116.8 64.0 120.1 66.2 120.1 60.7 s6 116.4 63.0 116.8 64.0 p 117.3 66.2 116.8 64.0 120.1 66.2 t6 117.3 66.2 116.8 64.0 p 117.4 62.4 117.1 60.7 120.1 60.7 t7 117.4 62.4 117.1 60.7 p 117.4 62.4 118.3 65.0 120.1 66.2 120.1 60.7 s7 117.4 62.4 118.3 65.0 p 118.6 66.2 118.3 65.0 120.1 66.2 t7 118.6 66.2 118.3 65.0 p 118.3 61.8 118.1 60.7 120.1 60.7 t8 118.3 61.8 118.1 60.7 p 118.3 61.8 119.8 66.0 120.1 66.2 120.1 60.7 s8 118.3 61.8 119.8 66.0 p 119.9 66.2 119.8 66.0 120.1 66.2 t8 119.9 66.2 119.8 66.0 p 120.1 60.7 128.7 60.7 128.7 66.2 120.1 66.2 s8 128.7 60.7 137.3 60.7 137.3 66.2 128.7 66.2 s8 137.3 60.7 145.8 60.7 145.8 66.2 137.3 66.2 s1 145.6 60.8 145.6 60.7 137.3 60.7 141.6 63.4 s2 145.6 60.8 145.6 60.7 p 145.6 60.8 145.3 65.9 141.6 63.4 t2 145.6 60.8 145.3 65.9 p 145.3 66.2 145.3 65.9 141.6 63.4 137.3 66.2 s2 145.3 66.2 145.3 65.9 p 137.3 66.2 141.6 63.4 137.3 60.7 t2 144.4 61.6 144.6 60.7 137.3 60.7 141.6 63.4 s3 144.4 61.6 144.6 60.7 p 144.4 61.6 144.2 65.1 141.6 63.4 t3 144.4 61.6 144.2 65.1 p 144.0 66.2 144.2 65.1 141.6 63.4 137.3 66.2 s3 144.0 66.2 144.2 65.1 p 137.3 66.2 141.6 63.4 137.3 60.7 t3 143.2 62.4 143.5 60.7 137.3 60.7 141.6 63.4 s4 143.2 62.4 143.5 60.7 p 143.2 62.4 143.1 64.4 141.6 63.4 t4 143.2 62.4 143.1 64.4 p 142.7 66.2 143.1 64.4 141.6 63.4 137.3 66.2 s4 142.7 66.2 143.1 64.4 p 137.3 66.2 141.6 63.4 137.3 60.7 t4 142.0 63.1 142.4 60.7 137.3 60.7 141.6 63.4 s5 142.0 63.1 142.4 60.7 p 142.0 63.1 141.9 63.7 141.6 63.4 t5 142.0 63.1 141.9 63.7 p 141.4 66.2 141.9 63.7 141.6 63.4 137.3 66.2 s5 141.4 66.2 141.9 63.7 p 137.3 66.2 141.6 63.4 137.3 60.7 t5 141.4 60.7 140.9 63.0 137.3 60.7 t6 141.4 60.7 140.9 63.0 p 140.6 64.0 140.1 66.2 137.3 66.2 t6 140.6 64.0 140.1 66.2 p 140.6 64.0 140.9 63.0 137.3 60.7 137.3 66.2 s6 140.6 64.0 140.9 63.0 p 140.3 60.7 140.0 62.4 137.3 60.7 t7 140.3 60.7 140.0 62.4 p 139.1 65.0 138.8 66.2 137.3 66.2 t7 139.1 65.0 138.8 66.2 p 139.1 65.0 140.0 62.4 137.3 60.7 137.3 66.2 s7 139.1 65.0 140.0 62.4 p 139.2 60.7 139.0 61.8 137.3 60.7 t8 139.2 60.7 139.0 61.8 p 137.6 66.0 137.5 66.2 137.3 66.2 t8 137.6 66.0 137.5 66.2 p 137.6 66.0 139.0 61.8 137.3 60.7 137.3 66.2 s8 137.6 66.0 139.0 61.8 p 145.8 60.7 154.4 60.7 154.4 66.2 145.8 66.2 s1 154.4 60.7 163.0 60.7 163.0 66.2 154.4 66.2 s1 154.6 60.7 154.6 60.8 158.7 63.4 163.0 60.7 s2 154.6 60.7 154.6 60.8 p 163.0 60.7 158.7 63.4 163.0 66.2 t2 154.9 65.9 155.0 66.2 163.0 66.2 158.7 63.4 s2 154.9 65.9 155.0 66.2 p 154.9 65.9 154.6 60.8 158.7 63.4 t2 154.9 65.9 154.6 60.8 p 155.7 60.7 155.9 61.6 158.7 63.4 163.0 60.7 s3 155.7 60.7 155.9 61.6 p 163.0 60.7 158.7 63.4 163.0 66.2 t3 156.1 65.1 156.3 66.2 163.0 66.2 158.7 63.4 s3 156.1 65.1 156.3 66.2 p 156.1 65.1 155.9 61.6 158.7 63.4 t3 156.1 65.1 155.9 61.6 p 156.8 60.7 157.1 62.4 158.7 63.4 163.0 60.7 s4 156.8 60.7 157.1 62.4 p 163.0 60.7 158.7 63.4 163.0 66.2 t4 157.2 64.4 157.6 66.2 163.0 66.2 158.7 63.4 s4 157.2 64.4 157.6 66.2 p 157.2 64.4 157.1 62.4 158.7 63.4 t4 157.2 64.4 157.1 62.4 p 157.8 60.7 158.3 63.1 158.7 63.4 163.0 60.7 s5 157.8 60.7 158.3 63.1 p 163.0 60.7 158.7 63.4 163.0 66.2 t5 158.3 63.7 158.9 66.2 163.0 66.2 158.7 63.4 s5 158.3 63.7 158.9 66.2 p 158.3 63.7 158.3 63.1 158.7 63.4 t5 158.3 63.7 158.3 63.1 p 159.3 63.0 158.9 60.7 163.0 60.7 t6 159.3 63.0 158.9 60.7 p 159.3 63.0 159.7 64.0 163.0 66.2 163.0 60.7 s6 159.3 63.0 159.7 64.0 p 160.2 66.2 159.7 64.0 163.0 66.2 t6 160.2 66.2 159.7 64.0 p 160.3 62.4 160.0 60.7 163.0 60.7 t7 160.3 62.4 160.0 60.7 p 160.3 62.4 161.2 65.0 163.0 66.2 163.0 60.7 s7 160.3 62.4 161.2 65.0 p 161.5 66.2 161.2 65.0 163.0 66.2 t7 161.5 66.2 161.2 65.0 p 161.2 61.8 161.0 60.7 163.0 60.7 t8 161.2 61.8 161.0 60.7 p 161.2 61.8 162.7 66.0 163.0 66.2 163.0 60.7 s8 161.2 61.8 162.7 66.0 p 162.7 66.2 162.7 66.0 163.0 66.2 t8 162.7 66.2 162.7 66.0 p 163.0 60.7 171.6 60.7 171.6 66.2 163.0 66.2 s8 171.6 60.7 180.2 60.7 180.2 66.2 171.6 66.2 s8 180.2 60.7 188.7 60.7 188.7 66.2 180.2 66.2 s1 188.5 60.8 188.5 60.7 180.2 60.7 184.4 63.4 s2 188.5 60.8 188.5 60.7 p 188.5 60.8 188.2 65.9 184.4 63.4 t2 188.5 60.8 188.2 65.9 p 188.2 66.2 188.2 65.9 184.4 63.4 180.2 66.2 s2 188.2 66.2 188.2 65.9 p 180.2 66.2 184.4 63.4 180.2 60.7 t2 187.3 61.6 187.5 60.7 180.2 60.7 184.4 63.4 s3 187.3 61.6 187.5 60.7 p 187.3 61.6 187.1 65.1 184.4 63.4 t3 187.3 61.6 187.1 65.1 p 186.9 66.2 187.1 65.1 184.4 63.4 180.2 66.2 s3 186.9 66.2 187.1 65.1 p 180.2 66.2 184.4 63.4 180.2 60.7 t3 186.1 62.4 186.4 60.7 180.2 60.7 184.4 63.4 s4 186.1 62.4 186.4 60.7 p 186.1 62.4 186.0 64.4 184.4 63.4 t4 186.1 62.4 186.0 64.4 p 185.6 66.2 186.0 64.4 184.4 63.4 180.2 66.2 s4 185.6 66.2 186.0 64.4 p 180.2 66.2 184.4 63.4 180.2 60.7 t4 184.9 63.1 185.3 60.7 180.2 60.7 184.4 63.4 s5 184.9 63.1 185.3 60.7 p 184.9 63.1 184.8 63.7 184.4 63.4 t5 184.9 63.1 184.8 63.7 p 184.3 66.2 184.8 63.7 184.4 63.4 180.2 66.2 s5 184.3 66.2 184.8 63.7 p 180.2 66.2 184.4 63.4 180.2 60.7 t5 184.3 60.7 183.8 63.0 180.2 60.7 t6 184.3 60.7 183.8 63.0 p 183.5 64.0 183.0 66.2 180.2 66.2 t6 183.5 64.0 183.0 66.2 p 183.5 64.0 183.8 63.0 180.2 60.7 180.2 66.2 s6 183.5 64.0 183.8 63.0 p 183.2 60.7 182.9 62.4 180.2 60.7 t7 183.2 60.7 182.9 62.4 p 182.0 65.0 181.7 66.2 180.2 66.2 t7 182.0 65.0 181.7 66.2 p 182.0 65.0 182.9 62.4 180.2 60.7 180.2 66.2 s7 182.0 65.0 182.9 62.4 p 182.1 60.7 181.9 61.8 180.2 60.7 t8 182.1 60.7 181.9 61.8 p 180.5 66.0 180.4 66.2 180.2 66.2 t8 180.5 66.0 180.4 66.2 p 180.5 66.0 181.9 61.8 180.2 60.7 180.2 66.2 s8 180.5 66.0 181.9 61.8 p 188.7 60.7 197.3 60.7 197.3 66.2 188.7 66.2 s1 197.3 60.7 205.9 60.7 205.9 66.2 197.3 66.2 s1 197.5 60.7 197.5 60.8 201.6 63.4 205.9 60.7 s2 197.5 60.7 197.5 60.8 p 205.9 60.7 201.6 63.4 205.9 66.2 t2 197.8 65.9 197.9 66.2 205.9 66.2 201.6 63.4 s2 197.8 65.9 197.9 66.2 p 197.8 65.9 197.5 60.8 201.6 63.4 t2 197.8 65.9 197.5 60.8 p 198.6 60.7 198.8 61.6 201.6 63.4 205.9 60.7 s3 198.6 60.7 198.8 61.6 p 205.9 60.7 201.6 63.4 205.9 66.2 t3 198.9 65.1 199.2 66.2 205.9 66.2 201.6 63.4 s3 198.9 65.1 199.2 66.2 p 198.9 65.1 198.8 61.6 201.6 63.4 t3 198.9 65.1 198.8 61.6 p 199.7 60.7 200.0 62.4 201.6 63.4 205.9 60.7 s4 199.7 60.7 200.0 62.4 p 205.9 60.7 201.6 63.4 205.9 66.2 t4 200.1 64.4 200.5 66.2 205.9 66.2 201.6 63.4 s4 200.1 64.4 200.5 66.2 p 200.1 64.4 200.0 62.4 201.6 63.4 t4 200.1 64.4 200.0 62.4 p 200.7 60.7 201.2 63.1 201.6 63.4 205.9 60.7 s5 200.7 60.7 201.2 63.1 p 205.9 60.7 201.6 63.4 205.9 66.2 t5 201.2 63.7 201.8 66.2 205.9 66.2 201.6 63.4 s5 201.2 63.7 201.8 66.2 p 201.2 63.7 201.2 63.1 201.6 63.4 t5 201.2 63.7 201.2 63.1 p 202.2 63.0 201.8 60.7 205.9 60.7 t6 202.2 63.0 201.8 60.7 p 202.2 63.0 202.6 64.0 205.9 66.2 205.9 60.7 s6 202.2 63.0 202.6 64.0 p 203.1 66.2 202.6 64.0 205.9 66.2 t6 203.1 66.2 202.6 64.0 p 203.2 62.4 202.9 60.7 205.9 60.7 t7 203.2 62.4 202.9 60.7 p 203.2 62.4 204.1 65.0 205.9 66.2 205.9 60.7 s7 203.2 62.4 204.1 65.0 p 204.3 66.2 204.1 65.0 205.9 66.2 t7 204.3 66.2 204.1 65.0 p 204.1 61.8 203.9 60.7 205.9 60.7 t8 204.1 61.8 203.9 60.7 p 204.1 61.8 205.6 66.0 205.9 66.2 205.9 60.7 s8 204.1 61.8 205.6 66.0 p 205.6 66.2 205.6 66.0 205.9 66.2 t8 205.6 66.2 205.6 66.0 p 205.9 60.7 214.5 60.7 214.5 66.2 205.9 66.2 s8 214.5 60.7 223.1 60.7 223.1 66.2 214.5 66.2 s8 223.1 60.7 231.6 60.7 231.6 66.2 223.1 66.2 s1 231.4 60.8 231.4 60.7 223.1 60.7 227.3 63.4 s2 231.4 60.8 231.4 60.7 p 231.4 60.8 231.1 65.9 227.3 63.4 t2 231.4 60.8 231.1 65.9 p 231.1 66.2 231.1 65.9 227.3 63.4 223.1 66.2 s2 231.1 66.2 231.1 65.9 p 223.1 66.2 227.3 63.4 223.1 60.7 t2 230.2 61.6 230.4 60.7 223.1 60.7 227.3 63.4 s3 230.2 61.6 230.4 60.7 p 230.2 61.6 230.0 65.1 227.3 63.4 t3 230.2 61.6 230.0 65.1 p 229.8 66.2 230.0 65.1 227.3 63.4 223.1 66.2 s3 229.8 66.2 230.0 65.1 p 223.1 66.2 227.3 63.4 223.1 60.7 t3 229.0 62.4 229.3 60.7 223.1 60.7 227.3 63.4 s4 229.0 62.4 229.3 60.7 p 229.0 62.4 228.9 64.4 227.3 63.4 t4 229.0 62.4 228.9 64.4 p 228.5 66.2 228.9 64.4 227.3 63.4 223.1 66.2 s4 228.5 66.2 228.9 64.4 p 223.1 66.2 227.3 63.4 223.1 60.7 t4 227.8 63.1 228.2 60.7 223.1 60.7 227.3 63.4 s5 227.8 63.1 228.2 60.7 p 227.8 63.1 227.7 63.7 227.3 63.4 t5 227.8 63.1 227.7 63.7 p 227.2 66.2 227.7 63.7 227.3 63.4 223.1 66.2 s5 227.2 66.2 227.7 63.7 p 223.1 66.2 227.3 63.4 223.1 60.7 t5 227.2 60.7 226.7 63.0 223.1 60.7 t6 227.2 60.7 226.7 63.0 p 226.4 64.0 225.9 66.2 223.1 66.2 t6 226.4 64.0 225.9 66.2 p 226.4 64.0 226.7 63.0 223.1 60.7 223.1 66.2 s6 226.4 64.0 226.7 63.0 p 226.1 60.7 225.8 62.4 223.1 60.7 t7 226.1 60.7 225.8 62.4 p 224.9 65.0 224.6 66.2 223.1 66.2 t7 224.9 65.0 224.6 66.2 p 224.9 65.0 225.8 62.4 223.1 60.7 223.1 66.2 s7 224.9 65.0 225.8 62.4 p 225.0 60.7 224.8 61.8 223.1 60.7 t8 225.0 60.7 224.8 61.8 p 223.3 66.0 223.3 66.2 223.1 66.2 t8 223.3 66.0 223.3 66.2 p 223.3 66.0 224.8 61.8 223.1 60.7 223.1 66.2 s8 223.3 66.0 224.8 61.8 p 231.6 60.7 240.2 60.7 240.2 66.2 231.6 66.2 s1 240.2 60.7 248.8 60.7 248.8 66.2 240.2 66.2 s1 240.4 60.7 240.4 60.8 244.5 63.4 248.8 60.7 s2 240.4 60.7 240.4 60.8 p 248.8 60.7 244.5 63.4 248.8 66.2 t2 240.7 65.9 240.8 66.2 248.8 66.2 244.5 63.4 s2 240.7 65.9 240.8 66.2 p 240.7 65.9 240.4 60.8 244.5 63.4 t2 240.7 65.9 240.4 60.8 p 241.5 60.7 241.6 61.6 244.5 63.4 248.8 60.7 s3 241.5 60.7 241.6 61.6 p 248.8 60.7 244.5 63.4 248.8 66.2 t3 241.8 65.1 242.1 66.2 248.8 66.2 244.5 63.4 s3 241.8 65.1 242.1 66.2 p 241.8 65.1 241.6 61.6 244.5 63.4 t3 241.8 65.1 241.6 61.6 p 242.5 60.7 242.9 62.4 244.5 63.4 248.8 60.7 s4 242.5 60.7 242.9 62.4 p 248.8 60.7 244.5 63.4 248.8 66.2 t4 243.0 64.4 243.4 66.2 248.8 66.2 244.5 63.4 s4 243.0 64.4 243.4 66.2 p 243.0 64.4 242.9 62.4 244.5 63.4 t4 243.0 64.4 242.9 62.4 p 243.6 60.7 244.1 63.1 244.5 63.4 248.8 60.7 s5 243.6 60.7 244.1 63.1 p 248.8 60.7 244.5 63.4 248.8 66.2 t5 244.1 63.7 244.7 66.2 248.8 66.2 244.5 63.4 s5 244.1 63.7 244.7 66.2 p 244.1 63.7 244.1 63.1 244.5 63.4 t5 244.1 63.7 244.1 63.1 p 245.1 63.0 244.7 60.7 248.8 60.7 t6 245.1 63.0 244.7 60.7 p 245.1 63.0 245.5 64.0 248.8 66.2 248.8 60.7 s6 245.1 63.0 245.5 64.0 p 246.0 66.2 245.5 64.0 248.8 66.2 t6 246.0 66.2 245.5 64.0 p 246.1 62.4 245.8 60.7 248.8 60.7 t7 246.1 62.4 245.8 60.7 p 246.1 62.4 247.0 65.0 248.8 66.2 248.8 60.7 s7 246.1 62.4 247.0 65.0 p 247.2 66.2 247.0 65.0 248.8 66.2 t7 247.2 66.2 247.0 65.0 p 247.0 61.8 246.8 60.7 248.8 60.7 t8 247.0 61.8 246.8 60.7 p 247.0 61.8 248.5 66.0 248.8 66.2 248.8 60.7 s8 247.0 61.8 248.5 66.0 p 248.5 66.2 248.5 66.0 248.8 66.2 t8 248.5 66.2 248.5 66.0 p 248.8 60.7 257.4 60.7 257.4 66.2 248.8 66.2 s8 257.4 60.7 265.9 60.7 265.9 66.2 257.4 66.2 s8 265.9 60.7 274.5 60.7 274.5 66.2 265.9 66.2 s1 274.3 60.8 274.3 60.7 265.9 60.7 270.2 63.4 s2 274.3 60.8 274.3 60.7 p 274.3 60.8 274.0 65.9 270.2 63.4 t2 274.3 60.8 274.0 65.9 p 274.0 66.2 274.0 65.9 270.2 63.4 265.9 66.2 s2 274.0 66.2 274.0 65.9 p 265.9 66.2 270.2 63.4 265.9 60.7 t2 273.1 61.6 273.3 60.7 265.9 60.7 270.2 63.4 s3 273.1 61.6 273.3 60.7 p 273.1 61.6 272.9 65.1 270.2 63.4 t3 273.1 61.6 272.9 65.1 p 272.7 66.2 272.9 65.1 270.2 63.4 265.9 66.2 s3 272.7 66.2 272.9 65.1 p 265.9 66.2 270.2 63.4 265.9 60.7 t3 271.9 62.4 272.2 60.7 265.9 60.7 270.2 63.4 s4 271.9 62.4 272.2 60.7 p 271.9 62.4 271.8 64.4 270.2 63.4 t4 271.9 62.4 271.8 64.4 p 271.4 66.2 271.8 64.4 270.2 63.4 265.9 66.2 s4 271.4 66.2 271.8 64.4 p 265.9 66.2 270.2 63.4 265.9 60.7 t4 270.7 63.1 271.1 60.7 265.9 60.7 270.2 63.4 s5 270.7 63.1 271.1 60.7 p 270.7 63.1 270.6 63.7 270.2 63.4 t5 270.7 63.1 270.6 63.7 p 270.1 66.2 270.6 63.7 270.2 63.4 265.9 66.2 s5 270.1 66.2 270.6 63.7 p 265.9 66.2 270.2 63.4 265.9 60.7 t5 270.0 60.7 269.6 63.0 265.9 60.7 t6 270.0 60.7 269.6 63.0 p 269.3 64.0 268.8 66.2 265.9 66.2 t6 269.3 64.0 268.8 66.2 p 269.3 64.0 269.6 63.0 265.9 60.7 265.9 66.2 s6 269.3 64.0 269.6 63.0 p 269.0 60.7 268.7 62.4 265.9 60.7 t7 269.0 60.7 268.7 62.4 p 267.7 65.0 267.5 66.2 265.9 66.2 t7 267.7 65.0 267.5 66.2 p 267.7 65.0 268.7 62.4 265.9 60.7 265.9 66.2 s7 267.7 65.0 268.7 62.4 p 267.9 60.7 267.7 61.8 265.9 60.7 t8 267.9 60.7 267.7 61.8 p 266.2 66.0 266.2 66.2 265.9 66.2 t8 266.2 66.0 266.2 66.2 p 266.2 66.0 267.7 61.8 265.9 60.7 265.9 66.2 s8 266.2 66.0 267.7 61.8 p 274.5 60.7 283.1 60.7 283.1 66.2 274.5 66.2 s1 283.1 60.7 291.7 60.7 291.7 66.2 283.1 66.2 s1 283.3 60.7 283.3 60.8 287.4 63.4 291.7 60.7 s2 283.3 60.7 283.3 60.8 p 291.7 60.7 287.4 63.4 291.7 66.2 t2 283.6 65.9 283.7 66.2 291.7 66.2 287.4 63.4 s2 283.6 65.9 283.7 66.2 p 283.6 65.9 283.3 60.8 287.4 63.4 t2 283.6 65.9 283.3 60.8 p 284.4 60.7 284.5 61.6 287.4 63.4 291.7 60.7 s3 284.4 60.7 284.5 61.6 p 291.7 60.7 287.4 63.4 291.7 66.2 t3 284.7 65.1 285.0 66.2 291.7 66.2 287.4 63.4 s3 284.7 65.1 285.0 66.2 p 284.7 65.1 284.5 61.6 287.4 63.4 t3 284.7 65.1 284.5 61.6 p 285.4 60.7 285.8 62.4 287.4 63.4 291.7 60.7 s4 285.4 60.7 285.8 62.4 p 291.7 60.7 287.4 63.4 291.7 66.2 t4 285.9 64.4 286.3 66.2 291.7 66.2 287.4 63.4 s4 285.9 64.4 286.3 66.2 p 285.9 64.4 285.8 62.4 287.4 63.4 t4 285.9 64.4 285.8 62.4 p 286.5 60.7 287.0 63.1 287.4 63.4 291.7 60.7 s5 286.5 60.7 287.0 63.1 p 291.7 60.7 287.4 63.4 291.7 66.2 t5 287.0 63.7 287.6 66.2 291.7 66.2 287.4 63.4 s5 287.0 63.7 287.6 66.2 p 287.0 63.7 287.0 63.1 287.4 63.4 t5 287.0 63.7 287.0 63.1 p 288.0 63.0 287.6 60.7 291.7 60.7 t6 288.0 63.0 287.6 60.7 p 288.0 63.0 288.4 64.0 291.7 66.2 291.7 60.7 s6 288.0 63.0 288.4 64.0 p 288.8 66.2 288.4 64.0 291.7 66.2 t6 288.8 66.2 288.4 64.0 p 289.0 62.4 288.6 60.7 291.7 60.7 t7 289.0 62.4 288.6 60.7 p 289.0 62.4 289.9 65.0 291.7 66.2 291.7 60.7 s7 289.0 62.4 289.9 65.0 p 290.1 66.2 289.9 65.0 291.7 66.2 t7 290.1 66.2 289.9 65.0 p 289.9 61.8 289.7 60.7 291.7 60.7 t8 289.9 61.8 289.7 60.7 p 289.9 61.8 291.4 66.0 291.7 66.2 291.7 60.7 s8 289.9 61.8 291.4 66.0 p 291.4 66.2 291.4 66.0 291.7 66.2 t8 291.4 66.2 291.4 66.0 p 291.7 60.7 300.3 60.7 300.3 66.2 291.7 66.2 s8 0.0 55.1 8.6 55.1 8.6 60.7 0.0 60.7 s5 8.3 55.3 7.9 55.1 0.0 55.1 4.3 57.9 s6 8.3 55.3 7.9 55.1 p 8.6 55.8 8.3 55.3 4.3 57.9 8.6 60.7 s6 8.6 55.8 8.3 55.3 p 8.6 60.7 4.3 57.9 0.0 60.7 t6 0.0 60.7 4.3 57.9 0.0 55.1 t6 7.7 55.7 6.6 55.1 0.0 55.1 4.3 57.9 s7 7.7 55.7 6.6 55.1 p 8.6 57.0 7.7 55.7 4.3 57.9 8.6 60.7 s7 8.6 57.0 7.7 55.7 p 8.6 60.7 4.3 57.9 0.0 60.7 t7 0.0 60.7 4.3 57.9 0.0 55.1 t7 7.1 56.1 5.3 55.1 0.0 55.1 4.3 57.9 s8 7.1 56.1 5.3 55.1 p 8.6 58.3 7.1 56.1 4.3 57.9 8.6 60.7 s8 8.6 58.3 7.1 56.1 p 8.6 60.7 4.3 57.9 0.0 60.7 t8 0.0 60.7 4.3 57.9 0.0 55.1 t8 8.6 55.1 17.2 55.1 17.2 60.7 8.6 60.7 s1 16.7 55.5 16.4 55.1 8.6 55.1 12.9 57.9 s2 16.7 55.5 16.4 55.1 p 16.7 55.5 16.9 60.5 12.9 57.9 t2 16.7 55.5 16.9 60.5 p 17.0 60.7 16.9 60.5 12.9 57.9 8.6 60.7 s2 17.0 60.7 16.9 60.5 p 8.6 60.7 12.9 57.9 8.6 55.1 t2 15.3 56.4 14.2 55.1 8.6 55.1 12.9 57.9 s3 15.3 56.4 14.2 55.1 p 15.3 56.4 15.4 59.5 12.9 57.9 t3 15.3 56.4 15.4 59.5 p 15.9 60.7 15.4 59.5 12.9 57.9 8.6 60.7 s3 15.9 60.7 15.4 59.5 p 8.6 60.7 12.9 57.9 8.6 55.1 t3 13.9 57.3 11.9 55.1 8.6 55.1 12.9 57.9 s4 13.9 57.3 11.9 55.1 p 13.9 57.3 13.9 58.6 12.9 57.9 t4 13.9 57.3 13.9 58.6 p 14.8 60.7 13.9 58.6 12.9 57.9 8.6 60.7 s4 14.8 60.7 13.9 58.6 p 8.6 60.7 12.9 57.9 8.6 55.1 t4 9.7 55.1 11.3 56.9 8.6 55.1 t5 9.7 55.1 11.3 56.9 p 12.6 58.1 13.8 60.7 8.6 60.7 t5 12.6 58.1 13.8 60.7 p 12.6 58.1 11.3 56.9 8.6 55.1 8.6 60.7 s5 12.6 58.1 11.3 56.9 p 11.8 58.6 12.7 60.7 8.6 60.7 t6 11.8 58.6 12.7 60.7 p 8.6 55.8 11.8 58.6 8.6 60.7 t6 8.6 55.8 11.8 58.6 p 11.0 59.1 11.6 60.7 8.6 60.7 t7 11.0 59.1 11.6 60.7 p 8.6 57.0 11.0 59.1 8.6 60.7 t7 8.6 57.0 11.0 59.1 p 10.1 59.7 10.5 60.7 8.6 60.7 t8 10.1 59.7 10.5 60.7 p 8.6 58.3 10.1 59.7 8.6 60.7 t8 8.6 58.3 10.1 59.7 p 17.2 55.1 25.7 55.1 25.7 60.7 17.2 60.7 s1 25.7 55.1 34.3 55.1 34.3 60.7 25.7 60.7 s1 26.5 55.1 26.2 55.5 30.0 57.9 34.3 55.1 s2 26.5 55.1 26.2 55.5 p 34.3 55.1 30.0 57.9 34.3 60.7 t2 26.0 60.5 25.9 60.7 34.3 60.7 30.0 57.9 s2 26.0 60.5 25.9 60.7 p 26.0 60.5 26.2 55.5 30.0 57.9 t2 26.0 60.5 26.2 55.5 p 28.7 55.1 27.6 56.4 30.0 57.9 34.3 55.1 s3 28.7 55.1 27.6 56.4 p 34.3 55.1 30.0 57.9 34.3 60.7 t3 27.5 59.5 27.0 60.7 34.3 60.7 30.0 57.9 s3 27.5 59.5 27.0 60.7 p 27.5 59.5 27.6 56.4 30.0 57.9 t3 27.5 59.5 27.6 56.4 p 31.0 55.1 29.0 57.3 30.0 57.9 34.3 55.1 s4 31.0 55.1 29.0 57.3 p 34.3 55.1 30.0 57.9 34.3 60.7 t4 29.0 58.6 28.1 60.7 34.3 60.7 30.0 57.9 s4 29.0 58.6 28.1 60.7 p 29.0 58.6 29.0 57.3 30.0 57.9 t4 29.0 58.6 29.0 57.3 p 31.6 56.9 33.2 55.1 34.3 55.1 t5 31.6 56.9 33.2 55.1 p 31.6 56.9 30.3 58.1 34.3 60.7 34.3 55.1 s5 31.6 56.9 30.3 58.1 p 29.1 60.7 30.3 58.1 34.3 60.7 t5 29.1 60.7 30.3 58.1 p 31.1 58.6 34.3 55.8 34.3 60.7 t6 31.1 58.6 34.3 55.8 p 30.2 60.7 31.1 58.6 34.3 60.7 t6 30.2 60.7 31.1 58.6 p 31.9 59.1 34.3 57.0 34.3 60.7 t7 31.9 59.1 34.3 57.0 p 31.3 60.7 31.9 59.1 34.3 60.7 t7 31.3 60.7 31.9 59.1 p 32.8 59.7 34.3 58.3 34.3 60.7 t8 32.8 59.7 34.3 58.3 p 32.3 60.7 32.8 59.7 34.3 60.7 t8 32.3 60.7 32.8 59.7 p 34.3 55.1 42.9 55.1 42.9 60.7 34.3 60.7 s5 35.0 55.1 34.6 55.3 38.6 57.9 42.9 55.1 s6 35.0 55.1 34.6 55.3 p 42.9 55.1 38.6 57.9 42.9 60.7 t6 42.9 60.7 38.6 57.9 34.3 60.7 t6 34.6 55.3 34.3 55.8 34.3 60.7 38.6 57.9 s6 34.6 55.3 34.3 55.8 p 36.3 55.1 35.2 55.7 38.6 57.9 42.9 55.1 s7 36.3 55.1 35.2 55.7 p 42.9 55.1 38.6 57.9 42.9 60.7 t7 42.9 60.7 38.6 57.9 34.3 60.7 t7 35.2 55.7 34.3 57.0 34.3 60.7 38.6 57.9 s7 35.2 55.7 34.3 57.0 p 37.6 55.1 35.8 56.1 38.6 57.9 42.9 55.1 s8 37.6 55.1 35.8 56.1 p 42.9 55.1 38.6 57.9 42.9 60.7 t8 42.9 60.7 38.6 57.9 34.3 60.7 t8 35.8 56.1 34.3 58.3 34.3 60.7 38.6 57.9 s8 35.8 56.1 34.3 58.3 p 42.9 55.1 51.5 55.1 51.5 60.7 42.9 60.7 s5 51.2 55.3 50.8 55.1 42.9 55.1 47.2 57.9 s6 51.2 55.3 50.8 55.1 p 51.5 55.8 51.2 55.3 47.2 57.9 51.5 60.7 s6 51.5 55.8 51.2 55.3 p 51.5 60.7 47.2 57.9 42.9 60.7 t6 42.9 60.7 47.2 57.9 42.9 55.1 t6 50.6 55.7 49.5 55.1 42.9 55.1 47.2 57.9 s7 50.6 55.7 49.5 55.1 p 51.5 57.0 50.6 55.7 47.2 57.9 51.5 60.7 s7 51.5 57.0 50.6 55.7 p 51.5 60.7 47.2 57.9 42.9 60.7 t7 42.9 60.7 47.2 57.9 42.9 55.1 t7 50.0 56.1 48.2 55.1 42.9 55.1 47.2 57.9 s8 50.0 56.1 48.2 55.1 p 51.5 58.3 50.0 56.1 47.2 57.9 51.5 60.7 s8 51.5 58.3 50.0 56.1 p 51.5 60.7 47.2 57.9 42.9 60.7 t8 42.9 60.7 47.2 57.9 42.9 55.1 t8 51.5 55.1 60.1 55.1 60.1 60.7 51.5 60.7 s1 59.6 55.5 59.3 55.1 51.5 55.1 55.8 57.9 s2 59.6 55.5 59.3 55.1 p 59.6 55.5 59.8 60.5 55.8 57.9 t2 59.6 55.5 59.8 60.5 p 59.9 60.7 59.8 60.5 55.8 57.9 51.5 60.7 s2 59.9 60.7 59.8 60.5 p 51.5 60.7 55.8 57.9 51.5 55.1 t2 58.2 56.4 57.1 55.1 51.5 55.1 55.8 57.9 s3 58.2 56.4 57.1 55.1 p 58.2 56.4 58.3 59.5 55.8 57.9 t3 58.2 56.4 58.3 59.5 p 58.8 60.7 58.3 59.5 55.8 57.9 51.5 60.7 s3 58.8 60.7 58.3 59.5 p 51.5 60.7 55.8 57.9 51.5 55.1 t3 56.8 57.3 54.8 55.1 51.5 55.1 55.8 57.9 s4 56.8 57.3 54.8 55.1 p 56.8 57.3 56.8 58.6 55.8 57.9 t4 56.8 57.3 56.8 58.6 p 57.7 60.7 56.8 58.6 55.8 57.9 51.5 60.7 s4 57.7 60.7 56.8 58.6 p 51.5 60.7 55.8 57.9 51.5 55.1 t4 52.6 55.1 54.2 56.9 51.5 55.1 t5 52.6 55.1 54.2 56.9 p 55.5 58.1 56.6 60.7 51.5 60.7 t5 55.5 58.1 56.6 60.7 p 55.5 58.1 54.2 56.9 51.5 55.1 51.5 60.7 s5 55.5 58.1 54.2 56.9 p 54.7 58.6 55.6 60.7 51.5 60.7 t6 54.7 58.6 55.6 60.7 p 51.5 55.8 54.7 58.6 51.5 60.7 t6 51.5 55.8 54.7 58.6 p 53.8 59.1 54.5 60.7 51.5 60.7 t7 53.8 59.1 54.5 60.7 p 51.5 57.0 53.8 59.1 51.5 60.7 t7 51.5 57.0 53.8 59.1 p 53.0 59.7 53.4 60.7 51.5 60.7 t8 53.0 59.7 53.4 60.7 p 51.5 58.3 53.0 59.7 51.5 60.7 t8 51.5 58.3 53.0 59.7 p 60.1 55.1 68.6 55.1 68.6 60.7 60.1 60.7 s1 68.6 55.1 77.2 55.1 77.2 60.7 68.6 60.7 s1 69.4 55.1 69.1 55.5 72.9 57.9 77.2 55.1 s2 69.4 55.1 69.1 55.5 p 77.2 55.1 72.9 57.9 77.2 60.7 t2 68.9 60.5 68.8 60.7 77.2 60.7 72.9 57.9 s2 68.9 60.5 68.8 60.7 p 68.9 60.5 69.1 55.5 72.9 57.9 t2 68.9 60.5 69.1 55.5 p 71.6 55.1 70.5 56.4 72.9 57.9 77.2 55.1 s3 71.6 55.1 70.5 56.4 p 77.2 55.1 72.9 57.9 77.2 60.7 t3 70.4 59.5 69.9 60.7 77.2 60.7 72.9 57.9 s3 70.4 59.5 69.9 60.7 p 70.4 59.5 70.5 56.4 72.9 57.9 t3 70.4 59.5 70.5 56.4 p 73.8 55.1 71.9 57.3 72.9 57.9 77.2 55.1 s4 73.8 55.1 71.9 57.3 p 77.2 55.1 72.9 57.9 77.2 60.7 t4 71.9 58.6 71.0 60.7 77.2 60.7 72.9 57.9 s4 71.9 58.6 71.0 60.7 p 71.9 58.6 71.9 57.3 72.9 57.9 t4 71.9 58.6 71.9 57.3 p 74.5 56.9 76.1 55.1 77.2 55.1 t5 74.5 56.9 76.1 55.1 p 74.5 56.9 73.2 58.1 77.2 60.7 77.2 55.1 s5 74.5 56.9 73.2 58.1 p 72.0 60.7 73.2 58.1 77.2 60.7 t5 72.0 60.7 73.2 58.1 p 74.0 58.6 77.2 55.8 77.2 60.7 t6 74.0 58.6 77.2 55.8 p 73.1 60.7 74.0 58.6 77.2 60.7 t6 73.1 60.7 74.0 58.6 p 74.8 59.1 77.2 57.0 77.2 60.7 t7 74.8 59.1 77.2 57.0 p 74.2 60.7 74.8 59.1 77.2 60.7 t7 74.2 60.7 74.8 59.1 p 75.7 59.7 77.2 58.3 77.2 60.7 t8 75.7 59.7 77.2 58.3 p 75.2 60.7 75.7 59.7 77.2 60.7 t8 75.2 60.7 75.7 59.7 p 77.2 55.1 85.8 55.1 85.8 60.7 77.2 60.7 s5 77.8 55.1 77.5 55.3 81.5 57.9 85.8 55.1 s6 77.8 55.1 77.5 55.3 p 85.8 55.1 81.5 57.9 85.8 60.7 t6 85.8 60.7 81.5 57.9 77.2 60.7 t6 77.5 55.3 77.2 55.8 77.2 60.7 81.5 57.9 s6 77.5 55.3 77.2 55.8 p 79.2 55.1 78.1 55.7 81.5 57.9 85.8 55.1 s7 79.2 55.1 78.1 55.7 p 85.8 55.1 81.5 57.9 85.8 60.7 t7 85.8 60.7 81.5 57.9 77.2 60.7 t7 78.1 55.7 77.2 57.0 77.2 60.7 81.5 57.9 s7 78.1 55.7 77.2 57.0 p 80.5 55.1 78.6 56.1 81.5 57.9 85.8 55.1 s8 80.5 55.1 78.6 56.1 p 85.8 55.1 81.5 57.9 85.8 60.7 t8 85.8 60.7 81.5 57.9 77.2 60.7 t8 78.6 56.1 77.2 58.3 77.2 60.7 81.5 57.9 s8 78.6 56.1 77.2 58.3 p 85.8 55.1 94.4 55.1 94.4 60.7 85.8 60.7 s5 94.1 55.3 93.7 55.1 85.8 55.1 90.1 57.9 s6 94.1 55.3 93.7 55.1 p 94.4 55.8 94.1 55.3 90.1 57.9 94.4 60.7 s6 94.4 55.8 94.1 55.3 p 94.4 60.7 90.1 57.9 85.8 60.7 t6 85.8 60.7 90.1 57.9 85.8 55.1 t6 93.5 55.7 92.4 55.1 85.8 55.1 90.1 57.9 s7 93.5 55.7 92.4 55.1 p 94.4 57.0 93.5 55.7 90.1 57.9 94.4 60.7 s7 94.4 57.0 93.5 55.7 p 94.4 60.7 90.1 57.9 85.8 60.7 t7 85.8 60.7 90.1 57.9 85.8 55.1 t7 92.9 56.1 91.1 55.1 85.8 55.1 90.1 57.9 s8 92.9 56.1 91.1 55.1 p 94.4 58.3 92.9 56.1 90.1 57.9 94.4 60.7 s8 94.4 58.3 92.9 56.1 p 94.4 60.7 90.1 57.9 85.8 60.7 t8 85.8 60.7 90.1 57.9 85.8 55.1 t8 94.4 55.1 102.9 55.1 102.9 60.7 94.4 60.7 s1 102.5 55.5 102.2 55.1 94.4 55.1 98.7 57.9 s2 102.5 55.5 102.2 55.1 p 102.5 55.5 102.7 60.5 98.7 57.9 t2 102.5 55.5 102.7 60.5 p 102.7 60.7 102.7 60.5 98.7 57.9 94.4 60.7 s2 102.7 60.7 102.7 60.5 p 94.4 60.7 98.7 57.9 94.4 55.1 t2 101.1 56.4 100.0 55.1 94.4 55.1 98.7 57.9 s3 101.1 56.4 100.0 55.1 p 101.1 56.4 101.2 59.5 98.7 57.9 t3 101.1 56.4 101.2 59.5 p 101.7 60.7 101.2 59.5 98.7 57.9 94.4 60.7 s3 101.7 60.7 101.2 59.5 p 94.4 60.7 98.7 57.9 94.4 55.1 t3 99.6 57.3 97.7 55.1 94.4 55.1 98.7 57.9 s4 99.6 57.3 97.7 55.1 p 99.6 57.3 99.7 58.6 98.7 57.9 t4 99.6 57.3 99.7 58.6 p 100.6 60.7 99.7 58.6 98.7 57.9 94.4 60.7 s4 100.6 60.7 99.7 58.6 p 94.4 60.7 98.7 57.9 94.4 55.1 t4 95.5 55.1 97.1 56.9 94.4 55.1 t5 95.5 55.1 97.1 56.9 p 98.4 58.1 99.5 60.7 94.4 60.7 t5 98.4 58.1 99.5 60.7 p 98.4 58.1 97.1 56.9 94.4 55.1 94.4 60.7 s5 98.4 58.1 97.1 56.9 p 97.6 58.6 98.5 60.7 94.4 60.7 t6 97.6 58.6 98.5 60.7 p 94.4 55.8 97.6 58.6 94.4 60.7 t6 94.4 55.8 97.6 58.6 p 96.7 59.1 97.4 60.7 94.4 60.7 t7 96.7 59.1 97.4 60.7 p 94.4 57.0 96.7 59.1 94.4 60.7 t7 94.4 57.0 96.7 59.1 p 95.9 59.7 96.3 60.7 94.4 60.7 t8 95.9 59.7 96.3 60.7 p 94.4 58.3 95.9 59.7 94.4 60.7 t8 94.4 58.3 95.9 59.7 p 102.9 55.1 111.5 55.1 111.5 60.7 102.9 60.7 s1 111.5 55.1 120.1 55.1 120.1 60.7 111.5 60.7 s1 112.3 55.1 112.0 55.5 115.8 57.9 120.1 55.1 s2 112.3 55.1 112.0 55.5 p 120.1 55.1 115.8 57.9 120.1 60.7 t2 111.8 60.5 111.7 60.7 120.1 60.7 115.8 57.9 s2 111.8 60.5 111.7 60.7 p 111.8 60.5 112.0 55.5 115.8 57.9 t2 111.8 60.5 112.0 55.5 p 114.5 55.1 113.4 56.4 115.8 57.9 120.1 55.1 s3 114.5 55.1 113.4 56.4 p 120.1 55.1 115.8 57.9 120.1 60.7 t3 113.3 59.5 112.8 60.7 120.1 60.7 115.8 57.9 s3 113.3 59.5 112.8 60.7 p 113.3 59.5 113.4 56.4 115.8 57.9 t3 113.3 59.5 113.4 56.4 p 116.7 55.1 114.8 57.3 115.8 57.9 120.1 55.1 s4 116.7 55.1 114.8 57.3 p 120.1 55.1 115.8 57.9 120.1 60.7 t4 114.8 58.6 113.9 60.7 120.1 60.7 115.8 57.9 s4 114.8 58.6 113.9 60.7 p 114.8 58.6 114.8 57.3 115.8 57.9 t4 114.8 58.6 114.8 57.3 p 117.4 56.9 119.0 55.1 120.1 55.1 t5 117.4 56.9 119.0 55.1 p 117.4 56.9 116.1 58.1 120.1 60.7 120.1 55.1 s5 117.4 56.9 116.1 58.1 p 114.9 60.7 116.1 58.1 120.1 60.7 t5 114.9 60.7 116.1 58.1 p 116.9 58.6 120.1 55.8 120.1 60.7 t6 116.9 58.6 120.1 55.8 p 116.0 60.7 116.9 58.6 120.1 60.7 t6 116.0 60.7 116.9 58.6 p 117.7 59.1 120.1 57.0 120.1 60.7 t7 117.7 59.1 120.1 57.0 p 117.1 60.7 117.7 59.1 120.1 60.7 t7 117.1 60.7 117.7 59.1 p 118.6 59.7 120.1 58.3 120.1 60.7 t8 118.6 59.7 120.1 58.3 p 118.1 60.7 118.6 59.7 120.1 60.7 t8 118.1 60.7 118.6 59.7 p 120.1 55.1 128.7 55.1 128.7 60.7 120.1 60.7 s5 120.7 55.1 120.4 55.3 124.4 57.9 128.7 55.1 s6 120.7 55.1 120.4 55.3 p 128.7 55.1 124.4 57.9 128.7 60.7 t6 128.7 60.7 124.4 57.9 120.1 60.7 t6 120.4 55.3 120.1 55.8 120.1 60.7 124.4 57.9 s6 120.4 55.3 120.1 55.8 p 122.1 55.1 121.0 55.7 124.4 57.9 128.7 55.1 s7 122.1 55.1 121.0 55.7 p 128.7 55.1 124.4 57.9 128.7 60.7 t7 128.7 60.7 124.4 57.9 120.1 60.7 t7 121.0 55.7 120.1 57.0 120.1 60.7 124.4 57.9 s7 121.0 55.7 120.1 57.0 p 123.4 55.1 121.5 56.1 124.4 57.9 128.7 55.1 s8 123.4 55.1 121.5 56.1 p 128.7 55.1 124.4 57.9 128.7 60.7 t8 128.7 60.7 124.4 57.9 120.1 60.7 t8 121.5 56.1 120.1 58.3 120.1 60.7 124.4 57.9 s8 121.5 56.1 120.1 58.3 p 128.7 55.1 137.3 55.1 137.3 60.7 128.7 60.7 s5 137.0 55.3 136.6 55.1 128.7 55.1 133.0 57.9 s6 137.0 55.3 136.6 55.1 p 137.3 55.8 137.0 55.3 133.0 57.9 137.3 60.7 s6 137.3 55.8 137.0 55.3 p 137.3 60.7 133.0 57.9 128.7 60.7 t6 128.7 60.7 133.0 57.9 128.7 55.1 t6 136.4 55.7 135.3 55.1 128.7 55.1 133.0 57.9 s7 136.4 55.7 135.3 55.1 p 137.3 57.0 136.4 55.7 133.0 57.9 137.3 60.7 s7 137.3 57.0 136.4 55.7 p 137.3 60.7 133.0 57.9 128.7 60.7 t7 128.7 60.7 133.0 57.9 128.7 55.1 t7 135.8 56.1 134.0 55.1 128.7 55.1 133.0 57.9 s8 135.8 56.1 134.0 55.1 p 137.3 58.3 135.8 56.1 133.0 57.9 137.3 60.7 s8 137.3 58.3 135.8 56.1 p 137.3 60.7 133.0 57.9 128.7 60.7 t8 128.7 60.7 133.0 57.9 128.7 55.1 t8 137.3 55.1 145.8 55.1 145.8 60.7 137.3 60.7 s1 145.4 55.5 145.1 55.1 137.3 55.1 141.6 57.9 s2 145.4 55.5 145.1 55.1 p 145.4 55.5 145.6 60.5 141.6 57.9 t2 145.4 55.5 145.6 60.5 p 145.6 60.7 145.6 60.5 141.6 57.9 137.3 60.7 s2 145.6 60.7 145.6 60.5 p 137.3 60.7 141.6 57.9 137.3 55.1 t2 143.9 56.4 142.8 55.1 137.3 55.1 141.6 57.9 s3 143.9 56.4 142.8 55.1 p 143.9 56.4 144.1 59.5 141.6 57.9 t3 143.9 56.4 144.1 59.5 p 144.6 60.7 144.1 59.5 141.6 57.9 137.3 60.7 s3 144.6 60.7 144.1 59.5 p 137.3 60.7 141.6 57.9 137.3 55.1 t3 142.5 57.3 140.6 55.1 137.3 55.1 141.6 57.9 s4 142.5 57.3 140.6 55.1 p 142.5 57.3 142.6 58.6 141.6 57.9 t4 142.5 57.3 142.6 58.6 p 143.5 60.7 142.6 58.6 141.6 57.9 137.3 60.7 s4 143.5 60.7 142.6 58.6 p 137.3 60.7 141.6 57.9 137.3 55.1 t4 138.4 55.1 140.0 56.9 137.3 55.1 t5 138.4 55.1 140.0 56.9 p 141.3 58.1 142.4 60.7 137.3 60.7 t5 141.3 58.1 142.4 60.7 p 141.3 58.1 140.0 56.9 137.3 55.1 137.3 60.7 s5 141.3 58.1 140.0 56.9 p 140.5 58.6 141.4 60.7 137.3 60.7 t6 140.5 58.6 141.4 60.7 p 137.3 55.8 140.5 58.6 137.3 60.7 t6 137.3 55.8 140.5 58.6 p 139.6 59.1 140.3 60.7 137.3 60.7 t7 139.6 59.1 140.3 60.7 p 137.3 57.0 139.6 59.1 137.3 60.7 t7 137.3 57.0 139.6 59.1 p 138.8 59.7 139.2 60.7 137.3 60.7 t8 138.8 59.7 139.2 60.7 p 137.3 58.3 138.8 59.7 137.3 60.7 t8 137.3 58.3 138.8 59.7 p 145.8 55.1 154.4 55.1 154.4 60.7 145.8 60.7 s1 154.4 55.1 163.0 55.1 163.0 60.7 154.4 60.7 s1 155.2 55.1 154.9 55.5 158.7 57.9 163.0 55.1 s2 155.2 55.1 154.9 55.5 p 163.0 55.1 158.7 57.9 163.0 60.7 t2 154.7 60.5 154.6 60.7 163.0 60.7 158.7 57.9 s2 154.7 60.5 154.6 60.7 p 154.7 60.5 154.9 55.5 158.7 57.9 t2 154.7 60.5 154.9 55.5 p 157.4 55.1 156.3 56.4 158.7 57.9 163.0 55.1 s3 157.4 55.1 156.3 56.4 p 163.0 55.1 158.7 57.9 163.0 60.7 t3 156.2 59.5 155.7 60.7 163.0 60.7 158.7 57.9 s3 156.2 59.5 155.7 60.7 p 156.2 59.5 156.3 56.4 158.7 57.9 t3 156.2 59.5 156.3 56.4 p 159.6 55.1 157.7 57.3 158.7 57.9 163.0 55.1 s4 159.6 55.1 157.7 57.3 p 163.0 55.1 158.7 57.9 163.0 60.7 t4 157.7 58.6 156.8 60.7 163.0 60.7 158.7 57.9 s4 157.7 58.6 156.8 60.7 p 157.7 58.6 157.7 57.3 158.7 57.9 t4 157.7 58.6 157.7 57.3 p 160.3 56.9 161.9 55.1 163.0 55.1 t5 160.3 56.9 161.9 55.1 p 160.3 56.9 159.0 58.1 163.0 60.7 163.0 55.1 s5 160.3 56.9 159.0 58.1 p 157.8 60.7 159.0 58.1 163.0 60.7 t5 157.8 60.7 159.0 58.1 p 159.8 58.6 163.0 55.8 163.0 60.7 t6 159.8 58.6 163.0 55.8 p 158.9 60.7 159.8 58.6 163.0 60.7 t6 158.9 60.7 159.8 58.6 p 160.6 59.1 163.0 57.0 163.0 60.7 t7 160.6 59.1 163.0 57.0 p 160.0 60.7 160.6 59.1 163.0 60.7 t7 160.0 60.7 160.6 59.1 p 161.5 59.7 163.0 58.3 163.0 60.7 t8 161.5 59.7 163.0 58.3 p 161.0 60.7 161.5 59.7 163.0 60.7 t8 161.0 60.7 161.5 59.7 p 163.0 55.1 171.6 55.1 171.6 60.7 163.0 60.7 s5 163.6 55.1 163.3 55.3 167.3 57.9 171.6 55.1 s6 163.6 55.1 163.3 55.3 p 171.6 55.1 167.3 57.9 171.6 60.7 t6 171.6 60.7 167.3 57.9 163.0 60.7 t6 163.3 55.3 163.0 55.8 163.0 60.7 167.3 57.9 s6 163.3 55.3 163.0 55.8 p 164.9 55.1 163.9 55.7 167.3 57.9 171.6 55.1 s7 164.9 55.1 163.9 55.7 p 171.6 55.1 167.3 57.9 171.6 60.7 t7 171.6 60.7 167.3 57.9 163.0 60.7 t7 163.9 55.7 163.0 57.0 163.0 60.7 167.3 57.9 s7 163.9 55.7 163.0 57.0 p 166.3 55.1 164.4 56.1 167.3 57.9 171.6 55.1 s8 166.3 55.1 164.4 56.1 p 171.6 55.1 167.3 57.9 171.6 60.7 t8 171.6 60.7 167.3 57.9 163.0 60.7 t8 164.4 56.1 163.0 58.3 163.0 60.7 167.3 57.9 s8 164.4 56.1 163.0 58.3 p 171.6 55.1 180.2 55.1 180.2 60.7 171.6 60.7 s5 179.9 55.3 179.5 55.1 171.6 55.1 175.9 57.9 s6 179.9 55.3 179.5 55.1 p 180.2 55.8 179.9 55.3 175.9 57.9 180.2 60.7 s6 180.2 55.8 179.9 55.3 p 180.2 60.7 175.9 57.9 171.6 60.7 t6 171.6 60.7 175.9 57.9 171.6 55.1 t6 179.3 55.7 178.2 55.1 171.6 55.1 175.9 57.9 s7 179.3 55.7 178.2 55.1 p 180.2 57.0 179.3 55.7 175.9 57.9 180.2 60.7 s7 180.2 57.0 179.3 55.7 p 180.2 60.7 175.9 57.9 171.6 60.7 t7 171.6 60.7 175.9 57.9 171.6 55.1 t7 178.7 56.1 176.9 55.1 171.6 55.1 175.9 57.9 s8 178.7 56.1 176.9 55.1 p 180.2 58.3 178.7 56.1 175.9 57.9 180.2 60.7 s8 180.2 58.3 178.7 56.1 p 180.2 60.7 175.9 57.9 171.6 60.7 t8 171.6 60.7 175.9 57.9 171.6 55.1 t8 180.2 55.1 188.7 55.1 188.7 60.7 180.2 60.7 s1 188.2 55.5 188.0 55.1 180.2 55.1 184.4 57.9 s2 188.2 55.5 188.0 55.1 p 188.2 55.5 188.5 60.5 184.4 57.9 t2 188.2 55.5 188.5 60.5 p 188.5 60.7 188.5 60.5 184.4 57.9 180.2 60.7 s2 188.5 60.7 188.5 60.5 p 180.2 60.7 184.4 57.9 180.2 55.1 t2 186.8 56.4 185.7 55.1 180.2 55.1 184.4 57.9 s3 186.8 56.4 185.7 55.1 p 186.8 56.4 187.0 59.5 184.4 57.9 t3 186.8 56.4 187.0 59.5 p 187.5 60.7 187.0 59.5 184.4 57.9 180.2 60.7 s3 187.5 60.7 187.0 59.5 p 180.2 60.7 184.4 57.9 180.2 55.1 t3 185.4 57.3 183.5 55.1 180.2 55.1 184.4 57.9 s4 185.4 57.3 183.5 55.1 p 185.4 57.3 185.5 58.6 184.4 57.9 t4 185.4 57.3 185.5 58.6 p 186.4 60.7 185.5 58.6 184.4 57.9 180.2 60.7 s4 186.4 60.7 185.5 58.6 p 180.2 60.7 184.4 57.9 180.2 55.1 t4 181.3 55.1 182.9 56.9 180.2 55.1 t5 181.3 55.1 182.9 56.9 p 184.2 58.1 185.3 60.7 180.2 60.7 t5 184.2 58.1 185.3 60.7 p 184.2 58.1 182.9 56.9 180.2 55.1 180.2 60.7 s5 184.2 58.1 182.9 56.9 p 183.4 58.6 184.3 60.7 180.2 60.7 t6 183.4 58.6 184.3 60.7 p 180.2 55.8 183.4 58.6 180.2 60.7 t6 180.2 55.8 183.4 58.6 p 182.5 59.1 183.2 60.7 180.2 60.7 t7 182.5 59.1 183.2 60.7 p 180.2 57.0 182.5 59.1 180.2 60.7 t7 180.2 57.0 182.5 59.1 p 181.7 59.7 182.1 60.7 180.2 60.7 t8 181.7 59.7 182.1 60.7 p 180.2 58.3 181.7 59.7 180.2 60.7 t8 180.2 58.3 181.7 59.7 p 188.7 55.1 197.3 55.1 197.3 60.7 188.7 60.7 s1 197.3 55.1 205.9 55.1 205.9 60.7 197.3 60.7 s1 198.1 55.1 197.8 55.5 201.6 57.9 205.9 55.1 s2 198.1 55.1 197.8 55.5 p 205.9 55.1 201.6 57.9 205.9 60.7 t2 197.6 60.5 197.5 60.7 205.9 60.7 201.6 57.9 s2 197.6 60.5 197.5 60.7 p 197.6 60.5 197.8 55.5 201.6 57.9 t2 197.6 60.5 197.8 55.5 p 200.3 55.1 199.2 56.4 201.6 57.9 205.9 55.1 s3 200.3 55.1 199.2 56.4 p 205.9 55.1 201.6 57.9 205.9 60.7 t3 199.1 59.5 198.6 60.7 205.9 60.7 201.6 57.9 s3 199.1 59.5 198.6 60.7 p 199.1 59.5 199.2 56.4 201.6 57.9 t3 199.1 59.5 199.2 56.4 p 202.5 55.1 200.6 57.3 201.6 57.9 205.9 55.1 s4 202.5 55.1 200.6 57.3 p 205.9 55.1 201.6 57.9 205.9 60.7 t4 200.6 58.6 199.7 60.7 205.9 60.7 201.6 57.9 s4 200.6 58.6 199.7 60.7 p 200.6 58.6 200.6 57.3 201.6 57.9 t4 200.6 58.6 200.6 57.3 p 203.2 56.9 204.7 55.1 205.9 55.1 t5 203.2 56.9 204.7 55.1 p 203.2 56.9 201.9 58.1 205.9 60.7 205.9 55.1 s5 203.2 56.9 201.9 58.1 p 200.7 60.7 201.9 58.1 205.9 60.7 t5 200.7 60.7 201.9 58.1 p 202.7 58.6 205.9 55.8 205.9 60.7 t6 202.7 58.6 205.9 55.8 p 201.8 60.7 202.7 58.6 205.9 60.7 t6 201.8 60.7 202.7 58.6 p 203.5 59.1 205.9 57.0 205.9 60.7 t7 203.5 59.1 205.9 57.0 p 202.9 60.7 203.5 59.1 205.9 60.7 t7 202.9 60.7 203.5 59.1 p 204.4 59.7 205.9 58.3 205.9 60.7 t8 204.4 59.7 205.9 58.3 p 203.9 60.7 204.4 59.7 205.9 60.7 t8 203.9 60.7 204.4 59.7 p 205.9 55.1 214.5 55.1 214.5 60.7 205.9 60.7 s5 206.5 55.1 206.2 55.3 210.2 57.9 214.5 55.1 s6 206.5 55.1 206.2 55.3 p 214.5 55.1 210.2 57.9 214.5 60.7 t6 214.5 60.7 210.2 57.9 205.9 60.7 t6 206.2 55.3 205.9 55.8 205.9 60.7 210.2 57.9 s6 206.2 55.3 205.9 55.8 p 207.8 55.1 206.8 55.7 210.2 57.9 214.5 55.1 s7 207.8 55.1 206.8 55.7 p 214.5 55.1 210.2 57.9 214.5 60.7 t7 214.5 60.7 210.2 57.9 205.9 60.7 t7 206.8 55.7 205.9 57.0 205.9 60.7 210.2 57.9 s7 206.8 55.7 205.9 57.0 p 209.2 55.1 207.3 56.1 210.2 57.9 214.5 55.1 s8 209.2 55.1 207.3 56.1 p 214.5 55.1 210.2 57.9 214.5 60.7 t8 214.5 60.7 210.2 57.9 205.9 60.7 t8 207.3 56.1 205.9 58.3 205.9 60.7 210.2 57.9 s8 207.3 56.1 205.9 58.3 p 214.5 55.1 223.1 55.1 223.1 60.7 214.5 60.7 s5 222.8 55.3 222.4 55.1 214.5 55.1 218.8 57.9 s6 222.8 55.3 222.4 55.1 p 223.1 55.8 222.8 55.3 218.8 57.9 223.1 60.7 s6 223.1 55.8 222.8 55.3 p 223.1 60.7 218.8 57.9 214.5 60.7 t6 214.5 60.7 218.8 57.9 214.5 55.1 t6 222.2 55.7 221.1 55.1 214.5 55.1 218.8 57.9 s7 222.2 55.7 221.1 55.1 p 223.1 57.0 222.2 55.7 218.8 57.9 223.1 60.7 s7 223.1 57.0 222.2 55.7 p 223.1 60.7 218.8 57.9 214.5 60.7 t7 214.5 60.7 218.8 57.9 214.5 55.1 t7 221.6 56.1 219.8 55.1 214.5 55.1 218.8 57.9 s8 221.6 56.1 219.8 55.1 p 223.1 58.3 221.6 56.1 218.8 57.9 223.1 60.7 s8 223.1 58.3 221.6 56.1 p 223.1 60.7 218.8 57.9 214.5 60.7 t8 214.5 60.7 218.8 57.9 214.5 55.1 t8 223.1 55.1 231.6 55.1 231.6 60.7 223.1 60.7 s1 231.1 55.5 230.9 55.1 223.1 55.1 227.3 57.9 s2 231.1 55.5 230.9 55.1 p 231.1 55.5 231.4 60.5 227.3 57.9 t2 231.1 55.5 231.4 60.5 p 231.4 60.7 231.4 60.5 227.3 57.9 223.1 60.7 s2 231.4 60.7 231.4 60.5 p 223.1 60.7 227.3 57.9 223.1 55.1 t2 229.7 56.4 228.6 55.1 223.1 55.1 227.3 57.9 s3 229.7 56.4 228.6 55.1 p 229.7 56.4 229.9 59.5 227.3 57.9 t3 229.7 56.4 229.9 59.5 p 230.4 60.7 229.9 59.5 227.3 57.9 223.1 60.7 s3 230.4 60.7 229.9 59.5 p 223.1 60.7 227.3 57.9 223.1 55.1 t3 228.3 57.3 226.4 55.1 223.1 55.1 227.3 57.9 s4 228.3 57.3 226.4 55.1 p 228.3 57.3 228.4 58.6 227.3 57.9 t4 228.3 57.3 228.4 58.6 p 229.3 60.7 228.4 58.6 227.3 57.9 223.1 60.7 s4 229.3 60.7 228.4 58.6 p 223.1 60.7 227.3 57.9 223.1 55.1 t4 224.2 55.1 225.8 56.9 223.1 55.1 t5 224.2 55.1 225.8 56.9 p 227.1 58.1 228.2 60.7 223.1 60.7 t5 227.1 58.1 228.2 60.7 p 227.1 58.1 225.8 56.9 223.1 55.1 223.1 60.7 s5 227.1 58.1 225.8 56.9 p 226.3 58.6 227.2 60.7 223.1 60.7 t6 226.3 58.6 227.2 60.7 p 223.1 55.8 226.3 58.6 223.1 60.7 t6 223.1 55.8 226.3 58.6 p 225.4 59.1 226.1 60.7 223.1 60.7 t7 225.4 59.1 226.1 60.7 p 223.1 57.0 225.4 59.1 223.1 60.7 t7 223.1 57.0 225.4 59.1 p 224.6 59.7 225.0 60.7 223.1 60.7 t8 224.6 59.7 225.0 60.7 p 223.1 58.3 224.6 59.7 223.1 60.7 t8 223.1 58.3 224.6 59.7 p 231.6 55.1 240.2 55.1 240.2 60.7 231.6 60.7 s1 240.2 55.1 248.8 55.1 248.8 60.7 240.2 60.7 s1 241.0 55.1 240.7 55.5 244.5 57.9 248.8 55.1 s2 241.0 55.1 240.7 55.5 p 248.8 55.1 244.5 57.9 248.8 60.7 t2 240.5 60.5 240.4 60.7 248.8 60.7 244.5 57.9 s2 240.5 60.5 240.4 60.7 p 240.5 60.5 240.7 55.5 244.5 57.9 t2 240.5 60.5 240.7 55.5 p 243.2 55.1 242.1 56.4 244.5 57.9 248.8 55.1 s3 243.2 55.1 242.1 56.4 p 248.8 55.1 244.5 57.9 248.8 60.7 t3 242.0 59.5 241.5 60.7 248.8 60.7 244.5 57.9 s3 242.0 59.5 241.5 60.7 p 242.0 59.5 242.1 56.4 244.5 57.9 t3 242.0 59.5 242.1 56.4 p 245.4 55.1 243.5 57.3 244.5 57.9 248.8 55.1 s4 245.4 55.1 243.5 57.3 p 248.8 55.1 244.5 57.9 248.8 60.7 t4 243.5 58.6 242.5 60.7 248.8 60.7 244.5 57.9 s4 243.5 58.6 242.5 60.7 p 243.5 58.6 243.5 57.3 244.5 57.9 t4 243.5 58.6 243.5 57.3 p 246.1 56.9 247.6 55.1 248.8 55.1 t5 246.1 56.9 247.6 55.1 p 246.1 56.9 244.7 58.1 248.8 60.7 248.8 55.1 s5 246.1 56.9 244.7 58.1 p 243.6 60.7 244.7 58.1 248.8 60.7 t5 243.6 60.7 244.7 58.1 p 245.6 58.6 248.8 55.8 248.8 60.7 t6 245.6 58.6 248.8 55.8 p 244.7 60.7 245.6 58.6 248.8 60.7 t6 244.7 60.7 245.6 58.6 p 246.4 59.1 248.8 57.0 248.8 60.7 t7 246.4 59.1 248.8 57.0 p 245.8 60.7 246.4 59.1 248.8 60.7 t7 245.8 60.7 246.4 59.1 p 247.3 59.7 248.8 58.3 248.8 60.7 t8 247.3 59.7 248.8 58.3 p 246.8 60.7 247.3 59.7 248.8 60.7 t8 246.8 60.7 247.3 59.7 p 248.8 55.1 257.4 55.1 257.4 60.7 248.8 60.7 s5 249.4 55.1 249.1 55.3 253.1 57.9 257.4 55.1 s6 249.4 55.1 249.1 55.3 p 257.4 55.1 253.1 57.9 257.4 60.7 t6 257.4 60.7 253.1 57.9 248.8 60.7 t6 249.1 55.3 248.8 55.8 248.8 60.7 253.1 57.9 s6 249.1 55.3 248.8 55.8 p 250.7 55.1 249.6 55.7 253.1 57.9 257.4 55.1 s7 250.7 55.1 249.6 55.7 p 257.4 55.1 253.1 57.9 257.4 60.7 t7 257.4 60.7 253.1 57.9 248.8 60.7 t7 249.6 55.7 248.8 57.0 248.8 60.7 253.1 57.9 s7 249.6 55.7 248.8 57.0 p 252.0 55.1 250.2 56.1 253.1 57.9 257.4 55.1 s8 252.0 55.1 250.2 56.1 p 257.4 55.1 253.1 57.9 257.4 60.7 t8 257.4 60.7 253.1 57.9 248.8 60.7 t8 250.2 56.1 248.8 58.3 248.8 60.7 253.1 57.9 s8 250.2 56.1 248.8 58.3 p 257.4 55.1 265.9 55.1 265.9 60.7 257.4 60.7 s5 265.7 55.3 265.3 55.1 257.4 55.1 261.7 57.9 s6 265.7 55.3 265.3 55.1 p 265.9 55.8 265.7 55.3 261.7 57.9 265.9 60.7 s6 265.9 55.8 265.7 55.3 p 265.9 60.7 261.7 57.9 257.4 60.7 t6 257.4 60.7 261.7 57.9 257.4 55.1 t6 265.1 55.7 264.0 55.1 257.4 55.1 261.7 57.9 s7 265.1 55.7 264.0 55.1 p 265.9 57.0 265.1 55.7 261.7 57.9 265.9 60.7 s7 265.9 57.0 265.1 55.7 p 265.9 60.7 261.7 57.9 257.4 60.7 t7 257.4 60.7 261.7 57.9 257.4 55.1 t7 264.5 56.1 262.7 55.1 257.4 55.1 261.7 57.9 s8 264.5 56.1 262.7 55.1 p 265.9 58.3 264.5 56.1 261.7 57.9 265.9 60.7 s8 265.9 58.3 264.5 56.1 p 265.9 60.7 261.7 57.9 257.4 60.7 t8 257.4 60.7 261.7 57.9 257.4 55.1 t8 265.9 55.1 274.5 55.1 274.5 60.7 265.9 60.7 s1 274.0 55.5 273.7 55.1 265.9 55.1 270.2 57.9 s2 274.0 55.5 273.7 55.1 p 274.0 55.5 274.2 60.5 270.2 57.9 t2 274.0 55.5 274.2 60.5 p 274.3 60.7 274.2 60.5 270.2 57.9 265.9 60.7 s2 274.3 60.7 274.2 60.5 p 265.9 60.7 270.2 57.9 265.9 55.1 t2 272.6 56.4 271.5 55.1 265.9 55.1 270.2 57.9 s3 272.6 56.4 271.5 55.1 p 272.6 56.4 272.8 59.5 270.2 57.9 t3 272.6 56.4 272.8 59.5 p 273.3 60.7 272.8 59.5 270.2 57.9 265.9 60.7 s3 273.3 60.7 272.8 59.5 p 265.9 60.7 270.2 57.9 265.9 55.1 t3 271.2 57.3 269.3 55.1 265.9 55.1 270.2 57.9 s4 271.2 57.3 269.3 55.1 p 271.2 57.3 271.3 58.6 270.2 57.9 t4 271.2 57.3 271.3 58.6 p 272.2 60.7 271.3 58.6 270.2 57.9 265.9 60.7 s4 272.2 60.7 271.3 58.6 p 265.9 60.7 270.2 57.9 265.9 55.1 t4 267.1 55.1 268.7 56.9 265.9 55.1 t5 267.1 55.1 268.7 56.9 p 270.0 58.1 271.1 60.7 265.9 60.7 t5 270.0 58.1 271.1 60.7 p 270.0 58.1 268.7 56.9 265.9 55.1 265.9 60.7 s5 270.0 58.1 268.7 56.9 p 269.2 58.6 270.0 60.7 265.9 60.7 t6 269.2 58.6 270.0 60.7 p 265.9 55.8 269.2 58.6 265.9 60.7 t6 265.9 55.8 269.2 58.6 p 268.3 59.1 269.0 60.7 265.9 60.7 t7 268.3 59.1 269.0 60.7 p 265.9 57.0 268.3 59.1 265.9 60.7 t7 265.9 57.0 268.3 59.1 p 267.5 59.7 267.9 60.7 265.9 60.7 t8 267.5 59.7 267.9 60.7 p 265.9 58.3 267.5 59.7 265.9 60.7 t8 265.9 58.3 267.5 59.7 p 274.5 55.1 283.1 55.1 283.1 60.7 274.5 60.7 s1 283.1 55.1 291.7 55.1 291.7 60.7 283.1 60.7 s1 283.9 55.1 283.6 55.5 287.4 57.9 291.7 55.1 s2 283.9 55.1 283.6 55.5 p 291.7 55.1 287.4 57.9 291.7 60.7 t2 283.4 60.5 283.3 60.7 291.7 60.7 287.4 57.9 s2 283.4 60.5 283.3 60.7 p 283.4 60.5 283.6 55.5 287.4 57.9 t2 283.4 60.5 283.6 55.5 p 286.1 55.1 285.0 56.4 287.4 57.9 291.7 55.1 s3 286.1 55.1 285.0 56.4 p 291.7 55.1 287.4 57.9 291.7 60.7 t3 284.9 59.5 284.4 60.7 291.7 60.7 287.4 57.9 s3 284.9 59.5 284.4 60.7 p 284.9 59.5 285.0 56.4 287.4 57.9 t3 284.9 59.5 285.0 56.4 p 288.3 55.1 286.4 57.3 287.4 57.9 291.7 55.1 s4 288.3 55.1 286.4 57.3 p 291.7 55.1 287.4 57.9 291.7 60.7 t4 286.3 58.6 285.4 60.7 291.7 60.7 287.4 57.9 s4 286.3 58.6 285.4 60.7 p 286.3 58.6 286.4 57.3 287.4 57.9 t4 286.3 58.6 286.4 57.3 p 289.0 56.9 290.5 55.1 291.7 55.1 t5 289.0 56.9 290.5 55.1 p 289.0 56.9 287.6 58.1 291.7 60.7 291.7 55.1 s5 289.0 56.9 287.6 58.1 p 286.5 60.7 287.6 58.1 291.7 60.7 t5 286.5 60.7 287.6 58.1 p 288.5 58.6 291.7 55.8 291.7 60.7 t6 288.5 58.6 291.7 55.8 p 287.6 60.7 288.5 58.6 291.7 60.7 t6 287.6 60.7 288.5 58.6 p 289.3 59.1 291.7 57.0 291.7 60.7 t7 289.3 59.1 291.7 57.0 p 288.6 60.7 289.3 59.1 291.7 60.7 t7 288.6 60.7 289.3 59.1 p 290.1 59.7 291.7 58.3 291.7 60.7 t8 290.1 59.7 291.7 58.3 p 289.7 60.7 290.1 59.7 291.7 60.7 t8 289.7 60.7 290.1 59.7 p 291.7 55.1 300.3 55.1 300.3 60.7 291.7 60.7 s5 292.3 55.1 292.0 55.3 296.0 57.9 300.3 55.1 s6 292.3 55.1 292.0 55.3 p 300.3 55.1 296.0 57.9 300.3 60.7 t6 300.3 60.7 296.0 57.9 291.7 60.7 t6 292.0 55.3 291.7 55.8 291.7 60.7 296.0 57.9 s6 292.0 55.3 291.7 55.8 p 293.6 55.1 292.5 55.7 296.0 57.9 300.3 55.1 s7 293.6 55.1 292.5 55.7 p 300.3 55.1 296.0 57.9 300.3 60.7 t7 300.3 60.7 296.0 57.9 291.7 60.7 t7 292.5 55.7 291.7 57.0 291.7 60.7 296.0 57.9 s7 292.5 55.7 291.7 57.0 p 294.9 55.1 293.1 56.1 296.0 57.9 300.3 55.1 s8 294.9 55.1 293.1 56.1 p 300.3 55.1 296.0 57.9 300.3 60.7 t8 300.3 60.7 296.0 57.9 291.7 60.7 t8 293.1 56.1 291.7 58.3 291.7 60.7 296.0 57.9 s8 293.1 56.1 291.7 58.3 p 0.0 49.6 8.6 49.6 8.6 55.1 0.0 55.1 s2 8.1 49.9 6.3 49.6 0.0 49.6 4.3 52.4 s3 8.1 49.9 6.3 49.6 p 8.6 50.3 8.1 49.9 4.3 52.4 8.6 55.1 s3 8.6 50.3 8.1 49.9 p 8.6 55.1 4.3 52.4 0.0 55.1 t3 0.0 55.1 4.3 52.4 0.0 49.6 t3 6.9 50.7 0.2 49.6 0.0 49.6 4.3 52.4 s4 6.9 50.7 0.2 49.6 p 8.6 52.2 6.9 50.7 4.3 52.4 8.6 55.1 s4 8.6 52.2 6.9 50.7 p 8.6 55.1 4.3 52.4 0.0 55.1 t4 0.0 55.1 4.3 52.4 0.0 49.6 t4 2.0 51.0 5.6 51.5 4.3 52.4 t5 2.0 51.0 5.6 51.5 p 8.6 54.2 5.6 51.5 4.3 52.4 8.6 55.1 s5 8.6 54.2 5.6 51.5 p 8.6 55.1 4.3 52.4 0.0 55.1 t5 2.0 51.0 0.0 50.3 0.0 55.1 4.3 52.4 s5 2.0 51.0 0.0 50.3 p 4.2 52.3 4.4 52.3 4.3 52.4 t6 4.2 52.3 4.4 52.3 p 4.4 52.3 4.8 52.7 4.3 52.4 t6 4.4 52.3 4.8 52.7 p 7.9 55.1 4.8 52.7 4.3 52.4 0.0 55.1 s6 7.9 55.1 4.8 52.7 p 4.2 52.3 0.0 51.0 0.0 55.1 4.3 52.4 s6 4.2 52.3 0.0 51.0 p 3.6 52.8 6.6 55.1 0.0 55.1 t7 3.6 52.8 6.6 55.1 p 0.0 51.7 3.6 52.8 0.0 55.1 t7 0.0 51.7 3.6 52.8 p 2.9 53.3 5.3 55.1 0.0 55.1 t8 2.9 53.3 5.3 55.1 p 0.0 52.4 2.9 53.3 0.0 55.1 t8 0.0 52.4 2.9 53.3 p 8.6 49.6 17.2 49.6 17.2 55.1 8.6 55.1 s1 15.1 50.9 12.7 49.6 8.6 49.6 12.9 52.4 s2 15.1 50.9 12.7 49.6 p 15.1 50.9 15.8 54.3 12.9 52.4 t2 15.1 50.9 15.8 54.3 p 16.4 55.1 15.8 54.3 12.9 52.4 8.6 55.1 s2 16.4 55.1 15.8 54.3 p 8.6 55.1 12.9 52.4 8.6 49.6 t2 12.5 52.6 14.2 55.1 8.6 55.1 t3 12.5 52.6 14.2 55.1 p 8.6 50.3 12.5 52.6 8.6 55.1 t3 8.6 50.3 12.5 52.6 p 11.0 53.6 11.9 55.1 8.6 55.1 t4 11.0 53.6 11.9 55.1 p 8.6 52.2 11.0 53.6 8.6 55.1 t4 8.6 52.2 11.0 53.6 p 9.4 54.6 9.7 55.1 8.6 55.1 t5 9.4 54.6 9.7 55.1 p 8.6 54.2 9.4 54.6 8.6 55.1 t5 8.6 54.2 9.4 54.6 p 17.2 49.6 25.7 49.6 25.7 55.1 17.2 55.1 s1 25.7 49.6 34.3 49.6 34.3 55.1 25.7 55.1 s1 30.2 49.6 27.8 50.9 30.0 52.4 34.3 49.6 s2 30.2 49.6 27.8 50.9 p 34.3 49.6 30.0 52.4 34.3 55.1 t2 27.1 54.3 26.5 55.1 34.3 55.1 30.0 52.4 s2 27.1 54.3 26.5 55.1 p 27.1 54.3 27.8 50.9 30.0 52.4 t2 27.1 54.3 27.8 50.9 p 30.4 52.6 34.3 50.3 34.3 55.1 t3 30.4 52.6 34.3 50.3 p 28.7 55.1 30.4 52.6 34.3 55.1 t3 28.7 55.1 30.4 52.6 p 31.9 53.6 34.3 52.2 34.3 55.1 t4 31.9 53.6 34.3 52.2 p 31.0 55.1 31.9 53.6 34.3 55.1 t4 31.0 55.1 31.9 53.6 p 33.5 54.6 34.3 54.2 34.3 55.1 t5 33.5 54.6 34.3 54.2 p 33.2 55.1 33.5 54.6 34.3 55.1 t5 33.2 55.1 33.5 54.6 p 34.3 49.6 42.9 49.6 42.9 55.1 34.3 55.1 s2 36.6 49.6 34.8 49.9 38.6 52.4 42.9 49.6 s3 36.6 49.6 34.8 49.9 p 42.9 49.6 38.6 52.4 42.9 55.1 t3 42.9 55.1 38.6 52.4 34.3 55.1 t3 34.8 49.9 34.3 50.3 34.3 55.1 38.6 52.4 s3 34.8 49.9 34.3 50.3 p 42.7 49.6 36.0 50.7 38.6 52.4 42.9 49.6 s4 42.7 49.6 36.0 50.7 p 42.9 49.6 38.6 52.4 42.9 55.1 t4 42.9 55.1 38.6 52.4 34.3 55.1 t4 36.0 50.7 34.3 52.2 34.3 55.1 38.6 52.4 s4 36.0 50.7 34.3 52.2 p 37.3 51.5 40.8 51.0 38.6 52.4 t5 37.3 51.5 40.8 51.0 p 42.9 50.3 40.8 51.0 38.6 52.4 42.9 55.1 s5 42.9 50.3 40.8 51.0 p 42.9 55.1 38.6 52.4 34.3 55.1 t5 37.3 51.5 34.3 54.2 34.3 55.1 38.6 52.4 s5 37.3 51.5 34.3 54.2 p 38.5 52.3 38.7 52.3 38.6 52.4 t6 38.5 52.3 38.7 52.3 p 42.9 51.0 38.7 52.3 38.6 52.4 42.9 55.1 s6 42.9 51.0 38.7 52.3 p 38.1 52.7 35.0 55.1 42.9 55.1 38.6 52.4 s6 38.1 52.7 35.0 55.1 p 38.1 52.7 38.5 52.3 38.6 52.4 t6 38.1 52.7 38.5 52.3 p 39.3 52.8 42.9 51.7 42.9 55.1 t7 39.3 52.8 42.9 51.7 p 36.3 55.1 39.3 52.8 42.9 55.1 t7 36.3 55.1 39.3 52.8 p 40.0 53.3 42.9 52.4 42.9 55.1 t8 40.0 53.3 42.9 52.4 p 37.6 55.1 40.0 53.3 42.9 55.1 t8 37.6 55.1 40.0 53.3 p 42.9 49.6 51.5 49.6 51.5 55.1 42.9 55.1 s2 51.0 49.9 49.2 49.6 42.9 49.6 47.2 52.4 s3 51.0 49.9 49.2 49.6 p 51.5 50.3 51.0 49.9 47.2 52.4 51.5 55.1 s3 51.5 50.3 51.0 49.9 p 51.5 55.1 47.2 52.4 42.9 55.1 t3 42.9 55.1 47.2 52.4 42.9 49.6 t3 49.8 50.7 43.1 49.6 42.9 49.6 47.2 52.4 s4 49.8 50.7 43.1 49.6 p 51.5 52.2 49.8 50.7 47.2 52.4 51.5 55.1 s4 51.5 52.2 49.8 50.7 p 51.5 55.1 47.2 52.4 42.9 55.1 t4 42.9 55.1 47.2 52.4 42.9 49.6 t4 44.9 51.0 48.5 51.5 47.2 52.4 t5 44.9 51.0 48.5 51.5 p 51.5 54.2 48.5 51.5 47.2 52.4 51.5 55.1 s5 51.5 54.2 48.5 51.5 p 51.5 55.1 47.2 52.4 42.9 55.1 t5 44.9 51.0 42.9 50.3 42.9 55.1 47.2 52.4 s5 44.9 51.0 42.9 50.3 p 47.1 52.3 47.3 52.3 47.2 52.4 t6 47.1 52.3 47.3 52.3 p 47.3 52.3 47.7 52.7 47.2 52.4 t6 47.3 52.3 47.7 52.7 p 50.8 55.1 47.7 52.7 47.2 52.4 42.9 55.1 s6 50.8 55.1 47.7 52.7 p 47.1 52.3 42.9 51.0 42.9 55.1 47.2 52.4 s6 47.1 52.3 42.9 51.0 p 46.5 52.8 49.5 55.1 42.9 55.1 t7 46.5 52.8 49.5 55.1 p 42.9 51.7 46.5 52.8 42.9 55.1 t7 42.9 51.7 46.5 52.8 p 45.8 53.3 48.2 55.1 42.9 55.1 t8 45.8 53.3 48.2 55.1 p 42.9 52.4 45.8 53.3 42.9 55.1 t8 42.9 52.4 45.8 53.3 p 51.5 49.6 60.1 49.6 60.1 55.1 51.5 55.1 s1 58.0 50.9 55.6 49.6 51.5 49.6 55.8 52.4 s2 58.0 50.9 55.6 49.6 p 58.0 50.9 58.7 54.3 55.8 52.4 t2 58.0 50.9 58.7 54.3 p 59.3 55.1 58.7 54.3 55.8 52.4 51.5 55.1 s2 59.3 55.1 58.7 54.3 p 51.5 55.1 55.8 52.4 51.5 49.6 t2 55.4 52.6 57.1 55.1 51.5 55.1 t3 55.4 52.6 57.1 55.1 p 51.5 50.3 55.4 52.6 51.5 55.1 t3 51.5 50.3 55.4 52.6 p 53.8 53.6 54.8 55.1 51.5 55.1 t4 53.8 53.6 54.8 55.1 p 51.5 52.2 53.8 53.6 51.5 55.1 t4 51.5 52.2 53.8 53.6 p 52.3 54.6 52.6 55.1 51.5 55.1 t5 52.3 54.6 52.6 55.1 p 51.5 54.2 52.3 54.6 51.5 55.1 t5 51.5 54.2 52.3 54.6 p 60.1 49.6 68.6 49.6 68.6 55.1 60.1 55.1 s1 68.6 49.6 77.2 49.6 77.2 55.1 68.6 55.1 s1 73.1 49.6 70.6 50.9 72.9 52.4 77.2 49.6 s2 73.1 49.6 70.6 50.9 p 77.2 49.6 72.9 52.4 77.2 55.1 t2 70.0 54.3 69.4 55.1 77.2 55.1 72.9 52.4 s2 70.0 54.3 69.4 55.1 p 70.0 54.3 70.6 50.9 72.9 52.4 t2 70.0 54.3 70.6 50.9 p 73.3 52.6 77.2 50.3 77.2 55.1 t3 73.3 52.6 77.2 50.3 p 71.6 55.1 73.3 52.6 77.2 55.1 t3 71.6 55.1 73.3 52.6 p 74.8 53.6 77.2 52.2 77.2 55.1 t4 74.8 53.6 77.2 52.2 p 73.8 55.1 74.8 53.6 77.2 55.1 t4 73.8 55.1 74.8 53.6 p 76.4 54.6 77.2 54.2 77.2 55.1 t5 76.4 54.6 77.2 54.2 p 76.1 55.1 76.4 54.6 77.2 55.1 t5 76.1 55.1 76.4 54.6 p 77.2 49.6 85.8 49.6 85.8 55.1 77.2 55.1 s2 79.5 49.6 77.7 49.9 81.5 52.4 85.8 49.6 s3 79.5 49.6 77.7 49.9 p 85.8 49.6 81.5 52.4 85.8 55.1 t3 85.8 55.1 81.5 52.4 77.2 55.1 t3 77.7 49.9 77.2 50.3 77.2 55.1 81.5 52.4 s3 77.7 49.9 77.2 50.3 p 85.6 49.6 78.9 50.7 81.5 52.4 85.8 49.6 s4 85.6 49.6 78.9 50.7 p 85.8 49.6 81.5 52.4 85.8 55.1 t4 85.8 55.1 81.5 52.4 77.2 55.1 t4 78.9 50.7 77.2 52.2 77.2 55.1 81.5 52.4 s4 78.9 50.7 77.2 52.2 p 80.2 51.5 83.7 51.0 81.5 52.4 t5 80.2 51.5 83.7 51.0 p 85.8 50.3 83.7 51.0 81.5 52.4 85.8 55.1 s5 85.8 50.3 83.7 51.0 p 85.8 55.1 81.5 52.4 77.2 55.1 t5 80.2 51.5 77.2 54.2 77.2 55.1 81.5 52.4 s5 80.2 51.5 77.2 54.2 p 81.4 52.3 81.6 52.3 81.5 52.4 t6 81.4 52.3 81.6 52.3 p 85.8 51.0 81.6 52.3 81.5 52.4 85.8 55.1 s6 85.8 51.0 81.6 52.3 p 81.0 52.7 77.8 55.1 85.8 55.1 81.5 52.4 s6 81.0 52.7 77.8 55.1 p 81.0 52.7 81.4 52.3 81.5 52.4 t6 81.0 52.7 81.4 52.3 p 82.2 52.8 85.8 51.7 85.8 55.1 t7 82.2 52.8 85.8 51.7 p 79.2 55.1 82.2 52.8 85.8 55.1 t7 79.2 55.1 82.2 52.8 p 82.9 53.3 85.8 52.4 85.8 55.1 t8 82.9 53.3 85.8 52.4 p 80.5 55.1 82.9 53.3 85.8 55.1 t8 80.5 55.1 82.9 53.3 p 85.8 49.6 94.4 49.6 94.4 55.1 85.8 55.1 s2 93.9 49.9 92.1 49.6 85.8 49.6 90.1 52.4 s3 93.9 49.9 92.1 49.6 p 94.4 50.3 93.9 49.9 90.1 52.4 94.4 55.1 s3 94.4 50.3 93.9 49.9 p 94.4 55.1 90.1 52.4 85.8 55.1 t3 85.8 55.1 90.1 52.4 85.8 49.6 t3 92.7 50.7 86.0 49.6 85.8 49.6 90.1 52.4 s4 92.7 50.7 86.0 49.6 p 94.4 52.2 92.7 50.7 90.1 52.4 94.4 55.1 s4 94.4 52.2 92.7 50.7 p 94.4 55.1 90.1 52.4 85.8 55.1 t4 85.8 55.1 90.1 52.4 85.8 49.6 t4 87.8 51.0 91.4 51.5 90.1 52.4 t5 87.8 51.0 91.4 51.5 p 94.4 54.2 91.4 51.5 90.1 52.4 94.4 55.1 s5 94.4 54.2 91.4 51.5 p 94.4 55.1 90.1 52.4 85.8 55.1 t5 87.8 51.0 85.8 50.3 85.8 55.1 90.1 52.4 s5 87.8 51.0 85.8 50.3 p 90.0 52.3 90.2 52.3 90.1 52.4 t6 90.0 52.3 90.2 52.3 p 90.2 52.3 90.5 52.7 90.1 52.4 t6 90.2 52.3 90.5 52.7 p 93.7 55.1 90.5 52.7 90.1 52.4 85.8 55.1 s6 93.7 55.1 90.5 52.7 p 90.0 52.3 85.8 51.0 85.8 55.1 90.1 52.4 s6 90.0 52.3 85.8 51.0 p 89.4 52.8 92.4 55.1 85.8 55.1 t7 89.4 52.8 92.4 55.1 p 85.8 51.7 89.4 52.8 85.8 55.1 t7 85.8 51.7 89.4 52.8 p 88.7 53.3 91.1 55.1 85.8 55.1 t8 88.7 53.3 91.1 55.1 p 85.8 52.4 88.7 53.3 85.8 55.1 t8 85.8 52.4 88.7 53.3 p 94.4 49.6 102.9 49.6 102.9 55.1 94.4 55.1 s1 100.9 50.9 98.5 49.6 94.4 49.6 98.7 52.4 s2 100.9 50.9 98.5 49.6 p 100.9 50.9 101.6 54.3 98.7 52.4 t2 100.9 50.9 101.6 54.3 p 102.2 55.1 101.6 54.3 98.7 52.4 94.4 55.1 s2 102.2 55.1 101.6 54.3 p 94.4 55.1 98.7 52.4 94.4 49.6 t2 98.3 52.6 100.0 55.1 94.4 55.1 t3 98.3 52.6 100.0 55.1 p 94.4 50.3 98.3 52.6 94.4 55.1 t3 94.4 50.3 98.3 52.6 p 96.7 53.6 97.7 55.1 94.4 55.1 t4 96.7 53.6 97.7 55.1 p 94.4 52.2 96.7 53.6 94.4 55.1 t4 94.4 52.2 96.7 53.6 p 95.2 54.6 95.5 55.1 94.4 55.1 t5 95.2 54.6 95.5 55.1 p 94.4 54.2 95.2 54.6 94.4 55.1 t5 94.4 54.2 95.2 54.6 p 102.9 49.6 111.5 49.6 111.5 55.1 102.9 55.1 s1 111.5 49.6 120.1 49.6 120.1 55.1 111.5 55.1 s1 116.0 49.6 113.5 50.9 115.8 52.4 120.1 49.6 s2 116.0 49.6 113.5 50.9 p 120.1 49.6 115.8 52.4 120.1 55.1 t2 112.9 54.3 112.3 55.1 120.1 55.1 115.8 52.4 s2 112.9 54.3 112.3 55.1 p 112.9 54.3 113.5 50.9 115.8 52.4 t2 112.9 54.3 113.5 50.9 p 116.2 52.6 120.1 50.3 120.1 55.1 t3 116.2 52.6 120.1 50.3 p 114.5 55.1 116.2 52.6 120.1 55.1 t3 114.5 55.1 116.2 52.6 p 117.7 53.6 120.1 52.2 120.1 55.1 t4 117.7 53.6 120.1 52.2 p 116.7 55.1 117.7 53.6 120.1 55.1 t4 116.7 55.1 117.7 53.6 p 119.3 54.6 120.1 54.2 120.1 55.1 t5 119.3 54.6 120.1 54.2 p 119.0 55.1 119.3 54.6 120.1 55.1 t5 119.0 55.1 119.3 54.6 p 120.1 49.6 128.7 49.6 128.7 55.1 120.1 55.1 s2 122.3 49.6 120.6 49.9 124.4 52.4 128.7 49.6 s3 122.3 49.6 120.6 49.9 p 128.7 49.6 124.4 52.4 128.7 55.1 t3 128.7 55.1 124.4 52.4 120.1 55.1 t3 120.6 49.9 120.1 50.3 120.1 55.1 124.4 52.4 s3 120.6 49.9 120.1 50.3 p 128.5 49.6 121.8 50.7 124.4 52.4 128.7 49.6 s4 128.5 49.6 121.8 50.7 p 128.7 49.6 124.4 52.4 128.7 55.1 t4 128.7 55.1 124.4 52.4 120.1 55.1 t4 121.8 50.7 120.1 52.2 120.1 55.1 124.4 52.4 s4 121.8 50.7 120.1 52.2 p 123.1 51.5 126.6 51.0 124.4 52.4 t5 123.1 51.5 126.6 51.0 p 128.7 50.3 126.6 51.0 124.4 52.4 128.7 55.1 s5 128.7 50.3 126.6 51.0 p 128.7 55.1 124.4 52.4 120.1 55.1 t5 123.1 51.5 120.1 54.2 120.1 55.1 124.4 52.4 s5 123.1 51.5 120.1 54.2 p 124.3 52.3 124.5 52.3 124.4 52.4 t6 124.3 52.3 124.5 52.3 p 128.7 51.0 124.5 52.3 124.4 52.4 128.7 55.1 s6 128.7 51.0 124.5 52.3 p 123.9 52.7 120.7 55.1 128.7 55.1 124.4 52.4 s6 123.9 52.7 120.7 55.1 p 123.9 52.7 124.3 52.3 124.4 52.4 t6 123.9 52.7 124.3 52.3 p 125.1 52.8 128.7 51.7 128.7 55.1 t7 125.1 52.8 128.7 51.7 p 122.1 55.1 125.1 52.8 128.7 55.1 t7 122.1 55.1 125.1 52.8 p 125.8 53.3 128.7 52.4 128.7 55.1 t8 125.8 53.3 128.7 52.4 p 123.4 55.1 125.8 53.3 128.7 55.1 t8 123.4 55.1 125.8 53.3 p 128.7 49.6 137.3 49.6 137.3 55.1 128.7 55.1 s2 136.8 49.9 135.0 49.6 128.7 49.6 133.0 52.4 s3 136.8 49.9 135.0 49.6 p 137.3 50.3 136.8 49.9 133.0 52.4 137.3 55.1 s3 137.3 50.3 136.8 49.9 p 137.3 55.1 133.0 52.4 128.7 55.1 t3 128.7 55.1 133.0 52.4 128.7 49.6 t3 135.6 50.7 128.9 49.6 128.7 49.6 133.0 52.4 s4 135.6 50.7 128.9 49.6 p 137.3 52.2 135.6 50.7 133.0 52.4 137.3 55.1 s4 137.3 52.2 135.6 50.7 p 137.3 55.1 133.0 52.4 128.7 55.1 t4 128.7 55.1 133.0 52.4 128.7 49.6 t4 130.7 51.0 134.3 51.5 133.0 52.4 t5 130.7 51.0 134.3 51.5 p 137.3 54.2 134.3 51.5 133.0 52.4 137.3 55.1 s5 137.3 54.2 134.3 51.5 p 137.3 55.1 133.0 52.4 128.7 55.1 t5 130.7 51.0 128.7 50.3 128.7 55.1 133.0 52.4 s5 130.7 51.0 128.7 50.3 p 132.8 52.3 133.0 52.3 133.0 52.4 t6 132.8 52.3 133.0 52.3 p 133.0 52.3 133.4 52.7 133.0 52.4 t6 133.0 52.3 133.4 52.7 p 136.6 55.1 133.4 52.7 133.0 52.4 128.7 55.1 s6 136.6 55.1 133.4 52.7 p 132.8 52.3 128.7 51.0 128.7 55.1 133.0 52.4 s6 132.8 52.3 128.7 51.0 p 132.3 52.8 135.3 55.1 128.7 55.1 t7 132.3 52.8 135.3 55.1 p 128.7 51.7 132.3 52.8 128.7 55.1 t7 128.7 51.7 132.3 52.8 p 131.6 53.3 134.0 55.1 128.7 55.1 t8 131.6 53.3 134.0 55.1 p 128.7 52.4 131.6 53.3 128.7 55.1 t8 128.7 52.4 131.6 53.3 p 137.3 49.6 145.8 49.6 145.8 55.1 137.3 55.1 s1 143.8 50.9 141.4 49.6 137.3 49.6 141.6 52.4 s2 143.8 50.9 141.4 49.6 p 143.8 50.9 144.5 54.3 141.6 52.4 t2 143.8 50.9 144.5 54.3 p 145.1 55.1 144.5 54.3 141.6 52.4 137.3 55.1 s2 145.1 55.1 144.5 54.3 p 137.3 55.1 141.6 52.4 137.3 49.6 t2 141.2 52.6 142.8 55.1 137.3 55.1 t3 141.2 52.6 142.8 55.1 p 137.3 50.3 141.2 52.6 137.3 55.1 t3 137.3 50.3 141.2 52.6 p 139.6 53.6 140.6 55.1 137.3 55.1 t4 139.6 53.6 140.6 55.1 p 137.3 52.2 139.6 53.6 137.3 55.1 t4 137.3 52.2 139.6 53.6 p 138.1 54.6 138.4 55.1 137.3 55.1 t5 138.1 54.6 138.4 55.1 p 137.3 54.2 138.1 54.6 137.3 55.1 t5 137.3 54.2 138.1 54.6 p 145.8 49.6 154.4 49.6 154.4 55.1 145.8 55.1 s1 154.4 49.6 163.0 49.6 163.0 55.1 154.4 55.1 s1 158.9 49.6 156.4 50.9 158.7 52.4 163.0 49.6 s2 158.9 49.6 156.4 50.9 p 163.0 49.6 158.7 52.4 163.0 55.1 t2 155.7 54.3 155.2 55.1 163.0 55.1 158.7 52.4 s2 155.7 54.3 155.2 55.1 p 155.7 54.3 156.4 50.9 158.7 52.4 t2 155.7 54.3 156.4 50.9 p 159.1 52.6 163.0 50.3 163.0 55.1 t3 159.1 52.6 163.0 50.3 p 157.4 55.1 159.1 52.6 163.0 55.1 t3 157.4 55.1 159.1 52.6 p 160.6 53.6 163.0 52.2 163.0 55.1 t4 160.6 53.6 163.0 52.2 p 159.6 55.1 160.6 53.6 163.0 55.1 t4 159.6 55.1 160.6 53.6 p 162.2 54.6 163.0 54.2 163.0 55.1 t5 162.2 54.6 163.0 54.2 p 161.9 55.1 162.2 54.6 163.0 55.1 t5 161.9 55.1 162.2 54.6 p 163.0 49.6 171.6 49.6 171.6 55.1 163.0 55.1 s2 165.2 49.6 163.5 49.9 167.3 52.4 171.6 49.6 s3 165.2 49.6 163.5 49.9 p 171.6 49.6 167.3 52.4 171.6 55.1 t3 171.6 55.1 167.3 52.4 163.0 55.1 t3 163.5 49.9 163.0 50.3 163.0 55.1 167.3 52.4 s3 163.5 49.9 163.0 50.3 p 171.4 49.6 164.7 50.7 167.3 52.4 171.6 49.6 s4 171.4 49.6 164.7 50.7 p 171.6 49.6 167.3 52.4 171.6 55.1 t4 171.6 55.1 167.3 52.4 163.0 55.1 t4 164.7 50.7 163.0 52.2 163.0 55.1 167.3 52.4 s4 164.7 50.7 163.0 52.2 p 166.0 51.5 169.5 51.0 167.3 52.4 t5 166.0 51.5 169.5 51.0 p 171.6 50.3 169.5 51.0 167.3 52.4 171.6 55.1 s5 171.6 50.3 169.5 51.0 p 171.6 55.1 167.3 52.4 163.0 55.1 t5 166.0 51.5 163.0 54.2 163.0 55.1 167.3 52.4 s5 166.0 51.5 163.0 54.2 p 167.2 52.3 167.4 52.3 167.3 52.4 t6 167.2 52.3 167.4 52.3 p 171.6 51.0 167.4 52.3 167.3 52.4 171.6 55.1 s6 171.6 51.0 167.4 52.3 p 166.8 52.7 163.6 55.1 171.6 55.1 167.3 52.4 s6 166.8 52.7 163.6 55.1 p 166.8 52.7 167.2 52.3 167.3 52.4 t6 166.8 52.7 167.2 52.3 p 168.0 52.8 171.6 51.7 171.6 55.1 t7 168.0 52.8 171.6 51.7 p 164.9 55.1 168.0 52.8 171.6 55.1 t7 164.9 55.1 168.0 52.8 p 168.7 53.3 171.6 52.4 171.6 55.1 t8 168.7 53.3 171.6 52.4 p 166.3 55.1 168.7 53.3 171.6 55.1 t8 166.3 55.1 168.7 53.3 p 171.6 49.6 180.2 49.6 180.2 55.1 171.6 55.1 s2 179.7 49.9 177.9 49.6 171.6 49.6 175.9 52.4 s3 179.7 49.9 177.9 49.6 p 180.2 50.3 179.7 49.9 175.9 52.4 180.2 55.1 s3 180.2 50.3 179.7 49.9 p 180.2 55.1 175.9 52.4 171.6 55.1 t3 171.6 55.1 175.9 52.4 171.6 49.6 t3 178.4 50.7 171.8 49.6 171.6 49.6 175.9 52.4 s4 178.4 50.7 171.8 49.6 p 180.2 52.2 178.4 50.7 175.9 52.4 180.2 55.1 s4 180.2 52.2 178.4 50.7 p 180.2 55.1 175.9 52.4 171.6 55.1 t4 171.6 55.1 175.9 52.4 171.6 49.6 t4 173.6 51.0 177.2 51.5 175.9 52.4 t5 173.6 51.0 177.2 51.5 p 180.2 54.2 177.2 51.5 175.9 52.4 180.2 55.1 s5 180.2 54.2 177.2 51.5 p 180.2 55.1 175.9 52.4 171.6 55.1 t5 173.6 51.0 171.6 50.3 171.6 55.1 175.9 52.4 s5 173.6 51.0 171.6 50.3 p 175.7 52.3 175.9 52.3 175.9 52.4 t6 175.7 52.3 175.9 52.3 p 175.9 52.3 176.3 52.7 175.9 52.4 t6 175.9 52.3 176.3 52.7 p 179.5 55.1 176.3 52.7 175.9 52.4 171.6 55.1 s6 179.5 55.1 176.3 52.7 p 175.7 52.3 171.6 51.0 171.6 55.1 175.9 52.4 s6 175.7 52.3 171.6 51.0 p 175.2 52.8 178.2 55.1 171.6 55.1 t7 175.2 52.8 178.2 55.1 p 171.6 51.7 175.2 52.8 171.6 55.1 t7 171.6 51.7 175.2 52.8 p 174.5 53.3 176.9 55.1 171.6 55.1 t8 174.5 53.3 176.9 55.1 p 171.6 52.4 174.5 53.3 171.6 55.1 t8 171.6 52.4 174.5 53.3 p 180.2 49.6 188.7 49.6 188.7 55.1 180.2 55.1 s1 186.7 50.9 184.3 49.6 180.2 49.6 184.4 52.4 s2 186.7 50.9 184.3 49.6 p 186.7 50.9 187.4 54.3 184.4 52.4 t2 186.7 50.9 187.4 54.3 p 188.0 55.1 187.4 54.3 184.4 52.4 180.2 55.1 s2 188.0 55.1 187.4 54.3 p 180.2 55.1 184.4 52.4 180.2 49.6 t2 184.1 52.6 185.7 55.1 180.2 55.1 t3 184.1 52.6 185.7 55.1 p 180.2 50.3 184.1 52.6 180.2 55.1 t3 180.2 50.3 184.1 52.6 p 182.5 53.6 183.5 55.1 180.2 55.1 t4 182.5 53.6 183.5 55.1 p 180.2 52.2 182.5 53.6 180.2 55.1 t4 180.2 52.2 182.5 53.6 p 181.0 54.6 181.3 55.1 180.2 55.1 t5 181.0 54.6 181.3 55.1 p 180.2 54.2 181.0 54.6 180.2 55.1 t5 180.2 54.2 181.0 54.6 p 188.7 49.6 197.3 49.6 197.3 55.1 188.7 55.1 s1 197.3 49.6 205.9 49.6 205.9 55.1 197.3 55.1 s1 201.8 49.6 199.3 50.9 201.6 52.4 205.9 49.6 s2 201.8 49.6 199.3 50.9 p 205.9 49.6 201.6 52.4 205.9 55.1 t2 198.6 54.3 198.1 55.1 205.9 55.1 201.6 52.4 s2 198.6 54.3 198.1 55.1 p 198.6 54.3 199.3 50.9 201.6 52.4 t2 198.6 54.3 199.3 50.9 p 202.0 52.6 205.9 50.3 205.9 55.1 t3 202.0 52.6 205.9 50.3 p 200.3 55.1 202.0 52.6 205.9 55.1 t3 200.3 55.1 202.0 52.6 p 203.5 53.6 205.9 52.2 205.9 55.1 t4 203.5 53.6 205.9 52.2 p 202.5 55.1 203.5 53.6 205.9 55.1 t4 202.5 55.1 203.5 53.6 p 205.1 54.6 205.9 54.2 205.9 55.1 t5 205.1 54.6 205.9 54.2 p 204.7 55.1 205.1 54.6 205.9 55.1 t5 204.7 55.1 205.1 54.6 p 205.9 49.6 214.5 49.6 214.5 55.1 205.9 55.1 s2 208.1 49.6 206.3 49.9 210.2 52.4 214.5 49.6 s3 208.1 49.6 206.3 49.9 p 214.5 49.6 210.2 52.4 214.5 55.1 t3 214.5 55.1 210.2 52.4 205.9 55.1 t3 206.3 49.9 205.9 50.3 205.9 55.1 210.2 52.4 s3 206.3 49.9 205.9 50.3 p 214.3 49.6 207.6 50.7 210.2 52.4 214.5 49.6 s4 214.3 49.6 207.6 50.7 p 214.5 49.6 210.2 52.4 214.5 55.1 t4 214.5 55.1 210.2 52.4 205.9 55.1 t4 207.6 50.7 205.9 52.2 205.9 55.1 210.2 52.4 s4 207.6 50.7 205.9 52.2 p 208.9 51.5 212.4 51.0 210.2 52.4 t5 208.9 51.5 212.4 51.0 p 214.5 50.3 212.4 51.0 210.2 52.4 214.5 55.1 s5 214.5 50.3 212.4 51.0 p 214.5 55.1 210.2 52.4 205.9 55.1 t5 208.9 51.5 205.9 54.2 205.9 55.1 210.2 52.4 s5 208.9 51.5 205.9 54.2 p 210.1 52.3 210.3 52.3 210.2 52.4 t6 210.1 52.3 210.3 52.3 p 214.5 51.0 210.3 52.3 210.2 52.4 214.5 55.1 s6 214.5 51.0 210.3 52.3 p 209.7 52.7 206.5 55.1 214.5 55.1 210.2 52.4 s6 209.7 52.7 206.5 55.1 p 209.7 52.7 210.1 52.3 210.2 52.4 t6 209.7 52.7 210.1 52.3 p 210.9 52.8 214.5 51.7 214.5 55.1 t7 210.9 52.8 214.5 51.7 p 207.8 55.1 210.9 52.8 214.5 55.1 t7 207.8 55.1 210.9 52.8 p 211.6 53.3 214.5 52.4 214.5 55.1 t8 211.6 53.3 214.5 52.4 p 209.2 55.1 211.6 53.3 214.5 55.1 t8 209.2 55.1 211.6 53.3 p 214.5 49.6 223.1 49.6 223.1 55.1 214.5 55.1 s2 222.6 49.9 220.8 49.6 214.5 49.6 218.8 52.4 s3 222.6 49.9 220.8 49.6 p 223.1 50.3 222.6 49.9 218.8 52.4 223.1 55.1 s3 223.1 50.3 222.6 49.9 p 223.1 55.1 218.8 52.4 214.5 55.1 t3 214.5 55.1 218.8 52.4 214.5 49.6 t3 221.3 50.7 214.7 49.6 214.5 49.6 218.8 52.4 s4 221.3 50.7 214.7 49.6 p 223.1 52.2 221.3 50.7 218.8 52.4 223.1 55.1 s4 223.1 52.2 221.3 50.7 p 223.1 55.1 218.8 52.4 214.5 55.1 t4 214.5 55.1 218.8 52.4 214.5 49.6 t4 216.5 51.0 220.1 51.5 218.8 52.4 t5 216.5 51.0 220.1 51.5 p 223.1 54.2 220.1 51.5 218.8 52.4 223.1 55.1 s5 223.1 54.2 220.1 51.5 p 223.1 55.1 218.8 52.4 214.5 55.1 t5 216.5 51.0 214.5 50.3 214.5 55.1 218.8 52.4 s5 216.5 51.0 214.5 50.3 p 218.6 52.3 218.8 52.3 218.8 52.4 t6 218.6 52.3 218.8 52.3 p 218.8 52.3 219.2 52.7 218.8 52.4 t6 218.8 52.3 219.2 52.7 p 222.4 55.1 219.2 52.7 218.8 52.4 214.5 55.1 s6 222.4 55.1 219.2 52.7 p 218.6 52.3 214.5 51.0 214.5 55.1 218.8 52.4 s6 218.6 52.3 214.5 51.0 p 218.1 52.8 221.1 55.1 214.5 55.1 t7 218.1 52.8 221.1 55.1 p 214.5 51.7 218.1 52.8 214.5 55.1 t7 214.5 51.7 218.1 52.8 p 217.4 53.3 219.8 55.1 214.5 55.1 t8 217.4 53.3 219.8 55.1 p 214.5 52.4 217.4 53.3 214.5 55.1 t8 214.5 52.4 217.4 53.3 p 223.1 49.6 231.6 49.6 231.6 55.1 223.1 55.1 s1 229.6 50.9 227.2 49.6 223.1 49.6 227.3 52.4 s2 229.6 50.9 227.2 49.6 p 229.6 50.9 230.3 54.3 227.3 52.4 t2 229.6 50.9 230.3 54.3 p 230.9 55.1 230.3 54.3 227.3 52.4 223.1 55.1 s2 230.9 55.1 230.3 54.3 p 223.1 55.1 227.3 52.4 223.1 49.6 t2 227.0 52.6 228.6 55.1 223.1 55.1 t3 227.0 52.6 228.6 55.1 p 223.1 50.3 227.0 52.6 223.1 55.1 t3 223.1 50.3 227.0 52.6 p 225.4 53.6 226.4 55.1 223.1 55.1 t4 225.4 53.6 226.4 55.1 p 223.1 52.2 225.4 53.6 223.1 55.1 t4 223.1 52.2 225.4 53.6 p 223.9 54.6 224.2 55.1 223.1 55.1 t5 223.9 54.6 224.2 55.1 p 223.1 54.2 223.9 54.6 223.1 55.1 t5 223.1 54.2 223.9 54.6 p 231.6 49.6 240.2 49.6 240.2 55.1 231.6 55.1 s1 240.2 49.6 248.8 49.6 248.8 55.1 240.2 55.1 s1 244.7 49.6 242.2 50.9 244.5 52.4 248.8 49.6 s2 244.7 49.6 242.2 50.9 p 248.8 49.6 244.5 52.4 248.8 55.1 t2 241.5 54.3 241.0 55.1 248.8 55.1 244.5 52.4 s2 241.5 54.3 241.0 55.1 p 241.5 54.3 242.2 50.9 244.5 52.4 t2 241.5 54.3 242.2 50.9 p 244.8 52.6 248.8 50.3 248.8 55.1 t3 244.8 52.6 248.8 50.3 p 243.2 55.1 244.8 52.6 248.8 55.1 t3 243.2 55.1 244.8 52.6 p 246.4 53.6 248.8 52.2 248.8 55.1 t4 246.4 53.6 248.8 52.2 p 245.4 55.1 246.4 53.6 248.8 55.1 t4 245.4 55.1 246.4 53.6 p 248.0 54.6 248.8 54.2 248.8 55.1 t5 248.0 54.6 248.8 54.2 p 247.6 55.1 248.0 54.6 248.8 55.1 t5 247.6 55.1 248.0 54.6 p 248.8 49.6 257.4 49.6 257.4 55.1 248.8 55.1 s2 251.0 49.6 249.2 49.9 253.1 52.4 257.4 49.6 s3 251.0 49.6 249.2 49.9 p 257.4 49.6 253.1 52.4 257.4 55.1 t3 257.4 55.1 253.1 52.4 248.8 55.1 t3 249.2 49.9 248.8 50.3 248.8 55.1 253.1 52.4 s3 249.2 49.9 248.8 50.3 p 257.2 49.6 250.5 50.7 253.1 52.4 257.4 49.6 s4 257.2 49.6 250.5 50.7 p 257.4 49.6 253.1 52.4 257.4 55.1 t4 257.4 55.1 253.1 52.4 248.8 55.1 t4 250.5 50.7 248.8 52.2 248.8 55.1 253.1 52.4 s4 250.5 50.7 248.8 52.2 p 251.7 51.5 255.3 51.0 253.1 52.4 t5 251.7 51.5 255.3 51.0 p 257.4 50.3 255.3 51.0 253.1 52.4 257.4 55.1 s5 257.4 50.3 255.3 51.0 p 257.4 55.1 253.1 52.4 248.8 55.1 t5 251.7 51.5 248.8 54.2 248.8 55.1 253.1 52.4 s5 251.7 51.5 248.8 54.2 p 253.0 52.3 253.2 52.3 253.1 52.4 t6 253.0 52.3 253.2 52.3 p 257.4 51.0 253.2 52.3 253.1 52.4 257.4 55.1 s6 257.4 51.0 253.2 52.3 p 252.6 52.7 249.4 55.1 257.4 55.1 253.1 52.4 s6 252.6 52.7 249.4 55.1 p 252.6 52.7 253.0 52.3 253.1 52.4 t6 252.6 52.7 253.0 52.3 p 253.7 52.8 257.4 51.7 257.4 55.1 t7 253.7 52.8 257.4 51.7 p 250.7 55.1 253.7 52.8 257.4 55.1 t7 250.7 55.1 253.7 52.8 p 254.5 53.3 257.4 52.4 257.4 55.1 t8 254.5 53.3 257.4 52.4 p 252.0 55.1 254.5 53.3 257.4 55.1 t8 252.0 55.1 254.5 53.3 p 257.4 49.6 265.9 49.6 265.9 55.1 257.4 55.1 s2 265.5 49.9 263.7 49.6 257.4 49.6 261.7 52.4 s3 265.5 49.9 263.7 49.6 p 265.9 50.3 265.5 49.9 261.7 52.4 265.9 55.1 s3 265.9 50.3 265.5 49.9 p 265.9 55.1 261.7 52.4 257.4 55.1 t3 257.4 55.1 261.7 52.4 257.4 49.6 t3 264.2 50.7 257.6 49.6 257.4 49.6 261.7 52.4 s4 264.2 50.7 257.6 49.6 p 265.9 52.2 264.2 50.7 261.7 52.4 265.9 55.1 s4 265.9 52.2 264.2 50.7 p 265.9 55.1 261.7 52.4 257.4 55.1 t4 257.4 55.1 261.7 52.4 257.4 49.6 t4 259.4 51.0 263.0 51.5 261.7 52.4 t5 259.4 51.0 263.0 51.5 p 265.9 54.2 263.0 51.5 261.7 52.4 265.9 55.1 s5 265.9 54.2 263.0 51.5 p 265.9 55.1 261.7 52.4 257.4 55.1 t5 259.4 51.0 257.4 50.3 257.4 55.1 261.7 52.4 s5 259.4 51.0 257.4 50.3 p 261.5 52.3 261.7 52.3 261.7 52.4 t6 261.5 52.3 261.7 52.3 p 261.7 52.3 262.1 52.7 261.7 52.4 t6 261.7 52.3 262.1 52.7 p 265.3 55.1 262.1 52.7 261.7 52.4 257.4 55.1 s6 265.3 55.1 262.1 52.7 p 261.5 52.3 257.4 51.0 257.4 55.1 261.7 52.4 s6 261.5 52.3 257.4 51.0 p 261.0 52.8 264.0 55.1 257.4 55.1 t7 261.0 52.8 264.0 55.1 p 257.4 51.7 261.0 52.8 257.4 55.1 t7 257.4 51.7 261.0 52.8 p 260.3 53.3 262.7 55.1 257.4 55.1 t8 260.3 53.3 262.7 55.1 p 257.4 52.4 260.3 53.3 257.4 55.1 t8 257.4 52.4 260.3 53.3 p 265.9 49.6 274.5 49.6 274.5 55.1 265.9 55.1 s1 272.5 50.9 270.1 49.6 265.9 49.6 270.2 52.4 s2 272.5 50.9 270.1 49.6 p 272.5 50.9 273.2 54.3 270.2 52.4 t2 272.5 50.9 273.2 54.3 p 273.7 55.1 273.2 54.3 270.2 52.4 265.9 55.1 s2 273.7 55.1 273.2 54.3 p 265.9 55.1 270.2 52.4 265.9 49.6 t2 269.9 52.6 271.5 55.1 265.9 55.1 t3 269.9 52.6 271.5 55.1 p 265.9 50.3 269.9 52.6 265.9 55.1 t3 265.9 50.3 269.9 52.6 p 268.3 53.6 269.3 55.1 265.9 55.1 t4 268.3 53.6 269.3 55.1 p 265.9 52.2 268.3 53.6 265.9 55.1 t4 265.9 52.2 268.3 53.6 p 266.8 54.6 267.1 55.1 265.9 55.1 t5 266.8 54.6 267.1 55.1 p 265.9 54.2 266.8 54.6 265.9 55.1 t5 265.9 54.2 266.8 54.6 p 274.5 49.6 283.1 49.6 283.1 55.1 274.5 55.1 s1 283.1 49.6 291.7 49.6 291.7 55.1 283.1 55.1 s1 287.6 49.6 285.1 50.9 287.4 52.4 291.7 49.6 s2 287.6 49.6 285.1 50.9 p 291.7 49.6 287.4 52.4 291.7 55.1 t2 284.4 54.3 283.9 55.1 291.7 55.1 287.4 52.4 s2 284.4 54.3 283.9 55.1 p 284.4 54.3 285.1 50.9 287.4 52.4 t2 284.4 54.3 285.1 50.9 p 287.7 52.6 291.7 50.3 291.7 55.1 t3 287.7 52.6 291.7 50.3 p 286.1 55.1 287.7 52.6 291.7 55.1 t3 286.1 55.1 287.7 52.6 p 289.3 53.6 291.7 52.2 291.7 55.1 t4 289.3 53.6 291.7 52.2 p 288.3 55.1 289.3 53.6 291.7 55.1 t4 288.3 55.1 289.3 53.6 p 290.9 54.6 291.7 54.2 291.7 55.1 t5 290.9 54.6 291.7 54.2 p 290.5 55.1 290.9 54.6 291.7 55.1 t5 290.5 55.1 290.9 54.6 p 291.7 49.6 300.3 49.6 300.3 55.1 291.7 55.1 s2 293.9 49.6 292.1 49.9 296.0 52.4 300.3 49.6 s3 293.9 49.6 292.1 49.9 p 300.3 49.6 296.0 52.4 300.3 55.1 t3 300.3 55.1 296.0 52.4 291.7 55.1 t3 292.1 49.9 291.7 50.3 291.7 55.1 296.0 52.4 s3 292.1 49.9 291.7 50.3 p 300.1 49.6 293.4 50.7 296.0 52.4 300.3 49.6 s4 300.1 49.6 293.4 50.7 p 300.3 49.6 296.0 52.4 300.3 55.1 t4 300.3 55.1 296.0 52.4 291.7 55.1 t4 293.4 50.7 291.7 52.2 291.7 55.1 296.0 52.4 s4 293.4 50.7 291.7 52.2 p 294.6 51.5 298.2 51.0 296.0 52.4 t5 294.6 51.5 298.2 51.0 p 300.3 50.3 298.2 51.0 296.0 52.4 300.3 55.1 s5 300.3 50.3 298.2 51.0 p 300.3 55.1 296.0 52.4 291.7 55.1 t5 294.6 51.5 291.7 54.2 291.7 55.1 296.0 52.4 s5 294.6 51.5 291.7 54.2 p 295.9 52.3 296.1 52.3 296.0 52.4 t6 295.9 52.3 296.1 52.3 p 300.3 51.0 296.1 52.3 296.0 52.4 300.3 55.1 s6 300.3 51.0 296.1 52.3 p 295.5 52.7 292.3 55.1 300.3 55.1 296.0 52.4 s6 295.5 52.7 292.3 55.1 p 295.5 52.7 295.9 52.3 296.0 52.4 t6 295.5 52.7 295.9 52.3 p 296.6 52.8 300.3 51.7 300.3 55.1 t7 296.6 52.8 300.3 51.7 p 293.6 55.1 296.6 52.8 300.3 55.1 t7 293.6 55.1 296.6 52.8 p 297.4 53.3 300.3 52.4 300.3 55.1 t8 297.4 53.3 300.3 52.4 p 294.9 55.1 297.4 53.3 300.3 55.1 t8 294.9 55.1 297.4 53.3 p 0.0 44.1 8.6 44.1 8.6 49.6 0.0 49.6 s1 1.5 45.1 6.2 45.6 4.3 46.9 t2 1.5 45.1 6.2 45.6 p 8.6 46.7 6.2 45.6 4.3 46.9 8.6 49.6 s2 8.6 46.7 6.2 45.6 p 8.6 49.6 4.3 46.9 0.0 49.6 t2 1.5 45.1 0.0 44.7 0.0 49.6 4.3 46.9 s2 1.5 45.1 0.0 44.7 p 2.8 47.8 6.3 49.6 0.0 49.6 t3 2.8 47.8 6.3 49.6 p 0.0 47.1 2.8 47.8 0.0 49.6 t3 0.0 47.1 2.8 47.8 p 0.1 49.6 0.2 49.6 0.0 49.6 t4 0.1 49.6 0.2 49.6 p 0.0 49.6 0.1 49.6 0.0 49.6 t4 0.0 49.6 0.1 49.6 p 8.6 44.1 17.2 44.1 17.2 49.6 8.6 49.6 s1 11.3 47.9 12.7 49.6 8.6 49.6 t2 11.3 47.9 12.7 49.6 p 8.6 46.7 11.3 47.9 8.6 49.6 t2 8.6 46.7 11.3 47.9 p 17.2 44.1 25.7 44.1 25.7 49.6 17.2 49.6 s1 25.7 44.1 34.3 44.1 34.3 49.6 25.7 49.6 s1 31.6 47.9 34.3 46.7 34.3 49.6 t2 31.6 47.9 34.3 46.7 p 30.2 49.6 31.6 47.9 34.3 49.6 t2 30.2 49.6 31.6 47.9 p 34.3 44.1 42.9 44.1 42.9 49.6 34.3 49.6 s1 36.7 45.6 41.4 45.1 38.6 46.9 t2 36.7 45.6 41.4 45.1 p 42.9 44.7 41.4 45.1 38.6 46.9 42.9 49.6 s2 42.9 44.7 41.4 45.1 p 42.9 49.6 38.6 46.9 34.3 49.6 t2 36.7 45.6 34.3 46.7 34.3 49.6 38.6 46.9 s2 36.7 45.6 34.3 46.7 p 40.1 47.8 42.9 47.1 42.9 49.6 t3 40.1 47.8 42.9 47.1 p 36.6 49.6 40.1 47.8 42.9 49.6 t3 36.6 49.6 40.1 47.8 p 42.8 49.6 42.9 49.6 42.9 49.6 t4 42.8 49.6 42.9 49.6 p 42.7 49.6 42.8 49.6 42.9 49.6 t4 42.7 49.6 42.8 49.6 p 42.9 44.1 51.5 44.1 51.5 49.6 42.9 49.6 s1 44.4 45.1 49.1 45.6 47.2 46.9 t2 44.4 45.1 49.1 45.6 p 51.5 46.7 49.1 45.6 47.2 46.9 51.5 49.6 s2 51.5 46.7 49.1 45.6 p 51.5 49.6 47.2 46.9 42.9 49.6 t2 44.4 45.1 42.9 44.7 42.9 49.6 47.2 46.9 s2 44.4 45.1 42.9 44.7 p 45.7 47.8 49.2 49.6 42.9 49.6 t3 45.7 47.8 49.2 49.6 p 42.9 47.1 45.7 47.8 42.9 49.6 t3 42.9 47.1 45.7 47.8 p 43.0 49.6 43.1 49.6 42.9 49.6 t4 43.0 49.6 43.1 49.6 p 42.9 49.6 43.0 49.6 42.9 49.6 t4 42.9 49.6 43.0 49.6 p 51.5 44.1 60.1 44.1 60.1 49.6 51.5 49.6 s1 54.2 47.9 55.6 49.6 51.5 49.6 t2 54.2 47.9 55.6 49.6 p 51.5 46.7 54.2 47.9 51.5 49.6 t2 51.5 46.7 54.2 47.9 p 60.1 44.1 68.6 44.1 68.6 49.6 60.1 49.6 s1 68.6 44.1 77.2 44.1 77.2 49.6 68.6 49.6 s1 74.5 47.9 77.2 46.7 77.2 49.6 t2 74.5 47.9 77.2 46.7 p 73.1 49.6 74.5 47.9 77.2 49.6 t2 73.1 49.6 74.5 47.9 p 77.2 44.1 85.8 44.1 85.8 49.6 77.2 49.6 s1 79.6 45.6 84.3 45.1 81.5 46.9 t2 79.6 45.6 84.3 45.1 p 85.8 44.7 84.3 45.1 81.5 46.9 85.8 49.6 s2 85.8 44.7 84.3 45.1 p 85.8 49.6 81.5 46.9 77.2 49.6 t2 79.6 45.6 77.2 46.7 77.2 49.6 81.5 46.9 s2 79.6 45.6 77.2 46.7 p 83.0 47.8 85.8 47.1 85.8 49.6 t3 83.0 47.8 85.8 47.1 p 79.5 49.6 83.0 47.8 85.8 49.6 t3 79.5 49.6 83.0 47.8 p 85.7 49.6 85.8 49.6 85.8 49.6 t4 85.7 49.6 85.8 49.6 p 85.6 49.6 85.7 49.6 85.8 49.6 t4 85.6 49.6 85.7 49.6 p 85.8 44.1 94.4 44.1 94.4 49.6 85.8 49.6 s1 87.3 45.1 92.0 45.6 90.1 46.9 t2 87.3 45.1 92.0 45.6 p 94.4 46.7 92.0 45.6 90.1 46.9 94.4 49.6 s2 94.4 46.7 92.0 45.6 p 94.4 49.6 90.1 46.9 85.8 49.6 t2 87.3 45.1 85.8 44.7 85.8 49.6 90.1 46.9 s2 87.3 45.1 85.8 44.7 p 88.6 47.8 92.1 49.6 85.8 49.6 t3 88.6 47.8 92.1 49.6 p 85.8 47.1 88.6 47.8 85.8 49.6 t3 85.8 47.1 88.6 47.8 p 85.9 49.6 86.0 49.6 85.8 49.6 t4 85.9 49.6 86.0 49.6 p 85.8 49.6 85.9 49.6 85.8 49.6 t4 85.8 49.6 85.9 49.6 p 94.4 44.1 102.9 44.1 102.9 49.6 94.4 49.6 s1 97.1 47.9 98.5 49.6 94.4 49.6 t2 97.1 47.9 98.5 49.6 p 94.4 46.7 97.1 47.9 94.4 49.6 t2 94.4 46.7 97.1 47.9 p 102.9 44.1 111.5 44.1 111.5 49.6 102.9 49.6 s1 111.5 44.1 120.1 44.1 120.1 49.6 111.5 49.6 s1 117.4 47.9 120.1 46.7 120.1 49.6 t2 117.4 47.9 120.1 46.7 p 116.0 49.6 117.4 47.9 120.1 49.6 t2 116.0 49.6 117.4 47.9 p 120.1 44.1 128.7 44.1 128.7 49.6 120.1 49.6 s1 122.5 45.6 127.2 45.1 124.4 46.9 t2 122.5 45.6 127.2 45.1 p 128.7 44.7 127.2 45.1 124.4 46.9 128.7 49.6 s2 128.7 44.7 127.2 45.1 p 128.7 49.6 124.4 46.9 120.1 49.6 t2 122.5 45.6 120.1 46.7 120.1 49.6 124.4 46.9 s2 122.5 45.6 120.1 46.7 p 125.9 47.8 128.7 47.1 128.7 49.6 t3 125.9 47.8 128.7 47.1 p 122.3 49.6 125.9 47.8 128.7 49.6 t3 122.3 49.6 125.9 47.8 p 128.6 49.6 128.7 49.6 128.7 49.6 t4 128.6 49.6 128.7 49.6 p 128.5 49.6 128.6 49.6 128.7 49.6 t4 128.5 49.6 128.6 49.6 p 128.7 44.1 137.3 44.1 137.3 49.6 128.7 49.6 s1 130.2 45.1 134.9 45.6 133.0 46.9 t2 130.2 45.1 134.9 45.6 p 137.3 46.7 134.9 45.6 133.0 46.9 137.3 49.6 s2 137.3 46.7 134.9 45.6 p 137.3 49.6 133.0 46.9 128.7 49.6 t2 130.2 45.1 128.7 44.7 128.7 49.6 133.0 46.9 s2 130.2 45.1 128.7 44.7 p 131.5 47.8 135.0 49.6 128.7 49.6 t3 131.5 47.8 135.0 49.6 p 128.7 47.1 131.5 47.8 128.7 49.6 t3 128.7 47.1 131.5 47.8 p 128.8 49.6 128.9 49.6 128.7 49.6 t4 128.8 49.6 128.9 49.6 p 128.7 49.6 128.8 49.6 128.7 49.6 t4 128.7 49.6 128.8 49.6 p 137.3 44.1 145.8 44.1 145.8 49.6 137.3 49.6 s1 140.0 47.9 141.4 49.6 137.3 49.6 t2 140.0 47.9 141.4 49.6 p 137.3 46.7 140.0 47.9 137.3 49.6 t2 137.3 46.7 140.0 47.9 p 145.8 44.1 154.4 44.1 154.4 49.6 145.8 49.6 s1 154.4 44.1 163.0 44.1 163.0 49.6 154.4 49.6 s1 160.3 47.9 163.0 46.7 163.0 49.6 t2 160.3 47.9 163.0 46.7 p 158.9 49.6 160.3 47.9 163.0 49.6 t2 158.9 49.6 160.3 47.9 p 163.0 44.1 171.6 44.1 171.6 49.6 163.0 49.6 s1 165.4 45.6 170.1 45.1 167.3 46.9 t2 165.4 45.6 170.1 45.1 p 171.6 44.7 170.1 45.1 167.3 46.9 171.6 49.6 s2 171.6 44.7 170.1 45.1 p 171.6 49.6 167.3 46.9 163.0 49.6 t2 165.4 45.6 163.0 46.7 163.0 49.6 167.3 46.9 s2 165.4 45.6 163.0 46.7 p 168.8 47.8 171.6 47.1 171.6 49.6 t3 168.8 47.8 171.6 47.1 p 165.2 49.6 168.8 47.8 171.6 49.6 t3 165.2 49.6 168.8 47.8 p 171.5 49.6 171.6 49.6 171.6 49.6 t4 171.5 49.6 171.6 49.6 p 171.4 49.6 171.5 49.6 171.6 49.6 t4 171.4 49.6 171.5 49.6 p 171.6 44.1 180.2 44.1 180.2 49.6 171.6 49.6 s1 173.1 45.1 177.8 45.6 175.9 46.9 t2 173.1 45.1 177.8 45.6 p 180.2 46.7 177.8 45.6 175.9 46.9 180.2 49.6 s2 180.2 46.7 177.8 45.6 p 180.2 49.6 175.9 46.9 171.6 49.6 t2 173.1 45.1 171.6 44.7 171.6 49.6 175.9 46.9 s2 173.1 45.1 171.6 44.7 p 174.4 47.8 177.9 49.6 171.6 49.6 t3 174.4 47.8 177.9 49.6 p 171.6 47.1 174.4 47.8 171.6 49.6 t3 171.6 47.1 174.4 47.8 p 171.7 49.6 171.8 49.6 171.6 49.6 t4 171.7 49.6 171.8 49.6 p 171.6 49.6 171.7 49.6 171.6 49.6 t4 171.6 49.6 171.7 49.6 p 180.2 44.1 188.7 44.1 188.7 49.6 180.2 49.6 s1 182.9 47.9 184.3 49.6 180.2 49.6 t2 182.9 47.9 184.3 49.6 p 180.2 46.7 182.9 47.9 180.2 49.6 t2 180.2 46.7 182.9 47.9 p 188.7 44.1 197.3 44.1 197.3 49.6 188.7 49.6 s1 197.3 44.1 205.9 44.1 205.9 49.6 197.3 49.6 s1 203.2 47.9 205.9 46.7 205.9 49.6 t2 203.2 47.9 205.9 46.7 p 201.8 49.6 203.2 47.9 205.9 49.6 t2 201.8 49.6 203.2 47.9 p 205.9 44.1 214.5 44.1 214.5 49.6 205.9 49.6 s1 208.2 45.6 213.0 45.1 210.2 46.9 t2 208.2 45.6 213.0 45.1 p 214.5 44.7 213.0 45.1 210.2 46.9 214.5 49.6 s2 214.5 44.7 213.0 45.1 p 214.5 49.6 210.2 46.9 205.9 49.6 t2 208.2 45.6 205.9 46.7 205.9 49.6 210.2 46.9 s2 208.2 45.6 205.9 46.7 p 211.7 47.8 214.5 47.1 214.5 49.6 t3 211.7 47.8 214.5 47.1 p 208.1 49.6 211.7 47.8 214.5 49.6 t3 208.1 49.6 211.7 47.8 p 214.4 49.6 214.5 49.6 214.5 49.6 t4 214.4 49.6 214.5 49.6 p 214.3 49.6 214.4 49.6 214.5 49.6 t4 214.3 49.6 214.4 49.6 p 214.5 44.1 223.1 44.1 223.1 49.6 214.5 49.6 s1 216.0 45.1 220.7 45.6 218.8 46.9 t2 216.0 45.1 220.7 45.6 p 223.1 46.7 220.7 45.6 218.8 46.9 223.1 49.6 s2 223.1 46.7 220.7 45.6 p 223.1 49.6 218.8 46.9 214.5 49.6 t2 216.0 45.1 214.5 44.7 214.5 49.6 218.8 46.9 s2 216.0 45.1 214.5 44.7 p 217.3 47.8 220.8 49.6 214.5 49.6 t3 217.3 47.8 220.8 49.6 p 214.5 47.1 217.3 47.8 214.5 49.6 t3 214.5 47.1 217.3 47.8 p 214.6 49.6 214.7 49.6 214.5 49.6 t4 214.6 49.6 214.7 49.6 p 214.5 49.6 214.6 49.6 214.5 49.6 t4 214.5 49.6 214.6 49.6 p 223.1 44.1 231.6 44.1 231.6 49.6 223.1 49.6 s1 225.8 47.9 227.2 49.6 223.1 49.6 t2 225.8 47.9 227.2 49.6 p 223.1 46.7 225.8 47.9 223.1 49.6 t2 223.1 46.7 225.8 47.9 p 231.6 44.1 240.2 44.1 240.2 49.6 231.6 49.6 s1 240.2 44.1 248.8 44.1 248.8 49.6 240.2 49.6 s1 246.1 47.9 248.8 46.7 248.8 49.6 t2 246.1 47.9 248.8 46.7 p 244.7 49.6 246.1 47.9 248.8 49.6 t2 244.7 49.6 246.1 47.9 p 248.8 44.1 257.4 44.1 257.4 49.6 248.8 49.6 s1 251.1 45.6 255.9 45.1 253.1 46.9 t2 251.1 45.6 255.9 45.1 p 257.4 44.7 255.9 45.1 253.1 46.9 257.4 49.6 s2 257.4 44.7 255.9 45.1 p 257.4 49.6 253.1 46.9 248.8 49.6 t2 251.1 45.6 248.8 46.7 248.8 49.6 253.1 46.9 s2 251.1 45.6 248.8 46.7 p 254.5 47.8 257.4 47.1 257.4 49.6 t3 254.5 47.8 257.4 47.1 p 251.0 49.6 254.5 47.8 257.4 49.6 t3 251.0 49.6 254.5 47.8 p 257.3 49.6 257.4 49.6 257.4 49.6 t4 257.3 49.6 257.4 49.6 p 257.2 49.6 257.3 49.6 257.4 49.6 t4 257.2 49.6 257.3 49.6 p 257.4 44.1 265.9 44.1 265.9 49.6 257.4 49.6 s1 258.9 45.1 263.6 45.6 261.7 46.9 t2 258.9 45.1 263.6 45.6 p 265.9 46.7 263.6 45.6 261.7 46.9 265.9 49.6 s2 265.9 46.7 263.6 45.6 p 265.9 49.6 261.7 46.9 257.4 49.6 t2 258.9 45.1 257.4 44.7 257.4 49.6 261.7 46.9 s2 258.9 45.1 257.4 44.7 p 260.2 47.8 263.7 49.6 257.4 49.6 t3 260.2 47.8 263.7 49.6 p 257.4 47.1 260.2 47.8 257.4 49.6 t3 257.4 47.1 260.2 47.8 p 257.4 49.6 257.6 49.6 257.4 49.6 t4 257.4 49.6 257.6 49.6 p 257.4 49.6 257.4 49.6 257.4 49.6 t4 257.4 49.6 257.4 49.6 p 265.9 44.1 274.5 44.1 274.5 49.6 265.9 49.6 s1 268.6 47.9 270.1 49.6 265.9 49.6 t2 268.6 47.9 270.1 49.6 p 265.9 46.7 268.6 47.9 265.9 49.6 t2 265.9 46.7 268.6 47.9 p 274.5 44.1 283.1 44.1 283.1 49.6 274.5 49.6 s1 283.1 44.1 291.7 44.1 291.7 49.6 283.1 49.6 s1 289.0 47.9 291.7 46.7 291.7 49.6 t2 289.0 47.9 291.7 46.7 p 287.6 49.6 289.0 47.9 291.7 49.6 t2 287.6 49.6 289.0 47.9 p 291.7 44.1 300.3 44.1 300.3 49.6 291.7 49.6 s1 294.0 45.6 298.8 45.1 296.0 46.9 t2 294.0 45.6 298.8 45.1 p 300.3 44.7 298.8 45.1 296.0 46.9 300.3 49.6 s2 300.3 44.7 298.8 45.1 p 300.3 49.6 296.0 46.9 291.7 49.6 t2 294.0 45.6 291.7 46.7 291.7 49.6 296.0 46.9 s2 294.0 45.6 291.7 46.7 p 297.4 47.8 300.3 47.1 300.3 49.6 t3 297.4 47.8 300.3 47.1 p 293.9 49.6 297.4 47.8 300.3 49.6 t3 293.9 49.6 297.4 47.8 p 300.2 49.6 300.3 49.6 300.3 49.6 t4 300.2 49.6 300.3 49.6 p 300.1 49.6 300.2 49.6 300.3 49.6 t4 300.1 49.6 300.2 49.6 p 0.0 38.6 8.6 38.6 8.6 44.1 0.0 44.1 s1 8.6 38.6 17.2 38.6 17.2 44.1 8.6 44.1 s1 17.2 38.6 25.7 38.6 25.7 44.1 17.2 44.1 s1 25.7 38.6 34.3 38.6 34.3 44.1 25.7 44.1 s1 34.3 38.6 42.9 38.6 42.9 44.1 34.3 44.1 s1 42.9 38.6 51.5 38.6 51.5 44.1 42.9 44.1 s1 51.5 38.6 60.1 38.6 60.1 44.1 51.5 44.1 s1 60.1 38.6 68.6 38.6 68.6 44.1 60.1 44.1 s1 68.6 38.6 77.2 38.6 77.2 44.1 68.6 44.1 s1 77.2 38.6 85.8 38.6 85.8 44.1 77.2 44.1 s1 85.8 38.6 94.4 38.6 94.4 44.1 85.8 44.1 s1 94.4 38.6 102.9 38.6 102.9 44.1 94.4 44.1 s1 102.9 38.6 111.5 38.6 111.5 44.1 102.9 44.1 s1 111.5 38.6 120.1 38.6 120.1 44.1 111.5 44.1 s1 120.1 38.6 128.7 38.6 128.7 44.1 120.1 44.1 s1 128.7 38.6 137.3 38.6 137.3 44.1 128.7 44.1 s1 137.3 38.6 145.8 38.6 145.8 44.1 137.3 44.1 s1 145.8 38.6 154.4 38.6 154.4 44.1 145.8 44.1 s1 154.4 38.6 163.0 38.6 163.0 44.1 154.4 44.1 s1 163.0 38.6 171.6 38.6 171.6 44.1 163.0 44.1 s1 171.6 38.6 180.2 38.6 180.2 44.1 171.6 44.1 s1 180.2 38.6 188.7 38.6 188.7 44.1 180.2 44.1 s1 188.7 38.6 197.3 38.6 197.3 44.1 188.7 44.1 s1 197.3 38.6 205.9 38.6 205.9 44.1 197.3 44.1 s1 205.9 38.6 214.5 38.6 214.5 44.1 205.9 44.1 s1 214.5 38.6 223.1 38.6 223.1 44.1 214.5 44.1 s1 223.1 38.6 231.6 38.6 231.6 44.1 223.1 44.1 s1 231.6 38.6 240.2 38.6 240.2 44.1 231.6 44.1 s1 240.2 38.6 248.8 38.6 248.8 44.1 240.2 44.1 s1 248.8 38.6 257.4 38.6 257.4 44.1 248.8 44.1 s1 257.4 38.6 265.9 38.6 265.9 44.1 257.4 44.1 s1 265.9 38.6 274.5 38.6 274.5 44.1 265.9 44.1 s1 274.5 38.6 283.1 38.6 283.1 44.1 274.5 44.1 s1 283.1 38.6 291.7 38.6 291.7 44.1 283.1 44.1 s1 291.7 38.6 300.3 38.6 300.3 44.1 291.7 44.1 s1 0.0 33.1 8.6 33.1 8.6 38.6 0.0 38.6 s1 8.6 33.1 17.2 33.1 17.2 38.6 8.6 38.6 s1 17.2 33.1 25.7 33.1 25.7 38.6 17.2 38.6 s1 25.7 33.1 34.3 33.1 34.3 38.6 25.7 38.6 s1 34.3 33.1 42.9 33.1 42.9 38.6 34.3 38.6 s1 42.9 33.1 51.5 33.1 51.5 38.6 42.9 38.6 s1 51.5 33.1 60.1 33.1 60.1 38.6 51.5 38.6 s1 60.1 33.1 68.6 33.1 68.6 38.6 60.1 38.6 s1 68.6 33.1 77.2 33.1 77.2 38.6 68.6 38.6 s1 77.2 33.1 85.8 33.1 85.8 38.6 77.2 38.6 s1 85.8 33.1 94.4 33.1 94.4 38.6 85.8 38.6 s1 94.4 33.1 102.9 33.1 102.9 38.6 94.4 38.6 s1 102.9 33.1 111.5 33.1 111.5 38.6 102.9 38.6 s1 111.5 33.1 120.1 33.1 120.1 38.6 111.5 38.6 s1 120.1 33.1 128.7 33.1 128.7 38.6 120.1 38.6 s1 128.7 33.1 137.3 33.1 137.3 38.6 128.7 38.6 s1 137.3 33.1 145.8 33.1 145.8 38.6 137.3 38.6 s1 145.8 33.1 154.4 33.1 154.4 38.6 145.8 38.6 s1 154.4 33.1 163.0 33.1 163.0 38.6 154.4 38.6 s1 163.0 33.1 171.6 33.1 171.6 38.6 163.0 38.6 s1 171.6 33.1 180.2 33.1 180.2 38.6 171.6 38.6 s1 180.2 33.1 188.7 33.1 188.7 38.6 180.2 38.6 s1 188.7 33.1 197.3 33.1 197.3 38.6 188.7 38.6 s1 197.3 33.1 205.9 33.1 205.9 38.6 197.3 38.6 s1 205.9 33.1 214.5 33.1 214.5 38.6 205.9 38.6 s1 214.5 33.1 223.1 33.1 223.1 38.6 214.5 38.6 s1 223.1 33.1 231.6 33.1 231.6 38.6 223.1 38.6 s1 231.6 33.1 240.2 33.1 240.2 38.6 231.6 38.6 s1 240.2 33.1 248.8 33.1 248.8 38.6 240.2 38.6 s1 248.8 33.1 257.4 33.1 257.4 38.6 248.8 38.6 s1 257.4 33.1 265.9 33.1 265.9 38.6 257.4 38.6 s1 265.9 33.1 274.5 33.1 274.5 38.6 265.9 38.6 s1 274.5 33.1 283.1 33.1 283.1 38.6 274.5 38.6 s1 283.1 33.1 291.7 33.1 291.7 38.6 283.1 38.6 s1 291.7 33.1 300.3 33.1 300.3 38.6 291.7 38.6 s1 0.0 27.6 8.6 27.6 8.6 33.1 0.0 33.1 s1 8.6 27.6 17.2 27.6 17.2 33.1 8.6 33.1 s1 17.2 27.6 25.7 27.6 25.7 33.1 17.2 33.1 s1 25.7 27.6 34.3 27.6 34.3 33.1 25.7 33.1 s1 34.3 27.6 42.9 27.6 42.9 33.1 34.3 33.1 s1 42.9 27.6 51.5 27.6 51.5 33.1 42.9 33.1 s1 51.5 27.6 60.1 27.6 60.1 33.1 51.5 33.1 s1 60.1 27.6 68.6 27.6 68.6 33.1 60.1 33.1 s1 68.6 27.6 77.2 27.6 77.2 33.1 68.6 33.1 s1 77.2 27.6 85.8 27.6 85.8 33.1 77.2 33.1 s1 85.8 27.6 94.4 27.6 94.4 33.1 85.8 33.1 s1 94.4 27.6 102.9 27.6 102.9 33.1 94.4 33.1 s1 102.9 27.6 111.5 27.6 111.5 33.1 102.9 33.1 s1 111.5 27.6 120.1 27.6 120.1 33.1 111.5 33.1 s1 120.1 27.6 128.7 27.6 128.7 33.1 120.1 33.1 s1 128.7 27.6 137.3 27.6 137.3 33.1 128.7 33.1 s1 137.3 27.6 145.8 27.6 145.8 33.1 137.3 33.1 s1 145.8 27.6 154.4 27.6 154.4 33.1 145.8 33.1 s1 154.4 27.6 163.0 27.6 163.0 33.1 154.4 33.1 s1 163.0 27.6 171.6 27.6 171.6 33.1 163.0 33.1 s1 171.6 27.6 180.2 27.6 180.2 33.1 171.6 33.1 s1 180.2 27.6 188.7 27.6 188.7 33.1 180.2 33.1 s1 188.7 27.6 197.3 27.6 197.3 33.1 188.7 33.1 s1 197.3 27.6 205.9 27.6 205.9 33.1 197.3 33.1 s1 205.9 27.6 214.5 27.6 214.5 33.1 205.9 33.1 s1 214.5 27.6 223.1 27.6 223.1 33.1 214.5 33.1 s1 223.1 27.6 231.6 27.6 231.6 33.1 223.1 33.1 s1 231.6 27.6 240.2 27.6 240.2 33.1 231.6 33.1 s1 240.2 27.6 248.8 27.6 248.8 33.1 240.2 33.1 s1 248.8 27.6 257.4 27.6 257.4 33.1 248.8 33.1 s1 257.4 27.6 265.9 27.6 265.9 33.1 257.4 33.1 s1 265.9 27.6 274.5 27.6 274.5 33.1 265.9 33.1 s1 274.5 27.6 283.1 27.6 283.1 33.1 274.5 33.1 s1 283.1 27.6 291.7 27.6 291.7 33.1 283.1 33.1 s1 291.7 27.6 300.3 27.6 300.3 33.1 291.7 33.1 s1 0.0 22.1 8.6 22.1 8.6 27.6 0.0 27.6 s1 8.6 22.1 17.2 22.1 17.2 27.6 8.6 27.6 s1 17.2 22.1 25.7 22.1 25.7 27.6 17.2 27.6 s1 25.7 22.1 34.3 22.1 34.3 27.6 25.7 27.6 s1 34.3 22.1 42.9 22.1 42.9 27.6 34.3 27.6 s1 42.9 22.1 51.5 22.1 51.5 27.6 42.9 27.6 s1 51.5 22.1 60.1 22.1 60.1 27.6 51.5 27.6 s1 60.1 22.1 68.6 22.1 68.6 27.6 60.1 27.6 s1 68.6 22.1 77.2 22.1 77.2 27.6 68.6 27.6 s1 77.2 22.1 85.8 22.1 85.8 27.6 77.2 27.6 s1 85.8 22.1 94.4 22.1 94.4 27.6 85.8 27.6 s1 94.4 22.1 102.9 22.1 102.9 27.6 94.4 27.6 s1 102.9 22.1 111.5 22.1 111.5 27.6 102.9 27.6 s1 111.5 22.1 120.1 22.1 120.1 27.6 111.5 27.6 s1 120.1 22.1 128.7 22.1 128.7 27.6 120.1 27.6 s1 128.7 22.1 137.3 22.1 137.3 27.6 128.7 27.6 s1 137.3 22.1 145.8 22.1 145.8 27.6 137.3 27.6 s1 145.8 22.1 154.4 22.1 154.4 27.6 145.8 27.6 s1 154.4 22.1 163.0 22.1 163.0 27.6 154.4 27.6 s1 163.0 22.1 171.6 22.1 171.6 27.6 163.0 27.6 s1 171.6 22.1 180.2 22.1 180.2 27.6 171.6 27.6 s1 180.2 22.1 188.7 22.1 188.7 27.6 180.2 27.6 s1 188.7 22.1 197.3 22.1 197.3 27.6 188.7 27.6 s1 197.3 22.1 205.9 22.1 205.9 27.6 197.3 27.6 s1 205.9 22.1 214.5 22.1 214.5 27.6 205.9 27.6 s1 214.5 22.1 223.1 22.1 223.1 27.6 214.5 27.6 s1 223.1 22.1 231.6 22.1 231.6 27.6 223.1 27.6 s1 231.6 22.1 240.2 22.1 240.2 27.6 231.6 27.6 s1 240.2 22.1 248.8 22.1 248.8 27.6 240.2 27.6 s1 248.8 22.1 257.4 22.1 257.4 27.6 248.8 27.6 s1 257.4 22.1 265.9 22.1 265.9 27.6 257.4 27.6 s1 265.9 22.1 274.5 22.1 274.5 27.6 265.9 27.6 s1 274.5 22.1 283.1 22.1 283.1 27.6 274.5 27.6 s1 283.1 22.1 291.7 22.1 291.7 27.6 283.1 27.6 s1 291.7 22.1 300.3 22.1 300.3 27.6 291.7 27.6 s1 0.0 16.5 8.6 16.5 8.6 22.1 0.0 22.1 s1 3.0 16.5 0.7 17.0 0.0 16.5 t2 3.0 16.5 0.7 17.0 p 0.7 17.0 0.0 17.0 0.0 16.5 t2 0.7 17.0 0.0 17.0 p 8.6 16.5 17.2 16.5 17.2 22.1 8.6 22.1 s1 17.2 16.5 25.7 16.5 25.7 22.1 17.2 22.1 s1 25.7 16.5 34.3 16.5 34.3 22.1 25.7 22.1 s1 34.3 16.5 42.9 16.5 42.9 22.1 34.3 22.1 s1 42.2 17.0 39.9 16.5 42.9 16.5 t2 42.2 17.0 39.9 16.5 p 42.9 17.0 42.2 17.0 42.9 16.5 t2 42.9 17.0 42.2 17.0 p 42.9 16.5 51.5 16.5 51.5 22.1 42.9 22.1 s1 45.9 16.5 43.6 17.0 42.9 16.5 t2 45.9 16.5 43.6 17.0 p 43.6 17.0 42.9 17.0 42.9 16.5 t2 43.6 17.0 42.9 17.0 p 51.5 16.5 60.1 16.5 60.1 22.1 51.5 22.1 s1 60.1 16.5 68.6 16.5 68.6 22.1 60.1 22.1 s1 68.6 16.5 77.2 16.5 77.2 22.1 68.6 22.1 s1 77.2 16.5 85.8 16.5 85.8 22.1 77.2 22.1 s1 85.1 17.0 82.8 16.5 85.8 16.5 t2 85.1 17.0 82.8 16.5 p 85.8 17.0 85.1 17.0 85.8 16.5 t2 85.8 17.0 85.1 17.0 p 85.8 16.5 94.4 16.5 94.4 22.1 85.8 22.1 s1 88.8 16.5 86.4 17.0 85.8 16.5 t2 88.8 16.5 86.4 17.0 p 86.4 17.0 85.8 17.0 85.8 16.5 t2 86.4 17.0 85.8 17.0 p 94.4 16.5 102.9 16.5 102.9 22.1 94.4 22.1 s1 102.9 16.5 111.5 16.5 111.5 22.1 102.9 22.1 s1 111.5 16.5 120.1 16.5 120.1 22.1 111.5 22.1 s1 120.1 16.5 128.7 16.5 128.7 22.1 120.1 22.1 s1 128.0 17.0 125.7 16.5 128.7 16.5 t2 128.0 17.0 125.7 16.5 p 128.7 17.0 128.0 17.0 128.7 16.5 t2 128.7 17.0 128.0 17.0 p 128.7 16.5 137.3 16.5 137.3 22.1 128.7 22.1 s1 131.7 16.5 129.3 17.0 128.7 16.5 t2 131.7 16.5 129.3 17.0 p 129.3 17.0 128.7 17.0 128.7 16.5 t2 129.3 17.0 128.7 17.0 p 137.3 16.5 145.8 16.5 145.8 22.1 137.3 22.1 s1 145.8 16.5 154.4 16.5 154.4 22.1 145.8 22.1 s1 154.4 16.5 163.0 16.5 163.0 22.1 154.4 22.1 s1 163.0 16.5 171.6 16.5 171.6 22.1 163.0 22.1 s1 170.9 17.0 168.6 16.5 171.6 16.5 t2 170.9 17.0 168.6 16.5 p 171.6 17.0 170.9 17.0 171.6 16.5 t2 171.6 17.0 170.9 17.0 p 171.6 16.5 180.2 16.5 180.2 22.1 171.6 22.1 s1 174.6 16.5 172.2 17.0 171.6 16.5 t2 174.6 16.5 172.2 17.0 p 172.2 17.0 171.6 17.0 171.6 16.5 t2 172.2 17.0 171.6 17.0 p 180.2 16.5 188.7 16.5 188.7 22.1 180.2 22.1 s1 188.7 16.5 197.3 16.5 197.3 22.1 188.7 22.1 s1 197.3 16.5 205.9 16.5 205.9 22.1 197.3 22.1 s1 205.9 16.5 214.5 16.5 214.5 22.1 205.9 22.1 s1 213.8 17.0 211.5 16.5 214.5 16.5 t2 213.8 17.0 211.5 16.5 p 214.5 17.0 213.8 17.0 214.5 16.5 t2 214.5 17.0 213.8 17.0 p 214.5 16.5 223.1 16.5 223.1 22.1 214.5 22.1 s1 217.5 16.5 215.1 17.0 214.5 16.5 t2 217.5 16.5 215.1 17.0 p 215.1 17.0 214.5 17.0 214.5 16.5 t2 215.1 17.0 214.5 17.0 p 223.1 16.5 231.6 16.5 231.6 22.1 223.1 22.1 s1 231.6 16.5 240.2 16.5 240.2 22.1 231.6 22.1 s1 240.2 16.5 248.8 16.5 248.8 22.1 240.2 22.1 s1 248.8 16.5 257.4 16.5 257.4 22.1 248.8 22.1 s1 256.7 17.0 254.4 16.5 257.4 16.5 t2 256.7 17.0 254.4 16.5 p 257.4 17.0 256.7 17.0 257.4 16.5 t2 257.4 17.0 256.7 17.0 p 257.4 16.5 265.9 16.5 265.9 22.1 257.4 22.1 s1 260.4 16.5 258.0 17.0 257.4 16.5 t2 260.4 16.5 258.0 17.0 p 258.0 17.0 257.4 17.0 257.4 16.5 t2 258.0 17.0 257.4 17.0 p 265.9 16.5 274.5 16.5 274.5 22.1 265.9 22.1 s1 274.5 16.5 283.1 16.5 283.1 22.1 274.5 22.1 s1 283.1 16.5 291.7 16.5 291.7 22.1 283.1 22.1 s1 291.7 16.5 300.3 16.5 300.3 22.1 291.7 22.1 s1 299.6 17.0 297.3 16.5 300.3 16.5 t2 299.6 17.0 297.3 16.5 p 300.3 17.0 299.6 17.0 300.3 16.5 t2 300.3 17.0 299.6 17.0 p 0.0 11.0 8.6 11.0 8.6 16.5 0.0 16.5 s1 0.0 11.0 4.3 13.8 8.6 11.0 t2 8.3 16.4 8.6 16.3 8.6 11.0 4.3 13.8 s2 8.3 16.4 8.6 16.3 p 3.0 16.5 8.3 16.4 4.3 13.8 0.0 16.5 s2 3.0 16.5 8.3 16.4 p 0.0 16.5 4.3 13.8 0.0 11.0 t2 0.0 11.0 4.3 13.8 8.6 11.0 t3 4.9 14.2 8.6 12.6 8.6 11.0 4.3 13.8 s3 4.9 14.2 8.6 12.6 p 4.9 14.2 3.6 14.2 4.3 13.8 t3 4.9 14.2 3.6 14.2 p 0.0 15.0 3.6 14.2 4.3 13.8 0.0 11.0 s3 0.0 15.0 3.6 14.2 p 6.0 11.0 2.7 12.8 0.0 11.0 t4 6.0 11.0 2.7 12.8 p 2.7 12.8 0.0 13.3 0.0 11.0 t4 2.7 12.8 0.0 13.3 p 1.6 11.0 0.7 11.5 0.0 11.0 t5 1.6 11.0 0.7 11.5 p 0.7 11.5 0.0 11.6 0.0 11.0 t5 0.7 11.5 0.0 11.6 p 8.6 11.0 17.2 11.0 17.2 16.5 8.6 16.5 s1 12.9 13.8 14.4 11.0 8.6 11.0 12.9 13.8 s2 12.9 13.8 14.4 11.0 p 12.9 13.8 12.9 13.8 12.9 13.8 t2 12.9 13.8 12.9 13.8 p 12.9 13.8 12.4 14.1 12.9 13.8 t2 12.9 13.8 12.4 14.1 p 8.6 16.3 12.4 14.1 12.9 13.8 8.6 11.0 s2 8.6 16.3 12.4 14.1 p 10.3 11.0 9.9 11.9 8.6 11.0 t3 10.3 11.0 9.9 11.9 p 9.9 11.9 8.6 12.6 8.6 11.0 t3 9.9 11.9 8.6 12.6 p 17.2 11.0 25.7 11.0 25.7 16.5 17.2 16.5 s1 25.7 11.0 34.3 11.0 34.3 16.5 25.7 16.5 s1 28.5 11.0 30.0 13.8 30.0 13.8 34.3 11.0 s2 28.5 11.0 30.0 13.8 p 30.5 14.1 34.3 16.3 34.3 11.0 30.0 13.8 s2 30.5 14.1 34.3 16.3 p 30.5 14.1 30.0 13.8 30.0 13.8 t2 30.5 14.1 30.0 13.8 p 30.0 13.8 30.0 13.8 30.0 13.8 t2 30.0 13.8 30.0 13.8 p 33.0 11.9 32.6 11.0 34.3 11.0 t3 33.0 11.9 32.6 11.0 p 34.3 12.6 33.0 11.9 34.3 11.0 t3 34.3 12.6 33.0 11.9 p 34.3 11.0 42.9 11.0 42.9 16.5 34.3 16.5 s1 34.3 11.0 38.6 13.8 42.9 11.0 t2 42.9 11.0 38.6 13.8 42.9 16.5 t2 34.6 16.4 39.9 16.5 42.9 16.5 38.6 13.8 s2 34.6 16.4 39.9 16.5 p 34.3 16.3 34.6 16.4 38.6 13.8 34.3 11.0 s2 34.3 16.3 34.6 16.4 p 34.3 11.0 38.6 13.8 42.9 11.0 t3 39.3 14.2 42.9 15.0 42.9 11.0 38.6 13.8 s3 39.3 14.2 42.9 15.0 p 39.3 14.2 38.0 14.2 38.6 13.8 t3 39.3 14.2 38.0 14.2 p 34.3 12.6 38.0 14.2 38.6 13.8 34.3 11.0 s3 34.3 12.6 38.0 14.2 p 40.2 12.8 36.8 11.0 42.9 11.0 t4 40.2 12.8 36.8 11.0 p 42.9 13.3 40.2 12.8 42.9 11.0 t4 42.9 13.3 40.2 12.8 p 42.2 11.5 41.3 11.0 42.9 11.0 t5 42.2 11.5 41.3 11.0 p 42.9 11.6 42.2 11.5 42.9 11.0 t5 42.9 11.6 42.2 11.5 p 42.9 11.0 51.5 11.0 51.5 16.5 42.9 16.5 s1 42.9 11.0 47.2 13.8 51.5 11.0 t2 51.2 16.4 51.5 16.3 51.5 11.0 47.2 13.8 s2 51.2 16.4 51.5 16.3 p 45.9 16.5 51.2 16.4 47.2 13.8 42.9 16.5 s2 45.9 16.5 51.2 16.4 p 42.9 16.5 47.2 13.8 42.9 11.0 t2 42.9 11.0 47.2 13.8 51.5 11.0 t3 47.8 14.2 51.5 12.6 51.5 11.0 47.2 13.8 s3 47.8 14.2 51.5 12.6 p 47.8 14.2 46.5 14.2 47.2 13.8 t3 47.8 14.2 46.5 14.2 p 42.9 15.0 46.5 14.2 47.2 13.8 42.9 11.0 s3 42.9 15.0 46.5 14.2 p 48.9 11.0 45.6 12.8 42.9 11.0 t4 48.9 11.0 45.6 12.8 p 45.6 12.8 42.9 13.3 42.9 11.0 t4 45.6 12.8 42.9 13.3 p 44.5 11.0 43.6 11.5 42.9 11.0 t5 44.5 11.0 43.6 11.5 p 43.6 11.5 42.9 11.6 42.9 11.0 t5 43.6 11.5 42.9 11.6 p 51.5 11.0 60.1 11.0 60.1 16.5 51.5 16.5 s1 55.8 13.8 57.3 11.0 51.5 11.0 55.8 13.8 s2 55.8 13.8 57.3 11.0 p 55.8 13.8 55.8 13.8 55.8 13.8 t2 55.8 13.8 55.8 13.8 p 55.8 13.8 55.3 14.1 55.8 13.8 t2 55.8 13.8 55.3 14.1 p 51.5 16.3 55.3 14.1 55.8 13.8 51.5 11.0 s2 51.5 16.3 55.3 14.1 p 53.2 11.0 52.8 11.9 51.5 11.0 t3 53.2 11.0 52.8 11.9 p 52.8 11.9 51.5 12.6 51.5 11.0 t3 52.8 11.9 51.5 12.6 p 60.1 11.0 68.6 11.0 68.6 16.5 60.1 16.5 s1 68.6 11.0 77.2 11.0 77.2 16.5 68.6 16.5 s1 71.4 11.0 72.9 13.8 72.9 13.8 77.2 11.0 s2 71.4 11.0 72.9 13.8 p 73.4 14.1 77.2 16.3 77.2 11.0 72.9 13.8 s2 73.4 14.1 77.2 16.3 p 73.4 14.1 72.9 13.8 72.9 13.8 t2 73.4 14.1 72.9 13.8 p 72.9 13.8 72.9 13.8 72.9 13.8 t2 72.9 13.8 72.9 13.8 p 75.9 11.9 75.5 11.0 77.2 11.0 t3 75.9 11.9 75.5 11.0 p 77.2 12.6 75.9 11.9 77.2 11.0 t3 77.2 12.6 75.9 11.9 p 77.2 11.0 85.8 11.0 85.8 16.5 77.2 16.5 s1 77.2 11.0 81.5 13.8 85.8 11.0 t2 85.8 11.0 81.5 13.8 85.8 16.5 t2 77.5 16.4 82.8 16.5 85.8 16.5 81.5 13.8 s2 77.5 16.4 82.8 16.5 p 77.2 16.3 77.5 16.4 81.5 13.8 77.2 11.0 s2 77.2 16.3 77.5 16.4 p 77.2 11.0 81.5 13.8 85.8 11.0 t3 82.2 14.2 85.8 15.0 85.8 11.0 81.5 13.8 s3 82.2 14.2 85.8 15.0 p 82.2 14.2 80.9 14.2 81.5 13.8 t3 82.2 14.2 80.9 14.2 p 77.2 12.6 80.9 14.2 81.5 13.8 77.2 11.0 s3 77.2 12.6 80.9 14.2 p 83.1 12.8 79.7 11.0 85.8 11.0 t4 83.1 12.8 79.7 11.0 p 85.8 13.3 83.1 12.8 85.8 11.0 t4 85.8 13.3 83.1 12.8 p 85.1 11.5 84.2 11.0 85.8 11.0 t5 85.1 11.5 84.2 11.0 p 85.8 11.6 85.1 11.5 85.8 11.0 t5 85.8 11.6 85.1 11.5 p 85.8 11.0 94.4 11.0 94.4 16.5 85.8 16.5 s1 85.8 11.0 90.1 13.8 94.4 11.0 t2 94.1 16.4 94.4 16.3 94.4 11.0 90.1 13.8 s2 94.1 16.4 94.4 16.3 p 88.8 16.5 94.1 16.4 90.1 13.8 85.8 16.5 s2 88.8 16.5 94.1 16.4 p 85.8 16.5 90.1 13.8 85.8 11.0 t2 85.8 11.0 90.1 13.8 94.4 11.0 t3 90.7 14.2 94.4 12.6 94.4 11.0 90.1 13.8 s3 90.7 14.2 94.4 12.6 p 90.7 14.2 89.4 14.2 90.1 13.8 t3 90.7 14.2 89.4 14.2 p 85.8 15.0 89.4 14.2 90.1 13.8 85.8 11.0 s3 85.8 15.0 89.4 14.2 p 91.8 11.0 88.5 12.8 85.8 11.0 t4 91.8 11.0 88.5 12.8 p 88.5 12.8 85.8 13.3 85.8 11.0 t4 88.5 12.8 85.8 13.3 p 87.4 11.0 86.5 11.5 85.8 11.0 t5 87.4 11.0 86.5 11.5 p 86.5 11.5 85.8 11.6 85.8 11.0 t5 86.5 11.5 85.8 11.6 p 94.4 11.0 102.9 11.0 102.9 16.5 94.4 16.5 s1 98.7 13.8 100.2 11.0 94.4 11.0 98.7 13.8 s2 98.7 13.8 100.2 11.0 p 98.7 13.8 98.7 13.8 98.7 13.8 t2 98.7 13.8 98.7 13.8 p 98.7 13.8 98.2 14.1 98.7 13.8 t2 98.7 13.8 98.2 14.1 p 94.4 16.3 98.2 14.1 98.7 13.8 94.4 11.0 s2 94.4 16.3 98.2 14.1 p 96.1 11.0 95.7 11.9 94.4 11.0 t3 96.1 11.0 95.7 11.9 p 95.7 11.9 94.4 12.6 94.4 11.0 t3 95.7 11.9 94.4 12.6 p 102.9 11.0 111.5 11.0 111.5 16.5 102.9 16.5 s1 111.5 11.0 120.1 11.0 120.1 16.5 111.5 16.5 s1 114.3 11.0 115.8 13.8 115.8 13.8 120.1 11.0 s2 114.3 11.0 115.8 13.8 p 116.3 14.1 120.1 16.3 120.1 11.0 115.8 13.8 s2 116.3 14.1 120.1 16.3 p 116.3 14.1 115.8 13.8 115.8 13.8 t2 116.3 14.1 115.8 13.8 p 115.8 13.8 115.8 13.8 115.8 13.8 t2 115.8 13.8 115.8 13.8 p 118.8 11.9 118.3 11.0 120.1 11.0 t3 118.8 11.9 118.3 11.0 p 120.1 12.6 118.8 11.9 120.1 11.0 t3 120.1 12.6 118.8 11.9 p 120.1 11.0 128.7 11.0 128.7 16.5 120.1 16.5 s1 120.1 11.0 124.4 13.8 128.7 11.0 t2 128.7 11.0 124.4 13.8 128.7 16.5 t2 120.4 16.4 125.7 16.5 128.7 16.5 124.4 13.8 s2 120.4 16.4 125.7 16.5 p 120.1 16.3 120.4 16.4 124.4 13.8 120.1 11.0 s2 120.1 16.3 120.4 16.4 p 120.1 11.0 124.4 13.8 128.7 11.0 t3 125.1 14.2 128.7 15.0 128.7 11.0 124.4 13.8 s3 125.1 14.2 128.7 15.0 p 125.1 14.2 123.8 14.2 124.4 13.8 t3 125.1 14.2 123.8 14.2 p 120.1 12.6 123.8 14.2 124.4 13.8 120.1 11.0 s3 120.1 12.6 123.8 14.2 p 126.0 12.8 122.6 11.0 128.7 11.0 t4 126.0 12.8 122.6 11.0 p 128.7 13.3 126.0 12.8 128.7 11.0 t4 128.7 13.3 126.0 12.8 p 128.0 11.5 127.1 11.0 128.7 11.0 t5 128.0 11.5 127.1 11.0 p 128.7 11.6 128.0 11.5 128.7 11.0 t5 128.7 11.6 128.0 11.5 p 128.7 11.0 137.3 11.0 137.3 16.5 128.7 16.5 s1 128.7 11.0 133.0 13.8 137.3 11.0 t2 137.0 16.4 137.3 16.3 137.3 11.0 133.0 13.8 s2 137.0 16.4 137.3 16.3 p 131.7 16.5 137.0 16.4 133.0 13.8 128.7 16.5 s2 131.7 16.5 137.0 16.4 p 128.7 16.5 133.0 13.8 128.7 11.0 t2 128.7 11.0 133.0 13.8 137.3 11.0 t3 133.6 14.2 137.3 12.6 137.3 11.0 133.0 13.8 s3 133.6 14.2 137.3 12.6 p 133.6 14.2 132.3 14.2 133.0 13.8 t3 133.6 14.2 132.3 14.2 p 128.7 15.0 132.3 14.2 133.0 13.8 128.7 11.0 s3 128.7 15.0 132.3 14.2 p 134.7 11.0 131.4 12.8 128.7 11.0 t4 134.7 11.0 131.4 12.8 p 131.4 12.8 128.7 13.3 128.7 11.0 t4 131.4 12.8 128.7 13.3 p 130.3 11.0 129.4 11.5 128.7 11.0 t5 130.3 11.0 129.4 11.5 p 129.4 11.5 128.7 11.6 128.7 11.0 t5 129.4 11.5 128.7 11.6 p 137.3 11.0 145.8 11.0 145.8 16.5 137.3 16.5 s1 141.6 13.8 143.1 11.0 137.3 11.0 141.6 13.8 s2 141.6 13.8 143.1 11.0 p 141.6 13.8 141.6 13.8 141.6 13.8 t2 141.6 13.8 141.6 13.8 p 141.6 13.8 141.1 14.1 141.6 13.8 t2 141.6 13.8 141.1 14.1 p 137.3 16.3 141.1 14.1 141.6 13.8 137.3 11.0 s2 137.3 16.3 141.1 14.1 p 139.0 11.0 138.6 11.9 137.3 11.0 t3 139.0 11.0 138.6 11.9 p 138.6 11.9 137.3 12.6 137.3 11.0 t3 138.6 11.9 137.3 12.6 p 145.8 11.0 154.4 11.0 154.4 16.5 145.8 16.5 s1 154.4 11.0 163.0 11.0 163.0 16.5 154.4 16.5 s1 157.2 11.0 158.7 13.8 158.7 13.8 163.0 11.0 s2 157.2 11.0 158.7 13.8 p 159.1 14.1 163.0 16.3 163.0 11.0 158.7 13.8 s2 159.1 14.1 163.0 16.3 p 159.1 14.1 158.6 13.8 158.7 13.8 t2 159.1 14.1 158.6 13.8 p 158.6 13.8 158.7 13.8 158.7 13.8 t2 158.6 13.8 158.7 13.8 p 161.7 11.9 161.2 11.0 163.0 11.0 t3 161.7 11.9 161.2 11.0 p 163.0 12.6 161.7 11.9 163.0 11.0 t3 163.0 12.6 161.7 11.9 p 163.0 11.0 171.6 11.0 171.6 16.5 163.0 16.5 s1 163.0 11.0 167.3 13.8 171.6 11.0 t2 171.6 11.0 167.3 13.8 171.6 16.5 t2 163.3 16.4 168.6 16.5 171.6 16.5 167.3 13.8 s2 163.3 16.4 168.6 16.5 p 163.0 16.3 163.3 16.4 167.3 13.8 163.0 11.0 s2 163.0 16.3 163.3 16.4 p 163.0 11.0 167.3 13.8 171.6 11.0 t3 168.0 14.2 171.6 15.0 171.6 11.0 167.3 13.8 s3 168.0 14.2 171.6 15.0 p 168.0 14.2 166.7 14.2 167.3 13.8 t3 168.0 14.2 166.7 14.2 p 163.0 12.6 166.7 14.2 167.3 13.8 163.0 11.0 s3 163.0 12.6 166.7 14.2 p 168.9 12.8 165.5 11.0 171.6 11.0 t4 168.9 12.8 165.5 11.0 p 171.6 13.3 168.9 12.8 171.6 11.0 t4 171.6 13.3 168.9 12.8 p 170.9 11.5 170.0 11.0 171.6 11.0 t5 170.9 11.5 170.0 11.0 p 171.6 11.6 170.9 11.5 171.6 11.0 t5 171.6 11.6 170.9 11.5 p 171.6 11.0 180.2 11.0 180.2 16.5 171.6 16.5 s1 171.6 11.0 175.9 13.8 180.2 11.0 t2 179.9 16.4 180.2 16.3 180.2 11.0 175.9 13.8 s2 179.9 16.4 180.2 16.3 p 174.6 16.5 179.9 16.4 175.9 13.8 171.6 16.5 s2 174.6 16.5 179.9 16.4 p 171.6 16.5 175.9 13.8 171.6 11.0 t2 171.6 11.0 175.9 13.8 180.2 11.0 t3 176.5 14.2 180.2 12.6 180.2 11.0 175.9 13.8 s3 176.5 14.2 180.2 12.6 p 176.5 14.2 175.2 14.2 175.9 13.8 t3 176.5 14.2 175.2 14.2 p 171.6 15.0 175.2 14.2 175.9 13.8 171.6 11.0 s3 171.6 15.0 175.2 14.2 p 177.6 11.0 174.3 12.8 171.6 11.0 t4 177.6 11.0 174.3 12.8 p 174.3 12.8 171.6 13.3 171.6 11.0 t4 174.3 12.8 171.6 13.3 p 173.2 11.0 172.3 11.5 171.6 11.0 t5 173.2 11.0 172.3 11.5 p 172.3 11.5 171.6 11.6 171.6 11.0 t5 172.3 11.5 171.6 11.6 p 180.2 11.0 188.7 11.0 188.7 16.5 180.2 16.5 s1 184.5 13.8 186.0 11.0 180.2 11.0 184.4 13.8 s2 184.5 13.8 186.0 11.0 p 184.5 13.8 184.5 13.8 184.4 13.8 t2 184.5 13.8 184.5 13.8 p 184.5 13.8 184.0 14.1 184.4 13.8 t2 184.5 13.8 184.0 14.1 p 180.2 16.3 184.0 14.1 184.4 13.8 180.2 11.0 s2 180.2 16.3 184.0 14.1 p 181.9 11.0 181.5 11.9 180.2 11.0 t3 181.9 11.0 181.5 11.9 p 181.5 11.9 180.2 12.6 180.2 11.0 t3 181.5 11.9 180.2 12.6 p 188.7 11.0 197.3 11.0 197.3 16.5 188.7 16.5 s1 197.3 11.0 205.9 11.0 205.9 16.5 197.3 16.5 s1 200.1 11.0 201.5 13.8 201.6 13.8 205.9 11.0 s2 200.1 11.0 201.5 13.8 p 202.0 14.1 205.9 16.3 205.9 11.0 201.6 13.8 s2 202.0 14.1 205.9 16.3 p 202.0 14.1 201.5 13.8 201.6 13.8 t2 202.0 14.1 201.5 13.8 p 201.5 13.8 201.5 13.8 201.6 13.8 t2 201.5 13.8 201.5 13.8 p 204.6 11.9 204.1 11.0 205.9 11.0 t3 204.6 11.9 204.1 11.0 p 205.9 12.6 204.6 11.9 205.9 11.0 t3 205.9 12.6 204.6 11.9 p 205.9 11.0 214.5 11.0 214.5 16.5 205.9 16.5 s1 205.9 11.0 210.2 13.8 214.5 11.0 t2 214.5 11.0 210.2 13.8 214.5 16.5 t2 206.2 16.4 211.5 16.5 214.5 16.5 210.2 13.8 s2 206.2 16.4 211.5 16.5 p 205.9 16.3 206.2 16.4 210.2 13.8 205.9 11.0 s2 205.9 16.3 206.2 16.4 p 205.9 11.0 210.2 13.8 214.5 11.0 t3 210.9 14.2 214.5 15.0 214.5 11.0 210.2 13.8 s3 210.9 14.2 214.5 15.0 p 210.9 14.2 209.5 14.2 210.2 13.8 t3 210.9 14.2 209.5 14.2 p 205.9 12.6 209.5 14.2 210.2 13.8 205.9 11.0 s3 205.9 12.6 209.5 14.2 p 211.8 12.8 208.4 11.0 214.5 11.0 t4 211.8 12.8 208.4 11.0 p 214.5 13.3 211.8 12.8 214.5 11.0 t4 214.5 13.3 211.8 12.8 p 213.8 11.5 212.9 11.0 214.5 11.0 t5 213.8 11.5 212.9 11.0 p 214.5 11.6 213.8 11.5 214.5 11.0 t5 214.5 11.6 213.8 11.5 p 214.5 11.0 223.1 11.0 223.1 16.5 214.5 16.5 s1 214.5 11.0 218.8 13.8 223.1 11.0 t2 222.8 16.4 223.1 16.3 223.1 11.0 218.8 13.8 s2 222.8 16.4 223.1 16.3 p 217.5 16.5 222.8 16.4 218.8 13.8 214.5 16.5 s2 217.5 16.5 222.8 16.4 p 214.5 16.5 218.8 13.8 214.5 11.0 t2 214.5 11.0 218.8 13.8 223.1 11.0 t3 219.4 14.2 223.1 12.6 223.1 11.0 218.8 13.8 s3 219.4 14.2 223.1 12.6 p 219.4 14.2 218.1 14.2 218.8 13.8 t3 219.4 14.2 218.1 14.2 p 214.5 15.0 218.1 14.2 218.8 13.8 214.5 11.0 s3 214.5 15.0 218.1 14.2 p 220.5 11.0 217.2 12.8 214.5 11.0 t4 220.5 11.0 217.2 12.8 p 217.2 12.8 214.5 13.3 214.5 11.0 t4 217.2 12.8 214.5 13.3 p 216.1 11.0 215.2 11.5 214.5 11.0 t5 216.1 11.0 215.2 11.5 p 215.2 11.5 214.5 11.6 214.5 11.0 t5 215.2 11.5 214.5 11.6 p 223.1 11.0 231.6 11.0 231.6 16.5 223.1 16.5 s1 227.4 13.8 228.9 11.0 223.1 11.0 227.3 13.8 s2 227.4 13.8 228.9 11.0 p 227.4 13.8 227.4 13.8 227.3 13.8 t2 227.4 13.8 227.4 13.8 p 227.4 13.8 226.9 14.1 227.3 13.8 t2 227.4 13.8 226.9 14.1 p 223.1 16.3 226.9 14.1 227.3 13.8 223.1 11.0 s2 223.1 16.3 226.9 14.1 p 224.8 11.0 224.4 11.9 223.1 11.0 t3 224.8 11.0 224.4 11.9 p 224.4 11.9 223.1 12.6 223.1 11.0 t3 224.4 11.9 223.1 12.6 p 231.6 11.0 240.2 11.0 240.2 16.5 231.6 16.5 s1 240.2 11.0 248.8 11.0 248.8 16.5 240.2 16.5 s1 243.0 11.0 244.4 13.8 244.5 13.8 248.8 11.0 s2 243.0 11.0 244.4 13.8 p 244.9 14.1 248.8 16.3 248.8 11.0 244.5 13.8 s2 244.9 14.1 248.8 16.3 p 244.9 14.1 244.4 13.8 244.5 13.8 t2 244.9 14.1 244.4 13.8 p 244.4 13.8 244.4 13.8 244.5 13.8 t2 244.4 13.8 244.4 13.8 p 247.5 11.9 247.0 11.0 248.8 11.0 t3 247.5 11.9 247.0 11.0 p 248.8 12.6 247.5 11.9 248.8 11.0 t3 248.8 12.6 247.5 11.9 p 248.8 11.0 257.4 11.0 257.4 16.5 248.8 16.5 s1 248.8 11.0 253.1 13.8 257.4 11.0 t2 257.4 11.0 253.1 13.8 257.4 16.5 t2 249.1 16.4 254.4 16.5 257.4 16.5 253.1 13.8 s2 249.1 16.4 254.4 16.5 p 248.8 16.3 249.1 16.4 253.1 13.8 248.8 11.0 s2 248.8 16.3 249.1 16.4 p 248.8 11.0 253.1 13.8 257.4 11.0 t3 253.8 14.2 257.4 15.0 257.4 11.0 253.1 13.8 s3 253.8 14.2 257.4 15.0 p 253.8 14.2 252.4 14.2 253.1 13.8 t3 253.8 14.2 252.4 14.2 p 248.8 12.6 252.4 14.2 253.1 13.8 248.8 11.0 s3 248.8 12.6 252.4 14.2 p 254.7 12.8 251.3 11.0 257.4 11.0 t4 254.7 12.8 251.3 11.0 p 257.4 13.3 254.7 12.8 257.4 11.0 t4 257.4 13.3 254.7 12.8 p 256.7 11.5 255.8 11.0 257.4 11.0 t5 256.7 11.5 255.8 11.0 p 257.4 11.6 256.7 11.5 257.4 11.0 t5 257.4 11.6 256.7 11.5 p 257.4 11.0 265.9 11.0 265.9 16.5 257.4 16.5 s1 257.4 11.0 261.7 13.8 265.9 11.0 t2 265.7 16.4 265.9 16.3 265.9 11.0 261.7 13.8 s2 265.7 16.4 265.9 16.3 p 260.4 16.5 265.7 16.4 261.7 13.8 257.4 16.5 s2 260.4 16.5 265.7 16.4 p 257.4 16.5 261.7 13.8 257.4 11.0 t2 257.4 11.0 261.7 13.8 265.9 11.0 t3 262.3 14.2 265.9 12.6 265.9 11.0 261.7 13.8 s3 262.3 14.2 265.9 12.6 p 262.3 14.2 261.0 14.2 261.7 13.8 t3 262.3 14.2 261.0 14.2 p 257.4 15.0 261.0 14.2 261.7 13.8 257.4 11.0 s3 257.4 15.0 261.0 14.2 p 263.4 11.0 260.1 12.8 257.4 11.0 t4 263.4 11.0 260.1 12.8 p 260.1 12.8 257.4 13.3 257.4 11.0 t4 260.1 12.8 257.4 13.3 p 259.0 11.0 258.1 11.5 257.4 11.0 t5 259.0 11.0 258.1 11.5 p 258.1 11.5 257.4 11.6 257.4 11.0 t5 258.1 11.5 257.4 11.6 p 265.9 11.0 274.5 11.0 274.5 16.5 265.9 16.5 s1 270.3 13.8 271.8 11.0 265.9 11.0 270.2 13.8 s2 270.3 13.8 271.8 11.0 p 270.3 13.8 270.3 13.8 270.2 13.8 t2 270.3 13.8 270.3 13.8 p 270.3 13.8 269.8 14.1 270.2 13.8 t2 270.3 13.8 269.8 14.1 p 265.9 16.3 269.8 14.1 270.2 13.8 265.9 11.0 s2 265.9 16.3 269.8 14.1 p 267.7 11.0 267.2 11.9 265.9 11.0 t3 267.7 11.0 267.2 11.9 p 267.2 11.9 265.9 12.6 265.9 11.0 t3 267.2 11.9 265.9 12.6 p 274.5 11.0 283.1 11.0 283.1 16.5 274.5 16.5 s1 283.1 11.0 291.7 11.0 291.7 16.5 283.1 16.5 s1 285.9 11.0 287.3 13.8 287.4 13.8 291.7 11.0 s2 285.9 11.0 287.3 13.8 p 287.8 14.1 291.7 16.3 291.7 11.0 287.4 13.8 s2 287.8 14.1 291.7 16.3 p 287.8 14.1 287.3 13.8 287.4 13.8 t2 287.8 14.1 287.3 13.8 p 287.3 13.8 287.3 13.8 287.4 13.8 t2 287.3 13.8 287.3 13.8 p 290.4 11.9 289.9 11.0 291.7 11.0 t3 290.4 11.9 289.9 11.0 p 291.7 12.6 290.4 11.9 291.7 11.0 t3 291.7 12.6 290.4 11.9 p 291.7 11.0 300.3 11.0 300.3 16.5 291.7 16.5 s1 291.7 11.0 296.0 13.8 300.3 11.0 t2 300.3 11.0 296.0 13.8 300.3 16.5 t2 292.0 16.4 297.3 16.5 300.3 16.5 296.0 13.8 s2 292.0 16.4 297.3 16.5 p 291.7 16.3 292.0 16.4 296.0 13.8 291.7 11.0 s2 291.7 16.3 292.0 16.4 p 291.7 11.0 296.0 13.8 300.3 11.0 t3 296.7 14.2 300.3 15.0 300.3 11.0 296.0 13.8 s3 296.7 14.2 300.3 15.0 p 296.7 14.2 295.3 14.2 296.0 13.8 t3 296.7 14.2 295.3 14.2 p 291.7 12.6 295.3 14.2 296.0 13.8 291.7 11.0 s3 291.7 12.6 295.3 14.2 p 297.6 12.8 294.2 11.0 300.3 11.0 t4 297.6 12.8 294.2 11.0 p 300.3 13.3 297.6 12.8 300.3 11.0 t4 300.3 13.3 297.6 12.8 p 299.6 11.5 298.7 11.0 300.3 11.0 t5 299.6 11.5 298.7 11.0 p 300.3 11.6 299.6 11.5 300.3 11.0 t5 300.3 11.6 299.6 11.5 p 0.0 5.5 8.6 5.5 8.6 11.0 0.0 11.0 s3 0.0 5.5 4.3 8.3 8.6 5.5 t4 8.1 10.7 8.6 10.4 8.6 5.5 4.3 8.3 s4 8.1 10.7 8.6 10.4 p 6.0 11.0 8.1 10.7 4.3 8.3 0.0 11.0 s4 6.0 11.0 8.1 10.7 p 0.0 11.0 4.3 8.3 0.0 5.5 t4 0.0 5.5 4.3 8.3 8.6 5.5 t5 7.3 10.2 8.6 9.2 8.6 5.5 4.3 8.3 s5 7.3 10.2 8.6 9.2 p 1.6 11.0 7.3 10.2 4.3 8.3 0.0 11.0 s5 1.6 11.0 7.3 10.2 p 0.0 11.0 4.3 8.3 0.0 5.5 t5 0.0 5.5 4.3 8.3 8.6 5.5 t6 6.4 9.6 8.6 8.1 8.6 5.5 4.3 8.3 s6 6.4 9.6 8.6 8.1 p 6.4 9.6 0.9 10.5 4.3 8.3 t6 6.4 9.6 0.9 10.5 p 0.0 10.7 0.9 10.5 4.3 8.3 0.0 5.5 s6 0.0 10.7 0.9 10.5 p 0.0 5.5 4.3 8.3 8.6 5.5 t7 5.6 9.1 8.6 6.9 8.6 5.5 4.3 8.3 s7 5.6 9.1 8.6 6.9 p 5.6 9.1 2.2 9.6 4.3 8.3 t7 5.6 9.1 2.2 9.6 p 0.0 10.3 2.2 9.6 4.3 8.3 0.0 5.5 s7 0.0 10.3 2.2 9.6 p 0.0 5.5 4.3 8.3 8.6 5.5 t8 4.7 8.6 8.6 5.7 8.6 5.5 4.3 8.3 s8 4.7 8.6 8.6 5.7 p 4.7 8.6 3.6 8.7 4.3 8.3 t8 4.7 8.6 3.6 8.7 p 0.0 9.8 3.6 8.7 4.3 8.3 0.0 5.5 s8 0.0 9.8 3.6 8.7 p 8.6 5.5 17.2 5.5 17.2 11.0 8.6 11.0 s1 16.2 6.1 16.6 5.5 8.6 5.5 12.9 8.3 s2 16.2 6.1 16.6 5.5 p 16.2 6.1 15.9 10.2 12.9 8.3 t2 16.2 6.1 15.9 10.2 p 14.4 11.0 15.9 10.2 12.9 8.3 8.6 11.0 s2 14.4 11.0 15.9 10.2 p 8.6 11.0 12.9 8.3 8.6 5.5 t2 14.2 7.4 15.3 5.5 8.6 5.5 12.9 8.3 s3 14.2 7.4 15.3 5.5 p 14.2 7.4 14.0 9.0 12.9 8.3 t3 14.2 7.4 14.0 9.0 p 10.3 11.0 14.0 9.0 12.9 8.3 8.6 11.0 s3 10.3 11.0 14.0 9.0 p 8.6 11.0 12.9 8.3 8.6 5.5 t3 14.0 5.5 12.5 8.0 8.6 5.5 t4 14.0 5.5 12.5 8.0 p 12.5 8.0 8.6 10.4 8.6 5.5 t4 12.5 8.0 8.6 10.4 p 12.7 5.5 11.6 7.4 8.6 5.5 t5 12.7 5.5 11.6 7.4 p 11.6 7.4 8.6 9.2 8.6 5.5 t5 11.6 7.4 8.6 9.2 p 11.4 5.5 10.6 6.8 8.6 5.5 t6 11.4 5.5 10.6 6.8 p 10.6 6.8 8.6 8.1 8.6 5.5 t6 10.6 6.8 8.6 8.1 p 10.1 5.5 9.7 6.2 8.6 5.5 t7 10.1 5.5 9.7 6.2 p 9.7 6.2 8.6 6.9 8.6 5.5 t7 9.7 6.2 8.6 6.9 p 8.8 5.5 8.8 5.6 8.6 5.5 t8 8.8 5.5 8.8 5.6 p 8.8 5.6 8.6 5.7 8.6 5.5 t8 8.8 5.6 8.6 5.7 p 17.2 5.5 25.7 5.5 25.7 11.0 17.2 11.0 s1 25.7 5.5 34.3 5.5 34.3 11.0 25.7 11.0 s1 26.3 5.5 26.7 6.1 30.0 8.3 34.3 5.5 s2 26.3 5.5 26.7 6.1 p 34.3 5.5 30.0 8.3 34.3 11.0 t2 27.0 10.2 28.5 11.0 34.3 11.0 30.0 8.3 s2 27.0 10.2 28.5 11.0 p 27.0 10.2 26.7 6.1 30.0 8.3 t2 27.0 10.2 26.7 6.1 p 27.6 5.5 28.7 7.4 30.0 8.3 34.3 5.5 s3 27.6 5.5 28.7 7.4 p 34.3 5.5 30.0 8.3 34.3 11.0 t3 28.9 9.0 32.6 11.0 34.3 11.0 30.0 8.3 s3 28.9 9.0 32.6 11.0 p 28.9 9.0 28.7 7.4 30.0 8.3 t3 28.9 9.0 28.7 7.4 p 30.4 8.0 28.9 5.5 34.3 5.5 t4 30.4 8.0 28.9 5.5 p 34.3 10.4 30.4 8.0 34.3 5.5 t4 34.3 10.4 30.4 8.0 p 31.3 7.4 30.2 5.5 34.3 5.5 t5 31.3 7.4 30.2 5.5 p 34.3 9.2 31.3 7.4 34.3 5.5 t5 34.3 9.2 31.3 7.4 p 32.3 6.8 31.5 5.5 34.3 5.5 t6 32.3 6.8 31.5 5.5 p 34.3 8.1 32.3 6.8 34.3 5.5 t6 34.3 8.1 32.3 6.8 p 33.2 6.2 32.8 5.5 34.3 5.5 t7 33.2 6.2 32.8 5.5 p 34.3 6.9 33.2 6.2 34.3 5.5 t7 34.3 6.9 33.2 6.2 p 34.1 5.6 34.1 5.5 34.3 5.5 t8 34.1 5.6 34.1 5.5 p 34.3 5.7 34.1 5.6 34.3 5.5 t8 34.3 5.7 34.1 5.6 p 34.3 5.5 42.9 5.5 42.9 11.0 34.3 11.0 s3 34.3 5.5 38.6 8.3 42.9 5.5 t4 42.9 5.5 38.6 8.3 42.9 11.0 t4 34.8 10.7 36.8 11.0 42.9 11.0 38.6 8.3 s4 34.8 10.7 36.8 11.0 p 34.3 10.4 34.8 10.7 38.6 8.3 34.3 5.5 s4 34.3 10.4 34.8 10.7 p 34.3 5.5 38.6 8.3 42.9 5.5 t5 42.9 5.5 38.6 8.3 42.9 11.0 t5 35.6 10.2 41.3 11.0 42.9 11.0 38.6 8.3 s5 35.6 10.2 41.3 11.0 p 34.3 9.2 35.6 10.2 38.6 8.3 34.3 5.5 s5 34.3 9.2 35.6 10.2 p 34.3 5.5 38.6 8.3 42.9 5.5 t6 42.0 10.5 42.9 10.7 42.9 5.5 38.6 8.3 s6 42.0 10.5 42.9 10.7 p 42.0 10.5 36.5 9.6 38.6 8.3 t6 42.0 10.5 36.5 9.6 p 34.3 8.1 36.5 9.6 38.6 8.3 34.3 5.5 s6 34.3 8.1 36.5 9.6 p 34.3 5.5 38.6 8.3 42.9 5.5 t7 40.7 9.6 42.9 10.3 42.9 5.5 38.6 8.3 s7 40.7 9.6 42.9 10.3 p 40.7 9.6 37.3 9.1 38.6 8.3 t7 40.7 9.6 37.3 9.1 p 34.3 6.9 37.3 9.1 38.6 8.3 34.3 5.5 s7 34.3 6.9 37.3 9.1 p 34.3 5.5 38.6 8.3 42.9 5.5 t8 39.3 8.7 42.9 9.8 42.9 5.5 38.6 8.3 s8 39.3 8.7 42.9 9.8 p 39.3 8.7 38.2 8.6 38.6 8.3 t8 39.3 8.7 38.2 8.6 p 34.3 5.7 38.2 8.6 38.6 8.3 34.3 5.5 s8 34.3 5.7 38.2 8.6 p 42.9 5.5 51.5 5.5 51.5 11.0 42.9 11.0 s3 42.9 5.5 47.2 8.3 51.5 5.5 t4 51.0 10.7 51.5 10.4 51.5 5.5 47.2 8.3 s4 51.0 10.7 51.5 10.4 p 48.9 11.0 51.0 10.7 47.2 8.3 42.9 11.0 s4 48.9 11.0 51.0 10.7 p 42.9 11.0 47.2 8.3 42.9 5.5 t4 42.9 5.5 47.2 8.3 51.5 5.5 t5 50.2 10.2 51.5 9.2 51.5 5.5 47.2 8.3 s5 50.2 10.2 51.5 9.2 p 44.5 11.0 50.2 10.2 47.2 8.3 42.9 11.0 s5 44.5 11.0 50.2 10.2 p 42.9 11.0 47.2 8.3 42.9 5.5 t5 42.9 5.5 47.2 8.3 51.5 5.5 t6 49.3 9.6 51.5 8.1 51.5 5.5 47.2 8.3 s6 49.3 9.6 51.5 8.1 p 49.3 9.6 43.8 10.5 47.2 8.3 t6 49.3 9.6 43.8 10.5 p 42.9 10.7 43.8 10.5 47.2 8.3 42.9 5.5 s6 42.9 10.7 43.8 10.5 p 42.9 5.5 47.2 8.3 51.5 5.5 t7 48.5 9.1 51.5 6.9 51.5 5.5 47.2 8.3 s7 48.5 9.1 51.5 6.9 p 48.5 9.1 45.1 9.6 47.2 8.3 t7 48.5 9.1 45.1 9.6 p 42.9 10.3 45.1 9.6 47.2 8.3 42.9 5.5 s7 42.9 10.3 45.1 9.6 p 42.9 5.5 47.2 8.3 51.5 5.5 t8 47.6 8.6 51.5 5.7 51.5 5.5 47.2 8.3 s8 47.6 8.6 51.5 5.7 p 47.6 8.6 46.5 8.7 47.2 8.3 t8 47.6 8.6 46.5 8.7 p 42.9 9.8 46.5 8.7 47.2 8.3 42.9 5.5 s8 42.9 9.8 46.5 8.7 p 51.5 5.5 60.1 5.5 60.1 11.0 51.5 11.0 s1 59.1 6.1 59.5 5.5 51.5 5.5 55.8 8.3 s2 59.1 6.1 59.5 5.5 p 59.1 6.1 58.8 10.2 55.8 8.3 t2 59.1 6.1 58.8 10.2 p 57.3 11.0 58.8 10.2 55.8 8.3 51.5 11.0 s2 57.3 11.0 58.8 10.2 p 51.5 11.0 55.8 8.3 51.5 5.5 t2 57.1 7.4 58.2 5.5 51.5 5.5 55.8 8.3 s3 57.1 7.4 58.2 5.5 p 57.1 7.4 56.9 9.0 55.8 8.3 t3 57.1 7.4 56.9 9.0 p 53.2 11.0 56.9 9.0 55.8 8.3 51.5 11.0 s3 53.2 11.0 56.9 9.0 p 51.5 11.0 55.8 8.3 51.5 5.5 t3 56.9 5.5 55.4 8.0 51.5 5.5 t4 56.9 5.5 55.4 8.0 p 55.4 8.0 51.5 10.4 51.5 5.5 t4 55.4 8.0 51.5 10.4 p 55.6 5.5 54.5 7.4 51.5 5.5 t5 55.6 5.5 54.5 7.4 p 54.5 7.4 51.5 9.2 51.5 5.5 t5 54.5 7.4 51.5 9.2 p 54.3 5.5 53.5 6.8 51.5 5.5 t6 54.3 5.5 53.5 6.8 p 53.5 6.8 51.5 8.1 51.5 5.5 t6 53.5 6.8 51.5 8.1 p 53.0 5.5 52.6 6.2 51.5 5.5 t7 53.0 5.5 52.6 6.2 p 52.6 6.2 51.5 6.9 51.5 5.5 t7 52.6 6.2 51.5 6.9 p 51.7 5.5 51.7 5.6 51.5 5.5 t8 51.7 5.5 51.7 5.6 p 51.7 5.6 51.5 5.7 51.5 5.5 t8 51.7 5.6 51.5 5.7 p 60.1 5.5 68.6 5.5 68.6 11.0 60.1 11.0 s1 68.6 5.5 77.2 5.5 77.2 11.0 68.6 11.0 s1 69.2 5.5 69.6 6.1 72.9 8.3 77.2 5.5 s2 69.2 5.5 69.6 6.1 p 77.2 5.5 72.9 8.3 77.2 11.0 t2 69.9 10.2 71.4 11.0 77.2 11.0 72.9 8.3 s2 69.9 10.2 71.4 11.0 p 69.9 10.2 69.6 6.1 72.9 8.3 t2 69.9 10.2 69.6 6.1 p 70.5 5.5 71.6 7.4 72.9 8.3 77.2 5.5 s3 70.5 5.5 71.6 7.4 p 77.2 5.5 72.9 8.3 77.2 11.0 t3 71.8 9.0 75.5 11.0 77.2 11.0 72.9 8.3 s3 71.8 9.0 75.5 11.0 p 71.8 9.0 71.6 7.4 72.9 8.3 t3 71.8 9.0 71.6 7.4 p 73.3 8.0 71.8 5.5 77.2 5.5 t4 73.3 8.0 71.8 5.5 p 77.2 10.4 73.3 8.0 77.2 5.5 t4 77.2 10.4 73.3 8.0 p 74.2 7.4 73.1 5.5 77.2 5.5 t5 74.2 7.4 73.1 5.5 p 77.2 9.2 74.2 7.4 77.2 5.5 t5 77.2 9.2 74.2 7.4 p 75.1 6.8 74.4 5.5 77.2 5.5 t6 75.1 6.8 74.4 5.5 p 77.2 8.1 75.1 6.8 77.2 5.5 t6 77.2 8.1 75.1 6.8 p 76.1 6.2 75.7 5.5 77.2 5.5 t7 76.1 6.2 75.7 5.5 p 77.2 6.9 76.1 6.2 77.2 5.5 t7 77.2 6.9 76.1 6.2 p 77.0 5.6 77.0 5.5 77.2 5.5 t8 77.0 5.6 77.0 5.5 p 77.2 5.7 77.0 5.6 77.2 5.5 t8 77.2 5.7 77.0 5.6 p 77.2 5.5 85.8 5.5 85.8 11.0 77.2 11.0 s3 77.2 5.5 81.5 8.3 85.8 5.5 t4 85.8 5.5 81.5 8.3 85.8 11.0 t4 77.7 10.7 79.7 11.0 85.8 11.0 81.5 8.3 s4 77.7 10.7 79.7 11.0 p 77.2 10.4 77.7 10.7 81.5 8.3 77.2 5.5 s4 77.2 10.4 77.7 10.7 p 77.2 5.5 81.5 8.3 85.8 5.5 t5 85.8 5.5 81.5 8.3 85.8 11.0 t5 78.5 10.2 84.2 11.0 85.8 11.0 81.5 8.3 s5 78.5 10.2 84.2 11.0 p 77.2 9.2 78.5 10.2 81.5 8.3 77.2 5.5 s5 77.2 9.2 78.5 10.2 p 77.2 5.5 81.5 8.3 85.8 5.5 t6 84.9 10.5 85.8 10.7 85.8 5.5 81.5 8.3 s6 84.9 10.5 85.8 10.7 p 84.9 10.5 79.4 9.6 81.5 8.3 t6 84.9 10.5 79.4 9.6 p 77.2 8.1 79.4 9.6 81.5 8.3 77.2 5.5 s6 77.2 8.1 79.4 9.6 p 77.2 5.5 81.5 8.3 85.8 5.5 t7 83.6 9.6 85.8 10.3 85.8 5.5 81.5 8.3 s7 83.6 9.6 85.8 10.3 p 83.6 9.6 80.2 9.1 81.5 8.3 t7 83.6 9.6 80.2 9.1 p 77.2 6.9 80.2 9.1 81.5 8.3 77.2 5.5 s7 77.2 6.9 80.2 9.1 p 77.2 5.5 81.5 8.3 85.8 5.5 t8 82.2 8.7 85.8 9.8 85.8 5.5 81.5 8.3 s8 82.2 8.7 85.8 9.8 p 82.2 8.7 81.1 8.6 81.5 8.3 t8 82.2 8.7 81.1 8.6 p 77.2 5.7 81.1 8.6 81.5 8.3 77.2 5.5 s8 77.2 5.7 81.1 8.6 p 85.8 5.5 94.4 5.5 94.4 11.0 85.8 11.0 s3 85.8 5.5 90.1 8.3 94.4 5.5 t4 93.9 10.7 94.4 10.4 94.4 5.5 90.1 8.3 s4 93.9 10.7 94.4 10.4 p 91.8 11.0 93.9 10.7 90.1 8.3 85.8 11.0 s4 91.8 11.0 93.9 10.7 p 85.8 11.0 90.1 8.3 85.8 5.5 t4 85.8 5.5 90.1 8.3 94.4 5.5 t5 93.0 10.2 94.4 9.2 94.4 5.5 90.1 8.3 s5 93.0 10.2 94.4 9.2 p 87.4 11.0 93.0 10.2 90.1 8.3 85.8 11.0 s5 87.4 11.0 93.0 10.2 p 85.8 11.0 90.1 8.3 85.8 5.5 t5 85.8 5.5 90.1 8.3 94.4 5.5 t6 92.2 9.6 94.4 8.1 94.4 5.5 90.1 8.3 s6 92.2 9.6 94.4 8.1 p 92.2 9.6 86.7 10.5 90.1 8.3 t6 92.2 9.6 86.7 10.5 p 85.8 10.7 86.7 10.5 90.1 8.3 85.8 5.5 s6 85.8 10.7 86.7 10.5 p 85.8 5.5 90.1 8.3 94.4 5.5 t7 91.4 9.1 94.4 6.9 94.4 5.5 90.1 8.3 s7 91.4 9.1 94.4 6.9 p 91.4 9.1 88.0 9.6 90.1 8.3 t7 91.4 9.1 88.0 9.6 p 85.8 10.3 88.0 9.6 90.1 8.3 85.8 5.5 s7 85.8 10.3 88.0 9.6 p 85.8 5.5 90.1 8.3 94.4 5.5 t8 90.5 8.6 94.4 5.7 94.4 5.5 90.1 8.3 s8 90.5 8.6 94.4 5.7 p 90.5 8.6 89.4 8.7 90.1 8.3 t8 90.5 8.6 89.4 8.7 p 85.8 9.8 89.4 8.7 90.1 8.3 85.8 5.5 s8 85.8 9.8 89.4 8.7 p 94.4 5.5 102.9 5.5 102.9 11.0 94.4 11.0 s1 102.0 6.1 102.4 5.5 94.4 5.5 98.7 8.3 s2 102.0 6.1 102.4 5.5 p 102.0 6.1 101.7 10.2 98.7 8.3 t2 102.0 6.1 101.7 10.2 p 100.2 11.0 101.7 10.2 98.7 8.3 94.4 11.0 s2 100.2 11.0 101.7 10.2 p 94.4 11.0 98.7 8.3 94.4 5.5 t2 100.0 7.4 101.1 5.5 94.4 5.5 98.7 8.3 s3 100.0 7.4 101.1 5.5 p 100.0 7.4 99.8 9.0 98.7 8.3 t3 100.0 7.4 99.8 9.0 p 96.1 11.0 99.8 9.0 98.7 8.3 94.4 11.0 s3 96.1 11.0 99.8 9.0 p 94.4 11.0 98.7 8.3 94.4 5.5 t3 99.8 5.5 98.3 8.0 94.4 5.5 t4 99.8 5.5 98.3 8.0 p 98.3 8.0 94.4 10.4 94.4 5.5 t4 98.3 8.0 94.4 10.4 p 98.5 5.5 97.4 7.4 94.4 5.5 t5 98.5 5.5 97.4 7.4 p 97.4 7.4 94.4 9.2 94.4 5.5 t5 97.4 7.4 94.4 9.2 p 97.2 5.5 96.4 6.8 94.4 5.5 t6 97.2 5.5 96.4 6.8 p 96.4 6.8 94.4 8.1 94.4 5.5 t6 96.4 6.8 94.4 8.1 p 95.9 5.5 95.5 6.2 94.4 5.5 t7 95.9 5.5 95.5 6.2 p 95.5 6.2 94.4 6.9 94.4 5.5 t7 95.5 6.2 94.4 6.9 p 94.6 5.5 94.6 5.6 94.4 5.5 t8 94.6 5.5 94.6 5.6 p 94.6 5.6 94.4 5.7 94.4 5.5 t8 94.6 5.6 94.4 5.7 p 102.9 5.5 111.5 5.5 111.5 11.0 102.9 11.0 s1 111.5 5.5 120.1 5.5 120.1 11.0 111.5 11.0 s1 112.1 5.5 112.4 6.1 115.8 8.3 120.1 5.5 s2 112.1 5.5 112.4 6.1 p 120.1 5.5 115.8 8.3 120.1 11.0 t2 112.8 10.2 114.3 11.0 120.1 11.0 115.8 8.3 s2 112.8 10.2 114.3 11.0 p 112.8 10.2 112.4 6.1 115.8 8.3 t2 112.8 10.2 112.4 6.1 p 113.4 5.5 114.5 7.4 115.8 8.3 120.1 5.5 s3 113.4 5.5 114.5 7.4 p 120.1 5.5 115.8 8.3 120.1 11.0 t3 114.6 9.0 118.3 11.0 120.1 11.0 115.8 8.3 s3 114.6 9.0 118.3 11.0 p 114.6 9.0 114.5 7.4 115.8 8.3 t3 114.6 9.0 114.5 7.4 p 116.2 8.0 114.7 5.5 120.1 5.5 t4 116.2 8.0 114.7 5.5 p 120.1 10.4 116.2 8.0 120.1 5.5 t4 120.1 10.4 116.2 8.0 p 117.1 7.4 116.0 5.5 120.1 5.5 t5 117.1 7.4 116.0 5.5 p 120.1 9.2 117.1 7.4 120.1 5.5 t5 120.1 9.2 117.1 7.4 p 118.0 6.8 117.3 5.5 120.1 5.5 t6 118.0 6.8 117.3 5.5 p 120.1 8.1 118.0 6.8 120.1 5.5 t6 120.1 8.1 118.0 6.8 p 119.0 6.2 118.6 5.5 120.1 5.5 t7 119.0 6.2 118.6 5.5 p 120.1 6.9 119.0 6.2 120.1 5.5 t7 120.1 6.9 119.0 6.2 p 119.9 5.6 119.9 5.5 120.1 5.5 t8 119.9 5.6 119.9 5.5 p 120.1 5.7 119.9 5.6 120.1 5.5 t8 120.1 5.7 119.9 5.6 p 120.1 5.5 128.7 5.5 128.7 11.0 120.1 11.0 s3 120.1 5.5 124.4 8.3 128.7 5.5 t4 128.7 5.5 124.4 8.3 128.7 11.0 t4 120.6 10.7 122.6 11.0 128.7 11.0 124.4 8.3 s4 120.6 10.7 122.6 11.0 p 120.1 10.4 120.6 10.7 124.4 8.3 120.1 5.5 s4 120.1 10.4 120.6 10.7 p 120.1 5.5 124.4 8.3 128.7 5.5 t5 128.7 5.5 124.4 8.3 128.7 11.0 t5 121.4 10.2 127.1 11.0 128.7 11.0 124.4 8.3 s5 121.4 10.2 127.1 11.0 p 120.1 9.2 121.4 10.2 124.4 8.3 120.1 5.5 s5 120.1 9.2 121.4 10.2 p 120.1 5.5 124.4 8.3 128.7 5.5 t6 127.8 10.5 128.7 10.7 128.7 5.5 124.4 8.3 s6 127.8 10.5 128.7 10.7 p 127.8 10.5 122.3 9.6 124.4 8.3 t6 127.8 10.5 122.3 9.6 p 120.1 8.1 122.3 9.6 124.4 8.3 120.1 5.5 s6 120.1 8.1 122.3 9.6 p 120.1 5.5 124.4 8.3 128.7 5.5 t7 126.5 9.6 128.7 10.3 128.7 5.5 124.4 8.3 s7 126.5 9.6 128.7 10.3 p 126.5 9.6 123.1 9.1 124.4 8.3 t7 126.5 9.6 123.1 9.1 p 120.1 6.9 123.1 9.1 124.4 8.3 120.1 5.5 s7 120.1 6.9 123.1 9.1 p 120.1 5.5 124.4 8.3 128.7 5.5 t8 125.1 8.7 128.7 9.8 128.7 5.5 124.4 8.3 s8 125.1 8.7 128.7 9.8 p 125.1 8.7 123.9 8.6 124.4 8.3 t8 125.1 8.7 123.9 8.6 p 120.1 5.7 123.9 8.6 124.4 8.3 120.1 5.5 s8 120.1 5.7 123.9 8.6 p 128.7 5.5 137.3 5.5 137.3 11.0 128.7 11.0 s3 128.7 5.5 133.0 8.3 137.3 5.5 t4 136.8 10.7 137.3 10.4 137.3 5.5 133.0 8.3 s4 136.8 10.7 137.3 10.4 p 134.7 11.0 136.8 10.7 133.0 8.3 128.7 11.0 s4 134.7 11.0 136.8 10.7 p 128.7 11.0 133.0 8.3 128.7 5.5 t4 128.7 5.5 133.0 8.3 137.3 5.5 t5 135.9 10.2 137.3 9.2 137.3 5.5 133.0 8.3 s5 135.9 10.2 137.3 9.2 p 130.3 11.0 135.9 10.2 133.0 8.3 128.7 11.0 s5 130.3 11.0 135.9 10.2 p 128.7 11.0 133.0 8.3 128.7 5.5 t5 128.7 5.5 133.0 8.3 137.3 5.5 t6 135.1 9.6 137.3 8.1 137.3 5.5 133.0 8.3 s6 135.1 9.6 137.3 8.1 p 135.1 9.6 129.6 10.5 133.0 8.3 t6 135.1 9.6 129.6 10.5 p 128.7 10.7 129.6 10.5 133.0 8.3 128.7 5.5 s6 128.7 10.7 129.6 10.5 p 128.7 5.5 133.0 8.3 137.3 5.5 t7 134.3 9.1 137.3 6.9 137.3 5.5 133.0 8.3 s7 134.3 9.1 137.3 6.9 p 134.3 9.1 130.9 9.6 133.0 8.3 t7 134.3 9.1 130.9 9.6 p 128.7 10.3 130.9 9.6 133.0 8.3 128.7 5.5 s7 128.7 10.3 130.9 9.6 p 128.7 5.5 133.0 8.3 137.3 5.5 t8 133.4 8.6 137.3 5.7 137.3 5.5 133.0 8.3 s8 133.4 8.6 137.3 5.7 p 133.4 8.6 132.3 8.7 133.0 8.3 t8 133.4 8.6 132.3 8.7 p 128.7 9.8 132.3 8.7 133.0 8.3 128.7 5.5 s8 128.7 9.8 132.3 8.7 p 137.3 5.5 145.8 5.5 145.8 11.0 137.3 11.0 s1 144.9 6.1 145.3 5.5 137.3 5.5 141.6 8.3 s2 144.9 6.1 145.3 5.5 p 144.9 6.1 144.6 10.2 141.6 8.3 t2 144.9 6.1 144.6 10.2 p 143.1 11.0 144.6 10.2 141.6 8.3 137.3 11.0 s2 143.1 11.0 144.6 10.2 p 137.3 11.0 141.6 8.3 137.3 5.5 t2 142.8 7.4 144.0 5.5 137.3 5.5 141.6 8.3 s3 142.8 7.4 144.0 5.5 p 142.8 7.4 142.7 9.0 141.6 8.3 t3 142.8 7.4 142.7 9.0 p 139.0 11.0 142.7 9.0 141.6 8.3 137.3 11.0 s3 139.0 11.0 142.7 9.0 p 137.3 11.0 141.6 8.3 137.3 5.5 t3 142.7 5.5 141.2 8.0 137.3 5.5 t4 142.7 5.5 141.2 8.0 p 141.2 8.0 137.3 10.4 137.3 5.5 t4 141.2 8.0 137.3 10.4 p 141.4 5.5 140.3 7.4 137.3 5.5 t5 141.4 5.5 140.3 7.4 p 140.3 7.4 137.3 9.2 137.3 5.5 t5 140.3 7.4 137.3 9.2 p 140.1 5.5 139.3 6.8 137.3 5.5 t6 140.1 5.5 139.3 6.8 p 139.3 6.8 137.3 8.1 137.3 5.5 t6 139.3 6.8 137.3 8.1 p 138.8 5.5 138.4 6.2 137.3 5.5 t7 138.8 5.5 138.4 6.2 p 138.4 6.2 137.3 6.9 137.3 5.5 t7 138.4 6.2 137.3 6.9 p 137.5 5.5 137.4 5.6 137.3 5.5 t8 137.5 5.5 137.4 5.6 p 137.4 5.6 137.3 5.7 137.3 5.5 t8 137.4 5.6 137.3 5.7 p 145.8 5.5 154.4 5.5 154.4 11.0 145.8 11.0 s1 154.4 5.5 163.0 5.5 163.0 11.0 154.4 11.0 s1 155.0 5.5 155.3 6.1 158.7 8.3 163.0 5.5 s2 155.0 5.5 155.3 6.1 p 163.0 5.5 158.7 8.3 163.0 11.0 t2 155.7 10.2 157.2 11.0 163.0 11.0 158.7 8.3 s2 155.7 10.2 157.2 11.0 p 155.7 10.2 155.3 6.1 158.7 8.3 t2 155.7 10.2 155.3 6.1 p 156.3 5.5 157.4 7.4 158.7 8.3 163.0 5.5 s3 156.3 5.5 157.4 7.4 p 163.0 5.5 158.7 8.3 163.0 11.0 t3 157.5 9.0 161.2 11.0 163.0 11.0 158.7 8.3 s3 157.5 9.0 161.2 11.0 p 157.5 9.0 157.4 7.4 158.7 8.3 t3 157.5 9.0 157.4 7.4 p 159.1 8.0 157.6 5.5 163.0 5.5 t4 159.1 8.0 157.6 5.5 p 163.0 10.4 159.1 8.0 163.0 5.5 t4 163.0 10.4 159.1 8.0 p 160.0 7.4 158.9 5.5 163.0 5.5 t5 160.0 7.4 158.9 5.5 p 163.0 9.2 160.0 7.4 163.0 5.5 t5 163.0 9.2 160.0 7.4 p 160.9 6.8 160.2 5.5 163.0 5.5 t6 160.9 6.8 160.2 5.5 p 163.0 8.1 160.9 6.8 163.0 5.5 t6 163.0 8.1 160.9 6.8 p 161.9 6.2 161.5 5.5 163.0 5.5 t7 161.9 6.2 161.5 5.5 p 163.0 6.9 161.9 6.2 163.0 5.5 t7 163.0 6.9 161.9 6.2 p 162.8 5.6 162.7 5.5 163.0 5.5 t8 162.8 5.6 162.7 5.5 p 163.0 5.7 162.8 5.6 163.0 5.5 t8 163.0 5.7 162.8 5.6 p 163.0 5.5 171.6 5.5 171.6 11.0 163.0 11.0 s3 163.0 5.5 167.3 8.3 171.6 5.5 t4 171.6 5.5 167.3 8.3 171.6 11.0 t4 163.5 10.7 165.5 11.0 171.6 11.0 167.3 8.3 s4 163.5 10.7 165.5 11.0 p 163.0 10.4 163.5 10.7 167.3 8.3 163.0 5.5 s4 163.0 10.4 163.5 10.7 p 163.0 5.5 167.3 8.3 171.6 5.5 t5 171.6 5.5 167.3 8.3 171.6 11.0 t5 164.3 10.2 170.0 11.0 171.6 11.0 167.3 8.3 s5 164.3 10.2 170.0 11.0 p 163.0 9.2 164.3 10.2 167.3 8.3 163.0 5.5 s5 163.0 9.2 164.3 10.2 p 163.0 5.5 167.3 8.3 171.6 5.5 t6 170.7 10.5 171.6 10.7 171.6 5.5 167.3 8.3 s6 170.7 10.5 171.6 10.7 p 170.7 10.5 165.2 9.6 167.3 8.3 t6 170.7 10.5 165.2 9.6 p 163.0 8.1 165.2 9.6 167.3 8.3 163.0 5.5 s6 163.0 8.1 165.2 9.6 p 163.0 5.5 167.3 8.3 171.6 5.5 t7 169.4 9.6 171.6 10.3 171.6 5.5 167.3 8.3 s7 169.4 9.6 171.6 10.3 p 169.4 9.6 166.0 9.1 167.3 8.3 t7 169.4 9.6 166.0 9.1 p 163.0 6.9 166.0 9.1 167.3 8.3 163.0 5.5 s7 163.0 6.9 166.0 9.1 p 163.0 5.5 167.3 8.3 171.6 5.5 t8 168.0 8.7 171.6 9.8 171.6 5.5 167.3 8.3 s8 168.0 8.7 171.6 9.8 p 168.0 8.7 166.8 8.6 167.3 8.3 t8 168.0 8.7 166.8 8.6 p 163.0 5.7 166.8 8.6 167.3 8.3 163.0 5.5 s8 163.0 5.7 166.8 8.6 p 171.6 5.5 180.2 5.5 180.2 11.0 171.6 11.0 s3 171.6 5.5 175.9 8.3 180.2 5.5 t4 179.7 10.7 180.2 10.4 180.2 5.5 175.9 8.3 s4 179.7 10.7 180.2 10.4 p 177.6 11.0 179.7 10.7 175.9 8.3 171.6 11.0 s4 177.6 11.0 179.7 10.7 p 171.6 11.0 175.9 8.3 171.6 5.5 t4 171.6 5.5 175.9 8.3 180.2 5.5 t5 178.8 10.2 180.2 9.2 180.2 5.5 175.9 8.3 s5 178.8 10.2 180.2 9.2 p 173.2 11.0 178.8 10.2 175.9 8.3 171.6 11.0 s5 173.2 11.0 178.8 10.2 p 171.6 11.0 175.9 8.3 171.6 5.5 t5 171.6 5.5 175.9 8.3 180.2 5.5 t6 178.0 9.6 180.2 8.1 180.2 5.5 175.9 8.3 s6 178.0 9.6 180.2 8.1 p 178.0 9.6 172.4 10.5 175.9 8.3 t6 178.0 9.6 172.4 10.5 p 171.6 10.7 172.4 10.5 175.9 8.3 171.6 5.5 s6 171.6 10.7 172.4 10.5 p 171.6 5.5 175.9 8.3 180.2 5.5 t7 177.2 9.1 180.2 6.9 180.2 5.5 175.9 8.3 s7 177.2 9.1 180.2 6.9 p 177.2 9.1 173.8 9.6 175.9 8.3 t7 177.2 9.1 173.8 9.6 p 171.6 10.3 173.8 9.6 175.9 8.3 171.6 5.5 s7 171.6 10.3 173.8 9.6 p 171.6 5.5 175.9 8.3 180.2 5.5 t8 176.3 8.6 180.2 5.7 180.2 5.5 175.9 8.3 s8 176.3 8.6 180.2 5.7 p 176.3 8.6 175.1 8.7 175.9 8.3 t8 176.3 8.6 175.1 8.7 p 171.6 9.8 175.1 8.7 175.9 8.3 171.6 5.5 s8 171.6 9.8 175.1 8.7 p 180.2 5.5 188.7 5.5 188.7 11.0 180.2 11.0 s1 187.8 6.1 188.2 5.5 180.2 5.5 184.4 8.3 s2 187.8 6.1 188.2 5.5 p 187.8 6.1 187.5 10.2 184.4 8.3 t2 187.8 6.1 187.5 10.2 p 186.0 11.0 187.5 10.2 184.4 8.3 180.2 11.0 s2 186.0 11.0 187.5 10.2 p 180.2 11.0 184.4 8.3 180.2 5.5 t2 185.7 7.4 186.9 5.5 180.2 5.5 184.4 8.3 s3 185.7 7.4 186.9 5.5 p 185.7 7.4 185.6 9.0 184.4 8.3 t3 185.7 7.4 185.6 9.0 p 181.9 11.0 185.6 9.0 184.4 8.3 180.2 11.0 s3 181.9 11.0 185.6 9.0 p 180.2 11.0 184.4 8.3 180.2 5.5 t3 185.6 5.5 184.1 8.0 180.2 5.5 t4 185.6 5.5 184.1 8.0 p 184.1 8.0 180.2 10.4 180.2 5.5 t4 184.1 8.0 180.2 10.4 p 184.3 5.5 183.2 7.4 180.2 5.5 t5 184.3 5.5 183.2 7.4 p 183.2 7.4 180.2 9.2 180.2 5.5 t5 183.2 7.4 180.2 9.2 p 183.0 5.5 182.2 6.8 180.2 5.5 t6 183.0 5.5 182.2 6.8 p 182.2 6.8 180.2 8.1 180.2 5.5 t6 182.2 6.8 180.2 8.1 p 181.7 5.5 181.3 6.2 180.2 5.5 t7 181.7 5.5 181.3 6.2 p 181.3 6.2 180.2 6.9 180.2 5.5 t7 181.3 6.2 180.2 6.9 p 180.4 5.5 180.3 5.6 180.2 5.5 t8 180.4 5.5 180.3 5.6 p 180.3 5.6 180.2 5.7 180.2 5.5 t8 180.3 5.6 180.2 5.7 p 188.7 5.5 197.3 5.5 197.3 11.0 188.7 11.0 s1 197.3 5.5 205.9 5.5 205.9 11.0 197.3 11.0 s1 197.9 5.5 198.2 6.1 201.6 8.3 205.9 5.5 s2 197.9 5.5 198.2 6.1 p 205.9 5.5 201.6 8.3 205.9 11.0 t2 198.6 10.2 200.1 11.0 205.9 11.0 201.6 8.3 s2 198.6 10.2 200.1 11.0 p 198.6 10.2 198.2 6.1 201.6 8.3 t2 198.6 10.2 198.2 6.1 p 199.2 5.5 200.3 7.4 201.6 8.3 205.9 5.5 s3 199.2 5.5 200.3 7.4 p 205.9 5.5 201.6 8.3 205.9 11.0 t3 200.4 9.0 204.1 11.0 205.9 11.0 201.6 8.3 s3 200.4 9.0 204.1 11.0 p 200.4 9.0 200.3 7.4 201.6 8.3 t3 200.4 9.0 200.3 7.4 p 202.0 8.0 200.5 5.5 205.9 5.5 t4 202.0 8.0 200.5 5.5 p 205.9 10.4 202.0 8.0 205.9 5.5 t4 205.9 10.4 202.0 8.0 p 202.9 7.4 201.8 5.5 205.9 5.5 t5 202.9 7.4 201.8 5.5 p 205.9 9.2 202.9 7.4 205.9 5.5 t5 205.9 9.2 202.9 7.4 p 203.8 6.8 203.1 5.5 205.9 5.5 t6 203.8 6.8 203.1 5.5 p 205.9 8.1 203.8 6.8 205.9 5.5 t6 205.9 8.1 203.8 6.8 p 204.8 6.2 204.3 5.5 205.9 5.5 t7 204.8 6.2 204.3 5.5 p 205.9 6.9 204.8 6.2 205.9 5.5 t7 205.9 6.9 204.8 6.2 p 205.7 5.6 205.6 5.5 205.9 5.5 t8 205.7 5.6 205.6 5.5 p 205.9 5.7 205.7 5.6 205.9 5.5 t8 205.9 5.7 205.7 5.6 p 205.9 5.5 214.5 5.5 214.5 11.0 205.9 11.0 s3 205.9 5.5 210.2 8.3 214.5 5.5 t4 214.5 5.5 210.2 8.3 214.5 11.0 t4 206.4 10.7 208.4 11.0 214.5 11.0 210.2 8.3 s4 206.4 10.7 208.4 11.0 p 205.9 10.4 206.4 10.7 210.2 8.3 205.9 5.5 s4 205.9 10.4 206.4 10.7 p 205.9 5.5 210.2 8.3 214.5 5.5 t5 214.5 5.5 210.2 8.3 214.5 11.0 t5 207.2 10.2 212.9 11.0 214.5 11.0 210.2 8.3 s5 207.2 10.2 212.9 11.0 p 205.9 9.2 207.2 10.2 210.2 8.3 205.9 5.5 s5 205.9 9.2 207.2 10.2 p 205.9 5.5 210.2 8.3 214.5 5.5 t6 213.6 10.5 214.5 10.7 214.5 5.5 210.2 8.3 s6 213.6 10.5 214.5 10.7 p 213.6 10.5 208.1 9.6 210.2 8.3 t6 213.6 10.5 208.1 9.6 p 205.9 8.1 208.1 9.6 210.2 8.3 205.9 5.5 s6 205.9 8.1 208.1 9.6 p 205.9 5.5 210.2 8.3 214.5 5.5 t7 212.3 9.6 214.5 10.3 214.5 5.5 210.2 8.3 s7 212.3 9.6 214.5 10.3 p 212.3 9.6 208.9 9.1 210.2 8.3 t7 212.3 9.6 208.9 9.1 p 205.9 6.9 208.9 9.1 210.2 8.3 205.9 5.5 s7 205.9 6.9 208.9 9.1 p 205.9 5.5 210.2 8.3 214.5 5.5 t8 210.9 8.7 214.5 9.8 214.5 5.5 210.2 8.3 s8 210.9 8.7 214.5 9.8 p 210.9 8.7 209.7 8.6 210.2 8.3 t8 210.9 8.7 209.7 8.6 p 205.9 5.7 209.7 8.6 210.2 8.3 205.9 5.5 s8 205.9 5.7 209.7 8.6 p 214.5 5.5 223.1 5.5 223.1 11.0 214.5 11.0 s3 214.5 5.5 218.8 8.3 223.1 5.5 t4 222.6 10.7 223.1 10.4 223.1 5.5 218.8 8.3 s4 222.6 10.7 223.1 10.4 p 220.5 11.0 222.6 10.7 218.8 8.3 214.5 11.0 s4 220.5 11.0 222.6 10.7 p 214.5 11.0 218.8 8.3 214.5 5.5 t4 214.5 5.5 218.8 8.3 223.1 5.5 t5 221.7 10.2 223.1 9.2 223.1 5.5 218.8 8.3 s5 221.7 10.2 223.1 9.2 p 216.1 11.0 221.7 10.2 218.8 8.3 214.5 11.0 s5 216.1 11.0 221.7 10.2 p 214.5 11.0 218.8 8.3 214.5 5.5 t5 214.5 5.5 218.8 8.3 223.1 5.5 t6 220.9 9.6 223.1 8.1 223.1 5.5 218.8 8.3 s6 220.9 9.6 223.1 8.1 p 220.9 9.6 215.3 10.5 218.8 8.3 t6 220.9 9.6 215.3 10.5 p 214.5 10.7 215.3 10.5 218.8 8.3 214.5 5.5 s6 214.5 10.7 215.3 10.5 p 214.5 5.5 218.8 8.3 223.1 5.5 t7 220.1 9.1 223.1 6.9 223.1 5.5 218.8 8.3 s7 220.1 9.1 223.1 6.9 p 220.1 9.1 216.7 9.6 218.8 8.3 t7 220.1 9.1 216.7 9.6 p 214.5 10.3 216.7 9.6 218.8 8.3 214.5 5.5 s7 214.5 10.3 216.7 9.6 p 214.5 5.5 218.8 8.3 223.1 5.5 t8 219.2 8.6 223.1 5.7 223.1 5.5 218.8 8.3 s8 219.2 8.6 223.1 5.7 p 219.2 8.6 218.0 8.7 218.8 8.3 t8 219.2 8.6 218.0 8.7 p 214.5 9.8 218.0 8.7 218.8 8.3 214.5 5.5 s8 214.5 9.8 218.0 8.7 p 223.1 5.5 231.6 5.5 231.6 11.0 223.1 11.0 s1 230.7 6.1 231.1 5.5 223.1 5.5 227.3 8.3 s2 230.7 6.1 231.1 5.5 p 230.7 6.1 230.4 10.2 227.3 8.3 t2 230.7 6.1 230.4 10.2 p 228.9 11.0 230.4 10.2 227.3 8.3 223.1 11.0 s2 228.9 11.0 230.4 10.2 p 223.1 11.0 227.3 8.3 223.1 5.5 t2 228.6 7.4 229.8 5.5 223.1 5.5 227.3 8.3 s3 228.6 7.4 229.8 5.5 p 228.6 7.4 228.5 9.0 227.3 8.3 t3 228.6 7.4 228.5 9.0 p 224.8 11.0 228.5 9.0 227.3 8.3 223.1 11.0 s3 224.8 11.0 228.5 9.0 p 223.1 11.0 227.3 8.3 223.1 5.5 t3 228.5 5.5 227.0 8.0 223.1 5.5 t4 228.5 5.5 227.0 8.0 p 227.0 8.0 223.1 10.4 223.1 5.5 t4 227.0 8.0 223.1 10.4 p 227.2 5.5 226.1 7.4 223.1 5.5 t5 227.2 5.5 226.1 7.4 p 226.1 7.4 223.1 9.2 223.1 5.5 t5 226.1 7.4 223.1 9.2 p 225.9 5.5 225.1 6.8 223.1 5.5 t6 225.9 5.5 225.1 6.8 p 225.1 6.8 223.1 8.1 223.1 5.5 t6 225.1 6.8 223.1 8.1 p 224.6 5.5 224.2 6.2 223.1 5.5 t7 224.6 5.5 224.2 6.2 p 224.2 6.2 223.1 6.9 223.1 5.5 t7 224.2 6.2 223.1 6.9 p 223.3 5.5 223.2 5.6 223.1 5.5 t8 223.3 5.5 223.2 5.6 p 223.2 5.6 223.1 5.7 223.1 5.5 t8 223.2 5.6 223.1 5.7 p 231.6 5.5 240.2 5.5 240.2 11.0 231.6 11.0 s1 240.2 5.5 248.8 5.5 248.8 11.0 240.2 11.0 s1 240.8 5.5 241.1 6.1 244.5 8.3 248.8 5.5 s2 240.8 5.5 241.1 6.1 p 248.8 5.5 244.5 8.3 248.8 11.0 t2 241.5 10.2 243.0 11.0 248.8 11.0 244.5 8.3 s2 241.5 10.2 243.0 11.0 p 241.5 10.2 241.1 6.1 244.5 8.3 t2 241.5 10.2 241.1 6.1 p 242.1 5.5 243.2 7.4 244.5 8.3 248.8 5.5 s3 242.1 5.5 243.2 7.4 p 248.8 5.5 244.5 8.3 248.8 11.0 t3 243.3 9.0 247.0 11.0 248.8 11.0 244.5 8.3 s3 243.3 9.0 247.0 11.0 p 243.3 9.0 243.2 7.4 244.5 8.3 t3 243.3 9.0 243.2 7.4 p 244.8 8.0 243.4 5.5 248.8 5.5 t4 244.8 8.0 243.4 5.5 p 248.8 10.4 244.8 8.0 248.8 5.5 t4 248.8 10.4 244.8 8.0 p 245.8 7.4 244.7 5.5 248.8 5.5 t5 245.8 7.4 244.7 5.5 p 248.8 9.2 245.8 7.4 248.8 5.5 t5 248.8 9.2 245.8 7.4 p 246.7 6.8 246.0 5.5 248.8 5.5 t6 246.7 6.8 246.0 5.5 p 248.8 8.1 246.7 6.8 248.8 5.5 t6 248.8 8.1 246.7 6.8 p 247.7 6.2 247.2 5.5 248.8 5.5 t7 247.7 6.2 247.2 5.5 p 248.8 6.9 247.7 6.2 248.8 5.5 t7 248.8 6.9 247.7 6.2 p 248.6 5.6 248.5 5.5 248.8 5.5 t8 248.6 5.6 248.5 5.5 p 248.8 5.7 248.6 5.6 248.8 5.5 t8 248.8 5.7 248.6 5.6 p 248.8 5.5 257.4 5.5 257.4 11.0 248.8 11.0 s3 248.8 5.5 253.1 8.3 257.4 5.5 t4 257.4 5.5 253.1 8.3 257.4 11.0 t4 249.3 10.7 251.3 11.0 257.4 11.0 253.1 8.3 s4 249.3 10.7 251.3 11.0 p 248.8 10.4 249.3 10.7 253.1 8.3 248.8 5.5 s4 248.8 10.4 249.3 10.7 p 248.8 5.5 253.1 8.3 257.4 5.5 t5 257.4 5.5 253.1 8.3 257.4 11.0 t5 250.1 10.2 255.8 11.0 257.4 11.0 253.1 8.3 s5 250.1 10.2 255.8 11.0 p 248.8 9.2 250.1 10.2 253.1 8.3 248.8 5.5 s5 248.8 9.2 250.1 10.2 p 248.8 5.5 253.1 8.3 257.4 5.5 t6 256.5 10.5 257.4 10.7 257.4 5.5 253.1 8.3 s6 256.5 10.5 257.4 10.7 p 256.5 10.5 250.9 9.6 253.1 8.3 t6 256.5 10.5 250.9 9.6 p 248.8 8.1 250.9 9.6 253.1 8.3 248.8 5.5 s6 248.8 8.1 250.9 9.6 p 248.8 5.5 253.1 8.3 257.4 5.5 t7 255.1 9.6 257.4 10.3 257.4 5.5 253.1 8.3 s7 255.1 9.6 257.4 10.3 p 255.1 9.6 251.8 9.1 253.1 8.3 t7 255.1 9.6 251.8 9.1 p 248.8 6.9 251.8 9.1 253.1 8.3 248.8 5.5 s7 248.8 6.9 251.8 9.1 p 248.8 5.5 253.1 8.3 257.4 5.5 t8 253.8 8.7 257.4 9.8 257.4 5.5 253.1 8.3 s8 253.8 8.7 257.4 9.8 p 253.8 8.7 252.6 8.6 253.1 8.3 t8 253.8 8.7 252.6 8.6 p 248.8 5.7 252.6 8.6 253.1 8.3 248.8 5.5 s8 248.8 5.7 252.6 8.6 p 257.4 5.5 265.9 5.5 265.9 11.0 257.4 11.0 s3 257.4 5.5 261.7 8.3 265.9 5.5 t4 265.5 10.7 265.9 10.4 265.9 5.5 261.7 8.3 s4 265.5 10.7 265.9 10.4 p 263.4 11.0 265.5 10.7 261.7 8.3 257.4 11.0 s4 263.4 11.0 265.5 10.7 p 257.4 11.0 261.7 8.3 257.4 5.5 t4 257.4 5.5 261.7 8.3 265.9 5.5 t5 264.6 10.2 265.9 9.2 265.9 5.5 261.7 8.3 s5 264.6 10.2 265.9 9.2 p 259.0 11.0 264.6 10.2 261.7 8.3 257.4 11.0 s5 259.0 11.0 264.6 10.2 p 257.4 11.0 261.7 8.3 257.4 5.5 t5 257.4 5.5 261.7 8.3 265.9 5.5 t6 263.8 9.6 265.9 8.1 265.9 5.5 261.7 8.3 s6 263.8 9.6 265.9 8.1 p 263.8 9.6 258.2 10.5 261.7 8.3 t6 263.8 9.6 258.2 10.5 p 257.4 10.7 258.2 10.5 261.7 8.3 257.4 5.5 s6 257.4 10.7 258.2 10.5 p 257.4 5.5 261.7 8.3 265.9 5.5 t7 262.9 9.1 265.9 6.9 265.9 5.5 261.7 8.3 s7 262.9 9.1 265.9 6.9 p 262.9 9.1 259.6 9.6 261.7 8.3 t7 262.9 9.1 259.6 9.6 p 257.4 10.3 259.6 9.6 261.7 8.3 257.4 5.5 s7 257.4 10.3 259.6 9.6 p 257.4 5.5 261.7 8.3 265.9 5.5 t8 262.1 8.6 265.9 5.7 265.9 5.5 261.7 8.3 s8 262.1 8.6 265.9 5.7 p 262.1 8.6 260.9 8.7 261.7 8.3 t8 262.1 8.6 260.9 8.7 p 257.4 9.8 260.9 8.7 261.7 8.3 257.4 5.5 s8 257.4 9.8 260.9 8.7 p 265.9 5.5 274.5 5.5 274.5 11.0 265.9 11.0 s1 273.6 6.1 274.0 5.5 265.9 5.5 270.2 8.3 s2 273.6 6.1 274.0 5.5 p 273.6 6.1 273.3 10.2 270.2 8.3 t2 273.6 6.1 273.3 10.2 p 271.8 11.0 273.3 10.2 270.2 8.3 265.9 11.0 s2 271.8 11.0 273.3 10.2 p 265.9 11.0 270.2 8.3 265.9 5.5 t2 271.5 7.4 272.7 5.5 265.9 5.5 270.2 8.3 s3 271.5 7.4 272.7 5.5 p 271.5 7.4 271.4 9.0 270.2 8.3 t3 271.5 7.4 271.4 9.0 p 267.7 11.0 271.4 9.0 270.2 8.3 265.9 11.0 s3 267.7 11.0 271.4 9.0 p 265.9 11.0 270.2 8.3 265.9 5.5 t3 271.4 5.5 269.9 8.0 265.9 5.5 t4 271.4 5.5 269.9 8.0 p 269.9 8.0 265.9 10.4 265.9 5.5 t4 269.9 8.0 265.9 10.4 p 270.1 5.5 268.9 7.4 265.9 5.5 t5 270.1 5.5 268.9 7.4 p 268.9 7.4 265.9 9.2 265.9 5.5 t5 268.9 7.4 265.9 9.2 p 268.8 5.5 268.0 6.8 265.9 5.5 t6 268.8 5.5 268.0 6.8 p 268.0 6.8 265.9 8.1 265.9 5.5 t6 268.0 6.8 265.9 8.1 p 267.5 5.5 267.1 6.2 265.9 5.5 t7 267.5 5.5 267.1 6.2 p 267.1 6.2 265.9 6.9 265.9 5.5 t7 267.1 6.2 265.9 6.9 p 266.2 5.5 266.1 5.6 265.9 5.5 t8 266.2 5.5 266.1 5.6 p 266.1 5.6 265.9 5.7 265.9 5.5 t8 266.1 5.6 265.9 5.7 p 274.5 5.5 283.1 5.5 283.1 11.0 274.5 11.0 s1 283.1 5.5 291.7 5.5 291.7 11.0 283.1 11.0 s1 283.7 5.5 284.0 6.1 287.4 8.3 291.7 5.5 s2 283.7 5.5 284.0 6.1 p 291.7 5.5 287.4 8.3 291.7 11.0 t2 284.4 10.2 285.9 11.0 291.7 11.0 287.4 8.3 s2 284.4 10.2 285.9 11.0 p 284.4 10.2 284.0 6.1 287.4 8.3 t2 284.4 10.2 284.0 6.1 p 285.0 5.5 286.1 7.4 287.4 8.3 291.7 5.5 s3 285.0 5.5 286.1 7.4 p 291.7 5.5 287.4 8.3 291.7 11.0 t3 286.2 9.0 289.9 11.0 291.7 11.0 287.4 8.3 s3 286.2 9.0 289.9 11.0 p 286.2 9.0 286.1 7.4 287.4 8.3 t3 286.2 9.0 286.1 7.4 p 287.7 8.0 286.3 5.5 291.7 5.5 t4 287.7 8.0 286.3 5.5 p 291.7 10.4 287.7 8.0 291.7 5.5 t4 291.7 10.4 287.7 8.0 p 288.7 7.4 287.6 5.5 291.7 5.5 t5 288.7 7.4 287.6 5.5 p 291.7 9.2 288.7 7.4 291.7 5.5 t5 291.7 9.2 288.7 7.4 p 289.6 6.8 288.8 5.5 291.7 5.5 t6 289.6 6.8 288.8 5.5 p 291.7 8.1 289.6 6.8 291.7 5.5 t6 291.7 8.1 289.6 6.8 p 290.6 6.2 290.1 5.5 291.7 5.5 t7 290.6 6.2 290.1 5.5 p 291.7 6.9 290.6 6.2 291.7 5.5 t7 291.7 6.9 290.6 6.2 p 291.5 5.6 291.4 5.5 291.7 5.5 t8 291.5 5.6 291.4 5.5 p 291.7 5.7 291.5 5.6 291.7 5.5 t8 291.7 5.7 291.5 5.6 p 291.7 5.5 300.3 5.5 300.3 11.0 291.7 11.0 s3 291.7 5.5 296.0 8.3 300.3 5.5 t4 300.3 5.5 296.0 8.3 300.3 11.0 t4 292.2 10.7 294.2 11.0 300.3 11.0 296.0 8.3 s4 292.2 10.7 294.2 11.0 p 291.7 10.4 292.2 10.7 296.0 8.3 291.7 5.5 s4 291.7 10.4 292.2 10.7 p 291.7 5.5 296.0 8.3 300.3 5.5 t5 300.3 5.5 296.0 8.3 300.3 11.0 t5 293.0 10.2 298.7 11.0 300.3 11.0 296.0 8.3 s5 293.0 10.2 298.7 11.0 p 291.7 9.2 293.0 10.2 296.0 8.3 291.7 5.5 s5 291.7 9.2 293.0 10.2 p 291.7 5.5 296.0 8.3 300.3 5.5 t6 299.4 10.5 300.3 10.7 300.3 5.5 296.0 8.3 s6 299.4 10.5 300.3 10.7 p 299.4 10.5 293.8 9.6 296.0 8.3 t6 299.4 10.5 293.8 9.6 p 291.7 8.1 293.8 9.6 296.0 8.3 291.7 5.5 s6 291.7 8.1 293.8 9.6 p 291.7 5.5 296.0 8.3 300.3 5.5 t7 298.0 9.6 300.3 10.3 300.3 5.5 296.0 8.3 s7 298.0 9.6 300.3 10.3 p 298.0 9.6 294.7 9.1 296.0 8.3 t7 298.0 9.6 294.7 9.1 p 291.7 6.9 294.7 9.1 296.0 8.3 291.7 5.5 s7 291.7 6.9 294.7 9.1 p 291.7 5.5 296.0 8.3 300.3 5.5 t8 296.7 8.7 300.3 9.8 300.3 5.5 296.0 8.3 s8 296.7 8.7 300.3 9.8 p 296.7 8.7 295.5 8.6 296.0 8.3 t8 296.7 8.7 295.5 8.6 p 291.7 5.7 295.5 8.6 296.0 8.3 291.7 5.5 s8 291.7 5.7 295.5 8.6 p 0.0 0.0 8.6 0.0 8.6 5.5 0.0 5.5 s8 8.6 0.0 17.2 0.0 17.2 5.5 8.6 5.5 s1 16.9 0.1 17.0 0.0 8.6 0.0 12.9 2.8 s2 16.9 0.1 17.0 0.0 p 16.9 0.1 16.7 5.2 12.9 2.8 t2 16.9 0.1 16.7 5.2 p 16.6 5.5 16.7 5.2 12.9 2.8 8.6 5.5 s2 16.6 5.5 16.7 5.2 p 8.6 5.5 12.9 2.8 8.6 0.0 t2 15.7 0.9 15.9 0.0 8.6 0.0 12.9 2.8 s3 15.7 0.9 15.9 0.0 p 15.7 0.9 15.5 4.5 12.9 2.8 t3 15.7 0.9 15.5 4.5 p 15.3 5.5 15.5 4.5 12.9 2.8 8.6 5.5 s3 15.3 5.5 15.5 4.5 p 8.6 5.5 12.9 2.8 8.6 0.0 t3 14.5 1.7 14.8 0.0 8.6 0.0 12.9 2.8 s4 14.5 1.7 14.8 0.0 p 14.5 1.7 14.4 3.7 12.9 2.8 t4 14.5 1.7 14.4 3.7 p 14.0 5.5 14.4 3.7 12.9 2.8 8.6 5.5 s4 14.0 5.5 14.4 3.7 p 8.6 5.5 12.9 2.8 8.6 0.0 t4 13.3 2.5 13.8 0.0 8.6 0.0 12.9 2.8 s5 13.3 2.5 13.8 0.0 p 13.3 2.5 13.3 3.0 12.9 2.8 t5 13.3 2.5 13.3 3.0 p 12.7 5.5 13.3 3.0 12.9 2.8 8.6 5.5 s5 12.7 5.5 13.3 3.0 p 8.6 5.5 12.9 2.8 8.6 0.0 t5 12.7 0.0 12.2 2.4 8.6 0.0 t6 12.7 0.0 12.2 2.4 p 11.9 3.4 11.4 5.5 8.6 5.5 t6 11.9 3.4 11.4 5.5 p 11.9 3.4 12.2 2.4 8.6 0.0 8.6 5.5 s6 11.9 3.4 12.2 2.4 p 11.6 0.0 11.3 1.7 8.6 0.0 t7 11.6 0.0 11.3 1.7 p 10.4 4.4 10.1 5.5 8.6 5.5 t7 10.4 4.4 10.1 5.5 p 10.4 4.4 11.3 1.7 8.6 0.0 8.6 5.5 s7 10.4 4.4 11.3 1.7 p 10.5 0.0 10.3 1.1 8.6 0.0 t8 10.5 0.0 10.3 1.1 p 8.9 5.3 8.8 5.5 8.6 5.5 t8 8.9 5.3 8.8 5.5 p 8.9 5.3 10.3 1.1 8.6 0.0 8.6 5.5 s8 8.9 5.3 10.3 1.1 p 17.2 0.0 25.7 0.0 25.7 5.5 17.2 5.5 s1 25.7 0.0 34.3 0.0 34.3 5.5 25.7 5.5 s1 25.9 0.0 26.0 0.1 30.0 2.8 34.3 0.0 s2 25.9 0.0 26.0 0.1 p 34.3 0.0 30.0 2.8 34.3 5.5 t2 26.2 5.2 26.3 5.5 34.3 5.5 30.0 2.8 s2 26.2 5.2 26.3 5.5 p 26.2 5.2 26.0 0.1 30.0 2.8 t2 26.2 5.2 26.0 0.1 p 27.0 0.0 27.2 0.9 30.0 2.8 34.3 0.0 s3 27.0 0.0 27.2 0.9 p 34.3 0.0 30.0 2.8 34.3 5.5 t3 27.4 4.5 27.6 5.5 34.3 5.5 30.0 2.8 s3 27.4 4.5 27.6 5.5 p 27.4 4.5 27.2 0.9 30.0 2.8 t3 27.4 4.5 27.2 0.9 p 28.1 0.0 28.4 1.7 30.0 2.8 34.3 0.0 s4 28.1 0.0 28.4 1.7 p 34.3 0.0 30.0 2.8 34.3 5.5 t4 28.5 3.7 28.9 5.5 34.3 5.5 30.0 2.8 s4 28.5 3.7 28.9 5.5 p 28.5 3.7 28.4 1.7 30.0 2.8 t4 28.5 3.7 28.4 1.7 p 29.1 0.0 29.6 2.5 30.0 2.8 34.3 0.0 s5 29.1 0.0 29.6 2.5 p 34.3 0.0 30.0 2.8 34.3 5.5 t5 29.6 3.0 30.2 5.5 34.3 5.5 30.0 2.8 s5 29.6 3.0 30.2 5.5 p 29.6 3.0 29.6 2.5 30.0 2.8 t5 29.6 3.0 29.6 2.5 p 30.6 2.4 30.2 0.0 34.3 0.0 t6 30.6 2.4 30.2 0.0 p 30.6 2.4 31.0 3.4 34.3 5.5 34.3 0.0 s6 30.6 2.4 31.0 3.4 p 31.5 5.5 31.0 3.4 34.3 5.5 t6 31.5 5.5 31.0 3.4 p 31.6 1.7 31.3 0.0 34.3 0.0 t7 31.6 1.7 31.3 0.0 p 31.6 1.7 32.5 4.4 34.3 5.5 34.3 0.0 s7 31.6 1.7 32.5 4.4 p 32.8 5.5 32.5 4.4 34.3 5.5 t7 32.8 5.5 32.5 4.4 p 32.6 1.1 32.3 0.0 34.3 0.0 t8 32.6 1.1 32.3 0.0 p 32.6 1.1 34.0 5.3 34.3 5.5 34.3 0.0 s8 32.6 1.1 34.0 5.3 p 34.1 5.5 34.0 5.3 34.3 5.5 t8 34.1 5.5 34.0 5.3 p 34.3 0.0 42.9 0.0 42.9 5.5 34.3 5.5 s8 42.9 0.0 51.5 0.0 51.5 5.5 42.9 5.5 s8 51.5 0.0 60.1 0.0 60.1 5.5 51.5 5.5 s1 59.8 0.1 59.9 0.0 51.5 0.0 55.8 2.8 s2 59.8 0.1 59.9 0.0 p 59.8 0.1 59.6 5.2 55.8 2.8 t2 59.8 0.1 59.6 5.2 p 59.5 5.5 59.6 5.2 55.8 2.8 51.5 5.5 s2 59.5 5.5 59.6 5.2 p 51.5 5.5 55.8 2.8 51.5 0.0 t2 58.6 0.9 58.8 0.0 51.5 0.0 55.8 2.8 s3 58.6 0.9 58.8 0.0 p 58.6 0.9 58.4 4.5 55.8 2.8 t3 58.6 0.9 58.4 4.5 p 58.2 5.5 58.4 4.5 55.8 2.8 51.5 5.5 s3 58.2 5.5 58.4 4.5 p 51.5 5.5 55.8 2.8 51.5 0.0 t3 57.4 1.7 57.7 0.0 51.5 0.0 55.8 2.8 s4 57.4 1.7 57.7 0.0 p 57.4 1.7 57.3 3.7 55.8 2.8 t4 57.4 1.7 57.3 3.7 p 56.9 5.5 57.3 3.7 55.8 2.8 51.5 5.5 s4 56.9 5.5 57.3 3.7 p 51.5 5.5 55.8 2.8 51.5 0.0 t4 56.2 2.5 56.6 0.0 51.5 0.0 55.8 2.8 s5 56.2 2.5 56.6 0.0 p 56.2 2.5 56.2 3.0 55.8 2.8 t5 56.2 2.5 56.2 3.0 p 55.6 5.5 56.2 3.0 55.8 2.8 51.5 5.5 s5 55.6 5.5 56.2 3.0 p 51.5 5.5 55.8 2.8 51.5 0.0 t5 55.6 0.0 55.1 2.4 51.5 0.0 t6 55.6 0.0 55.1 2.4 p 54.8 3.4 54.3 5.5 51.5 5.5 t6 54.8 3.4 54.3 5.5 p 54.8 3.4 55.1 2.4 51.5 0.0 51.5 5.5 s6 54.8 3.4 55.1 2.4 p 54.5 0.0 54.2 1.7 51.5 0.0 t7 54.5 0.0 54.2 1.7 p 53.3 4.4 53.0 5.5 51.5 5.5 t7 53.3 4.4 53.0 5.5 p 53.3 4.4 54.2 1.7 51.5 0.0 51.5 5.5 s7 53.3 4.4 54.2 1.7 p 53.4 0.0 53.2 1.1 51.5 0.0 t8 53.4 0.0 53.2 1.1 p 51.8 5.3 51.7 5.5 51.5 5.5 t8 51.8 5.3 51.7 5.5 p 51.8 5.3 53.2 1.1 51.5 0.0 51.5 5.5 s8 51.8 5.3 53.2 1.1 p 60.1 0.0 68.6 0.0 68.6 5.5 60.1 5.5 s1 68.6 0.0 77.2 0.0 77.2 5.5 68.6 5.5 s1 68.8 0.0 68.9 0.1 72.9 2.8 77.2 0.0 s2 68.8 0.0 68.9 0.1 p 77.2 0.0 72.9 2.8 77.2 5.5 t2 69.1 5.2 69.2 5.5 77.2 5.5 72.9 2.8 s2 69.1 5.2 69.2 5.5 p 69.1 5.2 68.9 0.1 72.9 2.8 t2 69.1 5.2 68.9 0.1 p 69.9 0.0 70.1 0.9 72.9 2.8 77.2 0.0 s3 69.9 0.0 70.1 0.9 p 77.2 0.0 72.9 2.8 77.2 5.5 t3 70.3 4.5 70.5 5.5 77.2 5.5 72.9 2.8 s3 70.3 4.5 70.5 5.5 p 70.3 4.5 70.1 0.9 72.9 2.8 t3 70.3 4.5 70.1 0.9 p 71.0 0.0 71.3 1.7 72.9 2.8 77.2 0.0 s4 71.0 0.0 71.3 1.7 p 77.2 0.0 72.9 2.8 77.2 5.5 t4 71.4 3.7 71.8 5.5 77.2 5.5 72.9 2.8 s4 71.4 3.7 71.8 5.5 p 71.4 3.7 71.3 1.7 72.9 2.8 t4 71.4 3.7 71.3 1.7 p 72.0 0.0 72.5 2.5 72.9 2.8 77.2 0.0 s5 72.0 0.0 72.5 2.5 p 77.2 0.0 72.9 2.8 77.2 5.5 t5 72.5 3.0 73.1 5.5 77.2 5.5 72.9 2.8 s5 72.5 3.0 73.1 5.5 p 72.5 3.0 72.5 2.5 72.9 2.8 t5 72.5 3.0 72.5 2.5 p 73.5 2.4 73.1 0.0 77.2 0.0 t6 73.5 2.4 73.1 0.0 p 73.5 2.4 73.9 3.4 77.2 5.5 77.2 0.0 s6 73.5 2.4 73.9 3.4 p 74.4 5.5 73.9 3.4 77.2 5.5 t6 74.4 5.5 73.9 3.4 p 74.5 1.7 74.2 0.0 77.2 0.0 t7 74.5 1.7 74.2 0.0 p 74.5 1.7 75.4 4.4 77.2 5.5 77.2 0.0 s7 74.5 1.7 75.4 4.4 p 75.7 5.5 75.4 4.4 77.2 5.5 t7 75.7 5.5 75.4 4.4 p 75.5 1.1 75.2 0.0 77.2 0.0 t8 75.5 1.1 75.2 0.0 p 75.5 1.1 76.9 5.3 77.2 5.5 77.2 0.0 s8 75.5 1.1 76.9 5.3 p 77.0 5.5 76.9 5.3 77.2 5.5 t8 77.0 5.5 76.9 5.3 p 77.2 0.0 85.8 0.0 85.8 5.5 77.2 5.5 s8 85.8 0.0 94.4 0.0 94.4 5.5 85.8 5.5 s8 94.4 0.0 102.9 0.0 102.9 5.5 94.4 5.5 s1 102.7 0.1 102.7 0.0 94.4 0.0 98.7 2.8 s2 102.7 0.1 102.7 0.0 p 102.7 0.1 102.4 5.2 98.7 2.8 t2 102.7 0.1 102.4 5.2 p 102.4 5.5 102.4 5.2 98.7 2.8 94.4 5.5 s2 102.4 5.5 102.4 5.2 p 94.4 5.5 98.7 2.8 94.4 0.0 t2 101.5 0.9 101.7 0.0 94.4 0.0 98.7 2.8 s3 101.5 0.9 101.7 0.0 p 101.5 0.9 101.3 4.5 98.7 2.8 t3 101.5 0.9 101.3 4.5 p 101.1 5.5 101.3 4.5 98.7 2.8 94.4 5.5 s3 101.1 5.5 101.3 4.5 p 94.4 5.5 98.7 2.8 94.4 0.0 t3 100.3 1.7 100.6 0.0 94.4 0.0 98.7 2.8 s4 100.3 1.7 100.6 0.0 p 100.3 1.7 100.2 3.7 98.7 2.8 t4 100.3 1.7 100.2 3.7 p 99.8 5.5 100.2 3.7 98.7 2.8 94.4 5.5 s4 99.8 5.5 100.2 3.7 p 94.4 5.5 98.7 2.8 94.4 0.0 t4 99.1 2.5 99.5 0.0 94.4 0.0 98.7 2.8 s5 99.1 2.5 99.5 0.0 p 99.1 2.5 99.1 3.0 98.7 2.8 t5 99.1 2.5 99.1 3.0 p 98.5 5.5 99.1 3.0 98.7 2.8 94.4 5.5 s5 98.5 5.5 99.1 3.0 p 94.4 5.5 98.7 2.8 94.4 0.0 t5 98.5 0.0 98.0 2.4 94.4 0.0 t6 98.5 0.0 98.0 2.4 p 97.7 3.4 97.2 5.5 94.4 5.5 t6 97.7 3.4 97.2 5.5 p 97.7 3.4 98.0 2.4 94.4 0.0 94.4 5.5 s6 97.7 3.4 98.0 2.4 p 97.4 0.0 97.1 1.7 94.4 0.0 t7 97.4 0.0 97.1 1.7 p 96.2 4.4 95.9 5.5 94.4 5.5 t7 96.2 4.4 95.9 5.5 p 96.2 4.4 97.1 1.7 94.4 0.0 94.4 5.5 s7 96.2 4.4 97.1 1.7 p 96.3 0.0 96.1 1.1 94.4 0.0 t8 96.3 0.0 96.1 1.1 p 94.7 5.3 94.6 5.5 94.4 5.5 t8 94.7 5.3 94.6 5.5 p 94.7 5.3 96.1 1.1 94.4 0.0 94.4 5.5 s8 94.7 5.3 96.1 1.1 p 102.9 0.0 111.5 0.0 111.5 5.5 102.9 5.5 s1 111.5 0.0 120.1 0.0 120.1 5.5 111.5 5.5 s1 111.7 0.0 111.8 0.1 115.8 2.8 120.1 0.0 s2 111.7 0.0 111.8 0.1 p 120.1 0.0 115.8 2.8 120.1 5.5 t2 112.0 5.2 112.1 5.5 120.1 5.5 115.8 2.8 s2 112.0 5.2 112.1 5.5 p 112.0 5.2 111.8 0.1 115.8 2.8 t2 112.0 5.2 111.8 0.1 p 112.8 0.0 113.0 0.9 115.8 2.8 120.1 0.0 s3 112.8 0.0 113.0 0.9 p 120.1 0.0 115.8 2.8 120.1 5.5 t3 113.2 4.5 113.4 5.5 120.1 5.5 115.8 2.8 s3 113.2 4.5 113.4 5.5 p 113.2 4.5 113.0 0.9 115.8 2.8 t3 113.2 4.5 113.0 0.9 p 113.9 0.0 114.2 1.7 115.8 2.8 120.1 0.0 s4 113.9 0.0 114.2 1.7 p 120.1 0.0 115.8 2.8 120.1 5.5 t4 114.3 3.7 114.7 5.5 120.1 5.5 115.8 2.8 s4 114.3 3.7 114.7 5.5 p 114.3 3.7 114.2 1.7 115.8 2.8 t4 114.3 3.7 114.2 1.7 p 114.9 0.0 115.4 2.5 115.8 2.8 120.1 0.0 s5 114.9 0.0 115.4 2.5 p 120.1 0.0 115.8 2.8 120.1 5.5 t5 115.4 3.0 116.0 5.5 120.1 5.5 115.8 2.8 s5 115.4 3.0 116.0 5.5 p 115.4 3.0 115.4 2.5 115.8 2.8 t5 115.4 3.0 115.4 2.5 p 116.4 2.4 116.0 0.0 120.1 0.0 t6 116.4 2.4 116.0 0.0 p 116.4 2.4 116.8 3.4 120.1 5.5 120.1 0.0 s6 116.4 2.4 116.8 3.4 p 117.3 5.5 116.8 3.4 120.1 5.5 t6 117.3 5.5 116.8 3.4 p 117.4 1.7 117.1 0.0 120.1 0.0 t7 117.4 1.7 117.1 0.0 p 117.4 1.7 118.3 4.4 120.1 5.5 120.1 0.0 s7 117.4 1.7 118.3 4.4 p 118.6 5.5 118.3 4.4 120.1 5.5 t7 118.6 5.5 118.3 4.4 p 118.3 1.1 118.1 0.0 120.1 0.0 t8 118.3 1.1 118.1 0.0 p 118.3 1.1 119.8 5.3 120.1 5.5 120.1 0.0 s8 118.3 1.1 119.8 5.3 p 119.9 5.5 119.8 5.3 120.1 5.5 t8 119.9 5.5 119.8 5.3 p 120.1 0.0 128.7 0.0 128.7 5.5 120.1 5.5 s8 128.7 0.0 137.3 0.0 137.3 5.5 128.7 5.5 s8 137.3 0.0 145.8 0.0 145.8 5.5 137.3 5.5 s1 145.6 0.1 145.6 0.0 137.3 0.0 141.6 2.8 s2 145.6 0.1 145.6 0.0 p 145.6 0.1 145.3 5.2 141.6 2.8 t2 145.6 0.1 145.3 5.2 p 145.3 5.5 145.3 5.2 141.6 2.8 137.3 5.5 s2 145.3 5.5 145.3 5.2 p 137.3 5.5 141.6 2.8 137.3 0.0 t2 144.4 0.9 144.6 0.0 137.3 0.0 141.6 2.8 s3 144.4 0.9 144.6 0.0 p 144.4 0.9 144.2 4.5 141.6 2.8 t3 144.4 0.9 144.2 4.5 p 144.0 5.5 144.2 4.5 141.6 2.8 137.3 5.5 s3 144.0 5.5 144.2 4.5 p 137.3 5.5 141.6 2.8 137.3 0.0 t3 143.2 1.7 143.5 0.0 137.3 0.0 141.6 2.8 s4 143.2 1.7 143.5 0.0 p 143.2 1.7 143.1 3.7 141.6 2.8 t4 143.2 1.7 143.1 3.7 p 142.7 5.5 143.1 3.7 141.6 2.8 137.3 5.5 s4 142.7 5.5 143.1 3.7 p 137.3 5.5 141.6 2.8 137.3 0.0 t4 142.0 2.5 142.4 0.0 137.3 0.0 141.6 2.8 s5 142.0 2.5 142.4 0.0 p 142.0 2.5 141.9 3.0 141.6 2.8 t5 142.0 2.5 141.9 3.0 p 141.4 5.5 141.9 3.0 141.6 2.8 137.3 5.5 s5 141.4 5.5 141.9 3.0 p 137.3 5.5 141.6 2.8 137.3 0.0 t5 141.4 0.0 140.9 2.4 137.3 0.0 t6 141.4 0.0 140.9 2.4 p 140.6 3.4 140.1 5.5 137.3 5.5 t6 140.6 3.4 140.1 5.5 p 140.6 3.4 140.9 2.4 137.3 0.0 137.3 5.5 s6 140.6 3.4 140.9 2.4 p 140.3 0.0 140.0 1.7 137.3 0.0 t7 140.3 0.0 140.0 1.7 p 139.1 4.4 138.8 5.5 137.3 5.5 t7 139.1 4.4 138.8 5.5 p 139.1 4.4 140.0 1.7 137.3 0.0 137.3 5.5 s7 139.1 4.4 140.0 1.7 p 139.2 0.0 139.0 1.1 137.3 0.0 t8 139.2 0.0 139.0 1.1 p 137.6 5.3 137.5 5.5 137.3 5.5 t8 137.6 5.3 137.5 5.5 p 137.6 5.3 139.0 1.1 137.3 0.0 137.3 5.5 s8 137.6 5.3 139.0 1.1 p 145.8 0.0 154.4 0.0 154.4 5.5 145.8 5.5 s1 154.4 0.0 163.0 0.0 163.0 5.5 154.4 5.5 s1 154.6 0.0 154.6 0.1 158.7 2.8 163.0 0.0 s2 154.6 0.0 154.6 0.1 p 163.0 0.0 158.7 2.8 163.0 5.5 t2 154.9 5.2 155.0 5.5 163.0 5.5 158.7 2.8 s2 154.9 5.2 155.0 5.5 p 154.9 5.2 154.6 0.1 158.7 2.8 t2 154.9 5.2 154.6 0.1 p 155.7 0.0 155.9 0.9 158.7 2.8 163.0 0.0 s3 155.7 0.0 155.9 0.9 p 163.0 0.0 158.7 2.8 163.0 5.5 t3 156.1 4.5 156.3 5.5 163.0 5.5 158.7 2.8 s3 156.1 4.5 156.3 5.5 p 156.1 4.5 155.9 0.9 158.7 2.8 t3 156.1 4.5 155.9 0.9 p 156.8 0.0 157.1 1.7 158.7 2.8 163.0 0.0 s4 156.8 0.0 157.1 1.7 p 163.0 0.0 158.7 2.8 163.0 5.5 t4 157.2 3.7 157.6 5.5 163.0 5.5 158.7 2.8 s4 157.2 3.7 157.6 5.5 p 157.2 3.7 157.1 1.7 158.7 2.8 t4 157.2 3.7 157.1 1.7 p 157.8 0.0 158.3 2.5 158.7 2.8 163.0 0.0 s5 157.8 0.0 158.3 2.5 p 163.0 0.0 158.7 2.8 163.0 5.5 t5 158.3 3.0 158.9 5.5 163.0 5.5 158.7 2.8 s5 158.3 3.0 158.9 5.5 p 158.3 3.0 158.3 2.5 158.7 2.8 t5 158.3 3.0 158.3 2.5 p 159.3 2.4 158.9 0.0 163.0 0.0 t6 159.3 2.4 158.9 0.0 p 159.3 2.4 159.7 3.4 163.0 5.5 163.0 0.0 s6 159.3 2.4 159.7 3.4 p 160.2 5.5 159.7 3.4 163.0 5.5 t6 160.2 5.5 159.7 3.4 p 160.3 1.7 160.0 0.0 163.0 0.0 t7 160.3 1.7 160.0 0.0 p 160.3 1.7 161.2 4.4 163.0 5.5 163.0 0.0 s7 160.3 1.7 161.2 4.4 p 161.5 5.5 161.2 4.4 163.0 5.5 t7 161.5 5.5 161.2 4.4 p 161.2 1.1 161.0 0.0 163.0 0.0 t8 161.2 1.1 161.0 0.0 p 161.2 1.1 162.7 5.3 163.0 5.5 163.0 0.0 s8 161.2 1.1 162.7 5.3 p 162.7 5.5 162.7 5.3 163.0 5.5 t8 162.7 5.5 162.7 5.3 p 163.0 0.0 171.6 0.0 171.6 5.5 163.0 5.5 s8 171.6 0.0 180.2 0.0 180.2 5.5 171.6 5.5 s8 180.2 0.0 188.7 0.0 188.7 5.5 180.2 5.5 s1 188.5 0.1 188.5 0.0 180.2 0.0 184.4 2.8 s2 188.5 0.1 188.5 0.0 p 188.5 0.1 188.2 5.2 184.4 2.8 t2 188.5 0.1 188.2 5.2 p 188.2 5.5 188.2 5.2 184.4 2.8 180.2 5.5 s2 188.2 5.5 188.2 5.2 p 180.2 5.5 184.4 2.8 180.2 0.0 t2 187.3 0.9 187.5 0.0 180.2 0.0 184.4 2.8 s3 187.3 0.9 187.5 0.0 p 187.3 0.9 187.1 4.5 184.4 2.8 t3 187.3 0.9 187.1 4.5 p 186.9 5.5 187.1 4.5 184.4 2.8 180.2 5.5 s3 186.9 5.5 187.1 4.5 p 180.2 5.5 184.4 2.8 180.2 0.0 t3 186.1 1.7 186.4 0.0 180.2 0.0 184.4 2.8 s4 186.1 1.7 186.4 0.0 p 186.1 1.7 186.0 3.7 184.4 2.8 t4 186.1 1.7 186.0 3.7 p 185.6 5.5 186.0 3.7 184.4 2.8 180.2 5.5 s4 185.6 5.5 186.0 3.7 p 180.2 5.5 184.4 2.8 180.2 0.0 t4 184.9 2.5 185.3 0.0 180.2 0.0 184.4 2.8 s5 184.9 2.5 185.3 0.0 p 184.9 2.5 184.8 3.0 184.4 2.8 t5 184.9 2.5 184.8 3.0 p 184.3 5.5 184.8 3.0 184.4 2.8 180.2 5.5 s5 184.3 5.5 184.8 3.0 p 180.2 5.5 184.4 2.8 180.2 0.0 t5 184.3 0.0 183.8 2.4 180.2 0.0 t6 184.3 0.0 183.8 2.4 p 183.5 3.4 183.0 5.5 180.2 5.5 t6 183.5 3.4 183.0 5.5 p 183.5 3.4 183.8 2.4 180.2 0.0 180.2 5.5 s6 183.5 3.4 183.8 2.4 p 183.2 0.0 182.9 1.7 180.2 0.0 t7 183.2 0.0 182.9 1.7 p 182.0 4.4 181.7 5.5 180.2 5.5 t7 182.0 4.4 181.7 5.5 p 182.0 4.4 182.9 1.7 180.2 0.0 180.2 5.5 s7 182.0 4.4 182.9 1.7 p 182.1 0.0 181.9 1.1 180.2 0.0 t8 182.1 0.0 181.9 1.1 p 180.5 5.3 180.4 5.5 180.2 5.5 t8 180.5 5.3 180.4 5.5 p 180.5 5.3 181.9 1.1 180.2 0.0 180.2 5.5 s8 180.5 5.3 181.9 1.1 p 188.7 0.0 197.3 0.0 197.3 5.5 188.7 5.5 s1 197.3 0.0 205.9 0.0 205.9 5.5 197.3 5.5 s1 197.5 0.0 197.5 0.1 201.6 2.8 205.9 0.0 s2 197.5 0.0 197.5 0.1 p 205.9 0.0 201.6 2.8 205.9 5.5 t2 197.8 5.2 197.9 5.5 205.9 5.5 201.6 2.8 s2 197.8 5.2 197.9 5.5 p 197.8 5.2 197.5 0.1 201.6 2.8 t2 197.8 5.2 197.5 0.1 p 198.6 0.0 198.8 0.9 201.6 2.8 205.9 0.0 s3 198.6 0.0 198.8 0.9 p 205.9 0.0 201.6 2.8 205.9 5.5 t3 198.9 4.5 199.2 5.5 205.9 5.5 201.6 2.8 s3 198.9 4.5 199.2 5.5 p 198.9 4.5 198.8 0.9 201.6 2.8 t3 198.9 4.5 198.8 0.9 p 199.7 0.0 200.0 1.7 201.6 2.8 205.9 0.0 s4 199.7 0.0 200.0 1.7 p 205.9 0.0 201.6 2.8 205.9 5.5 t4 200.1 3.7 200.5 5.5 205.9 5.5 201.6 2.8 s4 200.1 3.7 200.5 5.5 p 200.1 3.7 200.0 1.7 201.6 2.8 t4 200.1 3.7 200.0 1.7 p 200.7 0.0 201.2 2.5 201.6 2.8 205.9 0.0 s5 200.7 0.0 201.2 2.5 p 205.9 0.0 201.6 2.8 205.9 5.5 t5 201.2 3.0 201.8 5.5 205.9 5.5 201.6 2.8 s5 201.2 3.0 201.8 5.5 p 201.2 3.0 201.2 2.5 201.6 2.8 t5 201.2 3.0 201.2 2.5 p 202.2 2.4 201.8 0.0 205.9 0.0 t6 202.2 2.4 201.8 0.0 p 202.2 2.4 202.6 3.4 205.9 5.5 205.9 0.0 s6 202.2 2.4 202.6 3.4 p 203.1 5.5 202.6 3.4 205.9 5.5 t6 203.1 5.5 202.6 3.4 p 203.2 1.7 202.9 0.0 205.9 0.0 t7 203.2 1.7 202.9 0.0 p 203.2 1.7 204.1 4.4 205.9 5.5 205.9 0.0 s7 203.2 1.7 204.1 4.4 p 204.3 5.5 204.1 4.4 205.9 5.5 t7 204.3 5.5 204.1 4.4 p 204.1 1.1 203.9 0.0 205.9 0.0 t8 204.1 1.1 203.9 0.0 p 204.1 1.1 205.6 5.3 205.9 5.5 205.9 0.0 s8 204.1 1.1 205.6 5.3 p 205.6 5.5 205.6 5.3 205.9 5.5 t8 205.6 5.5 205.6 5.3 p 205.9 0.0 214.5 0.0 214.5 5.5 205.9 5.5 s8 214.5 0.0 223.1 0.0 223.1 5.5 214.5 5.5 s8 223.1 0.0 231.6 0.0 231.6 5.5 223.1 5.5 s1 231.4 0.1 231.4 0.0 223.1 0.0 227.3 2.8 s2 231.4 0.1 231.4 0.0 p 231.4 0.1 231.1 5.2 227.3 2.8 t2 231.4 0.1 231.1 5.2 p 231.1 5.5 231.1 5.2 227.3 2.8 223.1 5.5 s2 231.1 5.5 231.1 5.2 p 223.1 5.5 227.3 2.8 223.1 0.0 t2 230.2 0.9 230.4 0.0 223.1 0.0 227.3 2.8 s3 230.2 0.9 230.4 0.0 p 230.2 0.9 230.0 4.5 227.3 2.8 t3 230.2 0.9 230.0 4.5 p 229.8 5.5 230.0 4.5 227.3 2.8 223.1 5.5 s3 229.8 5.5 230.0 4.5 p 223.1 5.5 227.3 2.8 223.1 0.0 t3 229.0 1.7 229.3 0.0 223.1 0.0 227.3 2.8 s4 229.0 1.7 229.3 0.0 p 229.0 1.7 228.9 3.7 227.3 2.8 t4 229.0 1.7 228.9 3.7 p 228.5 5.5 228.9 3.7 227.3 2.8 223.1 5.5 s4 228.5 5.5 228.9 3.7 p 223.1 5.5 227.3 2.8 223.1 0.0 t4 227.8 2.5 228.2 0.0 223.1 0.0 227.3 2.8 s5 227.8 2.5 228.2 0.0 p 227.8 2.5 227.7 3.0 227.3 2.8 t5 227.8 2.5 227.7 3.0 p 227.2 5.5 227.7 3.0 227.3 2.8 223.1 5.5 s5 227.2 5.5 227.7 3.0 p 223.1 5.5 227.3 2.8 223.1 0.0 t5 227.2 0.0 226.7 2.4 223.1 0.0 t6 227.2 0.0 226.7 2.4 p 226.4 3.4 225.9 5.5 223.1 5.5 t6 226.4 3.4 225.9 5.5 p 226.4 3.4 226.7 2.4 223.1 0.0 223.1 5.5 s6 226.4 3.4 226.7 2.4 p 226.1 0.0 225.8 1.7 223.1 0.0 t7 226.1 0.0 225.8 1.7 p 224.9 4.4 224.6 5.5 223.1 5.5 t7 224.9 4.4 224.6 5.5 p 224.9 4.4 225.8 1.7 223.1 0.0 223.1 5.5 s7 224.9 4.4 225.8 1.7 p 225.0 0.0 224.8 1.1 223.1 0.0 t8 225.0 0.0 224.8 1.1 p 223.3 5.3 223.3 5.5 223.1 5.5 t8 223.3 5.3 223.3 5.5 p 223.3 5.3 224.8 1.1 223.1 0.0 223.1 5.5 s8 223.3 5.3 224.8 1.1 p 231.6 0.0 240.2 0.0 240.2 5.5 231.6 5.5 s1 240.2 0.0 248.8 0.0 248.8 5.5 240.2 5.5 s1 240.4 0.0 240.4 0.1 244.5 2.8 248.8 0.0 s2 240.4 0.0 240.4 0.1 p 248.8 0.0 244.5 2.8 248.8 5.5 t2 240.7 5.2 240.8 5.5 248.8 5.5 244.5 2.8 s2 240.7 5.2 240.8 5.5 p 240.7 5.2 240.4 0.1 244.5 2.8 t2 240.7 5.2 240.4 0.1 p 241.5 0.0 241.6 0.9 244.5 2.8 248.8 0.0 s3 241.5 0.0 241.6 0.9 p 248.8 0.0 244.5 2.8 248.8 5.5 t3 241.8 4.5 242.1 5.5 248.8 5.5 244.5 2.8 s3 241.8 4.5 242.1 5.5 p 241.8 4.5 241.6 0.9 244.5 2.8 t3 241.8 4.5 241.6 0.9 p 242.5 0.0 242.9 1.7 244.5 2.8 248.8 0.0 s4 242.5 0.0 242.9 1.7 p 248.8 0.0 244.5 2.8 248.8 5.5 t4 243.0 3.7 243.4 5.5 248.8 5.5 244.5 2.8 s4 243.0 3.7 243.4 5.5 p 243.0 3.7 242.9 1.7 244.5 2.8 t4 243.0 3.7 242.9 1.7 p 243.6 0.0 244.1 2.5 244.5 2.8 248.8 0.0 s5 243.6 0.0 244.1 2.5 p 248.8 0.0 244.5 2.8 248.8 5.5 t5 244.1 3.0 244.7 5.5 248.8 5.5 244.5 2.8 s5 244.1 3.0 244.7 5.5 p 244.1 3.0 244.1 2.5 244.5 2.8 t5 244.1 3.0 244.1 2.5 p 245.1 2.4 244.7 0.0 248.8 0.0 t6 245.1 2.4 244.7 0.0 p 245.1 2.4 245.5 3.4 248.8 5.5 248.8 0.0 s6 245.1 2.4 245.5 3.4 p 246.0 5.5 245.5 3.4 248.8 5.5 t6 246.0 5.5 245.5 3.4 p 246.1 1.7 245.8 0.0 248.8 0.0 t7 246.1 1.7 245.8 0.0 p 246.1 1.7 247.0 4.4 248.8 5.5 248.8 0.0 s7 246.1 1.7 247.0 4.4 p 247.2 5.5 247.0 4.4 248.8 5.5 t7 247.2 5.5 247.0 4.4 p 247.0 1.1 246.8 0.0 248.8 0.0 t8 247.0 1.1 246.8 0.0 p 247.0 1.1 248.5 5.3 248.8 5.5 248.8 0.0 s8 247.0 1.1 248.5 5.3 p 248.5 5.5 248.5 5.3 248.8 5.5 t8 248.5 5.5 248.5 5.3 p 248.8 0.0 257.4 0.0 257.4 5.5 248.8 5.5 s8 257.4 0.0 265.9 0.0 265.9 5.5 257.4 5.5 s8 265.9 0.0 274.5 0.0 274.5 5.5 265.9 5.5 s1 274.3 0.1 274.3 0.0 265.9 0.0 270.2 2.8 s2 274.3 0.1 274.3 0.0 p 274.3 0.1 274.0 5.2 270.2 2.8 t2 274.3 0.1 274.0 5.2 p 274.0 5.5 274.0 5.2 270.2 2.8 265.9 5.5 s2 274.0 5.5 274.0 5.2 p 265.9 5.5 270.2 2.8 265.9 0.0 t2 273.1 0.9 273.3 0.0 265.9 0.0 270.2 2.8 s3 273.1 0.9 273.3 0.0 p 273.1 0.9 272.9 4.5 270.2 2.8 t3 273.1 0.9 272.9 4.5 p 272.7 5.5 272.9 4.5 270.2 2.8 265.9 5.5 s3 272.7 5.5 272.9 4.5 p 265.9 5.5 270.2 2.8 265.9 0.0 t3 271.9 1.7 272.2 0.0 265.9 0.0 270.2 2.8 s4 271.9 1.7 272.2 0.0 p 271.9 1.7 271.8 3.7 270.2 2.8 t4 271.9 1.7 271.8 3.7 p 271.4 5.5 271.8 3.7 270.2 2.8 265.9 5.5 s4 271.4 5.5 271.8 3.7 p 265.9 5.5 270.2 2.8 265.9 0.0 t4 270.7 2.5 271.1 0.0 265.9 0.0 270.2 2.8 s5 270.7 2.5 271.1 0.0 p 270.7 2.5 270.6 3.0 270.2 2.8 t5 270.7 2.5 270.6 3.0 p 270.1 5.5 270.6 3.0 270.2 2.8 265.9 5.5 s5 270.1 5.5 270.6 3.0 p 265.9 5.5 270.2 2.8 265.9 0.0 t5 270.0 0.0 269.6 2.4 265.9 0.0 t6 270.0 0.0 269.6 2.4 p 269.3 3.4 268.8 5.5 265.9 5.5 t6 269.3 3.4 268.8 5.5 p 269.3 3.4 269.6 2.4 265.9 0.0 265.9 5.5 s6 269.3 3.4 269.6 2.4 p 269.0 0.0 268.7 1.7 265.9 0.0 t7 269.0 0.0 268.7 1.7 p 267.7 4.4 267.5 5.5 265.9 5.5 t7 267.7 4.4 267.5 5.5 p 267.7 4.4 268.7 1.7 265.9 0.0 265.9 5.5 s7 267.7 4.4 268.7 1.7 p 267.9 0.0 267.7 1.1 265.9 0.0 t8 267.9 0.0 267.7 1.1 p 266.2 5.3 266.2 5.5 265.9 5.5 t8 266.2 5.3 266.2 5.5 p 266.2 5.3 267.7 1.1 265.9 0.0 265.9 5.5 s8 266.2 5.3 267.7 1.1 p 274.5 0.0 283.1 0.0 283.1 5.5 274.5 5.5 s1 283.1 0.0 291.7 0.0 291.7 5.5 283.1 5.5 s1 283.3 0.0 283.3 0.1 287.4 2.8 291.7 0.0 s2 283.3 0.0 283.3 0.1 p 291.7 0.0 287.4 2.8 291.7 5.5 t2 283.6 5.2 283.7 5.5 291.7 5.5 287.4 2.8 s2 283.6 5.2 283.7 5.5 p 283.6 5.2 283.3 0.1 287.4 2.8 t2 283.6 5.2 283.3 0.1 p 284.4 0.0 284.5 0.9 287.4 2.8 291.7 0.0 s3 284.4 0.0 284.5 0.9 p 291.7 0.0 287.4 2.8 291.7 5.5 t3 284.7 4.5 285.0 5.5 291.7 5.5 287.4 2.8 s3 284.7 4.5 285.0 5.5 p 284.7 4.5 284.5 0.9 287.4 2.8 t3 284.7 4.5 284.5 0.9 p 285.4 0.0 285.8 1.7 287.4 2.8 291.7 0.0 s4 285.4 0.0 285.8 1.7 p 291.7 0.0 287.4 2.8 291.7 5.5 t4 285.9 3.7 286.3 5.5 291.7 5.5 287.4 2.8 s4 285.9 3.7 286.3 5.5 p 285.9 3.7 285.8 1.7 287.4 2.8 t4 285.9 3.7 285.8 1.7 p 286.5 0.0 287.0 2.5 287.4 2.8 291.7 0.0 s5 286.5 0.0 287.0 2.5 p 291.7 0.0 287.4 2.8 291.7 5.5 t5 287.0 3.0 287.6 5.5 291.7 5.5 287.4 2.8 s5 287.0 3.0 287.6 5.5 p 287.0 3.0 287.0 2.5 287.4 2.8 t5 287.0 3.0 287.0 2.5 p 288.0 2.4 287.6 0.0 291.7 0.0 t6 288.0 2.4 287.6 0.0 p 288.0 2.4 288.4 3.4 291.7 5.5 291.7 0.0 s6 288.0 2.4 288.4 3.4 p 288.8 5.5 288.4 3.4 291.7 5.5 t6 288.8 5.5 288.4 3.4 p 289.0 1.7 288.6 0.0 291.7 0.0 t7 289.0 1.7 288.6 0.0 p 289.0 1.7 289.9 4.4 291.7 5.5 291.7 0.0 s7 289.0 1.7 289.9 4.4 p 290.1 5.5 289.9 4.4 291.7 5.5 t7 290.1 5.5 289.9 4.4 p 289.9 1.1 289.7 0.0 291.7 0.0 t8 289.9 1.1 289.7 0.0 p 289.9 1.1 291.4 5.3 291.7 5.5 291.7 0.0 s8 289.9 1.1 291.4 5.3 p 291.4 5.5 291.4 5.3 291.7 5.5 t8 291.4 5.5 291.4 5.3 p 291.7 0.0 300.3 0.0 300.3 5.5 291.7 5.5 s8 1 setlinewidth 0 setgray newpath 0.0 0.0 moveto 300.3 0.0 lineto 300.3 303.3 lineto 0.0 303.3 lineto closepath stroke gsave newpath 0.0 0.0 moveto 300.3 0.0 lineto 300.3 303.3 lineto 0.0 303.3 lineto closepath clip stroke grestore grestore %%Trailer showpage espresso-5.1/PP/examples/example03/reference/AlAs110.ldos_boxes0000644000175000017500000030127612341372774022343 0ustar mbamba# E (eV) tot(E) totldos # 1 (E) # 2 (E) # 3 (E) # 4 (E) # 5 (E) # 6 (E) # 7 (E) # 8 (E) -11.745 0.269E-04 0.168E-08 0.144E-09 0.169E-10 0.354E-11 0.150E-08 0.945E-12 0.777E-12 0.172E-12 0.191E-10 -11.725 0.649E-04 0.406E-08 0.347E-09 0.408E-10 0.849E-11 0.361E-08 0.227E-11 0.185E-11 0.425E-12 0.460E-10 -11.705 0.150E-03 0.939E-08 0.802E-09 0.945E-10 0.195E-10 0.835E-08 0.523E-11 0.421E-11 0.101E-11 0.106E-09 -11.685 0.333E-03 0.208E-07 0.178E-08 0.210E-09 0.429E-10 0.185E-07 0.115E-10 0.920E-11 0.229E-11 0.236E-09 -11.665 0.710E-03 0.444E-07 0.379E-08 0.448E-09 0.905E-10 0.395E-07 0.244E-10 0.193E-10 0.502E-11 0.502E-09 -11.645 0.145E-02 0.907E-07 0.775E-08 0.917E-09 0.183E-09 0.807E-07 0.496E-10 0.387E-10 0.105E-10 0.102E-08 -11.625 0.284E-02 0.178E-06 0.152E-07 0.180E-08 0.356E-09 0.158E-06 0.967E-10 0.743E-10 0.212E-10 0.200E-08 -11.605 0.535E-02 0.334E-06 0.286E-07 0.339E-08 0.663E-09 0.298E-06 0.181E-09 0.137E-09 0.410E-10 0.377E-08 -11.585 0.967E-02 0.604E-06 0.516E-07 0.614E-08 0.118E-08 0.538E-06 0.324E-09 0.242E-09 0.762E-10 0.679E-08 -11.565 0.168E-01 0.105E-05 0.895E-07 0.107E-07 0.203E-08 0.932E-06 0.558E-09 0.411E-09 0.136E-09 0.118E-07 -11.545 0.279E-01 0.174E-05 0.149E-06 0.178E-07 0.334E-08 0.155E-05 0.922E-09 0.667E-09 0.232E-09 0.195E-07 -11.525 0.446E-01 0.279E-05 0.238E-06 0.285E-07 0.527E-08 0.248E-05 0.146E-08 0.104E-08 0.382E-09 0.312E-07 -11.505 0.686E-01 0.428E-05 0.366E-06 0.438E-07 0.798E-08 0.381E-05 0.222E-08 0.156E-08 0.603E-09 0.478E-07 -11.485 0.101E+00 0.632E-05 0.540E-06 0.648E-07 0.116E-07 0.562E-05 0.325E-08 0.223E-08 0.915E-09 0.705E-07 -11.465 0.144E+00 0.897E-05 0.767E-06 0.922E-07 0.162E-07 0.798E-05 0.457E-08 0.308E-08 0.134E-08 0.998E-07 -11.445 0.196E+00 0.123E-04 0.105E-05 0.126E-06 0.218E-07 0.109E-04 0.617E-08 0.409E-08 0.188E-08 0.136E-06 -11.425 0.259E+00 0.161E-04 0.138E-05 0.167E-06 0.282E-07 0.144E-04 0.802E-08 0.523E-08 0.255E-08 0.179E-06 -11.405 0.329E+00 0.205E-04 0.176E-05 0.212E-06 0.351E-07 0.183E-04 0.100E-07 0.645E-08 0.333E-08 0.227E-06 -11.385 0.405E+00 0.252E-04 0.217E-05 0.262E-06 0.421E-07 0.224E-04 0.121E-07 0.771E-08 0.423E-08 0.278E-06 -11.365 0.483E+00 0.301E-04 0.259E-05 0.313E-06 0.488E-07 0.268E-04 0.141E-07 0.897E-08 0.521E-08 0.331E-06 -11.345 0.562E+00 0.350E-04 0.303E-05 0.365E-06 0.550E-07 0.312E-04 0.160E-07 0.102E-07 0.627E-08 0.384E-06 -11.325 0.641E+00 0.400E-04 0.346E-05 0.417E-06 0.602E-07 0.355E-04 0.176E-07 0.115E-07 0.740E-08 0.437E-06 -11.305 0.720E+00 0.449E-04 0.391E-05 0.470E-06 0.647E-07 0.399E-04 0.190E-07 0.128E-07 0.863E-08 0.489E-06 -11.285 0.801E+00 0.501E-04 0.439E-05 0.525E-06 0.684E-07 0.445E-04 0.201E-07 0.144E-07 0.997E-08 0.544E-06 -11.265 0.887E+00 0.557E-04 0.491E-05 0.584E-06 0.719E-07 0.495E-04 0.211E-07 0.163E-07 0.115E-07 0.603E-06 -11.245 0.982E+00 0.621E-04 0.551E-05 0.650E-06 0.756E-07 0.552E-04 0.221E-07 0.187E-07 0.132E-07 0.669E-06 -11.225 0.109E+01 0.695E-04 0.619E-05 0.726E-06 0.800E-07 0.617E-04 0.231E-07 0.216E-07 0.151E-07 0.744E-06 -11.205 0.120E+01 0.780E-04 0.698E-05 0.812E-06 0.855E-07 0.692E-04 0.244E-07 0.250E-07 0.173E-07 0.829E-06 -11.185 0.132E+01 0.877E-04 0.788E-05 0.908E-06 0.922E-07 0.778E-04 0.258E-07 0.288E-07 0.196E-07 0.921E-06 -11.165 0.144E+01 0.985E-04 0.888E-05 0.101E-05 0.100E-06 0.874E-04 0.276E-07 0.328E-07 0.221E-07 0.102E-05 -11.145 0.156E+01 0.110E-03 0.998E-05 0.113E-05 0.110E-06 0.980E-04 0.295E-07 0.368E-07 0.246E-07 0.112E-05 -11.125 0.166E+01 0.123E-03 0.112E-04 0.125E-05 0.120E-06 0.109E-03 0.317E-07 0.405E-07 0.272E-07 0.122E-05 -11.105 0.176E+01 0.137E-03 0.125E-04 0.138E-05 0.131E-06 0.122E-03 0.340E-07 0.438E-07 0.298E-07 0.131E-05 -11.085 0.183E+01 0.152E-03 0.138E-04 0.151E-05 0.144E-06 0.135E-03 0.366E-07 0.466E-07 0.324E-07 0.140E-05 -11.065 0.190E+01 0.169E-03 0.153E-04 0.166E-05 0.157E-06 0.150E-03 0.392E-07 0.488E-07 0.350E-07 0.149E-05 -11.045 0.196E+01 0.186E-03 0.169E-04 0.181E-05 0.171E-06 0.165E-03 0.420E-07 0.506E-07 0.377E-07 0.158E-05 -11.025 0.202E+01 0.204E-03 0.186E-04 0.197E-05 0.185E-06 0.181E-03 0.447E-07 0.519E-07 0.404E-07 0.166E-05 -11.005 0.206E+01 0.222E-03 0.203E-04 0.213E-05 0.199E-06 0.197E-03 0.474E-07 0.530E-07 0.431E-07 0.175E-05 -10.985 0.210E+01 0.240E-03 0.220E-04 0.228E-05 0.212E-06 0.214E-03 0.500E-07 0.537E-07 0.455E-07 0.183E-05 -10.965 0.214E+01 0.258E-03 0.236E-04 0.244E-05 0.225E-06 0.230E-03 0.523E-07 0.542E-07 0.476E-07 0.191E-05 -10.945 0.217E+01 0.276E-03 0.253E-04 0.260E-05 0.237E-06 0.246E-03 0.544E-07 0.544E-07 0.492E-07 0.198E-05 -10.925 0.219E+01 0.295E-03 0.270E-04 0.276E-05 0.250E-06 0.262E-03 0.564E-07 0.545E-07 0.503E-07 0.205E-05 -10.905 0.222E+01 0.314E-03 0.288E-04 0.293E-05 0.263E-06 0.280E-03 0.583E-07 0.545E-07 0.510E-07 0.213E-05 -10.885 0.225E+01 0.335E-03 0.308E-04 0.312E-05 0.277E-06 0.299E-03 0.602E-07 0.546E-07 0.512E-07 0.220E-05 -10.865 0.230E+01 0.358E-03 0.328E-04 0.332E-05 0.292E-06 0.319E-03 0.623E-07 0.549E-07 0.513E-07 0.228E-05 -10.845 0.236E+01 0.382E-03 0.350E-04 0.353E-05 0.310E-06 0.340E-03 0.643E-07 0.556E-07 0.512E-07 0.238E-05 -10.825 0.243E+01 0.405E-03 0.372E-04 0.375E-05 0.329E-06 0.362E-03 0.662E-07 0.568E-07 0.512E-07 0.248E-05 -10.805 0.251E+01 0.428E-03 0.393E-04 0.395E-05 0.349E-06 0.381E-03 0.676E-07 0.582E-07 0.513E-07 0.258E-05 -10.785 0.260E+01 0.446E-03 0.410E-04 0.411E-05 0.368E-06 0.398E-03 0.682E-07 0.599E-07 0.515E-07 0.268E-05 -10.765 0.267E+01 0.460E-03 0.423E-04 0.423E-05 0.385E-06 0.410E-03 0.678E-07 0.616E-07 0.518E-07 0.276E-05 -10.745 0.274E+01 0.468E-03 0.431E-04 0.429E-05 0.400E-06 0.417E-03 0.664E-07 0.631E-07 0.522E-07 0.283E-05 -10.725 0.279E+01 0.470E-03 0.434E-04 0.430E-05 0.413E-06 0.419E-03 0.641E-07 0.645E-07 0.527E-07 0.288E-05 -10.705 0.282E+01 0.468E-03 0.432E-04 0.426E-05 0.423E-06 0.417E-03 0.610E-07 0.656E-07 0.533E-07 0.291E-05 -10.685 0.285E+01 0.462E-03 0.428E-04 0.418E-05 0.432E-06 0.411E-03 0.578E-07 0.666E-07 0.543E-07 0.294E-05 -10.665 0.287E+01 0.454E-03 0.422E-04 0.410E-05 0.441E-06 0.405E-03 0.547E-07 0.676E-07 0.555E-07 0.296E-05 -10.645 0.290E+01 0.447E-03 0.417E-04 0.401E-05 0.450E-06 0.398E-03 0.524E-07 0.689E-07 0.570E-07 0.299E-05 -10.625 0.295E+01 0.442E-03 0.413E-04 0.394E-05 0.460E-06 0.393E-03 0.510E-07 0.707E-07 0.586E-07 0.304E-05 -10.605 0.301E+01 0.440E-03 0.413E-04 0.390E-05 0.472E-06 0.391E-03 0.508E-07 0.730E-07 0.603E-07 0.311E-05 -10.585 0.309E+01 0.443E-03 0.416E-04 0.390E-05 0.486E-06 0.394E-03 0.520E-07 0.760E-07 0.618E-07 0.320E-05 -10.565 0.319E+01 0.453E-03 0.426E-04 0.397E-05 0.502E-06 0.403E-03 0.544E-07 0.798E-07 0.631E-07 0.331E-05 -10.545 0.331E+01 0.472E-03 0.444E-04 0.410E-05 0.524E-06 0.419E-03 0.579E-07 0.844E-07 0.641E-07 0.344E-05 -10.525 0.345E+01 0.500E-03 0.471E-04 0.432E-05 0.550E-06 0.444E-03 0.625E-07 0.897E-07 0.648E-07 0.359E-05 -10.505 0.361E+01 0.538E-03 0.508E-04 0.464E-05 0.583E-06 0.478E-03 0.677E-07 0.957E-07 0.655E-07 0.376E-05 -10.485 0.378E+01 0.588E-03 0.555E-04 0.504E-05 0.624E-06 0.523E-03 0.735E-07 0.102E-06 0.663E-07 0.394E-05 -10.465 0.395E+01 0.647E-03 0.611E-04 0.553E-05 0.671E-06 0.576E-03 0.794E-07 0.109E-06 0.676E-07 0.412E-05 -10.445 0.413E+01 0.715E-03 0.676E-04 0.610E-05 0.725E-06 0.636E-03 0.854E-07 0.115E-06 0.695E-07 0.431E-05 -10.425 0.430E+01 0.789E-03 0.747E-04 0.671E-05 0.784E-06 0.702E-03 0.912E-07 0.122E-06 0.724E-07 0.449E-05 -10.405 0.447E+01 0.867E-03 0.823E-04 0.737E-05 0.846E-06 0.772E-03 0.967E-07 0.127E-06 0.764E-07 0.467E-05 -10.385 0.464E+01 0.948E-03 0.901E-04 0.803E-05 0.908E-06 0.844E-03 0.102E-06 0.132E-06 0.813E-07 0.485E-05 -10.365 0.481E+01 0.103E-02 0.981E-04 0.870E-05 0.970E-06 0.917E-03 0.106E-06 0.137E-06 0.871E-07 0.503E-05 -10.345 0.499E+01 0.111E-02 0.106E-03 0.935E-05 0.103E-05 0.988E-03 0.110E-06 0.141E-06 0.935E-07 0.521E-05 -10.325 0.517E+01 0.119E-02 0.114E-03 0.996E-05 0.108E-05 0.106E-02 0.112E-06 0.144E-06 0.100E-06 0.540E-05 -10.305 0.536E+01 0.126E-02 0.121E-03 0.105E-04 0.113E-05 0.112E-02 0.114E-06 0.146E-06 0.106E-06 0.559E-05 -10.285 0.555E+01 0.133E-02 0.127E-03 0.110E-04 0.117E-05 0.118E-02 0.115E-06 0.148E-06 0.112E-06 0.577E-05 -10.265 0.572E+01 0.138E-02 0.133E-03 0.113E-04 0.120E-05 0.123E-02 0.115E-06 0.149E-06 0.116E-06 0.594E-05 -10.245 0.588E+01 0.142E-02 0.137E-03 0.116E-04 0.121E-05 0.126E-02 0.114E-06 0.150E-06 0.118E-06 0.608E-05 -10.225 0.601E+01 0.144E-02 0.140E-03 0.117E-04 0.122E-05 0.129E-02 0.112E-06 0.149E-06 0.119E-06 0.619E-05 -10.205 0.611E+01 0.145E-02 0.140E-03 0.116E-04 0.122E-05 0.129E-02 0.109E-06 0.147E-06 0.118E-06 0.626E-05 -10.185 0.617E+01 0.144E-02 0.140E-03 0.114E-04 0.121E-05 0.128E-02 0.105E-06 0.143E-06 0.116E-06 0.628E-05 -10.165 0.619E+01 0.142E-02 0.137E-03 0.111E-04 0.119E-05 0.126E-02 0.100E-06 0.139E-06 0.111E-06 0.625E-05 -10.145 0.618E+01 0.138E-02 0.134E-03 0.106E-04 0.117E-05 0.123E-02 0.955E-07 0.133E-06 0.106E-06 0.618E-05 -10.125 0.613E+01 0.133E-02 0.129E-03 0.101E-04 0.115E-05 0.119E-02 0.905E-07 0.127E-06 0.100E-06 0.607E-05 -10.105 0.607E+01 0.128E-02 0.124E-03 0.960E-05 0.113E-05 0.114E-02 0.856E-07 0.120E-06 0.941E-07 0.594E-05 -10.085 0.601E+01 0.122E-02 0.119E-03 0.904E-05 0.110E-05 0.108E-02 0.812E-07 0.114E-06 0.883E-07 0.581E-05 -10.065 0.595E+01 0.116E-02 0.113E-03 0.852E-05 0.108E-05 0.103E-02 0.775E-07 0.108E-06 0.832E-07 0.568E-05 -10.045 0.592E+01 0.111E-02 0.109E-03 0.804E-05 0.106E-05 0.987E-03 0.749E-07 0.104E-06 0.791E-07 0.559E-05 -10.025 0.592E+01 0.107E-02 0.105E-03 0.766E-05 0.104E-05 0.949E-03 0.735E-07 0.101E-06 0.763E-07 0.553E-05 -10.005 0.595E+01 0.104E-02 0.102E-03 0.738E-05 0.102E-05 0.922E-03 0.738E-07 0.101E-06 0.750E-07 0.553E-05 -9.985 0.602E+01 0.102E-02 0.101E-03 0.724E-05 0.102E-05 0.909E-03 0.758E-07 0.102E-06 0.753E-07 0.557E-05 -9.965 0.612E+01 0.103E-02 0.102E-03 0.727E-05 0.102E-05 0.915E-03 0.799E-07 0.106E-06 0.772E-07 0.568E-05 -9.945 0.626E+01 0.106E-02 0.105E-03 0.750E-05 0.103E-05 0.941E-03 0.863E-07 0.111E-06 0.807E-07 0.584E-05 -9.925 0.644E+01 0.112E-02 0.110E-03 0.794E-05 0.106E-05 0.991E-03 0.950E-07 0.118E-06 0.859E-07 0.606E-05 -9.905 0.667E+01 0.120E-02 0.119E-03 0.864E-05 0.111E-05 0.107E-02 0.106E-06 0.128E-06 0.927E-07 0.635E-05 -9.885 0.694E+01 0.132E-02 0.130E-03 0.960E-05 0.117E-05 0.117E-02 0.120E-06 0.138E-06 0.101E-06 0.670E-05 -9.865 0.727E+01 0.147E-02 0.145E-03 0.109E-04 0.126E-05 0.131E-02 0.136E-06 0.150E-06 0.111E-06 0.713E-05 -9.845 0.764E+01 0.166E-02 0.163E-03 0.124E-04 0.135E-05 0.148E-02 0.154E-06 0.162E-06 0.122E-06 0.762E-05 -9.825 0.805E+01 0.189E-02 0.184E-03 0.143E-04 0.146E-05 0.168E-02 0.174E-06 0.175E-06 0.133E-06 0.817E-05 -9.805 0.850E+01 0.214E-02 0.209E-03 0.164E-04 0.156E-05 0.191E-02 0.196E-06 0.187E-06 0.145E-06 0.876E-05 -9.785 0.895E+01 0.243E-02 0.237E-03 0.188E-04 0.166E-05 0.217E-02 0.219E-06 0.198E-06 0.156E-06 0.937E-05 -9.765 0.939E+01 0.276E-02 0.268E-03 0.215E-04 0.174E-05 0.245E-02 0.243E-06 0.207E-06 0.166E-06 0.998E-05 -9.745 0.978E+01 0.311E-02 0.303E-03 0.244E-04 0.181E-05 0.277E-02 0.270E-06 0.214E-06 0.175E-06 0.106E-04 -9.725 0.101E+02 0.349E-02 0.341E-03 0.275E-04 0.184E-05 0.311E-02 0.298E-06 0.219E-06 0.181E-06 0.111E-04 -9.705 0.104E+02 0.391E-02 0.382E-03 0.307E-04 0.186E-05 0.348E-02 0.328E-06 0.222E-06 0.186E-06 0.116E-04 -9.685 0.106E+02 0.435E-02 0.427E-03 0.342E-04 0.185E-05 0.387E-02 0.360E-06 0.224E-06 0.188E-06 0.120E-04 -9.665 0.108E+02 0.483E-02 0.476E-03 0.379E-04 0.183E-05 0.430E-02 0.395E-06 0.225E-06 0.190E-06 0.124E-04 -9.645 0.109E+02 0.535E-02 0.528E-03 0.417E-04 0.181E-05 0.476E-02 0.433E-06 0.227E-06 0.191E-06 0.128E-04 -9.625 0.110E+02 0.590E-02 0.585E-03 0.458E-04 0.179E-05 0.526E-02 0.472E-06 0.230E-06 0.193E-06 0.132E-04 -9.605 0.110E+02 0.651E-02 0.647E-03 0.502E-04 0.179E-05 0.580E-02 0.514E-06 0.236E-06 0.196E-06 0.137E-04 -9.585 0.111E+02 0.717E-02 0.714E-03 0.550E-04 0.181E-05 0.638E-02 0.557E-06 0.245E-06 0.200E-06 0.142E-04 -9.565 0.112E+02 0.788E-02 0.786E-03 0.601E-04 0.185E-05 0.701E-02 0.600E-06 0.257E-06 0.205E-06 0.148E-04 -9.545 0.113E+02 0.864E-02 0.863E-03 0.657E-04 0.192E-05 0.769E-02 0.643E-06 0.273E-06 0.213E-06 0.154E-04 -9.525 0.114E+02 0.943E-02 0.944E-03 0.715E-04 0.202E-05 0.840E-02 0.685E-06 0.292E-06 0.222E-06 0.160E-04 -9.505 0.114E+02 0.102E-01 0.103E-02 0.774E-04 0.213E-05 0.912E-02 0.723E-06 0.312E-06 0.231E-06 0.166E-04 -9.485 0.114E+02 0.110E-01 0.111E-02 0.831E-04 0.225E-05 0.982E-02 0.755E-06 0.331E-06 0.239E-06 0.172E-04 -9.465 0.113E+02 0.118E-01 0.118E-02 0.882E-04 0.236E-05 0.105E-01 0.780E-06 0.347E-06 0.246E-06 0.176E-04 -9.445 0.110E+02 0.124E-01 0.124E-02 0.925E-04 0.245E-05 0.110E-01 0.795E-06 0.359E-06 0.250E-06 0.178E-04 -9.425 0.107E+02 0.129E-01 0.130E-02 0.956E-04 0.252E-05 0.115E-01 0.800E-06 0.365E-06 0.251E-06 0.179E-04 -9.405 0.103E+02 0.133E-01 0.134E-02 0.974E-04 0.256E-05 0.118E-01 0.795E-06 0.365E-06 0.249E-06 0.177E-04 -9.385 0.973E+01 0.135E-01 0.137E-02 0.979E-04 0.257E-05 0.120E-01 0.781E-06 0.358E-06 0.244E-06 0.174E-04 -9.365 0.915E+01 0.137E-01 0.138E-02 0.974E-04 0.256E-05 0.122E-01 0.760E-06 0.346E-06 0.238E-06 0.170E-04 -9.345 0.855E+01 0.137E-01 0.139E-02 0.959E-04 0.252E-05 0.122E-01 0.737E-06 0.330E-06 0.231E-06 0.164E-04 -9.325 0.797E+01 0.137E-01 0.140E-02 0.939E-04 0.248E-05 0.122E-01 0.713E-06 0.311E-06 0.225E-06 0.159E-04 -9.305 0.744E+01 0.137E-01 0.141E-02 0.917E-04 0.244E-05 0.122E-01 0.694E-06 0.293E-06 0.222E-06 0.155E-04 -9.285 0.698E+01 0.138E-01 0.142E-02 0.896E-04 0.241E-05 0.123E-01 0.680E-06 0.275E-06 0.221E-06 0.151E-04 -9.265 0.661E+01 0.139E-01 0.144E-02 0.878E-04 0.239E-05 0.124E-01 0.675E-06 0.260E-06 0.223E-06 0.149E-04 -9.245 0.634E+01 0.142E-01 0.147E-02 0.862E-04 0.239E-05 0.126E-01 0.678E-06 0.248E-06 0.228E-06 0.149E-04 -9.225 0.617E+01 0.145E-01 0.151E-02 0.849E-04 0.240E-05 0.129E-01 0.687E-06 0.239E-06 0.233E-06 0.149E-04 -9.205 0.607E+01 0.149E-01 0.156E-02 0.837E-04 0.242E-05 0.132E-01 0.702E-06 0.232E-06 0.239E-06 0.151E-04 -9.185 0.603E+01 0.153E-01 0.162E-02 0.823E-04 0.244E-05 0.136E-01 0.720E-06 0.226E-06 0.243E-06 0.154E-04 -9.165 0.604E+01 0.158E-01 0.168E-02 0.806E-04 0.245E-05 0.140E-01 0.738E-06 0.221E-06 0.246E-06 0.157E-04 -9.145 0.609E+01 0.163E-01 0.175E-02 0.785E-04 0.245E-05 0.145E-01 0.755E-06 0.215E-06 0.246E-06 0.160E-04 -9.125 0.615E+01 0.169E-01 0.182E-02 0.757E-04 0.243E-05 0.150E-01 0.767E-06 0.210E-06 0.242E-06 0.164E-04 -9.105 0.623E+01 0.174E-01 0.189E-02 0.724E-04 0.239E-05 0.154E-01 0.774E-06 0.204E-06 0.236E-06 0.167E-04 -9.085 0.630E+01 0.180E-01 0.196E-02 0.685E-04 0.233E-05 0.159E-01 0.776E-06 0.197E-06 0.228E-06 0.170E-04 -9.065 0.638E+01 0.185E-01 0.203E-02 0.642E-04 0.225E-05 0.163E-01 0.771E-06 0.190E-06 0.218E-06 0.172E-04 -9.045 0.644E+01 0.189E-01 0.210E-02 0.594E-04 0.214E-05 0.167E-01 0.759E-06 0.183E-06 0.207E-06 0.174E-04 -9.025 0.647E+01 0.192E-01 0.215E-02 0.545E-04 0.201E-05 0.170E-01 0.739E-06 0.175E-06 0.194E-06 0.175E-04 -9.005 0.645E+01 0.193E-01 0.218E-02 0.494E-04 0.187E-05 0.171E-01 0.713E-06 0.167E-06 0.181E-06 0.175E-04 -8.985 0.636E+01 0.192E-01 0.218E-02 0.442E-04 0.171E-05 0.170E-01 0.679E-06 0.157E-06 0.166E-06 0.172E-04 -8.965 0.618E+01 0.188E-01 0.214E-02 0.391E-04 0.154E-05 0.166E-01 0.637E-06 0.147E-06 0.152E-06 0.167E-04 -8.945 0.589E+01 0.180E-01 0.206E-02 0.340E-04 0.136E-05 0.159E-01 0.587E-06 0.136E-06 0.136E-06 0.159E-04 -8.925 0.549E+01 0.169E-01 0.194E-02 0.292E-04 0.117E-05 0.149E-01 0.531E-06 0.123E-06 0.120E-06 0.148E-04 -8.905 0.500E+01 0.154E-01 0.178E-02 0.245E-04 0.994E-06 0.136E-01 0.470E-06 0.109E-06 0.104E-06 0.135E-04 -8.885 0.442E+01 0.137E-01 0.158E-02 0.202E-04 0.821E-06 0.121E-01 0.405E-06 0.943E-07 0.878E-07 0.119E-04 -8.865 0.379E+01 0.118E-01 0.136E-02 0.162E-04 0.661E-06 0.104E-01 0.340E-06 0.794E-07 0.724E-07 0.102E-04 -8.845 0.315E+01 0.978E-02 0.113E-02 0.127E-04 0.518E-06 0.862E-02 0.278E-06 0.649E-07 0.581E-07 0.843E-05 -8.825 0.253E+01 0.786E-02 0.913E-03 0.968E-05 0.394E-06 0.693E-02 0.219E-06 0.513E-07 0.452E-07 0.676E-05 -8.805 0.196E+01 0.610E-02 0.709E-03 0.715E-05 0.290E-06 0.537E-02 0.168E-06 0.393E-07 0.341E-07 0.524E-05 -8.785 0.146E+01 0.456E-02 0.532E-03 0.512E-05 0.207E-06 0.402E-02 0.124E-06 0.290E-07 0.249E-07 0.391E-05 -8.765 0.106E+01 0.329E-02 0.384E-03 0.355E-05 0.143E-06 0.290E-02 0.887E-07 0.207E-07 0.176E-07 0.282E-05 -8.745 0.733E+00 0.229E-02 0.267E-03 0.237E-05 0.951E-07 0.201E-02 0.611E-07 0.142E-07 0.120E-07 0.196E-05 -8.725 0.490E+00 0.153E-02 0.179E-03 0.153E-05 0.612E-07 0.135E-02 0.406E-07 0.943E-08 0.787E-08 0.131E-05 -8.705 0.315E+00 0.984E-03 0.115E-03 0.955E-06 0.379E-07 0.867E-03 0.260E-07 0.602E-08 0.499E-08 0.843E-06 -8.685 0.195E+00 0.610E-03 0.714E-04 0.574E-06 0.227E-07 0.537E-03 0.160E-07 0.370E-08 0.304E-08 0.522E-06 -8.665 0.116E+00 0.363E-03 0.426E-04 0.332E-06 0.130E-07 0.320E-03 0.951E-08 0.219E-08 0.179E-08 0.312E-06 -8.645 0.667E-01 0.208E-03 0.244E-04 0.185E-06 0.723E-08 0.183E-03 0.543E-08 0.124E-08 0.101E-08 0.179E-06 -8.625 0.368E-01 0.115E-03 0.135E-04 0.993E-07 0.386E-08 0.101E-03 0.299E-08 0.682E-09 0.552E-09 0.987E-07 -8.605 0.195E-01 0.608E-04 0.715E-05 0.513E-07 0.198E-08 0.536E-04 0.158E-08 0.359E-09 0.289E-09 0.524E-07 -8.585 0.994E-02 0.310E-04 0.364E-05 0.255E-07 0.980E-09 0.273E-04 0.803E-09 0.182E-09 0.146E-09 0.268E-07 -8.565 0.487E-02 0.152E-04 0.179E-05 0.122E-07 0.466E-09 0.134E-04 0.393E-09 0.885E-10 0.708E-10 0.131E-07 -8.545 0.229E-02 0.715E-05 0.841E-06 0.562E-08 0.213E-09 0.630E-05 0.185E-09 0.414E-10 0.331E-10 0.620E-08 -8.525 0.104E-02 0.323E-05 0.381E-06 0.249E-08 0.936E-10 0.285E-05 0.836E-10 0.186E-10 0.149E-10 0.281E-08 -8.505 0.451E-03 0.141E-05 0.166E-06 0.106E-08 0.396E-10 0.124E-05 0.363E-10 0.805E-11 0.641E-11 0.122E-08 -8.485 0.188E-03 0.587E-06 0.692E-07 0.435E-09 0.161E-10 0.517E-06 0.152E-10 0.334E-11 0.266E-11 0.513E-09 -8.465 0.756E-04 0.236E-06 0.278E-07 0.171E-09 0.628E-11 0.207E-06 0.609E-11 0.133E-11 0.106E-11 0.206E-09 -8.445 0.291E-04 0.907E-07 0.107E-07 0.649E-10 0.236E-11 0.799E-07 0.235E-11 0.511E-12 0.408E-12 0.797E-10 -8.425 0.108E-04 0.336E-07 0.396E-08 0.237E-10 0.850E-12 0.296E-07 0.871E-12 0.188E-12 0.150E-12 0.296E-10 -8.405 0.383E-05 0.119E-07 0.141E-08 0.829E-11 0.295E-12 0.105E-07 0.310E-12 0.664E-13 0.532E-13 0.105E-10 -8.385 0.131E-05 0.407E-08 0.480E-09 0.279E-11 0.981E-13 0.358E-08 0.106E-12 0.225E-13 0.181E-13 0.361E-11 -8.365 0.428E-06 0.133E-08 0.157E-09 0.902E-12 0.314E-13 0.117E-08 0.347E-13 0.733E-14 0.591E-14 0.118E-11 -8.345 0.134E-06 0.418E-09 0.494E-10 0.280E-12 0.964E-14 0.368E-09 0.109E-13 0.229E-14 0.185E-14 0.373E-12 -8.325 0.405E-07 0.126E-09 0.149E-10 0.837E-13 0.284E-14 0.111E-09 0.330E-14 0.685E-15 0.558E-15 0.113E-12 -8.305 0.117E-07 0.365E-10 0.431E-11 0.240E-13 0.805E-15 0.321E-10 0.957E-15 0.197E-15 0.161E-15 0.327E-13 -8.285 0.325E-08 0.101E-10 0.120E-11 0.661E-14 0.219E-15 0.891E-11 0.266E-15 0.543E-16 0.447E-16 0.911E-14 -8.265 0.866E-09 0.269E-11 0.318E-12 0.174E-14 0.570E-16 0.237E-11 0.711E-16 0.144E-16 0.119E-16 0.243E-14 -8.245 0.221E-09 0.687E-12 0.812E-13 0.442E-15 0.143E-16 0.605E-12 0.182E-16 0.364E-17 0.303E-17 0.622E-15 -8.225 0.515E-10 0.160E-12 0.190E-13 0.972E-16 0.302E-17 0.141E-12 0.423E-17 0.830E-18 0.685E-18 0.146E-15 -8.205 0.118E-10 0.365E-13 0.432E-14 0.222E-16 0.675E-18 0.321E-13 0.971E-18 0.191E-18 0.161E-18 0.334E-16 -8.185 0.237E-11 0.733E-14 0.868E-15 0.452E-17 0.130E-18 0.645E-14 0.200E-18 0.406E-19 0.349E-19 0.699E-17 -8.165 0.304E-12 0.945E-15 0.112E-15 0.606E-18 0.620E-20 0.831E-15 0.300E-19 0.167E-20 0.403E-20 0.937E-18 -8.145 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -8.125 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -8.105 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -8.085 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -8.065 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -8.045 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -8.025 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -8.005 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.985 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.965 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.945 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.925 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.905 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.885 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.865 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.845 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.825 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.805 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.785 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.765 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.745 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.725 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.705 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.685 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.665 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.645 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.625 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.605 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.585 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.565 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.545 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.525 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.505 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.485 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.465 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.445 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.425 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.405 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.385 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.365 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.345 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.325 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.305 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.285 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.265 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.245 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.225 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.205 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.185 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.165 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.145 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.125 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.105 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.085 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.065 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.045 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.025 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -7.005 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.985 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.965 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.945 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.925 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.905 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.885 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.865 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.845 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.825 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.805 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.785 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.765 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.745 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.725 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.705 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.685 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.665 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.645 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.625 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.605 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.585 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.565 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.545 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.525 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.505 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.485 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.465 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.445 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.425 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.405 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.385 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.365 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.345 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.325 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.305 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.285 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.265 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.245 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.225 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.205 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.185 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.165 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.145 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.125 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.105 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.085 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.065 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.045 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.025 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -6.005 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -5.985 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -5.965 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -5.945 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -5.925 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -5.905 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 -5.885 0.314E-12 0.867E-16 0.310E-18 0.443E-17 0.420E-19 0.818E-16 0.190E-20 0.691E-20 0.870E-21 0.116E-18 -5.865 0.142E-11 0.391E-15 0.140E-17 0.200E-16 0.190E-18 0.369E-15 0.859E-20 0.312E-19 0.393E-20 0.523E-18 -5.845 0.613E-11 0.169E-14 0.604E-17 0.864E-16 0.819E-18 0.160E-14 0.371E-19 0.135E-18 0.170E-19 0.226E-17 -5.825 0.254E-10 0.700E-14 0.250E-16 0.358E-15 0.339E-17 0.660E-14 0.154E-18 0.558E-18 0.702E-19 0.936E-17 -5.805 0.101E-09 0.278E-13 0.991E-16 0.142E-14 0.134E-16 0.262E-13 0.609E-18 0.221E-17 0.278E-18 0.371E-16 -5.785 0.382E-09 0.105E-12 0.376E-15 0.538E-14 0.510E-16 0.994E-13 0.231E-17 0.839E-17 0.106E-17 0.141E-15 -5.765 0.139E-08 0.383E-12 0.137E-14 0.196E-13 0.186E-15 0.361E-12 0.841E-17 0.305E-16 0.384E-17 0.512E-15 -5.745 0.483E-08 0.133E-11 0.477E-14 0.682E-13 0.646E-15 0.126E-11 0.293E-16 0.106E-15 0.134E-16 0.178E-14 -5.725 0.161E-07 0.445E-11 0.159E-13 0.227E-12 0.216E-14 0.420E-11 0.976E-16 0.354E-15 0.446E-16 0.595E-14 -5.705 0.515E-07 0.142E-10 0.508E-13 0.726E-12 0.689E-14 0.134E-10 0.312E-15 0.113E-14 0.143E-15 0.190E-13 -5.685 0.157E-06 0.435E-10 0.155E-12 0.222E-11 0.211E-13 0.410E-10 0.954E-15 0.346E-14 0.436E-15 0.581E-13 -5.665 0.461E-06 0.127E-09 0.456E-12 0.651E-11 0.617E-13 0.120E-09 0.279E-14 0.101E-13 0.128E-14 0.170E-12 -5.645 0.129E-05 0.357E-09 0.128E-11 0.183E-10 0.173E-12 0.337E-09 0.784E-14 0.285E-13 0.359E-14 0.478E-12 -5.625 0.348E-05 0.960E-09 0.344E-11 0.491E-10 0.465E-12 0.906E-09 0.211E-13 0.765E-13 0.963E-14 0.128E-11 -5.605 0.895E-05 0.247E-08 0.886E-11 0.126E-09 0.120E-11 0.233E-08 0.542E-13 0.197E-12 0.248E-13 0.330E-11 -5.585 0.221E-04 0.609E-08 0.219E-10 0.311E-09 0.295E-11 0.575E-08 0.134E-12 0.485E-12 0.611E-13 0.814E-11 -5.565 0.521E-04 0.144E-07 0.518E-10 0.735E-09 0.697E-11 0.136E-07 0.315E-12 0.115E-11 0.144E-12 0.192E-10 -5.545 0.118E-03 0.325E-07 0.117E-09 0.166E-08 0.158E-10 0.307E-07 0.713E-12 0.259E-11 0.326E-12 0.435E-10 -5.525 0.255E-03 0.704E-07 0.256E-09 0.360E-08 0.341E-10 0.665E-07 0.154E-11 0.562E-11 0.706E-12 0.942E-10 -5.505 0.529E-03 0.146E-06 0.534E-09 0.746E-08 0.708E-10 0.138E-06 0.320E-11 0.117E-10 0.147E-11 0.195E-09 -5.485 0.105E-02 0.291E-06 0.107E-08 0.148E-07 0.141E-09 0.274E-06 0.637E-11 0.232E-10 0.291E-11 0.388E-09 -5.465 0.200E-02 0.554E-06 0.206E-08 0.282E-07 0.268E-09 0.522E-06 0.121E-10 0.442E-10 0.554E-11 0.740E-09 -5.445 0.365E-02 0.101E-05 0.382E-08 0.515E-07 0.489E-09 0.953E-06 0.221E-10 0.807E-10 0.101E-10 0.135E-08 -5.425 0.639E-02 0.177E-05 0.684E-08 0.902E-07 0.854E-09 0.167E-05 0.387E-10 0.141E-09 0.177E-10 0.236E-08 -5.405 0.107E-01 0.297E-05 0.118E-07 0.151E-06 0.143E-08 0.280E-05 0.648E-10 0.238E-09 0.296E-10 0.397E-08 -5.385 0.172E-01 0.478E-05 0.199E-07 0.243E-06 0.230E-08 0.451E-05 0.104E-09 0.384E-09 0.476E-10 0.640E-08 -5.365 0.266E-01 0.740E-05 0.325E-07 0.376E-06 0.355E-08 0.697E-05 0.161E-09 0.595E-09 0.735E-10 0.990E-08 -5.345 0.395E-01 0.110E-04 0.521E-07 0.557E-06 0.527E-08 0.104E-04 0.239E-09 0.888E-09 0.109E-09 0.147E-07 -5.325 0.564E-01 0.158E-04 0.820E-07 0.796E-06 0.751E-08 0.149E-04 0.341E-09 0.128E-08 0.155E-09 0.211E-07 -5.305 0.775E-01 0.218E-04 0.128E-06 0.110E-05 0.103E-07 0.206E-04 0.471E-09 0.178E-08 0.213E-09 0.293E-07 -5.285 0.103E+00 0.292E-04 0.198E-06 0.146E-05 0.137E-07 0.275E-04 0.629E-09 0.239E-08 0.282E-09 0.393E-07 -5.265 0.133E+00 0.381E-04 0.307E-06 0.188E-05 0.175E-07 0.358E-04 0.820E-09 0.314E-08 0.361E-09 0.514E-07 -5.245 0.166E+00 0.485E-04 0.475E-06 0.236E-05 0.219E-07 0.455E-04 0.105E-08 0.402E-08 0.450E-09 0.656E-07 -5.225 0.203E+00 0.607E-04 0.736E-06 0.289E-05 0.266E-07 0.569E-04 0.134E-08 0.505E-08 0.549E-09 0.826E-07 -5.205 0.244E+00 0.752E-04 0.114E-05 0.349E-05 0.319E-07 0.704E-04 0.171E-08 0.626E-08 0.658E-09 0.103E-06 -5.185 0.290E+00 0.928E-04 0.176E-05 0.416E-05 0.376E-07 0.867E-04 0.223E-08 0.768E-08 0.783E-09 0.128E-06 -5.165 0.342E+00 0.115E-03 0.269E-05 0.492E-05 0.441E-07 0.107E-03 0.298E-08 0.937E-08 0.932E-09 0.160E-06 -5.145 0.402E+00 0.143E-03 0.409E-05 0.579E-05 0.516E-07 0.133E-03 0.409E-08 0.114E-07 0.112E-08 0.201E-06 -5.125 0.473E+00 0.179E-03 0.613E-05 0.680E-05 0.604E-07 0.166E-03 0.574E-08 0.137E-07 0.136E-08 0.254E-06 -5.105 0.557E+00 0.225E-03 0.904E-05 0.796E-05 0.710E-07 0.208E-03 0.815E-08 0.164E-07 0.168E-08 0.323E-06 -5.085 0.657E+00 0.284E-03 0.131E-04 0.926E-05 0.837E-07 0.261E-03 0.115E-07 0.195E-07 0.210E-08 0.412E-06 -5.065 0.775E+00 0.358E-03 0.186E-04 0.107E-04 0.990E-07 0.328E-03 0.162E-07 0.230E-07 0.267E-08 0.524E-06 -5.045 0.913E+00 0.448E-03 0.257E-04 0.123E-04 0.118E-06 0.409E-03 0.223E-07 0.268E-07 0.342E-08 0.662E-06 -5.025 0.108E+01 0.555E-03 0.346E-04 0.139E-04 0.140E-06 0.506E-03 0.300E-07 0.310E-07 0.439E-08 0.829E-06 -5.005 0.127E+01 0.681E-03 0.453E-04 0.157E-04 0.168E-06 0.618E-03 0.393E-07 0.355E-07 0.562E-08 0.103E-05 -4.985 0.149E+01 0.822E-03 0.577E-04 0.175E-04 0.203E-06 0.745E-03 0.501E-07 0.404E-07 0.716E-08 0.125E-05 -4.965 0.175E+01 0.977E-03 0.715E-04 0.195E-04 0.247E-06 0.885E-03 0.619E-07 0.455E-07 0.901E-08 0.150E-05 -4.945 0.204E+01 0.114E-02 0.861E-04 0.216E-04 0.304E-06 0.103E-02 0.746E-07 0.508E-07 0.112E-07 0.177E-05 -4.925 0.238E+01 0.131E-02 0.101E-03 0.238E-04 0.378E-06 0.119E-02 0.874E-07 0.563E-07 0.137E-07 0.206E-05 -4.905 0.275E+01 0.148E-02 0.116E-03 0.260E-04 0.475E-06 0.134E-02 0.100E-06 0.618E-07 0.164E-07 0.236E-05 -4.885 0.316E+01 0.166E-02 0.131E-03 0.284E-04 0.603E-06 0.149E-02 0.113E-06 0.671E-07 0.195E-07 0.267E-05 -4.865 0.360E+01 0.183E-02 0.145E-03 0.309E-04 0.773E-06 0.165E-02 0.125E-06 0.724E-07 0.227E-07 0.300E-05 -4.845 0.407E+01 0.201E-02 0.161E-03 0.335E-04 0.995E-06 0.182E-02 0.138E-06 0.775E-07 0.262E-07 0.335E-05 -4.825 0.457E+01 0.222E-02 0.178E-03 0.363E-04 0.128E-05 0.200E-02 0.152E-06 0.825E-07 0.299E-07 0.373E-05 -4.805 0.510E+01 0.245E-02 0.199E-03 0.393E-04 0.164E-05 0.221E-02 0.168E-06 0.877E-07 0.338E-07 0.418E-05 -4.785 0.567E+01 0.274E-02 0.225E-03 0.426E-04 0.208E-05 0.247E-02 0.189E-06 0.934E-07 0.381E-07 0.472E-05 -4.765 0.629E+01 0.309E-02 0.257E-03 0.463E-04 0.261E-05 0.278E-02 0.215E-06 0.997E-07 0.428E-07 0.537E-05 -4.745 0.695E+01 0.352E-02 0.298E-03 0.505E-04 0.321E-05 0.317E-02 0.247E-06 0.107E-06 0.478E-07 0.614E-05 -4.725 0.766E+01 0.403E-02 0.347E-03 0.552E-04 0.386E-05 0.362E-02 0.286E-06 0.116E-06 0.531E-07 0.703E-05 -4.705 0.841E+01 0.462E-02 0.405E-03 0.604E-04 0.455E-05 0.414E-02 0.331E-06 0.126E-06 0.587E-07 0.804E-05 -4.685 0.918E+01 0.527E-02 0.468E-03 0.660E-04 0.523E-05 0.472E-02 0.382E-06 0.137E-06 0.644E-07 0.914E-05 -4.665 0.994E+01 0.594E-02 0.536E-03 0.719E-04 0.589E-05 0.532E-02 0.436E-06 0.149E-06 0.698E-07 0.103E-04 -4.645 0.107E+02 0.662E-02 0.603E-03 0.780E-04 0.648E-05 0.592E-02 0.490E-06 0.161E-06 0.749E-07 0.114E-04 -4.625 0.113E+02 0.726E-02 0.667E-03 0.841E-04 0.699E-05 0.649E-02 0.542E-06 0.173E-06 0.792E-07 0.125E-04 -4.605 0.119E+02 0.783E-02 0.723E-03 0.901E-04 0.741E-05 0.700E-02 0.587E-06 0.185E-06 0.825E-07 0.134E-04 -4.585 0.123E+02 0.830E-02 0.768E-03 0.961E-04 0.773E-05 0.741E-02 0.623E-06 0.195E-06 0.846E-07 0.141E-04 -4.565 0.126E+02 0.866E-02 0.800E-03 0.102E-03 0.799E-05 0.773E-02 0.648E-06 0.204E-06 0.856E-07 0.146E-04 -4.545 0.127E+02 0.890E-02 0.817E-03 0.108E-03 0.821E-05 0.795E-02 0.661E-06 0.212E-06 0.855E-07 0.149E-04 -4.525 0.126E+02 0.903E-02 0.821E-03 0.115E-03 0.842E-05 0.806E-02 0.663E-06 0.218E-06 0.846E-07 0.149E-04 -4.505 0.125E+02 0.907E-02 0.812E-03 0.123E-03 0.867E-05 0.811E-02 0.655E-06 0.224E-06 0.831E-07 0.148E-04 -4.485 0.122E+02 0.905E-02 0.794E-03 0.132E-03 0.899E-05 0.810E-02 0.640E-06 0.229E-06 0.814E-07 0.146E-04 -4.465 0.118E+02 0.900E-02 0.769E-03 0.141E-03 0.940E-05 0.806E-02 0.619E-06 0.234E-06 0.799E-07 0.143E-04 -4.445 0.114E+02 0.893E-02 0.740E-03 0.153E-03 0.990E-05 0.802E-02 0.597E-06 0.240E-06 0.789E-07 0.140E-04 -4.425 0.109E+02 0.889E-02 0.710E-03 0.164E-03 0.105E-04 0.799E-02 0.575E-06 0.247E-06 0.784E-07 0.137E-04 -4.405 0.105E+02 0.887E-02 0.681E-03 0.177E-03 0.111E-04 0.798E-02 0.557E-06 0.255E-06 0.786E-07 0.134E-04 -4.385 0.102E+02 0.889E-02 0.657E-03 0.190E-03 0.118E-04 0.801E-02 0.542E-06 0.264E-06 0.795E-07 0.133E-04 -4.365 0.981E+01 0.895E-02 0.639E-03 0.202E-03 0.124E-04 0.808E-02 0.534E-06 0.273E-06 0.809E-07 0.132E-04 -4.345 0.951E+01 0.906E-02 0.627E-03 0.213E-03 0.130E-04 0.819E-02 0.532E-06 0.283E-06 0.827E-07 0.132E-04 -4.325 0.924E+01 0.923E-02 0.623E-03 0.224E-03 0.136E-04 0.835E-02 0.537E-06 0.293E-06 0.848E-07 0.133E-04 -4.305 0.901E+01 0.944E-02 0.627E-03 0.234E-03 0.141E-04 0.855E-02 0.548E-06 0.303E-06 0.870E-07 0.135E-04 -4.285 0.881E+01 0.971E-02 0.639E-03 0.243E-03 0.146E-04 0.880E-02 0.565E-06 0.312E-06 0.893E-07 0.138E-04 -4.265 0.864E+01 0.100E-01 0.655E-03 0.252E-03 0.150E-04 0.908E-02 0.585E-06 0.322E-06 0.916E-07 0.141E-04 -4.245 0.850E+01 0.103E-01 0.675E-03 0.260E-03 0.155E-04 0.937E-02 0.606E-06 0.331E-06 0.938E-07 0.145E-04 -4.225 0.837E+01 0.106E-01 0.693E-03 0.269E-03 0.160E-04 0.965E-02 0.625E-06 0.339E-06 0.959E-07 0.149E-04 -4.205 0.826E+01 0.109E-01 0.707E-03 0.277E-03 0.166E-04 0.989E-02 0.637E-06 0.345E-06 0.980E-07 0.152E-04 -4.185 0.814E+01 0.111E-01 0.712E-03 0.284E-03 0.173E-04 0.101E-01 0.641E-06 0.349E-06 0.100E-06 0.154E-04 -4.165 0.800E+01 0.111E-01 0.705E-03 0.290E-03 0.181E-04 0.101E-01 0.632E-06 0.350E-06 0.102E-06 0.154E-04 -4.145 0.784E+01 0.110E-01 0.685E-03 0.294E-03 0.189E-04 0.100E-01 0.611E-06 0.347E-06 0.104E-06 0.153E-04 -4.125 0.764E+01 0.108E-01 0.650E-03 0.295E-03 0.198E-04 0.979E-02 0.578E-06 0.340E-06 0.105E-06 0.149E-04 -4.105 0.740E+01 0.104E-01 0.604E-03 0.293E-03 0.207E-04 0.943E-02 0.535E-06 0.329E-06 0.105E-06 0.144E-04 -4.085 0.713E+01 0.982E-02 0.550E-03 0.287E-03 0.215E-04 0.894E-02 0.486E-06 0.313E-06 0.105E-06 0.138E-04 -4.065 0.683E+01 0.918E-02 0.491E-03 0.278E-03 0.223E-04 0.838E-02 0.435E-06 0.295E-06 0.104E-06 0.130E-04 -4.045 0.653E+01 0.850E-02 0.433E-03 0.265E-03 0.229E-04 0.777E-02 0.386E-06 0.274E-06 0.102E-06 0.123E-04 -4.025 0.623E+01 0.782E-02 0.379E-03 0.251E-03 0.235E-04 0.716E-02 0.343E-06 0.253E-06 0.995E-07 0.115E-04 -4.005 0.595E+01 0.718E-02 0.333E-03 0.235E-03 0.239E-04 0.658E-02 0.306E-06 0.233E-06 0.963E-07 0.108E-04 -3.985 0.569E+01 0.660E-02 0.294E-03 0.219E-03 0.241E-04 0.606E-02 0.277E-06 0.214E-06 0.927E-07 0.103E-04 -3.965 0.546E+01 0.611E-02 0.264E-03 0.204E-03 0.243E-04 0.560E-02 0.255E-06 0.198E-06 0.888E-07 0.975E-05 -3.945 0.524E+01 0.569E-02 0.241E-03 0.190E-03 0.242E-04 0.522E-02 0.239E-06 0.184E-06 0.848E-07 0.931E-05 -3.925 0.504E+01 0.534E-02 0.223E-03 0.177E-03 0.239E-04 0.491E-02 0.227E-06 0.172E-06 0.806E-07 0.891E-05 -3.905 0.483E+01 0.506E-02 0.210E-03 0.168E-03 0.234E-04 0.465E-02 0.216E-06 0.163E-06 0.766E-07 0.852E-05 -3.885 0.462E+01 0.482E-02 0.200E-03 0.160E-03 0.227E-04 0.443E-02 0.206E-06 0.156E-06 0.727E-07 0.813E-05 -3.865 0.442E+01 0.464E-02 0.192E-03 0.154E-03 0.219E-04 0.427E-02 0.196E-06 0.150E-06 0.692E-07 0.773E-05 -3.845 0.423E+01 0.451E-02 0.186E-03 0.151E-03 0.211E-04 0.414E-02 0.186E-06 0.145E-06 0.664E-07 0.735E-05 -3.825 0.406E+01 0.442E-02 0.183E-03 0.149E-03 0.203E-04 0.406E-02 0.177E-06 0.142E-06 0.644E-07 0.699E-05 -3.805 0.393E+01 0.439E-02 0.184E-03 0.148E-03 0.197E-04 0.403E-02 0.171E-06 0.139E-06 0.634E-07 0.668E-05 -3.785 0.385E+01 0.440E-02 0.189E-03 0.148E-03 0.192E-04 0.404E-02 0.168E-06 0.138E-06 0.635E-07 0.646E-05 -3.765 0.382E+01 0.446E-02 0.197E-03 0.148E-03 0.190E-04 0.409E-02 0.168E-06 0.136E-06 0.644E-07 0.631E-05 -3.745 0.383E+01 0.454E-02 0.210E-03 0.147E-03 0.188E-04 0.416E-02 0.173E-06 0.135E-06 0.659E-07 0.625E-05 -3.725 0.389E+01 0.464E-02 0.225E-03 0.145E-03 0.188E-04 0.424E-02 0.182E-06 0.134E-06 0.675E-07 0.626E-05 -3.705 0.396E+01 0.472E-02 0.242E-03 0.142E-03 0.186E-04 0.431E-02 0.195E-06 0.132E-06 0.690E-07 0.630E-05 -3.685 0.404E+01 0.478E-02 0.259E-03 0.137E-03 0.183E-04 0.436E-02 0.210E-06 0.129E-06 0.699E-07 0.635E-05 -3.665 0.410E+01 0.480E-02 0.274E-03 0.131E-03 0.178E-04 0.437E-02 0.226E-06 0.125E-06 0.700E-07 0.638E-05 -3.645 0.414E+01 0.478E-02 0.286E-03 0.124E-03 0.170E-04 0.434E-02 0.242E-06 0.120E-06 0.692E-07 0.637E-05 -3.625 0.415E+01 0.470E-02 0.294E-03 0.116E-03 0.160E-04 0.426E-02 0.257E-06 0.114E-06 0.676E-07 0.631E-05 -3.605 0.410E+01 0.457E-02 0.297E-03 0.107E-03 0.148E-04 0.414E-02 0.269E-06 0.107E-06 0.654E-07 0.619E-05 -3.585 0.402E+01 0.440E-02 0.295E-03 0.995E-04 0.137E-04 0.399E-02 0.278E-06 0.101E-06 0.629E-07 0.602E-05 -3.565 0.390E+01 0.420E-02 0.287E-03 0.926E-04 0.125E-04 0.380E-02 0.282E-06 0.943E-07 0.603E-07 0.581E-05 -3.545 0.374E+01 0.399E-02 0.275E-03 0.870E-04 0.115E-04 0.361E-02 0.282E-06 0.888E-07 0.577E-07 0.558E-05 -3.525 0.355E+01 0.377E-02 0.260E-03 0.832E-04 0.107E-04 0.341E-02 0.277E-06 0.846E-07 0.555E-07 0.534E-05 -3.505 0.335E+01 0.357E-02 0.241E-03 0.814E-04 0.101E-04 0.323E-02 0.267E-06 0.820E-07 0.536E-07 0.512E-05 -3.485 0.315E+01 0.340E-02 0.222E-03 0.816E-04 0.986E-05 0.308E-02 0.253E-06 0.810E-07 0.522E-07 0.492E-05 -3.465 0.295E+01 0.325E-02 0.203E-03 0.837E-04 0.982E-05 0.295E-02 0.237E-06 0.815E-07 0.511E-07 0.476E-05 -3.445 0.276E+01 0.315E-02 0.185E-03 0.870E-04 0.996E-05 0.286E-02 0.220E-06 0.834E-07 0.502E-07 0.463E-05 -3.425 0.259E+01 0.307E-02 0.169E-03 0.909E-04 0.102E-04 0.280E-02 0.204E-06 0.860E-07 0.493E-07 0.454E-05 -3.405 0.243E+01 0.302E-02 0.158E-03 0.945E-04 0.104E-04 0.276E-02 0.191E-06 0.890E-07 0.483E-07 0.448E-05 -3.385 0.229E+01 0.300E-02 0.151E-03 0.969E-04 0.105E-04 0.273E-02 0.181E-06 0.917E-07 0.469E-07 0.446E-05 -3.365 0.216E+01 0.299E-02 0.150E-03 0.975E-04 0.105E-04 0.273E-02 0.177E-06 0.941E-07 0.451E-07 0.447E-05 -3.345 0.206E+01 0.300E-02 0.155E-03 0.962E-04 0.103E-04 0.274E-02 0.181E-06 0.961E-07 0.429E-07 0.452E-05 -3.325 0.197E+01 0.304E-02 0.166E-03 0.932E-04 0.992E-05 0.277E-02 0.192E-06 0.980E-07 0.405E-07 0.464E-05 -3.305 0.191E+01 0.314E-02 0.185E-03 0.891E-04 0.949E-05 0.285E-02 0.212E-06 0.101E-06 0.382E-07 0.484E-05 -3.285 0.190E+01 0.330E-02 0.212E-03 0.849E-04 0.911E-05 0.298E-02 0.240E-06 0.105E-06 0.363E-07 0.516E-05 -3.265 0.193E+01 0.354E-02 0.246E-03 0.816E-04 0.894E-05 0.320E-02 0.277E-06 0.111E-06 0.355E-07 0.561E-05 -3.245 0.203E+01 0.389E-02 0.287E-03 0.803E-04 0.910E-05 0.350E-02 0.322E-06 0.119E-06 0.359E-07 0.620E-05 -3.225 0.219E+01 0.433E-02 0.334E-03 0.815E-04 0.970E-05 0.390E-02 0.371E-06 0.131E-06 0.379E-07 0.693E-05 -3.205 0.240E+01 0.484E-02 0.383E-03 0.853E-04 0.108E-04 0.436E-02 0.423E-06 0.145E-06 0.416E-07 0.774E-05 -3.185 0.266E+01 0.540E-02 0.431E-03 0.915E-04 0.123E-04 0.486E-02 0.474E-06 0.160E-06 0.469E-07 0.859E-05 -3.165 0.294E+01 0.594E-02 0.474E-03 0.991E-04 0.141E-04 0.535E-02 0.519E-06 0.175E-06 0.534E-07 0.940E-05 -3.145 0.321E+01 0.642E-02 0.508E-03 0.107E-03 0.161E-04 0.578E-02 0.555E-06 0.188E-06 0.606E-07 0.101E-04 -3.125 0.346E+01 0.678E-02 0.529E-03 0.114E-03 0.180E-04 0.611E-02 0.579E-06 0.199E-06 0.679E-07 0.106E-04 -3.105 0.365E+01 0.699E-02 0.537E-03 0.119E-03 0.196E-04 0.630E-02 0.590E-06 0.206E-06 0.748E-07 0.109E-04 -3.085 0.377E+01 0.702E-02 0.529E-03 0.122E-03 0.208E-04 0.634E-02 0.587E-06 0.208E-06 0.810E-07 0.110E-04 -3.065 0.383E+01 0.690E-02 0.510E-03 0.121E-03 0.215E-04 0.623E-02 0.572E-06 0.206E-06 0.862E-07 0.109E-04 -3.045 0.384E+01 0.665E-02 0.481E-03 0.118E-03 0.215E-04 0.601E-02 0.550E-06 0.202E-06 0.904E-07 0.107E-04 -3.025 0.380E+01 0.631E-02 0.448E-03 0.113E-03 0.211E-04 0.572E-02 0.524E-06 0.195E-06 0.939E-07 0.103E-04 -3.005 0.376E+01 0.595E-02 0.414E-03 0.107E-03 0.203E-04 0.540E-02 0.498E-06 0.188E-06 0.969E-07 0.100E-04 -2.985 0.371E+01 0.560E-02 0.383E-03 0.100E-03 0.192E-04 0.509E-02 0.475E-06 0.182E-06 0.996E-07 0.975E-05 -2.965 0.369E+01 0.530E-02 0.357E-03 0.948E-04 0.181E-04 0.482E-02 0.455E-06 0.177E-06 0.102E-06 0.956E-05 -2.945 0.368E+01 0.506E-02 0.336E-03 0.903E-04 0.170E-04 0.461E-02 0.440E-06 0.175E-06 0.105E-06 0.944E-05 -2.925 0.370E+01 0.488E-02 0.320E-03 0.872E-04 0.161E-04 0.444E-02 0.427E-06 0.174E-06 0.107E-06 0.939E-05 -2.905 0.374E+01 0.475E-02 0.308E-03 0.854E-04 0.152E-04 0.433E-02 0.417E-06 0.174E-06 0.108E-06 0.937E-05 -2.885 0.379E+01 0.465E-02 0.299E-03 0.848E-04 0.145E-04 0.425E-02 0.407E-06 0.176E-06 0.108E-06 0.937E-05 -2.865 0.385E+01 0.461E-02 0.293E-03 0.853E-04 0.139E-04 0.420E-02 0.399E-06 0.180E-06 0.107E-06 0.940E-05 -2.845 0.393E+01 0.461E-02 0.290E-03 0.869E-04 0.134E-04 0.421E-02 0.394E-06 0.187E-06 0.106E-06 0.951E-05 -2.825 0.404E+01 0.469E-02 0.293E-03 0.902E-04 0.131E-04 0.428E-02 0.396E-06 0.197E-06 0.105E-06 0.977E-05 -2.805 0.419E+01 0.488E-02 0.302E-03 0.957E-04 0.130E-04 0.446E-02 0.408E-06 0.213E-06 0.104E-06 0.103E-04 -2.785 0.439E+01 0.521E-02 0.319E-03 0.104E-03 0.133E-04 0.476E-02 0.432E-06 0.237E-06 0.106E-06 0.111E-04 -2.765 0.465E+01 0.571E-02 0.347E-03 0.116E-03 0.141E-04 0.522E-02 0.473E-06 0.268E-06 0.111E-06 0.122E-04 -2.745 0.498E+01 0.637E-02 0.384E-03 0.131E-03 0.154E-04 0.583E-02 0.529E-06 0.309E-06 0.119E-06 0.138E-04 -2.725 0.536E+01 0.720E-02 0.431E-03 0.150E-03 0.173E-04 0.658E-02 0.601E-06 0.357E-06 0.132E-06 0.158E-04 -2.705 0.579E+01 0.814E-02 0.486E-03 0.171E-03 0.198E-04 0.745E-02 0.685E-06 0.410E-06 0.148E-06 0.182E-04 -2.685 0.623E+01 0.917E-02 0.546E-03 0.193E-03 0.228E-04 0.838E-02 0.779E-06 0.466E-06 0.168E-06 0.207E-04 -2.665 0.666E+01 0.102E-01 0.609E-03 0.215E-03 0.259E-04 0.933E-02 0.876E-06 0.520E-06 0.190E-06 0.233E-04 -2.645 0.706E+01 0.112E-01 0.672E-03 0.235E-03 0.289E-04 0.102E-01 0.974E-06 0.570E-06 0.212E-06 0.259E-04 -2.625 0.739E+01 0.121E-01 0.733E-03 0.252E-03 0.316E-04 0.110E-01 0.107E-05 0.612E-06 0.232E-06 0.283E-04 -2.605 0.765E+01 0.128E-01 0.789E-03 0.264E-03 0.337E-04 0.117E-01 0.115E-05 0.643E-06 0.248E-06 0.303E-04 -2.585 0.781E+01 0.134E-01 0.839E-03 0.271E-03 0.350E-04 0.122E-01 0.123E-05 0.664E-06 0.260E-06 0.319E-04 -2.565 0.787E+01 0.138E-01 0.881E-03 0.273E-03 0.355E-04 0.126E-01 0.129E-05 0.675E-06 0.266E-06 0.330E-04 -2.545 0.784E+01 0.140E-01 0.915E-03 0.272E-03 0.353E-04 0.128E-01 0.135E-05 0.677E-06 0.266E-06 0.337E-04 -2.525 0.773E+01 0.141E-01 0.940E-03 0.268E-03 0.344E-04 0.128E-01 0.139E-05 0.673E-06 0.261E-06 0.340E-04 -2.505 0.756E+01 0.141E-01 0.957E-03 0.262E-03 0.332E-04 0.128E-01 0.143E-05 0.665E-06 0.252E-06 0.340E-04 -2.485 0.735E+01 0.140E-01 0.965E-03 0.256E-03 0.317E-04 0.127E-01 0.146E-05 0.656E-06 0.240E-06 0.337E-04 -2.465 0.711E+01 0.138E-01 0.966E-03 0.251E-03 0.302E-04 0.125E-01 0.147E-05 0.647E-06 0.227E-06 0.333E-04 -2.445 0.688E+01 0.136E-01 0.958E-03 0.247E-03 0.287E-04 0.124E-01 0.149E-05 0.638E-06 0.214E-06 0.328E-04 -2.425 0.666E+01 0.134E-01 0.944E-03 0.243E-03 0.274E-04 0.121E-01 0.149E-05 0.630E-06 0.203E-06 0.321E-04 -2.405 0.646E+01 0.131E-01 0.924E-03 0.239E-03 0.263E-04 0.119E-01 0.147E-05 0.621E-06 0.192E-06 0.314E-04 -2.385 0.630E+01 0.128E-01 0.898E-03 0.235E-03 0.253E-04 0.116E-01 0.145E-05 0.611E-06 0.183E-06 0.306E-04 -2.365 0.618E+01 0.125E-01 0.867E-03 0.230E-03 0.244E-04 0.114E-01 0.141E-05 0.599E-06 0.175E-06 0.298E-04 -2.345 0.610E+01 0.122E-01 0.832E-03 0.225E-03 0.236E-04 0.111E-01 0.135E-05 0.584E-06 0.169E-06 0.288E-04 -2.325 0.608E+01 0.118E-01 0.795E-03 0.220E-03 0.229E-04 0.107E-01 0.129E-05 0.568E-06 0.164E-06 0.278E-04 -2.305 0.610E+01 0.114E-01 0.759E-03 0.214E-03 0.223E-04 0.104E-01 0.122E-05 0.550E-06 0.161E-06 0.269E-04 -2.285 0.618E+01 0.111E-01 0.725E-03 0.210E-03 0.220E-04 0.101E-01 0.116E-05 0.534E-06 0.160E-06 0.260E-04 -2.265 0.631E+01 0.109E-01 0.695E-03 0.206E-03 0.219E-04 0.993E-02 0.109E-05 0.519E-06 0.161E-06 0.253E-04 -2.245 0.648E+01 0.107E-01 0.671E-03 0.205E-03 0.221E-04 0.979E-02 0.104E-05 0.508E-06 0.163E-06 0.248E-04 -2.225 0.668E+01 0.106E-01 0.653E-03 0.206E-03 0.225E-04 0.974E-02 0.993E-06 0.501E-06 0.167E-06 0.245E-04 -2.205 0.690E+01 0.107E-01 0.643E-03 0.208E-03 0.231E-04 0.977E-02 0.963E-06 0.498E-06 0.172E-06 0.245E-04 -2.185 0.711E+01 0.108E-01 0.640E-03 0.211E-03 0.238E-04 0.988E-02 0.946E-06 0.498E-06 0.177E-06 0.247E-04 -2.165 0.731E+01 0.110E-01 0.643E-03 0.216E-03 0.245E-04 0.100E-01 0.941E-06 0.500E-06 0.182E-06 0.249E-04 -2.145 0.746E+01 0.112E-01 0.651E-03 0.219E-03 0.252E-04 0.102E-01 0.945E-06 0.502E-06 0.187E-06 0.253E-04 -2.125 0.757E+01 0.114E-01 0.663E-03 0.222E-03 0.259E-04 0.104E-01 0.955E-06 0.504E-06 0.190E-06 0.256E-04 -2.105 0.763E+01 0.115E-01 0.676E-03 0.224E-03 0.265E-04 0.106E-01 0.969E-06 0.505E-06 0.192E-06 0.259E-04 -2.085 0.764E+01 0.117E-01 0.690E-03 0.224E-03 0.269E-04 0.107E-01 0.984E-06 0.504E-06 0.192E-06 0.262E-04 -2.065 0.762E+01 0.118E-01 0.703E-03 0.223E-03 0.272E-04 0.108E-01 0.999E-06 0.503E-06 0.193E-06 0.263E-04 -2.045 0.759E+01 0.119E-01 0.716E-03 0.221E-03 0.275E-04 0.109E-01 0.102E-05 0.503E-06 0.192E-06 0.265E-04 -2.025 0.756E+01 0.119E-01 0.728E-03 0.218E-03 0.276E-04 0.109E-01 0.103E-05 0.505E-06 0.193E-06 0.266E-04 -2.005 0.755E+01 0.120E-01 0.739E-03 0.216E-03 0.277E-04 0.110E-01 0.105E-05 0.510E-06 0.194E-06 0.268E-04 -1.985 0.758E+01 0.120E-01 0.749E-03 0.213E-03 0.278E-04 0.110E-01 0.107E-05 0.520E-06 0.197E-06 0.271E-04 -1.965 0.764E+01 0.120E-01 0.756E-03 0.211E-03 0.278E-04 0.110E-01 0.109E-05 0.532E-06 0.201E-06 0.274E-04 -1.945 0.774E+01 0.120E-01 0.760E-03 0.208E-03 0.278E-04 0.110E-01 0.111E-05 0.545E-06 0.205E-06 0.278E-04 -1.925 0.787E+01 0.120E-01 0.761E-03 0.205E-03 0.278E-04 0.109E-01 0.112E-05 0.558E-06 0.211E-06 0.281E-04 -1.905 0.799E+01 0.119E-01 0.757E-03 0.201E-03 0.277E-04 0.109E-01 0.113E-05 0.568E-06 0.216E-06 0.284E-04 -1.885 0.812E+01 0.117E-01 0.748E-03 0.196E-03 0.276E-04 0.107E-01 0.114E-05 0.574E-06 0.221E-06 0.284E-04 -1.865 0.822E+01 0.115E-01 0.734E-03 0.189E-03 0.275E-04 0.105E-01 0.113E-05 0.574E-06 0.225E-06 0.284E-04 -1.845 0.828E+01 0.113E-01 0.717E-03 0.183E-03 0.273E-04 0.103E-01 0.112E-05 0.570E-06 0.227E-06 0.281E-04 -1.825 0.830E+01 0.110E-01 0.698E-03 0.176E-03 0.270E-04 0.101E-01 0.111E-05 0.563E-06 0.228E-06 0.278E-04 -1.805 0.828E+01 0.107E-01 0.680E-03 0.170E-03 0.265E-04 0.981E-02 0.109E-05 0.554E-06 0.227E-06 0.275E-04 -1.785 0.822E+01 0.105E-01 0.667E-03 0.165E-03 0.258E-04 0.962E-02 0.109E-05 0.549E-06 0.224E-06 0.273E-04 -1.765 0.813E+01 0.104E-01 0.663E-03 0.162E-03 0.249E-04 0.953E-02 0.110E-05 0.550E-06 0.221E-06 0.276E-04 -1.745 0.803E+01 0.105E-01 0.675E-03 0.162E-03 0.239E-04 0.959E-02 0.115E-05 0.562E-06 0.218E-06 0.284E-04 -1.725 0.795E+01 0.108E-01 0.707E-03 0.165E-03 0.228E-04 0.986E-02 0.123E-05 0.588E-06 0.216E-06 0.300E-04 -1.705 0.791E+01 0.114E-01 0.763E-03 0.171E-03 0.217E-04 0.104E-01 0.135E-05 0.630E-06 0.218E-06 0.325E-04 -1.685 0.794E+01 0.122E-01 0.842E-03 0.179E-03 0.209E-04 0.111E-01 0.153E-05 0.689E-06 0.223E-06 0.360E-04 -1.665 0.804E+01 0.133E-01 0.944E-03 0.190E-03 0.205E-04 0.121E-01 0.174E-05 0.762E-06 0.233E-06 0.403E-04 -1.645 0.820E+01 0.146E-01 0.106E-02 0.203E-03 0.204E-04 0.133E-01 0.199E-05 0.846E-06 0.247E-06 0.452E-04 -1.625 0.843E+01 0.161E-01 0.119E-02 0.218E-03 0.208E-04 0.146E-01 0.225E-05 0.937E-06 0.264E-06 0.506E-04 -1.605 0.868E+01 0.175E-01 0.132E-02 0.233E-03 0.216E-04 0.159E-01 0.251E-05 0.103E-05 0.283E-06 0.560E-04 -1.585 0.894E+01 0.190E-01 0.144E-02 0.248E-03 0.227E-04 0.172E-01 0.276E-05 0.112E-05 0.302E-06 0.612E-04 -1.565 0.915E+01 0.203E-01 0.154E-02 0.263E-03 0.239E-04 0.184E-01 0.297E-05 0.121E-05 0.320E-06 0.659E-04 -1.545 0.931E+01 0.214E-01 0.163E-02 0.278E-03 0.250E-04 0.194E-01 0.316E-05 0.129E-05 0.335E-06 0.701E-04 -1.525 0.940E+01 0.224E-01 0.170E-02 0.294E-03 0.260E-04 0.203E-01 0.331E-05 0.137E-05 0.347E-06 0.738E-04 -1.505 0.941E+01 0.233E-01 0.176E-02 0.311E-03 0.268E-04 0.211E-01 0.343E-05 0.145E-05 0.358E-06 0.773E-04 -1.485 0.936E+01 0.241E-01 0.180E-02 0.330E-03 0.275E-04 0.219E-01 0.355E-05 0.154E-05 0.367E-06 0.807E-04 -1.465 0.928E+01 0.249E-01 0.185E-02 0.351E-03 0.280E-04 0.226E-01 0.365E-05 0.163E-05 0.377E-06 0.842E-04 -1.445 0.919E+01 0.257E-01 0.189E-02 0.375E-03 0.286E-04 0.233E-01 0.376E-05 0.173E-05 0.390E-06 0.879E-04 -1.425 0.914E+01 0.266E-01 0.194E-02 0.400E-03 0.293E-04 0.241E-01 0.386E-05 0.184E-05 0.406E-06 0.919E-04 -1.405 0.916E+01 0.274E-01 0.198E-02 0.427E-03 0.303E-04 0.249E-01 0.397E-05 0.194E-05 0.425E-06 0.961E-04 -1.385 0.927E+01 0.283E-01 0.203E-02 0.453E-03 0.315E-04 0.257E-01 0.407E-05 0.204E-05 0.447E-06 0.100E-03 -1.365 0.949E+01 0.291E-01 0.206E-02 0.478E-03 0.329E-04 0.264E-01 0.415E-05 0.212E-05 0.471E-06 0.104E-03 -1.345 0.979E+01 0.298E-01 0.209E-02 0.501E-03 0.342E-04 0.270E-01 0.421E-05 0.219E-05 0.494E-06 0.107E-03 -1.325 0.102E+02 0.303E-01 0.211E-02 0.518E-03 0.352E-04 0.275E-01 0.425E-05 0.223E-05 0.515E-06 0.109E-03 -1.305 0.106E+02 0.306E-01 0.212E-02 0.531E-03 0.359E-04 0.278E-01 0.426E-05 0.224E-05 0.530E-06 0.110E-03 -1.285 0.110E+02 0.308E-01 0.212E-02 0.537E-03 0.360E-04 0.280E-01 0.425E-05 0.223E-05 0.540E-06 0.110E-03 -1.265 0.113E+02 0.307E-01 0.211E-02 0.537E-03 0.356E-04 0.279E-01 0.422E-05 0.219E-05 0.543E-06 0.110E-03 -1.245 0.116E+02 0.305E-01 0.209E-02 0.532E-03 0.346E-04 0.277E-01 0.418E-05 0.214E-05 0.541E-06 0.108E-03 -1.225 0.117E+02 0.301E-01 0.207E-02 0.523E-03 0.334E-04 0.274E-01 0.414E-05 0.208E-05 0.534E-06 0.106E-03 -1.205 0.118E+02 0.297E-01 0.205E-02 0.513E-03 0.319E-04 0.270E-01 0.412E-05 0.202E-05 0.525E-06 0.104E-03 -1.185 0.118E+02 0.294E-01 0.204E-02 0.502E-03 0.306E-04 0.267E-01 0.412E-05 0.197E-05 0.516E-06 0.103E-03 -1.165 0.116E+02 0.291E-01 0.204E-02 0.493E-03 0.294E-04 0.264E-01 0.415E-05 0.193E-05 0.509E-06 0.102E-03 -1.145 0.114E+02 0.290E-01 0.205E-02 0.485E-03 0.286E-04 0.263E-01 0.420E-05 0.192E-05 0.504E-06 0.102E-03 -1.125 0.112E+02 0.290E-01 0.208E-02 0.480E-03 0.281E-04 0.263E-01 0.428E-05 0.192E-05 0.502E-06 0.102E-03 -1.105 0.109E+02 0.290E-01 0.211E-02 0.475E-03 0.279E-04 0.263E-01 0.437E-05 0.193E-05 0.503E-06 0.103E-03 -1.085 0.106E+02 0.292E-01 0.214E-02 0.471E-03 0.278E-04 0.264E-01 0.446E-05 0.194E-05 0.504E-06 0.104E-03 -1.065 0.103E+02 0.292E-01 0.217E-02 0.465E-03 0.279E-04 0.265E-01 0.453E-05 0.195E-05 0.506E-06 0.105E-03 -1.045 0.993E+01 0.292E-01 0.219E-02 0.457E-03 0.278E-04 0.264E-01 0.458E-05 0.195E-05 0.506E-06 0.105E-03 -1.025 0.957E+01 0.290E-01 0.219E-02 0.446E-03 0.277E-04 0.262E-01 0.459E-05 0.194E-05 0.504E-06 0.105E-03 -1.005 0.921E+01 0.287E-01 0.219E-02 0.433E-03 0.275E-04 0.260E-01 0.458E-05 0.191E-05 0.501E-06 0.105E-03 -0.985 0.886E+01 0.285E-01 0.218E-02 0.419E-03 0.273E-04 0.258E-01 0.457E-05 0.189E-05 0.499E-06 0.104E-03 -0.965 0.855E+01 0.284E-01 0.219E-02 0.407E-03 0.273E-04 0.257E-01 0.460E-05 0.188E-05 0.501E-06 0.105E-03 -0.945 0.830E+01 0.288E-01 0.223E-02 0.401E-03 0.277E-04 0.260E-01 0.470E-05 0.190E-05 0.512E-06 0.107E-03 -0.925 0.814E+01 0.297E-01 0.231E-02 0.403E-03 0.287E-04 0.269E-01 0.492E-05 0.196E-05 0.536E-06 0.112E-03 -0.905 0.810E+01 0.314E-01 0.246E-02 0.415E-03 0.305E-04 0.284E-01 0.528E-05 0.208E-05 0.577E-06 0.120E-03 -0.885 0.820E+01 0.340E-01 0.267E-02 0.436E-03 0.332E-04 0.307E-01 0.581E-05 0.226E-05 0.636E-06 0.133E-03 -0.865 0.845E+01 0.374E-01 0.295E-02 0.467E-03 0.368E-04 0.338E-01 0.648E-05 0.249E-05 0.714E-06 0.148E-03 -0.845 0.883E+01 0.414E-01 0.328E-02 0.504E-03 0.414E-04 0.374E-01 0.727E-05 0.276E-05 0.808E-06 0.167E-03 -0.825 0.933E+01 0.459E-01 0.364E-02 0.544E-03 0.467E-04 0.415E-01 0.812E-05 0.304E-05 0.912E-06 0.187E-03 -0.805 0.991E+01 0.504E-01 0.400E-02 0.584E-03 0.525E-04 0.456E-01 0.898E-05 0.333E-05 0.102E-05 0.207E-03 -0.785 0.105E+02 0.547E-01 0.434E-02 0.618E-03 0.585E-04 0.494E-01 0.979E-05 0.359E-05 0.113E-05 0.226E-03 -0.765 0.111E+02 0.584E-01 0.463E-02 0.645E-03 0.643E-04 0.528E-01 0.105E-04 0.382E-05 0.123E-05 0.243E-03 -0.745 0.116E+02 0.613E-01 0.484E-02 0.664E-03 0.697E-04 0.555E-01 0.110E-04 0.399E-05 0.131E-05 0.256E-03 -0.725 0.121E+02 0.634E-01 0.499E-02 0.673E-03 0.744E-04 0.574E-01 0.114E-04 0.411E-05 0.138E-05 0.266E-03 -0.705 0.124E+02 0.645E-01 0.505E-02 0.673E-03 0.784E-04 0.584E-01 0.117E-04 0.418E-05 0.143E-05 0.273E-03 -0.685 0.126E+02 0.648E-01 0.504E-02 0.667E-03 0.816E-04 0.587E-01 0.118E-04 0.421E-05 0.147E-05 0.277E-03 -0.665 0.127E+02 0.643E-01 0.497E-02 0.657E-03 0.839E-04 0.583E-01 0.118E-04 0.420E-05 0.149E-05 0.278E-03 -0.645 0.126E+02 0.633E-01 0.485E-02 0.644E-03 0.853E-04 0.574E-01 0.116E-04 0.418E-05 0.150E-05 0.277E-03 -0.625 0.124E+02 0.619E-01 0.469E-02 0.630E-03 0.860E-04 0.562E-01 0.114E-04 0.414E-05 0.150E-05 0.274E-03 -0.605 0.121E+02 0.602E-01 0.452E-02 0.617E-03 0.861E-04 0.547E-01 0.112E-04 0.409E-05 0.149E-05 0.270E-03 -0.585 0.118E+02 0.584E-01 0.435E-02 0.606E-03 0.856E-04 0.531E-01 0.109E-04 0.405E-05 0.148E-05 0.266E-03 -0.565 0.114E+02 0.569E-01 0.419E-02 0.597E-03 0.849E-04 0.517E-01 0.107E-04 0.401E-05 0.146E-05 0.262E-03 -0.545 0.110E+02 0.556E-01 0.407E-02 0.591E-03 0.841E-04 0.506E-01 0.106E-04 0.400E-05 0.145E-05 0.259E-03 -0.525 0.107E+02 0.549E-01 0.401E-02 0.589E-03 0.834E-04 0.500E-01 0.106E-04 0.402E-05 0.144E-05 0.259E-03 -0.505 0.105E+02 0.549E-01 0.400E-02 0.591E-03 0.831E-04 0.500E-01 0.107E-04 0.407E-05 0.144E-05 0.261E-03 -0.485 0.104E+02 0.557E-01 0.407E-02 0.596E-03 0.833E-04 0.506E-01 0.110E-04 0.416E-05 0.146E-05 0.267E-03 -0.465 0.104E+02 0.572E-01 0.421E-02 0.603E-03 0.842E-04 0.520E-01 0.114E-04 0.430E-05 0.148E-05 0.276E-03 -0.445 0.105E+02 0.593E-01 0.441E-02 0.613E-03 0.858E-04 0.539E-01 0.120E-04 0.447E-05 0.152E-05 0.288E-03 -0.425 0.106E+02 0.619E-01 0.466E-02 0.624E-03 0.878E-04 0.562E-01 0.128E-04 0.466E-05 0.157E-05 0.302E-03 -0.405 0.108E+02 0.648E-01 0.495E-02 0.633E-03 0.900E-04 0.588E-01 0.136E-04 0.487E-05 0.162E-05 0.318E-03 -0.385 0.110E+02 0.677E-01 0.525E-02 0.641E-03 0.922E-04 0.614E-01 0.144E-04 0.507E-05 0.167E-05 0.333E-03 -0.365 0.112E+02 0.705E-01 0.555E-02 0.644E-03 0.939E-04 0.638E-01 0.153E-04 0.525E-05 0.171E-05 0.348E-03 -0.345 0.113E+02 0.729E-01 0.583E-02 0.643E-03 0.947E-04 0.660E-01 0.160E-04 0.539E-05 0.173E-05 0.361E-03 -0.325 0.114E+02 0.749E-01 0.608E-02 0.635E-03 0.944E-04 0.677E-01 0.167E-04 0.547E-05 0.174E-05 0.370E-03 -0.305 0.114E+02 0.764E-01 0.630E-02 0.621E-03 0.926E-04 0.690E-01 0.172E-04 0.549E-05 0.172E-05 0.376E-03 -0.285 0.113E+02 0.773E-01 0.647E-02 0.600E-03 0.894E-04 0.698E-01 0.176E-04 0.545E-05 0.167E-05 0.378E-03 -0.265 0.112E+02 0.777E-01 0.660E-02 0.572E-03 0.847E-04 0.701E-01 0.179E-04 0.533E-05 0.159E-05 0.376E-03 -0.245 0.110E+02 0.777E-01 0.667E-02 0.539E-03 0.789E-04 0.700E-01 0.180E-04 0.514E-05 0.150E-05 0.370E-03 -0.225 0.108E+02 0.772E-01 0.669E-02 0.501E-03 0.724E-04 0.695E-01 0.179E-04 0.490E-05 0.140E-05 0.362E-03 -0.205 0.105E+02 0.763E-01 0.665E-02 0.459E-03 0.656E-04 0.687E-01 0.177E-04 0.460E-05 0.129E-05 0.351E-03 -0.185 0.102E+02 0.751E-01 0.657E-02 0.416E-03 0.592E-04 0.677E-01 0.174E-04 0.426E-05 0.119E-05 0.339E-03 -0.165 0.995E+01 0.737E-01 0.643E-02 0.372E-03 0.534E-04 0.665E-01 0.169E-04 0.390E-05 0.110E-05 0.325E-03 -0.145 0.967E+01 0.722E-01 0.627E-02 0.330E-03 0.486E-04 0.652E-01 0.164E-04 0.353E-05 0.103E-05 0.312E-03 -0.125 0.939E+01 0.706E-01 0.607E-02 0.289E-03 0.451E-04 0.639E-01 0.158E-04 0.315E-05 0.977E-06 0.298E-03 -0.105 0.913E+01 0.690E-01 0.586E-02 0.251E-03 0.427E-04 0.626E-01 0.152E-04 0.278E-05 0.949E-06 0.286E-03 -0.085 0.888E+01 0.676E-01 0.566E-02 0.217E-03 0.415E-04 0.614E-01 0.145E-04 0.244E-05 0.939E-06 0.274E-03 -0.065 0.865E+01 0.664E-01 0.547E-02 0.188E-03 0.413E-04 0.604E-01 0.140E-04 0.213E-05 0.945E-06 0.264E-03 -0.045 0.843E+01 0.654E-01 0.531E-02 0.163E-03 0.419E-04 0.596E-01 0.135E-04 0.185E-05 0.964E-06 0.256E-03 -0.025 0.824E+01 0.647E-01 0.518E-02 0.143E-03 0.434E-04 0.591E-01 0.131E-04 0.161E-05 0.996E-06 0.251E-03 -0.005 0.807E+01 0.644E-01 0.509E-02 0.127E-03 0.457E-04 0.588E-01 0.128E-04 0.142E-05 0.104E-05 0.248E-03 0.015 0.793E+01 0.645E-01 0.506E-02 0.115E-03 0.489E-04 0.590E-01 0.127E-04 0.127E-05 0.111E-05 0.248E-03 0.035 0.785E+01 0.651E-01 0.509E-02 0.106E-03 0.533E-04 0.596E-01 0.128E-04 0.118E-05 0.119E-05 0.253E-03 0.055 0.784E+01 0.665E-01 0.519E-02 0.101E-03 0.589E-04 0.609E-01 0.132E-04 0.113E-05 0.130E-05 0.262E-03 0.075 0.792E+01 0.687E-01 0.538E-02 0.992E-04 0.659E-04 0.629E-01 0.137E-04 0.114E-05 0.144E-05 0.276E-03 0.095 0.810E+01 0.719E-01 0.565E-02 0.101E-03 0.744E-04 0.658E-01 0.146E-04 0.120E-05 0.162E-05 0.296E-03 0.115 0.839E+01 0.760E-01 0.600E-02 0.105E-03 0.844E-04 0.695E-01 0.157E-04 0.132E-05 0.183E-05 0.322E-03 0.135 0.877E+01 0.810E-01 0.642E-02 0.113E-03 0.955E-04 0.740E-01 0.171E-04 0.149E-05 0.206E-05 0.353E-03 0.155 0.921E+01 0.865E-01 0.688E-02 0.122E-03 0.107E-03 0.790E-01 0.185E-04 0.171E-05 0.232E-05 0.387E-03 0.175 0.968E+01 0.920E-01 0.734E-02 0.133E-03 0.119E-03 0.840E-01 0.201E-04 0.195E-05 0.259E-05 0.422E-03 0.195 0.101E+02 0.971E-01 0.775E-02 0.145E-03 0.131E-03 0.886E-01 0.215E-04 0.222E-05 0.284E-05 0.456E-03 0.215 0.105E+02 0.101E+00 0.806E-02 0.155E-03 0.140E-03 0.922E-01 0.227E-04 0.250E-05 0.307E-05 0.485E-03 0.235 0.107E+02 0.103E+00 0.823E-02 0.164E-03 0.148E-03 0.944E-01 0.235E-04 0.276E-05 0.326E-05 0.508E-03 0.255 0.108E+02 0.104E+00 0.822E-02 0.169E-03 0.154E-03 0.947E-01 0.238E-04 0.298E-05 0.339E-05 0.521E-03 0.275 0.107E+02 0.102E+00 0.803E-02 0.172E-03 0.156E-03 0.931E-01 0.237E-04 0.316E-05 0.346E-05 0.524E-03 0.295 0.105E+02 0.981E-01 0.766E-02 0.172E-03 0.155E-03 0.896E-01 0.230E-04 0.327E-05 0.345E-05 0.516E-03 0.315 0.100E+02 0.924E-01 0.713E-02 0.168E-03 0.151E-03 0.844E-01 0.219E-04 0.330E-05 0.338E-05 0.498E-03 0.335 0.949E+01 0.851E-01 0.649E-02 0.162E-03 0.144E-03 0.778E-01 0.203E-04 0.326E-05 0.325E-05 0.471E-03 0.355 0.884E+01 0.769E-01 0.577E-02 0.154E-03 0.134E-03 0.704E-01 0.185E-04 0.313E-05 0.305E-05 0.436E-03 0.375 0.812E+01 0.682E-01 0.503E-02 0.144E-03 0.123E-03 0.624E-01 0.165E-04 0.293E-05 0.282E-05 0.396E-03 0.395 0.736E+01 0.593E-01 0.428E-02 0.133E-03 0.110E-03 0.544E-01 0.144E-04 0.267E-05 0.254E-05 0.352E-03 0.415 0.658E+01 0.507E-01 0.358E-02 0.121E-03 0.957E-04 0.466E-01 0.123E-04 0.237E-05 0.225E-05 0.307E-03 0.435 0.579E+01 0.427E-01 0.293E-02 0.108E-03 0.817E-04 0.393E-01 0.103E-04 0.205E-05 0.194E-05 0.262E-03 0.455 0.502E+01 0.353E-01 0.236E-02 0.956E-04 0.680E-04 0.325E-01 0.850E-05 0.171E-05 0.164E-05 0.219E-03 0.475 0.429E+01 0.286E-01 0.186E-02 0.828E-04 0.553E-04 0.264E-01 0.684E-05 0.139E-05 0.135E-05 0.179E-03 0.495 0.359E+01 0.228E-01 0.144E-02 0.702E-04 0.438E-04 0.211E-01 0.539E-05 0.110E-05 0.109E-05 0.142E-03 0.515 0.296E+01 0.178E-01 0.109E-02 0.581E-04 0.337E-04 0.165E-01 0.415E-05 0.843E-06 0.851E-06 0.111E-03 0.535 0.240E+01 0.136E-01 0.809E-03 0.468E-04 0.253E-04 0.127E-01 0.312E-05 0.626E-06 0.648E-06 0.841E-04 0.555 0.192E+01 0.102E-01 0.587E-03 0.367E-04 0.185E-04 0.948E-02 0.228E-05 0.452E-06 0.480E-06 0.622E-04 0.575 0.151E+01 0.744E-02 0.415E-03 0.279E-04 0.131E-04 0.693E-02 0.163E-05 0.316E-06 0.345E-06 0.447E-04 0.595 0.118E+01 0.529E-02 0.286E-03 0.206E-04 0.902E-05 0.494E-02 0.113E-05 0.215E-06 0.241E-06 0.312E-04 0.615 0.923E+00 0.367E-02 0.192E-03 0.147E-04 0.603E-05 0.344E-02 0.762E-06 0.142E-06 0.163E-06 0.211E-04 0.635 0.720E+00 0.249E-02 0.125E-03 0.102E-04 0.390E-05 0.233E-02 0.499E-06 0.908E-07 0.107E-06 0.139E-04 0.655 0.564E+00 0.164E-02 0.795E-04 0.686E-05 0.245E-05 0.155E-02 0.317E-06 0.567E-07 0.680E-07 0.885E-05 0.675 0.445E+00 0.106E-02 0.489E-04 0.447E-05 0.149E-05 0.100E-02 0.195E-06 0.347E-07 0.418E-07 0.547E-05 0.695 0.351E+00 0.675E-03 0.293E-04 0.284E-05 0.876E-06 0.638E-03 0.116E-06 0.208E-07 0.249E-07 0.328E-05 0.715 0.277E+00 0.422E-03 0.171E-04 0.176E-05 0.498E-06 0.401E-03 0.676E-07 0.124E-07 0.143E-07 0.191E-05 0.735 0.217E+00 0.262E-03 0.968E-05 0.107E-05 0.273E-06 0.250E-03 0.382E-07 0.734E-08 0.799E-08 0.109E-05 0.755 0.167E+00 0.162E-03 0.538E-05 0.636E-06 0.145E-06 0.155E-03 0.211E-07 0.439E-08 0.433E-08 0.603E-06 0.775 0.126E+00 0.996E-04 0.294E-05 0.376E-06 0.742E-07 0.959E-04 0.115E-07 0.266E-08 0.228E-08 0.329E-06 0.795 0.930E-01 0.615E-04 0.158E-05 0.222E-06 0.367E-07 0.594E-04 0.618E-08 0.165E-08 0.117E-08 0.178E-06 0.815 0.665E-01 0.379E-04 0.851E-06 0.130E-06 0.175E-07 0.368E-04 0.331E-08 0.103E-08 0.593E-09 0.960E-07 0.835 0.460E-01 0.233E-04 0.457E-06 0.763E-07 0.806E-08 0.227E-04 0.178E-08 0.652E-09 0.296E-09 0.519E-07 0.855 0.307E-01 0.142E-04 0.246E-06 0.446E-07 0.359E-08 0.138E-04 0.967E-09 0.409E-09 0.147E-09 0.282E-07 0.875 0.197E-01 0.847E-05 0.133E-06 0.258E-07 0.155E-08 0.830E-05 0.528E-09 0.253E-09 0.732E-10 0.154E-07 0.895 0.122E-01 0.497E-05 0.718E-07 0.147E-07 0.649E-09 0.487E-05 0.289E-09 0.153E-09 0.366E-10 0.844E-08 0.915 0.725E-02 0.283E-05 0.385E-07 0.826E-08 0.264E-09 0.278E-05 0.157E-09 0.900E-10 0.183E-10 0.459E-08 0.935 0.414E-02 0.157E-05 0.204E-07 0.451E-08 0.106E-09 0.154E-05 0.843E-10 0.510E-10 0.920E-11 0.246E-08 0.955 0.227E-02 0.840E-06 0.106E-07 0.240E-08 0.426E-10 0.826E-06 0.443E-10 0.279E-10 0.460E-11 0.129E-08 0.975 0.119E-02 0.434E-06 0.534E-08 0.126E-08 0.209E-10 0.427E-06 0.227E-10 0.148E-10 0.232E-11 0.661E-09 0.995 0.600E-03 0.217E-06 0.262E-08 0.709E-09 0.216E-10 0.214E-06 0.112E-10 0.791E-11 0.131E-11 0.336E-09 1.015 0.291E-03 0.108E-06 0.125E-08 0.584E-09 0.471E-10 0.106E-06 0.540E-11 0.507E-11 0.117E-11 0.187E-09 1.035 0.136E-03 0.609E-07 0.594E-09 0.944E-09 0.124E-09 0.591E-07 0.259E-11 0.576E-11 0.205E-11 0.159E-09 1.055 0.651E-04 0.566E-07 0.326E-09 0.219E-08 0.324E-09 0.535E-07 0.143E-11 0.115E-10 0.490E-11 0.263E-09 1.075 0.393E-04 0.988E-07 0.300E-09 0.540E-08 0.817E-09 0.916E-07 0.132E-11 0.275E-10 0.121E-10 0.597E-09 1.095 0.441E-04 0.221E-06 0.514E-09 0.130E-07 0.197E-08 0.204E-06 0.227E-11 0.657E-10 0.292E-10 0.141E-08 1.115 0.821E-04 0.503E-06 0.111E-08 0.300E-07 0.455E-08 0.464E-06 0.487E-11 0.152E-09 0.675E-10 0.325E-08 1.135 0.174E-03 0.111E-05 0.242E-08 0.663E-07 0.101E-07 0.102E-05 0.107E-10 0.335E-09 0.149E-09 0.720E-08 1.155 0.367E-03 0.235E-05 0.512E-08 0.141E-06 0.213E-07 0.217E-05 0.225E-10 0.711E-09 0.316E-09 0.153E-07 1.175 0.743E-03 0.477E-05 0.104E-07 0.285E-06 0.433E-07 0.440E-05 0.457E-10 0.144E-08 0.642E-09 0.310E-07 1.195 0.144E-02 0.928E-05 0.202E-07 0.555E-06 0.842E-07 0.856E-05 0.889E-10 0.280E-08 0.125E-08 0.602E-07 1.215 0.269E-02 0.173E-04 0.377E-07 0.103E-05 0.157E-06 0.159E-04 0.166E-09 0.522E-08 0.232E-08 0.112E-06 1.235 0.480E-02 0.308E-04 0.674E-07 0.184E-05 0.280E-06 0.284E-04 0.296E-09 0.931E-08 0.415E-08 0.200E-06 1.255 0.819E-02 0.526E-04 0.116E-06 0.315E-05 0.478E-06 0.485E-04 0.506E-09 0.159E-07 0.708E-08 0.341E-06 1.275 0.134E-01 0.861E-04 0.190E-06 0.515E-05 0.782E-06 0.794E-04 0.830E-09 0.260E-07 0.116E-07 0.559E-06 1.295 0.210E-01 0.135E-03 0.301E-06 0.807E-05 0.123E-05 0.124E-03 0.131E-08 0.408E-07 0.182E-07 0.875E-06 1.315 0.316E-01 0.203E-03 0.458E-06 0.121E-04 0.184E-05 0.187E-03 0.197E-08 0.612E-07 0.273E-07 0.131E-05 1.335 0.454E-01 0.292E-03 0.673E-06 0.174E-04 0.265E-05 0.269E-03 0.287E-08 0.881E-07 0.392E-07 0.189E-05 1.355 0.627E-01 0.403E-03 0.958E-06 0.240E-04 0.365E-05 0.371E-03 0.401E-08 0.122E-06 0.541E-07 0.261E-05 1.375 0.830E-01 0.533E-03 0.133E-05 0.318E-04 0.483E-05 0.492E-03 0.543E-08 0.161E-06 0.716E-07 0.345E-05 1.395 0.106E+00 0.679E-03 0.181E-05 0.404E-04 0.614E-05 0.626E-03 0.713E-08 0.204E-06 0.909E-07 0.439E-05 1.415 0.129E+00 0.830E-03 0.245E-05 0.494E-04 0.751E-05 0.765E-03 0.914E-08 0.249E-06 0.111E-06 0.536E-05 1.435 0.152E+00 0.980E-03 0.330E-05 0.581E-04 0.884E-05 0.903E-03 0.115E-07 0.293E-06 0.130E-06 0.630E-05 1.455 0.173E+00 0.112E-02 0.446E-05 0.660E-04 0.101E-04 0.103E-02 0.145E-07 0.332E-06 0.148E-06 0.716E-05 1.475 0.192E+00 0.124E-02 0.607E-05 0.728E-04 0.111E-04 0.114E-02 0.181E-07 0.365E-06 0.163E-06 0.789E-05 1.495 0.208E+00 0.135E-02 0.831E-05 0.784E-04 0.120E-04 0.124E-02 0.229E-07 0.392E-06 0.175E-06 0.848E-05 1.515 0.222E+00 0.145E-02 0.113E-04 0.830E-04 0.127E-04 0.133E-02 0.290E-07 0.413E-06 0.184E-06 0.897E-05 1.535 0.235E+00 0.154E-02 0.153E-04 0.872E-04 0.134E-04 0.142E-02 0.370E-07 0.431E-06 0.192E-06 0.940E-05 1.555 0.250E+00 0.165E-02 0.204E-04 0.915E-04 0.141E-04 0.151E-02 0.468E-07 0.449E-06 0.201E-06 0.985E-05 1.575 0.267E+00 0.177E-02 0.263E-04 0.965E-04 0.149E-04 0.162E-02 0.586E-07 0.469E-06 0.210E-06 0.104E-04 1.595 0.288E+00 0.192E-02 0.330E-04 0.103E-03 0.159E-04 0.175E-02 0.718E-07 0.495E-06 0.222E-06 0.110E-04 1.615 0.310E+00 0.208E-02 0.400E-04 0.109E-03 0.170E-04 0.190E-02 0.856E-07 0.524E-06 0.235E-06 0.117E-04 1.635 0.332E+00 0.224E-02 0.466E-04 0.116E-03 0.182E-04 0.204E-02 0.987E-07 0.554E-06 0.249E-06 0.124E-04 1.655 0.352E+00 0.237E-02 0.522E-04 0.122E-03 0.192E-04 0.217E-02 0.110E-06 0.581E-06 0.261E-06 0.131E-04 1.675 0.364E+00 0.247E-02 0.562E-04 0.127E-03 0.198E-04 0.225E-02 0.118E-06 0.599E-06 0.269E-06 0.135E-04 1.695 0.368E+00 0.250E-02 0.580E-04 0.128E-03 0.201E-04 0.228E-02 0.121E-06 0.606E-06 0.272E-06 0.137E-04 1.715 0.361E+00 0.246E-02 0.575E-04 0.126E-03 0.198E-04 0.225E-02 0.120E-06 0.599E-06 0.269E-06 0.135E-04 1.735 0.343E+00 0.236E-02 0.547E-04 0.121E-03 0.190E-04 0.216E-02 0.114E-06 0.580E-06 0.260E-06 0.130E-04 1.755 0.318E+00 0.222E-02 0.500E-04 0.114E-03 0.180E-04 0.202E-02 0.105E-06 0.556E-06 0.248E-06 0.124E-04 1.775 0.290E+00 0.206E-02 0.440E-04 0.107E-03 0.169E-04 0.188E-02 0.927E-07 0.534E-06 0.237E-06 0.118E-04 1.795 0.262E+00 0.192E-02 0.377E-04 0.101E-03 0.160E-04 0.175E-02 0.800E-07 0.524E-06 0.231E-06 0.113E-04 1.815 0.240E+00 0.183E-02 0.317E-04 0.986E-04 0.157E-04 0.168E-02 0.683E-07 0.535E-06 0.233E-06 0.113E-04 1.835 0.228E+00 0.183E-02 0.268E-04 0.101E-03 0.161E-04 0.168E-02 0.592E-07 0.574E-06 0.248E-06 0.119E-04 1.855 0.229E+00 0.194E-02 0.237E-04 0.109E-03 0.175E-04 0.177E-02 0.542E-07 0.645E-06 0.276E-06 0.132E-04 1.875 0.244E+00 0.215E-02 0.228E-04 0.122E-03 0.197E-04 0.197E-02 0.547E-07 0.749E-06 0.319E-06 0.152E-04 1.895 0.272E+00 0.247E-02 0.243E-04 0.141E-03 0.228E-04 0.226E-02 0.622E-07 0.883E-06 0.374E-06 0.178E-04 1.915 0.312E+00 0.287E-02 0.286E-04 0.164E-03 0.266E-04 0.263E-02 0.783E-07 0.104E-05 0.439E-06 0.210E-04 1.935 0.362E+00 0.334E-02 0.359E-04 0.190E-03 0.308E-04 0.306E-02 0.105E-06 0.121E-05 0.510E-06 0.247E-04 1.955 0.420E+00 0.386E-02 0.463E-04 0.217E-03 0.351E-04 0.353E-02 0.145E-06 0.139E-05 0.583E-06 0.287E-04 1.975 0.484E+00 0.439E-02 0.601E-04 0.244E-03 0.394E-04 0.402E-02 0.201E-06 0.157E-05 0.654E-06 0.328E-04 1.995 0.553E+00 0.494E-02 0.773E-04 0.270E-03 0.436E-04 0.451E-02 0.276E-06 0.174E-05 0.720E-06 0.371E-04 2.015 0.628E+00 0.550E-02 0.981E-04 0.296E-03 0.476E-04 0.502E-02 0.371E-06 0.191E-05 0.782E-06 0.416E-04 2.035 0.712E+00 0.609E-02 0.122E-03 0.323E-03 0.516E-04 0.555E-02 0.486E-06 0.208E-05 0.841E-06 0.464E-04 2.055 0.806E+00 0.674E-02 0.150E-03 0.353E-03 0.560E-04 0.612E-02 0.618E-06 0.227E-05 0.900E-06 0.516E-04 2.075 0.915E+00 0.747E-02 0.179E-03 0.390E-03 0.611E-04 0.678E-02 0.762E-06 0.249E-05 0.966E-06 0.574E-04 2.095 0.104E+01 0.832E-02 0.210E-03 0.435E-03 0.675E-04 0.754E-02 0.908E-06 0.277E-05 0.105E-05 0.640E-04 2.115 0.119E+01 0.932E-02 0.240E-03 0.493E-03 0.755E-04 0.844E-02 0.105E-05 0.311E-05 0.114E-05 0.713E-04 2.135 0.135E+01 0.105E-01 0.269E-03 0.562E-03 0.854E-04 0.947E-02 0.117E-05 0.352E-05 0.126E-05 0.794E-04 2.155 0.154E+01 0.117E-01 0.294E-03 0.643E-03 0.970E-04 0.106E-01 0.126E-05 0.399E-05 0.141E-05 0.882E-04 2.175 0.172E+01 0.131E-01 0.316E-03 0.733E-03 0.110E-03 0.118E-01 0.133E-05 0.451E-05 0.157E-05 0.973E-04 2.195 0.191E+01 0.145E-01 0.333E-03 0.827E-03 0.124E-03 0.131E-01 0.137E-05 0.506E-05 0.175E-05 0.106E-03 2.215 0.209E+01 0.159E-01 0.348E-03 0.920E-03 0.139E-03 0.143E-01 0.139E-05 0.561E-05 0.194E-05 0.116E-03 2.235 0.225E+01 0.172E-01 0.364E-03 0.100E-02 0.153E-03 0.155E-01 0.142E-05 0.613E-05 0.213E-05 0.125E-03 2.255 0.240E+01 0.183E-01 0.381E-03 0.108E-02 0.166E-03 0.166E-01 0.147E-05 0.660E-05 0.233E-05 0.133E-03 2.275 0.253E+01 0.194E-01 0.405E-03 0.114E-02 0.179E-03 0.175E-01 0.157E-05 0.701E-05 0.251E-05 0.142E-03 2.295 0.264E+01 0.203E-01 0.436E-03 0.118E-02 0.190E-03 0.184E-01 0.173E-05 0.734E-05 0.269E-05 0.151E-03 2.315 0.273E+01 0.211E-01 0.476E-03 0.120E-02 0.200E-03 0.191E-01 0.197E-05 0.760E-05 0.286E-05 0.160E-03 2.335 0.281E+01 0.218E-01 0.523E-03 0.121E-02 0.208E-03 0.197E-01 0.228E-05 0.779E-05 0.301E-05 0.170E-03 2.355 0.288E+01 0.223E-01 0.574E-03 0.121E-02 0.215E-03 0.201E-01 0.265E-05 0.790E-05 0.313E-05 0.179E-03 2.375 0.292E+01 0.226E-01 0.624E-03 0.118E-02 0.220E-03 0.204E-01 0.306E-05 0.791E-05 0.322E-05 0.187E-03 2.395 0.294E+01 0.226E-01 0.668E-03 0.114E-02 0.222E-03 0.204E-01 0.347E-05 0.782E-05 0.327E-05 0.194E-03 2.415 0.292E+01 0.223E-01 0.702E-03 0.109E-02 0.222E-03 0.201E-01 0.384E-05 0.762E-05 0.327E-05 0.198E-03 2.435 0.286E+01 0.217E-01 0.722E-03 0.102E-02 0.219E-03 0.195E-01 0.414E-05 0.732E-05 0.322E-05 0.199E-03 2.455 0.278E+01 0.208E-01 0.729E-03 0.947E-03 0.215E-03 0.187E-01 0.436E-05 0.693E-05 0.314E-05 0.197E-03 2.475 0.267E+01 0.198E-01 0.726E-03 0.870E-03 0.210E-03 0.178E-01 0.450E-05 0.649E-05 0.304E-05 0.193E-03 2.495 0.256E+01 0.188E-01 0.719E-03 0.798E-03 0.207E-03 0.169E-01 0.457E-05 0.606E-05 0.296E-05 0.188E-03 2.515 0.247E+01 0.180E-01 0.719E-03 0.740E-03 0.208E-03 0.162E-01 0.462E-05 0.569E-05 0.291E-05 0.183E-03 2.535 0.242E+01 0.177E-01 0.737E-03 0.703E-03 0.214E-03 0.158E-01 0.468E-05 0.542E-05 0.294E-05 0.180E-03 2.555 0.244E+01 0.179E-01 0.781E-03 0.691E-03 0.228E-03 0.161E-01 0.483E-05 0.531E-05 0.306E-05 0.182E-03 2.575 0.252E+01 0.189E-01 0.858E-03 0.705E-03 0.250E-03 0.169E-01 0.509E-05 0.537E-05 0.329E-05 0.189E-03 2.595 0.268E+01 0.205E-01 0.970E-03 0.744E-03 0.279E-03 0.183E-01 0.550E-05 0.560E-05 0.362E-05 0.202E-03 2.615 0.290E+01 0.228E-01 0.111E-02 0.801E-03 0.313E-03 0.203E-01 0.606E-05 0.596E-05 0.404E-05 0.220E-03 2.635 0.318E+01 0.253E-01 0.128E-02 0.868E-03 0.351E-03 0.226E-01 0.673E-05 0.640E-05 0.450E-05 0.242E-03 2.655 0.346E+01 0.280E-01 0.145E-02 0.935E-03 0.387E-03 0.250E-01 0.746E-05 0.687E-05 0.499E-05 0.266E-03 2.675 0.374E+01 0.306E-01 0.161E-02 0.994E-03 0.419E-03 0.272E-01 0.819E-05 0.730E-05 0.544E-05 0.291E-03 2.695 0.397E+01 0.326E-01 0.175E-02 0.104E-02 0.444E-03 0.291E-01 0.884E-05 0.763E-05 0.584E-05 0.313E-03 2.715 0.414E+01 0.341E-01 0.185E-02 0.106E-02 0.461E-03 0.303E-01 0.935E-05 0.785E-05 0.617E-05 0.331E-03 2.735 0.423E+01 0.348E-01 0.190E-02 0.106E-02 0.470E-03 0.310E-01 0.967E-05 0.794E-05 0.642E-05 0.344E-03 2.755 0.425E+01 0.349E-01 0.190E-02 0.104E-02 0.473E-03 0.311E-01 0.981E-05 0.795E-05 0.660E-05 0.353E-03 2.775 0.420E+01 0.345E-01 0.187E-02 0.102E-02 0.471E-03 0.307E-01 0.978E-05 0.792E-05 0.675E-05 0.358E-03 2.795 0.411E+01 0.337E-01 0.180E-02 0.100E-02 0.469E-03 0.301E-01 0.959E-05 0.791E-05 0.690E-05 0.360E-03 2.815 0.401E+01 0.329E-01 0.170E-02 0.991E-03 0.469E-03 0.293E-01 0.931E-05 0.799E-05 0.708E-05 0.362E-03 2.835 0.390E+01 0.321E-01 0.159E-02 0.998E-03 0.474E-03 0.287E-01 0.896E-05 0.820E-05 0.732E-05 0.365E-03 2.855 0.381E+01 0.316E-01 0.148E-02 0.103E-02 0.484E-03 0.282E-01 0.857E-05 0.858E-05 0.763E-05 0.369E-03 2.875 0.375E+01 0.314E-01 0.137E-02 0.108E-02 0.499E-03 0.280E-01 0.817E-05 0.912E-05 0.803E-05 0.376E-03 2.895 0.371E+01 0.314E-01 0.126E-02 0.114E-02 0.520E-03 0.281E-01 0.775E-05 0.981E-05 0.850E-05 0.386E-03 2.915 0.371E+01 0.317E-01 0.115E-02 0.123E-02 0.545E-03 0.284E-01 0.733E-05 0.106E-04 0.906E-05 0.398E-03 2.935 0.373E+01 0.322E-01 0.105E-02 0.131E-02 0.572E-03 0.288E-01 0.691E-05 0.115E-04 0.970E-05 0.412E-03 2.955 0.378E+01 0.328E-01 0.962E-03 0.140E-02 0.602E-03 0.294E-01 0.652E-05 0.124E-04 0.104E-04 0.430E-03 2.975 0.387E+01 0.336E-01 0.884E-03 0.149E-02 0.633E-03 0.301E-01 0.618E-05 0.133E-04 0.112E-04 0.450E-03 2.995 0.401E+01 0.346E-01 0.821E-03 0.156E-02 0.666E-03 0.310E-01 0.594E-05 0.143E-04 0.121E-04 0.475E-03 3.015 0.420E+01 0.357E-01 0.776E-03 0.163E-02 0.702E-03 0.321E-01 0.583E-05 0.152E-04 0.131E-04 0.506E-03 3.035 0.448E+01 0.372E-01 0.752E-03 0.170E-02 0.744E-03 0.334E-01 0.589E-05 0.162E-04 0.143E-04 0.543E-03 3.055 0.485E+01 0.389E-01 0.751E-03 0.176E-02 0.791E-03 0.350E-01 0.615E-05 0.173E-04 0.156E-04 0.587E-03 3.075 0.531E+01 0.411E-01 0.772E-03 0.183E-02 0.846E-03 0.370E-01 0.661E-05 0.185E-04 0.170E-04 0.639E-03 3.095 0.586E+01 0.438E-01 0.816E-03 0.191E-02 0.909E-03 0.394E-01 0.724E-05 0.198E-04 0.186E-04 0.698E-03 3.115 0.648E+01 0.468E-01 0.879E-03 0.199E-02 0.979E-03 0.421E-01 0.801E-05 0.213E-04 0.204E-04 0.761E-03 3.135 0.714E+01 0.500E-01 0.956E-03 0.209E-02 0.105E-02 0.451E-01 0.883E-05 0.227E-04 0.221E-04 0.827E-03 3.155 0.779E+01 0.534E-01 0.104E-02 0.219E-02 0.113E-02 0.481E-01 0.964E-05 0.242E-04 0.239E-04 0.892E-03 3.175 0.837E+01 0.565E-01 0.112E-02 0.229E-02 0.120E-02 0.509E-01 0.104E-04 0.256E-04 0.255E-04 0.950E-03 3.195 0.883E+01 0.592E-01 0.120E-02 0.237E-02 0.127E-02 0.533E-01 0.109E-04 0.267E-04 0.269E-04 0.999E-03 3.215 0.912E+01 0.611E-01 0.125E-02 0.243E-02 0.131E-02 0.550E-01 0.113E-04 0.275E-04 0.280E-04 0.103E-02 3.235 0.921E+01 0.619E-01 0.128E-02 0.246E-02 0.134E-02 0.557E-01 0.114E-04 0.280E-04 0.286E-04 0.105E-02 3.255 0.910E+01 0.617E-01 0.128E-02 0.245E-02 0.134E-02 0.555E-01 0.114E-04 0.280E-04 0.288E-04 0.106E-02 3.275 0.880E+01 0.604E-01 0.125E-02 0.239E-02 0.132E-02 0.543E-01 0.112E-04 0.278E-04 0.286E-04 0.105E-02 3.295 0.834E+01 0.581E-01 0.119E-02 0.231E-02 0.127E-02 0.522E-01 0.110E-04 0.273E-04 0.280E-04 0.103E-02 3.315 0.778E+01 0.553E-01 0.112E-02 0.219E-02 0.121E-02 0.497E-01 0.110E-04 0.268E-04 0.274E-04 0.102E-02 3.335 0.718E+01 0.522E-01 0.103E-02 0.207E-02 0.115E-02 0.468E-01 0.113E-04 0.264E-04 0.267E-04 0.101E-02 3.355 0.661E+01 0.493E-01 0.948E-03 0.195E-02 0.108E-02 0.442E-01 0.120E-04 0.265E-04 0.263E-04 0.103E-02 3.375 0.611E+01 0.469E-01 0.882E-03 0.185E-02 0.102E-02 0.420E-01 0.133E-04 0.270E-04 0.261E-04 0.106E-02 3.395 0.572E+01 0.453E-01 0.840E-03 0.177E-02 0.975E-03 0.405E-01 0.153E-04 0.282E-04 0.265E-04 0.112E-02 3.415 0.547E+01 0.446E-01 0.830E-03 0.172E-02 0.941E-03 0.398E-01 0.179E-04 0.299E-04 0.273E-04 0.122E-02 3.435 0.535E+01 0.449E-01 0.855E-03 0.170E-02 0.922E-03 0.400E-01 0.212E-04 0.322E-04 0.285E-04 0.133E-02 3.455 0.535E+01 0.461E-01 0.914E-03 0.170E-02 0.917E-03 0.410E-01 0.250E-04 0.350E-04 0.302E-04 0.148E-02 3.475 0.546E+01 0.482E-01 0.101E-02 0.172E-02 0.926E-03 0.428E-01 0.294E-04 0.382E-04 0.323E-04 0.164E-02 3.495 0.565E+01 0.510E-01 0.113E-02 0.176E-02 0.945E-03 0.452E-01 0.343E-04 0.417E-04 0.347E-04 0.182E-02 3.515 0.590E+01 0.544E-01 0.128E-02 0.182E-02 0.974E-03 0.482E-01 0.395E-04 0.455E-04 0.373E-04 0.201E-02 3.535 0.617E+01 0.583E-01 0.145E-02 0.189E-02 0.101E-02 0.516E-01 0.451E-04 0.496E-04 0.401E-04 0.222E-02 3.555 0.646E+01 0.627E-01 0.164E-02 0.197E-02 0.105E-02 0.555E-01 0.510E-04 0.539E-04 0.430E-04 0.244E-02 3.575 0.675E+01 0.673E-01 0.185E-02 0.205E-02 0.109E-02 0.595E-01 0.572E-04 0.583E-04 0.460E-04 0.266E-02 3.595 0.702E+01 0.721E-01 0.208E-02 0.213E-02 0.112E-02 0.637E-01 0.636E-04 0.627E-04 0.488E-04 0.288E-02 3.615 0.727E+01 0.767E-01 0.232E-02 0.221E-02 0.114E-02 0.677E-01 0.699E-04 0.670E-04 0.512E-04 0.310E-02 3.635 0.749E+01 0.809E-01 0.257E-02 0.226E-02 0.115E-02 0.714E-01 0.762E-04 0.707E-04 0.531E-04 0.329E-02 3.655 0.769E+01 0.844E-01 0.282E-02 0.229E-02 0.115E-02 0.744E-01 0.819E-04 0.738E-04 0.543E-04 0.345E-02 3.675 0.784E+01 0.869E-01 0.305E-02 0.229E-02 0.112E-02 0.767E-01 0.868E-04 0.758E-04 0.547E-04 0.357E-02 3.695 0.796E+01 0.884E-01 0.324E-02 0.225E-02 0.108E-02 0.779E-01 0.905E-04 0.767E-04 0.542E-04 0.364E-02 3.715 0.804E+01 0.885E-01 0.338E-02 0.217E-02 0.103E-02 0.781E-01 0.929E-04 0.763E-04 0.528E-04 0.365E-02 3.735 0.806E+01 0.875E-01 0.346E-02 0.207E-02 0.975E-03 0.771E-01 0.935E-04 0.749E-04 0.508E-04 0.360E-02 3.755 0.803E+01 0.852E-01 0.346E-02 0.196E-02 0.916E-03 0.752E-01 0.925E-04 0.724E-04 0.483E-04 0.350E-02 3.775 0.794E+01 0.821E-01 0.338E-02 0.184E-02 0.860E-03 0.724E-01 0.901E-04 0.694E-04 0.457E-04 0.336E-02 3.795 0.780E+01 0.783E-01 0.324E-02 0.173E-02 0.812E-03 0.691E-01 0.865E-04 0.661E-04 0.431E-04 0.320E-02 3.815 0.759E+01 0.743E-01 0.304E-02 0.163E-02 0.774E-03 0.656E-01 0.823E-04 0.629E-04 0.409E-04 0.304E-02 3.835 0.734E+01 0.702E-01 0.281E-02 0.155E-02 0.746E-03 0.620E-01 0.780E-04 0.603E-04 0.392E-04 0.290E-02 3.855 0.706E+01 0.665E-01 0.257E-02 0.150E-02 0.726E-03 0.588E-01 0.740E-04 0.584E-04 0.381E-04 0.279E-02 3.875 0.678E+01 0.634E-01 0.234E-02 0.146E-02 0.714E-03 0.560E-01 0.707E-04 0.572E-04 0.376E-04 0.271E-02 3.895 0.650E+01 0.608E-01 0.213E-02 0.143E-02 0.706E-03 0.537E-01 0.684E-04 0.569E-04 0.376E-04 0.267E-02 3.915 0.626E+01 0.590E-01 0.196E-02 0.142E-02 0.701E-03 0.521E-01 0.670E-04 0.572E-04 0.379E-04 0.266E-02 3.935 0.607E+01 0.577E-01 0.184E-02 0.141E-02 0.697E-03 0.509E-01 0.664E-04 0.578E-04 0.383E-04 0.267E-02 3.955 0.593E+01 0.568E-01 0.175E-02 0.140E-02 0.691E-03 0.501E-01 0.661E-04 0.584E-04 0.386E-04 0.268E-02 3.975 0.585E+01 0.562E-01 0.170E-02 0.138E-02 0.683E-03 0.495E-01 0.660E-04 0.587E-04 0.386E-04 0.269E-02 3.995 0.582E+01 0.556E-01 0.167E-02 0.136E-02 0.672E-03 0.491E-01 0.656E-04 0.584E-04 0.380E-04 0.267E-02 4.015 0.582E+01 0.549E-01 0.166E-02 0.133E-02 0.658E-03 0.485E-01 0.647E-04 0.575E-04 0.368E-04 0.262E-02 4.035 0.584E+01 0.541E-01 0.166E-02 0.128E-02 0.643E-03 0.478E-01 0.631E-04 0.558E-04 0.351E-04 0.253E-02 4.055 0.584E+01 0.531E-01 0.166E-02 0.123E-02 0.627E-03 0.470E-01 0.609E-04 0.534E-04 0.330E-04 0.242E-02 4.075 0.582E+01 0.518E-01 0.165E-02 0.118E-02 0.613E-03 0.459E-01 0.582E-04 0.505E-04 0.307E-04 0.228E-02 4.095 0.576E+01 0.503E-01 0.163E-02 0.111E-02 0.601E-03 0.447E-01 0.552E-04 0.473E-04 0.284E-04 0.213E-02 4.115 0.565E+01 0.486E-01 0.160E-02 0.105E-02 0.591E-03 0.432E-01 0.520E-04 0.440E-04 0.262E-04 0.198E-02 4.135 0.548E+01 0.468E-01 0.155E-02 0.978E-03 0.585E-03 0.417E-01 0.488E-04 0.408E-04 0.245E-04 0.185E-02 4.155 0.526E+01 0.449E-01 0.149E-02 0.913E-03 0.581E-03 0.401E-01 0.458E-04 0.379E-04 0.232E-04 0.173E-02 4.175 0.500E+01 0.430E-01 0.142E-02 0.853E-03 0.579E-03 0.384E-01 0.432E-04 0.354E-04 0.224E-04 0.163E-02 4.195 0.472E+01 0.411E-01 0.133E-02 0.801E-03 0.579E-03 0.368E-01 0.409E-04 0.334E-04 0.222E-04 0.156E-02 4.215 0.443E+01 0.393E-01 0.124E-02 0.758E-03 0.579E-03 0.352E-01 0.390E-04 0.320E-04 0.223E-04 0.151E-02 4.235 0.414E+01 0.377E-01 0.115E-02 0.726E-03 0.579E-03 0.336E-01 0.374E-04 0.309E-04 0.227E-04 0.148E-02 4.255 0.387E+01 0.361E-01 0.105E-02 0.702E-03 0.580E-03 0.322E-01 0.361E-04 0.303E-04 0.234E-04 0.147E-02 4.275 0.362E+01 0.346E-01 0.960E-03 0.686E-03 0.580E-03 0.309E-01 0.349E-04 0.298E-04 0.242E-04 0.146E-02 4.295 0.339E+01 0.333E-01 0.875E-03 0.673E-03 0.579E-03 0.296E-01 0.337E-04 0.295E-04 0.249E-04 0.145E-02 4.315 0.319E+01 0.320E-01 0.796E-03 0.660E-03 0.577E-03 0.284E-01 0.325E-04 0.291E-04 0.254E-04 0.144E-02 4.335 0.300E+01 0.307E-01 0.726E-03 0.644E-03 0.571E-03 0.272E-01 0.312E-04 0.284E-04 0.257E-04 0.141E-02 4.355 0.283E+01 0.293E-01 0.664E-03 0.621E-03 0.562E-03 0.260E-01 0.296E-04 0.275E-04 0.255E-04 0.137E-02 4.375 0.267E+01 0.278E-01 0.609E-03 0.591E-03 0.546E-03 0.247E-01 0.277E-04 0.261E-04 0.250E-04 0.131E-02 4.395 0.251E+01 0.262E-01 0.561E-03 0.552E-03 0.524E-03 0.233E-01 0.257E-04 0.243E-04 0.240E-04 0.123E-02 4.415 0.235E+01 0.244E-01 0.518E-03 0.505E-03 0.495E-03 0.217E-01 0.233E-04 0.222E-04 0.226E-04 0.113E-02 4.435 0.219E+01 0.224E-01 0.478E-03 0.452E-03 0.459E-03 0.199E-01 0.209E-04 0.198E-04 0.207E-04 0.102E-02 4.455 0.201E+01 0.203E-01 0.440E-03 0.394E-03 0.416E-03 0.180E-01 0.183E-04 0.172E-04 0.186E-04 0.904E-03 4.475 0.182E+01 0.180E-01 0.402E-03 0.335E-03 0.369E-03 0.160E-01 0.158E-04 0.146E-04 0.162E-04 0.779E-03 4.495 0.163E+01 0.156E-01 0.365E-03 0.277E-03 0.318E-03 0.140E-01 0.133E-04 0.120E-04 0.138E-04 0.654E-03 4.515 0.142E+01 0.133E-01 0.328E-03 0.222E-03 0.267E-03 0.119E-01 0.110E-04 0.951E-05 0.113E-04 0.535E-03 4.535 0.122E+01 0.111E-01 0.292E-03 0.173E-03 0.218E-03 0.996E-02 0.889E-05 0.733E-05 0.906E-05 0.426E-03 4.555 0.103E+01 0.903E-02 0.256E-03 0.130E-03 0.172E-03 0.812E-02 0.706E-05 0.545E-05 0.701E-05 0.330E-03 4.575 0.840E+00 0.717E-02 0.221E-03 0.947E-04 0.132E-03 0.646E-02 0.551E-05 0.392E-05 0.525E-05 0.248E-03 4.595 0.671E+00 0.557E-02 0.187E-03 0.666E-04 0.976E-04 0.502E-02 0.423E-05 0.271E-05 0.380E-05 0.182E-03 4.615 0.522E+00 0.422E-02 0.156E-03 0.453E-04 0.698E-04 0.381E-02 0.320E-05 0.181E-05 0.266E-05 0.130E-03 4.635 0.396E+00 0.312E-02 0.127E-03 0.297E-04 0.482E-04 0.282E-02 0.239E-05 0.116E-05 0.180E-05 0.901E-04 4.655 0.292E+00 0.225E-02 0.100E-03 0.188E-04 0.322E-04 0.204E-02 0.176E-05 0.720E-06 0.117E-05 0.610E-04 4.675 0.209E+00 0.158E-02 0.772E-04 0.115E-04 0.207E-04 0.143E-02 0.127E-05 0.429E-06 0.736E-06 0.404E-04 4.695 0.146E+00 0.109E-02 0.576E-04 0.682E-05 0.128E-04 0.982E-03 0.897E-06 0.246E-06 0.446E-06 0.261E-04 4.715 0.985E-01 0.726E-03 0.415E-04 0.390E-05 0.767E-05 0.656E-03 0.620E-06 0.136E-06 0.261E-06 0.165E-04 4.735 0.646E-01 0.472E-03 0.289E-04 0.216E-05 0.441E-05 0.425E-03 0.418E-06 0.729E-07 0.147E-06 0.102E-04 4.755 0.410E-01 0.297E-03 0.193E-04 0.116E-05 0.244E-05 0.268E-03 0.273E-06 0.377E-07 0.796E-07 0.618E-05 4.775 0.252E-01 0.182E-03 0.125E-04 0.601E-06 0.130E-05 0.163E-03 0.173E-06 0.189E-07 0.416E-07 0.364E-05 4.795 0.150E-01 0.108E-03 0.773E-05 0.304E-06 0.668E-06 0.966E-04 0.106E-06 0.917E-08 0.209E-07 0.209E-05 4.815 0.860E-02 0.615E-04 0.460E-05 0.149E-06 0.330E-06 0.552E-04 0.625E-07 0.434E-08 0.101E-07 0.117E-05 4.835 0.476E-02 0.340E-04 0.263E-05 0.715E-07 0.156E-06 0.304E-04 0.355E-07 0.200E-08 0.473E-08 0.632E-06 4.855 0.254E-02 0.181E-04 0.144E-05 0.334E-07 0.712E-07 0.162E-04 0.194E-07 0.903E-09 0.212E-08 0.332E-06 4.875 0.130E-02 0.928E-05 0.758E-06 0.152E-07 0.311E-07 0.830E-05 0.101E-07 0.400E-09 0.915E-09 0.168E-06 4.895 0.644E-03 0.458E-05 0.382E-06 0.674E-08 0.131E-07 0.409E-05 0.510E-08 0.173E-09 0.380E-09 0.822E-07 4.915 0.306E-03 0.217E-05 0.185E-06 0.291E-08 0.529E-08 0.194E-05 0.246E-08 0.737E-10 0.151E-09 0.388E-07 4.935 0.140E-03 0.992E-06 0.855E-07 0.123E-08 0.205E-08 0.884E-06 0.114E-08 0.307E-10 0.580E-10 0.176E-07 4.955 0.611E-04 0.434E-06 0.379E-07 0.501E-09 0.762E-09 0.387E-06 0.505E-09 0.125E-10 0.214E-10 0.768E-08 4.975 0.257E-04 0.183E-06 0.161E-07 0.199E-09 0.272E-09 0.163E-06 0.215E-09 0.495E-11 0.755E-11 0.322E-08 4.995 0.104E-04 0.737E-07 0.656E-08 0.765E-10 0.934E-10 0.656E-07 0.873E-10 0.191E-11 0.256E-11 0.130E-08 espresso-5.1/PP/examples/CLS_FS_example/0000755000175000017500000000000012341373041016161 5ustar mbambaespresso-5.1/PP/examples/CLS_FS_example/run_xml_example0000755000175000017500000002701212341372774021324 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example will calculate the final state contribution for a Rh011 slab" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x initial_state.x" PSEUDO_LIST="Rh.pbe-rrkjus_lb.UPF Rhs.pbe-rrkjus_lb.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" IS_COMMAND="$PARA_PREFIX $BIN_DIR/initial_state.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running initial_state.x as: $IS_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # # In this run the atom with the core-excited PP is the bulk atom (bulk is # intended as the atom in the middle of the slab). This calculation will # define the energy_GS of the reference atom # cat > rh011bulk.scf.xml << EOF 1.00000000 0.00000000 0.00000000 0.00000000 1.41421400 0.00000000 0.00000000 0.00000000 2.50000000 1.0 Rh.pbe-rrkjus_lb.UPF 1.0 Rhs.pbe-rrkjus_lb.UPF 0.25000000 0.35000000 0.50000000 0.00000000 0.00000000 0.25000000 0.25000000 0.35000000 0.00000000 0.00000000 0.00000000 -0.25000000 0.25000000 0.35000000 -0.50000000 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 25.0 0.3 1.0d-6 smearing mp 0.03 EOF $ECHO $ECHO " running pw.x for Rh011_[bulk-exited] slab...\c" $PW_COMMAND < rh011bulk.scf.xml > rh011bulk.scf.out check_failure $? $ECHO " done" # # Now we run a calculation exciting everytime one single atom we want to study. # The first calculation is for the surface atom. # cat > rh011surf.scf.xml << EOF 1.00000000 0.00000000 0.00000000 0.00000000 1.41421400 0.00000000 0.00000000 0.00000000 2.50000000 1.0 Rh.pbe-rrkjus_lb.UPF 1.0 Rhs.pbe-rrkjus_lb.UPF 0.25000000 0.35000000 0.50000000 0.00000000 0.00000000 0.25000000 0.25000000 0.35000000 0.00000000 0.00000000 0.00000000 -0.25000000 0.25000000 0.35000000 -0.50000000 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 25.0 0.3 1.0d-6 smearing mp 0.03 EOF $ECHO $ECHO " running pw.x for Rh011_[surface-exited] slab...\c" $PW_COMMAND < rh011surf.scf.xml > rh011surf.scf.out check_failure $? $ECHO " done" # # Now another simulation for the atom in the first layer under the surface. # cat > rh011layer1.scf.xml << EOF 1.00000000 0.00000000 0.00000000 0.00000000 1.41421400 0.00000000 0.00000000 0.00000000 2.50000000 1.0 Rh.pbe-rrkjus_lb.UPF 1.0 Rhs.pbe-rrkjus_lb.UPF 0.25000000 0.35000000 0.50000000 0.00000000 0.00000000 0.25000000 0.25000000 0.35000000 0.00000000 0.00000000 0.00000000 -0.25000000 0.25000000 0.35000000 -0.50000000 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 25.0 0.3 1.0d-6 smearing mp 0.03 EOF $ECHO $ECHO " running pw.x for Rh011_[layer(-1)-exited] slab...\c" $PW_COMMAND < rh011layer1.scf.xml > rh011layer1.scf.out check_failure $? $ECHO " done" # # Extract data and write results # enbulk=`cat rh011bulk.scf.out | grep -e ! | egrep -o "([+-])?[0-9]+(\.[0-9]+)?"` ensurf=`cat rh011surf.scf.out | grep -e ! | egrep -o "([+-])?[0-9]+(\.[0-9]+)?"` enlayer1=`cat rh011layer1.scf.out | grep -e ! | egrep -o "([+-])?[0-9]+(\.[0-9]+)?"` clssurfry=$(echo "scale=5; ($enbulk)-($ensurf)" | bc) clssurfev=$(echo "scale=5; (($enbulk)-($ensurf))*13.6" | bc) clslay1ry=$(echo "scale=5; ($enbulk)-($enlayer1)" | bc) clslay1ev=$(echo "scale=5; (($enbulk)-($enlayer1))*13.6" | bc) $ECHO "" > final-state.txt $ECHO "GS energy in the bulk configuration: $enbulk (Ry)" >> final-state.txt $ECHO "GS energy in the surface configuration: $ensurf (Ry)" >> final-state.txt $ECHO "GS energy in the layer(-1) configuration: $enlayer1 (Ry)" >> final-state.txt $ECHO "" >> final-state.txt $ECHO "------------------------------------------" >> final-state.txt $ECHO "FS shift for the surface atom: $clssurfev (eV)" >> final-state.txt $ECHO "FS shift for the layer(-1) atom: $clslay1ev (eV)" >> final-state.txt $ECHO $ECHO " Results written in results/final-state.txt !" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PP/examples/CLS_FS_example/README0000644000175000017500000001067512341372774017066 0ustar mbambaThis example shows how to calculate final-state core-level-shift (CLS) using the core-excited pseudo-potential technique. The procedure has been used in several works and references for the underlying theoretical concepts can be found in the articles listed below. E. Pehlke and M. Scheffler - http://link.aps.org/doi/10.1103/PhysRevLett.71.2338 J. N. Andersen, D. Hennig, E. Lundgren, M. Methfessel, R. Nyholm, and M. Scheffler - http://link.aps.org/doi/10.1103/PhysRevB.50.17525 The definition of a FS core-level-shift is based on a difference of energies and it's then necessary to take a reference atom in the configuration studied to obtain the relative core level shifts. In this example a very simple calculation regarding the SCLS (surface core level shift) in the rhodium 011 slab is presented. First the slab has to be defined with the correct parameters (how many layers are needed to find a bulk-like atom, the separation between the periodic repetitions of the slab, DFT convergence parameters, ecc...) and the atomic positions have to be relaxed. All these steps are described in detail in other examples and are not treated here. The structure used in this example should not be taken as reference for an accurate calculation but the parameters are chosen in order to keep the example fast and instructive. In the slab geometry it's natural to take the atom in the central layer, that mimics the bulk environment, as refernce and calculate all CLS from the difference w.rt. this one. In this example the other interesting atoms are the atoms in the surface layer and the one in the first subsurface layer. Once the desired atoms are identified the procedure is straightforward and can be defined in few steps: 1) Make a regular SCF calculation of the slab where the core-exited pseudo-potential is used for the reference atom. 2) Make several other SCF calculations, one for each selected atom in which only this one is described by the core-excited pseudo-potential 3) Calculate the ground state (GS) energy difference between each of these SCF calculations and the one for the reference atom. These differences are the FS core-level shifts. ---------------- 1) For this simulation, and all the following ones, it's necessary to define a normal pseudo-potential and a core-exited one for Rhodium. The two potentials have to be consistent with each other (functional, parameters, ecc..), being the core-exited one a PP for the same atomic type with a different, core-exited, electronic configuration. (The instructions to generate of a core-exited PP can be found in the ld1.x manual.) Once the PP and the core-exited PP are defined the calculation is a regular SCF run with the only difference that the bulk atom, the reference, is defined by the core-excited PP. ONLY the reference atom is defined in this way and ntyp variable in the &system namelist has to be defined including the new core-excited type. All the other parameter are defined following the normal guidelines for a SCF calculation. *** Keep in mind that the core-excited atom is a new atomic type in the configuration and all the precautions of possible interaction have to be considered. In the example a slab 1x1 is used only to let the example run on an average single CPU, again this is just a reference structure. It's possible, and in fact true, that a bigger supercell is needed, for example a 2x2 or a 3x3, to keep all the core-exited atoms enough separated, avoid an interaction between them. (input=rh011bulk.scf.in, output=rh011bulk.scf.out) 2) All the other simulations are identical to the bulk-reference one but this time the atom defined with the excited PP is different. For every simulation ONLY ONE atom has to be defined by the core-excited PP and no relaxation as to be done, only one SCF calculation. (If one wants to calculate the CLS of three different atoms three SCF calculations are needed). It's clear that to keep consistency all the other SCF parameters (k-points, energy cut-offs, ecc..) of these new calculations have to be identical to the reference SCF calculation. (input=rh011surf.scf.in, output=rh011surf.scf.in) 3) Once obtained the energy for all the atoms identified the CLS are defined as the difference between the GS energy of the particualar SCF calculation and the GS energy of the reference SCF one: SCLS = energy_gs(surface core-excited) - energy_gs(bulk core-excited) CLS = energy_gs(other atom core-excited) - energy_gs(bulk core-excited) (see final-state.txt) espresso-5.1/PP/examples/CLS_FS_example/run_example0000755000175000017500000001471712341372774020454 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example will calculate the final state contribution for a Rh011 slab" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Rh.pbe-rrkjus_lb.UPF Rhs.pbe-rrkjus_lb.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # # In this run the atom with the core-excited PP is the bulk atom (bulk is # intended as the atom in the middle of the slab). This calculation will # define the energy_GS of the reference atom # cat > rh011bulk.scf.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Rh011bulk', pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' / &system nat=5, ntyp=2, ibrav=0, celldm(1)=10.31510000, ecutwfc = 25, occupations='smearing', degauss = 0.03, smearing='mp', / &electrons mixing_beta = 0.3 conv_thr = 1.0d-6 / CELL_PARAMETERS 1.00000000 0.00000000 0.00000000 0.00000000 1.41421400 0.00000000 0.00000000 0.00000000 2.50000000 ATOMIC_SPECIES Rh 1.0 Rh.pbe-rrkjus_lb.UPF Rhs 1.0 Rhs.pbe-rrkjus_lb.UPF ATOMIC_POSITIONS (alat) Rh 0.25000000 0.35000000 0.50000000 Rh 0.00000000 0.00000000 0.25000000 Rhs 0.25000000 0.35000000 0.00000000 ! Bulk atom core-exited Rh 0.00000000 0.00000000 -0.25000000 Rh 0.25000000 0.35000000 -0.50000000 K_POINTS {gamma} EOF $ECHO $ECHO " running pw.x for Rh011_[bulk-exited] slab...\c" $PW_COMMAND < rh011bulk.scf.in > rh011bulk.scf.out check_failure $? $ECHO " done" # # Now we run a calculation exciting everytime one single atom we want to study. # The first calculation is for the surface atom. # cat > rh011surf.scf.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Rh011surf', pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' / &system nat=5, ntyp=2, ibrav=0, celldm(1)=10.31510000, ecutwfc = 25, occupations='smearing', degauss = 0.03, smearing='mp', / &electrons mixing_beta = 0.3 conv_thr = 1.0d-6 / CELL_PARAMETERS 1.00000000 0.00000000 0.00000000 0.00000000 1.41421400 0.00000000 0.00000000 0.00000000 2.50000000 ATOMIC_SPECIES Rh 1.0 Rh.pbe-rrkjus_lb.UPF Rhs 1.0 Rhs.pbe-rrkjus_lb.UPF ATOMIC_POSITIONS (alat) Rhs 0.25000000 0.35000000 0.50000000 ! Surface atom core-exited Rh 0.00000000 0.00000000 0.25000000 Rh 0.25000000 0.35000000 0.00000000 Rh 0.00000000 0.00000000 -0.25000000 Rh 0.25000000 0.35000000 -0.50000000 K_POINTS {gamma} EOF $ECHO $ECHO " running pw.x for Rh011_[surface-exited] slab...\c" $PW_COMMAND < rh011surf.scf.in > rh011surf.scf.out check_failure $? $ECHO " done" # # Now another simulation for the atom in the first layer under the surface. # cat > rh011layer1.scf.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Rh011lay1', pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' / &system nat=5, ntyp=2, ibrav=0, celldm(1)=10.31510000, ecutwfc = 25, occupations='smearing', degauss = 0.03, smearing='mp', / &electrons mixing_beta = 0.3 conv_thr = 1.0d-6 / CELL_PARAMETERS 1.00000000 0.00000000 0.00000000 0.00000000 1.41421400 0.00000000 0.00000000 0.00000000 2.50000000 ATOMIC_SPECIES Rh 1.0 Rh.pbe-rrkjus_lb.UPF Rhs 1.0 Rhs.pbe-rrkjus_lb.UPF ATOMIC_POSITIONS (alat) Rh 0.25000000 0.35000000 0.50000000 Rhs 0.00000000 0.00000000 0.25000000 ! Layer1 atom core-exited Rh 0.25000000 0.35000000 0.00000000 Rh 0.00000000 0.00000000 -0.25000000 Rh 0.25000000 0.35000000 -0.50000000 K_POINTS {gamma} EOF $ECHO $ECHO " running pw.x for Rh011_[layer(-1)-exited] slab...\c" $PW_COMMAND < rh011layer1.scf.in > rh011layer1.scf.out check_failure $? $ECHO " done" # # Extract data and write results # enbulk=`cat rh011bulk.scf.out | grep -e ! | egrep -o "([+-])?[0-9]+(\.[0-9]+)?"` ensurf=`cat rh011surf.scf.out | grep -e ! | egrep -o "([+-])?[0-9]+(\.[0-9]+)?"` enlayer1=`cat rh011layer1.scf.out | grep -e ! | egrep -o "([+-])?[0-9]+(\.[0-9]+)?"` clssurfry=$(echo "scale=5; ($enbulk)-($ensurf)" | bc) clssurfev=$(echo "scale=5; (($enbulk)-($ensurf))*13.6" | bc) clslay1ry=$(echo "scale=5; ($enbulk)-($enlayer1)" | bc) clslay1ev=$(echo "scale=5; (($enbulk)-($enlayer1))*13.6" | bc) $ECHO "" > final-state.txt $ECHO "GS energy in the bulk configuration: $enbulk (Ry)" >> final-state.txt $ECHO "GS energy in the surface configuration: $ensurf (Ry)" >> final-state.txt $ECHO "GS energy in the layer(-1) configuration: $enlayer1 (Ry)" >> final-state.txt $ECHO "" >> final-state.txt $ECHO "------------------------------------------" >> final-state.txt $ECHO "FS shift for the surface atom: $clssurfev (eV)" >> final-state.txt $ECHO "FS shift for the layer(-1) atom: $clslay1ev (eV)" >> final-state.txt $ECHO $ECHO " Results written in results/final-state.txt !" $ECHO $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/Rh011????.* $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PP/examples/CLS_FS_example/reference/0000755000175000017500000000000012341373041020117 5ustar mbambaespresso-5.1/PP/examples/CLS_FS_example/reference/final-state.txt0000644000175000017500000000047312341372774023107 0ustar mbamba GS energy in the bulk configuration: -233.51395412 (Ry) GS energy in the surface configuration: -233.56515587 (Ry) GS energy in the layer(-1) configuration: -233.53749320 (Ry) ------------------------------------------ FS shift for the surface atom: .69634380 (eV) FS shift for the layer(-1) atom: .32013148 (eV) espresso-5.1/PP/examples/CLS_FS_example/reference/rh011surf.scf.out0000644000175000017500000003671512341372774023205 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 12May2009 at 9:51:24 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 file RhUS.PBE.RRKJ3: wavefunction(s) nX renormalized file RhsUS.PBE.RRKJ3: wavefunction(s) nX nX renormalized gamma-point specific algorithms are used bravais-lattice index = 0 lattice parameter (a_0) = 10.3151 a.u. unit-cell volume = 3880.3908 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 46.00 number of Kohn-Sham states= 28 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA -PW -PBX -PBC (1434) celldm(1)= 10.315100 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.414214 0.000000 ) a(3) = ( 0.000000 0.000000 2.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 0.707107 0.000000 ) b(3) = ( 0.000000 0.000000 0.400000 ) PseudoPot. # 1 for Rh read from file RhUS.PBE.RRKJ3 Pseudo is Ultrasoft, Zval = 9.0 RRKJ3 Ultrasoft PP, generated by Andrea Dal Corso code Using radial grid of 1491 points, 3 beta functions with: l(1) = 1 l(2) = 2 l(3) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Rh read from file RhsUS.PBE.RRKJ3 Pseudo is Ultrasoft, Zval = 10.0 RRKJ3 Ultrasoft PP, generated by Andrea Dal Corso code Using radial grid of 1491 points, 3 beta functions with: l(1) = 1 l(2) = 2 l(3) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Rh 9.00 1.00000 Rh( 1.00) Rhs 10.00 1.00000 Rh( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Rhs tau( 1) = ( 0.2500000 0.3500000 0.5000000 ) 2 Rh tau( 2) = ( 0.0000000 0.0000000 0.2500000 ) 3 Rh tau( 3) = ( 0.2500000 0.3500000 0.0000000 ) 4 Rh tau( 4) = ( 0.0000000 0.0000000 -0.2500000 ) 5 Rh tau( 5) = ( 0.2500000 0.3500000 -0.5000000 ) number of k points= 1 gaussian broad. (Ry)= 0.0300 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 269.5176 ( 32829 G-vectors) FFT grid: ( 36, 48, 90) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.75 Mb ( 4104, 28) NL pseudopotentials 4.07 Mb ( 4104, 65) Each V/rho on FFT grid 2.37 Mb ( 155520) Each G-vector array 0.25 Mb ( 32829) G-vector shells 0.06 Mb ( 7905) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 3.51 Mb ( 4104, 112) Each subspace H/S matrix 0.10 Mb ( 112, 112) Each matrix 0.01 Mb ( 65, 28) Arrays for rho mixing 18.98 Mb ( 155520, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.013655 starting charge 45.94021, renormalised to 46.00000 negative rho (up, down): 0.137E-01 0.000E+00 Starting wfc are 30 atomic wfcs total cpu time spent up to now is 11.77 secs per-process dynamical memory: 25.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.189E-01 0.000E+00 total cpu time spent up to now is 17.77 secs total energy = -232.40380918 Ry Harris-Foulkes estimate = -234.61512228 Ry estimated scf accuracy < 4.88280723 Ry iteration # 2 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.195E-01 0.000E+00 total cpu time spent up to now is 24.28 secs total energy = -232.09382839 Ry Harris-Foulkes estimate = -235.55217229 Ry estimated scf accuracy < 23.26571001 Ry iteration # 3 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.203E-01 0.000E+00 total cpu time spent up to now is 30.40 secs total energy = -232.91757922 Ry Harris-Foulkes estimate = -234.24586260 Ry estimated scf accuracy < 13.38987641 Ry iteration # 4 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.213E-01 0.000E+00 total cpu time spent up to now is 36.06 secs total energy = -233.29431538 Ry Harris-Foulkes estimate = -233.92160343 Ry estimated scf accuracy < 4.98655779 Ry iteration # 5 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.242E-01 0.000E+00 total cpu time spent up to now is 41.74 secs total energy = -233.25230533 Ry Harris-Foulkes estimate = -233.73037651 Ry estimated scf accuracy < 4.64478375 Ry iteration # 6 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.246E-01 0.000E+00 total cpu time spent up to now is 47.43 secs total energy = -233.62188424 Ry Harris-Foulkes estimate = -233.71229670 Ry estimated scf accuracy < 3.97626983 Ry iteration # 7 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.64E-03, avg # of iterations = 1.0 negative rho (up, down): 0.257E-01 0.000E+00 total cpu time spent up to now is 53.13 secs total energy = -233.61252098 Ry Harris-Foulkes estimate = -233.67297070 Ry estimated scf accuracy < 2.46688057 Ry iteration # 8 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.36E-03, avg # of iterations = 1.0 negative rho (up, down): 0.270E-01 0.000E+00 total cpu time spent up to now is 58.85 secs total energy = -233.55709443 Ry Harris-Foulkes estimate = -233.62604678 Ry estimated scf accuracy < 1.35181314 Ry iteration # 9 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.94E-03, avg # of iterations = 1.0 negative rho (up, down): 0.295E-01 0.000E+00 total cpu time spent up to now is 64.56 secs total energy = -233.55682548 Ry Harris-Foulkes estimate = -233.58207138 Ry estimated scf accuracy < 0.54537438 Ry iteration # 10 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 1.0 negative rho (up, down): 0.348E-01 0.000E+00 total cpu time spent up to now is 70.27 secs total energy = -233.53135253 Ry Harris-Foulkes estimate = -233.57602456 Ry estimated scf accuracy < 0.54824730 Ry iteration # 11 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 1.0 negative rho (up, down): 0.339E-01 0.000E+00 total cpu time spent up to now is 76.02 secs total energy = -233.53222179 Ry Harris-Foulkes estimate = -233.60005752 Ry estimated scf accuracy < 3.06673293 Ry iteration # 12 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 1.0 negative rho (up, down): 0.342E-01 0.000E+00 total cpu time spent up to now is 81.73 secs total energy = -233.56347657 Ry Harris-Foulkes estimate = -233.56538868 Ry estimated scf accuracy < 0.04388734 Ry iteration # 13 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.54E-05, avg # of iterations = 1.0 negative rho (up, down): 0.362E-01 0.000E+00 total cpu time spent up to now is 87.42 secs total energy = -233.56501990 Ry Harris-Foulkes estimate = -233.56519811 Ry estimated scf accuracy < 0.01928857 Ry iteration # 14 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.19E-05, avg # of iterations = 1.0 negative rho (up, down): 0.370E-01 0.000E+00 total cpu time spent up to now is 93.16 secs total energy = -233.56498180 Ry Harris-Foulkes estimate = -233.56532721 Ry estimated scf accuracy < 0.02450805 Ry iteration # 15 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.19E-05, avg # of iterations = 1.0 negative rho (up, down): 0.372E-01 0.000E+00 total cpu time spent up to now is 98.86 secs total energy = -233.56497726 Ry Harris-Foulkes estimate = -233.56512903 Ry estimated scf accuracy < 0.00607926 Ry iteration # 16 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.32E-05, avg # of iterations = 4.0 negative rho (up, down): 0.372E-01 0.000E+00 total cpu time spent up to now is 104.83 secs total energy = -233.56511842 Ry Harris-Foulkes estimate = -233.56511631 Ry estimated scf accuracy < 0.00019152 Ry iteration # 17 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.16E-07, avg # of iterations = 4.0 negative rho (up, down): 0.368E-01 0.000E+00 total cpu time spent up to now is 111.30 secs total energy = -233.56514954 Ry Harris-Foulkes estimate = -233.56515049 Ry estimated scf accuracy < 0.00042988 Ry iteration # 18 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.16E-07, avg # of iterations = 1.0 negative rho (up, down): 0.367E-01 0.000E+00 total cpu time spent up to now is 116.99 secs total energy = -233.56515192 Ry Harris-Foulkes estimate = -233.56515714 Ry estimated scf accuracy < 0.00027524 Ry iteration # 19 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.16E-07, avg # of iterations = 1.0 negative rho (up, down): 0.367E-01 0.000E+00 total cpu time spent up to now is 122.71 secs total energy = -233.56515483 Ry Harris-Foulkes estimate = -233.56515601 Ry estimated scf accuracy < 0.00003922 Ry iteration # 20 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.53E-08, avg # of iterations = 1.0 negative rho (up, down): 0.367E-01 0.000E+00 total cpu time spent up to now is 128.43 secs total energy = -233.56515539 Ry Harris-Foulkes estimate = -233.56515677 Ry estimated scf accuracy < 0.00002220 Ry iteration # 21 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.83E-08, avg # of iterations = 1.0 negative rho (up, down): 0.367E-01 0.000E+00 total cpu time spent up to now is 134.10 secs total energy = -233.56515605 Ry Harris-Foulkes estimate = -233.56515612 Ry estimated scf accuracy < 0.00000281 Ry iteration # 22 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.11E-09, avg # of iterations = 3.0 negative rho (up, down): 0.367E-01 0.000E+00 total cpu time spent up to now is 139.86 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 4104 PWs) bands (ev): -5.0655 -4.7710 -4.7371 -4.4313 -3.9751 -3.8542 -3.8493 -3.7049 -3.6762 -3.2684 -3.2417 -3.1209 -3.0689 -2.9849 -2.7616 -2.6059 -2.5810 -2.5367 -2.4339 -2.3805 -2.3045 -2.2533 -2.2066 -2.1705 -2.1432 -2.0363 -1.8844 -0.7957 the Fermi energy is -2.1806 ev ! total energy = -233.56515587 Ry Harris-Foulkes estimate = -233.56515634 Ry estimated scf accuracy < 0.00000092 Ry The total energy is the sum of the following terms: one-electron contribution = -393.52057327 Ry hartree contribution = 218.31976501 Ry xc contribution = -41.80776429 Ry ewald contribution = -16.52166303 Ry smearing contrib. (-TS) = -0.03492029 Ry convergence has been achieved in 22 iterations Writing output data file Rh011surf.save PWSCF : 2m20.01s CPU time, 2m22.24s wall time init_run : 11.56s CPU electrons : 128.09s CPU Called by init_run: wfcinit : 0.81s CPU potinit : 2.59s CPU Called by electrons: c_bands : 52.53s CPU ( 22 calls, 2.388 s avg) sum_band : 34.35s CPU ( 22 calls, 1.561 s avg) v_of_rho : 13.68s CPU ( 23 calls, 0.595 s avg) newd : 26.40s CPU ( 23 calls, 1.148 s avg) mix_rho : 1.96s CPU ( 22 calls, 0.089 s avg) Called by c_bands: init_us_2 : 0.48s CPU ( 45 calls, 0.011 s avg) regterg : 50.89s CPU ( 22 calls, 2.313 s avg) Called by *egterg: h_psi : 48.05s CPU ( 58 calls, 0.828 s avg) s_psi : 0.76s CPU ( 58 calls, 0.013 s avg) g_psi : 0.35s CPU ( 35 calls, 0.010 s avg) rdiaghg : 0.22s CPU ( 57 calls, 0.004 s avg) Called by h_psi: add_vuspsi : 0.75s CPU ( 58 calls, 0.013 s avg) General routines calbec : 1.14s CPU ( 80 calls, 0.014 s avg) cft3 : 9.52s CPU ( 275 calls, 0.035 s avg) cft3s : 50.00s CPU ( 1634 calls, 0.031 s avg) davcio : 0.00s CPU ( 22 calls, 0.000 s avg) espresso-5.1/PP/examples/CLS_FS_example/reference/rh011bulk.scf.out0000644000175000017500000003275412341372774023162 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 12May2009 at 9:49:37 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 file Rh.pbe-rrkjus_lb.UPF: wavefunction(s) 4D renormalized file Rhs.pbe-rrkjus_lb.UPF: wavefunction(s) 4D 5S renormalized gamma-point specific algorithms are used bravais-lattice index = 0 lattice parameter (a_0) = 10.3151 a.u. unit-cell volume = 3880.3908 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 46.00 number of Kohn-Sham states= 28 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) celldm(1)= 10.315100 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.414214 0.000000 ) a(3) = ( 0.000000 0.000000 2.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 0.707107 0.000000 ) b(3) = ( 0.000000 0.000000 0.400000 ) PseudoPot. # 1 for Rh read from file Rh.pbe-rrkjus_lb.UPF Pseudo is Ultrasoft, Zval = 9.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1491 points, 3 beta functions with: l(1) = 1 l(2) = 2 l(3) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Rh read from file Rhs.pbe-rrkjus_lb.UPF Pseudo is Ultrasoft, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1491 points, 3 beta functions with: l(1) = 1 l(2) = 2 l(3) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Rh 9.00 1.00000 Rh( 1.00) Rhs 10.00 1.00000 Rh( 1.00) 2 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 Rh tau( 1) = ( 0.2500000 0.3500000 0.5000000 ) 2 Rh tau( 2) = ( 0.0000000 0.0000000 0.2500000 ) 3 Rhs tau( 3) = ( 0.2500000 0.3500000 0.0000000 ) 4 Rh tau( 4) = ( 0.0000000 0.0000000 -0.2500000 ) 5 Rh tau( 5) = ( 0.2500000 0.3500000 -0.5000000 ) number of k points= 1 gaussian broad. (Ry)= 0.0300 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 269.5176 ( 32829 G-vectors) FFT grid: ( 36, 48, 90) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.75 Mb ( 4104, 28) NL pseudopotentials 4.07 Mb ( 4104, 65) Each V/rho on FFT grid 2.37 Mb ( 155520) Each G-vector array 0.25 Mb ( 32829) G-vector shells 0.06 Mb ( 7905) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 3.51 Mb ( 4104, 112) Each subspace H/S matrix 0.10 Mb ( 112, 112) Each matrix 0.01 Mb ( 65, 28) Arrays for rho mixing 18.98 Mb ( 155520, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.012822 starting charge 45.94021, renormalised to 46.00000 negative rho (up, down): 0.128E-01 0.000E+00 Starting wfc are 30 atomic wfcs total cpu time spent up to now is 11.64 secs per-process dynamical memory: 25.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.177E-01 0.000E+00 total cpu time spent up to now is 17.29 secs total energy = -232.91089782 Ry Harris-Foulkes estimate = -234.56223681 Ry estimated scf accuracy < 3.75635198 Ry iteration # 2 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.17E-03, avg # of iterations = 2.0 negative rho (up, down): 0.189E-01 0.000E+00 total cpu time spent up to now is 23.07 secs total energy = -232.75864297 Ry Harris-Foulkes estimate = -234.16750091 Ry estimated scf accuracy < 6.98735555 Ry iteration # 3 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.17E-03, avg # of iterations = 1.0 negative rho (up, down): 0.213E-01 0.000E+00 total cpu time spent up to now is 28.41 secs total energy = -233.21095176 Ry Harris-Foulkes estimate = -233.92193646 Ry estimated scf accuracy < 6.17321159 Ry iteration # 4 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.17E-03, avg # of iterations = 1.0 negative rho (up, down): 0.232E-01 0.000E+00 total cpu time spent up to now is 33.71 secs total energy = -233.44867458 Ry Harris-Foulkes estimate = -233.57699126 Ry estimated scf accuracy < 1.65300042 Ry iteration # 5 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.59E-03, avg # of iterations = 1.0 negative rho (up, down): 0.244E-01 0.000E+00 total cpu time spent up to now is 39.08 secs total energy = -233.51473741 Ry Harris-Foulkes estimate = -233.53519304 Ry estimated scf accuracy < 0.38542292 Ry iteration # 6 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.38E-04, avg # of iterations = 1.0 negative rho (up, down): 0.282E-01 0.000E+00 total cpu time spent up to now is 44.43 secs total energy = -233.48358606 Ry Harris-Foulkes estimate = -233.52283987 Ry estimated scf accuracy < 0.19660394 Ry iteration # 7 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.27E-04, avg # of iterations = 2.0 negative rho (up, down): 0.299E-01 0.000E+00 total cpu time spent up to now is 49.82 secs total energy = -233.45359240 Ry Harris-Foulkes estimate = -233.57649206 Ry estimated scf accuracy < 2.38078278 Ry iteration # 8 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.27E-04, avg # of iterations = 1.0 negative rho (up, down): 0.324E-01 0.000E+00 total cpu time spent up to now is 55.14 secs total energy = -233.51157260 Ry Harris-Foulkes estimate = -233.51451525 Ry estimated scf accuracy < 0.06759681 Ry iteration # 9 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.47E-04, avg # of iterations = 1.0 negative rho (up, down): 0.343E-01 0.000E+00 total cpu time spent up to now is 60.53 secs total energy = -233.51278290 Ry Harris-Foulkes estimate = -233.51337917 Ry estimated scf accuracy < 0.00803379 Ry iteration # 10 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.75E-05, avg # of iterations = 5.0 negative rho (up, down): 0.341E-01 0.000E+00 total cpu time spent up to now is 66.21 secs total energy = -233.51395954 Ry Harris-Foulkes estimate = -233.51405294 Ry estimated scf accuracy < 0.02071878 Ry iteration # 11 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.75E-05, avg # of iterations = 1.0 negative rho (up, down): 0.337E-01 0.000E+00 total cpu time spent up to now is 71.56 secs total energy = -233.51296466 Ry Harris-Foulkes estimate = -233.51406155 Ry estimated scf accuracy < 0.01498193 Ry iteration # 12 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.75E-05, avg # of iterations = 1.0 negative rho (up, down): 0.339E-01 0.000E+00 total cpu time spent up to now is 76.91 secs total energy = -233.51343935 Ry Harris-Foulkes estimate = -233.51435808 Ry estimated scf accuracy < 0.02389551 Ry iteration # 13 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.75E-05, avg # of iterations = 1.0 negative rho (up, down): 0.337E-01 0.000E+00 total cpu time spent up to now is 82.28 secs total energy = -233.51394154 Ry Harris-Foulkes estimate = -233.51392947 Ry estimated scf accuracy < 0.00011379 Ry iteration # 14 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-07, avg # of iterations = 4.0 negative rho (up, down): 0.336E-01 0.000E+00 total cpu time spent up to now is 88.18 secs total energy = -233.51396117 Ry Harris-Foulkes estimate = -233.51397290 Ry estimated scf accuracy < 0.00099604 Ry iteration # 15 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-07, avg # of iterations = 1.0 negative rho (up, down): 0.336E-01 0.000E+00 total cpu time spent up to now is 93.53 secs total energy = -233.51394199 Ry Harris-Foulkes estimate = -233.51396461 Ry estimated scf accuracy < 0.00054005 Ry iteration # 16 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-07, avg # of iterations = 1.0 negative rho (up, down): 0.336E-01 0.000E+00 total cpu time spent up to now is 98.90 secs total energy = -233.51395334 Ry Harris-Foulkes estimate = -233.51395342 Ry estimated scf accuracy < 0.00000967 Ry iteration # 17 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.10E-08, avg # of iterations = 3.0 negative rho (up, down): 0.336E-01 0.000E+00 total cpu time spent up to now is 104.29 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 4104 PWs) bands (ev): -5.1600 -4.9215 -4.8201 -4.4910 -4.1443 -3.9930 -3.8304 -3.7460 -3.6936 -3.2020 -3.1645 -3.1419 -2.9065 -2.8395 -2.6833 -2.5470 -2.5290 -2.5056 -2.4491 -2.4459 -2.3581 -2.3227 -2.2672 -2.1735 -2.1529 -2.0917 -1.9370 -0.8962 the Fermi energy is -2.2167 ev ! total energy = -233.51395412 Ry Harris-Foulkes estimate = -233.51395408 Ry estimated scf accuracy < 0.00000086 Ry The total energy is the sum of the following terms: one-electron contribution = -401.90207418 Ry hartree contribution = 222.47505852 Ry xc contribution = -41.78862835 Ry ewald contribution = -12.26291846 Ry smearing contrib. (-TS) = -0.03539165 Ry convergence has been achieved in 17 iterations Writing output data file Rh011bulk.save PWSCF : 1m44.45s CPU time, 1m46.50s wall time init_run : 11.51s CPU electrons : 92.65s CPU Called by init_run: wfcinit : 0.82s CPU potinit : 2.60s CPU Called by electrons: c_bands : 28.31s CPU ( 17 calls, 1.665 s avg) sum_band : 31.74s CPU ( 17 calls, 1.867 s avg) v_of_rho : 11.14s CPU ( 18 calls, 0.619 s avg) newd : 21.05s CPU ( 18 calls, 1.170 s avg) mix_rho : 1.45s CPU ( 17 calls, 0.085 s avg) Called by c_bands: init_us_2 : 0.38s CPU ( 35 calls, 0.011 s avg) regterg : 27.03s CPU ( 17 calls, 1.590 s avg) Called by *egterg: h_psi : 25.02s CPU ( 47 calls, 0.532 s avg) s_psi : 0.58s CPU ( 47 calls, 0.012 s avg) g_psi : 0.27s CPU ( 29 calls, 0.009 s avg) rdiaghg : 0.20s CPU ( 46 calls, 0.004 s avg) Called by h_psi: add_vuspsi : 0.58s CPU ( 47 calls, 0.012 s avg) General routines calbec : 0.87s CPU ( 64 calls, 0.014 s avg) cft3 : 9.10s CPU ( 215 calls, 0.042 s avg) cft3s : 30.30s CPU ( 1274 calls, 0.024 s avg) davcio : 0.00s CPU ( 17 calls, 0.000 s avg) espresso-5.1/PP/examples/CLS_FS_example/reference/rh011layer1.scf.out0000644000175000017500000004040512341372774023412 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 12May2009 at 9:53:46 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 file RhUS.PBE.RRKJ3: wavefunction(s) nX renormalized file RhsUS.PBE.RRKJ3: wavefunction(s) nX nX renormalized gamma-point specific algorithms are used bravais-lattice index = 0 lattice parameter (a_0) = 10.3151 a.u. unit-cell volume = 3880.3908 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 46.00 number of Kohn-Sham states= 28 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA -PW -PBX -PBC (1434) celldm(1)= 10.315100 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.414214 0.000000 ) a(3) = ( 0.000000 0.000000 2.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 0.707107 0.000000 ) b(3) = ( 0.000000 0.000000 0.400000 ) PseudoPot. # 1 for Rh read from file RhUS.PBE.RRKJ3 Pseudo is Ultrasoft, Zval = 9.0 RRKJ3 Ultrasoft PP, generated by Andrea Dal Corso code Using radial grid of 1491 points, 3 beta functions with: l(1) = 1 l(2) = 2 l(3) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Rh read from file RhsUS.PBE.RRKJ3 Pseudo is Ultrasoft, Zval = 10.0 RRKJ3 Ultrasoft PP, generated by Andrea Dal Corso code Using radial grid of 1491 points, 3 beta functions with: l(1) = 1 l(2) = 2 l(3) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Rh 9.00 1.00000 Rh( 1.00) Rhs 10.00 1.00000 Rh( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Rh tau( 1) = ( 0.2500000 0.3500000 0.5000000 ) 2 Rhs tau( 2) = ( 0.0000000 0.0000000 0.2500000 ) 3 Rh tau( 3) = ( 0.2500000 0.3500000 0.0000000 ) 4 Rh tau( 4) = ( 0.0000000 0.0000000 -0.2500000 ) 5 Rh tau( 5) = ( 0.2500000 0.3500000 -0.5000000 ) number of k points= 1 gaussian broad. (Ry)= 0.0300 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 269.5176 ( 32829 G-vectors) FFT grid: ( 36, 48, 90) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.75 Mb ( 4104, 28) NL pseudopotentials 4.07 Mb ( 4104, 65) Each V/rho on FFT grid 2.37 Mb ( 155520) Each G-vector array 0.25 Mb ( 32829) G-vector shells 0.06 Mb ( 7905) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 3.51 Mb ( 4104, 112) Each subspace H/S matrix 0.10 Mb ( 112, 112) Each matrix 0.01 Mb ( 65, 28) Arrays for rho mixing 18.98 Mb ( 155520, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.013103 starting charge 45.94021, renormalised to 46.00000 negative rho (up, down): 0.131E-01 0.000E+00 Starting wfc are 30 atomic wfcs total cpu time spent up to now is 12.00 secs per-process dynamical memory: 25.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.181E-01 0.000E+00 total cpu time spent up to now is 17.19 secs total energy = -232.68693156 Ry Harris-Foulkes estimate = -234.59043965 Ry estimated scf accuracy < 4.26576856 Ry iteration # 2 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.27E-03, avg # of iterations = 2.0 negative rho (up, down): 0.190E-01 0.000E+00 total cpu time spent up to now is 22.59 secs total energy = -232.24647357 Ry Harris-Foulkes estimate = -234.72991547 Ry estimated scf accuracy < 16.74812329 Ry iteration # 3 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.27E-03, avg # of iterations = 2.0 negative rho (up, down): 0.197E-01 0.000E+00 total cpu time spent up to now is 27.72 secs total energy = -232.93326829 Ry Harris-Foulkes estimate = -234.27441533 Ry estimated scf accuracy < 11.69557672 Ry iteration # 4 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.27E-03, avg # of iterations = 1.0 negative rho (up, down): 0.201E-01 0.000E+00 total cpu time spent up to now is 32.68 secs total energy = -232.92751961 Ry Harris-Foulkes estimate = -234.27692453 Ry estimated scf accuracy < 23.70165876 Ry iteration # 5 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.27E-03, avg # of iterations = 1.0 negative rho (up, down): 0.226E-01 0.000E+00 total cpu time spent up to now is 37.64 secs total energy = -232.83529332 Ry Harris-Foulkes estimate = -234.12337758 Ry estimated scf accuracy < 19.89251821 Ry iteration # 6 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.27E-03, avg # of iterations = 1.0 negative rho (up, down): 0.227E-01 0.000E+00 total cpu time spent up to now is 42.60 secs total energy = -233.65229426 Ry Harris-Foulkes estimate = -233.69536761 Ry estimated scf accuracy < 3.71868072 Ry iteration # 7 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.08E-03, avg # of iterations = 1.0 negative rho (up, down): 0.242E-01 0.000E+00 total cpu time spent up to now is 47.57 secs total energy = -233.60703991 Ry Harris-Foulkes estimate = -233.66944860 Ry estimated scf accuracy < 2.49877280 Ry iteration # 8 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.43E-03, avg # of iterations = 1.0 negative rho (up, down): 0.262E-01 0.000E+00 total cpu time spent up to now is 52.57 secs total energy = -233.49772297 Ry Harris-Foulkes estimate = -233.62365745 Ry estimated scf accuracy < 1.73777176 Ry iteration # 9 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.78E-03, avg # of iterations = 1.0 negative rho (up, down): 0.277E-01 0.000E+00 total cpu time spent up to now is 57.55 secs total energy = -233.53837581 Ry Harris-Foulkes estimate = -233.55185486 Ry estimated scf accuracy < 0.54771783 Ry iteration # 10 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 1.0 negative rho (up, down): 0.302E-01 0.000E+00 total cpu time spent up to now is 62.54 secs total energy = -233.52815425 Ry Harris-Foulkes estimate = -233.54885628 Ry estimated scf accuracy < 0.40985732 Ry iteration # 11 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.91E-04, avg # of iterations = 1.0 negative rho (up, down): 0.327E-01 0.000E+00 total cpu time spent up to now is 67.55 secs total energy = -233.52871351 Ry Harris-Foulkes estimate = -233.54232199 Ry estimated scf accuracy < 0.36315442 Ry iteration # 12 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.89E-04, avg # of iterations = 1.0 negative rho (up, down): 0.330E-01 0.000E+00 total cpu time spent up to now is 72.54 secs total energy = -233.53547810 Ry Harris-Foulkes estimate = -233.53793792 Ry estimated scf accuracy < 0.08730267 Ry iteration # 13 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.90E-04, avg # of iterations = 1.0 negative rho (up, down): 0.346E-01 0.000E+00 total cpu time spent up to now is 77.51 secs total energy = -233.53652681 Ry Harris-Foulkes estimate = -233.53712158 Ry estimated scf accuracy < 0.00990173 Ry iteration # 14 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.15E-05, avg # of iterations = 6.0 negative rho (up, down): 0.346E-01 0.000E+00 total cpu time spent up to now is 82.85 secs total energy = -233.53718859 Ry Harris-Foulkes estimate = -233.53751377 Ry estimated scf accuracy < 0.01481067 Ry iteration # 15 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.15E-05, avg # of iterations = 1.0 negative rho (up, down): 0.346E-01 0.000E+00 total cpu time spent up to now is 87.84 secs total energy = -233.53735041 Ry Harris-Foulkes estimate = -233.53740336 Ry estimated scf accuracy < 0.00128571 Ry iteration # 16 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.80E-06, avg # of iterations = 3.0 negative rho (up, down): 0.344E-01 0.000E+00 total cpu time spent up to now is 92.99 secs total energy = -233.53737293 Ry Harris-Foulkes estimate = -233.53751984 Ry estimated scf accuracy < 0.00491714 Ry iteration # 17 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.80E-06, avg # of iterations = 1.0 negative rho (up, down): 0.343E-01 0.000E+00 total cpu time spent up to now is 97.99 secs total energy = -233.53747552 Ry Harris-Foulkes estimate = -233.53747858 Ry estimated scf accuracy < 0.00023215 Ry iteration # 18 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.05E-07, avg # of iterations = 1.0 negative rho (up, down): 0.342E-01 0.000E+00 total cpu time spent up to now is 102.98 secs total energy = -233.53748663 Ry Harris-Foulkes estimate = -233.53748470 Ry estimated scf accuracy < 0.00001834 Ry iteration # 19 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.99E-08, avg # of iterations = 3.0 negative rho (up, down): 0.341E-01 0.000E+00 total cpu time spent up to now is 108.52 secs total energy = -233.53749162 Ry Harris-Foulkes estimate = -233.53749186 Ry estimated scf accuracy < 0.00001132 Ry iteration # 20 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-08, avg # of iterations = 1.0 negative rho (up, down): 0.340E-01 0.000E+00 total cpu time spent up to now is 113.52 secs total energy = -233.53749256 Ry Harris-Foulkes estimate = -233.53749237 Ry estimated scf accuracy < 0.00000369 Ry iteration # 21 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.03E-09, avg # of iterations = 1.0 negative rho (up, down): 0.340E-01 0.000E+00 total cpu time spent up to now is 118.52 secs total energy = -233.53749298 Ry Harris-Foulkes estimate = -233.53749294 Ry estimated scf accuracy < 0.00000167 Ry iteration # 22 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.62E-09, avg # of iterations = 1.0 negative rho (up, down): 0.340E-01 0.000E+00 total cpu time spent up to now is 123.52 secs total energy = -233.53749305 Ry Harris-Foulkes estimate = -233.53749313 Ry estimated scf accuracy < 0.00000242 Ry iteration # 23 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.62E-09, avg # of iterations = 1.0 negative rho (up, down): 0.340E-01 0.000E+00 total cpu time spent up to now is 128.48 secs total energy = -233.53749314 Ry Harris-Foulkes estimate = -233.53749323 Ry estimated scf accuracy < 0.00000426 Ry iteration # 24 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.62E-09, avg # of iterations = 1.0 negative rho (up, down): 0.340E-01 0.000E+00 total cpu time spent up to now is 133.31 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 4104 PWs) bands (ev): -5.1327 -4.8465 -4.7760 -4.5517 -4.0089 -3.9550 -3.8413 -3.8058 -3.7520 -3.1921 -3.1699 -3.1576 -2.8906 -2.8504 -2.7930 -2.7496 -2.5311 -2.5268 -2.4784 -2.4047 -2.3654 -2.3025 -2.2690 -2.1851 -2.1629 -2.0711 -1.9049 -0.8344 the Fermi energy is -2.2164 ev ! total energy = -233.53749320 Ry Harris-Foulkes estimate = -233.53749325 Ry estimated scf accuracy < 0.00000016 Ry The total energy is the sum of the following terms: one-electron contribution = -398.74588211 Ry hartree contribution = 220.88994082 Ry xc contribution = -41.80328810 Ry ewald contribution = -13.84654969 Ry smearing contrib. (-TS) = -0.03171411 Ry convergence has been achieved in 24 iterations Writing output data file Rh011lay1.save PWSCF : 2m13.48s CPU time, 2m15.91s wall time init_run : 11.79s CPU electrons : 121.31s CPU Called by init_run: wfcinit : 0.81s CPU potinit : 2.77s CPU Called by electrons: c_bands : 38.85s CPU ( 24 calls, 1.619 s avg) sum_band : 37.34s CPU ( 24 calls, 1.556 s avg) v_of_rho : 15.07s CPU ( 25 calls, 0.603 s avg) newd : 28.72s CPU ( 25 calls, 1.149 s avg) mix_rho : 2.25s CPU ( 24 calls, 0.094 s avg) Called by c_bands: init_us_2 : 0.53s CPU ( 49 calls, 0.011 s avg) regterg : 37.04s CPU ( 24 calls, 1.543 s avg) Called by *egterg: h_psi : 34.03s CPU ( 61 calls, 0.558 s avg) s_psi : 0.80s CPU ( 61 calls, 0.013 s avg) g_psi : 0.38s CPU ( 36 calls, 0.010 s avg) rdiaghg : 0.23s CPU ( 60 calls, 0.004 s avg) Called by h_psi: add_vuspsi : 0.79s CPU ( 61 calls, 0.013 s avg) General routines calbec : 1.21s CPU ( 85 calls, 0.014 s avg) cft3 : 10.59s CPU ( 299 calls, 0.035 s avg) cft3s : 36.31s CPU ( 1772 calls, 0.020 s avg) davcio : 0.00s CPU ( 24 calls, 0.000 s avg) espresso-5.1/PP/examples/example01/0000755000175000017500000000000012341373041015231 5ustar mbambaespresso-5.1/PP/examples/example01/run_xml_example0000755000175000017500000002012212341372774020367 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x and postprocessing codes to make a" $ECHO "contour plot in the [110] plane of the charge density for Si, and to" $ECHO "plot the band structure of Si." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x pp.x plotrho.x bands.x plotband.x" PSEUDO_LIST="Si.pz-vbc.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" PP_COMMAND="$PARA_PREFIX $BIN_DIR/pp.x $PARA_POSTFIX" PLOTRHO_COMMAND="$BIN_DIR/plotrho.x" BANDS_COMMAND="$PARA_PREFIX $BIN_DIR/bands.x $PARA_POSTFIX" PLOTBAND_COMMAND="$BIN_DIR/plotband.x" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running pp.x as: $PP_COMMAND" $ECHO " running plotrho.x as: $PLOTRHO_COMMAND" $ECHO " running bands.x as: $BANDS_COMMAND" $ECHO " running plotband.x as: $PLOTBAND_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > si.scf.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pz-vbc.UPF 0.00 0.00 0.00 0.25 0.25 0.25 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 18.0 0.7 1.0d-8 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 EOF $ECHO " running the scf calculation...\c" $PW_COMMAND < si.scf.xml > si.scf.out check_failure $? $ECHO " done" # post-processing for charge density cat > si.pp_rho.in << EOF &inputpp prefix = 'si' outdir = '$TMP_DIR/' filplot = 'sicharge' plot_num= 0 / &plot nfile = 1 filepp(1) = 'sicharge' weight(1) = 1.0 iflag = 2 output_format = 2 fileout = 'si.rho.dat' e1(1) =1.0, e1(2)=1.0, e1(3) = 0.0, e2(1) =0.0, e2(2)=0.0, e2(3) = 1.0, nx=56, ny=40 / EOF $ECHO " running pp.x to do a 2-d plot of the charge density...\c" $PP_COMMAND < si.pp_rho.in > si.pp_rho.out check_failure $? $ECHO " done" # plotrho cat > si.plotrho.in << EOF si.rho.dat si.rho.ps n 0 0.09 6 EOF $ECHO " running plotrho.x to generate rho.ps...\c" $PLOTRHO_COMMAND < si.plotrho.in > si.plotrho.out $ECHO " done" # band structure calculation along high-symmetry lines cat > si.band.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pz-vbc.UPF 0.00 0.00 0.00 0.25 0.25 0.25 $PSEUDO_DIR/ $TMP_DIR/ 18.0 8 0.5 0.5 0.5 1 0.4 0.4 0.4 2 0.3 0.3 0.3 3 0.2 0.2 0.2 4 0.1 0.1 0.1 5 0.0 0.0 0.0 6 0.0 0.0 0.1 7 0.0 0.0 0.2 8 0.0 0.0 0.3 9 0.0 0.0 0.4 10 0.0 0.0 0.5 11 0.0 0.0 0.6 12 0.0 0.0 0.7 13 0.0 0.0 0.8 14 0.0 0.0 0.9 15 0.0 0.0 1.0 16 0.0 0.1 1.0 17 0.0 0.2 1.0 18 0.0 0.3 1.0 19 0.0 0.4 1.0 20 0.0 0.5 1.0 21 0.0 0.6 1.0 22 0.0 0.7 1.0 23 0.0 0.8 1.0 24 0.0 0.9 1.0 25 0.0 1.0 1.0 26 0.0 0.9 0.9 27 0.0 0.8 0.8 28 0.0 0.7 0.7 29 0.0 0.6 0.6 30 0.0 0.5 0.5 31 0.0 0.4 0.4 32 0.0 0.3 0.3 33 0.0 0.2 0.2 34 0.0 0.1 0.1 35 0.0 0.0 0.0 36 EOF $ECHO " running the band-structure calculation for Si...\c" $PW_COMMAND < si.band.xml > si.band.out check_failure $? $ECHO " done" # post-processing for band structure cat > si.bands.in << EOF &inputpp prefix = 'si' outdir = '$TMP_DIR/' filband = 'sibands.dat' / EOF $ECHO " running the post-processing for band structure...\c" $BANDS_COMMAND < si.bands.in > si.bands.out check_failure $? $ECHO " done" # plotband.x cat > si.plotband.in << EOF sibands.dat -6.0 10 sibands.xmgr sibands.ps 6.255 1.0 6.255 EOF $ECHO " running plotband.x to generate sibands.ps...\c" $PLOTBAND_COMMAND < si.plotband.in > si.plotband.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PP/examples/example01/README0000644000175000017500000000216412341372774016130 0ustar mbamba This example illustrates how to use pw.x and postprocessing codes - to make a contour plot in the [110] plane of the charge density for Si - to plot the band structure of Si The calculation proceeds as follows (for the meaning of the cited input variables see the appropriate INPUT_* file) 1) make a self-consistent calculation (input=si.scf.in, output=si.scf.out) 2) run the postprocessing program pp.x (input=si.pp_rho.in, output=si.pp_rho.out) in order to extract a 2D cut of the charge density. See INPUT_PP for details of the input. 3) run plotrho.x program (input=si.plotrho.in, output=si.plotrho.out) in order to produce a postscript file: si.rho.ps. 4) make a non self-consistent calculation including more bands (nbnd=8). (input=si.band.in, output=si.band.out) 5) run program bands.x that extracts the eigenvalues, tries to determine the correct crossing (based on the character of the bands), writes bands to a file (sibands.dat). (input=si.bands.in, output=si.bands.out) 6) run program plotband.x that reads the file produced by bands.x and produces a postscript plot file (sibands.ps) espresso-5.1/PP/examples/example01/run_example0000755000175000017500000003022712341372774017516 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x and postprocessing codes to make a" $ECHO "contour plot in the [110] plane of the charge density for Si, and to" $ECHO "plot the band structure of Si." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x pp.x plotrho.x bands.x plotband.x" PSEUDO_LIST="Si.pz-vbc.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for gnuplot GP_COMMAND=`which gnuplot 2>/dev/null` if [ "$GP_COMMAND" = "" ]; then $ECHO $ECHO "gnuplot not in PATH" $ECHO "Results will not be plotted" fi # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" PP_COMMAND="$PARA_PREFIX $BIN_DIR/pp.x $PARA_POSTFIX" PLOTRHO_COMMAND="$BIN_DIR/plotrho.x" BANDS_COMMAND="$PARA_PREFIX $BIN_DIR/bands.x $PARA_POSTFIX" PLOTBAND_COMMAND="$BIN_DIR/plotband.x" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running pp.x as: $PP_COMMAND" $ECHO " running plotrho.x as: $PLOTRHO_COMMAND" $ECHO " running bands.x as: $BANDS_COMMAND" $ECHO " running plotband.x as: $PLOTBAND_COMMAND" $ECHO # self-consistent calculation cat > si.scf.in << EOF &control calculation='scf' restart_mode='from_scratch', prefix='si' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 2, celldm(1)= 10.2, nat= 2, ntyp= 1, ecutwfc =18.0 / &electrons conv_thr = 1.0d-8 mixing_beta = 0.7 / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 EOF $ECHO " running the scf calculation...\c" $PW_COMMAND < si.scf.in > si.scf.out check_failure $? $ECHO " done" # post-processing for charge density cat > si.pp_rho.in << EOF &inputpp prefix = 'si' outdir = '$TMP_DIR/' filplot = 'sicharge' plot_num= 0 / &plot nfile = 1 filepp(1) = 'sicharge' weight(1) = 1.0 iflag = 2 output_format = 2 fileout = 'si.rho.dat' e1(1) =1.0, e1(2)=1.0, e1(3) = 0.0, e2(1) =0.0, e2(2)=0.0, e2(3) = 1.0, nx=56, ny=40 / EOF $ECHO " running pp.x to do a 2-d plot of the charge density...\c" $PP_COMMAND < si.pp_rho.in > si.pp_rho.out check_failure $? $ECHO " done" # plotrho cat > si.plotrho.in << EOF si.rho.dat si.rho.ps n 0 0.09 6 EOF $ECHO " running plotrho.x to generate rho.ps...\c" $PLOTRHO_COMMAND < si.plotrho.in > si.plotrho.out $ECHO " done" # post-processing for charge density cat > si.pp_rho_new.in << EOF &inputpp prefix = 'si' outdir = '$TMP_DIR/' filplot = 'sicharge' plot_num= 0 / &plot nfile = 1 filepp(1) = 'sicharge' weight(1) = 1.0 iflag = 2 output_format = 7 fileout = 'si.rho_new.dat' e1(1) =1.0, e1(2)=1.0, e1(3) = 0.0, e2(1) =0.0, e2(2)=0.0, e2(3) = 1.0, nx=141, ny=100 / EOF $ECHO $ECHO " running pp.x to do another 2-d plot of the charge density...\c" $PP_COMMAND < si.pp_rho_new.in > si.pp_rho_new.out check_failure $? $ECHO " done" if [ "$GP_COMMAND" = "" ]; then break else cat > gnuplot.tmp < gnuplot1.tmp < si.band.in << EOF &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='si' / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =18.0, nbnd = 8, / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS tpiba_b 5 L 20 gG 20 X 0 1.0 1.0 0.0 30 gG 1 EOF $ECHO " running the band-structure calculation for Si...\c" $PW_COMMAND < si.band.in > si.band.out check_failure $? $ECHO " done" # post-processing for band structure cat > si.bands.in << EOF &bands prefix = 'si' outdir = '$TMP_DIR/' filband = 'sibands.dat' lsym=.true., / EOF $ECHO " running the post-processing for band structure...\c" $BANDS_COMMAND < si.bands.in > si.bands.out check_failure $? $ECHO " done" # plotband.x cat > si.plotband.in << EOF sibands.dat -6.0 10 sibands.xmgr sibands.ps 6.255 1.0 6.255 EOF $ECHO " running plotband.x to generate sibands.ps...\c" $PLOTBAND_COMMAND < si.plotband.in > si.plotband.out check_failure $? $ECHO " done" if [ "$GP_COMMAND" = "" ]; then break else cat > gnuplot1.tmp <0.09000) show % End of Color Code 0.0 240.1 6.3 240.1 6.3 246.4 0.0 246.4 s1 6.3 240.1 12.7 240.1 12.7 246.4 6.3 246.4 s1 12.7 240.1 19.0 240.1 19.0 246.4 12.7 246.4 s1 13.9 240.1 13.8 241.3 15.8 243.3 19.0 240.1 s2 13.9 240.1 13.8 241.3 p 19.0 240.1 15.8 243.3 19.0 246.4 t2 14.1 245.0 14.1 246.4 19.0 246.4 15.8 243.3 s2 14.1 245.0 14.1 246.4 p 14.1 245.0 13.8 241.3 15.8 243.3 t2 14.1 245.0 13.8 241.3 p 19.0 240.1 25.3 240.1 25.3 246.4 19.0 246.4 s2 22.0 240.1 21.4 242.5 22.2 243.3 25.3 240.1 s3 22.0 240.1 21.4 242.5 p 25.3 240.1 22.2 243.3 25.3 246.4 t3 21.3 244.2 20.9 246.4 25.3 246.4 22.2 243.3 s3 21.3 244.2 20.9 246.4 p 21.3 244.2 21.4 242.5 22.2 243.3 t3 21.3 244.2 21.4 242.5 p 25.3 240.1 31.7 240.1 31.7 246.4 25.3 246.4 s3 29.4 244.1 31.7 240.8 31.7 246.4 t4 29.4 244.1 31.7 240.8 p 28.3 246.4 29.4 244.1 31.7 246.4 t4 28.3 246.4 29.4 244.1 p 31.7 240.1 38.0 240.1 38.0 246.4 31.7 246.4 s3 36.1 240.1 32.2 240.6 34.8 243.3 38.0 240.1 s4 36.1 240.1 32.2 240.6 p 38.0 240.1 34.8 243.3 38.0 246.4 t4 38.0 246.4 34.8 243.3 31.7 246.4 t4 32.2 240.6 31.7 240.8 31.7 246.4 34.8 243.3 s4 32.2 240.6 31.7 240.8 p 38.0 240.1 44.4 240.1 44.4 246.4 38.0 246.4 s3 42.0 242.4 38.4 240.1 38.0 240.1 41.2 243.3 s4 42.0 242.4 38.4 240.1 p 44.4 243.9 42.0 242.4 41.2 243.3 44.4 246.4 s4 44.4 243.9 42.0 242.4 p 44.4 246.4 41.2 243.3 38.0 246.4 t4 38.0 246.4 41.2 243.3 38.0 240.1 t4 44.4 240.1 50.7 240.1 50.7 246.4 44.4 246.4 s3 45.6 245.2 46.8 246.4 44.4 246.4 t4 45.6 245.2 46.8 246.4 p 44.4 243.9 45.6 245.2 44.4 246.4 t4 44.4 243.9 45.6 245.2 p 50.7 240.1 57.0 240.1 57.0 246.4 50.7 246.4 s2 56.0 241.1 54.9 240.1 50.7 240.1 53.9 243.3 s3 56.0 241.1 54.9 240.1 p 57.0 242.2 56.0 241.1 53.9 243.3 57.0 246.4 s3 57.0 242.2 56.0 241.1 p 57.0 246.4 53.9 243.3 50.7 246.4 t3 50.7 246.4 53.9 243.3 50.7 240.1 t3 57.0 240.1 63.4 240.1 63.4 246.4 57.0 246.4 s2 59.3 244.1 62.0 246.4 57.0 246.4 t3 59.3 244.1 62.0 246.4 p 57.0 242.2 59.3 244.1 57.0 246.4 t3 57.0 242.2 59.3 244.1 p 63.4 240.1 69.7 240.1 69.7 246.4 63.4 246.4 s2 69.7 240.1 76.0 240.1 76.0 246.4 69.7 246.4 s2 76.0 240.1 82.4 240.1 82.4 246.4 76.0 246.4 s2 82.4 240.1 88.7 240.1 88.7 246.4 82.4 246.4 s2 88.7 240.1 95.0 240.1 95.0 246.4 88.7 246.4 s2 95.0 240.1 101.4 240.1 101.4 246.4 95.0 246.4 s2 101.4 240.1 107.7 240.1 107.7 246.4 101.4 246.4 s2 107.7 240.1 114.0 240.1 114.0 246.4 107.7 246.4 s2 113.2 245.6 114.0 245.0 114.0 246.4 t3 113.2 245.6 114.0 245.0 p 112.2 246.4 113.2 245.6 114.0 246.4 t3 112.2 246.4 113.2 245.6 p 114.0 240.1 120.4 240.1 120.4 246.4 114.0 246.4 s2 119.4 240.1 116.6 242.6 117.2 243.3 120.4 240.1 s3 119.4 240.1 116.6 242.6 p 120.4 240.1 117.2 243.3 120.4 246.4 t3 120.4 246.4 117.2 243.3 114.0 246.4 t3 116.6 242.6 114.0 245.0 114.0 246.4 117.2 243.3 s3 116.6 242.6 114.0 245.0 p 120.4 240.1 126.7 240.1 126.7 246.4 120.4 246.4 s3 126.7 240.1 133.1 240.1 133.1 246.4 126.7 246.4 s3 130.4 243.8 133.1 241.4 133.1 246.4 t4 130.4 243.8 133.1 241.4 p 127.4 246.4 130.4 243.8 133.1 246.4 t4 127.4 246.4 130.4 243.8 p 133.1 240.1 139.4 240.1 139.4 246.4 133.1 246.4 s3 137.4 240.1 134.1 241.2 136.2 243.3 139.4 240.1 s4 137.4 240.1 134.1 241.2 p 139.4 240.1 136.2 243.3 139.4 246.4 t4 139.4 246.4 136.2 243.3 133.1 246.4 t4 134.1 241.2 133.1 241.4 133.1 246.4 136.2 243.3 s4 134.1 241.2 133.1 241.4 p 139.4 240.1 145.7 240.1 145.7 246.4 139.4 246.4 s3 143.4 242.4 140.4 240.1 139.4 240.1 142.6 243.3 s4 143.4 242.4 140.4 240.1 p 145.7 244.8 143.4 242.4 142.6 243.3 145.7 246.4 s4 145.7 244.8 143.4 242.4 p 145.7 246.4 142.6 243.3 139.4 246.4 t4 139.4 246.4 142.6 243.3 139.4 240.1 t4 145.7 240.1 152.1 240.1 152.1 246.4 145.7 246.4 s3 146.2 245.9 146.3 246.4 145.7 246.4 t4 146.2 245.9 146.3 246.4 p 145.7 244.8 146.2 245.9 145.7 246.4 t4 145.7 244.8 146.2 245.9 p 152.1 240.1 158.4 240.1 158.4 246.4 152.1 246.4 s2 152.4 240.1 152.4 240.5 152.1 240.1 t3 152.4 240.1 152.4 240.5 p 153.3 245.1 153.5 246.4 152.1 246.4 t3 153.3 245.1 153.5 246.4 p 153.3 245.1 152.4 240.5 152.1 240.1 152.1 246.4 s3 153.3 245.1 152.4 240.5 p 158.4 240.1 164.7 240.1 164.7 246.4 158.4 246.4 s1 160.5 240.1 160.4 242.1 158.4 240.1 t2 160.5 240.1 160.4 242.1 p 160.4 244.4 160.3 246.4 158.4 246.4 t2 160.4 244.4 160.3 246.4 p 160.4 244.4 160.4 242.1 158.4 240.1 158.4 246.4 s2 160.4 244.4 160.4 242.1 p 164.7 240.1 171.1 240.1 171.1 246.4 164.7 246.4 s1 171.1 240.1 177.4 240.1 177.4 246.4 171.1 246.4 s1 177.4 240.1 183.7 240.1 183.7 246.4 177.4 246.4 s1 183.7 240.1 190.1 240.1 190.1 246.4 183.7 246.4 s1 188.1 242.1 188.0 240.1 190.1 240.1 t2 188.1 242.1 188.0 240.1 p 188.1 242.1 188.1 244.4 190.1 246.4 190.1 240.1 s2 188.1 242.1 188.1 244.4 p 188.2 246.4 188.1 244.4 190.1 246.4 t2 188.2 246.4 188.1 244.4 p 190.1 240.1 196.4 240.1 196.4 246.4 190.1 246.4 s2 196.0 240.5 196.1 240.1 196.4 240.1 t3 196.0 240.5 196.1 240.1 p 196.0 240.5 195.1 245.1 196.4 246.4 196.4 240.1 s3 196.0 240.5 195.1 245.1 p 195.0 246.4 195.1 245.1 196.4 246.4 t3 195.0 246.4 195.1 245.1 p 196.4 240.1 202.7 240.1 202.7 246.4 196.4 246.4 s3 202.3 245.9 202.7 244.8 202.7 246.4 t4 202.3 245.9 202.7 244.8 p 202.1 246.4 202.3 245.9 202.7 246.4 t4 202.1 246.4 202.3 245.9 p 202.7 240.1 209.1 240.1 209.1 246.4 202.7 246.4 s3 208.1 240.1 205.1 242.4 205.9 243.3 209.1 240.1 s4 208.1 240.1 205.1 242.4 p 209.1 240.1 205.9 243.3 209.1 246.4 t4 209.1 246.4 205.9 243.3 202.7 246.4 t4 205.1 242.4 202.7 244.8 202.7 246.4 205.9 243.3 s4 205.1 242.4 202.7 244.8 p 209.1 240.1 215.4 240.1 215.4 246.4 209.1 246.4 s3 214.4 241.2 211.1 240.1 209.1 240.1 212.3 243.3 s4 214.4 241.2 211.1 240.1 p 215.4 241.4 214.4 241.2 212.3 243.3 215.4 246.4 s4 215.4 241.4 214.4 241.2 p 215.4 246.4 212.3 243.3 209.1 246.4 t4 209.1 246.4 212.3 243.3 209.1 240.1 t4 215.4 240.1 221.8 240.1 221.8 246.4 215.4 246.4 s3 218.1 243.8 221.1 246.4 215.4 246.4 t4 218.1 243.8 221.1 246.4 p 215.4 241.4 218.1 243.8 215.4 246.4 t4 215.4 241.4 218.1 243.8 p 221.8 240.1 228.1 240.1 228.1 246.4 221.8 246.4 s3 228.1 240.1 234.4 240.1 234.4 246.4 228.1 246.4 s2 231.9 242.6 229.1 240.1 228.1 240.1 231.3 243.3 s3 231.9 242.6 229.1 240.1 p 234.4 245.0 231.9 242.6 231.3 243.3 234.4 246.4 s3 234.4 245.0 231.9 242.6 p 234.4 246.4 231.3 243.3 228.1 246.4 t3 228.1 246.4 231.3 243.3 228.1 240.1 t3 234.4 240.1 240.8 240.1 240.8 246.4 234.4 246.4 s2 235.2 245.6 236.3 246.4 234.4 246.4 t3 235.2 245.6 236.3 246.4 p 234.4 245.0 235.2 245.6 234.4 246.4 t3 234.4 245.0 235.2 245.6 p 240.8 240.1 247.1 240.1 247.1 246.4 240.8 246.4 s2 247.1 240.1 253.4 240.1 253.4 246.4 247.1 246.4 s2 253.4 240.1 259.8 240.1 259.8 246.4 253.4 246.4 s2 259.8 240.1 266.1 240.1 266.1 246.4 259.8 246.4 s2 266.1 240.1 272.4 240.1 272.4 246.4 266.1 246.4 s2 272.4 240.1 278.8 240.1 278.8 246.4 272.4 246.4 s2 278.8 240.1 285.1 240.1 285.1 246.4 278.8 246.4 s2 285.1 240.1 291.5 240.1 291.5 246.4 285.1 246.4 s2 289.1 244.1 291.5 242.2 291.5 246.4 t3 289.1 244.1 291.5 242.2 p 286.4 246.4 289.1 244.1 291.5 246.4 t3 286.4 246.4 289.1 244.1 p 291.5 240.1 297.8 240.1 297.8 246.4 291.5 246.4 s2 293.6 240.1 292.5 241.1 294.6 243.3 297.8 240.1 s3 293.6 240.1 292.5 241.1 p 297.8 240.1 294.6 243.3 297.8 246.4 t3 297.8 246.4 294.6 243.3 291.5 246.4 t3 292.5 241.1 291.5 242.2 291.5 246.4 294.6 243.3 s3 292.5 241.1 291.5 242.2 p 297.8 240.1 304.1 240.1 304.1 246.4 297.8 246.4 s3 302.9 245.2 304.1 243.9 304.1 246.4 t4 302.9 245.2 304.1 243.9 p 301.7 246.4 302.9 245.2 304.1 246.4 t4 301.7 246.4 302.9 245.2 p 304.1 240.1 310.5 240.1 310.5 246.4 304.1 246.4 s3 310.1 240.1 306.5 242.4 307.3 243.3 310.5 240.1 s4 310.1 240.1 306.5 242.4 p 310.5 240.1 307.3 243.3 310.5 246.4 t4 310.5 246.4 307.3 243.3 304.1 246.4 t4 306.5 242.4 304.1 243.9 304.1 246.4 307.3 243.3 s4 306.5 242.4 304.1 243.9 p 310.5 240.1 316.8 240.1 316.8 246.4 310.5 246.4 s3 316.2 240.6 312.4 240.1 310.5 240.1 313.6 243.3 s4 316.2 240.6 312.4 240.1 p 316.8 240.8 316.2 240.6 313.6 243.3 316.8 246.4 s4 316.8 240.8 316.2 240.6 p 316.8 246.4 313.6 243.3 310.5 246.4 t4 310.5 246.4 313.6 243.3 310.5 240.1 t4 316.8 240.1 323.1 240.1 323.1 246.4 316.8 246.4 s3 319.1 244.1 320.2 246.4 316.8 246.4 t4 319.1 244.1 320.2 246.4 p 316.8 240.8 319.1 244.1 316.8 246.4 t4 316.8 240.8 319.1 244.1 p 323.1 240.1 329.5 240.1 329.5 246.4 323.1 246.4 s2 327.0 242.5 326.5 240.1 323.1 240.1 326.3 243.3 s3 327.0 242.5 326.5 240.1 p 327.0 242.5 327.2 244.2 326.3 243.3 t3 327.0 242.5 327.2 244.2 p 327.6 246.4 327.2 244.2 326.3 243.3 323.1 246.4 s3 327.6 246.4 327.2 244.2 p 323.1 246.4 326.3 243.3 323.1 240.1 t3 329.5 240.1 335.8 240.1 335.8 246.4 329.5 246.4 s1 334.6 241.3 334.6 240.1 329.5 240.1 332.6 243.3 s2 334.6 241.3 334.6 240.1 p 334.6 241.3 334.4 245.0 332.6 243.3 t2 334.6 241.3 334.4 245.0 p 334.4 246.4 334.4 245.0 332.6 243.3 329.5 246.4 s2 334.4 246.4 334.4 245.0 p 329.5 246.4 332.6 243.3 329.5 240.1 t2 335.8 240.1 342.1 240.1 342.1 246.4 335.8 246.4 s1 342.1 240.1 348.5 240.1 348.5 246.4 342.1 246.4 s1 0.0 233.8 6.3 233.8 6.3 240.1 0.0 240.1 s1 6.3 233.8 12.7 233.8 12.7 240.1 6.3 240.1 s1 10.5 235.9 7.8 233.8 12.7 233.8 t2 10.5 235.9 7.8 233.8 p 12.7 238.0 10.5 235.9 12.7 233.8 t2 12.7 238.0 10.5 235.9 p 12.7 233.8 19.0 233.8 19.0 240.1 12.7 240.1 s1 12.7 233.8 15.8 236.9 19.0 233.8 t2 19.0 233.8 15.8 236.9 19.0 240.1 t2 13.5 239.3 13.9 240.1 19.0 240.1 15.8 236.9 s2 13.5 239.3 13.9 240.1 p 12.7 238.0 13.5 239.3 15.8 236.9 12.7 233.8 s2 12.7 238.0 13.5 239.3 p 19.0 233.8 25.3 233.8 25.3 240.1 19.0 240.1 s2 20.5 233.8 20.9 235.6 22.2 236.9 25.3 233.8 s3 20.5 233.8 20.9 235.6 p 25.3 233.8 22.2 236.9 25.3 240.1 t3 21.6 237.5 22.0 240.1 25.3 240.1 22.2 236.9 s3 21.6 237.5 22.0 240.1 p 21.6 237.5 20.9 235.6 22.2 236.9 t3 21.6 237.5 20.9 235.6 p 25.3 233.8 31.7 233.8 31.7 240.1 25.3 240.1 s3 31.7 233.8 38.0 233.8 38.0 240.1 31.7 240.1 s3 37.7 239.8 38.0 239.8 38.0 240.1 t4 37.7 239.8 38.0 239.8 p 36.1 240.1 37.7 239.8 38.0 240.1 t4 36.1 240.1 37.7 239.8 p 38.0 233.8 44.4 233.8 44.4 240.1 38.0 240.1 s3 38.2 239.9 38.4 240.1 38.0 240.1 t4 38.2 239.9 38.4 240.1 p 38.0 239.8 38.2 239.9 38.0 240.1 t4 38.0 239.8 38.2 239.9 p 44.4 233.8 50.7 233.8 50.7 240.1 44.4 240.1 s2 49.8 234.7 48.9 233.8 44.4 233.8 47.5 236.9 s3 49.8 234.7 48.9 233.8 p 50.7 235.7 49.8 234.7 47.5 236.9 50.7 240.1 s3 50.7 235.7 49.8 234.7 p 50.7 240.1 47.5 236.9 44.4 240.1 t3 44.4 240.1 47.5 236.9 44.4 233.8 t3 50.7 233.8 57.0 233.8 57.0 240.1 50.7 240.1 s2 52.9 237.9 54.9 240.1 50.7 240.1 t3 52.9 237.9 54.9 240.1 p 50.7 235.7 52.9 237.9 50.7 240.1 t3 50.7 235.7 52.9 237.9 p 57.0 233.8 63.4 233.8 63.4 240.1 57.0 240.1 s2 63.4 233.8 69.7 233.8 69.7 240.1 63.4 240.1 s2 69.7 233.8 76.0 233.8 76.0 240.1 69.7 240.1 s1 74.5 235.4 71.1 233.8 69.7 233.8 72.9 236.9 s2 74.5 235.4 71.1 233.8 p 76.0 236.2 74.5 235.4 72.9 236.9 76.0 240.1 s2 76.0 236.2 74.5 235.4 p 76.0 240.1 72.9 236.9 69.7 240.1 t2 69.7 240.1 72.9 236.9 69.7 233.8 t2 76.0 233.8 82.4 233.8 82.4 240.1 76.0 240.1 s1 79.5 237.2 82.4 238.1 82.4 240.1 t2 79.5 237.2 82.4 238.1 p 79.5 237.2 79.0 237.1 76.0 240.1 82.4 240.1 s2 79.5 237.2 79.0 237.1 p 76.0 236.2 79.0 237.1 76.0 240.1 t2 76.0 236.2 79.0 237.1 p 82.4 233.8 88.7 233.8 88.7 240.1 82.4 240.1 s1 87.1 238.4 88.7 238.6 88.7 240.1 t2 87.1 238.4 88.7 238.6 p 87.1 238.4 84.2 238.3 82.4 240.1 88.7 240.1 s2 87.1 238.4 84.2 238.3 p 82.4 238.1 84.2 238.3 82.4 240.1 t2 82.4 238.1 84.2 238.3 p 88.7 233.8 95.0 233.8 95.0 240.1 88.7 240.1 s1 92.7 237.8 95.0 237.3 95.0 240.1 t2 92.7 237.8 95.0 237.3 p 92.7 237.8 90.6 238.2 88.7 240.1 95.0 240.1 s2 92.7 237.8 90.6 238.2 p 88.7 238.6 90.6 238.2 88.7 240.1 t2 88.7 238.6 90.6 238.2 p 95.0 233.8 101.4 233.8 101.4 240.1 95.0 240.1 s1 97.5 236.3 99.7 235.4 98.2 236.9 t2 97.5 236.3 99.7 235.4 p 101.4 234.8 99.7 235.4 98.2 236.9 101.4 240.1 s2 101.4 234.8 99.7 235.4 p 101.4 240.1 98.2 236.9 95.0 240.1 t2 97.5 236.3 95.0 237.3 95.0 240.1 98.2 236.9 s2 97.5 236.3 95.0 237.3 p 101.4 233.8 107.7 233.8 107.7 240.1 101.4 240.1 s1 103.0 233.8 102.0 234.4 104.5 236.9 107.7 233.8 s2 103.0 233.8 102.0 234.4 p 107.7 233.8 104.5 236.9 107.7 240.1 t2 107.7 240.1 104.5 236.9 101.4 240.1 t2 102.0 234.4 101.4 234.8 101.4 240.1 104.5 236.9 s2 102.0 234.4 101.4 234.8 p 107.7 233.8 114.0 233.8 114.0 240.1 107.7 240.1 s2 114.0 233.8 120.4 233.8 120.4 240.1 114.0 240.1 s2 119.9 239.6 120.4 239.1 120.4 240.1 t3 119.9 239.6 120.4 239.1 p 119.4 240.1 119.9 239.6 120.4 240.1 t3 119.4 240.1 119.9 239.6 p 120.4 233.8 126.7 233.8 126.7 240.1 120.4 240.1 s2 125.3 233.8 122.9 236.3 123.6 236.9 126.7 233.8 s3 125.3 233.8 122.9 236.3 p 126.7 233.8 123.6 236.9 126.7 240.1 t3 126.7 240.1 123.6 236.9 120.4 240.1 t3 122.9 236.3 120.4 239.1 120.4 240.1 123.6 236.9 s3 122.9 236.3 120.4 239.1 p 126.7 233.8 133.1 233.8 133.1 240.1 126.7 240.1 s3 133.1 233.8 139.4 233.8 139.4 240.1 133.1 240.1 s3 138.8 239.5 139.4 239.2 139.4 240.1 t4 138.8 239.5 139.4 239.2 p 137.4 240.1 138.8 239.5 139.4 240.1 t4 137.4 240.1 138.8 239.5 p 139.4 233.8 145.7 233.8 145.7 240.1 139.4 240.1 s3 139.9 239.6 140.4 240.1 139.4 240.1 t4 139.9 239.6 140.4 240.1 p 139.4 239.2 139.9 239.6 139.4 240.1 t4 139.4 239.2 139.9 239.6 p 145.7 233.8 152.1 233.8 152.1 240.1 145.7 240.1 s3 152.1 233.8 158.4 233.8 158.4 240.1 152.1 240.1 s2 153.8 233.8 153.3 235.0 152.1 233.8 t3 153.8 233.8 153.3 235.0 p 152.5 239.6 152.4 240.1 152.1 240.1 t3 152.5 239.6 152.4 240.1 p 152.5 239.6 153.3 235.0 152.1 233.8 152.1 240.1 s3 152.5 239.6 153.3 235.0 p 158.4 233.8 164.7 233.8 164.7 240.1 158.4 240.1 s1 158.4 233.8 161.6 236.9 164.7 233.8 t2 162.2 237.6 164.7 234.7 164.7 233.8 161.6 236.9 s2 162.2 237.6 164.7 234.7 p 160.5 240.1 162.2 237.6 161.6 236.9 158.4 240.1 s2 160.5 240.1 162.2 237.6 p 158.4 240.1 161.6 236.9 158.4 233.8 t2 164.7 233.8 171.1 233.8 171.1 240.1 164.7 240.1 s1 166.5 233.8 165.3 234.4 164.7 233.8 t2 166.5 233.8 165.3 234.4 p 165.3 234.4 164.7 234.7 164.7 233.8 t2 165.3 234.4 164.7 234.7 p 171.1 233.8 177.4 233.8 177.4 240.1 171.1 240.1 s1 177.4 233.8 183.7 233.8 183.7 240.1 177.4 240.1 s1 183.2 234.4 182.0 233.8 183.7 233.8 t2 183.2 234.4 182.0 233.8 p 183.7 234.7 183.2 234.4 183.7 233.8 t2 183.7 234.7 183.2 234.4 p 183.7 233.8 190.1 233.8 190.1 240.1 183.7 240.1 s1 183.7 233.8 186.9 236.9 190.1 233.8 t2 190.1 233.8 186.9 236.9 190.1 240.1 t2 186.3 237.6 188.0 240.1 190.1 240.1 186.9 236.9 s2 186.3 237.6 188.0 240.1 p 183.7 234.7 186.3 237.6 186.9 236.9 183.7 233.8 s2 183.7 234.7 186.3 237.6 p 190.1 233.8 196.4 233.8 196.4 240.1 190.1 240.1 s2 195.1 235.0 194.6 233.8 196.4 233.8 t3 195.1 235.0 194.6 233.8 p 195.1 235.0 195.9 239.6 196.4 240.1 196.4 233.8 s3 195.1 235.0 195.9 239.6 p 196.1 240.1 195.9 239.6 196.4 240.1 t3 196.1 240.1 195.9 239.6 p 196.4 233.8 202.7 233.8 202.7 240.1 196.4 240.1 s3 202.7 233.8 209.1 233.8 209.1 240.1 202.7 240.1 s3 208.5 239.6 209.1 239.2 209.1 240.1 t4 208.5 239.6 209.1 239.2 p 208.1 240.1 208.5 239.6 209.1 240.1 t4 208.1 240.1 208.5 239.6 p 209.1 233.8 215.4 233.8 215.4 240.1 209.1 240.1 s3 209.6 239.5 211.1 240.1 209.1 240.1 t4 209.6 239.5 211.1 240.1 p 209.1 239.2 209.6 239.5 209.1 240.1 t4 209.1 239.2 209.6 239.5 p 215.4 233.8 221.8 233.8 221.8 240.1 215.4 240.1 s3 221.8 233.8 228.1 233.8 228.1 240.1 221.8 240.1 s2 225.6 236.3 223.2 233.8 221.8 233.8 224.9 236.9 s3 225.6 236.3 223.2 233.8 p 228.1 239.1 225.6 236.3 224.9 236.9 228.1 240.1 s3 228.1 239.1 225.6 236.3 p 228.1 240.1 224.9 236.9 221.8 240.1 t3 221.8 240.1 224.9 236.9 221.8 233.8 t3 228.1 233.8 234.4 233.8 234.4 240.1 228.1 240.1 s2 228.6 239.6 229.1 240.1 228.1 240.1 t3 228.6 239.6 229.1 240.1 p 228.1 239.1 228.6 239.6 228.1 240.1 t3 228.1 239.1 228.6 239.6 p 234.4 233.8 240.8 233.8 240.8 240.1 234.4 240.1 s2 240.8 233.8 247.1 233.8 247.1 240.1 240.8 240.1 s1 246.5 234.4 245.4 233.8 240.8 233.8 243.9 236.9 s2 246.5 234.4 245.4 233.8 p 247.1 234.8 246.5 234.4 243.9 236.9 247.1 240.1 s2 247.1 234.8 246.5 234.4 p 247.1 240.1 243.9 236.9 240.8 240.1 t2 240.8 240.1 243.9 236.9 240.8 233.8 t2 247.1 233.8 253.4 233.8 253.4 240.1 247.1 240.1 s1 248.8 235.4 250.9 236.3 250.3 236.9 t2 248.8 235.4 250.9 236.3 p 253.4 237.3 250.9 236.3 250.3 236.9 253.4 240.1 s2 253.4 237.3 250.9 236.3 p 253.4 240.1 250.3 236.9 247.1 240.1 t2 248.8 235.4 247.1 234.8 247.1 240.1 250.3 236.9 s2 248.8 235.4 247.1 234.8 p 253.4 233.8 259.8 233.8 259.8 240.1 253.4 240.1 s1 257.9 238.2 259.8 238.6 259.8 240.1 t2 257.9 238.2 259.8 238.6 p 257.9 238.2 255.8 237.8 253.4 240.1 259.8 240.1 s2 257.9 238.2 255.8 237.8 p 253.4 237.3 255.8 237.8 253.4 240.1 t2 253.4 237.3 255.8 237.8 p 259.8 233.8 266.1 233.8 266.1 240.1 259.8 240.1 s1 264.3 238.3 266.1 238.1 266.1 240.1 t2 264.3 238.3 266.1 238.1 p 264.3 238.3 261.4 238.4 259.8 240.1 266.1 240.1 s2 264.3 238.3 261.4 238.4 p 259.8 238.6 261.4 238.4 259.8 240.1 t2 259.8 238.6 261.4 238.4 p 266.1 233.8 272.4 233.8 272.4 240.1 266.1 240.1 s1 269.4 237.1 272.4 236.2 272.4 240.1 t2 269.4 237.1 272.4 236.2 p 269.4 237.1 269.0 237.2 266.1 240.1 272.4 240.1 s2 269.4 237.1 269.0 237.2 p 266.1 238.1 269.0 237.2 266.1 240.1 t2 266.1 238.1 269.0 237.2 p 272.4 233.8 278.8 233.8 278.8 240.1 272.4 240.1 s1 277.3 233.8 274.0 235.4 275.6 236.9 278.8 233.8 s2 277.3 233.8 274.0 235.4 p 278.8 233.8 275.6 236.9 278.8 240.1 t2 278.8 240.1 275.6 236.9 272.4 240.1 t2 274.0 235.4 272.4 236.2 272.4 240.1 275.6 236.9 s2 274.0 235.4 272.4 236.2 p 278.8 233.8 285.1 233.8 285.1 240.1 278.8 240.1 s2 285.1 233.8 291.5 233.8 291.5 240.1 285.1 240.1 s2 291.5 233.8 297.8 233.8 297.8 240.1 291.5 240.1 s2 295.6 237.9 297.8 235.7 297.8 240.1 t3 295.6 237.9 297.8 235.7 p 293.6 240.1 295.6 237.9 297.8 240.1 t3 293.6 240.1 295.6 237.9 p 297.8 233.8 304.1 233.8 304.1 240.1 297.8 240.1 s2 299.6 233.8 298.7 234.7 301.0 236.9 304.1 233.8 s3 299.6 233.8 298.7 234.7 p 304.1 233.8 301.0 236.9 304.1 240.1 t3 304.1 240.1 301.0 236.9 297.8 240.1 t3 298.7 234.7 297.8 235.7 297.8 240.1 301.0 236.9 s3 298.7 234.7 297.8 235.7 p 304.1 233.8 310.5 233.8 310.5 240.1 304.1 240.1 s3 310.3 239.9 310.5 239.8 310.5 240.1 t4 310.3 239.9 310.5 239.8 p 310.1 240.1 310.3 239.9 310.5 240.1 t4 310.1 240.1 310.3 239.9 p 310.5 233.8 316.8 233.8 316.8 240.1 310.5 240.1 s3 310.8 239.8 312.4 240.1 310.5 240.1 t4 310.8 239.8 312.4 240.1 p 310.5 239.8 310.8 239.8 310.5 240.1 t4 310.5 239.8 310.8 239.8 p 316.8 233.8 323.1 233.8 323.1 240.1 316.8 240.1 s3 323.1 233.8 329.5 233.8 329.5 240.1 323.1 240.1 s2 327.6 235.6 328.0 233.8 323.1 233.8 326.3 236.9 s3 327.6 235.6 328.0 233.8 p 327.6 235.6 326.9 237.5 326.3 236.9 t3 327.6 235.6 326.9 237.5 p 326.5 240.1 326.9 237.5 326.3 236.9 323.1 240.1 s3 326.5 240.1 326.9 237.5 p 323.1 240.1 326.3 236.9 323.1 233.8 t3 329.5 233.8 335.8 233.8 335.8 240.1 329.5 240.1 s1 329.5 233.8 332.6 236.9 335.8 233.8 t2 335.0 239.3 335.8 238.0 335.8 233.8 332.6 236.9 s2 335.0 239.3 335.8 238.0 p 334.6 240.1 335.0 239.3 332.6 236.9 329.5 240.1 s2 334.6 240.1 335.0 239.3 p 329.5 240.1 332.6 236.9 329.5 233.8 t2 335.8 233.8 342.1 233.8 342.1 240.1 335.8 240.1 s1 340.7 233.8 338.0 235.9 335.8 233.8 t2 340.7 233.8 338.0 235.9 p 338.0 235.9 335.8 238.0 335.8 233.8 t2 338.0 235.9 335.8 238.0 p 342.1 233.8 348.5 233.8 348.5 240.1 342.1 240.1 s1 0.0 227.5 6.3 227.5 6.3 233.8 0.0 233.8 s1 0.0 227.5 3.2 230.6 6.3 227.5 t2 5.5 233.0 6.3 233.1 6.3 227.5 3.2 230.6 s2 5.5 233.0 6.3 233.1 p 5.5 233.0 1.4 232.4 3.2 230.6 t2 5.5 233.0 1.4 232.4 p 0.0 232.2 1.4 232.4 3.2 230.6 0.0 227.5 s2 0.0 232.2 1.4 232.4 p 6.3 227.5 12.7 227.5 12.7 233.8 6.3 233.8 s1 6.3 227.5 9.5 230.6 12.7 227.5 t2 12.7 227.5 9.5 230.6 12.7 233.8 t2 6.8 233.3 7.8 233.8 12.7 233.8 9.5 230.6 s2 6.8 233.3 7.8 233.8 p 6.3 233.1 6.8 233.3 9.5 230.6 6.3 227.5 s2 6.3 233.1 6.8 233.3 p 12.7 227.5 19.0 227.5 19.0 233.8 12.7 233.8 s2 16.8 229.7 12.9 227.5 19.0 227.5 t3 16.8 229.7 12.9 227.5 p 19.0 231.9 16.8 229.7 19.0 227.5 t3 19.0 231.9 16.8 229.7 p 19.0 227.5 25.3 227.5 25.3 233.8 19.0 233.8 s2 19.0 227.5 22.2 230.6 25.3 227.5 t3 25.3 227.5 22.2 230.6 25.3 233.8 t3 20.0 232.8 20.5 233.8 25.3 233.8 22.2 230.6 s3 20.0 232.8 20.5 233.8 p 19.0 231.9 20.0 232.8 22.2 230.6 19.0 227.5 s3 19.0 231.9 20.0 232.8 p 25.3 227.5 31.7 227.5 31.7 233.8 25.3 233.8 s3 31.7 227.5 38.0 227.5 38.0 233.8 31.7 233.8 s3 38.0 227.5 44.4 227.5 44.4 233.8 38.0 233.8 s2 43.8 228.0 43.4 227.5 38.0 227.5 41.2 230.6 s3 43.8 228.0 43.4 227.5 p 44.4 228.5 43.8 228.0 41.2 230.6 44.4 233.8 s3 44.4 228.5 43.8 228.0 p 44.4 233.8 41.2 230.6 38.0 233.8 t3 38.0 233.8 41.2 230.6 38.0 227.5 t3 44.4 227.5 50.7 227.5 50.7 233.8 44.4 233.8 s2 46.8 231.3 48.9 233.8 44.4 233.8 t3 46.8 231.3 48.9 233.8 p 44.4 228.5 46.8 231.3 44.4 233.8 t3 44.4 228.5 46.8 231.3 p 50.7 227.5 57.0 227.5 57.0 233.8 50.7 233.8 s2 57.0 227.5 63.4 227.5 63.4 233.8 57.0 233.8 s1 63.0 227.8 62.6 227.5 57.0 227.5 60.2 230.6 s2 63.0 227.8 62.6 227.5 p 63.4 228.1 63.0 227.8 60.2 230.6 63.4 233.8 s2 63.4 228.1 63.0 227.8 p 63.4 233.8 60.2 230.6 57.0 233.8 t2 57.0 233.8 60.2 230.6 57.0 227.5 t2 63.4 227.5 69.7 227.5 69.7 233.8 63.4 233.8 s1 65.8 229.9 66.7 230.5 66.5 230.6 t2 65.8 229.9 66.7 230.5 p 69.7 232.9 66.7 230.5 66.5 230.6 69.7 233.8 s2 69.7 232.9 66.7 230.5 p 69.7 233.8 66.5 230.6 63.4 233.8 t2 65.8 229.9 63.4 228.1 63.4 233.8 66.5 230.6 s2 65.8 229.9 63.4 228.1 p 69.7 227.5 76.0 227.5 76.0 233.8 69.7 233.8 s1 70.2 233.2 71.1 233.8 69.7 233.8 t2 70.2 233.2 71.1 233.8 p 69.7 232.9 70.2 233.2 69.7 233.8 t2 69.7 232.9 70.2 233.2 p 76.0 227.5 82.4 227.5 82.4 233.8 76.0 233.8 s1 82.4 227.5 88.7 227.5 88.7 233.8 82.4 233.8 s1 88.7 227.5 95.0 227.5 95.0 233.8 88.7 233.8 s1 95.0 227.5 101.4 227.5 101.4 233.8 95.0 233.8 s1 101.4 227.5 107.7 227.5 107.7 233.8 101.4 233.8 s1 105.8 231.8 107.7 230.6 107.7 233.8 t2 105.8 231.8 107.7 230.6 p 103.0 233.8 105.8 231.8 107.7 233.8 t2 103.0 233.8 105.8 231.8 p 107.7 227.5 114.0 227.5 114.0 233.8 107.7 233.8 s1 111.4 227.5 109.4 229.1 110.9 230.6 114.0 227.5 s2 111.4 227.5 109.4 229.1 p 114.0 227.5 110.9 230.6 114.0 233.8 t2 114.0 233.8 110.9 230.6 107.7 233.8 t2 109.4 229.1 107.7 230.6 107.7 233.8 110.9 230.6 s2 109.4 229.1 107.7 230.6 p 114.0 227.5 120.4 227.5 120.4 233.8 114.0 233.8 s2 120.4 227.5 126.7 227.5 126.7 233.8 120.4 233.8 s2 125.9 233.0 126.7 232.2 126.7 233.8 t3 125.9 233.0 126.7 232.2 p 125.3 233.8 125.9 233.0 126.7 233.8 t3 125.3 233.8 125.9 233.0 p 126.7 227.5 133.1 227.5 133.1 233.8 126.7 233.8 s2 130.8 227.5 128.9 229.7 129.9 230.6 133.1 227.5 s3 130.8 227.5 128.9 229.7 p 133.1 227.5 129.9 230.6 133.1 233.8 t3 133.1 233.8 129.9 230.6 126.7 233.8 t3 128.9 229.7 126.7 232.2 126.7 233.8 129.9 230.6 s3 128.9 229.7 126.7 232.2 p 133.1 227.5 139.4 227.5 139.4 233.8 133.1 233.8 s3 139.4 227.5 145.7 227.5 145.7 233.8 139.4 233.8 s3 145.7 227.5 152.1 227.5 152.1 233.8 145.7 233.8 s3 152.1 227.5 158.4 227.5 158.4 233.8 152.1 233.8 s2 152.1 227.5 155.2 230.6 158.4 227.5 t3 155.8 231.1 158.4 229.1 158.4 227.5 155.2 230.6 s3 155.8 231.1 158.4 229.1 p 153.8 233.8 155.8 231.1 155.2 230.6 152.1 233.8 s3 153.8 233.8 155.8 231.1 p 152.1 233.8 155.2 230.6 152.1 227.5 t3 158.4 227.5 164.7 227.5 164.7 233.8 158.4 233.8 s2 161.6 227.5 159.4 228.4 158.4 227.5 t3 161.6 227.5 159.4 228.4 p 159.4 228.4 158.4 229.1 158.4 227.5 t3 159.4 228.4 158.4 229.1 p 164.7 227.5 171.1 227.5 171.1 233.8 164.7 233.8 s1 164.7 227.5 167.9 230.6 171.1 227.5 t2 170.0 232.7 171.1 232.4 171.1 227.5 167.9 230.6 s2 170.0 232.7 171.1 232.4 p 166.5 233.8 170.0 232.7 167.9 230.6 164.7 233.8 s2 166.5 233.8 170.0 232.7 p 164.7 233.8 167.9 230.6 164.7 227.5 t2 171.1 227.5 177.4 227.5 177.4 233.8 171.1 233.8 s1 171.1 227.5 174.2 230.6 177.4 227.5 t2 176.0 232.4 177.4 232.4 177.4 227.5 174.2 230.6 s2 176.0 232.4 177.4 232.4 p 176.0 232.4 172.4 232.4 174.2 230.6 t2 176.0 232.4 172.4 232.4 p 171.1 232.4 172.4 232.4 174.2 230.6 171.1 227.5 s2 171.1 232.4 172.4 232.4 p 177.4 227.5 183.7 227.5 183.7 233.8 177.4 233.8 s1 177.4 227.5 180.6 230.6 183.7 227.5 t2 183.7 227.5 180.6 230.6 183.7 233.8 t2 178.5 232.7 182.0 233.8 183.7 233.8 180.6 230.6 s2 178.5 232.7 182.0 233.8 p 177.4 232.4 178.5 232.7 180.6 230.6 177.4 227.5 s2 177.4 232.4 178.5 232.7 p 183.7 227.5 190.1 227.5 190.1 233.8 183.7 233.8 s2 189.1 228.4 186.9 227.5 190.1 227.5 t3 189.1 228.4 186.9 227.5 p 190.1 229.1 189.1 228.4 190.1 227.5 t3 190.1 229.1 189.1 228.4 p 190.1 227.5 196.4 227.5 196.4 233.8 190.1 233.8 s2 190.1 227.5 193.2 230.6 196.4 227.5 t3 196.4 227.5 193.2 230.6 196.4 233.8 t3 192.7 231.1 194.6 233.8 196.4 233.8 193.2 230.6 s3 192.7 231.1 194.6 233.8 p 190.1 229.1 192.7 231.1 193.2 230.6 190.1 227.5 s3 190.1 229.1 192.7 231.1 p 196.4 227.5 202.7 227.5 202.7 233.8 196.4 233.8 s3 202.7 227.5 209.1 227.5 209.1 233.8 202.7 233.8 s3 209.1 227.5 215.4 227.5 215.4 233.8 209.1 233.8 s3 215.4 227.5 221.8 227.5 221.8 233.8 215.4 233.8 s2 219.6 229.7 217.6 227.5 215.4 227.5 218.6 230.6 s3 219.6 229.7 217.6 227.5 p 221.8 232.2 219.6 229.7 218.6 230.6 221.8 233.8 s3 221.8 232.2 219.6 229.7 p 221.8 233.8 218.6 230.6 215.4 233.8 t3 215.4 233.8 218.6 230.6 215.4 227.5 t3 221.8 227.5 228.1 227.5 228.1 233.8 221.8 233.8 s2 222.5 233.0 223.2 233.8 221.8 233.8 t3 222.5 233.0 223.2 233.8 p 221.8 232.2 222.5 233.0 221.8 233.8 t3 221.8 232.2 222.5 233.0 p 228.1 227.5 234.4 227.5 234.4 233.8 228.1 233.8 s2 234.4 227.5 240.8 227.5 240.8 233.8 234.4 233.8 s1 239.1 229.1 237.0 227.5 234.4 227.5 237.6 230.6 s2 239.1 229.1 237.0 227.5 p 240.8 230.6 239.1 229.1 237.6 230.6 240.8 233.8 s2 240.8 230.6 239.1 229.1 p 240.8 233.8 237.6 230.6 234.4 233.8 t2 234.4 233.8 237.6 230.6 234.4 227.5 t2 240.8 227.5 247.1 227.5 247.1 233.8 240.8 233.8 s1 242.7 231.8 245.4 233.8 240.8 233.8 t2 242.7 231.8 245.4 233.8 p 240.8 230.6 242.7 231.8 240.8 233.8 t2 240.8 230.6 242.7 231.8 p 247.1 227.5 253.4 227.5 253.4 233.8 247.1 233.8 s1 253.4 227.5 259.8 227.5 259.8 233.8 253.4 233.8 s1 259.8 227.5 266.1 227.5 266.1 233.8 259.8 233.8 s1 266.1 227.5 272.4 227.5 272.4 233.8 266.1 233.8 s1 272.4 227.5 278.8 227.5 278.8 233.8 272.4 233.8 s1 278.2 233.2 278.8 232.9 278.8 233.8 t2 278.2 233.2 278.8 232.9 p 277.3 233.8 278.2 233.2 278.8 233.8 t2 277.3 233.8 278.2 233.2 p 278.8 227.5 285.1 227.5 285.1 233.8 278.8 233.8 s1 281.8 230.5 282.7 229.9 281.9 230.6 t2 281.8 230.5 282.7 229.9 p 285.1 228.1 282.7 229.9 281.9 230.6 285.1 233.8 s2 285.1 228.1 282.7 229.9 p 285.1 233.8 281.9 230.6 278.8 233.8 t2 281.8 230.5 278.8 232.9 278.8 233.8 281.9 230.6 s2 281.8 230.5 278.8 232.9 p 285.1 227.5 291.5 227.5 291.5 233.8 285.1 233.8 s1 285.8 227.5 285.4 227.8 288.3 230.6 291.5 227.5 s2 285.8 227.5 285.4 227.8 p 291.5 227.5 288.3 230.6 291.5 233.8 t2 291.5 233.8 288.3 230.6 285.1 233.8 t2 285.4 227.8 285.1 228.1 285.1 233.8 288.3 230.6 s2 285.4 227.8 285.1 228.1 p 291.5 227.5 297.8 227.5 297.8 233.8 291.5 233.8 s2 297.8 227.5 304.1 227.5 304.1 233.8 297.8 233.8 s2 301.6 231.3 304.1 228.5 304.1 233.8 t3 301.6 231.3 304.1 228.5 p 299.6 233.8 301.6 231.3 304.1 233.8 t3 299.6 233.8 301.6 231.3 p 304.1 227.5 310.5 227.5 310.5 233.8 304.1 233.8 s2 305.1 227.5 304.6 228.0 307.3 230.6 310.5 227.5 s3 305.1 227.5 304.6 228.0 p 310.5 227.5 307.3 230.6 310.5 233.8 t3 310.5 233.8 307.3 230.6 304.1 233.8 t3 304.6 228.0 304.1 228.5 304.1 233.8 307.3 230.6 s3 304.6 228.0 304.1 228.5 p 310.5 227.5 316.8 227.5 316.8 233.8 310.5 233.8 s3 316.8 227.5 323.1 227.5 323.1 233.8 316.8 233.8 s3 323.1 227.5 329.5 227.5 329.5 233.8 323.1 233.8 s2 323.1 227.5 326.3 230.6 329.5 227.5 t3 328.5 232.8 329.5 231.9 329.5 227.5 326.3 230.6 s3 328.5 232.8 329.5 231.9 p 328.0 233.8 328.5 232.8 326.3 230.6 323.1 233.8 s3 328.0 233.8 328.5 232.8 p 323.1 233.8 326.3 230.6 323.1 227.5 t3 329.5 227.5 335.8 227.5 335.8 233.8 329.5 233.8 s2 335.6 227.5 331.7 229.7 329.5 227.5 t3 335.6 227.5 331.7 229.7 p 331.7 229.7 329.5 231.9 329.5 227.5 t3 331.7 229.7 329.5 231.9 p 335.8 227.5 342.1 227.5 342.1 233.8 335.8 233.8 s1 335.8 227.5 339.0 230.6 342.1 227.5 t2 341.6 233.3 342.1 233.1 342.1 227.5 339.0 230.6 s2 341.6 233.3 342.1 233.1 p 340.7 233.8 341.6 233.3 339.0 230.6 335.8 233.8 s2 340.7 233.8 341.6 233.3 p 335.8 233.8 339.0 230.6 335.8 227.5 t2 342.1 227.5 348.5 227.5 348.5 233.8 342.1 233.8 s1 342.1 227.5 345.3 230.6 348.5 227.5 t2 347.1 232.4 348.5 232.2 348.5 227.5 345.3 230.6 s2 347.1 232.4 348.5 232.2 p 347.1 232.4 342.9 233.0 345.3 230.6 t2 347.1 232.4 342.9 233.0 p 342.1 233.1 342.9 233.0 345.3 230.6 342.1 227.5 s2 342.1 233.1 342.9 233.0 p 0.0 221.1 6.3 221.1 6.3 227.5 0.0 227.5 s2 0.0 221.1 3.2 224.3 6.3 221.1 t3 4.2 225.4 6.3 225.5 6.3 221.1 3.2 224.3 s3 4.2 225.4 6.3 225.5 p 4.2 225.4 2.3 225.2 3.2 224.3 t3 4.2 225.4 2.3 225.2 p 0.0 225.0 2.3 225.2 3.2 224.3 0.0 221.1 s3 0.0 225.0 2.3 225.2 p 6.3 221.1 12.7 221.1 12.7 227.5 6.3 227.5 s2 6.3 221.1 9.5 224.3 12.7 221.1 t3 12.5 227.3 12.7 227.4 12.7 221.1 9.5 224.3 s3 12.5 227.3 12.7 227.4 p 12.5 227.3 8.0 225.8 9.5 224.3 t3 12.5 227.3 8.0 225.8 p 6.3 225.5 8.0 225.8 9.5 224.3 6.3 221.1 s3 6.3 225.5 8.0 225.8 p 12.7 221.1 19.0 221.1 19.0 227.5 12.7 227.5 s2 12.7 221.1 15.8 224.3 19.0 221.1 t3 19.0 221.1 15.8 224.3 19.0 227.5 t3 12.7 227.4 12.9 227.5 19.0 227.5 15.8 224.3 s3 12.7 227.4 12.9 227.5 p 12.7 227.4 12.7 227.4 15.8 224.3 12.7 221.1 s3 12.7 227.4 12.7 227.4 p 19.0 221.1 25.3 221.1 25.3 227.5 19.0 227.5 s3 25.3 221.1 31.7 221.1 31.7 227.5 25.3 227.5 s3 31.7 221.1 38.0 221.1 38.0 227.5 31.7 227.5 s3 38.0 221.1 44.4 221.1 44.4 227.5 38.0 227.5 s2 38.6 221.1 40.2 223.3 38.0 221.1 t3 38.6 221.1 40.2 223.3 p 41.0 224.5 43.4 227.5 38.0 227.5 t3 41.0 224.5 43.4 227.5 p 41.0 224.5 40.2 223.3 38.0 221.1 38.0 227.5 s3 41.0 224.5 40.2 223.3 p 44.4 221.1 50.7 221.1 50.7 227.5 44.4 227.5 s2 50.7 221.1 57.0 221.1 57.0 227.5 50.7 227.5 s1 56.8 221.4 56.6 221.1 50.7 221.1 53.9 224.3 s2 56.8 221.4 56.6 221.1 p 57.0 221.7 56.8 221.4 53.9 224.3 57.0 227.5 s2 57.0 221.7 56.8 221.4 p 57.0 227.5 53.9 224.3 50.7 227.5 t2 50.7 227.5 53.9 224.3 50.7 221.1 t2 57.0 221.1 63.4 221.1 63.4 227.5 57.0 227.5 s1 60.0 224.5 62.6 227.5 57.0 227.5 t2 60.0 224.5 62.6 227.5 p 57.0 221.7 60.0 224.5 57.0 227.5 t2 57.0 221.7 60.0 224.5 p 63.4 221.1 69.7 221.1 69.7 227.5 63.4 227.5 s1 69.7 221.1 76.0 221.1 76.0 227.5 69.7 227.5 s1 76.0 221.1 82.4 221.1 82.4 227.5 76.0 227.5 s1 82.4 221.1 88.7 221.1 88.7 227.5 82.4 227.5 s1 88.7 221.1 95.0 221.1 95.0 227.5 88.7 227.5 s1 95.0 221.1 101.4 221.1 101.4 227.5 95.0 227.5 s1 101.4 221.1 107.7 221.1 107.7 227.5 101.4 227.5 s1 107.7 221.1 114.0 221.1 114.0 227.5 107.7 227.5 s1 112.7 226.1 114.0 225.0 114.0 227.5 t2 112.7 226.1 114.0 225.0 p 111.4 227.5 112.7 226.1 114.0 227.5 t2 111.4 227.5 112.7 226.1 p 114.0 221.1 120.4 221.1 120.4 227.5 114.0 227.5 s1 117.5 221.1 115.8 222.9 117.2 224.3 120.4 221.1 s2 117.5 221.1 115.8 222.9 p 120.4 221.1 117.2 224.3 120.4 227.5 t2 120.4 227.5 117.2 224.3 114.0 227.5 t2 115.8 222.9 114.0 225.0 114.0 227.5 117.2 224.3 s2 115.8 222.9 114.0 225.0 p 120.4 221.1 126.7 221.1 126.7 227.5 120.4 227.5 s2 126.7 221.1 133.1 221.1 133.1 227.5 126.7 227.5 s2 131.8 226.2 133.1 224.6 133.1 227.5 t3 131.8 226.2 133.1 224.6 p 130.8 227.5 131.8 226.2 133.1 227.5 t3 130.8 227.5 131.8 226.2 p 133.1 221.1 139.4 221.1 139.4 227.5 133.1 227.5 s2 135.7 221.1 134.6 222.7 136.2 224.3 139.4 221.1 s3 135.7 221.1 134.6 222.7 p 139.4 221.1 136.2 224.3 139.4 227.5 t3 139.4 227.5 136.2 224.3 133.1 227.5 t3 134.6 222.7 133.1 224.6 133.1 227.5 136.2 224.3 s3 134.6 222.7 133.1 224.6 p 139.4 221.1 145.7 221.1 145.7 227.5 139.4 227.5 s3 145.7 221.1 152.1 221.1 152.1 227.5 145.7 227.5 s3 152.1 221.1 158.4 221.1 158.4 227.5 152.1 227.5 s3 158.4 221.1 164.7 221.1 164.7 227.5 158.4 227.5 s2 158.4 221.1 161.6 224.3 164.7 221.1 t3 163.7 226.5 164.7 226.2 164.7 221.1 161.6 224.3 s3 163.7 226.5 164.7 226.2 p 161.6 227.5 163.7 226.5 161.6 224.3 158.4 227.5 s3 161.6 227.5 163.7 226.5 p 158.4 227.5 161.6 224.3 158.4 221.1 t3 164.7 221.1 171.1 221.1 171.1 227.5 164.7 227.5 s2 164.7 221.1 167.9 224.3 171.1 221.1 t3 169.0 225.4 171.1 225.1 171.1 221.1 167.9 224.3 s3 169.0 225.4 171.1 225.1 p 169.0 225.4 166.2 226.0 167.9 224.3 t3 169.0 225.4 166.2 226.0 p 164.7 226.2 166.2 226.0 167.9 224.3 164.7 221.1 s3 164.7 226.2 166.2 226.0 p 171.1 221.1 177.4 221.1 177.4 227.5 171.1 227.5 s2 171.1 221.1 174.2 224.3 177.4 221.1 t3 175.1 225.1 177.4 225.1 177.4 221.1 174.2 224.3 s3 175.1 225.1 177.4 225.1 p 175.1 225.1 173.4 225.1 174.2 224.3 t3 175.1 225.1 173.4 225.1 p 171.1 225.1 173.4 225.1 174.2 224.3 171.1 221.1 s3 171.1 225.1 173.4 225.1 p 177.4 221.1 183.7 221.1 183.7 227.5 177.4 227.5 s2 177.4 221.1 180.6 224.3 183.7 221.1 t3 182.3 226.0 183.7 226.2 183.7 221.1 180.6 224.3 s3 182.3 226.0 183.7 226.2 p 182.3 226.0 179.5 225.4 180.6 224.3 t3 182.3 226.0 179.5 225.4 p 177.4 225.1 179.5 225.4 180.6 224.3 177.4 221.1 s3 177.4 225.1 179.5 225.4 p 183.7 221.1 190.1 221.1 190.1 227.5 183.7 227.5 s2 183.7 221.1 186.9 224.3 190.1 221.1 t3 190.1 221.1 186.9 224.3 190.1 227.5 t3 184.7 226.5 186.9 227.5 190.1 227.5 186.9 224.3 s3 184.7 226.5 186.9 227.5 p 183.7 226.2 184.7 226.5 186.9 224.3 183.7 221.1 s3 183.7 226.2 184.7 226.5 p 190.1 221.1 196.4 221.1 196.4 227.5 190.1 227.5 s3 196.4 221.1 202.7 221.1 202.7 227.5 196.4 227.5 s3 202.7 221.1 209.1 221.1 209.1 227.5 202.7 227.5 s3 209.1 221.1 215.4 221.1 215.4 227.5 209.1 227.5 s2 213.8 222.7 212.7 221.1 209.1 221.1 212.3 224.3 s3 213.8 222.7 212.7 221.1 p 215.4 224.6 213.8 222.7 212.3 224.3 215.4 227.5 s3 215.4 224.6 213.8 222.7 p 215.4 227.5 212.3 224.3 209.1 227.5 t3 209.1 227.5 212.3 224.3 209.1 221.1 t3 215.4 221.1 221.8 221.1 221.8 227.5 215.4 227.5 s2 216.7 226.2 217.6 227.5 215.4 227.5 t3 216.7 226.2 217.6 227.5 p 215.4 224.6 216.7 226.2 215.4 227.5 t3 215.4 224.6 216.7 226.2 p 221.8 221.1 228.1 221.1 228.1 227.5 221.8 227.5 s2 228.1 221.1 234.4 221.1 234.4 227.5 228.1 227.5 s1 232.7 222.9 231.0 221.1 228.1 221.1 231.3 224.3 s2 232.7 222.9 231.0 221.1 p 234.4 225.0 232.7 222.9 231.3 224.3 234.4 227.5 s2 234.4 225.0 232.7 222.9 p 234.4 227.5 231.3 224.3 228.1 227.5 t2 228.1 227.5 231.3 224.3 228.1 221.1 t2 234.4 221.1 240.8 221.1 240.8 227.5 234.4 227.5 s1 235.7 226.1 237.0 227.5 234.4 227.5 t2 235.7 226.1 237.0 227.5 p 234.4 225.0 235.7 226.1 234.4 227.5 t2 234.4 225.0 235.7 226.1 p 240.8 221.1 247.1 221.1 247.1 227.5 240.8 227.5 s1 247.1 221.1 253.4 221.1 253.4 227.5 247.1 227.5 s1 253.4 221.1 259.8 221.1 259.8 227.5 253.4 227.5 s1 259.8 221.1 266.1 221.1 266.1 227.5 259.8 227.5 s1 266.1 221.1 272.4 221.1 272.4 227.5 266.1 227.5 s1 272.4 221.1 278.8 221.1 278.8 227.5 272.4 227.5 s1 278.8 221.1 285.1 221.1 285.1 227.5 278.8 227.5 s1 285.1 221.1 291.5 221.1 291.5 227.5 285.1 227.5 s1 288.5 224.5 291.5 221.7 291.5 227.5 t2 288.5 224.5 291.5 221.7 p 285.8 227.5 288.5 224.5 291.5 227.5 t2 285.8 227.5 288.5 224.5 p 291.5 221.1 297.8 221.1 297.8 227.5 291.5 227.5 s1 291.9 221.1 291.7 221.4 294.6 224.3 297.8 221.1 s2 291.9 221.1 291.7 221.4 p 297.8 221.1 294.6 224.3 297.8 227.5 t2 297.8 227.5 294.6 224.3 291.5 227.5 t2 291.7 221.4 291.5 221.7 291.5 227.5 294.6 224.3 s2 291.7 221.4 291.5 221.7 p 297.8 221.1 304.1 221.1 304.1 227.5 297.8 227.5 s2 304.1 221.1 310.5 221.1 310.5 227.5 304.1 227.5 s2 308.3 223.3 309.9 221.1 310.5 221.1 t3 308.3 223.3 309.9 221.1 p 308.3 223.3 307.5 224.5 310.5 227.5 310.5 221.1 s3 308.3 223.3 307.5 224.5 p 305.1 227.5 307.5 224.5 310.5 227.5 t3 305.1 227.5 307.5 224.5 p 310.5 221.1 316.8 221.1 316.8 227.5 310.5 227.5 s3 316.8 221.1 323.1 221.1 323.1 227.5 316.8 227.5 s3 323.1 221.1 329.5 221.1 329.5 227.5 323.1 227.5 s3 329.5 221.1 335.8 221.1 335.8 227.5 329.5 227.5 s2 329.5 221.1 332.6 224.3 335.8 221.1 t3 335.7 227.4 335.8 227.4 335.8 221.1 332.6 224.3 s3 335.7 227.4 335.8 227.4 p 335.6 227.5 335.7 227.4 332.6 224.3 329.5 227.5 s3 335.6 227.5 335.7 227.4 p 329.5 227.5 332.6 224.3 329.5 221.1 t3 335.8 221.1 342.1 221.1 342.1 227.5 335.8 227.5 s2 335.8 221.1 339.0 224.3 342.1 221.1 t3 340.5 225.8 342.1 225.5 342.1 221.1 339.0 224.3 s3 340.5 225.8 342.1 225.5 p 340.5 225.8 335.9 227.3 339.0 224.3 t3 340.5 225.8 335.9 227.3 p 335.8 227.4 335.9 227.3 339.0 224.3 335.8 221.1 s3 335.8 227.4 335.9 227.3 p 342.1 221.1 348.5 221.1 348.5 227.5 342.1 227.5 s2 342.1 221.1 345.3 224.3 348.5 221.1 t3 346.2 225.2 348.5 225.0 348.5 221.1 345.3 224.3 s3 346.2 225.2 348.5 225.0 p 346.2 225.2 344.2 225.4 345.3 224.3 t3 346.2 225.2 344.2 225.4 p 342.1 225.5 344.2 225.4 345.3 224.3 342.1 221.1 s3 342.1 225.5 344.2 225.4 p 0.0 214.8 6.3 214.8 6.3 221.1 0.0 221.1 s3 1.3 216.1 5.2 215.9 6.3 214.8 0.0 214.8 s4 1.3 216.1 5.2 215.9 p 6.3 215.9 5.2 215.9 6.3 214.8 t4 6.3 215.9 5.2 215.9 p 1.3 216.1 0.0 216.1 0.0 214.8 t4 1.3 216.1 0.0 216.1 p 6.3 214.8 12.7 214.8 12.7 221.1 6.3 221.1 s3 12.3 214.8 7.4 215.9 6.3 214.8 t4 12.3 214.8 7.4 215.9 p 7.4 215.9 6.3 215.9 6.3 214.8 t4 7.4 215.9 6.3 215.9 p 12.7 214.8 19.0 214.8 19.0 221.1 12.7 221.1 s3 19.0 214.8 25.3 214.8 25.3 221.1 19.0 221.1 s3 25.3 214.8 31.7 214.8 31.7 221.1 25.3 221.1 s3 31.7 214.8 38.0 214.8 38.0 221.1 31.7 221.1 s2 35.6 217.2 34.1 214.8 31.7 214.8 34.8 218.0 s3 35.6 217.2 34.1 214.8 p 38.0 220.4 35.6 217.2 34.8 218.0 38.0 221.1 s3 38.0 220.4 35.6 217.2 p 38.0 221.1 34.8 218.0 31.7 221.1 t3 31.7 221.1 34.8 218.0 31.7 214.8 t3 38.0 214.8 44.4 214.8 44.4 221.1 38.0 221.1 s2 38.3 220.8 38.6 221.1 38.0 221.1 t3 38.3 220.8 38.6 221.1 p 38.0 220.4 38.3 220.8 38.0 221.1 t3 38.0 220.4 38.3 220.8 p 44.4 214.8 50.7 214.8 50.7 221.1 44.4 221.1 s2 50.7 214.8 57.0 214.8 57.0 221.1 50.7 221.1 s1 54.2 217.7 51.8 214.8 50.7 214.8 53.9 218.0 s2 54.2 217.7 51.8 214.8 p 54.2 217.7 55.5 219.6 53.9 218.0 t2 54.2 217.7 55.5 219.6 p 56.6 221.1 55.5 219.6 53.9 218.0 50.7 221.1 s2 56.6 221.1 55.5 219.6 p 50.7 221.1 53.9 218.0 50.7 214.8 t2 57.0 214.8 63.4 214.8 63.4 221.1 57.0 221.1 s1 63.4 214.8 69.7 214.8 69.7 221.1 63.4 221.1 s1 69.7 214.8 76.0 214.8 76.0 221.1 69.7 221.1 s1 76.0 214.8 82.4 214.8 82.4 221.1 76.0 221.1 s1 82.4 214.8 88.7 214.8 88.7 221.1 82.4 221.1 s1 88.7 214.8 95.0 214.8 95.0 221.1 88.7 221.1 s1 95.0 214.8 101.4 214.8 101.4 221.1 95.0 221.1 s1 101.4 214.8 107.7 214.8 107.7 221.1 101.4 221.1 s1 107.7 214.8 114.0 214.8 114.0 221.1 107.7 221.1 s1 114.0 214.8 120.4 214.8 120.4 221.1 114.0 221.1 s1 118.7 219.5 120.4 217.6 120.4 221.1 t2 118.7 219.5 120.4 217.6 p 117.5 221.1 118.7 219.5 120.4 221.1 t2 117.5 221.1 118.7 219.5 p 120.4 214.8 126.7 214.8 126.7 221.1 120.4 221.1 s1 122.4 214.8 121.5 215.9 123.6 218.0 126.7 214.8 s2 122.4 214.8 121.5 215.9 p 126.7 214.8 123.6 218.0 126.7 221.1 t2 126.7 221.1 123.6 218.0 120.4 221.1 t2 121.5 215.9 120.4 217.6 120.4 221.1 123.6 218.0 s2 121.5 215.9 120.4 217.6 p 126.7 214.8 133.1 214.8 133.1 221.1 126.7 221.1 s2 133.1 214.8 139.4 214.8 139.4 221.1 133.1 221.1 s2 137.3 219.0 139.4 215.9 139.4 221.1 t3 137.3 219.0 139.4 215.9 p 135.7 221.1 137.3 219.0 139.4 221.1 t3 135.7 221.1 137.3 219.0 p 139.4 214.8 145.7 214.8 145.7 221.1 139.4 221.1 s2 140.1 214.8 139.9 215.3 142.6 218.0 145.7 214.8 s3 140.1 214.8 139.9 215.3 p 145.7 214.8 142.6 218.0 145.7 221.1 t3 145.7 221.1 142.6 218.0 139.4 221.1 t3 139.9 215.3 139.4 215.9 139.4 221.1 142.6 218.0 s3 139.9 215.3 139.4 215.9 p 145.7 214.8 152.1 214.8 152.1 221.1 145.7 221.1 s3 152.1 214.8 158.4 214.8 158.4 221.1 152.1 221.1 s3 158.4 214.8 164.7 214.8 164.7 221.1 158.4 221.1 s3 164.0 215.5 162.3 214.8 164.7 214.8 t4 164.0 215.5 162.3 214.8 p 164.7 215.6 164.0 215.5 164.7 214.8 t4 164.7 215.6 164.0 215.5 p 164.7 214.8 171.1 214.8 171.1 221.1 164.7 221.1 s3 165.5 215.6 169.8 216.1 171.1 214.8 164.7 214.8 s4 165.5 215.6 169.8 216.1 p 171.1 216.1 169.8 216.1 171.1 214.8 t4 171.1 216.1 169.8 216.1 p 165.5 215.6 164.7 215.6 164.7 214.8 t4 165.5 215.6 164.7 215.6 p 171.1 214.8 177.4 214.8 177.4 221.1 171.1 221.1 s3 172.4 216.1 176.1 216.1 177.4 214.8 171.1 214.8 s4 172.4 216.1 176.1 216.1 p 177.4 216.1 176.1 216.1 177.4 214.8 t4 177.4 216.1 176.1 216.1 p 172.4 216.1 171.1 216.1 171.1 214.8 t4 172.4 216.1 171.1 216.1 p 177.4 214.8 183.7 214.8 183.7 221.1 177.4 221.1 s3 178.7 216.1 183.0 215.6 183.7 214.8 177.4 214.8 s4 178.7 216.1 183.0 215.6 p 183.7 215.6 183.0 215.6 183.7 214.8 t4 183.7 215.6 183.0 215.6 p 178.7 216.1 177.4 216.1 177.4 214.8 t4 178.7 216.1 177.4 216.1 p 183.7 214.8 190.1 214.8 190.1 221.1 183.7 221.1 s3 186.2 214.8 184.4 215.5 183.7 214.8 t4 186.2 214.8 184.4 215.5 p 184.4 215.5 183.7 215.6 183.7 214.8 t4 184.4 215.5 183.7 215.6 p 190.1 214.8 196.4 214.8 196.4 221.1 190.1 221.1 s3 196.4 214.8 202.7 214.8 202.7 221.1 196.4 221.1 s3 202.7 214.8 209.1 214.8 209.1 221.1 202.7 221.1 s2 208.6 215.3 208.4 214.8 202.7 214.8 205.9 218.0 s3 208.6 215.3 208.4 214.8 p 209.1 215.9 208.6 215.3 205.9 218.0 209.1 221.1 s3 209.1 215.9 208.6 215.3 p 209.1 221.1 205.9 218.0 202.7 221.1 t3 202.7 221.1 205.9 218.0 202.7 214.8 t3 209.1 214.8 215.4 214.8 215.4 221.1 209.1 221.1 s2 211.2 219.0 212.7 221.1 209.1 221.1 t3 211.2 219.0 212.7 221.1 p 209.1 215.9 211.2 219.0 209.1 221.1 t3 209.1 215.9 211.2 219.0 p 215.4 214.8 221.8 214.8 221.8 221.1 215.4 221.1 s2 221.8 214.8 228.1 214.8 228.1 221.1 221.8 221.1 s1 227.0 215.9 226.1 214.8 221.8 214.8 224.9 218.0 s2 227.0 215.9 226.1 214.8 p 228.1 217.6 227.0 215.9 224.9 218.0 228.1 221.1 s2 228.1 217.6 227.0 215.9 p 228.1 221.1 224.9 218.0 221.8 221.1 t2 221.8 221.1 224.9 218.0 221.8 214.8 t2 228.1 214.8 234.4 214.8 234.4 221.1 228.1 221.1 s1 229.8 219.5 231.0 221.1 228.1 221.1 t2 229.8 219.5 231.0 221.1 p 228.1 217.6 229.8 219.5 228.1 221.1 t2 228.1 217.6 229.8 219.5 p 234.4 214.8 240.8 214.8 240.8 221.1 234.4 221.1 s1 240.8 214.8 247.1 214.8 247.1 221.1 240.8 221.1 s1 247.1 214.8 253.4 214.8 253.4 221.1 247.1 221.1 s1 253.4 214.8 259.8 214.8 259.8 221.1 253.4 221.1 s1 259.8 214.8 266.1 214.8 266.1 221.1 259.8 221.1 s1 266.1 214.8 272.4 214.8 272.4 221.1 266.1 221.1 s1 272.4 214.8 278.8 214.8 278.8 221.1 272.4 221.1 s1 278.8 214.8 285.1 214.8 285.1 221.1 278.8 221.1 s1 285.1 214.8 291.5 214.8 291.5 221.1 285.1 221.1 s1 291.5 214.8 297.8 214.8 297.8 221.1 291.5 221.1 s1 296.7 214.8 294.3 217.7 294.6 218.0 297.8 214.8 s2 296.7 214.8 294.3 217.7 p 297.8 214.8 294.6 218.0 297.8 221.1 t2 292.9 219.6 291.9 221.1 297.8 221.1 294.6 218.0 s2 292.9 219.6 291.9 221.1 p 292.9 219.6 294.3 217.7 294.6 218.0 t2 292.9 219.6 294.3 217.7 p 297.8 214.8 304.1 214.8 304.1 221.1 297.8 221.1 s2 304.1 214.8 310.5 214.8 310.5 221.1 304.1 221.1 s2 310.1 220.8 310.5 220.4 310.5 221.1 t3 310.1 220.8 310.5 220.4 p 309.9 221.1 310.1 220.8 310.5 221.1 t3 309.9 221.1 310.1 220.8 p 310.5 214.8 316.8 214.8 316.8 221.1 310.5 221.1 s2 314.4 214.8 312.8 217.2 313.6 218.0 316.8 214.8 s3 314.4 214.8 312.8 217.2 p 316.8 214.8 313.6 218.0 316.8 221.1 t3 316.8 221.1 313.6 218.0 310.5 221.1 t3 312.8 217.2 310.5 220.4 310.5 221.1 313.6 218.0 s3 312.8 217.2 310.5 220.4 p 316.8 214.8 323.1 214.8 323.1 221.1 316.8 221.1 s3 323.1 214.8 329.5 214.8 329.5 221.1 323.1 221.1 s3 329.5 214.8 335.8 214.8 335.8 221.1 329.5 221.1 s3 335.8 214.8 342.1 214.8 342.1 221.1 335.8 221.1 s3 341.0 215.9 336.1 214.8 342.1 214.8 t4 341.0 215.9 336.1 214.8 p 342.1 215.9 341.0 215.9 342.1 214.8 t4 342.1 215.9 341.0 215.9 p 342.1 214.8 348.5 214.8 348.5 221.1 342.1 221.1 s3 343.3 215.9 347.1 216.1 348.5 214.8 342.1 214.8 s4 343.3 215.9 347.1 216.1 p 348.5 216.1 347.1 216.1 348.5 214.8 t4 348.5 216.1 347.1 216.1 p 343.3 215.9 342.1 215.9 342.1 214.8 t4 343.3 215.9 342.1 215.9 p 0.0 208.5 6.3 208.5 6.3 214.8 0.0 214.8 s4 6.3 208.5 12.7 208.5 12.7 214.8 6.3 214.8 s3 10.0 211.1 9.4 208.5 6.3 208.5 9.5 211.7 s4 10.0 211.1 9.4 208.5 p 10.0 211.1 12.0 214.2 9.5 211.7 t4 10.0 211.1 12.0 214.2 p 12.3 214.8 12.0 214.2 9.5 211.7 6.3 214.8 s4 12.3 214.8 12.0 214.2 p 6.3 214.8 9.5 211.7 6.3 208.5 t4 12.7 208.5 19.0 208.5 19.0 214.8 12.7 214.8 s3 19.0 208.5 25.3 208.5 25.3 214.8 19.0 214.8 s3 25.3 208.5 31.7 208.5 31.7 214.8 25.3 214.8 s2 30.3 209.9 29.3 208.5 25.3 208.5 28.5 211.7 s3 30.3 209.9 29.3 208.5 p 31.7 211.6 30.3 209.9 28.5 211.7 31.7 214.8 s3 31.7 211.6 30.3 209.9 p 31.7 214.8 28.5 211.7 25.3 214.8 t3 25.3 214.8 28.5 211.7 25.3 208.5 t3 31.7 208.5 38.0 208.5 38.0 214.8 31.7 214.8 s2 33.1 213.4 34.1 214.8 31.7 214.8 t3 33.1 213.4 34.1 214.8 p 31.7 211.6 33.1 213.4 31.7 214.8 t3 31.7 211.6 33.1 213.4 p 38.0 208.5 44.4 208.5 44.4 214.8 38.0 214.8 s2 44.4 208.5 50.7 208.5 50.7 214.8 44.4 214.8 s1 48.8 210.4 47.3 208.5 44.4 208.5 47.5 211.7 s2 48.8 210.4 47.3 208.5 p 50.7 213.4 48.8 210.4 47.5 211.7 50.7 214.8 s2 50.7 213.4 48.8 210.4 p 50.7 214.8 47.5 211.7 44.4 214.8 t2 44.4 214.8 47.5 211.7 44.4 208.5 t2 50.7 208.5 57.0 208.5 57.0 214.8 50.7 214.8 s1 51.3 214.2 51.8 214.8 50.7 214.8 t2 51.3 214.2 51.8 214.8 p 50.7 213.4 51.3 214.2 50.7 214.8 t2 50.7 213.4 51.3 214.2 p 57.0 208.5 63.4 208.5 63.4 214.8 57.0 214.8 s1 63.4 208.5 69.7 208.5 69.7 214.8 63.4 214.8 s1 69.7 208.5 76.0 208.5 76.0 214.8 69.7 214.8 s1 76.0 208.5 82.4 208.5 82.4 214.8 76.0 214.8 s1 82.4 208.5 88.7 208.5 88.7 214.8 82.4 214.8 s1 88.7 208.5 95.0 208.5 95.0 214.8 88.7 214.8 s1 95.0 208.5 101.4 208.5 101.4 214.8 95.0 214.8 s1 101.4 208.5 107.7 208.5 107.7 214.8 101.4 214.8 s1 107.7 208.5 114.0 208.5 114.0 214.8 107.7 214.8 s1 114.0 208.5 120.4 208.5 120.4 214.8 114.0 214.8 s1 120.4 208.5 126.7 208.5 126.7 214.8 120.4 214.8 s1 124.1 212.2 126.7 209.0 126.7 214.8 t2 124.1 212.2 126.7 209.0 p 122.4 214.8 124.1 212.2 126.7 214.8 t2 122.4 214.8 124.1 212.2 p 126.7 208.5 133.1 208.5 133.1 214.8 126.7 214.8 s1 127.1 208.5 126.9 208.7 129.9 211.7 133.1 208.5 s2 127.1 208.5 126.9 208.7 p 133.1 208.5 129.9 211.7 133.1 214.8 t2 133.1 214.8 129.9 211.7 126.7 214.8 t2 126.9 208.7 126.7 209.0 126.7 214.8 129.9 211.7 s2 126.9 208.7 126.7 209.0 p 133.1 208.5 139.4 208.5 139.4 214.8 133.1 214.8 s2 139.4 208.5 145.7 208.5 145.7 214.8 139.4 214.8 s2 144.9 208.5 142.5 211.6 142.6 211.7 145.7 208.5 s3 144.9 208.5 142.5 211.6 p 145.7 208.5 142.6 211.7 145.7 214.8 t3 142.4 211.8 140.1 214.8 145.7 214.8 142.6 211.7 s3 142.4 211.8 140.1 214.8 p 142.4 211.8 142.5 211.6 142.6 211.7 t3 142.4 211.8 142.5 211.6 p 145.7 208.5 152.1 208.5 152.1 214.8 145.7 214.8 s3 152.1 208.5 158.4 208.5 158.4 214.8 152.1 214.8 s3 158.4 208.5 164.7 208.5 164.7 214.8 158.4 214.8 s3 164.3 209.0 164.5 208.5 164.7 208.5 t4 164.3 209.0 164.5 208.5 p 164.3 209.0 163.3 213.4 164.7 214.8 164.7 208.5 s4 164.3 209.0 163.3 213.4 p 162.3 214.8 163.3 213.4 164.7 214.8 t4 162.3 214.8 163.3 213.4 p 164.7 208.5 171.1 208.5 171.1 214.8 164.7 214.8 s4 171.1 208.5 177.4 208.5 177.4 214.8 171.1 214.8 s4 177.4 208.5 183.7 208.5 183.7 214.8 177.4 214.8 s4 183.7 208.5 190.1 208.5 190.1 214.8 183.7 214.8 s3 184.0 208.5 184.2 209.0 183.7 208.5 t4 184.0 208.5 184.2 209.0 p 185.2 213.4 186.2 214.8 183.7 214.8 t4 185.2 213.4 186.2 214.8 p 185.2 213.4 184.2 209.0 183.7 208.5 183.7 214.8 s4 185.2 213.4 184.2 209.0 p 190.1 208.5 196.4 208.5 196.4 214.8 190.1 214.8 s3 196.4 208.5 202.7 208.5 202.7 214.8 196.4 214.8 s3 202.7 208.5 209.1 208.5 209.1 214.8 202.7 214.8 s2 205.9 211.6 203.6 208.5 202.7 208.5 205.9 211.7 s3 205.9 211.6 203.6 208.5 p 205.9 211.6 206.1 211.8 205.9 211.7 t3 205.9 211.6 206.1 211.8 p 208.4 214.8 206.1 211.8 205.9 211.7 202.7 214.8 s3 208.4 214.8 206.1 211.8 p 202.7 214.8 205.9 211.7 202.7 208.5 t3 209.1 208.5 215.4 208.5 215.4 214.8 209.1 214.8 s2 215.4 208.5 221.8 208.5 221.8 214.8 215.4 214.8 s1 221.6 208.7 221.4 208.5 215.4 208.5 218.6 211.7 s2 221.6 208.7 221.4 208.5 p 221.8 209.0 221.6 208.7 218.6 211.7 221.8 214.8 s2 221.8 209.0 221.6 208.7 p 221.8 214.8 218.6 211.7 215.4 214.8 t2 215.4 214.8 218.6 211.7 215.4 208.5 t2 221.8 208.5 228.1 208.5 228.1 214.8 221.8 214.8 s1 224.4 212.2 226.1 214.8 221.8 214.8 t2 224.4 212.2 226.1 214.8 p 221.8 209.0 224.4 212.2 221.8 214.8 t2 221.8 209.0 224.4 212.2 p 228.1 208.5 234.4 208.5 234.4 214.8 228.1 214.8 s1 234.4 208.5 240.8 208.5 240.8 214.8 234.4 214.8 s1 240.8 208.5 247.1 208.5 247.1 214.8 240.8 214.8 s1 247.1 208.5 253.4 208.5 253.4 214.8 247.1 214.8 s1 253.4 208.5 259.8 208.5 259.8 214.8 253.4 214.8 s1 259.8 208.5 266.1 208.5 266.1 214.8 259.8 214.8 s1 266.1 208.5 272.4 208.5 272.4 214.8 266.1 214.8 s1 272.4 208.5 278.8 208.5 278.8 214.8 272.4 214.8 s1 278.8 208.5 285.1 208.5 285.1 214.8 278.8 214.8 s1 285.1 208.5 291.5 208.5 291.5 214.8 285.1 214.8 s1 291.5 208.5 297.8 208.5 297.8 214.8 291.5 214.8 s1 297.1 214.2 297.8 213.4 297.8 214.8 t2 297.1 214.2 297.8 213.4 p 296.7 214.8 297.1 214.2 297.8 214.8 t2 296.7 214.8 297.1 214.2 p 297.8 208.5 304.1 208.5 304.1 214.8 297.8 214.8 s1 301.1 208.5 299.7 210.4 301.0 211.7 304.1 208.5 s2 301.1 208.5 299.7 210.4 p 304.1 208.5 301.0 211.7 304.1 214.8 t2 304.1 214.8 301.0 211.7 297.8 214.8 t2 299.7 210.4 297.8 213.4 297.8 214.8 301.0 211.7 s2 299.7 210.4 297.8 213.4 p 304.1 208.5 310.5 208.5 310.5 214.8 304.1 214.8 s2 310.5 208.5 316.8 208.5 316.8 214.8 310.5 214.8 s2 315.4 213.4 316.8 211.6 316.8 214.8 t3 315.4 213.4 316.8 211.6 p 314.4 214.8 315.4 213.4 316.8 214.8 t3 314.4 214.8 315.4 213.4 p 316.8 208.5 323.1 208.5 323.1 214.8 316.8 214.8 s2 319.2 208.5 318.2 209.9 320.0 211.7 323.1 208.5 s3 319.2 208.5 318.2 209.9 p 323.1 208.5 320.0 211.7 323.1 214.8 t3 323.1 214.8 320.0 211.7 316.8 214.8 t3 318.2 209.9 316.8 211.6 316.8 214.8 320.0 211.7 s3 318.2 209.9 316.8 211.6 p 323.1 208.5 329.5 208.5 329.5 214.8 323.1 214.8 s3 329.5 208.5 335.8 208.5 335.8 214.8 329.5 214.8 s3 335.8 208.5 342.1 208.5 342.1 214.8 335.8 214.8 s3 339.1 208.5 338.4 211.1 339.0 211.7 342.1 208.5 s4 339.1 208.5 338.4 211.1 p 342.1 208.5 339.0 211.7 342.1 214.8 t4 336.5 214.2 336.1 214.8 342.1 214.8 339.0 211.7 s4 336.5 214.2 336.1 214.8 p 336.5 214.2 338.4 211.1 339.0 211.7 t4 336.5 214.2 338.4 211.1 p 342.1 208.5 348.5 208.5 348.5 214.8 342.1 214.8 s4 0.0 202.2 6.3 202.2 6.3 208.5 0.0 208.5 s3 4.6 206.8 6.3 207.1 6.3 208.5 t4 4.6 206.8 6.3 207.1 p 4.6 206.8 2.1 206.4 0.0 208.5 6.3 208.5 s4 4.6 206.8 2.1 206.4 p 0.0 206.0 2.1 206.4 0.0 208.5 t4 0.0 206.0 2.1 206.4 p 6.3 202.2 12.7 202.2 12.7 208.5 6.3 208.5 s3 7.3 207.5 9.4 208.5 6.3 208.5 t4 7.3 207.5 9.4 208.5 p 6.3 207.1 7.3 207.5 6.3 208.5 t4 6.3 207.1 7.3 207.5 p 12.7 202.2 19.0 202.2 19.0 208.5 12.7 208.5 s3 19.0 202.2 25.3 202.2 25.3 208.5 19.0 208.5 s2 24.3 203.3 23.0 202.2 19.0 202.2 22.2 205.3 s3 24.3 203.3 23.0 202.2 p 25.3 204.3 24.3 203.3 22.2 205.3 25.3 208.5 s3 25.3 204.3 24.3 203.3 p 25.3 208.5 22.2 205.3 19.0 208.5 t3 19.0 208.5 22.2 205.3 19.0 202.2 t3 25.3 202.2 31.7 202.2 31.7 208.5 25.3 208.5 s2 27.5 206.4 29.3 208.5 25.3 208.5 t3 27.5 206.4 29.3 208.5 p 25.3 204.3 27.5 206.4 25.3 208.5 t3 25.3 204.3 27.5 206.4 p 31.7 202.2 38.0 202.2 38.0 208.5 31.7 208.5 s2 38.0 202.2 44.4 202.2 44.4 208.5 38.0 208.5 s1 43.4 203.1 42.7 202.2 38.0 202.2 41.2 205.3 s2 43.4 203.1 42.7 202.2 p 44.4 204.5 43.4 203.1 41.2 205.3 44.4 208.5 s2 44.4 204.5 43.4 203.1 p 44.4 208.5 41.2 205.3 38.0 208.5 t2 38.0 208.5 41.2 205.3 38.0 202.2 t2 44.4 202.2 50.7 202.2 50.7 208.5 44.4 208.5 s1 46.2 206.7 47.3 208.5 44.4 208.5 t2 46.2 206.7 47.3 208.5 p 44.4 204.5 46.2 206.7 44.4 208.5 t2 44.4 204.5 46.2 206.7 p 50.7 202.2 57.0 202.2 57.0 208.5 50.7 208.5 s1 57.0 202.2 63.4 202.2 63.4 208.5 57.0 208.5 s1 63.4 202.2 69.7 202.2 69.7 208.5 63.4 208.5 s1 69.7 202.2 76.0 202.2 76.0 208.5 69.7 208.5 s1 76.0 202.2 82.4 202.2 82.4 208.5 76.0 208.5 s1 82.4 202.2 88.7 202.2 88.7 208.5 82.4 208.5 s1 88.7 202.2 95.0 202.2 95.0 208.5 88.7 208.5 s1 95.0 202.2 101.4 202.2 101.4 208.5 95.0 208.5 s1 101.4 202.2 107.7 202.2 107.7 208.5 101.4 208.5 s1 107.7 202.2 114.0 202.2 114.0 208.5 107.7 208.5 s1 114.0 202.2 120.4 202.2 120.4 208.5 114.0 208.5 s1 120.4 202.2 126.7 202.2 126.7 208.5 120.4 208.5 s1 126.7 202.2 133.1 202.2 133.1 208.5 126.7 208.5 s1 131.6 202.2 129.4 204.8 129.9 205.3 133.1 202.2 s2 131.6 202.2 129.4 204.8 p 133.1 202.2 129.9 205.3 133.1 208.5 t2 127.7 207.5 127.1 208.5 133.1 208.5 129.9 205.3 s2 127.7 207.5 127.1 208.5 p 127.7 207.5 129.4 204.8 129.9 205.3 t2 127.7 207.5 129.4 204.8 p 133.1 202.2 139.4 202.2 139.4 208.5 133.1 208.5 s2 139.4 202.2 145.7 202.2 145.7 208.5 139.4 208.5 s2 145.3 208.1 145.7 207.6 145.7 208.5 t3 145.3 208.1 145.7 207.6 p 144.9 208.5 145.3 208.1 145.7 208.5 t3 144.9 208.5 145.3 208.1 p 145.7 202.2 152.1 202.2 152.1 208.5 145.7 208.5 s2 151.2 202.2 148.4 204.8 148.9 205.3 152.1 202.2 s3 151.2 202.2 148.4 204.8 p 152.1 202.2 148.9 205.3 152.1 208.5 t3 152.1 208.5 148.9 205.3 145.7 208.5 t3 148.4 204.8 145.7 207.6 145.7 208.5 148.9 205.3 s3 148.4 204.8 145.7 207.6 p 152.1 202.2 158.4 202.2 158.4 208.5 152.1 208.5 s3 158.4 202.2 164.7 202.2 164.7 208.5 158.4 208.5 s3 164.6 208.4 164.7 208.3 164.7 208.5 t4 164.6 208.4 164.7 208.3 p 164.5 208.5 164.6 208.4 164.7 208.5 t4 164.5 208.5 164.6 208.4 p 164.7 202.2 171.1 202.2 171.1 208.5 164.7 208.5 s3 169.4 206.8 171.1 206.3 171.1 208.5 t4 169.4 206.8 171.1 206.3 p 169.4 206.8 165.0 208.2 164.7 208.5 171.1 208.5 s4 169.4 206.8 165.0 208.2 p 164.7 208.3 165.0 208.2 164.7 208.5 t4 164.7 208.3 165.0 208.2 p 171.1 202.2 177.4 202.2 177.4 208.5 171.1 208.5 s3 175.2 206.3 177.4 206.3 177.4 208.5 t4 175.2 206.3 177.4 206.3 p 175.2 206.3 173.3 206.3 171.1 208.5 177.4 208.5 s4 175.2 206.3 173.3 206.3 p 171.1 206.3 173.3 206.3 171.1 208.5 t4 171.1 206.3 173.3 206.3 p 177.4 202.2 183.7 202.2 183.7 208.5 177.4 208.5 s3 183.5 208.2 183.7 208.3 183.7 208.5 t4 183.5 208.2 183.7 208.3 p 183.5 208.2 179.1 206.8 177.4 208.5 183.7 208.5 s4 183.5 208.2 179.1 206.8 p 177.4 206.3 179.1 206.8 177.4 208.5 t4 177.4 206.3 179.1 206.8 p 183.7 202.2 190.1 202.2 190.1 208.5 183.7 208.5 s3 183.8 208.4 184.0 208.5 183.7 208.5 t4 183.8 208.4 184.0 208.5 p 183.7 208.3 183.8 208.4 183.7 208.5 t4 183.7 208.3 183.8 208.4 p 190.1 202.2 196.4 202.2 196.4 208.5 190.1 208.5 s3 196.4 202.2 202.7 202.2 202.7 208.5 196.4 208.5 s2 200.1 204.8 197.3 202.2 196.4 202.2 199.6 205.3 s3 200.1 204.8 197.3 202.2 p 202.7 207.6 200.1 204.8 199.6 205.3 202.7 208.5 s3 202.7 207.6 200.1 204.8 p 202.7 208.5 199.6 205.3 196.4 208.5 t3 196.4 208.5 199.6 205.3 196.4 202.2 t3 202.7 202.2 209.1 202.2 209.1 208.5 202.7 208.5 s2 203.2 208.1 203.6 208.5 202.7 208.5 t3 203.2 208.1 203.6 208.5 p 202.7 207.6 203.2 208.1 202.7 208.5 t3 202.7 207.6 203.2 208.1 p 209.1 202.2 215.4 202.2 215.4 208.5 209.1 208.5 s2 215.4 202.2 221.8 202.2 221.8 208.5 215.4 208.5 s1 219.1 204.8 216.9 202.2 215.4 202.2 218.6 205.3 s2 219.1 204.8 216.9 202.2 p 219.1 204.8 220.8 207.5 218.6 205.3 t2 219.1 204.8 220.8 207.5 p 221.4 208.5 220.8 207.5 218.6 205.3 215.4 208.5 s2 221.4 208.5 220.8 207.5 p 215.4 208.5 218.6 205.3 215.4 202.2 t2 221.8 202.2 228.1 202.2 228.1 208.5 221.8 208.5 s1 228.1 202.2 234.4 202.2 234.4 208.5 228.1 208.5 s1 234.4 202.2 240.8 202.2 240.8 208.5 234.4 208.5 s1 240.8 202.2 247.1 202.2 247.1 208.5 240.8 208.5 s1 247.1 202.2 253.4 202.2 253.4 208.5 247.1 208.5 s1 253.4 202.2 259.8 202.2 259.8 208.5 253.4 208.5 s1 259.8 202.2 266.1 202.2 266.1 208.5 259.8 208.5 s1 266.1 202.2 272.4 202.2 272.4 208.5 266.1 208.5 s1 272.4 202.2 278.8 202.2 278.8 208.5 272.4 208.5 s1 278.8 202.2 285.1 202.2 285.1 208.5 278.8 208.5 s1 285.1 202.2 291.5 202.2 291.5 208.5 285.1 208.5 s1 291.5 202.2 297.8 202.2 297.8 208.5 291.5 208.5 s1 297.8 202.2 304.1 202.2 304.1 208.5 297.8 208.5 s1 302.3 206.7 304.1 204.5 304.1 208.5 t2 302.3 206.7 304.1 204.5 p 301.1 208.5 302.3 206.7 304.1 208.5 t2 301.1 208.5 302.3 206.7 p 304.1 202.2 310.5 202.2 310.5 208.5 304.1 208.5 s1 305.8 202.2 305.0 203.1 307.3 205.3 310.5 202.2 s2 305.8 202.2 305.0 203.1 p 310.5 202.2 307.3 205.3 310.5 208.5 t2 310.5 208.5 307.3 205.3 304.1 208.5 t2 305.0 203.1 304.1 204.5 304.1 208.5 307.3 205.3 s2 305.0 203.1 304.1 204.5 p 310.5 202.2 316.8 202.2 316.8 208.5 310.5 208.5 s2 316.8 202.2 323.1 202.2 323.1 208.5 316.8 208.5 s2 321.0 206.4 323.1 204.3 323.1 208.5 t3 321.0 206.4 323.1 204.3 p 319.2 208.5 321.0 206.4 323.1 208.5 t3 319.2 208.5 321.0 206.4 p 323.1 202.2 329.5 202.2 329.5 208.5 323.1 208.5 s2 325.4 202.2 324.2 203.3 326.3 205.3 329.5 202.2 s3 325.4 202.2 324.2 203.3 p 329.5 202.2 326.3 205.3 329.5 208.5 t3 329.5 208.5 326.3 205.3 323.1 208.5 t3 324.2 203.3 323.1 204.3 323.1 208.5 326.3 205.3 s3 324.2 203.3 323.1 204.3 p 329.5 202.2 335.8 202.2 335.8 208.5 329.5 208.5 s3 335.8 202.2 342.1 202.2 342.1 208.5 335.8 208.5 s3 341.2 207.5 342.1 207.1 342.1 208.5 t4 341.2 207.5 342.1 207.1 p 339.1 208.5 341.2 207.5 342.1 208.5 t4 339.1 208.5 341.2 207.5 p 342.1 202.2 348.5 202.2 348.5 208.5 342.1 208.5 s3 346.3 206.4 348.5 206.0 348.5 208.5 t4 346.3 206.4 348.5 206.0 p 346.3 206.4 343.9 206.8 342.1 208.5 348.5 208.5 s4 346.3 206.4 343.9 206.8 p 342.1 207.1 343.9 206.8 342.1 208.5 t4 342.1 207.1 343.9 206.8 p 0.0 195.9 6.3 195.9 6.3 202.2 0.0 202.2 s3 6.3 195.9 12.7 195.9 12.7 202.2 6.3 202.2 s3 12.7 195.9 19.0 195.9 19.0 202.2 12.7 202.2 s2 17.0 197.9 13.0 195.9 12.7 195.9 15.8 199.0 s3 17.0 197.9 13.0 195.9 p 19.0 199.1 17.0 197.9 15.8 199.0 19.0 202.2 s3 19.0 199.1 17.0 197.9 p 19.0 202.2 15.8 199.0 12.7 202.2 t3 12.7 202.2 15.8 199.0 12.7 195.9 t3 19.0 195.9 25.3 195.9 25.3 202.2 19.0 202.2 s2 20.8 200.3 23.0 202.2 19.0 202.2 t3 20.8 200.3 23.0 202.2 p 19.0 199.1 20.8 200.3 19.0 202.2 t3 19.0 199.1 20.8 200.3 p 25.3 195.9 31.7 195.9 31.7 202.2 25.3 202.2 s2 31.7 195.9 38.0 195.9 38.0 202.2 31.7 202.2 s1 37.7 196.2 37.4 195.9 31.7 195.9 34.8 199.0 s2 37.7 196.2 37.4 195.9 p 38.0 196.6 37.7 196.2 34.8 199.0 38.0 202.2 s2 38.0 196.6 37.7 196.2 p 38.0 202.2 34.8 199.0 31.7 202.2 t2 31.7 202.2 34.8 199.0 31.7 195.9 t2 38.0 195.9 44.4 195.9 44.4 202.2 38.0 202.2 s1 40.7 199.5 42.7 202.2 38.0 202.2 t2 40.7 199.5 42.7 202.2 p 38.0 196.6 40.7 199.5 38.0 202.2 t2 38.0 196.6 40.7 199.5 p 44.4 195.9 50.7 195.9 50.7 202.2 44.4 202.2 s1 50.7 195.9 57.0 195.9 57.0 202.2 50.7 202.2 s1 57.0 195.9 63.4 195.9 63.4 202.2 57.0 202.2 s1 63.4 195.9 69.7 195.9 69.7 202.2 63.4 202.2 s1 69.7 195.9 76.0 195.9 76.0 202.2 69.7 202.2 s1 76.0 195.9 82.4 195.9 82.4 202.2 76.0 202.2 s1 82.4 195.9 88.7 195.9 88.7 202.2 82.4 202.2 s1 88.7 195.9 95.0 195.9 95.0 202.2 88.7 202.2 s1 95.0 195.9 101.4 195.9 101.4 202.2 95.0 202.2 s1 101.4 195.9 107.7 195.9 107.7 202.2 101.4 202.2 s1 107.7 195.9 114.0 195.9 114.0 202.2 107.7 202.2 s1 114.0 195.9 120.4 195.9 120.4 202.2 114.0 202.2 s1 120.4 195.9 126.7 195.9 126.7 202.2 120.4 202.2 s1 126.7 195.9 133.1 195.9 133.1 202.2 126.7 202.2 s1 132.2 201.3 133.1 200.3 133.1 202.2 t2 132.2 201.3 133.1 200.3 p 131.6 202.2 132.2 201.3 133.1 202.2 t2 131.6 202.2 132.2 201.3 p 133.1 195.9 139.4 195.9 139.4 202.2 133.1 202.2 s1 136.8 195.9 134.9 197.7 136.2 199.0 139.4 195.9 s2 136.8 195.9 134.9 197.7 p 139.4 195.9 136.2 199.0 139.4 202.2 t2 139.4 202.2 136.2 199.0 133.1 202.2 t2 134.9 197.7 133.1 200.3 133.1 202.2 136.2 199.0 s2 134.9 197.7 133.1 200.3 p 139.4 195.9 145.7 195.9 145.7 202.2 139.4 202.2 s2 145.7 195.9 152.1 195.9 152.1 202.2 145.7 202.2 s2 151.6 201.7 152.1 201.4 152.1 202.2 t3 151.6 201.7 152.1 201.4 p 151.2 202.2 151.6 201.7 152.1 202.2 t3 151.2 202.2 151.6 201.7 p 152.1 195.9 158.4 195.9 158.4 202.2 152.1 202.2 s2 155.3 199.1 158.4 197.2 158.4 202.2 t3 155.3 199.1 158.4 197.2 p 155.3 199.1 154.8 199.5 152.1 202.2 158.4 202.2 s3 155.3 199.1 154.8 199.5 p 152.1 201.4 154.8 199.5 152.1 202.2 t3 152.1 201.4 154.8 199.5 p 158.4 195.9 164.7 195.9 164.7 202.2 158.4 202.2 s2 161.5 195.9 159.3 196.8 161.6 199.0 164.7 195.9 s3 161.5 195.9 159.3 196.8 p 164.7 195.9 161.6 199.0 164.7 202.2 t3 164.7 202.2 161.6 199.0 158.4 202.2 t3 159.3 196.8 158.4 197.2 158.4 202.2 161.6 199.0 s3 159.3 196.8 158.4 197.2 p 164.7 195.9 171.1 195.9 171.1 202.2 164.7 202.2 s3 171.1 195.9 177.4 195.9 177.4 202.2 171.1 202.2 s3 177.4 195.9 183.7 195.9 183.7 202.2 177.4 202.2 s3 183.7 195.9 190.1 195.9 190.1 202.2 183.7 202.2 s2 189.2 196.8 187.0 195.9 183.7 195.9 186.9 199.0 s3 189.2 196.8 187.0 195.9 p 190.1 197.2 189.2 196.8 186.9 199.0 190.1 202.2 s3 190.1 197.2 189.2 196.8 p 190.1 202.2 186.9 199.0 183.7 202.2 t3 183.7 202.2 186.9 199.0 183.7 195.9 t3 190.1 195.9 196.4 195.9 196.4 202.2 190.1 202.2 s2 193.7 199.5 196.4 201.4 196.4 202.2 t3 193.7 199.5 196.4 201.4 p 193.7 199.5 193.2 199.1 190.1 202.2 196.4 202.2 s3 193.7 199.5 193.2 199.1 p 190.1 197.2 193.2 199.1 190.1 202.2 t3 190.1 197.2 193.2 199.1 p 196.4 195.9 202.7 195.9 202.7 202.2 196.4 202.2 s2 196.9 201.7 197.3 202.2 196.4 202.2 t3 196.9 201.7 197.3 202.2 p 196.4 201.4 196.9 201.7 196.4 202.2 t3 196.4 201.4 196.9 201.7 p 202.7 195.9 209.1 195.9 209.1 202.2 202.7 202.2 s2 209.1 195.9 215.4 195.9 215.4 202.2 209.1 202.2 s1 213.5 197.7 211.7 195.9 209.1 195.9 212.3 199.0 s2 213.5 197.7 211.7 195.9 p 215.4 200.3 213.5 197.7 212.3 199.0 215.4 202.2 s2 215.4 200.3 213.5 197.7 p 215.4 202.2 212.3 199.0 209.1 202.2 t2 209.1 202.2 212.3 199.0 209.1 195.9 t2 215.4 195.9 221.8 195.9 221.8 202.2 215.4 202.2 s1 216.3 201.3 216.9 202.2 215.4 202.2 t2 216.3 201.3 216.9 202.2 p 215.4 200.3 216.3 201.3 215.4 202.2 t2 215.4 200.3 216.3 201.3 p 221.8 195.9 228.1 195.9 228.1 202.2 221.8 202.2 s1 228.1 195.9 234.4 195.9 234.4 202.2 228.1 202.2 s1 234.4 195.9 240.8 195.9 240.8 202.2 234.4 202.2 s1 240.8 195.9 247.1 195.9 247.1 202.2 240.8 202.2 s1 247.1 195.9 253.4 195.9 253.4 202.2 247.1 202.2 s1 253.4 195.9 259.8 195.9 259.8 202.2 253.4 202.2 s1 259.8 195.9 266.1 195.9 266.1 202.2 259.8 202.2 s1 266.1 195.9 272.4 195.9 272.4 202.2 266.1 202.2 s1 272.4 195.9 278.8 195.9 278.8 202.2 272.4 202.2 s1 278.8 195.9 285.1 195.9 285.1 202.2 278.8 202.2 s1 285.1 195.9 291.5 195.9 291.5 202.2 285.1 202.2 s1 291.5 195.9 297.8 195.9 297.8 202.2 291.5 202.2 s1 297.8 195.9 304.1 195.9 304.1 202.2 297.8 202.2 s1 304.1 195.9 310.5 195.9 310.5 202.2 304.1 202.2 s1 307.7 199.5 310.5 196.6 310.5 202.2 t2 307.7 199.5 310.5 196.6 p 305.8 202.2 307.7 199.5 310.5 202.2 t2 305.8 202.2 307.7 199.5 p 310.5 195.9 316.8 195.9 316.8 202.2 310.5 202.2 s1 311.1 195.9 310.8 196.2 313.6 199.0 316.8 195.9 s2 311.1 195.9 310.8 196.2 p 316.8 195.9 313.6 199.0 316.8 202.2 t2 316.8 202.2 313.6 199.0 310.5 202.2 t2 310.8 196.2 310.5 196.6 310.5 202.2 313.6 199.0 s2 310.8 196.2 310.5 196.6 p 316.8 195.9 323.1 195.9 323.1 202.2 316.8 202.2 s2 323.1 195.9 329.5 195.9 329.5 202.2 323.1 202.2 s2 327.6 200.3 329.5 199.1 329.5 202.2 t3 327.6 200.3 329.5 199.1 p 325.4 202.2 327.6 200.3 329.5 202.2 t3 325.4 202.2 327.6 200.3 p 329.5 195.9 335.8 195.9 335.8 202.2 329.5 202.2 s2 335.5 195.9 331.5 197.9 332.6 199.0 335.8 195.9 s3 335.5 195.9 331.5 197.9 p 335.8 195.9 332.6 199.0 335.8 202.2 t3 335.8 202.2 332.6 199.0 329.5 202.2 t3 331.5 197.9 329.5 199.1 329.5 202.2 332.6 199.0 s3 331.5 197.9 329.5 199.1 p 335.8 195.9 342.1 195.9 342.1 202.2 335.8 202.2 s3 342.1 195.9 348.5 195.9 348.5 202.2 342.1 202.2 s3 0.0 189.5 6.3 189.5 6.3 195.9 0.0 195.9 s2 3.9 193.5 6.3 193.7 6.3 195.9 t3 3.9 193.5 6.3 193.7 p 3.9 193.5 2.6 193.3 0.0 195.9 6.3 195.9 s3 3.9 193.5 2.6 193.3 p 0.0 193.1 2.6 193.3 0.0 195.9 t3 0.0 193.1 2.6 193.3 p 6.3 189.5 12.7 189.5 12.7 195.9 6.3 195.9 s2 12.4 195.6 12.7 195.7 12.7 195.9 t3 12.4 195.6 12.7 195.7 p 12.4 195.6 8.0 194.2 6.3 195.9 12.7 195.9 s3 12.4 195.6 8.0 194.2 p 6.3 193.7 8.0 194.2 6.3 195.9 t3 6.3 193.7 8.0 194.2 p 12.7 189.5 19.0 189.5 19.0 195.9 12.7 195.9 s2 12.8 195.8 13.0 195.9 12.7 195.9 t3 12.8 195.8 13.0 195.9 p 12.7 195.7 12.8 195.8 12.7 195.9 t3 12.7 195.7 12.8 195.8 p 19.0 189.5 25.3 189.5 25.3 195.9 19.0 195.9 s2 25.3 189.5 31.7 189.5 31.7 195.9 25.3 195.9 s1 31.4 189.8 31.1 189.5 25.3 189.5 28.5 192.7 s2 31.4 189.8 31.1 189.5 p 31.7 190.0 31.4 189.8 28.5 192.7 31.7 195.9 s2 31.7 190.0 31.4 189.8 p 31.7 195.9 28.5 192.7 25.3 195.9 t2 25.3 195.9 28.5 192.7 25.3 189.5 t2 31.7 189.5 38.0 189.5 38.0 195.9 31.7 195.9 s1 34.8 192.8 37.4 195.9 31.7 195.9 t2 34.8 192.8 37.4 195.9 p 31.7 190.0 34.8 192.8 31.7 195.9 t2 31.7 190.0 34.8 192.8 p 38.0 189.5 44.4 189.5 44.4 195.9 38.0 195.9 s1 44.4 189.5 50.7 189.5 50.7 195.9 44.4 195.9 s1 50.7 189.5 57.0 189.5 57.0 195.9 50.7 195.9 s1 57.0 189.5 63.4 189.5 63.4 195.9 57.0 195.9 s1 63.4 189.5 69.7 189.5 69.7 195.9 63.4 195.9 s1 69.7 189.5 76.0 189.5 76.0 195.9 69.7 195.9 s1 76.0 189.5 82.4 189.5 82.4 195.9 76.0 195.9 s1 82.4 189.5 88.7 189.5 88.7 195.9 82.4 195.9 s1 88.7 189.5 95.0 189.5 95.0 195.9 88.7 195.9 s1 95.0 189.5 101.4 189.5 101.4 195.9 95.0 195.9 s1 101.4 189.5 107.7 189.5 107.7 195.9 101.4 195.9 s1 107.7 189.5 114.0 189.5 114.0 195.9 107.7 195.9 s1 114.0 189.5 120.4 189.5 120.4 195.9 114.0 195.9 s1 120.4 189.5 126.7 189.5 126.7 195.9 120.4 195.9 s1 126.7 189.5 133.1 189.5 133.1 195.9 126.7 195.9 s1 133.1 189.5 139.4 189.5 139.4 195.9 133.1 195.9 s1 137.9 194.4 139.4 193.0 139.4 195.9 t2 137.9 194.4 139.4 193.0 p 136.8 195.9 137.9 194.4 139.4 195.9 t2 136.8 195.9 137.9 194.4 p 139.4 189.5 145.7 189.5 145.7 195.9 139.4 195.9 s1 143.1 189.5 141.0 191.2 142.6 192.7 145.7 189.5 s2 143.1 189.5 141.0 191.2 p 145.7 189.5 142.6 192.7 145.7 195.9 t2 145.7 195.9 142.6 192.7 139.4 195.9 t2 141.0 191.2 139.4 193.0 139.4 195.9 142.6 192.7 s2 141.0 191.2 139.4 193.0 p 145.7 189.5 152.1 189.5 152.1 195.9 145.7 195.9 s2 152.1 189.5 158.4 189.5 158.4 195.9 152.1 195.9 s2 158.4 189.5 164.7 189.5 164.7 195.9 158.4 195.9 s2 163.7 194.9 164.7 194.5 164.7 195.9 t3 163.7 194.9 164.7 194.5 p 161.5 195.9 163.7 194.9 164.7 195.9 t3 161.5 195.9 163.7 194.9 p 164.7 189.5 171.1 189.5 171.1 195.9 164.7 195.9 s2 168.8 193.6 171.1 193.2 171.1 195.9 t3 168.8 193.6 171.1 193.2 p 168.8 193.6 166.4 194.2 164.7 195.9 171.1 195.9 s3 168.8 193.6 166.4 194.2 p 164.7 194.5 166.4 194.2 164.7 195.9 t3 164.7 194.5 166.4 194.2 p 171.1 189.5 177.4 189.5 177.4 195.9 171.1 195.9 s2 174.7 193.2 177.4 193.2 177.4 195.9 t3 174.7 193.2 177.4 193.2 p 174.7 193.2 173.7 193.2 171.1 195.9 177.4 195.9 s3 174.7 193.2 173.7 193.2 p 171.1 193.2 173.7 193.2 171.1 195.9 t3 171.1 193.2 173.7 193.2 p 177.4 189.5 183.7 189.5 183.7 195.9 177.4 195.9 s2 182.0 194.2 183.7 194.5 183.7 195.9 t3 182.0 194.2 183.7 194.5 p 182.0 194.2 179.6 193.6 177.4 195.9 183.7 195.9 s3 182.0 194.2 179.6 193.6 p 177.4 193.2 179.6 193.6 177.4 195.9 t3 177.4 193.2 179.6 193.6 p 183.7 189.5 190.1 189.5 190.1 195.9 183.7 195.9 s2 184.7 194.9 187.0 195.9 183.7 195.9 t3 184.7 194.9 187.0 195.9 p 183.7 194.5 184.7 194.9 183.7 195.9 t3 183.7 194.5 184.7 194.9 p 190.1 189.5 196.4 189.5 196.4 195.9 190.1 195.9 s2 196.4 189.5 202.7 189.5 202.7 195.9 196.4 195.9 s2 202.7 189.5 209.1 189.5 209.1 195.9 202.7 195.9 s1 207.4 191.2 205.4 189.5 202.7 189.5 205.9 192.7 s2 207.4 191.2 205.4 189.5 p 209.1 193.0 207.4 191.2 205.9 192.7 209.1 195.9 s2 209.1 193.0 207.4 191.2 p 209.1 195.9 205.9 192.7 202.7 195.9 t2 202.7 195.9 205.9 192.7 202.7 189.5 t2 209.1 189.5 215.4 189.5 215.4 195.9 209.1 195.9 s1 210.6 194.4 211.7 195.9 209.1 195.9 t2 210.6 194.4 211.7 195.9 p 209.1 193.0 210.6 194.4 209.1 195.9 t2 209.1 193.0 210.6 194.4 p 215.4 189.5 221.8 189.5 221.8 195.9 215.4 195.9 s1 221.8 189.5 228.1 189.5 228.1 195.9 221.8 195.9 s1 228.1 189.5 234.4 189.5 234.4 195.9 228.1 195.9 s1 234.4 189.5 240.8 189.5 240.8 195.9 234.4 195.9 s1 240.8 189.5 247.1 189.5 247.1 195.9 240.8 195.9 s1 247.1 189.5 253.4 189.5 253.4 195.9 247.1 195.9 s1 253.4 189.5 259.8 189.5 259.8 195.9 253.4 195.9 s1 259.8 189.5 266.1 189.5 266.1 195.9 259.8 195.9 s1 266.1 189.5 272.4 189.5 272.4 195.9 266.1 195.9 s1 272.4 189.5 278.8 189.5 278.8 195.9 272.4 195.9 s1 278.8 189.5 285.1 189.5 285.1 195.9 278.8 195.9 s1 285.1 189.5 291.5 189.5 291.5 195.9 285.1 195.9 s1 291.5 189.5 297.8 189.5 297.8 195.9 291.5 195.9 s1 297.8 189.5 304.1 189.5 304.1 195.9 297.8 195.9 s1 304.1 189.5 310.5 189.5 310.5 195.9 304.1 195.9 s1 310.5 189.5 316.8 189.5 316.8 195.9 310.5 195.9 s1 313.7 192.8 316.8 190.0 316.8 195.9 t2 313.7 192.8 316.8 190.0 p 311.1 195.9 313.7 192.8 316.8 195.9 t2 311.1 195.9 313.7 192.8 p 316.8 189.5 323.1 189.5 323.1 195.9 316.8 195.9 s1 317.4 189.5 317.0 189.8 320.0 192.7 323.1 189.5 s2 317.4 189.5 317.0 189.8 p 323.1 189.5 320.0 192.7 323.1 195.9 t2 323.1 195.9 320.0 192.7 316.8 195.9 t2 317.0 189.8 316.8 190.0 316.8 195.9 320.0 192.7 s2 317.0 189.8 316.8 190.0 p 323.1 189.5 329.5 189.5 329.5 195.9 323.1 195.9 s2 329.5 189.5 335.8 189.5 335.8 195.9 329.5 195.9 s2 335.7 195.8 335.8 195.7 335.8 195.9 t3 335.7 195.8 335.8 195.7 p 335.5 195.9 335.7 195.8 335.8 195.9 t3 335.5 195.9 335.7 195.8 p 335.8 189.5 342.1 189.5 342.1 195.9 335.8 195.9 s2 340.4 194.2 342.1 193.7 342.1 195.9 t3 340.4 194.2 342.1 193.7 p 340.4 194.2 336.0 195.6 335.8 195.9 342.1 195.9 s3 340.4 194.2 336.0 195.6 p 335.8 195.7 336.0 195.6 335.8 195.9 t3 335.8 195.7 336.0 195.6 p 342.1 189.5 348.5 189.5 348.5 195.9 342.1 195.9 s2 345.9 193.3 348.5 193.1 348.5 195.9 t3 345.9 193.3 348.5 193.1 p 345.9 193.3 344.6 193.5 342.1 195.9 348.5 195.9 s3 345.9 193.3 344.6 193.5 p 342.1 193.7 344.6 193.5 342.1 195.9 t3 342.1 193.7 344.6 193.5 p 0.0 183.2 6.3 183.2 6.3 189.5 0.0 189.5 s2 6.3 183.2 12.7 183.2 12.7 189.5 6.3 189.5 s2 12.7 183.2 19.0 183.2 19.0 189.5 12.7 189.5 s2 19.0 183.2 25.3 183.2 25.3 189.5 19.0 189.5 s1 24.3 184.2 22.3 183.2 19.0 183.2 22.2 186.4 s2 24.3 184.2 22.3 183.2 p 25.3 184.9 24.3 184.2 22.2 186.4 25.3 189.5 s2 25.3 184.9 24.3 184.2 p 25.3 189.5 22.2 186.4 19.0 189.5 t2 19.0 189.5 22.2 186.4 19.0 183.2 t2 25.3 183.2 31.7 183.2 31.7 189.5 25.3 189.5 s1 28.1 186.8 31.1 189.5 25.3 189.5 t2 28.1 186.8 31.1 189.5 p 25.3 184.9 28.1 186.8 25.3 189.5 t2 25.3 184.9 28.1 186.8 p 31.7 183.2 38.0 183.2 38.0 189.5 31.7 189.5 s1 38.0 183.2 44.4 183.2 44.4 189.5 38.0 189.5 s1 44.4 183.2 50.7 183.2 50.7 189.5 44.4 189.5 s1 50.7 183.2 57.0 183.2 57.0 189.5 50.7 189.5 s1 57.0 183.2 63.4 183.2 63.4 189.5 57.0 189.5 s1 63.4 183.2 69.7 183.2 69.7 189.5 63.4 189.5 s1 69.7 183.2 76.0 183.2 76.0 189.5 69.7 189.5 s1 76.0 183.2 82.4 183.2 82.4 189.5 76.0 189.5 s1 82.4 183.2 88.7 183.2 88.7 189.5 82.4 189.5 s1 88.7 183.2 95.0 183.2 95.0 189.5 88.7 189.5 s1 95.0 183.2 101.4 183.2 101.4 189.5 95.0 189.5 s1 101.4 183.2 107.7 183.2 107.7 189.5 101.4 189.5 s1 107.7 183.2 114.0 183.2 114.0 189.5 107.7 189.5 s1 114.0 183.2 120.4 183.2 120.4 189.5 114.0 189.5 s1 120.4 183.2 126.7 183.2 126.7 189.5 120.4 189.5 s1 126.7 183.2 133.1 183.2 133.1 189.5 126.7 189.5 s1 133.1 183.2 139.4 183.2 139.4 189.5 133.1 189.5 s1 139.4 183.2 145.7 183.2 145.7 189.5 139.4 189.5 s1 144.4 188.2 145.7 187.2 145.7 189.5 t2 144.4 188.2 145.7 187.2 p 143.1 189.5 144.4 188.2 145.7 189.5 t2 143.1 189.5 144.4 188.2 p 145.7 183.2 152.1 183.2 152.1 189.5 145.7 189.5 s1 151.8 183.2 148.0 185.5 148.9 186.4 152.1 183.2 s2 151.8 183.2 148.0 185.5 p 152.1 183.2 148.9 186.4 152.1 189.5 t2 152.1 189.5 148.9 186.4 145.7 189.5 t2 148.0 185.5 145.7 187.2 145.7 189.5 148.9 186.4 s2 148.0 185.5 145.7 187.2 p 152.1 183.2 158.4 183.2 158.4 189.5 152.1 189.5 s2 158.4 183.2 164.7 183.2 164.7 189.5 158.4 189.5 s2 164.7 183.2 171.1 183.2 171.1 189.5 164.7 189.5 s2 171.1 183.2 177.4 183.2 177.4 189.5 171.1 189.5 s2 177.4 183.2 183.7 183.2 183.7 189.5 177.4 189.5 s2 183.7 183.2 190.1 183.2 190.1 189.5 183.7 189.5 s2 190.1 183.2 196.4 183.2 196.4 189.5 190.1 189.5 s2 196.4 183.2 202.7 183.2 202.7 189.5 196.4 189.5 s1 200.5 185.5 196.6 183.2 196.4 183.2 199.6 186.4 s2 200.5 185.5 196.6 183.2 p 202.7 187.2 200.5 185.5 199.6 186.4 202.7 189.5 s2 202.7 187.2 200.5 185.5 p 202.7 189.5 199.6 186.4 196.4 189.5 t2 196.4 189.5 199.6 186.4 196.4 183.2 t2 202.7 183.2 209.1 183.2 209.1 189.5 202.7 189.5 s1 204.1 188.2 205.4 189.5 202.7 189.5 t2 204.1 188.2 205.4 189.5 p 202.7 187.2 204.1 188.2 202.7 189.5 t2 202.7 187.2 204.1 188.2 p 209.1 183.2 215.4 183.2 215.4 189.5 209.1 189.5 s1 215.4 183.2 221.8 183.2 221.8 189.5 215.4 189.5 s1 221.8 183.2 228.1 183.2 228.1 189.5 221.8 189.5 s1 228.1 183.2 234.4 183.2 234.4 189.5 228.1 189.5 s1 234.4 183.2 240.8 183.2 240.8 189.5 234.4 189.5 s1 240.8 183.2 247.1 183.2 247.1 189.5 240.8 189.5 s1 247.1 183.2 253.4 183.2 253.4 189.5 247.1 189.5 s1 253.4 183.2 259.8 183.2 259.8 189.5 253.4 189.5 s1 259.8 183.2 266.1 183.2 266.1 189.5 259.8 189.5 s1 266.1 183.2 272.4 183.2 272.4 189.5 266.1 189.5 s1 272.4 183.2 278.8 183.2 278.8 189.5 272.4 189.5 s1 278.8 183.2 285.1 183.2 285.1 189.5 278.8 189.5 s1 285.1 183.2 291.5 183.2 291.5 189.5 285.1 189.5 s1 291.5 183.2 297.8 183.2 297.8 189.5 291.5 189.5 s1 297.8 183.2 304.1 183.2 304.1 189.5 297.8 189.5 s1 304.1 183.2 310.5 183.2 310.5 189.5 304.1 189.5 s1 310.5 183.2 316.8 183.2 316.8 189.5 310.5 189.5 s1 316.8 183.2 323.1 183.2 323.1 189.5 316.8 189.5 s1 320.4 186.8 323.1 184.9 323.1 189.5 t2 320.4 186.8 323.1 184.9 p 317.4 189.5 320.4 186.8 323.1 189.5 t2 317.4 189.5 320.4 186.8 p 323.1 183.2 329.5 183.2 329.5 189.5 323.1 189.5 s1 326.2 183.2 324.1 184.2 326.3 186.4 329.5 183.2 s2 326.2 183.2 324.1 184.2 p 329.5 183.2 326.3 186.4 329.5 189.5 t2 329.5 189.5 326.3 186.4 323.1 189.5 t2 324.1 184.2 323.1 184.9 323.1 189.5 326.3 186.4 s2 324.1 184.2 323.1 184.9 p 329.5 183.2 335.8 183.2 335.8 189.5 329.5 189.5 s2 335.8 183.2 342.1 183.2 342.1 189.5 335.8 189.5 s2 342.1 183.2 348.5 183.2 348.5 189.5 342.1 189.5 s2 0.0 176.9 6.3 176.9 6.3 183.2 0.0 183.2 s1 0.2 177.1 5.8 177.5 3.2 180.1 t2 0.2 177.1 5.8 177.5 p 6.3 177.5 5.8 177.5 3.2 180.1 6.3 183.2 s2 6.3 177.5 5.8 177.5 p 6.3 183.2 3.2 180.1 0.0 183.2 t2 0.2 177.1 0.0 177.1 0.0 183.2 3.2 180.1 s2 0.2 177.1 0.0 177.1 p 6.3 176.9 12.7 176.9 12.7 183.2 6.3 183.2 s1 7.1 177.7 11.1 178.5 9.5 180.1 t2 7.1 177.7 11.1 178.5 p 12.7 178.8 11.1 178.5 9.5 180.1 12.7 183.2 s2 12.7 178.8 11.1 178.5 p 12.7 183.2 9.5 180.1 6.3 183.2 t2 7.1 177.7 6.3 177.5 6.3 183.2 9.5 180.1 s2 7.1 177.7 6.3 177.5 p 12.7 176.9 19.0 176.9 19.0 183.2 12.7 183.2 s1 15.7 179.9 15.9 180.0 15.8 180.1 t2 15.7 179.9 15.9 180.0 p 19.0 181.3 15.9 180.0 15.8 180.1 19.0 183.2 s2 19.0 181.3 15.9 180.0 p 19.0 183.2 15.8 180.1 12.7 183.2 t2 15.7 179.9 12.7 178.8 12.7 183.2 15.8 180.1 s2 15.7 179.9 12.7 178.8 p 19.0 176.9 25.3 176.9 25.3 183.2 19.0 183.2 s1 20.3 181.9 22.3 183.2 19.0 183.2 t2 20.3 181.9 22.3 183.2 p 19.0 181.3 20.3 181.9 19.0 183.2 t2 19.0 181.3 20.3 181.9 p 25.3 176.9 31.7 176.9 31.7 183.2 25.3 183.2 s1 31.7 176.9 38.0 176.9 38.0 183.2 31.7 183.2 s1 38.0 176.9 44.4 176.9 44.4 183.2 38.0 183.2 s1 44.4 176.9 50.7 176.9 50.7 183.2 44.4 183.2 s1 50.7 176.9 57.0 176.9 57.0 183.2 50.7 183.2 s1 57.0 176.9 63.4 176.9 63.4 183.2 57.0 183.2 s1 63.4 176.9 69.7 176.9 69.7 183.2 63.4 183.2 s1 69.7 176.9 76.0 176.9 76.0 183.2 69.7 183.2 s1 76.0 176.9 82.4 176.9 82.4 183.2 76.0 183.2 s1 82.4 176.9 88.7 176.9 88.7 183.2 82.4 183.2 s1 88.7 176.9 95.0 176.9 95.0 183.2 88.7 183.2 s1 95.0 176.9 101.4 176.9 101.4 183.2 95.0 183.2 s1 101.4 176.9 107.7 176.9 107.7 183.2 101.4 183.2 s1 107.7 176.9 114.0 176.9 114.0 183.2 107.7 183.2 s1 114.0 176.9 120.4 176.9 120.4 183.2 114.0 183.2 s1 120.4 176.9 126.7 176.9 126.7 183.2 120.4 183.2 s1 126.7 176.9 133.1 176.9 133.1 183.2 126.7 183.2 s1 133.1 176.9 139.4 176.9 139.4 183.2 133.1 183.2 s1 139.4 176.9 145.7 176.9 145.7 183.2 139.4 183.2 s1 145.7 176.9 152.1 176.9 152.1 183.2 145.7 183.2 s1 152.0 183.1 152.1 183.1 152.1 183.2 t2 152.0 183.1 152.1 183.1 p 151.8 183.2 152.0 183.1 152.1 183.2 t2 151.8 183.2 152.0 183.1 p 152.1 176.9 158.4 176.9 158.4 183.2 152.1 183.2 s1 156.1 180.9 158.4 179.9 158.4 183.2 t2 156.1 180.9 158.4 179.9 p 156.1 180.9 152.4 182.9 152.1 183.2 158.4 183.2 s2 156.1 180.9 152.4 182.9 p 152.1 183.1 152.4 182.9 152.1 183.2 t2 152.1 183.1 152.4 182.9 p 158.4 176.9 164.7 176.9 164.7 183.2 158.4 183.2 s1 160.6 179.1 163.1 178.5 161.6 180.1 t2 160.6 179.1 163.1 178.5 p 164.7 178.1 163.1 178.5 161.6 180.1 164.7 183.2 s2 164.7 178.1 163.1 178.5 p 164.7 183.2 161.6 180.1 158.4 183.2 t2 160.6 179.1 158.4 179.9 158.4 183.2 161.6 180.1 s2 160.6 179.1 158.4 179.9 p 164.7 176.9 171.1 176.9 171.1 183.2 164.7 183.2 s1 165.7 177.9 170.7 177.3 167.9 180.1 t2 165.7 177.9 170.7 177.3 p 171.1 177.2 170.7 177.3 167.9 180.1 171.1 183.2 s2 171.1 177.2 170.7 177.3 p 171.1 183.2 167.9 180.1 164.7 183.2 t2 165.7 177.9 164.7 178.1 164.7 183.2 167.9 180.1 s2 165.7 177.9 164.7 178.1 p 171.1 176.9 177.4 176.9 177.4 183.2 171.1 183.2 s1 171.4 177.2 177.1 177.2 174.2 180.1 t2 171.4 177.2 177.1 177.2 p 177.4 177.2 177.1 177.2 174.2 180.1 177.4 183.2 s2 177.4 177.2 177.1 177.2 p 177.4 183.2 174.2 180.1 171.1 183.2 t2 171.4 177.2 171.1 177.2 171.1 183.2 174.2 180.1 s2 171.4 177.2 171.1 177.2 p 177.4 176.9 183.7 176.9 183.7 183.2 177.4 183.2 s1 177.8 177.3 182.8 177.9 180.6 180.1 t2 177.8 177.3 182.8 177.9 p 183.7 178.1 182.8 177.9 180.6 180.1 183.7 183.2 s2 183.7 178.1 182.8 177.9 p 183.7 183.2 180.6 180.1 177.4 183.2 t2 177.8 177.3 177.4 177.2 177.4 183.2 180.6 180.1 s2 177.8 177.3 177.4 177.2 p 183.7 176.9 190.1 176.9 190.1 183.2 183.7 183.2 s1 185.4 178.5 187.8 179.1 186.9 180.1 t2 185.4 178.5 187.8 179.1 p 190.1 179.9 187.8 179.1 186.9 180.1 190.1 183.2 s2 190.1 179.9 187.8 179.1 p 190.1 183.2 186.9 180.1 183.7 183.2 t2 185.4 178.5 183.7 178.1 183.7 183.2 186.9 180.1 s2 185.4 178.5 183.7 178.1 p 190.1 176.9 196.4 176.9 196.4 183.2 190.1 183.2 s1 196.1 182.9 196.4 183.1 196.4 183.2 t2 196.1 182.9 196.4 183.1 p 196.1 182.9 192.4 180.9 190.1 183.2 196.4 183.2 s2 196.1 182.9 192.4 180.9 p 190.1 179.9 192.4 180.9 190.1 183.2 t2 190.1 179.9 192.4 180.9 p 196.4 176.9 202.7 176.9 202.7 183.2 196.4 183.2 s1 196.5 183.1 196.6 183.2 196.4 183.2 t2 196.5 183.1 196.6 183.2 p 196.4 183.1 196.5 183.1 196.4 183.2 t2 196.4 183.1 196.5 183.1 p 202.7 176.9 209.1 176.9 209.1 183.2 202.7 183.2 s1 209.1 176.9 215.4 176.9 215.4 183.2 209.1 183.2 s1 215.4 176.9 221.8 176.9 221.8 183.2 215.4 183.2 s1 221.8 176.9 228.1 176.9 228.1 183.2 221.8 183.2 s1 228.1 176.9 234.4 176.9 234.4 183.2 228.1 183.2 s1 234.4 176.9 240.8 176.9 240.8 183.2 234.4 183.2 s1 240.8 176.9 247.1 176.9 247.1 183.2 240.8 183.2 s1 247.1 176.9 253.4 176.9 253.4 183.2 247.1 183.2 s1 253.4 176.9 259.8 176.9 259.8 183.2 253.4 183.2 s1 259.8 176.9 266.1 176.9 266.1 183.2 259.8 183.2 s1 266.1 176.9 272.4 176.9 272.4 183.2 266.1 183.2 s1 272.4 176.9 278.8 176.9 278.8 183.2 272.4 183.2 s1 278.8 176.9 285.1 176.9 285.1 183.2 278.8 183.2 s1 285.1 176.9 291.5 176.9 291.5 183.2 285.1 183.2 s1 291.5 176.9 297.8 176.9 297.8 183.2 291.5 183.2 s1 297.8 176.9 304.1 176.9 304.1 183.2 297.8 183.2 s1 304.1 176.9 310.5 176.9 310.5 183.2 304.1 183.2 s1 310.5 176.9 316.8 176.9 316.8 183.2 310.5 183.2 s1 316.8 176.9 323.1 176.9 323.1 183.2 316.8 183.2 s1 323.1 176.9 329.5 176.9 329.5 183.2 323.1 183.2 s1 328.2 181.9 329.5 181.3 329.5 183.2 t2 328.2 181.9 329.5 181.3 p 326.2 183.2 328.2 181.9 329.5 183.2 t2 326.2 183.2 328.2 181.9 p 329.5 176.9 335.8 176.9 335.8 183.2 329.5 183.2 s1 332.6 180.0 332.8 179.9 332.6 180.1 t2 332.6 180.0 332.8 179.9 p 335.8 178.8 332.8 179.9 332.6 180.1 335.8 183.2 s2 335.8 178.8 332.8 179.9 p 335.8 183.2 332.6 180.1 329.5 183.2 t2 332.6 180.0 329.5 181.3 329.5 183.2 332.6 180.1 s2 332.6 180.0 329.5 181.3 p 335.8 176.9 342.1 176.9 342.1 183.2 335.8 183.2 s1 337.4 178.5 341.3 177.7 339.0 180.1 t2 337.4 178.5 341.3 177.7 p 342.1 177.5 341.3 177.7 339.0 180.1 342.1 183.2 s2 342.1 177.5 341.3 177.7 p 342.1 183.2 339.0 180.1 335.8 183.2 t2 337.4 178.5 335.8 178.8 335.8 183.2 339.0 180.1 s2 337.4 178.5 335.8 178.8 p 342.1 176.9 348.5 176.9 348.5 183.2 342.1 183.2 s1 342.7 177.5 348.2 177.1 345.3 180.1 t2 342.7 177.5 348.2 177.1 p 348.5 177.1 348.2 177.1 345.3 180.1 348.5 183.2 s2 348.5 177.1 348.2 177.1 p 348.5 183.2 345.3 180.1 342.1 183.2 t2 342.7 177.5 342.1 177.5 342.1 183.2 345.3 180.1 s2 342.7 177.5 342.1 177.5 p 0.0 170.6 6.3 170.6 6.3 176.9 0.0 176.9 s1 6.3 170.6 12.7 170.6 12.7 176.9 6.3 176.9 s1 12.7 170.6 19.0 170.6 19.0 176.9 12.7 176.9 s1 19.0 170.6 25.3 170.6 25.3 176.9 19.0 176.9 s1 25.3 170.6 31.7 170.6 31.7 176.9 25.3 176.9 s1 31.7 170.6 38.0 170.6 38.0 176.9 31.7 176.9 s1 38.0 170.6 44.4 170.6 44.4 176.9 38.0 176.9 s1 44.4 170.6 50.7 170.6 50.7 176.9 44.4 176.9 s1 50.7 170.6 57.0 170.6 57.0 176.9 50.7 176.9 s1 57.0 170.6 63.4 170.6 63.4 176.9 57.0 176.9 s1 63.4 170.6 69.7 170.6 69.7 176.9 63.4 176.9 s1 69.7 170.6 76.0 170.6 76.0 176.9 69.7 176.9 s1 76.0 170.6 82.4 170.6 82.4 176.9 76.0 176.9 s1 82.4 170.6 88.7 170.6 88.7 176.9 82.4 176.9 s1 88.7 170.6 95.0 170.6 95.0 176.9 88.7 176.9 s1 95.0 170.6 101.4 170.6 101.4 176.9 95.0 176.9 s1 101.4 170.6 107.7 170.6 107.7 176.9 101.4 176.9 s1 107.7 170.6 114.0 170.6 114.0 176.9 107.7 176.9 s1 114.0 170.6 120.4 170.6 120.4 176.9 114.0 176.9 s1 120.4 170.6 126.7 170.6 126.7 176.9 120.4 176.9 s1 126.7 170.6 133.1 170.6 133.1 176.9 126.7 176.9 s1 133.1 170.6 139.4 170.6 139.4 176.9 133.1 176.9 s1 139.4 170.6 145.7 170.6 145.7 176.9 139.4 176.9 s1 145.7 170.6 152.1 170.6 152.1 176.9 145.7 176.9 s1 152.1 170.6 158.4 170.6 158.4 176.9 152.1 176.9 s1 158.4 170.6 164.7 170.6 164.7 176.9 158.4 176.9 s1 164.7 170.6 171.1 170.6 171.1 176.9 164.7 176.9 s1 171.1 170.6 177.4 170.6 177.4 176.9 171.1 176.9 s1 177.4 170.6 183.7 170.6 183.7 176.9 177.4 176.9 s1 183.7 170.6 190.1 170.6 190.1 176.9 183.7 176.9 s1 190.1 170.6 196.4 170.6 196.4 176.9 190.1 176.9 s1 196.4 170.6 202.7 170.6 202.7 176.9 196.4 176.9 s1 202.7 170.6 209.1 170.6 209.1 176.9 202.7 176.9 s1 209.1 170.6 215.4 170.6 215.4 176.9 209.1 176.9 s1 215.4 170.6 221.8 170.6 221.8 176.9 215.4 176.9 s1 221.8 170.6 228.1 170.6 228.1 176.9 221.8 176.9 s1 228.1 170.6 234.4 170.6 234.4 176.9 228.1 176.9 s1 234.4 170.6 240.8 170.6 240.8 176.9 234.4 176.9 s1 240.8 170.6 247.1 170.6 247.1 176.9 240.8 176.9 s1 247.1 170.6 253.4 170.6 253.4 176.9 247.1 176.9 s1 253.4 170.6 259.8 170.6 259.8 176.9 253.4 176.9 s1 259.8 170.6 266.1 170.6 266.1 176.9 259.8 176.9 s1 266.1 170.6 272.4 170.6 272.4 176.9 266.1 176.9 s1 272.4 170.6 278.8 170.6 278.8 176.9 272.4 176.9 s1 278.8 170.6 285.1 170.6 285.1 176.9 278.8 176.9 s1 285.1 170.6 291.5 170.6 291.5 176.9 285.1 176.9 s1 291.5 170.6 297.8 170.6 297.8 176.9 291.5 176.9 s1 297.8 170.6 304.1 170.6 304.1 176.9 297.8 176.9 s1 304.1 170.6 310.5 170.6 310.5 176.9 304.1 176.9 s1 310.5 170.6 316.8 170.6 316.8 176.9 310.5 176.9 s1 316.8 170.6 323.1 170.6 323.1 176.9 316.8 176.9 s1 323.1 170.6 329.5 170.6 329.5 176.9 323.1 176.9 s1 329.5 170.6 335.8 170.6 335.8 176.9 329.5 176.9 s1 335.8 170.6 342.1 170.6 342.1 176.9 335.8 176.9 s1 342.1 170.6 348.5 170.6 348.5 176.9 342.1 176.9 s1 0.0 164.3 6.3 164.3 6.3 170.6 0.0 170.6 s1 6.3 164.3 12.7 164.3 12.7 170.6 6.3 170.6 s1 12.7 164.3 19.0 164.3 19.0 170.6 12.7 170.6 s1 19.0 164.3 25.3 164.3 25.3 170.6 19.0 170.6 s1 25.3 164.3 31.7 164.3 31.7 170.6 25.3 170.6 s1 31.7 164.3 38.0 164.3 38.0 170.6 31.7 170.6 s1 38.0 164.3 44.4 164.3 44.4 170.6 38.0 170.6 s1 44.4 164.3 50.7 164.3 50.7 170.6 44.4 170.6 s1 50.7 164.3 57.0 164.3 57.0 170.6 50.7 170.6 s1 57.0 164.3 63.4 164.3 63.4 170.6 57.0 170.6 s1 63.4 164.3 69.7 164.3 69.7 170.6 63.4 170.6 s1 69.7 164.3 76.0 164.3 76.0 170.6 69.7 170.6 s1 76.0 164.3 82.4 164.3 82.4 170.6 76.0 170.6 s1 82.4 164.3 88.7 164.3 88.7 170.6 82.4 170.6 s1 88.7 164.3 95.0 164.3 95.0 170.6 88.7 170.6 s1 95.0 164.3 101.4 164.3 101.4 170.6 95.0 170.6 s1 101.4 164.3 107.7 164.3 107.7 170.6 101.4 170.6 s1 107.7 164.3 114.0 164.3 114.0 170.6 107.7 170.6 s1 114.0 164.3 120.4 164.3 120.4 170.6 114.0 170.6 s1 120.4 164.3 126.7 164.3 126.7 170.6 120.4 170.6 s1 126.7 164.3 133.1 164.3 133.1 170.6 126.7 170.6 s1 133.1 164.3 139.4 164.3 139.4 170.6 133.1 170.6 s1 139.4 164.3 145.7 164.3 145.7 170.6 139.4 170.6 s1 145.7 164.3 152.1 164.3 152.1 170.6 145.7 170.6 s1 152.1 164.3 158.4 164.3 158.4 170.6 152.1 170.6 s1 158.4 164.3 164.7 164.3 164.7 170.6 158.4 170.6 s1 164.7 164.3 171.1 164.3 171.1 170.6 164.7 170.6 s1 171.1 164.3 177.4 164.3 177.4 170.6 171.1 170.6 s1 177.4 164.3 183.7 164.3 183.7 170.6 177.4 170.6 s1 183.7 164.3 190.1 164.3 190.1 170.6 183.7 170.6 s1 190.1 164.3 196.4 164.3 196.4 170.6 190.1 170.6 s1 196.4 164.3 202.7 164.3 202.7 170.6 196.4 170.6 s1 202.7 164.3 209.1 164.3 209.1 170.6 202.7 170.6 s1 209.1 164.3 215.4 164.3 215.4 170.6 209.1 170.6 s1 215.4 164.3 221.8 164.3 221.8 170.6 215.4 170.6 s1 221.8 164.3 228.1 164.3 228.1 170.6 221.8 170.6 s1 228.1 164.3 234.4 164.3 234.4 170.6 228.1 170.6 s1 234.4 164.3 240.8 164.3 240.8 170.6 234.4 170.6 s1 240.8 164.3 247.1 164.3 247.1 170.6 240.8 170.6 s1 247.1 164.3 253.4 164.3 253.4 170.6 247.1 170.6 s1 253.4 164.3 259.8 164.3 259.8 170.6 253.4 170.6 s1 259.8 164.3 266.1 164.3 266.1 170.6 259.8 170.6 s1 266.1 164.3 272.4 164.3 272.4 170.6 266.1 170.6 s1 272.4 164.3 278.8 164.3 278.8 170.6 272.4 170.6 s1 278.8 164.3 285.1 164.3 285.1 170.6 278.8 170.6 s1 285.1 164.3 291.5 164.3 291.5 170.6 285.1 170.6 s1 291.5 164.3 297.8 164.3 297.8 170.6 291.5 170.6 s1 297.8 164.3 304.1 164.3 304.1 170.6 297.8 170.6 s1 304.1 164.3 310.5 164.3 310.5 170.6 304.1 170.6 s1 310.5 164.3 316.8 164.3 316.8 170.6 310.5 170.6 s1 316.8 164.3 323.1 164.3 323.1 170.6 316.8 170.6 s1 323.1 164.3 329.5 164.3 329.5 170.6 323.1 170.6 s1 329.5 164.3 335.8 164.3 335.8 170.6 329.5 170.6 s1 335.8 164.3 342.1 164.3 342.1 170.6 335.8 170.6 s1 342.1 164.3 348.5 164.3 348.5 170.6 342.1 170.6 s1 0.0 158.0 6.3 158.0 6.3 164.3 0.0 164.3 s1 6.3 158.0 12.7 158.0 12.7 164.3 6.3 164.3 s1 12.7 158.0 19.0 158.0 19.0 164.3 12.7 164.3 s1 19.0 158.0 25.3 158.0 25.3 164.3 19.0 164.3 s1 25.3 158.0 31.7 158.0 31.7 164.3 25.3 164.3 s1 31.7 158.0 38.0 158.0 38.0 164.3 31.7 164.3 s1 38.0 158.0 44.4 158.0 44.4 164.3 38.0 164.3 s1 44.4 158.0 50.7 158.0 50.7 164.3 44.4 164.3 s1 50.7 158.0 57.0 158.0 57.0 164.3 50.7 164.3 s1 57.0 158.0 63.4 158.0 63.4 164.3 57.0 164.3 s1 63.4 158.0 69.7 158.0 69.7 164.3 63.4 164.3 s1 69.7 158.0 76.0 158.0 76.0 164.3 69.7 164.3 s1 76.0 158.0 82.4 158.0 82.4 164.3 76.0 164.3 s1 82.4 158.0 88.7 158.0 88.7 164.3 82.4 164.3 s1 88.7 158.0 95.0 158.0 95.0 164.3 88.7 164.3 s1 95.0 158.0 101.4 158.0 101.4 164.3 95.0 164.3 s1 101.4 158.0 107.7 158.0 107.7 164.3 101.4 164.3 s1 107.7 158.0 114.0 158.0 114.0 164.3 107.7 164.3 s1 114.0 158.0 120.4 158.0 120.4 164.3 114.0 164.3 s1 120.4 158.0 126.7 158.0 126.7 164.3 120.4 164.3 s1 126.7 158.0 133.1 158.0 133.1 164.3 126.7 164.3 s1 133.1 158.0 139.4 158.0 139.4 164.3 133.1 164.3 s1 139.4 158.0 145.7 158.0 145.7 164.3 139.4 164.3 s1 145.7 158.0 152.1 158.0 152.1 164.3 145.7 164.3 s1 152.1 158.0 158.4 158.0 158.4 164.3 152.1 164.3 s1 158.4 158.0 164.7 158.0 164.7 164.3 158.4 164.3 s1 164.7 158.0 171.1 158.0 171.1 164.3 164.7 164.3 s1 171.1 158.0 177.4 158.0 177.4 164.3 171.1 164.3 s1 177.4 158.0 183.7 158.0 183.7 164.3 177.4 164.3 s1 183.7 158.0 190.1 158.0 190.1 164.3 183.7 164.3 s1 190.1 158.0 196.4 158.0 196.4 164.3 190.1 164.3 s1 196.4 158.0 202.7 158.0 202.7 164.3 196.4 164.3 s1 202.7 158.0 209.1 158.0 209.1 164.3 202.7 164.3 s1 209.1 158.0 215.4 158.0 215.4 164.3 209.1 164.3 s1 215.4 158.0 221.8 158.0 221.8 164.3 215.4 164.3 s1 221.8 158.0 228.1 158.0 228.1 164.3 221.8 164.3 s1 228.1 158.0 234.4 158.0 234.4 164.3 228.1 164.3 s1 234.4 158.0 240.8 158.0 240.8 164.3 234.4 164.3 s1 240.8 158.0 247.1 158.0 247.1 164.3 240.8 164.3 s1 247.1 158.0 253.4 158.0 253.4 164.3 247.1 164.3 s1 253.4 158.0 259.8 158.0 259.8 164.3 253.4 164.3 s1 259.8 158.0 266.1 158.0 266.1 164.3 259.8 164.3 s1 266.1 158.0 272.4 158.0 272.4 164.3 266.1 164.3 s1 272.4 158.0 278.8 158.0 278.8 164.3 272.4 164.3 s1 278.8 158.0 285.1 158.0 285.1 164.3 278.8 164.3 s1 285.1 158.0 291.5 158.0 291.5 164.3 285.1 164.3 s1 291.5 158.0 297.8 158.0 297.8 164.3 291.5 164.3 s1 297.8 158.0 304.1 158.0 304.1 164.3 297.8 164.3 s1 304.1 158.0 310.5 158.0 310.5 164.3 304.1 164.3 s1 310.5 158.0 316.8 158.0 316.8 164.3 310.5 164.3 s1 316.8 158.0 323.1 158.0 323.1 164.3 316.8 164.3 s1 323.1 158.0 329.5 158.0 329.5 164.3 323.1 164.3 s1 329.5 158.0 335.8 158.0 335.8 164.3 329.5 164.3 s1 335.8 158.0 342.1 158.0 342.1 164.3 335.8 164.3 s1 342.1 158.0 348.5 158.0 348.5 164.3 342.1 164.3 s1 0.0 151.6 6.3 151.6 6.3 158.0 0.0 158.0 s1 6.3 151.6 12.7 151.6 12.7 158.0 6.3 158.0 s1 12.7 151.6 19.0 151.6 19.0 158.0 12.7 158.0 s1 19.0 151.6 25.3 151.6 25.3 158.0 19.0 158.0 s1 25.3 151.6 31.7 151.6 31.7 158.0 25.3 158.0 s1 31.7 151.6 38.0 151.6 38.0 158.0 31.7 158.0 s1 38.0 151.6 44.4 151.6 44.4 158.0 38.0 158.0 s1 44.4 151.6 50.7 151.6 50.7 158.0 44.4 158.0 s1 50.7 151.6 57.0 151.6 57.0 158.0 50.7 158.0 s1 57.0 151.6 63.4 151.6 63.4 158.0 57.0 158.0 s1 63.4 151.6 69.7 151.6 69.7 158.0 63.4 158.0 s1 69.7 151.6 76.0 151.6 76.0 158.0 69.7 158.0 s1 76.0 151.6 82.4 151.6 82.4 158.0 76.0 158.0 s1 82.4 151.6 88.7 151.6 88.7 158.0 82.4 158.0 s1 88.7 151.6 95.0 151.6 95.0 158.0 88.7 158.0 s1 95.0 151.6 101.4 151.6 101.4 158.0 95.0 158.0 s1 101.4 151.6 107.7 151.6 107.7 158.0 101.4 158.0 s1 107.7 151.6 114.0 151.6 114.0 158.0 107.7 158.0 s1 114.0 151.6 120.4 151.6 120.4 158.0 114.0 158.0 s1 120.4 151.6 126.7 151.6 126.7 158.0 120.4 158.0 s1 126.7 151.6 133.1 151.6 133.1 158.0 126.7 158.0 s1 133.1 151.6 139.4 151.6 139.4 158.0 133.1 158.0 s1 139.4 151.6 145.7 151.6 145.7 158.0 139.4 158.0 s1 145.7 151.6 152.1 151.6 152.1 158.0 145.7 158.0 s1 152.1 151.6 158.4 151.6 158.4 158.0 152.1 158.0 s1 158.4 151.6 164.7 151.6 164.7 158.0 158.4 158.0 s1 164.7 151.6 171.1 151.6 171.1 158.0 164.7 158.0 s1 171.1 151.6 177.4 151.6 177.4 158.0 171.1 158.0 s1 177.4 151.6 183.7 151.6 183.7 158.0 177.4 158.0 s1 183.7 151.6 190.1 151.6 190.1 158.0 183.7 158.0 s1 190.1 151.6 196.4 151.6 196.4 158.0 190.1 158.0 s1 196.4 151.6 202.7 151.6 202.7 158.0 196.4 158.0 s1 202.7 151.6 209.1 151.6 209.1 158.0 202.7 158.0 s1 209.1 151.6 215.4 151.6 215.4 158.0 209.1 158.0 s1 215.4 151.6 221.8 151.6 221.8 158.0 215.4 158.0 s1 221.8 151.6 228.1 151.6 228.1 158.0 221.8 158.0 s1 228.1 151.6 234.4 151.6 234.4 158.0 228.1 158.0 s1 234.4 151.6 240.8 151.6 240.8 158.0 234.4 158.0 s1 240.8 151.6 247.1 151.6 247.1 158.0 240.8 158.0 s1 247.1 151.6 253.4 151.6 253.4 158.0 247.1 158.0 s1 253.4 151.6 259.8 151.6 259.8 158.0 253.4 158.0 s1 259.8 151.6 266.1 151.6 266.1 158.0 259.8 158.0 s1 266.1 151.6 272.4 151.6 272.4 158.0 266.1 158.0 s1 272.4 151.6 278.8 151.6 278.8 158.0 272.4 158.0 s1 278.8 151.6 285.1 151.6 285.1 158.0 278.8 158.0 s1 285.1 151.6 291.5 151.6 291.5 158.0 285.1 158.0 s1 291.5 151.6 297.8 151.6 297.8 158.0 291.5 158.0 s1 297.8 151.6 304.1 151.6 304.1 158.0 297.8 158.0 s1 304.1 151.6 310.5 151.6 310.5 158.0 304.1 158.0 s1 310.5 151.6 316.8 151.6 316.8 158.0 310.5 158.0 s1 316.8 151.6 323.1 151.6 323.1 158.0 316.8 158.0 s1 323.1 151.6 329.5 151.6 329.5 158.0 323.1 158.0 s1 329.5 151.6 335.8 151.6 335.8 158.0 329.5 158.0 s1 335.8 151.6 342.1 151.6 342.1 158.0 335.8 158.0 s1 342.1 151.6 348.5 151.6 348.5 158.0 342.1 158.0 s1 0.0 145.3 6.3 145.3 6.3 151.6 0.0 151.6 s1 6.3 145.3 12.7 145.3 12.7 151.6 6.3 151.6 s1 12.7 145.3 19.0 145.3 19.0 151.6 12.7 151.6 s1 19.0 145.3 25.3 145.3 25.3 151.6 19.0 151.6 s1 25.3 145.3 31.7 145.3 31.7 151.6 25.3 151.6 s1 31.7 145.3 38.0 145.3 38.0 151.6 31.7 151.6 s1 38.0 145.3 44.4 145.3 44.4 151.6 38.0 151.6 s1 44.4 145.3 50.7 145.3 50.7 151.6 44.4 151.6 s1 50.7 145.3 57.0 145.3 57.0 151.6 50.7 151.6 s1 57.0 145.3 63.4 145.3 63.4 151.6 57.0 151.6 s1 63.4 145.3 69.7 145.3 69.7 151.6 63.4 151.6 s1 69.7 145.3 76.0 145.3 76.0 151.6 69.7 151.6 s1 76.0 145.3 82.4 145.3 82.4 151.6 76.0 151.6 s1 82.4 145.3 88.7 145.3 88.7 151.6 82.4 151.6 s1 88.7 145.3 95.0 145.3 95.0 151.6 88.7 151.6 s1 95.0 145.3 101.4 145.3 101.4 151.6 95.0 151.6 s1 101.4 145.3 107.7 145.3 107.7 151.6 101.4 151.6 s1 107.7 145.3 114.0 145.3 114.0 151.6 107.7 151.6 s1 114.0 145.3 120.4 145.3 120.4 151.6 114.0 151.6 s1 120.4 145.3 126.7 145.3 126.7 151.6 120.4 151.6 s1 126.7 145.3 133.1 145.3 133.1 151.6 126.7 151.6 s1 133.1 145.3 139.4 145.3 139.4 151.6 133.1 151.6 s1 139.4 145.3 145.7 145.3 145.7 151.6 139.4 151.6 s1 145.7 145.3 152.1 145.3 152.1 151.6 145.7 151.6 s1 152.1 145.3 158.4 145.3 158.4 151.6 152.1 151.6 s1 158.4 145.3 164.7 145.3 164.7 151.6 158.4 151.6 s1 164.7 145.3 171.1 145.3 171.1 151.6 164.7 151.6 s1 171.1 145.3 177.4 145.3 177.4 151.6 171.1 151.6 s1 177.4 145.3 183.7 145.3 183.7 151.6 177.4 151.6 s1 183.7 145.3 190.1 145.3 190.1 151.6 183.7 151.6 s1 190.1 145.3 196.4 145.3 196.4 151.6 190.1 151.6 s1 196.4 145.3 202.7 145.3 202.7 151.6 196.4 151.6 s1 202.7 145.3 209.1 145.3 209.1 151.6 202.7 151.6 s1 209.1 145.3 215.4 145.3 215.4 151.6 209.1 151.6 s1 215.4 145.3 221.8 145.3 221.8 151.6 215.4 151.6 s1 221.8 145.3 228.1 145.3 228.1 151.6 221.8 151.6 s1 228.1 145.3 234.4 145.3 234.4 151.6 228.1 151.6 s1 234.4 145.3 240.8 145.3 240.8 151.6 234.4 151.6 s1 240.8 145.3 247.1 145.3 247.1 151.6 240.8 151.6 s1 247.1 145.3 253.4 145.3 253.4 151.6 247.1 151.6 s1 253.4 145.3 259.8 145.3 259.8 151.6 253.4 151.6 s1 259.8 145.3 266.1 145.3 266.1 151.6 259.8 151.6 s1 266.1 145.3 272.4 145.3 272.4 151.6 266.1 151.6 s1 272.4 145.3 278.8 145.3 278.8 151.6 272.4 151.6 s1 278.8 145.3 285.1 145.3 285.1 151.6 278.8 151.6 s1 285.1 145.3 291.5 145.3 291.5 151.6 285.1 151.6 s1 291.5 145.3 297.8 145.3 297.8 151.6 291.5 151.6 s1 297.8 145.3 304.1 145.3 304.1 151.6 297.8 151.6 s1 304.1 145.3 310.5 145.3 310.5 151.6 304.1 151.6 s1 310.5 145.3 316.8 145.3 316.8 151.6 310.5 151.6 s1 316.8 145.3 323.1 145.3 323.1 151.6 316.8 151.6 s1 323.1 145.3 329.5 145.3 329.5 151.6 323.1 151.6 s1 329.5 145.3 335.8 145.3 335.8 151.6 329.5 151.6 s1 335.8 145.3 342.1 145.3 342.1 151.6 335.8 151.6 s1 342.1 145.3 348.5 145.3 348.5 151.6 342.1 151.6 s1 0.0 139.0 6.3 139.0 6.3 145.3 0.0 145.3 s1 6.3 139.0 12.7 139.0 12.7 145.3 6.3 145.3 s1 12.7 139.0 19.0 139.0 19.0 145.3 12.7 145.3 s1 19.0 139.0 25.3 139.0 25.3 145.3 19.0 145.3 s1 25.3 139.0 31.7 139.0 31.7 145.3 25.3 145.3 s1 31.7 139.0 38.0 139.0 38.0 145.3 31.7 145.3 s1 38.0 139.0 44.4 139.0 44.4 145.3 38.0 145.3 s1 44.4 139.0 50.7 139.0 50.7 145.3 44.4 145.3 s1 50.7 139.0 57.0 139.0 57.0 145.3 50.7 145.3 s1 57.0 139.0 63.4 139.0 63.4 145.3 57.0 145.3 s1 63.4 139.0 69.7 139.0 69.7 145.3 63.4 145.3 s1 69.7 139.0 76.0 139.0 76.0 145.3 69.7 145.3 s1 76.0 139.0 82.4 139.0 82.4 145.3 76.0 145.3 s1 82.4 139.0 88.7 139.0 88.7 145.3 82.4 145.3 s1 88.7 139.0 95.0 139.0 95.0 145.3 88.7 145.3 s1 95.0 139.0 101.4 139.0 101.4 145.3 95.0 145.3 s1 101.4 139.0 107.7 139.0 107.7 145.3 101.4 145.3 s1 107.7 139.0 114.0 139.0 114.0 145.3 107.7 145.3 s1 114.0 139.0 120.4 139.0 120.4 145.3 114.0 145.3 s1 120.4 139.0 126.7 139.0 126.7 145.3 120.4 145.3 s1 126.7 139.0 133.1 139.0 133.1 145.3 126.7 145.3 s1 133.1 139.0 139.4 139.0 139.4 145.3 133.1 145.3 s1 139.4 139.0 145.7 139.0 145.7 145.3 139.4 145.3 s1 145.7 139.0 152.1 139.0 152.1 145.3 145.7 145.3 s1 152.1 139.0 158.4 139.0 158.4 145.3 152.1 145.3 s1 158.4 139.0 164.7 139.0 164.7 145.3 158.4 145.3 s1 164.7 139.0 171.1 139.0 171.1 145.3 164.7 145.3 s1 171.1 139.0 177.4 139.0 177.4 145.3 171.1 145.3 s1 177.4 139.0 183.7 139.0 183.7 145.3 177.4 145.3 s1 183.7 139.0 190.1 139.0 190.1 145.3 183.7 145.3 s1 190.1 139.0 196.4 139.0 196.4 145.3 190.1 145.3 s1 196.4 139.0 202.7 139.0 202.7 145.3 196.4 145.3 s1 202.7 139.0 209.1 139.0 209.1 145.3 202.7 145.3 s1 209.1 139.0 215.4 139.0 215.4 145.3 209.1 145.3 s1 215.4 139.0 221.8 139.0 221.8 145.3 215.4 145.3 s1 221.8 139.0 228.1 139.0 228.1 145.3 221.8 145.3 s1 228.1 139.0 234.4 139.0 234.4 145.3 228.1 145.3 s1 234.4 139.0 240.8 139.0 240.8 145.3 234.4 145.3 s1 240.8 139.0 247.1 139.0 247.1 145.3 240.8 145.3 s1 247.1 139.0 253.4 139.0 253.4 145.3 247.1 145.3 s1 253.4 139.0 259.8 139.0 259.8 145.3 253.4 145.3 s1 259.8 139.0 266.1 139.0 266.1 145.3 259.8 145.3 s1 266.1 139.0 272.4 139.0 272.4 145.3 266.1 145.3 s1 272.4 139.0 278.8 139.0 278.8 145.3 272.4 145.3 s1 278.8 139.0 285.1 139.0 285.1 145.3 278.8 145.3 s1 285.1 139.0 291.5 139.0 291.5 145.3 285.1 145.3 s1 291.5 139.0 297.8 139.0 297.8 145.3 291.5 145.3 s1 297.8 139.0 304.1 139.0 304.1 145.3 297.8 145.3 s1 304.1 139.0 310.5 139.0 310.5 145.3 304.1 145.3 s1 310.5 139.0 316.8 139.0 316.8 145.3 310.5 145.3 s1 316.8 139.0 323.1 139.0 323.1 145.3 316.8 145.3 s1 323.1 139.0 329.5 139.0 329.5 145.3 323.1 145.3 s1 329.5 139.0 335.8 139.0 335.8 145.3 329.5 145.3 s1 335.8 139.0 342.1 139.0 342.1 145.3 335.8 145.3 s1 342.1 139.0 348.5 139.0 348.5 145.3 342.1 145.3 s1 0.0 132.7 6.3 132.7 6.3 139.0 0.0 139.0 s1 6.3 132.7 12.7 132.7 12.7 139.0 6.3 139.0 s1 12.7 132.7 19.0 132.7 19.0 139.0 12.7 139.0 s1 19.0 132.7 25.3 132.7 25.3 139.0 19.0 139.0 s1 25.3 132.7 31.7 132.7 31.7 139.0 25.3 139.0 s1 31.7 132.7 38.0 132.7 38.0 139.0 31.7 139.0 s1 38.0 132.7 44.4 132.7 44.4 139.0 38.0 139.0 s1 44.4 132.7 50.7 132.7 50.7 139.0 44.4 139.0 s1 50.7 132.7 57.0 132.7 57.0 139.0 50.7 139.0 s1 57.0 132.7 63.4 132.7 63.4 139.0 57.0 139.0 s1 63.4 132.7 69.7 132.7 69.7 139.0 63.4 139.0 s1 69.7 132.7 76.0 132.7 76.0 139.0 69.7 139.0 s1 76.0 132.7 82.4 132.7 82.4 139.0 76.0 139.0 s1 82.4 132.7 88.7 132.7 88.7 139.0 82.4 139.0 s1 88.7 132.7 95.0 132.7 95.0 139.0 88.7 139.0 s1 95.0 132.7 101.4 132.7 101.4 139.0 95.0 139.0 s1 101.4 132.7 107.7 132.7 107.7 139.0 101.4 139.0 s1 107.7 132.7 114.0 132.7 114.0 139.0 107.7 139.0 s1 114.0 132.7 120.4 132.7 120.4 139.0 114.0 139.0 s1 120.4 132.7 126.7 132.7 126.7 139.0 120.4 139.0 s1 126.7 132.7 133.1 132.7 133.1 139.0 126.7 139.0 s1 133.1 132.7 139.4 132.7 139.4 139.0 133.1 139.0 s1 139.4 132.7 145.7 132.7 145.7 139.0 139.4 139.0 s1 145.7 132.7 152.1 132.7 152.1 139.0 145.7 139.0 s1 152.1 132.7 158.4 132.7 158.4 139.0 152.1 139.0 s1 158.4 132.7 164.7 132.7 164.7 139.0 158.4 139.0 s1 164.7 132.7 171.1 132.7 171.1 139.0 164.7 139.0 s1 171.1 132.7 177.4 132.7 177.4 139.0 171.1 139.0 s1 177.4 132.7 183.7 132.7 183.7 139.0 177.4 139.0 s1 183.7 132.7 190.1 132.7 190.1 139.0 183.7 139.0 s1 190.1 132.7 196.4 132.7 196.4 139.0 190.1 139.0 s1 196.4 132.7 202.7 132.7 202.7 139.0 196.4 139.0 s1 202.7 132.7 209.1 132.7 209.1 139.0 202.7 139.0 s1 209.1 132.7 215.4 132.7 215.4 139.0 209.1 139.0 s1 215.4 132.7 221.8 132.7 221.8 139.0 215.4 139.0 s1 221.8 132.7 228.1 132.7 228.1 139.0 221.8 139.0 s1 228.1 132.7 234.4 132.7 234.4 139.0 228.1 139.0 s1 234.4 132.7 240.8 132.7 240.8 139.0 234.4 139.0 s1 240.8 132.7 247.1 132.7 247.1 139.0 240.8 139.0 s1 247.1 132.7 253.4 132.7 253.4 139.0 247.1 139.0 s1 253.4 132.7 259.8 132.7 259.8 139.0 253.4 139.0 s1 259.8 132.7 266.1 132.7 266.1 139.0 259.8 139.0 s1 266.1 132.7 272.4 132.7 272.4 139.0 266.1 139.0 s1 272.4 132.7 278.8 132.7 278.8 139.0 272.4 139.0 s1 278.8 132.7 285.1 132.7 285.1 139.0 278.8 139.0 s1 285.1 132.7 291.5 132.7 291.5 139.0 285.1 139.0 s1 291.5 132.7 297.8 132.7 297.8 139.0 291.5 139.0 s1 297.8 132.7 304.1 132.7 304.1 139.0 297.8 139.0 s1 304.1 132.7 310.5 132.7 310.5 139.0 304.1 139.0 s1 310.5 132.7 316.8 132.7 316.8 139.0 310.5 139.0 s1 316.8 132.7 323.1 132.7 323.1 139.0 316.8 139.0 s1 323.1 132.7 329.5 132.7 329.5 139.0 323.1 139.0 s1 329.5 132.7 335.8 132.7 335.8 139.0 329.5 139.0 s1 335.8 132.7 342.1 132.7 342.1 139.0 335.8 139.0 s1 342.1 132.7 348.5 132.7 348.5 139.0 342.1 139.0 s1 0.0 126.4 6.3 126.4 6.3 132.7 0.0 132.7 s1 6.3 126.4 12.7 126.4 12.7 132.7 6.3 132.7 s1 12.7 126.4 19.0 126.4 19.0 132.7 12.7 132.7 s1 19.0 126.4 25.3 126.4 25.3 132.7 19.0 132.7 s1 25.3 126.4 31.7 126.4 31.7 132.7 25.3 132.7 s1 31.7 126.4 38.0 126.4 38.0 132.7 31.7 132.7 s1 38.0 126.4 44.4 126.4 44.4 132.7 38.0 132.7 s1 44.4 126.4 50.7 126.4 50.7 132.7 44.4 132.7 s1 50.7 126.4 57.0 126.4 57.0 132.7 50.7 132.7 s1 57.0 126.4 63.4 126.4 63.4 132.7 57.0 132.7 s1 63.4 126.4 69.7 126.4 69.7 132.7 63.4 132.7 s1 69.0 127.1 67.8 126.4 69.7 126.4 t2 69.0 127.1 67.8 126.4 p 69.7 127.4 69.0 127.1 69.7 126.4 t2 69.7 127.4 69.0 127.1 p 69.7 126.4 76.0 126.4 76.0 132.7 69.7 132.7 s1 71.3 128.0 73.5 128.9 76.0 126.4 69.7 126.4 s2 71.3 128.0 73.5 128.9 p 76.0 129.7 73.5 128.9 76.0 126.4 t2 76.0 129.7 73.5 128.9 p 71.3 128.0 69.7 127.4 69.7 126.4 t2 71.3 128.0 69.7 127.4 p 76.0 126.4 82.4 126.4 82.4 132.7 76.0 132.7 s1 76.0 126.4 79.2 129.5 82.4 126.4 t2 80.0 130.4 82.4 130.8 82.4 126.4 79.2 129.5 s2 80.0 130.4 82.4 130.8 p 80.0 130.4 78.6 130.1 79.2 129.5 t2 80.0 130.4 78.6 130.1 p 76.0 129.7 78.6 130.1 79.2 129.5 76.0 126.4 s2 76.0 129.7 78.6 130.1 p 82.4 126.4 88.7 126.4 88.7 132.7 82.4 132.7 s1 82.4 126.4 85.5 129.5 88.7 126.4 t2 87.0 130.9 88.7 131.0 88.7 126.4 85.5 129.5 s2 87.0 130.9 88.7 131.0 p 87.0 130.9 84.2 130.9 85.5 129.5 t2 87.0 130.9 84.2 130.9 p 82.4 130.8 84.2 130.9 85.5 129.5 82.4 126.4 s2 82.4 130.8 84.2 130.9 p 88.7 126.4 95.0 126.4 95.0 132.7 88.7 132.7 s1 88.7 126.4 91.9 129.5 95.0 126.4 t2 92.9 130.6 95.0 130.3 95.0 126.4 91.9 129.5 s2 92.9 130.6 95.0 130.3 p 92.9 130.6 90.6 130.8 91.9 129.5 t2 92.9 130.6 90.6 130.8 p 88.7 131.0 90.6 130.8 91.9 129.5 88.7 126.4 s2 88.7 131.0 90.6 130.8 p 95.0 126.4 101.4 126.4 101.4 132.7 95.0 132.7 s1 95.0 126.4 98.2 129.5 101.4 126.4 t2 98.2 129.6 101.4 128.7 101.4 126.4 98.2 129.5 s2 98.2 129.6 101.4 128.7 p 98.2 129.6 98.2 129.6 98.2 129.5 t2 98.2 129.6 98.2 129.6 p 95.0 130.3 98.2 129.6 98.2 129.5 95.0 126.4 s2 95.0 130.3 98.2 129.6 p 101.4 126.4 107.7 126.4 107.7 132.7 101.4 132.7 s1 106.4 126.4 103.0 128.0 101.4 126.4 t2 106.4 126.4 103.0 128.0 p 103.0 128.0 101.4 128.7 101.4 126.4 t2 103.0 128.0 101.4 128.7 p 107.7 126.4 114.0 126.4 114.0 132.7 107.7 132.7 s1 114.0 126.4 120.4 126.4 120.4 132.7 114.0 132.7 s1 120.4 126.4 126.7 126.4 126.7 132.7 120.4 132.7 s1 126.7 126.4 133.1 126.4 133.1 132.7 126.7 132.7 s1 133.1 126.4 139.4 126.4 139.4 132.7 133.1 132.7 s1 139.4 126.4 145.7 126.4 145.7 132.7 139.4 132.7 s1 145.7 126.4 152.1 126.4 152.1 132.7 145.7 132.7 s1 152.1 126.4 158.4 126.4 158.4 132.7 152.1 132.7 s1 158.4 126.4 164.7 126.4 164.7 132.7 158.4 132.7 s1 164.7 126.4 171.1 126.4 171.1 132.7 164.7 132.7 s1 171.1 126.4 177.4 126.4 177.4 132.7 171.1 132.7 s1 177.4 126.4 183.7 126.4 183.7 132.7 177.4 132.7 s1 183.7 126.4 190.1 126.4 190.1 132.7 183.7 132.7 s1 190.1 126.4 196.4 126.4 196.4 132.7 190.1 132.7 s1 196.4 126.4 202.7 126.4 202.7 132.7 196.4 132.7 s1 202.7 126.4 209.1 126.4 209.1 132.7 202.7 132.7 s1 209.1 126.4 215.4 126.4 215.4 132.7 209.1 132.7 s1 215.4 126.4 221.8 126.4 221.8 132.7 215.4 132.7 s1 221.8 126.4 228.1 126.4 228.1 132.7 221.8 132.7 s1 228.1 126.4 234.4 126.4 234.4 132.7 228.1 132.7 s1 234.4 126.4 240.8 126.4 240.8 132.7 234.4 132.7 s1 240.8 126.4 247.1 126.4 247.1 132.7 240.8 132.7 s1 245.4 128.0 242.0 126.4 247.1 126.4 t2 245.4 128.0 242.0 126.4 p 247.1 128.7 245.4 128.0 247.1 126.4 t2 247.1 128.7 245.4 128.0 p 247.1 126.4 253.4 126.4 253.4 132.7 247.1 132.7 s1 247.1 126.4 250.3 129.5 253.4 126.4 t2 250.3 129.6 253.4 130.3 253.4 126.4 250.3 129.5 s2 250.3 129.6 253.4 130.3 p 250.3 129.6 250.2 129.6 250.3 129.5 t2 250.3 129.6 250.2 129.6 p 247.1 128.7 250.2 129.6 250.3 129.5 247.1 126.4 s2 247.1 128.7 250.2 129.6 p 253.4 126.4 259.8 126.4 259.8 132.7 253.4 132.7 s1 253.4 126.4 256.6 129.5 259.8 126.4 t2 257.9 130.8 259.8 131.0 259.8 126.4 256.6 129.5 s2 257.9 130.8 259.8 131.0 p 257.9 130.8 255.5 130.6 256.6 129.5 t2 257.9 130.8 255.5 130.6 p 253.4 130.3 255.5 130.6 256.6 129.5 253.4 126.4 s2 253.4 130.3 255.5 130.6 p 259.8 126.4 266.1 126.4 266.1 132.7 259.8 132.7 s1 259.8 126.4 262.9 129.5 266.1 126.4 t2 264.3 130.9 266.1 130.8 266.1 126.4 262.9 129.5 s2 264.3 130.9 266.1 130.8 p 264.3 130.9 261.5 130.9 262.9 129.5 t2 264.3 130.9 261.5 130.9 p 259.8 131.0 261.5 130.9 262.9 129.5 259.8 126.4 s2 259.8 131.0 261.5 130.9 p 266.1 126.4 272.4 126.4 272.4 132.7 266.1 132.7 s1 266.1 126.4 269.3 129.5 272.4 126.4 t2 269.9 130.1 272.4 129.7 272.4 126.4 269.3 129.5 s2 269.9 130.1 272.4 129.7 p 269.9 130.1 268.4 130.4 269.3 129.5 t2 269.9 130.1 268.4 130.4 p 266.1 130.8 268.4 130.4 269.3 129.5 266.1 126.4 s2 266.1 130.8 268.4 130.4 p 272.4 126.4 278.8 126.4 278.8 132.7 272.4 132.7 s1 274.9 128.9 277.2 128.0 278.8 126.4 272.4 126.4 s2 274.9 128.9 277.2 128.0 p 278.8 127.4 277.2 128.0 278.8 126.4 t2 278.8 127.4 277.2 128.0 p 274.9 128.9 272.4 129.7 272.4 126.4 t2 274.9 128.9 272.4 129.7 p 278.8 126.4 285.1 126.4 285.1 132.7 278.8 132.7 s1 280.7 126.4 279.5 127.1 278.8 126.4 t2 280.7 126.4 279.5 127.1 p 279.5 127.1 278.8 127.4 278.8 126.4 t2 279.5 127.1 278.8 127.4 p 285.1 126.4 291.5 126.4 291.5 132.7 285.1 132.7 s1 291.5 126.4 297.8 126.4 297.8 132.7 291.5 132.7 s1 297.8 126.4 304.1 126.4 304.1 132.7 297.8 132.7 s1 304.1 126.4 310.5 126.4 310.5 132.7 304.1 132.7 s1 310.5 126.4 316.8 126.4 316.8 132.7 310.5 132.7 s1 316.8 126.4 323.1 126.4 323.1 132.7 316.8 132.7 s1 323.1 126.4 329.5 126.4 329.5 132.7 323.1 132.7 s1 329.5 126.4 335.8 126.4 335.8 132.7 329.5 132.7 s1 335.8 126.4 342.1 126.4 342.1 132.7 335.8 132.7 s1 342.1 126.4 348.5 126.4 348.5 132.7 342.1 132.7 s1 0.0 120.0 6.3 120.0 6.3 126.4 0.0 126.4 s1 6.3 120.0 12.7 120.0 12.7 126.4 6.3 126.4 s1 12.7 120.0 19.0 120.0 19.0 126.4 12.7 126.4 s1 19.0 120.0 25.3 120.0 25.3 126.4 19.0 126.4 s1 25.3 120.0 31.7 120.0 31.7 126.4 25.3 126.4 s1 31.7 120.0 38.0 120.0 38.0 126.4 31.7 126.4 s1 38.0 120.0 44.4 120.0 44.4 126.4 38.0 126.4 s1 44.4 120.0 50.7 120.0 50.7 126.4 44.4 126.4 s1 50.7 120.0 57.0 120.0 57.0 126.4 50.7 126.4 s1 57.0 120.0 63.4 120.0 63.4 126.4 57.0 126.4 s1 60.9 122.5 57.9 120.0 63.4 120.0 t2 60.9 122.5 57.9 120.0 p 63.4 124.1 60.9 122.5 63.4 120.0 t2 63.4 124.1 60.9 122.5 p 63.4 120.0 69.7 120.0 69.7 126.4 63.4 126.4 s1 63.4 120.0 66.5 123.2 69.7 120.0 t2 69.7 120.0 66.5 123.2 69.7 126.4 t2 64.7 125.0 67.8 126.4 69.7 126.4 66.5 123.2 s2 64.7 125.0 67.8 126.4 p 63.4 124.1 64.7 125.0 66.5 123.2 63.4 120.0 s2 63.4 124.1 64.7 125.0 p 69.7 120.0 76.0 120.0 76.0 126.4 69.7 126.4 s2 76.0 120.0 82.4 120.0 82.4 126.4 76.0 126.4 s2 82.4 120.0 88.7 120.0 88.7 126.4 82.4 126.4 s2 88.7 120.0 95.0 120.0 95.0 126.4 88.7 126.4 s2 95.0 120.0 101.4 120.0 101.4 126.4 95.0 126.4 s2 101.4 120.0 107.7 120.0 107.7 126.4 101.4 126.4 s1 101.4 120.0 104.5 123.2 107.7 120.0 t2 107.4 126.0 107.7 125.8 107.7 120.0 104.5 123.2 s2 107.4 126.0 107.7 125.8 p 106.4 126.4 107.4 126.0 104.5 123.2 101.4 126.4 s2 106.4 126.4 107.4 126.0 p 101.4 126.4 104.5 123.2 101.4 120.0 t2 107.7 120.0 114.0 120.0 114.0 126.4 107.7 126.4 s1 107.7 120.0 110.9 123.2 114.0 120.0 t2 111.5 123.8 114.0 122.0 114.0 120.0 110.9 123.2 s2 111.5 123.8 114.0 122.0 p 111.5 123.8 109.0 125.1 110.9 123.2 t2 111.5 123.8 109.0 125.1 p 107.7 125.8 109.0 125.1 110.9 123.2 107.7 120.0 s2 107.7 125.8 109.0 125.1 p 114.0 120.0 120.4 120.0 120.4 126.4 114.0 126.4 s1 116.4 120.0 115.2 121.2 114.0 120.0 t2 116.4 120.0 115.2 121.2 p 115.2 121.2 114.0 122.0 114.0 120.0 t2 115.2 121.2 114.0 122.0 p 120.4 120.0 126.7 120.0 126.7 126.4 120.4 126.4 s1 126.7 120.0 133.1 120.0 133.1 126.4 126.7 126.4 s1 133.1 120.0 139.4 120.0 139.4 126.4 133.1 126.4 s1 139.4 120.0 145.7 120.0 145.7 126.4 139.4 126.4 s1 145.7 120.0 152.1 120.0 152.1 126.4 145.7 126.4 s1 152.1 120.0 158.4 120.0 158.4 126.4 152.1 126.4 s1 158.4 120.0 164.7 120.0 164.7 126.4 158.4 126.4 s1 164.7 120.0 171.1 120.0 171.1 126.4 164.7 126.4 s1 171.1 120.0 177.4 120.0 177.4 126.4 171.1 126.4 s1 177.4 120.0 183.7 120.0 183.7 126.4 177.4 126.4 s1 183.7 120.0 190.1 120.0 190.1 126.4 183.7 126.4 s1 190.1 120.0 196.4 120.0 196.4 126.4 190.1 126.4 s1 196.4 120.0 202.7 120.0 202.7 126.4 196.4 126.4 s1 202.7 120.0 209.1 120.0 209.1 126.4 202.7 126.4 s1 209.1 120.0 215.4 120.0 215.4 126.4 209.1 126.4 s1 215.4 120.0 221.8 120.0 221.8 126.4 215.4 126.4 s1 221.8 120.0 228.1 120.0 228.1 126.4 221.8 126.4 s1 228.1 120.0 234.4 120.0 234.4 126.4 228.1 126.4 s1 233.3 121.2 232.1 120.0 234.4 120.0 t2 233.3 121.2 232.1 120.0 p 234.4 122.0 233.3 121.2 234.4 120.0 t2 234.4 122.0 233.3 121.2 p 234.4 120.0 240.8 120.0 240.8 126.4 234.4 126.4 s1 234.4 120.0 237.6 123.2 240.8 120.0 t2 239.5 125.1 240.8 125.8 240.8 120.0 237.6 123.2 s2 239.5 125.1 240.8 125.8 p 239.5 125.1 237.0 123.8 237.6 123.2 t2 239.5 125.1 237.0 123.8 p 234.4 122.0 237.0 123.8 237.6 123.2 234.4 120.0 s2 234.4 122.0 237.0 123.8 p 240.8 120.0 247.1 120.0 247.1 126.4 240.8 126.4 s1 240.8 120.0 243.9 123.2 247.1 120.0 t2 247.1 120.0 243.9 123.2 247.1 126.4 t2 241.1 126.0 242.0 126.4 247.1 126.4 243.9 123.2 s2 241.1 126.0 242.0 126.4 p 240.8 125.8 241.1 126.0 243.9 123.2 240.8 120.0 s2 240.8 125.8 241.1 126.0 p 247.1 120.0 253.4 120.0 253.4 126.4 247.1 126.4 s2 253.4 120.0 259.8 120.0 259.8 126.4 253.4 126.4 s2 259.8 120.0 266.1 120.0 266.1 126.4 259.8 126.4 s2 266.1 120.0 272.4 120.0 272.4 126.4 266.1 126.4 s2 272.4 120.0 278.8 120.0 278.8 126.4 272.4 126.4 s2 278.8 120.0 285.1 120.0 285.1 126.4 278.8 126.4 s1 278.8 120.0 281.9 123.2 285.1 120.0 t2 283.7 125.0 285.1 124.1 285.1 120.0 281.9 123.2 s2 283.7 125.0 285.1 124.1 p 280.7 126.4 283.7 125.0 281.9 123.2 278.8 126.4 s2 280.7 126.4 283.7 125.0 p 278.8 126.4 281.9 123.2 278.8 120.0 t2 285.1 120.0 291.5 120.0 291.5 126.4 285.1 126.4 s1 290.6 120.0 287.6 122.5 285.1 120.0 t2 290.6 120.0 287.6 122.5 p 287.6 122.5 285.1 124.1 285.1 120.0 t2 287.6 122.5 285.1 124.1 p 291.5 120.0 297.8 120.0 297.8 126.4 291.5 126.4 s1 297.8 120.0 304.1 120.0 304.1 126.4 297.8 126.4 s1 304.1 120.0 310.5 120.0 310.5 126.4 304.1 126.4 s1 310.5 120.0 316.8 120.0 316.8 126.4 310.5 126.4 s1 316.8 120.0 323.1 120.0 323.1 126.4 316.8 126.4 s1 323.1 120.0 329.5 120.0 329.5 126.4 323.1 126.4 s1 329.5 120.0 335.8 120.0 335.8 126.4 329.5 126.4 s1 335.8 120.0 342.1 120.0 342.1 126.4 335.8 126.4 s1 342.1 120.0 348.5 120.0 348.5 126.4 342.1 126.4 s1 0.0 113.7 6.3 113.7 6.3 120.0 0.0 120.0 s1 6.3 113.7 12.7 113.7 12.7 120.0 6.3 120.0 s1 12.7 113.7 19.0 113.7 19.0 120.0 12.7 120.0 s1 19.0 113.7 25.3 113.7 25.3 120.0 19.0 120.0 s1 25.3 113.7 31.7 113.7 31.7 120.0 25.3 120.0 s1 31.7 113.7 38.0 113.7 38.0 120.0 31.7 120.0 s1 38.0 113.7 44.4 113.7 44.4 120.0 38.0 120.0 s1 44.4 113.7 50.7 113.7 50.7 120.0 44.4 120.0 s1 50.7 113.7 57.0 113.7 57.0 120.0 50.7 120.0 s1 53.9 116.8 51.2 113.7 57.0 113.7 t2 53.9 116.8 51.2 113.7 p 57.0 119.4 53.9 116.8 57.0 113.7 t2 57.0 119.4 53.9 116.8 p 57.0 113.7 63.4 113.7 63.4 120.0 57.0 120.0 s1 57.0 113.7 60.2 116.9 63.4 113.7 t2 63.4 113.7 60.2 116.9 63.4 120.0 t2 57.4 119.7 57.9 120.0 63.4 120.0 60.2 116.9 s2 57.4 119.7 57.9 120.0 p 57.0 119.4 57.4 119.7 60.2 116.9 57.0 113.7 s2 57.0 119.4 57.4 119.7 p 63.4 113.7 69.7 113.7 69.7 120.0 63.4 120.0 s2 69.7 113.7 76.0 113.7 76.0 120.0 69.7 120.0 s2 76.0 113.7 82.4 113.7 82.4 120.0 76.0 120.0 s2 81.7 114.4 79.3 113.7 82.4 113.7 t3 81.7 114.4 79.3 113.7 p 82.4 114.5 81.7 114.4 82.4 113.7 t3 82.4 114.5 81.7 114.4 p 82.4 113.7 88.7 113.7 88.7 120.0 82.4 120.0 s2 83.2 114.6 87.6 114.8 88.7 113.7 82.4 113.7 s3 83.2 114.6 87.6 114.8 p 88.7 114.9 87.6 114.8 88.7 113.7 t3 88.7 114.9 87.6 114.8 p 83.2 114.6 82.4 114.5 82.4 113.7 t3 83.2 114.6 82.4 114.5 p 88.7 113.7 95.0 113.7 95.0 120.0 88.7 120.0 s2 89.7 114.7 94.9 113.9 95.0 113.7 88.7 113.7 s3 89.7 114.7 94.9 113.9 p 95.0 113.9 94.9 113.9 95.0 113.7 t3 95.0 113.9 94.9 113.9 p 89.7 114.7 88.7 114.9 88.7 113.7 t3 89.7 114.7 88.7 114.9 p 95.0 113.7 101.4 113.7 101.4 120.0 95.0 120.0 s2 95.4 113.7 95.1 113.8 95.0 113.7 t3 95.4 113.7 95.1 113.8 p 95.1 113.8 95.0 113.9 95.0 113.7 t3 95.1 113.8 95.0 113.9 p 101.4 113.7 107.7 113.7 107.7 120.0 101.4 120.0 s2 107.7 113.7 114.0 113.7 114.0 120.0 107.7 120.0 s2 114.0 113.7 120.4 113.7 120.4 120.0 114.0 120.0 s1 114.0 113.7 117.2 116.9 120.4 113.7 t2 118.7 118.3 120.4 116.6 120.4 113.7 117.2 116.9 s2 118.7 118.3 120.4 116.6 p 116.4 120.0 118.7 118.3 117.2 116.9 114.0 120.0 s2 116.4 120.0 118.7 118.3 p 114.0 120.0 117.2 116.9 114.0 113.7 t2 120.4 113.7 126.7 113.7 126.7 120.0 120.4 120.0 s1 123.2 113.7 121.9 115.2 120.4 113.7 t2 123.2 113.7 121.9 115.2 p 121.9 115.2 120.4 116.6 120.4 113.7 t2 121.9 115.2 120.4 116.6 p 126.7 113.7 133.1 113.7 133.1 120.0 126.7 120.0 s1 133.1 113.7 139.4 113.7 139.4 120.0 133.1 120.0 s1 139.4 113.7 145.7 113.7 145.7 120.0 139.4 120.0 s1 145.7 113.7 152.1 113.7 152.1 120.0 145.7 120.0 s1 152.1 113.7 158.4 113.7 158.4 120.0 152.1 120.0 s1 158.4 113.7 164.7 113.7 164.7 120.0 158.4 120.0 s1 164.7 113.7 171.1 113.7 171.1 120.0 164.7 120.0 s1 171.1 113.7 177.4 113.7 177.4 120.0 171.1 120.0 s1 177.4 113.7 183.7 113.7 183.7 120.0 177.4 120.0 s1 183.7 113.7 190.1 113.7 190.1 120.0 183.7 120.0 s1 190.1 113.7 196.4 113.7 196.4 120.0 190.1 120.0 s1 196.4 113.7 202.7 113.7 202.7 120.0 196.4 120.0 s1 202.7 113.7 209.1 113.7 209.1 120.0 202.7 120.0 s1 209.1 113.7 215.4 113.7 215.4 120.0 209.1 120.0 s1 215.4 113.7 221.8 113.7 221.8 120.0 215.4 120.0 s1 221.8 113.7 228.1 113.7 228.1 120.0 221.8 120.0 s1 226.6 115.2 225.3 113.7 228.1 113.7 t2 226.6 115.2 225.3 113.7 p 228.1 116.6 226.6 115.2 228.1 113.7 t2 228.1 116.6 226.6 115.2 p 228.1 113.7 234.4 113.7 234.4 120.0 228.1 120.0 s1 228.1 113.7 231.3 116.9 234.4 113.7 t2 234.4 113.7 231.3 116.9 234.4 120.0 t2 229.8 118.3 232.1 120.0 234.4 120.0 231.3 116.9 s2 229.8 118.3 232.1 120.0 p 228.1 116.6 229.8 118.3 231.3 116.9 228.1 113.7 s2 228.1 116.6 229.8 118.3 p 234.4 113.7 240.8 113.7 240.8 120.0 234.4 120.0 s2 240.8 113.7 247.1 113.7 247.1 120.0 240.8 120.0 s2 247.1 113.7 253.4 113.7 253.4 120.0 247.1 120.0 s2 253.3 113.8 253.1 113.7 253.4 113.7 t3 253.3 113.8 253.1 113.7 p 253.4 113.9 253.3 113.8 253.4 113.7 t3 253.4 113.9 253.3 113.8 p 253.4 113.7 259.8 113.7 259.8 120.0 253.4 120.0 s2 253.6 113.9 258.8 114.7 259.8 113.7 253.4 113.7 s3 253.6 113.9 258.8 114.7 p 259.8 114.9 258.8 114.7 259.8 113.7 t3 259.8 114.9 258.8 114.7 p 253.6 113.9 253.4 113.9 253.4 113.7 t3 253.6 113.9 253.4 113.9 p 259.8 113.7 266.1 113.7 266.1 120.0 259.8 120.0 s2 260.9 114.8 265.3 114.6 266.1 113.7 259.8 113.7 s3 260.9 114.8 265.3 114.6 p 266.1 114.5 265.3 114.6 266.1 113.7 t3 266.1 114.5 265.3 114.6 p 260.9 114.8 259.8 114.9 259.8 113.7 t3 260.9 114.8 259.8 114.9 p 266.1 113.7 272.4 113.7 272.4 120.0 266.1 120.0 s2 269.2 113.7 266.8 114.4 266.1 113.7 t3 269.2 113.7 266.8 114.4 p 266.8 114.4 266.1 114.5 266.1 113.7 t3 266.8 114.4 266.1 114.5 p 272.4 113.7 278.8 113.7 278.8 120.0 272.4 120.0 s2 278.8 113.7 285.1 113.7 285.1 120.0 278.8 120.0 s2 285.1 113.7 291.5 113.7 291.5 120.0 285.1 120.0 s1 285.1 113.7 288.3 116.9 291.5 113.7 t2 291.1 119.7 291.5 119.4 291.5 113.7 288.3 116.9 s2 291.1 119.7 291.5 119.4 p 290.6 120.0 291.1 119.7 288.3 116.9 285.1 120.0 s2 290.6 120.0 291.1 119.7 p 285.1 120.0 288.3 116.9 285.1 113.7 t2 291.5 113.7 297.8 113.7 297.8 120.0 291.5 120.0 s1 297.3 113.7 294.5 116.8 291.5 113.7 t2 297.3 113.7 294.5 116.8 p 294.5 116.8 291.5 119.4 291.5 113.7 t2 294.5 116.8 291.5 119.4 p 297.8 113.7 304.1 113.7 304.1 120.0 297.8 120.0 s1 304.1 113.7 310.5 113.7 310.5 120.0 304.1 120.0 s1 310.5 113.7 316.8 113.7 316.8 120.0 310.5 120.0 s1 316.8 113.7 323.1 113.7 323.1 120.0 316.8 120.0 s1 323.1 113.7 329.5 113.7 329.5 120.0 323.1 120.0 s1 329.5 113.7 335.8 113.7 335.8 120.0 329.5 120.0 s1 335.8 113.7 342.1 113.7 342.1 120.0 335.8 120.0 s1 342.1 113.7 348.5 113.7 348.5 120.0 342.1 120.0 s1 0.0 107.4 6.3 107.4 6.3 113.7 0.0 113.7 s1 6.3 107.4 12.7 107.4 12.7 113.7 6.3 113.7 s1 12.7 107.4 19.0 107.4 19.0 113.7 12.7 113.7 s1 19.0 107.4 25.3 107.4 25.3 113.7 19.0 113.7 s1 25.3 107.4 31.7 107.4 31.7 113.7 25.3 113.7 s1 31.7 107.4 38.0 107.4 38.0 113.7 31.7 113.7 s1 38.0 107.4 44.4 107.4 44.4 113.7 38.0 113.7 s1 44.4 107.4 50.7 107.4 50.7 113.7 44.4 113.7 s1 47.8 110.3 45.7 107.4 50.7 107.4 t2 47.8 110.3 45.7 107.4 p 50.7 113.2 47.8 110.3 50.7 107.4 t2 50.7 113.2 47.8 110.3 p 50.7 107.4 57.0 107.4 57.0 113.7 50.7 113.7 s1 50.7 107.4 53.9 110.6 57.0 107.4 t2 57.0 107.4 53.9 110.6 57.0 113.7 t2 50.9 113.5 51.2 113.7 57.0 113.7 53.9 110.6 s2 50.9 113.5 51.2 113.7 p 50.7 113.2 50.9 113.5 53.9 110.6 50.7 107.4 s2 50.7 113.2 50.9 113.5 p 57.0 107.4 63.4 107.4 63.4 113.7 57.0 113.7 s2 63.4 107.4 69.7 107.4 69.7 113.7 63.4 113.7 s2 68.1 109.0 66.1 107.4 69.7 107.4 t3 68.1 109.0 66.1 107.4 p 69.7 110.0 68.1 109.0 69.7 107.4 t3 69.7 110.0 68.1 109.0 p 69.7 107.4 76.0 107.4 76.0 113.7 69.7 113.7 s2 69.7 107.4 72.9 110.6 76.0 107.4 t3 74.5 112.2 76.0 112.9 76.0 107.4 72.9 110.6 s3 74.5 112.2 76.0 112.9 p 74.5 112.2 72.2 111.2 72.9 110.6 t3 74.5 112.2 72.2 111.2 p 69.7 110.0 72.2 111.2 72.9 110.6 69.7 107.4 s3 69.7 110.0 72.2 111.2 p 76.0 107.4 82.4 107.4 82.4 113.7 76.0 113.7 s2 76.0 107.4 79.2 110.6 82.4 107.4 t3 82.4 107.4 79.2 110.6 82.4 113.7 t3 76.7 113.1 79.3 113.7 82.4 113.7 79.2 110.6 s3 76.7 113.1 79.3 113.7 p 76.0 112.9 76.7 113.1 79.2 110.6 76.0 107.4 s3 76.0 112.9 76.7 113.1 p 82.4 107.4 88.7 107.4 88.7 113.7 82.4 113.7 s3 88.7 107.4 95.0 107.4 95.0 113.7 88.7 113.7 s3 95.0 107.4 101.4 107.4 101.4 113.7 95.0 113.7 s2 95.0 107.4 98.2 110.6 101.4 107.4 t3 99.9 112.2 101.4 111.6 101.4 107.4 98.2 110.6 s3 99.9 112.2 101.4 111.6 p 95.4 113.7 99.9 112.2 98.2 110.6 95.0 113.7 s3 95.4 113.7 99.9 112.2 p 95.0 113.7 98.2 110.6 95.0 107.4 t3 101.4 107.4 107.7 107.4 107.7 113.7 101.4 113.7 s2 104.1 110.1 106.6 108.5 107.7 107.4 101.4 107.4 s3 104.1 110.1 106.6 108.5 p 107.7 107.8 106.6 108.5 107.7 107.4 t3 107.7 107.8 106.6 108.5 p 104.1 110.1 101.4 111.6 101.4 107.4 t3 104.1 110.1 101.4 111.6 p 107.7 107.4 114.0 107.4 114.0 113.7 107.7 113.7 s2 108.2 107.4 108.0 107.7 107.7 107.4 t3 108.2 107.4 108.0 107.7 p 108.0 107.7 107.7 107.8 107.7 107.4 t3 108.0 107.7 107.7 107.8 p 114.0 107.4 120.4 107.4 120.4 113.7 114.0 113.7 s2 120.4 107.4 126.7 107.4 126.7 113.7 120.4 113.7 s1 120.4 107.4 123.6 110.6 126.7 107.4 t2 125.0 112.0 126.7 109.7 126.7 107.4 123.6 110.6 s2 125.0 112.0 126.7 109.7 p 123.2 113.7 125.0 112.0 123.6 110.6 120.4 113.7 s2 123.2 113.7 125.0 112.0 p 120.4 113.7 123.6 110.6 120.4 107.4 t2 126.7 107.4 133.1 107.4 133.1 113.7 126.7 113.7 s1 128.6 107.4 127.8 108.5 126.7 107.4 t2 128.6 107.4 127.8 108.5 p 127.8 108.5 126.7 109.7 126.7 107.4 t2 127.8 108.5 126.7 109.7 p 133.1 107.4 139.4 107.4 139.4 113.7 133.1 113.7 s1 139.4 107.4 145.7 107.4 145.7 113.7 139.4 113.7 s1 145.7 107.4 152.1 107.4 152.1 113.7 145.7 113.7 s1 152.1 107.4 158.4 107.4 158.4 113.7 152.1 113.7 s1 158.4 107.4 164.7 107.4 164.7 113.7 158.4 113.7 s1 164.7 107.4 171.1 107.4 171.1 113.7 164.7 113.7 s1 171.1 107.4 177.4 107.4 177.4 113.7 171.1 113.7 s1 177.4 107.4 183.7 107.4 183.7 113.7 177.4 113.7 s1 183.7 107.4 190.1 107.4 190.1 113.7 183.7 113.7 s1 190.1 107.4 196.4 107.4 196.4 113.7 190.1 113.7 s1 196.4 107.4 202.7 107.4 202.7 113.7 196.4 113.7 s1 202.7 107.4 209.1 107.4 209.1 113.7 202.7 113.7 s1 209.1 107.4 215.4 107.4 215.4 113.7 209.1 113.7 s1 215.4 107.4 221.8 107.4 221.8 113.7 215.4 113.7 s1 220.7 108.5 219.9 107.4 221.8 107.4 t2 220.7 108.5 219.9 107.4 p 221.8 109.7 220.7 108.5 221.8 107.4 t2 221.8 109.7 220.7 108.5 p 221.8 107.4 228.1 107.4 228.1 113.7 221.8 113.7 s1 221.8 107.4 224.9 110.6 228.1 107.4 t2 228.1 107.4 224.9 110.6 228.1 113.7 t2 223.5 112.0 225.3 113.7 228.1 113.7 224.9 110.6 s2 223.5 112.0 225.3 113.7 p 221.8 109.7 223.5 112.0 224.9 110.6 221.8 107.4 s2 221.8 109.7 223.5 112.0 p 228.1 107.4 234.4 107.4 234.4 113.7 228.1 113.7 s2 234.4 107.4 240.8 107.4 240.8 113.7 234.4 113.7 s2 240.5 107.7 240.2 107.4 240.8 107.4 t3 240.5 107.7 240.2 107.4 p 240.8 107.8 240.5 107.7 240.8 107.4 t3 240.8 107.8 240.5 107.7 p 240.8 107.4 247.1 107.4 247.1 113.7 240.8 113.7 s2 241.9 108.5 244.4 110.1 247.1 107.4 240.8 107.4 s3 241.9 108.5 244.4 110.1 p 247.1 111.6 244.4 110.1 247.1 107.4 t3 247.1 111.6 244.4 110.1 p 241.9 108.5 240.8 107.8 240.8 107.4 t3 241.9 108.5 240.8 107.8 p 247.1 107.4 253.4 107.4 253.4 113.7 247.1 113.7 s2 247.1 107.4 250.3 110.6 253.4 107.4 t3 253.4 107.4 250.3 110.6 253.4 113.7 t3 248.6 112.2 253.1 113.7 253.4 113.7 250.3 110.6 s3 248.6 112.2 253.1 113.7 p 247.1 111.6 248.6 112.2 250.3 110.6 247.1 107.4 s3 247.1 111.6 248.6 112.2 p 253.4 107.4 259.8 107.4 259.8 113.7 253.4 113.7 s3 259.8 107.4 266.1 107.4 266.1 113.7 259.8 113.7 s3 266.1 107.4 272.4 107.4 272.4 113.7 266.1 113.7 s2 266.1 107.4 269.3 110.6 272.4 107.4 t3 271.8 113.1 272.4 112.9 272.4 107.4 269.3 110.6 s3 271.8 113.1 272.4 112.9 p 269.2 113.7 271.8 113.1 269.3 110.6 266.1 113.7 s3 269.2 113.7 271.8 113.1 p 266.1 113.7 269.3 110.6 266.1 107.4 t3 272.4 107.4 278.8 107.4 278.8 113.7 272.4 113.7 s2 272.4 107.4 275.6 110.6 278.8 107.4 t3 276.3 111.2 278.8 110.0 278.8 107.4 275.6 110.6 s3 276.3 111.2 278.8 110.0 p 276.3 111.2 273.9 112.2 275.6 110.6 t3 276.3 111.2 273.9 112.2 p 272.4 112.9 273.9 112.2 275.6 110.6 272.4 107.4 s3 272.4 112.9 273.9 112.2 p 278.8 107.4 285.1 107.4 285.1 113.7 278.8 113.7 s2 282.4 107.4 280.4 109.0 278.8 107.4 t3 282.4 107.4 280.4 109.0 p 280.4 109.0 278.8 110.0 278.8 107.4 t3 280.4 109.0 278.8 110.0 p 285.1 107.4 291.5 107.4 291.5 113.7 285.1 113.7 s2 291.5 107.4 297.8 107.4 297.8 113.7 291.5 113.7 s1 291.5 107.4 294.6 110.6 297.8 107.4 t2 297.6 113.5 297.8 113.2 297.8 107.4 294.6 110.6 s2 297.6 113.5 297.8 113.2 p 297.3 113.7 297.6 113.5 294.6 110.6 291.5 113.7 s2 297.3 113.7 297.6 113.5 p 291.5 113.7 294.6 110.6 291.5 107.4 t2 297.8 107.4 304.1 107.4 304.1 113.7 297.8 113.7 s1 302.8 107.4 300.7 110.3 297.8 107.4 t2 302.8 107.4 300.7 110.3 p 300.7 110.3 297.8 113.2 297.8 107.4 t2 300.7 110.3 297.8 113.2 p 304.1 107.4 310.5 107.4 310.5 113.7 304.1 113.7 s1 310.5 107.4 316.8 107.4 316.8 113.7 310.5 113.7 s1 316.8 107.4 323.1 107.4 323.1 113.7 316.8 113.7 s1 323.1 107.4 329.5 107.4 329.5 113.7 323.1 113.7 s1 329.5 107.4 335.8 107.4 335.8 113.7 329.5 113.7 s1 335.8 107.4 342.1 107.4 342.1 113.7 335.8 113.7 s1 342.1 107.4 348.5 107.4 348.5 113.7 342.1 113.7 s1 0.0 101.1 6.3 101.1 6.3 107.4 0.0 107.4 s1 6.3 101.1 12.7 101.1 12.7 107.4 6.3 107.4 s1 12.7 101.1 19.0 101.1 19.0 107.4 12.7 107.4 s1 19.0 101.1 25.3 101.1 25.3 107.4 19.0 107.4 s1 25.3 101.1 31.7 101.1 31.7 107.4 25.3 107.4 s1 31.7 101.1 38.0 101.1 38.0 107.4 31.7 107.4 s1 38.0 101.1 44.4 101.1 44.4 107.4 38.0 107.4 s1 42.3 103.2 40.9 101.1 44.4 101.1 t2 42.3 103.2 40.9 101.1 p 44.4 105.6 42.3 103.2 44.4 101.1 t2 44.4 105.6 42.3 103.2 p 44.4 101.1 50.7 101.1 50.7 107.4 44.4 107.4 s1 44.4 101.1 47.5 104.3 50.7 101.1 t2 50.7 101.1 47.5 104.3 50.7 107.4 t2 45.1 106.7 45.7 107.4 50.7 107.4 47.5 104.3 s2 45.1 106.7 45.7 107.4 p 44.4 105.6 45.1 106.7 47.5 104.3 44.4 101.1 s2 44.4 105.6 45.1 106.7 p 50.7 101.1 57.0 101.1 57.0 107.4 50.7 107.4 s2 57.0 101.1 63.4 101.1 63.4 107.4 57.0 107.4 s2 61.2 103.2 59.2 101.1 63.4 101.1 t3 61.2 103.2 59.2 101.1 p 63.4 105.2 61.2 103.2 63.4 101.1 t3 63.4 105.2 61.2 103.2 p 63.4 101.1 69.7 101.1 69.7 107.4 63.4 107.4 s2 63.4 101.1 66.5 104.3 69.7 101.1 t3 69.7 101.1 66.5 104.3 69.7 107.4 t3 64.5 106.2 66.1 107.4 69.7 107.4 66.5 104.3 s3 64.5 106.2 66.1 107.4 p 63.4 105.2 64.5 106.2 66.5 104.3 63.4 101.1 s3 63.4 105.2 64.5 106.2 p 69.7 101.1 76.0 101.1 76.0 107.4 69.7 107.4 s3 76.0 101.1 82.4 101.1 82.4 107.4 76.0 107.4 s3 81.9 101.6 80.5 101.1 82.4 101.1 t4 81.9 101.6 80.5 101.1 p 82.4 101.8 81.9 101.6 82.4 101.1 t4 82.4 101.8 81.9 101.6 p 82.4 101.1 88.7 101.1 88.7 107.4 82.4 107.4 s3 83.1 101.8 87.6 102.2 88.7 101.1 82.4 101.1 s4 83.1 101.8 87.6 102.2 p 88.7 102.2 87.6 102.2 88.7 101.1 t4 88.7 102.2 87.6 102.2 p 83.1 101.8 82.4 101.8 82.4 101.1 t4 83.1 101.8 82.4 101.8 p 88.7 101.1 95.0 101.1 95.0 107.4 88.7 107.4 s3 93.8 101.1 89.6 102.0 88.7 101.1 t4 93.8 101.1 89.6 102.0 p 89.6 102.0 88.7 102.2 88.7 101.1 t4 89.6 102.0 88.7 102.2 p 95.0 101.1 101.4 101.1 101.4 107.4 95.0 107.4 s3 101.4 101.1 107.7 101.1 107.7 107.4 101.4 107.4 s3 107.7 101.1 114.0 101.1 114.0 107.4 107.7 107.4 s2 107.7 101.1 110.9 104.3 114.0 101.1 t3 111.4 104.7 114.0 102.2 114.0 101.1 110.9 104.3 s3 111.4 104.7 114.0 102.2 p 108.2 107.4 111.4 104.7 110.9 104.3 107.7 107.4 s3 108.2 107.4 111.4 104.7 p 107.7 107.4 110.9 104.3 107.7 101.1 t3 114.0 101.1 120.4 101.1 120.4 107.4 114.0 107.4 s2 115.1 101.1 114.6 101.6 114.0 101.1 t3 115.1 101.1 114.6 101.6 p 114.6 101.6 114.0 102.2 114.0 101.1 t3 114.6 101.6 114.0 102.2 p 120.4 101.1 126.7 101.1 126.7 107.4 120.4 107.4 s2 126.7 101.1 133.1 101.1 133.1 107.4 126.7 107.4 s1 126.7 101.1 129.9 104.3 133.1 101.1 t2 130.6 105.0 133.1 101.2 133.1 101.1 129.9 104.3 s2 130.6 105.0 133.1 101.2 p 128.6 107.4 130.6 105.0 129.9 104.3 126.7 107.4 s2 128.6 107.4 130.6 105.0 p 126.7 107.4 129.9 104.3 126.7 101.1 t2 133.1 101.1 139.4 101.1 139.4 107.4 133.1 107.4 s1 133.1 101.1 133.1 101.1 133.1 101.1 t2 133.1 101.1 133.1 101.1 p 133.1 101.1 133.1 101.2 133.1 101.1 t2 133.1 101.1 133.1 101.2 p 139.4 101.1 145.7 101.1 145.7 107.4 139.4 107.4 s1 145.7 101.1 152.1 101.1 152.1 107.4 145.7 107.4 s1 152.1 101.1 158.4 101.1 158.4 107.4 152.1 107.4 s1 158.4 101.1 164.7 101.1 164.7 107.4 158.4 107.4 s1 164.7 101.1 171.1 101.1 171.1 107.4 164.7 107.4 s1 171.1 101.1 177.4 101.1 177.4 107.4 171.1 107.4 s1 177.4 101.1 183.7 101.1 183.7 107.4 177.4 107.4 s1 183.7 101.1 190.1 101.1 190.1 107.4 183.7 107.4 s1 190.1 101.1 196.4 101.1 196.4 107.4 190.1 107.4 s1 196.4 101.1 202.7 101.1 202.7 107.4 196.4 107.4 s1 202.7 101.1 209.1 101.1 209.1 107.4 202.7 107.4 s1 209.1 101.1 215.4 101.1 215.4 107.4 209.1 107.4 s1 215.4 101.1 215.3 101.1 215.4 101.1 t2 215.4 101.1 215.3 101.1 p 215.4 101.2 215.4 101.1 215.4 101.1 t2 215.4 101.2 215.4 101.1 p 215.4 101.1 221.8 101.1 221.8 107.4 215.4 107.4 s1 215.4 101.1 218.6 104.3 221.8 101.1 t2 221.8 101.1 218.6 104.3 221.8 107.4 t2 217.9 105.0 219.9 107.4 221.8 107.4 218.6 104.3 s2 217.9 105.0 219.9 107.4 p 215.4 101.2 217.9 105.0 218.6 104.3 215.4 101.1 s2 215.4 101.2 217.9 105.0 p 221.8 101.1 228.1 101.1 228.1 107.4 221.8 107.4 s2 228.1 101.1 234.4 101.1 234.4 107.4 228.1 107.4 s2 233.9 101.6 233.4 101.1 234.4 101.1 t3 233.9 101.6 233.4 101.1 p 234.4 102.2 233.9 101.6 234.4 101.1 t3 234.4 102.2 233.9 101.6 p 234.4 101.1 240.8 101.1 240.8 107.4 234.4 107.4 s2 234.4 101.1 237.6 104.3 240.8 101.1 t3 240.8 101.1 237.6 104.3 240.8 107.4 t3 237.1 104.7 240.2 107.4 240.8 107.4 237.6 104.3 s3 237.1 104.7 240.2 107.4 p 234.4 102.2 237.1 104.7 237.6 104.3 234.4 101.1 s3 234.4 102.2 237.1 104.7 p 240.8 101.1 247.1 101.1 247.1 107.4 240.8 107.4 s3 247.1 101.1 253.4 101.1 253.4 107.4 247.1 107.4 s3 253.4 101.1 259.8 101.1 259.8 107.4 253.4 107.4 s3 258.8 102.0 254.6 101.1 259.8 101.1 t4 258.8 102.0 254.6 101.1 p 259.8 102.2 258.8 102.0 259.8 101.1 t4 259.8 102.2 258.8 102.0 p 259.8 101.1 266.1 101.1 266.1 107.4 259.8 107.4 s3 260.8 102.2 265.4 101.8 266.1 101.1 259.8 101.1 s4 260.8 102.2 265.4 101.8 p 266.1 101.8 265.4 101.8 266.1 101.1 t4 266.1 101.8 265.4 101.8 p 260.8 102.2 259.8 102.2 259.8 101.1 t4 260.8 102.2 259.8 102.2 p 266.1 101.1 272.4 101.1 272.4 107.4 266.1 107.4 s3 267.9 101.1 266.6 101.6 266.1 101.1 t4 267.9 101.1 266.6 101.6 p 266.6 101.6 266.1 101.8 266.1 101.1 t4 266.6 101.6 266.1 101.8 p 272.4 101.1 278.8 101.1 278.8 107.4 272.4 107.4 s3 278.8 101.1 285.1 101.1 285.1 107.4 278.8 107.4 s2 278.8 101.1 281.9 104.3 285.1 101.1 t3 283.9 106.2 285.1 105.2 285.1 101.1 281.9 104.3 s3 283.9 106.2 285.1 105.2 p 282.4 107.4 283.9 106.2 281.9 104.3 278.8 107.4 s3 282.4 107.4 283.9 106.2 p 278.8 107.4 281.9 104.3 278.8 101.1 t3 285.1 101.1 291.5 101.1 291.5 107.4 285.1 107.4 s2 289.3 101.1 287.3 103.2 285.1 101.1 t3 289.3 101.1 287.3 103.2 p 287.3 103.2 285.1 105.2 285.1 101.1 t3 287.3 103.2 285.1 105.2 p 291.5 101.1 297.8 101.1 297.8 107.4 291.5 107.4 s2 297.8 101.1 304.1 101.1 304.1 107.4 297.8 107.4 s1 297.8 101.1 301.0 104.3 304.1 101.1 t2 303.4 106.7 304.1 105.6 304.1 101.1 301.0 104.3 s2 303.4 106.7 304.1 105.6 p 302.8 107.4 303.4 106.7 301.0 104.3 297.8 107.4 s2 302.8 107.4 303.4 106.7 p 297.8 107.4 301.0 104.3 297.8 101.1 t2 304.1 101.1 310.5 101.1 310.5 107.4 304.1 107.4 s1 307.6 101.1 306.2 103.2 304.1 101.1 t2 307.6 101.1 306.2 103.2 p 306.2 103.2 304.1 105.6 304.1 101.1 t2 306.2 103.2 304.1 105.6 p 310.5 101.1 316.8 101.1 316.8 107.4 310.5 107.4 s1 316.8 101.1 323.1 101.1 323.1 107.4 316.8 107.4 s1 323.1 101.1 329.5 101.1 329.5 107.4 323.1 107.4 s1 329.5 101.1 335.8 101.1 335.8 107.4 329.5 107.4 s1 335.8 101.1 342.1 101.1 342.1 107.4 335.8 107.4 s1 342.1 101.1 348.5 101.1 348.5 107.4 342.1 107.4 s1 0.0 94.8 6.3 94.8 6.3 101.1 0.0 101.1 s1 6.3 94.8 12.7 94.8 12.7 101.1 6.3 101.1 s1 12.7 94.8 19.0 94.8 19.0 101.1 12.7 101.1 s1 19.0 94.8 25.3 94.8 25.3 101.1 19.0 101.1 s1 25.3 94.8 31.7 94.8 31.7 101.1 25.3 101.1 s1 31.7 94.8 38.0 94.8 38.0 101.1 31.7 101.1 s1 37.1 95.7 36.5 94.8 38.0 94.8 t2 37.1 95.7 36.5 94.8 p 38.0 96.9 37.1 95.7 38.0 94.8 t2 38.0 96.9 37.1 95.7 p 38.0 94.8 44.4 94.8 44.4 101.1 38.0 101.1 s1 38.0 94.8 41.2 97.9 44.4 94.8 t2 44.4 94.8 41.2 97.9 44.4 101.1 t2 39.6 99.5 40.9 101.1 44.4 101.1 41.2 97.9 s2 39.6 99.5 40.9 101.1 p 38.0 96.9 39.6 99.5 41.2 97.9 38.0 94.8 s2 38.0 96.9 39.6 99.5 p 44.4 94.8 50.7 94.8 50.7 101.1 44.4 101.1 s2 50.7 94.8 57.0 94.8 57.0 101.1 50.7 101.1 s2 55.4 96.4 54.1 94.8 57.0 94.8 t3 55.4 96.4 54.1 94.8 p 57.0 98.5 55.4 96.4 57.0 94.8 t3 57.0 98.5 55.4 96.4 p 57.0 94.8 63.4 94.8 63.4 101.1 57.0 101.1 s2 57.0 94.8 60.2 97.9 63.4 94.8 t3 63.4 94.8 60.2 97.9 63.4 101.1 t3 58.2 99.9 59.2 101.1 63.4 101.1 60.2 97.9 s3 58.2 99.9 59.2 101.1 p 57.0 98.5 58.2 99.9 60.2 97.9 57.0 94.8 s3 57.0 98.5 58.2 99.9 p 63.4 94.8 69.7 94.8 69.7 101.1 63.4 101.1 s3 69.7 94.8 76.0 94.8 76.0 101.1 69.7 101.1 s3 75.2 95.6 74.4 94.8 76.0 94.8 t4 75.2 95.6 74.4 94.8 p 76.0 96.7 75.2 95.6 76.0 94.8 t4 76.0 96.7 75.2 95.6 p 76.0 94.8 82.4 94.8 82.4 101.1 76.0 101.1 s3 76.0 94.8 79.2 97.9 82.4 94.8 t4 82.4 94.8 79.2 97.9 82.4 101.1 t4 78.5 98.6 80.5 101.1 82.4 101.1 79.2 97.9 s4 78.5 98.6 80.5 101.1 p 76.0 96.7 78.5 98.6 79.2 97.9 76.0 94.8 s4 76.0 96.7 78.5 98.6 p 82.4 94.8 88.7 94.8 88.7 101.1 82.4 101.1 s4 88.7 94.8 95.0 94.8 95.0 101.1 88.7 101.1 s3 88.7 94.8 91.9 97.9 95.0 94.8 t4 94.5 100.5 95.0 100.2 95.0 94.8 91.9 97.9 s4 94.5 100.5 95.0 100.2 p 93.8 101.1 94.5 100.5 91.9 97.9 88.7 101.1 s4 93.8 101.1 94.5 100.5 p 88.7 101.1 91.9 97.9 88.7 94.8 t4 95.0 94.8 101.4 94.8 101.4 101.1 95.0 101.1 s3 99.9 94.8 97.3 97.0 95.0 94.8 t4 99.9 94.8 97.3 97.0 p 97.3 97.0 95.0 100.2 95.0 94.8 t4 97.3 97.0 95.0 100.2 p 101.4 94.8 107.7 94.8 107.7 101.1 101.4 101.1 s3 107.7 94.8 114.0 94.8 114.0 101.1 107.7 101.1 s3 114.0 94.8 120.4 94.8 120.4 101.1 114.0 101.1 s2 119.1 96.0 120.1 94.8 114.0 94.8 117.2 97.9 s3 119.1 96.0 120.1 94.8 p 119.1 96.0 117.4 98.2 117.2 97.9 t3 119.1 96.0 117.4 98.2 p 115.1 101.1 117.4 98.2 117.2 97.9 114.0 101.1 s3 115.1 101.1 117.4 98.2 p 114.0 101.1 117.2 97.9 114.0 94.8 t3 120.4 94.8 126.7 94.8 126.7 101.1 120.4 101.1 s2 126.7 94.8 133.1 94.8 133.1 101.1 126.7 101.1 s2 133.1 94.8 139.4 94.8 139.4 101.1 133.1 101.1 s1 137.8 94.8 135.9 97.6 133.1 94.8 t2 137.8 94.8 135.9 97.6 p 133.5 100.7 133.1 101.1 133.1 101.1 t2 133.5 100.7 133.1 101.1 p 133.5 100.7 135.9 97.6 133.1 94.8 133.1 101.1 s2 133.5 100.7 135.9 97.6 p 139.4 94.8 145.7 94.8 145.7 101.1 139.4 101.1 s1 145.7 94.8 152.1 94.8 152.1 101.1 145.7 101.1 s1 152.1 94.8 158.4 94.8 158.4 101.1 152.1 101.1 s1 158.4 94.8 164.7 94.8 164.7 101.1 158.4 101.1 s1 164.7 94.8 171.1 94.8 171.1 101.1 164.7 101.1 s1 171.1 94.8 177.4 94.8 177.4 101.1 171.1 101.1 s1 177.4 94.8 183.7 94.8 183.7 101.1 177.4 101.1 s1 183.7 94.8 190.1 94.8 190.1 101.1 183.7 101.1 s1 190.1 94.8 196.4 94.8 196.4 101.1 190.1 101.1 s1 196.4 94.8 202.7 94.8 202.7 101.1 196.4 101.1 s1 202.7 94.8 209.1 94.8 209.1 101.1 202.7 101.1 s1 209.1 94.8 215.4 94.8 215.4 101.1 209.1 101.1 s1 212.5 97.6 210.7 94.8 215.4 94.8 t2 212.5 97.6 210.7 94.8 p 212.5 97.6 215.0 100.7 215.4 101.1 215.4 94.8 s2 212.5 97.6 215.0 100.7 p 215.3 101.1 215.0 100.7 215.4 101.1 t2 215.3 101.1 215.0 100.7 p 215.4 94.8 221.8 94.8 221.8 101.1 215.4 101.1 s2 221.8 94.8 228.1 94.8 228.1 101.1 221.8 101.1 s2 228.1 94.8 234.4 94.8 234.4 101.1 228.1 101.1 s2 228.4 94.8 229.4 96.0 231.3 97.9 234.4 94.8 s3 228.4 94.8 229.4 96.0 p 234.4 94.8 231.3 97.9 234.4 101.1 t3 231.0 98.2 233.4 101.1 234.4 101.1 231.3 97.9 s3 231.0 98.2 233.4 101.1 p 231.0 98.2 229.4 96.0 231.3 97.9 t3 231.0 98.2 229.4 96.0 p 234.4 94.8 240.8 94.8 240.8 101.1 234.4 101.1 s3 240.8 94.8 247.1 94.8 247.1 101.1 240.8 101.1 s3 247.1 94.8 253.4 94.8 253.4 101.1 247.1 101.1 s3 251.2 97.0 248.6 94.8 253.4 94.8 t4 251.2 97.0 248.6 94.8 p 253.4 100.2 251.2 97.0 253.4 94.8 t4 253.4 100.2 251.2 97.0 p 253.4 94.8 259.8 94.8 259.8 101.1 253.4 101.1 s3 253.4 94.8 256.6 97.9 259.8 94.8 t4 259.8 94.8 256.6 97.9 259.8 101.1 t4 254.0 100.5 254.6 101.1 259.8 101.1 256.6 97.9 s4 254.0 100.5 254.6 101.1 p 253.4 100.2 254.0 100.5 256.6 97.9 253.4 94.8 s4 253.4 100.2 254.0 100.5 p 259.8 94.8 266.1 94.8 266.1 101.1 259.8 101.1 s4 266.1 94.8 272.4 94.8 272.4 101.1 266.1 101.1 s3 266.1 94.8 269.3 97.9 272.4 94.8 t4 270.0 98.6 272.4 96.7 272.4 94.8 269.3 97.9 s4 270.0 98.6 272.4 96.7 p 267.9 101.1 270.0 98.6 269.3 97.9 266.1 101.1 s4 267.9 101.1 270.0 98.6 p 266.1 101.1 269.3 97.9 266.1 94.8 t4 272.4 94.8 278.8 94.8 278.8 101.1 272.4 101.1 s3 274.1 94.8 273.2 95.6 272.4 94.8 t4 274.1 94.8 273.2 95.6 p 273.2 95.6 272.4 96.7 272.4 94.8 t4 273.2 95.6 272.4 96.7 p 278.8 94.8 285.1 94.8 285.1 101.1 278.8 101.1 s3 285.1 94.8 291.5 94.8 291.5 101.1 285.1 101.1 s2 285.1 94.8 288.3 97.9 291.5 94.8 t3 290.2 99.9 291.5 98.5 291.5 94.8 288.3 97.9 s3 290.2 99.9 291.5 98.5 p 289.3 101.1 290.2 99.9 288.3 97.9 285.1 101.1 s3 289.3 101.1 290.2 99.9 p 285.1 101.1 288.3 97.9 285.1 94.8 t3 291.5 94.8 297.8 94.8 297.8 101.1 291.5 101.1 s2 294.3 94.8 293.1 96.4 291.5 94.8 t3 294.3 94.8 293.1 96.4 p 293.1 96.4 291.5 98.5 291.5 94.8 t3 293.1 96.4 291.5 98.5 p 297.8 94.8 304.1 94.8 304.1 101.1 297.8 101.1 s2 304.1 94.8 310.5 94.8 310.5 101.1 304.1 101.1 s1 304.1 94.8 307.3 97.9 310.5 94.8 t2 308.8 99.5 310.5 96.9 310.5 94.8 307.3 97.9 s2 308.8 99.5 310.5 96.9 p 307.6 101.1 308.8 99.5 307.3 97.9 304.1 101.1 s2 307.6 101.1 308.8 99.5 p 304.1 101.1 307.3 97.9 304.1 94.8 t2 310.5 94.8 316.8 94.8 316.8 101.1 310.5 101.1 s1 312.0 94.8 311.4 95.7 310.5 94.8 t2 312.0 94.8 311.4 95.7 p 311.4 95.7 310.5 96.9 310.5 94.8 t2 311.4 95.7 310.5 96.9 p 316.8 94.8 323.1 94.8 323.1 101.1 316.8 101.1 s1 323.1 94.8 329.5 94.8 329.5 101.1 323.1 101.1 s1 329.5 94.8 335.8 94.8 335.8 101.1 329.5 101.1 s1 335.8 94.8 342.1 94.8 342.1 101.1 335.8 101.1 s1 342.1 94.8 348.5 94.8 348.5 101.1 342.1 101.1 s1 0.0 88.5 6.3 88.5 6.3 94.8 0.0 94.8 s1 6.3 88.5 12.7 88.5 12.7 94.8 6.3 94.8 s1 12.7 88.5 19.0 88.5 19.0 94.8 12.7 94.8 s1 19.0 88.5 25.3 88.5 25.3 94.8 19.0 94.8 s1 25.3 88.5 31.7 88.5 31.7 94.8 25.3 94.8 s1 31.7 88.5 38.0 88.5 38.0 94.8 31.7 94.8 s1 31.9 88.5 32.2 89.0 34.8 91.6 38.0 88.5 s2 31.9 88.5 32.2 89.0 p 38.0 88.5 34.8 91.6 38.0 94.8 t2 34.3 92.1 36.5 94.8 38.0 94.8 34.8 91.6 s2 34.3 92.1 36.5 94.8 p 34.3 92.1 32.2 89.0 34.8 91.6 t2 34.3 92.1 32.2 89.0 p 38.0 88.5 44.4 88.5 44.4 94.8 38.0 94.8 s2 44.4 88.5 50.7 88.5 50.7 94.8 44.4 94.8 s2 50.1 89.1 49.7 88.5 50.7 88.5 t3 50.1 89.1 49.7 88.5 p 50.7 89.9 50.1 89.1 50.7 88.5 t3 50.7 89.9 50.1 89.1 p 50.7 88.5 57.0 88.5 57.0 94.8 50.7 94.8 s2 50.7 88.5 53.9 91.6 57.0 88.5 t3 57.0 88.5 53.9 91.6 57.0 94.8 t3 52.8 92.7 54.1 94.8 57.0 94.8 53.9 91.6 s3 52.8 92.7 54.1 94.8 p 50.7 89.9 52.8 92.7 53.9 91.6 50.7 88.5 s3 50.7 89.9 52.8 92.7 p 57.0 88.5 63.4 88.5 63.4 94.8 57.0 94.8 s3 63.4 88.5 69.7 88.5 69.7 94.8 63.4 94.8 s3 69.7 88.5 76.0 88.5 76.0 94.8 69.7 94.8 s3 75.2 93.9 76.0 93.6 76.0 94.8 t4 75.2 93.9 76.0 93.6 p 74.4 94.8 75.2 93.9 76.0 94.8 t4 74.4 94.8 75.2 93.9 p 76.0 88.5 82.4 88.5 82.4 94.8 76.0 94.8 s3 80.2 92.6 82.4 92.4 82.4 94.8 t4 80.2 92.6 82.4 92.4 p 80.2 92.6 77.4 93.4 76.0 94.8 82.4 94.8 s4 80.2 92.6 77.4 93.4 p 76.0 93.6 77.4 93.4 76.0 94.8 t4 76.0 93.6 77.4 93.4 p 82.4 88.5 88.7 88.5 88.7 94.8 82.4 94.8 s3 86.2 92.3 88.7 92.2 88.7 94.8 t4 86.2 92.3 88.7 92.2 p 86.2 92.3 84.8 92.3 82.4 94.8 88.7 94.8 s4 86.2 92.3 84.8 92.3 p 82.4 92.4 84.8 92.3 82.4 94.8 t4 82.4 92.4 84.8 92.3 p 88.7 88.5 95.0 88.5 95.0 94.8 88.7 94.8 s3 92.9 92.6 95.0 92.7 95.0 94.8 t4 92.9 92.6 95.0 92.7 p 92.9 92.6 91.1 92.4 88.7 94.8 95.0 94.8 s4 92.9 92.6 91.1 92.4 p 88.7 92.2 91.1 92.4 88.7 94.8 t4 88.7 92.2 91.1 92.4 p 95.0 88.5 101.4 88.5 101.4 94.8 95.0 94.8 s3 96.8 93.1 99.9 94.8 95.0 94.8 t4 96.8 93.1 99.9 94.8 p 95.0 92.7 96.8 93.1 95.0 94.8 t4 95.0 92.7 96.8 93.1 p 101.4 88.5 107.7 88.5 107.7 94.8 101.4 94.8 s3 107.7 88.5 114.0 88.5 114.0 94.8 107.7 94.8 s3 114.0 88.5 120.4 88.5 120.4 94.8 114.0 94.8 s2 114.0 88.5 117.2 91.6 120.4 88.5 t3 120.2 94.6 120.4 94.4 120.4 88.5 117.2 91.6 s3 120.2 94.6 120.4 94.4 p 120.1 94.8 120.2 94.6 117.2 91.6 114.0 94.8 s3 120.1 94.8 120.2 94.6 p 114.0 94.8 117.2 91.6 114.0 88.5 t3 120.4 88.5 126.7 88.5 126.7 94.8 120.4 94.8 s2 124.5 88.5 122.8 90.9 120.4 88.5 t3 124.5 88.5 122.8 90.9 p 122.8 90.9 120.4 94.4 120.4 88.5 t3 122.8 90.9 120.4 94.4 p 126.7 88.5 133.1 88.5 133.1 94.8 126.7 94.8 s2 133.1 88.5 139.4 88.5 139.4 94.8 133.1 94.8 s1 133.1 88.5 136.2 91.6 139.4 88.5 t2 138.5 93.9 139.4 92.5 139.4 88.5 136.2 91.6 s2 138.5 93.9 139.4 92.5 p 137.8 94.8 138.5 93.9 136.2 91.6 133.1 94.8 s2 137.8 94.8 138.5 93.9 p 133.1 94.8 136.2 91.6 133.1 88.5 t2 139.4 88.5 145.7 88.5 145.7 94.8 139.4 94.8 s1 142.6 88.5 141.3 90.3 139.4 88.5 t2 142.6 88.5 141.3 90.3 p 141.3 90.3 139.4 92.5 139.4 88.5 t2 141.3 90.3 139.4 92.5 p 145.7 88.5 152.1 88.5 152.1 94.8 145.7 94.8 s1 152.1 88.5 158.4 88.5 158.4 94.8 152.1 94.8 s1 158.4 88.5 164.7 88.5 164.7 94.8 158.4 94.8 s1 164.7 88.5 171.1 88.5 171.1 94.8 164.7 94.8 s1 171.1 88.5 177.4 88.5 177.4 94.8 171.1 94.8 s1 177.4 88.5 183.7 88.5 183.7 94.8 177.4 94.8 s1 183.7 88.5 190.1 88.5 190.1 94.8 183.7 94.8 s1 190.1 88.5 196.4 88.5 196.4 94.8 190.1 94.8 s1 196.4 88.5 202.7 88.5 202.7 94.8 196.4 94.8 s1 202.7 88.5 209.1 88.5 209.1 94.8 202.7 94.8 s1 207.2 90.3 205.9 88.5 209.1 88.5 t2 207.2 90.3 205.9 88.5 p 209.1 92.5 207.2 90.3 209.1 88.5 t2 209.1 92.5 207.2 90.3 p 209.1 88.5 215.4 88.5 215.4 94.8 209.1 94.8 s1 209.1 88.5 212.3 91.6 215.4 88.5 t2 215.4 88.5 212.3 91.6 215.4 94.8 t2 210.0 93.9 210.7 94.8 215.4 94.8 212.3 91.6 s2 210.0 93.9 210.7 94.8 p 209.1 92.5 210.0 93.9 212.3 91.6 209.1 88.5 s2 209.1 92.5 210.0 93.9 p 215.4 88.5 221.8 88.5 221.8 94.8 215.4 94.8 s2 221.8 88.5 228.1 88.5 228.1 94.8 221.8 94.8 s2 225.7 90.9 224.0 88.5 228.1 88.5 t3 225.7 90.9 224.0 88.5 p 228.1 94.4 225.7 90.9 228.1 88.5 t3 228.1 94.4 225.7 90.9 p 228.1 88.5 234.4 88.5 234.4 94.8 228.1 94.8 s2 228.1 88.5 231.3 91.6 234.4 88.5 t3 234.4 88.5 231.3 91.6 234.4 94.8 t3 228.3 94.6 228.4 94.8 234.4 94.8 231.3 91.6 s3 228.3 94.6 228.4 94.8 p 228.1 94.4 228.3 94.6 231.3 91.6 228.1 88.5 s3 228.1 94.4 228.3 94.6 p 234.4 88.5 240.8 88.5 240.8 94.8 234.4 94.8 s3 240.8 88.5 247.1 88.5 247.1 94.8 240.8 94.8 s3 247.1 88.5 253.4 88.5 253.4 94.8 247.1 94.8 s3 251.7 93.1 253.4 92.7 253.4 94.8 t4 251.7 93.1 253.4 92.7 p 248.6 94.8 251.7 93.1 253.4 94.8 t4 248.6 94.8 251.7 93.1 p 253.4 88.5 259.8 88.5 259.8 94.8 253.4 94.8 s3 257.3 92.4 259.8 92.2 259.8 94.8 t4 257.3 92.4 259.8 92.2 p 257.3 92.4 255.6 92.6 253.4 94.8 259.8 94.8 s4 257.3 92.4 255.6 92.6 p 253.4 92.7 255.6 92.6 253.4 94.8 t4 253.4 92.7 255.6 92.6 p 259.8 88.5 266.1 88.5 266.1 94.8 259.8 94.8 s3 263.7 92.3 266.1 92.4 266.1 94.8 t4 263.7 92.3 266.1 92.4 p 263.7 92.3 262.3 92.3 259.8 94.8 266.1 94.8 s4 263.7 92.3 262.3 92.3 p 259.8 92.2 262.3 92.3 259.8 94.8 t4 259.8 92.2 262.3 92.3 p 266.1 88.5 272.4 88.5 272.4 94.8 266.1 94.8 s3 271.1 93.4 272.4 93.6 272.4 94.8 t4 271.1 93.4 272.4 93.6 p 271.1 93.4 268.3 92.6 266.1 94.8 272.4 94.8 s4 271.1 93.4 268.3 92.6 p 266.1 92.4 268.3 92.6 266.1 94.8 t4 266.1 92.4 268.3 92.6 p 272.4 88.5 278.8 88.5 278.8 94.8 272.4 94.8 s3 273.3 93.9 274.1 94.8 272.4 94.8 t4 273.3 93.9 274.1 94.8 p 272.4 93.6 273.3 93.9 272.4 94.8 t4 272.4 93.6 273.3 93.9 p 278.8 88.5 285.1 88.5 285.1 94.8 278.8 94.8 s3 285.1 88.5 291.5 88.5 291.5 94.8 285.1 94.8 s3 291.5 88.5 297.8 88.5 297.8 94.8 291.5 94.8 s2 291.5 88.5 294.6 91.6 297.8 88.5 t3 295.7 92.7 297.8 89.9 297.8 88.5 294.6 91.6 s3 295.7 92.7 297.8 89.9 p 294.3 94.8 295.7 92.7 294.6 91.6 291.5 94.8 s3 294.3 94.8 295.7 92.7 p 291.5 94.8 294.6 91.6 291.5 88.5 t3 297.8 88.5 304.1 88.5 304.1 94.8 297.8 94.8 s2 298.8 88.5 298.4 89.1 297.8 88.5 t3 298.8 88.5 298.4 89.1 p 298.4 89.1 297.8 89.9 297.8 88.5 t3 298.4 89.1 297.8 89.9 p 304.1 88.5 310.5 88.5 310.5 94.8 304.1 94.8 s2 310.5 88.5 316.8 88.5 316.8 94.8 310.5 94.8 s1 316.2 89.0 316.6 88.5 310.5 88.5 313.6 91.6 s2 316.2 89.0 316.6 88.5 p 316.2 89.0 314.2 92.1 313.6 91.6 t2 316.2 89.0 314.2 92.1 p 312.0 94.8 314.2 92.1 313.6 91.6 310.5 94.8 s2 312.0 94.8 314.2 92.1 p 310.5 94.8 313.6 91.6 310.5 88.5 t2 316.8 88.5 323.1 88.5 323.1 94.8 316.8 94.8 s1 323.1 88.5 329.5 88.5 329.5 94.8 323.1 94.8 s1 329.5 88.5 335.8 88.5 335.8 94.8 329.5 94.8 s1 335.8 88.5 342.1 88.5 342.1 94.8 335.8 94.8 s1 342.1 88.5 348.5 88.5 348.5 94.8 342.1 94.8 s1 0.0 82.1 6.3 82.1 6.3 88.5 0.0 88.5 s1 6.3 82.1 12.7 82.1 12.7 88.5 6.3 88.5 s1 12.7 82.1 19.0 82.1 19.0 88.5 12.7 88.5 s1 19.0 82.1 25.3 82.1 25.3 88.5 19.0 88.5 s1 25.3 82.1 31.7 82.1 31.7 88.5 25.3 88.5 s1 28.7 85.2 26.1 82.1 31.7 82.1 t2 28.7 85.2 26.1 82.1 p 31.7 88.2 28.7 85.2 31.7 82.1 t2 31.7 88.2 28.7 85.2 p 31.7 82.1 38.0 82.1 38.0 88.5 31.7 88.5 s1 31.7 82.1 34.8 85.3 38.0 82.1 t2 38.0 82.1 34.8 85.3 38.0 88.5 t2 31.8 88.4 31.9 88.5 38.0 88.5 34.8 85.3 s2 31.8 88.4 31.9 88.5 p 31.7 88.2 31.8 88.4 34.8 85.3 31.7 82.1 s2 31.7 88.2 31.8 88.4 p 38.0 82.1 44.4 82.1 44.4 88.5 38.0 88.5 s2 44.4 82.1 50.7 82.1 50.7 88.5 44.4 88.5 s2 45.0 82.1 47.2 84.9 47.5 85.3 50.7 82.1 s3 45.0 82.1 47.2 84.9 p 50.7 82.1 47.5 85.3 50.7 88.5 t3 47.5 85.3 49.7 88.5 50.7 88.5 47.5 85.3 s3 47.5 85.3 49.7 88.5 p 47.5 85.3 47.2 84.9 47.5 85.3 t3 47.5 85.3 47.2 84.9 p 50.7 82.1 57.0 82.1 57.0 88.5 50.7 88.5 s3 57.0 82.1 63.4 82.1 63.4 88.5 57.0 88.5 s3 63.4 82.1 69.7 82.1 69.7 88.5 63.4 88.5 s3 69.7 82.1 76.0 82.1 76.0 88.5 69.7 88.5 s3 76.0 82.1 82.4 82.1 82.4 88.5 76.0 88.5 s2 81.9 82.6 80.0 82.1 76.0 82.1 79.2 85.3 s3 81.9 82.6 80.0 82.1 p 82.4 82.7 81.9 82.6 79.2 85.3 82.4 88.5 s3 82.4 82.7 81.9 82.6 p 82.4 88.5 79.2 85.3 76.0 88.5 t3 76.0 88.5 79.2 85.3 76.0 82.1 t3 82.4 82.1 88.7 82.1 88.7 88.5 82.4 88.5 s2 82.9 82.7 87.9 82.9 85.5 85.3 t3 82.9 82.7 87.9 82.9 p 88.7 82.9 87.9 82.9 85.5 85.3 88.7 88.5 s3 88.7 82.9 87.9 82.9 p 88.7 88.5 85.5 85.3 82.4 88.5 t3 82.9 82.7 82.4 82.7 82.4 88.5 85.5 85.3 s3 82.9 82.7 82.4 82.7 p 88.7 82.1 95.0 82.1 95.0 88.5 88.7 88.5 s2 94.7 82.1 89.4 82.9 91.9 85.3 95.0 82.1 s3 94.7 82.1 89.4 82.9 p 95.0 82.1 91.9 85.3 95.0 88.5 t3 95.0 88.5 91.9 85.3 88.7 88.5 t3 89.4 82.9 88.7 82.9 88.7 88.5 91.9 85.3 s3 89.4 82.9 88.7 82.9 p 95.0 82.1 101.4 82.1 101.4 88.5 95.0 88.5 s3 101.4 82.1 107.7 82.1 107.7 88.5 101.4 88.5 s3 107.7 82.1 114.0 82.1 114.0 88.5 107.7 88.5 s3 114.0 82.1 120.4 82.1 120.4 88.5 114.0 88.5 s3 120.4 82.1 126.7 82.1 126.7 88.5 120.4 88.5 s2 120.4 82.1 123.6 85.3 126.7 82.1 t3 125.4 87.1 126.7 85.5 126.7 82.1 123.6 85.3 s3 125.4 87.1 126.7 85.5 p 124.5 88.5 125.4 87.1 123.6 85.3 120.4 88.5 s3 124.5 88.5 125.4 87.1 p 120.4 88.5 123.6 85.3 120.4 82.1 t3 126.7 82.1 133.1 82.1 133.1 88.5 126.7 88.5 s2 129.2 82.1 128.2 83.6 126.7 82.1 t3 129.2 82.1 128.2 83.6 p 128.2 83.6 126.7 85.5 126.7 82.1 t3 128.2 83.6 126.7 85.5 p 133.1 82.1 139.4 82.1 139.4 88.5 133.1 88.5 s2 139.4 82.1 145.7 82.1 145.7 88.5 139.4 88.5 s1 139.4 82.1 142.6 85.3 145.7 82.1 t2 144.1 86.8 145.7 84.7 145.7 82.1 142.6 85.3 s2 144.1 86.8 145.7 84.7 p 142.6 88.5 144.1 86.8 142.6 85.3 139.4 88.5 s2 142.6 88.5 144.1 86.8 p 139.4 88.5 142.6 85.3 139.4 82.1 t2 145.7 82.1 152.1 82.1 152.1 88.5 145.7 88.5 s1 148.3 82.1 147.0 83.5 145.7 82.1 t2 148.3 82.1 147.0 83.5 p 147.0 83.5 145.7 84.7 145.7 82.1 t2 147.0 83.5 145.7 84.7 p 152.1 82.1 158.4 82.1 158.4 88.5 152.1 88.5 s1 158.4 82.1 164.7 82.1 164.7 88.5 158.4 88.5 s1 164.7 82.1 171.1 82.1 171.1 88.5 164.7 88.5 s1 171.1 82.1 177.4 82.1 177.4 88.5 171.1 88.5 s1 177.4 82.1 183.7 82.1 183.7 88.5 177.4 88.5 s1 183.7 82.1 190.1 82.1 190.1 88.5 183.7 88.5 s1 190.1 82.1 196.4 82.1 196.4 88.5 190.1 88.5 s1 196.4 82.1 202.7 82.1 202.7 88.5 196.4 88.5 s1 201.4 83.5 200.2 82.1 202.7 82.1 t2 201.4 83.5 200.2 82.1 p 202.7 84.7 201.4 83.5 202.7 82.1 t2 202.7 84.7 201.4 83.5 p 202.7 82.1 209.1 82.1 209.1 88.5 202.7 88.5 s1 202.7 82.1 205.9 85.3 209.1 82.1 t2 209.1 82.1 205.9 85.3 209.1 88.5 t2 204.4 86.8 205.9 88.5 209.1 88.5 205.9 85.3 s2 204.4 86.8 205.9 88.5 p 202.7 84.7 204.4 86.8 205.9 85.3 202.7 82.1 s2 202.7 84.7 204.4 86.8 p 209.1 82.1 215.4 82.1 215.4 88.5 209.1 88.5 s2 215.4 82.1 221.8 82.1 221.8 88.5 215.4 88.5 s2 220.3 83.6 219.2 82.1 221.8 82.1 t3 220.3 83.6 219.2 82.1 p 221.8 85.5 220.3 83.6 221.8 82.1 t3 221.8 85.5 220.3 83.6 p 221.8 82.1 228.1 82.1 228.1 88.5 221.8 88.5 s2 221.8 82.1 224.9 85.3 228.1 82.1 t3 228.1 82.1 224.9 85.3 228.1 88.5 t3 223.1 87.1 224.0 88.5 228.1 88.5 224.9 85.3 s3 223.1 87.1 224.0 88.5 p 221.8 85.5 223.1 87.1 224.9 85.3 221.8 82.1 s3 221.8 85.5 223.1 87.1 p 228.1 82.1 234.4 82.1 234.4 88.5 228.1 88.5 s3 234.4 82.1 240.8 82.1 240.8 88.5 234.4 88.5 s3 240.8 82.1 247.1 82.1 247.1 88.5 240.8 88.5 s3 247.1 82.1 253.4 82.1 253.4 88.5 247.1 88.5 s3 253.4 82.1 259.8 82.1 259.8 88.5 253.4 88.5 s2 259.0 82.9 253.8 82.1 253.4 82.1 256.6 85.3 s3 259.0 82.9 253.8 82.1 p 259.8 82.9 259.0 82.9 256.6 85.3 259.8 88.5 s3 259.8 82.9 259.0 82.9 p 259.8 88.5 256.6 85.3 253.4 88.5 t3 253.4 88.5 256.6 85.3 253.4 82.1 t3 259.8 82.1 266.1 82.1 266.1 88.5 259.8 88.5 s2 260.6 82.9 265.6 82.7 262.9 85.3 t3 260.6 82.9 265.6 82.7 p 266.1 82.7 265.6 82.7 262.9 85.3 266.1 88.5 s3 266.1 82.7 265.6 82.7 p 266.1 88.5 262.9 85.3 259.8 88.5 t3 260.6 82.9 259.8 82.9 259.8 88.5 262.9 85.3 s3 260.6 82.9 259.8 82.9 p 266.1 82.1 272.4 82.1 272.4 88.5 266.1 88.5 s2 268.5 82.1 266.6 82.6 269.3 85.3 272.4 82.1 s3 268.5 82.1 266.6 82.6 p 272.4 82.1 269.3 85.3 272.4 88.5 t3 272.4 88.5 269.3 85.3 266.1 88.5 t3 266.6 82.6 266.1 82.7 266.1 88.5 269.3 85.3 s3 266.6 82.6 266.1 82.7 p 272.4 82.1 278.8 82.1 278.8 88.5 272.4 88.5 s3 278.8 82.1 285.1 82.1 285.1 88.5 278.8 88.5 s3 285.1 82.1 291.5 82.1 291.5 88.5 285.1 88.5 s3 291.5 82.1 297.8 82.1 297.8 88.5 291.5 88.5 s3 297.8 82.1 304.1 82.1 304.1 88.5 297.8 88.5 s2 301.3 84.9 303.5 82.1 297.8 82.1 301.0 85.3 s3 301.3 84.9 303.5 82.1 p 301.3 84.9 301.0 85.3 301.0 85.3 t3 301.3 84.9 301.0 85.3 p 298.8 88.5 301.0 85.3 301.0 85.3 297.8 88.5 s3 298.8 88.5 301.0 85.3 p 297.8 88.5 301.0 85.3 297.8 82.1 t3 304.1 82.1 310.5 82.1 310.5 88.5 304.1 88.5 s2 310.5 82.1 316.8 82.1 316.8 88.5 310.5 88.5 s1 310.5 82.1 313.6 85.3 316.8 82.1 t2 316.7 88.4 316.8 88.2 316.8 82.1 313.6 85.3 s2 316.7 88.4 316.8 88.2 p 316.6 88.5 316.7 88.4 313.6 85.3 310.5 88.5 s2 316.6 88.5 316.7 88.4 p 310.5 88.5 313.6 85.3 310.5 82.1 t2 316.8 82.1 323.1 82.1 323.1 88.5 316.8 88.5 s1 322.4 82.1 319.8 85.2 316.8 82.1 t2 322.4 82.1 319.8 85.2 p 319.8 85.2 316.8 88.2 316.8 82.1 t2 319.8 85.2 316.8 88.2 p 323.1 82.1 329.5 82.1 329.5 88.5 323.1 88.5 s1 329.5 82.1 335.8 82.1 335.8 88.5 329.5 88.5 s1 335.8 82.1 342.1 82.1 342.1 88.5 335.8 88.5 s1 342.1 82.1 348.5 82.1 348.5 88.5 342.1 88.5 s1 0.0 75.8 6.3 75.8 6.3 82.1 0.0 82.1 s1 6.3 75.8 12.7 75.8 12.7 82.1 6.3 82.1 s1 12.7 75.8 19.0 75.8 19.0 82.1 12.7 82.1 s1 18.8 76.0 18.6 75.8 19.0 75.8 t2 18.8 76.0 18.6 75.8 p 19.0 76.1 18.8 76.0 19.0 75.8 t2 19.0 76.1 18.8 76.0 p 19.0 75.8 25.3 75.8 25.3 82.1 19.0 82.1 s1 21.3 78.2 22.2 78.9 25.3 75.8 19.0 75.8 s2 21.3 78.2 22.2 78.9 p 25.3 81.3 22.2 78.9 25.3 75.8 t2 25.3 81.3 22.2 78.9 p 21.3 78.2 19.0 76.1 19.0 75.8 t2 21.3 78.2 19.0 76.1 p 25.3 75.8 31.7 75.8 31.7 82.1 25.3 82.1 s1 25.3 75.8 28.5 79.0 31.7 75.8 t2 31.7 75.8 28.5 79.0 31.7 82.1 t2 25.7 81.8 26.1 82.1 31.7 82.1 28.5 79.0 s2 25.7 81.8 26.1 82.1 p 25.3 81.3 25.7 81.8 28.5 79.0 25.3 75.8 s2 25.3 81.3 25.7 81.8 p 31.7 75.8 38.0 75.8 38.0 82.1 31.7 82.1 s2 38.0 75.8 44.4 75.8 44.4 82.1 38.0 82.1 s2 41.8 78.4 39.7 75.8 44.4 75.8 t3 41.8 78.4 39.7 75.8 p 44.4 81.4 41.8 78.4 44.4 75.8 t3 44.4 81.4 41.8 78.4 p 44.4 75.8 50.7 75.8 50.7 82.1 44.4 82.1 s2 44.4 75.8 47.5 79.0 50.7 75.8 t3 50.7 75.8 47.5 79.0 50.7 82.1 t3 44.7 81.8 45.0 82.1 50.7 82.1 47.5 79.0 s3 44.7 81.8 45.0 82.1 p 44.4 81.4 44.7 81.8 47.5 79.0 44.4 75.8 s3 44.4 81.4 44.7 81.8 p 50.7 75.8 57.0 75.8 57.0 82.1 50.7 82.1 s3 57.0 75.8 63.4 75.8 63.4 82.1 57.0 82.1 s3 63.4 75.8 69.7 75.8 69.7 82.1 63.4 82.1 s2 68.5 77.0 67.7 75.8 63.4 75.8 66.5 79.0 s3 68.5 77.0 67.7 75.8 p 69.7 77.8 68.5 77.0 66.5 79.0 69.7 82.1 s3 69.7 77.8 68.5 77.0 p 69.7 82.1 66.5 79.0 63.4 82.1 t3 63.4 82.1 66.5 79.0 63.4 75.8 t3 69.7 75.8 76.0 75.8 76.0 82.1 69.7 82.1 s2 74.2 80.3 76.0 81.2 76.0 82.1 t3 74.2 80.3 76.0 81.2 p 74.2 80.3 72.3 79.6 69.7 82.1 76.0 82.1 s3 74.2 80.3 72.3 79.6 p 69.7 77.8 72.3 79.6 69.7 82.1 t3 69.7 77.8 72.3 79.6 p 76.0 75.8 82.4 75.8 82.4 82.1 76.0 82.1 s2 76.7 81.4 80.0 82.1 76.0 82.1 t3 76.7 81.4 80.0 82.1 p 76.0 81.2 76.7 81.4 76.0 82.1 t3 76.0 81.2 76.7 81.4 p 82.4 75.8 88.7 75.8 88.7 82.1 82.4 82.1 s1 88.6 75.9 87.0 75.8 82.4 75.8 85.5 79.0 s2 88.6 75.9 87.0 75.8 p 88.7 75.9 88.6 75.9 85.5 79.0 88.7 82.1 s2 88.7 75.9 88.6 75.9 p 88.7 82.1 85.5 79.0 82.4 82.1 t2 82.4 82.1 85.5 79.0 82.4 75.8 t2 88.7 75.8 95.0 75.8 95.0 82.1 88.7 82.1 s1 89.3 75.8 88.8 75.9 91.9 79.0 95.0 75.8 s2 89.3 75.8 88.8 75.9 p 95.0 75.8 91.9 79.0 95.0 82.1 t2 95.0 82.1 91.9 79.0 88.7 82.1 t2 88.8 75.9 88.7 75.9 88.7 82.1 91.9 79.0 s2 88.8 75.9 88.7 75.9 p 95.0 82.1 95.0 82.1 95.0 82.1 t3 95.0 82.1 95.0 82.1 p 94.7 82.1 95.0 82.1 95.0 82.1 t3 94.7 82.1 95.0 82.1 p 95.0 75.8 101.4 75.8 101.4 82.1 95.0 82.1 s2 99.9 80.6 101.4 79.9 101.4 82.1 t3 99.9 80.6 101.4 79.9 p 99.9 80.6 95.1 82.1 95.0 82.1 101.4 82.1 s3 99.9 80.6 95.1 82.1 p 95.0 82.1 95.1 82.1 95.0 82.1 t3 95.0 82.1 95.1 82.1 p 101.4 75.8 107.7 75.8 107.7 82.1 101.4 82.1 s2 106.4 75.8 103.9 78.4 104.5 79.0 107.7 75.8 s3 106.4 75.8 103.9 78.4 p 107.7 75.8 104.5 79.0 107.7 82.1 t3 107.7 82.1 104.5 79.0 101.4 82.1 t3 103.9 78.4 101.4 79.9 101.4 82.1 104.5 79.0 s3 103.9 78.4 101.4 79.9 p 107.7 75.8 114.0 75.8 114.0 82.1 107.7 82.1 s3 114.0 75.8 120.4 75.8 120.4 82.1 114.0 82.1 s3 120.4 75.8 126.7 75.8 126.7 82.1 120.4 82.1 s3 126.7 75.8 133.1 75.8 133.1 82.1 126.7 82.1 s2 126.7 75.8 129.9 79.0 133.1 75.8 t3 131.0 80.1 133.1 77.7 133.1 75.8 129.9 79.0 s3 131.0 80.1 133.1 77.7 p 129.2 82.1 131.0 80.1 129.9 79.0 126.7 82.1 s3 129.2 82.1 131.0 80.1 p 126.7 82.1 129.9 79.0 126.7 75.8 t3 133.1 75.8 139.4 75.8 139.4 82.1 133.1 82.1 s2 134.6 75.8 133.9 76.7 133.1 75.8 t3 134.6 75.8 133.9 76.7 p 133.9 76.7 133.1 77.7 133.1 75.8 t3 133.9 76.7 133.1 77.7 p 139.4 75.8 145.7 75.8 145.7 82.1 139.4 82.1 s2 145.7 75.8 152.1 75.8 152.1 82.1 145.7 82.1 s1 145.7 75.8 148.9 79.0 152.1 75.8 t2 150.3 80.4 152.1 78.6 152.1 75.8 148.9 79.0 s2 150.3 80.4 152.1 78.6 p 148.3 82.1 150.3 80.4 148.9 79.0 145.7 82.1 s2 148.3 82.1 150.3 80.4 p 145.7 82.1 148.9 79.0 145.7 75.8 t2 152.1 75.8 158.4 75.8 158.4 82.1 152.1 82.1 s1 155.9 75.8 153.7 77.5 152.1 75.8 t2 155.9 75.8 153.7 77.5 p 153.7 77.5 152.1 78.6 152.1 75.8 t2 153.7 77.5 152.1 78.6 p 158.4 75.8 164.7 75.8 164.7 82.1 158.4 82.1 s1 164.7 75.8 171.1 75.8 171.1 82.1 164.7 82.1 s1 171.1 75.8 177.4 75.8 177.4 82.1 171.1 82.1 s1 177.4 75.8 183.7 75.8 183.7 82.1 177.4 82.1 s1 183.7 75.8 190.1 75.8 190.1 82.1 183.7 82.1 s1 190.1 75.8 196.4 75.8 196.4 82.1 190.1 82.1 s1 194.7 77.5 192.6 75.8 196.4 75.8 t2 194.7 77.5 192.6 75.8 p 196.4 78.6 194.7 77.5 196.4 75.8 t2 196.4 78.6 194.7 77.5 p 196.4 75.8 202.7 75.8 202.7 82.1 196.4 82.1 s1 196.4 75.8 199.6 79.0 202.7 75.8 t2 202.7 75.8 199.6 79.0 202.7 82.1 t2 198.2 80.4 200.2 82.1 202.7 82.1 199.6 79.0 s2 198.2 80.4 200.2 82.1 p 196.4 78.6 198.2 80.4 199.6 79.0 196.4 75.8 s2 196.4 78.6 198.2 80.4 p 202.7 75.8 209.1 75.8 209.1 82.1 202.7 82.1 s2 209.1 75.8 215.4 75.8 215.4 82.1 209.1 82.1 s2 214.5 76.7 213.8 75.8 215.4 75.8 t3 214.5 76.7 213.8 75.8 p 215.4 77.7 214.5 76.7 215.4 75.8 t3 215.4 77.7 214.5 76.7 p 215.4 75.8 221.8 75.8 221.8 82.1 215.4 82.1 s2 215.4 75.8 218.6 79.0 221.8 75.8 t3 221.8 75.8 218.6 79.0 221.8 82.1 t3 217.5 80.1 219.2 82.1 221.8 82.1 218.6 79.0 s3 217.5 80.1 219.2 82.1 p 215.4 77.7 217.5 80.1 218.6 79.0 215.4 75.8 s3 215.4 77.7 217.5 80.1 p 221.8 75.8 228.1 75.8 228.1 82.1 221.8 82.1 s3 228.1 75.8 234.4 75.8 234.4 82.1 228.1 82.1 s3 234.4 75.8 240.8 75.8 240.8 82.1 234.4 82.1 s3 240.8 75.8 247.1 75.8 247.1 82.1 240.8 82.1 s2 244.5 78.4 242.0 75.8 240.8 75.8 243.9 79.0 s3 244.5 78.4 242.0 75.8 p 247.1 79.9 244.5 78.4 243.9 79.0 247.1 82.1 s3 247.1 79.9 244.5 78.4 p 247.1 82.1 243.9 79.0 240.8 82.1 t3 240.8 82.1 243.9 79.0 240.8 75.8 t3 247.1 75.8 253.4 75.8 253.4 82.1 247.1 82.1 s2 253.4 82.1 253.4 82.1 253.4 82.1 t3 253.4 82.1 253.4 82.1 p 253.4 82.1 248.6 80.6 247.1 82.1 253.4 82.1 s3 253.4 82.1 248.6 80.6 p 247.1 79.9 248.6 80.6 247.1 82.1 t3 247.1 79.9 248.6 80.6 p 253.4 75.8 259.8 75.8 259.8 82.1 253.4 82.1 s1 259.7 75.9 259.2 75.8 253.4 75.8 256.6 79.0 s2 259.7 75.9 259.2 75.8 p 259.8 75.9 259.7 75.9 256.6 79.0 259.8 82.1 s2 259.8 75.9 259.7 75.9 p 259.8 82.1 256.6 79.0 253.4 82.1 t2 253.4 82.1 256.6 79.0 253.4 75.8 t2 253.5 82.1 253.8 82.1 253.4 82.1 t3 253.5 82.1 253.8 82.1 p 253.4 82.1 253.5 82.1 253.4 82.1 t3 253.4 82.1 253.5 82.1 p 259.8 75.8 266.1 75.8 266.1 82.1 259.8 82.1 s1 261.5 75.8 259.9 75.9 262.9 79.0 266.1 75.8 s2 261.5 75.8 259.9 75.9 p 266.1 75.8 262.9 79.0 266.1 82.1 t2 266.1 82.1 262.9 79.0 259.8 82.1 t2 259.9 75.9 259.8 75.9 259.8 82.1 262.9 79.0 s2 259.9 75.9 259.8 75.9 p 266.1 75.8 272.4 75.8 272.4 82.1 266.1 82.1 s2 271.7 81.4 272.4 81.2 272.4 82.1 t3 271.7 81.4 272.4 81.2 p 268.5 82.1 271.7 81.4 272.4 82.1 t3 268.5 82.1 271.7 81.4 p 272.4 75.8 278.8 75.8 278.8 82.1 272.4 82.1 s2 276.2 79.6 278.8 77.8 278.8 82.1 t3 276.2 79.6 278.8 77.8 p 276.2 79.6 274.2 80.3 272.4 82.1 278.8 82.1 s3 276.2 79.6 274.2 80.3 p 272.4 81.2 274.2 80.3 272.4 82.1 t3 272.4 81.2 274.2 80.3 p 278.8 75.8 285.1 75.8 285.1 82.1 278.8 82.1 s2 280.8 75.8 280.0 77.0 281.9 79.0 285.1 75.8 s3 280.8 75.8 280.0 77.0 p 285.1 75.8 281.9 79.0 285.1 82.1 t3 285.1 82.1 281.9 79.0 278.8 82.1 t3 280.0 77.0 278.8 77.8 278.8 82.1 281.9 79.0 s3 280.0 77.0 278.8 77.8 p 285.1 75.8 291.5 75.8 291.5 82.1 285.1 82.1 s3 291.5 75.8 297.8 75.8 297.8 82.1 291.5 82.1 s3 297.8 75.8 304.1 75.8 304.1 82.1 297.8 82.1 s2 297.8 75.8 301.0 79.0 304.1 75.8 t3 303.8 81.8 304.1 81.4 304.1 75.8 301.0 79.0 s3 303.8 81.8 304.1 81.4 p 303.5 82.1 303.8 81.8 301.0 79.0 297.8 82.1 s3 303.5 82.1 303.8 81.8 p 297.8 82.1 301.0 79.0 297.8 75.8 t3 304.1 75.8 310.5 75.8 310.5 82.1 304.1 82.1 s2 308.8 75.8 306.7 78.4 304.1 75.8 t3 308.8 75.8 306.7 78.4 p 306.7 78.4 304.1 81.4 304.1 75.8 t3 306.7 78.4 304.1 81.4 p 310.5 75.8 316.8 75.8 316.8 82.1 310.5 82.1 s2 316.8 75.8 323.1 75.8 323.1 82.1 316.8 82.1 s1 316.8 75.8 320.0 79.0 323.1 75.8 t2 322.8 81.8 323.1 81.3 323.1 75.8 320.0 79.0 s2 322.8 81.8 323.1 81.3 p 322.4 82.1 322.8 81.8 320.0 79.0 316.8 82.1 s2 322.4 82.1 322.8 81.8 p 316.8 82.1 320.0 79.0 316.8 75.8 t2 323.1 75.8 329.5 75.8 329.5 82.1 323.1 82.1 s1 326.3 78.9 327.1 78.2 329.5 75.8 323.1 75.8 s2 326.3 78.9 327.1 78.2 p 329.5 76.1 327.1 78.2 329.5 75.8 t2 329.5 76.1 327.1 78.2 p 326.3 78.9 323.1 81.3 323.1 75.8 t2 326.3 78.9 323.1 81.3 p 329.5 75.8 335.8 75.8 335.8 82.1 329.5 82.1 s1 329.9 75.8 329.6 76.0 329.5 75.8 t2 329.9 75.8 329.6 76.0 p 329.6 76.0 329.5 76.1 329.5 75.8 t2 329.6 76.0 329.5 76.1 p 335.8 75.8 342.1 75.8 342.1 82.1 335.8 82.1 s1 342.1 75.8 348.5 75.8 348.5 82.1 342.1 82.1 s1 0.0 69.5 6.3 69.5 6.3 75.8 0.0 75.8 s1 5.8 70.0 1.9 69.5 6.3 69.5 t2 5.8 70.0 1.9 69.5 p 6.3 70.1 5.8 70.0 6.3 69.5 t2 6.3 70.1 5.8 70.0 p 6.3 69.5 12.7 69.5 12.7 75.8 6.3 75.8 s1 7.3 70.5 10.4 71.7 12.7 69.5 6.3 69.5 s2 7.3 70.5 10.4 71.7 p 12.7 72.5 10.4 71.7 12.7 69.5 t2 12.7 72.5 10.4 71.7 p 7.3 70.5 6.3 70.1 6.3 69.5 t2 7.3 70.5 6.3 70.1 p 12.7 69.5 19.0 69.5 19.0 75.8 12.7 75.8 s1 12.7 69.5 15.8 72.7 19.0 69.5 t2 19.0 69.5 15.8 72.7 19.0 75.8 t2 14.7 73.8 18.6 75.8 19.0 75.8 15.8 72.7 s2 14.7 73.8 18.6 75.8 p 12.7 72.5 14.7 73.8 15.8 72.7 12.7 69.5 s2 12.7 72.5 14.7 73.8 p 19.0 69.5 25.3 69.5 25.3 75.8 19.0 75.8 s2 25.3 69.5 31.7 69.5 31.7 75.8 25.3 75.8 s2 31.7 69.5 38.0 69.5 38.0 75.8 31.7 75.8 s2 35.8 71.8 33.8 69.5 38.0 69.5 t3 35.8 71.8 33.8 69.5 p 38.0 74.1 35.8 71.8 38.0 69.5 t3 38.0 74.1 35.8 71.8 p 38.0 69.5 44.4 69.5 44.4 75.8 38.0 75.8 s2 38.0 69.5 41.2 72.7 44.4 69.5 t3 44.4 69.5 41.2 72.7 44.4 75.8 t3 38.9 75.0 39.7 75.8 44.4 75.8 41.2 72.7 s3 38.9 75.0 39.7 75.8 p 38.0 74.1 38.9 75.0 41.2 72.7 38.0 69.5 s3 38.0 74.1 38.9 75.0 p 44.4 69.5 50.7 69.5 50.7 75.8 44.4 75.8 s3 50.7 69.5 57.0 69.5 57.0 75.8 50.7 75.8 s3 57.0 69.5 63.4 69.5 63.4 75.8 57.0 75.8 s3 63.4 69.5 69.7 69.5 69.7 75.8 63.4 75.8 s2 65.3 69.5 66.2 72.3 63.4 69.5 t3 65.3 69.5 66.2 72.3 p 66.3 72.9 67.7 75.8 63.4 75.8 t3 66.3 72.9 67.7 75.8 p 66.3 72.9 66.2 72.3 63.4 69.5 63.4 75.8 s3 66.3 72.9 66.2 72.3 p 69.7 69.5 76.0 69.5 76.0 75.8 69.7 75.8 s1 74.9 70.7 74.0 69.5 69.7 69.5 72.9 72.7 s2 74.9 70.7 74.0 69.5 p 76.0 71.9 74.9 70.7 72.9 72.7 76.0 75.8 s2 76.0 71.9 74.9 70.7 p 76.0 75.8 72.9 72.7 69.7 75.8 t2 69.7 75.8 72.9 72.7 69.7 69.5 t2 76.0 69.5 82.4 69.5 82.4 75.8 76.0 75.8 s1 81.4 74.9 82.4 75.4 82.4 75.8 t2 81.4 74.9 82.4 75.4 p 81.4 74.9 78.5 73.4 76.0 75.8 82.4 75.8 s2 81.4 74.9 78.5 73.4 p 76.0 71.9 78.5 73.4 76.0 75.8 t2 76.0 71.9 78.5 73.4 p 82.4 69.5 88.7 69.5 88.7 75.8 82.4 75.8 s1 82.8 75.4 87.0 75.8 82.4 75.8 t2 82.8 75.4 87.0 75.8 p 82.4 75.4 82.8 75.4 82.4 75.8 t2 82.4 75.4 82.8 75.4 p 88.7 69.5 95.0 69.5 95.0 75.8 88.7 75.8 s1 93.7 74.5 95.0 74.1 95.0 75.8 t2 93.7 74.5 95.0 74.1 p 89.3 75.8 93.7 74.5 95.0 75.8 t2 89.3 75.8 93.7 74.5 p 95.0 69.5 101.4 69.5 101.4 75.8 95.0 75.8 s1 100.3 69.5 97.6 72.1 98.2 72.7 101.4 69.5 s2 100.3 69.5 97.6 72.1 p 101.4 69.5 98.2 72.7 101.4 75.8 t2 101.4 75.8 98.2 72.7 95.0 75.8 t2 97.6 72.1 95.0 74.1 95.0 75.8 98.2 72.7 s2 97.6 72.1 95.0 74.1 p 101.4 69.5 107.7 69.5 107.7 75.8 101.4 75.8 s2 107.0 75.1 107.7 73.2 107.7 75.8 t3 107.0 75.1 107.7 73.2 p 106.4 75.8 107.0 75.1 107.7 75.8 t3 106.4 75.8 107.0 75.1 p 107.7 69.5 114.0 69.5 114.0 75.8 107.7 75.8 s2 109.0 69.5 108.8 70.6 110.9 72.7 114.0 69.5 s3 109.0 69.5 108.8 70.6 p 114.0 69.5 110.9 72.7 114.0 75.8 t3 114.0 75.8 110.9 72.7 107.7 75.8 t3 108.8 70.6 107.7 73.2 107.7 75.8 110.9 72.7 s3 108.8 70.6 107.7 73.2 p 114.0 69.5 120.4 69.5 120.4 75.8 114.0 75.8 s3 120.4 69.5 126.7 69.5 126.7 75.8 120.4 75.8 s3 126.7 69.5 133.1 69.5 133.1 75.8 126.7 75.8 s3 133.1 69.5 139.4 69.5 139.4 75.8 133.1 75.8 s2 133.1 69.5 136.2 72.7 139.4 69.5 t3 136.9 73.4 139.4 70.6 139.4 69.5 136.2 72.7 s3 136.9 73.4 139.4 70.6 p 134.6 75.8 136.9 73.4 136.2 72.7 133.1 75.8 s3 134.6 75.8 136.9 73.4 p 133.1 75.8 136.2 72.7 133.1 69.5 t3 139.4 69.5 145.7 69.5 145.7 75.8 139.4 75.8 s2 140.5 69.5 139.9 70.1 139.4 69.5 t3 140.5 69.5 139.9 70.1 p 139.9 70.1 139.4 70.6 139.4 69.5 t3 139.9 70.1 139.4 70.6 p 145.7 69.5 152.1 69.5 152.1 75.8 145.7 75.8 s2 152.1 69.5 158.4 69.5 158.4 75.8 152.1 75.8 s1 152.1 69.5 155.2 72.7 158.4 69.5 t2 157.4 74.9 158.4 74.2 158.4 69.5 155.2 72.7 s2 157.4 74.9 158.4 74.2 p 155.9 75.8 157.4 74.9 155.2 72.7 152.1 75.8 s2 155.9 75.8 157.4 74.9 p 152.1 75.8 155.2 72.7 152.1 69.5 t2 158.4 69.5 164.7 69.5 164.7 75.8 158.4 75.8 s1 158.4 69.5 161.6 72.7 164.7 69.5 t2 161.6 72.7 164.7 71.2 164.7 69.5 161.6 72.7 s2 161.6 72.7 164.7 71.2 p 161.6 72.7 161.5 72.8 161.6 72.7 t2 161.6 72.7 161.5 72.8 p 158.4 74.2 161.5 72.8 161.6 72.7 158.4 69.5 s2 158.4 74.2 161.5 72.8 p 164.7 69.5 171.1 69.5 171.1 75.8 164.7 75.8 s1 170.9 69.5 166.1 70.8 164.7 69.5 t2 170.9 69.5 166.1 70.8 p 166.1 70.8 164.7 71.2 164.7 69.5 t2 166.1 70.8 164.7 71.2 p 171.1 69.5 177.4 69.5 177.4 75.8 171.1 75.8 s1 177.4 69.5 183.7 69.5 183.7 75.8 177.4 75.8 s1 182.4 70.8 177.6 69.5 183.7 69.5 t2 182.4 70.8 177.6 69.5 p 183.7 71.2 182.4 70.8 183.7 69.5 t2 183.7 71.2 182.4 70.8 p 183.7 69.5 190.1 69.5 190.1 75.8 183.7 75.8 s1 183.7 69.5 186.9 72.7 190.1 69.5 t2 187.0 72.8 190.1 74.2 190.1 69.5 186.9 72.7 s2 187.0 72.8 190.1 74.2 p 187.0 72.8 186.9 72.7 186.9 72.7 t2 187.0 72.8 186.9 72.7 p 183.7 71.2 186.9 72.7 186.9 72.7 183.7 69.5 s2 183.7 71.2 186.9 72.7 p 190.1 69.5 196.4 69.5 196.4 75.8 190.1 75.8 s1 190.1 69.5 193.2 72.7 196.4 69.5 t2 196.4 69.5 193.2 72.7 196.4 75.8 t2 191.0 74.9 192.6 75.8 196.4 75.8 193.2 72.7 s2 191.0 74.9 192.6 75.8 p 190.1 74.2 191.0 74.9 193.2 72.7 190.1 69.5 s2 190.1 74.2 191.0 74.9 p 196.4 69.5 202.7 69.5 202.7 75.8 196.4 75.8 s2 202.7 69.5 209.1 69.5 209.1 75.8 202.7 75.8 s2 208.5 70.1 208.0 69.5 209.1 69.5 t3 208.5 70.1 208.0 69.5 p 209.1 70.6 208.5 70.1 209.1 69.5 t3 209.1 70.6 208.5 70.1 p 209.1 69.5 215.4 69.5 215.4 75.8 209.1 75.8 s2 209.1 69.5 212.3 72.7 215.4 69.5 t3 215.4 69.5 212.3 72.7 215.4 75.8 t3 211.5 73.4 213.8 75.8 215.4 75.8 212.3 72.7 s3 211.5 73.4 213.8 75.8 p 209.1 70.6 211.5 73.4 212.3 72.7 209.1 69.5 s3 209.1 70.6 211.5 73.4 p 215.4 69.5 221.8 69.5 221.8 75.8 215.4 75.8 s3 221.8 69.5 228.1 69.5 228.1 75.8 221.8 75.8 s3 228.1 69.5 234.4 69.5 234.4 75.8 228.1 75.8 s3 234.4 69.5 240.8 69.5 240.8 75.8 234.4 75.8 s2 239.6 70.6 239.5 69.5 234.4 69.5 237.6 72.7 s3 239.6 70.6 239.5 69.5 p 240.8 73.2 239.6 70.6 237.6 72.7 240.8 75.8 s3 240.8 73.2 239.6 70.6 p 240.8 75.8 237.6 72.7 234.4 75.8 t3 234.4 75.8 237.6 72.7 234.4 69.5 t3 240.8 69.5 247.1 69.5 247.1 75.8 240.8 75.8 s2 241.5 75.1 242.0 75.8 240.8 75.8 t3 241.5 75.1 242.0 75.8 p 240.8 73.2 241.5 75.1 240.8 75.8 t3 240.8 73.2 241.5 75.1 p 247.1 69.5 253.4 69.5 253.4 75.8 247.1 75.8 s1 250.9 72.1 248.2 69.5 247.1 69.5 250.3 72.7 s2 250.9 72.1 248.2 69.5 p 253.4 74.1 250.9 72.1 250.3 72.7 253.4 75.8 s2 253.4 74.1 250.9 72.1 p 253.4 75.8 250.3 72.7 247.1 75.8 t2 247.1 75.8 250.3 72.7 247.1 69.5 t2 253.4 69.5 259.8 69.5 259.8 75.8 253.4 75.8 s1 254.7 74.5 259.2 75.8 253.4 75.8 t2 254.7 74.5 259.2 75.8 p 253.4 74.1 254.7 74.5 253.4 75.8 t2 253.4 74.1 254.7 74.5 p 259.8 69.5 266.1 69.5 266.1 75.8 259.8 75.8 s1 265.7 75.4 266.1 75.4 266.1 75.8 t2 265.7 75.4 266.1 75.4 p 261.5 75.8 265.7 75.4 266.1 75.8 t2 261.5 75.8 265.7 75.4 p 266.1 69.5 272.4 69.5 272.4 75.8 266.1 75.8 s1 270.0 73.4 272.4 71.9 272.4 75.8 t2 270.0 73.4 272.4 71.9 p 270.0 73.4 267.1 74.9 266.1 75.8 272.4 75.8 s2 270.0 73.4 267.1 74.9 p 266.1 75.4 267.1 74.9 266.1 75.8 t2 266.1 75.4 267.1 74.9 p 272.4 69.5 278.8 69.5 278.8 75.8 272.4 75.8 s1 274.4 69.5 273.6 70.7 275.6 72.7 278.8 69.5 s2 274.4 69.5 273.6 70.7 p 278.8 69.5 275.6 72.7 278.8 75.8 t2 278.8 75.8 275.6 72.7 272.4 75.8 t2 273.6 70.7 272.4 71.9 272.4 75.8 275.6 72.7 s2 273.6 70.7 272.4 71.9 p 278.8 69.5 285.1 69.5 285.1 75.8 278.8 75.8 s2 282.3 72.3 283.2 69.5 285.1 69.5 t3 282.3 72.3 283.2 69.5 p 282.3 72.3 282.2 72.9 285.1 75.8 285.1 69.5 s3 282.3 72.3 282.2 72.9 p 280.8 75.8 282.2 72.9 285.1 75.8 t3 280.8 75.8 282.2 72.9 p 285.1 69.5 291.5 69.5 291.5 75.8 285.1 75.8 s3 291.5 69.5 297.8 69.5 297.8 75.8 291.5 75.8 s3 297.8 69.5 304.1 69.5 304.1 75.8 297.8 75.8 s3 304.1 69.5 310.5 69.5 310.5 75.8 304.1 75.8 s2 304.1 69.5 307.3 72.7 310.5 69.5 t3 309.6 75.0 310.5 74.1 310.5 69.5 307.3 72.7 s3 309.6 75.0 310.5 74.1 p 308.8 75.8 309.6 75.0 307.3 72.7 304.1 75.8 s3 308.8 75.8 309.6 75.0 p 304.1 75.8 307.3 72.7 304.1 69.5 t3 310.5 69.5 316.8 69.5 316.8 75.8 310.5 75.8 s2 314.7 69.5 312.7 71.8 310.5 69.5 t3 314.7 69.5 312.7 71.8 p 312.7 71.8 310.5 74.1 310.5 69.5 t3 312.7 71.8 310.5 74.1 p 316.8 69.5 323.1 69.5 323.1 75.8 316.8 75.8 s2 323.1 69.5 329.5 69.5 329.5 75.8 323.1 75.8 s2 329.5 69.5 335.8 69.5 335.8 75.8 329.5 75.8 s1 329.5 69.5 332.6 72.7 335.8 69.5 t2 333.7 73.8 335.8 72.5 335.8 69.5 332.6 72.7 s2 333.7 73.8 335.8 72.5 p 329.9 75.8 333.7 73.8 332.6 72.7 329.5 75.8 s2 329.9 75.8 333.7 73.8 p 329.5 75.8 332.6 72.7 329.5 69.5 t2 335.8 69.5 342.1 69.5 342.1 75.8 335.8 75.8 s1 338.0 71.7 341.1 70.5 342.1 69.5 335.8 69.5 s2 338.0 71.7 341.1 70.5 p 342.1 70.1 341.1 70.5 342.1 69.5 t2 342.1 70.1 341.1 70.5 p 338.0 71.7 335.8 72.5 335.8 69.5 t2 338.0 71.7 335.8 72.5 p 342.1 69.5 348.5 69.5 348.5 75.8 342.1 75.8 s1 346.5 69.5 342.7 70.0 342.1 69.5 t2 346.5 69.5 342.7 70.0 p 342.7 70.0 342.1 70.1 342.1 69.5 t2 342.7 70.0 342.1 70.1 p 0.0 63.2 6.3 63.2 6.3 69.5 0.0 69.5 s1 0.0 63.2 3.2 66.3 6.3 63.2 t2 6.3 63.2 3.2 66.3 6.3 69.5 t2 0.2 69.3 1.9 69.5 6.3 69.5 3.2 66.3 s2 0.2 69.3 1.9 69.5 p 0.0 69.3 0.2 69.3 3.2 66.3 0.0 63.2 s2 0.0 69.3 0.2 69.3 p 6.3 63.2 12.7 63.2 12.7 69.5 6.3 69.5 s2 12.7 63.2 19.0 63.2 19.0 69.5 12.7 69.5 s2 19.0 63.2 25.3 63.2 25.3 69.5 19.0 69.5 s2 25.3 63.2 31.7 63.2 31.7 69.5 25.3 69.5 s2 29.4 65.4 27.1 63.2 31.7 63.2 t3 29.4 65.4 27.1 63.2 p 31.7 67.3 29.4 65.4 31.7 63.2 t3 31.7 67.3 29.4 65.4 p 31.7 63.2 38.0 63.2 38.0 69.5 31.7 69.5 s2 31.7 63.2 34.8 66.3 38.0 63.2 t3 38.0 63.2 34.8 66.3 38.0 69.5 t3 32.7 68.5 33.8 69.5 38.0 69.5 34.8 66.3 s3 32.7 68.5 33.8 69.5 p 31.7 67.3 32.7 68.5 34.8 66.3 31.7 63.2 s3 31.7 67.3 32.7 68.5 p 38.0 63.2 44.4 63.2 44.4 69.5 38.0 69.5 s3 43.2 64.3 42.0 63.2 44.4 63.2 t4 43.2 64.3 42.0 63.2 p 44.4 65.4 43.2 64.3 44.4 63.2 t4 44.4 65.4 43.2 64.3 p 44.4 63.2 50.7 63.2 50.7 69.5 44.4 69.5 s3 44.4 63.2 47.5 66.3 50.7 63.2 t4 49.0 67.8 50.7 68.7 50.7 63.2 47.5 66.3 s4 49.0 67.8 50.7 68.7 p 49.0 67.8 47.1 66.8 47.5 66.3 t4 49.0 67.8 47.1 66.8 p 44.4 65.4 47.1 66.8 47.5 66.3 44.4 63.2 s4 44.4 65.4 47.1 66.8 p 50.7 63.2 57.0 63.2 57.0 69.5 50.7 69.5 s3 50.7 63.2 53.9 66.3 57.0 63.2 t4 54.6 67.1 57.0 65.7 57.0 63.2 53.9 66.3 s4 54.6 67.1 57.0 65.7 p 54.6 67.1 52.1 68.1 53.9 66.3 t4 54.6 67.1 52.1 68.1 p 50.7 68.7 52.1 68.1 53.9 66.3 50.7 63.2 s4 50.7 68.7 52.1 68.1 p 57.0 63.2 63.4 63.2 63.4 69.5 57.0 69.5 s3 58.1 63.2 57.8 64.0 57.0 63.2 t4 58.1 63.2 57.8 64.0 p 57.8 64.0 57.0 65.7 57.0 63.2 t4 57.8 64.0 57.0 65.7 p 63.4 63.2 69.7 63.2 69.7 69.5 63.4 69.5 s2 65.9 63.2 65.7 65.6 63.4 63.2 t3 65.9 63.2 65.7 65.6 p 65.4 67.4 65.3 69.5 63.4 69.5 t3 65.4 67.4 65.3 69.5 p 65.4 67.4 65.7 65.6 63.4 63.2 63.4 69.5 s3 65.4 67.4 65.7 65.6 p 69.7 63.2 76.0 63.2 76.0 69.5 69.7 69.5 s1 73.3 65.9 72.9 63.2 69.7 63.2 72.9 66.3 s2 73.3 65.9 72.9 63.2 p 73.3 65.9 73.6 67.1 72.9 66.3 t2 73.3 65.9 73.6 67.1 p 74.0 69.5 73.6 67.1 72.9 66.3 69.7 69.5 s2 74.0 69.5 73.6 67.1 p 69.7 69.5 72.9 66.3 69.7 63.2 t2 76.0 63.2 82.4 63.2 82.4 69.5 76.0 69.5 s1 82.4 63.2 88.7 63.2 88.7 69.5 82.4 69.5 s1 88.7 63.2 95.0 63.2 95.0 69.5 88.7 69.5 s1 95.0 63.2 101.4 63.2 101.4 69.5 95.0 69.5 s1 100.5 68.7 101.4 64.7 101.4 69.5 t2 100.5 68.7 101.4 64.7 p 100.3 69.5 100.5 68.7 101.4 69.5 t2 100.3 69.5 100.5 68.7 p 101.4 63.2 107.7 63.2 107.7 69.5 101.4 69.5 s1 101.6 63.2 101.6 63.4 104.5 66.3 107.7 63.2 s2 101.6 63.2 101.6 63.4 p 107.7 63.2 104.5 66.3 107.7 69.5 t2 107.7 69.5 104.5 66.3 101.4 69.5 t2 101.6 63.4 101.4 64.7 101.4 69.5 104.5 66.3 s2 101.6 63.4 101.4 64.7 p 107.7 63.2 114.0 63.2 114.0 69.5 107.7 69.5 s2 108.4 63.2 108.5 64.0 110.9 66.3 114.0 63.2 s3 108.4 63.2 108.5 64.0 p 114.0 63.2 110.9 66.3 114.0 69.5 t3 108.8 68.4 109.0 69.5 114.0 69.5 110.9 66.3 s3 108.8 68.4 109.0 69.5 p 108.8 68.4 108.5 64.0 110.9 66.3 t3 108.8 68.4 108.5 64.0 p 114.0 63.2 120.4 63.2 120.4 69.5 114.0 69.5 s3 117.9 65.6 116.4 63.2 120.4 63.2 t4 117.9 65.6 116.4 63.2 p 120.4 68.4 117.9 65.6 120.4 63.2 t4 120.4 68.4 117.9 65.6 p 120.4 63.2 126.7 63.2 126.7 69.5 120.4 69.5 s3 120.4 63.2 123.6 66.3 126.7 63.2 t4 124.9 67.7 126.7 67.6 126.7 63.2 123.6 66.3 s4 124.9 67.7 126.7 67.6 p 124.9 67.7 121.6 68.3 123.6 66.3 t4 124.9 67.7 121.6 68.3 p 120.4 68.4 121.6 68.3 123.6 66.3 120.4 63.2 s4 120.4 68.4 121.6 68.3 p 126.7 63.2 133.1 63.2 133.1 69.5 126.7 69.5 s3 132.3 63.2 129.2 65.6 126.7 63.2 t4 132.3 63.2 129.2 65.6 p 129.2 65.6 126.7 67.6 126.7 63.2 t4 129.2 65.6 126.7 67.6 p 133.1 63.2 139.4 63.2 139.4 69.5 133.1 69.5 s3 139.4 63.2 145.7 63.2 145.7 69.5 139.4 69.5 s2 139.4 63.2 142.6 66.3 145.7 63.2 t3 143.2 66.9 145.7 64.3 145.7 63.2 142.6 66.3 s3 143.2 66.9 145.7 64.3 p 140.5 69.5 143.2 66.9 142.6 66.3 139.4 69.5 s3 140.5 69.5 143.2 66.9 p 139.4 69.5 142.6 66.3 139.4 63.2 t3 145.7 63.2 152.1 63.2 152.1 69.5 145.7 69.5 s2 147.1 63.2 146.4 63.8 145.7 63.2 t3 147.1 63.2 146.4 63.8 p 146.4 63.8 145.7 64.3 145.7 63.2 t3 146.4 63.8 145.7 64.3 p 152.1 63.2 158.4 63.2 158.4 69.5 152.1 69.5 s2 158.4 63.2 164.7 63.2 164.7 69.5 158.4 69.5 s2 164.7 63.2 171.1 63.2 171.1 69.5 164.7 69.5 s1 164.7 63.2 167.9 66.3 171.1 63.2 t2 171.0 69.5 171.1 69.5 171.1 63.2 167.9 66.3 s2 171.0 69.5 171.1 69.5 p 170.9 69.5 171.0 69.5 167.9 66.3 164.7 69.5 s2 170.9 69.5 171.0 69.5 p 164.7 69.5 167.9 66.3 164.7 63.2 t2 171.1 63.2 177.4 63.2 177.4 69.5 171.1 69.5 s1 171.1 63.2 174.2 66.3 177.4 63.2 t2 177.4 69.5 177.4 69.5 177.4 63.2 174.2 66.3 s2 177.4 69.5 177.4 69.5 p 177.4 69.5 171.1 69.5 174.2 66.3 t2 177.4 69.5 171.1 69.5 p 171.1 69.5 171.1 69.5 174.2 66.3 171.1 63.2 s2 171.1 69.5 171.1 69.5 p 177.4 63.2 183.7 63.2 183.7 69.5 177.4 69.5 s1 177.4 63.2 180.6 66.3 183.7 63.2 t2 183.7 63.2 180.6 66.3 183.7 69.5 t2 177.4 69.5 177.6 69.5 183.7 69.5 180.6 66.3 s2 177.4 69.5 177.6 69.5 p 177.4 69.5 177.4 69.5 180.6 66.3 177.4 63.2 s2 177.4 69.5 177.4 69.5 p 183.7 63.2 190.1 63.2 190.1 69.5 183.7 69.5 s2 190.1 63.2 196.4 63.2 196.4 69.5 190.1 69.5 s2 196.4 63.2 202.7 63.2 202.7 69.5 196.4 69.5 s2 202.1 63.8 201.4 63.2 202.7 63.2 t3 202.1 63.8 201.4 63.2 p 202.7 64.3 202.1 63.8 202.7 63.2 t3 202.7 64.3 202.1 63.8 p 202.7 63.2 209.1 63.2 209.1 69.5 202.7 69.5 s2 202.7 63.2 205.9 66.3 209.1 63.2 t3 209.1 63.2 205.9 66.3 209.1 69.5 t3 205.3 66.9 208.0 69.5 209.1 69.5 205.9 66.3 s3 205.3 66.9 208.0 69.5 p 202.7 64.3 205.3 66.9 205.9 66.3 202.7 63.2 s3 202.7 64.3 205.3 66.9 p 209.1 63.2 215.4 63.2 215.4 69.5 209.1 69.5 s3 215.4 63.2 221.8 63.2 221.8 69.5 215.4 69.5 s3 219.3 65.6 216.2 63.2 221.8 63.2 t4 219.3 65.6 216.2 63.2 p 221.8 67.6 219.3 65.6 221.8 63.2 t4 221.8 67.6 219.3 65.6 p 221.8 63.2 228.1 63.2 228.1 69.5 221.8 69.5 s3 221.8 63.2 224.9 66.3 228.1 63.2 t4 226.9 68.3 228.1 68.4 228.1 63.2 224.9 66.3 s4 226.9 68.3 228.1 68.4 p 226.9 68.3 223.5 67.7 224.9 66.3 t4 226.9 68.3 223.5 67.7 p 221.8 67.6 223.5 67.7 224.9 66.3 221.8 63.2 s4 221.8 67.6 223.5 67.7 p 228.1 63.2 234.4 63.2 234.4 69.5 228.1 69.5 s3 232.0 63.2 230.5 65.6 228.1 63.2 t4 232.0 63.2 230.5 65.6 p 230.5 65.6 228.1 68.4 228.1 63.2 t4 230.5 65.6 228.1 68.4 p 234.4 63.2 240.8 63.2 240.8 69.5 234.4 69.5 s2 239.9 64.0 240.1 63.2 234.4 63.2 237.6 66.3 s3 239.9 64.0 240.1 63.2 p 239.9 64.0 239.7 68.4 237.6 66.3 t3 239.9 64.0 239.7 68.4 p 239.5 69.5 239.7 68.4 237.6 66.3 234.4 69.5 s3 239.5 69.5 239.7 68.4 p 234.4 69.5 237.6 66.3 234.4 63.2 t3 240.8 63.2 247.1 63.2 247.1 69.5 240.8 69.5 s1 246.9 63.4 246.9 63.2 240.8 63.2 243.9 66.3 s2 246.9 63.4 246.9 63.2 p 247.1 64.7 246.9 63.4 243.9 66.3 247.1 69.5 s2 247.1 64.7 246.9 63.4 p 247.1 69.5 243.9 66.3 240.8 69.5 t2 240.8 69.5 243.9 66.3 240.8 63.2 t2 247.1 63.2 253.4 63.2 253.4 69.5 247.1 69.5 s1 247.9 68.7 248.2 69.5 247.1 69.5 t2 247.9 68.7 248.2 69.5 p 247.1 64.7 247.9 68.7 247.1 69.5 t2 247.1 64.7 247.9 68.7 p 253.4 63.2 259.8 63.2 259.8 69.5 253.4 69.5 s1 259.8 63.2 266.1 63.2 266.1 69.5 259.8 69.5 s1 266.1 63.2 272.4 63.2 272.4 69.5 266.1 69.5 s1 272.4 63.2 278.8 63.2 278.8 69.5 272.4 69.5 s1 275.5 63.2 275.1 65.9 275.6 66.3 278.8 63.2 s2 275.5 63.2 275.1 65.9 p 278.8 63.2 275.6 66.3 278.8 69.5 t2 274.8 67.1 274.4 69.5 278.8 69.5 275.6 66.3 s2 274.8 67.1 274.4 69.5 p 274.8 67.1 275.1 65.9 275.6 66.3 t2 274.8 67.1 275.1 65.9 p 278.8 63.2 285.1 63.2 285.1 69.5 278.8 69.5 s2 282.7 65.6 282.6 63.2 285.1 63.2 t3 282.7 65.6 282.6 63.2 p 282.7 65.6 283.0 67.4 285.1 69.5 285.1 63.2 s3 282.7 65.6 283.0 67.4 p 283.2 69.5 283.0 67.4 285.1 69.5 t3 283.2 69.5 283.0 67.4 p 285.1 63.2 291.5 63.2 291.5 69.5 285.1 69.5 s3 290.6 64.0 290.4 63.2 291.5 63.2 t4 290.6 64.0 290.4 63.2 p 291.5 65.7 290.6 64.0 291.5 63.2 t4 291.5 65.7 290.6 64.0 p 291.5 63.2 297.8 63.2 297.8 69.5 291.5 69.5 s3 291.5 63.2 294.6 66.3 297.8 63.2 t4 296.3 68.1 297.8 68.7 297.8 63.2 294.6 66.3 s4 296.3 68.1 297.8 68.7 p 296.3 68.1 293.8 67.1 294.6 66.3 t4 296.3 68.1 293.8 67.1 p 291.5 65.7 293.8 67.1 294.6 66.3 291.5 63.2 s4 291.5 65.7 293.8 67.1 p 297.8 63.2 304.1 63.2 304.1 69.5 297.8 69.5 s3 297.8 63.2 301.0 66.3 304.1 63.2 t4 301.4 66.8 304.1 65.4 304.1 63.2 301.0 66.3 s4 301.4 66.8 304.1 65.4 p 301.4 66.8 299.5 67.8 301.0 66.3 t4 301.4 66.8 299.5 67.8 p 297.8 68.7 299.5 67.8 301.0 66.3 297.8 63.2 s4 297.8 68.7 299.5 67.8 p 304.1 63.2 310.5 63.2 310.5 69.5 304.1 69.5 s3 306.5 63.2 305.3 64.3 304.1 63.2 t4 306.5 63.2 305.3 64.3 p 305.3 64.3 304.1 65.4 304.1 63.2 t4 305.3 64.3 304.1 65.4 p 310.5 63.2 316.8 63.2 316.8 69.5 310.5 69.5 s2 310.5 63.2 313.6 66.3 316.8 63.2 t3 315.8 68.5 316.8 67.3 316.8 63.2 313.6 66.3 s3 315.8 68.5 316.8 67.3 p 314.7 69.5 315.8 68.5 313.6 66.3 310.5 69.5 s3 314.7 69.5 315.8 68.5 p 310.5 69.5 313.6 66.3 310.5 63.2 t3 316.8 63.2 323.1 63.2 323.1 69.5 316.8 69.5 s2 321.4 63.2 319.0 65.4 316.8 63.2 t3 321.4 63.2 319.0 65.4 p 319.0 65.4 316.8 67.3 316.8 63.2 t3 319.0 65.4 316.8 67.3 p 323.1 63.2 329.5 63.2 329.5 69.5 323.1 69.5 s2 329.5 63.2 335.8 63.2 335.8 69.5 329.5 69.5 s2 335.8 63.2 342.1 63.2 342.1 69.5 335.8 69.5 s2 342.1 63.2 348.5 63.2 348.5 69.5 342.1 69.5 s1 342.1 63.2 345.3 66.3 348.5 63.2 t2 348.3 69.3 348.5 69.3 348.5 63.2 345.3 66.3 s2 348.3 69.3 348.5 69.3 p 346.5 69.5 348.3 69.3 345.3 66.3 342.1 69.5 s2 346.5 69.5 348.3 69.3 p 342.1 69.5 345.3 66.3 342.1 63.2 t2 0.0 56.9 6.3 56.9 6.3 63.2 0.0 63.2 s2 6.3 56.9 12.7 56.9 12.7 63.2 6.3 63.2 s2 12.7 56.9 19.0 56.9 19.0 63.2 12.7 63.2 s2 18.3 57.6 16.6 56.9 19.0 56.9 t3 18.3 57.6 16.6 56.9 p 19.0 57.9 18.3 57.6 19.0 56.9 t3 19.0 57.9 18.3 57.6 p 19.0 56.9 25.3 56.9 25.3 63.2 19.0 63.2 s2 21.7 59.6 22.3 59.9 25.3 56.9 19.0 56.9 s3 21.7 59.6 22.3 59.9 p 25.3 61.8 22.3 59.9 25.3 56.9 t3 25.3 61.8 22.3 59.9 p 21.7 59.6 19.0 57.9 19.0 56.9 t3 21.7 59.6 19.0 57.9 p 25.3 56.9 31.7 56.9 31.7 63.2 25.3 63.2 s2 25.3 56.9 28.5 60.0 31.7 56.9 t3 31.7 56.9 28.5 60.0 31.7 63.2 t3 26.1 62.4 27.1 63.2 31.7 63.2 28.5 60.0 s3 26.1 62.4 27.1 63.2 p 25.3 61.8 26.1 62.4 28.5 60.0 25.3 56.9 s3 25.3 61.8 26.1 62.4 p 31.7 56.9 38.0 56.9 38.0 63.2 31.7 63.2 s3 36.8 58.1 35.5 56.9 38.0 56.9 t4 36.8 58.1 35.5 56.9 p 38.0 59.4 36.8 58.1 38.0 56.9 t4 38.0 59.4 36.8 58.1 p 38.0 56.9 44.4 56.9 44.4 63.2 38.0 63.2 s3 38.0 56.9 41.2 60.0 44.4 56.9 t4 44.4 56.9 41.2 60.0 44.4 63.2 t4 40.0 61.3 42.0 63.2 44.4 63.2 41.2 60.0 s4 40.0 61.3 42.0 63.2 p 38.0 59.4 40.0 61.3 41.2 60.0 38.0 56.9 s4 38.0 59.4 40.0 61.3 p 44.4 56.9 50.7 56.9 50.7 63.2 44.4 63.2 s4 50.7 56.9 57.0 56.9 57.0 63.2 50.7 63.2 s4 57.0 56.9 63.4 56.9 63.4 63.2 57.0 63.2 s3 61.9 56.9 60.1 60.0 57.0 56.9 t4 61.9 56.9 60.1 60.0 p 59.9 60.3 58.1 63.2 57.0 63.2 t4 59.9 60.3 58.1 63.2 p 59.9 60.3 60.1 60.0 57.0 56.9 57.0 63.2 s4 59.9 60.3 60.1 60.0 p 63.4 56.9 69.7 56.9 69.7 63.2 63.4 63.2 s2 67.4 59.2 68.2 56.9 63.4 56.9 66.5 60.0 s3 67.4 59.2 68.2 56.9 p 67.4 59.2 66.9 60.4 66.5 60.0 t3 67.4 59.2 66.9 60.4 p 65.9 63.2 66.9 60.4 66.5 60.0 63.4 63.2 s3 65.9 63.2 66.9 60.4 p 63.4 63.2 66.5 60.0 63.4 56.9 t3 69.7 56.9 76.0 56.9 76.0 63.2 69.7 63.2 s1 74.3 58.6 74.8 56.9 69.7 56.9 72.9 60.0 s2 74.3 58.6 74.8 56.9 p 74.3 58.6 73.7 60.9 72.9 60.0 t2 74.3 58.6 73.7 60.9 p 72.9 63.2 73.7 60.9 72.9 60.0 69.7 63.2 s2 72.9 63.2 73.7 60.9 p 69.7 63.2 72.9 60.0 69.7 56.9 t2 76.0 56.9 82.4 56.9 82.4 63.2 76.0 63.2 s1 82.4 56.9 88.7 56.9 88.7 63.2 82.4 63.2 s1 88.7 56.9 95.0 56.9 95.0 63.2 88.7 63.2 s1 95.0 56.9 101.4 56.9 101.4 63.2 95.0 63.2 s1 99.8 58.4 99.3 56.9 101.4 56.9 t2 99.8 58.4 99.3 56.9 p 101.4 62.5 99.8 58.4 101.4 56.9 t2 101.4 62.5 99.8 58.4 p 101.4 56.9 107.7 56.9 107.7 63.2 101.4 63.2 s1 101.4 56.9 104.5 60.0 107.7 56.9 t2 107.7 56.9 104.5 60.0 107.7 63.2 t2 101.5 63.0 101.6 63.2 107.7 63.2 104.5 60.0 s2 101.5 63.0 101.6 63.2 p 101.4 62.5 101.5 63.0 104.5 60.0 101.4 56.9 s2 101.4 62.5 101.5 63.0 p 106.4 58.2 106.0 56.9 107.7 56.9 t3 106.4 58.2 106.0 56.9 p 107.7 61.6 106.4 58.2 107.7 56.9 t3 107.7 61.6 106.4 58.2 p 107.7 56.9 114.0 56.9 114.0 63.2 107.7 63.2 s2 107.7 56.9 110.9 60.0 114.0 56.9 t3 114.0 56.9 110.9 60.0 114.0 63.2 t3 108.2 62.7 108.4 63.2 114.0 63.2 110.9 60.0 s3 108.2 62.7 108.4 63.2 p 107.7 61.6 108.2 62.7 110.9 60.0 107.7 56.9 s3 107.7 61.6 108.2 62.7 p 112.8 58.1 112.3 56.9 114.0 56.9 t4 112.8 58.1 112.3 56.9 p 114.0 60.6 112.8 58.1 114.0 56.9 t4 114.0 60.6 112.8 58.1 p 114.0 56.9 120.4 56.9 120.4 63.2 114.0 63.2 s3 114.0 56.9 117.2 60.0 120.4 56.9 t4 120.4 56.9 117.2 60.0 120.4 63.2 t4 115.3 62.0 116.4 63.2 120.4 63.2 117.2 60.0 s4 115.3 62.0 116.4 63.2 p 114.0 60.6 115.3 62.0 117.2 60.0 114.0 56.9 s4 114.0 60.6 115.3 62.0 p 120.4 56.9 126.7 56.9 126.7 63.2 120.4 63.2 s4 126.7 56.9 133.1 56.9 133.1 63.2 126.7 63.2 s3 126.7 56.9 129.9 60.0 133.1 56.9 t4 132.7 62.8 133.1 62.6 133.1 56.9 129.9 60.0 s4 132.7 62.8 133.1 62.6 p 132.3 63.2 132.7 62.8 129.9 60.0 126.7 63.2 s4 132.3 63.2 132.7 62.8 p 126.7 63.2 129.9 60.0 126.7 56.9 t4 133.1 56.9 139.4 56.9 139.4 63.2 133.1 63.2 s3 138.6 56.9 135.9 59.7 133.1 56.9 t4 138.6 56.9 135.9 59.7 p 135.9 59.7 133.1 62.6 133.1 56.9 t4 135.9 59.7 133.1 62.6 p 139.4 56.9 145.7 56.9 145.7 63.2 139.4 63.2 s3 145.7 56.9 152.1 56.9 152.1 63.2 145.7 63.2 s2 145.7 56.9 148.9 60.0 152.1 56.9 t3 150.0 61.1 152.1 59.7 152.1 56.9 148.9 60.0 s3 150.0 61.1 152.1 59.7 p 147.1 63.2 150.0 61.1 148.9 60.0 145.7 63.2 s3 147.1 63.2 150.0 61.1 p 145.7 63.2 148.9 60.0 145.7 56.9 t3 152.1 56.9 158.4 56.9 158.4 63.2 152.1 63.2 s2 157.5 56.9 153.9 58.7 152.1 56.9 t3 157.5 56.9 153.9 58.7 p 153.9 58.7 152.1 59.7 152.1 56.9 t3 153.9 58.7 152.1 59.7 p 158.4 56.9 164.7 56.9 164.7 63.2 158.4 63.2 s2 164.7 56.9 171.1 56.9 171.1 63.2 164.7 63.2 s2 171.1 56.9 177.4 56.9 177.4 63.2 171.1 63.2 s2 177.4 56.9 183.7 56.9 183.7 63.2 177.4 63.2 s2 183.7 56.9 190.1 56.9 190.1 63.2 183.7 63.2 s2 190.1 56.9 196.4 56.9 196.4 63.2 190.1 63.2 s2 194.5 58.7 191.0 56.9 196.4 56.9 t3 194.5 58.7 191.0 56.9 p 196.4 59.7 194.5 58.7 196.4 56.9 t3 196.4 59.7 194.5 58.7 p 196.4 56.9 202.7 56.9 202.7 63.2 196.4 63.2 s2 196.4 56.9 199.6 60.0 202.7 56.9 t3 202.7 56.9 199.6 60.0 202.7 63.2 t3 198.5 61.1 201.4 63.2 202.7 63.2 199.6 60.0 s3 198.5 61.1 201.4 63.2 p 196.4 59.7 198.5 61.1 199.6 60.0 196.4 56.9 s3 196.4 59.7 198.5 61.1 p 202.7 56.9 209.1 56.9 209.1 63.2 202.7 63.2 s3 209.1 56.9 215.4 56.9 215.4 63.2 209.1 63.2 s3 212.6 59.7 209.8 56.9 215.4 56.9 t4 212.6 59.7 209.8 56.9 p 215.4 62.6 212.6 59.7 215.4 56.9 t4 215.4 62.6 212.6 59.7 p 215.4 56.9 221.8 56.9 221.8 63.2 215.4 63.2 s3 215.4 56.9 218.6 60.0 221.8 56.9 t4 221.8 56.9 218.6 60.0 221.8 63.2 t4 215.8 62.8 216.2 63.2 221.8 63.2 218.6 60.0 s4 215.8 62.8 216.2 63.2 p 215.4 62.6 215.8 62.8 218.6 60.0 215.4 56.9 s4 215.4 62.6 215.8 62.8 p 221.8 56.9 228.1 56.9 228.1 63.2 221.8 63.2 s4 228.1 56.9 234.4 56.9 234.4 63.2 228.1 63.2 s3 228.1 56.9 231.3 60.0 234.4 56.9 t4 233.2 62.0 234.4 60.6 234.4 56.9 231.3 60.0 s4 233.2 62.0 234.4 60.6 p 232.0 63.2 233.2 62.0 231.3 60.0 228.1 63.2 s4 232.0 63.2 233.2 62.0 p 228.1 63.2 231.3 60.0 228.1 56.9 t4 234.4 56.9 240.8 56.9 240.8 63.2 234.4 63.2 s2 234.4 56.9 237.6 60.0 240.8 56.9 t3 240.3 62.7 240.8 61.6 240.8 56.9 237.6 60.0 s3 240.3 62.7 240.8 61.6 p 240.1 63.2 240.3 62.7 237.6 60.0 234.4 63.2 s3 240.1 63.2 240.3 62.7 p 234.4 63.2 237.6 60.0 234.4 56.9 t3 236.2 56.9 235.7 58.1 234.4 56.9 t4 236.2 56.9 235.7 58.1 p 235.7 58.1 234.4 60.6 234.4 56.9 t4 235.7 58.1 234.4 60.6 p 240.8 56.9 247.1 56.9 247.1 63.2 240.8 63.2 s1 240.8 56.9 243.9 60.0 247.1 56.9 t2 247.0 63.0 247.1 62.5 247.1 56.9 243.9 60.0 s2 247.0 63.0 247.1 62.5 p 246.9 63.2 247.0 63.0 243.9 60.0 240.8 63.2 s2 246.9 63.2 247.0 63.0 p 240.8 63.2 243.9 60.0 240.8 56.9 t2 242.5 56.9 242.1 58.2 240.8 56.9 t3 242.5 56.9 242.1 58.2 p 242.1 58.2 240.8 61.6 240.8 56.9 t3 242.1 58.2 240.8 61.6 p 247.1 56.9 253.4 56.9 253.4 63.2 247.1 63.2 s1 249.1 56.9 248.7 58.4 247.1 56.9 t2 249.1 56.9 248.7 58.4 p 248.7 58.4 247.1 62.5 247.1 56.9 t2 248.7 58.4 247.1 62.5 p 253.4 56.9 259.8 56.9 259.8 63.2 253.4 63.2 s1 259.8 56.9 266.1 56.9 266.1 63.2 259.8 63.2 s1 266.1 56.9 272.4 56.9 272.4 63.2 266.1 63.2 s1 272.4 56.9 278.8 56.9 278.8 63.2 272.4 63.2 s1 273.7 56.9 274.2 58.6 275.6 60.0 278.8 56.9 s2 273.7 56.9 274.2 58.6 p 278.8 56.9 275.6 60.0 278.8 63.2 t2 274.8 60.9 275.5 63.2 278.8 63.2 275.6 60.0 s2 274.8 60.9 275.5 63.2 p 274.8 60.9 274.2 58.6 275.6 60.0 t2 274.8 60.9 274.2 58.6 p 278.8 56.9 285.1 56.9 285.1 63.2 278.8 63.2 s2 280.3 56.9 281.1 59.2 281.9 60.0 285.1 56.9 s3 280.3 56.9 281.1 59.2 p 285.1 56.9 281.9 60.0 285.1 63.2 t3 281.5 60.4 282.6 63.2 285.1 63.2 281.9 60.0 s3 281.5 60.4 282.6 63.2 p 281.5 60.4 281.1 59.2 281.9 60.0 t3 281.5 60.4 281.1 59.2 p 285.1 56.9 291.5 56.9 291.5 63.2 285.1 63.2 s3 288.4 60.0 286.6 56.9 291.5 56.9 t4 288.4 60.0 286.6 56.9 p 288.4 60.0 288.6 60.3 291.5 63.2 291.5 56.9 s4 288.4 60.0 288.6 60.3 p 290.4 63.2 288.6 60.3 291.5 63.2 t4 290.4 63.2 288.6 60.3 p 291.5 56.9 297.8 56.9 297.8 63.2 291.5 63.2 s4 297.8 56.9 304.1 56.9 304.1 63.2 297.8 63.2 s4 304.1 56.9 310.5 56.9 310.5 63.2 304.1 63.2 s3 304.1 56.9 307.3 60.0 310.5 56.9 t4 308.5 61.3 310.5 59.4 310.5 56.9 307.3 60.0 s4 308.5 61.3 310.5 59.4 p 306.5 63.2 308.5 61.3 307.3 60.0 304.1 63.2 s4 306.5 63.2 308.5 61.3 p 304.1 63.2 307.3 60.0 304.1 56.9 t4 310.5 56.9 316.8 56.9 316.8 63.2 310.5 63.2 s3 313.0 56.9 311.7 58.1 310.5 56.9 t4 313.0 56.9 311.7 58.1 p 311.7 58.1 310.5 59.4 310.5 56.9 t4 311.7 58.1 310.5 59.4 p 316.8 56.9 323.1 56.9 323.1 63.2 316.8 63.2 s2 316.8 56.9 320.0 60.0 323.1 56.9 t3 322.3 62.4 323.1 61.8 323.1 56.9 320.0 60.0 s3 322.3 62.4 323.1 61.8 p 321.4 63.2 322.3 62.4 320.0 60.0 316.8 63.2 s3 321.4 63.2 322.3 62.4 p 316.8 63.2 320.0 60.0 316.8 56.9 t3 323.1 56.9 329.5 56.9 329.5 63.2 323.1 63.2 s2 326.2 59.9 326.8 59.6 329.5 56.9 323.1 56.9 s3 326.2 59.9 326.8 59.6 p 329.5 57.9 326.8 59.6 329.5 56.9 t3 329.5 57.9 326.8 59.6 p 326.2 59.9 323.1 61.8 323.1 56.9 t3 326.2 59.9 323.1 61.8 p 329.5 56.9 335.8 56.9 335.8 63.2 329.5 63.2 s2 331.8 56.9 330.2 57.6 329.5 56.9 t3 331.8 56.9 330.2 57.6 p 330.2 57.6 329.5 57.9 329.5 56.9 t3 330.2 57.6 329.5 57.9 p 335.8 56.9 342.1 56.9 342.1 63.2 335.8 63.2 s2 342.1 56.9 348.5 56.9 348.5 63.2 342.1 63.2 s2 0.0 50.5 6.3 50.5 6.3 56.9 0.0 56.9 s2 3.1 53.6 3.2 53.6 6.3 50.5 0.0 50.5 s3 3.1 53.6 3.2 53.6 p 6.3 53.9 3.2 53.6 6.3 50.5 t3 6.3 53.9 3.2 53.6 p 3.1 53.6 0.0 53.4 0.0 50.5 t3 3.1 53.6 0.0 53.4 p 6.3 50.5 12.7 50.5 12.7 56.9 6.3 56.9 s2 6.3 50.5 9.5 53.7 12.7 50.5 t3 10.8 55.0 12.7 55.4 12.7 50.5 9.5 53.7 s3 10.8 55.0 12.7 55.4 p 10.8 55.0 8.7 54.5 9.5 53.7 t3 10.8 55.0 8.7 54.5 p 6.3 53.9 8.7 54.5 9.5 53.7 6.3 50.5 s3 6.3 53.9 8.7 54.5 p 12.7 50.5 19.0 50.5 19.0 56.9 12.7 56.9 s2 12.7 50.5 15.8 53.7 19.0 50.5 t3 19.0 50.5 15.8 53.7 19.0 56.9 t3 13.7 55.8 16.6 56.9 19.0 56.9 15.8 53.7 s3 13.7 55.8 16.6 56.9 p 12.7 55.4 13.7 55.8 15.8 53.7 12.7 50.5 s3 12.7 55.4 13.7 55.8 p 19.0 50.5 25.3 50.5 25.3 56.9 19.0 56.9 s3 25.3 50.5 31.7 50.5 31.7 56.9 25.3 56.9 s3 30.1 52.1 27.8 50.5 31.7 50.5 t4 30.1 52.1 27.8 50.5 p 31.7 53.3 30.1 52.1 31.7 50.5 t4 31.7 53.3 30.1 52.1 p 31.7 50.5 38.0 50.5 38.0 56.9 31.7 56.9 s3 31.7 50.5 34.8 53.7 38.0 50.5 t4 38.0 50.5 34.8 53.7 38.0 56.9 t4 33.6 55.0 35.5 56.9 38.0 56.9 34.8 53.7 s4 33.6 55.0 35.5 56.9 p 31.7 53.3 33.6 55.0 34.8 53.7 31.7 50.5 s4 31.7 53.3 33.6 55.0 p 38.0 50.5 44.4 50.5 44.4 56.9 38.0 56.9 s4 43.7 51.2 43.0 50.5 44.4 50.5 t5 43.7 51.2 43.0 50.5 p 44.4 51.9 43.7 51.2 44.4 50.5 t5 44.4 51.9 43.7 51.2 p 44.4 50.5 50.7 50.5 50.7 56.9 44.4 56.9 s4 47.2 53.4 47.6 53.6 50.7 50.5 44.4 50.5 s5 47.2 53.4 47.6 53.6 p 50.7 55.2 47.6 53.6 50.7 50.5 t5 50.7 55.2 47.6 53.6 p 47.2 53.4 44.4 51.9 44.4 50.5 t5 47.2 53.4 44.4 51.9 p 50.7 50.5 57.0 50.5 57.0 56.9 50.7 56.9 s4 50.7 50.5 53.9 53.7 57.0 50.5 t5 53.9 53.7 57.0 52.5 57.0 50.5 53.9 53.7 s5 53.9 53.7 57.0 52.5 p 53.9 53.7 53.8 53.7 53.9 53.7 t5 53.9 53.7 53.8 53.7 p 50.7 55.2 53.8 53.7 53.9 53.7 50.7 50.5 s5 50.7 55.2 53.8 53.7 p 57.0 50.5 63.4 50.5 63.4 56.9 57.0 56.9 s3 57.0 50.5 60.2 53.7 63.4 50.5 t4 62.5 56.0 63.4 55.0 63.4 50.5 60.2 53.7 s4 62.5 56.0 63.4 55.0 p 61.9 56.9 62.5 56.0 60.2 53.7 57.0 56.9 s4 61.9 56.9 62.5 56.0 p 57.0 56.9 60.2 53.7 57.0 50.5 t4 58.5 50.5 57.8 51.4 57.0 50.5 t5 58.5 50.5 57.8 51.4 p 57.8 51.4 57.0 52.5 57.0 50.5 t5 57.8 51.4 57.0 52.5 p 63.4 50.5 69.7 50.5 69.7 56.9 63.4 56.9 s2 63.4 50.5 66.5 53.7 69.7 50.5 t3 68.7 55.9 69.7 54.4 69.7 50.5 66.5 53.7 s3 68.7 55.9 69.7 54.4 p 68.2 56.9 68.7 55.9 66.5 53.7 63.4 56.9 s3 68.2 56.9 68.7 55.9 p 63.4 56.9 66.5 53.7 63.4 50.5 t3 66.0 50.5 65.0 52.2 63.4 50.5 t4 66.0 50.5 65.0 52.2 p 65.0 52.2 63.4 55.0 63.4 50.5 t4 65.0 52.2 63.4 55.0 p 69.7 50.5 76.0 50.5 76.0 56.9 69.7 56.9 s1 69.7 50.5 72.9 53.7 76.0 50.5 t2 75.3 56.1 76.0 54.8 76.0 50.5 72.9 53.7 s2 75.3 56.1 76.0 54.8 p 74.8 56.9 75.3 56.1 72.9 53.7 69.7 56.9 s2 74.8 56.9 75.3 56.1 p 69.7 56.9 72.9 53.7 69.7 50.5 t2 72.1 50.5 71.2 52.1 69.7 50.5 t3 72.1 50.5 71.2 52.1 p 71.2 52.1 69.7 54.4 69.7 50.5 t3 71.2 52.1 69.7 54.4 p 76.0 50.5 82.4 50.5 82.4 56.9 76.0 56.9 s1 79.9 50.5 78.2 52.7 76.0 50.5 t2 79.9 50.5 78.2 52.7 p 78.2 52.7 76.0 54.8 76.0 50.5 t2 78.2 52.7 76.0 54.8 p 82.4 50.5 88.7 50.5 88.7 56.9 82.4 56.9 s1 88.7 50.5 95.0 50.5 95.0 56.9 88.7 56.9 s1 95.0 50.6 94.9 50.5 95.0 50.5 t2 95.0 50.6 94.9 50.5 p 95.0 50.7 95.0 50.6 95.0 50.5 t2 95.0 50.7 95.0 50.6 p 95.0 50.5 101.4 50.5 101.4 56.9 95.0 56.9 s1 95.0 50.5 98.2 53.7 101.4 50.5 t2 101.4 50.5 98.2 53.7 101.4 56.9 t2 97.5 54.4 99.3 56.9 101.4 56.9 98.2 53.7 s2 97.5 54.4 99.3 56.9 p 95.0 50.7 97.5 54.4 98.2 53.7 95.0 50.5 s2 95.0 50.7 97.5 54.4 p 101.4 50.5 107.7 50.5 107.7 56.9 101.4 56.9 s2 102.2 50.5 103.4 52.6 104.5 53.7 107.7 50.5 s3 102.2 50.5 103.4 52.6 p 107.7 50.5 104.5 53.7 107.7 56.9 t3 104.2 54.0 106.0 56.9 107.7 56.9 104.5 53.7 s3 104.2 54.0 106.0 56.9 p 104.2 54.0 103.4 52.6 104.5 53.7 t3 104.2 54.0 103.4 52.6 p 107.7 50.5 114.0 50.5 114.0 56.9 107.7 56.9 s3 108.1 50.5 109.0 51.8 110.9 53.7 114.0 50.5 s4 108.1 50.5 109.0 51.8 p 114.0 50.5 110.9 53.7 114.0 56.9 t4 110.5 54.1 112.3 56.9 114.0 56.9 110.9 53.7 s4 110.5 54.1 112.3 56.9 p 110.5 54.1 109.0 51.8 110.9 53.7 t4 110.5 54.1 109.0 51.8 p 114.0 50.5 120.4 50.5 120.4 56.9 114.0 56.9 s4 118.3 52.6 115.8 50.5 120.4 50.5 t5 118.3 52.6 115.8 50.5 p 120.4 54.6 118.3 52.6 120.4 50.5 t5 120.4 54.6 118.3 52.6 p 120.4 50.5 126.7 50.5 126.7 56.9 120.4 56.9 s4 120.4 50.5 123.6 53.7 126.7 50.5 t5 124.2 54.4 126.7 54.2 126.7 50.5 123.6 53.7 s5 124.2 54.4 126.7 54.2 p 124.2 54.4 122.9 54.4 123.6 53.7 t5 124.2 54.4 122.9 54.4 p 120.4 54.6 122.9 54.4 123.6 53.7 120.4 50.5 s5 120.4 54.6 122.9 54.4 p 126.7 50.5 133.1 50.5 133.1 56.9 126.7 56.9 s4 131.0 50.5 128.7 52.5 126.7 50.5 t5 131.0 50.5 128.7 52.5 p 128.7 52.5 126.7 54.2 126.7 50.5 t5 128.7 52.5 126.7 54.2 p 133.1 50.5 139.4 50.5 139.4 56.9 133.1 56.9 s3 133.1 50.5 136.2 53.7 139.4 50.5 t4 139.0 56.5 139.4 56.1 139.4 50.5 136.2 53.7 s4 139.0 56.5 139.4 56.1 p 138.6 56.9 139.0 56.5 136.2 53.7 133.1 56.9 s4 138.6 56.9 139.0 56.5 p 133.1 56.9 136.2 53.7 133.1 50.5 t4 139.4 50.5 145.7 50.5 145.7 56.9 139.4 56.9 s3 142.4 53.5 144.0 52.3 145.7 50.5 139.4 50.5 s4 142.4 53.5 144.0 52.3 p 145.7 50.9 144.0 52.3 145.7 50.5 t4 145.7 50.9 144.0 52.3 p 142.4 53.5 139.4 56.1 139.4 50.5 t4 142.4 53.5 139.4 56.1 p 145.7 50.5 152.1 50.5 152.1 56.9 145.7 56.9 s3 146.3 50.5 145.9 50.8 145.7 50.5 t4 146.3 50.5 145.9 50.8 p 145.9 50.8 145.7 50.9 145.7 50.5 t4 145.9 50.8 145.7 50.9 p 152.1 50.5 158.4 50.5 158.4 56.9 152.1 56.9 s2 152.1 50.5 155.2 53.7 158.4 50.5 t3 158.1 56.6 158.4 56.5 158.4 50.5 155.2 53.7 s3 158.1 56.6 158.4 56.5 p 157.5 56.9 158.1 56.6 155.2 53.7 152.1 56.9 s3 157.5 56.9 158.1 56.6 p 152.1 56.9 155.2 53.7 152.1 50.5 t3 158.4 50.5 164.7 50.5 164.7 56.9 158.4 56.9 s2 158.4 50.5 161.6 53.7 164.7 50.5 t3 163.0 55.1 164.7 54.6 164.7 50.5 161.6 53.7 s3 163.0 55.1 164.7 54.6 p 163.0 55.1 159.0 56.3 161.6 53.7 t3 163.0 55.1 159.0 56.3 p 158.4 56.5 159.0 56.3 161.6 53.7 158.4 50.5 s3 158.4 56.5 159.0 56.3 p 164.7 50.5 171.1 50.5 171.1 56.9 164.7 56.9 s2 164.7 50.5 167.9 53.7 171.1 50.5 t3 168.2 54.0 171.1 53.5 171.1 50.5 167.9 53.7 s3 168.2 54.0 171.1 53.5 p 168.2 54.0 167.5 54.1 167.9 53.7 t3 168.2 54.0 167.5 54.1 p 164.7 54.6 167.5 54.1 167.9 53.7 164.7 50.5 s3 164.7 54.6 167.5 54.1 p 171.1 50.5 177.4 50.5 177.4 56.9 171.1 56.9 s2 174.0 53.5 174.4 53.5 177.4 50.5 171.1 50.5 s3 174.0 53.5 174.4 53.5 p 177.4 53.5 174.4 53.5 177.4 50.5 t3 177.4 53.5 174.4 53.5 p 174.0 53.5 171.1 53.5 171.1 50.5 t3 174.0 53.5 171.1 53.5 p 177.4 50.5 183.7 50.5 183.7 56.9 177.4 56.9 s2 177.4 50.5 180.6 53.7 183.7 50.5 t3 181.0 54.1 183.7 54.6 183.7 50.5 180.6 53.7 s3 181.0 54.1 183.7 54.6 p 181.0 54.1 180.3 54.0 180.6 53.7 t3 181.0 54.1 180.3 54.0 p 177.4 53.5 180.3 54.0 180.6 53.7 177.4 50.5 s3 177.4 53.5 180.3 54.0 p 183.7 50.5 190.1 50.5 190.1 56.9 183.7 56.9 s2 183.7 50.5 186.9 53.7 190.1 50.5 t3 189.5 56.3 190.1 56.5 190.1 50.5 186.9 53.7 s3 189.5 56.3 190.1 56.5 p 189.5 56.3 185.5 55.1 186.9 53.7 t3 189.5 56.3 185.5 55.1 p 183.7 54.6 185.5 55.1 186.9 53.7 183.7 50.5 s3 183.7 54.6 185.5 55.1 p 190.1 50.5 196.4 50.5 196.4 56.9 190.1 56.9 s2 190.1 50.5 193.2 53.7 196.4 50.5 t3 196.4 50.5 193.2 53.7 196.4 56.9 t3 190.3 56.6 191.0 56.9 196.4 56.9 193.2 53.7 s3 190.3 56.6 191.0 56.9 p 190.1 56.5 190.3 56.6 193.2 53.7 190.1 50.5 s3 190.1 56.5 190.3 56.6 p 196.4 50.5 202.7 50.5 202.7 56.9 196.4 56.9 s3 202.5 50.8 202.1 50.5 202.7 50.5 t4 202.5 50.8 202.1 50.5 p 202.7 50.9 202.5 50.8 202.7 50.5 t4 202.7 50.9 202.5 50.8 p 202.7 50.5 209.1 50.5 209.1 56.9 202.7 56.9 s3 204.5 52.3 206.1 53.5 209.1 50.5 202.7 50.5 s4 204.5 52.3 206.1 53.5 p 209.1 56.1 206.1 53.5 209.1 50.5 t4 209.1 56.1 206.1 53.5 p 204.5 52.3 202.7 50.9 202.7 50.5 t4 204.5 52.3 202.7 50.9 p 209.1 50.5 215.4 50.5 215.4 56.9 209.1 56.9 s3 209.1 50.5 212.3 53.7 215.4 50.5 t4 215.4 50.5 212.3 53.7 215.4 56.9 t4 209.5 56.5 209.8 56.9 215.4 56.9 212.3 53.7 s4 209.5 56.5 209.8 56.9 p 209.1 56.1 209.5 56.5 212.3 53.7 209.1 50.5 s4 209.1 56.1 209.5 56.5 p 215.4 50.5 221.8 50.5 221.8 56.9 215.4 56.9 s4 219.8 52.5 217.4 50.5 221.8 50.5 t5 219.8 52.5 217.4 50.5 p 221.8 54.2 219.8 52.5 221.8 50.5 t5 221.8 54.2 219.8 52.5 p 221.8 50.5 228.1 50.5 228.1 56.9 221.8 56.9 s4 221.8 50.5 224.9 53.7 228.1 50.5 t5 225.6 54.4 228.1 54.6 228.1 50.5 224.9 53.7 s5 225.6 54.4 228.1 54.6 p 225.6 54.4 224.3 54.4 224.9 53.7 t5 225.6 54.4 224.3 54.4 p 221.8 54.2 224.3 54.4 224.9 53.7 221.8 50.5 s5 221.8 54.2 224.3 54.4 p 228.1 50.5 234.4 50.5 234.4 56.9 228.1 56.9 s4 232.6 50.5 230.1 52.6 228.1 50.5 t5 232.6 50.5 230.1 52.6 p 230.1 52.6 228.1 54.6 228.1 50.5 t5 230.1 52.6 228.1 54.6 p 234.4 50.5 240.8 50.5 240.8 56.9 234.4 56.9 s3 239.5 51.8 240.3 50.5 234.4 50.5 237.6 53.7 s4 239.5 51.8 240.3 50.5 p 239.5 51.8 238.0 54.1 237.6 53.7 t4 239.5 51.8 238.0 54.1 p 236.2 56.9 238.0 54.1 237.6 53.7 234.4 56.9 s4 236.2 56.9 238.0 54.1 p 234.4 56.9 237.6 53.7 234.4 50.5 t4 240.8 50.5 247.1 50.5 247.1 56.9 240.8 56.9 s2 245.0 52.6 246.2 50.5 240.8 50.5 243.9 53.7 s3 245.0 52.6 246.2 50.5 p 245.0 52.6 244.2 54.0 243.9 53.7 t3 245.0 52.6 244.2 54.0 p 242.5 56.9 244.2 54.0 243.9 53.7 240.8 56.9 s3 242.5 56.9 244.2 54.0 p 240.8 56.9 243.9 53.7 240.8 50.5 t3 247.1 50.5 253.4 50.5 253.4 56.9 247.1 56.9 s1 247.1 50.5 250.3 53.7 253.4 50.5 t2 251.0 54.4 253.4 50.7 253.4 50.5 250.3 53.7 s2 251.0 54.4 253.4 50.7 p 249.1 56.9 251.0 54.4 250.3 53.7 247.1 56.9 s2 249.1 56.9 251.0 54.4 p 247.1 56.9 250.3 53.7 247.1 50.5 t2 253.4 50.5 259.8 50.5 259.8 56.9 253.4 56.9 s1 253.6 50.5 253.5 50.6 253.4 50.5 t2 253.6 50.5 253.5 50.6 p 253.5 50.6 253.4 50.7 253.4 50.5 t2 253.5 50.6 253.4 50.7 p 259.8 50.5 266.1 50.5 266.1 56.9 259.8 56.9 s1 266.1 50.5 272.4 50.5 272.4 56.9 266.1 56.9 s1 270.3 52.7 268.6 50.5 272.4 50.5 t2 270.3 52.7 268.6 50.5 p 272.4 54.8 270.3 52.7 272.4 50.5 t2 272.4 54.8 270.3 52.7 p 272.4 50.5 278.8 50.5 278.8 56.9 272.4 56.9 s1 272.4 50.5 275.6 53.7 278.8 50.5 t2 278.8 50.5 275.6 53.7 278.8 56.9 t2 273.2 56.1 273.7 56.9 278.8 56.9 275.6 53.7 s2 273.2 56.1 273.7 56.9 p 272.4 54.8 273.2 56.1 275.6 53.7 272.4 50.5 s2 272.4 54.8 273.2 56.1 p 277.3 52.1 276.3 50.5 278.8 50.5 t3 277.3 52.1 276.3 50.5 p 278.8 54.4 277.3 52.1 278.8 50.5 t3 278.8 54.4 277.3 52.1 p 278.8 50.5 285.1 50.5 285.1 56.9 278.8 56.9 s2 278.8 50.5 281.9 53.7 285.1 50.5 t3 285.1 50.5 281.9 53.7 285.1 56.9 t3 279.7 55.9 280.3 56.9 285.1 56.9 281.9 53.7 s3 279.7 55.9 280.3 56.9 p 278.8 54.4 279.7 55.9 281.9 53.7 278.8 50.5 s3 278.8 54.4 279.7 55.9 p 283.4 52.2 282.4 50.5 285.1 50.5 t4 283.4 52.2 282.4 50.5 p 285.1 55.0 283.4 52.2 285.1 50.5 t4 285.1 55.0 283.4 52.2 p 285.1 50.5 291.5 50.5 291.5 56.9 285.1 56.9 s3 285.1 50.5 288.3 53.7 291.5 50.5 t4 291.5 50.5 288.3 53.7 291.5 56.9 t4 285.9 56.0 286.6 56.9 291.5 56.9 288.3 53.7 s4 285.9 56.0 286.6 56.9 p 285.1 55.0 285.9 56.0 288.3 53.7 285.1 50.5 s4 285.1 55.0 285.9 56.0 p 290.6 51.4 290.0 50.5 291.5 50.5 t5 290.6 51.4 290.0 50.5 p 291.5 52.5 290.6 51.4 291.5 50.5 t5 291.5 52.5 290.6 51.4 p 291.5 50.5 297.8 50.5 297.8 56.9 291.5 56.9 s4 291.5 50.5 294.6 53.7 297.8 50.5 t5 294.7 53.7 297.8 55.2 297.8 50.5 294.6 53.7 s5 294.7 53.7 297.8 55.2 p 294.7 53.7 294.6 53.7 294.6 53.7 t5 294.7 53.7 294.6 53.7 p 291.5 52.5 294.6 53.7 294.6 53.7 291.5 50.5 s5 291.5 52.5 294.6 53.7 p 297.8 50.5 304.1 50.5 304.1 56.9 297.8 56.9 s4 300.9 53.6 301.3 53.4 304.1 50.5 297.8 50.5 s5 300.9 53.6 301.3 53.4 p 304.1 51.9 301.3 53.4 304.1 50.5 t5 304.1 51.9 301.3 53.4 p 300.9 53.6 297.8 55.2 297.8 50.5 t5 300.9 53.6 297.8 55.2 p 304.1 50.5 310.5 50.5 310.5 56.9 304.1 56.9 s4 305.4 50.5 304.8 51.2 304.1 50.5 t5 305.4 50.5 304.8 51.2 p 304.8 51.2 304.1 51.9 304.1 50.5 t5 304.8 51.2 304.1 51.9 p 310.5 50.5 316.8 50.5 316.8 56.9 310.5 56.9 s3 310.5 50.5 313.6 53.7 316.8 50.5 t4 314.9 55.0 316.8 53.3 316.8 50.5 313.6 53.7 s4 314.9 55.0 316.8 53.3 p 313.0 56.9 314.9 55.0 313.6 53.7 310.5 56.9 s4 313.0 56.9 314.9 55.0 p 310.5 56.9 313.6 53.7 310.5 50.5 t4 316.8 50.5 323.1 50.5 323.1 56.9 316.8 56.9 s3 320.7 50.5 318.4 52.1 316.8 50.5 t4 320.7 50.5 318.4 52.1 p 318.4 52.1 316.8 53.3 316.8 50.5 t4 318.4 52.1 316.8 53.3 p 323.1 50.5 329.5 50.5 329.5 56.9 323.1 56.9 s3 329.5 50.5 335.8 50.5 335.8 56.9 329.5 56.9 s2 329.5 50.5 332.6 53.7 335.8 50.5 t3 334.8 55.8 335.8 55.4 335.8 50.5 332.6 53.7 s3 334.8 55.8 335.8 55.4 p 331.8 56.9 334.8 55.8 332.6 53.7 329.5 56.9 s3 331.8 56.9 334.8 55.8 p 329.5 56.9 332.6 53.7 329.5 50.5 t3 335.8 50.5 342.1 50.5 342.1 56.9 335.8 56.9 s2 335.8 50.5 339.0 53.7 342.1 50.5 t3 339.8 54.5 342.1 53.9 342.1 50.5 339.0 53.7 s3 339.8 54.5 342.1 53.9 p 339.8 54.5 337.7 55.0 339.0 53.7 t3 339.8 54.5 337.7 55.0 p 335.8 55.4 337.7 55.0 339.0 53.7 335.8 50.5 s3 335.8 55.4 337.7 55.0 p 342.1 50.5 348.5 50.5 348.5 56.9 342.1 56.9 s2 345.2 53.6 345.4 53.6 348.5 50.5 342.1 50.5 s3 345.2 53.6 345.4 53.6 p 348.5 53.4 345.4 53.6 348.5 50.5 t3 348.5 53.4 345.4 53.6 p 345.2 53.6 342.1 53.9 342.1 50.5 t3 345.2 53.6 342.1 53.9 p 0.0 44.2 6.3 44.2 6.3 50.5 0.0 50.5 s3 6.3 44.2 12.7 44.2 12.7 50.5 6.3 50.5 s3 12.7 44.2 12.7 44.2 12.7 44.2 t4 12.7 44.2 12.7 44.2 p 12.7 44.2 12.7 44.2 12.7 44.2 t4 12.7 44.2 12.7 44.2 p 12.7 44.2 19.0 44.2 19.0 50.5 12.7 50.5 s3 12.7 44.2 17.3 45.9 19.0 44.2 12.7 44.2 s4 12.7 44.2 17.3 45.9 p 19.0 46.5 17.3 45.9 19.0 44.2 t4 19.0 46.5 17.3 45.9 p 12.7 44.2 12.7 44.2 12.7 44.2 t4 12.7 44.2 12.7 44.2 p 19.0 44.2 25.3 44.2 25.3 50.5 19.0 50.5 s3 19.0 44.2 22.2 47.4 25.3 44.2 t4 22.9 48.1 25.3 49.1 25.3 44.2 22.2 47.4 s4 22.9 48.1 25.3 49.1 p 22.9 48.1 21.9 47.7 22.2 47.4 t4 22.9 48.1 21.9 47.7 p 19.0 46.5 21.9 47.7 22.2 47.4 19.0 44.2 s4 19.0 46.5 21.9 47.7 p 25.3 44.2 31.7 44.2 31.7 50.5 25.3 50.5 s3 25.3 44.2 28.5 47.4 31.7 44.2 t4 31.7 44.2 28.5 47.4 31.7 50.5 t4 26.3 49.6 27.8 50.5 31.7 50.5 28.5 47.4 s4 26.3 49.6 27.8 50.5 p 25.3 49.1 26.3 49.6 28.5 47.4 25.3 44.2 s4 25.3 49.1 26.3 49.6 p 31.7 44.2 38.0 44.2 38.0 50.5 31.7 50.5 s4 37.4 44.8 36.6 44.2 38.0 44.2 t5 37.4 44.8 36.6 44.2 p 38.0 45.4 37.4 44.8 38.0 44.2 t5 38.0 45.4 37.4 44.8 p 38.0 44.2 44.4 44.2 44.4 50.5 38.0 50.5 s4 38.0 44.2 41.2 47.4 44.4 44.2 t5 44.4 44.2 41.2 47.4 44.4 50.5 t5 40.7 47.9 43.0 50.5 44.4 50.5 41.2 47.4 s5 40.7 47.9 43.0 50.5 p 38.0 45.4 40.7 47.9 41.2 47.4 38.0 44.2 s5 38.0 45.4 40.7 47.9 p 44.4 44.2 50.7 44.2 50.7 50.5 44.4 50.5 s5 50.7 44.2 57.0 44.2 57.0 50.5 50.7 50.5 s5 57.0 44.2 63.4 44.2 63.4 50.5 57.0 50.5 s4 57.0 44.2 60.2 47.4 63.4 44.2 t5 60.6 47.8 63.4 44.9 63.4 44.2 60.2 47.4 s5 60.6 47.8 63.4 44.9 p 58.5 50.5 60.6 47.8 60.2 47.4 57.0 50.5 s5 58.5 50.5 60.6 47.8 p 57.0 50.5 60.2 47.4 57.0 44.2 t5 63.4 44.2 69.7 44.2 69.7 50.5 63.4 50.5 s3 63.4 44.2 66.5 47.4 69.7 44.2 t4 67.5 48.3 69.7 45.5 69.7 44.2 66.5 47.4 s4 67.5 48.3 69.7 45.5 p 66.0 50.5 67.5 48.3 66.5 47.4 63.4 50.5 s4 66.0 50.5 67.5 48.3 p 63.4 50.5 66.5 47.4 63.4 44.2 t4 63.8 44.2 63.6 44.5 63.4 44.2 t5 63.8 44.2 63.6 44.5 p 63.6 44.5 63.4 44.9 63.4 44.2 t5 63.6 44.5 63.4 44.9 p 69.7 44.2 76.0 44.2 76.0 50.5 69.7 50.5 s2 69.7 44.2 72.9 47.4 76.0 44.2 t3 73.9 48.4 76.0 45.8 76.0 44.2 72.9 47.4 s3 73.9 48.4 76.0 45.8 p 72.1 50.5 73.9 48.4 72.9 47.4 69.7 50.5 s3 72.1 50.5 73.9 48.4 p 69.7 50.5 72.9 47.4 69.7 44.2 t3 70.8 44.2 70.3 44.8 69.7 44.2 t4 70.8 44.2 70.3 44.8 p 70.3 44.8 69.7 45.5 69.7 44.2 t4 70.3 44.8 69.7 45.5 p 76.0 44.2 82.4 44.2 82.4 50.5 76.0 50.5 s1 76.0 44.2 79.2 47.4 82.4 44.2 t2 81.3 49.5 82.4 48.7 82.4 44.2 79.2 47.4 s2 81.3 49.5 82.4 48.7 p 79.9 50.5 81.3 49.5 79.2 47.4 76.0 50.5 s2 79.9 50.5 81.3 49.5 p 76.0 50.5 79.2 47.4 76.0 44.2 t2 78.1 44.2 76.9 45.1 76.0 44.2 t3 78.1 44.2 76.9 45.1 p 76.9 45.1 76.0 45.8 76.0 44.2 t3 76.9 45.1 76.0 45.8 p 82.4 44.2 88.7 44.2 88.7 50.5 82.4 50.5 s1 82.4 44.2 85.5 47.4 88.7 44.2 t2 86.2 48.0 88.7 47.6 88.7 44.2 85.5 47.4 s2 86.2 48.0 88.7 47.6 p 86.2 48.0 84.6 48.3 85.5 47.4 t2 86.2 48.0 84.6 48.3 p 82.4 48.7 84.6 48.3 85.5 47.4 82.4 44.2 s2 82.4 48.7 84.6 48.3 p 88.7 44.2 95.0 44.2 95.0 50.5 88.7 50.5 s1 88.7 44.2 91.9 47.4 95.0 44.2 t2 95.0 44.2 91.9 47.4 95.0 50.5 t2 90.7 48.6 94.9 50.5 95.0 50.5 91.9 47.4 s2 90.7 48.6 94.9 50.5 p 88.7 47.6 90.7 48.6 91.9 47.4 88.7 44.2 s2 88.7 47.6 90.7 48.6 p 95.0 44.2 101.4 44.2 101.4 50.5 95.0 50.5 s2 98.8 46.8 96.3 44.2 101.4 44.2 t3 98.8 46.8 96.3 44.2 p 101.4 49.4 98.8 46.8 101.4 44.2 t3 101.4 49.4 98.8 46.8 p 101.4 44.2 107.7 44.2 107.7 50.5 101.4 50.5 s2 101.4 44.2 104.5 47.4 107.7 44.2 t3 107.7 44.2 104.5 47.4 107.7 50.5 t3 101.9 50.0 102.2 50.5 107.7 50.5 104.5 47.4 s3 101.9 50.0 102.2 50.5 p 101.4 49.4 101.9 50.0 104.5 47.4 101.4 44.2 s3 101.4 49.4 101.9 50.0 p 105.4 46.6 103.5 44.2 107.7 44.2 t4 105.4 46.6 103.5 44.2 p 107.7 50.0 105.4 46.6 107.7 44.2 t4 107.7 50.0 105.4 46.6 p 107.7 44.2 114.0 44.2 114.0 50.5 107.7 50.5 s3 107.7 44.2 110.9 47.4 114.0 44.2 t4 114.0 44.2 110.9 47.4 114.0 50.5 t4 108.0 50.3 108.1 50.5 114.0 50.5 110.9 47.4 s4 108.0 50.3 108.1 50.5 p 107.7 50.0 108.0 50.3 110.9 47.4 107.7 44.2 s4 107.7 50.0 108.0 50.3 p 112.2 46.1 110.7 44.2 114.0 44.2 t5 112.2 46.1 110.7 44.2 p 114.0 49.0 112.2 46.1 114.0 44.2 t5 114.0 49.0 112.2 46.1 p 114.0 44.2 120.4 44.2 120.4 50.5 114.0 50.5 s4 114.0 44.2 117.2 47.4 120.4 44.2 t5 120.4 44.2 117.2 47.4 120.4 50.5 t5 114.9 49.7 115.8 50.5 120.4 50.5 117.2 47.4 s5 114.9 49.7 115.8 50.5 p 114.0 49.0 114.9 49.7 117.2 47.4 114.0 44.2 s5 114.0 49.0 114.9 49.7 p 120.4 44.2 126.7 44.2 126.7 50.5 120.4 50.5 s5 126.7 44.2 133.1 44.2 133.1 50.5 126.7 50.5 s4 126.7 44.2 129.9 47.4 133.1 44.2 t5 132.0 49.5 133.1 48.6 133.1 44.2 129.9 47.4 s5 132.0 49.5 133.1 48.6 p 131.0 50.5 132.0 49.5 129.9 47.4 126.7 50.5 s5 131.0 50.5 132.0 49.5 p 126.7 50.5 129.9 47.4 126.7 44.2 t5 133.1 44.2 139.4 44.2 139.4 50.5 133.1 50.5 s4 137.6 44.2 135.2 46.3 133.1 44.2 t5 137.6 44.2 135.2 46.3 p 135.2 46.3 133.1 48.6 133.1 44.2 t5 135.2 46.3 133.1 48.6 p 139.4 44.2 145.7 44.2 145.7 50.5 139.4 50.5 s4 145.7 44.2 152.1 44.2 152.1 50.5 145.7 50.5 s3 145.7 44.2 148.9 47.4 152.1 44.2 t4 150.1 48.6 152.1 47.7 152.1 44.2 148.9 47.4 s4 150.1 48.6 152.1 47.7 p 146.3 50.5 150.1 48.6 148.9 47.4 145.7 50.5 s4 146.3 50.5 150.1 48.6 p 145.7 50.5 148.9 47.4 145.7 44.2 t4 152.1 44.2 158.4 44.2 158.4 50.5 152.1 50.5 s3 154.6 46.8 156.6 46.0 158.4 44.2 152.1 44.2 s4 154.6 46.8 156.6 46.0 p 158.4 45.3 156.6 46.0 158.4 44.2 t4 158.4 45.3 156.6 46.0 p 154.6 46.8 152.1 47.7 152.1 44.2 t4 154.6 46.8 152.1 47.7 p 158.4 44.2 164.7 44.2 164.7 50.5 158.4 50.5 s3 161.8 44.2 159.2 45.1 158.4 44.2 t4 161.8 44.2 159.2 45.1 p 159.2 45.1 158.4 45.3 158.4 44.2 t4 159.2 45.1 158.4 45.3 p 164.7 44.2 171.1 44.2 171.1 50.5 164.7 50.5 s3 171.1 44.2 177.4 44.2 177.4 50.5 171.1 50.5 s3 177.4 44.2 183.7 44.2 183.7 50.5 177.4 50.5 s3 183.7 44.2 190.1 44.2 190.1 50.5 183.7 50.5 s3 189.2 45.1 186.7 44.2 190.1 44.2 t4 189.2 45.1 186.7 44.2 p 190.1 45.3 189.2 45.1 190.1 44.2 t4 190.1 45.3 189.2 45.1 p 190.1 44.2 196.4 44.2 196.4 50.5 190.1 50.5 s3 191.9 46.0 193.9 46.8 196.4 44.2 190.1 44.2 s4 191.9 46.0 193.9 46.8 p 196.4 47.7 193.9 46.8 196.4 44.2 t4 196.4 47.7 193.9 46.8 p 191.9 46.0 190.1 45.3 190.1 44.2 t4 191.9 46.0 190.1 45.3 p 196.4 44.2 202.7 44.2 202.7 50.5 196.4 50.5 s3 196.4 44.2 199.6 47.4 202.7 44.2 t4 202.7 44.2 199.6 47.4 202.7 50.5 t4 198.4 48.6 202.1 50.5 202.7 50.5 199.6 47.4 s4 198.4 48.6 202.1 50.5 p 196.4 47.7 198.4 48.6 199.6 47.4 196.4 44.2 s4 196.4 47.7 198.4 48.6 p 202.7 44.2 209.1 44.2 209.1 50.5 202.7 50.5 s4 209.1 44.2 215.4 44.2 215.4 50.5 209.1 50.5 s4 213.3 46.3 210.8 44.2 215.4 44.2 t5 213.3 46.3 210.8 44.2 p 215.4 48.6 213.3 46.3 215.4 44.2 t5 215.4 48.6 213.3 46.3 p 215.4 44.2 221.8 44.2 221.8 50.5 215.4 50.5 s4 215.4 44.2 218.6 47.4 221.8 44.2 t5 221.8 44.2 218.6 47.4 221.8 50.5 t5 216.5 49.5 217.4 50.5 221.8 50.5 218.6 47.4 s5 216.5 49.5 217.4 50.5 p 215.4 48.6 216.5 49.5 218.6 47.4 215.4 44.2 s5 215.4 48.6 216.5 49.5 p 221.8 44.2 228.1 44.2 228.1 50.5 221.8 50.5 s5 228.1 44.2 234.4 44.2 234.4 50.5 228.1 50.5 s4 228.1 44.2 231.3 47.4 234.4 44.2 t5 233.5 49.7 234.4 49.0 234.4 44.2 231.3 47.4 s5 233.5 49.7 234.4 49.0 p 232.6 50.5 233.5 49.7 231.3 47.4 228.1 50.5 s5 232.6 50.5 233.5 49.7 p 228.1 50.5 231.3 47.4 228.1 44.2 t5 234.4 44.2 240.8 44.2 240.8 50.5 234.4 50.5 s3 234.4 44.2 237.6 47.4 240.8 44.2 t4 240.5 50.3 240.8 50.0 240.8 44.2 237.6 47.4 s4 240.5 50.3 240.8 50.0 p 240.3 50.5 240.5 50.3 237.6 47.4 234.4 50.5 s4 240.3 50.5 240.5 50.3 p 234.4 50.5 237.6 47.4 234.4 44.2 t4 237.8 44.2 236.3 46.1 234.4 44.2 t5 237.8 44.2 236.3 46.1 p 236.3 46.1 234.4 49.0 234.4 44.2 t5 236.3 46.1 234.4 49.0 p 240.8 44.2 247.1 44.2 247.1 50.5 240.8 50.5 s2 240.8 44.2 243.9 47.4 247.1 44.2 t3 246.6 50.0 247.1 49.4 247.1 44.2 243.9 47.4 s3 246.6 50.0 247.1 49.4 p 246.2 50.5 246.6 50.0 243.9 47.4 240.8 50.5 s3 246.2 50.5 246.6 50.0 p 240.8 50.5 243.9 47.4 240.8 44.2 t3 244.9 44.2 243.1 46.6 240.8 44.2 t4 244.9 44.2 243.1 46.6 p 243.1 46.6 240.8 50.0 240.8 44.2 t4 243.1 46.6 240.8 50.0 p 247.1 44.2 253.4 44.2 253.4 50.5 247.1 50.5 s2 252.2 44.2 249.7 46.8 247.1 44.2 t3 252.2 44.2 249.7 46.8 p 249.7 46.8 247.1 49.4 247.1 44.2 t3 249.7 46.8 247.1 49.4 p 253.4 44.2 259.8 44.2 259.8 50.5 253.4 50.5 s1 253.4 44.2 256.6 47.4 259.8 44.2 t2 257.8 48.6 259.8 47.6 259.8 44.2 256.6 47.4 s2 257.8 48.6 259.8 47.6 p 253.6 50.5 257.8 48.6 256.6 47.4 253.4 50.5 s2 253.6 50.5 257.8 48.6 p 253.4 50.5 256.6 47.4 253.4 44.2 t2 259.8 44.2 266.1 44.2 266.1 50.5 259.8 50.5 s1 259.8 44.2 262.9 47.4 266.1 44.2 t2 263.8 48.3 266.1 48.7 266.1 44.2 262.9 47.4 s2 263.8 48.3 266.1 48.7 p 263.8 48.3 262.3 48.0 262.9 47.4 t2 263.8 48.3 262.3 48.0 p 259.8 47.6 262.3 48.0 262.9 47.4 259.8 44.2 s2 259.8 47.6 262.3 48.0 p 266.1 44.2 272.4 44.2 272.4 50.5 266.1 50.5 s1 266.1 44.2 269.3 47.4 272.4 44.2 t2 272.4 44.2 269.3 47.4 272.4 50.5 t2 267.2 49.5 268.6 50.5 272.4 50.5 269.3 47.4 s2 267.2 49.5 268.6 50.5 p 266.1 48.7 267.2 49.5 269.3 47.4 266.1 44.2 s2 266.1 48.7 267.2 49.5 p 271.5 45.1 270.4 44.2 272.4 44.2 t3 271.5 45.1 270.4 44.2 p 272.4 45.8 271.5 45.1 272.4 44.2 t3 272.4 45.8 271.5 45.1 p 272.4 44.2 278.8 44.2 278.8 50.5 272.4 50.5 s2 272.4 44.2 275.6 47.4 278.8 44.2 t3 278.8 44.2 275.6 47.4 278.8 50.5 t3 274.6 48.4 276.3 50.5 278.8 50.5 275.6 47.4 s3 274.6 48.4 276.3 50.5 p 272.4 45.8 274.6 48.4 275.6 47.4 272.4 44.2 s3 272.4 45.8 274.6 48.4 p 278.2 44.8 277.7 44.2 278.8 44.2 t4 278.2 44.8 277.7 44.2 p 278.8 45.5 278.2 44.8 278.8 44.2 t4 278.8 45.5 278.2 44.8 p 278.8 44.2 285.1 44.2 285.1 50.5 278.8 50.5 s3 278.8 44.2 281.9 47.4 285.1 44.2 t4 285.1 44.2 281.9 47.4 285.1 50.5 t4 281.0 48.3 282.4 50.5 285.1 50.5 281.9 47.4 s4 281.0 48.3 282.4 50.5 p 278.8 45.5 281.0 48.3 281.9 47.4 278.8 44.2 s4 278.8 45.5 281.0 48.3 p 284.8 44.5 284.6 44.2 285.1 44.2 t5 284.8 44.5 284.6 44.2 p 285.1 44.9 284.8 44.5 285.1 44.2 t5 285.1 44.9 284.8 44.5 p 285.1 44.2 291.5 44.2 291.5 50.5 285.1 50.5 s4 285.1 44.2 288.3 47.4 291.5 44.2 t5 291.5 44.2 288.3 47.4 291.5 50.5 t5 287.9 47.8 290.0 50.5 291.5 50.5 288.3 47.4 s5 287.9 47.8 290.0 50.5 p 285.1 44.9 287.9 47.8 288.3 47.4 285.1 44.2 s5 285.1 44.9 287.9 47.8 p 291.5 44.2 297.8 44.2 297.8 50.5 291.5 50.5 s5 297.8 44.2 304.1 44.2 304.1 50.5 297.8 50.5 s5 304.1 44.2 310.5 44.2 310.5 50.5 304.1 50.5 s4 304.1 44.2 307.3 47.4 310.5 44.2 t5 307.8 47.9 310.5 45.4 310.5 44.2 307.3 47.4 s5 307.8 47.9 310.5 45.4 p 305.4 50.5 307.8 47.9 307.3 47.4 304.1 50.5 s5 305.4 50.5 307.8 47.9 p 304.1 50.5 307.3 47.4 304.1 44.2 t5 310.5 44.2 316.8 44.2 316.8 50.5 310.5 50.5 s4 311.9 44.2 311.1 44.8 310.5 44.2 t5 311.9 44.2 311.1 44.8 p 311.1 44.8 310.5 45.4 310.5 44.2 t5 311.1 44.8 310.5 45.4 p 316.8 44.2 323.1 44.2 323.1 50.5 316.8 50.5 s3 316.8 44.2 320.0 47.4 323.1 44.2 t4 322.2 49.6 323.1 49.1 323.1 44.2 320.0 47.4 s4 322.2 49.6 323.1 49.1 p 320.7 50.5 322.2 49.6 320.0 47.4 316.8 50.5 s4 320.7 50.5 322.2 49.6 p 316.8 50.5 320.0 47.4 316.8 44.2 t4 323.1 44.2 329.5 44.2 329.5 50.5 323.1 50.5 s3 323.1 44.2 326.3 47.4 329.5 44.2 t4 326.6 47.7 329.5 46.5 329.5 44.2 326.3 47.4 s4 326.6 47.7 329.5 46.5 p 326.6 47.7 325.6 48.1 326.3 47.4 t4 326.6 47.7 325.6 48.1 p 323.1 49.1 325.6 48.1 326.3 47.4 323.1 44.2 s4 323.1 49.1 325.6 48.1 p 329.5 44.2 335.8 44.2 335.8 50.5 329.5 50.5 s3 331.2 45.9 335.8 44.2 335.8 44.2 329.5 44.2 s4 331.2 45.9 335.8 44.2 p 335.8 44.2 335.8 44.2 335.8 44.2 t4 335.8 44.2 335.8 44.2 p 331.2 45.9 329.5 46.5 329.5 44.2 t4 331.2 45.9 329.5 46.5 p 335.8 44.2 342.1 44.2 342.1 50.5 335.8 50.5 s3 335.8 44.2 335.8 44.2 335.8 44.2 t4 335.8 44.2 335.8 44.2 p 335.8 44.2 335.8 44.2 335.8 44.2 t4 335.8 44.2 335.8 44.2 p 342.1 44.2 348.5 44.2 348.5 50.5 342.1 50.5 s3 0.0 37.9 6.3 37.9 6.3 44.2 0.0 44.2 s3 0.0 37.9 3.2 41.1 6.3 37.9 t4 3.2 41.1 6.3 41.7 6.3 37.9 3.2 41.1 s4 3.2 41.1 6.3 41.7 p 3.2 41.1 3.2 41.1 3.2 41.1 t4 3.2 41.1 3.2 41.1 p 0.0 40.4 3.2 41.1 3.2 41.1 0.0 37.9 s4 0.0 40.4 3.2 41.1 p 6.3 37.9 12.7 37.9 12.7 44.2 6.3 44.2 s3 6.3 37.9 9.5 41.1 12.7 37.9 t4 12.7 37.9 9.5 41.1 12.7 44.2 t4 8.0 42.5 12.7 44.2 12.7 44.2 9.5 41.1 s4 8.0 42.5 12.7 44.2 p 6.3 41.7 8.0 42.5 9.5 41.1 6.3 37.9 s4 6.3 41.7 8.0 42.5 p 12.7 37.9 19.0 37.9 19.0 44.2 12.7 44.2 s4 19.0 37.9 25.3 37.9 25.3 44.2 19.0 44.2 s4 25.1 38.2 24.5 37.9 25.3 37.9 t5 25.1 38.2 24.5 37.9 p 25.3 38.3 25.1 38.2 25.3 37.9 t5 25.3 38.3 25.1 38.2 p 25.3 37.9 31.7 37.9 31.7 44.2 25.3 44.2 s4 26.0 38.6 29.6 39.9 31.7 37.9 25.3 37.9 s5 26.0 38.6 29.6 39.9 p 31.7 40.9 29.6 39.9 31.7 37.9 t5 31.7 40.9 29.6 39.9 p 26.0 38.6 25.3 38.3 25.3 37.9 t5 26.0 38.6 25.3 38.3 p 31.7 37.9 38.0 37.9 38.0 44.2 31.7 44.2 s4 31.7 37.9 34.8 41.1 38.0 37.9 t5 38.0 37.9 34.8 41.1 38.0 44.2 t5 33.8 42.1 36.6 44.2 38.0 44.2 34.8 41.1 s5 33.8 42.1 36.6 44.2 p 31.7 40.9 33.8 42.1 34.8 41.1 31.7 37.9 s5 31.7 40.9 33.8 42.1 p 38.0 37.9 44.4 37.9 44.4 44.2 38.0 44.2 s5 44.4 37.9 50.7 37.9 50.7 44.2 44.4 44.2 s5 50.7 37.9 57.0 37.9 57.0 44.2 50.7 44.2 s5 57.0 37.9 63.4 37.9 63.4 44.2 57.0 44.2 s5 63.4 37.9 69.7 37.9 69.7 44.2 63.4 44.2 s4 67.6 37.9 65.8 40.3 63.4 37.9 t5 67.6 37.9 65.8 40.3 p 64.4 43.2 63.8 44.2 63.4 44.2 t5 64.4 43.2 63.8 44.2 p 64.4 43.2 65.8 40.3 63.4 37.9 63.4 44.2 s5 64.4 43.2 65.8 40.3 p 69.7 37.9 76.0 37.9 76.0 44.2 69.7 44.2 s3 69.7 37.9 72.9 41.1 76.0 37.9 t4 73.0 41.2 76.0 38.1 76.0 37.9 72.9 41.1 s4 73.0 41.2 76.0 38.1 p 70.8 44.2 73.0 41.2 72.9 41.1 69.7 44.2 s4 70.8 44.2 73.0 41.2 p 69.7 44.2 72.9 41.1 69.7 37.9 t4 76.0 37.9 82.4 37.9 82.4 44.2 76.0 44.2 s2 76.0 37.9 79.2 41.1 82.4 37.9 t3 80.6 42.4 82.4 41.3 82.4 37.9 79.2 41.1 s3 80.6 42.4 82.4 41.3 p 78.1 44.2 80.6 42.4 79.2 41.1 76.0 44.2 s3 78.1 44.2 80.6 42.4 p 76.0 44.2 79.2 41.1 76.0 37.9 t3 76.4 37.9 76.2 38.0 76.0 37.9 t4 76.4 37.9 76.2 38.0 p 76.2 38.0 76.0 38.1 76.0 37.9 t4 76.2 38.0 76.0 38.1 p 82.4 37.9 88.7 37.9 88.7 44.2 82.4 44.2 s2 85.3 40.8 85.8 40.8 88.7 37.9 82.4 37.9 s3 85.3 40.8 85.8 40.8 p 88.7 40.4 85.8 40.8 88.7 37.9 t3 88.7 40.4 85.8 40.8 p 85.3 40.8 82.4 41.3 82.4 37.9 t3 85.3 40.8 82.4 41.3 p 88.7 37.9 95.0 37.9 95.0 44.2 88.7 44.2 s2 88.7 37.9 91.9 41.1 95.0 37.9 t3 93.0 42.2 95.0 43.0 95.0 37.9 91.9 41.1 s3 93.0 42.2 95.0 43.0 p 93.0 42.2 91.5 41.5 91.9 41.1 t3 93.0 42.2 91.5 41.5 p 88.7 40.4 91.5 41.5 91.9 41.1 88.7 37.9 s3 88.7 40.4 91.5 41.5 p 95.0 37.9 101.4 37.9 101.4 44.2 95.0 44.2 s2 95.0 37.9 98.2 41.1 101.4 37.9 t3 101.4 37.9 98.2 41.1 101.4 44.2 t3 95.7 43.6 96.3 44.2 101.4 44.2 98.2 41.1 s3 95.7 43.6 96.3 44.2 p 95.0 43.0 95.7 43.6 98.2 41.1 95.0 37.9 s3 95.0 43.0 95.7 43.6 p 99.7 39.6 97.7 37.9 101.4 37.9 t4 99.7 39.6 97.7 37.9 p 101.4 41.3 99.7 39.6 101.4 37.9 t4 101.4 41.3 99.7 39.6 p 101.4 37.9 107.7 37.9 107.7 44.2 101.4 44.2 s3 101.4 37.9 104.5 41.1 107.7 37.9 t4 107.7 37.9 104.5 41.1 107.7 44.2 t4 102.7 42.9 103.5 44.2 107.7 44.2 104.5 41.1 s4 102.7 42.9 103.5 44.2 p 101.4 41.3 102.7 42.9 104.5 41.1 101.4 37.9 s4 101.4 41.3 102.7 42.9 p 107.0 38.6 106.5 37.9 107.7 37.9 t5 107.0 38.6 106.5 37.9 p 107.7 39.7 107.0 38.6 107.7 37.9 t5 107.7 39.7 107.0 38.6 p 107.7 37.9 114.0 37.9 114.0 44.2 107.7 44.2 s4 107.7 37.9 110.9 41.1 114.0 37.9 t5 114.0 37.9 110.9 41.1 114.0 44.2 t5 109.7 42.3 110.7 44.2 114.0 44.2 110.9 41.1 s5 109.7 42.3 110.7 44.2 p 107.7 39.7 109.7 42.3 110.9 41.1 107.7 37.9 s5 107.7 39.7 109.7 42.3 p 114.0 37.9 120.4 37.9 120.4 44.2 114.0 44.2 s5 120.4 37.9 126.7 37.9 126.7 44.2 120.4 44.2 s5 126.7 37.9 133.1 37.9 133.1 44.2 126.7 44.2 s5 133.1 37.9 139.4 37.9 139.4 44.2 133.1 44.2 s4 133.1 37.9 136.2 41.1 139.4 37.9 t5 138.5 43.4 139.4 42.8 139.4 37.9 136.2 41.1 s5 138.5 43.4 139.4 42.8 p 137.6 44.2 138.5 43.4 136.2 41.1 133.1 44.2 s5 137.6 44.2 138.5 43.4 p 133.1 44.2 136.2 41.1 133.1 37.9 t5 139.4 37.9 145.7 37.9 145.7 44.2 139.4 44.2 s4 142.5 41.0 142.7 40.9 145.7 37.9 139.4 37.9 s5 142.5 41.0 142.7 40.9 p 145.7 39.5 142.7 40.9 145.7 37.9 t5 145.7 39.5 142.7 40.9 p 142.5 41.0 139.4 42.8 139.4 37.9 t5 142.5 41.0 139.4 42.8 p 145.7 37.9 152.1 37.9 152.1 44.2 145.7 44.2 s4 149.7 37.9 146.9 39.0 145.7 37.9 t5 149.7 37.9 146.9 39.0 p 146.9 39.0 145.7 39.5 145.7 37.9 t5 146.9 39.0 145.7 39.5 p 152.1 37.9 158.4 37.9 158.4 44.2 152.1 44.2 s4 158.4 37.9 164.7 37.9 164.7 44.2 158.4 44.2 s3 158.4 37.9 161.6 41.1 164.7 37.9 t4 163.9 43.4 164.7 42.9 164.7 37.9 161.6 41.1 s4 163.9 43.4 164.7 42.9 p 161.8 44.2 163.9 43.4 161.6 41.1 158.4 44.2 s4 161.8 44.2 163.9 43.4 p 158.4 44.2 161.6 41.1 158.4 37.9 t4 164.7 37.9 171.1 37.9 171.1 44.2 164.7 44.2 s3 164.7 37.9 167.9 41.1 171.1 37.9 t4 168.6 41.7 171.1 40.8 171.1 37.9 167.9 41.1 s4 168.6 41.7 171.1 40.8 p 168.6 41.7 166.7 42.3 167.9 41.1 t4 168.6 41.7 166.7 42.3 p 164.7 42.9 166.7 42.3 167.9 41.1 164.7 37.9 s4 164.7 42.9 166.7 42.3 p 171.1 37.9 177.4 37.9 177.4 44.2 171.1 44.2 s3 173.9 40.8 174.6 40.8 177.4 37.9 171.1 37.9 s4 173.9 40.8 174.6 40.8 p 177.4 40.8 174.6 40.8 177.4 37.9 t4 177.4 40.8 174.6 40.8 p 173.9 40.8 171.1 40.8 171.1 37.9 t4 173.9 40.8 171.1 40.8 p 177.4 37.9 183.7 37.9 183.7 44.2 177.4 44.2 s3 177.4 37.9 180.6 41.1 183.7 37.9 t4 181.8 42.3 183.7 42.9 183.7 37.9 180.6 41.1 s4 181.8 42.3 183.7 42.9 p 181.8 42.3 179.9 41.7 180.6 41.1 t4 181.8 42.3 179.9 41.7 p 177.4 40.8 179.9 41.7 180.6 41.1 177.4 37.9 s4 177.4 40.8 179.9 41.7 p 183.7 37.9 190.1 37.9 190.1 44.2 183.7 44.2 s3 183.7 37.9 186.9 41.1 190.1 37.9 t4 190.1 37.9 186.9 41.1 190.1 44.2 t4 184.6 43.4 186.7 44.2 190.1 44.2 186.9 41.1 s4 184.6 43.4 186.7 44.2 p 183.7 42.9 184.6 43.4 186.9 41.1 183.7 37.9 s4 183.7 42.9 184.6 43.4 p 190.1 37.9 196.4 37.9 196.4 44.2 190.1 44.2 s4 196.4 37.9 202.7 37.9 202.7 44.2 196.4 44.2 s4 201.6 39.0 198.8 37.9 202.7 37.9 t5 201.6 39.0 198.8 37.9 p 202.7 39.5 201.6 39.0 202.7 37.9 t5 202.7 39.5 201.6 39.0 p 202.7 37.9 209.1 37.9 209.1 44.2 202.7 44.2 s4 205.8 40.9 206.0 41.0 209.1 37.9 202.7 37.9 s5 205.8 40.9 206.0 41.0 p 209.1 42.8 206.0 41.0 209.1 37.9 t5 209.1 42.8 206.0 41.0 p 205.8 40.9 202.7 39.5 202.7 37.9 t5 205.8 40.9 202.7 39.5 p 209.1 37.9 215.4 37.9 215.4 44.2 209.1 44.2 s4 209.1 37.9 212.3 41.1 215.4 37.9 t5 215.4 37.9 212.3 41.1 215.4 44.2 t5 210.0 43.4 210.8 44.2 215.4 44.2 212.3 41.1 s5 210.0 43.4 210.8 44.2 p 209.1 42.8 210.0 43.4 212.3 41.1 209.1 37.9 s5 209.1 42.8 210.0 43.4 p 215.4 37.9 221.8 37.9 221.8 44.2 215.4 44.2 s5 221.8 37.9 228.1 37.9 228.1 44.2 221.8 44.2 s5 228.1 37.9 234.4 37.9 234.4 44.2 228.1 44.2 s5 234.4 37.9 240.8 37.9 240.8 44.2 234.4 44.2 s4 234.4 37.9 237.6 41.1 240.8 37.9 t5 238.8 42.3 240.8 39.7 240.8 37.9 237.6 41.1 s5 238.8 42.3 240.8 39.7 p 237.8 44.2 238.8 42.3 237.6 41.1 234.4 44.2 s5 237.8 44.2 238.8 42.3 p 234.4 44.2 237.6 41.1 234.4 37.9 t5 240.8 37.9 247.1 37.9 247.1 44.2 240.8 44.2 s3 240.8 37.9 243.9 41.1 247.1 37.9 t4 245.8 42.9 247.1 41.3 247.1 37.9 243.9 41.1 s4 245.8 42.9 247.1 41.3 p 244.9 44.2 245.8 42.9 243.9 41.1 240.8 44.2 s4 244.9 44.2 245.8 42.9 p 240.8 44.2 243.9 41.1 240.8 37.9 t4 242.0 37.9 241.4 38.6 240.8 37.9 t5 242.0 37.9 241.4 38.6 p 241.4 38.6 240.8 39.7 240.8 37.9 t5 241.4 38.6 240.8 39.7 p 247.1 37.9 253.4 37.9 253.4 44.2 247.1 44.2 s2 247.1 37.9 250.3 41.1 253.4 37.9 t3 252.8 43.6 253.4 43.0 253.4 37.9 250.3 41.1 s3 252.8 43.6 253.4 43.0 p 252.2 44.2 252.8 43.6 250.3 41.1 247.1 44.2 s3 252.2 44.2 252.8 43.6 p 247.1 44.2 250.3 41.1 247.1 37.9 t3 250.8 37.9 248.8 39.6 247.1 37.9 t4 250.8 37.9 248.8 39.6 p 248.8 39.6 247.1 41.3 247.1 37.9 t4 248.8 39.6 247.1 41.3 p 253.4 37.9 259.8 37.9 259.8 44.2 253.4 44.2 s2 253.4 37.9 256.6 41.1 259.8 37.9 t3 257.0 41.5 259.8 40.4 259.8 37.9 256.6 41.1 s3 257.0 41.5 259.8 40.4 p 257.0 41.5 255.5 42.2 256.6 41.1 t3 257.0 41.5 255.5 42.2 p 253.4 43.0 255.5 42.2 256.6 41.1 253.4 37.9 s3 253.4 43.0 255.5 42.2 p 259.8 37.9 266.1 37.9 266.1 44.2 259.8 44.2 s2 262.6 40.8 263.2 40.8 266.1 37.9 259.8 37.9 s3 262.6 40.8 263.2 40.8 p 266.1 41.3 263.2 40.8 266.1 37.9 t3 266.1 41.3 263.2 40.8 p 262.6 40.8 259.8 40.4 259.8 37.9 t3 262.6 40.8 259.8 40.4 p 266.1 37.9 272.4 37.9 272.4 44.2 266.1 44.2 s2 266.1 37.9 269.3 41.1 272.4 37.9 t3 272.4 37.9 269.3 41.1 272.4 44.2 t3 267.9 42.4 270.4 44.2 272.4 44.2 269.3 41.1 s3 267.9 42.4 270.4 44.2 p 266.1 41.3 267.9 42.4 269.3 41.1 266.1 37.9 s3 266.1 41.3 267.9 42.4 p 272.3 38.0 272.1 37.9 272.4 37.9 t4 272.3 38.0 272.1 37.9 p 272.4 38.1 272.3 38.0 272.4 37.9 t4 272.4 38.1 272.3 38.0 p 272.4 37.9 278.8 37.9 278.8 44.2 272.4 44.2 s3 272.4 37.9 275.6 41.1 278.8 37.9 t4 278.8 37.9 275.6 41.1 278.8 44.2 t4 275.4 41.2 277.7 44.2 278.8 44.2 275.6 41.1 s4 275.4 41.2 277.7 44.2 p 272.4 38.1 275.4 41.2 275.6 41.1 272.4 37.9 s4 272.4 38.1 275.4 41.2 p 278.8 37.9 285.1 37.9 285.1 44.2 278.8 44.2 s4 282.7 40.3 280.8 37.9 285.1 37.9 t5 282.7 40.3 280.8 37.9 p 282.7 40.3 284.1 43.2 285.1 44.2 285.1 37.9 s5 282.7 40.3 284.1 43.2 p 284.6 44.2 284.1 43.2 285.1 44.2 t5 284.6 44.2 284.1 43.2 p 285.1 37.9 291.5 37.9 291.5 44.2 285.1 44.2 s5 291.5 37.9 297.8 37.9 297.8 44.2 291.5 44.2 s5 297.8 37.9 304.1 37.9 304.1 44.2 297.8 44.2 s5 304.1 37.9 310.5 37.9 310.5 44.2 304.1 44.2 s5 310.5 37.9 316.8 37.9 316.8 44.2 310.5 44.2 s4 310.5 37.9 313.6 41.1 316.8 37.9 t5 314.6 42.1 316.8 40.9 316.8 37.9 313.6 41.1 s5 314.6 42.1 316.8 40.9 p 311.9 44.2 314.6 42.1 313.6 41.1 310.5 44.2 s5 311.9 44.2 314.6 42.1 p 310.5 44.2 313.6 41.1 310.5 37.9 t5 316.8 37.9 323.1 37.9 323.1 44.2 316.8 44.2 s4 318.8 39.9 322.5 38.6 323.1 37.9 316.8 37.9 s5 318.8 39.9 322.5 38.6 p 323.1 38.3 322.5 38.6 323.1 37.9 t5 323.1 38.3 322.5 38.6 p 318.8 39.9 316.8 40.9 316.8 37.9 t5 318.8 39.9 316.8 40.9 p 323.1 37.9 329.5 37.9 329.5 44.2 323.1 44.2 s4 324.0 37.9 323.4 38.2 323.1 37.9 t5 324.0 37.9 323.4 38.2 p 323.4 38.2 323.1 38.3 323.1 37.9 t5 323.4 38.2 323.1 38.3 p 329.5 37.9 335.8 37.9 335.8 44.2 329.5 44.2 s4 335.8 37.9 342.1 37.9 342.1 44.2 335.8 44.2 s3 335.8 37.9 339.0 41.1 342.1 37.9 t4 340.4 42.5 342.1 41.7 342.1 37.9 339.0 41.1 s4 340.4 42.5 342.1 41.7 p 335.8 44.2 340.4 42.5 339.0 41.1 335.8 44.2 s4 335.8 44.2 340.4 42.5 p 335.8 44.2 339.0 41.1 335.8 37.9 t4 342.1 37.9 348.5 37.9 348.5 44.2 342.1 44.2 s3 342.1 37.9 345.3 41.1 348.5 37.9 t4 345.3 41.1 348.5 40.4 348.5 37.9 345.3 41.1 s4 345.3 41.1 348.5 40.4 p 345.3 41.1 345.3 41.1 345.3 41.1 t4 345.3 41.1 345.3 41.1 p 342.1 41.7 345.3 41.1 345.3 41.1 342.1 37.9 s4 342.1 41.7 345.3 41.1 p 0.0 31.6 6.3 31.6 6.3 37.9 0.0 37.9 s4 6.3 31.6 12.7 31.6 12.7 37.9 6.3 37.9 s4 12.7 31.6 19.0 31.6 19.0 37.9 12.7 37.9 s4 17.9 32.7 17.3 31.6 19.0 31.6 t5 17.9 32.7 17.3 31.6 p 19.0 33.8 17.9 32.7 19.0 31.6 t5 19.0 33.8 17.9 32.7 p 19.0 31.6 25.3 31.6 25.3 37.9 19.0 37.9 s4 19.0 31.6 22.2 34.8 25.3 31.6 t5 25.3 31.6 22.2 34.8 25.3 37.9 t5 21.2 35.8 24.5 37.9 25.3 37.9 22.2 34.8 s5 21.2 35.8 24.5 37.9 p 19.0 33.8 21.2 35.8 22.2 34.8 19.0 31.6 s5 19.0 33.8 21.2 35.8 p 25.3 31.6 31.7 31.6 31.7 37.9 25.3 37.9 s5 31.7 31.6 38.0 31.6 38.0 37.9 31.7 37.9 s5 38.0 31.6 44.4 31.6 44.4 37.9 38.0 37.9 s5 44.4 31.6 50.7 31.6 50.7 37.9 44.4 37.9 s5 50.7 31.6 57.0 31.6 57.0 37.9 50.7 37.9 s5 57.0 31.6 63.4 31.6 63.4 37.9 57.0 37.9 s5 63.4 31.6 69.7 31.6 69.7 37.9 63.4 37.9 s4 63.4 31.6 66.5 34.8 69.7 31.6 t5 68.0 36.2 69.7 32.2 69.7 31.6 66.5 34.8 s5 68.0 36.2 69.7 32.2 p 67.6 37.9 68.0 36.2 66.5 34.8 63.4 37.9 s5 67.6 37.9 68.0 36.2 p 63.4 37.9 66.5 34.8 63.4 31.6 t5 69.7 31.6 76.0 31.6 76.0 37.9 69.7 37.9 s4 70.0 31.6 69.9 31.8 69.7 31.6 t5 70.0 31.6 69.9 31.8 p 69.9 31.8 69.7 32.2 69.7 31.6 t5 69.9 31.8 69.7 32.2 p 76.0 31.6 82.4 31.6 82.4 37.9 76.0 37.9 s3 76.0 31.6 79.2 34.8 82.4 31.6 t4 79.4 35.0 82.4 32.8 82.4 31.6 79.2 34.8 s4 79.4 35.0 82.4 32.8 p 76.4 37.9 79.4 35.0 79.2 34.8 76.0 37.9 s4 76.4 37.9 79.4 35.0 p 76.0 37.9 79.2 34.8 76.0 31.6 t4 82.4 31.6 88.7 31.6 88.7 37.9 82.4 37.9 s3 83.4 32.6 88.3 32.0 88.7 31.6 82.4 31.6 s4 83.4 32.6 88.3 32.0 p 88.7 31.9 88.3 32.0 88.7 31.6 t4 88.7 31.9 88.3 32.0 p 83.4 32.6 82.4 32.8 82.4 31.6 t4 83.4 32.6 82.4 32.8 p 88.7 31.6 95.0 31.6 95.0 37.9 88.7 37.9 s3 89.3 32.2 93.0 33.7 95.0 31.6 88.7 31.6 s4 89.3 32.2 93.0 33.7 p 95.0 34.8 93.0 33.7 95.0 31.6 t4 95.0 34.8 93.0 33.7 p 89.3 32.2 88.7 31.9 88.7 31.6 t4 89.3 32.2 88.7 31.9 p 95.0 31.6 101.4 31.6 101.4 37.9 95.0 37.9 s3 95.0 31.6 98.2 34.8 101.4 31.6 t4 101.4 31.6 98.2 34.8 101.4 37.9 t4 96.6 36.3 97.7 37.9 101.4 37.9 98.2 34.8 s4 96.6 36.3 97.7 37.9 p 95.0 34.8 96.6 36.3 98.2 34.8 95.0 31.6 s4 95.0 34.8 96.6 36.3 p 101.4 31.6 107.7 31.6 107.7 37.9 101.4 37.9 s4 105.5 33.8 104.4 31.6 107.7 31.6 t5 105.5 33.8 104.4 31.6 p 105.5 33.8 105.9 36.1 107.7 37.9 107.7 31.6 s5 105.5 33.8 105.9 36.1 p 106.5 37.9 105.9 36.1 107.7 37.9 t5 106.5 37.9 105.9 36.1 p 107.7 31.6 114.0 31.6 114.0 37.9 107.7 37.9 s5 114.0 31.6 120.4 31.6 120.4 37.9 114.0 37.9 s5 120.4 31.6 126.7 31.6 126.7 37.9 120.4 37.9 s5 126.7 31.6 133.1 31.6 133.1 37.9 126.7 37.9 s5 133.1 31.6 139.4 31.6 139.4 37.9 133.1 37.9 s5 139.4 31.6 145.7 31.6 145.7 37.9 139.4 37.9 s5 145.7 31.6 152.1 31.6 152.1 37.9 145.7 37.9 s4 145.7 31.6 148.9 34.8 152.1 31.6 t5 151.2 37.1 152.1 36.6 152.1 31.6 148.9 34.8 s5 151.2 37.1 152.1 36.6 p 149.7 37.9 151.2 37.1 148.9 34.8 145.7 37.9 s5 149.7 37.9 151.2 37.1 p 145.7 37.9 148.9 34.8 145.7 31.6 t5 152.1 31.6 158.4 31.6 158.4 37.9 152.1 37.9 s4 156.8 31.6 154.7 34.3 152.1 31.6 t5 156.8 31.6 154.7 34.3 p 154.7 34.3 152.1 36.6 152.1 31.6 t5 154.7 34.3 152.1 36.6 p 158.4 31.6 164.7 31.6 164.7 37.9 158.4 37.9 s4 164.7 31.6 171.1 31.6 171.1 37.9 164.7 37.9 s4 171.1 31.6 177.4 31.6 177.4 37.9 171.1 37.9 s4 177.4 31.6 183.7 31.6 183.7 37.9 177.4 37.9 s4 183.7 31.6 190.1 31.6 190.1 37.9 183.7 37.9 s4 190.1 31.6 196.4 31.6 196.4 37.9 190.1 37.9 s4 193.7 34.3 191.6 31.6 196.4 31.6 t5 193.7 34.3 191.6 31.6 p 196.4 36.6 193.7 34.3 196.4 31.6 t5 196.4 36.6 193.7 34.3 p 196.4 31.6 202.7 31.6 202.7 37.9 196.4 37.9 s4 196.4 31.6 199.6 34.8 202.7 31.6 t5 202.7 31.6 199.6 34.8 202.7 37.9 t5 197.2 37.1 198.8 37.9 202.7 37.9 199.6 34.8 s5 197.2 37.1 198.8 37.9 p 196.4 36.6 197.2 37.1 199.6 34.8 196.4 31.6 s5 196.4 36.6 197.2 37.1 p 202.7 31.6 209.1 31.6 209.1 37.9 202.7 37.9 s5 209.1 31.6 215.4 31.6 215.4 37.9 209.1 37.9 s5 215.4 31.6 221.8 31.6 221.8 37.9 215.4 37.9 s5 221.8 31.6 228.1 31.6 228.1 37.9 221.8 37.9 s5 228.1 31.6 234.4 31.6 234.4 37.9 228.1 37.9 s5 234.4 31.6 240.8 31.6 240.8 37.9 234.4 37.9 s5 240.8 31.6 247.1 31.6 247.1 37.9 240.8 37.9 s4 244.1 31.6 243.0 33.8 240.8 31.6 t5 244.1 31.6 243.0 33.8 p 242.6 36.1 242.0 37.9 240.8 37.9 t5 242.6 36.1 242.0 37.9 p 242.6 36.1 243.0 33.8 240.8 31.6 240.8 37.9 s5 242.6 36.1 243.0 33.8 p 247.1 31.6 253.4 31.6 253.4 37.9 247.1 37.9 s3 247.1 31.6 250.3 34.8 253.4 31.6 t4 251.9 36.3 253.4 34.8 253.4 31.6 250.3 34.8 s4 251.9 36.3 253.4 34.8 p 250.8 37.9 251.9 36.3 250.3 34.8 247.1 37.9 s4 250.8 37.9 251.9 36.3 p 247.1 37.9 250.3 34.8 247.1 31.6 t4 253.4 31.6 259.8 31.6 259.8 37.9 253.4 37.9 s3 255.5 33.7 259.2 32.2 259.8 31.6 253.4 31.6 s4 255.5 33.7 259.2 32.2 p 259.8 31.9 259.2 32.2 259.8 31.6 t4 259.8 31.9 259.2 32.2 p 255.5 33.7 253.4 34.8 253.4 31.6 t4 255.5 33.7 253.4 34.8 p 259.8 31.6 266.1 31.6 266.1 37.9 259.8 37.9 s3 260.2 32.0 265.1 32.6 266.1 31.6 259.8 31.6 s4 260.2 32.0 265.1 32.6 p 266.1 32.8 265.1 32.6 266.1 31.6 t4 266.1 32.8 265.1 32.6 p 260.2 32.0 259.8 31.9 259.8 31.6 t4 260.2 32.0 259.8 31.9 p 266.1 31.6 272.4 31.6 272.4 37.9 266.1 37.9 s3 266.1 31.6 269.3 34.8 272.4 31.6 t4 272.4 31.6 269.3 34.8 272.4 37.9 t4 269.1 35.0 272.1 37.9 272.4 37.9 269.3 34.8 s4 269.1 35.0 272.1 37.9 p 266.1 32.8 269.1 35.0 269.3 34.8 266.1 31.6 s4 266.1 32.8 269.1 35.0 p 272.4 31.6 278.8 31.6 278.8 37.9 272.4 37.9 s4 278.6 31.8 278.5 31.6 278.8 31.6 t5 278.6 31.8 278.5 31.6 p 278.8 32.2 278.6 31.8 278.8 31.6 t5 278.8 32.2 278.6 31.8 p 278.8 31.6 285.1 31.6 285.1 37.9 278.8 37.9 s4 278.8 31.6 281.9 34.8 285.1 31.6 t5 285.1 31.6 281.9 34.8 285.1 37.9 t5 280.5 36.2 280.8 37.9 285.1 37.9 281.9 34.8 s5 280.5 36.2 280.8 37.9 p 278.8 32.2 280.5 36.2 281.9 34.8 278.8 31.6 s5 278.8 32.2 280.5 36.2 p 285.1 31.6 291.5 31.6 291.5 37.9 285.1 37.9 s5 291.5 31.6 297.8 31.6 297.8 37.9 291.5 37.9 s5 297.8 31.6 304.1 31.6 304.1 37.9 297.8 37.9 s5 304.1 31.6 310.5 31.6 310.5 37.9 304.1 37.9 s5 310.5 31.6 316.8 31.6 316.8 37.9 310.5 37.9 s5 316.8 31.6 323.1 31.6 323.1 37.9 316.8 37.9 s5 323.1 31.6 329.5 31.6 329.5 37.9 323.1 37.9 s4 323.1 31.6 326.3 34.8 329.5 31.6 t5 327.3 35.8 329.5 33.8 329.5 31.6 326.3 34.8 s5 327.3 35.8 329.5 33.8 p 324.0 37.9 327.3 35.8 326.3 34.8 323.1 37.9 s5 324.0 37.9 327.3 35.8 p 323.1 37.9 326.3 34.8 323.1 31.6 t5 329.5 31.6 335.8 31.6 335.8 37.9 329.5 37.9 s4 331.1 31.6 330.5 32.7 329.5 31.6 t5 331.1 31.6 330.5 32.7 p 330.5 32.7 329.5 33.8 329.5 31.6 t5 330.5 32.7 329.5 33.8 p 335.8 31.6 342.1 31.6 342.1 37.9 335.8 37.9 s4 342.1 31.6 348.5 31.6 348.5 37.9 342.1 37.9 s4 0.0 25.3 6.3 25.3 6.3 31.6 0.0 31.6 s3 3.8 29.1 6.3 28.1 6.3 31.6 t4 3.8 29.1 6.3 28.1 p 3.8 29.1 2.0 29.6 0.0 31.6 6.3 31.6 s4 3.8 29.1 2.0 29.6 p 0.0 30.3 2.0 29.6 0.0 31.6 t4 0.0 30.3 2.0 29.6 p 6.3 25.3 12.7 25.3 12.7 31.6 6.3 31.6 s3 8.7 25.3 7.8 26.7 9.5 28.4 12.7 25.3 s4 8.7 25.3 7.8 26.7 p 12.7 25.3 9.5 28.4 12.7 31.6 t4 12.7 31.6 9.5 28.4 6.3 31.6 t4 7.8 26.7 6.3 28.1 6.3 31.6 9.5 28.4 s4 7.8 26.7 6.3 28.1 p 12.7 25.3 19.0 25.3 19.0 31.6 12.7 31.6 s4 18.3 26.0 18.5 25.3 19.0 25.3 t5 18.3 26.0 18.5 25.3 p 18.3 26.0 17.8 30.4 19.0 31.6 19.0 25.3 s5 18.3 26.0 17.8 30.4 p 17.3 31.6 17.8 30.4 19.0 31.6 t5 17.3 31.6 17.8 30.4 p 19.0 25.3 25.3 25.3 25.3 31.6 19.0 31.6 s5 25.3 25.3 31.7 25.3 31.7 31.6 25.3 31.6 s5 31.7 25.3 38.0 25.3 38.0 31.6 31.7 31.6 s5 38.0 25.3 44.4 25.3 44.4 31.6 38.0 31.6 s5 44.4 25.3 50.7 25.3 50.7 31.6 44.4 31.6 s5 50.7 25.3 57.0 25.3 57.0 31.6 50.7 31.6 s5 57.0 25.3 63.4 25.3 63.4 31.6 57.0 31.6 s5 63.4 25.3 69.7 25.3 69.7 31.6 63.4 31.6 s4 67.7 27.3 65.7 25.3 63.4 25.3 66.5 28.4 s5 67.7 27.3 65.7 25.3 p 69.7 30.9 67.7 27.3 66.5 28.4 69.7 31.6 s5 69.7 30.9 67.7 27.3 p 69.7 31.6 66.5 28.4 63.4 31.6 t5 63.4 31.6 66.5 28.4 63.4 25.3 t5 69.7 25.3 76.0 25.3 76.0 31.6 69.7 31.6 s4 69.9 31.4 70.0 31.6 69.7 31.6 t5 69.9 31.4 70.0 31.6 p 69.7 30.9 69.9 31.4 69.7 31.6 t5 69.7 30.9 69.9 31.4 p 76.0 25.3 82.4 25.3 82.4 31.6 76.0 31.6 s4 82.4 25.3 88.7 25.3 88.7 31.6 82.4 31.6 s4 88.7 25.3 95.0 25.3 95.0 31.6 88.7 31.6 s4 95.0 25.3 101.4 25.3 101.4 31.6 95.0 31.6 s4 101.4 25.3 107.7 25.3 107.7 31.6 101.4 31.6 s4 105.3 29.2 107.7 25.9 107.7 31.6 t5 105.3 29.2 107.7 25.9 p 104.4 31.6 105.3 29.2 107.7 31.6 t5 104.4 31.6 105.3 29.2 p 107.7 25.3 114.0 25.3 114.0 31.6 107.7 31.6 s4 108.5 25.3 108.0 25.6 110.9 28.4 114.0 25.3 s5 108.5 25.3 108.0 25.6 p 114.0 25.3 110.9 28.4 114.0 31.6 t5 114.0 31.6 110.9 28.4 107.7 31.6 t5 108.0 25.6 107.7 25.9 107.7 31.6 110.9 28.4 s5 108.0 25.6 107.7 25.9 p 114.0 25.3 120.4 25.3 120.4 31.6 114.0 31.6 s5 120.4 25.3 126.7 25.3 126.7 31.6 120.4 31.6 s5 126.7 25.3 133.1 25.3 133.1 31.6 126.7 31.6 s5 133.1 25.3 139.4 25.3 139.4 31.6 133.1 31.6 s5 139.4 25.3 145.7 25.3 145.7 31.6 139.4 31.6 s5 145.7 25.3 152.1 25.3 152.1 31.6 145.7 31.6 s5 152.1 25.3 158.4 25.3 158.4 31.6 152.1 31.6 s4 155.8 27.8 155.6 25.3 152.1 25.3 155.2 28.4 s5 155.8 27.8 155.6 25.3 p 155.8 27.8 156.5 29.7 155.2 28.4 t5 155.8 27.8 156.5 29.7 p 156.8 31.6 156.5 29.7 155.2 28.4 152.1 31.6 s5 156.8 31.6 156.5 29.7 p 152.1 31.6 155.2 28.4 152.1 25.3 t5 158.4 25.3 164.7 25.3 164.7 31.6 158.4 31.6 s4 164.7 25.3 171.1 25.3 171.1 31.6 164.7 31.6 s3 168.4 28.0 165.3 25.3 164.7 25.3 167.9 28.4 s4 168.4 28.0 165.3 25.3 p 171.1 29.8 168.4 28.0 167.9 28.4 171.1 31.6 s4 171.1 29.8 168.4 28.0 p 171.1 31.6 167.9 28.4 164.7 31.6 t4 164.7 31.6 167.9 28.4 164.7 25.3 t4 171.1 25.3 177.4 25.3 177.4 31.6 171.1 31.6 s3 175.6 29.8 177.4 29.8 177.4 31.6 t4 175.6 29.8 177.4 29.8 p 175.6 29.8 172.9 29.8 171.1 31.6 177.4 31.6 s4 175.6 29.8 172.9 29.8 p 171.1 29.8 172.9 29.8 171.1 31.6 t4 171.1 29.8 172.9 29.8 p 177.4 25.3 183.7 25.3 183.7 31.6 177.4 31.6 s3 183.2 25.3 180.1 28.0 180.6 28.4 183.7 25.3 s4 183.2 25.3 180.1 28.0 p 183.7 25.3 180.6 28.4 183.7 31.6 t4 183.7 31.6 180.6 28.4 177.4 31.6 t4 180.1 28.0 177.4 29.8 177.4 31.6 180.6 28.4 s4 180.1 28.0 177.4 29.8 p 183.7 25.3 190.1 25.3 190.1 31.6 183.7 31.6 s4 190.1 25.3 196.4 25.3 196.4 31.6 190.1 31.6 s4 192.9 25.3 192.6 27.8 193.2 28.4 196.4 25.3 s5 192.9 25.3 192.6 27.8 p 196.4 25.3 193.2 28.4 196.4 31.6 t5 192.0 29.7 191.6 31.6 196.4 31.6 193.2 28.4 s5 192.0 29.7 191.6 31.6 p 192.0 29.7 192.6 27.8 193.2 28.4 t5 192.0 29.7 192.6 27.8 p 196.4 25.3 202.7 25.3 202.7 31.6 196.4 31.6 s5 202.7 25.3 209.1 25.3 209.1 31.6 202.7 31.6 s5 209.1 25.3 215.4 25.3 215.4 31.6 209.1 31.6 s5 215.4 25.3 221.8 25.3 221.8 31.6 215.4 31.6 s5 221.8 25.3 228.1 25.3 228.1 31.6 221.8 31.6 s5 228.1 25.3 234.4 25.3 234.4 31.6 228.1 31.6 s5 234.4 25.3 240.8 25.3 240.8 31.6 234.4 31.6 s4 240.4 25.6 240.0 25.3 234.4 25.3 237.6 28.4 s5 240.4 25.6 240.0 25.3 p 240.8 25.9 240.4 25.6 237.6 28.4 240.8 31.6 s5 240.8 25.9 240.4 25.6 p 240.8 31.6 237.6 28.4 234.4 31.6 t5 234.4 31.6 237.6 28.4 234.4 25.3 t5 240.8 25.3 247.1 25.3 247.1 31.6 240.8 31.6 s4 243.1 29.2 244.1 31.6 240.8 31.6 t5 243.1 29.2 244.1 31.6 p 240.8 25.9 243.1 29.2 240.8 31.6 t5 240.8 25.9 243.1 29.2 p 247.1 25.3 253.4 25.3 253.4 31.6 247.1 31.6 s4 253.4 25.3 259.8 25.3 259.8 31.6 253.4 31.6 s4 259.8 25.3 266.1 25.3 266.1 31.6 259.8 31.6 s4 266.1 25.3 272.4 25.3 272.4 31.6 266.1 31.6 s4 272.4 25.3 278.8 25.3 278.8 31.6 272.4 31.6 s4 278.5 31.4 278.8 30.9 278.8 31.6 t5 278.5 31.4 278.8 30.9 p 278.5 31.6 278.5 31.4 278.8 31.6 t5 278.5 31.6 278.5 31.4 p 278.8 25.3 285.1 25.3 285.1 31.6 278.8 31.6 s4 282.8 25.3 280.8 27.3 281.9 28.4 285.1 25.3 s5 282.8 25.3 280.8 27.3 p 285.1 25.3 281.9 28.4 285.1 31.6 t5 285.1 31.6 281.9 28.4 278.8 31.6 t5 280.8 27.3 278.8 30.9 278.8 31.6 281.9 28.4 s5 280.8 27.3 278.8 30.9 p 285.1 25.3 291.5 25.3 291.5 31.6 285.1 31.6 s5 291.5 25.3 297.8 25.3 297.8 31.6 291.5 31.6 s5 297.8 25.3 304.1 25.3 304.1 31.6 297.8 31.6 s5 304.1 25.3 310.5 25.3 310.5 31.6 304.1 31.6 s5 310.5 25.3 316.8 25.3 316.8 31.6 310.5 31.6 s5 316.8 25.3 323.1 25.3 323.1 31.6 316.8 31.6 s5 323.1 25.3 329.5 25.3 329.5 31.6 323.1 31.6 s5 329.5 25.3 335.8 25.3 335.8 31.6 329.5 31.6 s4 330.0 25.3 330.2 26.0 329.5 25.3 t5 330.0 25.3 330.2 26.0 p 330.7 30.4 331.1 31.6 329.5 31.6 t5 330.7 30.4 331.1 31.6 p 330.7 30.4 330.2 26.0 329.5 25.3 329.5 31.6 s5 330.7 30.4 330.2 26.0 p 335.8 25.3 342.1 25.3 342.1 31.6 335.8 31.6 s3 340.7 26.7 339.7 25.3 335.8 25.3 339.0 28.4 s4 340.7 26.7 339.7 25.3 p 342.1 28.1 340.7 26.7 339.0 28.4 342.1 31.6 s4 342.1 28.1 340.7 26.7 p 342.1 31.6 339.0 28.4 335.8 31.6 t4 335.8 31.6 339.0 28.4 335.8 25.3 t4 342.1 25.3 348.5 25.3 348.5 31.6 342.1 31.6 s3 346.5 29.6 348.5 30.3 348.5 31.6 t4 346.5 29.6 348.5 30.3 p 346.5 29.6 344.7 29.1 342.1 31.6 348.5 31.6 s4 346.5 29.6 344.7 29.1 p 342.1 28.1 344.7 29.1 342.1 31.6 t4 342.1 28.1 344.7 29.1 p 0.0 19.0 6.3 19.0 6.3 25.3 0.0 25.3 s2 1.9 20.9 5.5 19.8 3.2 22.1 t3 1.9 20.9 5.5 19.8 p 6.3 19.6 5.5 19.8 3.2 22.1 6.3 25.3 s3 6.3 19.6 5.5 19.8 p 6.3 25.3 3.2 22.1 0.0 25.3 t3 1.9 20.9 0.0 21.4 0.0 25.3 3.2 22.1 s3 1.9 20.9 0.0 21.4 p 6.3 19.0 12.7 19.0 12.7 25.3 6.3 25.3 s2 7.1 19.0 6.7 19.3 9.5 22.1 12.7 19.0 s3 7.1 19.0 6.7 19.3 p 12.7 19.0 9.5 22.1 12.7 25.3 t3 12.7 25.3 9.5 22.1 6.3 25.3 t3 6.7 19.3 6.3 19.6 6.3 25.3 9.5 22.1 s3 6.7 19.3 6.3 19.6 p 11.0 23.6 12.7 22.1 12.7 25.3 t4 11.0 23.6 12.7 22.1 p 8.7 25.3 11.0 23.6 12.7 25.3 t4 8.7 25.3 11.0 23.6 p 12.7 19.0 19.0 19.0 19.0 25.3 12.7 25.3 s3 15.1 19.0 14.2 20.4 15.8 22.1 19.0 19.0 s4 15.1 19.0 14.2 20.4 p 19.0 19.0 15.8 22.1 19.0 25.3 t4 19.0 25.3 15.8 22.1 12.7 25.3 t4 14.2 20.4 12.7 22.1 12.7 25.3 15.8 22.1 s4 14.2 20.4 12.7 22.1 p 18.7 25.0 19.0 24.6 19.0 25.3 t5 18.7 25.0 19.0 24.6 p 18.5 25.3 18.7 25.0 19.0 25.3 t5 18.5 25.3 18.7 25.0 p 19.0 19.0 25.3 19.0 25.3 25.3 19.0 25.3 s4 22.5 19.0 21.4 21.3 22.2 22.1 25.3 19.0 s5 22.5 19.0 21.4 21.3 p 25.3 19.0 22.2 22.1 25.3 25.3 t5 25.3 25.3 22.2 22.1 19.0 25.3 t5 21.4 21.3 19.0 24.6 19.0 25.3 22.2 22.1 s5 21.4 21.3 19.0 24.6 p 25.3 19.0 31.7 19.0 31.7 25.3 25.3 25.3 s5 31.7 19.0 38.0 19.0 38.0 25.3 31.7 25.3 s5 38.0 19.0 44.4 19.0 44.4 25.3 38.0 25.3 s5 44.4 19.0 50.7 19.0 50.7 25.3 44.4 25.3 s5 50.7 19.0 57.0 19.0 57.0 25.3 50.7 25.3 s4 55.3 20.7 52.7 19.0 50.7 19.0 53.9 22.1 s5 55.3 20.7 52.7 19.0 p 57.0 21.4 55.3 20.7 53.9 22.1 57.0 25.3 s5 57.0 21.4 55.3 20.7 p 57.0 25.3 53.9 22.1 50.7 25.3 t5 50.7 25.3 53.9 22.1 50.7 19.0 t5 57.0 19.0 63.4 19.0 63.4 25.3 57.0 25.3 s4 61.3 23.3 63.4 24.1 63.4 25.3 t5 61.3 23.3 63.4 24.1 p 61.3 23.3 59.7 22.6 57.0 25.3 63.4 25.3 s5 61.3 23.3 59.7 22.6 p 57.0 21.4 59.7 22.6 57.0 25.3 t5 57.0 21.4 59.7 22.6 p 63.4 19.0 69.7 19.0 69.7 25.3 63.4 25.3 s4 64.2 24.5 65.7 25.3 63.4 25.3 t5 64.2 24.5 65.7 25.3 p 63.4 24.1 64.2 24.5 63.4 25.3 t5 63.4 24.1 64.2 24.5 p 69.7 19.0 76.0 19.0 76.0 25.3 69.7 25.3 s4 76.0 19.0 82.4 19.0 82.4 25.3 76.0 25.3 s3 81.5 19.8 79.6 19.0 76.0 19.0 79.2 22.1 s4 81.5 19.8 79.6 19.0 p 82.4 20.3 81.5 19.8 79.2 22.1 82.4 25.3 s4 82.4 20.3 81.5 19.8 p 82.4 25.3 79.2 22.1 76.0 25.3 t4 76.0 25.3 79.2 22.1 76.0 19.0 t4 82.4 19.0 88.7 19.0 88.7 25.3 82.4 25.3 s3 84.0 20.5 86.8 20.9 85.5 22.1 t4 84.0 20.5 86.8 20.9 p 88.7 21.2 86.8 20.9 85.5 22.1 88.7 25.3 s4 88.7 21.2 86.8 20.9 p 88.7 25.3 85.5 22.1 82.4 25.3 t4 84.0 20.5 82.4 20.3 82.4 25.3 85.5 22.1 s4 84.0 20.5 82.4 20.3 p 88.7 19.0 95.0 19.0 95.0 25.3 88.7 25.3 s3 90.2 20.5 95.0 19.0 91.9 22.1 t4 90.2 20.5 95.0 19.0 p 95.0 19.0 95.0 19.0 91.9 22.1 95.0 25.3 s4 95.0 19.0 95.0 19.0 p 95.0 25.3 91.9 22.1 88.7 25.3 t4 90.2 20.5 88.7 21.2 88.7 25.3 91.9 22.1 s4 90.2 20.5 88.7 21.2 p 95.0 19.0 101.4 19.0 101.4 25.3 95.0 25.3 s3 95.1 19.0 95.1 19.0 98.2 22.1 101.4 19.0 s4 95.1 19.0 95.1 19.0 p 101.4 19.0 98.2 22.1 101.4 25.3 t4 101.4 25.3 98.2 22.1 95.0 25.3 t4 95.1 19.0 95.0 19.0 95.0 25.3 98.2 22.1 s4 95.1 19.0 95.0 19.0 p 101.4 19.0 107.7 19.0 107.7 25.3 101.4 25.3 s4 107.7 19.0 114.0 19.0 114.0 25.3 107.7 25.3 s4 112.3 23.5 114.0 22.8 114.0 25.3 t5 112.3 23.5 114.0 22.8 p 108.5 25.3 112.3 23.5 114.0 25.3 t5 108.5 25.3 112.3 23.5 p 114.0 19.0 120.4 19.0 120.4 25.3 114.0 25.3 s4 116.8 21.7 118.7 20.6 117.2 22.1 t5 116.8 21.7 118.7 20.6 p 120.4 19.8 118.7 20.6 117.2 22.1 120.4 25.3 s5 120.4 19.8 118.7 20.6 p 120.4 25.3 117.2 22.1 114.0 25.3 t5 116.8 21.7 114.0 22.8 114.0 25.3 117.2 22.1 s5 116.8 21.7 114.0 22.8 p 120.4 19.0 126.7 19.0 126.7 25.3 120.4 25.3 s4 121.6 19.0 120.9 19.5 123.6 22.1 126.7 19.0 s5 121.6 19.0 120.9 19.5 p 126.7 19.0 123.6 22.1 126.7 25.3 t5 126.7 25.3 123.6 22.1 120.4 25.3 t5 120.9 19.5 120.4 19.8 120.4 25.3 123.6 22.1 s5 120.9 19.5 120.4 19.8 p 126.7 19.0 133.1 19.0 133.1 25.3 126.7 25.3 s5 133.1 19.0 139.4 19.0 139.4 25.3 133.1 25.3 s5 139.4 19.0 145.7 19.0 145.7 25.3 139.4 25.3 s5 145.7 19.0 152.1 19.0 152.1 25.3 145.7 25.3 s5 152.1 19.0 158.4 19.0 158.4 25.3 152.1 25.3 s4 152.1 19.0 152.1 19.0 152.1 19.0 t5 152.1 19.0 152.1 19.0 p 154.1 23.3 155.6 25.3 152.1 25.3 t5 154.1 23.3 155.6 25.3 p 154.1 23.3 152.1 19.0 152.1 19.0 152.1 25.3 s5 154.1 23.3 152.1 19.0 p 158.4 19.0 164.7 19.0 164.7 25.3 158.4 25.3 s3 161.7 22.0 159.2 19.0 158.4 19.0 161.6 22.1 s4 161.7 22.0 159.2 19.0 p 164.7 25.0 161.7 22.0 161.6 22.1 164.7 25.3 s4 164.7 25.0 161.7 22.0 p 164.7 25.3 161.6 22.1 158.4 25.3 t4 158.4 25.3 161.6 22.1 158.4 19.0 t4 164.7 19.0 171.1 19.0 171.1 25.3 164.7 25.3 s2 169.8 20.3 167.6 19.0 164.7 19.0 167.9 22.1 s3 169.8 20.3 167.6 19.0 p 171.1 20.9 169.8 20.3 167.9 22.1 171.1 25.3 s3 171.1 20.9 169.8 20.3 p 171.1 25.3 167.9 22.1 164.7 25.3 t3 164.7 25.3 167.9 22.1 164.7 19.0 t3 164.9 25.1 165.3 25.3 164.7 25.3 t4 164.9 25.1 165.3 25.3 p 164.7 25.0 164.9 25.1 164.7 25.3 t4 164.7 25.0 164.9 25.1 p 171.1 19.0 177.4 19.0 177.4 25.3 171.1 25.3 s2 173.1 20.9 175.4 20.9 174.2 22.1 t3 173.1 20.9 175.4 20.9 p 177.4 20.9 175.4 20.9 174.2 22.1 177.4 25.3 s3 177.4 20.9 175.4 20.9 p 177.4 25.3 174.2 22.1 171.1 25.3 t3 173.1 20.9 171.1 20.9 171.1 25.3 174.2 22.1 s3 173.1 20.9 171.1 20.9 p 177.4 19.0 183.7 19.0 183.7 25.3 177.4 25.3 s2 180.9 19.0 178.7 20.3 180.6 22.1 183.7 19.0 s3 180.9 19.0 178.7 20.3 p 183.7 19.0 180.6 22.1 183.7 25.3 t3 183.7 25.3 180.6 22.1 177.4 25.3 t3 178.7 20.3 177.4 20.9 177.4 25.3 180.6 22.1 s3 178.7 20.3 177.4 20.9 p 183.6 25.1 183.7 25.0 183.7 25.3 t4 183.6 25.1 183.7 25.0 p 183.2 25.3 183.6 25.1 183.7 25.3 t4 183.2 25.3 183.6 25.1 p 183.7 19.0 190.1 19.0 190.1 25.3 183.7 25.3 s3 189.3 19.0 186.8 22.0 186.9 22.1 190.1 19.0 s4 189.3 19.0 186.8 22.0 p 190.1 19.0 186.9 22.1 190.1 25.3 t4 190.1 25.3 186.9 22.1 183.7 25.3 t4 186.8 22.0 183.7 25.0 183.7 25.3 186.9 22.1 s4 186.8 22.0 183.7 25.0 p 190.1 19.0 196.4 19.0 196.4 25.3 190.1 25.3 s4 196.4 19.0 196.4 19.0 196.4 19.0 t5 196.4 19.0 196.4 19.0 p 196.4 19.0 194.4 23.3 196.4 25.3 196.4 19.0 s5 196.4 19.0 194.4 23.3 p 192.9 25.3 194.4 23.3 196.4 25.3 t5 192.9 25.3 194.4 23.3 p 196.4 19.0 202.7 19.0 202.7 25.3 196.4 25.3 s5 202.7 19.0 209.1 19.0 209.1 25.3 202.7 25.3 s5 209.1 19.0 215.4 19.0 215.4 25.3 209.1 25.3 s5 215.4 19.0 221.8 19.0 221.8 25.3 215.4 25.3 s5 221.8 19.0 228.1 19.0 228.1 25.3 221.8 25.3 s4 227.5 19.5 226.9 19.0 221.8 19.0 224.9 22.1 s5 227.5 19.5 226.9 19.0 p 228.1 19.8 227.5 19.5 224.9 22.1 228.1 25.3 s5 228.1 19.8 227.5 19.5 p 228.1 25.3 224.9 22.1 221.8 25.3 t5 221.8 25.3 224.9 22.1 221.8 19.0 t5 228.1 19.0 234.4 19.0 234.4 25.3 228.1 25.3 s4 229.8 20.6 231.7 21.7 231.3 22.1 t5 229.8 20.6 231.7 21.7 p 234.4 22.8 231.7 21.7 231.3 22.1 234.4 25.3 s5 234.4 22.8 231.7 21.7 p 234.4 25.3 231.3 22.1 228.1 25.3 t5 229.8 20.6 228.1 19.8 228.1 25.3 231.3 22.1 s5 229.8 20.6 228.1 19.8 p 234.4 19.0 240.8 19.0 240.8 25.3 234.4 25.3 s4 236.2 23.5 240.0 25.3 234.4 25.3 t5 236.2 23.5 240.0 25.3 p 234.4 22.8 236.2 23.5 234.4 25.3 t5 234.4 22.8 236.2 23.5 p 240.8 19.0 247.1 19.0 247.1 25.3 240.8 25.3 s4 247.1 19.0 253.4 19.0 253.4 25.3 247.1 25.3 s3 253.4 19.0 253.3 19.0 247.1 19.0 250.3 22.1 s4 253.4 19.0 253.3 19.0 p 253.4 19.0 253.4 19.0 250.3 22.1 253.4 25.3 s4 253.4 19.0 253.4 19.0 p 253.4 25.3 250.3 22.1 247.1 25.3 t4 247.1 25.3 250.3 22.1 247.1 19.0 t4 253.4 19.0 259.8 19.0 259.8 25.3 253.4 25.3 s3 253.5 19.0 258.2 20.5 256.6 22.1 t4 253.5 19.0 258.2 20.5 p 259.8 21.2 258.2 20.5 256.6 22.1 259.8 25.3 s4 259.8 21.2 258.2 20.5 p 259.8 25.3 256.6 22.1 253.4 25.3 t4 253.5 19.0 253.4 19.0 253.4 25.3 256.6 22.1 s4 253.5 19.0 253.4 19.0 p 259.8 19.0 266.1 19.0 266.1 25.3 259.8 25.3 s3 261.7 20.9 264.5 20.5 262.9 22.1 t4 261.7 20.9 264.5 20.5 p 266.1 20.3 264.5 20.5 262.9 22.1 266.1 25.3 s4 266.1 20.3 264.5 20.5 p 266.1 25.3 262.9 22.1 259.8 25.3 t4 261.7 20.9 259.8 21.2 259.8 25.3 262.9 22.1 s4 261.7 20.9 259.8 21.2 p 266.1 19.0 272.4 19.0 272.4 25.3 266.1 25.3 s3 268.9 19.0 266.9 19.8 269.3 22.1 272.4 19.0 s4 268.9 19.0 266.9 19.8 p 272.4 19.0 269.3 22.1 272.4 25.3 t4 272.4 25.3 269.3 22.1 266.1 25.3 t4 266.9 19.8 266.1 20.3 266.1 25.3 269.3 22.1 s4 266.9 19.8 266.1 20.3 p 272.4 19.0 278.8 19.0 278.8 25.3 272.4 25.3 s4 278.8 19.0 285.1 19.0 285.1 25.3 278.8 25.3 s4 284.3 24.5 285.1 24.1 285.1 25.3 t5 284.3 24.5 285.1 24.1 p 282.8 25.3 284.3 24.5 285.1 25.3 t5 282.8 25.3 284.3 24.5 p 285.1 19.0 291.5 19.0 291.5 25.3 285.1 25.3 s4 288.8 22.6 291.5 21.4 291.5 25.3 t5 288.8 22.6 291.5 21.4 p 288.8 22.6 287.1 23.3 285.1 25.3 291.5 25.3 s5 288.8 22.6 287.1 23.3 p 285.1 24.1 287.1 23.3 285.1 25.3 t5 285.1 24.1 287.1 23.3 p 291.5 19.0 297.8 19.0 297.8 25.3 291.5 25.3 s4 295.8 19.0 293.2 20.7 294.6 22.1 297.8 19.0 s5 295.8 19.0 293.2 20.7 p 297.8 19.0 294.6 22.1 297.8 25.3 t5 297.8 25.3 294.6 22.1 291.5 25.3 t5 293.2 20.7 291.5 21.4 291.5 25.3 294.6 22.1 s5 293.2 20.7 291.5 21.4 p 297.8 19.0 304.1 19.0 304.1 25.3 297.8 25.3 s5 304.1 19.0 310.5 19.0 310.5 25.3 304.1 25.3 s5 310.5 19.0 316.8 19.0 316.8 25.3 310.5 25.3 s5 316.8 19.0 323.1 19.0 323.1 25.3 316.8 25.3 s5 323.1 19.0 329.5 19.0 329.5 25.3 323.1 25.3 s4 327.1 21.3 326.0 19.0 323.1 19.0 326.3 22.1 s5 327.1 21.3 326.0 19.0 p 329.5 24.6 327.1 21.3 326.3 22.1 329.5 25.3 s5 329.5 24.6 327.1 21.3 p 329.5 25.3 326.3 22.1 323.1 25.3 t5 323.1 25.3 326.3 22.1 323.1 19.0 t5 329.5 19.0 335.8 19.0 335.8 25.3 329.5 25.3 s3 334.3 20.4 333.4 19.0 329.5 19.0 332.6 22.1 s4 334.3 20.4 333.4 19.0 p 335.8 22.1 334.3 20.4 332.6 22.1 335.8 25.3 s4 335.8 22.1 334.3 20.4 p 335.8 25.3 332.6 22.1 329.5 25.3 t4 329.5 25.3 332.6 22.1 329.5 19.0 t4 329.7 25.0 330.0 25.3 329.5 25.3 t5 329.7 25.0 330.0 25.3 p 329.5 24.6 329.7 25.0 329.5 25.3 t5 329.5 24.6 329.7 25.0 p 335.8 19.0 342.1 19.0 342.1 25.3 335.8 25.3 s2 341.8 19.3 341.4 19.0 335.8 19.0 339.0 22.1 s3 341.8 19.3 341.4 19.0 p 342.1 19.6 341.8 19.3 339.0 22.1 342.1 25.3 s3 342.1 19.6 341.8 19.3 p 342.1 25.3 339.0 22.1 335.8 25.3 t3 335.8 25.3 339.0 22.1 335.8 19.0 t3 337.5 23.6 339.7 25.3 335.8 25.3 t4 337.5 23.6 339.7 25.3 p 335.8 22.1 337.5 23.6 335.8 25.3 t4 335.8 22.1 337.5 23.6 p 342.1 19.0 348.5 19.0 348.5 25.3 342.1 25.3 s2 343.0 19.8 346.5 20.9 345.3 22.1 t3 343.0 19.8 346.5 20.9 p 348.5 21.4 346.5 20.9 345.3 22.1 348.5 25.3 s3 348.5 21.4 346.5 20.9 p 348.5 25.3 345.3 22.1 342.1 25.3 t3 343.0 19.8 342.1 19.6 342.1 25.3 345.3 22.1 s3 343.0 19.8 342.1 19.6 p 0.0 12.6 6.3 12.6 6.3 19.0 0.0 19.0 s1 5.2 12.6 1.2 13.8 3.2 15.8 6.3 12.6 s2 5.2 12.6 1.2 13.8 p 6.3 12.6 3.2 15.8 6.3 19.0 t2 6.3 19.0 3.2 15.8 0.0 19.0 t2 1.2 13.8 0.0 14.2 0.0 19.0 3.2 15.8 s2 1.2 13.8 0.0 14.2 p 6.3 12.6 12.7 12.6 12.7 19.0 6.3 19.0 s2 10.1 16.4 12.7 14.1 12.7 19.0 t3 10.1 16.4 12.7 14.1 p 7.1 19.0 10.1 16.4 12.7 19.0 t3 7.1 19.0 10.1 16.4 p 12.7 12.6 19.0 12.6 19.0 19.0 12.7 19.0 s2 13.9 12.6 13.4 13.3 15.8 15.8 19.0 12.6 s3 13.9 12.6 13.4 13.3 p 19.0 12.6 15.8 15.8 19.0 19.0 t3 19.0 19.0 15.8 15.8 12.7 19.0 t3 13.4 13.3 12.7 14.1 12.7 19.0 15.8 15.8 s3 13.4 13.3 12.7 14.1 p 16.9 16.8 19.0 14.0 19.0 19.0 t4 16.9 16.8 19.0 14.0 p 15.1 19.0 16.9 16.8 19.0 19.0 t4 15.1 19.0 16.9 16.8 p 19.0 12.6 25.3 12.6 25.3 19.0 19.0 19.0 s3 20.0 12.6 19.6 13.2 22.2 15.8 25.3 12.6 s4 20.0 12.6 19.6 13.2 p 25.3 12.6 22.2 15.8 25.3 19.0 t4 25.3 19.0 22.2 15.8 19.0 19.0 t4 19.6 13.2 19.0 14.0 19.0 19.0 22.2 15.8 s4 19.6 13.2 19.0 14.0 p 23.7 17.4 25.3 14.7 25.3 19.0 t5 23.7 17.4 25.3 14.7 p 22.5 19.0 23.7 17.4 25.3 19.0 t5 22.5 19.0 23.7 17.4 p 25.3 12.6 31.7 12.6 31.7 19.0 25.3 19.0 s4 27.3 12.6 26.4 13.7 28.5 15.8 31.7 12.6 s5 27.3 12.6 26.4 13.7 p 31.7 12.6 28.5 15.8 31.7 19.0 t5 31.7 19.0 28.5 15.8 25.3 19.0 t5 26.4 13.7 25.3 14.7 25.3 19.0 28.5 15.8 s5 26.4 13.7 25.3 14.7 p 31.7 12.6 38.0 12.6 38.0 19.0 31.7 19.0 s5 38.0 12.6 44.4 12.6 44.4 19.0 38.0 19.0 s5 44.4 12.6 50.7 12.6 50.7 19.0 44.4 19.0 s4 48.0 15.3 45.7 12.6 44.4 12.6 47.5 15.8 s5 48.0 15.3 45.7 12.6 p 50.7 17.6 48.0 15.3 47.5 15.8 50.7 19.0 s5 50.7 17.6 48.0 15.3 p 50.7 19.0 47.5 15.8 44.4 19.0 t5 44.4 19.0 47.5 15.8 44.4 12.6 t5 50.7 12.6 57.0 12.6 57.0 19.0 50.7 19.0 s4 51.4 18.2 52.7 19.0 50.7 19.0 t5 51.4 18.2 52.7 19.0 p 50.7 17.6 51.4 18.2 50.7 19.0 t5 50.7 17.6 51.4 18.2 p 57.0 12.6 63.4 12.6 63.4 19.0 57.0 19.0 s3 62.9 13.1 62.2 12.6 57.0 12.6 60.2 15.8 s4 62.9 13.1 62.2 12.6 p 63.4 13.2 62.9 13.1 60.2 15.8 63.4 19.0 s4 63.4 13.2 62.9 13.1 p 63.4 19.0 60.2 15.8 57.0 19.0 t4 57.0 19.0 60.2 15.8 57.0 12.6 t4 63.4 12.6 69.7 12.6 69.7 19.0 63.4 19.0 s3 64.4 13.6 67.5 14.9 66.5 15.8 t4 64.4 13.6 67.5 14.9 p 69.7 15.7 67.5 14.9 66.5 15.8 69.7 19.0 s4 69.7 15.7 67.5 14.9 p 69.7 19.0 66.5 15.8 63.4 19.0 t4 64.4 13.6 63.4 13.2 63.4 19.0 66.5 15.8 s4 64.4 13.6 63.4 13.2 p 69.7 12.6 76.0 12.6 76.0 19.0 69.7 19.0 s3 74.5 17.4 76.0 18.0 76.0 19.0 t4 74.5 17.4 76.0 18.0 p 74.5 17.4 72.1 16.5 69.7 19.0 76.0 19.0 s4 74.5 17.4 72.1 16.5 p 69.7 15.7 72.1 16.5 69.7 19.0 t4 69.7 15.7 72.1 16.5 p 76.0 12.6 82.4 12.6 82.4 19.0 76.0 19.0 s3 76.8 18.2 79.6 19.0 76.0 19.0 t4 76.8 18.2 79.6 19.0 p 76.0 18.0 76.8 18.2 76.0 19.0 t4 76.0 18.0 76.8 18.2 p 82.4 12.6 88.7 12.6 88.7 19.0 82.4 19.0 s3 88.7 12.6 95.0 12.6 95.0 19.0 88.7 19.0 s3 95.0 12.6 101.4 12.6 101.4 19.0 95.0 19.0 s3 99.8 17.4 101.4 16.9 101.4 19.0 t4 99.8 17.4 101.4 16.9 p 95.1 19.0 99.8 17.4 101.4 19.0 t4 95.1 19.0 99.8 17.4 p 101.4 12.6 107.7 12.6 107.7 19.0 101.4 19.0 s3 104.5 15.7 104.7 15.6 104.5 15.8 t4 104.5 15.7 104.7 15.6 p 107.7 14.5 104.7 15.6 104.5 15.8 107.7 19.0 s4 107.7 14.5 104.7 15.6 p 107.7 19.0 104.5 15.8 101.4 19.0 t4 104.5 15.7 101.4 16.9 101.4 19.0 104.5 15.8 s4 104.5 15.7 101.4 16.9 p 107.7 12.6 114.0 12.6 114.0 19.0 107.7 19.0 s3 112.0 12.6 109.1 14.0 110.9 15.8 114.0 12.6 s4 112.0 12.6 109.1 14.0 p 114.0 12.6 110.9 15.8 114.0 19.0 t4 114.0 19.0 110.9 15.8 107.7 19.0 t4 109.1 14.0 107.7 14.5 107.7 19.0 110.9 15.8 s4 109.1 14.0 107.7 14.5 p 114.0 12.6 120.4 12.6 120.4 19.0 114.0 19.0 s4 120.4 12.6 126.7 12.6 126.7 19.0 120.4 19.0 s4 124.6 16.8 126.7 14.7 126.7 19.0 t5 124.6 16.8 126.7 14.7 p 121.6 19.0 124.6 16.8 126.7 19.0 t5 121.6 19.0 124.6 16.8 p 126.7 12.6 133.1 12.6 133.1 19.0 126.7 19.0 s4 128.7 12.6 127.8 13.7 129.9 15.8 133.1 12.6 s5 128.7 12.6 127.8 13.7 p 133.1 12.6 129.9 15.8 133.1 19.0 t5 133.1 19.0 129.9 15.8 126.7 19.0 t5 127.8 13.7 126.7 14.7 126.7 19.0 129.9 15.8 s5 127.8 13.7 126.7 14.7 p 133.1 12.6 139.4 12.6 139.4 19.0 133.1 19.0 s5 139.4 12.6 145.7 12.6 145.7 19.0 139.4 19.0 s5 145.7 12.6 152.1 12.6 152.1 19.0 145.7 19.0 s4 149.1 15.6 147.1 12.6 145.7 12.6 148.9 15.8 s5 149.1 15.6 147.1 12.6 p 152.1 18.9 149.1 15.6 148.9 15.8 152.1 19.0 s5 152.1 18.9 149.1 15.6 p 152.1 19.0 148.9 15.8 145.7 19.0 t5 145.7 19.0 148.9 15.8 145.7 12.6 t5 152.1 12.6 158.4 12.6 158.4 19.0 152.1 19.0 s3 155.9 15.1 154.3 12.6 152.1 12.6 155.2 15.8 s4 155.9 15.1 154.3 12.6 p 158.4 18.1 155.9 15.1 155.2 15.8 158.4 19.0 s4 158.4 18.1 155.9 15.1 p 158.4 19.0 155.2 15.8 152.1 19.0 t4 152.1 19.0 155.2 15.8 152.1 12.6 t4 152.1 18.9 152.1 19.0 152.1 19.0 t5 152.1 18.9 152.1 19.0 p 152.1 18.9 152.1 18.9 152.1 19.0 t5 152.1 18.9 152.1 18.9 p 158.4 12.6 164.7 12.6 164.7 19.0 158.4 19.0 s2 162.5 14.9 160.5 12.6 158.4 12.6 161.6 15.8 s3 162.5 14.9 160.5 12.6 p 164.7 17.2 162.5 14.9 161.6 15.8 164.7 19.0 s3 164.7 17.2 162.5 14.9 p 164.7 19.0 161.6 15.8 158.4 19.0 t3 158.4 19.0 161.6 15.8 158.4 12.6 t3 158.8 18.6 159.2 19.0 158.4 19.0 t4 158.8 18.6 159.2 19.0 p 158.4 18.1 158.8 18.6 158.4 19.0 t4 158.4 18.1 158.8 18.6 p 164.7 12.6 171.1 12.6 171.1 19.0 164.7 19.0 s1 170.4 13.3 169.2 12.6 164.7 12.6 167.9 15.8 s2 170.4 13.3 169.2 12.6 p 171.1 13.7 170.4 13.3 167.9 15.8 171.1 19.0 s2 171.1 13.7 170.4 13.3 p 171.1 19.0 167.9 15.8 164.7 19.0 t2 164.7 19.0 167.9 15.8 164.7 12.6 t2 165.8 17.9 167.6 19.0 164.7 19.0 t3 165.8 17.9 167.6 19.0 p 164.7 17.2 165.8 17.9 164.7 19.0 t3 164.7 17.2 165.8 17.9 p 171.1 12.6 177.4 12.6 177.4 19.0 171.1 19.0 s1 172.2 13.7 176.3 13.7 174.2 15.8 t2 172.2 13.7 176.3 13.7 p 177.4 13.7 176.3 13.7 174.2 15.8 177.4 19.0 s2 177.4 13.7 176.3 13.7 p 177.4 19.0 174.2 15.8 171.1 19.0 t2 172.2 13.7 171.1 13.7 171.1 19.0 174.2 15.8 s2 172.2 13.7 171.1 13.7 p 177.4 12.6 183.7 12.6 183.7 19.0 177.4 19.0 s1 179.2 12.6 178.1 13.3 180.6 15.8 183.7 12.6 s2 179.2 12.6 178.1 13.3 p 183.7 12.6 180.6 15.8 183.7 19.0 t2 183.7 19.0 180.6 15.8 177.4 19.0 t2 178.1 13.3 177.4 13.7 177.4 19.0 180.6 15.8 s2 178.1 13.3 177.4 13.7 p 182.7 17.9 183.7 17.2 183.7 19.0 t3 182.7 17.9 183.7 17.2 p 180.9 19.0 182.7 17.9 183.7 19.0 t3 180.9 19.0 182.7 17.9 p 183.7 12.6 190.1 12.6 190.1 19.0 183.7 19.0 s2 188.0 12.6 186.0 14.9 186.9 15.8 190.1 12.6 s3 188.0 12.6 186.0 14.9 p 190.1 12.6 186.9 15.8 190.1 19.0 t3 190.1 19.0 186.9 15.8 183.7 19.0 t3 186.0 14.9 183.7 17.2 183.7 19.0 186.9 15.8 s3 186.0 14.9 183.7 17.2 p 189.7 18.6 190.1 18.1 190.1 19.0 t4 189.7 18.6 190.1 18.1 p 189.3 19.0 189.7 18.6 190.1 19.0 t4 189.3 19.0 189.7 18.6 p 190.1 12.6 196.4 12.6 196.4 19.0 190.1 19.0 s3 194.2 12.6 192.5 15.1 193.2 15.8 196.4 12.6 s4 194.2 12.6 192.5 15.1 p 196.4 12.6 193.2 15.8 196.4 19.0 t4 196.4 19.0 193.2 15.8 190.1 19.0 t4 192.5 15.1 190.1 18.1 190.1 19.0 193.2 15.8 s4 192.5 15.1 190.1 18.1 p 196.4 18.9 196.4 18.9 196.4 19.0 t5 196.4 18.9 196.4 18.9 p 196.4 19.0 196.4 18.9 196.4 19.0 t5 196.4 19.0 196.4 18.9 p 196.4 12.6 202.7 12.6 202.7 19.0 196.4 19.0 s4 201.4 12.6 199.4 15.6 199.6 15.8 202.7 12.6 s5 201.4 12.6 199.4 15.6 p 202.7 12.6 199.6 15.8 202.7 19.0 t5 202.7 19.0 199.6 15.8 196.4 19.0 t5 199.4 15.6 196.4 18.9 196.4 19.0 199.6 15.8 s5 199.4 15.6 196.4 18.9 p 202.7 12.6 209.1 12.6 209.1 19.0 202.7 19.0 s5 209.1 12.6 215.4 12.6 215.4 19.0 209.1 19.0 s5 215.4 12.6 221.8 12.6 221.8 19.0 215.4 19.0 s4 220.7 13.7 219.8 12.6 215.4 12.6 218.6 15.8 s5 220.7 13.7 219.8 12.6 p 221.8 14.7 220.7 13.7 218.6 15.8 221.8 19.0 s5 221.8 14.7 220.7 13.7 p 221.8 19.0 218.6 15.8 215.4 19.0 t5 215.4 19.0 218.6 15.8 215.4 12.6 t5 221.8 12.6 228.1 12.6 228.1 19.0 221.8 19.0 s4 223.9 16.8 226.9 19.0 221.8 19.0 t5 223.9 16.8 226.9 19.0 p 221.8 14.7 223.9 16.8 221.8 19.0 t5 221.8 14.7 223.9 16.8 p 228.1 12.6 234.4 12.6 234.4 19.0 228.1 19.0 s4 234.4 12.6 240.8 12.6 240.8 19.0 234.4 19.0 s3 239.4 14.0 236.4 12.6 234.4 12.6 237.6 15.8 s4 239.4 14.0 236.4 12.6 p 240.8 14.5 239.4 14.0 237.6 15.8 240.8 19.0 s4 240.8 14.5 239.4 14.0 p 240.8 19.0 237.6 15.8 234.4 19.0 t4 234.4 19.0 237.6 15.8 234.4 12.6 t4 240.8 12.6 247.1 12.6 247.1 19.0 240.8 19.0 s3 243.8 15.6 244.0 15.7 243.9 15.8 t4 243.8 15.6 244.0 15.7 p 247.1 16.9 244.0 15.7 243.9 15.8 247.1 19.0 s4 247.1 16.9 244.0 15.7 p 247.1 19.0 243.9 15.8 240.8 19.0 t4 243.8 15.6 240.8 14.5 240.8 19.0 243.9 15.8 s4 243.8 15.6 240.8 14.5 p 247.1 12.6 253.4 12.6 253.4 19.0 247.1 19.0 s3 248.7 17.4 253.3 19.0 247.1 19.0 t4 248.7 17.4 253.3 19.0 p 247.1 16.9 248.7 17.4 247.1 19.0 t4 247.1 16.9 248.7 17.4 p 253.4 12.6 259.8 12.6 259.8 19.0 253.4 19.0 s3 259.8 12.6 266.1 12.6 266.1 19.0 259.8 19.0 s3 266.1 12.6 272.4 12.6 272.4 19.0 266.1 19.0 s3 271.7 18.2 272.4 18.0 272.4 19.0 t4 271.7 18.2 272.4 18.0 p 268.9 19.0 271.7 18.2 272.4 19.0 t4 268.9 19.0 271.7 18.2 p 272.4 12.6 278.8 12.6 278.8 19.0 272.4 19.0 s3 276.4 16.5 278.8 15.7 278.8 19.0 t4 276.4 16.5 278.8 15.7 p 276.4 16.5 274.0 17.4 272.4 19.0 278.8 19.0 s4 276.4 16.5 274.0 17.4 p 272.4 18.0 274.0 17.4 272.4 19.0 t4 272.4 18.0 274.0 17.4 p 278.8 12.6 285.1 12.6 285.1 19.0 278.8 19.0 s3 281.0 14.9 284.1 13.6 281.9 15.8 t4 281.0 14.9 284.1 13.6 p 285.1 13.2 284.1 13.6 281.9 15.8 285.1 19.0 s4 285.1 13.2 284.1 13.6 p 285.1 19.0 281.9 15.8 278.8 19.0 t4 281.0 14.9 278.8 15.7 278.8 19.0 281.9 15.8 s4 281.0 14.9 278.8 15.7 p 285.1 12.6 291.5 12.6 291.5 19.0 285.1 19.0 s3 286.3 12.6 285.5 13.1 288.3 15.8 291.5 12.6 s4 286.3 12.6 285.5 13.1 p 291.5 12.6 288.3 15.8 291.5 19.0 t4 291.5 19.0 288.3 15.8 285.1 19.0 t4 285.5 13.1 285.1 13.2 285.1 19.0 288.3 15.8 s4 285.5 13.1 285.1 13.2 p 291.5 12.6 297.8 12.6 297.8 19.0 291.5 19.0 s4 297.0 18.2 297.8 17.6 297.8 19.0 t5 297.0 18.2 297.8 17.6 p 295.8 19.0 297.0 18.2 297.8 19.0 t5 295.8 19.0 297.0 18.2 p 297.8 12.6 304.1 12.6 304.1 19.0 297.8 19.0 s4 302.8 12.6 300.5 15.3 301.0 15.8 304.1 12.6 s5 302.8 12.6 300.5 15.3 p 304.1 12.6 301.0 15.8 304.1 19.0 t5 304.1 19.0 301.0 15.8 297.8 19.0 t5 300.5 15.3 297.8 17.6 297.8 19.0 301.0 15.8 s5 300.5 15.3 297.8 17.6 p 304.1 12.6 310.5 12.6 310.5 19.0 304.1 19.0 s5 310.5 12.6 316.8 12.6 316.8 19.0 310.5 19.0 s5 316.8 12.6 323.1 12.6 323.1 19.0 316.8 19.0 s4 322.1 13.7 321.2 12.6 316.8 12.6 320.0 15.8 s5 322.1 13.7 321.2 12.6 p 323.1 14.7 322.1 13.7 320.0 15.8 323.1 19.0 s5 323.1 14.7 322.1 13.7 p 323.1 19.0 320.0 15.8 316.8 19.0 t5 316.8 19.0 320.0 15.8 316.8 12.6 t5 323.1 12.6 329.5 12.6 329.5 19.0 323.1 19.0 s3 328.9 13.2 328.5 12.6 323.1 12.6 326.3 15.8 s4 328.9 13.2 328.5 12.6 p 329.5 14.0 328.9 13.2 326.3 15.8 329.5 19.0 s4 329.5 14.0 328.9 13.2 p 329.5 19.0 326.3 15.8 323.1 19.0 t4 323.1 19.0 326.3 15.8 323.1 12.6 t4 324.7 17.4 326.0 19.0 323.1 19.0 t5 324.7 17.4 326.0 19.0 p 323.1 14.7 324.7 17.4 323.1 19.0 t5 323.1 14.7 324.7 17.4 p 329.5 12.6 335.8 12.6 335.8 19.0 329.5 19.0 s2 335.1 13.3 334.6 12.6 329.5 12.6 332.6 15.8 s3 335.1 13.3 334.6 12.6 p 335.8 14.1 335.1 13.3 332.6 15.8 335.8 19.0 s3 335.8 14.1 335.1 13.3 p 335.8 19.0 332.6 15.8 329.5 19.0 t3 329.5 19.0 332.6 15.8 329.5 12.6 t3 331.6 16.8 333.4 19.0 329.5 19.0 t4 331.6 16.8 333.4 19.0 p 329.5 14.0 331.6 16.8 329.5 19.0 t4 329.5 14.0 331.6 16.8 p 335.8 12.6 342.1 12.6 342.1 19.0 335.8 19.0 s2 338.4 16.4 341.4 19.0 335.8 19.0 t3 338.4 16.4 341.4 19.0 p 335.8 14.1 338.4 16.4 335.8 19.0 t3 335.8 14.1 338.4 16.4 p 342.1 12.6 348.5 12.6 348.5 19.0 342.1 19.0 s1 347.3 13.8 343.3 12.6 342.1 12.6 345.3 15.8 s2 347.3 13.8 343.3 12.6 p 348.5 14.2 347.3 13.8 345.3 15.8 348.5 19.0 s2 348.5 14.2 347.3 13.8 p 348.5 19.0 345.3 15.8 342.1 19.0 t2 342.1 19.0 345.3 15.8 342.1 12.6 t2 0.0 6.3 6.3 6.3 6.3 12.6 0.0 12.6 s1 6.0 12.3 6.3 12.1 6.3 12.6 t2 6.0 12.3 6.3 12.1 p 5.2 12.6 6.0 12.3 6.3 12.6 t2 5.2 12.6 6.0 12.3 p 6.3 6.3 12.7 6.3 12.7 12.6 6.3 12.6 s1 11.4 6.3 9.0 8.9 9.5 9.5 12.7 6.3 s2 11.4 6.3 9.0 8.9 p 12.7 6.3 9.5 9.5 12.7 12.6 t2 12.7 12.6 9.5 9.5 6.3 12.6 t2 9.0 8.9 6.3 12.1 6.3 12.6 9.5 9.5 s2 9.0 8.9 6.3 12.1 p 12.7 6.3 19.0 6.3 19.0 12.6 12.7 12.6 s2 16.1 9.2 18.0 6.3 19.0 6.3 t3 16.1 9.2 18.0 6.3 p 16.1 9.2 15.9 9.5 19.0 12.6 19.0 6.3 s3 16.1 9.2 15.9 9.5 p 13.9 12.6 15.9 9.5 19.0 12.6 t3 13.9 12.6 15.9 9.5 p 19.0 6.3 25.3 6.3 25.3 12.6 19.0 12.6 s3 24.1 6.3 22.1 9.4 22.2 9.5 25.3 6.3 s4 24.1 6.3 22.1 9.4 p 25.3 6.3 22.2 9.5 25.3 12.6 t4 22.0 9.7 20.0 12.6 25.3 12.6 22.2 9.5 s4 22.0 9.7 20.0 12.6 p 22.0 9.7 22.1 9.4 22.2 9.5 t4 22.0 9.7 22.1 9.4 p 25.3 6.3 31.7 6.3 31.7 12.6 25.3 12.6 s4 29.5 10.5 31.7 7.9 31.7 12.6 t5 29.5 10.5 31.7 7.9 p 27.3 12.6 29.5 10.5 31.7 12.6 t5 27.3 12.6 29.5 10.5 p 31.7 6.3 38.0 6.3 38.0 12.6 31.7 12.6 s4 33.1 7.7 37.6 6.7 34.8 9.5 t5 33.1 7.7 37.6 6.7 p 38.0 6.7 37.6 6.7 34.8 9.5 38.0 12.6 s5 38.0 6.7 37.6 6.7 p 38.0 12.6 34.8 9.5 31.7 12.6 t5 33.1 7.7 31.7 7.9 31.7 12.6 34.8 9.5 s5 33.1 7.7 31.7 7.9 p 38.0 6.3 44.4 6.3 44.4 12.6 38.0 12.6 s4 39.3 7.6 41.5 9.2 41.2 9.5 t5 39.3 7.6 41.5 9.2 p 44.4 11.3 41.5 9.2 41.2 9.5 44.4 12.6 s5 44.4 11.3 41.5 9.2 p 44.4 12.6 41.2 9.5 38.0 12.6 t5 39.3 7.6 38.0 6.7 38.0 12.6 41.2 9.5 s5 39.3 7.6 38.0 6.7 p 44.4 6.3 50.7 6.3 50.7 12.6 44.4 12.6 s4 45.0 12.0 45.7 12.6 44.4 12.6 t5 45.0 12.0 45.7 12.6 p 44.4 11.3 45.0 12.0 44.4 12.6 t5 44.4 11.3 45.0 12.0 p 50.7 6.3 57.0 6.3 57.0 12.6 50.7 12.6 s3 55.2 8.1 53.2 6.3 50.7 6.3 53.9 9.5 s4 55.2 8.1 53.2 6.3 p 57.0 9.6 55.2 8.1 53.9 9.5 57.0 12.6 s4 57.0 9.6 55.2 8.1 p 57.0 12.6 53.9 9.5 50.7 12.6 t4 50.7 12.6 53.9 9.5 50.7 6.3 t4 57.0 6.3 63.4 6.3 63.4 12.6 57.0 12.6 s3 58.9 10.8 62.2 12.6 57.0 12.6 t4 58.9 10.8 62.2 12.6 p 57.0 9.6 58.9 10.8 57.0 12.6 t4 57.0 9.6 58.9 10.8 p 63.4 6.3 69.7 6.3 69.7 12.6 63.4 12.6 s3 69.7 6.3 76.0 6.3 76.0 12.6 69.7 12.6 s2 75.7 6.6 74.8 6.3 69.7 6.3 72.9 9.5 s3 75.7 6.6 74.8 6.3 p 76.0 6.7 75.7 6.6 72.9 9.5 76.0 12.6 s3 76.0 6.7 75.7 6.6 p 76.0 12.6 72.9 9.5 69.7 12.6 t3 69.7 12.6 72.9 9.5 69.7 6.3 t3 76.0 6.3 82.4 6.3 82.4 12.6 76.0 12.6 s2 76.5 6.8 81.0 7.7 79.2 9.5 t3 76.5 6.8 81.0 7.7 p 82.4 8.0 81.0 7.7 79.2 9.5 82.4 12.6 s3 82.4 8.0 81.0 7.7 p 82.4 12.6 79.2 9.5 76.0 12.6 t3 76.5 6.8 76.0 6.7 76.0 12.6 79.2 9.5 s3 76.5 6.8 76.0 6.7 p 82.4 6.3 88.7 6.3 88.7 12.6 82.4 12.6 s2 84.1 8.1 86.9 8.2 85.5 9.5 t3 84.1 8.1 86.9 8.2 p 88.7 8.2 86.9 8.2 85.5 9.5 88.7 12.6 s3 88.7 8.2 86.9 8.2 p 88.7 12.6 85.5 9.5 82.4 12.6 t3 84.1 8.1 82.4 8.0 82.4 12.6 85.5 9.5 s3 84.1 8.1 82.4 8.0 p 88.7 6.3 95.0 6.3 95.0 12.6 88.7 12.6 s2 90.4 8.0 93.7 7.6 91.9 9.5 t3 90.4 8.0 93.7 7.6 p 95.0 7.4 93.7 7.6 91.9 9.5 95.0 12.6 s3 95.0 7.4 93.7 7.6 p 95.0 12.6 91.9 9.5 88.7 12.6 t3 90.4 8.0 88.7 8.2 88.7 12.6 91.9 9.5 s3 90.4 8.0 88.7 8.2 p 95.0 6.3 101.4 6.3 101.4 12.6 95.0 12.6 s2 99.4 6.3 95.9 7.2 98.2 9.5 101.4 6.3 s3 99.4 6.3 95.9 7.2 p 101.4 6.3 98.2 9.5 101.4 12.6 t3 101.4 12.6 98.2 9.5 95.0 12.6 t3 95.9 7.2 95.0 7.4 95.0 12.6 98.2 9.5 s3 95.9 7.2 95.0 7.4 p 101.4 6.3 107.7 6.3 107.7 12.6 101.4 12.6 s3 107.7 6.3 114.0 6.3 114.0 12.6 107.7 12.6 s3 113.4 12.0 114.0 11.6 114.0 12.6 t4 113.4 12.0 114.0 11.6 p 112.0 12.6 113.4 12.0 114.0 12.6 t4 112.0 12.6 113.4 12.0 p 114.0 6.3 120.4 6.3 120.4 12.6 114.0 12.6 s3 117.2 9.4 117.5 9.2 117.2 9.5 t4 117.2 9.4 117.5 9.2 p 120.4 7.0 117.5 9.2 117.2 9.5 120.4 12.6 s4 120.4 7.0 117.5 9.2 p 120.4 12.6 117.2 9.5 114.0 12.6 t4 117.2 9.4 114.0 11.6 114.0 12.6 117.2 9.5 s4 117.2 9.4 114.0 11.6 p 120.4 6.3 126.7 6.3 126.7 12.6 120.4 12.6 s3 121.1 6.3 120.7 6.7 123.6 9.5 126.7 6.3 s4 121.1 6.3 120.7 6.7 p 126.7 6.3 123.6 9.5 126.7 12.6 t4 126.7 12.6 123.6 9.5 120.4 12.6 t4 120.7 6.7 120.4 7.0 120.4 12.6 123.6 9.5 s4 120.7 6.7 120.4 7.0 p 126.7 6.3 133.1 6.3 133.1 12.6 126.7 12.6 s4 130.9 10.5 133.1 8.5 133.1 12.6 t5 130.9 10.5 133.1 8.5 p 128.7 12.6 130.9 10.5 133.1 12.6 t5 128.7 12.6 130.9 10.5 p 133.1 6.3 139.4 6.3 139.4 12.6 133.1 12.6 s4 134.6 7.9 139.2 6.5 136.2 9.5 t5 134.6 7.9 139.2 6.5 p 139.4 6.5 139.2 6.5 136.2 9.5 139.4 12.6 s5 139.4 6.5 139.2 6.5 p 139.4 12.6 136.2 9.5 133.1 12.6 t5 134.6 7.9 133.1 8.5 133.1 12.6 136.2 9.5 s5 134.6 7.9 133.1 8.5 p 139.4 6.3 145.7 6.3 145.7 12.6 139.4 12.6 s4 139.9 6.8 143.0 9.1 142.6 9.5 t5 139.9 6.8 143.0 9.1 p 145.7 10.7 143.0 9.1 142.6 9.5 145.7 12.6 s5 145.7 10.7 143.0 9.1 p 145.7 12.6 142.6 9.5 139.4 12.6 t5 139.9 6.8 139.4 6.5 139.4 12.6 142.6 9.5 s5 139.9 6.8 139.4 6.5 p 145.7 6.3 152.1 6.3 152.1 12.6 145.7 12.6 s3 150.8 7.5 150.0 6.3 145.7 6.3 148.9 9.5 s4 150.8 7.5 150.0 6.3 p 152.1 9.1 150.8 7.5 148.9 9.5 152.1 12.6 s4 152.1 9.1 150.8 7.5 p 152.1 12.6 148.9 9.5 145.7 12.6 t4 145.7 12.6 148.9 9.5 145.7 6.3 t4 146.5 11.9 147.1 12.6 145.7 12.6 t5 146.5 11.9 147.1 12.6 p 145.7 10.7 146.5 11.9 145.7 12.6 t5 145.7 10.7 146.5 11.9 p 152.1 6.3 158.4 6.3 158.4 12.6 152.1 12.6 s2 157.0 7.7 156.2 6.3 152.1 6.3 155.2 9.5 s3 157.0 7.7 156.2 6.3 p 158.4 9.8 157.0 7.7 155.2 9.5 158.4 12.6 s3 158.4 9.8 157.0 7.7 p 158.4 12.6 155.2 9.5 152.1 12.6 t3 152.1 12.6 155.2 9.5 152.1 6.3 t3 153.4 11.3 154.3 12.6 152.1 12.6 t4 153.4 11.3 154.3 12.6 p 152.1 9.1 153.4 11.3 152.1 12.6 t4 152.1 9.1 153.4 11.3 p 158.4 6.3 164.7 6.3 164.7 12.6 158.4 12.6 s1 163.7 7.4 162.9 6.3 158.4 6.3 161.6 9.5 s2 163.7 7.4 162.9 6.3 p 164.7 8.9 163.7 7.4 161.6 9.5 164.7 12.6 s2 164.7 8.9 163.7 7.4 p 164.7 12.6 161.6 9.5 158.4 12.6 t2 158.4 12.6 161.6 9.5 158.4 6.3 t2 159.6 11.4 160.5 12.6 158.4 12.6 t3 159.6 11.4 160.5 12.6 p 158.4 9.8 159.6 11.4 158.4 12.6 t3 158.4 9.8 159.6 11.4 p 164.7 6.3 171.1 6.3 171.1 12.6 164.7 12.6 s1 166.9 10.5 169.2 12.6 164.7 12.6 t2 166.9 10.5 169.2 12.6 p 164.7 8.9 166.9 10.5 164.7 12.6 t2 164.7 8.9 166.9 10.5 p 171.1 6.3 177.4 6.3 177.4 12.6 171.1 12.6 s1 177.4 6.3 183.7 6.3 183.7 12.6 177.4 12.6 s1 181.6 10.5 183.7 8.9 183.7 12.6 t2 181.6 10.5 183.7 8.9 p 179.2 12.6 181.6 10.5 183.7 12.6 t2 179.2 12.6 181.6 10.5 p 183.7 6.3 190.1 6.3 190.1 12.6 183.7 12.6 s1 185.6 6.3 184.8 7.4 186.9 9.5 190.1 6.3 s2 185.6 6.3 184.8 7.4 p 190.1 6.3 186.9 9.5 190.1 12.6 t2 190.1 12.6 186.9 9.5 183.7 12.6 t2 184.8 7.4 183.7 8.9 183.7 12.6 186.9 9.5 s2 184.8 7.4 183.7 8.9 p 188.9 11.4 190.1 9.8 190.1 12.6 t3 188.9 11.4 190.1 9.8 p 188.0 12.6 188.9 11.4 190.1 12.6 t3 188.0 12.6 188.9 11.4 p 190.1 6.3 196.4 6.3 196.4 12.6 190.1 12.6 s2 192.3 6.3 191.5 7.7 193.2 9.5 196.4 6.3 s3 192.3 6.3 191.5 7.7 p 196.4 6.3 193.2 9.5 196.4 12.6 t3 196.4 12.6 193.2 9.5 190.1 12.6 t3 191.5 7.7 190.1 9.8 190.1 12.6 193.2 9.5 s3 191.5 7.7 190.1 9.8 p 195.1 11.3 196.4 9.1 196.4 12.6 t4 195.1 11.3 196.4 9.1 p 194.2 12.6 195.1 11.3 196.4 12.6 t4 194.2 12.6 195.1 11.3 p 196.4 6.3 202.7 6.3 202.7 12.6 196.4 12.6 s3 198.5 6.3 197.6 7.5 199.6 9.5 202.7 6.3 s4 198.5 6.3 197.6 7.5 p 202.7 6.3 199.6 9.5 202.7 12.6 t4 202.7 12.6 199.6 9.5 196.4 12.6 t4 197.6 7.5 196.4 9.1 196.4 12.6 199.6 9.5 s4 197.6 7.5 196.4 9.1 p 202.0 11.9 202.7 10.7 202.7 12.6 t5 202.0 11.9 202.7 10.7 p 201.4 12.6 202.0 11.9 202.7 12.6 t5 201.4 12.6 202.0 11.9 p 202.7 6.3 209.1 6.3 209.1 12.6 202.7 12.6 s4 205.5 9.1 208.6 6.8 205.9 9.5 t5 205.5 9.1 208.6 6.8 p 209.1 6.5 208.6 6.8 205.9 9.5 209.1 12.6 s5 209.1 6.5 208.6 6.8 p 209.1 12.6 205.9 9.5 202.7 12.6 t5 205.5 9.1 202.7 10.7 202.7 12.6 205.9 9.5 s5 205.5 9.1 202.7 10.7 p 209.1 6.3 215.4 6.3 215.4 12.6 209.1 12.6 s4 209.3 6.5 213.8 7.9 212.3 9.5 t5 209.3 6.5 213.8 7.9 p 215.4 8.5 213.8 7.9 212.3 9.5 215.4 12.6 s5 215.4 8.5 213.8 7.9 p 215.4 12.6 212.3 9.5 209.1 12.6 t5 209.3 6.5 209.1 6.5 209.1 12.6 212.3 9.5 s5 209.3 6.5 209.1 6.5 p 215.4 6.3 221.8 6.3 221.8 12.6 215.4 12.6 s4 217.5 10.5 219.8 12.6 215.4 12.6 t5 217.5 10.5 219.8 12.6 p 215.4 8.5 217.5 10.5 215.4 12.6 t5 215.4 8.5 217.5 10.5 p 221.8 6.3 228.1 6.3 228.1 12.6 221.8 12.6 s3 227.7 6.7 227.4 6.3 221.8 6.3 224.9 9.5 s4 227.7 6.7 227.4 6.3 p 228.1 7.0 227.7 6.7 224.9 9.5 228.1 12.6 s4 228.1 7.0 227.7 6.7 p 228.1 12.6 224.9 9.5 221.8 12.6 t4 221.8 12.6 224.9 9.5 221.8 6.3 t4 228.1 6.3 234.4 6.3 234.4 12.6 228.1 12.6 s3 231.0 9.2 231.3 9.4 231.3 9.5 t4 231.0 9.2 231.3 9.4 p 234.4 11.6 231.3 9.4 231.3 9.5 234.4 12.6 s4 234.4 11.6 231.3 9.4 p 234.4 12.6 231.3 9.5 228.1 12.6 t4 231.0 9.2 228.1 7.0 228.1 12.6 231.3 9.5 s4 231.0 9.2 228.1 7.0 p 234.4 6.3 240.8 6.3 240.8 12.6 234.4 12.6 s3 235.1 12.0 236.4 12.6 234.4 12.6 t4 235.1 12.0 236.4 12.6 p 234.4 11.6 235.1 12.0 234.4 12.6 t4 234.4 11.6 235.1 12.0 p 240.8 6.3 247.1 6.3 247.1 12.6 240.8 12.6 s3 247.1 6.3 253.4 6.3 253.4 12.6 247.1 12.6 s2 252.5 7.2 249.1 6.3 247.1 6.3 250.3 9.5 s3 252.5 7.2 249.1 6.3 p 253.4 7.4 252.5 7.2 250.3 9.5 253.4 12.6 s3 253.4 7.4 252.5 7.2 p 253.4 12.6 250.3 9.5 247.1 12.6 t3 247.1 12.6 250.3 9.5 247.1 6.3 t3 253.4 6.3 259.8 6.3 259.8 12.6 253.4 12.6 s2 254.7 7.6 258.1 8.0 256.6 9.5 t3 254.7 7.6 258.1 8.0 p 259.8 8.2 258.1 8.0 256.6 9.5 259.8 12.6 s3 259.8 8.2 258.1 8.0 p 259.8 12.6 256.6 9.5 253.4 12.6 t3 254.7 7.6 253.4 7.4 253.4 12.6 256.6 9.5 s3 254.7 7.6 253.4 7.4 p 259.8 6.3 266.1 6.3 266.1 12.6 259.8 12.6 s2 261.6 8.2 264.4 8.1 262.9 9.5 t3 261.6 8.2 264.4 8.1 p 266.1 8.0 264.4 8.1 262.9 9.5 266.1 12.6 s3 266.1 8.0 264.4 8.1 p 266.1 12.6 262.9 9.5 259.8 12.6 t3 261.6 8.2 259.8 8.2 259.8 12.6 262.9 9.5 s3 261.6 8.2 259.8 8.2 p 266.1 6.3 272.4 6.3 272.4 12.6 266.1 12.6 s2 267.5 7.7 271.9 6.8 269.3 9.5 t3 267.5 7.7 271.9 6.8 p 272.4 6.7 271.9 6.8 269.3 9.5 272.4 12.6 s3 272.4 6.7 271.9 6.8 p 272.4 12.6 269.3 9.5 266.1 12.6 t3 267.5 7.7 266.1 8.0 266.1 12.6 269.3 9.5 s3 267.5 7.7 266.1 8.0 p 272.4 6.3 278.8 6.3 278.8 12.6 272.4 12.6 s2 273.7 6.3 272.7 6.6 275.6 9.5 278.8 6.3 s3 273.7 6.3 272.7 6.6 p 278.8 6.3 275.6 9.5 278.8 12.6 t3 278.8 12.6 275.6 9.5 272.4 12.6 t3 272.7 6.6 272.4 6.7 272.4 12.6 275.6 9.5 s3 272.7 6.6 272.4 6.7 p 278.8 6.3 285.1 6.3 285.1 12.6 278.8 12.6 s3 285.1 6.3 291.5 6.3 291.5 12.6 285.1 12.6 s3 289.6 10.8 291.5 9.6 291.5 12.6 t4 289.6 10.8 291.5 9.6 p 286.3 12.6 289.6 10.8 291.5 12.6 t4 286.3 12.6 289.6 10.8 p 291.5 6.3 297.8 6.3 297.8 12.6 291.5 12.6 s3 295.2 6.3 293.2 8.1 294.6 9.5 297.8 6.3 s4 295.2 6.3 293.2 8.1 p 297.8 6.3 294.6 9.5 297.8 12.6 t4 297.8 12.6 294.6 9.5 291.5 12.6 t4 293.2 8.1 291.5 9.6 291.5 12.6 294.6 9.5 s4 293.2 8.1 291.5 9.6 p 297.8 6.3 304.1 6.3 304.1 12.6 297.8 12.6 s4 303.5 12.0 304.1 11.3 304.1 12.6 t5 303.5 12.0 304.1 11.3 p 302.8 12.6 303.5 12.0 304.1 12.6 t5 302.8 12.6 303.5 12.0 p 304.1 6.3 310.5 6.3 310.5 12.6 304.1 12.6 s4 307.0 9.2 309.2 7.6 307.3 9.5 t5 307.0 9.2 309.2 7.6 p 310.5 6.7 309.2 7.6 307.3 9.5 310.5 12.6 s5 310.5 6.7 309.2 7.6 p 310.5 12.6 307.3 9.5 304.1 12.6 t5 307.0 9.2 304.1 11.3 304.1 12.6 307.3 9.5 s5 307.0 9.2 304.1 11.3 p 310.5 6.3 316.8 6.3 316.8 12.6 310.5 12.6 s4 310.9 6.7 315.4 7.7 313.6 9.5 t5 310.9 6.7 315.4 7.7 p 316.8 7.9 315.4 7.7 313.6 9.5 316.8 12.6 s5 316.8 7.9 315.4 7.7 p 316.8 12.6 313.6 9.5 310.5 12.6 t5 310.9 6.7 310.5 6.7 310.5 12.6 313.6 9.5 s5 310.9 6.7 310.5 6.7 p 316.8 6.3 323.1 6.3 323.1 12.6 316.8 12.6 s4 319.0 10.5 321.2 12.6 316.8 12.6 t5 319.0 10.5 321.2 12.6 p 316.8 7.9 319.0 10.5 316.8 12.6 t5 316.8 7.9 319.0 10.5 p 323.1 6.3 329.5 6.3 329.5 12.6 323.1 12.6 s3 326.3 9.4 324.4 6.3 323.1 6.3 326.3 9.5 s4 326.3 9.4 324.4 6.3 p 326.3 9.4 326.5 9.7 326.3 9.5 t4 326.3 9.4 326.5 9.7 p 328.5 12.6 326.5 9.7 326.3 9.5 323.1 12.6 s4 328.5 12.6 326.5 9.7 p 323.1 12.6 326.3 9.5 323.1 6.3 t4 329.5 6.3 335.8 6.3 335.8 12.6 329.5 12.6 s2 330.4 6.3 332.3 9.2 329.5 6.3 t3 330.4 6.3 332.3 9.2 p 332.6 9.5 334.6 12.6 329.5 12.6 t3 332.6 9.5 334.6 12.6 p 332.6 9.5 332.3 9.2 329.5 6.3 329.5 12.6 s3 332.6 9.5 332.3 9.2 p 335.8 6.3 342.1 6.3 342.1 12.6 335.8 12.6 s1 339.5 8.9 337.1 6.3 335.8 6.3 339.0 9.5 s2 339.5 8.9 337.1 6.3 p 342.1 12.1 339.5 8.9 339.0 9.5 342.1 12.6 s2 342.1 12.1 339.5 8.9 p 342.1 12.6 339.0 9.5 335.8 12.6 t2 335.8 12.6 339.0 9.5 335.8 6.3 t2 342.1 6.3 348.5 6.3 348.5 12.6 342.1 12.6 s1 342.5 12.3 343.3 12.6 342.1 12.6 t2 342.5 12.3 343.3 12.6 p 342.1 12.1 342.5 12.3 342.1 12.6 t2 342.1 12.1 342.5 12.3 p 0.0 0.0 6.3 0.0 6.3 6.3 0.0 6.3 s1 6.3 0.0 12.7 0.0 12.7 6.3 6.3 6.3 s1 11.8 5.4 12.7 3.8 12.7 6.3 t2 11.8 5.4 12.7 3.8 p 11.4 6.3 11.8 5.4 12.7 6.3 t2 11.4 6.3 11.8 5.4 p 12.7 0.0 19.0 0.0 19.0 6.3 12.7 6.3 s1 14.1 0.0 13.6 1.0 15.8 3.2 19.0 0.0 s2 14.1 0.0 13.6 1.0 p 19.0 0.0 15.8 3.2 19.0 6.3 t2 19.0 6.3 15.8 3.2 12.7 6.3 t2 13.6 1.0 12.7 3.8 12.7 6.3 15.8 3.2 s2 13.6 1.0 12.7 3.8 p 18.3 5.6 19.0 4.1 19.0 6.3 t3 18.3 5.6 19.0 4.1 p 18.0 6.3 18.3 5.6 19.0 6.3 t3 18.0 6.3 18.3 5.6 p 19.0 0.0 25.3 0.0 25.3 6.3 19.0 6.3 s2 20.9 0.0 20.3 1.2 22.2 3.2 25.3 0.0 s3 20.9 0.0 20.3 1.2 p 25.3 0.0 22.2 3.2 25.3 6.3 t3 25.3 6.3 22.2 3.2 19.0 6.3 t3 20.3 1.2 19.0 4.1 19.0 6.3 22.2 3.2 s3 20.3 1.2 19.0 4.1 p 24.5 5.5 25.3 3.8 25.3 6.3 t4 24.5 5.5 25.3 3.8 p 24.1 6.3 24.5 5.5 25.3 6.3 t4 24.1 6.3 24.5 5.5 p 25.3 0.0 31.7 0.0 31.7 6.3 25.3 6.3 s3 28.3 0.0 27.0 1.6 28.5 3.2 31.7 0.0 s4 28.3 0.0 27.0 1.6 p 31.7 0.0 28.5 3.2 31.7 6.3 t4 31.7 6.3 28.5 3.2 25.3 6.3 t4 27.0 1.6 25.3 3.8 25.3 6.3 28.5 3.2 s4 27.0 1.6 25.3 3.8 p 31.7 0.0 38.0 0.0 38.0 6.3 31.7 6.3 s4 38.0 0.0 44.4 0.0 44.4 6.3 38.0 6.3 s4 44.4 0.0 50.7 0.0 50.7 6.3 44.4 6.3 s3 48.8 1.9 46.8 0.0 44.4 0.0 47.5 3.2 s4 48.8 1.9 46.8 0.0 p 50.7 3.9 48.8 1.9 47.5 3.2 50.7 6.3 s4 50.7 3.9 48.8 1.9 p 50.7 6.3 47.5 3.2 44.4 6.3 t4 44.4 6.3 47.5 3.2 44.4 0.0 t4 50.7 0.0 57.0 0.0 57.0 6.3 50.7 6.3 s3 51.9 5.1 53.2 6.3 50.7 6.3 t4 51.9 5.1 53.2 6.3 p 50.7 3.9 51.9 5.1 50.7 6.3 t4 50.7 3.9 51.9 5.1 p 57.0 0.0 63.4 0.0 63.4 6.3 57.0 6.3 s2 62.8 0.6 62.0 0.0 57.0 0.0 60.2 3.2 s3 62.8 0.6 62.0 0.0 p 63.4 1.0 62.8 0.6 60.2 3.2 63.4 6.3 s3 63.4 1.0 62.8 0.6 p 63.4 6.3 60.2 3.2 57.0 6.3 t3 57.0 6.3 60.2 3.2 57.0 0.0 t3 63.4 0.0 69.7 0.0 69.7 6.3 63.4 6.3 s2 65.5 2.1 66.8 2.8 66.5 3.2 t3 65.5 2.1 66.8 2.8 p 69.7 4.4 66.8 2.8 66.5 3.2 69.7 6.3 s3 69.7 4.4 66.8 2.8 p 69.7 6.3 66.5 3.2 63.4 6.3 t3 65.5 2.1 63.4 1.0 63.4 6.3 66.5 3.2 s3 65.5 2.1 63.4 1.0 p 69.7 0.0 76.0 0.0 76.0 6.3 69.7 6.3 s2 71.1 4.9 74.8 6.3 69.7 6.3 t3 71.1 4.9 74.8 6.3 p 69.7 4.4 71.1 4.9 69.7 6.3 t3 69.7 4.4 71.1 4.9 p 76.0 0.0 82.4 0.0 82.4 6.3 76.0 6.3 s2 82.4 0.0 88.7 0.0 88.7 6.3 82.4 6.3 s2 88.7 0.0 95.0 0.0 95.0 6.3 88.7 6.3 s2 95.0 0.0 101.4 0.0 101.4 6.3 95.0 6.3 s2 100.9 5.8 101.4 5.7 101.4 6.3 t3 100.9 5.8 101.4 5.7 p 99.4 6.3 100.9 5.8 101.4 6.3 t3 99.4 6.3 100.9 5.8 p 101.4 0.0 107.7 0.0 107.7 6.3 101.4 6.3 s2 105.3 3.9 107.7 2.8 107.7 6.3 t3 105.3 3.9 107.7 2.8 p 105.3 3.9 102.5 5.2 101.4 6.3 107.7 6.3 s3 105.3 3.9 102.5 5.2 p 101.4 5.7 102.5 5.2 101.4 6.3 t3 101.4 5.7 102.5 5.2 p 107.7 0.0 114.0 0.0 114.0 6.3 107.7 6.3 s2 112.2 0.0 109.4 1.7 110.9 3.2 114.0 0.0 s3 112.2 0.0 109.4 1.7 p 114.0 0.0 110.9 3.2 114.0 6.3 t3 114.0 6.3 110.9 3.2 107.7 6.3 t3 109.4 1.7 107.7 2.8 107.7 6.3 110.9 3.2 s3 109.4 1.7 107.7 2.8 p 114.0 0.0 120.4 0.0 120.4 6.3 114.0 6.3 s3 120.4 0.0 126.7 0.0 126.7 6.3 120.4 6.3 s3 123.9 3.5 126.7 0.6 126.7 6.3 t4 123.9 3.5 126.7 0.6 p 121.1 6.3 123.9 3.5 126.7 6.3 t4 121.1 6.3 123.9 3.5 p 126.7 0.0 133.1 0.0 133.1 6.3 126.7 6.3 s3 127.4 0.0 127.0 0.3 129.9 3.2 133.1 0.0 s4 127.4 0.0 127.0 0.3 p 133.1 0.0 129.9 3.2 133.1 6.3 t4 133.1 6.3 129.9 3.2 126.7 6.3 t4 127.0 0.3 126.7 0.6 126.7 6.3 129.9 3.2 s4 127.0 0.3 126.7 0.6 p 133.1 0.0 139.4 0.0 139.4 6.3 133.1 6.3 s4 139.4 0.0 145.7 0.0 145.7 6.3 139.4 6.3 s4 145.7 0.0 152.1 0.0 152.1 6.3 145.7 6.3 s3 146.3 0.0 147.2 1.5 145.7 0.0 t4 146.3 0.0 147.2 1.5 p 148.5 3.6 150.0 6.3 145.7 6.3 t4 148.5 3.6 150.0 6.3 p 148.5 3.6 147.2 1.5 145.7 0.0 145.7 6.3 s4 148.5 3.6 147.2 1.5 p 152.1 0.0 158.4 0.0 158.4 6.3 152.1 6.3 s2 153.5 0.0 154.6 2.5 152.1 0.0 t3 153.5 0.0 154.6 2.5 p 155.0 3.4 156.2 6.3 152.1 6.3 t3 155.0 3.4 156.2 6.3 p 155.0 3.4 154.6 2.5 152.1 0.0 152.1 6.3 s3 155.0 3.4 154.6 2.5 p 158.4 0.0 164.7 0.0 164.7 6.3 158.4 6.3 s1 161.6 3.1 160.3 0.0 158.4 0.0 161.6 3.2 s2 161.6 3.1 160.3 0.0 p 161.6 3.1 161.7 3.3 161.6 3.2 t2 161.6 3.1 161.7 3.3 p 162.9 6.3 161.7 3.3 161.6 3.2 158.4 6.3 s2 162.9 6.3 161.7 3.3 p 158.4 6.3 161.6 3.2 158.4 0.0 t2 164.7 0.0 171.1 0.0 171.1 6.3 164.7 6.3 s1 171.1 0.0 177.4 0.0 177.4 6.3 171.1 6.3 s1 177.4 0.0 183.7 0.0 183.7 6.3 177.4 6.3 s1 183.7 0.0 190.1 0.0 190.1 6.3 183.7 6.3 s1 188.2 0.0 186.8 3.1 186.9 3.2 190.1 0.0 s2 188.2 0.0 186.8 3.1 p 190.1 0.0 186.9 3.2 190.1 6.3 t2 186.8 3.3 185.6 6.3 190.1 6.3 186.9 3.2 s2 186.8 3.3 185.6 6.3 p 186.8 3.3 186.8 3.1 186.9 3.2 t2 186.8 3.3 186.8 3.1 p 190.1 0.0 196.4 0.0 196.4 6.3 190.1 6.3 s2 193.9 2.5 195.0 0.0 196.4 0.0 t3 193.9 2.5 195.0 0.0 p 193.9 2.5 193.5 3.4 196.4 6.3 196.4 0.0 s3 193.9 2.5 193.5 3.4 p 192.3 6.3 193.5 3.4 196.4 6.3 t3 192.3 6.3 193.5 3.4 p 196.4 0.0 202.7 0.0 202.7 6.3 196.4 6.3 s3 201.3 1.5 202.1 0.0 202.7 0.0 t4 201.3 1.5 202.1 0.0 p 201.3 1.5 200.0 3.6 202.7 6.3 202.7 0.0 s4 201.3 1.5 200.0 3.6 p 198.5 6.3 200.0 3.6 202.7 6.3 t4 198.5 6.3 200.0 3.6 p 202.7 0.0 209.1 0.0 209.1 6.3 202.7 6.3 s4 209.1 0.0 215.4 0.0 215.4 6.3 209.1 6.3 s4 215.4 0.0 221.8 0.0 221.8 6.3 215.4 6.3 s3 221.4 0.3 221.1 0.0 215.4 0.0 218.6 3.2 s4 221.4 0.3 221.1 0.0 p 221.8 0.6 221.4 0.3 218.6 3.2 221.8 6.3 s4 221.8 0.6 221.4 0.3 p 221.8 6.3 218.6 3.2 215.4 6.3 t4 215.4 6.3 218.6 3.2 215.4 0.0 t4 221.8 0.0 228.1 0.0 228.1 6.3 221.8 6.3 s3 224.6 3.5 227.4 6.3 221.8 6.3 t4 224.6 3.5 227.4 6.3 p 221.8 0.6 224.6 3.5 221.8 6.3 t4 221.8 0.6 224.6 3.5 p 228.1 0.0 234.4 0.0 234.4 6.3 228.1 6.3 s3 234.4 0.0 240.8 0.0 240.8 6.3 234.4 6.3 s2 239.0 1.7 236.3 0.0 234.4 0.0 237.6 3.2 s3 239.0 1.7 236.3 0.0 p 240.8 2.8 239.0 1.7 237.6 3.2 240.8 6.3 s3 240.8 2.8 239.0 1.7 p 240.8 6.3 237.6 3.2 234.4 6.3 t3 234.4 6.3 237.6 3.2 234.4 0.0 t3 240.8 0.0 247.1 0.0 247.1 6.3 240.8 6.3 s2 245.9 5.2 247.1 5.7 247.1 6.3 t3 245.9 5.2 247.1 5.7 p 245.9 5.2 243.2 3.9 240.8 6.3 247.1 6.3 s3 245.9 5.2 243.2 3.9 p 240.8 2.8 243.2 3.9 240.8 6.3 t3 240.8 2.8 243.2 3.9 p 247.1 0.0 253.4 0.0 253.4 6.3 247.1 6.3 s2 247.6 5.8 249.1 6.3 247.1 6.3 t3 247.6 5.8 249.1 6.3 p 247.1 5.7 247.6 5.8 247.1 6.3 t3 247.1 5.7 247.6 5.8 p 253.4 0.0 259.8 0.0 259.8 6.3 253.4 6.3 s2 259.8 0.0 266.1 0.0 266.1 6.3 259.8 6.3 s2 266.1 0.0 272.4 0.0 272.4 6.3 266.1 6.3 s2 272.4 0.0 278.8 0.0 278.8 6.3 272.4 6.3 s2 277.4 4.9 278.8 4.4 278.8 6.3 t3 277.4 4.9 278.8 4.4 p 273.7 6.3 277.4 4.9 278.8 6.3 t3 273.7 6.3 277.4 4.9 p 278.8 0.0 285.1 0.0 285.1 6.3 278.8 6.3 s2 281.6 2.8 283.0 2.1 281.9 3.2 t3 281.6 2.8 283.0 2.1 p 285.1 1.0 283.0 2.1 281.9 3.2 285.1 6.3 s3 285.1 1.0 283.0 2.1 p 285.1 6.3 281.9 3.2 278.8 6.3 t3 281.6 2.8 278.8 4.4 278.8 6.3 281.9 3.2 s3 281.6 2.8 278.8 4.4 p 285.1 0.0 291.5 0.0 291.5 6.3 285.1 6.3 s2 286.4 0.0 285.7 0.6 288.3 3.2 291.5 0.0 s3 286.4 0.0 285.7 0.6 p 291.5 0.0 288.3 3.2 291.5 6.3 t3 291.5 6.3 288.3 3.2 285.1 6.3 t3 285.7 0.6 285.1 1.0 285.1 6.3 288.3 3.2 s3 285.7 0.6 285.1 1.0 p 291.5 0.0 297.8 0.0 297.8 6.3 291.5 6.3 s3 296.5 5.1 297.8 3.9 297.8 6.3 t4 296.5 5.1 297.8 3.9 p 295.2 6.3 296.5 5.1 297.8 6.3 t4 295.2 6.3 296.5 5.1 p 297.8 0.0 304.1 0.0 304.1 6.3 297.8 6.3 s3 301.7 0.0 299.7 1.9 301.0 3.2 304.1 0.0 s4 301.7 0.0 299.7 1.9 p 304.1 0.0 301.0 3.2 304.1 6.3 t4 304.1 6.3 301.0 3.2 297.8 6.3 t4 299.7 1.9 297.8 3.9 297.8 6.3 301.0 3.2 s4 299.7 1.9 297.8 3.9 p 304.1 0.0 310.5 0.0 310.5 6.3 304.1 6.3 s4 310.5 0.0 316.8 0.0 316.8 6.3 310.5 6.3 s4 316.8 0.0 323.1 0.0 323.1 6.3 316.8 6.3 s3 321.5 1.6 320.2 0.0 316.8 0.0 320.0 3.2 s4 321.5 1.6 320.2 0.0 p 323.1 3.8 321.5 1.6 320.0 3.2 323.1 6.3 s4 323.1 3.8 321.5 1.6 p 323.1 6.3 320.0 3.2 316.8 6.3 t4 316.8 6.3 320.0 3.2 316.8 0.0 t4 323.1 0.0 329.5 0.0 329.5 6.3 323.1 6.3 s2 328.2 1.2 327.6 0.0 323.1 0.0 326.3 3.2 s3 328.2 1.2 327.6 0.0 p 329.5 4.1 328.2 1.2 326.3 3.2 329.5 6.3 s3 329.5 4.1 328.2 1.2 p 329.5 6.3 326.3 3.2 323.1 6.3 t3 323.1 6.3 326.3 3.2 323.1 0.0 t3 324.0 5.5 324.4 6.3 323.1 6.3 t4 324.0 5.5 324.4 6.3 p 323.1 3.8 324.0 5.5 323.1 6.3 t4 323.1 3.8 324.0 5.5 p 329.5 0.0 335.8 0.0 335.8 6.3 329.5 6.3 s1 334.8 1.0 334.4 0.0 329.5 0.0 332.6 3.2 s2 334.8 1.0 334.4 0.0 p 335.8 3.8 334.8 1.0 332.6 3.2 335.8 6.3 s2 335.8 3.8 334.8 1.0 p 335.8 6.3 332.6 3.2 329.5 6.3 t2 329.5 6.3 332.6 3.2 329.5 0.0 t2 330.2 5.6 330.4 6.3 329.5 6.3 t3 330.2 5.6 330.4 6.3 p 329.5 4.1 330.2 5.6 329.5 6.3 t3 329.5 4.1 330.2 5.6 p 335.8 0.0 342.1 0.0 342.1 6.3 335.8 6.3 s1 336.7 5.4 337.1 6.3 335.8 6.3 t2 336.7 5.4 337.1 6.3 p 335.8 3.8 336.7 5.4 335.8 6.3 t2 335.8 3.8 336.7 5.4 p 342.1 0.0 348.5 0.0 348.5 6.3 342.1 6.3 s1 1 setlinewidth 0 setgray newpath 0.0 0.0 moveto 348.5 0.0 lineto 348.5 246.4 lineto 0.0 246.4 lineto closepath stroke gsave newpath 0.0 0.0 moveto 348.5 0.0 lineto 348.5 246.4 lineto 0.0 246.4 lineto closepath clip stroke 348.5 0.0 24.2 0 360 arc gsave 0.00 setgray fill grestore stroke 174.2 0.0 24.2 0 360 arc gsave 0.00 setgray fill grestore stroke 261.4 61.6 24.2 0 360 arc gsave 0.00 setgray fill grestore stroke 348.5 246.4 24.2 0 360 arc gsave 0.00 setgray fill grestore stroke 0.0 0.0 24.2 0 360 arc gsave 0.00 setgray fill grestore stroke 87.1 61.6 24.2 0 360 arc gsave 0.00 setgray fill grestore stroke 174.2 246.4 24.2 0 360 arc gsave 0.00 setgray fill grestore stroke 0.0 246.4 24.2 0 360 arc gsave 0.00 setgray fill grestore stroke grestore grestore %%Trailer showpage espresso-5.1/PP/examples/example01/reference/si.band.out0000644000175000017500000003007712341372774021261 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:39:55 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 72.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 36 cart. coord. in units 2pi/a_0 k( 1) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0030030 k( 2) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0060060 k( 3) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0090090 k( 4) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0120120 k( 5) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0150150 k( 6) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0180180 k( 7) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0210210 k( 8) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0240240 k( 9) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0270270 k( 10) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0300300 k( 11) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0330330 k( 12) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0360360 k( 13) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0390390 k( 14) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0420420 k( 15) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0450450 k( 16) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0480480 k( 17) = ( 0.0000000 0.1000000 1.0000000), wk = 0.0510511 k( 18) = ( 0.0000000 0.2000000 1.0000000), wk = 0.0540541 k( 19) = ( 0.0000000 0.3000000 1.0000000), wk = 0.0570571 k( 20) = ( 0.0000000 0.4000000 1.0000000), wk = 0.0600601 k( 21) = ( 0.0000000 0.5000000 1.0000000), wk = 0.0630631 k( 22) = ( 0.0000000 0.6000000 1.0000000), wk = 0.0660661 k( 23) = ( 0.0000000 0.7000000 1.0000000), wk = 0.0690691 k( 24) = ( 0.0000000 0.8000000 1.0000000), wk = 0.0720721 k( 25) = ( 0.0000000 0.9000000 1.0000000), wk = 0.0750751 k( 26) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0780781 k( 27) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0810811 k( 28) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0840841 k( 29) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0870871 k( 30) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0900901 k( 31) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0930931 k( 32) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0960961 k( 33) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0990991 k( 34) = ( 0.0000000 0.2000000 0.2000000), wk = 0.1021021 k( 35) = ( 0.0000000 0.1000000 0.1000000), wk = 0.1051051 k( 36) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1081081 G cutoff = 189.7462 ( 2733 G-vectors) FFT grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.04 Mb ( 360, 8) NL pseudopotentials 0.04 Mb ( 360, 8) Each V/rho on FFT grid 0.12 Mb ( 8000) Each G-vector array 0.02 Mb ( 2733) G-vector shells 0.00 Mb ( 65) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.18 Mb ( 360, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.98 Mb ( 8000, 8) The potential is recalculated from file : si.save/charge-density.dat Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.07 secs per-process dynamical memory: 1.5 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 11.3 total cpu time spent up to now is 1.31 secs End of band structure calculation k = 0.5000 0.5000 0.5000 band energies (ev): -3.4180 -0.8220 5.0289 5.0289 7.8139 9.5968 9.5968 13.8378 k = 0.4000 0.4000 0.4000 band energies (ev): -3.8910 -0.1018 5.1024 5.1024 7.9003 9.6788 9.6788 13.9593 k = 0.3000 0.3000 0.3000 band energies (ev): -4.6592 1.4043 5.3188 5.3188 8.1385 9.8032 9.8032 13.8447 k = 0.2000 0.2000 0.2000 band energies (ev): -5.2848 3.2219 5.6599 5.6599 8.5038 9.6359 9.6359 12.3332 k = 0.1000 0.1000 0.1000 band energies (ev): -5.6783 5.1038 6.0496 6.0496 8.8476 9.1205 9.1205 10.6116 k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 k = 0.0000 0.0000 0.1000 band energies (ev): -5.7668 5.9810 6.0722 6.0722 8.7104 9.0571 9.0571 9.9838 k = 0.0000 0.0000 0.2000 band energies (ev): -5.6337 5.3339 5.6601 5.6601 8.4238 9.6301 9.6301 10.5192 k = 0.0000 0.0000 0.3000 band energies (ev): -5.4133 4.5265 5.1859 5.1859 8.0516 10.3698 10.3698 10.7062 k = 0.0000 0.0000 0.4000 band energies (ev): -5.1063 3.6529 4.7266 4.7266 7.6724 10.1364 11.1866 11.1866 k = 0.0000 0.0000 0.5000 band energies (ev): -4.7129 2.7564 4.3161 4.3161 7.3316 9.3547 12.0595 12.0595 k = 0.0000 0.0000 0.6000 band energies (ev): -4.2358 1.8517 3.9694 3.9694 7.0565 8.6170 12.9618 12.9618 k = 0.0000 0.0000 0.7000 band energies (ev): -3.6801 0.9502 3.6936 3.6936 6.8654 7.9924 13.8856 13.8856 k = 0.0000 0.0000 0.8000 band energies (ev): -3.0530 0.0683 3.4948 3.4948 6.7657 7.4943 14.8291 14.8291 k = 0.0000 0.0000 0.9000 band energies (ev): -2.3563 -0.7867 3.3738 3.3738 6.7691 7.1285 15.7632 15.7632 k = 0.0000 0.0000 1.0000 band energies (ev): -1.5978 -1.5978 3.3334 3.3334 6.8886 6.8886 16.4070 16.4070 k = 0.0000 0.1000 1.0000 band energies (ev): -1.5822 -1.5822 3.2024 3.2024 7.1306 7.1306 15.9621 15.9621 k = 0.0000 0.2000 1.0000 band energies (ev): -1.5402 -1.5402 2.9040 2.9040 7.7640 7.7640 14.7989 14.7989 k = 0.0000 0.3000 1.0000 band energies (ev): -1.4853 -1.4853 2.5917 2.5917 8.6424 8.6424 13.4895 13.4895 k = 0.0000 0.4000 1.0000 band energies (ev): -1.4379 -1.4379 2.3672 2.3672 9.6622 9.6622 12.2109 12.2109 k = 0.0000 0.5000 1.0000 band energies (ev): -1.4212 -1.4212 2.2855 2.2855 10.4870 10.4870 11.2918 11.2918 k = 0.0000 0.6000 1.0000 band energies (ev): -1.4379 -1.4379 2.3672 2.3672 9.6622 9.6622 12.2109 12.2109 k = 0.0000 0.7000 1.0000 band energies (ev): -1.4853 -1.4853 2.5917 2.5917 8.6424 8.6424 13.4895 13.4895 k = 0.0000 0.8000 1.0000 band energies (ev): -1.5402 -1.5402 2.9040 2.9040 7.7640 7.7640 14.7989 14.7989 k = 0.0000 0.9000 1.0000 band energies (ev): -1.5822 -1.5822 3.2024 3.2024 7.1306 7.1306 15.9621 15.9621 k = 0.0000 1.0000 1.0000 band energies (ev): -1.5978 -1.5978 3.3334 3.3334 6.8886 6.8886 16.4070 16.4070 k = 0.0000 0.9000 0.9000 band energies (ev): -1.6351 -1.5030 2.8302 3.4052 6.9710 7.6840 15.6697 15.9429 k = 0.0000 0.8000 0.8000 band energies (ev): -1.8118 -1.2182 2.0701 3.6165 7.2165 9.3814 14.4148 15.0152 k = 0.0000 0.7000 0.7000 band energies (ev): -2.2636 -0.7459 1.7118 3.9544 7.6098 11.3920 13.1675 13.6967 k = 0.0000 0.6000 0.6000 band energies (ev): -2.9584 -0.0844 1.8684 4.3957 8.1262 12.0466 12.3047 13.1205 k = 0.0000 0.5000 0.5000 band energies (ev): -3.7277 0.7540 2.3987 4.8964 8.6931 11.0753 11.3920 12.4083 k = 0.0000 0.4000 0.4000 band energies (ev): -4.4382 1.7660 3.1712 5.3917 9.1678 10.2713 10.5715 11.9975 k = 0.0000 0.3000 0.3000 band energies (ev): -5.0244 2.9330 4.0923 5.8016 9.3562 9.6416 9.8965 11.9166 k = 0.0000 0.2000 0.2000 band energies (ev): -5.4577 4.2238 5.0583 6.0750 9.1873 9.2787 9.3685 11.4991 k = 0.0000 0.1000 0.1000 band energies (ev): -5.7218 5.5180 5.8909 6.2146 8.9135 8.9856 9.0810 10.3168 k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 Writing output data file si.save PWSCF : 1.41s CPU time, 1.45s wall time init_run : 0.05s CPU electrons : 1.25s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 1.25s CPU v_of_rho : 0.00s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 36 calls, 0.000 s avg) cegterg : 1.13s CPU ( 36 calls, 0.031 s avg) Called by *egterg: h_psi : 0.98s CPU ( 478 calls, 0.002 s avg) g_psi : 0.03s CPU ( 406 calls, 0.000 s avg) cdiaghg : 0.11s CPU ( 442 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 478 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 478 calls, 0.000 s avg) cft3 : 0.00s CPU ( 3 calls, 0.001 s avg) cft3s : 0.84s CPU ( 5528 calls, 0.000 s avg) davcio : 0.00s CPU ( 36 calls, 0.000 s avg) espresso-5.1/PP/examples/example01/reference/sibands.dat.rap0000644000175000017500000000770512341372774022112 0ustar mbamba &plot_rap nbnd_rap= 8, nks_rap= 36 / 0.500000 0.500000 0.500000 T -1 -1 -1 -1 -1 -1 -1 -1 0.400000 0.400000 0.400000 F 1 1 3 3 1 3 3 1 0.300000 0.300000 0.300000 F 1 1 3 3 1 3 3 1 0.200000 0.200000 0.200000 F 1 1 3 3 1 3 3 1 0.100000 0.100000 0.100000 F 1 1 3 3 1 3 3 1 0.000000 0.000000 0.000000 T 1 5 5 5 9 9 9 7 0.000000 0.000000 0.100000 F 1 4 5 5 1 5 5 4 0.000000 0.000000 0.200000 F 1 4 5 5 1 5 5 4 0.000000 0.000000 0.300000 F 1 4 5 5 1 5 5 4 0.000000 0.000000 0.400000 F 1 4 5 5 1 4 5 5 0.000000 0.000000 0.500000 F 1 4 5 5 1 4 5 5 0.000000 0.000000 0.600000 F 1 4 5 5 1 4 5 5 0.000000 0.000000 0.700000 F 1 4 5 5 1 4 5 5 0.000000 0.000000 0.800000 F 1 4 5 5 1 4 5 5 0.000000 0.000000 0.900000 F 1 4 5 5 1 4 5 5 0.000000 0.000000 1.000000 T -1 -1 -1 -1 -1 -1 -1 -1 0.000000 0.100000 1.000000 F -1 -1 -1 -1 -1 -1 -1 -1 0.000000 0.200000 1.000000 F -1 -1 -1 -1 -1 -1 -1 -1 0.000000 0.300000 1.000000 F -1 -1 -1 -1 -1 -1 -1 -1 0.000000 0.400000 1.000000 F -1 -1 -1 -1 -1 -1 -1 -1 0.000000 0.500000 1.000000 T -1 -1 -1 -1 -1 -1 -1 -1 0.000000 0.600000 1.000000 F -1 -1 -1 -1 -1 -1 -1 -1 0.000000 0.700000 1.000000 F -1 -1 -1 -1 -1 -1 -1 -1 0.000000 0.800000 1.000000 F -1 -1 -1 -1 -1 -1 -1 -1 0.000000 0.900000 1.000000 F -1 -1 -1 -1 -1 -1 -1 -1 0.000000 1.000000 1.000000 T -1 -1 -1 -1 -1 -1 -1 -1 0.000000 0.900000 0.900000 F 1 4 1 2 4 1 3 4 0.000000 0.800000 0.800000 F 1 4 1 2 4 1 3 1 0.000000 0.700000 0.700000 F 1 4 1 2 4 1 3 1 0.000000 0.600000 0.600000 F 1 4 1 2 4 3 1 4 0.000000 0.500000 0.500000 F 1 4 1 2 4 3 1 4 0.000000 0.400000 0.400000 F 1 4 1 2 4 3 1 4 0.000000 0.300000 0.300000 F 1 4 1 2 4 3 1 4 0.000000 0.200000 0.200000 F 1 4 1 2 3 4 1 4 0.000000 0.100000 0.100000 F 1 4 1 2 3 1 4 4 0.000000 0.000000 0.000000 T 1 5 5 5 9 9 9 7 espresso-5.1/PP/examples/example01/reference/si.scf.out0000644000175000017500000002316412341372774021127 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21: 1:25 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 20 npp = 20 ncplane = 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 20 253 2733 20 253 2733 85 531 bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 72.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 189.7462 ( 2733 G-vectors) FFT grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 350, 4) NL pseudopotentials 0.04 Mb ( 350, 8) Each V/rho on FFT grid 0.12 Mb ( 8000) Each G-vector array 0.02 Mb ( 2733) G-vector shells 0.00 Mb ( 65) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 350, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.98 Mb ( 8000, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.14 secs per-process dynamical memory: 8.1 Mb Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.75E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.32 secs total energy = -15.84097415 Ry Harris-Foulkes estimate = -15.86197052 Ry estimated scf accuracy < 0.06141563 Ry iteration # 2 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.68E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.41 secs total energy = -15.84406636 Ry Harris-Foulkes estimate = -15.84437081 Ry estimated scf accuracy < 0.00214295 Ry iteration # 3 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-05, avg # of iterations = 2.5 total cpu time spent up to now is 0.51 secs total energy = -15.84451020 Ry Harris-Foulkes estimate = -15.84454237 Ry estimated scf accuracy < 0.00007086 Ry iteration # 4 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.86E-07, avg # of iterations = 2.1 total cpu time spent up to now is 0.61 secs total energy = -15.84452620 Ry Harris-Foulkes estimate = -15.84452929 Ry estimated scf accuracy < 0.00000682 Ry iteration # 5 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.52E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.71 secs total energy = -15.84452724 Ry Harris-Foulkes estimate = -15.84452726 Ry estimated scf accuracy < 0.00000006 Ry iteration # 6 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.18E-10, avg # of iterations = 2.7 total cpu time spent up to now is 0.82 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 335 PWs) bands (ev): -5.6039 4.6467 5.9568 5.9568 k = 0.1250 0.1250 0.3750 ( 338 PWs) bands (ev): -5.0584 3.0175 4.9012 4.9909 k = 0.1250 0.1250 0.6250 ( 337 PWs) bands (ev): -3.9883 1.3106 3.5165 3.9919 k = 0.1250 0.1250 0.8750 ( 343 PWs) bands (ev): -2.4615 -0.5936 2.7226 3.5069 k = 0.1250 0.3750 0.3750 ( 341 PWs) bands (ev): -4.5395 1.5909 3.8905 5.4636 k = 0.1250 0.3750 0.6250 ( 340 PWs) bands (ev): -3.5491 0.3750 2.8565 4.2745 k = 0.1250 0.3750 0.8750 ( 347 PWs) bands (ev): -2.2719 -0.7033 2.0783 3.2106 k = 0.1250 0.6250 0.6250 ( 344 PWs) bands (ev): -2.8220 -0.4390 2.1614 4.3230 k = 0.3750 0.3750 0.3750 ( 350 PWs) bands (ev): -4.0849 0.2304 5.1432 5.1432 k = 0.3750 0.3750 0.6250 ( 343 PWs) bands (ev): -3.3347 -0.5842 3.9340 4.6556 ! total energy = -15.84452726 Ry Harris-Foulkes estimate = -15.84452726 Ry estimated scf accuracy < 8.8E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 4.79352695 Ry hartree contribution = 1.07664132 Ry xc contribution = -4.81493686 Ry ewald contribution = -16.89975867 Ry convergence has been achieved in 6 iterations Writing output data file si.save PWSCF : 0.93s CPU time, 1.83s wall time init_run : 0.11s CPU electrons : 0.68s CPU Called by init_run: wfcinit : 0.06s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.55s CPU ( 7 calls, 0.078 s avg) sum_band : 0.10s CPU ( 7 calls, 0.015 s avg) v_of_rho : 0.02s CPU ( 7 calls, 0.002 s avg) mix_rho : 0.01s CPU ( 7 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.02s CPU ( 150 calls, 0.000 s avg) cegterg : 0.53s CPU ( 70 calls, 0.008 s avg) Called by *egterg: h_psi : 0.52s CPU ( 213 calls, 0.002 s avg) g_psi : 0.01s CPU ( 133 calls, 0.000 s avg) cdiaghg : 0.02s CPU ( 193 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.00s CPU ( 213 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 213 calls, 0.000 s avg) cft3s : 0.56s CPU ( 1978 calls, 0.000 s avg) davcio : 0.00s CPU ( 220 calls, 0.000 s avg) Parallel routines espresso-5.1/PP/examples/example01/reference/si.bands.out0000644000175000017500000006036112341372774021443 0ustar mbamba Program BANDS v.5.0.1 starts on 18Aug2012 at 15:56: 6 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 2 processors R & G space division: proc/pool = 2 Info: using nr1, nr2, nr3 values from input Info: using nr1s, nr2s, nr3s values from input IMPORTANT: XC functional enforced from input : Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Any further DFT definition will be discarded Please, verify this is what you really want Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 126 126 45 1365 1365 304 Max 127 127 46 1368 1368 305 Sum 253 253 91 2733 2733 609 ************************************************************************** xk=( 0.50000, 0.50000, 0.50000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.40000, 0.40000, 0.40000 ) point group C_3v (3m) there are 3 classes the character table: E 2C3 3s_v A_1 1.00 1.00 1.00 A_2 1.00 1.00 -1.00 E 2.00 -1.00 0.00 the symmetry operations in each class: E 1 2C3 2 3 3s_v 4 5 6 Band symmetry, C_3v (3m) point group: e( 1 - 1) = -3.89098 eV 1 --> A_1 L_1 e( 2 - 2) = -0.10176 eV 1 --> A_1 L_1 e( 3 - 4) = 5.10243 eV 2 --> E L_3 e( 5 - 5) = 7.90028 eV 1 --> A_1 L_1 e( 6 - 7) = 9.67885 eV 2 --> E L_3 e( 8 - 8) = 13.95934 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.30000, 0.30000, 0.30000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = -4.65923 eV 1 --> A_1 L_1 e( 2 - 2) = 1.40426 eV 1 --> A_1 L_1 e( 3 - 4) = 5.31880 eV 2 --> E L_3 e( 5 - 5) = 8.13849 eV 1 --> A_1 L_1 e( 6 - 7) = 9.80320 eV 2 --> E L_3 e( 8 - 8) = 13.84469 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.20000, 0.20000, 0.20000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = -5.28483 eV 1 --> A_1 L_1 e( 2 - 2) = 3.22191 eV 1 --> A_1 L_1 e( 3 - 4) = 5.65990 eV 2 --> E L_3 e( 5 - 5) = 8.50379 eV 1 --> A_1 L_1 e( 6 - 7) = 9.63593 eV 2 --> E L_3 e( 8 - 8) = 12.33324 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.10000, 0.10000, 0.10000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = -5.67829 eV 1 --> A_1 L_1 e( 2 - 2) = 5.10376 eV 1 --> A_1 L_1 e( 3 - 4) = 6.04960 eV 2 --> E L_3 e( 5 - 5) = 8.84762 eV 1 --> A_1 L_1 e( 6 - 7) = 9.12047 eV 2 --> E L_3 e( 8 - 8) = 10.61160 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = -5.80989 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 6.25489 eV 3 --> T_2g G_25' G_5+ e( 5 - 7) = 8.82205 eV 3 --> T_1u G_15 G_4- e( 8 - 8) = 9.72317 eV 1 --> A_2u G_2' G_2- ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.10000 ) point group C_4v (4mm) there are 5 classes the character table: E 2C4 C2 2s_v 2s_d A_1 1.00 1.00 1.00 1.00 1.00 A_2 1.00 1.00 1.00 -1.00 -1.00 B_1 1.00 -1.00 1.00 1.00 -1.00 B_2 1.00 -1.00 1.00 -1.00 1.00 E 2.00 0.00 -2.00 0.00 0.00 the symmetry operations in each class: E 1 C2 2 2C4 3 4 2s_v 5 6 2s_d 7 8 Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -5.76681 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 5.98100 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 6.07224 eV 2 --> E G_5 D_5 e( 5 - 5) = 8.71044 eV 1 --> A_1 G_1 D_1 e( 6 - 7) = 9.05709 eV 2 --> E G_5 D_5 e( 8 - 8) = 9.98378 eV 1 --> B_2 G_4 D_2' ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.20000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -5.63372 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 5.33389 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 5.66013 eV 2 --> E G_5 D_5 e( 5 - 5) = 8.42383 eV 1 --> A_1 G_1 D_1 e( 6 - 7) = 9.63007 eV 2 --> E G_5 D_5 e( 8 - 8) = 10.51923 eV 1 --> B_2 G_4 D_2' ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.30000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -5.41325 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 4.52654 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 5.18587 eV 2 --> E G_5 D_5 e( 5 - 5) = 8.05161 eV 1 --> A_1 G_1 D_1 e( 6 - 7) = 10.36976 eV 2 --> E G_5 D_5 e( 8 - 8) = 10.70616 eV 1 --> B_2 G_4 D_2' ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.40000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -5.10634 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 3.65285 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 4.72660 eV 2 --> E G_5 D_5 e( 5 - 5) = 7.67236 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 10.13643 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 11.18661 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.50000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -4.71286 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 2.75637 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 4.31609 eV 2 --> E G_5 D_5 e( 5 - 5) = 7.33158 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 9.35468 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 12.05953 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.60000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -4.23577 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 1.85168 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 3.96936 eV 2 --> E G_5 D_5 e( 5 - 5) = 7.05650 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 8.61696 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 12.96178 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.70000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -3.68012 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 0.95015 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 3.69360 eV 2 --> E G_5 D_5 e( 5 - 5) = 6.86544 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 7.99242 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 13.88560 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.80000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -3.05298 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 0.06829 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 3.49478 eV 2 --> E G_5 D_5 e( 5 - 5) = 6.76567 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 7.49426 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 14.82910 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.90000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -2.35631 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = -0.78668 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 3.37380 eV 2 --> E G_5 D_5 e( 5 - 5) = 6.76912 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 7.12853 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 15.76318 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.10000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.20000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.30000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.40000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.50000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.60000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.70000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.80000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.90000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 1.00000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.90000, 0.90000 ) point group C_2v (mm2) there are 4 classes the character table: E C2 s_xz s_yz A_1 1.00 1.00 1.00 1.00 A_2 1.00 1.00 -1.00 -1.00 B_1 1.00 -1.00 1.00 -1.00 B_2 1.00 -1.00 -1.00 1.00 the symmetry operations in each class: E 1 C2 2 s_xz 3 s_yz 4 Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -1.63507 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = -1.50298 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 2.83020 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 3.40517 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 6.97105 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 7.68400 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 15.66969 eV 1 --> B_1 D_3 S_3 e( 8 - 8) = 15.94292 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.80000, 0.80000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -1.81180 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = -1.21825 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 2.07007 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 3.61647 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 7.21653 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 9.38142 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 14.41482 eV 1 --> B_1 D_3 S_3 e( 8 - 8) = 14.96861 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.70000, 0.70000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -2.26355 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = -0.74585 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 1.71184 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 3.95444 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 7.60984 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 11.39200 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 13.16747 eV 1 --> B_1 D_3 S_3 e( 8 - 8) = 13.69667 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.60000, 0.60000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -2.95841 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = -0.08443 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 1.86837 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 4.39570 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 8.12616 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 12.04665 eV 1 --> B_1 D_3 S_3 e( 7 - 7) = 12.30467 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 13.12049 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.50000, 0.50000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -3.72766 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 0.75397 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 2.39873 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 4.89637 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 8.69308 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 11.07535 eV 1 --> B_1 D_3 S_3 e( 7 - 7) = 11.39195 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 12.40832 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.40000, 0.40000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -4.43817 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 1.76602 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 3.17122 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 5.39166 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 9.16778 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 10.27129 eV 1 --> B_1 D_3 S_3 e( 7 - 7) = 10.57148 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 11.99749 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.30000, 0.30000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -5.02436 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 2.93304 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 4.09225 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 5.80158 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 9.35615 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 9.64161 eV 1 --> B_1 D_3 S_3 e( 7 - 7) = 9.89651 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 11.91655 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.20000, 0.20000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -5.45765 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 4.22376 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 5.05826 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 6.07498 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 9.18727 eV 1 --> B_1 D_3 S_3 e( 6 - 6) = 9.27870 eV 1 --> B_2 D_4 S_4 e( 7 - 7) = 9.36851 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 11.49913 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.10000, 0.10000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -5.72181 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 5.51805 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 5.89088 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 6.21456 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 8.91346 eV 1 --> B_1 D_3 S_3 e( 6 - 6) = 8.98563 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 9.08099 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 10.31679 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = -5.80989 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 6.25489 eV 3 --> T_2g G_25' G_5+ e( 5 - 7) = 8.82205 eV 3 --> T_1u G_15 G_4- e( 8 - 8) = 9.72317 eV 1 --> A_2u G_2' G_2- ************************************************************************** espresso-5.1/PP/examples/example01/reference/sicharge0000644000175000017500000041544512341372774020730 0ustar mbamba 20 20 20 20 20 20 2 1 2 10.20000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 189.7462070307 4.0000000000 18.0000000000 0 1 Si 4.00 1 0.000000000 0.000000000 0.000000000 1 2 0.250000000 0.250000000 0.250000000 1 1.410752548E-03 7.336888634E-03 2.630392872E-02 5.045243129E-02 6.266178671E-02 5.821451122E-02 4.673760092E-02 3.679047261E-02 3.028273404E-02 2.645641552E-02 2.511858521E-02 2.645641552E-02 3.028273404E-02 3.679047261E-02 4.673760092E-02 5.821451122E-02 6.266178671E-02 5.045243129E-02 2.630392872E-02 7.336888634E-03 7.336888634E-03 1.784803138E-02 3.710155405E-02 5.256060421E-02 5.364496498E-02 4.431149165E-02 3.378857385E-02 2.627730267E-02 2.165967377E-02 1.932577122E-02 1.932577122E-02 2.165967377E-02 2.627730267E-02 3.378857385E-02 4.431149165E-02 5.364496498E-02 5.256060421E-02 3.710155405E-02 1.784803138E-02 7.336888634E-03 2.630392872E-02 3.710155405E-02 4.785912130E-02 4.949590056E-02 4.171990996E-02 3.137722829E-02 2.332662941E-02 1.819032170E-02 1.522310274E-02 1.420658738E-02 1.522310274E-02 1.819032170E-02 2.332662941E-02 3.137722829E-02 4.171990996E-02 4.949590056E-02 4.785912130E-02 3.710155405E-02 2.630392872E-02 2.232878766E-02 5.045243129E-02 5.256060421E-02 4.949590056E-02 4.053085631E-02 2.985229337E-02 2.134010225E-02 1.579258471E-02 1.243462807E-02 1.075514271E-02 1.075514271E-02 1.243462807E-02 1.579258471E-02 2.134010225E-02 2.985229337E-02 4.053085631E-02 4.949590056E-02 5.256060421E-02 5.045243129E-02 4.784210774E-02 4.784210774E-02 6.266178671E-02 5.364496498E-02 4.171990996E-02 2.985229337E-02 2.061001057E-02 1.451184462E-02 1.077218767E-02 8.658592227E-03 7.952860561E-03 8.658592227E-03 1.077218767E-02 1.451184462E-02 2.061001057E-02 2.985229337E-02 4.171990996E-02 5.364496498E-02 6.266178671E-02 6.770809631E-02 6.927093266E-02 6.770809631E-02 5.821451122E-02 4.431149165E-02 3.137722829E-02 2.134010225E-02 1.451184462E-02 1.021426587E-02 7.683626941E-03 6.489638821E-03 6.489638821E-03 7.683626941E-03 1.021426587E-02 1.451184462E-02 2.134010225E-02 3.137722829E-02 4.431149165E-02 5.821451122E-02 7.002972758E-02 7.681749385E-02 7.681749385E-02 7.002972758E-02 4.673760092E-02 3.378857385E-02 2.332662941E-02 1.579258471E-02 1.077218767E-02 7.683626941E-03 6.048711102E-03 5.543427348E-03 6.048711102E-03 7.683626941E-03 1.077218767E-02 1.579258471E-02 2.332662941E-02 3.378857385E-02 4.673760092E-02 6.015406312E-02 7.057114826E-02 7.453143011E-02 7.057114826E-02 6.015406312E-02 3.679047261E-02 2.627730267E-02 1.819032170E-02 1.243462807E-02 8.658592227E-03 6.489638821E-03 5.543427348E-03 5.543427348E-03 6.489638821E-03 8.658592227E-03 1.243462807E-02 1.819032170E-02 2.627730267E-02 3.679047261E-02 4.886686103E-02 6.008009761E-02 6.698659653E-02 6.698659653E-02 6.008009761E-02 4.886686103E-02 3.028273404E-02 2.165967377E-02 1.522310274E-02 1.075514271E-02 7.952860561E-03 6.489638821E-03 6.048711102E-03 6.489638821E-03 7.952860561E-03 1.075514271E-02 1.522310274E-02 2.165967377E-02 3.028273404E-02 4.077833765E-02 5.162980944E-02 6.008009761E-02 6.330005647E-02 6.008009761E-02 5.162980944E-02 4.077833765E-02 2.645641552E-02 1.932577122E-02 1.420658738E-02 1.075514271E-02 8.658592227E-03 7.683626941E-03 7.683626941E-03 8.658592227E-03 1.075514271E-02 1.420658738E-02 1.932577122E-02 2.645641552E-02 3.559264206E-02 4.575158679E-02 5.478748589E-02 6.015406312E-02 6.015406312E-02 5.478748589E-02 4.575158679E-02 3.559264206E-02 2.511858521E-02 1.932577122E-02 1.522310274E-02 1.243462807E-02 1.077218767E-02 1.021426587E-02 1.077218767E-02 1.243462807E-02 1.522310274E-02 1.932577122E-02 2.511858521E-02 3.278911854E-02 4.168401732E-02 5.011378756E-02 5.607980099E-02 5.821451122E-02 5.607980099E-02 5.011378756E-02 4.168401732E-02 3.278911854E-02 2.645641552E-02 2.165967377E-02 1.819032170E-02 1.579258471E-02 1.451184462E-02 1.451184462E-02 1.579258471E-02 1.819032170E-02 2.165967377E-02 2.645641552E-02 3.278911854E-02 4.008906944E-02 4.682226974E-02 5.147916724E-02 5.364496498E-02 5.364496498E-02 5.147916724E-02 4.682226974E-02 4.008906944E-02 3.278911854E-02 3.028273404E-02 2.627730267E-02 2.332662941E-02 2.134010225E-02 2.061001057E-02 2.134010225E-02 2.332662941E-02 2.627730267E-02 3.028273404E-02 3.559264206E-02 4.168401732E-02 4.682226974E-02 4.933561120E-02 4.949590056E-02 4.918844003E-02 4.949590056E-02 4.933561120E-02 4.682226974E-02 4.168401732E-02 3.559264206E-02 3.679047261E-02 3.378857385E-02 3.137722829E-02 2.985229337E-02 2.985229337E-02 3.137722829E-02 3.378857385E-02 3.679047261E-02 4.077833765E-02 4.575158679E-02 5.011378756E-02 5.147916724E-02 4.949590056E-02 4.695865926E-02 4.695865926E-02 4.949590056E-02 5.147916724E-02 5.011378756E-02 4.575158679E-02 4.077833765E-02 4.673760092E-02 4.431149165E-02 4.171990996E-02 4.053085631E-02 4.171990996E-02 4.431149165E-02 4.673760092E-02 4.886686103E-02 5.162980944E-02 5.478748589E-02 5.607980099E-02 5.364496498E-02 4.918844003E-02 4.695865926E-02 4.918844003E-02 5.364496498E-02 5.607980099E-02 5.478748589E-02 5.162980944E-02 4.886686103E-02 5.821451122E-02 5.364496498E-02 4.949590056E-02 4.949590056E-02 5.364496498E-02 5.821451122E-02 6.015406312E-02 6.008009761E-02 6.008009761E-02 6.015406312E-02 5.821451122E-02 5.364496498E-02 4.949590056E-02 4.949590056E-02 5.364496498E-02 5.821451122E-02 6.015406312E-02 6.008009761E-02 6.008009761E-02 6.015406312E-02 6.266178671E-02 5.256060421E-02 4.785912130E-02 5.256060421E-02 6.266178671E-02 7.002972758E-02 7.057114826E-02 6.698659653E-02 6.330005647E-02 6.015406312E-02 5.607980099E-02 5.147916724E-02 4.933561120E-02 5.147916724E-02 5.607980099E-02 6.015406312E-02 6.330005647E-02 6.698659653E-02 7.057114826E-02 7.002972758E-02 5.045243129E-02 3.710155405E-02 3.710155405E-02 5.045243129E-02 6.770809631E-02 7.681749385E-02 7.453143011E-02 6.698659653E-02 6.008009761E-02 5.478748589E-02 5.011378756E-02 4.682226974E-02 4.682226974E-02 5.011378756E-02 5.478748589E-02 6.008009761E-02 6.698659653E-02 7.453143011E-02 7.681749385E-02 6.770809631E-02 2.630392872E-02 1.784803138E-02 2.630392872E-02 4.784210774E-02 6.927093266E-02 7.681749385E-02 7.057114826E-02 6.008009761E-02 5.162980944E-02 4.575158679E-02 4.168401732E-02 4.008906944E-02 4.168401732E-02 4.575158679E-02 5.162980944E-02 6.008009761E-02 7.057114826E-02 7.681749385E-02 6.927093266E-02 4.784210774E-02 7.336888634E-03 7.336888634E-03 2.232878766E-02 4.784210774E-02 6.770809631E-02 7.002972758E-02 6.015406312E-02 4.886686103E-02 4.077833765E-02 3.559264206E-02 3.278911854E-02 3.278911854E-02 3.559264206E-02 4.077833765E-02 4.886686103E-02 6.015406312E-02 7.002972758E-02 6.770809631E-02 4.784210774E-02 2.232878766E-02 7.336888634E-03 1.784803138E-02 3.710155405E-02 5.256060421E-02 5.364496498E-02 4.431149165E-02 3.378857385E-02 2.627730267E-02 2.165967377E-02 1.932577122E-02 1.932577122E-02 2.165967377E-02 2.627730267E-02 3.378857385E-02 4.431149165E-02 5.364496498E-02 5.256060421E-02 3.710155405E-02 1.784803138E-02 7.336888634E-03 1.784803138E-02 3.053265872E-02 4.463517735E-02 4.918844003E-02 4.265382842E-02 3.237494300E-02 2.408518946E-02 1.877770461E-02 1.573095187E-02 1.469125533E-02 1.573095187E-02 1.877770461E-02 2.408518946E-02 3.237494300E-02 4.265382842E-02 4.918844003E-02 4.463517735E-02 3.053265872E-02 1.784803138E-02 1.346760887E-02 3.710155405E-02 4.463517735E-02 4.695865926E-02 4.102316702E-02 3.110697941E-02 2.242274851E-02 1.661918251E-02 1.310977994E-02 1.135974513E-02 1.135974513E-02 1.310977994E-02 1.661918251E-02 2.242274851E-02 3.110697941E-02 4.102316702E-02 4.695865926E-02 4.463517735E-02 3.710155405E-02 3.149859816E-02 3.149859816E-02 5.256060421E-02 4.918844003E-02 4.102316702E-02 3.056683192E-02 2.147399717E-02 1.523247728E-02 1.136829684E-02 9.164110625E-03 8.420372603E-03 9.164110625E-03 1.136829684E-02 1.523247728E-02 2.147399717E-02 3.056683192E-02 4.102316702E-02 4.918844003E-02 5.256060421E-02 5.255675221E-02 5.214472107E-02 5.255675221E-02 5.364496498E-02 4.265382842E-02 3.110697941E-02 2.147399717E-02 1.474888568E-02 1.049724621E-02 7.951325906E-03 6.712334079E-03 6.712334079E-03 7.951325906E-03 1.049724621E-02 1.474888568E-02 2.147399717E-02 3.110697941E-02 4.265382842E-02 5.364496498E-02 6.171115911E-02 6.581693895E-02 6.581693895E-02 6.171115911E-02 4.431149165E-02 3.237494300E-02 2.242274851E-02 1.523247728E-02 1.049724621E-02 7.570802779E-03 5.967458799E-03 5.453593221E-03 5.967458799E-03 7.570802779E-03 1.049724621E-02 1.523247728E-02 2.242274851E-02 3.237494300E-02 4.431149165E-02 5.607980099E-02 6.479100302E-02 6.801025510E-02 6.479100302E-02 5.607980099E-02 3.378857385E-02 2.408518946E-02 1.661918251E-02 1.136829684E-02 7.951325906E-03 5.967458799E-03 5.079743310E-03 5.079743310E-03 5.967458799E-03 7.951325906E-03 1.136829684E-02 1.661918251E-02 2.408518946E-02 3.378857385E-02 4.477814539E-02 5.478748589E-02 6.085965591E-02 6.085965591E-02 5.478748589E-02 4.477814539E-02 2.627730267E-02 1.877770461E-02 1.310977994E-02 9.164110625E-03 6.712334079E-03 5.453593221E-03 5.079743310E-03 5.453593221E-03 6.712334079E-03 9.164110625E-03 1.310977994E-02 1.877770461E-02 2.627730267E-02 3.527757314E-02 4.449069286E-02 5.162980944E-02 5.434561968E-02 5.162980944E-02 4.449069286E-02 3.527757314E-02 2.165967377E-02 1.573095187E-02 1.135974513E-02 8.420372603E-03 6.712334079E-03 5.967458799E-03 5.967458799E-03 6.712334079E-03 8.420372603E-03 1.135974513E-02 1.573095187E-02 2.165967377E-02 2.905485662E-02 3.720069702E-02 4.449069286E-02 4.886686103E-02 4.886686103E-02 4.449069286E-02 3.720069702E-02 2.905485662E-02 1.932577122E-02 1.469125533E-02 1.135974513E-02 9.164110625E-03 7.951325906E-03 7.570802779E-03 7.951325906E-03 9.164110625E-03 1.135974513E-02 1.469125533E-02 1.932577122E-02 2.536114332E-02 3.246239961E-02 3.950667612E-02 4.477814539E-02 4.673760092E-02 4.477814539E-02 3.950667612E-02 3.246239961E-02 2.536114332E-02 1.932577122E-02 1.573095187E-02 1.310977994E-02 1.136829684E-02 1.049724621E-02 1.049724621E-02 1.136829684E-02 1.310977994E-02 1.573095187E-02 1.932577122E-02 2.406334989E-02 2.987840680E-02 3.606437693E-02 4.131333285E-02 4.431149165E-02 4.431149165E-02 4.131333285E-02 3.606437693E-02 2.987840680E-02 2.406334989E-02 2.165967377E-02 1.877770461E-02 1.661918251E-02 1.523247728E-02 1.474888568E-02 1.523247728E-02 1.661918251E-02 1.877770461E-02 2.165967377E-02 2.536114332E-02 2.987840680E-02 3.472679295E-02 3.895940798E-02 4.171990996E-02 4.265382842E-02 4.171990996E-02 3.895940798E-02 3.472679295E-02 2.987840680E-02 2.536114332E-02 2.627730267E-02 2.408518946E-02 2.242274851E-02 2.147399717E-02 2.147399717E-02 2.242274851E-02 2.408518946E-02 2.627730267E-02 2.905485662E-02 3.246239961E-02 3.606437693E-02 3.895940798E-02 4.053085631E-02 4.102316702E-02 4.102316702E-02 4.053085631E-02 3.895940798E-02 3.606437693E-02 3.246239961E-02 2.905485662E-02 3.378857385E-02 3.237494300E-02 3.110697941E-02 3.056683192E-02 3.110697941E-02 3.237494300E-02 3.378857385E-02 3.527757314E-02 3.720069702E-02 3.950667612E-02 4.131333285E-02 4.171990996E-02 4.102316702E-02 4.054046395E-02 4.102316702E-02 4.171990996E-02 4.131333285E-02 3.950667612E-02 3.720069702E-02 3.527757314E-02 4.431149165E-02 4.265382842E-02 4.102316702E-02 4.102316702E-02 4.265382842E-02 4.431149165E-02 4.477814539E-02 4.449069286E-02 4.449069286E-02 4.477814539E-02 4.431149165E-02 4.265382842E-02 4.102316702E-02 4.102316702E-02 4.265382842E-02 4.431149165E-02 4.477814539E-02 4.449069286E-02 4.449069286E-02 4.477814539E-02 5.364496498E-02 4.918844003E-02 4.695865926E-02 4.918844003E-02 5.364496498E-02 5.607980099E-02 5.478748589E-02 5.162980944E-02 4.886686103E-02 4.673760092E-02 4.431149165E-02 4.171990996E-02 4.053085631E-02 4.171990996E-02 4.431149165E-02 4.673760092E-02 4.886686103E-02 5.162980944E-02 5.478748589E-02 5.607980099E-02 5.256060421E-02 4.463517735E-02 4.463517735E-02 5.256060421E-02 6.171115911E-02 6.479100302E-02 6.085965591E-02 5.434561968E-02 4.886686103E-02 4.477814539E-02 4.131333285E-02 3.895940798E-02 3.895940798E-02 4.131333285E-02 4.477814539E-02 4.886686103E-02 5.434561968E-02 6.085965591E-02 6.479100302E-02 6.171115911E-02 3.710155405E-02 3.053265872E-02 3.710155405E-02 5.255675221E-02 6.581693895E-02 6.801025510E-02 6.085965591E-02 5.162980944E-02 4.449069286E-02 3.950667612E-02 3.606437693E-02 3.472679295E-02 3.606437693E-02 3.950667612E-02 4.449069286E-02 5.162980944E-02 6.085965591E-02 6.801025510E-02 6.581693895E-02 5.255675221E-02 1.784803138E-02 1.784803138E-02 3.149859816E-02 5.214472107E-02 6.581693895E-02 6.479100302E-02 5.478748589E-02 4.449069286E-02 3.720069702E-02 3.246239961E-02 2.987840680E-02 2.987840680E-02 3.246239961E-02 3.720069702E-02 4.449069286E-02 5.478748589E-02 6.479100302E-02 6.581693895E-02 5.214472107E-02 3.149859816E-02 7.336888634E-03 1.346760887E-02 3.149859816E-02 5.255675221E-02 6.171115911E-02 5.607980099E-02 4.477814539E-02 3.527757314E-02 2.905485662E-02 2.536114332E-02 2.406334989E-02 2.536114332E-02 2.905485662E-02 3.527757314E-02 4.477814539E-02 5.607980099E-02 6.171115911E-02 5.255675221E-02 3.149859816E-02 1.346760887E-02 2.630392872E-02 3.710155405E-02 4.785912130E-02 4.949590056E-02 4.171990996E-02 3.137722829E-02 2.332662941E-02 1.819032170E-02 1.522310274E-02 1.420658738E-02 1.522310274E-02 1.819032170E-02 2.332662941E-02 3.137722829E-02 4.171990996E-02 4.949590056E-02 4.785912130E-02 3.710155405E-02 2.630392872E-02 2.232878766E-02 3.710155405E-02 4.463517735E-02 4.695865926E-02 4.102316702E-02 3.110697941E-02 2.242274851E-02 1.661918251E-02 1.310977994E-02 1.135974513E-02 1.135974513E-02 1.310977994E-02 1.661918251E-02 2.242274851E-02 3.110697941E-02 4.102316702E-02 4.695865926E-02 4.463517735E-02 3.710155405E-02 3.149859816E-02 3.149859816E-02 4.785912130E-02 4.695865926E-02 4.054046395E-02 3.079690590E-02 2.180930606E-02 1.550863427E-02 1.158807796E-02 9.348116428E-03 8.590919322E-03 9.348116428E-03 1.158807796E-02 1.550863427E-02 2.180930606E-02 3.079690590E-02 4.054046395E-02 4.695865926E-02 4.785912130E-02 4.575855910E-02 4.455689206E-02 4.575855910E-02 4.949590056E-02 4.102316702E-02 3.079690590E-02 2.159031620E-02 1.494232783E-02 1.068863898E-02 8.113509916E-03 6.842158313E-03 6.842158313E-03 8.113509916E-03 1.068863898E-02 1.494232783E-02 2.159031620E-02 3.079690590E-02 4.102316702E-02 4.949590056E-02 5.453077084E-02 5.656045169E-02 5.656045169E-02 5.453077084E-02 4.171990996E-02 3.110697941E-02 2.180930606E-02 1.494232783E-02 1.039630969E-02 7.550049034E-03 5.941353161E-03 5.411270826E-03 5.941353161E-03 7.550049034E-03 1.039630969E-02 1.494232783E-02 2.180930606E-02 3.110697941E-02 4.171990996E-02 5.147916724E-02 5.822335543E-02 6.061215074E-02 5.822335543E-02 5.147916724E-02 3.137722829E-02 2.242274851E-02 1.550863427E-02 1.068863898E-02 7.550049034E-03 5.675050138E-03 4.797933198E-03 4.797933198E-03 5.675050138E-03 7.550049034E-03 1.068863898E-02 1.550863427E-02 2.242274851E-02 3.137722829E-02 4.131333285E-02 5.011378756E-02 5.533215374E-02 5.533215374E-02 5.011378756E-02 4.131333285E-02 2.332662941E-02 1.661918251E-02 1.158807796E-02 8.113509916E-03 5.941353161E-03 4.797933198E-03 4.448997543E-03 4.797933198E-03 5.941353161E-03 8.113509916E-03 1.158807796E-02 1.661918251E-02 2.332662941E-02 3.136085494E-02 3.950667612E-02 4.575158679E-02 4.811166390E-02 4.575158679E-02 3.950667612E-02 3.136085494E-02 1.819032170E-02 1.310977994E-02 9.348116428E-03 6.842158313E-03 5.411270826E-03 4.797933198E-03 4.797933198E-03 5.411270826E-03 6.842158313E-03 9.348116428E-03 1.310977994E-02 1.819032170E-02 2.443633085E-02 3.120787008E-02 3.720069702E-02 4.077833765E-02 4.077833765E-02 3.720069702E-02 3.120787008E-02 2.443633085E-02 1.522310274E-02 1.135974513E-02 8.590919322E-03 6.842158313E-03 5.941353161E-03 5.675050138E-03 5.941353161E-03 6.842158313E-03 8.590919322E-03 1.135974513E-02 1.522310274E-02 2.013023111E-02 2.573981764E-02 3.120787008E-02 3.527757314E-02 3.679047261E-02 3.527757314E-02 3.120787008E-02 2.573981764E-02 2.013023111E-02 1.420658738E-02 1.135974513E-02 9.348116428E-03 8.113509916E-03 7.550049034E-03 7.550049034E-03 8.113509916E-03 9.348116428E-03 1.135974513E-02 1.420658738E-02 1.792336104E-02 2.241647191E-02 2.720969903E-02 3.136085494E-02 3.378857385E-02 3.378857385E-02 3.136085494E-02 2.720969903E-02 2.241647191E-02 1.792336104E-02 1.522310274E-02 1.310977994E-02 1.158807796E-02 1.068863898E-02 1.039630969E-02 1.068863898E-02 1.158807796E-02 1.310977994E-02 1.522310274E-02 1.792336104E-02 2.123694757E-02 2.500684413E-02 2.867209778E-02 3.137722829E-02 3.237494300E-02 3.137722829E-02 2.867209778E-02 2.500684413E-02 2.123694757E-02 1.792336104E-02 1.819032170E-02 1.661918251E-02 1.550863427E-02 1.494232783E-02 1.494232783E-02 1.550863427E-02 1.661918251E-02 1.819032170E-02 2.013023111E-02 2.241647191E-02 2.500684413E-02 2.764821140E-02 2.985229337E-02 3.110697941E-02 3.110697941E-02 2.985229337E-02 2.764821140E-02 2.500684413E-02 2.241647191E-02 2.013023111E-02 2.332662941E-02 2.242274851E-02 2.180930606E-02 2.159031620E-02 2.180930606E-02 2.242274851E-02 2.332662941E-02 2.443633085E-02 2.573981764E-02 2.720969903E-02 2.867209778E-02 2.985229337E-02 3.056683192E-02 3.079690590E-02 3.056683192E-02 2.985229337E-02 2.867209778E-02 2.720969903E-02 2.573981764E-02 2.443633085E-02 3.137722829E-02 3.110697941E-02 3.079690590E-02 3.079690590E-02 3.110697941E-02 3.137722829E-02 3.136085494E-02 3.120787008E-02 3.120787008E-02 3.136085494E-02 3.137722829E-02 3.110697941E-02 3.079690590E-02 3.079690590E-02 3.110697941E-02 3.137722829E-02 3.136085494E-02 3.120787008E-02 3.120787008E-02 3.136085494E-02 4.171990996E-02 4.102316702E-02 4.054046395E-02 4.102316702E-02 4.171990996E-02 4.131333285E-02 3.950667612E-02 3.720069702E-02 3.527757314E-02 3.378857385E-02 3.237494300E-02 3.110697941E-02 3.056683192E-02 3.110697941E-02 3.237494300E-02 3.378857385E-02 3.527757314E-02 3.720069702E-02 3.950667612E-02 4.131333285E-02 4.949590056E-02 4.695865926E-02 4.695865926E-02 4.949590056E-02 5.147916724E-02 5.011378756E-02 4.575158679E-02 4.077833765E-02 3.679047261E-02 3.378857385E-02 3.137722829E-02 2.985229337E-02 2.985229337E-02 3.137722829E-02 3.378857385E-02 3.679047261E-02 4.077833765E-02 4.575158679E-02 5.011378756E-02 5.147916724E-02 4.785912130E-02 4.463517735E-02 4.785912130E-02 5.453077084E-02 5.822335543E-02 5.533215374E-02 4.811166390E-02 4.077833765E-02 3.527757314E-02 3.136085494E-02 2.867209778E-02 2.764821140E-02 2.867209778E-02 3.136085494E-02 3.527757314E-02 4.077833765E-02 4.811166390E-02 5.533215374E-02 5.822335543E-02 5.453077084E-02 3.710155405E-02 3.710155405E-02 4.575855910E-02 5.656045169E-02 6.061215074E-02 5.533215374E-02 4.575158679E-02 3.720069702E-02 3.120787008E-02 2.720969903E-02 2.500684413E-02 2.500684413E-02 2.720969903E-02 3.120787008E-02 3.720069702E-02 4.575158679E-02 5.533215374E-02 6.061215074E-02 5.656045169E-02 4.575855910E-02 2.630392872E-02 3.149859816E-02 4.455689206E-02 5.656045169E-02 5.822335543E-02 5.011378756E-02 3.950667612E-02 3.120787008E-02 2.573981764E-02 2.241647191E-02 2.123694757E-02 2.241647191E-02 2.573981764E-02 3.120787008E-02 3.950667612E-02 5.011378756E-02 5.822335543E-02 5.656045169E-02 4.455689206E-02 3.149859816E-02 2.232878766E-02 3.149859816E-02 4.575855910E-02 5.453077084E-02 5.147916724E-02 4.131333285E-02 3.136085494E-02 2.443633085E-02 2.013023111E-02 1.792336104E-02 1.792336104E-02 2.013023111E-02 2.443633085E-02 3.136085494E-02 4.131333285E-02 5.147916724E-02 5.453077084E-02 4.575855910E-02 3.149859816E-02 2.232878766E-02 5.045243129E-02 5.256060421E-02 4.949590056E-02 4.053085631E-02 2.985229337E-02 2.134010225E-02 1.579258471E-02 1.243462807E-02 1.075514271E-02 1.075514271E-02 1.243462807E-02 1.579258471E-02 2.134010225E-02 2.985229337E-02 4.053085631E-02 4.949590056E-02 5.256060421E-02 5.045243129E-02 4.784210774E-02 4.784210774E-02 5.256060421E-02 4.918844003E-02 4.102316702E-02 3.056683192E-02 2.147399717E-02 1.523247728E-02 1.136829684E-02 9.164110625E-03 8.420372603E-03 9.164110625E-03 1.136829684E-02 1.523247728E-02 2.147399717E-02 3.056683192E-02 4.102316702E-02 4.918844003E-02 5.256060421E-02 5.255675221E-02 5.214472107E-02 5.255675221E-02 4.949590056E-02 4.102316702E-02 3.079690590E-02 2.159031620E-02 1.494232783E-02 1.068863898E-02 8.113509916E-03 6.842158313E-03 6.842158313E-03 8.113509916E-03 1.068863898E-02 1.494232783E-02 2.159031620E-02 3.079690590E-02 4.102316702E-02 4.949590056E-02 5.453077084E-02 5.656045169E-02 5.656045169E-02 5.453077084E-02 4.053085631E-02 3.056683192E-02 2.159031620E-02 1.486265093E-02 1.038017035E-02 7.552822020E-03 5.935496502E-03 5.397490755E-03 5.935496502E-03 7.552822020E-03 1.038017035E-02 1.486265093E-02 2.159031620E-02 3.056683192E-02 4.053085631E-02 4.933561120E-02 5.516972298E-02 5.717980179E-02 5.516972298E-02 4.933561120E-02 2.985229337E-02 2.147399717E-02 1.494232783E-02 1.038017035E-02 7.383988671E-03 5.547368476E-03 4.660585656E-03 4.660585656E-03 5.547368476E-03 7.383988671E-03 1.038017035E-02 1.494232783E-02 2.147399717E-02 2.985229337E-02 3.895940798E-02 4.682226974E-02 5.138874082E-02 5.138874082E-02 4.682226974E-02 3.895940798E-02 2.134010225E-02 1.523247728E-02 1.068863898E-02 7.552822020E-03 5.547368476E-03 4.443175500E-03 4.092615382E-03 4.443175500E-03 5.547368476E-03 7.552822020E-03 1.068863898E-02 1.523247728E-02 2.134010225E-02 2.867209778E-02 3.606437693E-02 4.168401732E-02 4.379559116E-02 4.168401732E-02 3.606437693E-02 2.867209778E-02 1.579258471E-02 1.136829684E-02 8.113509916E-03 5.935496502E-03 4.660585656E-03 4.092615382E-03 4.092615382E-03 4.660585656E-03 5.935496502E-03 8.113509916E-03 1.136829684E-02 1.579258471E-02 2.126598267E-02 2.720969903E-02 3.246239961E-02 3.559264206E-02 3.559264206E-02 3.246239961E-02 2.720969903E-02 2.126598267E-02 1.243462807E-02 9.164110625E-03 6.842158313E-03 5.397490755E-03 4.660585656E-03 4.443175500E-03 4.660585656E-03 5.397490755E-03 6.842158313E-03 9.164110625E-03 1.243462807E-02 1.657449096E-02 2.124663610E-02 2.573981764E-02 2.905485662E-02 3.028273404E-02 2.905485662E-02 2.573981764E-02 2.124663610E-02 1.657449096E-02 1.075514271E-02 8.420372603E-03 6.842158313E-03 5.935496502E-03 5.547368476E-03 5.547368476E-03 5.935496502E-03 6.842158313E-03 8.420372603E-03 1.075514271E-02 1.383109198E-02 1.747452352E-02 2.124663610E-02 2.443633085E-02 2.627730267E-02 2.627730267E-02 2.443633085E-02 2.124663610E-02 1.747452352E-02 1.383109198E-02 1.075514271E-02 9.164110625E-03 8.113509916E-03 7.552822020E-03 7.383988671E-03 7.552822020E-03 8.113509916E-03 9.164110625E-03 1.075514271E-02 1.288608376E-02 1.551318227E-02 1.845276082E-02 2.126598267E-02 2.332662941E-02 2.408518946E-02 2.332662941E-02 2.126598267E-02 1.845276082E-02 1.551318227E-02 1.288608376E-02 1.243462807E-02 1.136829684E-02 1.068863898E-02 1.038017035E-02 1.038017035E-02 1.068863898E-02 1.136829684E-02 1.243462807E-02 1.383109198E-02 1.551318227E-02 1.745741185E-02 1.952228489E-02 2.134010225E-02 2.242274851E-02 2.242274851E-02 2.134010225E-02 1.952228489E-02 1.745741185E-02 1.551318227E-02 1.383109198E-02 1.579258471E-02 1.523247728E-02 1.494232783E-02 1.486265093E-02 1.494232783E-02 1.523247728E-02 1.579258471E-02 1.657449096E-02 1.747452352E-02 1.845276082E-02 1.952228489E-02 2.061001057E-02 2.147399717E-02 2.180930606E-02 2.147399717E-02 2.061001057E-02 1.952228489E-02 1.845276082E-02 1.747452352E-02 1.657449096E-02 2.134010225E-02 2.147399717E-02 2.159031620E-02 2.159031620E-02 2.147399717E-02 2.134010225E-02 2.126598267E-02 2.124663610E-02 2.124663610E-02 2.126598267E-02 2.134010225E-02 2.147399717E-02 2.159031620E-02 2.159031620E-02 2.147399717E-02 2.134010225E-02 2.126598267E-02 2.124663610E-02 2.124663610E-02 2.126598267E-02 2.985229337E-02 3.056683192E-02 3.079690590E-02 3.056683192E-02 2.985229337E-02 2.867209778E-02 2.720969903E-02 2.573981764E-02 2.443633085E-02 2.332662941E-02 2.242274851E-02 2.180930606E-02 2.159031620E-02 2.180930606E-02 2.242274851E-02 2.332662941E-02 2.443633085E-02 2.573981764E-02 2.720969903E-02 2.867209778E-02 4.053085631E-02 4.102316702E-02 4.102316702E-02 4.053085631E-02 3.895940798E-02 3.606437693E-02 3.246239961E-02 2.905485662E-02 2.627730267E-02 2.408518946E-02 2.242274851E-02 2.147399717E-02 2.147399717E-02 2.242274851E-02 2.408518946E-02 2.627730267E-02 2.905485662E-02 3.246239961E-02 3.606437693E-02 3.895940798E-02 4.949590056E-02 4.918844003E-02 4.949590056E-02 4.933561120E-02 4.682226974E-02 4.168401732E-02 3.559264206E-02 3.028273404E-02 2.627730267E-02 2.332662941E-02 2.134010225E-02 2.061001057E-02 2.134010225E-02 2.332662941E-02 2.627730267E-02 3.028273404E-02 3.559264206E-02 4.168401732E-02 4.682226974E-02 4.933561120E-02 5.256060421E-02 5.256060421E-02 5.453077084E-02 5.516972298E-02 5.138874082E-02 4.379559116E-02 3.559264206E-02 2.905485662E-02 2.443633085E-02 2.126598267E-02 1.952228489E-02 1.952228489E-02 2.126598267E-02 2.443633085E-02 2.905485662E-02 3.559264206E-02 4.379559116E-02 5.138874082E-02 5.516972298E-02 5.453077084E-02 5.045243129E-02 5.255675221E-02 5.656045169E-02 5.717980179E-02 5.138874082E-02 4.168401732E-02 3.246239961E-02 2.573981764E-02 2.124663610E-02 1.845276082E-02 1.745741185E-02 1.845276082E-02 2.124663610E-02 2.573981764E-02 3.246239961E-02 4.168401732E-02 5.138874082E-02 5.717980179E-02 5.656045169E-02 5.255675221E-02 4.784210774E-02 5.214472107E-02 5.656045169E-02 5.516972298E-02 4.682226974E-02 3.606437693E-02 2.720969903E-02 2.124663610E-02 1.747452352E-02 1.551318227E-02 1.551318227E-02 1.747452352E-02 2.124663610E-02 2.720969903E-02 3.606437693E-02 4.682226974E-02 5.516972298E-02 5.656045169E-02 5.214472107E-02 4.784210774E-02 4.784210774E-02 5.255675221E-02 5.453077084E-02 4.933561120E-02 3.895940798E-02 2.867209778E-02 2.126598267E-02 1.657449096E-02 1.383109198E-02 1.288608376E-02 1.383109198E-02 1.657449096E-02 2.126598267E-02 2.867209778E-02 3.895940798E-02 4.933561120E-02 5.453077084E-02 5.255675221E-02 4.784210774E-02 4.569473435E-02 6.266178671E-02 5.364496498E-02 4.171990996E-02 2.985229337E-02 2.061001057E-02 1.451184462E-02 1.077218767E-02 8.658592227E-03 7.952860561E-03 8.658592227E-03 1.077218767E-02 1.451184462E-02 2.061001057E-02 2.985229337E-02 4.171990996E-02 5.364496498E-02 6.266178671E-02 6.770809631E-02 6.927093266E-02 6.770809631E-02 5.364496498E-02 4.265382842E-02 3.110697941E-02 2.147399717E-02 1.474888568E-02 1.049724621E-02 7.951325906E-03 6.712334079E-03 6.712334079E-03 7.951325906E-03 1.049724621E-02 1.474888568E-02 2.147399717E-02 3.110697941E-02 4.265382842E-02 5.364496498E-02 6.171115911E-02 6.581693895E-02 6.581693895E-02 6.171115911E-02 4.171990996E-02 3.110697941E-02 2.180930606E-02 1.494232783E-02 1.039630969E-02 7.550049034E-03 5.941353161E-03 5.411270826E-03 5.941353161E-03 7.550049034E-03 1.039630969E-02 1.494232783E-02 2.180930606E-02 3.110697941E-02 4.171990996E-02 5.147916724E-02 5.822335543E-02 6.061215074E-02 5.822335543E-02 5.147916724E-02 2.985229337E-02 2.147399717E-02 1.494232783E-02 1.038017035E-02 7.383988671E-03 5.547368476E-03 4.660585656E-03 4.660585656E-03 5.547368476E-03 7.383988671E-03 1.038017035E-02 1.494232783E-02 2.147399717E-02 2.985229337E-02 3.895940798E-02 4.682226974E-02 5.138874082E-02 5.138874082E-02 4.682226974E-02 3.895940798E-02 2.061001057E-02 1.474888568E-02 1.039630969E-02 7.383988671E-03 5.430702951E-03 4.331437232E-03 3.976458890E-03 4.331437232E-03 5.430702951E-03 7.383988671E-03 1.039630969E-02 1.474888568E-02 2.061001057E-02 2.764821140E-02 3.472679295E-02 4.008906944E-02 4.209909364E-02 4.008906944E-02 3.472679295E-02 2.764821140E-02 1.451184462E-02 1.049724621E-02 7.550049034E-03 5.547368476E-03 4.331437232E-03 3.765600563E-03 3.765600563E-03 4.331437232E-03 5.547368476E-03 7.550049034E-03 1.049724621E-02 1.451184462E-02 1.952228489E-02 2.500684413E-02 2.987840680E-02 3.278911854E-02 3.278911854E-02 2.987840680E-02 2.500684413E-02 1.952228489E-02 1.077218767E-02 7.951325906E-03 5.941353161E-03 4.660585656E-03 3.976458890E-03 3.765600563E-03 3.976458890E-03 4.660585656E-03 5.941353161E-03 7.951325906E-03 1.077218767E-02 1.436451234E-02 1.845276082E-02 2.241647191E-02 2.536114332E-02 2.645641552E-02 2.536114332E-02 2.241647191E-02 1.845276082E-02 1.436451234E-02 8.658592227E-03 6.712334079E-03 5.411270826E-03 4.660585656E-03 4.331437232E-03 4.331437232E-03 4.660585656E-03 5.411270826E-03 6.712334079E-03 8.658592227E-03 1.124833808E-02 1.431674480E-02 1.747452352E-02 2.013023111E-02 2.165967377E-02 2.165967377E-02 2.013023111E-02 1.747452352E-02 1.431674480E-02 1.124833808E-02 7.952860561E-03 6.712334079E-03 5.941353161E-03 5.547368476E-03 5.430702951E-03 5.547368476E-03 5.941353161E-03 6.712334079E-03 7.952860561E-03 9.700541389E-03 1.189440198E-02 1.431674480E-02 1.657449096E-02 1.819032170E-02 1.877770461E-02 1.819032170E-02 1.657449096E-02 1.431674480E-02 1.189440198E-02 9.700541389E-03 8.658592227E-03 7.951325906E-03 7.550049034E-03 7.383988671E-03 7.383988671E-03 7.550049034E-03 7.951325906E-03 8.658592227E-03 9.700541389E-03 1.106573421E-02 1.268311583E-02 1.436451234E-02 1.579258471E-02 1.661918251E-02 1.661918251E-02 1.579258471E-02 1.436451234E-02 1.268311583E-02 1.106573421E-02 9.700541389E-03 1.077218767E-02 1.049724621E-02 1.039630969E-02 1.038017035E-02 1.039630969E-02 1.049724621E-02 1.077218767E-02 1.124833808E-02 1.189440198E-02 1.268311583E-02 1.358957044E-02 1.451184462E-02 1.523247728E-02 1.550863427E-02 1.523247728E-02 1.451184462E-02 1.358957044E-02 1.268311583E-02 1.189440198E-02 1.124833808E-02 1.451184462E-02 1.474888568E-02 1.494232783E-02 1.494232783E-02 1.474888568E-02 1.451184462E-02 1.436451234E-02 1.431674480E-02 1.431674480E-02 1.436451234E-02 1.451184462E-02 1.474888568E-02 1.494232783E-02 1.494232783E-02 1.474888568E-02 1.451184462E-02 1.436451234E-02 1.431674480E-02 1.431674480E-02 1.436451234E-02 2.061001057E-02 2.147399717E-02 2.180930606E-02 2.147399717E-02 2.061001057E-02 1.952228489E-02 1.845276082E-02 1.747452352E-02 1.657449096E-02 1.579258471E-02 1.523247728E-02 1.494232783E-02 1.486265093E-02 1.494232783E-02 1.523247728E-02 1.579258471E-02 1.657449096E-02 1.747452352E-02 1.845276082E-02 1.952228489E-02 2.985229337E-02 3.110697941E-02 3.110697941E-02 2.985229337E-02 2.764821140E-02 2.500684413E-02 2.241647191E-02 2.013023111E-02 1.819032170E-02 1.661918251E-02 1.550863427E-02 1.494232783E-02 1.494232783E-02 1.550863427E-02 1.661918251E-02 1.819032170E-02 2.013023111E-02 2.241647191E-02 2.500684413E-02 2.764821140E-02 4.171990996E-02 4.265382842E-02 4.171990996E-02 3.895940798E-02 3.472679295E-02 2.987840680E-02 2.536114332E-02 2.165967377E-02 1.877770461E-02 1.661918251E-02 1.523247728E-02 1.474888568E-02 1.523247728E-02 1.661918251E-02 1.877770461E-02 2.165967377E-02 2.536114332E-02 2.987840680E-02 3.472679295E-02 3.895940798E-02 5.364496498E-02 5.364496498E-02 5.147916724E-02 4.682226974E-02 4.008906944E-02 3.278911854E-02 2.645641552E-02 2.165967377E-02 1.819032170E-02 1.579258471E-02 1.451184462E-02 1.451184462E-02 1.579258471E-02 1.819032170E-02 2.165967377E-02 2.645641552E-02 3.278911854E-02 4.008906944E-02 4.682226974E-02 5.147916724E-02 6.266178671E-02 6.171115911E-02 5.822335543E-02 5.138874082E-02 4.209909364E-02 3.278911854E-02 2.536114332E-02 2.013023111E-02 1.657449096E-02 1.436451234E-02 1.358957044E-02 1.436451234E-02 1.657449096E-02 2.013023111E-02 2.536114332E-02 3.278911854E-02 4.209909364E-02 5.138874082E-02 5.822335543E-02 6.171115911E-02 6.770809631E-02 6.581693895E-02 6.061215074E-02 5.138874082E-02 4.008906944E-02 2.987840680E-02 2.241647191E-02 1.747452352E-02 1.431674480E-02 1.268311583E-02 1.268311583E-02 1.431674480E-02 1.747452352E-02 2.241647191E-02 2.987840680E-02 4.008906944E-02 5.138874082E-02 6.061215074E-02 6.581693895E-02 6.770809631E-02 6.927093266E-02 6.581693895E-02 5.822335543E-02 4.682226974E-02 3.472679295E-02 2.500684413E-02 1.845276082E-02 1.431674480E-02 1.189440198E-02 1.106573421E-02 1.189440198E-02 1.431674480E-02 1.845276082E-02 2.500684413E-02 3.472679295E-02 4.682226974E-02 5.822335543E-02 6.581693895E-02 6.927093266E-02 7.014515822E-02 6.770809631E-02 6.171115911E-02 5.147916724E-02 3.895940798E-02 2.764821140E-02 1.952228489E-02 1.436451234E-02 1.124833808E-02 9.700541389E-03 9.700541389E-03 1.124833808E-02 1.436451234E-02 1.952228489E-02 2.764821140E-02 3.895940798E-02 5.147916724E-02 6.171115911E-02 6.770809631E-02 7.014515822E-02 7.014515822E-02 5.821451122E-02 4.431149165E-02 3.137722829E-02 2.134010225E-02 1.451184462E-02 1.021426587E-02 7.683626941E-03 6.489638821E-03 6.489638821E-03 7.683626941E-03 1.021426587E-02 1.451184462E-02 2.134010225E-02 3.137722829E-02 4.431149165E-02 5.821451122E-02 7.002972758E-02 7.681749385E-02 7.681749385E-02 7.002972758E-02 4.431149165E-02 3.237494300E-02 2.242274851E-02 1.523247728E-02 1.049724621E-02 7.570802779E-03 5.967458799E-03 5.453593221E-03 5.967458799E-03 7.570802779E-03 1.049724621E-02 1.523247728E-02 2.242274851E-02 3.237494300E-02 4.431149165E-02 5.607980099E-02 6.479100302E-02 6.801025510E-02 6.479100302E-02 5.607980099E-02 3.137722829E-02 2.242274851E-02 1.550863427E-02 1.068863898E-02 7.550049034E-03 5.675050138E-03 4.797933198E-03 4.797933198E-03 5.675050138E-03 7.550049034E-03 1.068863898E-02 1.550863427E-02 2.242274851E-02 3.137722829E-02 4.131333285E-02 5.011378756E-02 5.533215374E-02 5.533215374E-02 5.011378756E-02 4.131333285E-02 2.134010225E-02 1.523247728E-02 1.068863898E-02 7.552822020E-03 5.547368476E-03 4.443175500E-03 4.092615382E-03 4.443175500E-03 5.547368476E-03 7.552822020E-03 1.068863898E-02 1.523247728E-02 2.134010225E-02 2.867209778E-02 3.606437693E-02 4.168401732E-02 4.379559116E-02 4.168401732E-02 3.606437693E-02 2.867209778E-02 1.451184462E-02 1.049724621E-02 7.550049034E-03 5.547368476E-03 4.331437232E-03 3.765600563E-03 3.765600563E-03 4.331437232E-03 5.547368476E-03 7.550049034E-03 1.049724621E-02 1.451184462E-02 1.952228489E-02 2.500684413E-02 2.987840680E-02 3.278911854E-02 3.278911854E-02 2.987840680E-02 2.500684413E-02 1.952228489E-02 1.021426587E-02 7.570802779E-03 5.675050138E-03 4.443175500E-03 3.765600563E-03 3.551778852E-03 3.765600563E-03 4.443175500E-03 5.675050138E-03 7.570802779E-03 1.021426587E-02 1.358957044E-02 1.745741185E-02 2.123694757E-02 2.406334989E-02 2.511858521E-02 2.406334989E-02 2.123694757E-02 1.745741185E-02 1.358957044E-02 7.683626941E-03 5.967458799E-03 4.797933198E-03 4.092615382E-03 3.765600563E-03 3.765600563E-03 4.092615382E-03 4.797933198E-03 5.967458799E-03 7.683626941E-03 9.963404014E-03 1.268311583E-02 1.551318227E-02 1.792336104E-02 1.932577122E-02 1.932577122E-02 1.792336104E-02 1.551318227E-02 1.268311583E-02 9.963404014E-03 6.489638821E-03 5.453593221E-03 4.797933198E-03 4.443175500E-03 4.331437232E-03 4.443175500E-03 4.797933198E-03 5.453593221E-03 6.489638821E-03 7.959586410E-03 9.824001300E-03 1.189440198E-02 1.383109198E-02 1.522310274E-02 1.573095187E-02 1.522310274E-02 1.383109198E-02 1.189440198E-02 9.824001300E-03 7.959586410E-03 6.489638821E-03 5.967458799E-03 5.675050138E-03 5.547368476E-03 5.547368476E-03 5.675050138E-03 5.967458799E-03 6.489638821E-03 7.307921858E-03 8.444460834E-03 9.824001300E-03 1.124833808E-02 1.243462807E-02 1.310977994E-02 1.310977994E-02 1.243462807E-02 1.124833808E-02 9.824001300E-03 8.444460834E-03 7.307921858E-03 7.683626941E-03 7.570802779E-03 7.550049034E-03 7.552822020E-03 7.550049034E-03 7.570802779E-03 7.683626941E-03 7.959586410E-03 8.444460834E-03 9.136810816E-03 9.963404014E-03 1.077218767E-02 1.136829684E-02 1.158807796E-02 1.136829684E-02 1.077218767E-02 9.963404014E-03 9.136810816E-03 8.444460834E-03 7.959586410E-03 1.021426587E-02 1.049724621E-02 1.068863898E-02 1.068863898E-02 1.049724621E-02 1.021426587E-02 9.963404014E-03 9.824001300E-03 9.824001300E-03 9.963404014E-03 1.021426587E-02 1.049724621E-02 1.068863898E-02 1.068863898E-02 1.049724621E-02 1.021426587E-02 9.963404014E-03 9.824001300E-03 9.824001300E-03 9.963404014E-03 1.451184462E-02 1.523247728E-02 1.550863427E-02 1.523247728E-02 1.451184462E-02 1.358957044E-02 1.268311583E-02 1.189440198E-02 1.124833808E-02 1.077218767E-02 1.049724621E-02 1.039630969E-02 1.038017035E-02 1.039630969E-02 1.049724621E-02 1.077218767E-02 1.124833808E-02 1.189440198E-02 1.268311583E-02 1.358957044E-02 2.134010225E-02 2.242274851E-02 2.242274851E-02 2.134010225E-02 1.952228489E-02 1.745741185E-02 1.551318227E-02 1.383109198E-02 1.243462807E-02 1.136829684E-02 1.068863898E-02 1.038017035E-02 1.038017035E-02 1.068863898E-02 1.136829684E-02 1.243462807E-02 1.383109198E-02 1.551318227E-02 1.745741185E-02 1.952228489E-02 3.137722829E-02 3.237494300E-02 3.137722829E-02 2.867209778E-02 2.500684413E-02 2.123694757E-02 1.792336104E-02 1.522310274E-02 1.310977994E-02 1.158807796E-02 1.068863898E-02 1.039630969E-02 1.068863898E-02 1.158807796E-02 1.310977994E-02 1.522310274E-02 1.792336104E-02 2.123694757E-02 2.500684413E-02 2.867209778E-02 4.431149165E-02 4.431149165E-02 4.131333285E-02 3.606437693E-02 2.987840680E-02 2.406334989E-02 1.932577122E-02 1.573095187E-02 1.310977994E-02 1.136829684E-02 1.049724621E-02 1.049724621E-02 1.136829684E-02 1.310977994E-02 1.573095187E-02 1.932577122E-02 2.406334989E-02 2.987840680E-02 3.606437693E-02 4.131333285E-02 5.821451122E-02 5.607980099E-02 5.011378756E-02 4.168401732E-02 3.278911854E-02 2.511858521E-02 1.932577122E-02 1.522310274E-02 1.243462807E-02 1.077218767E-02 1.021426587E-02 1.077218767E-02 1.243462807E-02 1.522310274E-02 1.932577122E-02 2.511858521E-02 3.278911854E-02 4.168401732E-02 5.011378756E-02 5.607980099E-02 7.002972758E-02 6.479100302E-02 5.533215374E-02 4.379559116E-02 3.278911854E-02 2.406334989E-02 1.792336104E-02 1.383109198E-02 1.124833808E-02 9.963404014E-03 9.963404014E-03 1.124833808E-02 1.383109198E-02 1.792336104E-02 2.406334989E-02 3.278911854E-02 4.379559116E-02 5.533215374E-02 6.479100302E-02 7.002972758E-02 7.681749385E-02 6.801025510E-02 5.533215374E-02 4.168401732E-02 2.987840680E-02 2.123694757E-02 1.551318227E-02 1.189440198E-02 9.824001300E-03 9.136810816E-03 9.824001300E-03 1.189440198E-02 1.551318227E-02 2.123694757E-02 2.987840680E-02 4.168401732E-02 5.533215374E-02 6.801025510E-02 7.681749385E-02 7.994242118E-02 7.681749385E-02 6.479100302E-02 5.011378756E-02 3.606437693E-02 2.500684413E-02 1.745741185E-02 1.268311583E-02 9.824001300E-03 8.444460834E-03 8.444460834E-03 9.824001300E-03 1.268311583E-02 1.745741185E-02 2.500684413E-02 3.606437693E-02 5.011378756E-02 6.479100302E-02 7.681749385E-02 8.352153305E-02 8.352153305E-02 7.002972758E-02 5.607980099E-02 4.131333285E-02 2.867209778E-02 1.952228489E-02 1.358957044E-02 9.963404014E-03 7.959586410E-03 7.307921858E-03 7.959586410E-03 9.963404014E-03 1.358957044E-02 1.952228489E-02 2.867209778E-02 4.131333285E-02 5.607980099E-02 7.002972758E-02 7.994242118E-02 8.352153305E-02 7.994242118E-02 4.673760092E-02 3.378857385E-02 2.332662941E-02 1.579258471E-02 1.077218767E-02 7.683626941E-03 6.048711102E-03 5.543427348E-03 6.048711102E-03 7.683626941E-03 1.077218767E-02 1.579258471E-02 2.332662941E-02 3.378857385E-02 4.673760092E-02 6.015406312E-02 7.057114826E-02 7.453143011E-02 7.057114826E-02 6.015406312E-02 3.378857385E-02 2.408518946E-02 1.661918251E-02 1.136829684E-02 7.951325906E-03 5.967458799E-03 5.079743310E-03 5.079743310E-03 5.967458799E-03 7.951325906E-03 1.136829684E-02 1.661918251E-02 2.408518946E-02 3.378857385E-02 4.477814539E-02 5.478748589E-02 6.085965591E-02 6.085965591E-02 5.478748589E-02 4.477814539E-02 2.332662941E-02 1.661918251E-02 1.158807796E-02 8.113509916E-03 5.941353161E-03 4.797933198E-03 4.448997543E-03 4.797933198E-03 5.941353161E-03 8.113509916E-03 1.158807796E-02 1.661918251E-02 2.332662941E-02 3.136085494E-02 3.950667612E-02 4.575158679E-02 4.811166390E-02 4.575158679E-02 3.950667612E-02 3.136085494E-02 1.579258471E-02 1.136829684E-02 8.113509916E-03 5.935496502E-03 4.660585656E-03 4.092615382E-03 4.092615382E-03 4.660585656E-03 5.935496502E-03 8.113509916E-03 1.136829684E-02 1.579258471E-02 2.126598267E-02 2.720969903E-02 3.246239961E-02 3.559264206E-02 3.559264206E-02 3.246239961E-02 2.720969903E-02 2.126598267E-02 1.077218767E-02 7.951325906E-03 5.941353161E-03 4.660585656E-03 3.976458890E-03 3.765600563E-03 3.976458890E-03 4.660585656E-03 5.941353161E-03 7.951325906E-03 1.077218767E-02 1.436451234E-02 1.845276082E-02 2.241647191E-02 2.536114332E-02 2.645641552E-02 2.536114332E-02 2.241647191E-02 1.845276082E-02 1.436451234E-02 7.683626941E-03 5.967458799E-03 4.797933198E-03 4.092615382E-03 3.765600563E-03 3.765600563E-03 4.092615382E-03 4.797933198E-03 5.967458799E-03 7.683626941E-03 9.963404014E-03 1.268311583E-02 1.551318227E-02 1.792336104E-02 1.932577122E-02 1.932577122E-02 1.792336104E-02 1.551318227E-02 1.268311583E-02 9.963404014E-03 6.048711102E-03 5.079743310E-03 4.448997543E-03 4.092615382E-03 3.976458890E-03 4.092615382E-03 4.448997543E-03 5.079743310E-03 6.048711102E-03 7.409780059E-03 9.136810816E-03 1.106573421E-02 1.288608376E-02 1.420658738E-02 1.469125533E-02 1.420658738E-02 1.288608376E-02 1.106573421E-02 9.136810816E-03 7.409780059E-03 5.543427348E-03 5.079743310E-03 4.797933198E-03 4.660585656E-03 4.660585656E-03 4.797933198E-03 5.079743310E-03 5.543427348E-03 6.251391054E-03 7.237508836E-03 8.444460834E-03 9.700541389E-03 1.075514271E-02 1.135974513E-02 1.135974513E-02 1.075514271E-02 9.700541389E-03 8.444460834E-03 7.237508836E-03 6.251391054E-03 6.048711102E-03 5.967458799E-03 5.941353161E-03 5.935496502E-03 5.941353161E-03 5.967458799E-03 6.048711102E-03 6.251391054E-03 6.642996083E-03 7.237508836E-03 7.959586410E-03 8.658592227E-03 9.164110625E-03 9.348116428E-03 9.164110625E-03 8.658592227E-03 7.959586410E-03 7.237508836E-03 6.642996083E-03 6.251391054E-03 7.683626941E-03 7.951325906E-03 8.113509916E-03 8.113509916E-03 7.951325906E-03 7.683626941E-03 7.409780059E-03 7.237508836E-03 7.237508836E-03 7.409780059E-03 7.683626941E-03 7.951325906E-03 8.113509916E-03 8.113509916E-03 7.951325906E-03 7.683626941E-03 7.409780059E-03 7.237508836E-03 7.237508836E-03 7.409780059E-03 1.077218767E-02 1.136829684E-02 1.158807796E-02 1.136829684E-02 1.077218767E-02 9.963404014E-03 9.136810816E-03 8.444460834E-03 7.959586410E-03 7.683626941E-03 7.570802779E-03 7.550049034E-03 7.552822020E-03 7.550049034E-03 7.570802779E-03 7.683626941E-03 7.959586410E-03 8.444460834E-03 9.136810816E-03 9.963404014E-03 1.579258471E-02 1.661918251E-02 1.661918251E-02 1.579258471E-02 1.436451234E-02 1.268311583E-02 1.106573421E-02 9.700541389E-03 8.658592227E-03 7.951325906E-03 7.550049034E-03 7.383988671E-03 7.383988671E-03 7.550049034E-03 7.951325906E-03 8.658592227E-03 9.700541389E-03 1.106573421E-02 1.268311583E-02 1.436451234E-02 2.332662941E-02 2.408518946E-02 2.332662941E-02 2.126598267E-02 1.845276082E-02 1.551318227E-02 1.288608376E-02 1.075514271E-02 9.164110625E-03 8.113509916E-03 7.552822020E-03 7.383988671E-03 7.552822020E-03 8.113509916E-03 9.164110625E-03 1.075514271E-02 1.288608376E-02 1.551318227E-02 1.845276082E-02 2.126598267E-02 3.378857385E-02 3.378857385E-02 3.136085494E-02 2.720969903E-02 2.241647191E-02 1.792336104E-02 1.420658738E-02 1.135974513E-02 9.348116428E-03 8.113509916E-03 7.550049034E-03 7.550049034E-03 8.113509916E-03 9.348116428E-03 1.135974513E-02 1.420658738E-02 1.792336104E-02 2.241647191E-02 2.720969903E-02 3.136085494E-02 4.673760092E-02 4.477814539E-02 3.950667612E-02 3.246239961E-02 2.536114332E-02 1.932577122E-02 1.469125533E-02 1.135974513E-02 9.164110625E-03 7.951325906E-03 7.570802779E-03 7.951325906E-03 9.164110625E-03 1.135974513E-02 1.469125533E-02 1.932577122E-02 2.536114332E-02 3.246239961E-02 3.950667612E-02 4.477814539E-02 6.015406312E-02 5.478748589E-02 4.575158679E-02 3.559264206E-02 2.645641552E-02 1.932577122E-02 1.420658738E-02 1.075514271E-02 8.658592227E-03 7.683626941E-03 7.683626941E-03 8.658592227E-03 1.075514271E-02 1.420658738E-02 1.932577122E-02 2.645641552E-02 3.559264206E-02 4.575158679E-02 5.478748589E-02 6.015406312E-02 7.057114826E-02 6.085965591E-02 4.811166390E-02 3.559264206E-02 2.536114332E-02 1.792336104E-02 1.288608376E-02 9.700541389E-03 7.959586410E-03 7.409780059E-03 7.959586410E-03 9.700541389E-03 1.288608376E-02 1.792336104E-02 2.536114332E-02 3.559264206E-02 4.811166390E-02 6.085965591E-02 7.057114826E-02 7.421707044E-02 7.453143011E-02 6.085965591E-02 4.575158679E-02 3.246239961E-02 2.241647191E-02 1.551318227E-02 1.106573421E-02 8.444460834E-03 7.237508836E-03 7.237508836E-03 8.444460834E-03 1.106573421E-02 1.551318227E-02 2.241647191E-02 3.246239961E-02 4.575158679E-02 6.085965591E-02 7.453143011E-02 8.275665460E-02 8.275665460E-02 7.057114826E-02 5.478748589E-02 3.950667612E-02 2.720969903E-02 1.845276082E-02 1.268311583E-02 9.136810816E-03 7.237508836E-03 6.642996083E-03 7.237508836E-03 9.136810816E-03 1.268311583E-02 1.845276082E-02 2.720969903E-02 3.950667612E-02 5.478748589E-02 7.057114826E-02 8.275665460E-02 8.737114027E-02 8.275665460E-02 6.015406312E-02 4.477814539E-02 3.136085494E-02 2.126598267E-02 1.436451234E-02 9.963404014E-03 7.409780059E-03 6.251391054E-03 6.251391054E-03 7.409780059E-03 9.963404014E-03 1.436451234E-02 2.126598267E-02 3.136085494E-02 4.477814539E-02 6.015406312E-02 7.421707044E-02 8.275665460E-02 8.275665460E-02 7.421707044E-02 3.679047261E-02 2.627730267E-02 1.819032170E-02 1.243462807E-02 8.658592227E-03 6.489638821E-03 5.543427348E-03 5.543427348E-03 6.489638821E-03 8.658592227E-03 1.243462807E-02 1.819032170E-02 2.627730267E-02 3.679047261E-02 4.886686103E-02 6.008009761E-02 6.698659653E-02 6.698659653E-02 6.008009761E-02 4.886686103E-02 2.627730267E-02 1.877770461E-02 1.310977994E-02 9.164110625E-03 6.712334079E-03 5.453593221E-03 5.079743310E-03 5.453593221E-03 6.712334079E-03 9.164110625E-03 1.310977994E-02 1.877770461E-02 2.627730267E-02 3.527757314E-02 4.449069286E-02 5.162980944E-02 5.434561968E-02 5.162980944E-02 4.449069286E-02 3.527757314E-02 1.819032170E-02 1.310977994E-02 9.348116428E-03 6.842158313E-03 5.411270826E-03 4.797933198E-03 4.797933198E-03 5.411270826E-03 6.842158313E-03 9.348116428E-03 1.310977994E-02 1.819032170E-02 2.443633085E-02 3.120787008E-02 3.720069702E-02 4.077833765E-02 4.077833765E-02 3.720069702E-02 3.120787008E-02 2.443633085E-02 1.243462807E-02 9.164110625E-03 6.842158313E-03 5.397490755E-03 4.660585656E-03 4.443175500E-03 4.660585656E-03 5.397490755E-03 6.842158313E-03 9.164110625E-03 1.243462807E-02 1.657449096E-02 2.124663610E-02 2.573981764E-02 2.905485662E-02 3.028273404E-02 2.905485662E-02 2.573981764E-02 2.124663610E-02 1.657449096E-02 8.658592227E-03 6.712334079E-03 5.411270826E-03 4.660585656E-03 4.331437232E-03 4.331437232E-03 4.660585656E-03 5.411270826E-03 6.712334079E-03 8.658592227E-03 1.124833808E-02 1.431674480E-02 1.747452352E-02 2.013023111E-02 2.165967377E-02 2.165967377E-02 2.013023111E-02 1.747452352E-02 1.431674480E-02 1.124833808E-02 6.489638821E-03 5.453593221E-03 4.797933198E-03 4.443175500E-03 4.331437232E-03 4.443175500E-03 4.797933198E-03 5.453593221E-03 6.489638821E-03 7.959586410E-03 9.824001300E-03 1.189440198E-02 1.383109198E-02 1.522310274E-02 1.573095187E-02 1.522310274E-02 1.383109198E-02 1.189440198E-02 9.824001300E-03 7.959586410E-03 5.543427348E-03 5.079743310E-03 4.797933198E-03 4.660585656E-03 4.660585656E-03 4.797933198E-03 5.079743310E-03 5.543427348E-03 6.251391054E-03 7.237508836E-03 8.444460834E-03 9.700541389E-03 1.075514271E-02 1.135974513E-02 1.135974513E-02 1.075514271E-02 9.700541389E-03 8.444460834E-03 7.237508836E-03 6.251391054E-03 5.543427348E-03 5.453593221E-03 5.411270826E-03 5.397490755E-03 5.411270826E-03 5.453593221E-03 5.543427348E-03 5.735897081E-03 6.096559351E-03 6.642996083E-03 7.307921858E-03 7.952860561E-03 8.420372603E-03 8.590919322E-03 8.420372603E-03 7.952860561E-03 7.307921858E-03 6.642996083E-03 6.096559351E-03 5.735897081E-03 6.489638821E-03 6.712334079E-03 6.842158313E-03 6.842158313E-03 6.712334079E-03 6.489638821E-03 6.251391054E-03 6.096559351E-03 6.096559351E-03 6.251391054E-03 6.489638821E-03 6.712334079E-03 6.842158313E-03 6.842158313E-03 6.712334079E-03 6.489638821E-03 6.251391054E-03 6.096559351E-03 6.096559351E-03 6.251391054E-03 8.658592227E-03 9.164110625E-03 9.348116428E-03 9.164110625E-03 8.658592227E-03 7.959586410E-03 7.237508836E-03 6.642996083E-03 6.251391054E-03 6.048711102E-03 5.967458799E-03 5.941353161E-03 5.935496502E-03 5.941353161E-03 5.967458799E-03 6.048711102E-03 6.251391054E-03 6.642996083E-03 7.237508836E-03 7.959586410E-03 1.243462807E-02 1.310977994E-02 1.310977994E-02 1.243462807E-02 1.124833808E-02 9.824001300E-03 8.444460834E-03 7.307921858E-03 6.489638821E-03 5.967458799E-03 5.675050138E-03 5.547368476E-03 5.547368476E-03 5.675050138E-03 5.967458799E-03 6.489638821E-03 7.307921858E-03 8.444460834E-03 9.824001300E-03 1.124833808E-02 1.819032170E-02 1.877770461E-02 1.819032170E-02 1.657449096E-02 1.431674480E-02 1.189440198E-02 9.700541389E-03 7.952860561E-03 6.712334079E-03 5.941353161E-03 5.547368476E-03 5.430702951E-03 5.547368476E-03 5.941353161E-03 6.712334079E-03 7.952860561E-03 9.700541389E-03 1.189440198E-02 1.431674480E-02 1.657449096E-02 2.627730267E-02 2.627730267E-02 2.443633085E-02 2.124663610E-02 1.747452352E-02 1.383109198E-02 1.075514271E-02 8.420372603E-03 6.842158313E-03 5.935496502E-03 5.547368476E-03 5.547368476E-03 5.935496502E-03 6.842158313E-03 8.420372603E-03 1.075514271E-02 1.383109198E-02 1.747452352E-02 2.124663610E-02 2.443633085E-02 3.679047261E-02 3.527757314E-02 3.120787008E-02 2.573981764E-02 2.013023111E-02 1.522310274E-02 1.135974513E-02 8.590919322E-03 6.842158313E-03 5.941353161E-03 5.675050138E-03 5.941353161E-03 6.842158313E-03 8.590919322E-03 1.135974513E-02 1.522310274E-02 2.013023111E-02 2.573981764E-02 3.120787008E-02 3.527757314E-02 4.886686103E-02 4.449069286E-02 3.720069702E-02 2.905485662E-02 2.165967377E-02 1.573095187E-02 1.135974513E-02 8.420372603E-03 6.712334079E-03 5.967458799E-03 5.967458799E-03 6.712334079E-03 8.420372603E-03 1.135974513E-02 1.573095187E-02 2.165967377E-02 2.905485662E-02 3.720069702E-02 4.449069286E-02 4.886686103E-02 6.008009761E-02 5.162980944E-02 4.077833765E-02 3.028273404E-02 2.165967377E-02 1.522310274E-02 1.075514271E-02 7.952860561E-03 6.489638821E-03 6.048711102E-03 6.489638821E-03 7.952860561E-03 1.075514271E-02 1.522310274E-02 2.165967377E-02 3.028273404E-02 4.077833765E-02 5.162980944E-02 6.008009761E-02 6.330005647E-02 6.698659653E-02 5.434561968E-02 4.077833765E-02 2.905485662E-02 2.013023111E-02 1.383109198E-02 9.700541389E-03 7.307921858E-03 6.251391054E-03 6.251391054E-03 7.307921858E-03 9.700541389E-03 1.383109198E-02 2.013023111E-02 2.905485662E-02 4.077833765E-02 5.434561968E-02 6.698659653E-02 7.477968694E-02 7.477968694E-02 6.698659653E-02 5.162980944E-02 3.720069702E-02 2.573981764E-02 1.747452352E-02 1.189440198E-02 8.444460834E-03 6.642996083E-03 6.096559351E-03 6.642996083E-03 8.444460834E-03 1.189440198E-02 1.747452352E-02 2.573981764E-02 3.720069702E-02 5.162980944E-02 6.698659653E-02 7.920590483E-02 8.391674481E-02 7.920590483E-02 6.008009761E-02 4.449069286E-02 3.120787008E-02 2.124663610E-02 1.431674480E-02 9.824001300E-03 7.237508836E-03 6.096559351E-03 6.096559351E-03 7.237508836E-03 9.824001300E-03 1.431674480E-02 2.124663610E-02 3.120787008E-02 4.449069286E-02 6.008009761E-02 7.477968694E-02 8.391674481E-02 8.391674481E-02 7.477968694E-02 4.886686103E-02 3.527757314E-02 2.443633085E-02 1.657449096E-02 1.124833808E-02 7.959586410E-03 6.251391054E-03 5.735897081E-03 6.251391054E-03 7.959586410E-03 1.124833808E-02 1.657449096E-02 2.443633085E-02 3.527757314E-02 4.886686103E-02 6.330005647E-02 7.477968694E-02 7.920590483E-02 7.477968694E-02 6.330005647E-02 3.028273404E-02 2.165967377E-02 1.522310274E-02 1.075514271E-02 7.952860561E-03 6.489638821E-03 6.048711102E-03 6.489638821E-03 7.952860561E-03 1.075514271E-02 1.522310274E-02 2.165967377E-02 3.028273404E-02 4.077833765E-02 5.162980944E-02 6.008009761E-02 6.330005647E-02 6.008009761E-02 5.162980944E-02 4.077833765E-02 2.165967377E-02 1.573095187E-02 1.135974513E-02 8.420372603E-03 6.712334079E-03 5.967458799E-03 5.967458799E-03 6.712334079E-03 8.420372603E-03 1.135974513E-02 1.573095187E-02 2.165967377E-02 2.905485662E-02 3.720069702E-02 4.449069286E-02 4.886686103E-02 4.886686103E-02 4.449069286E-02 3.720069702E-02 2.905485662E-02 1.522310274E-02 1.135974513E-02 8.590919322E-03 6.842158313E-03 5.941353161E-03 5.675050138E-03 5.941353161E-03 6.842158313E-03 8.590919322E-03 1.135974513E-02 1.522310274E-02 2.013023111E-02 2.573981764E-02 3.120787008E-02 3.527757314E-02 3.679047261E-02 3.527757314E-02 3.120787008E-02 2.573981764E-02 2.013023111E-02 1.075514271E-02 8.420372603E-03 6.842158313E-03 5.935496502E-03 5.547368476E-03 5.547368476E-03 5.935496502E-03 6.842158313E-03 8.420372603E-03 1.075514271E-02 1.383109198E-02 1.747452352E-02 2.124663610E-02 2.443633085E-02 2.627730267E-02 2.627730267E-02 2.443633085E-02 2.124663610E-02 1.747452352E-02 1.383109198E-02 7.952860561E-03 6.712334079E-03 5.941353161E-03 5.547368476E-03 5.430702951E-03 5.547368476E-03 5.941353161E-03 6.712334079E-03 7.952860561E-03 9.700541389E-03 1.189440198E-02 1.431674480E-02 1.657449096E-02 1.819032170E-02 1.877770461E-02 1.819032170E-02 1.657449096E-02 1.431674480E-02 1.189440198E-02 9.700541389E-03 6.489638821E-03 5.967458799E-03 5.675050138E-03 5.547368476E-03 5.547368476E-03 5.675050138E-03 5.967458799E-03 6.489638821E-03 7.307921858E-03 8.444460834E-03 9.824001300E-03 1.124833808E-02 1.243462807E-02 1.310977994E-02 1.310977994E-02 1.243462807E-02 1.124833808E-02 9.824001300E-03 8.444460834E-03 7.307921858E-03 6.048711102E-03 5.967458799E-03 5.941353161E-03 5.935496502E-03 5.941353161E-03 5.967458799E-03 6.048711102E-03 6.251391054E-03 6.642996083E-03 7.237508836E-03 7.959586410E-03 8.658592227E-03 9.164110625E-03 9.348116428E-03 9.164110625E-03 8.658592227E-03 7.959586410E-03 7.237508836E-03 6.642996083E-03 6.251391054E-03 6.489638821E-03 6.712334079E-03 6.842158313E-03 6.842158313E-03 6.712334079E-03 6.489638821E-03 6.251391054E-03 6.096559351E-03 6.096559351E-03 6.251391054E-03 6.489638821E-03 6.712334079E-03 6.842158313E-03 6.842158313E-03 6.712334079E-03 6.489638821E-03 6.251391054E-03 6.096559351E-03 6.096559351E-03 6.251391054E-03 7.952860561E-03 8.420372603E-03 8.590919322E-03 8.420372603E-03 7.952860561E-03 7.307921858E-03 6.642996083E-03 6.096559351E-03 5.735897081E-03 5.543427348E-03 5.453593221E-03 5.411270826E-03 5.397490755E-03 5.411270826E-03 5.453593221E-03 5.543427348E-03 5.735897081E-03 6.096559351E-03 6.642996083E-03 7.307921858E-03 1.075514271E-02 1.135974513E-02 1.135974513E-02 1.075514271E-02 9.700541389E-03 8.444460834E-03 7.237508836E-03 6.251391054E-03 5.543427348E-03 5.079743310E-03 4.797933198E-03 4.660585656E-03 4.660585656E-03 4.797933198E-03 5.079743310E-03 5.543427348E-03 6.251391054E-03 7.237508836E-03 8.444460834E-03 9.700541389E-03 1.522310274E-02 1.573095187E-02 1.522310274E-02 1.383109198E-02 1.189440198E-02 9.824001300E-03 7.959586410E-03 6.489638821E-03 5.453593221E-03 4.797933198E-03 4.443175500E-03 4.331437232E-03 4.443175500E-03 4.797933198E-03 5.453593221E-03 6.489638821E-03 7.959586410E-03 9.824001300E-03 1.189440198E-02 1.383109198E-02 2.165967377E-02 2.165967377E-02 2.013023111E-02 1.747452352E-02 1.431674480E-02 1.124833808E-02 8.658592227E-03 6.712334079E-03 5.411270826E-03 4.660585656E-03 4.331437232E-03 4.331437232E-03 4.660585656E-03 5.411270826E-03 6.712334079E-03 8.658592227E-03 1.124833808E-02 1.431674480E-02 1.747452352E-02 2.013023111E-02 3.028273404E-02 2.905485662E-02 2.573981764E-02 2.124663610E-02 1.657449096E-02 1.243462807E-02 9.164110625E-03 6.842158313E-03 5.397490755E-03 4.660585656E-03 4.443175500E-03 4.660585656E-03 5.397490755E-03 6.842158313E-03 9.164110625E-03 1.243462807E-02 1.657449096E-02 2.124663610E-02 2.573981764E-02 2.905485662E-02 4.077833765E-02 3.720069702E-02 3.120787008E-02 2.443633085E-02 1.819032170E-02 1.310977994E-02 9.348116428E-03 6.842158313E-03 5.411270826E-03 4.797933198E-03 4.797933198E-03 5.411270826E-03 6.842158313E-03 9.348116428E-03 1.310977994E-02 1.819032170E-02 2.443633085E-02 3.120787008E-02 3.720069702E-02 4.077833765E-02 5.162980944E-02 4.449069286E-02 3.527757314E-02 2.627730267E-02 1.877770461E-02 1.310977994E-02 9.164110625E-03 6.712334079E-03 5.453593221E-03 5.079743310E-03 5.453593221E-03 6.712334079E-03 9.164110625E-03 1.310977994E-02 1.877770461E-02 2.627730267E-02 3.527757314E-02 4.449069286E-02 5.162980944E-02 5.434561968E-02 6.008009761E-02 4.886686103E-02 3.679047261E-02 2.627730267E-02 1.819032170E-02 1.243462807E-02 8.658592227E-03 6.489638821E-03 5.543427348E-03 5.543427348E-03 6.489638821E-03 8.658592227E-03 1.243462807E-02 1.819032170E-02 2.627730267E-02 3.679047261E-02 4.886686103E-02 6.008009761E-02 6.698659653E-02 6.698659653E-02 6.330005647E-02 4.886686103E-02 3.527757314E-02 2.443633085E-02 1.657449096E-02 1.124833808E-02 7.959586410E-03 6.251391054E-03 5.735897081E-03 6.251391054E-03 7.959586410E-03 1.124833808E-02 1.657449096E-02 2.443633085E-02 3.527757314E-02 4.886686103E-02 6.330005647E-02 7.477968694E-02 7.920590483E-02 7.477968694E-02 6.008009761E-02 4.449069286E-02 3.120787008E-02 2.124663610E-02 1.431674480E-02 9.824001300E-03 7.237508836E-03 6.096559351E-03 6.096559351E-03 7.237508836E-03 9.824001300E-03 1.431674480E-02 2.124663610E-02 3.120787008E-02 4.449069286E-02 6.008009761E-02 7.477968694E-02 8.391674481E-02 8.391674481E-02 7.477968694E-02 5.162980944E-02 3.720069702E-02 2.573981764E-02 1.747452352E-02 1.189440198E-02 8.444460834E-03 6.642996083E-03 6.096559351E-03 6.642996083E-03 8.444460834E-03 1.189440198E-02 1.747452352E-02 2.573981764E-02 3.720069702E-02 5.162980944E-02 6.698659653E-02 7.920590483E-02 8.391674481E-02 7.920590483E-02 6.698659653E-02 4.077833765E-02 2.905485662E-02 2.013023111E-02 1.383109198E-02 9.700541389E-03 7.307921858E-03 6.251391054E-03 6.251391054E-03 7.307921858E-03 9.700541389E-03 1.383109198E-02 2.013023111E-02 2.905485662E-02 4.077833765E-02 5.434561968E-02 6.698659653E-02 7.477968694E-02 7.477968694E-02 6.698659653E-02 5.434561968E-02 2.645641552E-02 1.932577122E-02 1.420658738E-02 1.075514271E-02 8.658592227E-03 7.683626941E-03 7.683626941E-03 8.658592227E-03 1.075514271E-02 1.420658738E-02 1.932577122E-02 2.645641552E-02 3.559264206E-02 4.575158679E-02 5.478748589E-02 6.015406312E-02 6.015406312E-02 5.478748589E-02 4.575158679E-02 3.559264206E-02 1.932577122E-02 1.469125533E-02 1.135974513E-02 9.164110625E-03 7.951325906E-03 7.570802779E-03 7.951325906E-03 9.164110625E-03 1.135974513E-02 1.469125533E-02 1.932577122E-02 2.536114332E-02 3.246239961E-02 3.950667612E-02 4.477814539E-02 4.673760092E-02 4.477814539E-02 3.950667612E-02 3.246239961E-02 2.536114332E-02 1.420658738E-02 1.135974513E-02 9.348116428E-03 8.113509916E-03 7.550049034E-03 7.550049034E-03 8.113509916E-03 9.348116428E-03 1.135974513E-02 1.420658738E-02 1.792336104E-02 2.241647191E-02 2.720969903E-02 3.136085494E-02 3.378857385E-02 3.378857385E-02 3.136085494E-02 2.720969903E-02 2.241647191E-02 1.792336104E-02 1.075514271E-02 9.164110625E-03 8.113509916E-03 7.552822020E-03 7.383988671E-03 7.552822020E-03 8.113509916E-03 9.164110625E-03 1.075514271E-02 1.288608376E-02 1.551318227E-02 1.845276082E-02 2.126598267E-02 2.332662941E-02 2.408518946E-02 2.332662941E-02 2.126598267E-02 1.845276082E-02 1.551318227E-02 1.288608376E-02 8.658592227E-03 7.951325906E-03 7.550049034E-03 7.383988671E-03 7.383988671E-03 7.550049034E-03 7.951325906E-03 8.658592227E-03 9.700541389E-03 1.106573421E-02 1.268311583E-02 1.436451234E-02 1.579258471E-02 1.661918251E-02 1.661918251E-02 1.579258471E-02 1.436451234E-02 1.268311583E-02 1.106573421E-02 9.700541389E-03 7.683626941E-03 7.570802779E-03 7.550049034E-03 7.552822020E-03 7.550049034E-03 7.570802779E-03 7.683626941E-03 7.959586410E-03 8.444460834E-03 9.136810816E-03 9.963404014E-03 1.077218767E-02 1.136829684E-02 1.158807796E-02 1.136829684E-02 1.077218767E-02 9.963404014E-03 9.136810816E-03 8.444460834E-03 7.959586410E-03 7.683626941E-03 7.951325906E-03 8.113509916E-03 8.113509916E-03 7.951325906E-03 7.683626941E-03 7.409780059E-03 7.237508836E-03 7.237508836E-03 7.409780059E-03 7.683626941E-03 7.951325906E-03 8.113509916E-03 8.113509916E-03 7.951325906E-03 7.683626941E-03 7.409780059E-03 7.237508836E-03 7.237508836E-03 7.409780059E-03 8.658592227E-03 9.164110625E-03 9.348116428E-03 9.164110625E-03 8.658592227E-03 7.959586410E-03 7.237508836E-03 6.642996083E-03 6.251391054E-03 6.048711102E-03 5.967458799E-03 5.941353161E-03 5.935496502E-03 5.941353161E-03 5.967458799E-03 6.048711102E-03 6.251391054E-03 6.642996083E-03 7.237508836E-03 7.959586410E-03 1.075514271E-02 1.135974513E-02 1.135974513E-02 1.075514271E-02 9.700541389E-03 8.444460834E-03 7.237508836E-03 6.251391054E-03 5.543427348E-03 5.079743310E-03 4.797933198E-03 4.660585656E-03 4.660585656E-03 4.797933198E-03 5.079743310E-03 5.543427348E-03 6.251391054E-03 7.237508836E-03 8.444460834E-03 9.700541389E-03 1.420658738E-02 1.469125533E-02 1.420658738E-02 1.288608376E-02 1.106573421E-02 9.136810816E-03 7.409780059E-03 6.048711102E-03 5.079743310E-03 4.448997543E-03 4.092615382E-03 3.976458890E-03 4.092615382E-03 4.448997543E-03 5.079743310E-03 6.048711102E-03 7.409780059E-03 9.136810816E-03 1.106573421E-02 1.288608376E-02 1.932577122E-02 1.932577122E-02 1.792336104E-02 1.551318227E-02 1.268311583E-02 9.963404014E-03 7.683626941E-03 5.967458799E-03 4.797933198E-03 4.092615382E-03 3.765600563E-03 3.765600563E-03 4.092615382E-03 4.797933198E-03 5.967458799E-03 7.683626941E-03 9.963404014E-03 1.268311583E-02 1.551318227E-02 1.792336104E-02 2.645641552E-02 2.536114332E-02 2.241647191E-02 1.845276082E-02 1.436451234E-02 1.077218767E-02 7.951325906E-03 5.941353161E-03 4.660585656E-03 3.976458890E-03 3.765600563E-03 3.976458890E-03 4.660585656E-03 5.941353161E-03 7.951325906E-03 1.077218767E-02 1.436451234E-02 1.845276082E-02 2.241647191E-02 2.536114332E-02 3.559264206E-02 3.246239961E-02 2.720969903E-02 2.126598267E-02 1.579258471E-02 1.136829684E-02 8.113509916E-03 5.935496502E-03 4.660585656E-03 4.092615382E-03 4.092615382E-03 4.660585656E-03 5.935496502E-03 8.113509916E-03 1.136829684E-02 1.579258471E-02 2.126598267E-02 2.720969903E-02 3.246239961E-02 3.559264206E-02 4.575158679E-02 3.950667612E-02 3.136085494E-02 2.332662941E-02 1.661918251E-02 1.158807796E-02 8.113509916E-03 5.941353161E-03 4.797933198E-03 4.448997543E-03 4.797933198E-03 5.941353161E-03 8.113509916E-03 1.158807796E-02 1.661918251E-02 2.332662941E-02 3.136085494E-02 3.950667612E-02 4.575158679E-02 4.811166390E-02 5.478748589E-02 4.477814539E-02 3.378857385E-02 2.408518946E-02 1.661918251E-02 1.136829684E-02 7.951325906E-03 5.967458799E-03 5.079743310E-03 5.079743310E-03 5.967458799E-03 7.951325906E-03 1.136829684E-02 1.661918251E-02 2.408518946E-02 3.378857385E-02 4.477814539E-02 5.478748589E-02 6.085965591E-02 6.085965591E-02 6.015406312E-02 4.673760092E-02 3.378857385E-02 2.332662941E-02 1.579258471E-02 1.077218767E-02 7.683626941E-03 6.048711102E-03 5.543427348E-03 6.048711102E-03 7.683626941E-03 1.077218767E-02 1.579258471E-02 2.332662941E-02 3.378857385E-02 4.673760092E-02 6.015406312E-02 7.057114826E-02 7.453143011E-02 7.057114826E-02 6.015406312E-02 4.477814539E-02 3.136085494E-02 2.126598267E-02 1.436451234E-02 9.963404014E-03 7.409780059E-03 6.251391054E-03 6.251391054E-03 7.409780059E-03 9.963404014E-03 1.436451234E-02 2.126598267E-02 3.136085494E-02 4.477814539E-02 6.015406312E-02 7.421707044E-02 8.275665460E-02 8.275665460E-02 7.421707044E-02 5.478748589E-02 3.950667612E-02 2.720969903E-02 1.845276082E-02 1.268311583E-02 9.136810816E-03 7.237508836E-03 6.642996083E-03 7.237508836E-03 9.136810816E-03 1.268311583E-02 1.845276082E-02 2.720969903E-02 3.950667612E-02 5.478748589E-02 7.057114826E-02 8.275665460E-02 8.737114027E-02 8.275665460E-02 7.057114826E-02 4.575158679E-02 3.246239961E-02 2.241647191E-02 1.551318227E-02 1.106573421E-02 8.444460834E-03 7.237508836E-03 7.237508836E-03 8.444460834E-03 1.106573421E-02 1.551318227E-02 2.241647191E-02 3.246239961E-02 4.575158679E-02 6.085965591E-02 7.453143011E-02 8.275665460E-02 8.275665460E-02 7.453143011E-02 6.085965591E-02 3.559264206E-02 2.536114332E-02 1.792336104E-02 1.288608376E-02 9.700541389E-03 7.959586410E-03 7.409780059E-03 7.959586410E-03 9.700541389E-03 1.288608376E-02 1.792336104E-02 2.536114332E-02 3.559264206E-02 4.811166390E-02 6.085965591E-02 7.057114826E-02 7.421707044E-02 7.057114826E-02 6.085965591E-02 4.811166390E-02 2.511858521E-02 1.932577122E-02 1.522310274E-02 1.243462807E-02 1.077218767E-02 1.021426587E-02 1.077218767E-02 1.243462807E-02 1.522310274E-02 1.932577122E-02 2.511858521E-02 3.278911854E-02 4.168401732E-02 5.011378756E-02 5.607980099E-02 5.821451122E-02 5.607980099E-02 5.011378756E-02 4.168401732E-02 3.278911854E-02 1.932577122E-02 1.573095187E-02 1.310977994E-02 1.136829684E-02 1.049724621E-02 1.049724621E-02 1.136829684E-02 1.310977994E-02 1.573095187E-02 1.932577122E-02 2.406334989E-02 2.987840680E-02 3.606437693E-02 4.131333285E-02 4.431149165E-02 4.431149165E-02 4.131333285E-02 3.606437693E-02 2.987840680E-02 2.406334989E-02 1.522310274E-02 1.310977994E-02 1.158807796E-02 1.068863898E-02 1.039630969E-02 1.068863898E-02 1.158807796E-02 1.310977994E-02 1.522310274E-02 1.792336104E-02 2.123694757E-02 2.500684413E-02 2.867209778E-02 3.137722829E-02 3.237494300E-02 3.137722829E-02 2.867209778E-02 2.500684413E-02 2.123694757E-02 1.792336104E-02 1.243462807E-02 1.136829684E-02 1.068863898E-02 1.038017035E-02 1.038017035E-02 1.068863898E-02 1.136829684E-02 1.243462807E-02 1.383109198E-02 1.551318227E-02 1.745741185E-02 1.952228489E-02 2.134010225E-02 2.242274851E-02 2.242274851E-02 2.134010225E-02 1.952228489E-02 1.745741185E-02 1.551318227E-02 1.383109198E-02 1.077218767E-02 1.049724621E-02 1.039630969E-02 1.038017035E-02 1.039630969E-02 1.049724621E-02 1.077218767E-02 1.124833808E-02 1.189440198E-02 1.268311583E-02 1.358957044E-02 1.451184462E-02 1.523247728E-02 1.550863427E-02 1.523247728E-02 1.451184462E-02 1.358957044E-02 1.268311583E-02 1.189440198E-02 1.124833808E-02 1.021426587E-02 1.049724621E-02 1.068863898E-02 1.068863898E-02 1.049724621E-02 1.021426587E-02 9.963404014E-03 9.824001300E-03 9.824001300E-03 9.963404014E-03 1.021426587E-02 1.049724621E-02 1.068863898E-02 1.068863898E-02 1.049724621E-02 1.021426587E-02 9.963404014E-03 9.824001300E-03 9.824001300E-03 9.963404014E-03 1.077218767E-02 1.136829684E-02 1.158807796E-02 1.136829684E-02 1.077218767E-02 9.963404014E-03 9.136810816E-03 8.444460834E-03 7.959586410E-03 7.683626941E-03 7.570802779E-03 7.550049034E-03 7.552822020E-03 7.550049034E-03 7.570802779E-03 7.683626941E-03 7.959586410E-03 8.444460834E-03 9.136810816E-03 9.963404014E-03 1.243462807E-02 1.310977994E-02 1.310977994E-02 1.243462807E-02 1.124833808E-02 9.824001300E-03 8.444460834E-03 7.307921858E-03 6.489638821E-03 5.967458799E-03 5.675050138E-03 5.547368476E-03 5.547368476E-03 5.675050138E-03 5.967458799E-03 6.489638821E-03 7.307921858E-03 8.444460834E-03 9.824001300E-03 1.124833808E-02 1.522310274E-02 1.573095187E-02 1.522310274E-02 1.383109198E-02 1.189440198E-02 9.824001300E-03 7.959586410E-03 6.489638821E-03 5.453593221E-03 4.797933198E-03 4.443175500E-03 4.331437232E-03 4.443175500E-03 4.797933198E-03 5.453593221E-03 6.489638821E-03 7.959586410E-03 9.824001300E-03 1.189440198E-02 1.383109198E-02 1.932577122E-02 1.932577122E-02 1.792336104E-02 1.551318227E-02 1.268311583E-02 9.963404014E-03 7.683626941E-03 5.967458799E-03 4.797933198E-03 4.092615382E-03 3.765600563E-03 3.765600563E-03 4.092615382E-03 4.797933198E-03 5.967458799E-03 7.683626941E-03 9.963404014E-03 1.268311583E-02 1.551318227E-02 1.792336104E-02 2.511858521E-02 2.406334989E-02 2.123694757E-02 1.745741185E-02 1.358957044E-02 1.021426587E-02 7.570802779E-03 5.675050138E-03 4.443175500E-03 3.765600563E-03 3.551778852E-03 3.765600563E-03 4.443175500E-03 5.675050138E-03 7.570802779E-03 1.021426587E-02 1.358957044E-02 1.745741185E-02 2.123694757E-02 2.406334989E-02 3.278911854E-02 2.987840680E-02 2.500684413E-02 1.952228489E-02 1.451184462E-02 1.049724621E-02 7.550049034E-03 5.547368476E-03 4.331437232E-03 3.765600563E-03 3.765600563E-03 4.331437232E-03 5.547368476E-03 7.550049034E-03 1.049724621E-02 1.451184462E-02 1.952228489E-02 2.500684413E-02 2.987840680E-02 3.278911854E-02 4.168401732E-02 3.606437693E-02 2.867209778E-02 2.134010225E-02 1.523247728E-02 1.068863898E-02 7.552822020E-03 5.547368476E-03 4.443175500E-03 4.092615382E-03 4.443175500E-03 5.547368476E-03 7.552822020E-03 1.068863898E-02 1.523247728E-02 2.134010225E-02 2.867209778E-02 3.606437693E-02 4.168401732E-02 4.379559116E-02 5.011378756E-02 4.131333285E-02 3.137722829E-02 2.242274851E-02 1.550863427E-02 1.068863898E-02 7.550049034E-03 5.675050138E-03 4.797933198E-03 4.797933198E-03 5.675050138E-03 7.550049034E-03 1.068863898E-02 1.550863427E-02 2.242274851E-02 3.137722829E-02 4.131333285E-02 5.011378756E-02 5.533215374E-02 5.533215374E-02 5.607980099E-02 4.431149165E-02 3.237494300E-02 2.242274851E-02 1.523247728E-02 1.049724621E-02 7.570802779E-03 5.967458799E-03 5.453593221E-03 5.967458799E-03 7.570802779E-03 1.049724621E-02 1.523247728E-02 2.242274851E-02 3.237494300E-02 4.431149165E-02 5.607980099E-02 6.479100302E-02 6.801025510E-02 6.479100302E-02 5.821451122E-02 4.431149165E-02 3.137722829E-02 2.134010225E-02 1.451184462E-02 1.021426587E-02 7.683626941E-03 6.489638821E-03 6.489638821E-03 7.683626941E-03 1.021426587E-02 1.451184462E-02 2.134010225E-02 3.137722829E-02 4.431149165E-02 5.821451122E-02 7.002972758E-02 7.681749385E-02 7.681749385E-02 7.002972758E-02 5.607980099E-02 4.131333285E-02 2.867209778E-02 1.952228489E-02 1.358957044E-02 9.963404014E-03 7.959586410E-03 7.307921858E-03 7.959586410E-03 9.963404014E-03 1.358957044E-02 1.952228489E-02 2.867209778E-02 4.131333285E-02 5.607980099E-02 7.002972758E-02 7.994242118E-02 8.352153305E-02 7.994242118E-02 7.002972758E-02 5.011378756E-02 3.606437693E-02 2.500684413E-02 1.745741185E-02 1.268311583E-02 9.824001300E-03 8.444460834E-03 8.444460834E-03 9.824001300E-03 1.268311583E-02 1.745741185E-02 2.500684413E-02 3.606437693E-02 5.011378756E-02 6.479100302E-02 7.681749385E-02 8.352153305E-02 8.352153305E-02 7.681749385E-02 6.479100302E-02 4.168401732E-02 2.987840680E-02 2.123694757E-02 1.551318227E-02 1.189440198E-02 9.824001300E-03 9.136810816E-03 9.824001300E-03 1.189440198E-02 1.551318227E-02 2.123694757E-02 2.987840680E-02 4.168401732E-02 5.533215374E-02 6.801025510E-02 7.681749385E-02 7.994242118E-02 7.681749385E-02 6.801025510E-02 5.533215374E-02 3.278911854E-02 2.406334989E-02 1.792336104E-02 1.383109198E-02 1.124833808E-02 9.963404014E-03 9.963404014E-03 1.124833808E-02 1.383109198E-02 1.792336104E-02 2.406334989E-02 3.278911854E-02 4.379559116E-02 5.533215374E-02 6.479100302E-02 7.002972758E-02 7.002972758E-02 6.479100302E-02 5.533215374E-02 4.379559116E-02 2.645641552E-02 2.165967377E-02 1.819032170E-02 1.579258471E-02 1.451184462E-02 1.451184462E-02 1.579258471E-02 1.819032170E-02 2.165967377E-02 2.645641552E-02 3.278911854E-02 4.008906944E-02 4.682226974E-02 5.147916724E-02 5.364496498E-02 5.364496498E-02 5.147916724E-02 4.682226974E-02 4.008906944E-02 3.278911854E-02 2.165967377E-02 1.877770461E-02 1.661918251E-02 1.523247728E-02 1.474888568E-02 1.523247728E-02 1.661918251E-02 1.877770461E-02 2.165967377E-02 2.536114332E-02 2.987840680E-02 3.472679295E-02 3.895940798E-02 4.171990996E-02 4.265382842E-02 4.171990996E-02 3.895940798E-02 3.472679295E-02 2.987840680E-02 2.536114332E-02 1.819032170E-02 1.661918251E-02 1.550863427E-02 1.494232783E-02 1.494232783E-02 1.550863427E-02 1.661918251E-02 1.819032170E-02 2.013023111E-02 2.241647191E-02 2.500684413E-02 2.764821140E-02 2.985229337E-02 3.110697941E-02 3.110697941E-02 2.985229337E-02 2.764821140E-02 2.500684413E-02 2.241647191E-02 2.013023111E-02 1.579258471E-02 1.523247728E-02 1.494232783E-02 1.486265093E-02 1.494232783E-02 1.523247728E-02 1.579258471E-02 1.657449096E-02 1.747452352E-02 1.845276082E-02 1.952228489E-02 2.061001057E-02 2.147399717E-02 2.180930606E-02 2.147399717E-02 2.061001057E-02 1.952228489E-02 1.845276082E-02 1.747452352E-02 1.657449096E-02 1.451184462E-02 1.474888568E-02 1.494232783E-02 1.494232783E-02 1.474888568E-02 1.451184462E-02 1.436451234E-02 1.431674480E-02 1.431674480E-02 1.436451234E-02 1.451184462E-02 1.474888568E-02 1.494232783E-02 1.494232783E-02 1.474888568E-02 1.451184462E-02 1.436451234E-02 1.431674480E-02 1.431674480E-02 1.436451234E-02 1.451184462E-02 1.523247728E-02 1.550863427E-02 1.523247728E-02 1.451184462E-02 1.358957044E-02 1.268311583E-02 1.189440198E-02 1.124833808E-02 1.077218767E-02 1.049724621E-02 1.039630969E-02 1.038017035E-02 1.039630969E-02 1.049724621E-02 1.077218767E-02 1.124833808E-02 1.189440198E-02 1.268311583E-02 1.358957044E-02 1.579258471E-02 1.661918251E-02 1.661918251E-02 1.579258471E-02 1.436451234E-02 1.268311583E-02 1.106573421E-02 9.700541389E-03 8.658592227E-03 7.951325906E-03 7.550049034E-03 7.383988671E-03 7.383988671E-03 7.550049034E-03 7.951325906E-03 8.658592227E-03 9.700541389E-03 1.106573421E-02 1.268311583E-02 1.436451234E-02 1.819032170E-02 1.877770461E-02 1.819032170E-02 1.657449096E-02 1.431674480E-02 1.189440198E-02 9.700541389E-03 7.952860561E-03 6.712334079E-03 5.941353161E-03 5.547368476E-03 5.430702951E-03 5.547368476E-03 5.941353161E-03 6.712334079E-03 7.952860561E-03 9.700541389E-03 1.189440198E-02 1.431674480E-02 1.657449096E-02 2.165967377E-02 2.165967377E-02 2.013023111E-02 1.747452352E-02 1.431674480E-02 1.124833808E-02 8.658592227E-03 6.712334079E-03 5.411270826E-03 4.660585656E-03 4.331437232E-03 4.331437232E-03 4.660585656E-03 5.411270826E-03 6.712334079E-03 8.658592227E-03 1.124833808E-02 1.431674480E-02 1.747452352E-02 2.013023111E-02 2.645641552E-02 2.536114332E-02 2.241647191E-02 1.845276082E-02 1.436451234E-02 1.077218767E-02 7.951325906E-03 5.941353161E-03 4.660585656E-03 3.976458890E-03 3.765600563E-03 3.976458890E-03 4.660585656E-03 5.941353161E-03 7.951325906E-03 1.077218767E-02 1.436451234E-02 1.845276082E-02 2.241647191E-02 2.536114332E-02 3.278911854E-02 2.987840680E-02 2.500684413E-02 1.952228489E-02 1.451184462E-02 1.049724621E-02 7.550049034E-03 5.547368476E-03 4.331437232E-03 3.765600563E-03 3.765600563E-03 4.331437232E-03 5.547368476E-03 7.550049034E-03 1.049724621E-02 1.451184462E-02 1.952228489E-02 2.500684413E-02 2.987840680E-02 3.278911854E-02 4.008906944E-02 3.472679295E-02 2.764821140E-02 2.061001057E-02 1.474888568E-02 1.039630969E-02 7.383988671E-03 5.430702951E-03 4.331437232E-03 3.976458890E-03 4.331437232E-03 5.430702951E-03 7.383988671E-03 1.039630969E-02 1.474888568E-02 2.061001057E-02 2.764821140E-02 3.472679295E-02 4.008906944E-02 4.209909364E-02 4.682226974E-02 3.895940798E-02 2.985229337E-02 2.147399717E-02 1.494232783E-02 1.038017035E-02 7.383988671E-03 5.547368476E-03 4.660585656E-03 4.660585656E-03 5.547368476E-03 7.383988671E-03 1.038017035E-02 1.494232783E-02 2.147399717E-02 2.985229337E-02 3.895940798E-02 4.682226974E-02 5.138874082E-02 5.138874082E-02 5.147916724E-02 4.171990996E-02 3.110697941E-02 2.180930606E-02 1.494232783E-02 1.039630969E-02 7.550049034E-03 5.941353161E-03 5.411270826E-03 5.941353161E-03 7.550049034E-03 1.039630969E-02 1.494232783E-02 2.180930606E-02 3.110697941E-02 4.171990996E-02 5.147916724E-02 5.822335543E-02 6.061215074E-02 5.822335543E-02 5.364496498E-02 4.265382842E-02 3.110697941E-02 2.147399717E-02 1.474888568E-02 1.049724621E-02 7.951325906E-03 6.712334079E-03 6.712334079E-03 7.951325906E-03 1.049724621E-02 1.474888568E-02 2.147399717E-02 3.110697941E-02 4.265382842E-02 5.364496498E-02 6.171115911E-02 6.581693895E-02 6.581693895E-02 6.171115911E-02 5.364496498E-02 4.171990996E-02 2.985229337E-02 2.061001057E-02 1.451184462E-02 1.077218767E-02 8.658592227E-03 7.952860561E-03 8.658592227E-03 1.077218767E-02 1.451184462E-02 2.061001057E-02 2.985229337E-02 4.171990996E-02 5.364496498E-02 6.266178671E-02 6.770809631E-02 6.927093266E-02 6.770809631E-02 6.266178671E-02 5.147916724E-02 3.895940798E-02 2.764821140E-02 1.952228489E-02 1.436451234E-02 1.124833808E-02 9.700541389E-03 9.700541389E-03 1.124833808E-02 1.436451234E-02 1.952228489E-02 2.764821140E-02 3.895940798E-02 5.147916724E-02 6.171115911E-02 6.770809631E-02 7.014515822E-02 7.014515822E-02 6.770809631E-02 6.171115911E-02 4.682226974E-02 3.472679295E-02 2.500684413E-02 1.845276082E-02 1.431674480E-02 1.189440198E-02 1.106573421E-02 1.189440198E-02 1.431674480E-02 1.845276082E-02 2.500684413E-02 3.472679295E-02 4.682226974E-02 5.822335543E-02 6.581693895E-02 6.927093266E-02 7.014515822E-02 6.927093266E-02 6.581693895E-02 5.822335543E-02 4.008906944E-02 2.987840680E-02 2.241647191E-02 1.747452352E-02 1.431674480E-02 1.268311583E-02 1.268311583E-02 1.431674480E-02 1.747452352E-02 2.241647191E-02 2.987840680E-02 4.008906944E-02 5.138874082E-02 6.061215074E-02 6.581693895E-02 6.770809631E-02 6.770809631E-02 6.581693895E-02 6.061215074E-02 5.138874082E-02 3.278911854E-02 2.536114332E-02 2.013023111E-02 1.657449096E-02 1.436451234E-02 1.358957044E-02 1.436451234E-02 1.657449096E-02 2.013023111E-02 2.536114332E-02 3.278911854E-02 4.209909364E-02 5.138874082E-02 5.822335543E-02 6.171115911E-02 6.266178671E-02 6.171115911E-02 5.822335543E-02 5.138874082E-02 4.209909364E-02 3.028273404E-02 2.627730267E-02 2.332662941E-02 2.134010225E-02 2.061001057E-02 2.134010225E-02 2.332662941E-02 2.627730267E-02 3.028273404E-02 3.559264206E-02 4.168401732E-02 4.682226974E-02 4.933561120E-02 4.949590056E-02 4.918844003E-02 4.949590056E-02 4.933561120E-02 4.682226974E-02 4.168401732E-02 3.559264206E-02 2.627730267E-02 2.408518946E-02 2.242274851E-02 2.147399717E-02 2.147399717E-02 2.242274851E-02 2.408518946E-02 2.627730267E-02 2.905485662E-02 3.246239961E-02 3.606437693E-02 3.895940798E-02 4.053085631E-02 4.102316702E-02 4.102316702E-02 4.053085631E-02 3.895940798E-02 3.606437693E-02 3.246239961E-02 2.905485662E-02 2.332662941E-02 2.242274851E-02 2.180930606E-02 2.159031620E-02 2.180930606E-02 2.242274851E-02 2.332662941E-02 2.443633085E-02 2.573981764E-02 2.720969903E-02 2.867209778E-02 2.985229337E-02 3.056683192E-02 3.079690590E-02 3.056683192E-02 2.985229337E-02 2.867209778E-02 2.720969903E-02 2.573981764E-02 2.443633085E-02 2.134010225E-02 2.147399717E-02 2.159031620E-02 2.159031620E-02 2.147399717E-02 2.134010225E-02 2.126598267E-02 2.124663610E-02 2.124663610E-02 2.126598267E-02 2.134010225E-02 2.147399717E-02 2.159031620E-02 2.159031620E-02 2.147399717E-02 2.134010225E-02 2.126598267E-02 2.124663610E-02 2.124663610E-02 2.126598267E-02 2.061001057E-02 2.147399717E-02 2.180930606E-02 2.147399717E-02 2.061001057E-02 1.952228489E-02 1.845276082E-02 1.747452352E-02 1.657449096E-02 1.579258471E-02 1.523247728E-02 1.494232783E-02 1.486265093E-02 1.494232783E-02 1.523247728E-02 1.579258471E-02 1.657449096E-02 1.747452352E-02 1.845276082E-02 1.952228489E-02 2.134010225E-02 2.242274851E-02 2.242274851E-02 2.134010225E-02 1.952228489E-02 1.745741185E-02 1.551318227E-02 1.383109198E-02 1.243462807E-02 1.136829684E-02 1.068863898E-02 1.038017035E-02 1.038017035E-02 1.068863898E-02 1.136829684E-02 1.243462807E-02 1.383109198E-02 1.551318227E-02 1.745741185E-02 1.952228489E-02 2.332662941E-02 2.408518946E-02 2.332662941E-02 2.126598267E-02 1.845276082E-02 1.551318227E-02 1.288608376E-02 1.075514271E-02 9.164110625E-03 8.113509916E-03 7.552822020E-03 7.383988671E-03 7.552822020E-03 8.113509916E-03 9.164110625E-03 1.075514271E-02 1.288608376E-02 1.551318227E-02 1.845276082E-02 2.126598267E-02 2.627730267E-02 2.627730267E-02 2.443633085E-02 2.124663610E-02 1.747452352E-02 1.383109198E-02 1.075514271E-02 8.420372603E-03 6.842158313E-03 5.935496502E-03 5.547368476E-03 5.547368476E-03 5.935496502E-03 6.842158313E-03 8.420372603E-03 1.075514271E-02 1.383109198E-02 1.747452352E-02 2.124663610E-02 2.443633085E-02 3.028273404E-02 2.905485662E-02 2.573981764E-02 2.124663610E-02 1.657449096E-02 1.243462807E-02 9.164110625E-03 6.842158313E-03 5.397490755E-03 4.660585656E-03 4.443175500E-03 4.660585656E-03 5.397490755E-03 6.842158313E-03 9.164110625E-03 1.243462807E-02 1.657449096E-02 2.124663610E-02 2.573981764E-02 2.905485662E-02 3.559264206E-02 3.246239961E-02 2.720969903E-02 2.126598267E-02 1.579258471E-02 1.136829684E-02 8.113509916E-03 5.935496502E-03 4.660585656E-03 4.092615382E-03 4.092615382E-03 4.660585656E-03 5.935496502E-03 8.113509916E-03 1.136829684E-02 1.579258471E-02 2.126598267E-02 2.720969903E-02 3.246239961E-02 3.559264206E-02 4.168401732E-02 3.606437693E-02 2.867209778E-02 2.134010225E-02 1.523247728E-02 1.068863898E-02 7.552822020E-03 5.547368476E-03 4.443175500E-03 4.092615382E-03 4.443175500E-03 5.547368476E-03 7.552822020E-03 1.068863898E-02 1.523247728E-02 2.134010225E-02 2.867209778E-02 3.606437693E-02 4.168401732E-02 4.379559116E-02 4.682226974E-02 3.895940798E-02 2.985229337E-02 2.147399717E-02 1.494232783E-02 1.038017035E-02 7.383988671E-03 5.547368476E-03 4.660585656E-03 4.660585656E-03 5.547368476E-03 7.383988671E-03 1.038017035E-02 1.494232783E-02 2.147399717E-02 2.985229337E-02 3.895940798E-02 4.682226974E-02 5.138874082E-02 5.138874082E-02 4.933561120E-02 4.053085631E-02 3.056683192E-02 2.159031620E-02 1.486265093E-02 1.038017035E-02 7.552822020E-03 5.935496502E-03 5.397490755E-03 5.935496502E-03 7.552822020E-03 1.038017035E-02 1.486265093E-02 2.159031620E-02 3.056683192E-02 4.053085631E-02 4.933561120E-02 5.516972298E-02 5.717980179E-02 5.516972298E-02 4.949590056E-02 4.102316702E-02 3.079690590E-02 2.159031620E-02 1.494232783E-02 1.068863898E-02 8.113509916E-03 6.842158313E-03 6.842158313E-03 8.113509916E-03 1.068863898E-02 1.494232783E-02 2.159031620E-02 3.079690590E-02 4.102316702E-02 4.949590056E-02 5.453077084E-02 5.656045169E-02 5.656045169E-02 5.453077084E-02 4.918844003E-02 4.102316702E-02 3.056683192E-02 2.147399717E-02 1.523247728E-02 1.136829684E-02 9.164110625E-03 8.420372603E-03 9.164110625E-03 1.136829684E-02 1.523247728E-02 2.147399717E-02 3.056683192E-02 4.102316702E-02 4.918844003E-02 5.256060421E-02 5.255675221E-02 5.214472107E-02 5.255675221E-02 5.256060421E-02 4.949590056E-02 4.053085631E-02 2.985229337E-02 2.134010225E-02 1.579258471E-02 1.243462807E-02 1.075514271E-02 1.075514271E-02 1.243462807E-02 1.579258471E-02 2.134010225E-02 2.985229337E-02 4.053085631E-02 4.949590056E-02 5.256060421E-02 5.045243129E-02 4.784210774E-02 4.784210774E-02 5.045243129E-02 5.256060421E-02 4.933561120E-02 3.895940798E-02 2.867209778E-02 2.126598267E-02 1.657449096E-02 1.383109198E-02 1.288608376E-02 1.383109198E-02 1.657449096E-02 2.126598267E-02 2.867209778E-02 3.895940798E-02 4.933561120E-02 5.453077084E-02 5.255675221E-02 4.784210774E-02 4.569473435E-02 4.784210774E-02 5.255675221E-02 5.453077084E-02 4.682226974E-02 3.606437693E-02 2.720969903E-02 2.124663610E-02 1.747452352E-02 1.551318227E-02 1.551318227E-02 1.747452352E-02 2.124663610E-02 2.720969903E-02 3.606437693E-02 4.682226974E-02 5.516972298E-02 5.656045169E-02 5.214472107E-02 4.784210774E-02 4.784210774E-02 5.214472107E-02 5.656045169E-02 5.516972298E-02 4.168401732E-02 3.246239961E-02 2.573981764E-02 2.124663610E-02 1.845276082E-02 1.745741185E-02 1.845276082E-02 2.124663610E-02 2.573981764E-02 3.246239961E-02 4.168401732E-02 5.138874082E-02 5.717980179E-02 5.656045169E-02 5.255675221E-02 5.045243129E-02 5.255675221E-02 5.656045169E-02 5.717980179E-02 5.138874082E-02 3.559264206E-02 2.905485662E-02 2.443633085E-02 2.126598267E-02 1.952228489E-02 1.952228489E-02 2.126598267E-02 2.443633085E-02 2.905485662E-02 3.559264206E-02 4.379559116E-02 5.138874082E-02 5.516972298E-02 5.453077084E-02 5.256060421E-02 5.256060421E-02 5.453077084E-02 5.516972298E-02 5.138874082E-02 4.379559116E-02 3.679047261E-02 3.378857385E-02 3.137722829E-02 2.985229337E-02 2.985229337E-02 3.137722829E-02 3.378857385E-02 3.679047261E-02 4.077833765E-02 4.575158679E-02 5.011378756E-02 5.147916724E-02 4.949590056E-02 4.695865926E-02 4.695865926E-02 4.949590056E-02 5.147916724E-02 5.011378756E-02 4.575158679E-02 4.077833765E-02 3.378857385E-02 3.237494300E-02 3.110697941E-02 3.056683192E-02 3.110697941E-02 3.237494300E-02 3.378857385E-02 3.527757314E-02 3.720069702E-02 3.950667612E-02 4.131333285E-02 4.171990996E-02 4.102316702E-02 4.054046395E-02 4.102316702E-02 4.171990996E-02 4.131333285E-02 3.950667612E-02 3.720069702E-02 3.527757314E-02 3.137722829E-02 3.110697941E-02 3.079690590E-02 3.079690590E-02 3.110697941E-02 3.137722829E-02 3.136085494E-02 3.120787008E-02 3.120787008E-02 3.136085494E-02 3.137722829E-02 3.110697941E-02 3.079690590E-02 3.079690590E-02 3.110697941E-02 3.137722829E-02 3.136085494E-02 3.120787008E-02 3.120787008E-02 3.136085494E-02 2.985229337E-02 3.056683192E-02 3.079690590E-02 3.056683192E-02 2.985229337E-02 2.867209778E-02 2.720969903E-02 2.573981764E-02 2.443633085E-02 2.332662941E-02 2.242274851E-02 2.180930606E-02 2.159031620E-02 2.180930606E-02 2.242274851E-02 2.332662941E-02 2.443633085E-02 2.573981764E-02 2.720969903E-02 2.867209778E-02 2.985229337E-02 3.110697941E-02 3.110697941E-02 2.985229337E-02 2.764821140E-02 2.500684413E-02 2.241647191E-02 2.013023111E-02 1.819032170E-02 1.661918251E-02 1.550863427E-02 1.494232783E-02 1.494232783E-02 1.550863427E-02 1.661918251E-02 1.819032170E-02 2.013023111E-02 2.241647191E-02 2.500684413E-02 2.764821140E-02 3.137722829E-02 3.237494300E-02 3.137722829E-02 2.867209778E-02 2.500684413E-02 2.123694757E-02 1.792336104E-02 1.522310274E-02 1.310977994E-02 1.158807796E-02 1.068863898E-02 1.039630969E-02 1.068863898E-02 1.158807796E-02 1.310977994E-02 1.522310274E-02 1.792336104E-02 2.123694757E-02 2.500684413E-02 2.867209778E-02 3.378857385E-02 3.378857385E-02 3.136085494E-02 2.720969903E-02 2.241647191E-02 1.792336104E-02 1.420658738E-02 1.135974513E-02 9.348116428E-03 8.113509916E-03 7.550049034E-03 7.550049034E-03 8.113509916E-03 9.348116428E-03 1.135974513E-02 1.420658738E-02 1.792336104E-02 2.241647191E-02 2.720969903E-02 3.136085494E-02 3.679047261E-02 3.527757314E-02 3.120787008E-02 2.573981764E-02 2.013023111E-02 1.522310274E-02 1.135974513E-02 8.590919322E-03 6.842158313E-03 5.941353161E-03 5.675050138E-03 5.941353161E-03 6.842158313E-03 8.590919322E-03 1.135974513E-02 1.522310274E-02 2.013023111E-02 2.573981764E-02 3.120787008E-02 3.527757314E-02 4.077833765E-02 3.720069702E-02 3.120787008E-02 2.443633085E-02 1.819032170E-02 1.310977994E-02 9.348116428E-03 6.842158313E-03 5.411270826E-03 4.797933198E-03 4.797933198E-03 5.411270826E-03 6.842158313E-03 9.348116428E-03 1.310977994E-02 1.819032170E-02 2.443633085E-02 3.120787008E-02 3.720069702E-02 4.077833765E-02 4.575158679E-02 3.950667612E-02 3.136085494E-02 2.332662941E-02 1.661918251E-02 1.158807796E-02 8.113509916E-03 5.941353161E-03 4.797933198E-03 4.448997543E-03 4.797933198E-03 5.941353161E-03 8.113509916E-03 1.158807796E-02 1.661918251E-02 2.332662941E-02 3.136085494E-02 3.950667612E-02 4.575158679E-02 4.811166390E-02 5.011378756E-02 4.131333285E-02 3.137722829E-02 2.242274851E-02 1.550863427E-02 1.068863898E-02 7.550049034E-03 5.675050138E-03 4.797933198E-03 4.797933198E-03 5.675050138E-03 7.550049034E-03 1.068863898E-02 1.550863427E-02 2.242274851E-02 3.137722829E-02 4.131333285E-02 5.011378756E-02 5.533215374E-02 5.533215374E-02 5.147916724E-02 4.171990996E-02 3.110697941E-02 2.180930606E-02 1.494232783E-02 1.039630969E-02 7.550049034E-03 5.941353161E-03 5.411270826E-03 5.941353161E-03 7.550049034E-03 1.039630969E-02 1.494232783E-02 2.180930606E-02 3.110697941E-02 4.171990996E-02 5.147916724E-02 5.822335543E-02 6.061215074E-02 5.822335543E-02 4.949590056E-02 4.102316702E-02 3.079690590E-02 2.159031620E-02 1.494232783E-02 1.068863898E-02 8.113509916E-03 6.842158313E-03 6.842158313E-03 8.113509916E-03 1.068863898E-02 1.494232783E-02 2.159031620E-02 3.079690590E-02 4.102316702E-02 4.949590056E-02 5.453077084E-02 5.656045169E-02 5.656045169E-02 5.453077084E-02 4.695865926E-02 4.054046395E-02 3.079690590E-02 2.180930606E-02 1.550863427E-02 1.158807796E-02 9.348116428E-03 8.590919322E-03 9.348116428E-03 1.158807796E-02 1.550863427E-02 2.180930606E-02 3.079690590E-02 4.054046395E-02 4.695865926E-02 4.785912130E-02 4.575855910E-02 4.455689206E-02 4.575855910E-02 4.785912130E-02 4.695865926E-02 4.102316702E-02 3.110697941E-02 2.242274851E-02 1.661918251E-02 1.310977994E-02 1.135974513E-02 1.135974513E-02 1.310977994E-02 1.661918251E-02 2.242274851E-02 3.110697941E-02 4.102316702E-02 4.695865926E-02 4.463517735E-02 3.710155405E-02 3.149859816E-02 3.149859816E-02 3.710155405E-02 4.463517735E-02 4.949590056E-02 4.171990996E-02 3.137722829E-02 2.332662941E-02 1.819032170E-02 1.522310274E-02 1.420658738E-02 1.522310274E-02 1.819032170E-02 2.332662941E-02 3.137722829E-02 4.171990996E-02 4.949590056E-02 4.785912130E-02 3.710155405E-02 2.630392872E-02 2.232878766E-02 2.630392872E-02 3.710155405E-02 4.785912130E-02 5.147916724E-02 4.131333285E-02 3.136085494E-02 2.443633085E-02 2.013023111E-02 1.792336104E-02 1.792336104E-02 2.013023111E-02 2.443633085E-02 3.136085494E-02 4.131333285E-02 5.147916724E-02 5.453077084E-02 4.575855910E-02 3.149859816E-02 2.232878766E-02 2.232878766E-02 3.149859816E-02 4.575855910E-02 5.453077084E-02 5.011378756E-02 3.950667612E-02 3.120787008E-02 2.573981764E-02 2.241647191E-02 2.123694757E-02 2.241647191E-02 2.573981764E-02 3.120787008E-02 3.950667612E-02 5.011378756E-02 5.822335543E-02 5.656045169E-02 4.455689206E-02 3.149859816E-02 2.630392872E-02 3.149859816E-02 4.455689206E-02 5.656045169E-02 5.822335543E-02 4.575158679E-02 3.720069702E-02 3.120787008E-02 2.720969903E-02 2.500684413E-02 2.500684413E-02 2.720969903E-02 3.120787008E-02 3.720069702E-02 4.575158679E-02 5.533215374E-02 6.061215074E-02 5.656045169E-02 4.575855910E-02 3.710155405E-02 3.710155405E-02 4.575855910E-02 5.656045169E-02 6.061215074E-02 5.533215374E-02 4.077833765E-02 3.527757314E-02 3.136085494E-02 2.867209778E-02 2.764821140E-02 2.867209778E-02 3.136085494E-02 3.527757314E-02 4.077833765E-02 4.811166390E-02 5.533215374E-02 5.822335543E-02 5.453077084E-02 4.785912130E-02 4.463517735E-02 4.785912130E-02 5.453077084E-02 5.822335543E-02 5.533215374E-02 4.811166390E-02 4.673760092E-02 4.431149165E-02 4.171990996E-02 4.053085631E-02 4.171990996E-02 4.431149165E-02 4.673760092E-02 4.886686103E-02 5.162980944E-02 5.478748589E-02 5.607980099E-02 5.364496498E-02 4.918844003E-02 4.695865926E-02 4.918844003E-02 5.364496498E-02 5.607980099E-02 5.478748589E-02 5.162980944E-02 4.886686103E-02 4.431149165E-02 4.265382842E-02 4.102316702E-02 4.102316702E-02 4.265382842E-02 4.431149165E-02 4.477814539E-02 4.449069286E-02 4.449069286E-02 4.477814539E-02 4.431149165E-02 4.265382842E-02 4.102316702E-02 4.102316702E-02 4.265382842E-02 4.431149165E-02 4.477814539E-02 4.449069286E-02 4.449069286E-02 4.477814539E-02 4.171990996E-02 4.102316702E-02 4.054046395E-02 4.102316702E-02 4.171990996E-02 4.131333285E-02 3.950667612E-02 3.720069702E-02 3.527757314E-02 3.378857385E-02 3.237494300E-02 3.110697941E-02 3.056683192E-02 3.110697941E-02 3.237494300E-02 3.378857385E-02 3.527757314E-02 3.720069702E-02 3.950667612E-02 4.131333285E-02 4.053085631E-02 4.102316702E-02 4.102316702E-02 4.053085631E-02 3.895940798E-02 3.606437693E-02 3.246239961E-02 2.905485662E-02 2.627730267E-02 2.408518946E-02 2.242274851E-02 2.147399717E-02 2.147399717E-02 2.242274851E-02 2.408518946E-02 2.627730267E-02 2.905485662E-02 3.246239961E-02 3.606437693E-02 3.895940798E-02 4.171990996E-02 4.265382842E-02 4.171990996E-02 3.895940798E-02 3.472679295E-02 2.987840680E-02 2.536114332E-02 2.165967377E-02 1.877770461E-02 1.661918251E-02 1.523247728E-02 1.474888568E-02 1.523247728E-02 1.661918251E-02 1.877770461E-02 2.165967377E-02 2.536114332E-02 2.987840680E-02 3.472679295E-02 3.895940798E-02 4.431149165E-02 4.431149165E-02 4.131333285E-02 3.606437693E-02 2.987840680E-02 2.406334989E-02 1.932577122E-02 1.573095187E-02 1.310977994E-02 1.136829684E-02 1.049724621E-02 1.049724621E-02 1.136829684E-02 1.310977994E-02 1.573095187E-02 1.932577122E-02 2.406334989E-02 2.987840680E-02 3.606437693E-02 4.131333285E-02 4.673760092E-02 4.477814539E-02 3.950667612E-02 3.246239961E-02 2.536114332E-02 1.932577122E-02 1.469125533E-02 1.135974513E-02 9.164110625E-03 7.951325906E-03 7.570802779E-03 7.951325906E-03 9.164110625E-03 1.135974513E-02 1.469125533E-02 1.932577122E-02 2.536114332E-02 3.246239961E-02 3.950667612E-02 4.477814539E-02 4.886686103E-02 4.449069286E-02 3.720069702E-02 2.905485662E-02 2.165967377E-02 1.573095187E-02 1.135974513E-02 8.420372603E-03 6.712334079E-03 5.967458799E-03 5.967458799E-03 6.712334079E-03 8.420372603E-03 1.135974513E-02 1.573095187E-02 2.165967377E-02 2.905485662E-02 3.720069702E-02 4.449069286E-02 4.886686103E-02 5.162980944E-02 4.449069286E-02 3.527757314E-02 2.627730267E-02 1.877770461E-02 1.310977994E-02 9.164110625E-03 6.712334079E-03 5.453593221E-03 5.079743310E-03 5.453593221E-03 6.712334079E-03 9.164110625E-03 1.310977994E-02 1.877770461E-02 2.627730267E-02 3.527757314E-02 4.449069286E-02 5.162980944E-02 5.434561968E-02 5.478748589E-02 4.477814539E-02 3.378857385E-02 2.408518946E-02 1.661918251E-02 1.136829684E-02 7.951325906E-03 5.967458799E-03 5.079743310E-03 5.079743310E-03 5.967458799E-03 7.951325906E-03 1.136829684E-02 1.661918251E-02 2.408518946E-02 3.378857385E-02 4.477814539E-02 5.478748589E-02 6.085965591E-02 6.085965591E-02 5.607980099E-02 4.431149165E-02 3.237494300E-02 2.242274851E-02 1.523247728E-02 1.049724621E-02 7.570802779E-03 5.967458799E-03 5.453593221E-03 5.967458799E-03 7.570802779E-03 1.049724621E-02 1.523247728E-02 2.242274851E-02 3.237494300E-02 4.431149165E-02 5.607980099E-02 6.479100302E-02 6.801025510E-02 6.479100302E-02 5.364496498E-02 4.265382842E-02 3.110697941E-02 2.147399717E-02 1.474888568E-02 1.049724621E-02 7.951325906E-03 6.712334079E-03 6.712334079E-03 7.951325906E-03 1.049724621E-02 1.474888568E-02 2.147399717E-02 3.110697941E-02 4.265382842E-02 5.364496498E-02 6.171115911E-02 6.581693895E-02 6.581693895E-02 6.171115911E-02 4.918844003E-02 4.102316702E-02 3.056683192E-02 2.147399717E-02 1.523247728E-02 1.136829684E-02 9.164110625E-03 8.420372603E-03 9.164110625E-03 1.136829684E-02 1.523247728E-02 2.147399717E-02 3.056683192E-02 4.102316702E-02 4.918844003E-02 5.256060421E-02 5.255675221E-02 5.214472107E-02 5.255675221E-02 5.256060421E-02 4.695865926E-02 4.102316702E-02 3.110697941E-02 2.242274851E-02 1.661918251E-02 1.310977994E-02 1.135974513E-02 1.135974513E-02 1.310977994E-02 1.661918251E-02 2.242274851E-02 3.110697941E-02 4.102316702E-02 4.695865926E-02 4.463517735E-02 3.710155405E-02 3.149859816E-02 3.149859816E-02 3.710155405E-02 4.463517735E-02 4.918844003E-02 4.265382842E-02 3.237494300E-02 2.408518946E-02 1.877770461E-02 1.573095187E-02 1.469125533E-02 1.573095187E-02 1.877770461E-02 2.408518946E-02 3.237494300E-02 4.265382842E-02 4.918844003E-02 4.463517735E-02 3.053265872E-02 1.784803138E-02 1.346760887E-02 1.784803138E-02 3.053265872E-02 4.463517735E-02 5.364496498E-02 4.431149165E-02 3.378857385E-02 2.627730267E-02 2.165967377E-02 1.932577122E-02 1.932577122E-02 2.165967377E-02 2.627730267E-02 3.378857385E-02 4.431149165E-02 5.364496498E-02 5.256060421E-02 3.710155405E-02 1.784803138E-02 7.336888634E-03 7.336888634E-03 1.784803138E-02 3.710155405E-02 5.256060421E-02 5.607980099E-02 4.477814539E-02 3.527757314E-02 2.905485662E-02 2.536114332E-02 2.406334989E-02 2.536114332E-02 2.905485662E-02 3.527757314E-02 4.477814539E-02 5.607980099E-02 6.171115911E-02 5.255675221E-02 3.149859816E-02 1.346760887E-02 7.336888634E-03 1.346760887E-02 3.149859816E-02 5.255675221E-02 6.171115911E-02 5.478748589E-02 4.449069286E-02 3.720069702E-02 3.246239961E-02 2.987840680E-02 2.987840680E-02 3.246239961E-02 3.720069702E-02 4.449069286E-02 5.478748589E-02 6.479100302E-02 6.581693895E-02 5.214472107E-02 3.149859816E-02 1.784803138E-02 1.784803138E-02 3.149859816E-02 5.214472107E-02 6.581693895E-02 6.479100302E-02 5.162980944E-02 4.449069286E-02 3.950667612E-02 3.606437693E-02 3.472679295E-02 3.606437693E-02 3.950667612E-02 4.449069286E-02 5.162980944E-02 6.085965591E-02 6.801025510E-02 6.581693895E-02 5.255675221E-02 3.710155405E-02 3.053265872E-02 3.710155405E-02 5.255675221E-02 6.581693895E-02 6.801025510E-02 6.085965591E-02 4.886686103E-02 4.477814539E-02 4.131333285E-02 3.895940798E-02 3.895940798E-02 4.131333285E-02 4.477814539E-02 4.886686103E-02 5.434561968E-02 6.085965591E-02 6.479100302E-02 6.171115911E-02 5.256060421E-02 4.463517735E-02 4.463517735E-02 5.256060421E-02 6.171115911E-02 6.479100302E-02 6.085965591E-02 5.434561968E-02 5.821451122E-02 5.364496498E-02 4.949590056E-02 4.949590056E-02 5.364496498E-02 5.821451122E-02 6.015406312E-02 6.008009761E-02 6.008009761E-02 6.015406312E-02 5.821451122E-02 5.364496498E-02 4.949590056E-02 4.949590056E-02 5.364496498E-02 5.821451122E-02 6.015406312E-02 6.008009761E-02 6.008009761E-02 6.015406312E-02 5.364496498E-02 4.918844003E-02 4.695865926E-02 4.918844003E-02 5.364496498E-02 5.607980099E-02 5.478748589E-02 5.162980944E-02 4.886686103E-02 4.673760092E-02 4.431149165E-02 4.171990996E-02 4.053085631E-02 4.171990996E-02 4.431149165E-02 4.673760092E-02 4.886686103E-02 5.162980944E-02 5.478748589E-02 5.607980099E-02 4.949590056E-02 4.695865926E-02 4.695865926E-02 4.949590056E-02 5.147916724E-02 5.011378756E-02 4.575158679E-02 4.077833765E-02 3.679047261E-02 3.378857385E-02 3.137722829E-02 2.985229337E-02 2.985229337E-02 3.137722829E-02 3.378857385E-02 3.679047261E-02 4.077833765E-02 4.575158679E-02 5.011378756E-02 5.147916724E-02 4.949590056E-02 4.918844003E-02 4.949590056E-02 4.933561120E-02 4.682226974E-02 4.168401732E-02 3.559264206E-02 3.028273404E-02 2.627730267E-02 2.332662941E-02 2.134010225E-02 2.061001057E-02 2.134010225E-02 2.332662941E-02 2.627730267E-02 3.028273404E-02 3.559264206E-02 4.168401732E-02 4.682226974E-02 4.933561120E-02 5.364496498E-02 5.364496498E-02 5.147916724E-02 4.682226974E-02 4.008906944E-02 3.278911854E-02 2.645641552E-02 2.165967377E-02 1.819032170E-02 1.579258471E-02 1.451184462E-02 1.451184462E-02 1.579258471E-02 1.819032170E-02 2.165967377E-02 2.645641552E-02 3.278911854E-02 4.008906944E-02 4.682226974E-02 5.147916724E-02 5.821451122E-02 5.607980099E-02 5.011378756E-02 4.168401732E-02 3.278911854E-02 2.511858521E-02 1.932577122E-02 1.522310274E-02 1.243462807E-02 1.077218767E-02 1.021426587E-02 1.077218767E-02 1.243462807E-02 1.522310274E-02 1.932577122E-02 2.511858521E-02 3.278911854E-02 4.168401732E-02 5.011378756E-02 5.607980099E-02 6.015406312E-02 5.478748589E-02 4.575158679E-02 3.559264206E-02 2.645641552E-02 1.932577122E-02 1.420658738E-02 1.075514271E-02 8.658592227E-03 7.683626941E-03 7.683626941E-03 8.658592227E-03 1.075514271E-02 1.420658738E-02 1.932577122E-02 2.645641552E-02 3.559264206E-02 4.575158679E-02 5.478748589E-02 6.015406312E-02 6.008009761E-02 5.162980944E-02 4.077833765E-02 3.028273404E-02 2.165967377E-02 1.522310274E-02 1.075514271E-02 7.952860561E-03 6.489638821E-03 6.048711102E-03 6.489638821E-03 7.952860561E-03 1.075514271E-02 1.522310274E-02 2.165967377E-02 3.028273404E-02 4.077833765E-02 5.162980944E-02 6.008009761E-02 6.330005647E-02 6.008009761E-02 4.886686103E-02 3.679047261E-02 2.627730267E-02 1.819032170E-02 1.243462807E-02 8.658592227E-03 6.489638821E-03 5.543427348E-03 5.543427348E-03 6.489638821E-03 8.658592227E-03 1.243462807E-02 1.819032170E-02 2.627730267E-02 3.679047261E-02 4.886686103E-02 6.008009761E-02 6.698659653E-02 6.698659653E-02 6.015406312E-02 4.673760092E-02 3.378857385E-02 2.332662941E-02 1.579258471E-02 1.077218767E-02 7.683626941E-03 6.048711102E-03 5.543427348E-03 6.048711102E-03 7.683626941E-03 1.077218767E-02 1.579258471E-02 2.332662941E-02 3.378857385E-02 4.673760092E-02 6.015406312E-02 7.057114826E-02 7.453143011E-02 7.057114826E-02 5.821451122E-02 4.431149165E-02 3.137722829E-02 2.134010225E-02 1.451184462E-02 1.021426587E-02 7.683626941E-03 6.489638821E-03 6.489638821E-03 7.683626941E-03 1.021426587E-02 1.451184462E-02 2.134010225E-02 3.137722829E-02 4.431149165E-02 5.821451122E-02 7.002972758E-02 7.681749385E-02 7.681749385E-02 7.002972758E-02 5.364496498E-02 4.171990996E-02 2.985229337E-02 2.061001057E-02 1.451184462E-02 1.077218767E-02 8.658592227E-03 7.952860561E-03 8.658592227E-03 1.077218767E-02 1.451184462E-02 2.061001057E-02 2.985229337E-02 4.171990996E-02 5.364496498E-02 6.266178671E-02 6.770809631E-02 6.927093266E-02 6.770809631E-02 6.266178671E-02 4.949590056E-02 4.053085631E-02 2.985229337E-02 2.134010225E-02 1.579258471E-02 1.243462807E-02 1.075514271E-02 1.075514271E-02 1.243462807E-02 1.579258471E-02 2.134010225E-02 2.985229337E-02 4.053085631E-02 4.949590056E-02 5.256060421E-02 5.045243129E-02 4.784210774E-02 4.784210774E-02 5.045243129E-02 5.256060421E-02 4.949590056E-02 4.171990996E-02 3.137722829E-02 2.332662941E-02 1.819032170E-02 1.522310274E-02 1.420658738E-02 1.522310274E-02 1.819032170E-02 2.332662941E-02 3.137722829E-02 4.171990996E-02 4.949590056E-02 4.785912130E-02 3.710155405E-02 2.630392872E-02 2.232878766E-02 2.630392872E-02 3.710155405E-02 4.785912130E-02 5.364496498E-02 4.431149165E-02 3.378857385E-02 2.627730267E-02 2.165967377E-02 1.932577122E-02 1.932577122E-02 2.165967377E-02 2.627730267E-02 3.378857385E-02 4.431149165E-02 5.364496498E-02 5.256060421E-02 3.710155405E-02 1.784803138E-02 7.336888634E-03 7.336888634E-03 1.784803138E-02 3.710155405E-02 5.256060421E-02 5.821451122E-02 4.673760092E-02 3.679047261E-02 3.028273404E-02 2.645641552E-02 2.511858521E-02 2.645641552E-02 3.028273404E-02 3.679047261E-02 4.673760092E-02 5.821451122E-02 6.266178671E-02 5.045243129E-02 2.630392872E-02 7.336888634E-03 1.410752548E-03 7.336888634E-03 2.630392872E-02 5.045243129E-02 6.266178671E-02 6.015406312E-02 4.886686103E-02 4.077833765E-02 3.559264206E-02 3.278911854E-02 3.278911854E-02 3.559264206E-02 4.077833765E-02 4.886686103E-02 6.015406312E-02 7.002972758E-02 6.770809631E-02 4.784210774E-02 2.232878766E-02 7.336888634E-03 7.336888634E-03 2.232878766E-02 4.784210774E-02 6.770809631E-02 7.002972758E-02 6.008009761E-02 5.162980944E-02 4.575158679E-02 4.168401732E-02 4.008906944E-02 4.168401732E-02 4.575158679E-02 5.162980944E-02 6.008009761E-02 7.057114826E-02 7.681749385E-02 6.927093266E-02 4.784210774E-02 2.630392872E-02 1.784803138E-02 2.630392872E-02 4.784210774E-02 6.927093266E-02 7.681749385E-02 7.057114826E-02 6.008009761E-02 5.478748589E-02 5.011378756E-02 4.682226974E-02 4.682226974E-02 5.011378756E-02 5.478748589E-02 6.008009761E-02 6.698659653E-02 7.453143011E-02 7.681749385E-02 6.770809631E-02 5.045243129E-02 3.710155405E-02 3.710155405E-02 5.045243129E-02 6.770809631E-02 7.681749385E-02 7.453143011E-02 6.698659653E-02 6.015406312E-02 5.607980099E-02 5.147916724E-02 4.933561120E-02 5.147916724E-02 5.607980099E-02 6.015406312E-02 6.330005647E-02 6.698659653E-02 7.057114826E-02 7.002972758E-02 6.266178671E-02 5.256060421E-02 4.785912130E-02 5.256060421E-02 6.266178671E-02 7.002972758E-02 7.057114826E-02 6.698659653E-02 6.330005647E-02 6.266178671E-02 5.256060421E-02 4.785912130E-02 5.256060421E-02 6.266178671E-02 7.002972758E-02 7.057114826E-02 6.698659653E-02 6.330005647E-02 6.015406312E-02 5.607980099E-02 5.147916724E-02 4.933561120E-02 5.147916724E-02 5.607980099E-02 6.015406312E-02 6.330005647E-02 6.698659653E-02 7.057114826E-02 7.002972758E-02 5.256060421E-02 4.463517735E-02 4.463517735E-02 5.256060421E-02 6.171115911E-02 6.479100302E-02 6.085965591E-02 5.434561968E-02 4.886686103E-02 4.477814539E-02 4.131333285E-02 3.895940798E-02 3.895940798E-02 4.131333285E-02 4.477814539E-02 4.886686103E-02 5.434561968E-02 6.085965591E-02 6.479100302E-02 6.171115911E-02 4.785912130E-02 4.463517735E-02 4.785912130E-02 5.453077084E-02 5.822335543E-02 5.533215374E-02 4.811166390E-02 4.077833765E-02 3.527757314E-02 3.136085494E-02 2.867209778E-02 2.764821140E-02 2.867209778E-02 3.136085494E-02 3.527757314E-02 4.077833765E-02 4.811166390E-02 5.533215374E-02 5.822335543E-02 5.453077084E-02 5.256060421E-02 5.256060421E-02 5.453077084E-02 5.516972298E-02 5.138874082E-02 4.379559116E-02 3.559264206E-02 2.905485662E-02 2.443633085E-02 2.126598267E-02 1.952228489E-02 1.952228489E-02 2.126598267E-02 2.443633085E-02 2.905485662E-02 3.559264206E-02 4.379559116E-02 5.138874082E-02 5.516972298E-02 5.453077084E-02 6.266178671E-02 6.171115911E-02 5.822335543E-02 5.138874082E-02 4.209909364E-02 3.278911854E-02 2.536114332E-02 2.013023111E-02 1.657449096E-02 1.436451234E-02 1.358957044E-02 1.436451234E-02 1.657449096E-02 2.013023111E-02 2.536114332E-02 3.278911854E-02 4.209909364E-02 5.138874082E-02 5.822335543E-02 6.171115911E-02 7.002972758E-02 6.479100302E-02 5.533215374E-02 4.379559116E-02 3.278911854E-02 2.406334989E-02 1.792336104E-02 1.383109198E-02 1.124833808E-02 9.963404014E-03 9.963404014E-03 1.124833808E-02 1.383109198E-02 1.792336104E-02 2.406334989E-02 3.278911854E-02 4.379559116E-02 5.533215374E-02 6.479100302E-02 7.002972758E-02 7.057114826E-02 6.085965591E-02 4.811166390E-02 3.559264206E-02 2.536114332E-02 1.792336104E-02 1.288608376E-02 9.700541389E-03 7.959586410E-03 7.409780059E-03 7.959586410E-03 9.700541389E-03 1.288608376E-02 1.792336104E-02 2.536114332E-02 3.559264206E-02 4.811166390E-02 6.085965591E-02 7.057114826E-02 7.421707044E-02 6.698659653E-02 5.434561968E-02 4.077833765E-02 2.905485662E-02 2.013023111E-02 1.383109198E-02 9.700541389E-03 7.307921858E-03 6.251391054E-03 6.251391054E-03 7.307921858E-03 9.700541389E-03 1.383109198E-02 2.013023111E-02 2.905485662E-02 4.077833765E-02 5.434561968E-02 6.698659653E-02 7.477968694E-02 7.477968694E-02 6.330005647E-02 4.886686103E-02 3.527757314E-02 2.443633085E-02 1.657449096E-02 1.124833808E-02 7.959586410E-03 6.251391054E-03 5.735897081E-03 6.251391054E-03 7.959586410E-03 1.124833808E-02 1.657449096E-02 2.443633085E-02 3.527757314E-02 4.886686103E-02 6.330005647E-02 7.477968694E-02 7.920590483E-02 7.477968694E-02 6.015406312E-02 4.477814539E-02 3.136085494E-02 2.126598267E-02 1.436451234E-02 9.963404014E-03 7.409780059E-03 6.251391054E-03 6.251391054E-03 7.409780059E-03 9.963404014E-03 1.436451234E-02 2.126598267E-02 3.136085494E-02 4.477814539E-02 6.015406312E-02 7.421707044E-02 8.275665460E-02 8.275665460E-02 7.421707044E-02 5.607980099E-02 4.131333285E-02 2.867209778E-02 1.952228489E-02 1.358957044E-02 9.963404014E-03 7.959586410E-03 7.307921858E-03 7.959586410E-03 9.963404014E-03 1.358957044E-02 1.952228489E-02 2.867209778E-02 4.131333285E-02 5.607980099E-02 7.002972758E-02 7.994242118E-02 8.352153305E-02 7.994242118E-02 7.002972758E-02 5.147916724E-02 3.895940798E-02 2.764821140E-02 1.952228489E-02 1.436451234E-02 1.124833808E-02 9.700541389E-03 9.700541389E-03 1.124833808E-02 1.436451234E-02 1.952228489E-02 2.764821140E-02 3.895940798E-02 5.147916724E-02 6.171115911E-02 6.770809631E-02 7.014515822E-02 7.014515822E-02 6.770809631E-02 6.171115911E-02 4.933561120E-02 3.895940798E-02 2.867209778E-02 2.126598267E-02 1.657449096E-02 1.383109198E-02 1.288608376E-02 1.383109198E-02 1.657449096E-02 2.126598267E-02 2.867209778E-02 3.895940798E-02 4.933561120E-02 5.453077084E-02 5.255675221E-02 4.784210774E-02 4.569473435E-02 4.784210774E-02 5.255675221E-02 5.453077084E-02 5.147916724E-02 4.131333285E-02 3.136085494E-02 2.443633085E-02 2.013023111E-02 1.792336104E-02 1.792336104E-02 2.013023111E-02 2.443633085E-02 3.136085494E-02 4.131333285E-02 5.147916724E-02 5.453077084E-02 4.575855910E-02 3.149859816E-02 2.232878766E-02 2.232878766E-02 3.149859816E-02 4.575855910E-02 5.453077084E-02 5.607980099E-02 4.477814539E-02 3.527757314E-02 2.905485662E-02 2.536114332E-02 2.406334989E-02 2.536114332E-02 2.905485662E-02 3.527757314E-02 4.477814539E-02 5.607980099E-02 6.171115911E-02 5.255675221E-02 3.149859816E-02 1.346760887E-02 7.336888634E-03 1.346760887E-02 3.149859816E-02 5.255675221E-02 6.171115911E-02 6.015406312E-02 4.886686103E-02 4.077833765E-02 3.559264206E-02 3.278911854E-02 3.278911854E-02 3.559264206E-02 4.077833765E-02 4.886686103E-02 6.015406312E-02 7.002972758E-02 6.770809631E-02 4.784210774E-02 2.232878766E-02 7.336888634E-03 7.336888634E-03 2.232878766E-02 4.784210774E-02 6.770809631E-02 7.002972758E-02 6.330005647E-02 5.434561968E-02 4.811166390E-02 4.379559116E-02 4.209909364E-02 4.379559116E-02 4.811166390E-02 5.434561968E-02 6.330005647E-02 7.421707044E-02 7.994242118E-02 7.014515822E-02 4.569473435E-02 2.232878766E-02 1.346760887E-02 2.232878766E-02 4.569473435E-02 7.014515822E-02 7.994242118E-02 7.421707044E-02 6.698659653E-02 6.085965591E-02 5.533215374E-02 5.138874082E-02 5.138874082E-02 5.533215374E-02 6.085965591E-02 6.698659653E-02 7.477968694E-02 8.275665460E-02 8.352153305E-02 7.014515822E-02 4.784210774E-02 3.149859816E-02 3.149859816E-02 4.784210774E-02 7.014515822E-02 8.352153305E-02 8.275665460E-02 7.477968694E-02 7.057114826E-02 6.479100302E-02 5.822335543E-02 5.516972298E-02 5.822335543E-02 6.479100302E-02 7.057114826E-02 7.477968694E-02 7.920590483E-02 8.275665460E-02 7.994242118E-02 6.770809631E-02 5.255675221E-02 4.575855910E-02 5.255675221E-02 6.770809631E-02 7.994242118E-02 8.275665460E-02 7.920590483E-02 7.477968694E-02 7.002972758E-02 6.171115911E-02 5.453077084E-02 5.453077084E-02 6.171115911E-02 7.002972758E-02 7.421707044E-02 7.477968694E-02 7.477968694E-02 7.421707044E-02 7.002972758E-02 6.171115911E-02 5.453077084E-02 5.453077084E-02 6.171115911E-02 7.002972758E-02 7.421707044E-02 7.477968694E-02 7.477968694E-02 7.421707044E-02 5.045243129E-02 3.710155405E-02 3.710155405E-02 5.045243129E-02 6.770809631E-02 7.681749385E-02 7.453143011E-02 6.698659653E-02 6.008009761E-02 5.478748589E-02 5.011378756E-02 4.682226974E-02 4.682226974E-02 5.011378756E-02 5.478748589E-02 6.008009761E-02 6.698659653E-02 7.453143011E-02 7.681749385E-02 6.770809631E-02 3.710155405E-02 3.053265872E-02 3.710155405E-02 5.255675221E-02 6.581693895E-02 6.801025510E-02 6.085965591E-02 5.162980944E-02 4.449069286E-02 3.950667612E-02 3.606437693E-02 3.472679295E-02 3.606437693E-02 3.950667612E-02 4.449069286E-02 5.162980944E-02 6.085965591E-02 6.801025510E-02 6.581693895E-02 5.255675221E-02 3.710155405E-02 3.710155405E-02 4.575855910E-02 5.656045169E-02 6.061215074E-02 5.533215374E-02 4.575158679E-02 3.720069702E-02 3.120787008E-02 2.720969903E-02 2.500684413E-02 2.500684413E-02 2.720969903E-02 3.120787008E-02 3.720069702E-02 4.575158679E-02 5.533215374E-02 6.061215074E-02 5.656045169E-02 4.575855910E-02 5.045243129E-02 5.255675221E-02 5.656045169E-02 5.717980179E-02 5.138874082E-02 4.168401732E-02 3.246239961E-02 2.573981764E-02 2.124663610E-02 1.845276082E-02 1.745741185E-02 1.845276082E-02 2.124663610E-02 2.573981764E-02 3.246239961E-02 4.168401732E-02 5.138874082E-02 5.717980179E-02 5.656045169E-02 5.255675221E-02 6.770809631E-02 6.581693895E-02 6.061215074E-02 5.138874082E-02 4.008906944E-02 2.987840680E-02 2.241647191E-02 1.747452352E-02 1.431674480E-02 1.268311583E-02 1.268311583E-02 1.431674480E-02 1.747452352E-02 2.241647191E-02 2.987840680E-02 4.008906944E-02 5.138874082E-02 6.061215074E-02 6.581693895E-02 6.770809631E-02 7.681749385E-02 6.801025510E-02 5.533215374E-02 4.168401732E-02 2.987840680E-02 2.123694757E-02 1.551318227E-02 1.189440198E-02 9.824001300E-03 9.136810816E-03 9.824001300E-03 1.189440198E-02 1.551318227E-02 2.123694757E-02 2.987840680E-02 4.168401732E-02 5.533215374E-02 6.801025510E-02 7.681749385E-02 7.994242118E-02 7.453143011E-02 6.085965591E-02 4.575158679E-02 3.246239961E-02 2.241647191E-02 1.551318227E-02 1.106573421E-02 8.444460834E-03 7.237508836E-03 7.237508836E-03 8.444460834E-03 1.106573421E-02 1.551318227E-02 2.241647191E-02 3.246239961E-02 4.575158679E-02 6.085965591E-02 7.453143011E-02 8.275665460E-02 8.275665460E-02 6.698659653E-02 5.162980944E-02 3.720069702E-02 2.573981764E-02 1.747452352E-02 1.189440198E-02 8.444460834E-03 6.642996083E-03 6.096559351E-03 6.642996083E-03 8.444460834E-03 1.189440198E-02 1.747452352E-02 2.573981764E-02 3.720069702E-02 5.162980944E-02 6.698659653E-02 7.920590483E-02 8.391674481E-02 7.920590483E-02 6.008009761E-02 4.449069286E-02 3.120787008E-02 2.124663610E-02 1.431674480E-02 9.824001300E-03 7.237508836E-03 6.096559351E-03 6.096559351E-03 7.237508836E-03 9.824001300E-03 1.431674480E-02 2.124663610E-02 3.120787008E-02 4.449069286E-02 6.008009761E-02 7.477968694E-02 8.391674481E-02 8.391674481E-02 7.477968694E-02 5.478748589E-02 3.950667612E-02 2.720969903E-02 1.845276082E-02 1.268311583E-02 9.136810816E-03 7.237508836E-03 6.642996083E-03 7.237508836E-03 9.136810816E-03 1.268311583E-02 1.845276082E-02 2.720969903E-02 3.950667612E-02 5.478748589E-02 7.057114826E-02 8.275665460E-02 8.737114027E-02 8.275665460E-02 7.057114826E-02 5.011378756E-02 3.606437693E-02 2.500684413E-02 1.745741185E-02 1.268311583E-02 9.824001300E-03 8.444460834E-03 8.444460834E-03 9.824001300E-03 1.268311583E-02 1.745741185E-02 2.500684413E-02 3.606437693E-02 5.011378756E-02 6.479100302E-02 7.681749385E-02 8.352153305E-02 8.352153305E-02 7.681749385E-02 6.479100302E-02 4.682226974E-02 3.472679295E-02 2.500684413E-02 1.845276082E-02 1.431674480E-02 1.189440198E-02 1.106573421E-02 1.189440198E-02 1.431674480E-02 1.845276082E-02 2.500684413E-02 3.472679295E-02 4.682226974E-02 5.822335543E-02 6.581693895E-02 6.927093266E-02 7.014515822E-02 6.927093266E-02 6.581693895E-02 5.822335543E-02 4.682226974E-02 3.606437693E-02 2.720969903E-02 2.124663610E-02 1.747452352E-02 1.551318227E-02 1.551318227E-02 1.747452352E-02 2.124663610E-02 2.720969903E-02 3.606437693E-02 4.682226974E-02 5.516972298E-02 5.656045169E-02 5.214472107E-02 4.784210774E-02 4.784210774E-02 5.214472107E-02 5.656045169E-02 5.516972298E-02 5.011378756E-02 3.950667612E-02 3.120787008E-02 2.573981764E-02 2.241647191E-02 2.123694757E-02 2.241647191E-02 2.573981764E-02 3.120787008E-02 3.950667612E-02 5.011378756E-02 5.822335543E-02 5.656045169E-02 4.455689206E-02 3.149859816E-02 2.630392872E-02 3.149859816E-02 4.455689206E-02 5.656045169E-02 5.822335543E-02 5.478748589E-02 4.449069286E-02 3.720069702E-02 3.246239961E-02 2.987840680E-02 2.987840680E-02 3.246239961E-02 3.720069702E-02 4.449069286E-02 5.478748589E-02 6.479100302E-02 6.581693895E-02 5.214472107E-02 3.149859816E-02 1.784803138E-02 1.784803138E-02 3.149859816E-02 5.214472107E-02 6.581693895E-02 6.479100302E-02 6.008009761E-02 5.162980944E-02 4.575158679E-02 4.168401732E-02 4.008906944E-02 4.168401732E-02 4.575158679E-02 5.162980944E-02 6.008009761E-02 7.057114826E-02 7.681749385E-02 6.927093266E-02 4.784210774E-02 2.630392872E-02 1.784803138E-02 2.630392872E-02 4.784210774E-02 6.927093266E-02 7.681749385E-02 7.057114826E-02 6.698659653E-02 6.085965591E-02 5.533215374E-02 5.138874082E-02 5.138874082E-02 5.533215374E-02 6.085965591E-02 6.698659653E-02 7.477968694E-02 8.275665460E-02 8.352153305E-02 7.014515822E-02 4.784210774E-02 3.149859816E-02 3.149859816E-02 4.784210774E-02 7.014515822E-02 8.352153305E-02 8.275665460E-02 7.477968694E-02 7.453143011E-02 6.801025510E-02 6.061215074E-02 5.717980179E-02 6.061215074E-02 6.801025510E-02 7.453143011E-02 7.920590483E-02 8.391674481E-02 8.737114027E-02 8.352153305E-02 6.927093266E-02 5.214472107E-02 4.455689206E-02 5.214472107E-02 6.927093266E-02 8.352153305E-02 8.737114027E-02 8.391674481E-02 7.920590483E-02 7.681749385E-02 6.581693895E-02 5.656045169E-02 5.656045169E-02 6.581693895E-02 7.681749385E-02 8.275665460E-02 8.391674481E-02 8.391674481E-02 8.275665460E-02 7.681749385E-02 6.581693895E-02 5.656045169E-02 5.656045169E-02 6.581693895E-02 7.681749385E-02 8.275665460E-02 8.391674481E-02 8.391674481E-02 8.275665460E-02 6.770809631E-02 5.255675221E-02 4.575855910E-02 5.255675221E-02 6.770809631E-02 7.994242118E-02 8.275665460E-02 7.920590483E-02 7.477968694E-02 7.057114826E-02 6.479100302E-02 5.822335543E-02 5.516972298E-02 5.822335543E-02 6.479100302E-02 7.057114826E-02 7.477968694E-02 7.920590483E-02 8.275665460E-02 7.994242118E-02 2.630392872E-02 1.784803138E-02 2.630392872E-02 4.784210774E-02 6.927093266E-02 7.681749385E-02 7.057114826E-02 6.008009761E-02 5.162980944E-02 4.575158679E-02 4.168401732E-02 4.008906944E-02 4.168401732E-02 4.575158679E-02 5.162980944E-02 6.008009761E-02 7.057114826E-02 7.681749385E-02 6.927093266E-02 4.784210774E-02 1.784803138E-02 1.784803138E-02 3.149859816E-02 5.214472107E-02 6.581693895E-02 6.479100302E-02 5.478748589E-02 4.449069286E-02 3.720069702E-02 3.246239961E-02 2.987840680E-02 2.987840680E-02 3.246239961E-02 3.720069702E-02 4.449069286E-02 5.478748589E-02 6.479100302E-02 6.581693895E-02 5.214472107E-02 3.149859816E-02 2.630392872E-02 3.149859816E-02 4.455689206E-02 5.656045169E-02 5.822335543E-02 5.011378756E-02 3.950667612E-02 3.120787008E-02 2.573981764E-02 2.241647191E-02 2.123694757E-02 2.241647191E-02 2.573981764E-02 3.120787008E-02 3.950667612E-02 5.011378756E-02 5.822335543E-02 5.656045169E-02 4.455689206E-02 3.149859816E-02 4.784210774E-02 5.214472107E-02 5.656045169E-02 5.516972298E-02 4.682226974E-02 3.606437693E-02 2.720969903E-02 2.124663610E-02 1.747452352E-02 1.551318227E-02 1.551318227E-02 1.747452352E-02 2.124663610E-02 2.720969903E-02 3.606437693E-02 4.682226974E-02 5.516972298E-02 5.656045169E-02 5.214472107E-02 4.784210774E-02 6.927093266E-02 6.581693895E-02 5.822335543E-02 4.682226974E-02 3.472679295E-02 2.500684413E-02 1.845276082E-02 1.431674480E-02 1.189440198E-02 1.106573421E-02 1.189440198E-02 1.431674480E-02 1.845276082E-02 2.500684413E-02 3.472679295E-02 4.682226974E-02 5.822335543E-02 6.581693895E-02 6.927093266E-02 7.014515822E-02 7.681749385E-02 6.479100302E-02 5.011378756E-02 3.606437693E-02 2.500684413E-02 1.745741185E-02 1.268311583E-02 9.824001300E-03 8.444460834E-03 8.444460834E-03 9.824001300E-03 1.268311583E-02 1.745741185E-02 2.500684413E-02 3.606437693E-02 5.011378756E-02 6.479100302E-02 7.681749385E-02 8.352153305E-02 8.352153305E-02 7.057114826E-02 5.478748589E-02 3.950667612E-02 2.720969903E-02 1.845276082E-02 1.268311583E-02 9.136810816E-03 7.237508836E-03 6.642996083E-03 7.237508836E-03 9.136810816E-03 1.268311583E-02 1.845276082E-02 2.720969903E-02 3.950667612E-02 5.478748589E-02 7.057114826E-02 8.275665460E-02 8.737114027E-02 8.275665460E-02 6.008009761E-02 4.449069286E-02 3.120787008E-02 2.124663610E-02 1.431674480E-02 9.824001300E-03 7.237508836E-03 6.096559351E-03 6.096559351E-03 7.237508836E-03 9.824001300E-03 1.431674480E-02 2.124663610E-02 3.120787008E-02 4.449069286E-02 6.008009761E-02 7.477968694E-02 8.391674481E-02 8.391674481E-02 7.477968694E-02 5.162980944E-02 3.720069702E-02 2.573981764E-02 1.747452352E-02 1.189440198E-02 8.444460834E-03 6.642996083E-03 6.096559351E-03 6.642996083E-03 8.444460834E-03 1.189440198E-02 1.747452352E-02 2.573981764E-02 3.720069702E-02 5.162980944E-02 6.698659653E-02 7.920590483E-02 8.391674481E-02 7.920590483E-02 6.698659653E-02 4.575158679E-02 3.246239961E-02 2.241647191E-02 1.551318227E-02 1.106573421E-02 8.444460834E-03 7.237508836E-03 7.237508836E-03 8.444460834E-03 1.106573421E-02 1.551318227E-02 2.241647191E-02 3.246239961E-02 4.575158679E-02 6.085965591E-02 7.453143011E-02 8.275665460E-02 8.275665460E-02 7.453143011E-02 6.085965591E-02 4.168401732E-02 2.987840680E-02 2.123694757E-02 1.551318227E-02 1.189440198E-02 9.824001300E-03 9.136810816E-03 9.824001300E-03 1.189440198E-02 1.551318227E-02 2.123694757E-02 2.987840680E-02 4.168401732E-02 5.533215374E-02 6.801025510E-02 7.681749385E-02 7.994242118E-02 7.681749385E-02 6.801025510E-02 5.533215374E-02 4.008906944E-02 2.987840680E-02 2.241647191E-02 1.747452352E-02 1.431674480E-02 1.268311583E-02 1.268311583E-02 1.431674480E-02 1.747452352E-02 2.241647191E-02 2.987840680E-02 4.008906944E-02 5.138874082E-02 6.061215074E-02 6.581693895E-02 6.770809631E-02 6.770809631E-02 6.581693895E-02 6.061215074E-02 5.138874082E-02 4.168401732E-02 3.246239961E-02 2.573981764E-02 2.124663610E-02 1.845276082E-02 1.745741185E-02 1.845276082E-02 2.124663610E-02 2.573981764E-02 3.246239961E-02 4.168401732E-02 5.138874082E-02 5.717980179E-02 5.656045169E-02 5.255675221E-02 5.045243129E-02 5.255675221E-02 5.656045169E-02 5.717980179E-02 5.138874082E-02 4.575158679E-02 3.720069702E-02 3.120787008E-02 2.720969903E-02 2.500684413E-02 2.500684413E-02 2.720969903E-02 3.120787008E-02 3.720069702E-02 4.575158679E-02 5.533215374E-02 6.061215074E-02 5.656045169E-02 4.575855910E-02 3.710155405E-02 3.710155405E-02 4.575855910E-02 5.656045169E-02 6.061215074E-02 5.533215374E-02 5.162980944E-02 4.449069286E-02 3.950667612E-02 3.606437693E-02 3.472679295E-02 3.606437693E-02 3.950667612E-02 4.449069286E-02 5.162980944E-02 6.085965591E-02 6.801025510E-02 6.581693895E-02 5.255675221E-02 3.710155405E-02 3.053265872E-02 3.710155405E-02 5.255675221E-02 6.581693895E-02 6.801025510E-02 6.085965591E-02 6.008009761E-02 5.478748589E-02 5.011378756E-02 4.682226974E-02 4.682226974E-02 5.011378756E-02 5.478748589E-02 6.008009761E-02 6.698659653E-02 7.453143011E-02 7.681749385E-02 6.770809631E-02 5.045243129E-02 3.710155405E-02 3.710155405E-02 5.045243129E-02 6.770809631E-02 7.681749385E-02 7.453143011E-02 6.698659653E-02 7.057114826E-02 6.479100302E-02 5.822335543E-02 5.516972298E-02 5.822335543E-02 6.479100302E-02 7.057114826E-02 7.477968694E-02 7.920590483E-02 8.275665460E-02 7.994242118E-02 6.770809631E-02 5.255675221E-02 4.575855910E-02 5.255675221E-02 6.770809631E-02 7.994242118E-02 8.275665460E-02 7.920590483E-02 7.477968694E-02 7.681749385E-02 6.581693895E-02 5.656045169E-02 5.656045169E-02 6.581693895E-02 7.681749385E-02 8.275665460E-02 8.391674481E-02 8.391674481E-02 8.275665460E-02 7.681749385E-02 6.581693895E-02 5.656045169E-02 5.656045169E-02 6.581693895E-02 7.681749385E-02 8.275665460E-02 8.391674481E-02 8.391674481E-02 8.275665460E-02 6.927093266E-02 5.214472107E-02 4.455689206E-02 5.214472107E-02 6.927093266E-02 8.352153305E-02 8.737114027E-02 8.391674481E-02 7.920590483E-02 7.453143011E-02 6.801025510E-02 6.061215074E-02 5.717980179E-02 6.061215074E-02 6.801025510E-02 7.453143011E-02 7.920590483E-02 8.391674481E-02 8.737114027E-02 8.352153305E-02 4.784210774E-02 3.149859816E-02 3.149859816E-02 4.784210774E-02 7.014515822E-02 8.352153305E-02 8.275665460E-02 7.477968694E-02 6.698659653E-02 6.085965591E-02 5.533215374E-02 5.138874082E-02 5.138874082E-02 5.533215374E-02 6.085965591E-02 6.698659653E-02 7.477968694E-02 8.275665460E-02 8.352153305E-02 7.014515822E-02 7.336888634E-03 7.336888634E-03 2.232878766E-02 4.784210774E-02 6.770809631E-02 7.002972758E-02 6.015406312E-02 4.886686103E-02 4.077833765E-02 3.559264206E-02 3.278911854E-02 3.278911854E-02 3.559264206E-02 4.077833765E-02 4.886686103E-02 6.015406312E-02 7.002972758E-02 6.770809631E-02 4.784210774E-02 2.232878766E-02 7.336888634E-03 1.346760887E-02 3.149859816E-02 5.255675221E-02 6.171115911E-02 5.607980099E-02 4.477814539E-02 3.527757314E-02 2.905485662E-02 2.536114332E-02 2.406334989E-02 2.536114332E-02 2.905485662E-02 3.527757314E-02 4.477814539E-02 5.607980099E-02 6.171115911E-02 5.255675221E-02 3.149859816E-02 1.346760887E-02 2.232878766E-02 3.149859816E-02 4.575855910E-02 5.453077084E-02 5.147916724E-02 4.131333285E-02 3.136085494E-02 2.443633085E-02 2.013023111E-02 1.792336104E-02 1.792336104E-02 2.013023111E-02 2.443633085E-02 3.136085494E-02 4.131333285E-02 5.147916724E-02 5.453077084E-02 4.575855910E-02 3.149859816E-02 2.232878766E-02 4.784210774E-02 5.255675221E-02 5.453077084E-02 4.933561120E-02 3.895940798E-02 2.867209778E-02 2.126598267E-02 1.657449096E-02 1.383109198E-02 1.288608376E-02 1.383109198E-02 1.657449096E-02 2.126598267E-02 2.867209778E-02 3.895940798E-02 4.933561120E-02 5.453077084E-02 5.255675221E-02 4.784210774E-02 4.569473435E-02 6.770809631E-02 6.171115911E-02 5.147916724E-02 3.895940798E-02 2.764821140E-02 1.952228489E-02 1.436451234E-02 1.124833808E-02 9.700541389E-03 9.700541389E-03 1.124833808E-02 1.436451234E-02 1.952228489E-02 2.764821140E-02 3.895940798E-02 5.147916724E-02 6.171115911E-02 6.770809631E-02 7.014515822E-02 7.014515822E-02 7.002972758E-02 5.607980099E-02 4.131333285E-02 2.867209778E-02 1.952228489E-02 1.358957044E-02 9.963404014E-03 7.959586410E-03 7.307921858E-03 7.959586410E-03 9.963404014E-03 1.358957044E-02 1.952228489E-02 2.867209778E-02 4.131333285E-02 5.607980099E-02 7.002972758E-02 7.994242118E-02 8.352153305E-02 7.994242118E-02 6.015406312E-02 4.477814539E-02 3.136085494E-02 2.126598267E-02 1.436451234E-02 9.963404014E-03 7.409780059E-03 6.251391054E-03 6.251391054E-03 7.409780059E-03 9.963404014E-03 1.436451234E-02 2.126598267E-02 3.136085494E-02 4.477814539E-02 6.015406312E-02 7.421707044E-02 8.275665460E-02 8.275665460E-02 7.421707044E-02 4.886686103E-02 3.527757314E-02 2.443633085E-02 1.657449096E-02 1.124833808E-02 7.959586410E-03 6.251391054E-03 5.735897081E-03 6.251391054E-03 7.959586410E-03 1.124833808E-02 1.657449096E-02 2.443633085E-02 3.527757314E-02 4.886686103E-02 6.330005647E-02 7.477968694E-02 7.920590483E-02 7.477968694E-02 6.330005647E-02 4.077833765E-02 2.905485662E-02 2.013023111E-02 1.383109198E-02 9.700541389E-03 7.307921858E-03 6.251391054E-03 6.251391054E-03 7.307921858E-03 9.700541389E-03 1.383109198E-02 2.013023111E-02 2.905485662E-02 4.077833765E-02 5.434561968E-02 6.698659653E-02 7.477968694E-02 7.477968694E-02 6.698659653E-02 5.434561968E-02 3.559264206E-02 2.536114332E-02 1.792336104E-02 1.288608376E-02 9.700541389E-03 7.959586410E-03 7.409780059E-03 7.959586410E-03 9.700541389E-03 1.288608376E-02 1.792336104E-02 2.536114332E-02 3.559264206E-02 4.811166390E-02 6.085965591E-02 7.057114826E-02 7.421707044E-02 7.057114826E-02 6.085965591E-02 4.811166390E-02 3.278911854E-02 2.406334989E-02 1.792336104E-02 1.383109198E-02 1.124833808E-02 9.963404014E-03 9.963404014E-03 1.124833808E-02 1.383109198E-02 1.792336104E-02 2.406334989E-02 3.278911854E-02 4.379559116E-02 5.533215374E-02 6.479100302E-02 7.002972758E-02 7.002972758E-02 6.479100302E-02 5.533215374E-02 4.379559116E-02 3.278911854E-02 2.536114332E-02 2.013023111E-02 1.657449096E-02 1.436451234E-02 1.358957044E-02 1.436451234E-02 1.657449096E-02 2.013023111E-02 2.536114332E-02 3.278911854E-02 4.209909364E-02 5.138874082E-02 5.822335543E-02 6.171115911E-02 6.266178671E-02 6.171115911E-02 5.822335543E-02 5.138874082E-02 4.209909364E-02 3.559264206E-02 2.905485662E-02 2.443633085E-02 2.126598267E-02 1.952228489E-02 1.952228489E-02 2.126598267E-02 2.443633085E-02 2.905485662E-02 3.559264206E-02 4.379559116E-02 5.138874082E-02 5.516972298E-02 5.453077084E-02 5.256060421E-02 5.256060421E-02 5.453077084E-02 5.516972298E-02 5.138874082E-02 4.379559116E-02 4.077833765E-02 3.527757314E-02 3.136085494E-02 2.867209778E-02 2.764821140E-02 2.867209778E-02 3.136085494E-02 3.527757314E-02 4.077833765E-02 4.811166390E-02 5.533215374E-02 5.822335543E-02 5.453077084E-02 4.785912130E-02 4.463517735E-02 4.785912130E-02 5.453077084E-02 5.822335543E-02 5.533215374E-02 4.811166390E-02 4.886686103E-02 4.477814539E-02 4.131333285E-02 3.895940798E-02 3.895940798E-02 4.131333285E-02 4.477814539E-02 4.886686103E-02 5.434561968E-02 6.085965591E-02 6.479100302E-02 6.171115911E-02 5.256060421E-02 4.463517735E-02 4.463517735E-02 5.256060421E-02 6.171115911E-02 6.479100302E-02 6.085965591E-02 5.434561968E-02 6.015406312E-02 5.607980099E-02 5.147916724E-02 4.933561120E-02 5.147916724E-02 5.607980099E-02 6.015406312E-02 6.330005647E-02 6.698659653E-02 7.057114826E-02 7.002972758E-02 6.266178671E-02 5.256060421E-02 4.785912130E-02 5.256060421E-02 6.266178671E-02 7.002972758E-02 7.057114826E-02 6.698659653E-02 6.330005647E-02 7.002972758E-02 6.171115911E-02 5.453077084E-02 5.453077084E-02 6.171115911E-02 7.002972758E-02 7.421707044E-02 7.477968694E-02 7.477968694E-02 7.421707044E-02 7.002972758E-02 6.171115911E-02 5.453077084E-02 5.453077084E-02 6.171115911E-02 7.002972758E-02 7.421707044E-02 7.477968694E-02 7.477968694E-02 7.421707044E-02 6.770809631E-02 5.255675221E-02 4.575855910E-02 5.255675221E-02 6.770809631E-02 7.994242118E-02 8.275665460E-02 7.920590483E-02 7.477968694E-02 7.057114826E-02 6.479100302E-02 5.822335543E-02 5.516972298E-02 5.822335543E-02 6.479100302E-02 7.057114826E-02 7.477968694E-02 7.920590483E-02 8.275665460E-02 7.994242118E-02 4.784210774E-02 3.149859816E-02 3.149859816E-02 4.784210774E-02 7.014515822E-02 8.352153305E-02 8.275665460E-02 7.477968694E-02 6.698659653E-02 6.085965591E-02 5.533215374E-02 5.138874082E-02 5.138874082E-02 5.533215374E-02 6.085965591E-02 6.698659653E-02 7.477968694E-02 8.275665460E-02 8.352153305E-02 7.014515822E-02 2.232878766E-02 1.346760887E-02 2.232878766E-02 4.569473435E-02 7.014515822E-02 7.994242118E-02 7.421707044E-02 6.330005647E-02 5.434561968E-02 4.811166390E-02 4.379559116E-02 4.209909364E-02 4.379559116E-02 4.811166390E-02 5.434561968E-02 6.330005647E-02 7.421707044E-02 7.994242118E-02 7.014515822E-02 4.569473435E-02 espresso-5.1/PP/examples/example01/reference/si.plotband.out0000644000175000017500000000172112341372774022152 0ustar mbambaInput file > Reading 8 bands at 36 k-points Range: -5.8100 16.4070eV Emin, Emax > high-symmetry point: 0.5000 0.5000 0.5000 high-symmetry point: 0.0000 0.0000 0.0000 high-symmetry point: 0.0000 0.0000 1.0000 high-symmetry point: 0.0000 1.0000 1.0000 high-symmetry point: 0.0000 0.0000 0.0000 output file (xmgr) > bands in xmgr format written to file sibands.xmgr output file (ps) > Efermi > deltaE, reference E (for tics) bands in PostScript format written to file sibands.ps espresso-5.1/PP/examples/example01/reference/si.plotrho.out0000644000175000017500000000037512341372774022042 0ustar mbambaInput file > r0 : 0.0000 0.0000 0.0000 tau1 : 1.0000 1.0000 0.0000 tau2 : 0.0000 0.0000 1.0000 read 2 atomic positions output file > Read 56 * 40 grid Logarithmic scale (y/n)? > Bounds: 0.001411 0.087440 min, max, # of levels > espresso-5.1/PP/examples/example01/reference/si.rho.dat0000644000175000017500000006721612341372774021113 0ustar mbamba 55 39 0.0000 0.0257 0.0514 0.0771 0.1029 0.1286 0.1543 0.1800 0.2057 0.2314 0.2571 0.2828 0.3086 0.3343 0.3600 0.3857 0.4114 0.4371 0.4628 0.4885 0.5143 0.5400 0.5657 0.5914 0.6171 0.6428 0.6685 0.6943 0.7200 0.7457 0.7714 0.7971 0.8228 0.8485 0.8742 0.9000 0.9257 0.9514 0.9771 1.0028 1.0285 1.0542 1.0799 1.1057 1.1314 1.1571 1.1828 1.2085 1.2342 1.2599 1.2856 1.3114 1.3371 1.3628 1.3885 1.4142 0.0000 0.0256 0.0513 0.0769 0.1026 0.1282 0.1538 0.1795 0.2051 0.2308 0.2564 0.2821 0.3077 0.3333 0.3590 0.3846 0.4103 0.4359 0.4615 0.4872 0.5128 0.5385 0.5641 0.5897 0.6154 0.6410 0.6667 0.6923 0.7179 0.7436 0.7692 0.7949 0.8205 0.8462 0.8718 0.8974 0.9231 0.9487 0.9744 1.0000 0.1411E-02 0.4468E-02 0.1442E-01 0.3080E-01 0.4852E-01 0.6034E-01 0.6262E-01 0.5729E-01 0.4886E-01 0.4088E-01 0.3470E-01 0.3028E-01 0.2726E-01 0.2552E-01 0.2516E-01 0.2623E-01 0.2861E-01 0.3230E-01 0.3755E-01 0.4468E-01 0.5319E-01 0.6063E-01 0.6266E-01 0.5553E-01 0.3997E-01 0.2201E-01 0.8522E-02 0.2155E-02 0.2155E-02 0.8522E-02 0.2201E-01 0.3997E-01 0.5553E-01 0.6266E-01 0.6063E-01 0.5319E-01 0.4468E-01 0.3755E-01 0.3230E-01 0.2861E-01 0.2623E-01 0.2516E-01 0.2552E-01 0.2726E-01 0.3028E-01 0.3470E-01 0.4088E-01 0.4886E-01 0.5729E-01 0.6262E-01 0.6034E-01 0.4852E-01 0.3080E-01 0.1442E-01 0.4468E-02 0.1411E-02 0.4434E-02 0.8365E-02 0.2038E-01 0.3881E-01 0.5767E-01 0.6964E-01 0.7155E-01 0.6584E-01 0.5723E-01 0.4922E-01 0.4305E-01 0.3856E-01 0.3537E-01 0.3347E-01 0.3307E-01 0.3425E-01 0.3682E-01 0.4062E-01 0.4590E-01 0.5303E-01 0.6163E-01 0.6935E-01 0.7180E-01 0.6486E-01 0.4869E-01 0.2907E-01 0.1337E-01 0.5407E-02 0.5407E-02 0.1337E-01 0.2907E-01 0.4869E-01 0.6486E-01 0.7180E-01 0.6935E-01 0.6163E-01 0.5303E-01 0.4590E-01 0.4062E-01 0.3682E-01 0.3425E-01 0.3307E-01 0.3347E-01 0.3537E-01 0.3856E-01 0.4305E-01 0.4922E-01 0.5723E-01 0.6584E-01 0.7155E-01 0.6964E-01 0.5767E-01 0.3881E-01 0.2038E-01 0.8365E-02 0.4434E-02 0.1411E-01 0.1887E-01 0.3240E-01 0.5129E-01 0.6892E-01 0.7895E-01 0.7953E-01 0.7364E-01 0.6566E-01 0.5851E-01 0.5295E-01 0.4865E-01 0.4529E-01 0.4313E-01 0.4266E-01 0.4403E-01 0.4685E-01 0.5068E-01 0.5554E-01 0.6189E-01 0.6967E-01 0.7711E-01 0.8032E-01 0.7513E-01 0.6072E-01 0.4153E-01 0.2467E-01 0.1531E-01 0.1531E-01 0.2467E-01 0.4153E-01 0.6072E-01 0.7513E-01 0.8032E-01 0.7711E-01 0.6967E-01 0.6189E-01 0.5554E-01 0.5068E-01 0.4685E-01 0.4403E-01 0.4266E-01 0.4313E-01 0.4529E-01 0.4865E-01 0.5295E-01 0.5851E-01 0.6566E-01 0.7364E-01 0.7953E-01 0.7895E-01 0.6892E-01 0.5129E-01 0.3240E-01 0.1887E-01 0.1411E-01 0.2969E-01 0.3453E-01 0.4757E-01 0.6430E-01 0.7846E-01 0.8544E-01 0.8488E-01 0.7980E-01 0.7369E-01 0.6835E-01 0.6384E-01 0.5959E-01 0.5560E-01 0.5275E-01 0.5211E-01 0.5395E-01 0.5752E-01 0.6170E-01 0.6602E-01 0.7089E-01 0.7671E-01 0.8266E-01 0.8596E-01 0.8298E-01 0.7207E-01 0.5586E-01 0.4024E-01 0.3092E-01 0.3092E-01 0.4024E-01 0.5586E-01 0.7207E-01 0.8298E-01 0.8596E-01 0.8266E-01 0.7671E-01 0.7089E-01 0.6602E-01 0.6170E-01 0.5752E-01 0.5395E-01 0.5211E-01 0.5275E-01 0.5560E-01 0.5959E-01 0.6384E-01 0.6835E-01 0.7369E-01 0.7980E-01 0.8488E-01 0.8544E-01 0.7846E-01 0.6430E-01 0.4757E-01 0.3453E-01 0.2969E-01 0.4601E-01 0.5004E-01 0.6047E-01 0.7299E-01 0.8276E-01 0.8708E-01 0.8659E-01 0.8376E-01 0.8064E-01 0.7762E-01 0.7388E-01 0.6874E-01 0.6294E-01 0.5854E-01 0.5753E-01 0.6042E-01 0.6581E-01 0.7148E-01 0.7590E-01 0.7916E-01 0.8218E-01 0.8531E-01 0.8730E-01 0.8563E-01 0.7846E-01 0.6679E-01 0.5468E-01 0.4705E-01 0.4705E-01 0.5468E-01 0.6679E-01 0.7846E-01 0.8563E-01 0.8730E-01 0.8531E-01 0.8218E-01 0.7916E-01 0.7590E-01 0.7148E-01 0.6581E-01 0.6042E-01 0.5753E-01 0.5854E-01 0.6294E-01 0.6874E-01 0.7388E-01 0.7762E-01 0.8064E-01 0.8376E-01 0.8659E-01 0.8708E-01 0.8276E-01 0.7299E-01 0.6047E-01 0.5004E-01 0.4601E-01 0.5611E-01 0.5891E-01 0.6598E-01 0.7415E-01 0.8039E-01 0.8360E-01 0.8472E-01 0.8522E-01 0.8550E-01 0.8439E-01 0.8017E-01 0.7241E-01 0.6320E-01 0.5623E-01 0.5465E-01 0.5920E-01 0.6777E-01 0.7666E-01 0.8275E-01 0.8523E-01 0.8543E-01 0.8498E-01 0.8432E-01 0.8235E-01 0.7764E-01 0.7015E-01 0.6209E-01 0.5683E-01 0.5683E-01 0.6209E-01 0.7015E-01 0.7764E-01 0.8235E-01 0.8432E-01 0.8498E-01 0.8543E-01 0.8523E-01 0.8275E-01 0.7666E-01 0.6777E-01 0.5920E-01 0.5465E-01 0.5623E-01 0.6320E-01 0.7241E-01 0.8017E-01 0.8439E-01 0.8550E-01 0.8522E-01 0.8472E-01 0.8360E-01 0.8039E-01 0.7415E-01 0.6598E-01 0.5891E-01 0.5611E-01 0.5670E-01 0.5845E-01 0.6288E-01 0.6810E-01 0.7263E-01 0.7634E-01 0.8001E-01 0.8399E-01 0.8707E-01 0.8655E-01 0.8009E-01 0.6811E-01 0.5454E-01 0.4472E-01 0.4254E-01 0.4886E-01 0.6119E-01 0.7461E-01 0.8412E-01 0.8744E-01 0.8579E-01 0.8199E-01 0.7813E-01 0.7455E-01 0.7049E-01 0.6551E-01 0.6044E-01 0.5715E-01 0.5715E-01 0.6044E-01 0.6551E-01 0.7049E-01 0.7455E-01 0.7813E-01 0.8199E-01 0.8579E-01 0.8744E-01 0.8412E-01 0.7461E-01 0.6119E-01 0.4886E-01 0.4254E-01 0.4472E-01 0.5454E-01 0.6811E-01 0.8009E-01 0.8655E-01 0.8707E-01 0.8399E-01 0.8001E-01 0.7634E-01 0.7263E-01 0.6810E-01 0.6288E-01 0.5845E-01 0.5670E-01 0.4987E-01 0.5102E-01 0.5401E-01 0.5791E-01 0.6222E-01 0.6723E-01 0.7339E-01 0.8005E-01 0.8458E-01 0.8310E-01 0.7322E-01 0.5685E-01 0.3980E-01 0.2824E-01 0.2577E-01 0.3304E-01 0.4798E-01 0.6554E-01 0.7920E-01 0.8481E-01 0.8282E-01 0.7678E-01 0.7017E-01 0.6460E-01 0.6001E-01 0.5589E-01 0.5234E-01 0.5016E-01 0.5016E-01 0.5234E-01 0.5589E-01 0.6001E-01 0.6460E-01 0.7017E-01 0.7678E-01 0.8282E-01 0.8481E-01 0.7920E-01 0.6554E-01 0.4798E-01 0.3304E-01 0.2577E-01 0.2824E-01 0.3980E-01 0.5685E-01 0.7322E-01 0.8310E-01 0.8458E-01 0.8005E-01 0.7339E-01 0.6723E-01 0.6222E-01 0.5791E-01 0.5401E-01 0.5102E-01 0.4987E-01 0.4011E-01 0.4099E-01 0.4341E-01 0.4697E-01 0.5163E-01 0.5782E-01 0.6564E-01 0.7368E-01 0.7830E-01 0.7504E-01 0.6206E-01 0.4296E-01 0.2490E-01 0.1364E-01 0.1133E-01 0.1820E-01 0.3336E-01 0.5285E-01 0.6967E-01 0.7788E-01 0.7671E-01 0.6981E-01 0.6156E-01 0.5451E-01 0.4914E-01 0.4506E-01 0.4204E-01 0.4034E-01 0.4034E-01 0.4204E-01 0.4506E-01 0.4914E-01 0.5451E-01 0.6156E-01 0.6981E-01 0.7671E-01 0.7788E-01 0.6967E-01 0.5285E-01 0.3336E-01 0.1820E-01 0.1133E-01 0.1364E-01 0.2490E-01 0.4296E-01 0.6206E-01 0.7504E-01 0.7830E-01 0.7368E-01 0.6564E-01 0.5782E-01 0.5163E-01 0.4697E-01 0.4341E-01 0.4099E-01 0.4011E-01 0.3086E-01 0.3163E-01 0.3383E-01 0.3730E-01 0.4219E-01 0.4891E-01 0.5732E-01 0.6560E-01 0.6969E-01 0.6508E-01 0.5073E-01 0.3141E-01 0.1466E-01 0.5149E-02 0.3317E-02 0.8905E-02 0.2230E-01 0.4121E-01 0.5895E-01 0.6867E-01 0.6848E-01 0.6169E-01 0.5296E-01 0.4530E-01 0.3954E-01 0.3541E-01 0.3257E-01 0.3106E-01 0.3106E-01 0.3257E-01 0.3541E-01 0.3954E-01 0.4530E-01 0.5296E-01 0.6169E-01 0.6848E-01 0.6867E-01 0.5895E-01 0.4121E-01 0.2230E-01 0.8905E-02 0.3317E-02 0.5149E-02 0.1466E-01 0.3141E-01 0.5073E-01 0.6508E-01 0.6969E-01 0.6560E-01 0.5732E-01 0.4891E-01 0.4219E-01 0.3730E-01 0.3383E-01 0.3163E-01 0.3086E-01 0.2345E-01 0.2414E-01 0.2616E-01 0.2944E-01 0.3419E-01 0.4077E-01 0.4896E-01 0.5693E-01 0.6075E-01 0.5628E-01 0.4289E-01 0.2543E-01 0.1096E-01 0.3200E-02 0.1769E-02 0.6207E-02 0.1747E-01 0.3421E-01 0.5051E-01 0.5972E-01 0.5965E-01 0.5318E-01 0.4473E-01 0.3724E-01 0.3161E-01 0.2764E-01 0.2499E-01 0.2362E-01 0.2362E-01 0.2499E-01 0.2764E-01 0.3161E-01 0.3724E-01 0.4473E-01 0.5318E-01 0.5965E-01 0.5972E-01 0.5051E-01 0.3421E-01 0.1747E-01 0.6207E-02 0.1769E-02 0.3200E-02 0.1096E-01 0.2543E-01 0.4289E-01 0.5628E-01 0.6075E-01 0.5693E-01 0.4896E-01 0.4077E-01 0.3419E-01 0.2944E-01 0.2616E-01 0.2414E-01 0.2345E-01 0.1781E-01 0.1843E-01 0.2022E-01 0.2318E-01 0.2750E-01 0.3351E-01 0.4108E-01 0.4869E-01 0.5304E-01 0.5051E-01 0.4030E-01 0.2625E-01 0.1423E-01 0.7599E-02 0.6353E-02 0.1019E-01 0.1967E-01 0.3337E-01 0.4622E-01 0.5279E-01 0.5153E-01 0.4505E-01 0.3715E-01 0.3028E-01 0.2515E-01 0.2155E-01 0.1918E-01 0.1797E-01 0.1797E-01 0.1918E-01 0.2155E-01 0.2515E-01 0.3028E-01 0.3715E-01 0.4505E-01 0.5153E-01 0.5279E-01 0.4622E-01 0.3337E-01 0.1967E-01 0.1019E-01 0.6353E-02 0.7599E-02 0.1423E-01 0.2625E-01 0.4030E-01 0.5051E-01 0.5304E-01 0.4869E-01 0.4108E-01 0.3351E-01 0.2750E-01 0.2318E-01 0.2022E-01 0.1843E-01 0.1781E-01 0.1352E-01 0.1405E-01 0.1560E-01 0.1817E-01 0.2193E-01 0.2722E-01 0.3407E-01 0.4148E-01 0.4700E-01 0.4768E-01 0.4230E-01 0.3306E-01 0.2419E-01 0.1879E-01 0.1771E-01 0.2096E-01 0.2833E-01 0.3791E-01 0.4569E-01 0.4809E-01 0.4467E-01 0.3783E-01 0.3048E-01 0.2437E-01 0.1988E-01 0.1675E-01 0.1470E-01 0.1365E-01 0.1365E-01 0.1470E-01 0.1675E-01 0.1988E-01 0.2437E-01 0.3048E-01 0.3783E-01 0.4467E-01 0.4809E-01 0.4569E-01 0.3791E-01 0.2833E-01 0.2096E-01 0.1771E-01 0.1879E-01 0.2419E-01 0.3306E-01 0.4230E-01 0.4768E-01 0.4700E-01 0.4148E-01 0.3407E-01 0.2722E-01 0.2193E-01 0.1817E-01 0.1560E-01 0.1405E-01 0.1352E-01 0.1025E-01 0.1070E-01 0.1202E-01 0.1422E-01 0.1744E-01 0.2201E-01 0.2812E-01 0.3530E-01 0.4202E-01 0.4608E-01 0.4606E-01 0.4257E-01 0.3801E-01 0.3477E-01 0.3407E-01 0.3612E-01 0.4025E-01 0.4462E-01 0.4660E-01 0.4451E-01 0.3885E-01 0.3165E-01 0.2488E-01 0.1954E-01 0.1568E-01 0.1301E-01 0.1125E-01 0.1036E-01 0.1036E-01 0.1125E-01 0.1301E-01 0.1568E-01 0.1954E-01 0.2488E-01 0.3165E-01 0.3885E-01 0.4451E-01 0.4660E-01 0.4462E-01 0.4025E-01 0.3612E-01 0.3407E-01 0.3477E-01 0.3801E-01 0.4257E-01 0.4606E-01 0.4608E-01 0.4202E-01 0.3530E-01 0.2812E-01 0.2201E-01 0.1744E-01 0.1422E-01 0.1202E-01 0.1070E-01 0.1025E-01 0.7834E-02 0.8213E-02 0.9335E-02 0.1121E-01 0.1395E-01 0.1785E-01 0.2318E-01 0.2987E-01 0.3716E-01 0.4366E-01 0.4803E-01 0.4988E-01 0.4996E-01 0.4950E-01 0.4936E-01 0.4973E-01 0.5006E-01 0.4924E-01 0.4616E-01 0.4061E-01 0.3352E-01 0.2639E-01 0.2033E-01 0.1574E-01 0.1245E-01 0.1017E-01 0.8682E-02 0.7929E-02 0.7929E-02 0.8682E-02 0.1017E-01 0.1245E-01 0.1574E-01 0.2033E-01 0.2639E-01 0.3352E-01 0.4061E-01 0.4616E-01 0.4924E-01 0.5006E-01 0.4973E-01 0.4936E-01 0.4950E-01 0.4996E-01 0.4988E-01 0.4803E-01 0.4366E-01 0.3716E-01 0.2987E-01 0.2318E-01 0.1785E-01 0.1395E-01 0.1121E-01 0.9335E-02 0.8213E-02 0.7834E-02 0.6136E-02 0.6455E-02 0.7403E-02 0.8992E-02 0.1132E-01 0.1460E-01 0.1911E-01 0.2499E-01 0.3199E-01 0.3937E-01 0.4610E-01 0.5139E-01 0.5491E-01 0.5675E-01 0.5710E-01 0.5602E-01 0.5337E-01 0.4896E-01 0.4288E-01 0.3570E-01 0.2839E-01 0.2189E-01 0.1668E-01 0.1282E-01 0.1005E-01 0.8114E-02 0.6851E-02 0.6216E-02 0.6216E-02 0.6851E-02 0.8114E-02 0.1005E-01 0.1282E-01 0.1668E-01 0.2189E-01 0.2839E-01 0.3570E-01 0.4288E-01 0.4896E-01 0.5337E-01 0.5602E-01 0.5710E-01 0.5675E-01 0.5491E-01 0.5139E-01 0.4610E-01 0.3937E-01 0.3199E-01 0.2499E-01 0.1911E-01 0.1460E-01 0.1132E-01 0.8992E-02 0.7403E-02 0.6455E-02 0.6136E-02 0.4998E-02 0.5262E-02 0.6053E-02 0.7388E-02 0.9339E-02 0.1206E-01 0.1577E-01 0.2066E-01 0.2671E-01 0.3359E-01 0.4063E-01 0.4700E-01 0.5193E-01 0.5484E-01 0.5544E-01 0.5366E-01 0.4969E-01 0.4395E-01 0.3714E-01 0.3008E-01 0.2355E-01 0.1806E-01 0.1378E-01 0.1059E-01 0.8279E-02 0.6649E-02 0.5591E-02 0.5064E-02 0.5064E-02 0.5591E-02 0.6649E-02 0.8279E-02 0.1059E-01 0.1378E-01 0.1806E-01 0.2355E-01 0.3008E-01 0.3714E-01 0.4395E-01 0.4969E-01 0.5366E-01 0.5544E-01 0.5484E-01 0.5193E-01 0.4700E-01 0.4063E-01 0.3359E-01 0.2671E-01 0.2066E-01 0.1577E-01 0.1206E-01 0.9339E-02 0.7388E-02 0.6053E-02 0.5262E-02 0.4998E-02 0.4258E-02 0.4471E-02 0.5116E-02 0.6219E-02 0.7837E-02 0.1007E-01 0.1307E-01 0.1696E-01 0.2182E-01 0.2748E-01 0.3353E-01 0.3930E-01 0.4398E-01 0.4686E-01 0.4746E-01 0.4568E-01 0.4182E-01 0.3650E-01 0.3050E-01 0.2457E-01 0.1928E-01 0.1489E-01 0.1146E-01 0.8868E-02 0.6958E-02 0.5608E-02 0.4738E-02 0.4311E-02 0.4311E-02 0.4738E-02 0.5608E-02 0.6958E-02 0.8868E-02 0.1146E-01 0.1489E-01 0.1928E-01 0.2457E-01 0.3050E-01 0.3650E-01 0.4182E-01 0.4568E-01 0.4746E-01 0.4686E-01 0.4398E-01 0.3930E-01 0.3353E-01 0.2748E-01 0.2182E-01 0.1696E-01 0.1307E-01 0.1007E-01 0.7837E-02 0.6219E-02 0.5116E-02 0.4471E-02 0.4258E-02 0.3802E-02 0.3969E-02 0.4482E-02 0.5373E-02 0.6690E-02 0.8502E-02 0.1089E-01 0.1394E-01 0.1767E-01 0.2201E-01 0.2666E-01 0.3114E-01 0.3483E-01 0.3712E-01 0.3760E-01 0.3618E-01 0.3312E-01 0.2896E-01 0.2432E-01 0.1978E-01 0.1572E-01 0.1233E-01 0.9619E-02 0.7529E-02 0.5974E-02 0.4878E-02 0.4181E-02 0.3843E-02 0.3843E-02 0.4181E-02 0.4878E-02 0.5974E-02 0.7529E-02 0.9619E-02 0.1233E-01 0.1572E-01 0.1978E-01 0.2432E-01 0.2896E-01 0.3312E-01 0.3618E-01 0.3760E-01 0.3712E-01 0.3483E-01 0.3114E-01 0.2666E-01 0.2201E-01 0.1767E-01 0.1394E-01 0.1089E-01 0.8502E-02 0.6690E-02 0.5373E-02 0.4482E-02 0.3969E-02 0.3802E-02 0.3579E-02 0.3708E-02 0.4106E-02 0.4805E-02 0.5848E-02 0.7284E-02 0.9162E-02 0.1151E-01 0.1433E-01 0.1754E-01 0.2092E-01 0.2415E-01 0.2680E-01 0.2844E-01 0.2878E-01 0.2777E-01 0.2558E-01 0.2258E-01 0.1923E-01 0.1590E-01 0.1287E-01 0.1028E-01 0.8165E-02 0.6514E-02 0.5281E-02 0.4416E-02 0.3872E-02 0.3611E-02 0.3611E-02 0.3872E-02 0.4416E-02 0.5281E-02 0.6514E-02 0.8165E-02 0.1028E-01 0.1287E-01 0.1590E-01 0.1923E-01 0.2258E-01 0.2558E-01 0.2777E-01 0.2878E-01 0.2844E-01 0.2680E-01 0.2415E-01 0.2092E-01 0.1754E-01 0.1433E-01 0.1151E-01 0.9162E-02 0.7284E-02 0.5848E-02 0.4805E-02 0.4106E-02 0.3708E-02 0.3579E-02 0.3579E-02 0.3677E-02 0.3978E-02 0.4507E-02 0.5299E-02 0.6391E-02 0.7816E-02 0.9586E-02 0.1168E-01 0.1401E-01 0.1642E-01 0.1868E-01 0.2050E-01 0.2162E-01 0.2186E-01 0.2117E-01 0.1966E-01 0.1758E-01 0.1521E-01 0.1282E-01 0.1059E-01 0.8658E-02 0.7061E-02 0.5805E-02 0.4868E-02 0.4212E-02 0.3801E-02 0.3604E-02 0.3604E-02 0.3801E-02 0.4212E-02 0.4868E-02 0.5805E-02 0.7061E-02 0.8658E-02 0.1059E-01 0.1282E-01 0.1521E-01 0.1758E-01 0.1966E-01 0.2117E-01 0.2186E-01 0.2162E-01 0.2050E-01 0.1868E-01 0.1642E-01 0.1401E-01 0.1168E-01 0.9586E-02 0.7816E-02 0.6391E-02 0.5299E-02 0.4507E-02 0.3978E-02 0.3677E-02 0.3579E-02 0.3802E-02 0.3874E-02 0.4093E-02 0.4474E-02 0.5037E-02 0.5813E-02 0.6828E-02 0.8091E-02 0.9579E-02 0.1122E-01 0.1290E-01 0.1446E-01 0.1570E-01 0.1645E-01 0.1661E-01 0.1614E-01 0.1513E-01 0.1371E-01 0.1207E-01 0.1039E-01 0.8810E-02 0.7429E-02 0.6289E-02 0.5396E-02 0.4731E-02 0.4262E-02 0.3964E-02 0.3820E-02 0.3820E-02 0.3964E-02 0.4262E-02 0.4731E-02 0.5396E-02 0.6289E-02 0.7429E-02 0.8810E-02 0.1039E-01 0.1207E-01 0.1371E-01 0.1513E-01 0.1614E-01 0.1661E-01 0.1645E-01 0.1570E-01 0.1446E-01 0.1290E-01 0.1122E-01 0.9579E-02 0.8091E-02 0.6828E-02 0.5813E-02 0.5037E-02 0.4474E-02 0.4093E-02 0.3874E-02 0.3802E-02 0.4258E-02 0.4306E-02 0.4451E-02 0.4695E-02 0.5050E-02 0.5539E-02 0.6187E-02 0.7006E-02 0.7983E-02 0.9069E-02 0.1018E-01 0.1120E-01 0.1201E-01 0.1250E-01 0.1260E-01 0.1230E-01 0.1164E-01 0.1071E-01 0.9628E-02 0.8517E-02 0.7477E-02 0.6575E-02 0.5842E-02 0.5276E-02 0.4857E-02 0.4560E-02 0.4367E-02 0.4270E-02 0.4270E-02 0.4367E-02 0.4560E-02 0.4857E-02 0.5276E-02 0.5842E-02 0.6575E-02 0.7477E-02 0.8517E-02 0.9628E-02 0.1071E-01 0.1164E-01 0.1230E-01 0.1260E-01 0.1250E-01 0.1201E-01 0.1120E-01 0.1018E-01 0.9069E-02 0.7983E-02 0.7006E-02 0.6187E-02 0.5539E-02 0.5050E-02 0.4695E-02 0.4451E-02 0.4306E-02 0.4258E-02 0.4998E-02 0.5019E-02 0.5081E-02 0.5183E-02 0.5336E-02 0.5559E-02 0.5879E-02 0.6313E-02 0.6859E-02 0.7485E-02 0.8136E-02 0.8738E-02 0.9216E-02 0.9505E-02 0.9565E-02 0.9387E-02 0.8997E-02 0.8448E-02 0.7812E-02 0.7165E-02 0.6573E-02 0.6081E-02 0.5705E-02 0.5437E-02 0.5252E-02 0.5126E-02 0.5045E-02 0.5004E-02 0.5004E-02 0.5045E-02 0.5126E-02 0.5252E-02 0.5437E-02 0.5705E-02 0.6081E-02 0.6573E-02 0.7165E-02 0.7812E-02 0.8448E-02 0.8997E-02 0.9387E-02 0.9565E-02 0.9505E-02 0.9216E-02 0.8738E-02 0.8136E-02 0.7485E-02 0.6859E-02 0.6313E-02 0.5879E-02 0.5559E-02 0.5336E-02 0.5183E-02 0.5081E-02 0.5019E-02 0.4998E-02 0.6136E-02 0.6120E-02 0.6072E-02 0.6002E-02 0.5928E-02 0.5879E-02 0.5889E-02 0.5981E-02 0.6161E-02 0.6411E-02 0.6695E-02 0.6967E-02 0.7185E-02 0.7317E-02 0.7344E-02 0.7263E-02 0.7085E-02 0.6835E-02 0.6551E-02 0.6279E-02 0.6060E-02 0.5923E-02 0.5875E-02 0.5898E-02 0.5964E-02 0.6039E-02 0.6099E-02 0.6132E-02 0.6132E-02 0.6099E-02 0.6039E-02 0.5964E-02 0.5898E-02 0.5875E-02 0.5923E-02 0.6060E-02 0.6279E-02 0.6551E-02 0.6835E-02 0.7085E-02 0.7263E-02 0.7344E-02 0.7317E-02 0.7185E-02 0.6967E-02 0.6695E-02 0.6411E-02 0.6161E-02 0.5981E-02 0.5889E-02 0.5879E-02 0.5928E-02 0.6002E-02 0.6072E-02 0.6120E-02 0.6136E-02 0.7834E-02 0.7765E-02 0.7568E-02 0.7269E-02 0.6912E-02 0.6547E-02 0.6224E-02 0.5979E-02 0.5827E-02 0.5759E-02 0.5748E-02 0.5766E-02 0.5788E-02 0.5803E-02 0.5806E-02 0.5797E-02 0.5777E-02 0.5755E-02 0.5748E-02 0.5784E-02 0.5892E-02 0.6090E-02 0.6378E-02 0.6727E-02 0.7095E-02 0.7429E-02 0.7681E-02 0.7816E-02 0.7816E-02 0.7681E-02 0.7429E-02 0.7095E-02 0.6727E-02 0.6378E-02 0.6090E-02 0.5892E-02 0.5784E-02 0.5748E-02 0.5755E-02 0.5777E-02 0.5797E-02 0.5806E-02 0.5803E-02 0.5788E-02 0.5766E-02 0.5748E-02 0.5759E-02 0.5827E-02 0.5979E-02 0.6224E-02 0.6547E-02 0.6912E-02 0.7269E-02 0.7568E-02 0.7765E-02 0.7834E-02 0.1025E-01 0.1011E-01 0.9718E-02 0.9121E-02 0.8400E-02 0.7642E-02 0.6926E-02 0.6308E-02 0.5815E-02 0.5445E-02 0.5180E-02 0.4993E-02 0.4868E-02 0.4798E-02 0.4783E-02 0.4826E-02 0.4923E-02 0.5078E-02 0.5301E-02 0.5615E-02 0.6045E-02 0.6602E-02 0.7275E-02 0.8020E-02 0.8770E-02 0.9440E-02 0.9945E-02 0.1022E-01 0.1022E-01 0.9945E-02 0.9440E-02 0.8770E-02 0.8020E-02 0.7275E-02 0.6602E-02 0.6045E-02 0.5615E-02 0.5301E-02 0.5078E-02 0.4923E-02 0.4826E-02 0.4783E-02 0.4798E-02 0.4868E-02 0.4993E-02 0.5180E-02 0.5445E-02 0.5815E-02 0.6308E-02 0.6926E-02 0.7642E-02 0.8400E-02 0.9121E-02 0.9718E-02 0.1011E-01 0.1025E-01 0.1352E-01 0.1329E-01 0.1265E-01 0.1167E-01 0.1049E-01 0.9242E-02 0.8049E-02 0.6991E-02 0.6114E-02 0.5425E-02 0.4907E-02 0.4535E-02 0.4287E-02 0.4151E-02 0.4124E-02 0.4205E-02 0.4396E-02 0.4704E-02 0.5146E-02 0.5746E-02 0.6529E-02 0.7499E-02 0.8633E-02 0.9865E-02 0.1109E-01 0.1219E-01 0.1302E-01 0.1346E-01 0.1346E-01 0.1302E-01 0.1219E-01 0.1109E-01 0.9865E-02 0.8633E-02 0.7499E-02 0.6529E-02 0.5746E-02 0.5146E-02 0.4704E-02 0.4396E-02 0.4205E-02 0.4124E-02 0.4151E-02 0.4287E-02 0.4535E-02 0.4907E-02 0.5425E-02 0.6114E-02 0.6991E-02 0.8049E-02 0.9242E-02 0.1049E-01 0.1167E-01 0.1265E-01 0.1329E-01 0.1352E-01 0.1781E-01 0.1747E-01 0.1648E-01 0.1501E-01 0.1325E-01 0.1140E-01 0.9628E-02 0.8055E-02 0.6738E-02 0.5692E-02 0.4901E-02 0.4336E-02 0.3967E-02 0.3769E-02 0.3730E-02 0.3847E-02 0.4129E-02 0.4592E-02 0.5266E-02 0.6182E-02 0.7363E-02 0.8812E-02 0.1049E-01 0.1232E-01 0.1415E-01 0.1580E-01 0.1705E-01 0.1772E-01 0.1772E-01 0.1705E-01 0.1580E-01 0.1415E-01 0.1232E-01 0.1049E-01 0.8812E-02 0.7363E-02 0.6182E-02 0.5266E-02 0.4592E-02 0.4129E-02 0.3847E-02 0.3730E-02 0.3769E-02 0.3967E-02 0.4336E-02 0.4901E-02 0.5692E-02 0.6738E-02 0.8055E-02 0.9628E-02 0.1140E-01 0.1325E-01 0.1501E-01 0.1648E-01 0.1747E-01 0.1781E-01 0.2345E-01 0.2293E-01 0.2148E-01 0.1933E-01 0.1679E-01 0.1416E-01 0.1169E-01 0.9514E-02 0.7700E-02 0.6258E-02 0.5167E-02 0.4389E-02 0.3884E-02 0.3617E-02 0.3565E-02 0.3723E-02 0.4105E-02 0.4742E-02 0.5671E-02 0.6934E-02 0.8560E-02 0.1056E-01 0.1290E-01 0.1547E-01 0.1809E-01 0.2047E-01 0.2231E-01 0.2332E-01 0.2332E-01 0.2231E-01 0.2047E-01 0.1809E-01 0.1547E-01 0.1290E-01 0.1056E-01 0.8560E-02 0.6934E-02 0.5671E-02 0.4742E-02 0.4105E-02 0.3723E-02 0.3565E-02 0.3617E-02 0.3884E-02 0.4389E-02 0.5167E-02 0.6258E-02 0.7700E-02 0.9514E-02 0.1169E-01 0.1416E-01 0.1679E-01 0.1933E-01 0.2148E-01 0.2293E-01 0.2345E-01 0.3086E-01 0.3011E-01 0.2801E-01 0.2492E-01 0.2132E-01 0.1766E-01 0.1430E-01 0.1139E-01 0.9010E-02 0.7134E-02 0.5717E-02 0.4703E-02 0.4042E-02 0.3691E-02 0.3623E-02 0.3830E-02 0.4332E-02 0.5163E-02 0.6371E-02 0.8011E-02 0.1013E-01 0.1278E-01 0.1593E-01 0.1947E-01 0.2315E-01 0.2656E-01 0.2921E-01 0.3067E-01 0.3067E-01 0.2921E-01 0.2656E-01 0.2315E-01 0.1947E-01 0.1593E-01 0.1278E-01 0.1013E-01 0.8011E-02 0.6371E-02 0.5163E-02 0.4332E-02 0.3830E-02 0.3623E-02 0.3691E-02 0.4042E-02 0.4703E-02 0.5717E-02 0.7134E-02 0.9010E-02 0.1139E-01 0.1430E-01 0.1766E-01 0.2132E-01 0.2492E-01 0.2801E-01 0.3011E-01 0.3086E-01 0.4011E-01 0.3908E-01 0.3620E-01 0.3196E-01 0.2703E-01 0.2208E-01 0.1756E-01 0.1375E-01 0.1069E-01 0.8327E-02 0.6554E-02 0.5282E-02 0.4444E-02 0.3993E-02 0.3904E-02 0.4172E-02 0.4812E-02 0.5860E-02 0.7373E-02 0.9430E-02 0.1213E-01 0.1556E-01 0.1974E-01 0.2452E-01 0.2954E-01 0.3420E-01 0.3785E-01 0.3985E-01 0.3985E-01 0.3785E-01 0.3420E-01 0.2954E-01 0.2452E-01 0.1974E-01 0.1556E-01 0.1213E-01 0.9430E-02 0.7373E-02 0.5860E-02 0.4812E-02 0.4172E-02 0.3904E-02 0.3993E-02 0.4444E-02 0.5282E-02 0.6554E-02 0.8327E-02 0.1069E-01 0.1375E-01 0.1756E-01 0.2208E-01 0.2703E-01 0.3196E-01 0.3620E-01 0.3908E-01 0.4011E-01 0.4987E-01 0.4864E-01 0.4515E-01 0.3993E-01 0.3376E-01 0.2742E-01 0.2160E-01 0.1669E-01 0.1281E-01 0.9868E-02 0.7695E-02 0.6141E-02 0.5105E-02 0.4540E-02 0.4427E-02 0.4765E-02 0.5562E-02 0.6848E-02 0.8696E-02 0.1123E-01 0.1463E-01 0.1902E-01 0.2442E-01 0.3056E-01 0.3691E-01 0.4271E-01 0.4715E-01 0.4956E-01 0.4956E-01 0.4715E-01 0.4271E-01 0.3691E-01 0.3056E-01 0.2442E-01 0.1902E-01 0.1463E-01 0.1123E-01 0.8696E-02 0.6848E-02 0.5562E-02 0.4765E-02 0.4427E-02 0.4540E-02 0.5105E-02 0.6141E-02 0.7695E-02 0.9868E-02 0.1281E-01 0.1669E-01 0.2160E-01 0.2742E-01 0.3376E-01 0.3993E-01 0.4515E-01 0.4864E-01 0.4987E-01 0.5670E-01 0.5557E-01 0.5228E-01 0.4708E-01 0.4050E-01 0.3330E-01 0.2634E-01 0.2028E-01 0.1546E-01 0.1183E-01 0.9204E-02 0.7337E-02 0.6086E-02 0.5396E-02 0.5257E-02 0.5672E-02 0.6640E-02 0.8187E-02 0.1041E-01 0.1351E-01 0.1771E-01 0.2317E-01 0.2974E-01 0.3693E-01 0.4392E-01 0.4989E-01 0.5419E-01 0.5641E-01 0.5641E-01 0.5419E-01 0.4989E-01 0.4392E-01 0.3693E-01 0.2974E-01 0.2317E-01 0.1771E-01 0.1351E-01 0.1041E-01 0.8187E-02 0.6640E-02 0.5672E-02 0.5257E-02 0.5396E-02 0.6086E-02 0.7337E-02 0.9204E-02 0.1183E-01 0.1546E-01 0.2028E-01 0.2634E-01 0.3330E-01 0.4050E-01 0.4708E-01 0.5228E-01 0.5557E-01 0.5670E-01 0.5611E-01 0.5560E-01 0.5391E-01 0.5064E-01 0.4552E-01 0.3884E-01 0.3147E-01 0.2452E-01 0.1874E-01 0.1437E-01 0.1122E-01 0.9001E-02 0.7516E-02 0.6689E-02 0.6522E-02 0.7021E-02 0.8174E-02 0.1001E-01 0.1266E-01 0.1638E-01 0.2146E-01 0.2788E-01 0.3517E-01 0.4233E-01 0.4831E-01 0.5250E-01 0.5493E-01 0.5599E-01 0.5599E-01 0.5493E-01 0.5250E-01 0.4831E-01 0.4233E-01 0.3517E-01 0.2788E-01 0.2146E-01 0.1638E-01 0.1266E-01 0.1001E-01 0.8174E-02 0.7021E-02 0.6522E-02 0.6689E-02 0.7516E-02 0.9001E-02 0.1122E-01 0.1437E-01 0.1874E-01 0.2452E-01 0.3147E-01 0.3884E-01 0.4552E-01 0.5064E-01 0.5391E-01 0.5560E-01 0.5611E-01 0.4601E-01 0.4656E-01 0.4781E-01 0.4856E-01 0.4728E-01 0.4312E-01 0.3664E-01 0.2938E-01 0.2281E-01 0.1765E-01 0.1392E-01 0.1131E-01 0.9566E-02 0.8588E-02 0.8390E-02 0.8981E-02 0.1034E-01 0.1250E-01 0.1563E-01 0.2004E-01 0.2594E-01 0.3300E-01 0.4009E-01 0.4556E-01 0.4826E-01 0.4835E-01 0.4716E-01 0.4615E-01 0.4615E-01 0.4716E-01 0.4835E-01 0.4826E-01 0.4556E-01 0.4009E-01 0.3300E-01 0.2594E-01 0.2004E-01 0.1563E-01 0.1250E-01 0.1034E-01 0.8981E-02 0.8390E-02 0.8588E-02 0.9566E-02 0.1131E-01 0.1392E-01 0.1765E-01 0.2281E-01 0.2938E-01 0.3664E-01 0.4312E-01 0.4728E-01 0.4856E-01 0.4781E-01 0.4656E-01 0.4601E-01 0.2969E-01 0.3131E-01 0.3582E-01 0.4164E-01 0.4591E-01 0.4608E-01 0.4181E-01 0.3494E-01 0.2780E-01 0.2188E-01 0.1751E-01 0.1445E-01 0.1240E-01 0.1125E-01 0.1101E-01 0.1171E-01 0.1331E-01 0.1584E-01 0.1951E-01 0.2465E-01 0.3128E-01 0.3854E-01 0.4442E-01 0.4659E-01 0.4416E-01 0.3872E-01 0.3327E-01 0.3010E-01 0.3010E-01 0.3327E-01 0.3872E-01 0.4416E-01 0.4659E-01 0.4442E-01 0.3854E-01 0.3128E-01 0.2465E-01 0.1951E-01 0.1584E-01 0.1331E-01 0.1171E-01 0.1101E-01 0.1125E-01 0.1240E-01 0.1445E-01 0.1751E-01 0.2188E-01 0.2780E-01 0.3494E-01 0.4181E-01 0.4608E-01 0.4591E-01 0.4164E-01 0.3582E-01 0.3131E-01 0.2969E-01 0.1411E-01 0.1639E-01 0.2330E-01 0.3368E-01 0.4369E-01 0.4886E-01 0.4748E-01 0.4140E-01 0.3386E-01 0.2717E-01 0.2211E-01 0.1855E-01 0.1615E-01 0.1480E-01 0.1452E-01 0.1534E-01 0.1722E-01 0.2017E-01 0.2443E-01 0.3033E-01 0.3763E-01 0.4482E-01 0.4894E-01 0.4708E-01 0.3904E-01 0.2824E-01 0.1928E-01 0.1468E-01 0.1468E-01 0.1928E-01 0.2824E-01 0.3904E-01 0.4708E-01 0.4894E-01 0.4482E-01 0.3763E-01 0.3033E-01 0.2443E-01 0.2017E-01 0.1722E-01 0.1534E-01 0.1452E-01 0.1480E-01 0.1615E-01 0.1855E-01 0.2211E-01 0.2717E-01 0.3386E-01 0.4140E-01 0.4748E-01 0.4886E-01 0.4369E-01 0.3368E-01 0.2330E-01 0.1639E-01 0.1411E-01 0.4434E-02 0.7023E-02 0.1542E-01 0.2917E-01 0.4384E-01 0.5324E-01 0.5434E-01 0.4892E-01 0.4095E-01 0.3352E-01 0.2780E-01 0.2374E-01 0.2099E-01 0.1944E-01 0.1912E-01 0.2006E-01 0.2221E-01 0.2558E-01 0.3043E-01 0.3705E-01 0.4502E-01 0.5220E-01 0.5481E-01 0.4951E-01 0.3680E-01 0.2181E-01 0.1045E-01 0.5065E-02 0.5065E-02 0.1045E-01 0.2181E-01 0.3680E-01 0.4951E-01 0.5481E-01 0.5220E-01 0.4502E-01 0.3705E-01 0.3043E-01 0.2558E-01 0.2221E-01 0.2006E-01 0.1912E-01 0.1944E-01 0.2099E-01 0.2374E-01 0.2780E-01 0.3352E-01 0.4095E-01 0.4892E-01 0.5434E-01 0.5324E-01 0.4384E-01 0.2917E-01 0.1542E-01 0.7023E-02 0.4434E-02 0.1411E-02 0.4468E-02 0.1442E-01 0.3080E-01 0.4852E-01 0.6034E-01 0.6262E-01 0.5729E-01 0.4886E-01 0.4088E-01 0.3470E-01 0.3028E-01 0.2726E-01 0.2552E-01 0.2516E-01 0.2623E-01 0.2861E-01 0.3230E-01 0.3755E-01 0.4468E-01 0.5319E-01 0.6063E-01 0.6266E-01 0.5553E-01 0.3997E-01 0.2201E-01 0.8522E-02 0.2155E-02 0.2155E-02 0.8522E-02 0.2201E-01 0.3997E-01 0.5553E-01 0.6266E-01 0.6063E-01 0.5319E-01 0.4468E-01 0.3755E-01 0.3230E-01 0.2861E-01 0.2623E-01 0.2516E-01 0.2552E-01 0.2726E-01 0.3028E-01 0.3470E-01 0.4088E-01 0.4886E-01 0.5729E-01 0.6262E-01 0.6034E-01 0.4852E-01 0.3080E-01 0.1442E-01 0.4468E-02 0.1411E-02 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 2 0.0000 0.0000 0.0000 1 0.2500 0.2500 0.2500 1 10.200000 -0.500000 0.000000 0.500000 0.000000 0.500000 0.500000 -0.500000 0.500000 0.000000 espresso-5.1/PP/examples/example01/reference/sibands.dat0000644000175000017500000000740512341372774021326 0ustar mbamba &plot nbnd= 8, nks= 36 / 0.500000 0.500000 0.500000 -3.418 -0.822 5.029 5.029 7.814 9.597 9.597 13.838 0.400000 0.400000 0.400000 -3.891 -0.102 5.102 5.102 7.900 9.679 9.679 13.959 0.300000 0.300000 0.300000 -4.659 1.404 5.319 5.319 8.138 9.803 9.803 13.845 0.200000 0.200000 0.200000 -5.285 3.222 5.660 5.660 8.504 9.636 9.636 12.333 0.100000 0.100000 0.100000 -5.678 5.104 6.050 6.050 8.848 9.120 9.120 10.612 0.000000 0.000000 0.000000 -5.810 6.255 6.255 6.255 8.822 8.822 8.822 9.723 0.000000 0.000000 0.100000 -5.767 5.981 6.072 6.072 8.710 9.057 9.057 9.984 0.000000 0.000000 0.200000 -5.634 5.334 5.660 5.660 8.424 9.630 9.630 10.519 0.000000 0.000000 0.300000 -5.413 4.527 5.186 5.186 8.052 10.370 10.370 10.706 0.000000 0.000000 0.400000 -5.106 3.653 4.727 4.727 7.672 11.187 11.187 10.136 0.000000 0.000000 0.500000 -4.713 2.756 4.316 4.316 7.332 12.060 12.060 9.355 0.000000 0.000000 0.600000 -4.236 1.852 3.969 3.969 7.056 12.962 12.962 8.617 0.000000 0.000000 0.700000 -3.680 0.950 3.694 3.694 6.865 13.886 13.886 7.992 0.000000 0.000000 0.800000 -3.053 0.068 3.495 3.495 6.766 14.829 14.829 7.494 0.000000 0.000000 0.900000 -2.356 -0.787 3.374 3.374 6.769 15.763 15.763 7.129 0.000000 0.000000 1.000000 -1.598 -1.598 3.333 3.333 6.889 16.407 16.407 6.889 0.000000 0.100000 1.000000 -1.582 -1.582 3.202 3.202 7.131 15.962 15.962 7.131 0.000000 0.200000 1.000000 -1.540 -1.540 2.904 2.904 7.764 14.799 14.799 7.764 0.000000 0.300000 1.000000 -1.485 -1.485 2.592 2.592 8.642 13.489 13.489 8.642 0.000000 0.400000 1.000000 -1.438 -1.438 2.367 2.367 9.662 12.211 12.211 9.662 0.000000 0.500000 1.000000 -1.421 -1.421 2.285 2.285 10.487 11.292 11.292 10.487 0.000000 0.600000 1.000000 -1.438 -1.438 2.367 2.367 9.662 12.211 12.211 9.662 0.000000 0.700000 1.000000 -1.485 -1.485 2.592 2.592 8.642 13.489 13.489 8.642 0.000000 0.800000 1.000000 -1.540 -1.540 2.904 2.904 7.764 14.799 14.799 7.764 0.000000 0.900000 1.000000 -1.582 -1.582 3.202 3.202 7.131 15.962 15.962 7.131 0.000000 1.000000 1.000000 -1.598 -1.598 3.333 3.333 6.889 16.407 16.407 6.889 0.000000 0.900000 0.900000 -1.635 -1.503 2.830 3.405 6.971 15.670 15.943 7.684 0.000000 0.800000 0.800000 -1.812 -1.218 2.070 3.616 7.217 14.415 15.015 9.381 0.000000 0.700000 0.700000 -2.264 -0.746 1.712 3.954 7.610 13.167 13.697 11.392 0.000000 0.600000 0.600000 -2.958 -0.084 1.868 4.396 8.126 12.047 13.120 12.305 0.000000 0.500000 0.500000 -3.728 0.754 2.399 4.896 8.693 11.075 12.408 11.392 0.000000 0.400000 0.400000 -4.438 1.766 3.171 5.392 9.168 10.271 11.997 10.571 0.000000 0.300000 0.300000 -5.024 2.933 4.092 5.802 9.356 9.642 11.917 9.897 0.000000 0.200000 0.200000 -5.458 4.224 5.058 6.075 9.279 9.187 11.499 9.369 0.000000 0.100000 0.100000 -5.722 5.518 5.891 6.215 9.081 8.913 10.317 8.986 0.000000 0.000000 0.000000 -5.810 6.255 6.255 6.255 8.822 8.822 9.723 8.822 espresso-5.1/PP/examples/example01/reference/sibands.ps0000644000175000017500000004717612341372774021211 0ustar mbamba%! PS-Adobe-1.0 /localdict 100 dict def localdict begin % delete next line for insertion in a LaTeX file 0 0 moveto gsave /nm {newpath moveto} def /riga {newpath moveto lineto stroke} def /banda {3 1 roll moveto {lineto} repeat stroke} def /dot {newpath 1 0 360 arc fill} def /Times-Roman findfont 12 scalefont setfont currentpoint translate % Landscape: uncomment next line 90 rotate 0 21 neg 28.451 mul translate 1.5 1.5 scale % Landscape: comment next line % 1.2 1.2 scale 56.906 56.906 translate 0 setgray 0.5 setlinewidth 0.000 4.535 moveto -5 0 rlineto stroke -30.000 4.535 moveto (-12.0) show 0.000 22.318 moveto -5 0 rlineto stroke -30.000 22.318 moveto (-11.0) show 0.000 40.101 moveto -5 0 rlineto stroke -30.000 40.101 moveto (-10.0) show 0.000 57.884 moveto -5 0 rlineto stroke -30.000 57.884 moveto ( -9.0) show 0.000 75.667 moveto -5 0 rlineto stroke -30.000 75.667 moveto ( -8.0) show 0.000 93.450 moveto -5 0 rlineto stroke -30.000 93.450 moveto ( -7.0) show 0.000 111.233 moveto -5 0 rlineto stroke -30.000 111.233 moveto ( -6.0) show 0.000 129.017 moveto -5 0 rlineto stroke -30.000 129.017 moveto ( -5.0) show 0.000 146.800 moveto -5 0 rlineto stroke -30.000 146.800 moveto ( -4.0) show 0.000 164.583 moveto -5 0 rlineto stroke -30.000 164.583 moveto ( -3.0) show 0.000 182.366 moveto -5 0 rlineto stroke -30.000 182.366 moveto ( -2.0) show 0.000 200.149 moveto -5 0 rlineto stroke -30.000 200.149 moveto ( -1.0) show 0.000 217.932 moveto -5 0 rlineto stroke -30.000 217.932 moveto ( 0.0) show 0.000 235.715 moveto -5 0 rlineto stroke -30.000 235.715 moveto ( 1.0) show 0.000 253.498 moveto -5 0 rlineto stroke -30.000 253.498 moveto ( 2.0) show 0.000 271.282 moveto -5 0 rlineto stroke -30.000 271.282 moveto ( 3.0) show [2 4] 0 setdash newpath 0.000 217.932 moveto 426.795 217.932 lineto stroke [] 0 setdash 1 setlinewidth 0.000 0.000 0.000 284.530 426.795 284.530 426.795 0.000 newpath moveto lineto lineto lineto closepath clip stroke 0.5 setlinewidth 71.822 0.000 71.822 284.530 riga 71.822 45.916 dot 71.822 92.081 dot 71.822 196.130 dot 71.822 196.130 dot 71.822 245.656 dot 71.822 277.363 dot 71.822 277.363 dot 71.822 352.782 dot 86.187 37.505 dot 86.187 104.885 dot 86.187 197.428 dot 86.187 197.428 dot 86.187 247.185 dot 86.187 278.822 dot 86.187 278.822 dot 86.187 354.933 dot 100.551 23.847 dot 100.551 131.666 dot 100.551 201.287 dot 100.551 201.287 dot 100.551 251.418 dot 100.551 281.027 dot 100.551 281.027 dot 100.551 352.906 dot 114.915 12.715 dot 114.915 163.996 dot 114.915 207.351 dot 114.915 207.351 dot 114.915 257.926 dot 114.915 278.057 dot 114.915 278.057 dot 114.915 326.018 dot 129.280 5.726 dot 129.280 197.464 dot 129.280 214.287 dot 129.280 214.287 dot 129.280 264.044 dot 129.280 268.881 dot 129.280 268.881 dot 129.280 295.413 dot 143.644 0.000 143.644 284.530 riga 143.644 3.379 dot 143.644 217.932 dot 143.644 217.932 dot 143.644 217.932 dot 143.644 263.581 dot 143.644 263.581 dot 143.644 263.581 dot 143.644 279.604 dot 151.937 4.143 dot 151.937 213.060 dot 151.937 214.678 dot 151.937 214.678 dot 151.937 261.590 dot 151.937 267.761 dot 151.937 267.761 dot 151.937 284.245 dot 160.231 6.509 dot 160.231 201.554 dot 160.231 207.351 dot 160.231 207.351 dot 160.231 256.504 dot 160.231 277.950 dot 160.231 277.950 dot 160.231 293.759 dot 168.524 10.439 dot 168.524 187.203 dot 168.524 198.922 dot 168.524 198.922 dot 168.524 249.888 dot 168.524 291.110 dot 168.524 291.110 dot 168.524 297.085 dot 176.817 15.898 dot 176.817 171.661 dot 176.817 190.760 dot 176.817 190.760 dot 176.817 243.131 dot 176.817 305.639 dot 176.817 305.639 dot 176.817 286.948 dot 185.111 22.887 dot 185.111 155.709 dot 185.111 183.451 dot 185.111 183.451 dot 185.111 237.085 dot 185.111 321.163 dot 185.111 321.163 dot 185.111 273.060 dot 193.404 31.369 dot 193.404 139.633 dot 193.404 177.280 dot 193.404 177.280 dot 193.404 232.176 dot 193.404 337.204 dot 193.404 337.204 dot 193.404 259.936 dot 201.697 41.257 dot 201.697 123.593 dot 201.697 172.390 dot 201.697 172.390 dot 201.697 228.780 dot 201.697 353.635 dot 201.697 353.635 dot 201.697 248.821 dot 209.991 52.407 dot 209.991 107.908 dot 209.991 168.851 dot 209.991 168.851 dot 209.991 227.019 dot 209.991 370.405 dot 209.991 370.405 dot 209.991 239.965 dot 218.284 64.802 dot 218.284 92.703 dot 218.284 166.699 dot 218.284 166.699 dot 218.284 227.073 dot 218.284 387.014 dot 218.284 387.014 dot 218.284 233.475 dot 226.577 0.000 226.577 284.530 riga 226.577 78.281 dot 226.577 78.281 dot 226.577 165.970 dot 226.577 165.970 dot 226.577 229.207 dot 226.577 398.466 dot 226.577 398.466 dot 226.577 229.207 dot 234.870 78.566 dot 234.870 78.566 dot 234.870 163.640 dot 234.870 163.640 dot 234.870 233.510 dot 234.870 390.553 dot 234.870 390.553 dot 234.870 233.510 dot 243.164 79.313 dot 243.164 79.313 dot 243.164 158.341 dot 243.164 158.341 dot 243.164 244.767 dot 243.164 369.871 dot 243.164 369.871 dot 243.164 244.767 dot 251.457 80.291 dot 251.457 80.291 dot 251.457 152.793 dot 251.457 152.793 dot 251.457 260.381 dot 251.457 346.575 dot 251.457 346.575 dot 251.457 260.381 dot 259.750 81.127 dot 259.750 81.127 dot 259.750 148.791 dot 259.750 148.791 dot 259.750 278.519 dot 259.750 323.849 dot 259.750 323.849 dot 259.750 278.519 dot 268.044 81.429 dot 268.044 81.429 dot 268.044 147.333 dot 268.044 147.333 dot 268.044 293.190 dot 268.044 307.506 dot 268.044 307.506 dot 268.044 293.190 dot 276.337 81.127 dot 276.337 81.127 dot 276.337 148.791 dot 276.337 148.791 dot 276.337 278.519 dot 276.337 323.849 dot 276.337 323.849 dot 276.337 278.519 dot 284.630 80.291 dot 284.630 80.291 dot 284.630 152.793 dot 284.630 152.793 dot 284.630 260.381 dot 284.630 346.575 dot 284.630 346.575 dot 284.630 260.381 dot 292.923 79.313 dot 292.923 79.313 dot 292.923 158.341 dot 292.923 158.341 dot 292.923 244.767 dot 292.923 369.871 dot 292.923 369.871 dot 292.923 244.767 dot 301.217 78.566 dot 301.217 78.566 dot 301.217 163.640 dot 301.217 163.640 dot 301.217 233.510 dot 301.217 390.553 dot 301.217 390.553 dot 301.217 233.510 dot 309.510 0.000 309.510 284.530 riga 309.510 78.281 dot 309.510 78.281 dot 309.510 165.970 dot 309.510 165.970 dot 309.510 229.207 dot 309.510 398.466 dot 309.510 398.466 dot 309.510 229.207 dot 321.239 77.623 dot 321.239 79.971 dot 321.239 157.025 dot 321.239 167.250 dot 321.239 230.665 dot 321.239 385.360 dot 321.239 390.215 dot 321.239 243.344 dot 332.967 74.476 dot 332.967 85.039 dot 332.967 143.510 dot 332.967 171.003 dot 332.967 235.040 dot 332.967 363.043 dot 332.967 373.712 dot 332.967 273.522 dot 344.696 66.438 dot 344.696 93.433 dot 344.696 137.143 dot 344.696 177.013 dot 344.696 242.028 dot 344.696 340.849 dot 344.696 350.274 dot 344.696 309.284 dot 356.424 54.096 dot 356.424 105.205 dot 356.424 139.918 dot 356.424 184.873 dot 356.424 251.204 dot 356.424 320.932 dot 356.424 340.013 dot 356.424 325.520 dot 368.152 40.403 dot 368.152 120.107 dot 368.152 149.360 dot 368.152 193.765 dot 368.152 261.287 dot 368.152 303.647 dot 368.152 327.352 dot 368.152 309.284 dot 379.881 27.777 dot 379.881 138.104 dot 379.881 163.089 dot 379.881 202.585 dot 379.881 269.734 dot 379.881 289.349 dot 379.881 320.043 dot 379.881 294.684 dot 391.609 17.356 dot 391.609 158.857 dot 391.609 179.467 dot 391.609 209.876 dot 391.609 273.078 dot 391.609 278.164 dot 391.609 318.620 dot 391.609 282.698 dot 403.338 9.638 dot 403.338 181.815 dot 403.338 196.646 dot 403.338 214.731 dot 403.338 271.708 dot 403.338 270.072 dot 403.338 311.187 dot 403.338 273.309 dot 415.066 4.944 dot 415.066 204.826 dot 415.066 211.459 dot 415.066 217.221 dot 415.066 268.187 dot 415.066 265.200 dot 415.066 290.167 dot 415.066 266.498 dot 426.795 0.000 426.795 284.530 riga 426.795 3.379 dot 426.795 217.932 dot 426.795 217.932 dot 426.795 217.932 dot 426.795 263.581 dot 426.795 263.581 dot 426.795 279.604 dot 426.795 263.581 dot 143.644 3.379 136.462 3.959 129.280 5.726 122.098 8.688 114.915 12.715 107.733 17.710 100.551 23.847 93.369 30.991 86.187 37.505 79.004 42.041 71.822 45.916 10 banda 226.577 78.281 222.430 73.630 218.284 64.802 214.137 57.863 209.991 52.407 205.844 46.834 201.697 41.257 197.551 36.105 193.404 31.369 189.257 26.956 185.111 22.887 180.964 19.200 176.817 15.898 172.671 12.976 168.524 10.439 164.377 8.290 160.231 6.509 156.084 5.094 151.937 4.143 147.791 3.688 143.644 3.379 20 banda 309.510 78.281 305.363 78.355 301.217 78.566 297.070 78.893 292.923 79.313 288.777 79.793 284.630 80.291 280.484 80.755 276.337 81.127 272.190 81.354 268.044 81.429 263.897 81.354 259.750 81.127 255.604 80.754 251.457 80.291 247.310 79.797 243.164 79.313 239.017 78.881 234.870 78.566 230.724 78.400 226.577 78.281 20 banda 426.795 3.379 420.931 3.769 415.066 4.944 409.202 6.903 403.338 9.638 397.474 13.136 391.609 17.356 385.745 22.253 379.881 27.777 374.017 33.864 368.152 40.403 362.288 47.240 356.424 54.096 350.560 60.639 344.696 66.438 338.831 71.098 332.967 74.476 327.103 76.560 321.239 77.623 315.374 78.037 309.510 78.281 20 banda 143.644 217.932 136.462 211.707 129.280 197.464 122.098 180.909 114.915 163.996 107.733 147.554 100.551 131.666 93.369 116.697 86.187 104.885 79.004 97.750 71.822 92.081 10 banda 226.577 78.281 222.430 83.167 218.284 92.703 214.137 100.822 209.991 107.908 205.844 115.539 201.697 123.593 197.551 131.630 193.404 139.633 189.257 147.669 185.111 155.709 180.964 163.709 176.817 171.661 172.671 179.535 168.524 187.203 164.377 194.541 160.231 201.554 156.084 208.069 151.937 213.060 147.791 215.841 143.644 217.932 20 banda 309.510 78.281 305.363 78.355 301.217 78.566 297.070 78.893 292.923 79.313 288.777 79.793 284.630 80.291 280.484 80.755 276.337 81.127 272.190 81.354 268.044 81.429 263.897 81.354 259.750 81.127 255.604 80.754 251.457 80.291 247.310 79.797 243.164 79.313 239.017 78.881 234.870 78.566 230.724 78.400 226.577 78.281 20 banda 426.795 217.932 420.931 214.025 415.066 204.826 409.202 193.635 403.338 181.815 397.474 170.125 391.609 158.857 385.745 148.161 379.881 138.104 374.017 128.734 368.152 120.107 362.288 112.269 356.424 105.205 350.560 98.906 344.696 93.433 338.831 88.833 332.967 85.039 327.103 82.016 321.239 79.971 315.374 78.970 309.510 78.281 20 banda 143.644 217.932 136.462 216.885 129.280 214.287 122.098 210.907 114.915 207.351 107.733 204.099 100.551 201.287 93.369 198.996 86.187 197.428 79.004 196.660 71.822 196.130 10 banda 226.577 165.970 222.430 166.153 218.284 166.699 214.137 167.600 209.991 168.851 205.844 170.449 201.697 172.390 197.551 174.669 193.404 177.280 189.257 180.213 185.111 183.451 180.964 186.974 176.817 190.760 172.671 194.772 168.524 198.922 164.377 203.124 160.231 207.351 156.084 211.448 151.937 214.678 147.791 216.524 143.644 217.932 20 banda 309.510 165.970 305.363 165.338 301.217 163.640 297.070 161.185 292.923 158.341 288.777 155.464 284.630 152.793 280.484 150.523 276.337 148.791 272.190 147.707 268.044 147.333 263.897 147.705 259.750 148.791 255.604 150.530 251.457 152.793 247.310 155.437 243.164 158.341 239.017 161.284 234.870 163.640 230.724 164.969 226.577 165.970 20 banda 426.795 217.932 420.931 216.167 415.066 211.459 409.202 204.676 403.338 196.646 397.474 188.105 391.609 179.467 385.745 171.049 379.881 163.089 374.017 155.800 368.152 149.360 362.288 143.967 356.424 139.918 350.560 137.535 344.696 137.143 338.831 139.050 332.967 143.510 327.103 150.259 321.239 157.025 315.374 161.842 309.510 165.970 20 banda 143.644 217.932 136.462 216.885 129.280 214.287 122.098 210.907 114.915 207.351 107.733 204.099 100.551 201.287 93.369 198.996 86.187 197.428 79.004 196.660 71.822 196.130 10 banda 226.577 165.970 222.430 166.153 218.284 166.699 214.137 167.600 209.991 168.851 205.844 170.449 201.697 172.390 197.551 174.669 193.404 177.280 189.257 180.213 185.111 183.451 180.964 186.974 176.817 190.760 172.671 194.772 168.524 198.922 164.377 203.124 160.231 207.351 156.084 211.448 151.937 214.678 147.791 216.524 143.644 217.932 20 banda 309.510 165.970 305.363 165.338 301.217 163.640 297.070 161.185 292.923 158.341 288.777 155.464 284.630 152.793 280.484 150.523 276.337 148.791 272.190 147.707 268.044 147.333 263.897 147.705 259.750 148.791 255.604 150.530 251.457 152.793 247.310 155.437 243.164 158.341 239.017 161.284 234.870 163.640 230.724 164.969 226.577 165.970 20 banda 426.795 217.932 420.931 217.764 415.066 217.221 409.202 216.238 403.338 214.731 397.474 212.622 391.609 209.876 385.745 206.498 379.881 202.585 374.017 198.275 368.152 193.765 362.288 189.252 356.424 184.873 350.560 180.752 344.696 177.013 338.831 173.759 332.967 171.003 327.103 168.774 321.239 167.250 315.374 166.495 309.510 165.970 20 banda 143.644 263.581 136.462 264.109 129.280 264.044 122.098 261.625 114.915 257.926 107.733 254.429 100.551 251.418 93.369 248.928 86.187 247.185 79.004 246.293 71.822 245.656 10 banda 226.577 229.207 222.430 228.380 218.284 227.073 214.137 226.665 209.991 227.019 205.844 227.724 201.697 228.780 197.551 230.268 193.404 232.177 189.257 234.465 185.111 237.085 180.964 239.986 176.817 243.131 172.671 246.468 168.524 249.888 164.377 253.269 160.231 256.504 156.084 259.423 151.937 261.590 147.791 262.742 143.644 263.581 20 banda 309.510 229.207 305.363 230.335 301.217 233.510 297.070 238.422 292.923 244.767 288.777 252.223 284.630 260.381 280.484 268.988 276.337 278.519 272.190 288.407 268.044 293.190 263.897 288.412 259.750 278.519 255.604 268.974 251.457 260.381 247.310 252.272 243.164 244.767 239.017 238.239 234.870 233.510 230.724 231.017 226.577 229.207 20 banda 426.795 263.581 420.931 265.198 415.066 268.187 409.202 270.331 403.338 271.708 397.474 272.762 391.609 273.078 385.745 272.121 379.881 269.734 374.017 265.961 368.152 261.287 362.288 256.257 356.424 251.204 350.560 246.397 344.696 242.028 338.831 238.242 332.967 235.040 327.103 232.441 321.239 230.665 315.374 229.799 309.510 229.207 20 banda 143.644 263.581 136.462 265.092 129.280 268.881 122.098 273.734 114.915 278.057 107.733 280.492 100.551 281.027 93.369 280.126 86.187 278.822 79.004 277.996 71.822 277.363 10 banda 226.577 398.466 222.430 394.851 218.284 387.014 214.137 378.679 209.991 370.405 205.844 362.025 201.697 353.635 197.551 345.362 193.404 337.204 189.257 329.136 185.111 321.163 180.964 313.309 176.817 305.639 172.671 298.223 168.524 291.110 164.377 284.340 160.231 277.950 156.084 272.138 151.937 267.761 147.791 265.364 143.644 263.581 20 banda 309.510 398.466 305.363 396.460 301.217 390.553 297.070 381.186 292.923 369.871 288.777 358.145 284.630 346.575 280.484 335.317 276.337 323.849 272.190 312.728 268.044 307.506 263.897 312.719 259.750 323.849 255.604 335.342 251.457 346.575 247.310 358.055 243.164 369.871 239.017 381.522 234.870 390.553 230.724 395.205 226.577 398.466 20 banda 426.795 263.581 420.931 263.985 415.066 265.200 409.202 267.229 403.338 270.072 397.474 273.725 391.609 278.164 385.745 283.369 379.881 289.349 374.017 296.113 368.152 303.647 362.288 311.929 356.424 320.932 350.560 330.610 344.696 340.849 338.831 351.589 332.967 363.043 327.103 375.010 321.239 385.360 315.374 392.443 309.510 398.466 20 banda 143.644 263.581 136.462 265.092 129.280 268.881 122.098 273.734 114.915 278.057 107.733 280.492 100.551 281.027 93.369 280.126 86.187 278.822 79.004 277.996 71.822 277.363 10 banda 226.577 398.466 222.430 394.851 218.284 387.014 214.137 378.679 209.991 370.405 205.844 362.025 201.697 353.635 197.551 345.362 193.404 337.204 189.257 329.136 185.111 321.163 180.964 313.309 176.817 305.639 172.671 298.223 168.524 291.110 164.377 284.340 160.231 277.950 156.084 272.138 151.937 267.761 147.791 265.364 143.644 263.581 20 banda 309.510 398.466 305.363 396.460 301.217 390.553 297.070 381.186 292.923 369.871 288.777 358.145 284.630 346.575 280.484 335.317 276.337 323.849 272.190 312.728 268.044 307.506 263.897 312.719 259.750 323.849 255.604 335.342 251.457 346.575 247.310 358.055 243.164 369.871 239.017 381.522 234.870 390.553 230.724 395.205 226.577 398.466 20 banda 426.795 279.604 420.931 282.423 415.066 290.167 409.202 301.146 403.338 311.187 397.474 316.664 391.609 318.620 385.745 319.169 379.881 320.043 374.017 322.632 368.152 327.352 362.288 333.891 356.424 340.013 350.560 344.269 344.696 350.274 338.831 361.244 332.967 373.712 327.103 383.497 321.239 390.215 315.374 394.653 309.510 398.466 20 banda 143.644 279.604 136.462 284.186 129.280 295.413 122.098 309.924 114.915 326.018 107.733 341.797 100.551 352.906 93.369 356.089 86.187 354.933 79.004 353.737 71.822 352.782 10 banda 226.577 229.207 222.430 230.565 218.284 233.475 214.137 236.566 209.991 239.965 205.844 244.066 201.697 248.822 197.551 254.111 193.404 259.936 189.257 266.298 185.111 273.060 180.964 280.032 176.817 286.948 172.671 293.227 168.524 297.085 164.377 297.010 160.231 293.759 156.084 288.811 151.937 284.245 147.791 281.598 143.644 279.604 20 banda 309.510 229.207 305.363 230.335 301.217 233.510 297.070 238.422 292.923 244.767 288.777 252.223 284.630 260.381 280.484 268.988 276.337 278.519 272.190 288.407 268.044 293.190 263.897 288.412 259.750 278.519 255.604 268.974 251.457 260.381 247.310 252.272 243.164 244.767 239.017 238.239 234.870 233.510 230.724 231.017 226.577 229.207 20 banda 426.795 263.581 420.931 264.381 415.066 266.498 409.202 269.549 403.338 273.309 397.474 277.653 391.609 282.698 385.745 288.508 379.881 294.684 374.017 301.115 368.152 309.284 362.288 319.469 356.424 325.520 350.560 321.568 344.696 309.284 338.831 292.174 332.967 273.522 327.103 256.413 321.239 243.344 315.374 235.477 309.510 229.207 20 banda grestore % delete next lines for insertion in a tex file %%Page showpage espresso-5.1/PP/examples/example04/0000755000175000017500000000000012341373041015234 5ustar mbambaespresso-5.1/PP/examples/example04/run_xml_example0000755000175000017500000001616312341372774020404 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy" $ECHO "and the band structure of fcc-Pt with a fully relativistic " $ECHO "pseudo-potential including spin-orbit coupling." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x bands.x" PSEUDO_LIST="Pt.rel-pz-n-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" BANDS_COMMAND="$PARA_PREFIX $BIN_DIR/bands.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running bands.x as: $BANDS_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > pt.scf.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Pt.rel-pz-n-rrkjus.UPF 0.0 0.0000000 0.00000000 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 30.0 250.0 0.7 1.0d-8 smearing mp 0.02 true true 4 4 4 1 1 1 EOF $ECHO " running the scf calculation for Pt with spin-orbit coupling...\c" $PW_COMMAND < pt.scf.xml > pt.scf.out check_failure $? $ECHO " done" # a non self-consistent calculation cat > pt.nscf.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Pt.rel-pz-n-rrkjus.UPF 0.0 0.0000000 0.00000000 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true 30.0 250.0 0.7 1.0d-8 smearing mp 0.02 true true 0.0 0.0 0.0 1.0 0.1 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.4 0.2 0.1 1.0 0.4 0.4 0.0 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 0.75 0.75 0.0 1.0 EOF $ECHO " running the non-scf calculation for Pt with spin-orbit coupling...\c" $PW_COMMAND < pt.nscf.xml > pt.nscf.out check_failure $? $ECHO " done" cat > pt.bands.in << EOF &inputpp prefix='Pt', outdir='$TMP_DIR/' filband='pt.band' lsym=.true., / EOF $ECHO " running the symmetry analysis for Pt bands...\c" $BANDS_COMMAND < pt.bands.in > pt.bands.out $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PP/examples/example04/README0000644000175000017500000000071012341372774016126 0ustar mbambaThis example shows how to use bands.x to check the band symmetry of fcc-Pt with a fully relativistic US-PP which includes spin-orbit effects. The calculation proceeds as follows: 1) make a self-consistent calculation for Pt (input=pt.scf.in, output=pt.scf.out). 2) make a band structure calculation for Pt (input=pt.nscf.in, output=pt.nscf.out). 3) use the bands.x program to check the band symmetry (input=pt.bands.in, output=pt.bands.out). espresso-5.1/PP/examples/example04/run_example0000755000175000017500000001007512341372774017520 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use bands.x to check the band symmetry" $ECHO "of fcc-Pt with a fully relativistic " $ECHO "pseudo-potential including spin-orbit coupling." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x bands.x" PSEUDO_LIST="Pt.rel-pz-n-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" BANDS_COMMAND="$PARA_PREFIX $BIN_DIR/bands.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running bands.x as: $BANDS_COMMAND" $ECHO # self-consistent calculation cat > pt.scf.in << EOF Pt Pt &control calculation = 'scf' restart_mode='from_scratch', prefix='Pt', tprnfor = .true., tstress =.true., pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 2, celldm(1) =7.42, nat= 1, ntyp= 1, lspinorb=.true., noncolin=.true., starting_magnetization=0.0, occupations='smearing', degauss=0.02, smearing='mp', ecutwfc =30.0, ecutrho =250.0, / &electrons mixing_beta = 0.7, conv_thr = 1.0d-8 / ATOMIC_SPECIES Pt 0.0 Pt.rel-pz-n-rrkjus.UPF ATOMIC_POSITIONS Pt 0.0000000 0.00000000 0.0 K_POINTS AUTOMATIC 4 4 4 1 1 1 EOF $ECHO " running the scf calculation for Pt with spin-orbit coupling...\c" $PW_COMMAND < pt.scf.in > pt.scf.out check_failure $? $ECHO " done" # a non self-consistent calculation cat > pt.nscf.in << EOF Pt Pt &control calculation = 'nscf' restart_mode='from_scratch', prefix='Pt', tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 2, celldm(1) =7.42, nat= 1, ntyp= 1, lspinorb=.true., noncolin=.true., starting_magnetization=0.0, occupations='smearing', degauss=0.02, smearing='mp', ecutwfc =30.0, ecutrho =250.0, / &electrons mixing_beta = 0.7, conv_thr = 1.0d-8 / ATOMIC_SPECIES Pt 0.0 Pt.rel-pz-n-rrkjus.UPF ATOMIC_POSITIONS Pt 0.0000000 0.00000000 0.0 K_POINTS 8 0.0 0.0 0.0 1.0 0.1 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.4 0.2 0.1 1.0 0.4 0.4 0.0 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 0.75 0.75 0.0 1.0 EOF $ECHO " running the non-scf calculation for Pt with spin-orbit coupling...\c" $PW_COMMAND < pt.nscf.in > pt.nscf.out check_failure $? $ECHO " done" cat > pt.bands.in << EOF &bands prefix='Pt', outdir='$TMP_DIR/' filband='pt.band' lsym=.true., / EOF $ECHO " running the symmetry analysis for Pt bands...\c" $BANDS_COMMAND < pt.bands.in > pt.bands.out $ECHO " done" $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/Pt.* $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PP/examples/example04/reference/0000755000175000017500000000000012341373041017172 5ustar mbambaespresso-5.1/PP/examples/example04/reference/pt.nscf.out0000644000175000017500000001710212341372774021313 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 26Feb2009 at 16:17:49 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Starting configuration read from directory: /home/smogunov/tmp/Pt.save/ Failed to open directory or to read data file! Using input configuration Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 195.07800 Pt( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( 0.1000000 0.0000000 0.0000000), wk = 0.1250000 k( 3) = ( 1.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 4) = ( 0.4000000 0.2000000 0.1000000), wk = 0.1250000 k( 5) = ( 0.4000000 0.4000000 0.0000000), wk = 0.1250000 k( 6) = ( 0.4000000 0.4000000 0.4000000), wk = 0.1250000 k( 7) = ( 0.5000000 0.5000000 0.5000000), wk = 0.1250000 k( 8) = ( 0.7500000 0.7500000 0.0000000), wk = 0.1250000 G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 580, 18) NL pseudopotentials 0.12 Mb ( 290, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 580, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Check: negative/imaginary core charge= -0.000004 0.000000 The potential is recalculated from file : /home/smogunov/tmp/Pt.save/charge-density.dat Starting wfc are 18 atomic wfcs total cpu time spent up to now is 3.24 secs per-process dynamical memory: 8.8 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-10, avg # of iterations = 12.9 total cpu time spent up to now is 9.39 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 7.2727 7.2727 13.2979 13.2979 13.2979 13.2979 14.2915 14.2915 16.1192 16.1192 16.1192 16.1192 38.3611 38.3611 39.6539 39.6539 39.6539 39.6539 k = 0.1000 0.0000 0.0000 band energies (ev): 7.4060 7.4060 13.2659 13.2659 13.3547 13.3547 14.3152 14.3152 16.0336 16.0336 16.1507 16.1507 35.0225 35.0225 38.0754 38.0754 39.1251 39.1251 k = 1.0000 0.0000 0.0000 band energies (ev): 10.4418 10.4418 10.8735 10.8735 17.3745 17.3745 17.6778 17.6778 18.6596 18.6596 19.1027 19.1027 26.2690 26.2690 28.7375 28.7375 30.2807 30.2807 k = 0.4000 0.2000 0.1000 band energies (ev): 9.6596 9.6596 12.6769 12.6769 13.6738 13.6738 14.9439 14.9439 15.7183 15.7183 16.9332 16.9332 32.0504 32.0504 35.7819 35.7819 37.6057 37.6057 k = 0.4000 0.4000 0.0000 band energies (ev): 10.6363 10.6363 12.6777 12.6777 13.5168 13.5168 15.0207 15.0207 15.4549 15.4549 18.0755 18.0755 30.3507 30.3507 32.8954 32.8954 37.6060 37.6060 k = 0.4000 0.4000 0.4000 band energies (ev): 10.1556 10.1556 13.2272 13.2272 14.2768 14.2768 15.3893 15.3893 17.0681 17.0681 17.6323 17.6323 25.3712 25.3712 34.2923 34.2923 37.6882 37.6882 k = 0.5000 0.5000 0.5000 band energies (ev): 10.1742 10.1742 13.1425 13.1425 14.1587 14.1587 16.9032 16.9032 17.2998 17.2998 17.9638 17.9638 23.3579 23.3579 33.8778 33.8778 36.9542 36.9542 k = 0.7500 0.7500 0.0000 band energies (ev): 11.2371 11.2371 11.9864 11.9864 14.5671 14.5671 16.2494 16.2494 17.5338 17.5338 23.3264 23.3264 24.2249 24.2249 27.5537 27.5537 32.6917 32.6917 the Fermi energy is 17.4541 ev Writing output data file Pt.save PWSCF : 9.56s CPU time, 9.74s wall time init_run : 3.09s CPU electrons : 6.15s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.05s CPU Called by electrons: c_bands : 6.15s CPU v_of_rho : 0.01s CPU newd : 0.20s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 8 calls, 0.000 s avg) cegterg : 5.60s CPU ( 8 calls, 0.700 s avg) Called by *egterg: h_psi : 4.38s CPU ( 119 calls, 0.037 s avg) s_psi : 0.20s CPU ( 119 calls, 0.002 s avg) g_psi : 0.04s CPU ( 103 calls, 0.000 s avg) cdiaghg : 0.46s CPU ( 111 calls, 0.004 s avg) Called by h_psi: add_vuspsi : 0.17s CPU ( 119 calls, 0.001 s avg) General routines calbec : 0.13s CPU ( 119 calls, 0.001 s avg) cft3 : 0.04s CPU ( 12 calls, 0.004 s avg) cft3s : 3.45s CPU ( 5532 calls, 0.001 s avg) interpolate : 0.02s CPU ( 4 calls, 0.006 s avg) davcio : 0.00s CPU ( 8 calls, 0.000 s avg) espresso-5.1/PP/examples/example04/reference/bands.pt.re0000644000175000017500000000043112341372774021245 0ustar mbamba# Re(k), E-Ef # k-point 1 -0.0642 0.0000 0.0642 0.0000 -0.0642 0.0000 0.0642 0.0000 -0.1971 0.0000 0.1971 0.0000 -0.1971 0.0000 0.1971 0.0000 -0.3204 0.0000 0.3204 0.0000 -0.3204 0.0000 0.3204 0.0000 espresso-5.1/PP/examples/example04/reference/bands.pt.co0000644000175000017500000000004212341372774021236 0ustar mbamba# Re (Im(k)), E-Ef # k-point 1 espresso-5.1/PP/examples/example04/reference/pt.scf.out0000644000175000017500000002756212341372774021150 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 17:47:46 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 85 531 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 195.07800 Pt( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 586, 18) NL pseudopotentials 0.12 Mb ( 293, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 586, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Arrays for rho mixing 2.40 Mb ( 19683, 8) Check: negative/imaginary core charge= -0.000004 0.000000 Initial potential from superposition of free atoms starting charge 9.99989, renormalised to 10.00000 Starting wfc are 18 atomic wfcs total cpu time spent up to now is 2.15 secs per-process dynamical memory: 18.0 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.63E-05, avg # of iterations = 2.2 total cpu time spent up to now is 4.37 secs total energy = -69.48938333 Ry Harris-Foulkes estimate = -69.49382576 Ry estimated scf accuracy < 0.00669665 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.70E-05, avg # of iterations = 2.0 total cpu time spent up to now is 5.47 secs total energy = -69.49113618 Ry Harris-Foulkes estimate = -69.49216661 Ry estimated scf accuracy < 0.00173656 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-05, avg # of iterations = 1.9 total cpu time spent up to now is 6.47 secs total energy = -69.49152610 Ry Harris-Foulkes estimate = -69.49152597 Ry estimated scf accuracy < 0.00002117 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.12E-07, avg # of iterations = 2.1 total cpu time spent up to now is 7.52 secs total energy = -69.49152949 Ry Harris-Foulkes estimate = -69.49152950 Ry estimated scf accuracy < 0.00000005 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-10, avg # of iterations = 2.7 total cpu time spent up to now is 8.65 secs End of self-consistent calculation k =-0.1250 0.1250 0.1250 ( 289 PWs) bands (ev): 7.8772 7.8772 13.2292 13.2292 13.4264 13.4264 14.4376 14.4376 15.9224 15.9224 16.1362 16.1362 35.3889 35.3889 36.0586 36.0586 39.4166 39.4166 k =-0.3750 0.3750-0.1250 ( 290 PWs) bands (ev): 10.2486 10.2486 12.9954 12.9954 13.5532 13.5532 14.7280 14.7280 15.8285 15.8285 17.6679 17.6679 29.6954 29.6954 34.5991 34.5991 37.2964 37.2964 k = 0.3750-0.3750 0.6250 ( 280 PWs) bands (ev): 10.6354 10.6354 13.0659 13.0659 14.2338 14.2338 15.0192 15.0192 17.6452 17.6452 19.5046 19.5046 23.6874 23.6874 34.1690 34.1690 35.7959 35.7959 k = 0.1250-0.1250 0.3750 ( 293 PWs) bands (ev): 9.3017 9.3017 12.6960 12.6960 13.7327 13.7327 14.9244 14.9244 15.6316 15.6316 16.6861 16.6861 33.0450 33.0450 36.5818 36.5818 37.3441 37.3441 k =-0.1250 0.6250 0.1250 ( 287 PWs) bands (ev): 10.8908 10.8908 11.8399 11.8399 14.0057 14.0057 15.7860 15.7860 17.0479 17.0479 17.7783 17.7783 29.8172 29.8172 33.2623 33.2623 34.5894 34.5894 k = 0.6250-0.1250 0.8750 ( 282 PWs) bands (ev): 11.6205 11.6205 12.1714 12.1714 13.7381 13.7381 15.9944 15.9944 17.6842 17.6842 22.8386 22.8386 24.6336 24.6336 28.6991 28.6991 31.3279 31.3279 k = 0.3750 0.1250 0.6250 ( 283 PWs) bands (ev): 11.4017 11.4017 12.7865 12.7865 13.1476 13.1476 15.2398 15.2398 16.8797 16.8797 19.5402 19.5402 26.7746 26.7746 31.9766 31.9766 34.7572 34.7572 k =-0.1250-0.8750 0.1250 ( 282 PWs) bands (ev): 10.7843 10.7843 11.2349 11.2349 15.8006 15.8006 16.9108 16.9108 17.9869 17.9869 20.3557 20.3557 26.3674 26.3674 29.2335 29.2335 31.0472 31.0472 k =-0.3750 0.3750 0.3750 ( 281 PWs) bands (ev): 10.1224 10.1224 13.2697 13.2697 14.3339 14.3339 14.8704 14.8704 16.8997 16.8997 17.4674 17.4674 26.2483 26.2483 34.5190 34.5190 38.0606 38.0606 k = 0.3750-0.3750 1.1250 ( 280 PWs) bands (ev): 11.5839 11.5839 12.6789 12.6789 13.7603 13.7603 15.1964 15.1964 17.0718 17.0718 21.4664 21.4664 24.6727 24.6727 29.9116 29.9116 35.7353 35.7353 the Fermi energy is 17.6821 ev ! total energy = -69.49152951 Ry Harris-Foulkes estimate = -69.49152952 Ry estimated scf accuracy < 2.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 17.06705794 Ry hartree contribution = 3.77086769 Ry xc contribution = -28.53673982 Ry ewald contribution = -61.79059399 Ry smearing contrib. (-TS) = -0.00212133 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -22.17 -0.00015068 0.00000000 0.00000000 -22.17 0.00 0.00 0.00000000 -0.00015068 0.00000000 0.00 -22.17 0.00 0.00000000 0.00000000 -0.00015068 0.00 0.00 -22.17 Writing output data file Pt.save PWSCF : 10.70s CPU time, 11.60s wall time init_run : 2.06s CPU electrons : 6.51s CPU forces : 0.35s CPU stress : 1.56s CPU Called by init_run: wfcinit : 0.27s CPU potinit : 0.02s CPU Called by electrons: c_bands : 4.61s CPU ( 6 calls, 0.768 s avg) sum_band : 1.33s CPU ( 6 calls, 0.222 s avg) v_of_rho : 0.03s CPU ( 6 calls, 0.005 s avg) newd : 0.52s CPU ( 6 calls, 0.086 s avg) mix_rho : 0.05s CPU ( 6 calls, 0.008 s avg) Called by c_bands: init_us_2 : 0.04s CPU ( 150 calls, 0.000 s avg) cegterg : 4.41s CPU ( 60 calls, 0.073 s avg) Called by *egterg: h_psi : 3.91s CPU ( 219 calls, 0.018 s avg) s_psi : 0.10s CPU ( 219 calls, 0.000 s avg) g_psi : 0.06s CPU ( 149 calls, 0.000 s avg) cdiaghg : 0.23s CPU ( 199 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.08s CPU ( 219 calls, 0.000 s avg) General routines calbec : 0.10s CPU ( 299 calls, 0.000 s avg) cft3s : 4.02s CPU ( 13994 calls, 0.000 s avg) interpolate : 0.08s CPU ( 48 calls, 0.002 s avg) davcio : 0.01s CPU ( 210 calls, 0.000 s avg) Parallel routines espresso-5.1/PP/examples/example04/reference/pt.scf_ph.out0000644000175000017500000002267212341372774021634 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 17:48:16 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 73 411 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 195.07800 Pt( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.2500000 k( 2) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.7500000 G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 578, 18) NL pseudopotentials 0.11 Mb ( 289, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 578, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Arrays for rho mixing 2.40 Mb ( 19683, 8) Check: negative/imaginary core charge= -0.000004 0.000000 Initial potential from superposition of free atoms starting charge 9.99989, renormalised to 10.00000 Starting wfc are 18 atomic wfcs total cpu time spent up to now is 1.97 secs per-process dynamical memory: 17.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.33E-05, avg # of iterations = 2.5 total cpu time spent up to now is 2.66 secs total energy = -69.50302370 Ry Harris-Foulkes estimate = -69.50464124 Ry estimated scf accuracy < 0.00285877 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.86E-05, avg # of iterations = 2.0 total cpu time spent up to now is 3.04 secs total energy = -69.50359634 Ry Harris-Foulkes estimate = -69.50389917 Ry estimated scf accuracy < 0.00052019 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.20E-06, avg # of iterations = 2.0 total cpu time spent up to now is 3.40 secs total energy = -69.50371007 Ry Harris-Foulkes estimate = -69.50371591 Ry estimated scf accuracy < 0.00002197 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.20E-07, avg # of iterations = 1.0 total cpu time spent up to now is 3.75 secs total energy = -69.50371193 Ry Harris-Foulkes estimate = -69.50371194 Ry estimated scf accuracy < 0.00000002 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-10, avg # of iterations = 3.0 total cpu time spent up to now is 4.15 secs End of self-consistent calculation k =-0.2500 0.2500 0.2500 ( 289 PWs) bands (ev): 9.3170 9.3170 13.3105 13.3105 13.5796 13.5796 14.7740 14.7740 16.0687 16.0687 16.6619 16.6619 31.1505 31.1505 35.9702 35.9702 39.8080 39.8080 k = 0.2500-0.2500 0.7500 ( 283 PWs) bands (ev): 11.2908 11.2908 12.4158 12.4158 13.9356 13.9356 15.5885 15.5885 17.8742 17.8742 20.6638 20.6638 25.0086 25.0086 31.6341 31.6341 33.8373 33.8373 the Fermi energy is 17.9290 ev ! total energy = -69.50371199 Ry Harris-Foulkes estimate = -69.50371200 Ry estimated scf accuracy < 4.3E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 17.02512017 Ry hartree contribution = 3.82828747 Ry xc contribution = -28.56279204 Ry ewald contribution = -61.79059399 Ry smearing contrib. (-TS) = -0.00373359 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -23.09 -0.00015694 0.00000000 0.00000000 -23.09 0.00 0.00 0.00000000 -0.00015694 0.00000000 0.00 -23.09 0.00 0.00000000 0.00000000 -0.00015694 0.00 0.00 -23.09 Writing output data file Pt.save PWSCF : 6.05s CPU time, 6.18s wall time init_run : 1.85s CPU electrons : 2.18s CPU forces : 0.32s CPU stress : 1.46s CPU Called by init_run: wfcinit : 0.05s CPU potinit : 0.03s CPU Called by electrons: c_bands : 0.92s CPU ( 6 calls, 0.153 s avg) sum_band : 0.69s CPU ( 6 calls, 0.116 s avg) v_of_rho : 0.03s CPU ( 6 calls, 0.005 s avg) newd : 0.52s CPU ( 6 calls, 0.086 s avg) mix_rho : 0.04s CPU ( 6 calls, 0.007 s avg) Called by c_bands: init_us_2 : 0.01s CPU ( 30 calls, 0.000 s avg) cegterg : 0.88s CPU ( 12 calls, 0.073 s avg) Called by *egterg: h_psi : 0.77s CPU ( 43 calls, 0.018 s avg) s_psi : 0.02s CPU ( 43 calls, 0.000 s avg) g_psi : 0.01s CPU ( 29 calls, 0.000 s avg) cdiaghg : 0.05s CPU ( 39 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 43 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 59 calls, 0.000 s avg) cft3s : 0.94s CPU ( 3010 calls, 0.000 s avg) interpolate : 0.08s CPU ( 48 calls, 0.002 s avg) davcio : 0.00s CPU ( 42 calls, 0.000 s avg) Parallel routines espresso-5.1/PP/examples/example04/reference/pt.bands.out0000644000175000017500000003337012341372774021456 0ustar mbamba Program POST-PROC v.4.1CVS starts ... Today is 26Feb2009 at 16:17:59 Check: negative/imaginary core charge= -0.000004 0.000000 ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) double point group O_h (m-3m) there are 16 classes and 6 irreducible representations the character table: E -E 8C3 -8C3 3C2 6C4 -6C4 6C2' i -i 8S6 -8S6 -3C2 -6C2' G_6+ 2.00 -2.00 1.00 -1.00 0.00 1.41 -1.41 0.00 2.00 -2.00 1.00 -1.00 G_7+ 2.00 -2.00 1.00 -1.00 0.00 -1.41 1.41 0.00 2.00 -2.00 1.00 -1.00 G_8+ 4.00 -4.00 -1.00 1.00 0.00 0.00 0.00 0.00 4.00 -4.00 -1.00 1.00 G_6- 2.00 -2.00 1.00 -1.00 0.00 1.41 -1.41 0.00 -2.00 2.00 -1.00 1.00 G_7- 2.00 -2.00 1.00 -1.00 0.00 -1.41 1.41 0.00 -2.00 2.00 -1.00 1.00 G_8- 4.00 -4.00 -1.00 1.00 0.00 0.00 0.00 0.00 -4.00 4.00 1.00 -1.00 3s_h 6S4 -6S4 6s_d -3s_h -6s_d G_6+ 0.00 1.41 -1.41 0.00 G_7+ 0.00 -1.41 1.41 0.00 G_8+ 0.00 0.00 0.00 0.00 G_6- 0.00 -1.41 1.41 0.00 G_7- 0.00 1.41 -1.41 0.00 G_8- 0.00 0.00 0.00 0.00 the symmetry operations in each class: E 1 3C2 -3C2 2 -2 4 -4 3 -3 6C2'-6C2' 5 -5 6 -6 14 -13 -14 13 -10 -9 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h-3s_h 26 -26 28 -28 27 -27 6s_d-6s_d 29 -29 30 -30 38 -37 -38 37 -34 -33 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 -E -1 -6C4 -7 -8 -15 -16 -12 -11 -8C3 -17 -19 -20 -18 -24 -21 -22 -23 -i -25 -6S4 -31 -32 -39 -40 -36 -35 -8S6 -41 -43 -44 -42 -48 -45 -46 -47 Band symmetry, O_h (m-3m) double point group: e( 1 - 2) = 7.27272 eV 2 --> G_6+ e( 3 - 6) = 13.29785 eV 4 --> G_8+ e( 7 - 8) = 14.29146 eV 2 --> G_7+ e( 9 - 12) = 16.11924 eV 4 --> G_8+ e( 13 - 14) = 38.36105 eV 2 --> G_6- e( 15 - 18) = 39.65390 eV 4 --> G_8- ************************************************************************** ************************************************************************** xk=( 0.10000, 0.00000, 0.00000 ) double point group C_4v (4mm) there are 7 classes and 2 irreducible representations the character table: E -E 2C4 -2C4 C2 2s_v 2s_d -C2 -2s_v -2s_d G_6 2.00 -2.00 1.41 -1.41 0.00 0.00 0.00 G_7 2.00 -2.00 -1.41 1.41 0.00 0.00 0.00 the symmetry operations in each class: E 1 C2 -C2 2 -2 2C4 3 4 2s_v-2s_v 5 -5 6 -6 2s_d-2s_d 7 -7 -8 8 -E -1 -2C4 -3 -4 Band symmetry, C_4v (4mm) double point group: e( 1 - 2) = 7.40600 eV 2 --> G_6 D_6 e( 3 - 4) = 13.26585 eV 2 --> G_7 D_7 e( 5 - 6) = 13.35474 eV 2 --> G_6 D_6 e( 7 - 8) = 14.31525 eV 2 --> G_7 D_7 e( 9 - 10) = 16.03365 eV 2 --> G_6 D_6 e( 11 - 12) = 16.15074 eV 2 --> G_7 D_7 e( 13 - 14) = 35.02250 eV 2 --> G_7 D_7 e( 15 - 16) = 38.07544 eV 2 --> G_6 D_6 e( 17 - 18) = 39.12512 eV 2 --> G_6 D_6 ************************************************************************** ************************************************************************** xk=( 1.00000, 0.00000, 0.00000 ) double point group D_4h(4/mmm) there are 14 classes and 4 irreducible representations the character table: E -E 2C4 -2C4 C2 2C2' 2C2'' i -i 2S4 -2S4 s_h -C2 -2C2' -2C2' -s_h G_6+ 2.00 -2.00 1.41 -1.41 0.00 0.00 0.00 2.00 -2.00 1.41 -1.41 0.00 G_7+ 2.00 -2.00 -1.41 1.41 0.00 0.00 0.00 2.00 -2.00 -1.41 1.41 0.00 G_6- 2.00 -2.00 1.41 -1.41 0.00 0.00 0.00 -2.00 2.00 -1.41 1.41 0.00 G_7- 2.00 -2.00 -1.41 1.41 0.00 0.00 0.00 -2.00 2.00 1.41 -1.41 0.00 2s_v 2s_d -2s_v -2s_d G_6+ 0.00 0.00 G_7+ 0.00 0.00 G_6- 0.00 0.00 G_7- 0.00 0.00 the symmetry operations in each class: E 1 2C2'-2C2' 2 -2 3 -3 C2 -C2 4 -4 2C2''-2C2' 5 6 -6 -5 2C4 7 8 i 9 2s_v-2s_v 10 -10 11 -11 s_h -s_h 12 -12 2s_d-2s_d 13 14 -14 -13 2S4 15 16 -E -1 -2C4 -7 -8 -i -9 -2S4 -15 -16 Band symmetry, D_4h(4/mmm) double point group: e( 1 - 2) = 10.44178 eV 2 --> G_6+ M_6+ e( 3 - 4) = 10.87347 eV 2 --> G_7+ M_7+ e( 5 - 6) = 17.37445 eV 2 --> G_7+ M_7+ e( 7 - 8) = 17.67776 eV 2 --> G_6+ M_6+ e( 9 - 10) = 18.65959 eV 2 --> G_7+ M_7+ e( 11 - 12) = 19.10266 eV 2 --> G_6- M_6- e( 13 - 14) = 26.26903 eV 2 --> G_6+ M_6+ e( 15 - 16) = 28.73750 eV 2 --> G_6- M_6- e( 17 - 18) = 30.28069 eV 2 --> G_7- M_7- ************************************************************************** ************************************************************************** xk=( 0.40000, 0.20000, 0.10000 ) double point group C_1 (1) there are 2 classes and 1 irreducible representations the character table: E -E G_2 1.00 -1.00 the symmetry operations in each class: E 1 -E -1 Band symmetry, C_1 (1) double point group: e( 1 - 2) = 9.65964 eV 2 --> 2 G_2 e( 3 - 4) = 12.67691 eV 2 --> 2 G_2 e( 5 - 6) = 13.67379 eV 2 --> 2 G_2 e( 7 - 8) = 14.94391 eV 2 --> 2 G_2 e( 9 - 10) = 15.71832 eV 2 --> 2 G_2 e( 11 - 12) = 16.93321 eV 2 --> 2 G_2 e( 13 - 14) = 32.05038 eV 2 --> 2 G_2 e( 15 - 16) = 35.78192 eV 2 --> 2 G_2 e( 17 - 18) = 37.60570 eV 2 --> 2 G_2 ************************************************************************** ************************************************************************** xk=( 0.40000, 0.40000, 0.00000 ) double point group C_2v (mm2) there are 5 classes and 1 irreducible representations the character table: E -E C2 s_v s_v' -C2 -s_v -s_v' G_5 2.00 -2.00 0.00 0.00 0.00 the symmetry operations in each class: E 1 C2 -C2 2 -2 s_v -s_v 3 -3 s_v'-s_v' 4 -4 -E -1 Band symmetry, C_2v (mm2) double point group: e( 1 - 2) = 10.63627 eV 2 --> G_5 D_5 e( 3 - 4) = 12.67775 eV 2 --> G_5 D_5 e( 5 - 6) = 13.51681 eV 2 --> G_5 D_5 e( 7 - 8) = 15.02072 eV 2 --> G_5 D_5 e( 9 - 10) = 15.45492 eV 2 --> G_5 D_5 e( 11 - 12) = 18.07552 eV 2 --> G_5 D_5 e( 13 - 14) = 30.35066 eV 2 --> G_5 D_5 e( 15 - 16) = 32.89540 eV 2 --> G_5 D_5 e( 17 - 18) = 37.60596 eV 2 --> G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.40000, 0.40000, 0.40000 ) double point group C_3v (3m) there are 6 classes and 3 irreducible representations the character table: E -E 2C3 -2C3 3s_v -3s_v G_4 2.00 -2.00 1.00 -1.00 0.00 0.00 G_5 1.00 -1.00 -1.00 1.00 0.00 0.00 G_6 1.00 -1.00 -1.00 1.00 0.00 0.00 imaginary part E -E 2C3 -2C3 3s_v -3s_v G_4 0.00 0.00 0.00 0.00 0.00 0.00 G_5 0.00 0.00 0.00 0.00 1.00 -1.00 G_6 0.00 0.00 0.00 0.00 -1.00 1.00 the symmetry operations in each class: E 1 2C3 2 3 3s_v 4 5 6 -E -1 -2C3 -2 -3 -3s_v -4 -5 -6 Band symmetry, C_3v (3m) double point group: e( 1 - 2) = 10.15556 eV 2 --> G_4 L_6 e( 3 - 4) = 13.22718 eV 2 --> G_5 L_4 e( 3 - 4) = 13.22718 eV 2 --> G_6 L_5 e( 5 - 6) = 14.27679 eV 2 --> G_4 L_6 e( 7 - 8) = 15.38929 eV 2 --> G_4 L_6 e( 9 - 10) = 17.06807 eV 2 --> G_4 L_6 e( 11 - 12) = 17.63232 eV 2 --> G_5 L_4 e( 11 - 12) = 17.63232 eV 2 --> G_6 L_5 e( 13 - 14) = 25.37118 eV 2 --> G_4 L_6 e( 15 - 16) = 34.29231 eV 2 --> G_4 L_6 e( 17 - 18) = 37.68822 eV 2 --> G_4 L_6 ************************************************************************** ************************************************************************** xk=( 0.50000, 0.50000, 0.50000 ) double point group D_3d (-3m) there are 12 classes and 6 irreducible representations the character table: E -E 2C3 -2C3 3s_v -3s_v i -i 2S6 -2S6 3C2' -3C2' G_4+ 2.00 -2.00 1.00 -1.00 0.00 0.00 2.00 -2.00 1.00 -1.00 0.00 0.00 G_5+ 1.00 -1.00 -1.00 1.00 0.00 0.00 1.00 -1.00 -1.00 1.00 0.00 0.00 G_6+ 1.00 -1.00 -1.00 1.00 0.00 0.00 1.00 -1.00 -1.00 1.00 0.00 0.00 G_4- 2.00 -2.00 1.00 -1.00 0.00 0.00 -2.00 2.00 -1.00 1.00 0.00 0.00 G_5- 1.00 -1.00 -1.00 1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 0.00 0.00 G_6- 1.00 -1.00 -1.00 1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 0.00 0.00 imaginary part E -E 2C3 -2C3 3s_v -3s_v i -i 2S6 -2S6 3C2' -3C2' G_4+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 G_5+ 0.00 0.00 0.00 0.00 1.00 -1.00 0.00 0.00 0.00 0.00 1.00 -1.00 G_6+ 0.00 0.00 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 -1.00 1.00 G_4- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 G_5- 0.00 0.00 0.00 0.00 1.00 -1.00 0.00 0.00 0.00 0.00 -1.00 1.00 G_6- 0.00 0.00 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2' 2 4 3 2C3 5 6 i 7 3s_v 8 10 9 2S6 11 12 -E -1 -3C2' -2 -4 -3 -2C3 -5 -6 -i -7 -3s_v -8 -10 -9 -2S6 -11 -12 Band symmetry, D_3d (-3m) double point group: e( 1 - 2) = 10.17424 eV 2 --> G_4+ L_6+ e( 3 - 4) = 13.14245 eV 2 --> G_5+ L_4+ e( 3 - 4) = 13.14245 eV 2 --> G_6+ L_5+ e( 5 - 6) = 14.15869 eV 2 --> G_4+ L_6+ e( 7 - 8) = 16.90324 eV 2 --> G_4- L_6- e( 9 - 10) = 17.29982 eV 2 --> G_4+ L_6+ e( 11 - 12) = 17.96377 eV 2 --> G_5+ L_4+ e( 11 - 12) = 17.96377 eV 2 --> G_6+ L_5+ e( 13 - 14) = 23.35789 eV 2 --> G_4+ L_6+ e( 15 - 16) = 33.87781 eV 2 --> G_4- L_6- e( 17 - 18) = 36.95416 eV 2 --> G_4- L_6- ************************************************************************** ************************************************************************** xk=( 0.75000, 0.75000, 0.00000 ) double point group C_2v (mm2) there are 5 classes and 1 irreducible representations the character table: E -E C2 s_v s_v' -C2 -s_v -s_v' G_5 2.00 -2.00 0.00 0.00 0.00 the symmetry operations in each class: E 1 C2 -C2 2 -2 s_v -s_v 3 -3 s_v'-s_v' 4 -4 -E -1 Band symmetry, C_2v (mm2) double point group: e( 1 - 2) = 11.23710 eV 2 --> G_5 D_5 e( 3 - 4) = 11.98639 eV 2 --> G_5 D_5 e( 5 - 6) = 14.56710 eV 2 --> G_5 D_5 e( 7 - 8) = 16.24938 eV 2 --> G_5 D_5 e( 9 - 10) = 17.53377 eV 2 --> G_5 D_5 e( 11 - 12) = 23.32636 eV 2 --> G_5 D_5 e( 13 - 14) = 24.22494 eV 2 --> G_5 D_5 e( 15 - 16) = 27.55368 eV 2 --> G_5 D_5 e( 17 - 18) = 32.69172 eV 2 --> G_5 D_5 ************************************************************************** espresso-5.1/PP/examples/example04/reference/pt.ph.out0000644000175000017500000002357612341372774021005 0ustar mbamba Program PHONON v.4.1a starts ... Today is 10Jul2009 at 17:48:22 Parallel version (MPI) Number of processors in use: 1 Ultrasoft (Vanderbilt) Pseudopotentials Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 73 411 Check: negative/imaginary core charge= -0.000004 0.000000 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 kinetic-energy cut-off = 30.0000 Ry charge density cut-off = 250.0000 Ry convergence threshold = 1.0E-16 beta = 0.7000 number of iterations used = 4 Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.42000 celldm(2)= 0.00000 celldm(3)= 0.00000 celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.5000 0.0000 0.5000 ) a(2) = ( 0.0000 0.5000 0.5000 ) a(3) = ( -0.5000 0.5000 0.0000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.0000 -1.0000 1.0000 ) b(2) = ( 1.0000 1.0000 1.0000 ) b(3) = ( -1.0000 1.0000 -1.0000 ) Atoms inside the unit cell: Cartesian axes site n. atom mass positions (a_0 units) 1 Pt 195.0780 tau( 1) = ( 0.00000 0.00000 0.00000 ) Computing dynamical matrix for q = ( 0.0000000 0.0000000 0.0000000 ) 49 Sym.Ops. (with q -> -q+G ) G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) number of k points= 2 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.2500000 k( 2) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.7500000 PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients Atomic displacements: There are 1 irreducible representations Representation 1 3 modes -T_1u G_15 G_4- To be done PHONON : 3.49s CPU time, 3.56s wall time Alpha used in Ewald sum = 2.6000 Representation # 1 modes # 1 2 3 Self-consistent Calculation Pert. # 1: Fermi energy shift (Ry) = -0.4109E-32 0.6269E-37 Pert. # 2: Fermi energy shift (Ry) = -0.2054E-32 -0.7837E-38 Pert. # 3: Fermi energy shift (Ry) = 0.8217E-32 0.3135E-37 iter # 1 total cpu time : 5.9 secs av.it.: 6.3 thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.387E-07 Pert. # 1: Fermi energy shift (Ry) = -0.4109E-32 0.6122E-40 Pert. # 2: Fermi energy shift (Ry) = -0.2054E-32 -0.7653E-41 Pert. # 3: Fermi energy shift (Ry) = 0.1027E-31 0.3061E-40 iter # 2 total cpu time : 8.0 secs av.it.: 14.0 thresh= 0.197E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.114E-08 Pert. # 1: Fermi energy shift (Ry) = 0.4109E-32 0.0000E+00 Pert. # 2: Fermi energy shift (Ry) = -0.1284E-31 0.5740E-40 Pert. # 3: Fermi energy shift (Ry) = 0.6163E-32 -0.3061E-40 iter # 3 total cpu time : 10.0 secs av.it.: 13.2 thresh= 0.337E-05 alpha_mix = 0.700 |ddv_scf|^2 = 0.436E-10 Pert. # 1: Fermi energy shift (Ry) = -0.2054E-32 0.0000E+00 Pert. # 2: Fermi energy shift (Ry) = -0.4622E-32 0.5740E-40 Pert. # 3: Fermi energy shift (Ry) = 0.6163E-32 -0.3061E-40 iter # 4 total cpu time : 12.0 secs av.it.: 12.8 thresh= 0.660E-06 alpha_mix = 0.700 |ddv_scf|^2 = 0.123E-13 Pert. # 1: Fermi energy shift (Ry) = 0.2054E-32 0.0000E+00 Pert. # 2: Fermi energy shift (Ry) = -0.2054E-32 0.5740E-40 Pert. # 3: Fermi energy shift (Ry) = 0.0000E+00 -0.3061E-40 iter # 5 total cpu time : 14.0 secs av.it.: 13.3 thresh= 0.111E-07 alpha_mix = 0.700 |ddv_scf|^2 = 0.185E-15 Pert. # 1: Fermi energy shift (Ry) = -0.2054E-32 0.0000E+00 Pert. # 2: Fermi energy shift (Ry) = -0.4109E-32 0.5740E-40 Pert. # 3: Fermi energy shift (Ry) = -0.2054E-32 -0.3061E-40 iter # 6 total cpu time : 15.8 secs av.it.: 12.2 thresh= 0.136E-08 alpha_mix = 0.700 |ddv_scf|^2 = 0.215E-17 End of self-consistent calculation Convergence has been achieved Number of q in the star = 1 List of q in the star: 1 0.000000000 0.000000000 0.000000000 Diagonalizing the dynamical matrix q = ( 0.000000000 0.000000000 0.000000000 ) ************************************************************************** omega( 1) = 0.153605 [THz] = 5.123754 [cm-1] omega( 2) = 0.153605 [THz] = 5.123754 [cm-1] omega( 3) = 0.153605 [THz] = 5.123754 [cm-1] ************************************************************************** Mode symmetry, O_h (m-3m) point group: omega( 1 - 3) = 5.1 [cm-1] --> T_1u G_15 G_4- I ************************************************************************** PWSCF : 13.91s CPU Called by init_run: Called by electrons: v_of_rho : 0.00s CPU newd : 0.08s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 22 calls, 0.000 s avg) Called by *egterg: s_psi : 0.32s CPU ( 1208 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.15s CPU ( 586 calls, 0.000 s avg) General routines calbec : 0.25s CPU ( 1296 calls, 0.000 s avg) cft3s : 6.71s CPU ( 23656 calls, 0.000 s avg) interpolate : 0.01s CPU ( 4 calls, 0.002 s avg) davcio : 0.00s CPU ( 204 calls, 0.000 s avg) Parallel routines PHONON : 15.88s CPU time, 17.83s wall time INITIALIZATION: phq_setup : 0.02s CPU phq_init : 1.49s CPU phq_init : 1.49s CPU set_drhoc : 1.13s CPU ( 3 calls, 0.377 s avg) init_vloc : 0.00s CPU init_us_1 : 1.37s CPU newd : 0.08s CPU dvanqq : 0.37s CPU drho : 0.60s CPU DYNAMICAL MATRIX: dynmat0 : 0.81s CPU phqscf : 11.58s CPU dynmatrix : 0.00s CPU phqscf : 11.58s CPU solve_linter : 11.56s CPU drhodv : 0.02s CPU dynmat0 : 0.81s CPU dynmat_us : 0.05s CPU d2ionq : 0.00s CPU dynmatcc : 0.76s CPU dynmat_us : 0.05s CPU addusdynmat : 0.02s CPU phqscf : 11.58s CPU solve_linter : 11.56s CPU solve_linter : 11.56s CPU dvqpsi_us : 0.18s CPU ( 6 calls, 0.029 s avg) ortho : 0.06s CPU ( 36 calls, 0.002 s avg) cgsolve : 6.78s CPU ( 36 calls, 0.188 s avg) incdrhoscf : 0.48s CPU ( 36 calls, 0.013 s avg) addusddens : 0.74s CPU ( 7 calls, 0.105 s avg) vpsifft : 0.41s CPU ( 30 calls, 0.014 s avg) dv_of_drho : 0.16s CPU ( 18 calls, 0.009 s avg) mix_pot : 0.17s CPU ( 6 calls, 0.028 s avg) ef_shift : 0.05s CPU ( 7 calls, 0.007 s avg) localdos : 0.21s CPU psymdvscf : 0.67s CPU ( 6 calls, 0.111 s avg) newdq : 1.41s CPU ( 6 calls, 0.235 s avg) adddvscf : 0.02s CPU ( 30 calls, 0.001 s avg) drhodvus : 0.00s CPU dvqpsi_us : 0.18s CPU ( 6 calls, 0.029 s avg) dvqpsi_us_on : 0.04s CPU ( 6 calls, 0.007 s avg) cgsolve : 6.78s CPU ( 36 calls, 0.188 s avg) ch_psi : 6.70s CPU ( 586 calls, 0.011 s avg) ch_psi : 6.70s CPU ( 586 calls, 0.011 s avg) h_psiq : 6.25s CPU ( 586 calls, 0.011 s avg) last : 0.43s CPU ( 586 calls, 0.001 s avg) h_psiq : 6.25s CPU ( 586 calls, 0.011 s avg) firstfft : 2.84s CPU ( 4894 calls, 0.001 s avg) secondfft : 2.81s CPU ( 4894 calls, 0.001 s avg) add_vuspsi : 0.15s CPU ( 586 calls, 0.000 s avg) incdrhoscf : 0.48s CPU ( 36 calls, 0.013 s avg) drhodvus : 0.00s CPU General routines calbec : 0.25s CPU ( 1296 calls, 0.000 s avg) cft3s : 6.71s CPU ( 23656 calls, 0.000 s avg) cinterpolate : 0.27s CPU ( 151 calls, 0.002 s avg) davcio : 0.00s CPU ( 204 calls, 0.000 s avg) write_rec : 0.02s CPU ( 7 calls, 0.003 s avg) espresso-5.1/PP/examples/example04/reference/pt.phX.out0000644000175000017500000004064612341372774021132 0ustar mbamba Program PHONON v.4.1a starts ... Today is 10Jul2009 at 17:48:40 Parallel version (MPI) Number of processors in use: 1 Ultrasoft (Vanderbilt) Pseudopotentials Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 73 411 Check: negative/imaginary core charge= -0.000004 0.000000 Calculation of q = 1.0000000 0.0000000 0.0000000 Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 91 609 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 195.07800 Pt( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 6 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.2500000 k( 2) = ( 0.7500000 0.2500000 0.2500000), wk = 0.0000000 k( 3) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.5000000 k( 4) = ( 1.2500000 -0.2500000 0.7500000), wk = 0.0000000 k( 5) = ( 0.7500000 0.2500000 -0.2500000), wk = 0.2500000 k( 6) = ( 1.7500000 0.2500000 -0.2500000), wk = 0.0000000 G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 578, 18) NL pseudopotentials 0.11 Mb ( 289, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 578, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Check: negative/imaginary core charge= -0.000004 0.000000 The potential is recalculated from file : /home/dalcorso/tmp/_phPt.save/charge-density.dat Starting wfc are 18 atomic wfcs total cpu time spent up to now is 1.81 secs per-process dynamical memory: 15.6 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-10, avg # of iterations = 13.3 total cpu time spent up to now is 3.69 secs End of band structure calculation k =-0.2500 0.2500 0.2500 band energies (ev): 9.3170 9.3170 13.3107 13.3107 13.5799 13.5799 14.7743 14.7743 16.0691 16.0691 16.6623 16.6623 31.1506 31.1506 35.9701 35.9701 39.8081 39.8081 k = 0.7500 0.2500 0.2500 band energies (ev): 11.2910 11.2910 12.4161 12.4161 13.9359 13.9359 15.5889 15.5889 17.8747 17.8747 20.6641 20.6641 25.0087 25.0087 31.6342 31.6342 33.8373 33.8373 k = 0.2500-0.2500 0.7500 band energies (ev): 11.2910 11.2910 12.4161 12.4161 13.9359 13.9359 15.5889 15.5889 17.8747 17.8747 20.6641 20.6641 25.0087 25.0087 31.6342 31.6342 33.8373 33.8373 k = 1.2500-0.2500 0.7500 band energies (ev): 11.2910 11.2910 12.4161 12.4161 13.9359 13.9359 15.5889 15.5889 17.8747 17.8747 20.6641 20.6641 25.0087 25.0087 31.6342 31.6342 33.8373 33.8373 k = 0.7500 0.2500-0.2500 band energies (ev): 11.2910 11.2910 12.4161 12.4161 13.9359 13.9359 15.5889 15.5889 17.8747 17.8747 20.6641 20.6641 25.0087 25.0087 31.6342 31.6342 33.8373 33.8373 k = 1.7500 0.2500-0.2500 band energies (ev): 9.3170 9.3170 13.3107 13.3107 13.5799 13.5799 14.7743 14.7743 16.0691 16.0691 16.6623 16.6623 31.1506 31.1506 35.9701 35.9701 39.8081 39.8081 the Fermi energy is 17.9295 ev Writing output data file Pt.save bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 kinetic-energy cut-off = 30.0000 Ry charge density cut-off = 250.0000 Ry convergence threshold = 1.0E-16 beta = 0.7000 number of iterations used = 4 Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.42000 celldm(2)= 0.00000 celldm(3)= 0.00000 celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.5000 0.0000 0.5000 ) a(2) = ( 0.0000 0.5000 0.5000 ) a(3) = ( -0.5000 0.5000 0.0000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.0000 -1.0000 1.0000 ) b(2) = ( 1.0000 1.0000 1.0000 ) b(3) = ( -1.0000 1.0000 -1.0000 ) Atoms inside the unit cell: Cartesian axes site n. atom mass positions (a_0 units) 1 Pt 195.0780 tau( 1) = ( 0.00000 0.00000 0.00000 ) Computing dynamical matrix for q = ( 1.0000000 0.0000000 0.0000000 ) 17 Sym.Ops. (with q -> -q+G ) G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) number of k points= 6 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.2500000 k( 2) = ( 0.7500000 0.2500000 0.2500000), wk = 0.0000000 k( 3) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.5000000 k( 4) = ( 1.2500000 -0.2500000 0.7500000), wk = 0.0000000 k( 5) = ( 0.7500000 0.2500000 -0.2500000), wk = 0.2500000 k( 6) = ( 1.7500000 0.2500000 -0.2500000), wk = 0.0000000 PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients Atomic displacements: There are 2 irreducible representations Representation 1 2 modes -E_u X_5' M_5' To be done Representation 2 1 modes -A_2u X_4' M_4' To be done PHONON : 7.83s CPU time, 7.96s wall time Alpha used in Ewald sum = 2.6000 Representation # 1 modes # 1 2 Self-consistent Calculation iter # 1 total cpu time : 10.2 secs av.it.: 7.5 thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.516E-06 iter # 2 total cpu time : 12.2 secs av.it.: 14.0 thresh= 0.718E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.706E-07 iter # 3 total cpu time : 14.2 secs av.it.: 13.2 thresh= 0.266E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.165E-09 iter # 4 total cpu time : 16.1 secs av.it.: 12.7 thresh= 0.129E-05 alpha_mix = 0.700 |ddv_scf|^2 = 0.315E-12 iter # 5 total cpu time : 18.1 secs av.it.: 13.2 thresh= 0.562E-07 alpha_mix = 0.700 |ddv_scf|^2 = 0.305E-14 iter # 6 total cpu time : 20.0 secs av.it.: 12.8 thresh= 0.553E-08 alpha_mix = 0.700 |ddv_scf|^2 = 0.478E-16 End of self-consistent calculation Convergence has been achieved Representation # 2 mode # 3 Self-consistent Calculation iter # 1 total cpu time : 20.9 secs av.it.: 8.3 thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.325E-04 iter # 2 total cpu time : 22.0 secs av.it.: 12.7 thresh= 0.570E-03 alpha_mix = 0.700 |ddv_scf|^2 = 0.350E-04 iter # 3 total cpu time : 23.0 secs av.it.: 11.3 thresh= 0.592E-03 alpha_mix = 0.700 |ddv_scf|^2 = 0.152E-08 iter # 4 total cpu time : 24.0 secs av.it.: 12.3 thresh= 0.390E-05 alpha_mix = 0.700 |ddv_scf|^2 = 0.127E-10 iter # 5 total cpu time : 25.0 secs av.it.: 11.7 thresh= 0.357E-06 alpha_mix = 0.700 |ddv_scf|^2 = 0.274E-12 iter # 6 total cpu time : 26.0 secs av.it.: 12.0 thresh= 0.523E-07 alpha_mix = 0.700 |ddv_scf|^2 = 0.315E-15 iter # 7 total cpu time : 27.0 secs av.it.: 12.3 thresh= 0.177E-08 alpha_mix = 0.700 |ddv_scf|^2 = 0.803E-18 End of self-consistent calculation Convergence has been achieved Number of q in the star = 3 List of q in the star: 1 1.000000000 0.000000000 0.000000000 2 0.000000000 0.000000000 1.000000000 3 0.000000000 1.000000000 0.000000000 Diagonalizing the dynamical matrix q = ( 1.000000000 0.000000000 0.000000000 ) ************************************************************************** omega( 1) = 3.670213 [THz] = 122.425943 [cm-1] omega( 2) = 3.670213 [THz] = 122.425943 [cm-1] omega( 3) = 5.809423 [THz] = 193.782795 [cm-1] ************************************************************************** Mode symmetry, D_4h(4/mmm) point group: omega( 1 - 2) = 122.4 [cm-1] --> E_u X_5' M_5' omega( 3 - 3) = 193.8 [cm-1] --> A_2u X_4' M_4' ************************************************************************** PWSCF : 25.09s CPU init_run : 1.80s CPU electrons : 1.88s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.02s CPU Called by electrons: c_bands : 1.88s CPU v_of_rho : 0.01s CPU ( 2 calls, 0.005 s avg) newd : 0.17s CPU ( 2 calls, 0.085 s avg) Called by c_bands: init_us_2 : 0.01s CPU ( 63 calls, 0.000 s avg) cegterg : 1.70s CPU ( 6 calls, 0.284 s avg) Called by *egterg: h_psi : 1.43s CPU ( 92 calls, 0.016 s avg) s_psi : 0.57s CPU ( 1935 calls, 0.000 s avg) g_psi : 0.02s CPU ( 80 calls, 0.000 s avg) cdiaghg : 0.15s CPU ( 86 calls, 0.002 s avg) Called by h_psi: add_vuspsi : 0.25s CPU ( 985 calls, 0.000 s avg) General routines calbec : 0.43s CPU ( 2079 calls, 0.000 s avg) cft3s : 11.51s CPU ( 40608 calls, 0.000 s avg) interpolate : 0.01s CPU ( 8 calls, 0.002 s avg) davcio : 0.00s CPU ( 389 calls, 0.000 s avg) Parallel routines PHONON : 27.06s CPU time, 27.84s wall time INITIALIZATION: phq_setup : 0.01s CPU phq_init : 2.04s CPU phq_init : 2.04s CPU set_drhoc : 1.13s CPU ( 3 calls, 0.375 s avg) init_vloc : 0.00s CPU ( 2 calls, 0.002 s avg) init_us_1 : 2.82s CPU ( 2 calls, 1.409 s avg) newd : 0.17s CPU ( 2 calls, 0.085 s avg) dvanqq : 0.50s CPU drho : 1.01s CPU DYNAMICAL MATRIX: dynmat0 : 0.82s CPU phqscf : 18.40s CPU dynmatrix : 0.00s CPU phqscf : 18.40s CPU solve_linter : 18.36s CPU ( 2 calls, 9.179 s avg) drhodv : 0.03s CPU ( 2 calls, 0.017 s avg) dynmat0 : 0.82s CPU dynmat_us : 0.06s CPU d2ionq : 0.00s CPU dynmatcc : 0.76s CPU dynmat_us : 0.06s CPU addusdynmat : 0.02s CPU phqscf : 18.40s CPU solve_linter : 18.36s CPU ( 2 calls, 9.179 s avg) solve_linter : 18.36s CPU ( 2 calls, 9.179 s avg) dvqpsi_us : 0.25s CPU ( 9 calls, 0.028 s avg) ortho : 0.08s CPU ( 57 calls, 0.001 s avg) cgsolve : 10.72s CPU ( 57 calls, 0.188 s avg) incdrhoscf : 0.75s CPU ( 57 calls, 0.013 s avg) addusddens : 2.37s CPU ( 15 calls, 0.158 s avg) vpsifft : 0.66s CPU ( 48 calls, 0.014 s avg) dv_of_drho : 0.17s CPU ( 19 calls, 0.009 s avg) mix_pot : 0.15s CPU ( 13 calls, 0.012 s avg) psymdvscf : 0.28s CPU ( 13 calls, 0.022 s avg) newdq : 2.82s CPU ( 13 calls, 0.217 s avg) adddvscf : 0.04s CPU ( 48 calls, 0.001 s avg) drhodvus : 0.00s CPU ( 2 calls, 0.000 s avg) dvqpsi_us : 0.25s CPU ( 9 calls, 0.028 s avg) dvqpsi_us_on : 0.05s CPU ( 9 calls, 0.006 s avg) cgsolve : 10.72s CPU ( 57 calls, 0.188 s avg) ch_psi : 10.62s CPU ( 893 calls, 0.012 s avg) ch_psi : 10.62s CPU ( 893 calls, 0.012 s avg) h_psiq : 9.93s CPU ( 893 calls, 0.011 s avg) last : 0.66s CPU ( 893 calls, 0.001 s avg) h_psiq : 9.93s CPU ( 893 calls, 0.011 s avg) firstfft : 4.41s CPU ( 7608 calls, 0.001 s avg) secondfft : 4.56s CPU ( 7608 calls, 0.001 s avg) add_vuspsi : 0.25s CPU ( 985 calls, 0.000 s avg) incdrhoscf : 0.75s CPU ( 57 calls, 0.013 s avg) drhodvus : 0.00s CPU ( 2 calls, 0.000 s avg) General routines calbec : 0.43s CPU ( 2079 calls, 0.000 s avg) cft3s : 11.51s CPU ( 40608 calls, 0.000 s avg) cinterpolate : 0.27s CPU ( 155 calls, 0.002 s avg) davcio : 0.00s CPU ( 389 calls, 0.000 s avg) write_rec : 0.05s CPU ( 15 calls, 0.003 s avg) espresso-5.1/PP/examples/example04/reference/bands.pt.im0000644000175000017500000000102512341372774021244 0ustar mbamba# Im(k), E-Ef # k-point 1 -0.1581 0.0000 -0.1581 0.0000 -0.3623 0.0000 -0.3623 0.0000 -0.4880 0.0000 -0.4880 0.0000 -1.0638 0.0000 -1.0638 0.0000 -1.1298 0.0000 -1.1298 0.0000 -1.1420 0.0000 -1.1420 0.0000 -1.0638 0.0000 -1.0638 0.0000 -1.1298 0.0000 -1.1298 0.0000 -1.1420 0.0000 -1.1420 0.0000 -0.4880 0.0000 -0.4880 0.0000 -0.3623 0.0000 -0.3623 0.0000 -0.1581 0.0000 -0.1581 0.0000 espresso-5.1/PP/examples/README0000644000175000017500000001163212341372775014335 0ustar mbambaThese are instructions on how to run the examples for some PostProc programs included in the Quantum ESPRESSO distribution. These examples try to exercise all the programs and features of the PP package. If you find that any relevant feature isn't being tested, please contact us (or even better, write and send us a new example). To run the examples, you should follow this procedure: 1) Edit the "environment_variables" file from the main ESPRESSO directory, setting the following variables as needed: BIN_DIR = directory where ESPRESSO executables reside PSEUDO_DIR = directory where pseudopotential files reside TMP_DIR = directory to be used as temporary storage area If you have downloaded the full ESPRESSO distribution, you may set BIN_DIR=$TOPDIR/bin and PSEUDO_DIR=$TOPDIR/pseudo, where $TOPDIR is the root of the ESPRESSO source tree. TMP_DIR must be a directory you have read and write access to, with enough available space to host the temporary files produced by the example runs, and possibly offering high I/O performance (i.e., don't use an NFS-mounted directory). 2) If you want to test the parallel version of ESPRESSO, you will usually have to specify a driver program (such as "poe" or "mpirun") and the number of processors. This can be done by editing PARA_PREFIX and PARA_POSTFIX variables (in the "environment_variables" file). Parallel executables will be run by a command like this: $PARA_PREFIX pp.x $PARA_POSTFIX < file.in > file.out For example, if the command line is like this (as for an IBM SP): poe pp.x -procs 4 < file.in > file.out you should set PARA_PREFIX="poe", PARA_POSTFIX="-procs 4". See section "Running on parallel machines" of the user guide for details. Furthermore, if your machine does not support interactive use, you must run the commands specified below through the batch queueing system installed on that machine. Ask your system administrator for instructions. 3) To run a single example, go to the corresponding directory (for instance, "example/example01") and execute: ./run_example This will create a subdirectory "results", containing the input and output files generated by the calculation. Some examples take only a few seconds to run, while others may require several minutes depending on your system. 4) In each example's directory, the "reference" subdirectory contains verified output files, that you can check your results against. The reference results were generated on a Linux PC with Intel compiler. On different architectures the precise numbers could be slightly different, in particular if different FFT dimensions are automatically selected. For this reason, a plain "diff" of your results against the reference data doesn't work, or at least, it requires human inspection of the results. ----------------------------------------------------------------------- LIST AND CONTENT OF THE EXAMPLES example01: This example shows how to use pw.x and postprocessing codes to make a contour plot in the [110] plane of the charge density for Si, and to plot the band structure of Si. example02: This example shows how to use pw.x to calculate the DOS of Ni and how to plot the Fermi Surface using XCrysDen example03: This example shows a calculation of STM maps. example04: This example shows how to use bands.x to check the band symmetry of fcc-Pt with a fully relativistic pseudo-potential including spin-orbit coupling. example05: This example shows how to use pmw.x to generate better projectors for LDA+U calculation on FeO. Read file README for more details example06: This example calculates the band structure of ferromagnetic bcc-Fe in the noncollinear spin-orbit case. Additional feature-specific examples: dipole_example: This example will calculate the water dipole and calculate the work function on a Ni slab with a CO molecule adsorbed using the dipole correction. CLS_IS_example, CLS_FS_example These examples show how to calculate initial-state (IS) and final-state (FS) core-level-shift (CLS) using the core-excited pseudo-potential technique. WorkFct_example: This example shows how to use pw.x, pp.x, and average.x to compute the work function of a metal using the slab-supercell approximation. This example is of a 4 layer unrelaxed Al(100) slab with 5 equivalent layers of vacuum between the surfaces. WAN90_example: This example shows how to use pw2wannier90.x in conjunction with Wannier90 (http://www.wannier.org) to obtain maximally-localised Wannier functions (MLWFs) for the valence bands of diamond. WannierHam_example: This example shows how to generate a model Hamiltonian in a Wannier functions basis, using pw.x and wannier_ham.x. QExml_example: The example shows how to use qexml.f90 to read files written by pw.x and cp.x espresso-5.1/PP/examples/dipole_example/0000755000175000017500000000000012341373041016424 5ustar mbambaespresso-5.1/PP/examples/dipole_example/README0000644000175000017500000000416512341372774017326 0ustar mbamba This example shows how to use QE to apply the dipole field correction in two different cases, first a Ni metal slab with a adsorbed CO molecule and second a water molecule in vacuum. Note about the dipole field correction. ----- In several cases the electron configuration of the grund state in a SCF calculation generates a macroscopic dipole in the cell. This effect will influence the slope of the potential far away from the atoms, in the vacuum region. To correct this dipole effect and let the potential recover a constant level (the vacuum level) far away from the atoms it's possible to correct the SCF potential by introducing a electric double layer in the vacuum region which generates an electric field that cancels the macroscopic dipole in the slab. (See Bengtsson PRB 59, 12 301 (1999) and Meyer and Vanderbilt, PRB 63, 205426 (2001).) To launch a calculation with the dipole correction it's important to define the correct position (and obviously the direction) where to insert the compensating eletric double layer, a vacuum region where almost no charge is present. ---- The calculation proceeds as follows (for the meaning of the cited input variables see the appropriate INPUT_* file) 1) make a self-consistent calculation for Ni+CO slab (input=ni+co.scf, output=ni+co.scf.out). Emaxpos, eopreg and edir are the essential variables needed to define position and width of electric double layer giving the dipole correction. 2) extract the total electrostatic potential (V_bare + V_H potential) with a post-process run (input=ni+co.pp.in, output=ni+co.pp.out, potential_file=ni+co.vpot). 3) calculate the planar average along the edir direction and plot the result (input=ni+co.avg.in, output=ni+co.vpot-z, plot=ni+co.eps). 4) make a self-consistent calculation for water molecule (input=water.scf, output=water.scf.out). 5) extract the potential (the V_bare + V_H potential) with a post-process run (input=water.pp.in, output=water.pp.out, potential_file=water.vpot). 5) calculate the planar average along the edir direction and plot the result (input=water.avg.in, output=water.vpot-z, plot=water.eps). espresso-5.1/PP/examples/dipole_example/run_example0000755000175000017500000002076612341372774020720 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example will calculate the water dipole and calculate the work" $ECHO "function on a Ni slab with a CO molecule adsorbed using the dipole" $ECHO "correction" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x pp.x average.x" PSEUDO_LIST="C.pbe-rrkjus.UPF O.pbe-rrkjus.UPF Ni.pbe-nd-rrkjus.UPF HUSPBE.RRKJ3" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for gnuplot GP_COMMAND=`which gnuplot 2>/dev/null` if [ "$GP_COMMAND" = "" ]; then $ECHO $ECHO "gnuplot not in PATH" $ECHO "Results will not be plotted" fi # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" PP_COMMAND="$PARA_PREFIX $BIN_DIR/pp.x $PARA_POSTFIX" AVERAGE_COMMAND="$BIN_DIR/average.x" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running pp.x as: $PP_COMMAND" $ECHO " running average.x as: $AVERAGE_COMMAND" $ECHO " running gnuplot as: $GP_COMMAND" $ECHO # # Run the calculation for the Ni+CO slab with the dipole correction # emaxpos, the starting of the potential inversion, has to be carefully # placed in a position where there's almost no charge. # cat > ni+co.scf.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='ni+co', pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' tefield=.true., dipfield=.true., / &system nat=5, ntyp=3, ibrav=0, celldm(1)=4.70366666, ecutwfc = 30.0 occupations='smearing', smearing='m-v', degauss=0.03 edir=3, emaxpos=0.55, eopreg=0.06, eamp=0, / &electrons mixing_beta = 0.3 conv_thr = 1.0d-6 / ATOMIC_SPECIES C 1.0 C.pbe-rrkjus.UPF O 1.0 O.pbe-rrkjus.UPF Ni 1.0 Ni.pbe-nd-rrkjus.UPF CELL_PARAMETERS 1.00000000 0.00000000 0.00000000 0.00000000 1.41421356 0.00000000 0.00000000 0.00000000 9.10000001 ATOMIC_POSITIONS (alat) C -0.00364039 0.02119538 1.54673745 O -0.00634860 0.04192428 2.02021975 Ni 0.48527378 0.00197332 0.97713547 Ni -0.00049546 0.70236680 0.45417840 Ni 0.50000000 0.00000000 0.00000000 K_POINTS {gamma} EOF $ECHO $ECHO " running pw.x for Ni+CO slab...\c" $PW_COMMAND < ni+co.scf.in > ni+co.scf.out check_failure $? $ECHO " done" # # Extract the potential from the SCF calculation # cat > ni+co.pp.in << EOF &inputpp prefix='ni+co', outdir='$TMP_DIR', filplot = 'ni+co.vpot' plot_num= 11 / EOF $ECHO $ECHO " running pp.x to extract ni+co potential...\c" $PP_COMMAND < ni+co.pp.in > ni+co.pp.out check_failure $? $ECHO " done" # # Average the potential to obtain the planar average along edir # cat > ni+co.avg.in << EOF 1 ni+co.vpot 1.D0 150 3 3.000000 EOF $ECHO $ECHO " running average.x to obtain the potential along Z...\c" $AVERAGE_COMMAND < ni+co.avg.in > ni+co.vpot-z check_failure $? $ECHO " done" # # If gnuplot is present plot the potential. In the graph it's clear where # the potential reaches a constant value thanks to the dipole correction. # if [ "$GP_COMMAND" = "" ]; then break else cat > ni+co.gnuplot < water.scf.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='water', pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' tefield=.true., dipfield=.true. / &SYSTEM ibrav=1, celldm(1) = 15 nat=3, ntyp=2 ecutwfc=30.0 occupations='smearing', degauss=0.01 edir=3 eamp=0.D0 eopreg=0.1 emaxpos=0.6 / &ELECTRONS mixing_beta = 0.7 conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 HUSPBE.RRKJ3 ATOMIC_POSITIONS { Angstrom } O 0.0 0.0 0.0 H 0.77 0.0 0.62 H -0.77 0.0 0.62 K_POINTS { gamma } EOF $ECHO $ECHO " running pw.x for water molecule ...\c" $PW_COMMAND < water.scf.in > water.scf.out check_failure $? $ECHO " done" # # Extract the potential from the SCF calculation # cat > water.pp.in << EOF &inputpp prefix='water', outdir='$TMP_DIR', filplot = 'water.vpot' plot_num= 11 / EOF $ECHO $ECHO " running pp.x to extract water potential...\c" $PP_COMMAND < water.pp.in > water.pp.out check_failure $? $ECHO " done" # # If gnuplot is present plot the potential. In the graph it's clear how the # dipole influences the potential slope # cat > water.avg.in << EOF 1 water.vpot 1.D0 90 3 3.000000 EOF $ECHO $ECHO " running average.x to obtain the potential along Z...\c" $AVERAGE_COMMAND < water.avg.in > water.vpot-z check_failure $? $ECHO " done" if [ "$GP_COMMAND" = "" ]; then break else cat > water.gnuplot < Graph for the slab calculation" $ECHO " results/water.eps -> Graph for the water molecule" $ECHO "----------------------------------------------------" espresso-5.1/PP/examples/dipole_example/reference/0000755000175000017500000000000012341373041020362 5ustar mbambaespresso-5.1/PP/examples/dipole_example/reference/ni+co.pp.in0000644000175000017500000000015412341372774022347 0ustar mbamba&inputpp prefix='ni+co', outdir='/home/degironc/tmp', filplot = 'ni+co.vpot' plot_num= 11 / espresso-5.1/PP/examples/dipole_example/reference/ni+co.vpot-z0000644000175000017500000001562712341372774022575 0ustar mbamba Program POST-PROC v.4.1CVS starts ... Today is 2Jul2009 at 17:47:20 Reading header from file ni+co.vpot Reading data from file ni+co.vpot 0.000000000 -0.785563277 -0.581860408 0.285355778 -0.778806823 -0.644972801 0.570711555 -0.717320368 -0.699528781 0.856067333 -0.680948296 -0.739832931 1.141423111 -0.683741716 -0.758245713 1.426778888 -0.715078566 -0.754245580 1.712134666 -0.791619285 -0.737427560 1.997490444 -0.857839556 -0.719854200 2.282846221 -0.845686956 -0.708058743 2.568201999 -0.754851386 -0.703351876 2.853557777 -0.647562425 -0.704892173 3.138913555 -0.580447267 -0.706739516 3.424269332 -0.564212733 -0.699753653 3.709625110 -0.598146792 -0.680129463 3.994980888 -0.672405873 -0.651692881 4.280336665 -0.757220352 -0.619809144 4.565692443 -0.786424350 -0.586922929 4.851048221 -0.723317228 -0.556714356 5.136403998 -0.587725493 -0.532951477 5.421759776 -0.444081201 -0.513631175 5.707115554 -0.320657869 -0.493680669 5.992471331 -0.249627538 -0.470576222 6.277827109 -0.290861003 -0.445638515 6.563182887 -0.396240935 -0.421580412 6.848538664 -0.487905693 -0.399132301 7.133894442 -0.542710412 -0.380683347 7.419250220 -0.538845342 -0.375351148 7.704605998 -0.472142093 -0.386740525 7.989961775 -0.357738576 -0.404240290 8.275317553 -0.225105899 -0.412850049 8.560673331 -0.170654082 -0.400377844 8.846029108 -0.292987343 -0.362093602 9.131384886 -0.475288744 -0.305601389 9.416740664 -0.561808500 -0.245042007 9.702096441 -0.494533308 -0.190058774 9.987452219 -0.286638704 -0.140564404 10.272807997 -0.029232200 -0.085499473 10.558163774 0.148089028 -0.013946474 10.843519552 0.233217940 0.071770866 11.128875330 0.283602251 0.158882085 11.414231107 0.310525158 0.232487779 11.699586885 0.327132049 0.282984013 11.984942663 0.335651837 0.311835611 12.270298441 0.341597721 0.327623357 12.555654218 0.344284857 0.336669560 12.841009996 0.346657001 0.341873382 13.126365774 0.347396766 0.344913536 13.411721551 0.348492027 0.346706798 13.697077329 0.348569865 0.347781459 13.982433107 0.349174383 0.348428580 14.267788884 0.349029476 0.348824350 14.553144662 0.349430811 0.349066516 14.838500440 0.349218314 0.349217361 15.123856217 0.349524460 0.349310644 15.409211995 0.349300528 0.349369797 15.694567773 0.349556738 0.349406667 15.979923550 0.349340352 0.349430533 16.265279328 0.349565346 0.349445445 16.550635106 0.349362193 0.349455436 16.835990884 0.349565115 0.349461702 17.121346661 0.349376143 0.349466109 17.406702439 0.349561479 0.349468849 17.692058217 0.349385885 0.349470925 17.977413994 0.349556704 0.349472192 18.262769772 0.349393597 0.349473253 18.548125550 0.349551812 0.349473874 18.833481327 0.349400085 0.349474477 19.118837105 0.349547124 0.349474828 19.404192883 0.349405763 0.349475230 19.689548660 0.349542752 0.349475462 19.974904438 0.349410936 0.349475763 20.260260216 0.349538738 0.349475940 20.545615993 0.349415650 0.349476184 20.830971771 0.349534977 0.349476331 21.116327549 0.349419977 0.349476538 21.401683327 0.349531447 0.349476660 21.687039104 0.349423984 0.349476831 21.972394882 0.349528113 0.349476930 22.257750660 0.349427712 0.349477825 22.543106437 0.349524940 0.349480923 22.828462215 0.349431194 0.349487078 23.113817993 0.349521900 0.349496199 23.399173770 0.349434457 0.349508371 23.684529548 0.349534073 0.349523516 23.969885326 0.349482852 0.349541707 24.255241103 0.349591665 0.349562877 24.540596881 0.349546192 0.349587088 24.825952659 0.349649336 0.349613528 25.111308436 0.349609390 0.349639983 25.396664214 0.349707074 0.349664139 25.682019992 0.349672459 0.349685284 25.967375770 0.349764857 0.349703376 26.252731547 0.349720298 0.349718453 26.538087325 0.349777343 0.349730478 26.823443103 0.349722698 0.349739481 27.108798880 0.349774725 0.349745430 27.394154658 0.349724978 0.349748350 27.679510436 0.349772086 0.349748967 27.964866213 0.349727131 0.349748807 28.250221991 0.349769390 0.349748600 28.535577769 0.349729131 0.349748351 28.820933546 0.349766578 0.349748030 29.106289324 0.349730913 0.349747630 29.391645102 0.349763541 0.349747113 29.677000879 0.349732354 0.349746450 29.962356657 0.349760089 0.349745582 30.247712435 0.349733202 0.349744445 30.533068212 0.349755864 0.349742941 30.818423990 0.349733010 0.349740945 31.103779768 0.349750241 0.349738281 31.389135546 0.349730921 0.349734709 31.674491323 0.349742043 0.349729876 31.959847101 0.349725387 0.349723272 32.245202879 0.349729142 0.349714277 32.530558656 0.349713470 0.349702060 32.815914434 0.349707527 0.349685518 33.101270212 0.349689111 0.349663125 33.386625989 0.349667871 0.349632838 33.671981767 0.349641109 0.349591843 33.957337545 0.349597798 0.349536319 34.242693322 0.349552527 0.349461054 34.528049100 0.349472560 0.349359090 34.813404878 0.349389135 0.349220957 35.098760655 0.349245492 0.349033817 35.384116433 0.349086653 0.348780190 35.669472211 0.348829049 0.348436462 35.954827989 0.348528299 0.347970653 36.240183766 0.348066028 0.347339536 36.525539544 0.347500149 0.346484544 36.810895322 0.346666226 0.345326597 37.096251099 0.345609526 0.343758919 37.381606877 0.344099391 0.341637488 37.666962655 0.342139958 0.338768165 37.952318432 0.339394841 0.334889185 38.237674210 0.335778357 0.329647355 38.523029988 0.330783789 0.322564686 38.808385765 0.324144925 0.312993326 39.093741543 0.315062945 0.300052660 39.379097321 0.302923639 0.282529212 39.664453098 0.286406138 0.258707387 39.949808876 0.264216224 0.226024610 40.235164654 0.234065492 0.181055674 40.520520432 0.193360537 0.121178319 40.805876209 0.137705311 0.045406814 41.091231987 0.061031380 -0.045673810 41.376587765 -0.048124772 -0.147325751 41.661943542 -0.196325225 -0.250458342 41.947299320 -0.362014010 -0.346636003 42.232655098 -0.535429509 -0.433102728 42.518010875 -0.696853189 -0.511274064 espresso-5.1/PP/examples/dipole_example/reference/ni+co.scf.in0000644000175000017500000000171712341372774022511 0ustar mbamba &control calculation='scf', restart_mode='from_scratch', prefix='ni+co', pseudo_dir = '/home/degironc/QE/espresso/pseudo', outdir='/home/degironc/tmp' tefield=.true., dipfield=.true., / &system nat=5, ntyp=3, ibrav=0, celldm(1)=4.70366666, ecutwfc = 30.0 occupations='smearing', smearing='m-v', degauss=0.03 edir=3, emaxpos=0.55, eopreg=0.06, eamp=0, / &electrons mixing_beta = 0.3 conv_thr = 1.0d-6 / ATOMIC_SPECIES C 1.0 C.pbe-rrkjus.UPF O 1.0 O.pbe-rrkjus.UPF Ni 1.0 Ni.pbe-nd-rrkjus.UPF CELL_PARAMETERS 1.00000000 0.00000000 0.00000000 0.00000000 1.41421356 0.00000000 0.00000000 0.00000000 9.10000001 ATOMIC_POSITIONS (alat) C -0.00364039 0.02119538 1.54673745 O -0.00634860 0.04192428 2.02021975 Ni 0.48527378 0.00197332 0.97713547 Ni -0.00049546 0.70236680 0.45417840 Ni 0.50000000 0.00000000 0.00000000 K_POINTS {gamma} espresso-5.1/PP/examples/dipole_example/reference/ni+co.pp.out0000644000175000017500000000210012341372774022541 0ustar mbamba Program POST-PROC v.4.1CVS starts ... Today is 2Jul2009 at 17:47:17 file C.pbe-rrkjus.UPF: wavefunction(s) 2S 2P renormalized file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized file Ni.pbe-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Check: negative/imaginary core charge= -0.000147 0.000000 negative rho (up, down): 0.209E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.0003 au, 0.0009 Debye Dipole field 0.0000 au Potential amp. -0.0003 Ry Total length 40.2352 bhor Calling punch_plot, plot_num = 11 Adding external electric field Computed dipole along edir(3) : Dipole 0.0003 au, 0.0009 Debye Dipole field 0.0000 au Potential amp. -0.0003 Ry Total length 40.2352 bhor Writing data to file ni+co.vpot Message from routine chdens: namelist plot not found or invalid, exiting espresso-5.1/PP/examples/dipole_example/reference/water.pp.out0000644000175000017500000000166312341372774022675 0ustar mbamba Program POST-PROC v.4.1CVS starts ... Today is 26Jun2009 at 12:57:26 file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized file HUSPBE.RRKJ3: wavefunction(s) nX renormalized negative rho (up, down): 0.409E-01 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.7172 au, 1.8230 Debye Dipole field 0.0027 au Potential amp. -0.0721 Ry Total length 13.5000 bhor Calling punch_plot, plot_num = 11 Adding external electric field Computed dipole along edir(3) : Dipole 0.7172 au, 1.8230 Debye Dipole field 0.0027 au Potential amp. -0.0721 Ry Total length 13.5000 bhor Writing data to file water.vpot Message from routine chdens: namelist plot not found or invalid, exiting espresso-5.1/PP/examples/dipole_example/reference/ni+co.avg.in0000644000175000017500000000004112341372774022500 0ustar mbamba1 ni+co.vpot 1.D0 150 3 3.000000 espresso-5.1/PP/examples/dipole_example/reference/ni+co.eps0000644000175000017500000005147012341372774022121 0ustar mbamba%!PS-Adobe-2.0 %%Title: ni+co.eps %%Creator: gnuplot 4.0 patchlevel 0 %%CreationDate: Thu Jul 2 17:47:21 2009 %%DocumentFonts: (atend) %%BoundingBox: 50 50 554 770 %%Orientation: Landscape %%Pages: (atend) %%EndComments /gnudict 256 dict def gnudict begin /Color true def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -46 def /dl {10.0 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /Rounded false def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse } def /BL { stroke userlinewidth 2 mul setlinewidth Rounded { 1 setlinejoin 1 setlinecap } if } def /AL { stroke userlinewidth 2 div setlinewidth Rounded { 1 setlinejoin 1 setlinecap } if } def /UL { dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def } def /PL { stroke userlinewidth setlinewidth Rounded { 1 setlinejoin 1 setlinecap } if } def /LTw { PL [] 1 setgray } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def /BoxColFill { gsave Rec /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor fill grestore } def % % PostScript Level 1 Pattern Fill routine % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill { gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi { PFa 4 get mul 0 M 0 PFs V } for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi { PFa 4 get mul 0 2 1 roll M PFs 0 V } for } if stroke grestore } def % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop /MFshow { { dup 5 get 3 ge { 5 get 3 eq {gsave} {grestore} ifelse } {dup dup 0 get findfont exch 1 get scalefont setfont [ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6 get exch 4 get {show} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq {dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5 get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop pop aload pop M} ifelse }ifelse }ifelse } ifelse } forall} bind def /MFwidth {0 exch {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont 6 get stringwidth pop add} {pop} ifelse} forall} bind def /MLshow { currentpoint stroke M 0 exch R MFshow } bind def /MRshow { currentpoint stroke M exch dup MFwidth neg 3 -1 roll R MFshow } def /MCshow { currentpoint stroke M exch dup MFwidth -2 div 3 -1 roll R MFshow } def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 90 rotate 0 -5040 translate 0 setgray newpath (Helvetica) findfont 140 scalefont setfont 1.000 UL LTb 630 420 M 63 0 V 6269 0 R -63 0 V stroke 546 420 M [ [(Helvetica) 140.0 0.0 true true 0 (-12)] ] -46.7 MRshow 1.000 UL LTb 630 915 M 63 0 V 6269 0 R -63 0 V stroke 546 915 M [ [(Helvetica) 140.0 0.0 true true 0 (-10)] ] -46.7 MRshow 1.000 UL LTb 630 1409 M 63 0 V 6269 0 R -63 0 V stroke 546 1409 M [ [(Helvetica) 140.0 0.0 true true 0 (-8)] ] -46.7 MRshow 1.000 UL LTb 630 1904 M 63 0 V 6269 0 R -63 0 V stroke 546 1904 M [ [(Helvetica) 140.0 0.0 true true 0 (-6)] ] -46.7 MRshow 1.000 UL LTb 630 2399 M 63 0 V 6269 0 R -63 0 V stroke 546 2399 M [ [(Helvetica) 140.0 0.0 true true 0 (-4)] ] -46.7 MRshow 1.000 UL LTb 630 2893 M 63 0 V 6269 0 R -63 0 V stroke 546 2893 M [ [(Helvetica) 140.0 0.0 true true 0 (-2)] ] -46.7 MRshow 1.000 UL LTb 630 3388 M 63 0 V 6269 0 R -63 0 V stroke 546 3388 M [ [(Helvetica) 140.0 0.0 true true 0 ( 0)] ] -46.7 MRshow 1.000 UL LTb 630 3883 M 63 0 V 6269 0 R -63 0 V stroke 546 3883 M [ [(Helvetica) 140.0 0.0 true true 0 ( 2)] ] -46.7 MRshow 1.000 UL LTb 630 4377 M 63 0 V 6269 0 R -63 0 V stroke 546 4377 M [ [(Helvetica) 140.0 0.0 true true 0 ( 4)] ] -46.7 MRshow 1.000 UL LTb 630 4872 M 63 0 V 6269 0 R -63 0 V stroke 546 4872 M [ [(Helvetica) 140.0 0.0 true true 0 ( 6)] ] -46.7 MRshow 1.000 UL LTb 630 420 M 0 63 V 0 4389 R 0 -63 V stroke 630 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 0)] ] -46.7 MCshow 1.000 UL LTb 1896 420 M 0 63 V 0 4389 R 0 -63 V stroke 1896 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 5)] ] -46.7 MCshow 1.000 UL LTb 3163 420 M 0 63 V 0 4389 R 0 -63 V stroke 3163 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 10)] ] -46.7 MCshow 1.000 UL LTb 4429 420 M 0 63 V 0 4389 R 0 -63 V stroke 4429 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 15)] ] -46.7 MCshow 1.000 UL LTb 5696 420 M 0 63 V 0 4389 R 0 -63 V stroke 5696 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 20)] ] -46.7 MCshow 1.000 UL LTb 6962 420 M 0 63 V 0 4389 R 0 -63 V stroke 6962 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 25)] ] -46.7 MCshow 1.000 UL LTb 1.000 UL LTb 630 420 M 6332 0 V 0 4452 V -6332 0 V 630 420 L LTb 140 2646 M currentpoint gsave translate 90 rotate 0 0 moveto [ [(Helvetica) 140.0 0.0 true true 0 (Energy \(eV\))] ] -46.7 MCshow grestore LTb 3796 70 M [ [(Helvetica) 140.0 0.0 true true 0 (Length \(Angstroms\))] ] -46.7 MCshow 1.000 UP LTb 2707 3388 M [ [(Helvetica) 140.0 0.0 true true 0 (W)] [(Helvetica) 112.0 -42.0 true true 0 (funct)] [(Helvetica) 140.0 0.0 true true 0 ( = 7.04 eV)] ] -32.7 MLshow 1.000 UL LT2 2688 4442 M -32 121 V -32 -121 V 32 -1622 R 0 1743 V 1.000 UL LT2 2624 2941 M 32 -121 V 32 121 V -32 1622 R 0 -1743 V 1.000 UL LT0 LTb 6311 4739 M [ [(Helvetica) 140.0 0.0 true true 0 (Pot.)] ] -46.7 MRshow LT0 6395 4739 M 399 0 V 630 746 M 38 22 V 38 207 V 39 122 V 38 -9 V 821 983 L 859 725 L 898 502 L 38 41 V 38 306 V 38 361 V 39 226 V 38 54 V 38 -114 V 38 -250 V 39 -285 V 38 -98 V 38 212 V 38 456 V 39 483 V 38 415 V 38 239 V 38 -138 V 39 -355 V 38 -308 V 38 -185 V 38 13 V 39 225 V 38 385 V 38 446 V 38 183 V 39 -412 V 38 -613 V 38 -291 V 38 227 V 39 699 V 38 866 V 38 596 V 38 286 V 39 170 V 38 91 V 38 55 V 38 29 V 39 20 V 38 9 V 38 8 V 38 3 V 39 3 V 38 0 V 38 3 V 38 -1 V 39 1 V 38 0 V 38 1 V 38 -1 V 39 1 V 38 -1 V 38 1 V 38 -1 V 39 1 V 38 -1 V 38 1 V 38 -1 V 39 1 V 38 -1 V 38 1 V 38 -1 V 39 1 V 38 -1 V 38 1 V 38 -1 V 38 1 V 39 -1 V 38 1 V 38 -1 V 38 1 V 39 -1 V 38 1 V 38 -1 V 38 1 V 39 -1 V 38 1 V 38 -1 V 38 1 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 1 V 39 -1 V 38 1 V 38 -1 V 38 1 V 39 -1 V 38 1 V 38 -1 V 38 1 V 39 -1 V 38 1 V 38 -1 V stroke 4531 4564 M 38 1 V 39 -1 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 -1 V 38 0 V 39 -1 V 38 -1 V 38 -1 V 38 -1 V 39 -2 V 38 -3 V 38 -3 V 38 -6 V 39 -6 V 38 -9 V 38 -13 V 38 -16 V 39 -23 V 38 -30 V 38 -41 V 38 -56 V 39 -74 V 38 -102 V 38 -137 V 38 -187 V 38 -258 V 39 -367 V 38 -498 V 38 -558 V 38 -583 V 39 -543 V 1.000 UL LT1 LTb 6311 4599 M [ [(Helvetica) 140.0 0.0 true true 0 (E)] [(Helvetica) 112.0 -42.0 true true 0 (f)] ] -32.7 MRshow LT1 6395 4599 M 399 0 V 630 2820 M 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V stroke 4531 2820 M 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 38 0 V 39 0 V 38 0 V 38 0 V 38 0 V 39 0 V 1.000 UL LTb 630 420 M 6332 0 V 0 4452 V -6332 0 V 630 420 L 1.000 UP 1.000 UL LTb 3982 941 M 63 0 V 1837 0 R -63 0 V stroke 3898 941 M [ [(Helvetica) 140.0 0.0 true true 0 ( 4.742)] ] -46.7 MRshow 1.000 UL LTb 3982 1333 M 63 0 V 1837 0 R -63 0 V stroke 3898 1333 M [ [(Helvetica) 140.0 0.0 true true 0 ( 4.747)] ] -46.7 MRshow 1.000 UL LTb 3982 1725 M 63 0 V 1837 0 R -63 0 V stroke 3898 1725 M [ [(Helvetica) 140.0 0.0 true true 0 ( 4.752)] ] -46.7 MRshow 1.000 UL LTb 3982 2117 M 63 0 V 1837 0 R -63 0 V stroke 3898 2117 M [ [(Helvetica) 140.0 0.0 true true 0 ( 4.757)] ] -46.7 MRshow 1.000 UL LTb 4020 784 M 0 63 V 0 1505 R 0 -63 V stroke 4020 644 M [ [(Helvetica) 140.0 0.0 true true 0 ( 8.2)] ] -46.7 MCshow 1.000 UL LTb 4552 784 M 0 63 V 0 1505 R 0 -63 V stroke 4552 644 M [ [(Helvetica) 140.0 0.0 true true 0 ( 11)] ] -46.7 MCshow 1.000 UL LTb 5084 784 M 0 63 V 0 1505 R 0 -63 V stroke 5084 644 M [ [(Helvetica) 140.0 0.0 true true 0 ( 13.8)] ] -46.7 MCshow 1.000 UL LTb 5616 784 M 0 63 V 0 1505 R 0 -63 V stroke 5616 644 M [ [(Helvetica) 140.0 0.0 true true 0 ( 16.6)] ] -46.7 MCshow 1.000 UL LTb 1.000 UL LTb 3982 784 M 1900 0 V 0 1568 V -1900 0 V 0 -1568 V 1.000 UP LTb 4020 -370830 M [ [(Helvetica) 140.0 0.0 true true 0 (W)] [(Helvetica) 112.0 -42.0 true true 0 (funct)] [(Helvetica) 140.0 0.0 true true 0 ( = 7.04 eV)] ] -32.7 MLshow LTb 4514 1411 M [ [(Helvetica) 140.0 0.0 true true 0 (Dipole corr.)] ] -46.7 MLshow 1.000 UL LT2 4340 1879 M 22 -84 V 22 84 V -22 206 R 0 -290 V 1.000 UL LT2 4384 2001 M -22 84 V -22 -84 V 22 -206 R 0 290 V 1.000 UL LT0 3982 1615 M 1 2 V 28 63 V 29 39 V 29 26 V 28 16 V 29 10 V 29 7 V 28 5 V 29 3 V 29 2 V 29 1 V 28 1 V 29 1 V 29 1 V 28 0 V 29 0 V 29 1 V 28 0 V 29 0 V 29 0 V 28 1 V 29 0 V 29 0 V 29 0 V 28 0 V 29 1 V 29 4 V 28 6 V 29 10 V 29 13 V 28 16 V 29 19 V 29 23 V 28 26 V 29 28 V 29 28 V 28 26 V 29 22 V 29 20 V 29 16 V 28 13 V 29 9 V 29 7 V 28 3 V 29 0 V 29 0 V 28 0 V 29 0 V 29 -1 V 28 0 V 29 -1 V 29 0 V 29 -1 V 28 -1 V 29 -2 V 29 -2 V 28 -3 V 29 -4 V 29 -5 V 28 -7 V 29 -10 V 29 -13 V 28 -17 V 29 -24 V 29 -32 V 29 -44 V 28 -59 V 6 -17 V 1.000 UL LT1 3982 2085 M 1 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 29 0 V 28 0 V 6 0 V 1.000 UL LT1 3982 1795 M 1 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 28 0 V 29 0 V 29 0 V 29 0 V 28 0 V 6 0 V 1.000 UL LTb 3982 784 M 1900 0 V 0 1568 V -1900 0 V 0 -1568 V 1.000 UP stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%Pages: 1 espresso-5.1/PP/examples/dipole_example/reference/water.vpot-z0000644000175000017500000001031712341372774022703 0ustar mbamba Program POST-PROC v.4.1CVS starts ... Today is 26Jun2009 at 12:57:36 Reading header from file water.vpot Reading data from file water.vpot 0.000000000 -0.075936949 -0.033033744 0.166666667 -0.079747979 -0.038493962 0.333333333 -0.077411484 -0.043153105 0.500000000 -0.071628464 -0.046947746 0.666666667 -0.065600622 -0.049759228 0.833333333 -0.061410940 -0.051367591 1.000000000 -0.059332972 -0.051598146 1.166666667 -0.058005996 -0.050466183 1.333333333 -0.055127719 -0.048176703 1.500000000 -0.049051437 -0.045053035 1.666666667 -0.040518273 -0.041479466 1.833333333 -0.032217105 -0.037834038 2.000000000 -0.026188503 -0.034392411 2.166666667 -0.022335012 -0.031262045 2.333333333 -0.019580733 -0.028402193 2.500000000 -0.017401891 -0.025707370 2.666666667 -0.015807136 -0.023100523 2.833333333 -0.014696326 -0.020604524 3.000000000 -0.013847123 -0.018353064 3.166666667 -0.013189307 -0.016505009 3.333333333 -0.012734774 -0.015121948 3.500000000 -0.012406574 -0.014134561 3.666666667 -0.012129370 -0.013420804 3.833333333 -0.011927513 -0.012889660 4.000000000 -0.011802773 -0.012493942 4.166666667 -0.011689690 -0.012202512 4.333333333 -0.011588057 -0.011986192 4.500000000 -0.011538551 -0.011823247 4.666666667 -0.011501170 -0.011701459 4.833333333 -0.011444004 -0.011610850 5.000000000 -0.011415687 -0.011541491 5.166666667 -0.011412588 -0.011488032 5.333333333 -0.011381964 -0.011447980 5.500000000 -0.011354815 -0.011417063 5.666666667 -0.011362733 -0.011391970 5.833333333 -0.011353190 -0.011372357 6.000000000 -0.011324249 -0.011357174 6.166666667 -0.011327815 -0.011344445 6.333333333 -0.011334324 -0.011333278 6.500000000 -0.011310097 -0.011323654 6.666666667 -0.011301354 -0.011316773 6.833333333 -0.011313659 -0.011310656 7.000000000 -0.011303611 -0.011300119 7.166666667 -0.011285478 -0.011295329 7.333333333 -0.011286226 -0.011305392 7.500000000 -0.011293786 -0.011251551 7.666666667 -0.011287688 -0.010940354 7.833333333 -0.011255464 -0.010192787 8.000000000 -0.011257780 -0.008952613 8.166666667 -0.011322768 -0.007222803 8.333333333 -0.011251593 -0.004990540 8.500000000 -0.011105841 -0.002260111 8.666666667 -0.011439250 0.000950326 8.833333333 -0.011638973 0.004657626 9.000000000 -0.009100184 0.008829242 9.166666667 -0.002348778 0.013271557 9.333333333 0.006599049 0.017749668 9.500000000 0.015402811 0.022187661 9.666666667 0.024258891 0.026631497 9.833333333 0.033487572 0.031087356 10.000000000 0.042190589 0.035522914 10.166666667 0.050796057 0.039955592 10.333333333 0.060095023 0.044405878 10.500000000 0.067503161 0.048779232 10.666666667 0.069838682 0.052876538 10.833333333 0.068830181 0.056525976 11.000000000 0.068424332 0.059659507 11.166666667 0.068973183 0.062264134 11.333333333 0.068863389 0.064323053 11.500000000 0.068459282 0.065823331 11.666666667 0.068572020 0.066750038 11.833333333 0.068560070 0.067055965 12.000000000 0.068141505 0.066728359 12.166666667 0.067912537 0.065885479 12.333333333 0.067717508 0.064672281 12.500000000 0.067091469 0.063031919 12.666666667 0.066336825 0.060678929 12.833333333 0.065530711 0.057294171 13.000000000 0.064157473 0.052682913 13.166666667 0.062190600 0.046822052 13.333333333 0.059713873 0.039876029 13.500000000 0.056090482 0.032162221 13.666666667 0.050907668 0.024058361 13.833333333 0.044086090 0.015925319 14.000000000 0.034115395 0.008040626 14.166666667 0.018574459 0.000522366 14.333333333 -0.002589148 -0.006668720 14.500000000 -0.026093493 -0.013625167 14.666666667 -0.047866196 -0.020394252 14.833333333 -0.065058554 -0.026923090 espresso-5.1/PP/examples/dipole_example/reference/water.eps0000644000175000017500000004204712341372774022240 0ustar mbamba%!PS-Adobe-2.0 %%Title: water.eps %%Creator: gnuplot 4.0 patchlevel 0 %%CreationDate: Fri Jun 26 12:57:37 2009 %%DocumentFonts: (atend) %%BoundingBox: 50 50 554 770 %%Orientation: Landscape %%Pages: (atend) %%EndComments /gnudict 256 dict def gnudict begin /Color true def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -46 def /dl {10.0 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /Rounded false def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse } def /BL { stroke userlinewidth 2 mul setlinewidth Rounded { 1 setlinejoin 1 setlinecap } if } def /AL { stroke userlinewidth 2 div setlinewidth Rounded { 1 setlinejoin 1 setlinecap } if } def /UL { dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def } def /PL { stroke userlinewidth setlinewidth Rounded { 1 setlinejoin 1 setlinecap } if } def /LTw { PL [] 1 setgray } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 udl mul 2 udl mul] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def /BoxColFill { gsave Rec /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor fill grestore } def % % PostScript Level 1 Pattern Fill routine % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill { gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi { PFa 4 get mul 0 M 0 PFs V } for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi { PFa 4 get mul 0 2 1 roll M PFs 0 V } for } if stroke grestore } def % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop /MFshow { { dup 5 get 3 ge { 5 get 3 eq {gsave} {grestore} ifelse } {dup dup 0 get findfont exch 1 get scalefont setfont [ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6 get exch 4 get {show} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq {dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5 get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop pop aload pop M} ifelse }ifelse }ifelse } ifelse } forall} bind def /MFwidth {0 exch {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont 6 get stringwidth pop add} {pop} ifelse} forall} bind def /MLshow { currentpoint stroke M 0 exch R MFshow } bind def /MRshow { currentpoint stroke M exch dup MFwidth neg 3 -1 roll R MFshow } def /MCshow { currentpoint stroke M exch dup MFwidth -2 div 3 -1 roll R MFshow } def end %%EndProlog %%Page: 1 1 gnudict begin gsave 50 50 translate 0.100 0.100 scale 90 rotate 0 -5040 translate 0 setgray newpath (Helvetica) findfont 140 scalefont setfont 1.000 UL LTb 714 791 M 63 0 V 6185 0 R -63 0 V stroke 630 791 M [ [(Helvetica) 140.0 0.0 true true 0 (-1)] ] -46.7 MRshow 1.000 UL LTb 714 1718 M 63 0 V 6185 0 R -63 0 V stroke 630 1718 M [ [(Helvetica) 140.0 0.0 true true 0 (-0.5)] ] -46.7 MRshow 1.000 UL LTb 714 2646 M 63 0 V 6185 0 R -63 0 V stroke 630 2646 M [ [(Helvetica) 140.0 0.0 true true 0 ( 0)] ] -46.7 MRshow 1.000 UL LTb 714 3573 M 63 0 V 6185 0 R -63 0 V stroke 630 3573 M [ [(Helvetica) 140.0 0.0 true true 0 ( 0.5)] ] -46.7 MRshow 1.000 UL LTb 714 4501 M 63 0 V 6185 0 R -63 0 V stroke 630 4501 M [ [(Helvetica) 140.0 0.0 true true 0 ( 1)] ] -46.7 MRshow 1.000 UL LTb 714 420 M 0 63 V 0 4389 R 0 -63 V stroke 714 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 0)] ] -46.7 MCshow 1.000 UL LTb 1495 420 M 0 63 V 0 4389 R 0 -63 V stroke 1495 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 1)] ] -46.7 MCshow 1.000 UL LTb 2276 420 M 0 63 V 0 4389 R 0 -63 V stroke 2276 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 2)] ] -46.7 MCshow 1.000 UL LTb 3057 420 M 0 63 V 0 4389 R 0 -63 V stroke 3057 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 3)] ] -46.7 MCshow 1.000 UL LTb 3838 420 M 0 63 V 0 4389 R 0 -63 V stroke 3838 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 4)] ] -46.7 MCshow 1.000 UL LTb 4619 420 M 0 63 V 0 4389 R 0 -63 V stroke 4619 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 5)] ] -46.7 MCshow 1.000 UL LTb 5400 420 M 0 63 V 0 4389 R 0 -63 V stroke 5400 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 6)] ] -46.7 MCshow 1.000 UL LTb 6181 420 M 0 63 V 0 4389 R 0 -63 V stroke 6181 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 7)] ] -46.7 MCshow 1.000 UL LTb 6962 420 M 0 63 V 0 4389 R 0 -63 V stroke 6962 280 M [ [(Helvetica) 140.0 0.0 true true 0 ( 8)] ] -46.7 MCshow 1.000 UL LTb 1.000 UL LTb 714 420 M 6248 0 V 0 4452 V -6248 0 V 714 420 L LTb 140 2646 M currentpoint gsave translate 90 rotate 0 0 moveto [ [(Helvetica) 140.0 0.0 true true 0 (Energy \(eV\))] ] -46.7 MCshow grestore LTb 3838 70 M [ [(Helvetica) 140.0 0.0 true true 0 (Length \(Angstroms\))] ] -46.7 MCshow 1.000 UP LTb 3057 3573 M [ [(Helvetica) 140.0 0.0 true true 0 (Dipole correction)] ] -46.7 MLshow 1.000 UL LT2 2699 4250 M -32 121 V -32 -121 V 32 -1882 R 0 2003 V 1.000 UL LT2 2635 2489 M 32 -121 V 32 121 V -32 1882 R 0 -2003 V 1.000 UL LT0 LTb 6311 4739 M [ [(Helvetica) 140.0 0.0 true true 0 (Pot.)] ] -46.7 MRshow LT0 6395 4739 M 399 0 V 714 730 M 69 -96 V 69 59 V 69 146 V 69 152 V 68 106 V 69 52 V 69 34 V 69 72 V 69 154 V 69 215 V 69 209 V 69 152 V 68 98 V 69 69 V 69 55 V 69 40 V 69 28 V 69 22 V 69 16 V 69 12 V 69 8 V 68 7 V 69 5 V 69 3 V 69 3 V 69 3 V 69 1 V 69 1 V 69 1 V 68 1 V 69 0 V 69 1 V 69 1 V 69 -1 V 69 1 V 69 0 V 69 0 V 69 0 V 68 1 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 1 V 69 0 V 69 -2 V 69 2 V 69 4 V 69 -9 V 69 -5 V 69 64 V 68 171 V 69 225 V 69 223 V 69 223 V 69 233 V 69 219 V 69 217 V 69 235 V 69 187 V 68 59 V 69 -26 V 69 -10 V 69 14 V 69 -3 V 69 -10 V 69 3 V 69 0 V 68 -11 V 69 -6 V 69 -5 V 69 -15 V 69 -19 V 69 -21 V 69 -34 V 69 -50 V 69 -63 V 68 -91 V 69 -131 V 69 -172 V 69 -251 V 69 -392 V 69 -534 V 69 -593 V 69 -550 V 68 -433 V 1.000 UL LT1 714 2368 M 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 1.000 UL LT1 714 4371 M 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 69 0 V 68 0 V 1.000 UL LTb 714 420 M 6248 0 V 0 4452 V -6248 0 V 714 420 L 1.000 UP stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%Pages: 1 espresso-5.1/PP/examples/dipole_example/reference/ni+co.scf.out0000644000175000017500000004727712341372774022725 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 2Jul2009 at 17:46:44 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Presently no symmetry can be used with electric field file C.pbe-rrkjus.UPF: wavefunction(s) 2S 2P renormalized file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized file Ni.pbe-nd-rrkjus.UPF: wavefunction(s) 4S renormalized gamma-point specific algorithms are used bravais-lattice index = 0 lattice parameter (a_0) = 4.7037 a.u. unit-cell volume = 1339.2634 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 3 number of electrons = 40.00 number of Kohn-Sham states= 24 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) celldm(1)= 4.703667 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.414214 0.000000 ) a(3) = ( 0.000000 0.000000 9.100000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 0.707107 0.000000 ) b(3) = ( 0.000000 0.000000 0.109890 ) PseudoPot. # 1 for C read from file C.pbe-rrkjus.UPF Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for O read from file O.pbe-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Ni read from file Ni.pbe-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential C 4.00 1.00000 C ( 1.00) O 6.00 1.00000 O ( 1.00) Ni 10.00 1.00000 Ni( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( -0.0036404 0.0211954 1.5467374 ) 2 O tau( 2) = ( -0.0063486 0.0419243 2.0202197 ) 3 Ni tau( 3) = ( 0.4852738 0.0019733 0.9771355 ) 4 Ni tau( 4) = ( -0.0004955 0.7023668 0.4541784 ) 5 Ni tau( 5) = ( 0.5000000 0.0000000 0.0000000 ) number of k points= 1 gaussian broad. (Ry)= 0.0300 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 67.2504 ( 14878 G-vectors) FFT grid: ( 18, 24,150) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.67 Mb ( 1831, 24) NL pseudopotentials 1.96 Mb ( 1831, 70) Each V/rho on FFT grid 0.99 Mb ( 64800) Each G-vector array 0.11 Mb ( 14878) G-vector shells 0.03 Mb ( 4364) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.34 Mb ( 1831, 96) Each subspace H/S matrix 0.07 Mb ( 96, 96) Each matrix 0.01 Mb ( 70, 24) Arrays for rho mixing 7.91 Mb ( 64800, 8) Check: negative/imaginary core charge= -0.000147 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.211987 starting charge 39.99857, renormalised to 40.00000 negative rho (up, down): 0.212E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0020 au, -0.0051 Debye Dipole field 0.0000 au Potential amp. 0.0015 Ry Total length 40.2352 bhor Starting wfc are 26 atomic wfcs total cpu time spent up to now is 4.43 secs per-process dynamical memory: 15.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.191E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -1.2421 au, -3.1571 Debye Dipole field -0.0117 au Potential amp. 0.9378 Ry Total length 40.2352 bhor total cpu time spent up to now is 5.99 secs total energy = -300.15645075 Ry Harris-Foulkes estimate = -301.70087816 Ry estimated scf accuracy < 3.35607194 Ry iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.39E-03, avg # of iterations = 9.0 negative rho (up, down): 0.174E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.9060 au, 2.3028 Debye Dipole field 0.0085 au Potential amp. -0.6841 Ry Total length 40.2352 bhor total cpu time spent up to now is 7.76 secs total energy = -296.78349429 Ry Harris-Foulkes estimate = -305.18571729 Ry estimated scf accuracy < 137.54322034 Ry iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.39E-03, avg # of iterations = 6.0 negative rho (up, down): 0.178E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.5891 au, 1.4973 Debye Dipole field 0.0055 au Potential amp. -0.4448 Ry Total length 40.2352 bhor total cpu time spent up to now is 9.56 secs total energy = -301.29727084 Ry Harris-Foulkes estimate = -301.68872791 Ry estimated scf accuracy < 1.73045866 Ry iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.33E-03, avg # of iterations = 2.0 negative rho (up, down): 0.182E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.5334 au, 1.3559 Debye Dipole field 0.0050 au Potential amp. -0.4028 Ry Total length 40.2352 bhor total cpu time spent up to now is 11.02 secs total energy = -301.22886574 Ry Harris-Foulkes estimate = -301.61365078 Ry estimated scf accuracy < 5.82389699 Ry iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.33E-03, avg # of iterations = 1.0 negative rho (up, down): 0.184E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.4650 au, 1.1820 Debye Dipole field 0.0044 au Potential amp. -0.3511 Ry Total length 40.2352 bhor total cpu time spent up to now is 12.43 secs total energy = -301.39716412 Ry Harris-Foulkes estimate = -301.44678870 Ry estimated scf accuracy < 0.44545546 Ry iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.11E-03, avg # of iterations = 1.0 negative rho (up, down): 0.191E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.2499 au, 0.6351 Debye Dipole field 0.0023 au Potential amp. -0.1887 Ry Total length 40.2352 bhor total cpu time spent up to now is 13.88 secs total energy = -301.32882479 Ry Harris-Foulkes estimate = -301.47474464 Ry estimated scf accuracy < 2.72337358 Ry iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.11E-03, avg # of iterations = 5.0 negative rho (up, down): 0.191E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.3146 au, 0.7997 Debye Dipole field 0.0030 au Potential amp. -0.2376 Ry Total length 40.2352 bhor total cpu time spent up to now is 15.42 secs total energy = -301.36948042 Ry Harris-Foulkes estimate = -301.40797928 Ry estimated scf accuracy < 0.61682963 Ry iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.11E-03, avg # of iterations = 1.0 negative rho (up, down): 0.194E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.2640 au, 0.6711 Debye Dipole field 0.0025 au Potential amp. -0.1994 Ry Total length 40.2352 bhor total cpu time spent up to now is 16.86 secs total energy = -301.38842637 Ry Harris-Foulkes estimate = -301.39651719 Ry estimated scf accuracy < 0.25907583 Ry iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.48E-04, avg # of iterations = 1.0 negative rho (up, down): 0.200E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.1502 au, 0.3818 Debye Dipole field 0.0014 au Potential amp. -0.1134 Ry Total length 40.2352 bhor total cpu time spent up to now is 18.31 secs total energy = -301.38375799 Ry Harris-Foulkes estimate = -301.39384818 Ry estimated scf accuracy < 0.08430831 Ry iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.11E-04, avg # of iterations = 1.0 negative rho (up, down): 0.203E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.0944 au, 0.2398 Debye Dipole field 0.0009 au Potential amp. -0.0712 Ry Total length 40.2352 bhor total cpu time spent up to now is 19.75 secs total energy = -301.38609667 Ry Harris-Foulkes estimate = -301.38994036 Ry estimated scf accuracy < 0.14826012 Ry iteration # 11 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.11E-04, avg # of iterations = 1.0 negative rho (up, down): 0.208E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.0184 au, 0.0468 Debye Dipole field 0.0002 au Potential amp. -0.0139 Ry Total length 40.2352 bhor total cpu time spent up to now is 21.19 secs total energy = -301.38406999 Ry Harris-Foulkes estimate = -301.38853246 Ry estimated scf accuracy < 0.04991204 Ry iteration # 12 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.25E-04, avg # of iterations = 9.0 negative rho (up, down): 0.207E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.0392 au, 0.0996 Debye Dipole field 0.0004 au Potential amp. -0.0296 Ry Total length 40.2352 bhor total cpu time spent up to now is 22.79 secs total energy = -301.38546176 Ry Harris-Foulkes estimate = -301.38707000 Ry estimated scf accuracy < 0.06066377 Ry iteration # 13 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.25E-04, avg # of iterations = 1.0 negative rho (up, down): 0.209E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.0036 au, 0.0092 Debye Dipole field 0.0000 au Potential amp. -0.0027 Ry Total length 40.2352 bhor total cpu time spent up to now is 24.23 secs total energy = -301.38583889 Ry Harris-Foulkes estimate = -301.38656957 Ry estimated scf accuracy < 0.01650856 Ry iteration # 14 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.13E-05, avg # of iterations = 1.0 negative rho (up, down): 0.209E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.0066 au, 0.0169 Debye Dipole field 0.0001 au Potential amp. -0.0050 Ry Total length 40.2352 bhor total cpu time spent up to now is 25.67 secs total energy = -301.38604083 Ry Harris-Foulkes estimate = -301.38611579 Ry estimated scf accuracy < 0.00206312 Ry iteration # 15 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.16E-06, avg # of iterations = 4.0 negative rho (up, down): 0.209E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.0036 au, 0.0091 Debye Dipole field 0.0000 au Potential amp. -0.0027 Ry Total length 40.2352 bhor total cpu time spent up to now is 27.17 secs total energy = -301.38605504 Ry Harris-Foulkes estimate = -301.38607458 Ry estimated scf accuracy < 0.00039504 Ry iteration # 16 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.88E-07, avg # of iterations = 1.0 negative rho (up, down): 0.209E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.0000 au, 0.0000 Debye Dipole field 0.0000 au Potential amp. 0.0000 Ry Total length 40.2352 bhor total cpu time spent up to now is 28.63 secs total energy = -301.38606142 Ry Harris-Foulkes estimate = -301.38606714 Ry estimated scf accuracy < 0.00010390 Ry iteration # 17 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.60E-07, avg # of iterations = 3.0 negative rho (up, down): 0.209E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0001 au, -0.0002 Debye Dipole field 0.0000 au Potential amp. 0.0001 Ry Total length 40.2352 bhor total cpu time spent up to now is 30.12 secs total energy = -301.38606263 Ry Harris-Foulkes estimate = -301.38606329 Ry estimated scf accuracy < 0.00000698 Ry iteration # 18 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.75E-08, avg # of iterations = 1.0 negative rho (up, down): 0.209E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.0003 au, 0.0009 Debye Dipole field 0.0000 au Potential amp. -0.0003 Ry Total length 40.2352 bhor total cpu time spent up to now is 31.52 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1831 PWs) bands (ev): -25.2260 -12.7010 -9.4483 -8.0891 -8.0832 -5.9919 -5.5658 -5.1224 -4.6777 -4.5519 -4.1064 -3.9520 -3.6590 -3.4850 -3.3475 -2.9187 -2.8063 -2.7714 -2.6958 -2.3939 -2.1055 -1.5706 0.1205 1.1821 the Fermi energy is -2.2903 ev ! total energy = -301.38606267 Ry Harris-Foulkes estimate = -301.38606290 Ry estimated scf accuracy < 0.00000018 Ry The total energy is the sum of the following terms: one-electron contribution = -2533.78606181 Ry hartree contribution = 1294.14594361 Ry xc contribution = -100.88195795 Ry ewald contribution = 1039.11537436 Ry electric field correction = 0.00000000 Ry smearing contrib. (-TS) = 0.02063912 Ry convergence has been achieved in 18 iterations Writing output data file ni+co.save PWSCF : 31.64s CPU time, 32.47s wall time init_run : 4.32s CPU electrons : 27.09s CPU Called by init_run: wfcinit : 0.24s CPU potinit : 0.79s CPU Called by electrons: c_bands : 7.99s CPU ( 18 calls, 0.444 s avg) sum_band : 8.46s CPU ( 18 calls, 0.470 s avg) v_of_rho : 3.04s CPU ( 19 calls, 0.160 s avg) newd : 7.25s CPU ( 19 calls, 0.381 s avg) mix_rho : 0.60s CPU ( 18 calls, 0.034 s avg) Called by c_bands: init_us_2 : 0.16s CPU ( 37 calls, 0.004 s avg) regterg : 7.50s CPU ( 18 calls, 0.417 s avg) Called by *egterg: h_psi : 6.77s CPU ( 69 calls, 0.098 s avg) s_psi : 0.19s CPU ( 69 calls, 0.003 s avg) g_psi : 0.08s CPU ( 50 calls, 0.002 s avg) rdiaghg : 0.16s CPU ( 68 calls, 0.002 s avg) Called by h_psi: add_vuspsi : 0.18s CPU ( 69 calls, 0.003 s avg) General routines calbec : 0.29s CPU ( 87 calls, 0.003 s avg) cft3 : 1.89s CPU ( 228 calls, 0.008 s avg) cft3s : 7.29s CPU ( 1238 calls, 0.006 s avg) davcio : 0.00s CPU ( 18 calls, 0.000 s avg) espresso-5.1/PP/examples/dipole_example/reference/water.scf.in0000644000175000017500000000120712341372774022622 0ustar mbamba &control calculation='scf', restart_mode='from_scratch', prefix='water', pseudo_dir = '/home/degironc/QE/espresso/pseudo', outdir='/home/degironc/tmp' tefield=.true., dipfield=.true. / &SYSTEM ibrav=1, celldm(1) = 15 nat=3, ntyp=2 ecutwfc=30.0 occupations='smearing', degauss=0.01 edir=3 eamp=0.D0 eopreg=0.1 emaxpos=0.6 / &ELECTRONS mixing_beta = 0.7 conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 HUSPBE.RRKJ3 ATOMIC_POSITIONS { Angstrom } O 0.0 0.0 0.0 H 0.77 0.0 0.62 H -0.77 0.0 0.62 K_POINTS { gamma } espresso-5.1/PP/examples/dipole_example/reference/water.scf.out0000644000175000017500000003003012341372774023017 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 26Jun2009 at 12:56:40 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Presently no symmetry can be used with electric field file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized file HUSPBE.RRKJ3: wavefunction(s) nX renormalized gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 15.0000 a.u. unit-cell volume = 3375.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA -PW -PBX -PBC (1434) celldm(1)= 15.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file HUSPBE.RRKJ3 Pseudo is Ultrasoft, Zval = 1.0 RRKJ3 Ultrasoft PP, generated by Andrea Dal Corso code Using radial grid of 1061 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99940 O ( 1.00) H 1.00 1.00794 H ( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0970059 0.0000000 0.0781087 ) 3 H tau( 3) = ( -0.0970059 0.0000000 0.0781087 ) number of k points= 1 gaussian broad. (Ry)= 0.0100 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 683.9180 ( 37387 G-vectors) FFT grid: ( 54, 54, 54) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.57 Mb ( 4658, 8) NL pseudopotentials 0.85 Mb ( 4658, 12) Each V/rho on FFT grid 2.40 Mb ( 157464) Each G-vector array 0.29 Mb ( 37387) G-vector shells 0.00 Mb ( 572) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.14 Mb ( 4658, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 19.22 Mb ( 157464, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001749 starting charge 7.80759, renormalised to 8.00000 negative rho (up, down): 0.179E-02 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.3066 au, -0.7793 Debye Dipole field -0.0011 au Potential amp. 0.0308 Ry Total length 13.5000 bhor Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 4.49 secs per-process dynamical memory: 20.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.925E-02 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.5746 au, 1.4604 Debye Dipole field 0.0021 au Potential amp. -0.0578 Ry Total length 13.5000 bhor total cpu time spent up to now is 6.96 secs total energy = -34.06737062 Ry Harris-Foulkes estimate = -34.58932568 Ry estimated scf accuracy < 0.67346178 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.42E-03, avg # of iterations = 2.0 negative rho (up, down): 0.115E-01 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.4058 au, 1.0315 Debye Dipole field 0.0015 au Potential amp. -0.0408 Ry Total length 13.5000 bhor total cpu time spent up to now is 9.04 secs total energy = -34.15312598 Ry Harris-Foulkes estimate = -34.39301907 Ry estimated scf accuracy < 0.48662223 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.08E-03, avg # of iterations = 2.0 negative rho (up, down): 0.366E-01 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.6927 au, 1.7606 Debye Dipole field 0.0026 au Potential amp. -0.0696 Ry Total length 13.5000 bhor total cpu time spent up to now is 11.03 secs total energy = -34.26067773 Ry Harris-Foulkes estimate = -34.27158675 Ry estimated scf accuracy < 0.02075962 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.59E-04, avg # of iterations = 4.0 negative rho (up, down): 0.391E-01 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.7107 au, 1.8063 Debye Dipole field 0.0026 au Potential amp. -0.0714 Ry Total length 13.5000 bhor total cpu time spent up to now is 13.34 secs total energy = -34.26518923 Ry Harris-Foulkes estimate = -34.26515547 Ry estimated scf accuracy < 0.00019299 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.41E-06, avg # of iterations = 7.0 negative rho (up, down): 0.409E-01 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.7171 au, 1.8227 Debye Dipole field 0.0027 au Potential amp. -0.0721 Ry Total length 13.5000 bhor total cpu time spent up to now is 15.79 secs total energy = -34.26521222 Ry Harris-Foulkes estimate = -34.26517899 Ry estimated scf accuracy < 0.00000677 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.46E-08, avg # of iterations = 2.0 negative rho (up, down): 0.409E-01 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.7169 au, 1.8222 Debye Dipole field 0.0027 au Potential amp. -0.0721 Ry Total length 13.5000 bhor total cpu time spent up to now is 17.76 secs total energy = -34.26521265 Ry Harris-Foulkes estimate = -34.26521398 Ry estimated scf accuracy < 0.00000066 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.23E-09, avg # of iterations = 2.0 negative rho (up, down): 0.409E-01 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.7172 au, 1.8230 Debye Dipole field 0.0027 au Potential amp. -0.0721 Ry Total length 13.5000 bhor total cpu time spent up to now is 19.81 secs total energy = -34.26521276 Ry Harris-Foulkes estimate = -34.26521114 Ry estimated scf accuracy < 0.00000012 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-09, avg # of iterations = 2.0 negative rho (up, down): 0.409E-01 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.7172 au, 1.8230 Debye Dipole field 0.0027 au Potential amp. -0.0721 Ry Total length 13.5000 bhor total cpu time spent up to now is 21.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 4658 PWs) bands (ev): -24.8126 -12.5156 -8.9556 -6.8280 -1.5698 0.3816 0.7898 1.0998 the Fermi energy is -5.2423 ev ! total energy = -34.26521278 Ry Harris-Foulkes estimate = -34.26521273 Ry estimated scf accuracy < 3.2E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -57.73470354 Ry hartree contribution = 30.34785570 Ry xc contribution = -8.37146875 Ry ewald contribution = 1.49118840 Ry electric field correction = 0.00191540 Ry smearing contrib. (-TS) = 0.00000000 Ry convergence has been achieved in 8 iterations Writing output data file water.save PWSCF : 21.88s CPU time, 46.16s wall time init_run : 4.38s CPU electrons : 17.24s CPU Called by init_run: wfcinit : 0.24s CPU potinit : 0.89s CPU Called by electrons: c_bands : 5.94s CPU ( 8 calls, 0.742 s avg) sum_band : 2.70s CPU ( 8 calls, 0.338 s avg) v_of_rho : 6.35s CPU ( 9 calls, 0.705 s avg) newd : 1.83s CPU ( 9 calls, 0.203 s avg) mix_rho : 0.94s CPU ( 8 calls, 0.117 s avg) Called by c_bands: init_us_2 : 0.13s CPU ( 17 calls, 0.008 s avg) regterg : 5.83s CPU ( 8 calls, 0.728 s avg) Called by *egterg: h_psi : 5.57s CPU ( 36 calls, 0.155 s avg) s_psi : 0.05s CPU ( 36 calls, 0.001 s avg) g_psi : 0.07s CPU ( 27 calls, 0.003 s avg) rdiaghg : 0.02s CPU ( 35 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.04s CPU ( 36 calls, 0.001 s avg) General routines calbec : 0.08s CPU ( 44 calls, 0.002 s avg) cft3 : 4.25s CPU ( 107 calls, 0.040 s avg) cft3s : 5.46s CPU ( 238 calls, 0.023 s avg) davcio : 0.00s CPU ( 8 calls, 0.000 s avg) espresso-5.1/PP/examples/dipole_example/reference/water.avg.in0000644000175000017500000000004012341372774022616 0ustar mbamba1 water.vpot 1.D0 90 3 3.000000 espresso-5.1/PP/examples/dipole_example/reference/water.pp.in0000644000175000017500000000015412341372774022466 0ustar mbamba&inputpp prefix='water', outdir='/home/degironc/tmp', filplot = 'water.vpot' plot_num= 11 / espresso-5.1/PP/examples/example05/0000755000175000017500000000000012341373041015235 5ustar mbambaespresso-5.1/PP/examples/example05/run_xml_example0000755000175000017500000002435612341372774020410 0ustar mbamba#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pmw.x to generate better projectors for $ECHO LDA+U calculation on FeO. Read file README for more details" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x pmw.x" PSEUDO_LIST="O.pz-rrkjus.UPF Fe.pz-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" PMW_COMMAND="$PARA_PREFIX $BIN_DIR/pmw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running pmw.x as: $PMW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with standard LDA cat > feo_LDA.xml << EOF 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 1.0 O.pz-rrkjus.UPF 0.0 0.0 1.0 Fe.pz-nd-rrkjus.UPF 0.5 1.d-8 1.0 Fe.pz-nd-rrkjus.UPF -0.5 1.d-8 0.25 0.25 0.25 0.75 0.75 0.75 0.0 0.0 0.0 0.5 0.5 0.5 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 30.0 240.0 plain 0.3 1.0d-6 true 0 smearing gauss 0.01 20 2 2 2 2 0 0 0 EOF $ECHO " 1) running scf for FeO in LDA ...\c" $PW_COMMAND < feo_LDA.xml > feo_LDA.out check_failure $? $ECHO " done" $ECHO " 2) running poormanwannier post-processing to build Wannier projectors ...\c" cat > pmw.in << EOF &inputpp outdir='$TMP_DIR/', prefix='feo_af', first_band=9, last_band=20, / EOF $PMW_COMMAND < pmw.in > pmw.out check_failure $? $ECHO " done" # self-consistent calculation with user defined ns + Wannier cat > feo_wannier.xml << EOF 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 1.0 O.pz-rrkjus.UPF 0.0 1.0 Fe.pz-nd-rrkjus.UPF 0.5 4.3 1.d0 1.0 Fe.pz-nd-rrkjus.UPF -0.5 4.3 1.d0 0.25 0.25 0.25 0.75 0.75 0.75 0.0 0.0 0.0 0.5 0.5 0.5 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 30.0 240.0 plain 0.3 1.0d-6 true file 0 smearing gauss 0.01 20 2 2 2 2 0 0 0 EOF $ECHO " 3) running scf for FeO in LDA+U using Wannier projectors...\c" $PW_COMMAND < feo_wannier.xml > feo_wannier.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PP/examples/example05/README0000644000175000017500000000222312341372774016130 0ustar mbambaTo have 'better' projector in LDA+U calculations some localized Wannier functions of the relevant bands around the Fermi energy can be used. See for instance N.Marzari and D.Vanderbilt, PRB 56, 12847 (1997) and I. Sousa, N. Marzari, and D.Vanderbilt, PRB 65, 035109 (2001) for the definition and construction of Maximally Localized Wannier Functions (MLWF). Although it is possible to generate MLWF with the software distributed by Nicola Marzari at www.wannier.org, here we follow a simpler prescription and fix the phase-factor freedom---intrinsic in any Wannier function determination---in a sub-optimal but simple way using the atomic wavefunction as a guide. This is done as a post-processing step with a poormanwannier tool (pmw.x) that reads atomic wavefunctions and band structure of an LDA calculation and replaces the atomic wavefunctions with our simple Wannier functions. The subsequent LDA+U calculation is performed specifying in the system namelist U_projection_type='file' so that the freshly produced Wannier functions are used in the projection. The outcome of this calculation is an insulating state with d-level occupations really close to 0 or 1. espresso-5.1/PP/examples/example05/run_example0000755000175000017500000001171512341372774017523 0ustar mbamba#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pmw.x to generate better projectors for $ECHO LDA+U calculation on FeO. Read file README for more details" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x pmw.x" PSEUDO_LIST="O.pz-rrkjus.UPF Fe.pz-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" PMW_COMMAND="$PARA_PREFIX $BIN_DIR/pmw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running pmw.x as: $PMW_COMMAND" $ECHO # self-consistent calculation with standard LDA cat > feo_LDA.in << EOF FeO FeO Wustite in LDA &control calculation = 'scf' restart_mode='from_scratch', prefix='feo_af', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' tprnfor = .true., tstress=.true. / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true. Hubbard_U(2)=1.d-8, Hubbard_U(3)=1.d-8, / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 EOF $ECHO " 1) running scf for FeO in LDA ...\c" $PW_COMMAND < feo_LDA.in > feo_LDA.out check_failure $? $ECHO " done" $ECHO " 2) running poormanwannier post-processing to build Wannier projectors ...\c" cat > pmw.in << EOF &inputpp outdir='$TMP_DIR/', prefix='feo_af', first_band=9, last_band=20, / EOF $PMW_COMMAND < pmw.in > pmw.out check_failure $? $ECHO " done" # self-consistent calculation with user defined ns + Wannier cat > feo_wannier.in << EOF FeO FeO Wustite whithin LDA+U with user defined ns + Wannier &control calculation = 'scf' restart_mode='from_scratch', prefix='feo_af', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true., Hubbard_U(2)=4.3, Hubbard_U(3)=4.3, U_projection_type='file' starting_ns_eigenvalue(3,2,2) = 1.d0 starting_ns_eigenvalue(3,1,3) = 1.d0 / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 EOF $ECHO " 3) running scf for FeO in LDA+U using Wannier projectors...\c" $PW_COMMAND < feo_wannier.in > feo_wannier.out check_failure $? $ECHO " done" $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/feo_af.* $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PP/examples/example05/reference/0000755000175000017500000000000012341373041017173 5ustar mbambaespresso-5.1/PP/examples/example05/reference/pmw.out0000644000175000017500000006075612341372774020561 0ustar mbamba Program POST-PROC v.4.0 starts ... Today is 28Apr2008 at 16:19:35 Check: negative/imaginary core charge= -0.000003 0.000000 Calling projection .... NBND = 20 NATOMWFC = 20 NKSTOT = 8 10 12 Hubbard_lmax = 2 T ATOMIC WFC # 1 : 1 1 0 1 ATOMIC WFC # 2 : 1 2 1 1 ATOMIC WFC # 3 : 1 2 1 2 ATOMIC WFC # 4 : 1 2 1 3 ATOMIC WFC # 5 : 2 1 0 1 ATOMIC WFC # 6 : 2 2 1 1 ATOMIC WFC # 7 : 2 2 1 2 ATOMIC WFC # 8 : 2 2 1 3 ATOMIC WFC # 9 : 3 1 0 1 ATOMIC WFC # 10 : 3 2 2 1 ATOMIC WFC # 11 : 3 2 2 2 ATOMIC WFC # 12 : 3 2 2 3 ATOMIC WFC # 13 : 3 2 2 4 ATOMIC WFC # 14 : 3 2 2 5 ATOMIC WFC # 15 : 4 1 0 1 ATOMIC WFC # 16 : 4 2 2 1 ATOMIC WFC # 17 : 4 2 2 2 ATOMIC WFC # 18 : 4 2 2 3 ATOMIC WFC # 19 : 4 2 2 4 ATOMIC WFC # 20 : 4 2 2 5 KPOINT = 1 1.00333064142534 0.00 0.00 -0.33 0.01 -0.33 0.01 0.00 0.00 0.33-0.01 0.00 0.00 -0.48 0.02 -0.48 0.02 0.00 0.00 0.48-0.02 0.00 0.00 0.00 0.00 -0.55-0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.45 -0.08-0.07 0.00 0.00 0.00 0.00 0.00 0.00 1.00151941763230 0.00 0.00 -0.43 0.14 0.43-0.14 0.07-0.02 0.00 0.00 0.00 0.00 -0.51 0.16 0.51-0.16 -0.08 0.02 0.00 0.00 -0.01 0.19 -0.73-0.05 0.00 0.00 0.09 0.14 0.00 0.00 0.09 0.13 -0.55-0.26 0.00 0.00 0.00 0.00 0.04 0.11 0.00 0.00 0.00 0.00 1.00151941763230 0.08 0.00 -0.26 0.00 -0.26 0.00 0.00 0.00 -0.52 0.00 -0.08 0.00 -0.31 0.00 -0.31 0.00 0.00 0.00 -0.62 0.00 0.31 0.66 0.17-0.07 0.00 0.00 0.00 0.00 0.14 0.09 0.46 0.40 0.15 0.03 0.00 0.00 0.00 0.00 0.00 0.00 -0.10-0.06 0.00 0.00 0.968093600795185 0.02 0.00 0.17-0.04 -0.18 0.04 -0.51 0.12 -0.01 0.00 0.03 0.00 -0.12 0.03 0.13-0.03 -0.77 0.19 0.01 0.00 0.00-0.06 0.29 0.00 0.00 0.00 0.47 0.64 -0.03-0.02 0.01 0.01 -0.05-0.02 0.00 0.00 0.00 0.00 0.23 0.47 0.02 0.01 0.00 0.00 0.968093600795177 -0.52 0.00 0.11 0.00 0.10 0.00 -0.02 0.00 0.21 0.00 -0.79 0.00 -0.08 0.00 -0.07 0.00 -0.03 0.01 -0.15 0.00 -0.13-0.27 -0.06 0.03 0.00 0.00 0.02 0.03 0.66 0.43 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.02 -0.46-0.26 0.00 0.00 0.943665149372745 0.09 0.00 0.11-0.05 -0.51 0.05 -0.08 0.01 -0.39 0.00 -0.31 0.00 -0.11 0.05 0.47-0.05 0.29-0.05 0.37 0.00 0.16 0.27 0.47-0.06 0.00 0.00 -0.03-0.04 0.04 0.03 -0.32-0.26 -0.62-0.18 0.00 0.00 0.00 0.00 -0.10-0.17 -0.19-0.11 0.00 0.00 0.943665149372743 -0.09 0.00 0.52-0.06 -0.15 0.06 -0.09 0.02 0.36 0.00 0.29 0.00 -0.48 0.05 0.14-0.05 0.31-0.05 -0.34 0.00 -0.17-0.44 0.32 0.01 0.00 0.00 -0.03-0.04 -0.04-0.03 0.47 0.43 -0.39-0.14 0.00 0.00 0.00 0.00 -0.11-0.19 0.17 0.10 0.00 0.00 0.834845084528259 0.00 0.00 -0.48 0.00 -0.48 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.00 -0.33 0.00 0.00 0.00 0.00 0.00 -0.51-0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.56-0.47 0.08 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.618788924838533 0.02 0.00 -0.22 0.00 0.22 0.00 -0.84 0.00 0.00 0.00 -0.01 0.00 0.10 0.00 -0.10 0.00 0.42 0.00 0.00 0.00 0.01 0.03 -0.12 0.03 0.00 0.00 0.45 0.37 -0.01-0.01 -0.03-0.02 0.15 0.02 0.00 0.00 0.00 0.00 -0.51-0.60 -0.01-0.01 0.00 0.00 0.618788924838293 0.84 0.00 0.13 0.00 0.12 0.00 0.02 0.00 0.25 0.00 -0.42 0.00 -0.06 0.00 -0.05 0.00 -0.01 0.00 -0.11 0.00 -0.05-0.11 -0.03 0.01 0.00 0.00 -0.01-0.01 -0.49-0.32 0.12 0.10 0.03 0.01 0.00 0.00 0.00 0.00 0.01 0.01 -0.68-0.39 0.00 0.00 ORTHOGONALITY CHECK PASSED KPOINT = 2 0.982912367885352 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-0.20 0.00 0.22 0.01 0.86 0.01 0.35 0.00-0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.91 0.05 0.00 0.00 0.34-0.02 0.22-0.01 0.00 0.00 0.00 0.00 -0.07 0.00 0.974792369761372 0.24 0.00 -0.34 0.00 -0.73 0.00 -0.42 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.64 0.64 0.00 0.00 0.11-0.36 -0.21 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.03 0.00 0.00 0.00 0.941908451210695 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.16 0.51 0.45 0.00 0.00 0.11 0.09 0.51 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.71-0.70 0.00 0.00 0.00 0.00 -0.07-0.07 0.00 0.00 0.00 0.00 0.941882837402977 -0.25 0.00 -0.68 0.00 0.00 0.00 -0.15 0.00 -0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.82 0.00 0.00 0.00 0.00 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.907268964401294 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.54-0.38 0.28 0.20 0.00 0.00 0.54 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.20-0.25 0.00 0.00 -0.59-0.73 0.05 0.07 0.00 0.00 0.00 0.00 -0.03-0.03 0.859894658595786 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33-0.31 0.07-0.07 0.27-0.26 -0.58 0.54 -0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15-0.18 0.00 0.00 0.00-0.01 0.61-0.75 0.00 0.00 0.00 0.00 -0.01 0.01 0.840638468888008 0.13 0.00 0.62 0.00 -0.41 0.00 -0.23 0.00 -0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.21 0.21 0.00 0.00 -0.26 0.86 -0.31 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06-0.01 0.00 0.00 0.831189802615992 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.83-0.08 0.20 0.02 0.00 0.00 -0.48-0.05 0.20 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.02-0.09 0.00 0.00 0.00 0.00 0.17 0.98 0.00 0.00 0.00 0.00 0.719063464231504 0.42 0.00 0.00 0.00 0.55 0.00 -0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22-0.22 0.00 0.00 0.06-0.21 -0.92 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.07 0.01 0.00 0.00 0.669495675161251 -0.83 0.00 0.21 0.00 0.00 0.00 -0.48 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.98 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ORTHOGONALITY CHECK PASSED KPOINT = 3 1.07479303742163 -0.08 0.00 -0.02 0.00 -0.02 0.00 0.00 0.00 0.64 0.00 0.07 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.76 0.00 0.73 0.46 0.00 0.00 0.02-0.02 0.00 0.00 0.04 0.08 0.48 0.03 0.00 0.00 -0.03-0.01 0.00 0.00 -0.07 0.01 0.00 0.00 0.01 0.00 0.952224652598239 0.00 0.00 0.32 0.01 -0.32-0.01 0.46 0.01 0.00 0.00 0.00 0.00 -0.44-0.01 0.44 0.01 0.43 0.01 0.00 0.00 0.00 0.00 -0.13-0.63 0.00 0.00 -0.12-0.43 0.00 0.00 0.00 0.00 0.13 0.49 0.00 0.00 -0.26-0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.949228369445671 0.54 0.00 0.13 0.00 0.13 0.00 0.00 0.00 -0.32 0.00 0.62 0.00 -0.23 0.00 -0.23 0.00 0.00 0.00 0.29 0.00 -0.20-0.12 0.00 0.00 0.19-0.25 0.00 0.00 0.30 0.65 0.20 0.01 0.00 0.00 0.22 0.10 0.00 0.00 -0.48 0.09 0.00 0.00 -0.05 0.02 0.942767472428579 0.08 0.00 -0.17 0.00 -0.17 0.00 0.00 0.00 0.40 0.00 0.64 0.00 0.31 0.00 0.31 0.00 0.00 0.00 -0.41 0.00 0.23 0.14 0.00 0.00 -0.14 0.18 0.00 0.00 0.09 0.19 -0.61-0.04 0.00 0.00 -0.45-0.20 0.00 0.00 -0.45 0.08 0.00 0.00 -0.02 0.01 0.941065092122953 0.00 0.00 0.03 0.26 -0.03-0.26 -0.03-0.22 0.00 0.00 0.00 0.00 -0.04-0.31 0.04 0.31 -0.10-0.78 0.00 0.00 0.00 0.00 -0.25 0.01 0.00 0.00 0.58-0.07 0.00 0.00 0.00 0.00 0.56-0.06 0.00 0.00 0.41-0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.937131684867035 0.09 0.00 0.44 0.00 0.44 0.00 0.00 0.00 -0.19 0.00 -0.06 0.00 0.51 0.00 0.51 0.00 0.00 0.00 0.16 0.00 -0.11-0.07 0.00 0.00 0.38-0.52 0.00 0.00 -0.03-0.07 0.18 0.01 0.00 0.00 -0.66-0.30 0.00 0.00 0.09-0.02 0.00 0.00 -0.01 0.00 0.934748046133173 0.00 0.00 0.54 0.05 -0.54-0.05 0.12 0.01 0.00 0.00 0.00 0.00 0.44 0.04 -0.44-0.04 -0.03 0.00 0.00 0.00 0.00 0.00 -0.20-0.69 0.00 0.00 0.08 0.21 0.00 0.00 0.00 0.00 -0.22-0.61 0.00 0.00 0.08 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.833073122727367 0.04 0.00 -0.50 0.00 -0.50 0.00 0.00 0.00 -0.46 0.00 -0.03 0.00 0.28 0.00 0.28 0.00 0.00 0.00 0.35 0.00 -0.24-0.15 0.00 0.00 -0.39 0.53 0.00 0.00 0.10 0.21 0.50 0.03 0.00 0.00 -0.39-0.17 0.00 0.00 0.05-0.01 0.00 0.00 0.01 0.00 0.632253565141276 0.00 0.00 0.18-0.01 -0.18 0.01 -0.85 0.03 0.00 0.00 0.00 0.00 -0.10 0.00 0.10 0.00 0.44-0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.14 0.62 0.00 0.00 0.00 0.00 0.01 0.07 0.00 0.00 -0.53-0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.631271380917092 -0.82 0.00 0.09 0.00 0.09 0.00 0.00 0.00 -0.28 0.00 0.45 0.00 -0.05 0.00 -0.05 0.00 0.00 0.00 0.12 0.00 -0.12-0.07 0.00 0.00 -0.02 0.03 0.00 0.00 -0.25-0.55 0.26 0.02 0.00 0.00 0.03 0.02 0.00 0.00 -0.72 0.13 0.00 0.00 0.08-0.03 ORTHOGONALITY CHECK PASSED KPOINT = 4 0.971097634968456 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19-0.22 -0.35 0.41 -0.14 0.17 0.05-0.05 -0.49 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15-0.98 0.00 0.00 0.03-0.14 0.00 0.00 0.00 0.00 0.971097436298030 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.04 0.47 0.31 -0.62-0.41 -0.24-0.16 -0.15-0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.95-0.28 0.00 0.00 -0.14-0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.970570539746647 0.38 0.00 -0.38 0.00 -0.38 0.00 0.00 0.00 -0.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41-0.85 -0.20-0.24 0.00 0.00 0.00 0.00 0.12-0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.970570539746641 0.00 0.00 -0.65-0.06 0.65 0.06 0.38 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03-0.31 0.81 0.48 0.00 0.00 -0.11-0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.922865811588552 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.07-0.57 -0.07-0.57 0.00 0.00 0.07 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.83 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.17 0.10 0.827217255641535 0.00 0.00 -0.58-0.02 -0.58-0.02 0.00 0.00 0.58 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94-0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.08-0.10 0.00 0.00 0.815378421298023 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.11 0.17 0.02 0.07 0.01 0.22 0.03 0.23 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.00 -0.71-0.69 0.00 0.00 0.00 0.00 0.815378129172314 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.20 -0.08-0.16 0.11 0.21 -0.42-0.82 0.03 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14-0.03 0.00 0.00 -0.97 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.604950568269497 0.08 0.00 -0.25-0.01 0.28 0.01 -0.92-0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-0.03 0.10 0.07 0.00 0.00 0.91 0.39 0.07-0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.604950568269429 0.92 0.00 0.18 0.00 0.13 0.00 0.08 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 0.11 0.02 0.02 0.00 0.00 -0.07-0.03 0.95-0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ORTHOGONALITY CHECK PASSED KPOINT = 5 1.00333060722339 0.00 0.00 0.48 0.00 0.48 0.00 0.00 0.00 -0.48 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.00 0.00 -0.33 0.00 0.00 0.00 0.00 0.00 0.10-0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.09 0.66 0.01-0.10 0.00 0.00 0.00 0.00 0.00 0.00 1.00151941820757 0.00 0.00 0.54 0.04 -0.54-0.04 0.08 0.01 0.00 0.00 0.00 0.00 0.45 0.03 -0.45-0.03 -0.07-0.01 0.00 0.00 -0.02-0.12 0.08-0.74 0.00 0.00 0.00 0.00 -0.02 0.16 0.01-0.15 0.08-0.60 0.00 0.00 0.00 0.00 0.01 0.12 0.00 0.01 0.00 0.00 1.00151941820757 -0.08 0.00 -0.31 0.00 -0.31 0.00 0.00 0.00 -0.62 0.00 0.08 0.00 -0.26 0.00 -0.26 0.00 0.00 0.00 -0.52 0.00 -0.01 0.74 0.03-0.12 0.00 0.00 -0.01 0.17 0.00 0.00 -0.09 0.60 0.03-0.15 0.00 0.00 0.00 0.00 0.00 0.01 0.01-0.12 0.00 0.00 0.968093557777292 -0.05 0.00 0.12 0.04 -0.13-0.04 0.75 0.27 -0.01 0.00 -0.03 0.00 -0.16-0.06 0.17 0.06 0.49 0.17 0.01 0.00 0.02 0.03 0.05 0.30 0.00 0.00 0.00 0.07 0.10 0.78 0.00-0.01 -0.01-0.05 0.00 0.00 0.00 0.00 0.20 0.49 0.01 0.02 0.00 0.00 0.968093557777288 0.79 0.00 0.08 0.00 0.07 0.00 0.04 0.02 0.15 0.00 0.52 0.00 -0.11 0.00 -0.09 0.00 0.03 0.01 -0.21 0.00 0.00 0.30 0.01-0.03 0.00 0.00 0.07-0.79 0.00 0.07 0.01-0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.01-0.02 -0.07 0.52 0.00 0.00 0.943665176623261 0.26 0.00 0.20 0.00 -0.50 0.00 -0.34 0.00 -0.30 0.00 -0.08 0.00 -0.21 0.00 0.53 0.00 0.10 0.00 0.32 0.00 0.01-0.26 -0.09 0.50 0.00 0.00 0.00-0.04 0.01-0.06 -0.05 0.29 0.13-0.69 0.00 0.00 0.00 0.00 -0.01-0.25 -0.02 0.15 0.00 0.00 0.943665176623259 0.34 0.00 -0.46 0.00 0.06 0.00 0.26 0.00 -0.40 0.00 -0.10 0.00 0.49 0.00 -0.06 0.00 -0.08 0.00 0.43 0.00 0.00-0.51 0.04-0.26 0.00 0.00 0.00-0.06 -0.01 0.04 -0.11 0.69 -0.05 0.29 0.00 0.00 0.00 0.00 0.01 0.15 -0.03 0.25 0.00 0.00 0.834845357195784 0.00 0.00 0.33-0.01 0.33-0.01 0.00 0.00 -0.33 0.01 0.00 0.00 -0.48 0.01 -0.48 0.01 0.00 0.00 0.48-0.01 0.00 0.00 0.00 0.00 -0.10 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.11 0.73 0.02-0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.618789761323876 0.02 0.00 -0.09 0.00 0.10 0.00 -0.42-0.01 0.01 0.00 -0.04 0.00 0.21 0.00 -0.23 0.00 0.84 0.02 -0.01 0.00 0.00-0.01 0.02-0.12 0.00 0.00 0.00 0.04 -0.11 0.57 0.00 0.03 -0.03 0.15 0.00 0.00 0.00 0.00 -0.05-0.79 0.01-0.04 0.00 0.00 0.618789761323762 0.42 0.00 0.06 0.00 0.05 0.00 0.02 0.00 0.11 0.00 -0.84 0.00 -0.14 0.00 -0.12 0.00 -0.04 0.00 -0.25 0.00 0.00 0.12 0.00-0.01 0.00 0.00 -0.05 0.58 0.01-0.04 0.02-0.15 -0.01 0.03 0.00 0.00 0.00 0.00 0.00-0.04 -0.10 0.78 0.00 0.00 ORTHOGONALITY CHECK PASSED KPOINT = 6 0.982912336357522 -0.20 0.00 0.22 0.00 0.86 0.00 0.35 0.00 -0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91-0.12 0.00 0.00 0.33-0.04 0.22-0.03 0.00 0.00 0.00 0.00 0.07-0.01 0.974792428915909 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.21-0.11 0.30 0.16 0.64 0.34 0.37 0.20 -0.30-0.16 0.86-0.29 0.00 0.00 -0.15 0.34 -0.02-0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.941908451884139 0.25 0.00 0.68 0.00 0.00 0.00 0.14 0.00 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99-0.13 0.00 0.00 0.00 0.00 0.09-0.01 0.00 0.00 0.00 0.00 0.941882838036788 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01-0.25 0.02-0.68 0.00 0.00 0.00-0.15 0.02-0.68 0.00 0.00 -0.19 0.98 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.907268834001435 0.00 0.00 0.66 0.00 -0.35 0.00 0.00 0.00 -0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.32 0.04 0.00 0.00 0.93-0.12 -0.09 0.01 0.00 0.00 0.00 0.00 -0.04 0.01 0.859894405748651 -0.46 0.00 -0.10 0.00 -0.38 0.00 0.79 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.24 0.03 0.00 0.00 0.01 0.00 0.96-0.12 0.00 0.00 0.00 0.00 0.02 0.00 0.840638907836761 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11-0.07 0.52-0.33 -0.34 0.22 -0.19 0.12 -0.52 0.33 -0.22-0.20 0.00 0.00 -0.89 0.10 -0.26 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.04 0.04 0.00 0.00 0.831189518236865 0.83 0.00 -0.20 0.00 0.00 0.00 0.48 0.00 -0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.09 0.01 0.00 0.00 0.00 0.00 0.99-0.13 0.00 0.00 0.00 0.00 0.719064336620171 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11-0.40 0.00 0.00 0.14-0.53 -0.19 0.70 0.00 0.00 0.03 0.30 0.00 0.00 0.18 0.13 -0.92-0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.669496639842054 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80-0.20 -0.20 0.05 0.00 0.00 0.46-0.12 -0.20 0.05 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 -0.87 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ORTHOGONALITY CHECK PASSED KPOINT = 7 1.07479306407456 0.07 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.76 0.00 -0.08 0.00 -0.02 0.00 -0.02 0.00 0.00 0.00 0.64 0.00 -0.85-0.20 0.00 0.00 -0.02 0.01 0.00 0.00 0.01-0.09 0.48 0.01 0.00 0.00 -0.03 0.00 0.00 0.00 0.07 0.01 0.00 0.00 0.01 0.00 0.952224590395448 0.00 0.00 0.44 0.06 -0.44-0.06 -0.43-0.06 0.00 0.00 0.00 0.00 -0.32-0.05 0.32 0.05 -0.46-0.07 0.00 0.00 0.00 0.00 0.64 0.06 0.00 0.00 -0.45 0.01 0.00 0.00 0.00 0.00 -0.51-0.02 0.00 0.00 0.35 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.949228321865400 0.62 0.00 -0.23 0.00 -0.23 0.00 0.00 0.00 0.29 0.00 0.54 0.00 0.13 0.00 0.13 0.00 0.00 0.00 -0.32 0.00 0.23 0.05 0.00 0.00 -0.29 0.13 0.00 0.00 0.05-0.71 0.20 0.00 0.00 0.00 0.24 0.03 0.00 0.00 0.48 0.07 0.00 0.00 -0.06 0.01 0.942767481913127 -0.64 0.00 -0.31 0.00 -0.31 0.00 0.00 0.00 0.41 0.00 -0.08 0.00 0.17 0.00 0.17 0.00 0.00 0.00 -0.40 0.00 0.26 0.06 0.00 0.00 -0.21 0.10 0.00 0.00 -0.01 0.21 0.61 0.01 0.00 0.00 0.49 0.06 0.00 0.00 -0.46-0.07 0.00 0.00 0.02 0.00 0.941065098727561 0.00 0.00 0.29 0.12 -0.29-0.12 0.72 0.31 0.00 0.00 0.00 0.00 -0.24-0.10 0.24 0.10 0.20 0.09 0.00 0.00 0.00 0.00 0.25-0.04 0.00 0.00 0.56-0.17 0.00 0.00 0.00 0.00 -0.55 0.13 0.00 0.00 -0.52 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.937131658688873 -0.06 0.00 0.51 0.00 0.51 0.00 0.00 0.00 0.16 0.00 0.09 0.00 0.44 0.00 0.44 0.00 0.00 0.00 -0.19 0.00 0.13 0.03 0.00 0.00 -0.58 0.27 0.00 0.00 -0.01 0.08 0.19 0.00 0.00 0.00 -0.72-0.08 0.00 0.00 -0.09-0.01 0.00 0.00 -0.01 0.00 0.934748047432856 0.00 0.00 -0.41-0.18 0.41 0.18 0.03 0.01 0.00 0.00 0.00 0.00 -0.49-0.22 0.49 0.22 -0.11-0.05 0.00 0.00 0.00 0.00 0.71-0.14 0.00 0.00 0.21-0.07 0.00 0.00 0.00 0.00 0.63-0.16 0.00 0.00 -0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.833073393354575 0.03 0.00 -0.28 0.00 -0.28 0.00 0.00 0.00 -0.35 0.00 -0.04 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.46 0.00 -0.28-0.07 0.00 0.00 -0.60 0.28 0.00 0.00 -0.02 0.23 -0.50-0.01 0.00 0.00 0.42 0.05 0.00 0.00 0.05 0.01 0.00 0.00 -0.01 0.00 0.632254275020006 0.00 0.00 0.10 0.00 -0.10 0.00 -0.44 0.00 0.00 0.00 0.00 0.00 -0.18 0.00 0.18 0.00 0.85 0.00 0.00 0.00 0.00 0.00 -0.03-0.01 0.00 0.00 0.63 0.07 0.00 0.00 0.00 0.00 -0.07-0.01 0.00 0.00 0.73 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.631272079289054 -0.45 0.00 0.05 0.00 0.05 0.00 0.00 0.00 -0.12 0.00 0.82 0.00 -0.09 0.00 -0.09 0.00 0.00 0.00 0.28 0.00 -0.13-0.03 0.00 0.00 -0.03 0.01 0.00 0.00 0.04-0.61 -0.26 0.00 0.00 0.00 -0.04 0.00 0.00 0.00 -0.72-0.11 0.00 0.00 -0.08 0.02 ORTHOGONALITY CHECK PASSED KPOINT = 8 0.971097636604146 0.29 0.00 -0.57-0.01 -0.18 0.01 0.09 0.01 -0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 0.99 0.00 0.00 0.11 0.09 0.00 0.00 0.00 0.00 0.971097437720181 -0.09 0.00 -0.53-0.04 0.76 0.04 0.28 0.02 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.62 0.00 0.00 0.11 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.970570552767571 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25-0.18 -0.28-0.20 -0.21 0.56 0.02 0.22 -0.49 0.37 -0.70 0.26 -0.30 0.58 0.00 0.00 -0.08 0.07 0.03-0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.970570552767571 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.20 0.10 0.24-0.63 0.15 0.43 -0.03 0.30 0.39-0.20 0.62-0.19 -0.39 0.64 0.00 0.00 0.03-0.06 0.01-0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.922865624589866 0.00 0.00 0.57-0.07 0.57-0.07 0.00 0.00 -0.57 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.07 0.18 0.827217940476984 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.48 0.32 -0.48 0.32 0.00 0.00 0.48-0.32 0.00 0.00 0.00 0.00 0.98 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.04 0.00 0.00 0.815378010897373 0.91 0.00 0.18 0.00 0.06 0.00 0.27 0.02 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01-0.14 0.00 0.00 0.79 0.60 0.00 0.00 0.00 0.00 0.815377718602265 0.27 0.00 -0.17-0.01 0.24 0.01 -0.91-0.06 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.09 0.00 0.00 -0.77-0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.604951681326465 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06-0.03 -0.22 0.13 0.24-0.15 -0.78 0.49 0.02-0.01 -0.01 0.00 -0.06-0.11 0.00 0.00 -0.12 0.13 -0.70-0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.604951681326378 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90-0.20 0.17-0.04 0.13-0.03 0.07-0.02 0.30-0.07 0.09-0.08 -0.01-0.01 0.00 0.00 -0.35 0.91 0.17 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ORTHOGONALITY CHECK PASSED espresso-5.1/PP/examples/example05/reference/feo_wannier.out0000644000175000017500000006021212341372774022235 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16:19:39 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.316044 0.000000 Fe2 2 0.316044 0.000000 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0100 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 G cutoff = 407.7738 ( 17255 G-vectors) FFT grid: ( 50, 50, 50) G cutoff = 203.8869 ( 6111 G-vectors) smooth grid: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns LDA+U Projector read from file Starting wfc are 20 atomic wfcs total cpu time spent up to now is 2.67 secs per-process dynamical memory: 28.6 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 5.6406612 atom 3 spin 1 eigenvalues: 0.9879557 0.9879557 0.9903396 0.9903396 0.9909571 eigenvectors 1 -0.9551858 -0.0468940 -0.0149193 -0.2852675 -0.0618132 2 0.2852675 -0.0443015 0.0627621 -0.9551858 0.0184606 3 -0.0229492 -0.5562961 0.7927156 0.0756032 0.2364195 4 -0.0756032 0.5941714 0.1846809 -0.0229492 0.7788523 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.988 0.000 0.000 0.000 0.000 0.000 0.991 atom 3 spin 2 eigenvalues: 0.0240864 0.0240864 0.2017543 0.2215931 0.2215931 eigenvectors 1 0.9699510 0.0364923 0.0149502 0.2345068 0.0514425 2 -0.2345068 0.0383319 -0.0507692 0.9699510 -0.0124374 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.0314225 0.4196730 -0.8146548 -0.0566935 -0.3949818 5 0.0566935 -0.6983840 -0.0142555 0.0314225 -0.7126395 occupations 0.025 -0.005 -0.005 0.000 -0.010 -0.005 0.214 -0.006 -0.009 0.006 -0.005 -0.006 0.214 0.009 0.006 0.000 -0.009 0.009 0.025 0.000 -0.010 0.006 0.006 0.000 0.214 atom 4 Tr[ns(na)]= 5.6406613 atom 4 spin 1 eigenvalues: 0.0240863 0.0240863 0.2017543 0.2215932 0.2215932 eigenvectors 1 -0.9703033 -0.0364345 -0.0150267 -0.2330449 -0.0514612 2 0.2330449 -0.0383868 0.0507466 -0.9703033 0.0123598 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.0316129 0.4173233 -0.8146981 -0.0565876 -0.3973748 5 0.0565876 -0.6997906 -0.0115172 0.0316129 -0.7113079 occupations 0.025 -0.005 -0.005 0.000 -0.010 -0.005 0.214 -0.006 -0.009 0.006 -0.005 -0.006 0.214 0.009 0.006 0.000 -0.009 0.009 0.025 0.000 -0.010 0.006 0.006 0.000 0.214 atom 4 spin 2 eigenvalues: 0.9879558 0.9879558 0.9903396 0.9903396 0.9909571 eigenvectors 1 0.9605767 0.0460197 0.0161426 0.2665519 0.0621623 2 0.2665519 -0.0452094 0.0624589 -0.9605767 0.0172495 3 -0.0334730 -0.4660954 0.8109275 0.0715689 0.3448320 4 -0.0715689 0.6672781 0.0700115 -0.0334730 0.7372895 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.988 0.000 0.000 0.000 0.000 0.000 0.991 nsum = 11.2813225 exit write_ns Modify starting ns matrices according to input values enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.4389069 atom 3 spin 1 eigenvalues: 0.9879557 0.9879557 0.9903396 0.9903396 0.9909571 eigenvectors 1 0.9374138 0.0493379 0.0113253 0.3391354 0.0606632 2 0.3391354 -0.0415626 0.0635091 -0.9374138 0.0219466 3 -0.0397854 -0.4040741 0.8139372 0.0682615 0.4098632 4 -0.0682615 0.7065615 -0.0033423 -0.0397854 0.7032191 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.988 0.000 0.000 0.000 0.000 0.000 0.991 atom 3 spin 2 eigenvalues: 0.0240864 0.0240864 0.2215931 0.2215931 1.0000000 eigenvectors 1 -0.9850274 -0.0334584 -0.0187837 -0.1597480 -0.0522421 2 0.1597480 -0.0410068 0.0494792 -0.9850274 0.0084724 3 0.0334701 0.3939122 -0.8146325 -0.0555093 -0.4207203 4 0.0555093 -0.7132313 0.0154777 0.0334701 -0.6977536 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.025 -0.005 -0.005 0.000 -0.010 -0.005 0.481 0.260 -0.009 -0.260 -0.005 0.260 0.481 0.009 -0.260 0.000 -0.009 0.009 0.025 0.000 -0.010 -0.260 -0.260 0.000 0.481 atom 4 Tr[ns(na)]= 6.4389070 atom 4 spin 1 eigenvalues: 0.0240863 0.0240863 0.2215932 0.2215932 1.0000000 eigenvectors 1 -0.9852271 -0.0334069 -0.0188458 -0.1585119 -0.0522527 2 0.1585119 -0.0410487 0.0494556 -0.9852271 0.0084069 3 -0.0163670 -0.5798886 0.7856218 0.0627188 0.2057332 4 -0.0627188 0.5723590 0.2160187 -0.0163670 0.7883778 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.025 -0.005 -0.005 0.000 -0.010 -0.005 0.481 0.260 -0.009 -0.260 -0.005 0.260 0.481 0.009 -0.260 0.000 -0.009 0.009 0.025 0.000 -0.010 -0.260 -0.260 0.000 0.481 atom 4 spin 2 eigenvalues: 0.9879558 0.9879558 0.9903396 0.9903396 0.9909571 eigenvectors 1 0.9562943 0.0467205 0.0151647 0.2815293 0.0618852 2 -0.2815293 0.0444848 -0.0627035 0.9562943 -0.0182188 3 -0.0268472 -0.5246667 0.8012418 0.0743086 0.2765751 4 -0.0743086 0.6222779 0.1432358 -0.0268472 0.7655137 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.991 0.000 0.000 0.000 0.000 0.000 0.988 0.000 0.000 0.000 0.000 0.000 0.991 nsum = 12.8778140 exit write_ns total cpu time spent up to now is 4.46 secs total energy = -174.15073358 Ry Harris-Foulkes estimate = -175.00407466 Ry estimated scf accuracy < 2.39675807 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 8.48 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.56E-03, avg # of iterations = 2.0 total cpu time spent up to now is 6.20 secs total energy = -174.58149604 Ry Harris-Foulkes estimate = -174.58521999 Ry estimated scf accuracy < 0.24523348 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.24 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.76E-04, avg # of iterations = 1.2 total cpu time spent up to now is 7.82 secs total energy = -174.64831309 Ry Harris-Foulkes estimate = -174.60020892 Ry estimated scf accuracy < 0.11770690 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.37 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.20E-04, avg # of iterations = 2.0 total cpu time spent up to now is 9.45 secs total energy = -174.67468574 Ry Harris-Foulkes estimate = -174.67175927 Ry estimated scf accuracy < 0.00790771 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.38 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.82E-05, avg # of iterations = 2.5 total cpu time spent up to now is 11.19 secs total energy = -174.67655750 Ry Harris-Foulkes estimate = -174.67565576 Ry estimated scf accuracy < 0.00184333 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.58E-06, avg # of iterations = 1.8 total cpu time spent up to now is 12.75 secs total energy = -174.67679228 Ry Harris-Foulkes estimate = -174.67681945 Ry estimated scf accuracy < 0.00012219 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.36E-07, avg # of iterations = 5.0 total cpu time spent up to now is 14.66 secs total energy = -174.67684628 Ry Harris-Foulkes estimate = -174.67684045 Ry estimated scf accuracy < 0.00000950 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.39E-08, avg # of iterations = 3.2 total cpu time spent up to now is 16.54 secs total energy = -174.67685240 Ry Harris-Foulkes estimate = -174.67684870 Ry estimated scf accuracy < 0.00000466 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.66E-08, avg # of iterations = 2.0 total cpu time spent up to now is 18.18 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 5.9906137 atom 3 spin 1 eigenvalues: 0.9814246 0.9814246 0.9943617 0.9963140 0.9963140 eigenvectors 1 0.9559070 0.0835914 0.0306945 0.2554425 0.1142859 2 0.2554425 -0.0837044 0.1142445 -0.9559070 0.0305401 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 0.0027790 0.6917693 -0.7072653 -0.1448558 -0.0154961 5 0.1448558 -0.4172865 -0.3904465 0.0027790 -0.8077330 occupations 0.982 -0.001 -0.001 0.000 -0.002 -0.001 0.995 -0.001 -0.002 0.001 -0.001 -0.001 0.995 0.002 0.001 0.000 -0.002 0.002 0.982 0.000 -0.002 0.001 0.001 0.000 0.995 atom 3 spin 2 eigenvalues: 0.0144884 0.0144884 0.0176617 0.0176617 0.9764745 eigenvectors 1 -0.1210259 0.7545720 -0.1308673 -0.0991968 0.6237047 2 -0.0991968 -0.2845398 0.7957484 0.1210259 0.5112086 3 -0.8531159 -0.1109386 0.0005774 -0.4977007 -0.1103612 4 -0.4977007 0.0633837 -0.1277675 0.8531159 -0.0643838 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.018 0.000 0.000 0.000 0.000 0.000 0.335 0.321 0.000 -0.321 0.000 0.321 0.335 0.000 -0.321 0.000 0.000 0.000 0.018 0.000 0.000 -0.321 -0.321 0.000 0.335 atom 4 Tr[ns(na)]= 5.9906141 atom 4 spin 1 eigenvalues: 0.0144885 0.0144885 0.0176618 0.0176618 0.9764745 eigenvectors 1 -0.1561670 0.4470066 0.3577839 -0.0099959 0.8047905 2 -0.0099959 -0.6712126 0.7227254 0.1561670 0.0515128 3 -0.9751781 -0.0806268 -0.0455266 -0.1566513 -0.1261534 4 -0.1566513 0.0991195 -0.1193846 0.9751781 -0.0202651 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.018 0.000 0.000 0.000 0.000 0.000 0.335 0.321 0.000 -0.321 0.000 0.321 0.335 0.000 -0.321 0.000 0.000 0.000 0.018 0.000 0.000 -0.321 -0.321 0.000 0.335 atom 4 spin 2 eigenvalues: 0.9814247 0.9814247 0.9943617 0.9963140 0.9963140 eigenvectors 1 -0.9743505 -0.0760742 -0.0404167 -0.1721924 -0.1164909 2 -0.1721924 0.0905906 -0.1111775 0.9743505 -0.0205869 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 -0.0405551 -0.5586072 0.7847470 0.1390906 0.2261399 5 0.1390906 -0.5836358 -0.1919501 0.0405551 -0.7755859 occupations 0.982 -0.001 -0.001 0.000 -0.002 -0.001 0.995 -0.001 -0.002 0.001 -0.001 -0.001 0.995 0.002 0.001 0.000 -0.002 0.002 0.982 0.000 -0.002 0.001 0.001 0.000 0.995 nsum = 11.9812278 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7628 -7.5193 2.8001 5.0047 5.0047 5.4662 5.4662 6.7590 7.2934 7.2934 7.7830 7.8265 7.8265 9.4263 11.5887 13.1874 13.1874 14.7127 14.7127 15.5091 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.5546 -7.5343 3.7492 4.0889 4.7638 5.4245 5.4932 5.5831 5.7021 6.2797 6.8841 7.6991 7.8438 9.3479 13.2097 13.7136 14.7662 14.9941 17.3578 17.6823 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.5441 -7.5344 2.8784 4.1840 5.1086 5.2755 5.3275 5.5738 6.6204 6.6385 6.9355 7.6877 7.8301 9.4452 13.1760 13.7332 15.0731 15.1405 15.3218 16.7138 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2146 -8.1703 4.5307 4.9368 5.2135 5.2135 5.6808 5.6808 6.6665 6.6665 7.0759 7.9059 7.9059 9.1318 13.2039 13.2039 14.0831 14.3676 14.7108 14.7108 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7628 -7.5193 2.8001 5.0047 5.0047 5.4662 5.4662 6.7590 7.2934 7.2934 7.7830 7.8265 7.8265 9.4263 11.5887 13.1874 13.1874 14.7127 14.7127 15.5091 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.5546 -7.5343 3.7492 4.0889 4.7638 5.4245 5.4932 5.5831 5.7021 6.2797 6.8841 7.6991 7.8438 9.3479 13.2097 13.7136 14.7662 14.9941 17.3578 17.6823 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.5441 -7.5344 2.8784 4.1840 5.1086 5.2755 5.3275 5.5738 6.6204 6.6385 6.9355 7.6877 7.8301 9.4452 13.1760 13.7332 15.0731 15.1405 15.3218 16.7138 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2146 -8.1703 4.5307 4.9368 5.2135 5.2135 5.6808 5.6808 6.6665 6.6665 7.0759 7.9059 7.9059 9.1318 13.2039 13.2039 14.0831 14.3676 14.7108 14.7109 the Fermi energy is 10.3637 ev ! total energy = -174.67685715 Ry Harris-Foulkes estimate = -174.67685319 Ry estimated scf accuracy < 0.00000071 Ry The total energy is the sum of the following terms: one-electron contribution = 0.53356967 Ry hartree contribution = 28.15543574 Ry xc contribution = -65.89943570 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.04286850 Ry smearing contrib. (-TS) = 0.00000000 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell convergence has been achieved in 9 iterations Writing output data file feo_af.save PWSCF : 18.27s CPU time, 19.62s wall time init_run : 2.60s CPU electrons : 15.50s CPU Called by init_run: wfcinit : 0.37s CPU potinit : 0.11s CPU Called by electrons: c_bands : 7.90s CPU ( 9 calls, 0.878 s avg) sum_band : 4.89s CPU ( 9 calls, 0.544 s avg) v_of_rho : 0.49s CPU ( 10 calls, 0.049 s avg) newd : 1.75s CPU ( 10 calls, 0.175 s avg) mix_rho : 0.27s CPU ( 9 calls, 0.030 s avg) Called by c_bands: init_us_2 : 0.13s CPU ( 152 calls, 0.001 s avg) cegterg : 7.62s CPU ( 72 calls, 0.106 s avg) Called by *egterg: h_psi : 6.95s CPU ( 262 calls, 0.027 s avg) s_psi : 0.19s CPU ( 262 calls, 0.001 s avg) g_psi : 0.06s CPU ( 182 calls, 0.000 s avg) cdiaghg : 0.26s CPU ( 254 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.18s CPU ( 262 calls, 0.001 s avg) General routines calbec : 0.26s CPU ( 334 calls, 0.001 s avg) cft3 : 0.82s CPU ( 142 calls, 0.006 s avg) cft3s : 7.16s CPU ( 8254 calls, 0.001 s avg) interpolate : 0.34s CPU ( 38 calls, 0.009 s avg) davcio : 0.00s CPU ( 448 calls, 0.000 s avg) espresso-5.1/PP/examples/example05/reference/feo_LDA.out0000644000175000017500000005464412341372774021206 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16:17:46 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.000000 0.000000 Fe2 2 0.000000 0.000000 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0100 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 G cutoff = 407.7738 ( 17255 G-vectors) FFT grid: ( 50, 50, 50) G cutoff = 203.8869 ( 6111 G-vectors) smooth grid: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 atomic wfcs total cpu time spent up to now is 2.70 secs per-process dynamical memory: 28.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.2 enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.4251862 atom 3 spin 1 eigenvalues: 0.9871648 0.9871648 0.9966670 0.9966670 0.9980445 eigenvectors 1 -0.9018069 0.1812386 0.0436787 -0.3184358 0.2249173 2 -0.3184358 -0.1550740 0.2344942 0.9018069 0.0794202 3 0.1838967 -0.2796812 0.7712377 -0.2269912 0.4915565 4 0.2269912 0.7290746 -0.1223263 0.1838967 0.6067483 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.001 0.001 0.000 0.002 0.001 0.997 0.001 0.002 -0.001 0.001 0.001 0.997 -0.002 -0.001 0.000 0.002 -0.002 0.988 0.000 0.002 -0.001 -0.001 0.000 0.997 atom 3 spin 2 eigenvalues: 0.2000722 0.2000722 0.3336994 0.3336994 0.3919349 eigenvectors 1 0.9716143 0.0399371 0.0170375 0.2254646 0.0569746 2 -0.2254646 0.0427310 -0.0559520 0.9716143 -0.0132211 3 -0.0591782 -0.0610240 0.7338195 0.0403645 0.6727954 4 -0.0403645 0.8121095 -0.3532064 -0.0591782 0.4589031 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.201 -0.004 -0.004 0.000 -0.008 -0.004 0.353 0.020 -0.007 -0.020 -0.004 0.020 0.353 0.007 -0.020 0.000 -0.007 0.007 0.201 0.000 -0.008 -0.020 -0.020 0.000 0.353 atom 4 Tr[ns(na)]= 6.4251862 atom 4 spin 1 eigenvalues: 0.2000722 0.2000722 0.3336994 0.3336994 0.3919349 eigenvectors 1 0.9746728 0.0393355 0.0178185 0.2118528 0.0571540 2 -0.2118528 0.0432854 -0.0557082 0.9746728 -0.0124229 3 -0.0285067 -0.4849917 0.8090835 0.0657170 0.3240919 4 -0.0657170 0.6542391 0.0928955 -0.0285067 0.7471347 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.201 -0.004 -0.004 0.000 -0.008 -0.004 0.353 0.020 -0.007 -0.020 -0.004 0.020 0.353 0.007 -0.020 0.000 -0.007 0.007 0.201 0.000 -0.008 -0.020 -0.020 0.000 0.353 atom 4 spin 2 eigenvalues: 0.9871648 0.9871648 0.9966670 0.9966670 0.9980445 eigenvectors 1 -0.8988060 0.1826731 0.0414957 -0.3268099 0.2241688 2 -0.3268099 -0.1533815 0.2348903 0.8988060 0.0815088 3 0.2491024 -0.0203584 0.6862100 -0.1526139 0.6658516 4 -0.1526139 -0.7806131 0.3726757 -0.2491024 -0.4079374 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.001 0.001 0.000 0.002 0.001 0.997 0.001 0.002 -0.001 0.001 0.001 0.997 -0.002 -0.001 0.000 0.002 -0.002 0.988 0.000 0.002 -0.001 -0.001 0.000 0.997 nsum = 12.8503725 exit write_ns total cpu time spent up to now is 4.49 secs total energy = -174.41116749 Ry Harris-Foulkes estimate = -175.24062365 Ry estimated scf accuracy < 1.83907829 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.80 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.57E-03, avg # of iterations = 2.0 total cpu time spent up to now is 6.53 secs total energy = -174.80132266 Ry Harris-Foulkes estimate = -174.82982858 Ry estimated scf accuracy < 0.10915999 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.81 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.90E-04, avg # of iterations = 2.0 total cpu time spent up to now is 8.28 secs total energy = -174.82215071 Ry Harris-Foulkes estimate = -174.81940173 Ry estimated scf accuracy < 0.01925761 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.04 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.88E-05, avg # of iterations = 1.8 total cpu time spent up to now is 9.97 secs total energy = -174.82396919 Ry Harris-Foulkes estimate = -174.82416263 Ry estimated scf accuracy < 0.00166244 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.05 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.94E-06, avg # of iterations = 3.0 total cpu time spent up to now is 11.86 secs total energy = -174.82455754 Ry Harris-Foulkes estimate = -174.82440517 Ry estimated scf accuracy < 0.00042492 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.08 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.52E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.64 secs total energy = -174.82463767 Ry Harris-Foulkes estimate = -174.82463510 Ry estimated scf accuracy < 0.00003442 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.08 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.23E-07, avg # of iterations = 3.2 total cpu time spent up to now is 15.65 secs total energy = -174.82465009 Ry Harris-Foulkes estimate = -174.82465934 Ry estimated scf accuracy < 0.00003428 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.22E-07, avg # of iterations = 3.5 total cpu time spent up to now is 17.44 secs total energy = -174.82465720 Ry Harris-Foulkes estimate = -174.82465702 Ry estimated scf accuracy < 0.00000105 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.76E-09, avg # of iterations = 3.8 total cpu time spent up to now is 19.35 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.9389790 atom 3 spin 1 eigenvalues: 0.9856388 0.9856388 0.9995005 0.9995005 0.9999704 eigenvectors 1 -0.9703422 0.0769323 0.0371688 -0.1952354 0.1141011 2 -0.1952354 -0.0873358 0.1102932 0.9703422 0.0229575 3 0.0955956 -0.2481788 0.7901569 -0.1057386 0.5419781 4 -0.1057386 -0.7691085 0.1696251 -0.0955956 -0.5994834 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.986 0.001 0.001 0.000 0.002 0.001 0.999 0.000 0.001 0.000 0.001 0.000 0.999 -0.001 0.000 0.000 0.001 -0.001 0.986 0.000 0.002 0.000 0.000 0.000 0.999 atom 3 spin 2 eigenvalues: 0.3300323 0.3300323 0.4304625 0.4391014 0.4391014 eigenvectors 1 0.9010186 0.2093506 0.0797170 0.2332872 0.2890676 2 0.2332872 -0.2129179 0.2877619 -0.9010186 0.0748439 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 0.3117275 -0.6680169 0.0202509 0.1912290 -0.6477660 5 0.1912290 0.3622960 -0.7596676 -0.3117275 -0.3973716 occupations 0.345 -0.015 -0.015 0.000 -0.030 -0.015 0.426 0.002 -0.026 -0.002 -0.015 0.002 0.426 0.026 -0.002 0.000 -0.026 0.026 0.345 0.000 -0.030 -0.002 -0.002 0.000 0.426 atom 4 Tr[ns(na)]= 6.9389553 atom 4 spin 1 eigenvalues: 0.3300313 0.3300313 0.4304584 0.4390928 0.4390928 eigenvectors 1 0.9075044 0.2029843 0.0881745 0.2066033 0.2911588 2 0.2066033 -0.2190082 0.2852936 -0.9075044 0.0662855 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 0.3229471 -0.6443763 -0.0266800 0.1716274 -0.6710563 5 0.1716274 0.4028383 -0.7594654 -0.3229471 -0.3566271 occupations 0.345 -0.015 -0.015 0.000 -0.030 -0.015 0.426 0.002 -0.026 -0.002 -0.015 0.002 0.426 0.026 -0.002 0.000 -0.026 0.026 0.345 0.000 -0.030 -0.002 -0.002 0.000 0.426 atom 4 spin 2 eigenvalues: 0.9856386 0.9856386 0.9995005 0.9995005 0.9999704 eigenvectors 1 0.9470929 -0.0849674 -0.0263988 0.2875695 -0.1113662 2 -0.2875695 -0.0795387 0.1133533 0.9470929 0.0338146 3 -0.0945987 0.2553819 -0.7917133 0.1066296 -0.5363314 4 0.1066296 0.7667469 -0.1622062 0.0945987 0.6045407 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.986 0.001 0.001 0.000 0.002 0.001 0.999 0.000 0.001 0.000 0.001 0.000 0.999 -0.001 0.000 0.000 0.001 -0.001 0.986 0.000 0.002 0.000 0.000 0.000 0.999 nsum = 13.8779343 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.9531 -7.7466 2.7539 5.1279 5.1279 7.5763 7.5999 7.5999 7.7781 7.7781 8.0650 8.9386 8.9386 11.0567 11.0567 11.2577 11.5025 12.8933 12.8933 15.3690 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.7707 -7.7513 3.6509 3.9130 4.7745 5.3282 5.3837 6.0705 7.7222 8.2473 8.6477 9.6396 9.8408 10.4291 11.7001 11.8246 12.6014 12.6283 17.2954 17.6038 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.7619 -7.7503 2.7897 4.0522 5.1682 5.1907 6.4321 6.4448 7.1583 8.2356 8.5574 9.3831 9.6067 10.7263 11.7103 11.8183 13.0243 13.0945 15.3293 16.7013 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.4145 -8.3805 4.4377 4.8298 5.5355 5.5355 6.5044 6.5044 7.8486 7.8486 8.2986 9.9326 9.9326 10.9601 10.9723 10.9723 12.4960 12.4960 13.9941 14.2632 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.9531 -7.7466 2.7539 5.1279 5.1279 7.5763 7.5999 7.5999 7.7781 7.7781 8.0650 8.9386 8.9386 11.0567 11.0567 11.2577 11.5025 12.8933 12.8933 15.3690 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.7707 -7.7513 3.6509 3.9130 4.7745 5.3282 5.3837 6.0705 7.7223 8.2473 8.6477 9.6396 9.8408 10.4291 11.7001 11.8246 12.6014 12.6283 17.2954 17.6038 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.7619 -7.7503 2.7897 4.0522 5.1682 5.1907 6.4321 6.4448 7.1583 8.2356 8.5574 9.3831 9.6067 10.7263 11.7103 11.8183 13.0243 13.0945 15.3293 16.7013 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.4145 -8.3805 4.4377 4.8298 5.5355 5.5355 6.5044 6.5044 7.8486 7.8486 8.2987 9.9326 9.9326 10.9601 10.9723 10.9723 12.4959 12.4959 13.9941 14.2632 the Fermi energy is 10.9768 ev ! total energy = -174.82465792 Ry Harris-Foulkes estimate = -174.82465763 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 0.56215155 Ry hartree contribution = 27.86074716 Ry xc contribution = -65.73507747 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.00000000 Ry smearing contrib. (-TS) = -0.00318382 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000174 -0.00000174 -0.00000174 atom 2 type 1 force = 0.00000174 0.00000174 0.00000174 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 atom 4 type 3 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000004 Total SCF correction = 0.000034 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -236.31 -0.00160642 0.00014872 0.00014872 -236.31 21.88 21.88 0.00014872 -0.00160642 0.00014872 21.88 -236.31 21.88 0.00014872 0.00014872 -0.00160642 21.88 21.88 -236.31 Writing output data file feo_af.save PWSCF : 23.26s CPU time, 24.50s wall time init_run : 2.63s CPU electrons : 16.65s CPU forces : 0.70s CPU stress : 3.11s CPU Called by init_run: wfcinit : 0.39s CPU potinit : 0.12s CPU Called by electrons: c_bands : 8.97s CPU ( 9 calls, 0.997 s avg) sum_band : 4.95s CPU ( 9 calls, 0.550 s avg) v_of_rho : 0.48s CPU ( 10 calls, 0.048 s avg) newd : 1.78s CPU ( 10 calls, 0.178 s avg) mix_rho : 0.25s CPU ( 9 calls, 0.028 s avg) Called by c_bands: init_us_2 : 0.24s CPU ( 256 calls, 0.001 s avg) cegterg : 8.68s CPU ( 72 calls, 0.121 s avg) Called by *egterg: h_psi : 7.86s CPU ( 276 calls, 0.028 s avg) s_psi : 0.31s CPU ( 364 calls, 0.001 s avg) g_psi : 0.06s CPU ( 196 calls, 0.000 s avg) cdiaghg : 0.30s CPU ( 268 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.21s CPU ( 276 calls, 0.001 s avg) General routines calbec : 0.39s CPU ( 452 calls, 0.001 s avg) cft3 : 0.89s CPU ( 152 calls, 0.006 s avg) cft3s : 7.92s CPU ( 8670 calls, 0.001 s avg) interpolate : 0.36s CPU ( 38 calls, 0.009 s avg) davcio : 0.00s CPU ( 720 calls, 0.000 s avg) espresso-5.1/PP/examples/run_all_examples0000755000175000017500000000062712341372775016737 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname echo echo "run_all_examples: starting" # run all examples for dir in example* CLS_FS_example CLS_IS_example dipole_example WorkFct_example WannierHam_example WAN90_example ; do if test -f $dir/run_example then sh $dir/run_example fi done echo echo "run_all_examples: done" espresso-5.1/PP/examples/WAN90_example/0000755000175000017500000000000012341373041015746 5ustar mbambaespresso-5.1/PP/examples/WAN90_example/README0000644000175000017500000001014712341372775016646 0ustar mbamba This example shows how to use pw2wannier90.x in conjunction with Wannier90 (http://www.wannier.org) to obtain maximally-localised Wannier functions (MLWFs) for the valence bands of diamond. Wannier90 may be run in two modes, 'library' and 'standalone', and both of these are demonstrated. The Wannier90 code and library (available for download from http://www.wannier.org under the GNU General Public License) are required. For operation in library mode, the pw2wannier90 post-processing code must be linked at compile time to the Wannier90 library. Instructions for compilation of Wannier90 can be found in the documentation that comes with the distribution. The calculation proceeds as follows (for the meaning of the cited input variables see the bottom of this file) 1) make a self-consistent calculation for diamond (input=diamond.scf.in, output=diamond.scf.out). The number of computed bands is internally computed as half the number of electrons in the unit cell (4 in this case). 2) make a non-self-consistent calculation for diamond (input=diamond.nscf.in, output=diamond.nscf.out). The variable nbnd is explicitly set to 4 so that just the 4 valence bands are calculated. The list of k-points given in input is the list of points where the bands are computed. The k-points must form a uniform Monkhorst-Pack mesh. 3) STAND-ALONE MODE (3a) run Wannier90 (input=wannier.sa.win, output=wannier.sa.wout) to generate a list of the required overlap elements between states at different k-points. This information is written to a file called diamond.sa.nnkp (3b) run pw2wannier90 (input=diamond.pw2wan.sa.in, output=diamond.pw2wan.sa.out) to compute the overlap between Bloch states, the projections for the starting guess and the eigenvalue of each Bloch eigenstate (written to the diamond.sa.mmn, diamond.sa.amn and diamond.sa.eig files, respectively). (3c) run Wannier90 (input=wannier.sa.win, output=wannier.sa.wout) to obtain the MLWF centres and spreads. 4) LIBRARY MODE !! pw2wannier90.x has to be compiled with the -D__WANLIB and !! libwannier.a has to be linked (4a) run pw2wannier90 in library mode to obtain the MLWF centres and spreads (input=diamond.lib.win, diamond.pw2wan.lib.in, output=diamond.lib.wout, diamond.pw2wan.lib.out). N.B. (i) The WAN_DIR variable in the run_example script must be set to the directory of the wannier90 executable. (ii) Multiple CPUs: distribution of k-points (the -npool command line option) is not yet supported, only G-vectors. (iii) To run in library mode, pw2wannier90 must be linked to the wannier library. To do so, compile the Wannier90 library, libwannier.a, following the instructions in the Wannier90 documentation (for the impatient, type 'make lib' in the Wannier90 root directory). Then make the following changes to the espresso make.sys file, and recompile pw2wannier90: + Add -D__WANLIB to the DFLAGS variable DFLAGS = -D__WANLIB ... + Add a new variable WANLIB to specify location of Wannier library WANLIB = -L/path/of/wannier/library -lwannier + Add $(WANLIB) to the LIBS variable LIBS = $(WANLIB) $(LAPACK_LIBS) $(BLAS_LIBS) ... Input variables for pw2wannier90: outdir : location of temporary output files prefix : pwscf filename prefix seedname : wannier90 input/output filename prefix wan_mode : 'standalone' or 'library' [1] write_mmn : (logical) compute M_mn matrix [1] write_amn : (logical) compute A_mn matrix [1] write_unk : (logical) write wavefunctions to file [1] wvfn_formatted : (logical) formatted or unformatted output for wavefunctions reduce_unk : (logical) output wavefunctions on a coarse grid to save memory spin_component : 'none', 'up' or 'down' Please report problems and suggestions to Stefano de Gironcoli (degironc@sissa.it), Arash Mostofi (mostofi@mit.edu) and Jonathan Yates (jry20@cam.ac.uk). [1] For more details see Wannier90 documentation at http://www.wannier.org espresso-5.1/PP/examples/WAN90_example/run_example0000755000175000017500000002355312341372775020240 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # Path for Wannier90 WAN_DIR=../../../wannier90-1.2 # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw2wannier90.x in conjunction with" $ECHO "Wannier90 (http://www.wannier.org) to obtain maximally-localised" $ECHO "Wannier functions (MLWFs) for the valence bands of diamond." $ECHO "Wannier90 may be run in two modes, 'library' and 'standalone'," $ECHO "and both of these are demonstrated." $ECHO "for library mode pw2wannier90 has to be compile with -D__WANLIB flag," $ECHO "libwannier.a has to be linked. Uncomment related lines below." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x pw2wannier90.x" PSEUDO_LIST="C.pz-vbc.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for wannier90 executable if test ! -x "$BIN_DIR/wannier90.x" ; then $ECHO $ECHO "ERROR: '$BIN_DIR/wannier90.x' not existent or not executable" $ECHO "Aborting" exit 1 fi # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" WAN_COMMAND="$BIN_DIR/wannier90.x" PW2WAN_COMMAND="$PARA_PREFIX $BIN_DIR/pw2wannier90.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as : $PW_COMMAND" $ECHO " running wannier90.x as : $WAN_COMMAND" $ECHO " running pw2wannier90.x as: $PW2WAN_COMMAND" $ECHO # self-consistent calculation for diamond cat > diamond.scf.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='di', pseudo_dir='$PSEUDO_DIR', outdir='$TMP_DIR' / &system ibrav= 2, celldm(1) =6.1, nat= 2, ntyp= 1, ecutwfc =40.0, / &electrons diagonalization='david' mixing_mode = 'plain' mixing_beta = 0.7 conv_thr = 1.0d-13 / ATOMIC_SPECIES C 12.0 C.pz-vbc.UPF ATOMIC_POSITIONS {crystal} C -0.25 -0.25 -0.25 C 0.0 0.0 0.0 K_POINTS {automatic} 12 12 12 0 0 0 EOF $ECHO " running the scf calculation for diamond...\c" $PW_COMMAND < diamond.scf.in > diamond.scf.out $ECHO " done" # non-self-consistent calculation for diamond cat > diamond.nscf.in << EOF &control calculation='nscf' pseudo_dir='$PSEUDO_DIR', outdir='$TMP_DIR', prefix='di' / &system ibrav= 2, celldm(1) =6.1, nat= 2, ntyp= 1, ecutwfc =40.0, nbnd = 4, / &electrons conv_thr = 1.0d-11 / ATOMIC_SPECIES C 12.0 C.pz-vbc.UPF ATOMIC_POSITIONS {crystal} C -0.25 -0.25 -0.25 C 0.0 0.0 0.0 K_POINTS {crystal} 64 0.0000 0.0000 0.0000 0.0156250 0.0000 0.2500 0.0000 0.0156250 0.0000 0.5000 0.0000 0.0156250 0.0000 0.7500 0.0000 0.0156250 0.2500 0.0000 0.0000 0.0156250 0.2500 0.2500 0.0000 0.0156250 0.2500 0.5000 0.0000 0.0156250 0.2500 0.7500 0.0000 0.0156250 0.5000 0.0000 0.0000 0.0156250 0.5000 0.2500 0.0000 0.0156250 0.5000 0.5000 0.0000 0.0156250 0.5000 0.7500 0.0000 0.0156250 0.7500 0.0000 0.0000 0.0156250 0.7500 0.2500 0.0000 0.0156250 0.7500 0.5000 0.0000 0.0156250 0.7500 0.7500 0.0000 0.0156250 0.0000 0.0000 0.2500 0.0156250 0.0000 0.2500 0.2500 0.0156250 0.0000 0.5000 0.2500 0.0156250 0.0000 0.7500 0.2500 0.0156250 0.2500 0.0000 0.2500 0.0156250 0.2500 0.2500 0.2500 0.0156250 0.2500 0.5000 0.2500 0.0156250 0.2500 0.7500 0.2500 0.0156250 0.5000 0.0000 0.2500 0.0156250 0.5000 0.2500 0.2500 0.0156250 0.5000 0.5000 0.2500 0.0156250 0.5000 0.7500 0.2500 0.0156250 0.7500 0.0000 0.2500 0.0156250 0.7500 0.2500 0.2500 0.0156250 0.7500 0.5000 0.2500 0.0156250 0.7500 0.7500 0.2500 0.0156250 0.0000 0.0000 0.5000 0.0156250 0.0000 0.2500 0.5000 0.0156250 0.0000 0.5000 0.5000 0.0156250 0.0000 0.7500 0.5000 0.0156250 0.2500 0.0000 0.5000 0.0156250 0.2500 0.2500 0.5000 0.0156250 0.2500 0.5000 0.5000 0.0156250 0.2500 0.7500 0.5000 0.0156250 0.5000 0.0000 0.5000 0.0156250 0.5000 0.2500 0.5000 0.0156250 0.5000 0.5000 0.5000 0.0156250 0.5000 0.7500 0.5000 0.0156250 0.7500 0.0000 0.5000 0.0156250 0.7500 0.2500 0.5000 0.0156250 0.7500 0.5000 0.5000 0.0156250 0.7500 0.7500 0.5000 0.0156250 0.0000 0.0000 0.7500 0.0156250 0.0000 0.2500 0.7500 0.0156250 0.0000 0.5000 0.7500 0.0156250 0.0000 0.7500 0.7500 0.0156250 0.2500 0.0000 0.7500 0.0156250 0.2500 0.2500 0.7500 0.0156250 0.2500 0.5000 0.7500 0.0156250 0.2500 0.7500 0.7500 0.0156250 0.5000 0.0000 0.7500 0.0156250 0.5000 0.2500 0.7500 0.0156250 0.5000 0.5000 0.7500 0.0156250 0.5000 0.7500 0.7500 0.0156250 0.7500 0.0000 0.7500 0.0156250 0.7500 0.2500 0.7500 0.0156250 0.7500 0.5000 0.7500 0.0156250 0.7500 0.7500 0.7500 0.0156250 EOF $ECHO " running the nscf calculation for diamond...\c" $PW_COMMAND < diamond.nscf.in > diamond.nscf.out $ECHO " done" # Wannier90 to get nnkp cat > diamond.win << EOF num_wann = 4 num_iter = 20 begin atoms_frac C -0.2500 -0.250 -0.25000 C 0.00000 0.0000 0.000000 end atoms_frac begin projections f=0.0,0.0,0.0:s f=0.0,0.0,0.5:s f=0.0,0.5,0.0:s f=0.5,0.0,0.0:s end projections #begin unit_cell_cart #-1.613990 0.000000 1.613990 # 0.000000 1.613990 1.613990 #-1.613990 1.613990 0.000000 #end unit_cell_cart begin unit_cell_cart bohr -3.050 0.000 3.050 0.000 3.050 3.050 -3.050 3.050 0.000 end_unit_cell_cart mp_grid : 4 4 4 begin kpoints 0.0000 0.0000 0.0000 0.0000 0.2500 0.0000 0.0000 0.5000 0.0000 0.0000 0.7500 0.0000 0.2500 0.0000 0.0000 0.2500 0.2500 0.0000 0.2500 0.5000 0.0000 0.2500 0.7500 0.0000 0.5000 0.0000 0.0000 0.5000 0.2500 0.0000 0.5000 0.5000 0.0000 0.5000 0.7500 0.0000 0.7500 0.0000 0.0000 0.7500 0.2500 0.0000 0.7500 0.5000 0.0000 0.7500 0.7500 0.0000 0.0000 0.0000 0.2500 0.0000 0.2500 0.2500 0.0000 0.5000 0.2500 0.0000 0.7500 0.2500 0.2500 0.0000 0.2500 0.2500 0.2500 0.2500 0.2500 0.5000 0.2500 0.2500 0.7500 0.2500 0.5000 0.0000 0.2500 0.5000 0.2500 0.2500 0.5000 0.5000 0.2500 0.5000 0.7500 0.2500 0.7500 0.0000 0.2500 0.7500 0.2500 0.2500 0.7500 0.5000 0.2500 0.7500 0.7500 0.2500 0.0000 0.0000 0.5000 0.0000 0.2500 0.5000 0.0000 0.5000 0.5000 0.0000 0.7500 0.5000 0.2500 0.0000 0.5000 0.2500 0.2500 0.5000 0.2500 0.5000 0.5000 0.2500 0.7500 0.5000 0.5000 0.0000 0.5000 0.5000 0.2500 0.5000 0.5000 0.5000 0.5000 0.5000 0.7500 0.5000 0.7500 0.0000 0.5000 0.7500 0.2500 0.5000 0.7500 0.5000 0.5000 0.7500 0.7500 0.5000 0.0000 0.0000 0.7500 0.0000 0.2500 0.7500 0.0000 0.5000 0.7500 0.0000 0.7500 0.7500 0.2500 0.0000 0.7500 0.2500 0.2500 0.7500 0.2500 0.5000 0.7500 0.2500 0.7500 0.7500 0.5000 0.0000 0.7500 0.5000 0.2500 0.7500 0.5000 0.5000 0.7500 0.5000 0.7500 0.7500 0.7500 0.0000 0.7500 0.7500 0.2500 0.7500 0.7500 0.5000 0.7500 0.7500 0.7500 0.7500 end kpoints EOF # STANDALONE MODE $ECHO $ECHO " <== Stand-alone Mode ==>\c" $ECHO mv diamond.win diamond.sa.win # run wannier90 to get nnkp file $ECHO " running wannier90 -pp for diamond...\c" $WAN_COMMAND -pp diamond.sa $ECHO " done" # run pw2wannier90 to get overlap matrices cat > diamond.pw2wan.sa.in << EOF &inputpp outdir = '$TMP_DIR/' prefix = 'di' seedname = 'diamond.sa' spin_component = 'none' write_mmn = .true. write_amn = .true. write_unk = .false. wan_mode = 'standalone' / EOF $ECHO " running pw2wannier90 in stand-alone mode for diamond...\c" $PW2WAN_COMMAND < diamond.pw2wan.sa.in > diamond.pw2wan.sa.out $ECHO " done" # clean TMP_DIR #$ECHO " cleaning $TMP_DIR...\c" #rm -rf $TMP_DIR/pwscf* #$ECHO " done" # run Wannier90 to obtain MLWFs $ECHO " running wannier90 for diamond...\c" $WAN_COMMAND diamond.sa $ECHO " done" ######################################################### # LIBRARY MODE ######################################################## #$ECHO #$ECHO " <== Library Mode ==> \c" #$ECHO cp diamond.sa.win diamond.lib.win # run pw2wannier90 to get overlap matrices cat > diamond.pw2wan.lib.in << EOF &inputpp outdir = '$TMP_DIR/' prefix = 'di' seedname = 'diamond.lib' spin_component = 'none' write_mmn = .true. write_amn = .true. write_unk = .false. wan_mode = 'library' / EOF #$ECHO " running pw2wannier90 in library mode for diamond...\c" #$PW2WAN_COMMAND < diamond.pw2wan.lib.in > diamond.pw2wan.lib.out #$ECHO " done" ############################################################ #clean TMP_DIR $ECHO $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/di.* $ECHO $ECHO "$EXAMPLE_DIR : done" $ECHO espresso-5.1/PP/examples/WAN90_example/reference/0000755000175000017500000000000012341373041017704 5ustar mbambaespresso-5.1/PP/examples/WAN90_example/reference/diamond.sa.win0000644000175000017500000000404312341372775022456 0ustar mbambanum_wann = 4 num_iter = 20 begin atoms_frac C -0.12500 -0.1250 -0.125000 C 0.12500 0.1250 0.125000 end atoms_frac begin projections f=0.0,0.0,0.0:s f=0.0,0.0,0.5:s f=0.0,0.5,0.0:s f=0.5,0.0,0.0:s end projections #begin unit_cell_cart #-1.613990 0.000000 1.613990 # 0.000000 1.613990 1.613990 #-1.613990 1.613990 0.000000 #end unit_cell_cart begin unit_cell_cart bohr -3.050 0.000 3.050 0.000 3.050 3.050 -3.050 3.050 0.000 end_unit_cell_cart mp_grid : 4 4 4 begin kpoints 0.0000 0.0000 0.0000 0.0000 0.2500 0.0000 0.0000 0.5000 0.0000 0.0000 0.7500 0.0000 0.2500 0.0000 0.0000 0.2500 0.2500 0.0000 0.2500 0.5000 0.0000 0.2500 0.7500 0.0000 0.5000 0.0000 0.0000 0.5000 0.2500 0.0000 0.5000 0.5000 0.0000 0.5000 0.7500 0.0000 0.7500 0.0000 0.0000 0.7500 0.2500 0.0000 0.7500 0.5000 0.0000 0.7500 0.7500 0.0000 0.0000 0.0000 0.2500 0.0000 0.2500 0.2500 0.0000 0.5000 0.2500 0.0000 0.7500 0.2500 0.2500 0.0000 0.2500 0.2500 0.2500 0.2500 0.2500 0.5000 0.2500 0.2500 0.7500 0.2500 0.5000 0.0000 0.2500 0.5000 0.2500 0.2500 0.5000 0.5000 0.2500 0.5000 0.7500 0.2500 0.7500 0.0000 0.2500 0.7500 0.2500 0.2500 0.7500 0.5000 0.2500 0.7500 0.7500 0.2500 0.0000 0.0000 0.5000 0.0000 0.2500 0.5000 0.0000 0.5000 0.5000 0.0000 0.7500 0.5000 0.2500 0.0000 0.5000 0.2500 0.2500 0.5000 0.2500 0.5000 0.5000 0.2500 0.7500 0.5000 0.5000 0.0000 0.5000 0.5000 0.2500 0.5000 0.5000 0.5000 0.5000 0.5000 0.7500 0.5000 0.7500 0.0000 0.5000 0.7500 0.2500 0.5000 0.7500 0.5000 0.5000 0.7500 0.7500 0.5000 0.0000 0.0000 0.7500 0.0000 0.2500 0.7500 0.0000 0.5000 0.7500 0.0000 0.7500 0.7500 0.2500 0.0000 0.7500 0.2500 0.2500 0.7500 0.2500 0.5000 0.7500 0.2500 0.7500 0.7500 0.5000 0.0000 0.7500 0.5000 0.2500 0.7500 0.5000 0.5000 0.7500 0.5000 0.7500 0.7500 0.7500 0.0000 0.7500 0.7500 0.2500 0.7500 0.7500 0.5000 0.7500 0.7500 0.7500 0.7500 end kpoints espresso-5.1/PP/examples/WAN90_example/reference/diamond.nscf.out0000644000175000017500000003750412341372775023026 0ustar mbamba Program PWSCF v.3.1.1 starts ... Today is 9Oct2006 at 15:37: 6 Parallel version (MPI) Number of processors in use: 2 R & G space division: proc/pool = 2 Ultrasoft (Vanderbilt) Pseudopotentials Current dimensions of program pwscf are: ntypx = 10 npk = 40000 lmax = 3 nchix = 6 ndmx = 2000 nbrx = 14 nqfx = 8 looking for the optimal diagonalization algorithm ... a serial algorithm will be used Planes per process (thick) : nr3 = 18 npp = 9 ncplane = 324 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 9 99 957 9 99 957 42 230 2 9 100 960 9 100 960 43 229 0 18 199 1917 18 199 1917 85 459 bravais-lattice index = 2 lattice parameter (a_0) = 6.1000 a.u. unit-cell volume = 56.7452 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 kinetic-energy cutoff = 40.0000 Ry charge density cutoff = 160.0000 Ry convergence threshold = 1.0E-11 beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.100000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PSEUDO 1 is C zval = 4.0 lmax= 0 lloc= 0 (in numerical form: 269 grid points, xmin = 0.00, dx = 0.0000) atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.1250000 -0.1250000 -0.1250000 ) 2 C tau( 2) = ( -0.1250000 0.1250000 0.1250000 ) number of k points= 64 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( 0.2500000 0.2500000 0.2500000), wk = 0.0312500 k( 3) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0312500 k( 4) = ( 0.7500000 0.7500000 0.7500000), wk = 0.0312500 k( 5) = ( -0.2500000 -0.2500000 0.2500000), wk = 0.0312500 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0312500 k( 7) = ( 0.2500000 0.2500000 0.7500000), wk = 0.0312500 k( 8) = ( 0.5000000 0.5000000 1.0000000), wk = 0.0312500 k( 9) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.0312500 k( 10) = ( -0.2500000 -0.2500000 0.7500000), wk = 0.0312500 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0312500 k( 12) = ( 0.2500000 0.2500000 1.2500000), wk = 0.0312500 k( 13) = ( -0.7500000 -0.7500000 0.7500000), wk = 0.0312500 k( 14) = ( -0.5000000 -0.5000000 1.0000000), wk = 0.0312500 k( 15) = ( -0.2500000 -0.2500000 1.2500000), wk = 0.0312500 k( 16) = ( 0.0000000 0.0000000 1.5000000), wk = 0.0312500 k( 17) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 18) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0312500 k( 19) = ( 0.2500000 0.7500000 0.2500000), wk = 0.0312500 k( 20) = ( 0.5000000 1.0000000 0.5000000), wk = 0.0312500 k( 21) = ( -0.5000000 0.0000000 0.0000000), wk = 0.0312500 k( 22) = ( -0.2500000 0.2500000 0.2500000), wk = 0.0312500 k( 23) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0312500 k( 24) = ( 0.2500000 0.7500000 0.7500000), wk = 0.0312500 k( 25) = ( -0.7500000 -0.2500000 0.2500000), wk = 0.0312500 k( 26) = ( -0.5000000 0.0000000 0.5000000), wk = 0.0312500 k( 27) = ( -0.2500000 0.2500000 0.7500000), wk = 0.0312500 k( 28) = ( 0.0000000 0.5000000 1.0000000), wk = 0.0312500 k( 29) = ( -1.0000000 -0.5000000 0.5000000), wk = 0.0312500 k( 30) = ( -0.7500000 -0.2500000 0.7500000), wk = 0.0312500 k( 31) = ( -0.5000000 0.0000000 1.0000000), wk = 0.0312500 k( 32) = ( -0.2500000 0.2500000 1.2500000), wk = 0.0312500 k( 33) = ( -0.5000000 0.5000000 -0.5000000), wk = 0.0312500 k( 34) = ( -0.2500000 0.7500000 -0.2500000), wk = 0.0312500 k( 35) = ( 0.0000000 1.0000000 0.0000000), wk = 0.0312500 k( 36) = ( 0.2500000 1.2500000 0.2500000), wk = 0.0312500 k( 37) = ( -0.7500000 0.2500000 -0.2500000), wk = 0.0312500 k( 38) = ( -0.5000000 0.5000000 0.0000000), wk = 0.0312500 k( 39) = ( -0.2500000 0.7500000 0.2500000), wk = 0.0312500 k( 40) = ( 0.0000000 1.0000000 0.5000000), wk = 0.0312500 k( 41) = ( -1.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 42) = ( -0.7500000 0.2500000 0.2500000), wk = 0.0312500 k( 43) = ( -0.5000000 0.5000000 0.5000000), wk = 0.0312500 k( 44) = ( -0.2500000 0.7500000 0.7500000), wk = 0.0312500 k( 45) = ( -1.2500000 -0.2500000 0.2500000), wk = 0.0312500 k( 46) = ( -1.0000000 0.0000000 0.5000000), wk = 0.0312500 k( 47) = ( -0.7500000 0.2500000 0.7500000), wk = 0.0312500 k( 48) = ( -0.5000000 0.5000000 1.0000000), wk = 0.0312500 k( 49) = ( -0.7500000 0.7500000 -0.7500000), wk = 0.0312500 k( 50) = ( -0.5000000 1.0000000 -0.5000000), wk = 0.0312500 k( 51) = ( -0.2500000 1.2500000 -0.2500000), wk = 0.0312500 k( 52) = ( 0.0000000 1.5000000 0.0000000), wk = 0.0312500 k( 53) = ( -1.0000000 0.5000000 -0.5000000), wk = 0.0312500 k( 54) = ( -0.7500000 0.7500000 -0.2500000), wk = 0.0312500 k( 55) = ( -0.5000000 1.0000000 0.0000000), wk = 0.0312500 k( 56) = ( -0.2500000 1.2500000 0.2500000), wk = 0.0312500 k( 57) = ( -1.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 58) = ( -1.0000000 0.5000000 0.0000000), wk = 0.0312500 k( 59) = ( -0.7500000 0.7500000 0.2500000), wk = 0.0312500 k( 60) = ( -0.5000000 1.0000000 0.5000000), wk = 0.0312500 k( 61) = ( -1.5000000 0.0000000 0.0000000), wk = 0.0312500 k( 62) = ( -1.2500000 0.2500000 0.2500000), wk = 0.0312500 k( 63) = ( -1.0000000 0.5000000 0.5000000), wk = 0.0312500 k( 64) = ( -0.7500000 0.7500000 0.7500000), wk = 0.0312500 G cutoff = 150.8064 ( 1917 G-vectors) FFT grid: ( 18, 18, 18) nbndx = 16 nbnd = 4 natomwfc = 8 npwx = 133 nelec = 8.00 nkb = 2 ngl = 52 The potential is recalculated from file : di.save/charge-density.xml Starting wfc are atomic total cpu time spent up to now is 0.25 secs Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-13, avg # of iterations = 11.2 total cpu time spent up to now is 1.78 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -6.4387 19.3980 19.3980 19.3980 k = 0.2500 0.2500 0.2500 band energies (ev): -4.3800 11.1722 17.0933 17.0933 k = 0.5000 0.5000 0.5000 band energies (ev): 1.3328 2.0781 15.8056 15.8056 k = 0.7500 0.7500 0.7500 band energies (ev): -4.3800 11.1722 17.0933 17.0933 k =-0.2500-0.2500 0.2500 band energies (ev): -4.3800 11.1722 17.0933 17.0933 k = 0.0000 0.0000 0.5000 band energies (ev): -3.6839 13.8639 13.8639 14.5739 k = 0.2500 0.2500 0.7500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k = 0.5000 0.5000 1.0000 band energies (ev): -1.0019 8.9712 9.4601 15.4030 k =-0.5000-0.5000 0.5000 band energies (ev): 1.3328 2.0781 15.8056 15.8056 k =-0.2500-0.2500 0.7500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k = 0.0000 0.0000 1.0000 band energies (ev): 4.2492 4.2492 11.0421 11.0421 k = 0.2500 0.2500 1.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-0.7500-0.7500 0.7500 band energies (ev): -4.3800 11.1722 17.0933 17.0933 k =-0.5000-0.5000 1.0000 band energies (ev): -1.0019 8.9712 9.4601 15.4030 k =-0.2500-0.2500 1.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k = 0.0000 0.0000 1.5000 band energies (ev): -3.6839 13.8639 13.8639 14.5739 k =-0.2500 0.2500-0.2500 band energies (ev): -4.3800 11.1722 17.0933 17.0933 k = 0.0000 0.5000 0.0000 band energies (ev): -3.6839 13.8639 13.8639 14.5739 k = 0.2500 0.7500 0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k = 0.5000 1.0000 0.5000 band energies (ev): -1.0019 8.9712 9.4601 15.4030 k =-0.5000 0.0000 0.0000 band energies (ev): -3.6839 13.8639 13.8639 14.5739 k =-0.2500 0.2500 0.2500 band energies (ev): -4.3800 11.1722 17.0933 17.0933 k = 0.0000 0.5000 0.5000 band energies (ev): -1.0019 8.9712 9.4601 15.4030 k = 0.2500 0.7500 0.7500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-0.7500-0.2500 0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-0.5000 0.0000 0.5000 band energies (ev): -1.0019 8.9712 9.4601 15.4030 k =-0.2500 0.2500 0.7500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k = 0.0000 0.5000 1.0000 band energies (ev): 5.7054 5.7054 7.9453 7.9453 k =-1.0000-0.5000 0.5000 band energies (ev): -1.0019 8.9712 9.4601 15.4030 k =-0.7500-0.2500 0.7500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-0.5000 0.0000 1.0000 band energies (ev): 5.7054 5.7054 7.9453 7.9453 k =-0.2500 0.2500 1.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-0.5000 0.5000-0.5000 band energies (ev): 1.3328 2.0781 15.8056 15.8056 k =-0.2500 0.7500-0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k = 0.0000 1.0000 0.0000 band energies (ev): 4.2492 4.2492 11.0421 11.0421 k = 0.2500 1.2500 0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-0.7500 0.2500-0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-0.5000 0.5000 0.0000 band energies (ev): -1.0019 8.9712 9.4601 15.4030 k =-0.2500 0.7500 0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k = 0.0000 1.0000 0.5000 band energies (ev): 5.7054 5.7054 7.9453 7.9453 k =-1.0000 0.0000 0.0000 band energies (ev): 4.2492 4.2492 11.0421 11.0421 k =-0.7500 0.2500 0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-0.5000 0.5000 0.5000 band energies (ev): 1.3328 2.0781 15.8056 15.8056 k =-0.2500 0.7500 0.7500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-1.2500-0.2500 0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-1.0000 0.0000 0.5000 band energies (ev): 5.7054 5.7054 7.9453 7.9453 k =-0.7500 0.2500 0.7500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-0.5000 0.5000 1.0000 band energies (ev): -1.0019 8.9712 9.4601 15.4030 k =-0.7500 0.7500-0.7500 band energies (ev): -4.3800 11.1722 17.0933 17.0933 k =-0.5000 1.0000-0.5000 band energies (ev): -1.0019 8.9712 9.4601 15.4030 k =-0.2500 1.2500-0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k = 0.0000 1.5000 0.0000 band energies (ev): -3.6839 13.8639 13.8639 14.5739 k =-1.0000 0.5000-0.5000 band energies (ev): -1.0019 8.9712 9.4601 15.4030 k =-0.7500 0.7500-0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-0.5000 1.0000 0.0000 band energies (ev): 5.7054 5.7054 7.9453 7.9453 k =-0.2500 1.2500 0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-1.2500 0.2500-0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-1.0000 0.5000 0.0000 band energies (ev): 5.7054 5.7054 7.9453 7.9453 k =-0.7500 0.7500 0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-0.5000 1.0000 0.5000 band energies (ev): -1.0019 8.9712 9.4601 15.4030 k =-1.5000 0.0000 0.0000 band energies (ev): -3.6839 13.8639 13.8639 14.5739 k =-1.2500 0.2500 0.2500 band energies (ev): 0.9925 6.0964 10.9236 12.9161 k =-1.0000 0.5000 0.5000 band energies (ev): -1.0019 8.9712 9.4601 15.4030 k =-0.7500 0.7500 0.7500 band energies (ev): -4.3800 11.1722 17.0933 17.0933 Writing output data file di.save PWSCF : 1.92s CPU time init_run : 0.24s CPU electrons : 1.53s CPU electrons : 1.53s CPU c_bands : 1.53s CPU sum_band : 0.06s CPU v_of_rho : 0.00s CPU c_bands : 1.53s CPU init_us_2 : 0.01s CPU ( 192 calls, 0.000 s avg) cegterg : 1.53s CPU ( 64 calls, 0.024 s avg) sum_band : 0.06s CPU wfcrot : 0.22s CPU ( 64 calls, 0.003 s avg) cegterg : 1.53s CPU ( 64 calls, 0.024 s avg) h_psi : 1.33s CPU ( 846 calls, 0.002 s avg) g_psi : 0.03s CPU ( 718 calls, 0.000 s avg) cdiaghg : 0.14s CPU ( 782 calls, 0.000 s avg) update : 0.02s CPU ( 718 calls, 0.000 s avg) last : 0.01s CPU ( 256 calls, 0.000 s avg) h_psi : 1.33s CPU ( 846 calls, 0.002 s avg) init : 0.01s CPU ( 846 calls, 0.000 s avg) firstfft : 0.58s CPU ( 3547 calls, 0.000 s avg) secondfft : 0.62s CPU ( 3547 calls, 0.000 s avg) add_vuspsi : 0.00s CPU ( 846 calls, 0.000 s avg) General routines ccalbec : 0.06s CPU ( 846 calls, 0.000 s avg) cft3 : 0.01s CPU ( 3 calls, 0.003 s avg) cft3s : 1.21s CPU ( 7350 calls, 0.000 s avg) davcio : 0.01s CPU ( 256 calls, 0.000 s avg) Parallel routines reduce : 0.20s CPU ( 3266 calls, 0.000 s avg) fft_scatter : 0.40s CPU ( 7353 calls, 0.000 s avg) espresso-5.1/PP/examples/WAN90_example/reference/diamond.lib.win0000644000175000017500000000404312341372775022621 0ustar mbambanum_wann = 4 num_iter = 20 begin atoms_frac C -0.12500 -0.1250 -0.125000 C 0.12500 0.1250 0.125000 end atoms_frac begin projections f=0.0,0.0,0.0:s f=0.0,0.0,0.5:s f=0.0,0.5,0.0:s f=0.5,0.0,0.0:s end projections #begin unit_cell_cart #-1.613990 0.000000 1.613990 # 0.000000 1.613990 1.613990 #-1.613990 1.613990 0.000000 #end unit_cell_cart begin unit_cell_cart bohr -3.050 0.000 3.050 0.000 3.050 3.050 -3.050 3.050 0.000 end_unit_cell_cart mp_grid : 4 4 4 begin kpoints 0.0000 0.0000 0.0000 0.0000 0.2500 0.0000 0.0000 0.5000 0.0000 0.0000 0.7500 0.0000 0.2500 0.0000 0.0000 0.2500 0.2500 0.0000 0.2500 0.5000 0.0000 0.2500 0.7500 0.0000 0.5000 0.0000 0.0000 0.5000 0.2500 0.0000 0.5000 0.5000 0.0000 0.5000 0.7500 0.0000 0.7500 0.0000 0.0000 0.7500 0.2500 0.0000 0.7500 0.5000 0.0000 0.7500 0.7500 0.0000 0.0000 0.0000 0.2500 0.0000 0.2500 0.2500 0.0000 0.5000 0.2500 0.0000 0.7500 0.2500 0.2500 0.0000 0.2500 0.2500 0.2500 0.2500 0.2500 0.5000 0.2500 0.2500 0.7500 0.2500 0.5000 0.0000 0.2500 0.5000 0.2500 0.2500 0.5000 0.5000 0.2500 0.5000 0.7500 0.2500 0.7500 0.0000 0.2500 0.7500 0.2500 0.2500 0.7500 0.5000 0.2500 0.7500 0.7500 0.2500 0.0000 0.0000 0.5000 0.0000 0.2500 0.5000 0.0000 0.5000 0.5000 0.0000 0.7500 0.5000 0.2500 0.0000 0.5000 0.2500 0.2500 0.5000 0.2500 0.5000 0.5000 0.2500 0.7500 0.5000 0.5000 0.0000 0.5000 0.5000 0.2500 0.5000 0.5000 0.5000 0.5000 0.5000 0.7500 0.5000 0.7500 0.0000 0.5000 0.7500 0.2500 0.5000 0.7500 0.5000 0.5000 0.7500 0.7500 0.5000 0.0000 0.0000 0.7500 0.0000 0.2500 0.7500 0.0000 0.5000 0.7500 0.0000 0.7500 0.7500 0.2500 0.0000 0.7500 0.2500 0.2500 0.7500 0.2500 0.5000 0.7500 0.2500 0.7500 0.7500 0.5000 0.0000 0.7500 0.5000 0.2500 0.7500 0.5000 0.5000 0.7500 0.5000 0.7500 0.7500 0.7500 0.0000 0.7500 0.7500 0.2500 0.7500 0.7500 0.5000 0.7500 0.7500 0.7500 0.7500 end kpoints espresso-5.1/PP/examples/WAN90_example/reference/diamond.scf.in0000644000175000017500000000077312341372775022445 0ustar mbamba &control calculation = 'scf' restart_mode='from_scratch', prefix='di', pseudo_dir='/home/arash/PW-pseudo', outdir='/home/arash/tmp' / &system ibrav= 2, celldm(1) =6.1, nat= 2, ntyp= 1, ecutwfc =40.0, / &electrons diagonalization='david' mixing_mode = 'plain' mixing_beta = 0.7 conv_thr = 1.0d-13 / ATOMIC_SPECIES C 12.0 C.pz-vbc.UPF ATOMIC_POSITIONS {crystal} C -0.125 -0.125 -0.125 C 0.125 0.125 0.125 K_POINTS {automatic} 12 12 12 0 0 0 espresso-5.1/PP/examples/WAN90_example/reference/diamond.pw2wan.sa.in0000644000175000017500000000032012341372775023476 0ustar mbamba&inputpp outdir = '/home/arash/tmp/' prefix = 'di' seedname = 'diamond.sa' spin_component = 'none' write_mmn = .true. write_amn = .true. write_unk = .false. wan_mode = 'standalone' / espresso-5.1/PP/examples/WAN90_example/reference/diamond.sa.nnkp0000644000175000017500000004311212341372775022627 0ustar mbambaFile written on 9Oct2006 at 15:37:08 calc_only_A : F begin real_lattice -1.6139905 0.0000000 1.6139905 0.0000000 1.6139905 1.6139905 -1.6139905 1.6139905 0.0000000 end real_lattice begin recip_lattice -1.9464753 -1.9464753 1.9464753 1.9464753 1.9464753 1.9464753 -1.9464753 1.9464753 -1.9464753 end recip_lattice begin kpoints 64 0.00000000 0.00000000 0.00000000 0.00000000 0.25000000 0.00000000 0.00000000 0.50000000 0.00000000 0.00000000 0.75000000 0.00000000 0.25000000 0.00000000 0.00000000 0.25000000 0.25000000 0.00000000 0.25000000 0.50000000 0.00000000 0.25000000 0.75000000 0.00000000 0.50000000 0.00000000 0.00000000 0.50000000 0.25000000 0.00000000 0.50000000 0.50000000 0.00000000 0.50000000 0.75000000 0.00000000 0.75000000 0.00000000 0.00000000 0.75000000 0.25000000 0.00000000 0.75000000 0.50000000 0.00000000 0.75000000 0.75000000 0.00000000 0.00000000 0.00000000 0.25000000 0.00000000 0.25000000 0.25000000 0.00000000 0.50000000 0.25000000 0.00000000 0.75000000 0.25000000 0.25000000 0.00000000 0.25000000 0.25000000 0.25000000 0.25000000 0.25000000 0.50000000 0.25000000 0.25000000 0.75000000 0.25000000 0.50000000 0.00000000 0.25000000 0.50000000 0.25000000 0.25000000 0.50000000 0.50000000 0.25000000 0.50000000 0.75000000 0.25000000 0.75000000 0.00000000 0.25000000 0.75000000 0.25000000 0.25000000 0.75000000 0.50000000 0.25000000 0.75000000 0.75000000 0.25000000 0.00000000 0.00000000 0.50000000 0.00000000 0.25000000 0.50000000 0.00000000 0.50000000 0.50000000 0.00000000 0.75000000 0.50000000 0.25000000 0.00000000 0.50000000 0.25000000 0.25000000 0.50000000 0.25000000 0.50000000 0.50000000 0.25000000 0.75000000 0.50000000 0.50000000 0.00000000 0.50000000 0.50000000 0.25000000 0.50000000 0.50000000 0.50000000 0.50000000 0.50000000 0.75000000 0.50000000 0.75000000 0.00000000 0.50000000 0.75000000 0.25000000 0.50000000 0.75000000 0.50000000 0.50000000 0.75000000 0.75000000 0.50000000 0.00000000 0.00000000 0.75000000 0.00000000 0.25000000 0.75000000 0.00000000 0.50000000 0.75000000 0.00000000 0.75000000 0.75000000 0.25000000 0.00000000 0.75000000 0.25000000 0.25000000 0.75000000 0.25000000 0.50000000 0.75000000 0.25000000 0.75000000 0.75000000 0.50000000 0.00000000 0.75000000 0.50000000 0.25000000 0.75000000 0.50000000 0.50000000 0.75000000 0.50000000 0.75000000 0.75000000 0.75000000 0.00000000 0.75000000 0.75000000 0.25000000 0.75000000 0.75000000 0.50000000 0.75000000 0.75000000 0.75000000 0.75000000 end kpoints begin projections 4 0.00000 0.00000 0.00000 0 1 1 0.000 0.000 1.000 1.000 0.000 0.000 1.00 0.00000 0.00000 0.50000 0 1 1 0.000 0.000 1.000 1.000 0.000 0.000 1.00 0.00000 0.50000 0.00000 0 1 1 0.000 0.000 1.000 1.000 0.000 0.000 1.00 0.50000 0.00000 0.00000 0 1 1 0.000 0.000 1.000 1.000 0.000 0.000 1.00 end projections begin nnkpts 8 1 2 0 0 0 1 5 0 0 0 1 17 0 0 0 1 22 0 0 0 1 49 0 0 -1 1 4 0 -1 0 1 13 -1 0 0 1 64 -1 -1 -1 2 1 0 0 0 2 3 0 0 0 2 6 0 0 0 2 18 0 0 0 2 23 0 0 0 2 50 0 0 -1 2 14 -1 0 0 2 61 -1 0 -1 3 2 0 0 0 3 4 0 0 0 3 7 0 0 0 3 19 0 0 0 3 24 0 0 0 3 51 0 0 -1 3 15 -1 0 0 3 62 -1 0 -1 4 3 0 0 0 4 8 0 0 0 4 20 0 0 0 4 1 0 1 0 4 21 0 1 0 4 52 0 0 -1 4 16 -1 0 0 4 63 -1 0 -1 5 1 0 0 0 5 6 0 0 0 5 9 0 0 0 5 21 0 0 0 5 26 0 0 0 5 53 0 0 -1 5 8 0 -1 0 5 52 0 -1 -1 6 2 0 0 0 6 5 0 0 0 6 7 0 0 0 6 10 0 0 0 6 22 0 0 0 6 27 0 0 0 6 49 0 0 -1 6 54 0 0 -1 7 3 0 0 0 7 6 0 0 0 7 8 0 0 0 7 11 0 0 0 7 23 0 0 0 7 28 0 0 0 7 50 0 0 -1 7 55 0 0 -1 8 4 0 0 0 8 7 0 0 0 8 12 0 0 0 8 24 0 0 0 8 5 0 1 0 8 25 0 1 0 8 51 0 0 -1 8 56 0 0 -1 9 5 0 0 0 9 10 0 0 0 9 13 0 0 0 9 25 0 0 0 9 30 0 0 0 9 57 0 0 -1 9 12 0 -1 0 9 56 0 -1 -1 10 6 0 0 0 10 9 0 0 0 10 11 0 0 0 10 14 0 0 0 10 26 0 0 0 10 31 0 0 0 10 53 0 0 -1 10 58 0 0 -1 11 7 0 0 0 11 10 0 0 0 11 12 0 0 0 11 15 0 0 0 11 27 0 0 0 11 32 0 0 0 11 54 0 0 -1 11 59 0 0 -1 12 8 0 0 0 12 11 0 0 0 12 16 0 0 0 12 28 0 0 0 12 9 0 1 0 12 29 0 1 0 12 55 0 0 -1 12 60 0 0 -1 13 9 0 0 0 13 14 0 0 0 13 29 0 0 0 13 1 1 0 0 13 18 1 0 0 13 61 0 0 -1 13 16 0 -1 0 13 60 0 -1 -1 14 10 0 0 0 14 13 0 0 0 14 15 0 0 0 14 30 0 0 0 14 2 1 0 0 14 19 1 0 0 14 57 0 0 -1 14 62 0 0 -1 15 11 0 0 0 15 14 0 0 0 15 16 0 0 0 15 31 0 0 0 15 3 1 0 0 15 20 1 0 0 15 58 0 0 -1 15 63 0 0 -1 16 12 0 0 0 16 15 0 0 0 16 32 0 0 0 16 4 1 0 0 16 13 0 1 0 16 59 0 0 -1 16 64 0 0 -1 16 17 1 1 0 17 1 0 0 0 17 18 0 0 0 17 21 0 0 0 17 33 0 0 0 17 38 0 0 0 17 20 0 -1 0 17 29 -1 0 0 17 16 -1 -1 0 18 2 0 0 0 18 17 0 0 0 18 19 0 0 0 18 22 0 0 0 18 34 0 0 0 18 39 0 0 0 18 13 -1 0 0 18 30 -1 0 0 19 3 0 0 0 19 18 0 0 0 19 20 0 0 0 19 23 0 0 0 19 35 0 0 0 19 40 0 0 0 19 14 -1 0 0 19 31 -1 0 0 20 4 0 0 0 20 19 0 0 0 20 24 0 0 0 20 36 0 0 0 20 17 0 1 0 20 37 0 1 0 20 15 -1 0 0 20 32 -1 0 0 21 5 0 0 0 21 17 0 0 0 21 22 0 0 0 21 25 0 0 0 21 37 0 0 0 21 42 0 0 0 21 4 0 -1 0 21 24 0 -1 0 22 1 0 0 0 22 6 0 0 0 22 18 0 0 0 22 21 0 0 0 22 23 0 0 0 22 26 0 0 0 22 38 0 0 0 22 43 0 0 0 23 2 0 0 0 23 7 0 0 0 23 19 0 0 0 23 22 0 0 0 23 24 0 0 0 23 27 0 0 0 23 39 0 0 0 23 44 0 0 0 24 3 0 0 0 24 8 0 0 0 24 20 0 0 0 24 23 0 0 0 24 28 0 0 0 24 40 0 0 0 24 21 0 1 0 24 41 0 1 0 25 9 0 0 0 25 21 0 0 0 25 26 0 0 0 25 29 0 0 0 25 41 0 0 0 25 46 0 0 0 25 8 0 -1 0 25 28 0 -1 0 26 5 0 0 0 26 10 0 0 0 26 22 0 0 0 26 25 0 0 0 26 27 0 0 0 26 30 0 0 0 26 42 0 0 0 26 47 0 0 0 27 6 0 0 0 27 11 0 0 0 27 23 0 0 0 27 26 0 0 0 27 28 0 0 0 27 31 0 0 0 27 43 0 0 0 27 48 0 0 0 28 7 0 0 0 28 12 0 0 0 28 24 0 0 0 28 27 0 0 0 28 32 0 0 0 28 44 0 0 0 28 25 0 1 0 28 45 0 1 0 29 13 0 0 0 29 25 0 0 0 29 30 0 0 0 29 45 0 0 0 29 17 1 0 0 29 34 1 0 0 29 12 0 -1 0 29 32 0 -1 0 30 9 0 0 0 30 14 0 0 0 30 26 0 0 0 30 29 0 0 0 30 31 0 0 0 30 46 0 0 0 30 18 1 0 0 30 35 1 0 0 31 10 0 0 0 31 15 0 0 0 31 27 0 0 0 31 30 0 0 0 31 32 0 0 0 31 47 0 0 0 31 19 1 0 0 31 36 1 0 0 32 11 0 0 0 32 16 0 0 0 32 28 0 0 0 32 31 0 0 0 32 48 0 0 0 32 20 1 0 0 32 29 0 1 0 32 33 1 1 0 33 17 0 0 0 33 34 0 0 0 33 37 0 0 0 33 49 0 0 0 33 54 0 0 0 33 36 0 -1 0 33 45 -1 0 0 33 32 -1 -1 0 34 18 0 0 0 34 33 0 0 0 34 35 0 0 0 34 38 0 0 0 34 50 0 0 0 34 55 0 0 0 34 29 -1 0 0 34 46 -1 0 0 35 19 0 0 0 35 34 0 0 0 35 36 0 0 0 35 39 0 0 0 35 51 0 0 0 35 56 0 0 0 35 30 -1 0 0 35 47 -1 0 0 36 20 0 0 0 36 35 0 0 0 36 40 0 0 0 36 52 0 0 0 36 33 0 1 0 36 53 0 1 0 36 31 -1 0 0 36 48 -1 0 0 37 21 0 0 0 37 33 0 0 0 37 38 0 0 0 37 41 0 0 0 37 53 0 0 0 37 58 0 0 0 37 20 0 -1 0 37 40 0 -1 0 38 17 0 0 0 38 22 0 0 0 38 34 0 0 0 38 37 0 0 0 38 39 0 0 0 38 42 0 0 0 38 54 0 0 0 38 59 0 0 0 39 18 0 0 0 39 23 0 0 0 39 35 0 0 0 39 38 0 0 0 39 40 0 0 0 39 43 0 0 0 39 55 0 0 0 39 60 0 0 0 40 19 0 0 0 40 24 0 0 0 40 36 0 0 0 40 39 0 0 0 40 44 0 0 0 40 56 0 0 0 40 37 0 1 0 40 57 0 1 0 41 25 0 0 0 41 37 0 0 0 41 42 0 0 0 41 45 0 0 0 41 57 0 0 0 41 62 0 0 0 41 24 0 -1 0 41 44 0 -1 0 42 21 0 0 0 42 26 0 0 0 42 38 0 0 0 42 41 0 0 0 42 43 0 0 0 42 46 0 0 0 42 58 0 0 0 42 63 0 0 0 43 22 0 0 0 43 27 0 0 0 43 39 0 0 0 43 42 0 0 0 43 44 0 0 0 43 47 0 0 0 43 59 0 0 0 43 64 0 0 0 44 23 0 0 0 44 28 0 0 0 44 40 0 0 0 44 43 0 0 0 44 48 0 0 0 44 60 0 0 0 44 41 0 1 0 44 61 0 1 0 45 29 0 0 0 45 41 0 0 0 45 46 0 0 0 45 61 0 0 0 45 33 1 0 0 45 50 1 0 0 45 28 0 -1 0 45 48 0 -1 0 46 25 0 0 0 46 30 0 0 0 46 42 0 0 0 46 45 0 0 0 46 47 0 0 0 46 62 0 0 0 46 34 1 0 0 46 51 1 0 0 47 26 0 0 0 47 31 0 0 0 47 43 0 0 0 47 46 0 0 0 47 48 0 0 0 47 63 0 0 0 47 35 1 0 0 47 52 1 0 0 48 27 0 0 0 48 32 0 0 0 48 44 0 0 0 48 47 0 0 0 48 64 0 0 0 48 36 1 0 0 48 45 0 1 0 48 49 1 1 0 49 33 0 0 0 49 50 0 0 0 49 53 0 0 0 49 1 0 0 1 49 6 0 0 1 49 52 0 -1 0 49 61 -1 0 0 49 48 -1 -1 0 50 34 0 0 0 50 49 0 0 0 50 51 0 0 0 50 54 0 0 0 50 2 0 0 1 50 7 0 0 1 50 45 -1 0 0 50 62 -1 0 0 51 35 0 0 0 51 50 0 0 0 51 52 0 0 0 51 55 0 0 0 51 3 0 0 1 51 8 0 0 1 51 46 -1 0 0 51 63 -1 0 0 52 36 0 0 0 52 51 0 0 0 52 56 0 0 0 52 49 0 1 0 52 4 0 0 1 52 47 -1 0 0 52 64 -1 0 0 52 5 0 1 1 53 37 0 0 0 53 49 0 0 0 53 54 0 0 0 53 57 0 0 0 53 5 0 0 1 53 10 0 0 1 53 36 0 -1 0 53 56 0 -1 0 54 33 0 0 0 54 38 0 0 0 54 50 0 0 0 54 53 0 0 0 54 55 0 0 0 54 58 0 0 0 54 6 0 0 1 54 11 0 0 1 55 34 0 0 0 55 39 0 0 0 55 51 0 0 0 55 54 0 0 0 55 56 0 0 0 55 59 0 0 0 55 7 0 0 1 55 12 0 0 1 56 35 0 0 0 56 40 0 0 0 56 52 0 0 0 56 55 0 0 0 56 60 0 0 0 56 53 0 1 0 56 8 0 0 1 56 9 0 1 1 57 41 0 0 0 57 53 0 0 0 57 58 0 0 0 57 61 0 0 0 57 9 0 0 1 57 14 0 0 1 57 40 0 -1 0 57 60 0 -1 0 58 37 0 0 0 58 42 0 0 0 58 54 0 0 0 58 57 0 0 0 58 59 0 0 0 58 62 0 0 0 58 10 0 0 1 58 15 0 0 1 59 38 0 0 0 59 43 0 0 0 59 55 0 0 0 59 58 0 0 0 59 60 0 0 0 59 63 0 0 0 59 11 0 0 1 59 16 0 0 1 60 39 0 0 0 60 44 0 0 0 60 56 0 0 0 60 59 0 0 0 60 64 0 0 0 60 57 0 1 0 60 12 0 0 1 60 13 0 1 1 61 45 0 0 0 61 57 0 0 0 61 62 0 0 0 61 49 1 0 0 61 13 0 0 1 61 44 0 -1 0 61 64 0 -1 0 61 2 1 0 1 62 41 0 0 0 62 46 0 0 0 62 58 0 0 0 62 61 0 0 0 62 63 0 0 0 62 50 1 0 0 62 14 0 0 1 62 3 1 0 1 63 42 0 0 0 63 47 0 0 0 63 59 0 0 0 63 62 0 0 0 63 64 0 0 0 63 51 1 0 0 63 15 0 0 1 63 4 1 0 1 64 43 0 0 0 64 48 0 0 0 64 60 0 0 0 64 63 0 0 0 64 1 1 1 1 64 52 1 0 0 64 61 0 1 0 64 16 0 0 1 end nnkpts begin exclude_bands 0 end exclude_bands espresso-5.1/PP/examples/WAN90_example/reference/diamond.scf.out0000644000175000017500000005106112341372775022642 0ustar mbamba Program PWSCF v.3.1.1 starts ... Today is 9Oct2006 at 15:37: 0 Parallel version (MPI) Number of processors in use: 2 R & G space division: proc/pool = 2 Ultrasoft (Vanderbilt) Pseudopotentials Current dimensions of program pwscf are: ntypx = 10 npk = 40000 lmax = 3 nchix = 6 ndmx = 2000 nbrx = 14 nqfx = 8 looking for the optimal diagonalization algorithm ... a serial algorithm will be used Planes per process (thick) : nr3 = 18 npp = 9 ncplane = 324 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 9 99 957 9 99 957 37 206 2 9 100 960 9 100 960 36 205 0 18 199 1917 18 199 1917 73 411 bravais-lattice index = 2 lattice parameter (a_0) = 6.1000 a.u. unit-cell volume = 56.7452 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 kinetic-energy cutoff = 40.0000 Ry charge density cutoff = 160.0000 Ry convergence threshold = 1.0E-13 beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.100000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PSEUDO 1 is C zval = 4.0 lmax= 0 lloc= 0 (in numerical form: 269 grid points, xmin = 0.00, dx = 0.0000) atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.1250000 -0.1250000 -0.1250000 ) 2 C tau( 2) = ( -0.1250000 0.1250000 0.1250000 ) number of k points= 72 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0011574 k( 2) = ( -0.0833333 0.0833333 -0.0833333), wk = 0.0092593 k( 3) = ( -0.1666667 0.1666667 -0.1666667), wk = 0.0092593 k( 4) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0092593 k( 5) = ( -0.3333333 0.3333333 -0.3333333), wk = 0.0092593 k( 6) = ( -0.4166667 0.4166667 -0.4166667), wk = 0.0092593 k( 7) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0046296 k( 8) = ( 0.0000000 0.1666667 0.0000000), wk = 0.0069444 k( 9) = ( -0.0833333 0.2500000 -0.0833333), wk = 0.0277778 k( 10) = ( -0.1666667 0.3333333 -0.1666667), wk = 0.0277778 k( 11) = ( -0.2500000 0.4166667 -0.2500000), wk = 0.0277778 k( 12) = ( -0.3333333 0.5000000 -0.3333333), wk = 0.0277778 k( 13) = ( 0.5833333 -0.4166667 0.5833333), wk = 0.0277778 k( 14) = ( 0.5000000 -0.3333333 0.5000000), wk = 0.0277778 k( 15) = ( 0.4166667 -0.2500000 0.4166667), wk = 0.0277778 k( 16) = ( 0.3333333 -0.1666667 0.3333333), wk = 0.0277778 k( 17) = ( 0.2500000 -0.0833333 0.2500000), wk = 0.0277778 k( 18) = ( 0.1666667 0.0000000 0.1666667), wk = 0.0138889 k( 19) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0069444 k( 20) = ( -0.0833333 0.4166667 -0.0833333), wk = 0.0277778 k( 21) = ( -0.1666667 0.5000000 -0.1666667), wk = 0.0277778 k( 22) = ( -0.2500000 0.5833333 -0.2500000), wk = 0.0277778 k( 23) = ( 0.6666667 -0.3333333 0.6666667), wk = 0.0277778 k( 24) = ( 0.5833333 -0.2500000 0.5833333), wk = 0.0277778 k( 25) = ( 0.5000000 -0.1666667 0.5000000), wk = 0.0277778 k( 26) = ( 0.4166667 -0.0833333 0.4166667), wk = 0.0277778 k( 27) = ( 0.3333333 0.0000000 0.3333333), wk = 0.0138889 k( 28) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0069444 k( 29) = ( -0.0833333 0.5833333 -0.0833333), wk = 0.0277778 k( 30) = ( -0.1666667 0.6666667 -0.1666667), wk = 0.0277778 k( 31) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0277778 k( 32) = ( 0.6666667 -0.1666667 0.6666667), wk = 0.0277778 k( 33) = ( 0.5833333 -0.0833333 0.5833333), wk = 0.0277778 k( 34) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0138889 k( 35) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0069444 k( 36) = ( -0.0833333 0.7500000 -0.0833333), wk = 0.0277778 k( 37) = ( 0.8333333 -0.1666667 0.8333333), wk = 0.0277778 k( 38) = ( 0.7500000 -0.0833333 0.7500000), wk = 0.0277778 k( 39) = ( 0.6666667 0.0000000 0.6666667), wk = 0.0138889 k( 40) = ( 0.0000000 0.8333333 0.0000000), wk = 0.0069444 k( 41) = ( 0.9166667 -0.0833333 0.9166667), wk = 0.0277778 k( 42) = ( 0.8333333 0.0000000 0.8333333), wk = 0.0138889 k( 43) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0034722 k( 44) = ( -0.1666667 0.3333333 0.0000000), wk = 0.0277778 k( 45) = ( -0.2500000 0.4166667 -0.0833333), wk = 0.0555556 k( 46) = ( -0.3333333 0.5000000 -0.1666667), wk = 0.0555556 k( 47) = ( 0.5833333 -0.4166667 0.7500000), wk = 0.0555556 k( 48) = ( 0.5000000 -0.3333333 0.6666667), wk = 0.0277778 k( 49) = ( -0.1666667 0.5000000 0.0000000), wk = 0.0277778 k( 50) = ( -0.2500000 0.5833333 -0.0833333), wk = 0.0555556 k( 51) = ( 0.6666667 -0.3333333 0.8333333), wk = 0.0555556 k( 52) = ( 0.5833333 -0.2500000 0.7500000), wk = 0.0555556 k( 53) = ( 0.5000000 -0.1666667 0.6666667), wk = 0.0555556 k( 54) = ( 0.4166667 -0.0833333 0.5833333), wk = 0.0555556 k( 55) = ( 0.3333333 0.0000000 0.5000000), wk = 0.0277778 k( 56) = ( -0.1666667 0.6666667 0.0000000), wk = 0.0277778 k( 57) = ( 0.7500000 -0.2500000 0.9166667), wk = 0.0555556 k( 58) = ( 0.6666667 -0.1666667 0.8333333), wk = 0.0555556 k( 59) = ( 0.5833333 -0.0833333 0.7500000), wk = 0.0555556 k( 60) = ( 0.5000000 0.0000000 0.6666667), wk = 0.0277778 k( 61) = ( 0.8333333 -0.1666667 1.0000000), wk = 0.0277778 k( 62) = ( 0.7500000 -0.0833333 0.9166667), wk = 0.0555556 k( 63) = ( 0.6666667 0.0000000 0.8333333), wk = 0.0277778 k( 64) = ( -0.1666667 -1.0000000 0.0000000), wk = 0.0138889 k( 65) = ( 0.6666667 -0.3333333 1.0000000), wk = 0.0277778 k( 66) = ( 0.5833333 -0.2500000 0.9166667), wk = 0.0555556 k( 67) = ( 0.5000000 -0.1666667 0.8333333), wk = 0.0277778 k( 68) = ( 0.6666667 -0.1666667 1.0000000), wk = 0.0277778 k( 69) = ( 0.5833333 -0.0833333 0.9166667), wk = 0.0555556 k( 70) = ( 0.5000000 0.0000000 0.8333333), wk = 0.0277778 k( 71) = ( -0.3333333 -1.0000000 0.0000000), wk = 0.0138889 k( 72) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0069444 G cutoff = 150.8064 ( 1917 G-vectors) FFT grid: ( 18, 18, 18) nbndx = 16 nbnd = 4 natomwfc = 8 npwx = 128 nelec = 8.00 nkb = 2 ngl = 52 Initial potential from superposition of free atoms starting charge 7.99994, renormalised to 8.00000 Starting wfc are atomic total cpu time spent up to now is 0.26 secs Self-consistent Calculation iteration # 1 ecut= 40.00 ryd beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.74 secs total energy = -22.56222778 ryd estimated scf accuracy < 0.21680062 ryd iteration # 2 ecut= 40.00 ryd beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-03, avg # of iterations = 1.9 total cpu time spent up to now is 1.10 secs total energy = -22.58044894 ryd estimated scf accuracy < 0.00299479 ryd iteration # 3 ecut= 40.00 ryd beta=0.70 Davidson diagonalization with overlap ethr = 3.74E-05, avg # of iterations = 2.2 total cpu time spent up to now is 1.53 secs total energy = -22.58126747 ryd estimated scf accuracy < 0.00007543 ryd iteration # 4 ecut= 40.00 ryd beta=0.70 Davidson diagonalization with overlap ethr = 9.43E-07, avg # of iterations = 2.1 total cpu time spent up to now is 1.97 secs total energy = -22.58128481 ryd estimated scf accuracy < 0.00000553 ryd iteration # 5 ecut= 40.00 ryd beta=0.70 Davidson diagonalization with overlap ethr = 6.91E-08, avg # of iterations = 2.1 total cpu time spent up to now is 2.40 secs total energy = -22.58128612 ryd estimated scf accuracy < 0.00000006 ryd iteration # 6 ecut= 40.00 ryd beta=0.70 Davidson diagonalization with overlap ethr = 7.28E-10, avg # of iterations = 2.4 total cpu time spent up to now is 2.88 secs total energy = -22.58128615 ryd estimated scf accuracy < 4.8E-10 ryd iteration # 7 ecut= 40.00 ryd beta=0.70 Davidson diagonalization with overlap ethr = 6.06E-12, avg # of iterations = 2.7 total cpu time spent up to now is 3.38 secs total energy = -22.58128615 ryd estimated scf accuracy < 2.5E-12 ryd iteration # 8 ecut= 40.00 ryd beta=0.70 Davidson diagonalization with overlap ethr = 3.07E-14, avg # of iterations = 2.7 total cpu time spent up to now is 3.87 secs total energy = -22.58128615 ryd estimated scf accuracy < 2.4E-12 ryd iteration # 9 ecut= 40.00 ryd beta=0.70 Davidson diagonalization with overlap ethr = 3.03E-14, avg # of iterations = 2.0 total cpu time spent up to now is 4.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 259 PWs) bands (ev): -6.4387 19.3980 19.3980 19.3980 k =-0.0833 0.0833-0.0833 ( 259 PWs) bands (ev): -6.2059 17.7916 18.9461 18.9461 k =-0.1667 0.1667-0.1667 ( 250 PWs) bands (ev): -5.5239 14.7237 18.0303 18.0303 k =-0.2500 0.2500-0.2500 ( 247 PWs) bands (ev): -4.3800 11.1722 17.0933 17.0933 k =-0.3333 0.3333-0.3333 ( 256 PWs) bands (ev): -2.7985 7.7336 16.3402 16.3402 k =-0.4167 0.4167-0.4167 ( 241 PWs) bands (ev): -0.7720 4.5802 15.9606 15.9606 k = 0.5000-0.5000 0.5000 ( 242 PWs) bands (ev): 1.3328 2.0781 15.8056 15.8056 k = 0.0000 0.1667 0.0000 ( 258 PWs) bands (ev): -6.1283 18.0990 18.0990 18.7944 k =-0.0833 0.2500-0.0833 ( 251 PWs) bands (ev): -5.5975 15.7396 17.0413 18.3592 k =-0.1667 0.3333-0.1667 ( 245 PWs) bands (ev): -4.6090 12.4481 16.1205 17.4878 k =-0.2500 0.4167-0.2500 ( 244 PWs) bands (ev): -3.1690 9.0041 15.4986 16.4994 k =-0.3333 0.5000-0.3333 ( 239 PWs) bands (ev): -1.2861 5.7738 15.2328 15.6431 k = 0.5833-0.4167 0.5833 ( 244 PWs) bands (ev): 0.9585 2.8834 15.0126 15.2937 k = 0.5000-0.3333 0.5000 ( 245 PWs) bands (ev): 0.1816 3.7906 14.7068 15.6943 k = 0.4167-0.2500 0.4167 ( 246 PWs) bands (ev): -1.9665 6.8253 14.7676 16.3532 k = 0.3333-0.1667 0.3333 ( 247 PWs) bands (ev): -3.7043 10.1448 15.1597 17.2929 k = 0.2500-0.0833 0.2500 ( 247 PWs) bands (ev): -4.9871 13.6195 15.8712 18.2866 k = 0.1667 0.0000 0.1667 ( 249 PWs) bands (ev): -5.8228 16.6872 16.9968 19.0144 k = 0.0000 0.3333 0.0000 ( 246 PWs) bands (ev): -5.2143 15.8760 15.8760 17.1836 k =-0.0833 0.4167-0.0833 ( 241 PWs) bands (ev): -4.3759 13.5805 14.9103 16.3827 k =-0.1667 0.5000-0.1667 ( 243 PWs) bands (ev): -3.0921 10.4482 14.2608 15.3274 k =-0.2500 0.5833-0.2500 ( 242 PWs) bands (ev): -1.3652 7.2880 13.9795 14.1724 k = 0.6667-0.3333 0.6667 ( 241 PWs) bands (ev): 0.7661 4.3402 13.1961 14.1422 k = 0.5833-0.2500 0.5833 ( 244 PWs) bands (ev): 1.5045 3.4799 12.5245 14.6603 k = 0.5000-0.1667 0.5000 ( 244 PWs) bands (ev): -0.7053 6.3114 12.2247 15.4885 k = 0.4167-0.0833 0.4167 ( 247 PWs) bands (ev): -2.5725 9.4562 12.3240 16.5607 k = 0.3333 0.0000 0.3333 ( 243 PWs) bands (ev): -3.9981 12.5454 13.0501 17.6367 k = 0.0000 0.5000 0.0000 ( 234 PWs) bands (ev): -3.6839 13.8639 13.8639 14.5739 k =-0.0833 0.5833-0.0833 ( 241 PWs) bands (ev): -2.5558 11.7000 13.1068 13.5221 k =-0.1667 0.6667-0.1667 ( 241 PWs) bands (ev): -0.9844 8.9159 12.2025 12.7922 k = 0.7500-0.2500 0.7500 ( 242 PWs) bands (ev): 0.9925 6.0964 10.9236 12.9161 k = 0.6667-0.1667 0.6667 ( 243 PWs) bands (ev): 2.8810 3.9356 9.9587 13.4075 k = 0.5833-0.0833 0.5833 ( 242 PWs) bands (ev): 0.9624 6.2286 9.3906 14.2912 k = 0.5000 0.0000 0.5000 ( 248 PWs) bands (ev): -1.0019 8.9712 9.4601 15.4030 k = 0.0000 0.6667 0.0000 ( 238 PWs) bands (ev): -1.5725 11.2642 12.2895 12.2895 k =-0.0833 0.7500-0.0833 ( 238 PWs) bands (ev): -0.1604 9.4051 11.0975 11.8596 k = 0.8333-0.1667 0.8333 ( 237 PWs) bands (ev): 1.6593 7.5041 9.1634 11.9042 k = 0.7500-0.0833 0.7500 ( 240 PWs) bands (ev): 3.7207 5.4924 7.6076 12.3195 k = 0.6667 0.0000 0.6667 ( 236 PWs) bands (ev): 2.9492 6.3653 6.9214 13.1569 k = 0.0000 0.8333 0.0000 ( 242 PWs) bands (ev): 1.0916 7.7036 11.3169 11.3169 k = 0.9167-0.0833 0.9167 ( 236 PWs) bands (ev): 2.7524 6.0454 10.2548 11.2543 k = 0.8333 0.0000 0.8333 ( 236 PWs) bands (ev): 4.6516 4.7804 8.2699 11.5694 k = 0.0000-1.0000 0.0000 ( 230 PWs) bands (ev): 4.2492 4.2492 11.0421 11.0421 k =-0.1667 0.3333 0.0000 ( 246 PWs) bands (ev): -4.9093 14.5284 14.9188 17.8183 k =-0.2500 0.4167-0.0833 ( 242 PWs) bands (ev): -3.7718 11.4980 13.9890 16.9330 k =-0.3333 0.5000-0.1667 ( 241 PWs) bands (ev): -2.1915 8.2128 13.5508 15.8527 k = 0.5833-0.4167 0.7500 ( 245 PWs) bands (ev): -0.1834 5.1215 13.4385 14.9220 k = 0.5000-0.3333 0.6667 ( 248 PWs) bands (ev): 1.8514 2.7077 13.5088 14.4976 k =-0.1667 0.5000 0.0000 ( 240 PWs) bands (ev): -3.3863 12.5120 12.9789 15.4172 k =-0.2500 0.5833-0.0833 ( 242 PWs) bands (ev): -1.9597 9.7407 12.2598 14.2906 k = 0.6667-0.3333 0.8333 ( 242 PWs) bands (ev): -0.1078 6.7622 11.9531 13.2951 k = 0.5833-0.2500 0.7500 ( 244 PWs) bands (ev): 2.0675 4.0376 11.4911 13.0996 k = 0.5000-0.1667 0.6667 ( 242 PWs) bands (ev): 1.3220 4.9225 10.9875 13.7104 k = 0.4167-0.0833 0.5833 ( 243 PWs) bands (ev): -0.7751 7.8113 10.7866 14.7292 k = 0.3333 0.0000 0.5000 ( 245 PWs) bands (ev): -2.4890 10.6785 11.2079 15.9035 k =-0.1667 0.6667 0.0000 ( 233 PWs) bands (ev): -1.2730 10.6158 11.5108 12.5541 k = 0.7500-0.2500 0.9167 ( 241 PWs) bands (ev): 0.4166 8.3786 10.4116 11.7076 k = 0.6667-0.1667 0.8333 ( 241 PWs) bands (ev): 2.4737 5.8638 9.2553 11.7926 k = 0.5833-0.0833 0.7500 ( 240 PWs) bands (ev): 3.1150 5.2146 8.3789 12.4525 k = 0.5000 0.0000 0.6667 ( 240 PWs) bands (ev): 1.0411 7.6226 8.1361 13.4967 k = 0.8333-0.1667 1.0000 ( 238 PWs) bands (ev): 1.3752 7.8172 10.5785 10.7901 k = 0.7500-0.0833 0.9167 ( 237 PWs) bands (ev): 3.2820 6.3579 8.5917 10.8368 k = 0.6667 0.0000 0.8333 ( 236 PWs) bands (ev): 4.7275 5.5416 6.7823 11.4553 k =-0.1667-1.0000 0.0000 ( 240 PWs) bands (ev): 4.4828 4.4828 10.2998 10.2998 k = 0.6667-0.3333 1.0000 ( 241 PWs) bands (ev): -0.4002 9.1556 9.7984 13.0400 k = 0.5833-0.2500 0.9167 ( 241 PWs) bands (ev): 1.5518 6.6605 9.5598 11.8615 k = 0.5000-0.1667 0.8333 ( 244 PWs) bands (ev): 3.3921 4.5257 9.6735 11.3128 k = 0.6667-0.1667 1.0000 ( 249 PWs) bands (ev): 2.2043 7.6799 8.9571 10.0738 k = 0.5833-0.0833 0.9167 ( 242 PWs) bands (ev): 4.2151 6.0118 7.9294 9.7768 k = 0.5000 0.0000 0.8333 ( 245 PWs) bands (ev): 3.5098 6.6578 7.4201 10.5578 k =-0.3333-1.0000 0.0000 ( 244 PWs) bands (ev): 5.1547 5.1547 8.8552 8.8552 k =-0.5000-1.0000 0.0000 ( 252 PWs) bands (ev): 5.7054 5.7054 7.9453 7.9453 ! total energy = -22.58128615 ryd estimated scf accuracy < 9.3E-15 ryd band energy sum = 4.91039910 ryd one-electron contribution = 11.69117932 ryd hartree contribution = 1.57036312 ryd xc contribution = -7.58421585 ryd ewald contribution = -28.25861274 ryd convergence has been achieved Writing output data file di.save PWSCF : 4.38s CPU time init_run : 0.26s CPU electrons : 4.02s CPU electrons : 4.02s CPU c_bands : 3.49s CPU ( 9 calls, 0.388 s avg) sum_band : 0.48s CPU ( 9 calls, 0.053 s avg) v_of_rho : 0.02s CPU ( 10 calls, 0.002 s avg) mix_rho : 0.01s CPU ( 9 calls, 0.001 s avg) c_bands : 3.49s CPU ( 9 calls, 0.388 s avg) init_us_2 : 0.02s CPU ( 1368 calls, 0.000 s avg) cegterg : 3.47s CPU ( 648 calls, 0.005 s avg) sum_band : 0.48s CPU ( 9 calls, 0.053 s avg) wfcrot : 0.24s CPU ( 72 calls, 0.003 s avg) cegterg : 3.47s CPU ( 648 calls, 0.005 s avg) h_psi : 2.99s CPU ( 2164 calls, 0.001 s avg) g_psi : 0.04s CPU ( 1444 calls, 0.000 s avg) cdiaghg : 0.24s CPU ( 2092 calls, 0.000 s avg) update : 0.04s CPU ( 1444 calls, 0.000 s avg) last : 0.00s CPU ( 648 calls, 0.000 s avg) h_psi : 2.99s CPU ( 2164 calls, 0.001 s avg) init : 0.02s CPU ( 2164 calls, 0.000 s avg) firstfft : 1.32s CPU ( 8012 calls, 0.000 s avg) secondfft : 1.44s CPU ( 8012 calls, 0.000 s avg) add_vuspsi : 0.01s CPU ( 2164 calls, 0.000 s avg) General routines ccalbec : 0.12s CPU ( 2164 calls, 0.000 s avg) cft3 : 0.01s CPU ( 40 calls, 0.000 s avg) cft3s : 3.14s CPU ( 18616 calls, 0.000 s avg) davcio : 0.02s CPU ( 2016 calls, 0.000 s avg) Parallel routines reduce : 0.39s CPU ( 8123 calls, 0.000 s avg) fft_scatter : 1.26s CPU ( 18656 calls, 0.000 s avg) espresso-5.1/PP/examples/WAN90_example/reference/diamond.sa.wout0000644000175000017500000007020212341372775022657 0ustar mbamba +---------------------------------------------------+ | | | WANNIER90 | | | +---------------------------------------------------+ | | | Welcome to the Maximally-Localized | | Generalized Wannier Functions code | | http://www.wannier.org | | | | Authors: | | Arash A. Mostofi (MIT) | | Jonathan R. Yates (LBNL and UC Berkeley) | | | | | | Please cite | | | | [ref] A. A. Mostofi, J. R. Yates, | | N. Marzari, I. Souza and D. Vanderbilt, | | http://www.wannier.org/ | | | | in any publications arising from the use of | | this code. | | | | | | Wannier90 is based on routines written by | | Nicola Marzari, Ivo Souza and David Vanderbilt. | | For the method please cite | | | | [ref] "Maximally Localized Generalised Wannier | | Functions for Composite Energy Bands" | | N. Marzari and D. Vanderbilt | | Phys. Rev. B 56 12847 (1997) | | | | [ref] "Maximally Localized Wannier Functions | | for Entangled Energy Bands" | | I. Souza, N. Marzari and D. Vanderbilt | | Phys. Rev. B 65 035109 (2001) | | | | | | Copyright (c) 1997-2006 J. Yates, A. Mostofi, | | N. Marzari, I. Souza, D. Vanderbilt | | | | Release: 1.0.1 17th May 2006 | | | | This program is free software; you can | | redistribute it and/or modify it under the terms | | of the GNU General Public License as published by | | the Free Software Foundation; either version 2 of | | the License, or (at your option) any later version| | | | This program is distributed in the hope that it | | will be useful, but WITHOUT ANY WARRANTY; without | | even the implied warranty of MERCHANTABILITY or | | FITNESS FOR A PARTICULAR PURPOSE. See the GNU | | General Public License for more details. | | | | You should have received a copy of the GNU General| | Public License along with this program; if not, | | write to the Free Software Foundation, Inc., | | 675 Mass Ave, Cambridge, MA 02139, USA. | | | +---------------------------------------------------+ | Execution started on 9Oct2006 at 15:37:14 | +---------------------------------------------------+ ------ SYSTEM ------ Lattice Vectors (Ang) a_1 -1.613990 0.000000 1.613990 a_2 0.000000 1.613990 1.613990 a_3 -1.613990 1.613990 0.000000 Unit Cell Volume: 8.40878 (Ang^3) Reciprocal-Space Vectors (Ang^-1) b_1 -1.946475 -1.946475 1.946475 b_2 1.946475 1.946475 1.946475 b_3 -1.946475 1.946475 -1.946475 *----------------------------------------------------------------------------* | Site Fractional Coordinate Cartesian Coordinate (Ang) | +----------------------------------------------------------------------------+ | C 1 -0.12500 -0.12500 -0.12500 | 0.40350 -0.40350 -0.40350 | | C 2 0.12500 0.12500 0.12500 | -0.40350 0.40350 0.40350 | *----------------------------------------------------------------------------* ------------ K-POINT GRID ------------ Grid size = 4 x 4 x 4 Total points = 64 *---------------------------------- MAIN ------------------------------------* | Number of Wannier Functions : 4 | | Number of input Bloch states : 4 | | Output verbosity (1=low, 5=high) : 1 | | Length Unit : Ang | | Post-processing setup (write *.nnkp) : F | *----------------------------------------------------------------------------* *------------------------------- WANNIERISE ---------------------------------* | Total number of iterations : 20 | | Number of CG steps before reset : 5 | | Trial step length for line search : 2.000 | | Iterations between writing output : 1 | | Iterations between backing up to disk : 100 | | Write r^2_nm to file : F | | Use guiding centre to control phases : F | *----------------------------------------------------------------------------* Time to read parameters 0.004 (sec) *---------------------------------- K-MESH ----------------------------------* +----------------------------------------------------------------------------+ | Distance to Nearest-Neighbour Shells | | ------------------------------------ | | Shell Distance (Ang^-1) Multiplicity | | ----- ----------------- ------------ | | 1 0.842849 8 | | 2 0.973238 6 | | 3 1.376366 12 | | 4 1.613932 24 | | 5 1.685697 8 | | 6 1.946475 6 | | 7 2.121122 24 | | 8 2.176226 24 | | 9 2.383936 24 | | 10 2.528546 32 | | 11 2.752732 12 | | 12 2.878876 48 | +----------------------------------------------------------------------------+ | The b-vectors are chosen automatically | | The following shells are used: 1 | +----------------------------------------------------------------------------+ | Shell # Nearest-Neighbours | | ----- -------------------- | | 1 8 | +----------------------------------------------------------------------------+ | Completeness relation is fully satisfied [Eq. (B1), PRB 56, 12847 (1997)] | +----------------------------------------------------------------------------+ | b_k Vectors (Ang^-1) and Weights (Ang^2) | | ---------------------------------------- | | No. b_k(x) b_k(y) b_k(z) w_b | | --- -------------------------------- -------- | | 1 0.486619 0.486619 0.486619 0.527876 | | 2 -0.486619 -0.486619 0.486619 0.527876 | | 3 -0.486619 0.486619 -0.486619 0.527876 | | 4 -0.486619 0.486619 0.486619 0.527876 | | 5 0.486619 -0.486619 0.486619 0.527876 | | 6 -0.486619 -0.486619 -0.486619 0.527876 | | 7 0.486619 0.486619 -0.486619 0.527876 | | 8 0.486619 -0.486619 -0.486619 0.527876 | +----------------------------------------------------------------------------+ | b_k Directions (Ang^-1) | | ----------------------- | | No. x y z | | --- -------------------------------- | | 1 0.486619 0.486619 0.486619 | | 2 -0.486619 -0.486619 0.486619 | | 3 -0.486619 0.486619 -0.486619 | | 4 -0.486619 0.486619 0.486619 | +----------------------------------------------------------------------------+ Starting a new Wannier90 calculation ... Time to get kmesh 0.048 (sec) Reading overlaps from diamond.sa.mmn : Created on 9Oct2006 at 15:37:12 Reading projections from diamond.sa.amn : Created on 9Oct2006 at 15:37:10 Time to read overlaps 0.012 (sec) Writing checkpoint file diamond.sa.chk... done *------------------------------- WANNIERISE ---------------------------------* +--------------------------------------------------------------------+<-- CONV | Iter Delta Spread RMS Gradient Spread (Ang^2) Time |<-- CONV +--------------------------------------------------------------------+<-- CONV ------------------------------------------------------------------------------ Initial State WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58061390 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58061390 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58061390 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58061390 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32245560 0 0.232E+01 0.0000000000 2.3224556019 0.07 <-- CONV O_D= 0.0000000 O_OD= 0.3678346 O_TOT= 2.3224556 <-- SPRD ------------------------------------------------------------------------------ Cycle: 1 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58023486 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58023486 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58023486 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58023486 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32093943 1 -0.152E-02 0.0234565935 2.3209394335 0.07 <-- CONV O_D= 0.0000000 O_OD= 0.3663184 O_TOT= 2.3209394 <-- SPRD Delta: O_D= -0.2661842E-23 O_OD= -0.1516168E-02 O_TOT= -0.1516168E-02 <-- DLTA ------------------------------------------------------------------------------ Cycle: 2 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022673 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022673 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022673 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022673 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090693 2 -0.325E-04 0.0039154226 2.3209069320 0.08 <-- CONV O_D= 0.0000000 O_OD= 0.3662859 O_TOT= 2.3209069 <-- SPRD Delta: O_D= -0.2285730E-23 O_OD= -0.3250145E-04 O_TOT= -0.3250145E-04 <-- DLTA ------------------------------------------------------------------------------ Cycle: 3 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 3 -0.614E-06 0.0005711221 2.3209063179 0.09 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= -0.1071897E-23 O_OD= -0.6141199E-06 O_TOT= -0.6141199E-06 <-- DLTA ------------------------------------------------------------------------------ Cycle: 4 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 4 -0.792E-10 0.0000061002 2.3209063178 0.09 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.1638306E-24 O_OD= -0.7916606E-10 O_TOT= -0.7916601E-10 <-- DLTA ------------------------------------------------------------------------------ Cycle: 5 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 5 0.000E+00 0.0000004301 2.3209063178 0.10 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 6 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 6 0.000E+00 0.0000004196 2.3209063178 0.10 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 7 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 7 -0.342E-13 0.0000003999 2.3209063178 0.11 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= -0.2269263E-24 O_OD= -0.3413936E-13 O_TOT= -0.3419487E-13 <-- DLTA ------------------------------------------------------------------------------ Cycle: 8 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 8 0.000E+00 0.0000003815 2.3209063178 0.11 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 9 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 9 -0.236E-12 0.0000003644 2.3209063178 0.12 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= -0.5124537E-24 O_OD= -0.2364775E-12 O_TOT= -0.2362555E-12 <-- DLTA ------------------------------------------------------------------------------ Cycle: 10 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 10 0.000E+00 0.0000002034 2.3209063178 0.12 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 11 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 11 -0.333E-13 0.0000001918 2.3209063178 0.13 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.1278015E-25 O_OD= -0.3336220E-13 O_TOT= -0.3330669E-13 <-- DLTA ------------------------------------------------------------------------------ Cycle: 12 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 12 -0.173E-13 0.0000001556 2.3209063178 0.14 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= -0.1414977E-25 O_OD= -0.1759703E-13 O_TOT= -0.1731948E-13 <-- DLTA ------------------------------------------------------------------------------ Cycle: 13 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 13 0.000E+00 0.0000001314 2.3209063178 0.14 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 14 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 14 0.000E+00 0.0000001286 2.3209063178 0.14 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 15 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 15 0.000E+00 0.0000001233 2.3209063178 0.15 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 16 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 16 -0.235E-13 0.0000001158 2.3209063178 0.16 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= -0.2696537E-25 O_OD= -0.2353673E-13 O_TOT= -0.2353673E-13 <-- DLTA ------------------------------------------------------------------------------ Cycle: 17 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 17 -0.311E-14 0.0000000702 2.3209063178 0.16 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.4067529E-26 O_OD= -0.3108624E-14 O_TOT= -0.3108624E-14 <-- DLTA ------------------------------------------------------------------------------ Cycle: 18 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 18 0.133E-14 0.0000000623 2.3209063178 0.17 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.8779410E-27 O_OD= 0.1276756E-14 O_TOT= 0.1332268E-14 <-- DLTA ------------------------------------------------------------------------------ Cycle: 19 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 19 0.000E+00 0.0000000574 2.3209063178 0.17 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 20 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 20 0.000E+00 0.0000000562 2.3209063178 0.18 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Final State WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 Spreads (Ang^2) Omega I = 1.954621046 ================ Omega D = 0.000000000 Omega OD = 0.366285272 Final Spread (Ang^2) Omega Total = 2.320906318 ------------------------------------------------------------------------------ Time for wannierise 0.112 (sec) Writing checkpoint file diamond.sa.chk... done Total Execution Time 0.176 (sec) *===========================================================================* | TIMING INFORMATION | *===========================================================================* | Tag Ncalls Time (s)| |---------------------------------------------------------------------------| |kmesh: get : 1 0.048| |overlap: read : 1 0.012| |wann: main : 1 0.112| *---------------------------------------------------------------------------* All done: wannier90 exiting espresso-5.1/PP/examples/WAN90_example/reference/diamond.lib.wout0000644000175000017500000010376312341372775023033 0ustar mbamba +---------------------------------------------------+ | | | WANNIER90 | | | +---------------------------------------------------+ | | | Welcome to the Maximally-Localized | | Generalized Wannier Functions code | | http://www.wannier.org | | | | Authors: | | Arash A. Mostofi (MIT) | | Jonathan R. Yates (LBNL and UC Berkeley) | | | | | | Please cite | | | | [ref] A. A. Mostofi, J. R. Yates, | | N. Marzari, I. Souza and D. Vanderbilt, | | http://www.wannier.org/ | | | | in any publications arising from the use of | | this code. | | | | | | Wannier90 is based on routines written by | | Nicola Marzari, Ivo Souza and David Vanderbilt. | | For the method please cite | | | | [ref] "Maximally Localized Generalised Wannier | | Functions for Composite Energy Bands" | | N. Marzari and D. Vanderbilt | | Phys. Rev. B 56 12847 (1997) | | | | [ref] "Maximally Localized Wannier Functions | | for Entangled Energy Bands" | | I. Souza, N. Marzari and D. Vanderbilt | | Phys. Rev. B 65 035109 (2001) | | | | | | Copyright (c) 1997-2006 J. Yates, A. Mostofi, | | N. Marzari, I. Souza, D. Vanderbilt | | | | Release: 1.0.1 17th May 2006 | | | | This program is free software; you can | | redistribute it and/or modify it under the terms | | of the GNU General Public License as published by | | the Free Software Foundation; either version 2 of | | the License, or (at your option) any later version| | | | This program is distributed in the hope that it | | will be useful, but WITHOUT ANY WARRANTY; without | | even the implied warranty of MERCHANTABILITY or | | FITNESS FOR A PARTICULAR PURPOSE. See the GNU | | General Public License for more details. | | | | You should have received a copy of the GNU General| | Public License along with this program; if not, | | write to the Free Software Foundation, Inc., | | 675 Mass Ave, Cambridge, MA 02139, USA. | | | +---------------------------------------------------+ | Execution started on 9Oct2006 at 15:37:15 | +---------------------------------------------------+ Wannier90 is running in LIBRARY MODE Setting up k-point neighbours... Ignoring in input file Ignoring in input file Ignoring in input file Ignoring in input file ------ SYSTEM ------ Lattice Vectors (Ang) a_1 -1.613990 0.000000 1.613990 a_2 0.000000 1.613990 1.613990 a_3 -1.613990 1.613990 0.000000 Unit Cell Volume: 8.40878 (Ang^3) Reciprocal-Space Vectors (Ang^-1) b_1 -1.946475 -1.946475 1.946475 b_2 1.946475 1.946475 1.946475 b_3 -1.946475 1.946475 -1.946475 No atom positions specified ------------ K-POINT GRID ------------ Grid size = 4 x 4 x 4 Total points = 64 *---------------------------------- MAIN ------------------------------------* | Number of Wannier Functions : 4 | | Number of input Bloch states : 4 | | Output verbosity (1=low, 5=high) : 1 | | Length Unit : Ang | | Post-processing setup (write *.nnkp) : F | *----------------------------------------------------------------------------* *------------------------------- WANNIERISE ---------------------------------* | Total number of iterations : 20 | | Number of CG steps before reset : 5 | | Trial step length for line search : 2.000 | | Iterations between writing output : 1 | | Iterations between backing up to disk : 100 | | Write r^2_nm to file : F | | Use guiding centre to control phases : F | *----------------------------------------------------------------------------* Time to read parameters 0.000 (sec) *---------------------------------- K-MESH ----------------------------------* +----------------------------------------------------------------------------+ | Distance to Nearest-Neighbour Shells | | ------------------------------------ | | Shell Distance (Ang^-1) Multiplicity | | ----- ----------------- ------------ | | 1 0.842849 8 | | 2 0.973238 6 | | 3 1.376366 12 | | 4 1.613932 24 | | 5 1.685697 8 | | 6 1.946475 6 | | 7 2.121122 24 | | 8 2.176226 24 | | 9 2.383936 24 | | 10 2.528546 32 | | 11 2.752732 12 | | 12 2.878876 48 | +----------------------------------------------------------------------------+ | The b-vectors are chosen automatically | | The following shells are used: 1 | +----------------------------------------------------------------------------+ | Shell # Nearest-Neighbours | | ----- -------------------- | | 1 8 | +----------------------------------------------------------------------------+ | Completeness relation is fully satisfied [Eq. (B1), PRB 56, 12847 (1997)] | +----------------------------------------------------------------------------+ | b_k Vectors (Ang^-1) and Weights (Ang^2) | | ---------------------------------------- | | No. b_k(x) b_k(y) b_k(z) w_b | | --- -------------------------------- -------- | | 1 0.486619 0.486619 0.486619 0.527876 | | 2 -0.486619 -0.486619 0.486619 0.527876 | | 3 -0.486619 0.486619 -0.486619 0.527876 | | 4 -0.486619 0.486619 0.486619 0.527876 | | 5 0.486619 -0.486619 0.486619 0.527876 | | 6 -0.486619 -0.486619 -0.486619 0.527876 | | 7 0.486619 0.486619 -0.486619 0.527876 | | 8 0.486619 -0.486619 -0.486619 0.527876 | +----------------------------------------------------------------------------+ | b_k Directions (Ang^-1) | | ----------------------- | | No. x y z | | --- -------------------------------- | | 1 0.486619 0.486619 0.486619 | | 2 -0.486619 -0.486619 0.486619 | | 3 -0.486619 0.486619 -0.486619 | | 4 -0.486619 0.486619 0.486619 | +----------------------------------------------------------------------------+ Time to write kmesh 0.048 (sec) Finished setting up k-point neighbours. Returning to pw2wannier90. Wannier90: Disentanglement - Localisation - Plotting Ignoring in input file Ignoring in input file Ignoring in input file Ignoring in input file ------ SYSTEM ------ Lattice Vectors (Ang) a_1 -1.613990 0.000000 1.613990 a_2 0.000000 1.613990 1.613990 a_3 -1.613990 1.613990 0.000000 Unit Cell Volume: 8.40878 (Ang^3) Reciprocal-Space Vectors (Ang^-1) b_1 -1.946475 -1.946475 1.946475 b_2 1.946475 1.946475 1.946475 b_3 -1.946475 1.946475 -1.946475 No atom positions specified ------------ K-POINT GRID ------------ Grid size = 4 x 4 x 4 Total points = 64 *---------------------------------- MAIN ------------------------------------* | Number of Wannier Functions : 4 | | Number of input Bloch states : 4 | | Output verbosity (1=low, 5=high) : 1 | | Length Unit : Ang | | Post-processing setup (write *.nnkp) : F | *----------------------------------------------------------------------------* *------------------------------- WANNIERISE ---------------------------------* | Total number of iterations : 20 | | Number of CG steps before reset : 5 | | Trial step length for line search : 2.000 | | Iterations between writing output : 1 | | Iterations between backing up to disk : 100 | | Write r^2_nm to file : F | | Use guiding centre to control phases : F | *----------------------------------------------------------------------------* Time to read parameters 0.000 (sec) *---------------------------------- K-MESH ----------------------------------* +----------------------------------------------------------------------------+ | Distance to Nearest-Neighbour Shells | | ------------------------------------ | | Shell Distance (Ang^-1) Multiplicity | | ----- ----------------- ------------ | | 1 0.842849 8 | | 2 0.973238 6 | | 3 1.376366 12 | | 4 1.613932 24 | | 5 1.685697 8 | | 6 1.946475 6 | | 7 2.121122 24 | | 8 2.176226 24 | | 9 2.383936 24 | | 10 2.528546 32 | | 11 2.752732 12 | | 12 2.878876 48 | +----------------------------------------------------------------------------+ | The b-vectors are chosen automatically | | The following shells are used: 1 | +----------------------------------------------------------------------------+ | Shell # Nearest-Neighbours | | ----- -------------------- | | 1 8 | +----------------------------------------------------------------------------+ | Completeness relation is fully satisfied [Eq. (B1), PRB 56, 12847 (1997)] | +----------------------------------------------------------------------------+ | b_k Vectors (Ang^-1) and Weights (Ang^2) | | ---------------------------------------- | | No. b_k(x) b_k(y) b_k(z) w_b | | --- -------------------------------- -------- | | 1 0.486619 0.486619 0.486619 0.527876 | | 2 -0.486619 -0.486619 0.486619 0.527876 | | 3 -0.486619 0.486619 -0.486619 0.527876 | | 4 -0.486619 0.486619 0.486619 0.527876 | | 5 0.486619 -0.486619 0.486619 0.527876 | | 6 -0.486619 -0.486619 -0.486619 0.527876 | | 7 0.486619 0.486619 -0.486619 0.527876 | | 8 0.486619 -0.486619 -0.486619 0.527876 | +----------------------------------------------------------------------------+ | b_k Directions (Ang^-1) | | ----------------------- | | No. x y z | | --- -------------------------------- | | 1 0.486619 0.486619 0.486619 | | 2 -0.486619 -0.486619 0.486619 | | 3 -0.486619 0.486619 -0.486619 | | 4 -0.486619 0.486619 0.486619 | +----------------------------------------------------------------------------+ Writing checkpoint file diamond.lib.chk... done *------------------------------- WANNIERISE ---------------------------------* +--------------------------------------------------------------------+<-- CONV | Iter Delta Spread RMS Gradient Spread (Ang^2) Time |<-- CONV +--------------------------------------------------------------------+<-- CONV ------------------------------------------------------------------------------ Initial State WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58061390 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58061390 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58061390 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58061390 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32245560 0 0.232E+01 0.0000000000 2.3224556019 3.46 <-- CONV O_D= 0.0000000 O_OD= 0.3678346 O_TOT= 2.3224556 <-- SPRD ------------------------------------------------------------------------------ Cycle: 1 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58023486 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58023486 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58023486 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58023486 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32093943 1 -0.152E-02 0.0234565935 2.3209394335 3.47 <-- CONV O_D= 0.0000000 O_OD= 0.3663184 O_TOT= 2.3209394 <-- SPRD Delta: O_D= -0.4176236E-29 O_OD= -0.1516168E-02 O_TOT= -0.1516168E-02 <-- DLTA ------------------------------------------------------------------------------ Cycle: 2 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022673 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022673 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022673 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022673 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090693 2 -0.325E-04 0.0039154226 2.3209069320 3.48 <-- CONV O_D= 0.0000000 O_OD= 0.3662859 O_TOT= 2.3209069 <-- SPRD Delta: O_D= -0.1799131E-29 O_OD= -0.3250145E-04 O_TOT= -0.3250145E-04 <-- DLTA ------------------------------------------------------------------------------ Cycle: 3 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 3 -0.614E-06 0.0005711219 2.3209063179 3.48 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.1027749E-30 O_OD= -0.6141199E-06 O_TOT= -0.6141199E-06 <-- DLTA ------------------------------------------------------------------------------ Cycle: 4 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 4 -0.788E-10 0.0000061000 2.3209063178 3.49 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= -0.2389507E-30 O_OD= -0.7882672E-10 O_TOT= -0.7882672E-10 <-- DLTA ------------------------------------------------------------------------------ Cycle: 5 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 5 0.000E+00 0.0000006099 2.3209063178 3.50 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 6 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 6 0.000E+00 0.0000005949 2.3209063178 3.50 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 7 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 7 -0.835E-13 0.0000005645 2.3209063178 3.51 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= -0.5618240E-31 O_OD= -0.8337775E-13 O_TOT= -0.8348877E-13 <-- DLTA ------------------------------------------------------------------------------ Cycle: 8 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 8 -0.392E-12 0.0000005304 2.3209063178 3.51 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= -0.1453542E-29 O_OD= -0.3919087E-12 O_TOT= -0.3916867E-12 <-- DLTA ------------------------------------------------------------------------------ Cycle: 9 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 9 0.000E+00 0.0000003183 2.3209063178 3.52 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 10 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 10 -0.719E-13 0.0000003000 2.3209063178 3.52 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.1347175E-30 O_OD= -0.7227552E-13 O_TOT= -0.7194245E-13 <-- DLTA ------------------------------------------------------------------------------ Cycle: 11 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 11 -0.338E-13 0.0000002410 2.3209063178 3.53 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= -0.8712704E-30 O_OD= -0.3336220E-13 O_TOT= -0.3375078E-13 <-- DLTA ------------------------------------------------------------------------------ Cycle: 12 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 12 -0.191E-13 0.0000002124 2.3209063178 3.54 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.4007401E-31 O_OD= -0.1920686E-13 O_TOT= -0.1909584E-13 <-- DLTA ------------------------------------------------------------------------------ Cycle: 13 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 13 -0.488E-14 0.0000001831 2.3209063178 3.54 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.2132942E-29 O_OD= -0.4829470E-14 O_TOT= -0.4884981E-14 <-- DLTA ------------------------------------------------------------------------------ Cycle: 14 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 14 0.000E+00 0.0000001801 2.3209063178 3.55 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 15 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 15 -0.133E-14 0.0000001709 2.3209063178 3.56 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.5204445E-31 O_OD= -0.1609823E-14 O_TOT= -0.1332268E-14 <-- DLTA ------------------------------------------------------------------------------ Cycle: 16 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 16 0.000E+00 0.0000001633 2.3209063178 3.56 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 17 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 17 -0.240E-13 0.0000001476 2.3209063178 3.56 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= -0.1696416E-30 O_OD= -0.2420286E-13 O_TOT= -0.2398082E-13 <-- DLTA ------------------------------------------------------------------------------ Cycle: 18 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 18 0.000E+00 0.0000001014 2.3209063178 3.57 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 19 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 19 0.000E+00 0.0000000913 2.3209063178 3.57 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Cycle: 20 WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 20 0.000E+00 0.0000000891 2.3209063178 3.58 <-- CONV O_D= 0.0000000 O_OD= 0.3662853 O_TOT= 2.3209063 <-- SPRD Delta: O_D= 0.0000000E+00 O_OD= 0.0000000E+00 O_TOT= 0.0000000E+00 <-- DLTA ------------------------------------------------------------------------------ Final State WF centre and spread 1 ( 0.000000, 0.000000, 0.000000 ) 0.58022658 WF centre and spread 2 ( -0.806995, 0.806995, 0.000000 ) 0.58022658 WF centre and spread 3 ( 0.000000, 0.806995, 0.806995 ) 0.58022658 WF centre and spread 4 ( -0.806995, 0.000000, 0.806995 ) 0.58022658 Sum of centres and spreads ( -1.613990, 1.613990, 1.613990 ) 2.32090632 Spreads (Ang^2) Omega I = 1.954621046 ================ Omega D = 0.000000000 Omega OD = 0.366285272 Final Spread (Ang^2) Omega Total = 2.320906318 ------------------------------------------------------------------------------ Time for wannierise 0.116 (sec) Writing checkpoint file diamond.lib.chk... done Total Execution Time 0.164 (sec) *===========================================================================* | TIMING INFORMATION | *===========================================================================* | Tag Ncalls Time (s)| |---------------------------------------------------------------------------| |kmesh: get : 2 0.088| |wann: main : 1 0.116| *---------------------------------------------------------------------------* All done: wannier90 exiting espresso-5.1/PP/examples/WAN90_example/reference/diamond.sa.eig0000644000175000017500000001640012341372775022425 0ustar mbamba 1 1 -6.438652252327 2 1 19.397969790637 3 1 19.397969790637 4 1 19.397969790637 1 2 -4.380016396969 2 2 11.172207556971 3 2 17.093266450345 4 2 17.093266450345 1 3 1.332848442002 2 3 2.078125696460 3 3 15.805580035570 4 3 15.805580035570 1 4 -4.380016396968 2 4 11.172207556971 3 4 17.093266450345 4 4 17.093266450345 1 5 -4.380016396969 2 5 11.172207556971 3 5 17.093266450345 4 5 17.093266450345 1 6 -3.683932502208 2 6 13.863868679720 3 6 13.863868679720 4 6 14.573879775104 1 7 0.992452023097 2 7 6.096400025548 3 7 10.923568079329 4 7 12.916098085933 1 8 -1.001903579304 2 8 8.971237876729 3 8 9.460135452653 4 8 15.403020804067 1 9 1.332848442001 2 9 2.078125696460 3 9 15.805580035570 4 9 15.805580035570 1 10 0.992452023097 2 10 6.096400025547 3 10 10.923568079329 4 10 12.916098085933 1 11 4.249159419138 2 11 4.249159419138 3 11 11.042056535307 4 11 11.042056535307 1 12 0.992452023097 2 12 6.096400025547 3 12 10.923568079329 4 12 12.916098085933 1 13 -4.380016396968 2 13 11.172207556971 3 13 17.093266450345 4 13 17.093266450345 1 14 -1.001903579304 2 14 8.971237876729 3 14 9.460135452653 4 14 15.403020804066 1 15 0.992452023097 2 15 6.096400025547 3 15 10.923568079329 4 15 12.916098085933 1 16 -3.683932502208 2 16 13.863868679720 3 16 13.863868679720 4 16 14.573879775104 1 17 -4.380016396968 2 17 11.172207556971 3 17 17.093266450345 4 17 17.093266450345 1 18 -3.683932502208 2 18 13.863868679720 3 18 13.863868679720 4 18 14.573879775104 1 19 0.992452023097 2 19 6.096400025547 3 19 10.923568079329 4 19 12.916098085933 1 20 -1.001903579304 2 20 8.971237876729 3 20 9.460135452653 4 20 15.403020804067 1 21 -3.683932502208 2 21 13.863868679720 3 21 13.863868679720 4 21 14.573879775104 1 22 -4.380016396968 2 22 11.172207556971 3 22 17.093266450345 4 22 17.093266450345 1 23 -1.001903579304 2 23 8.971237876729 3 23 9.460135452653 4 23 15.403020804066 1 24 0.992452023097 2 24 6.096400025547 3 24 10.923568079329 4 24 12.916098085933 1 25 0.992452023097 2 25 6.096400025547 3 25 10.923568079329 4 25 12.916098085933 1 26 -1.001903579304 2 26 8.971237876729 3 26 9.460135452653 4 26 15.403020804066 1 27 0.992452023097 2 27 6.096400025547 3 27 10.923568079329 4 27 12.916098085933 1 28 5.705448619229 2 28 5.705448619229 3 28 7.945291355847 4 28 7.945291355847 1 29 -1.001903579304 2 29 8.971237876729 3 29 9.460135452653 4 29 15.403020804066 1 30 0.992452023097 2 30 6.096400025548 3 30 10.923568079329 4 30 12.916098085933 1 31 5.705448619229 2 31 5.705448619229 3 31 7.945291355847 4 31 7.945291355847 1 32 0.992452023097 2 32 6.096400025547 3 32 10.923568079329 4 32 12.916098085933 1 33 1.332848442002 2 33 2.078125696459 3 33 15.805580035570 4 33 15.805580035570 1 34 0.992452023097 2 34 6.096400025547 3 34 10.923568079329 4 34 12.916098085933 1 35 4.249159419138 2 35 4.249159419138 3 35 11.042056535307 4 35 11.042056535307 1 36 0.992452023097 2 36 6.096400025547 3 36 10.923568079329 4 36 12.916098085933 1 37 0.992452023097 2 37 6.096400025547 3 37 10.923568079329 4 37 12.916098085933 1 38 -1.001903579304 2 38 8.971237876729 3 38 9.460135452653 4 38 15.403020804067 1 39 0.992452023097 2 39 6.096400025547 3 39 10.923568079329 4 39 12.916098085933 1 40 5.705448619229 2 40 5.705448619229 3 40 7.945291355847 4 40 7.945291355847 1 41 4.249159419138 2 41 4.249159419138 3 41 11.042056535307 4 41 11.042056535307 1 42 0.992452023097 2 42 6.096400025547 3 42 10.923568079329 4 42 12.916098085933 1 43 1.332848442001 2 43 2.078125696460 3 43 15.805580035570 4 43 15.805580035570 1 44 0.992452023097 2 44 6.096400025547 3 44 10.923568079329 4 44 12.916098085933 1 45 0.992452023097 2 45 6.096400025547 3 45 10.923568079329 4 45 12.916098085933 1 46 5.705448619229 2 46 5.705448619229 3 46 7.945291355847 4 46 7.945291355847 1 47 0.992452023097 2 47 6.096400025548 3 47 10.923568079329 4 47 12.916098085933 1 48 -1.001903579304 2 48 8.971237876729 3 48 9.460135452653 4 48 15.403020804066 1 49 -4.380016396968 2 49 11.172207556971 3 49 17.093266450345 4 49 17.093266450345 1 50 -1.001903579304 2 50 8.971237876729 3 50 9.460135452653 4 50 15.403020804067 1 51 0.992452023097 2 51 6.096400025548 3 51 10.923568079329 4 51 12.916098085933 1 52 -3.683932502208 2 52 13.863868679720 3 52 13.863868679720 4 52 14.573879775104 1 53 -1.001903579304 2 53 8.971237876729 3 53 9.460135452653 4 53 15.403020804066 1 54 0.992452023097 2 54 6.096400025548 3 54 10.923568079329 4 54 12.916098085933 1 55 5.705448619229 2 55 5.705448619229 3 55 7.945291355847 4 55 7.945291355847 1 56 0.992452023097 2 56 6.096400025547 3 56 10.923568079329 4 56 12.916098085933 1 57 0.992452023097 2 57 6.096400025547 3 57 10.923568079329 4 57 12.916098085933 1 58 5.705448619229 2 58 5.705448619229 3 58 7.945291355847 4 58 7.945291355847 1 59 0.992452023097 2 59 6.096400025547 3 59 10.923568079329 4 59 12.916098085933 1 60 -1.001903579304 2 60 8.971237876729 3 60 9.460135452653 4 60 15.403020804066 1 61 -3.683932502208 2 61 13.863868679720 3 61 13.863868679720 4 61 14.573879775104 1 62 0.992452023097 2 62 6.096400025547 3 62 10.923568079329 4 62 12.916098085933 1 63 -1.001903579304 2 63 8.971237876729 3 63 9.460135452653 4 63 15.403020804066 1 64 -4.380016396968 2 64 11.172207556971 3 64 17.093266450345 4 64 17.093266450345 espresso-5.1/PP/examples/WAN90_example/reference/diamond.pw2wan.lib.in0000644000175000017500000000031612341372775023646 0ustar mbamba&inputpp outdir = '/home/arash/tmp/' prefix = 'di' seedname = 'diamond.lib' spin_component = 'none' write_mmn = .true. write_amn = .true. write_unk = .false. wan_mode = 'library' / espresso-5.1/PP/examples/WAN90_example/reference/diamond.pw2wan.sa.out0000644000175000017500000000561012341372775023706 0ustar mbamba Program POST-PROC v.3.1.1 starts ... Today is 9Oct2006 at 15:37: 9 Parallel version (MPI) Number of processors in use: 2 R & G space division: proc/pool = 2 Reading nscf_save data Planes per process (thick) : nr3 = 18 npp = 9 ncplane = 324 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 9 99 957 9 99 957 42 230 2 9 100 960 9 100 960 43 229 0 18 199 1917 18 199 1917 85 459 nbndx = 4 nbnd = 4 natomwfc = 8 npwx = 133 nelec = 8.00 nkb = 2 ngl = 52 Spin CASE ( default = unpolarized ) Wannier mode is: standalone ----------------- *** Reading nnkp ----------------- Checking info from wannier.nnkp file - Real lattice is ok - Reciprocal lattice is ok - K-points are ok - Number of wannier functions is ok ( 4) - All guiding functions are given Projections: 0.000000 0.000000 0.000000 0 1 1 1.000000 -0.250000 0.250000 0.000000 0 1 1 1.000000 0.000000 0.250000 0.250000 0 1 1 1.000000 -0.250000 0.000000 0.250000 0 1 1 1.000000 Reading data about k-point neighbours All neighbours are found Opening pp-files --------------- *** Compute A --------------- AMN iknum = 64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 AMN calculated --------------- *** Compute M --------------- MMN iknum = 64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 MMN calculated ---------------- *** Write bands ---------------- ----------------------------- *** Plot info is not printed ----------------------------- ------------ *** Stop pp ------------ espresso-5.1/PP/examples/WAN90_example/reference/diamond.nscf.in0000644000175000017500000000520612341372775022617 0ustar mbamba &control calculation='nscf' pseudo_dir='/home/arash/PW-pseudo', outdir='/home/arash/tmp', prefix='di' / &system ibrav= 2, celldm(1) =6.1, nat= 2, ntyp= 1, ecutwfc =40.0, nbnd = 4, / &electrons conv_thr = 1.0d-11 / ATOMIC_SPECIES C 12.0 C.pz-vbc.UPF ATOMIC_POSITIONS {crystal} C -0.125 -0.125 -0.125 C 0.125 0.125 0.125 K_POINTS {crystal} 64 0.0000 0.0000 0.0000 0.0156250 0.0000 0.2500 0.0000 0.0156250 0.0000 0.5000 0.0000 0.0156250 0.0000 0.7500 0.0000 0.0156250 0.2500 0.0000 0.0000 0.0156250 0.2500 0.2500 0.0000 0.0156250 0.2500 0.5000 0.0000 0.0156250 0.2500 0.7500 0.0000 0.0156250 0.5000 0.0000 0.0000 0.0156250 0.5000 0.2500 0.0000 0.0156250 0.5000 0.5000 0.0000 0.0156250 0.5000 0.7500 0.0000 0.0156250 0.7500 0.0000 0.0000 0.0156250 0.7500 0.2500 0.0000 0.0156250 0.7500 0.5000 0.0000 0.0156250 0.7500 0.7500 0.0000 0.0156250 0.0000 0.0000 0.2500 0.0156250 0.0000 0.2500 0.2500 0.0156250 0.0000 0.5000 0.2500 0.0156250 0.0000 0.7500 0.2500 0.0156250 0.2500 0.0000 0.2500 0.0156250 0.2500 0.2500 0.2500 0.0156250 0.2500 0.5000 0.2500 0.0156250 0.2500 0.7500 0.2500 0.0156250 0.5000 0.0000 0.2500 0.0156250 0.5000 0.2500 0.2500 0.0156250 0.5000 0.5000 0.2500 0.0156250 0.5000 0.7500 0.2500 0.0156250 0.7500 0.0000 0.2500 0.0156250 0.7500 0.2500 0.2500 0.0156250 0.7500 0.5000 0.2500 0.0156250 0.7500 0.7500 0.2500 0.0156250 0.0000 0.0000 0.5000 0.0156250 0.0000 0.2500 0.5000 0.0156250 0.0000 0.5000 0.5000 0.0156250 0.0000 0.7500 0.5000 0.0156250 0.2500 0.0000 0.5000 0.0156250 0.2500 0.2500 0.5000 0.0156250 0.2500 0.5000 0.5000 0.0156250 0.2500 0.7500 0.5000 0.0156250 0.5000 0.0000 0.5000 0.0156250 0.5000 0.2500 0.5000 0.0156250 0.5000 0.5000 0.5000 0.0156250 0.5000 0.7500 0.5000 0.0156250 0.7500 0.0000 0.5000 0.0156250 0.7500 0.2500 0.5000 0.0156250 0.7500 0.5000 0.5000 0.0156250 0.7500 0.7500 0.5000 0.0156250 0.0000 0.0000 0.7500 0.0156250 0.0000 0.2500 0.7500 0.0156250 0.0000 0.5000 0.7500 0.0156250 0.0000 0.7500 0.7500 0.0156250 0.2500 0.0000 0.7500 0.0156250 0.2500 0.2500 0.7500 0.0156250 0.2500 0.5000 0.7500 0.0156250 0.2500 0.7500 0.7500 0.0156250 0.5000 0.0000 0.7500 0.0156250 0.5000 0.2500 0.7500 0.0156250 0.5000 0.5000 0.7500 0.0156250 0.5000 0.7500 0.7500 0.0156250 0.7500 0.0000 0.7500 0.0156250 0.7500 0.2500 0.7500 0.0156250 0.7500 0.5000 0.7500 0.0156250 0.7500 0.7500 0.7500 0.0156250 espresso-5.1/PP/examples/WAN90_example/reference/diamond.pw2wan.lib.out0000644000175000017500000000431512341372775024052 0ustar mbamba Program POST-PROC v.3.1.1 starts ... Today is 9Oct2006 at 15:37:14 Parallel version (MPI) Number of processors in use: 2 R & G space division: proc/pool = 2 Reading nscf_save data Planes per process (thick) : nr3 = 18 npp = 9 ncplane = 324 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 9 99 957 9 99 957 42 230 2 9 100 960 9 100 960 43 229 0 18 199 1917 18 199 1917 85 459 nbndx = 4 nbnd = 4 natomwfc = 8 npwx = 133 nelec = 8.00 nkb = 2 ngl = 52 Spin CASE ( default = unpolarized ) Wannier mode is: library Setting up... MP grid is 4 x 4 x 4 - Number of atoms is ( 2) - Number of wannier functions is ( 4) - All guiding functions are given - All neighbours are found Opening pp-files Ylm expansion AMN iknum = 64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 AMN calculated MMN iknum = 64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 MMN calculated espresso-5.1/PP/examples/clean_all0000755000175000017500000000005512341372775015312 0ustar mbamba#!/bin/bash \rm -rf */results* >& /dev/null espresso-5.1/PP/examples/example02/0000755000175000017500000000000012341373041015232 5ustar mbambaespresso-5.1/PP/examples/example02/run_xml_example0000755000175000017500000006736012341372774020407 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use PostProc codes to calculate the DOS of Ni." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x dos.x projwfc.x kvecs_FS.x bands_FS.x" PSEUDO_LIST="Ni.pz-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for gnuplot GP_COMMAND=`which gnuplot 2>/dev/null` if [ "$GP_COMMAND" = "" ]; then $ECHO $ECHO "gnuplot not in PATH" $ECHO "Results will not be plotted" fi # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" DOS_COMMAND="$PARA_PREFIX $BIN_DIR/dos.x $PARA_POSTFIX" PROJWFC_COMMAND="$PARA_PREFIX $BIN_DIR/projwfc.x $PARA_POSTFIX" KVECS_COMMAND="$BIN_DIR/kvecs_FS.x " BANDS_COMMAND="$BIN_DIR/bands_FS.x " $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running dos.x as: $DOS_COMMAND" $ECHO " running projwfc.x as: $PROJWFC_COMMAND" $ECHO " running gnuplot as: $GP_COMMAND" $ECHO " running kvecs_FS.x as: $KVECS_COMMAND" $ECHO " running bands_FS.x as: $BANDS_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > ni.scf.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pz-nd-rrkjus.UPF 0.7 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 24.0 288.0 0.7 1.0e-10 smearing methfessel-paxton 0.02 2 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Ni...\c" $PW_COMMAND < ni.scf.xml > ni.scf.out check_failure $? $ECHO " done" # band structure calculation along Delta and Sigma lines cat > ni.band.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pz-nd-rrkjus.UPF 0.7 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 24.0 288.0 0.7 1.0e-10 smearing methfessel-paxton 0.02 2 1.000000000 0.000000000 0.000000000 1 0.975000000 0.000000000 0.000000000 2 0.950000000 0.000000000 0.000000000 3 0.925000000 0.000000000 0.000000000 4 0.900000000 0.000000000 0.000000000 5 0.875000000 0.000000000 0.000000000 6 0.850000000 0.000000000 0.000000000 7 0.825000000 0.000000000 0.000000000 8 0.800000000 0.000000000 0.000000000 9 0.775000000 0.000000000 0.000000000 10 0.750000000 0.000000000 0.000000000 11 0.725000000 0.000000000 0.000000000 12 0.700000000 0.000000000 0.000000000 13 0.675000000 0.000000000 0.000000000 14 0.650000000 0.000000000 0.000000000 15 0.625000000 0.000000000 0.000000000 16 0.600000000 0.000000000 0.000000000 17 0.575000000 0.000000000 0.000000000 18 0.550000000 0.000000000 0.000000000 19 0.525000000 0.000000000 0.000000000 20 0.500000000 0.000000000 0.000000000 21 0.475000000 0.000000000 0.000000000 22 0.450000000 0.000000000 0.000000000 23 0.425000000 0.000000000 0.000000000 24 0.400000000 0.000000000 0.000000000 25 0.375000000 0.000000000 0.000000000 26 0.350000000 0.000000000 0.000000000 27 0.325000000 0.000000000 0.000000000 28 0.300000000 0.000000000 0.000000000 29 0.275000000 0.000000000 0.000000000 30 0.250000000 0.000000000 0.000000000 31 0.225000000 0.000000000 0.000000000 32 0.200000000 0.000000000 0.000000000 33 0.175000000 0.000000000 0.000000000 34 0.150000000 0.000000000 0.000000000 35 0.125000000 0.000000000 0.000000000 36 0.100000000 0.000000000 0.000000000 37 0.075000000 0.000000000 0.000000000 38 0.050000000 0.000000000 0.000000000 39 0.025000000 0.000000000 0.000000000 40 0.000000000 0.000000000 0.000000000 41 0.017857142 0.017857142 0.000000000 42 0.035714285 0.035714285 0.000000000 43 0.053571428 0.053571428 0.000000000 44 0.071428571 0.071428571 0.000000000 45 0.089285714 0.089285714 0.000000000 46 0.107142857 0.107142857 0.000000000 47 0.125000000 0.125000000 0.000000000 48 0.142857142 0.142857142 0.000000000 49 0.160714285 0.160714285 0.000000000 50 0.178571428 0.178571428 0.000000000 51 0.196428571 0.196428571 0.000000000 52 0.214285714 0.214285714 0.000000000 53 0.232142857 0.232142857 0.000000000 54 0.250000000 0.250000000 0.000000000 55 0.267857142 0.267857142 0.000000000 56 0.285714285 0.285714285 0.000000000 57 0.303571428 0.303571428 0.000000000 58 0.321428571 0.321428571 0.000000000 59 0.339285714 0.339285714 0.000000000 60 0.357142857 0.357142857 0.000000000 61 0.375000000 0.375000000 0.000000000 62 0.392857142 0.392857142 0.000000000 63 0.410714285 0.410714285 0.000000000 64 0.428571428 0.428571428 0.000000000 65 0.446428571 0.446428571 0.000000000 66 0.464285714 0.464285714 0.000000000 67 0.482142857 0.482142857 0.000000000 68 0.500000000 0.500000000 0.000000000 69 0.517857142 0.517857142 0.000000000 70 0.535714285 0.535714285 0.000000000 71 0.553571428 0.553571428 0.000000000 72 0.571428571 0.571428571 0.000000000 73 0.589285714 0.589285714 0.000000000 74 0.607142857 0.607142857 0.000000000 75 0.625000000 0.625000000 0.000000000 76 0.642857142 0.642857142 0.000000000 77 0.660714285 0.660714285 0.000000000 78 0.678571428 0.678571428 0.000000000 79 0.696428571 0.696428571 0.000000000 80 0.714285714 0.714285714 0.000000000 81 0.732142857 0.732142857 0.000000000 82 0.750000000 0.750000000 0.000000000 83 0.767857142 0.767857142 0.000000000 84 0.785714285 0.785714285 0.000000000 85 0.803571428 0.803571428 0.000000000 86 0.821428571 0.821428571 0.000000000 87 0.839285714 0.839285714 0.000000000 88 0.857142857 0.857142857 0.000000000 89 0.875000000 0.875000000 0.000000000 90 0.892857142 0.892857142 0.000000000 91 0.910714285 0.910714285 0.000000000 92 0.928571428 0.928571428 0.000000000 93 0.946428571 0.946428571 0.000000000 94 0.964285714 0.964285714 0.000000000 95 0.982142857 0.982142857 0.000000000 96 1.000000000 1.000000000 0.000000000 97 EOF $ECHO " running the band-structure calculation for Ni...\c" $PW_COMMAND < ni.band.xml > ni.band.out check_failure $? $ECHO " done" # K-resolved PDOS calculation along Delta and Sigma lines computed above cat > ni.kpdos.in << EOF &inputpp outdir='$TMP_DIR/' prefix='ni' ngauss=0, degauss=0.036748 DeltaE=0.01 kresolveddos=.true. filpdos='ni.k' / EOF $ECHO " running k-resolved PDOS calculation for Ni...\c" $PROJWFC_COMMAND < ni.kpdos.in > ni.kpdos.out check_failure $? $ECHO " done" # # if gnuplot was found, the results are plotted # if [ "$GP_COMMAND" = "" ]; then break else cat > gnuplot.tmp < ni.dos.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pz-nd-rrkjus.UPF 0.7 0.0 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 24.0 288.0 0.7 1.0e-10 tetrahedra 8 2 12 12 12 0 0 0 EOF cat > ni.dos2.in << EOF &inputpp outdir='$TMP_DIR/' prefix='ni' fildos='ni.dos', Emin=5.0, Emax=25.0, DeltaE=0.1 / EOF $ECHO " running DOS calculation for Ni...\c" $PW_COMMAND < ni.dos.xml > ni.dos.out check_failure $? $DOS_COMMAND < ni.dos2.in > ni.dos2.out check_failure $? $ECHO " done" cat > ni.pdos.in << EOF &inputpp outdir='$TMP_DIR/' prefix='ni' Emin=5.0, Emax=25.0, DeltaE=0.1 ngauss=1, degauss=0.02 / EOF $ECHO " running PDOS calculation for Ni...\c" $PROJWFC_COMMAND < ni.pdos.in > ni.pdos.out check_failure $? $ECHO " done" $ECHO " Fermi Surface plot Spin-Polarized case...\c" # self-consistent calculation - Spin-Polarized (SP) case cat > ni.scf_SP.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pz-nd-rrkjus.UPF 0.8 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 24.0 288.0 0.7 1.0e-10 smearing methfessel-paxton 0.02 2 8 8 8 0 0 0 EOF $ECHO " running the scf calculation spin-polarization ... \c" $PW_COMMAND < ni.scf_SP.xml > ni.scf0.SP.out check_failure $? $ECHO " done" # # prepare input file ni.fs_SP.in # Sysname='ni' nabc=' 16 16 16 ' n_start=3 n_last=6 # E_Fermi=`grep Fermi ni.scf0.SP.out | cut -c 26-36` a1=`grep 'b(1)' ni.scf.out | cut -c 24-54` a2=`grep 'b(2)' ni.scf.out | cut -c 24-54` a3=`grep 'b(3)' ni.scf.out | cut -c 24-54` cat > kvecs_FS.in < kvecs_FS.out check_failure $? npoints=`head -n 1 kvecs_$Sysname | tr -d ' '` points=`sed -n -e '2,$p' kvecs_$Sysname` cat > ni.fs_SP.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pz-nd-rrkjus.UPF 0.8 0.0 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 24.0 288.0 0.7 1.0e-10 cg 8 2 $points EOF # input file ni.fs.in ready $ECHO " running the Fermi Surface calculation ... \c" $PW_COMMAND < ni.fs_SP.xml > ni.fs.SP.out check_failure $? $ECHO " done" # prepare input data (input_FS, Bands.out) for bands_FS mv ni.fs.SP.out Bands_SP.out cat > input_FS < bands_fs.out check_failure $? mv Bands_FS_up.bxsf $Sysname.fs_up.bxsf mv Bands_FS_down.bxsf $Sysname.fs_down.bxsf ################## $ECHO " Fermi Surface plot Non-Spin-Polarized (NSP) case...\c" # self-consistent calculation - Non-Spin-Polarised case cat > ni.scf_NSP.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pz-nd-rrkjus.UPF 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 24.0 288.0 0.7 1.0e-10 smearing methfessel-paxton 0.02 8 8 8 0 0 0 EOF $ECHO " running the scf calculation non spin-polarized case ... \c" $PW_COMMAND < ni.scf_NSP.xml > ni.scf0.NSP.out check_failure $? $ECHO " done" # # prepare input file ni.fs.in # Sysname='ni' nabc=' 16 16 16 ' n_start=3 n_last=6 # E_Fermi=`grep Fermi ni.scf0.NSP.out | cut -c 26-36` a1=`grep 'b(1)' ni.scf.out | cut -c 24-54` a2=`grep 'b(2)' ni.scf.out | cut -c 24-54` a3=`grep 'b(3)' ni.scf.out | cut -c 24-54` cat > kvecs_FS.in < kvecs_FS.out npoints=`head -n 1 kvecs_$Sysname | tr -d ' '` points=`sed -n -e '2,$p' kvecs_$Sysname` cat > ni.fs_NSP.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pz-nd-rrkjus.UPF 0.0 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 24.0 288.0 0.7 1.0e-10 cg 8 $points EOF # input file ni.fs.in ready $ECHO " running the Fermi Surface calculation ... \c" $PW_COMMAND < ni.fs_NSP.xml > ni.fs_NSP.out check_failure $? $ECHO " done" # prepare input data (input_FS, Bands.out) for bands_FS mv ni.fs_NSP.out Bands_NSP.out cat > input_FS < bands_fs.out check_failure $? mv Bands_FS.bxsf ni.fs_NSP.bxsf $ECHO " Fermi surface plot: use 'xcrysden --bxsf ni.fs_NSP.bxsf' to plot ...\c" $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PP/examples/example02/README0000644000175000017500000000656512341372774016142 0ustar mbamba This example shows how to calculate the Density of States (DOS) and how to plot the Fermi Surface of Ni . The calculation proceeds as follows (for the meaning of the cited input variables see the appropriate INPUT_* file) 1) make a self-consistent calculation for Ni (like in example 1). (input=ni.scf.in, output=ni.scf.out) 2) make a band structure calculation for Ni (input=ni.dos.in, output=ni.dos.out) on a uniform k-point grid (automatically generated). In this example the Fermi level is calculated with the tetrahedra method (not in the actual band structure calculation but in the subsequent DOS calculation). If preferred, a gaussian broadening may be specified in this or in the subsequent step. 3) the program dos.x reads file filpun (ni.pun) and calculates the DOS on a uniform grid of energies from Emin to Emax, with grid step Delta E. The output DOS is in file ni.dos, ready for plotting. 4) the program projfwc.x projects the crystal wavefunctions on an orthogonalized basis set of atomic orbitals, calculates the Loewdin charges, spilling parameter, and the projected DOS (total DOS in file 'ni.pdos_tot', s and d component in files 'ni.pdos_atm#1(Ni)_wfc#1(s)' and 'ni.pdos_atm#1(Ni)_wfc#2(d)' respectively). (input=ni.pdos.in, output=ni.pdos.in) 5) Fermi Surface plot, courtesy of Eyvaz Isaev Theoretical Physics Department Moscow State Institute of Steel and Alloys (eyvaz_isaev@yahoo.com, e.isaev@misis.ru) First, one generates a grid of k-points (all of them, not only those in the Irreducible Brilloin Zone) using auxiliary code kvecs_FS.x Then, the non-scf calculation is performed Then, auxiliary code bands_FS.x collects the data and produces a file ni.fs.bxsf that can be read by XCrySDen (www.xcrysden.org) as: xcrysden --bxsf ni.fs.bxsf Additional info for customization of the script: # # A user has to edit so-called "user part" in order to define some required # parameters. # # Sysname - a nickname for your system # Calc_Type - The Fermi Surface calculations (FS) or band-structure # calculations (Band) which will be included later. # Presently band-structure calculations could be carried out # by means of plotband.x from PP (postprocessing) directory # or a little package distributed by E.Isaev (posted to pw_forum). # nabc - a number for dividing of each edge of a parallelepiped. # Be careful, the total number of generated k-points is # (na+1)*(nb+1)*(nc+1), i.e. including \Gamma-point. # n_start - starting band's number for the Fermi Surface calculations. # It is obvious, we have to deal with the bands crossing the # Fermi level. # n_last - last band's number for FS calculations # # That's all!!! Present values in the script (may be edited): Sysname='ni' Calc_Type='FS' nabc=' 16 16 16 ' n_start=2 n_last=5 # # # Nota Bene : You can take more bands and then choose from a XCrySDen menu # only those bands which cross the Fermi level # Nota Bene : If you have mistaken choosing bands to be considered for the # FS construction, you do not need to restart all calculations. # Just edit "bands_FS" file and restart "bands_FS.x" manually. # It will read Bands.out and result Bands.bxsf which you can # rename as you like. # espresso-5.1/PP/examples/example02/run_example0000755000175000017500000004256412341372774017526 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use PostProc codes to calculate the DOS of Ni." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x dos.x projwfc.x kvecs_FS.x bands_FS.x" PSEUDO_LIST="Ni.pz-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for gnuplot GP_COMMAND=`which gnuplot 2>/dev/null` if [ "$GP_COMMAND" = "" ]; then $ECHO $ECHO "gnuplot not in PATH" $ECHO "Results will not be plotted" fi # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" DOS_COMMAND="$PARA_PREFIX $BIN_DIR/dos.x $PARA_POSTFIX" PROJWFC_COMMAND="$PARA_PREFIX $BIN_DIR/projwfc.x $PARA_POSTFIX" KVECS_COMMAND="$BIN_DIR/kvecs_FS.x " BANDS_COMMAND="$BIN_DIR/bands_FS.x " $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO " running dos.x as: $DOS_COMMAND" $ECHO " running projwfc.x as: $PROJWFC_COMMAND" $ECHO " running gnuplot as: $GP_COMMAND" $ECHO " running kvecs_FS.x as: $KVECS_COMMAND" $ECHO " running bands_FS.x as: $BANDS_COMMAND" $ECHO # self-consistent calculation cat > ni.scf.in << EOF &control calculation='scf' restart_mode='from_scratch', prefix='ni', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin = 2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='methfessel-paxton', degauss=0.02 / &electrons conv_thr = 1.0e-10 mixing_beta = 0.7 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS 60 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Ni...\c" $PW_COMMAND < ni.scf.in > ni.scf.out check_failure $? $ECHO " done" # band structure calculation along Delta and Sigma lines cat > ni.band.in << EOF &control calculation='bands' restart_mode='from_scratch', prefix='ni', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin = 2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='methfessel-paxton', degauss=0.02 / &electrons conv_thr = 1.0e-10 mixing_beta = 0.7 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS 97 1.000000000 0.000000000 0.000000000 1 0.975000000 0.000000000 0.000000000 2 0.950000000 0.000000000 0.000000000 3 0.925000000 0.000000000 0.000000000 4 0.900000000 0.000000000 0.000000000 5 0.875000000 0.000000000 0.000000000 6 0.850000000 0.000000000 0.000000000 7 0.825000000 0.000000000 0.000000000 8 0.800000000 0.000000000 0.000000000 9 0.775000000 0.000000000 0.000000000 10 0.750000000 0.000000000 0.000000000 11 0.725000000 0.000000000 0.000000000 12 0.700000000 0.000000000 0.000000000 13 0.675000000 0.000000000 0.000000000 14 0.650000000 0.000000000 0.000000000 15 0.625000000 0.000000000 0.000000000 16 0.600000000 0.000000000 0.000000000 17 0.575000000 0.000000000 0.000000000 18 0.550000000 0.000000000 0.000000000 19 0.525000000 0.000000000 0.000000000 20 0.500000000 0.000000000 0.000000000 21 0.475000000 0.000000000 0.000000000 22 0.450000000 0.000000000 0.000000000 23 0.425000000 0.000000000 0.000000000 24 0.400000000 0.000000000 0.000000000 25 0.375000000 0.000000000 0.000000000 26 0.350000000 0.000000000 0.000000000 27 0.325000000 0.000000000 0.000000000 28 0.300000000 0.000000000 0.000000000 29 0.275000000 0.000000000 0.000000000 30 0.250000000 0.000000000 0.000000000 31 0.225000000 0.000000000 0.000000000 32 0.200000000 0.000000000 0.000000000 33 0.175000000 0.000000000 0.000000000 34 0.150000000 0.000000000 0.000000000 35 0.125000000 0.000000000 0.000000000 36 0.100000000 0.000000000 0.000000000 37 0.075000000 0.000000000 0.000000000 38 0.050000000 0.000000000 0.000000000 39 0.025000000 0.000000000 0.000000000 40 0.000000000 0.000000000 0.000000000 41 0.017857142 0.017857142 0.000000000 42 0.035714285 0.035714285 0.000000000 43 0.053571428 0.053571428 0.000000000 44 0.071428571 0.071428571 0.000000000 45 0.089285714 0.089285714 0.000000000 46 0.107142857 0.107142857 0.000000000 47 0.125000000 0.125000000 0.000000000 48 0.142857142 0.142857142 0.000000000 49 0.160714285 0.160714285 0.000000000 50 0.178571428 0.178571428 0.000000000 51 0.196428571 0.196428571 0.000000000 52 0.214285714 0.214285714 0.000000000 53 0.232142857 0.232142857 0.000000000 54 0.250000000 0.250000000 0.000000000 55 0.267857142 0.267857142 0.000000000 56 0.285714285 0.285714285 0.000000000 57 0.303571428 0.303571428 0.000000000 58 0.321428571 0.321428571 0.000000000 59 0.339285714 0.339285714 0.000000000 60 0.357142857 0.357142857 0.000000000 61 0.375000000 0.375000000 0.000000000 62 0.392857142 0.392857142 0.000000000 63 0.410714285 0.410714285 0.000000000 64 0.428571428 0.428571428 0.000000000 65 0.446428571 0.446428571 0.000000000 66 0.464285714 0.464285714 0.000000000 67 0.482142857 0.482142857 0.000000000 68 0.500000000 0.500000000 0.000000000 69 0.517857142 0.517857142 0.000000000 70 0.535714285 0.535714285 0.000000000 71 0.553571428 0.553571428 0.000000000 72 0.571428571 0.571428571 0.000000000 73 0.589285714 0.589285714 0.000000000 74 0.607142857 0.607142857 0.000000000 75 0.625000000 0.625000000 0.000000000 76 0.642857142 0.642857142 0.000000000 77 0.660714285 0.660714285 0.000000000 78 0.678571428 0.678571428 0.000000000 79 0.696428571 0.696428571 0.000000000 80 0.714285714 0.714285714 0.000000000 81 0.732142857 0.732142857 0.000000000 82 0.750000000 0.750000000 0.000000000 83 0.767857142 0.767857142 0.000000000 84 0.785714285 0.785714285 0.000000000 85 0.803571428 0.803571428 0.000000000 86 0.821428571 0.821428571 0.000000000 87 0.839285714 0.839285714 0.000000000 88 0.857142857 0.857142857 0.000000000 89 0.875000000 0.875000000 0.000000000 90 0.892857142 0.892857142 0.000000000 91 0.910714285 0.910714285 0.000000000 92 0.928571428 0.928571428 0.000000000 93 0.946428571 0.946428571 0.000000000 94 0.964285714 0.964285714 0.000000000 95 0.982142857 0.982142857 0.000000000 96 1.000000000 1.000000000 0.000000000 97 EOF $ECHO " running the band-structure calculation for Ni...\c" $PW_COMMAND < ni.band.in > ni.band.out check_failure $? $ECHO " done" # K-resolved PDOS calculation along Delta and Sigma lines computed above cat > ni.kpdos.in << EOF &projwfc outdir='$TMP_DIR/' prefix='ni' ngauss=0, degauss=0.036748 DeltaE=0.01 kresolveddos=.true. filpdos='ni.k' / EOF $ECHO " running k-resolved PDOS calculation for Ni...\c" $PROJWFC_COMMAND < ni.kpdos.in > ni.kpdos.out check_failure $? $ECHO " done" # # if gnuplot was found, the results are plotted # if [ "$GP_COMMAND" = "" ]; then break else cat > gnuplot.tmp < ni.dos.in << EOF &control calculation='nscf' prefix='ni', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin = 2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, nbnd=8, occupations='tetrahedra' / &electrons conv_thr = 1.0e-10 mixing_beta = 0.7 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS {automatic} 12 12 12 0 0 0 EOF cat > ni.dos2.in << EOF &dos outdir='$TMP_DIR/' prefix='ni' fildos='ni.dos', Emin=5.0, Emax=25.0, DeltaE=0.1 / EOF $ECHO " running DOS calculation for Ni...\c" $PW_COMMAND < ni.dos.in > ni.dos.out check_failure $? $DOS_COMMAND < ni.dos2.in > ni.dos2.out check_failure $? $ECHO " done" cat > ni.pdos.in << EOF &projwfc outdir='$TMP_DIR/' prefix='ni' Emin=5.0, Emax=25.0, DeltaE=0.1 ngauss=1, degauss=0.02 / EOF $ECHO " running PDOS calculation for Ni...\c" $PROJWFC_COMMAND < ni.pdos.in > ni.pdos.out check_failure $? $ECHO " done" $ECHO $ECHO " Fermi Surface plot Spin-Polarized case..." # self-consistent calculation - Spin-Polarized (SP) case cat > ni.scf_SP.in << EOF &control calculation='scf' restart_mode='from_scratch', prefix='ni', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='methfessel-paxton', degauss=0.02 nspin=2, starting_magnetization(1)=0.8 / &electrons conv_thr = 1.0e-10 mixing_beta = 0.7 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS {automatic} 8 8 8 0 0 0 EOF $ECHO " running the scf calculation spin-polarization ... \c" $PW_COMMAND < ni.scf_SP.in > ni.scf0.SP.out check_failure $? $ECHO " done" # # prepare input file ni.fs_SP.in # Sysname='ni' nabc=' 16 16 16 ' n_start=3 n_last=6 # E_Fermi=`grep Fermi ni.scf0.SP.out | cut -c 26-36` a1=`grep 'b(1)' ni.scf0.SP.out | cut -c 24-54` a2=`grep 'b(2)' ni.scf0.SP.out | cut -c 24-54` a3=`grep 'b(3)' ni.scf0.SP.out | cut -c 24-54` cat > kvecs_FS.in < kvecs_FS.out check_failure $? cat > ni.fs_SP.in << EOF &control calculation='bands' prefix='ni', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' verbosity='high' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, ecutwfc = 24.0, ecutrho = 288.0, nbnd=8 nspin=2, starting_magnetization(1)=0.8 / &electrons diagonalization='cg' conv_thr = 1.0e-10 mixing_beta = 0.7 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS EOF cat kvecs_$Sysname >> ni.fs_SP.in # input file ni.fs.in ready $ECHO " running the Fermi Surface calculation ... \c" $PW_COMMAND < ni.fs_SP.in > ni.fs.SP.out check_failure $? $ECHO " done" # prepare input data (input_FS, Bands.out) for bands_FS mv ni.fs.SP.out Bands_SP.out cat > input_FS < bands_fs.out check_failure $? mv Bands_FS_up.bxsf $Sysname.fs_up.bxsf mv Bands_FS_down.bxsf $Sysname.fs_down.bxsf ################## $ECHO $ECHO " Fermi Surface plot Non-Spin-Polarized (NSP) case..." # self-consistent calculation - Non-Spin-Polarised case cat > ni.scf_NSP.in << EOF &control calculation='scf' restart_mode='from_scratch', prefix='ni', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='methfessel-paxton', degauss=0.02 / &electrons conv_thr = 1.0e-10 mixing_beta = 0.7 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS {automatic} 8 8 8 0 0 0 EOF $ECHO " running the scf calculation non spin-polarized case ... \c" $PW_COMMAND < ni.scf_NSP.in > ni.scf0.NSP.out check_failure $? $ECHO " done" # # prepare input file ni.fs.in # Sysname='ni' nabc=' 16 16 16 ' n_start=3 n_last=6 # E_Fermi=`grep Fermi ni.scf0.NSP.out | cut -c 26-36` a1=`grep 'b(1)' ni.scf0.NSP.out | cut -c 24-54` a2=`grep 'b(2)' ni.scf0.NSP.out | cut -c 24-54` a3=`grep 'b(3)' ni.scf0.NSP.out | cut -c 24-54` cat > kvecs_FS.in < kvecs_FS.out cat > ni.fs_NSP.in << EOF &control calculation='bands' prefix='ni', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' verbosity='high' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, ecutwfc = 24.0, ecutrho = 288.0, nbnd=8 / &electrons diagonalization='cg' conv_thr = 1.0e-10 mixing_beta = 0.7 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS EOF cat kvecs_$Sysname >> ni.fs_NSP.in # input file ni.fs.in ready $ECHO " running the Fermi Surface calculation ... \c" $PW_COMMAND < ni.fs_NSP.in > ni.fs_NSP.out check_failure $? $ECHO " done" # prepare input data (input_FS, Bands.out) for bands_FS mv ni.fs_NSP.out Bands_NSP.out cat > input_FS < bands_fs.out check_failure $? mv Bands_FS.bxsf ni.fs_NSP.bxsf $ECHO $ECHO " Fermi surface plot: use 'xcrysden --bxsf ni.fs_NSP.bxsf' to plot ...\c" $ECHO " done" $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/ni.* $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PP/examples/example02/reference/0000755000175000017500000000000012341373041017170 5ustar mbambaespresso-5.1/PP/examples/example02/reference/ni.dos.out0000644000175000017500000010605512341372774021136 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:42:11 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-10 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file NiUS.RRKJ3.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 144 (tetrahedron method) cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0005787 k( 2) = ( -0.0833333 0.0833333 -0.0833333), wk = 0.0046296 k( 3) = ( -0.1666667 0.1666667 -0.1666667), wk = 0.0046296 k( 4) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0046296 k( 5) = ( -0.3333333 0.3333333 -0.3333333), wk = 0.0046296 k( 6) = ( -0.4166667 0.4166667 -0.4166667), wk = 0.0046296 k( 7) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0023148 k( 8) = ( 0.0000000 0.1666667 0.0000000), wk = 0.0034722 k( 9) = ( -0.0833333 0.2500000 -0.0833333), wk = 0.0138889 k( 10) = ( -0.1666667 0.3333333 -0.1666667), wk = 0.0138889 k( 11) = ( -0.2500000 0.4166667 -0.2500000), wk = 0.0138889 k( 12) = ( -0.3333333 0.5000000 -0.3333333), wk = 0.0138889 k( 13) = ( 0.5833333 -0.4166667 0.5833333), wk = 0.0138889 k( 14) = ( 0.5000000 -0.3333333 0.5000000), wk = 0.0138889 k( 15) = ( 0.4166667 -0.2500000 0.4166667), wk = 0.0138889 k( 16) = ( 0.3333333 -0.1666667 0.3333333), wk = 0.0138889 k( 17) = ( 0.2500000 -0.0833333 0.2500000), wk = 0.0138889 k( 18) = ( 0.1666667 0.0000000 0.1666667), wk = 0.0069444 k( 19) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0034722 k( 20) = ( -0.0833333 0.4166667 -0.0833333), wk = 0.0138889 k( 21) = ( -0.1666667 0.5000000 -0.1666667), wk = 0.0138889 k( 22) = ( -0.2500000 0.5833333 -0.2500000), wk = 0.0138889 k( 23) = ( 0.6666667 -0.3333333 0.6666667), wk = 0.0138889 k( 24) = ( 0.5833333 -0.2500000 0.5833333), wk = 0.0138889 k( 25) = ( 0.5000000 -0.1666667 0.5000000), wk = 0.0138889 k( 26) = ( 0.4166667 -0.0833333 0.4166667), wk = 0.0138889 k( 27) = ( 0.3333333 0.0000000 0.3333333), wk = 0.0069444 k( 28) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0034722 k( 29) = ( -0.0833333 0.5833333 -0.0833333), wk = 0.0138889 k( 30) = ( -0.1666667 0.6666667 -0.1666667), wk = 0.0138889 k( 31) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0138889 k( 32) = ( 0.6666667 -0.1666667 0.6666667), wk = 0.0138889 k( 33) = ( 0.5833333 -0.0833333 0.5833333), wk = 0.0138889 k( 34) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0069444 k( 35) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0034722 k( 36) = ( -0.0833333 0.7500000 -0.0833333), wk = 0.0138889 k( 37) = ( 0.8333333 -0.1666667 0.8333333), wk = 0.0138889 k( 38) = ( 0.7500000 -0.0833333 0.7500000), wk = 0.0138889 k( 39) = ( 0.6666667 0.0000000 0.6666667), wk = 0.0069444 k( 40) = ( 0.0000000 0.8333333 0.0000000), wk = 0.0034722 k( 41) = ( 0.9166667 -0.0833333 0.9166667), wk = 0.0138889 k( 42) = ( 0.8333333 0.0000000 0.8333333), wk = 0.0069444 k( 43) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0017361 k( 44) = ( -0.1666667 0.3333333 0.0000000), wk = 0.0138889 k( 45) = ( -0.2500000 0.4166667 -0.0833333), wk = 0.0277778 k( 46) = ( -0.3333333 0.5000000 -0.1666667), wk = 0.0277778 k( 47) = ( 0.5833333 -0.4166667 0.7500000), wk = 0.0277778 k( 48) = ( 0.5000000 -0.3333333 0.6666667), wk = 0.0138889 k( 49) = ( -0.1666667 0.5000000 0.0000000), wk = 0.0138889 k( 50) = ( -0.2500000 0.5833333 -0.0833333), wk = 0.0277778 k( 51) = ( 0.6666667 -0.3333333 0.8333333), wk = 0.0277778 k( 52) = ( 0.5833333 -0.2500000 0.7500000), wk = 0.0277778 k( 53) = ( 0.5000000 -0.1666667 0.6666667), wk = 0.0277778 k( 54) = ( 0.4166667 -0.0833333 0.5833333), wk = 0.0277778 k( 55) = ( 0.3333333 0.0000000 0.5000000), wk = 0.0138889 k( 56) = ( -0.1666667 0.6666667 0.0000000), wk = 0.0138889 k( 57) = ( 0.7500000 -0.2500000 0.9166667), wk = 0.0277778 k( 58) = ( 0.6666667 -0.1666667 0.8333333), wk = 0.0277778 k( 59) = ( 0.5833333 -0.0833333 0.7500000), wk = 0.0277778 k( 60) = ( 0.5000000 0.0000000 0.6666667), wk = 0.0138889 k( 61) = ( 0.8333333 -0.1666667 1.0000000), wk = 0.0138889 k( 62) = ( 0.7500000 -0.0833333 0.9166667), wk = 0.0277778 k( 63) = ( 0.6666667 0.0000000 0.8333333), wk = 0.0138889 k( 64) = ( -0.1666667 -1.0000000 0.0000000), wk = 0.0069444 k( 65) = ( 0.6666667 -0.3333333 1.0000000), wk = 0.0138889 k( 66) = ( 0.5833333 -0.2500000 0.9166667), wk = 0.0277778 k( 67) = ( 0.5000000 -0.1666667 0.8333333), wk = 0.0138889 k( 68) = ( 0.6666667 -0.1666667 1.0000000), wk = 0.0138889 k( 69) = ( 0.5833333 -0.0833333 0.9166667), wk = 0.0277778 k( 70) = ( 0.5000000 0.0000000 0.8333333), wk = 0.0138889 k( 71) = ( -0.3333333 -1.0000000 0.0000000), wk = 0.0069444 k( 72) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0034722 k( 73) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0005787 k( 74) = ( -0.0833333 0.0833333 -0.0833333), wk = 0.0046296 k( 75) = ( -0.1666667 0.1666667 -0.1666667), wk = 0.0046296 k( 76) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0046296 k( 77) = ( -0.3333333 0.3333333 -0.3333333), wk = 0.0046296 k( 78) = ( -0.4166667 0.4166667 -0.4166667), wk = 0.0046296 k( 79) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0023148 k( 80) = ( 0.0000000 0.1666667 0.0000000), wk = 0.0034722 k( 81) = ( -0.0833333 0.2500000 -0.0833333), wk = 0.0138889 k( 82) = ( -0.1666667 0.3333333 -0.1666667), wk = 0.0138889 k( 83) = ( -0.2500000 0.4166667 -0.2500000), wk = 0.0138889 k( 84) = ( -0.3333333 0.5000000 -0.3333333), wk = 0.0138889 k( 85) = ( 0.5833333 -0.4166667 0.5833333), wk = 0.0138889 k( 86) = ( 0.5000000 -0.3333333 0.5000000), wk = 0.0138889 k( 87) = ( 0.4166667 -0.2500000 0.4166667), wk = 0.0138889 k( 88) = ( 0.3333333 -0.1666667 0.3333333), wk = 0.0138889 k( 89) = ( 0.2500000 -0.0833333 0.2500000), wk = 0.0138889 k( 90) = ( 0.1666667 0.0000000 0.1666667), wk = 0.0069444 k( 91) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0034722 k( 92) = ( -0.0833333 0.4166667 -0.0833333), wk = 0.0138889 k( 93) = ( -0.1666667 0.5000000 -0.1666667), wk = 0.0138889 k( 94) = ( -0.2500000 0.5833333 -0.2500000), wk = 0.0138889 k( 95) = ( 0.6666667 -0.3333333 0.6666667), wk = 0.0138889 k( 96) = ( 0.5833333 -0.2500000 0.5833333), wk = 0.0138889 k( 97) = ( 0.5000000 -0.1666667 0.5000000), wk = 0.0138889 k( 98) = ( 0.4166667 -0.0833333 0.4166667), wk = 0.0138889 k( 99) = ( 0.3333333 0.0000000 0.3333333), wk = 0.0069444 k( 100) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0034722 k( 101) = ( -0.0833333 0.5833333 -0.0833333), wk = 0.0138889 k( 102) = ( -0.1666667 0.6666667 -0.1666667), wk = 0.0138889 k( 103) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0138889 k( 104) = ( 0.6666667 -0.1666667 0.6666667), wk = 0.0138889 k( 105) = ( 0.5833333 -0.0833333 0.5833333), wk = 0.0138889 k( 106) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0069444 k( 107) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0034722 k( 108) = ( -0.0833333 0.7500000 -0.0833333), wk = 0.0138889 k( 109) = ( 0.8333333 -0.1666667 0.8333333), wk = 0.0138889 k( 110) = ( 0.7500000 -0.0833333 0.7500000), wk = 0.0138889 k( 111) = ( 0.6666667 0.0000000 0.6666667), wk = 0.0069444 k( 112) = ( 0.0000000 0.8333333 0.0000000), wk = 0.0034722 k( 113) = ( 0.9166667 -0.0833333 0.9166667), wk = 0.0138889 k( 114) = ( 0.8333333 0.0000000 0.8333333), wk = 0.0069444 k( 115) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0017361 k( 116) = ( -0.1666667 0.3333333 0.0000000), wk = 0.0138889 k( 117) = ( -0.2500000 0.4166667 -0.0833333), wk = 0.0277778 k( 118) = ( -0.3333333 0.5000000 -0.1666667), wk = 0.0277778 k( 119) = ( 0.5833333 -0.4166667 0.7500000), wk = 0.0277778 k( 120) = ( 0.5000000 -0.3333333 0.6666667), wk = 0.0138889 k( 121) = ( -0.1666667 0.5000000 0.0000000), wk = 0.0138889 k( 122) = ( -0.2500000 0.5833333 -0.0833333), wk = 0.0277778 k( 123) = ( 0.6666667 -0.3333333 0.8333333), wk = 0.0277778 k( 124) = ( 0.5833333 -0.2500000 0.7500000), wk = 0.0277778 k( 125) = ( 0.5000000 -0.1666667 0.6666667), wk = 0.0277778 k( 126) = ( 0.4166667 -0.0833333 0.5833333), wk = 0.0277778 k( 127) = ( 0.3333333 0.0000000 0.5000000), wk = 0.0138889 k( 128) = ( -0.1666667 0.6666667 0.0000000), wk = 0.0138889 k( 129) = ( 0.7500000 -0.2500000 0.9166667), wk = 0.0277778 k( 130) = ( 0.6666667 -0.1666667 0.8333333), wk = 0.0277778 k( 131) = ( 0.5833333 -0.0833333 0.7500000), wk = 0.0277778 k( 132) = ( 0.5000000 0.0000000 0.6666667), wk = 0.0138889 k( 133) = ( 0.8333333 -0.1666667 1.0000000), wk = 0.0138889 k( 134) = ( 0.7500000 -0.0833333 0.9166667), wk = 0.0277778 k( 135) = ( 0.6666667 0.0000000 0.8333333), wk = 0.0138889 k( 136) = ( -0.1666667 -1.0000000 0.0000000), wk = 0.0069444 k( 137) = ( 0.6666667 -0.3333333 1.0000000), wk = 0.0138889 k( 138) = ( 0.5833333 -0.2500000 0.9166667), wk = 0.0277778 k( 139) = ( 0.5000000 -0.1666667 0.8333333), wk = 0.0138889 k( 140) = ( 0.6666667 -0.1666667 1.0000000), wk = 0.0138889 k( 141) = ( 0.5833333 -0.0833333 0.9166667), wk = 0.0277778 k( 142) = ( 0.5000000 0.0000000 0.8333333), wk = 0.0138889 k( 143) = ( -0.3333333 -1.0000000 0.0000000), wk = 0.0069444 k( 144) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0034722 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 8) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.07 Mb ( 144, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 18, 8) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 The potential is recalculated from file : ni.save/charge-density.dat Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 1.07 secs per-process dynamical memory: 7.4 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-12, avg # of iterations = 18.3 total cpu time spent up to now is 4.02 secs End of band structure calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): 5.7491 12.6853 12.6853 12.6853 13.9842 13.9842 39.8745 44.2744 k =-0.0833 0.0833-0.0833 band energies (ev): 6.0376 12.6074 12.7517 12.7517 13.9566 13.9566 38.9813 41.7511 k =-0.1667 0.1667-0.1667 band energies (ev): 6.8689 12.4284 12.8892 12.8892 13.9333 13.9333 35.0732 40.7659 k =-0.2500 0.2500-0.2500 band energies (ev): 8.1021 12.3268 12.9332 12.9332 14.0672 14.0672 30.6333 40.0740 k =-0.3333 0.3333-0.3333 band energies (ev): 9.3176 12.7139 12.8389 12.8389 14.3649 14.3649 26.5370 39.2225 k =-0.4167 0.4167-0.4167 band energies (ev): 9.9099 12.7279 12.7279 13.9861 14.6430 14.6430 23.1444 38.5665 k = 0.5000-0.5000 0.5000 band energies (ev): 10.0270 12.6829 12.6829 14.7534 14.7534 14.9657 21.5359 38.3257 k = 0.0000 0.1667 0.0000 band energies (ev): 6.1331 12.5396 12.7994 12.7994 13.8501 14.0365 39.3161 42.0874 k =-0.0833 0.2500-0.0833 band energies (ev): 6.7828 12.3629 12.9363 12.9442 13.7358 14.0830 36.7373 40.0522 k =-0.1667 0.3333-0.1667 band energies (ev): 7.8918 12.1902 12.9698 13.0417 13.8398 14.2058 32.2747 39.3322 k =-0.2500 0.4167-0.2500 band energies (ev): 9.1643 12.2728 12.8137 12.9963 14.3029 14.4537 28.0202 38.5688 k =-0.3333 0.5000-0.3333 band energies (ev): 9.9699 12.6321 12.8848 12.9785 14.6889 15.0791 24.3008 37.8072 k = 0.5833-0.4167 0.5833 band energies (ev): 10.1841 12.5573 12.8050 13.6602 14.7606 16.1183 21.8004 37.1459 k = 0.5000-0.3333 0.5000 band energies (ev): 10.1548 12.5912 12.8072 13.5660 14.6094 15.8808 22.4065 36.6986 k = 0.4167-0.2500 0.4167 band energies (ev): 9.7927 12.7095 12.7445 12.8959 14.2802 15.0459 25.4663 36.5869 k = 0.3333-0.1667 0.3333 band energies (ev): 8.7616 12.2308 12.8745 13.0198 13.9083 14.5272 29.4008 36.8641 k = 0.2500-0.0833 0.2500 band energies (ev): 7.4835 12.2751 12.9468 13.0163 13.7304 14.1861 33.7615 37.5035 k = 0.1667 0.0000 0.1667 band energies (ev): 6.5076 12.4705 12.8501 12.8673 13.8221 14.0311 37.7037 39.0395 k = 0.0000 0.3333 0.0000 band energies (ev): 7.2302 12.1512 13.1305 13.1305 13.5220 14.1806 38.2947 38.7729 k =-0.0833 0.4167-0.0833 band energies (ev): 8.1432 11.9223 13.0971 13.3130 13.6810 14.3008 34.2733 37.4010 k =-0.1667 0.5000-0.1667 band energies (ev): 9.3155 11.8011 12.8050 13.3439 14.3777 14.5200 29.9049 36.5923 k =-0.2500 0.5833-0.2500 band energies (ev): 10.2449 11.9808 12.6088 13.2544 14.7329 15.5274 25.9264 35.4480 k = 0.6667-0.3333 0.6667 band energies (ev): 10.5750 12.1599 12.8093 13.1517 14.7808 17.1645 22.6980 34.0421 k = 0.5833-0.2500 0.5833 band energies (ev): 10.6343 12.2216 12.9188 13.1052 14.5999 17.7087 22.0219 33.0193 k = 0.5000-0.1667 0.5000 band energies (ev): 10.4896 12.3945 12.4814 13.1459 14.2314 16.3514 24.7823 32.4934 k = 0.4167-0.0833 0.4167 band energies (ev): 9.7553 12.0412 12.6478 13.2700 13.7836 15.3106 28.5706 32.4909 k = 0.3333 0.0000 0.3333 band energies (ev): 8.5395 12.0720 12.8704 13.2917 13.5346 14.6308 32.5237 33.2895 k = 0.0000 0.5000 0.0000 band energies (ev): 8.7855 11.6433 13.3074 13.6369 13.6369 14.3803 35.6924 35.6924 k =-0.0833 0.5833-0.0833 band energies (ev): 9.6383 11.4315 13.1394 13.8065 14.3517 14.5504 32.0294 34.5155 k =-0.1667 0.6667-0.1667 band energies (ev): 10.3992 11.3851 12.9024 13.7689 14.7611 15.7497 27.9961 32.4869 k = 0.7500-0.2500 0.7500 band energies (ev): 10.8314 11.5333 12.7447 13.6597 14.8092 17.7934 24.3637 30.7822 k = 0.6667-0.1667 0.6667 band energies (ev): 11.0672 11.7070 12.6116 13.5630 14.6222 19.6754 22.0599 29.5128 k = 0.5833-0.0833 0.5833 band energies (ev): 11.1587 11.9413 12.2840 13.5150 14.2569 18.1434 24.3619 28.7828 k = 0.5000 0.0000 0.5000 band energies (ev): 10.7578 11.9680 12.2939 13.4870 13.8706 16.4668 27.5860 29.0253 k = 0.0000 0.6667 0.0000 band energies (ev): 9.9752 11.1575 14.0778 14.2229 14.2229 14.5835 31.8919 33.1773 k =-0.0833 0.7500-0.0833 band energies (ev): 10.2845 11.0216 13.8707 14.3109 14.7626 15.7952 29.6130 30.4519 k = 0.8333-0.1667 0.8333 band energies (ev): 10.5945 11.0692 13.4769 14.2159 14.8403 18.0239 26.6246 28.0533 k = 0.7500-0.0833 0.7500 band energies (ev): 10.9333 11.2700 13.0084 14.0725 14.6815 20.6342 23.3632 26.7971 k = 0.6667 0.0000 0.6667 band energies (ev): 11.2756 11.5388 12.5063 13.8596 14.4155 20.4238 23.3049 26.5824 k = 0.0000 0.8333 0.0000 band energies (ev): 10.2009 10.8153 14.7197 14.7197 14.7345 16.2769 27.5185 31.4940 k = 0.9167-0.0833 0.9167 band energies (ev): 10.2878 10.7916 14.4375 14.6522 14.8750 17.9747 25.9765 29.3477 k = 0.8333 0.0000 0.8333 band energies (ev): 10.5528 10.9587 13.7558 14.4694 14.7891 19.7902 25.2801 26.4295 k = 0.0000-1.0000 0.0000 band energies (ev): 10.1728 10.6930 14.7902 14.9199 14.9199 17.8715 25.2663 30.8931 k =-0.1667 0.3333 0.0000 band energies (ev): 7.5744 12.1534 13.0046 13.1442 13.6329 14.2337 35.3264 36.0936 k =-0.2500 0.4167-0.0833 band energies (ev): 8.7445 11.9911 12.8495 13.2686 13.7998 14.5925 31.1783 34.9723 k =-0.3333 0.5000-0.1667 band energies (ev): 9.8875 12.1249 12.6116 13.1821 14.2410 15.2350 27.0518 34.6078 k = 0.5833-0.4167 0.7500 band energies (ev): 10.4100 12.3641 12.7680 13.0786 14.5891 16.3823 23.5274 34.6892 k = 0.5000-0.3333 0.6667 band energies (ev): 10.5013 12.3040 13.0161 13.1045 14.7005 17.4173 21.6830 34.9333 k =-0.1667 0.5000 0.0000 band energies (ev): 9.0800 11.6997 12.9104 13.6382 13.8657 14.5867 33.0424 33.5565 k =-0.2500 0.5833-0.0833 band energies (ev): 10.1086 11.6115 12.6262 13.6730 14.3020 15.3468 29.0396 32.7918 k = 0.6667-0.3333 0.8333 band energies (ev): 10.7490 11.7685 12.4672 13.5469 14.6331 16.8198 25.2207 32.6237 k = 0.5833-0.2500 0.7500 band energies (ev): 10.9579 11.8551 12.5858 13.4264 14.6871 18.7355 22.2795 31.8017 k = 0.5000-0.1667 0.6667 band energies (ev): 10.9968 11.9470 12.4674 13.4110 14.5091 18.2313 23.0961 30.9147 k = 0.4167-0.0833 0.5833 band energies (ev): 10.7496 11.9606 12.2573 13.5113 14.1410 16.5122 26.4644 30.5329 k = 0.3333 0.0000 0.5000 band energies (ev): 9.8575 11.8385 12.5678 13.6481 13.6816 15.3450 30.1160 31.0245 k =-0.1667 0.6667 0.0000 band energies (ev): 10.2277 11.2587 13.1352 14.2202 14.3876 15.3816 31.0633 31.3434 k = 0.7500-0.2500 0.9167 band energies (ev): 10.6920 11.2604 12.9273 14.1320 14.6671 17.0863 27.4118 30.1810 k = 0.6667-0.1667 0.8333 band energies (ev): 11.0223 11.4059 12.6898 13.9329 14.7339 19.4447 23.9568 28.6933 k = 0.5833-0.0833 0.7500 band energies (ev): 11.3487 11.5335 12.3871 13.7880 14.5577 20.5073 22.8065 27.6655 k = 0.5000 0.0000 0.6667 band energies (ev): 11.3824 11.8235 12.0086 13.7241 14.2623 18.2883 25.5256 27.6463 k = 0.8333-0.1667 1.0000 band energies (ev): 10.4169 10.9454 13.8207 14.6084 14.7183 17.3435 27.6923 29.6666 k = 0.7500-0.0833 0.9167 band energies (ev): 10.6570 11.0598 13.4145 14.3700 14.8369 19.5290 26.0429 26.7918 k = 0.6667 0.0000 0.8333 band energies (ev): 10.9996 11.3098 12.8558 14.1024 14.7222 21.6896 23.2790 26.0370 k =-0.1667-1.0000 0.0000 band energies (ev): 10.3734 10.8327 14.1504 14.6154 14.9203 18.9510 25.3464 29.1538 k = 0.6667-0.3333 1.0000 band energies (ev): 10.8606 11.5549 12.3336 14.0281 14.2217 16.7026 28.1600 29.3229 k = 0.5833-0.2500 0.9167 band energies (ev): 11.2564 11.6536 12.1644 13.8504 14.5493 18.6708 24.8870 29.1467 k = 0.5000-0.1667 0.8333 band energies (ev): 11.4646 11.5002 12.2552 13.7419 14.6726 20.6136 22.3925 29.6308 k = 0.6667-0.1667 1.0000 band energies (ev): 10.9428 11.3370 12.6993 14.1970 14.7147 19.0757 26.8139 27.9013 k = 0.5833-0.0833 0.9167 band energies (ev): 11.1458 11.5689 12.3822 13.9706 14.8227 21.5529 23.9444 27.0390 k = 0.5000 0.0000 0.8333 band energies (ev): 11.3230 11.8238 11.9875 13.8880 14.7122 21.0258 24.0951 26.8084 k =-0.3333-1.0000 0.0000 band energies (ev): 10.8515 11.2567 12.9661 14.1853 14.9209 21.0571 25.6197 26.3223 k =-0.5000-1.0000 0.0000 band energies (ev): 11.1545 11.9708 11.9708 13.9041 14.9212 23.5612 23.5612 25.9310 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): 5.7795 13.3412 13.3412 13.3412 14.5867 14.5867 39.8447 44.2979 k =-0.0833 0.0833-0.0833 band energies (ev): 6.0679 13.2553 13.4096 13.4096 14.5576 14.5576 39.0169 41.7687 k =-0.1667 0.1667-0.1667 band energies (ev): 6.9018 13.0511 13.5451 13.5451 14.5385 14.5385 35.1993 40.7501 k =-0.2500 0.2500-0.2500 band energies (ev): 8.1574 12.8916 13.5659 13.5659 14.7007 14.7007 30.8080 40.0563 k =-0.3333 0.3333-0.3333 band energies (ev): 9.4800 13.1191 13.4457 13.4457 15.0320 15.0320 26.7678 39.1958 k =-0.4167 0.4167-0.4167 band energies (ev): 10.2474 13.3203 13.3203 14.1316 15.3323 15.3323 23.4606 38.5313 k = 0.5000-0.5000 0.5000 band energies (ev): 10.4255 13.2707 13.2707 14.9680 15.4504 15.4504 21.9342 38.2873 k = 0.0000 0.1667 0.0000 band energies (ev): 6.1634 13.1861 13.4583 13.4583 14.4452 14.6406 39.3321 42.1725 k =-0.0833 0.2500-0.0833 band energies (ev): 6.8144 12.9935 13.5948 13.6043 14.3266 14.6913 36.8454 40.0773 k =-0.1667 0.3333-0.1667 band energies (ev): 7.9360 12.7863 13.5961 13.6872 14.4566 14.8353 32.4312 39.3595 k =-0.2500 0.4167-0.2500 band energies (ev): 9.2780 12.7780 13.4110 13.6164 14.9332 15.1162 28.2249 38.5882 k =-0.3333 0.5000-0.3333 band energies (ev): 10.2632 13.1468 13.4026 13.4861 15.3763 15.6358 24.5741 37.8219 k = 0.5833-0.4167 0.5833 band energies (ev): 10.5845 13.1116 13.3965 14.0447 15.4584 16.4769 22.1738 37.1761 k = 0.5000-0.3333 0.5000 band energies (ev): 10.5350 13.1527 13.3976 13.9156 15.3019 16.3238 22.7475 36.7562 k = 0.4167-0.2500 0.4167 band energies (ev): 10.0215 13.1197 13.3099 13.4951 14.9535 15.6668 25.7139 36.6674 k = 0.3333-0.1667 0.3333 band energies (ev): 8.8394 12.7781 13.4803 13.6430 14.5479 15.1731 29.5891 36.9561 k = 0.2500-0.0833 0.2500 band energies (ev): 7.5208 12.8859 13.5822 13.6770 14.3268 14.8113 33.9045 37.5922 k = 0.1667 0.0000 0.1667 band energies (ev): 6.5385 13.1073 13.5130 13.5219 14.4156 14.6379 37.7937 39.1108 k = 0.0000 0.3333 0.0000 band energies (ev): 7.2634 12.7733 13.7993 13.7993 14.0922 14.7894 38.3862 38.8830 k =-0.0833 0.4167-0.0833 band energies (ev): 8.1874 12.5258 13.6961 13.9785 14.3038 14.9228 34.4087 37.5122 k =-0.1667 0.5000-0.1667 band energies (ev): 9.4082 12.3660 13.3771 13.9850 14.9877 15.1760 30.0782 36.7003 k =-0.2500 0.5833-0.2500 band energies (ev): 10.4943 12.4434 13.1739 13.8720 15.4185 16.0508 26.1491 35.5420 k = 0.6667-0.3333 0.6667 band energies (ev): 10.9814 12.6011 13.3261 13.7537 15.4806 17.5311 23.0023 34.1522 k = 0.5833-0.2500 0.5833 band energies (ev): 11.0589 12.6927 13.3986 13.6993 15.2985 18.0373 22.3642 33.1408 k = 0.5000-0.1667 0.5000 band energies (ev): 10.7988 12.8348 13.0203 13.7394 14.9169 16.8628 25.0351 32.6239 k = 0.4167-0.0833 0.4167 band energies (ev): 9.8766 12.5912 13.2115 13.8736 14.4464 15.9312 28.7677 32.6260 k = 0.3333 0.0000 0.3333 band energies (ev): 8.5925 12.6673 13.4691 13.9734 14.1115 15.2724 32.7030 33.3985 k = 0.0000 0.5000 0.0000 band energies (ev): 8.8496 12.2358 13.8123 14.3237 14.3237 14.9957 35.7973 35.7973 k =-0.0833 0.5833-0.0833 band energies (ev): 9.7626 12.0070 13.6488 14.4792 14.9663 15.1935 32.1646 34.6353 k =-0.1667 0.6667-0.1667 band energies (ev): 10.6451 11.9235 13.4184 14.4102 15.4439 16.2462 28.1682 32.6274 k = 0.7500-0.2500 0.7500 band energies (ev): 11.2317 11.9914 13.2757 14.2781 15.5133 18.1619 24.5864 30.9356 k = 0.6667-0.1667 0.6667 band energies (ev): 11.5444 12.1115 13.1517 14.1639 15.3317 19.9438 22.3661 29.6742 k = 0.5833-0.0833 0.5833 band energies (ev): 11.5565 12.3813 12.8200 14.1000 14.9650 18.5357 24.6090 28.9474 k = 0.5000 0.0000 0.5000 band energies (ev): 10.9731 12.5253 12.8079 14.0570 14.5775 17.0016 27.8059 29.1743 k = 0.0000 0.6667 0.0000 band energies (ev): 10.1843 11.7237 14.3922 14.9357 14.9357 15.2057 32.0416 33.2606 k =-0.0833 0.7500-0.0833 band energies (ev): 10.5822 11.5755 14.3911 14.9802 15.4415 16.2011 29.7870 30.5726 k = 0.8333-0.1667 0.8333 band energies (ev): 10.9633 11.6001 14.0170 14.8513 15.5532 18.3342 26.7884 28.2447 k = 0.7500-0.0833 0.7500 band energies (ev): 11.3683 11.7507 13.5519 14.6785 15.4098 20.8874 23.5747 27.0059 k = 0.6667 0.0000 0.6667 band energies (ev): 11.7836 11.9268 13.0471 14.4418 15.1464 20.7091 23.5389 26.7850 k = 0.0000 0.8333 0.0000 band energies (ev): 10.5424 11.3640 15.3619 15.4599 15.4599 16.3942 27.7371 31.5511 k = 0.9167-0.0833 0.9167 band energies (ev): 10.6563 11.3343 15.0770 15.2874 15.6117 18.1366 26.2318 29.4415 k = 0.8333 0.0000 0.8333 band energies (ev): 10.9438 11.4890 14.3327 15.0804 15.5363 19.9871 25.5334 26.5829 k = 0.0000-1.0000 0.0000 band energies (ev): 10.5436 11.2356 15.4195 15.6728 15.6728 17.8924 25.5513 30.9377 k =-0.1667 0.3333 0.0000 band energies (ev): 7.6110 12.7682 13.6362 13.8163 14.2205 14.8563 35.4706 36.1851 k =-0.2500 0.4167-0.0833 band energies (ev): 8.8063 12.5754 13.4430 13.9128 14.4182 15.2348 31.3454 35.0884 k =-0.3333 0.5000-0.1667 band energies (ev): 10.0597 12.6165 13.1899 13.7926 14.8948 15.8430 27.2652 34.7212 k = 0.5833-0.4167 0.7500 band energies (ev): 10.7695 12.8322 13.2631 13.6702 15.2756 16.8379 23.8123 34.7914 k = 0.5000-0.3333 0.6667 band energies (ev): 10.9244 12.7967 13.5657 13.6094 15.4002 17.7260 22.0510 35.0223 k =-0.1667 0.5000 0.0000 band energies (ev): 9.1522 12.2873 13.4771 14.3270 14.4548 15.2265 33.2043 33.6616 k =-0.2500 0.5833-0.0833 band energies (ev): 10.2641 12.1674 13.1759 14.3048 14.9429 15.9383 29.2159 32.9165 k = 0.6667-0.3333 0.8333 band energies (ev): 11.0819 12.2322 13.0144 14.1561 15.3215 17.2688 25.4439 32.7492 k = 0.5833-0.2500 0.7500 band energies (ev): 11.4077 12.2770 13.1204 14.0246 15.3935 19.0389 22.5854 31.9390 k = 0.5000-0.1667 0.6667 band energies (ev): 11.4203 12.3839 12.9939 14.0038 15.2116 18.5880 23.3765 31.0577 k = 0.4167-0.0833 0.5833 band energies (ev): 11.0021 12.4636 12.8074 14.1005 14.8268 17.0278 26.6810 30.6794 k = 0.3333 0.0000 0.5000 band energies (ev): 9.9672 12.4126 13.1299 14.2155 14.3771 15.9617 30.3140 31.1502 k =-0.1667 0.6667 0.0000 band energies (ev): 10.4460 11.8219 13.6408 14.9338 14.9643 15.9342 31.2134 31.4611 k = 0.7500-0.2500 0.9167 band energies (ev): 11.0167 11.7995 13.4459 14.7557 15.3648 17.4916 27.5811 30.3460 k = 0.6667-0.1667 0.8333 band energies (ev): 11.4434 11.8883 13.2241 14.5368 15.4555 19.7462 24.1737 28.8711 k = 0.5833-0.0833 0.7500 band energies (ev): 11.8479 11.9320 12.9287 14.3754 15.2837 20.7807 23.0636 27.8474 k = 0.5000 0.0000 0.6667 band energies (ev): 11.7283 12.3169 12.5545 14.2972 14.9840 18.6792 25.7503 27.8159 k = 0.8333-0.1667 1.0000 band energies (ev): 10.7670 11.4922 14.3869 15.2201 15.4586 17.6359 27.9027 29.7930 k = 0.7500-0.0833 0.9167 band energies (ev): 11.0430 11.5947 13.9740 14.9781 15.5808 19.7665 26.2597 26.9615 k = 0.6667 0.0000 0.8333 band energies (ev): 11.4197 11.8147 13.4026 14.6936 15.4651 21.9121 23.4910 26.2605 k =-0.1667-1.0000 0.0000 band energies (ev): 10.7512 11.3739 14.7652 15.2341 15.6731 19.1070 25.6216 29.2679 k = 0.6667-0.3333 1.0000 band energies (ev): 11.1109 12.1105 12.8638 14.5990 14.9378 17.1865 28.3568 29.4578 k = 0.5833-0.2500 0.9167 band energies (ev): 11.6315 12.1571 12.6964 14.4382 15.2693 19.0253 25.1060 29.3004 k = 0.5000-0.1667 0.8333 band energies (ev): 11.9093 11.9558 12.7965 14.3295 15.3991 20.8706 22.6720 29.7944 k = 0.6667-0.1667 1.0000 band energies (ev): 11.3161 11.8797 13.2266 14.7881 15.4553 19.3844 26.9962 28.0760 k = 0.5833-0.0833 0.9167 band energies (ev): 11.5499 12.0977 12.9197 14.5538 15.5687 21.7949 24.1551 27.2390 k = 0.5000 0.0000 0.8333 band energies (ev): 11.7241 12.3399 12.5278 14.4673 15.4535 21.2952 24.3087 26.9954 k =-0.3333-1.0000 0.0000 band energies (ev): 11.2464 11.7950 13.5189 14.7781 15.6738 21.2656 25.8670 26.4951 k =-0.5000-1.0000 0.0000 band energies (ev): 11.5605 12.5092 12.5092 14.4807 15.6741 23.7658 23.7658 26.1523 the Fermi energy is 15.3038 ev Writing output data file ni.save PWSCF : 5.85s CPU time, 6.06s wall time init_run : 1.00s CPU electrons : 2.95s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.01s CPU Called by electrons: c_bands : 2.71s CPU v_of_rho : 0.00s CPU newd : 0.02s CPU Called by c_bands: init_us_2 : 0.01s CPU ( 144 calls, 0.000 s avg) cegterg : 2.50s CPU ( 182 calls, 0.014 s avg) Called by *egterg: h_psi : 1.48s CPU ( 2967 calls, 0.000 s avg) s_psi : 0.06s CPU ( 2967 calls, 0.000 s avg) g_psi : 0.06s CPU ( 2641 calls, 0.000 s avg) cdiaghg : 0.67s CPU ( 2785 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.06s CPU ( 2967 calls, 0.000 s avg) General routines calbec : 0.07s CPU ( 2967 calls, 0.000 s avg) cft3 : 0.00s CPU ( 9 calls, 0.000 s avg) cft3s : 1.15s CPU ( 28792 calls, 0.000 s avg) interpolate : 0.00s CPU ( 2 calls, 0.001 s avg) davcio : 0.00s CPU ( 144 calls, 0.000 s avg) espresso-5.1/PP/examples/example02/reference/ni.pdos_atm#1(Ni)_wfc#2(d)0000644000175000017500000006740612341372774023364 0ustar mbamba# E (eV) ldosup(E) ldosdw(E) pdosup(E) pdosdw(E) pdosup(E) pdosdw(E) pdosup(E) pdosdw(E) pdosup(E) pdosdw(E) pdosup(E) pdosdw(E) 5.000 -0.296E-10 -0.115E-10 -0.999E-12 -0.374E-12 -0.920E-11 -0.359E-11 -0.920E-11 -0.359E-11 -0.999E-12 -0.374E-12 -0.920E-11 -0.359E-11 5.100 -0.347E-09 -0.147E-09 -0.152E-10 -0.622E-11 -0.105E-09 -0.450E-10 -0.105E-09 -0.450E-10 -0.152E-10 -0.622E-11 -0.105E-09 -0.450E-10 5.200 -0.302E-08 -0.141E-08 -0.172E-09 -0.769E-10 -0.891E-09 -0.418E-09 -0.891E-09 -0.418E-09 -0.172E-09 -0.769E-10 -0.891E-09 -0.418E-09 5.300 -0.193E-07 -0.991E-08 -0.143E-08 -0.704E-09 -0.548E-08 -0.283E-08 -0.548E-08 -0.283E-08 -0.143E-08 -0.704E-09 -0.548E-08 -0.283E-08 5.400 -0.893E-07 -0.508E-07 -0.869E-08 -0.471E-08 -0.240E-07 -0.138E-07 -0.240E-07 -0.138E-07 -0.869E-08 -0.471E-08 -0.240E-07 -0.138E-07 5.500 -0.287E-06 -0.184E-06 -0.374E-07 -0.226E-07 -0.707E-07 -0.463E-07 -0.707E-07 -0.463E-07 -0.374E-07 -0.226E-07 -0.707E-07 -0.463E-07 5.600 -0.579E-06 -0.438E-06 -0.108E-06 -0.745E-07 -0.121E-06 -0.962E-07 -0.121E-06 -0.962E-07 -0.108E-06 -0.745E-07 -0.121E-06 -0.962E-07 5.700 -0.438E-06 -0.521E-06 -0.180E-06 -0.152E-06 -0.256E-07 -0.728E-07 -0.256E-07 -0.728E-07 -0.180E-06 -0.152E-06 -0.256E-07 -0.728E-07 5.800 0.122E-05 0.428E-06 -0.267E-07 -0.107E-06 0.425E-06 0.214E-06 0.425E-06 0.214E-06 -0.267E-07 -0.107E-06 0.425E-06 0.214E-06 5.900 0.465E-05 0.308E-05 0.674E-06 0.359E-06 0.110E-05 0.788E-06 0.110E-05 0.788E-06 0.674E-06 0.359E-06 0.110E-05 0.788E-06 6.000 0.748E-05 0.612E-05 0.179E-05 0.131E-05 0.130E-05 0.116E-05 0.130E-05 0.116E-05 0.179E-05 0.131E-05 0.130E-05 0.116E-05 6.100 0.689E-05 0.665E-05 0.242E-05 0.212E-05 0.684E-06 0.803E-06 0.684E-06 0.803E-06 0.242E-05 0.212E-05 0.684E-06 0.803E-06 6.200 0.545E-05 0.502E-05 0.183E-05 0.194E-05 0.596E-06 0.383E-06 0.596E-06 0.383E-06 0.183E-05 0.194E-05 0.596E-06 0.383E-06 6.300 0.115E-04 0.742E-05 0.843E-06 0.977E-06 0.326E-05 0.182E-05 0.326E-05 0.182E-05 0.843E-06 0.977E-06 0.326E-05 0.182E-05 6.400 0.339E-04 0.216E-04 0.253E-05 0.132E-05 0.962E-05 0.631E-05 0.962E-05 0.631E-05 0.253E-05 0.132E-05 0.962E-05 0.631E-05 6.500 0.878E-04 0.578E-04 0.122E-04 0.721E-05 0.212E-04 0.145E-04 0.212E-04 0.145E-04 0.122E-04 0.721E-05 0.212E-04 0.145E-04 6.600 0.192E-03 0.134E-03 0.326E-04 0.228E-04 0.422E-04 0.294E-04 0.422E-04 0.294E-04 0.326E-04 0.228E-04 0.422E-04 0.294E-04 6.700 0.321E-03 0.245E-03 0.543E-04 0.437E-04 0.707E-04 0.525E-04 0.707E-04 0.525E-04 0.543E-04 0.437E-04 0.707E-04 0.525E-04 6.800 0.379E-03 0.325E-03 0.589E-04 0.541E-04 0.872E-04 0.722E-04 0.872E-04 0.722E-04 0.589E-04 0.541E-04 0.872E-04 0.722E-04 6.900 0.298E-03 0.294E-03 0.434E-04 0.445E-04 0.705E-04 0.682E-04 0.705E-04 0.682E-04 0.434E-04 0.445E-04 0.705E-04 0.682E-04 7.000 0.138E-03 0.166E-03 0.302E-04 0.291E-04 0.258E-04 0.359E-04 0.258E-04 0.359E-04 0.302E-04 0.291E-04 0.258E-04 0.359E-04 7.100 0.463E-04 0.526E-04 0.385E-04 0.294E-04 -0.102E-04 -0.207E-05 -0.102E-04 -0.207E-05 0.385E-04 0.294E-04 -0.102E-04 -0.207E-05 7.200 0.183E-03 0.861E-04 0.681E-04 0.493E-04 0.156E-04 -0.420E-05 0.156E-04 -0.420E-05 0.681E-04 0.493E-04 0.156E-04 -0.420E-05 7.300 0.658E-03 0.385E-03 0.123E-03 0.884E-04 0.138E-03 0.693E-04 0.138E-03 0.693E-04 0.123E-03 0.884E-04 0.138E-03 0.693E-04 7.400 0.135E-02 0.945E-03 0.209E-03 0.156E-03 0.311E-03 0.211E-03 0.311E-03 0.211E-03 0.209E-03 0.156E-03 0.311E-03 0.211E-03 7.500 0.182E-02 0.147E-02 0.286E-03 0.237E-03 0.418E-03 0.334E-03 0.418E-03 0.334E-03 0.286E-03 0.237E-03 0.418E-03 0.334E-03 7.600 0.180E-02 0.160E-02 0.288E-03 0.267E-03 0.409E-03 0.354E-03 0.409E-03 0.354E-03 0.288E-03 0.267E-03 0.409E-03 0.354E-03 7.700 0.164E-02 0.140E-02 0.225E-03 0.221E-03 0.396E-03 0.319E-03 0.396E-03 0.319E-03 0.225E-03 0.221E-03 0.396E-03 0.319E-03 7.800 0.192E-02 0.140E-02 0.219E-03 0.176E-03 0.494E-03 0.350E-03 0.494E-03 0.350E-03 0.219E-03 0.176E-03 0.494E-03 0.350E-03 7.900 0.274E-02 0.192E-02 0.392E-03 0.255E-03 0.651E-03 0.469E-03 0.651E-03 0.469E-03 0.392E-03 0.255E-03 0.651E-03 0.469E-03 8.000 0.358E-02 0.271E-02 0.716E-03 0.500E-03 0.717E-03 0.570E-03 0.717E-03 0.570E-03 0.716E-03 0.500E-03 0.717E-03 0.570E-03 8.100 0.369E-02 0.321E-02 0.947E-03 0.774E-03 0.599E-03 0.555E-03 0.599E-03 0.555E-03 0.947E-03 0.774E-03 0.599E-03 0.555E-03 8.200 0.264E-02 0.284E-02 0.831E-03 0.825E-03 0.328E-03 0.397E-03 0.328E-03 0.397E-03 0.831E-03 0.825E-03 0.328E-03 0.397E-03 8.300 0.112E-02 0.162E-02 0.434E-03 0.555E-03 0.848E-04 0.170E-03 0.848E-04 0.170E-03 0.434E-03 0.555E-03 0.848E-04 0.170E-03 8.400 0.974E-03 0.588E-03 0.175E-03 0.204E-03 0.208E-03 0.598E-04 0.208E-03 0.598E-04 0.175E-03 0.204E-03 0.208E-03 0.598E-04 8.500 0.401E-02 0.135E-02 0.454E-03 0.164E-03 0.103E-02 0.339E-03 0.103E-02 0.339E-03 0.454E-03 0.164E-03 0.103E-02 0.339E-03 8.600 0.985E-02 0.488E-02 0.126E-02 0.643E-03 0.244E-02 0.120E-02 0.244E-02 0.120E-02 0.126E-02 0.643E-03 0.244E-02 0.120E-02 8.700 0.148E-01 0.995E-02 0.207E-02 0.143E-02 0.356E-02 0.236E-02 0.356E-02 0.236E-02 0.207E-02 0.143E-02 0.356E-02 0.236E-02 8.800 0.154E-01 0.130E-01 0.244E-02 0.201E-02 0.349E-02 0.300E-02 0.349E-02 0.300E-02 0.244E-02 0.201E-02 0.349E-02 0.300E-02 8.900 0.134E-01 0.120E-01 0.260E-02 0.214E-02 0.273E-02 0.258E-02 0.273E-02 0.258E-02 0.260E-02 0.214E-02 0.273E-02 0.258E-02 9.000 0.142E-01 0.977E-02 0.299E-02 0.222E-02 0.274E-02 0.177E-02 0.274E-02 0.177E-02 0.299E-02 0.222E-02 0.274E-02 0.177E-02 9.100 0.186E-01 0.105E-01 0.344E-02 0.259E-02 0.392E-02 0.178E-02 0.392E-02 0.178E-02 0.344E-02 0.259E-02 0.392E-02 0.178E-02 9.200 0.214E-01 0.143E-01 0.340E-02 0.294E-02 0.487E-02 0.279E-02 0.487E-02 0.279E-02 0.340E-02 0.294E-02 0.487E-02 0.279E-02 9.300 0.182E-01 0.170E-01 0.299E-02 0.284E-02 0.407E-02 0.377E-02 0.407E-02 0.377E-02 0.299E-02 0.284E-02 0.407E-02 0.377E-02 9.400 0.120E-01 0.156E-01 0.316E-02 0.238E-02 0.190E-02 0.361E-02 0.190E-02 0.361E-02 0.316E-02 0.238E-02 0.190E-02 0.361E-02 9.500 0.124E-01 0.115E-01 0.456E-02 0.233E-02 0.109E-02 0.226E-02 0.109E-02 0.226E-02 0.456E-02 0.233E-02 0.109E-02 0.226E-02 9.600 0.277E-01 0.976E-02 0.633E-02 0.347E-02 0.503E-02 0.939E-03 0.503E-02 0.939E-03 0.633E-02 0.347E-02 0.503E-02 0.939E-03 9.700 0.572E-01 0.154E-01 0.689E-02 0.538E-02 0.145E-01 0.155E-02 0.145E-01 0.155E-02 0.689E-02 0.538E-02 0.145E-01 0.155E-02 9.800 0.905E-01 0.295E-01 0.662E-02 0.659E-02 0.258E-01 0.544E-02 0.258E-01 0.544E-02 0.662E-02 0.659E-02 0.258E-01 0.544E-02 9.900 0.121E+00 0.487E-01 0.946E-02 0.670E-02 0.339E-01 0.118E-01 0.339E-01 0.118E-01 0.946E-02 0.670E-02 0.339E-01 0.118E-01 10.000 0.156E+00 0.668E-01 0.214E-01 0.710E-02 0.377E-01 0.175E-01 0.377E-01 0.175E-01 0.214E-01 0.710E-02 0.377E-01 0.175E-01 10.100 0.208E+00 0.788E-01 0.447E-01 0.905E-02 0.394E-01 0.202E-01 0.394E-01 0.202E-01 0.447E-01 0.905E-02 0.394E-01 0.202E-01 10.200 0.267E+00 0.870E-01 0.716E-01 0.129E-01 0.412E-01 0.204E-01 0.412E-01 0.204E-01 0.716E-01 0.129E-01 0.412E-01 0.204E-01 10.300 0.315E+00 0.103E+00 0.893E-01 0.202E-01 0.455E-01 0.210E-01 0.455E-01 0.210E-01 0.893E-01 0.202E-01 0.455E-01 0.210E-01 10.400 0.351E+00 0.142E+00 0.959E-01 0.337E-01 0.531E-01 0.248E-01 0.531E-01 0.248E-01 0.959E-01 0.337E-01 0.531E-01 0.248E-01 10.500 0.394E+00 0.197E+00 0.103E+00 0.522E-01 0.627E-01 0.309E-01 0.627E-01 0.309E-01 0.103E+00 0.522E-01 0.627E-01 0.309E-01 10.600 0.455E+00 0.247E+00 0.115E+00 0.678E-01 0.746E-01 0.372E-01 0.746E-01 0.372E-01 0.115E+00 0.678E-01 0.746E-01 0.372E-01 10.700 0.532E+00 0.284E+00 0.126E+00 0.764E-01 0.936E-01 0.439E-01 0.936E-01 0.439E-01 0.126E+00 0.764E-01 0.936E-01 0.439E-01 10.800 0.625E+00 0.332E+00 0.128E+00 0.870E-01 0.123E+00 0.528E-01 0.123E+00 0.528E-01 0.128E+00 0.870E-01 0.123E+00 0.528E-01 10.900 0.724E+00 0.397E+00 0.129E+00 0.107E+00 0.156E+00 0.612E-01 0.156E+00 0.612E-01 0.129E+00 0.107E+00 0.156E+00 0.612E-01 11.000 0.793E+00 0.433E+00 0.130E+00 0.123E+00 0.178E+00 0.622E-01 0.178E+00 0.622E-01 0.130E+00 0.123E+00 0.178E+00 0.622E-01 11.100 0.816E+00 0.412E+00 0.130E+00 0.120E+00 0.185E+00 0.572E-01 0.185E+00 0.572E-01 0.130E+00 0.120E+00 0.185E+00 0.572E-01 11.200 0.823E+00 0.402E+00 0.128E+00 0.108E+00 0.189E+00 0.619E-01 0.189E+00 0.619E-01 0.128E+00 0.108E+00 0.189E+00 0.619E-01 11.300 0.834E+00 0.485E+00 0.126E+00 0.109E+00 0.194E+00 0.888E-01 0.194E+00 0.888E-01 0.126E+00 0.109E+00 0.194E+00 0.888E-01 11.400 0.824E+00 0.630E+00 0.125E+00 0.124E+00 0.191E+00 0.127E+00 0.191E+00 0.127E+00 0.125E+00 0.124E+00 0.191E+00 0.127E+00 11.500 0.776E+00 0.732E+00 0.123E+00 0.134E+00 0.177E+00 0.155E+00 0.177E+00 0.155E+00 0.123E+00 0.134E+00 0.177E+00 0.155E+00 11.600 0.716E+00 0.757E+00 0.122E+00 0.128E+00 0.157E+00 0.167E+00 0.157E+00 0.167E+00 0.122E+00 0.128E+00 0.157E+00 0.167E+00 11.700 0.695E+00 0.763E+00 0.130E+00 0.117E+00 0.145E+00 0.176E+00 0.145E+00 0.176E+00 0.130E+00 0.117E+00 0.145E+00 0.176E+00 11.800 0.737E+00 0.784E+00 0.142E+00 0.112E+00 0.151E+00 0.187E+00 0.151E+00 0.187E+00 0.142E+00 0.112E+00 0.151E+00 0.187E+00 11.900 0.808E+00 0.778E+00 0.141E+00 0.107E+00 0.175E+00 0.188E+00 0.175E+00 0.188E+00 0.141E+00 0.107E+00 0.175E+00 0.188E+00 12.000 0.856E+00 0.727E+00 0.125E+00 0.101E+00 0.202E+00 0.175E+00 0.202E+00 0.175E+00 0.125E+00 0.101E+00 0.202E+00 0.175E+00 12.100 0.892E+00 0.680E+00 0.114E+00 0.103E+00 0.221E+00 0.158E+00 0.221E+00 0.158E+00 0.114E+00 0.103E+00 0.221E+00 0.158E+00 12.200 0.949E+00 0.677E+00 0.121E+00 0.120E+00 0.236E+00 0.146E+00 0.236E+00 0.146E+00 0.121E+00 0.120E+00 0.236E+00 0.146E+00 12.300 0.101E+01 0.704E+00 0.136E+00 0.133E+00 0.247E+00 0.146E+00 0.247E+00 0.146E+00 0.136E+00 0.133E+00 0.247E+00 0.146E+00 12.400 0.105E+01 0.730E+00 0.146E+00 0.123E+00 0.253E+00 0.161E+00 0.253E+00 0.161E+00 0.146E+00 0.123E+00 0.253E+00 0.161E+00 12.500 0.109E+01 0.758E+00 0.159E+00 0.101E+00 0.258E+00 0.186E+00 0.258E+00 0.186E+00 0.159E+00 0.101E+00 0.258E+00 0.186E+00 12.600 0.118E+01 0.810E+00 0.180E+00 0.945E-01 0.274E+00 0.207E+00 0.274E+00 0.207E+00 0.180E+00 0.945E-01 0.274E+00 0.207E+00 12.700 0.133E+01 0.892E+00 0.204E+00 0.110E+00 0.307E+00 0.224E+00 0.307E+00 0.224E+00 0.204E+00 0.110E+00 0.307E+00 0.224E+00 12.800 0.147E+01 0.963E+00 0.219E+00 0.124E+00 0.344E+00 0.238E+00 0.344E+00 0.238E+00 0.219E+00 0.124E+00 0.344E+00 0.238E+00 12.900 0.151E+01 0.995E+00 0.223E+00 0.122E+00 0.356E+00 0.250E+00 0.356E+00 0.250E+00 0.223E+00 0.122E+00 0.356E+00 0.250E+00 13.000 0.139E+01 0.102E+01 0.214E+00 0.124E+00 0.322E+00 0.257E+00 0.322E+00 0.257E+00 0.214E+00 0.124E+00 0.322E+00 0.257E+00 13.100 0.115E+01 0.107E+01 0.192E+00 0.144E+00 0.255E+00 0.261E+00 0.255E+00 0.261E+00 0.192E+00 0.144E+00 0.255E+00 0.261E+00 13.200 0.898E+00 0.115E+01 0.168E+00 0.173E+00 0.188E+00 0.266E+00 0.188E+00 0.266E+00 0.168E+00 0.173E+00 0.188E+00 0.266E+00 13.300 0.754E+00 0.122E+01 0.160E+00 0.196E+00 0.145E+00 0.277E+00 0.145E+00 0.277E+00 0.160E+00 0.196E+00 0.145E+00 0.277E+00 13.400 0.759E+00 0.130E+01 0.185E+00 0.214E+00 0.130E+00 0.292E+00 0.130E+00 0.292E+00 0.185E+00 0.214E+00 0.130E+00 0.292E+00 13.500 0.885E+00 0.134E+01 0.239E+00 0.227E+00 0.136E+00 0.295E+00 0.136E+00 0.295E+00 0.239E+00 0.227E+00 0.136E+00 0.295E+00 13.600 0.107E+01 0.126E+01 0.307E+00 0.227E+00 0.151E+00 0.270E+00 0.151E+00 0.270E+00 0.307E+00 0.227E+00 0.151E+00 0.270E+00 13.700 0.122E+01 0.108E+01 0.372E+00 0.208E+00 0.157E+00 0.222E+00 0.157E+00 0.222E+00 0.372E+00 0.208E+00 0.157E+00 0.222E+00 13.800 0.124E+01 0.907E+00 0.410E+00 0.185E+00 0.140E+00 0.179E+00 0.140E+00 0.179E+00 0.410E+00 0.185E+00 0.140E+00 0.179E+00 13.900 0.114E+01 0.826E+00 0.408E+00 0.181E+00 0.109E+00 0.155E+00 0.109E+00 0.155E+00 0.408E+00 0.181E+00 0.109E+00 0.155E+00 14.000 0.106E+01 0.823E+00 0.380E+00 0.207E+00 0.986E-01 0.136E+00 0.986E-01 0.136E+00 0.380E+00 0.207E+00 0.986E-01 0.136E+00 14.100 0.108E+01 0.865E+00 0.354E+00 0.253E+00 0.125E+00 0.120E+00 0.125E+00 0.120E+00 0.354E+00 0.253E+00 0.125E+00 0.120E+00 14.200 0.117E+01 0.980E+00 0.335E+00 0.310E+00 0.166E+00 0.120E+00 0.166E+00 0.120E+00 0.335E+00 0.310E+00 0.166E+00 0.120E+00 14.300 0.121E+01 0.115E+01 0.317E+00 0.370E+00 0.191E+00 0.137E+00 0.191E+00 0.137E+00 0.317E+00 0.370E+00 0.191E+00 0.137E+00 14.400 0.128E+01 0.123E+01 0.312E+00 0.408E+00 0.218E+00 0.139E+00 0.218E+00 0.139E+00 0.312E+00 0.408E+00 0.218E+00 0.139E+00 14.500 0.149E+01 0.113E+01 0.331E+00 0.399E+00 0.278E+00 0.111E+00 0.278E+00 0.111E+00 0.331E+00 0.399E+00 0.278E+00 0.111E+00 14.600 0.175E+01 0.954E+00 0.343E+00 0.357E+00 0.354E+00 0.798E-01 0.354E+00 0.798E-01 0.343E+00 0.357E+00 0.354E+00 0.798E-01 14.700 0.174E+01 0.900E+00 0.300E+00 0.321E+00 0.381E+00 0.863E-01 0.381E+00 0.863E-01 0.300E+00 0.321E+00 0.381E+00 0.863E-01 14.800 0.136E+01 0.101E+01 0.199E+00 0.305E+00 0.319E+00 0.133E+00 0.319E+00 0.133E+00 0.199E+00 0.305E+00 0.319E+00 0.133E+00 14.900 0.784E+00 0.112E+01 0.932E-01 0.292E+00 0.199E+00 0.179E+00 0.199E+00 0.179E+00 0.932E-01 0.292E+00 0.199E+00 0.179E+00 15.000 0.333E+00 0.113E+01 0.316E-01 0.272E+00 0.898E-01 0.196E+00 0.898E-01 0.196E+00 0.316E-01 0.272E+00 0.898E-01 0.196E+00 15.100 0.142E+00 0.116E+01 0.200E-01 0.265E+00 0.340E-01 0.208E+00 0.340E-01 0.208E+00 0.200E-01 0.265E+00 0.340E-01 0.208E+00 15.200 0.144E+00 0.133E+01 0.332E-01 0.278E+00 0.259E-01 0.258E+00 0.259E-01 0.258E+00 0.332E-01 0.278E+00 0.259E-01 0.258E+00 15.300 0.189E+00 0.155E+01 0.437E-01 0.279E+00 0.337E-01 0.332E+00 0.337E-01 0.332E+00 0.437E-01 0.279E+00 0.337E-01 0.332E+00 15.400 0.179E+00 0.158E+01 0.390E-01 0.233E+00 0.337E-01 0.371E+00 0.337E-01 0.371E+00 0.390E-01 0.233E+00 0.337E-01 0.371E+00 15.500 0.120E+00 0.130E+01 0.242E-01 0.153E+00 0.239E-01 0.333E+00 0.239E-01 0.333E+00 0.242E-01 0.153E+00 0.239E-01 0.333E+00 15.600 0.669E-01 0.865E+00 0.119E-01 0.787E-01 0.144E-01 0.236E+00 0.144E-01 0.236E+00 0.119E-01 0.787E-01 0.144E-01 0.236E+00 15.700 0.479E-01 0.484E+00 0.757E-02 0.412E-01 0.109E-01 0.134E+00 0.109E-01 0.134E+00 0.757E-02 0.412E-01 0.109E-01 0.134E+00 15.800 0.466E-01 0.284E+00 0.766E-02 0.376E-01 0.104E-01 0.696E-01 0.104E-01 0.696E-01 0.766E-02 0.376E-01 0.104E-01 0.696E-01 15.900 0.393E-01 0.223E+00 0.706E-02 0.443E-01 0.840E-02 0.448E-01 0.840E-02 0.448E-01 0.706E-02 0.443E-01 0.840E-02 0.448E-01 16.000 0.258E-01 0.193E+00 0.522E-02 0.415E-01 0.512E-02 0.366E-01 0.512E-02 0.366E-01 0.522E-02 0.415E-01 0.512E-02 0.366E-01 16.100 0.223E-01 0.145E+00 0.492E-02 0.287E-01 0.416E-02 0.291E-01 0.416E-02 0.291E-01 0.492E-02 0.287E-01 0.416E-02 0.291E-01 16.200 0.403E-01 0.976E-01 0.824E-02 0.169E-01 0.794E-02 0.213E-01 0.794E-02 0.213E-01 0.824E-02 0.169E-01 0.794E-02 0.213E-01 16.300 0.729E-01 0.672E-01 0.140E-01 0.110E-01 0.150E-01 0.151E-01 0.150E-01 0.151E-01 0.140E-01 0.110E-01 0.150E-01 0.151E-01 16.400 0.980E-01 0.449E-01 0.181E-01 0.814E-02 0.206E-01 0.954E-02 0.206E-01 0.954E-02 0.181E-01 0.814E-02 0.206E-01 0.954E-02 16.500 0.984E-01 0.258E-01 0.177E-01 0.549E-02 0.210E-01 0.494E-02 0.210E-01 0.494E-02 0.177E-01 0.549E-02 0.210E-01 0.494E-02 16.600 0.802E-01 0.210E-01 0.139E-01 0.458E-02 0.175E-01 0.394E-02 0.175E-01 0.394E-02 0.139E-01 0.458E-02 0.175E-01 0.394E-02 16.700 0.614E-01 0.402E-01 0.102E-01 0.772E-02 0.137E-01 0.825E-02 0.137E-01 0.825E-02 0.102E-01 0.772E-02 0.137E-01 0.825E-02 16.800 0.501E-01 0.745E-01 0.801E-02 0.137E-01 0.113E-01 0.157E-01 0.113E-01 0.157E-01 0.801E-02 0.137E-01 0.113E-01 0.157E-01 16.900 0.442E-01 0.102E+00 0.697E-02 0.183E-01 0.101E-01 0.217E-01 0.101E-01 0.217E-01 0.697E-02 0.183E-01 0.101E-01 0.217E-01 17.000 0.423E-01 0.108E+00 0.669E-02 0.189E-01 0.963E-02 0.233E-01 0.963E-02 0.233E-01 0.669E-02 0.189E-01 0.963E-02 0.233E-01 17.100 0.412E-01 0.977E-01 0.668E-02 0.165E-01 0.928E-02 0.216E-01 0.928E-02 0.216E-01 0.668E-02 0.165E-01 0.928E-02 0.216E-01 17.200 0.361E-01 0.835E-01 0.615E-02 0.134E-01 0.795E-02 0.189E-01 0.795E-02 0.189E-01 0.615E-02 0.134E-01 0.795E-02 0.189E-01 17.300 0.267E-01 0.729E-01 0.491E-02 0.112E-01 0.561E-02 0.168E-01 0.561E-02 0.168E-01 0.491E-02 0.112E-01 0.561E-02 0.168E-01 17.400 0.171E-01 0.677E-01 0.351E-02 0.102E-01 0.336E-02 0.158E-01 0.336E-02 0.158E-01 0.351E-02 0.102E-01 0.336E-02 0.158E-01 17.500 0.114E-01 0.634E-01 0.252E-02 0.965E-02 0.213E-02 0.147E-01 0.213E-02 0.147E-01 0.252E-02 0.965E-02 0.213E-02 0.147E-01 17.600 0.112E-01 0.521E-01 0.230E-02 0.829E-02 0.221E-02 0.118E-01 0.221E-02 0.118E-01 0.230E-02 0.829E-02 0.221E-02 0.118E-01 17.700 0.147E-01 0.336E-01 0.269E-02 0.578E-02 0.310E-02 0.734E-02 0.310E-02 0.734E-02 0.269E-02 0.578E-02 0.310E-02 0.734E-02 17.800 0.181E-01 0.171E-01 0.311E-02 0.336E-02 0.397E-02 0.346E-02 0.397E-02 0.346E-02 0.311E-02 0.336E-02 0.397E-02 0.346E-02 17.900 0.212E-01 0.117E-01 0.343E-02 0.243E-02 0.477E-02 0.230E-02 0.477E-02 0.230E-02 0.343E-02 0.243E-02 0.477E-02 0.230E-02 18.000 0.266E-01 0.171E-01 0.408E-02 0.304E-02 0.614E-02 0.368E-02 0.614E-02 0.368E-02 0.408E-02 0.304E-02 0.614E-02 0.368E-02 18.100 0.337E-01 0.245E-01 0.499E-02 0.388E-02 0.791E-02 0.557E-02 0.791E-02 0.557E-02 0.499E-02 0.388E-02 0.791E-02 0.557E-02 18.200 0.359E-01 0.267E-01 0.521E-02 0.394E-02 0.850E-02 0.628E-02 0.850E-02 0.628E-02 0.521E-02 0.394E-02 0.850E-02 0.628E-02 18.300 0.289E-01 0.261E-01 0.413E-02 0.368E-02 0.687E-02 0.626E-02 0.687E-02 0.626E-02 0.413E-02 0.368E-02 0.687E-02 0.626E-02 18.400 0.182E-01 0.296E-01 0.259E-02 0.417E-02 0.433E-02 0.708E-02 0.433E-02 0.708E-02 0.259E-02 0.417E-02 0.433E-02 0.708E-02 18.500 0.144E-01 0.367E-01 0.216E-02 0.529E-02 0.336E-02 0.871E-02 0.336E-02 0.871E-02 0.216E-02 0.529E-02 0.336E-02 0.871E-02 18.600 0.192E-01 0.386E-01 0.306E-02 0.561E-02 0.436E-02 0.914E-02 0.436E-02 0.914E-02 0.306E-02 0.561E-02 0.436E-02 0.914E-02 18.700 0.234E-01 0.312E-01 0.381E-02 0.455E-02 0.526E-02 0.738E-02 0.526E-02 0.738E-02 0.381E-02 0.455E-02 0.526E-02 0.738E-02 18.800 0.200E-01 0.235E-01 0.326E-02 0.348E-02 0.451E-02 0.552E-02 0.451E-02 0.552E-02 0.326E-02 0.348E-02 0.451E-02 0.552E-02 18.900 0.125E-01 0.249E-01 0.195E-02 0.381E-02 0.286E-02 0.576E-02 0.286E-02 0.576E-02 0.195E-02 0.381E-02 0.286E-02 0.576E-02 19.000 0.691E-02 0.305E-01 0.973E-03 0.471E-02 0.165E-02 0.704E-02 0.165E-02 0.704E-02 0.973E-03 0.471E-02 0.165E-02 0.704E-02 19.100 0.479E-02 0.290E-01 0.634E-03 0.442E-02 0.117E-02 0.671E-02 0.117E-02 0.671E-02 0.634E-03 0.442E-02 0.117E-02 0.671E-02 19.200 0.538E-02 0.193E-01 0.756E-03 0.287E-02 0.129E-02 0.452E-02 0.129E-02 0.452E-02 0.756E-03 0.287E-02 0.129E-02 0.452E-02 19.300 0.919E-02 0.982E-02 0.133E-02 0.138E-02 0.218E-02 0.235E-02 0.218E-02 0.235E-02 0.133E-02 0.138E-02 0.218E-02 0.235E-02 19.400 0.148E-01 0.582E-02 0.213E-02 0.761E-03 0.350E-02 0.143E-02 0.350E-02 0.143E-02 0.213E-02 0.761E-03 0.350E-02 0.143E-02 19.500 0.174E-01 0.754E-02 0.252E-02 0.958E-03 0.413E-02 0.187E-02 0.413E-02 0.187E-02 0.252E-02 0.958E-03 0.413E-02 0.187E-02 19.600 0.146E-01 0.141E-01 0.213E-02 0.178E-02 0.343E-02 0.352E-02 0.343E-02 0.352E-02 0.213E-02 0.178E-02 0.343E-02 0.352E-02 19.700 0.856E-02 0.217E-01 0.127E-02 0.275E-02 0.201E-02 0.541E-02 0.201E-02 0.541E-02 0.127E-02 0.275E-02 0.201E-02 0.541E-02 19.800 0.337E-02 0.238E-01 0.476E-03 0.305E-02 0.806E-03 0.589E-02 0.806E-03 0.589E-02 0.476E-03 0.305E-02 0.806E-03 0.589E-02 19.900 0.497E-03 0.181E-01 0.316E-04 0.238E-02 0.144E-03 0.445E-02 0.144E-03 0.445E-02 0.316E-04 0.238E-02 0.144E-03 0.445E-02 20.000 -0.648E-03 0.934E-02 -0.123E-03 0.126E-02 -0.134E-03 0.227E-02 -0.134E-03 0.227E-02 -0.123E-03 0.126E-02 -0.134E-03 0.227E-02 20.100 -0.789E-03 0.274E-02 -0.127E-03 0.383E-03 -0.178E-03 0.659E-03 -0.178E-03 0.659E-03 -0.127E-03 0.383E-03 -0.178E-03 0.659E-03 20.200 0.236E-03 -0.388E-03 -0.748E-05 -0.498E-04 0.837E-04 -0.961E-04 0.837E-04 -0.961E-04 -0.748E-05 -0.498E-04 0.837E-04 -0.961E-04 20.300 0.301E-02 -0.131E-02 0.320E-03 -0.176E-03 0.790E-03 -0.318E-03 0.790E-03 -0.318E-03 0.320E-03 -0.176E-03 0.790E-03 -0.318E-03 20.400 0.702E-02 -0.101E-02 0.843E-03 -0.146E-03 0.178E-02 -0.240E-03 0.178E-02 -0.240E-03 0.843E-03 -0.146E-03 0.178E-02 -0.240E-03 20.500 0.991E-02 0.951E-03 0.129E-02 0.828E-04 0.244E-02 0.262E-03 0.244E-02 0.262E-03 0.129E-02 0.828E-04 0.244E-02 0.262E-03 20.600 0.949E-02 0.537E-02 0.132E-02 0.636E-03 0.228E-02 0.137E-02 0.228E-02 0.137E-02 0.132E-02 0.636E-03 0.228E-02 0.137E-02 20.700 0.632E-02 0.109E-01 0.931E-03 0.139E-02 0.148E-02 0.271E-02 0.148E-02 0.271E-02 0.931E-03 0.139E-02 0.148E-02 0.271E-02 20.800 0.330E-02 0.138E-01 0.478E-03 0.184E-02 0.783E-03 0.338E-02 0.783E-03 0.338E-02 0.478E-03 0.184E-02 0.783E-03 0.338E-02 20.900 0.239E-02 0.118E-01 0.268E-03 0.163E-02 0.617E-03 0.284E-02 0.617E-03 0.284E-02 0.268E-03 0.163E-02 0.617E-03 0.284E-02 21.000 0.268E-02 0.698E-02 0.251E-03 0.971E-03 0.724E-03 0.168E-02 0.724E-03 0.168E-02 0.251E-03 0.971E-03 0.724E-03 0.168E-02 21.100 0.228E-02 0.371E-02 0.220E-03 0.438E-03 0.615E-03 0.945E-03 0.615E-03 0.945E-03 0.220E-03 0.438E-03 0.615E-03 0.945E-03 21.200 0.105E-02 0.331E-02 0.130E-03 0.287E-03 0.264E-03 0.913E-03 0.264E-03 0.913E-03 0.130E-03 0.287E-03 0.264E-03 0.913E-03 21.300 0.751E-03 0.358E-02 0.114E-03 0.304E-03 0.174E-03 0.992E-03 0.174E-03 0.992E-03 0.114E-03 0.304E-03 0.174E-03 0.992E-03 21.400 0.310E-02 0.262E-02 0.248E-03 0.249E-03 0.869E-03 0.706E-03 0.869E-03 0.706E-03 0.248E-03 0.249E-03 0.869E-03 0.706E-03 21.500 0.792E-02 0.127E-02 0.411E-03 0.168E-03 0.237E-02 0.309E-03 0.237E-02 0.309E-03 0.411E-03 0.168E-03 0.237E-02 0.309E-03 21.600 0.129E-01 0.157E-02 0.427E-03 0.233E-03 0.401E-02 0.368E-03 0.401E-02 0.368E-03 0.427E-03 0.233E-03 0.401E-02 0.368E-03 21.700 0.152E-01 0.415E-02 0.275E-03 0.427E-03 0.488E-02 0.110E-02 0.488E-02 0.110E-02 0.275E-03 0.427E-03 0.488E-02 0.110E-02 21.800 0.143E-01 0.790E-02 0.963E-04 0.536E-03 0.472E-02 0.228E-02 0.472E-02 0.228E-02 0.963E-04 0.536E-03 0.472E-02 0.228E-02 21.900 0.124E-01 0.116E-01 0.688E-05 0.424E-03 0.412E-02 0.357E-02 0.412E-02 0.357E-02 0.688E-05 0.424E-03 0.412E-02 0.357E-02 22.000 0.114E-01 0.144E-01 0.289E-05 0.196E-03 0.381E-02 0.468E-02 0.381E-02 0.468E-02 0.289E-05 0.196E-03 0.381E-02 0.468E-02 22.100 0.121E-01 0.161E-01 0.331E-04 0.317E-04 0.401E-02 0.533E-02 0.401E-02 0.533E-02 0.331E-04 0.317E-04 0.401E-02 0.533E-02 22.200 0.137E-01 0.164E-01 0.676E-04 -0.143E-04 0.451E-02 0.549E-02 0.451E-02 0.549E-02 0.676E-04 -0.143E-04 0.451E-02 0.549E-02 22.300 0.145E-01 0.163E-01 0.908E-04 0.673E-05 0.477E-02 0.542E-02 0.477E-02 0.542E-02 0.908E-04 0.673E-05 0.477E-02 0.542E-02 22.400 0.127E-01 0.165E-01 0.882E-04 0.448E-04 0.418E-02 0.546E-02 0.418E-02 0.546E-02 0.882E-04 0.448E-04 0.418E-02 0.546E-02 22.500 0.915E-02 0.173E-01 0.676E-04 0.817E-04 0.301E-02 0.571E-02 0.301E-02 0.571E-02 0.676E-04 0.817E-04 0.301E-02 0.571E-02 22.600 0.658E-02 0.174E-01 0.607E-04 0.103E-03 0.215E-02 0.574E-02 0.215E-02 0.574E-02 0.607E-04 0.103E-03 0.215E-02 0.574E-02 22.700 0.603E-02 0.153E-01 0.802E-04 0.965E-04 0.196E-02 0.505E-02 0.196E-02 0.505E-02 0.802E-04 0.965E-04 0.196E-02 0.505E-02 22.800 0.610E-02 0.119E-01 0.983E-04 0.780E-04 0.197E-02 0.390E-02 0.197E-02 0.390E-02 0.983E-04 0.780E-04 0.197E-02 0.390E-02 22.900 0.595E-02 0.945E-02 0.905E-04 0.803E-04 0.192E-02 0.310E-02 0.192E-02 0.310E-02 0.905E-04 0.803E-04 0.192E-02 0.310E-02 23.000 0.610E-02 0.864E-02 0.725E-04 0.102E-03 0.199E-02 0.281E-02 0.199E-02 0.281E-02 0.725E-04 0.102E-03 0.199E-02 0.281E-02 23.100 0.642E-02 0.796E-02 0.718E-04 0.111E-03 0.209E-02 0.258E-02 0.209E-02 0.258E-02 0.718E-04 0.111E-03 0.209E-02 0.258E-02 23.200 0.616E-02 0.733E-02 0.836E-04 0.103E-03 0.200E-02 0.237E-02 0.200E-02 0.237E-02 0.836E-04 0.103E-03 0.200E-02 0.237E-02 23.300 0.566E-02 0.782E-02 0.807E-04 0.111E-03 0.183E-02 0.253E-02 0.183E-02 0.253E-02 0.807E-04 0.111E-03 0.183E-02 0.253E-02 23.400 0.563E-02 0.870E-02 0.522E-04 0.137E-03 0.184E-02 0.281E-02 0.184E-02 0.281E-02 0.522E-04 0.137E-03 0.184E-02 0.281E-02 23.500 0.550E-02 0.836E-02 0.163E-04 0.140E-03 0.182E-02 0.269E-02 0.182E-02 0.269E-02 0.163E-04 0.140E-03 0.182E-02 0.269E-02 23.600 0.438E-02 0.719E-02 0.113E-05 0.969E-04 0.146E-02 0.233E-02 0.146E-02 0.233E-02 0.113E-05 0.969E-04 0.146E-02 0.233E-02 23.700 0.301E-02 0.654E-02 0.259E-04 0.354E-04 0.987E-03 0.216E-02 0.987E-03 0.216E-02 0.259E-04 0.354E-04 0.987E-03 0.216E-02 23.800 0.287E-02 0.622E-02 0.848E-04 0.228E-05 0.899E-03 0.207E-02 0.899E-03 0.207E-02 0.848E-04 0.228E-05 0.899E-03 0.207E-02 23.900 0.378E-02 0.555E-02 0.137E-03 0.259E-04 0.117E-02 0.183E-02 0.117E-02 0.183E-02 0.137E-03 0.259E-04 0.117E-02 0.183E-02 24.000 0.428E-02 0.513E-02 0.136E-03 0.998E-04 0.134E-02 0.164E-02 0.134E-02 0.164E-02 0.136E-03 0.998E-04 0.134E-02 0.164E-02 24.100 0.402E-02 0.549E-02 0.860E-04 0.173E-03 0.128E-02 0.172E-02 0.128E-02 0.172E-02 0.860E-04 0.173E-03 0.128E-02 0.172E-02 24.200 0.388E-02 0.558E-02 0.335E-04 0.181E-03 0.127E-02 0.174E-02 0.127E-02 0.174E-02 0.335E-04 0.181E-03 0.127E-02 0.174E-02 24.300 0.398E-02 0.477E-02 0.893E-05 0.120E-03 0.132E-02 0.151E-02 0.132E-02 0.151E-02 0.893E-05 0.120E-03 0.132E-02 0.151E-02 24.400 0.339E-02 0.426E-02 0.408E-05 0.475E-04 0.113E-02 0.139E-02 0.113E-02 0.139E-02 0.408E-05 0.475E-04 0.113E-02 0.139E-02 24.500 0.209E-02 0.473E-02 0.227E-05 0.118E-04 0.695E-03 0.157E-02 0.695E-03 0.157E-02 0.227E-05 0.118E-04 0.695E-03 0.157E-02 24.600 0.128E-02 0.488E-02 -0.485E-06 0.651E-05 0.428E-03 0.162E-02 0.428E-03 0.162E-02 -0.485E-06 0.651E-05 0.428E-03 0.162E-02 24.700 0.162E-02 0.363E-02 -0.565E-05 0.684E-05 0.543E-03 0.121E-02 0.543E-03 0.121E-02 -0.565E-05 0.684E-05 0.543E-03 0.121E-02 24.800 0.233E-02 0.211E-02 -0.206E-04 0.612E-05 0.789E-03 0.698E-03 0.789E-03 0.698E-03 -0.206E-04 0.612E-05 0.789E-03 0.698E-03 24.900 0.245E-02 0.196E-02 -0.257E-04 0.860E-05 0.835E-03 0.648E-03 0.835E-03 0.648E-03 -0.257E-04 0.860E-05 0.835E-03 0.648E-03 25.000 0.225E-02 0.293E-02 0.765E-04 0.505E-05 0.700E-03 0.974E-03 0.700E-03 0.974E-03 0.765E-04 0.505E-05 0.700E-03 0.974E-03 25.100 0.268E-02 0.345E-02 0.400E-03 -0.168E-04 0.628E-03 0.116E-02 0.628E-03 0.116E-02 0.400E-03 -0.168E-04 0.628E-03 0.116E-02 espresso-5.1/PP/examples/example02/reference/ni.dos0000644000175000017500000002053312341372774020324 0ustar mbamba# E (eV) dosup(E) dosdw(E) Int dos(E) 5.749 0.0000E+00 0.0000E+00 0.0000E+00 5.849 0.9326E-03 0.4524E-03 0.1385E-03 5.949 0.3730E-02 0.2683E-02 0.7799E-03 6.049 0.1327E-01 0.6778E-02 0.2785E-02 6.149 0.1422E-01 0.1860E-01 0.6067E-02 6.249 0.1686E-01 0.1600E-01 0.9353E-02 6.349 0.1969E-01 0.1876E-01 0.1320E-01 6.449 0.2270E-01 0.2169E-01 0.1764E-01 6.549 0.2663E-01 0.2502E-01 0.2280E-01 6.649 0.3047E-01 0.2934E-01 0.2878E-01 6.749 0.3266E-01 0.3199E-01 0.3525E-01 6.849 0.3143E-01 0.3155E-01 0.4155E-01 6.949 0.3324E-01 0.3233E-01 0.4810E-01 7.049 0.3541E-01 0.3437E-01 0.5508E-01 7.149 0.3778E-01 0.3661E-01 0.6252E-01 7.249 0.4035E-01 0.3904E-01 0.7046E-01 7.349 0.4304E-01 0.4162E-01 0.7893E-01 7.449 0.4578E-01 0.4426E-01 0.8793E-01 7.549 0.4829E-01 0.4691E-01 0.9745E-01 7.649 0.5012E-01 0.4854E-01 0.1073E+00 7.749 0.5207E-01 0.5034E-01 0.1176E+00 7.849 0.5397E-01 0.5207E-01 0.1282E+00 7.949 0.5555E-01 0.5366E-01 0.1391E+00 8.049 0.5758E-01 0.5509E-01 0.1503E+00 8.149 0.6041E-01 0.5729E-01 0.1621E+00 8.249 0.6358E-01 0.6005E-01 0.1745E+00 8.349 0.6693E-01 0.6298E-01 0.1875E+00 8.449 0.7047E-01 0.6605E-01 0.2011E+00 8.549 0.7419E-01 0.6927E-01 0.2155E+00 8.649 0.7759E-01 0.7250E-01 0.2305E+00 8.749 0.8067E-01 0.7506E-01 0.2461E+00 8.849 0.8646E-01 0.7866E-01 0.2626E+00 8.949 0.9146E-01 0.8234E-01 0.2799E+00 9.049 0.9682E-01 0.8626E-01 0.2983E+00 9.149 0.1024E+00 0.9040E-01 0.3175E+00 9.249 0.1084E+00 0.9458E-01 0.3378E+00 9.349 0.1161E+00 0.9895E-01 0.3593E+00 9.449 0.1251E+00 0.1044E+00 0.3823E+00 9.549 0.1354E+00 0.1108E+00 0.4069E+00 9.649 0.1469E+00 0.1181E+00 0.4334E+00 9.749 0.1598E+00 0.1260E+00 0.4620E+00 9.849 0.1892E+00 0.1347E+00 0.4944E+00 9.949 0.2341E+00 0.1452E+00 0.5323E+00 10.049 0.2857E+00 0.1619E+00 0.5771E+00 10.149 0.3428E+00 0.1828E+00 0.6296E+00 10.249 0.4702E+00 0.2071E+00 0.6974E+00 10.349 0.5345E+00 0.2411E+00 0.7749E+00 10.449 0.5403E+00 0.2830E+00 0.8573E+00 10.549 0.5567E+00 0.3936E+00 0.9523E+00 10.649 0.5726E+00 0.4649E+00 0.1056E+01 10.749 0.6302E+00 0.4699E+00 0.1166E+01 10.849 0.7605E+00 0.4889E+00 0.1291E+01 10.949 0.8373E+00 0.5089E+00 0.1426E+01 11.049 0.9253E+00 0.5319E+00 0.1571E+01 11.149 0.9656E+00 0.5341E+00 0.1721E+01 11.249 0.9313E+00 0.5282E+00 0.1867E+01 11.349 0.6849E+00 0.7035E+00 0.2006E+01 11.449 0.6156E+00 0.7861E+00 0.2146E+01 11.549 0.7953E+00 0.8868E+00 0.2314E+01 11.649 0.8309E+00 0.8300E+00 0.2481E+01 11.749 0.7759E+00 0.7161E+00 0.2630E+01 11.849 0.7505E+00 0.5897E+00 0.2764E+01 11.949 0.8979E+00 0.7131E+00 0.2925E+01 12.049 0.8304E+00 0.8010E+00 0.3088E+01 12.149 0.8811E+00 0.8257E+00 0.3259E+01 12.249 0.1135E+01 0.7694E+00 0.3449E+01 12.349 0.1179E+01 0.7044E+00 0.3637E+01 12.449 0.1152E+01 0.7088E+00 0.3824E+01 12.549 0.1200E+01 0.7092E+00 0.4014E+01 12.649 0.1365E+01 0.7878E+00 0.4230E+01 12.749 0.1448E+01 0.9528E+00 0.4470E+01 12.849 0.1520E+01 0.1158E+01 0.4738E+01 12.949 0.1508E+01 0.1140E+01 0.5003E+01 13.049 0.9797E+00 0.1140E+01 0.5215E+01 13.149 0.1017E+01 0.1253E+01 0.5442E+01 13.249 0.1038E+01 0.1290E+01 0.5674E+01 13.349 0.9362E+00 0.1394E+01 0.5907E+01 13.449 0.9454E+00 0.1032E+01 0.6105E+01 13.549 0.8959E+00 0.1320E+01 0.6327E+01 13.649 0.1074E+01 0.1157E+01 0.6550E+01 13.749 0.1358E+01 0.1049E+01 0.6791E+01 13.849 0.1300E+01 0.1056E+01 0.7026E+01 13.949 0.1189E+01 0.1001E+01 0.7245E+01 14.049 0.1151E+01 0.8762E+00 0.7448E+01 14.149 0.1102E+01 0.8369E+00 0.7642E+01 14.249 0.1196E+01 0.9758E+00 0.7859E+01 14.349 0.1200E+01 0.1277E+01 0.8107E+01 14.449 0.1262E+01 0.1300E+01 0.8363E+01 14.549 0.1505E+01 0.1073E+01 0.8621E+01 14.649 0.2302E+01 0.1054E+01 0.8956E+01 14.749 0.1968E+01 0.9892E+00 0.9252E+01 14.849 0.8652E+00 0.1009E+01 0.9439E+01 14.949 0.1823E+00 0.1176E+01 0.9575E+01 15.049 0.1907E+00 0.1074E+01 0.9702E+01 15.149 0.1799E+00 0.1164E+01 0.9836E+01 15.249 0.1754E+00 0.1288E+01 0.9982E+01 15.349 0.1617E+00 0.2049E+01 0.1020E+02 15.449 0.1571E+00 0.1856E+01 0.1040E+02 15.549 0.1540E+00 0.1131E+01 0.1053E+02 15.649 0.1519E+00 0.3862E+00 0.1059E+02 15.749 0.1505E+00 0.2004E+00 0.1062E+02 15.849 0.1502E+00 0.1978E+00 0.1066E+02 15.949 0.1596E+00 0.1883E+00 0.1069E+02 16.049 0.1603E+00 0.1781E+00 0.1073E+02 16.149 0.1512E+00 0.1734E+00 0.1076E+02 16.249 0.1495E+00 0.1687E+00 0.1079E+02 16.349 0.1473E+00 0.1760E+00 0.1082E+02 16.449 0.1444E+00 0.1766E+00 0.1085E+02 16.549 0.1406E+00 0.1661E+00 0.1088E+02 16.649 0.1384E+00 0.1644E+00 0.1092E+02 16.749 0.1368E+00 0.1624E+00 0.1095E+02 16.849 0.1355E+00 0.1601E+00 0.1097E+02 16.949 0.1345E+00 0.1575E+00 0.1100E+02 17.049 0.1336E+00 0.1530E+00 0.1103E+02 17.149 0.1329E+00 0.1501E+00 0.1106E+02 17.249 0.1326E+00 0.1478E+00 0.1109E+02 17.349 0.1326E+00 0.1460E+00 0.1112E+02 17.449 0.1321E+00 0.1445E+00 0.1114E+02 17.549 0.1313E+00 0.1435E+00 0.1117E+02 17.649 0.1312E+00 0.1435E+00 0.1120E+02 17.749 0.1316E+00 0.1432E+00 0.1123E+02 17.849 0.1327E+00 0.1434E+00 0.1125E+02 17.949 0.1308E+00 0.1444E+00 0.1128E+02 18.049 0.1295E+00 0.1422E+00 0.1131E+02 18.149 0.1285E+00 0.1374E+00 0.1134E+02 18.249 0.1295E+00 0.1371E+00 0.1136E+02 18.349 0.1281E+00 0.1362E+00 0.1139E+02 18.449 0.1262E+00 0.1349E+00 0.1141E+02 18.549 0.1239E+00 0.1335E+00 0.1144E+02 18.649 0.1211E+00 0.1343E+00 0.1147E+02 18.749 0.1185E+00 0.1321E+00 0.1149E+02 18.849 0.1158E+00 0.1295E+00 0.1152E+02 18.949 0.1133E+00 0.1264E+00 0.1154E+02 19.049 0.1108E+00 0.1230E+00 0.1156E+02 19.149 0.1088E+00 0.1199E+00 0.1159E+02 19.249 0.1066E+00 0.1169E+00 0.1161E+02 19.349 0.1043E+00 0.1143E+00 0.1163E+02 19.449 0.1020E+00 0.1120E+00 0.1165E+02 19.549 0.1069E+00 0.1095E+00 0.1167E+02 19.649 0.1020E+00 0.1068E+00 0.1169E+02 19.749 0.9894E-01 0.1043E+00 0.1171E+02 19.849 0.9757E-01 0.1074E+00 0.1173E+02 19.949 0.9625E-01 0.1029E+00 0.1175E+02 20.049 0.9481E-01 0.1013E+00 0.1177E+02 20.149 0.9323E-01 0.9985E-01 0.1179E+02 20.249 0.9153E-01 0.9829E-01 0.1181E+02 20.349 0.8971E-01 0.9659E-01 0.1183E+02 20.449 0.8728E-01 0.9478E-01 0.1185E+02 20.549 0.7839E-01 0.9284E-01 0.1187E+02 20.649 0.7212E-01 0.9078E-01 0.1188E+02 20.749 0.6752E-01 0.8699E-01 0.1190E+02 20.849 0.6326E-01 0.7753E-01 0.1191E+02 20.949 0.5933E-01 0.7188E-01 0.1193E+02 21.049 0.5630E-01 0.6722E-01 0.1194E+02 21.149 0.5582E-01 0.6291E-01 0.1195E+02 21.249 0.5205E-01 0.5897E-01 0.1196E+02 21.349 0.4495E-01 0.5785E-01 0.1197E+02 21.449 0.3453E-01 0.5538E-01 0.1198E+02 21.549 0.2086E-01 0.4945E-01 0.1199E+02 21.649 0.1802E-01 0.4005E-01 0.1199E+02 21.749 0.3878E-01 0.2720E-01 0.1200E+02 21.849 0.4370E-01 0.1401E-01 0.1201E+02 21.949 0.5611E-01 0.1053E-01 0.1201E+02 22.049 0.6847E-01 0.1892E-01 0.1202E+02 22.149 0.8118E-01 0.4153E-01 0.1203E+02 22.249 0.9272E-01 0.5177E-01 0.1205E+02 22.349 0.9971E-01 0.6643E-01 0.1206E+02 22.449 0.1061E+00 0.8212E-01 0.1208E+02 22.549 0.1132E+00 0.9607E-01 0.1210E+02 22.649 0.1201E+00 0.1045E+00 0.1213E+02 22.749 0.1268E+00 0.1124E+00 0.1215E+02 22.849 0.1329E+00 0.1202E+00 0.1218E+02 22.949 0.1388E+00 0.1281E+00 0.1220E+02 23.049 0.1436E+00 0.1356E+00 0.1223E+02 23.149 0.1482E+00 0.1423E+00 0.1226E+02 23.249 0.1537E+00 0.1485E+00 0.1229E+02 23.349 0.1559E+00 0.1539E+00 0.1232E+02 23.449 0.1570E+00 0.1596E+00 0.1235E+02 23.549 0.1579E+00 0.1612E+00 0.1238E+02 23.649 0.1586E+00 0.1626E+00 0.1242E+02 23.749 0.1582E+00 0.1630E+00 0.1245E+02 23.849 0.1568E+00 0.1635E+00 0.1248E+02 23.949 0.1753E+00 0.1630E+00 0.1251E+02 24.049 0.1626E+00 0.1614E+00 0.1255E+02 24.149 0.1406E+00 0.1586E+00 0.1258E+02 24.249 0.1352E+00 0.1700E+00 0.1261E+02 24.349 0.1307E+00 0.1442E+00 0.1263E+02 24.449 0.1273E+00 0.1385E+00 0.1266E+02 24.549 0.1242E+00 0.1336E+00 0.1269E+02 24.649 0.1213E+00 0.1298E+00 0.1271E+02 24.749 0.1187E+00 0.1266E+00 0.1274E+02 24.849 0.1163E+00 0.1236E+00 0.1276E+02 24.949 0.1149E+00 0.1209E+00 0.1278E+02 espresso-5.1/PP/examples/example02/reference/ni.scf.out0000644000175000017500000011422512341372774021122 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 11Jul2009 at 14:18:38 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 25 npp = 25 ncplane = 625 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 25 421 5601 15 139 1067 55 259 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-10 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file Ni.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 120 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0039062 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0117188 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0117188 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0117188 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0117188 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0117188 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0117188 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0117188 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0117188 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0234375 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0234375 k( 12) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0234375 k( 13) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0234375 k( 14) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0234375 k( 15) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0234375 k( 16) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0117188 k( 17) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0234375 k( 18) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0234375 k( 19) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0234375 k( 20) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0234375 k( 21) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0234375 k( 22) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0117188 k( 23) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0234375 k( 24) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0234375 k( 25) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0234375 k( 26) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0234375 k( 27) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0117188 k( 28) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0234375 k( 29) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0234375 k( 30) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0117188 k( 31) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0234375 k( 32) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0117188 k( 33) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0039062 k( 34) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0117188 k( 35) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0117188 k( 36) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0117188 k( 37) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0117188 k( 38) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0117188 k( 39) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0117188 k( 40) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0234375 k( 41) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0234375 k( 42) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0234375 k( 43) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0234375 k( 44) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0117188 k( 45) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0234375 k( 46) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0234375 k( 47) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0234375 k( 48) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0117188 k( 49) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0234375 k( 50) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0117188 k( 51) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0039062 k( 52) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0117188 k( 53) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0117188 k( 54) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0117188 k( 55) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0117188 k( 56) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0234375 k( 57) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0234375 k( 58) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0117188 k( 59) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0039062 k( 60) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0117188 k( 61) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0039062 k( 62) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0117188 k( 63) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0117188 k( 64) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0117188 k( 65) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0117188 k( 66) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0117188 k( 67) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0117188 k( 68) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0117188 k( 69) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0117188 k( 70) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0234375 k( 71) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0234375 k( 72) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0234375 k( 73) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0234375 k( 74) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0234375 k( 75) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0234375 k( 76) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0117188 k( 77) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0234375 k( 78) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0234375 k( 79) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0234375 k( 80) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0234375 k( 81) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0234375 k( 82) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0117188 k( 83) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0234375 k( 84) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0234375 k( 85) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0234375 k( 86) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0234375 k( 87) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0117188 k( 88) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0234375 k( 89) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0234375 k( 90) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0117188 k( 91) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0234375 k( 92) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0117188 k( 93) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0039062 k( 94) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0117188 k( 95) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0117188 k( 96) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0117188 k( 97) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0117188 k( 98) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0117188 k( 99) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0117188 k( 100) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0234375 k( 101) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0234375 k( 102) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0234375 k( 103) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0234375 k( 104) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0117188 k( 105) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0234375 k( 106) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0234375 k( 107) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0234375 k( 108) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0117188 k( 109) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0234375 k( 110) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0117188 k( 111) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0039062 k( 112) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0117188 k( 113) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0117188 k( 114) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0117188 k( 115) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0117188 k( 116) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0234375 k( 117) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0234375 k( 118) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0117188 k( 119) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0039062 k( 120) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0117188 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 144, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 atomic + 3 random wfc total cpu time spent up to now is 1.51 secs per-process dynamical memory: 11.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 total cpu time spent up to now is 2.91 secs total energy = -85.35005575 Ry Harris-Foulkes estimate = -85.36840648 Ry estimated scf accuracy < 0.91558347 Ry total magnetization = 1.85 Bohr mag/cell absolute magnetization = 1.87 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.16E-03, avg # of iterations = 2.0 total cpu time spent up to now is 3.85 secs total energy = -85.52910291 Ry Harris-Foulkes estimate = -85.84199986 Ry estimated scf accuracy < 0.93392466 Ry total magnetization = 0.67 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.16E-03, avg # of iterations = 1.0 total cpu time spent up to now is 4.70 secs total energy = -85.71067529 Ry Harris-Foulkes estimate = -85.68286109 Ry estimated scf accuracy < 0.04349221 Ry total magnetization = 1.00 Bohr mag/cell absolute magnetization = 1.10 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.35E-04, avg # of iterations = 1.0 total cpu time spent up to now is 5.54 secs total energy = -85.72195595 Ry Harris-Foulkes estimate = -85.72138903 Ry estimated scf accuracy < 0.00128188 Ry total magnetization = 0.62 Bohr mag/cell absolute magnetization = 0.74 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-05, avg # of iterations = 2.0 total cpu time spent up to now is 6.47 secs total energy = -85.72234798 Ry Harris-Foulkes estimate = -85.72218992 Ry estimated scf accuracy < 0.00030103 Ry total magnetization = 0.59 Bohr mag/cell absolute magnetization = 0.68 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-06, avg # of iterations = 1.8 total cpu time spent up to now is 7.39 secs total energy = -85.72248661 Ry Harris-Foulkes estimate = -85.72247858 Ry estimated scf accuracy < 0.00003441 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.44E-07, avg # of iterations = 1.0 total cpu time spent up to now is 8.23 secs total energy = -85.72248975 Ry Harris-Foulkes estimate = -85.72248942 Ry estimated scf accuracy < 0.00000309 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.09E-08, avg # of iterations = 1.5 total cpu time spent up to now is 9.13 secs total energy = -85.72249130 Ry Harris-Foulkes estimate = -85.72249055 Ry estimated scf accuracy < 0.00000164 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 9 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.64E-08, avg # of iterations = 1.0 total cpu time spent up to now is 9.97 secs total energy = -85.72249140 Ry Harris-Foulkes estimate = -85.72249140 Ry estimated scf accuracy < 1.0E-09 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 10 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-11, avg # of iterations = 2.8 total cpu time spent up to now is 11.04 secs total energy = -85.72249140 Ry Harris-Foulkes estimate = -85.72249140 Ry estimated scf accuracy < 1.4E-09 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 11 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-11, avg # of iterations = 1.1 total cpu time spent up to now is 11.88 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0625 0.0625 0.0625 ( 137 PWs) bands (ev): 5.9120 12.6405 12.7239 12.7239 13.9676 13.9676 39.4726 42.4109 44.0014 k = 0.0625 0.0625 0.1875 ( 137 PWs) bands (ev): 6.3391 12.4942 12.8364 12.8413 13.8267 14.0340 38.2933 40.8114 41.8233 k = 0.0625 0.0625 0.3125 ( 136 PWs) bands (ev): 7.1584 12.2113 13.0528 13.0701 13.6132 14.1573 36.6039 39.3136 39.3758 k = 0.0625 0.0625 0.4375 ( 135 PWs) bands (ev): 8.2720 11.8509 13.1520 13.3958 13.6437 14.3191 34.7984 36.9240 37.9143 k = 0.0625 0.0625 0.5625 ( 135 PWs) bands (ev): 9.4204 11.4731 13.1995 13.7878 14.1065 14.4961 33.0562 34.8022 35.0428 k = 0.0625 0.0625 0.6875 ( 131 PWs) bands (ev): 10.1167 11.1349 13.7248 14.1931 14.6631 14.9104 31.2034 31.8424 33.0618 k = 0.0625 0.0625 0.8125 ( 131 PWs) bands (ev): 10.2638 10.8828 14.3319 14.5329 14.7989 16.3747 28.0532 30.5459 31.8085 k = 0.0625 0.0625 0.9375 ( 131 PWs) bands (ev): 10.2379 10.7488 14.6335 14.7180 14.8876 17.9391 25.6720 29.9311 31.1465 k = 0.0625 0.1875 0.1875 ( 140 PWs) bands (ev): 6.7533 12.4202 12.8937 12.8979 13.8050 14.0434 36.2756 39.1047 42.8591 k = 0.0625 0.1875 0.3125 ( 138 PWs) bands (ev): 7.5453 12.2049 12.9781 13.0817 13.6872 14.2129 34.2598 37.1140 41.9174 k = 0.0625 0.1875 0.4375 ( 138 PWs) bands (ev): 8.6158 11.8970 12.9168 13.3636 13.8100 14.4738 32.4182 35.2312 39.3633 k = 0.0625 0.1875 0.5625 ( 138 PWs) bands (ev): 9.7156 11.5625 12.8192 13.7142 14.2265 14.8745 30.7919 33.4968 35.6959 k = 0.0625 0.1875 0.6875 ( 135 PWs) bands (ev): 10.3795 11.2566 13.0675 14.0984 14.5780 15.7749 29.4219 31.5622 32.4412 k = 0.0625 0.1875 0.8125 ( 131 PWs) bands (ev): 10.5004 11.0256 13.5615 14.4143 14.7603 17.3451 28.0924 28.6880 31.1642 k = 0.0625 0.1875 0.9375 ( 129 PWs) bands (ev): 10.4588 10.9029 13.9046 14.5424 14.8707 18.9889 25.7860 27.9627 30.5806 k = 0.0625 0.3125 0.3125 ( 140 PWs) bands (ev): 8.2768 12.1322 12.9067 13.1711 13.6344 14.4855 32.1372 35.0423 43.2095 k = 0.0625 0.3125 0.4375 ( 140 PWs) bands (ev): 9.2452 11.9635 12.7385 13.3507 13.7366 14.9231 30.2768 33.2184 40.3512 k = 0.0625 0.3125 0.5625 ( 138 PWs) bands (ev): 10.2214 11.7376 12.4841 13.6349 14.0806 15.5991 28.6801 31.6639 36.3665 k = 0.0625 0.3125 0.6875 ( 133 PWs) bands (ev): 10.8205 11.4998 12.4577 13.9656 14.4291 16.7888 27.3680 30.3866 32.5390 k = 0.0625 0.3125 0.8125 ( 130 PWs) bands (ev): 10.8991 11.3073 12.7653 14.1830 14.6922 18.5760 26.3890 28.7463 29.8041 k = 0.0625 0.3125 0.9375 ( 131 PWs) bands (ev): 10.8248 11.2093 13.0471 14.2308 14.8637 20.4641 25.6516 26.3855 29.2118 k = 0.0625 0.4375 0.4375 ( 137 PWs) bands (ev): 10.0257 12.0019 12.5668 13.3429 13.7720 15.5602 28.4100 31.4585 41.0969 k = 0.0625 0.4375 0.5625 ( 137 PWs) bands (ev): 10.7530 11.9718 12.2595 13.5025 14.0305 16.4892 26.8151 30.0154 37.3166 k = 0.0625 0.4375 0.6875 ( 133 PWs) bands (ev): 11.2449 11.7949 12.0503 13.7587 14.3644 17.9339 25.5047 28.9111 33.4080 k = 0.0625 0.4375 0.8125 ( 134 PWs) bands (ev): 11.2924 11.6686 12.1316 13.9145 14.6667 19.9279 24.5295 28.1126 29.8824 k = 0.0625 0.4375 0.9375 ( 134 PWs) bands (ev): 11.1515 11.6596 12.2853 13.9467 14.8617 22.1140 23.9546 26.6773 28.0356 k = 0.0625 0.5625 0.5625 ( 135 PWs) bands (ev): 11.1282 12.0207 12.1766 13.5104 14.1532 17.6719 25.2003 28.7036 37.9213 k = 0.0625 0.5625 0.6875 ( 132 PWs) bands (ev): 11.3602 11.6828 12.2749 13.7021 14.3956 19.3048 23.8525 27.7566 34.5390 k = 0.0625 0.5625 0.8125 ( 132 PWs) bands (ev): 11.3386 11.5513 12.2979 13.8727 14.6680 21.3640 22.8887 27.1406 30.9747 k = 0.0625 0.6875 0.6875 ( 133 PWs) bands (ev): 11.1872 11.4835 12.6292 13.8744 14.5155 20.9385 22.5124 26.9685 34.7729 k = 0.0625 0.6875 0.8125 ( 133 PWs) bands (ev): 10.9776 11.2913 12.9105 14.0928 14.6996 21.0784 23.3700 26.5025 32.1960 k = 0.0625 0.8125 0.8125 ( 131 PWs) bands (ev): 10.6503 11.0396 13.5300 14.3482 14.7756 19.8118 25.2622 26.2888 32.4298 k = 0.1875 0.1875 0.1875 ( 138 PWs) bands (ev): 7.1490 12.3852 12.9157 12.9157 13.9467 13.9467 33.9508 40.6190 42.8593 k = 0.1875 0.1875 0.3125 ( 141 PWs) bands (ev): 7.9002 12.2437 12.9546 12.9970 13.8848 14.1749 31.8264 39.5831 40.2798 k = 0.1875 0.1875 0.4375 ( 140 PWs) bands (ev): 8.9011 12.0030 12.8503 13.1657 14.1652 14.4270 29.9624 37.8956 38.1474 k = 0.1875 0.1875 0.5625 ( 136 PWs) bands (ev): 9.9126 11.7110 12.7081 13.4228 14.6485 14.9232 28.3601 35.5626 35.8389 k = 0.1875 0.1875 0.6875 ( 136 PWs) bands (ev): 10.5389 11.4085 12.8535 13.7439 14.7940 16.2053 27.0374 32.0231 34.1889 k = 0.1875 0.1875 0.8125 ( 133 PWs) bands (ev): 10.6807 11.1645 13.2465 14.0807 14.8326 17.9973 26.0369 28.6480 33.0299 k = 0.1875 0.3125 0.3125 ( 141 PWs) bands (ev): 8.5586 12.2712 12.9021 12.9802 13.9476 14.3828 29.6693 37.9512 41.7133 k = 0.1875 0.3125 0.4375 ( 140 PWs) bands (ev): 9.3982 12.2157 12.7538 13.0609 14.1485 14.7917 27.8106 36.2164 40.0119 k = 0.1875 0.3125 0.5625 ( 139 PWs) bands (ev): 10.2096 12.0265 12.5522 13.2671 14.5186 15.5529 26.2410 34.6190 36.6546 k = 0.1875 0.3125 0.6875 ( 136 PWs) bands (ev): 10.7590 11.7057 12.5501 13.5601 14.7185 16.9899 24.9668 32.4882 33.7646 k = 0.1875 0.3125 0.8125 ( 132 PWs) bands (ev): 10.9691 11.4205 12.7357 13.8694 14.7505 18.9807 24.0155 29.1748 32.6897 k = 0.1875 0.4375 0.4375 ( 137 PWs) bands (ev): 9.9716 12.4434 12.6306 13.0295 14.1453 15.4094 25.9849 34.5170 40.6365 k = 0.1875 0.4375 0.5625 ( 135 PWs) bands (ev): 10.4973 12.3268 12.5150 13.1745 14.3792 16.3915 24.4792 33.0805 37.5682 k = 0.1875 0.4375 0.6875 ( 135 PWs) bands (ev): 10.9361 11.9280 12.4600 13.4316 14.5934 17.9595 23.2972 31.9165 33.8122 k = 0.1875 0.4375 0.8125 ( 135 PWs) bands (ev): 11.2739 11.5940 12.3716 13.6975 14.6682 19.9684 22.5289 29.9764 31.4465 k = 0.1875 0.5625 0.5625 ( 131 PWs) bands (ev): 10.7560 12.1786 12.6605 13.2083 14.4335 17.5332 23.0842 31.7385 38.3099 k = 0.1875 0.5625 0.6875 ( 129 PWs) bands (ev): 11.0186 11.8734 12.5735 13.4189 14.5883 18.9958 22.1675 30.7158 34.9245 k = 0.1875 0.6875 0.6875 ( 132 PWs) bands (ev): 11.0172 11.6639 12.6551 13.5834 14.6897 19.4276 22.3001 29.7834 35.2773 k = 0.3125 0.3125 0.3125 ( 144 PWs) bands (ev): 9.0549 12.5369 12.8688 12.8688 14.2848 14.2848 27.5125 39.4294 41.9478 k = 0.3125 0.3125 0.4375 ( 141 PWs) bands (ev): 9.6441 12.7233 12.7668 12.8803 14.5678 14.5760 25.6927 38.4692 39.6465 k = 0.3125 0.3125 0.5625 ( 140 PWs) bands (ev): 10.2056 12.4177 12.7653 13.0188 14.7461 15.6521 24.2000 36.5086 37.7393 k = 0.3125 0.3125 0.6875 ( 134 PWs) bands (ev): 10.6758 12.0091 12.7076 13.2671 14.7874 17.3642 23.0424 33.2020 36.2736 k = 0.3125 0.4375 0.4375 ( 140 PWs) bands (ev): 9.9305 12.7000 12.8055 13.2794 14.4729 15.0936 23.9724 37.4847 40.2945 k = 0.3125 0.4375 0.5625 ( 136 PWs) bands (ev): 10.2530 12.5025 12.8958 13.2317 14.6597 16.1516 22.6705 36.1715 38.2403 k = 0.3125 0.4375 0.6875 ( 134 PWs) bands (ev): 10.6208 12.1885 12.9092 13.1236 14.7088 17.7232 21.8909 34.0191 35.8118 k = 0.3125 0.5625 0.5625 ( 131 PWs) bands (ev): 10.3874 12.4131 12.9286 13.2782 14.6636 16.9660 21.7837 35.0550 39.0775 k = 0.4375 0.4375 0.4375 ( 135 PWs) bands (ev): 9.9678 12.7087 12.7087 14.3520 14.6902 14.6902 22.5009 38.4626 41.4621 k = 0.4375 0.4375 0.5625 ( 135 PWs) bands (ev): 10.1168 12.6122 12.7520 13.9395 14.7575 15.8141 21.6822 37.6851 40.1836 ------ SPIN DOWN ---------- k = 0.0625 0.0625 0.0625 ( 137 PWs) bands (ev): 5.9423 13.2919 13.3811 13.3811 14.5690 14.5690 39.4757 42.4456 44.0456 k = 0.0625 0.0625 0.1875 ( 137 PWs) bands (ev): 6.3696 13.1354 13.4959 13.5007 14.4209 14.6387 38.3635 40.8363 41.9152 k = 0.0625 0.0625 0.3125 ( 136 PWs) bands (ev): 7.1915 12.8346 13.7096 13.7342 14.1982 14.7679 36.7186 39.4223 39.4233 k = 0.0625 0.0625 0.4375 ( 135 PWs) bands (ev): 8.3187 12.4527 13.7352 14.0674 14.2766 14.9388 34.9274 37.0338 37.9863 k = 0.0625 0.0625 0.5625 ( 135 PWs) bands (ev): 9.5245 12.0535 13.7062 14.4681 14.7454 15.1285 33.1823 34.9011 35.1551 k = 0.0625 0.0625 0.6875 ( 131 PWs) bands (ev): 10.3520 11.6972 14.1955 14.8773 15.3164 15.4384 31.3478 31.9672 33.1430 k = 0.0625 0.0625 0.8125 ( 131 PWs) bands (ev): 10.5987 11.4323 14.9361 15.1984 15.4946 16.6428 28.2599 30.6380 31.8707 k = 0.0625 0.0625 0.9375 ( 131 PWs) bands (ev): 10.6074 11.2916 15.3104 15.3495 15.6323 18.0527 25.9391 30.0091 31.1960 k = 0.0625 0.1875 0.1875 ( 140 PWs) bands (ev): 6.7851 13.0501 13.5501 13.5565 14.3989 14.6530 36.3891 39.1678 42.8832 k = 0.0625 0.1875 0.3125 ( 138 PWs) bands (ev): 7.5823 12.8179 13.6113 13.7455 14.2815 14.8368 34.3987 37.2088 41.9618 k = 0.0625 0.1875 0.4375 ( 138 PWs) bands (ev): 8.6713 12.4899 13.5075 14.0220 14.4223 15.1127 32.5719 35.3450 39.4342 k = 0.0625 0.1875 0.5625 ( 138 PWs) bands (ev): 9.8329 12.1351 13.3658 14.3672 14.8447 15.5018 30.9494 33.6152 35.8079 k = 0.0625 0.1875 0.6875 ( 135 PWs) bands (ev): 10.6281 11.8125 13.5765 14.7465 15.2362 16.2800 29.5734 31.7072 32.5544 k = 0.0625 0.1875 0.8125 ( 131 PWs) bands (ev): 10.8469 11.5706 14.1050 15.0469 15.4723 17.6742 28.2748 28.8396 31.2557 k = 0.0625 0.1875 0.9375 ( 129 PWs) bands (ev): 10.8374 11.4426 14.4937 15.1593 15.6180 19.1883 26.0415 28.0867 30.6622 k = 0.0625 0.3125 0.3125 ( 140 PWs) bands (ev): 8.3257 12.7274 13.5158 13.8279 14.2358 15.1254 32.2983 35.1569 43.2292 k = 0.0625 0.3125 0.4375 ( 140 PWs) bands (ev): 9.3257 12.5389 13.3183 13.9798 14.3691 15.5606 30.4551 33.3475 40.4215 k = 0.0625 0.3125 0.5625 ( 138 PWs) bands (ev): 10.3760 12.2923 13.0402 14.2475 14.7348 16.1864 28.8676 31.7999 36.4746 k = 0.0625 0.3125 0.6875 ( 133 PWs) bands (ev): 11.1005 12.0394 12.9847 14.5705 15.1197 17.2531 27.5551 30.5248 32.6754 k = 0.0625 0.3125 0.8125 ( 130 PWs) bands (ev): 11.2676 11.8435 13.2914 14.7820 15.4223 18.9055 26.5693 28.9277 29.9268 k = 0.0625 0.3125 0.9375 ( 131 PWs) bands (ev): 11.2184 11.7442 13.5980 14.8274 15.6124 20.6945 25.8515 26.5878 29.3299 k = 0.0625 0.4375 0.4375 ( 137 PWs) bands (ev): 10.1637 12.5548 13.1188 13.9363 14.4469 16.1657 28.6100 31.6003 41.1331 k = 0.0625 0.4375 0.5625 ( 137 PWs) bands (ev): 10.9899 12.4956 12.7968 14.0852 14.7226 17.0136 27.0302 30.1659 37.4189 k = 0.0625 0.4375 0.6875 ( 133 PWs) bands (ev): 11.5820 12.2943 12.5937 14.3410 15.0767 18.3385 25.7246 29.0676 33.5355 k = 0.0625 0.4375 0.8125 ( 134 PWs) bands (ev): 11.6822 12.1942 12.6584 14.4978 15.4018 20.2285 24.7449 28.2782 30.0313 k = 0.0625 0.4375 0.9375 ( 134 PWs) bands (ev): 11.5559 12.1927 12.8234 14.5272 15.6108 22.3433 24.1635 26.8834 28.1802 k = 0.0625 0.5625 0.5625 ( 135 PWs) bands (ev): 11.4809 12.4759 12.7210 14.0911 14.8612 18.1023 25.4357 28.8675 38.0319 k = 0.0625 0.5625 0.6875 ( 132 PWs) bands (ev): 11.8102 12.1063 12.8157 14.2852 15.1161 19.6344 24.0961 27.9338 34.6538 k = 0.0625 0.5625 0.8125 ( 132 PWs) bands (ev): 11.7575 12.0464 12.8392 14.4558 15.4044 21.6172 23.1292 27.3301 31.1073 k = 0.0625 0.6875 0.6875 ( 133 PWs) bands (ev): 11.6824 11.8912 13.1703 14.4662 15.2418 21.1953 22.7661 27.1663 34.8663 k = 0.0625 0.6875 0.8125 ( 133 PWs) bands (ev): 11.4040 11.7855 13.4554 14.6898 15.4363 21.3197 23.5811 26.7161 32.2999 k = 0.0625 0.8125 0.8125 ( 131 PWs) bands (ev): 11.0468 11.5628 14.0915 14.9628 15.5125 20.0406 25.4558 26.4955 32.4991 k = 0.1875 0.1875 0.1875 ( 138 PWs) bands (ev): 7.1843 12.9978 13.5679 13.5679 14.5566 14.5566 34.0896 40.6034 42.9618 k = 0.1875 0.1875 0.3125 ( 141 PWs) bands (ev): 7.9462 12.8332 13.5845 13.6387 14.5045 14.8056 31.9878 39.5993 40.3950 k = 0.1875 0.1875 0.4375 ( 140 PWs) bands (ev): 8.9768 12.5674 13.4416 13.8016 14.7874 15.0783 30.1403 38.0085 38.1941 k = 0.1875 0.1875 0.5625 ( 136 PWs) bands (ev): 10.0649 12.2491 13.2649 14.0573 15.3195 15.4963 28.5455 35.6610 35.9418 k = 0.1875 0.1875 0.6875 ( 136 PWs) bands (ev): 10.8240 11.9299 13.3722 14.3788 15.4838 16.6690 27.2199 32.1674 34.2787 k = 0.1875 0.1875 0.8125 ( 133 PWs) bands (ev): 11.0536 11.6846 13.7764 14.7124 15.5424 18.3298 26.2107 28.8322 33.1070 k = 0.1875 0.3125 0.3125 ( 141 PWs) bands (ev): 8.6293 12.8207 13.5169 13.6059 14.5850 15.0280 29.8548 38.0246 41.7480 k = 0.1875 0.3125 0.4375 ( 140 PWs) bands (ev): 9.5247 12.7222 13.3433 13.6763 14.7952 15.4318 28.0170 36.3136 40.0636 k = 0.1875 0.3125 0.5625 ( 139 PWs) bands (ev): 10.4383 12.4966 13.1239 13.8795 15.1835 16.1109 26.4611 34.7274 36.7576 k = 0.1875 0.3125 0.6875 ( 136 PWs) bands (ev): 11.1115 12.1663 13.0914 14.1728 15.4122 17.4172 25.1906 32.6212 33.8803 k = 0.1875 0.3125 0.8125 ( 132 PWs) bands (ev): 11.3913 11.8919 13.2689 14.4794 15.4653 19.2984 24.2340 29.3468 32.7973 k = 0.1875 0.4375 0.4375 ( 137 PWs) bands (ev): 10.1882 12.8843 13.2048 13.6289 14.8176 16.0079 26.2194 34.6295 40.6601 k = 0.1875 0.4375 0.5625 ( 135 PWs) bands (ev): 10.8222 12.7639 13.0577 13.7684 15.0617 16.8855 24.7368 33.2043 37.6627 k = 0.1875 0.4375 0.6875 ( 135 PWs) bands (ev): 11.3500 12.3613 12.9964 14.0274 15.2941 18.3276 23.5691 32.0492 33.9358 k = 0.1875 0.4375 0.8125 ( 135 PWs) bands (ev): 11.7399 12.0197 12.9122 14.2901 15.3881 20.2463 22.8049 30.1346 31.5763 k = 0.1875 0.5625 0.5625 ( 131 PWs) bands (ev): 11.1590 12.6382 13.1552 13.8013 15.1299 17.9246 23.3766 31.8742 38.4178 k = 0.1875 0.5625 0.6875 ( 129 PWs) bands (ev): 11.4743 12.2958 13.1025 14.0143 15.2947 19.2904 22.4822 30.8621 35.0370 k = 0.1875 0.6875 0.6875 ( 132 PWs) bands (ev): 11.4871 12.0746 13.1954 14.1883 15.3989 19.7106 22.5884 29.9433 35.3727 k = 0.3125 0.3125 0.3125 ( 144 PWs) bands (ev): 9.1777 12.9970 13.4811 13.4811 14.9443 14.9443 27.7275 39.4053 42.0659 k = 0.3125 0.3125 0.4375 ( 141 PWs) bands (ev): 9.8551 13.1172 13.3540 13.4864 15.2035 15.2451 25.9368 38.4691 39.7586 k = 0.3125 0.3125 0.5625 ( 140 PWs) bands (ev): 10.5225 12.8610 13.2887 13.6233 15.4371 16.1480 24.4682 36.5712 37.8449 k = 0.3125 0.3125 0.6875 ( 134 PWs) bands (ev): 11.0838 12.4356 13.2427 13.8728 15.4881 17.7343 23.3257 33.3242 36.3732 k = 0.3125 0.4375 0.4375 ( 140 PWs) bands (ev): 10.2349 13.2792 13.3996 13.5901 15.1560 15.6915 24.2580 37.5277 40.3441 k = 0.3125 0.4375 0.5625 ( 136 PWs) bands (ev): 10.6313 13.0321 13.4869 13.6404 15.3503 16.5818 22.9945 36.2417 38.3355 k = 0.3125 0.4375 0.6875 ( 134 PWs) bands (ev): 11.0485 12.6517 13.4027 13.7180 15.4095 18.0358 22.2385 34.1264 35.9252 k = 0.3125 0.5625 0.5625 ( 131 PWs) bands (ev): 10.8006 12.9309 13.5206 13.7076 15.3609 17.3009 22.1505 35.1477 39.1811 k = 0.4375 0.4375 0.4375 ( 135 PWs) bands (ev): 10.3331 13.2991 13.2991 14.4427 15.3829 15.3829 22.8439 38.4259 41.5581 k = 0.4375 0.4375 0.5625 ( 135 PWs) bands (ev): 10.5164 13.1822 13.3419 14.2982 15.4550 16.1781 22.0665 37.6872 40.2830 the Fermi energy is 15.2874 ev ! total energy = -85.72249140 Ry Harris-Foulkes estimate = -85.72249140 Ry estimated scf accuracy < 2.3E-11 Ry The total energy is the sum of the following terms: one-electron contribution = 0.28995941 Ry hartree contribution = 14.34985055 Ry xc contribution = -29.60813630 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = -0.00012071 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell convergence has been achieved in 11 iterations Writing output data file ni.save PWSCF : 12.18s CPU time, 14.22s wall time init_run : 1.43s CPU electrons : 10.37s CPU Called by init_run: wfcinit : 0.27s CPU potinit : 0.02s CPU Called by electrons: c_bands : 7.75s CPU ( 11 calls, 0.704 s avg) sum_band : 2.03s CPU ( 11 calls, 0.185 s avg) v_of_rho : 0.10s CPU ( 12 calls, 0.008 s avg) newd : 0.40s CPU ( 12 calls, 0.033 s avg) mix_rho : 0.05s CPU ( 11 calls, 0.005 s avg) Called by c_bands: init_us_2 : 0.28s CPU ( 2760 calls, 0.000 s avg) cegterg : 7.16s CPU ( 1320 calls, 0.005 s avg) Called by *egterg: h_psi : 5.52s CPU ( 3771 calls, 0.001 s avg) s_psi : 0.16s CPU ( 3771 calls, 0.000 s avg) g_psi : 0.12s CPU ( 2331 calls, 0.000 s avg) cdiaghg : 0.99s CPU ( 3651 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.14s CPU ( 3771 calls, 0.000 s avg) General routines calbec : 0.21s CPU ( 5091 calls, 0.000 s avg) cft3s : 5.17s CPU ( 67352 calls, 0.000 s avg) interpolate : 0.05s CPU ( 46 calls, 0.001 s avg) davcio : 0.02s CPU ( 4080 calls, 0.000 s avg) Parallel routines espresso-5.1/PP/examples/example02/reference/ni.fs_up.bxsf0000644000175000017500000060721412341372774021623 0ustar mbamba BEGIN_INFO # # this is a Band-XCRYSDEN-Structure-File # aimed at Visualization of Fermi Surface # # Case: ni # Fermi Energy: 15.2788 END_INFO BEGIN_BLOCK_BANDGRID_3D band_energies BANDGRID_3D_BANDS 4 17 17 17 0.000000 0.000000 0.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 -1.000000 1.000000 -1.000000 BAND: 3 12.5900 12.6283 12.7247 12.8195 12.8373 12.7737 12.6844 12.6150 12.5893 12.6150 12.6844 12.7737 12.8373 12.8195 12.7247 12.6283 12.5900 12.6283 12.6542 12.7405 12.8405 12.8590 12.7724 12.6890 12.7055 12.6581 12.6595 12.7111 12.7118 12.8076 12.8488 12.7973 12.6833 12.6283 12.7247 12.7405 12.8434 12.9563 12.9222 12.7566 12.5940 12.6885 12.8585 12.8340 12.8601 12.5408 12.6913 12.8130 12.8546 12.7973 12.7247 12.8195 12.8405 12.9563 13.1459 13.0579 12.8257 12.6189 12.5216 12.6267 12.7319 12.5859 12.2695 12.4782 12.6774 12.8130 12.8488 12.8195 12.8373 12.8590 12.9222 13.0579 13.2209 13.1148 12.9328 12.7715 12.6628 12.5731 12.3984 12.0953 12.2094 12.4782 12.6913 12.8076 12.8373 12.7737 12.7724 12.7566 12.8257 13.1148 13.6625 13.6451 13.4235 13.1642 12.8741 12.5468 12.2201 12.0953 12.2695 12.5408 12.7118 12.7737 12.6844 12.6890 12.5940 12.6189 12.9328 13.6451 14.3913 14.2385 13.8813 13.4443 12.9691 12.5468 12.3984 12.5859 12.8601 12.7111 12.6844 12.6150 12.7055 12.6885 12.5216 12.7715 13.4235 14.2385 14.6535 14.5335 14.0484 13.4443 12.8741 12.5731 12.7319 12.8340 12.6595 12.6150 12.5893 12.6581 12.8585 12.6267 12.6628 13.1642 13.8813 14.5335 14.6850 14.5335 13.8813 13.1642 12.6628 12.6267 12.8585 12.6581 12.5893 12.6150 12.6595 12.8340 12.7319 12.5731 12.8741 13.4443 14.0484 14.5335 14.6535 14.2385 13.4235 12.7715 12.5216 12.6885 12.7055 12.6150 12.6844 12.7111 12.8601 12.5859 12.3984 12.5468 12.9691 13.4443 13.8813 14.2385 14.3913 13.6451 12.9328 12.6189 12.5940 12.6890 12.6844 12.7737 12.7118 12.5408 12.2695 12.0953 12.2201 12.5468 12.8741 13.1642 13.4235 13.6451 13.6625 13.1148 12.8257 12.7566 12.7724 12.7737 12.8373 12.8076 12.6913 12.4782 12.2094 12.0953 12.3984 12.5731 12.6628 12.7715 12.9328 13.1148 13.2209 13.0579 12.9222 12.8590 12.8373 12.8195 12.8488 12.8130 12.6774 12.4782 12.2695 12.5859 12.7319 12.6267 12.5216 12.6189 12.8257 13.0579 13.1459 12.9563 12.8405 12.8195 12.7247 12.7973 12.8546 12.8130 12.6913 12.5408 12.8601 12.8340 12.8585 12.6885 12.5940 12.7566 12.9222 12.9563 12.8434 12.7405 12.7247 12.6283 12.6833 12.7973 12.8488 12.8076 12.7118 12.7111 12.6595 12.6581 12.7055 12.6890 12.7724 12.8590 12.8405 12.7405 12.6542 12.6283 12.5900 12.6283 12.7247 12.8195 12.8373 12.7737 12.6844 12.6150 12.5893 12.6150 12.6844 12.7737 12.8373 12.8195 12.7247 12.6283 12.5900 12.6283 12.6542 12.7405 12.8405 12.8590 12.7724 12.6890 12.7055 12.6581 12.6595 12.7111 12.7118 12.8076 12.8488 12.7973 12.6833 12.6283 12.6542 12.6283 12.6833 12.7973 12.8488 12.8076 12.7118 12.7111 12.6595 12.6581 12.7055 12.6890 12.7724 12.8590 12.8405 12.7405 12.6542 12.7405 12.6833 12.7405 12.8437 12.8827 12.8045 12.6608 12.6172 12.8014 12.7788 12.8014 12.6172 12.6608 12.8045 12.8827 12.8437 12.7405 12.8405 12.7973 12.8437 12.9563 12.9757 12.8230 12.6181 12.4623 12.5801 12.8332 12.7901 12.4367 12.4530 12.6465 12.8114 12.8827 12.8405 12.8590 12.8488 12.8827 12.9757 13.0579 12.9337 12.7308 12.5466 12.4664 12.5143 12.4936 12.2479 12.1726 12.4182 12.6465 12.8045 12.8590 12.7724 12.8076 12.8045 12.8230 12.9337 13.1148 13.1234 12.9857 12.8181 12.6537 12.4641 12.1931 11.9243 12.1726 12.4530 12.6608 12.7724 12.6890 12.7118 12.6608 12.6181 12.7308 13.1234 13.6451 13.6846 13.4765 13.1825 12.8273 12.4466 12.1931 12.2479 12.4367 12.6172 12.6890 12.7055 12.7111 12.6172 12.4623 12.5466 12.9857 13.6846 14.2385 14.1503 13.8151 13.3390 12.8273 12.4641 12.4936 12.7901 12.8014 12.7055 12.6581 12.6595 12.8014 12.5801 12.4664 12.8181 13.4765 14.1503 14.5335 14.3378 13.8151 13.1825 12.6537 12.5143 12.8332 12.7788 12.6581 12.6595 12.6581 12.7788 12.8332 12.5143 12.6537 13.1825 13.8151 14.3378 14.5335 14.1503 13.4765 12.8181 12.4664 12.5801 12.8014 12.6595 12.7111 12.7055 12.8014 12.7901 12.4936 12.4641 12.8273 13.3390 13.8151 14.1503 14.2385 13.6846 12.9857 12.5466 12.4623 12.6172 12.7111 12.7118 12.6890 12.6172 12.4367 12.2479 12.1931 12.4466 12.8273 13.1825 13.4765 13.6846 13.6451 13.1234 12.7308 12.6181 12.6608 12.7118 12.8076 12.7724 12.6608 12.4530 12.1726 11.9243 12.1931 12.4641 12.6537 12.8181 12.9857 13.1234 13.1148 12.9337 12.8230 12.8045 12.8076 12.8488 12.8590 12.8045 12.6465 12.4182 12.1726 12.2479 12.4936 12.5143 12.4664 12.5466 12.7308 12.9337 13.0579 12.9757 12.8827 12.8488 12.7973 12.8405 12.8827 12.8114 12.6465 12.4530 12.4367 12.7901 12.8332 12.5801 12.4623 12.6181 12.8230 12.9757 12.9563 12.8437 12.7973 12.6833 12.7405 12.8437 12.8827 12.8045 12.6608 12.6172 12.8014 12.7788 12.8014 12.6172 12.6608 12.8045 12.8827 12.8437 12.7405 12.6833 12.6283 12.6542 12.7405 12.8405 12.8590 12.7724 12.6890 12.7055 12.6581 12.6595 12.7111 12.7118 12.8076 12.8488 12.7973 12.6833 12.6283 12.7247 12.7405 12.8434 12.9563 12.9222 12.7566 12.5940 12.6885 12.8585 12.8340 12.8601 12.5408 12.6913 12.8130 12.8546 12.7973 12.7247 12.7405 12.6833 12.7405 12.8437 12.8827 12.8045 12.6608 12.6172 12.8014 12.7788 12.8014 12.6172 12.6608 12.8045 12.8827 12.8437 12.7405 12.8434 12.7405 12.7247 12.7973 12.8546 12.8130 12.6913 12.5408 12.8601 12.8340 12.8585 12.6885 12.5940 12.7566 12.9222 12.9563 12.8434 12.9563 12.8437 12.7973 12.8405 12.8827 12.8114 12.6465 12.4530 12.4367 12.7901 12.8332 12.5801 12.4623 12.6181 12.8230 12.9757 12.9563 12.9222 12.8827 12.8546 12.8827 12.9222 12.8230 12.6229 12.3947 12.2370 12.3793 12.5154 12.3793 12.2370 12.3947 12.6229 12.8230 12.9222 12.7566 12.8045 12.8130 12.8114 12.8230 12.8257 12.7308 12.5545 12.3742 12.2856 12.2897 12.1824 11.9663 12.1294 12.3947 12.6181 12.7566 12.5940 12.6608 12.6913 12.6465 12.6229 12.7308 12.9328 12.9857 12.8665 12.6836 12.4737 12.2157 11.9190 11.9663 12.2370 12.4623 12.5940 12.6885 12.6172 12.5408 12.4530 12.3947 12.5545 12.9857 13.4235 13.4765 13.2791 12.9630 12.5723 12.2157 12.1824 12.3793 12.5801 12.6885 12.8585 12.8014 12.8601 12.4367 12.2370 12.3742 12.8665 13.4765 13.8813 13.8151 13.4617 12.9630 12.4737 12.2897 12.5154 12.8332 12.8585 12.8340 12.7788 12.8340 12.7901 12.3793 12.2856 12.6836 13.2791 13.8151 14.0484 13.8151 13.2791 12.6836 12.2856 12.3793 12.7901 12.8340 12.8601 12.8014 12.8585 12.8332 12.5154 12.2897 12.4737 12.9630 13.4617 13.8151 13.8813 13.4765 12.8665 12.3742 12.2370 12.4367 12.8601 12.5408 12.6172 12.6885 12.5801 12.3793 12.1824 12.2157 12.5723 12.9630 13.2791 13.4765 13.4235 12.9857 12.5545 12.3947 12.4530 12.5408 12.6913 12.6608 12.5940 12.4623 12.2370 11.9663 11.9190 12.2157 12.4737 12.6836 12.8665 12.9857 12.9328 12.7308 12.6229 12.6465 12.6913 12.8130 12.8045 12.7566 12.6181 12.3947 12.1294 11.9663 12.1824 12.2897 12.2856 12.3742 12.5545 12.7308 12.8257 12.8230 12.8114 12.8130 12.8546 12.8827 12.9222 12.8230 12.6229 12.3947 12.2370 12.3793 12.5154 12.3793 12.2370 12.3947 12.6229 12.8230 12.9222 12.8827 12.8546 12.7973 12.8437 12.9563 12.9757 12.8230 12.6181 12.4623 12.5801 12.8332 12.7901 12.4367 12.4530 12.6465 12.8114 12.8827 12.8405 12.7973 12.7247 12.7405 12.8434 12.9563 12.9222 12.7566 12.5940 12.6885 12.8585 12.8340 12.8601 12.5408 12.6913 12.8130 12.8546 12.7973 12.7247 12.8195 12.8405 12.9563 13.1459 13.0579 12.8257 12.6189 12.5216 12.6267 12.7319 12.5859 12.2695 12.4782 12.6774 12.8130 12.8488 12.8195 12.8405 12.7973 12.8437 12.9563 12.9757 12.8230 12.6181 12.4623 12.5801 12.8332 12.7901 12.4367 12.4530 12.6465 12.8114 12.8827 12.8405 12.9563 12.8437 12.7973 12.8405 12.8827 12.8114 12.6465 12.4530 12.4367 12.7901 12.8332 12.5801 12.4623 12.6181 12.8230 12.9757 12.9563 13.1459 12.9563 12.8405 12.8195 12.8488 12.8130 12.6774 12.4782 12.2695 12.5859 12.7319 12.6267 12.5216 12.6189 12.8257 13.0579 13.1459 13.0579 12.9757 12.8827 12.8488 12.8590 12.8045 12.6465 12.4182 12.1726 12.2479 12.4936 12.5143 12.4664 12.5466 12.7308 12.9337 13.0579 12.8257 12.8230 12.8114 12.8130 12.8045 12.7566 12.6181 12.3947 12.1294 11.9663 12.1824 12.2897 12.2856 12.3742 12.5545 12.7308 12.8257 12.6189 12.6181 12.6465 12.6774 12.6465 12.6181 12.6189 12.5466 12.3742 12.1714 12.0509 12.0517 12.0509 12.1714 12.3742 12.5466 12.6189 12.5216 12.4623 12.4530 12.4782 12.4182 12.3947 12.5466 12.7715 12.8181 12.6836 12.4670 12.2034 11.8991 12.0509 12.2856 12.4664 12.5216 12.6267 12.5801 12.4367 12.2695 12.1726 12.1294 12.3742 12.8181 13.1642 13.1825 12.9630 12.6102 12.2034 12.0517 12.2897 12.5143 12.6267 12.7319 12.8332 12.7901 12.5859 12.2479 11.9663 12.1714 12.6836 13.1825 13.4443 13.3390 12.9630 12.4670 12.0509 12.1824 12.4936 12.7319 12.5859 12.7901 12.8332 12.7319 12.4936 12.1824 12.0509 12.4670 12.9630 13.3390 13.4443 13.1825 12.6836 12.1714 11.9663 12.2479 12.5859 12.2695 12.4367 12.5801 12.6267 12.5143 12.2897 12.0517 12.2034 12.6102 12.9630 13.1825 13.1642 12.8181 12.3742 12.1294 12.1726 12.2695 12.4782 12.4530 12.4623 12.5216 12.4664 12.2856 12.0509 11.8991 12.2034 12.4670 12.6836 12.8181 12.7715 12.5466 12.3947 12.4182 12.4782 12.6774 12.6465 12.6181 12.6189 12.5466 12.3742 12.1714 12.0509 12.0517 12.0509 12.1714 12.3742 12.5466 12.6189 12.6181 12.6465 12.6774 12.8130 12.8114 12.8230 12.8257 12.7308 12.5545 12.3742 12.2856 12.2897 12.1824 11.9663 12.1294 12.3947 12.6181 12.7566 12.8045 12.8130 12.8488 12.8827 12.9757 13.0579 12.9337 12.7308 12.5466 12.4664 12.5143 12.4936 12.2479 12.1726 12.4182 12.6465 12.8045 12.8590 12.8488 12.8195 12.8405 12.9563 13.1459 13.0579 12.8257 12.6189 12.5216 12.6267 12.7319 12.5859 12.2695 12.4782 12.6774 12.8130 12.8488 12.8195 12.8373 12.8590 12.9222 13.0579 13.2209 13.1148 12.9328 12.7715 12.6628 12.5731 12.3984 12.0953 12.2094 12.4782 12.6913 12.8076 12.8373 12.8590 12.8488 12.8827 12.9757 13.0579 12.9337 12.7308 12.5466 12.4664 12.5143 12.4936 12.2479 12.1726 12.4182 12.6465 12.8045 12.8590 12.9222 12.8827 12.8546 12.8827 12.9222 12.8230 12.6229 12.3947 12.2370 12.3793 12.5154 12.3793 12.2370 12.3947 12.6229 12.8230 12.9222 13.0579 12.9757 12.8827 12.8488 12.8590 12.8045 12.6465 12.4182 12.1726 12.2479 12.4936 12.5143 12.4664 12.5466 12.7308 12.9337 13.0579 13.2209 13.0579 12.9222 12.8590 12.8373 12.8076 12.6913 12.4782 12.2094 12.0953 12.3984 12.5731 12.6628 12.7715 12.9328 13.1148 13.2209 13.1148 12.9337 12.8230 12.8045 12.8076 12.7724 12.6608 12.4530 12.1726 11.9243 12.1931 12.4641 12.6537 12.8181 12.9857 13.1234 13.1148 12.9328 12.7308 12.6229 12.6465 12.6913 12.6608 12.5940 12.4623 12.2370 11.9663 11.9190 12.2157 12.4737 12.6836 12.8665 12.9857 12.9328 12.7715 12.5466 12.3947 12.4182 12.4782 12.4530 12.4623 12.5216 12.4664 12.2856 12.0509 11.8991 12.2034 12.4670 12.6836 12.8181 12.7715 12.6628 12.4664 12.2370 12.1726 12.2094 12.1726 12.2370 12.4664 12.6628 12.6537 12.4737 12.2034 11.8891 12.2034 12.4737 12.6537 12.6628 12.5731 12.5143 12.3793 12.2479 12.0953 11.9243 11.9663 12.2856 12.6537 12.8741 12.8273 12.5723 12.2034 11.8991 12.2157 12.4641 12.5731 12.3984 12.4936 12.5154 12.4936 12.3984 12.1931 11.9190 12.0509 12.4737 12.8273 12.9691 12.8273 12.4737 12.0509 11.9190 12.1931 12.3984 12.0953 12.2479 12.3793 12.5143 12.5731 12.4641 12.2157 11.8991 12.2034 12.5723 12.8273 12.8741 12.6537 12.2856 11.9663 11.9243 12.0953 12.2094 12.1726 12.2370 12.4664 12.6628 12.6537 12.4737 12.2034 11.8891 12.2034 12.4737 12.6537 12.6628 12.4664 12.2370 12.1726 12.2094 12.4782 12.4182 12.3947 12.5466 12.7715 12.8181 12.6836 12.4670 12.2034 11.8991 12.0509 12.2856 12.4664 12.5216 12.4623 12.4530 12.4782 12.6913 12.6465 12.6229 12.7308 12.9328 12.9857 12.8665 12.6836 12.4737 12.2157 11.9190 11.9663 12.2370 12.4623 12.5940 12.6608 12.6913 12.8076 12.8045 12.8230 12.9337 13.1148 13.1234 12.9857 12.8181 12.6537 12.4641 12.1931 11.9243 12.1726 12.4530 12.6608 12.7724 12.8076 12.8373 12.8590 12.9222 13.0579 13.2209 13.1148 12.9328 12.7715 12.6628 12.5731 12.3984 12.0953 12.2094 12.4782 12.6913 12.8076 12.8373 12.7737 12.7724 12.7566 12.8257 13.1148 13.6625 13.6451 13.4235 13.1642 12.8741 12.5468 12.2201 12.0953 12.2695 12.5408 12.7118 12.7737 12.7724 12.8076 12.8045 12.8230 12.9337 13.1148 13.1234 12.9857 12.8181 12.6537 12.4641 12.1931 11.9243 12.1726 12.4530 12.6608 12.7724 12.7566 12.8045 12.8130 12.8114 12.8230 12.8257 12.7308 12.5545 12.3742 12.2856 12.2897 12.1824 11.9663 12.1294 12.3947 12.6181 12.7566 12.8257 12.8230 12.8114 12.8130 12.8045 12.7566 12.6181 12.3947 12.1294 11.9663 12.1824 12.2897 12.2856 12.3742 12.5545 12.7308 12.8257 13.1148 12.9337 12.8230 12.8045 12.8076 12.7724 12.6608 12.4530 12.1726 11.9243 12.1931 12.4641 12.6537 12.8181 12.9857 13.1234 13.1148 13.6625 13.1148 12.8257 12.7566 12.7724 12.7737 12.7118 12.5408 12.2695 12.0953 12.2201 12.5468 12.8741 13.1642 13.4235 13.6451 13.6625 13.6451 13.1234 12.7308 12.6181 12.6608 12.7118 12.6890 12.6172 12.4367 12.2479 12.1931 12.4466 12.8273 13.1825 13.4765 13.6846 13.6451 13.4235 12.9857 12.5545 12.3947 12.4530 12.5408 12.6172 12.6885 12.5801 12.3793 12.1824 12.2157 12.5723 12.9630 13.2791 13.4765 13.4235 13.1642 12.8181 12.3742 12.1294 12.1726 12.2695 12.4367 12.5801 12.6267 12.5143 12.2897 12.0517 12.2034 12.6102 12.9630 13.1825 13.1642 12.8741 12.6537 12.2856 11.9663 11.9243 12.0953 12.2479 12.3793 12.5143 12.5731 12.4641 12.2157 11.8991 12.2034 12.5723 12.8273 12.8741 12.5468 12.4641 12.2897 12.1824 12.1931 12.2201 12.1931 12.1824 12.2897 12.4641 12.5468 12.4466 12.2157 12.0517 12.2157 12.4466 12.5468 12.2201 12.1931 12.1824 12.2897 12.4641 12.5468 12.4466 12.2157 12.0517 12.2157 12.4466 12.5468 12.4641 12.2897 12.1824 12.1931 12.2201 12.0953 11.9243 11.9663 12.2856 12.6537 12.8741 12.8273 12.5723 12.2034 11.8991 12.2157 12.4641 12.5731 12.5143 12.3793 12.2479 12.0953 12.2695 12.1726 12.1294 12.3742 12.8181 13.1642 13.1825 12.9630 12.6102 12.2034 12.0517 12.2897 12.5143 12.6267 12.5801 12.4367 12.2695 12.5408 12.4530 12.3947 12.5545 12.9857 13.4235 13.4765 13.2791 12.9630 12.5723 12.2157 12.1824 12.3793 12.5801 12.6885 12.6172 12.5408 12.7118 12.6608 12.6181 12.7308 13.1234 13.6451 13.6846 13.4765 13.1825 12.8273 12.4466 12.1931 12.2479 12.4367 12.6172 12.6890 12.7118 12.7737 12.7724 12.7566 12.8257 13.1148 13.6625 13.6451 13.4235 13.1642 12.8741 12.5468 12.2201 12.0953 12.2695 12.5408 12.7118 12.7737 12.6844 12.6890 12.5940 12.6189 12.9328 13.6451 14.3913 14.2385 13.8813 13.4443 12.9691 12.5468 12.3984 12.5859 12.8601 12.7111 12.6844 12.6890 12.7118 12.6608 12.6181 12.7308 13.1234 13.6451 13.6846 13.4765 13.1825 12.8273 12.4466 12.1931 12.2479 12.4367 12.6172 12.6890 12.5940 12.6608 12.6913 12.6465 12.6229 12.7308 12.9328 12.9857 12.8665 12.6836 12.4737 12.2157 11.9190 11.9663 12.2370 12.4623 12.5940 12.6189 12.6181 12.6465 12.6774 12.6465 12.6181 12.6189 12.5466 12.3742 12.1714 12.0509 12.0517 12.0509 12.1714 12.3742 12.5466 12.6189 12.9328 12.7308 12.6229 12.6465 12.6913 12.6608 12.5940 12.4623 12.2370 11.9663 11.9190 12.2157 12.4737 12.6836 12.8665 12.9857 12.9328 13.6451 13.1234 12.7308 12.6181 12.6608 12.7118 12.6890 12.6172 12.4367 12.2479 12.1931 12.4466 12.8273 13.1825 13.4765 13.6846 13.6451 14.3913 13.6451 12.9328 12.6189 12.5940 12.6890 12.6844 12.7111 12.8601 12.5859 12.3984 12.5468 12.9691 13.4443 13.8813 14.2385 14.3913 14.2385 13.6846 12.9857 12.5466 12.4623 12.6172 12.7111 12.7055 12.8014 12.7901 12.4936 12.4641 12.8273 13.3390 13.8151 14.1503 14.2385 13.8813 13.4765 12.8665 12.3742 12.2370 12.4367 12.8601 12.8014 12.8585 12.8332 12.5154 12.2897 12.4737 12.9630 13.4617 13.8151 13.8813 13.4443 13.1825 12.6836 12.1714 11.9663 12.2479 12.5859 12.7901 12.8332 12.7319 12.4936 12.1824 12.0509 12.4670 12.9630 13.3390 13.4443 12.9691 12.8273 12.4737 12.0509 11.9190 12.1931 12.3984 12.4936 12.5154 12.4936 12.3984 12.1931 11.9190 12.0509 12.4737 12.8273 12.9691 12.5468 12.4466 12.2157 12.0517 12.2157 12.4466 12.5468 12.4641 12.2897 12.1824 12.1931 12.2201 12.1931 12.1824 12.2897 12.4641 12.5468 12.3984 12.1931 11.9190 12.0509 12.4737 12.8273 12.9691 12.8273 12.4737 12.0509 11.9190 12.1931 12.3984 12.4936 12.5154 12.4936 12.3984 12.5859 12.2479 11.9663 12.1714 12.6836 13.1825 13.4443 13.3390 12.9630 12.4670 12.0509 12.1824 12.4936 12.7319 12.8332 12.7901 12.5859 12.8601 12.4367 12.2370 12.3742 12.8665 13.4765 13.8813 13.8151 13.4617 12.9630 12.4737 12.2897 12.5154 12.8332 12.8585 12.8014 12.8601 12.7111 12.6172 12.4623 12.5466 12.9857 13.6846 14.2385 14.1503 13.8151 13.3390 12.8273 12.4641 12.4936 12.7901 12.8014 12.7055 12.7111 12.6844 12.6890 12.5940 12.6189 12.9328 13.6451 14.3913 14.2385 13.8813 13.4443 12.9691 12.5468 12.3984 12.5859 12.8601 12.7111 12.6844 12.6150 12.7055 12.6885 12.5216 12.7715 13.4235 14.2385 14.6535 14.5335 14.0484 13.4443 12.8741 12.5731 12.7319 12.8340 12.6595 12.6150 12.7055 12.7111 12.6172 12.4623 12.5466 12.9857 13.6846 14.2385 14.1503 13.8151 13.3390 12.8273 12.4641 12.4936 12.7901 12.8014 12.7055 12.6885 12.6172 12.5408 12.4530 12.3947 12.5545 12.9857 13.4235 13.4765 13.2791 12.9630 12.5723 12.2157 12.1824 12.3793 12.5801 12.6885 12.5216 12.4623 12.4530 12.4782 12.4182 12.3947 12.5466 12.7715 12.8181 12.6836 12.4670 12.2034 11.8991 12.0509 12.2856 12.4664 12.5216 12.7715 12.5466 12.3947 12.4182 12.4782 12.4530 12.4623 12.5216 12.4664 12.2856 12.0509 11.8991 12.2034 12.4670 12.6836 12.8181 12.7715 13.4235 12.9857 12.5545 12.3947 12.4530 12.5408 12.6172 12.6885 12.5801 12.3793 12.1824 12.2157 12.5723 12.9630 13.2791 13.4765 13.4235 14.2385 13.6846 12.9857 12.5466 12.4623 12.6172 12.7111 12.7055 12.8014 12.7901 12.4936 12.4641 12.8273 13.3390 13.8151 14.1503 14.2385 14.6535 14.2385 13.4235 12.7715 12.5216 12.6885 12.7055 12.6150 12.6595 12.8340 12.7319 12.5731 12.8741 13.4443 14.0484 14.5335 14.6535 14.5335 14.1503 13.4765 12.8181 12.4664 12.5801 12.8014 12.6595 12.6581 12.7788 12.8332 12.5143 12.6537 13.1825 13.8151 14.3378 14.5335 14.0484 13.8151 13.2791 12.6836 12.2856 12.3793 12.7901 12.8340 12.7788 12.8340 12.7901 12.3793 12.2856 12.6836 13.2791 13.8151 14.0484 13.4443 13.3390 12.9630 12.4670 12.0509 12.1824 12.4936 12.7319 12.8332 12.7901 12.5859 12.2479 11.9663 12.1714 12.6836 13.1825 13.4443 12.8741 12.8273 12.5723 12.2034 11.8991 12.2157 12.4641 12.5731 12.5143 12.3793 12.2479 12.0953 11.9243 11.9663 12.2856 12.6537 12.8741 12.5731 12.4641 12.2157 11.8991 12.2034 12.5723 12.8273 12.8741 12.6537 12.2856 11.9663 11.9243 12.0953 12.2479 12.3793 12.5143 12.5731 12.7319 12.4936 12.1824 12.0509 12.4670 12.9630 13.3390 13.4443 13.1825 12.6836 12.1714 11.9663 12.2479 12.5859 12.7901 12.8332 12.7319 12.8340 12.7901 12.3793 12.2856 12.6836 13.2791 13.8151 14.0484 13.8151 13.2791 12.6836 12.2856 12.3793 12.7901 12.8340 12.7788 12.8340 12.6595 12.8014 12.5801 12.4664 12.8181 13.4765 14.1503 14.5335 14.3378 13.8151 13.1825 12.6537 12.5143 12.8332 12.7788 12.6581 12.6595 12.6150 12.7055 12.6885 12.5216 12.7715 13.4235 14.2385 14.6535 14.5335 14.0484 13.4443 12.8741 12.5731 12.7319 12.8340 12.6595 12.6150 12.5893 12.6581 12.8585 12.6267 12.6628 13.1642 13.8813 14.5335 14.6850 14.5335 13.8813 13.1642 12.6628 12.6267 12.8585 12.6581 12.5893 12.6581 12.6595 12.8014 12.5801 12.4664 12.8181 13.4765 14.1503 14.5335 14.3378 13.8151 13.1825 12.6537 12.5143 12.8332 12.7788 12.6581 12.8585 12.8014 12.8601 12.4367 12.2370 12.3742 12.8665 13.4765 13.8813 13.8151 13.4617 12.9630 12.4737 12.2897 12.5154 12.8332 12.8585 12.6267 12.5801 12.4367 12.2695 12.1726 12.1294 12.3742 12.8181 13.1642 13.1825 12.9630 12.6102 12.2034 12.0517 12.2897 12.5143 12.6267 12.6628 12.4664 12.2370 12.1726 12.2094 12.1726 12.2370 12.4664 12.6628 12.6537 12.4737 12.2034 11.8891 12.2034 12.4737 12.6537 12.6628 13.1642 12.8181 12.3742 12.1294 12.1726 12.2695 12.4367 12.5801 12.6267 12.5143 12.2897 12.0517 12.2034 12.6102 12.9630 13.1825 13.1642 13.8813 13.4765 12.8665 12.3742 12.2370 12.4367 12.8601 12.8014 12.8585 12.8332 12.5154 12.2897 12.4737 12.9630 13.4617 13.8151 13.8813 14.5335 14.1503 13.4765 12.8181 12.4664 12.5801 12.8014 12.6595 12.6581 12.7788 12.8332 12.5143 12.6537 13.1825 13.8151 14.3378 14.5335 14.6850 14.5335 13.8813 13.1642 12.6628 12.6267 12.8585 12.6581 12.5893 12.6581 12.8585 12.6267 12.6628 13.1642 13.8813 14.5335 14.6850 14.5335 14.3378 13.8151 13.1825 12.6537 12.5143 12.8332 12.7788 12.6581 12.6595 12.8014 12.5801 12.4664 12.8181 13.4765 14.1503 14.5335 13.8813 13.8151 13.4617 12.9630 12.4737 12.2897 12.5154 12.8332 12.8585 12.8014 12.8601 12.4367 12.2370 12.3742 12.8665 13.4765 13.8813 13.1642 13.1825 12.9630 12.6102 12.2034 12.0517 12.2897 12.5143 12.6267 12.5801 12.4367 12.2695 12.1726 12.1294 12.3742 12.8181 13.1642 12.6628 12.6537 12.4737 12.2034 11.8891 12.2034 12.4737 12.6537 12.6628 12.4664 12.2370 12.1726 12.2094 12.1726 12.2370 12.4664 12.6628 12.6267 12.5143 12.2897 12.0517 12.2034 12.6102 12.9630 13.1825 13.1642 12.8181 12.3742 12.1294 12.1726 12.2695 12.4367 12.5801 12.6267 12.8585 12.8332 12.5154 12.2897 12.4737 12.9630 13.4617 13.8151 13.8813 13.4765 12.8665 12.3742 12.2370 12.4367 12.8601 12.8014 12.8585 12.6581 12.7788 12.8332 12.5143 12.6537 13.1825 13.8151 14.3378 14.5335 14.1503 13.4765 12.8181 12.4664 12.5801 12.8014 12.6595 12.6581 12.5893 12.6581 12.8585 12.6267 12.6628 13.1642 13.8813 14.5335 14.6850 14.5335 13.8813 13.1642 12.6628 12.6267 12.8585 12.6581 12.5893 12.6150 12.6595 12.8340 12.7319 12.5731 12.8741 13.4443 14.0484 14.5335 14.6535 14.2385 13.4235 12.7715 12.5216 12.6885 12.7055 12.6150 12.6595 12.6581 12.7788 12.8332 12.5143 12.6537 13.1825 13.8151 14.3378 14.5335 14.1503 13.4765 12.8181 12.4664 12.5801 12.8014 12.6595 12.8340 12.7788 12.8340 12.7901 12.3793 12.2856 12.6836 13.2791 13.8151 14.0484 13.8151 13.2791 12.6836 12.2856 12.3793 12.7901 12.8340 12.7319 12.8332 12.7901 12.5859 12.2479 11.9663 12.1714 12.6836 13.1825 13.4443 13.3390 12.9630 12.4670 12.0509 12.1824 12.4936 12.7319 12.5731 12.5143 12.3793 12.2479 12.0953 11.9243 11.9663 12.2856 12.6537 12.8741 12.8273 12.5723 12.2034 11.8991 12.2157 12.4641 12.5731 12.8741 12.6537 12.2856 11.9663 11.9243 12.0953 12.2479 12.3793 12.5143 12.5731 12.4641 12.2157 11.8991 12.2034 12.5723 12.8273 12.8741 13.4443 13.1825 12.6836 12.1714 11.9663 12.2479 12.5859 12.7901 12.8332 12.7319 12.4936 12.1824 12.0509 12.4670 12.9630 13.3390 13.4443 14.0484 13.8151 13.2791 12.6836 12.2856 12.3793 12.7901 12.8340 12.7788 12.8340 12.7901 12.3793 12.2856 12.6836 13.2791 13.8151 14.0484 14.5335 14.3378 13.8151 13.1825 12.6537 12.5143 12.8332 12.7788 12.6581 12.6595 12.8014 12.5801 12.4664 12.8181 13.4765 14.1503 14.5335 14.6535 14.5335 14.0484 13.4443 12.8741 12.5731 12.7319 12.8340 12.6595 12.6150 12.7055 12.6885 12.5216 12.7715 13.4235 14.2385 14.6535 14.2385 14.1503 13.8151 13.3390 12.8273 12.4641 12.4936 12.7901 12.8014 12.7055 12.7111 12.6172 12.4623 12.5466 12.9857 13.6846 14.2385 13.4235 13.4765 13.2791 12.9630 12.5723 12.2157 12.1824 12.3793 12.5801 12.6885 12.6172 12.5408 12.4530 12.3947 12.5545 12.9857 13.4235 12.7715 12.8181 12.6836 12.4670 12.2034 11.8991 12.0509 12.2856 12.4664 12.5216 12.4623 12.4530 12.4782 12.4182 12.3947 12.5466 12.7715 12.5216 12.4664 12.2856 12.0509 11.8991 12.2034 12.4670 12.6836 12.8181 12.7715 12.5466 12.3947 12.4182 12.4782 12.4530 12.4623 12.5216 12.6885 12.5801 12.3793 12.1824 12.2157 12.5723 12.9630 13.2791 13.4765 13.4235 12.9857 12.5545 12.3947 12.4530 12.5408 12.6172 12.6885 12.7055 12.8014 12.7901 12.4936 12.4641 12.8273 13.3390 13.8151 14.1503 14.2385 13.6846 12.9857 12.5466 12.4623 12.6172 12.7111 12.7055 12.6150 12.6595 12.8340 12.7319 12.5731 12.8741 13.4443 14.0484 14.5335 14.6535 14.2385 13.4235 12.7715 12.5216 12.6885 12.7055 12.6150 12.6844 12.7111 12.8601 12.5859 12.3984 12.5468 12.9691 13.4443 13.8813 14.2385 14.3913 13.6451 12.9328 12.6189 12.5940 12.6890 12.6844 12.7111 12.7055 12.8014 12.7901 12.4936 12.4641 12.8273 13.3390 13.8151 14.1503 14.2385 13.6846 12.9857 12.5466 12.4623 12.6172 12.7111 12.8601 12.8014 12.8585 12.8332 12.5154 12.2897 12.4737 12.9630 13.4617 13.8151 13.8813 13.4765 12.8665 12.3742 12.2370 12.4367 12.8601 12.5859 12.7901 12.8332 12.7319 12.4936 12.1824 12.0509 12.4670 12.9630 13.3390 13.4443 13.1825 12.6836 12.1714 11.9663 12.2479 12.5859 12.3984 12.4936 12.5154 12.4936 12.3984 12.1931 11.9190 12.0509 12.4737 12.8273 12.9691 12.8273 12.4737 12.0509 11.9190 12.1931 12.3984 12.5468 12.4641 12.2897 12.1824 12.1931 12.2201 12.1931 12.1824 12.2897 12.4641 12.5468 12.4466 12.2157 12.0517 12.2157 12.4466 12.5468 12.9691 12.8273 12.4737 12.0509 11.9190 12.1931 12.3984 12.4936 12.5154 12.4936 12.3984 12.1931 11.9190 12.0509 12.4737 12.8273 12.9691 13.4443 13.3390 12.9630 12.4670 12.0509 12.1824 12.4936 12.7319 12.8332 12.7901 12.5859 12.2479 11.9663 12.1714 12.6836 13.1825 13.4443 13.8813 13.8151 13.4617 12.9630 12.4737 12.2897 12.5154 12.8332 12.8585 12.8014 12.8601 12.4367 12.2370 12.3742 12.8665 13.4765 13.8813 14.2385 14.1503 13.8151 13.3390 12.8273 12.4641 12.4936 12.7901 12.8014 12.7055 12.7111 12.6172 12.4623 12.5466 12.9857 13.6846 14.2385 14.3913 14.2385 13.8813 13.4443 12.9691 12.5468 12.3984 12.5859 12.8601 12.7111 12.6844 12.6890 12.5940 12.6189 12.9328 13.6451 14.3913 13.6451 13.6846 13.4765 13.1825 12.8273 12.4466 12.1931 12.2479 12.4367 12.6172 12.6890 12.7118 12.6608 12.6181 12.7308 13.1234 13.6451 12.9328 12.9857 12.8665 12.6836 12.4737 12.2157 11.9190 11.9663 12.2370 12.4623 12.5940 12.6608 12.6913 12.6465 12.6229 12.7308 12.9328 12.6189 12.5466 12.3742 12.1714 12.0509 12.0517 12.0509 12.1714 12.3742 12.5466 12.6189 12.6181 12.6465 12.6774 12.6465 12.6181 12.6189 12.5940 12.4623 12.2370 11.9663 11.9190 12.2157 12.4737 12.6836 12.8665 12.9857 12.9328 12.7308 12.6229 12.6465 12.6913 12.6608 12.5940 12.6890 12.6172 12.4367 12.2479 12.1931 12.4466 12.8273 13.1825 13.4765 13.6846 13.6451 13.1234 12.7308 12.6181 12.6608 12.7118 12.6890 12.6844 12.7111 12.8601 12.5859 12.3984 12.5468 12.9691 13.4443 13.8813 14.2385 14.3913 13.6451 12.9328 12.6189 12.5940 12.6890 12.6844 12.7737 12.7118 12.5408 12.2695 12.0953 12.2201 12.5468 12.8741 13.1642 13.4235 13.6451 13.6625 13.1148 12.8257 12.7566 12.7724 12.7737 12.7118 12.6890 12.6172 12.4367 12.2479 12.1931 12.4466 12.8273 13.1825 13.4765 13.6846 13.6451 13.1234 12.7308 12.6181 12.6608 12.7118 12.5408 12.6172 12.6885 12.5801 12.3793 12.1824 12.2157 12.5723 12.9630 13.2791 13.4765 13.4235 12.9857 12.5545 12.3947 12.4530 12.5408 12.2695 12.4367 12.5801 12.6267 12.5143 12.2897 12.0517 12.2034 12.6102 12.9630 13.1825 13.1642 12.8181 12.3742 12.1294 12.1726 12.2695 12.0953 12.2479 12.3793 12.5143 12.5731 12.4641 12.2157 11.8991 12.2034 12.5723 12.8273 12.8741 12.6537 12.2856 11.9663 11.9243 12.0953 12.2201 12.1931 12.1824 12.2897 12.4641 12.5468 12.4466 12.2157 12.0517 12.2157 12.4466 12.5468 12.4641 12.2897 12.1824 12.1931 12.2201 12.5468 12.4466 12.2157 12.0517 12.2157 12.4466 12.5468 12.4641 12.2897 12.1824 12.1931 12.2201 12.1931 12.1824 12.2897 12.4641 12.5468 12.8741 12.8273 12.5723 12.2034 11.8991 12.2157 12.4641 12.5731 12.5143 12.3793 12.2479 12.0953 11.9243 11.9663 12.2856 12.6537 12.8741 13.1642 13.1825 12.9630 12.6102 12.2034 12.0517 12.2897 12.5143 12.6267 12.5801 12.4367 12.2695 12.1726 12.1294 12.3742 12.8181 13.1642 13.4235 13.4765 13.2791 12.9630 12.5723 12.2157 12.1824 12.3793 12.5801 12.6885 12.6172 12.5408 12.4530 12.3947 12.5545 12.9857 13.4235 13.6451 13.6846 13.4765 13.1825 12.8273 12.4466 12.1931 12.2479 12.4367 12.6172 12.6890 12.7118 12.6608 12.6181 12.7308 13.1234 13.6451 13.6625 13.6451 13.4235 13.1642 12.8741 12.5468 12.2201 12.0953 12.2695 12.5408 12.7118 12.7737 12.7724 12.7566 12.8257 13.1148 13.6625 13.1148 13.1234 12.9857 12.8181 12.6537 12.4641 12.1931 11.9243 12.1726 12.4530 12.6608 12.7724 12.8076 12.8045 12.8230 12.9337 13.1148 12.8257 12.7308 12.5545 12.3742 12.2856 12.2897 12.1824 11.9663 12.1294 12.3947 12.6181 12.7566 12.8045 12.8130 12.8114 12.8230 12.8257 12.7566 12.6181 12.3947 12.1294 11.9663 12.1824 12.2897 12.2856 12.3742 12.5545 12.7308 12.8257 12.8230 12.8114 12.8130 12.8045 12.7566 12.7724 12.6608 12.4530 12.1726 11.9243 12.1931 12.4641 12.6537 12.8181 12.9857 13.1234 13.1148 12.9337 12.8230 12.8045 12.8076 12.7724 12.7737 12.7118 12.5408 12.2695 12.0953 12.2201 12.5468 12.8741 13.1642 13.4235 13.6451 13.6625 13.1148 12.8257 12.7566 12.7724 12.7737 12.8373 12.8076 12.6913 12.4782 12.2094 12.0953 12.3984 12.5731 12.6628 12.7715 12.9328 13.1148 13.2209 13.0579 12.9222 12.8590 12.8373 12.8076 12.7724 12.6608 12.4530 12.1726 11.9243 12.1931 12.4641 12.6537 12.8181 12.9857 13.1234 13.1148 12.9337 12.8230 12.8045 12.8076 12.6913 12.6608 12.5940 12.4623 12.2370 11.9663 11.9190 12.2157 12.4737 12.6836 12.8665 12.9857 12.9328 12.7308 12.6229 12.6465 12.6913 12.4782 12.4530 12.4623 12.5216 12.4664 12.2856 12.0509 11.8991 12.2034 12.4670 12.6836 12.8181 12.7715 12.5466 12.3947 12.4182 12.4782 12.2094 12.1726 12.2370 12.4664 12.6628 12.6537 12.4737 12.2034 11.8891 12.2034 12.4737 12.6537 12.6628 12.4664 12.2370 12.1726 12.2094 12.0953 11.9243 11.9663 12.2856 12.6537 12.8741 12.8273 12.5723 12.2034 11.8991 12.2157 12.4641 12.5731 12.5143 12.3793 12.2479 12.0953 12.3984 12.1931 11.9190 12.0509 12.4737 12.8273 12.9691 12.8273 12.4737 12.0509 11.9190 12.1931 12.3984 12.4936 12.5154 12.4936 12.3984 12.5731 12.4641 12.2157 11.8991 12.2034 12.5723 12.8273 12.8741 12.6537 12.2856 11.9663 11.9243 12.0953 12.2479 12.3793 12.5143 12.5731 12.6628 12.6537 12.4737 12.2034 11.8891 12.2034 12.4737 12.6537 12.6628 12.4664 12.2370 12.1726 12.2094 12.1726 12.2370 12.4664 12.6628 12.7715 12.8181 12.6836 12.4670 12.2034 11.8991 12.0509 12.2856 12.4664 12.5216 12.4623 12.4530 12.4782 12.4182 12.3947 12.5466 12.7715 12.9328 12.9857 12.8665 12.6836 12.4737 12.2157 11.9190 11.9663 12.2370 12.4623 12.5940 12.6608 12.6913 12.6465 12.6229 12.7308 12.9328 13.1148 13.1234 12.9857 12.8181 12.6537 12.4641 12.1931 11.9243 12.1726 12.4530 12.6608 12.7724 12.8076 12.8045 12.8230 12.9337 13.1148 13.2209 13.1148 12.9328 12.7715 12.6628 12.5731 12.3984 12.0953 12.2094 12.4782 12.6913 12.8076 12.8373 12.8590 12.9222 13.0579 13.2209 13.0579 12.9337 12.7308 12.5466 12.4664 12.5143 12.4936 12.2479 12.1726 12.4182 12.6465 12.8045 12.8590 12.8488 12.8827 12.9757 13.0579 12.9222 12.8230 12.6229 12.3947 12.2370 12.3793 12.5154 12.3793 12.2370 12.3947 12.6229 12.8230 12.9222 12.8827 12.8546 12.8827 12.9222 12.8590 12.8045 12.6465 12.4182 12.1726 12.2479 12.4936 12.5143 12.4664 12.5466 12.7308 12.9337 13.0579 12.9757 12.8827 12.8488 12.8590 12.8373 12.8076 12.6913 12.4782 12.2094 12.0953 12.3984 12.5731 12.6628 12.7715 12.9328 13.1148 13.2209 13.0579 12.9222 12.8590 12.8373 12.8195 12.8488 12.8130 12.6774 12.4782 12.2695 12.5859 12.7319 12.6267 12.5216 12.6189 12.8257 13.0579 13.1459 12.9563 12.8405 12.8195 12.8488 12.8590 12.8045 12.6465 12.4182 12.1726 12.2479 12.4936 12.5143 12.4664 12.5466 12.7308 12.9337 13.0579 12.9757 12.8827 12.8488 12.8130 12.8045 12.7566 12.6181 12.3947 12.1294 11.9663 12.1824 12.2897 12.2856 12.3742 12.5545 12.7308 12.8257 12.8230 12.8114 12.8130 12.6774 12.6465 12.6181 12.6189 12.5466 12.3742 12.1714 12.0509 12.0517 12.0509 12.1714 12.3742 12.5466 12.6189 12.6181 12.6465 12.6774 12.4782 12.4182 12.3947 12.5466 12.7715 12.8181 12.6836 12.4670 12.2034 11.8991 12.0509 12.2856 12.4664 12.5216 12.4623 12.4530 12.4782 12.2695 12.1726 12.1294 12.3742 12.8181 13.1642 13.1825 12.9630 12.6102 12.2034 12.0517 12.2897 12.5143 12.6267 12.5801 12.4367 12.2695 12.5859 12.2479 11.9663 12.1714 12.6836 13.1825 13.4443 13.3390 12.9630 12.4670 12.0509 12.1824 12.4936 12.7319 12.8332 12.7901 12.5859 12.7319 12.4936 12.1824 12.0509 12.4670 12.9630 13.3390 13.4443 13.1825 12.6836 12.1714 11.9663 12.2479 12.5859 12.7901 12.8332 12.7319 12.6267 12.5143 12.2897 12.0517 12.2034 12.6102 12.9630 13.1825 13.1642 12.8181 12.3742 12.1294 12.1726 12.2695 12.4367 12.5801 12.6267 12.5216 12.4664 12.2856 12.0509 11.8991 12.2034 12.4670 12.6836 12.8181 12.7715 12.5466 12.3947 12.4182 12.4782 12.4530 12.4623 12.5216 12.6189 12.5466 12.3742 12.1714 12.0509 12.0517 12.0509 12.1714 12.3742 12.5466 12.6189 12.6181 12.6465 12.6774 12.6465 12.6181 12.6189 12.8257 12.7308 12.5545 12.3742 12.2856 12.2897 12.1824 11.9663 12.1294 12.3947 12.6181 12.7566 12.8045 12.8130 12.8114 12.8230 12.8257 13.0579 12.9337 12.7308 12.5466 12.4664 12.5143 12.4936 12.2479 12.1726 12.4182 12.6465 12.8045 12.8590 12.8488 12.8827 12.9757 13.0579 13.1459 13.0579 12.8257 12.6189 12.5216 12.6267 12.7319 12.5859 12.2695 12.4782 12.6774 12.8130 12.8488 12.8195 12.8405 12.9563 13.1459 12.9563 12.9757 12.8230 12.6181 12.4623 12.5801 12.8332 12.7901 12.4367 12.4530 12.6465 12.8114 12.8827 12.8405 12.7973 12.8437 12.9563 12.8405 12.8827 12.8114 12.6465 12.4530 12.4367 12.7901 12.8332 12.5801 12.4623 12.6181 12.8230 12.9757 12.9563 12.8437 12.7973 12.8405 12.8195 12.8488 12.8130 12.6774 12.4782 12.2695 12.5859 12.7319 12.6267 12.5216 12.6189 12.8257 13.0579 13.1459 12.9563 12.8405 12.8195 12.7247 12.7973 12.8546 12.8130 12.6913 12.5408 12.8601 12.8340 12.8585 12.6885 12.5940 12.7566 12.9222 12.9563 12.8434 12.7405 12.7247 12.7973 12.8405 12.8827 12.8114 12.6465 12.4530 12.4367 12.7901 12.8332 12.5801 12.4623 12.6181 12.8230 12.9757 12.9563 12.8437 12.7973 12.8546 12.8827 12.9222 12.8230 12.6229 12.3947 12.2370 12.3793 12.5154 12.3793 12.2370 12.3947 12.6229 12.8230 12.9222 12.8827 12.8546 12.8130 12.8114 12.8230 12.8257 12.7308 12.5545 12.3742 12.2856 12.2897 12.1824 11.9663 12.1294 12.3947 12.6181 12.7566 12.8045 12.8130 12.6913 12.6465 12.6229 12.7308 12.9328 12.9857 12.8665 12.6836 12.4737 12.2157 11.9190 11.9663 12.2370 12.4623 12.5940 12.6608 12.6913 12.5408 12.4530 12.3947 12.5545 12.9857 13.4235 13.4765 13.2791 12.9630 12.5723 12.2157 12.1824 12.3793 12.5801 12.6885 12.6172 12.5408 12.8601 12.4367 12.2370 12.3742 12.8665 13.4765 13.8813 13.8151 13.4617 12.9630 12.4737 12.2897 12.5154 12.8332 12.8585 12.8014 12.8601 12.8340 12.7901 12.3793 12.2856 12.6836 13.2791 13.8151 14.0484 13.8151 13.2791 12.6836 12.2856 12.3793 12.7901 12.8340 12.7788 12.8340 12.8585 12.8332 12.5154 12.2897 12.4737 12.9630 13.4617 13.8151 13.8813 13.4765 12.8665 12.3742 12.2370 12.4367 12.8601 12.8014 12.8585 12.6885 12.5801 12.3793 12.1824 12.2157 12.5723 12.9630 13.2791 13.4765 13.4235 12.9857 12.5545 12.3947 12.4530 12.5408 12.6172 12.6885 12.5940 12.4623 12.2370 11.9663 11.9190 12.2157 12.4737 12.6836 12.8665 12.9857 12.9328 12.7308 12.6229 12.6465 12.6913 12.6608 12.5940 12.7566 12.6181 12.3947 12.1294 11.9663 12.1824 12.2897 12.2856 12.3742 12.5545 12.7308 12.8257 12.8230 12.8114 12.8130 12.8045 12.7566 12.9222 12.8230 12.6229 12.3947 12.2370 12.3793 12.5154 12.3793 12.2370 12.3947 12.6229 12.8230 12.9222 12.8827 12.8546 12.8827 12.9222 12.9563 12.9757 12.8230 12.6181 12.4623 12.5801 12.8332 12.7901 12.4367 12.4530 12.6465 12.8114 12.8827 12.8405 12.7973 12.8437 12.9563 12.8434 12.9563 12.9222 12.7566 12.5940 12.6885 12.8585 12.8340 12.8601 12.5408 12.6913 12.8130 12.8546 12.7973 12.7247 12.7405 12.8434 12.7405 12.8437 12.8827 12.8045 12.6608 12.6172 12.8014 12.7788 12.8014 12.6172 12.6608 12.8045 12.8827 12.8437 12.7405 12.6833 12.7405 12.7247 12.7973 12.8546 12.8130 12.6913 12.5408 12.8601 12.8340 12.8585 12.6885 12.5940 12.7566 12.9222 12.9563 12.8434 12.7405 12.7247 12.6283 12.6833 12.7973 12.8488 12.8076 12.7118 12.7111 12.6595 12.6581 12.7055 12.6890 12.7724 12.8590 12.8405 12.7405 12.6542 12.6283 12.6833 12.7405 12.8437 12.8827 12.8045 12.6608 12.6172 12.8014 12.7788 12.8014 12.6172 12.6608 12.8045 12.8827 12.8437 12.7405 12.6833 12.7973 12.8437 12.9563 12.9757 12.8230 12.6181 12.4623 12.5801 12.8332 12.7901 12.4367 12.4530 12.6465 12.8114 12.8827 12.8405 12.7973 12.8488 12.8827 12.9757 13.0579 12.9337 12.7308 12.5466 12.4664 12.5143 12.4936 12.2479 12.1726 12.4182 12.6465 12.8045 12.8590 12.8488 12.8076 12.8045 12.8230 12.9337 13.1148 13.1234 12.9857 12.8181 12.6537 12.4641 12.1931 11.9243 12.1726 12.4530 12.6608 12.7724 12.8076 12.7118 12.6608 12.6181 12.7308 13.1234 13.6451 13.6846 13.4765 13.1825 12.8273 12.4466 12.1931 12.2479 12.4367 12.6172 12.6890 12.7118 12.7111 12.6172 12.4623 12.5466 12.9857 13.6846 14.2385 14.1503 13.8151 13.3390 12.8273 12.4641 12.4936 12.7901 12.8014 12.7055 12.7111 12.6595 12.8014 12.5801 12.4664 12.8181 13.4765 14.1503 14.5335 14.3378 13.8151 13.1825 12.6537 12.5143 12.8332 12.7788 12.6581 12.6595 12.6581 12.7788 12.8332 12.5143 12.6537 13.1825 13.8151 14.3378 14.5335 14.1503 13.4765 12.8181 12.4664 12.5801 12.8014 12.6595 12.6581 12.7055 12.8014 12.7901 12.4936 12.4641 12.8273 13.3390 13.8151 14.1503 14.2385 13.6846 12.9857 12.5466 12.4623 12.6172 12.7111 12.7055 12.6890 12.6172 12.4367 12.2479 12.1931 12.4466 12.8273 13.1825 13.4765 13.6846 13.6451 13.1234 12.7308 12.6181 12.6608 12.7118 12.6890 12.7724 12.6608 12.4530 12.1726 11.9243 12.1931 12.4641 12.6537 12.8181 12.9857 13.1234 13.1148 12.9337 12.8230 12.8045 12.8076 12.7724 12.8590 12.8045 12.6465 12.4182 12.1726 12.2479 12.4936 12.5143 12.4664 12.5466 12.7308 12.9337 13.0579 12.9757 12.8827 12.8488 12.8590 12.8405 12.8827 12.8114 12.6465 12.4530 12.4367 12.7901 12.8332 12.5801 12.4623 12.6181 12.8230 12.9757 12.9563 12.8437 12.7973 12.8405 12.7405 12.8437 12.8827 12.8045 12.6608 12.6172 12.8014 12.7788 12.8014 12.6172 12.6608 12.8045 12.8827 12.8437 12.7405 12.6833 12.7405 12.6542 12.7405 12.8405 12.8590 12.7724 12.6890 12.7055 12.6581 12.6595 12.7111 12.7118 12.8076 12.8488 12.7973 12.6833 12.6283 12.6542 12.6283 12.6833 12.7973 12.8488 12.8076 12.7118 12.7111 12.6595 12.6581 12.7055 12.6890 12.7724 12.8590 12.8405 12.7405 12.6542 12.6283 12.5900 12.6283 12.7247 12.8195 12.8373 12.7737 12.6844 12.6150 12.5893 12.6150 12.6844 12.7737 12.8373 12.8195 12.7247 12.6283 12.5900 12.6283 12.6542 12.7405 12.8405 12.8590 12.7724 12.6890 12.7055 12.6581 12.6595 12.7111 12.7118 12.8076 12.8488 12.7973 12.6833 12.6283 12.7247 12.7405 12.8434 12.9563 12.9222 12.7566 12.5940 12.6885 12.8585 12.8340 12.8601 12.5408 12.6913 12.8130 12.8546 12.7973 12.7247 12.8195 12.8405 12.9563 13.1459 13.0579 12.8257 12.6189 12.5216 12.6267 12.7319 12.5859 12.2695 12.4782 12.6774 12.8130 12.8488 12.8195 12.8373 12.8590 12.9222 13.0579 13.2209 13.1148 12.9328 12.7715 12.6628 12.5731 12.3984 12.0953 12.2094 12.4782 12.6913 12.8076 12.8373 12.7737 12.7724 12.7566 12.8257 13.1148 13.6625 13.6451 13.4235 13.1642 12.8741 12.5468 12.2201 12.0953 12.2695 12.5408 12.7118 12.7737 12.6844 12.6890 12.5940 12.6189 12.9328 13.6451 14.3913 14.2385 13.8813 13.4443 12.9691 12.5468 12.3984 12.5859 12.8601 12.7111 12.6844 12.6150 12.7055 12.6885 12.5216 12.7715 13.4235 14.2385 14.6535 14.5335 14.0484 13.4443 12.8741 12.5731 12.7319 12.8340 12.6595 12.6150 12.5893 12.6581 12.8585 12.6267 12.6628 13.1642 13.8813 14.5335 14.6850 14.5335 13.8813 13.1642 12.6628 12.6267 12.8585 12.6581 12.5893 12.6150 12.6595 12.8340 12.7319 12.5731 12.8741 13.4443 14.0484 14.5335 14.6535 14.2385 13.4235 12.7715 12.5216 12.6885 12.7055 12.6150 12.6844 12.7111 12.8601 12.5859 12.3984 12.5468 12.9691 13.4443 13.8813 14.2385 14.3913 13.6451 12.9328 12.6189 12.5940 12.6890 12.6844 12.7737 12.7118 12.5408 12.2695 12.0953 12.2201 12.5468 12.8741 13.1642 13.4235 13.6451 13.6625 13.1148 12.8257 12.7566 12.7724 12.7737 12.8373 12.8076 12.6913 12.4782 12.2094 12.0953 12.3984 12.5731 12.6628 12.7715 12.9328 13.1148 13.2209 13.0579 12.9222 12.8590 12.8373 12.8195 12.8488 12.8130 12.6774 12.4782 12.2695 12.5859 12.7319 12.6267 12.5216 12.6189 12.8257 13.0579 13.1459 12.9563 12.8405 12.8195 12.7247 12.7973 12.8546 12.8130 12.6913 12.5408 12.8601 12.8340 12.8585 12.6885 12.5940 12.7566 12.9222 12.9563 12.8434 12.7405 12.7247 12.6283 12.6833 12.7973 12.8488 12.8076 12.7118 12.7111 12.6595 12.6581 12.7055 12.6890 12.7724 12.8590 12.8405 12.7405 12.6542 12.6283 12.5900 12.6283 12.7247 12.8195 12.8373 12.7737 12.6844 12.6150 12.5893 12.6150 12.6844 12.7737 12.8373 12.8195 12.7247 12.6283 12.5900 BAND: 4 12.5900 12.6283 12.7247 12.8195 12.8373 12.7737 13.2146 14.3283 14.6475 14.3283 13.2146 12.7737 12.8373 12.8195 12.7247 12.6283 12.5900 12.6283 12.6542 12.7454 12.8512 12.9008 12.8665 12.7855 13.4210 13.8711 13.8194 13.2259 12.7988 12.8842 12.8941 12.8021 12.7046 12.6283 12.7247 12.7454 12.8434 12.9734 13.0646 13.0690 13.0061 12.9235 13.0930 13.2078 12.9120 12.9340 13.0334 13.0735 12.9461 12.8021 12.7247 12.8195 12.8512 12.9734 13.1459 13.2977 13.3577 13.3252 13.2486 13.1707 13.1199 13.1125 13.1551 13.2461 13.3309 13.0735 12.8941 12.8195 12.8373 12.9008 13.0646 13.2977 13.5376 13.6877 13.7050 13.6448 13.5613 13.4856 13.4350 13.4135 13.3904 13.2461 13.0334 12.8842 12.8373 12.7737 12.8665 13.0690 13.3577 13.6877 13.9752 14.0909 14.0604 13.9798 13.8831 13.7756 13.6324 13.4135 13.1551 12.9340 12.7988 12.7737 13.2146 12.7855 13.0061 13.3252 13.7050 14.0909 14.3913 14.4288 14.3585 14.2462 14.0619 13.7756 13.4350 13.1125 12.9120 13.2259 13.2146 14.3283 13.4210 12.9235 13.2486 13.6448 14.0604 14.4288 14.6982 14.6132 14.4966 14.2462 13.8831 13.4856 13.1199 13.2078 13.8194 14.3283 14.6475 13.8711 13.0930 13.1707 13.5613 13.9798 14.3585 14.6132 14.8124 14.6132 14.3585 13.9798 13.5613 13.1707 13.0930 13.8711 14.6475 14.3283 13.8194 13.2078 13.1199 13.4856 13.8831 14.2462 14.4966 14.6132 14.6982 14.4288 14.0604 13.6448 13.2486 12.9235 13.4210 14.3283 13.2146 13.2259 12.9120 13.1125 13.4350 13.7756 14.0619 14.2462 14.3585 14.4288 14.3913 14.0909 13.7050 13.3252 13.0061 12.7855 13.2146 12.7737 12.7988 12.9340 13.1551 13.4135 13.6324 13.7756 13.8831 13.9798 14.0604 14.0909 13.9752 13.6877 13.3577 13.0690 12.8665 12.7737 12.8373 12.8842 13.0334 13.2461 13.3904 13.4135 13.4350 13.4856 13.5613 13.6448 13.7050 13.6877 13.5376 13.2977 13.0646 12.9008 12.8373 12.8195 12.8941 13.0735 13.3309 13.2461 13.1551 13.1125 13.1199 13.1707 13.2486 13.3252 13.3577 13.2977 13.1459 12.9734 12.8512 12.8195 12.7247 12.8021 12.9461 13.0735 13.0334 12.9340 12.9120 13.2078 13.0930 12.9235 13.0061 13.0690 13.0646 12.9734 12.8434 12.7454 12.7247 12.6283 12.7046 12.8021 12.8941 12.8842 12.7988 13.2259 13.8194 13.8711 13.4210 12.7855 12.8665 12.9008 12.8512 12.7454 12.6542 12.6283 12.5900 12.6283 12.7247 12.8195 12.8373 12.7737 13.2146 14.3283 14.6475 14.3283 13.2146 12.7737 12.8373 12.8195 12.7247 12.6283 12.5900 12.6283 12.6542 12.7454 12.8512 12.9008 12.8665 12.7855 13.4210 13.8711 13.8194 13.2259 12.7988 12.8842 12.8941 12.8021 12.7046 12.6283 12.6542 12.6283 12.7046 12.8021 12.8941 12.8842 12.7988 13.2259 13.8194 13.8711 13.4210 12.7855 12.8665 12.9008 12.8512 12.7454 12.6542 12.7454 12.7046 12.7454 12.8529 12.9845 13.0249 12.9651 12.8834 13.1647 13.3806 13.1647 12.8834 12.9651 13.0249 12.9845 12.8529 12.7454 12.8512 12.8021 12.8529 12.9734 13.1490 13.2657 13.2474 13.1709 13.0899 13.0286 13.0251 13.0793 13.1649 13.2533 13.1882 12.9845 12.8512 12.9008 12.8941 12.9845 13.1490 13.2977 13.5374 13.6153 13.5566 13.4628 13.3727 13.3223 13.3393 13.4062 13.4789 13.2533 13.0249 12.9008 12.8665 12.8842 13.0249 13.2657 13.5374 13.6877 13.9736 13.9981 13.8929 13.7706 13.6662 13.6045 13.5569 13.4062 13.1649 12.9651 12.8665 12.7855 12.7988 12.9651 13.2474 13.6153 13.9736 14.0909 14.3898 14.3124 14.1547 13.9929 13.8204 13.6045 13.3393 13.0793 12.8834 12.7855 13.4210 13.2259 12.8834 13.1709 13.5566 13.9981 14.3898 14.4288 14.5893 14.4394 14.2495 13.9929 13.6662 13.3223 13.0251 13.1647 13.4210 13.8711 13.8194 13.1647 13.0899 13.4628 13.8929 14.3124 14.5893 14.6132 14.5860 14.4394 14.1547 13.7706 13.3727 13.0286 13.3806 13.8711 13.8194 13.8711 13.3806 13.0286 13.3727 13.7706 14.1547 14.4394 14.5860 14.6132 14.5893 14.3124 13.8929 13.4628 13.0899 13.1647 13.8194 13.2259 13.4210 13.1647 13.0251 13.3223 13.6662 13.9929 14.2495 14.4394 14.5893 14.4288 14.3898 13.9981 13.5566 13.1709 12.8834 13.2259 12.7988 12.7855 12.8834 13.0793 13.3393 13.6045 13.8204 13.9929 14.1547 14.3124 14.3898 14.0909 13.9736 13.6153 13.2474 12.9651 12.7988 12.8842 12.8665 12.9651 13.1649 13.4062 13.5569 13.6045 13.6662 13.7706 13.8929 13.9981 13.9736 13.6877 13.5374 13.2657 13.0249 12.8842 12.8941 12.9008 13.0249 13.2533 13.4789 13.4062 13.3393 13.3223 13.3727 13.4628 13.5566 13.6153 13.5374 13.2977 13.1490 12.9845 12.8941 12.8021 12.8512 12.9845 13.1882 13.2533 13.1649 13.0793 13.0251 13.0286 13.0899 13.1709 13.2474 13.2657 13.1490 12.9734 12.8529 12.8021 12.7046 12.7454 12.8529 12.9845 13.0249 12.9651 12.8834 13.1647 13.3806 13.1647 12.8834 12.9651 13.0249 12.9845 12.8529 12.7454 12.7046 12.6283 12.6542 12.7454 12.8512 12.9008 12.8665 12.7855 13.4210 13.8711 13.8194 13.2259 12.7988 12.8842 12.8941 12.8021 12.7046 12.6283 12.7247 12.7454 12.8434 12.9734 13.0646 13.0690 13.0061 12.9235 13.0930 13.2078 12.9120 12.9340 13.0334 13.0735 12.9461 12.8021 12.7247 12.7454 12.7046 12.7454 12.8529 12.9845 13.0249 12.9651 12.8834 13.1647 13.3806 13.1647 12.8834 12.9651 13.0249 12.9845 12.8529 12.7454 12.8434 12.7454 12.7247 12.8021 12.9461 13.0735 13.0334 12.9340 12.9120 13.2078 13.0930 12.9235 13.0061 13.0690 13.0646 12.9734 12.8434 12.9734 12.8529 12.8021 12.8512 12.9845 13.1882 13.2533 13.1649 13.0793 13.0251 13.0286 13.0899 13.1709 13.2474 13.2657 13.1490 12.9734 13.0646 12.9845 12.9461 12.9845 13.0646 13.2657 13.5493 13.5377 13.4323 13.3354 13.2892 13.3354 13.4323 13.5377 13.5493 13.2657 13.0646 13.0690 13.0249 13.0735 13.1882 13.2657 13.3577 13.6153 13.9730 13.8674 13.7167 13.6000 13.5816 13.6617 13.7480 13.5377 13.2474 13.0690 13.0061 12.9651 13.0334 13.2533 13.5493 13.6153 13.7050 13.9981 14.2637 14.0834 13.8950 13.7746 13.7359 13.6617 13.4323 13.1709 13.0061 12.9235 12.8834 12.9340 13.1649 13.5377 13.9730 13.9981 14.0604 14.3124 14.3259 14.1304 13.9414 13.7746 13.5816 13.3354 13.0899 12.9235 13.0930 13.1647 12.9120 13.0793 13.4323 13.8674 14.2637 14.3124 14.3585 14.4394 14.3148 14.1304 13.8950 13.6000 13.2892 13.0286 13.0930 13.2078 13.3806 13.2078 13.0251 13.3354 13.7167 14.0834 14.3259 14.4394 14.4966 14.4394 14.3259 14.0834 13.7167 13.3354 13.0251 13.2078 12.9120 13.1647 13.0930 13.0286 13.2892 13.6000 13.8950 14.1304 14.3148 14.4394 14.3585 14.3124 14.2637 13.8674 13.4323 13.0793 12.9120 12.9340 12.8834 12.9235 13.0899 13.3354 13.5816 13.7746 13.9414 14.1304 14.3259 14.3124 14.0604 13.9981 13.9730 13.5377 13.1649 12.9340 13.0334 12.9651 13.0061 13.1709 13.4323 13.6617 13.7359 13.7746 13.8950 14.0834 14.2637 13.9981 13.7050 13.6153 13.5493 13.2533 13.0334 13.0735 13.0249 13.0690 13.2474 13.5377 13.7480 13.6617 13.5816 13.6000 13.7167 13.8674 13.9730 13.6153 13.3577 13.2657 13.1882 13.0735 12.9461 12.9845 13.0646 13.2657 13.5493 13.5377 13.4323 13.3354 13.2892 13.3354 13.4323 13.5377 13.5493 13.2657 13.0646 12.9845 12.9461 12.8021 12.8529 12.9734 13.1490 13.2657 13.2474 13.1709 13.0899 13.0286 13.0251 13.0793 13.1649 13.2533 13.1882 12.9845 12.8512 12.8021 12.7247 12.7454 12.8434 12.9734 13.0646 13.0690 13.0061 12.9235 13.0930 13.2078 12.9120 12.9340 13.0334 13.0735 12.9461 12.8021 12.7247 12.8195 12.8512 12.9734 13.1459 13.2977 13.3577 13.3252 13.2486 13.1707 13.1199 13.1125 13.1551 13.2461 13.3309 13.0735 12.8941 12.8195 12.8512 12.8021 12.8529 12.9734 13.1490 13.2657 13.2474 13.1709 13.0899 13.0286 13.0251 13.0793 13.1649 13.2533 13.1882 12.9845 12.8512 12.9734 12.8529 12.8021 12.8512 12.9845 13.1882 13.2533 13.1649 13.0793 13.0251 13.0286 13.0899 13.1709 13.2474 13.2657 13.1490 12.9734 13.1459 12.9734 12.8512 12.8195 12.8941 13.0735 13.3309 13.2461 13.1551 13.1125 13.1199 13.1707 13.2486 13.3252 13.3577 13.2977 13.1459 13.2977 13.1490 12.9845 12.8941 12.9008 13.0249 13.2533 13.4789 13.4062 13.3393 13.3223 13.3727 13.4628 13.5566 13.6153 13.5374 13.2977 13.3577 13.2657 13.1882 13.0735 13.0249 13.0690 13.2474 13.5377 13.7480 13.6617 13.5816 13.6000 13.7167 13.8674 13.9730 13.6153 13.3577 13.3252 13.2474 13.2533 13.3309 13.2533 13.2474 13.3252 13.5566 13.8674 13.9460 13.8165 13.7487 13.8165 13.9460 13.8674 13.5566 13.3252 13.2486 13.1709 13.1649 13.2461 13.4789 13.5377 13.5566 13.6448 13.8929 14.0834 13.9904 13.8485 13.8009 13.8165 13.7167 13.4628 13.2486 13.1707 13.0899 13.0793 13.1551 13.4062 13.7480 13.8674 13.8929 13.9798 14.1547 14.1304 13.9773 13.8485 13.7487 13.6000 13.3727 13.1707 13.1199 13.0286 13.0251 13.1125 13.3393 13.6617 13.9460 14.0834 14.1547 14.2462 14.2495 14.1304 13.9904 13.8165 13.5816 13.3223 13.1199 13.1125 13.0251 13.0286 13.1199 13.3223 13.5816 13.8165 13.9904 14.1304 14.2495 14.2462 14.1547 14.0834 13.9460 13.6617 13.3393 13.1125 13.1551 13.0793 13.0899 13.1707 13.3727 13.6000 13.7487 13.8485 13.9773 14.1304 14.1547 13.9798 13.8929 13.8674 13.7480 13.4062 13.1551 13.2461 13.1649 13.1709 13.2486 13.4628 13.7167 13.8165 13.8009 13.8485 13.9904 14.0834 13.8929 13.6448 13.5566 13.5377 13.4789 13.2461 13.3309 13.2533 13.2474 13.3252 13.5566 13.8674 13.9460 13.8165 13.7487 13.8165 13.9460 13.8674 13.5566 13.3252 13.2474 13.2533 13.3309 13.0735 13.1882 13.2657 13.3577 13.6153 13.9730 13.8674 13.7167 13.6000 13.5816 13.6617 13.7480 13.5377 13.2474 13.0690 13.0249 13.0735 12.8941 12.9845 13.1490 13.2977 13.5374 13.6153 13.5566 13.4628 13.3727 13.3223 13.3393 13.4062 13.4789 13.2533 13.0249 12.9008 12.8941 12.8195 12.8512 12.9734 13.1459 13.2977 13.3577 13.3252 13.2486 13.1707 13.1199 13.1125 13.1551 13.2461 13.3309 13.0735 12.8941 12.8195 12.8373 12.9008 13.0646 13.2977 13.5376 13.6877 13.7050 13.6448 13.5613 13.4856 13.4350 13.4135 13.3904 13.2461 13.0334 12.8842 12.8373 12.9008 12.8941 12.9845 13.1490 13.2977 13.5374 13.6153 13.5566 13.4628 13.3727 13.3223 13.3393 13.4062 13.4789 13.2533 13.0249 12.9008 13.0646 12.9845 12.9461 12.9845 13.0646 13.2657 13.5493 13.5377 13.4323 13.3354 13.2892 13.3354 13.4323 13.5377 13.5493 13.2657 13.0646 13.2977 13.1490 12.9845 12.8941 12.9008 13.0249 13.2533 13.4789 13.4062 13.3393 13.3223 13.3727 13.4628 13.5566 13.6153 13.5374 13.2977 13.5376 13.2977 13.0646 12.9008 12.8373 12.8842 13.0334 13.2461 13.3904 13.4135 13.4350 13.4856 13.5613 13.6448 13.7050 13.6877 13.5376 13.6877 13.5374 13.2657 13.0249 12.8842 12.8665 12.9651 13.1649 13.4062 13.5569 13.6045 13.6662 13.7706 13.8929 13.9981 13.9736 13.6877 13.7050 13.6153 13.5493 13.2533 13.0334 12.9651 13.0061 13.1709 13.4323 13.6617 13.7359 13.7746 13.8950 14.0834 14.2637 13.9981 13.7050 13.6448 13.5566 13.5377 13.4789 13.2461 13.1649 13.1709 13.2486 13.4628 13.7167 13.8165 13.8009 13.8485 13.9904 14.0834 13.8929 13.6448 13.5613 13.4628 13.4323 13.4062 13.3904 13.4062 13.4323 13.4628 13.5613 13.7706 13.8950 13.8485 13.8064 13.8485 13.8950 13.7706 13.5613 13.4856 13.3727 13.3354 13.3393 13.4135 13.5569 13.6617 13.7167 13.7706 13.8831 13.9929 13.9414 13.8485 13.8009 13.7746 13.6662 13.4856 13.4350 13.3223 13.2892 13.3223 13.4350 13.6045 13.7359 13.8165 13.8950 13.9929 14.0619 13.9929 13.8950 13.8165 13.7359 13.6045 13.4350 13.4135 13.3393 13.3354 13.3727 13.4856 13.6662 13.7746 13.8009 13.8485 13.9414 13.9929 13.8831 13.7706 13.7167 13.6617 13.5569 13.4135 13.3904 13.4062 13.4323 13.4628 13.5613 13.7706 13.8950 13.8485 13.8064 13.8485 13.8950 13.7706 13.5613 13.4628 13.4323 13.4062 13.3904 13.2461 13.4789 13.5377 13.5566 13.6448 13.8929 14.0834 13.9904 13.8485 13.8009 13.8165 13.7167 13.4628 13.2486 13.1709 13.1649 13.2461 13.0334 13.2533 13.5493 13.6153 13.7050 13.9981 14.2637 14.0834 13.8950 13.7746 13.7359 13.6617 13.4323 13.1709 13.0061 12.9651 13.0334 12.8842 13.0249 13.2657 13.5374 13.6877 13.9736 13.9981 13.8929 13.7706 13.6662 13.6045 13.5569 13.4062 13.1649 12.9651 12.8665 12.8842 12.8373 12.9008 13.0646 13.2977 13.5376 13.6877 13.7050 13.6448 13.5613 13.4856 13.4350 13.4135 13.3904 13.2461 13.0334 12.8842 12.8373 12.7737 12.8665 13.0690 13.3577 13.6877 13.9752 14.0909 14.0604 13.9798 13.8831 13.7756 13.6324 13.4135 13.1551 12.9340 12.7988 12.7737 12.8665 12.8842 13.0249 13.2657 13.5374 13.6877 13.9736 13.9981 13.8929 13.7706 13.6662 13.6045 13.5569 13.4062 13.1649 12.9651 12.8665 13.0690 13.0249 13.0735 13.1882 13.2657 13.3577 13.6153 13.9730 13.8674 13.7167 13.6000 13.5816 13.6617 13.7480 13.5377 13.2474 13.0690 13.3577 13.2657 13.1882 13.0735 13.0249 13.0690 13.2474 13.5377 13.7480 13.6617 13.5816 13.6000 13.7167 13.8674 13.9730 13.6153 13.3577 13.6877 13.5374 13.2657 13.0249 12.8842 12.8665 12.9651 13.1649 13.4062 13.5569 13.6045 13.6662 13.7706 13.8929 13.9981 13.9736 13.6877 13.9752 13.6877 13.3577 13.0690 12.8665 12.7737 12.7988 12.9340 13.1551 13.4135 13.6324 13.7756 13.8831 13.9798 14.0604 14.0909 13.9752 14.0909 13.9736 13.6153 13.2474 12.9651 12.7988 12.7855 12.8834 13.0793 13.3393 13.6045 13.8204 13.9929 14.1547 14.3124 14.3898 14.0909 14.0604 13.9981 13.9730 13.5377 13.1649 12.9340 12.8834 12.9235 13.0899 13.3354 13.5816 13.7746 13.9414 14.1304 14.3259 14.3124 14.0604 13.9798 13.8929 13.8674 13.7480 13.4062 13.1551 13.0793 13.0899 13.1707 13.3727 13.6000 13.7487 13.8485 13.9773 14.1304 14.1547 13.9798 13.8831 13.7706 13.7167 13.6617 13.5569 13.4135 13.3393 13.3354 13.3727 13.4856 13.6662 13.7746 13.8009 13.8485 13.9414 13.9929 13.8831 13.7756 13.6662 13.6000 13.5816 13.6045 13.6324 13.6045 13.5816 13.6000 13.6662 13.7756 13.8204 13.7746 13.7487 13.7746 13.8204 13.7756 13.6324 13.6045 13.5816 13.6000 13.6662 13.7756 13.8204 13.7746 13.7487 13.7746 13.8204 13.7756 13.6662 13.6000 13.5816 13.6045 13.6324 13.4135 13.5569 13.6617 13.7167 13.7706 13.8831 13.9929 13.9414 13.8485 13.8009 13.7746 13.6662 13.4856 13.3727 13.3354 13.3393 13.4135 13.1551 13.4062 13.7480 13.8674 13.8929 13.9798 14.1547 14.1304 13.9773 13.8485 13.7487 13.6000 13.3727 13.1707 13.0899 13.0793 13.1551 12.9340 13.1649 13.5377 13.9730 13.9981 14.0604 14.3124 14.3259 14.1304 13.9414 13.7746 13.5816 13.3354 13.0899 12.9235 12.8834 12.9340 12.7988 12.9651 13.2474 13.6153 13.9736 14.0909 14.3898 14.3124 14.1547 13.9929 13.8204 13.6045 13.3393 13.0793 12.8834 12.7855 12.7988 12.7737 12.8665 13.0690 13.3577 13.6877 13.9752 14.0909 14.0604 13.9798 13.8831 13.7756 13.6324 13.4135 13.1551 12.9340 12.7988 12.7737 13.2146 12.7855 13.0061 13.3252 13.7050 14.0909 14.3913 14.4288 14.3585 14.2462 14.0619 13.7756 13.4350 13.1125 12.9120 13.2259 13.2146 12.7855 12.7988 12.9651 13.2474 13.6153 13.9736 14.0909 14.3898 14.3124 14.1547 13.9929 13.8204 13.6045 13.3393 13.0793 12.8834 12.7855 13.0061 12.9651 13.0334 13.2533 13.5493 13.6153 13.7050 13.9981 14.2637 14.0834 13.8950 13.7746 13.7359 13.6617 13.4323 13.1709 13.0061 13.3252 13.2474 13.2533 13.3309 13.2533 13.2474 13.3252 13.5566 13.8674 13.9460 13.8165 13.7487 13.8165 13.9460 13.8674 13.5566 13.3252 13.7050 13.6153 13.5493 13.2533 13.0334 12.9651 13.0061 13.1709 13.4323 13.6617 13.7359 13.7746 13.8950 14.0834 14.2637 13.9981 13.7050 14.0909 13.9736 13.6153 13.2474 12.9651 12.7988 12.7855 12.8834 13.0793 13.3393 13.6045 13.8204 13.9929 14.1547 14.3124 14.3898 14.0909 14.3913 14.0909 13.7050 13.3252 13.0061 12.7855 13.2146 13.2259 12.9120 13.1125 13.4350 13.7756 14.0619 14.2462 14.3585 14.4288 14.3913 14.4288 14.3898 13.9981 13.5566 13.1709 12.8834 13.2259 13.4210 13.1647 13.0251 13.3223 13.6662 13.9929 14.2495 14.4394 14.5893 14.4288 14.3585 14.3124 14.2637 13.8674 13.4323 13.0793 12.9120 13.1647 13.0930 13.0286 13.2892 13.6000 13.8950 14.1304 14.3148 14.4394 14.3585 14.2462 14.1547 14.0834 13.9460 13.6617 13.3393 13.1125 13.0251 13.0286 13.1199 13.3223 13.5816 13.8165 13.9904 14.1304 14.2495 14.2462 14.0619 13.9929 13.8950 13.8165 13.7359 13.6045 13.4350 13.3223 13.2892 13.3223 13.4350 13.6045 13.7359 13.8165 13.8950 13.9929 14.0619 13.7756 13.8204 13.7746 13.7487 13.7746 13.8204 13.7756 13.6662 13.6000 13.5816 13.6045 13.6324 13.6045 13.5816 13.6000 13.6662 13.7756 13.4350 13.6045 13.7359 13.8165 13.8950 13.9929 14.0619 13.9929 13.8950 13.8165 13.7359 13.6045 13.4350 13.3223 13.2892 13.3223 13.4350 13.1125 13.3393 13.6617 13.9460 14.0834 14.1547 14.2462 14.2495 14.1304 13.9904 13.8165 13.5816 13.3223 13.1199 13.0286 13.0251 13.1125 12.9120 13.0793 13.4323 13.8674 14.2637 14.3124 14.3585 14.4394 14.3148 14.1304 13.8950 13.6000 13.2892 13.0286 13.0930 13.1647 12.9120 13.2259 12.8834 13.1709 13.5566 13.9981 14.3898 14.4288 14.5893 14.4394 14.2495 13.9929 13.6662 13.3223 13.0251 13.1647 13.4210 13.2259 13.2146 12.7855 13.0061 13.3252 13.7050 14.0909 14.3913 14.4288 14.3585 14.2462 14.0619 13.7756 13.4350 13.1125 12.9120 13.2259 13.2146 14.3283 13.4210 12.9235 13.2486 13.6448 14.0604 14.4288 14.6982 14.6132 14.4966 14.2462 13.8831 13.4856 13.1199 13.2078 13.8194 14.3283 13.4210 13.2259 12.8834 13.1709 13.5566 13.9981 14.3898 14.4288 14.5893 14.4394 14.2495 13.9929 13.6662 13.3223 13.0251 13.1647 13.4210 12.9235 12.8834 12.9340 13.1649 13.5377 13.9730 13.9981 14.0604 14.3124 14.3259 14.1304 13.9414 13.7746 13.5816 13.3354 13.0899 12.9235 13.2486 13.1709 13.1649 13.2461 13.4789 13.5377 13.5566 13.6448 13.8929 14.0834 13.9904 13.8485 13.8009 13.8165 13.7167 13.4628 13.2486 13.6448 13.5566 13.5377 13.4789 13.2461 13.1649 13.1709 13.2486 13.4628 13.7167 13.8165 13.8009 13.8485 13.9904 14.0834 13.8929 13.6448 14.0604 13.9981 13.9730 13.5377 13.1649 12.9340 12.8834 12.9235 13.0899 13.3354 13.5816 13.7746 13.9414 14.1304 14.3259 14.3124 14.0604 14.4288 14.3898 13.9981 13.5566 13.1709 12.8834 13.2259 13.4210 13.1647 13.0251 13.3223 13.6662 13.9929 14.2495 14.4394 14.5893 14.4288 14.6982 14.4288 14.0604 13.6448 13.2486 12.9235 13.4210 14.3283 13.8194 13.2078 13.1199 13.4856 13.8831 14.2462 14.4966 14.6132 14.6982 14.6132 14.5893 14.3124 13.8929 13.4628 13.0899 13.1647 13.8194 13.8711 13.3806 13.0286 13.3727 13.7706 14.1547 14.4394 14.5860 14.6132 14.4966 14.4394 14.3259 14.0834 13.7167 13.3354 13.0251 13.2078 13.3806 13.2078 13.0251 13.3354 13.7167 14.0834 14.3259 14.4394 14.4966 14.2462 14.2495 14.1304 13.9904 13.8165 13.5816 13.3223 13.1199 13.0286 13.0251 13.1125 13.3393 13.6617 13.9460 14.0834 14.1547 14.2462 13.8831 13.9929 13.9414 13.8485 13.8009 13.7746 13.6662 13.4856 13.3727 13.3354 13.3393 13.4135 13.5569 13.6617 13.7167 13.7706 13.8831 13.4856 13.6662 13.7746 13.8009 13.8485 13.9414 13.9929 13.8831 13.7706 13.7167 13.6617 13.5569 13.4135 13.3393 13.3354 13.3727 13.4856 13.1199 13.3223 13.5816 13.8165 13.9904 14.1304 14.2495 14.2462 14.1547 14.0834 13.9460 13.6617 13.3393 13.1125 13.0251 13.0286 13.1199 13.2078 13.0251 13.3354 13.7167 14.0834 14.3259 14.4394 14.4966 14.4394 14.3259 14.0834 13.7167 13.3354 13.0251 13.2078 13.3806 13.2078 13.8194 13.1647 13.0899 13.4628 13.8929 14.3124 14.5893 14.6132 14.5860 14.4394 14.1547 13.7706 13.3727 13.0286 13.3806 13.8711 13.8194 14.3283 13.4210 12.9235 13.2486 13.6448 14.0604 14.4288 14.6982 14.6132 14.4966 14.2462 13.8831 13.4856 13.1199 13.2078 13.8194 14.3283 14.6475 13.8711 13.0930 13.1707 13.5613 13.9798 14.3585 14.6132 14.8124 14.6132 14.3585 13.9798 13.5613 13.1707 13.0930 13.8711 14.6475 13.8711 13.8194 13.1647 13.0899 13.4628 13.8929 14.3124 14.5893 14.6132 14.5860 14.4394 14.1547 13.7706 13.3727 13.0286 13.3806 13.8711 13.0930 13.1647 12.9120 13.0793 13.4323 13.8674 14.2637 14.3124 14.3585 14.4394 14.3148 14.1304 13.8950 13.6000 13.2892 13.0286 13.0930 13.1707 13.0899 13.0793 13.1551 13.4062 13.7480 13.8674 13.8929 13.9798 14.1547 14.1304 13.9773 13.8485 13.7487 13.6000 13.3727 13.1707 13.5613 13.4628 13.4323 13.4062 13.3904 13.4062 13.4323 13.4628 13.5613 13.7706 13.8950 13.8485 13.8064 13.8485 13.8950 13.7706 13.5613 13.9798 13.8929 13.8674 13.7480 13.4062 13.1551 13.0793 13.0899 13.1707 13.3727 13.6000 13.7487 13.8485 13.9773 14.1304 14.1547 13.9798 14.3585 14.3124 14.2637 13.8674 13.4323 13.0793 12.9120 13.1647 13.0930 13.0286 13.2892 13.6000 13.8950 14.1304 14.3148 14.4394 14.3585 14.6132 14.5893 14.3124 13.8929 13.4628 13.0899 13.1647 13.8194 13.8711 13.3806 13.0286 13.3727 13.7706 14.1547 14.4394 14.5860 14.6132 14.8124 14.6132 14.3585 13.9798 13.5613 13.1707 13.0930 13.8711 14.6475 13.8711 13.0930 13.1707 13.5613 13.9798 14.3585 14.6132 14.8124 14.6132 14.5860 14.4394 14.1547 13.7706 13.3727 13.0286 13.3806 13.8711 13.8194 13.1647 13.0899 13.4628 13.8929 14.3124 14.5893 14.6132 14.3585 14.4394 14.3148 14.1304 13.8950 13.6000 13.2892 13.0286 13.0930 13.1647 12.9120 13.0793 13.4323 13.8674 14.2637 14.3124 14.3585 13.9798 14.1547 14.1304 13.9773 13.8485 13.7487 13.6000 13.3727 13.1707 13.0899 13.0793 13.1551 13.4062 13.7480 13.8674 13.8929 13.9798 13.5613 13.7706 13.8950 13.8485 13.8064 13.8485 13.8950 13.7706 13.5613 13.4628 13.4323 13.4062 13.3904 13.4062 13.4323 13.4628 13.5613 13.1707 13.3727 13.6000 13.7487 13.8485 13.9773 14.1304 14.1547 13.9798 13.8929 13.8674 13.7480 13.4062 13.1551 13.0793 13.0899 13.1707 13.0930 13.0286 13.2892 13.6000 13.8950 14.1304 14.3148 14.4394 14.3585 14.3124 14.2637 13.8674 13.4323 13.0793 12.9120 13.1647 13.0930 13.8711 13.3806 13.0286 13.3727 13.7706 14.1547 14.4394 14.5860 14.6132 14.5893 14.3124 13.8929 13.4628 13.0899 13.1647 13.8194 13.8711 14.6475 13.8711 13.0930 13.1707 13.5613 13.9798 14.3585 14.6132 14.8124 14.6132 14.3585 13.9798 13.5613 13.1707 13.0930 13.8711 14.6475 14.3283 13.8194 13.2078 13.1199 13.4856 13.8831 14.2462 14.4966 14.6132 14.6982 14.4288 14.0604 13.6448 13.2486 12.9235 13.4210 14.3283 13.8194 13.8711 13.3806 13.0286 13.3727 13.7706 14.1547 14.4394 14.5860 14.6132 14.5893 14.3124 13.8929 13.4628 13.0899 13.1647 13.8194 13.2078 13.3806 13.2078 13.0251 13.3354 13.7167 14.0834 14.3259 14.4394 14.4966 14.4394 14.3259 14.0834 13.7167 13.3354 13.0251 13.2078 13.1199 13.0286 13.0251 13.1125 13.3393 13.6617 13.9460 14.0834 14.1547 14.2462 14.2495 14.1304 13.9904 13.8165 13.5816 13.3223 13.1199 13.4856 13.3727 13.3354 13.3393 13.4135 13.5569 13.6617 13.7167 13.7706 13.8831 13.9929 13.9414 13.8485 13.8009 13.7746 13.6662 13.4856 13.8831 13.7706 13.7167 13.6617 13.5569 13.4135 13.3393 13.3354 13.3727 13.4856 13.6662 13.7746 13.8009 13.8485 13.9414 13.9929 13.8831 14.2462 14.1547 14.0834 13.9460 13.6617 13.3393 13.1125 13.0251 13.0286 13.1199 13.3223 13.5816 13.8165 13.9904 14.1304 14.2495 14.2462 14.4966 14.4394 14.3259 14.0834 13.7167 13.3354 13.0251 13.2078 13.3806 13.2078 13.0251 13.3354 13.7167 14.0834 14.3259 14.4394 14.4966 14.6132 14.5860 14.4394 14.1547 13.7706 13.3727 13.0286 13.3806 13.8711 13.8194 13.1647 13.0899 13.4628 13.8929 14.3124 14.5893 14.6132 14.6982 14.6132 14.4966 14.2462 13.8831 13.4856 13.1199 13.2078 13.8194 14.3283 13.4210 12.9235 13.2486 13.6448 14.0604 14.4288 14.6982 14.4288 14.5893 14.4394 14.2495 13.9929 13.6662 13.3223 13.0251 13.1647 13.4210 13.2259 12.8834 13.1709 13.5566 13.9981 14.3898 14.4288 14.0604 14.3124 14.3259 14.1304 13.9414 13.7746 13.5816 13.3354 13.0899 12.9235 12.8834 12.9340 13.1649 13.5377 13.9730 13.9981 14.0604 13.6448 13.8929 14.0834 13.9904 13.8485 13.8009 13.8165 13.7167 13.4628 13.2486 13.1709 13.1649 13.2461 13.4789 13.5377 13.5566 13.6448 13.2486 13.4628 13.7167 13.8165 13.8009 13.8485 13.9904 14.0834 13.8929 13.6448 13.5566 13.5377 13.4789 13.2461 13.1649 13.1709 13.2486 12.9235 13.0899 13.3354 13.5816 13.7746 13.9414 14.1304 14.3259 14.3124 14.0604 13.9981 13.9730 13.5377 13.1649 12.9340 12.8834 12.9235 13.4210 13.1647 13.0251 13.3223 13.6662 13.9929 14.2495 14.4394 14.5893 14.4288 14.3898 13.9981 13.5566 13.1709 12.8834 13.2259 13.4210 14.3283 13.8194 13.2078 13.1199 13.4856 13.8831 14.2462 14.4966 14.6132 14.6982 14.4288 14.0604 13.6448 13.2486 12.9235 13.4210 14.3283 13.2146 13.2259 12.9120 13.1125 13.4350 13.7756 14.0619 14.2462 14.3585 14.4288 14.3913 14.0909 13.7050 13.3252 13.0061 12.7855 13.2146 13.2259 13.4210 13.1647 13.0251 13.3223 13.6662 13.9929 14.2495 14.4394 14.5893 14.4288 14.3898 13.9981 13.5566 13.1709 12.8834 13.2259 12.9120 13.1647 13.0930 13.0286 13.2892 13.6000 13.8950 14.1304 14.3148 14.4394 14.3585 14.3124 14.2637 13.8674 13.4323 13.0793 12.9120 13.1125 13.0251 13.0286 13.1199 13.3223 13.5816 13.8165 13.9904 14.1304 14.2495 14.2462 14.1547 14.0834 13.9460 13.6617 13.3393 13.1125 13.4350 13.3223 13.2892 13.3223 13.4350 13.6045 13.7359 13.8165 13.8950 13.9929 14.0619 13.9929 13.8950 13.8165 13.7359 13.6045 13.4350 13.7756 13.6662 13.6000 13.5816 13.6045 13.6324 13.6045 13.5816 13.6000 13.6662 13.7756 13.8204 13.7746 13.7487 13.7746 13.8204 13.7756 14.0619 13.9929 13.8950 13.8165 13.7359 13.6045 13.4350 13.3223 13.2892 13.3223 13.4350 13.6045 13.7359 13.8165 13.8950 13.9929 14.0619 14.2462 14.2495 14.1304 13.9904 13.8165 13.5816 13.3223 13.1199 13.0286 13.0251 13.1125 13.3393 13.6617 13.9460 14.0834 14.1547 14.2462 14.3585 14.4394 14.3148 14.1304 13.8950 13.6000 13.2892 13.0286 13.0930 13.1647 12.9120 13.0793 13.4323 13.8674 14.2637 14.3124 14.3585 14.4288 14.5893 14.4394 14.2495 13.9929 13.6662 13.3223 13.0251 13.1647 13.4210 13.2259 12.8834 13.1709 13.5566 13.9981 14.3898 14.4288 14.3913 14.4288 14.3585 14.2462 14.0619 13.7756 13.4350 13.1125 12.9120 13.2259 13.2146 12.7855 13.0061 13.3252 13.7050 14.0909 14.3913 14.0909 14.3898 14.3124 14.1547 13.9929 13.8204 13.6045 13.3393 13.0793 12.8834 12.7855 12.7988 12.9651 13.2474 13.6153 13.9736 14.0909 13.7050 13.9981 14.2637 14.0834 13.8950 13.7746 13.7359 13.6617 13.4323 13.1709 13.0061 12.9651 13.0334 13.2533 13.5493 13.6153 13.7050 13.3252 13.5566 13.8674 13.9460 13.8165 13.7487 13.8165 13.9460 13.8674 13.5566 13.3252 13.2474 13.2533 13.3309 13.2533 13.2474 13.3252 13.0061 13.1709 13.4323 13.6617 13.7359 13.7746 13.8950 14.0834 14.2637 13.9981 13.7050 13.6153 13.5493 13.2533 13.0334 12.9651 13.0061 12.7855 12.8834 13.0793 13.3393 13.6045 13.8204 13.9929 14.1547 14.3124 14.3898 14.0909 13.9736 13.6153 13.2474 12.9651 12.7988 12.7855 13.2146 13.2259 12.9120 13.1125 13.4350 13.7756 14.0619 14.2462 14.3585 14.4288 14.3913 14.0909 13.7050 13.3252 13.0061 12.7855 13.2146 12.7737 12.7988 12.9340 13.1551 13.4135 13.6324 13.7756 13.8831 13.9798 14.0604 14.0909 13.9752 13.6877 13.3577 13.0690 12.8665 12.7737 12.7988 12.7855 12.8834 13.0793 13.3393 13.6045 13.8204 13.9929 14.1547 14.3124 14.3898 14.0909 13.9736 13.6153 13.2474 12.9651 12.7988 12.9340 12.8834 12.9235 13.0899 13.3354 13.5816 13.7746 13.9414 14.1304 14.3259 14.3124 14.0604 13.9981 13.9730 13.5377 13.1649 12.9340 13.1551 13.0793 13.0899 13.1707 13.3727 13.6000 13.7487 13.8485 13.9773 14.1304 14.1547 13.9798 13.8929 13.8674 13.7480 13.4062 13.1551 13.4135 13.3393 13.3354 13.3727 13.4856 13.6662 13.7746 13.8009 13.8485 13.9414 13.9929 13.8831 13.7706 13.7167 13.6617 13.5569 13.4135 13.6324 13.6045 13.5816 13.6000 13.6662 13.7756 13.8204 13.7746 13.7487 13.7746 13.8204 13.7756 13.6662 13.6000 13.5816 13.6045 13.6324 13.7756 13.8204 13.7746 13.7487 13.7746 13.8204 13.7756 13.6662 13.6000 13.5816 13.6045 13.6324 13.6045 13.5816 13.6000 13.6662 13.7756 13.8831 13.9929 13.9414 13.8485 13.8009 13.7746 13.6662 13.4856 13.3727 13.3354 13.3393 13.4135 13.5569 13.6617 13.7167 13.7706 13.8831 13.9798 14.1547 14.1304 13.9773 13.8485 13.7487 13.6000 13.3727 13.1707 13.0899 13.0793 13.1551 13.4062 13.7480 13.8674 13.8929 13.9798 14.0604 14.3124 14.3259 14.1304 13.9414 13.7746 13.5816 13.3354 13.0899 12.9235 12.8834 12.9340 13.1649 13.5377 13.9730 13.9981 14.0604 14.0909 14.3898 14.3124 14.1547 13.9929 13.8204 13.6045 13.3393 13.0793 12.8834 12.7855 12.7988 12.9651 13.2474 13.6153 13.9736 14.0909 13.9752 14.0909 14.0604 13.9798 13.8831 13.7756 13.6324 13.4135 13.1551 12.9340 12.7988 12.7737 12.8665 13.0690 13.3577 13.6877 13.9752 13.6877 13.9736 13.9981 13.8929 13.7706 13.6662 13.6045 13.5569 13.4062 13.1649 12.9651 12.8665 12.8842 13.0249 13.2657 13.5374 13.6877 13.3577 13.6153 13.9730 13.8674 13.7167 13.6000 13.5816 13.6617 13.7480 13.5377 13.2474 13.0690 13.0249 13.0735 13.1882 13.2657 13.3577 13.0690 13.2474 13.5377 13.7480 13.6617 13.5816 13.6000 13.7167 13.8674 13.9730 13.6153 13.3577 13.2657 13.1882 13.0735 13.0249 13.0690 12.8665 12.9651 13.1649 13.4062 13.5569 13.6045 13.6662 13.7706 13.8929 13.9981 13.9736 13.6877 13.5374 13.2657 13.0249 12.8842 12.8665 12.7737 12.7988 12.9340 13.1551 13.4135 13.6324 13.7756 13.8831 13.9798 14.0604 14.0909 13.9752 13.6877 13.3577 13.0690 12.8665 12.7737 12.8373 12.8842 13.0334 13.2461 13.3904 13.4135 13.4350 13.4856 13.5613 13.6448 13.7050 13.6877 13.5376 13.2977 13.0646 12.9008 12.8373 12.8842 12.8665 12.9651 13.1649 13.4062 13.5569 13.6045 13.6662 13.7706 13.8929 13.9981 13.9736 13.6877 13.5374 13.2657 13.0249 12.8842 13.0334 12.9651 13.0061 13.1709 13.4323 13.6617 13.7359 13.7746 13.8950 14.0834 14.2637 13.9981 13.7050 13.6153 13.5493 13.2533 13.0334 13.2461 13.1649 13.1709 13.2486 13.4628 13.7167 13.8165 13.8009 13.8485 13.9904 14.0834 13.8929 13.6448 13.5566 13.5377 13.4789 13.2461 13.3904 13.4062 13.4323 13.4628 13.5613 13.7706 13.8950 13.8485 13.8064 13.8485 13.8950 13.7706 13.5613 13.4628 13.4323 13.4062 13.3904 13.4135 13.5569 13.6617 13.7167 13.7706 13.8831 13.9929 13.9414 13.8485 13.8009 13.7746 13.6662 13.4856 13.3727 13.3354 13.3393 13.4135 13.4350 13.6045 13.7359 13.8165 13.8950 13.9929 14.0619 13.9929 13.8950 13.8165 13.7359 13.6045 13.4350 13.3223 13.2892 13.3223 13.4350 13.4856 13.6662 13.7746 13.8009 13.8485 13.9414 13.9929 13.8831 13.7706 13.7167 13.6617 13.5569 13.4135 13.3393 13.3354 13.3727 13.4856 13.5613 13.7706 13.8950 13.8485 13.8064 13.8485 13.8950 13.7706 13.5613 13.4628 13.4323 13.4062 13.3904 13.4062 13.4323 13.4628 13.5613 13.6448 13.8929 14.0834 13.9904 13.8485 13.8009 13.8165 13.7167 13.4628 13.2486 13.1709 13.1649 13.2461 13.4789 13.5377 13.5566 13.6448 13.7050 13.9981 14.2637 14.0834 13.8950 13.7746 13.7359 13.6617 13.4323 13.1709 13.0061 12.9651 13.0334 13.2533 13.5493 13.6153 13.7050 13.6877 13.9736 13.9981 13.8929 13.7706 13.6662 13.6045 13.5569 13.4062 13.1649 12.9651 12.8665 12.8842 13.0249 13.2657 13.5374 13.6877 13.5376 13.6877 13.7050 13.6448 13.5613 13.4856 13.4350 13.4135 13.3904 13.2461 13.0334 12.8842 12.8373 12.9008 13.0646 13.2977 13.5376 13.2977 13.5374 13.6153 13.5566 13.4628 13.3727 13.3223 13.3393 13.4062 13.4789 13.2533 13.0249 12.9008 12.8941 12.9845 13.1490 13.2977 13.0646 13.2657 13.5493 13.5377 13.4323 13.3354 13.2892 13.3354 13.4323 13.5377 13.5493 13.2657 13.0646 12.9845 12.9461 12.9845 13.0646 12.9008 13.0249 13.2533 13.4789 13.4062 13.3393 13.3223 13.3727 13.4628 13.5566 13.6153 13.5374 13.2977 13.1490 12.9845 12.8941 12.9008 12.8373 12.8842 13.0334 13.2461 13.3904 13.4135 13.4350 13.4856 13.5613 13.6448 13.7050 13.6877 13.5376 13.2977 13.0646 12.9008 12.8373 12.8195 12.8941 13.0735 13.3309 13.2461 13.1551 13.1125 13.1199 13.1707 13.2486 13.3252 13.3577 13.2977 13.1459 12.9734 12.8512 12.8195 12.8941 12.9008 13.0249 13.2533 13.4789 13.4062 13.3393 13.3223 13.3727 13.4628 13.5566 13.6153 13.5374 13.2977 13.1490 12.9845 12.8941 13.0735 13.0249 13.0690 13.2474 13.5377 13.7480 13.6617 13.5816 13.6000 13.7167 13.8674 13.9730 13.6153 13.3577 13.2657 13.1882 13.0735 13.3309 13.2533 13.2474 13.3252 13.5566 13.8674 13.9460 13.8165 13.7487 13.8165 13.9460 13.8674 13.5566 13.3252 13.2474 13.2533 13.3309 13.2461 13.4789 13.5377 13.5566 13.6448 13.8929 14.0834 13.9904 13.8485 13.8009 13.8165 13.7167 13.4628 13.2486 13.1709 13.1649 13.2461 13.1551 13.4062 13.7480 13.8674 13.8929 13.9798 14.1547 14.1304 13.9773 13.8485 13.7487 13.6000 13.3727 13.1707 13.0899 13.0793 13.1551 13.1125 13.3393 13.6617 13.9460 14.0834 14.1547 14.2462 14.2495 14.1304 13.9904 13.8165 13.5816 13.3223 13.1199 13.0286 13.0251 13.1125 13.1199 13.3223 13.5816 13.8165 13.9904 14.1304 14.2495 14.2462 14.1547 14.0834 13.9460 13.6617 13.3393 13.1125 13.0251 13.0286 13.1199 13.1707 13.3727 13.6000 13.7487 13.8485 13.9773 14.1304 14.1547 13.9798 13.8929 13.8674 13.7480 13.4062 13.1551 13.0793 13.0899 13.1707 13.2486 13.4628 13.7167 13.8165 13.8009 13.8485 13.9904 14.0834 13.8929 13.6448 13.5566 13.5377 13.4789 13.2461 13.1649 13.1709 13.2486 13.3252 13.5566 13.8674 13.9460 13.8165 13.7487 13.8165 13.9460 13.8674 13.5566 13.3252 13.2474 13.2533 13.3309 13.2533 13.2474 13.3252 13.3577 13.6153 13.9730 13.8674 13.7167 13.6000 13.5816 13.6617 13.7480 13.5377 13.2474 13.0690 13.0249 13.0735 13.1882 13.2657 13.3577 13.2977 13.5374 13.6153 13.5566 13.4628 13.3727 13.3223 13.3393 13.4062 13.4789 13.2533 13.0249 12.9008 12.8941 12.9845 13.1490 13.2977 13.1459 13.2977 13.3577 13.3252 13.2486 13.1707 13.1199 13.1125 13.1551 13.2461 13.3309 13.0735 12.8941 12.8195 12.8512 12.9734 13.1459 12.9734 13.1490 13.2657 13.2474 13.1709 13.0899 13.0286 13.0251 13.0793 13.1649 13.2533 13.1882 12.9845 12.8512 12.8021 12.8529 12.9734 12.8512 12.9845 13.1882 13.2533 13.1649 13.0793 13.0251 13.0286 13.0899 13.1709 13.2474 13.2657 13.1490 12.9734 12.8529 12.8021 12.8512 12.8195 12.8941 13.0735 13.3309 13.2461 13.1551 13.1125 13.1199 13.1707 13.2486 13.3252 13.3577 13.2977 13.1459 12.9734 12.8512 12.8195 12.7247 12.8021 12.9461 13.0735 13.0334 12.9340 12.9120 13.2078 13.0930 12.9235 13.0061 13.0690 13.0646 12.9734 12.8434 12.7454 12.7247 12.8021 12.8512 12.9845 13.1882 13.2533 13.1649 13.0793 13.0251 13.0286 13.0899 13.1709 13.2474 13.2657 13.1490 12.9734 12.8529 12.8021 12.9461 12.9845 13.0646 13.2657 13.5493 13.5377 13.4323 13.3354 13.2892 13.3354 13.4323 13.5377 13.5493 13.2657 13.0646 12.9845 12.9461 13.0735 13.1882 13.2657 13.3577 13.6153 13.9730 13.8674 13.7167 13.6000 13.5816 13.6617 13.7480 13.5377 13.2474 13.0690 13.0249 13.0735 13.0334 13.2533 13.5493 13.6153 13.7050 13.9981 14.2637 14.0834 13.8950 13.7746 13.7359 13.6617 13.4323 13.1709 13.0061 12.9651 13.0334 12.9340 13.1649 13.5377 13.9730 13.9981 14.0604 14.3124 14.3259 14.1304 13.9414 13.7746 13.5816 13.3354 13.0899 12.9235 12.8834 12.9340 12.9120 13.0793 13.4323 13.8674 14.2637 14.3124 14.3585 14.4394 14.3148 14.1304 13.8950 13.6000 13.2892 13.0286 13.0930 13.1647 12.9120 13.2078 13.0251 13.3354 13.7167 14.0834 14.3259 14.4394 14.4966 14.4394 14.3259 14.0834 13.7167 13.3354 13.0251 13.2078 13.3806 13.2078 13.0930 13.0286 13.2892 13.6000 13.8950 14.1304 14.3148 14.4394 14.3585 14.3124 14.2637 13.8674 13.4323 13.0793 12.9120 13.1647 13.0930 12.9235 13.0899 13.3354 13.5816 13.7746 13.9414 14.1304 14.3259 14.3124 14.0604 13.9981 13.9730 13.5377 13.1649 12.9340 12.8834 12.9235 13.0061 13.1709 13.4323 13.6617 13.7359 13.7746 13.8950 14.0834 14.2637 13.9981 13.7050 13.6153 13.5493 13.2533 13.0334 12.9651 13.0061 13.0690 13.2474 13.5377 13.7480 13.6617 13.5816 13.6000 13.7167 13.8674 13.9730 13.6153 13.3577 13.2657 13.1882 13.0735 13.0249 13.0690 13.0646 13.2657 13.5493 13.5377 13.4323 13.3354 13.2892 13.3354 13.4323 13.5377 13.5493 13.2657 13.0646 12.9845 12.9461 12.9845 13.0646 12.9734 13.1490 13.2657 13.2474 13.1709 13.0899 13.0286 13.0251 13.0793 13.1649 13.2533 13.1882 12.9845 12.8512 12.8021 12.8529 12.9734 12.8434 12.9734 13.0646 13.0690 13.0061 12.9235 13.0930 13.2078 12.9120 12.9340 13.0334 13.0735 12.9461 12.8021 12.7247 12.7454 12.8434 12.7454 12.8529 12.9845 13.0249 12.9651 12.8834 13.1647 13.3806 13.1647 12.8834 12.9651 13.0249 12.9845 12.8529 12.7454 12.7046 12.7454 12.7247 12.8021 12.9461 13.0735 13.0334 12.9340 12.9120 13.2078 13.0930 12.9235 13.0061 13.0690 13.0646 12.9734 12.8434 12.7454 12.7247 12.6283 12.7046 12.8021 12.8941 12.8842 12.7988 13.2259 13.8194 13.8711 13.4210 12.7855 12.8665 12.9008 12.8512 12.7454 12.6542 12.6283 12.7046 12.7454 12.8529 12.9845 13.0249 12.9651 12.8834 13.1647 13.3806 13.1647 12.8834 12.9651 13.0249 12.9845 12.8529 12.7454 12.7046 12.8021 12.8529 12.9734 13.1490 13.2657 13.2474 13.1709 13.0899 13.0286 13.0251 13.0793 13.1649 13.2533 13.1882 12.9845 12.8512 12.8021 12.8941 12.9845 13.1490 13.2977 13.5374 13.6153 13.5566 13.4628 13.3727 13.3223 13.3393 13.4062 13.4789 13.2533 13.0249 12.9008 12.8941 12.8842 13.0249 13.2657 13.5374 13.6877 13.9736 13.9981 13.8929 13.7706 13.6662 13.6045 13.5569 13.4062 13.1649 12.9651 12.8665 12.8842 12.7988 12.9651 13.2474 13.6153 13.9736 14.0909 14.3898 14.3124 14.1547 13.9929 13.8204 13.6045 13.3393 13.0793 12.8834 12.7855 12.7988 13.2259 12.8834 13.1709 13.5566 13.9981 14.3898 14.4288 14.5893 14.4394 14.2495 13.9929 13.6662 13.3223 13.0251 13.1647 13.4210 13.2259 13.8194 13.1647 13.0899 13.4628 13.8929 14.3124 14.5893 14.6132 14.5860 14.4394 14.1547 13.7706 13.3727 13.0286 13.3806 13.8711 13.8194 13.8711 13.3806 13.0286 13.3727 13.7706 14.1547 14.4394 14.5860 14.6132 14.5893 14.3124 13.8929 13.4628 13.0899 13.1647 13.8194 13.8711 13.4210 13.1647 13.0251 13.3223 13.6662 13.9929 14.2495 14.4394 14.5893 14.4288 14.3898 13.9981 13.5566 13.1709 12.8834 13.2259 13.4210 12.7855 12.8834 13.0793 13.3393 13.6045 13.8204 13.9929 14.1547 14.3124 14.3898 14.0909 13.9736 13.6153 13.2474 12.9651 12.7988 12.7855 12.8665 12.9651 13.1649 13.4062 13.5569 13.6045 13.6662 13.7706 13.8929 13.9981 13.9736 13.6877 13.5374 13.2657 13.0249 12.8842 12.8665 12.9008 13.0249 13.2533 13.4789 13.4062 13.3393 13.3223 13.3727 13.4628 13.5566 13.6153 13.5374 13.2977 13.1490 12.9845 12.8941 12.9008 12.8512 12.9845 13.1882 13.2533 13.1649 13.0793 13.0251 13.0286 13.0899 13.1709 13.2474 13.2657 13.1490 12.9734 12.8529 12.8021 12.8512 12.7454 12.8529 12.9845 13.0249 12.9651 12.8834 13.1647 13.3806 13.1647 12.8834 12.9651 13.0249 12.9845 12.8529 12.7454 12.7046 12.7454 12.6542 12.7454 12.8512 12.9008 12.8665 12.7855 13.4210 13.8711 13.8194 13.2259 12.7988 12.8842 12.8941 12.8021 12.7046 12.6283 12.6542 12.6283 12.7046 12.8021 12.8941 12.8842 12.7988 13.2259 13.8194 13.8711 13.4210 12.7855 12.8665 12.9008 12.8512 12.7454 12.6542 12.6283 12.5900 12.6283 12.7247 12.8195 12.8373 12.7737 13.2146 14.3283 14.6475 14.3283 13.2146 12.7737 12.8373 12.8195 12.7247 12.6283 12.5900 12.6283 12.6542 12.7454 12.8512 12.9008 12.8665 12.7855 13.4210 13.8711 13.8194 13.2259 12.7988 12.8842 12.8941 12.8021 12.7046 12.6283 12.7247 12.7454 12.8434 12.9734 13.0646 13.0690 13.0061 12.9235 13.0930 13.2078 12.9120 12.9340 13.0334 13.0735 12.9461 12.8021 12.7247 12.8195 12.8512 12.9734 13.1459 13.2977 13.3577 13.3252 13.2486 13.1707 13.1199 13.1125 13.1551 13.2461 13.3309 13.0735 12.8941 12.8195 12.8373 12.9008 13.0646 13.2977 13.5376 13.6877 13.7050 13.6448 13.5613 13.4856 13.4350 13.4135 13.3904 13.2461 13.0334 12.8842 12.8373 12.7737 12.8665 13.0690 13.3577 13.6877 13.9752 14.0909 14.0604 13.9798 13.8831 13.7756 13.6324 13.4135 13.1551 12.9340 12.7988 12.7737 13.2146 12.7855 13.0061 13.3252 13.7050 14.0909 14.3913 14.4288 14.3585 14.2462 14.0619 13.7756 13.4350 13.1125 12.9120 13.2259 13.2146 14.3283 13.4210 12.9235 13.2486 13.6448 14.0604 14.4288 14.6982 14.6132 14.4966 14.2462 13.8831 13.4856 13.1199 13.2078 13.8194 14.3283 14.6475 13.8711 13.0930 13.1707 13.5613 13.9798 14.3585 14.6132 14.8124 14.6132 14.3585 13.9798 13.5613 13.1707 13.0930 13.8711 14.6475 14.3283 13.8194 13.2078 13.1199 13.4856 13.8831 14.2462 14.4966 14.6132 14.6982 14.4288 14.0604 13.6448 13.2486 12.9235 13.4210 14.3283 13.2146 13.2259 12.9120 13.1125 13.4350 13.7756 14.0619 14.2462 14.3585 14.4288 14.3913 14.0909 13.7050 13.3252 13.0061 12.7855 13.2146 12.7737 12.7988 12.9340 13.1551 13.4135 13.6324 13.7756 13.8831 13.9798 14.0604 14.0909 13.9752 13.6877 13.3577 13.0690 12.8665 12.7737 12.8373 12.8842 13.0334 13.2461 13.3904 13.4135 13.4350 13.4856 13.5613 13.6448 13.7050 13.6877 13.5376 13.2977 13.0646 12.9008 12.8373 12.8195 12.8941 13.0735 13.3309 13.2461 13.1551 13.1125 13.1199 13.1707 13.2486 13.3252 13.3577 13.2977 13.1459 12.9734 12.8512 12.8195 12.7247 12.8021 12.9461 13.0735 13.0334 12.9340 12.9120 13.2078 13.0930 12.9235 13.0061 13.0690 13.0646 12.9734 12.8434 12.7454 12.7247 12.6283 12.7046 12.8021 12.8941 12.8842 12.7988 13.2259 13.8194 13.8711 13.4210 12.7855 12.8665 12.9008 12.8512 12.7454 12.6542 12.6283 12.5900 12.6283 12.7247 12.8195 12.8373 12.7737 13.2146 14.3283 14.6475 14.3283 13.2146 12.7737 12.8373 12.8195 12.7247 12.6283 12.5900 BAND: 5 13.8830 13.8664 13.8351 13.8459 13.9657 14.1818 14.4133 14.5847 14.6475 14.5847 14.4133 14.1818 13.9657 13.8459 13.8351 13.8664 13.8830 13.8664 13.8069 13.7268 13.6834 13.7854 14.0659 14.4631 14.6110 14.6516 14.5659 14.3687 14.1047 13.8468 13.6972 13.7052 13.7878 13.8664 13.8351 13.7268 13.6004 13.5156 13.6618 14.0696 14.5091 14.6402 14.6633 14.5582 14.3381 14.0430 13.7361 13.5358 13.5715 13.7052 13.8351 13.8459 13.6834 13.5156 13.3418 13.5478 14.0672 14.5434 14.6675 14.6812 14.5639 14.3293 14.0155 13.6715 13.3909 13.5358 13.6972 13.8459 13.9657 13.7854 13.6618 13.5478 13.5376 14.0127 14.5601 14.6879 14.7030 14.5839 14.3501 14.0501 13.7688 13.6715 13.7361 13.8468 13.9657 14.1818 14.0659 14.0696 14.0672 14.0127 13.9752 14.5582 14.6974 14.7261 14.6184 14.4103 14.1870 14.0501 14.0155 14.0430 14.1047 14.1818 14.4133 14.4631 14.5091 14.5434 14.5601 14.5582 14.5641 14.6929 14.7495 14.6690 14.5238 14.4103 14.3501 14.3293 14.3381 14.3687 14.4133 14.5847 14.6110 14.6402 14.6675 14.6879 14.6974 14.6929 14.6982 14.7803 14.7389 14.6690 14.6184 14.5839 14.5639 14.5582 14.5659 14.5847 14.6475 14.6516 14.6633 14.6812 14.7030 14.7261 14.7495 14.7803 14.8124 14.7803 14.7495 14.7261 14.7030 14.6812 14.6633 14.6516 14.6475 14.5847 14.5659 14.5582 14.5639 14.5839 14.6184 14.6690 14.7389 14.7803 14.6982 14.6929 14.6974 14.6879 14.6675 14.6402 14.6110 14.5847 14.4133 14.3687 14.3381 14.3293 14.3501 14.4103 14.5238 14.6690 14.7495 14.6929 14.5641 14.5582 14.5601 14.5434 14.5091 14.4631 14.4133 14.1818 14.1047 14.0430 14.0155 14.0501 14.1870 14.4103 14.6184 14.7261 14.6974 14.5582 13.9752 14.0127 14.0672 14.0696 14.0659 14.1818 13.9657 13.8468 13.7361 13.6715 13.7688 14.0501 14.3501 14.5839 14.7030 14.6879 14.5601 14.0127 13.5376 13.5478 13.6618 13.7854 13.9657 13.8459 13.6972 13.5358 13.3909 13.6715 14.0155 14.3293 14.5639 14.6812 14.6675 14.5434 14.0672 13.5478 13.3418 13.5156 13.6834 13.8459 13.8351 13.7052 13.5715 13.5358 13.7361 14.0430 14.3381 14.5582 14.6633 14.6402 14.5091 14.0696 13.6618 13.5156 13.6004 13.7268 13.8351 13.8664 13.7878 13.7052 13.6972 13.8468 14.1047 14.3687 14.5659 14.6516 14.6110 14.4631 14.0659 13.7854 13.6834 13.7268 13.8069 13.8664 13.8830 13.8664 13.8351 13.8459 13.9657 14.1818 14.4133 14.5847 14.6475 14.5847 14.4133 14.1818 13.9657 13.8459 13.8351 13.8664 13.8830 13.8664 13.8069 13.7268 13.6834 13.7854 14.0659 14.4631 14.6110 14.6516 14.5659 14.3687 14.1047 13.8468 13.6972 13.7052 13.7878 13.8664 13.8069 13.8664 13.7878 13.7052 13.6972 13.8468 14.1047 14.3687 14.5659 14.6516 14.6110 14.4631 14.0659 13.7854 13.6834 13.7268 13.8069 13.7268 13.7878 13.7268 13.6252 13.5889 13.7422 14.0484 14.3585 14.5547 14.6167 14.5547 14.3585 14.0484 13.7422 13.5889 13.6252 13.7268 13.6834 13.7052 13.6252 13.5156 13.5001 13.7138 14.0899 14.4161 14.5837 14.6032 14.4964 14.2761 13.9639 13.6382 13.5075 13.5889 13.6834 13.7854 13.6972 13.5889 13.5001 13.5478 13.7486 14.1297 14.4588 14.6133 14.6145 14.4832 14.2443 13.9288 13.6100 13.6382 13.7422 13.7854 14.0659 13.8468 13.7422 13.7138 13.7486 14.0127 14.2181 14.4755 14.6375 14.6444 14.5155 14.2913 14.0463 13.9288 13.9639 14.0484 14.0659 14.4631 14.1047 14.0484 14.0899 14.1297 14.2181 14.5582 14.5020 14.6546 14.6929 14.5935 14.4275 14.2913 14.2443 14.2761 14.3585 14.4631 14.6110 14.3687 14.3585 14.4161 14.4588 14.4755 14.5020 14.6929 14.6978 14.7635 14.6999 14.5935 14.5155 14.4832 14.4964 14.5547 14.6110 14.6516 14.5659 14.5547 14.5837 14.6133 14.6375 14.6546 14.6978 14.7803 14.8126 14.7635 14.6929 14.6444 14.6145 14.6032 14.6167 14.6516 14.5659 14.6516 14.6167 14.6032 14.6145 14.6444 14.6929 14.7635 14.8126 14.7803 14.6978 14.6546 14.6375 14.6133 14.5837 14.5547 14.5659 14.3687 14.6110 14.5547 14.4964 14.4832 14.5155 14.5935 14.6999 14.7635 14.6978 14.6929 14.5020 14.4755 14.4588 14.4161 14.3585 14.3687 14.1047 14.4631 14.3585 14.2761 14.2443 14.2913 14.4275 14.5935 14.6929 14.6546 14.5020 14.5582 14.2181 14.1297 14.0899 14.0484 14.1047 13.8468 14.0659 14.0484 13.9639 13.9288 14.0463 14.2913 14.5155 14.6444 14.6375 14.4755 14.2181 14.0127 13.7486 13.7138 13.7422 13.8468 13.6972 13.7854 13.7422 13.6382 13.6100 13.9288 14.2443 14.4832 14.6145 14.6133 14.4588 14.1297 13.7486 13.5478 13.5001 13.5889 13.6972 13.7052 13.6834 13.5889 13.5075 13.6382 13.9639 14.2761 14.4964 14.6032 14.5837 14.4161 14.0899 13.7138 13.5001 13.5156 13.6252 13.7052 13.7878 13.7268 13.6252 13.5889 13.7422 14.0484 14.3585 14.5547 14.6167 14.5547 14.3585 14.0484 13.7422 13.5889 13.6252 13.7268 13.7878 13.8664 13.8069 13.7268 13.6834 13.7854 14.0659 14.4631 14.6110 14.6516 14.5659 14.3687 14.1047 13.8468 13.6972 13.7052 13.7878 13.8664 13.8351 13.7268 13.6004 13.5156 13.6618 14.0696 14.5091 14.6402 14.6633 14.5582 14.3381 14.0430 13.7361 13.5358 13.5715 13.7052 13.8351 13.7268 13.7878 13.7268 13.6252 13.5889 13.7422 14.0484 14.3585 14.5547 14.6167 14.5547 14.3585 14.0484 13.7422 13.5889 13.6252 13.7268 13.6004 13.7268 13.8351 13.7052 13.5715 13.5358 13.7361 14.0430 14.3381 14.5582 14.6633 14.6402 14.5091 14.0696 13.6618 13.5156 13.6004 13.5156 13.6252 13.7052 13.6834 13.5889 13.5075 13.6382 13.9639 14.2761 14.4964 14.6032 14.5837 14.4161 14.0899 13.7138 13.5001 13.5156 13.6618 13.5889 13.5715 13.5889 13.6618 13.7138 13.6987 13.9811 14.2953 14.4886 14.5504 14.4886 14.2953 13.9811 13.6987 13.7138 13.6618 14.0696 13.7422 13.5358 13.5075 13.7138 14.0672 14.1297 14.0330 14.3262 14.5193 14.5626 14.4712 14.2607 13.9881 13.9811 14.0899 14.0696 14.5091 14.0484 13.7361 13.6382 13.6987 14.1297 14.5601 14.4755 14.3864 14.5865 14.6438 14.5621 14.3924 14.2607 14.2953 14.4161 14.5091 14.6402 14.3585 14.0430 13.9639 13.9811 14.0330 14.4755 14.6974 14.6546 14.6965 14.7565 14.6923 14.5621 14.4712 14.4886 14.5837 14.6402 14.6633 14.5547 14.3381 14.2761 14.2953 14.3262 14.3864 14.6546 14.7495 14.7635 14.8130 14.7565 14.6438 14.5626 14.5504 14.6032 14.6633 14.5582 14.6167 14.5582 14.4964 14.4886 14.5193 14.5865 14.6965 14.7635 14.7389 14.7635 14.6965 14.5865 14.5193 14.4886 14.4964 14.5582 14.3381 14.5547 14.6633 14.6032 14.5504 14.5626 14.6438 14.7565 14.8130 14.7635 14.7495 14.6546 14.3864 14.3262 14.2953 14.2761 14.3381 14.0430 14.3585 14.6402 14.5837 14.4886 14.4712 14.5621 14.6923 14.7565 14.6965 14.6546 14.6974 14.4755 14.0330 13.9811 13.9639 14.0430 13.7361 14.0484 14.5091 14.4161 14.2953 14.2607 14.3924 14.5621 14.6438 14.5865 14.3864 14.4755 14.5601 14.1297 13.6987 13.6382 13.7361 13.5358 13.7422 14.0696 14.0899 13.9811 13.9881 14.2607 14.4712 14.5626 14.5193 14.3262 14.0330 14.1297 14.0672 13.7138 13.5075 13.5358 13.5715 13.5889 13.6618 13.7138 13.6987 13.9811 14.2953 14.4886 14.5504 14.4886 14.2953 13.9811 13.6987 13.7138 13.6618 13.5889 13.5715 13.7052 13.6252 13.5156 13.5001 13.7138 14.0899 14.4161 14.5837 14.6032 14.4964 14.2761 13.9639 13.6382 13.5075 13.5889 13.6834 13.7052 13.8351 13.7268 13.6004 13.5156 13.6618 14.0696 14.5091 14.6402 14.6633 14.5582 14.3381 14.0430 13.7361 13.5358 13.5715 13.7052 13.8351 13.8459 13.6834 13.5156 13.3418 13.5478 14.0672 14.5434 14.6675 14.6812 14.5639 14.3293 14.0155 13.6715 13.3909 13.5358 13.6972 13.8459 13.6834 13.7052 13.6252 13.5156 13.5001 13.7138 14.0899 14.4161 14.5837 14.6032 14.4964 14.2761 13.9639 13.6382 13.5075 13.5889 13.6834 13.5156 13.6252 13.7052 13.6834 13.5889 13.5075 13.6382 13.9639 14.2761 14.4964 14.6032 14.5837 14.4161 14.0899 13.7138 13.5001 13.5156 13.3418 13.5156 13.6834 13.8459 13.6972 13.5358 13.3909 13.6715 14.0155 14.3293 14.5639 14.6812 14.6675 14.5434 14.0672 13.5478 13.3418 13.5478 13.5001 13.5889 13.6972 13.7854 13.7422 13.6382 13.6100 13.9288 14.2443 14.4832 14.6145 14.6133 14.4588 14.1297 13.7486 13.5478 14.0672 13.7138 13.5075 13.5358 13.7422 14.0696 14.0899 13.9811 13.9881 14.2607 14.4712 14.5626 14.5193 14.3262 14.0330 14.1297 14.0672 14.5434 14.0899 13.6382 13.3909 13.6382 14.0899 14.5434 14.4588 14.3262 14.3845 14.5609 14.6293 14.5609 14.3845 14.3262 14.4588 14.5434 14.6675 14.4161 13.9639 13.6715 13.6100 13.9811 14.4588 14.6879 14.6375 14.5865 14.6945 14.7546 14.6924 14.5609 14.5193 14.6133 14.6675 14.6812 14.5837 14.2761 14.0155 13.9288 13.9881 14.3262 14.6375 14.7261 14.6929 14.7565 14.8135 14.7546 14.6293 14.5626 14.6145 14.6812 14.5639 14.6032 14.4964 14.3293 14.2443 14.2607 14.3845 14.5865 14.6929 14.6690 14.6999 14.7565 14.6945 14.5609 14.4712 14.4832 14.5639 14.3293 14.4964 14.6032 14.5639 14.4832 14.4712 14.5609 14.6945 14.7565 14.6999 14.6690 14.6929 14.5865 14.3845 14.2607 14.2443 14.3293 14.0155 14.2761 14.5837 14.6812 14.6145 14.5626 14.6293 14.7546 14.8135 14.7565 14.6929 14.7261 14.6375 14.3262 13.9881 13.9288 14.0155 13.6715 13.9639 14.4161 14.6675 14.6133 14.5193 14.5609 14.6924 14.7546 14.6945 14.5865 14.6375 14.6879 14.4588 13.9811 13.6100 13.6715 13.3909 13.6382 14.0899 14.5434 14.4588 14.3262 14.3845 14.5609 14.6293 14.5609 14.3845 14.3262 14.4588 14.5434 14.0899 13.6382 13.3909 13.5358 13.5075 13.7138 14.0672 14.1297 14.0330 14.3262 14.5193 14.5626 14.4712 14.2607 13.9881 13.9811 14.0899 14.0696 13.7422 13.5358 13.6972 13.5889 13.5001 13.5478 13.7486 14.1297 14.4588 14.6133 14.6145 14.4832 14.2443 13.9288 13.6100 13.6382 13.7422 13.7854 13.6972 13.8459 13.6834 13.5156 13.3418 13.5478 14.0672 14.5434 14.6675 14.6812 14.5639 14.3293 14.0155 13.6715 13.3909 13.5358 13.6972 13.8459 13.9657 13.7854 13.6618 13.5478 13.5376 14.0127 14.5601 14.6879 14.7030 14.5839 14.3501 14.0501 13.7688 13.6715 13.7361 13.8468 13.9657 13.7854 13.6972 13.5889 13.5001 13.5478 13.7486 14.1297 14.4588 14.6133 14.6145 14.4832 14.2443 13.9288 13.6100 13.6382 13.7422 13.7854 13.6618 13.5889 13.5715 13.5889 13.6618 13.7138 13.6987 13.9811 14.2953 14.4886 14.5504 14.4886 14.2953 13.9811 13.6987 13.7138 13.6618 13.5478 13.5001 13.5889 13.6972 13.7854 13.7422 13.6382 13.6100 13.9288 14.2443 14.4832 14.6145 14.6133 14.4588 14.1297 13.7486 13.5478 13.5376 13.5478 13.6618 13.7854 13.9657 13.8468 13.7361 13.6715 13.7688 14.0501 14.3501 14.5839 14.7030 14.6879 14.5601 14.0127 13.5376 14.0127 13.7486 13.7138 13.7422 13.8468 14.0659 14.0484 13.9639 13.9288 14.0463 14.2913 14.5155 14.6444 14.6375 14.4755 14.2181 14.0127 14.5601 14.1297 13.6987 13.6382 13.7361 14.0484 14.5091 14.4161 14.2953 14.2607 14.3924 14.5621 14.6438 14.5865 14.3864 14.4755 14.5601 14.6879 14.4588 13.9811 13.6100 13.6715 13.9639 14.4161 14.6675 14.6133 14.5193 14.5609 14.6924 14.7546 14.6945 14.5865 14.6375 14.6879 14.7030 14.6133 14.2953 13.9288 13.7688 13.9288 14.2953 14.6133 14.7030 14.6444 14.6438 14.7546 14.8136 14.7546 14.6438 14.6444 14.7030 14.5839 14.6145 14.4886 14.2443 14.0501 14.0463 14.2607 14.5193 14.6444 14.6184 14.5935 14.6923 14.7546 14.6924 14.5621 14.5155 14.5839 14.3501 14.4832 14.5504 14.4832 14.3501 14.2913 14.3924 14.5609 14.6438 14.5935 14.5238 14.5935 14.6438 14.5609 14.3924 14.2913 14.3501 14.0501 14.2443 14.4886 14.6145 14.5839 14.5155 14.5621 14.6924 14.7546 14.6923 14.5935 14.6184 14.6444 14.5193 14.2607 14.0463 14.0501 13.7688 13.9288 14.2953 14.6133 14.7030 14.6444 14.6438 14.7546 14.8136 14.7546 14.6438 14.6444 14.7030 14.6133 14.2953 13.9288 13.7688 13.6715 13.6100 13.9811 14.4588 14.6879 14.6375 14.5865 14.6945 14.7546 14.6924 14.5609 14.5193 14.6133 14.6675 14.4161 13.9639 13.6715 13.7361 13.6382 13.6987 14.1297 14.5601 14.4755 14.3864 14.5865 14.6438 14.5621 14.3924 14.2607 14.2953 14.4161 14.5091 14.0484 13.7361 13.8468 13.7422 13.7138 13.7486 14.0127 14.2181 14.4755 14.6375 14.6444 14.5155 14.2913 14.0463 13.9288 13.9639 14.0484 14.0659 13.8468 13.9657 13.7854 13.6618 13.5478 13.5376 14.0127 14.5601 14.6879 14.7030 14.5839 14.3501 14.0501 13.7688 13.6715 13.7361 13.8468 13.9657 14.1818 14.0659 14.0696 14.0672 14.0127 13.9752 14.5582 14.6974 14.7261 14.6184 14.4103 14.1870 14.0501 14.0155 14.0430 14.1047 14.1818 14.0659 13.8468 13.7422 13.7138 13.7486 14.0127 14.2181 14.4755 14.6375 14.6444 14.5155 14.2913 14.0463 13.9288 13.9639 14.0484 14.0659 14.0696 13.7422 13.5358 13.5075 13.7138 14.0672 14.1297 14.0330 14.3262 14.5193 14.5626 14.4712 14.2607 13.9881 13.9811 14.0899 14.0696 14.0672 13.7138 13.5075 13.5358 13.7422 14.0696 14.0899 13.9811 13.9881 14.2607 14.4712 14.5626 14.5193 14.3262 14.0330 14.1297 14.0672 14.0127 13.7486 13.7138 13.7422 13.8468 14.0659 14.0484 13.9639 13.9288 14.0463 14.2913 14.5155 14.6444 14.6375 14.4755 14.2181 14.0127 13.9752 14.0127 14.0672 14.0696 14.0659 14.1818 14.1047 14.0430 14.0155 14.0501 14.1870 14.4103 14.6184 14.7261 14.6974 14.5582 13.9752 14.5582 14.2181 14.1297 14.0899 14.0484 14.1047 14.4631 14.3585 14.2761 14.2443 14.2913 14.4275 14.5935 14.6929 14.6546 14.5020 14.5582 14.6974 14.4755 14.0330 13.9811 13.9639 14.0430 14.3585 14.6402 14.5837 14.4886 14.4712 14.5621 14.6923 14.7565 14.6965 14.6546 14.6974 14.7261 14.6375 14.3262 13.9881 13.9288 14.0155 14.2761 14.5837 14.6812 14.6145 14.5626 14.6293 14.7546 14.8135 14.7565 14.6929 14.7261 14.6184 14.6444 14.5193 14.2607 14.0463 14.0501 14.2443 14.4886 14.6145 14.5839 14.5155 14.5621 14.6924 14.7546 14.6923 14.5935 14.6184 14.4103 14.5155 14.5626 14.4712 14.2913 14.1870 14.2913 14.4712 14.5626 14.5155 14.4103 14.4275 14.5621 14.6293 14.5621 14.4275 14.4103 14.1870 14.2913 14.4712 14.5626 14.5155 14.4103 14.4275 14.5621 14.6293 14.5621 14.4275 14.4103 14.5155 14.5626 14.4712 14.2913 14.1870 14.0501 14.0463 14.2607 14.5193 14.6444 14.6184 14.5935 14.6923 14.7546 14.6924 14.5621 14.5155 14.5839 14.6145 14.4886 14.2443 14.0501 14.0155 13.9288 13.9881 14.3262 14.6375 14.7261 14.6929 14.7565 14.8135 14.7546 14.6293 14.5626 14.6145 14.6812 14.5837 14.2761 14.0155 14.0430 13.9639 13.9811 14.0330 14.4755 14.6974 14.6546 14.6965 14.7565 14.6923 14.5621 14.4712 14.4886 14.5837 14.6402 14.3585 14.0430 14.1047 14.0484 14.0899 14.1297 14.2181 14.5582 14.5020 14.6546 14.6929 14.5935 14.4275 14.2913 14.2443 14.2761 14.3585 14.4631 14.1047 14.1818 14.0659 14.0696 14.0672 14.0127 13.9752 14.5582 14.6974 14.7261 14.6184 14.4103 14.1870 14.0501 14.0155 14.0430 14.1047 14.1818 14.4133 14.4631 14.5091 14.5434 14.5601 14.5582 14.5641 14.6929 14.7495 14.6690 14.5238 14.4103 14.3501 14.3293 14.3381 14.3687 14.4133 14.4631 14.1047 14.0484 14.0899 14.1297 14.2181 14.5582 14.5020 14.6546 14.6929 14.5935 14.4275 14.2913 14.2443 14.2761 14.3585 14.4631 14.5091 14.0484 13.7361 13.6382 13.6987 14.1297 14.5601 14.4755 14.3864 14.5865 14.6438 14.5621 14.3924 14.2607 14.2953 14.4161 14.5091 14.5434 14.0899 13.6382 13.3909 13.6382 14.0899 14.5434 14.4588 14.3262 14.3845 14.5609 14.6293 14.5609 14.3845 14.3262 14.4588 14.5434 14.5601 14.1297 13.6987 13.6382 13.7361 14.0484 14.5091 14.4161 14.2953 14.2607 14.3924 14.5621 14.6438 14.5865 14.3864 14.4755 14.5601 14.5582 14.2181 14.1297 14.0899 14.0484 14.1047 14.4631 14.3585 14.2761 14.2443 14.2913 14.4275 14.5935 14.6929 14.6546 14.5020 14.5582 14.5641 14.5582 14.5601 14.5434 14.5091 14.4631 14.4133 14.3687 14.3381 14.3293 14.3501 14.4103 14.5238 14.6690 14.7495 14.6929 14.5641 14.6929 14.5020 14.4755 14.4588 14.4161 14.3585 14.3687 14.6110 14.5547 14.4964 14.4832 14.5155 14.5935 14.6999 14.7635 14.6978 14.6929 14.7495 14.6546 14.3864 14.3262 14.2953 14.2761 14.3381 14.5547 14.6633 14.6032 14.5504 14.5626 14.6438 14.7565 14.8130 14.7635 14.7495 14.6690 14.6929 14.5865 14.3845 14.2607 14.2443 14.3293 14.4964 14.6032 14.5639 14.4832 14.4712 14.5609 14.6945 14.7565 14.6999 14.6690 14.5238 14.5935 14.6438 14.5609 14.3924 14.2913 14.3501 14.4832 14.5504 14.4832 14.3501 14.2913 14.3924 14.5609 14.6438 14.5935 14.5238 14.4103 14.4275 14.5621 14.6293 14.5621 14.4275 14.4103 14.5155 14.5626 14.4712 14.2913 14.1870 14.2913 14.4712 14.5626 14.5155 14.4103 14.3501 14.2913 14.3924 14.5609 14.6438 14.5935 14.5238 14.5935 14.6438 14.5609 14.3924 14.2913 14.3501 14.4832 14.5504 14.4832 14.3501 14.3293 14.2443 14.2607 14.3845 14.5865 14.6929 14.6690 14.6999 14.7565 14.6945 14.5609 14.4712 14.4832 14.5639 14.6032 14.4964 14.3293 14.3381 14.2761 14.2953 14.3262 14.3864 14.6546 14.7495 14.7635 14.8130 14.7565 14.6438 14.5626 14.5504 14.6032 14.6633 14.5547 14.3381 14.3687 14.3585 14.4161 14.4588 14.4755 14.5020 14.6929 14.6978 14.7635 14.6999 14.5935 14.5155 14.4832 14.4964 14.5547 14.6110 14.3687 14.4133 14.4631 14.5091 14.5434 14.5601 14.5582 14.5641 14.6929 14.7495 14.6690 14.5238 14.4103 14.3501 14.3293 14.3381 14.3687 14.4133 14.5847 14.6110 14.6402 14.6675 14.6879 14.6974 14.6929 14.6982 14.7803 14.7389 14.6690 14.6184 14.5839 14.5639 14.5582 14.5659 14.5847 14.6110 14.3687 14.3585 14.4161 14.4588 14.4755 14.5020 14.6929 14.6978 14.7635 14.6999 14.5935 14.5155 14.4832 14.4964 14.5547 14.6110 14.6402 14.3585 14.0430 13.9639 13.9811 14.0330 14.4755 14.6974 14.6546 14.6965 14.7565 14.6923 14.5621 14.4712 14.4886 14.5837 14.6402 14.6675 14.4161 13.9639 13.6715 13.6100 13.9811 14.4588 14.6879 14.6375 14.5865 14.6945 14.7546 14.6924 14.5609 14.5193 14.6133 14.6675 14.6879 14.4588 13.9811 13.6100 13.6715 13.9639 14.4161 14.6675 14.6133 14.5193 14.5609 14.6924 14.7546 14.6945 14.5865 14.6375 14.6879 14.6974 14.4755 14.0330 13.9811 13.9639 14.0430 14.3585 14.6402 14.5837 14.4886 14.4712 14.5621 14.6923 14.7565 14.6965 14.6546 14.6974 14.6929 14.5020 14.4755 14.4588 14.4161 14.3585 14.3687 14.6110 14.5547 14.4964 14.4832 14.5155 14.5935 14.6999 14.7635 14.6978 14.6929 14.6982 14.6929 14.6974 14.6879 14.6675 14.6402 14.6110 14.5847 14.5659 14.5582 14.5639 14.5839 14.6184 14.6690 14.7389 14.7803 14.6982 14.7803 14.6978 14.6546 14.6375 14.6133 14.5837 14.5547 14.5659 14.6516 14.6167 14.6032 14.6145 14.6444 14.6929 14.7635 14.8126 14.7803 14.7389 14.7635 14.6965 14.5865 14.5193 14.4886 14.4964 14.5582 14.6167 14.5582 14.4964 14.4886 14.5193 14.5865 14.6965 14.7635 14.7389 14.6690 14.6999 14.7565 14.6945 14.5609 14.4712 14.4832 14.5639 14.6032 14.4964 14.3293 14.2443 14.2607 14.3845 14.5865 14.6929 14.6690 14.6184 14.5935 14.6923 14.7546 14.6924 14.5621 14.5155 14.5839 14.6145 14.4886 14.2443 14.0501 14.0463 14.2607 14.5193 14.6444 14.6184 14.5839 14.5155 14.5621 14.6924 14.7546 14.6923 14.5935 14.6184 14.6444 14.5193 14.2607 14.0463 14.0501 14.2443 14.4886 14.6145 14.5839 14.5639 14.4832 14.4712 14.5609 14.6945 14.7565 14.6999 14.6690 14.6929 14.5865 14.3845 14.2607 14.2443 14.3293 14.4964 14.6032 14.5639 14.5582 14.4964 14.4886 14.5193 14.5865 14.6965 14.7635 14.7389 14.7635 14.6965 14.5865 14.5193 14.4886 14.4964 14.5582 14.6167 14.5582 14.5659 14.5547 14.5837 14.6133 14.6375 14.6546 14.6978 14.7803 14.8126 14.7635 14.6929 14.6444 14.6145 14.6032 14.6167 14.6516 14.5659 14.5847 14.6110 14.6402 14.6675 14.6879 14.6974 14.6929 14.6982 14.7803 14.7389 14.6690 14.6184 14.5839 14.5639 14.5582 14.5659 14.5847 14.6475 14.6516 14.6633 14.6812 14.7030 14.7261 14.7495 14.7803 14.8124 14.7803 14.7495 14.7261 14.7030 14.6812 14.6633 14.6516 14.6475 14.6516 14.5659 14.5547 14.5837 14.6133 14.6375 14.6546 14.6978 14.7803 14.8126 14.7635 14.6929 14.6444 14.6145 14.6032 14.6167 14.6516 14.6633 14.5547 14.3381 14.2761 14.2953 14.3262 14.3864 14.6546 14.7495 14.7635 14.8130 14.7565 14.6438 14.5626 14.5504 14.6032 14.6633 14.6812 14.5837 14.2761 14.0155 13.9288 13.9881 14.3262 14.6375 14.7261 14.6929 14.7565 14.8135 14.7546 14.6293 14.5626 14.6145 14.6812 14.7030 14.6133 14.2953 13.9288 13.7688 13.9288 14.2953 14.6133 14.7030 14.6444 14.6438 14.7546 14.8136 14.7546 14.6438 14.6444 14.7030 14.7261 14.6375 14.3262 13.9881 13.9288 14.0155 14.2761 14.5837 14.6812 14.6145 14.5626 14.6293 14.7546 14.8135 14.7565 14.6929 14.7261 14.7495 14.6546 14.3864 14.3262 14.2953 14.2761 14.3381 14.5547 14.6633 14.6032 14.5504 14.5626 14.6438 14.7565 14.8130 14.7635 14.7495 14.7803 14.6978 14.6546 14.6375 14.6133 14.5837 14.5547 14.5659 14.6516 14.6167 14.6032 14.6145 14.6444 14.6929 14.7635 14.8126 14.7803 14.8124 14.7803 14.7495 14.7261 14.7030 14.6812 14.6633 14.6516 14.6475 14.6516 14.6633 14.6812 14.7030 14.7261 14.7495 14.7803 14.8124 14.7803 14.8126 14.7635 14.6929 14.6444 14.6145 14.6032 14.6167 14.6516 14.5659 14.5547 14.5837 14.6133 14.6375 14.6546 14.6978 14.7803 14.7495 14.7635 14.8130 14.7565 14.6438 14.5626 14.5504 14.6032 14.6633 14.5547 14.3381 14.2761 14.2953 14.3262 14.3864 14.6546 14.7495 14.7261 14.6929 14.7565 14.8135 14.7546 14.6293 14.5626 14.6145 14.6812 14.5837 14.2761 14.0155 13.9288 13.9881 14.3262 14.6375 14.7261 14.7030 14.6444 14.6438 14.7546 14.8136 14.7546 14.6438 14.6444 14.7030 14.6133 14.2953 13.9288 13.7688 13.9288 14.2953 14.6133 14.7030 14.6812 14.6145 14.5626 14.6293 14.7546 14.8135 14.7565 14.6929 14.7261 14.6375 14.3262 13.9881 13.9288 14.0155 14.2761 14.5837 14.6812 14.6633 14.6032 14.5504 14.5626 14.6438 14.7565 14.8130 14.7635 14.7495 14.6546 14.3864 14.3262 14.2953 14.2761 14.3381 14.5547 14.6633 14.6516 14.6167 14.6032 14.6145 14.6444 14.6929 14.7635 14.8126 14.7803 14.6978 14.6546 14.6375 14.6133 14.5837 14.5547 14.5659 14.6516 14.6475 14.6516 14.6633 14.6812 14.7030 14.7261 14.7495 14.7803 14.8124 14.7803 14.7495 14.7261 14.7030 14.6812 14.6633 14.6516 14.6475 14.5847 14.5659 14.5582 14.5639 14.5839 14.6184 14.6690 14.7389 14.7803 14.6982 14.6929 14.6974 14.6879 14.6675 14.6402 14.6110 14.5847 14.5659 14.6516 14.6167 14.6032 14.6145 14.6444 14.6929 14.7635 14.8126 14.7803 14.6978 14.6546 14.6375 14.6133 14.5837 14.5547 14.5659 14.5582 14.6167 14.5582 14.4964 14.4886 14.5193 14.5865 14.6965 14.7635 14.7389 14.7635 14.6965 14.5865 14.5193 14.4886 14.4964 14.5582 14.5639 14.6032 14.4964 14.3293 14.2443 14.2607 14.3845 14.5865 14.6929 14.6690 14.6999 14.7565 14.6945 14.5609 14.4712 14.4832 14.5639 14.5839 14.6145 14.4886 14.2443 14.0501 14.0463 14.2607 14.5193 14.6444 14.6184 14.5935 14.6923 14.7546 14.6924 14.5621 14.5155 14.5839 14.6184 14.6444 14.5193 14.2607 14.0463 14.0501 14.2443 14.4886 14.6145 14.5839 14.5155 14.5621 14.6924 14.7546 14.6923 14.5935 14.6184 14.6690 14.6929 14.5865 14.3845 14.2607 14.2443 14.3293 14.4964 14.6032 14.5639 14.4832 14.4712 14.5609 14.6945 14.7565 14.6999 14.6690 14.7389 14.7635 14.6965 14.5865 14.5193 14.4886 14.4964 14.5582 14.6167 14.5582 14.4964 14.4886 14.5193 14.5865 14.6965 14.7635 14.7389 14.7803 14.8126 14.7635 14.6929 14.6444 14.6145 14.6032 14.6167 14.6516 14.5659 14.5547 14.5837 14.6133 14.6375 14.6546 14.6978 14.7803 14.6982 14.7803 14.7389 14.6690 14.6184 14.5839 14.5639 14.5582 14.5659 14.5847 14.6110 14.6402 14.6675 14.6879 14.6974 14.6929 14.6982 14.6929 14.6978 14.7635 14.6999 14.5935 14.5155 14.4832 14.4964 14.5547 14.6110 14.3687 14.3585 14.4161 14.4588 14.4755 14.5020 14.6929 14.6974 14.6546 14.6965 14.7565 14.6923 14.5621 14.4712 14.4886 14.5837 14.6402 14.3585 14.0430 13.9639 13.9811 14.0330 14.4755 14.6974 14.6879 14.6375 14.5865 14.6945 14.7546 14.6924 14.5609 14.5193 14.6133 14.6675 14.4161 13.9639 13.6715 13.6100 13.9811 14.4588 14.6879 14.6675 14.6133 14.5193 14.5609 14.6924 14.7546 14.6945 14.5865 14.6375 14.6879 14.4588 13.9811 13.6100 13.6715 13.9639 14.4161 14.6675 14.6402 14.5837 14.4886 14.4712 14.5621 14.6923 14.7565 14.6965 14.6546 14.6974 14.4755 14.0330 13.9811 13.9639 14.0430 14.3585 14.6402 14.6110 14.5547 14.4964 14.4832 14.5155 14.5935 14.6999 14.7635 14.6978 14.6929 14.5020 14.4755 14.4588 14.4161 14.3585 14.3687 14.6110 14.5847 14.5659 14.5582 14.5639 14.5839 14.6184 14.6690 14.7389 14.7803 14.6982 14.6929 14.6974 14.6879 14.6675 14.6402 14.6110 14.5847 14.4133 14.3687 14.3381 14.3293 14.3501 14.4103 14.5238 14.6690 14.7495 14.6929 14.5641 14.5582 14.5601 14.5434 14.5091 14.4631 14.4133 14.3687 14.6110 14.5547 14.4964 14.4832 14.5155 14.5935 14.6999 14.7635 14.6978 14.6929 14.5020 14.4755 14.4588 14.4161 14.3585 14.3687 14.3381 14.5547 14.6633 14.6032 14.5504 14.5626 14.6438 14.7565 14.8130 14.7635 14.7495 14.6546 14.3864 14.3262 14.2953 14.2761 14.3381 14.3293 14.4964 14.6032 14.5639 14.4832 14.4712 14.5609 14.6945 14.7565 14.6999 14.6690 14.6929 14.5865 14.3845 14.2607 14.2443 14.3293 14.3501 14.4832 14.5504 14.4832 14.3501 14.2913 14.3924 14.5609 14.6438 14.5935 14.5238 14.5935 14.6438 14.5609 14.3924 14.2913 14.3501 14.4103 14.5155 14.5626 14.4712 14.2913 14.1870 14.2913 14.4712 14.5626 14.5155 14.4103 14.4275 14.5621 14.6293 14.5621 14.4275 14.4103 14.5238 14.5935 14.6438 14.5609 14.3924 14.2913 14.3501 14.4832 14.5504 14.4832 14.3501 14.2913 14.3924 14.5609 14.6438 14.5935 14.5238 14.6690 14.6999 14.7565 14.6945 14.5609 14.4712 14.4832 14.5639 14.6032 14.4964 14.3293 14.2443 14.2607 14.3845 14.5865 14.6929 14.6690 14.7495 14.7635 14.8130 14.7565 14.6438 14.5626 14.5504 14.6032 14.6633 14.5547 14.3381 14.2761 14.2953 14.3262 14.3864 14.6546 14.7495 14.6929 14.6978 14.7635 14.6999 14.5935 14.5155 14.4832 14.4964 14.5547 14.6110 14.3687 14.3585 14.4161 14.4588 14.4755 14.5020 14.6929 14.5641 14.6929 14.7495 14.6690 14.5238 14.4103 14.3501 14.3293 14.3381 14.3687 14.4133 14.4631 14.5091 14.5434 14.5601 14.5582 14.5641 14.5582 14.5020 14.6546 14.6929 14.5935 14.4275 14.2913 14.2443 14.2761 14.3585 14.4631 14.1047 14.0484 14.0899 14.1297 14.2181 14.5582 14.5601 14.4755 14.3864 14.5865 14.6438 14.5621 14.3924 14.2607 14.2953 14.4161 14.5091 14.0484 13.7361 13.6382 13.6987 14.1297 14.5601 14.5434 14.4588 14.3262 14.3845 14.5609 14.6293 14.5609 14.3845 14.3262 14.4588 14.5434 14.0899 13.6382 13.3909 13.6382 14.0899 14.5434 14.5091 14.4161 14.2953 14.2607 14.3924 14.5621 14.6438 14.5865 14.3864 14.4755 14.5601 14.1297 13.6987 13.6382 13.7361 14.0484 14.5091 14.4631 14.3585 14.2761 14.2443 14.2913 14.4275 14.5935 14.6929 14.6546 14.5020 14.5582 14.2181 14.1297 14.0899 14.0484 14.1047 14.4631 14.4133 14.3687 14.3381 14.3293 14.3501 14.4103 14.5238 14.6690 14.7495 14.6929 14.5641 14.5582 14.5601 14.5434 14.5091 14.4631 14.4133 14.1818 14.1047 14.0430 14.0155 14.0501 14.1870 14.4103 14.6184 14.7261 14.6974 14.5582 13.9752 14.0127 14.0672 14.0696 14.0659 14.1818 14.1047 14.4631 14.3585 14.2761 14.2443 14.2913 14.4275 14.5935 14.6929 14.6546 14.5020 14.5582 14.2181 14.1297 14.0899 14.0484 14.1047 14.0430 14.3585 14.6402 14.5837 14.4886 14.4712 14.5621 14.6923 14.7565 14.6965 14.6546 14.6974 14.4755 14.0330 13.9811 13.9639 14.0430 14.0155 14.2761 14.5837 14.6812 14.6145 14.5626 14.6293 14.7546 14.8135 14.7565 14.6929 14.7261 14.6375 14.3262 13.9881 13.9288 14.0155 14.0501 14.2443 14.4886 14.6145 14.5839 14.5155 14.5621 14.6924 14.7546 14.6923 14.5935 14.6184 14.6444 14.5193 14.2607 14.0463 14.0501 14.1870 14.2913 14.4712 14.5626 14.5155 14.4103 14.4275 14.5621 14.6293 14.5621 14.4275 14.4103 14.5155 14.5626 14.4712 14.2913 14.1870 14.4103 14.4275 14.5621 14.6293 14.5621 14.4275 14.4103 14.5155 14.5626 14.4712 14.2913 14.1870 14.2913 14.4712 14.5626 14.5155 14.4103 14.6184 14.5935 14.6923 14.7546 14.6924 14.5621 14.5155 14.5839 14.6145 14.4886 14.2443 14.0501 14.0463 14.2607 14.5193 14.6444 14.6184 14.7261 14.6929 14.7565 14.8135 14.7546 14.6293 14.5626 14.6145 14.6812 14.5837 14.2761 14.0155 13.9288 13.9881 14.3262 14.6375 14.7261 14.6974 14.6546 14.6965 14.7565 14.6923 14.5621 14.4712 14.4886 14.5837 14.6402 14.3585 14.0430 13.9639 13.9811 14.0330 14.4755 14.6974 14.5582 14.5020 14.6546 14.6929 14.5935 14.4275 14.2913 14.2443 14.2761 14.3585 14.4631 14.1047 14.0484 14.0899 14.1297 14.2181 14.5582 13.9752 14.5582 14.6974 14.7261 14.6184 14.4103 14.1870 14.0501 14.0155 14.0430 14.1047 14.1818 14.0659 14.0696 14.0672 14.0127 13.9752 14.0127 14.2181 14.4755 14.6375 14.6444 14.5155 14.2913 14.0463 13.9288 13.9639 14.0484 14.0659 13.8468 13.7422 13.7138 13.7486 14.0127 14.0672 14.1297 14.0330 14.3262 14.5193 14.5626 14.4712 14.2607 13.9881 13.9811 14.0899 14.0696 13.7422 13.5358 13.5075 13.7138 14.0672 14.0696 14.0899 13.9811 13.9881 14.2607 14.4712 14.5626 14.5193 14.3262 14.0330 14.1297 14.0672 13.7138 13.5075 13.5358 13.7422 14.0696 14.0659 14.0484 13.9639 13.9288 14.0463 14.2913 14.5155 14.6444 14.6375 14.4755 14.2181 14.0127 13.7486 13.7138 13.7422 13.8468 14.0659 14.1818 14.1047 14.0430 14.0155 14.0501 14.1870 14.4103 14.6184 14.7261 14.6974 14.5582 13.9752 14.0127 14.0672 14.0696 14.0659 14.1818 13.9657 13.8468 13.7361 13.6715 13.7688 14.0501 14.3501 14.5839 14.7030 14.6879 14.5601 14.0127 13.5376 13.5478 13.6618 13.7854 13.9657 13.8468 14.0659 14.0484 13.9639 13.9288 14.0463 14.2913 14.5155 14.6444 14.6375 14.4755 14.2181 14.0127 13.7486 13.7138 13.7422 13.8468 13.7361 14.0484 14.5091 14.4161 14.2953 14.2607 14.3924 14.5621 14.6438 14.5865 14.3864 14.4755 14.5601 14.1297 13.6987 13.6382 13.7361 13.6715 13.9639 14.4161 14.6675 14.6133 14.5193 14.5609 14.6924 14.7546 14.6945 14.5865 14.6375 14.6879 14.4588 13.9811 13.6100 13.6715 13.7688 13.9288 14.2953 14.6133 14.7030 14.6444 14.6438 14.7546 14.8136 14.7546 14.6438 14.6444 14.7030 14.6133 14.2953 13.9288 13.7688 14.0501 14.0463 14.2607 14.5193 14.6444 14.6184 14.5935 14.6923 14.7546 14.6924 14.5621 14.5155 14.5839 14.6145 14.4886 14.2443 14.0501 14.3501 14.2913 14.3924 14.5609 14.6438 14.5935 14.5238 14.5935 14.6438 14.5609 14.3924 14.2913 14.3501 14.4832 14.5504 14.4832 14.3501 14.5839 14.5155 14.5621 14.6924 14.7546 14.6923 14.5935 14.6184 14.6444 14.5193 14.2607 14.0463 14.0501 14.2443 14.4886 14.6145 14.5839 14.7030 14.6444 14.6438 14.7546 14.8136 14.7546 14.6438 14.6444 14.7030 14.6133 14.2953 13.9288 13.7688 13.9288 14.2953 14.6133 14.7030 14.6879 14.6375 14.5865 14.6945 14.7546 14.6924 14.5609 14.5193 14.6133 14.6675 14.4161 13.9639 13.6715 13.6100 13.9811 14.4588 14.6879 14.5601 14.4755 14.3864 14.5865 14.6438 14.5621 14.3924 14.2607 14.2953 14.4161 14.5091 14.0484 13.7361 13.6382 13.6987 14.1297 14.5601 14.0127 14.2181 14.4755 14.6375 14.6444 14.5155 14.2913 14.0463 13.9288 13.9639 14.0484 14.0659 13.8468 13.7422 13.7138 13.7486 14.0127 13.5376 14.0127 14.5601 14.6879 14.7030 14.5839 14.3501 14.0501 13.7688 13.6715 13.7361 13.8468 13.9657 13.7854 13.6618 13.5478 13.5376 13.5478 13.7486 14.1297 14.4588 14.6133 14.6145 14.4832 14.2443 13.9288 13.6100 13.6382 13.7422 13.7854 13.6972 13.5889 13.5001 13.5478 13.6618 13.7138 13.6987 13.9811 14.2953 14.4886 14.5504 14.4886 14.2953 13.9811 13.6987 13.7138 13.6618 13.5889 13.5715 13.5889 13.6618 13.7854 13.7422 13.6382 13.6100 13.9288 14.2443 14.4832 14.6145 14.6133 14.4588 14.1297 13.7486 13.5478 13.5001 13.5889 13.6972 13.7854 13.9657 13.8468 13.7361 13.6715 13.7688 14.0501 14.3501 14.5839 14.7030 14.6879 14.5601 14.0127 13.5376 13.5478 13.6618 13.7854 13.9657 13.8459 13.6972 13.5358 13.3909 13.6715 14.0155 14.3293 14.5639 14.6812 14.6675 14.5434 14.0672 13.5478 13.3418 13.5156 13.6834 13.8459 13.6972 13.7854 13.7422 13.6382 13.6100 13.9288 14.2443 14.4832 14.6145 14.6133 14.4588 14.1297 13.7486 13.5478 13.5001 13.5889 13.6972 13.5358 13.7422 14.0696 14.0899 13.9811 13.9881 14.2607 14.4712 14.5626 14.5193 14.3262 14.0330 14.1297 14.0672 13.7138 13.5075 13.5358 13.3909 13.6382 14.0899 14.5434 14.4588 14.3262 14.3845 14.5609 14.6293 14.5609 14.3845 14.3262 14.4588 14.5434 14.0899 13.6382 13.3909 13.6715 13.6100 13.9811 14.4588 14.6879 14.6375 14.5865 14.6945 14.7546 14.6924 14.5609 14.5193 14.6133 14.6675 14.4161 13.9639 13.6715 14.0155 13.9288 13.9881 14.3262 14.6375 14.7261 14.6929 14.7565 14.8135 14.7546 14.6293 14.5626 14.6145 14.6812 14.5837 14.2761 14.0155 14.3293 14.2443 14.2607 14.3845 14.5865 14.6929 14.6690 14.6999 14.7565 14.6945 14.5609 14.4712 14.4832 14.5639 14.6032 14.4964 14.3293 14.5639 14.4832 14.4712 14.5609 14.6945 14.7565 14.6999 14.6690 14.6929 14.5865 14.3845 14.2607 14.2443 14.3293 14.4964 14.6032 14.5639 14.6812 14.6145 14.5626 14.6293 14.7546 14.8135 14.7565 14.6929 14.7261 14.6375 14.3262 13.9881 13.9288 14.0155 14.2761 14.5837 14.6812 14.6675 14.6133 14.5193 14.5609 14.6924 14.7546 14.6945 14.5865 14.6375 14.6879 14.4588 13.9811 13.6100 13.6715 13.9639 14.4161 14.6675 14.5434 14.4588 14.3262 14.3845 14.5609 14.6293 14.5609 14.3845 14.3262 14.4588 14.5434 14.0899 13.6382 13.3909 13.6382 14.0899 14.5434 14.0672 14.1297 14.0330 14.3262 14.5193 14.5626 14.4712 14.2607 13.9881 13.9811 14.0899 14.0696 13.7422 13.5358 13.5075 13.7138 14.0672 13.5478 13.7486 14.1297 14.4588 14.6133 14.6145 14.4832 14.2443 13.9288 13.6100 13.6382 13.7422 13.7854 13.6972 13.5889 13.5001 13.5478 13.3418 13.5478 14.0672 14.5434 14.6675 14.6812 14.5639 14.3293 14.0155 13.6715 13.3909 13.5358 13.6972 13.8459 13.6834 13.5156 13.3418 13.5156 13.5001 13.7138 14.0899 14.4161 14.5837 14.6032 14.4964 14.2761 13.9639 13.6382 13.5075 13.5889 13.6834 13.7052 13.6252 13.5156 13.6834 13.5889 13.5075 13.6382 13.9639 14.2761 14.4964 14.6032 14.5837 14.4161 14.0899 13.7138 13.5001 13.5156 13.6252 13.7052 13.6834 13.8459 13.6972 13.5358 13.3909 13.6715 14.0155 14.3293 14.5639 14.6812 14.6675 14.5434 14.0672 13.5478 13.3418 13.5156 13.6834 13.8459 13.8351 13.7052 13.5715 13.5358 13.7361 14.0430 14.3381 14.5582 14.6633 14.6402 14.5091 14.0696 13.6618 13.5156 13.6004 13.7268 13.8351 13.7052 13.6834 13.5889 13.5075 13.6382 13.9639 14.2761 14.4964 14.6032 14.5837 14.4161 14.0899 13.7138 13.5001 13.5156 13.6252 13.7052 13.5715 13.5889 13.6618 13.7138 13.6987 13.9811 14.2953 14.4886 14.5504 14.4886 14.2953 13.9811 13.6987 13.7138 13.6618 13.5889 13.5715 13.5358 13.5075 13.7138 14.0672 14.1297 14.0330 14.3262 14.5193 14.5626 14.4712 14.2607 13.9881 13.9811 14.0899 14.0696 13.7422 13.5358 13.7361 13.6382 13.6987 14.1297 14.5601 14.4755 14.3864 14.5865 14.6438 14.5621 14.3924 14.2607 14.2953 14.4161 14.5091 14.0484 13.7361 14.0430 13.9639 13.9811 14.0330 14.4755 14.6974 14.6546 14.6965 14.7565 14.6923 14.5621 14.4712 14.4886 14.5837 14.6402 14.3585 14.0430 14.3381 14.2761 14.2953 14.3262 14.3864 14.6546 14.7495 14.7635 14.8130 14.7565 14.6438 14.5626 14.5504 14.6032 14.6633 14.5547 14.3381 14.5582 14.4964 14.4886 14.5193 14.5865 14.6965 14.7635 14.7389 14.7635 14.6965 14.5865 14.5193 14.4886 14.4964 14.5582 14.6167 14.5582 14.6633 14.6032 14.5504 14.5626 14.6438 14.7565 14.8130 14.7635 14.7495 14.6546 14.3864 14.3262 14.2953 14.2761 14.3381 14.5547 14.6633 14.6402 14.5837 14.4886 14.4712 14.5621 14.6923 14.7565 14.6965 14.6546 14.6974 14.4755 14.0330 13.9811 13.9639 14.0430 14.3585 14.6402 14.5091 14.4161 14.2953 14.2607 14.3924 14.5621 14.6438 14.5865 14.3864 14.4755 14.5601 14.1297 13.6987 13.6382 13.7361 14.0484 14.5091 14.0696 14.0899 13.9811 13.9881 14.2607 14.4712 14.5626 14.5193 14.3262 14.0330 14.1297 14.0672 13.7138 13.5075 13.5358 13.7422 14.0696 13.6618 13.7138 13.6987 13.9811 14.2953 14.4886 14.5504 14.4886 14.2953 13.9811 13.6987 13.7138 13.6618 13.5889 13.5715 13.5889 13.6618 13.5156 13.5001 13.7138 14.0899 14.4161 14.5837 14.6032 14.4964 14.2761 13.9639 13.6382 13.5075 13.5889 13.6834 13.7052 13.6252 13.5156 13.6004 13.5156 13.6618 14.0696 14.5091 14.6402 14.6633 14.5582 14.3381 14.0430 13.7361 13.5358 13.5715 13.7052 13.8351 13.7268 13.6004 13.7268 13.6252 13.5889 13.7422 14.0484 14.3585 14.5547 14.6167 14.5547 14.3585 14.0484 13.7422 13.5889 13.6252 13.7268 13.7878 13.7268 13.8351 13.7052 13.5715 13.5358 13.7361 14.0430 14.3381 14.5582 14.6633 14.6402 14.5091 14.0696 13.6618 13.5156 13.6004 13.7268 13.8351 13.8664 13.7878 13.7052 13.6972 13.8468 14.1047 14.3687 14.5659 14.6516 14.6110 14.4631 14.0659 13.7854 13.6834 13.7268 13.8069 13.8664 13.7878 13.7268 13.6252 13.5889 13.7422 14.0484 14.3585 14.5547 14.6167 14.5547 14.3585 14.0484 13.7422 13.5889 13.6252 13.7268 13.7878 13.7052 13.6252 13.5156 13.5001 13.7138 14.0899 14.4161 14.5837 14.6032 14.4964 14.2761 13.9639 13.6382 13.5075 13.5889 13.6834 13.7052 13.6972 13.5889 13.5001 13.5478 13.7486 14.1297 14.4588 14.6133 14.6145 14.4832 14.2443 13.9288 13.6100 13.6382 13.7422 13.7854 13.6972 13.8468 13.7422 13.7138 13.7486 14.0127 14.2181 14.4755 14.6375 14.6444 14.5155 14.2913 14.0463 13.9288 13.9639 14.0484 14.0659 13.8468 14.1047 14.0484 14.0899 14.1297 14.2181 14.5582 14.5020 14.6546 14.6929 14.5935 14.4275 14.2913 14.2443 14.2761 14.3585 14.4631 14.1047 14.3687 14.3585 14.4161 14.4588 14.4755 14.5020 14.6929 14.6978 14.7635 14.6999 14.5935 14.5155 14.4832 14.4964 14.5547 14.6110 14.3687 14.5659 14.5547 14.5837 14.6133 14.6375 14.6546 14.6978 14.7803 14.8126 14.7635 14.6929 14.6444 14.6145 14.6032 14.6167 14.6516 14.5659 14.6516 14.6167 14.6032 14.6145 14.6444 14.6929 14.7635 14.8126 14.7803 14.6978 14.6546 14.6375 14.6133 14.5837 14.5547 14.5659 14.6516 14.6110 14.5547 14.4964 14.4832 14.5155 14.5935 14.6999 14.7635 14.6978 14.6929 14.5020 14.4755 14.4588 14.4161 14.3585 14.3687 14.6110 14.4631 14.3585 14.2761 14.2443 14.2913 14.4275 14.5935 14.6929 14.6546 14.5020 14.5582 14.2181 14.1297 14.0899 14.0484 14.1047 14.4631 14.0659 14.0484 13.9639 13.9288 14.0463 14.2913 14.5155 14.6444 14.6375 14.4755 14.2181 14.0127 13.7486 13.7138 13.7422 13.8468 14.0659 13.7854 13.7422 13.6382 13.6100 13.9288 14.2443 14.4832 14.6145 14.6133 14.4588 14.1297 13.7486 13.5478 13.5001 13.5889 13.6972 13.7854 13.6834 13.5889 13.5075 13.6382 13.9639 14.2761 14.4964 14.6032 14.5837 14.4161 14.0899 13.7138 13.5001 13.5156 13.6252 13.7052 13.6834 13.7268 13.6252 13.5889 13.7422 14.0484 14.3585 14.5547 14.6167 14.5547 14.3585 14.0484 13.7422 13.5889 13.6252 13.7268 13.7878 13.7268 13.8069 13.7268 13.6834 13.7854 14.0659 14.4631 14.6110 14.6516 14.5659 14.3687 14.1047 13.8468 13.6972 13.7052 13.7878 13.8664 13.8069 13.8664 13.7878 13.7052 13.6972 13.8468 14.1047 14.3687 14.5659 14.6516 14.6110 14.4631 14.0659 13.7854 13.6834 13.7268 13.8069 13.8664 13.8830 13.8664 13.8351 13.8459 13.9657 14.1818 14.4133 14.5847 14.6475 14.5847 14.4133 14.1818 13.9657 13.8459 13.8351 13.8664 13.8830 13.8664 13.8069 13.7268 13.6834 13.7854 14.0659 14.4631 14.6110 14.6516 14.5659 14.3687 14.1047 13.8468 13.6972 13.7052 13.7878 13.8664 13.8351 13.7268 13.6004 13.5156 13.6618 14.0696 14.5091 14.6402 14.6633 14.5582 14.3381 14.0430 13.7361 13.5358 13.5715 13.7052 13.8351 13.8459 13.6834 13.5156 13.3418 13.5478 14.0672 14.5434 14.6675 14.6812 14.5639 14.3293 14.0155 13.6715 13.3909 13.5358 13.6972 13.8459 13.9657 13.7854 13.6618 13.5478 13.5376 14.0127 14.5601 14.6879 14.7030 14.5839 14.3501 14.0501 13.7688 13.6715 13.7361 13.8468 13.9657 14.1818 14.0659 14.0696 14.0672 14.0127 13.9752 14.5582 14.6974 14.7261 14.6184 14.4103 14.1870 14.0501 14.0155 14.0430 14.1047 14.1818 14.4133 14.4631 14.5091 14.5434 14.5601 14.5582 14.5641 14.6929 14.7495 14.6690 14.5238 14.4103 14.3501 14.3293 14.3381 14.3687 14.4133 14.5847 14.6110 14.6402 14.6675 14.6879 14.6974 14.6929 14.6982 14.7803 14.7389 14.6690 14.6184 14.5839 14.5639 14.5582 14.5659 14.5847 14.6475 14.6516 14.6633 14.6812 14.7030 14.7261 14.7495 14.7803 14.8124 14.7803 14.7495 14.7261 14.7030 14.6812 14.6633 14.6516 14.6475 14.5847 14.5659 14.5582 14.5639 14.5839 14.6184 14.6690 14.7389 14.7803 14.6982 14.6929 14.6974 14.6879 14.6675 14.6402 14.6110 14.5847 14.4133 14.3687 14.3381 14.3293 14.3501 14.4103 14.5238 14.6690 14.7495 14.6929 14.5641 14.5582 14.5601 14.5434 14.5091 14.4631 14.4133 14.1818 14.1047 14.0430 14.0155 14.0501 14.1870 14.4103 14.6184 14.7261 14.6974 14.5582 13.9752 14.0127 14.0672 14.0696 14.0659 14.1818 13.9657 13.8468 13.7361 13.6715 13.7688 14.0501 14.3501 14.5839 14.7030 14.6879 14.5601 14.0127 13.5376 13.5478 13.6618 13.7854 13.9657 13.8459 13.6972 13.5358 13.3909 13.6715 14.0155 14.3293 14.5639 14.6812 14.6675 14.5434 14.0672 13.5478 13.3418 13.5156 13.6834 13.8459 13.8351 13.7052 13.5715 13.5358 13.7361 14.0430 14.3381 14.5582 14.6633 14.6402 14.5091 14.0696 13.6618 13.5156 13.6004 13.7268 13.8351 13.8664 13.7878 13.7052 13.6972 13.8468 14.1047 14.3687 14.5659 14.6516 14.6110 14.4631 14.0659 13.7854 13.6834 13.7268 13.8069 13.8664 13.8830 13.8664 13.8351 13.8459 13.9657 14.1818 14.4133 14.5847 14.6475 14.5847 14.4133 14.1818 13.9657 13.8459 13.8351 13.8664 13.8830 BAND: 6 13.8830 13.8664 13.8351 13.8459 13.9657 14.1818 14.4133 14.5847 14.9529 14.5847 14.4133 14.1818 13.9657 13.8459 13.8351 13.8664 13.8830 13.8664 13.9125 13.9326 13.9669 14.0728 14.2589 14.4805 15.0855 15.7616 15.6179 15.0039 14.5876 14.2809 14.0581 13.9421 13.8997 13.8664 13.8351 13.9326 13.9970 14.0552 14.1561 14.3233 14.6888 15.5765 16.6278 16.9125 16.1029 15.3179 14.7784 14.3841 14.1075 13.9421 13.8351 13.8459 13.9669 14.0552 14.1247 14.2162 14.3670 14.8365 15.9285 17.3047 18.2546 17.4710 16.3246 15.4673 14.8473 14.3841 14.0581 13.8459 13.9657 14.0728 14.1561 14.2162 14.2771 14.3922 14.8821 16.1341 17.7342 19.3787 19.0726 17.6044 16.3849 15.4673 14.7784 14.2809 13.9657 14.1818 14.2589 14.3233 14.3670 14.3922 14.4316 14.8344 16.2254 17.9433 19.8937 20.8928 19.1759 17.6044 16.3246 15.3179 14.5876 14.1818 14.4133 14.4805 14.6888 14.8365 14.8821 14.8344 15.0291 16.3304 17.9832 19.7713 21.3975 20.8928 19.0726 17.4710 16.1029 15.0039 14.4133 14.5847 15.0855 15.5765 15.9285 16.1341 16.2254 16.3304 16.8434 17.9130 19.0439 19.7713 19.8937 19.3787 18.2546 16.9125 15.6179 14.5847 14.9529 15.7616 16.6278 17.3047 17.7342 17.9433 17.9832 17.9130 17.8554 17.9130 17.9832 17.9433 17.7342 17.3047 16.6278 15.7616 14.9529 14.5847 15.6179 16.9125 18.2546 19.3787 19.8937 19.7713 19.0439 17.9130 16.8434 16.3304 16.2254 16.1341 15.9285 15.5765 15.0855 14.5847 14.4133 15.0039 16.1029 17.4710 19.0726 20.8928 21.3975 19.7713 17.9832 16.3304 15.0291 14.8344 14.8821 14.8365 14.6888 14.4805 14.4133 14.1818 14.5876 15.3179 16.3246 17.6044 19.1759 20.8928 19.8937 17.9433 16.2254 14.8344 14.4316 14.3922 14.3670 14.3233 14.2589 14.1818 13.9657 14.2809 14.7784 15.4673 16.3849 17.6044 19.0726 19.3787 17.7342 16.1341 14.8821 14.3922 14.2771 14.2162 14.1561 14.0728 13.9657 13.8459 14.0581 14.3841 14.8473 15.4673 16.3246 17.4710 18.2546 17.3047 15.9285 14.8365 14.3670 14.2162 14.1247 14.0552 13.9669 13.8459 13.8351 13.9421 14.1075 14.3841 14.7784 15.3179 16.1029 16.9125 16.6278 15.5765 14.6888 14.3233 14.1561 14.0552 13.9970 13.9326 13.8351 13.8664 13.8997 13.9421 14.0581 14.2809 14.5876 15.0039 15.6179 15.7616 15.0855 14.4805 14.2589 14.0728 13.9669 13.9326 13.9125 13.8664 13.8830 13.8664 13.8351 13.8459 13.9657 14.1818 14.4133 14.5847 14.9529 14.5847 14.4133 14.1818 13.9657 13.8459 13.8351 13.8664 13.8830 13.8664 13.9125 13.9326 13.9669 14.0728 14.2589 14.4805 15.0855 15.7616 15.6179 15.0039 14.5876 14.2809 14.0581 13.9421 13.8997 13.8664 13.9125 13.8664 13.8997 13.9421 14.0581 14.2809 14.5876 15.0039 15.6179 15.7616 15.0855 14.4805 14.2589 14.0728 13.9669 13.9326 13.9125 13.9326 13.8997 13.9326 13.9918 14.1110 14.3404 14.6927 15.2425 16.0859 16.6637 16.0859 15.2425 14.6927 14.3404 14.1110 13.9918 13.9326 13.9669 13.9421 13.9918 14.0552 14.1580 14.3717 14.7618 15.4680 16.5683 17.6714 17.4216 16.3156 15.4289 14.8241 14.3947 14.1110 13.9669 14.0728 14.0581 14.1110 14.1580 14.2162 14.3743 14.7780 15.6198 16.9230 18.4706 18.9455 17.6503 16.4088 15.4931 14.8241 14.3404 14.0728 14.2589 14.2809 14.3404 14.3717 14.3743 14.3922 14.7413 15.6989 17.1452 18.9278 20.4712 19.2501 17.6774 16.4088 15.4289 14.6927 14.2589 14.4805 14.5876 14.6927 14.7618 14.7780 14.7413 14.8344 15.8091 17.2920 19.0846 21.0357 21.1137 19.2501 17.6503 16.3156 15.2425 14.4805 15.0855 15.0039 15.2425 15.4680 15.6198 15.6989 15.8091 16.3304 17.4913 18.9524 20.3171 21.0357 20.4712 18.9455 17.4216 16.0859 15.0855 15.7616 15.6179 16.0859 16.5683 16.9230 17.1452 17.2920 17.4913 17.9130 18.5047 18.9524 19.0846 18.9278 18.4706 17.6714 16.6637 15.7616 15.6179 15.7616 16.6637 17.6714 18.4706 18.9278 19.0846 18.9524 18.5047 17.9130 17.4913 17.2920 17.1452 16.9230 16.5683 16.0859 15.6179 15.0039 15.0855 16.0859 17.4216 18.9455 20.4712 21.0357 20.3171 18.9524 17.4913 16.3304 15.8091 15.6989 15.6198 15.4680 15.2425 15.0039 14.5876 14.4805 15.2425 16.3156 17.6503 19.2501 21.1137 21.0357 19.0846 17.2920 15.8091 14.8344 14.7413 14.7780 14.7618 14.6927 14.5876 14.2809 14.2589 14.6927 15.4289 16.4088 17.6774 19.2501 20.4712 18.9278 17.1452 15.6989 14.7413 14.3922 14.3743 14.3717 14.3404 14.2809 14.0581 14.0728 14.3404 14.8241 15.4931 16.4088 17.6503 18.9455 18.4706 16.9230 15.6198 14.7780 14.3743 14.2162 14.1580 14.1110 14.0581 13.9421 13.9669 14.1110 14.3947 14.8241 15.4289 16.3156 17.4216 17.6714 16.5683 15.4680 14.7618 14.3717 14.1580 14.0552 13.9918 13.9421 13.8997 13.9326 13.9918 14.1110 14.3404 14.6927 15.2425 16.0859 16.6637 16.0859 15.2425 14.6927 14.3404 14.1110 13.9918 13.9326 13.8997 13.8664 13.9125 13.9326 13.9669 14.0728 14.2589 14.4805 15.0855 15.7616 15.6179 15.0039 14.5876 14.2809 14.0581 13.9421 13.8997 13.8664 13.8351 13.9326 13.9970 14.0552 14.1561 14.3233 14.6888 15.5765 16.6278 16.9125 16.1029 15.3179 14.7784 14.3841 14.1075 13.9421 13.8351 13.9326 13.8997 13.9326 13.9918 14.1110 14.3404 14.6927 15.2425 16.0859 16.6637 16.0859 15.2425 14.6927 14.3404 14.1110 13.9918 13.9326 13.9970 13.9326 13.8351 13.9421 14.1075 14.3841 14.7784 15.3179 16.1029 16.9125 16.6278 15.5765 14.6888 14.3233 14.1561 14.0552 13.9970 14.0552 13.9918 13.9421 13.9669 14.1110 14.3947 14.8241 15.4289 16.3156 17.4216 17.6714 16.5683 15.4680 14.7618 14.3717 14.1580 14.0552 14.1561 14.1110 14.1075 14.1110 14.1561 14.3717 14.8220 15.5095 16.5325 17.9001 18.8942 17.9001 16.5325 15.5095 14.8220 14.3717 14.1561 14.3233 14.3404 14.3841 14.3947 14.3717 14.3670 14.7780 15.5648 16.7172 18.2565 19.9201 19.4908 17.8698 16.5222 15.5095 14.7618 14.3233 14.6888 14.6927 14.7784 14.8241 14.8220 14.7780 14.8821 15.6989 16.9223 18.5219 20.4099 21.3186 19.5014 17.8698 16.5325 15.4680 14.6888 15.5765 15.2425 15.3179 15.4289 15.5095 15.5648 15.6989 16.2254 17.2920 18.7511 20.4231 21.9589 21.3186 19.4908 17.9001 16.5683 15.5765 16.6278 16.0859 16.1029 16.3156 16.5325 16.7172 16.9223 17.2920 17.9832 18.9524 19.9022 20.4231 20.4099 19.9201 18.8942 17.6714 16.6278 16.9125 16.6637 16.9125 17.4216 17.9001 18.2565 18.5219 18.7511 18.9524 19.0439 18.9524 18.7511 18.5219 18.2565 17.9001 17.4216 16.9125 16.1029 16.0859 16.6278 17.6714 18.8942 19.9201 20.4099 20.4231 19.9022 18.9524 17.9832 17.2920 16.9223 16.7172 16.5325 16.3156 16.1029 15.3179 15.2425 15.5765 16.5683 17.9001 19.4908 21.3186 21.9589 20.4231 18.7511 17.2920 16.2254 15.6989 15.5648 15.5095 15.4289 15.3179 14.7784 14.6927 14.6888 15.4680 16.5325 17.8698 19.5014 21.3186 20.4099 18.5219 16.9223 15.6989 14.8821 14.7780 14.8220 14.8241 14.7784 14.3841 14.3404 14.3233 14.7618 15.5095 16.5222 17.8698 19.4908 19.9201 18.2565 16.7172 15.5648 14.7780 14.3670 14.3717 14.3947 14.3841 14.1075 14.1110 14.1561 14.3717 14.8220 15.5095 16.5325 17.9001 18.8942 17.9001 16.5325 15.5095 14.8220 14.3717 14.1561 14.1110 14.1075 13.9421 13.9918 14.0552 14.1580 14.3717 14.7618 15.4680 16.5683 17.6714 17.4216 16.3156 15.4289 14.8241 14.3947 14.1110 13.9669 13.9421 13.8351 13.9326 13.9970 14.0552 14.1561 14.3233 14.6888 15.5765 16.6278 16.9125 16.1029 15.3179 14.7784 14.3841 14.1075 13.9421 13.8351 13.8459 13.9669 14.0552 14.1247 14.2162 14.3670 14.8365 15.9285 17.3047 18.2546 17.4710 16.3246 15.4673 14.8473 14.3841 14.0581 13.8459 13.9669 13.9421 13.9918 14.0552 14.1580 14.3717 14.7618 15.4680 16.5683 17.6714 17.4216 16.3156 15.4289 14.8241 14.3947 14.1110 13.9669 14.0552 13.9918 13.9421 13.9669 14.1110 14.3947 14.8241 15.4289 16.3156 17.4216 17.6714 16.5683 15.4680 14.7618 14.3717 14.1580 14.0552 14.1247 14.0552 13.9669 13.8459 14.0581 14.3841 14.8473 15.4673 16.3246 17.4710 18.2546 17.3047 15.9285 14.8365 14.3670 14.2162 14.1247 14.2162 14.1580 14.1110 14.0581 14.0728 14.3404 14.8241 15.4931 16.4088 17.6503 18.9455 18.4706 16.9230 15.6198 14.7780 14.3743 14.2162 14.3670 14.3717 14.3947 14.3841 14.3404 14.3233 14.7618 15.5095 16.5222 17.8698 19.4908 19.9201 18.2565 16.7172 15.5648 14.7780 14.3670 14.8365 14.7618 14.8241 14.8473 14.8241 14.7618 14.8365 15.6198 16.7172 18.1375 19.8770 21.4462 19.8770 18.1375 16.7172 15.6198 14.8365 15.9285 15.4680 15.4289 15.4673 15.4931 15.5095 15.6198 16.1341 17.1452 18.5219 20.1991 22.0724 21.7632 19.8770 18.2565 16.9230 15.9285 17.3047 16.5683 16.3156 16.3246 16.4088 16.5222 16.7172 17.1452 17.9433 19.0846 20.4231 21.6154 22.0724 21.4462 19.9201 18.4706 17.3047 18.2546 17.6714 17.4216 17.4710 17.6503 17.8698 18.1375 18.5219 19.0846 19.7713 20.3171 20.4231 20.1991 19.8770 19.4908 18.9455 18.2546 17.4710 17.4216 17.6714 18.2546 18.9455 19.4908 19.8770 20.1991 20.4231 20.3171 19.7713 19.0846 18.5219 18.1375 17.8698 17.6503 17.4710 16.3246 16.3156 16.5683 17.3047 18.4706 19.9201 21.4462 22.0724 21.6154 20.4231 19.0846 17.9433 17.1452 16.7172 16.5222 16.4088 16.3246 15.4673 15.4289 15.4680 15.9285 16.9230 18.2565 19.8770 21.7632 22.0724 20.1991 18.5219 17.1452 16.1341 15.6198 15.5095 15.4931 15.4673 14.8473 14.8241 14.7618 14.8365 15.6198 16.7172 18.1375 19.8770 21.4462 19.8770 18.1375 16.7172 15.6198 14.8365 14.7618 14.8241 14.8473 14.3841 14.3947 14.3717 14.3670 14.7780 15.5648 16.7172 18.2565 19.9201 19.4908 17.8698 16.5222 15.5095 14.7618 14.3233 14.3404 14.3841 14.0581 14.1110 14.1580 14.2162 14.3743 14.7780 15.6198 16.9230 18.4706 18.9455 17.6503 16.4088 15.4931 14.8241 14.3404 14.0728 14.0581 13.8459 13.9669 14.0552 14.1247 14.2162 14.3670 14.8365 15.9285 17.3047 18.2546 17.4710 16.3246 15.4673 14.8473 14.3841 14.0581 13.8459 13.9657 14.0728 14.1561 14.2162 14.2771 14.3922 14.8821 16.1341 17.7342 19.3787 19.0726 17.6044 16.3849 15.4673 14.7784 14.2809 13.9657 14.0728 14.0581 14.1110 14.1580 14.2162 14.3743 14.7780 15.6198 16.9230 18.4706 18.9455 17.6503 16.4088 15.4931 14.8241 14.3404 14.0728 14.1561 14.1110 14.1075 14.1110 14.1561 14.3717 14.8220 15.5095 16.5325 17.9001 18.8942 17.9001 16.5325 15.5095 14.8220 14.3717 14.1561 14.2162 14.1580 14.1110 14.0581 14.0728 14.3404 14.8241 15.4931 16.4088 17.6503 18.9455 18.4706 16.9230 15.6198 14.7780 14.3743 14.2162 14.2771 14.2162 14.1561 14.0728 13.9657 14.2809 14.7784 15.4673 16.3849 17.6044 19.0726 19.3787 17.7342 16.1341 14.8821 14.3922 14.2771 14.3922 14.3743 14.3717 14.3404 14.2809 14.2589 14.6927 15.4289 16.4088 17.6774 19.2501 20.4712 18.9278 17.1452 15.6989 14.7413 14.3922 14.8821 14.7780 14.8220 14.8241 14.7784 14.6927 14.6888 15.4680 16.5325 17.8698 19.5014 21.3186 20.4099 18.5219 16.9223 15.6989 14.8821 16.1341 15.6198 15.5095 15.4931 15.4673 15.4289 15.4680 15.9285 16.9230 18.2565 19.8770 21.7632 22.0724 20.1991 18.5219 17.1452 16.1341 17.7342 16.9230 16.5325 16.4088 16.3849 16.4088 16.5325 16.9230 17.7342 18.9278 20.4099 22.0724 23.5230 22.0724 20.4099 18.9278 17.7342 19.3787 18.4706 17.9001 17.6503 17.6044 17.6774 17.8698 18.2565 18.9278 19.8937 21.0357 21.9589 22.0724 21.7632 21.3186 20.4712 19.3787 19.0726 18.9455 18.8942 18.9455 19.0726 19.2501 19.5014 19.8770 20.4099 21.0357 21.3975 21.0357 20.4099 19.8770 19.5014 19.2501 19.0726 17.6044 17.6503 17.9001 18.4706 19.3787 20.4712 21.3186 21.7632 22.0724 21.9589 21.0357 19.8937 18.9278 18.2565 17.8698 17.6774 17.6044 16.3849 16.4088 16.5325 16.9230 17.7342 18.9278 20.4099 22.0724 23.5230 22.0724 20.4099 18.9278 17.7342 16.9230 16.5325 16.4088 16.3849 15.4673 15.4931 15.5095 15.6198 16.1341 17.1452 18.5219 20.1991 22.0724 21.7632 19.8770 18.2565 16.9230 15.9285 15.4680 15.4289 15.4673 14.7784 14.8241 14.8220 14.7780 14.8821 15.6989 16.9223 18.5219 20.4099 21.3186 19.5014 17.8698 16.5325 15.4680 14.6888 14.6927 14.7784 14.2809 14.3404 14.3717 14.3743 14.3922 14.7413 15.6989 17.1452 18.9278 20.4712 19.2501 17.6774 16.4088 15.4289 14.6927 14.2589 14.2809 13.9657 14.0728 14.1561 14.2162 14.2771 14.3922 14.8821 16.1341 17.7342 19.3787 19.0726 17.6044 16.3849 15.4673 14.7784 14.2809 13.9657 14.1818 14.2589 14.3233 14.3670 14.3922 14.4316 14.8344 16.2254 17.9433 19.8937 20.8928 19.1759 17.6044 16.3246 15.3179 14.5876 14.1818 14.2589 14.2809 14.3404 14.3717 14.3743 14.3922 14.7413 15.6989 17.1452 18.9278 20.4712 19.2501 17.6774 16.4088 15.4289 14.6927 14.2589 14.3233 14.3404 14.3841 14.3947 14.3717 14.3670 14.7780 15.5648 16.7172 18.2565 19.9201 19.4908 17.8698 16.5222 15.5095 14.7618 14.3233 14.3670 14.3717 14.3947 14.3841 14.3404 14.3233 14.7618 15.5095 16.5222 17.8698 19.4908 19.9201 18.2565 16.7172 15.5648 14.7780 14.3670 14.3922 14.3743 14.3717 14.3404 14.2809 14.2589 14.6927 15.4289 16.4088 17.6774 19.2501 20.4712 18.9278 17.1452 15.6989 14.7413 14.3922 14.4316 14.3922 14.3670 14.3233 14.2589 14.1818 14.5876 15.3179 16.3246 17.6044 19.1759 20.8928 19.8937 17.9433 16.2254 14.8344 14.4316 14.8344 14.7413 14.7780 14.7618 14.6927 14.5876 14.4805 15.2425 16.3156 17.6503 19.2501 21.1137 21.0357 19.0846 17.2920 15.8091 14.8344 16.2254 15.6989 15.5648 15.5095 15.4289 15.3179 15.2425 15.5765 16.5683 17.9001 19.4908 21.3186 21.9589 20.4231 18.7511 17.2920 16.2254 17.9433 17.1452 16.7172 16.5222 16.4088 16.3246 16.3156 16.5683 17.3047 18.4706 19.9201 21.4462 22.0724 21.6154 20.4231 19.0846 17.9433 19.8937 18.9278 18.2565 17.8698 17.6774 17.6044 17.6503 17.9001 18.4706 19.3787 20.4712 21.3186 21.7632 22.0724 21.9589 21.0357 19.8937 20.8928 20.4712 19.9201 19.4908 19.2501 19.1759 19.2501 19.4908 19.9201 20.4712 20.8928 21.1137 21.3186 21.4462 21.3186 21.1137 20.8928 19.1759 19.2501 19.4908 19.9201 20.4712 20.8928 21.1137 21.3186 21.4462 21.3186 21.1137 20.8928 20.4712 19.9201 19.4908 19.2501 19.1759 17.6044 17.6774 17.8698 18.2565 18.9278 19.8937 21.0357 21.9589 22.0724 21.7632 21.3186 20.4712 19.3787 18.4706 17.9001 17.6503 17.6044 16.3246 16.4088 16.5222 16.7172 17.1452 17.9433 19.0846 20.4231 21.6154 22.0724 21.4462 19.9201 18.4706 17.3047 16.5683 16.3156 16.3246 15.3179 15.4289 15.5095 15.5648 15.6989 16.2254 17.2920 18.7511 20.4231 21.9589 21.3186 19.4908 17.9001 16.5683 15.5765 15.2425 15.3179 14.5876 14.6927 14.7618 14.7780 14.7413 14.8344 15.8091 17.2920 19.0846 21.0357 21.1137 19.2501 17.6503 16.3156 15.2425 14.4805 14.5876 14.1818 14.2589 14.3233 14.3670 14.3922 14.4316 14.8344 16.2254 17.9433 19.8937 20.8928 19.1759 17.6044 16.3246 15.3179 14.5876 14.1818 14.4133 14.4805 14.6888 14.8365 14.8821 14.8344 15.0291 16.3304 17.9832 19.7713 21.3975 20.8928 19.0726 17.4710 16.1029 15.0039 14.4133 14.4805 14.5876 14.6927 14.7618 14.7780 14.7413 14.8344 15.8091 17.2920 19.0846 21.0357 21.1137 19.2501 17.6503 16.3156 15.2425 14.4805 14.6888 14.6927 14.7784 14.8241 14.8220 14.7780 14.8821 15.6989 16.9223 18.5219 20.4099 21.3186 19.5014 17.8698 16.5325 15.4680 14.6888 14.8365 14.7618 14.8241 14.8473 14.8241 14.7618 14.8365 15.6198 16.7172 18.1375 19.8770 21.4462 19.8770 18.1375 16.7172 15.6198 14.8365 14.8821 14.7780 14.8220 14.8241 14.7784 14.6927 14.6888 15.4680 16.5325 17.8698 19.5014 21.3186 20.4099 18.5219 16.9223 15.6989 14.8821 14.8344 14.7413 14.7780 14.7618 14.6927 14.5876 14.4805 15.2425 16.3156 17.6503 19.2501 21.1137 21.0357 19.0846 17.2920 15.8091 14.8344 15.0291 14.8344 14.8821 14.8365 14.6888 14.4805 14.4133 15.0039 16.1029 17.4710 19.0726 20.8928 21.3975 19.7713 17.9832 16.3304 15.0291 16.3304 15.8091 15.6989 15.6198 15.4680 15.2425 15.0039 15.0855 16.0859 17.4216 18.9455 20.4712 21.0357 20.3171 18.9524 17.4913 16.3304 17.9832 17.2920 16.9223 16.7172 16.5325 16.3156 16.1029 16.0859 16.6278 17.6714 18.8942 19.9201 20.4099 20.4231 19.9022 18.9524 17.9832 19.7713 19.0846 18.5219 18.1375 17.8698 17.6503 17.4710 17.4216 17.6714 18.2546 18.9455 19.4908 19.8770 20.1991 20.4231 20.3171 19.7713 21.3975 21.0357 20.4099 19.8770 19.5014 19.2501 19.0726 18.9455 18.8942 18.9455 19.0726 19.2501 19.5014 19.8770 20.4099 21.0357 21.3975 20.8928 21.1137 21.3186 21.4462 21.3186 21.1137 20.8928 20.4712 19.9201 19.4908 19.2501 19.1759 19.2501 19.4908 19.9201 20.4712 20.8928 19.0726 19.2501 19.5014 19.8770 20.4099 21.0357 21.3975 21.0357 20.4099 19.8770 19.5014 19.2501 19.0726 18.9455 18.8942 18.9455 19.0726 17.4710 17.6503 17.8698 18.1375 18.5219 19.0846 19.7713 20.3171 20.4231 20.1991 19.8770 19.4908 18.9455 18.2546 17.6714 17.4216 17.4710 16.1029 16.3156 16.5325 16.7172 16.9223 17.2920 17.9832 18.9524 19.9022 20.4231 20.4099 19.9201 18.8942 17.6714 16.6278 16.0859 16.1029 15.0039 15.2425 15.4680 15.6198 15.6989 15.8091 16.3304 17.4913 18.9524 20.3171 21.0357 20.4712 18.9455 17.4216 16.0859 15.0855 15.0039 14.4133 14.4805 14.6888 14.8365 14.8821 14.8344 15.0291 16.3304 17.9832 19.7713 21.3975 20.8928 19.0726 17.4710 16.1029 15.0039 14.4133 14.5847 15.0855 15.5765 15.9285 16.1341 16.2254 16.3304 16.8434 17.9130 19.0439 19.7713 19.8937 19.3787 18.2546 16.9125 15.6179 14.5847 15.0855 15.0039 15.2425 15.4680 15.6198 15.6989 15.8091 16.3304 17.4913 18.9524 20.3171 21.0357 20.4712 18.9455 17.4216 16.0859 15.0855 15.5765 15.2425 15.3179 15.4289 15.5095 15.5648 15.6989 16.2254 17.2920 18.7511 20.4231 21.9589 21.3186 19.4908 17.9001 16.5683 15.5765 15.9285 15.4680 15.4289 15.4673 15.4931 15.5095 15.6198 16.1341 17.1452 18.5219 20.1991 22.0724 21.7632 19.8770 18.2565 16.9230 15.9285 16.1341 15.6198 15.5095 15.4931 15.4673 15.4289 15.4680 15.9285 16.9230 18.2565 19.8770 21.7632 22.0724 20.1991 18.5219 17.1452 16.1341 16.2254 15.6989 15.5648 15.5095 15.4289 15.3179 15.2425 15.5765 16.5683 17.9001 19.4908 21.3186 21.9589 20.4231 18.7511 17.2920 16.2254 16.3304 15.8091 15.6989 15.6198 15.4680 15.2425 15.0039 15.0855 16.0859 17.4216 18.9455 20.4712 21.0357 20.3171 18.9524 17.4913 16.3304 16.8434 16.3304 16.2254 16.1341 15.9285 15.5765 15.0855 14.5847 15.6179 16.9125 18.2546 19.3787 19.8937 19.7713 19.0439 17.9130 16.8434 17.9130 17.4913 17.2920 17.1452 16.9230 16.5683 16.0859 15.6179 15.7616 16.6637 17.6714 18.4706 18.9278 19.0846 18.9524 18.5047 17.9130 19.0439 18.9524 18.7511 18.5219 18.2565 17.9001 17.4216 16.9125 16.6637 16.9125 17.4216 17.9001 18.2565 18.5219 18.7511 18.9524 19.0439 19.7713 20.3171 20.4231 20.1991 19.8770 19.4908 18.9455 18.2546 17.6714 17.4216 17.4710 17.6503 17.8698 18.1375 18.5219 19.0846 19.7713 19.8937 21.0357 21.9589 22.0724 21.7632 21.3186 20.4712 19.3787 18.4706 17.9001 17.6503 17.6044 17.6774 17.8698 18.2565 18.9278 19.8937 19.3787 20.4712 21.3186 21.7632 22.0724 21.9589 21.0357 19.8937 18.9278 18.2565 17.8698 17.6774 17.6044 17.6503 17.9001 18.4706 19.3787 18.2546 18.9455 19.4908 19.8770 20.1991 20.4231 20.3171 19.7713 19.0846 18.5219 18.1375 17.8698 17.6503 17.4710 17.4216 17.6714 18.2546 16.9125 17.4216 17.9001 18.2565 18.5219 18.7511 18.9524 19.0439 18.9524 18.7511 18.5219 18.2565 17.9001 17.4216 16.9125 16.6637 16.9125 15.6179 16.0859 16.5683 16.9230 17.1452 17.2920 17.4913 17.9130 18.5047 18.9524 19.0846 18.9278 18.4706 17.6714 16.6637 15.7616 15.6179 14.5847 15.0855 15.5765 15.9285 16.1341 16.2254 16.3304 16.8434 17.9130 19.0439 19.7713 19.8937 19.3787 18.2546 16.9125 15.6179 14.5847 14.9529 15.7616 16.6278 17.3047 17.7342 17.9433 17.9832 17.9130 17.8554 17.9130 17.9832 17.9433 17.7342 17.3047 16.6278 15.7616 14.9529 15.7616 15.6179 16.0859 16.5683 16.9230 17.1452 17.2920 17.4913 17.9130 18.5047 18.9524 19.0846 18.9278 18.4706 17.6714 16.6637 15.7616 16.6278 16.0859 16.1029 16.3156 16.5325 16.7172 16.9223 17.2920 17.9832 18.9524 19.9022 20.4231 20.4099 19.9201 18.8942 17.6714 16.6278 17.3047 16.5683 16.3156 16.3246 16.4088 16.5222 16.7172 17.1452 17.9433 19.0846 20.4231 21.6154 22.0724 21.4462 19.9201 18.4706 17.3047 17.7342 16.9230 16.5325 16.4088 16.3849 16.4088 16.5325 16.9230 17.7342 18.9278 20.4099 22.0724 23.5230 22.0724 20.4099 18.9278 17.7342 17.9433 17.1452 16.7172 16.5222 16.4088 16.3246 16.3156 16.5683 17.3047 18.4706 19.9201 21.4462 22.0724 21.6154 20.4231 19.0846 17.9433 17.9832 17.2920 16.9223 16.7172 16.5325 16.3156 16.1029 16.0859 16.6278 17.6714 18.8942 19.9201 20.4099 20.4231 19.9022 18.9524 17.9832 17.9130 17.4913 17.2920 17.1452 16.9230 16.5683 16.0859 15.6179 15.7616 16.6637 17.6714 18.4706 18.9278 19.0846 18.9524 18.5047 17.9130 17.8554 17.9130 17.9832 17.9433 17.7342 17.3047 16.6278 15.7616 14.9529 15.7616 16.6278 17.3047 17.7342 17.9433 17.9832 17.9130 17.8554 17.9130 18.5047 18.9524 19.0846 18.9278 18.4706 17.6714 16.6637 15.7616 15.6179 16.0859 16.5683 16.9230 17.1452 17.2920 17.4913 17.9130 17.9832 18.9524 19.9022 20.4231 20.4099 19.9201 18.8942 17.6714 16.6278 16.0859 16.1029 16.3156 16.5325 16.7172 16.9223 17.2920 17.9832 17.9433 19.0846 20.4231 21.6154 22.0724 21.4462 19.9201 18.4706 17.3047 16.5683 16.3156 16.3246 16.4088 16.5222 16.7172 17.1452 17.9433 17.7342 18.9278 20.4099 22.0724 23.5230 22.0724 20.4099 18.9278 17.7342 16.9230 16.5325 16.4088 16.3849 16.4088 16.5325 16.9230 17.7342 17.3047 18.4706 19.9201 21.4462 22.0724 21.6154 20.4231 19.0846 17.9433 17.1452 16.7172 16.5222 16.4088 16.3246 16.3156 16.5683 17.3047 16.6278 17.6714 18.8942 19.9201 20.4099 20.4231 19.9022 18.9524 17.9832 17.2920 16.9223 16.7172 16.5325 16.3156 16.1029 16.0859 16.6278 15.7616 16.6637 17.6714 18.4706 18.9278 19.0846 18.9524 18.5047 17.9130 17.4913 17.2920 17.1452 16.9230 16.5683 16.0859 15.6179 15.7616 14.9529 15.7616 16.6278 17.3047 17.7342 17.9433 17.9832 17.9130 17.8554 17.9130 17.9832 17.9433 17.7342 17.3047 16.6278 15.7616 14.9529 14.5847 15.6179 16.9125 18.2546 19.3787 19.8937 19.7713 19.0439 17.9130 16.8434 16.3304 16.2254 16.1341 15.9285 15.5765 15.0855 14.5847 15.6179 15.7616 16.6637 17.6714 18.4706 18.9278 19.0846 18.9524 18.5047 17.9130 17.4913 17.2920 17.1452 16.9230 16.5683 16.0859 15.6179 16.9125 16.6637 16.9125 17.4216 17.9001 18.2565 18.5219 18.7511 18.9524 19.0439 18.9524 18.7511 18.5219 18.2565 17.9001 17.4216 16.9125 18.2546 17.6714 17.4216 17.4710 17.6503 17.8698 18.1375 18.5219 19.0846 19.7713 20.3171 20.4231 20.1991 19.8770 19.4908 18.9455 18.2546 19.3787 18.4706 17.9001 17.6503 17.6044 17.6774 17.8698 18.2565 18.9278 19.8937 21.0357 21.9589 22.0724 21.7632 21.3186 20.4712 19.3787 19.8937 18.9278 18.2565 17.8698 17.6774 17.6044 17.6503 17.9001 18.4706 19.3787 20.4712 21.3186 21.7632 22.0724 21.9589 21.0357 19.8937 19.7713 19.0846 18.5219 18.1375 17.8698 17.6503 17.4710 17.4216 17.6714 18.2546 18.9455 19.4908 19.8770 20.1991 20.4231 20.3171 19.7713 19.0439 18.9524 18.7511 18.5219 18.2565 17.9001 17.4216 16.9125 16.6637 16.9125 17.4216 17.9001 18.2565 18.5219 18.7511 18.9524 19.0439 17.9130 18.5047 18.9524 19.0846 18.9278 18.4706 17.6714 16.6637 15.7616 15.6179 16.0859 16.5683 16.9230 17.1452 17.2920 17.4913 17.9130 16.8434 17.9130 19.0439 19.7713 19.8937 19.3787 18.2546 16.9125 15.6179 14.5847 15.0855 15.5765 15.9285 16.1341 16.2254 16.3304 16.8434 16.3304 17.4913 18.9524 20.3171 21.0357 20.4712 18.9455 17.4216 16.0859 15.0855 15.0039 15.2425 15.4680 15.6198 15.6989 15.8091 16.3304 16.2254 17.2920 18.7511 20.4231 21.9589 21.3186 19.4908 17.9001 16.5683 15.5765 15.2425 15.3179 15.4289 15.5095 15.5648 15.6989 16.2254 16.1341 17.1452 18.5219 20.1991 22.0724 21.7632 19.8770 18.2565 16.9230 15.9285 15.4680 15.4289 15.4673 15.4931 15.5095 15.6198 16.1341 15.9285 16.9230 18.2565 19.8770 21.7632 22.0724 20.1991 18.5219 17.1452 16.1341 15.6198 15.5095 15.4931 15.4673 15.4289 15.4680 15.9285 15.5765 16.5683 17.9001 19.4908 21.3186 21.9589 20.4231 18.7511 17.2920 16.2254 15.6989 15.5648 15.5095 15.4289 15.3179 15.2425 15.5765 15.0855 16.0859 17.4216 18.9455 20.4712 21.0357 20.3171 18.9524 17.4913 16.3304 15.8091 15.6989 15.6198 15.4680 15.2425 15.0039 15.0855 14.5847 15.6179 16.9125 18.2546 19.3787 19.8937 19.7713 19.0439 17.9130 16.8434 16.3304 16.2254 16.1341 15.9285 15.5765 15.0855 14.5847 14.4133 15.0039 16.1029 17.4710 19.0726 20.8928 21.3975 19.7713 17.9832 16.3304 15.0291 14.8344 14.8821 14.8365 14.6888 14.4805 14.4133 15.0039 15.0855 16.0859 17.4216 18.9455 20.4712 21.0357 20.3171 18.9524 17.4913 16.3304 15.8091 15.6989 15.6198 15.4680 15.2425 15.0039 16.1029 16.0859 16.6278 17.6714 18.8942 19.9201 20.4099 20.4231 19.9022 18.9524 17.9832 17.2920 16.9223 16.7172 16.5325 16.3156 16.1029 17.4710 17.4216 17.6714 18.2546 18.9455 19.4908 19.8770 20.1991 20.4231 20.3171 19.7713 19.0846 18.5219 18.1375 17.8698 17.6503 17.4710 19.0726 18.9455 18.8942 18.9455 19.0726 19.2501 19.5014 19.8770 20.4099 21.0357 21.3975 21.0357 20.4099 19.8770 19.5014 19.2501 19.0726 20.8928 20.4712 19.9201 19.4908 19.2501 19.1759 19.2501 19.4908 19.9201 20.4712 20.8928 21.1137 21.3186 21.4462 21.3186 21.1137 20.8928 21.3975 21.0357 20.4099 19.8770 19.5014 19.2501 19.0726 18.9455 18.8942 18.9455 19.0726 19.2501 19.5014 19.8770 20.4099 21.0357 21.3975 19.7713 20.3171 20.4231 20.1991 19.8770 19.4908 18.9455 18.2546 17.6714 17.4216 17.4710 17.6503 17.8698 18.1375 18.5219 19.0846 19.7713 17.9832 18.9524 19.9022 20.4231 20.4099 19.9201 18.8942 17.6714 16.6278 16.0859 16.1029 16.3156 16.5325 16.7172 16.9223 17.2920 17.9832 16.3304 17.4913 18.9524 20.3171 21.0357 20.4712 18.9455 17.4216 16.0859 15.0855 15.0039 15.2425 15.4680 15.6198 15.6989 15.8091 16.3304 15.0291 16.3304 17.9832 19.7713 21.3975 20.8928 19.0726 17.4710 16.1029 15.0039 14.4133 14.4805 14.6888 14.8365 14.8821 14.8344 15.0291 14.8344 15.8091 17.2920 19.0846 21.0357 21.1137 19.2501 17.6503 16.3156 15.2425 14.4805 14.5876 14.6927 14.7618 14.7780 14.7413 14.8344 14.8821 15.6989 16.9223 18.5219 20.4099 21.3186 19.5014 17.8698 16.5325 15.4680 14.6888 14.6927 14.7784 14.8241 14.8220 14.7780 14.8821 14.8365 15.6198 16.7172 18.1375 19.8770 21.4462 19.8770 18.1375 16.7172 15.6198 14.8365 14.7618 14.8241 14.8473 14.8241 14.7618 14.8365 14.6888 15.4680 16.5325 17.8698 19.5014 21.3186 20.4099 18.5219 16.9223 15.6989 14.8821 14.7780 14.8220 14.8241 14.7784 14.6927 14.6888 14.4805 15.2425 16.3156 17.6503 19.2501 21.1137 21.0357 19.0846 17.2920 15.8091 14.8344 14.7413 14.7780 14.7618 14.6927 14.5876 14.4805 14.4133 15.0039 16.1029 17.4710 19.0726 20.8928 21.3975 19.7713 17.9832 16.3304 15.0291 14.8344 14.8821 14.8365 14.6888 14.4805 14.4133 14.1818 14.5876 15.3179 16.3246 17.6044 19.1759 20.8928 19.8937 17.9433 16.2254 14.8344 14.4316 14.3922 14.3670 14.3233 14.2589 14.1818 14.5876 14.4805 15.2425 16.3156 17.6503 19.2501 21.1137 21.0357 19.0846 17.2920 15.8091 14.8344 14.7413 14.7780 14.7618 14.6927 14.5876 15.3179 15.2425 15.5765 16.5683 17.9001 19.4908 21.3186 21.9589 20.4231 18.7511 17.2920 16.2254 15.6989 15.5648 15.5095 15.4289 15.3179 16.3246 16.3156 16.5683 17.3047 18.4706 19.9201 21.4462 22.0724 21.6154 20.4231 19.0846 17.9433 17.1452 16.7172 16.5222 16.4088 16.3246 17.6044 17.6503 17.9001 18.4706 19.3787 20.4712 21.3186 21.7632 22.0724 21.9589 21.0357 19.8937 18.9278 18.2565 17.8698 17.6774 17.6044 19.1759 19.2501 19.4908 19.9201 20.4712 20.8928 21.1137 21.3186 21.4462 21.3186 21.1137 20.8928 20.4712 19.9201 19.4908 19.2501 19.1759 20.8928 21.1137 21.3186 21.4462 21.3186 21.1137 20.8928 20.4712 19.9201 19.4908 19.2501 19.1759 19.2501 19.4908 19.9201 20.4712 20.8928 19.8937 21.0357 21.9589 22.0724 21.7632 21.3186 20.4712 19.3787 18.4706 17.9001 17.6503 17.6044 17.6774 17.8698 18.2565 18.9278 19.8937 17.9433 19.0846 20.4231 21.6154 22.0724 21.4462 19.9201 18.4706 17.3047 16.5683 16.3156 16.3246 16.4088 16.5222 16.7172 17.1452 17.9433 16.2254 17.2920 18.7511 20.4231 21.9589 21.3186 19.4908 17.9001 16.5683 15.5765 15.2425 15.3179 15.4289 15.5095 15.5648 15.6989 16.2254 14.8344 15.8091 17.2920 19.0846 21.0357 21.1137 19.2501 17.6503 16.3156 15.2425 14.4805 14.5876 14.6927 14.7618 14.7780 14.7413 14.8344 14.4316 14.8344 16.2254 17.9433 19.8937 20.8928 19.1759 17.6044 16.3246 15.3179 14.5876 14.1818 14.2589 14.3233 14.3670 14.3922 14.4316 14.3922 14.7413 15.6989 17.1452 18.9278 20.4712 19.2501 17.6774 16.4088 15.4289 14.6927 14.2589 14.2809 14.3404 14.3717 14.3743 14.3922 14.3670 14.7780 15.5648 16.7172 18.2565 19.9201 19.4908 17.8698 16.5222 15.5095 14.7618 14.3233 14.3404 14.3841 14.3947 14.3717 14.3670 14.3233 14.7618 15.5095 16.5222 17.8698 19.4908 19.9201 18.2565 16.7172 15.5648 14.7780 14.3670 14.3717 14.3947 14.3841 14.3404 14.3233 14.2589 14.6927 15.4289 16.4088 17.6774 19.2501 20.4712 18.9278 17.1452 15.6989 14.7413 14.3922 14.3743 14.3717 14.3404 14.2809 14.2589 14.1818 14.5876 15.3179 16.3246 17.6044 19.1759 20.8928 19.8937 17.9433 16.2254 14.8344 14.4316 14.3922 14.3670 14.3233 14.2589 14.1818 13.9657 14.2809 14.7784 15.4673 16.3849 17.6044 19.0726 19.3787 17.7342 16.1341 14.8821 14.3922 14.2771 14.2162 14.1561 14.0728 13.9657 14.2809 14.2589 14.6927 15.4289 16.4088 17.6774 19.2501 20.4712 18.9278 17.1452 15.6989 14.7413 14.3922 14.3743 14.3717 14.3404 14.2809 14.7784 14.6927 14.6888 15.4680 16.5325 17.8698 19.5014 21.3186 20.4099 18.5219 16.9223 15.6989 14.8821 14.7780 14.8220 14.8241 14.7784 15.4673 15.4289 15.4680 15.9285 16.9230 18.2565 19.8770 21.7632 22.0724 20.1991 18.5219 17.1452 16.1341 15.6198 15.5095 15.4931 15.4673 16.3849 16.4088 16.5325 16.9230 17.7342 18.9278 20.4099 22.0724 23.5230 22.0724 20.4099 18.9278 17.7342 16.9230 16.5325 16.4088 16.3849 17.6044 17.6774 17.8698 18.2565 18.9278 19.8937 21.0357 21.9589 22.0724 21.7632 21.3186 20.4712 19.3787 18.4706 17.9001 17.6503 17.6044 19.0726 19.2501 19.5014 19.8770 20.4099 21.0357 21.3975 21.0357 20.4099 19.8770 19.5014 19.2501 19.0726 18.9455 18.8942 18.9455 19.0726 19.3787 20.4712 21.3186 21.7632 22.0724 21.9589 21.0357 19.8937 18.9278 18.2565 17.8698 17.6774 17.6044 17.6503 17.9001 18.4706 19.3787 17.7342 18.9278 20.4099 22.0724 23.5230 22.0724 20.4099 18.9278 17.7342 16.9230 16.5325 16.4088 16.3849 16.4088 16.5325 16.9230 17.7342 16.1341 17.1452 18.5219 20.1991 22.0724 21.7632 19.8770 18.2565 16.9230 15.9285 15.4680 15.4289 15.4673 15.4931 15.5095 15.6198 16.1341 14.8821 15.6989 16.9223 18.5219 20.4099 21.3186 19.5014 17.8698 16.5325 15.4680 14.6888 14.6927 14.7784 14.8241 14.8220 14.7780 14.8821 14.3922 14.7413 15.6989 17.1452 18.9278 20.4712 19.2501 17.6774 16.4088 15.4289 14.6927 14.2589 14.2809 14.3404 14.3717 14.3743 14.3922 14.2771 14.3922 14.8821 16.1341 17.7342 19.3787 19.0726 17.6044 16.3849 15.4673 14.7784 14.2809 13.9657 14.0728 14.1561 14.2162 14.2771 14.2162 14.3743 14.7780 15.6198 16.9230 18.4706 18.9455 17.6503 16.4088 15.4931 14.8241 14.3404 14.0728 14.0581 14.1110 14.1580 14.2162 14.1561 14.3717 14.8220 15.5095 16.5325 17.9001 18.8942 17.9001 16.5325 15.5095 14.8220 14.3717 14.1561 14.1110 14.1075 14.1110 14.1561 14.0728 14.3404 14.8241 15.4931 16.4088 17.6503 18.9455 18.4706 16.9230 15.6198 14.7780 14.3743 14.2162 14.1580 14.1110 14.0581 14.0728 13.9657 14.2809 14.7784 15.4673 16.3849 17.6044 19.0726 19.3787 17.7342 16.1341 14.8821 14.3922 14.2771 14.2162 14.1561 14.0728 13.9657 13.8459 14.0581 14.3841 14.8473 15.4673 16.3246 17.4710 18.2546 17.3047 15.9285 14.8365 14.3670 14.2162 14.1247 14.0552 13.9669 13.8459 14.0581 14.0728 14.3404 14.8241 15.4931 16.4088 17.6503 18.9455 18.4706 16.9230 15.6198 14.7780 14.3743 14.2162 14.1580 14.1110 14.0581 14.3841 14.3404 14.3233 14.7618 15.5095 16.5222 17.8698 19.4908 19.9201 18.2565 16.7172 15.5648 14.7780 14.3670 14.3717 14.3947 14.3841 14.8473 14.8241 14.7618 14.8365 15.6198 16.7172 18.1375 19.8770 21.4462 19.8770 18.1375 16.7172 15.6198 14.8365 14.7618 14.8241 14.8473 15.4673 15.4931 15.5095 15.6198 16.1341 17.1452 18.5219 20.1991 22.0724 21.7632 19.8770 18.2565 16.9230 15.9285 15.4680 15.4289 15.4673 16.3246 16.4088 16.5222 16.7172 17.1452 17.9433 19.0846 20.4231 21.6154 22.0724 21.4462 19.9201 18.4706 17.3047 16.5683 16.3156 16.3246 17.4710 17.6503 17.8698 18.1375 18.5219 19.0846 19.7713 20.3171 20.4231 20.1991 19.8770 19.4908 18.9455 18.2546 17.6714 17.4216 17.4710 18.2546 18.9455 19.4908 19.8770 20.1991 20.4231 20.3171 19.7713 19.0846 18.5219 18.1375 17.8698 17.6503 17.4710 17.4216 17.6714 18.2546 17.3047 18.4706 19.9201 21.4462 22.0724 21.6154 20.4231 19.0846 17.9433 17.1452 16.7172 16.5222 16.4088 16.3246 16.3156 16.5683 17.3047 15.9285 16.9230 18.2565 19.8770 21.7632 22.0724 20.1991 18.5219 17.1452 16.1341 15.6198 15.5095 15.4931 15.4673 15.4289 15.4680 15.9285 14.8365 15.6198 16.7172 18.1375 19.8770 21.4462 19.8770 18.1375 16.7172 15.6198 14.8365 14.7618 14.8241 14.8473 14.8241 14.7618 14.8365 14.3670 14.7780 15.5648 16.7172 18.2565 19.9201 19.4908 17.8698 16.5222 15.5095 14.7618 14.3233 14.3404 14.3841 14.3947 14.3717 14.3670 14.2162 14.3743 14.7780 15.6198 16.9230 18.4706 18.9455 17.6503 16.4088 15.4931 14.8241 14.3404 14.0728 14.0581 14.1110 14.1580 14.2162 14.1247 14.2162 14.3670 14.8365 15.9285 17.3047 18.2546 17.4710 16.3246 15.4673 14.8473 14.3841 14.0581 13.8459 13.9669 14.0552 14.1247 14.0552 14.1580 14.3717 14.7618 15.4680 16.5683 17.6714 17.4216 16.3156 15.4289 14.8241 14.3947 14.1110 13.9669 13.9421 13.9918 14.0552 13.9669 14.1110 14.3947 14.8241 15.4289 16.3156 17.4216 17.6714 16.5683 15.4680 14.7618 14.3717 14.1580 14.0552 13.9918 13.9421 13.9669 13.8459 14.0581 14.3841 14.8473 15.4673 16.3246 17.4710 18.2546 17.3047 15.9285 14.8365 14.3670 14.2162 14.1247 14.0552 13.9669 13.8459 13.8351 13.9421 14.1075 14.3841 14.7784 15.3179 16.1029 16.9125 16.6278 15.5765 14.6888 14.3233 14.1561 14.0552 13.9970 13.9326 13.8351 13.9421 13.9669 14.1110 14.3947 14.8241 15.4289 16.3156 17.4216 17.6714 16.5683 15.4680 14.7618 14.3717 14.1580 14.0552 13.9918 13.9421 14.1075 14.1110 14.1561 14.3717 14.8220 15.5095 16.5325 17.9001 18.8942 17.9001 16.5325 15.5095 14.8220 14.3717 14.1561 14.1110 14.1075 14.3841 14.3947 14.3717 14.3670 14.7780 15.5648 16.7172 18.2565 19.9201 19.4908 17.8698 16.5222 15.5095 14.7618 14.3233 14.3404 14.3841 14.7784 14.8241 14.8220 14.7780 14.8821 15.6989 16.9223 18.5219 20.4099 21.3186 19.5014 17.8698 16.5325 15.4680 14.6888 14.6927 14.7784 15.3179 15.4289 15.5095 15.5648 15.6989 16.2254 17.2920 18.7511 20.4231 21.9589 21.3186 19.4908 17.9001 16.5683 15.5765 15.2425 15.3179 16.1029 16.3156 16.5325 16.7172 16.9223 17.2920 17.9832 18.9524 19.9022 20.4231 20.4099 19.9201 18.8942 17.6714 16.6278 16.0859 16.1029 16.9125 17.4216 17.9001 18.2565 18.5219 18.7511 18.9524 19.0439 18.9524 18.7511 18.5219 18.2565 17.9001 17.4216 16.9125 16.6637 16.9125 16.6278 17.6714 18.8942 19.9201 20.4099 20.4231 19.9022 18.9524 17.9832 17.2920 16.9223 16.7172 16.5325 16.3156 16.1029 16.0859 16.6278 15.5765 16.5683 17.9001 19.4908 21.3186 21.9589 20.4231 18.7511 17.2920 16.2254 15.6989 15.5648 15.5095 15.4289 15.3179 15.2425 15.5765 14.6888 15.4680 16.5325 17.8698 19.5014 21.3186 20.4099 18.5219 16.9223 15.6989 14.8821 14.7780 14.8220 14.8241 14.7784 14.6927 14.6888 14.3233 14.7618 15.5095 16.5222 17.8698 19.4908 19.9201 18.2565 16.7172 15.5648 14.7780 14.3670 14.3717 14.3947 14.3841 14.3404 14.3233 14.1561 14.3717 14.8220 15.5095 16.5325 17.9001 18.8942 17.9001 16.5325 15.5095 14.8220 14.3717 14.1561 14.1110 14.1075 14.1110 14.1561 14.0552 14.1580 14.3717 14.7618 15.4680 16.5683 17.6714 17.4216 16.3156 15.4289 14.8241 14.3947 14.1110 13.9669 13.9421 13.9918 14.0552 13.9970 14.0552 14.1561 14.3233 14.6888 15.5765 16.6278 16.9125 16.1029 15.3179 14.7784 14.3841 14.1075 13.9421 13.8351 13.9326 13.9970 13.9326 13.9918 14.1110 14.3404 14.6927 15.2425 16.0859 16.6637 16.0859 15.2425 14.6927 14.3404 14.1110 13.9918 13.9326 13.8997 13.9326 13.8351 13.9421 14.1075 14.3841 14.7784 15.3179 16.1029 16.9125 16.6278 15.5765 14.6888 14.3233 14.1561 14.0552 13.9970 13.9326 13.8351 13.8664 13.8997 13.9421 14.0581 14.2809 14.5876 15.0039 15.6179 15.7616 15.0855 14.4805 14.2589 14.0728 13.9669 13.9326 13.9125 13.8664 13.8997 13.9326 13.9918 14.1110 14.3404 14.6927 15.2425 16.0859 16.6637 16.0859 15.2425 14.6927 14.3404 14.1110 13.9918 13.9326 13.8997 13.9421 13.9918 14.0552 14.1580 14.3717 14.7618 15.4680 16.5683 17.6714 17.4216 16.3156 15.4289 14.8241 14.3947 14.1110 13.9669 13.9421 14.0581 14.1110 14.1580 14.2162 14.3743 14.7780 15.6198 16.9230 18.4706 18.9455 17.6503 16.4088 15.4931 14.8241 14.3404 14.0728 14.0581 14.2809 14.3404 14.3717 14.3743 14.3922 14.7413 15.6989 17.1452 18.9278 20.4712 19.2501 17.6774 16.4088 15.4289 14.6927 14.2589 14.2809 14.5876 14.6927 14.7618 14.7780 14.7413 14.8344 15.8091 17.2920 19.0846 21.0357 21.1137 19.2501 17.6503 16.3156 15.2425 14.4805 14.5876 15.0039 15.2425 15.4680 15.6198 15.6989 15.8091 16.3304 17.4913 18.9524 20.3171 21.0357 20.4712 18.9455 17.4216 16.0859 15.0855 15.0039 15.6179 16.0859 16.5683 16.9230 17.1452 17.2920 17.4913 17.9130 18.5047 18.9524 19.0846 18.9278 18.4706 17.6714 16.6637 15.7616 15.6179 15.7616 16.6637 17.6714 18.4706 18.9278 19.0846 18.9524 18.5047 17.9130 17.4913 17.2920 17.1452 16.9230 16.5683 16.0859 15.6179 15.7616 15.0855 16.0859 17.4216 18.9455 20.4712 21.0357 20.3171 18.9524 17.4913 16.3304 15.8091 15.6989 15.6198 15.4680 15.2425 15.0039 15.0855 14.4805 15.2425 16.3156 17.6503 19.2501 21.1137 21.0357 19.0846 17.2920 15.8091 14.8344 14.7413 14.7780 14.7618 14.6927 14.5876 14.4805 14.2589 14.6927 15.4289 16.4088 17.6774 19.2501 20.4712 18.9278 17.1452 15.6989 14.7413 14.3922 14.3743 14.3717 14.3404 14.2809 14.2589 14.0728 14.3404 14.8241 15.4931 16.4088 17.6503 18.9455 18.4706 16.9230 15.6198 14.7780 14.3743 14.2162 14.1580 14.1110 14.0581 14.0728 13.9669 14.1110 14.3947 14.8241 15.4289 16.3156 17.4216 17.6714 16.5683 15.4680 14.7618 14.3717 14.1580 14.0552 13.9918 13.9421 13.9669 13.9326 13.9918 14.1110 14.3404 14.6927 15.2425 16.0859 16.6637 16.0859 15.2425 14.6927 14.3404 14.1110 13.9918 13.9326 13.8997 13.9326 13.9125 13.9326 13.9669 14.0728 14.2589 14.4805 15.0855 15.7616 15.6179 15.0039 14.5876 14.2809 14.0581 13.9421 13.8997 13.8664 13.9125 13.8664 13.8997 13.9421 14.0581 14.2809 14.5876 15.0039 15.6179 15.7616 15.0855 14.4805 14.2589 14.0728 13.9669 13.9326 13.9125 13.8664 13.8830 13.8664 13.8351 13.8459 13.9657 14.1818 14.4133 14.5847 14.9529 14.5847 14.4133 14.1818 13.9657 13.8459 13.8351 13.8664 13.8830 13.8664 13.9125 13.9326 13.9669 14.0728 14.2589 14.4805 15.0855 15.7616 15.6179 15.0039 14.5876 14.2809 14.0581 13.9421 13.8997 13.8664 13.8351 13.9326 13.9970 14.0552 14.1561 14.3233 14.6888 15.5765 16.6278 16.9125 16.1029 15.3179 14.7784 14.3841 14.1075 13.9421 13.8351 13.8459 13.9669 14.0552 14.1247 14.2162 14.3670 14.8365 15.9285 17.3047 18.2546 17.4710 16.3246 15.4673 14.8473 14.3841 14.0581 13.8459 13.9657 14.0728 14.1561 14.2162 14.2771 14.3922 14.8821 16.1341 17.7342 19.3787 19.0726 17.6044 16.3849 15.4673 14.7784 14.2809 13.9657 14.1818 14.2589 14.3233 14.3670 14.3922 14.4316 14.8344 16.2254 17.9433 19.8937 20.8928 19.1759 17.6044 16.3246 15.3179 14.5876 14.1818 14.4133 14.4805 14.6888 14.8365 14.8821 14.8344 15.0291 16.3304 17.9832 19.7713 21.3975 20.8928 19.0726 17.4710 16.1029 15.0039 14.4133 14.5847 15.0855 15.5765 15.9285 16.1341 16.2254 16.3304 16.8434 17.9130 19.0439 19.7713 19.8937 19.3787 18.2546 16.9125 15.6179 14.5847 14.9529 15.7616 16.6278 17.3047 17.7342 17.9433 17.9832 17.9130 17.8554 17.9130 17.9832 17.9433 17.7342 17.3047 16.6278 15.7616 14.9529 14.5847 15.6179 16.9125 18.2546 19.3787 19.8937 19.7713 19.0439 17.9130 16.8434 16.3304 16.2254 16.1341 15.9285 15.5765 15.0855 14.5847 14.4133 15.0039 16.1029 17.4710 19.0726 20.8928 21.3975 19.7713 17.9832 16.3304 15.0291 14.8344 14.8821 14.8365 14.6888 14.4805 14.4133 14.1818 14.5876 15.3179 16.3246 17.6044 19.1759 20.8928 19.8937 17.9433 16.2254 14.8344 14.4316 14.3922 14.3670 14.3233 14.2589 14.1818 13.9657 14.2809 14.7784 15.4673 16.3849 17.6044 19.0726 19.3787 17.7342 16.1341 14.8821 14.3922 14.2771 14.2162 14.1561 14.0728 13.9657 13.8459 14.0581 14.3841 14.8473 15.4673 16.3246 17.4710 18.2546 17.3047 15.9285 14.8365 14.3670 14.2162 14.1247 14.0552 13.9669 13.8459 13.8351 13.9421 14.1075 14.3841 14.7784 15.3179 16.1029 16.9125 16.6278 15.5765 14.6888 14.3233 14.1561 14.0552 13.9970 13.9326 13.8351 13.8664 13.8997 13.9421 14.0581 14.2809 14.5876 15.0039 15.6179 15.7616 15.0855 14.4805 14.2589 14.0728 13.9669 13.9326 13.9125 13.8664 13.8830 13.8664 13.8351 13.8459 13.9657 14.1818 14.4133 14.5847 14.9529 14.5847 14.4133 14.1818 13.9657 13.8459 13.8351 13.8664 13.8830 END_BANDGRID_3D END_BLOCK_BANDGRID_3D espresso-5.1/PP/examples/example02/reference/ni.fs_NSP.bxsf0000644000175000017500000060721412341372774021637 0ustar mbamba BEGIN_INFO # # this is a Band-XCRYSDEN-Structure-File # aimed at Visualization of Fermi Surface # # Case: ni # Fermi Energy: 15.1160 END_INFO BEGIN_BLOCK_BANDGRID_3D band_energies BANDGRID_3D_BANDS 4 17 17 17 0.000000 0.000000 0.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 -1.000000 1.000000 -1.000000 BAND: 3 13.0169 13.0560 13.1536 13.2456 13.2534 13.1787 13.0814 13.0074 12.9803 13.0074 13.0814 13.1787 13.2534 13.2456 13.1536 13.0560 13.0169 13.0560 13.0822 13.1697 13.2673 13.2734 13.1736 13.0607 13.1009 13.0504 13.0516 13.1061 13.1054 13.2129 13.2661 13.2277 13.1127 13.0560 13.1536 13.1697 13.2748 13.3851 13.3301 13.1496 12.9818 13.0264 13.2548 13.2281 13.1830 12.9183 13.0790 13.2147 13.2704 13.2277 13.1536 13.2456 13.2673 13.3851 13.5834 13.4485 13.2040 12.9903 12.8883 12.9787 13.0690 12.9086 12.6388 12.8452 13.0616 13.2147 13.2661 13.2456 13.2534 13.2734 13.3301 13.4485 13.5616 13.4570 13.2770 13.1177 13.0151 12.9300 12.7511 12.4520 12.5527 12.8452 13.0790 13.2129 13.2534 13.1787 13.1736 13.1496 13.2040 13.4570 13.9150 13.9704 13.7697 13.5179 13.2319 12.9049 12.5781 12.4520 12.6388 12.9183 13.1054 13.1787 13.0814 13.0607 12.9818 12.9903 13.2770 13.9704 14.8630 14.6450 14.2668 13.8173 13.3323 12.9049 12.7511 12.9086 13.1830 13.1061 13.0814 13.0074 13.1009 13.0264 12.8883 13.1177 13.7697 14.6450 15.0754 14.9790 14.4508 13.8173 13.2319 12.9300 13.0690 13.2281 13.0516 13.0074 12.9803 13.0504 13.2548 12.9787 13.0151 13.5179 14.2668 14.9790 15.1076 14.9790 14.2668 13.5179 13.0151 12.9787 13.2548 13.0504 12.9803 13.0074 13.0516 13.2281 13.0690 12.9300 13.2319 13.8173 14.4508 14.9790 15.0754 14.6450 13.7697 13.1177 12.8883 13.0264 13.1009 13.0074 13.0814 13.1061 13.1830 12.9086 12.7511 12.9049 13.3323 13.8173 14.2668 14.6450 14.8630 13.9704 13.2770 12.9903 12.9818 13.0607 13.0814 13.1787 13.1054 12.9183 12.6388 12.4520 12.5781 12.9049 13.2319 13.5179 13.7697 13.9704 13.9150 13.4570 13.2040 13.1496 13.1736 13.1787 13.2534 13.2129 13.0790 12.8452 12.5527 12.4520 12.7511 12.9300 13.0151 13.1177 13.2770 13.4570 13.5616 13.4485 13.3301 13.2734 13.2534 13.2456 13.2661 13.2147 13.0616 12.8452 12.6388 12.9086 13.0690 12.9787 12.8883 12.9903 13.2040 13.4485 13.5834 13.3851 13.2673 13.2456 13.1536 13.2277 13.2704 13.2147 13.0790 12.9183 13.1830 13.2281 13.2548 13.0264 12.9818 13.1496 13.3301 13.3851 13.2748 13.1697 13.1536 13.0560 13.1127 13.2277 13.2661 13.2129 13.1054 13.1061 13.0516 13.0504 13.1009 13.0607 13.1736 13.2734 13.2673 13.1697 13.0822 13.0560 13.0169 13.0560 13.1536 13.2456 13.2534 13.1787 13.0814 13.0074 12.9803 13.0074 13.0814 13.1787 13.2534 13.2456 13.1536 13.0560 13.0169 13.0560 13.0822 13.1697 13.2673 13.2734 13.1736 13.0607 13.1009 13.0504 13.0516 13.1061 13.1054 13.2129 13.2661 13.2277 13.1127 13.0560 13.0822 13.0560 13.1127 13.2277 13.2661 13.2129 13.1054 13.1061 13.0516 13.0504 13.1009 13.0607 13.1736 13.2734 13.2673 13.1697 13.0822 13.1697 13.1127 13.1697 13.2702 13.2985 13.2053 13.0517 12.9662 13.1953 13.1723 13.1953 12.9662 13.0517 13.2053 13.2985 13.2702 13.1697 13.2673 13.2277 13.2702 13.3851 13.3876 13.2161 13.0009 12.8418 12.9286 13.1591 13.1076 12.7854 12.8297 13.0317 13.2111 13.2985 13.2673 13.2734 13.2661 13.2985 13.3876 13.4485 13.3086 13.0966 12.9067 12.8249 12.8698 12.8416 12.5971 12.5303 12.7870 13.0317 13.2053 13.2734 13.1736 13.2129 13.2053 13.2161 13.3086 13.4570 13.4605 13.3278 13.1651 13.0075 12.8220 12.5497 12.2855 12.5303 12.8297 13.0517 13.1736 13.0607 13.1054 13.0517 13.0009 13.0966 13.4605 13.9704 14.0435 13.8407 13.5459 13.1886 12.8048 12.5497 12.5971 12.7854 12.9662 13.0607 13.1009 13.1061 12.9662 12.8418 12.9067 13.3278 14.0435 14.6450 14.5596 14.2063 13.7129 13.1886 12.8220 12.8416 13.1076 13.1953 13.1009 13.0504 13.0516 13.1953 12.9286 12.8249 13.1651 13.8407 14.5596 14.9790 14.7655 14.2063 13.5459 13.0075 12.8698 13.1591 13.1723 13.0504 13.0516 13.0504 13.1723 13.1591 12.8698 13.0075 13.5459 14.2063 14.7655 14.9790 14.5596 13.8407 13.1651 12.8249 12.9286 13.1953 13.0516 13.1061 13.1009 13.1953 13.1076 12.8416 12.8220 13.1886 13.7129 14.2063 14.5596 14.6450 14.0435 13.3278 12.9067 12.8418 12.9662 13.1061 13.1054 13.0607 12.9662 12.7854 12.5971 12.5497 12.8048 13.1886 13.5459 13.8407 14.0435 13.9704 13.4605 13.0966 13.0009 13.0517 13.1054 13.2129 13.1736 13.0517 12.8297 12.5303 12.2855 12.5497 12.8220 13.0075 13.1651 13.3278 13.4605 13.4570 13.3086 13.2161 13.2053 13.2129 13.2661 13.2734 13.2053 13.0317 12.7870 12.5303 12.5971 12.8416 12.8698 12.8249 12.9067 13.0966 13.3086 13.4485 13.3876 13.2985 13.2661 13.2277 13.2673 13.2985 13.2111 13.0317 12.8297 12.7854 13.1076 13.1591 12.9286 12.8418 13.0009 13.2161 13.3876 13.3851 13.2702 13.2277 13.1127 13.1697 13.2702 13.2985 13.2053 13.0517 12.9662 13.1953 13.1723 13.1953 12.9662 13.0517 13.2053 13.2985 13.2702 13.1697 13.1127 13.0560 13.0822 13.1697 13.2673 13.2734 13.1736 13.0607 13.1009 13.0504 13.0516 13.1061 13.1054 13.2129 13.2661 13.2277 13.1127 13.0560 13.1536 13.1697 13.2748 13.3851 13.3301 13.1496 12.9818 13.0264 13.2548 13.2281 13.1830 12.9183 13.0790 13.2147 13.2704 13.2277 13.1536 13.1697 13.1127 13.1697 13.2702 13.2985 13.2053 13.0517 12.9662 13.1953 13.1723 13.1953 12.9662 13.0517 13.2053 13.2985 13.2702 13.1697 13.2748 13.1697 13.1536 13.2277 13.2704 13.2147 13.0790 12.9183 13.1830 13.2281 13.2548 13.0264 12.9818 13.1496 13.3301 13.3851 13.2748 13.3851 13.2702 13.2277 13.2673 13.2985 13.2111 13.0317 12.8297 12.7854 13.1076 13.1591 12.9286 12.8418 13.0009 13.2161 13.3876 13.3851 13.3301 13.2985 13.2704 13.2985 13.3301 13.2161 13.0034 12.7658 12.6068 12.7313 12.8609 12.7313 12.6068 12.7658 13.0034 13.2161 13.3301 13.1496 13.2053 13.2147 13.2111 13.2161 13.2040 13.0966 12.9114 12.7255 12.6386 12.6462 12.5373 12.3260 12.4882 12.7658 13.0009 13.1496 12.9818 13.0517 13.0790 13.0317 13.0034 13.0966 13.2770 13.3278 13.2131 13.0339 12.8290 12.5734 12.2769 12.3260 12.6068 12.8418 12.9818 13.0264 12.9662 12.9183 12.8297 12.7658 12.9114 13.3278 13.7697 13.8407 13.6469 13.3284 12.9330 12.5734 12.5373 12.7313 12.9286 13.0264 13.2548 13.1953 13.1830 12.7854 12.6068 12.7255 13.2131 13.8407 14.2668 14.2063 13.8421 13.3284 12.8290 12.6462 12.8609 13.1591 13.2548 13.2281 13.1723 13.2281 13.1076 12.7313 12.6386 13.0339 13.6469 14.2063 14.4508 14.2063 13.6469 13.0339 12.6386 12.7313 13.1076 13.2281 13.1830 13.1953 13.2548 13.1591 12.8609 12.6462 12.8290 13.3284 13.8421 14.2063 14.2668 13.8407 13.2131 12.7255 12.6068 12.7854 13.1830 12.9183 12.9662 13.0264 12.9286 12.7313 12.5373 12.5734 12.9330 13.3284 13.6469 13.8407 13.7697 13.3278 12.9114 12.7658 12.8297 12.9183 13.0790 13.0517 12.9818 12.8418 12.6068 12.3260 12.2769 12.5734 12.8290 13.0339 13.2131 13.3278 13.2770 13.0966 13.0034 13.0317 13.0790 13.2147 13.2053 13.1496 13.0009 12.7658 12.4882 12.3260 12.5373 12.6462 12.6386 12.7255 12.9114 13.0966 13.2040 13.2161 13.2111 13.2147 13.2704 13.2985 13.3301 13.2161 13.0034 12.7658 12.6068 12.7313 12.8609 12.7313 12.6068 12.7658 13.0034 13.2161 13.3301 13.2985 13.2704 13.2277 13.2702 13.3851 13.3876 13.2161 13.0009 12.8418 12.9286 13.1591 13.1076 12.7854 12.8297 13.0317 13.2111 13.2985 13.2673 13.2277 13.1536 13.1697 13.2748 13.3851 13.3301 13.1496 12.9818 13.0264 13.2548 13.2281 13.1830 12.9183 13.0790 13.2147 13.2704 13.2277 13.1536 13.2456 13.2673 13.3851 13.5834 13.4485 13.2040 12.9903 12.8883 12.9787 13.0690 12.9086 12.6388 12.8452 13.0616 13.2147 13.2661 13.2456 13.2673 13.2277 13.2702 13.3851 13.3876 13.2161 13.0009 12.8418 12.9286 13.1591 13.1076 12.7854 12.8297 13.0317 13.2111 13.2985 13.2673 13.3851 13.2702 13.2277 13.2673 13.2985 13.2111 13.0317 12.8297 12.7854 13.1076 13.1591 12.9286 12.8418 13.0009 13.2161 13.3876 13.3851 13.5834 13.3851 13.2673 13.2456 13.2661 13.2147 13.0616 12.8452 12.6388 12.9086 13.0690 12.9787 12.8883 12.9903 13.2040 13.4485 13.5834 13.4485 13.3876 13.2985 13.2661 13.2734 13.2053 13.0317 12.7870 12.5303 12.5971 12.8416 12.8698 12.8249 12.9067 13.0966 13.3086 13.4485 13.2040 13.2161 13.2111 13.2147 13.2053 13.1496 13.0009 12.7658 12.4882 12.3260 12.5373 12.6462 12.6386 12.7255 12.9114 13.0966 13.2040 12.9903 13.0009 13.0317 13.0616 13.0317 13.0009 12.9903 12.9067 12.7255 12.5158 12.3995 12.4088 12.3995 12.5158 12.7255 12.9067 12.9903 12.8883 12.8418 12.8297 12.8452 12.7870 12.7658 12.9067 13.1177 13.1651 13.0339 12.8198 12.5593 12.2553 12.3995 12.6386 12.8249 12.8883 12.9787 12.9286 12.7854 12.6388 12.5303 12.4882 12.7255 13.1651 13.5179 13.5459 13.3284 12.9722 12.5593 12.4088 12.6462 12.8698 12.9787 13.0690 13.1591 13.1076 12.9086 12.5971 12.3260 12.5158 13.0339 13.5459 13.8173 13.7129 13.3284 12.8198 12.3995 12.5373 12.8416 13.0690 12.9086 13.1076 13.1591 13.0690 12.8416 12.5373 12.3995 12.8198 13.3284 13.7129 13.8173 13.5459 13.0339 12.5158 12.3260 12.5971 12.9086 12.6388 12.7854 12.9286 12.9787 12.8698 12.6462 12.4088 12.5593 12.9722 13.3284 13.5459 13.5179 13.1651 12.7255 12.4882 12.5303 12.6388 12.8452 12.8297 12.8418 12.8883 12.8249 12.6386 12.3995 12.2553 12.5593 12.8198 13.0339 13.1651 13.1177 12.9067 12.7658 12.7870 12.8452 13.0616 13.0317 13.0009 12.9903 12.9067 12.7255 12.5158 12.3995 12.4088 12.3995 12.5158 12.7255 12.9067 12.9903 13.0009 13.0317 13.0616 13.2147 13.2111 13.2161 13.2040 13.0966 12.9114 12.7255 12.6386 12.6462 12.5373 12.3260 12.4882 12.7658 13.0009 13.1496 13.2053 13.2147 13.2661 13.2985 13.3876 13.4485 13.3086 13.0966 12.9067 12.8249 12.8698 12.8416 12.5971 12.5303 12.7870 13.0317 13.2053 13.2734 13.2661 13.2456 13.2673 13.3851 13.5834 13.4485 13.2040 12.9903 12.8883 12.9787 13.0690 12.9086 12.6388 12.8452 13.0616 13.2147 13.2661 13.2456 13.2534 13.2734 13.3301 13.4485 13.5616 13.4570 13.2770 13.1177 13.0151 12.9300 12.7511 12.4520 12.5527 12.8452 13.0790 13.2129 13.2534 13.2734 13.2661 13.2985 13.3876 13.4485 13.3086 13.0966 12.9067 12.8249 12.8698 12.8416 12.5971 12.5303 12.7870 13.0317 13.2053 13.2734 13.3301 13.2985 13.2704 13.2985 13.3301 13.2161 13.0034 12.7658 12.6068 12.7313 12.8609 12.7313 12.6068 12.7658 13.0034 13.2161 13.3301 13.4485 13.3876 13.2985 13.2661 13.2734 13.2053 13.0317 12.7870 12.5303 12.5971 12.8416 12.8698 12.8249 12.9067 13.0966 13.3086 13.4485 13.5616 13.4485 13.3301 13.2734 13.2534 13.2129 13.0790 12.8452 12.5527 12.4520 12.7511 12.9300 13.0151 13.1177 13.2770 13.4570 13.5616 13.4570 13.3086 13.2161 13.2053 13.2129 13.1736 13.0517 12.8297 12.5303 12.2855 12.5497 12.8220 13.0075 13.1651 13.3278 13.4605 13.4570 13.2770 13.0966 13.0034 13.0317 13.0790 13.0517 12.9818 12.8418 12.6068 12.3260 12.2769 12.5734 12.8290 13.0339 13.2131 13.3278 13.2770 13.1177 12.9067 12.7658 12.7870 12.8452 12.8297 12.8418 12.8883 12.8249 12.6386 12.3995 12.2553 12.5593 12.8198 13.0339 13.1651 13.1177 13.0151 12.8249 12.6068 12.5303 12.5527 12.5303 12.6068 12.8249 13.0151 13.0075 12.8290 12.5593 12.2447 12.5593 12.8290 13.0075 13.0151 12.9300 12.8698 12.7313 12.5971 12.4520 12.2855 12.3260 12.6386 13.0075 13.2319 13.1886 12.9330 12.5593 12.2553 12.5734 12.8220 12.9300 12.7511 12.8416 12.8609 12.8416 12.7511 12.5497 12.2769 12.3995 12.8290 13.1886 13.3323 13.1886 12.8290 12.3995 12.2769 12.5497 12.7511 12.4520 12.5971 12.7313 12.8698 12.9300 12.8220 12.5734 12.2553 12.5593 12.9330 13.1886 13.2319 13.0075 12.6386 12.3260 12.2855 12.4520 12.5527 12.5303 12.6068 12.8249 13.0151 13.0075 12.8290 12.5593 12.2447 12.5593 12.8290 13.0075 13.0151 12.8249 12.6068 12.5303 12.5527 12.8452 12.7870 12.7658 12.9067 13.1177 13.1651 13.0339 12.8198 12.5593 12.2553 12.3995 12.6386 12.8249 12.8883 12.8418 12.8297 12.8452 13.0790 13.0317 13.0034 13.0966 13.2770 13.3278 13.2131 13.0339 12.8290 12.5734 12.2769 12.3260 12.6068 12.8418 12.9818 13.0517 13.0790 13.2129 13.2053 13.2161 13.3086 13.4570 13.4605 13.3278 13.1651 13.0075 12.8220 12.5497 12.2855 12.5303 12.8297 13.0517 13.1736 13.2129 13.2534 13.2734 13.3301 13.4485 13.5616 13.4570 13.2770 13.1177 13.0151 12.9300 12.7511 12.4520 12.5527 12.8452 13.0790 13.2129 13.2534 13.1787 13.1736 13.1496 13.2040 13.4570 13.9150 13.9704 13.7697 13.5179 13.2319 12.9049 12.5781 12.4520 12.6388 12.9183 13.1054 13.1787 13.1736 13.2129 13.2053 13.2161 13.3086 13.4570 13.4605 13.3278 13.1651 13.0075 12.8220 12.5497 12.2855 12.5303 12.8297 13.0517 13.1736 13.1496 13.2053 13.2147 13.2111 13.2161 13.2040 13.0966 12.9114 12.7255 12.6386 12.6462 12.5373 12.3260 12.4882 12.7658 13.0009 13.1496 13.2040 13.2161 13.2111 13.2147 13.2053 13.1496 13.0009 12.7658 12.4882 12.3260 12.5373 12.6462 12.6386 12.7255 12.9114 13.0966 13.2040 13.4570 13.3086 13.2161 13.2053 13.2129 13.1736 13.0517 12.8297 12.5303 12.2855 12.5497 12.8220 13.0075 13.1651 13.3278 13.4605 13.4570 13.9150 13.4570 13.2040 13.1496 13.1736 13.1787 13.1054 12.9183 12.6388 12.4520 12.5781 12.9049 13.2319 13.5179 13.7697 13.9704 13.9150 13.9704 13.4605 13.0966 13.0009 13.0517 13.1054 13.0607 12.9662 12.7854 12.5971 12.5497 12.8048 13.1886 13.5459 13.8407 14.0435 13.9704 13.7697 13.3278 12.9114 12.7658 12.8297 12.9183 12.9662 13.0264 12.9286 12.7313 12.5373 12.5734 12.9330 13.3284 13.6469 13.8407 13.7697 13.5179 13.1651 12.7255 12.4882 12.5303 12.6388 12.7854 12.9286 12.9787 12.8698 12.6462 12.4088 12.5593 12.9722 13.3284 13.5459 13.5179 13.2319 13.0075 12.6386 12.3260 12.2855 12.4520 12.5971 12.7313 12.8698 12.9300 12.8220 12.5734 12.2553 12.5593 12.9330 13.1886 13.2319 12.9049 12.8220 12.6462 12.5373 12.5497 12.5781 12.5497 12.5373 12.6462 12.8220 12.9049 12.8048 12.5734 12.4088 12.5734 12.8048 12.9049 12.5781 12.5497 12.5373 12.6462 12.8220 12.9049 12.8048 12.5734 12.4088 12.5734 12.8048 12.9049 12.8220 12.6462 12.5373 12.5497 12.5781 12.4520 12.2855 12.3260 12.6386 13.0075 13.2319 13.1886 12.9330 12.5593 12.2553 12.5734 12.8220 12.9300 12.8698 12.7313 12.5971 12.4520 12.6388 12.5303 12.4882 12.7255 13.1651 13.5179 13.5459 13.3284 12.9722 12.5593 12.4088 12.6462 12.8698 12.9787 12.9286 12.7854 12.6388 12.9183 12.8297 12.7658 12.9114 13.3278 13.7697 13.8407 13.6469 13.3284 12.9330 12.5734 12.5373 12.7313 12.9286 13.0264 12.9662 12.9183 13.1054 13.0517 13.0009 13.0966 13.4605 13.9704 14.0435 13.8407 13.5459 13.1886 12.8048 12.5497 12.5971 12.7854 12.9662 13.0607 13.1054 13.1787 13.1736 13.1496 13.2040 13.4570 13.9150 13.9704 13.7697 13.5179 13.2319 12.9049 12.5781 12.4520 12.6388 12.9183 13.1054 13.1787 13.0814 13.0607 12.9818 12.9903 13.2770 13.9704 14.8630 14.6450 14.2668 13.8173 13.3323 12.9049 12.7511 12.9086 13.1830 13.1061 13.0814 13.0607 13.1054 13.0517 13.0009 13.0966 13.4605 13.9704 14.0435 13.8407 13.5459 13.1886 12.8048 12.5497 12.5971 12.7854 12.9662 13.0607 12.9818 13.0517 13.0790 13.0317 13.0034 13.0966 13.2770 13.3278 13.2131 13.0339 12.8290 12.5734 12.2769 12.3260 12.6068 12.8418 12.9818 12.9903 13.0009 13.0317 13.0616 13.0317 13.0009 12.9903 12.9067 12.7255 12.5158 12.3995 12.4088 12.3995 12.5158 12.7255 12.9067 12.9903 13.2770 13.0966 13.0034 13.0317 13.0790 13.0517 12.9818 12.8418 12.6068 12.3260 12.2769 12.5734 12.8290 13.0339 13.2131 13.3278 13.2770 13.9704 13.4605 13.0966 13.0009 13.0517 13.1054 13.0607 12.9662 12.7854 12.5971 12.5497 12.8048 13.1886 13.5459 13.8407 14.0435 13.9704 14.8630 13.9704 13.2770 12.9903 12.9818 13.0607 13.0814 13.1061 13.1830 12.9086 12.7511 12.9049 13.3323 13.8173 14.2668 14.6450 14.8630 14.6450 14.0435 13.3278 12.9067 12.8418 12.9662 13.1061 13.1009 13.1953 13.1076 12.8416 12.8220 13.1886 13.7129 14.2063 14.5596 14.6450 14.2668 13.8407 13.2131 12.7255 12.6068 12.7854 13.1830 13.1953 13.2548 13.1591 12.8609 12.6462 12.8290 13.3284 13.8421 14.2063 14.2668 13.8173 13.5459 13.0339 12.5158 12.3260 12.5971 12.9086 13.1076 13.1591 13.0690 12.8416 12.5373 12.3995 12.8198 13.3284 13.7129 13.8173 13.3323 13.1886 12.8290 12.3995 12.2769 12.5497 12.7511 12.8416 12.8609 12.8416 12.7511 12.5497 12.2769 12.3995 12.8290 13.1886 13.3323 12.9049 12.8048 12.5734 12.4088 12.5734 12.8048 12.9049 12.8220 12.6462 12.5373 12.5497 12.5781 12.5497 12.5373 12.6462 12.8220 12.9049 12.7511 12.5497 12.2769 12.3995 12.8290 13.1886 13.3323 13.1886 12.8290 12.3995 12.2769 12.5497 12.7511 12.8416 12.8609 12.8416 12.7511 12.9086 12.5971 12.3260 12.5158 13.0339 13.5459 13.8173 13.7129 13.3284 12.8198 12.3995 12.5373 12.8416 13.0690 13.1591 13.1076 12.9086 13.1830 12.7854 12.6068 12.7255 13.2131 13.8407 14.2668 14.2063 13.8421 13.3284 12.8290 12.6462 12.8609 13.1591 13.2548 13.1953 13.1830 13.1061 12.9662 12.8418 12.9067 13.3278 14.0435 14.6450 14.5596 14.2063 13.7129 13.1886 12.8220 12.8416 13.1076 13.1953 13.1009 13.1061 13.0814 13.0607 12.9818 12.9903 13.2770 13.9704 14.8630 14.6450 14.2668 13.8173 13.3323 12.9049 12.7511 12.9086 13.1830 13.1061 13.0814 13.0074 13.1009 13.0264 12.8883 13.1177 13.7697 14.6450 15.0754 14.9790 14.4508 13.8173 13.2319 12.9300 13.0690 13.2281 13.0516 13.0074 13.1009 13.1061 12.9662 12.8418 12.9067 13.3278 14.0435 14.6450 14.5596 14.2063 13.7129 13.1886 12.8220 12.8416 13.1076 13.1953 13.1009 13.0264 12.9662 12.9183 12.8297 12.7658 12.9114 13.3278 13.7697 13.8407 13.6469 13.3284 12.9330 12.5734 12.5373 12.7313 12.9286 13.0264 12.8883 12.8418 12.8297 12.8452 12.7870 12.7658 12.9067 13.1177 13.1651 13.0339 12.8198 12.5593 12.2553 12.3995 12.6386 12.8249 12.8883 13.1177 12.9067 12.7658 12.7870 12.8452 12.8297 12.8418 12.8883 12.8249 12.6386 12.3995 12.2553 12.5593 12.8198 13.0339 13.1651 13.1177 13.7697 13.3278 12.9114 12.7658 12.8297 12.9183 12.9662 13.0264 12.9286 12.7313 12.5373 12.5734 12.9330 13.3284 13.6469 13.8407 13.7697 14.6450 14.0435 13.3278 12.9067 12.8418 12.9662 13.1061 13.1009 13.1953 13.1076 12.8416 12.8220 13.1886 13.7129 14.2063 14.5596 14.6450 15.0754 14.6450 13.7697 13.1177 12.8883 13.0264 13.1009 13.0074 13.0516 13.2281 13.0690 12.9300 13.2319 13.8173 14.4508 14.9790 15.0754 14.9790 14.5596 13.8407 13.1651 12.8249 12.9286 13.1953 13.0516 13.0504 13.1723 13.1591 12.8698 13.0075 13.5459 14.2063 14.7655 14.9790 14.4508 14.2063 13.6469 13.0339 12.6386 12.7313 13.1076 13.2281 13.1723 13.2281 13.1076 12.7313 12.6386 13.0339 13.6469 14.2063 14.4508 13.8173 13.7129 13.3284 12.8198 12.3995 12.5373 12.8416 13.0690 13.1591 13.1076 12.9086 12.5971 12.3260 12.5158 13.0339 13.5459 13.8173 13.2319 13.1886 12.9330 12.5593 12.2553 12.5734 12.8220 12.9300 12.8698 12.7313 12.5971 12.4520 12.2855 12.3260 12.6386 13.0075 13.2319 12.9300 12.8220 12.5734 12.2553 12.5593 12.9330 13.1886 13.2319 13.0075 12.6386 12.3260 12.2855 12.4520 12.5971 12.7313 12.8698 12.9300 13.0690 12.8416 12.5373 12.3995 12.8198 13.3284 13.7129 13.8173 13.5459 13.0339 12.5158 12.3260 12.5971 12.9086 13.1076 13.1591 13.0690 13.2281 13.1076 12.7313 12.6386 13.0339 13.6469 14.2063 14.4508 14.2063 13.6469 13.0339 12.6386 12.7313 13.1076 13.2281 13.1723 13.2281 13.0516 13.1953 12.9286 12.8249 13.1651 13.8407 14.5596 14.9790 14.7655 14.2063 13.5459 13.0075 12.8698 13.1591 13.1723 13.0504 13.0516 13.0074 13.1009 13.0264 12.8883 13.1177 13.7697 14.6450 15.0754 14.9790 14.4508 13.8173 13.2319 12.9300 13.0690 13.2281 13.0516 13.0074 12.9803 13.0504 13.2548 12.9787 13.0151 13.5179 14.2668 14.9790 15.1076 14.9790 14.2668 13.5179 13.0151 12.9787 13.2548 13.0504 12.9803 13.0504 13.0516 13.1953 12.9286 12.8249 13.1651 13.8407 14.5596 14.9790 14.7655 14.2063 13.5459 13.0075 12.8698 13.1591 13.1723 13.0504 13.2548 13.1953 13.1830 12.7854 12.6068 12.7255 13.2131 13.8407 14.2668 14.2063 13.8421 13.3284 12.8290 12.6462 12.8609 13.1591 13.2548 12.9787 12.9286 12.7854 12.6388 12.5303 12.4882 12.7255 13.1651 13.5179 13.5459 13.3284 12.9722 12.5593 12.4088 12.6462 12.8698 12.9787 13.0151 12.8249 12.6068 12.5303 12.5527 12.5303 12.6068 12.8249 13.0151 13.0075 12.8290 12.5593 12.2447 12.5593 12.8290 13.0075 13.0151 13.5179 13.1651 12.7255 12.4882 12.5303 12.6388 12.7854 12.9286 12.9787 12.8698 12.6462 12.4088 12.5593 12.9722 13.3284 13.5459 13.5179 14.2668 13.8407 13.2131 12.7255 12.6068 12.7854 13.1830 13.1953 13.2548 13.1591 12.8609 12.6462 12.8290 13.3284 13.8421 14.2063 14.2668 14.9790 14.5596 13.8407 13.1651 12.8249 12.9286 13.1953 13.0516 13.0504 13.1723 13.1591 12.8698 13.0075 13.5459 14.2063 14.7655 14.9790 15.1076 14.9790 14.2668 13.5179 13.0151 12.9787 13.2548 13.0504 12.9803 13.0504 13.2548 12.9787 13.0151 13.5179 14.2668 14.9790 15.1076 14.9790 14.7655 14.2063 13.5459 13.0075 12.8698 13.1591 13.1723 13.0504 13.0516 13.1953 12.9286 12.8249 13.1651 13.8407 14.5596 14.9790 14.2668 14.2063 13.8421 13.3284 12.8290 12.6462 12.8609 13.1591 13.2548 13.1953 13.1830 12.7854 12.6068 12.7255 13.2131 13.8407 14.2668 13.5179 13.5459 13.3284 12.9722 12.5593 12.4088 12.6462 12.8698 12.9787 12.9286 12.7854 12.6388 12.5303 12.4882 12.7255 13.1651 13.5179 13.0151 13.0075 12.8290 12.5593 12.2447 12.5593 12.8290 13.0075 13.0151 12.8249 12.6068 12.5303 12.5527 12.5303 12.6068 12.8249 13.0151 12.9787 12.8698 12.6462 12.4088 12.5593 12.9722 13.3284 13.5459 13.5179 13.1651 12.7255 12.4882 12.5303 12.6388 12.7854 12.9286 12.9787 13.2548 13.1591 12.8609 12.6462 12.8290 13.3284 13.8421 14.2063 14.2668 13.8407 13.2131 12.7255 12.6068 12.7854 13.1830 13.1953 13.2548 13.0504 13.1723 13.1591 12.8698 13.0075 13.5459 14.2063 14.7655 14.9790 14.5596 13.8407 13.1651 12.8249 12.9286 13.1953 13.0516 13.0504 12.9803 13.0504 13.2548 12.9787 13.0151 13.5179 14.2668 14.9790 15.1076 14.9790 14.2668 13.5179 13.0151 12.9787 13.2548 13.0504 12.9803 13.0074 13.0516 13.2281 13.0690 12.9300 13.2319 13.8173 14.4508 14.9790 15.0754 14.6450 13.7697 13.1177 12.8883 13.0264 13.1009 13.0074 13.0516 13.0504 13.1723 13.1591 12.8698 13.0075 13.5459 14.2063 14.7655 14.9790 14.5596 13.8407 13.1651 12.8249 12.9286 13.1953 13.0516 13.2281 13.1723 13.2281 13.1076 12.7313 12.6386 13.0339 13.6469 14.2063 14.4508 14.2063 13.6469 13.0339 12.6386 12.7313 13.1076 13.2281 13.0690 13.1591 13.1076 12.9086 12.5971 12.3260 12.5158 13.0339 13.5459 13.8173 13.7129 13.3284 12.8198 12.3995 12.5373 12.8416 13.0690 12.9300 12.8698 12.7313 12.5971 12.4520 12.2855 12.3260 12.6386 13.0075 13.2319 13.1886 12.9330 12.5593 12.2553 12.5734 12.8220 12.9300 13.2319 13.0075 12.6386 12.3260 12.2855 12.4520 12.5971 12.7313 12.8698 12.9300 12.8220 12.5734 12.2553 12.5593 12.9330 13.1886 13.2319 13.8173 13.5459 13.0339 12.5158 12.3260 12.5971 12.9086 13.1076 13.1591 13.0690 12.8416 12.5373 12.3995 12.8198 13.3284 13.7129 13.8173 14.4508 14.2063 13.6469 13.0339 12.6386 12.7313 13.1076 13.2281 13.1723 13.2281 13.1076 12.7313 12.6386 13.0339 13.6469 14.2063 14.4508 14.9790 14.7655 14.2063 13.5459 13.0075 12.8698 13.1591 13.1723 13.0504 13.0516 13.1953 12.9286 12.8249 13.1651 13.8407 14.5596 14.9790 15.0754 14.9790 14.4508 13.8173 13.2319 12.9300 13.0690 13.2281 13.0516 13.0074 13.1009 13.0264 12.8883 13.1177 13.7697 14.6450 15.0754 14.6450 14.5596 14.2063 13.7129 13.1886 12.8220 12.8416 13.1076 13.1953 13.1009 13.1061 12.9662 12.8418 12.9067 13.3278 14.0435 14.6450 13.7697 13.8407 13.6469 13.3284 12.9330 12.5734 12.5373 12.7313 12.9286 13.0264 12.9662 12.9183 12.8297 12.7658 12.9114 13.3278 13.7697 13.1177 13.1651 13.0339 12.8198 12.5593 12.2553 12.3995 12.6386 12.8249 12.8883 12.8418 12.8297 12.8452 12.7870 12.7658 12.9067 13.1177 12.8883 12.8249 12.6386 12.3995 12.2553 12.5593 12.8198 13.0339 13.1651 13.1177 12.9067 12.7658 12.7870 12.8452 12.8297 12.8418 12.8883 13.0264 12.9286 12.7313 12.5373 12.5734 12.9330 13.3284 13.6469 13.8407 13.7697 13.3278 12.9114 12.7658 12.8297 12.9183 12.9662 13.0264 13.1009 13.1953 13.1076 12.8416 12.8220 13.1886 13.7129 14.2063 14.5596 14.6450 14.0435 13.3278 12.9067 12.8418 12.9662 13.1061 13.1009 13.0074 13.0516 13.2281 13.0690 12.9300 13.2319 13.8173 14.4508 14.9790 15.0754 14.6450 13.7697 13.1177 12.8883 13.0264 13.1009 13.0074 13.0814 13.1061 13.1830 12.9086 12.7511 12.9049 13.3323 13.8173 14.2668 14.6450 14.8630 13.9704 13.2770 12.9903 12.9818 13.0607 13.0814 13.1061 13.1009 13.1953 13.1076 12.8416 12.8220 13.1886 13.7129 14.2063 14.5596 14.6450 14.0435 13.3278 12.9067 12.8418 12.9662 13.1061 13.1830 13.1953 13.2548 13.1591 12.8609 12.6462 12.8290 13.3284 13.8421 14.2063 14.2668 13.8407 13.2131 12.7255 12.6068 12.7854 13.1830 12.9086 13.1076 13.1591 13.0690 12.8416 12.5373 12.3995 12.8198 13.3284 13.7129 13.8173 13.5459 13.0339 12.5158 12.3260 12.5971 12.9086 12.7511 12.8416 12.8609 12.8416 12.7511 12.5497 12.2769 12.3995 12.8290 13.1886 13.3323 13.1886 12.8290 12.3995 12.2769 12.5497 12.7511 12.9049 12.8220 12.6462 12.5373 12.5497 12.5781 12.5497 12.5373 12.6462 12.8220 12.9049 12.8048 12.5734 12.4088 12.5734 12.8048 12.9049 13.3323 13.1886 12.8290 12.3995 12.2769 12.5497 12.7511 12.8416 12.8609 12.8416 12.7511 12.5497 12.2769 12.3995 12.8290 13.1886 13.3323 13.8173 13.7129 13.3284 12.8198 12.3995 12.5373 12.8416 13.0690 13.1591 13.1076 12.9086 12.5971 12.3260 12.5158 13.0339 13.5459 13.8173 14.2668 14.2063 13.8421 13.3284 12.8290 12.6462 12.8609 13.1591 13.2548 13.1953 13.1830 12.7854 12.6068 12.7255 13.2131 13.8407 14.2668 14.6450 14.5596 14.2063 13.7129 13.1886 12.8220 12.8416 13.1076 13.1953 13.1009 13.1061 12.9662 12.8418 12.9067 13.3278 14.0435 14.6450 14.8630 14.6450 14.2668 13.8173 13.3323 12.9049 12.7511 12.9086 13.1830 13.1061 13.0814 13.0607 12.9818 12.9903 13.2770 13.9704 14.8630 13.9704 14.0435 13.8407 13.5459 13.1886 12.8048 12.5497 12.5971 12.7854 12.9662 13.0607 13.1054 13.0517 13.0009 13.0966 13.4605 13.9704 13.2770 13.3278 13.2131 13.0339 12.8290 12.5734 12.2769 12.3260 12.6068 12.8418 12.9818 13.0517 13.0790 13.0317 13.0034 13.0966 13.2770 12.9903 12.9067 12.7255 12.5158 12.3995 12.4088 12.3995 12.5158 12.7255 12.9067 12.9903 13.0009 13.0317 13.0616 13.0317 13.0009 12.9903 12.9818 12.8418 12.6068 12.3260 12.2769 12.5734 12.8290 13.0339 13.2131 13.3278 13.2770 13.0966 13.0034 13.0317 13.0790 13.0517 12.9818 13.0607 12.9662 12.7854 12.5971 12.5497 12.8048 13.1886 13.5459 13.8407 14.0435 13.9704 13.4605 13.0966 13.0009 13.0517 13.1054 13.0607 13.0814 13.1061 13.1830 12.9086 12.7511 12.9049 13.3323 13.8173 14.2668 14.6450 14.8630 13.9704 13.2770 12.9903 12.9818 13.0607 13.0814 13.1787 13.1054 12.9183 12.6388 12.4520 12.5781 12.9049 13.2319 13.5179 13.7697 13.9704 13.9150 13.4570 13.2040 13.1496 13.1736 13.1787 13.1054 13.0607 12.9662 12.7854 12.5971 12.5497 12.8048 13.1886 13.5459 13.8407 14.0435 13.9704 13.4605 13.0966 13.0009 13.0517 13.1054 12.9183 12.9662 13.0264 12.9286 12.7313 12.5373 12.5734 12.9330 13.3284 13.6469 13.8407 13.7697 13.3278 12.9114 12.7658 12.8297 12.9183 12.6388 12.7854 12.9286 12.9787 12.8698 12.6462 12.4088 12.5593 12.9722 13.3284 13.5459 13.5179 13.1651 12.7255 12.4882 12.5303 12.6388 12.4520 12.5971 12.7313 12.8698 12.9300 12.8220 12.5734 12.2553 12.5593 12.9330 13.1886 13.2319 13.0075 12.6386 12.3260 12.2855 12.4520 12.5781 12.5497 12.5373 12.6462 12.8220 12.9049 12.8048 12.5734 12.4088 12.5734 12.8048 12.9049 12.8220 12.6462 12.5373 12.5497 12.5781 12.9049 12.8048 12.5734 12.4088 12.5734 12.8048 12.9049 12.8220 12.6462 12.5373 12.5497 12.5781 12.5497 12.5373 12.6462 12.8220 12.9049 13.2319 13.1886 12.9330 12.5593 12.2553 12.5734 12.8220 12.9300 12.8698 12.7313 12.5971 12.4520 12.2855 12.3260 12.6386 13.0075 13.2319 13.5179 13.5459 13.3284 12.9722 12.5593 12.4088 12.6462 12.8698 12.9787 12.9286 12.7854 12.6388 12.5303 12.4882 12.7255 13.1651 13.5179 13.7697 13.8407 13.6469 13.3284 12.9330 12.5734 12.5373 12.7313 12.9286 13.0264 12.9662 12.9183 12.8297 12.7658 12.9114 13.3278 13.7697 13.9704 14.0435 13.8407 13.5459 13.1886 12.8048 12.5497 12.5971 12.7854 12.9662 13.0607 13.1054 13.0517 13.0009 13.0966 13.4605 13.9704 13.9150 13.9704 13.7697 13.5179 13.2319 12.9049 12.5781 12.4520 12.6388 12.9183 13.1054 13.1787 13.1736 13.1496 13.2040 13.4570 13.9150 13.4570 13.4605 13.3278 13.1651 13.0075 12.8220 12.5497 12.2855 12.5303 12.8297 13.0517 13.1736 13.2129 13.2053 13.2161 13.3086 13.4570 13.2040 13.0966 12.9114 12.7255 12.6386 12.6462 12.5373 12.3260 12.4882 12.7658 13.0009 13.1496 13.2053 13.2147 13.2111 13.2161 13.2040 13.1496 13.0009 12.7658 12.4882 12.3260 12.5373 12.6462 12.6386 12.7255 12.9114 13.0966 13.2040 13.2161 13.2111 13.2147 13.2053 13.1496 13.1736 13.0517 12.8297 12.5303 12.2855 12.5497 12.8220 13.0075 13.1651 13.3278 13.4605 13.4570 13.3086 13.2161 13.2053 13.2129 13.1736 13.1787 13.1054 12.9183 12.6388 12.4520 12.5781 12.9049 13.2319 13.5179 13.7697 13.9704 13.9150 13.4570 13.2040 13.1496 13.1736 13.1787 13.2534 13.2129 13.0790 12.8452 12.5527 12.4520 12.7511 12.9300 13.0151 13.1177 13.2770 13.4570 13.5616 13.4485 13.3301 13.2734 13.2534 13.2129 13.1736 13.0517 12.8297 12.5303 12.2855 12.5497 12.8220 13.0075 13.1651 13.3278 13.4605 13.4570 13.3086 13.2161 13.2053 13.2129 13.0790 13.0517 12.9818 12.8418 12.6068 12.3260 12.2769 12.5734 12.8290 13.0339 13.2131 13.3278 13.2770 13.0966 13.0034 13.0317 13.0790 12.8452 12.8297 12.8418 12.8883 12.8249 12.6386 12.3995 12.2553 12.5593 12.8198 13.0339 13.1651 13.1177 12.9067 12.7658 12.7870 12.8452 12.5527 12.5303 12.6068 12.8249 13.0151 13.0075 12.8290 12.5593 12.2447 12.5593 12.8290 13.0075 13.0151 12.8249 12.6068 12.5303 12.5527 12.4520 12.2855 12.3260 12.6386 13.0075 13.2319 13.1886 12.9330 12.5593 12.2553 12.5734 12.8220 12.9300 12.8698 12.7313 12.5971 12.4520 12.7511 12.5497 12.2769 12.3995 12.8290 13.1886 13.3323 13.1886 12.8290 12.3995 12.2769 12.5497 12.7511 12.8416 12.8609 12.8416 12.7511 12.9300 12.8220 12.5734 12.2553 12.5593 12.9330 13.1886 13.2319 13.0075 12.6386 12.3260 12.2855 12.4520 12.5971 12.7313 12.8698 12.9300 13.0151 13.0075 12.8290 12.5593 12.2447 12.5593 12.8290 13.0075 13.0151 12.8249 12.6068 12.5303 12.5527 12.5303 12.6068 12.8249 13.0151 13.1177 13.1651 13.0339 12.8198 12.5593 12.2553 12.3995 12.6386 12.8249 12.8883 12.8418 12.8297 12.8452 12.7870 12.7658 12.9067 13.1177 13.2770 13.3278 13.2131 13.0339 12.8290 12.5734 12.2769 12.3260 12.6068 12.8418 12.9818 13.0517 13.0790 13.0317 13.0034 13.0966 13.2770 13.4570 13.4605 13.3278 13.1651 13.0075 12.8220 12.5497 12.2855 12.5303 12.8297 13.0517 13.1736 13.2129 13.2053 13.2161 13.3086 13.4570 13.5616 13.4570 13.2770 13.1177 13.0151 12.9300 12.7511 12.4520 12.5527 12.8452 13.0790 13.2129 13.2534 13.2734 13.3301 13.4485 13.5616 13.4485 13.3086 13.0966 12.9067 12.8249 12.8698 12.8416 12.5971 12.5303 12.7870 13.0317 13.2053 13.2734 13.2661 13.2985 13.3876 13.4485 13.3301 13.2161 13.0034 12.7658 12.6068 12.7313 12.8609 12.7313 12.6068 12.7658 13.0034 13.2161 13.3301 13.2985 13.2704 13.2985 13.3301 13.2734 13.2053 13.0317 12.7870 12.5303 12.5971 12.8416 12.8698 12.8249 12.9067 13.0966 13.3086 13.4485 13.3876 13.2985 13.2661 13.2734 13.2534 13.2129 13.0790 12.8452 12.5527 12.4520 12.7511 12.9300 13.0151 13.1177 13.2770 13.4570 13.5616 13.4485 13.3301 13.2734 13.2534 13.2456 13.2661 13.2147 13.0616 12.8452 12.6388 12.9086 13.0690 12.9787 12.8883 12.9903 13.2040 13.4485 13.5834 13.3851 13.2673 13.2456 13.2661 13.2734 13.2053 13.0317 12.7870 12.5303 12.5971 12.8416 12.8698 12.8249 12.9067 13.0966 13.3086 13.4485 13.3876 13.2985 13.2661 13.2147 13.2053 13.1496 13.0009 12.7658 12.4882 12.3260 12.5373 12.6462 12.6386 12.7255 12.9114 13.0966 13.2040 13.2161 13.2111 13.2147 13.0616 13.0317 13.0009 12.9903 12.9067 12.7255 12.5158 12.3995 12.4088 12.3995 12.5158 12.7255 12.9067 12.9903 13.0009 13.0317 13.0616 12.8452 12.7870 12.7658 12.9067 13.1177 13.1651 13.0339 12.8198 12.5593 12.2553 12.3995 12.6386 12.8249 12.8883 12.8418 12.8297 12.8452 12.6388 12.5303 12.4882 12.7255 13.1651 13.5179 13.5459 13.3284 12.9722 12.5593 12.4088 12.6462 12.8698 12.9787 12.9286 12.7854 12.6388 12.9086 12.5971 12.3260 12.5158 13.0339 13.5459 13.8173 13.7129 13.3284 12.8198 12.3995 12.5373 12.8416 13.0690 13.1591 13.1076 12.9086 13.0690 12.8416 12.5373 12.3995 12.8198 13.3284 13.7129 13.8173 13.5459 13.0339 12.5158 12.3260 12.5971 12.9086 13.1076 13.1591 13.0690 12.9787 12.8698 12.6462 12.4088 12.5593 12.9722 13.3284 13.5459 13.5179 13.1651 12.7255 12.4882 12.5303 12.6388 12.7854 12.9286 12.9787 12.8883 12.8249 12.6386 12.3995 12.2553 12.5593 12.8198 13.0339 13.1651 13.1177 12.9067 12.7658 12.7870 12.8452 12.8297 12.8418 12.8883 12.9903 12.9067 12.7255 12.5158 12.3995 12.4088 12.3995 12.5158 12.7255 12.9067 12.9903 13.0009 13.0317 13.0616 13.0317 13.0009 12.9903 13.2040 13.0966 12.9114 12.7255 12.6386 12.6462 12.5373 12.3260 12.4882 12.7658 13.0009 13.1496 13.2053 13.2147 13.2111 13.2161 13.2040 13.4485 13.3086 13.0966 12.9067 12.8249 12.8698 12.8416 12.5971 12.5303 12.7870 13.0317 13.2053 13.2734 13.2661 13.2985 13.3876 13.4485 13.5834 13.4485 13.2040 12.9903 12.8883 12.9787 13.0690 12.9086 12.6388 12.8452 13.0616 13.2147 13.2661 13.2456 13.2673 13.3851 13.5834 13.3851 13.3876 13.2161 13.0009 12.8418 12.9286 13.1591 13.1076 12.7854 12.8297 13.0317 13.2111 13.2985 13.2673 13.2277 13.2702 13.3851 13.2673 13.2985 13.2111 13.0317 12.8297 12.7854 13.1076 13.1591 12.9286 12.8418 13.0009 13.2161 13.3876 13.3851 13.2702 13.2277 13.2673 13.2456 13.2661 13.2147 13.0616 12.8452 12.6388 12.9086 13.0690 12.9787 12.8883 12.9903 13.2040 13.4485 13.5834 13.3851 13.2673 13.2456 13.1536 13.2277 13.2704 13.2147 13.0790 12.9183 13.1830 13.2281 13.2548 13.0264 12.9818 13.1496 13.3301 13.3851 13.2748 13.1697 13.1536 13.2277 13.2673 13.2985 13.2111 13.0317 12.8297 12.7854 13.1076 13.1591 12.9286 12.8418 13.0009 13.2161 13.3876 13.3851 13.2702 13.2277 13.2704 13.2985 13.3301 13.2161 13.0034 12.7658 12.6068 12.7313 12.8609 12.7313 12.6068 12.7658 13.0034 13.2161 13.3301 13.2985 13.2704 13.2147 13.2111 13.2161 13.2040 13.0966 12.9114 12.7255 12.6386 12.6462 12.5373 12.3260 12.4882 12.7658 13.0009 13.1496 13.2053 13.2147 13.0790 13.0317 13.0034 13.0966 13.2770 13.3278 13.2131 13.0339 12.8290 12.5734 12.2769 12.3260 12.6068 12.8418 12.9818 13.0517 13.0790 12.9183 12.8297 12.7658 12.9114 13.3278 13.7697 13.8407 13.6469 13.3284 12.9330 12.5734 12.5373 12.7313 12.9286 13.0264 12.9662 12.9183 13.1830 12.7854 12.6068 12.7255 13.2131 13.8407 14.2668 14.2063 13.8421 13.3284 12.8290 12.6462 12.8609 13.1591 13.2548 13.1953 13.1830 13.2281 13.1076 12.7313 12.6386 13.0339 13.6469 14.2063 14.4508 14.2063 13.6469 13.0339 12.6386 12.7313 13.1076 13.2281 13.1723 13.2281 13.2548 13.1591 12.8609 12.6462 12.8290 13.3284 13.8421 14.2063 14.2668 13.8407 13.2131 12.7255 12.6068 12.7854 13.1830 13.1953 13.2548 13.0264 12.9286 12.7313 12.5373 12.5734 12.9330 13.3284 13.6469 13.8407 13.7697 13.3278 12.9114 12.7658 12.8297 12.9183 12.9662 13.0264 12.9818 12.8418 12.6068 12.3260 12.2769 12.5734 12.8290 13.0339 13.2131 13.3278 13.2770 13.0966 13.0034 13.0317 13.0790 13.0517 12.9818 13.1496 13.0009 12.7658 12.4882 12.3260 12.5373 12.6462 12.6386 12.7255 12.9114 13.0966 13.2040 13.2161 13.2111 13.2147 13.2053 13.1496 13.3301 13.2161 13.0034 12.7658 12.6068 12.7313 12.8609 12.7313 12.6068 12.7658 13.0034 13.2161 13.3301 13.2985 13.2704 13.2985 13.3301 13.3851 13.3876 13.2161 13.0009 12.8418 12.9286 13.1591 13.1076 12.7854 12.8297 13.0317 13.2111 13.2985 13.2673 13.2277 13.2702 13.3851 13.2748 13.3851 13.3301 13.1496 12.9818 13.0264 13.2548 13.2281 13.1830 12.9183 13.0790 13.2147 13.2704 13.2277 13.1536 13.1697 13.2748 13.1697 13.2702 13.2985 13.2053 13.0517 12.9662 13.1953 13.1723 13.1953 12.9662 13.0517 13.2053 13.2985 13.2702 13.1697 13.1127 13.1697 13.1536 13.2277 13.2704 13.2147 13.0790 12.9183 13.1830 13.2281 13.2548 13.0264 12.9818 13.1496 13.3301 13.3851 13.2748 13.1697 13.1536 13.0560 13.1127 13.2277 13.2661 13.2129 13.1054 13.1061 13.0516 13.0504 13.1009 13.0607 13.1736 13.2734 13.2673 13.1697 13.0822 13.0560 13.1127 13.1697 13.2702 13.2985 13.2053 13.0517 12.9662 13.1953 13.1723 13.1953 12.9662 13.0517 13.2053 13.2985 13.2702 13.1697 13.1127 13.2277 13.2702 13.3851 13.3876 13.2161 13.0009 12.8418 12.9286 13.1591 13.1076 12.7854 12.8297 13.0317 13.2111 13.2985 13.2673 13.2277 13.2661 13.2985 13.3876 13.4485 13.3086 13.0966 12.9067 12.8249 12.8698 12.8416 12.5971 12.5303 12.7870 13.0317 13.2053 13.2734 13.2661 13.2129 13.2053 13.2161 13.3086 13.4570 13.4605 13.3278 13.1651 13.0075 12.8220 12.5497 12.2855 12.5303 12.8297 13.0517 13.1736 13.2129 13.1054 13.0517 13.0009 13.0966 13.4605 13.9704 14.0435 13.8407 13.5459 13.1886 12.8048 12.5497 12.5971 12.7854 12.9662 13.0607 13.1054 13.1061 12.9662 12.8418 12.9067 13.3278 14.0435 14.6450 14.5596 14.2063 13.7129 13.1886 12.8220 12.8416 13.1076 13.1953 13.1009 13.1061 13.0516 13.1953 12.9286 12.8249 13.1651 13.8407 14.5596 14.9790 14.7655 14.2063 13.5459 13.0075 12.8698 13.1591 13.1723 13.0504 13.0516 13.0504 13.1723 13.1591 12.8698 13.0075 13.5459 14.2063 14.7655 14.9790 14.5596 13.8407 13.1651 12.8249 12.9286 13.1953 13.0516 13.0504 13.1009 13.1953 13.1076 12.8416 12.8220 13.1886 13.7129 14.2063 14.5596 14.6450 14.0435 13.3278 12.9067 12.8418 12.9662 13.1061 13.1009 13.0607 12.9662 12.7854 12.5971 12.5497 12.8048 13.1886 13.5459 13.8407 14.0435 13.9704 13.4605 13.0966 13.0009 13.0517 13.1054 13.0607 13.1736 13.0517 12.8297 12.5303 12.2855 12.5497 12.8220 13.0075 13.1651 13.3278 13.4605 13.4570 13.3086 13.2161 13.2053 13.2129 13.1736 13.2734 13.2053 13.0317 12.7870 12.5303 12.5971 12.8416 12.8698 12.8249 12.9067 13.0966 13.3086 13.4485 13.3876 13.2985 13.2661 13.2734 13.2673 13.2985 13.2111 13.0317 12.8297 12.7854 13.1076 13.1591 12.9286 12.8418 13.0009 13.2161 13.3876 13.3851 13.2702 13.2277 13.2673 13.1697 13.2702 13.2985 13.2053 13.0517 12.9662 13.1953 13.1723 13.1953 12.9662 13.0517 13.2053 13.2985 13.2702 13.1697 13.1127 13.1697 13.0822 13.1697 13.2673 13.2734 13.1736 13.0607 13.1009 13.0504 13.0516 13.1061 13.1054 13.2129 13.2661 13.2277 13.1127 13.0560 13.0822 13.0560 13.1127 13.2277 13.2661 13.2129 13.1054 13.1061 13.0516 13.0504 13.1009 13.0607 13.1736 13.2734 13.2673 13.1697 13.0822 13.0560 13.0169 13.0560 13.1536 13.2456 13.2534 13.1787 13.0814 13.0074 12.9803 13.0074 13.0814 13.1787 13.2534 13.2456 13.1536 13.0560 13.0169 13.0560 13.0822 13.1697 13.2673 13.2734 13.1736 13.0607 13.1009 13.0504 13.0516 13.1061 13.1054 13.2129 13.2661 13.2277 13.1127 13.0560 13.1536 13.1697 13.2748 13.3851 13.3301 13.1496 12.9818 13.0264 13.2548 13.2281 13.1830 12.9183 13.0790 13.2147 13.2704 13.2277 13.1536 13.2456 13.2673 13.3851 13.5834 13.4485 13.2040 12.9903 12.8883 12.9787 13.0690 12.9086 12.6388 12.8452 13.0616 13.2147 13.2661 13.2456 13.2534 13.2734 13.3301 13.4485 13.5616 13.4570 13.2770 13.1177 13.0151 12.9300 12.7511 12.4520 12.5527 12.8452 13.0790 13.2129 13.2534 13.1787 13.1736 13.1496 13.2040 13.4570 13.9150 13.9704 13.7697 13.5179 13.2319 12.9049 12.5781 12.4520 12.6388 12.9183 13.1054 13.1787 13.0814 13.0607 12.9818 12.9903 13.2770 13.9704 14.8630 14.6450 14.2668 13.8173 13.3323 12.9049 12.7511 12.9086 13.1830 13.1061 13.0814 13.0074 13.1009 13.0264 12.8883 13.1177 13.7697 14.6450 15.0754 14.9790 14.4508 13.8173 13.2319 12.9300 13.0690 13.2281 13.0516 13.0074 12.9803 13.0504 13.2548 12.9787 13.0151 13.5179 14.2668 14.9790 15.1076 14.9790 14.2668 13.5179 13.0151 12.9787 13.2548 13.0504 12.9803 13.0074 13.0516 13.2281 13.0690 12.9300 13.2319 13.8173 14.4508 14.9790 15.0754 14.6450 13.7697 13.1177 12.8883 13.0264 13.1009 13.0074 13.0814 13.1061 13.1830 12.9086 12.7511 12.9049 13.3323 13.8173 14.2668 14.6450 14.8630 13.9704 13.2770 12.9903 12.9818 13.0607 13.0814 13.1787 13.1054 12.9183 12.6388 12.4520 12.5781 12.9049 13.2319 13.5179 13.7697 13.9704 13.9150 13.4570 13.2040 13.1496 13.1736 13.1787 13.2534 13.2129 13.0790 12.8452 12.5527 12.4520 12.7511 12.9300 13.0151 13.1177 13.2770 13.4570 13.5616 13.4485 13.3301 13.2734 13.2534 13.2456 13.2661 13.2147 13.0616 12.8452 12.6388 12.9086 13.0690 12.9787 12.8883 12.9903 13.2040 13.4485 13.5834 13.3851 13.2673 13.2456 13.1536 13.2277 13.2704 13.2147 13.0790 12.9183 13.1830 13.2281 13.2548 13.0264 12.9818 13.1496 13.3301 13.3851 13.2748 13.1697 13.1536 13.0560 13.1127 13.2277 13.2661 13.2129 13.1054 13.1061 13.0516 13.0504 13.1009 13.0607 13.1736 13.2734 13.2673 13.1697 13.0822 13.0560 13.0169 13.0560 13.1536 13.2456 13.2534 13.1787 13.0814 13.0074 12.9803 13.0074 13.0814 13.1787 13.2534 13.2456 13.1536 13.0560 13.0169 BAND: 4 13.0169 13.0560 13.1536 13.2456 13.2534 13.1787 13.3954 14.3963 14.9661 14.3963 13.3954 13.1787 13.2534 13.2456 13.1536 13.0560 13.0169 13.0560 13.0822 13.1746 13.2793 13.3217 13.2769 13.1870 13.6461 14.1342 14.0608 13.4359 13.2003 13.2971 13.3209 13.2287 13.1324 13.0560 13.1536 13.1746 13.2748 13.4059 13.4927 13.4875 13.4148 13.3246 13.3929 13.4982 13.2549 13.3329 13.4424 13.5040 13.3825 13.2287 13.1536 13.2456 13.2793 13.4059 13.5834 13.7354 13.7873 13.7439 13.6582 13.5735 13.5181 13.5084 13.5508 13.6438 13.7777 13.5040 13.3209 13.2456 13.2534 13.3217 13.4927 13.7354 13.9840 14.1320 14.1370 14.0653 13.9727 13.8895 13.8323 13.8040 13.7748 13.6438 13.4424 13.2971 13.2534 13.1787 13.2769 13.4875 13.7873 14.1320 14.4335 14.5399 14.4933 14.4005 14.2925 14.1735 14.0216 13.8040 13.5508 13.3329 13.2003 13.1787 13.3954 13.1870 13.4148 13.7439 14.1370 14.5399 14.8630 14.8715 14.7856 14.6588 14.4629 14.1735 13.8323 13.5084 13.2549 13.4359 13.3954 14.3963 13.6461 13.3246 13.6582 14.0653 14.4933 14.8715 15.1812 15.0372 14.9121 14.6588 14.2925 13.8895 13.5181 13.4982 14.0608 14.3963 14.9661 14.1342 13.3929 13.5735 13.9727 14.4005 14.7856 15.0372 15.3000 15.0372 14.7856 14.4005 13.9727 13.5735 13.3929 14.1342 14.9661 14.3963 14.0608 13.4982 13.5181 13.8895 14.2925 14.6588 14.9121 15.0372 15.1812 14.8715 14.4933 14.0653 13.6582 13.3246 13.6461 14.3963 13.3954 13.4359 13.2549 13.5084 13.8323 14.1735 14.4629 14.6588 14.7856 14.8715 14.8630 14.5399 14.1370 13.7439 13.4148 13.1870 13.3954 13.1787 13.2003 13.3329 13.5508 13.8040 14.0216 14.1735 14.2925 14.4005 14.4933 14.5399 14.4335 14.1320 13.7873 13.4875 13.2769 13.1787 13.2534 13.2971 13.4424 13.6438 13.7748 13.8040 13.8323 13.8895 13.9727 14.0653 14.1370 14.1320 13.9840 13.7354 13.4927 13.3217 13.2534 13.2456 13.3209 13.5040 13.7777 13.6438 13.5508 13.5084 13.5181 13.5735 13.6582 13.7439 13.7873 13.7354 13.5834 13.4059 13.2793 13.2456 13.1536 13.2287 13.3825 13.5040 13.4424 13.3329 13.2549 13.4982 13.3929 13.3246 13.4148 13.4875 13.4927 13.4059 13.2748 13.1746 13.1536 13.0560 13.1324 13.2287 13.3209 13.2971 13.2003 13.4359 14.0608 14.1342 13.6461 13.1870 13.2769 13.3217 13.2793 13.1746 13.0822 13.0560 13.0169 13.0560 13.1536 13.2456 13.2534 13.1787 13.3954 14.3963 14.9661 14.3963 13.3954 13.1787 13.2534 13.2456 13.1536 13.0560 13.0169 13.0560 13.0822 13.1746 13.2793 13.3217 13.2769 13.1870 13.6461 14.1342 14.0608 13.4359 13.2003 13.2971 13.3209 13.2287 13.1324 13.0560 13.0822 13.0560 13.1324 13.2287 13.3209 13.2971 13.2003 13.4359 14.0608 14.1342 13.6461 13.1870 13.2769 13.3217 13.2793 13.1746 13.0822 13.1746 13.1324 13.1746 13.2855 13.4174 13.4453 13.3725 13.2795 13.4396 13.6657 13.4396 13.2795 13.3725 13.4453 13.4174 13.2855 13.1746 13.2793 13.2287 13.2855 13.4059 13.5874 13.6971 13.6641 13.5771 13.4887 13.4242 13.4194 13.4750 13.5668 13.6706 13.6298 13.4174 13.2793 13.3217 13.3209 13.4174 13.5874 13.7354 13.9845 14.0455 13.9729 13.8703 13.7743 13.7202 13.7341 13.7975 13.8609 13.6706 13.4453 13.3217 13.2769 13.2971 13.4453 13.6971 13.9845 14.1320 14.4322 14.4279 14.3095 14.1782 14.0659 13.9968 13.9419 13.7975 13.5668 13.3725 13.2769 13.1870 13.2003 13.3725 13.6641 14.0455 14.4322 14.5399 14.8616 14.7356 14.5668 14.3944 14.2138 13.9968 13.7341 13.4750 13.2795 13.1870 13.6461 13.4359 13.2795 13.5771 13.9729 14.4279 14.8616 14.8715 15.0071 14.8539 14.6560 14.3944 14.0659 13.7202 13.4194 13.4396 13.6461 14.1342 14.0608 13.4396 13.4887 13.8703 14.3095 14.7356 15.0071 15.0372 15.0047 14.8539 14.5668 14.1782 13.7743 13.4242 13.6657 14.1342 14.0608 14.1342 13.6657 13.4242 13.7743 14.1782 14.5668 14.8539 15.0047 15.0372 15.0071 14.7356 14.3095 13.8703 13.4887 13.4396 14.0608 13.4359 13.6461 13.4396 13.4194 13.7202 14.0659 14.3944 14.6560 14.8539 15.0071 14.8715 14.8616 14.4279 13.9729 13.5771 13.2795 13.4359 13.2003 13.1870 13.2795 13.4750 13.7341 13.9968 14.2138 14.3944 14.5668 14.7356 14.8616 14.5399 14.4322 14.0455 13.6641 13.3725 13.2003 13.2971 13.2769 13.3725 13.5668 13.7975 13.9419 13.9968 14.0659 14.1782 14.3095 14.4279 14.4322 14.1320 13.9845 13.6971 13.4453 13.2971 13.3209 13.3217 13.4453 13.6706 13.8609 13.7975 13.7341 13.7202 13.7743 13.8703 13.9729 14.0455 13.9845 13.7354 13.5874 13.4174 13.3209 13.2287 13.2793 13.4174 13.6298 13.6706 13.5668 13.4750 13.4194 13.4242 13.4887 13.5771 13.6641 13.6971 13.5874 13.4059 13.2855 13.2287 13.1324 13.1746 13.2855 13.4174 13.4453 13.3725 13.2795 13.4396 13.6657 13.4396 13.2795 13.3725 13.4453 13.4174 13.2855 13.1746 13.1324 13.0560 13.0822 13.1746 13.2793 13.3217 13.2769 13.1870 13.6461 14.1342 14.0608 13.4359 13.2003 13.2971 13.3209 13.2287 13.1324 13.0560 13.1536 13.1746 13.2748 13.4059 13.4927 13.4875 13.4148 13.3246 13.3929 13.4982 13.2549 13.3329 13.4424 13.5040 13.3825 13.2287 13.1536 13.1746 13.1324 13.1746 13.2855 13.4174 13.4453 13.3725 13.2795 13.4396 13.6657 13.4396 13.2795 13.3725 13.4453 13.4174 13.2855 13.1746 13.2748 13.1746 13.1536 13.2287 13.3825 13.5040 13.4424 13.3329 13.2549 13.4982 13.3929 13.3246 13.4148 13.4875 13.4927 13.4059 13.2748 13.4059 13.2855 13.2287 13.2793 13.4174 13.6298 13.6706 13.5668 13.4750 13.4194 13.4242 13.4887 13.5771 13.6641 13.6971 13.5874 13.4059 13.4927 13.4174 13.3825 13.4174 13.4927 13.6971 13.9985 13.9463 13.8330 13.7332 13.6865 13.7332 13.8330 13.9463 13.9985 13.6971 13.4927 13.4875 13.4453 13.5040 13.6298 13.6971 13.7873 14.0455 14.4160 14.2728 14.1176 13.9973 13.9766 14.0533 14.1299 13.9463 13.6641 13.4875 13.4148 13.3725 13.4424 13.6706 13.9985 14.0455 14.1370 14.4279 14.6613 14.4861 14.2927 14.1672 14.1253 14.0533 13.8330 13.5771 13.4148 13.3246 13.2795 13.3329 13.5668 13.9463 14.4160 14.4279 14.4933 14.7356 14.7328 14.5320 14.3366 14.1672 13.9766 13.7332 13.4887 13.3246 13.3929 13.4396 13.2549 13.4750 13.8330 14.2728 14.6613 14.7356 14.7856 14.8539 14.7229 14.5320 14.2927 13.9973 13.6865 13.4242 13.3929 13.4982 13.6657 13.4982 13.4194 13.7332 14.1176 14.4861 14.7328 14.8539 14.9121 14.8539 14.7328 14.4861 14.1176 13.7332 13.4194 13.4982 13.2549 13.4396 13.3929 13.4242 13.6865 13.9973 14.2927 14.5320 14.7229 14.8539 14.7856 14.7356 14.6613 14.2728 13.8330 13.4750 13.2549 13.3329 13.2795 13.3246 13.4887 13.7332 13.9766 14.1672 14.3366 14.5320 14.7328 14.7356 14.4933 14.4279 14.4160 13.9463 13.5668 13.3329 13.4424 13.3725 13.4148 13.5771 13.8330 14.0533 14.1253 14.1672 14.2927 14.4861 14.6613 14.4279 14.1370 14.0455 13.9985 13.6706 13.4424 13.5040 13.4453 13.4875 13.6641 13.9463 14.1299 14.0533 13.9766 13.9973 14.1176 14.2728 14.4160 14.0455 13.7873 13.6971 13.6298 13.5040 13.3825 13.4174 13.4927 13.6971 13.9985 13.9463 13.8330 13.7332 13.6865 13.7332 13.8330 13.9463 13.9985 13.6971 13.4927 13.4174 13.3825 13.2287 13.2855 13.4059 13.5874 13.6971 13.6641 13.5771 13.4887 13.4242 13.4194 13.4750 13.5668 13.6706 13.6298 13.4174 13.2793 13.2287 13.1536 13.1746 13.2748 13.4059 13.4927 13.4875 13.4148 13.3246 13.3929 13.4982 13.2549 13.3329 13.4424 13.5040 13.3825 13.2287 13.1536 13.2456 13.2793 13.4059 13.5834 13.7354 13.7873 13.7439 13.6582 13.5735 13.5181 13.5084 13.5508 13.6438 13.7777 13.5040 13.3209 13.2456 13.2793 13.2287 13.2855 13.4059 13.5874 13.6971 13.6641 13.5771 13.4887 13.4242 13.4194 13.4750 13.5668 13.6706 13.6298 13.4174 13.2793 13.4059 13.2855 13.2287 13.2793 13.4174 13.6298 13.6706 13.5668 13.4750 13.4194 13.4242 13.4887 13.5771 13.6641 13.6971 13.5874 13.4059 13.5834 13.4059 13.2793 13.2456 13.3209 13.5040 13.7777 13.6438 13.5508 13.5084 13.5181 13.5735 13.6582 13.7439 13.7873 13.7354 13.5834 13.7354 13.5874 13.4174 13.3209 13.3217 13.4453 13.6706 13.8609 13.7975 13.7341 13.7202 13.7743 13.8703 13.9729 14.0455 13.9845 13.7354 13.7873 13.6971 13.6298 13.5040 13.4453 13.4875 13.6641 13.9463 14.1299 14.0533 13.9766 13.9973 14.1176 14.2728 14.4160 14.0455 13.7873 13.7439 13.6641 13.6706 13.7777 13.6706 13.6641 13.7439 13.9729 14.2728 14.3372 14.2092 14.1408 14.2092 14.3372 14.2728 13.9729 13.7439 13.6582 13.5771 13.5668 13.6438 13.8609 13.9463 13.9729 14.0653 14.3095 14.4861 14.3861 14.2398 14.1911 14.2092 14.1176 13.8703 13.6582 13.5735 13.4887 13.4750 13.5508 13.7975 14.1299 14.2728 14.3095 14.4005 14.5668 14.5320 14.3725 14.2398 14.1408 13.9973 13.7743 13.5735 13.5181 13.4242 13.4194 13.5084 13.7341 14.0533 14.3372 14.4861 14.5668 14.6588 14.6560 14.5320 14.3861 14.2092 13.9766 13.7202 13.5181 13.5084 13.4194 13.4242 13.5181 13.7202 13.9766 14.2092 14.3861 14.5320 14.6560 14.6588 14.5668 14.4861 14.3372 14.0533 13.7341 13.5084 13.5508 13.4750 13.4887 13.5735 13.7743 13.9973 14.1408 14.2398 14.3725 14.5320 14.5668 14.4005 14.3095 14.2728 14.1299 13.7975 13.5508 13.6438 13.5668 13.5771 13.6582 13.8703 14.1176 14.2092 14.1911 14.2398 14.3861 14.4861 14.3095 14.0653 13.9729 13.9463 13.8609 13.6438 13.7777 13.6706 13.6641 13.7439 13.9729 14.2728 14.3372 14.2092 14.1408 14.2092 14.3372 14.2728 13.9729 13.7439 13.6641 13.6706 13.7777 13.5040 13.6298 13.6971 13.7873 14.0455 14.4160 14.2728 14.1176 13.9973 13.9766 14.0533 14.1299 13.9463 13.6641 13.4875 13.4453 13.5040 13.3209 13.4174 13.5874 13.7354 13.9845 14.0455 13.9729 13.8703 13.7743 13.7202 13.7341 13.7975 13.8609 13.6706 13.4453 13.3217 13.3209 13.2456 13.2793 13.4059 13.5834 13.7354 13.7873 13.7439 13.6582 13.5735 13.5181 13.5084 13.5508 13.6438 13.7777 13.5040 13.3209 13.2456 13.2534 13.3217 13.4927 13.7354 13.9840 14.1320 14.1370 14.0653 13.9727 13.8895 13.8323 13.8040 13.7748 13.6438 13.4424 13.2971 13.2534 13.3217 13.3209 13.4174 13.5874 13.7354 13.9845 14.0455 13.9729 13.8703 13.7743 13.7202 13.7341 13.7975 13.8609 13.6706 13.4453 13.3217 13.4927 13.4174 13.3825 13.4174 13.4927 13.6971 13.9985 13.9463 13.8330 13.7332 13.6865 13.7332 13.8330 13.9463 13.9985 13.6971 13.4927 13.7354 13.5874 13.4174 13.3209 13.3217 13.4453 13.6706 13.8609 13.7975 13.7341 13.7202 13.7743 13.8703 13.9729 14.0455 13.9845 13.7354 13.9840 13.7354 13.4927 13.3217 13.2534 13.2971 13.4424 13.6438 13.7748 13.8040 13.8323 13.8895 13.9727 14.0653 14.1370 14.1320 13.9840 14.1320 13.9845 13.6971 13.4453 13.2971 13.2769 13.3725 13.5668 13.7975 13.9419 13.9968 14.0659 14.1782 14.3095 14.4279 14.4322 14.1320 14.1370 14.0455 13.9985 13.6706 13.4424 13.3725 13.4148 13.5771 13.8330 14.0533 14.1253 14.1672 14.2927 14.4861 14.6613 14.4279 14.1370 14.0653 13.9729 13.9463 13.8609 13.6438 13.5668 13.5771 13.6582 13.8703 14.1176 14.2092 14.1911 14.2398 14.3861 14.4861 14.3095 14.0653 13.9727 13.8703 13.8330 13.7975 13.7748 13.7975 13.8330 13.8703 13.9727 14.1782 14.2927 14.2398 14.1954 14.2398 14.2927 14.1782 13.9727 13.8895 13.7743 13.7332 13.7341 13.8040 13.9419 14.0533 14.1176 14.1782 14.2925 14.3944 14.3366 14.2398 14.1911 14.1672 14.0659 13.8895 13.8323 13.7202 13.6865 13.7202 13.8323 13.9968 14.1253 14.2092 14.2927 14.3944 14.4629 14.3944 14.2927 14.2092 14.1253 13.9968 13.8323 13.8040 13.7341 13.7332 13.7743 13.8895 14.0659 14.1672 14.1911 14.2398 14.3366 14.3944 14.2925 14.1782 14.1176 14.0533 13.9419 13.8040 13.7748 13.7975 13.8330 13.8703 13.9727 14.1782 14.2927 14.2398 14.1954 14.2398 14.2927 14.1782 13.9727 13.8703 13.8330 13.7975 13.7748 13.6438 13.8609 13.9463 13.9729 14.0653 14.3095 14.4861 14.3861 14.2398 14.1911 14.2092 14.1176 13.8703 13.6582 13.5771 13.5668 13.6438 13.4424 13.6706 13.9985 14.0455 14.1370 14.4279 14.6613 14.4861 14.2927 14.1672 14.1253 14.0533 13.8330 13.5771 13.4148 13.3725 13.4424 13.2971 13.4453 13.6971 13.9845 14.1320 14.4322 14.4279 14.3095 14.1782 14.0659 13.9968 13.9419 13.7975 13.5668 13.3725 13.2769 13.2971 13.2534 13.3217 13.4927 13.7354 13.9840 14.1320 14.1370 14.0653 13.9727 13.8895 13.8323 13.8040 13.7748 13.6438 13.4424 13.2971 13.2534 13.1787 13.2769 13.4875 13.7873 14.1320 14.4335 14.5399 14.4933 14.4005 14.2925 14.1735 14.0216 13.8040 13.5508 13.3329 13.2003 13.1787 13.2769 13.2971 13.4453 13.6971 13.9845 14.1320 14.4322 14.4279 14.3095 14.1782 14.0659 13.9968 13.9419 13.7975 13.5668 13.3725 13.2769 13.4875 13.4453 13.5040 13.6298 13.6971 13.7873 14.0455 14.4160 14.2728 14.1176 13.9973 13.9766 14.0533 14.1299 13.9463 13.6641 13.4875 13.7873 13.6971 13.6298 13.5040 13.4453 13.4875 13.6641 13.9463 14.1299 14.0533 13.9766 13.9973 14.1176 14.2728 14.4160 14.0455 13.7873 14.1320 13.9845 13.6971 13.4453 13.2971 13.2769 13.3725 13.5668 13.7975 13.9419 13.9968 14.0659 14.1782 14.3095 14.4279 14.4322 14.1320 14.4335 14.1320 13.7873 13.4875 13.2769 13.1787 13.2003 13.3329 13.5508 13.8040 14.0216 14.1735 14.2925 14.4005 14.4933 14.5399 14.4335 14.5399 14.4322 14.0455 13.6641 13.3725 13.2003 13.1870 13.2795 13.4750 13.7341 13.9968 14.2138 14.3944 14.5668 14.7356 14.8616 14.5399 14.4933 14.4279 14.4160 13.9463 13.5668 13.3329 13.2795 13.3246 13.4887 13.7332 13.9766 14.1672 14.3366 14.5320 14.7328 14.7356 14.4933 14.4005 14.3095 14.2728 14.1299 13.7975 13.5508 13.4750 13.4887 13.5735 13.7743 13.9973 14.1408 14.2398 14.3725 14.5320 14.5668 14.4005 14.2925 14.1782 14.1176 14.0533 13.9419 13.8040 13.7341 13.7332 13.7743 13.8895 14.0659 14.1672 14.1911 14.2398 14.3366 14.3944 14.2925 14.1735 14.0659 13.9973 13.9766 13.9968 14.0216 13.9968 13.9766 13.9973 14.0659 14.1735 14.2138 14.1672 14.1408 14.1672 14.2138 14.1735 14.0216 13.9968 13.9766 13.9973 14.0659 14.1735 14.2138 14.1672 14.1408 14.1672 14.2138 14.1735 14.0659 13.9973 13.9766 13.9968 14.0216 13.8040 13.9419 14.0533 14.1176 14.1782 14.2925 14.3944 14.3366 14.2398 14.1911 14.1672 14.0659 13.8895 13.7743 13.7332 13.7341 13.8040 13.5508 13.7975 14.1299 14.2728 14.3095 14.4005 14.5668 14.5320 14.3725 14.2398 14.1408 13.9973 13.7743 13.5735 13.4887 13.4750 13.5508 13.3329 13.5668 13.9463 14.4160 14.4279 14.4933 14.7356 14.7328 14.5320 14.3366 14.1672 13.9766 13.7332 13.4887 13.3246 13.2795 13.3329 13.2003 13.3725 13.6641 14.0455 14.4322 14.5399 14.8616 14.7356 14.5668 14.3944 14.2138 13.9968 13.7341 13.4750 13.2795 13.1870 13.2003 13.1787 13.2769 13.4875 13.7873 14.1320 14.4335 14.5399 14.4933 14.4005 14.2925 14.1735 14.0216 13.8040 13.5508 13.3329 13.2003 13.1787 13.3954 13.1870 13.4148 13.7439 14.1370 14.5399 14.8630 14.8715 14.7856 14.6588 14.4629 14.1735 13.8323 13.5084 13.2549 13.4359 13.3954 13.1870 13.2003 13.3725 13.6641 14.0455 14.4322 14.5399 14.8616 14.7356 14.5668 14.3944 14.2138 13.9968 13.7341 13.4750 13.2795 13.1870 13.4148 13.3725 13.4424 13.6706 13.9985 14.0455 14.1370 14.4279 14.6613 14.4861 14.2927 14.1672 14.1253 14.0533 13.8330 13.5771 13.4148 13.7439 13.6641 13.6706 13.7777 13.6706 13.6641 13.7439 13.9729 14.2728 14.3372 14.2092 14.1408 14.2092 14.3372 14.2728 13.9729 13.7439 14.1370 14.0455 13.9985 13.6706 13.4424 13.3725 13.4148 13.5771 13.8330 14.0533 14.1253 14.1672 14.2927 14.4861 14.6613 14.4279 14.1370 14.5399 14.4322 14.0455 13.6641 13.3725 13.2003 13.1870 13.2795 13.4750 13.7341 13.9968 14.2138 14.3944 14.5668 14.7356 14.8616 14.5399 14.8630 14.5399 14.1370 13.7439 13.4148 13.1870 13.3954 13.4359 13.2549 13.5084 13.8323 14.1735 14.4629 14.6588 14.7856 14.8715 14.8630 14.8715 14.8616 14.4279 13.9729 13.5771 13.2795 13.4359 13.6461 13.4396 13.4194 13.7202 14.0659 14.3944 14.6560 14.8539 15.0071 14.8715 14.7856 14.7356 14.6613 14.2728 13.8330 13.4750 13.2549 13.4396 13.3929 13.4242 13.6865 13.9973 14.2927 14.5320 14.7229 14.8539 14.7856 14.6588 14.5668 14.4861 14.3372 14.0533 13.7341 13.5084 13.4194 13.4242 13.5181 13.7202 13.9766 14.2092 14.3861 14.5320 14.6560 14.6588 14.4629 14.3944 14.2927 14.2092 14.1253 13.9968 13.8323 13.7202 13.6865 13.7202 13.8323 13.9968 14.1253 14.2092 14.2927 14.3944 14.4629 14.1735 14.2138 14.1672 14.1408 14.1672 14.2138 14.1735 14.0659 13.9973 13.9766 13.9968 14.0216 13.9968 13.9766 13.9973 14.0659 14.1735 13.8323 13.9968 14.1253 14.2092 14.2927 14.3944 14.4629 14.3944 14.2927 14.2092 14.1253 13.9968 13.8323 13.7202 13.6865 13.7202 13.8323 13.5084 13.7341 14.0533 14.3372 14.4861 14.5668 14.6588 14.6560 14.5320 14.3861 14.2092 13.9766 13.7202 13.5181 13.4242 13.4194 13.5084 13.2549 13.4750 13.8330 14.2728 14.6613 14.7356 14.7856 14.8539 14.7229 14.5320 14.2927 13.9973 13.6865 13.4242 13.3929 13.4396 13.2549 13.4359 13.2795 13.5771 13.9729 14.4279 14.8616 14.8715 15.0071 14.8539 14.6560 14.3944 14.0659 13.7202 13.4194 13.4396 13.6461 13.4359 13.3954 13.1870 13.4148 13.7439 14.1370 14.5399 14.8630 14.8715 14.7856 14.6588 14.4629 14.1735 13.8323 13.5084 13.2549 13.4359 13.3954 14.3963 13.6461 13.3246 13.6582 14.0653 14.4933 14.8715 15.1812 15.0372 14.9121 14.6588 14.2925 13.8895 13.5181 13.4982 14.0608 14.3963 13.6461 13.4359 13.2795 13.5771 13.9729 14.4279 14.8616 14.8715 15.0071 14.8539 14.6560 14.3944 14.0659 13.7202 13.4194 13.4396 13.6461 13.3246 13.2795 13.3329 13.5668 13.9463 14.4160 14.4279 14.4933 14.7356 14.7328 14.5320 14.3366 14.1672 13.9766 13.7332 13.4887 13.3246 13.6582 13.5771 13.5668 13.6438 13.8609 13.9463 13.9729 14.0653 14.3095 14.4861 14.3861 14.2398 14.1911 14.2092 14.1176 13.8703 13.6582 14.0653 13.9729 13.9463 13.8609 13.6438 13.5668 13.5771 13.6582 13.8703 14.1176 14.2092 14.1911 14.2398 14.3861 14.4861 14.3095 14.0653 14.4933 14.4279 14.4160 13.9463 13.5668 13.3329 13.2795 13.3246 13.4887 13.7332 13.9766 14.1672 14.3366 14.5320 14.7328 14.7356 14.4933 14.8715 14.8616 14.4279 13.9729 13.5771 13.2795 13.4359 13.6461 13.4396 13.4194 13.7202 14.0659 14.3944 14.6560 14.8539 15.0071 14.8715 15.1812 14.8715 14.4933 14.0653 13.6582 13.3246 13.6461 14.3963 14.0608 13.4982 13.5181 13.8895 14.2925 14.6588 14.9121 15.0372 15.1812 15.0372 15.0071 14.7356 14.3095 13.8703 13.4887 13.4396 14.0608 14.1342 13.6657 13.4242 13.7743 14.1782 14.5668 14.8539 15.0047 15.0372 14.9121 14.8539 14.7328 14.4861 14.1176 13.7332 13.4194 13.4982 13.6657 13.4982 13.4194 13.7332 14.1176 14.4861 14.7328 14.8539 14.9121 14.6588 14.6560 14.5320 14.3861 14.2092 13.9766 13.7202 13.5181 13.4242 13.4194 13.5084 13.7341 14.0533 14.3372 14.4861 14.5668 14.6588 14.2925 14.3944 14.3366 14.2398 14.1911 14.1672 14.0659 13.8895 13.7743 13.7332 13.7341 13.8040 13.9419 14.0533 14.1176 14.1782 14.2925 13.8895 14.0659 14.1672 14.1911 14.2398 14.3366 14.3944 14.2925 14.1782 14.1176 14.0533 13.9419 13.8040 13.7341 13.7332 13.7743 13.8895 13.5181 13.7202 13.9766 14.2092 14.3861 14.5320 14.6560 14.6588 14.5668 14.4861 14.3372 14.0533 13.7341 13.5084 13.4194 13.4242 13.5181 13.4982 13.4194 13.7332 14.1176 14.4861 14.7328 14.8539 14.9121 14.8539 14.7328 14.4861 14.1176 13.7332 13.4194 13.4982 13.6657 13.4982 14.0608 13.4396 13.4887 13.8703 14.3095 14.7356 15.0071 15.0372 15.0047 14.8539 14.5668 14.1782 13.7743 13.4242 13.6657 14.1342 14.0608 14.3963 13.6461 13.3246 13.6582 14.0653 14.4933 14.8715 15.1812 15.0372 14.9121 14.6588 14.2925 13.8895 13.5181 13.4982 14.0608 14.3963 14.9661 14.1342 13.3929 13.5735 13.9727 14.4005 14.7856 15.0372 15.3000 15.0372 14.7856 14.4005 13.9727 13.5735 13.3929 14.1342 14.9661 14.1342 14.0608 13.4396 13.4887 13.8703 14.3095 14.7356 15.0071 15.0372 15.0047 14.8539 14.5668 14.1782 13.7743 13.4242 13.6657 14.1342 13.3929 13.4396 13.2549 13.4750 13.8330 14.2728 14.6613 14.7356 14.7856 14.8539 14.7229 14.5320 14.2927 13.9973 13.6865 13.4242 13.3929 13.5735 13.4887 13.4750 13.5508 13.7975 14.1299 14.2728 14.3095 14.4005 14.5668 14.5320 14.3725 14.2398 14.1408 13.9973 13.7743 13.5735 13.9727 13.8703 13.8330 13.7975 13.7748 13.7975 13.8330 13.8703 13.9727 14.1782 14.2927 14.2398 14.1954 14.2398 14.2927 14.1782 13.9727 14.4005 14.3095 14.2728 14.1299 13.7975 13.5508 13.4750 13.4887 13.5735 13.7743 13.9973 14.1408 14.2398 14.3725 14.5320 14.5668 14.4005 14.7856 14.7356 14.6613 14.2728 13.8330 13.4750 13.2549 13.4396 13.3929 13.4242 13.6865 13.9973 14.2927 14.5320 14.7229 14.8539 14.7856 15.0372 15.0071 14.7356 14.3095 13.8703 13.4887 13.4396 14.0608 14.1342 13.6657 13.4242 13.7743 14.1782 14.5668 14.8539 15.0047 15.0372 15.3000 15.0372 14.7856 14.4005 13.9727 13.5735 13.3929 14.1342 14.9661 14.1342 13.3929 13.5735 13.9727 14.4005 14.7856 15.0372 15.3000 15.0372 15.0047 14.8539 14.5668 14.1782 13.7743 13.4242 13.6657 14.1342 14.0608 13.4396 13.4887 13.8703 14.3095 14.7356 15.0071 15.0372 14.7856 14.8539 14.7229 14.5320 14.2927 13.9973 13.6865 13.4242 13.3929 13.4396 13.2549 13.4750 13.8330 14.2728 14.6613 14.7356 14.7856 14.4005 14.5668 14.5320 14.3725 14.2398 14.1408 13.9973 13.7743 13.5735 13.4887 13.4750 13.5508 13.7975 14.1299 14.2728 14.3095 14.4005 13.9727 14.1782 14.2927 14.2398 14.1954 14.2398 14.2927 14.1782 13.9727 13.8703 13.8330 13.7975 13.7748 13.7975 13.8330 13.8703 13.9727 13.5735 13.7743 13.9973 14.1408 14.2398 14.3725 14.5320 14.5668 14.4005 14.3095 14.2728 14.1299 13.7975 13.5508 13.4750 13.4887 13.5735 13.3929 13.4242 13.6865 13.9973 14.2927 14.5320 14.7229 14.8539 14.7856 14.7356 14.6613 14.2728 13.8330 13.4750 13.2549 13.4396 13.3929 14.1342 13.6657 13.4242 13.7743 14.1782 14.5668 14.8539 15.0047 15.0372 15.0071 14.7356 14.3095 13.8703 13.4887 13.4396 14.0608 14.1342 14.9661 14.1342 13.3929 13.5735 13.9727 14.4005 14.7856 15.0372 15.3000 15.0372 14.7856 14.4005 13.9727 13.5735 13.3929 14.1342 14.9661 14.3963 14.0608 13.4982 13.5181 13.8895 14.2925 14.6588 14.9121 15.0372 15.1812 14.8715 14.4933 14.0653 13.6582 13.3246 13.6461 14.3963 14.0608 14.1342 13.6657 13.4242 13.7743 14.1782 14.5668 14.8539 15.0047 15.0372 15.0071 14.7356 14.3095 13.8703 13.4887 13.4396 14.0608 13.4982 13.6657 13.4982 13.4194 13.7332 14.1176 14.4861 14.7328 14.8539 14.9121 14.8539 14.7328 14.4861 14.1176 13.7332 13.4194 13.4982 13.5181 13.4242 13.4194 13.5084 13.7341 14.0533 14.3372 14.4861 14.5668 14.6588 14.6560 14.5320 14.3861 14.2092 13.9766 13.7202 13.5181 13.8895 13.7743 13.7332 13.7341 13.8040 13.9419 14.0533 14.1176 14.1782 14.2925 14.3944 14.3366 14.2398 14.1911 14.1672 14.0659 13.8895 14.2925 14.1782 14.1176 14.0533 13.9419 13.8040 13.7341 13.7332 13.7743 13.8895 14.0659 14.1672 14.1911 14.2398 14.3366 14.3944 14.2925 14.6588 14.5668 14.4861 14.3372 14.0533 13.7341 13.5084 13.4194 13.4242 13.5181 13.7202 13.9766 14.2092 14.3861 14.5320 14.6560 14.6588 14.9121 14.8539 14.7328 14.4861 14.1176 13.7332 13.4194 13.4982 13.6657 13.4982 13.4194 13.7332 14.1176 14.4861 14.7328 14.8539 14.9121 15.0372 15.0047 14.8539 14.5668 14.1782 13.7743 13.4242 13.6657 14.1342 14.0608 13.4396 13.4887 13.8703 14.3095 14.7356 15.0071 15.0372 15.1812 15.0372 14.9121 14.6588 14.2925 13.8895 13.5181 13.4982 14.0608 14.3963 13.6461 13.3246 13.6582 14.0653 14.4933 14.8715 15.1812 14.8715 15.0071 14.8539 14.6560 14.3944 14.0659 13.7202 13.4194 13.4396 13.6461 13.4359 13.2795 13.5771 13.9729 14.4279 14.8616 14.8715 14.4933 14.7356 14.7328 14.5320 14.3366 14.1672 13.9766 13.7332 13.4887 13.3246 13.2795 13.3329 13.5668 13.9463 14.4160 14.4279 14.4933 14.0653 14.3095 14.4861 14.3861 14.2398 14.1911 14.2092 14.1176 13.8703 13.6582 13.5771 13.5668 13.6438 13.8609 13.9463 13.9729 14.0653 13.6582 13.8703 14.1176 14.2092 14.1911 14.2398 14.3861 14.4861 14.3095 14.0653 13.9729 13.9463 13.8609 13.6438 13.5668 13.5771 13.6582 13.3246 13.4887 13.7332 13.9766 14.1672 14.3366 14.5320 14.7328 14.7356 14.4933 14.4279 14.4160 13.9463 13.5668 13.3329 13.2795 13.3246 13.6461 13.4396 13.4194 13.7202 14.0659 14.3944 14.6560 14.8539 15.0071 14.8715 14.8616 14.4279 13.9729 13.5771 13.2795 13.4359 13.6461 14.3963 14.0608 13.4982 13.5181 13.8895 14.2925 14.6588 14.9121 15.0372 15.1812 14.8715 14.4933 14.0653 13.6582 13.3246 13.6461 14.3963 13.3954 13.4359 13.2549 13.5084 13.8323 14.1735 14.4629 14.6588 14.7856 14.8715 14.8630 14.5399 14.1370 13.7439 13.4148 13.1870 13.3954 13.4359 13.6461 13.4396 13.4194 13.7202 14.0659 14.3944 14.6560 14.8539 15.0071 14.8715 14.8616 14.4279 13.9729 13.5771 13.2795 13.4359 13.2549 13.4396 13.3929 13.4242 13.6865 13.9973 14.2927 14.5320 14.7229 14.8539 14.7856 14.7356 14.6613 14.2728 13.8330 13.4750 13.2549 13.5084 13.4194 13.4242 13.5181 13.7202 13.9766 14.2092 14.3861 14.5320 14.6560 14.6588 14.5668 14.4861 14.3372 14.0533 13.7341 13.5084 13.8323 13.7202 13.6865 13.7202 13.8323 13.9968 14.1253 14.2092 14.2927 14.3944 14.4629 14.3944 14.2927 14.2092 14.1253 13.9968 13.8323 14.1735 14.0659 13.9973 13.9766 13.9968 14.0216 13.9968 13.9766 13.9973 14.0659 14.1735 14.2138 14.1672 14.1408 14.1672 14.2138 14.1735 14.4629 14.3944 14.2927 14.2092 14.1253 13.9968 13.8323 13.7202 13.6865 13.7202 13.8323 13.9968 14.1253 14.2092 14.2927 14.3944 14.4629 14.6588 14.6560 14.5320 14.3861 14.2092 13.9766 13.7202 13.5181 13.4242 13.4194 13.5084 13.7341 14.0533 14.3372 14.4861 14.5668 14.6588 14.7856 14.8539 14.7229 14.5320 14.2927 13.9973 13.6865 13.4242 13.3929 13.4396 13.2549 13.4750 13.8330 14.2728 14.6613 14.7356 14.7856 14.8715 15.0071 14.8539 14.6560 14.3944 14.0659 13.7202 13.4194 13.4396 13.6461 13.4359 13.2795 13.5771 13.9729 14.4279 14.8616 14.8715 14.8630 14.8715 14.7856 14.6588 14.4629 14.1735 13.8323 13.5084 13.2549 13.4359 13.3954 13.1870 13.4148 13.7439 14.1370 14.5399 14.8630 14.5399 14.8616 14.7356 14.5668 14.3944 14.2138 13.9968 13.7341 13.4750 13.2795 13.1870 13.2003 13.3725 13.6641 14.0455 14.4322 14.5399 14.1370 14.4279 14.6613 14.4861 14.2927 14.1672 14.1253 14.0533 13.8330 13.5771 13.4148 13.3725 13.4424 13.6706 13.9985 14.0455 14.1370 13.7439 13.9729 14.2728 14.3372 14.2092 14.1408 14.2092 14.3372 14.2728 13.9729 13.7439 13.6641 13.6706 13.7777 13.6706 13.6641 13.7439 13.4148 13.5771 13.8330 14.0533 14.1253 14.1672 14.2927 14.4861 14.6613 14.4279 14.1370 14.0455 13.9985 13.6706 13.4424 13.3725 13.4148 13.1870 13.2795 13.4750 13.7341 13.9968 14.2138 14.3944 14.5668 14.7356 14.8616 14.5399 14.4322 14.0455 13.6641 13.3725 13.2003 13.1870 13.3954 13.4359 13.2549 13.5084 13.8323 14.1735 14.4629 14.6588 14.7856 14.8715 14.8630 14.5399 14.1370 13.7439 13.4148 13.1870 13.3954 13.1787 13.2003 13.3329 13.5508 13.8040 14.0216 14.1735 14.2925 14.4005 14.4933 14.5399 14.4335 14.1320 13.7873 13.4875 13.2769 13.1787 13.2003 13.1870 13.2795 13.4750 13.7341 13.9968 14.2138 14.3944 14.5668 14.7356 14.8616 14.5399 14.4322 14.0455 13.6641 13.3725 13.2003 13.3329 13.2795 13.3246 13.4887 13.7332 13.9766 14.1672 14.3366 14.5320 14.7328 14.7356 14.4933 14.4279 14.4160 13.9463 13.5668 13.3329 13.5508 13.4750 13.4887 13.5735 13.7743 13.9973 14.1408 14.2398 14.3725 14.5320 14.5668 14.4005 14.3095 14.2728 14.1299 13.7975 13.5508 13.8040 13.7341 13.7332 13.7743 13.8895 14.0659 14.1672 14.1911 14.2398 14.3366 14.3944 14.2925 14.1782 14.1176 14.0533 13.9419 13.8040 14.0216 13.9968 13.9766 13.9973 14.0659 14.1735 14.2138 14.1672 14.1408 14.1672 14.2138 14.1735 14.0659 13.9973 13.9766 13.9968 14.0216 14.1735 14.2138 14.1672 14.1408 14.1672 14.2138 14.1735 14.0659 13.9973 13.9766 13.9968 14.0216 13.9968 13.9766 13.9973 14.0659 14.1735 14.2925 14.3944 14.3366 14.2398 14.1911 14.1672 14.0659 13.8895 13.7743 13.7332 13.7341 13.8040 13.9419 14.0533 14.1176 14.1782 14.2925 14.4005 14.5668 14.5320 14.3725 14.2398 14.1408 13.9973 13.7743 13.5735 13.4887 13.4750 13.5508 13.7975 14.1299 14.2728 14.3095 14.4005 14.4933 14.7356 14.7328 14.5320 14.3366 14.1672 13.9766 13.7332 13.4887 13.3246 13.2795 13.3329 13.5668 13.9463 14.4160 14.4279 14.4933 14.5399 14.8616 14.7356 14.5668 14.3944 14.2138 13.9968 13.7341 13.4750 13.2795 13.1870 13.2003 13.3725 13.6641 14.0455 14.4322 14.5399 14.4335 14.5399 14.4933 14.4005 14.2925 14.1735 14.0216 13.8040 13.5508 13.3329 13.2003 13.1787 13.2769 13.4875 13.7873 14.1320 14.4335 14.1320 14.4322 14.4279 14.3095 14.1782 14.0659 13.9968 13.9419 13.7975 13.5668 13.3725 13.2769 13.2971 13.4453 13.6971 13.9845 14.1320 13.7873 14.0455 14.4160 14.2728 14.1176 13.9973 13.9766 14.0533 14.1299 13.9463 13.6641 13.4875 13.4453 13.5040 13.6298 13.6971 13.7873 13.4875 13.6641 13.9463 14.1299 14.0533 13.9766 13.9973 14.1176 14.2728 14.4160 14.0455 13.7873 13.6971 13.6298 13.5040 13.4453 13.4875 13.2769 13.3725 13.5668 13.7975 13.9419 13.9968 14.0659 14.1782 14.3095 14.4279 14.4322 14.1320 13.9845 13.6971 13.4453 13.2971 13.2769 13.1787 13.2003 13.3329 13.5508 13.8040 14.0216 14.1735 14.2925 14.4005 14.4933 14.5399 14.4335 14.1320 13.7873 13.4875 13.2769 13.1787 13.2534 13.2971 13.4424 13.6438 13.7748 13.8040 13.8323 13.8895 13.9727 14.0653 14.1370 14.1320 13.9840 13.7354 13.4927 13.3217 13.2534 13.2971 13.2769 13.3725 13.5668 13.7975 13.9419 13.9968 14.0659 14.1782 14.3095 14.4279 14.4322 14.1320 13.9845 13.6971 13.4453 13.2971 13.4424 13.3725 13.4148 13.5771 13.8330 14.0533 14.1253 14.1672 14.2927 14.4861 14.6613 14.4279 14.1370 14.0455 13.9985 13.6706 13.4424 13.6438 13.5668 13.5771 13.6582 13.8703 14.1176 14.2092 14.1911 14.2398 14.3861 14.4861 14.3095 14.0653 13.9729 13.9463 13.8609 13.6438 13.7748 13.7975 13.8330 13.8703 13.9727 14.1782 14.2927 14.2398 14.1954 14.2398 14.2927 14.1782 13.9727 13.8703 13.8330 13.7975 13.7748 13.8040 13.9419 14.0533 14.1176 14.1782 14.2925 14.3944 14.3366 14.2398 14.1911 14.1672 14.0659 13.8895 13.7743 13.7332 13.7341 13.8040 13.8323 13.9968 14.1253 14.2092 14.2927 14.3944 14.4629 14.3944 14.2927 14.2092 14.1253 13.9968 13.8323 13.7202 13.6865 13.7202 13.8323 13.8895 14.0659 14.1672 14.1911 14.2398 14.3366 14.3944 14.2925 14.1782 14.1176 14.0533 13.9419 13.8040 13.7341 13.7332 13.7743 13.8895 13.9727 14.1782 14.2927 14.2398 14.1954 14.2398 14.2927 14.1782 13.9727 13.8703 13.8330 13.7975 13.7748 13.7975 13.8330 13.8703 13.9727 14.0653 14.3095 14.4861 14.3861 14.2398 14.1911 14.2092 14.1176 13.8703 13.6582 13.5771 13.5668 13.6438 13.8609 13.9463 13.9729 14.0653 14.1370 14.4279 14.6613 14.4861 14.2927 14.1672 14.1253 14.0533 13.8330 13.5771 13.4148 13.3725 13.4424 13.6706 13.9985 14.0455 14.1370 14.1320 14.4322 14.4279 14.3095 14.1782 14.0659 13.9968 13.9419 13.7975 13.5668 13.3725 13.2769 13.2971 13.4453 13.6971 13.9845 14.1320 13.9840 14.1320 14.1370 14.0653 13.9727 13.8895 13.8323 13.8040 13.7748 13.6438 13.4424 13.2971 13.2534 13.3217 13.4927 13.7354 13.9840 13.7354 13.9845 14.0455 13.9729 13.8703 13.7743 13.7202 13.7341 13.7975 13.8609 13.6706 13.4453 13.3217 13.3209 13.4174 13.5874 13.7354 13.4927 13.6971 13.9985 13.9463 13.8330 13.7332 13.6865 13.7332 13.8330 13.9463 13.9985 13.6971 13.4927 13.4174 13.3825 13.4174 13.4927 13.3217 13.4453 13.6706 13.8609 13.7975 13.7341 13.7202 13.7743 13.8703 13.9729 14.0455 13.9845 13.7354 13.5874 13.4174 13.3209 13.3217 13.2534 13.2971 13.4424 13.6438 13.7748 13.8040 13.8323 13.8895 13.9727 14.0653 14.1370 14.1320 13.9840 13.7354 13.4927 13.3217 13.2534 13.2456 13.3209 13.5040 13.7777 13.6438 13.5508 13.5084 13.5181 13.5735 13.6582 13.7439 13.7873 13.7354 13.5834 13.4059 13.2793 13.2456 13.3209 13.3217 13.4453 13.6706 13.8609 13.7975 13.7341 13.7202 13.7743 13.8703 13.9729 14.0455 13.9845 13.7354 13.5874 13.4174 13.3209 13.5040 13.4453 13.4875 13.6641 13.9463 14.1299 14.0533 13.9766 13.9973 14.1176 14.2728 14.4160 14.0455 13.7873 13.6971 13.6298 13.5040 13.7777 13.6706 13.6641 13.7439 13.9729 14.2728 14.3372 14.2092 14.1408 14.2092 14.3372 14.2728 13.9729 13.7439 13.6641 13.6706 13.7777 13.6438 13.8609 13.9463 13.9729 14.0653 14.3095 14.4861 14.3861 14.2398 14.1911 14.2092 14.1176 13.8703 13.6582 13.5771 13.5668 13.6438 13.5508 13.7975 14.1299 14.2728 14.3095 14.4005 14.5668 14.5320 14.3725 14.2398 14.1408 13.9973 13.7743 13.5735 13.4887 13.4750 13.5508 13.5084 13.7341 14.0533 14.3372 14.4861 14.5668 14.6588 14.6560 14.5320 14.3861 14.2092 13.9766 13.7202 13.5181 13.4242 13.4194 13.5084 13.5181 13.7202 13.9766 14.2092 14.3861 14.5320 14.6560 14.6588 14.5668 14.4861 14.3372 14.0533 13.7341 13.5084 13.4194 13.4242 13.5181 13.5735 13.7743 13.9973 14.1408 14.2398 14.3725 14.5320 14.5668 14.4005 14.3095 14.2728 14.1299 13.7975 13.5508 13.4750 13.4887 13.5735 13.6582 13.8703 14.1176 14.2092 14.1911 14.2398 14.3861 14.4861 14.3095 14.0653 13.9729 13.9463 13.8609 13.6438 13.5668 13.5771 13.6582 13.7439 13.9729 14.2728 14.3372 14.2092 14.1408 14.2092 14.3372 14.2728 13.9729 13.7439 13.6641 13.6706 13.7777 13.6706 13.6641 13.7439 13.7873 14.0455 14.4160 14.2728 14.1176 13.9973 13.9766 14.0533 14.1299 13.9463 13.6641 13.4875 13.4453 13.5040 13.6298 13.6971 13.7873 13.7354 13.9845 14.0455 13.9729 13.8703 13.7743 13.7202 13.7341 13.7975 13.8609 13.6706 13.4453 13.3217 13.3209 13.4174 13.5874 13.7354 13.5834 13.7354 13.7873 13.7439 13.6582 13.5735 13.5181 13.5084 13.5508 13.6438 13.7777 13.5040 13.3209 13.2456 13.2793 13.4059 13.5834 13.4059 13.5874 13.6971 13.6641 13.5771 13.4887 13.4242 13.4194 13.4750 13.5668 13.6706 13.6298 13.4174 13.2793 13.2287 13.2855 13.4059 13.2793 13.4174 13.6298 13.6706 13.5668 13.4750 13.4194 13.4242 13.4887 13.5771 13.6641 13.6971 13.5874 13.4059 13.2855 13.2287 13.2793 13.2456 13.3209 13.5040 13.7777 13.6438 13.5508 13.5084 13.5181 13.5735 13.6582 13.7439 13.7873 13.7354 13.5834 13.4059 13.2793 13.2456 13.1536 13.2287 13.3825 13.5040 13.4424 13.3329 13.2549 13.4982 13.3929 13.3246 13.4148 13.4875 13.4927 13.4059 13.2748 13.1746 13.1536 13.2287 13.2793 13.4174 13.6298 13.6706 13.5668 13.4750 13.4194 13.4242 13.4887 13.5771 13.6641 13.6971 13.5874 13.4059 13.2855 13.2287 13.3825 13.4174 13.4927 13.6971 13.9985 13.9463 13.8330 13.7332 13.6865 13.7332 13.8330 13.9463 13.9985 13.6971 13.4927 13.4174 13.3825 13.5040 13.6298 13.6971 13.7873 14.0455 14.4160 14.2728 14.1176 13.9973 13.9766 14.0533 14.1299 13.9463 13.6641 13.4875 13.4453 13.5040 13.4424 13.6706 13.9985 14.0455 14.1370 14.4279 14.6613 14.4861 14.2927 14.1672 14.1253 14.0533 13.8330 13.5771 13.4148 13.3725 13.4424 13.3329 13.5668 13.9463 14.4160 14.4279 14.4933 14.7356 14.7328 14.5320 14.3366 14.1672 13.9766 13.7332 13.4887 13.3246 13.2795 13.3329 13.2549 13.4750 13.8330 14.2728 14.6613 14.7356 14.7856 14.8539 14.7229 14.5320 14.2927 13.9973 13.6865 13.4242 13.3929 13.4396 13.2549 13.4982 13.4194 13.7332 14.1176 14.4861 14.7328 14.8539 14.9121 14.8539 14.7328 14.4861 14.1176 13.7332 13.4194 13.4982 13.6657 13.4982 13.3929 13.4242 13.6865 13.9973 14.2927 14.5320 14.7229 14.8539 14.7856 14.7356 14.6613 14.2728 13.8330 13.4750 13.2549 13.4396 13.3929 13.3246 13.4887 13.7332 13.9766 14.1672 14.3366 14.5320 14.7328 14.7356 14.4933 14.4279 14.4160 13.9463 13.5668 13.3329 13.2795 13.3246 13.4148 13.5771 13.8330 14.0533 14.1253 14.1672 14.2927 14.4861 14.6613 14.4279 14.1370 14.0455 13.9985 13.6706 13.4424 13.3725 13.4148 13.4875 13.6641 13.9463 14.1299 14.0533 13.9766 13.9973 14.1176 14.2728 14.4160 14.0455 13.7873 13.6971 13.6298 13.5040 13.4453 13.4875 13.4927 13.6971 13.9985 13.9463 13.8330 13.7332 13.6865 13.7332 13.8330 13.9463 13.9985 13.6971 13.4927 13.4174 13.3825 13.4174 13.4927 13.4059 13.5874 13.6971 13.6641 13.5771 13.4887 13.4242 13.4194 13.4750 13.5668 13.6706 13.6298 13.4174 13.2793 13.2287 13.2855 13.4059 13.2748 13.4059 13.4927 13.4875 13.4148 13.3246 13.3929 13.4982 13.2549 13.3329 13.4424 13.5040 13.3825 13.2287 13.1536 13.1746 13.2748 13.1746 13.2855 13.4174 13.4453 13.3725 13.2795 13.4396 13.6657 13.4396 13.2795 13.3725 13.4453 13.4174 13.2855 13.1746 13.1324 13.1746 13.1536 13.2287 13.3825 13.5040 13.4424 13.3329 13.2549 13.4982 13.3929 13.3246 13.4148 13.4875 13.4927 13.4059 13.2748 13.1746 13.1536 13.0560 13.1324 13.2287 13.3209 13.2971 13.2003 13.4359 14.0608 14.1342 13.6461 13.1870 13.2769 13.3217 13.2793 13.1746 13.0822 13.0560 13.1324 13.1746 13.2855 13.4174 13.4453 13.3725 13.2795 13.4396 13.6657 13.4396 13.2795 13.3725 13.4453 13.4174 13.2855 13.1746 13.1324 13.2287 13.2855 13.4059 13.5874 13.6971 13.6641 13.5771 13.4887 13.4242 13.4194 13.4750 13.5668 13.6706 13.6298 13.4174 13.2793 13.2287 13.3209 13.4174 13.5874 13.7354 13.9845 14.0455 13.9729 13.8703 13.7743 13.7202 13.7341 13.7975 13.8609 13.6706 13.4453 13.3217 13.3209 13.2971 13.4453 13.6971 13.9845 14.1320 14.4322 14.4279 14.3095 14.1782 14.0659 13.9968 13.9419 13.7975 13.5668 13.3725 13.2769 13.2971 13.2003 13.3725 13.6641 14.0455 14.4322 14.5399 14.8616 14.7356 14.5668 14.3944 14.2138 13.9968 13.7341 13.4750 13.2795 13.1870 13.2003 13.4359 13.2795 13.5771 13.9729 14.4279 14.8616 14.8715 15.0071 14.8539 14.6560 14.3944 14.0659 13.7202 13.4194 13.4396 13.6461 13.4359 14.0608 13.4396 13.4887 13.8703 14.3095 14.7356 15.0071 15.0372 15.0047 14.8539 14.5668 14.1782 13.7743 13.4242 13.6657 14.1342 14.0608 14.1342 13.6657 13.4242 13.7743 14.1782 14.5668 14.8539 15.0047 15.0372 15.0071 14.7356 14.3095 13.8703 13.4887 13.4396 14.0608 14.1342 13.6461 13.4396 13.4194 13.7202 14.0659 14.3944 14.6560 14.8539 15.0071 14.8715 14.8616 14.4279 13.9729 13.5771 13.2795 13.4359 13.6461 13.1870 13.2795 13.4750 13.7341 13.9968 14.2138 14.3944 14.5668 14.7356 14.8616 14.5399 14.4322 14.0455 13.6641 13.3725 13.2003 13.1870 13.2769 13.3725 13.5668 13.7975 13.9419 13.9968 14.0659 14.1782 14.3095 14.4279 14.4322 14.1320 13.9845 13.6971 13.4453 13.2971 13.2769 13.3217 13.4453 13.6706 13.8609 13.7975 13.7341 13.7202 13.7743 13.8703 13.9729 14.0455 13.9845 13.7354 13.5874 13.4174 13.3209 13.3217 13.2793 13.4174 13.6298 13.6706 13.5668 13.4750 13.4194 13.4242 13.4887 13.5771 13.6641 13.6971 13.5874 13.4059 13.2855 13.2287 13.2793 13.1746 13.2855 13.4174 13.4453 13.3725 13.2795 13.4396 13.6657 13.4396 13.2795 13.3725 13.4453 13.4174 13.2855 13.1746 13.1324 13.1746 13.0822 13.1746 13.2793 13.3217 13.2769 13.1870 13.6461 14.1342 14.0608 13.4359 13.2003 13.2971 13.3209 13.2287 13.1324 13.0560 13.0822 13.0560 13.1324 13.2287 13.3209 13.2971 13.2003 13.4359 14.0608 14.1342 13.6461 13.1870 13.2769 13.3217 13.2793 13.1746 13.0822 13.0560 13.0169 13.0560 13.1536 13.2456 13.2534 13.1787 13.3954 14.3963 14.9661 14.3963 13.3954 13.1787 13.2534 13.2456 13.1536 13.0560 13.0169 13.0560 13.0822 13.1746 13.2793 13.3217 13.2769 13.1870 13.6461 14.1342 14.0608 13.4359 13.2003 13.2971 13.3209 13.2287 13.1324 13.0560 13.1536 13.1746 13.2748 13.4059 13.4927 13.4875 13.4148 13.3246 13.3929 13.4982 13.2549 13.3329 13.4424 13.5040 13.3825 13.2287 13.1536 13.2456 13.2793 13.4059 13.5834 13.7354 13.7873 13.7439 13.6582 13.5735 13.5181 13.5084 13.5508 13.6438 13.7777 13.5040 13.3209 13.2456 13.2534 13.3217 13.4927 13.7354 13.9840 14.1320 14.1370 14.0653 13.9727 13.8895 13.8323 13.8040 13.7748 13.6438 13.4424 13.2971 13.2534 13.1787 13.2769 13.4875 13.7873 14.1320 14.4335 14.5399 14.4933 14.4005 14.2925 14.1735 14.0216 13.8040 13.5508 13.3329 13.2003 13.1787 13.3954 13.1870 13.4148 13.7439 14.1370 14.5399 14.8630 14.8715 14.7856 14.6588 14.4629 14.1735 13.8323 13.5084 13.2549 13.4359 13.3954 14.3963 13.6461 13.3246 13.6582 14.0653 14.4933 14.8715 15.1812 15.0372 14.9121 14.6588 14.2925 13.8895 13.5181 13.4982 14.0608 14.3963 14.9661 14.1342 13.3929 13.5735 13.9727 14.4005 14.7856 15.0372 15.3000 15.0372 14.7856 14.4005 13.9727 13.5735 13.3929 14.1342 14.9661 14.3963 14.0608 13.4982 13.5181 13.8895 14.2925 14.6588 14.9121 15.0372 15.1812 14.8715 14.4933 14.0653 13.6582 13.3246 13.6461 14.3963 13.3954 13.4359 13.2549 13.5084 13.8323 14.1735 14.4629 14.6588 14.7856 14.8715 14.8630 14.5399 14.1370 13.7439 13.4148 13.1870 13.3954 13.1787 13.2003 13.3329 13.5508 13.8040 14.0216 14.1735 14.2925 14.4005 14.4933 14.5399 14.4335 14.1320 13.7873 13.4875 13.2769 13.1787 13.2534 13.2971 13.4424 13.6438 13.7748 13.8040 13.8323 13.8895 13.9727 14.0653 14.1370 14.1320 13.9840 13.7354 13.4927 13.3217 13.2534 13.2456 13.3209 13.5040 13.7777 13.6438 13.5508 13.5084 13.5181 13.5735 13.6582 13.7439 13.7873 13.7354 13.5834 13.4059 13.2793 13.2456 13.1536 13.2287 13.3825 13.5040 13.4424 13.3329 13.2549 13.4982 13.3929 13.3246 13.4148 13.4875 13.4927 13.4059 13.2748 13.1746 13.1536 13.0560 13.1324 13.2287 13.3209 13.2971 13.2003 13.4359 14.0608 14.1342 13.6461 13.1870 13.2769 13.3217 13.2793 13.1746 13.0822 13.0560 13.0169 13.0560 13.1536 13.2456 13.2534 13.1787 13.3954 14.3963 14.9661 14.3963 13.3954 13.1787 13.2534 13.2456 13.1536 13.0560 13.0169 BAND: 5 14.2882 14.2710 14.2390 14.2541 14.3864 14.6171 14.8604 15.0393 15.1048 15.0393 14.8604 14.6171 14.3864 14.2541 14.2390 14.2710 14.2882 14.2710 14.2094 14.1265 14.0840 14.1969 14.4867 14.8902 15.0653 15.1091 15.0213 14.8172 14.5420 14.2686 14.1023 14.1046 14.1896 14.2710 14.2390 14.1265 13.9945 13.9080 14.0683 14.4779 14.9540 15.0943 15.1215 15.0151 14.7890 14.4840 14.1620 13.9370 13.9654 14.1046 14.2390 14.2541 14.0840 13.9080 13.7192 13.9612 14.4720 14.9865 15.1213 15.1404 15.0232 14.7845 14.4637 14.1115 13.7777 13.9370 14.1023 14.2541 14.3864 14.1969 14.0683 13.9612 13.9840 14.4260 14.9999 15.1413 15.1639 15.0470 14.8120 14.5103 14.2277 14.1115 14.1620 14.2686 14.3864 14.6171 14.4867 14.4779 14.4720 14.4260 14.4335 14.9915 15.1503 15.1899 15.0874 14.8818 14.6574 14.5103 14.4637 14.4840 14.5420 14.6171 14.8604 14.8902 14.9540 14.9865 14.9999 14.9915 14.9840 15.1473 15.2192 15.1470 15.0035 14.8818 14.8120 14.7845 14.7890 14.8172 14.8604 15.0393 15.0653 15.0943 15.1213 15.1413 15.1503 15.1473 15.1812 15.2627 15.2244 15.1470 15.0874 15.0470 15.0232 15.0151 15.0213 15.0393 15.1048 15.1091 15.1215 15.1404 15.1639 15.1899 15.2192 15.2627 15.3000 15.2627 15.2192 15.1899 15.1639 15.1404 15.1215 15.1091 15.1048 15.0393 15.0213 15.0151 15.0232 15.0470 15.0874 15.1470 15.2244 15.2627 15.1812 15.1473 15.1503 15.1413 15.1213 15.0943 15.0653 15.0393 14.8604 14.8172 14.7890 14.7845 14.8120 14.8818 15.0035 15.1470 15.2192 15.1473 14.9840 14.9915 14.9999 14.9865 14.9540 14.8902 14.8604 14.6171 14.5420 14.4840 14.4637 14.5103 14.6574 14.8818 15.0874 15.1899 15.1503 14.9915 14.4335 14.4260 14.4720 14.4779 14.4867 14.6171 14.3864 14.2686 14.1620 14.1115 14.2277 14.5103 14.8120 15.0470 15.1639 15.1413 14.9999 14.4260 13.9840 13.9612 14.0683 14.1969 14.3864 14.2541 14.1023 13.9370 13.7777 14.1115 14.4637 14.7845 15.0232 15.1404 15.1213 14.9865 14.4720 13.9612 13.7192 13.9080 14.0840 14.2541 14.2390 14.1046 13.9654 13.9370 14.1620 14.4840 14.7890 15.0151 15.1215 15.0943 14.9540 14.4779 14.0683 13.9080 13.9945 14.1265 14.2390 14.2710 14.1896 14.1046 14.1023 14.2686 14.5420 14.8172 15.0213 15.1091 15.0653 14.8902 14.4867 14.1969 14.0840 14.1265 14.2094 14.2710 14.2882 14.2710 14.2390 14.2541 14.3864 14.6171 14.8604 15.0393 15.1048 15.0393 14.8604 14.6171 14.3864 14.2541 14.2390 14.2710 14.2882 14.2710 14.2094 14.1265 14.0840 14.1969 14.4867 14.8902 15.0653 15.1091 15.0213 14.8172 14.5420 14.2686 14.1023 14.1046 14.1896 14.2710 14.2094 14.2710 14.1896 14.1046 14.1023 14.2686 14.5420 14.8172 15.0213 15.1091 15.0653 14.8902 14.4867 14.1969 14.0840 14.1265 14.2094 14.1265 14.1896 14.1265 14.0212 13.9867 14.1542 14.4740 14.7983 15.0078 15.0744 15.0078 14.7983 14.4740 14.1542 13.9867 14.0212 14.1265 14.0840 14.1046 14.0212 13.9080 13.8956 14.1176 14.5056 14.8536 15.0370 15.0620 14.9527 14.7231 14.3978 14.0536 13.8977 13.9867 14.0840 14.1969 14.1023 13.9867 13.8956 13.9612 14.1480 14.5361 14.8954 15.0680 15.0759 14.9443 14.7005 14.3791 14.0633 14.0536 14.1542 14.1969 14.4867 14.2686 14.1542 14.1176 14.1480 14.4260 14.6003 14.9083 15.0946 15.1106 14.9839 14.7591 14.5118 14.3791 14.3978 14.4740 14.4867 14.8902 14.5420 14.4740 14.5056 14.5361 14.6003 14.9915 14.9067 15.1180 15.1672 15.0712 14.9038 14.7591 14.7005 14.7231 14.7983 14.8902 15.0653 14.8172 14.7983 14.8536 14.8954 14.9083 14.9067 15.1473 15.1808 15.2477 15.1840 15.0712 14.9839 14.9443 14.9527 15.0078 15.0653 15.1091 15.0213 15.0078 15.0370 15.0680 15.0946 15.1180 15.1808 15.2627 15.3001 15.2477 15.1672 15.1106 15.0759 15.0620 15.0744 15.1091 15.0213 15.1091 15.0744 15.0620 15.0759 15.1106 15.1672 15.2477 15.3001 15.2627 15.1808 15.1180 15.0946 15.0680 15.0370 15.0078 15.0213 14.8172 15.0653 15.0078 14.9527 14.9443 14.9839 15.0712 15.1840 15.2477 15.1808 15.1473 14.9067 14.9083 14.8954 14.8536 14.7983 14.8172 14.5420 14.8902 14.7983 14.7231 14.7005 14.7591 14.9038 15.0712 15.1672 15.1180 14.9067 14.9915 14.6003 14.5361 14.5056 14.4740 14.5420 14.2686 14.4867 14.4740 14.3978 14.3791 14.5118 14.7591 14.9839 15.1106 15.0946 14.9083 14.6003 14.4260 14.1480 14.1176 14.1542 14.2686 14.1023 14.1969 14.1542 14.0536 14.0633 14.3791 14.7005 14.9443 15.0759 15.0680 14.8954 14.5361 14.1480 13.9612 13.8956 13.9867 14.1023 14.1046 14.0840 13.9867 13.8977 14.0536 14.3978 14.7231 14.9527 15.0620 15.0370 14.8536 14.5056 14.1176 13.8956 13.9080 14.0212 14.1046 14.1896 14.1265 14.0212 13.9867 14.1542 14.4740 14.7983 15.0078 15.0744 15.0078 14.7983 14.4740 14.1542 13.9867 14.0212 14.1265 14.1896 14.2710 14.2094 14.1265 14.0840 14.1969 14.4867 14.8902 15.0653 15.1091 15.0213 14.8172 14.5420 14.2686 14.1023 14.1046 14.1896 14.2710 14.2390 14.1265 13.9945 13.9080 14.0683 14.4779 14.9540 15.0943 15.1215 15.0151 14.7890 14.4840 14.1620 13.9370 13.9654 14.1046 14.2390 14.1265 14.1896 14.1265 14.0212 13.9867 14.1542 14.4740 14.7983 15.0078 15.0744 15.0078 14.7983 14.4740 14.1542 13.9867 14.0212 14.1265 13.9945 14.1265 14.2390 14.1046 13.9654 13.9370 14.1620 14.4840 14.7890 15.0151 15.1215 15.0943 14.9540 14.4779 14.0683 13.9080 13.9945 13.9080 14.0212 14.1046 14.0840 13.9867 13.8977 14.0536 14.3978 14.7231 14.9527 15.0620 15.0370 14.8536 14.5056 14.1176 13.8956 13.9080 14.0683 13.9867 13.9654 13.9867 14.0683 14.1176 14.0822 14.4086 14.7410 14.9465 15.0123 14.9465 14.7410 14.4086 14.0822 14.1176 14.0683 14.4779 14.1542 13.9370 13.8977 14.1176 14.4720 14.5361 14.4328 14.7763 14.9827 15.0311 14.9387 14.7236 14.4500 14.4086 14.5056 14.4779 14.9540 14.4740 14.1620 14.0536 14.0822 14.5361 14.9999 14.9083 14.8585 15.0604 15.1216 15.0397 14.8664 14.7236 14.7410 14.8536 14.9540 15.0943 14.7983 14.4840 14.3978 14.4086 14.4328 14.9083 15.1503 15.1180 15.1795 15.2416 15.1757 15.0397 14.9387 14.9465 15.0370 15.0943 15.1215 15.0078 14.7890 14.7231 14.7410 14.7763 14.8585 15.1180 15.2192 15.2477 15.3006 15.2416 15.1216 15.0311 15.0123 15.0620 15.1215 15.0151 15.0744 15.0151 14.9527 14.9465 14.9827 15.0604 15.1795 15.2477 15.2244 15.2477 15.1795 15.0604 14.9827 14.9465 14.9527 15.0151 14.7890 15.0078 15.1215 15.0620 15.0123 15.0311 15.1216 15.2416 15.3006 15.2477 15.2192 15.1180 14.8585 14.7763 14.7410 14.7231 14.7890 14.4840 14.7983 15.0943 15.0370 14.9465 14.9387 15.0397 15.1757 15.2416 15.1795 15.1180 15.1503 14.9083 14.4328 14.4086 14.3978 14.4840 14.1620 14.4740 14.9540 14.8536 14.7410 14.7236 14.8664 15.0397 15.1216 15.0604 14.8585 14.9083 14.9999 14.5361 14.0822 14.0536 14.1620 13.9370 14.1542 14.4779 14.5056 14.4086 14.4500 14.7236 14.9387 15.0311 14.9827 14.7763 14.4328 14.5361 14.4720 14.1176 13.8977 13.9370 13.9654 13.9867 14.0683 14.1176 14.0822 14.4086 14.7410 14.9465 15.0123 14.9465 14.7410 14.4086 14.0822 14.1176 14.0683 13.9867 13.9654 14.1046 14.0212 13.9080 13.8956 14.1176 14.5056 14.8536 15.0370 15.0620 14.9527 14.7231 14.3978 14.0536 13.8977 13.9867 14.0840 14.1046 14.2390 14.1265 13.9945 13.9080 14.0683 14.4779 14.9540 15.0943 15.1215 15.0151 14.7890 14.4840 14.1620 13.9370 13.9654 14.1046 14.2390 14.2541 14.0840 13.9080 13.7192 13.9612 14.4720 14.9865 15.1213 15.1404 15.0232 14.7845 14.4637 14.1115 13.7777 13.9370 14.1023 14.2541 14.0840 14.1046 14.0212 13.9080 13.8956 14.1176 14.5056 14.8536 15.0370 15.0620 14.9527 14.7231 14.3978 14.0536 13.8977 13.9867 14.0840 13.9080 14.0212 14.1046 14.0840 13.9867 13.8977 14.0536 14.3978 14.7231 14.9527 15.0620 15.0370 14.8536 14.5056 14.1176 13.8956 13.9080 13.7192 13.9080 14.0840 14.2541 14.1023 13.9370 13.7777 14.1115 14.4637 14.7845 15.0232 15.1404 15.1213 14.9865 14.4720 13.9612 13.7192 13.9612 13.8956 13.9867 14.1023 14.1969 14.1542 14.0536 14.0633 14.3791 14.7005 14.9443 15.0759 15.0680 14.8954 14.5361 14.1480 13.9612 14.4720 14.1176 13.8977 13.9370 14.1542 14.4779 14.5056 14.4086 14.4500 14.7236 14.9387 15.0311 14.9827 14.7763 14.4328 14.5361 14.4720 14.9865 14.5056 14.0536 13.7777 14.0536 14.5056 14.9865 14.8954 14.7763 14.8573 15.0377 15.1078 15.0377 14.8573 14.7763 14.8954 14.9865 15.1213 14.8536 14.3978 14.1115 14.0633 14.4086 14.8954 15.1413 15.0946 15.0604 15.1776 15.2398 15.1756 15.0377 14.9827 15.0680 15.1213 15.1404 15.0370 14.7231 14.4637 14.3791 14.4500 14.7763 15.0946 15.1899 15.1672 15.2416 15.3010 15.2398 15.1078 15.0311 15.0759 15.1404 15.0232 15.0620 14.9527 14.7845 14.7005 14.7236 14.8573 15.0604 15.1672 15.1470 15.1840 15.2416 15.1776 15.0377 14.9387 14.9443 15.0232 14.7845 14.9527 15.0620 15.0232 14.9443 14.9387 15.0377 15.1776 15.2416 15.1840 15.1470 15.1672 15.0604 14.8573 14.7236 14.7005 14.7845 14.4637 14.7231 15.0370 15.1404 15.0759 15.0311 15.1078 15.2398 15.3010 15.2416 15.1672 15.1899 15.0946 14.7763 14.4500 14.3791 14.4637 14.1115 14.3978 14.8536 15.1213 15.0680 14.9827 15.0377 15.1756 15.2398 15.1776 15.0604 15.0946 15.1413 14.8954 14.4086 14.0633 14.1115 13.7777 14.0536 14.5056 14.9865 14.8954 14.7763 14.8573 15.0377 15.1078 15.0377 14.8573 14.7763 14.8954 14.9865 14.5056 14.0536 13.7777 13.9370 13.8977 14.1176 14.4720 14.5361 14.4328 14.7763 14.9827 15.0311 14.9387 14.7236 14.4500 14.4086 14.5056 14.4779 14.1542 13.9370 14.1023 13.9867 13.8956 13.9612 14.1480 14.5361 14.8954 15.0680 15.0759 14.9443 14.7005 14.3791 14.0633 14.0536 14.1542 14.1969 14.1023 14.2541 14.0840 13.9080 13.7192 13.9612 14.4720 14.9865 15.1213 15.1404 15.0232 14.7845 14.4637 14.1115 13.7777 13.9370 14.1023 14.2541 14.3864 14.1969 14.0683 13.9612 13.9840 14.4260 14.9999 15.1413 15.1639 15.0470 14.8120 14.5103 14.2277 14.1115 14.1620 14.2686 14.3864 14.1969 14.1023 13.9867 13.8956 13.9612 14.1480 14.5361 14.8954 15.0680 15.0759 14.9443 14.7005 14.3791 14.0633 14.0536 14.1542 14.1969 14.0683 13.9867 13.9654 13.9867 14.0683 14.1176 14.0822 14.4086 14.7410 14.9465 15.0123 14.9465 14.7410 14.4086 14.0822 14.1176 14.0683 13.9612 13.8956 13.9867 14.1023 14.1969 14.1542 14.0536 14.0633 14.3791 14.7005 14.9443 15.0759 15.0680 14.8954 14.5361 14.1480 13.9612 13.9840 13.9612 14.0683 14.1969 14.3864 14.2686 14.1620 14.1115 14.2277 14.5103 14.8120 15.0470 15.1639 15.1413 14.9999 14.4260 13.9840 14.4260 14.1480 14.1176 14.1542 14.2686 14.4867 14.4740 14.3978 14.3791 14.5118 14.7591 14.9839 15.1106 15.0946 14.9083 14.6003 14.4260 14.9999 14.5361 14.0822 14.0536 14.1620 14.4740 14.9540 14.8536 14.7410 14.7236 14.8664 15.0397 15.1216 15.0604 14.8585 14.9083 14.9999 15.1413 14.8954 14.4086 14.0633 14.1115 14.3978 14.8536 15.1213 15.0680 14.9827 15.0377 15.1756 15.2398 15.1776 15.0604 15.0946 15.1413 15.1639 15.0680 14.7410 14.3791 14.2277 14.3791 14.7410 15.0680 15.1639 15.1106 15.1216 15.2398 15.3012 15.2398 15.1216 15.1106 15.1639 15.0470 15.0759 14.9465 14.7005 14.5103 14.5118 14.7236 14.9827 15.1106 15.0874 15.0712 15.1757 15.2398 15.1756 15.0397 14.9839 15.0470 14.8120 14.9443 15.0123 14.9443 14.8120 14.7591 14.8664 15.0377 15.1216 15.0712 15.0035 15.0712 15.1216 15.0377 14.8664 14.7591 14.8120 14.5103 14.7005 14.9465 15.0759 15.0470 14.9839 15.0397 15.1756 15.2398 15.1757 15.0712 15.0874 15.1106 14.9827 14.7236 14.5118 14.5103 14.2277 14.3791 14.7410 15.0680 15.1639 15.1106 15.1216 15.2398 15.3012 15.2398 15.1216 15.1106 15.1639 15.0680 14.7410 14.3791 14.2277 14.1115 14.0633 14.4086 14.8954 15.1413 15.0946 15.0604 15.1776 15.2398 15.1756 15.0377 14.9827 15.0680 15.1213 14.8536 14.3978 14.1115 14.1620 14.0536 14.0822 14.5361 14.9999 14.9083 14.8585 15.0604 15.1216 15.0397 14.8664 14.7236 14.7410 14.8536 14.9540 14.4740 14.1620 14.2686 14.1542 14.1176 14.1480 14.4260 14.6003 14.9083 15.0946 15.1106 14.9839 14.7591 14.5118 14.3791 14.3978 14.4740 14.4867 14.2686 14.3864 14.1969 14.0683 13.9612 13.9840 14.4260 14.9999 15.1413 15.1639 15.0470 14.8120 14.5103 14.2277 14.1115 14.1620 14.2686 14.3864 14.6171 14.4867 14.4779 14.4720 14.4260 14.4335 14.9915 15.1503 15.1899 15.0874 14.8818 14.6574 14.5103 14.4637 14.4840 14.5420 14.6171 14.4867 14.2686 14.1542 14.1176 14.1480 14.4260 14.6003 14.9083 15.0946 15.1106 14.9839 14.7591 14.5118 14.3791 14.3978 14.4740 14.4867 14.4779 14.1542 13.9370 13.8977 14.1176 14.4720 14.5361 14.4328 14.7763 14.9827 15.0311 14.9387 14.7236 14.4500 14.4086 14.5056 14.4779 14.4720 14.1176 13.8977 13.9370 14.1542 14.4779 14.5056 14.4086 14.4500 14.7236 14.9387 15.0311 14.9827 14.7763 14.4328 14.5361 14.4720 14.4260 14.1480 14.1176 14.1542 14.2686 14.4867 14.4740 14.3978 14.3791 14.5118 14.7591 14.9839 15.1106 15.0946 14.9083 14.6003 14.4260 14.4335 14.4260 14.4720 14.4779 14.4867 14.6171 14.5420 14.4840 14.4637 14.5103 14.6574 14.8818 15.0874 15.1899 15.1503 14.9915 14.4335 14.9915 14.6003 14.5361 14.5056 14.4740 14.5420 14.8902 14.7983 14.7231 14.7005 14.7591 14.9038 15.0712 15.1672 15.1180 14.9067 14.9915 15.1503 14.9083 14.4328 14.4086 14.3978 14.4840 14.7983 15.0943 15.0370 14.9465 14.9387 15.0397 15.1757 15.2416 15.1795 15.1180 15.1503 15.1899 15.0946 14.7763 14.4500 14.3791 14.4637 14.7231 15.0370 15.1404 15.0759 15.0311 15.1078 15.2398 15.3010 15.2416 15.1672 15.1899 15.0874 15.1106 14.9827 14.7236 14.5118 14.5103 14.7005 14.9465 15.0759 15.0470 14.9839 15.0397 15.1756 15.2398 15.1757 15.0712 15.0874 14.8818 14.9839 15.0311 14.9387 14.7591 14.6574 14.7591 14.9387 15.0311 14.9839 14.8818 14.9038 15.0397 15.1078 15.0397 14.9038 14.8818 14.6574 14.7591 14.9387 15.0311 14.9839 14.8818 14.9038 15.0397 15.1078 15.0397 14.9038 14.8818 14.9839 15.0311 14.9387 14.7591 14.6574 14.5103 14.5118 14.7236 14.9827 15.1106 15.0874 15.0712 15.1757 15.2398 15.1756 15.0397 14.9839 15.0470 15.0759 14.9465 14.7005 14.5103 14.4637 14.3791 14.4500 14.7763 15.0946 15.1899 15.1672 15.2416 15.3010 15.2398 15.1078 15.0311 15.0759 15.1404 15.0370 14.7231 14.4637 14.4840 14.3978 14.4086 14.4328 14.9083 15.1503 15.1180 15.1795 15.2416 15.1757 15.0397 14.9387 14.9465 15.0370 15.0943 14.7983 14.4840 14.5420 14.4740 14.5056 14.5361 14.6003 14.9915 14.9067 15.1180 15.1672 15.0712 14.9038 14.7591 14.7005 14.7231 14.7983 14.8902 14.5420 14.6171 14.4867 14.4779 14.4720 14.4260 14.4335 14.9915 15.1503 15.1899 15.0874 14.8818 14.6574 14.5103 14.4637 14.4840 14.5420 14.6171 14.8604 14.8902 14.9540 14.9865 14.9999 14.9915 14.9840 15.1473 15.2192 15.1470 15.0035 14.8818 14.8120 14.7845 14.7890 14.8172 14.8604 14.8902 14.5420 14.4740 14.5056 14.5361 14.6003 14.9915 14.9067 15.1180 15.1672 15.0712 14.9038 14.7591 14.7005 14.7231 14.7983 14.8902 14.9540 14.4740 14.1620 14.0536 14.0822 14.5361 14.9999 14.9083 14.8585 15.0604 15.1216 15.0397 14.8664 14.7236 14.7410 14.8536 14.9540 14.9865 14.5056 14.0536 13.7777 14.0536 14.5056 14.9865 14.8954 14.7763 14.8573 15.0377 15.1078 15.0377 14.8573 14.7763 14.8954 14.9865 14.9999 14.5361 14.0822 14.0536 14.1620 14.4740 14.9540 14.8536 14.7410 14.7236 14.8664 15.0397 15.1216 15.0604 14.8585 14.9083 14.9999 14.9915 14.6003 14.5361 14.5056 14.4740 14.5420 14.8902 14.7983 14.7231 14.7005 14.7591 14.9038 15.0712 15.1672 15.1180 14.9067 14.9915 14.9840 14.9915 14.9999 14.9865 14.9540 14.8902 14.8604 14.8172 14.7890 14.7845 14.8120 14.8818 15.0035 15.1470 15.2192 15.1473 14.9840 15.1473 14.9067 14.9083 14.8954 14.8536 14.7983 14.8172 15.0653 15.0078 14.9527 14.9443 14.9839 15.0712 15.1840 15.2477 15.1808 15.1473 15.2192 15.1180 14.8585 14.7763 14.7410 14.7231 14.7890 15.0078 15.1215 15.0620 15.0123 15.0311 15.1216 15.2416 15.3006 15.2477 15.2192 15.1470 15.1672 15.0604 14.8573 14.7236 14.7005 14.7845 14.9527 15.0620 15.0232 14.9443 14.9387 15.0377 15.1776 15.2416 15.1840 15.1470 15.0035 15.0712 15.1216 15.0377 14.8664 14.7591 14.8120 14.9443 15.0123 14.9443 14.8120 14.7591 14.8664 15.0377 15.1216 15.0712 15.0035 14.8818 14.9038 15.0397 15.1078 15.0397 14.9038 14.8818 14.9839 15.0311 14.9387 14.7591 14.6574 14.7591 14.9387 15.0311 14.9839 14.8818 14.8120 14.7591 14.8664 15.0377 15.1216 15.0712 15.0035 15.0712 15.1216 15.0377 14.8664 14.7591 14.8120 14.9443 15.0123 14.9443 14.8120 14.7845 14.7005 14.7236 14.8573 15.0604 15.1672 15.1470 15.1840 15.2416 15.1776 15.0377 14.9387 14.9443 15.0232 15.0620 14.9527 14.7845 14.7890 14.7231 14.7410 14.7763 14.8585 15.1180 15.2192 15.2477 15.3006 15.2416 15.1216 15.0311 15.0123 15.0620 15.1215 15.0078 14.7890 14.8172 14.7983 14.8536 14.8954 14.9083 14.9067 15.1473 15.1808 15.2477 15.1840 15.0712 14.9839 14.9443 14.9527 15.0078 15.0653 14.8172 14.8604 14.8902 14.9540 14.9865 14.9999 14.9915 14.9840 15.1473 15.2192 15.1470 15.0035 14.8818 14.8120 14.7845 14.7890 14.8172 14.8604 15.0393 15.0653 15.0943 15.1213 15.1413 15.1503 15.1473 15.1812 15.2627 15.2244 15.1470 15.0874 15.0470 15.0232 15.0151 15.0213 15.0393 15.0653 14.8172 14.7983 14.8536 14.8954 14.9083 14.9067 15.1473 15.1808 15.2477 15.1840 15.0712 14.9839 14.9443 14.9527 15.0078 15.0653 15.0943 14.7983 14.4840 14.3978 14.4086 14.4328 14.9083 15.1503 15.1180 15.1795 15.2416 15.1757 15.0397 14.9387 14.9465 15.0370 15.0943 15.1213 14.8536 14.3978 14.1115 14.0633 14.4086 14.8954 15.1413 15.0946 15.0604 15.1776 15.2398 15.1756 15.0377 14.9827 15.0680 15.1213 15.1413 14.8954 14.4086 14.0633 14.1115 14.3978 14.8536 15.1213 15.0680 14.9827 15.0377 15.1756 15.2398 15.1776 15.0604 15.0946 15.1413 15.1503 14.9083 14.4328 14.4086 14.3978 14.4840 14.7983 15.0943 15.0370 14.9465 14.9387 15.0397 15.1757 15.2416 15.1795 15.1180 15.1503 15.1473 14.9067 14.9083 14.8954 14.8536 14.7983 14.8172 15.0653 15.0078 14.9527 14.9443 14.9839 15.0712 15.1840 15.2477 15.1808 15.1473 15.1812 15.1473 15.1503 15.1413 15.1213 15.0943 15.0653 15.0393 15.0213 15.0151 15.0232 15.0470 15.0874 15.1470 15.2244 15.2627 15.1812 15.2627 15.1808 15.1180 15.0946 15.0680 15.0370 15.0078 15.0213 15.1091 15.0744 15.0620 15.0759 15.1106 15.1672 15.2477 15.3001 15.2627 15.2244 15.2477 15.1795 15.0604 14.9827 14.9465 14.9527 15.0151 15.0744 15.0151 14.9527 14.9465 14.9827 15.0604 15.1795 15.2477 15.2244 15.1470 15.1840 15.2416 15.1776 15.0377 14.9387 14.9443 15.0232 15.0620 14.9527 14.7845 14.7005 14.7236 14.8573 15.0604 15.1672 15.1470 15.0874 15.0712 15.1757 15.2398 15.1756 15.0397 14.9839 15.0470 15.0759 14.9465 14.7005 14.5103 14.5118 14.7236 14.9827 15.1106 15.0874 15.0470 14.9839 15.0397 15.1756 15.2398 15.1757 15.0712 15.0874 15.1106 14.9827 14.7236 14.5118 14.5103 14.7005 14.9465 15.0759 15.0470 15.0232 14.9443 14.9387 15.0377 15.1776 15.2416 15.1840 15.1470 15.1672 15.0604 14.8573 14.7236 14.7005 14.7845 14.9527 15.0620 15.0232 15.0151 14.9527 14.9465 14.9827 15.0604 15.1795 15.2477 15.2244 15.2477 15.1795 15.0604 14.9827 14.9465 14.9527 15.0151 15.0744 15.0151 15.0213 15.0078 15.0370 15.0680 15.0946 15.1180 15.1808 15.2627 15.3001 15.2477 15.1672 15.1106 15.0759 15.0620 15.0744 15.1091 15.0213 15.0393 15.0653 15.0943 15.1213 15.1413 15.1503 15.1473 15.1812 15.2627 15.2244 15.1470 15.0874 15.0470 15.0232 15.0151 15.0213 15.0393 15.1048 15.1091 15.1215 15.1404 15.1639 15.1899 15.2192 15.2627 15.3000 15.2627 15.2192 15.1899 15.1639 15.1404 15.1215 15.1091 15.1048 15.1091 15.0213 15.0078 15.0370 15.0680 15.0946 15.1180 15.1808 15.2627 15.3001 15.2477 15.1672 15.1106 15.0759 15.0620 15.0744 15.1091 15.1215 15.0078 14.7890 14.7231 14.7410 14.7763 14.8585 15.1180 15.2192 15.2477 15.3006 15.2416 15.1216 15.0311 15.0123 15.0620 15.1215 15.1404 15.0370 14.7231 14.4637 14.3791 14.4500 14.7763 15.0946 15.1899 15.1672 15.2416 15.3010 15.2398 15.1078 15.0311 15.0759 15.1404 15.1639 15.0680 14.7410 14.3791 14.2277 14.3791 14.7410 15.0680 15.1639 15.1106 15.1216 15.2398 15.3012 15.2398 15.1216 15.1106 15.1639 15.1899 15.0946 14.7763 14.4500 14.3791 14.4637 14.7231 15.0370 15.1404 15.0759 15.0311 15.1078 15.2398 15.3010 15.2416 15.1672 15.1899 15.2192 15.1180 14.8585 14.7763 14.7410 14.7231 14.7890 15.0078 15.1215 15.0620 15.0123 15.0311 15.1216 15.2416 15.3006 15.2477 15.2192 15.2627 15.1808 15.1180 15.0946 15.0680 15.0370 15.0078 15.0213 15.1091 15.0744 15.0620 15.0759 15.1106 15.1672 15.2477 15.3001 15.2627 15.3000 15.2627 15.2192 15.1899 15.1639 15.1404 15.1215 15.1091 15.1048 15.1091 15.1215 15.1404 15.1639 15.1899 15.2192 15.2627 15.3000 15.2627 15.3001 15.2477 15.1672 15.1106 15.0759 15.0620 15.0744 15.1091 15.0213 15.0078 15.0370 15.0680 15.0946 15.1180 15.1808 15.2627 15.2192 15.2477 15.3006 15.2416 15.1216 15.0311 15.0123 15.0620 15.1215 15.0078 14.7890 14.7231 14.7410 14.7763 14.8585 15.1180 15.2192 15.1899 15.1672 15.2416 15.3010 15.2398 15.1078 15.0311 15.0759 15.1404 15.0370 14.7231 14.4637 14.3791 14.4500 14.7763 15.0946 15.1899 15.1639 15.1106 15.1216 15.2398 15.3012 15.2398 15.1216 15.1106 15.1639 15.0680 14.7410 14.3791 14.2277 14.3791 14.7410 15.0680 15.1639 15.1404 15.0759 15.0311 15.1078 15.2398 15.3010 15.2416 15.1672 15.1899 15.0946 14.7763 14.4500 14.3791 14.4637 14.7231 15.0370 15.1404 15.1215 15.0620 15.0123 15.0311 15.1216 15.2416 15.3006 15.2477 15.2192 15.1180 14.8585 14.7763 14.7410 14.7231 14.7890 15.0078 15.1215 15.1091 15.0744 15.0620 15.0759 15.1106 15.1672 15.2477 15.3001 15.2627 15.1808 15.1180 15.0946 15.0680 15.0370 15.0078 15.0213 15.1091 15.1048 15.1091 15.1215 15.1404 15.1639 15.1899 15.2192 15.2627 15.3000 15.2627 15.2192 15.1899 15.1639 15.1404 15.1215 15.1091 15.1048 15.0393 15.0213 15.0151 15.0232 15.0470 15.0874 15.1470 15.2244 15.2627 15.1812 15.1473 15.1503 15.1413 15.1213 15.0943 15.0653 15.0393 15.0213 15.1091 15.0744 15.0620 15.0759 15.1106 15.1672 15.2477 15.3001 15.2627 15.1808 15.1180 15.0946 15.0680 15.0370 15.0078 15.0213 15.0151 15.0744 15.0151 14.9527 14.9465 14.9827 15.0604 15.1795 15.2477 15.2244 15.2477 15.1795 15.0604 14.9827 14.9465 14.9527 15.0151 15.0232 15.0620 14.9527 14.7845 14.7005 14.7236 14.8573 15.0604 15.1672 15.1470 15.1840 15.2416 15.1776 15.0377 14.9387 14.9443 15.0232 15.0470 15.0759 14.9465 14.7005 14.5103 14.5118 14.7236 14.9827 15.1106 15.0874 15.0712 15.1757 15.2398 15.1756 15.0397 14.9839 15.0470 15.0874 15.1106 14.9827 14.7236 14.5118 14.5103 14.7005 14.9465 15.0759 15.0470 14.9839 15.0397 15.1756 15.2398 15.1757 15.0712 15.0874 15.1470 15.1672 15.0604 14.8573 14.7236 14.7005 14.7845 14.9527 15.0620 15.0232 14.9443 14.9387 15.0377 15.1776 15.2416 15.1840 15.1470 15.2244 15.2477 15.1795 15.0604 14.9827 14.9465 14.9527 15.0151 15.0744 15.0151 14.9527 14.9465 14.9827 15.0604 15.1795 15.2477 15.2244 15.2627 15.3001 15.2477 15.1672 15.1106 15.0759 15.0620 15.0744 15.1091 15.0213 15.0078 15.0370 15.0680 15.0946 15.1180 15.1808 15.2627 15.1812 15.2627 15.2244 15.1470 15.0874 15.0470 15.0232 15.0151 15.0213 15.0393 15.0653 15.0943 15.1213 15.1413 15.1503 15.1473 15.1812 15.1473 15.1808 15.2477 15.1840 15.0712 14.9839 14.9443 14.9527 15.0078 15.0653 14.8172 14.7983 14.8536 14.8954 14.9083 14.9067 15.1473 15.1503 15.1180 15.1795 15.2416 15.1757 15.0397 14.9387 14.9465 15.0370 15.0943 14.7983 14.4840 14.3978 14.4086 14.4328 14.9083 15.1503 15.1413 15.0946 15.0604 15.1776 15.2398 15.1756 15.0377 14.9827 15.0680 15.1213 14.8536 14.3978 14.1115 14.0633 14.4086 14.8954 15.1413 15.1213 15.0680 14.9827 15.0377 15.1756 15.2398 15.1776 15.0604 15.0946 15.1413 14.8954 14.4086 14.0633 14.1115 14.3978 14.8536 15.1213 15.0943 15.0370 14.9465 14.9387 15.0397 15.1757 15.2416 15.1795 15.1180 15.1503 14.9083 14.4328 14.4086 14.3978 14.4840 14.7983 15.0943 15.0653 15.0078 14.9527 14.9443 14.9839 15.0712 15.1840 15.2477 15.1808 15.1473 14.9067 14.9083 14.8954 14.8536 14.7983 14.8172 15.0653 15.0393 15.0213 15.0151 15.0232 15.0470 15.0874 15.1470 15.2244 15.2627 15.1812 15.1473 15.1503 15.1413 15.1213 15.0943 15.0653 15.0393 14.8604 14.8172 14.7890 14.7845 14.8120 14.8818 15.0035 15.1470 15.2192 15.1473 14.9840 14.9915 14.9999 14.9865 14.9540 14.8902 14.8604 14.8172 15.0653 15.0078 14.9527 14.9443 14.9839 15.0712 15.1840 15.2477 15.1808 15.1473 14.9067 14.9083 14.8954 14.8536 14.7983 14.8172 14.7890 15.0078 15.1215 15.0620 15.0123 15.0311 15.1216 15.2416 15.3006 15.2477 15.2192 15.1180 14.8585 14.7763 14.7410 14.7231 14.7890 14.7845 14.9527 15.0620 15.0232 14.9443 14.9387 15.0377 15.1776 15.2416 15.1840 15.1470 15.1672 15.0604 14.8573 14.7236 14.7005 14.7845 14.8120 14.9443 15.0123 14.9443 14.8120 14.7591 14.8664 15.0377 15.1216 15.0712 15.0035 15.0712 15.1216 15.0377 14.8664 14.7591 14.8120 14.8818 14.9839 15.0311 14.9387 14.7591 14.6574 14.7591 14.9387 15.0311 14.9839 14.8818 14.9038 15.0397 15.1078 15.0397 14.9038 14.8818 15.0035 15.0712 15.1216 15.0377 14.8664 14.7591 14.8120 14.9443 15.0123 14.9443 14.8120 14.7591 14.8664 15.0377 15.1216 15.0712 15.0035 15.1470 15.1840 15.2416 15.1776 15.0377 14.9387 14.9443 15.0232 15.0620 14.9527 14.7845 14.7005 14.7236 14.8573 15.0604 15.1672 15.1470 15.2192 15.2477 15.3006 15.2416 15.1216 15.0311 15.0123 15.0620 15.1215 15.0078 14.7890 14.7231 14.7410 14.7763 14.8585 15.1180 15.2192 15.1473 15.1808 15.2477 15.1840 15.0712 14.9839 14.9443 14.9527 15.0078 15.0653 14.8172 14.7983 14.8536 14.8954 14.9083 14.9067 15.1473 14.9840 15.1473 15.2192 15.1470 15.0035 14.8818 14.8120 14.7845 14.7890 14.8172 14.8604 14.8902 14.9540 14.9865 14.9999 14.9915 14.9840 14.9915 14.9067 15.1180 15.1672 15.0712 14.9038 14.7591 14.7005 14.7231 14.7983 14.8902 14.5420 14.4740 14.5056 14.5361 14.6003 14.9915 14.9999 14.9083 14.8585 15.0604 15.1216 15.0397 14.8664 14.7236 14.7410 14.8536 14.9540 14.4740 14.1620 14.0536 14.0822 14.5361 14.9999 14.9865 14.8954 14.7763 14.8573 15.0377 15.1078 15.0377 14.8573 14.7763 14.8954 14.9865 14.5056 14.0536 13.7777 14.0536 14.5056 14.9865 14.9540 14.8536 14.7410 14.7236 14.8664 15.0397 15.1216 15.0604 14.8585 14.9083 14.9999 14.5361 14.0822 14.0536 14.1620 14.4740 14.9540 14.8902 14.7983 14.7231 14.7005 14.7591 14.9038 15.0712 15.1672 15.1180 14.9067 14.9915 14.6003 14.5361 14.5056 14.4740 14.5420 14.8902 14.8604 14.8172 14.7890 14.7845 14.8120 14.8818 15.0035 15.1470 15.2192 15.1473 14.9840 14.9915 14.9999 14.9865 14.9540 14.8902 14.8604 14.6171 14.5420 14.4840 14.4637 14.5103 14.6574 14.8818 15.0874 15.1899 15.1503 14.9915 14.4335 14.4260 14.4720 14.4779 14.4867 14.6171 14.5420 14.8902 14.7983 14.7231 14.7005 14.7591 14.9038 15.0712 15.1672 15.1180 14.9067 14.9915 14.6003 14.5361 14.5056 14.4740 14.5420 14.4840 14.7983 15.0943 15.0370 14.9465 14.9387 15.0397 15.1757 15.2416 15.1795 15.1180 15.1503 14.9083 14.4328 14.4086 14.3978 14.4840 14.4637 14.7231 15.0370 15.1404 15.0759 15.0311 15.1078 15.2398 15.3010 15.2416 15.1672 15.1899 15.0946 14.7763 14.4500 14.3791 14.4637 14.5103 14.7005 14.9465 15.0759 15.0470 14.9839 15.0397 15.1756 15.2398 15.1757 15.0712 15.0874 15.1106 14.9827 14.7236 14.5118 14.5103 14.6574 14.7591 14.9387 15.0311 14.9839 14.8818 14.9038 15.0397 15.1078 15.0397 14.9038 14.8818 14.9839 15.0311 14.9387 14.7591 14.6574 14.8818 14.9038 15.0397 15.1078 15.0397 14.9038 14.8818 14.9839 15.0311 14.9387 14.7591 14.6574 14.7591 14.9387 15.0311 14.9839 14.8818 15.0874 15.0712 15.1757 15.2398 15.1756 15.0397 14.9839 15.0470 15.0759 14.9465 14.7005 14.5103 14.5118 14.7236 14.9827 15.1106 15.0874 15.1899 15.1672 15.2416 15.3010 15.2398 15.1078 15.0311 15.0759 15.1404 15.0370 14.7231 14.4637 14.3791 14.4500 14.7763 15.0946 15.1899 15.1503 15.1180 15.1795 15.2416 15.1757 15.0397 14.9387 14.9465 15.0370 15.0943 14.7983 14.4840 14.3978 14.4086 14.4328 14.9083 15.1503 14.9915 14.9067 15.1180 15.1672 15.0712 14.9038 14.7591 14.7005 14.7231 14.7983 14.8902 14.5420 14.4740 14.5056 14.5361 14.6003 14.9915 14.4335 14.9915 15.1503 15.1899 15.0874 14.8818 14.6574 14.5103 14.4637 14.4840 14.5420 14.6171 14.4867 14.4779 14.4720 14.4260 14.4335 14.4260 14.6003 14.9083 15.0946 15.1106 14.9839 14.7591 14.5118 14.3791 14.3978 14.4740 14.4867 14.2686 14.1542 14.1176 14.1480 14.4260 14.4720 14.5361 14.4328 14.7763 14.9827 15.0311 14.9387 14.7236 14.4500 14.4086 14.5056 14.4779 14.1542 13.9370 13.8977 14.1176 14.4720 14.4779 14.5056 14.4086 14.4500 14.7236 14.9387 15.0311 14.9827 14.7763 14.4328 14.5361 14.4720 14.1176 13.8977 13.9370 14.1542 14.4779 14.4867 14.4740 14.3978 14.3791 14.5118 14.7591 14.9839 15.1106 15.0946 14.9083 14.6003 14.4260 14.1480 14.1176 14.1542 14.2686 14.4867 14.6171 14.5420 14.4840 14.4637 14.5103 14.6574 14.8818 15.0874 15.1899 15.1503 14.9915 14.4335 14.4260 14.4720 14.4779 14.4867 14.6171 14.3864 14.2686 14.1620 14.1115 14.2277 14.5103 14.8120 15.0470 15.1639 15.1413 14.9999 14.4260 13.9840 13.9612 14.0683 14.1969 14.3864 14.2686 14.4867 14.4740 14.3978 14.3791 14.5118 14.7591 14.9839 15.1106 15.0946 14.9083 14.6003 14.4260 14.1480 14.1176 14.1542 14.2686 14.1620 14.4740 14.9540 14.8536 14.7410 14.7236 14.8664 15.0397 15.1216 15.0604 14.8585 14.9083 14.9999 14.5361 14.0822 14.0536 14.1620 14.1115 14.3978 14.8536 15.1213 15.0680 14.9827 15.0377 15.1756 15.2398 15.1776 15.0604 15.0946 15.1413 14.8954 14.4086 14.0633 14.1115 14.2277 14.3791 14.7410 15.0680 15.1639 15.1106 15.1216 15.2398 15.3012 15.2398 15.1216 15.1106 15.1639 15.0680 14.7410 14.3791 14.2277 14.5103 14.5118 14.7236 14.9827 15.1106 15.0874 15.0712 15.1757 15.2398 15.1756 15.0397 14.9839 15.0470 15.0759 14.9465 14.7005 14.5103 14.8120 14.7591 14.8664 15.0377 15.1216 15.0712 15.0035 15.0712 15.1216 15.0377 14.8664 14.7591 14.8120 14.9443 15.0123 14.9443 14.8120 15.0470 14.9839 15.0397 15.1756 15.2398 15.1757 15.0712 15.0874 15.1106 14.9827 14.7236 14.5118 14.5103 14.7005 14.9465 15.0759 15.0470 15.1639 15.1106 15.1216 15.2398 15.3012 15.2398 15.1216 15.1106 15.1639 15.0680 14.7410 14.3791 14.2277 14.3791 14.7410 15.0680 15.1639 15.1413 15.0946 15.0604 15.1776 15.2398 15.1756 15.0377 14.9827 15.0680 15.1213 14.8536 14.3978 14.1115 14.0633 14.4086 14.8954 15.1413 14.9999 14.9083 14.8585 15.0604 15.1216 15.0397 14.8664 14.7236 14.7410 14.8536 14.9540 14.4740 14.1620 14.0536 14.0822 14.5361 14.9999 14.4260 14.6003 14.9083 15.0946 15.1106 14.9839 14.7591 14.5118 14.3791 14.3978 14.4740 14.4867 14.2686 14.1542 14.1176 14.1480 14.4260 13.9840 14.4260 14.9999 15.1413 15.1639 15.0470 14.8120 14.5103 14.2277 14.1115 14.1620 14.2686 14.3864 14.1969 14.0683 13.9612 13.9840 13.9612 14.1480 14.5361 14.8954 15.0680 15.0759 14.9443 14.7005 14.3791 14.0633 14.0536 14.1542 14.1969 14.1023 13.9867 13.8956 13.9612 14.0683 14.1176 14.0822 14.4086 14.7410 14.9465 15.0123 14.9465 14.7410 14.4086 14.0822 14.1176 14.0683 13.9867 13.9654 13.9867 14.0683 14.1969 14.1542 14.0536 14.0633 14.3791 14.7005 14.9443 15.0759 15.0680 14.8954 14.5361 14.1480 13.9612 13.8956 13.9867 14.1023 14.1969 14.3864 14.2686 14.1620 14.1115 14.2277 14.5103 14.8120 15.0470 15.1639 15.1413 14.9999 14.4260 13.9840 13.9612 14.0683 14.1969 14.3864 14.2541 14.1023 13.9370 13.7777 14.1115 14.4637 14.7845 15.0232 15.1404 15.1213 14.9865 14.4720 13.9612 13.7192 13.9080 14.0840 14.2541 14.1023 14.1969 14.1542 14.0536 14.0633 14.3791 14.7005 14.9443 15.0759 15.0680 14.8954 14.5361 14.1480 13.9612 13.8956 13.9867 14.1023 13.9370 14.1542 14.4779 14.5056 14.4086 14.4500 14.7236 14.9387 15.0311 14.9827 14.7763 14.4328 14.5361 14.4720 14.1176 13.8977 13.9370 13.7777 14.0536 14.5056 14.9865 14.8954 14.7763 14.8573 15.0377 15.1078 15.0377 14.8573 14.7763 14.8954 14.9865 14.5056 14.0536 13.7777 14.1115 14.0633 14.4086 14.8954 15.1413 15.0946 15.0604 15.1776 15.2398 15.1756 15.0377 14.9827 15.0680 15.1213 14.8536 14.3978 14.1115 14.4637 14.3791 14.4500 14.7763 15.0946 15.1899 15.1672 15.2416 15.3010 15.2398 15.1078 15.0311 15.0759 15.1404 15.0370 14.7231 14.4637 14.7845 14.7005 14.7236 14.8573 15.0604 15.1672 15.1470 15.1840 15.2416 15.1776 15.0377 14.9387 14.9443 15.0232 15.0620 14.9527 14.7845 15.0232 14.9443 14.9387 15.0377 15.1776 15.2416 15.1840 15.1470 15.1672 15.0604 14.8573 14.7236 14.7005 14.7845 14.9527 15.0620 15.0232 15.1404 15.0759 15.0311 15.1078 15.2398 15.3010 15.2416 15.1672 15.1899 15.0946 14.7763 14.4500 14.3791 14.4637 14.7231 15.0370 15.1404 15.1213 15.0680 14.9827 15.0377 15.1756 15.2398 15.1776 15.0604 15.0946 15.1413 14.8954 14.4086 14.0633 14.1115 14.3978 14.8536 15.1213 14.9865 14.8954 14.7763 14.8573 15.0377 15.1078 15.0377 14.8573 14.7763 14.8954 14.9865 14.5056 14.0536 13.7777 14.0536 14.5056 14.9865 14.4720 14.5361 14.4328 14.7763 14.9827 15.0311 14.9387 14.7236 14.4500 14.4086 14.5056 14.4779 14.1542 13.9370 13.8977 14.1176 14.4720 13.9612 14.1480 14.5361 14.8954 15.0680 15.0759 14.9443 14.7005 14.3791 14.0633 14.0536 14.1542 14.1969 14.1023 13.9867 13.8956 13.9612 13.7192 13.9612 14.4720 14.9865 15.1213 15.1404 15.0232 14.7845 14.4637 14.1115 13.7777 13.9370 14.1023 14.2541 14.0840 13.9080 13.7192 13.9080 13.8956 14.1176 14.5056 14.8536 15.0370 15.0620 14.9527 14.7231 14.3978 14.0536 13.8977 13.9867 14.0840 14.1046 14.0212 13.9080 14.0840 13.9867 13.8977 14.0536 14.3978 14.7231 14.9527 15.0620 15.0370 14.8536 14.5056 14.1176 13.8956 13.9080 14.0212 14.1046 14.0840 14.2541 14.1023 13.9370 13.7777 14.1115 14.4637 14.7845 15.0232 15.1404 15.1213 14.9865 14.4720 13.9612 13.7192 13.9080 14.0840 14.2541 14.2390 14.1046 13.9654 13.9370 14.1620 14.4840 14.7890 15.0151 15.1215 15.0943 14.9540 14.4779 14.0683 13.9080 13.9945 14.1265 14.2390 14.1046 14.0840 13.9867 13.8977 14.0536 14.3978 14.7231 14.9527 15.0620 15.0370 14.8536 14.5056 14.1176 13.8956 13.9080 14.0212 14.1046 13.9654 13.9867 14.0683 14.1176 14.0822 14.4086 14.7410 14.9465 15.0123 14.9465 14.7410 14.4086 14.0822 14.1176 14.0683 13.9867 13.9654 13.9370 13.8977 14.1176 14.4720 14.5361 14.4328 14.7763 14.9827 15.0311 14.9387 14.7236 14.4500 14.4086 14.5056 14.4779 14.1542 13.9370 14.1620 14.0536 14.0822 14.5361 14.9999 14.9083 14.8585 15.0604 15.1216 15.0397 14.8664 14.7236 14.7410 14.8536 14.9540 14.4740 14.1620 14.4840 14.3978 14.4086 14.4328 14.9083 15.1503 15.1180 15.1795 15.2416 15.1757 15.0397 14.9387 14.9465 15.0370 15.0943 14.7983 14.4840 14.7890 14.7231 14.7410 14.7763 14.8585 15.1180 15.2192 15.2477 15.3006 15.2416 15.1216 15.0311 15.0123 15.0620 15.1215 15.0078 14.7890 15.0151 14.9527 14.9465 14.9827 15.0604 15.1795 15.2477 15.2244 15.2477 15.1795 15.0604 14.9827 14.9465 14.9527 15.0151 15.0744 15.0151 15.1215 15.0620 15.0123 15.0311 15.1216 15.2416 15.3006 15.2477 15.2192 15.1180 14.8585 14.7763 14.7410 14.7231 14.7890 15.0078 15.1215 15.0943 15.0370 14.9465 14.9387 15.0397 15.1757 15.2416 15.1795 15.1180 15.1503 14.9083 14.4328 14.4086 14.3978 14.4840 14.7983 15.0943 14.9540 14.8536 14.7410 14.7236 14.8664 15.0397 15.1216 15.0604 14.8585 14.9083 14.9999 14.5361 14.0822 14.0536 14.1620 14.4740 14.9540 14.4779 14.5056 14.4086 14.4500 14.7236 14.9387 15.0311 14.9827 14.7763 14.4328 14.5361 14.4720 14.1176 13.8977 13.9370 14.1542 14.4779 14.0683 14.1176 14.0822 14.4086 14.7410 14.9465 15.0123 14.9465 14.7410 14.4086 14.0822 14.1176 14.0683 13.9867 13.9654 13.9867 14.0683 13.9080 13.8956 14.1176 14.5056 14.8536 15.0370 15.0620 14.9527 14.7231 14.3978 14.0536 13.8977 13.9867 14.0840 14.1046 14.0212 13.9080 13.9945 13.9080 14.0683 14.4779 14.9540 15.0943 15.1215 15.0151 14.7890 14.4840 14.1620 13.9370 13.9654 14.1046 14.2390 14.1265 13.9945 14.1265 14.0212 13.9867 14.1542 14.4740 14.7983 15.0078 15.0744 15.0078 14.7983 14.4740 14.1542 13.9867 14.0212 14.1265 14.1896 14.1265 14.2390 14.1046 13.9654 13.9370 14.1620 14.4840 14.7890 15.0151 15.1215 15.0943 14.9540 14.4779 14.0683 13.9080 13.9945 14.1265 14.2390 14.2710 14.1896 14.1046 14.1023 14.2686 14.5420 14.8172 15.0213 15.1091 15.0653 14.8902 14.4867 14.1969 14.0840 14.1265 14.2094 14.2710 14.1896 14.1265 14.0212 13.9867 14.1542 14.4740 14.7983 15.0078 15.0744 15.0078 14.7983 14.4740 14.1542 13.9867 14.0212 14.1265 14.1896 14.1046 14.0212 13.9080 13.8956 14.1176 14.5056 14.8536 15.0370 15.0620 14.9527 14.7231 14.3978 14.0536 13.8977 13.9867 14.0840 14.1046 14.1023 13.9867 13.8956 13.9612 14.1480 14.5361 14.8954 15.0680 15.0759 14.9443 14.7005 14.3791 14.0633 14.0536 14.1542 14.1969 14.1023 14.2686 14.1542 14.1176 14.1480 14.4260 14.6003 14.9083 15.0946 15.1106 14.9839 14.7591 14.5118 14.3791 14.3978 14.4740 14.4867 14.2686 14.5420 14.4740 14.5056 14.5361 14.6003 14.9915 14.9067 15.1180 15.1672 15.0712 14.9038 14.7591 14.7005 14.7231 14.7983 14.8902 14.5420 14.8172 14.7983 14.8536 14.8954 14.9083 14.9067 15.1473 15.1808 15.2477 15.1840 15.0712 14.9839 14.9443 14.9527 15.0078 15.0653 14.8172 15.0213 15.0078 15.0370 15.0680 15.0946 15.1180 15.1808 15.2627 15.3001 15.2477 15.1672 15.1106 15.0759 15.0620 15.0744 15.1091 15.0213 15.1091 15.0744 15.0620 15.0759 15.1106 15.1672 15.2477 15.3001 15.2627 15.1808 15.1180 15.0946 15.0680 15.0370 15.0078 15.0213 15.1091 15.0653 15.0078 14.9527 14.9443 14.9839 15.0712 15.1840 15.2477 15.1808 15.1473 14.9067 14.9083 14.8954 14.8536 14.7983 14.8172 15.0653 14.8902 14.7983 14.7231 14.7005 14.7591 14.9038 15.0712 15.1672 15.1180 14.9067 14.9915 14.6003 14.5361 14.5056 14.4740 14.5420 14.8902 14.4867 14.4740 14.3978 14.3791 14.5118 14.7591 14.9839 15.1106 15.0946 14.9083 14.6003 14.4260 14.1480 14.1176 14.1542 14.2686 14.4867 14.1969 14.1542 14.0536 14.0633 14.3791 14.7005 14.9443 15.0759 15.0680 14.8954 14.5361 14.1480 13.9612 13.8956 13.9867 14.1023 14.1969 14.0840 13.9867 13.8977 14.0536 14.3978 14.7231 14.9527 15.0620 15.0370 14.8536 14.5056 14.1176 13.8956 13.9080 14.0212 14.1046 14.0840 14.1265 14.0212 13.9867 14.1542 14.4740 14.7983 15.0078 15.0744 15.0078 14.7983 14.4740 14.1542 13.9867 14.0212 14.1265 14.1896 14.1265 14.2094 14.1265 14.0840 14.1969 14.4867 14.8902 15.0653 15.1091 15.0213 14.8172 14.5420 14.2686 14.1023 14.1046 14.1896 14.2710 14.2094 14.2710 14.1896 14.1046 14.1023 14.2686 14.5420 14.8172 15.0213 15.1091 15.0653 14.8902 14.4867 14.1969 14.0840 14.1265 14.2094 14.2710 14.2882 14.2710 14.2390 14.2541 14.3864 14.6171 14.8604 15.0393 15.1048 15.0393 14.8604 14.6171 14.3864 14.2541 14.2390 14.2710 14.2882 14.2710 14.2094 14.1265 14.0840 14.1969 14.4867 14.8902 15.0653 15.1091 15.0213 14.8172 14.5420 14.2686 14.1023 14.1046 14.1896 14.2710 14.2390 14.1265 13.9945 13.9080 14.0683 14.4779 14.9540 15.0943 15.1215 15.0151 14.7890 14.4840 14.1620 13.9370 13.9654 14.1046 14.2390 14.2541 14.0840 13.9080 13.7192 13.9612 14.4720 14.9865 15.1213 15.1404 15.0232 14.7845 14.4637 14.1115 13.7777 13.9370 14.1023 14.2541 14.3864 14.1969 14.0683 13.9612 13.9840 14.4260 14.9999 15.1413 15.1639 15.0470 14.8120 14.5103 14.2277 14.1115 14.1620 14.2686 14.3864 14.6171 14.4867 14.4779 14.4720 14.4260 14.4335 14.9915 15.1503 15.1899 15.0874 14.8818 14.6574 14.5103 14.4637 14.4840 14.5420 14.6171 14.8604 14.8902 14.9540 14.9865 14.9999 14.9915 14.9840 15.1473 15.2192 15.1470 15.0035 14.8818 14.8120 14.7845 14.7890 14.8172 14.8604 15.0393 15.0653 15.0943 15.1213 15.1413 15.1503 15.1473 15.1812 15.2627 15.2244 15.1470 15.0874 15.0470 15.0232 15.0151 15.0213 15.0393 15.1048 15.1091 15.1215 15.1404 15.1639 15.1899 15.2192 15.2627 15.3000 15.2627 15.2192 15.1899 15.1639 15.1404 15.1215 15.1091 15.1048 15.0393 15.0213 15.0151 15.0232 15.0470 15.0874 15.1470 15.2244 15.2627 15.1812 15.1473 15.1503 15.1413 15.1213 15.0943 15.0653 15.0393 14.8604 14.8172 14.7890 14.7845 14.8120 14.8818 15.0035 15.1470 15.2192 15.1473 14.9840 14.9915 14.9999 14.9865 14.9540 14.8902 14.8604 14.6171 14.5420 14.4840 14.4637 14.5103 14.6574 14.8818 15.0874 15.1899 15.1503 14.9915 14.4335 14.4260 14.4720 14.4779 14.4867 14.6171 14.3864 14.2686 14.1620 14.1115 14.2277 14.5103 14.8120 15.0470 15.1639 15.1413 14.9999 14.4260 13.9840 13.9612 14.0683 14.1969 14.3864 14.2541 14.1023 13.9370 13.7777 14.1115 14.4637 14.7845 15.0232 15.1404 15.1213 14.9865 14.4720 13.9612 13.7192 13.9080 14.0840 14.2541 14.2390 14.1046 13.9654 13.9370 14.1620 14.4840 14.7890 15.0151 15.1215 15.0943 14.9540 14.4779 14.0683 13.9080 13.9945 14.1265 14.2390 14.2710 14.1896 14.1046 14.1023 14.2686 14.5420 14.8172 15.0213 15.1091 15.0653 14.8902 14.4867 14.1969 14.0840 14.1265 14.2094 14.2710 14.2882 14.2710 14.2390 14.2541 14.3864 14.6171 14.8604 15.0393 15.1048 15.0393 14.8604 14.6171 14.3864 14.2541 14.2390 14.2710 14.2882 BAND: 6 14.2882 14.2710 14.2390 14.2541 14.3864 14.6171 14.8604 15.0393 15.1048 15.0393 14.8604 14.6171 14.3864 14.2541 14.2390 14.2710 14.2882 14.2710 14.3183 14.3390 14.3768 14.4927 14.6928 14.9091 15.4212 15.9820 15.8794 15.3901 15.0145 14.7078 14.4752 14.3508 14.3054 14.2710 14.2390 14.3390 14.4046 14.4652 14.5745 14.7551 15.0735 15.8967 16.8582 17.1269 16.4130 15.7085 15.1992 14.8078 14.5239 14.3508 14.2390 14.2541 14.3768 14.4652 14.5350 14.6315 14.7954 15.2093 16.2426 17.5456 18.4458 17.7254 16.6637 15.8634 15.2676 14.8078 14.4752 14.2541 14.3864 14.4927 14.5745 14.6315 14.6907 14.8147 15.2432 16.4339 17.9745 19.5662 19.2818 17.8845 16.7329 15.8634 15.1992 14.7078 14.3864 14.6171 14.6928 14.7551 14.7954 14.8147 14.8485 15.1662 16.4874 18.1597 20.0769 21.0650 19.3983 17.8845 16.6637 15.7085 15.0145 14.6171 14.8604 14.9091 15.0735 15.2093 15.2432 15.1662 15.1703 16.5006 18.1451 19.9229 21.5483 21.0650 19.2818 17.7254 16.4130 15.3901 14.8604 15.0393 15.4212 15.8967 16.2426 16.4339 16.4874 16.5006 16.9090 17.9921 19.1552 19.9229 20.0769 19.5662 18.4458 17.1269 15.8794 15.0393 15.1048 15.9820 16.8582 17.5456 17.9745 18.1597 18.1451 17.9921 17.8816 17.9921 18.1451 18.1597 17.9745 17.5456 16.8582 15.9820 15.1048 15.0393 15.8794 17.1269 18.4458 19.5662 20.0769 19.9229 19.1552 17.9921 16.9090 16.5006 16.4874 16.4339 16.2426 15.8967 15.4212 15.0393 14.8604 15.3901 16.4130 17.7254 19.2818 21.0650 21.5483 19.9229 18.1451 16.5006 15.1703 15.1662 15.2432 15.2093 15.0735 14.9091 14.8604 14.6171 15.0145 15.7085 16.6637 17.8845 19.3983 21.0650 20.0769 18.1597 16.4874 15.1662 14.8485 14.8147 14.7954 14.7551 14.6928 14.6171 14.3864 14.7078 15.1992 15.8634 16.7329 17.8845 19.2818 19.5662 17.9745 16.4339 15.2432 14.8147 14.6907 14.6315 14.5745 14.4927 14.3864 14.2541 14.4752 14.8078 15.2676 15.8634 16.6637 17.7254 18.4458 17.5456 16.2426 15.2093 14.7954 14.6315 14.5350 14.4652 14.3768 14.2541 14.2390 14.3508 14.5239 14.8078 15.1992 15.7085 16.4130 17.1269 16.8582 15.8967 15.0735 14.7551 14.5745 14.4652 14.4046 14.3390 14.2390 14.2710 14.3054 14.3508 14.4752 14.7078 15.0145 15.3901 15.8794 15.9820 15.4212 14.9091 14.6928 14.4927 14.3768 14.3390 14.3183 14.2710 14.2882 14.2710 14.2390 14.2541 14.3864 14.6171 14.8604 15.0393 15.1048 15.0393 14.8604 14.6171 14.3864 14.2541 14.2390 14.2710 14.2882 14.2710 14.3183 14.3390 14.3768 14.4927 14.6928 14.9091 15.4212 15.9820 15.8794 15.3901 15.0145 14.7078 14.4752 14.3508 14.3054 14.2710 14.3183 14.2710 14.3054 14.3508 14.4752 14.7078 15.0145 15.3901 15.8794 15.9820 15.4212 14.9091 14.6928 14.4927 14.3768 14.3390 14.3183 14.3390 14.3054 14.3390 14.4009 14.5274 14.7655 15.1133 15.6172 16.3605 16.8689 16.3605 15.6172 15.1133 14.7655 14.5274 14.4009 14.3390 14.3768 14.3508 14.4009 14.4652 14.5732 14.7956 15.1771 15.8304 16.8483 17.8748 17.6511 16.6358 15.8187 15.2437 14.8182 14.5274 14.3768 14.4927 14.4752 14.5274 14.5732 14.6315 14.7965 15.1889 15.9690 17.2004 18.6818 19.1399 17.9168 16.7498 15.8872 15.2437 14.7655 14.4927 14.6928 14.7078 14.7655 14.7956 14.7965 14.8147 15.1450 16.0234 17.4032 19.1366 20.6423 19.4672 17.9565 16.7498 15.8187 15.1133 14.6928 14.9091 15.0145 15.1133 15.1771 15.1889 15.1450 15.1662 16.0728 17.5046 19.2659 21.1966 21.2892 19.4672 17.9168 16.6358 15.6172 14.9091 15.4212 15.3901 15.6172 15.8304 15.9690 16.0234 16.0728 16.5006 17.6298 19.0846 20.4555 21.1966 20.6423 19.1399 17.6511 16.3605 15.4212 15.9820 15.8794 16.3605 16.8483 17.2004 17.4032 17.5046 17.6298 17.9921 18.5898 19.0846 19.2659 19.1366 18.6818 17.8748 16.8689 15.9820 15.8794 15.9820 16.8689 17.8748 18.6818 19.1366 19.2659 19.0846 18.5898 17.9921 17.6298 17.5046 17.4032 17.2004 16.8483 16.3605 15.8794 15.3901 15.4212 16.3605 17.6511 19.1399 20.6423 21.1966 20.4555 19.0846 17.6298 16.5006 16.0728 16.0234 15.9690 15.8304 15.6172 15.3901 15.0145 14.9091 15.6172 16.6358 17.9168 19.4672 21.2892 21.1966 19.2659 17.5046 16.0728 15.1662 15.1450 15.1889 15.1771 15.1133 15.0145 14.7078 14.6928 15.1133 15.8187 16.7498 17.9565 19.4672 20.6423 19.1366 17.4032 16.0234 15.1450 14.8147 14.7965 14.7956 14.7655 14.7078 14.4752 14.4927 14.7655 15.2437 15.8872 16.7498 17.9168 19.1399 18.6818 17.2004 15.9690 15.1889 14.7965 14.6315 14.5732 14.5274 14.4752 14.3508 14.3768 14.5274 14.8182 15.2437 15.8187 16.6358 17.6511 17.8748 16.8483 15.8304 15.1771 14.7956 14.5732 14.4652 14.4009 14.3508 14.3054 14.3390 14.4009 14.5274 14.7655 15.1133 15.6172 16.3605 16.8689 16.3605 15.6172 15.1133 14.7655 14.5274 14.4009 14.3390 14.3054 14.2710 14.3183 14.3390 14.3768 14.4927 14.6928 14.9091 15.4212 15.9820 15.8794 15.3901 15.0145 14.7078 14.4752 14.3508 14.3054 14.2710 14.2390 14.3390 14.4046 14.4652 14.5745 14.7551 15.0735 15.8967 16.8582 17.1269 16.4130 15.7085 15.1992 14.8078 14.5239 14.3508 14.2390 14.3390 14.3054 14.3390 14.4009 14.5274 14.7655 15.1133 15.6172 16.3605 16.8689 16.3605 15.6172 15.1133 14.7655 14.5274 14.4009 14.3390 14.4046 14.3390 14.2390 14.3508 14.5239 14.8078 15.1992 15.7085 16.4130 17.1269 16.8582 15.8967 15.0735 14.7551 14.5745 14.4652 14.4046 14.4652 14.4009 14.3508 14.3768 14.5274 14.8182 15.2437 15.8187 16.6358 17.6511 17.8748 16.8483 15.8304 15.1771 14.7956 14.5732 14.4652 14.5745 14.5274 14.5239 14.5274 14.5745 14.7956 15.2393 15.8923 16.8494 18.1403 19.0805 18.1403 16.8494 15.8923 15.2393 14.7956 14.5745 14.7551 14.7655 14.8078 14.8182 14.7956 14.7954 15.1889 15.9311 17.0180 18.4939 20.1048 19.6935 18.1335 16.8513 15.8923 15.1771 14.7551 15.0735 15.1133 15.1992 15.2437 15.2393 15.1889 15.2432 16.0234 17.1881 18.7375 20.5897 21.4887 19.7144 18.1335 16.8494 15.8304 15.0735 15.8967 15.6172 15.7085 15.8187 15.8923 15.9311 16.0234 16.4874 17.5046 18.9273 20.5767 22.1056 21.4887 19.6935 18.1403 16.8483 15.8967 16.8582 16.3605 16.4130 16.6358 16.8494 17.0180 17.1881 17.5046 18.1451 19.0846 20.0315 20.5767 20.5897 20.1048 19.0805 17.8748 16.8582 17.1269 16.8689 17.1269 17.6511 18.1403 18.4939 18.7375 18.9273 19.0846 19.1552 19.0846 18.9273 18.7375 18.4939 18.1403 17.6511 17.1269 16.4130 16.3605 16.8582 17.8748 19.0805 20.1048 20.5897 20.5767 20.0315 19.0846 18.1451 17.5046 17.1881 17.0180 16.8494 16.6358 16.4130 15.7085 15.6172 15.8967 16.8483 18.1403 19.6935 21.4887 22.1056 20.5767 18.9273 17.5046 16.4874 16.0234 15.9311 15.8923 15.8187 15.7085 15.1992 15.1133 15.0735 15.8304 16.8494 18.1335 19.7144 21.4887 20.5897 18.7375 17.1881 16.0234 15.2432 15.1889 15.2393 15.2437 15.1992 14.8078 14.7655 14.7551 15.1771 15.8923 16.8513 18.1335 19.6935 20.1048 18.4939 17.0180 15.9311 15.1889 14.7954 14.7956 14.8182 14.8078 14.5239 14.5274 14.5745 14.7956 15.2393 15.8923 16.8494 18.1403 19.0805 18.1403 16.8494 15.8923 15.2393 14.7956 14.5745 14.5274 14.5239 14.3508 14.4009 14.4652 14.5732 14.7956 15.1771 15.8304 16.8483 17.8748 17.6511 16.6358 15.8187 15.2437 14.8182 14.5274 14.3768 14.3508 14.2390 14.3390 14.4046 14.4652 14.5745 14.7551 15.0735 15.8967 16.8582 17.1269 16.4130 15.7085 15.1992 14.8078 14.5239 14.3508 14.2390 14.2541 14.3768 14.4652 14.5350 14.6315 14.7954 15.2093 16.2426 17.5456 18.4458 17.7254 16.6637 15.8634 15.2676 14.8078 14.4752 14.2541 14.3768 14.3508 14.4009 14.4652 14.5732 14.7956 15.1771 15.8304 16.8483 17.8748 17.6511 16.6358 15.8187 15.2437 14.8182 14.5274 14.3768 14.4652 14.4009 14.3508 14.3768 14.5274 14.8182 15.2437 15.8187 16.6358 17.6511 17.8748 16.8483 15.8304 15.1771 14.7956 14.5732 14.4652 14.5350 14.4652 14.3768 14.2541 14.4752 14.8078 15.2676 15.8634 16.6637 17.7254 18.4458 17.5456 16.2426 15.2093 14.7954 14.6315 14.5350 14.6315 14.5732 14.5274 14.4752 14.4927 14.7655 15.2437 15.8872 16.7498 17.9168 19.1399 18.6818 17.2004 15.9690 15.1889 14.7965 14.6315 14.7954 14.7956 14.8182 14.8078 14.7655 14.7551 15.1771 15.8923 16.8513 18.1335 19.6935 20.1048 18.4939 17.0180 15.9311 15.1889 14.7954 15.2093 15.1771 15.2437 15.2676 15.2437 15.1771 15.2093 15.9690 17.0180 18.3833 20.0758 21.6104 20.0758 18.3833 17.0180 15.9690 15.2093 16.2426 15.8304 15.8187 15.8634 15.8872 15.8923 15.9690 16.4339 17.4032 18.7375 20.3791 22.2269 21.9298 20.0758 18.4939 17.2004 16.2426 17.5456 16.8483 16.6358 16.6637 16.7498 16.8513 17.0180 17.4032 18.1597 19.2659 20.5767 21.7573 22.2269 21.6104 20.1048 18.6818 17.5456 18.4458 17.8748 17.6511 17.7254 17.9168 18.1335 18.3833 18.7375 19.2659 19.9229 20.4555 20.5767 20.3791 20.0758 19.6935 19.1399 18.4458 17.7254 17.6511 17.8748 18.4458 19.1399 19.6935 20.0758 20.3791 20.5767 20.4555 19.9229 19.2659 18.7375 18.3833 18.1335 17.9168 17.7254 16.6637 16.6358 16.8483 17.5456 18.6818 20.1048 21.6104 22.2269 21.7573 20.5767 19.2659 18.1597 17.4032 17.0180 16.8513 16.7498 16.6637 15.8634 15.8187 15.8304 16.2426 17.2004 18.4939 20.0758 21.9298 22.2269 20.3791 18.7375 17.4032 16.4339 15.9690 15.8923 15.8872 15.8634 15.2676 15.2437 15.1771 15.2093 15.9690 17.0180 18.3833 20.0758 21.6104 20.0758 18.3833 17.0180 15.9690 15.2093 15.1771 15.2437 15.2676 14.8078 14.8182 14.7956 14.7954 15.1889 15.9311 17.0180 18.4939 20.1048 19.6935 18.1335 16.8513 15.8923 15.1771 14.7551 14.7655 14.8078 14.4752 14.5274 14.5732 14.6315 14.7965 15.1889 15.9690 17.2004 18.6818 19.1399 17.9168 16.7498 15.8872 15.2437 14.7655 14.4927 14.4752 14.2541 14.3768 14.4652 14.5350 14.6315 14.7954 15.2093 16.2426 17.5456 18.4458 17.7254 16.6637 15.8634 15.2676 14.8078 14.4752 14.2541 14.3864 14.4927 14.5745 14.6315 14.6907 14.8147 15.2432 16.4339 17.9745 19.5662 19.2818 17.8845 16.7329 15.8634 15.1992 14.7078 14.3864 14.4927 14.4752 14.5274 14.5732 14.6315 14.7965 15.1889 15.9690 17.2004 18.6818 19.1399 17.9168 16.7498 15.8872 15.2437 14.7655 14.4927 14.5745 14.5274 14.5239 14.5274 14.5745 14.7956 15.2393 15.8923 16.8494 18.1403 19.0805 18.1403 16.8494 15.8923 15.2393 14.7956 14.5745 14.6315 14.5732 14.5274 14.4752 14.4927 14.7655 15.2437 15.8872 16.7498 17.9168 19.1399 18.6818 17.2004 15.9690 15.1889 14.7965 14.6315 14.6907 14.6315 14.5745 14.4927 14.3864 14.7078 15.1992 15.8634 16.7329 17.8845 19.2818 19.5662 17.9745 16.4339 15.2432 14.8147 14.6907 14.8147 14.7965 14.7956 14.7655 14.7078 14.6928 15.1133 15.8187 16.7498 17.9565 19.4672 20.6423 19.1366 17.4032 16.0234 15.1450 14.8147 15.2432 15.1889 15.2393 15.2437 15.1992 15.1133 15.0735 15.8304 16.8494 18.1335 19.7144 21.4887 20.5897 18.7375 17.1881 16.0234 15.2432 16.4339 15.9690 15.8923 15.8872 15.8634 15.8187 15.8304 16.2426 17.2004 18.4939 20.0758 21.9298 22.2269 20.3791 18.7375 17.4032 16.4339 17.9745 17.2004 16.8494 16.7498 16.7329 16.7498 16.8494 17.2004 17.9745 19.1366 20.5897 22.2269 23.6622 22.2269 20.5897 19.1366 17.9745 19.5662 18.6818 18.1403 17.9168 17.8845 17.9565 18.1335 18.4939 19.1366 20.0769 21.1966 22.1056 22.2269 21.9298 21.4887 20.6423 19.5662 19.2818 19.1399 19.0805 19.1399 19.2818 19.4672 19.7144 20.0758 20.5897 21.1966 21.5483 21.1966 20.5897 20.0758 19.7144 19.4672 19.2818 17.8845 17.9168 18.1403 18.6818 19.5662 20.6423 21.4887 21.9298 22.2269 22.1056 21.1966 20.0769 19.1366 18.4939 18.1335 17.9565 17.8845 16.7329 16.7498 16.8494 17.2004 17.9745 19.1366 20.5897 22.2269 23.6622 22.2269 20.5897 19.1366 17.9745 17.2004 16.8494 16.7498 16.7329 15.8634 15.8872 15.8923 15.9690 16.4339 17.4032 18.7375 20.3791 22.2269 21.9298 20.0758 18.4939 17.2004 16.2426 15.8304 15.8187 15.8634 15.1992 15.2437 15.2393 15.1889 15.2432 16.0234 17.1881 18.7375 20.5897 21.4887 19.7144 18.1335 16.8494 15.8304 15.0735 15.1133 15.1992 14.7078 14.7655 14.7956 14.7965 14.8147 15.1450 16.0234 17.4032 19.1366 20.6423 19.4672 17.9565 16.7498 15.8187 15.1133 14.6928 14.7078 14.3864 14.4927 14.5745 14.6315 14.6907 14.8147 15.2432 16.4339 17.9745 19.5662 19.2818 17.8845 16.7329 15.8634 15.1992 14.7078 14.3864 14.6171 14.6928 14.7551 14.7954 14.8147 14.8485 15.1662 16.4874 18.1597 20.0769 21.0650 19.3983 17.8845 16.6637 15.7085 15.0145 14.6171 14.6928 14.7078 14.7655 14.7956 14.7965 14.8147 15.1450 16.0234 17.4032 19.1366 20.6423 19.4672 17.9565 16.7498 15.8187 15.1133 14.6928 14.7551 14.7655 14.8078 14.8182 14.7956 14.7954 15.1889 15.9311 17.0180 18.4939 20.1048 19.6935 18.1335 16.8513 15.8923 15.1771 14.7551 14.7954 14.7956 14.8182 14.8078 14.7655 14.7551 15.1771 15.8923 16.8513 18.1335 19.6935 20.1048 18.4939 17.0180 15.9311 15.1889 14.7954 14.8147 14.7965 14.7956 14.7655 14.7078 14.6928 15.1133 15.8187 16.7498 17.9565 19.4672 20.6423 19.1366 17.4032 16.0234 15.1450 14.8147 14.8485 14.8147 14.7954 14.7551 14.6928 14.6171 15.0145 15.7085 16.6637 17.8845 19.3983 21.0650 20.0769 18.1597 16.4874 15.1662 14.8485 15.1662 15.1450 15.1889 15.1771 15.1133 15.0145 14.9091 15.6172 16.6358 17.9168 19.4672 21.2892 21.1966 19.2659 17.5046 16.0728 15.1662 16.4874 16.0234 15.9311 15.8923 15.8187 15.7085 15.6172 15.8967 16.8483 18.1403 19.6935 21.4887 22.1056 20.5767 18.9273 17.5046 16.4874 18.1597 17.4032 17.0180 16.8513 16.7498 16.6637 16.6358 16.8483 17.5456 18.6818 20.1048 21.6104 22.2269 21.7573 20.5767 19.2659 18.1597 20.0769 19.1366 18.4939 18.1335 17.9565 17.8845 17.9168 18.1403 18.6818 19.5662 20.6423 21.4887 21.9298 22.2269 22.1056 21.1966 20.0769 21.0650 20.6423 20.1048 19.6935 19.4672 19.3983 19.4672 19.6935 20.1048 20.6423 21.0650 21.2892 21.4887 21.6104 21.4887 21.2892 21.0650 19.3983 19.4672 19.6935 20.1048 20.6423 21.0650 21.2892 21.4887 21.6104 21.4887 21.2892 21.0650 20.6423 20.1048 19.6935 19.4672 19.3983 17.8845 17.9565 18.1335 18.4939 19.1366 20.0769 21.1966 22.1056 22.2269 21.9298 21.4887 20.6423 19.5662 18.6818 18.1403 17.9168 17.8845 16.6637 16.7498 16.8513 17.0180 17.4032 18.1597 19.2659 20.5767 21.7573 22.2269 21.6104 20.1048 18.6818 17.5456 16.8483 16.6358 16.6637 15.7085 15.8187 15.8923 15.9311 16.0234 16.4874 17.5046 18.9273 20.5767 22.1056 21.4887 19.6935 18.1403 16.8483 15.8967 15.6172 15.7085 15.0145 15.1133 15.1771 15.1889 15.1450 15.1662 16.0728 17.5046 19.2659 21.1966 21.2892 19.4672 17.9168 16.6358 15.6172 14.9091 15.0145 14.6171 14.6928 14.7551 14.7954 14.8147 14.8485 15.1662 16.4874 18.1597 20.0769 21.0650 19.3983 17.8845 16.6637 15.7085 15.0145 14.6171 14.8604 14.9091 15.0735 15.2093 15.2432 15.1662 15.1703 16.5006 18.1451 19.9229 21.5483 21.0650 19.2818 17.7254 16.4130 15.3901 14.8604 14.9091 15.0145 15.1133 15.1771 15.1889 15.1450 15.1662 16.0728 17.5046 19.2659 21.1966 21.2892 19.4672 17.9168 16.6358 15.6172 14.9091 15.0735 15.1133 15.1992 15.2437 15.2393 15.1889 15.2432 16.0234 17.1881 18.7375 20.5897 21.4887 19.7144 18.1335 16.8494 15.8304 15.0735 15.2093 15.1771 15.2437 15.2676 15.2437 15.1771 15.2093 15.9690 17.0180 18.3833 20.0758 21.6104 20.0758 18.3833 17.0180 15.9690 15.2093 15.2432 15.1889 15.2393 15.2437 15.1992 15.1133 15.0735 15.8304 16.8494 18.1335 19.7144 21.4887 20.5897 18.7375 17.1881 16.0234 15.2432 15.1662 15.1450 15.1889 15.1771 15.1133 15.0145 14.9091 15.6172 16.6358 17.9168 19.4672 21.2892 21.1966 19.2659 17.5046 16.0728 15.1662 15.1703 15.1662 15.2432 15.2093 15.0735 14.9091 14.8604 15.3901 16.4130 17.7254 19.2818 21.0650 21.5483 19.9229 18.1451 16.5006 15.1703 16.5006 16.0728 16.0234 15.9690 15.8304 15.6172 15.3901 15.4212 16.3605 17.6511 19.1399 20.6423 21.1966 20.4555 19.0846 17.6298 16.5006 18.1451 17.5046 17.1881 17.0180 16.8494 16.6358 16.4130 16.3605 16.8582 17.8748 19.0805 20.1048 20.5897 20.5767 20.0315 19.0846 18.1451 19.9229 19.2659 18.7375 18.3833 18.1335 17.9168 17.7254 17.6511 17.8748 18.4458 19.1399 19.6935 20.0758 20.3791 20.5767 20.4555 19.9229 21.5483 21.1966 20.5897 20.0758 19.7144 19.4672 19.2818 19.1399 19.0805 19.1399 19.2818 19.4672 19.7144 20.0758 20.5897 21.1966 21.5483 21.0650 21.2892 21.4887 21.6104 21.4887 21.2892 21.0650 20.6423 20.1048 19.6935 19.4672 19.3983 19.4672 19.6935 20.1048 20.6423 21.0650 19.2818 19.4672 19.7144 20.0758 20.5897 21.1966 21.5483 21.1966 20.5897 20.0758 19.7144 19.4672 19.2818 19.1399 19.0805 19.1399 19.2818 17.7254 17.9168 18.1335 18.3833 18.7375 19.2659 19.9229 20.4555 20.5767 20.3791 20.0758 19.6935 19.1399 18.4458 17.8748 17.6511 17.7254 16.4130 16.6358 16.8494 17.0180 17.1881 17.5046 18.1451 19.0846 20.0315 20.5767 20.5897 20.1048 19.0805 17.8748 16.8582 16.3605 16.4130 15.3901 15.6172 15.8304 15.9690 16.0234 16.0728 16.5006 17.6298 19.0846 20.4555 21.1966 20.6423 19.1399 17.6511 16.3605 15.4212 15.3901 14.8604 14.9091 15.0735 15.2093 15.2432 15.1662 15.1703 16.5006 18.1451 19.9229 21.5483 21.0650 19.2818 17.7254 16.4130 15.3901 14.8604 15.0393 15.4212 15.8967 16.2426 16.4339 16.4874 16.5006 16.9090 17.9921 19.1552 19.9229 20.0769 19.5662 18.4458 17.1269 15.8794 15.0393 15.4212 15.3901 15.6172 15.8304 15.9690 16.0234 16.0728 16.5006 17.6298 19.0846 20.4555 21.1966 20.6423 19.1399 17.6511 16.3605 15.4212 15.8967 15.6172 15.7085 15.8187 15.8923 15.9311 16.0234 16.4874 17.5046 18.9273 20.5767 22.1056 21.4887 19.6935 18.1403 16.8483 15.8967 16.2426 15.8304 15.8187 15.8634 15.8872 15.8923 15.9690 16.4339 17.4032 18.7375 20.3791 22.2269 21.9298 20.0758 18.4939 17.2004 16.2426 16.4339 15.9690 15.8923 15.8872 15.8634 15.8187 15.8304 16.2426 17.2004 18.4939 20.0758 21.9298 22.2269 20.3791 18.7375 17.4032 16.4339 16.4874 16.0234 15.9311 15.8923 15.8187 15.7085 15.6172 15.8967 16.8483 18.1403 19.6935 21.4887 22.1056 20.5767 18.9273 17.5046 16.4874 16.5006 16.0728 16.0234 15.9690 15.8304 15.6172 15.3901 15.4212 16.3605 17.6511 19.1399 20.6423 21.1966 20.4555 19.0846 17.6298 16.5006 16.9090 16.5006 16.4874 16.4339 16.2426 15.8967 15.4212 15.0393 15.8794 17.1269 18.4458 19.5662 20.0769 19.9229 19.1552 17.9921 16.9090 17.9921 17.6298 17.5046 17.4032 17.2004 16.8483 16.3605 15.8794 15.9820 16.8689 17.8748 18.6818 19.1366 19.2659 19.0846 18.5898 17.9921 19.1552 19.0846 18.9273 18.7375 18.4939 18.1403 17.6511 17.1269 16.8689 17.1269 17.6511 18.1403 18.4939 18.7375 18.9273 19.0846 19.1552 19.9229 20.4555 20.5767 20.3791 20.0758 19.6935 19.1399 18.4458 17.8748 17.6511 17.7254 17.9168 18.1335 18.3833 18.7375 19.2659 19.9229 20.0769 21.1966 22.1056 22.2269 21.9298 21.4887 20.6423 19.5662 18.6818 18.1403 17.9168 17.8845 17.9565 18.1335 18.4939 19.1366 20.0769 19.5662 20.6423 21.4887 21.9298 22.2269 22.1056 21.1966 20.0769 19.1366 18.4939 18.1335 17.9565 17.8845 17.9168 18.1403 18.6818 19.5662 18.4458 19.1399 19.6935 20.0758 20.3791 20.5767 20.4555 19.9229 19.2659 18.7375 18.3833 18.1335 17.9168 17.7254 17.6511 17.8748 18.4458 17.1269 17.6511 18.1403 18.4939 18.7375 18.9273 19.0846 19.1552 19.0846 18.9273 18.7375 18.4939 18.1403 17.6511 17.1269 16.8689 17.1269 15.8794 16.3605 16.8483 17.2004 17.4032 17.5046 17.6298 17.9921 18.5898 19.0846 19.2659 19.1366 18.6818 17.8748 16.8689 15.9820 15.8794 15.0393 15.4212 15.8967 16.2426 16.4339 16.4874 16.5006 16.9090 17.9921 19.1552 19.9229 20.0769 19.5662 18.4458 17.1269 15.8794 15.0393 15.1048 15.9820 16.8582 17.5456 17.9745 18.1597 18.1451 17.9921 17.8816 17.9921 18.1451 18.1597 17.9745 17.5456 16.8582 15.9820 15.1048 15.9820 15.8794 16.3605 16.8483 17.2004 17.4032 17.5046 17.6298 17.9921 18.5898 19.0846 19.2659 19.1366 18.6818 17.8748 16.8689 15.9820 16.8582 16.3605 16.4130 16.6358 16.8494 17.0180 17.1881 17.5046 18.1451 19.0846 20.0315 20.5767 20.5897 20.1048 19.0805 17.8748 16.8582 17.5456 16.8483 16.6358 16.6637 16.7498 16.8513 17.0180 17.4032 18.1597 19.2659 20.5767 21.7573 22.2269 21.6104 20.1048 18.6818 17.5456 17.9745 17.2004 16.8494 16.7498 16.7329 16.7498 16.8494 17.2004 17.9745 19.1366 20.5897 22.2269 23.6622 22.2269 20.5897 19.1366 17.9745 18.1597 17.4032 17.0180 16.8513 16.7498 16.6637 16.6358 16.8483 17.5456 18.6818 20.1048 21.6104 22.2269 21.7573 20.5767 19.2659 18.1597 18.1451 17.5046 17.1881 17.0180 16.8494 16.6358 16.4130 16.3605 16.8582 17.8748 19.0805 20.1048 20.5897 20.5767 20.0315 19.0846 18.1451 17.9921 17.6298 17.5046 17.4032 17.2004 16.8483 16.3605 15.8794 15.9820 16.8689 17.8748 18.6818 19.1366 19.2659 19.0846 18.5898 17.9921 17.8816 17.9921 18.1451 18.1597 17.9745 17.5456 16.8582 15.9820 15.1048 15.9820 16.8582 17.5456 17.9745 18.1597 18.1451 17.9921 17.8816 17.9921 18.5898 19.0846 19.2659 19.1366 18.6818 17.8748 16.8689 15.9820 15.8794 16.3605 16.8483 17.2004 17.4032 17.5046 17.6298 17.9921 18.1451 19.0846 20.0315 20.5767 20.5897 20.1048 19.0805 17.8748 16.8582 16.3605 16.4130 16.6358 16.8494 17.0180 17.1881 17.5046 18.1451 18.1597 19.2659 20.5767 21.7573 22.2269 21.6104 20.1048 18.6818 17.5456 16.8483 16.6358 16.6637 16.7498 16.8513 17.0180 17.4032 18.1597 17.9745 19.1366 20.5897 22.2269 23.6622 22.2269 20.5897 19.1366 17.9745 17.2004 16.8494 16.7498 16.7329 16.7498 16.8494 17.2004 17.9745 17.5456 18.6818 20.1048 21.6104 22.2269 21.7573 20.5767 19.2659 18.1597 17.4032 17.0180 16.8513 16.7498 16.6637 16.6358 16.8483 17.5456 16.8582 17.8748 19.0805 20.1048 20.5897 20.5767 20.0315 19.0846 18.1451 17.5046 17.1881 17.0180 16.8494 16.6358 16.4130 16.3605 16.8582 15.9820 16.8689 17.8748 18.6818 19.1366 19.2659 19.0846 18.5898 17.9921 17.6298 17.5046 17.4032 17.2004 16.8483 16.3605 15.8794 15.9820 15.1048 15.9820 16.8582 17.5456 17.9745 18.1597 18.1451 17.9921 17.8816 17.9921 18.1451 18.1597 17.9745 17.5456 16.8582 15.9820 15.1048 15.0393 15.8794 17.1269 18.4458 19.5662 20.0769 19.9229 19.1552 17.9921 16.9090 16.5006 16.4874 16.4339 16.2426 15.8967 15.4212 15.0393 15.8794 15.9820 16.8689 17.8748 18.6818 19.1366 19.2659 19.0846 18.5898 17.9921 17.6298 17.5046 17.4032 17.2004 16.8483 16.3605 15.8794 17.1269 16.8689 17.1269 17.6511 18.1403 18.4939 18.7375 18.9273 19.0846 19.1552 19.0846 18.9273 18.7375 18.4939 18.1403 17.6511 17.1269 18.4458 17.8748 17.6511 17.7254 17.9168 18.1335 18.3833 18.7375 19.2659 19.9229 20.4555 20.5767 20.3791 20.0758 19.6935 19.1399 18.4458 19.5662 18.6818 18.1403 17.9168 17.8845 17.9565 18.1335 18.4939 19.1366 20.0769 21.1966 22.1056 22.2269 21.9298 21.4887 20.6423 19.5662 20.0769 19.1366 18.4939 18.1335 17.9565 17.8845 17.9168 18.1403 18.6818 19.5662 20.6423 21.4887 21.9298 22.2269 22.1056 21.1966 20.0769 19.9229 19.2659 18.7375 18.3833 18.1335 17.9168 17.7254 17.6511 17.8748 18.4458 19.1399 19.6935 20.0758 20.3791 20.5767 20.4555 19.9229 19.1552 19.0846 18.9273 18.7375 18.4939 18.1403 17.6511 17.1269 16.8689 17.1269 17.6511 18.1403 18.4939 18.7375 18.9273 19.0846 19.1552 17.9921 18.5898 19.0846 19.2659 19.1366 18.6818 17.8748 16.8689 15.9820 15.8794 16.3605 16.8483 17.2004 17.4032 17.5046 17.6298 17.9921 16.9090 17.9921 19.1552 19.9229 20.0769 19.5662 18.4458 17.1269 15.8794 15.0393 15.4212 15.8967 16.2426 16.4339 16.4874 16.5006 16.9090 16.5006 17.6298 19.0846 20.4555 21.1966 20.6423 19.1399 17.6511 16.3605 15.4212 15.3901 15.6172 15.8304 15.9690 16.0234 16.0728 16.5006 16.4874 17.5046 18.9273 20.5767 22.1056 21.4887 19.6935 18.1403 16.8483 15.8967 15.6172 15.7085 15.8187 15.8923 15.9311 16.0234 16.4874 16.4339 17.4032 18.7375 20.3791 22.2269 21.9298 20.0758 18.4939 17.2004 16.2426 15.8304 15.8187 15.8634 15.8872 15.8923 15.9690 16.4339 16.2426 17.2004 18.4939 20.0758 21.9298 22.2269 20.3791 18.7375 17.4032 16.4339 15.9690 15.8923 15.8872 15.8634 15.8187 15.8304 16.2426 15.8967 16.8483 18.1403 19.6935 21.4887 22.1056 20.5767 18.9273 17.5046 16.4874 16.0234 15.9311 15.8923 15.8187 15.7085 15.6172 15.8967 15.4212 16.3605 17.6511 19.1399 20.6423 21.1966 20.4555 19.0846 17.6298 16.5006 16.0728 16.0234 15.9690 15.8304 15.6172 15.3901 15.4212 15.0393 15.8794 17.1269 18.4458 19.5662 20.0769 19.9229 19.1552 17.9921 16.9090 16.5006 16.4874 16.4339 16.2426 15.8967 15.4212 15.0393 14.8604 15.3901 16.4130 17.7254 19.2818 21.0650 21.5483 19.9229 18.1451 16.5006 15.1703 15.1662 15.2432 15.2093 15.0735 14.9091 14.8604 15.3901 15.4212 16.3605 17.6511 19.1399 20.6423 21.1966 20.4555 19.0846 17.6298 16.5006 16.0728 16.0234 15.9690 15.8304 15.6172 15.3901 16.4130 16.3605 16.8582 17.8748 19.0805 20.1048 20.5897 20.5767 20.0315 19.0846 18.1451 17.5046 17.1881 17.0180 16.8494 16.6358 16.4130 17.7254 17.6511 17.8748 18.4458 19.1399 19.6935 20.0758 20.3791 20.5767 20.4555 19.9229 19.2659 18.7375 18.3833 18.1335 17.9168 17.7254 19.2818 19.1399 19.0805 19.1399 19.2818 19.4672 19.7144 20.0758 20.5897 21.1966 21.5483 21.1966 20.5897 20.0758 19.7144 19.4672 19.2818 21.0650 20.6423 20.1048 19.6935 19.4672 19.3983 19.4672 19.6935 20.1048 20.6423 21.0650 21.2892 21.4887 21.6104 21.4887 21.2892 21.0650 21.5483 21.1966 20.5897 20.0758 19.7144 19.4672 19.2818 19.1399 19.0805 19.1399 19.2818 19.4672 19.7144 20.0758 20.5897 21.1966 21.5483 19.9229 20.4555 20.5767 20.3791 20.0758 19.6935 19.1399 18.4458 17.8748 17.6511 17.7254 17.9168 18.1335 18.3833 18.7375 19.2659 19.9229 18.1451 19.0846 20.0315 20.5767 20.5897 20.1048 19.0805 17.8748 16.8582 16.3605 16.4130 16.6358 16.8494 17.0180 17.1881 17.5046 18.1451 16.5006 17.6298 19.0846 20.4555 21.1966 20.6423 19.1399 17.6511 16.3605 15.4212 15.3901 15.6172 15.8304 15.9690 16.0234 16.0728 16.5006 15.1703 16.5006 18.1451 19.9229 21.5483 21.0650 19.2818 17.7254 16.4130 15.3901 14.8604 14.9091 15.0735 15.2093 15.2432 15.1662 15.1703 15.1662 16.0728 17.5046 19.2659 21.1966 21.2892 19.4672 17.9168 16.6358 15.6172 14.9091 15.0145 15.1133 15.1771 15.1889 15.1450 15.1662 15.2432 16.0234 17.1881 18.7375 20.5897 21.4887 19.7144 18.1335 16.8494 15.8304 15.0735 15.1133 15.1992 15.2437 15.2393 15.1889 15.2432 15.2093 15.9690 17.0180 18.3833 20.0758 21.6104 20.0758 18.3833 17.0180 15.9690 15.2093 15.1771 15.2437 15.2676 15.2437 15.1771 15.2093 15.0735 15.8304 16.8494 18.1335 19.7144 21.4887 20.5897 18.7375 17.1881 16.0234 15.2432 15.1889 15.2393 15.2437 15.1992 15.1133 15.0735 14.9091 15.6172 16.6358 17.9168 19.4672 21.2892 21.1966 19.2659 17.5046 16.0728 15.1662 15.1450 15.1889 15.1771 15.1133 15.0145 14.9091 14.8604 15.3901 16.4130 17.7254 19.2818 21.0650 21.5483 19.9229 18.1451 16.5006 15.1703 15.1662 15.2432 15.2093 15.0735 14.9091 14.8604 14.6171 15.0145 15.7085 16.6637 17.8845 19.3983 21.0650 20.0769 18.1597 16.4874 15.1662 14.8485 14.8147 14.7954 14.7551 14.6928 14.6171 15.0145 14.9091 15.6172 16.6358 17.9168 19.4672 21.2892 21.1966 19.2659 17.5046 16.0728 15.1662 15.1450 15.1889 15.1771 15.1133 15.0145 15.7085 15.6172 15.8967 16.8483 18.1403 19.6935 21.4887 22.1056 20.5767 18.9273 17.5046 16.4874 16.0234 15.9311 15.8923 15.8187 15.7085 16.6637 16.6358 16.8483 17.5456 18.6818 20.1048 21.6104 22.2269 21.7573 20.5767 19.2659 18.1597 17.4032 17.0180 16.8513 16.7498 16.6637 17.8845 17.9168 18.1403 18.6818 19.5662 20.6423 21.4887 21.9298 22.2269 22.1056 21.1966 20.0769 19.1366 18.4939 18.1335 17.9565 17.8845 19.3983 19.4672 19.6935 20.1048 20.6423 21.0650 21.2892 21.4887 21.6104 21.4887 21.2892 21.0650 20.6423 20.1048 19.6935 19.4672 19.3983 21.0650 21.2892 21.4887 21.6104 21.4887 21.2892 21.0650 20.6423 20.1048 19.6935 19.4672 19.3983 19.4672 19.6935 20.1048 20.6423 21.0650 20.0769 21.1966 22.1056 22.2269 21.9298 21.4887 20.6423 19.5662 18.6818 18.1403 17.9168 17.8845 17.9565 18.1335 18.4939 19.1366 20.0769 18.1597 19.2659 20.5767 21.7573 22.2269 21.6104 20.1048 18.6818 17.5456 16.8483 16.6358 16.6637 16.7498 16.8513 17.0180 17.4032 18.1597 16.4874 17.5046 18.9273 20.5767 22.1056 21.4887 19.6935 18.1403 16.8483 15.8967 15.6172 15.7085 15.8187 15.8923 15.9311 16.0234 16.4874 15.1662 16.0728 17.5046 19.2659 21.1966 21.2892 19.4672 17.9168 16.6358 15.6172 14.9091 15.0145 15.1133 15.1771 15.1889 15.1450 15.1662 14.8485 15.1662 16.4874 18.1597 20.0769 21.0650 19.3983 17.8845 16.6637 15.7085 15.0145 14.6171 14.6928 14.7551 14.7954 14.8147 14.8485 14.8147 15.1450 16.0234 17.4032 19.1366 20.6423 19.4672 17.9565 16.7498 15.8187 15.1133 14.6928 14.7078 14.7655 14.7956 14.7965 14.8147 14.7954 15.1889 15.9311 17.0180 18.4939 20.1048 19.6935 18.1335 16.8513 15.8923 15.1771 14.7551 14.7655 14.8078 14.8182 14.7956 14.7954 14.7551 15.1771 15.8923 16.8513 18.1335 19.6935 20.1048 18.4939 17.0180 15.9311 15.1889 14.7954 14.7956 14.8182 14.8078 14.7655 14.7551 14.6928 15.1133 15.8187 16.7498 17.9565 19.4672 20.6423 19.1366 17.4032 16.0234 15.1450 14.8147 14.7965 14.7956 14.7655 14.7078 14.6928 14.6171 15.0145 15.7085 16.6637 17.8845 19.3983 21.0650 20.0769 18.1597 16.4874 15.1662 14.8485 14.8147 14.7954 14.7551 14.6928 14.6171 14.3864 14.7078 15.1992 15.8634 16.7329 17.8845 19.2818 19.5662 17.9745 16.4339 15.2432 14.8147 14.6907 14.6315 14.5745 14.4927 14.3864 14.7078 14.6928 15.1133 15.8187 16.7498 17.9565 19.4672 20.6423 19.1366 17.4032 16.0234 15.1450 14.8147 14.7965 14.7956 14.7655 14.7078 15.1992 15.1133 15.0735 15.8304 16.8494 18.1335 19.7144 21.4887 20.5897 18.7375 17.1881 16.0234 15.2432 15.1889 15.2393 15.2437 15.1992 15.8634 15.8187 15.8304 16.2426 17.2004 18.4939 20.0758 21.9298 22.2269 20.3791 18.7375 17.4032 16.4339 15.9690 15.8923 15.8872 15.8634 16.7329 16.7498 16.8494 17.2004 17.9745 19.1366 20.5897 22.2269 23.6622 22.2269 20.5897 19.1366 17.9745 17.2004 16.8494 16.7498 16.7329 17.8845 17.9565 18.1335 18.4939 19.1366 20.0769 21.1966 22.1056 22.2269 21.9298 21.4887 20.6423 19.5662 18.6818 18.1403 17.9168 17.8845 19.2818 19.4672 19.7144 20.0758 20.5897 21.1966 21.5483 21.1966 20.5897 20.0758 19.7144 19.4672 19.2818 19.1399 19.0805 19.1399 19.2818 19.5662 20.6423 21.4887 21.9298 22.2269 22.1056 21.1966 20.0769 19.1366 18.4939 18.1335 17.9565 17.8845 17.9168 18.1403 18.6818 19.5662 17.9745 19.1366 20.5897 22.2269 23.6622 22.2269 20.5897 19.1366 17.9745 17.2004 16.8494 16.7498 16.7329 16.7498 16.8494 17.2004 17.9745 16.4339 17.4032 18.7375 20.3791 22.2269 21.9298 20.0758 18.4939 17.2004 16.2426 15.8304 15.8187 15.8634 15.8872 15.8923 15.9690 16.4339 15.2432 16.0234 17.1881 18.7375 20.5897 21.4887 19.7144 18.1335 16.8494 15.8304 15.0735 15.1133 15.1992 15.2437 15.2393 15.1889 15.2432 14.8147 15.1450 16.0234 17.4032 19.1366 20.6423 19.4672 17.9565 16.7498 15.8187 15.1133 14.6928 14.7078 14.7655 14.7956 14.7965 14.8147 14.6907 14.8147 15.2432 16.4339 17.9745 19.5662 19.2818 17.8845 16.7329 15.8634 15.1992 14.7078 14.3864 14.4927 14.5745 14.6315 14.6907 14.6315 14.7965 15.1889 15.9690 17.2004 18.6818 19.1399 17.9168 16.7498 15.8872 15.2437 14.7655 14.4927 14.4752 14.5274 14.5732 14.6315 14.5745 14.7956 15.2393 15.8923 16.8494 18.1403 19.0805 18.1403 16.8494 15.8923 15.2393 14.7956 14.5745 14.5274 14.5239 14.5274 14.5745 14.4927 14.7655 15.2437 15.8872 16.7498 17.9168 19.1399 18.6818 17.2004 15.9690 15.1889 14.7965 14.6315 14.5732 14.5274 14.4752 14.4927 14.3864 14.7078 15.1992 15.8634 16.7329 17.8845 19.2818 19.5662 17.9745 16.4339 15.2432 14.8147 14.6907 14.6315 14.5745 14.4927 14.3864 14.2541 14.4752 14.8078 15.2676 15.8634 16.6637 17.7254 18.4458 17.5456 16.2426 15.2093 14.7954 14.6315 14.5350 14.4652 14.3768 14.2541 14.4752 14.4927 14.7655 15.2437 15.8872 16.7498 17.9168 19.1399 18.6818 17.2004 15.9690 15.1889 14.7965 14.6315 14.5732 14.5274 14.4752 14.8078 14.7655 14.7551 15.1771 15.8923 16.8513 18.1335 19.6935 20.1048 18.4939 17.0180 15.9311 15.1889 14.7954 14.7956 14.8182 14.8078 15.2676 15.2437 15.1771 15.2093 15.9690 17.0180 18.3833 20.0758 21.6104 20.0758 18.3833 17.0180 15.9690 15.2093 15.1771 15.2437 15.2676 15.8634 15.8872 15.8923 15.9690 16.4339 17.4032 18.7375 20.3791 22.2269 21.9298 20.0758 18.4939 17.2004 16.2426 15.8304 15.8187 15.8634 16.6637 16.7498 16.8513 17.0180 17.4032 18.1597 19.2659 20.5767 21.7573 22.2269 21.6104 20.1048 18.6818 17.5456 16.8483 16.6358 16.6637 17.7254 17.9168 18.1335 18.3833 18.7375 19.2659 19.9229 20.4555 20.5767 20.3791 20.0758 19.6935 19.1399 18.4458 17.8748 17.6511 17.7254 18.4458 19.1399 19.6935 20.0758 20.3791 20.5767 20.4555 19.9229 19.2659 18.7375 18.3833 18.1335 17.9168 17.7254 17.6511 17.8748 18.4458 17.5456 18.6818 20.1048 21.6104 22.2269 21.7573 20.5767 19.2659 18.1597 17.4032 17.0180 16.8513 16.7498 16.6637 16.6358 16.8483 17.5456 16.2426 17.2004 18.4939 20.0758 21.9298 22.2269 20.3791 18.7375 17.4032 16.4339 15.9690 15.8923 15.8872 15.8634 15.8187 15.8304 16.2426 15.2093 15.9690 17.0180 18.3833 20.0758 21.6104 20.0758 18.3833 17.0180 15.9690 15.2093 15.1771 15.2437 15.2676 15.2437 15.1771 15.2093 14.7954 15.1889 15.9311 17.0180 18.4939 20.1048 19.6935 18.1335 16.8513 15.8923 15.1771 14.7551 14.7655 14.8078 14.8182 14.7956 14.7954 14.6315 14.7965 15.1889 15.9690 17.2004 18.6818 19.1399 17.9168 16.7498 15.8872 15.2437 14.7655 14.4927 14.4752 14.5274 14.5732 14.6315 14.5350 14.6315 14.7954 15.2093 16.2426 17.5456 18.4458 17.7254 16.6637 15.8634 15.2676 14.8078 14.4752 14.2541 14.3768 14.4652 14.5350 14.4652 14.5732 14.7956 15.1771 15.8304 16.8483 17.8748 17.6511 16.6358 15.8187 15.2437 14.8182 14.5274 14.3768 14.3508 14.4009 14.4652 14.3768 14.5274 14.8182 15.2437 15.8187 16.6358 17.6511 17.8748 16.8483 15.8304 15.1771 14.7956 14.5732 14.4652 14.4009 14.3508 14.3768 14.2541 14.4752 14.8078 15.2676 15.8634 16.6637 17.7254 18.4458 17.5456 16.2426 15.2093 14.7954 14.6315 14.5350 14.4652 14.3768 14.2541 14.2390 14.3508 14.5239 14.8078 15.1992 15.7085 16.4130 17.1269 16.8582 15.8967 15.0735 14.7551 14.5745 14.4652 14.4046 14.3390 14.2390 14.3508 14.3768 14.5274 14.8182 15.2437 15.8187 16.6358 17.6511 17.8748 16.8483 15.8304 15.1771 14.7956 14.5732 14.4652 14.4009 14.3508 14.5239 14.5274 14.5745 14.7956 15.2393 15.8923 16.8494 18.1403 19.0805 18.1403 16.8494 15.8923 15.2393 14.7956 14.5745 14.5274 14.5239 14.8078 14.8182 14.7956 14.7954 15.1889 15.9311 17.0180 18.4939 20.1048 19.6935 18.1335 16.8513 15.8923 15.1771 14.7551 14.7655 14.8078 15.1992 15.2437 15.2393 15.1889 15.2432 16.0234 17.1881 18.7375 20.5897 21.4887 19.7144 18.1335 16.8494 15.8304 15.0735 15.1133 15.1992 15.7085 15.8187 15.8923 15.9311 16.0234 16.4874 17.5046 18.9273 20.5767 22.1056 21.4887 19.6935 18.1403 16.8483 15.8967 15.6172 15.7085 16.4130 16.6358 16.8494 17.0180 17.1881 17.5046 18.1451 19.0846 20.0315 20.5767 20.5897 20.1048 19.0805 17.8748 16.8582 16.3605 16.4130 17.1269 17.6511 18.1403 18.4939 18.7375 18.9273 19.0846 19.1552 19.0846 18.9273 18.7375 18.4939 18.1403 17.6511 17.1269 16.8689 17.1269 16.8582 17.8748 19.0805 20.1048 20.5897 20.5767 20.0315 19.0846 18.1451 17.5046 17.1881 17.0180 16.8494 16.6358 16.4130 16.3605 16.8582 15.8967 16.8483 18.1403 19.6935 21.4887 22.1056 20.5767 18.9273 17.5046 16.4874 16.0234 15.9311 15.8923 15.8187 15.7085 15.6172 15.8967 15.0735 15.8304 16.8494 18.1335 19.7144 21.4887 20.5897 18.7375 17.1881 16.0234 15.2432 15.1889 15.2393 15.2437 15.1992 15.1133 15.0735 14.7551 15.1771 15.8923 16.8513 18.1335 19.6935 20.1048 18.4939 17.0180 15.9311 15.1889 14.7954 14.7956 14.8182 14.8078 14.7655 14.7551 14.5745 14.7956 15.2393 15.8923 16.8494 18.1403 19.0805 18.1403 16.8494 15.8923 15.2393 14.7956 14.5745 14.5274 14.5239 14.5274 14.5745 14.4652 14.5732 14.7956 15.1771 15.8304 16.8483 17.8748 17.6511 16.6358 15.8187 15.2437 14.8182 14.5274 14.3768 14.3508 14.4009 14.4652 14.4046 14.4652 14.5745 14.7551 15.0735 15.8967 16.8582 17.1269 16.4130 15.7085 15.1992 14.8078 14.5239 14.3508 14.2390 14.3390 14.4046 14.3390 14.4009 14.5274 14.7655 15.1133 15.6172 16.3605 16.8689 16.3605 15.6172 15.1133 14.7655 14.5274 14.4009 14.3390 14.3054 14.3390 14.2390 14.3508 14.5239 14.8078 15.1992 15.7085 16.4130 17.1269 16.8582 15.8967 15.0735 14.7551 14.5745 14.4652 14.4046 14.3390 14.2390 14.2710 14.3054 14.3508 14.4752 14.7078 15.0145 15.3901 15.8794 15.9820 15.4212 14.9091 14.6928 14.4927 14.3768 14.3390 14.3183 14.2710 14.3054 14.3390 14.4009 14.5274 14.7655 15.1133 15.6172 16.3605 16.8689 16.3605 15.6172 15.1133 14.7655 14.5274 14.4009 14.3390 14.3054 14.3508 14.4009 14.4652 14.5732 14.7956 15.1771 15.8304 16.8483 17.8748 17.6511 16.6358 15.8187 15.2437 14.8182 14.5274 14.3768 14.3508 14.4752 14.5274 14.5732 14.6315 14.7965 15.1889 15.9690 17.2004 18.6818 19.1399 17.9168 16.7498 15.8872 15.2437 14.7655 14.4927 14.4752 14.7078 14.7655 14.7956 14.7965 14.8147 15.1450 16.0234 17.4032 19.1366 20.6423 19.4672 17.9565 16.7498 15.8187 15.1133 14.6928 14.7078 15.0145 15.1133 15.1771 15.1889 15.1450 15.1662 16.0728 17.5046 19.2659 21.1966 21.2892 19.4672 17.9168 16.6358 15.6172 14.9091 15.0145 15.3901 15.6172 15.8304 15.9690 16.0234 16.0728 16.5006 17.6298 19.0846 20.4555 21.1966 20.6423 19.1399 17.6511 16.3605 15.4212 15.3901 15.8794 16.3605 16.8483 17.2004 17.4032 17.5046 17.6298 17.9921 18.5898 19.0846 19.2659 19.1366 18.6818 17.8748 16.8689 15.9820 15.8794 15.9820 16.8689 17.8748 18.6818 19.1366 19.2659 19.0846 18.5898 17.9921 17.6298 17.5046 17.4032 17.2004 16.8483 16.3605 15.8794 15.9820 15.4212 16.3605 17.6511 19.1399 20.6423 21.1966 20.4555 19.0846 17.6298 16.5006 16.0728 16.0234 15.9690 15.8304 15.6172 15.3901 15.4212 14.9091 15.6172 16.6358 17.9168 19.4672 21.2892 21.1966 19.2659 17.5046 16.0728 15.1662 15.1450 15.1889 15.1771 15.1133 15.0145 14.9091 14.6928 15.1133 15.8187 16.7498 17.9565 19.4672 20.6423 19.1366 17.4032 16.0234 15.1450 14.8147 14.7965 14.7956 14.7655 14.7078 14.6928 14.4927 14.7655 15.2437 15.8872 16.7498 17.9168 19.1399 18.6818 17.2004 15.9690 15.1889 14.7965 14.6315 14.5732 14.5274 14.4752 14.4927 14.3768 14.5274 14.8182 15.2437 15.8187 16.6358 17.6511 17.8748 16.8483 15.8304 15.1771 14.7956 14.5732 14.4652 14.4009 14.3508 14.3768 14.3390 14.4009 14.5274 14.7655 15.1133 15.6172 16.3605 16.8689 16.3605 15.6172 15.1133 14.7655 14.5274 14.4009 14.3390 14.3054 14.3390 14.3183 14.3390 14.3768 14.4927 14.6928 14.9091 15.4212 15.9820 15.8794 15.3901 15.0145 14.7078 14.4752 14.3508 14.3054 14.2710 14.3183 14.2710 14.3054 14.3508 14.4752 14.7078 15.0145 15.3901 15.8794 15.9820 15.4212 14.9091 14.6928 14.4927 14.3768 14.3390 14.3183 14.2710 14.2882 14.2710 14.2390 14.2541 14.3864 14.6171 14.8604 15.0393 15.1048 15.0393 14.8604 14.6171 14.3864 14.2541 14.2390 14.2710 14.2882 14.2710 14.3183 14.3390 14.3768 14.4927 14.6928 14.9091 15.4212 15.9820 15.8794 15.3901 15.0145 14.7078 14.4752 14.3508 14.3054 14.2710 14.2390 14.3390 14.4046 14.4652 14.5745 14.7551 15.0735 15.8967 16.8582 17.1269 16.4130 15.7085 15.1992 14.8078 14.5239 14.3508 14.2390 14.2541 14.3768 14.4652 14.5350 14.6315 14.7954 15.2093 16.2426 17.5456 18.4458 17.7254 16.6637 15.8634 15.2676 14.8078 14.4752 14.2541 14.3864 14.4927 14.5745 14.6315 14.6907 14.8147 15.2432 16.4339 17.9745 19.5662 19.2818 17.8845 16.7329 15.8634 15.1992 14.7078 14.3864 14.6171 14.6928 14.7551 14.7954 14.8147 14.8485 15.1662 16.4874 18.1597 20.0769 21.0650 19.3983 17.8845 16.6637 15.7085 15.0145 14.6171 14.8604 14.9091 15.0735 15.2093 15.2432 15.1662 15.1703 16.5006 18.1451 19.9229 21.5483 21.0650 19.2818 17.7254 16.4130 15.3901 14.8604 15.0393 15.4212 15.8967 16.2426 16.4339 16.4874 16.5006 16.9090 17.9921 19.1552 19.9229 20.0769 19.5662 18.4458 17.1269 15.8794 15.0393 15.1048 15.9820 16.8582 17.5456 17.9745 18.1597 18.1451 17.9921 17.8816 17.9921 18.1451 18.1597 17.9745 17.5456 16.8582 15.9820 15.1048 15.0393 15.8794 17.1269 18.4458 19.5662 20.0769 19.9229 19.1552 17.9921 16.9090 16.5006 16.4874 16.4339 16.2426 15.8967 15.4212 15.0393 14.8604 15.3901 16.4130 17.7254 19.2818 21.0650 21.5483 19.9229 18.1451 16.5006 15.1703 15.1662 15.2432 15.2093 15.0735 14.9091 14.8604 14.6171 15.0145 15.7085 16.6637 17.8845 19.3983 21.0650 20.0769 18.1597 16.4874 15.1662 14.8485 14.8147 14.7954 14.7551 14.6928 14.6171 14.3864 14.7078 15.1992 15.8634 16.7329 17.8845 19.2818 19.5662 17.9745 16.4339 15.2432 14.8147 14.6907 14.6315 14.5745 14.4927 14.3864 14.2541 14.4752 14.8078 15.2676 15.8634 16.6637 17.7254 18.4458 17.5456 16.2426 15.2093 14.7954 14.6315 14.5350 14.4652 14.3768 14.2541 14.2390 14.3508 14.5239 14.8078 15.1992 15.7085 16.4130 17.1269 16.8582 15.8967 15.0735 14.7551 14.5745 14.4652 14.4046 14.3390 14.2390 14.2710 14.3054 14.3508 14.4752 14.7078 15.0145 15.3901 15.8794 15.9820 15.4212 14.9091 14.6928 14.4927 14.3768 14.3390 14.3183 14.2710 14.2882 14.2710 14.2390 14.2541 14.3864 14.6171 14.8604 15.0393 15.1048 15.0393 14.8604 14.6171 14.3864 14.2541 14.2390 14.2710 14.2882 END_BANDGRID_3D END_BLOCK_BANDGRID_3D espresso-5.1/PP/examples/example02/reference/ni.pdos_tot0000644000175000017500000002447412341372774021402 0ustar mbamba# E (eV) dosup(E) dosdw(E) pdosup(E) pdosdw(E) 5.000 -0.379E-05 -0.223E-05 -0.379E-05 -0.222E-05 5.100 -0.177E-04 -0.115E-04 -0.177E-04 -0.115E-04 5.200 -0.590E-04 -0.425E-04 -0.590E-04 -0.425E-04 5.300 -0.137E-03 -0.111E-03 -0.137E-03 -0.110E-03 5.400 -0.221E-03 -0.199E-03 -0.221E-03 -0.199E-03 5.500 -0.248E-03 -0.250E-03 -0.248E-03 -0.250E-03 5.600 -0.836E-04 -0.177E-03 -0.835E-04 -0.177E-03 5.700 0.102E-02 0.490E-03 0.102E-02 0.489E-03 5.800 0.492E-02 0.332E-02 0.491E-02 0.332E-02 5.900 0.126E-01 0.998E-02 0.126E-01 0.997E-02 6.000 0.205E-01 0.185E-01 0.205E-01 0.185E-01 6.100 0.223E-01 0.226E-01 0.222E-01 0.226E-01 6.200 0.172E-01 0.191E-01 0.172E-01 0.191E-01 6.300 0.127E-01 0.135E-01 0.126E-01 0.134E-01 6.400 0.149E-01 0.134E-01 0.149E-01 0.134E-01 6.500 0.240E-01 0.205E-01 0.240E-01 0.205E-01 6.600 0.378E-01 0.330E-01 0.378E-01 0.330E-01 6.700 0.522E-01 0.480E-01 0.521E-01 0.479E-01 6.800 0.564E-01 0.568E-01 0.563E-01 0.567E-01 6.900 0.433E-01 0.492E-01 0.433E-01 0.491E-01 7.000 0.215E-01 0.285E-01 0.215E-01 0.284E-01 7.100 0.746E-02 0.104E-01 0.745E-02 0.104E-01 7.200 0.103E-01 0.696E-02 0.103E-01 0.695E-02 7.300 0.305E-01 0.213E-01 0.305E-01 0.212E-01 7.400 0.598E-01 0.490E-01 0.598E-01 0.489E-01 7.500 0.793E-01 0.746E-01 0.792E-01 0.745E-01 7.600 0.749E-01 0.790E-01 0.748E-01 0.789E-01 7.700 0.572E-01 0.628E-01 0.571E-01 0.627E-01 7.800 0.484E-01 0.479E-01 0.483E-01 0.478E-01 7.900 0.552E-01 0.494E-01 0.552E-01 0.493E-01 8.000 0.660E-01 0.611E-01 0.659E-01 0.610E-01 8.100 0.659E-01 0.680E-01 0.657E-01 0.679E-01 8.200 0.486E-01 0.590E-01 0.485E-01 0.589E-01 8.300 0.245E-01 0.358E-01 0.245E-01 0.358E-01 8.400 0.167E-01 0.159E-01 0.166E-01 0.159E-01 8.500 0.423E-01 0.207E-01 0.422E-01 0.206E-01 8.600 0.943E-01 0.583E-01 0.940E-01 0.582E-01 8.700 0.137E+00 0.111E+00 0.136E+00 0.111E+00 8.800 0.137E+00 0.141E+00 0.136E+00 0.141E+00 8.900 0.106E+00 0.125E+00 0.106E+00 0.125E+00 9.000 0.877E-01 0.896E-01 0.875E-01 0.894E-01 9.100 0.950E-01 0.753E-01 0.948E-01 0.751E-01 9.200 0.102E+00 0.872E-01 0.102E+00 0.869E-01 9.300 0.857E-01 0.976E-01 0.855E-01 0.972E-01 9.400 0.566E-01 0.857E-01 0.564E-01 0.854E-01 9.500 0.494E-01 0.589E-01 0.492E-01 0.587E-01 9.600 0.899E-01 0.442E-01 0.895E-01 0.440E-01 9.700 0.168E+00 0.634E-01 0.167E+00 0.631E-01 9.800 0.244E+00 0.115E+00 0.243E+00 0.115E+00 9.900 0.287E+00 0.177E+00 0.285E+00 0.176E+00 10.000 0.311E+00 0.220E+00 0.309E+00 0.219E+00 10.100 0.347E+00 0.233E+00 0.345E+00 0.232E+00 10.200 0.394E+00 0.226E+00 0.392E+00 0.224E+00 10.300 0.429E+00 0.223E+00 0.427E+00 0.222E+00 10.400 0.453E+00 0.248E+00 0.451E+00 0.247E+00 10.500 0.493E+00 0.297E+00 0.490E+00 0.295E+00 10.600 0.565E+00 0.345E+00 0.561E+00 0.343E+00 10.700 0.657E+00 0.385E+00 0.652E+00 0.382E+00 10.800 0.748E+00 0.448E+00 0.742E+00 0.444E+00 10.900 0.824E+00 0.540E+00 0.818E+00 0.535E+00 11.000 0.865E+00 0.591E+00 0.858E+00 0.584E+00 11.100 0.867E+00 0.549E+00 0.860E+00 0.543E+00 11.200 0.865E+00 0.497E+00 0.856E+00 0.491E+00 11.300 0.872E+00 0.550E+00 0.862E+00 0.543E+00 11.400 0.858E+00 0.688E+00 0.847E+00 0.680E+00 11.500 0.803E+00 0.793E+00 0.792E+00 0.783E+00 11.600 0.737E+00 0.815E+00 0.726E+00 0.804E+00 11.700 0.714E+00 0.814E+00 0.702E+00 0.801E+00 11.800 0.760E+00 0.825E+00 0.748E+00 0.810E+00 11.900 0.837E+00 0.810E+00 0.825E+00 0.795E+00 12.000 0.892E+00 0.752E+00 0.880E+00 0.737E+00 12.100 0.933E+00 0.701E+00 0.922E+00 0.686E+00 12.200 0.994E+00 0.699E+00 0.981E+00 0.684E+00 12.300 0.106E+01 0.729E+00 0.104E+01 0.713E+00 12.400 0.110E+01 0.760E+00 0.108E+01 0.743E+00 12.500 0.114E+01 0.792E+00 0.112E+01 0.776E+00 12.600 0.124E+01 0.851E+00 0.122E+01 0.834E+00 12.700 0.140E+01 0.940E+00 0.138E+01 0.920E+00 12.800 0.155E+01 0.102E+01 0.153E+01 0.994E+00 12.900 0.159E+01 0.105E+01 0.157E+01 0.103E+01 13.000 0.146E+01 0.108E+01 0.144E+01 0.106E+01 13.100 0.119E+01 0.115E+01 0.118E+01 0.112E+01 13.200 0.924E+00 0.123E+01 0.917E+00 0.120E+01 13.300 0.772E+00 0.131E+01 0.766E+00 0.128E+01 13.400 0.780E+00 0.138E+01 0.771E+00 0.135E+01 13.500 0.915E+00 0.140E+01 0.899E+00 0.138E+01 13.600 0.110E+01 0.130E+01 0.109E+01 0.129E+01 13.700 0.126E+01 0.111E+01 0.124E+01 0.110E+01 13.800 0.128E+01 0.938E+00 0.127E+01 0.923E+00 13.900 0.118E+01 0.867E+00 0.117E+01 0.843E+00 14.000 0.109E+01 0.873E+00 0.108E+01 0.842E+00 14.100 0.111E+01 0.914E+00 0.111E+01 0.887E+00 14.200 0.120E+01 0.102E+01 0.119E+01 0.101E+01 14.300 0.124E+01 0.119E+01 0.124E+01 0.118E+01 14.400 0.131E+01 0.127E+01 0.131E+01 0.126E+01 14.500 0.152E+01 0.116E+01 0.152E+01 0.116E+01 14.600 0.177E+01 0.969E+00 0.176E+01 0.966E+00 14.700 0.175E+01 0.912E+00 0.175E+01 0.908E+00 14.800 0.136E+01 0.103E+01 0.136E+01 0.102E+01 14.900 0.799E+00 0.115E+01 0.790E+00 0.114E+01 15.000 0.361E+00 0.117E+01 0.350E+00 0.116E+01 15.100 0.189E+00 0.119E+01 0.180E+00 0.118E+01 15.200 0.211E+00 0.135E+01 0.204E+00 0.134E+01 15.300 0.267E+00 0.156E+01 0.263E+00 0.156E+01 15.400 0.252E+00 0.158E+01 0.249E+00 0.158E+01 15.500 0.177E+00 0.131E+01 0.174E+00 0.131E+01 15.600 0.116E+00 0.883E+00 0.111E+00 0.879E+00 15.700 0.103E+00 0.518E+00 0.946E-01 0.514E+00 15.800 0.110E+00 0.338E+00 0.938E-01 0.334E+00 15.900 0.976E-01 0.294E+00 0.743E-01 0.290E+00 16.000 0.732E-01 0.269E+00 0.437E-01 0.264E+00 16.100 0.703E-01 0.219E+00 0.369E-01 0.211E+00 16.200 0.109E+00 0.170E+00 0.748E-01 0.154E+00 16.300 0.173E+00 0.137E+00 0.141E+00 0.111E+00 16.400 0.217E+00 0.104E+00 0.190E+00 0.720E-01 16.500 0.211E+00 0.666E-01 0.191E+00 0.377E-01 16.600 0.173E+00 0.514E-01 0.161E+00 0.303E-01 16.700 0.140E+00 0.819E-01 0.131E+00 0.647E-01 16.800 0.124E+00 0.143E+00 0.114E+00 0.124E+00 16.900 0.121E+00 0.191E+00 0.108E+00 0.172E+00 17.000 0.128E+00 0.202E+00 0.110E+00 0.186E+00 17.100 0.139E+00 0.188E+00 0.111E+00 0.176E+00 17.200 0.137E+00 0.171E+00 0.983E-01 0.159E+00 17.300 0.119E+00 0.165E+00 0.717E-01 0.149E+00 17.400 0.915E-01 0.174E+00 0.428E-01 0.147E+00 17.500 0.688E-01 0.182E+00 0.243E-01 0.142E+00 17.600 0.649E-01 0.167E+00 0.231E-01 0.116E+00 17.700 0.809E-01 0.123E+00 0.359E-01 0.703E-01 17.800 0.104E+00 0.775E-01 0.534E-01 0.306E-01 17.900 0.128E+00 0.663E-01 0.727E-01 0.198E-01 18.000 0.157E+00 0.914E-01 0.972E-01 0.369E-01 18.100 0.183E+00 0.120E+00 0.121E+00 0.604E-01 18.200 0.182E+00 0.123E+00 0.125E+00 0.715E-01 18.300 0.139E+00 0.112E+00 0.992E-01 0.743E-01 18.400 0.879E-01 0.120E+00 0.635E-01 0.856E-01 18.500 0.817E-01 0.146E+00 0.520E-01 0.105E+00 18.600 0.125E+00 0.153E+00 0.677E-01 0.111E+00 18.700 0.162E+00 0.125E+00 0.789E-01 0.902E-01 18.800 0.149E+00 0.105E+00 0.652E-01 0.681E-01 18.900 0.104E+00 0.133E+00 0.412E-01 0.700E-01 19.000 0.630E-01 0.177E+00 0.270E-01 0.834E-01 19.100 0.408E-01 0.173E+00 0.232E-01 0.785E-01 19.200 0.426E-01 0.117E+00 0.267E-01 0.544E-01 19.300 0.809E-01 0.581E-01 0.421E-01 0.326E-01 19.400 0.144E+00 0.322E-01 0.641E-01 0.246E-01 19.500 0.185E+00 0.478E-01 0.720E-01 0.307E-01 19.600 0.171E+00 0.103E+00 0.548E-01 0.509E-01 19.700 0.117E+00 0.171E+00 0.263E-01 0.732E-01 19.800 0.596E-01 0.198E+00 0.534E-02 0.749E-01 19.900 0.180E-01 0.164E+00 -0.300E-02 0.508E-01 20.000 -0.480E-02 0.972E-01 -0.450E-02 0.203E-01 20.100 -0.117E-01 0.372E-01 -0.308E-02 0.167E-02 20.200 0.148E-02 0.162E-02 0.368E-02 -0.430E-02 20.300 0.443E-01 -0.129E-01 0.191E-01 -0.482E-02 20.400 0.111E+00 -0.122E-01 0.384E-01 -0.250E-02 20.500 0.163E+00 0.983E-02 0.482E-01 0.651E-02 20.600 0.163E+00 0.636E-01 0.405E-01 0.249E-01 20.700 0.113E+00 0.134E+00 0.236E-01 0.447E-01 20.800 0.614E-01 0.175E+00 0.129E-01 0.510E-01 20.900 0.455E-01 0.154E+00 0.140E-01 0.387E-01 21.000 0.516E-01 0.945E-01 0.183E-01 0.206E-01 21.100 0.459E-01 0.536E-01 0.156E-01 0.126E-01 21.200 0.250E-01 0.489E-01 0.710E-02 0.160E-01 21.300 0.201E-01 0.512E-01 0.418E-02 0.193E-01 21.400 0.567E-01 0.366E-01 0.166E-01 0.147E-01 21.500 0.121E+00 0.205E-01 0.427E-01 0.702E-02 21.600 0.171E+00 0.336E-01 0.695E-01 0.597E-02 21.700 0.173E+00 0.789E-01 0.827E-01 0.147E-01 21.800 0.139E+00 0.125E+00 0.813E-01 0.300E-01 21.900 0.107E+00 0.142E+00 0.778E-01 0.484E-01 22.000 0.101E+00 0.130E+00 0.820E-01 0.668E-01 22.100 0.118E+00 0.112E+00 0.940E-01 0.810E-01 22.200 0.145E+00 0.106E+00 0.108E+00 0.899E-01 22.300 0.159E+00 0.114E+00 0.113E+00 0.971E-01 22.400 0.142E+00 0.132E+00 0.965E-01 0.106E+00 22.500 0.107E+00 0.152E+00 0.664E-01 0.116E+00 22.600 0.912E-01 0.160E+00 0.456E-01 0.117E+00 22.700 0.102E+00 0.144E+00 0.429E-01 0.992E-01 22.800 0.114E+00 0.118E+00 0.455E-01 0.714E-01 22.900 0.112E+00 0.109E+00 0.442E-01 0.538E-01 23.000 0.114E+00 0.116E+00 0.427E-01 0.501E-01 23.100 0.132E+00 0.115E+00 0.435E-01 0.479E-01 23.200 0.152E+00 0.110E+00 0.429E-01 0.441E-01 23.300 0.163E+00 0.127E+00 0.398E-01 0.458E-01 23.400 0.161E+00 0.160E+00 0.355E-01 0.508E-01 23.500 0.138E+00 0.174E+00 0.287E-01 0.492E-01 23.600 0.996E-01 0.160E+00 0.200E-01 0.396E-01 23.700 0.793E-01 0.134E+00 0.176E-01 0.297E-01 23.800 0.110E+00 0.111E+00 0.276E-01 0.239E-01 23.900 0.167E+00 0.102E+00 0.412E-01 0.240E-01 24.000 0.192E+00 0.125E+00 0.428E-01 0.324E-01 24.100 0.171E+00 0.170E+00 0.318E-01 0.437E-01 24.200 0.144E+00 0.188E+00 0.216E-01 0.449E-01 24.300 0.130E+00 0.161E+00 0.185E-01 0.330E-01 24.400 0.105E+00 0.128E+00 0.161E-01 0.211E-01 24.500 0.644E-01 0.121E+00 0.105E-01 0.185E-01 24.600 0.443E-01 0.116E+00 0.648E-02 0.190E-01 24.700 0.661E-01 0.851E-01 0.837E-02 0.146E-01 24.800 0.102E+00 0.524E-01 0.128E-01 0.867E-02 24.900 0.111E+00 0.590E-01 0.142E-01 0.843E-02 25.000 0.999E-01 0.956E-01 0.143E-01 0.132E-01 25.100 0.102E+00 0.116E+00 0.194E-01 0.159E-01 espresso-5.1/PP/examples/example02/reference/kpdos_dw.png0000644000175000017500000013530412341372774021532 0ustar mbambaPNG  IHDRPLTE@ @@```@0``@@@@`````@```` ``` @@ @` ```@ ```@@@``` @ @``@@`p #)).32=6G:Q=ZAdDmGwJLORTWY[^`bdfhjlnprsuwyz|~ ݕ ؖ җ ̙ ƚ wmdZQG=3) !"$%&()+,./13468:;=?ACEGILNPRUWY\^adfilnqtwz}(+/ IDATxz[׵.L*| O_n$AD#wR %J"UjK,;츦I$_Nvw|\J, >i;Gc9q..^t;y~x H~''QHn-+/wdzL/];&>!?YBH~/"Bf.\ɥϕ/R **^Y]_QWȯ./Ϻ i::t|3E:z^.!zP\Gx[?T*sĄJ%U00t:sPhtt7LfrrxxXG;Y&!BIa`(їFc__RadQFSAoD@yYW"tl!xVmSDBA#NBrDf !Bt ƲA<.Ϯ>;ѧM&SUTK*[ "nB-D]C,ޞ?44ԚSՑ\lN|o7`Re`@ l!0[ z__gW^udFFF, N~ӌjp:p8d-:y⹣弄;!BIa/NP|ao|k3??05558(cc>/x<};z.'_;!BIa/Nܹ‚ Y1@٥@ RFyww& 5&+奋X? J f 0`$rxxQ:V[FtUزJ$AݞNGQAU_5"qI;!BIa/Nҙ̳gCd<2ҲÊa2MOOqV;U*ٜ$P:AUq~O/Ί4pB-¬W}}fiŋ{{e'>.HԅSo04d{=B7BPRh4^ի8̭~- lU$/>`&|\}o;( Y/0[%Y8U͗/_LV܏@ܜ!#=(_5Uե EX)B-¬WSSSuiQkCC{PNTEt8ߓ|_$f 00맄u[斗~Y{T*E鸺*BA~APRu_~ _Zj8,kA@o2qn/WIGѹK$sMHaVaJ .qOz9-~̓ ltzmm l2*l,|ڭ([EpZ!Bt]E+W|"+_Vx [2>=mG' henB-Dlj>88t޹s륥vVQXll6JONNfhvֳ l!Ά0J0FFF|dZZ>!D>7gd9 xG:qeφn gCg谷ć~Yk_ -lpae6HN0N|6ll]B<7ի$maaayJSPdY Rn6< ѩVmOnl2OLήhwr`Pquݠ Am$!DNw[[Fݯd2x\0^nXXl||tA7-Dogtcc`= -Q-LnlLSMWS)VGL7;n z ɽ2TɓϟR#T`g&kN{J%0:Jun3a @̢/=zr"T` .X~ڗDr9߯՞nw LAIӹY^^ )'6vn30۔{׉G]~㏯]&k,\ \ŕO>qS>AՊy|ya;#J1O0/_ ,&IހfN.hըDo8f xI?yx6[dIu`s׫0֋;:/LAf%tñGR偷RTaWj gffB!<w^7!t^͊8ٳP(}%h4Y( <&E^ҫ)wfYT*>ݼ nR Dסby.kQ vLfztR^}nC0ћg_oɓ'[[ А׻!rk!-; DW:DtIkuueY7-Rl|CF#y|aa#rngu*@`gg<+z+lssskkHD^:]0VpU]Do!O>r܍Fc2w>~R-\ lٍD"+oמq1]VWu;V+!aDy= \r%iJh66@V: FF=_ Lsϧ|/gH73$wpꩩߺ|s%P->33C.%)whpx||3GtNkܒf}>众.gK7[S+-5nrӈxݡz Du82+z5E*D&{/ȝ-TSϖ0 HR׮%^W%-l n[fẁ&N9[-aD's{馦a76P--~Al`| GIM?Tj&:{rGGfs$b9xhBaY]D"t\>99LnmmݻCڂϜ(oaÙ(>*SPQ33 d2ոaY%"-B(KtkLp8B7>wϜ(¶!oahh||JpF盘0j~AK5+7vϗN޽K~\Vh=̜(ͭ$p7g~>Gg/WX NMjDow&0doc&S8n̉T*X\nuu 8{dӉ?e6/w*L׸\ zpZzD"17sǏ3jmC-ErC~-f<X,: G$;JVL}8Dݛ܄GnބkZ b^Hu1eNxfaxo*S=kq?M F133~{?~6, MWA I{ UI,,/Vn o =&x<ɜiOu=D p|k0߹sgybmf < !.:` B./-`4B"m5{AxaaV&zh ZFt0,ћfO8>57- z -:}}`g,]IZ, ^ 4M(ɄB|K˳EIW':bی>|a=7)̞i!#"2ǁ\v8-fD"X3Qr{R]FVo~aDWP==&DS70;,B|\.75P{{bl6"n?*WY2ވuG?a*7Vt XD/V}b! M&S2J3㎞GˍӫDϨjOp.+#3J&3J~X(鄖Iݞd蔎k=WJRQj>VW",uGZt-.?jmSURʝ/% &zǥSL lr2BG&_"`֓IĠJp8w\s҅Ns[N]|]D1C]Ia5J|$Sِ!xg^o8n -% D"!dNHCb==cc8d; N p466-:qyo7ۆCKuA:5w"qjuC_Kv;M[yC<=8yh4j̙&zIe^B]B~:5w(ht\ Mӹ\(ꚡ2](0pkfڬ0ZnX5V+^ z +KJ*hi4 Z瑈j= :8A5n!:_/ې A9x#3q"Q;@t*̜( ."!6PziHj{ۯlB;aXwA͛忝7b(At)mşl7ѹlNH|84!fMyMO&^zۯ0l@Z$T oh`(%Af^h4tEEhfMOOb<=LE/P M~Mo`Rۨ^Yfz *<$7^c0M&]?EX,087"؞@_x?AZ.aJPD=)0~HxI$)jOGU]-ya?G[@tdm%::&Tk^ lI'vzP,6'N~7PQ5;YjpbXEs:@ (U=uD٫pG-4̺#(`zHC5FXYx `h|؝rR}MJn7CRZ)fqjNQXYg;[R0Γpu&S}xrLgMG*E.ي^lI&0v }l܍Y#;TCt7EOG7qUcc6doXzpCf60꼟A@_jXQu?4BĴ~Ņb әJx "X%OwS&O]4/Q,AE8|>wV Թ~J1mlv){}z'+ZA.63[h򛍏yd2>b`* UM/ڣ w-y !n=N@U{A;%)>Et|l.6̖i0g|HVʺ ;n~݄0fv_X)fku8lF/Ftk^RՑ0чiH&0viNL n.577J*/40ߡ݄0m6MFK(J ڥ;=&a#i,E0@Qt{Nɣ@v䣏LRߦ-ѳ`0hJߡda: zwv&'Adt8tTAGv_WmDhgt^F&:tvD)}`ML .oX.L%ݔZv2ڡNM讴f)xFFit~Ш(x#y¦?D/Pca@ʈ]Jqi!x2|:d9,KEF}e#%eKGwB7!LA]3&Lfvvzv;O"kjy_JU6rP :UgCCp4|;gvE8#葶ZFFIX搳̾ht3#!8n{zzaaan2xx(Jg^ml p^hx'3sP|7%:Z죭|!>Vss6#pXV'M.FsrnwΜ(D{VKK [7o^^^LOݺ533WZDﰔN@pKD/| Lrrdd8'Q)!z1*!Djwѽ00 xdԹ#&#٬#䭤8H-uٓ'O>Ç/_| :0FP???͗_~7A9F XV%q.]y4H]yiSF9%:hS|ݽ{GR}nHRTsssLui͑ 8}4;;3~Q,L2?ƍOA/_*jpK*\ s>LEwZeD畊^`WDr6:pIϜ3|{6;'qA`&()N8tZ\2w>]-JW~ px6gH$q'0!W7g p(nz:.&F#8޽<__% ܃Gv www<ǿٳg[[kkkw߇òStfa2e: H%4Z833?=oxO`15ؘdr8`#,Lަ#W8TR~GZ*`tZ\r!7v$`O>#0{}ʕ+=~Y1&8>6ݽ8|Uԙ"VeŨ,tǑoxOl)PҶi>^6;TcPQ.HOx 5z,v:63rj5ض)AE}b()̞NNӐ&'W 1PP &.K{J<ӗ.^/~O?SꃴjMů][YYY^}ٟ}AAIar;-zQǧZ]ãU.|㧣14 @">PP˅<+AqTK=GO_5F_~ru٩VWM5,y*>ť%xA/^g?/믿0͖vZ*ta* DWdrMV=B 䯘+##`04pPZX8Ӽd^ب0aO~\:lܹǿ%()L&)~-\KV +Qn[]ʻS$ !s(,,J:ێ)?7o>4NǪY jHuy&{ۿ˚TN* D2+)̞p"l##҉244}}R_4dz$\N|, ͊; ¬ik(hY+ѣ>.?#()1B{:_%T%z[s߰T\+)KtF||Ĕ.W!}XhB)dϷiGqCq [[T!sփј[nݻ'O={~DB < pmsrzFN[R_ޞPϦi*OGB|ҳ`x?Á;3y( UޫZIކG.kB6V GG靪G uYhX6PO2:ϜP|ʔ@[ V+|$!<+Uf-Щ#Jh4odJ1MQRp zɸ6z`cxMg%}><#62 ȧ7U8ɥ^-EX ~Qol DXYa2Uhux7!@Bl03K"}&ͺ UWDlAFBv;^bu fH,!JED/9ǥ+Rkh=88v]n($(Y 48tA!ھp8$e4Sv}U¬J}荡P˙aNhB7VMLzfe0ыJ.R~ zeLl&7P(T{ͺ066p赵S2JM4$^ipM4>O䏚ܵ.d\]}@@26LjknV6 n=tsaeU ?@2>4K&sF56Jt:AFPN:b WF.Y4l4:!`_0 ~bۤ zePכfi[zxhFaА霚:H!̪8NtN 7aik #A12v aV1GIrl"1>>voYj;9yBU!ݹTǥѫ!;=r|<5> evvvu !̪6w&:ɺ. WtFb1%Zm MYg`yyyii&!̪PW0uf2s荀PHVC&fnVLӹ>7U7 aVQj1 ˞|wWFay9A9(Q188^|9o*C2؄Cޭ˜HAtـn:n7oND"]3d+zIB7+ke$׷C!Y:F'J^.^ pp`5SuL%q^8Gx'уv20+Rqc4C WjPR[T*%kV{Z S-Ln%SSPeaVRq z|A޲Z0O8) ãd& Mf% PeaV<1BaҹV.^r7hTˋnh;b٬ 9WJxuR˗WWW8,!ʀVpW@nULWRY*P2Ytx,8;wY bWzo¬.i4>Jd5<⤔czw0833S^K=Z v~k12Ů_+Vxf% | r{֫ӕi'ܧEO&WAiJ2tf}4#Ʃ&B[ZmIk-W0O8~z|>ti[: @QzTZ|Bh Laqq@ PmW2T*ZՖLϷQlfZ%S+|{2i6K BXD.eK&8F; 766^uW¬ |*tjb<̷oVh 03t~OH3VB#]˗el\caZm%KV)+)R4 IDATS+NbIR0ΒV cNQzv+.D1Os][q!Y> u:Z]Mr{EJ Ԋ QPڊ)ڳ{{{ 2610O8^_)?qJt^X@5#(%p̭[dm\caAE8l=J1] }}ԁoH-k&0 ;B7KtWV@hT5fZ-^ttA2Cbt<R`ԟtlYn_| O5f )NO===3 ȭ[k !1Zm53J[Xkle:X\9yfͱXlv6Z,#4/;ݯtzii ,JhL& U_2BC)klWϗLMMUN냴%E;ƣŃ\.'k? CM*[536V^cD/F?mQ <r$|Bzr10001Νx<>2"B]`2:AD) dZRRAY3uff&2<`e/t8snk~̔{f1WD2݈!u͔ы1ML%DQDn\n@]Э[]s\2S^8TJkƦ,_: _\L&RνC jB7 স郃M+ؔ0{ef-t͔lXUyGKxZ 4Vu4V*0>50Yݛ{FlBKn0`;8fޞ4qO.IBAP?jdဋ?;v-MJ+tME@n0@t:]3%teU]iV&"Z,\LTa<@(re?sD?j@~֌TLϯ \ \T\Fv(LP{nJbUR>Nѹ! ݼy竕? A8߉ .SR==<2paF# 4BZuWZgfqZz\no_Tu>2b|Ƙ˔KKw)G ~J t0h lLxx )x<.;+++ u2fDtwۡͫY|lCwè]!ar2nOБ]LVt!>i{PxɄd?: ^Q\矝TJKĻ/˗/ߺ%hz0{l`77K5/a||\]PJ ''R:|ZK4vm)K CGбl6׽fQo.-Z&lF|ؗT)Cai͛ %+Ä=万B!UOIa97# iMNϐ!{X&LY &c/QX?ƒ˗цVxE-66`gg-K3_.uw R\ 8ѕ&oSu:#Oؒ:)3KlND^p<+?KPAηlvi6'W&sYf͜4xO@=vfOi8bset.?pu7Pz&=B|BY[}ʊڵ^(M@^rW7779,J xveX3qa 8"L\SW%ɣ ˕Lrl\q<8G.<Ε ULOY\_PX\\zuiiV*PRR=]Uc]G8&''e5Uf.jÜF=;ә##&rܳlsnBRx ,ga r f8RBYo JD'O (?O4h4NM[F7ŕCIarE/vWttqClRx?߄n 1ĭ[)YWQnA&k6yu ᇩ<Uhf,'iOn3D\kzz:C%]-n7U 5kd׮]{h}}f떂72Z^WM[6@ F=df,F*FBVk':FV+7#V9pD 3gz %pDFIP閂ez1?A=N TI45 +K2IkfΣL IH$! S4 fgy܄ qȑ%+ykԣ&ڭA^7zH榝 %osgjeT `͌D"<=ej/-fWel IKGiޱW >lzjyX\s,IVd6{gÇfMV[|-/c K\J ZMq\+j.v\3y 1>1Qe [$+K1 :t:G44@=b&nFh&h{)oYC%K-KVhsٳgͫU[n QCpuzO7f0 "K]'@9*Kt:zpp1=]8ƼO:hffX8kE͂Ds>UBH9b,9|`,Q EPRF#T`?u飝BnGq,t~'"i XH->b|=O$V{j:!SEC}OiSR *%yÓIU 㸳vv77AP($k|w(tpWM7_PR\}N-38##vs- Jj9h7KA%R 8bW08.#]XXf] ܋A8*^Dgfx,QY0LFIjI:[ʼnKa8k#wZLB7a0|gr߽f'0ƾ[;Z}<2a@%:m=%n 'l6OLxSS[eC!<"#[\\\X? \x2O>z[/p"Sp@m;NQ6z.--+XJՋ{JeYJMbQRS))ƅ{<&'A*v<ۡ6]:Lf~?|>.W(nIsR)eei<I嵵$B7 h)ߕ'ńHȜ"M8|j-b_8n:NQVv@Ν;/_О,<g#H|>hZk 4bX(ιg;4PA9[ Rlh^8ԉG#Cpn*vV\XA\07-Fǭ{E'!)%x=Vpʕ7n(Ktƍk׮lllmoo߼EܲЈ1.h.V<<<85zi)K`X@91f;SXvXDbn1n6 ao֊%1m6aB!Xdv|n彽h8WEMݻֵ^?paLazs*׀X;BX> A>C" %gg_#P[n]{ &,%=loV  k]ZoʚEևpJn##-%`PMX}?W^zŋ|\j"jRUF$i;:bA4oG"RULv`CɎ3%scߝ;q!:sl /_|'*@P|Xi2ɿ y}iYnPIa׿կz?{lx<Knv5)gm׳HOS <5׾ ĚY02=a%6xzW\ۃ}+7WRϟ?MC*ڸݸh%RLJP~8[tA]΅%S y,EEK˗_?88E&85" Co(Logxb  c OVR~_p{&lƚr׳X7O@Z 4^{gg p9)5X%xryip$V7>裏>+ڏ?PR==믾/~ <_$[^q.W$P tddZ$XU1e[(~x4F#m#>t_{dqJ:89?__{$η5" @f[[$I,oWʽ @_nSR_?駟~_:ݻwaVI7vp|h4r]dcTp5o Z\D~\3vTbOWݽ}{07_{UR==| xI~ 9o>~͂@dDe2-`-*AjU_>vɜsժr = -.Pbccc{`?3J1Gb׍"Ty>UY,lb5٠n7Di|ME*a;;o?[H##GlϷQWw1Գit:|*Z 8%L9!rs[_&<8x@7>?`1=*)̞_~[8M?ʼn(v=/I=*Am0`t N-,&=#,N)/fTL9<sy}u~1$΋okE$f=zG.̭!X-H\y88}A+w"濑o_O~Wn]×=;J" M:yY0FBAM793÷ҡI3$/^"JDr7I%wwwo݂9<|~_wFCIa|_}kwX]~C?qxD6hOf%3I!<#PEѷV+8y6PrN>X"Hr* 'ɒR&vb9h~Νᵓ9noꫯ*ܱ͠pWAmwfl6f%J &=7p?%aجBܵ -`qdkC[ ~.5@I5(g4 ɮd};u+΍˗a/o܀~Ç>}C)ɜÞo_qJ ?o~×?_o_ܿhc#/Nf >Vh~^ϻoax3G׾@AǃJfK *W9|muuh7oO~AihonFtkʕ+/_޻w/+rBJ31fNGjn% 7? 0_[ۃKL 5s '<2Wc2$C9#uH/QFY[CLDcW>V+;goy}sݻ0<~O?>~=֬?S[esA/m{pVο_|_X׏R^4<@/#C[Nc;ηoY;+yh{vP¯\ONr;P|UXIRFh#"Ǐ={Eޟ ?~0J twn; IDAT$x?_C;?!g ߸|! ʦX<<\c4iy8„O>p*P?0?/?vc}tuBih4G!SZ!7799l:[RK%V2OM9=v.߇DgD_ Otx.FglOU"Y77I.!P0XEŠIo/Dd9?pE5_pd%Ϩ찯a/_ޡcp+7n$S*~˓'7,Um⬻5sWp&$e4xr|,vGyTa% cv<} Q:~`w_}hP7ؾ4OVY" |n$,r~qI_ v)=9: -Mg11x*&K,OKYx)% p,T_:K(6'=o߆aih[1<|A BRGQCEMn5%/rdtћ7կ=+uzMk<tn܁@ZM/+~-Efe:4s6{y;R>j.f0ٯrI坃{4G=~ g}g](u<'Bojռy//T?|oݐMR+JI8 NlADҧ(e ,y~ O''{K9v y2찯7U0 ٣/_ƧrW1޹t\+Y΄ o5Ә-Ȭl-:e5­*q-<ђ[ L/f1',yޱ(|-Pkomr6ƆzٹaFS.sVޥ$ߺ};Ot.3r/^~+<}ʊ0y?KkkX=W/ᅦ'ߟ?gӈ;E>RWɏf 1xE.r-oakOI&w ;_{eMm%m:q$䃽=Hߏ?-4M爕*j O|q˚P%Y?/-{݅?:O9Ct.ӗu*Q18/ݻP;w7oD_c6VujJ9(}('cdcczsREI1/ TyիW}E -HW׈u̶m2(,hEu eBtׯm8q bp(,yhoQ z|5C•loS\ q|܊2֣Sh!x*$ `Tڢ`Nͩw}{|9/bUATgݍffF7ՀyTCɜx,TT%%򭱺e;ےhehF.>՟~cۇfLS+Փ7cC:o0\:dl.nK>k wM:^4m\~;(V+ernǻFR,2mc& %C46&nO>d8#sDn:9-w_6GU&vM~+jp><4x m3Nk3twKXA\6R__Ҋ7c|_C' ]/S6KDt[]!ǎ8YPr9.&KVoL[WUUɄasu 4"~rxZ%QsV+n^@ItM]Y!`į2ʜatE3gd|kCK9]NDmSQWk&a@ {-yKݻWN4RZ63qS8K)@}u5t7 ,$sxsXccnzcdDj޶[H4Ĩ/*X|%X Pdi*Y6]/sq5edGɏ?0 9pH.EKpUarVpdL;\TGlUVwyBp$oH{FG%?{Q8{xQl\Lʽi_`-xRN|&7vco|"tky{wfF%WÁC}8s:uNVPH͕˦G>D}8:z D=:8)N|wɓݩکVvP0 w+8KayuDrF]Ein(޽C ; 6er1ր;?&tT0Y|IٷowN>{kv/{>z2a7;b<·[CzGGF63U^o;)iSWWNN =9ͽrZu53K&?}gSu;[:} G.EpEN21u|l#CF\n~{ I1"t+C4O?!rgv@BI37LrSMg>f =!AjM׮]rkʧ'ŔێňMtlΔHԹvqRs7unr&`"7Nm{ʐ5h*M% kn>e[ZGE`CɅW3m9r$]$& :!=|uBII#W\FFT_7:S#Q'>C6^GȥK{ CL31!ޖP:7ʖ5N(~8{,/͛d1T.vtZhԑ5gǜs1PGM08yer8a L&1s+E5Y׮eVW ¶mr%)Kp%PQ[=(~*3P X,zWA[?~~=S~~Ff %&%̄8`b@48E@^˸;2PξEf6CٹNZONY5SbNau)Z19#ؘdzP$*,5?L.m\UZqnD%gU:kz==Lـe:ݮ#=OKKs)aQfq+FcDqthzDFZZYYYk9###r_?RX~q'y;Q-5wgA5A?hֻZkڏ|gZ6`oia31yȶ=W 4׹):q^KME(ۀV>{ɓG䳏mISjTI07G#kjn_c"+ziZ#qs̬|ii)@55^Jŭp831ovn0SB }:G_9 S&->~ۯ_?}b׵a9d}54k13j'FkM5nߩfѭv9ٔ3 ꬨuvuX ٳbog\ⅸuݧcT!bh:n-ΐKdvu*đ#'$FDdqr/)CcS1M Dl&&;miaB27c5 >&XX(ٶm>$ž~ 1oŢ#&ׯy7 ;GgoB3(؝;.xaC􈺾X؇ > CAfk12ty֡NqL틆~5ǹ<LHôw6BvlnlR' qجRO^Lm(a*=nY'2˱gaj+%)7`LC(?!ZL]?NuBGdf謌CtK>&\8D.xo wV߾7ϟ)"c-ʁ3DDelm\9O&O=$QilQI UT.1)\EE}'$LET 95ǘ@+:9Vj0TvpL0!w1_hdAuT}b Hu8u:h!(x G`Zm q[tн]bL7%%*t[Jxݗ/Q4muģ~B3L1\vHI%uf䨺=x&"Z5sKXUwsZD qOTfMy?eevR钠M-y$Դ+`C:lO47:ja־,+eRذAL Z҃DgHLC Ư^z=!4}B]\-a:BRnm||jjI=`K`(skG\Ŗ,Ѳ.jK` }2NmZT({;ڕ$ɓͶ"i$dL8qO%> dmf>UTNr+$- [Q_V i1vBb,3A9:܂\,f|pSnȼ<-As^k=6p)>H$ 7lN59M w %76nɼ ]f¦UUv+'sԦeRV9555E/1§\AV Kx2@ HvNbl 0G^zC*hъ哋: E. ٴ&D KWwр,hX^ϿNT=Dq!;"^> }z/ׯ74#Х_ۀLU1tCzcK W۶ pEdAȥʇ)C>ުc޽0C%? KoBf PL 39}[ȫC3w١Dgfΐlrk[3A ݥ Yr0F1z씹J/NEEELEʡvSg^lGKA}:[M 8\*8@ CǙ^[ r#9SOop^\ !Ohn4ܠ$>ϧغɎmyP{ۏ4t-թK0Q^nP'34俀Tw>mɭ^9 ӯ.<=O=M{m:Cw6K׬YNIIhe)|ݽ+GNb?CCN<:W۹Ӻtᐑi_ O-7r35#j l=Wt9u2#S'/n-u|>1ҡ!nk .7Sel}ȔpD:f{{-:-tCG&:y nJx8Po2U4/)b`fLa1U&'3!!I$-Pر. [H?)cnbX1vCl]&YدDsv˘Z/ޠhܜKSk==b}AvY y8zqc1|I'ݐuHpέ3T ֭!q%g.S3_T>Sgft1UI8;z/5,>,Ko=z\*TX͔>h Nry黏 r5xv"$ԭb{nП98mQ>Wt9Wu:4V_R>-Á:S0l9|Hx@ss78w6xoڙ3VS#^|$(N&4ЍpWOݺ7{(ӰX.m?v<]p #!')u{bcex:pQֵ q&[d }OTU 9.cn2UiPatΫIx^?[( X6;قxf'XA;*v_^.L(1>(ٝhOeFSnLNfYc$Asa=C O,Mr70c* %8p(~976>&(䏮.$v'sN99Uz^,o} P# }ZppCwxR+;gADљ&8gS1>L2169W.ebC Ak q,Ufz4{3 3Kb:C7@Z,=^e+w9.c^3uT XРL g*o l( k"T2E; ^ Tڒ՝  Y+ӾLg뭇ׄyMٓ< e+dA9 .qw9c~Ln%Yt#R=n<|҅? 1QԹf.:X̱ڎ68-"LR?)05)lv>Cd)6fB+* 50 ƷG_4b~{/2's))YYY8ܪfnՉc*ptn7e2CLm?D%r ϟ?ϪYIiCwzoIpY~3It#:iCEmlR&uJ'aS5$?vJI2ǏsF%:0`KdA oyZC=gPfȌ>ldh[y ˵jfnoQSeJp&ghfUJk7zU1*X~k)1;VTIWP8f8sb#3Fݼ[9au4S VH4#3P#kjon'Ѯ 6N]"䷭%@yWMoX9 H( ܜztp9pj iZgNu׀3BhU;o3&]=ծ|:{Vs7XU˃wuIjJRi -3OD 4:ʜk\fړj{moKݷ,4ä%{cTC#yk@l(_'Q7^U1{j@+ф9`QCuD}e[gӇ|e`69if(SX;hk4߸Q>9] 2s9kƙK*Ô/RH`(uB~0?Bc9qN Zk+yX;N7Zu[-g)z&E_;̀ET7 ֺ8p:jQR0krne9?pܑTR|sjuGA@93@^(S,k]v0 Yn[CuѮ^\}66΀ h}mh# L-n2H,q]T93&P:2uHXג` ۙZl.0o]IϏ@x],-D1U3X1Ym6p1c&L-.y >3:s6IC'r"4.*j.+G)U+/!Kx[T! sb3V3w5i3ؗ4 t,3 㮪f]߮+t7`9xOmeJ u?4I}FEg,Z}קL,Ӣt빤>3 /??toiMZ;&d p*sŋ:}iHЪHl&+:M{FM8Ph-iü%peSr!,s7(Qf?V*LYi$h6LuSwZ$]:3։#W! Aڄ8Ƅa݋w6U L藧 L2d2{ڕuj剠D M'|aFvGaafr gUh VL>0tveAV,*/HYeT~*}RSihW|<ef3sCyL\eqgsrZ}'쾃B]MQ\f[7<$gϞe~f.&xTmg;#Qrdml׀zJ[d֙;PŠݠ./9;\ѐItͼ)8.QRw7 32l;?0ի;SFm>IHhju>*R0g݌%ZD=+ C{ܑG6o\:'bTȐ?@A1>*8?dMq}Ɉ8ΙG I_MCIZ`Zv Ԛݻ+D##lÂY$NYh8iD־,-I++"u TZ-fJXu`0lP{g):(7˷/6;Sꪘg1e+T&TcɂZaF[g1ZKQ+_, SW'_@Ԉ3W`d9j#(%5>M!T8*+zyf:&B}p3YnCsȚ vrcBlY; y $*/oAcpkkҖ409>ʬS٢z$bV̎3W+Ϛb;# )zUΝ>ޤltjmv4|N#6)/\[Zr8l V|֨MmZ\Y:%{c5{A5:͵T5sH[&wXƏDP0g,[:+ɤM +ŤfD["+˒#Z-Įy[lW+3ߤ8tj+_]b8KD#wۣ܏GƂnZr,DͰh{h pYY]P ؅:D61. CT&PּNT3*'srHXX(y/)r?y;0t Xݻ5t sR*̩\rfvљOUSRJJJ 񵮮r1H8=rĂ|.8XW~3bx"wc"Au6]+NH;MxB?;f|:S3 GM33ck#[$'S J ԼcDFu~0I-k5P tQqfĎpS2p84a2X9~3d3 6l3y0~_sUc*}}ro,Q;_0az蜤[،Z ES]]xutTTT˺t[| #ax"?iϿKt=(g tJ03)4cZM/SU LvS]235pg.{p֘JFCx6Y8?" @RU,;+"唂]h­}h38kGa+vpPZJ=7D{1 5ׯǮ'Q 0N&X))ٺQ0> -q4?Zc (ua,&I[hWV@[g@VdJv׮ݡ2:ZxMTɺ2μ\w,f}KKBS[tIQS[[ș3gݥa*5V;[s23tA*+EcY۸1K5Kr2}kH\ ׫X = =կOMS!+Q\7ƢZb%%ɷkMێ? (Y8Z֖!בOc~d` \=:׉Z>23ż֮&m 'rnP%;li+')}Ot[@d5w~=R%;3$dA$6PI?t)d^.R ÈRNDrLU(NHVEӢ\G1v69=0[k; \:)깦v;*(ݐSt,*HT> }T mmGEF6n\S' @]*~TsssNlߨ9̰0KImmrMlbMM7NSmNd;n-!rT~*5HakrHRS%eJ |Oa~D/hQ ѩaUwUw};t@#G)+55zH̤*yi?6 glOeZ6c|n%4OGk:פ&ac:l @X!SODkTtK;9O)oic3";@[ǬwnRe {|r^{{O>/!Fvv^QQ毿{jn>{{W\...NLۗJ6dSAO&JԏXӶЩRhW0^vc9N"?i„%;CeLvk[k DƂo.D IsHܱ4nzK~&d.*7#a NkT,|8DDuA{Μ9Ғ\3{J[.,j*P %i-7+S;sXJtƻy*>4P" lҢCiQrBF) |YYhs:BL I&X {>}ҥkk%FcɷwkjDsiVǭ[@nT%R*;W19~^6P54tuu=zIi울3twv|bn~h ,;|^)aJQ%P1c2r|aŮ9s3 ސ(/dzՉJKБ8^[HᎥ-}&Yt atrr$uֹs۶mvSN=z$Sm}F" ذR/],"rcѡM%DRPm r&'Dt$a(,/v0g8ώ'Q' %~߳gܵku_rS#v{1A pϿOJCji1=6eRPDA|6 iR"m҆*uz'$,,ܪbf's:!g4B7gN@M}۷o߹sɆ_Ku$N>yOϟ? GEuGVtud%i\,c^u)₣h@Np WW3S;%[OMg 4|vٽZ=ERr:4::Kv/CNLرG$k,/"%jY8V8˵ܙfYl9l3roѨ{F>:oD (5ڌ]=y N+ϟߺ[Pm<[3 -tXYpQ0^y"QbA)sFᆴ^U YS{fSuʤ-#tkӧ8xJܼŋ+Wmp::?LM{Xx"X$f٦NB%J\5Qmseezz{=Ą6ٞMx=jkbd&y_Jh*r~鬥'!';^ScŏnnM0s Νhý H\Cùs^a~?zxd:ha]"NPF{T vn<$D7J~2ޡXu,w隰MMMO Rz_m@v}zlllƘ*\1C,H(&C= x"/q DI 6ѨksՙK,@$KM;wx122cmo(SgՅ nB씹j2dBi,FVkFHcC7MZGbFQwgpBr3+qc9|FV _weJzӧǎۼYϭɛYq2/52k5CgTu6@H }YIM-载6G1Ǽԩ-ԑ8^a^;!eI8tЃ_vmF^65nP\o߾Я^3=WWcoA+y^e'/QC<YeZ[$T "CIDATK+D\ Zi:͹x) {zz{KK8dĉϟz !W&1IE7:`K > Il4zR,:W HyIx|႘OTo2?j|7o?~|[$bs|{b{ȅ x0t[jެ@555ٞީהOv֖\4OXPUUѣbZ_ݶM!oRjq޹sݻ[nuuɓG ^ښ_B~m󫠠AgG=tB)))`ϊ[1[KGH~xE5$jrl'r TuH:g(5UsX4x7J_AA@6qr6!^۷oGFoߞ 1,|>_:kH(W-_CtP?#qd耹IԻ:7X'ĸXJ ,v֐89tsugu`:UW;v_&𡳆ĉ2K=YQۏCw3-i^/)Af&,r*]G$NΦizݻw/_ mݚ.R7o^~=4T[[l("6ƍeR=z)G6J] [4poT 7g)U1ӧ_|Ν,|X\\{?~|Kg e2'hz^>6ef%jJ^mGŚXl:ٴ{'>Q8tH! |Ǐ?{7n$njJ r ԟG$ })8ܬDM 18mRp~2=W9vt۶ׯիsD d_$I27W˗ߪ\p!%%?Q&bҍ{5s?Pf)odWq%:#S}zl``ܯOtՆ!~:ς% "酉i*P/tXٲ%OG| SYف=G[f [:us1۷{zz!L_ܯcy2 7h."vVւ*r'8iMyrH}/G0~͛#~wz޽tI&8Ɨ2WMxdй6\ߗx3t;Q\lKK%ڜ 9 ЗPpk/('1Tl>rɓ'_<})Ѩn^Tyy9#6),,/e"^PCUH*=rrsř+QDܹʉ3!Zi$߰ʒ7Sʚ$zw7>}neOBjn;:AEvDY55t1?):yqq1s)KJJi^>v֐:G55˗/9r>;;[@~Ф9U7=ss?7+G xkшڑ4t'222Y˳թ]'DzSQ!hܞ߬;G7;oߞ={vmJK*8SB#'|Ν.|۷/^:%7orY=Rey4t[zWq55z07Siޘ^TT,m:(`+s8tǏ|{޽kÅGFŒt9 4USSS[Sߴi8 OzgN͛%4C78óIx$sk>|Dɓ3g!Ɵ% lx )I(^W=۷/_萿yCe"7gX;īSzר\o1uG*uBV)'WVfóiK[x_{7::zŢ+5& iAFNÇo޼'Ǐ~i:CeZ1n5w*~ -Oߺysnnnjz`wpBF8J2.1iEEs7<ׯ?>wVg脊 RR\ ޽…O~ӧ7z{{QpGSHh(1wWC7SĎ---[jk`!~U9(#y6۶m7=YUU/n=9Y}JR(8#Cnjoݒ^zu5+U'L# Ջ%&k4h$ˍJGWm9(s_$ЌFϳIx&ر*O^t-}1,q*rWĶKR<^!w$>dцśį[)V9ee'C1 64))rKV/--r, G5/׳ԻD:w_~߽{whHBfQSII~~~J~z[q똷Jpr<|8<;&<_H] B|xչSf|4P;+UKlI £BY*"ևRai(C <tɕ˗ŭ>QJ@JLog=&_yV,7> xd Lk6ez(2ynи~Ѡ闟"~|HDԹңXp: TM![)ohi⏈&=Y(6JL%P2.Yfrt?|eYg|(C 饬\g+Sb?fQ}Hdr 2=@^bd2􋍉_La!^7}Pez)+W,׿Y?ەgY}Pez*WϿeV+~^˲Y9}-?(C H H H H H H H H H H H H H H H H H H H H ҖsPQIENDB`espresso-5.1/PP/examples/example02/reference/ni.fs_down.bxsf0000644000175000017500000060721412341372774022146 0ustar mbamba BEGIN_INFO # # this is a Band-XCRYSDEN-Structure-File # aimed at Visualization of Fermi Surface # # Case: ni # Fermi Energy: 15.2788 END_INFO BEGIN_BLOCK_BANDGRID_3D band_energies BANDGRID_3D_BANDS 4 17 17 17 0.000000 0.000000 0.000000 -1.000000 -1.000000 1.000000 1.000000 1.000000 1.000000 -1.000000 1.000000 -1.000000 BAND: 3 13.3663 13.4061 13.5044 13.5930 13.5910 13.5061 13.4019 13.3240 13.2956 13.3240 13.4019 13.5061 13.5910 13.5930 13.5044 13.4061 13.3663 13.4061 13.4324 13.5209 13.6157 13.6096 13.4982 13.3788 13.4200 13.3668 13.3677 13.4246 13.4264 13.5418 13.6056 13.5751 13.4642 13.4061 13.5044 13.5209 13.6277 13.7347 13.6592 13.4664 13.2946 13.3122 13.5742 13.5456 13.4123 13.2295 13.3937 13.5407 13.6088 13.5751 13.5044 13.5930 13.6157 13.7347 13.9412 13.7600 13.5074 13.2892 13.1850 13.2660 13.3446 13.1780 12.9430 13.1432 13.3729 13.5407 13.6056 13.5930 13.5910 13.6096 13.6592 13.7600 13.8365 13.7299 13.5520 13.3954 13.2990 13.2187 13.0381 12.7444 12.8319 13.1432 13.3937 13.5418 13.5910 13.5061 13.4982 13.4664 13.5074 13.7299 14.1250 14.2178 14.0412 13.7994 13.5189 13.1936 12.8675 12.7444 12.9430 13.2295 13.4264 13.5061 13.4019 13.3788 13.2946 13.2892 13.5520 14.2178 15.2488 14.9598 14.5715 14.1149 13.6237 13.1936 13.0381 13.1780 13.4123 13.4246 13.4019 13.3240 13.4200 13.3122 13.1850 13.3954 14.0412 14.9598 15.4128 15.3353 14.7709 14.1149 13.5189 13.2187 13.3446 13.5456 13.3677 13.3240 13.2956 13.3668 13.5742 13.2660 13.2990 13.7994 14.5715 15.3353 15.4456 15.3353 14.5715 13.7994 13.2990 13.2660 13.5742 13.3668 13.2956 13.3240 13.3677 13.5456 13.3446 13.2187 13.5189 14.1149 14.7709 15.3353 15.4128 14.9598 14.0412 13.3954 13.1850 13.3122 13.4200 13.3240 13.4019 13.4246 13.4123 13.1780 13.0381 13.1936 13.6237 14.1149 14.5715 14.9598 15.2488 14.2178 13.5520 13.2892 13.2946 13.3788 13.4019 13.5061 13.4264 13.2295 12.9430 12.7444 12.8675 13.1936 13.5189 13.7994 14.0412 14.2178 14.1250 13.7299 13.5074 13.4664 13.4982 13.5061 13.5910 13.5418 13.3937 13.1432 12.8319 12.7444 13.0381 13.2187 13.2990 13.3954 13.5520 13.7299 13.8365 13.7600 13.6592 13.6096 13.5910 13.5930 13.6056 13.5407 13.3729 13.1432 12.9430 13.1780 13.3446 13.2660 13.1850 13.2892 13.5074 13.7600 13.9412 13.7347 13.6157 13.5930 13.5044 13.5751 13.6088 13.5407 13.3937 13.2295 13.4123 13.5456 13.5742 13.3122 13.2946 13.4664 13.6592 13.7347 13.6277 13.5209 13.5044 13.4061 13.4642 13.5751 13.6056 13.5418 13.4264 13.4246 13.3677 13.3668 13.4200 13.3788 13.4982 13.6096 13.6157 13.5209 13.4324 13.4061 13.3663 13.4061 13.5044 13.5930 13.5910 13.5061 13.4019 13.3240 13.2956 13.3240 13.4019 13.5061 13.5910 13.5930 13.5044 13.4061 13.3663 13.4061 13.4324 13.5209 13.6157 13.6096 13.4982 13.3788 13.4200 13.3668 13.3677 13.4246 13.4264 13.5418 13.6056 13.5751 13.4642 13.4061 13.4324 13.4061 13.4642 13.5751 13.6056 13.5418 13.4264 13.4246 13.3677 13.3668 13.4200 13.3788 13.4982 13.6096 13.6157 13.5209 13.4324 13.5209 13.4642 13.5209 13.6185 13.6364 13.5296 13.3681 13.2718 13.5117 13.4895 13.5117 13.2718 13.3681 13.5296 13.6364 13.6185 13.5209 13.6157 13.5751 13.6185 13.7347 13.7199 13.5324 13.3091 13.1483 13.2167 13.4254 13.3689 13.0814 13.1350 13.3430 13.5345 13.6364 13.6157 13.6096 13.6056 13.6364 13.7199 13.7600 13.6084 13.3900 13.1965 13.1149 13.1587 13.1257 12.8858 12.8210 13.0850 13.3430 13.5296 13.6096 13.4982 13.5418 13.5296 13.5324 13.6084 13.7299 13.7275 13.5996 13.4426 13.2920 13.1111 12.8390 12.5785 12.8210 13.1350 13.3681 13.4982 13.3788 13.4264 13.3681 13.3091 13.3900 13.7275 14.2178 14.3207 14.1282 13.8359 13.4787 13.0937 12.8390 12.8858 13.0814 13.2718 13.3788 13.4200 13.4246 13.2718 13.1483 13.1965 13.5996 14.3207 14.9598 14.8833 14.5174 14.0118 13.4787 13.1111 13.1257 13.3689 13.5117 13.4200 13.3668 13.3677 13.5117 13.2167 13.1149 13.4426 14.1282 14.8833 15.3353 15.1067 14.5174 13.8359 13.2920 13.1587 13.4254 13.4895 13.3668 13.3677 13.3668 13.4895 13.4254 13.1587 13.2920 13.8359 14.5174 15.1067 15.3353 14.8833 14.1282 13.4426 13.1149 13.2167 13.5117 13.3677 13.4246 13.4200 13.5117 13.3689 13.1257 13.1111 13.4787 14.0118 14.5174 14.8833 14.9598 14.3207 13.5996 13.1965 13.1483 13.2718 13.4246 13.4264 13.3788 13.2718 13.0814 12.8858 12.8390 13.0937 13.4787 13.8359 14.1282 14.3207 14.2178 13.7275 13.3900 13.3091 13.3681 13.4264 13.5418 13.4982 13.3681 13.1350 12.8210 12.5785 12.8390 13.1111 13.2920 13.4426 13.5996 13.7275 13.7299 13.6084 13.5324 13.5296 13.5418 13.6056 13.6096 13.5296 13.3430 13.0850 12.8210 12.8858 13.1257 13.1587 13.1149 13.1965 13.3900 13.6084 13.7600 13.7199 13.6364 13.6056 13.5751 13.6157 13.6364 13.5345 13.3430 13.1350 13.0814 13.3689 13.4254 13.2167 13.1483 13.3091 13.5324 13.7199 13.7347 13.6185 13.5751 13.4642 13.5209 13.6185 13.6364 13.5296 13.3681 13.2718 13.5117 13.4895 13.5117 13.2718 13.3681 13.5296 13.6364 13.6185 13.5209 13.4642 13.4061 13.4324 13.5209 13.6157 13.6096 13.4982 13.3788 13.4200 13.3668 13.3677 13.4246 13.4264 13.5418 13.6056 13.5751 13.4642 13.4061 13.5044 13.5209 13.6277 13.7347 13.6592 13.4664 13.2946 13.3122 13.5742 13.5456 13.4123 13.2295 13.3937 13.5407 13.6088 13.5751 13.5044 13.5209 13.4642 13.5209 13.6185 13.6364 13.5296 13.3681 13.2718 13.5117 13.4895 13.5117 13.2718 13.3681 13.5296 13.6364 13.6185 13.5209 13.6277 13.5209 13.5044 13.5751 13.6088 13.5407 13.3937 13.2295 13.4123 13.5456 13.5742 13.3122 13.2946 13.4664 13.6592 13.7347 13.6277 13.7347 13.6185 13.5751 13.6157 13.6364 13.5345 13.3430 13.1350 13.0814 13.3689 13.4254 13.2167 13.1483 13.3091 13.5324 13.7199 13.7347 13.6592 13.6364 13.6088 13.6364 13.6592 13.5324 13.3095 13.0646 12.9057 13.0198 13.1434 13.0198 12.9057 13.0646 13.3095 13.5324 13.6592 13.4664 13.5296 13.5407 13.5345 13.5324 13.5074 13.3900 13.1980 13.0082 12.9240 12.9355 12.8263 12.6173 12.7771 13.0646 13.3091 13.4664 13.2946 13.3681 13.3937 13.3430 13.3095 13.3900 13.5520 13.5996 13.4894 13.3146 13.1151 12.8624 12.5669 12.6173 12.9057 13.1483 13.2946 13.3122 13.2718 13.2295 13.1350 13.0646 13.1980 13.5996 14.0412 14.1282 13.9400 13.6213 13.2234 12.8624 12.8263 13.0198 13.2167 13.3122 13.5742 13.5117 13.4123 13.0814 12.9057 13.0082 13.4894 14.1282 14.5715 14.5174 14.1459 13.6213 13.1151 12.9355 13.1434 13.4254 13.5742 13.5456 13.4895 13.5456 13.3689 13.0198 12.9240 13.3146 13.9400 14.5174 14.7709 14.5174 13.9400 13.3146 12.9240 13.0198 13.3689 13.5456 13.4123 13.5117 13.5742 13.4254 13.1434 12.9355 13.1151 13.6213 14.1459 14.5174 14.5715 14.1282 13.4894 13.0082 12.9057 13.0814 13.4123 13.2295 13.2718 13.3122 13.2167 13.0198 12.8263 12.8624 13.2234 13.6213 13.9400 14.1282 14.0412 13.5996 13.1980 13.0646 13.1350 13.2295 13.3937 13.3681 13.2946 13.1483 12.9057 12.6173 12.5669 12.8624 13.1151 13.3146 13.4894 13.5996 13.5520 13.3900 13.3095 13.3430 13.3937 13.5407 13.5296 13.4664 13.3091 13.0646 12.7771 12.6173 12.8263 12.9355 12.9240 13.0082 13.1980 13.3900 13.5074 13.5324 13.5345 13.5407 13.6088 13.6364 13.6592 13.5324 13.3095 13.0646 12.9057 13.0198 13.1434 13.0198 12.9057 13.0646 13.3095 13.5324 13.6592 13.6364 13.6088 13.5751 13.6185 13.7347 13.7199 13.5324 13.3091 13.1483 13.2167 13.4254 13.3689 13.0814 13.1350 13.3430 13.5345 13.6364 13.6157 13.5751 13.5044 13.5209 13.6277 13.7347 13.6592 13.4664 13.2946 13.3122 13.5742 13.5456 13.4123 13.2295 13.3937 13.5407 13.6088 13.5751 13.5044 13.5930 13.6157 13.7347 13.9412 13.7600 13.5074 13.2892 13.1850 13.2660 13.3446 13.1780 12.9430 13.1432 13.3729 13.5407 13.6056 13.5930 13.6157 13.5751 13.6185 13.7347 13.7199 13.5324 13.3091 13.1483 13.2167 13.4254 13.3689 13.0814 13.1350 13.3430 13.5345 13.6364 13.6157 13.7347 13.6185 13.5751 13.6157 13.6364 13.5345 13.3430 13.1350 13.0814 13.3689 13.4254 13.2167 13.1483 13.3091 13.5324 13.7199 13.7347 13.9412 13.7347 13.6157 13.5930 13.6056 13.5407 13.3729 13.1432 12.9430 13.1780 13.3446 13.2660 13.1850 13.2892 13.5074 13.7600 13.9412 13.7600 13.7199 13.6364 13.6056 13.6096 13.5296 13.3430 13.0850 12.8210 12.8858 13.1257 13.1587 13.1149 13.1965 13.3900 13.6084 13.7600 13.5074 13.5324 13.5345 13.5407 13.5296 13.4664 13.3091 13.0646 12.7771 12.6173 12.8263 12.9355 12.9240 13.0082 13.1980 13.3900 13.5074 13.2892 13.3091 13.3430 13.3729 13.3430 13.3091 13.2892 13.1965 13.0082 12.7930 12.6815 12.6984 12.6815 12.7930 13.0082 13.1965 13.2892 13.1850 13.1483 13.1350 13.1432 13.0850 13.0646 13.1965 13.3954 13.4426 13.3146 13.1035 12.8467 12.5437 12.6815 12.9240 13.1149 13.1850 13.2660 13.2167 13.0814 12.9430 12.8210 12.7771 13.0082 13.4426 13.7994 13.8359 13.6213 13.2635 12.8467 12.6984 12.9355 13.1587 13.2660 13.3446 13.4254 13.3689 13.1780 12.8858 12.6173 12.7930 13.3146 13.8359 14.1149 14.0118 13.6213 13.1035 12.6815 12.8263 13.1257 13.3446 13.1780 13.3689 13.4254 13.3446 13.1257 12.8263 12.6815 13.1035 13.6213 14.0118 14.1149 13.8359 13.3146 12.7930 12.6173 12.8858 13.1780 12.9430 13.0814 13.2167 13.2660 13.1587 12.9355 12.6984 12.8467 13.2635 13.6213 13.8359 13.7994 13.4426 13.0082 12.7771 12.8210 12.9430 13.1432 13.1350 13.1483 13.1850 13.1149 12.9240 12.6815 12.5437 12.8467 13.1035 13.3146 13.4426 13.3954 13.1965 13.0646 13.0850 13.1432 13.3729 13.3430 13.3091 13.2892 13.1965 13.0082 12.7930 12.6815 12.6984 12.6815 12.7930 13.0082 13.1965 13.2892 13.3091 13.3430 13.3729 13.5407 13.5345 13.5324 13.5074 13.3900 13.1980 13.0082 12.9240 12.9355 12.8263 12.6173 12.7771 13.0646 13.3091 13.4664 13.5296 13.5407 13.6056 13.6364 13.7199 13.7600 13.6084 13.3900 13.1965 13.1149 13.1587 13.1257 12.8858 12.8210 13.0850 13.3430 13.5296 13.6096 13.6056 13.5930 13.6157 13.7347 13.9412 13.7600 13.5074 13.2892 13.1850 13.2660 13.3446 13.1780 12.9430 13.1432 13.3729 13.5407 13.6056 13.5930 13.5910 13.6096 13.6592 13.7600 13.8365 13.7299 13.5520 13.3954 13.2990 13.2187 13.0381 12.7444 12.8319 13.1432 13.3937 13.5418 13.5910 13.6096 13.6056 13.6364 13.7199 13.7600 13.6084 13.3900 13.1965 13.1149 13.1587 13.1257 12.8858 12.8210 13.0850 13.3430 13.5296 13.6096 13.6592 13.6364 13.6088 13.6364 13.6592 13.5324 13.3095 13.0646 12.9057 13.0198 13.1434 13.0198 12.9057 13.0646 13.3095 13.5324 13.6592 13.7600 13.7199 13.6364 13.6056 13.6096 13.5296 13.3430 13.0850 12.8210 12.8858 13.1257 13.1587 13.1149 13.1965 13.3900 13.6084 13.7600 13.8365 13.7600 13.6592 13.6096 13.5910 13.5418 13.3937 13.1432 12.8319 12.7444 13.0381 13.2187 13.2990 13.3954 13.5520 13.7299 13.8365 13.7299 13.6084 13.5324 13.5296 13.5418 13.4982 13.3681 13.1350 12.8210 12.5785 12.8390 13.1111 13.2920 13.4426 13.5996 13.7275 13.7299 13.5520 13.3900 13.3095 13.3430 13.3937 13.3681 13.2946 13.1483 12.9057 12.6173 12.5669 12.8624 13.1151 13.3146 13.4894 13.5996 13.5520 13.3954 13.1965 13.0646 13.0850 13.1432 13.1350 13.1483 13.1850 13.1149 12.9240 12.6815 12.5437 12.8467 13.1035 13.3146 13.4426 13.3954 13.2990 13.1149 12.9057 12.8210 12.8319 12.8210 12.9057 13.1149 13.2990 13.2920 13.1151 12.8467 12.5325 12.8467 13.1151 13.2920 13.2990 13.2187 13.1587 13.0198 12.8858 12.7444 12.5785 12.6173 12.9240 13.2920 13.5189 13.4787 13.2234 12.8467 12.5437 12.8624 13.1111 13.2187 13.0381 13.1257 13.1434 13.1257 13.0381 12.8390 12.5669 12.6815 13.1151 13.4787 13.6237 13.4787 13.1151 12.6815 12.5669 12.8390 13.0381 12.7444 12.8858 13.0198 13.1587 13.2187 13.1111 12.8624 12.5437 12.8467 13.2234 13.4787 13.5189 13.2920 12.9240 12.6173 12.5785 12.7444 12.8319 12.8210 12.9057 13.1149 13.2990 13.2920 13.1151 12.8467 12.5325 12.8467 13.1151 13.2920 13.2990 13.1149 12.9057 12.8210 12.8319 13.1432 13.0850 13.0646 13.1965 13.3954 13.4426 13.3146 13.1035 12.8467 12.5437 12.6815 12.9240 13.1149 13.1850 13.1483 13.1350 13.1432 13.3937 13.3430 13.3095 13.3900 13.5520 13.5996 13.4894 13.3146 13.1151 12.8624 12.5669 12.6173 12.9057 13.1483 13.2946 13.3681 13.3937 13.5418 13.5296 13.5324 13.6084 13.7299 13.7275 13.5996 13.4426 13.2920 13.1111 12.8390 12.5785 12.8210 13.1350 13.3681 13.4982 13.5418 13.5910 13.6096 13.6592 13.7600 13.8365 13.7299 13.5520 13.3954 13.2990 13.2187 13.0381 12.7444 12.8319 13.1432 13.3937 13.5418 13.5910 13.5061 13.4982 13.4664 13.5074 13.7299 14.1250 14.2178 14.0412 13.7994 13.5189 13.1936 12.8675 12.7444 12.9430 13.2295 13.4264 13.5061 13.4982 13.5418 13.5296 13.5324 13.6084 13.7299 13.7275 13.5996 13.4426 13.2920 13.1111 12.8390 12.5785 12.8210 13.1350 13.3681 13.4982 13.4664 13.5296 13.5407 13.5345 13.5324 13.5074 13.3900 13.1980 13.0082 12.9240 12.9355 12.8263 12.6173 12.7771 13.0646 13.3091 13.4664 13.5074 13.5324 13.5345 13.5407 13.5296 13.4664 13.3091 13.0646 12.7771 12.6173 12.8263 12.9355 12.9240 13.0082 13.1980 13.3900 13.5074 13.7299 13.6084 13.5324 13.5296 13.5418 13.4982 13.3681 13.1350 12.8210 12.5785 12.8390 13.1111 13.2920 13.4426 13.5996 13.7275 13.7299 14.1250 13.7299 13.5074 13.4664 13.4982 13.5061 13.4264 13.2295 12.9430 12.7444 12.8675 13.1936 13.5189 13.7994 14.0412 14.2178 14.1250 14.2178 13.7275 13.3900 13.3091 13.3681 13.4264 13.3788 13.2718 13.0814 12.8858 12.8390 13.0937 13.4787 13.8359 14.1282 14.3207 14.2178 14.0412 13.5996 13.1980 13.0646 13.1350 13.2295 13.2718 13.3122 13.2167 13.0198 12.8263 12.8624 13.2234 13.6213 13.9400 14.1282 14.0412 13.7994 13.4426 13.0082 12.7771 12.8210 12.9430 13.0814 13.2167 13.2660 13.1587 12.9355 12.6984 12.8467 13.2635 13.6213 13.8359 13.7994 13.5189 13.2920 12.9240 12.6173 12.5785 12.7444 12.8858 13.0198 13.1587 13.2187 13.1111 12.8624 12.5437 12.8467 13.2234 13.4787 13.5189 13.1936 13.1111 12.9355 12.8263 12.8390 12.8675 12.8390 12.8263 12.9355 13.1111 13.1936 13.0937 12.8624 12.6984 12.8624 13.0937 13.1936 12.8675 12.8390 12.8263 12.9355 13.1111 13.1936 13.0937 12.8624 12.6984 12.8624 13.0937 13.1936 13.1111 12.9355 12.8263 12.8390 12.8675 12.7444 12.5785 12.6173 12.9240 13.2920 13.5189 13.4787 13.2234 12.8467 12.5437 12.8624 13.1111 13.2187 13.1587 13.0198 12.8858 12.7444 12.9430 12.8210 12.7771 13.0082 13.4426 13.7994 13.8359 13.6213 13.2635 12.8467 12.6984 12.9355 13.1587 13.2660 13.2167 13.0814 12.9430 13.2295 13.1350 13.0646 13.1980 13.5996 14.0412 14.1282 13.9400 13.6213 13.2234 12.8624 12.8263 13.0198 13.2167 13.3122 13.2718 13.2295 13.4264 13.3681 13.3091 13.3900 13.7275 14.2178 14.3207 14.1282 13.8359 13.4787 13.0937 12.8390 12.8858 13.0814 13.2718 13.3788 13.4264 13.5061 13.4982 13.4664 13.5074 13.7299 14.1250 14.2178 14.0412 13.7994 13.5189 13.1936 12.8675 12.7444 12.9430 13.2295 13.4264 13.5061 13.4019 13.3788 13.2946 13.2892 13.5520 14.2178 15.2488 14.9598 14.5715 14.1149 13.6237 13.1936 13.0381 13.1780 13.4123 13.4246 13.4019 13.3788 13.4264 13.3681 13.3091 13.3900 13.7275 14.2178 14.3207 14.1282 13.8359 13.4787 13.0937 12.8390 12.8858 13.0814 13.2718 13.3788 13.2946 13.3681 13.3937 13.3430 13.3095 13.3900 13.5520 13.5996 13.4894 13.3146 13.1151 12.8624 12.5669 12.6173 12.9057 13.1483 13.2946 13.2892 13.3091 13.3430 13.3729 13.3430 13.3091 13.2892 13.1965 13.0082 12.7930 12.6815 12.6984 12.6815 12.7930 13.0082 13.1965 13.2892 13.5520 13.3900 13.3095 13.3430 13.3937 13.3681 13.2946 13.1483 12.9057 12.6173 12.5669 12.8624 13.1151 13.3146 13.4894 13.5996 13.5520 14.2178 13.7275 13.3900 13.3091 13.3681 13.4264 13.3788 13.2718 13.0814 12.8858 12.8390 13.0937 13.4787 13.8359 14.1282 14.3207 14.2178 15.2488 14.2178 13.5520 13.2892 13.2946 13.3788 13.4019 13.4246 13.4123 13.1780 13.0381 13.1936 13.6237 14.1149 14.5715 14.9598 15.2488 14.9598 14.3207 13.5996 13.1965 13.1483 13.2718 13.4246 13.4200 13.5117 13.3689 13.1257 13.1111 13.4787 14.0118 14.5174 14.8833 14.9598 14.5715 14.1282 13.4894 13.0082 12.9057 13.0814 13.4123 13.5117 13.5742 13.4254 13.1434 12.9355 13.1151 13.6213 14.1459 14.5174 14.5715 14.1149 13.8359 13.3146 12.7930 12.6173 12.8858 13.1780 13.3689 13.4254 13.3446 13.1257 12.8263 12.6815 13.1035 13.6213 14.0118 14.1149 13.6237 13.4787 13.1151 12.6815 12.5669 12.8390 13.0381 13.1257 13.1434 13.1257 13.0381 12.8390 12.5669 12.6815 13.1151 13.4787 13.6237 13.1936 13.0937 12.8624 12.6984 12.8624 13.0937 13.1936 13.1111 12.9355 12.8263 12.8390 12.8675 12.8390 12.8263 12.9355 13.1111 13.1936 13.0381 12.8390 12.5669 12.6815 13.1151 13.4787 13.6237 13.4787 13.1151 12.6815 12.5669 12.8390 13.0381 13.1257 13.1434 13.1257 13.0381 13.1780 12.8858 12.6173 12.7930 13.3146 13.8359 14.1149 14.0118 13.6213 13.1035 12.6815 12.8263 13.1257 13.3446 13.4254 13.3689 13.1780 13.4123 13.0814 12.9057 13.0082 13.4894 14.1282 14.5715 14.5174 14.1459 13.6213 13.1151 12.9355 13.1434 13.4254 13.5742 13.5117 13.4123 13.4246 13.2718 13.1483 13.1965 13.5996 14.3207 14.9598 14.8833 14.5174 14.0118 13.4787 13.1111 13.1257 13.3689 13.5117 13.4200 13.4246 13.4019 13.3788 13.2946 13.2892 13.5520 14.2178 15.2488 14.9598 14.5715 14.1149 13.6237 13.1936 13.0381 13.1780 13.4123 13.4246 13.4019 13.3240 13.4200 13.3122 13.1850 13.3954 14.0412 14.9598 15.4128 15.3353 14.7709 14.1149 13.5189 13.2187 13.3446 13.5456 13.3677 13.3240 13.4200 13.4246 13.2718 13.1483 13.1965 13.5996 14.3207 14.9598 14.8833 14.5174 14.0118 13.4787 13.1111 13.1257 13.3689 13.5117 13.4200 13.3122 13.2718 13.2295 13.1350 13.0646 13.1980 13.5996 14.0412 14.1282 13.9400 13.6213 13.2234 12.8624 12.8263 13.0198 13.2167 13.3122 13.1850 13.1483 13.1350 13.1432 13.0850 13.0646 13.1965 13.3954 13.4426 13.3146 13.1035 12.8467 12.5437 12.6815 12.9240 13.1149 13.1850 13.3954 13.1965 13.0646 13.0850 13.1432 13.1350 13.1483 13.1850 13.1149 12.9240 12.6815 12.5437 12.8467 13.1035 13.3146 13.4426 13.3954 14.0412 13.5996 13.1980 13.0646 13.1350 13.2295 13.2718 13.3122 13.2167 13.0198 12.8263 12.8624 13.2234 13.6213 13.9400 14.1282 14.0412 14.9598 14.3207 13.5996 13.1965 13.1483 13.2718 13.4246 13.4200 13.5117 13.3689 13.1257 13.1111 13.4787 14.0118 14.5174 14.8833 14.9598 15.4128 14.9598 14.0412 13.3954 13.1850 13.3122 13.4200 13.3240 13.3677 13.5456 13.3446 13.2187 13.5189 14.1149 14.7709 15.3353 15.4128 15.3353 14.8833 14.1282 13.4426 13.1149 13.2167 13.5117 13.3677 13.3668 13.4895 13.4254 13.1587 13.2920 13.8359 14.5174 15.1067 15.3353 14.7709 14.5174 13.9400 13.3146 12.9240 13.0198 13.3689 13.5456 13.4895 13.5456 13.3689 13.0198 12.9240 13.3146 13.9400 14.5174 14.7709 14.1149 14.0118 13.6213 13.1035 12.6815 12.8263 13.1257 13.3446 13.4254 13.3689 13.1780 12.8858 12.6173 12.7930 13.3146 13.8359 14.1149 13.5189 13.4787 13.2234 12.8467 12.5437 12.8624 13.1111 13.2187 13.1587 13.0198 12.8858 12.7444 12.5785 12.6173 12.9240 13.2920 13.5189 13.2187 13.1111 12.8624 12.5437 12.8467 13.2234 13.4787 13.5189 13.2920 12.9240 12.6173 12.5785 12.7444 12.8858 13.0198 13.1587 13.2187 13.3446 13.1257 12.8263 12.6815 13.1035 13.6213 14.0118 14.1149 13.8359 13.3146 12.7930 12.6173 12.8858 13.1780 13.3689 13.4254 13.3446 13.5456 13.3689 13.0198 12.9240 13.3146 13.9400 14.5174 14.7709 14.5174 13.9400 13.3146 12.9240 13.0198 13.3689 13.5456 13.4895 13.5456 13.3677 13.5117 13.2167 13.1149 13.4426 14.1282 14.8833 15.3353 15.1067 14.5174 13.8359 13.2920 13.1587 13.4254 13.4895 13.3668 13.3677 13.3240 13.4200 13.3122 13.1850 13.3954 14.0412 14.9598 15.4128 15.3353 14.7709 14.1149 13.5189 13.2187 13.3446 13.5456 13.3677 13.3240 13.2956 13.3668 13.5742 13.2660 13.2990 13.7994 14.5715 15.3353 15.4456 15.3353 14.5715 13.7994 13.2990 13.2660 13.5742 13.3668 13.2956 13.3668 13.3677 13.5117 13.2167 13.1149 13.4426 14.1282 14.8833 15.3353 15.1067 14.5174 13.8359 13.2920 13.1587 13.4254 13.4895 13.3668 13.5742 13.5117 13.4123 13.0814 12.9057 13.0082 13.4894 14.1282 14.5715 14.5174 14.1459 13.6213 13.1151 12.9355 13.1434 13.4254 13.5742 13.2660 13.2167 13.0814 12.9430 12.8210 12.7771 13.0082 13.4426 13.7994 13.8359 13.6213 13.2635 12.8467 12.6984 12.9355 13.1587 13.2660 13.2990 13.1149 12.9057 12.8210 12.8319 12.8210 12.9057 13.1149 13.2990 13.2920 13.1151 12.8467 12.5325 12.8467 13.1151 13.2920 13.2990 13.7994 13.4426 13.0082 12.7771 12.8210 12.9430 13.0814 13.2167 13.2660 13.1587 12.9355 12.6984 12.8467 13.2635 13.6213 13.8359 13.7994 14.5715 14.1282 13.4894 13.0082 12.9057 13.0814 13.4123 13.5117 13.5742 13.4254 13.1434 12.9355 13.1151 13.6213 14.1459 14.5174 14.5715 15.3353 14.8833 14.1282 13.4426 13.1149 13.2167 13.5117 13.3677 13.3668 13.4895 13.4254 13.1587 13.2920 13.8359 14.5174 15.1067 15.3353 15.4456 15.3353 14.5715 13.7994 13.2990 13.2660 13.5742 13.3668 13.2956 13.3668 13.5742 13.2660 13.2990 13.7994 14.5715 15.3353 15.4456 15.3353 15.1067 14.5174 13.8359 13.2920 13.1587 13.4254 13.4895 13.3668 13.3677 13.5117 13.2167 13.1149 13.4426 14.1282 14.8833 15.3353 14.5715 14.5174 14.1459 13.6213 13.1151 12.9355 13.1434 13.4254 13.5742 13.5117 13.4123 13.0814 12.9057 13.0082 13.4894 14.1282 14.5715 13.7994 13.8359 13.6213 13.2635 12.8467 12.6984 12.9355 13.1587 13.2660 13.2167 13.0814 12.9430 12.8210 12.7771 13.0082 13.4426 13.7994 13.2990 13.2920 13.1151 12.8467 12.5325 12.8467 13.1151 13.2920 13.2990 13.1149 12.9057 12.8210 12.8319 12.8210 12.9057 13.1149 13.2990 13.2660 13.1587 12.9355 12.6984 12.8467 13.2635 13.6213 13.8359 13.7994 13.4426 13.0082 12.7771 12.8210 12.9430 13.0814 13.2167 13.2660 13.5742 13.4254 13.1434 12.9355 13.1151 13.6213 14.1459 14.5174 14.5715 14.1282 13.4894 13.0082 12.9057 13.0814 13.4123 13.5117 13.5742 13.3668 13.4895 13.4254 13.1587 13.2920 13.8359 14.5174 15.1067 15.3353 14.8833 14.1282 13.4426 13.1149 13.2167 13.5117 13.3677 13.3668 13.2956 13.3668 13.5742 13.2660 13.2990 13.7994 14.5715 15.3353 15.4456 15.3353 14.5715 13.7994 13.2990 13.2660 13.5742 13.3668 13.2956 13.3240 13.3677 13.5456 13.3446 13.2187 13.5189 14.1149 14.7709 15.3353 15.4128 14.9598 14.0412 13.3954 13.1850 13.3122 13.4200 13.3240 13.3677 13.3668 13.4895 13.4254 13.1587 13.2920 13.8359 14.5174 15.1067 15.3353 14.8833 14.1282 13.4426 13.1149 13.2167 13.5117 13.3677 13.5456 13.4895 13.5456 13.3689 13.0198 12.9240 13.3146 13.9400 14.5174 14.7709 14.5174 13.9400 13.3146 12.9240 13.0198 13.3689 13.5456 13.3446 13.4254 13.3689 13.1780 12.8858 12.6173 12.7930 13.3146 13.8359 14.1149 14.0118 13.6213 13.1035 12.6815 12.8263 13.1257 13.3446 13.2187 13.1587 13.0198 12.8858 12.7444 12.5785 12.6173 12.9240 13.2920 13.5189 13.4787 13.2234 12.8467 12.5437 12.8624 13.1111 13.2187 13.5189 13.2920 12.9240 12.6173 12.5785 12.7444 12.8858 13.0198 13.1587 13.2187 13.1111 12.8624 12.5437 12.8467 13.2234 13.4787 13.5189 14.1149 13.8359 13.3146 12.7930 12.6173 12.8858 13.1780 13.3689 13.4254 13.3446 13.1257 12.8263 12.6815 13.1035 13.6213 14.0118 14.1149 14.7709 14.5174 13.9400 13.3146 12.9240 13.0198 13.3689 13.5456 13.4895 13.5456 13.3689 13.0198 12.9240 13.3146 13.9400 14.5174 14.7709 15.3353 15.1067 14.5174 13.8359 13.2920 13.1587 13.4254 13.4895 13.3668 13.3677 13.5117 13.2167 13.1149 13.4426 14.1282 14.8833 15.3353 15.4128 15.3353 14.7709 14.1149 13.5189 13.2187 13.3446 13.5456 13.3677 13.3240 13.4200 13.3122 13.1850 13.3954 14.0412 14.9598 15.4128 14.9598 14.8833 14.5174 14.0118 13.4787 13.1111 13.1257 13.3689 13.5117 13.4200 13.4246 13.2718 13.1483 13.1965 13.5996 14.3207 14.9598 14.0412 14.1282 13.9400 13.6213 13.2234 12.8624 12.8263 13.0198 13.2167 13.3122 13.2718 13.2295 13.1350 13.0646 13.1980 13.5996 14.0412 13.3954 13.4426 13.3146 13.1035 12.8467 12.5437 12.6815 12.9240 13.1149 13.1850 13.1483 13.1350 13.1432 13.0850 13.0646 13.1965 13.3954 13.1850 13.1149 12.9240 12.6815 12.5437 12.8467 13.1035 13.3146 13.4426 13.3954 13.1965 13.0646 13.0850 13.1432 13.1350 13.1483 13.1850 13.3122 13.2167 13.0198 12.8263 12.8624 13.2234 13.6213 13.9400 14.1282 14.0412 13.5996 13.1980 13.0646 13.1350 13.2295 13.2718 13.3122 13.4200 13.5117 13.3689 13.1257 13.1111 13.4787 14.0118 14.5174 14.8833 14.9598 14.3207 13.5996 13.1965 13.1483 13.2718 13.4246 13.4200 13.3240 13.3677 13.5456 13.3446 13.2187 13.5189 14.1149 14.7709 15.3353 15.4128 14.9598 14.0412 13.3954 13.1850 13.3122 13.4200 13.3240 13.4019 13.4246 13.4123 13.1780 13.0381 13.1936 13.6237 14.1149 14.5715 14.9598 15.2488 14.2178 13.5520 13.2892 13.2946 13.3788 13.4019 13.4246 13.4200 13.5117 13.3689 13.1257 13.1111 13.4787 14.0118 14.5174 14.8833 14.9598 14.3207 13.5996 13.1965 13.1483 13.2718 13.4246 13.4123 13.5117 13.5742 13.4254 13.1434 12.9355 13.1151 13.6213 14.1459 14.5174 14.5715 14.1282 13.4894 13.0082 12.9057 13.0814 13.4123 13.1780 13.3689 13.4254 13.3446 13.1257 12.8263 12.6815 13.1035 13.6213 14.0118 14.1149 13.8359 13.3146 12.7930 12.6173 12.8858 13.1780 13.0381 13.1257 13.1434 13.1257 13.0381 12.8390 12.5669 12.6815 13.1151 13.4787 13.6237 13.4787 13.1151 12.6815 12.5669 12.8390 13.0381 13.1936 13.1111 12.9355 12.8263 12.8390 12.8675 12.8390 12.8263 12.9355 13.1111 13.1936 13.0937 12.8624 12.6984 12.8624 13.0937 13.1936 13.6237 13.4787 13.1151 12.6815 12.5669 12.8390 13.0381 13.1257 13.1434 13.1257 13.0381 12.8390 12.5669 12.6815 13.1151 13.4787 13.6237 14.1149 14.0118 13.6213 13.1035 12.6815 12.8263 13.1257 13.3446 13.4254 13.3689 13.1780 12.8858 12.6173 12.7930 13.3146 13.8359 14.1149 14.5715 14.5174 14.1459 13.6213 13.1151 12.9355 13.1434 13.4254 13.5742 13.5117 13.4123 13.0814 12.9057 13.0082 13.4894 14.1282 14.5715 14.9598 14.8833 14.5174 14.0118 13.4787 13.1111 13.1257 13.3689 13.5117 13.4200 13.4246 13.2718 13.1483 13.1965 13.5996 14.3207 14.9598 15.2488 14.9598 14.5715 14.1149 13.6237 13.1936 13.0381 13.1780 13.4123 13.4246 13.4019 13.3788 13.2946 13.2892 13.5520 14.2178 15.2488 14.2178 14.3207 14.1282 13.8359 13.4787 13.0937 12.8390 12.8858 13.0814 13.2718 13.3788 13.4264 13.3681 13.3091 13.3900 13.7275 14.2178 13.5520 13.5996 13.4894 13.3146 13.1151 12.8624 12.5669 12.6173 12.9057 13.1483 13.2946 13.3681 13.3937 13.3430 13.3095 13.3900 13.5520 13.2892 13.1965 13.0082 12.7930 12.6815 12.6984 12.6815 12.7930 13.0082 13.1965 13.2892 13.3091 13.3430 13.3729 13.3430 13.3091 13.2892 13.2946 13.1483 12.9057 12.6173 12.5669 12.8624 13.1151 13.3146 13.4894 13.5996 13.5520 13.3900 13.3095 13.3430 13.3937 13.3681 13.2946 13.3788 13.2718 13.0814 12.8858 12.8390 13.0937 13.4787 13.8359 14.1282 14.3207 14.2178 13.7275 13.3900 13.3091 13.3681 13.4264 13.3788 13.4019 13.4246 13.4123 13.1780 13.0381 13.1936 13.6237 14.1149 14.5715 14.9598 15.2488 14.2178 13.5520 13.2892 13.2946 13.3788 13.4019 13.5061 13.4264 13.2295 12.9430 12.7444 12.8675 13.1936 13.5189 13.7994 14.0412 14.2178 14.1250 13.7299 13.5074 13.4664 13.4982 13.5061 13.4264 13.3788 13.2718 13.0814 12.8858 12.8390 13.0937 13.4787 13.8359 14.1282 14.3207 14.2178 13.7275 13.3900 13.3091 13.3681 13.4264 13.2295 13.2718 13.3122 13.2167 13.0198 12.8263 12.8624 13.2234 13.6213 13.9400 14.1282 14.0412 13.5996 13.1980 13.0646 13.1350 13.2295 12.9430 13.0814 13.2167 13.2660 13.1587 12.9355 12.6984 12.8467 13.2635 13.6213 13.8359 13.7994 13.4426 13.0082 12.7771 12.8210 12.9430 12.7444 12.8858 13.0198 13.1587 13.2187 13.1111 12.8624 12.5437 12.8467 13.2234 13.4787 13.5189 13.2920 12.9240 12.6173 12.5785 12.7444 12.8675 12.8390 12.8263 12.9355 13.1111 13.1936 13.0937 12.8624 12.6984 12.8624 13.0937 13.1936 13.1111 12.9355 12.8263 12.8390 12.8675 13.1936 13.0937 12.8624 12.6984 12.8624 13.0937 13.1936 13.1111 12.9355 12.8263 12.8390 12.8675 12.8390 12.8263 12.9355 13.1111 13.1936 13.5189 13.4787 13.2234 12.8467 12.5437 12.8624 13.1111 13.2187 13.1587 13.0198 12.8858 12.7444 12.5785 12.6173 12.9240 13.2920 13.5189 13.7994 13.8359 13.6213 13.2635 12.8467 12.6984 12.9355 13.1587 13.2660 13.2167 13.0814 12.9430 12.8210 12.7771 13.0082 13.4426 13.7994 14.0412 14.1282 13.9400 13.6213 13.2234 12.8624 12.8263 13.0198 13.2167 13.3122 13.2718 13.2295 13.1350 13.0646 13.1980 13.5996 14.0412 14.2178 14.3207 14.1282 13.8359 13.4787 13.0937 12.8390 12.8858 13.0814 13.2718 13.3788 13.4264 13.3681 13.3091 13.3900 13.7275 14.2178 14.1250 14.2178 14.0412 13.7994 13.5189 13.1936 12.8675 12.7444 12.9430 13.2295 13.4264 13.5061 13.4982 13.4664 13.5074 13.7299 14.1250 13.7299 13.7275 13.5996 13.4426 13.2920 13.1111 12.8390 12.5785 12.8210 13.1350 13.3681 13.4982 13.5418 13.5296 13.5324 13.6084 13.7299 13.5074 13.3900 13.1980 13.0082 12.9240 12.9355 12.8263 12.6173 12.7771 13.0646 13.3091 13.4664 13.5296 13.5407 13.5345 13.5324 13.5074 13.4664 13.3091 13.0646 12.7771 12.6173 12.8263 12.9355 12.9240 13.0082 13.1980 13.3900 13.5074 13.5324 13.5345 13.5407 13.5296 13.4664 13.4982 13.3681 13.1350 12.8210 12.5785 12.8390 13.1111 13.2920 13.4426 13.5996 13.7275 13.7299 13.6084 13.5324 13.5296 13.5418 13.4982 13.5061 13.4264 13.2295 12.9430 12.7444 12.8675 13.1936 13.5189 13.7994 14.0412 14.2178 14.1250 13.7299 13.5074 13.4664 13.4982 13.5061 13.5910 13.5418 13.3937 13.1432 12.8319 12.7444 13.0381 13.2187 13.2990 13.3954 13.5520 13.7299 13.8365 13.7600 13.6592 13.6096 13.5910 13.5418 13.4982 13.3681 13.1350 12.8210 12.5785 12.8390 13.1111 13.2920 13.4426 13.5996 13.7275 13.7299 13.6084 13.5324 13.5296 13.5418 13.3937 13.3681 13.2946 13.1483 12.9057 12.6173 12.5669 12.8624 13.1151 13.3146 13.4894 13.5996 13.5520 13.3900 13.3095 13.3430 13.3937 13.1432 13.1350 13.1483 13.1850 13.1149 12.9240 12.6815 12.5437 12.8467 13.1035 13.3146 13.4426 13.3954 13.1965 13.0646 13.0850 13.1432 12.8319 12.8210 12.9057 13.1149 13.2990 13.2920 13.1151 12.8467 12.5325 12.8467 13.1151 13.2920 13.2990 13.1149 12.9057 12.8210 12.8319 12.7444 12.5785 12.6173 12.9240 13.2920 13.5189 13.4787 13.2234 12.8467 12.5437 12.8624 13.1111 13.2187 13.1587 13.0198 12.8858 12.7444 13.0381 12.8390 12.5669 12.6815 13.1151 13.4787 13.6237 13.4787 13.1151 12.6815 12.5669 12.8390 13.0381 13.1257 13.1434 13.1257 13.0381 13.2187 13.1111 12.8624 12.5437 12.8467 13.2234 13.4787 13.5189 13.2920 12.9240 12.6173 12.5785 12.7444 12.8858 13.0198 13.1587 13.2187 13.2990 13.2920 13.1151 12.8467 12.5325 12.8467 13.1151 13.2920 13.2990 13.1149 12.9057 12.8210 12.8319 12.8210 12.9057 13.1149 13.2990 13.3954 13.4426 13.3146 13.1035 12.8467 12.5437 12.6815 12.9240 13.1149 13.1850 13.1483 13.1350 13.1432 13.0850 13.0646 13.1965 13.3954 13.5520 13.5996 13.4894 13.3146 13.1151 12.8624 12.5669 12.6173 12.9057 13.1483 13.2946 13.3681 13.3937 13.3430 13.3095 13.3900 13.5520 13.7299 13.7275 13.5996 13.4426 13.2920 13.1111 12.8390 12.5785 12.8210 13.1350 13.3681 13.4982 13.5418 13.5296 13.5324 13.6084 13.7299 13.8365 13.7299 13.5520 13.3954 13.2990 13.2187 13.0381 12.7444 12.8319 13.1432 13.3937 13.5418 13.5910 13.6096 13.6592 13.7600 13.8365 13.7600 13.6084 13.3900 13.1965 13.1149 13.1587 13.1257 12.8858 12.8210 13.0850 13.3430 13.5296 13.6096 13.6056 13.6364 13.7199 13.7600 13.6592 13.5324 13.3095 13.0646 12.9057 13.0198 13.1434 13.0198 12.9057 13.0646 13.3095 13.5324 13.6592 13.6364 13.6088 13.6364 13.6592 13.6096 13.5296 13.3430 13.0850 12.8210 12.8858 13.1257 13.1587 13.1149 13.1965 13.3900 13.6084 13.7600 13.7199 13.6364 13.6056 13.6096 13.5910 13.5418 13.3937 13.1432 12.8319 12.7444 13.0381 13.2187 13.2990 13.3954 13.5520 13.7299 13.8365 13.7600 13.6592 13.6096 13.5910 13.5930 13.6056 13.5407 13.3729 13.1432 12.9430 13.1780 13.3446 13.2660 13.1850 13.2892 13.5074 13.7600 13.9412 13.7347 13.6157 13.5930 13.6056 13.6096 13.5296 13.3430 13.0850 12.8210 12.8858 13.1257 13.1587 13.1149 13.1965 13.3900 13.6084 13.7600 13.7199 13.6364 13.6056 13.5407 13.5296 13.4664 13.3091 13.0646 12.7771 12.6173 12.8263 12.9355 12.9240 13.0082 13.1980 13.3900 13.5074 13.5324 13.5345 13.5407 13.3729 13.3430 13.3091 13.2892 13.1965 13.0082 12.7930 12.6815 12.6984 12.6815 12.7930 13.0082 13.1965 13.2892 13.3091 13.3430 13.3729 13.1432 13.0850 13.0646 13.1965 13.3954 13.4426 13.3146 13.1035 12.8467 12.5437 12.6815 12.9240 13.1149 13.1850 13.1483 13.1350 13.1432 12.9430 12.8210 12.7771 13.0082 13.4426 13.7994 13.8359 13.6213 13.2635 12.8467 12.6984 12.9355 13.1587 13.2660 13.2167 13.0814 12.9430 13.1780 12.8858 12.6173 12.7930 13.3146 13.8359 14.1149 14.0118 13.6213 13.1035 12.6815 12.8263 13.1257 13.3446 13.4254 13.3689 13.1780 13.3446 13.1257 12.8263 12.6815 13.1035 13.6213 14.0118 14.1149 13.8359 13.3146 12.7930 12.6173 12.8858 13.1780 13.3689 13.4254 13.3446 13.2660 13.1587 12.9355 12.6984 12.8467 13.2635 13.6213 13.8359 13.7994 13.4426 13.0082 12.7771 12.8210 12.9430 13.0814 13.2167 13.2660 13.1850 13.1149 12.9240 12.6815 12.5437 12.8467 13.1035 13.3146 13.4426 13.3954 13.1965 13.0646 13.0850 13.1432 13.1350 13.1483 13.1850 13.2892 13.1965 13.0082 12.7930 12.6815 12.6984 12.6815 12.7930 13.0082 13.1965 13.2892 13.3091 13.3430 13.3729 13.3430 13.3091 13.2892 13.5074 13.3900 13.1980 13.0082 12.9240 12.9355 12.8263 12.6173 12.7771 13.0646 13.3091 13.4664 13.5296 13.5407 13.5345 13.5324 13.5074 13.7600 13.6084 13.3900 13.1965 13.1149 13.1587 13.1257 12.8858 12.8210 13.0850 13.3430 13.5296 13.6096 13.6056 13.6364 13.7199 13.7600 13.9412 13.7600 13.5074 13.2892 13.1850 13.2660 13.3446 13.1780 12.9430 13.1432 13.3729 13.5407 13.6056 13.5930 13.6157 13.7347 13.9412 13.7347 13.7199 13.5324 13.3091 13.1483 13.2167 13.4254 13.3689 13.0814 13.1350 13.3430 13.5345 13.6364 13.6157 13.5751 13.6185 13.7347 13.6157 13.6364 13.5345 13.3430 13.1350 13.0814 13.3689 13.4254 13.2167 13.1483 13.3091 13.5324 13.7199 13.7347 13.6185 13.5751 13.6157 13.5930 13.6056 13.5407 13.3729 13.1432 12.9430 13.1780 13.3446 13.2660 13.1850 13.2892 13.5074 13.7600 13.9412 13.7347 13.6157 13.5930 13.5044 13.5751 13.6088 13.5407 13.3937 13.2295 13.4123 13.5456 13.5742 13.3122 13.2946 13.4664 13.6592 13.7347 13.6277 13.5209 13.5044 13.5751 13.6157 13.6364 13.5345 13.3430 13.1350 13.0814 13.3689 13.4254 13.2167 13.1483 13.3091 13.5324 13.7199 13.7347 13.6185 13.5751 13.6088 13.6364 13.6592 13.5324 13.3095 13.0646 12.9057 13.0198 13.1434 13.0198 12.9057 13.0646 13.3095 13.5324 13.6592 13.6364 13.6088 13.5407 13.5345 13.5324 13.5074 13.3900 13.1980 13.0082 12.9240 12.9355 12.8263 12.6173 12.7771 13.0646 13.3091 13.4664 13.5296 13.5407 13.3937 13.3430 13.3095 13.3900 13.5520 13.5996 13.4894 13.3146 13.1151 12.8624 12.5669 12.6173 12.9057 13.1483 13.2946 13.3681 13.3937 13.2295 13.1350 13.0646 13.1980 13.5996 14.0412 14.1282 13.9400 13.6213 13.2234 12.8624 12.8263 13.0198 13.2167 13.3122 13.2718 13.2295 13.4123 13.0814 12.9057 13.0082 13.4894 14.1282 14.5715 14.5174 14.1459 13.6213 13.1151 12.9355 13.1434 13.4254 13.5742 13.5117 13.4123 13.5456 13.3689 13.0198 12.9240 13.3146 13.9400 14.5174 14.7709 14.5174 13.9400 13.3146 12.9240 13.0198 13.3689 13.5456 13.4895 13.5456 13.5742 13.4254 13.1434 12.9355 13.1151 13.6213 14.1459 14.5174 14.5715 14.1282 13.4894 13.0082 12.9057 13.0814 13.4123 13.5117 13.5742 13.3122 13.2167 13.0198 12.8263 12.8624 13.2234 13.6213 13.9400 14.1282 14.0412 13.5996 13.1980 13.0646 13.1350 13.2295 13.2718 13.3122 13.2946 13.1483 12.9057 12.6173 12.5669 12.8624 13.1151 13.3146 13.4894 13.5996 13.5520 13.3900 13.3095 13.3430 13.3937 13.3681 13.2946 13.4664 13.3091 13.0646 12.7771 12.6173 12.8263 12.9355 12.9240 13.0082 13.1980 13.3900 13.5074 13.5324 13.5345 13.5407 13.5296 13.4664 13.6592 13.5324 13.3095 13.0646 12.9057 13.0198 13.1434 13.0198 12.9057 13.0646 13.3095 13.5324 13.6592 13.6364 13.6088 13.6364 13.6592 13.7347 13.7199 13.5324 13.3091 13.1483 13.2167 13.4254 13.3689 13.0814 13.1350 13.3430 13.5345 13.6364 13.6157 13.5751 13.6185 13.7347 13.6277 13.7347 13.6592 13.4664 13.2946 13.3122 13.5742 13.5456 13.4123 13.2295 13.3937 13.5407 13.6088 13.5751 13.5044 13.5209 13.6277 13.5209 13.6185 13.6364 13.5296 13.3681 13.2718 13.5117 13.4895 13.5117 13.2718 13.3681 13.5296 13.6364 13.6185 13.5209 13.4642 13.5209 13.5044 13.5751 13.6088 13.5407 13.3937 13.2295 13.4123 13.5456 13.5742 13.3122 13.2946 13.4664 13.6592 13.7347 13.6277 13.5209 13.5044 13.4061 13.4642 13.5751 13.6056 13.5418 13.4264 13.4246 13.3677 13.3668 13.4200 13.3788 13.4982 13.6096 13.6157 13.5209 13.4324 13.4061 13.4642 13.5209 13.6185 13.6364 13.5296 13.3681 13.2718 13.5117 13.4895 13.5117 13.2718 13.3681 13.5296 13.6364 13.6185 13.5209 13.4642 13.5751 13.6185 13.7347 13.7199 13.5324 13.3091 13.1483 13.2167 13.4254 13.3689 13.0814 13.1350 13.3430 13.5345 13.6364 13.6157 13.5751 13.6056 13.6364 13.7199 13.7600 13.6084 13.3900 13.1965 13.1149 13.1587 13.1257 12.8858 12.8210 13.0850 13.3430 13.5296 13.6096 13.6056 13.5418 13.5296 13.5324 13.6084 13.7299 13.7275 13.5996 13.4426 13.2920 13.1111 12.8390 12.5785 12.8210 13.1350 13.3681 13.4982 13.5418 13.4264 13.3681 13.3091 13.3900 13.7275 14.2178 14.3207 14.1282 13.8359 13.4787 13.0937 12.8390 12.8858 13.0814 13.2718 13.3788 13.4264 13.4246 13.2718 13.1483 13.1965 13.5996 14.3207 14.9598 14.8833 14.5174 14.0118 13.4787 13.1111 13.1257 13.3689 13.5117 13.4200 13.4246 13.3677 13.5117 13.2167 13.1149 13.4426 14.1282 14.8833 15.3353 15.1067 14.5174 13.8359 13.2920 13.1587 13.4254 13.4895 13.3668 13.3677 13.3668 13.4895 13.4254 13.1587 13.2920 13.8359 14.5174 15.1067 15.3353 14.8833 14.1282 13.4426 13.1149 13.2167 13.5117 13.3677 13.3668 13.4200 13.5117 13.3689 13.1257 13.1111 13.4787 14.0118 14.5174 14.8833 14.9598 14.3207 13.5996 13.1965 13.1483 13.2718 13.4246 13.4200 13.3788 13.2718 13.0814 12.8858 12.8390 13.0937 13.4787 13.8359 14.1282 14.3207 14.2178 13.7275 13.3900 13.3091 13.3681 13.4264 13.3788 13.4982 13.3681 13.1350 12.8210 12.5785 12.8390 13.1111 13.2920 13.4426 13.5996 13.7275 13.7299 13.6084 13.5324 13.5296 13.5418 13.4982 13.6096 13.5296 13.3430 13.0850 12.8210 12.8858 13.1257 13.1587 13.1149 13.1965 13.3900 13.6084 13.7600 13.7199 13.6364 13.6056 13.6096 13.6157 13.6364 13.5345 13.3430 13.1350 13.0814 13.3689 13.4254 13.2167 13.1483 13.3091 13.5324 13.7199 13.7347 13.6185 13.5751 13.6157 13.5209 13.6185 13.6364 13.5296 13.3681 13.2718 13.5117 13.4895 13.5117 13.2718 13.3681 13.5296 13.6364 13.6185 13.5209 13.4642 13.5209 13.4324 13.5209 13.6157 13.6096 13.4982 13.3788 13.4200 13.3668 13.3677 13.4246 13.4264 13.5418 13.6056 13.5751 13.4642 13.4061 13.4324 13.4061 13.4642 13.5751 13.6056 13.5418 13.4264 13.4246 13.3677 13.3668 13.4200 13.3788 13.4982 13.6096 13.6157 13.5209 13.4324 13.4061 13.3663 13.4061 13.5044 13.5930 13.5910 13.5061 13.4019 13.3240 13.2956 13.3240 13.4019 13.5061 13.5910 13.5930 13.5044 13.4061 13.3663 13.4061 13.4324 13.5209 13.6157 13.6096 13.4982 13.3788 13.4200 13.3668 13.3677 13.4246 13.4264 13.5418 13.6056 13.5751 13.4642 13.4061 13.5044 13.5209 13.6277 13.7347 13.6592 13.4664 13.2946 13.3122 13.5742 13.5456 13.4123 13.2295 13.3937 13.5407 13.6088 13.5751 13.5044 13.5930 13.6157 13.7347 13.9412 13.7600 13.5074 13.2892 13.1850 13.2660 13.3446 13.1780 12.9430 13.1432 13.3729 13.5407 13.6056 13.5930 13.5910 13.6096 13.6592 13.7600 13.8365 13.7299 13.5520 13.3954 13.2990 13.2187 13.0381 12.7444 12.8319 13.1432 13.3937 13.5418 13.5910 13.5061 13.4982 13.4664 13.5074 13.7299 14.1250 14.2178 14.0412 13.7994 13.5189 13.1936 12.8675 12.7444 12.9430 13.2295 13.4264 13.5061 13.4019 13.3788 13.2946 13.2892 13.5520 14.2178 15.2488 14.9598 14.5715 14.1149 13.6237 13.1936 13.0381 13.1780 13.4123 13.4246 13.4019 13.3240 13.4200 13.3122 13.1850 13.3954 14.0412 14.9598 15.4128 15.3353 14.7709 14.1149 13.5189 13.2187 13.3446 13.5456 13.3677 13.3240 13.2956 13.3668 13.5742 13.2660 13.2990 13.7994 14.5715 15.3353 15.4456 15.3353 14.5715 13.7994 13.2990 13.2660 13.5742 13.3668 13.2956 13.3240 13.3677 13.5456 13.3446 13.2187 13.5189 14.1149 14.7709 15.3353 15.4128 14.9598 14.0412 13.3954 13.1850 13.3122 13.4200 13.3240 13.4019 13.4246 13.4123 13.1780 13.0381 13.1936 13.6237 14.1149 14.5715 14.9598 15.2488 14.2178 13.5520 13.2892 13.2946 13.3788 13.4019 13.5061 13.4264 13.2295 12.9430 12.7444 12.8675 13.1936 13.5189 13.7994 14.0412 14.2178 14.1250 13.7299 13.5074 13.4664 13.4982 13.5061 13.5910 13.5418 13.3937 13.1432 12.8319 12.7444 13.0381 13.2187 13.2990 13.3954 13.5520 13.7299 13.8365 13.7600 13.6592 13.6096 13.5910 13.5930 13.6056 13.5407 13.3729 13.1432 12.9430 13.1780 13.3446 13.2660 13.1850 13.2892 13.5074 13.7600 13.9412 13.7347 13.6157 13.5930 13.5044 13.5751 13.6088 13.5407 13.3937 13.2295 13.4123 13.5456 13.5742 13.3122 13.2946 13.4664 13.6592 13.7347 13.6277 13.5209 13.5044 13.4061 13.4642 13.5751 13.6056 13.5418 13.4264 13.4246 13.3677 13.3668 13.4200 13.3788 13.4982 13.6096 13.6157 13.5209 13.4324 13.4061 13.3663 13.4061 13.5044 13.5930 13.5910 13.5061 13.4019 13.3240 13.2956 13.3240 13.4019 13.5061 13.5910 13.5930 13.5044 13.4061 13.3663 BAND: 4 13.3663 13.4061 13.5044 13.5930 13.5910 13.5061 13.5540 14.4599 14.9840 14.4599 13.5540 13.5061 13.5910 13.5930 13.5044 13.4061 13.3663 13.4061 13.4324 13.5258 13.6289 13.6638 13.6092 13.5113 13.8210 14.3185 14.2314 13.6104 13.5242 13.6310 13.6684 13.5816 13.4824 13.4061 13.5044 13.5258 13.6277 13.7594 13.8413 13.8267 13.7451 13.6483 13.6353 13.7294 13.5728 13.6540 13.7715 13.8532 13.7397 13.5816 13.5044 13.5930 13.6289 13.7594 13.9412 14.0927 14.1361 14.0825 13.9885 13.8979 13.8384 13.8264 13.8681 13.9615 14.0871 13.8532 13.6684 13.5930 13.5910 13.6638 13.8413 14.0927 14.3491 14.4936 14.4863 14.4042 14.3035 14.2136 14.1506 14.1163 14.0822 13.9615 13.7715 13.6310 13.5910 13.5061 13.6092 13.8267 14.1361 14.4936 14.8083 14.9030 14.8413 14.7379 14.6203 14.4916 14.3327 14.1163 13.8681 13.6540 13.5242 13.5061 13.5540 13.5113 13.7451 14.0825 14.4863 14.9030 15.2488 15.2243 15.1266 14.9885 14.7834 14.4916 14.1506 13.8264 13.5728 13.6104 13.5540 14.4599 13.8210 13.6483 13.9885 14.4042 14.8413 15.2243 15.5764 15.3755 15.2444 14.9885 14.6203 14.2136 13.8384 13.7294 14.2314 14.4599 14.9840 14.3185 13.6353 13.8979 14.3035 14.7379 15.1266 15.3755 15.6990 15.3755 15.1266 14.7379 14.3035 13.8979 13.6353 14.3185 14.9840 14.4599 14.2314 13.7294 13.8384 14.2136 14.6203 14.9885 15.2444 15.3755 15.5764 15.2243 14.8413 14.4042 13.9885 13.6483 13.8210 14.4599 13.5540 13.6104 13.5728 13.8264 14.1506 14.4916 14.7834 14.9885 15.1266 15.2243 15.2488 14.9030 14.4863 14.0825 13.7451 13.5113 13.5540 13.5061 13.5242 13.6540 13.8681 14.1163 14.3327 14.4916 14.6203 14.7379 14.8413 14.9030 14.8083 14.4936 14.1361 13.8267 13.6092 13.5061 13.5910 13.6310 13.7715 13.9615 14.0822 14.1163 14.1506 14.2136 14.3035 14.4042 14.4863 14.4936 14.3491 14.0927 13.8413 13.6638 13.5910 13.5930 13.6684 13.8532 14.0871 13.9615 13.8681 13.8264 13.8384 13.8979 13.9885 14.0825 14.1361 14.0927 13.9412 13.7594 13.6289 13.5930 13.5044 13.5816 13.7397 13.8532 13.7715 13.6540 13.5728 13.7294 13.6353 13.6483 13.7451 13.8267 13.8413 13.7594 13.6277 13.5258 13.5044 13.4061 13.4824 13.5816 13.6684 13.6310 13.5242 13.6104 14.2314 14.3185 13.8210 13.5113 13.6092 13.6638 13.6289 13.5258 13.4324 13.4061 13.3663 13.4061 13.5044 13.5930 13.5910 13.5061 13.5540 14.4599 14.9840 14.4599 13.5540 13.5061 13.5910 13.5930 13.5044 13.4061 13.3663 13.4061 13.4324 13.5258 13.6289 13.6638 13.6092 13.5113 13.8210 14.3185 14.2314 13.6104 13.5242 13.6310 13.6684 13.5816 13.4824 13.4061 13.4324 13.4061 13.4824 13.5816 13.6684 13.6310 13.5242 13.6104 14.2314 14.3185 13.8210 13.5113 13.6092 13.6638 13.6289 13.5258 13.4324 13.5258 13.4824 13.5258 13.6396 13.7707 13.7859 13.7014 13.6001 13.6620 13.8875 13.6620 13.6001 13.7014 13.7859 13.7707 13.6396 13.5258 13.6289 13.5816 13.6396 13.7594 13.9460 14.0472 14.0006 13.9046 13.8102 13.7430 13.7370 13.7935 13.8898 14.0050 13.9912 13.7707 13.6289 13.6638 13.6684 13.7707 13.9460 14.0927 14.3501 14.3925 14.3080 14.1980 14.0970 14.0395 14.0505 14.1103 14.1670 14.0050 13.7859 13.6638 13.6092 13.6310 13.7859 14.0472 14.3501 14.4936 14.8073 14.7719 14.6435 14.5048 14.3858 14.3104 14.2498 14.1103 13.8898 13.7014 13.6092 13.5113 13.5242 13.7014 14.0006 14.3925 14.8073 14.9030 15.2284 15.0726 14.8961 14.7152 14.5283 14.3104 14.0505 13.7935 13.6001 13.5113 13.8210 13.6104 13.6001 13.9046 14.3080 14.7719 15.2284 15.2243 15.3404 15.1851 14.9808 14.7152 14.3858 14.0395 13.7370 13.6620 13.8210 14.3185 14.2314 13.6620 13.8102 14.1980 14.6435 15.0726 15.3404 15.3755 15.3396 15.1851 14.8961 14.5048 14.0970 13.7430 13.8875 14.3185 14.2314 14.3185 13.8875 13.7430 14.0970 14.5048 14.8961 15.1851 15.3396 15.3755 15.3404 15.0726 14.6435 14.1980 13.8102 13.6620 14.2314 13.6104 13.8210 13.6620 13.7370 14.0395 14.3858 14.7152 14.9808 15.1851 15.3404 15.2243 15.2284 14.7719 14.3080 13.9046 13.6001 13.6104 13.5242 13.5113 13.6001 13.7935 14.0505 14.3104 14.5283 14.7152 14.8961 15.0726 15.2284 14.9030 14.8073 14.3925 14.0006 13.7014 13.5242 13.6310 13.6092 13.7014 13.8898 14.1103 14.2498 14.3104 14.3858 14.5048 14.6435 14.7719 14.8073 14.4936 14.3501 14.0472 13.7859 13.6310 13.6684 13.6638 13.7859 14.0050 14.1670 14.1103 14.0505 14.0395 14.0970 14.1980 14.3080 14.3925 14.3501 14.0927 13.9460 13.7707 13.6684 13.5816 13.6289 13.7707 13.9912 14.0050 13.8898 13.7935 13.7370 13.7430 13.8102 13.9046 14.0006 14.0472 13.9460 13.7594 13.6396 13.5816 13.4824 13.5258 13.6396 13.7707 13.7859 13.7014 13.6001 13.6620 13.8875 13.6620 13.6001 13.7014 13.7859 13.7707 13.6396 13.5258 13.4824 13.4061 13.4324 13.5258 13.6289 13.6638 13.6092 13.5113 13.8210 14.3185 14.2314 13.6104 13.5242 13.6310 13.6684 13.5816 13.4824 13.4061 13.5044 13.5258 13.6277 13.7594 13.8413 13.8267 13.7451 13.6483 13.6353 13.7294 13.5728 13.6540 13.7715 13.8532 13.7397 13.5816 13.5044 13.5258 13.4824 13.5258 13.6396 13.7707 13.7859 13.7014 13.6001 13.6620 13.8875 13.6620 13.6001 13.7014 13.7859 13.7707 13.6396 13.5258 13.6277 13.5258 13.5044 13.5816 13.7397 13.8532 13.7715 13.6540 13.5728 13.7294 13.6353 13.6483 13.7451 13.8267 13.8413 13.7594 13.6277 13.7594 13.6396 13.5816 13.6289 13.7707 13.9912 14.0050 13.8898 13.7935 13.7370 13.7430 13.8102 13.9046 14.0006 14.0472 13.9460 13.7594 13.8413 13.7707 13.7397 13.7707 13.8413 14.0472 14.3660 14.2726 14.1544 14.0525 14.0056 14.0525 14.1544 14.2726 14.3660 14.0472 13.8413 13.8267 13.7859 13.8532 13.9912 14.0472 14.1361 14.3925 14.7229 14.5957 14.4384 14.3154 14.2927 14.3662 14.4353 14.2726 14.0006 13.8267 13.7451 13.7014 13.7715 14.0050 14.3660 14.3925 14.4863 14.7719 14.9784 14.8075 14.6105 14.4811 14.4366 14.3662 14.1544 13.9046 13.7451 13.6483 13.6001 13.6540 13.8898 14.2726 14.7229 14.7719 14.8413 15.0726 15.0578 14.8529 14.6524 14.4811 14.2927 14.0525 13.8102 13.6483 13.6353 13.6620 13.5728 13.7935 14.1544 14.5957 14.9784 15.0726 15.1266 15.1851 15.0491 14.8529 14.6105 14.3154 14.0056 13.7430 13.6353 13.7294 13.8875 13.7294 13.7370 14.0525 14.4384 14.8075 15.0578 15.1851 15.2444 15.1851 15.0578 14.8075 14.4384 14.0525 13.7370 13.7294 13.5728 13.6620 13.6353 13.7430 14.0056 14.3154 14.6105 14.8529 15.0491 15.1851 15.1266 15.0726 14.9784 14.5957 14.1544 13.7935 13.5728 13.6540 13.6001 13.6483 13.8102 14.0525 14.2927 14.4811 14.6524 14.8529 15.0578 15.0726 14.8413 14.7719 14.7229 14.2726 13.8898 13.6540 13.7715 13.7014 13.7451 13.9046 14.1544 14.3662 14.4366 14.4811 14.6105 14.8075 14.9784 14.7719 14.4863 14.3925 14.3660 14.0050 13.7715 13.8532 13.7859 13.8267 14.0006 14.2726 14.4353 14.3662 14.2927 14.3154 14.4384 14.5957 14.7229 14.3925 14.1361 14.0472 13.9912 13.8532 13.7397 13.7707 13.8413 14.0472 14.3660 14.2726 14.1544 14.0525 14.0056 14.0525 14.1544 14.2726 14.3660 14.0472 13.8413 13.7707 13.7397 13.5816 13.6396 13.7594 13.9460 14.0472 14.0006 13.9046 13.8102 13.7430 13.7370 13.7935 13.8898 14.0050 13.9912 13.7707 13.6289 13.5816 13.5044 13.5258 13.6277 13.7594 13.8413 13.8267 13.7451 13.6483 13.6353 13.7294 13.5728 13.6540 13.7715 13.8532 13.7397 13.5816 13.5044 13.5930 13.6289 13.7594 13.9412 14.0927 14.1361 14.0825 13.9885 13.8979 13.8384 13.8264 13.8681 13.9615 14.0871 13.8532 13.6684 13.5930 13.6289 13.5816 13.6396 13.7594 13.9460 14.0472 14.0006 13.9046 13.8102 13.7430 13.7370 13.7935 13.8898 14.0050 13.9912 13.7707 13.6289 13.7594 13.6396 13.5816 13.6289 13.7707 13.9912 14.0050 13.8898 13.7935 13.7370 13.7430 13.8102 13.9046 14.0006 14.0472 13.9460 13.7594 13.9412 13.7594 13.6289 13.5930 13.6684 13.8532 14.0871 13.9615 13.8681 13.8264 13.8384 13.8979 13.9885 14.0825 14.1361 14.0927 13.9412 14.0927 13.9460 13.7707 13.6684 13.6638 13.7859 14.0050 14.1670 14.1103 14.0505 14.0395 14.0970 14.1980 14.3080 14.3925 14.3501 14.0927 14.1361 14.0472 13.9912 13.8532 13.7859 13.8267 14.0006 14.2726 14.4353 14.3662 14.2927 14.3154 14.4384 14.5957 14.7229 14.3925 14.1361 14.0825 14.0006 14.0050 14.0871 14.0050 14.0006 14.0825 14.3080 14.5957 14.6496 14.5231 14.4542 14.5231 14.6496 14.5957 14.3080 14.0825 13.9885 13.9046 13.8898 13.9615 14.1670 14.2726 14.3080 14.4042 14.6435 14.8075 14.7022 14.5525 14.5028 14.5231 14.4384 14.1980 13.9885 13.8979 13.8102 13.7935 13.8681 14.1103 14.4353 14.5957 14.6435 14.7379 14.8961 14.8529 14.6882 14.5525 14.4542 14.3154 14.0970 13.8979 13.8384 13.7430 13.7370 13.8264 14.0505 14.3662 14.6496 14.8075 14.8961 14.9885 14.9808 14.8529 14.7022 14.5231 14.2927 14.0395 13.8384 13.8264 13.7370 13.7430 13.8384 14.0395 14.2927 14.5231 14.7022 14.8529 14.9808 14.9885 14.8961 14.8075 14.6496 14.3662 14.0505 13.8264 13.8681 13.7935 13.8102 13.8979 14.0970 14.3154 14.4542 14.5525 14.6882 14.8529 14.8961 14.7379 14.6435 14.5957 14.4353 14.1103 13.8681 13.9615 13.8898 13.9046 13.9885 14.1980 14.4384 14.5231 14.5028 14.5525 14.7022 14.8075 14.6435 14.4042 14.3080 14.2726 14.1670 13.9615 14.0871 14.0050 14.0006 14.0825 14.3080 14.5957 14.6496 14.5231 14.4542 14.5231 14.6496 14.5957 14.3080 14.0825 14.0006 14.0050 14.0871 13.8532 13.9912 14.0472 14.1361 14.3925 14.7229 14.5957 14.4384 14.3154 14.2927 14.3662 14.4353 14.2726 14.0006 13.8267 13.7859 13.8532 13.6684 13.7707 13.9460 14.0927 14.3501 14.3925 14.3080 14.1980 14.0970 14.0395 14.0505 14.1103 14.1670 14.0050 13.7859 13.6638 13.6684 13.5930 13.6289 13.7594 13.9412 14.0927 14.1361 14.0825 13.9885 13.8979 13.8384 13.8264 13.8681 13.9615 14.0871 13.8532 13.6684 13.5930 13.5910 13.6638 13.8413 14.0927 14.3491 14.4936 14.4863 14.4042 14.3035 14.2136 14.1506 14.1163 14.0822 13.9615 13.7715 13.6310 13.5910 13.6638 13.6684 13.7707 13.9460 14.0927 14.3501 14.3925 14.3080 14.1980 14.0970 14.0395 14.0505 14.1103 14.1670 14.0050 13.7859 13.6638 13.8413 13.7707 13.7397 13.7707 13.8413 14.0472 14.3660 14.2726 14.1544 14.0525 14.0056 14.0525 14.1544 14.2726 14.3660 14.0472 13.8413 14.0927 13.9460 13.7707 13.6684 13.6638 13.7859 14.0050 14.1670 14.1103 14.0505 14.0395 14.0970 14.1980 14.3080 14.3925 14.3501 14.0927 14.3491 14.0927 13.8413 13.6638 13.5910 13.6310 13.7715 13.9615 14.0822 14.1163 14.1506 14.2136 14.3035 14.4042 14.4863 14.4936 14.3491 14.4936 14.3501 14.0472 13.7859 13.6310 13.6092 13.7014 13.8898 14.1103 14.2498 14.3104 14.3858 14.5048 14.6435 14.7719 14.8073 14.4936 14.4863 14.3925 14.3660 14.0050 13.7715 13.7014 13.7451 13.9046 14.1544 14.3662 14.4366 14.4811 14.6105 14.8075 14.9784 14.7719 14.4863 14.4042 14.3080 14.2726 14.1670 13.9615 13.8898 13.9046 13.9885 14.1980 14.4384 14.5231 14.5028 14.5525 14.7022 14.8075 14.6435 14.4042 14.3035 14.1980 14.1544 14.1103 14.0822 14.1103 14.1544 14.1980 14.3035 14.5048 14.6105 14.5525 14.5060 14.5525 14.6105 14.5048 14.3035 14.2136 14.0970 14.0525 14.0505 14.1163 14.2498 14.3662 14.4384 14.5048 14.6203 14.7152 14.6524 14.5525 14.5028 14.4811 14.3858 14.2136 14.1506 14.0395 14.0056 14.0395 14.1506 14.3104 14.4366 14.5231 14.6105 14.7152 14.7834 14.7152 14.6105 14.5231 14.4366 14.3104 14.1506 14.1163 14.0505 14.0525 14.0970 14.2136 14.3858 14.4811 14.5028 14.5525 14.6524 14.7152 14.6203 14.5048 14.4384 14.3662 14.2498 14.1163 14.0822 14.1103 14.1544 14.1980 14.3035 14.5048 14.6105 14.5525 14.5060 14.5525 14.6105 14.5048 14.3035 14.1980 14.1544 14.1103 14.0822 13.9615 14.1670 14.2726 14.3080 14.4042 14.6435 14.8075 14.7022 14.5525 14.5028 14.5231 14.4384 14.1980 13.9885 13.9046 13.8898 13.9615 13.7715 14.0050 14.3660 14.3925 14.4863 14.7719 14.9784 14.8075 14.6105 14.4811 14.4366 14.3662 14.1544 13.9046 13.7451 13.7014 13.7715 13.6310 13.7859 14.0472 14.3501 14.4936 14.8073 14.7719 14.6435 14.5048 14.3858 14.3104 14.2498 14.1103 13.8898 13.7014 13.6092 13.6310 13.5910 13.6638 13.8413 14.0927 14.3491 14.4936 14.4863 14.4042 14.3035 14.2136 14.1506 14.1163 14.0822 13.9615 13.7715 13.6310 13.5910 13.5061 13.6092 13.8267 14.1361 14.4936 14.8083 14.9030 14.8413 14.7379 14.6203 14.4916 14.3327 14.1163 13.8681 13.6540 13.5242 13.5061 13.6092 13.6310 13.7859 14.0472 14.3501 14.4936 14.8073 14.7719 14.6435 14.5048 14.3858 14.3104 14.2498 14.1103 13.8898 13.7014 13.6092 13.8267 13.7859 13.8532 13.9912 14.0472 14.1361 14.3925 14.7229 14.5957 14.4384 14.3154 14.2927 14.3662 14.4353 14.2726 14.0006 13.8267 14.1361 14.0472 13.9912 13.8532 13.7859 13.8267 14.0006 14.2726 14.4353 14.3662 14.2927 14.3154 14.4384 14.5957 14.7229 14.3925 14.1361 14.4936 14.3501 14.0472 13.7859 13.6310 13.6092 13.7014 13.8898 14.1103 14.2498 14.3104 14.3858 14.5048 14.6435 14.7719 14.8073 14.4936 14.8083 14.4936 14.1361 13.8267 13.6092 13.5061 13.5242 13.6540 13.8681 14.1163 14.3327 14.4916 14.6203 14.7379 14.8413 14.9030 14.8083 14.9030 14.8073 14.3925 14.0006 13.7014 13.5242 13.5113 13.6001 13.7935 14.0505 14.3104 14.5283 14.7152 14.8961 15.0726 15.2284 14.9030 14.8413 14.7719 14.7229 14.2726 13.8898 13.6540 13.6001 13.6483 13.8102 14.0525 14.2927 14.4811 14.6524 14.8529 15.0578 15.0726 14.8413 14.7379 14.6435 14.5957 14.4353 14.1103 13.8681 13.7935 13.8102 13.8979 14.0970 14.3154 14.4542 14.5525 14.6882 14.8529 14.8961 14.7379 14.6203 14.5048 14.4384 14.3662 14.2498 14.1163 14.0505 14.0525 14.0970 14.2136 14.3858 14.4811 14.5028 14.5525 14.6524 14.7152 14.6203 14.4916 14.3858 14.3154 14.2927 14.3104 14.3327 14.3104 14.2927 14.3154 14.3858 14.4916 14.5283 14.4811 14.4542 14.4811 14.5283 14.4916 14.3327 14.3104 14.2927 14.3154 14.3858 14.4916 14.5283 14.4811 14.4542 14.4811 14.5283 14.4916 14.3858 14.3154 14.2927 14.3104 14.3327 14.1163 14.2498 14.3662 14.4384 14.5048 14.6203 14.7152 14.6524 14.5525 14.5028 14.4811 14.3858 14.2136 14.0970 14.0525 14.0505 14.1163 13.8681 14.1103 14.4353 14.5957 14.6435 14.7379 14.8961 14.8529 14.6882 14.5525 14.4542 14.3154 14.0970 13.8979 13.8102 13.7935 13.8681 13.6540 13.8898 14.2726 14.7229 14.7719 14.8413 15.0726 15.0578 14.8529 14.6524 14.4811 14.2927 14.0525 13.8102 13.6483 13.6001 13.6540 13.5242 13.7014 14.0006 14.3925 14.8073 14.9030 15.2284 15.0726 14.8961 14.7152 14.5283 14.3104 14.0505 13.7935 13.6001 13.5113 13.5242 13.5061 13.6092 13.8267 14.1361 14.4936 14.8083 14.9030 14.8413 14.7379 14.6203 14.4916 14.3327 14.1163 13.8681 13.6540 13.5242 13.5061 13.5540 13.5113 13.7451 14.0825 14.4863 14.9030 15.2488 15.2243 15.1266 14.9885 14.7834 14.4916 14.1506 13.8264 13.5728 13.6104 13.5540 13.5113 13.5242 13.7014 14.0006 14.3925 14.8073 14.9030 15.2284 15.0726 14.8961 14.7152 14.5283 14.3104 14.0505 13.7935 13.6001 13.5113 13.7451 13.7014 13.7715 14.0050 14.3660 14.3925 14.4863 14.7719 14.9784 14.8075 14.6105 14.4811 14.4366 14.3662 14.1544 13.9046 13.7451 14.0825 14.0006 14.0050 14.0871 14.0050 14.0006 14.0825 14.3080 14.5957 14.6496 14.5231 14.4542 14.5231 14.6496 14.5957 14.3080 14.0825 14.4863 14.3925 14.3660 14.0050 13.7715 13.7014 13.7451 13.9046 14.1544 14.3662 14.4366 14.4811 14.6105 14.8075 14.9784 14.7719 14.4863 14.9030 14.8073 14.3925 14.0006 13.7014 13.5242 13.5113 13.6001 13.7935 14.0505 14.3104 14.5283 14.7152 14.8961 15.0726 15.2284 14.9030 15.2488 14.9030 14.4863 14.0825 13.7451 13.5113 13.5540 13.6104 13.5728 13.8264 14.1506 14.4916 14.7834 14.9885 15.1266 15.2243 15.2488 15.2243 15.2284 14.7719 14.3080 13.9046 13.6001 13.6104 13.8210 13.6620 13.7370 14.0395 14.3858 14.7152 14.9808 15.1851 15.3404 15.2243 15.1266 15.0726 14.9784 14.5957 14.1544 13.7935 13.5728 13.6620 13.6353 13.7430 14.0056 14.3154 14.6105 14.8529 15.0491 15.1851 15.1266 14.9885 14.8961 14.8075 14.6496 14.3662 14.0505 13.8264 13.7370 13.7430 13.8384 14.0395 14.2927 14.5231 14.7022 14.8529 14.9808 14.9885 14.7834 14.7152 14.6105 14.5231 14.4366 14.3104 14.1506 14.0395 14.0056 14.0395 14.1506 14.3104 14.4366 14.5231 14.6105 14.7152 14.7834 14.4916 14.5283 14.4811 14.4542 14.4811 14.5283 14.4916 14.3858 14.3154 14.2927 14.3104 14.3327 14.3104 14.2927 14.3154 14.3858 14.4916 14.1506 14.3104 14.4366 14.5231 14.6105 14.7152 14.7834 14.7152 14.6105 14.5231 14.4366 14.3104 14.1506 14.0395 14.0056 14.0395 14.1506 13.8264 14.0505 14.3662 14.6496 14.8075 14.8961 14.9885 14.9808 14.8529 14.7022 14.5231 14.2927 14.0395 13.8384 13.7430 13.7370 13.8264 13.5728 13.7935 14.1544 14.5957 14.9784 15.0726 15.1266 15.1851 15.0491 14.8529 14.6105 14.3154 14.0056 13.7430 13.6353 13.6620 13.5728 13.6104 13.6001 13.9046 14.3080 14.7719 15.2284 15.2243 15.3404 15.1851 14.9808 14.7152 14.3858 14.0395 13.7370 13.6620 13.8210 13.6104 13.5540 13.5113 13.7451 14.0825 14.4863 14.9030 15.2488 15.2243 15.1266 14.9885 14.7834 14.4916 14.1506 13.8264 13.5728 13.6104 13.5540 14.4599 13.8210 13.6483 13.9885 14.4042 14.8413 15.2243 15.5764 15.3755 15.2444 14.9885 14.6203 14.2136 13.8384 13.7294 14.2314 14.4599 13.8210 13.6104 13.6001 13.9046 14.3080 14.7719 15.2284 15.2243 15.3404 15.1851 14.9808 14.7152 14.3858 14.0395 13.7370 13.6620 13.8210 13.6483 13.6001 13.6540 13.8898 14.2726 14.7229 14.7719 14.8413 15.0726 15.0578 14.8529 14.6524 14.4811 14.2927 14.0525 13.8102 13.6483 13.9885 13.9046 13.8898 13.9615 14.1670 14.2726 14.3080 14.4042 14.6435 14.8075 14.7022 14.5525 14.5028 14.5231 14.4384 14.1980 13.9885 14.4042 14.3080 14.2726 14.1670 13.9615 13.8898 13.9046 13.9885 14.1980 14.4384 14.5231 14.5028 14.5525 14.7022 14.8075 14.6435 14.4042 14.8413 14.7719 14.7229 14.2726 13.8898 13.6540 13.6001 13.6483 13.8102 14.0525 14.2927 14.4811 14.6524 14.8529 15.0578 15.0726 14.8413 15.2243 15.2284 14.7719 14.3080 13.9046 13.6001 13.6104 13.8210 13.6620 13.7370 14.0395 14.3858 14.7152 14.9808 15.1851 15.3404 15.2243 15.5764 15.2243 14.8413 14.4042 13.9885 13.6483 13.8210 14.4599 14.2314 13.7294 13.8384 14.2136 14.6203 14.9885 15.2444 15.3755 15.5764 15.3755 15.3404 15.0726 14.6435 14.1980 13.8102 13.6620 14.2314 14.3185 13.8875 13.7430 14.0970 14.5048 14.8961 15.1851 15.3396 15.3755 15.2444 15.1851 15.0578 14.8075 14.4384 14.0525 13.7370 13.7294 13.8875 13.7294 13.7370 14.0525 14.4384 14.8075 15.0578 15.1851 15.2444 14.9885 14.9808 14.8529 14.7022 14.5231 14.2927 14.0395 13.8384 13.7430 13.7370 13.8264 14.0505 14.3662 14.6496 14.8075 14.8961 14.9885 14.6203 14.7152 14.6524 14.5525 14.5028 14.4811 14.3858 14.2136 14.0970 14.0525 14.0505 14.1163 14.2498 14.3662 14.4384 14.5048 14.6203 14.2136 14.3858 14.4811 14.5028 14.5525 14.6524 14.7152 14.6203 14.5048 14.4384 14.3662 14.2498 14.1163 14.0505 14.0525 14.0970 14.2136 13.8384 14.0395 14.2927 14.5231 14.7022 14.8529 14.9808 14.9885 14.8961 14.8075 14.6496 14.3662 14.0505 13.8264 13.7370 13.7430 13.8384 13.7294 13.7370 14.0525 14.4384 14.8075 15.0578 15.1851 15.2444 15.1851 15.0578 14.8075 14.4384 14.0525 13.7370 13.7294 13.8875 13.7294 14.2314 13.6620 13.8102 14.1980 14.6435 15.0726 15.3404 15.3755 15.3396 15.1851 14.8961 14.5048 14.0970 13.7430 13.8875 14.3185 14.2314 14.4599 13.8210 13.6483 13.9885 14.4042 14.8413 15.2243 15.5764 15.3755 15.2444 14.9885 14.6203 14.2136 13.8384 13.7294 14.2314 14.4599 14.9840 14.3185 13.6353 13.8979 14.3035 14.7379 15.1266 15.3755 15.6990 15.3755 15.1266 14.7379 14.3035 13.8979 13.6353 14.3185 14.9840 14.3185 14.2314 13.6620 13.8102 14.1980 14.6435 15.0726 15.3404 15.3755 15.3396 15.1851 14.8961 14.5048 14.0970 13.7430 13.8875 14.3185 13.6353 13.6620 13.5728 13.7935 14.1544 14.5957 14.9784 15.0726 15.1266 15.1851 15.0491 14.8529 14.6105 14.3154 14.0056 13.7430 13.6353 13.8979 13.8102 13.7935 13.8681 14.1103 14.4353 14.5957 14.6435 14.7379 14.8961 14.8529 14.6882 14.5525 14.4542 14.3154 14.0970 13.8979 14.3035 14.1980 14.1544 14.1103 14.0822 14.1103 14.1544 14.1980 14.3035 14.5048 14.6105 14.5525 14.5060 14.5525 14.6105 14.5048 14.3035 14.7379 14.6435 14.5957 14.4353 14.1103 13.8681 13.7935 13.8102 13.8979 14.0970 14.3154 14.4542 14.5525 14.6882 14.8529 14.8961 14.7379 15.1266 15.0726 14.9784 14.5957 14.1544 13.7935 13.5728 13.6620 13.6353 13.7430 14.0056 14.3154 14.6105 14.8529 15.0491 15.1851 15.1266 15.3755 15.3404 15.0726 14.6435 14.1980 13.8102 13.6620 14.2314 14.3185 13.8875 13.7430 14.0970 14.5048 14.8961 15.1851 15.3396 15.3755 15.6990 15.3755 15.1266 14.7379 14.3035 13.8979 13.6353 14.3185 14.9840 14.3185 13.6353 13.8979 14.3035 14.7379 15.1266 15.3755 15.6990 15.3755 15.3396 15.1851 14.8961 14.5048 14.0970 13.7430 13.8875 14.3185 14.2314 13.6620 13.8102 14.1980 14.6435 15.0726 15.3404 15.3755 15.1266 15.1851 15.0491 14.8529 14.6105 14.3154 14.0056 13.7430 13.6353 13.6620 13.5728 13.7935 14.1544 14.5957 14.9784 15.0726 15.1266 14.7379 14.8961 14.8529 14.6882 14.5525 14.4542 14.3154 14.0970 13.8979 13.8102 13.7935 13.8681 14.1103 14.4353 14.5957 14.6435 14.7379 14.3035 14.5048 14.6105 14.5525 14.5060 14.5525 14.6105 14.5048 14.3035 14.1980 14.1544 14.1103 14.0822 14.1103 14.1544 14.1980 14.3035 13.8979 14.0970 14.3154 14.4542 14.5525 14.6882 14.8529 14.8961 14.7379 14.6435 14.5957 14.4353 14.1103 13.8681 13.7935 13.8102 13.8979 13.6353 13.7430 14.0056 14.3154 14.6105 14.8529 15.0491 15.1851 15.1266 15.0726 14.9784 14.5957 14.1544 13.7935 13.5728 13.6620 13.6353 14.3185 13.8875 13.7430 14.0970 14.5048 14.8961 15.1851 15.3396 15.3755 15.3404 15.0726 14.6435 14.1980 13.8102 13.6620 14.2314 14.3185 14.9840 14.3185 13.6353 13.8979 14.3035 14.7379 15.1266 15.3755 15.6990 15.3755 15.1266 14.7379 14.3035 13.8979 13.6353 14.3185 14.9840 14.4599 14.2314 13.7294 13.8384 14.2136 14.6203 14.9885 15.2444 15.3755 15.5764 15.2243 14.8413 14.4042 13.9885 13.6483 13.8210 14.4599 14.2314 14.3185 13.8875 13.7430 14.0970 14.5048 14.8961 15.1851 15.3396 15.3755 15.3404 15.0726 14.6435 14.1980 13.8102 13.6620 14.2314 13.7294 13.8875 13.7294 13.7370 14.0525 14.4384 14.8075 15.0578 15.1851 15.2444 15.1851 15.0578 14.8075 14.4384 14.0525 13.7370 13.7294 13.8384 13.7430 13.7370 13.8264 14.0505 14.3662 14.6496 14.8075 14.8961 14.9885 14.9808 14.8529 14.7022 14.5231 14.2927 14.0395 13.8384 14.2136 14.0970 14.0525 14.0505 14.1163 14.2498 14.3662 14.4384 14.5048 14.6203 14.7152 14.6524 14.5525 14.5028 14.4811 14.3858 14.2136 14.6203 14.5048 14.4384 14.3662 14.2498 14.1163 14.0505 14.0525 14.0970 14.2136 14.3858 14.4811 14.5028 14.5525 14.6524 14.7152 14.6203 14.9885 14.8961 14.8075 14.6496 14.3662 14.0505 13.8264 13.7370 13.7430 13.8384 14.0395 14.2927 14.5231 14.7022 14.8529 14.9808 14.9885 15.2444 15.1851 15.0578 14.8075 14.4384 14.0525 13.7370 13.7294 13.8875 13.7294 13.7370 14.0525 14.4384 14.8075 15.0578 15.1851 15.2444 15.3755 15.3396 15.1851 14.8961 14.5048 14.0970 13.7430 13.8875 14.3185 14.2314 13.6620 13.8102 14.1980 14.6435 15.0726 15.3404 15.3755 15.5764 15.3755 15.2444 14.9885 14.6203 14.2136 13.8384 13.7294 14.2314 14.4599 13.8210 13.6483 13.9885 14.4042 14.8413 15.2243 15.5764 15.2243 15.3404 15.1851 14.9808 14.7152 14.3858 14.0395 13.7370 13.6620 13.8210 13.6104 13.6001 13.9046 14.3080 14.7719 15.2284 15.2243 14.8413 15.0726 15.0578 14.8529 14.6524 14.4811 14.2927 14.0525 13.8102 13.6483 13.6001 13.6540 13.8898 14.2726 14.7229 14.7719 14.8413 14.4042 14.6435 14.8075 14.7022 14.5525 14.5028 14.5231 14.4384 14.1980 13.9885 13.9046 13.8898 13.9615 14.1670 14.2726 14.3080 14.4042 13.9885 14.1980 14.4384 14.5231 14.5028 14.5525 14.7022 14.8075 14.6435 14.4042 14.3080 14.2726 14.1670 13.9615 13.8898 13.9046 13.9885 13.6483 13.8102 14.0525 14.2927 14.4811 14.6524 14.8529 15.0578 15.0726 14.8413 14.7719 14.7229 14.2726 13.8898 13.6540 13.6001 13.6483 13.8210 13.6620 13.7370 14.0395 14.3858 14.7152 14.9808 15.1851 15.3404 15.2243 15.2284 14.7719 14.3080 13.9046 13.6001 13.6104 13.8210 14.4599 14.2314 13.7294 13.8384 14.2136 14.6203 14.9885 15.2444 15.3755 15.5764 15.2243 14.8413 14.4042 13.9885 13.6483 13.8210 14.4599 13.5540 13.6104 13.5728 13.8264 14.1506 14.4916 14.7834 14.9885 15.1266 15.2243 15.2488 14.9030 14.4863 14.0825 13.7451 13.5113 13.5540 13.6104 13.8210 13.6620 13.7370 14.0395 14.3858 14.7152 14.9808 15.1851 15.3404 15.2243 15.2284 14.7719 14.3080 13.9046 13.6001 13.6104 13.5728 13.6620 13.6353 13.7430 14.0056 14.3154 14.6105 14.8529 15.0491 15.1851 15.1266 15.0726 14.9784 14.5957 14.1544 13.7935 13.5728 13.8264 13.7370 13.7430 13.8384 14.0395 14.2927 14.5231 14.7022 14.8529 14.9808 14.9885 14.8961 14.8075 14.6496 14.3662 14.0505 13.8264 14.1506 14.0395 14.0056 14.0395 14.1506 14.3104 14.4366 14.5231 14.6105 14.7152 14.7834 14.7152 14.6105 14.5231 14.4366 14.3104 14.1506 14.4916 14.3858 14.3154 14.2927 14.3104 14.3327 14.3104 14.2927 14.3154 14.3858 14.4916 14.5283 14.4811 14.4542 14.4811 14.5283 14.4916 14.7834 14.7152 14.6105 14.5231 14.4366 14.3104 14.1506 14.0395 14.0056 14.0395 14.1506 14.3104 14.4366 14.5231 14.6105 14.7152 14.7834 14.9885 14.9808 14.8529 14.7022 14.5231 14.2927 14.0395 13.8384 13.7430 13.7370 13.8264 14.0505 14.3662 14.6496 14.8075 14.8961 14.9885 15.1266 15.1851 15.0491 14.8529 14.6105 14.3154 14.0056 13.7430 13.6353 13.6620 13.5728 13.7935 14.1544 14.5957 14.9784 15.0726 15.1266 15.2243 15.3404 15.1851 14.9808 14.7152 14.3858 14.0395 13.7370 13.6620 13.8210 13.6104 13.6001 13.9046 14.3080 14.7719 15.2284 15.2243 15.2488 15.2243 15.1266 14.9885 14.7834 14.4916 14.1506 13.8264 13.5728 13.6104 13.5540 13.5113 13.7451 14.0825 14.4863 14.9030 15.2488 14.9030 15.2284 15.0726 14.8961 14.7152 14.5283 14.3104 14.0505 13.7935 13.6001 13.5113 13.5242 13.7014 14.0006 14.3925 14.8073 14.9030 14.4863 14.7719 14.9784 14.8075 14.6105 14.4811 14.4366 14.3662 14.1544 13.9046 13.7451 13.7014 13.7715 14.0050 14.3660 14.3925 14.4863 14.0825 14.3080 14.5957 14.6496 14.5231 14.4542 14.5231 14.6496 14.5957 14.3080 14.0825 14.0006 14.0050 14.0871 14.0050 14.0006 14.0825 13.7451 13.9046 14.1544 14.3662 14.4366 14.4811 14.6105 14.8075 14.9784 14.7719 14.4863 14.3925 14.3660 14.0050 13.7715 13.7014 13.7451 13.5113 13.6001 13.7935 14.0505 14.3104 14.5283 14.7152 14.8961 15.0726 15.2284 14.9030 14.8073 14.3925 14.0006 13.7014 13.5242 13.5113 13.5540 13.6104 13.5728 13.8264 14.1506 14.4916 14.7834 14.9885 15.1266 15.2243 15.2488 14.9030 14.4863 14.0825 13.7451 13.5113 13.5540 13.5061 13.5242 13.6540 13.8681 14.1163 14.3327 14.4916 14.6203 14.7379 14.8413 14.9030 14.8083 14.4936 14.1361 13.8267 13.6092 13.5061 13.5242 13.5113 13.6001 13.7935 14.0505 14.3104 14.5283 14.7152 14.8961 15.0726 15.2284 14.9030 14.8073 14.3925 14.0006 13.7014 13.5242 13.6540 13.6001 13.6483 13.8102 14.0525 14.2927 14.4811 14.6524 14.8529 15.0578 15.0726 14.8413 14.7719 14.7229 14.2726 13.8898 13.6540 13.8681 13.7935 13.8102 13.8979 14.0970 14.3154 14.4542 14.5525 14.6882 14.8529 14.8961 14.7379 14.6435 14.5957 14.4353 14.1103 13.8681 14.1163 14.0505 14.0525 14.0970 14.2136 14.3858 14.4811 14.5028 14.5525 14.6524 14.7152 14.6203 14.5048 14.4384 14.3662 14.2498 14.1163 14.3327 14.3104 14.2927 14.3154 14.3858 14.4916 14.5283 14.4811 14.4542 14.4811 14.5283 14.4916 14.3858 14.3154 14.2927 14.3104 14.3327 14.4916 14.5283 14.4811 14.4542 14.4811 14.5283 14.4916 14.3858 14.3154 14.2927 14.3104 14.3327 14.3104 14.2927 14.3154 14.3858 14.4916 14.6203 14.7152 14.6524 14.5525 14.5028 14.4811 14.3858 14.2136 14.0970 14.0525 14.0505 14.1163 14.2498 14.3662 14.4384 14.5048 14.6203 14.7379 14.8961 14.8529 14.6882 14.5525 14.4542 14.3154 14.0970 13.8979 13.8102 13.7935 13.8681 14.1103 14.4353 14.5957 14.6435 14.7379 14.8413 15.0726 15.0578 14.8529 14.6524 14.4811 14.2927 14.0525 13.8102 13.6483 13.6001 13.6540 13.8898 14.2726 14.7229 14.7719 14.8413 14.9030 15.2284 15.0726 14.8961 14.7152 14.5283 14.3104 14.0505 13.7935 13.6001 13.5113 13.5242 13.7014 14.0006 14.3925 14.8073 14.9030 14.8083 14.9030 14.8413 14.7379 14.6203 14.4916 14.3327 14.1163 13.8681 13.6540 13.5242 13.5061 13.6092 13.8267 14.1361 14.4936 14.8083 14.4936 14.8073 14.7719 14.6435 14.5048 14.3858 14.3104 14.2498 14.1103 13.8898 13.7014 13.6092 13.6310 13.7859 14.0472 14.3501 14.4936 14.1361 14.3925 14.7229 14.5957 14.4384 14.3154 14.2927 14.3662 14.4353 14.2726 14.0006 13.8267 13.7859 13.8532 13.9912 14.0472 14.1361 13.8267 14.0006 14.2726 14.4353 14.3662 14.2927 14.3154 14.4384 14.5957 14.7229 14.3925 14.1361 14.0472 13.9912 13.8532 13.7859 13.8267 13.6092 13.7014 13.8898 14.1103 14.2498 14.3104 14.3858 14.5048 14.6435 14.7719 14.8073 14.4936 14.3501 14.0472 13.7859 13.6310 13.6092 13.5061 13.5242 13.6540 13.8681 14.1163 14.3327 14.4916 14.6203 14.7379 14.8413 14.9030 14.8083 14.4936 14.1361 13.8267 13.6092 13.5061 13.5910 13.6310 13.7715 13.9615 14.0822 14.1163 14.1506 14.2136 14.3035 14.4042 14.4863 14.4936 14.3491 14.0927 13.8413 13.6638 13.5910 13.6310 13.6092 13.7014 13.8898 14.1103 14.2498 14.3104 14.3858 14.5048 14.6435 14.7719 14.8073 14.4936 14.3501 14.0472 13.7859 13.6310 13.7715 13.7014 13.7451 13.9046 14.1544 14.3662 14.4366 14.4811 14.6105 14.8075 14.9784 14.7719 14.4863 14.3925 14.3660 14.0050 13.7715 13.9615 13.8898 13.9046 13.9885 14.1980 14.4384 14.5231 14.5028 14.5525 14.7022 14.8075 14.6435 14.4042 14.3080 14.2726 14.1670 13.9615 14.0822 14.1103 14.1544 14.1980 14.3035 14.5048 14.6105 14.5525 14.5060 14.5525 14.6105 14.5048 14.3035 14.1980 14.1544 14.1103 14.0822 14.1163 14.2498 14.3662 14.4384 14.5048 14.6203 14.7152 14.6524 14.5525 14.5028 14.4811 14.3858 14.2136 14.0970 14.0525 14.0505 14.1163 14.1506 14.3104 14.4366 14.5231 14.6105 14.7152 14.7834 14.7152 14.6105 14.5231 14.4366 14.3104 14.1506 14.0395 14.0056 14.0395 14.1506 14.2136 14.3858 14.4811 14.5028 14.5525 14.6524 14.7152 14.6203 14.5048 14.4384 14.3662 14.2498 14.1163 14.0505 14.0525 14.0970 14.2136 14.3035 14.5048 14.6105 14.5525 14.5060 14.5525 14.6105 14.5048 14.3035 14.1980 14.1544 14.1103 14.0822 14.1103 14.1544 14.1980 14.3035 14.4042 14.6435 14.8075 14.7022 14.5525 14.5028 14.5231 14.4384 14.1980 13.9885 13.9046 13.8898 13.9615 14.1670 14.2726 14.3080 14.4042 14.4863 14.7719 14.9784 14.8075 14.6105 14.4811 14.4366 14.3662 14.1544 13.9046 13.7451 13.7014 13.7715 14.0050 14.3660 14.3925 14.4863 14.4936 14.8073 14.7719 14.6435 14.5048 14.3858 14.3104 14.2498 14.1103 13.8898 13.7014 13.6092 13.6310 13.7859 14.0472 14.3501 14.4936 14.3491 14.4936 14.4863 14.4042 14.3035 14.2136 14.1506 14.1163 14.0822 13.9615 13.7715 13.6310 13.5910 13.6638 13.8413 14.0927 14.3491 14.0927 14.3501 14.3925 14.3080 14.1980 14.0970 14.0395 14.0505 14.1103 14.1670 14.0050 13.7859 13.6638 13.6684 13.7707 13.9460 14.0927 13.8413 14.0472 14.3660 14.2726 14.1544 14.0525 14.0056 14.0525 14.1544 14.2726 14.3660 14.0472 13.8413 13.7707 13.7397 13.7707 13.8413 13.6638 13.7859 14.0050 14.1670 14.1103 14.0505 14.0395 14.0970 14.1980 14.3080 14.3925 14.3501 14.0927 13.9460 13.7707 13.6684 13.6638 13.5910 13.6310 13.7715 13.9615 14.0822 14.1163 14.1506 14.2136 14.3035 14.4042 14.4863 14.4936 14.3491 14.0927 13.8413 13.6638 13.5910 13.5930 13.6684 13.8532 14.0871 13.9615 13.8681 13.8264 13.8384 13.8979 13.9885 14.0825 14.1361 14.0927 13.9412 13.7594 13.6289 13.5930 13.6684 13.6638 13.7859 14.0050 14.1670 14.1103 14.0505 14.0395 14.0970 14.1980 14.3080 14.3925 14.3501 14.0927 13.9460 13.7707 13.6684 13.8532 13.7859 13.8267 14.0006 14.2726 14.4353 14.3662 14.2927 14.3154 14.4384 14.5957 14.7229 14.3925 14.1361 14.0472 13.9912 13.8532 14.0871 14.0050 14.0006 14.0825 14.3080 14.5957 14.6496 14.5231 14.4542 14.5231 14.6496 14.5957 14.3080 14.0825 14.0006 14.0050 14.0871 13.9615 14.1670 14.2726 14.3080 14.4042 14.6435 14.8075 14.7022 14.5525 14.5028 14.5231 14.4384 14.1980 13.9885 13.9046 13.8898 13.9615 13.8681 14.1103 14.4353 14.5957 14.6435 14.7379 14.8961 14.8529 14.6882 14.5525 14.4542 14.3154 14.0970 13.8979 13.8102 13.7935 13.8681 13.8264 14.0505 14.3662 14.6496 14.8075 14.8961 14.9885 14.9808 14.8529 14.7022 14.5231 14.2927 14.0395 13.8384 13.7430 13.7370 13.8264 13.8384 14.0395 14.2927 14.5231 14.7022 14.8529 14.9808 14.9885 14.8961 14.8075 14.6496 14.3662 14.0505 13.8264 13.7370 13.7430 13.8384 13.8979 14.0970 14.3154 14.4542 14.5525 14.6882 14.8529 14.8961 14.7379 14.6435 14.5957 14.4353 14.1103 13.8681 13.7935 13.8102 13.8979 13.9885 14.1980 14.4384 14.5231 14.5028 14.5525 14.7022 14.8075 14.6435 14.4042 14.3080 14.2726 14.1670 13.9615 13.8898 13.9046 13.9885 14.0825 14.3080 14.5957 14.6496 14.5231 14.4542 14.5231 14.6496 14.5957 14.3080 14.0825 14.0006 14.0050 14.0871 14.0050 14.0006 14.0825 14.1361 14.3925 14.7229 14.5957 14.4384 14.3154 14.2927 14.3662 14.4353 14.2726 14.0006 13.8267 13.7859 13.8532 13.9912 14.0472 14.1361 14.0927 14.3501 14.3925 14.3080 14.1980 14.0970 14.0395 14.0505 14.1103 14.1670 14.0050 13.7859 13.6638 13.6684 13.7707 13.9460 14.0927 13.9412 14.0927 14.1361 14.0825 13.9885 13.8979 13.8384 13.8264 13.8681 13.9615 14.0871 13.8532 13.6684 13.5930 13.6289 13.7594 13.9412 13.7594 13.9460 14.0472 14.0006 13.9046 13.8102 13.7430 13.7370 13.7935 13.8898 14.0050 13.9912 13.7707 13.6289 13.5816 13.6396 13.7594 13.6289 13.7707 13.9912 14.0050 13.8898 13.7935 13.7370 13.7430 13.8102 13.9046 14.0006 14.0472 13.9460 13.7594 13.6396 13.5816 13.6289 13.5930 13.6684 13.8532 14.0871 13.9615 13.8681 13.8264 13.8384 13.8979 13.9885 14.0825 14.1361 14.0927 13.9412 13.7594 13.6289 13.5930 13.5044 13.5816 13.7397 13.8532 13.7715 13.6540 13.5728 13.7294 13.6353 13.6483 13.7451 13.8267 13.8413 13.7594 13.6277 13.5258 13.5044 13.5816 13.6289 13.7707 13.9912 14.0050 13.8898 13.7935 13.7370 13.7430 13.8102 13.9046 14.0006 14.0472 13.9460 13.7594 13.6396 13.5816 13.7397 13.7707 13.8413 14.0472 14.3660 14.2726 14.1544 14.0525 14.0056 14.0525 14.1544 14.2726 14.3660 14.0472 13.8413 13.7707 13.7397 13.8532 13.9912 14.0472 14.1361 14.3925 14.7229 14.5957 14.4384 14.3154 14.2927 14.3662 14.4353 14.2726 14.0006 13.8267 13.7859 13.8532 13.7715 14.0050 14.3660 14.3925 14.4863 14.7719 14.9784 14.8075 14.6105 14.4811 14.4366 14.3662 14.1544 13.9046 13.7451 13.7014 13.7715 13.6540 13.8898 14.2726 14.7229 14.7719 14.8413 15.0726 15.0578 14.8529 14.6524 14.4811 14.2927 14.0525 13.8102 13.6483 13.6001 13.6540 13.5728 13.7935 14.1544 14.5957 14.9784 15.0726 15.1266 15.1851 15.0491 14.8529 14.6105 14.3154 14.0056 13.7430 13.6353 13.6620 13.5728 13.7294 13.7370 14.0525 14.4384 14.8075 15.0578 15.1851 15.2444 15.1851 15.0578 14.8075 14.4384 14.0525 13.7370 13.7294 13.8875 13.7294 13.6353 13.7430 14.0056 14.3154 14.6105 14.8529 15.0491 15.1851 15.1266 15.0726 14.9784 14.5957 14.1544 13.7935 13.5728 13.6620 13.6353 13.6483 13.8102 14.0525 14.2927 14.4811 14.6524 14.8529 15.0578 15.0726 14.8413 14.7719 14.7229 14.2726 13.8898 13.6540 13.6001 13.6483 13.7451 13.9046 14.1544 14.3662 14.4366 14.4811 14.6105 14.8075 14.9784 14.7719 14.4863 14.3925 14.3660 14.0050 13.7715 13.7014 13.7451 13.8267 14.0006 14.2726 14.4353 14.3662 14.2927 14.3154 14.4384 14.5957 14.7229 14.3925 14.1361 14.0472 13.9912 13.8532 13.7859 13.8267 13.8413 14.0472 14.3660 14.2726 14.1544 14.0525 14.0056 14.0525 14.1544 14.2726 14.3660 14.0472 13.8413 13.7707 13.7397 13.7707 13.8413 13.7594 13.9460 14.0472 14.0006 13.9046 13.8102 13.7430 13.7370 13.7935 13.8898 14.0050 13.9912 13.7707 13.6289 13.5816 13.6396 13.7594 13.6277 13.7594 13.8413 13.8267 13.7451 13.6483 13.6353 13.7294 13.5728 13.6540 13.7715 13.8532 13.7397 13.5816 13.5044 13.5258 13.6277 13.5258 13.6396 13.7707 13.7859 13.7014 13.6001 13.6620 13.8875 13.6620 13.6001 13.7014 13.7859 13.7707 13.6396 13.5258 13.4824 13.5258 13.5044 13.5816 13.7397 13.8532 13.7715 13.6540 13.5728 13.7294 13.6353 13.6483 13.7451 13.8267 13.8413 13.7594 13.6277 13.5258 13.5044 13.4061 13.4824 13.5816 13.6684 13.6310 13.5242 13.6104 14.2314 14.3185 13.8210 13.5113 13.6092 13.6638 13.6289 13.5258 13.4324 13.4061 13.4824 13.5258 13.6396 13.7707 13.7859 13.7014 13.6001 13.6620 13.8875 13.6620 13.6001 13.7014 13.7859 13.7707 13.6396 13.5258 13.4824 13.5816 13.6396 13.7594 13.9460 14.0472 14.0006 13.9046 13.8102 13.7430 13.7370 13.7935 13.8898 14.0050 13.9912 13.7707 13.6289 13.5816 13.6684 13.7707 13.9460 14.0927 14.3501 14.3925 14.3080 14.1980 14.0970 14.0395 14.0505 14.1103 14.1670 14.0050 13.7859 13.6638 13.6684 13.6310 13.7859 14.0472 14.3501 14.4936 14.8073 14.7719 14.6435 14.5048 14.3858 14.3104 14.2498 14.1103 13.8898 13.7014 13.6092 13.6310 13.5242 13.7014 14.0006 14.3925 14.8073 14.9030 15.2284 15.0726 14.8961 14.7152 14.5283 14.3104 14.0505 13.7935 13.6001 13.5113 13.5242 13.6104 13.6001 13.9046 14.3080 14.7719 15.2284 15.2243 15.3404 15.1851 14.9808 14.7152 14.3858 14.0395 13.7370 13.6620 13.8210 13.6104 14.2314 13.6620 13.8102 14.1980 14.6435 15.0726 15.3404 15.3755 15.3396 15.1851 14.8961 14.5048 14.0970 13.7430 13.8875 14.3185 14.2314 14.3185 13.8875 13.7430 14.0970 14.5048 14.8961 15.1851 15.3396 15.3755 15.3404 15.0726 14.6435 14.1980 13.8102 13.6620 14.2314 14.3185 13.8210 13.6620 13.7370 14.0395 14.3858 14.7152 14.9808 15.1851 15.3404 15.2243 15.2284 14.7719 14.3080 13.9046 13.6001 13.6104 13.8210 13.5113 13.6001 13.7935 14.0505 14.3104 14.5283 14.7152 14.8961 15.0726 15.2284 14.9030 14.8073 14.3925 14.0006 13.7014 13.5242 13.5113 13.6092 13.7014 13.8898 14.1103 14.2498 14.3104 14.3858 14.5048 14.6435 14.7719 14.8073 14.4936 14.3501 14.0472 13.7859 13.6310 13.6092 13.6638 13.7859 14.0050 14.1670 14.1103 14.0505 14.0395 14.0970 14.1980 14.3080 14.3925 14.3501 14.0927 13.9460 13.7707 13.6684 13.6638 13.6289 13.7707 13.9912 14.0050 13.8898 13.7935 13.7370 13.7430 13.8102 13.9046 14.0006 14.0472 13.9460 13.7594 13.6396 13.5816 13.6289 13.5258 13.6396 13.7707 13.7859 13.7014 13.6001 13.6620 13.8875 13.6620 13.6001 13.7014 13.7859 13.7707 13.6396 13.5258 13.4824 13.5258 13.4324 13.5258 13.6289 13.6638 13.6092 13.5113 13.8210 14.3185 14.2314 13.6104 13.5242 13.6310 13.6684 13.5816 13.4824 13.4061 13.4324 13.4061 13.4824 13.5816 13.6684 13.6310 13.5242 13.6104 14.2314 14.3185 13.8210 13.5113 13.6092 13.6638 13.6289 13.5258 13.4324 13.4061 13.3663 13.4061 13.5044 13.5930 13.5910 13.5061 13.5540 14.4599 14.9840 14.4599 13.5540 13.5061 13.5910 13.5930 13.5044 13.4061 13.3663 13.4061 13.4324 13.5258 13.6289 13.6638 13.6092 13.5113 13.8210 14.3185 14.2314 13.6104 13.5242 13.6310 13.6684 13.5816 13.4824 13.4061 13.5044 13.5258 13.6277 13.7594 13.8413 13.8267 13.7451 13.6483 13.6353 13.7294 13.5728 13.6540 13.7715 13.8532 13.7397 13.5816 13.5044 13.5930 13.6289 13.7594 13.9412 14.0927 14.1361 14.0825 13.9885 13.8979 13.8384 13.8264 13.8681 13.9615 14.0871 13.8532 13.6684 13.5930 13.5910 13.6638 13.8413 14.0927 14.3491 14.4936 14.4863 14.4042 14.3035 14.2136 14.1506 14.1163 14.0822 13.9615 13.7715 13.6310 13.5910 13.5061 13.6092 13.8267 14.1361 14.4936 14.8083 14.9030 14.8413 14.7379 14.6203 14.4916 14.3327 14.1163 13.8681 13.6540 13.5242 13.5061 13.5540 13.5113 13.7451 14.0825 14.4863 14.9030 15.2488 15.2243 15.1266 14.9885 14.7834 14.4916 14.1506 13.8264 13.5728 13.6104 13.5540 14.4599 13.8210 13.6483 13.9885 14.4042 14.8413 15.2243 15.5764 15.3755 15.2444 14.9885 14.6203 14.2136 13.8384 13.7294 14.2314 14.4599 14.9840 14.3185 13.6353 13.8979 14.3035 14.7379 15.1266 15.3755 15.6990 15.3755 15.1266 14.7379 14.3035 13.8979 13.6353 14.3185 14.9840 14.4599 14.2314 13.7294 13.8384 14.2136 14.6203 14.9885 15.2444 15.3755 15.5764 15.2243 14.8413 14.4042 13.9885 13.6483 13.8210 14.4599 13.5540 13.6104 13.5728 13.8264 14.1506 14.4916 14.7834 14.9885 15.1266 15.2243 15.2488 14.9030 14.4863 14.0825 13.7451 13.5113 13.5540 13.5061 13.5242 13.6540 13.8681 14.1163 14.3327 14.4916 14.6203 14.7379 14.8413 14.9030 14.8083 14.4936 14.1361 13.8267 13.6092 13.5061 13.5910 13.6310 13.7715 13.9615 14.0822 14.1163 14.1506 14.2136 14.3035 14.4042 14.4863 14.4936 14.3491 14.0927 13.8413 13.6638 13.5910 13.5930 13.6684 13.8532 14.0871 13.9615 13.8681 13.8264 13.8384 13.8979 13.9885 14.0825 14.1361 14.0927 13.9412 13.7594 13.6289 13.5930 13.5044 13.5816 13.7397 13.8532 13.7715 13.6540 13.5728 13.7294 13.6353 13.6483 13.7451 13.8267 13.8413 13.7594 13.6277 13.5258 13.5044 13.4061 13.4824 13.5816 13.6684 13.6310 13.5242 13.6104 14.2314 14.3185 13.8210 13.5113 13.6092 13.6638 13.6289 13.5258 13.4324 13.4061 13.3663 13.4061 13.5044 13.5930 13.5910 13.5061 13.5540 14.4599 14.9840 14.4599 13.5540 13.5061 13.5910 13.5930 13.5044 13.4061 13.3663 BAND: 5 14.6124 14.5947 14.5625 14.5822 14.7264 14.9701 15.2235 15.4089 15.4766 15.4089 15.2235 14.9701 14.7264 14.5822 14.5625 14.5947 14.6124 14.5947 14.5315 14.4464 14.4057 14.5299 14.8294 15.2287 15.4344 15.4811 15.3917 15.1819 14.8973 14.6106 14.4286 14.4245 14.5111 14.5947 14.5625 14.4464 14.3099 14.2235 14.3993 14.8125 15.3148 15.4632 15.4941 15.3870 15.1562 14.8433 14.5091 14.2612 14.2806 14.4245 14.5625 14.5822 14.4057 14.2235 14.0215 14.3018 14.8059 15.3455 15.4900 15.5142 15.3975 15.1558 14.8300 14.4725 14.1434 14.2612 14.4286 14.5822 14.7264 14.5299 14.3993 14.3018 14.3491 14.7704 15.3561 15.5099 15.5394 15.4250 15.1896 14.8870 14.6032 14.4725 14.5091 14.6106 14.7264 14.9701 14.8294 14.8125 14.8059 14.7704 14.8083 15.3424 15.5193 15.5686 15.4710 15.2678 15.0424 14.8870 14.8300 14.8433 14.8973 14.9701 15.2235 15.2287 15.3148 15.3455 15.3561 15.3424 15.2917 15.5207 15.6043 15.5386 15.3961 15.2678 15.1896 15.1558 15.1562 15.1819 15.2235 15.4089 15.4344 15.4632 15.4900 15.5099 15.5193 15.5207 15.5764 15.6585 15.6219 15.5386 15.4710 15.4250 15.3975 15.3870 15.3917 15.4089 15.4766 15.4811 15.4941 15.5142 15.5394 15.5686 15.6043 15.6585 15.6990 15.6585 15.6043 15.5686 15.5394 15.5142 15.4941 15.4811 15.4766 15.4089 15.3917 15.3870 15.3975 15.4250 15.4710 15.5386 15.6219 15.6585 15.5764 15.5207 15.5193 15.5099 15.4900 15.4632 15.4344 15.4089 15.2235 15.1819 15.1562 15.1558 15.1896 15.2678 15.3961 15.5386 15.6043 15.5207 15.2917 15.3424 15.3561 15.3455 15.3148 15.2287 15.2235 14.9701 14.8973 14.8433 14.8300 14.8870 15.0424 15.2678 15.4710 15.5686 15.5193 15.3424 14.8083 14.7704 14.8059 14.8125 14.8294 14.9701 14.7264 14.6106 14.5091 14.4725 14.6032 14.8870 15.1896 15.4250 15.5394 15.5099 15.3561 14.7704 14.3491 14.3018 14.3993 14.5299 14.7264 14.5822 14.4286 14.2612 14.1434 14.4725 14.8300 15.1558 15.3975 15.5142 15.4900 15.3455 14.8059 14.3018 14.0215 14.2235 14.4057 14.5822 14.5625 14.4245 14.2806 14.2612 14.5091 14.8433 15.1562 15.3870 15.4941 15.4632 15.3148 14.8125 14.3993 14.2235 14.3099 14.4464 14.5625 14.5947 14.5111 14.4245 14.4286 14.6106 14.8973 15.1819 15.3917 15.4811 15.4344 15.2287 14.8294 14.5299 14.4057 14.4464 14.5315 14.5947 14.6124 14.5947 14.5625 14.5822 14.7264 14.9701 15.2235 15.4089 15.4766 15.4089 15.2235 14.9701 14.7264 14.5822 14.5625 14.5947 14.6124 14.5947 14.5315 14.4464 14.4057 14.5299 14.8294 15.2287 15.4344 15.4811 15.3917 15.1819 14.8973 14.6106 14.4286 14.4245 14.5111 14.5947 14.5315 14.5947 14.5111 14.4245 14.4286 14.6106 14.8973 15.1819 15.3917 15.4811 15.4344 15.2287 14.8294 14.5299 14.4057 14.4464 14.5315 14.4464 14.5111 14.4464 14.3383 14.3069 14.4890 14.8207 15.1562 15.3763 15.4468 15.3763 15.1562 14.8207 14.4890 14.3069 14.3383 14.4464 14.4057 14.4245 14.3383 14.2235 14.2163 14.4475 14.8451 15.2092 15.4058 15.4356 15.3245 15.0875 14.7524 14.3945 14.2109 14.3069 14.4057 14.5299 14.4286 14.3069 14.2163 14.3018 14.4753 14.8699 15.2505 15.4382 15.4521 15.3207 15.0734 14.7483 14.4342 14.3945 14.4890 14.5299 14.8294 14.6106 14.4890 14.4475 14.4753 14.7704 14.9123 15.2620 15.4676 15.4914 15.3671 15.1420 14.8928 14.7483 14.7524 14.8207 14.8294 15.2287 14.8973 14.8207 14.8451 14.8699 14.9123 15.3424 15.2475 15.4984 15.5555 15.4623 15.2936 15.1420 15.0734 15.0875 15.1562 15.2287 15.4344 15.1819 15.1562 15.2092 15.2505 15.2620 15.2475 15.5207 15.5760 15.6442 15.5802 15.4623 15.3671 15.3207 15.3245 15.3763 15.4344 15.4811 15.3917 15.3763 15.4058 15.4382 15.4676 15.4984 15.5760 15.6585 15.6992 15.6442 15.5555 15.4914 15.4521 15.4356 15.4468 15.4811 15.3917 15.4811 15.4468 15.4356 15.4521 15.4914 15.5555 15.6442 15.6992 15.6585 15.5760 15.4984 15.4676 15.4382 15.4058 15.3763 15.3917 15.1819 15.4344 15.3763 15.3245 15.3207 15.3671 15.4623 15.5802 15.6442 15.5760 15.5207 15.2475 15.2620 15.2505 15.2092 15.1562 15.1819 14.8973 15.2287 15.1562 15.0875 15.0734 15.1420 15.2936 15.4623 15.5555 15.4984 15.2475 15.3424 14.9123 14.8699 14.8451 14.8207 14.8973 14.6106 14.8294 14.8207 14.7524 14.7483 14.8928 15.1420 15.3671 15.4914 15.4676 15.2620 14.9123 14.7704 14.4753 14.4475 14.4890 14.6106 14.4286 14.5299 14.4890 14.3945 14.4342 14.7483 15.0734 15.3207 15.4521 15.4382 15.2505 14.8699 14.4753 14.3018 14.2163 14.3069 14.4286 14.4245 14.4057 14.3069 14.2109 14.3945 14.7524 15.0875 15.3245 15.4356 15.4058 15.2092 14.8451 14.4475 14.2163 14.2235 14.3383 14.4245 14.5111 14.4464 14.3383 14.3069 14.4890 14.8207 15.1562 15.3763 15.4468 15.3763 15.1562 14.8207 14.4890 14.3069 14.3383 14.4464 14.5111 14.5947 14.5315 14.4464 14.4057 14.5299 14.8294 15.2287 15.4344 15.4811 15.3917 15.1819 14.8973 14.6106 14.4286 14.4245 14.5111 14.5947 14.5625 14.4464 14.3099 14.2235 14.3993 14.8125 15.3148 15.4632 15.4941 15.3870 15.1562 14.8433 14.5091 14.2612 14.2806 14.4245 14.5625 14.4464 14.5111 14.4464 14.3383 14.3069 14.4890 14.8207 15.1562 15.3763 15.4468 15.3763 15.1562 14.8207 14.4890 14.3069 14.3383 14.4464 14.3099 14.4464 14.5625 14.4245 14.2806 14.2612 14.5091 14.8433 15.1562 15.3870 15.4941 15.4632 15.3148 14.8125 14.3993 14.2235 14.3099 14.2235 14.3383 14.4245 14.4057 14.3069 14.2109 14.3945 14.7524 15.0875 15.3245 15.4356 15.4058 15.2092 14.8451 14.4475 14.2163 14.2235 14.3993 14.3069 14.2806 14.3069 14.3993 14.4475 14.3915 14.7603 15.1050 15.3200 15.3891 15.3200 15.1050 14.7603 14.3915 14.4475 14.3993 14.8125 14.4890 14.2612 14.2109 14.4475 14.8059 14.8699 14.8088 15.1455 15.3615 15.4141 15.3210 15.1026 14.8279 14.7603 14.8451 14.8125 15.3148 14.8207 14.5091 14.3945 14.3915 14.8699 15.3561 15.2620 15.2447 15.4483 15.5126 15.4305 15.2543 15.1026 15.1050 15.2092 15.3148 15.4632 15.1562 14.8433 14.7524 14.7603 14.8088 15.2620 15.5193 15.4984 15.5748 15.6386 15.5714 15.4305 15.3210 15.3200 15.4058 15.4632 15.4941 15.3763 15.1562 15.0875 15.1050 15.1455 15.2447 15.4984 15.6043 15.6442 15.6997 15.6386 15.5126 15.4141 15.3891 15.4356 15.4941 15.3870 15.4468 15.3870 15.3245 15.3200 15.3615 15.4483 15.5748 15.6442 15.6219 15.6442 15.5748 15.4483 15.3615 15.3200 15.3245 15.3870 15.1562 15.3763 15.4941 15.4356 15.3891 15.4141 15.5126 15.6386 15.6997 15.6442 15.6043 15.4984 15.2447 15.1455 15.1050 15.0875 15.1562 14.8433 15.1562 15.4632 15.4058 15.3200 15.3210 15.4305 15.5714 15.6386 15.5748 15.4984 15.5193 15.2620 14.8088 14.7603 14.7524 14.8433 14.5091 14.8207 15.3148 15.2092 15.1050 15.1026 15.2543 15.4305 15.5126 15.4483 15.2447 15.2620 15.3561 14.8699 14.3915 14.3945 14.5091 14.2612 14.4890 14.8125 14.8451 14.7603 14.8279 15.1026 15.3210 15.4141 15.3615 15.1455 14.8088 14.8699 14.8059 14.4475 14.2109 14.2612 14.2806 14.3069 14.3993 14.4475 14.3915 14.7603 15.1050 15.3200 15.3891 15.3200 15.1050 14.7603 14.3915 14.4475 14.3993 14.3069 14.2806 14.4245 14.3383 14.2235 14.2163 14.4475 14.8451 15.2092 15.4058 15.4356 15.3245 15.0875 14.7524 14.3945 14.2109 14.3069 14.4057 14.4245 14.5625 14.4464 14.3099 14.2235 14.3993 14.8125 15.3148 15.4632 15.4941 15.3870 15.1562 14.8433 14.5091 14.2612 14.2806 14.4245 14.5625 14.5822 14.4057 14.2235 14.0215 14.3018 14.8059 15.3455 15.4900 15.5142 15.3975 15.1558 14.8300 14.4725 14.1434 14.2612 14.4286 14.5822 14.4057 14.4245 14.3383 14.2235 14.2163 14.4475 14.8451 15.2092 15.4058 15.4356 15.3245 15.0875 14.7524 14.3945 14.2109 14.3069 14.4057 14.2235 14.3383 14.4245 14.4057 14.3069 14.2109 14.3945 14.7524 15.0875 15.3245 15.4356 15.4058 15.2092 14.8451 14.4475 14.2163 14.2235 14.0215 14.2235 14.4057 14.5822 14.4286 14.2612 14.1434 14.4725 14.8300 15.1558 15.3975 15.5142 15.4900 15.3455 14.8059 14.3018 14.0215 14.3018 14.2163 14.3069 14.4286 14.5299 14.4890 14.3945 14.4342 14.7483 15.0734 15.3207 15.4521 15.4382 15.2505 14.8699 14.4753 14.3018 14.8059 14.4475 14.2109 14.2612 14.4890 14.8125 14.8451 14.7603 14.8279 15.1026 15.3210 15.4141 15.3615 15.1455 14.8088 14.8699 14.8059 15.3455 14.8451 14.3945 14.1434 14.3945 14.8451 15.3455 15.2505 15.1455 15.2441 15.4278 15.4994 15.4278 15.2441 15.1455 15.2505 15.3455 15.4900 15.2092 14.7524 14.4725 14.4342 14.7603 15.2505 15.5099 15.4676 15.4483 15.5729 15.6370 15.5711 15.4278 15.3615 15.4382 15.4900 15.5142 15.4058 15.0875 14.8300 14.7483 14.8279 15.1455 15.4676 15.5686 15.5555 15.6386 15.7001 15.6370 15.4994 15.4141 15.4521 15.5142 15.3975 15.4356 15.3245 15.1558 15.0734 15.1026 15.2441 15.4483 15.5555 15.5386 15.5802 15.6386 15.5729 15.4278 15.3210 15.3207 15.3975 15.1558 15.3245 15.4356 15.3975 15.3207 15.3210 15.4278 15.5729 15.6386 15.5802 15.5386 15.5555 15.4483 15.2441 15.1026 15.0734 15.1558 14.8300 15.0875 15.4058 15.5142 15.4521 15.4141 15.4994 15.6370 15.7001 15.6386 15.5555 15.5686 15.4676 15.1455 14.8279 14.7483 14.8300 14.4725 14.7524 15.2092 15.4900 15.4382 15.3615 15.4278 15.5711 15.6370 15.5729 15.4483 15.4676 15.5099 15.2505 14.7603 14.4342 14.4725 14.1434 14.3945 14.8451 15.3455 15.2505 15.1455 15.2441 15.4278 15.4994 15.4278 15.2441 15.1455 15.2505 15.3455 14.8451 14.3945 14.1434 14.2612 14.2109 14.4475 14.8059 14.8699 14.8088 15.1455 15.3615 15.4141 15.3210 15.1026 14.8279 14.7603 14.8451 14.8125 14.4890 14.2612 14.4286 14.3069 14.2163 14.3018 14.4753 14.8699 15.2505 15.4382 15.4521 15.3207 15.0734 14.7483 14.4342 14.3945 14.4890 14.5299 14.4286 14.5822 14.4057 14.2235 14.0215 14.3018 14.8059 15.3455 15.4900 15.5142 15.3975 15.1558 14.8300 14.4725 14.1434 14.2612 14.4286 14.5822 14.7264 14.5299 14.3993 14.3018 14.3491 14.7704 15.3561 15.5099 15.5394 15.4250 15.1896 14.8870 14.6032 14.4725 14.5091 14.6106 14.7264 14.5299 14.4286 14.3069 14.2163 14.3018 14.4753 14.8699 15.2505 15.4382 15.4521 15.3207 15.0734 14.7483 14.4342 14.3945 14.4890 14.5299 14.3993 14.3069 14.2806 14.3069 14.3993 14.4475 14.3915 14.7603 15.1050 15.3200 15.3891 15.3200 15.1050 14.7603 14.3915 14.4475 14.3993 14.3018 14.2163 14.3069 14.4286 14.5299 14.4890 14.3945 14.4342 14.7483 15.0734 15.3207 15.4521 15.4382 15.2505 14.8699 14.4753 14.3018 14.3491 14.3018 14.3993 14.5299 14.7264 14.6106 14.5091 14.4725 14.6032 14.8870 15.1896 15.4250 15.5394 15.5099 15.3561 14.7704 14.3491 14.7704 14.4753 14.4475 14.4890 14.6106 14.8294 14.8207 14.7524 14.7483 14.8928 15.1420 15.3671 15.4914 15.4676 15.2620 14.9123 14.7704 15.3561 14.8699 14.3915 14.3945 14.5091 14.8207 15.3148 15.2092 15.1050 15.1026 15.2543 15.4305 15.5126 15.4483 15.2447 15.2620 15.3561 15.5099 15.2505 14.7603 14.4342 14.4725 14.7524 15.2092 15.4900 15.4382 15.3615 15.4278 15.5711 15.6370 15.5729 15.4483 15.4676 15.5099 15.5394 15.4382 15.1050 14.7483 14.6032 14.7483 15.1050 15.4382 15.5394 15.4914 15.5126 15.6370 15.7003 15.6370 15.5126 15.4914 15.5394 15.4250 15.4521 15.3200 15.0734 14.8870 14.8928 15.1026 15.3615 15.4914 15.4710 15.4623 15.5714 15.6370 15.5711 15.4305 15.3671 15.4250 15.1896 15.3207 15.3891 15.3207 15.1896 15.1420 15.2543 15.4278 15.5126 15.4623 15.3961 15.4623 15.5126 15.4278 15.2543 15.1420 15.1896 14.8870 15.0734 15.3200 15.4521 15.4250 15.3671 15.4305 15.5711 15.6370 15.5714 15.4623 15.4710 15.4914 15.3615 15.1026 14.8928 14.8870 14.6032 14.7483 15.1050 15.4382 15.5394 15.4914 15.5126 15.6370 15.7003 15.6370 15.5126 15.4914 15.5394 15.4382 15.1050 14.7483 14.6032 14.4725 14.4342 14.7603 15.2505 15.5099 15.4676 15.4483 15.5729 15.6370 15.5711 15.4278 15.3615 15.4382 15.4900 15.2092 14.7524 14.4725 14.5091 14.3945 14.3915 14.8699 15.3561 15.2620 15.2447 15.4483 15.5126 15.4305 15.2543 15.1026 15.1050 15.2092 15.3148 14.8207 14.5091 14.6106 14.4890 14.4475 14.4753 14.7704 14.9123 15.2620 15.4676 15.4914 15.3671 15.1420 14.8928 14.7483 14.7524 14.8207 14.8294 14.6106 14.7264 14.5299 14.3993 14.3018 14.3491 14.7704 15.3561 15.5099 15.5394 15.4250 15.1896 14.8870 14.6032 14.4725 14.5091 14.6106 14.7264 14.9701 14.8294 14.8125 14.8059 14.7704 14.8083 15.3424 15.5193 15.5686 15.4710 15.2678 15.0424 14.8870 14.8300 14.8433 14.8973 14.9701 14.8294 14.6106 14.4890 14.4475 14.4753 14.7704 14.9123 15.2620 15.4676 15.4914 15.3671 15.1420 14.8928 14.7483 14.7524 14.8207 14.8294 14.8125 14.4890 14.2612 14.2109 14.4475 14.8059 14.8699 14.8088 15.1455 15.3615 15.4141 15.3210 15.1026 14.8279 14.7603 14.8451 14.8125 14.8059 14.4475 14.2109 14.2612 14.4890 14.8125 14.8451 14.7603 14.8279 15.1026 15.3210 15.4141 15.3615 15.1455 14.8088 14.8699 14.8059 14.7704 14.4753 14.4475 14.4890 14.6106 14.8294 14.8207 14.7524 14.7483 14.8928 15.1420 15.3671 15.4914 15.4676 15.2620 14.9123 14.7704 14.8083 14.7704 14.8059 14.8125 14.8294 14.9701 14.8973 14.8433 14.8300 14.8870 15.0424 15.2678 15.4710 15.5686 15.5193 15.3424 14.8083 15.3424 14.9123 14.8699 14.8451 14.8207 14.8973 15.2287 15.1562 15.0875 15.0734 15.1420 15.2936 15.4623 15.5555 15.4984 15.2475 15.3424 15.5193 15.2620 14.8088 14.7603 14.7524 14.8433 15.1562 15.4632 15.4058 15.3200 15.3210 15.4305 15.5714 15.6386 15.5748 15.4984 15.5193 15.5686 15.4676 15.1455 14.8279 14.7483 14.8300 15.0875 15.4058 15.5142 15.4521 15.4141 15.4994 15.6370 15.7001 15.6386 15.5555 15.5686 15.4710 15.4914 15.3615 15.1026 14.8928 14.8870 15.0734 15.3200 15.4521 15.4250 15.3671 15.4305 15.5711 15.6370 15.5714 15.4623 15.4710 15.2678 15.3671 15.4141 15.3210 15.1420 15.0424 15.1420 15.3210 15.4141 15.3671 15.2678 15.2936 15.4305 15.4994 15.4305 15.2936 15.2678 15.0424 15.1420 15.3210 15.4141 15.3671 15.2678 15.2936 15.4305 15.4994 15.4305 15.2936 15.2678 15.3671 15.4141 15.3210 15.1420 15.0424 14.8870 14.8928 15.1026 15.3615 15.4914 15.4710 15.4623 15.5714 15.6370 15.5711 15.4305 15.3671 15.4250 15.4521 15.3200 15.0734 14.8870 14.8300 14.7483 14.8279 15.1455 15.4676 15.5686 15.5555 15.6386 15.7001 15.6370 15.4994 15.4141 15.4521 15.5142 15.4058 15.0875 14.8300 14.8433 14.7524 14.7603 14.8088 15.2620 15.5193 15.4984 15.5748 15.6386 15.5714 15.4305 15.3210 15.3200 15.4058 15.4632 15.1562 14.8433 14.8973 14.8207 14.8451 14.8699 14.9123 15.3424 15.2475 15.4984 15.5555 15.4623 15.2936 15.1420 15.0734 15.0875 15.1562 15.2287 14.8973 14.9701 14.8294 14.8125 14.8059 14.7704 14.8083 15.3424 15.5193 15.5686 15.4710 15.2678 15.0424 14.8870 14.8300 14.8433 14.8973 14.9701 15.2235 15.2287 15.3148 15.3455 15.3561 15.3424 15.2917 15.5207 15.6043 15.5386 15.3961 15.2678 15.1896 15.1558 15.1562 15.1819 15.2235 15.2287 14.8973 14.8207 14.8451 14.8699 14.9123 15.3424 15.2475 15.4984 15.5555 15.4623 15.2936 15.1420 15.0734 15.0875 15.1562 15.2287 15.3148 14.8207 14.5091 14.3945 14.3915 14.8699 15.3561 15.2620 15.2447 15.4483 15.5126 15.4305 15.2543 15.1026 15.1050 15.2092 15.3148 15.3455 14.8451 14.3945 14.1434 14.3945 14.8451 15.3455 15.2505 15.1455 15.2441 15.4278 15.4994 15.4278 15.2441 15.1455 15.2505 15.3455 15.3561 14.8699 14.3915 14.3945 14.5091 14.8207 15.3148 15.2092 15.1050 15.1026 15.2543 15.4305 15.5126 15.4483 15.2447 15.2620 15.3561 15.3424 14.9123 14.8699 14.8451 14.8207 14.8973 15.2287 15.1562 15.0875 15.0734 15.1420 15.2936 15.4623 15.5555 15.4984 15.2475 15.3424 15.2917 15.3424 15.3561 15.3455 15.3148 15.2287 15.2235 15.1819 15.1562 15.1558 15.1896 15.2678 15.3961 15.5386 15.6043 15.5207 15.2917 15.5207 15.2475 15.2620 15.2505 15.2092 15.1562 15.1819 15.4344 15.3763 15.3245 15.3207 15.3671 15.4623 15.5802 15.6442 15.5760 15.5207 15.6043 15.4984 15.2447 15.1455 15.1050 15.0875 15.1562 15.3763 15.4941 15.4356 15.3891 15.4141 15.5126 15.6386 15.6997 15.6442 15.6043 15.5386 15.5555 15.4483 15.2441 15.1026 15.0734 15.1558 15.3245 15.4356 15.3975 15.3207 15.3210 15.4278 15.5729 15.6386 15.5802 15.5386 15.3961 15.4623 15.5126 15.4278 15.2543 15.1420 15.1896 15.3207 15.3891 15.3207 15.1896 15.1420 15.2543 15.4278 15.5126 15.4623 15.3961 15.2678 15.2936 15.4305 15.4994 15.4305 15.2936 15.2678 15.3671 15.4141 15.3210 15.1420 15.0424 15.1420 15.3210 15.4141 15.3671 15.2678 15.1896 15.1420 15.2543 15.4278 15.5126 15.4623 15.3961 15.4623 15.5126 15.4278 15.2543 15.1420 15.1896 15.3207 15.3891 15.3207 15.1896 15.1558 15.0734 15.1026 15.2441 15.4483 15.5555 15.5386 15.5802 15.6386 15.5729 15.4278 15.3210 15.3207 15.3975 15.4356 15.3245 15.1558 15.1562 15.0875 15.1050 15.1455 15.2447 15.4984 15.6043 15.6442 15.6997 15.6386 15.5126 15.4141 15.3891 15.4356 15.4941 15.3763 15.1562 15.1819 15.1562 15.2092 15.2505 15.2620 15.2475 15.5207 15.5760 15.6442 15.5802 15.4623 15.3671 15.3207 15.3245 15.3763 15.4344 15.1819 15.2235 15.2287 15.3148 15.3455 15.3561 15.3424 15.2917 15.5207 15.6043 15.5386 15.3961 15.2678 15.1896 15.1558 15.1562 15.1819 15.2235 15.4089 15.4344 15.4632 15.4900 15.5099 15.5193 15.5207 15.5764 15.6585 15.6219 15.5386 15.4710 15.4250 15.3975 15.3870 15.3917 15.4089 15.4344 15.1819 15.1562 15.2092 15.2505 15.2620 15.2475 15.5207 15.5760 15.6442 15.5802 15.4623 15.3671 15.3207 15.3245 15.3763 15.4344 15.4632 15.1562 14.8433 14.7524 14.7603 14.8088 15.2620 15.5193 15.4984 15.5748 15.6386 15.5714 15.4305 15.3210 15.3200 15.4058 15.4632 15.4900 15.2092 14.7524 14.4725 14.4342 14.7603 15.2505 15.5099 15.4676 15.4483 15.5729 15.6370 15.5711 15.4278 15.3615 15.4382 15.4900 15.5099 15.2505 14.7603 14.4342 14.4725 14.7524 15.2092 15.4900 15.4382 15.3615 15.4278 15.5711 15.6370 15.5729 15.4483 15.4676 15.5099 15.5193 15.2620 14.8088 14.7603 14.7524 14.8433 15.1562 15.4632 15.4058 15.3200 15.3210 15.4305 15.5714 15.6386 15.5748 15.4984 15.5193 15.5207 15.2475 15.2620 15.2505 15.2092 15.1562 15.1819 15.4344 15.3763 15.3245 15.3207 15.3671 15.4623 15.5802 15.6442 15.5760 15.5207 15.5764 15.5207 15.5193 15.5099 15.4900 15.4632 15.4344 15.4089 15.3917 15.3870 15.3975 15.4250 15.4710 15.5386 15.6219 15.6585 15.5764 15.6585 15.5760 15.4984 15.4676 15.4382 15.4058 15.3763 15.3917 15.4811 15.4468 15.4356 15.4521 15.4914 15.5555 15.6442 15.6992 15.6585 15.6219 15.6442 15.5748 15.4483 15.3615 15.3200 15.3245 15.3870 15.4468 15.3870 15.3245 15.3200 15.3615 15.4483 15.5748 15.6442 15.6219 15.5386 15.5802 15.6386 15.5729 15.4278 15.3210 15.3207 15.3975 15.4356 15.3245 15.1558 15.0734 15.1026 15.2441 15.4483 15.5555 15.5386 15.4710 15.4623 15.5714 15.6370 15.5711 15.4305 15.3671 15.4250 15.4521 15.3200 15.0734 14.8870 14.8928 15.1026 15.3615 15.4914 15.4710 15.4250 15.3671 15.4305 15.5711 15.6370 15.5714 15.4623 15.4710 15.4914 15.3615 15.1026 14.8928 14.8870 15.0734 15.3200 15.4521 15.4250 15.3975 15.3207 15.3210 15.4278 15.5729 15.6386 15.5802 15.5386 15.5555 15.4483 15.2441 15.1026 15.0734 15.1558 15.3245 15.4356 15.3975 15.3870 15.3245 15.3200 15.3615 15.4483 15.5748 15.6442 15.6219 15.6442 15.5748 15.4483 15.3615 15.3200 15.3245 15.3870 15.4468 15.3870 15.3917 15.3763 15.4058 15.4382 15.4676 15.4984 15.5760 15.6585 15.6992 15.6442 15.5555 15.4914 15.4521 15.4356 15.4468 15.4811 15.3917 15.4089 15.4344 15.4632 15.4900 15.5099 15.5193 15.5207 15.5764 15.6585 15.6219 15.5386 15.4710 15.4250 15.3975 15.3870 15.3917 15.4089 15.4766 15.4811 15.4941 15.5142 15.5394 15.5686 15.6043 15.6585 15.6990 15.6585 15.6043 15.5686 15.5394 15.5142 15.4941 15.4811 15.4766 15.4811 15.3917 15.3763 15.4058 15.4382 15.4676 15.4984 15.5760 15.6585 15.6992 15.6442 15.5555 15.4914 15.4521 15.4356 15.4468 15.4811 15.4941 15.3763 15.1562 15.0875 15.1050 15.1455 15.2447 15.4984 15.6043 15.6442 15.6997 15.6386 15.5126 15.4141 15.3891 15.4356 15.4941 15.5142 15.4058 15.0875 14.8300 14.7483 14.8279 15.1455 15.4676 15.5686 15.5555 15.6386 15.7001 15.6370 15.4994 15.4141 15.4521 15.5142 15.5394 15.4382 15.1050 14.7483 14.6032 14.7483 15.1050 15.4382 15.5394 15.4914 15.5126 15.6370 15.7003 15.6370 15.5126 15.4914 15.5394 15.5686 15.4676 15.1455 14.8279 14.7483 14.8300 15.0875 15.4058 15.5142 15.4521 15.4141 15.4994 15.6370 15.7001 15.6386 15.5555 15.5686 15.6043 15.4984 15.2447 15.1455 15.1050 15.0875 15.1562 15.3763 15.4941 15.4356 15.3891 15.4141 15.5126 15.6386 15.6997 15.6442 15.6043 15.6585 15.5760 15.4984 15.4676 15.4382 15.4058 15.3763 15.3917 15.4811 15.4468 15.4356 15.4521 15.4914 15.5555 15.6442 15.6992 15.6585 15.6990 15.6585 15.6043 15.5686 15.5394 15.5142 15.4941 15.4811 15.4766 15.4811 15.4941 15.5142 15.5394 15.5686 15.6043 15.6585 15.6990 15.6585 15.6992 15.6442 15.5555 15.4914 15.4521 15.4356 15.4468 15.4811 15.3917 15.3763 15.4058 15.4382 15.4676 15.4984 15.5760 15.6585 15.6043 15.6442 15.6997 15.6386 15.5126 15.4141 15.3891 15.4356 15.4941 15.3763 15.1562 15.0875 15.1050 15.1455 15.2447 15.4984 15.6043 15.5686 15.5555 15.6386 15.7001 15.6370 15.4994 15.4141 15.4521 15.5142 15.4058 15.0875 14.8300 14.7483 14.8279 15.1455 15.4676 15.5686 15.5394 15.4914 15.5126 15.6370 15.7003 15.6370 15.5126 15.4914 15.5394 15.4382 15.1050 14.7483 14.6032 14.7483 15.1050 15.4382 15.5394 15.5142 15.4521 15.4141 15.4994 15.6370 15.7001 15.6386 15.5555 15.5686 15.4676 15.1455 14.8279 14.7483 14.8300 15.0875 15.4058 15.5142 15.4941 15.4356 15.3891 15.4141 15.5126 15.6386 15.6997 15.6442 15.6043 15.4984 15.2447 15.1455 15.1050 15.0875 15.1562 15.3763 15.4941 15.4811 15.4468 15.4356 15.4521 15.4914 15.5555 15.6442 15.6992 15.6585 15.5760 15.4984 15.4676 15.4382 15.4058 15.3763 15.3917 15.4811 15.4766 15.4811 15.4941 15.5142 15.5394 15.5686 15.6043 15.6585 15.6990 15.6585 15.6043 15.5686 15.5394 15.5142 15.4941 15.4811 15.4766 15.4089 15.3917 15.3870 15.3975 15.4250 15.4710 15.5386 15.6219 15.6585 15.5764 15.5207 15.5193 15.5099 15.4900 15.4632 15.4344 15.4089 15.3917 15.4811 15.4468 15.4356 15.4521 15.4914 15.5555 15.6442 15.6992 15.6585 15.5760 15.4984 15.4676 15.4382 15.4058 15.3763 15.3917 15.3870 15.4468 15.3870 15.3245 15.3200 15.3615 15.4483 15.5748 15.6442 15.6219 15.6442 15.5748 15.4483 15.3615 15.3200 15.3245 15.3870 15.3975 15.4356 15.3245 15.1558 15.0734 15.1026 15.2441 15.4483 15.5555 15.5386 15.5802 15.6386 15.5729 15.4278 15.3210 15.3207 15.3975 15.4250 15.4521 15.3200 15.0734 14.8870 14.8928 15.1026 15.3615 15.4914 15.4710 15.4623 15.5714 15.6370 15.5711 15.4305 15.3671 15.4250 15.4710 15.4914 15.3615 15.1026 14.8928 14.8870 15.0734 15.3200 15.4521 15.4250 15.3671 15.4305 15.5711 15.6370 15.5714 15.4623 15.4710 15.5386 15.5555 15.4483 15.2441 15.1026 15.0734 15.1558 15.3245 15.4356 15.3975 15.3207 15.3210 15.4278 15.5729 15.6386 15.5802 15.5386 15.6219 15.6442 15.5748 15.4483 15.3615 15.3200 15.3245 15.3870 15.4468 15.3870 15.3245 15.3200 15.3615 15.4483 15.5748 15.6442 15.6219 15.6585 15.6992 15.6442 15.5555 15.4914 15.4521 15.4356 15.4468 15.4811 15.3917 15.3763 15.4058 15.4382 15.4676 15.4984 15.5760 15.6585 15.5764 15.6585 15.6219 15.5386 15.4710 15.4250 15.3975 15.3870 15.3917 15.4089 15.4344 15.4632 15.4900 15.5099 15.5193 15.5207 15.5764 15.5207 15.5760 15.6442 15.5802 15.4623 15.3671 15.3207 15.3245 15.3763 15.4344 15.1819 15.1562 15.2092 15.2505 15.2620 15.2475 15.5207 15.5193 15.4984 15.5748 15.6386 15.5714 15.4305 15.3210 15.3200 15.4058 15.4632 15.1562 14.8433 14.7524 14.7603 14.8088 15.2620 15.5193 15.5099 15.4676 15.4483 15.5729 15.6370 15.5711 15.4278 15.3615 15.4382 15.4900 15.2092 14.7524 14.4725 14.4342 14.7603 15.2505 15.5099 15.4900 15.4382 15.3615 15.4278 15.5711 15.6370 15.5729 15.4483 15.4676 15.5099 15.2505 14.7603 14.4342 14.4725 14.7524 15.2092 15.4900 15.4632 15.4058 15.3200 15.3210 15.4305 15.5714 15.6386 15.5748 15.4984 15.5193 15.2620 14.8088 14.7603 14.7524 14.8433 15.1562 15.4632 15.4344 15.3763 15.3245 15.3207 15.3671 15.4623 15.5802 15.6442 15.5760 15.5207 15.2475 15.2620 15.2505 15.2092 15.1562 15.1819 15.4344 15.4089 15.3917 15.3870 15.3975 15.4250 15.4710 15.5386 15.6219 15.6585 15.5764 15.5207 15.5193 15.5099 15.4900 15.4632 15.4344 15.4089 15.2235 15.1819 15.1562 15.1558 15.1896 15.2678 15.3961 15.5386 15.6043 15.5207 15.2917 15.3424 15.3561 15.3455 15.3148 15.2287 15.2235 15.1819 15.4344 15.3763 15.3245 15.3207 15.3671 15.4623 15.5802 15.6442 15.5760 15.5207 15.2475 15.2620 15.2505 15.2092 15.1562 15.1819 15.1562 15.3763 15.4941 15.4356 15.3891 15.4141 15.5126 15.6386 15.6997 15.6442 15.6043 15.4984 15.2447 15.1455 15.1050 15.0875 15.1562 15.1558 15.3245 15.4356 15.3975 15.3207 15.3210 15.4278 15.5729 15.6386 15.5802 15.5386 15.5555 15.4483 15.2441 15.1026 15.0734 15.1558 15.1896 15.3207 15.3891 15.3207 15.1896 15.1420 15.2543 15.4278 15.5126 15.4623 15.3961 15.4623 15.5126 15.4278 15.2543 15.1420 15.1896 15.2678 15.3671 15.4141 15.3210 15.1420 15.0424 15.1420 15.3210 15.4141 15.3671 15.2678 15.2936 15.4305 15.4994 15.4305 15.2936 15.2678 15.3961 15.4623 15.5126 15.4278 15.2543 15.1420 15.1896 15.3207 15.3891 15.3207 15.1896 15.1420 15.2543 15.4278 15.5126 15.4623 15.3961 15.5386 15.5802 15.6386 15.5729 15.4278 15.3210 15.3207 15.3975 15.4356 15.3245 15.1558 15.0734 15.1026 15.2441 15.4483 15.5555 15.5386 15.6043 15.6442 15.6997 15.6386 15.5126 15.4141 15.3891 15.4356 15.4941 15.3763 15.1562 15.0875 15.1050 15.1455 15.2447 15.4984 15.6043 15.5207 15.5760 15.6442 15.5802 15.4623 15.3671 15.3207 15.3245 15.3763 15.4344 15.1819 15.1562 15.2092 15.2505 15.2620 15.2475 15.5207 15.2917 15.5207 15.6043 15.5386 15.3961 15.2678 15.1896 15.1558 15.1562 15.1819 15.2235 15.2287 15.3148 15.3455 15.3561 15.3424 15.2917 15.3424 15.2475 15.4984 15.5555 15.4623 15.2936 15.1420 15.0734 15.0875 15.1562 15.2287 14.8973 14.8207 14.8451 14.8699 14.9123 15.3424 15.3561 15.2620 15.2447 15.4483 15.5126 15.4305 15.2543 15.1026 15.1050 15.2092 15.3148 14.8207 14.5091 14.3945 14.3915 14.8699 15.3561 15.3455 15.2505 15.1455 15.2441 15.4278 15.4994 15.4278 15.2441 15.1455 15.2505 15.3455 14.8451 14.3945 14.1434 14.3945 14.8451 15.3455 15.3148 15.2092 15.1050 15.1026 15.2543 15.4305 15.5126 15.4483 15.2447 15.2620 15.3561 14.8699 14.3915 14.3945 14.5091 14.8207 15.3148 15.2287 15.1562 15.0875 15.0734 15.1420 15.2936 15.4623 15.5555 15.4984 15.2475 15.3424 14.9123 14.8699 14.8451 14.8207 14.8973 15.2287 15.2235 15.1819 15.1562 15.1558 15.1896 15.2678 15.3961 15.5386 15.6043 15.5207 15.2917 15.3424 15.3561 15.3455 15.3148 15.2287 15.2235 14.9701 14.8973 14.8433 14.8300 14.8870 15.0424 15.2678 15.4710 15.5686 15.5193 15.3424 14.8083 14.7704 14.8059 14.8125 14.8294 14.9701 14.8973 15.2287 15.1562 15.0875 15.0734 15.1420 15.2936 15.4623 15.5555 15.4984 15.2475 15.3424 14.9123 14.8699 14.8451 14.8207 14.8973 14.8433 15.1562 15.4632 15.4058 15.3200 15.3210 15.4305 15.5714 15.6386 15.5748 15.4984 15.5193 15.2620 14.8088 14.7603 14.7524 14.8433 14.8300 15.0875 15.4058 15.5142 15.4521 15.4141 15.4994 15.6370 15.7001 15.6386 15.5555 15.5686 15.4676 15.1455 14.8279 14.7483 14.8300 14.8870 15.0734 15.3200 15.4521 15.4250 15.3671 15.4305 15.5711 15.6370 15.5714 15.4623 15.4710 15.4914 15.3615 15.1026 14.8928 14.8870 15.0424 15.1420 15.3210 15.4141 15.3671 15.2678 15.2936 15.4305 15.4994 15.4305 15.2936 15.2678 15.3671 15.4141 15.3210 15.1420 15.0424 15.2678 15.2936 15.4305 15.4994 15.4305 15.2936 15.2678 15.3671 15.4141 15.3210 15.1420 15.0424 15.1420 15.3210 15.4141 15.3671 15.2678 15.4710 15.4623 15.5714 15.6370 15.5711 15.4305 15.3671 15.4250 15.4521 15.3200 15.0734 14.8870 14.8928 15.1026 15.3615 15.4914 15.4710 15.5686 15.5555 15.6386 15.7001 15.6370 15.4994 15.4141 15.4521 15.5142 15.4058 15.0875 14.8300 14.7483 14.8279 15.1455 15.4676 15.5686 15.5193 15.4984 15.5748 15.6386 15.5714 15.4305 15.3210 15.3200 15.4058 15.4632 15.1562 14.8433 14.7524 14.7603 14.8088 15.2620 15.5193 15.3424 15.2475 15.4984 15.5555 15.4623 15.2936 15.1420 15.0734 15.0875 15.1562 15.2287 14.8973 14.8207 14.8451 14.8699 14.9123 15.3424 14.8083 15.3424 15.5193 15.5686 15.4710 15.2678 15.0424 14.8870 14.8300 14.8433 14.8973 14.9701 14.8294 14.8125 14.8059 14.7704 14.8083 14.7704 14.9123 15.2620 15.4676 15.4914 15.3671 15.1420 14.8928 14.7483 14.7524 14.8207 14.8294 14.6106 14.4890 14.4475 14.4753 14.7704 14.8059 14.8699 14.8088 15.1455 15.3615 15.4141 15.3210 15.1026 14.8279 14.7603 14.8451 14.8125 14.4890 14.2612 14.2109 14.4475 14.8059 14.8125 14.8451 14.7603 14.8279 15.1026 15.3210 15.4141 15.3615 15.1455 14.8088 14.8699 14.8059 14.4475 14.2109 14.2612 14.4890 14.8125 14.8294 14.8207 14.7524 14.7483 14.8928 15.1420 15.3671 15.4914 15.4676 15.2620 14.9123 14.7704 14.4753 14.4475 14.4890 14.6106 14.8294 14.9701 14.8973 14.8433 14.8300 14.8870 15.0424 15.2678 15.4710 15.5686 15.5193 15.3424 14.8083 14.7704 14.8059 14.8125 14.8294 14.9701 14.7264 14.6106 14.5091 14.4725 14.6032 14.8870 15.1896 15.4250 15.5394 15.5099 15.3561 14.7704 14.3491 14.3018 14.3993 14.5299 14.7264 14.6106 14.8294 14.8207 14.7524 14.7483 14.8928 15.1420 15.3671 15.4914 15.4676 15.2620 14.9123 14.7704 14.4753 14.4475 14.4890 14.6106 14.5091 14.8207 15.3148 15.2092 15.1050 15.1026 15.2543 15.4305 15.5126 15.4483 15.2447 15.2620 15.3561 14.8699 14.3915 14.3945 14.5091 14.4725 14.7524 15.2092 15.4900 15.4382 15.3615 15.4278 15.5711 15.6370 15.5729 15.4483 15.4676 15.5099 15.2505 14.7603 14.4342 14.4725 14.6032 14.7483 15.1050 15.4382 15.5394 15.4914 15.5126 15.6370 15.7003 15.6370 15.5126 15.4914 15.5394 15.4382 15.1050 14.7483 14.6032 14.8870 14.8928 15.1026 15.3615 15.4914 15.4710 15.4623 15.5714 15.6370 15.5711 15.4305 15.3671 15.4250 15.4521 15.3200 15.0734 14.8870 15.1896 15.1420 15.2543 15.4278 15.5126 15.4623 15.3961 15.4623 15.5126 15.4278 15.2543 15.1420 15.1896 15.3207 15.3891 15.3207 15.1896 15.4250 15.3671 15.4305 15.5711 15.6370 15.5714 15.4623 15.4710 15.4914 15.3615 15.1026 14.8928 14.8870 15.0734 15.3200 15.4521 15.4250 15.5394 15.4914 15.5126 15.6370 15.7003 15.6370 15.5126 15.4914 15.5394 15.4382 15.1050 14.7483 14.6032 14.7483 15.1050 15.4382 15.5394 15.5099 15.4676 15.4483 15.5729 15.6370 15.5711 15.4278 15.3615 15.4382 15.4900 15.2092 14.7524 14.4725 14.4342 14.7603 15.2505 15.5099 15.3561 15.2620 15.2447 15.4483 15.5126 15.4305 15.2543 15.1026 15.1050 15.2092 15.3148 14.8207 14.5091 14.3945 14.3915 14.8699 15.3561 14.7704 14.9123 15.2620 15.4676 15.4914 15.3671 15.1420 14.8928 14.7483 14.7524 14.8207 14.8294 14.6106 14.4890 14.4475 14.4753 14.7704 14.3491 14.7704 15.3561 15.5099 15.5394 15.4250 15.1896 14.8870 14.6032 14.4725 14.5091 14.6106 14.7264 14.5299 14.3993 14.3018 14.3491 14.3018 14.4753 14.8699 15.2505 15.4382 15.4521 15.3207 15.0734 14.7483 14.4342 14.3945 14.4890 14.5299 14.4286 14.3069 14.2163 14.3018 14.3993 14.4475 14.3915 14.7603 15.1050 15.3200 15.3891 15.3200 15.1050 14.7603 14.3915 14.4475 14.3993 14.3069 14.2806 14.3069 14.3993 14.5299 14.4890 14.3945 14.4342 14.7483 15.0734 15.3207 15.4521 15.4382 15.2505 14.8699 14.4753 14.3018 14.2163 14.3069 14.4286 14.5299 14.7264 14.6106 14.5091 14.4725 14.6032 14.8870 15.1896 15.4250 15.5394 15.5099 15.3561 14.7704 14.3491 14.3018 14.3993 14.5299 14.7264 14.5822 14.4286 14.2612 14.1434 14.4725 14.8300 15.1558 15.3975 15.5142 15.4900 15.3455 14.8059 14.3018 14.0215 14.2235 14.4057 14.5822 14.4286 14.5299 14.4890 14.3945 14.4342 14.7483 15.0734 15.3207 15.4521 15.4382 15.2505 14.8699 14.4753 14.3018 14.2163 14.3069 14.4286 14.2612 14.4890 14.8125 14.8451 14.7603 14.8279 15.1026 15.3210 15.4141 15.3615 15.1455 14.8088 14.8699 14.8059 14.4475 14.2109 14.2612 14.1434 14.3945 14.8451 15.3455 15.2505 15.1455 15.2441 15.4278 15.4994 15.4278 15.2441 15.1455 15.2505 15.3455 14.8451 14.3945 14.1434 14.4725 14.4342 14.7603 15.2505 15.5099 15.4676 15.4483 15.5729 15.6370 15.5711 15.4278 15.3615 15.4382 15.4900 15.2092 14.7524 14.4725 14.8300 14.7483 14.8279 15.1455 15.4676 15.5686 15.5555 15.6386 15.7001 15.6370 15.4994 15.4141 15.4521 15.5142 15.4058 15.0875 14.8300 15.1558 15.0734 15.1026 15.2441 15.4483 15.5555 15.5386 15.5802 15.6386 15.5729 15.4278 15.3210 15.3207 15.3975 15.4356 15.3245 15.1558 15.3975 15.3207 15.3210 15.4278 15.5729 15.6386 15.5802 15.5386 15.5555 15.4483 15.2441 15.1026 15.0734 15.1558 15.3245 15.4356 15.3975 15.5142 15.4521 15.4141 15.4994 15.6370 15.7001 15.6386 15.5555 15.5686 15.4676 15.1455 14.8279 14.7483 14.8300 15.0875 15.4058 15.5142 15.4900 15.4382 15.3615 15.4278 15.5711 15.6370 15.5729 15.4483 15.4676 15.5099 15.2505 14.7603 14.4342 14.4725 14.7524 15.2092 15.4900 15.3455 15.2505 15.1455 15.2441 15.4278 15.4994 15.4278 15.2441 15.1455 15.2505 15.3455 14.8451 14.3945 14.1434 14.3945 14.8451 15.3455 14.8059 14.8699 14.8088 15.1455 15.3615 15.4141 15.3210 15.1026 14.8279 14.7603 14.8451 14.8125 14.4890 14.2612 14.2109 14.4475 14.8059 14.3018 14.4753 14.8699 15.2505 15.4382 15.4521 15.3207 15.0734 14.7483 14.4342 14.3945 14.4890 14.5299 14.4286 14.3069 14.2163 14.3018 14.0215 14.3018 14.8059 15.3455 15.4900 15.5142 15.3975 15.1558 14.8300 14.4725 14.1434 14.2612 14.4286 14.5822 14.4057 14.2235 14.0215 14.2235 14.2163 14.4475 14.8451 15.2092 15.4058 15.4356 15.3245 15.0875 14.7524 14.3945 14.2109 14.3069 14.4057 14.4245 14.3383 14.2235 14.4057 14.3069 14.2109 14.3945 14.7524 15.0875 15.3245 15.4356 15.4058 15.2092 14.8451 14.4475 14.2163 14.2235 14.3383 14.4245 14.4057 14.5822 14.4286 14.2612 14.1434 14.4725 14.8300 15.1558 15.3975 15.5142 15.4900 15.3455 14.8059 14.3018 14.0215 14.2235 14.4057 14.5822 14.5625 14.4245 14.2806 14.2612 14.5091 14.8433 15.1562 15.3870 15.4941 15.4632 15.3148 14.8125 14.3993 14.2235 14.3099 14.4464 14.5625 14.4245 14.4057 14.3069 14.2109 14.3945 14.7524 15.0875 15.3245 15.4356 15.4058 15.2092 14.8451 14.4475 14.2163 14.2235 14.3383 14.4245 14.2806 14.3069 14.3993 14.4475 14.3915 14.7603 15.1050 15.3200 15.3891 15.3200 15.1050 14.7603 14.3915 14.4475 14.3993 14.3069 14.2806 14.2612 14.2109 14.4475 14.8059 14.8699 14.8088 15.1455 15.3615 15.4141 15.3210 15.1026 14.8279 14.7603 14.8451 14.8125 14.4890 14.2612 14.5091 14.3945 14.3915 14.8699 15.3561 15.2620 15.2447 15.4483 15.5126 15.4305 15.2543 15.1026 15.1050 15.2092 15.3148 14.8207 14.5091 14.8433 14.7524 14.7603 14.8088 15.2620 15.5193 15.4984 15.5748 15.6386 15.5714 15.4305 15.3210 15.3200 15.4058 15.4632 15.1562 14.8433 15.1562 15.0875 15.1050 15.1455 15.2447 15.4984 15.6043 15.6442 15.6997 15.6386 15.5126 15.4141 15.3891 15.4356 15.4941 15.3763 15.1562 15.3870 15.3245 15.3200 15.3615 15.4483 15.5748 15.6442 15.6219 15.6442 15.5748 15.4483 15.3615 15.3200 15.3245 15.3870 15.4468 15.3870 15.4941 15.4356 15.3891 15.4141 15.5126 15.6386 15.6997 15.6442 15.6043 15.4984 15.2447 15.1455 15.1050 15.0875 15.1562 15.3763 15.4941 15.4632 15.4058 15.3200 15.3210 15.4305 15.5714 15.6386 15.5748 15.4984 15.5193 15.2620 14.8088 14.7603 14.7524 14.8433 15.1562 15.4632 15.3148 15.2092 15.1050 15.1026 15.2543 15.4305 15.5126 15.4483 15.2447 15.2620 15.3561 14.8699 14.3915 14.3945 14.5091 14.8207 15.3148 14.8125 14.8451 14.7603 14.8279 15.1026 15.3210 15.4141 15.3615 15.1455 14.8088 14.8699 14.8059 14.4475 14.2109 14.2612 14.4890 14.8125 14.3993 14.4475 14.3915 14.7603 15.1050 15.3200 15.3891 15.3200 15.1050 14.7603 14.3915 14.4475 14.3993 14.3069 14.2806 14.3069 14.3993 14.2235 14.2163 14.4475 14.8451 15.2092 15.4058 15.4356 15.3245 15.0875 14.7524 14.3945 14.2109 14.3069 14.4057 14.4245 14.3383 14.2235 14.3099 14.2235 14.3993 14.8125 15.3148 15.4632 15.4941 15.3870 15.1562 14.8433 14.5091 14.2612 14.2806 14.4245 14.5625 14.4464 14.3099 14.4464 14.3383 14.3069 14.4890 14.8207 15.1562 15.3763 15.4468 15.3763 15.1562 14.8207 14.4890 14.3069 14.3383 14.4464 14.5111 14.4464 14.5625 14.4245 14.2806 14.2612 14.5091 14.8433 15.1562 15.3870 15.4941 15.4632 15.3148 14.8125 14.3993 14.2235 14.3099 14.4464 14.5625 14.5947 14.5111 14.4245 14.4286 14.6106 14.8973 15.1819 15.3917 15.4811 15.4344 15.2287 14.8294 14.5299 14.4057 14.4464 14.5315 14.5947 14.5111 14.4464 14.3383 14.3069 14.4890 14.8207 15.1562 15.3763 15.4468 15.3763 15.1562 14.8207 14.4890 14.3069 14.3383 14.4464 14.5111 14.4245 14.3383 14.2235 14.2163 14.4475 14.8451 15.2092 15.4058 15.4356 15.3245 15.0875 14.7524 14.3945 14.2109 14.3069 14.4057 14.4245 14.4286 14.3069 14.2163 14.3018 14.4753 14.8699 15.2505 15.4382 15.4521 15.3207 15.0734 14.7483 14.4342 14.3945 14.4890 14.5299 14.4286 14.6106 14.4890 14.4475 14.4753 14.7704 14.9123 15.2620 15.4676 15.4914 15.3671 15.1420 14.8928 14.7483 14.7524 14.8207 14.8294 14.6106 14.8973 14.8207 14.8451 14.8699 14.9123 15.3424 15.2475 15.4984 15.5555 15.4623 15.2936 15.1420 15.0734 15.0875 15.1562 15.2287 14.8973 15.1819 15.1562 15.2092 15.2505 15.2620 15.2475 15.5207 15.5760 15.6442 15.5802 15.4623 15.3671 15.3207 15.3245 15.3763 15.4344 15.1819 15.3917 15.3763 15.4058 15.4382 15.4676 15.4984 15.5760 15.6585 15.6992 15.6442 15.5555 15.4914 15.4521 15.4356 15.4468 15.4811 15.3917 15.4811 15.4468 15.4356 15.4521 15.4914 15.5555 15.6442 15.6992 15.6585 15.5760 15.4984 15.4676 15.4382 15.4058 15.3763 15.3917 15.4811 15.4344 15.3763 15.3245 15.3207 15.3671 15.4623 15.5802 15.6442 15.5760 15.5207 15.2475 15.2620 15.2505 15.2092 15.1562 15.1819 15.4344 15.2287 15.1562 15.0875 15.0734 15.1420 15.2936 15.4623 15.5555 15.4984 15.2475 15.3424 14.9123 14.8699 14.8451 14.8207 14.8973 15.2287 14.8294 14.8207 14.7524 14.7483 14.8928 15.1420 15.3671 15.4914 15.4676 15.2620 14.9123 14.7704 14.4753 14.4475 14.4890 14.6106 14.8294 14.5299 14.4890 14.3945 14.4342 14.7483 15.0734 15.3207 15.4521 15.4382 15.2505 14.8699 14.4753 14.3018 14.2163 14.3069 14.4286 14.5299 14.4057 14.3069 14.2109 14.3945 14.7524 15.0875 15.3245 15.4356 15.4058 15.2092 14.8451 14.4475 14.2163 14.2235 14.3383 14.4245 14.4057 14.4464 14.3383 14.3069 14.4890 14.8207 15.1562 15.3763 15.4468 15.3763 15.1562 14.8207 14.4890 14.3069 14.3383 14.4464 14.5111 14.4464 14.5315 14.4464 14.4057 14.5299 14.8294 15.2287 15.4344 15.4811 15.3917 15.1819 14.8973 14.6106 14.4286 14.4245 14.5111 14.5947 14.5315 14.5947 14.5111 14.4245 14.4286 14.6106 14.8973 15.1819 15.3917 15.4811 15.4344 15.2287 14.8294 14.5299 14.4057 14.4464 14.5315 14.5947 14.6124 14.5947 14.5625 14.5822 14.7264 14.9701 15.2235 15.4089 15.4766 15.4089 15.2235 14.9701 14.7264 14.5822 14.5625 14.5947 14.6124 14.5947 14.5315 14.4464 14.4057 14.5299 14.8294 15.2287 15.4344 15.4811 15.3917 15.1819 14.8973 14.6106 14.4286 14.4245 14.5111 14.5947 14.5625 14.4464 14.3099 14.2235 14.3993 14.8125 15.3148 15.4632 15.4941 15.3870 15.1562 14.8433 14.5091 14.2612 14.2806 14.4245 14.5625 14.5822 14.4057 14.2235 14.0215 14.3018 14.8059 15.3455 15.4900 15.5142 15.3975 15.1558 14.8300 14.4725 14.1434 14.2612 14.4286 14.5822 14.7264 14.5299 14.3993 14.3018 14.3491 14.7704 15.3561 15.5099 15.5394 15.4250 15.1896 14.8870 14.6032 14.4725 14.5091 14.6106 14.7264 14.9701 14.8294 14.8125 14.8059 14.7704 14.8083 15.3424 15.5193 15.5686 15.4710 15.2678 15.0424 14.8870 14.8300 14.8433 14.8973 14.9701 15.2235 15.2287 15.3148 15.3455 15.3561 15.3424 15.2917 15.5207 15.6043 15.5386 15.3961 15.2678 15.1896 15.1558 15.1562 15.1819 15.2235 15.4089 15.4344 15.4632 15.4900 15.5099 15.5193 15.5207 15.5764 15.6585 15.6219 15.5386 15.4710 15.4250 15.3975 15.3870 15.3917 15.4089 15.4766 15.4811 15.4941 15.5142 15.5394 15.5686 15.6043 15.6585 15.6990 15.6585 15.6043 15.5686 15.5394 15.5142 15.4941 15.4811 15.4766 15.4089 15.3917 15.3870 15.3975 15.4250 15.4710 15.5386 15.6219 15.6585 15.5764 15.5207 15.5193 15.5099 15.4900 15.4632 15.4344 15.4089 15.2235 15.1819 15.1562 15.1558 15.1896 15.2678 15.3961 15.5386 15.6043 15.5207 15.2917 15.3424 15.3561 15.3455 15.3148 15.2287 15.2235 14.9701 14.8973 14.8433 14.8300 14.8870 15.0424 15.2678 15.4710 15.5686 15.5193 15.3424 14.8083 14.7704 14.8059 14.8125 14.8294 14.9701 14.7264 14.6106 14.5091 14.4725 14.6032 14.8870 15.1896 15.4250 15.5394 15.5099 15.3561 14.7704 14.3491 14.3018 14.3993 14.5299 14.7264 14.5822 14.4286 14.2612 14.1434 14.4725 14.8300 15.1558 15.3975 15.5142 15.4900 15.3455 14.8059 14.3018 14.0215 14.2235 14.4057 14.5822 14.5625 14.4245 14.2806 14.2612 14.5091 14.8433 15.1562 15.3870 15.4941 15.4632 15.3148 14.8125 14.3993 14.2235 14.3099 14.4464 14.5625 14.5947 14.5111 14.4245 14.4286 14.6106 14.8973 15.1819 15.3917 15.4811 15.4344 15.2287 14.8294 14.5299 14.4057 14.4464 14.5315 14.5947 14.6124 14.5947 14.5625 14.5822 14.7264 14.9701 15.2235 15.4089 15.4766 15.4089 15.2235 14.9701 14.7264 14.5822 14.5625 14.5947 14.6124 BAND: 6 14.6124 14.5947 14.5625 14.5822 14.7264 14.9701 15.2235 15.4089 15.4766 15.4089 15.2235 14.9701 14.7264 14.5822 14.5625 14.5947 14.6124 14.5947 14.6430 14.6643 14.7056 14.8313 15.0440 15.2711 15.7167 16.2003 16.1275 15.7165 15.3632 15.0537 14.8113 14.6787 14.6301 14.5947 14.5625 14.6643 14.7308 14.7937 14.9109 15.1042 15.3930 16.1713 17.0654 17.3222 16.6810 16.0327 15.5426 15.1510 14.8594 14.6787 14.5625 14.5822 14.7056 14.7937 14.8633 14.9646 15.1409 15.5206 16.5105 17.7558 18.6163 17.9463 16.9500 16.1905 15.6102 15.1510 14.8113 14.5822 14.7264 14.8313 14.9109 14.9646 15.0216 15.1544 15.5491 16.6917 18.1832 19.7307 19.4638 18.1244 17.0253 16.1905 15.5426 15.0537 14.7264 14.9701 15.0440 15.1042 15.1409 15.1544 15.1820 15.4622 16.7196 18.3505 20.2380 21.2149 19.5904 18.1244 16.9500 16.0327 15.3632 14.9701 15.2235 15.2711 15.3930 15.5206 15.5491 15.4622 15.3198 16.6630 18.2933 20.0597 21.6829 21.2149 19.4638 17.9463 16.6810 15.7165 15.2235 15.4089 15.7167 16.1713 16.5105 16.6917 16.7196 16.6630 16.9676 18.0702 19.2609 20.0597 20.2380 19.7307 18.6163 17.3222 16.1275 15.4089 15.4766 16.2003 17.0654 17.7558 18.1832 18.3505 18.2933 18.0702 17.9084 18.0702 18.2933 18.3505 18.1832 17.7558 17.0654 16.2003 15.4766 15.4089 16.1275 17.3222 18.6163 19.7307 20.2380 20.0597 19.2609 18.0702 16.9676 16.6630 16.7196 16.6917 16.5105 16.1713 15.7167 15.4089 15.2235 15.7165 16.6810 17.9463 19.4638 21.2149 21.6829 20.0597 18.2933 16.6630 15.3198 15.4622 15.5491 15.5206 15.3930 15.2711 15.2235 14.9701 15.3632 16.0327 16.9500 18.1244 19.5904 21.2149 20.2380 18.3505 16.7196 15.4622 15.1820 15.1544 15.1409 15.1042 15.0440 14.9701 14.7264 15.0537 15.5426 16.1905 17.0253 18.1244 19.4638 19.7307 18.1832 16.6917 15.5491 15.1544 15.0216 14.9646 14.9109 14.8313 14.7264 14.5822 14.8113 15.1510 15.6102 16.1905 16.9500 17.9463 18.6163 17.7558 16.5105 15.5206 15.1409 14.9646 14.8633 14.7937 14.7056 14.5822 14.5625 14.6787 14.8594 15.1510 15.5426 16.0327 16.6810 17.3222 17.0654 16.1713 15.3930 15.1042 14.9109 14.7937 14.7308 14.6643 14.5625 14.5947 14.6301 14.6787 14.8113 15.0537 15.3632 15.7165 16.1275 16.2003 15.7167 15.2711 15.0440 14.8313 14.7056 14.6643 14.6430 14.5947 14.6124 14.5947 14.5625 14.5822 14.7264 14.9701 15.2235 15.4089 15.4766 15.4089 15.2235 14.9701 14.7264 14.5822 14.5625 14.5947 14.6124 14.5947 14.6430 14.6643 14.7056 14.8313 15.0440 15.2711 15.7167 16.2003 16.1275 15.7165 15.3632 15.0537 14.8113 14.6787 14.6301 14.5947 14.6430 14.5947 14.6301 14.6787 14.8113 15.0537 15.3632 15.7165 16.1275 16.2003 15.7167 15.2711 15.0440 14.8313 14.7056 14.6643 14.6430 14.6643 14.6301 14.6643 14.7288 14.8625 15.1097 15.4573 15.9321 16.6044 17.0601 16.6044 15.9321 15.4573 15.1097 14.8625 14.7288 14.6643 14.7056 14.6787 14.7288 14.7937 14.9066 15.1384 15.5176 16.1351 17.0907 18.0566 17.8537 16.9087 16.1418 15.5860 15.1610 14.8625 14.7056 14.8313 14.8113 14.8625 14.9066 14.9646 15.1372 15.5270 16.2645 17.4394 18.8665 19.3107 18.1462 17.0371 16.2130 15.5860 15.1097 14.8313 15.0440 15.0537 15.1097 15.1384 15.1372 15.1544 15.4804 16.3034 17.6278 19.3188 20.7923 19.6550 18.1953 17.0371 16.1418 15.4573 15.0440 15.2711 15.3632 15.4573 15.5176 15.5270 15.4804 15.4622 16.3125 17.6949 19.4268 21.3389 21.4413 19.6550 18.1462 16.9087 15.9321 15.2711 15.7167 15.7165 15.9321 16.1351 16.2645 16.3034 16.3125 16.6630 17.7601 19.2070 20.5812 21.3389 20.7923 19.3107 17.8537 16.6044 15.7167 16.2003 16.1275 16.6044 17.0907 17.4394 17.6278 17.6949 17.7601 18.0702 18.6737 19.2070 19.4268 19.3188 18.8665 18.0566 17.0601 16.2003 16.1275 16.2003 17.0601 18.0566 18.8665 19.3188 19.4268 19.2070 18.6737 18.0702 17.7601 17.6949 17.6278 17.4394 17.0907 16.6044 16.1275 15.7165 15.7167 16.6044 17.8537 19.3107 20.7923 21.3389 20.5812 19.2070 17.7601 16.6630 16.3125 16.3034 16.2645 16.1351 15.9321 15.7165 15.3632 15.2711 15.9321 16.9087 18.1462 19.6550 21.4413 21.3389 19.4268 17.6949 16.3125 15.4622 15.4804 15.5270 15.5176 15.4573 15.3632 15.0537 15.0440 15.4573 16.1418 17.0371 18.1953 19.6550 20.7923 19.3188 17.6278 16.3034 15.4804 15.1544 15.1372 15.1384 15.1097 15.0537 14.8113 14.8313 15.1097 15.5860 16.2130 17.0371 18.1462 19.3107 18.8665 17.4394 16.2645 15.5270 15.1372 14.9646 14.9066 14.8625 14.8113 14.6787 14.7056 14.8625 15.1610 15.5860 16.1418 16.9087 17.8537 18.0566 17.0907 16.1351 15.5176 15.1384 14.9066 14.7937 14.7288 14.6787 14.6301 14.6643 14.7288 14.8625 15.1097 15.4573 15.9321 16.6044 17.0601 16.6044 15.9321 15.4573 15.1097 14.8625 14.7288 14.6643 14.6301 14.5947 14.6430 14.6643 14.7056 14.8313 15.0440 15.2711 15.7167 16.2003 16.1275 15.7165 15.3632 15.0537 14.8113 14.6787 14.6301 14.5947 14.5625 14.6643 14.7308 14.7937 14.9109 15.1042 15.3930 16.1713 17.0654 17.3222 16.6810 16.0327 15.5426 15.1510 14.8594 14.6787 14.5625 14.6643 14.6301 14.6643 14.7288 14.8625 15.1097 15.4573 15.9321 16.6044 17.0601 16.6044 15.9321 15.4573 15.1097 14.8625 14.7288 14.6643 14.7308 14.6643 14.5625 14.6787 14.8594 15.1510 15.5426 16.0327 16.6810 17.3222 17.0654 16.1713 15.3930 15.1042 14.9109 14.7937 14.7308 14.7937 14.7288 14.6787 14.7056 14.8625 15.1610 15.5860 16.1418 16.9087 17.8537 18.0566 17.0907 16.1351 15.5176 15.1384 14.9066 14.7937 14.9109 14.8625 14.8594 14.8625 14.9109 15.1384 15.5805 16.2109 17.1192 18.3489 19.2453 18.3489 17.1192 16.2109 15.5805 15.1384 14.9109 15.1042 15.1097 15.1510 15.1610 15.1384 15.1409 15.5270 16.2392 17.2758 18.6997 20.2663 19.8698 18.3603 17.1301 16.2109 15.5176 15.1042 15.3930 15.4573 15.5426 15.5860 15.5805 15.5270 15.5491 16.3034 17.4201 18.9261 20.7469 21.6367 19.8987 18.3603 17.1192 16.1351 15.3930 16.1713 15.9321 16.0327 16.1418 16.2109 16.2392 16.3034 16.7196 17.6949 19.0848 20.7136 22.2357 21.6367 19.8698 18.3489 17.0907 16.1713 17.0654 16.6044 16.6810 16.9087 17.1192 17.2758 17.4201 17.6949 18.2933 19.2070 20.1500 20.7136 20.7469 20.2663 19.2453 18.0566 17.0654 17.3222 17.0601 17.3222 17.8537 18.3489 18.6997 18.9261 19.0848 19.2070 19.2609 19.2070 19.0848 18.9261 18.6997 18.3489 17.8537 17.3222 16.6810 16.6044 17.0654 18.0566 19.2453 20.2663 20.7469 20.7136 20.1500 19.2070 18.2933 17.6949 17.4201 17.2758 17.1192 16.9087 16.6810 16.0327 15.9321 16.1713 17.0907 18.3489 19.8698 21.6367 22.2357 20.7136 19.0848 17.6949 16.7196 16.3034 16.2392 16.2109 16.1418 16.0327 15.5426 15.4573 15.3930 16.1351 17.1192 18.3603 19.8987 21.6367 20.7469 18.9261 17.4201 16.3034 15.5491 15.5270 15.5805 15.5860 15.5426 15.1510 15.1097 15.1042 15.5176 16.2109 17.1301 18.3603 19.8698 20.2663 18.6997 17.2758 16.2392 15.5270 15.1409 15.1384 15.1610 15.1510 14.8594 14.8625 14.9109 15.1384 15.5805 16.2109 17.1192 18.3489 19.2453 18.3489 17.1192 16.2109 15.5805 15.1384 14.9109 14.8625 14.8594 14.6787 14.7288 14.7937 14.9066 15.1384 15.5176 16.1351 17.0907 18.0566 17.8537 16.9087 16.1418 15.5860 15.1610 14.8625 14.7056 14.6787 14.5625 14.6643 14.7308 14.7937 14.9109 15.1042 15.3930 16.1713 17.0654 17.3222 16.6810 16.0327 15.5426 15.1510 14.8594 14.6787 14.5625 14.5822 14.7056 14.7937 14.8633 14.9646 15.1409 15.5206 16.5105 17.7558 18.6163 17.9463 16.9500 16.1905 15.6102 15.1510 14.8113 14.5822 14.7056 14.6787 14.7288 14.7937 14.9066 15.1384 15.5176 16.1351 17.0907 18.0566 17.8537 16.9087 16.1418 15.5860 15.1610 14.8625 14.7056 14.7937 14.7288 14.6787 14.7056 14.8625 15.1610 15.5860 16.1418 16.9087 17.8537 18.0566 17.0907 16.1351 15.5176 15.1384 14.9066 14.7937 14.8633 14.7937 14.7056 14.5822 14.8113 15.1510 15.6102 16.1905 16.9500 17.9463 18.6163 17.7558 16.5105 15.5206 15.1409 14.9646 14.8633 14.9646 14.9066 14.8625 14.8113 14.8313 15.1097 15.5860 16.2130 17.0371 18.1462 19.3107 18.8665 17.4394 16.2645 15.5270 15.1372 14.9646 15.1409 15.1384 15.1610 15.1510 15.1097 15.1042 15.5176 16.2109 17.1301 18.3603 19.8698 20.2663 18.6997 17.2758 16.2392 15.5270 15.1409 15.5206 15.5176 15.5860 15.6102 15.5860 15.5176 15.5206 16.2645 17.2758 18.5960 20.2486 21.7538 20.2486 18.5960 17.2758 16.2645 15.5206 16.5105 16.1351 16.1418 16.1905 16.2130 16.2109 16.2645 16.6917 17.6278 18.9261 20.5367 22.3623 22.0747 20.2486 18.6997 17.4394 16.5105 17.7558 17.0907 16.9087 16.9500 17.0371 17.1301 17.2758 17.6278 18.3505 19.4268 20.7136 21.8835 22.3623 21.7538 20.2663 18.8665 17.7558 18.6163 18.0566 17.8537 17.9463 18.1462 18.3603 18.5960 18.9261 19.4268 20.0597 20.5812 20.7136 20.5367 20.2486 19.8698 19.3107 18.6163 17.9463 17.8537 18.0566 18.6163 19.3107 19.8698 20.2486 20.5367 20.7136 20.5812 20.0597 19.4268 18.9261 18.5960 18.3603 18.1462 17.9463 16.9500 16.9087 17.0907 17.7558 18.8665 20.2663 21.7538 22.3623 21.8835 20.7136 19.4268 18.3505 17.6278 17.2758 17.1301 17.0371 16.9500 16.1905 16.1418 16.1351 16.5105 17.4394 18.6997 20.2486 22.0747 22.3623 20.5367 18.9261 17.6278 16.6917 16.2645 16.2109 16.2130 16.1905 15.6102 15.5860 15.5176 15.5206 16.2645 17.2758 18.5960 20.2486 21.7538 20.2486 18.5960 17.2758 16.2645 15.5206 15.5176 15.5860 15.6102 15.1510 15.1610 15.1384 15.1409 15.5270 16.2392 17.2758 18.6997 20.2663 19.8698 18.3603 17.1301 16.2109 15.5176 15.1042 15.1097 15.1510 14.8113 14.8625 14.9066 14.9646 15.1372 15.5270 16.2645 17.4394 18.8665 19.3107 18.1462 17.0371 16.2130 15.5860 15.1097 14.8313 14.8113 14.5822 14.7056 14.7937 14.8633 14.9646 15.1409 15.5206 16.5105 17.7558 18.6163 17.9463 16.9500 16.1905 15.6102 15.1510 14.8113 14.5822 14.7264 14.8313 14.9109 14.9646 15.0216 15.1544 15.5491 16.6917 18.1832 19.7307 19.4638 18.1244 17.0253 16.1905 15.5426 15.0537 14.7264 14.8313 14.8113 14.8625 14.9066 14.9646 15.1372 15.5270 16.2645 17.4394 18.8665 19.3107 18.1462 17.0371 16.2130 15.5860 15.1097 14.8313 14.9109 14.8625 14.8594 14.8625 14.9109 15.1384 15.5805 16.2109 17.1192 18.3489 19.2453 18.3489 17.1192 16.2109 15.5805 15.1384 14.9109 14.9646 14.9066 14.8625 14.8113 14.8313 15.1097 15.5860 16.2130 17.0371 18.1462 19.3107 18.8665 17.4394 16.2645 15.5270 15.1372 14.9646 15.0216 14.9646 14.9109 14.8313 14.7264 15.0537 15.5426 16.1905 17.0253 18.1244 19.4638 19.7307 18.1832 16.6917 15.5491 15.1544 15.0216 15.1544 15.1372 15.1384 15.1097 15.0537 15.0440 15.4573 16.1418 17.0371 18.1953 19.6550 20.7923 19.3188 17.6278 16.3034 15.4804 15.1544 15.5491 15.5270 15.5805 15.5860 15.5426 15.4573 15.3930 16.1351 17.1192 18.3603 19.8987 21.6367 20.7469 18.9261 17.4201 16.3034 15.5491 16.6917 16.2645 16.2109 16.2130 16.1905 16.1418 16.1351 16.5105 17.4394 18.6997 20.2486 22.0747 22.3623 20.5367 18.9261 17.6278 16.6917 18.1832 17.4394 17.1192 17.0371 17.0253 17.0371 17.1192 17.4394 18.1832 19.3188 20.7469 22.3623 23.7844 22.3623 20.7469 19.3188 18.1832 19.7307 18.8665 18.3489 18.1462 18.1244 18.1953 18.3603 18.6997 19.3188 20.2380 21.3389 22.2357 22.3623 22.0747 21.6367 20.7923 19.7307 19.4638 19.3107 19.2453 19.3107 19.4638 19.6550 19.8987 20.2486 20.7469 21.3389 21.6829 21.3389 20.7469 20.2486 19.8987 19.6550 19.4638 18.1244 18.1462 18.3489 18.8665 19.7307 20.7923 21.6367 22.0747 22.3623 22.2357 21.3389 20.2380 19.3188 18.6997 18.3603 18.1953 18.1244 17.0253 17.0371 17.1192 17.4394 18.1832 19.3188 20.7469 22.3623 23.7844 22.3623 20.7469 19.3188 18.1832 17.4394 17.1192 17.0371 17.0253 16.1905 16.2130 16.2109 16.2645 16.6917 17.6278 18.9261 20.5367 22.3623 22.0747 20.2486 18.6997 17.4394 16.5105 16.1351 16.1418 16.1905 15.5426 15.5860 15.5805 15.5270 15.5491 16.3034 17.4201 18.9261 20.7469 21.6367 19.8987 18.3603 17.1192 16.1351 15.3930 15.4573 15.5426 15.0537 15.1097 15.1384 15.1372 15.1544 15.4804 16.3034 17.6278 19.3188 20.7923 19.6550 18.1953 17.0371 16.1418 15.4573 15.0440 15.0537 14.7264 14.8313 14.9109 14.9646 15.0216 15.1544 15.5491 16.6917 18.1832 19.7307 19.4638 18.1244 17.0253 16.1905 15.5426 15.0537 14.7264 14.9701 15.0440 15.1042 15.1409 15.1544 15.1820 15.4622 16.7196 18.3505 20.2380 21.2149 19.5904 18.1244 16.9500 16.0327 15.3632 14.9701 15.0440 15.0537 15.1097 15.1384 15.1372 15.1544 15.4804 16.3034 17.6278 19.3188 20.7923 19.6550 18.1953 17.0371 16.1418 15.4573 15.0440 15.1042 15.1097 15.1510 15.1610 15.1384 15.1409 15.5270 16.2392 17.2758 18.6997 20.2663 19.8698 18.3603 17.1301 16.2109 15.5176 15.1042 15.1409 15.1384 15.1610 15.1510 15.1097 15.1042 15.5176 16.2109 17.1301 18.3603 19.8698 20.2663 18.6997 17.2758 16.2392 15.5270 15.1409 15.1544 15.1372 15.1384 15.1097 15.0537 15.0440 15.4573 16.1418 17.0371 18.1953 19.6550 20.7923 19.3188 17.6278 16.3034 15.4804 15.1544 15.1820 15.1544 15.1409 15.1042 15.0440 14.9701 15.3632 16.0327 16.9500 18.1244 19.5904 21.2149 20.2380 18.3505 16.7196 15.4622 15.1820 15.4622 15.4804 15.5270 15.5176 15.4573 15.3632 15.2711 15.9321 16.9087 18.1462 19.6550 21.4413 21.3389 19.4268 17.6949 16.3125 15.4622 16.7196 16.3034 16.2392 16.2109 16.1418 16.0327 15.9321 16.1713 17.0907 18.3489 19.8698 21.6367 22.2357 20.7136 19.0848 17.6949 16.7196 18.3505 17.6278 17.2758 17.1301 17.0371 16.9500 16.9087 17.0907 17.7558 18.8665 20.2663 21.7538 22.3623 21.8835 20.7136 19.4268 18.3505 20.2380 19.3188 18.6997 18.3603 18.1953 18.1244 18.1462 18.3489 18.8665 19.7307 20.7923 21.6367 22.0747 22.3623 22.2357 21.3389 20.2380 21.2149 20.7923 20.2663 19.8698 19.6550 19.5904 19.6550 19.8698 20.2663 20.7923 21.2149 21.4413 21.6367 21.7538 21.6367 21.4413 21.2149 19.5904 19.6550 19.8698 20.2663 20.7923 21.2149 21.4413 21.6367 21.7538 21.6367 21.4413 21.2149 20.7923 20.2663 19.8698 19.6550 19.5904 18.1244 18.1953 18.3603 18.6997 19.3188 20.2380 21.3389 22.2357 22.3623 22.0747 21.6367 20.7923 19.7307 18.8665 18.3489 18.1462 18.1244 16.9500 17.0371 17.1301 17.2758 17.6278 18.3505 19.4268 20.7136 21.8835 22.3623 21.7538 20.2663 18.8665 17.7558 17.0907 16.9087 16.9500 16.0327 16.1418 16.2109 16.2392 16.3034 16.7196 17.6949 19.0848 20.7136 22.2357 21.6367 19.8698 18.3489 17.0907 16.1713 15.9321 16.0327 15.3632 15.4573 15.5176 15.5270 15.4804 15.4622 16.3125 17.6949 19.4268 21.3389 21.4413 19.6550 18.1462 16.9087 15.9321 15.2711 15.3632 14.9701 15.0440 15.1042 15.1409 15.1544 15.1820 15.4622 16.7196 18.3505 20.2380 21.2149 19.5904 18.1244 16.9500 16.0327 15.3632 14.9701 15.2235 15.2711 15.3930 15.5206 15.5491 15.4622 15.3198 16.6630 18.2933 20.0597 21.6829 21.2149 19.4638 17.9463 16.6810 15.7165 15.2235 15.2711 15.3632 15.4573 15.5176 15.5270 15.4804 15.4622 16.3125 17.6949 19.4268 21.3389 21.4413 19.6550 18.1462 16.9087 15.9321 15.2711 15.3930 15.4573 15.5426 15.5860 15.5805 15.5270 15.5491 16.3034 17.4201 18.9261 20.7469 21.6367 19.8987 18.3603 17.1192 16.1351 15.3930 15.5206 15.5176 15.5860 15.6102 15.5860 15.5176 15.5206 16.2645 17.2758 18.5960 20.2486 21.7538 20.2486 18.5960 17.2758 16.2645 15.5206 15.5491 15.5270 15.5805 15.5860 15.5426 15.4573 15.3930 16.1351 17.1192 18.3603 19.8987 21.6367 20.7469 18.9261 17.4201 16.3034 15.5491 15.4622 15.4804 15.5270 15.5176 15.4573 15.3632 15.2711 15.9321 16.9087 18.1462 19.6550 21.4413 21.3389 19.4268 17.6949 16.3125 15.4622 15.3198 15.4622 15.5491 15.5206 15.3930 15.2711 15.2235 15.7165 16.6810 17.9463 19.4638 21.2149 21.6829 20.0597 18.2933 16.6630 15.3198 16.6630 16.3125 16.3034 16.2645 16.1351 15.9321 15.7165 15.7167 16.6044 17.8537 19.3107 20.7923 21.3389 20.5812 19.2070 17.7601 16.6630 18.2933 17.6949 17.4201 17.2758 17.1192 16.9087 16.6810 16.6044 17.0654 18.0566 19.2453 20.2663 20.7469 20.7136 20.1500 19.2070 18.2933 20.0597 19.4268 18.9261 18.5960 18.3603 18.1462 17.9463 17.8537 18.0566 18.6163 19.3107 19.8698 20.2486 20.5367 20.7136 20.5812 20.0597 21.6829 21.3389 20.7469 20.2486 19.8987 19.6550 19.4638 19.3107 19.2453 19.3107 19.4638 19.6550 19.8987 20.2486 20.7469 21.3389 21.6829 21.2149 21.4413 21.6367 21.7538 21.6367 21.4413 21.2149 20.7923 20.2663 19.8698 19.6550 19.5904 19.6550 19.8698 20.2663 20.7923 21.2149 19.4638 19.6550 19.8987 20.2486 20.7469 21.3389 21.6829 21.3389 20.7469 20.2486 19.8987 19.6550 19.4638 19.3107 19.2453 19.3107 19.4638 17.9463 18.1462 18.3603 18.5960 18.9261 19.4268 20.0597 20.5812 20.7136 20.5367 20.2486 19.8698 19.3107 18.6163 18.0566 17.8537 17.9463 16.6810 16.9087 17.1192 17.2758 17.4201 17.6949 18.2933 19.2070 20.1500 20.7136 20.7469 20.2663 19.2453 18.0566 17.0654 16.6044 16.6810 15.7165 15.9321 16.1351 16.2645 16.3034 16.3125 16.6630 17.7601 19.2070 20.5812 21.3389 20.7923 19.3107 17.8537 16.6044 15.7167 15.7165 15.2235 15.2711 15.3930 15.5206 15.5491 15.4622 15.3198 16.6630 18.2933 20.0597 21.6829 21.2149 19.4638 17.9463 16.6810 15.7165 15.2235 15.4089 15.7167 16.1713 16.5105 16.6917 16.7196 16.6630 16.9676 18.0702 19.2609 20.0597 20.2380 19.7307 18.6163 17.3222 16.1275 15.4089 15.7167 15.7165 15.9321 16.1351 16.2645 16.3034 16.3125 16.6630 17.7601 19.2070 20.5812 21.3389 20.7923 19.3107 17.8537 16.6044 15.7167 16.1713 15.9321 16.0327 16.1418 16.2109 16.2392 16.3034 16.7196 17.6949 19.0848 20.7136 22.2357 21.6367 19.8698 18.3489 17.0907 16.1713 16.5105 16.1351 16.1418 16.1905 16.2130 16.2109 16.2645 16.6917 17.6278 18.9261 20.5367 22.3623 22.0747 20.2486 18.6997 17.4394 16.5105 16.6917 16.2645 16.2109 16.2130 16.1905 16.1418 16.1351 16.5105 17.4394 18.6997 20.2486 22.0747 22.3623 20.5367 18.9261 17.6278 16.6917 16.7196 16.3034 16.2392 16.2109 16.1418 16.0327 15.9321 16.1713 17.0907 18.3489 19.8698 21.6367 22.2357 20.7136 19.0848 17.6949 16.7196 16.6630 16.3125 16.3034 16.2645 16.1351 15.9321 15.7165 15.7167 16.6044 17.8537 19.3107 20.7923 21.3389 20.5812 19.2070 17.7601 16.6630 16.9676 16.6630 16.7196 16.6917 16.5105 16.1713 15.7167 15.4089 16.1275 17.3222 18.6163 19.7307 20.2380 20.0597 19.2609 18.0702 16.9676 18.0702 17.7601 17.6949 17.6278 17.4394 17.0907 16.6044 16.1275 16.2003 17.0601 18.0566 18.8665 19.3188 19.4268 19.2070 18.6737 18.0702 19.2609 19.2070 19.0848 18.9261 18.6997 18.3489 17.8537 17.3222 17.0601 17.3222 17.8537 18.3489 18.6997 18.9261 19.0848 19.2070 19.2609 20.0597 20.5812 20.7136 20.5367 20.2486 19.8698 19.3107 18.6163 18.0566 17.8537 17.9463 18.1462 18.3603 18.5960 18.9261 19.4268 20.0597 20.2380 21.3389 22.2357 22.3623 22.0747 21.6367 20.7923 19.7307 18.8665 18.3489 18.1462 18.1244 18.1953 18.3603 18.6997 19.3188 20.2380 19.7307 20.7923 21.6367 22.0747 22.3623 22.2357 21.3389 20.2380 19.3188 18.6997 18.3603 18.1953 18.1244 18.1462 18.3489 18.8665 19.7307 18.6163 19.3107 19.8698 20.2486 20.5367 20.7136 20.5812 20.0597 19.4268 18.9261 18.5960 18.3603 18.1462 17.9463 17.8537 18.0566 18.6163 17.3222 17.8537 18.3489 18.6997 18.9261 19.0848 19.2070 19.2609 19.2070 19.0848 18.9261 18.6997 18.3489 17.8537 17.3222 17.0601 17.3222 16.1275 16.6044 17.0907 17.4394 17.6278 17.6949 17.7601 18.0702 18.6737 19.2070 19.4268 19.3188 18.8665 18.0566 17.0601 16.2003 16.1275 15.4089 15.7167 16.1713 16.5105 16.6917 16.7196 16.6630 16.9676 18.0702 19.2609 20.0597 20.2380 19.7307 18.6163 17.3222 16.1275 15.4089 15.4766 16.2003 17.0654 17.7558 18.1832 18.3505 18.2933 18.0702 17.9084 18.0702 18.2933 18.3505 18.1832 17.7558 17.0654 16.2003 15.4766 16.2003 16.1275 16.6044 17.0907 17.4394 17.6278 17.6949 17.7601 18.0702 18.6737 19.2070 19.4268 19.3188 18.8665 18.0566 17.0601 16.2003 17.0654 16.6044 16.6810 16.9087 17.1192 17.2758 17.4201 17.6949 18.2933 19.2070 20.1500 20.7136 20.7469 20.2663 19.2453 18.0566 17.0654 17.7558 17.0907 16.9087 16.9500 17.0371 17.1301 17.2758 17.6278 18.3505 19.4268 20.7136 21.8835 22.3623 21.7538 20.2663 18.8665 17.7558 18.1832 17.4394 17.1192 17.0371 17.0253 17.0371 17.1192 17.4394 18.1832 19.3188 20.7469 22.3623 23.7844 22.3623 20.7469 19.3188 18.1832 18.3505 17.6278 17.2758 17.1301 17.0371 16.9500 16.9087 17.0907 17.7558 18.8665 20.2663 21.7538 22.3623 21.8835 20.7136 19.4268 18.3505 18.2933 17.6949 17.4201 17.2758 17.1192 16.9087 16.6810 16.6044 17.0654 18.0566 19.2453 20.2663 20.7469 20.7136 20.1500 19.2070 18.2933 18.0702 17.7601 17.6949 17.6278 17.4394 17.0907 16.6044 16.1275 16.2003 17.0601 18.0566 18.8665 19.3188 19.4268 19.2070 18.6737 18.0702 17.9084 18.0702 18.2933 18.3505 18.1832 17.7558 17.0654 16.2003 15.4766 16.2003 17.0654 17.7558 18.1832 18.3505 18.2933 18.0702 17.9084 18.0702 18.6737 19.2070 19.4268 19.3188 18.8665 18.0566 17.0601 16.2003 16.1275 16.6044 17.0907 17.4394 17.6278 17.6949 17.7601 18.0702 18.2933 19.2070 20.1500 20.7136 20.7469 20.2663 19.2453 18.0566 17.0654 16.6044 16.6810 16.9087 17.1192 17.2758 17.4201 17.6949 18.2933 18.3505 19.4268 20.7136 21.8835 22.3623 21.7538 20.2663 18.8665 17.7558 17.0907 16.9087 16.9500 17.0371 17.1301 17.2758 17.6278 18.3505 18.1832 19.3188 20.7469 22.3623 23.7844 22.3623 20.7469 19.3188 18.1832 17.4394 17.1192 17.0371 17.0253 17.0371 17.1192 17.4394 18.1832 17.7558 18.8665 20.2663 21.7538 22.3623 21.8835 20.7136 19.4268 18.3505 17.6278 17.2758 17.1301 17.0371 16.9500 16.9087 17.0907 17.7558 17.0654 18.0566 19.2453 20.2663 20.7469 20.7136 20.1500 19.2070 18.2933 17.6949 17.4201 17.2758 17.1192 16.9087 16.6810 16.6044 17.0654 16.2003 17.0601 18.0566 18.8665 19.3188 19.4268 19.2070 18.6737 18.0702 17.7601 17.6949 17.6278 17.4394 17.0907 16.6044 16.1275 16.2003 15.4766 16.2003 17.0654 17.7558 18.1832 18.3505 18.2933 18.0702 17.9084 18.0702 18.2933 18.3505 18.1832 17.7558 17.0654 16.2003 15.4766 15.4089 16.1275 17.3222 18.6163 19.7307 20.2380 20.0597 19.2609 18.0702 16.9676 16.6630 16.7196 16.6917 16.5105 16.1713 15.7167 15.4089 16.1275 16.2003 17.0601 18.0566 18.8665 19.3188 19.4268 19.2070 18.6737 18.0702 17.7601 17.6949 17.6278 17.4394 17.0907 16.6044 16.1275 17.3222 17.0601 17.3222 17.8537 18.3489 18.6997 18.9261 19.0848 19.2070 19.2609 19.2070 19.0848 18.9261 18.6997 18.3489 17.8537 17.3222 18.6163 18.0566 17.8537 17.9463 18.1462 18.3603 18.5960 18.9261 19.4268 20.0597 20.5812 20.7136 20.5367 20.2486 19.8698 19.3107 18.6163 19.7307 18.8665 18.3489 18.1462 18.1244 18.1953 18.3603 18.6997 19.3188 20.2380 21.3389 22.2357 22.3623 22.0747 21.6367 20.7923 19.7307 20.2380 19.3188 18.6997 18.3603 18.1953 18.1244 18.1462 18.3489 18.8665 19.7307 20.7923 21.6367 22.0747 22.3623 22.2357 21.3389 20.2380 20.0597 19.4268 18.9261 18.5960 18.3603 18.1462 17.9463 17.8537 18.0566 18.6163 19.3107 19.8698 20.2486 20.5367 20.7136 20.5812 20.0597 19.2609 19.2070 19.0848 18.9261 18.6997 18.3489 17.8537 17.3222 17.0601 17.3222 17.8537 18.3489 18.6997 18.9261 19.0848 19.2070 19.2609 18.0702 18.6737 19.2070 19.4268 19.3188 18.8665 18.0566 17.0601 16.2003 16.1275 16.6044 17.0907 17.4394 17.6278 17.6949 17.7601 18.0702 16.9676 18.0702 19.2609 20.0597 20.2380 19.7307 18.6163 17.3222 16.1275 15.4089 15.7167 16.1713 16.5105 16.6917 16.7196 16.6630 16.9676 16.6630 17.7601 19.2070 20.5812 21.3389 20.7923 19.3107 17.8537 16.6044 15.7167 15.7165 15.9321 16.1351 16.2645 16.3034 16.3125 16.6630 16.7196 17.6949 19.0848 20.7136 22.2357 21.6367 19.8698 18.3489 17.0907 16.1713 15.9321 16.0327 16.1418 16.2109 16.2392 16.3034 16.7196 16.6917 17.6278 18.9261 20.5367 22.3623 22.0747 20.2486 18.6997 17.4394 16.5105 16.1351 16.1418 16.1905 16.2130 16.2109 16.2645 16.6917 16.5105 17.4394 18.6997 20.2486 22.0747 22.3623 20.5367 18.9261 17.6278 16.6917 16.2645 16.2109 16.2130 16.1905 16.1418 16.1351 16.5105 16.1713 17.0907 18.3489 19.8698 21.6367 22.2357 20.7136 19.0848 17.6949 16.7196 16.3034 16.2392 16.2109 16.1418 16.0327 15.9321 16.1713 15.7167 16.6044 17.8537 19.3107 20.7923 21.3389 20.5812 19.2070 17.7601 16.6630 16.3125 16.3034 16.2645 16.1351 15.9321 15.7165 15.7167 15.4089 16.1275 17.3222 18.6163 19.7307 20.2380 20.0597 19.2609 18.0702 16.9676 16.6630 16.7196 16.6917 16.5105 16.1713 15.7167 15.4089 15.2235 15.7165 16.6810 17.9463 19.4638 21.2149 21.6829 20.0597 18.2933 16.6630 15.3198 15.4622 15.5491 15.5206 15.3930 15.2711 15.2235 15.7165 15.7167 16.6044 17.8537 19.3107 20.7923 21.3389 20.5812 19.2070 17.7601 16.6630 16.3125 16.3034 16.2645 16.1351 15.9321 15.7165 16.6810 16.6044 17.0654 18.0566 19.2453 20.2663 20.7469 20.7136 20.1500 19.2070 18.2933 17.6949 17.4201 17.2758 17.1192 16.9087 16.6810 17.9463 17.8537 18.0566 18.6163 19.3107 19.8698 20.2486 20.5367 20.7136 20.5812 20.0597 19.4268 18.9261 18.5960 18.3603 18.1462 17.9463 19.4638 19.3107 19.2453 19.3107 19.4638 19.6550 19.8987 20.2486 20.7469 21.3389 21.6829 21.3389 20.7469 20.2486 19.8987 19.6550 19.4638 21.2149 20.7923 20.2663 19.8698 19.6550 19.5904 19.6550 19.8698 20.2663 20.7923 21.2149 21.4413 21.6367 21.7538 21.6367 21.4413 21.2149 21.6829 21.3389 20.7469 20.2486 19.8987 19.6550 19.4638 19.3107 19.2453 19.3107 19.4638 19.6550 19.8987 20.2486 20.7469 21.3389 21.6829 20.0597 20.5812 20.7136 20.5367 20.2486 19.8698 19.3107 18.6163 18.0566 17.8537 17.9463 18.1462 18.3603 18.5960 18.9261 19.4268 20.0597 18.2933 19.2070 20.1500 20.7136 20.7469 20.2663 19.2453 18.0566 17.0654 16.6044 16.6810 16.9087 17.1192 17.2758 17.4201 17.6949 18.2933 16.6630 17.7601 19.2070 20.5812 21.3389 20.7923 19.3107 17.8537 16.6044 15.7167 15.7165 15.9321 16.1351 16.2645 16.3034 16.3125 16.6630 15.3198 16.6630 18.2933 20.0597 21.6829 21.2149 19.4638 17.9463 16.6810 15.7165 15.2235 15.2711 15.3930 15.5206 15.5491 15.4622 15.3198 15.4622 16.3125 17.6949 19.4268 21.3389 21.4413 19.6550 18.1462 16.9087 15.9321 15.2711 15.3632 15.4573 15.5176 15.5270 15.4804 15.4622 15.5491 16.3034 17.4201 18.9261 20.7469 21.6367 19.8987 18.3603 17.1192 16.1351 15.3930 15.4573 15.5426 15.5860 15.5805 15.5270 15.5491 15.5206 16.2645 17.2758 18.5960 20.2486 21.7538 20.2486 18.5960 17.2758 16.2645 15.5206 15.5176 15.5860 15.6102 15.5860 15.5176 15.5206 15.3930 16.1351 17.1192 18.3603 19.8987 21.6367 20.7469 18.9261 17.4201 16.3034 15.5491 15.5270 15.5805 15.5860 15.5426 15.4573 15.3930 15.2711 15.9321 16.9087 18.1462 19.6550 21.4413 21.3389 19.4268 17.6949 16.3125 15.4622 15.4804 15.5270 15.5176 15.4573 15.3632 15.2711 15.2235 15.7165 16.6810 17.9463 19.4638 21.2149 21.6829 20.0597 18.2933 16.6630 15.3198 15.4622 15.5491 15.5206 15.3930 15.2711 15.2235 14.9701 15.3632 16.0327 16.9500 18.1244 19.5904 21.2149 20.2380 18.3505 16.7196 15.4622 15.1820 15.1544 15.1409 15.1042 15.0440 14.9701 15.3632 15.2711 15.9321 16.9087 18.1462 19.6550 21.4413 21.3389 19.4268 17.6949 16.3125 15.4622 15.4804 15.5270 15.5176 15.4573 15.3632 16.0327 15.9321 16.1713 17.0907 18.3489 19.8698 21.6367 22.2357 20.7136 19.0848 17.6949 16.7196 16.3034 16.2392 16.2109 16.1418 16.0327 16.9500 16.9087 17.0907 17.7558 18.8665 20.2663 21.7538 22.3623 21.8835 20.7136 19.4268 18.3505 17.6278 17.2758 17.1301 17.0371 16.9500 18.1244 18.1462 18.3489 18.8665 19.7307 20.7923 21.6367 22.0747 22.3623 22.2357 21.3389 20.2380 19.3188 18.6997 18.3603 18.1953 18.1244 19.5904 19.6550 19.8698 20.2663 20.7923 21.2149 21.4413 21.6367 21.7538 21.6367 21.4413 21.2149 20.7923 20.2663 19.8698 19.6550 19.5904 21.2149 21.4413 21.6367 21.7538 21.6367 21.4413 21.2149 20.7923 20.2663 19.8698 19.6550 19.5904 19.6550 19.8698 20.2663 20.7923 21.2149 20.2380 21.3389 22.2357 22.3623 22.0747 21.6367 20.7923 19.7307 18.8665 18.3489 18.1462 18.1244 18.1953 18.3603 18.6997 19.3188 20.2380 18.3505 19.4268 20.7136 21.8835 22.3623 21.7538 20.2663 18.8665 17.7558 17.0907 16.9087 16.9500 17.0371 17.1301 17.2758 17.6278 18.3505 16.7196 17.6949 19.0848 20.7136 22.2357 21.6367 19.8698 18.3489 17.0907 16.1713 15.9321 16.0327 16.1418 16.2109 16.2392 16.3034 16.7196 15.4622 16.3125 17.6949 19.4268 21.3389 21.4413 19.6550 18.1462 16.9087 15.9321 15.2711 15.3632 15.4573 15.5176 15.5270 15.4804 15.4622 15.1820 15.4622 16.7196 18.3505 20.2380 21.2149 19.5904 18.1244 16.9500 16.0327 15.3632 14.9701 15.0440 15.1042 15.1409 15.1544 15.1820 15.1544 15.4804 16.3034 17.6278 19.3188 20.7923 19.6550 18.1953 17.0371 16.1418 15.4573 15.0440 15.0537 15.1097 15.1384 15.1372 15.1544 15.1409 15.5270 16.2392 17.2758 18.6997 20.2663 19.8698 18.3603 17.1301 16.2109 15.5176 15.1042 15.1097 15.1510 15.1610 15.1384 15.1409 15.1042 15.5176 16.2109 17.1301 18.3603 19.8698 20.2663 18.6997 17.2758 16.2392 15.5270 15.1409 15.1384 15.1610 15.1510 15.1097 15.1042 15.0440 15.4573 16.1418 17.0371 18.1953 19.6550 20.7923 19.3188 17.6278 16.3034 15.4804 15.1544 15.1372 15.1384 15.1097 15.0537 15.0440 14.9701 15.3632 16.0327 16.9500 18.1244 19.5904 21.2149 20.2380 18.3505 16.7196 15.4622 15.1820 15.1544 15.1409 15.1042 15.0440 14.9701 14.7264 15.0537 15.5426 16.1905 17.0253 18.1244 19.4638 19.7307 18.1832 16.6917 15.5491 15.1544 15.0216 14.9646 14.9109 14.8313 14.7264 15.0537 15.0440 15.4573 16.1418 17.0371 18.1953 19.6550 20.7923 19.3188 17.6278 16.3034 15.4804 15.1544 15.1372 15.1384 15.1097 15.0537 15.5426 15.4573 15.3930 16.1351 17.1192 18.3603 19.8987 21.6367 20.7469 18.9261 17.4201 16.3034 15.5491 15.5270 15.5805 15.5860 15.5426 16.1905 16.1418 16.1351 16.5105 17.4394 18.6997 20.2486 22.0747 22.3623 20.5367 18.9261 17.6278 16.6917 16.2645 16.2109 16.2130 16.1905 17.0253 17.0371 17.1192 17.4394 18.1832 19.3188 20.7469 22.3623 23.7844 22.3623 20.7469 19.3188 18.1832 17.4394 17.1192 17.0371 17.0253 18.1244 18.1953 18.3603 18.6997 19.3188 20.2380 21.3389 22.2357 22.3623 22.0747 21.6367 20.7923 19.7307 18.8665 18.3489 18.1462 18.1244 19.4638 19.6550 19.8987 20.2486 20.7469 21.3389 21.6829 21.3389 20.7469 20.2486 19.8987 19.6550 19.4638 19.3107 19.2453 19.3107 19.4638 19.7307 20.7923 21.6367 22.0747 22.3623 22.2357 21.3389 20.2380 19.3188 18.6997 18.3603 18.1953 18.1244 18.1462 18.3489 18.8665 19.7307 18.1832 19.3188 20.7469 22.3623 23.7844 22.3623 20.7469 19.3188 18.1832 17.4394 17.1192 17.0371 17.0253 17.0371 17.1192 17.4394 18.1832 16.6917 17.6278 18.9261 20.5367 22.3623 22.0747 20.2486 18.6997 17.4394 16.5105 16.1351 16.1418 16.1905 16.2130 16.2109 16.2645 16.6917 15.5491 16.3034 17.4201 18.9261 20.7469 21.6367 19.8987 18.3603 17.1192 16.1351 15.3930 15.4573 15.5426 15.5860 15.5805 15.5270 15.5491 15.1544 15.4804 16.3034 17.6278 19.3188 20.7923 19.6550 18.1953 17.0371 16.1418 15.4573 15.0440 15.0537 15.1097 15.1384 15.1372 15.1544 15.0216 15.1544 15.5491 16.6917 18.1832 19.7307 19.4638 18.1244 17.0253 16.1905 15.5426 15.0537 14.7264 14.8313 14.9109 14.9646 15.0216 14.9646 15.1372 15.5270 16.2645 17.4394 18.8665 19.3107 18.1462 17.0371 16.2130 15.5860 15.1097 14.8313 14.8113 14.8625 14.9066 14.9646 14.9109 15.1384 15.5805 16.2109 17.1192 18.3489 19.2453 18.3489 17.1192 16.2109 15.5805 15.1384 14.9109 14.8625 14.8594 14.8625 14.9109 14.8313 15.1097 15.5860 16.2130 17.0371 18.1462 19.3107 18.8665 17.4394 16.2645 15.5270 15.1372 14.9646 14.9066 14.8625 14.8113 14.8313 14.7264 15.0537 15.5426 16.1905 17.0253 18.1244 19.4638 19.7307 18.1832 16.6917 15.5491 15.1544 15.0216 14.9646 14.9109 14.8313 14.7264 14.5822 14.8113 15.1510 15.6102 16.1905 16.9500 17.9463 18.6163 17.7558 16.5105 15.5206 15.1409 14.9646 14.8633 14.7937 14.7056 14.5822 14.8113 14.8313 15.1097 15.5860 16.2130 17.0371 18.1462 19.3107 18.8665 17.4394 16.2645 15.5270 15.1372 14.9646 14.9066 14.8625 14.8113 15.1510 15.1097 15.1042 15.5176 16.2109 17.1301 18.3603 19.8698 20.2663 18.6997 17.2758 16.2392 15.5270 15.1409 15.1384 15.1610 15.1510 15.6102 15.5860 15.5176 15.5206 16.2645 17.2758 18.5960 20.2486 21.7538 20.2486 18.5960 17.2758 16.2645 15.5206 15.5176 15.5860 15.6102 16.1905 16.2130 16.2109 16.2645 16.6917 17.6278 18.9261 20.5367 22.3623 22.0747 20.2486 18.6997 17.4394 16.5105 16.1351 16.1418 16.1905 16.9500 17.0371 17.1301 17.2758 17.6278 18.3505 19.4268 20.7136 21.8835 22.3623 21.7538 20.2663 18.8665 17.7558 17.0907 16.9087 16.9500 17.9463 18.1462 18.3603 18.5960 18.9261 19.4268 20.0597 20.5812 20.7136 20.5367 20.2486 19.8698 19.3107 18.6163 18.0566 17.8537 17.9463 18.6163 19.3107 19.8698 20.2486 20.5367 20.7136 20.5812 20.0597 19.4268 18.9261 18.5960 18.3603 18.1462 17.9463 17.8537 18.0566 18.6163 17.7558 18.8665 20.2663 21.7538 22.3623 21.8835 20.7136 19.4268 18.3505 17.6278 17.2758 17.1301 17.0371 16.9500 16.9087 17.0907 17.7558 16.5105 17.4394 18.6997 20.2486 22.0747 22.3623 20.5367 18.9261 17.6278 16.6917 16.2645 16.2109 16.2130 16.1905 16.1418 16.1351 16.5105 15.5206 16.2645 17.2758 18.5960 20.2486 21.7538 20.2486 18.5960 17.2758 16.2645 15.5206 15.5176 15.5860 15.6102 15.5860 15.5176 15.5206 15.1409 15.5270 16.2392 17.2758 18.6997 20.2663 19.8698 18.3603 17.1301 16.2109 15.5176 15.1042 15.1097 15.1510 15.1610 15.1384 15.1409 14.9646 15.1372 15.5270 16.2645 17.4394 18.8665 19.3107 18.1462 17.0371 16.2130 15.5860 15.1097 14.8313 14.8113 14.8625 14.9066 14.9646 14.8633 14.9646 15.1409 15.5206 16.5105 17.7558 18.6163 17.9463 16.9500 16.1905 15.6102 15.1510 14.8113 14.5822 14.7056 14.7937 14.8633 14.7937 14.9066 15.1384 15.5176 16.1351 17.0907 18.0566 17.8537 16.9087 16.1418 15.5860 15.1610 14.8625 14.7056 14.6787 14.7288 14.7937 14.7056 14.8625 15.1610 15.5860 16.1418 16.9087 17.8537 18.0566 17.0907 16.1351 15.5176 15.1384 14.9066 14.7937 14.7288 14.6787 14.7056 14.5822 14.8113 15.1510 15.6102 16.1905 16.9500 17.9463 18.6163 17.7558 16.5105 15.5206 15.1409 14.9646 14.8633 14.7937 14.7056 14.5822 14.5625 14.6787 14.8594 15.1510 15.5426 16.0327 16.6810 17.3222 17.0654 16.1713 15.3930 15.1042 14.9109 14.7937 14.7308 14.6643 14.5625 14.6787 14.7056 14.8625 15.1610 15.5860 16.1418 16.9087 17.8537 18.0566 17.0907 16.1351 15.5176 15.1384 14.9066 14.7937 14.7288 14.6787 14.8594 14.8625 14.9109 15.1384 15.5805 16.2109 17.1192 18.3489 19.2453 18.3489 17.1192 16.2109 15.5805 15.1384 14.9109 14.8625 14.8594 15.1510 15.1610 15.1384 15.1409 15.5270 16.2392 17.2758 18.6997 20.2663 19.8698 18.3603 17.1301 16.2109 15.5176 15.1042 15.1097 15.1510 15.5426 15.5860 15.5805 15.5270 15.5491 16.3034 17.4201 18.9261 20.7469 21.6367 19.8987 18.3603 17.1192 16.1351 15.3930 15.4573 15.5426 16.0327 16.1418 16.2109 16.2392 16.3034 16.7196 17.6949 19.0848 20.7136 22.2357 21.6367 19.8698 18.3489 17.0907 16.1713 15.9321 16.0327 16.6810 16.9087 17.1192 17.2758 17.4201 17.6949 18.2933 19.2070 20.1500 20.7136 20.7469 20.2663 19.2453 18.0566 17.0654 16.6044 16.6810 17.3222 17.8537 18.3489 18.6997 18.9261 19.0848 19.2070 19.2609 19.2070 19.0848 18.9261 18.6997 18.3489 17.8537 17.3222 17.0601 17.3222 17.0654 18.0566 19.2453 20.2663 20.7469 20.7136 20.1500 19.2070 18.2933 17.6949 17.4201 17.2758 17.1192 16.9087 16.6810 16.6044 17.0654 16.1713 17.0907 18.3489 19.8698 21.6367 22.2357 20.7136 19.0848 17.6949 16.7196 16.3034 16.2392 16.2109 16.1418 16.0327 15.9321 16.1713 15.3930 16.1351 17.1192 18.3603 19.8987 21.6367 20.7469 18.9261 17.4201 16.3034 15.5491 15.5270 15.5805 15.5860 15.5426 15.4573 15.3930 15.1042 15.5176 16.2109 17.1301 18.3603 19.8698 20.2663 18.6997 17.2758 16.2392 15.5270 15.1409 15.1384 15.1610 15.1510 15.1097 15.1042 14.9109 15.1384 15.5805 16.2109 17.1192 18.3489 19.2453 18.3489 17.1192 16.2109 15.5805 15.1384 14.9109 14.8625 14.8594 14.8625 14.9109 14.7937 14.9066 15.1384 15.5176 16.1351 17.0907 18.0566 17.8537 16.9087 16.1418 15.5860 15.1610 14.8625 14.7056 14.6787 14.7288 14.7937 14.7308 14.7937 14.9109 15.1042 15.3930 16.1713 17.0654 17.3222 16.6810 16.0327 15.5426 15.1510 14.8594 14.6787 14.5625 14.6643 14.7308 14.6643 14.7288 14.8625 15.1097 15.4573 15.9321 16.6044 17.0601 16.6044 15.9321 15.4573 15.1097 14.8625 14.7288 14.6643 14.6301 14.6643 14.5625 14.6787 14.8594 15.1510 15.5426 16.0327 16.6810 17.3222 17.0654 16.1713 15.3930 15.1042 14.9109 14.7937 14.7308 14.6643 14.5625 14.5947 14.6301 14.6787 14.8113 15.0537 15.3632 15.7165 16.1275 16.2003 15.7167 15.2711 15.0440 14.8313 14.7056 14.6643 14.6430 14.5947 14.6301 14.6643 14.7288 14.8625 15.1097 15.4573 15.9321 16.6044 17.0601 16.6044 15.9321 15.4573 15.1097 14.8625 14.7288 14.6643 14.6301 14.6787 14.7288 14.7937 14.9066 15.1384 15.5176 16.1351 17.0907 18.0566 17.8537 16.9087 16.1418 15.5860 15.1610 14.8625 14.7056 14.6787 14.8113 14.8625 14.9066 14.9646 15.1372 15.5270 16.2645 17.4394 18.8665 19.3107 18.1462 17.0371 16.2130 15.5860 15.1097 14.8313 14.8113 15.0537 15.1097 15.1384 15.1372 15.1544 15.4804 16.3034 17.6278 19.3188 20.7923 19.6550 18.1953 17.0371 16.1418 15.4573 15.0440 15.0537 15.3632 15.4573 15.5176 15.5270 15.4804 15.4622 16.3125 17.6949 19.4268 21.3389 21.4413 19.6550 18.1462 16.9087 15.9321 15.2711 15.3632 15.7165 15.9321 16.1351 16.2645 16.3034 16.3125 16.6630 17.7601 19.2070 20.5812 21.3389 20.7923 19.3107 17.8537 16.6044 15.7167 15.7165 16.1275 16.6044 17.0907 17.4394 17.6278 17.6949 17.7601 18.0702 18.6737 19.2070 19.4268 19.3188 18.8665 18.0566 17.0601 16.2003 16.1275 16.2003 17.0601 18.0566 18.8665 19.3188 19.4268 19.2070 18.6737 18.0702 17.7601 17.6949 17.6278 17.4394 17.0907 16.6044 16.1275 16.2003 15.7167 16.6044 17.8537 19.3107 20.7923 21.3389 20.5812 19.2070 17.7601 16.6630 16.3125 16.3034 16.2645 16.1351 15.9321 15.7165 15.7167 15.2711 15.9321 16.9087 18.1462 19.6550 21.4413 21.3389 19.4268 17.6949 16.3125 15.4622 15.4804 15.5270 15.5176 15.4573 15.3632 15.2711 15.0440 15.4573 16.1418 17.0371 18.1953 19.6550 20.7923 19.3188 17.6278 16.3034 15.4804 15.1544 15.1372 15.1384 15.1097 15.0537 15.0440 14.8313 15.1097 15.5860 16.2130 17.0371 18.1462 19.3107 18.8665 17.4394 16.2645 15.5270 15.1372 14.9646 14.9066 14.8625 14.8113 14.8313 14.7056 14.8625 15.1610 15.5860 16.1418 16.9087 17.8537 18.0566 17.0907 16.1351 15.5176 15.1384 14.9066 14.7937 14.7288 14.6787 14.7056 14.6643 14.7288 14.8625 15.1097 15.4573 15.9321 16.6044 17.0601 16.6044 15.9321 15.4573 15.1097 14.8625 14.7288 14.6643 14.6301 14.6643 14.6430 14.6643 14.7056 14.8313 15.0440 15.2711 15.7167 16.2003 16.1275 15.7165 15.3632 15.0537 14.8113 14.6787 14.6301 14.5947 14.6430 14.5947 14.6301 14.6787 14.8113 15.0537 15.3632 15.7165 16.1275 16.2003 15.7167 15.2711 15.0440 14.8313 14.7056 14.6643 14.6430 14.5947 14.6124 14.5947 14.5625 14.5822 14.7264 14.9701 15.2235 15.4089 15.4766 15.4089 15.2235 14.9701 14.7264 14.5822 14.5625 14.5947 14.6124 14.5947 14.6430 14.6643 14.7056 14.8313 15.0440 15.2711 15.7167 16.2003 16.1275 15.7165 15.3632 15.0537 14.8113 14.6787 14.6301 14.5947 14.5625 14.6643 14.7308 14.7937 14.9109 15.1042 15.3930 16.1713 17.0654 17.3222 16.6810 16.0327 15.5426 15.1510 14.8594 14.6787 14.5625 14.5822 14.7056 14.7937 14.8633 14.9646 15.1409 15.5206 16.5105 17.7558 18.6163 17.9463 16.9500 16.1905 15.6102 15.1510 14.8113 14.5822 14.7264 14.8313 14.9109 14.9646 15.0216 15.1544 15.5491 16.6917 18.1832 19.7307 19.4638 18.1244 17.0253 16.1905 15.5426 15.0537 14.7264 14.9701 15.0440 15.1042 15.1409 15.1544 15.1820 15.4622 16.7196 18.3505 20.2380 21.2149 19.5904 18.1244 16.9500 16.0327 15.3632 14.9701 15.2235 15.2711 15.3930 15.5206 15.5491 15.4622 15.3198 16.6630 18.2933 20.0597 21.6829 21.2149 19.4638 17.9463 16.6810 15.7165 15.2235 15.4089 15.7167 16.1713 16.5105 16.6917 16.7196 16.6630 16.9676 18.0702 19.2609 20.0597 20.2380 19.7307 18.6163 17.3222 16.1275 15.4089 15.4766 16.2003 17.0654 17.7558 18.1832 18.3505 18.2933 18.0702 17.9084 18.0702 18.2933 18.3505 18.1832 17.7558 17.0654 16.2003 15.4766 15.4089 16.1275 17.3222 18.6163 19.7307 20.2380 20.0597 19.2609 18.0702 16.9676 16.6630 16.7196 16.6917 16.5105 16.1713 15.7167 15.4089 15.2235 15.7165 16.6810 17.9463 19.4638 21.2149 21.6829 20.0597 18.2933 16.6630 15.3198 15.4622 15.5491 15.5206 15.3930 15.2711 15.2235 14.9701 15.3632 16.0327 16.9500 18.1244 19.5904 21.2149 20.2380 18.3505 16.7196 15.4622 15.1820 15.1544 15.1409 15.1042 15.0440 14.9701 14.7264 15.0537 15.5426 16.1905 17.0253 18.1244 19.4638 19.7307 18.1832 16.6917 15.5491 15.1544 15.0216 14.9646 14.9109 14.8313 14.7264 14.5822 14.8113 15.1510 15.6102 16.1905 16.9500 17.9463 18.6163 17.7558 16.5105 15.5206 15.1409 14.9646 14.8633 14.7937 14.7056 14.5822 14.5625 14.6787 14.8594 15.1510 15.5426 16.0327 16.6810 17.3222 17.0654 16.1713 15.3930 15.1042 14.9109 14.7937 14.7308 14.6643 14.5625 14.5947 14.6301 14.6787 14.8113 15.0537 15.3632 15.7165 16.1275 16.2003 15.7167 15.2711 15.0440 14.8313 14.7056 14.6643 14.6430 14.5947 14.6124 14.5947 14.5625 14.5822 14.7264 14.9701 15.2235 15.4089 15.4766 15.4089 15.2235 14.9701 14.7264 14.5822 14.5625 14.5947 14.6124 END_BANDGRID_3D END_BLOCK_BANDGRID_3D espresso-5.1/PP/examples/example02/reference/ni.pdos_atm#1(Ni)_wfc#1(s)0000644000175000017500000002447612341372774023402 0ustar mbamba# E (eV) ldosup(E) ldosdw(E) pdosup(E) pdosdw(E) 5.000 -0.379E-05 -0.222E-05 -0.379E-05 -0.222E-05 5.100 -0.177E-04 -0.115E-04 -0.177E-04 -0.115E-04 5.200 -0.590E-04 -0.425E-04 -0.590E-04 -0.425E-04 5.300 -0.137E-03 -0.110E-03 -0.137E-03 -0.110E-03 5.400 -0.221E-03 -0.199E-03 -0.221E-03 -0.199E-03 5.500 -0.247E-03 -0.249E-03 -0.247E-03 -0.249E-03 5.600 -0.830E-04 -0.176E-03 -0.830E-04 -0.176E-03 5.700 0.102E-02 0.490E-03 0.102E-02 0.490E-03 5.800 0.491E-02 0.332E-02 0.491E-02 0.332E-02 5.900 0.126E-01 0.996E-02 0.126E-01 0.996E-02 6.000 0.205E-01 0.185E-01 0.205E-01 0.185E-01 6.100 0.222E-01 0.226E-01 0.222E-01 0.226E-01 6.200 0.172E-01 0.191E-01 0.172E-01 0.191E-01 6.300 0.126E-01 0.134E-01 0.126E-01 0.134E-01 6.400 0.149E-01 0.133E-01 0.149E-01 0.133E-01 6.500 0.239E-01 0.205E-01 0.239E-01 0.205E-01 6.600 0.376E-01 0.328E-01 0.376E-01 0.328E-01 6.700 0.518E-01 0.477E-01 0.518E-01 0.477E-01 6.800 0.559E-01 0.564E-01 0.559E-01 0.564E-01 6.900 0.430E-01 0.488E-01 0.430E-01 0.488E-01 7.000 0.214E-01 0.283E-01 0.214E-01 0.283E-01 7.100 0.740E-02 0.103E-01 0.740E-02 0.103E-01 7.200 0.101E-01 0.687E-02 0.101E-01 0.687E-02 7.300 0.298E-01 0.209E-01 0.298E-01 0.209E-01 7.400 0.584E-01 0.480E-01 0.584E-01 0.480E-01 7.500 0.774E-01 0.730E-01 0.774E-01 0.730E-01 7.600 0.730E-01 0.773E-01 0.730E-01 0.773E-01 7.700 0.554E-01 0.613E-01 0.554E-01 0.613E-01 7.800 0.464E-01 0.464E-01 0.464E-01 0.464E-01 7.900 0.524E-01 0.474E-01 0.524E-01 0.474E-01 8.000 0.623E-01 0.583E-01 0.623E-01 0.583E-01 8.100 0.620E-01 0.647E-01 0.620E-01 0.647E-01 8.200 0.459E-01 0.561E-01 0.459E-01 0.561E-01 8.300 0.234E-01 0.341E-01 0.234E-01 0.341E-01 8.400 0.157E-01 0.153E-01 0.157E-01 0.153E-01 8.500 0.382E-01 0.193E-01 0.382E-01 0.193E-01 8.600 0.842E-01 0.533E-01 0.842E-01 0.533E-01 8.700 0.122E+00 0.101E+00 0.122E+00 0.101E+00 8.800 0.121E+00 0.128E+00 0.121E+00 0.128E+00 8.900 0.927E-01 0.113E+00 0.927E-01 0.113E+00 9.000 0.733E-01 0.796E-01 0.733E-01 0.796E-01 9.100 0.761E-01 0.646E-01 0.761E-01 0.646E-01 9.200 0.804E-01 0.727E-01 0.804E-01 0.727E-01 9.300 0.673E-01 0.803E-01 0.673E-01 0.803E-01 9.400 0.444E-01 0.698E-01 0.444E-01 0.698E-01 9.500 0.368E-01 0.473E-01 0.368E-01 0.473E-01 9.600 0.617E-01 0.342E-01 0.617E-01 0.342E-01 9.700 0.110E+00 0.477E-01 0.110E+00 0.477E-01 9.800 0.152E+00 0.851E-01 0.152E+00 0.851E-01 9.900 0.165E+00 0.127E+00 0.165E+00 0.127E+00 10.000 0.153E+00 0.152E+00 0.153E+00 0.152E+00 10.100 0.137E+00 0.153E+00 0.137E+00 0.153E+00 10.200 0.125E+00 0.137E+00 0.125E+00 0.137E+00 10.300 0.112E+00 0.118E+00 0.112E+00 0.118E+00 10.400 0.997E-01 0.105E+00 0.997E-01 0.105E+00 10.500 0.963E-01 0.982E-01 0.963E-01 0.982E-01 10.600 0.107E+00 0.954E-01 0.107E+00 0.954E-01 10.700 0.120E+00 0.973E-01 0.120E+00 0.973E-01 10.800 0.117E+00 0.112E+00 0.117E+00 0.112E+00 10.900 0.945E-01 0.137E+00 0.945E-01 0.137E+00 11.000 0.650E-01 0.151E+00 0.650E-01 0.151E+00 11.100 0.433E-01 0.131E+00 0.433E-01 0.131E+00 11.200 0.330E-01 0.895E-01 0.330E-01 0.895E-01 11.300 0.285E-01 0.582E-01 0.285E-01 0.582E-01 11.400 0.235E-01 0.497E-01 0.235E-01 0.497E-01 11.500 0.161E-01 0.505E-01 0.161E-01 0.505E-01 11.600 0.961E-02 0.467E-01 0.961E-02 0.467E-01 11.700 0.762E-02 0.370E-01 0.762E-02 0.370E-01 11.800 0.107E-01 0.261E-01 0.107E-01 0.261E-01 11.900 0.172E-01 0.168E-01 0.172E-01 0.168E-01 12.000 0.245E-01 0.100E-01 0.245E-01 0.100E-01 12.100 0.301E-01 0.638E-02 0.301E-01 0.638E-02 12.200 0.319E-01 0.617E-02 0.319E-01 0.617E-02 12.300 0.304E-01 0.878E-02 0.304E-01 0.878E-02 12.400 0.293E-01 0.131E-01 0.293E-01 0.131E-01 12.500 0.332E-01 0.184E-01 0.332E-01 0.184E-01 12.600 0.434E-01 0.241E-01 0.434E-01 0.241E-01 12.700 0.544E-01 0.286E-01 0.544E-01 0.286E-01 12.800 0.589E-01 0.307E-01 0.589E-01 0.307E-01 12.900 0.543E-01 0.329E-01 0.543E-01 0.329E-01 13.000 0.434E-01 0.391E-01 0.434E-01 0.391E-01 13.100 0.303E-01 0.487E-01 0.303E-01 0.487E-01 13.200 0.186E-01 0.558E-01 0.186E-01 0.558E-01 13.300 0.118E-01 0.560E-01 0.118E-01 0.560E-01 13.400 0.111E-01 0.496E-01 0.111E-01 0.496E-01 13.500 0.144E-01 0.395E-01 0.144E-01 0.395E-01 13.600 0.187E-01 0.288E-01 0.187E-01 0.288E-01 13.700 0.228E-01 0.204E-01 0.228E-01 0.204E-01 13.800 0.263E-01 0.166E-01 0.263E-01 0.166E-01 13.900 0.273E-01 0.173E-01 0.273E-01 0.173E-01 14.000 0.252E-01 0.196E-01 0.252E-01 0.196E-01 14.100 0.232E-01 0.219E-01 0.232E-01 0.219E-01 14.200 0.247E-01 0.254E-01 0.247E-01 0.254E-01 14.300 0.281E-01 0.300E-01 0.281E-01 0.300E-01 14.400 0.282E-01 0.303E-01 0.282E-01 0.303E-01 14.500 0.228E-01 0.225E-01 0.228E-01 0.225E-01 14.600 0.142E-01 0.120E-01 0.142E-01 0.120E-01 14.700 0.625E-02 0.796E-02 0.625E-02 0.796E-02 14.800 0.240E-02 0.130E-01 0.240E-02 0.130E-01 14.900 0.583E-02 0.210E-01 0.583E-02 0.210E-01 15.000 0.179E-01 0.241E-01 0.179E-01 0.241E-01 15.100 0.378E-01 0.206E-01 0.378E-01 0.206E-01 15.200 0.603E-01 0.140E-01 0.603E-01 0.140E-01 15.300 0.740E-01 0.784E-02 0.740E-01 0.784E-02 15.400 0.696E-01 0.446E-02 0.696E-01 0.446E-02 15.500 0.540E-01 0.583E-02 0.540E-01 0.583E-02 15.600 0.445E-01 0.138E-01 0.445E-01 0.138E-01 15.700 0.467E-01 0.295E-01 0.467E-01 0.295E-01 15.800 0.472E-01 0.503E-01 0.472E-01 0.503E-01 15.900 0.350E-01 0.672E-01 0.350E-01 0.672E-01 16.000 0.179E-01 0.715E-01 0.179E-01 0.715E-01 16.100 0.146E-01 0.657E-01 0.146E-01 0.657E-01 16.200 0.345E-01 0.564E-01 0.345E-01 0.564E-01 16.300 0.677E-01 0.439E-01 0.677E-01 0.439E-01 16.400 0.917E-01 0.271E-01 0.917E-01 0.271E-01 16.500 0.931E-01 0.119E-01 0.931E-01 0.119E-01 16.600 0.803E-01 0.935E-02 0.803E-01 0.935E-02 16.700 0.691E-01 0.245E-01 0.691E-01 0.245E-01 16.800 0.642E-01 0.497E-01 0.642E-01 0.497E-01 16.900 0.638E-01 0.703E-01 0.638E-01 0.703E-01 17.000 0.673E-01 0.787E-01 0.673E-01 0.787E-01 17.100 0.695E-01 0.783E-01 0.695E-01 0.783E-01 17.200 0.622E-01 0.758E-01 0.622E-01 0.758E-01 17.300 0.451E-01 0.760E-01 0.451E-01 0.760E-01 17.400 0.257E-01 0.792E-01 0.257E-01 0.792E-01 17.500 0.129E-01 0.784E-01 0.129E-01 0.784E-01 17.600 0.119E-01 0.636E-01 0.119E-01 0.636E-01 17.700 0.212E-01 0.367E-01 0.212E-01 0.367E-01 17.800 0.353E-01 0.135E-01 0.353E-01 0.135E-01 17.900 0.515E-01 0.805E-02 0.515E-01 0.805E-02 18.000 0.706E-01 0.198E-01 0.706E-01 0.198E-01 18.100 0.875E-01 0.359E-01 0.875E-01 0.359E-01 18.200 0.894E-01 0.448E-01 0.894E-01 0.448E-01 18.300 0.704E-01 0.481E-01 0.704E-01 0.481E-01 18.400 0.453E-01 0.561E-01 0.453E-01 0.561E-01 18.500 0.376E-01 0.687E-01 0.376E-01 0.687E-01 18.600 0.485E-01 0.721E-01 0.485E-01 0.721E-01 18.700 0.555E-01 0.590E-01 0.555E-01 0.590E-01 18.800 0.451E-01 0.446E-01 0.451E-01 0.446E-01 18.900 0.288E-01 0.451E-01 0.288E-01 0.451E-01 19.000 0.201E-01 0.528E-01 0.201E-01 0.528E-01 19.100 0.185E-01 0.495E-01 0.185E-01 0.495E-01 19.200 0.214E-01 0.351E-01 0.214E-01 0.351E-01 19.300 0.329E-01 0.228E-01 0.329E-01 0.228E-01 19.400 0.493E-01 0.188E-01 0.493E-01 0.188E-01 19.500 0.545E-01 0.232E-01 0.545E-01 0.232E-01 19.600 0.403E-01 0.368E-01 0.403E-01 0.368E-01 19.700 0.177E-01 0.515E-01 0.177E-01 0.515E-01 19.800 0.197E-02 0.511E-01 0.197E-02 0.511E-01 19.900 -0.350E-02 0.327E-01 -0.350E-02 0.327E-01 20.000 -0.385E-02 0.110E-01 -0.385E-02 0.110E-01 20.100 -0.229E-02 -0.107E-02 -0.229E-02 -0.107E-02 20.200 0.344E-02 -0.392E-02 0.344E-02 -0.392E-02 20.300 0.161E-01 -0.351E-02 0.161E-01 -0.351E-02 20.400 0.313E-01 -0.149E-02 0.313E-01 -0.149E-02 20.500 0.382E-01 0.556E-02 0.382E-01 0.556E-02 20.600 0.311E-01 0.195E-01 0.311E-01 0.195E-01 20.700 0.173E-01 0.338E-01 0.173E-01 0.338E-01 20.800 0.956E-02 0.372E-01 0.956E-02 0.372E-01 20.900 0.116E-01 0.269E-01 0.116E-01 0.269E-01 21.000 0.157E-01 0.136E-01 0.157E-01 0.136E-01 21.100 0.133E-01 0.885E-02 0.133E-01 0.885E-02 21.200 0.605E-02 0.127E-01 0.605E-02 0.127E-01 21.300 0.343E-02 0.157E-01 0.343E-02 0.157E-01 21.400 0.135E-01 0.121E-01 0.135E-01 0.121E-01 21.500 0.348E-01 0.575E-02 0.348E-01 0.575E-02 21.600 0.566E-01 0.440E-02 0.566E-01 0.440E-02 21.700 0.675E-01 0.106E-01 0.675E-01 0.106E-01 21.800 0.669E-01 0.221E-01 0.669E-01 0.221E-01 21.900 0.654E-01 0.368E-01 0.654E-01 0.368E-01 22.000 0.706E-01 0.523E-01 0.706E-01 0.523E-01 22.100 0.819E-01 0.650E-01 0.819E-01 0.650E-01 22.200 0.945E-01 0.735E-01 0.945E-01 0.735E-01 22.300 0.984E-01 0.809E-01 0.984E-01 0.809E-01 22.400 0.838E-01 0.900E-01 0.838E-01 0.900E-01 22.500 0.572E-01 0.992E-01 0.572E-01 0.992E-01 22.600 0.390E-01 0.998E-01 0.390E-01 0.998E-01 22.700 0.368E-01 0.839E-01 0.368E-01 0.839E-01 22.800 0.394E-01 0.595E-01 0.394E-01 0.595E-01 22.900 0.383E-01 0.443E-01 0.383E-01 0.443E-01 23.000 0.366E-01 0.415E-01 0.366E-01 0.415E-01 23.100 0.371E-01 0.400E-01 0.371E-01 0.400E-01 23.200 0.367E-01 0.368E-01 0.367E-01 0.368E-01 23.300 0.342E-01 0.379E-01 0.342E-01 0.379E-01 23.400 0.299E-01 0.421E-01 0.299E-01 0.421E-01 23.500 0.232E-01 0.408E-01 0.232E-01 0.408E-01 23.600 0.156E-01 0.324E-01 0.156E-01 0.324E-01 23.700 0.146E-01 0.232E-01 0.146E-01 0.232E-01 23.800 0.247E-01 0.177E-01 0.247E-01 0.177E-01 23.900 0.374E-01 0.185E-01 0.374E-01 0.185E-01 24.000 0.385E-01 0.272E-01 0.385E-01 0.272E-01 24.100 0.278E-01 0.382E-01 0.278E-01 0.382E-01 24.200 0.177E-01 0.393E-01 0.177E-01 0.393E-01 24.300 0.145E-01 0.283E-01 0.145E-01 0.283E-01 24.400 0.127E-01 0.169E-01 0.127E-01 0.169E-01 24.500 0.842E-02 0.138E-01 0.842E-02 0.138E-01 24.600 0.520E-02 0.141E-01 0.520E-02 0.141E-01 24.700 0.675E-02 0.110E-01 0.675E-02 0.110E-01 24.800 0.104E-01 0.656E-02 0.104E-01 0.656E-02 24.900 0.118E-01 0.647E-02 0.118E-01 0.647E-02 25.000 0.120E-01 0.103E-01 0.120E-01 0.103E-01 25.100 0.167E-01 0.125E-01 0.167E-01 0.125E-01 espresso-5.1/PP/examples/example02/reference/ni.pdos.out0000644000175000017500000043510212341372774021314 0ustar mbamba Program POST-PROC v.4.0 starts ... Today is 28Apr2008 at 15:42:32 Check: negative/imaginary core charge= -0.000015 0.000000 Gaussian broadening (read from input): ngauss,degauss= 1 0.020000 Calling projwave .... Projection on atomic states: state # 1: atom 1 (Ni ), wfc 1 (l=0 m= 1) state # 2: atom 1 (Ni ), wfc 2 (l=2 m= 1) state # 3: atom 1 (Ni ), wfc 2 (l=2 m= 2) state # 4: atom 1 (Ni ), wfc 2 (l=2 m= 3) state # 5: atom 1 (Ni ), wfc 2 (l=2 m= 4) state # 6: atom 1 (Ni ), wfc 2 (l=2 m= 5) k = 0.0000000000 0.0000000000 0.0000000000 e = 5.74913 eV psi = 0.999*[# 1]+ |psi|^2 = 0.999 e = 12.68532 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 12.68532 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 12.68532 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 13.98419 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 0.999 e = 13.98419 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 0.999 e = 39.87451 eV psi = |psi|^2 = 0.000 e = 44.27442 eV psi = |psi|^2 = 0.000 k = -0.0833333333 0.0833333333 -0.0833333333 e = 6.03756 eV psi = 0.998*[# 1]+ |psi|^2 = 0.999 e = 12.60736 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 12.75169 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 1.000 e = 12.75169 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 1.000 e = 13.95661 eV psi = 0.498*[# 2]+0.498*[# 5]+0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.999 e = 13.95661 eV psi = 0.498*[# 2]+0.498*[# 5]+0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.999 e = 38.98128 eV psi = |psi|^2 = 0.000 e = 41.75105 eV psi = |psi|^2 = 0.000 k = -0.1666666667 0.1666666667 -0.1666666667 e = 6.86885 eV psi = 0.989*[# 1]+0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+ |psi|^2 = 0.999 e = 12.42845 eV psi = 0.330*[# 3]+0.330*[# 4]+0.330*[# 6]+0.009*[# 1]+ |psi|^2 = 0.999 e = 12.88923 eV psi = 0.313*[# 3]+0.313*[# 4]+0.313*[# 6]+0.031*[# 2]+0.031*[# 5]+ |psi|^2 = 1.000 e = 12.88923 eV psi = 0.313*[# 3]+0.313*[# 4]+0.313*[# 6]+0.031*[# 2]+0.031*[# 5]+ |psi|^2 = 1.000 e = 13.93334 eV psi = 0.469*[# 2]+0.469*[# 5]+0.020*[# 3]+0.020*[# 4]+0.020*[# 6]+ |psi|^2 = 0.999 e = 13.93334 eV psi = 0.469*[# 2]+0.469*[# 5]+0.020*[# 3]+0.020*[# 4]+0.020*[# 6]+ |psi|^2 = 0.999 e = 35.07317 eV psi = |psi|^2 = 0.001 e = 40.76587 eV psi = |psi|^2 = 0.000 k = -0.2500000000 0.2500000000 -0.2500000000 e = 8.10210 eV psi = 0.927*[# 1]+0.024*[# 3]+0.024*[# 4]+0.024*[# 6]+ |psi|^2 = 0.998 e = 12.32677 eV psi = 0.308*[# 3]+0.308*[# 4]+0.308*[# 6]+0.071*[# 1]+ |psi|^2 = 0.995 e = 12.93318 eV psi = 0.243*[# 3]+0.243*[# 4]+0.243*[# 6]+0.135*[# 2]+0.135*[# 5]+ |psi|^2 = 1.000 e = 12.93318 eV psi = 0.243*[# 3]+0.243*[# 4]+0.243*[# 6]+0.135*[# 2]+0.135*[# 5]+ |psi|^2 = 1.000 e = 14.06716 eV psi = 0.365*[# 2]+0.365*[# 5]+0.090*[# 3]+0.090*[# 4]+0.090*[# 6]+ |psi|^2 = 0.999 e = 14.06716 eV psi = 0.365*[# 2]+0.365*[# 5]+0.090*[# 3]+0.090*[# 4]+0.090*[# 6]+ |psi|^2 = 0.999 e = 30.63327 eV psi = 0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.005 e = 40.07398 eV psi = |psi|^2 = 0.000 k = -0.3333333333 0.3333333333 -0.3333333333 e = 9.31758 eV psi = 0.662*[# 1]+0.112*[# 3]+0.112*[# 4]+0.112*[# 6]+ |psi|^2 = 0.997 e = 12.71386 eV psi = 0.319*[# 1]+0.216*[# 3]+0.216*[# 4]+0.216*[# 6]+ |psi|^2 = 0.968 e = 12.83886 eV psi = 0.231*[# 2]+0.231*[# 5]+0.179*[# 3]+0.179*[# 4]+0.179*[# 6]+ |psi|^2 = 1.000 e = 12.83886 eV psi = 0.231*[# 2]+0.231*[# 5]+0.179*[# 3]+0.179*[# 4]+0.179*[# 6]+ |psi|^2 = 1.000 e = 14.36490 eV psi = 0.269*[# 2]+0.269*[# 5]+0.154*[# 3]+0.154*[# 4]+0.154*[# 6]+ |psi|^2 = 0.999 e = 14.36490 eV psi = 0.269*[# 2]+0.269*[# 5]+0.154*[# 3]+0.154*[# 4]+0.154*[# 6]+ |psi|^2 = 0.999 e = 26.53702 eV psi = 0.014*[# 1]+0.005*[# 3]+0.005*[# 4]+0.005*[# 6]+ |psi|^2 = 0.030 e = 39.22252 eV psi = |psi|^2 = 0.000 k = -0.4166666667 0.4166666667 -0.4166666667 e = 9.90988 eV psi = 0.295*[# 1]+0.234*[# 3]+0.234*[# 4]+0.234*[# 6]+ |psi|^2 = 0.996 e = 12.72786 eV psi = 0.275*[# 2]+0.275*[# 5]+0.150*[# 3]+0.150*[# 4]+0.150*[# 6]+ |psi|^2 = 1.000 e = 12.72786 eV psi = 0.275*[# 2]+0.275*[# 5]+0.150*[# 3]+0.150*[# 4]+0.150*[# 6]+ |psi|^2 = 1.000 e = 13.98606 eV psi = 0.500*[# 1]+0.077*[# 3]+0.077*[# 4]+0.077*[# 6]+ |psi|^2 = 0.730 e = 14.64302 eV psi = 0.225*[# 2]+0.225*[# 5]+0.183*[# 3]+0.183*[# 4]+0.183*[# 6]+ |psi|^2 = 0.999 e = 14.64302 eV psi = 0.225*[# 2]+0.225*[# 5]+0.183*[# 3]+0.183*[# 4]+0.183*[# 6]+ |psi|^2 = 0.999 e = 23.14437 eV psi = 0.189*[# 1]+0.023*[# 3]+0.023*[# 4]+0.023*[# 6]+ |psi|^2 = 0.257 e = 38.56653 eV psi = |psi|^2 = 0.000 k = 0.5000000000 -0.5000000000 0.5000000000 e = 10.02702 eV psi = 0.275*[# 3]+0.275*[# 4]+0.275*[# 6]+0.174*[# 1]+ |psi|^2 = 0.998 e = 12.68286 eV psi = 0.287*[# 2]+0.287*[# 5]+0.142*[# 3]+0.142*[# 4]+0.142*[# 6]+ |psi|^2 = 1.000 e = 12.68286 eV psi = 0.287*[# 2]+0.287*[# 5]+0.142*[# 3]+0.142*[# 4]+0.142*[# 6]+ |psi|^2 = 1.000 e = 14.75336 eV psi = 0.213*[# 2]+0.213*[# 5]+0.191*[# 3]+0.191*[# 4]+0.191*[# 6]+ |psi|^2 = 0.999 e = 14.75336 eV psi = 0.213*[# 2]+0.213*[# 5]+0.191*[# 3]+0.191*[# 4]+0.191*[# 6]+ |psi|^2 = 0.999 e = 14.96574 eV psi = |psi|^2 = 0.000 e = 21.53588 eV psi = 0.791*[# 1]+0.058*[# 3]+0.058*[# 4]+0.058*[# 6]+ |psi|^2 = 0.966 e = 38.32575 eV psi = |psi|^2 = 0.000 k = 0.0000000000 0.1666666667 0.0000000000 e = 6.13313 eV psi = 0.998*[# 1]+ |psi|^2 = 0.999 e = 12.53960 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 12.79935 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 12.79935 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 13.85014 eV psi = 0.499*[# 2]+0.499*[# 5]+ |psi|^2 = 1.000 e = 14.03649 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 0.999 e = 39.31610 eV psi = |psi|^2 = 0.000 e = 42.08740 eV psi = |psi|^2 = 0.000 k = -0.0833333333 0.2500000000 -0.0833333333 e = 6.78277 eV psi = 0.992*[# 1]+0.001*[# 2]+0.001*[# 5]+0.001*[# 3]+0.001*[# 4]+ +0.001*[# 6]+ |psi|^2 = 0.999 e = 12.36286 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+0.001*[# 1]+ |psi|^2 = 0.999 e = 12.93631 eV psi = 0.322*[# 3]+0.322*[# 4]+0.322*[# 6]+0.017*[# 2]+0.017*[# 5]+ +0.001*[# 1]+ |psi|^2 = 1.000 e = 12.94416 eV psi = 0.324*[# 3]+0.324*[# 4]+0.324*[# 6]+0.014*[# 2]+0.014*[# 5]+ |psi|^2 = 1.000 e = 13.73584 eV psi = 0.482*[# 2]+0.482*[# 5]+0.011*[# 3]+0.011*[# 4]+0.011*[# 6]+ +0.004*[# 1]+ |psi|^2 = 1.000 e = 14.08301 eV psi = 0.486*[# 2]+0.486*[# 5]+0.009*[# 3]+0.009*[# 4]+0.009*[# 6]+ |psi|^2 = 0.999 e = 36.73730 eV psi = |psi|^2 = 0.001 e = 40.05223 eV psi = |psi|^2 = 0.000 k = -0.1666666667 0.3333333333 -0.1666666667 e = 7.89178 eV psi = 0.954*[# 1]+0.012*[# 3]+0.012*[# 4]+0.012*[# 6]+0.004*[# 2]+ +0.004*[# 5]+ |psi|^2 = 0.998 e = 12.19023 eV psi = 0.325*[# 3]+0.325*[# 4]+0.325*[# 6]+0.021*[# 1]+ |psi|^2 = 0.997 e = 12.96981 eV psi = 0.232*[# 3]+0.232*[# 4]+0.232*[# 6]+0.152*[# 2]+0.152*[# 5]+ +0.002*[# 1]+ |psi|^2 = 1.000 e = 13.04167 eV psi = 0.274*[# 3]+0.274*[# 4]+0.274*[# 6]+0.089*[# 2]+0.089*[# 5]+ |psi|^2 = 1.000 e = 13.83981 eV psi = 0.343*[# 2]+0.343*[# 5]+0.097*[# 3]+0.097*[# 4]+0.097*[# 6]+ +0.021*[# 1]+ |psi|^2 = 0.999 e = 14.20580 eV psi = 0.410*[# 2]+0.410*[# 5]+0.060*[# 3]+0.060*[# 4]+0.060*[# 6]+ |psi|^2 = 0.999 e = 32.27468 eV psi = |psi|^2 = 0.003 e = 39.33215 eV psi = |psi|^2 = 0.000 k = -0.2500000000 0.4166666667 -0.2500000000 e = 9.16427 eV psi = 0.770*[# 1]+0.069*[# 3]+0.069*[# 4]+0.069*[# 6]+0.009*[# 2]+ +0.009*[# 5]+ |psi|^2 = 0.997 e = 12.27278 eV psi = 0.273*[# 3]+0.273*[# 4]+0.273*[# 6]+0.139*[# 1]+0.015*[# 2]+ +0.015*[# 5]+ |psi|^2 = 0.988 e = 12.81372 eV psi = 0.259*[# 2]+0.259*[# 5]+0.161*[# 3]+0.161*[# 4]+0.161*[# 6]+ |psi|^2 = 1.000 e = 12.99629 eV psi = 0.205*[# 3]+0.205*[# 4]+0.205*[# 6]+0.193*[# 2]+0.193*[# 5]+ |psi|^2 = 1.000 e = 14.30292 eV psi = 0.216*[# 2]+0.216*[# 5]+0.161*[# 3]+0.161*[# 4]+0.161*[# 6]+ +0.081*[# 1]+ |psi|^2 = 0.996 e = 14.45368 eV psi = 0.307*[# 2]+0.307*[# 5]+0.129*[# 3]+0.129*[# 4]+0.129*[# 6]+ |psi|^2 = 0.999 e = 28.02019 eV psi = 0.006*[# 1]+0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+ |psi|^2 = 0.015 e = 38.56880 eV psi = |psi|^2 = 0.000 k = -0.3333333333 0.5000000000 -0.3333333333 e = 9.96993 eV psi = 0.380*[# 1]+0.201*[# 3]+0.201*[# 4]+0.201*[# 6]+0.007*[# 2]+ +0.007*[# 5]+ |psi|^2 = 0.996 e = 12.63210 eV psi = 0.339*[# 2]+0.339*[# 5]+0.101*[# 3]+0.101*[# 4]+0.101*[# 6]+ +0.013*[# 1]+ |psi|^2 = 0.993 e = 12.88483 eV psi = 0.258*[# 2]+0.258*[# 5]+0.161*[# 3]+0.161*[# 4]+0.161*[# 6]+ |psi|^2 = 1.000 e = 12.97851 eV psi = 0.260*[# 1]+0.213*[# 3]+0.213*[# 4]+0.213*[# 6]+0.018*[# 2]+ +0.018*[# 5]+ |psi|^2 = 0.933 e = 14.68894 eV psi = 0.242*[# 2]+0.242*[# 5]+0.172*[# 3]+0.172*[# 4]+0.172*[# 6]+ |psi|^2 = 0.999 e = 15.07911 eV psi = 0.248*[# 1]+0.139*[# 3]+0.139*[# 4]+0.139*[# 6]+0.137*[# 2]+ +0.137*[# 5]+ |psi|^2 = 0.939 e = 24.30081 eV psi = 0.086*[# 1]+0.013*[# 3]+0.013*[# 4]+0.013*[# 6]+ |psi|^2 = 0.125 e = 37.80716 eV psi = |psi|^2 = 0.000 k = 0.5833333333 -0.4166666667 0.5833333333 e = 10.18409 eV psi = 0.273*[# 3]+0.273*[# 4]+0.273*[# 6]+0.177*[# 1]+ |psi|^2 = 0.997 e = 12.55734 eV psi = 0.331*[# 2]+0.331*[# 5]+0.110*[# 3]+0.110*[# 4]+0.110*[# 6]+ |psi|^2 = 0.993 e = 12.80501 eV psi = 0.288*[# 2]+0.288*[# 5]+0.141*[# 3]+0.141*[# 4]+0.141*[# 6]+ |psi|^2 = 1.000 e = 13.66020 eV psi = 0.181*[# 3]+0.181*[# 4]+0.181*[# 6]+0.104*[# 2]+0.104*[# 5]+ +0.037*[# 1]+ |psi|^2 = 0.786 e = 14.76062 eV psi = 0.211*[# 2]+0.211*[# 5]+0.192*[# 3]+0.192*[# 4]+0.192*[# 6]+ |psi|^2 = 0.999 e = 16.11825 eV psi = 0.097*[# 1]+0.064*[# 2]+0.064*[# 5]+0.054*[# 3]+0.054*[# 4]+ +0.054*[# 6]+ |psi|^2 = 0.388 e = 21.80037 eV psi = 0.653*[# 1]+0.048*[# 3]+0.048*[# 4]+0.048*[# 6]+ |psi|^2 = 0.797 e = 37.14592 eV psi = |psi|^2 = 0.001 k = 0.5000000000 -0.3333333333 0.5000000000 e = 10.15483 eV psi = 0.260*[# 3]+0.260*[# 4]+0.260*[# 6]+0.216*[# 1]+ |psi|^2 = 0.997 e = 12.59116 eV psi = 0.312*[# 2]+0.312*[# 5]+0.123*[# 3]+0.123*[# 4]+0.123*[# 6]+ +0.002*[# 1]+ |psi|^2 = 0.996 e = 12.80716 eV psi = 0.295*[# 2]+0.295*[# 5]+0.136*[# 3]+0.136*[# 4]+0.136*[# 6]+ |psi|^2 = 1.000 e = 13.56604 eV psi = 0.165*[# 3]+0.165*[# 4]+0.165*[# 6]+0.127*[# 1]+0.098*[# 2]+ +0.098*[# 5]+ |psi|^2 = 0.818 e = 14.60942 eV psi = 0.204*[# 2]+0.204*[# 5]+0.197*[# 3]+0.197*[# 4]+0.197*[# 6]+ |psi|^2 = 0.999 e = 15.88075 eV psi = 0.242*[# 1]+0.089*[# 2]+0.089*[# 5]+0.084*[# 3]+0.084*[# 4]+ +0.084*[# 6]+ |psi|^2 = 0.673 e = 22.40646 eV psi = 0.386*[# 1]+0.033*[# 3]+0.033*[# 4]+0.033*[# 6]+ |psi|^2 = 0.487 e = 36.69861 eV psi = 0.002*[# 1]+ |psi|^2 = 0.003 k = 0.4166666667 -0.2500000000 0.4166666667 e = 9.79269 eV psi = 0.511*[# 1]+0.159*[# 3]+0.159*[# 4]+0.159*[# 6]+0.004*[# 2]+ +0.004*[# 5]+ |psi|^2 = 0.996 e = 12.70945 eV psi = 0.228*[# 3]+0.228*[# 4]+0.228*[# 6]+0.133*[# 2]+0.133*[# 5]+ +0.043*[# 1]+ |psi|^2 = 0.994 e = 12.74453 eV psi = 0.243*[# 1]+0.170*[# 2]+0.170*[# 5]+0.125*[# 3]+0.125*[# 4]+ +0.125*[# 6]+ |psi|^2 = 0.960 e = 12.89592 eV psi = 0.274*[# 2]+0.274*[# 5]+0.150*[# 3]+0.150*[# 4]+0.150*[# 6]+ |psi|^2 = 1.000 e = 14.28023 eV psi = 0.226*[# 2]+0.226*[# 5]+0.183*[# 3]+0.183*[# 4]+0.183*[# 6]+ |psi|^2 = 0.999 e = 15.04586 eV psi = 0.192*[# 2]+0.192*[# 5]+0.158*[# 1]+0.146*[# 3]+0.146*[# 4]+ +0.146*[# 6]+ |psi|^2 = 0.980 e = 25.46627 eV psi = 0.036*[# 1]+0.008*[# 3]+0.008*[# 4]+0.008*[# 6]+ |psi|^2 = 0.060 e = 36.58694 eV psi = |psi|^2 = 0.001 k = 0.3333333333 -0.1666666667 0.3333333333 e = 8.76162 eV psi = 0.863*[# 1]+0.042*[# 3]+0.042*[# 4]+0.042*[# 6]+0.004*[# 2]+ +0.004*[# 5]+ |psi|^2 = 0.998 e = 12.23077 eV psi = 0.303*[# 3]+0.303*[# 4]+0.303*[# 6]+0.080*[# 1]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.993 e = 12.87450 eV psi = 0.206*[# 2]+0.206*[# 5]+0.193*[# 3]+0.193*[# 4]+0.193*[# 6]+ +0.008*[# 1]+ |psi|^2 = 0.999 e = 13.01977 eV psi = 0.207*[# 3]+0.207*[# 4]+0.207*[# 6]+0.190*[# 2]+0.190*[# 5]+ |psi|^2 = 1.000 e = 13.90830 eV psi = 0.310*[# 2]+0.310*[# 5]+0.127*[# 3]+0.127*[# 4]+0.127*[# 6]+ |psi|^2 = 0.999 e = 14.52718 eV psi = 0.288*[# 2]+0.288*[# 5]+0.126*[# 3]+0.126*[# 4]+0.126*[# 6]+ +0.044*[# 1]+ |psi|^2 = 0.998 e = 29.40081 eV psi = 0.002*[# 1]+0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.008 e = 36.86415 eV psi = |psi|^2 = 0.001 k = 0.2500000000 -0.0833333333 0.2500000000 e = 7.48351 eV psi = 0.975*[# 1]+0.007*[# 3]+0.007*[# 4]+0.007*[# 6]+0.001*[# 2]+ +0.001*[# 5]+ |psi|^2 = 0.999 e = 12.27506 eV psi = 0.330*[# 3]+0.330*[# 4]+0.330*[# 6]+0.008*[# 1]+ |psi|^2 = 0.998 e = 12.94684 eV psi = 0.267*[# 3]+0.267*[# 4]+0.267*[# 6]+0.096*[# 2]+0.096*[# 5]+ +0.006*[# 1]+ |psi|^2 = 1.000 e = 13.01626 eV psi = 0.310*[# 3]+0.310*[# 4]+0.310*[# 6]+0.035*[# 2]+0.035*[# 5]+ |psi|^2 = 1.000 e = 13.73037 eV psi = 0.465*[# 2]+0.465*[# 5]+0.023*[# 3]+0.023*[# 4]+0.023*[# 6]+ |psi|^2 = 1.000 e = 14.18614 eV psi = 0.402*[# 2]+0.402*[# 5]+0.062*[# 3]+0.062*[# 4]+0.062*[# 6]+ +0.010*[# 1]+ |psi|^2 = 0.999 e = 33.76151 eV psi = |psi|^2 = 0.002 e = 37.50349 eV psi = |psi|^2 = 0.000 k = 0.1666666667 0.0000000000 0.1666666667 e = 6.50758 eV psi = 0.996*[# 1]+ |psi|^2 = 0.999 e = 12.47047 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 12.85011 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 12.86726 eV psi = 0.320*[# 3]+0.320*[# 4]+0.320*[# 6]+0.019*[# 2]+0.019*[# 5]+ +0.002*[# 1]+ |psi|^2 = 1.000 e = 13.82213 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 1.000 e = 14.03113 eV psi = 0.481*[# 2]+0.481*[# 5]+0.012*[# 3]+0.012*[# 4]+0.012*[# 6]+ +0.001*[# 1]+ |psi|^2 = 0.999 e = 37.70369 eV psi = |psi|^2 = 0.001 e = 39.03950 eV psi = |psi|^2 = 0.000 k = 0.0000000000 0.3333333333 0.0000000000 e = 7.23021 eV psi = 0.984*[# 1]+0.007*[# 2]+0.007*[# 5]+ |psi|^2 = 0.999 e = 12.15116 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 13.13050 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 13.13050 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 13.52199 eV psi = 0.493*[# 2]+0.493*[# 5]+0.014*[# 1]+ |psi|^2 = 1.000 e = 14.18057 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 0.999 e = 38.29471 eV psi = |psi|^2 = 0.001 e = 38.77291 eV psi = |psi|^2 = 0.000 k = -0.0833333333 0.4166666667 -0.0833333333 e = 8.14322 eV psi = 0.943*[# 1]+0.022*[# 2]+0.022*[# 5]+0.004*[# 3]+0.004*[# 4]+ +0.004*[# 6]+ |psi|^2 = 0.998 e = 11.92228 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+0.001*[# 1]+ |psi|^2 = 0.998 e = 13.09710 eV psi = 0.248*[# 2]+0.248*[# 5]+0.166*[# 3]+0.166*[# 4]+0.166*[# 6]+ +0.007*[# 1]+ |psi|^2 = 1.000 e = 13.31296 eV psi = 0.307*[# 3]+0.307*[# 4]+0.307*[# 6]+0.039*[# 2]+0.039*[# 5]+ |psi|^2 = 1.000 e = 13.68103 eV psi = 0.229*[# 2]+0.229*[# 5]+0.165*[# 3]+0.165*[# 4]+0.165*[# 6]+ +0.046*[# 1]+ |psi|^2 = 0.999 e = 14.30076 eV psi = 0.460*[# 2]+0.460*[# 5]+0.026*[# 3]+0.026*[# 4]+0.026*[# 6]+ |psi|^2 = 0.999 e = 34.27332 eV psi = |psi|^2 = 0.001 e = 37.40096 eV psi = |psi|^2 = 0.000 k = -0.1666666667 0.5000000000 -0.1666666667 e = 9.31546 eV psi = 0.796*[# 1]+0.053*[# 2]+0.053*[# 5]+0.032*[# 3]+0.032*[# 4]+ +0.032*[# 6]+ |psi|^2 = 0.997 e = 11.80110 eV psi = 0.314*[# 3]+0.314*[# 4]+0.314*[# 6]+0.027*[# 1]+0.014*[# 2]+ +0.014*[# 5]+ |psi|^2 = 0.995 e = 12.80497 eV psi = 0.285*[# 2]+0.285*[# 5]+0.137*[# 3]+0.137*[# 4]+0.137*[# 6]+ +0.019*[# 1]+ |psi|^2 = 0.999 e = 13.34390 eV psi = 0.233*[# 3]+0.233*[# 4]+0.233*[# 6]+0.150*[# 2]+0.150*[# 5]+ |psi|^2 = 1.000 e = 14.37772 eV psi = 0.182*[# 3]+0.182*[# 4]+0.182*[# 6]+0.151*[# 1]+0.149*[# 2]+ +0.149*[# 5]+ |psi|^2 = 0.995 e = 14.51998 eV psi = 0.349*[# 2]+0.349*[# 5]+0.100*[# 3]+0.100*[# 4]+0.100*[# 6]+ |psi|^2 = 0.999 e = 29.90490 eV psi = 0.002*[# 1]+0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.007 e = 36.59230 eV psi = |psi|^2 = 0.000 k = -0.2500000000 0.5833333333 -0.2500000000 e = 10.24490 eV psi = 0.439*[# 1]+0.143*[# 3]+0.143*[# 4]+0.143*[# 6]+0.063*[# 2]+ +0.063*[# 5]+ |psi|^2 = 0.994 e = 11.98078 eV psi = 0.184*[# 3]+0.184*[# 4]+0.184*[# 6]+0.169*[# 2]+0.169*[# 5]+ +0.090*[# 1]+ |psi|^2 = 0.979 e = 12.60879 eV psi = 0.202*[# 3]+0.202*[# 4]+0.202*[# 6]+0.167*[# 2]+0.167*[# 5]+ +0.056*[# 1]+ |psi|^2 = 0.997 e = 13.25443 eV psi = 0.240*[# 2]+0.240*[# 5]+0.173*[# 3]+0.173*[# 4]+0.173*[# 6]+ |psi|^2 = 1.000 e = 14.73292 eV psi = 0.259*[# 2]+0.259*[# 5]+0.160*[# 3]+0.160*[# 4]+0.160*[# 6]+ |psi|^2 = 0.999 e = 15.52742 eV psi = 0.363*[# 1]+0.132*[# 3]+0.132*[# 4]+0.132*[# 6]+0.099*[# 2]+ +0.099*[# 5]+ |psi|^2 = 0.956 e = 25.92644 eV psi = 0.038*[# 1]+0.006*[# 3]+0.006*[# 4]+0.006*[# 6]+ |psi|^2 = 0.057 e = 35.44801 eV psi = 0.002*[# 1]+ |psi|^2 = 0.003 k = 0.6666666667 -0.3333333333 0.6666666667 e = 10.57505 eV psi = 0.260*[# 3]+0.260*[# 4]+0.260*[# 6]+0.175*[# 1]+0.021*[# 2]+ +0.021*[# 5]+ |psi|^2 = 0.996 e = 12.15988 eV psi = 0.431*[# 2]+0.431*[# 5]+0.032*[# 3]+0.032*[# 4]+0.032*[# 6]+ +0.009*[# 1]+ |psi|^2 = 0.968 e = 12.80926 eV psi = 0.291*[# 3]+0.291*[# 4]+0.291*[# 6]+0.065*[# 1]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.942 e = 13.15169 eV psi = 0.293*[# 2]+0.293*[# 5]+0.138*[# 3]+0.138*[# 4]+0.138*[# 6]+ |psi|^2 = 1.000 e = 14.78076 eV psi = 0.207*[# 2]+0.207*[# 5]+0.195*[# 3]+0.195*[# 4]+0.195*[# 6]+ |psi|^2 = 0.999 e = 17.16453 eV psi = 0.320*[# 1]+0.055*[# 3]+0.055*[# 4]+0.055*[# 6]+0.046*[# 2]+ +0.046*[# 5]+ |psi|^2 = 0.579 e = 22.69803 eV psi = 0.388*[# 1]+0.027*[# 3]+0.027*[# 4]+0.027*[# 6]+ |psi|^2 = 0.468 e = 34.04213 eV psi = 0.012*[# 1]+ |psi|^2 = 0.013 k = 0.5833333333 -0.2500000000 0.5833333333 e = 10.63429 eV psi = 0.283*[# 3]+0.283*[# 4]+0.283*[# 6]+0.148*[# 1]+ |psi|^2 = 0.996 e = 12.22162 eV psi = 0.421*[# 2]+0.421*[# 5]+0.044*[# 3]+0.044*[# 4]+0.044*[# 6]+ +0.004*[# 1]+ |psi|^2 = 0.978 e = 12.91880 eV psi = 0.268*[# 3]+0.268*[# 4]+0.268*[# 6]+0.044*[# 2]+0.044*[# 5]+ +0.010*[# 1]+ |psi|^2 = 0.902 e = 13.10517 eV psi = 0.322*[# 2]+0.322*[# 5]+0.119*[# 3]+0.119*[# 4]+0.119*[# 6]+ |psi|^2 = 1.000 e = 14.59995 eV psi = 0.214*[# 3]+0.214*[# 4]+0.214*[# 6]+0.178*[# 2]+0.178*[# 5]+ |psi|^2 = 0.999 e = 17.70865 eV psi = 0.147*[# 1]+0.034*[# 2]+0.034*[# 5]+0.032*[# 3]+0.032*[# 4]+ +0.032*[# 6]+ |psi|^2 = 0.312 e = 22.02193 eV psi = 0.634*[# 1]+0.039*[# 3]+0.039*[# 4]+0.039*[# 6]+ |psi|^2 = 0.751 e = 33.01932 eV psi = 0.021*[# 1]+ |psi|^2 = 0.022 k = 0.5000000000 -0.1666666667 0.5000000000 e = 10.48957 eV psi = 0.338*[# 1]+0.212*[# 3]+0.212*[# 4]+0.212*[# 6]+0.010*[# 2]+ +0.010*[# 5]+ |psi|^2 = 0.993 e = 12.39449 eV psi = 0.386*[# 2]+0.386*[# 5]+0.062*[# 3]+0.062*[# 4]+0.062*[# 6]+ +0.028*[# 1]+ |psi|^2 = 0.987 e = 12.48138 eV psi = 0.278*[# 3]+0.278*[# 4]+0.278*[# 6]+0.111*[# 1]+0.011*[# 2]+ +0.011*[# 5]+ |psi|^2 = 0.966 e = 13.14590 eV psi = 0.334*[# 2]+0.334*[# 5]+0.111*[# 3]+0.111*[# 4]+0.111*[# 6]+ |psi|^2 = 1.000 e = 14.23140 eV psi = 0.222*[# 3]+0.222*[# 4]+0.222*[# 6]+0.166*[# 2]+0.166*[# 5]+ |psi|^2 = 0.999 e = 16.35140 eV psi = 0.414*[# 1]+0.104*[# 3]+0.104*[# 4]+0.104*[# 6]+0.093*[# 2]+ +0.093*[# 5]+ |psi|^2 = 0.911 e = 24.78230 eV psi = 0.085*[# 1]+0.010*[# 3]+0.010*[# 4]+0.010*[# 6]+ |psi|^2 = 0.115 e = 32.49342 eV psi = 0.010*[# 1]+ |psi|^2 = 0.012 k = 0.4166666667 -0.0833333333 0.4166666667 e = 9.75532 eV psi = 0.734*[# 1]+0.076*[# 3]+0.076*[# 4]+0.076*[# 6]+0.017*[# 2]+ +0.017*[# 5]+ |psi|^2 = 0.995 e = 12.04120 eV psi = 0.314*[# 3]+0.314*[# 4]+0.314*[# 6]+0.040*[# 1]+0.005*[# 2]+ +0.005*[# 5]+ |psi|^2 = 0.993 e = 12.64778 eV psi = 0.293*[# 2]+0.293*[# 5]+0.132*[# 3]+0.132*[# 4]+0.132*[# 6]+ +0.015*[# 1]+ |psi|^2 = 0.997 e = 13.27004 eV psi = 0.306*[# 2]+0.306*[# 5]+0.130*[# 3]+0.130*[# 4]+0.130*[# 6]+ |psi|^2 = 1.000 e = 13.78363 eV psi = 0.204*[# 3]+0.204*[# 4]+0.204*[# 6]+0.194*[# 2]+0.194*[# 5]+ |psi|^2 = 1.000 e = 15.31063 eV psi = 0.196*[# 1]+0.185*[# 2]+0.185*[# 5]+0.141*[# 3]+0.141*[# 4]+ +0.141*[# 6]+ |psi|^2 = 0.991 e = 28.57059 eV psi = 0.006*[# 1]+0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.014 e = 32.49092 eV psi = 0.003*[# 1]+ |psi|^2 = 0.005 k = 0.3333333333 0.0000000000 0.3333333333 e = 8.53954 eV psi = 0.924*[# 1]+0.020*[# 3]+0.020*[# 4]+0.020*[# 6]+0.007*[# 2]+ +0.007*[# 5]+ |psi|^2 = 0.998 e = 12.07197 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+ |psi|^2 = 0.997 e = 12.87039 eV psi = 0.205*[# 2]+0.205*[# 5]+0.192*[# 3]+0.192*[# 4]+0.192*[# 6]+ +0.013*[# 1]+ |psi|^2 = 0.999 e = 13.29167 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 13.53460 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 1.000 e = 14.63084 eV psi = 0.287*[# 2]+0.287*[# 5]+0.121*[# 3]+0.121*[# 4]+0.121*[# 6]+ +0.060*[# 1]+ |psi|^2 = 0.998 e = 32.52370 eV psi = |psi|^2 = 0.003 e = 33.28948 eV psi = |psi|^2 = 0.002 k = 0.0000000000 0.5000000000 0.0000000000 e = 8.78551 eV psi = 0.865*[# 1]+0.066*[# 2]+0.066*[# 5]+ |psi|^2 = 0.997 e = 11.64325 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 13.30740 eV psi = 0.433*[# 2]+0.433*[# 5]+0.131*[# 1]+ |psi|^2 = 0.998 e = 13.63690 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 13.63690 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 14.38030 eV psi = 0.499*[# 2]+0.499*[# 5]+ |psi|^2 = 0.999 e = 35.69241 eV psi = |psi|^2 = 0.000 e = 35.69241 eV psi = |psi|^2 = 0.000 k = -0.0833333333 0.5833333333 -0.0833333333 e = 9.63829 eV psi = 0.673*[# 1]+0.152*[# 2]+0.152*[# 5]+0.006*[# 3]+0.006*[# 4]+ +0.006*[# 6]+ |psi|^2 = 0.996 e = 11.43152 eV psi = 0.331*[# 3]+0.331*[# 4]+0.331*[# 6]+0.002*[# 2]+0.002*[# 5]+ +0.001*[# 1]+ |psi|^2 = 0.997 e = 13.13939 eV psi = 0.249*[# 2]+0.249*[# 5]+0.149*[# 1]+0.117*[# 3]+0.117*[# 4]+ +0.117*[# 6]+ |psi|^2 = 0.997 e = 13.80650 eV psi = 0.275*[# 3]+0.275*[# 4]+0.275*[# 6]+0.087*[# 2]+0.087*[# 5]+ |psi|^2 = 0.999 e = 14.35166 eV psi = 0.211*[# 3]+0.211*[# 4]+0.211*[# 6]+0.170*[# 1]+0.096*[# 2]+ +0.096*[# 5]+ |psi|^2 = 0.995 e = 14.55040 eV psi = 0.413*[# 2]+0.413*[# 5]+0.058*[# 3]+0.058*[# 4]+0.058*[# 6]+ |psi|^2 = 0.999 e = 32.02937 eV psi = |psi|^2 = 0.003 e = 34.51545 eV psi = |psi|^2 = 0.002 k = -0.1666666667 0.6666666667 -0.1666666667 e = 10.39923 eV psi = 0.373*[# 1]+0.240*[# 2]+0.240*[# 5]+0.047*[# 3]+0.047*[# 4]+ +0.047*[# 6]+ |psi|^2 = 0.993 e = 11.38505 eV psi = 0.295*[# 3]+0.295*[# 4]+0.295*[# 6]+0.048*[# 2]+0.048*[# 5]+ +0.013*[# 1]+ |psi|^2 = 0.993 e = 12.90243 eV psi = 0.198*[# 3]+0.198*[# 4]+0.198*[# 6]+0.138*[# 1]+0.132*[# 2]+ +0.132*[# 5]+ |psi|^2 = 0.995 e = 13.76888 eV psi = 0.219*[# 2]+0.219*[# 5]+0.187*[# 3]+0.187*[# 4]+0.187*[# 6]+ |psi|^2 = 0.999 e = 14.76112 eV psi = 0.280*[# 2]+0.280*[# 5]+0.146*[# 3]+0.146*[# 4]+0.146*[# 6]+ |psi|^2 = 0.999 e = 15.74971 eV psi = 0.437*[# 1]+0.124*[# 3]+0.124*[# 4]+0.124*[# 6]+0.078*[# 2]+ +0.078*[# 5]+ |psi|^2 = 0.967 e = 27.99607 eV psi = 0.016*[# 1]+0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.023 e = 32.48694 eV psi = 0.008*[# 1]+0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 0.012 k = 0.7500000000 -0.2500000000 0.7500000000 e = 10.83141 eV psi = 0.172*[# 2]+0.172*[# 5]+0.171*[# 3]+0.171*[# 4]+0.171*[# 6]+ +0.138*[# 1]+ |psi|^2 = 0.993 e = 11.53330 eV psi = 0.254*[# 2]+0.254*[# 5]+0.152*[# 3]+0.152*[# 4]+0.152*[# 6]+ +0.011*[# 1]+ |psi|^2 = 0.977 e = 12.74467 eV psi = 0.276*[# 3]+0.276*[# 4]+0.276*[# 6]+0.088*[# 1]+0.034*[# 2]+ +0.034*[# 5]+ |psi|^2 = 0.984 e = 13.65967 eV psi = 0.302*[# 2]+0.302*[# 5]+0.132*[# 3]+0.132*[# 4]+0.132*[# 6]+ |psi|^2 = 0.999 e = 14.80925 eV psi = 0.201*[# 3]+0.201*[# 4]+0.201*[# 6]+0.198*[# 2]+0.198*[# 5]+ |psi|^2 = 0.998 e = 17.79343 eV psi = 0.503*[# 1]+0.057*[# 3]+0.057*[# 4]+0.057*[# 6]+0.037*[# 2]+ +0.037*[# 5]+ |psi|^2 = 0.748 e = 24.36369 eV psi = 0.181*[# 1]+0.010*[# 3]+0.010*[# 4]+0.010*[# 6]+ |psi|^2 = 0.210 e = 30.78219 eV psi = 0.043*[# 1]+0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 0.049 k = 0.6666666667 -0.1666666667 0.6666666667 e = 11.06723 eV psi = 0.278*[# 3]+0.278*[# 4]+0.278*[# 6]+0.081*[# 1]+0.041*[# 2]+ +0.041*[# 5]+ |psi|^2 = 0.996 e = 11.70697 eV psi = 0.443*[# 2]+0.443*[# 5]+0.026*[# 3]+0.026*[# 4]+0.026*[# 6]+ +0.002*[# 1]+ |psi|^2 = 0.967 e = 12.61161 eV psi = 0.319*[# 3]+0.319*[# 4]+0.319*[# 6]+0.008*[# 1]+ |psi|^2 = 0.965 e = 13.56300 eV psi = 0.362*[# 2]+0.362*[# 5]+0.092*[# 3]+0.092*[# 4]+0.092*[# 6]+ |psi|^2 = 0.999 e = 14.62220 eV psi = 0.241*[# 3]+0.241*[# 4]+0.241*[# 6]+0.138*[# 2]+0.138*[# 5]+ |psi|^2 = 0.999 e = 19.67537 eV psi = 0.014*[# 2]+0.014*[# 5]+0.011*[# 3]+0.011*[# 4]+0.011*[# 6]+ +0.003*[# 1]+ |psi|^2 = 0.063 e = 22.05991 eV psi = 0.757*[# 1]+0.031*[# 3]+0.031*[# 4]+0.031*[# 6]+ |psi|^2 = 0.851 e = 29.51281 eV psi = 0.100*[# 1]+0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 0.106 k = 0.5833333333 -0.0833333333 0.5833333333 e = 11.15872 eV psi = 0.268*[# 3]+0.268*[# 4]+0.268*[# 6]+0.179*[# 1]+0.003*[# 2]+ +0.003*[# 5]+ |psi|^2 = 0.989 e = 11.94128 eV psi = 0.462*[# 2]+0.462*[# 5]+0.017*[# 1]+0.013*[# 3]+0.013*[# 4]+ +0.013*[# 6]+ |psi|^2 = 0.981 e = 12.28397 eV psi = 0.319*[# 3]+0.319*[# 4]+0.319*[# 6]+0.014*[# 1]+0.003*[# 2]+ +0.003*[# 5]+ |psi|^2 = 0.978 e = 13.51500 eV psi = 0.426*[# 2]+0.426*[# 5]+0.049*[# 3]+0.049*[# 4]+0.049*[# 6]+ |psi|^2 = 1.000 e = 14.25695 eV psi = 0.284*[# 3]+0.284*[# 4]+0.284*[# 6]+0.074*[# 2]+0.074*[# 5]+ |psi|^2 = 0.999 e = 18.14341 eV psi = 0.556*[# 1]+0.055*[# 3]+0.055*[# 4]+0.055*[# 6]+0.031*[# 2]+ +0.031*[# 5]+ |psi|^2 = 0.782 e = 24.36187 eV psi = 0.123*[# 1]+0.009*[# 3]+0.009*[# 4]+0.009*[# 6]+ |psi|^2 = 0.150 e = 28.78278 eV psi = 0.082*[# 1]+0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.089 k = 0.5000000000 0.0000000000 0.5000000000 e = 10.75783 eV psi = 0.491*[# 1]+0.145*[# 3]+0.145*[# 4]+0.145*[# 6]+0.030*[# 2]+ +0.030*[# 5]+ |psi|^2 = 0.987 e = 11.96803 eV psi = 0.331*[# 3]+0.331*[# 4]+0.331*[# 6]+ |psi|^2 = 0.992 e = 12.29392 eV psi = 0.375*[# 2]+0.375*[# 5]+0.075*[# 3]+0.075*[# 4]+0.075*[# 6]+ +0.017*[# 1]+ |psi|^2 = 0.993 e = 13.48700 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 1.000 e = 13.87058 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 16.46681 eV psi = 0.440*[# 1]+0.111*[# 3]+0.111*[# 4]+0.111*[# 6]+0.094*[# 2]+ +0.094*[# 5]+ |psi|^2 = 0.960 e = 27.58599 eV psi = 0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+ |psi|^2 = 0.008 e = 29.02533 eV psi = 0.040*[# 1]+0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.047 k = 0.0000000000 0.6666666667 0.0000000000 e = 9.97515 eV psi = 0.434*[# 1]+0.281*[# 2]+0.281*[# 5]+ |psi|^2 = 0.996 e = 11.15753 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+ |psi|^2 = 0.997 e = 14.07783 eV psi = 0.549*[# 1]+0.217*[# 2]+0.217*[# 5]+ |psi|^2 = 0.982 e = 14.22291 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 14.22291 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 14.58348 eV psi = 0.499*[# 2]+0.499*[# 5]+ |psi|^2 = 0.999 e = 31.89191 eV psi = 0.004*[# 1]+0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 0.009 e = 33.17733 eV psi = |psi|^2 = 0.000 k = -0.0833333333 0.7500000000 -0.0833333333 e = 10.28451 eV psi = 0.380*[# 2]+0.380*[# 5]+0.226*[# 1]+0.003*[# 3]+0.003*[# 4]+ +0.003*[# 6]+ |psi|^2 = 0.995 e = 11.02157 eV psi = 0.330*[# 3]+0.330*[# 4]+0.330*[# 6]+0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 0.996 e = 13.87071 eV psi = 0.244*[# 3]+0.244*[# 4]+0.244*[# 6]+0.167*[# 1]+0.044*[# 2]+ +0.044*[# 5]+ |psi|^2 = 0.986 e = 14.31095 eV psi = 0.207*[# 3]+0.207*[# 4]+0.207*[# 6]+0.189*[# 2]+0.189*[# 5]+ |psi|^2 = 0.999 e = 14.76262 eV psi = 0.311*[# 2]+0.311*[# 5]+0.126*[# 3]+0.126*[# 4]+0.126*[# 6]+ |psi|^2 = 0.999 e = 15.79522 eV psi = 0.546*[# 1]+0.087*[# 3]+0.087*[# 4]+0.087*[# 6]+0.069*[# 2]+ +0.069*[# 5]+ |psi|^2 = 0.946 e = 29.61304 eV psi = 0.015*[# 1]+0.004*[# 2]+0.004*[# 5]+ |psi|^2 = 0.023 e = 30.45194 eV psi = 0.020*[# 1]+ |psi|^2 = 0.024 k = 0.8333333333 -0.1666666667 0.8333333333 e = 10.59453 eV psi = 0.407*[# 2]+0.407*[# 5]+0.097*[# 1]+0.027*[# 3]+0.027*[# 4]+ +0.027*[# 6]+ |psi|^2 = 0.993 e = 11.06924 eV psi = 0.305*[# 3]+0.305*[# 4]+0.305*[# 6]+0.038*[# 2]+0.038*[# 5]+ |psi|^2 = 0.992 e = 13.47692 eV psi = 0.287*[# 3]+0.287*[# 4]+0.287*[# 6]+0.084*[# 1]+0.016*[# 2]+ +0.016*[# 5]+ |psi|^2 = 0.976 e = 14.21592 eV psi = 0.326*[# 2]+0.326*[# 5]+0.116*[# 3]+0.116*[# 4]+0.116*[# 6]+ |psi|^2 = 0.999 e = 14.84033 eV psi = 0.217*[# 3]+0.217*[# 4]+0.217*[# 6]+0.173*[# 2]+0.173*[# 5]+ |psi|^2 = 0.998 e = 18.02391 eV psi = 0.547*[# 1]+0.044*[# 3]+0.044*[# 4]+0.044*[# 6]+0.030*[# 2]+ +0.030*[# 5]+ |psi|^2 = 0.739 e = 26.62462 eV psi = 0.038*[# 1]+0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.046 e = 28.05331 eV psi = 0.178*[# 1]+0.008*[# 2]+0.008*[# 5]+ |psi|^2 = 0.196 k = 0.7500000000 -0.0833333333 0.7500000000 e = 10.93329 eV psi = 0.330*[# 2]+0.330*[# 5]+0.099*[# 3]+0.099*[# 4]+0.099*[# 6]+ +0.038*[# 1]+ |psi|^2 = 0.994 e = 11.26996 eV psi = 0.226*[# 3]+0.226*[# 4]+0.226*[# 6]+0.151*[# 2]+0.151*[# 5]+ +0.001*[# 1]+ |psi|^2 = 0.981 e = 13.00837 eV psi = 0.317*[# 3]+0.317*[# 4]+0.317*[# 6]+0.015*[# 1]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.970 e = 14.07252 eV psi = 0.430*[# 2]+0.430*[# 5]+0.046*[# 3]+0.046*[# 4]+0.046*[# 6]+ |psi|^2 = 0.999 e = 14.68150 eV psi = 0.287*[# 3]+0.287*[# 4]+0.287*[# 6]+0.070*[# 2]+0.070*[# 5]+ |psi|^2 = 0.999 e = 20.63417 eV psi = 0.143*[# 1]+0.015*[# 3]+0.015*[# 4]+0.015*[# 6]+0.007*[# 2]+ +0.007*[# 5]+ |psi|^2 = 0.201 e = 23.36319 eV psi = 0.311*[# 1]+0.009*[# 3]+0.009*[# 4]+0.009*[# 6]+ |psi|^2 = 0.337 e = 26.79709 eV psi = 0.416*[# 1]+0.009*[# 2]+0.009*[# 5]+0.002*[# 3]+0.002*[# 4]+ +0.002*[# 6]+ |psi|^2 = 0.439 k = 0.6666666667 0.0000000000 0.6666666667 e = 11.27562 eV psi = 0.252*[# 3]+0.252*[# 4]+0.252*[# 6]+0.097*[# 2]+0.097*[# 5]+ +0.049*[# 1]+ |psi|^2 = 0.997 e = 11.53878 eV psi = 0.393*[# 2]+0.393*[# 5]+0.056*[# 3]+0.056*[# 4]+0.056*[# 6]+ +0.017*[# 1]+ |psi|^2 = 0.971 e = 12.50634 eV psi = 0.326*[# 3]+0.326*[# 4]+0.326*[# 6]+ |psi|^2 = 0.979 e = 13.85955 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 0.999 e = 14.41549 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 20.42375 eV psi = 0.490*[# 1]+0.022*[# 3]+0.022*[# 4]+0.022*[# 6]+0.006*[# 2]+ +0.006*[# 5]+ |psi|^2 = 0.566 e = 23.30488 eV psi = 0.007*[# 3]+0.007*[# 4]+0.007*[# 6]+ |psi|^2 = 0.020 e = 26.58243 eV psi = 0.390*[# 1]+0.005*[# 2]+0.005*[# 5]+0.004*[# 3]+0.004*[# 4]+ +0.004*[# 6]+ |psi|^2 = 0.410 k = 0.0000000000 0.8333333333 0.0000000000 e = 10.20094 eV psi = 0.433*[# 2]+0.433*[# 5]+0.130*[# 1]+ |psi|^2 = 0.996 e = 10.81533 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+ |psi|^2 = 0.996 e = 14.71971 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 14.71971 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 14.73448 eV psi = 0.499*[# 2]+0.499*[# 5]+ |psi|^2 = 0.999 e = 16.27694 eV psi = 0.690*[# 1]+0.055*[# 2]+0.055*[# 5]+ |psi|^2 = 0.801 e = 27.51850 eV psi = 0.121*[# 1]+0.011*[# 2]+0.011*[# 5]+ |psi|^2 = 0.143 e = 31.49400 eV psi = |psi|^2 = 0.000 k = 0.9166666667 -0.0833333333 0.9166666667 e = 10.28782 eV psi = 0.459*[# 2]+0.459*[# 5]+0.074*[# 1]+0.001*[# 3]+0.001*[# 4]+ +0.001*[# 6]+ |psi|^2 = 0.995 e = 10.79161 eV psi = 0.331*[# 3]+0.331*[# 4]+0.331*[# 6]+0.001*[# 2]+0.001*[# 5]+ |psi|^2 = 0.995 e = 14.43747 eV psi = 0.314*[# 3]+0.314*[# 4]+0.314*[# 6]+0.022*[# 1]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.968 e = 14.65222 eV psi = 0.415*[# 2]+0.415*[# 5]+0.056*[# 3]+0.056*[# 4]+0.056*[# 6]+ |psi|^2 = 0.999 e = 14.87499 eV psi = 0.277*[# 3]+0.277*[# 4]+0.277*[# 6]+0.084*[# 2]+0.084*[# 5]+ |psi|^2 = 0.998 e = 17.97467 eV psi = 0.331*[# 1]+0.019*[# 3]+0.019*[# 4]+0.019*[# 6]+0.015*[# 2]+ +0.015*[# 5]+ |psi|^2 = 0.417 e = 25.97647 eV psi = 0.413*[# 1]+0.022*[# 2]+0.022*[# 5]+ |psi|^2 = 0.456 e = 29.34767 eV psi = 0.054*[# 1]+ |psi|^2 = 0.057 k = 0.8333333333 0.0000000000 0.8333333333 e = 10.55277 eV psi = 0.453*[# 2]+0.453*[# 5]+0.044*[# 1]+0.014*[# 3]+0.014*[# 4]+ +0.014*[# 6]+ |psi|^2 = 0.993 e = 10.95873 eV psi = 0.316*[# 3]+0.316*[# 4]+0.316*[# 6]+0.022*[# 2]+0.022*[# 5]+ |psi|^2 = 0.992 e = 13.75584 eV psi = 0.318*[# 3]+0.318*[# 4]+0.318*[# 6]+ |psi|^2 = 0.954 e = 14.46939 eV psi = 0.499*[# 2]+0.499*[# 5]+ |psi|^2 = 0.999 e = 14.78909 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 19.79017 eV psi = 0.015*[# 3]+0.015*[# 4]+0.015*[# 6]+ |psi|^2 = 0.045 e = 25.28005 eV psi = 0.322*[# 1]+0.018*[# 2]+0.018*[# 5]+ |psi|^2 = 0.358 e = 26.42948 eV psi = 0.520*[# 1]+0.006*[# 2]+0.006*[# 5]+0.002*[# 3]+0.002*[# 4]+ +0.002*[# 6]+ |psi|^2 = 0.539 k = 0.0000000000 -1.0000000000 0.0000000000 e = 10.17277 eV psi = 0.464*[# 2]+0.464*[# 5]+0.067*[# 1]+ |psi|^2 = 0.996 e = 10.69296 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+ |psi|^2 = 0.996 e = 14.79023 eV psi = 0.499*[# 2]+0.499*[# 5]+ |psi|^2 = 0.999 e = 14.91994 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 14.91994 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 17.87150 eV psi = |psi|^2 = 0.000 e = 25.26635 eV psi = 0.768*[# 1]+0.034*[# 2]+0.034*[# 5]+ |psi|^2 = 0.837 e = 30.89314 eV psi = |psi|^2 = 0.000 k = -0.1666666667 0.3333333333 0.0000000000 e = 7.57442 eV psi = 0.974*[# 1]+0.006*[# 2]+0.006*[# 5]+0.004*[# 3]+0.004*[# 4]+ +0.004*[# 6]+ |psi|^2 = 0.998 e = 12.15342 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 13.00457 eV psi = 0.252*[# 3]+0.252*[# 4]+0.252*[# 6]+0.121*[# 2]+0.121*[# 5]+ +0.002*[# 1]+ |psi|^2 = 1.000 e = 13.14422 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 13.63292 eV psi = 0.443*[# 2]+0.443*[# 5]+0.033*[# 3]+0.033*[# 4]+0.033*[# 6]+ +0.015*[# 1]+ |psi|^2 = 1.000 e = 14.23367 eV psi = 0.429*[# 2]+0.429*[# 5]+0.045*[# 3]+0.045*[# 4]+0.045*[# 6]+ +0.007*[# 1]+ |psi|^2 = 0.999 e = 35.32642 eV psi = |psi|^2 = 0.001 e = 36.09362 eV psi = |psi|^2 = 0.000 k = -0.2500000000 0.4166666667 -0.0833333333 e = 8.74449 eV psi = 0.895*[# 1]+0.023*[# 3]+0.023*[# 4]+0.023*[# 6]+0.017*[# 2]+ +0.017*[# 5]+ |psi|^2 = 0.998 e = 11.99114 eV psi = 0.326*[# 3]+0.326*[# 4]+0.326*[# 6]+0.015*[# 1]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.997 e = 12.84945 eV psi = 0.252*[# 2]+0.252*[# 5]+0.165*[# 3]+0.165*[# 4]+0.165*[# 6]+ |psi|^2 = 0.999 e = 13.26860 eV psi = 0.252*[# 3]+0.252*[# 4]+0.252*[# 6]+0.121*[# 2]+0.121*[# 5]+ +0.003*[# 1]+ |psi|^2 = 1.000 e = 13.79975 eV psi = 0.313*[# 2]+0.313*[# 5]+0.114*[# 3]+0.114*[# 4]+0.114*[# 6]+ +0.030*[# 1]+ |psi|^2 = 0.999 e = 14.59248 eV psi = 0.295*[# 2]+0.295*[# 5]+0.119*[# 3]+0.119*[# 4]+0.119*[# 6]+ +0.053*[# 1]+ |psi|^2 = 0.998 e = 31.17825 eV psi = 0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.004 e = 34.97232 eV psi = |psi|^2 = 0.001 k = -0.3333333333 0.5000000000 -0.1666666667 e = 9.88746 eV psi = 0.616*[# 1]+0.107*[# 3]+0.107*[# 4]+0.107*[# 6]+0.028*[# 2]+ +0.028*[# 5]+ |psi|^2 = 0.995 e = 12.12493 eV psi = 0.256*[# 3]+0.256*[# 4]+0.256*[# 6]+0.115*[# 1]+0.050*[# 2]+ +0.050*[# 5]+ |psi|^2 = 0.984 e = 12.61159 eV psi = 0.275*[# 2]+0.275*[# 5]+0.149*[# 3]+0.149*[# 4]+0.149*[# 6]+ |psi|^2 = 0.999 e = 13.18205 eV psi = 0.245*[# 2]+0.245*[# 5]+0.168*[# 3]+0.168*[# 4]+0.168*[# 6]+ +0.007*[# 1]+ |psi|^2 = 0.999 e = 14.24103 eV psi = 0.229*[# 2]+0.229*[# 5]+0.171*[# 3]+0.171*[# 4]+0.171*[# 6]+ +0.026*[# 1]+ |psi|^2 = 0.997 e = 15.23498 eV psi = 0.211*[# 1]+0.172*[# 2]+0.172*[# 5]+0.144*[# 3]+0.144*[# 4]+ +0.144*[# 6]+ |psi|^2 = 0.985 e = 27.05178 eV psi = 0.016*[# 1]+0.004*[# 3]+0.004*[# 4]+0.004*[# 6]+ |psi|^2 = 0.028 e = 34.60780 eV psi = 0.001*[# 1]+ |psi|^2 = 0.002 k = 0.5833333333 -0.4166666667 0.7500000000 e = 10.41004 eV psi = 0.253*[# 1]+0.239*[# 3]+0.239*[# 4]+0.239*[# 6]+0.012*[# 2]+ +0.012*[# 5]+ |psi|^2 = 0.995 e = 12.36414 eV psi = 0.403*[# 2]+0.403*[# 5]+0.052*[# 3]+0.052*[# 4]+0.052*[# 6]+ +0.018*[# 1]+ |psi|^2 = 0.981 e = 12.76799 eV psi = 0.264*[# 3]+0.264*[# 4]+0.264*[# 6]+0.105*[# 1]+0.025*[# 2]+ +0.025*[# 5]+ |psi|^2 = 0.946 e = 13.07859 eV psi = 0.279*[# 2]+0.279*[# 5]+0.141*[# 3]+0.141*[# 4]+0.141*[# 6]+ +0.012*[# 1]+ |psi|^2 = 0.995 e = 14.58910 eV psi = 0.203*[# 2]+0.203*[# 5]+0.196*[# 3]+0.196*[# 4]+0.196*[# 6]+ +0.003*[# 1]+ |psi|^2 = 0.996 e = 16.38226 eV psi = 0.390*[# 1]+0.089*[# 3]+0.089*[# 4]+0.089*[# 6]+0.077*[# 2]+ +0.077*[# 5]+ |psi|^2 = 0.810 e = 23.52735 eV psi = 0.191*[# 1]+0.018*[# 3]+0.018*[# 4]+0.018*[# 6]+ |psi|^2 = 0.245 e = 34.68918 eV psi = 0.003*[# 1]+ |psi|^2 = 0.004 k = 0.5000000000 -0.3333333333 0.6666666667 e = 10.50128 eV psi = 0.283*[# 3]+0.283*[# 4]+0.283*[# 6]+0.146*[# 1]+ |psi|^2 = 0.997 e = 12.30398 eV psi = 0.401*[# 2]+0.401*[# 5]+0.059*[# 3]+0.059*[# 4]+0.059*[# 6]+ |psi|^2 = 0.980 e = 13.01607 eV psi = 0.308*[# 2]+0.308*[# 5]+0.128*[# 3]+0.128*[# 4]+0.128*[# 6]+ |psi|^2 = 1.000 e = 13.10454 eV psi = 0.249*[# 3]+0.249*[# 4]+0.249*[# 6]+0.061*[# 2]+0.061*[# 5]+ |psi|^2 = 0.867 e = 14.70046 eV psi = 0.206*[# 3]+0.206*[# 4]+0.206*[# 6]+0.191*[# 2]+0.191*[# 5]+ |psi|^2 = 0.999 e = 17.41731 eV psi = 0.037*[# 2]+0.037*[# 5]+0.026*[# 3]+0.026*[# 4]+0.026*[# 6]+ |psi|^2 = 0.151 e = 21.68300 eV psi = 0.801*[# 1]+0.049*[# 3]+0.049*[# 4]+0.049*[# 6]+ |psi|^2 = 0.950 e = 34.93325 eV psi = |psi|^2 = 0.001 k = -0.1666666667 0.5000000000 0.0000000000 e = 9.07997 eV psi = 0.844*[# 1]+0.061*[# 2]+0.061*[# 5]+0.010*[# 3]+0.010*[# 4]+ +0.010*[# 6]+ |psi|^2 = 0.997 e = 11.69966 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 12.91044 eV psi = 0.291*[# 2]+0.291*[# 5]+0.130*[# 3]+0.130*[# 4]+0.130*[# 6]+ +0.028*[# 1]+ |psi|^2 = 0.999 e = 13.63823 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 13.86571 eV psi = 0.325*[# 2]+0.325*[# 5]+0.090*[# 3]+0.090*[# 4]+0.090*[# 6]+ +0.078*[# 1]+ |psi|^2 = 0.998 e = 14.58669 eV psi = 0.322*[# 2]+0.322*[# 5]+0.103*[# 3]+0.103*[# 4]+0.103*[# 6]+ +0.046*[# 1]+ |psi|^2 = 0.998 e = 33.04243 eV psi = |psi|^2 = 0.002 e = 33.55650 eV psi = |psi|^2 = 0.002 k = -0.2500000000 0.5833333333 -0.0833333333 e = 10.10859 eV psi = 0.605*[# 1]+0.128*[# 2]+0.128*[# 5]+0.045*[# 3]+0.045*[# 4]+ +0.045*[# 6]+ |psi|^2 = 0.994 e = 11.61146 eV psi = 0.314*[# 3]+0.314*[# 4]+0.314*[# 6]+0.019*[# 2]+0.019*[# 5]+ +0.015*[# 1]+ |psi|^2 = 0.995 e = 12.62617 eV psi = 0.246*[# 2]+0.246*[# 5]+0.154*[# 3]+0.154*[# 4]+0.154*[# 6]+ +0.044*[# 1]+ |psi|^2 = 0.999 e = 13.67300 eV psi = 0.197*[# 3]+0.197*[# 4]+0.197*[# 6]+0.197*[# 2]+0.197*[# 5]+ +0.014*[# 1]+ |psi|^2 = 0.999 e = 14.30205 eV psi = 0.264*[# 2]+0.264*[# 5]+0.143*[# 3]+0.143*[# 4]+0.143*[# 6]+ +0.041*[# 1]+ |psi|^2 = 0.997 e = 15.34683 eV psi = 0.263*[# 1]+0.145*[# 2]+0.145*[# 5]+0.145*[# 3]+0.145*[# 4]+ +0.145*[# 6]+ |psi|^2 = 0.988 e = 29.03955 eV psi = 0.006*[# 1]+0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.012 e = 32.79178 eV psi = 0.002*[# 1]+ |psi|^2 = 0.003 k = 0.6666666667 -0.3333333333 0.8333333333 e = 10.74904 eV psi = 0.257*[# 1]+0.169*[# 3]+0.169*[# 4]+0.169*[# 6]+0.114*[# 2]+ +0.114*[# 5]+ |psi|^2 = 0.992 e = 11.76849 eV psi = 0.234*[# 2]+0.234*[# 5]+0.158*[# 3]+0.158*[# 4]+0.158*[# 6]+ +0.035*[# 1]+ |psi|^2 = 0.978 e = 12.46720 eV psi = 0.242*[# 3]+0.242*[# 4]+0.242*[# 6]+0.098*[# 2]+0.098*[# 5]+ +0.070*[# 1]+ |psi|^2 = 0.994 e = 13.54685 eV psi = 0.288*[# 2]+0.288*[# 5]+0.138*[# 3]+0.138*[# 4]+0.138*[# 6]+ +0.008*[# 1]+ |psi|^2 = 0.998 e = 14.63314 eV psi = 0.202*[# 2]+0.202*[# 5]+0.196*[# 3]+0.196*[# 4]+0.196*[# 6]+ +0.003*[# 1]+ |psi|^2 = 0.997 e = 16.81979 eV psi = 0.503*[# 1]+0.087*[# 3]+0.087*[# 4]+0.087*[# 6]+0.062*[# 2]+ +0.062*[# 5]+ |psi|^2 = 0.888 e = 25.22073 eV psi = 0.086*[# 1]+0.007*[# 3]+0.007*[# 4]+0.007*[# 6]+ |psi|^2 = 0.109 e = 32.62369 eV psi = |psi|^2 = 0.002 k = 0.5833333333 -0.2500000000 0.7500000000 e = 10.95790 eV psi = 0.278*[# 3]+0.278*[# 4]+0.278*[# 6]+0.112*[# 1]+0.024*[# 2]+ +0.024*[# 5]+ |psi|^2 = 0.995 e = 11.85513 eV psi = 0.453*[# 2]+0.453*[# 5]+0.020*[# 3]+0.020*[# 4]+0.020*[# 6]+ |psi|^2 = 0.968 e = 12.58582 eV psi = 0.311*[# 3]+0.311*[# 4]+0.311*[# 6]+0.018*[# 1]+0.003*[# 2]+ +0.003*[# 5]+ |psi|^2 = 0.957 e = 13.42643 eV psi = 0.337*[# 2]+0.337*[# 5]+0.108*[# 3]+0.108*[# 4]+0.108*[# 6]+ |psi|^2 = 0.999 e = 14.68712 eV psi = 0.227*[# 3]+0.227*[# 4]+0.227*[# 6]+0.158*[# 2]+0.158*[# 5]+ |psi|^2 = 0.998 e = 18.73552 eV psi = 0.152*[# 1]+0.024*[# 3]+0.024*[# 4]+0.024*[# 6]+0.023*[# 2]+ +0.023*[# 5]+ |psi|^2 = 0.269 e = 22.27954 eV psi = 0.626*[# 1]+0.030*[# 3]+0.030*[# 4]+0.030*[# 6]+ |psi|^2 = 0.718 e = 31.80171 eV psi = 0.026*[# 1]+ |psi|^2 = 0.029 k = 0.5000000000 -0.1666666667 0.6666666667 e = 10.99683 eV psi = 0.276*[# 3]+0.276*[# 4]+0.276*[# 6]+0.148*[# 1]+0.009*[# 2]+ +0.009*[# 5]+ |psi|^2 = 0.993 e = 11.94700 eV psi = 0.459*[# 2]+0.459*[# 5]+0.017*[# 3]+0.017*[# 4]+0.017*[# 6]+ +0.008*[# 1]+ |psi|^2 = 0.977 e = 12.46741 eV psi = 0.308*[# 3]+0.308*[# 4]+0.308*[# 6]+0.023*[# 1]+0.006*[# 2]+ +0.006*[# 5]+ |psi|^2 = 0.961 e = 13.41105 eV psi = 0.358*[# 2]+0.358*[# 5]+0.094*[# 3]+0.094*[# 4]+0.094*[# 6]+ +0.001*[# 1]+ |psi|^2 = 0.999 e = 14.50908 eV psi = 0.241*[# 3]+0.241*[# 4]+0.241*[# 6]+0.137*[# 2]+0.137*[# 5]+ |psi|^2 = 0.998 e = 18.23133 eV psi = 0.408*[# 1]+0.043*[# 3]+0.043*[# 4]+0.043*[# 6]+0.029*[# 2]+ +0.029*[# 5]+ |psi|^2 = 0.595 e = 23.09607 eV psi = 0.334*[# 1]+0.019*[# 3]+0.019*[# 4]+0.019*[# 6]+ |psi|^2 = 0.392 e = 30.91469 eV psi = 0.036*[# 1]+ |psi|^2 = 0.039 k = 0.4166666667 -0.0833333333 0.5833333333 e = 10.74960 eV psi = 0.411*[# 1]+0.154*[# 3]+0.154*[# 4]+0.154*[# 6]+0.058*[# 2]+ +0.058*[# 5]+ |psi|^2 = 0.989 e = 11.96064 eV psi = 0.261*[# 3]+0.261*[# 4]+0.261*[# 6]+0.076*[# 2]+0.076*[# 5]+ +0.049*[# 1]+ |psi|^2 = 0.984 e = 12.25732 eV psi = 0.288*[# 2]+0.288*[# 5]+0.140*[# 3]+0.140*[# 4]+0.140*[# 6]+ +0.001*[# 1]+ |psi|^2 = 0.998 e = 13.51127 eV psi = 0.362*[# 2]+0.362*[# 5]+0.087*[# 3]+0.087*[# 4]+0.087*[# 6]+ +0.011*[# 1]+ |psi|^2 = 0.998 e = 14.14096 eV psi = 0.246*[# 3]+0.246*[# 4]+0.246*[# 6]+0.128*[# 2]+0.128*[# 5]+ +0.004*[# 1]+ |psi|^2 = 0.998 e = 16.51217 eV psi = 0.457*[# 1]+0.106*[# 3]+0.106*[# 4]+0.106*[# 6]+0.086*[# 2]+ +0.086*[# 5]+ |psi|^2 = 0.946 e = 26.46443 eV psi = 0.034*[# 1]+0.005*[# 3]+0.005*[# 4]+0.005*[# 6]+ |psi|^2 = 0.047 e = 30.53294 eV psi = 0.017*[# 1]+0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.021 k = 0.3333333333 0.0000000000 0.5000000000 e = 9.85751 eV psi = 0.746*[# 1]+0.053*[# 3]+0.053*[# 4]+0.053*[# 6]+0.045*[# 2]+ +0.045*[# 5]+ |psi|^2 = 0.994 e = 11.83854 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+ |psi|^2 = 0.996 e = 12.56780 eV psi = 0.305*[# 2]+0.305*[# 5]+0.129*[# 3]+0.129*[# 4]+0.129*[# 6]+ |psi|^2 = 0.998 e = 13.64810 eV psi = 0.472*[# 2]+0.472*[# 5]+0.031*[# 1]+0.008*[# 3]+0.008*[# 4]+ +0.008*[# 6]+ |psi|^2 = 0.998 e = 13.68158 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 15.34497 eV psi = 0.211*[# 1]+0.177*[# 2]+0.177*[# 5]+0.142*[# 3]+0.142*[# 4]+ +0.142*[# 6]+ |psi|^2 = 0.992 e = 30.11601 eV psi = 0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.004 e = 31.02453 eV psi = 0.007*[# 1]+ |psi|^2 = 0.010 k = -0.1666666667 0.6666666667 0.0000000000 e = 10.22772 eV psi = 0.413*[# 1]+0.279*[# 2]+0.279*[# 5]+0.008*[# 3]+0.008*[# 4]+ +0.008*[# 6]+ |psi|^2 = 0.995 e = 11.25865 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+ |psi|^2 = 0.996 e = 13.13521 eV psi = 0.184*[# 3]+0.184*[# 4]+0.184*[# 6]+0.161*[# 1]+0.141*[# 2]+ +0.141*[# 5]+ |psi|^2 = 0.994 e = 14.22023 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 14.38757 eV psi = 0.464*[# 2]+0.464*[# 5]+0.063*[# 1]+0.002*[# 3]+0.002*[# 4]+ +0.002*[# 6]+ |psi|^2 = 0.996 e = 15.38164 eV psi = 0.339*[# 1]+0.139*[# 3]+0.139*[# 4]+0.139*[# 6]+0.114*[# 2]+ +0.114*[# 5]+ |psi|^2 = 0.983 e = 31.06327 eV psi = |psi|^2 = 0.003 e = 31.34341 eV psi = |psi|^2 = 0.003 k = 0.7500000000 -0.2500000000 0.9166666667 e = 10.69200 eV psi = 0.358*[# 2]+0.358*[# 5]+0.183*[# 1]+0.031*[# 3]+0.031*[# 4]+ +0.031*[# 6]+ |psi|^2 = 0.991 e = 11.26041 eV psi = 0.308*[# 3]+0.308*[# 4]+0.308*[# 6]+0.033*[# 2]+0.033*[# 5]+ +0.003*[# 1]+ |psi|^2 = 0.993 e = 12.92732 eV psi = 0.245*[# 3]+0.245*[# 4]+0.245*[# 6]+0.116*[# 1]+0.069*[# 2]+ +0.069*[# 5]+ |psi|^2 = 0.990 e = 14.13200 eV psi = 0.302*[# 2]+0.302*[# 5]+0.128*[# 3]+0.128*[# 4]+0.128*[# 6]+ +0.010*[# 1]+ |psi|^2 = 0.997 e = 14.66715 eV psi = 0.210*[# 3]+0.210*[# 4]+0.210*[# 6]+0.183*[# 2]+0.183*[# 5]+ +0.003*[# 1]+ |psi|^2 = 0.998 e = 17.08627 eV psi = 0.576*[# 1]+0.074*[# 3]+0.074*[# 4]+0.074*[# 6]+0.050*[# 2]+ +0.050*[# 5]+ |psi|^2 = 0.900 e = 27.41183 eV psi = 0.031*[# 1]+0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.038 e = 30.18095 eV psi = 0.025*[# 1]+0.003*[# 2]+0.003*[# 5]+ |psi|^2 = 0.031 k = 0.6666666667 -0.1666666667 0.8333333333 e = 11.02234 eV psi = 0.293*[# 2]+0.293*[# 5]+0.114*[# 3]+0.114*[# 4]+0.114*[# 6]+ +0.063*[# 1]+ |psi|^2 = 0.992 e = 11.40587 eV psi = 0.211*[# 3]+0.211*[# 4]+0.211*[# 6]+0.174*[# 2]+0.174*[# 5]+ |psi|^2 = 0.981 e = 12.68975 eV psi = 0.299*[# 3]+0.299*[# 4]+0.299*[# 6]+0.047*[# 1]+0.017*[# 2]+ +0.017*[# 5]+ |psi|^2 = 0.979 e = 13.93290 eV psi = 0.390*[# 2]+0.390*[# 5]+0.072*[# 3]+0.072*[# 4]+0.072*[# 6]+ |psi|^2 = 0.998 e = 14.73388 eV psi = 0.265*[# 3]+0.265*[# 4]+0.265*[# 6]+0.102*[# 2]+0.102*[# 5]+ |psi|^2 = 0.998 e = 19.44472 eV psi = 0.396*[# 1]+0.028*[# 3]+0.028*[# 4]+0.028*[# 6]+0.018*[# 2]+ +0.018*[# 5]+ |psi|^2 = 0.515 e = 23.95676 eV psi = 0.277*[# 1]+0.009*[# 3]+0.009*[# 4]+0.009*[# 6]+ |psi|^2 = 0.306 e = 28.69329 eV psi = 0.132*[# 1]+0.004*[# 2]+0.004*[# 5]+ |psi|^2 = 0.142 k = 0.5833333333 -0.0833333333 0.7500000000 e = 11.34866 eV psi = 0.244*[# 3]+0.244*[# 4]+0.244*[# 6]+0.107*[# 2]+0.107*[# 5]+ +0.048*[# 1]+ |psi|^2 = 0.996 e = 11.53348 eV psi = 0.384*[# 2]+0.384*[# 5]+0.063*[# 3]+0.063*[# 4]+0.063*[# 6]+ +0.017*[# 1]+ |psi|^2 = 0.972 e = 12.38711 eV psi = 0.325*[# 3]+0.325*[# 4]+0.325*[# 6]+ |psi|^2 = 0.977 e = 13.78804 eV psi = 0.451*[# 2]+0.451*[# 5]+0.032*[# 3]+0.032*[# 4]+0.032*[# 6]+ |psi|^2 = 0.999 e = 14.55773 eV psi = 0.303*[# 3]+0.303*[# 4]+0.303*[# 6]+0.045*[# 2]+0.045*[# 5]+ |psi|^2 = 0.999 e = 20.50731 eV psi = 0.296*[# 1]+0.016*[# 3]+0.016*[# 4]+0.016*[# 6]+0.008*[# 2]+ +0.008*[# 5]+ |psi|^2 = 0.360 e = 22.80651 eV psi = 0.345*[# 1]+0.014*[# 3]+0.014*[# 4]+0.014*[# 6]+0.001*[# 2]+ +0.001*[# 5]+ |psi|^2 = 0.389 e = 27.66546 eV psi = 0.218*[# 1]+0.003*[# 2]+0.003*[# 5]+0.002*[# 3]+0.002*[# 4]+ +0.002*[# 6]+ |psi|^2 = 0.230 k = 0.5000000000 0.0000000000 0.6666666667 e = 11.38243 eV psi = 0.208*[# 3]+0.208*[# 4]+0.208*[# 6]+0.204*[# 1]+0.075*[# 2]+ +0.075*[# 5]+ |psi|^2 = 0.980 e = 11.82346 eV psi = 0.399*[# 2]+0.399*[# 5]+0.065*[# 3]+0.065*[# 4]+0.065*[# 6]+ |psi|^2 = 0.992 e = 12.00861 eV psi = 0.329*[# 3]+0.329*[# 4]+0.329*[# 6]+ |psi|^2 = 0.988 e = 13.72409 eV psi = 0.494*[# 2]+0.494*[# 5]+0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+ +0.001*[# 1]+ |psi|^2 = 0.998 e = 14.26229 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 18.28833 eV psi = 0.605*[# 1]+0.055*[# 3]+0.055*[# 4]+0.055*[# 6]+0.029*[# 2]+ +0.029*[# 5]+ |psi|^2 = 0.827 e = 25.52564 eV psi = 0.004*[# 3]+0.004*[# 4]+0.004*[# 6]+ |psi|^2 = 0.012 e = 27.64633 eV psi = 0.153*[# 1]+0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+ |psi|^2 = 0.164 k = 0.8333333333 -0.1666666667 1.0000000000 e = 10.41693 eV psi = 0.439*[# 2]+0.439*[# 5]+0.113*[# 1]+0.001*[# 3]+0.001*[# 4]+ +0.001*[# 6]+ |psi|^2 = 0.994 e = 10.94536 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+ |psi|^2 = 0.995 e = 13.82074 eV psi = 0.273*[# 3]+0.273*[# 4]+0.273*[# 6]+0.081*[# 1]+0.040*[# 2]+ +0.040*[# 5]+ |psi|^2 = 0.979 e = 14.60836 eV psi = 0.473*[# 2]+0.473*[# 5]+0.014*[# 3]+0.014*[# 4]+0.014*[# 6]+ +0.007*[# 1]+ |psi|^2 = 0.995 e = 14.71829 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 17.34347 eV psi = 0.586*[# 1]+0.045*[# 3]+0.045*[# 4]+0.045*[# 6]+0.037*[# 2]+ +0.037*[# 5]+ |psi|^2 = 0.794 e = 27.69228 eV psi = 0.108*[# 1]+0.009*[# 2]+0.009*[# 5]+ |psi|^2 = 0.127 e = 29.66657 eV psi = |psi|^2 = 0.003 k = 0.7500000000 -0.0833333333 0.9166666667 e = 10.65704 eV psi = 0.457*[# 2]+0.457*[# 5]+0.049*[# 1]+0.009*[# 3]+0.009*[# 4]+ +0.009*[# 6]+ |psi|^2 = 0.992 e = 11.05979 eV psi = 0.322*[# 3]+0.322*[# 4]+0.322*[# 6]+0.014*[# 2]+0.014*[# 5]+ |psi|^2 = 0.993 e = 13.41448 eV psi = 0.308*[# 3]+0.308*[# 4]+0.308*[# 6]+0.024*[# 1]+0.010*[# 2]+ +0.010*[# 5]+ |psi|^2 = 0.966 e = 14.37004 eV psi = 0.470*[# 2]+0.470*[# 5]+0.019*[# 3]+0.019*[# 4]+0.019*[# 6]+ |psi|^2 = 0.997 e = 14.83689 eV psi = 0.318*[# 3]+0.318*[# 4]+0.318*[# 6]+0.022*[# 2]+0.022*[# 5]+ |psi|^2 = 0.998 e = 19.52895 eV psi = 0.282*[# 1]+0.021*[# 3]+0.021*[# 4]+0.021*[# 6]+0.010*[# 2]+ +0.010*[# 5]+ |psi|^2 = 0.363 e = 26.04287 eV psi = 0.083*[# 1]+0.009*[# 2]+0.009*[# 5]+ |psi|^2 = 0.102 e = 26.79175 eV psi = 0.418*[# 1]+0.007*[# 2]+0.007*[# 5]+0.002*[# 3]+0.002*[# 4]+ +0.002*[# 6]+ |psi|^2 = 0.438 k = 0.6666666667 0.0000000000 0.8333333333 e = 10.99959 eV psi = 0.422*[# 2]+0.422*[# 5]+0.042*[# 3]+0.042*[# 4]+0.042*[# 6]+ +0.020*[# 1]+ |psi|^2 = 0.992 e = 11.30976 eV psi = 0.283*[# 3]+0.283*[# 4]+0.283*[# 6]+0.066*[# 2]+0.066*[# 5]+ +0.005*[# 1]+ |psi|^2 = 0.985 e = 12.85579 eV psi = 0.324*[# 3]+0.324*[# 4]+0.324*[# 6]+ |psi|^2 = 0.971 e = 14.10243 eV psi = 0.498*[# 2]+0.498*[# 5]+0.003*[# 1]+ |psi|^2 = 0.999 e = 14.72221 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 21.68963 eV psi = 0.010*[# 3]+0.010*[# 4]+0.010*[# 6]+ |psi|^2 = 0.029 e = 23.27901 eV psi = 0.179*[# 1]+0.006*[# 3]+0.006*[# 4]+0.006*[# 6]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.199 e = 26.03700 eV psi = 0.669*[# 1]+0.012*[# 2]+0.012*[# 5]+0.002*[# 3]+0.002*[# 4]+ +0.002*[# 6]+ |psi|^2 = 0.700 k = -0.1666666667 -1.0000000000 0.0000000000 e = 10.37344 eV psi = 0.470*[# 2]+0.470*[# 5]+0.054*[# 1]+ |psi|^2 = 0.994 e = 10.83274 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+ |psi|^2 = 0.995 e = 14.15036 eV psi = 0.318*[# 3]+0.318*[# 4]+0.318*[# 6]+ |psi|^2 = 0.954 e = 14.61541 eV psi = 0.499*[# 2]+0.499*[# 5]+ |psi|^2 = 0.999 e = 14.92025 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 18.95097 eV psi = 0.015*[# 3]+0.015*[# 4]+0.015*[# 6]+ |psi|^2 = 0.045 e = 25.34638 eV psi = 0.696*[# 1]+0.029*[# 2]+0.029*[# 5]+ |psi|^2 = 0.753 e = 29.15375 eV psi = |psi|^2 = 0.003 k = 0.6666666667 -0.3333333333 1.0000000000 e = 10.86059 eV psi = 0.342*[# 1]+0.253*[# 2]+0.253*[# 5]+0.047*[# 3]+0.047*[# 4]+ +0.047*[# 6]+ |psi|^2 = 0.987 e = 11.55495 eV psi = 0.331*[# 3]+0.331*[# 4]+0.331*[# 6]+ |psi|^2 = 0.994 e = 12.33360 eV psi = 0.192*[# 2]+0.192*[# 5]+0.186*[# 3]+0.186*[# 4]+0.186*[# 6]+ +0.055*[# 1]+ |psi|^2 = 0.997 e = 14.02814 eV psi = 0.483*[# 2]+0.483*[# 5]+0.026*[# 1]+0.001*[# 3]+0.001*[# 4]+ +0.001*[# 6]+ |psi|^2 = 0.996 e = 14.22170 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 16.70262 eV psi = 0.513*[# 1]+0.097*[# 3]+0.097*[# 4]+0.097*[# 6]+0.071*[# 2]+ +0.071*[# 5]+ |psi|^2 = 0.947 e = 28.15996 eV psi = 0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.006 e = 29.32291 eV psi = 0.035*[# 1]+0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.040 k = 0.5833333333 -0.2500000000 0.9166666667 e = 11.25641 eV psi = 0.272*[# 2]+0.272*[# 5]+0.112*[# 1]+0.110*[# 3]+0.110*[# 4]+ +0.110*[# 6]+ |psi|^2 = 0.984 e = 11.65356 eV psi = 0.218*[# 3]+0.218*[# 4]+0.218*[# 6]+0.166*[# 2]+0.166*[# 5]+ |psi|^2 = 0.986 e = 12.16443 eV psi = 0.281*[# 3]+0.281*[# 4]+0.281*[# 6]+0.054*[# 1]+0.046*[# 2]+ +0.046*[# 5]+ |psi|^2 = 0.990 e = 13.85037 eV psi = 0.428*[# 2]+0.428*[# 5]+0.047*[# 3]+0.047*[# 4]+0.047*[# 6]+ +0.002*[# 1]+ |psi|^2 = 0.997 e = 14.54926 eV psi = 0.293*[# 3]+0.293*[# 4]+0.293*[# 6]+0.060*[# 2]+0.060*[# 5]+ |psi|^2 = 0.998 e = 18.67083 eV psi = 0.564*[# 1]+0.043*[# 3]+0.043*[# 4]+0.043*[# 6]+0.026*[# 2]+ +0.026*[# 5]+ |psi|^2 = 0.745 e = 24.88699 eV psi = 0.125*[# 1]+0.007*[# 3]+0.007*[# 4]+0.007*[# 6]+ |psi|^2 = 0.145 e = 29.14671 eV psi = 0.055*[# 1]+0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.060 k = 0.5000000000 -0.1666666667 0.8333333333 e = 11.46464 eV psi = 0.306*[# 3]+0.306*[# 4]+0.306*[# 6]+0.065*[# 1]+0.005*[# 2]+ +0.005*[# 5]+ |psi|^2 = 0.993 e = 11.50021 eV psi = 0.488*[# 2]+0.488*[# 5]+ |psi|^2 = 0.978 e = 12.25516 eV psi = 0.324*[# 3]+0.324*[# 4]+0.324*[# 6]+ |psi|^2 = 0.973 e = 13.74187 eV psi = 0.431*[# 2]+0.431*[# 5]+0.045*[# 3]+0.045*[# 4]+0.045*[# 6]+ |psi|^2 = 0.999 e = 14.67263 eV psi = 0.292*[# 3]+0.292*[# 4]+0.292*[# 6]+0.061*[# 2]+0.061*[# 5]+ +0.003*[# 1]+ |psi|^2 = 0.999 e = 20.61362 eV psi = 0.010*[# 2]+0.010*[# 5]+0.008*[# 3]+0.008*[# 4]+0.008*[# 6]+ |psi|^2 = 0.044 e = 22.39250 eV psi = 0.722*[# 1]+0.023*[# 3]+0.023*[# 4]+0.023*[# 6]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.795 e = 29.63080 eV psi = 0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 0.004 k = 0.6666666667 -0.1666666667 1.0000000000 e = 10.94278 eV psi = 0.455*[# 2]+0.455*[# 5]+0.064*[# 1]+0.005*[# 3]+0.005*[# 4]+ +0.005*[# 6]+ |psi|^2 = 0.988 e = 11.33699 eV psi = 0.331*[# 3]+0.331*[# 4]+0.331*[# 6]+ |psi|^2 = 0.992 e = 12.69926 eV psi = 0.285*[# 3]+0.285*[# 4]+0.285*[# 6]+0.063*[# 1]+0.032*[# 2]+ +0.032*[# 5]+ |psi|^2 = 0.984 e = 14.19703 eV psi = 0.484*[# 2]+0.484*[# 5]+0.009*[# 3]+0.009*[# 4]+0.009*[# 6]+ |psi|^2 = 0.996 e = 14.71472 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 19.07568 eV psi = 0.549*[# 1]+0.033*[# 3]+0.033*[# 4]+0.033*[# 6]+0.021*[# 2]+ +0.021*[# 5]+ |psi|^2 = 0.690 e = 26.81387 eV psi = 0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.007 e = 27.90127 eV psi = 0.004*[# 1]+0.003*[# 2]+0.003*[# 5]+ |psi|^2 = 0.010 k = 0.5833333333 -0.0833333333 0.9166666667 e = 11.14580 eV psi = 0.481*[# 2]+0.481*[# 5]+0.010*[# 1]+0.005*[# 3]+0.005*[# 4]+ +0.005*[# 6]+ |psi|^2 = 0.986 e = 11.56886 eV psi = 0.322*[# 3]+0.322*[# 4]+0.322*[# 6]+0.008*[# 2]+0.008*[# 5]+ +0.007*[# 1]+ |psi|^2 = 0.988 e = 12.38219 eV psi = 0.319*[# 3]+0.319*[# 4]+0.319*[# 6]+0.013*[# 1]+0.004*[# 2]+ +0.004*[# 5]+ |psi|^2 = 0.980 e = 13.97056 eV psi = 0.486*[# 2]+0.486*[# 5]+0.007*[# 3]+0.007*[# 4]+0.007*[# 6]+ +0.006*[# 1]+ |psi|^2 = 0.998 e = 14.82265 eV psi = 0.329*[# 3]+0.329*[# 4]+0.329*[# 6]+0.005*[# 2]+0.005*[# 5]+ |psi|^2 = 0.998 e = 21.55292 eV psi = 0.187*[# 1]+0.011*[# 3]+0.011*[# 4]+0.011*[# 6]+0.005*[# 2]+ +0.005*[# 5]+ |psi|^2 = 0.230 e = 23.94440 eV psi = 0.208*[# 1]+0.006*[# 3]+0.006*[# 4]+0.006*[# 6]+0.001*[# 2]+ +0.001*[# 5]+ |psi|^2 = 0.228 e = 27.03904 eV psi = 0.213*[# 1]+0.006*[# 2]+0.006*[# 5]+ |psi|^2 = 0.227 k = 0.5000000000 0.0000000000 0.8333333333 e = 11.32295 eV psi = 0.488*[# 2]+0.488*[# 5]+0.005*[# 1]+ |psi|^2 = 0.983 e = 11.82378 eV psi = 0.310*[# 3]+0.310*[# 4]+0.310*[# 6]+0.042*[# 1]+0.008*[# 2]+ +0.008*[# 5]+ |psi|^2 = 0.988 e = 11.98749 eV psi = 0.328*[# 3]+0.328*[# 4]+0.328*[# 6]+ |psi|^2 = 0.985 e = 13.88799 eV psi = 0.490*[# 2]+0.490*[# 5]+0.004*[# 3]+0.004*[# 4]+0.004*[# 6]+ +0.004*[# 1]+ |psi|^2 = 0.998 e = 14.71223 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 21.02581 eV psi = 0.426*[# 1]+0.016*[# 3]+0.016*[# 4]+0.016*[# 6]+0.008*[# 2]+ +0.008*[# 5]+ |psi|^2 = 0.489 e = 24.09507 eV psi = 0.005*[# 3]+0.005*[# 4]+0.005*[# 6]+ |psi|^2 = 0.015 e = 26.80841 eV psi = 0.330*[# 1]+0.004*[# 2]+0.004*[# 5]+0.002*[# 3]+0.002*[# 4]+ +0.002*[# 6]+ |psi|^2 = 0.344 k = -0.3333333333 -1.0000000000 0.0000000000 e = 10.85152 eV psi = 0.484*[# 2]+0.484*[# 5]+0.022*[# 1]+ |psi|^2 = 0.990 e = 11.25674 eV psi = 0.331*[# 3]+0.331*[# 4]+0.331*[# 6]+ |psi|^2 = 0.992 e = 12.96614 eV psi = 0.323*[# 3]+0.323*[# 4]+0.323*[# 6]+ |psi|^2 = 0.968 e = 14.18532 eV psi = 0.496*[# 2]+0.496*[# 5]+0.006*[# 1]+ |psi|^2 = 0.999 e = 14.92086 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 21.05709 eV psi = 0.011*[# 3]+0.011*[# 4]+0.011*[# 6]+ |psi|^2 = 0.032 e = 25.61970 eV psi = 0.431*[# 1]+0.016*[# 2]+0.016*[# 5]+ |psi|^2 = 0.463 e = 26.32225 eV psi = 0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+ |psi|^2 = 0.008 k = -0.5000000000 -1.0000000000 0.0000000000 e = 11.15451 eV psi = 0.494*[# 2]+0.494*[# 5]+ |psi|^2 = 0.987 e = 11.97078 eV psi = 0.328*[# 3]+0.328*[# 4]+0.328*[# 6]+ |psi|^2 = 0.984 e = 11.97078 eV psi = 0.328*[# 3]+0.328*[# 4]+0.328*[# 6]+ |psi|^2 = 0.984 e = 13.90407 eV psi = 0.492*[# 2]+0.492*[# 5]+0.015*[# 1]+ |psi|^2 = 1.000 e = 14.92116 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 23.56122 eV psi = 0.005*[# 3]+0.005*[# 4]+0.005*[# 6]+ |psi|^2 = 0.016 e = 23.56122 eV psi = 0.005*[# 3]+0.005*[# 4]+0.005*[# 6]+ |psi|^2 = 0.016 e = 25.93100 eV psi = 0.006*[# 2]+0.006*[# 5]+ |psi|^2 = 0.013 k = 0.0000000000 0.0000000000 0.0000000000 e = 5.77946 eV psi = 0.999*[# 1]+ |psi|^2 = 0.999 e = 13.34124 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 13.34124 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 13.34124 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 14.58667 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 1.000 e = 14.58667 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 1.000 e = 39.84472 eV psi = |psi|^2 = 0.000 e = 44.29788 eV psi = |psi|^2 = 0.000 k = -0.0833333333 0.0833333333 -0.0833333333 e = 6.06788 eV psi = 0.999*[# 1]+ |psi|^2 = 0.999 e = 13.25528 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 13.40962 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 1.000 e = 13.40962 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 1.000 e = 14.55759 eV psi = 0.498*[# 2]+0.498*[# 5]+0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 1.000 e = 14.55759 eV psi = 0.498*[# 2]+0.498*[# 5]+0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 1.000 e = 39.01694 eV psi = |psi|^2 = 0.000 e = 41.76874 eV psi = |psi|^2 = 0.000 k = -0.1666666667 0.1666666667 -0.1666666667 e = 6.90184 eV psi = 0.991*[# 1]+0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+ |psi|^2 = 0.999 e = 13.05113 eV psi = 0.330*[# 3]+0.330*[# 4]+0.330*[# 6]+0.008*[# 1]+ |psi|^2 = 0.998 e = 13.54509 eV psi = 0.309*[# 3]+0.309*[# 4]+0.309*[# 6]+0.037*[# 2]+0.037*[# 5]+ |psi|^2 = 1.000 e = 13.54509 eV psi = 0.309*[# 3]+0.309*[# 4]+0.309*[# 6]+0.037*[# 2]+0.037*[# 5]+ |psi|^2 = 1.000 e = 14.53852 eV psi = 0.463*[# 2]+0.463*[# 5]+0.025*[# 3]+0.025*[# 4]+0.025*[# 6]+ |psi|^2 = 1.000 e = 14.53852 eV psi = 0.463*[# 2]+0.463*[# 5]+0.025*[# 3]+0.025*[# 4]+0.025*[# 6]+ |psi|^2 = 1.000 e = 35.19931 eV psi = |psi|^2 = 0.002 e = 40.75014 eV psi = |psi|^2 = 0.000 k = -0.2500000000 0.2500000000 -0.2500000000 e = 8.15736 eV psi = 0.940*[# 1]+0.019*[# 3]+0.019*[# 4]+0.019*[# 6]+ |psi|^2 = 0.998 e = 12.89157 eV psi = 0.312*[# 3]+0.312*[# 4]+0.312*[# 6]+0.057*[# 1]+ |psi|^2 = 0.993 e = 13.56586 eV psi = 0.230*[# 3]+0.230*[# 4]+0.230*[# 6]+0.154*[# 2]+0.154*[# 5]+ |psi|^2 = 1.000 e = 13.56586 eV psi = 0.230*[# 3]+0.230*[# 4]+0.230*[# 6]+0.154*[# 2]+0.154*[# 5]+ |psi|^2 = 1.000 e = 14.70069 eV psi = 0.345*[# 2]+0.345*[# 5]+0.103*[# 3]+0.103*[# 4]+0.103*[# 6]+ |psi|^2 = 1.000 e = 14.70069 eV psi = 0.345*[# 2]+0.345*[# 5]+0.103*[# 3]+0.103*[# 4]+0.103*[# 6]+ |psi|^2 = 1.000 e = 30.80795 eV psi = 0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.007 e = 40.05635 eV psi = |psi|^2 = 0.000 k = -0.3333333333 0.3333333333 -0.3333333333 e = 9.47998 eV psi = 0.722*[# 1]+0.091*[# 3]+0.091*[# 4]+0.091*[# 6]+ |psi|^2 = 0.996 e = 13.11908 eV psi = 0.258*[# 1]+0.235*[# 3]+0.235*[# 4]+0.235*[# 6]+ |psi|^2 = 0.962 e = 13.44574 eV psi = 0.249*[# 2]+0.249*[# 5]+0.167*[# 3]+0.167*[# 4]+0.167*[# 6]+ |psi|^2 = 1.000 e = 13.44574 eV psi = 0.249*[# 2]+0.249*[# 5]+0.167*[# 3]+0.167*[# 4]+0.167*[# 6]+ |psi|^2 = 1.000 e = 15.03198 eV psi = 0.251*[# 2]+0.251*[# 5]+0.166*[# 3]+0.166*[# 4]+0.166*[# 6]+ |psi|^2 = 0.999 e = 15.03198 eV psi = 0.251*[# 2]+0.251*[# 5]+0.166*[# 3]+0.166*[# 4]+0.166*[# 6]+ |psi|^2 = 0.999 e = 26.76785 eV psi = 0.015*[# 1]+0.007*[# 3]+0.007*[# 4]+0.007*[# 6]+ |psi|^2 = 0.037 e = 39.19581 eV psi = |psi|^2 = 0.000 k = -0.4166666667 0.4166666667 -0.4166666667 e = 10.24737 eV psi = 0.345*[# 1]+0.217*[# 3]+0.217*[# 4]+0.217*[# 6]+ |psi|^2 = 0.995 e = 13.32028 eV psi = 0.289*[# 2]+0.289*[# 5]+0.140*[# 3]+0.140*[# 4]+0.140*[# 6]+ |psi|^2 = 1.000 e = 13.32028 eV psi = 0.289*[# 2]+0.289*[# 5]+0.140*[# 3]+0.140*[# 4]+0.140*[# 6]+ |psi|^2 = 1.000 e = 14.13161 eV psi = 0.446*[# 1]+0.089*[# 3]+0.089*[# 4]+0.089*[# 6]+ |psi|^2 = 0.713 e = 15.33226 eV psi = 0.210*[# 2]+0.210*[# 5]+0.193*[# 3]+0.193*[# 4]+0.193*[# 6]+ |psi|^2 = 0.999 e = 15.33226 eV psi = 0.210*[# 2]+0.210*[# 5]+0.193*[# 3]+0.193*[# 4]+0.193*[# 6]+ |psi|^2 = 0.999 e = 23.46056 eV psi = 0.192*[# 1]+0.028*[# 3]+0.028*[# 4]+0.028*[# 6]+ |psi|^2 = 0.276 e = 38.53125 eV psi = |psi|^2 = 0.000 k = 0.5000000000 -0.5000000000 0.5000000000 e = 10.42552 eV psi = 0.267*[# 3]+0.267*[# 4]+0.267*[# 6]+0.196*[# 1]+ |psi|^2 = 0.996 e = 13.27073 eV psi = 0.300*[# 2]+0.300*[# 5]+0.133*[# 3]+0.133*[# 4]+0.133*[# 6]+ |psi|^2 = 1.000 e = 13.27073 eV psi = 0.300*[# 2]+0.300*[# 5]+0.133*[# 3]+0.133*[# 4]+0.133*[# 6]+ |psi|^2 = 1.000 e = 14.96801 eV psi = |psi|^2 = 0.000 e = 15.45045 eV psi = 0.200*[# 3]+0.200*[# 4]+0.200*[# 6]+0.199*[# 2]+0.199*[# 5]+ |psi|^2 = 0.999 e = 15.45045 eV psi = 0.200*[# 3]+0.200*[# 4]+0.200*[# 6]+0.199*[# 2]+0.199*[# 5]+ |psi|^2 = 0.999 e = 21.93421 eV psi = 0.769*[# 1]+0.066*[# 3]+0.066*[# 4]+0.066*[# 6]+ |psi|^2 = 0.967 e = 38.28728 eV psi = |psi|^2 = 0.000 k = 0.0000000000 0.1666666667 0.0000000000 e = 6.16340 eV psi = 0.998*[# 1]+ |psi|^2 = 0.999 e = 13.18606 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 13.45831 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 13.45831 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 14.44517 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 1.000 e = 14.64064 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 1.000 e = 39.33207 eV psi = |psi|^2 = 0.000 e = 42.17252 eV psi = |psi|^2 = 0.000 k = -0.0833333333 0.2500000000 -0.0833333333 e = 6.81443 eV psi = 0.993*[# 1]+0.001*[# 2]+0.001*[# 5]+ |psi|^2 = 0.999 e = 12.99350 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 13.59481 eV psi = 0.319*[# 3]+0.319*[# 4]+0.319*[# 6]+0.021*[# 2]+0.021*[# 5]+ +0.001*[# 1]+ |psi|^2 = 1.000 e = 13.60432 eV psi = 0.322*[# 3]+0.322*[# 4]+0.322*[# 6]+0.017*[# 2]+0.017*[# 5]+ |psi|^2 = 1.000 e = 14.32660 eV psi = 0.477*[# 2]+0.477*[# 5]+0.014*[# 3]+0.014*[# 4]+0.014*[# 6]+ +0.004*[# 1]+ |psi|^2 = 1.000 e = 14.69129 eV psi = 0.483*[# 2]+0.483*[# 5]+0.011*[# 3]+0.011*[# 4]+0.011*[# 6]+ |psi|^2 = 0.999 e = 36.84542 eV psi = |psi|^2 = 0.001 e = 40.07728 eV psi = |psi|^2 = 0.000 k = -0.1666666667 0.3333333333 -0.1666666667 e = 7.93597 eV psi = 0.961*[# 1]+0.010*[# 3]+0.010*[# 4]+0.010*[# 6]+0.004*[# 2]+ +0.004*[# 5]+ |psi|^2 = 0.998 e = 12.78629 eV psi = 0.325*[# 3]+0.325*[# 4]+0.325*[# 6]+0.018*[# 1]+ |psi|^2 = 0.996 e = 13.59613 eV psi = 0.215*[# 3]+0.215*[# 4]+0.215*[# 6]+0.177*[# 2]+0.177*[# 5]+ |psi|^2 = 0.999 e = 13.68718 eV psi = 0.264*[# 3]+0.264*[# 4]+0.264*[# 6]+0.104*[# 2]+0.104*[# 5]+ |psi|^2 = 1.000 e = 14.45659 eV psi = 0.318*[# 2]+0.318*[# 5]+0.115*[# 3]+0.115*[# 4]+0.115*[# 6]+ +0.019*[# 1]+ |psi|^2 = 0.999 e = 14.83527 eV psi = 0.396*[# 2]+0.396*[# 5]+0.069*[# 3]+0.069*[# 4]+0.069*[# 6]+ |psi|^2 = 0.999 e = 32.43116 eV psi = 0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.004 e = 39.35950 eV psi = |psi|^2 = 0.001 k = -0.2500000000 0.4166666667 -0.2500000000 e = 9.27797 eV psi = 0.813*[# 1]+0.055*[# 3]+0.055*[# 4]+0.055*[# 6]+0.009*[# 2]+ +0.009*[# 5]+ |psi|^2 = 0.996 e = 12.77797 eV psi = 0.280*[# 3]+0.280*[# 4]+0.280*[# 6]+0.112*[# 1]+0.016*[# 2]+ +0.016*[# 5]+ |psi|^2 = 0.984 e = 13.41104 eV psi = 0.271*[# 2]+0.271*[# 5]+0.153*[# 3]+0.153*[# 4]+0.153*[# 6]+ |psi|^2 = 0.999 e = 13.61635 eV psi = 0.211*[# 2]+0.211*[# 5]+0.193*[# 3]+0.193*[# 4]+0.193*[# 6]+ |psi|^2 = 1.000 e = 14.93322 eV psi = 0.205*[# 2]+0.205*[# 5]+0.174*[# 3]+0.174*[# 4]+0.174*[# 6]+ +0.065*[# 1]+ |psi|^2 = 0.996 e = 15.11619 eV psi = 0.289*[# 2]+0.289*[# 5]+0.140*[# 3]+0.140*[# 4]+0.140*[# 6]+ |psi|^2 = 0.999 e = 28.22489 eV psi = 0.006*[# 1]+0.004*[# 3]+0.004*[# 4]+0.004*[# 6]+ |psi|^2 = 0.019 e = 38.58823 eV psi = |psi|^2 = 0.001 k = -0.3333333333 0.5000000000 -0.3333333333 e = 10.26324 eV psi = 0.445*[# 1]+0.178*[# 3]+0.178*[# 4]+0.178*[# 6]+0.008*[# 2]+ +0.008*[# 5]+ |psi|^2 = 0.994 e = 13.14684 eV psi = 0.328*[# 2]+0.328*[# 5]+0.083*[# 1]+0.075*[# 3]+0.075*[# 4]+ +0.075*[# 6]+ |psi|^2 = 0.963 e = 13.40261 eV psi = 0.240*[# 3]+0.240*[# 4]+0.240*[# 6]+0.187*[# 1]+0.018*[# 2]+ +0.018*[# 5]+ |psi|^2 = 0.943 e = 13.48606 eV psi = 0.273*[# 2]+0.273*[# 5]+0.151*[# 3]+0.151*[# 4]+0.151*[# 6]+ |psi|^2 = 1.000 e = 15.37629 eV psi = 0.227*[# 2]+0.227*[# 5]+0.182*[# 3]+0.182*[# 4]+0.182*[# 6]+ |psi|^2 = 0.999 e = 15.63578 eV psi = 0.184*[# 1]+0.157*[# 3]+0.157*[# 4]+0.157*[# 6]+0.146*[# 2]+ +0.146*[# 5]+ |psi|^2 = 0.948 e = 24.57411 eV psi = 0.089*[# 1]+0.017*[# 3]+0.017*[# 4]+0.017*[# 6]+ |psi|^2 = 0.138 e = 37.82189 eV psi = |psi|^2 = 0.000 k = 0.5833333333 -0.4166666667 0.5833333333 e = 10.58447 eV psi = 0.264*[# 3]+0.264*[# 4]+0.264*[# 6]+0.202*[# 1]+0.001*[# 2]+ +0.001*[# 5]+ |psi|^2 = 0.996 e = 13.11158 eV psi = 0.358*[# 2]+0.358*[# 5]+0.088*[# 3]+0.088*[# 4]+0.088*[# 6]+ +0.001*[# 1]+ |psi|^2 = 0.980 e = 13.39646 eV psi = 0.302*[# 2]+0.302*[# 5]+0.132*[# 3]+0.132*[# 4]+0.132*[# 6]+ |psi|^2 = 1.000 e = 14.04470 eV psi = 0.180*[# 3]+0.180*[# 4]+0.180*[# 6]+0.052*[# 2]+0.052*[# 5]+ +0.047*[# 1]+ |psi|^2 = 0.690 e = 15.45838 eV psi = 0.201*[# 3]+0.201*[# 4]+0.201*[# 6]+0.198*[# 2]+0.198*[# 5]+ |psi|^2 = 0.999 e = 16.47691 eV psi = 0.088*[# 2]+0.088*[# 5]+0.079*[# 3]+0.079*[# 4]+0.079*[# 6]+ +0.073*[# 1]+ |psi|^2 = 0.488 e = 22.17382 eV psi = 0.641*[# 1]+0.056*[# 3]+0.056*[# 4]+0.056*[# 6]+ |psi|^2 = 0.807 e = 37.17608 eV psi = |psi|^2 = 0.001 k = 0.5000000000 -0.3333333333 0.5000000000 e = 10.53503 eV psi = 0.250*[# 1]+0.248*[# 3]+0.248*[# 4]+0.248*[# 6]+ |psi|^2 = 0.995 e = 13.15269 eV psi = 0.341*[# 2]+0.341*[# 5]+0.099*[# 3]+0.099*[# 4]+0.099*[# 6]+ +0.007*[# 1]+ |psi|^2 = 0.986 e = 13.39763 eV psi = 0.310*[# 2]+0.310*[# 5]+0.126*[# 3]+0.126*[# 4]+0.126*[# 6]+ |psi|^2 = 1.000 e = 13.91565 eV psi = 0.173*[# 3]+0.173*[# 4]+0.173*[# 6]+0.147*[# 1]+0.045*[# 2]+ +0.045*[# 5]+ |psi|^2 = 0.754 e = 15.30193 eV psi = 0.207*[# 3]+0.207*[# 4]+0.207*[# 6]+0.190*[# 2]+0.190*[# 5]+ |psi|^2 = 0.999 e = 16.32381 eV psi = 0.182*[# 1]+0.113*[# 2]+0.113*[# 5]+0.107*[# 3]+0.107*[# 4]+ +0.107*[# 6]+ |psi|^2 = 0.730 e = 22.74746 eV psi = 0.386*[# 1]+0.040*[# 3]+0.040*[# 4]+0.040*[# 6]+ |psi|^2 = 0.505 e = 36.75617 eV psi = 0.002*[# 1]+ |psi|^2 = 0.003 k = 0.4166666667 -0.2500000000 0.4166666667 e = 10.02148 eV psi = 0.581*[# 1]+0.134*[# 3]+0.134*[# 4]+0.134*[# 6]+0.005*[# 2]+ +0.005*[# 5]+ |psi|^2 = 0.994 e = 13.11973 eV psi = 0.248*[# 1]+0.192*[# 3]+0.192*[# 4]+0.192*[# 6]+0.060*[# 2]+ +0.060*[# 5]+ |psi|^2 = 0.944 e = 13.30991 eV psi = 0.240*[# 2]+0.240*[# 5]+0.172*[# 3]+0.172*[# 4]+0.172*[# 6]+ +0.002*[# 1]+ |psi|^2 = 0.999 e = 13.49514 eV psi = 0.294*[# 2]+0.294*[# 5]+0.137*[# 3]+0.137*[# 4]+0.137*[# 6]+ |psi|^2 = 1.000 e = 14.95355 eV psi = 0.206*[# 2]+0.206*[# 5]+0.196*[# 3]+0.196*[# 4]+0.196*[# 6]+ |psi|^2 = 0.999 e = 15.66679 eV psi = 0.194*[# 2]+0.194*[# 5]+0.157*[# 3]+0.157*[# 4]+0.157*[# 6]+ +0.122*[# 1]+ |psi|^2 = 0.982 e = 25.71394 eV psi = 0.038*[# 1]+0.011*[# 3]+0.011*[# 4]+0.011*[# 6]+ |psi|^2 = 0.070 e = 36.66736 eV psi = |psi|^2 = 0.002 k = 0.3333333333 -0.1666666667 0.3333333333 e = 8.83936 eV psi = 0.888*[# 1]+0.034*[# 3]+0.034*[# 4]+0.034*[# 6]+0.004*[# 2]+ +0.004*[# 5]+ |psi|^2 = 0.997 e = 12.77813 eV psi = 0.306*[# 3]+0.306*[# 4]+0.306*[# 6]+0.065*[# 1]+0.003*[# 2]+ +0.003*[# 5]+ |psi|^2 = 0.990 e = 13.48026 eV psi = 0.216*[# 2]+0.216*[# 5]+0.187*[# 3]+0.187*[# 4]+0.187*[# 6]+ +0.004*[# 1]+ |psi|^2 = 0.999 e = 13.64304 eV psi = 0.220*[# 2]+0.220*[# 5]+0.186*[# 3]+0.186*[# 4]+0.186*[# 6]+ |psi|^2 = 1.000 e = 14.54788 eV psi = 0.279*[# 2]+0.279*[# 5]+0.147*[# 3]+0.147*[# 4]+0.147*[# 6]+ |psi|^2 = 1.000 e = 15.17308 eV psi = 0.277*[# 2]+0.277*[# 5]+0.136*[# 3]+0.136*[# 4]+0.136*[# 6]+ +0.038*[# 1]+ |psi|^2 = 0.998 e = 29.58906 eV psi = 0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+0.002*[# 1]+ |psi|^2 = 0.011 e = 36.95606 eV psi = |psi|^2 = 0.001 k = 0.2500000000 -0.0833333333 0.2500000000 e = 7.52084 eV psi = 0.979*[# 1]+0.006*[# 3]+0.006*[# 4]+0.006*[# 6]+0.001*[# 2]+ +0.001*[# 5]+ |psi|^2 = 0.999 e = 12.88589 eV psi = 0.330*[# 3]+0.330*[# 4]+0.330*[# 6]+0.007*[# 1]+ |psi|^2 = 0.997 e = 13.58216 eV psi = 0.259*[# 3]+0.259*[# 4]+0.259*[# 6]+0.109*[# 2]+0.109*[# 5]+ +0.004*[# 1]+ |psi|^2 = 0.999 e = 13.67704 eV psi = 0.302*[# 3]+0.302*[# 4]+0.302*[# 6]+0.046*[# 2]+0.046*[# 5]+ |psi|^2 = 1.000 e = 14.32678 eV psi = 0.453*[# 2]+0.453*[# 5]+0.031*[# 3]+0.031*[# 4]+0.031*[# 6]+ |psi|^2 = 1.000 e = 14.81130 eV psi = 0.389*[# 2]+0.389*[# 5]+0.071*[# 3]+0.071*[# 4]+0.071*[# 6]+ +0.009*[# 1]+ |psi|^2 = 0.999 e = 33.90451 eV psi = |psi|^2 = 0.003 e = 37.59218 eV psi = |psi|^2 = 0.001 k = 0.1666666667 0.0000000000 0.1666666667 e = 6.53851 eV psi = 0.996*[# 1]+ |psi|^2 = 0.999 e = 13.10730 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 13.51297 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 13.52190 eV psi = 0.318*[# 3]+0.318*[# 4]+0.318*[# 6]+0.022*[# 2]+0.022*[# 5]+ +0.002*[# 1]+ |psi|^2 = 1.000 e = 14.41565 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 1.000 e = 14.63789 eV psi = 0.477*[# 2]+0.477*[# 5]+0.015*[# 3]+0.015*[# 4]+0.015*[# 6]+ +0.001*[# 1]+ |psi|^2 = 1.000 e = 37.79366 eV psi = |psi|^2 = 0.001 e = 39.11075 eV psi = |psi|^2 = 0.000 k = 0.0000000000 0.3333333333 0.0000000000 e = 7.26343 eV psi = 0.986*[# 1]+0.006*[# 2]+0.006*[# 5]+ |psi|^2 = 0.999 e = 12.77335 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 13.79926 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 13.79926 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 14.09217 eV psi = 0.493*[# 2]+0.493*[# 5]+0.013*[# 1]+ |psi|^2 = 1.000 e = 14.78938 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 0.999 e = 38.38617 eV psi = |psi|^2 = 0.002 e = 38.88299 eV psi = |psi|^2 = 0.000 k = -0.0833333333 0.4166666667 -0.0833333333 e = 8.18744 eV psi = 0.950*[# 1]+0.020*[# 2]+0.020*[# 5]+0.003*[# 3]+0.003*[# 4]+ +0.003*[# 6]+ |psi|^2 = 0.998 e = 12.52580 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+0.001*[# 1]+ |psi|^2 = 0.997 e = 13.69610 eV psi = 0.297*[# 2]+0.297*[# 5]+0.132*[# 3]+0.132*[# 4]+0.132*[# 6]+ +0.010*[# 1]+ |psi|^2 = 0.999 e = 13.97851 eV psi = 0.301*[# 3]+0.301*[# 4]+0.301*[# 6]+0.048*[# 2]+0.048*[# 5]+ |psi|^2 = 0.999 e = 14.30382 eV psi = 0.199*[# 3]+0.199*[# 4]+0.199*[# 6]+0.183*[# 2]+0.183*[# 5]+ +0.037*[# 1]+ |psi|^2 = 0.999 e = 14.92282 eV psi = 0.452*[# 2]+0.452*[# 5]+0.032*[# 3]+0.032*[# 4]+0.032*[# 6]+ |psi|^2 = 0.999 e = 34.40874 eV psi = |psi|^2 = 0.002 e = 37.51217 eV psi = |psi|^2 = 0.000 k = -0.1666666667 0.5000000000 -0.1666666667 e = 9.40820 eV psi = 0.827*[# 1]+0.046*[# 2]+0.046*[# 5]+0.025*[# 3]+0.025*[# 4]+ +0.025*[# 6]+ |psi|^2 = 0.996 e = 12.36598 eV psi = 0.316*[# 3]+0.316*[# 4]+0.316*[# 6]+0.020*[# 1]+0.012*[# 2]+ +0.012*[# 5]+ |psi|^2 = 0.993 e = 13.37714 eV psi = 0.305*[# 2]+0.305*[# 5]+0.123*[# 3]+0.123*[# 4]+0.123*[# 6]+ +0.021*[# 1]+ |psi|^2 = 0.999 e = 13.98504 eV psi = 0.220*[# 3]+0.220*[# 4]+0.220*[# 6]+0.170*[# 2]+0.170*[# 5]+ |psi|^2 = 0.999 e = 14.98770 eV psi = 0.199*[# 3]+0.199*[# 4]+0.199*[# 6]+0.136*[# 2]+0.136*[# 5]+ +0.125*[# 1]+ |psi|^2 = 0.995 e = 15.17598 eV psi = 0.330*[# 2]+0.330*[# 5]+0.113*[# 3]+0.113*[# 4]+0.113*[# 6]+ |psi|^2 = 0.999 e = 30.07820 eV psi = 0.003*[# 1]+0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.010 e = 36.70030 eV psi = |psi|^2 = 0.000 k = -0.2500000000 0.5833333333 -0.2500000000 e = 10.49431 eV psi = 0.513*[# 1]+0.116*[# 3]+0.116*[# 4]+0.116*[# 6]+0.065*[# 2]+ +0.065*[# 5]+ |psi|^2 = 0.992 e = 12.44344 eV psi = 0.206*[# 3]+0.206*[# 4]+0.206*[# 6]+0.141*[# 2]+0.141*[# 5]+ +0.071*[# 1]+ |psi|^2 = 0.973 e = 13.17392 eV psi = 0.190*[# 2]+0.190*[# 5]+0.187*[# 3]+0.187*[# 4]+0.187*[# 6]+ +0.056*[# 1]+ |psi|^2 = 0.996 e = 13.87201 eV psi = 0.259*[# 2]+0.259*[# 5]+0.161*[# 3]+0.161*[# 4]+0.161*[# 6]+ |psi|^2 = 0.999 e = 15.41850 eV psi = 0.241*[# 2]+0.241*[# 5]+0.172*[# 3]+0.172*[# 4]+0.172*[# 6]+ |psi|^2 = 0.999 e = 16.05079 eV psi = 0.306*[# 1]+0.148*[# 3]+0.148*[# 4]+0.148*[# 6]+0.103*[# 2]+ +0.103*[# 5]+ |psi|^2 = 0.957 e = 26.14906 eV psi = 0.040*[# 1]+0.008*[# 3]+0.008*[# 4]+0.008*[# 6]+ |psi|^2 = 0.065 e = 35.54195 eV psi = 0.002*[# 1]+ |psi|^2 = 0.003 k = 0.6666666667 -0.3333333333 0.6666666667 e = 10.98141 eV psi = 0.246*[# 3]+0.246*[# 4]+0.246*[# 6]+0.208*[# 1]+0.024*[# 2]+ +0.024*[# 5]+ |psi|^2 = 0.993 e = 12.60107 eV psi = 0.414*[# 2]+0.414*[# 5]+0.033*[# 3]+0.033*[# 4]+0.033*[# 6]+ +0.015*[# 1]+ |psi|^2 = 0.942 e = 13.32611 eV psi = 0.287*[# 3]+0.287*[# 4]+0.287*[# 6]+0.065*[# 1]+0.004*[# 2]+ +0.004*[# 5]+ |psi|^2 = 0.935 e = 13.75374 eV psi = 0.309*[# 2]+0.309*[# 5]+0.127*[# 3]+0.127*[# 4]+0.127*[# 6]+ |psi|^2 = 0.999 e = 15.48065 eV psi = 0.206*[# 3]+0.206*[# 4]+0.206*[# 6]+0.191*[# 2]+0.191*[# 5]+ |psi|^2 = 0.999 e = 17.53111 eV psi = 0.279*[# 1]+0.068*[# 3]+0.068*[# 4]+0.068*[# 6]+0.056*[# 2]+ +0.056*[# 5]+ |psi|^2 = 0.594 e = 23.00235 eV psi = 0.389*[# 1]+0.032*[# 3]+0.032*[# 4]+0.032*[# 6]+ |psi|^2 = 0.487 e = 34.15221 eV psi = 0.012*[# 1]+ |psi|^2 = 0.014 k = 0.5833333333 -0.2500000000 0.5833333333 e = 11.05894 eV psi = 0.274*[# 3]+0.274*[# 4]+0.274*[# 6]+0.171*[# 1]+ |psi|^2 = 0.994 e = 12.69274 eV psi = 0.446*[# 2]+0.446*[# 5]+0.018*[# 3]+0.018*[# 4]+0.018*[# 6]+ +0.007*[# 1]+ |psi|^2 = 0.951 e = 13.39864 eV psi = 0.286*[# 3]+0.286*[# 4]+0.286*[# 6]+0.010*[# 1]+0.009*[# 2]+ +0.009*[# 5]+ |psi|^2 = 0.885 e = 13.69926 eV psi = 0.339*[# 2]+0.339*[# 5]+0.107*[# 3]+0.107*[# 4]+0.107*[# 6]+ |psi|^2 = 1.000 e = 15.29854 eV psi = 0.226*[# 3]+0.226*[# 4]+0.226*[# 6]+0.161*[# 2]+0.161*[# 5]+ |psi|^2 = 0.999 e = 18.03726 eV psi = 0.131*[# 1]+0.045*[# 2]+0.045*[# 5]+0.043*[# 3]+0.043*[# 4]+ +0.043*[# 6]+ |psi|^2 = 0.348 e = 22.36419 eV psi = 0.625*[# 1]+0.046*[# 3]+0.046*[# 4]+0.046*[# 6]+ |psi|^2 = 0.762 e = 33.14083 eV psi = 0.020*[# 1]+ |psi|^2 = 0.023 k = 0.5000000000 -0.1666666667 0.5000000000 e = 10.79883 eV psi = 0.404*[# 1]+0.186*[# 3]+0.186*[# 4]+0.186*[# 6]+0.014*[# 2]+ +0.014*[# 5]+ |psi|^2 = 0.990 e = 12.83478 eV psi = 0.299*[# 2]+0.299*[# 5]+0.093*[# 1]+0.087*[# 3]+0.087*[# 4]+ +0.087*[# 6]+ |psi|^2 = 0.952 e = 13.02031 eV psi = 0.263*[# 3]+0.263*[# 4]+0.263*[# 6]+0.083*[# 2]+0.083*[# 5]+ +0.031*[# 1]+ |psi|^2 = 0.988 e = 13.73941 eV psi = 0.356*[# 2]+0.356*[# 5]+0.096*[# 3]+0.096*[# 4]+0.096*[# 6]+ |psi|^2 = 1.000 e = 14.91686 eV psi = 0.237*[# 3]+0.237*[# 4]+0.237*[# 6]+0.144*[# 2]+0.144*[# 5]+ |psi|^2 = 0.999 e = 16.86280 eV psi = 0.360*[# 1]+0.116*[# 3]+0.116*[# 4]+0.116*[# 6]+0.103*[# 2]+ +0.103*[# 5]+ |psi|^2 = 0.916 e = 25.03510 eV psi = 0.088*[# 1]+0.013*[# 3]+0.013*[# 4]+0.013*[# 6]+ |psi|^2 = 0.126 e = 32.62386 eV psi = 0.010*[# 1]+ |psi|^2 = 0.013 k = 0.4166666667 -0.0833333333 0.4166666667 e = 9.87658 eV psi = 0.776*[# 1]+0.061*[# 3]+0.061*[# 4]+0.061*[# 6]+0.017*[# 2]+ +0.017*[# 5]+ |psi|^2 = 0.994 e = 12.59119 eV psi = 0.315*[# 3]+0.315*[# 4]+0.315*[# 6]+0.032*[# 1]+0.007*[# 2]+ +0.007*[# 5]+ |psi|^2 = 0.989 e = 13.21152 eV psi = 0.289*[# 2]+0.289*[# 5]+0.137*[# 3]+0.137*[# 4]+0.137*[# 6]+ +0.008*[# 1]+ |psi|^2 = 0.996 e = 13.87361 eV psi = 0.353*[# 2]+0.353*[# 5]+0.098*[# 3]+0.098*[# 4]+0.098*[# 6]+ |psi|^2 = 1.000 e = 14.44638 eV psi = 0.236*[# 3]+0.236*[# 4]+0.236*[# 6]+0.147*[# 2]+0.147*[# 5]+ |psi|^2 = 1.000 e = 15.93122 eV psi = 0.187*[# 2]+0.187*[# 5]+0.169*[# 1]+0.149*[# 3]+0.149*[# 4]+ +0.149*[# 6]+ |psi|^2 = 0.991 e = 28.76771 eV psi = 0.007*[# 1]+0.004*[# 3]+0.004*[# 4]+0.004*[# 6]+ |psi|^2 = 0.017 e = 32.62598 eV psi = 0.003*[# 1]+ |psi|^2 = 0.006 k = 0.3333333333 0.0000000000 0.3333333333 e = 8.59247 eV psi = 0.935*[# 1]+0.017*[# 3]+0.017*[# 4]+0.017*[# 6]+0.007*[# 2]+ +0.007*[# 5]+ |psi|^2 = 0.998 e = 12.66733 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+ |psi|^2 = 0.996 e = 13.46913 eV psi = 0.214*[# 2]+0.214*[# 5]+0.187*[# 3]+0.187*[# 4]+0.187*[# 6]+ +0.009*[# 1]+ |psi|^2 = 0.998 e = 13.97341 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 14.11154 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 1.000 e = 15.27242 eV psi = 0.279*[# 2]+0.279*[# 5]+0.129*[# 3]+0.129*[# 4]+0.129*[# 6]+ +0.054*[# 1]+ |psi|^2 = 0.998 e = 32.70305 eV psi = 0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.004 e = 33.39855 eV psi = 0.001*[# 1]+ |psi|^2 = 0.003 k = 0.0000000000 0.5000000000 0.0000000000 e = 8.84963 eV psi = 0.883*[# 1]+0.057*[# 2]+0.057*[# 5]+ |psi|^2 = 0.997 e = 12.23584 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+ |psi|^2 = 0.997 e = 13.81230 eV psi = 0.442*[# 2]+0.442*[# 5]+0.113*[# 1]+ |psi|^2 = 0.998 e = 14.32369 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 14.32369 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 14.99569 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 0.999 e = 35.79729 eV psi = |psi|^2 = 0.001 e = 35.79729 eV psi = |psi|^2 = 0.001 k = -0.0833333333 0.5833333333 -0.0833333333 e = 9.76264 eV psi = 0.715*[# 1]+0.132*[# 2]+0.132*[# 5]+0.006*[# 3]+0.006*[# 4]+ +0.006*[# 6]+ |psi|^2 = 0.996 e = 12.00697 eV psi = 0.331*[# 3]+0.331*[# 4]+0.331*[# 6]+0.001*[# 2]+0.001*[# 5]+ |psi|^2 = 0.995 e = 13.64879 eV psi = 0.291*[# 2]+0.291*[# 5]+0.153*[# 1]+0.087*[# 3]+0.087*[# 4]+ +0.087*[# 6]+ |psi|^2 = 0.996 e = 14.47923 eV psi = 0.260*[# 3]+0.260*[# 4]+0.260*[# 6]+0.110*[# 2]+0.110*[# 5]+ |psi|^2 = 0.999 e = 14.96629 eV psi = 0.242*[# 3]+0.242*[# 4]+0.242*[# 6]+0.122*[# 1]+0.074*[# 2]+ +0.074*[# 5]+ |psi|^2 = 0.996 e = 15.19349 eV psi = 0.390*[# 2]+0.390*[# 5]+0.073*[# 3]+0.073*[# 4]+0.073*[# 6]+ |psi|^2 = 0.999 e = 32.16456 eV psi = |psi|^2 = 0.004 e = 34.63526 eV psi = 0.001*[# 2]+0.001*[# 5]+ |psi|^2 = 0.004 k = -0.1666666667 0.6666666667 -0.1666666667 e = 10.64505 eV psi = 0.434*[# 1]+0.226*[# 2]+0.226*[# 5]+0.035*[# 3]+0.035*[# 4]+ +0.035*[# 6]+ |psi|^2 = 0.991 e = 11.92348 eV psi = 0.305*[# 3]+0.305*[# 4]+0.305*[# 6]+0.035*[# 2]+0.035*[# 5]+ +0.007*[# 1]+ |psi|^2 = 0.990 e = 13.41836 eV psi = 0.174*[# 3]+0.174*[# 4]+0.174*[# 6]+0.160*[# 2]+0.160*[# 5]+ +0.149*[# 1]+ |psi|^2 = 0.993 e = 14.41020 eV psi = 0.246*[# 2]+0.246*[# 5]+0.169*[# 3]+0.169*[# 4]+0.169*[# 6]+ |psi|^2 = 0.999 e = 15.44391 eV psi = 0.253*[# 2]+0.253*[# 5]+0.164*[# 3]+0.164*[# 4]+0.164*[# 6]+ |psi|^2 = 0.999 e = 16.24618 eV psi = 0.369*[# 1]+0.148*[# 3]+0.148*[# 4]+0.148*[# 6]+0.077*[# 2]+ +0.077*[# 5]+ |psi|^2 = 0.967 e = 28.16818 eV psi = 0.017*[# 1]+0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+ |psi|^2 = 0.027 e = 32.62737 eV psi = 0.009*[# 1]+0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 0.014 k = 0.7500000000 -0.2500000000 0.7500000000 e = 11.23170 eV psi = 0.204*[# 2]+0.204*[# 5]+0.175*[# 1]+0.135*[# 3]+0.135*[# 4]+ +0.135*[# 6]+ |psi|^2 = 0.988 e = 11.99143 eV psi = 0.203*[# 2]+0.203*[# 5]+0.186*[# 3]+0.186*[# 4]+0.186*[# 6]+ +0.005*[# 1]+ |psi|^2 = 0.970 e = 13.27573 eV psi = 0.262*[# 3]+0.262*[# 4]+0.262*[# 6]+0.098*[# 1]+0.047*[# 2]+ +0.047*[# 5]+ |psi|^2 = 0.978 e = 14.27811 eV psi = 0.324*[# 2]+0.324*[# 5]+0.117*[# 3]+0.117*[# 4]+0.117*[# 6]+ |psi|^2 = 0.999 e = 15.51327 eV psi = 0.216*[# 3]+0.216*[# 4]+0.216*[# 6]+0.175*[# 2]+0.175*[# 5]+ |psi|^2 = 0.999 e = 18.16191 eV psi = 0.458*[# 1]+0.070*[# 3]+0.070*[# 4]+0.070*[# 6]+0.042*[# 2]+ +0.042*[# 5]+ |psi|^2 = 0.751 e = 24.58638 eV psi = 0.184*[# 1]+0.013*[# 3]+0.013*[# 4]+0.013*[# 6]+ |psi|^2 = 0.222 e = 30.93564 eV psi = 0.044*[# 1]+0.003*[# 2]+0.003*[# 5]+ |psi|^2 = 0.051 k = 0.6666666667 -0.1666666667 0.6666666667 e = 11.54437 eV psi = 0.271*[# 3]+0.271*[# 4]+0.271*[# 6]+0.095*[# 1]+0.042*[# 2]+ +0.042*[# 5]+ |psi|^2 = 0.994 e = 12.11145 eV psi = 0.435*[# 2]+0.435*[# 5]+0.027*[# 3]+0.027*[# 4]+0.027*[# 6]+ +0.002*[# 1]+ |psi|^2 = 0.951 e = 13.15169 eV psi = 0.314*[# 3]+0.314*[# 4]+0.314*[# 6]+0.008*[# 1]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.954 e = 14.16394 eV psi = 0.382*[# 2]+0.382*[# 5]+0.078*[# 3]+0.078*[# 4]+0.078*[# 6]+ |psi|^2 = 0.999 e = 15.33175 eV psi = 0.255*[# 3]+0.255*[# 4]+0.255*[# 6]+0.117*[# 2]+0.117*[# 5]+ |psi|^2 = 0.999 e = 19.94379 eV psi = 0.018*[# 2]+0.018*[# 5]+0.016*[# 3]+0.016*[# 4]+0.016*[# 6]+ +0.003*[# 1]+ |psi|^2 = 0.087 e = 22.36606 eV psi = 0.741*[# 1]+0.037*[# 3]+0.037*[# 4]+0.037*[# 6]+ |psi|^2 = 0.854 e = 29.67423 eV psi = 0.099*[# 1]+0.003*[# 2]+0.003*[# 5]+ |psi|^2 = 0.108 k = 0.5833333333 -0.0833333333 0.5833333333 e = 11.55646 eV psi = 0.244*[# 3]+0.244*[# 4]+0.244*[# 6]+0.223*[# 1]+0.014*[# 2]+ +0.014*[# 5]+ |psi|^2 = 0.982 e = 12.38131 eV psi = 0.446*[# 2]+0.446*[# 5]+0.024*[# 3]+0.024*[# 4]+0.024*[# 6]+ +0.012*[# 1]+ |psi|^2 = 0.973 e = 12.82001 eV psi = 0.320*[# 3]+0.320*[# 4]+0.320*[# 6]+0.011*[# 1]+0.001*[# 2]+ +0.001*[# 5]+ |psi|^2 = 0.974 e = 14.10003 eV psi = 0.442*[# 2]+0.442*[# 5]+0.038*[# 3]+0.038*[# 4]+0.038*[# 6]+ |psi|^2 = 0.999 e = 14.96504 eV psi = 0.295*[# 3]+0.295*[# 4]+0.295*[# 6]+0.057*[# 2]+0.057*[# 5]+ |psi|^2 = 0.999 e = 18.53567 eV psi = 0.519*[# 1]+0.065*[# 3]+0.065*[# 4]+0.065*[# 6]+0.037*[# 2]+ +0.037*[# 5]+ |psi|^2 = 0.789 e = 24.60903 eV psi = 0.124*[# 1]+0.012*[# 3]+0.012*[# 4]+0.012*[# 6]+ |psi|^2 = 0.160 e = 28.94743 eV psi = 0.082*[# 1]+0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+0.001*[# 2]+ +0.001*[# 5]+ |psi|^2 = 0.091 k = 0.5000000000 0.0000000000 0.5000000000 e = 10.97315 eV psi = 0.547*[# 1]+0.121*[# 3]+0.121*[# 4]+0.121*[# 6]+0.037*[# 2]+ +0.037*[# 5]+ |psi|^2 = 0.984 e = 12.52535 eV psi = 0.329*[# 3]+0.329*[# 4]+0.329*[# 6]+ |psi|^2 = 0.988 e = 12.80785 eV psi = 0.360*[# 2]+0.360*[# 5]+0.087*[# 3]+0.087*[# 4]+0.087*[# 6]+ +0.008*[# 1]+ |psi|^2 = 0.991 e = 14.05699 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 1.000 e = 14.57754 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 17.00155 eV psi = 0.392*[# 1]+0.122*[# 3]+0.122*[# 4]+0.122*[# 6]+0.102*[# 2]+ +0.102*[# 5]+ |psi|^2 = 0.961 e = 27.80591 eV psi = 0.004*[# 3]+0.004*[# 4]+0.004*[# 6]+ |psi|^2 = 0.012 e = 29.17435 eV psi = 0.041*[# 1]+0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+ |psi|^2 = 0.050 k = 0.0000000000 0.6666666667 0.0000000000 e = 10.18426 eV psi = 0.488*[# 1]+0.253*[# 2]+0.253*[# 5]+ |psi|^2 = 0.995 e = 11.72371 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+ |psi|^2 = 0.995 e = 14.39216 eV psi = 0.494*[# 1]+0.243*[# 2]+0.243*[# 5]+ |psi|^2 = 0.981 e = 14.93574 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 14.93574 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 15.20569 eV psi = 0.499*[# 2]+0.499*[# 5]+ |psi|^2 = 0.999 e = 32.04159 eV psi = 0.005*[# 1]+0.003*[# 2]+0.003*[# 5]+ |psi|^2 = 0.011 e = 33.26063 eV psi = |psi|^2 = 0.000 k = -0.0833333333 0.7500000000 -0.0833333333 e = 10.58220 eV psi = 0.360*[# 2]+0.360*[# 5]+0.264*[# 1]+0.003*[# 3]+0.003*[# 4]+ +0.003*[# 6]+ |psi|^2 = 0.993 e = 11.57548 eV psi = 0.330*[# 3]+0.330*[# 4]+0.330*[# 6]+0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 0.994 e = 14.39113 eV psi = 0.238*[# 1]+0.201*[# 3]+0.201*[# 4]+0.201*[# 6]+0.069*[# 2]+ +0.069*[# 5]+ |psi|^2 = 0.978 e = 14.98024 eV psi = 0.247*[# 2]+0.247*[# 5]+0.168*[# 3]+0.168*[# 4]+0.168*[# 6]+ |psi|^2 = 0.999 e = 15.44149 eV psi = 0.252*[# 2]+0.252*[# 5]+0.165*[# 3]+0.165*[# 4]+0.165*[# 6]+ |psi|^2 = 0.999 e = 16.20115 eV psi = 0.434*[# 1]+0.130*[# 3]+0.130*[# 4]+0.130*[# 6]+0.063*[# 2]+ +0.063*[# 5]+ |psi|^2 = 0.951 e = 29.78700 eV psi = 0.015*[# 1]+0.005*[# 2]+0.005*[# 5]+ |psi|^2 = 0.026 e = 30.57265 eV psi = 0.022*[# 1]+ |psi|^2 = 0.027 k = 0.8333333333 -0.1666666667 0.8333333333 e = 10.96331 eV psi = 0.413*[# 2]+0.413*[# 5]+0.115*[# 1]+0.016*[# 3]+0.016*[# 4]+ +0.016*[# 6]+ |psi|^2 = 0.989 e = 11.60011 eV psi = 0.315*[# 3]+0.315*[# 4]+0.315*[# 6]+0.022*[# 2]+0.022*[# 5]+ |psi|^2 = 0.989 e = 14.01703 eV psi = 0.271*[# 3]+0.271*[# 4]+0.271*[# 6]+0.107*[# 1]+0.022*[# 2]+ +0.022*[# 5]+ |psi|^2 = 0.964 e = 14.85128 eV psi = 0.363*[# 2]+0.363*[# 5]+0.091*[# 3]+0.091*[# 4]+0.091*[# 6]+ |psi|^2 = 0.999 e = 15.55316 eV psi = 0.242*[# 3]+0.242*[# 4]+0.242*[# 6]+0.137*[# 2]+0.137*[# 5]+ |psi|^2 = 0.999 e = 18.33424 eV psi = 0.502*[# 1]+0.060*[# 3]+0.060*[# 4]+0.060*[# 6]+0.032*[# 2]+ +0.032*[# 5]+ |psi|^2 = 0.745 e = 26.78835 eV psi = 0.042*[# 1]+0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+ |psi|^2 = 0.052 e = 28.24467 eV psi = 0.179*[# 1]+0.010*[# 2]+0.010*[# 5]+ |psi|^2 = 0.201 k = 0.7500000000 -0.0833333333 0.7500000000 e = 11.36832 eV psi = 0.395*[# 2]+0.395*[# 5]+0.053*[# 3]+0.053*[# 4]+0.053*[# 6]+ +0.040*[# 1]+ |psi|^2 = 0.988 e = 11.75072 eV psi = 0.270*[# 3]+0.270*[# 4]+0.270*[# 6]+0.081*[# 2]+0.081*[# 5]+ +0.006*[# 1]+ |psi|^2 = 0.977 e = 13.55194 eV psi = 0.310*[# 3]+0.310*[# 4]+0.310*[# 6]+0.018*[# 1]+0.003*[# 2]+ +0.003*[# 5]+ |psi|^2 = 0.956 e = 14.67846 eV psi = 0.448*[# 2]+0.448*[# 5]+0.034*[# 3]+0.034*[# 4]+0.034*[# 6]+ |psi|^2 = 0.999 e = 15.40984 eV psi = 0.299*[# 3]+0.299*[# 4]+0.299*[# 6]+0.051*[# 2]+0.051*[# 5]+ |psi|^2 = 0.999 e = 20.88745 eV psi = 0.132*[# 1]+0.021*[# 3]+0.021*[# 4]+0.021*[# 6]+0.008*[# 2]+ +0.008*[# 5]+ |psi|^2 = 0.211 e = 23.57474 eV psi = 0.315*[# 1]+0.011*[# 3]+0.011*[# 4]+0.011*[# 6]+ |psi|^2 = 0.348 e = 27.00592 eV psi = 0.413*[# 1]+0.012*[# 2]+0.012*[# 5]+0.002*[# 3]+0.002*[# 4]+ +0.002*[# 6]+ |psi|^2 = 0.441 k = 0.6666666667 0.0000000000 0.6666666667 e = 11.78361 eV psi = 0.244*[# 3]+0.244*[# 4]+0.244*[# 6]+0.104*[# 2]+0.104*[# 5]+ +0.056*[# 1]+ |psi|^2 = 0.995 e = 11.92677 eV psi = 0.382*[# 2]+0.382*[# 5]+0.058*[# 3]+0.058*[# 4]+0.058*[# 6]+ +0.022*[# 1]+ |psi|^2 = 0.961 e = 13.04706 eV psi = 0.323*[# 3]+0.323*[# 4]+0.323*[# 6]+ |psi|^2 = 0.970 e = 14.44184 eV psi = 0.500*[# 2]+0.500*[# 5]+ |psi|^2 = 0.999 e = 15.14641 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 20.70907 eV psi = 0.479*[# 1]+0.027*[# 3]+0.027*[# 4]+0.027*[# 6]+0.008*[# 2]+ +0.008*[# 5]+ |psi|^2 = 0.576 e = 23.53891 eV psi = 0.010*[# 3]+0.010*[# 4]+0.010*[# 6]+ |psi|^2 = 0.030 e = 26.78499 eV psi = 0.388*[# 1]+0.006*[# 2]+0.006*[# 5]+0.004*[# 3]+0.004*[# 4]+ +0.004*[# 6]+ |psi|^2 = 0.412 k = 0.0000000000 0.8333333333 0.0000000000 e = 10.54243 eV psi = 0.422*[# 2]+0.422*[# 5]+0.150*[# 1]+ |psi|^2 = 0.994 e = 11.36400 eV psi = 0.331*[# 3]+0.331*[# 4]+0.331*[# 6]+ |psi|^2 = 0.994 e = 15.36185 eV psi = 0.499*[# 2]+0.499*[# 5]+ |psi|^2 = 0.999 e = 15.45987 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 15.45987 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 16.39421 eV psi = 0.666*[# 1]+0.064*[# 2]+0.064*[# 5]+ |psi|^2 = 0.794 e = 27.73711 eV psi = 0.124*[# 1]+0.014*[# 2]+0.014*[# 5]+ |psi|^2 = 0.152 e = 31.55107 eV psi = |psi|^2 = 0.000 k = 0.9166666667 -0.0833333333 0.9166666667 e = 10.65634 eV psi = 0.453*[# 2]+0.453*[# 5]+0.084*[# 1]+ |psi|^2 = 0.993 e = 11.33430 eV psi = 0.330*[# 3]+0.330*[# 4]+0.330*[# 6]+ |psi|^2 = 0.993 e = 15.07700 eV psi = 0.301*[# 3]+0.301*[# 4]+0.301*[# 6]+0.035*[# 1]+0.003*[# 2]+ +0.003*[# 5]+ |psi|^2 = 0.944 e = 15.28745 eV psi = 0.459*[# 2]+0.459*[# 5]+0.027*[# 3]+0.027*[# 4]+0.027*[# 6]+ |psi|^2 = 0.999 e = 15.61172 eV psi = 0.306*[# 3]+0.306*[# 4]+0.306*[# 6]+0.040*[# 2]+0.040*[# 5]+ |psi|^2 = 0.999 e = 18.13659 eV psi = 0.306*[# 1]+0.032*[# 3]+0.032*[# 4]+0.032*[# 6]+0.016*[# 2]+ +0.016*[# 5]+ |psi|^2 = 0.434 e = 26.23181 eV psi = 0.413*[# 1]+0.026*[# 2]+0.026*[# 5]+ |psi|^2 = 0.465 e = 29.44146 eV psi = 0.055*[# 1]+ |psi|^2 = 0.058 k = 0.8333333333 0.0000000000 0.8333333333 e = 10.94382 eV psi = 0.461*[# 2]+0.461*[# 5]+0.048*[# 1]+0.007*[# 3]+0.007*[# 4]+ +0.007*[# 6]+ |psi|^2 = 0.990 e = 11.48898 eV psi = 0.323*[# 3]+0.323*[# 4]+0.323*[# 6]+0.010*[# 2]+0.010*[# 5]+ |psi|^2 = 0.989 e = 14.33271 eV psi = 0.310*[# 3]+0.310*[# 4]+0.310*[# 6]+ |psi|^2 = 0.929 e = 15.08040 eV psi = 0.499*[# 2]+0.499*[# 5]+ |psi|^2 = 0.999 e = 15.53628 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 19.98708 eV psi = 0.023*[# 3]+0.023*[# 4]+0.023*[# 6]+ |psi|^2 = 0.070 e = 25.53336 eV psi = 0.290*[# 1]+0.021*[# 2]+0.021*[# 5]+ |psi|^2 = 0.333 e = 26.58290 eV psi = 0.546*[# 1]+0.007*[# 2]+0.007*[# 5]+0.003*[# 3]+0.003*[# 4]+ +0.003*[# 6]+ |psi|^2 = 0.570 k = 0.0000000000 -1.0000000000 0.0000000000 e = 10.54362 eV psi = 0.459*[# 2]+0.459*[# 5]+0.075*[# 1]+ |psi|^2 = 0.994 e = 11.23559 eV psi = 0.331*[# 3]+0.331*[# 4]+0.331*[# 6]+ |psi|^2 = 0.994 e = 15.41953 eV psi = 0.499*[# 2]+0.499*[# 5]+ |psi|^2 = 0.999 e = 15.67276 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 15.67276 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 17.89241 eV psi = |psi|^2 = 0.000 e = 25.55128 eV psi = 0.759*[# 1]+0.040*[# 2]+0.040*[# 5]+ |psi|^2 = 0.838 e = 30.93770 eV psi = |psi|^2 = 0.000 k = -0.1666666667 0.3333333333 0.0000000000 e = 7.61100 eV psi = 0.977*[# 1]+0.005*[# 2]+0.005*[# 5]+0.003*[# 3]+0.003*[# 4]+ +0.003*[# 6]+ |psi|^2 = 0.999 e = 12.76817 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 13.63625 eV psi = 0.237*[# 3]+0.237*[# 4]+0.237*[# 6]+0.143*[# 2]+0.143*[# 5]+ +0.001*[# 1]+ |psi|^2 = 0.999 e = 13.81628 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 1.000 e = 14.22048 eV psi = 0.432*[# 2]+0.432*[# 5]+0.041*[# 3]+0.041*[# 4]+0.041*[# 6]+ +0.013*[# 1]+ |psi|^2 = 1.000 e = 14.85632 eV psi = 0.419*[# 2]+0.419*[# 5]+0.052*[# 3]+0.052*[# 4]+0.052*[# 6]+ +0.007*[# 1]+ |psi|^2 = 0.999 e = 35.47055 eV psi = |psi|^2 = 0.002 e = 36.18514 eV psi = |psi|^2 = 0.001 k = -0.2500000000 0.4166666667 -0.0833333333 e = 8.80628 eV psi = 0.911*[# 1]+0.019*[# 3]+0.019*[# 4]+0.019*[# 6]+0.015*[# 2]+ +0.015*[# 5]+ |psi|^2 = 0.998 e = 12.57537 eV psi = 0.326*[# 3]+0.326*[# 4]+0.326*[# 6]+0.012*[# 1]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.995 e = 13.44297 eV psi = 0.267*[# 2]+0.267*[# 5]+0.155*[# 3]+0.155*[# 4]+0.155*[# 6]+ |psi|^2 = 0.999 e = 13.91285 eV psi = 0.226*[# 3]+0.226*[# 4]+0.226*[# 6]+0.158*[# 2]+0.158*[# 5]+ +0.004*[# 1]+ |psi|^2 = 1.000 e = 14.41820 eV psi = 0.271*[# 2]+0.271*[# 5]+0.144*[# 3]+0.144*[# 4]+0.144*[# 6]+ +0.024*[# 1]+ |psi|^2 = 0.999 e = 15.23475 eV psi = 0.285*[# 2]+0.285*[# 5]+0.127*[# 3]+0.127*[# 4]+0.127*[# 6]+ +0.046*[# 1]+ |psi|^2 = 0.998 e = 31.34544 eV psi = 0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.006 e = 35.08837 eV psi = |psi|^2 = 0.002 k = -0.3333333333 0.5000000000 -0.1666666667 e = 10.05972 eV psi = 0.678*[# 1]+0.086*[# 3]+0.086*[# 4]+0.086*[# 6]+0.028*[# 2]+ +0.028*[# 5]+ |psi|^2 = 0.994 e = 12.61648 eV psi = 0.263*[# 3]+0.263*[# 4]+0.263*[# 6]+0.090*[# 1]+0.050*[# 2]+ +0.050*[# 5]+ |psi|^2 = 0.979 e = 13.18992 eV psi = 0.273*[# 2]+0.273*[# 5]+0.150*[# 3]+0.150*[# 4]+0.150*[# 6]+ +0.003*[# 1]+ |psi|^2 = 0.999 e = 13.79258 eV psi = 0.271*[# 2]+0.271*[# 5]+0.150*[# 3]+0.150*[# 4]+0.150*[# 6]+ +0.007*[# 1]+ |psi|^2 = 0.999 e = 14.89475 eV psi = 0.201*[# 2]+0.201*[# 5]+0.191*[# 3]+0.191*[# 4]+0.191*[# 6]+ +0.024*[# 1]+ |psi|^2 = 0.997 e = 15.84297 eV psi = 0.176*[# 2]+0.176*[# 5]+0.173*[# 1]+0.153*[# 3]+0.153*[# 4]+ +0.153*[# 6]+ |psi|^2 = 0.986 e = 27.26519 eV psi = 0.017*[# 1]+0.006*[# 3]+0.006*[# 4]+0.006*[# 6]+ |psi|^2 = 0.034 e = 34.72117 eV psi = 0.001*[# 1]+ |psi|^2 = 0.003 k = 0.5833333333 -0.4166666667 0.7500000000 e = 10.76950 eV psi = 0.303*[# 1]+0.220*[# 3]+0.220*[# 4]+0.220*[# 6]+0.015*[# 2]+ +0.015*[# 5]+ |psi|^2 = 0.992 e = 12.83217 eV psi = 0.393*[# 2]+0.393*[# 5]+0.043*[# 1]+0.042*[# 3]+0.042*[# 4]+ +0.042*[# 6]+ |psi|^2 = 0.953 e = 13.26306 eV psi = 0.278*[# 3]+0.278*[# 4]+0.278*[# 6]+0.090*[# 1]+0.012*[# 2]+ +0.012*[# 5]+ |psi|^2 = 0.947 e = 13.67017 eV psi = 0.305*[# 2]+0.305*[# 5]+0.126*[# 3]+0.126*[# 4]+0.126*[# 6]+ +0.007*[# 1]+ |psi|^2 = 0.997 e = 15.27564 eV psi = 0.208*[# 3]+0.208*[# 4]+0.208*[# 6]+0.184*[# 2]+0.184*[# 5]+ +0.003*[# 1]+ |psi|^2 = 0.996 e = 16.83790 eV psi = 0.332*[# 1]+0.103*[# 3]+0.103*[# 4]+0.103*[# 6]+0.090*[# 2]+ +0.090*[# 5]+ |psi|^2 = 0.822 e = 23.81235 eV psi = 0.195*[# 1]+0.022*[# 3]+0.022*[# 4]+0.022*[# 6]+ |psi|^2 = 0.262 e = 34.79139 eV psi = 0.003*[# 1]+ |psi|^2 = 0.005 k = 0.5000000000 -0.3333333333 0.6666666667 e = 10.92436 eV psi = 0.276*[# 3]+0.276*[# 4]+0.276*[# 6]+0.167*[# 1]+ |psi|^2 = 0.995 e = 12.79667 eV psi = 0.431*[# 2]+0.431*[# 5]+0.030*[# 3]+0.030*[# 4]+0.030*[# 6]+ |psi|^2 = 0.951 e = 13.56574 eV psi = 0.266*[# 3]+0.266*[# 4]+0.266*[# 6]+0.019*[# 2]+0.019*[# 5]+ |psi|^2 = 0.834 e = 13.60939 eV psi = 0.323*[# 2]+0.323*[# 5]+0.117*[# 3]+0.117*[# 4]+0.117*[# 6]+ |psi|^2 = 0.999 e = 15.40017 eV psi = 0.216*[# 3]+0.216*[# 4]+0.216*[# 6]+0.175*[# 2]+0.175*[# 5]+ |psi|^2 = 0.999 e = 17.72601 eV psi = 0.050*[# 2]+0.050*[# 5]+0.037*[# 3]+0.037*[# 4]+0.037*[# 6]+ |psi|^2 = 0.212 e = 22.05096 eV psi = 0.781*[# 1]+0.057*[# 3]+0.057*[# 4]+0.057*[# 6]+ |psi|^2 = 0.952 e = 35.02228 eV psi = |psi|^2 = 0.002 k = -0.1666666667 0.5000000000 0.0000000000 e = 9.15219 eV psi = 0.865*[# 1]+0.053*[# 2]+0.053*[# 5]+0.009*[# 3]+0.009*[# 4]+ +0.009*[# 6]+ |psi|^2 = 0.997 e = 12.28731 eV psi = 0.332*[# 3]+0.332*[# 4]+0.332*[# 6]+ |psi|^2 = 0.996 e = 13.47713 eV psi = 0.318*[# 2]+0.318*[# 5]+0.110*[# 3]+0.110*[# 4]+0.110*[# 6]+ +0.031*[# 1]+ |psi|^2 = 0.999 e = 14.32695 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 14.45481 eV psi = 0.316*[# 2]+0.316*[# 5]+0.102*[# 3]+0.102*[# 4]+0.102*[# 6]+ +0.061*[# 1]+ |psi|^2 = 0.998 e = 15.22645 eV psi = 0.311*[# 2]+0.311*[# 5]+0.112*[# 3]+0.112*[# 4]+0.112*[# 6]+ +0.039*[# 1]+ |psi|^2 = 0.998 e = 33.20432 eV psi = 0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.004 e = 33.66162 eV psi = |psi|^2 = 0.002 k = -0.2500000000 0.5833333333 -0.0833333333 e = 10.26405 eV psi = 0.656*[# 1]+0.114*[# 2]+0.114*[# 5]+0.037*[# 3]+0.037*[# 4]+ +0.037*[# 6]+ |psi|^2 = 0.993 e = 12.16741 eV psi = 0.317*[# 3]+0.317*[# 4]+0.317*[# 6]+0.015*[# 2]+0.015*[# 5]+ +0.009*[# 1]+ |psi|^2 = 0.992 e = 13.17591 eV psi = 0.265*[# 2]+0.265*[# 5]+0.140*[# 3]+0.140*[# 4]+0.140*[# 6]+ +0.048*[# 1]+ |psi|^2 = 0.998 e = 14.30480 eV psi = 0.242*[# 2]+0.242*[# 5]+0.166*[# 3]+0.166*[# 4]+0.166*[# 6]+ +0.017*[# 1]+ |psi|^2 = 0.999 e = 14.94292 eV psi = 0.211*[# 2]+0.211*[# 5]+0.179*[# 3]+0.179*[# 4]+0.179*[# 6]+ +0.037*[# 1]+ |psi|^2 = 0.997 e = 15.93826 eV psi = 0.215*[# 1]+0.157*[# 3]+0.157*[# 4]+0.157*[# 6]+0.151*[# 2]+ +0.151*[# 5]+ |psi|^2 = 0.989 e = 29.21592 eV psi = 0.007*[# 1]+0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+ |psi|^2 = 0.015 e = 32.91654 eV psi = 0.002*[# 1]+ |psi|^2 = 0.004 k = 0.6666666667 -0.3333333333 0.8333333333 e = 11.08192 eV psi = 0.319*[# 1]+0.138*[# 3]+0.138*[# 4]+0.138*[# 6]+0.128*[# 2]+ +0.128*[# 5]+ |psi|^2 = 0.988 e = 12.23221 eV psi = 0.193*[# 2]+0.193*[# 5]+0.187*[# 3]+0.187*[# 4]+0.187*[# 6]+ +0.024*[# 1]+ |psi|^2 = 0.972 e = 13.01439 eV psi = 0.228*[# 3]+0.228*[# 4]+0.228*[# 6]+0.118*[# 2]+0.118*[# 5]+ +0.072*[# 1]+ |psi|^2 = 0.991 e = 14.15607 eV psi = 0.314*[# 2]+0.314*[# 5]+0.120*[# 3]+0.120*[# 4]+0.120*[# 6]+ +0.009*[# 1]+ |psi|^2 = 0.998 e = 15.32149 eV psi = 0.213*[# 3]+0.213*[# 4]+0.213*[# 6]+0.177*[# 2]+0.177*[# 5]+ +0.004*[# 1]+ |psi|^2 = 0.997 e = 17.26878 eV psi = 0.447*[# 1]+0.102*[# 3]+0.102*[# 4]+0.102*[# 6]+0.069*[# 2]+ +0.069*[# 5]+ |psi|^2 = 0.891 e = 25.44393 eV psi = 0.088*[# 1]+0.010*[# 3]+0.010*[# 4]+0.010*[# 6]+ |psi|^2 = 0.118 e = 32.74924 eV psi = |psi|^2 = 0.003 k = 0.5833333333 -0.2500000000 0.7500000000 e = 11.40767 eV psi = 0.267*[# 3]+0.267*[# 4]+0.267*[# 6]+0.133*[# 1]+0.029*[# 2]+ +0.029*[# 5]+ |psi|^2 = 0.993 e = 12.27697 eV psi = 0.440*[# 2]+0.440*[# 5]+0.023*[# 3]+0.023*[# 4]+0.023*[# 6]+ |psi|^2 = 0.949 e = 13.12041 eV psi = 0.307*[# 3]+0.307*[# 4]+0.307*[# 6]+0.019*[# 1]+0.004*[# 2]+ +0.004*[# 5]+ |psi|^2 = 0.948 e = 14.02463 eV psi = 0.356*[# 2]+0.356*[# 5]+0.095*[# 3]+0.095*[# 4]+0.095*[# 6]+ |psi|^2 = 0.998 e = 15.39354 eV psi = 0.240*[# 3]+0.240*[# 4]+0.240*[# 6]+0.139*[# 2]+0.139*[# 5]+ |psi|^2 = 0.999 e = 19.03889 eV psi = 0.136*[# 1]+0.031*[# 3]+0.031*[# 4]+0.031*[# 6]+0.029*[# 2]+ +0.029*[# 5]+ |psi|^2 = 0.285 e = 22.58539 eV psi = 0.621*[# 1]+0.036*[# 3]+0.036*[# 4]+0.036*[# 6]+ |psi|^2 = 0.731 e = 31.93895 eV psi = 0.026*[# 1]+0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 0.030 k = 0.5000000000 -0.1666666667 0.6666666667 e = 11.42031 eV psi = 0.260*[# 3]+0.260*[# 4]+0.260*[# 6]+0.179*[# 1]+0.015*[# 2]+ +0.015*[# 5]+ |psi|^2 = 0.989 e = 12.38389 eV psi = 0.449*[# 2]+0.449*[# 5]+0.018*[# 3]+0.018*[# 4]+0.018*[# 6]+ +0.009*[# 1]+ |psi|^2 = 0.960 e = 12.99391 eV psi = 0.310*[# 3]+0.310*[# 4]+0.310*[# 6]+0.021*[# 1]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.956 e = 14.00383 eV psi = 0.378*[# 2]+0.378*[# 5]+0.080*[# 3]+0.080*[# 4]+0.080*[# 6]+ +0.001*[# 1]+ |psi|^2 = 0.998 e = 15.21156 eV psi = 0.254*[# 3]+0.254*[# 4]+0.254*[# 6]+0.118*[# 2]+0.118*[# 5]+ |psi|^2 = 0.998 e = 18.58798 eV psi = 0.376*[# 1]+0.052*[# 3]+0.052*[# 4]+0.052*[# 6]+0.036*[# 2]+ +0.036*[# 5]+ |psi|^2 = 0.605 e = 23.37648 eV psi = 0.336*[# 1]+0.024*[# 3]+0.024*[# 4]+0.024*[# 6]+ |psi|^2 = 0.407 e = 31.05773 eV psi = 0.036*[# 1]+ |psi|^2 = 0.040 k = 0.4166666667 -0.0833333333 0.5833333333 e = 11.00211 eV psi = 0.477*[# 1]+0.127*[# 3]+0.127*[# 4]+0.127*[# 6]+0.065*[# 2]+ +0.065*[# 5]+ |psi|^2 = 0.985 e = 12.46358 eV psi = 0.259*[# 3]+0.259*[# 4]+0.259*[# 6]+0.086*[# 2]+0.086*[# 5]+ +0.032*[# 1]+ |psi|^2 = 0.979 e = 12.80743 eV psi = 0.263*[# 2]+0.263*[# 5]+0.155*[# 3]+0.155*[# 4]+0.155*[# 6]+ +0.004*[# 1]+ |psi|^2 = 0.997 e = 14.10048 eV psi = 0.395*[# 2]+0.395*[# 5]+0.065*[# 3]+0.065*[# 4]+0.065*[# 6]+ +0.012*[# 1]+ |psi|^2 = 0.998 e = 14.82681 eV psi = 0.268*[# 3]+0.268*[# 4]+0.268*[# 6]+0.096*[# 2]+0.096*[# 5]+ +0.003*[# 1]+ |psi|^2 = 0.998 e = 17.02783 eV psi = 0.405*[# 1]+0.118*[# 3]+0.118*[# 4]+0.118*[# 6]+0.094*[# 2]+ +0.094*[# 5]+ |psi|^2 = 0.948 e = 26.68104 eV psi = 0.035*[# 1]+0.006*[# 3]+0.006*[# 4]+0.006*[# 6]+ |psi|^2 = 0.054 e = 30.67938 eV psi = 0.017*[# 1]+0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.022 k = 0.3333333333 0.0000000000 0.5000000000 e = 9.96723 eV psi = 0.779*[# 1]+0.044*[# 3]+0.044*[# 4]+0.044*[# 6]+0.041*[# 2]+ +0.041*[# 5]+ |psi|^2 = 0.994 e = 12.41256 eV psi = 0.331*[# 3]+0.331*[# 4]+0.331*[# 6]+ |psi|^2 = 0.993 e = 13.12993 eV psi = 0.308*[# 2]+0.308*[# 5]+0.127*[# 3]+0.127*[# 4]+0.127*[# 6]+ |psi|^2 = 0.997 e = 14.21548 eV psi = 0.470*[# 2]+0.470*[# 5]+0.027*[# 1]+0.010*[# 3]+0.010*[# 4]+ +0.010*[# 6]+ |psi|^2 = 0.998 e = 14.37707 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 15.96168 eV psi = 0.181*[# 1]+0.179*[# 2]+0.179*[# 5]+0.151*[# 3]+0.151*[# 4]+ +0.151*[# 6]+ |psi|^2 = 0.992 e = 30.31399 eV psi = 0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.007 e = 31.15020 eV psi = 0.007*[# 1]+0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.011 k = -0.1666666667 0.6666666667 0.0000000000 e = 10.44604 eV psi = 0.467*[# 1]+0.251*[# 2]+0.251*[# 5]+0.008*[# 3]+0.008*[# 4]+ +0.008*[# 6]+ |psi|^2 = 0.993 e = 11.82191 eV psi = 0.331*[# 3]+0.331*[# 4]+0.331*[# 6]+ |psi|^2 = 0.994 e = 13.64085 eV psi = 0.185*[# 1]+0.173*[# 2]+0.173*[# 5]+0.154*[# 3]+0.154*[# 4]+ +0.154*[# 6]+ |psi|^2 = 0.992 e = 14.93377 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 14.96425 eV psi = 0.454*[# 2]+0.454*[# 5]+0.064*[# 1]+0.008*[# 3]+0.008*[# 4]+ +0.008*[# 6]+ |psi|^2 = 0.995 e = 15.93423 eV psi = 0.259*[# 1]+0.162*[# 3]+0.162*[# 4]+0.162*[# 6]+0.120*[# 2]+ +0.120*[# 5]+ |psi|^2 = 0.985 e = 31.21344 eV psi = 0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.004 e = 31.46107 eV psi = 0.001*[# 1]+ |psi|^2 = 0.004 k = 0.7500000000 -0.2500000000 0.9166666667 e = 11.01666 eV psi = 0.350*[# 2]+0.350*[# 5]+0.220*[# 1]+0.023*[# 3]+0.023*[# 4]+ +0.023*[# 6]+ |psi|^2 = 0.988 e = 11.79952 eV psi = 0.316*[# 3]+0.316*[# 4]+0.316*[# 6]+0.020*[# 2]+0.020*[# 5]+ |psi|^2 = 0.990 e = 13.44591 eV psi = 0.228*[# 3]+0.228*[# 4]+0.228*[# 6]+0.136*[# 1]+0.083*[# 2]+ +0.083*[# 5]+ |psi|^2 = 0.985 e = 14.75568 eV psi = 0.350*[# 2]+0.350*[# 5]+0.095*[# 3]+0.095*[# 4]+0.095*[# 6]+ +0.012*[# 1]+ |psi|^2 = 0.996 e = 15.36482 eV psi = 0.241*[# 3]+0.241*[# 4]+0.241*[# 6]+0.137*[# 2]+0.137*[# 5]+ +0.002*[# 1]+ |psi|^2 = 0.998 e = 17.49155 eV psi = 0.516*[# 1]+0.093*[# 3]+0.093*[# 4]+0.093*[# 6]+0.054*[# 2]+ +0.054*[# 5]+ |psi|^2 = 0.903 e = 27.58105 eV psi = 0.032*[# 1]+0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+ |psi|^2 = 0.042 e = 30.34605 eV psi = 0.025*[# 1]+0.004*[# 2]+0.004*[# 5]+ |psi|^2 = 0.034 k = 0.6666666667 -0.1666666667 0.8333333333 e = 11.44343 eV psi = 0.348*[# 2]+0.348*[# 5]+0.074*[# 1]+0.072*[# 3]+0.072*[# 4]+ +0.072*[# 6]+ |psi|^2 = 0.985 e = 11.88830 eV psi = 0.251*[# 3]+0.251*[# 4]+0.251*[# 6]+0.110*[# 2]+0.110*[# 5]+ +0.002*[# 1]+ |psi|^2 = 0.976 e = 13.22411 eV psi = 0.291*[# 3]+0.291*[# 4]+0.291*[# 6]+0.055*[# 1]+0.022*[# 2]+ +0.022*[# 5]+ |psi|^2 = 0.971 e = 14.53684 eV psi = 0.411*[# 2]+0.411*[# 5]+0.059*[# 3]+0.059*[# 4]+0.059*[# 6]+ |psi|^2 = 0.997 e = 15.45553 eV psi = 0.278*[# 3]+0.278*[# 4]+0.278*[# 6]+0.082*[# 2]+0.082*[# 5]+ |psi|^2 = 0.999 e = 19.74621 eV psi = 0.371*[# 1]+0.036*[# 3]+0.036*[# 4]+0.036*[# 6]+0.021*[# 2]+ +0.021*[# 5]+ |psi|^2 = 0.520 e = 24.17372 eV psi = 0.280*[# 1]+0.012*[# 3]+0.012*[# 4]+0.012*[# 6]+ |psi|^2 = 0.317 e = 28.87112 eV psi = 0.133*[# 1]+0.006*[# 2]+0.006*[# 5]+ |psi|^2 = 0.146 k = 0.5833333333 -0.0833333333 0.7500000000 e = 11.84792 eV psi = 0.202*[# 3]+0.202*[# 4]+0.202*[# 6]+0.171*[# 2]+0.171*[# 5]+ +0.046*[# 1]+ |psi|^2 = 0.994 e = 11.93197 eV psi = 0.315*[# 2]+0.315*[# 5]+0.100*[# 3]+0.100*[# 4]+0.100*[# 6]+ +0.031*[# 1]+ |psi|^2 = 0.962 e = 12.92875 eV psi = 0.322*[# 3]+0.322*[# 4]+0.322*[# 6]+ |psi|^2 = 0.968 e = 14.37542 eV psi = 0.461*[# 2]+0.461*[# 5]+0.025*[# 3]+0.025*[# 4]+0.025*[# 6]+ |psi|^2 = 0.999 e = 15.28370 eV psi = 0.310*[# 3]+0.310*[# 4]+0.310*[# 6]+0.035*[# 2]+0.035*[# 5]+ |psi|^2 = 0.999 e = 20.78066 eV psi = 0.287*[# 1]+0.021*[# 3]+0.021*[# 4]+0.021*[# 6]+0.010*[# 2]+ +0.010*[# 5]+ |psi|^2 = 0.369 e = 23.06362 eV psi = 0.343*[# 1]+0.018*[# 3]+0.018*[# 4]+0.018*[# 6]+0.001*[# 2]+ +0.001*[# 5]+ |psi|^2 = 0.400 e = 27.84743 eV psi = 0.218*[# 1]+0.004*[# 2]+0.004*[# 5]+0.002*[# 3]+0.002*[# 4]+ +0.002*[# 6]+ |psi|^2 = 0.232 k = 0.5000000000 0.0000000000 0.6666666667 e = 11.72834 eV psi = 0.237*[# 1]+0.168*[# 3]+0.168*[# 4]+0.168*[# 6]+0.114*[# 2]+ +0.114*[# 5]+ |psi|^2 = 0.970 e = 12.31688 eV psi = 0.353*[# 2]+0.353*[# 5]+0.094*[# 3]+0.094*[# 4]+0.094*[# 6]+ +0.003*[# 1]+ |psi|^2 = 0.992 e = 12.55448 eV psi = 0.328*[# 3]+0.328*[# 4]+0.328*[# 6]+ |psi|^2 = 0.983 e = 14.29717 eV psi = 0.495*[# 2]+0.495*[# 5]+0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ +0.002*[# 1]+ |psi|^2 = 0.997 e = 14.98401 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 18.67923 eV psi = 0.569*[# 1]+0.065*[# 3]+0.065*[# 4]+0.065*[# 6]+0.035*[# 2]+ +0.035*[# 5]+ |psi|^2 = 0.833 e = 25.75029 eV psi = 0.006*[# 3]+0.006*[# 4]+0.006*[# 6]+ |psi|^2 = 0.018 e = 27.81587 eV psi = 0.154*[# 1]+0.004*[# 3]+0.004*[# 4]+0.004*[# 6]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.168 k = 0.8333333333 -0.1666666667 1.0000000000 e = 10.76697 eV psi = 0.428*[# 2]+0.428*[# 5]+0.132*[# 1]+0.001*[# 3]+0.001*[# 4]+ +0.001*[# 6]+ |psi|^2 = 0.991 e = 11.49223 eV psi = 0.331*[# 3]+0.331*[# 4]+0.331*[# 6]+ |psi|^2 = 0.993 e = 14.38686 eV psi = 0.256*[# 3]+0.256*[# 4]+0.256*[# 6]+0.113*[# 1]+0.043*[# 2]+ +0.043*[# 5]+ |psi|^2 = 0.967 e = 15.22009 eV psi = 0.477*[# 2]+0.477*[# 5]+0.010*[# 1]+0.010*[# 3]+0.010*[# 4]+ +0.010*[# 6]+ |psi|^2 = 0.994 e = 15.45856 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 17.63594 eV psi = 0.527*[# 1]+0.066*[# 3]+0.066*[# 4]+0.066*[# 6]+0.039*[# 2]+ +0.039*[# 5]+ |psi|^2 = 0.802 e = 27.90273 eV psi = 0.110*[# 1]+0.012*[# 2]+0.012*[# 5]+ |psi|^2 = 0.134 e = 29.79303 eV psi = 0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.004 k = 0.7500000000 -0.0833333333 0.9166666667 e = 11.04303 eV psi = 0.459*[# 2]+0.459*[# 5]+0.056*[# 1]+0.005*[# 3]+0.005*[# 4]+ +0.005*[# 6]+ |psi|^2 = 0.988 e = 11.59466 eV psi = 0.325*[# 3]+0.325*[# 4]+0.325*[# 6]+0.007*[# 2]+0.007*[# 5]+ |psi|^2 = 0.989 e = 13.97402 eV psi = 0.299*[# 3]+0.299*[# 4]+0.299*[# 6]+0.031*[# 1]+0.010*[# 2]+ +0.010*[# 5]+ |psi|^2 = 0.949 e = 14.97814 eV psi = 0.478*[# 2]+0.478*[# 5]+0.014*[# 3]+0.014*[# 4]+0.014*[# 6]+ |psi|^2 = 0.997 e = 15.58082 eV psi = 0.323*[# 3]+0.323*[# 4]+0.323*[# 6]+0.015*[# 2]+0.015*[# 5]+ |psi|^2 = 0.999 e = 19.76654 eV psi = 0.265*[# 1]+0.029*[# 3]+0.029*[# 4]+0.029*[# 6]+0.011*[# 2]+ +0.011*[# 5]+ |psi|^2 = 0.375 e = 26.25966 eV psi = 0.065*[# 1]+0.010*[# 2]+0.010*[# 5]+ |psi|^2 = 0.088 e = 26.96151 eV psi = 0.439*[# 1]+0.009*[# 2]+0.009*[# 5]+0.003*[# 3]+0.003*[# 4]+ +0.003*[# 6]+ |psi|^2 = 0.464 k = 0.6666666667 0.0000000000 0.8333333333 e = 11.41965 eV psi = 0.458*[# 2]+0.458*[# 5]+0.019*[# 1]+0.017*[# 3]+0.017*[# 4]+ +0.017*[# 6]+ |psi|^2 = 0.985 e = 11.81474 eV psi = 0.306*[# 3]+0.306*[# 4]+0.306*[# 6]+0.027*[# 2]+0.027*[# 5]+ +0.011*[# 1]+ |psi|^2 = 0.982 e = 13.40265 eV psi = 0.319*[# 3]+0.319*[# 4]+0.319*[# 6]+ |psi|^2 = 0.957 e = 14.69357 eV psi = 0.497*[# 2]+0.497*[# 5]+0.003*[# 1]+ |psi|^2 = 0.999 e = 15.46514 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 21.91207 eV psi = 0.014*[# 3]+0.014*[# 4]+0.014*[# 6]+ |psi|^2 = 0.043 e = 23.49095 eV psi = 0.185*[# 1]+0.008*[# 3]+0.008*[# 4]+0.008*[# 6]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.212 e = 26.26055 eV psi = 0.660*[# 1]+0.015*[# 2]+0.015*[# 5]+0.002*[# 3]+0.002*[# 4]+ +0.002*[# 6]+ |psi|^2 = 0.696 k = -0.1666666667 -1.0000000000 0.0000000000 e = 10.75123 eV psi = 0.465*[# 2]+0.465*[# 5]+0.061*[# 1]+ |psi|^2 = 0.992 e = 11.37391 eV psi = 0.331*[# 3]+0.331*[# 4]+0.331*[# 6]+ |psi|^2 = 0.992 e = 14.76518 eV psi = 0.308*[# 3]+0.308*[# 4]+0.308*[# 6]+ |psi|^2 = 0.925 e = 15.23408 eV psi = 0.499*[# 2]+0.499*[# 5]+ |psi|^2 = 0.999 e = 15.67309 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 19.10696 eV psi = 0.025*[# 3]+0.025*[# 4]+0.025*[# 6]+ |psi|^2 = 0.074 e = 25.62155 eV psi = 0.687*[# 1]+0.034*[# 2]+0.034*[# 5]+ |psi|^2 = 0.754 e = 29.26791 eV psi = 0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+ |psi|^2 = 0.004 k = 0.6666666667 -0.3333333333 1.0000000000 e = 11.11094 eV psi = 0.392*[# 1]+0.228*[# 2]+0.228*[# 5]+0.045*[# 3]+0.045*[# 4]+ +0.045*[# 6]+ |psi|^2 = 0.984 e = 12.11045 eV psi = 0.330*[# 3]+0.330*[# 4]+0.330*[# 6]+ |psi|^2 = 0.991 e = 12.86380 eV psi = 0.209*[# 2]+0.209*[# 5]+0.173*[# 3]+0.173*[# 4]+0.173*[# 6]+ +0.060*[# 1]+ |psi|^2 = 0.996 e = 14.59903 eV psi = 0.483*[# 2]+0.483*[# 5]+0.028*[# 1]+ |psi|^2 = 0.995 e = 14.93782 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 17.18654 eV psi = 0.456*[# 1]+0.113*[# 3]+0.113*[# 4]+0.113*[# 6]+0.077*[# 2]+ +0.077*[# 5]+ |psi|^2 = 0.949 e = 28.35679 eV psi = 0.003*[# 3]+0.003*[# 4]+0.003*[# 6]+ |psi|^2 = 0.009 e = 29.45779 eV psi = 0.036*[# 1]+0.002*[# 3]+0.002*[# 4]+0.002*[# 6]+ |psi|^2 = 0.042 k = 0.5833333333 -0.2500000000 0.9166666667 e = 11.63146 eV psi = 0.298*[# 2]+0.298*[# 5]+0.137*[# 1]+0.081*[# 3]+0.081*[# 4]+ +0.081*[# 6]+ |psi|^2 = 0.976 e = 12.15714 eV psi = 0.245*[# 3]+0.245*[# 4]+0.245*[# 6]+0.122*[# 2]+0.122*[# 5]+ +0.003*[# 1]+ |psi|^2 = 0.982 e = 12.69643 eV psi = 0.271*[# 3]+0.271*[# 4]+0.271*[# 6]+0.058*[# 2]+0.058*[# 5]+ +0.056*[# 1]+ |psi|^2 = 0.986 e = 14.43819 eV psi = 0.443*[# 2]+0.443*[# 5]+0.036*[# 3]+0.036*[# 4]+0.036*[# 6]+ +0.002*[# 1]+ |psi|^2 = 0.995 e = 15.26929 eV psi = 0.302*[# 3]+0.302*[# 4]+0.302*[# 6]+0.045*[# 2]+0.045*[# 5]+ |psi|^2 = 0.998 e = 19.02529 eV psi = 0.531*[# 1]+0.053*[# 3]+0.053*[# 4]+0.053*[# 6]+0.030*[# 2]+ +0.030*[# 5]+ |psi|^2 = 0.751 e = 25.10599 eV psi = 0.127*[# 1]+0.009*[# 3]+0.009*[# 4]+0.009*[# 6]+ |psi|^2 = 0.154 e = 29.30042 eV psi = 0.055*[# 1]+0.001*[# 3]+0.001*[# 4]+0.001*[# 6]+0.001*[# 2]+ +0.001*[# 5]+ |psi|^2 = 0.062 k = 0.5000000000 -0.1666666667 0.8333333333 e = 11.90926 eV psi = 0.483*[# 2]+0.483*[# 5]+ |psi|^2 = 0.967 e = 11.95581 eV psi = 0.301*[# 3]+0.301*[# 4]+0.301*[# 6]+0.077*[# 1]+0.005*[# 2]+ +0.005*[# 5]+ |psi|^2 = 0.989 e = 12.79647 eV psi = 0.321*[# 3]+0.321*[# 4]+0.321*[# 6]+0.001*[# 2]+0.001*[# 5]+ |psi|^2 = 0.965 e = 14.32950 eV psi = 0.442*[# 2]+0.442*[# 5]+0.038*[# 3]+0.038*[# 4]+0.038*[# 6]+ |psi|^2 = 0.998 e = 15.39914 eV psi = 0.299*[# 3]+0.299*[# 4]+0.299*[# 6]+0.049*[# 2]+0.049*[# 5]+ +0.003*[# 1]+ |psi|^2 = 0.999 e = 20.87059 eV psi = 0.013*[# 2]+0.013*[# 5]+0.012*[# 3]+0.012*[# 4]+0.012*[# 6]+ |psi|^2 = 0.061 e = 22.67203 eV psi = 0.710*[# 1]+0.028*[# 3]+0.028*[# 4]+0.028*[# 6]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.799 e = 29.79444 eV psi = 0.002*[# 2]+0.002*[# 5]+ |psi|^2 = 0.007 k = 0.6666666667 -0.1666666667 1.0000000000 e = 11.31606 eV psi = 0.444*[# 2]+0.444*[# 5]+0.077*[# 1]+0.006*[# 3]+0.006*[# 4]+ +0.006*[# 6]+ |psi|^2 = 0.983 e = 11.87972 eV psi = 0.330*[# 3]+0.330*[# 4]+0.330*[# 6]+ |psi|^2 = 0.989 e = 13.22656 eV psi = 0.275*[# 3]+0.275*[# 4]+0.275*[# 6]+0.076*[# 1]+0.037*[# 2]+ +0.037*[# 5]+ |psi|^2 = 0.977 e = 14.78815 eV psi = 0.485*[# 2]+0.485*[# 5]+0.008*[# 3]+0.008*[# 4]+0.008*[# 6]+ |psi|^2 = 0.994 e = 15.45529 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 19.38442 eV psi = 0.520*[# 1]+0.043*[# 3]+0.043*[# 4]+0.043*[# 6]+0.024*[# 2]+ +0.024*[# 5]+ |psi|^2 = 0.696 e = 26.99619 eV psi = 0.004*[# 3]+0.004*[# 4]+0.004*[# 6]+ |psi|^2 = 0.011 e = 28.07600 eV psi = 0.006*[# 1]+0.004*[# 2]+0.004*[# 5]+ |psi|^2 = 0.015 k = 0.5833333333 -0.0833333333 0.9166666667 e = 11.54986 eV psi = 0.481*[# 2]+0.481*[# 5]+0.011*[# 1]+0.003*[# 3]+0.003*[# 4]+ +0.003*[# 6]+ |psi|^2 = 0.980 e = 12.09767 eV psi = 0.322*[# 3]+0.322*[# 4]+0.322*[# 6]+0.009*[# 1]+0.004*[# 2]+ +0.004*[# 5]+ |psi|^2 = 0.983 e = 12.91969 eV psi = 0.315*[# 3]+0.315*[# 4]+0.315*[# 6]+0.015*[# 1]+0.005*[# 2]+ +0.005*[# 5]+ |psi|^2 = 0.970 e = 14.55381 eV psi = 0.487*[# 2]+0.487*[# 5]+0.007*[# 1]+0.006*[# 3]+0.006*[# 4]+ +0.006*[# 6]+ |psi|^2 = 0.998 e = 15.56871 eV psi = 0.330*[# 3]+0.330*[# 4]+0.330*[# 6]+0.004*[# 2]+0.004*[# 5]+ |psi|^2 = 0.999 e = 21.79494 eV psi = 0.180*[# 1]+0.015*[# 3]+0.015*[# 4]+0.015*[# 6]+0.006*[# 2]+ +0.006*[# 5]+ |psi|^2 = 0.238 e = 24.15514 eV psi = 0.209*[# 1]+0.008*[# 3]+0.008*[# 4]+0.008*[# 6]+0.002*[# 2]+ +0.002*[# 5]+ |psi|^2 = 0.237 e = 27.23899 eV psi = 0.215*[# 1]+0.008*[# 2]+0.008*[# 5]+ |psi|^2 = 0.233 k = 0.5000000000 0.0000000000 0.8333333333 e = 11.72411 eV psi = 0.479*[# 2]+0.479*[# 5]+0.008*[# 1]+0.003*[# 3]+0.003*[# 4]+ +0.003*[# 6]+ |psi|^2 = 0.975 e = 12.33993 eV psi = 0.303*[# 3]+0.303*[# 4]+0.303*[# 6]+0.049*[# 1]+0.013*[# 2]+ +0.013*[# 5]+ |psi|^2 = 0.983 e = 12.52776 eV psi = 0.326*[# 3]+0.326*[# 4]+0.326*[# 6]+ |psi|^2 = 0.978 e = 14.46731 eV psi = 0.490*[# 2]+0.490*[# 5]+0.005*[# 1]+0.005*[# 3]+0.005*[# 4]+ +0.005*[# 6]+ |psi|^2 = 0.998 e = 15.45346 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.998 e = 21.29521 eV psi = 0.417*[# 1]+0.021*[# 3]+0.021*[# 4]+0.021*[# 6]+0.010*[# 2]+ +0.010*[# 5]+ |psi|^2 = 0.498 e = 24.30874 eV psi = 0.007*[# 3]+0.007*[# 4]+0.007*[# 6]+ |psi|^2 = 0.022 e = 26.99536 eV psi = 0.331*[# 1]+0.005*[# 2]+0.005*[# 5]+0.002*[# 3]+0.002*[# 4]+ +0.002*[# 6]+ |psi|^2 = 0.349 k = -0.3333333333 -1.0000000000 0.0000000000 e = 11.24643 eV psi = 0.480*[# 2]+0.480*[# 5]+0.025*[# 1]+ |psi|^2 = 0.986 e = 11.79499 eV psi = 0.329*[# 3]+0.329*[# 4]+0.329*[# 6]+ |psi|^2 = 0.988 e = 13.51888 eV psi = 0.317*[# 3]+0.317*[# 4]+0.317*[# 6]+ |psi|^2 = 0.952 e = 14.77812 eV psi = 0.496*[# 2]+0.496*[# 5]+0.007*[# 1]+ |psi|^2 = 0.999 e = 15.67375 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 21.26564 eV psi = 0.016*[# 3]+0.016*[# 4]+0.016*[# 6]+ |psi|^2 = 0.047 e = 25.86700 eV psi = 0.427*[# 1]+0.020*[# 2]+0.020*[# 5]+ |psi|^2 = 0.466 e = 26.49512 eV psi = 0.004*[# 3]+0.004*[# 4]+0.004*[# 6]+ |psi|^2 = 0.011 k = -0.5000000000 -1.0000000000 0.0000000000 e = 11.56046 eV psi = 0.491*[# 2]+0.491*[# 5]+ |psi|^2 = 0.982 e = 12.50920 eV psi = 0.325*[# 3]+0.325*[# 4]+0.325*[# 6]+ |psi|^2 = 0.976 e = 12.50920 eV psi = 0.325*[# 3]+0.325*[# 4]+0.325*[# 6]+ |psi|^2 = 0.976 e = 14.48071 eV psi = 0.491*[# 2]+0.491*[# 5]+0.018*[# 1]+ |psi|^2 = 1.000 e = 15.67407 eV psi = 0.333*[# 3]+0.333*[# 4]+0.333*[# 6]+ |psi|^2 = 0.999 e = 23.76579 eV psi = 0.008*[# 3]+0.008*[# 4]+0.008*[# 6]+ |psi|^2 = 0.023 e = 23.76579 eV psi = 0.008*[# 3]+0.008*[# 4]+0.008*[# 6]+ |psi|^2 = 0.023 e = 26.15230 eV psi = 0.009*[# 2]+0.009*[# 5]+ |psi|^2 = 0.018 Lowdin Charges: Atom # 1: total charge = 9.8849, s = 0.9348, p = 0.0000, d = 8.9501, spin up = 5.2271, s = 0.4610, p = 0.0000, d = 4.7661, spin down = 4.6578, s = 0.4738, p = 0.0000, d = 4.1840, polarization = 0.5693, s = -0.0128, p = 0.0000, d = 0.5821, Spilling Parameter: 0.0115 espresso-5.1/PP/Makefile0000644000175000017500000000071412341372775013276 0ustar mbamba# Makefile for PostProc sinclude ../make.sys default: all all: if test -d src ; then \ ( cd src ; $(MAKE) || exit 1 ) ; fi doc: if test -d Doc ; then \ (cd Doc ; $(MAKE) all || exit 1 ) ; fi doc_clean: if test -d Doc ; then \ (cd Doc ; $(MAKE) clean ) ; fi clean : examples_clean if test -d src ; then \ ( cd src ; $(MAKE) clean ) ; fi examples_clean: if test -d examples ; then \ ( cd examples ; ./clean_all ) ; fi distclean: clean doc_clean espresso-5.1/PP/Doc/0000755000175000017500000000000012341373154012331 5ustar mbambaespresso-5.1/PP/Doc/INPUT_BANDS.html0000644000175000017500000002341712341373154015034 0ustar mbamba

Input File Description

Program: bands.x / PWscf / Quantum Espresso

TABLE OF CONTENTS

INTRODUCTION

&BANDS

prefix | outdir | filband | spin_component | lsigma | lsym | no_overlap | plot_2d | firstk | lastk

INTRODUCTION

Purpose of bands.x:
    Rewrite the bands ordering them using the overlap
    of the wave-functions on neighbor k points
    and calculate properties of each eigen-function.

Presently it can calculate:

   (a) The expectation value of the spin operator on each spinor
       wave-function.
   (b) The symmetry properties of each wavefunction. With this option
       the bands are not ordered according to the overlap.

The input data of this program are read from standard input
or from a file and have the following format:


Structure of the input data:
============================

   &BANDS
     ...
   /
   

Namelist: BANDS

prefix CHARACTER
prefix of files saved by program pw.x
         
outdir CHARACTER
Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise
directory containing the input data,
i.e. the same as in pw.x
         
filband CHARACTER
file "filband" contains the bands
         
spin_component INTEGER
In the lsda case select:

   1 = spin-up
   2 = spin-down
         
lsigma(i), i=1,3 LOGICAL
If true writes a file filband.i with the expectation
values of the spin operator on the spinor wave-functions.
(only in the noncollinear case).
         
lsym LOGICAL
If .true. the bands are classified according to the
irreducible representations of the small group of k. A
file "filband".rap with the same format of "filband"
is written.
         
no_overlap LOGICAL
Default: .false.
If .true. writes the eigenvalues in the output file
without changing their order.
         
plot_2d LOGICAL
Default: .false.
If .true. writes the eigenvalues in the output file
in a 2D format readable by gnuplot. Band ordering is not
changed. Each band is written in a different file called
filband.# with the format:
xk, yk, energy
xk, yk, energy
..  ..  ..
energies are written in eV and xk in units 2\pi/a.
         
firstk, lastk INTEGER
if lsym=.true. makes the symmetry analysis only for k
points between firstk to lastk
         

This file has been created by helpdoc utility.
espresso-5.1/PP/Doc/INPUT_pw2bgw.xml0000644000175000017500000002643012341373154015247 0ustar mbamba Converts the output files produced by pw.x to the input files for BerkeleyGW. You cannot use USPP, PAW, or spinors in a pw.x run for BerkeleyGW. You cannot use "K_POINTS gamma" in a pw.x run for BerkeleyGW. Use "K_POINTS { tpiba | automatic | crystal }" even for the Gamma-point calculation. It is recommended to run a pw.x "bands" calculation with "K_POINTS crystal" and a list of k-points produced by kgrid.x, which is a part of BerkeleyGW package (see BerkeleyGW documentation for details). You can also run a pw.x "nscf" calculation instead of "bands", but in this case pw.x may generate more k-points than provided in the input file of pw.x. If this is the case for your calculation you will get errors in BerkeleyGW. Examples showing how to run BerkeleyGW on top of Quantum ESPRESSO including the input files for pw.x and pw2bgw.x are distributed together with the BerkeleyGW package. Structure of the input data: ============================ &INPUT_PW2BGW ... / MANDATORY prefix of files saved by program pw.x './' the scratch directory where the massive data-files are written 2 1 | 2 1 for real flavor of BerkeleyGW (for systems with inversion symmetry and time-reversal symmetry) or 2 for complex flavor of BerkeleyGW (for systems without inversion symmetry and time-reversal symmetry) 'cubic' 'cubic' | 'hexagonal' type of crystal system, 'cubic' for space groups 1 ... 142 and 195 ... 230 and 'hexagonal' for space groups 143 ... 194. Only used if ibrav = 0 in a pw.x run. Written to BerkeleyGW WFN, RHO, VXC and VKB files but no longer used (except in SAPO code in BerkeleyGW). You can use the default value for all systems. Don't set to different values in different files for the same system or you will get errors in BerkeleyGW. .FALSE. write wavefunctions in G-space to BerkeleyGW WFN file 'WFN' name of BerkeleyGW WFN output file. Not used if wfng_flag = .FALSE. .FALSE. overwrite k-grid parameters in BerkeleyGW WFN file. If pw.x input file contains an explicit list of k-points, the k-grid parameters in the output of pw.x will be set to zero. Since sigma and absorption in BerkeleyGW both need to know the k-grid dimensions, we patch these parameters into BerkeleyGW WFN file 0 number of k-points along b_1 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. 0 number of k-points along b_2 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. 0 number of k-points along b_3 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. 0.0 k-grid offset (0.0 unshifted, 0.5 shifted by half a grid step) along b_1 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. 0.0 k-grid offset (0.0 unshifted, 0.5 shifted by half a grid step) along b_2 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. 0.0 k-grid offset (0.0 unshifted, 0.5 shifted by half a grid step) along b_3 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. .FALSE. overwrite occupations in BerkeleyGW WFN file 0 index of the lowest occupied band (normally = 1). Not used if wfng_occupation = .FALSE. 0 index of the highest occupied band (normally = number of occupied bands). Not used if wfng_occupation = .FALSE. .FALSE. write charge density in G-space to BerkeleyGW RHO file. Only used for the GPP model in sigma code in BerkeleyGW 'RHO' name of BerkeleyGW RHO output file. Only used for the GPP model in sigma code in BerkeleyGW. Not used if rhog_flag = .FALSE. 0 index of the lowest band used for calculation of charge density. This is needed if one wants to exclude semicore states from charge density used for the GPP model in sigma code in BerkeleyGW. Make sure to include the same k-points as in scf calculation. Self-consistent charge density is used if rhog_nvmin = 0 and rhog_nvmax = 0. Not used if rhog_flag = .FALSE. BEWARE: this feature is highly experimental and may not work at all in parallel, with pools, with spins, etc. 0 index of the highest band used for calculation of charge density. See description of rhog_nvmin for more details .FALSE. write local part of exchange-correlation potential in G-space to BerkeleyGW VXC file. Only used in sigma code in BerkeleyGW, it is recommended to use vxc_flag instead 'VXC' name of BerkeleyGW VXC output file. Only used in sigma code in BerkeleyGW, it is recommended to use vxc_flag instead. Not used if vxcg_flag = .FALSE. .FALSE. write Vxc(G = 0) to text file. Only for testing, not required for BerkeleyGW 'vxc0.dat' name of output text file for Vxc(G = 0). Only for testing, not required for BerkeleyGW. Not used if vxc0_flag = .FALSE. .FALSE. write matrix elements of exchange-correlation potential to text file. Only used in sigma code in BerkeleyGW 'vxc.dat' name of output text file for Vxc matrix elements. Only used in sigma code in BerkeleyGW. Not used if vxc_flag = .FALSE. 'g' 'g' | 'r' 'g' to compute matrix elements of exchange-correlation potential in G-space. 'r' to compute matrix elements of the local part of exchange-correlation potential in R-space. It is recommended to use 'g'. Not used if vxc_flag = .FALSE. 0 minimum band index for diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE. 0 maximum band index for diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE. 0 minimum band index for off-diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE. 0 maximum band index for off-diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE. .TRUE. set to .TRUE. to zero out NLCC or to .FALSE. to keep NLCC when computing exchange-correlation potential. This flag has no effect for pseudopotentials without NLCC. BEWARE: setting vxc_zero_rho_core to .FALSE. will produce incorrect results. This functionality is only included for testing purposes and is not meant to be used in a production environment .FALSE. write local part of self-consistent potential in G-space to BerkeleyGW VSC file. Only used in SAPO code in BerkeleyGW 'VSC' name of BerkeleyGW VSC output file. Only used in SAPO code in BerkeleyGW. Not used if vscg_flag = .FALSE. .FALSE. write Kleinman-Bylander projectors in G-space to BerkeleyGW VKB file. Only used in SAPO code in BerkeleyGW 'VKB' name of BerkeleyGW VKB output file. Only used in SAPO code in BerkeleyGW. Not used if vkbg_flag = .FALSE. espresso-5.1/PP/Doc/INPUT_pw2bgw.html0000644000175000017500000011522712341373154015416 0ustar mbamba

Input File Description

Program: pw2bgw.x / PWscf / Quantum Espresso

TABLE OF CONTENTS

INTRODUCTION

&INPUT_PW2BGW

prefix | outdir | real_or_complex | symm_type | wfng_flag | wfng_file | wfng_kgrid | wfng_nk1 | wfng_nk2 | wfng_nk3 | wfng_dk1 | wfng_dk2 | wfng_dk3 | wfng_occupation | wfng_nvmin | wfng_nvmax | rhog_flag | rhog_file | rhog_nvmin | rhog_nvmax | vxcg_flag | vxcg_file | vxc0_flag | vxc0_file | vxc_flag | vxc_file | vxc_integral | vxc_diag_nmin | vxc_diag_nmax | vxc_offdiag_nmin | vxc_offdiag_nmax | vxc_zero_rho_core | vscg_flag | vscg_file | vkbg_flag | vkbg_file

INTRODUCTION

Converts the output files produced by pw.x to the input files for BerkeleyGW.

You cannot use USPP, PAW, or spinors in a pw.x run for BerkeleyGW.

You cannot use "K_POINTS gamma" in a pw.x run for BerkeleyGW.
Use "K_POINTS { tpiba | automatic | crystal }" even for the
Gamma-point calculation.

It is recommended to run a pw.x "bands" calculation with "K_POINTS crystal"
and a list of k-points produced by kgrid.x, which is a part of BerkeleyGW
package (see BerkeleyGW documentation for details).

You can also run a pw.x "nscf" calculation instead of "bands", but in this
case pw.x may generate more k-points than provided in the input file of pw.x.
If this is the case for your calculation you will get errors in BerkeleyGW.

Examples showing how to run BerkeleyGW on top of Quantum ESPRESSO including
the input files for pw.x and pw2bgw.x are distributed together with the
BerkeleyGW package.

Structure of the input data:
============================

   &INPUT_PW2BGW
     ...
   /
   

Namelist: INPUT_PW2BGW

prefix STRING
Status: MANDATORY
prefix of files saved by program pw.x
         
outdir STRING
Default: './'
the scratch directory where the massive data-files are written
         
real_or_complex INTEGER
Default: 2
1 | 2
1 for real flavor of BerkeleyGW (for systems with inversion symmetry and
time-reversal symmetry) or 2 for complex flavor of BerkeleyGW (for systems
without inversion symmetry and time-reversal symmetry)
         
symm_type STRING
Default: 'cubic'
'cubic' | 'hexagonal'
type of crystal system, 'cubic' for space groups 1 ... 142 and 195 ... 230
and 'hexagonal' for space groups 143 ... 194. Only used if ibrav = 0 in a
pw.x run. Written to BerkeleyGW WFN, RHO, VXC and VKB files but no longer
used (except in SAPO code in BerkeleyGW). You can use the default value for
all systems. Don't set to different values in different files for the same
system or you will get errors in BerkeleyGW.
         
wfng_flag LOGICAL
Default: .FALSE.
write wavefunctions in G-space to BerkeleyGW WFN file
         
wfng_file STRING
Default: 'WFN'
name of BerkeleyGW WFN output file. Not used if wfng_flag = .FALSE.
         
wfng_kgrid LOGICAL
Default: .FALSE.
overwrite k-grid parameters in BerkeleyGW WFN file.
If pw.x input file contains an explicit list of k-points,
the k-grid parameters in the output of pw.x will be set to zero.
Since sigma and absorption in BerkeleyGW both need to know the
k-grid dimensions, we patch these parameters into BerkeleyGW WFN file
         
wfng_nk1 INTEGER
Default: 0
number of k-points along b_1 reciprocal lattice vector.
Not used if wfng_kgrid = .FALSE.
         
wfng_nk2 INTEGER
Default: 0
number of k-points along b_2 reciprocal lattice vector.
Not used if wfng_kgrid = .FALSE.
         
wfng_nk3 INTEGER
Default: 0
number of k-points along b_3 reciprocal lattice vector.
Not used if wfng_kgrid = .FALSE.
         
wfng_dk1 REAL
Default: 0.0
k-grid offset (0.0 unshifted, 0.5 shifted by half a grid step)
along b_1 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE.
         
wfng_dk2 REAL
Default: 0.0
k-grid offset (0.0 unshifted, 0.5 shifted by half a grid step)
along b_2 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE.
         
wfng_dk3 REAL
Default: 0.0
k-grid offset (0.0 unshifted, 0.5 shifted by half a grid step)
along b_3 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE.
         
wfng_occupation LOGICAL
Default: .FALSE.
overwrite occupations in BerkeleyGW WFN file
         
wfng_nvmin INTEGER
Default: 0
index of the lowest occupied band (normally = 1).
Not used if wfng_occupation = .FALSE.
         
wfng_nvmax INTEGER
Default: 0
index of the highest occupied band (normally = number of occupied bands).
Not used if wfng_occupation = .FALSE.
         
rhog_flag LOGICAL
Default: .FALSE.
write charge density in G-space to BerkeleyGW RHO file.
Only used for the GPP model in sigma code in BerkeleyGW
         
rhog_file STRING
Default: 'RHO'
name of BerkeleyGW RHO output file. Only used for the GPP model in sigma
code in BerkeleyGW. Not used if rhog_flag = .FALSE.
         
rhog_nvmin INTEGER
Default: 0
index of the lowest band used for calculation of charge density. This is
needed if one wants to exclude semicore states from charge density used
for the GPP model in sigma code in BerkeleyGW. Make sure to include the
same k-points as in scf calculation. Self-consistent charge density is
used if rhog_nvmin = 0 and rhog_nvmax = 0. Not used if rhog_flag = .FALSE.
BEWARE: this feature is highly experimental and may not work at all in
parallel, with pools, with spins, etc.
         
rhog_nvmax INTEGER
Default: 0
index of the highest band used for calculation of charge density. See
description of rhog_nvmin for more details
         
vxcg_flag LOGICAL
Default: .FALSE.
write local part of exchange-correlation potential in G-space to
BerkeleyGW VXC file. Only used in sigma code in BerkeleyGW, it is
recommended to use vxc_flag instead
         
vxcg_file STRING
Default: 'VXC'
name of BerkeleyGW VXC output file. Only used in sigma code in BerkeleyGW,
it is recommended to use vxc_flag instead. Not used if vxcg_flag = .FALSE.
         
vxc0_flag LOGICAL
Default: .FALSE.
write Vxc(G = 0) to text file. Only for testing, not required for BerkeleyGW
         
vxc0_file STRING
Default: 'vxc0.dat'
name of output text file for Vxc(G = 0). Only for testing, not required for
BerkeleyGW. Not used if vxc0_flag = .FALSE.
         
vxc_flag LOGICAL
Default: .FALSE.
write matrix elements of exchange-correlation potential to text file.
Only used in sigma code in BerkeleyGW
         
vxc_file STRING
Default: 'vxc.dat'
name of output text file for Vxc matrix elements. Only used in sigma code
in BerkeleyGW. Not used if vxc_flag = .FALSE.
         
vxc_integral STRING
Default: 'g'
'g' | 'r'
'g' to compute matrix elements of exchange-correlation potential in G-space.
'r' to compute matrix elements of the local part of exchange-correlation
potential in R-space. It is recommended to use 'g'. Not used if vxc_flag = .FALSE.
         
vxc_diag_nmin INTEGER
Default: 0
minimum band index for diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE.
         
vxc_diag_nmax INTEGER
Default: 0
maximum band index for diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE.
         
vxc_offdiag_nmin INTEGER
Default: 0
minimum band index for off-diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE.
         
vxc_offdiag_nmax INTEGER
Default: 0
maximum band index for off-diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE.
         
vxc_zero_rho_core LOGICAL
Default: .TRUE.
set to .TRUE. to zero out NLCC or to .FALSE. to keep NLCC when computing
exchange-correlation potential. This flag has no effect for pseudopotentials
without NLCC. BEWARE: setting vxc_zero_rho_core to .FALSE. will produce
incorrect results. This functionality is only included for testing purposes
and is not meant to be used in a production environment
         
vscg_flag LOGICAL
Default: .FALSE.
write local part of self-consistent potential in G-space to
BerkeleyGW VSC file. Only used in SAPO code in BerkeleyGW
         
vscg_file STRING
Default: 'VSC'
name of BerkeleyGW VSC output file. Only used in SAPO code in BerkeleyGW.
Not used if vscg_flag = .FALSE.
         
vkbg_flag LOGICAL
Default: .FALSE.
write Kleinman-Bylander projectors in G-space to BerkeleyGW VKB file.
Only used in SAPO code in BerkeleyGW
         
vkbg_file STRING
Default: 'VKB'
name of BerkeleyGW VKB output file. Only used in SAPO code in BerkeleyGW.
Not used if vkbg_flag = .FALSE.
         
This file has been created by helpdoc utility.
espresso-5.1/PP/Doc/INPUT_BANDS.def0000644000175000017500000000535512341372773014635 0ustar mbambainput_description -distribution {Quantum Espresso} -package PWscf -program bands.x { toc {} intro { Purpose of bands.x: Rewrite the bands ordering them using the overlap of the wave-functions on neighbor k points and calculate properties of each eigen-function. Presently it can calculate: (a) The expectation value of the spin operator on each spinor wave-function. (b) The symmetry properties of each wavefunction. With this option the bands are not ordered according to the overlap. The input data of this program are read from standard input or from a file and have the following format: Structure of the input data: ============================ &BANDS ... / } namelist BANDS { var prefix -type CHARACTER { info { prefix of files saved by program pw.x } } var outdir -type CHARACTER { info { directory containing the input data, i.e. the same as in pw.x } default { value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise } } var filband -type CHARACTER { info { file "filband" contains the bands } } var spin_component -type INTEGER { info { In the lsda case select: 1 = spin-up 2 = spin-down } } dimension lsigma -start 1 -end 3 -type LOGICAL { info { If true writes a file filband.i with the expectation values of the spin operator on the spinor wave-functions. (only in the noncollinear case). } } var lsym -type LOGICAL { info { If .true. the bands are classified according to the irreducible representations of the small group of k. A file "filband".rap with the same format of "filband" is written. } } var no_overlap -type LOGICAL { default { .false. } info { If .true. writes the eigenvalues in the output file without changing their order. } } var plot_2d -type LOGICAL { default { .false. } info { If .true. writes the eigenvalues in the output file in a 2D format readable by gnuplot. Band ordering is not changed. Each band is written in a different file called filband.# with the format: xk, yk, energy xk, yk, energy .. .. .. energies are written in eV and xk in units 2\pi/a. } } vargroup -type INTEGER { var firstk var lastk info { if lsym=.true. makes the symmetry analysis only for k points between firstk to lastk } } } } espresso-5.1/PP/Doc/INPUT_PP.xml0000644000175000017500000003443012341373153014354 0ustar mbamba Purpose of pp.x: data analysis and plotting. The code performs two steps: (1) reads the output file produced by pw.x, extract and calculate the desired quantity (rho, V, ...) (2) writes the desired quantity to file in a suitable format for various types of plotting and various plotting programs The input data of this program is read from standard input or from file and has the following format: NAMELIST &INPUTPP containing the variables for step (1), followed by NAMELIST &PLOT containing the variables for step (2) The two steps can be performed independently. In order to perform only step (2), leave namelist &inputpp blank. In order to perform only step (1), do not specify namelist &plot Intermediate results from step 1 can be saved to disk (see variable "filplot" in &inputpp) and later read in step 2. Since the file with intermediate results is formatted, it can be safely transferred to a different machine. This also allows plotting of a linear combination (for instance, charge differences) by saving two intermediate files and combining them (see variables "weight" and "filepp" in &plot) All output quantities are in ATOMIC (RYDBERG) UNITS unless otherwise explicitly specified. prefix of files saved by program pw.x directory containing the input data, i.e. the same as in pw.x value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise file "filplot" contains the quantity selected by plot_num (can be saved for further processing) selects what to save in filplot: 0 = electron (pseudo-)charge density 1 = total potential V_bare + V_H + V_xc 2 = local ionic potential V_bare 3 = local density of states at e_fermi (number of states per volume, in bohr^3, per energy unit, in Ry) 4 = local density of electronic entropy 5 = STM images Tersoff and Hamann, PRB 31, 805 (1985) 6 = spin polarization (rho(up)-rho(down)) 7 = contribution of a selected wavefunction to the (pseudo-)charge density. For norm-conserving PPs, |psi|^2 (psi=selected wavefunction). Noncollinear case: contribution of the given state to the charge or to the magnetization along the direction indicated by spin_component (0 = charge, 1 = x, 2 = y, 3 = z ) 8 = electron localization function (ELF) 9 = charge density minus superposition of atomic densities 10 = integrated local density of states (ILDOS) from emin to emax (emin, emax in eV) if emax is not specified, emax=E_fermi 11 = the V_bare + V_H potential 12 = the sawtooth electric field potential (if present) 13 = the noncollinear magnetization. 17 = all-electron valence charge density can be performed for PAW calculations only requires a very dense real-space grid! 18 = The exchange and correlation magnetic field in the noncollinear case 19 = Reduced density gradient (J. Chem. Theory Comput. 7, 625 (2011)) Set the isosurface between 0.3 and 0.6 to plot the non-covalent interactions (see also plot_num = 20) 20 = Product of the electron density (charge) and the second eigenvalue of the electron-density Hessian matrix; used to colorize the RDG plot (plot_num = 19) 0 0=total charge (default value), 1=spin up charge, 2=spin down charge. 0 0=spin averaged potential (default value), 1=spin up potential, 2=spin down potential. the bias of the sample (Ry) in stm images Unpolarized and noncollinear case: k-point to be plotted LSDA: k-point and spin polarization to be plotted (spin-up and spin-down correspond to different k-points!) band to be plotted if true and k point is Gamma, plot |psi|^2 sign(psi) Noncollinear case only: plot the contribution of the given state to the charge or to the magnetization along the direction indicated by spin_component: 0 = charge (default), 1 = x, 2 = y, 3 = z. Ignored in unpolarized or LSDA case lower energy boundary (in eV) upper energy boundary (in eV), i.e. compute ILDOS from emin to emax for LSDA case only: plot the contribution to ILDOS of 0 = spin-up + spin-down (default) 1 = spin-up only 2 = spin-down only 0 0=absolute value (default value) 1=x component of the magnetization 2=y component of the magnetization 3=z component of the magnetization 0 0=total charge (default value), 1=spin up charge, 2=spin down charge. 1 OPTIONAL the number of data files filepp(1)=filplot nfile = 1 : file containing the quantity to be plotted nfile > 1 : see "weight" weight(1)=1.0 weighing factors: assuming that rho(i) is the quantity read from filepp(i), the quantity that will be plotted is: weight(1)*rho(1) + weight(2)*rho(2) + weight(3)*rho(3)+... BEWARE: atomic coordinates are read from the first file; if their number is different for different files, the first file must have the largest number of atoms 0 1D plot of the spherical average 1 1D plot 2 2D plot 3 3D plot 4 2D polar plot on a sphere (ignored on 1D plot) 0 format suitable for gnuplot (1D) 1 format suitable for contour.x (2D) 2 format suitable for plotrho (2D) 3 format suitable for XCRYSDEN (2D or user-supplied 3D region) 4 format suitable for gOpenMol (3D) (formatted: convert to unformatted *.plt) 5 format suitable for XCRYSDEN (3D, using entire FFT grid) 6 format as gaussian cube file (3D) (can be read by many programs) 7 format suitable for gnuplot (2D) x, y, f(x,y) standard output name of the file to which the plot is written "fourier" type of interpolation: "fourier" or "bspline" (EXPERIMENTAL!) 3D vector which determines the plotting line 3D vector, origin of the line !!! x0 and e1 are in alat units !!! number of points in the line: rho(i) = rho( x0 + e1 * (i-1)/(nx-1) ), i=1, nx 3D vectors which determine the plotting plane (must be orthogonal) 3D vector, origin of the plane !!! x0, e1, e2 are in alat units !!! Number of points in the plane: rho(i,j) = rho( x0 + e1 * (i-1)/(nx-1) + e2 * (j-1)/(ny-1) ), i=1,nx ; j=1,ny 3D vectors which determine the plotting parallelepiped (if present, must be orthogonal) e1, e2, and e3 are in alat units ! 3D vector, origin of the parallelepiped x0 is in alat units ! Number of points in the parallelepiped: rho(i,j,k) = rho( x0 + e1 * (i-1)/nx + e2 * (j-1)/ny + e3 * (k-1)/nz ), i = 1, nx ; j = 1, ny ; k = 1, nz - If output_format = 3 (XCRYSDEN), the above variables are used to determine the grid to plot. - If output_format = 5 (XCRYSDEN), the above variables are ignored, the entire FFT grid is written in the XCRYSDEN format - works for any crystal axis (VERY FAST) - If e1, e2, e3, x0 are present, e1 e2 e3 are parallel to xyz and parallel to crystal axis, a subset of the FFT grid that approximately covers the parallelepiped defined by e1, e2, e3, x0, is written (presently only if output_format = 4, i.e. gopenmol format) - works only if the crystal axis are parallel to xyz - Otherwise, the required 3D grid is generated from the Fourier components (may be VERY slow) Radius of the sphere (alat units), centered at (0,0,0) Number of points in the polar plane: phi(i) = 2 pi * (i - 1)/(nx-1), i=1, nx theta(j) = pi * (j - 1)/(ny-1), j=1, ny espresso-5.1/PP/Doc/INPUT_PP.def0000644000175000017500000003106512341372773014322 0ustar mbambainput_description -distribution {Quantum Espresso} -package PWscf -program pp.x { toc {} intro { Purpose of pp.x: data analysis and plotting. The code performs two steps: (1) reads the output file produced by pw.x, extract and calculate the desired quantity (rho, V, ...) (2) writes the desired quantity to file in a suitable format for various types of plotting and various plotting programs The input data of this program is read from standard input or from file and has the following format: NAMELIST &INPUTPP containing the variables for step (1), followed by NAMELIST &PLOT containing the variables for step (2) The two steps can be performed independently. In order to perform only step (2), leave namelist &inputpp blank. In order to perform only step (1), do not specify namelist &plot Intermediate results from step 1 can be saved to disk (see variable "filplot" in &inputpp) and later read in step 2. Since the file with intermediate results is formatted, it can be safely transferred to a different machine. This also allows plotting of a linear combination (for instance, charge differences) by saving two intermediate files and combining them (see variables "weight" and "filepp" in &plot) All output quantities are in ATOMIC (RYDBERG) UNITS unless otherwise explicitly specified. } namelist INPUTPP { var prefix -type CHARATER { info { prefix of files saved by program pw.x } } var outdir -type CHARACTER { info { directory containing the input data, i.e. the same as in pw.x } default { value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise } } var filplot -type CHARACTER { info { file "filplot" contains the quantity selected by plot_num (can be saved for further processing) } } var plot_num -type INTEGER { info { selects what to save in filplot: 0 = electron (pseudo-)charge density 1 = total potential V_bare + V_H + V_xc 2 = local ionic potential V_bare 3 = local density of states at e_fermi (number of states per volume, in bohr^3, per energy unit, in Ry) 4 = local density of electronic entropy 5 = STM images Tersoff and Hamann, PRB 31, 805 (1985) 6 = spin polarization (rho(up)-rho(down)) 7 = contribution of a selected wavefunction to the (pseudo-)charge density. For norm-conserving PPs, |psi|^2 (psi=selected wavefunction). Noncollinear case: contribution of the given state to the charge or to the magnetization along the direction indicated by spin_component (0 = charge, 1 = x, 2 = y, 3 = z ) 8 = electron localization function (ELF) 9 = charge density minus superposition of atomic densities 10 = integrated local density of states (ILDOS) from emin to emax (emin, emax in eV) if emax is not specified, emax=E_fermi 11 = the V_bare + V_H potential 12 = the sawtooth electric field potential (if present) 13 = the noncollinear magnetization. 17 = all-electron valence charge density can be performed for PAW calculations only requires a very dense real-space grid! 18 = The exchange and correlation magnetic field in the noncollinear case 19 = Reduced density gradient (J. Chem. Theory Comput. 7, 625 (2011)) Set the isosurface between 0.3 and 0.6 to plot the non-covalent interactions (see also plot_num = 20) 20 = Product of the electron density (charge) and the second eigenvalue of the electron-density Hessian matrix; used to colorize the RDG plot (plot_num = 19) } } choose { when -test "plot_num=0" { label { Options for total charge (plot_num=0): } var spin_component -type INTEGER { default 0 info { 0=total charge (default value), 1=spin up charge, 2=spin down charge. } } } elsewhen -test "plot_num=1" { label { Options for total potential (plot_num=1): } var spin_component -type INTEGER { default 0 info { 0=spin averaged potential (default value), 1=spin up potential, 2=spin down potential. } } } elsewhen -test "plot_num=5" { label { Options for STM images (plot_num=5): } var sample_bias -type REAL { info { the bias of the sample (Ry) in stm images } } } elsewhen -test "plot_num=7" { label { Options for |psi|^2 (plot_num=7): } var kpoint -type INTEGER { info { Unpolarized and noncollinear case: k-point to be plotted LSDA: k-point and spin polarization to be plotted (spin-up and spin-down correspond to different k-points!) } } var kband -type INTEGER { info { band to be plotted } } var lsign -type LOGICAL { info { if true and k point is Gamma, plot |psi|^2 sign(psi) } } var spin_component -type INTEGER { info { Noncollinear case only: plot the contribution of the given state to the charge or to the magnetization along the direction indicated by spin_component: 0 = charge (default), 1 = x, 2 = y, 3 = z. Ignored in unpolarized or LSDA case } } } elsewhen -test "plot_num=10" { label { Options for ILDOS (plot_num=10): } var emin -type REAL { info { lower energy boundary (in eV) } } var emax -type REAL { info { upper energy boundary (in eV), i.e. compute ILDOS from emin to emax } } var spin_component -type INTEGER { info { for LSDA case only: plot the contribution to ILDOS of 0 = spin-up + spin-down (default) 1 = spin-up only 2 = spin-down only } } } elsewhen -test "plot_num=13" { label { Options for noncollinear magnetization (plot_num=13): } var spin_component -type INTEGER { default 0 info { 0=absolute value (default value) 1=x component of the magnetization 2=y component of the magnetization 3=z component of the magnetization } } } elsewhen -test "plot_num=17" { label { Options for reconstructed charge density (plot_num=17): } var spin_component -type INTEGER { default 0 info { 0=total charge (default value), 1=spin up charge, 2=spin down charge. } } } #message { # Unfinished and untested option: # # plot_num = 14, 15, 16 polarisation along x, y, z respectively. # epsilon = macroscopic dielectric constant #} } } # END of namelist &INPUTPP # namelist PLOT namelist PLOT { var nfile -type INTEGER { default 1 status OPTIONAL info { the number of data files } } group { dimension filepp -start 1 -end nfile -type CHARACTER { default { filepp(1)=filplot } info { nfile = 1 : file containing the quantity to be plotted nfile > 1 : see "weight" } } dimension weight -start 1 -end nfile -type REAL { default { weight(1)=1.0 } info { weighing factors: assuming that rho(i) is the quantity read from filepp(i), the quantity that will be plotted is: weight(1)*rho(1) + weight(2)*rho(2) + weight(3)*rho(3)+... } } message { BEWARE: atomic coordinates are read from the first file; if their number is different for different files, the first file must have the largest number of atoms } } var iflag -type INTEGER { info { 0 1D plot of the spherical average 1 1D plot 2 2D plot 3 3D plot 4 2D polar plot on a sphere } } var output_format -type INTEGER { info { (ignored on 1D plot) 0 format suitable for gnuplot (1D) 1 format suitable for contour.x (2D) 2 format suitable for plotrho (2D) 3 format suitable for XCRYSDEN (2D or user-supplied 3D region) 4 format suitable for gOpenMol (3D) (formatted: convert to unformatted *.plt) 5 format suitable for XCRYSDEN (3D, using entire FFT grid) 6 format as gaussian cube file (3D) (can be read by many programs) 7 format suitable for gnuplot (2D) x, y, f(x,y) } } var fileout -type CHARACTER { default { standard output } info { name of the file to which the plot is written } } var interpolation -type CHARACTER { default { "fourier" } info { type of interpolation: "fourier" or "bspline" (EXPERIMENTAL!) } } choose { when -test "iflag = 0 or 1" { label { the following variables are REQUIRED: } dimension e1 -start 1 -end 3 -type REAL { info { 3D vector which determines the plotting line } } dimension x0 -start 1 -end 3 -type REAL { info { 3D vector, origin of the line } } message { !!! x0 and e1 are in alat units !!! } var nx -type INTEGER { info { number of points in the line: rho(i) = rho( x0 + e1 * (i-1)/(nx-1) ), i=1, nx } } } elsewhen -test "iflag = 2" { label { the following variables are REQUIRED: } dimensiongroup -start 1 -end 3 -type REAL { dimension e1 dimension e2 info { 3D vectors which determine the plotting plane (must be orthogonal) } } dimension x0 -start 1 -end 3 -type REAL { info { 3D vector, origin of the plane } } message { !!! x0, e1, e2 are in alat units !!! } vargroup -type INTEGER { var nx var ny info { Number of points in the plane: rho(i,j) = rho( x0 + e1 * (i-1)/(nx-1) + e2 * (j-1)/(ny-1) ), i=1,nx ; j=1,ny } } } elsewhen -test "iflag = 3" { label { the following variables are OPTIONAL: } dimensiongroup -start 1 -end 3 -type REAL { dimension e1 dimension e2 dimension e3 info { 3D vectors which determine the plotting parallelepiped (if present, must be orthogonal) e1, e2, and e3 are in alat units ! } } dimension x0 -start 1 -end 3 -type REAL { info { 3D vector, origin of the parallelepiped x0 is in alat units ! } } vargroup -type INTEGER { var nx var ny var nz info { Number of points in the parallelepiped: rho(i,j,k) = rho( x0 + e1 * (i-1)/nx + e2 * (j-1)/ny + e3 * (k-1)/nz ), i = 1, nx ; j = 1, ny ; k = 1, nz - If output_format = 3 (XCRYSDEN), the above variables are used to determine the grid to plot. - If output_format = 5 (XCRYSDEN), the above variables are ignored, the entire FFT grid is written in the XCRYSDEN format - works for any crystal axis (VERY FAST) - If e1, e2, e3, x0 are present, e1 e2 e3 are parallel to xyz and parallel to crystal axis, a subset of the FFT grid that approximately covers the parallelepiped defined by e1, e2, e3, x0, is written (presently only if output_format = 4, i.e. gopenmol format) - works only if the crystal axis are parallel to xyz - Otherwise, the required 3D grid is generated from the Fourier components (may be VERY slow) } } } elsewhen -test "iflag = 4" { label { the following variables are REQUIRED: } var radius -type REAL { info { Radius of the sphere (alat units), centered at (0,0,0) } } vargroup -type INTEGER { var nx var ny info { Number of points in the polar plane: phi(i) = 2 pi * (i - 1)/(nx-1), i=1, nx theta(j) = pi * (j - 1)/(ny-1), j=1, ny } } } } } # END of namelist PLOT } espresso-5.1/PP/Doc/INPUT_PP.html0000644000175000017500000011520512341373153014520 0ustar mbamba

Input File Description

Program: pp.x / PWscf / Quantum Espresso

TABLE OF CONTENTS

INTRODUCTION

&INPUTPP

prefix | outdir | filplot | plot_num | spin_component | spin_component | sample_bias | kpoint | kband | lsign | spin_component | emin | emax | spin_component | spin_component | spin_component

&PLOT

nfile | filepp | weight | iflag | output_format | fileout | interpolation | e1 | x0 | nx | e1 | e2 | x0 | nx | ny | e1 | e2 | e3 | x0 | nx | ny | nz | radius | nx | ny

INTRODUCTION

Purpose of pp.x: data analysis and plotting.

The code performs two steps:
(1) reads the output file produced by pw.x, extract and calculate
    the desired quantity (rho, V, ...)
(2) writes the desired quantity to file in a suitable format for
    various types of plotting and various plotting programs

The input data of this program is read from standard input
or from file and has the following format:

NAMELIST &INPUTPP
   containing the variables for step (1), followed by

NAMELIST &PLOT
   containing the variables for step (2)

The two steps can be performed independently. In order to perform
only step (2), leave namelist &inputpp blank. In order to perform
only step (1), do not specify namelist &plot

Intermediate results from step 1 can be saved to disk (see
variable "filplot" in &inputpp) and later read in step 2.
Since the file with intermediate results is formatted, it
can be safely transferred to a different machine. This
also allows plotting of a linear combination (for instance,
charge differences) by saving two intermediate files and
combining them (see variables "weight" and "filepp" in &plot)

All output quantities are in ATOMIC (RYDBERG) UNITS unless
otherwise explicitly specified.
   

Namelist: INPUTPP

prefix CHARATER
prefix of files saved by program pw.x
         
outdir CHARACTER
Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise
directory containing the input data,
i.e. the same as in pw.x
         
filplot CHARACTER
file "filplot" contains the quantity selected by plot_num
(can be saved for further processing)
         
plot_num INTEGER
selects what to save in filplot:

   0  = electron (pseudo-)charge density

   1  = total potential V_bare + V_H + V_xc

   2  = local ionic potential V_bare

   3  = local density of states at e_fermi
        (number of states per volume, in bohr^3,
         per energy unit, in Ry)

   4  = local density of electronic entropy

   5  = STM images
        Tersoff and Hamann, PRB 31, 805 (1985)

   6  = spin polarization (rho(up)-rho(down))

   7  = contribution of a selected wavefunction to the
        (pseudo-)charge density. For norm-conserving PPs,
        |psi|^2 (psi=selected wavefunction). Noncollinear case:
        contribution of the given state to the charge or
        to the magnetization along the direction indicated
        by spin_component (0 = charge, 1 = x, 2 = y, 3 = z )

   8  = electron localization function (ELF)

   9  = charge density minus superposition of atomic densities

   10 = integrated local density of states (ILDOS)
        from emin to emax (emin, emax in eV)
        if emax is not specified, emax=E_fermi

   11 = the V_bare + V_H potential

   12 = the sawtooth electric field potential (if present)

   13 = the noncollinear magnetization.

   17 = all-electron valence charge density
        can be performed for PAW calculations only
        requires a very dense real-space grid!

   18 = The exchange and correlation magnetic field in
        the noncollinear case

   19 = Reduced density gradient
        (J. Chem. Theory Comput. 7, 625 (2011))
        Set the isosurface between 0.3 and 0.6 to plot the
        non-covalent interactions (see also plot_num = 20)

   20 = Product of the electron density (charge) and the second
        eigenvalue of the electron-density Hessian matrix;
        used to colorize the RDG plot (plot_num = 19)
         
IF plot_num=0 :
Options for total charge (plot_num=0):

spin_component INTEGER
Default: 0
0=total charge (default value),
1=spin up charge,
2=spin down charge.
               
ELSEIF plot_num=1 :
Options for total potential (plot_num=1):

spin_component INTEGER
Default: 0
0=spin averaged potential (default value),
1=spin up potential,
2=spin down potential.
               
ELSEIF plot_num=5 :
Options for STM images (plot_num=5):

sample_bias REAL
the bias of the sample (Ry) in stm images
               
ELSEIF plot_num=7 :
Options for |psi|^2 (plot_num=7):

kpoint INTEGER
Unpolarized and noncollinear case:   k-point to be plotted
LSDA:  k-point and spin polarization to be plotted
(spin-up and spin-down correspond to different k-points!)
               
kband INTEGER
band to be plotted
               
lsign LOGICAL
if true and k point is Gamma, plot |psi|^2 sign(psi)
               
spin_component INTEGER
Noncollinear case only:
plot the contribution of the given state to the charge
or to the magnetization along the direction indicated
by spin_component:
   0 = charge (default),
   1 = x,
   2 = y,
   3 = z.

Ignored in unpolarized or LSDA case
               
ELSEIF plot_num=10 :
Options for ILDOS (plot_num=10):

emin REAL
lower energy boundary (in eV)
               
emax REAL
upper energy boundary (in eV), i.e. compute
ILDOS from emin to emax
               
spin_component INTEGER
for LSDA case only: plot the contribution to ILDOS of
0 = spin-up + spin-down (default)
1 = spin-up   only
2 = spin-down only
               
ELSEIF plot_num=13 :
Options for noncollinear magnetization (plot_num=13):

spin_component INTEGER
Default: 0
0=absolute value (default value)
1=x component of the magnetization
2=y component of the magnetization
3=z component of the magnetization
               
ELSEIF plot_num=17 :
Options for reconstructed charge density (plot_num=17):

spin_component INTEGER
Default: 0
0=total charge (default value),
1=spin up charge,
2=spin down charge.
               

Namelist: PLOT

nfile INTEGER
Default: 1
Status: OPTIONAL
the number of data files
         
filepp(i), i=1,nfile CHARACTER
Default: filepp(1)=filplot
nfile = 1 : file containing the quantity to be plotted
nfile > 1 : see "weight"
            
weight(i), i=1,nfile REAL
Default: weight(1)=1.0
weighing factors: assuming that rho(i) is the quantity
read from filepp(i), the quantity that will be plotted is:
weight(1)*rho(1) + weight(2)*rho(2) + weight(3)*rho(3)+...
            
BEWARE: atomic coordinates are read from the first file;
        if their number is different for different files,
        the first file must have the largest number of atoms
         
iflag INTEGER
0 1D plot of the spherical average
1 1D plot
2 2D plot
3 3D plot
4 2D polar plot on a sphere
         
output_format INTEGER
(ignored on 1D plot)
0  format suitable for gnuplot   (1D)
1  format suitable for contour.x (2D)
2  format suitable for plotrho   (2D)
3  format suitable for XCRYSDEN  (2D or user-supplied 3D region)
4  format suitable for gOpenMol  (3D)
   (formatted: convert to unformatted *.plt)
5  format suitable for XCRYSDEN  (3D, using entire FFT grid)
6  format as gaussian cube file  (3D)
   (can be read by many programs)
7  format suitable for gnuplot   (2D) x, y, f(x,y)
         
fileout CHARACTER
Default: standard output
name of the file to which the plot is written
         
interpolation CHARACTER
Default: "fourier"
type of interpolation: "fourier" or "bspline" (EXPERIMENTAL!)
         
IF iflag = 0 or 1 :
the following variables are REQUIRED:

e1(i), i=1,3 REAL
3D vector which determines the plotting line
               
x0(i), i=1,3 REAL
3D vector, origin of the line
               
!!! x0 and e1 are in alat units !!!
            
nx INTEGER
number of points in the line:
rho(i) = rho( x0 + e1 * (i-1)/(nx-1) ), i=1, nx
               
ELSEIF iflag = 2 :
the following variables are REQUIRED:

e1(i), e2(i), i=1,3 REAL
3D vectors which determine the plotting plane
(must be orthogonal)
               
x0(i), i=1,3 REAL
3D vector, origin of the plane
               
!!! x0, e1, e2 are in alat units !!!
            
nx, ny INTEGER
Number of points in the plane:

rho(i,j) = rho( x0 + e1 * (i-1)/(nx-1)
               + e2 * (j-1)/(ny-1) ), i=1,nx ; j=1,ny
               
ELSEIF iflag = 3 :
the following variables are OPTIONAL:

e1(i), e2(i), e3(i), i=1,3 REAL
3D vectors which determine the plotting parallelepiped
(if present, must be orthogonal)

e1, e2, and e3 are in alat units !
               
x0(i), i=1,3 REAL
3D vector, origin of the parallelepiped

x0 is in alat units !
               
nx, ny, nz INTEGER
Number of points in the parallelepiped:

rho(i,j,k) = rho( x0 + e1 * (i-1)/nx
                     + e2 * (j-1)/ny
                     + e3 * (k-1)/nz ),
                i = 1, nx ; j = 1, ny ; k = 1, nz

- If output_format = 3 (XCRYSDEN), the above variables
are used to determine the grid to plot.

- If output_format = 5 (XCRYSDEN), the above variables
are ignored, the entire FFT grid is written in the
XCRYSDEN format - works for any crystal axis (VERY FAST)

- If e1, e2, e3, x0 are present, e1 e2 e3 are parallel
to xyz and parallel to crystal axis, a subset of the
FFT grid that approximately covers the parallelepiped
defined by e1, e2, e3, x0, is written (presently only
if output_format = 4, i.e. gopenmol format) - works only
if the crystal axis are parallel to xyz

- Otherwise, the required 3D grid is generated from the
Fourier components (may be VERY slow)
               
ELSEIF iflag = 4 :
the following variables are REQUIRED:

radius REAL
Radius of the sphere (alat units), centered at (0,0,0)
               
nx, ny INTEGER
Number of points in the polar plane:

    phi(i)   = 2 pi * (i - 1)/(nx-1), i=1, nx
    theta(j) =   pi * (j - 1)/(ny-1), j=1, ny
               
This file has been created by helpdoc utility.
espresso-5.1/PP/Doc/INPUT_PROJWFC.html0000644000175000017500000005471512341373153015323 0ustar mbamba

Input File Description

Program: projwfc.x / PWscf / Quantum Espresso

TABLE OF CONTENTS

INTRODUCTION

&PROJWFC

prefix | outdir | ngauss | degauss | Emin | Emax | DeltaE | lsym | filpdos | filproj | lwrite_overlaps | lbinary_data | kresolveddos | tdosinboxes | n_proj_boxes | irmin | irmax | plotboxes

Notes

Format of output files
Orbital Order
Defining boxes for the Local DOS(E)
Important notices

INTRODUCTION

Purpose of projwfc.x:
    projects wavefunctions onto orthogonalized atomic wavefunctions,
    calculates Lowdin charges, spilling parameter, projected DOS
    (separated into up and down components for lSDA)
    alternatively, computes the local DOS(E), integrated in volumes
    given in input

Structure of the input data:
============================

   &PROJWFC
     ...
   /
   

Namelist: PROJWFC

prefix CHARACTER
Default: 'pwscf'
Prefix of input file produced by pw.x
(wavefunctions are needed).
         
outdir CHARACTER
Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise
directory containing the input data,
i.e. the same as in pw.x
         
ngauss INTEGER
Default: 0
Type of gaussian broadening:
    0 ... Simple Gaussian (default)
    1 ... Methfessel-Paxton of order 1
   -1 ... Marzari-Vanderbilt "cold smearing"
  -99 ... Fermi-Dirac function
         
degauss REAL
Default: 0.0
 gaussian broadening, Ry (not eV!)
         
Emin, Emax REAL
Default: (band extrema)
 min & max energy (eV) for DOS plot
         
DeltaE REAL
 energy grid step (eV)
         
lsym LOGICAL
Default: .true.
if true the projections are symmetrized
         
filpdos CHARACTER
Default: (value of prefix variable)
 prefix for output files containing PDOS(E)
         
filproj CHARACTER
Default: (standard output)
file containing the projections
         
lwrite_overlaps LOGICAL
Default: .false.
if .true., the overlap matrix of the atomic orbitals
prior to orthogonalization is written to the atomic_proj datafile.
         
lbinary_data LOGICAL
Default: .false.
if .true., the atomic_proj datafile is written in binary fmt.
         
kresolveddos LOGICAL
Default: .false.
if .true. the k-resolved DOS is computed: not summed over
all k-points but written as a function of the k-point index.
In this case all k-point weights are set to unity
         
tdosinboxes LOGICAL
Default: .false.
if .true. compute the local DOS integrated in volumes
volumes are defined as boxes with edges parallel
to the unit cell, containing the points of the
(charge density) FFT grid included within
irmin and irmax, in the three dimensions:
from irmin(j,n) to irmax(j,n) for j=1,2,3
(n=1,n_proj_boxes)
         
n_proj_boxes INTEGER
Default: 1
number of boxes where the local DOS is computed
         
irmin INTEGER
Default: 1
first point to be included in the box
         
irmax INTEGER
Default: 0
last point to be included in the box
         
plotboxes LOGICAL
Default: .false.
if .true., the boxes are written in output as
as xsf files with 3D datagrids, valued 1.0
inside the box volume and 0 outside
(visualize them as isosurfaces with isovalue 0.5)
         

Notes

Format of output files

Projections are written to standard output,
and also to file filproj if given as input.

The total DOS and the sum of projected DOS are written to file
"filpdos".pdos_tot.

* The format for the collinear, spin-unpolarized case and the
  non-collinear, spin-orbit case is:
      E DOS(E) PDOS(E)
      ...

* The format for the collinear, spin-polarized case is:
      E DOSup(E) DOSdw(E)  PDOSup(E) PDOSdw(E)
      ...

* The format for the non-collinear, non spin-orbit case is:
      E DOS(E) PDOSup(E) PDOSdw(E)
      ...

In the collinear case and the non-collinear, non spin-orbit case
projected DOS are written to file "filpdos".pdos_atm#N(X)_wfc#M(l),
where N = atom number , X = atom symbol, M = wfc number, l=s,p,d,f
(one file per atomic wavefunction found in the pseudopotential file)

* The format for the collinear, spin-unpolarized case is:
      E LDOS(E) PDOS_1(E) ... PDOS_2l+1(E)
      ...

where LDOS = \sum m=1,2l+1 PDOS_m(E)
and PDOS_m(E) = projected DOS on atomic wfc with component m

* The format for the collinear, spin-polarized case and the
  non-collinear, non spin-orbit case is as above with
  two components for both  LDOS(E) and PDOS_m(E)

In the non-collinear, spin-orbit case (i.e. if there is at least one
fully relativistic pseudopotential) wavefunctions are projected
onto eigenstates of the total angular-momentum.
Projected DOS are written to file "filpdos".pdos_atm#N(X)_wfc#M(l_j),
where N = atom number , X = atom symbol, M = wfc number, l=s,p,d,f
and j is the value of the total angular momentum.
In this case the format is:
    E LDOS(E) PDOS_1(E) ... PDOS_2j+1(E)
    ...

If kresolveddos=.true., the k-point index is prepended
to the formats above, e.g. (collinear, spin-unpolarized case)
    ik E DOS(E) PDOS(E)

All DOS(E) are in states/eV plotted vs E in eV
         

Orbital Order

Order of m-components for each l in the output:

    1, cos(phi), sin(phi), cos(2*phi), sin(2*phi), .., cos(l*phi), sin(l*phi)

where phi is the polar angle:x=r cos(theta)cos(phi), y=r cos(theta)sin(phi)
This is determined in file flib/ylmr2.f90 that calculates spherical harmonics.

for l=1:
  1 pz     (m=0)
  2 px     (real combination of m=+/-1 with cosine)
  3 py     (real combination of m=+/-1 with sine)

for l=2:
  1 dz2    (m=0)
  2 dzx    (real combination of m=+/-1 with cosine)
  3 dzy    (real combination of m=+/-1 with sine)
  4 dx2-y2 (real combination of m=+/-2 with cosine)
  5 dxy    (real combination of m=+/-2 with sine)
         

Defining boxes for the Local DOS(E)

Boxes are specified using the variables irmin and irmax:
FFT grid points are included from irmin(j,n) to irmax(j,n)
for j=1,2,3 and n=1,...,n_proj_boxes
irmin and irmax range from 1 to nr1 or nr2 or nr3
Values larger than nr1/2/3 or smaller than 1 are folded
to the unit cell.
If irmax<irmin FFT grid points are included from 1 to irmax
and from irmin to nr1/2/3
         

Important notices

* The tetrahedron method is presently not implemented.

* Gaussian broadening is used in all cases:

    - if degauss is set to some value in namelist &projwfc, that value
      (and the optional value for ngauss) is used

    - if degauss is NOT set to any value in namelist &projwfc, the
      value of degauss and of ngauss are read from the input data
      file (they will be the same used in the pw.x calculations)

    - if degauss is NOT set to any value in namelist &projwfc, AND
      there is no value of degauss and of ngauss in the input data
      file, degauss=DeltaE (in Ry) and ngauss=0 will be used


Obsolete variables, ignored:
    io_choice
    smoothing
         
This file has been created by helpdoc utility.
espresso-5.1/PP/Doc/INPUT_pw_export.html0000644000175000017500000002320112341373154016223 0ustar mbamba

Input File Description

Program: pw_export.x / PWscf / Quantum Espresso

TABLE OF CONTENTS

INTRODUCTION

&INPUTPP

prefix | outdir | pseudo_dir | psfile | single_file | ascii | pp_file | uspp_spsi

INTRODUCTION

Structure of the input data:
============================

   &INPUTPP
     ...
   /
   

Namelist: INPUTPP

prefix STRING
Status: MANDATORY
the first part of the name of all the file written by the code
should be equal to the value given in the main calculations.
         
outdir STRING
Default: "./"
the scratch directory where the massive data-files are written
         
pseudo_dir STRING
Default: "./"
directory containing pseudopotential (PP) files
         
psfile(i), i=1,ntyp STRING
Default: ""
files containing i-th pseudopotential, where i=1, N_type.
PP numbering must follow the ordering defined in the input of pw.x
         
single_file LOGICAL
Default: .FALSE.
if .TRUE. one-file output is produced
         
ascii LOGICAL
Default: .FALSE.
if .TRUE. output files are textual, otherwise they are partly binary.
         
pp_file STRING
Default: "prefix.export/"
Output file.

If it is omitted, a directory "prefix.export/" is created
in outdir and some output files are put there. Anyway all the data
are accessible through the "prefix.export/index.xml" file which
contains implicit pointers to all the other files in the
export directory. If reading is done by the IOTK library
all data appear to be in index.xml even if physically it is not.
         
uspp_spsi LOGICAL
Default: .FALSE.
when using USPP,  if set .TRUE. the code writes S | psi >
and | psi > vectors separately in the output file.
         
This file has been created by helpdoc utility.
espresso-5.1/PP/Doc/user_guide.log0000644000175000017500000003317412341373153015176 0ustar mbambaThis is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=pdflatex 2013.10.8) 28 MAY 2014 16:44 entering extended mode restricted \write18 enabled. %&-line parsing enabled. **user_guide.tex (./user_guide.tex LaTeX2e <2011/06/27> Babel and hyphenation patterns for english, dumylang, nohyphenation, it alian, loaded. (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo File: size12.clo 2007/10/19 v1.4h Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf/tex/latex/html/html.sty (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty Package: hyperref 2012/05/13 v6.82q Hypertext links for LaTeX (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty Package: hobsub-hyperref 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty Package: hobsub-generic 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO) Package: hobsub 2012/05/28 v1.13 Construct package bundles (HO) Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO) Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO) Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO) Package ifluatex Info: LuaTeX not detected. Package: ifvtex 2010/03/01 v1.5 Detect VTeX and its facilities (HO) Package ifvtex Info: VTeX not detected. Package: intcalc 2007/09/27 v1.1 Expandable calculations with integers (HO) Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO) Package ifpdf Info: pdfTeX in PDF mode is detected. Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO) Package etexcmds Info: Could not find \expanded. (etexcmds) That can mean that you are not using pdfTeX 1.50 or (etexcmds) that some package has redefined \expanded. (etexcmds) In the latter case, load this package earlier. Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO) Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO) Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO ) Package pdftexcmds Info: LuaTeX not detected. Package pdftexcmds Info: \pdf@primitive is available. Package pdftexcmds Info: \pdf@ifprimitive is available. Package pdftexcmds Info: \pdfdraftmode found. Package: pdfescape 2011/11/25 v1.13 Implements pdfTeX's escape features (HO) Package: bigintcalc 2012/04/08 v1.3 Expandable calculations on big integers (HO ) Package: bitset 2011/01/30 v1.1 Handle bit-vector datatype (HO) Package: uniquecounter 2011/01/30 v1.2 Provide unlimited unique counter (HO) ) Package hobsub Info: Skipping package `hobsub' (already loaded). Package: letltxmacro 2010/09/02 v1.4 Let assignment for LaTeX macros (HO) Package: hopatch 2012/05/28 v1.2 Wrapper for package hooks (HO) Package: xcolor-patch 2011/01/30 xcolor patch Package: atveryend 2011/06/30 v1.8 Hooks at the very end of document (HO) Package atveryend Info: \enddocument detected (standard20110627). Package: atbegshi 2011/10/05 v1.16 At begin shipout hook (HO) Package: refcount 2011/10/16 v3.4 Data extraction from label references (HO) Package: hycolor 2011/01/30 v1.7 Color options for hyperref/bookmark (HO) ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) (/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO) ) \@linkdim=\dimen103 \Hy@linkcounter=\count87 \Hy@pagecounter=\count88 (/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2012/05/13 v6.82q Hyperref: PDFDocEncoding definition (HO) ) \Hy@SavedSpaceFactor=\count89 (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive ) Package hyperref Info: Hyper figures OFF on input line 4062. Package hyperref Info: Link nesting OFF on input line 4067. Package hyperref Info: Hyper index ON on input line 4070. Package hyperref Info: Plain pages OFF on input line 4077. Package hyperref Info: Backreferencing OFF on input line 4082. Package hyperref Info: Implicit mode ON; LaTeX internals redefined. Package hyperref Info: Bookmarks ON on input line 4300. \c@Hy@tempcnt=\count90 (/usr/share/texlive/texmf-dist/tex/latex/url/url.sty \Urlmuskip=\muskip10 Package: url 2006/04/12 ver 3.3 Verb mode for urls, etc. ) LaTeX Info: Redefining \url on input line 4653. \Fld@menulength=\count91 \Field@Width=\dimen104 \Fld@charsize=\dimen105 Package hyperref Info: Hyper figures OFF on input line 5773. Package hyperref Info: Link nesting OFF on input line 5778. Package hyperref Info: Hyper index ON on input line 5781. Package hyperref Info: backreferencing OFF on input line 5788. Package hyperref Info: Link coloring OFF on input line 5793. Package hyperref Info: Link coloring with OCG OFF on input line 5798. Package hyperref Info: PDF/A mode OFF on input line 5803. LaTeX Info: Redefining \ref on input line 5843. LaTeX Info: Redefining \pageref on input line 5847. \Hy@abspage=\count92 \c@Item=\count93 \c@Hfootnote=\count94 ) Package hyperref Message: Driver: hpdftex. (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def File: hpdftex.def 2012/05/13 v6.82q Hyperref driver for pdfTeX \Fld@listcount=\count95 \c@bookmark@seq@number=\count96 (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty Package: rerunfilecheck 2011/04/15 v1.7 Rerun checks for auxiliary files (HO) Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 82. ) \Hy@SectionHShift=\skip43 ) Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count97 \c@lchapter=\count98 \c@chapter=\count99 \c@lsection=\count100 \c@lsubsection=\count101 \c@lsubsubsection=\count102 \c@lparagraph=\count103 \c@lsubparagraph=\count104 \c@lsubsubparagraph=\count105 \ptrfile=\write3 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live ) Package graphics Info: Driver file: pdftex.def on input line 91. (/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX \Gread@gobject=\count106 )) \Gin@req@height=\dimen106 \Gin@req@width=\dimen107 ) (./user_guide.aux) \openout1 = `user_guide.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. \AtBeginShipoutBox=\box26 Package hyperref Info: Link coloring OFF on input line 28. (/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty Package: nameref 2010/04/30 v2.40 Cross-referencing by name of section (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/gettitlestring.sty Package: gettitlestring 2010/12/03 v1.4 Cleanup title references (HO) ) \c@section@level=\count107 ) LaTeX Info: Redefining \ref on input line 28. LaTeX Info: Redefining \pageref on input line 28. LaTeX Info: Redefining \nameref on input line 28. (./user_guide.out) (./user_guide.out) \@outlinefile=\write4 \openout4 = `user_guide.out'. (/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii [Loading MPS to PDF converter (version 2006.09.02).] \scratchcounter=\count108 \scratchdimen=\dimen108 \scratchbox=\box27 \nofMPsegments=\count109 \nofMParguments=\count110 \everyMPshowfont=\toks15 \MPscratchCnt=\count111 \MPscratchDim=\dimen109 \MPnumerator=\count112 \makeMPintoPDFobject=\count113 \everyMPtoPDFconversion=\toks16 ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO) ) Package grfext Info: Graphics extension search list: (grfext) [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE G,.JBIG2,.JB2,.eps] (grfext) \AppendGraphicsExtensions on input line 452. (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv e )) <../../Doc/quantum_espresso.pdf, id=48, 532.99126pt x 181.67876pt> File: ../../Doc/quantum_espresso.pdf Graphic file (type pdf) Package pdftex.def Info: ../../Doc/quantum_espresso.pdf used on input line 61. (pdftex.def) Requested size: 142.26378pt x 48.49115pt. <../../Doc/democritos.pdf, id=49, 262.9825pt x 76.285pt> File: ../../Doc/democritos.pdf Graphic file (type pdf) Package pdftex.def Info: ../../Doc/democritos.pdf used on input line 61. (pdftex.def) Requested size: 170.71652pt x 49.52296pt. LaTeX Font Info: External font `cmex10' loaded for size (Font) <14.4> on input line 61. LaTeX Font Info: External font `cmex10' loaded for size (Font) <7> on input line 61. (./user_guide.toc LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 5. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 5. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 5. ) \tf@toc=\write5 \openout5 = `user_guide.toc'. [1 {/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map} <../../Doc/quantum_espresso .pdf> <../../Doc/democritos.pdf>] LaTeX Font Info: Try loading font information for OMS+cmr on input line 93. (/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 93. [2] Overfull \hbox (79.14261pt too wide) in paragraph at lines 179--186 \OT1/cmr/m/n/12 not data files pro-duced by \OT1/cmtt/m/n/12 pw.x\OT1/cmr/m/n/1 2 . Ex-am-ples of us-age of \OT1/cmtt/m/n/12 average.x \OT1/cmr/m/n/12 can be f ound in \OT1/cmtt/m/n/12 examples/WorcFct[]example/ [] [3] [4] Overfull \hbox (2.59775pt too wide) in paragraph at lines 284--288 \OT1/cmtt/m/n/12 examples/CLS[]IS[]example/ \OT1/cmr/m/n/12 for an ex-am-ple, a nd \OT1/cmtt/m/n/12 examples/CLS[]FS[]example/ \OT1/cmr/m/n/12 for the corrspon d- [] Package atveryend Info: Empty hook `BeforeClearDocument' on input line 312. [5] Package atveryend Info: Empty hook `AfterLastShipout' on input line 312. (./user_guide.aux) Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 312. Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 312. Package rerunfilecheck Info: File `user_guide.out' has not changed. (rerunfilecheck) Checksum: B2BEAABF47CB5FFC29D07E180F704704;685. Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 312. ) Here is how much of TeX's memory you used: 5304 strings out of 495048 77747 string characters out of 3181554 159921 words of memory out of 3000000 8445 multiletter control sequences out of 15000+200000 10105 words of font info for 36 fonts, out of 3000000 for 9000 14 hyphenation exceptions out of 8191 36i,5n,28p,223b,335s stack positions out of 5000i,500n,10000p,200000b,50000s Output written on user_guide.pdf (5 pages, 181264 bytes). PDF statistics: 155 PDF objects out of 1000 (max. 8388607) 130 compressed objects within 2 object streams 26 named destinations out of 1000 (max. 500000) 99 words of extra memory for PDF output out of 10000 (max. 10000000) espresso-5.1/PP/Doc/INPUT_PP.txt0000644000175000017500000005022112341373153014367 0ustar mbamba*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: pp.x / PWscf / Quantum Espresso ------------------------------------------------------------------------ Purpose of pp.x: data analysis and plotting. The code performs two steps: (1) reads the output file produced by pw.x, extract and calculate the desired quantity (rho, V, ...) (2) writes the desired quantity to file in a suitable format for various types of plotting and various plotting programs The input data of this program is read from standard input or from file and has the following format: NAMELIST &INPUTPP containing the variables for step (1), followed by NAMELIST &PLOT containing the variables for step (2) The two steps can be performed independently. In order to perform only step (2), leave namelist &inputpp blank. In order to perform only step (1), do not specify namelist &plot Intermediate results from step 1 can be saved to disk (see variable "filplot" in &inputpp) and later read in step 2. Since the file with intermediate results is formatted, it can be safely transferred to a different machine. This also allows plotting of a linear combination (for instance, charge differences) by saving two intermediate files and combining them (see variables "weight" and "filepp" in &plot) All output quantities are in ATOMIC (RYDBERG) UNITS unless otherwise explicitly specified. ======================================================================== NAMELIST: &INPUTPP +-------------------------------------------------------------------- Variable: prefix Type: CHARATER Description: prefix of files saved by program pw.x +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: CHARACTER Description: directory containing the input data, i.e. the same as in pw.x Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: filplot Type: CHARACTER Description: file "filplot" contains the quantity selected by plot_num (can be saved for further processing) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: plot_num Type: INTEGER Description: selects what to save in filplot: 0 = electron (pseudo-)charge density 1 = total potential V_bare + V_H + V_xc 2 = local ionic potential V_bare 3 = local density of states at e_fermi (number of states per volume, in bohr^3, per energy unit, in Ry) 4 = local density of electronic entropy 5 = STM images Tersoff and Hamann, PRB 31, 805 (1985) 6 = spin polarization (rho(up)-rho(down)) 7 = contribution of a selected wavefunction to the (pseudo-)charge density. For norm-conserving PPs, |psi|^2 (psi=selected wavefunction). Noncollinear case: contribution of the given state to the charge or to the magnetization along the direction indicated by spin_component (0 = charge, 1 = x, 2 = y, 3 = z ) 8 = electron localization function (ELF) 9 = charge density minus superposition of atomic densities 10 = integrated local density of states (ILDOS) from emin to emax (emin, emax in eV) if emax is not specified, emax=E_fermi 11 = the V_bare + V_H potential 12 = the sawtooth electric field potential (if present) 13 = the noncollinear magnetization. 17 = all-electron valence charge density can be performed for PAW calculations only requires a very dense real-space grid! 18 = The exchange and correlation magnetic field in the noncollinear case 19 = Reduced density gradient (J. Chem. Theory Comput. 7, 625 (2011)) Set the isosurface between 0.3 and 0.6 to plot the non-covalent interactions (see also plot_num = 20) 20 = Product of the electron density (charge) and the second eigenvalue of the electron-density Hessian matrix; used to colorize the RDG plot (plot_num = 19) +-------------------------------------------------------------------- ________________________________________________________________________ * IF plot_num=0 : OPTIONS FOR TOTAL CHARGE (PLOT_NUM=0): +-------------------------------------------------------------------- Variable: spin_component Type: INTEGER Default: 0 Description: 0=total charge (default value), 1=spin up charge, 2=spin down charge. +-------------------------------------------------------------------- * ELSE IF plot_num=1 : OPTIONS FOR TOTAL POTENTIAL (PLOT_NUM=1): +-------------------------------------------------------------------- Variable: spin_component Type: INTEGER Default: 0 Description: 0=spin averaged potential (default value), 1=spin up potential, 2=spin down potential. +-------------------------------------------------------------------- * ELSE IF plot_num=5 : OPTIONS FOR STM IMAGES (PLOT_NUM=5): +-------------------------------------------------------------------- Variable: sample_bias Type: REAL Description: the bias of the sample (Ry) in stm images +-------------------------------------------------------------------- * ELSE IF plot_num=7 : OPTIONS FOR |PSI|^2 (PLOT_NUM=7): +-------------------------------------------------------------------- Variable: kpoint Type: INTEGER Description: Unpolarized and noncollinear case: k-point to be plotted LSDA: k-point and spin polarization to be plotted (spin-up and spin-down correspond to different k-points!) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: kband Type: INTEGER Description: band to be plotted +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lsign Type: LOGICAL Description: if true and k point is Gamma, plot |psi|^2 sign(psi) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: spin_component Type: INTEGER Description: Noncollinear case only: plot the contribution of the given state to the charge or to the magnetization along the direction indicated by spin_component: 0 = charge (default), 1 = x, 2 = y, 3 = z. Ignored in unpolarized or LSDA case +-------------------------------------------------------------------- * ELSE IF plot_num=10 : OPTIONS FOR ILDOS (PLOT_NUM=10): +-------------------------------------------------------------------- Variable: emin Type: REAL Description: lower energy boundary (in eV) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: emax Type: REAL Description: upper energy boundary (in eV), i.e. compute ILDOS from emin to emax +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: spin_component Type: INTEGER Description: for LSDA case only: plot the contribution to ILDOS of 0 = spin-up + spin-down (default) 1 = spin-up only 2 = spin-down only +-------------------------------------------------------------------- * ELSE IF plot_num=13 : OPTIONS FOR NONCOLLINEAR MAGNETIZATION (PLOT_NUM=13): +-------------------------------------------------------------------- Variable: spin_component Type: INTEGER Default: 0 Description: 0=absolute value (default value) 1=x component of the magnetization 2=y component of the magnetization 3=z component of the magnetization +-------------------------------------------------------------------- * ELSE IF plot_num=17 : OPTIONS FOR RECONSTRUCTED CHARGE DENSITY (PLOT_NUM=17): +-------------------------------------------------------------------- Variable: spin_component Type: INTEGER Default: 0 Description: 0=total charge (default value), 1=spin up charge, 2=spin down charge. +-------------------------------------------------------------------- ENDIF ________________________________________________________________________ ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &PLOT +-------------------------------------------------------------------- Variable: nfile Type: INTEGER Default: 1 Status: OPTIONAL Description: the number of data files +-------------------------------------------------------------------- ///--- +-------------------------------------------------------------------- Variable: filepp(i), i=1,nfile Type: CHARACTER Default: filepp(1)=filplot Description: nfile = 1 : file containing the quantity to be plotted nfile > 1 : see "weight" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: weight(i), i=1,nfile Type: REAL Default: weight(1)=1.0 Description: weighing factors: assuming that rho(i) is the quantity read from filepp(i), the quantity that will be plotted is: weight(1)*rho(1) + weight(2)*rho(2) + weight(3)*rho(3)+... +-------------------------------------------------------------------- BEWARE: atomic coordinates are read from the first file; if their number is different for different files, the first file must have the largest number of atoms \\\--- +-------------------------------------------------------------------- Variable: iflag Type: INTEGER Description: 0 1D plot of the spherical average 1 1D plot 2 2D plot 3 3D plot 4 2D polar plot on a sphere +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: output_format Type: INTEGER Description: (ignored on 1D plot) 0 format suitable for gnuplot (1D) 1 format suitable for contour.x (2D) 2 format suitable for plotrho (2D) 3 format suitable for XCRYSDEN (2D or user-supplied 3D region) 4 format suitable for gOpenMol (3D) (formatted: convert to unformatted *.plt) 5 format suitable for XCRYSDEN (3D, using entire FFT grid) 6 format as gaussian cube file (3D) (can be read by many programs) 7 format suitable for gnuplot (2D) x, y, f(x,y) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fileout Type: CHARACTER Default: standard output Description: name of the file to which the plot is written +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: interpolation Type: CHARACTER Default: "fourier" Description: type of interpolation: "fourier" or "bspline" (EXPERIMENTAL!) +-------------------------------------------------------------------- ________________________________________________________________________ * IF iflag = 0 or 1 : THE FOLLOWING VARIABLES ARE REQUIRED: +-------------------------------------------------------------------- Variable: e1(i), i=1,3 Type: REAL Description: 3D vector which determines the plotting line +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: x0(i), i=1,3 Type: REAL Description: 3D vector, origin of the line +-------------------------------------------------------------------- !!! x0 and e1 are in alat units !!! +-------------------------------------------------------------------- Variable: nx Type: INTEGER Description: number of points in the line: rho(i) = rho( x0 + e1 * (i-1)/(nx-1) ), i=1, nx +-------------------------------------------------------------------- * ELSE IF iflag = 2 : THE FOLLOWING VARIABLES ARE REQUIRED: +-------------------------------------------------------------------- Variables: e1(i), e2(i), i=1,3 Type: REAL Description: 3D vectors which determine the plotting plane (must be orthogonal) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: x0(i), i=1,3 Type: REAL Description: 3D vector, origin of the plane +-------------------------------------------------------------------- !!! x0, e1, e2 are in alat units !!! +-------------------------------------------------------------------- Variables: nx, ny Type: INTEGER Description: Number of points in the plane: rho(i,j) = rho( x0 + e1 * (i-1)/(nx-1) + e2 * (j-1)/(ny-1) ), i=1,nx ; j=1,ny +-------------------------------------------------------------------- * ELSE IF iflag = 3 : THE FOLLOWING VARIABLES ARE OPTIONAL: +-------------------------------------------------------------------- Variables: e1(i), e2(i), e3(i), i=1,3 Type: REAL Description: 3D vectors which determine the plotting parallelepiped (if present, must be orthogonal) e1, e2, and e3 are in alat units ! +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: x0(i), i=1,3 Type: REAL Description: 3D vector, origin of the parallelepiped x0 is in alat units ! +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nx, ny, nz Type: INTEGER Description: Number of points in the parallelepiped: rho(i,j,k) = rho( x0 + e1 * (i-1)/nx + e2 * (j-1)/ny + e3 * (k-1)/nz ), i = 1, nx ; j = 1, ny ; k = 1, nz - If output_format = 3 (XCRYSDEN), the above variables are used to determine the grid to plot. - If output_format = 5 (XCRYSDEN), the above variables are ignored, the entire FFT grid is written in the XCRYSDEN format - works for any crystal axis (VERY FAST) - If e1, e2, e3, x0 are present, e1 e2 e3 are parallel to xyz and parallel to crystal axis, a subset of the FFT grid that approximately covers the parallelepiped defined by e1, e2, e3, x0, is written (presently only if output_format = 4, i.e. gopenmol format) - works only if the crystal axis are parallel to xyz - Otherwise, the required 3D grid is generated from the Fourier components (may be VERY slow) +-------------------------------------------------------------------- * ELSE IF iflag = 4 : THE FOLLOWING VARIABLES ARE REQUIRED: +-------------------------------------------------------------------- Variable: radius Type: REAL Description: Radius of the sphere (alat units), centered at (0,0,0) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nx, ny Type: INTEGER Description: Number of points in the polar plane: phi(i) = 2 pi * (i - 1)/(nx-1), i=1, nx theta(j) = pi * (j - 1)/(ny-1), j=1, ny +-------------------------------------------------------------------- ENDIF ________________________________________________________________________ ===END OF NAMELIST====================================================== espresso-5.1/PP/Doc/INPUT_PROJWFC.def0000644000175000017500000001764612341372773015126 0ustar mbambainput_description -distribution {Quantum Espresso} -package PWscf -program projwfc.x { toc {} intro { Purpose of projwfc.x: projects wavefunctions onto orthogonalized atomic wavefunctions, calculates Lowdin charges, spilling parameter, projected DOS (separated into up and down components for lSDA) alternatively, computes the local DOS(E), integrated in volumes given in input Structure of the input data: ============================ &PROJWFC ... / } namelist PROJWFC { var prefix -type CHARACTER { info { Prefix of input file produced by pw.x (wavefunctions are needed). } default { 'pwscf' } } var outdir -type CHARACTER { info { directory containing the input data, i.e. the same as in pw.x } default { value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise } } var ngauss -type INTEGER { default { 0 } info { Type of gaussian broadening: 0 ... Simple Gaussian (default) 1 ... Methfessel-Paxton of order 1 -1 ... Marzari-Vanderbilt "cold smearing" -99 ... Fermi-Dirac function } } var degauss -type REAL { default { 0.0 } info { gaussian broadening, Ry (not eV!) } } vargroup -type REAL { var Emin var Emax info { min & max energy (eV) for DOS plot } default { (band extrema) } } var DeltaE -type REAL { info { energy grid step (eV) } } var lsym -type LOGICAL { default { .true. } info { if true the projections are symmetrized } } var filpdos -type CHARACTER { info { prefix for output files containing PDOS(E) } default { (value of prefix variable) } } var filproj -type CHARACTER { default { (standard output) } info { file containing the projections } } var lwrite_overlaps -type LOGICAL { default { .false. } info { if .true., the overlap matrix of the atomic orbitals prior to orthogonalization is written to the atomic_proj datafile. } } var lbinary_data -type LOGICAL { default { .false. } info { if .true., the atomic_proj datafile is written in binary fmt. } } var kresolveddos -type LOGICAL { default { .false. } info { if .true. the k-resolved DOS is computed: not summed over all k-points but written as a function of the k-point index. In this case all k-point weights are set to unity } } var tdosinboxes -type LOGICAL { default { .false. } info { if .true. compute the local DOS integrated in volumes volumes are defined as boxes with edges parallel to the unit cell, containing the points of the (charge density) FFT grid included within irmin and irmax, in the three dimensions: from irmin(j,n) to irmax(j,n) for j=1,2,3 (n=1,n_proj_boxes) } } var n_proj_boxes -type INTEGER { default { 1 } info { number of boxes where the local DOS is computed } } var irmin -type INTEGER { default { 1 } info { first point to be included in the box } } var irmax -type INTEGER { default { 0 } info { last point to be included in the box } } var plotboxes -type LOGICAL { default { .false. } info { if .true., the boxes are written in output as as xsf files with 3D datagrids, valued 1.0 inside the box volume and 0 outside (visualize them as isosurfaces with isovalue 0.5) } } } section -title Notes { subsection -title {Format of output files} { text { Projections are written to standard output, and also to file filproj if given as input. The total DOS and the sum of projected DOS are written to file "filpdos".pdos_tot. * The format for the collinear, spin-unpolarized case and the non-collinear, spin-orbit case is: E DOS(E) PDOS(E) ... * The format for the collinear, spin-polarized case is: E DOSup(E) DOSdw(E) PDOSup(E) PDOSdw(E) ... * The format for the non-collinear, non spin-orbit case is: E DOS(E) PDOSup(E) PDOSdw(E) ... In the collinear case and the non-collinear, non spin-orbit case projected DOS are written to file "filpdos".pdos_atm#N(X)_wfc#M(l), where N = atom number , X = atom symbol, M = wfc number, l=s,p,d,f (one file per atomic wavefunction found in the pseudopotential file) * The format for the collinear, spin-unpolarized case is: E LDOS(E) PDOS_1(E) ... PDOS_2l+1(E) ... where LDOS = \sum m=1,2l+1 PDOS_m(E) and PDOS_m(E) = projected DOS on atomic wfc with component m * The format for the collinear, spin-polarized case and the non-collinear, non spin-orbit case is as above with two components for both LDOS(E) and PDOS_m(E) In the non-collinear, spin-orbit case (i.e. if there is at least one fully relativistic pseudopotential) wavefunctions are projected onto eigenstates of the total angular-momentum. Projected DOS are written to file "filpdos".pdos_atm#N(X)_wfc#M(l_j), where N = atom number , X = atom symbol, M = wfc number, l=s,p,d,f and j is the value of the total angular momentum. In this case the format is: E LDOS(E) PDOS_1(E) ... PDOS_2j+1(E) ... If kresolveddos=.true., the k-point index is prepended to the formats above, e.g. (collinear, spin-unpolarized case) ik E DOS(E) PDOS(E) All DOS(E) are in states/eV plotted vs E in eV } } subsection -title {Orbital Order} { text { Order of m-components for each l in the output: 1, cos(phi), sin(phi), cos(2*phi), sin(2*phi), .., cos(l*phi), sin(l*phi) where phi is the polar angle:x=r cos(theta)cos(phi), y=r cos(theta)sin(phi) This is determined in file flib/ylmr2.f90 that calculates spherical harmonics. for l=1: 1 pz (m=0) 2 px (real combination of m=+/-1 with cosine) 3 py (real combination of m=+/-1 with sine) for l=2: 1 dz2 (m=0) 2 dzx (real combination of m=+/-1 with cosine) 3 dzy (real combination of m=+/-1 with sine) 4 dx2-y2 (real combination of m=+/-2 with cosine) 5 dxy (real combination of m=+/-2 with sine) } } subsection -title {Defining boxes for the Local DOS(E)} { text { Boxes are specified using the variables irmin and irmax: FFT grid points are included from irmin(j,n) to irmax(j,n) for j=1,2,3 and n=1,...,n_proj_boxes irmin and irmax range from 1 to nr1 or nr2 or nr3 Values larger than nr1/2/3 or smaller than 1 are folded to the unit cell. If irmax and | psi > vectors separately in the output file. +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== espresso-5.1/PP/Doc/user_guide.tex0000644000175000017500000003122612341372773015220 0ustar mbamba\documentclass[12pt,a4paper]{article} \def\version{5.0} \def\qe{{\sc Quantum ESPRESSO}} \usepackage{html} % BEWARE: don't revert from graphicx for epsfig, because latex2html % doesn't handle epsfig commands !!! \usepackage{graphicx} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm \def\pwx{\texttt{pw.x}} \def\cpx{\texttt{cp.x}} \def\phx{\texttt{ph.x}} \def\nebx{\texttt{neb.x}} \def\configure{\texttt{configure}} \def\PWscf{\texttt{PWscf}} \def\PHonon{\texttt{PHonon}} \def\CP{\texttt{CP}} \def\PostProc{\texttt{PostProc}} \def\NEB{\texttt{PWneb}} % to be decided \def\make{\texttt{make}} \begin{document} \author{} \date{} \def\qeImage{../../Doc/quantum_espresso.pdf} \def\democritosImage{../../Doc/democritos.pdf} \begin{htmlonly} \def\qeImage{quantum_espresso.png} \def\democritosImage{democritos.png} \end{htmlonly} \title{ \includegraphics[width=5cm]{\qeImage} \hskip 2cm \includegraphics[width=6cm]{\democritosImage}\\ \vskip 1cm % title \Huge User's Guide for \PostProc\ \Large (version \version) } %\endhtmlonly %\latexonly %\title{ % \epsfig{figure=quantum_espresso.png,width=5cm}\hskip 2cm % \epsfig{figure=democritos.png,width=6cm}\vskip 1cm % % title % \Huge User's Guide for \qe \smallskip % \Large (version \version) %} %\endlatexonly \maketitle \tableofcontents \section{Introduction} This guide covers the usage of \PostProc, version \version: an open-source package for postprocessing of data produced by \PWscf\ and \CP. \PostProc\ is part of the \qe\ distribution and requires \PWscf\ to be installed. This guide assumes that you know the physics that \PostProc\ describes and the methods it implements. It also assumes that you have already installed, or know how to install, \qe. If not, please read the general User's Guide for \qe, found in directory \texttt{Doc/} two levels above the one containing this guide; or consult the web site:\\ \texttt{http://www.quantum-espresso.org}. Further documentation, beyond what is provided in this guide, can be found in the directory \texttt{PP/Doc/}, containing a copy of this guide. People who want to contribute to \qe\ should read the Developer Manual, found in directory \texttt{Doc/} two levels above the one containing this guide: \texttt{Doc/developer\_man.pdf}. \section{People and terms of use} The \PostProc\ package was originally developed by Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso (SISSA), Paolo Giannozzi (Univ. Udine), and many others. We mention in particular: \begin{itemize} \item Andrea Benassi (SISSA) for the \texttt{epsilon} utility; \item Dmitry Korotin (Inst. Met. Phys. Ekaterinburg) for the \texttt{wannier\_ham} utility; \item Georgy Samsonidze (Bosch Research) for the interface with the Berkeley GW code. \end{itemize} \PostProc\ is free software, released under the GNU General Public License. See:\\ \texttt{http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt}, or the file License in the distribution). We shall greatly appreciate if scientific work done using this code will contain an explicit acknowledgment and the following reference: \begin{quote} P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009), http://arxiv.org/abs/0906.2569 \end{quote} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Compilation} \PostProc\ is distributed together with \qe. For instruction on how to download and compile \qe, please refer to the general Users' Guide, available in file \texttt{Doc/user\_guide.pdf} under the main \qe\ directory, or in web site \texttt{http://www.quantum-espresso.org}. Once \qe\ is correctly configured, \PostProc\ can be compiled by just typing \texttt{make pp}, from the main \qe\ directory; or typing \make\ from the \texttt{PP/} subdirectory. Several executable codes are produced in \texttt{PP/bin} and linked to \texttt{bin/}. \section{Usage} All codes for which input documentation is not explicitly mentioned below havesome documentation in the header of the fortran sources. In the following, ``Example N'' standes for subdirectory \texttt{examples/exampleN/}. All quantities whose dimensions are not explicitly specified are in RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied by $e$); potentials are in energy units (i.e. they are multiplied by $e$). \subsection{Plotting selected quantities} The main postprocessing code \texttt{pp.x} extracts the specified data from the data files produced by \PWscf\ (\pwx\ executable) or \CP\ (\cpx\ executable); prepares data for plotting by writing them into formats that can be read by several plotting programs. Quantities that can be read or calculated are: \begin{quote} charge density\\ spin polarization\\ various potentials\\ local density of states at $E_F$\\ local density of electronic entropy\\ STM images\\ selected squared wavefunction\\ ELF (electron localization function)\\ RDG (reduced density gradient)\\ integrated local density of states \end{quote} Various types of plotting (along a line, on a plane, three-dimensional, polar) and output formats (including the popular cube format) can be specified. Moreover data can be saved to an intermediate (formatted) file so that more data set can be summed or subracted in a later run. The output files can be directly read by the free plotting system Gnuplot (1D or 2D plots), or by code \texttt{plotrho.x} that comes with \PostProc\ and produces PostScript 2D plots, or by advanced plotting software XCrySDen and gOpenMol (3D plots). See file \texttt{Doc/INPUT\_PP.*} for a detailed description of the input for code \texttt{pp.x}. See Example 01 for an example of a charge density plot, Example 03 for an example of STM image simulation. \paragraph{Planar averages} Code \texttt{plan\_avg.x} calculates planar averages of Kohn-Sham orbitals. Code \texttt{average.x} calculates planar averages of quantities calculated by \texttt{pp.x} (e.g. potentials, charge, magnetization densities). Note that \texttt{average.x} reads the intermediate file produced by \texttt{pp.x}, not data files produced by \pwx. Examples of usage of \texttt{average.x} can be found in \texttt{examples/WorcFct\_example/} and in \texttt{examples/dipole\_example/}. \paragraph{All-electron charge} \texttt{pawplot.x} produces plots of the all-electron charge for PAW calculations. \paragraph{About Bader's analysis} In \texttt{http://theory.cm.utexas.edu/bader/} one can find a software that performs Bader's analysis starting from charge on a regular grid. The required "cube" format can be produced by \qe\ using \texttt{pp.x} (info by G. Lapenna who has successfully used this technique, but adds: ``Problems occur with polar X-H bonds or in all cases where the zero-flux of density comes too close to atoms described with pseudo-potentials"). This code should perform decomposition into Voronoi polyhedra as well, in place of obsolete code \texttt{voronoy.x} (removed from distribution since v.4.2). \subsection{Band structure, Fermi surface} The code \texttt{bands.x} reads data file(s), extracts eigenvalues, regroups them into bands (the algorithm used to order bands and to resolve crossings may not work in all circumstances, though). The output is written to a file in a simple format that can be directly read and converted to plottable format by auxiliary code \texttt{plotband.x}. Unpredictable plots may results if k-points are not in sequence along lines, or if two consecutive points are the same. The code \texttt{bands.x} performs as well a symmetry analysis of the band structure. For a complete input description, see\texttt{Doc/INPUT\_bands.*}. See Example 01, Example 04 and Example 06 for simple band plots. The calculation of Fermi surface can be performed using \texttt{kvecs\_FS.x} and \texttt{bands\_FS.x}. The resulting file in .xsf format can be read and plotted using XCrySDen. See Example 02 for an example of Fermi surface visualization (Ni, including the spin-polarized case). \subsection{Projection over atomic states, DOS} The code \texttt{projwfc.x} calculates projections of wavefunctions over atomic orbitals. The atomic wavefunctions are those contained in the pseudopotential file(s). The L\"owdin population analysis (similar to Mulliken analysis) is presently implemented. The projected DOS (or PDOS: the DOS projected onto atomic orbitals) can also be calculated and written to file(s). More details on the input data are found in file \texttt{Doc/INPUT\_PROJWFC.*}. The ordering of the various angular momentum components (defined in routine \texttt{flib/ylmr2.f90}) is as follows: $P_{0,0}(t)$, $P_{1,0}(t)$, $P_{1,1}(t)cos\phi$, $P_{1,1}(t)sin\phi$, $P_{2,0}(t)$, $P_{2,1}(t)cos\phi$, $P_{2,1}(t)sin\phi$, $P_{2,2}(t)cos2\phi$, $P_{2,2}(t)sin2\phi$ and so on, where $P_{l,m}$=Legendre Polynomials, $t = cos\theta = z/r$, $\phi= atan(y /x)$. Data produced by code \texttt{projwfc.x} can be further analysed using auxiliary codes \texttt{sumpdos.x} (sums selected PDOS by specifying the names of files containing the desired PDOS: type \texttt{sumpdos.x -h} or look into the source code for more details) and \texttt{plotproj.x} . The total electronic DOS can also be calculated by code \texttt{dos.x}, whose complete input documentation is in \texttt{Doc/INPUT\_DOS.*} See Example 02 for total and projected electronic DOS calculations; see Example 03 for projected and local DOS calculations. \subsection{Wannier functions} There are several Wannier-related utilities in \PostProc: \begin{enumerate} \item The "Poor Man Wannier" code \texttt{pmw.x}, to be used in conjunction with DFT+U calculations (see Example 05) \item The interface with Wannier90 code, \texttt{pw2wannier.x}: see the documentation in \texttt{W90/} (you have to install the Wannier90 plug-in) \item The \texttt{wannier\_ham.x} code generates a model Hamiltonian in Wannier functions basis: see \texttt{examples/WannierHam\_example/}. \end{enumerate} Note that the \texttt{wfdd.x} code has been moved to \CP. \subsection{Interfaces to/from other code} Codes \texttt{pw2bgw.x} and \texttt{bgw2pw.x} convert data files from \pwx\ to a format suitable for usage by the Berkeley GW code, and vice versa. See files \texttt{Doc/INPUT\_pw2bgw.*} and \texttt{Doc/INPUT\_bgw2pw.*} for input data documentation. Undocumented code \texttt{pw2gw.x} converts data files from \pwx\ to a format suitable for usage by another GW code. Code \texttt{pw\_export.x}, not compiled by default, is an interface to other codes, documented in \texttt{Doc/INPUT\_pw\_export.*} Code \texttt{qexml.x}, not compiled by default, is a template that is useful to follow when wrting interfaces. \subsection{Other tools} Code \texttt{epsilon.x} calculates RPA frequency-dependent complex dielectric function. Documentation is in file \texttt{Doc/eps\_man.tex}. Code \texttt{initial\_state.x} calculates the initial state contribution to the Core-level shift. See \texttt{examples/CLS\_IS\_example/} for an example, and \texttt{examples/CLS\_FS\_example/} for the corrsponding final state calculation of Core-level shifts. \section{Troubleshooting} Almost all problems in \qe\ arise from incorrect input data and result in error stops. Error messages should be self-explanatory, but unfortunately this is not always true. If the code issues a warning messages and continues, pay attention to it but do not assume that something is necessarily wrong in your calculation: most warning messages signal harmless problems. \paragraph{Some postprocessing codes complain that they do not find some files} For Linux PC clusters in parallel execution: in at least some versions of MPICH, the current directory is set to the directory where the executable code resides, instead of being set to the directory where the code is executed. This MPICH weirdness may cause unexpected failures in some postprocessing codes that expect a data file in the current directory. Workaround: use symbolic links, or copy the executable to the current directory. \paragraph{{\em error in davcio} in postprocessing codes} Most likely you are not reading the correct data files, or you are not following the correct procedure for postprocessing. In parallel execution: if you did not set \texttt{wf\_collect=.true.}, the number of processors and pools for the phonon run should be the same as for the self-consistent run; all files must be visible to all processors. \end{document} espresso-5.1/PP/Doc/INPUT_bgw2pw.txt0000644000175000017500000001012412341373154015257 0ustar mbamba*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: bgw2pw.x / PWscf / Quantum Espresso ------------------------------------------------------------------------ Converts BerkeleyGW WFN and RHO files to the format of pw.x. This can be useful, for example, if you generate the plane waves on top of the valence bands and want to diagonalize them in pw.x. Look at the documentation for SAPO code in BerkeleyGW for more information. bgw2pw.x reads common parameters from file prefix.save/data-file.xml and writes files prefix.save/charge-density.dat (charge density in R-space), prefix.save/gvectors.dat (G-vectors for charge density and potential), prefix.save/K$n/eigenval.xml (eigenvalues and occupations for nth k-point), prefix.save/K$n/evc.dat (wavefunctions in G-space for nth k-point), and prefix.save/K$n/gkvectors.dat (G-vectors for nth k-point). bgw2pw.x doesn't modify file prefix.save/data-file.xml so make changes to this file manually (for example, you will need to change the number of bands if you are using bgw2pw.x in conjunction with SAPO code in BerkeleyGW). Structure of the input data: ============================ &INPUT_BGW2PW ... / ======================================================================== NAMELIST: &INPUT_BGW2PW +-------------------------------------------------------------------- Variable: prefix Type: STRING Status: MANDATORY Description: prefix of files saved by program pw.x +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: STRING Default: './' Description: the scratch directory where the massive data-files are written +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: real_or_complex Type: INTEGER Default: 2 Description: 1 | 2 1 for real flavor of BerkeleyGW (for systems with inversion symmetry and time-reversal symmetry) or 2 for complex flavor of BerkeleyGW (for systems without inversion symmetry and time-reversal symmetry) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_flag Type: LOGICAL Default: .FALSE. Description: read wavefunctions in G-space from BerkeleyGW WFN file +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_file Type: STRING Default: 'WFN' Description: name of BerkeleyGW WFN input file. Not used if wfng_flag = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_nband Type: INTEGER Default: 0 Description: number of bands to write (0 = all). Not used if wfng_flag = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: rhog_flag Type: LOGICAL Default: .FALSE. Description: read charge density in G-space from BerkeleyGW RHO file +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: rhog_file Type: STRING Default: 'RHO' Description: name of BerkeleyGW RHO input file. Not used if rhog_flag = .FALSE. +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== espresso-5.1/PP/Doc/INPUT_pw2bgw.txt0000644000175000017500000004020412341373154015261 0ustar mbamba*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: pw2bgw.x / PWscf / Quantum Espresso ------------------------------------------------------------------------ Converts the output files produced by pw.x to the input files for BerkeleyGW. You cannot use USPP, PAW, or spinors in a pw.x run for BerkeleyGW. You cannot use "K_POINTS gamma" in a pw.x run for BerkeleyGW. Use "K_POINTS { tpiba | automatic | crystal }" even for the Gamma-point calculation. It is recommended to run a pw.x "bands" calculation with "K_POINTS crystal" and a list of k-points produced by kgrid.x, which is a part of BerkeleyGW package (see BerkeleyGW documentation for details). You can also run a pw.x "nscf" calculation instead of "bands", but in this case pw.x may generate more k-points than provided in the input file of pw.x. If this is the case for your calculation you will get errors in BerkeleyGW. Examples showing how to run BerkeleyGW on top of Quantum ESPRESSO including the input files for pw.x and pw2bgw.x are distributed together with the BerkeleyGW package. Structure of the input data: ============================ &INPUT_PW2BGW ... / ======================================================================== NAMELIST: &INPUT_PW2BGW +-------------------------------------------------------------------- Variable: prefix Type: STRING Status: MANDATORY Description: prefix of files saved by program pw.x +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: STRING Default: './' Description: the scratch directory where the massive data-files are written +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: real_or_complex Type: INTEGER Default: 2 Description: 1 | 2 1 for real flavor of BerkeleyGW (for systems with inversion symmetry and time-reversal symmetry) or 2 for complex flavor of BerkeleyGW (for systems without inversion symmetry and time-reversal symmetry) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: symm_type Type: STRING Default: 'cubic' Description: 'cubic' | 'hexagonal' type of crystal system, 'cubic' for space groups 1 ... 142 and 195 ... 230 and 'hexagonal' for space groups 143 ... 194. Only used if ibrav = 0 in a pw.x run. Written to BerkeleyGW WFN, RHO, VXC and VKB files but no longer used (except in SAPO code in BerkeleyGW). You can use the default value for all systems. Don't set to different values in different files for the same system or you will get errors in BerkeleyGW. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_flag Type: LOGICAL Default: .FALSE. Description: write wavefunctions in G-space to BerkeleyGW WFN file +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_file Type: STRING Default: 'WFN' Description: name of BerkeleyGW WFN output file. Not used if wfng_flag = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_kgrid Type: LOGICAL Default: .FALSE. Description: overwrite k-grid parameters in BerkeleyGW WFN file. If pw.x input file contains an explicit list of k-points, the k-grid parameters in the output of pw.x will be set to zero. Since sigma and absorption in BerkeleyGW both need to know the k-grid dimensions, we patch these parameters into BerkeleyGW WFN file +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_nk1 Type: INTEGER Default: 0 Description: number of k-points along b_1 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_nk2 Type: INTEGER Default: 0 Description: number of k-points along b_2 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_nk3 Type: INTEGER Default: 0 Description: number of k-points along b_3 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_dk1 Type: REAL Default: 0.0 Description: k-grid offset (0.0 unshifted, 0.5 shifted by half a grid step) along b_1 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_dk2 Type: REAL Default: 0.0 Description: k-grid offset (0.0 unshifted, 0.5 shifted by half a grid step) along b_2 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_dk3 Type: REAL Default: 0.0 Description: k-grid offset (0.0 unshifted, 0.5 shifted by half a grid step) along b_3 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_occupation Type: LOGICAL Default: .FALSE. Description: overwrite occupations in BerkeleyGW WFN file +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_nvmin Type: INTEGER Default: 0 Description: index of the lowest occupied band (normally = 1). Not used if wfng_occupation = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfng_nvmax Type: INTEGER Default: 0 Description: index of the highest occupied band (normally = number of occupied bands). Not used if wfng_occupation = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: rhog_flag Type: LOGICAL Default: .FALSE. Description: write charge density in G-space to BerkeleyGW RHO file. Only used for the GPP model in sigma code in BerkeleyGW +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: rhog_file Type: STRING Default: 'RHO' Description: name of BerkeleyGW RHO output file. Only used for the GPP model in sigma code in BerkeleyGW. Not used if rhog_flag = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: rhog_nvmin Type: INTEGER Default: 0 Description: index of the lowest band used for calculation of charge density. This is needed if one wants to exclude semicore states from charge density used for the GPP model in sigma code in BerkeleyGW. Make sure to include the same k-points as in scf calculation. Self-consistent charge density is used if rhog_nvmin = 0 and rhog_nvmax = 0. Not used if rhog_flag = .FALSE. BEWARE: this feature is highly experimental and may not work at all in parallel, with pools, with spins, etc. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: rhog_nvmax Type: INTEGER Default: 0 Description: index of the highest band used for calculation of charge density. See description of rhog_nvmin for more details +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vxcg_flag Type: LOGICAL Default: .FALSE. Description: write local part of exchange-correlation potential in G-space to BerkeleyGW VXC file. Only used in sigma code in BerkeleyGW, it is recommended to use vxc_flag instead +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vxcg_file Type: STRING Default: 'VXC' Description: name of BerkeleyGW VXC output file. Only used in sigma code in BerkeleyGW, it is recommended to use vxc_flag instead. Not used if vxcg_flag = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vxc0_flag Type: LOGICAL Default: .FALSE. Description: write Vxc(G = 0) to text file. Only for testing, not required for BerkeleyGW +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vxc0_file Type: STRING Default: 'vxc0.dat' Description: name of output text file for Vxc(G = 0). Only for testing, not required for BerkeleyGW. Not used if vxc0_flag = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vxc_flag Type: LOGICAL Default: .FALSE. Description: write matrix elements of exchange-correlation potential to text file. Only used in sigma code in BerkeleyGW +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vxc_file Type: STRING Default: 'vxc.dat' Description: name of output text file for Vxc matrix elements. Only used in sigma code in BerkeleyGW. Not used if vxc_flag = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vxc_integral Type: STRING Default: 'g' Description: 'g' | 'r' 'g' to compute matrix elements of exchange-correlation potential in G-space. 'r' to compute matrix elements of the local part of exchange-correlation potential in R-space. It is recommended to use 'g'. Not used if vxc_flag = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vxc_diag_nmin Type: INTEGER Default: 0 Description: minimum band index for diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vxc_diag_nmax Type: INTEGER Default: 0 Description: maximum band index for diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vxc_offdiag_nmin Type: INTEGER Default: 0 Description: minimum band index for off-diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vxc_offdiag_nmax Type: INTEGER Default: 0 Description: maximum band index for off-diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vxc_zero_rho_core Type: LOGICAL Default: .TRUE. Description: set to .TRUE. to zero out NLCC or to .FALSE. to keep NLCC when computing exchange-correlation potential. This flag has no effect for pseudopotentials without NLCC. BEWARE: setting vxc_zero_rho_core to .FALSE. will produce incorrect results. This functionality is only included for testing purposes and is not meant to be used in a production environment +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vscg_flag Type: LOGICAL Default: .FALSE. Description: write local part of self-consistent potential in G-space to BerkeleyGW VSC file. Only used in SAPO code in BerkeleyGW +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vscg_file Type: STRING Default: 'VSC' Description: name of BerkeleyGW VSC output file. Only used in SAPO code in BerkeleyGW. Not used if vscg_flag = .FALSE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vkbg_flag Type: LOGICAL Default: .FALSE. Description: write Kleinman-Bylander projectors in G-space to BerkeleyGW VKB file. Only used in SAPO code in BerkeleyGW +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vkbg_file Type: STRING Default: 'VKB' Description: name of BerkeleyGW VKB output file. Only used in SAPO code in BerkeleyGW. Not used if vkbg_flag = .FALSE. +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== espresso-5.1/PP/Doc/INPUT_DOS.def0000644000175000017500000000547712341372773014440 0ustar mbambainput_description -distribution {Quantum Espresso} -package PWscf -program dos.x { toc {} intro { Purpose of dos.x: calculates the Density of States (DOS) (separated into up and down components for DSDA) Structure of the input data: ============================ &DOS ... / IMPORTANT: since v.5 namelist name is &dos and no longer &inputpp } namelist DOS { var prefix -type CHARACTER { default { 'pwscf' } info { prefix of input file produced by pw.x (wavefunctions are not needed) } } var outdir -type CHARACTER { info { directory containing the input data, i.e. the same as in pw.x } default { value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise } } var ngauss -type INTEGER { default { 0 } status { optional } info { Type of gaussian broadening: = 0 Simple Gaussian (default) = 1 Methfessel-Paxton of order 1 = -1 Marzari-Vanderbilt "cold smearing" =-99 Fermi-Dirac function } } var degauss -type REAL { info { gaussian broadening, Ry (not eV!) see below } } vargroup -type REAL { var Emin var Emax default { band extrema } info { min, max energy (eV) for DOS plot. If unspecified, the lower and/or upper band value, plus/minus 3 times the value of the gaussian smearing if present, will be used. } } var DeltaE -type REAL { info { energy grid step (eV) } } var fildos -type CHARACTER { default { "prefix".dos } info { output file containing DOS(E) } } } section -title Notes { subsection -title Output { text { The total DOS (states/eV plotted vs E in eV) is written to file "fildos" } } subsection -title {Important !} { text { The tetrahedron method is used if - the input data file has been produced by pw.x using the option occupations='tetrahedra', AND - a value for degauss is not given as input to namelist &dos Gaussian broadening is used in all other cases: - if degauss is set to some value in namelist &dos, that value (and the optional value for ngauss) is used - if degauss is NOT set to any value in namelist &dos, the value of degauss and of ngauss are read from the input data file (they will be the same used in the pw.x calculations) - if degauss is NOT set to any value in namelist &dos, AND there is no value of degauss and of ngauss in the input data file, degauss=DeltaE (in Ry) and ngauss=0 will be used } } } } espresso-5.1/PP/Doc/INPUT_pw_export.xml0000644000175000017500000000505612341373154016067 0ustar mbamba Structure of the input data: ============================ &INPUTPP ... / MANDATORY the first part of the name of all the file written by the code should be equal to the value given in the main calculations. "./" the scratch directory where the massive data-files are written "./" directory containing pseudopotential (PP) files "" files containing i-th pseudopotential, where i=1, N_type. PP numbering must follow the ordering defined in the input of pw.x .FALSE. if .TRUE. one-file output is produced .FALSE. if .TRUE. output files are textual, otherwise they are partly binary. "prefix.export/" Output file. If it is omitted, a directory "prefix.export/" is created in outdir and some output files are put there. Anyway all the data are accessible through the "prefix.export/index.xml" file which contains implicit pointers to all the other files in the export directory. If reading is done by the IOTK library all data appear to be in index.xml even if physically it is not. .FALSE. when using USPP, if set .TRUE. the code writes S | psi > and | psi > vectors separately in the output file. espresso-5.1/PP/Doc/eps_man.aux0000644000175000017500000000112112341373153014464 0ustar mbamba\relax \select@language{english} \@writefile{toc}{\select@language{english}} \@writefile{lof}{\select@language{english}} \@writefile{lot}{\select@language{english}} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}} \@writefile{toc}{\contentsline {section}{\numberline {2}Input file}{1}} \@writefile{toc}{\contentsline {section}{\numberline {3}Joint density of states}{2}} \newlabel{imp2}{{1}{2}} \newlabel{imp}{{2}{2}} \newlabel{lor}{{3}{2}} \newlabel{gau}{{4}{2}} \@writefile{toc}{\contentsline {section}{\numberline {4}Dielectric tensor}{2}} \newlabel{nos}{{11}{3}} espresso-5.1/PP/Doc/INPUT_DOS.xml0000644000175000017500000000654212341373153014465 0ustar mbamba Purpose of dos.x: calculates the Density of States (DOS) (separated into up and down components for DSDA) Structure of the input data: ============================ &DOS ... / IMPORTANT: since v.5 namelist name is &dos and no longer &inputpp 'pwscf' prefix of input file produced by pw.x (wavefunctions are not needed) directory containing the input data, i.e. the same as in pw.x value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise 0 optional Type of gaussian broadening: = 0 Simple Gaussian (default) = 1 Methfessel-Paxton of order 1 = -1 Marzari-Vanderbilt "cold smearing" =-99 Fermi-Dirac function gaussian broadening, Ry (not eV!) see below band extrema min, max energy (eV) for DOS plot. If unspecified, the lower and/or upper band value, plus/minus 3 times the value of the gaussian smearing if present, will be used. energy grid step (eV) "prefix".dos output file containing DOS(E)
The total DOS (states/eV plotted vs E in eV) is written to file "fildos" The tetrahedron method is used if - the input data file has been produced by pw.x using the option occupations='tetrahedra', AND - a value for degauss is not given as input to namelist &dos Gaussian broadening is used in all other cases: - if degauss is set to some value in namelist &dos, that value (and the optional value for ngauss) is used - if degauss is NOT set to any value in namelist &dos, the value of degauss and of ngauss are read from the input data file (they will be the same used in the pw.x calculations) - if degauss is NOT set to any value in namelist &dos, AND there is no value of degauss and of ngauss in the input data file, degauss=DeltaE (in Ry) and ngauss=0 will be used
espresso-5.1/PP/Doc/INPUT_BANDS.txt0000644000175000017500000001102012341373154014672 0ustar mbamba*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: bands.x / PWscf / Quantum Espresso ------------------------------------------------------------------------ Purpose of bands.x: Rewrite the bands ordering them using the overlap of the wave-functions on neighbor k points and calculate properties of each eigen-function. Presently it can calculate: (a) The expectation value of the spin operator on each spinor wave-function. (b) The symmetry properties of each wavefunction. With this option the bands are not ordered according to the overlap. The input data of this program are read from standard input or from a file and have the following format: Structure of the input data: ============================ &BANDS ... / ======================================================================== NAMELIST: &BANDS +-------------------------------------------------------------------- Variable: prefix Type: CHARACTER Description: prefix of files saved by program pw.x +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: CHARACTER Description: directory containing the input data, i.e. the same as in pw.x Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: filband Type: CHARACTER Description: file "filband" contains the bands +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: spin_component Type: INTEGER Description: In the lsda case select: 1 = spin-up 2 = spin-down +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lsigma(i), i=1,3 Type: LOGICAL Description: If true writes a file filband.i with the expectation values of the spin operator on the spinor wave-functions. (only in the noncollinear case). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lsym Type: LOGICAL Description: If .true. the bands are classified according to the irreducible representations of the small group of k. A file "filband".rap with the same format of "filband" is written. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: no_overlap Type: LOGICAL Default: .false. Description: If .true. writes the eigenvalues in the output file without changing their order. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: plot_2d Type: LOGICAL Default: .false. Description: If .true. writes the eigenvalues in the output file in a 2D format readable by gnuplot. Band ordering is not changed. Each band is written in a different file called filband.# with the format: xk, yk, energy xk, yk, energy .. .. .. energies are written in eV and xk in units 2\pi/a. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: firstk, lastk Type: INTEGER Description: if lsym=.true. makes the symmetry analysis only for k points between firstk to lastk +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== espresso-5.1/PP/Doc/eps_man.tex0000644000175000017500000003630112341372773014506 0ustar mbamba% % Copyright (C) 2006 Andrea Benassi % This file is distributed under the terms of the % GNU General Public License. See the file `License' % in the root directory of the present distribution, % or http://www.gnu.org/copyleft/gpl.txt . % \documentclass[twocolumn]{article} \usepackage[english]{babel} \usepackage[centertags,intlimits]{amsmath} \usepackage{amssymb} \usepackage{verbatim} \begin{document} \begin{titlepage} \Huge \begin{center} $PW_{SCF}$'s epsilon.x user's manual\\[4.5cm] \normalsize \vspace{10.5cm} \textbf{Manual Author:} \emph{Andrea Benassi}$^{1,2}$\\[0.3cm] \textbf{Code Developers:} \emph{Andrea Benassi$^{1,2}$, Andrea Ferretti$^{1,2}$, Carlo Cavazzoni$^{2,3}$}\\[1cm] $^{1}$ \emph{Physics Department, Universit\'a degli Studi di Modena e Reggio Emilia,} www.fisica.unimore.it\\ $^{2}$ \emph{INFM/S$^{3}$ (Nanostructure and Biosystem at Surfaces),} www.s3.infm.it\\ $^{3}$ \emph{High Performance Computing Department, CINECA Consorzio Interuniversitario,} www.cineca.it\\ \end{center} \end{titlepage} \newpage \section{Introduction} Epsilon.x is a post processing code of $PW_{SCF}$. Starting from DFT eigenvalues and eigenvectors, epsilon.x provides the real and imaginary parts of the dielectric tensor or the joint density of states, it works both in serial and parallel mode, also pool parallelization is supported. As all the others post processing codes, epsilon.x must run with the same number of processors of the previews parallel PW runs, to avoid this constrain set the variable WF\_COLLECT=.TRUE. in pw.x input file. Epsilon.x doesn't support the reduction of the k-points grid into the unreducible Brillouin zone, so the previous PW runs must be performed with a uniform k-points grid and all k-points weights must be equal to each other, i.e. in the k-points card the k-points coordinates must be given manually in \emph{crystal} or \emph{alat} or \emph{bohr}, but not with the \emph{automatic} option. Also the auto-symmetrization of k-points grid can produce a non uniform distribution of k-points weights, in order to avoid this PW's behavior the variable NOSYM must be set .TRUE. disabling auto-symmetrization. \section{Input file} When executed, epsilon.x reads an input file from standard input, this file contains two Fortran namelists (value associated to each variable is the default one): \begin{verbatim} &inputpp outdir='./' prefix='pwscf' calculation='eps' / &energy_grid smeartype='gauss' intersmear=0.136d0 intrasmear=0.0d0 wmax=30.0d0 wmin=0.0d0 nw=600 shift=0.0d0 / \end{verbatim} the first two characters are the location and name of the output files from the previous PW runs. \emph{calculation} select the kind of calculation to be performed by epsilon.x, actually the following calculation are implemented: \begin{itemize} \item \emph{eps}: dielectric tensor calculation, in addition to the standard output the code produces the four files \emph{epsr.dat}, \emph{epsi.dat}, \emph{eels.dat} and \emph{ieps.dat}. The first two contain the real and imaginary parts of the dielectric tensor diagonal components $\epsilon_{1_{\alpha,\alpha}}(\omega)$ e $\epsilon_{2_{\alpha,\alpha}}(\omega)$, as a function of frequency (in eV). The third file contains the electron energy loss spectrum calculated from the diagonal elements of dielectric tensor and the last one contains the diagonal components of dielectric tensor calculated on the imaginary axe of frequency (via London transformation) $\epsilon_{\alpha,\alpha}(i\omega)$. If the PW calculations have been performed in collinear spin mode the previous files contain the sum of spin up and spin down contribution, other files with prefix \emph{u-} or \emph{d-} are created containing the same quantities for spin up or spin down separately. \item \emph{jdos}: joint density of state calculation, in addition to the standard output the code produces the file \emph{jdos.dat}, containing the joint density of state (in eV$^{-1}$) as a function of frequency (in eV). If the PW calculations have been performed in collinear spin mode, \emph{jdos.dat} contains separately the spin up and spin down joind donsity of states. \item \emph{offdiag}: calculation of diagonal and off-diagonal components of dielectric tensor. In addition to the standard output the code produces one file for each component of the dielectric tensor (i.e. \emph{epsxy.dat}), each file contains real and imaginary part of the tensor component. \item \emph{occ}: calculation of occupation factors and its first derivative, results are written on \emph{occupations.dat}. In metallic systems it is highly raccomanded to permorm this calculation before enything else. Plotting this file it is easy to see if the chosen broadening parameter and k points number are enough to have a good sampling of the fermi surface. \end{itemize} \emph{smeartype} select the kind of broadening for the plot of joint density of state, it can be both \emph{gauss} or \emph{lorentz} for a Gaussian or Lorentzian broadening. \emph{intersmear} is the broadening parameter (in eV) for the interband contribution, it will be the Gaussian or Lorentzian broadening parameter in the case of joint density of state calculation or the Drude-Lorentz broadening parameter for the dielectric tensor calculation. \emph{intrasmear} is the broadening parameter for the intraband, i.e. metal Drude like term (again in eV), the intraband contribution is calculated only if a Gaussian broadening or tetrahedron method it's been applied in PW calculations. The desired functions will be calculated in a frequency interval $\big[$-\emph{wmax},\emph{wmax}$\big]$ and \emph{nw} is the number of points of the frequency mesh, \emph{wmax} is expected to be in eV. Finally \emph{shift} is the number of eV for an optional rigid shift of the imaginary part of the dielectric function. \section{Joint density of states} The joint density of state is defined has: \begin{displaymath} n(\omega)=\sum_{\sigma}\sum_{n\in V}\sum_{n'\in C}\frac{\Omega}{(2\pi)^3}\int d^3\textbf{k}\delta(E_{\textbf{k},n'}-E_{\textbf{k},n} -\hbar\omega) \end{displaymath} or alternatively: \begin{equation} n(\omega)=\sum_{n}\sum_{n'}\frac{\Omega}{(2\pi)^3}\int d^3\textbf{k}\delta(E_{\textbf{k},n'}-E_{\textbf{k},n} -\hbar\omega)... \label{imp2} \end{equation} \begin{displaymath} ...f(E_{\textbf{k},n})[2-f(E_{\textbf{k},n'})]/2 \end{displaymath} or finally: \begin{equation} n(\omega)=\sum_{n\in V}\sum_{n'\in C}\frac{\Omega}{(2\pi)^3}\int d^3\textbf{k}\delta(E_{\textbf{k},n'}-E_{\textbf{k},n} -\hbar\omega)... \label{imp} \end{equation} \begin{displaymath} ...[f(E_{\textbf{k},n})-f(E_{\textbf{k},n'})] \end{displaymath} were $\sigma$ is the spin component, $\Omega$ is the volume of the lattice cell, $n$ and $n'$ belong respectively to the valence and conduction bands, $E_{\textbf{k},n}$ are the eigenvalues of the Hamiltonian and $f(E_{\textbf{k},n})$ is the Fermi distribution function that account for the occupation of the bands. In the last two notation the sum over spin values is included into Fermi function whose normalization is two instead of one. The Dirac Delta function it's numerically implemented by means of Lorentzian or Gaussian functions normalized to one: \begin{equation} L(\omega)=\frac{\Gamma}{\pi\big[(E_{\textbf{k},n'}-E_{\textbf{k},n}-\hbar\omega)^2+\Gamma^2\big]} \label{lor} \end{equation} \begin{equation} G(\omega)=\frac{1}{\Gamma\sqrt{\pi}}e^{(E_{\textbf{k},n'}-E_{\textbf{k},n}-\hbar\omega)^2/\Gamma^2} \label{gau} \end{equation} $\Gamma$ is the broadening parameter from the input file. The implemented formula is obtained substituting the Dirac Delta function in (\ref{imp}) by (\ref{lor}) or (\ref{gau}) and substituting $\frac{\Omega}{(2\pi)^3}\int d^3\textbf{k}$ by a simple sun over k-points.\\ Integrating analytically (\ref{imp}) one obtains: \begin{eqnarray} \sum_{\textbf{k}}\sum_{n}\sum_{n'}[f(E_{\textbf{k},n})-f(E_{\textbf{k},n'})] \end{eqnarray} so a division by this quantity is needed to renormalize to one the joint density of state, the standard output file contains a convergence check on this renormalizzazion. Note that in the case of joint density of state the two kinds of broadening (\ref{lor}) and (\ref{gau}) are exactly equivalent. \section{Dielectric tensor} The imaginary part of the dielectric tensor $\epsilon_{2_{\alpha,\beta}}(\omega)$ can be viewed as a response function that comes from a perturbation theory with adiabatic turning on: \begin{displaymath} \epsilon_{\alpha,\beta}(\omega)=1+\frac{4 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n,n'}\sum_{\textbf{k}} \frac{\hat{\textbf{M}}_{\alpha,\beta}}{(E_{\textbf{k},n'}-E_{\textbf{k},n})^2}... \end{displaymath} \begin{displaymath} ...\Bigg\{\frac{f(E_{\textbf{k},n})}{E_{\textbf{k},n'}-E_{\textbf{k},n}+\hbar\omega+i\hbar\Gamma}+... \end{displaymath} \begin{equation} ...\frac{f(E_{\textbf{k},n})}{E_{\textbf{k},n'}-E_{\textbf{k},n}-\hbar\omega-i\hbar\Gamma}\Bigg\} \end{equation} where $\Gamma$ is the adiabatic parameter and, for the total energy conservation it must tend to zero. This is the way in which the Dirac Delta function appears and this means that every excited state has an infinite lifetime, i.e. is stationary. \begin{displaymath} \epsilon_{2_{\alpha,\beta}}(\omega)=\frac{4 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n,n'}\sum_{\textbf{k}} \frac{\hat{\textbf{M}}_{\alpha,\beta} f(E_{\textbf{k},n})}{(E_{\textbf{k},n'}-E_{\textbf{k},n})^2}... \end{displaymath} \begin{equation} ...\bigg[\delta(E_{\textbf{k},n'}-E_{\textbf{k},n}+\hbar\omega)+\delta(E_{\textbf{k},n'}- E_{\textbf{k},n}-\hbar\omega)\bigg] \end{equation} This situation is unphysical because the interaction with electromagnetic field (even in the absence of photons, i.e. spontaneous emission) gives an intrinsic broadening to all exited states, the lifetime is finite and $\Gamma$ must be greater than zero. In the limit of small but non vanishing $\Gamma$ the dielectric tensor turns into the Drude-Lorentz one: \begin{displaymath} \epsilon_{2_{\alpha,\beta}}(\omega)=\frac{4 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n,\textbf{k}} \frac{d f(E_{\textbf{k},n})}{d E_{\textbf{k},n}}\frac{\eta \omega \hat{\textbf{M}}_{\alpha,\beta}} {\omega^4+\eta^2 \omega^2}+... \end{displaymath} \begin{displaymath} ...+\frac{8 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n\ne n'}\sum_{\textbf{k}} \frac{\hat{\textbf{M}}_{\alpha,\beta}}{E_{\textbf{k},n'}-E_{\textbf{k},n}}... \end{displaymath} \begin{equation} ...\frac{\Gamma \omega f(E_{\textbf{k},n})}{\big[(\omega_{\textbf{k},n'}-\omega_{\textbf{k},n})^2-\omega^2\big]^2+\Gamma^2\omega^2} \end{equation} while the real part comes from the Kramers-Kronig transformation: \begin{equation} \epsilon_{1_{\alpha,\beta}}(\omega)=1+\frac{2}{\pi}\int_{0}^{\infty}\frac{\omega' \epsilon_{2_{\alpha,\beta}}(\omega')} {\omega'^{2}-\omega^{2}}d\omega' \end{equation} \begin{displaymath} \epsilon_{1_{\alpha,\beta}}(\omega)=1-\frac{4 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n,\textbf{k}} \frac{d f(E_{\textbf{k},n})}{d E_{\textbf{k},n}}\frac{\omega^2 \hat{\textbf{M}}_{\alpha,\beta}} {\omega^4+\eta^2 \omega^2}+... \end{displaymath} \begin{displaymath} ...+\frac{8 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n\ne n'}\sum_{\textbf{k}} \frac{\hat{\textbf{M}}_{\alpha,\beta}}{E_{\textbf{k},n'}-E_{\textbf{k},n}}... \end{displaymath} \begin{equation} ...\frac{\big[(\omega_{\textbf{k},n'}-\omega_{\textbf{k},n})^2-\omega^2\big]f(E_{\textbf{k},n})} {\big[(\omega_{\textbf{k},n'}-\omega_{\textbf{k},n})^2 -\omega^2\big]^2+\Gamma^2\omega^2} \end{equation} finally the complex dielectric function is: \begin{displaymath} \epsilon_{\alpha,\beta}(\omega)=1-\frac{4 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n,\textbf{k}} \frac{d f(E_{\textbf{k},n})}{d E_{\textbf{k},n}}\frac{\hat{\textbf{M}}_{\alpha,\beta}} {\omega^2+i\eta\omega}+... \end{displaymath} \begin{displaymath} ...+\frac{8 \pi e^2}{\Omega N_{\textbf{k}} m^2}\sum_{n'\ne n}\sum_{\textbf{k}} \frac{\hat{\textbf{M}}_{\alpha,\beta}}{(E_{\textbf{k},n'}-E_{\textbf{k},n})}... \end{displaymath} \begin{displaymath} ...\frac{f(E_{\textbf{k},n})}{(\omega_{\textbf{k},n'}-\omega_{\textbf{k},n})^2+\omega^2+i\Gamma\omega} \end{displaymath} $\Gamma$ and $\eta$ are respectively \emph{intersmear} and \emph{intrasmear}. The squared matrix elements are defined as follow: \begin{equation} \hat{\textbf{M}}_{\alpha,\beta}=\langle u_{\textbf{k},n'}\vert\hat{\textbf{p}}_{\alpha}\vert u_{\textbf{k},n}\rangle \langle u_{\textbf{k},n}\vert\hat{\textbf{p}}_{\beta}^{\dagger}\vert u_{\textbf{k},n'}\rangle \label{nos} \end{equation} \begin{equation} \propto u_{\textbf{k},n'}^{\star}(\textbf{r})\frac{d}{d x_{\alpha}}u_{\textbf{k},n}(\textbf{r}) u_{\textbf{k},n}^{\star}(\textbf{r})\frac{d}{d x_{\beta}}u_{\textbf{k},n'}(\textbf{r}) \end{equation} the double index reveals the tensorial nature of $\epsilon_{2}(\omega)$, while $\vert u_{\textbf{k},n}\rangle$ is a factor of the single particle Bloch function obtained by the PW's DFT calculation. In all the cases illustrated above the non-local contribution due to the pseudopotential is neglected, actually the correction to the matrix element that take into account the non-local part of the Hamiltonian it's not implemented. From the previews definition of the imaginary part of the dielectric function it is easy to see that even the local-field contributions are not implemented.\\ PW works on a plane wave set so the Bloch functions of the matrix element (\ref{nos}) are decomposed as follow: \begin{equation} \vert \psi_{\textbf{k},n}\rangle=e^{i\textbf{G}\cdot\textbf{r}}u_{\textbf{k},n}=\frac{1}{\sqrt{V}}\sum_{\textbf{G}}a_{n,\textbf{k},\textbf{G}} e^{i(\textbf{k}+\textbf{G})\cdot\textbf{r}} \end{equation} and consequently: \begin{equation} \hat{\textbf{M}}_{\alpha,\beta}=\bigg(\sum_{\textbf{G}}a^{\star}_{n,\textbf{k},\textbf{G}}a_{n',\textbf{k},\textbf{G}} G_{\alpha}\bigg) \bigg(\sum_{\textbf{G}}a^{\star}_{n,\textbf{k},\textbf{G}}a_{n',\textbf{k},\textbf{G}} G_{\beta}\bigg) \end{equation} defined in this way the matrix element accounts only for interband transitions, i.e. vertical transition in which the electron momentum $\textbf{k}$ is conserved (optical approximation). In standard optics the intraband transitions give a neglectable contribution due to the very low momentum transfered by the incoming/outcoming photon.\\ Operating a London transformation upon $\epsilon_{2_{\alpha,\beta}}(\omega)$, it's possible to obtain the whole dielectric tensor calculated on the imaginary frequency axe $\epsilon_{\alpha,\beta}(i\omega)$. \begin{equation} \epsilon_{\alpha,\beta}(i\omega)=1+\frac{2}{\pi}\int_{0}^{\infty}\frac{\omega' \epsilon_{2_{\alpha,\beta}}(\omega')} {\omega'^{2}+\omega^{2}}d\omega' \end{equation} The LOSS spectrum is proportional to the imaginary of the inverse dielectric tensor, that is: \begin{equation} Imm\Bigg\{\frac{1}{\epsilon_{\alpha,\beta}(\omega)}\Bigg\}= \frac{\epsilon_{2_{\alpha,\beta}}(\omega)}{\epsilon_{1_{\alpha,\beta}}^{2}(\omega)+ \epsilon_{2_{\alpha,\beta}}^{2}(\omega)} \end{equation} this quantity provides a useful check of the dielectric tensor calculation because it reaches its maximum at the bulk plasmon frequency $\Omega_{p}$, where the real and imaginary parts cross their paths at higher frequency. The same quantity (in eV) is numerically evaluated using the following sum rule: \begin{equation} \int_{0}^{\infty}\omega\epsilon_{2_{\alpha,\beta}}(\omega)d\omega=\frac{\pi}{2}\Omega_{p} \end{equation} The result of this calculation is printed in the standard output file. \end{document} espresso-5.1/PP/Doc/user_guide.out0000644000175000017500000000125512341373153015217 0ustar mbamba\BOOKMARK [1][-]{section.1}{Introduction}{}% 1 \BOOKMARK [1][-]{section.2}{People and terms of use}{}% 2 \BOOKMARK [1][-]{section.3}{Compilation}{}% 3 \BOOKMARK [1][-]{section.4}{Usage}{}% 4 \BOOKMARK [2][-]{subsection.4.1}{Plotting selected quantities}{section.4}% 5 \BOOKMARK [2][-]{subsection.4.2}{Band structure, Fermi surface}{section.4}% 6 \BOOKMARK [2][-]{subsection.4.3}{Projection over atomic states, DOS}{section.4}% 7 \BOOKMARK [2][-]{subsection.4.4}{Wannier functions}{section.4}% 8 \BOOKMARK [2][-]{subsection.4.5}{Interfaces to/from other code}{section.4}% 9 \BOOKMARK [2][-]{subsection.4.6}{Other tools}{section.4}% 10 \BOOKMARK [1][-]{section.5}{Troubleshooting}{}% 11 espresso-5.1/PP/Doc/INPUT_bgw2pw.def0000644000175000017500000000460512341372773015213 0ustar mbambainput_description -distribution {Quantum Espresso} -package PWscf -program bgw2pw.x { toc {} intro { Converts BerkeleyGW WFN and RHO files to the format of pw.x. This can be useful, for example, if you generate the plane waves on top of the valence bands and want to diagonalize them in pw.x. Look at the documentation for SAPO code in BerkeleyGW for more information. bgw2pw.x reads common parameters from file prefix.save/data-file.xml and writes files prefix.save/charge-density.dat (charge density in R-space), prefix.save/gvectors.dat (G-vectors for charge density and potential), prefix.save/K$n/eigenval.xml (eigenvalues and occupations for nth k-point), prefix.save/K$n/evc.dat (wavefunctions in G-space for nth k-point), and prefix.save/K$n/gkvectors.dat (G-vectors for nth k-point). bgw2pw.x doesn't modify file prefix.save/data-file.xml so make changes to this file manually (for example, you will need to change the number of bands if you are using bgw2pw.x in conjunction with SAPO code in BerkeleyGW). Structure of the input data: ============================ &INPUT_BGW2PW ... / } namelist INPUT_BGW2PW { var prefix -type STRING { status { MANDATORY } info { prefix of files saved by program pw.x } } var outdir -type STRING { default { './' } info { the scratch directory where the massive data-files are written } } var real_or_complex -type INTEGER { default { 2 } info { 1 | 2 1 for real flavor of BerkeleyGW (for systems with inversion symmetry and time-reversal symmetry) or 2 for complex flavor of BerkeleyGW (for systems without inversion symmetry and time-reversal symmetry) } } var wfng_flag -type LOGICAL { default { .FALSE. } info { read wavefunctions in G-space from BerkeleyGW WFN file } } var wfng_file -type STRING { default { 'WFN' } info { name of BerkeleyGW WFN input file. Not used if wfng_flag = .FALSE. } } var wfng_nband -type INTEGER { default { 0 } info { number of bands to write (0 = all). Not used if wfng_flag = .FALSE. } } var rhog_flag -type LOGICAL { default { .FALSE. } info { read charge density in G-space from BerkeleyGW RHO file } } var rhog_file -type STRING { default { 'RHO' } info { name of BerkeleyGW RHO input file. Not used if rhog_flag = .FALSE. } } } } espresso-5.1/PP/Doc/INPUT_DOS.txt0000644000175000017500000001050712341373153014500 0ustar mbamba*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: dos.x / PWscf / Quantum Espresso ------------------------------------------------------------------------ Purpose of dos.x: calculates the Density of States (DOS) (separated into up and down components for DSDA) Structure of the input data: ============================ &DOS ... / IMPORTANT: since v.5 namelist name is &dos and no longer &inputpp ======================================================================== NAMELIST: &DOS +-------------------------------------------------------------------- Variable: prefix Type: CHARACTER Default: 'pwscf' Description: prefix of input file produced by pw.x (wavefunctions are not needed) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: CHARACTER Description: directory containing the input data, i.e. the same as in pw.x Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ngauss Type: INTEGER Default: 0 Status: optional Description: Type of gaussian broadening: = 0 Simple Gaussian (default) = 1 Methfessel-Paxton of order 1 = -1 Marzari-Vanderbilt "cold smearing" =-99 Fermi-Dirac function +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: degauss Type: REAL Description: gaussian broadening, Ry (not eV!) see below +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: Emin, Emax Type: REAL Default: band extrema Description: min, max energy (eV) for DOS plot. If unspecified, the lower and/or upper band value, plus/minus 3 times the value of the gaussian smearing if present, will be used. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: DeltaE Type: REAL Description: energy grid step (eV) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fildos Type: CHARACTER Default: "prefix".dos Description: output file containing DOS(E) +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== :::: Notes ::: Output The total DOS (states/eV plotted vs E in eV) is written to file "fildos" ::: Important ! The tetrahedron method is used if - the input data file has been produced by pw.x using the option occupations='tetrahedra', AND - a value for degauss is not given as input to namelist &dos Gaussian broadening is used in all other cases: - if degauss is set to some value in namelist &dos, that value (and the optional value for ngauss) is used - if degauss is NOT set to any value in namelist &dos, the value of degauss and of ngauss are read from the input data file (they will be the same used in the pw.x calculations) - if degauss is NOT set to any value in namelist &dos, AND there is no value of degauss and of ngauss in the input data file, degauss=DeltaE (in Ry) and ngauss=0 will be used espresso-5.1/PP/Doc/INPUT_PROJWFC.txt0000644000175000017500000002606712341373153015175 0ustar mbamba*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: projwfc.x / PWscf / Quantum Espresso ------------------------------------------------------------------------ Purpose of projwfc.x: projects wavefunctions onto orthogonalized atomic wavefunctions, calculates Lowdin charges, spilling parameter, projected DOS (separated into up and down components for lSDA) alternatively, computes the local DOS(E), integrated in volumes given in input Structure of the input data: ============================ &PROJWFC ... / ======================================================================== NAMELIST: &PROJWFC +-------------------------------------------------------------------- Variable: prefix Type: CHARACTER Description: Prefix of input file produced by pw.x (wavefunctions are needed). Default: 'pwscf' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: CHARACTER Description: directory containing the input data, i.e. the same as in pw.x Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ngauss Type: INTEGER Default: 0 Description: Type of gaussian broadening: 0 ... Simple Gaussian (default) 1 ... Methfessel-Paxton of order 1 -1 ... Marzari-Vanderbilt "cold smearing" -99 ... Fermi-Dirac function +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: degauss Type: REAL Default: 0.0 Description: gaussian broadening, Ry (not eV!) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: Emin, Emax Type: REAL Default: (band extrema) Description: min & max energy (eV) for DOS plot +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: DeltaE Type: REAL Description: energy grid step (eV) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lsym Type: LOGICAL Default: .true. Description: if true the projections are symmetrized +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: filpdos Type: CHARACTER Description: prefix for output files containing PDOS(E) Default: (value of prefix variable) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: filproj Type: CHARACTER Default: (standard output) Description: file containing the projections +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lwrite_overlaps Type: LOGICAL Default: .false. Description: if .true., the overlap matrix of the atomic orbitals prior to orthogonalization is written to the atomic_proj datafile. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lbinary_data Type: LOGICAL Default: .false. Description: if .true., the atomic_proj datafile is written in binary fmt. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: kresolveddos Type: LOGICAL Default: .false. Description: if .true. the k-resolved DOS is computed: not summed over all k-points but written as a function of the k-point index. In this case all k-point weights are set to unity +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tdosinboxes Type: LOGICAL Default: .false. Description: if .true. compute the local DOS integrated in volumes volumes are defined as boxes with edges parallel to the unit cell, containing the points of the (charge density) FFT grid included within irmin and irmax, in the three dimensions: from irmin(j,n) to irmax(j,n) for j=1,2,3 (n=1,n_proj_boxes) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: n_proj_boxes Type: INTEGER Default: 1 Description: number of boxes where the local DOS is computed +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: irmin Type: INTEGER Default: 1 Description: first point to be included in the box +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: irmax Type: INTEGER Default: 0 Description: last point to be included in the box +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: plotboxes Type: LOGICAL Default: .false. Description: if .true., the boxes are written in output as as xsf files with 3D datagrids, valued 1.0 inside the box volume and 0 outside (visualize them as isosurfaces with isovalue 0.5) +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== :::: Notes ::: Format of output files Projections are written to standard output, and also to file filproj if given as input. The total DOS and the sum of projected DOS are written to file "filpdos".pdos_tot. * The format for the collinear, spin-unpolarized case and the non-collinear, spin-orbit case is: E DOS(E) PDOS(E) ... * The format for the collinear, spin-polarized case is: E DOSup(E) DOSdw(E) PDOSup(E) PDOSdw(E) ... * The format for the non-collinear, non spin-orbit case is: E DOS(E) PDOSup(E) PDOSdw(E) ... In the collinear case and the non-collinear, non spin-orbit case projected DOS are written to file "filpdos".pdos_atm#N(X)_wfc#M(l), where N = atom number , X = atom symbol, M = wfc number, l=s,p,d,f (one file per atomic wavefunction found in the pseudopotential file) * The format for the collinear, spin-unpolarized case is: E LDOS(E) PDOS_1(E) ... PDOS_2l+1(E) ... where LDOS = \sum m=1,2l+1 PDOS_m(E) and PDOS_m(E) = projected DOS on atomic wfc with component m * The format for the collinear, spin-polarized case and the non-collinear, non spin-orbit case is as above with two components for both LDOS(E) and PDOS_m(E) In the non-collinear, spin-orbit case (i.e. if there is at least one fully relativistic pseudopotential) wavefunctions are projected onto eigenstates of the total angular-momentum. Projected DOS are written to file "filpdos".pdos_atm#N(X)_wfc#M(l_j), where N = atom number , X = atom symbol, M = wfc number, l=s,p,d,f and j is the value of the total angular momentum. In this case the format is: E LDOS(E) PDOS_1(E) ... PDOS_2j+1(E) ... If kresolveddos=.true., the k-point index is prepended to the formats above, e.g. (collinear, spin-unpolarized case) ik E DOS(E) PDOS(E) All DOS(E) are in states/eV plotted vs E in eV ::: Orbital Order Order of m-components for each l in the output: 1, cos(phi), sin(phi), cos(2*phi), sin(2*phi), .., cos(l*phi), sin(l*phi) where phi is the polar angle:x=r cos(theta)cos(phi), y=r cos(theta)sin(phi) This is determined in file flib/ylmr2.f90 that calculates spherical harmonics. for l=1: 1 pz (m=0) 2 px (real combination of m=+/-1 with cosine) 3 py (real combination of m=+/-1 with sine) for l=2: 1 dz2 (m=0) 2 dzx (real combination of m=+/-1 with cosine) 3 dzy (real combination of m=+/-1 with sine) 4 dx2-y2 (real combination of m=+/-2 with cosine) 5 dxy (real combination of m=+/-2 with sine) ::: Defining boxes for the Local DOS(E) Boxes are specified using the variables irmin and irmax: FFT grid points are included from irmin(j,n) to irmax(j,n) for j=1,2,3 and n=1,...,n_proj_boxes irmin and irmax range from 1 to nr1 or nr2 or nr3 Values larger than nr1/2/3 or smaller than 1 are folded to the unit cell. If irmax Purpose of bands.x: Rewrite the bands ordering them using the overlap of the wave-functions on neighbor k points and calculate properties of each eigen-function. Presently it can calculate: (a) The expectation value of the spin operator on each spinor wave-function. (b) The symmetry properties of each wavefunction. With this option the bands are not ordered according to the overlap. The input data of this program are read from standard input or from a file and have the following format: Structure of the input data: ============================ &BANDS ... / prefix of files saved by program pw.x directory containing the input data, i.e. the same as in pw.x value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise file "filband" contains the bands In the lsda case select: 1 = spin-up 2 = spin-down If true writes a file filband.i with the expectation values of the spin operator on the spinor wave-functions. (only in the noncollinear case). If .true. the bands are classified according to the irreducible representations of the small group of k. A file "filband".rap with the same format of "filband" is written. .false. If .true. writes the eigenvalues in the output file without changing their order. .false. If .true. writes the eigenvalues in the output file in a 2D format readable by gnuplot. Band ordering is not changed. Each band is written in a different file called filband.# with the format: xk, yk, energy xk, yk, energy .. .. .. energies are written in eV and xk in units 2\pi/a. if lsym=.true. makes the symmetry analysis only for k points between firstk to lastk espresso-5.1/PP/Doc/INPUT_PROJWFC.xml0000644000175000017500000002077112341373153015152 0ustar mbamba Purpose of projwfc.x: projects wavefunctions onto orthogonalized atomic wavefunctions, calculates Lowdin charges, spilling parameter, projected DOS (separated into up and down components for lSDA) alternatively, computes the local DOS(E), integrated in volumes given in input Structure of the input data: ============================ &PROJWFC ... / Prefix of input file produced by pw.x (wavefunctions are needed). 'pwscf' directory containing the input data, i.e. the same as in pw.x value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise 0 Type of gaussian broadening: 0 ... Simple Gaussian (default) 1 ... Methfessel-Paxton of order 1 -1 ... Marzari-Vanderbilt "cold smearing" -99 ... Fermi-Dirac function 0.0 gaussian broadening, Ry (not eV!) min & max energy (eV) for DOS plot (band extrema) energy grid step (eV) .true. if true the projections are symmetrized prefix for output files containing PDOS(E) (value of prefix variable) (standard output) file containing the projections .false. if .true., the overlap matrix of the atomic orbitals prior to orthogonalization is written to the atomic_proj datafile. .false. if .true., the atomic_proj datafile is written in binary fmt. .false. if .true. the k-resolved DOS is computed: not summed over all k-points but written as a function of the k-point index. In this case all k-point weights are set to unity .false. if .true. compute the local DOS integrated in volumes volumes are defined as boxes with edges parallel to the unit cell, containing the points of the (charge density) FFT grid included within irmin and irmax, in the three dimensions: from irmin(j,n) to irmax(j,n) for j=1,2,3 (n=1,n_proj_boxes) 1 number of boxes where the local DOS is computed 1 first point to be included in the box 0 last point to be included in the box .false. if .true., the boxes are written in output as as xsf files with 3D datagrids, valued 1.0 inside the box volume and 0 outside (visualize them as isosurfaces with isovalue 0.5)
Projections are written to standard output, and also to file filproj if given as input. The total DOS and the sum of projected DOS are written to file "filpdos".pdos_tot. * The format for the collinear, spin-unpolarized case and the non-collinear, spin-orbit case is: E DOS(E) PDOS(E) ... * The format for the collinear, spin-polarized case is: E DOSup(E) DOSdw(E) PDOSup(E) PDOSdw(E) ... * The format for the non-collinear, non spin-orbit case is: E DOS(E) PDOSup(E) PDOSdw(E) ... In the collinear case and the non-collinear, non spin-orbit case projected DOS are written to file "filpdos".pdos_atm#N(X)_wfc#M(l), where N = atom number , X = atom symbol, M = wfc number, l=s,p,d,f (one file per atomic wavefunction found in the pseudopotential file) * The format for the collinear, spin-unpolarized case is: E LDOS(E) PDOS_1(E) ... PDOS_2l+1(E) ... where LDOS = \sum m=1,2l+1 PDOS_m(E) and PDOS_m(E) = projected DOS on atomic wfc with component m * The format for the collinear, spin-polarized case and the non-collinear, non spin-orbit case is as above with two components for both LDOS(E) and PDOS_m(E) In the non-collinear, spin-orbit case (i.e. if there is at least one fully relativistic pseudopotential) wavefunctions are projected onto eigenstates of the total angular-momentum. Projected DOS are written to file "filpdos".pdos_atm#N(X)_wfc#M(l_j), where N = atom number , X = atom symbol, M = wfc number, l=s,p,d,f and j is the value of the total angular momentum. In this case the format is: E LDOS(E) PDOS_1(E) ... PDOS_2j+1(E) ... If kresolveddos=.true., the k-point index is prepended to the formats above, e.g. (collinear, spin-unpolarized case) ik E DOS(E) PDOS(E) All DOS(E) are in states/eV plotted vs E in eV Order of m-components for each l in the output: 1, cos(phi), sin(phi), cos(2*phi), sin(2*phi), .., cos(l*phi), sin(l*phi) where phi is the polar angle:x=r cos(theta)cos(phi), y=r cos(theta)sin(phi) This is determined in file flib/ylmr2.f90 that calculates spherical harmonics. for l=1: 1 pz (m=0) 2 px (real combination of m=+/-1 with cosine) 3 py (real combination of m=+/-1 with sine) for l=2: 1 dz2 (m=0) 2 dzx (real combination of m=+/-1 with cosine) 3 dzy (real combination of m=+/-1 with sine) 4 dx2-y2 (real combination of m=+/-2 with cosine) 5 dxy (real combination of m=+/-2 with sine) Boxes are specified using the variables irmin and irmax: FFT grid points are included from irmin(j,n) to irmax(j,n) for j=1,2,3 and n=1,...,n_proj_boxes irmin and irmax range from 1 to nr1 or nr2 or nr3 Values larger than nr1/2/3 or smaller than 1 are folded to the unit cell. If irmax<irmin FFT grid points are included from 1 to irmax and from irmin to nr1/2/3 * The tetrahedron method is presently not implemented. * Gaussian broadening is used in all cases: - if degauss is set to some value in namelist &projwfc, that value (and the optional value for ngauss) is used - if degauss is NOT set to any value in namelist &projwfc, the value of degauss and of ngauss are read from the input data file (they will be the same used in the pw.x calculations) - if degauss is NOT set to any value in namelist &projwfc, AND there is no value of degauss and of ngauss in the input data file, degauss=DeltaE (in Ry) and ngauss=0 will be used Obsolete variables, ignored: io_choice smoothing
espresso-5.1/PP/Doc/INPUT_pw_export.def0000644000175000017500000000360112341372773016025 0ustar mbambainput_description -distribution {Quantum Espresso} -package PWscf -program pw_export.x { toc {} intro { Structure of the input data: ============================ &INPUTPP ... / } namelist INPUTPP { var prefix -type STRING { status { MANDATORY } info { the first part of the name of all the file written by the code should be equal to the value given in the main calculations. } } var outdir -type STRING { default { "./" } info { the scratch directory where the massive data-files are written } } var pseudo_dir -type STRING { default { "./" } info { directory containing pseudopotential (PP) files } } dimension psfile -start 1 -end ntyp -type STRING { default { "" } info { files containing i-th pseudopotential, where i=1, N_type. PP numbering must follow the ordering defined in the input of pw.x } } var single_file -type LOGICAL { default { .FALSE. } info { if .TRUE. one-file output is produced } } var ascii -type LOGICAL { default { .FALSE. } info { if .TRUE. output files are textual, otherwise they are partly binary. } } var pp_file -type STRING { default { "prefix.export/" } info { Output file. If it is omitted, a directory "prefix.export/" is created in outdir and some output files are put there. Anyway all the data are accessible through the "prefix.export/index.xml" file which contains implicit pointers to all the other files in the export directory. If reading is done by the IOTK library all data appear to be in index.xml even if physically it is not. } } var uspp_spsi -type LOGICAL { default { .FALSE. } info { when using USPP, if set .TRUE. the code writes S | psi > and | psi > vectors separately in the output file. } } } }espresso-5.1/PP/Doc/input_xx.xsl0000777000175000017500000000000012341373153021703 2../../dev-tools/input_xx.xslustar mbambaespresso-5.1/PP/Doc/INPUT_bgw2pw.html0000644000175000017500000002426512341373154015417 0ustar mbamba

Input File Description

Program: bgw2pw.x / PWscf / Quantum Espresso

TABLE OF CONTENTS

INTRODUCTION

&INPUT_BGW2PW

prefix | outdir | real_or_complex | wfng_flag | wfng_file | wfng_nband | rhog_flag | rhog_file

INTRODUCTION

Converts BerkeleyGW WFN and RHO files to the format of pw.x.
This can be useful, for example, if you generate the plane waves
on top of the valence bands and want to diagonalize them in pw.x.
Look at the documentation for SAPO code in BerkeleyGW for more information.

bgw2pw.x reads common parameters from file prefix.save/data-file.xml and
writes files prefix.save/charge-density.dat (charge density in R-space),
prefix.save/gvectors.dat (G-vectors for charge density and potential),
prefix.save/K$n/eigenval.xml (eigenvalues and occupations for nth k-point),
prefix.save/K$n/evc.dat (wavefunctions in G-space for nth k-point), and
prefix.save/K$n/gkvectors.dat (G-vectors for nth k-point).

bgw2pw.x doesn't modify file prefix.save/data-file.xml so make changes to this
file manually (for example, you will need to change the number of bands if you
are using bgw2pw.x in conjunction with SAPO code in BerkeleyGW).

Structure of the input data:
============================

   &INPUT_BGW2PW
     ...
   /
   

Namelist: INPUT_BGW2PW

prefix STRING
Status: MANDATORY
prefix of files saved by program pw.x
         
outdir STRING
Default: './'
the scratch directory where the massive data-files are written
         
real_or_complex INTEGER
Default: 2
1 | 2
1 for real flavor of BerkeleyGW (for systems with inversion symmetry and
time-reversal symmetry) or 2 for complex flavor of BerkeleyGW (for systems
without inversion symmetry and time-reversal symmetry)
         
wfng_flag LOGICAL
Default: .FALSE.
read wavefunctions in G-space from BerkeleyGW WFN file
         
wfng_file STRING
Default: 'WFN'
name of BerkeleyGW WFN input file. Not used if wfng_flag = .FALSE.
         
wfng_nband INTEGER
Default: 0
number of bands to write (0 = all). Not used if wfng_flag = .FALSE.
         
rhog_flag LOGICAL
Default: .FALSE.
read charge density in G-space from BerkeleyGW RHO file
         
rhog_file STRING
Default: 'RHO'
name of BerkeleyGW RHO input file. Not used if rhog_flag = .FALSE.
         
This file has been created by helpdoc utility.
espresso-5.1/PP/Doc/eps_man.log0000644000175000017500000001731112341373153014460 0ustar mbambaThis is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=pdflatex 2013.10.8) 28 MAY 2014 16:44 entering extended mode restricted \write18 enabled. %&-line parsing enabled. **eps_man.tex (./eps_man.tex LaTeX2e <2011/06/27> Babel and hyphenation patterns for english, dumylang, nohyphenation, it alian, loaded. (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size10.clo File: size10.clo 2007/10/19 v1.4h Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texlive/texmf-dist/tex/generic/babel/babel.sty Package: babel 2008/07/08 v3.8m The Babel package (/usr/share/texlive/texmf-dist/tex/generic/babel/english.ldf Language: english 2005/03/30 v3.3o English support from the babel system (/usr/share/texlive/texmf-dist/tex/generic/babel/babel.def File: babel.def 2008/07/08 v3.8m Babel common definitions \babel@savecnt=\count87 \U@D=\dimen103 ) \l@british = a dialect from \language\l@english \l@UKenglish = a dialect from \language\l@english \l@canadian = a dialect from \language\l@american \l@australian = a dialect from \language\l@british \l@newzealand = a dialect from \language\l@british )) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty Package: amsmath 2000/07/18 v2.13 AMS math features \@mathmargin=\skip43 For additional information on amsmath, use the `?' option. (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty Package: amstext 2000/06/29 v2.01 (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty File: amsgen.sty 1999/11/30 v2.0 \@emptytoks=\toks14 \ex@=\dimen104 )) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty Package: amsbsy 1999/11/29 v1.2d \pmbraise@=\dimen105 ) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty Package: amsopn 1999/12/14 v2.01 operator names ) \inf@bad=\count88 LaTeX Info: Redefining \frac on input line 211. \uproot@=\count89 \leftroot@=\count90 LaTeX Info: Redefining \overline on input line 307. \classnum@=\count91 \DOTSCASE@=\count92 LaTeX Info: Redefining \ldots on input line 379. LaTeX Info: Redefining \dots on input line 382. LaTeX Info: Redefining \cdots on input line 467. \Mathstrutbox@=\box26 \strutbox@=\box27 \big@size=\dimen106 LaTeX Font Info: Redeclaring font encoding OML on input line 567. LaTeX Font Info: Redeclaring font encoding OMS on input line 568. \macc@depth=\count93 \c@MaxMatrixCols=\count94 \dotsspace@=\muskip10 \c@parentequation=\count95 \dspbrk@lvl=\count96 \tag@help=\toks15 \row@=\count97 \column@=\count98 \maxfields@=\count99 \andhelp@=\toks16 \eqnshift@=\dimen107 \alignsep@=\dimen108 \tagshift@=\dimen109 \tagwidth@=\dimen110 \totwidth@=\dimen111 \lineht@=\dimen112 \@envbody=\toks17 \multlinegap=\skip44 \multlinetaggap=\skip45 \mathdisplay@stack=\toks18 LaTeX Info: Redefining \[ on input line 2666. LaTeX Info: Redefining \] on input line 2667. ) (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty Package: amssymb 2009/06/22 v3.00 (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty Package: amsfonts 2009/06/22 v3.00 Basic AMSFonts support \symAMSa=\mathgroup4 \symAMSb=\mathgroup5 LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' (Font) U/euf/m/n --> U/euf/b/n on input line 96. )) (/usr/share/texlive/texmf-dist/tex/latex/tools/verbatim.sty Package: verbatim 2003/08/22 v1.5q LaTeX2e package for verbatim enhancements \every@verbatim=\toks19 \verbatim@line=\toks20 \verbatim@in@stream=\read1 ) (./eps_man.aux) \openout1 = `eps_man.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 13. LaTeX Font Info: ... okay on input line 13. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 13. LaTeX Font Info: ... okay on input line 13. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 13. LaTeX Font Info: ... okay on input line 13. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 13. LaTeX Font Info: ... okay on input line 13. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 13. LaTeX Font Info: ... okay on input line 13. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 13. LaTeX Font Info: ... okay on input line 13. LaTeX Font Info: Try loading font information for U+msa on input line 17. (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd File: umsa.fd 2009/06/22 v3.00 AMS symbols A ) LaTeX Font Info: Try loading font information for U+msb on input line 17. (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd File: umsb.fd 2009/06/22 v3.00 AMS symbols B ) Underfull \vbox (badness 10000) has occurred while \output is active [] [1 {/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] Underfull \hbox (badness 2790) in paragraph at lines 42--44 \OT1/cmr/m/n/10 stan-dard in-put, this file con-tains two For-tran [] LaTeX Font Info: Try loading font information for OMS+cmr on input line 63. (/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <10> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 63. [1 ] [2] Overfull \hbox (14.30104pt too wide) detected at line 247 [][] \OT1/cmr/m/n/10 = [] [] \OML/cmm/m/it/10 a[]a[]G[][][] [] a[]a[]G[][] [] [3] [4 ] (./eps_man.aux) ) Here is how much of TeX's memory you used: 1483 strings out of 495048 17010 string characters out of 3181554 76964 words of memory out of 3000000 4693 multiletter control sequences out of 15000+200000 12023 words of font info for 47 fonts, out of 3000000 for 9000 14 hyphenation exceptions out of 8191 27i,9n,24p,223b,187s stack positions out of 5000i,500n,10000p,200000b,50000s
Output written on eps_man.pdf (5 pages, 212154 bytes). PDF statistics: 100 PDF objects out of 1000 (max. 8388607) 72 compressed objects within 1 object stream 0 named destinations out of 1000 (max. 500000) 1 words of extra memory for PDF output out of 10000 (max. 10000000) espresso-5.1/PP/Doc/eps_man.pdf0000644000175000017500000063627212341373153014465 0ustar mbamba%PDF-1.5 % 3 0 obj << /Length 678 /Filter /FlateDecode >> stream xڵT[O0}WmD/%1 F==D[,N80|tE{i|}8: I%IXEq$hW 1)cqCofqsЊ֛jkWO))ʄ{I.:׊*̀dcC牔 9{?\29/g۴>NT3>fI%kׁVW \±o@{}ojslw~?Xy3S˯m)7& o}S)QBX 뵩lLq(cF8&.PcͶroSJ%A(U 䇛gv"I1~ԫl70ׅjoxw [LU?^oy{ڸU5!> stream xڽZYܶ~ׯx9U@tjlGrʉhcUq!w}x`-=2Ѹ}|ݘon^|m&6BTmnn7d2J67(bDߵ[Gcmw-O7}nr*rSZixP7]+;dQ=FWQ7zU+X3c}Ge׍q*E4l~S&b=sU-P2iIh̽.ng4ZG/|6A%r|P>-,421" Ps 6]+ɓM1^N@g秉=mrI9"T,FOBM+x5s6&:$"ӇDٲ%Q8M2'pt3BٵDr$*XX-vxkiIr\¶H2k2)i:^ȗ!Q0ЕXˁlyM?O@UQ0c؞63~w( RAv2OTN'M>qR<)e8r@xB8uIÉrn],S&gjIEFՏ '1QY'Kh3@GH>r À)xo CeٵwP(^hs=g8" D S/` wiZ/e7دCWÌ^ $_ 3rks>.c="//?Aa6%Q Ƕsr*Kݳצ \3Ҟd%OP]3}n6Bə3MOՏNN~'JI 7/%R^,7ā̳0f_~D)uڥZ웏%Y쁐;~>rF[i݋R2}.1ގb:`dS}pW0e@L*<> stream x<]8rS8}/U>\Tv7U3Xf)>~{Pfة}A@wC{7E]֚EʚLz诸-[Zo;\-E3M1\]h]Knw4]Ւ~Wuw7W?ӢZ,@<4'DqfՖ7 -hjZђWPgm{`a|}oTem-L>h7jr`Mׯ$RvͺֽBΏs%]G]gFx*pJ|fl_bYjzWu|1@9%RZ{=VN@, ]6?'SFtݴe-U]AhAPQk07?RT:@c;LhOOp 9T7CmG|R$ayԈ U;ڹCw}].Sƕc_J$VdbZ W\~X5UBM뗙0j8Y6 .+A 4)V|3/f#33D+J#Hf7;;)oRr~ķP4">J^{ {Zc1@N ZӂWG^OgJQ0%b,R2^?}6ݛ+|n]=As)@{*O/}Yn$X VPV:7}Dؑ*| k w<@w}=-gs2]f-g`{rY >v 6xsW˵9>ᖹimBc!Q7CӡW]ġ^)] V^زt.b2CBPݶ[F"I[1\ڦәtCg'b4a.#YʅdATytUNNg?w2 mnS'^^[ns$*RG^H^`JW Pgf3%WOPﺛ1'NY#MdWbtLR :tbA{$5b|6tt3\%Ͷ޻`cAZLDiؽ̑vN4K`hşK#kT &弔A{~4X#\v$9VsP1@fS&M :d@s8y01Di }!Kت@ 憠RK?} F$47Bd-U_n%0T͐k$D2+9~<3* 4hE4M9 G,4H] ש ZFpuSsPOOGR*l6^^ 0LX[Z/Z HE >(n__nn!O#^> -G, Q0` N}r~P_xh.`E8t>fBD2 No29.*`+bXMV)4sҜPהf9Mu`j; U%jPtPOxhޟav(D (w}}--9>L/׋YS^Ľrccaܕ'((hࡥ%p;.-aaTFR\Q>+ϒ+ꇹ"\KJ#b9?%5P-_p ,U!  _u_ugGQ+R8c:+*i`. \Ǣ|MClL֏P33T?E@R5L `΄PBUCVSdVn> ;D]:|m .6w7<-H0$gn^Uټ3Ћp#c:85>VI9iN@Ar\a"F(qC05a0w~o*BԷրΦWm~PCbu}Xx+6`vi "Dw-h|(n6CϒpH爱Zjc۬ (>{찕I]| ʵ~n'rI qvVޅJM\,e]۶<k|u3 E`c4rn1wos.b5Gg(2g,{Fwajb0L:[ےsg)aJNLd{8w 0i0Hh)A#gGz4yn ,N_rstq!P55A[Gyd 4M+s<= ;2n-̱PjKTZL#A?O<87~Jp>B`/@6q4Dž1,=E'I&r_+ a] ou0u iC"Mέ笲*T9i<4eEE»hs=$SE2:rt-!0As ԇQsQY~jVg&KGd%(&8SD?ei/IAʆ:8$C7n/pE]1W^T +Aæ>zl>tc732AsDkX{hI]ߊcuȳJ8qN ̧G00]51[+.`Y+f,7~$@ 2*ʪSwuOV49#%R :#W~dq;4!Jܼ)Rcq33&zQ:%,-s R{(K\x\%ST4>,}l?zxc2ֺVSmv'vrdv#s,8I( _$h=}4+^F)_7w?lj4X#%{*Xbz`ⷈ=mBW?>x ٩UJʏJgm>oݻN{L]o]UЪ@Xm[1i5x ^x׍w^Yw wAڤʊ<(Rv'{j6wO sޢh$ZT:Ry0ld#L;Z%sI[P}2Jl`O%_34*/S/&lOwopRZtO*YPå,!OQ%f`w"YJÄMɬbfℍdS2G֥3 c<3$Z|N *uz)ԬTÎ, .I njFJQxuڙi endstream endobj 34 0 obj << /Length 5019 /Filter /FlateDecode >> stream x][㶕~_!?E]h˕*co6Mvj[Gbw36Ief=PDޙʼ4!<|߽yz%r~L*!Tެfzw ewo?O= {ɗ.Y>Vˮݻ݂y7SglAH  \+Φc ~Yvh+0I珹{3쵬^AG}ѕ+(Ik\̱,xEC]rfe|!^+&g 'ͪf2Ә')g6S2Mfb`T0 Vf{$lF!HYBD+7yu2kڌ Б (Wl &~+4PH"Vx7~~&L Oh՟V053Y73z߯wc-߉*\ڔF*v62^'i*.)"F$Td3/f4JGh H8u.SIZ E#PMע7H=mo f007v&|s445l\y4ɠ-"H=Aq4tKJ^/H2t~i P/:-n|XD5po`P0jҸ2Yvx\aq &k@CUB3b ʃ>BƊmR7*to)2C!%L.y1 DSP4%iF KٌtB(?`4Hr_Cq¯3NJ4%!Zߨ:W/ݷQaT/=4;1g)뮮گZY(mj[*mk=bS-TlJx\3TM6}mS竢* &9a ',+'bu=*r(c8 1݂ aR|^(}CS}*G`мu);+j7XX+l;,5W ^c`b՞We?=/n\zT͍#iEٮo린A1 ֋ȂπJ@3W P:QZ'](@)'='IBخ&:A|.5 +\Û;"U e WWq4nΏ4J 3Vhl:Ԩpg0J`2e,b/K uˉF_L0"#"MVv%;3-˓Ͼ|D&dP#oDO 'y'GՉГ /mRhi)ӚAqЪ|<iuh:v%MD9OCc469( D蛼jfcw,~b89]s z\U2"31/T Pفce'O2ԒF)&L} 0,#~ j8о+7dvx{L)'!׋r`|"6l&UTgt2(=EMGjtŊG(Nt.(s&y*[*V3j &  0 /B-c₉ʨ[g{"*X4Җ2{dIXQvۋBW|B9_q U/E^aq~*@MR:INSh 5+.|b=H"ָ8xhwuhĴ8Mdy=A,f5-\p'`W`:LlEl՜ ~,ͪ᝖"6Sꎊy~FoTg !X-W|S9Fzr={ŔʠR\cɀ20r|^2d/d@Hf,x8H wWznQt{9< 5f$1_G? čpLFgz'_b8.z=PÉY X@M/JDJvrbAF$ ᒞP8. b*Ԩų U i Nh9G)'og`ʣ;AASdn4cgrF]T3/IUܶ2 h\T.2$I[b&9,XLR8 {eġretm[I9A8;NP|HŞFc3Ux'28ЁjdCNjᱽB'@P(j-ޱ7 ך󁜧VouWWe+;ThwXH-?`\s3 O`{} t߉(7Ci#r>ذAcb"( [T>y[(L9]]cxflFDMKV#pG+{"O*9#m%j{!^orC=H3*蕟fڧtC߆hjՕl\6x"?rbd=[F(}헕"ǣ rޖ >N&>EIOeˆNRzl7A/e,}plfމ^eچB h85yQ2ӷSckc^A=\Q>cex?  P; A<ސ'G'd m>TIAф9 y&;j 3q-/BCogGT fsB"'"}au/"|!S6=$aDCV/eRD) :ʹrvS݊"e;3vDN}jG_X$W\FxLp}ev%oKDc L> jSbLJܿToiR*jg0KcTr30.oѼ5s!c0A&P&.2rFGאylNMdMc}Z̓vn<6vWp3 $[ " -yVyoOzkӶ5wG)Lr>:ۋjkw-P,Z3zFMGAطLhTH@"j]mmn $s>hzΥ2t"\~[W+;R5{[GxŎDbZ!MCojIJX*Aڶzzn~h`B&G |Ռ`p{IXOFߧbA}v O4W^~p]F+ҏJԓ7✓7biؑ,#~/ւH34e'+9BD]ŘTˢaD.C+E GQQĤ(aS͉G??^EuD=ci'nNk(aA.A^n~05-@ĺ~ ϫ &2E?v# endstream endobj 37 0 obj << /Length 1065 /Filter /FlateDecode >> stream xVK6W07 z - =4́Pڕle="OyۼhV1v{Dc$ڕS;Tۜi͍ߙ?5mNll#ܝ^SӄB>~ӍM5 |5e6of+-,瘱MM5@3f`> stream xڍP\-Kp%%kpw ! GsUUWu1u)kWSWRe1%A. ,̼1Q-f33#33+-o9 d/ 1'˛LPduX8yYx<xnVfF,@!rtty#ڔE;@dejlP0vڽe45L.ŁݝΙd!HCprNn@3oEc;_(jV*TA.N@hjote>84ӀWq,,w +?MMAvVs+[ < =췡3$Eo ldle#0oe7]~O hVwOkcr[ٛano M :Ly:Pqr9h}́o?^n@+ߊF,,3+S ?@?[<o`Im@1Lr tQG)* x1ppX9,,OfT+9'MɠkmhA6@_y pQ'tCOGolge<mCTBlW'b!"Yhdbj݅V@% ?3yTz RRd{Xnd7by[R3 `bAN;`-qL 7? 8,MAo$d/` ,ߢ |qE~*&п +_-ӿ?AN˿[^n5oezMA|uw5" {{4 ^KN_]P`h37nEFzVw$oINZ`?%(?z?ƩL#,N,< 'dP~vlutFQǼs([4_)T6PW+\c4F|=q:層x3F{ѽMK .| lZr$Lxph"\BY8.#|{]Ȣ,!_ YiO `ƍ"yb~ڪö_ 麗CoSMt 9I%Pku?D P35,@ Y֍3#Oci2G;Le>Al2iN$cN:k;Y7-ri5 S^ZFRIM+Jw W&6ݒ5و|fBdtD1^7g?R1UwQX?VPRW+Glr3|︸?aZ.)&ץ P'lTpJ 7yQvZeu.aazD |4]? O;hu؝'b׎,EDQUL V>*+yeDbUJ+wbrM6< 47y&tNnx4lU BvLt}|5DQ>oA B:#DX[ϼ%>x[3}ؓظG}#Y#U#ڵ՝ӥmHv^?3ϑDW\jEpHyj;{1ϿrKu!+~ !Xs!± (ynO%s,$j%x;uRt~!]OҦT Eu~N 5H(V5}]*H ީY%`NF~GSW!i9 ?̦)xBǙiKy6Qm(x  Wqk ݁_ L94v ni 6=oy0' : X݅N:5 l9G񠈔m߻ѕTˋ'MЕpC`%{F0z, Pv$,:d>Z euo ◎a3~0&qDi 1<|-1F_68Rf|ǥN1f#$*jtbS/ѻ*<8N*vC 乫2eMla.8fDeI_/f4#w'8K>D>4ʱ g ݃}2u +ggh|(#žL҇tcvGM \SHUYϟ?^H$BO2Gq ɣ͟ZzՐ~•I% t].r_4fEP1L]\uf%ԇ|#Yutx^:l+\B Ö2aWr[`S!UU~oV H]b+y@;hTX*Db-L;{..)F)2wVun3&3q_]{X <5)J0&Š^ $%}d^H\cc^wtlt&0/ fFҔ:;ȁ/=mh^I+7ry;Akv3%B0S x赿oV%IsAAhٻR򨞣j\?%Vη_4};fĤ_60bw/ & r3$W s(pڰ;)ީSNV1DV[t>MCYr3~z?R M706rzn&66w{B,YS_88C&WZ>thDR/|[&^׬LfRR1Jbe 8^l񙅬=R !x4(sfk䢗A-7>1IʾB j+Onm!2R(83kP4=I4HcM˲16e[>CɃvw0TN]"`#8b-\MhsΏ@sߢ+S}?4nn؞T=֬ρI<\}c z{!wx~y}:/L?ш3 σtdUܲGOk!ù|$sq<`ޢYnd(ao{p͞%P̧*ρ̧"|336cWY.'N02cz?_ w(1dJM]XHlM/]|7Sr"5-pl' 9nҟ/re9\ݿK=-fg_JW4TnO=~<]vE|N(N| 3gAAciGq\_2gafaFGD56vqtwe5E[w2j8o1,#ɑFJO09n&I\9-  AE-24 rٴ.'ܿb +Փ2Ld$5c+IcS@^Y:\:ccp˱>zZ0%,sUtM5W*= d@!\ݷ߷KdMyGTa)P)+6W?zU=O _ᆬ,4~~sbj.ɰY$Y+ǎaqJ#R"-T_ A0k%AY:#TV=qE?Omwpf%>5b*,~I WVKʶ#(iLOsmC5~fdQRuMu7ڟ ?,Ѷd Wƫ}]"J1q ;X7MZ8)X7ZIj8 {֪*\h#q @Ub""pjN!,iu Ox۩9O!Xey^P19$AjTC:)xӱјQ. ~I_,6 *<42Uo2RJTl׳TIf>bP(au ]۹?zB.Vmv'39d~ Ү7w4DEJ=Y K+XGwtv;ugW~m"\Q6;)Pua]0'zZԐPk] ` *? |-RʣSwK !:iADQ(EB\3)LBuQҾ:6{Okl O WlGjğu\d0tGR{yl닮):KP$9HX+XFWWrd0h TVfwᇂZEDmAxl_ yy<<5t ra-$V3/Mu+J/ׁ2I.QPVV$C4n蘈+ohBv`cy gUBcAf6d 9<5SY` %j>-EX)߄긢='٬3+p8v²Tk eʼn`۞%>RrͪxEZT!W[>n(n:nEyy*k>(t@4`꧿ZW%yX0f;/;y4y?T ʈb=cl[WݭA~?܄I4ϫci~*c$WV׸5&X'UM|vf<tM^+k7Y4Ua|Gm80a;RggU(#c:}1_@[`DgSA*`I>E\y@O]CiGsd`9M{Ƹ5TR-{_iKi?7toХuK?|xAGF+`qxDӎzbn,t> *N.|̉I ~Kr#i3j@OXue35Xe7FԄjQyT9V} yb'3kXJ?k+!@-j|OXBBҔT^w| #۬OaHТϽeL)0[D,S :rf?_ru4#ڞFJ3'PywTjgM]D=] 98cXt2b7n;cn=ޟγŭU[ k+ b2Qzh}aF_H K҇&ܰp 8 ܀ ois16Cʲ 2g=ew@ɋ[!jvl_t$VP'l'+VDC]oyUš6l>FD[3f;P<18 gk[H&+ sZs^>s't#T91rj^c]O_IGͺFBd8r@o)'rE j[^jUJNI"Яƅ"/m]DuSR;;Ok-xZQɫ@ L"30& =VOnIg^%p?j`$`ivv'DZhE|ra["G!83+˛6JH V8g2\3%F1 YͯPj@ZCn,ua%Kw^\+_15J9e8Rq.iuVO_r^B=}Oըw\j``$Bv!$ = P3 13 %hG QqtLy &Ie}>o0:r$n.II`CO5ujT |5B2*[x+HYZφd?7SIWo'|;(ypCVڇWAKδ:dP%_ Ŷ#>{t$)$:._i;ΌG,K b3:,)pT۪P獢ZziH%dǽ>0Mţ[v\uS&GpI7q ^Rke_:xbC 2=ıEB0cz2e 7W26EOν5WbP$.z# ݯ=A;mQ'8ڀE!Yg,|yԎo:"ɬfdֹpFHW J !u{4jmմ3(5peulb4JN{">K*.I@iI^ÏSFkidmp5c`pz$_چ1nUlS[05~Q_?n~зiQԘ->8gQ0$),P5pfmsj m%iqDu:۸{+h} &+ja "UGnh" 1̈ (Z ^׶gʁB>/;őu}]UG`}͂Ͳ$>CNFhG_\AOe>TᆫAyn侮ὲߗִ(YMl_% \P:ۜ")*Yt]h+6iۙh`L6 k`w\}pZe -`Vδ"+_, FPM؉'K4(A^]rIPŽCNEjtmb+6U!Q, q6{H#o6B(M;ɟ `__Io$/*[.JW< - %C0 :K#T߮$oD~;RovLp}MN56@{ȺLkx ^<:,d w^C#=w: =O}e~?M T!?Fả9x4K%_ @Y|H7GZd䋖Byk(^G¢>yoxBc9EM̘(U{h:6<6.^f#ɵkKYj֪ {mۆeGAMS*+zbidqF*~;jqCOCa2UtȈpk^5M}Ԯn%=_s4C\SUtXn֭YQ{ 7b.(UJGcl4+g]5M ZrBq]y}(o.w[b]*Gvqxh'd Km_0>˟T<ǬTfl˩@|NR<(AYP )uWO6q<B8$.6~bm4P U_fTƛ;Se@'oI5ZO)1ģ5]E,8A@cgJ-1M훰"MEm쿲aq 䈣H19ϥȆڹ3 IYƾ5[.dk$ܽshIwu j"Mcn=cVq{M\}Hv4 l;vRk='3n ~S`Jeݥ ѯL$V$-˱ li[ʨIA`7 w &d5+&1>eKf(nO˙\{b',guw9ahυ*kT'aUթoQ &8h\3%JF (cHrT(d4NE3Wt3Z=sE\JXY#U쟃Cu9[,SM ˨0B48I(;*qYk_f~߳FO*| u$OFi=(ZY$/-&|3/rEPgǨ(2R42:bZk5ڐٿ\ \ruQTayk)\(e N+6B3u x4dFGs.+M["i?÷qsj~Q!niP0FA֏ |62$7F(ÝM,8"mqBiʯ$<&:]PIt'ċ9/[v8Ռ\DZ˫|kw,2$‡D I|5d IW_"-k,ҞI]|vkkJcjpM q՚t}ku/>|g`hG |2WBIbbrH_${FFM`m^c39<Ǜ)Q&QHDQ ;]>ckXD;~lcQB&ߎ}Bqgӽl I3eJCxp؄Mm.U4Aȉ0m|p"e~̒c&ezc)N]ȡk-_hԑiDJ$nHW13vƫEˁJ$ endstream endobj 60 0 obj << /Length1 1724 /Length2 9361 /Length3 0 /Length 10448 /Filter /FlateDecode >> stream xڍT6 ҍ42])!=`d [JDJAJCCiiD^gl1ir8Y`.^n1/Ic3'ؿ,`^&B;*nP/?WHWX#\ rԹ*N0+6bg_5WTT;@ X`ux:YC`G ŀ@n+NAt`;2@76@B( swqـ]e53?;ܟ޿A`AN f@ME5n'2A]A duot@QFg'?Wk8  09'GG0 >yl}w/u9y|B/6n@} ,ͽ]`Ok{z^J_{~>N{`?- n`?+yy6k la^ ܯ/ffzc{@5%CU?)up yaA݁j VODe@ٰA~ߔG~(ߊݠz? ?z#>!oCB`kje6SF/DfWE'F c}p(rrzp\<<9kG~VUoJͯp6 |x{@npO`5Q!P7AHTD@ѯʁ6 _B/ /OO7/>=e/(")>2'9_=~ ~_¿K0l=;d$yeHy#a/Lkl\>K|2 }WXOho|1㵛|-t֚gFɺGoTu`QsI޸94 0ek{|V*:6^.s]44()*cENI0qr(sV%o;?x/b[k;%#1 Di1*ali̧$[@.fŋF(6-Vbd6DYU7خڭ7dޑ`nĎ_xJV)?f(sDYHYe#L:|@x;FF`LH"Q1y2[3.#sD~T5@*mwﶬ/q,N譹ǢStPT^1Tʐ",QG~R)\^Oa;?Ӣ+iS.kwLht7Ku0oF1a|n{Q 7txz6}dDED`4:9}5w+Ռ˦Kry{Y-MHB-]; ôΊpZlu ڬuZ8Gwj-Vh$ '_f7vhMDQӢO`r {}}_4σ<{M[dF-1Rk"\w"*D⯄fRUNV!~Ԓ̓VJl:L0[X`2mj-!M &]3q5SHؠʦaHa?vpO(yL)olp3S A1 D kƱ 00IǢBwjeҾ(q1WybGYʄjsM9nN}mYV/i\ E?(YX}. NF"Eru..m th 3;(uEݩF{D~vI P(Ět*ܕ:ߪ L-H,b}biuѴ%Vb1r?Lh3 k4"*;h)q%9"K?$ZgC%OT"GO;ouL_ g"?&nwI.HD,k#;Egpkj|B􃻄BkWly2(Ux΂@Z 1]>\zc:Bә 3lei׳PGbϨk$O{fW@O.NJ^5٤]8Iz[91D | QЩ-e}uH$.s8օ4trs??:M wJ 8qm0Z_%RRK֑dx6?ٷ(VdMIJ0'3~ 8o:;Q{޾Q;h)VAK^Rb[b*`g>eѴbYğzjK{Doa|Yl] x@ t9] Ny9SFTWBhFSȜxMKFhMF(7p j?m)8e"FrJx '1[*qIvHH ~0m*od,uUҨ.= ٬bI{i`/ɵ) "k!OhڊR;LJlhe+h]lR+ۦc[y \R'fOЕt|qϖpkX<oʓ&,8wV=&i̾PM.+7"%iч,Dt-Ja#,v`Š3>\I*DոMy7`+d>XgsHl3v R7cE0`4)E1zо̕h8'eEkڻnJ4 D Pڎ0/3o!9GokA/Cei&F3H#Rl'EksZeΥ4$_jה7 ;xBc>{e'ۆ48m]l&O4 ByDr8oޘ;@*癨oiF`@$uҀ> #c9ZrNhL4v.DcZH&22B8-iq-" RܜU|P`I3끊~wm*:,2S%白zOj,b+UKo'iZ xo0=V,Κ> u*+8$ӑnicNϬ6Qn2bO^j:0gL~5F|Q7~3jvsr*45S$q{FH1o ]o^}~91۸ި1 Z t-2VIeμe;z`Vp#G(/@3LQhSvRBUAOOȶnj4o:,k ̶Z}[{V<:\Z;9`960~&ǥaIgo:LV@G\~ȧsPܻ UWb>+"א T!}2-}#)IjhdSkCe^9L%!yE;Af3y ^Ü9M"nG 9ֆ\cPlj&UᖄbLx7m }' ÕcQ !;"=,XC &;TjȬe:D:7bz);ٺqt8a8|<[|.mнⶳ<RݒMx|kcr`1}'4tlHd# .$A8QH6FDn1L-8'YX bA*l:e߼Lɹr[Bg f׻ñrq['+/nk\ܵqZI7my8]-= 7)it>kPpn. =/M~S"pӣ6! T D&MljmLp #16m YTd NT{8r4t~Yx+U82ubYxqqN~$e bu1ȆnRs!U"s{Bfgo;KBSu;.qlc2^aER{!Z/ne/ÚXPEGzisa-L8n^ mkrQcŇJo="M:m6v[Snl#0Fk<ľ}cg6$N(z\ӸוMÉu]%c8sc5Cy_~C%J/^ b #4UJϻc\p2B8zްL,#%Z'1N/?>a.t63rfZ7@yQMK>\EU/ͬOZ#?.7z>j\Mip$ltaФ)8~2}̶fFrኗ)Lf JU77 Ң~5"󸀮e#pX# d~֘4B{Ijc E:ղoJwUAОx?P]gG#7z;;#ŕj.x3%Q{T0,).X*?y0??G,y|h˳X?t>B(eO$Hs'i=T-?!qjU]ܙx\wi:$?~b?1:7a}t/';Ә7Pj1Z k33PzhXz Mk;z9 EF]j9dYJ;O)h-v:kgbkW`dĒ{3*^9\kO"GK67( f*ta>$>"xLjp>).9XN:glB%c2jEmS%Jݗ+)xH:q$wؾwID}OK$YL̈́;ElE =FFѢș_W!\T/OX{z zN#HKo4+# FSs̲߭)ƮI~@m%'/; )E 1:gvZc5X=1JTdS"OsmXSkآ7@2]!Πp JOi f (>VRD8pzx AўzpGʠnQߗIX~lf[e G'xnlKy9]CC!3qQ@x2 y؍z d@ڋ`ޞvLG:_g1qs֑njyF01)h z T[xut|U6tjѕ-2Km@-I̓뮙3ܑtj :E<2GH__$w%xphKH 9 ٸV秭5˞0~wB!(?B y\ne ?C X3muQAmAg% Q<>6+5s=_hf~cyb W6 բ4~lմ4\s~c`||w.U %ETA&~ϗ~}6y<G%KPZF^QθԆgl|0¿!"G2 6|zU Ѳ5T-FtrܒhZZb4r'otA7Qm+S s$EXͪR~"!i~)9ۗfSYS^:#jy9nQ'=~Ε`BĠ[힥/2=W䌠ܵ'q~kL#$سjxsȃHFuȥ sǮ ՇsRf.V; ys_1 fq5KFZGa"-cjtSk>2^M`sE}]ﴇѨ4- Je״ƄӘe&B z4X<>]}EBϞ\^<#r:eoP V^Z_ OF3vobk$cpy~yzr,%*{C,qKBq~gܵI#M{r4 7vj*xY=) ym34êe1L}h}Mm< y]qCջCms0L? Q2h|kiµuŊɾ ӃAb{T *r!Y~c~ Җ~M{k"rEZLəd 9`d zS`>$8'PRgr)ɍ0Nׄ.w׾[% ^*Ծ]ggt*>ԻKͲEUpv=>ZEe@#+!Wv4bEj2)APeXNh ^`2)#[ G XSLJ)0_U±7NK.ěnӭ1=ևc]}LfQ#|-ŊĐ*E?YcuPx>GZgw*`h+894,Iji\ JY'VTy:lBA('e<"RB.5rӚӊ/!O>uwOqDS0mīF&6k4(f-lJc'lkb $|M6E8hr!\+ƙ! %:jBШpsFA=~U/}aԾ͏]M(nߩ:["ԝ> stream xڍuTkӭD"jB!JIEAA""EwAzJ/"Ezݻֽ+k%3g3߀+9`X A*)[H!qD  ȿGc1r C D*@a1@mOW TJA @1Do 'T{z"@m,T8@,#Bee~ܐ84 (" 4"HRˣw9QQooo^sR G⼐_p7f"` pH4H q@@-]; 7@tEJ#X7w8q:]@u]A8]Xb< vo+D#phw^vEQWb0*X77$*D+g.7#m h$%!8D Pқ#;DXw#2$p/$DoǿO(FH'4D3ϙ8|h ! F\/,?7SV3W2/, IBP q0ii[ .OF-#(yk-  X.#Y}$A wme_HpЮI BK濡?RVƺ:O'C OxuM@l3 &wEcX<׫( @G…:'ۅ$%0/ى 'I?O`bH.~ {ĢkA"cXčpeJW?( Sw?(J-gݚYWEq>q]Mv¦V~z#ieyx>g:nl/[6Z)ҡ>)&$ml A)C?0cfv p+ZՂXѨl͊7A^,yQI)( /s?0|udjyޤ;zPТ*5]Y-TzS+>PǥrSl.o4x u@ϴ1x.v }ͳ?:>].vRT 3Ti(:zi?("u뽞yN u{GYӀK!Si Xg/F}fH?c5"0^acdy/cJF<|^-Z>DFie]F-Y*x$+ɗ3'ʟTS[-^v,vw;7gG;GM41:ϕ{f܎|މ-}}CXnxr=,:dK؃ܾ܉=`~uE L11 v[GSxH6J H[e4Zzxtߩ{Ylj.KcR7-˿Mд\]*g@8/l \^{Uo`1(,**p^swf4˸>o߬\ : [_=کվoOt1^yX z@Ѳ䍣X z^YnH+ͼΓg\vWB&UjM4O{SsvUFɌ u鮱N_BqgeSu{Zirٖ> # 5"Nl1\#)wtK|jZW587!R*^j9EjYMTEJ=~C: #VyԘvSD||=wKS2D5&jvJIY~ JkY[1h.R4u;/ǡȓby-ELuϼx薺hZC,V r*r'U{iqn,am7D-6'K^OkWCB>tvyX-=~Y* m.yT ^P?<trjR,52[S*>(y}xObdu$,Dab(]Jא'֔- quWy$h1fN^jX9ZP0B9 ^`f2-¾=t9NG IfLP繵>IZ: 0/ #ZQygmIGJoE2N!{8Պ4(j8҃陹*EYѩ~Yٿ(k`-ۏM.|*]8EVzfFD֗V@XⵀdFG %> <F%b'dGW^ vGUF<=/LJQ e*e.|)Չ4m֭eXRs#G'յjC _/0x'ծ6c.IW_x]w"fyY1iv#WCW! U4?J"9zr yԝV>svJE>ʎؒϐ>O]J{%^ŹivZ 5w*I^1{Dv׏`.Wy 楤wl&a ;/露Y3ɏ*o|bO<=V}}G^y`&e­.qpsUe<3\r Qrh7]e?lνcn'!t_;Vl"M]ʪGuخNOf{cF57ϹQX}OXZ:|Mkef|3#NOT]>9wVNX˫94`aAfv2Z]xQb}?5G>* c^ 1J[SolSOŋtbx}NW͉`:'3U[+3Є,Y;sDu_Jj+]Z!opi:@W!OaM0GHKbJZPw}n E &q>v 6iwW_A̾-c'x2b`X9 c#V`nturJщr'Mr%ږ&SɤkV" Hj?ޑ6T8ɱ6oKsc@!rڥ|nr͒7\Uƙ222EQ} ?B;8J?kۓ ?8_WS <K)ĭ1˺i[Gy҃HYԮ8H׃KnWKqH/< L+WH<@YJPKAN;,n]W=}:[Wޠ&׼P?_xT0>ӫ,Xzu1lXr 8h}B}7Nm'xJQ0סw=: q0LKYp@ 5e3wڊqކ#{݇G~B |͸]/YULSyQ3`sH &jy+&)wP&B#_JWX5uD1\0րB"Hw 1v@d1ynuhchPh̡f&afl!Ь8 2`}}uoPs׽kg;;%(/z bP,gFa2IH\%RGszԈ7-~sN-]x'UiY~RH䓼k!(@m>*ls.Q+`õ2LLئde !hCQ,LL-iG+J/K]eW hg\Έ(;K ^Mwܽԩb dI>HȭSf%(;{\e6Pݡ*G0pKʱR4ﳱ{&VAk+|$mdj Y{Y>k>ua`f^\Dݝ _w#] YVkSR{ܶ?(y7~3t%&~nT[ F?'U% Qj|?Gd~G!6^K$"o,/-EeC U[+uhY/c26u@n6XG&+E79rMF$Ӽr:^ᠤ}py8,1zټ+3W?*e7^\ZvߕT&#K~H}!s1,w6Ca;ڠ{G|YۯxX\7JɆ<@bnR'˝9}$DԽ6N;.Aq~f?W7c=*>jc0|rVjRjyqz' 9|å3gn"3Ej !g,[ 4 @ݳm4e:Xmw[㊻1<_rՊ%`E$IL)?Y{8u~p#s4FyMJًLTm=YSԵJoxutCg=aJla4AYۣ>%*~R,K:z;vNw_QٸJi%',Q,oG~wz$B萟=lŝ6mcoضo@&Qk14fQc~*YYn6Zx/5T:չ){ r1\^TLܤ] QْVCN!1TԢnSmPz *9`t} p8Rq2VӋѥSL\E|)]ܭґEށO.ݔOx|+A^T' t=n݀}`~l6w.8ݥp}%$ﺟViAU~yKݽl55L@OT)F7kfgk;W^.E+dny]r`su^יjY"weO+Wo'-G6E̱4DS"/?)s[\aq#B~*ѝ|òJFoJQsʾJcC?j 'dH&&z2{("f{CE'2Q!]FǥnqY(\UMb_t~u×@pJ]QG ZzIE98alHjVՎ&c'Ø,9!z\X[p&SA^WQzW z$/_g}PW4 &_9OQ c.953۔d]͚it9`Ej(<(UOם])dv>yF&aȎZ!RU3&#L!鑇=sgM&+X lO,+7?qoiUfu'u]l kuu7W¯#8|\:Ml:6Bք9$9q>~pc`QLKiXFFdEZm#D& CAV&Fv endstream endobj 64 0 obj << /Length1 1413 /Length2 6444 /Length3 0 /Length 7402 /Filter /FlateDecode >> stream xڍtT ׮ t3%9t0C0t7HJH HI4HIwtzwݻֽkzݽ2ipH[- 8 - Ursqrsb11BXL (&d0N'Fa@eW GPGH-#! Aj@e8 $ wD@mlwe~2[yDD!%T#m!w-@%W fq[$Iݝ GHݡH[6pX!qb1um.:pk;)]+ (5 ?Ϊ؁tEJ[Z0O(h u5@H$; vpŃPŝ@|/x.҅ "ׯ4wSY!0 ֯=lwy%XCaVֿ@X:qή%\TXl H77 xXrJmCwZ߁B!wX.`7pzoÿ%, @aXdSCwG@=FwϛyYa/s}?c{9@^ai3j5OF%5(Y0E+nd-<_Y_ \~3)"h#]CPY`6%$0 z@4HK?;@aM ק_;Y}N\6cӿK,Vh+ #`OI@o;~ZA<~6Gޅ_r)Rx\<@.o_E-];.>XbMO-BC>WJSsI1?OcF4^b$Td-"N{?ϭ3H^{o5oLjie kj{͖tM*] kgg (L9ή¸y 5]%aZ*rE3ZdMѣ#91Y =ONoiذ|c xc/&ty] ɨQOTgE$5/Z5Ȏ%1V$%֫^z[?V_Oe ےT=j^H@u3^@n0pʙ.L$] 9A5;S;OeXil඙Ls#+ T_SD~7sؼ$l. !Ril:('+s2N5i/X$d+ 棻 # yRQ2Α/ NT!MSg@h'tTkEJf;ad֋MCىߺp]k = kFHxHzܬK&. דpdڭy1aƥlrȌt\Pj66UL<վwKKbgy9P0*Il /vuM]Ds'oMNBWm<&JM\"s S M1 A Y6\8gы|E,Y*_9O"򔺬࿧к o==^~}%T0*XpO( {OycBu~t $k{Fߍ+tOXFc) Vbc)R5̞mĝ gd8tkh W,x:ܾ#oP ,R;rTx]61\1O%9^f'g *ѴVku"M~*E$:;쏭ϩyx`xcp0d>#ܥ#5K!FWmU3s۞ $bj*I-ڵyrFY%a꺁~m.Mf-fN|;pTIjok0a<5zB9upe%[l[xYòуdνƗ^.U J.O5a5o:>ܠoƧ+4PȚ93z[wViLqSuU~FlҲOx'ԧ †+n)ZvpGd6=RtZi"9B0e6翘NTNjĽEo:}UDTAuW̯OVedQ0TJ9RK.`4x+"# +n MIUd.>1J)Z m.6|{-a_% :UN@z>M9ɹ.0W[lcm;m1n }"{,mPG[Np1rc\\[Bѣ_u7&N[f^d{>:ۛp+po#^I(㫷f0'kßHbeM75#b3b.j߶K' (L-d xVhZS۝hMYظ㿪5҉$USy=E+KZsR[f8?Y΍T Go?= :)֥O`^.mؗ_$*"_]5@ ָxAXNǯo~**Tz-G2ݎf7"5.yp(ΉqL%/sfE`/QzI S,}i7h('-mxZ'{ N@9tϗa.j<4gW;3 lM~0 }5=r=)?3{Cn KxCj7jԫǯ8>_zw)XJ 4@멶t"OO-@IG)5b$eN(yE4Ɨ;mBdi{8qj ='ZD\;& BEמdRɱ괿xӷfH`ťzW@~ƶ 5lJŲƕi:lnOϽ(޹V;(qI,N˓4%yȧ7hpϥ7ҟw+P!n'۽JZn>uώ}aU!~P5 םL,P=܉y 9BRO&MvjqvWK/) OQЋ]5K<#"{g8|"'L(Ajm 0hu$7YSśz+QzqVI)`t J=P%;vR3"t`p'%/Yh6d.\fnݚיx1XPѼ{,ǵ/^8ײ˅jU&L(oKX^X;쓵և~yęYg~gW,+ mu*yM]%nu(b}aBJČޛ 7e%ŁzYkƃq V}0d1G'ZURϡ6NYXEWօF&g|gFNNI1ʃ {aۋ +KgΎ] =% Au]yA1iw<, )(n"aP{7MTD=^%{)ұV|ϭ53b}bouJăSH&2T=e;rIbGEuW>r JAu7ñUt9*QxEakyiB݇~Im$EY9XQQ7\bH [.t.`qB{í$"`6J*#~1kRҤ;L' r/Lzmab rhMN-T_>ff*4z !Ĩ?SZ(0;#Zue <[DCZíHen"awZ`",DB&ѳ+ ~]n؂Tډ)5+w_#ۖw٥ݗ6X&?t j|UyxC?b$"XI2r,\j}8 1.PDF"ê<#G eQ6kUWsEΞ> =avwB՗*=,*Ϸ< ?a2Y` ; gP7aG7z _fK8рAq뚾:t;7T?Ll Y: oNMAȊT.+ߞqVi=7G[ JŲ,i ᨵCǑboPc]$oQ7[3khqwI;= P}e16tC.gS2BٙW39iLcoLeTLIʑsKaٹޱcES:<}3\}xf*2MDY砷/Ēb?`0zj8|GG詐pJR}r+dR P=M Ŧy+jmkڹ>krT>j_" YgWfB3O˚ӝݸZHs-/qPUJwvY;[vURL(onR*0{ .j M*:"vQD(M'b{OKa _#/j@d$&EFU,aS=dWE&zmd/&trc9Q>X+hhy})7RGWmno4vQj5{V Is{Ny"sշGOο q$(>UkEjɝ%곫vrX&]L?Q$;w5j֛0)&7aŏ(C' `F<6de)`K7U:HIyJݷ˨NMY4pRs/ \ KrFeJtg?~=&L4c-%DYNEYLL}Tq'̋ C$!}nIZ?me?;iMS؛MH㐽(*IÀ8So?c[xKqWuaJuZphԖ~ -dsO3褈 j 2S:Y{ L916[k;`mjzs5%U9} ݛ!"I+3ˉBӼq'0GT-k 9b%&*UZlQv<Ì [Dz;OG#AMd/A?Q탲kZsztXu J/K=շt~^ {M 6'Q>Frq@볎@_:K=1/gLgZ?C&D7?11_Rf0p}<'[nQSX{,Hs| >阬a?drݩA([͵ ۛǥeZǭPp 9y=SL#: Hyέm&ϫNfoyAd}(s]4:5EW-RYԾm,yain3#NxJcB4XmQ-zZ\MEfՃXQAq[UA>":dm->,s@fO4ЀF^[T_9߈rt;|#1?*9*7]N̮3&w;yl[idGS#Ua)WP``PG/GNmht\qTtbLk+ڏRuou}YҩI6UBk]m>C%mۊo~}~ U$p~ D}e?/3\rayvbӕoѬJ>`@Fiy]ztDjv\ W-(f&> stream xڍvT.]t %- C04 4H7"Ҡ(HI \s׺wZ3ώ~ʤ#@0$_d ౲@ΐxF; )wpే3(HE%E' < x pWyG-(.. A@mA0&qh rmϿBK9 ||^^^ w^87 tA!O2@ /+Czj ߹x.;@_M a7+dk wq|0{VEz# !~AA6w(@w n"yݡο8 sWf%X!~O݇:^0$;( lÕu)isGgADED7ցWWoK}᩟+`wGjsyBH@j@0ߩ!vwG@wdy7a`8-S21Rߠ<# w [y`qWx9 w 3w_-_Q'Rpva?8@{ C~"65њ0Q5$nI` uH[?>܅w :pw;/nln w[J0[8 @w0x`;;8WO|6-b@"{/H e0P.tB g07&&x#b>׻[?o&;'wLz ɿ?bun+v^'wߋguX svK"4oS$sJ'3~[-ؑo^J]mś\%@v( 1kN!WOk"?+x ,KY lr&<8d'_>2>N{/Xg(p1;_e IƌC?ʊ^3%عުȘ#<ل t!sip!OFp}^y[O4t-L X<]>ڰEߪ|+ 4+ˡxU`)B_4|yN= M16ZS3&^q_#NVܥR6+[6a~e`B'[%%"Th6!@;f1hg5Pؖgqyf欀)^U#o(M[7[j((.Mhq0(&6Q Ow$)ǼBMHp˨\L3aXT^SKm3(GwR/; }8=^ʥb÷YO`髉,?94tjkؔZmS[f/B)U_k8ڈiN OW3סKv%0#^U|/J/WJ#I{w*=\qn9|T콵vrFԨ\O't?FR<,3ƲFzgUv >+A#l'b[(;x!-KOHX3уZ,j5ls^zuj]n0ZoC1W>jaҠɵ &$^ >"5ǃ<(zRd.EӜ`͖]}7$ 5G0.V]x~U}b6Lȸ ?䝠WPgGO/Z“ɪJʀ' GJ-Z[3mv[ Jލ_5@\:ۖBC}M|SU(L2F U޽rڡ-N(`?`Ѿ|R^мA `YJQ!xrKizʣ+a*Ѹ%SI8 H$׭oWs %qХu H濺n,pJ0lt\cut _OOY@~3Kz  e?Mip~e`+k<[QvpoJu?ݺ{tɝ%|vكYi|!A]SC}NjPUkl}ci*V1.Q+ViUR _v U7yC)̃ji٤#UxD1dU^/_imDCGh,RdMIBYfh>wӳClNt.Y(>϶E>JW{f801,yxTQ%RWX+lů@E*8QMң9Ӝ4Zl#uէcuIݫ4!&*a'+ @bxۖqUX&xR0gs3/';PK:ezn3ㆼa,ƐK 62ZZrV۫ =v#b=$>Sx,FRfY+2wѱ; ?ǝ_& 2R,d9 &EVu Xy+%& ~a",5^?rO*r- ԅ0wz%>jjǸL>/pӻrP gYEZ3 ~Ez(zM#8G&Vxѵ=Hd}cCoYFnQF_zD1~|A {Kz1 wuJ/߂@ΩźEOTg5kBn>N/@e ^ VAn81M1bx+1? dPU+x{~;k2X{>AMI5A|ȓ~ NT[ %,_[ĢFW>:S-Nt6%TNWܥҽO餑HS0]>{{ w% Ehׄ4`fR Ң2S;X멁a_BCaADÇ1wi6 75 iۖWZM8J) F/]yVp>E_8W-4AU˿@9xn٦(NF,gP(N@BЪkU##o5ܞy7> X2cH`BnI˿ϼJ2̝3Sfa+{ق_d?d,Qo.iREVmٳ0㣤ꞹޗUi:' δAP/It@zs-LN*ѐu?7?xyxgЧh)v>xiE5Ͳ10Tӕ<":N^pe}RJv{g 4S_껺_mVgJ[qf'L"BuoLƺs_}'`Mq/0ZV@;oao1!$@=mGp* C>^D}r$/_Td6q p(\7>)PV9=Yh2+lˢM2\!$:Fe~% yWEw WhS PDYoڪ @-Àj1|<#.TU}(cDՏ"`(y@$oGGjOj Dn(cxDqwQSts䉞'=qCјW_`SoUk9dkE=k4{m.)Qu\SWs R|UUKˍ,:XK hZ8fy70яGU>ɼj9m\I$Æ`gvm{\t zU4mF86Lz1ބӴ`@vErJq41$&nY8$Ӛr [C6i&4 |%";20=n &B[DMuΌ$〪BJyzrpmr^ag*2I,(9CmRB{f\0!"4靠2TAQ4ϊ0gqD1 D;X1|*|{0(m(=\V^-aƐ[ְ7@Sm,钆M;`m` &댷eT$FMuW/:Uz>yf3= N_|I>!~ƕM q9h7hbk{HZRo& B'|&W:j~] ʭty-|DX|xCl̦t0F[< Sqq$Ed'sO݈ ce[Lg3Dx]-tv@a1ctͩ51kE'NLOPW_|ZfjN6Wx9`͊*qY#==R &I X?jj" 6󋂣?؆wK",vêoX=OؐT ōź}iC/o]ƋgǹŌcW2^n)|V ~GHɸmDQwT=KH6SU/q`)W(s85073hЦ#RۿGF P]S4~PNb.]PC{.żqyshmXq@{Ļ,XA'TtIVH}>258vv\ `f9&d9T?B6,٘}iߊMM{'܂qdOj΂@Ini9 פwoQO?=~.@*(tm(+z<n&6|0"<ťZo}j\)u9>o"d,^y۔-\hpzƅi`㬸 k ?"vCym-i&]4~hpŲX8%͝mrѯGoEv4`>NqN\?ny9G1ٕ鲥q"#Zy(fxYšEH@ kHr:eL)߫牣cg3Kߐu֥"/QyV+ _1OF. ihe,9q+4 =wL< wxpm$kjQS^Q!˫ JEOi/nt6\d8dT,ȣ$YCC‡?K4{Boѵܔm2^utu ׋dP즊EA{숹j\ݐŠSLo/_u7e}C 2a48u|NJ/ |c9F_[0}Ѭ8׿Od-sݤ&ND8dwzx;Aمs3S [LUi&Txjrb v!bp'-Q0&g]{{ a:aTCgEmA4P1[QiܗցL82ҏ/=/CvZ/'>j)?八PMXiET.-U,23Z|9*{w&^uD˒l;{ҺG%\ 9j##&97| s:7KBjT-b:9i (|K+< /cpWGX"i)Qφ1k/ rqof C18-;!b7UIQ`M80yV WVW)4Rƺ!;D{ǭGxQ ^ӁۀCX_.u[V4#V҇segYoQ눞>7xdhN& h D?olB^*z\J~͜bZx!"D8V7wI^R-1#(|[b h=o-tv~C "яdჅ"bLiRmCMe*wqЦuf(g팀`|4T3Y% ܤmoFeZvr9l"@l|F7CVvȑN uhS\WWQƘ=R-G)+FSd{z*k^{`9_m7WsX* )LؠvSRK*ᨉa^KklQ($7c*ړadϞ?[7f-н#3*j+8Ύފk3n^A]ߌ4;/bnh`WLחNRLcHZ6ZИh\ [Tw3rH+o@ `LZFvPWQ{vߡV]ڮw} endstream endobj 68 0 obj << /Length1 1806 /Length2 11201 /Length3 0 /Length 12351 /Filter /FlateDecode >> stream xڍP.kR݋$[]{"݊Cqҽ9=̽{?Z|J "`c$ fa03123RRQ)5ؖ?,FgPl d `app23Xyev9L-J)sq[@@mB` bt䍠@&FU uP/ `.HCpA-*@h M`d#*%@[ 6:9k xP(m6ۀXY߁@9ml]@35()ulMYCFF k#gJ7H(bB! ~y>f [S1  A]8h|.L4d/d55M-PZg9 `b@g \)Y~9xفf4 3:|z* dA?f;:`󄙂m]b&I5 1([)* v1X9,JFҶf`Y<߿83 S(3&_,[H_z ?z#? _SM-4}_4yIDl͟o9" r*&ӿd TC@/g/f=y*#"Bjo |^Cl{'Y98FF.#8n,k tkL`  ќ<&ߢ `8Lr7I߈=[jA\&#gdoL@gsE?=`[?a0|v|fl>O=!3e O4gv S&s@?鹦?z s?18I@ \_ks~@g 4؄߲ڿRȉak8Za4W+1a>/[,9"oٮ j2['P, bq_^g8b7-YIV8<#07 g9p![Mv5] "ohtIdd]槺W?&IS x#}6TB}ׇ}T]+bk>vs/hpsOemDT꧛hq5ob`>mo* cXx0,PGUۍ oY=o ":Do)Af)fNDx.L̀ lDX#wwE[CU]GIb |.)iSײI) q䅌^W-U, _!5YD{t:iP1[ƟTkp\$[6|B{d3MYjتD+jh\c4A <4)i+(lzpס&d#vQ=DŻ[cyIXͺjA;p]zI|ٌTͭee@'& 5sɚ{Uk1֮<+-C\jǴޛϔKZ/ƭ#;(i>:ױ/+]_Z*O8 snDH6bR3k?j\48L`zce$7Ex66;$G伛ZpRav[>UpGV`Q݊fZH)ur54 ttҼCB܉rw?;=ů-=֣{{<2AUeR+ 6:2AQeͯ=J=9`Mp*)H/wF`xT:a_noF#`B[ ^`M)"k.(*tüta[NUqm,OÊbvLaOÖxSVZrmןcԓ*/6AַjR.i=@{Hbz(8l] PM䳤PN@:p] #_4ޘkrq#Mn'$S?FA|[UyWX}cW[[hg,ivgqQNf7H 6>x*'HS7'vkP٨\zMc'p֬1`͙t}/"VGbCF;]qݐm~&?V>:A (ŻV^hT4gO Ǩڵe$DY5 ib_R-%eO*ACaES{l#}"Rt7@CumCmZƳe[c:fq%OmNJneY5kƏ_1y0AP:%ïƩۡ0Y0x$4SΦ T/M8Fք|r#"ɡ^ $Uraf}۬ԉö ňp[FeJx3 "҇W;~>[Q{yhrpL?yE.3T2'FY>q2A }PcS㨫سV wODZ6e%Z孝}%- [^6y=yBb3%_a9tR~'m#:w3Mf'>xlaJeFgUFd_qbv\MnY2XOI{I;{V/7?NaoYѷ .se2yC' /]P)ǃ7)Lk[(n `z |) .F$ kȜ`y/1dF⹏v_FűR604+osK+*[4k fJg+^oݟ _=<ƅv У_b1GcUB6迹vx1ȲbCWmKz c?B[Y|mN n 9hx{Sb/8^*A g_:'o*Uw l`N`l"k&MK3+/~"dsz3X(>e?ƾrHR<.3YEY8@Z eFZ?HXLQ ଖ&dl'uԒTh i;$ _Ռח96+[YKdٺV@ HvkP3 lKW43:fQH w敆j*fg>{h2_uB=3!¸q& v X$룰e ưFܹ ˧l8SgboK/,`"nDH&9 !mzD|RB&؛0JyW@䜅=(K,!S1`BӖ x<8m4?j~ %Vh˷_ ]&Dű (н>>AH*N, ϸ0Ћkq|~㖊aޣupq}0lJFċq#*CqW>>Emg퀅 ogf/cՇGfQeagPeF=zpcEI|O\X'iEѣP&ll%ŅZ/f`GVWT—)U6UNi ~ z_ƲgveNzK~N^ݍqFg(|,.E5<gRل'xk7`"T(ǯ=޳ae \ɡ!Xx?nӺ93N\IL]V~t[H/ۉ{kVcUoehΥtp='ՅirrĖ/~ޏӐF#-ʍ$O^.K1gje&!= u# ?Oe‡//WnL.U;j 0#y7w)hP *`ɽ6ER[ PD,^İ۽OqtI<["u\1 ;KFu|TD %5&X'E<~fX0Dw',iUnQQ&C-ۀ0նp!/R\G"2 :N挖pvA7GU,5fpQnSYdM3ҴڲwQ']sF8gHw F0Qtj2u^1@e1B]*iV0*TN"!J*%1|KDXnv eW 4"R qp{zEKXkN&{]OVh!sאߙM2xONDo2njlp\Y;hv)gLFK%IwPؽPs [,1-ǔE+Ƚkbb]b1j(eTK+7CV7,OTB4 'N)cbj$.2kp\C3 >w;#iН"$ִO!8,Yr:Qjj6̋sLCd_c{99n 2攊1<8;yG0FO'M2b,jIQۡ5wBj LI8Lbf ; q]ʞ-Xlj<[ƒV`fwiFOJ9WӾ4w_\q'-ʯTI9> H\~1lga6g ǂaZs(۳#hR+QO- xs\su4Vu}t15Z'EPK\QTiI"SߚjadoSb.ŻPdrqB0,JFiqo nLioyYʕ[h9H2!C5zrʁǴ 3t ‚@FypdΣA9B>oAq]ODyG#w۬8AϕE9/ n-9߾V{̘Pp1K7xo$'Oi(_U*E}"OX{#bFܮcGzSvg&Uu3m^z]SJ}Vs&m~i_7IJ"8Թym7KV_7\)^x̗zQhj')wmT0]V/rZA$:QNQ.j>vʌ*ȗtT:=2c;8n%a./ad)"źz{(,͊kt ?+.0=ͪ9wc_w{ M6y JzF`S#|owOfUS;P2n >hD{4_׭ !>EiJ9%oAAIF^ؽ~^oU ]q(贒vG8tnTōka++43ٜ1+LZNtlcSlc:#&t`9 1TH/Ά2y^T3wHn`mC"Q+/~&&{ 1'U`xYAؔ-㫣]op-@L R>-/b*f2a@&kbdJ~`8wWnw1ͬ`H\,$V@C= cKxhZ٤C60eEoU Slz+EٯU%lm"g1K;1 Z*{HF~ ÐyY}%Y Dw?~f((qӜ+`I'~7˚ vcL5".lI+ne:)po9hk\E;۳ 7HQ1SV}Ca~)dR;e4ߡB`P%[gs&;fG&!ZR# cؖ-6ųa7H4_sd2 zIX󶤳Iap]_R,7:)Q-h q"@(mU$ b ٨ 4 Kh"g]@8x?5UٛM7TAiө=G:-5e4{޹ ]p'x9تTs.}UׁOĤboQs-@u˱v%mGiXt moQxwA$9T)ݸQ85"k_~=Zϳ Xخt7>/L~if nuq 6Yx: Ģ'V LQggaZcdalhcpV0u=+u)H1 |`j&;D!C}Qa!タxR 1d]^{go%u#+LӺ*N4ŋ4_'Epx^1r`p#:Ѹ? ?:dgt|g9(Koq n[[~D=N9{N^ R֦8L$aø Fq0u^RME*jWB8a)F;χͅrR=ہbgKHkƏhFEȏ\}_"T'-Za9;$FHVSBVb_;au@iN d&EAE?a蛮5XE;GK IGT@a:a&2{&cM--=Bjcr"m&$7+sIto$CH0Dԩ=y}fqؒf$s$j2EiŊOOSl ]#a!s [~y7&J㈀MX$# !{ޏmhW'xEFE=rl$]¾.2x^IJUX_W!5jk{jT [͒ܖ8>[- ¾_B{͋?5XṢ\Ұη$ⅷGQ2$ԯhڶnictȳ&/1eroj^\%'N >rZ~$zۺ4{6K¯ rnymV}n]L)Ѻ؎%D/% '2?ƅVßSO!W~ 5P-$,݅ns{B:Vǐ0Pw`)669֐Ho0OoB~0{U]Okh?*_Z'"$3MVu]'e'ujvck")MTz{3jZQ R$e12gkoTiwx?W ";p.[WM~݆ Q&\v}袗/M Gl^]Gok"y5gR dظYGr2~-1KofR?q]u87Hg kb8Ÿ%F?i-~G?eŭVAdV>ſ2'~|JV4AHi#anٙg}7,h"j^d^}993=-)vxhT<ѓj0KDa%Cg4Ө,7%lF{9(Im%Pl8rרG%XM +ꟾfVBٲ;qmV߮~bubo?$/2:(0""֏dkKx\;mNZ\XER8gИ! 훼@of rsV8 hoN͟G|c7-QI@!t ԠowU>?iA:!f.7%0-2Q^y^ Mj73vb|N׶5j3aLJg%HA;h\ kJ@pq5Tv^*+m\ZsyE2A=v#c\[n_:J|B̩y]SݞbqcRbAgEXk*$-Lu% u;+,5 c\Y>PL;,FCSw\>BatOSop"[F`Z>50RׅrϥKAV̈89,Z&~)[>Ə#D7}ȘsTX<Ēfݚ2X[XŶl9ʑafQc S7fO̸|,CB:W\)EI#҆ U7?@ om٤`,g66t#-:]zm!md_KD bJ-wB Υ-i1wh̞~4MY8n-V9ۧ 㔉^sB\ӏP*MUP<^~ֿ G&Ia!3^Vf^{cPCӘk{qe-A +77?NHxY#aS/(mkPd,Gvqh,%o qT]UH*eM~AgJ>a$5j.I37JjDY[SnfS!V1|+:%>k {}? Ƅ(xkې19yELВȱΪ^P+MWsX'^s/7?f|{$ONmrxQ rQq eĂQK?3ydXn++Nl`y-,,ʯ#'S^ddNm9ēz6xKCUe%בtt06NObOgZ,c2&p?-v LKoSED_34.%V$5W$jOj艸kmnLMgd&_* \Qo ͌-5|CB˂\>URIK+XĴ£}ER;5aޔ$jټkl XbWV^?a- 9´V),[Vԗd$eR|r%L|ّThWczط$¸pFJo_^()V./kp„Ȇx'n74u'=T߲c=vz GBqMM`)>Ho~: PCSqƦÅW9(m܉L= w8+u0ɢ y gdB$5͇C9}2Tf4d%a`-:%&`+DFӺ;D GQlYx| ㇑J}FÈk'Yk7?g\ ;R/)>4i[&-]y-QLq(\0O:]:3zyRcQhn|-Og.ɋ5XCO)=YgD :t-w8SC)BfڴM&“pHe=kDשl"Q->S|Şj[` Qg! .fF2S7.b{wG^URUsMʷnF 67BwuKp2+RK$j&:Yo6M* W %=N֓{3_9,Z`keEZCO EͅBӎH({LEg|:1)rhr$G㥎uVD6%D endstream endobj 70 0 obj << /Length1 1471 /Length2 6961 /Length3 0 /Length 7946 /Filter /FlateDecode >> stream xڍuTk.("!H44 ]"000 ]" ]҂tHw#?wZYz~_&: mIKDGq9EҪ@77/'77 e [ǤqDp!: l@^P@(( (9,%cFػ9¬(tf0 (,,; iqAp*ء+AmA+rqq!9, Ђ !K/54N<&ˠB!'%VTC9s9 '?DJ;{ Xl!u9N+[r"x3f @;nCa($'f #ׯ4k[J# pW20G}n\p{-YV`X:saNE?>h?:k -$+$8 `(ׯ:nF/5=`YAxH3rtxyoÿ%< ` kh5/=G+M? ?'4,p[녴 1JI!\@?7#D?77Z OwdT[!yB8aMhssW'#9'[v;fMh'z9T>䯍VXœ۪Dn&:/= )sXjP`_d{08Dz񠣸ˆ=K_&%CЫ>d`寝AnxhJ%~ߜpq(t `p5hA/oI%I-i#qvrtDG^/ Woz hQ)I±:(vg?`)Sv[vZr'5) +5߹}x,aw̱3jYR"4aDm-;{>qyPNP)Y0UΒGgiƒ]dzesh 9O4|VPIJ=2|w+ 2 I<,IifiHg6_15I moN^σ"|y2胭_{Xi6LMY[ojbNeyI,rpgB&H> b靹G"QƶT+x-5S=1-[Yz5FW|1܈%R Hsܝe`nѧM](qek3C8Zweھ>'QLmY1>(_=vM(J߮(H ̆zw=K.4DB:YO +14|O=3&Fx4=.EgJ"NY.5ʾN]rrJ.q0[Bԩrp-Ws6bSq+ $&9JF ]IpLQѢ(=6il%N$YWhTRLjLr8XT$K:ԝO򘭦, ڷJ~9g>( Reֻ;80s#CSq3c5ಧ&2Whe},SmxP087s4je9h'xyڹ`m&s3>J>NuP*Sg[b[sGj\G5VyPŚ6P.sX{7}ZIa%5uLHR1V]âe֫'3:qgSj" _ܝLRԞA(l;"L3XLs 'MGY6'~˽w|7rqX³*_ 5S>F_J̽ɟ6}89)sS|g^68 )c]# l5?7W)LZ2 H6!X GR_WJ|ڶ(ARm]3/#!)aǚh^DZxtRqi//^⨵+hp'Kj ܰ XSwVzr2ՙ<|Q`Y֞UF2z78LfV0Nx{o$":d4ȉ ~zM}%(b|MKK[5|}#y3:o?2xtڴNCx9)ۑ|zʔcj+d6M+}GHB$g]{Sp#AI'W󭊸M!ԥuڜ˦MhkL=fj|.*SDz,l:8fmރW&$u +Sr|[%L G?b݁K嗜jw@[U˂~?̂vI +5:G1kxMN`# |K5HK"ј,xjEیy=y?4Og4$ϋ:U! g}a鮄'׊o/$xʸ'=:2{u~:z|aqC@gf/\]gr<6촀Pp xlHD0{ ?dܴkM ~%:-t g{ڎߥϷ?4#bSjI%\j}e\iV'W30YAV(1Ղnsģ|"l9o\'v~`̏y(vm#R}|2+sOܥ,ċǟ=a+~:3LJ.عgW}h]ǕkDFy*" eiO=tb0Ww&xˎs1c-ѵ$aLUiԸ?QwEv9(݇rOT."e1kd)瞶q\'<yu¡jxuѭ '\R72QGGyX_qQY{t1iQLw,?ٳ$$!-2N=_ w=4A7vLhJT5pTb戬.3Zw@뉩aQSdk@_?0#BOMδCr&Ha1Kk3Vۡ+}eKdxY ŕr.Hb:;eBy5! j4 JO=NN jJh}uTƺ7$H-+38&$!Ҷx^e9[ɀ $q`ݤ u%S Z>5w$o{֋Z9eYqKŹ.ֻVZqbJTrյDo(1:繫մvZY7#9A=u2kӞOA2w8[rdEhO+>hlJ CI)'˒S}awܯ4|zqTxcf*8,bS#f؇dbw(QU~P-w{Kob( yU .b0QBoanW?8?,s1Z2go\Fc;>@tT QeoYWcrw︎S ݷs~' sՂVb9}$%ч6_^LzD`lcG<y:V6]bcOI#e ' B6Oi k%JH`8~%+?I`rF_(j>FdLr*!]~yxPb8"qcjsbbѾN0lٱ+|/C*|z-q䍴ןťHⓤ>%_"V^Ys)rL3x?߃, e=V6mixNdFffD{l6TU%NoXWEj)PIԙsc*LЎK^P^Vs`ڥm\g3G 8u0LK6jӓ*zJpn񉊋:K[}`{Ҡ!G"^w9ԊOlůY4:ĝ6Z6&XW g6SQDjdGZ eD,OF> ^奢R*#U+ΖI4ed׬d1s+&$Nڽw{MõMVo~Y+vLk d t l1+>P ‹}~=֟frN]ABpBo❼@[_胻0ofĖx_{9Vv8ezFj6BktqɮRGľiD?|u.{Oz ino/4w"=w:/ (glj\̦ockJ5I1LQ }$DL<3&$ؿ/旚XJtp1XHhmQNYjE}N,~. ګe1=|{FbePzH`G՚T]9#qx4ǻNõ+hc_>Ila?>YÜ`8D9ƢH'D!DQ[B>`jUwΝqi!J]|ABEmg%OQG cAߤiO:f窹GǛ8T B|W2] u(_{t)嚺b]"v; Lʛe%waOuz<<>bhÙT|Apz(v}MDD]'lL`,  {Hi"J~qWEשK~r.20aM$شɛ`M{Q"iԪʂʶ+'O5j-5ڠTٔ,Rl -ZY3jX:%*~wD8ފ<LZ[Qix (=Ae Cɧ2FaAUN?9Z1O6ߞ/3'Xtϖ  ּCq W\7sAuȮ8b&6̊Ӳ!NdZ-s# |łYvZՕ{e }(+X, 2s>BvJo(=HĴMVZS zX'.^to )񖣕?ZSH fI\c^zEF?7Ezمlm+f׺{0r1ԖQAYaZU6c`&4E%!3Mf*^-r z'm"9'Ӗm[1Ai3٣DsnKFOI’,6t(a>?otZ0dF'hCqė!D2oS.+"bMtR2rf߱ Ug)t,F𣝎sbEg];tq7_~Q4Ϗq.D'a[T}\GWsO4pSKe贩#ԹG;vb{Ze{ RO,6ME9d #xh$ X.E_Gl@w`fs|5,Yd*߲=8~CV5=u"wWeفo6uS؊g?K3#0 RA‹xWB_ x,o݂x_vSmɫb⪖ 8Ff*Zݘ:GCtv EX%#a'+XE/}; Ccdt ᩨ5쐨DW[ێƩ_sZ%wͺzCqv1^~_̵:_agN n3q/_4b'@b*l+,HEҽbFiH!#G/'E-f˩5M>֛^Źzb,s(UZ:M?Q0g̫6jr.nIăPͲ'to!zx/f{݊=@.\ۮԼH-$D}e\&BIB眄a! k5x:ϡj5ŅȅѧvX<[CsG),[qMOxk(,_+|t:gX]ϒ;xbe-M&txu3U7굨Fc4һBRJp8ao T=PTșX*$ZԴn?Ib߷`)p~seøMs-XZ~6vO1iW"DUxfNZ^3ݱs]RpsC+4.qoGWOF<ŞL~~TmaI*C{#EBr%8~n_Z(*JMqڳ K?`۳km1v[*!kWCIi{)VQVOWnϧA:A_<=>1HR*:Ca]-2*p\V)=8:3΢HbWp3qƻj-|DNck?]IM>ˍ]CsV?{OOz_{u[޶U8/SlMP#nAs3cm endstream endobj 72 0 obj << /Length1 1460 /Length2 6587 /Length3 0 /Length 7570 /Filter /FlateDecode >> stream xڍtTTk6) RSI`Q!ASJDDTA:$;AF==y_֞}s_}]A[KaUD\`1ࡆ s|x0/7!.P哇 Qy8Bbb`0p!0@PExN^.0;{$꘿_6kvWTTw9 uYCiuDh q0(_-$H'1n+7N!]+j hBq10?~=-P5p@]သ:IV u7/7U bmpt`p;չHNqpE! {r(@PjsBr~Au pGG(k>y u^<6e6@ظ9anPRP.|vP$ Pgim󫽾w آ@@}aP+ ]ܠ>;o Y#+ OwjF- Q~y3Gw'~yUԌA( ¨wjC` `@]8_a}&e(`kԃ[KoEHwwCa^%DBS9wT ACn87XhÐ.Pg8Pm+UW :맨+jcBWˆD9_j ../<!P Ë 7n8*P}[ ޯ5hqprk9\A_%pEnGo7~s>sJ8N\e,G'ҎMI$mc׮Lu2уjp/_ӈnEYuQf~w \2 O|Ũ&/dkvms U! ]48%3DW[X)ݕٲi/gO>+<_>2gpn{SCنUVLOL|x9ROށ>,K۫u G6eN}0St{;'=#RC#FBkE.ӅKFKFO%r!,'w6_v}(lmMrf^|6df$B0QS}hNot)2, V@x1Lݓa,ATl/9gclL痠hnR6ejH+=:\OBz{1_OL2*'ßS"M6*n?SRSkK4s˔cw%HaT S)Rk \?xa@2;ȄB1r3E@@tū=,LR7&pQm%;XUlMvbݺ/Q7ʥDMUq(骈U3w??#Ms^:x+%B(SFRuyjYb2S_-Ļ.d׉B,YoPN]M陷 飭+=pw;Fqnn:Eם}aQX~2RH8[Z4l&#(Hy[Q( OfW-T10mBŸgA "l"6R2@XER]Vf :kFS+$֪+x=]á!d((k<]̋*0Y~?GZj,˪ӵD *藄ߧ[}(!8jRύ{8zѲ3fḓnlhUƜAonۋc Y7N([J~`8xF掓??d2:"oŎ'mEπtFҐ"%dh89FIo^h%oi˫lטv0?4; V; +@N0is 6NqǣqQnx^iE ZV&O({z%ub'85s^{x?+8%y̙a;thGzju~uʥ%`2*Ys3j9уNO<\Me]hRϲt=߈ӮNmvD/ZeSn XeP!1@fKbT"9jRdMBpю x'~5P^2ڳQY&ޅS"@F SM,vo'c,iwSYiԇ7[4Mh34bY,@9m qjYº1_d}*cWڙצPuJ]l)OV6am*`yeb \͎3yVde0 BoE%U$$W%4aY:0MUU|bwkmX" ՙ/I|ջ9"*>ज़+~cgJgVejOJVO>l(*LN/;{?*cmW$i\ N(,Oey>:bYD>;& -)SB#j[ڃw}P(;iQQ崄)iG2VZ8%K)=\OTG`{v}|70 gq7NvQ5r,Lz}O#i!LZNp$SԢBkWU+_|n$)+>n!.SB(dk6/XȂw{>Q'jrBMwDx.j .=RVnyκjF,jGu}/ZX6 6PS T*^f*x 8IA1*xդZbK.ɪn cFB| E.\a >"S,;* C]L{= bUd<5|k\$Ľ^Y?~_mOg=ӱ}A~ Ց̨)x꘹ȁG#9U?a4(PS+^ >KӰf$fHLfh)]c9 \׃oLDн l6N%=~vb] [n)}a!\b:UT|$rD2%UuXމwKy·#hh ӼVjJ}?C>T}:'B{d&fA-gf=# ؼs"c|aAZDBmuaf{B׍:&|BksʙbV^})2DO;E.FuYsza)!t/->|*sPU=do}̦oJRo?80[ uykyZbٮeG$#]q8sRLG1hi`&]!j;Uo'j{G [l,[ B0sv'}eX$-}鲼;ku2յIfhl3Lկ|wny$.;}^DtD}&7K]{ԐKZ:SR`ŭM~;)Rxu|?ӽ7 Ow߃?1̋c2`yu0DZ$d'|n'TRNtm 6SehG9ZsXVe|$+~? 2gf-)/-J5Wt[G9HH7UagݥQ+ѮzⵄC[iC?};Nvs!YuӍ9!dϣ,!gd)eoQfvl6?*W\GcVžV])X,™q2CY@$&@]I#de@!HYAUG9/nbhXOϖ;ݹ6[KifS5 TS݋ܯ[؞<4w}q'w8L^XLRs0vtA<n͑`al^PZZFttCckNOa{Q^wh%먩Τq`(\g޽sMΜs )LDMrfQ=%3Qn}K m3K,**BTp7ʜ9>/})O9B$V7d5:Ӳ/(.\ܸlHZeKen>fF˒ISM̫\Z̔0\R /Abdžu֙2dr 7 ׯ{-bHIzݨ>͚p}Ig! K:I6:NG] \wo m*Z`?3LM|4?Կc(׷7=M%/@^:X׵k"?nW÷e̿WnN,hςK&YÜJ-6y˖ɲIDr‹VL(da%d5|:͡*== BF/*SE7w&奺Yi:jF?/&";ke<#ud++#Δ#w;9{?5FULw,?Y^1osnm8ڔmdV0=m3$. 8Dz kKܹїuj44yāsY߸>`f2d+⤣if@1%k?'OXVݱXDE9CgŶz ,X1٠N`y]Ve ]cr,z2>N(HV>]dٴ^hgMH9PӾȪl]X{k1"5/jQ!i;I'v"rk=|%p@~Bt~G^[#pkR HGH$tgdn0ҹ5&| -$/ ) 9m$UØ}IU!lNEuN n:-)=zgZ}1%DMZ Ig4SODawpC bκQRG56AD"IH p”q\[@}1-st,&2ہۥ'CH/eiYz5=76-E^WᦆlGJL~^D"T(-!Q)#cH?ȓ\:TQt? >WYnZu D6刅Ɵ90*@EM-G be /zǿF|Q5rG#6!LºQɉMl5Y;ml>ݓe?=t8h$˲6f0ь4Wγ{R< 'ɫLXt_P7mUneq4Ez3G;R%)O$';\Ouh ίf\y΁X_[/a ŋw3zO$sqr'QDꐯ/"DcL4b^_F :RO-7'9u#3?ܽ엨7o SXVSab4f4)76%DYq6|V~I iT<؋"_XunzFNTǯ;z0C) S+;@I3'+V12`E-dBU|{@:G+~ ̌2?0y B1P9kߘ^4x;cM޴M endstream endobj 74 0 obj << /Length1 1646 /Length2 9104 /Length3 0 /Length 10191 /Filter /FlateDecode >> stream xڍT.LJ( 0t 9CC7HKI)]H Ҡt\kݻf>o獽FSCf VA@Nn % dA`P0uh@^P@(( *y@je sv}0[‚+ہ3Z:0+_!pg..OOON'V n`W57a: '3NLK;۟ rGtT`ƪ '_޿A8`N 7j 8 p/8;mrt=<@G7Gsr88 )rXey, alXvo?;yB}l Pk$ݝtw_&濘-]`/+;_z;PÏ }aG`  ]o XCK-oGl|WqߟNe :zkGԌddNF8x@  x(&ݸ rx,<< V)a 0;&V_oG^H5qqk{\\e55JpzHCmG'qSx5!p+?^}eηSߍ:zosjԖ ɾ8SeD]4)cĐacOd$(QTkWX]JD! ozF”k4*bWIUWq(c=B6Cr|hUzyط{o|-_(O$$lfFT ;mnfI qβYWs|F0L=T~b;7Ec_96@wB\ 9{1GGS17\9B9X+|x`@cƸ, 6kUatKkbzV([/%C A#VayjjBOc Z5Q:pY`cTܭTO|c Jz`&mb҆NߝRn%u.&Ҵ0~:QTcZL"CX5Z$XߑC}@UO@4-MU>v- /m H] Pl'*I< [{/=S}W gL4SJ1l5~X+fL6#94к$UÊ\1?UƳ_6y'!#[ȷ,>nFUC ZhdH[\%@*/ 0N!wBd" zR*.' MqUIq\Wj$!JB(AݞP<{ Eʎ WJfb]Cd#>u85A8 ?Ne4 N0EJ{ G۟ Ea~,yB O"2<xd"%KFO]*UVzY Kz;Vuhϫ?&&ЫxFQv=S^Z Ϛ\"#R"gvޓ,Cj*39qKZSu2Jn"ȲGqSS9t<Vc -+PtS3S⸨Sf|Xm㴡tP_#/]:eYk\/GZȚH n(w5*MbH!2%FF /0{`W偍+.т4'ecs ao{z+{DaZ8-! Ubk6SNp29Q#M|px2tg.%_,[{ /2v7ŏlDݯWlL첕;mm"q%F lI[6k!CGBA+ ^;b(*Sa*PŸvʞ&>'jJ4f}TihuPZ/x/Mf:HIDy?p Y O=ۮ4mB%U2 b 0ɜ?_ֽ8dHNq( bվ"Reg,MxryIE<]eF̵s+-o=zS0XhdW9EYa#y<lOo~. +lQ }(t0Jf|̆fˁ2@2PϜs°/Ql&Be*d κrmj15ZIzDΌ.KZ0w z(j<+@73uZН_׺Bkm=DS~}o^"fJ2mv9֖$G\$k.z"(Pjft_5'~Ѽlk¡ )2/_UhMyƷw[ [UWa,H8+7xHك3@B(I((Ý5j6@*2L]d _D~ycҤRğ{`9`pQ6';,v#*C^1Z0M$Wdں|Û]I9Q2!$:VoH7tSwTj,G, \~={䵗> :Et/'R6F|mq (L i= #aŒuy \owLHXpOA1a9YW̰iY[.ffAʠՊ]e"waK2lN]翊)բ"?B{q<EVڊk6G\oy>Z+(.OXBNm ZGX ^^z=m,au F|飉om'ְU(ul =z2#]7 &QPMfxsZbv[! CnlּK?Y .P]iKͮY-|ƤT{r4u&V~` p,}L,"'nCo;mccԒimovCʁQchlF'p*<~v> =4{q7`b)[ s ʯɹxe;xfrBQ;s.x(Zpr,ވg+L'JA6k }ꀼ_ VyטKz3vy!̷feE,|$dto߷">\>;XVs9AY[5>- }% Fsݼ}R_#ꒂDO`I>M;9Ե5ti<؎H_9#نhHĩKWGeS|=$`)ϏPݍHA"c'FFq2KG'zJfcl*7_96g=B;ŷq#-Z"r( $ "ҏ&~|6jp< ֱ4W֓)y~oG YldmU]Df ¾sRq]_qT^]YD`=Ntt-ѪMeg`L1ia>R1#V+ ״!BŌ,JIRI^b:14Qorks%.I.Һ'5vJToFFZ 0=[1BX 97cJF`6aVݟ6G?]qT93 m:{X`u%QHg߸-""V%aos[eOEzi_t7l~bxdFCND Xz 9)Q| :%M(Xjh0`= Z 7cʶ9I(3bUlVz`%6s= a0.s%b`{#vLFtBzYx^4c@r/̗|"#R޳fOՈn'ޗiro]}*p(q$ K(fεOeꥼXY5 y0ֳ3> {ο(?4L3H $U>xjF|ZeeF~cE:/$i̊|Fk.ĩ>q<̭؂]kdҥӀ`0lrLϳLKΔ$7@J( ԝn6![Z)~tw2WpGv#@-/)"OO8|jsi^܇I:3wG#im#5KOLCF jc0VTv0Hi$rxl*z4h<4~e~a3\j*D3Wuvֻ@?/)i2leU1ЖL$p$C&J R0;UX=t'm xVbЈ?Vje& l)cϽ)V84J'ݚ flz@}ܛ*vz@D͍3}})g43y5'AA]Ař v=6:ȤսQ@N*Hw?J^^[ !n5W*;S:>occ($lt_K f|%8\JS>%~+Anu3KH?iGt<U:k:MW¡ǂ|1,׃ٹ,"8BO{nƛ**]}R!?kv3|SY2u%} ڱ|!$jr8fKd<p U|TGEK=. [gfڧR:!?k|6C H[JM7lM>mnN:Mښa8.:D4dWmrxydR}ާ0]*5D Ƀ['-?۔fLӸmqa!YsĝwfHԂKl3S 5,67C+͟7l=y>9ٰxfj$6fAkD.kQLU]E4 2ж$-kz-ӘF;T:|]Yqi}L N <b`̲8g^; ka7)_9_Y0n]]& %]MP>3T)e7U<\Y^+}".ky3ѩvtC,7O QjC}T󸙖}c6%8Yi5+$0wk4˼˓2Lbh3ĩy~ssk2HŇQLbk%e`,3cG)A)GE,f5%Bwi,\Iu[Y`b/ejl5tLbQjY㥟djihC͑FZk|ё獬J~`0 TQBgi)~?c8W>RPK\ۓM 8ɇ\"[VL\Sb)/E7|#52bztJ.3fEVGIV /auTcD\mkh^X O,[0z Y7k׷tMn=]Sj A:9 *7-^IϭU츬WɨGIԏ` qF'%Θ߿:H%?QYUy*jx?}6>Hչ] vNDu $ ;>?k eb}^r~\+00jsVguXH]Sx$Xu&/fLBF[ mlԐ\>j_sIYUk!' >mJ4|D_ds-'p!Ko$WK(]4Lm\TwuQ6$7<^59 itae C 3g}N´ޮ Ow Yc3wJ(m-+tS?h2S~\hS|ȫG #irz[TG _.e"¸HsE\6q2'nj7ySy[-8փ8?'ϟ0{֣9/,-!wfGy^!BDBn{=9bjDܓd,?'+ܸÒ7r'% q*{l"^L=Rѥg:jh044Z iIG#$XX-DyNZwIw?ufztZ 4z38[%5{)djpvGF[KUD/^VE(u(;PGG>~ucQS1z!}ۍ0HrFإcQz=m`{O56 2[ބ:.Hf32OvkLTed?R8Gt[wzQ9F7G+QQb)BfF}NGnן=7vYG@n]t.Mpl9-E$oM7L,FbZ:bV}&zk`<V 5mMݢ7Li bū-n+6*MRj-{aK$Yȅ?Jn+J.є[ۈZ5Kq8S'=%Q|ܫM<}&΁pٰ/a`\e&O+kdsnQ,Mi_M2V-z\_cE>R'hk1nPsB^_jT ˳,d]u|%PaeH")E`IT[U+n#D6Wٜp1&n٫^,Kt> Jx$/q,WWԝ Y׭ku h)ES:/XU' oRZ(#joKQĥ0.scniBóբy[ "7+H: f? !~jϞ~d~:sa 1L#ʲ.EŪJP?]Di+d m484W8?55M8<HR<}%(PDZhݨԸWmP'=W%1*Daday侒!ıU,޻'\+q NoӁ8|'IK졼*_Z>i~fe9O%KzUɫmm/,F]UI8b4[!L, > /b8n6/8je鴵`߇DŧXɂM/ьAJ'%ȐpA . .F{5EFoJڝrUkaCXڑT"Q!G)εK^%"S'<}yVd7 <w>D Uߕ0YG%,EqR˓z ! wTphH>yX;EoތEU&8J,PȔ8 HysCX@=Ey K9$ U]a4\Dzl M^]RP6]'V6pf\:ŗxJv#;n{靍~}]bX+aʑWX u=ŒS,P+O͝aQ[7Ta?6NvR3FQ#[$R qn> stream xڌPNp Ҹ Ӹ܂k!48=3Lr-ֵkTՙL W&6fV~;6V++3++;?b$*- g+X&i Srl6n~6~VV;++ &%fD%lmi NߏZ3:1{ djg43;Y]'#?  0# tv*lb2f$*?ru Wg ,6\n s3.Pq1Vǀؘ Yv613sw4yY,v@"+#dl7s\s1svtuavD€,2p\]'i 4݋ڂ<@> s0wsdY;$c!Y]\<|ifWx /GJ |"~@$w ` !-;[{X`O2wy6{,b2*:r TN\ `bbd<~&!GD9oY 3(;w\f_lo{WVQ[ynPrj9e%ʹC dio]=֮fVog :X?:قV)@f;7 ܌ߑ  b߯)';PN0kG{F8ڹ,qr;9dw q]o 'j;?BN~Y\ \n@p`l79p$o?3ss7%_@' iiL Ԧ>Vބ ՞v:ϒW7j7o>Hވ.>6G%}2J|7׎8;ؗ~bD"& }g'_ [VoTNnoT?a{x~/_ SۯV@~*fՌ**0͙'se"FǼDJ*ȀwQ䣻0VE@IO }96E#~*SZ:*XDʘʄ|ȞUc.[>ɶJvk7ș\(˵H|i!qmaF70cuimxd.<~ydOD_҃^J/ju?8 uK(θ $L'#!gVV]^^13|ߟq~Uʝ v!!ʯ..>XqHgdIu(XQ6Ά\lV2Ky*&ms-,┓[y+d>ӪlO*T#=f?l  5?ܾ79rz -.0E%CF,ngєTCܝ̾9M[CqgɃ\NhI_H0w`Q6PMs {W{Zl8h Z?_ߪkބ]!ڡ/kpd@%R-f^mDXDkz5,e7N`)rb O>d+1`'l{>ƷUׯcUw@RnHDj@7)SxEk]C5K0WqS@Gc>#bGp{>>;,UP&: ͗I7h5̰K}Խ>

 y~[> ;^ѝ\ۧ/5O8fфJJy:c>)(&2_HVhD)ЄhUs˩RR:zlaJ?G"(-PSYxGɏd09+U{%eGrgVL}(+TH5~aZE-RNk~eDKeE잤Nd;owٴXbąDOXu (O&M xlo8nEF Ϥ ,# yqw-QKCA\eL352|?hviǞ;䞬}vU0o٠q`ȕN~6kυW_5b]J4<+HHfͱJ*^O%F.Ȳ/X{ƅU.+Vqc'P3څLKѶ$ D n! OvHT%@A k~&Mc(+׮+w`E~;\RQ韤)M^$;fhJJ 2kzmc1*{䅫0ZD~Zt 0C+A%0q[pKBUa>3ySo7^+oZ-UC=$ 8˜L`ؒ3!4Ƙ·v7`$jA(j>M9cT7=[FB_;Y0h.V>TƁ{%X19ZY%wӚb$7<2OH_hS\zQA^WzbVPeuwβtUYa\ܨ ^?oIdbh{<. ;3J9EdE˷[ ;n/yxiKAĽc*qbb#vuh& 'B>)^p2YMs {$xd8 /=[\ܪsPž3q/z0\>) $א3Hw+x?{x`l qIU&`4m]Ғ5cM1_1,?^ \0x7LQ!9l{Bc`jI{~?=LX'6zjy4.cLPx㧕8_v'f.2;}HTI=RܕBL*GF+BvM ~C^Q**2u TA%8P\q+ڥOQ&UB8L>* "կ}S! _ɧ88:TNtc]" iwHPOSN\fnSIE,BP ¨9=0켑)gٵϱ=NTL_ UFƵ{1 Xc#S>/_{h 57*T2NEM']sQӐM?֩Яn(nQ'BiBRSKŌBHl M}0Ҧ+Ukjv^)OuS(HfvŤI'{ٍ #b.2m(RAd&RU2tʅmz?bMŠg~HLsōնOlXbg.{.ABew#.7Yئ>^d>xfM'$x MS0KtsJ)ۚ,jEAo0-hvX(Y }M ^![F#y"pP?:n"zC}GJ]X"GBٓFR7Q` >THNp%xV&alq(^A`Ed]Cki~KV|B-u"ԌKQG]х,ɒG񍫰^6xKK?;J>nlG{j:F(#[hžwM{~1_R*?[>NJkBk|PsfRߺqٱ$6QPVJ8ٍ1WUCsK:D?EA8ΩF'ՠNW1eX&ETPjt:Q؊%vR.@@1Iix7{&I8cb8aŧ𦜇ƢKXxu]W:؞_BhYeF&pVԜSl5hZ/rrނw݂\%ؒ ӐDv'$ UzIPJ#h4R"Xx Qt+&QU35n~zK5Sd:O~@6+vPm4rvud{ O73=#'>)jυ&M UlsϲvQxݼV)/S׮>!Y92pu{=<:yXOo/{ߩַB[mT :"|qt;c%OyA:c9*E!_xS[>i#zgAVt5!{ȳm;㬛gwA{fLq%;'R|dO(:7_ jdܸd؊"lƎm_ mr~cEscط(䳢$~,4=Wz0^4nQ઀1x+t.Va!aVس{udSX?>vٜ] Y嘩<nͤpw>W|>$P> 2M*!zPoC `hS_;lйK|H(%4$x2|}8??e] ۽(/L )jaC23\_&CQz5QӝcR=ݰ'&$oQ /MB0lFjEFxk7g"\YAo|؉y_En9=%udR*}`, 0n(1Ntmإ\}}P}VEJGzh9bR&bԕqݸ ^^k-啓PPC" z8Ke3?e-\fvO:)5OQ&yO>_eȂrJxȏ|$ >+^?{dQX=R{T![d]+gQ#q?'D8ży1I>[ .I%2~/ܨk @؁KNuT {/$eCZ HOYj z낚`WDn6OWչC@Ɩe<8X54-G[xUD$b+9Wx S9 I5f Cb@r{]=Ge+pҏ)0,iFWЄ>}:g_Uƫ!9fƔRJ\0G aJPupdh6pbyǼc*s{ԏ[JHh7CCMQH^Iԝgmrf*BQC1CjUf*ձv}unT1턬8 +@\9PrڴtNUD,h{i,pq썕5*bSuEKPE-bFK4,YUJTй&"]*]G̞l#ծ:BohVH fRTd??J'C>]JmY|$1 )1{ (*$%{* ޔO^[|ktYOڨM{d Q1=jzzA4\5 T}92qy&ؑ%§']@#M'ВN6ofJՙԏ5 V44#}#i8\bal\XDtRt,#n6>uN)/tc/DcI2]Mw1K#{ i=wNTH%~LLe]݇ǜh$vS Q4ꑖZ!f sN?\t-|dZEȽw!߸&Өuqs>Ͼ%%I>C;3̮MS;2:J@8nŚdU3 5nETEWƹG5Ym_iʒ!Ex2AvSfm5'_|P9[QTےQ~KHMg}Cƙz tgOZw*0dx.j쮦~6U߀\[VgңjKha=[56a &%3Vh# 9*V)*D2PoDDа"n򗆘;^ŇN"F ,_]Dɣu]]%q&ҧ@k?0̍r% ? j߹ƍ~g}Ȅj0 vyWrlx kay9c~:1 V[ =:ĭ#Y N%#-*B-?۴͝e΁&ť۰UJm>\R ,\a=Q;?(J F SC>v[֢nJ\]=yv? 5 6!̰jQE^cTm,*} tniDX{DnlxfH̉-(;b|.sUwY Kࡲ 6`tBe ]Z^V %Ly ~ ާ X-i%z)"hDQrx8cbMB GEHi+ϼaQL2c&B#0k'eZY>$CU͛8R2 OԜ=&tyNQIڢ+>徤SzwGfenIwt{z( _J7ߢEvY(w6|_P(HgZ5ۙ͸Z >TZK/QtrjǨi\T:,>+1??*𙱟!sץB#_PJ&ӆmxp:K_'SYrtEADSJ,:uX KM\BG$v]uO񕇦so0a<$`sD%y+O?Vvk1L{tھgxDO\*}][I1@,|fm~srQ$p g~UrO!:zGK䌽:yG7ZAꈺ Ol8 ȵo\3\}%v2(dB.ytA=ךǘݩVuL eo&+/w*w .p(1+Zbx͐T 3~KGA8Gl(bG m걆Nh_l/cHSQ2,[ϑ?~zaV0*k%Re ib=6e=DvW~ jκfmr]Y_dI]߫GT(/O*3>(?1u5UKl@.Zso627rv+ _.N{?]2NQUZH6ihl.v)xfHW''<tW0n`SX!ź 4D)C|/$&vWnSN<,E%ۓ -&2`)rЁ :X H<ɤ㱯X~XF \RuEfGm1)ks$EY3=Wr|B&݄_1OlUi+7|z<4..`dZkޘ*$63~YЧbG4Mhtz"`!L{rg\a jqE}2 pτpcwGo7eJϨ kɖ]_>SrP?URn0({߽;vR#P"h:vX`~g4M:$^[*om4CiZ4b~{Gz,](㬊Hi??S7JUbĶS:wIfҤe> cF`R+-oo`SCKK&r]Nx/2hEԯWW8y>Vݛ&Ҙw暒Un}Ǻ+B~hH[wf#%]j׼z;CfrCFA1t WrX&UfC2D|mIahi oh5rk[Ft8u^(VQW 8_djܴ`%lm- p{RU_]E~H2O6Z4VOK#*VyOFwC}DghLRtbѢvm9? /3V)4Y?u8So^VD07ső& } *Lo >&F)*ͽyu2>q%DƷh'؟) jO ԯ(!msO{Y[O{1~ӗOF4~;<ܠ_yKON.7`QRlz$֘dkTKnPKԔ{}n.pzs~NsU%3tᅩ"{y,2PK1h5q{,MPCucZ?賝mO.S&|R5ϯiCt8vz #q7rBv>l/XLT錑lߚtV^ z`lh!"9C֡'М_fEm\W+Q;IRF-]ʹWҩ&y4"O *}w قGjiտpaRu[Pxl6P|2lZWKΰOP{rA?ұMKx:KoXl FAd(=){Pݬk{`~xJD*W86U#Q+O~.tOg׫J2uFC!;o%7}b1 ӭⷭ8<[xv> (_>B=<,ǵ6EK~{ܤ5o"tI!SRz%S+#W|G $?f6j o_l-M#F Oi1A@{L;z*ҡϖsG8̵™wK IYgUO>$ -v>?aR(.N_n`MF1앹C/^rᰙQ_؍`Qn.JB~YfiI$w\u7)'9dȧ)7(`y{''1XwSeL_A׬"*e" Y tlE[o3}􀏡5)mg>7.J>gMTޙրK3g8rwLNs2-ؼ84_KN=M[S gw=x IcM“nwOݓ)95Qi@w0_ajZ'J9"tw'$bNnl/ ]3\QݐݯzW H").#ʎZvpYב-X +o?QjJF9UUbZ?-a5ȥ>/QkQ;¾M/=k]L CPZ͉^~1LB+;q:iP{ #^ǯs|z~JP\\~t7;4rn ) !HJ.]l -_2Hj0`Dc/|R}1Yے@2Oy Mv<-Uc|\#kHXuQw~KJf.:ꃅr1 *6b}嵶}!HG_9}BcdϦMpA AaJqh[KO>ߍwPW3sð]ʓج-Wu-MYޝJF J8Tay'M\ tqW,i X[r\NAe"UkS0]uH3M-нYix) ia`Y@VBFQ c:.3UneŝlZ Ddt,p}npL'i :L:{Eʤԙ emhoZ?#f!O|ە[ N׭&(G~>V8aVoJMi6*?.NSH|R5.Bmx.0ψ]5&9)wtZ, ;}&ߋ/"qRcvaԤwZ[o'# "[Jp3^}蓉VcX1SY<wh?~ +m%t@i_Ѣye@RS)W4=.)ˠ^]j+9B.dM%Vy⒲Z ׏SJ}""h6" ]eaOoۖi#9t4pR%Ȳ~ф fQ?׻M 9UO$#2ڛf_-69?0C.Ǹ&h4OO\:X[N|8:eThv(X|Ҭ+Eqw>V-j^%7`G'堟\庩%>;~;-;Nݡ\^]4~`k:X׊1quu7(:%=uJ&s WciAߖM(OtV觱y BF:4`q3= 3b oIc , Z4ZiHStUu-jo+b# <=X"<ɴMi "/~R#:GT m#=ɫ1B;b7LyDG;$z+~_$2_ϴ'/SұEYDqMp TւeOo!>qWɽ"tAF\oyz/ӟLjv}sعo_1$$SdžInٽ] hvsd@)^IöVk-D "$ l(c{nCkC%!Qz;cUR zϳ$ɓ2为ͥStB9#>n_` ?V^oLfn ԨJ+B9eѬlv@IU%6(MB >_L;ߞo=jm[0_\T=*oQm? iaiqU:imaGUt奶`|wn/dHKT8'ZnT)njwuءc{=uig< 6Ew糅wVsG ,p\k4g=t G{qK2|İۆK [ 4KB\ڭ&Ka9L_ دݍCt61AkhAip0.OGebpS 6pBLXlO=uκ!H߃R*:+q>D)èU?9ι]D1t;Md:K9#7ToIF)0S!(Ld}ֹ. L bsN`铰ik [bgEѐfaTO^`, Ђm+?ƍyKIxҀNUkJZ^0ttZ5w9q<0crS"'D*~Fj|݁:XExy~HVz.SBb9c; .hbdTJDuU:X69fkwxmJWih0R6”ܦ uzzޖ?(NWblbm72'oRٱE s'K/*1¼(df&5R\^C&!-{+%;PJ{~[ /Xȳ tJǺ3^%! WX׋ ;w=rf֞bB?K(iMzɌ fCK"mأaV?=>$inY  i|[H~i;B\0\^˗GwIcc)tTd( Sl"WdHӮCξtD*>yjk'oZ'X6KMPe`Ep= f8ƹ~g%{U"ϓyBuUّ6o'&椄@{Qw5ѾbuGFsAUW|axΫ6FkYmt`XpeƐV\U"y@p)ÓGe\h0f?mT8Cδ4KOLp~hRHqCS)OV.t^@_6HHH3[owEjoes? gO2 Hm!$D7s`\q{ F v MO- ^3L`djY^ xԔбg,Ha/ӄ50nFmړZRg>!tM˂ W` =u\-Gg9cc|IpAb\.4+k0KMP(*waT-3iu5W&Pwz)!M:Ɲ4%Xc",Y=/\ݢʐ<;h-?Xpի9Vr.:ġy1ƽd`3CD'gUHXT;ssCEƉ`_'҄lo8?cSo4N0FU:-wL0&zf`8E>9&< nI8a?X*H:PzI<QTW(u mNؘ7ud' b׊0vʂnj)]X.@z8-SeMSC<9N'|hi ET /9(f`Ddo'cԑ7pZOs^ogq(6IVX DIĴPTHĔ \}GG!XK#PMVqͧ[UbJACՊ<6 0BR{"X0€%0Db-2VU'QK嫶f۸hD a HL/;a/ /]ד"@<~a^"Y]aVn{<9^(&CPGhF2!E02p..R$׹kQ#]~m8]p0*,OL~;M7i]5P:MxMPzQsJ]ʃhcf}H</VNYE3Q.rtm&5Ba!?G 3oo/k{#qi=t赡;xl T(;RV@8;V^^ Ⱦc*޵ i8a2C޸*f7M[JO !SUjsz 1Aߣ3ዋq %,5x2[Dvl$RG4Ecޟ `5H@0gW69\(;d1֗)0@Rq'^]ĿSey ~eѓeW"^EXX?ao[fK9w9V"pA|3#;QM8XXnZ˸w_X v|"u1.GO#M:1Xw%SJb_Dq" 3-D[|S?yçXvt7bu8i@@Ȗ{hMiE%d105߾. ߧ"ҸE0Вkz%)&=3uC"J&_U-Imj+-Oh 凼(&l,nԢRR{eXԽZ7z7DJ99]U3J M`"؉"Y097ǖIo' dk'[ӃZZ @N&7a,B N x&m)\o Qb3QJG߷!wdgBKX< '}q~V_VLlS?WZnHnՌZ`65-bx& *>_p,j*)5phR_Edd{+v\l4A[= {!ҧȦTw)] n1O| Oo"`JyaZfG/늛X) z";A^Tg8I܁V!MtCrȪ!n"d*nF#L?'QA\iO Ud7bISU{B/[eFVgpG;DM2s8Ӎx@9SRA~dDX8O(u񁤎VVUߠ2oSo2 X.V)!c7>E =*)RCvȝ_msE|s.:e} ,Yͥ1^Տ8>V@9yQurPLs}d\f(ʵV%W85;+:B1kު_کŴ\lV(4Qkc1!erc;w£x ٣΄0b L`anWOڊҧ\1T]-V/"<kY)Tk2GcxL.\@ h -8@e]?7>>1􅨓K*"0'dѤ-rukӾ\,+`]{HeJʺ>|9S&Pz5dPV=巚 OGTxS"0|ˋztFN@h`bP:%@3ĈLZ`CoUU̢>"݅0>ѳnڏmE{Ӌ_(m(RgIj`z#Z '0N@ƓH-4&ՁP"0Y;O>{G!O^M>iHUɇ)dMr3S bRͬJ[Hi ~ iYlA4Ma`_$lZ ]SY3ZZ-c G {d\yX?PsMc{8nyDEFB9.؍ FsF +8(_*JR(jJbt_2@'Cu4c(LԽ 3mPW]אƾLgxzEO&s同$}D0٭`\zs'NCkN#-)}n2pD4Ŝ_dyͻ HǦFd EX}"LvE̽~81Fx_V/Ӡ]?=3Z=Mb0 k{~>{N풘<Ҷqֹ$|ewI9yzSmf얡{+1=##d05I V}0p}E{5--cH[R.qZSnJG@f %u@hw U1 m-De}/H9m_̕ve%Gըk#-M(h8&qx9uP/9/-=i *8-S7B ->-? Cll4BZcs(M{b$q,%1<[co2ks':g?*R qFX\j\ Po}yU j; 렿2VԹubsc9p-ù1&NZm:y_9So޺bD+oN? sQ6jwx]} RJeX_5yw&Vb+gqw@ܚ x0DK63_",g-NoW69tQ/%`௡qm}z CJ1)s7Ø-K?}~n!S2{4%(!zV.rxſ5,IvG1_HP62NUy9gc@na8g;$4Ϝ.G8ΉbMHCXe_o҆o2֙sA_:1NS{{@\e]CO}O6HFT> f nɒhe}΍[4g= yAMjTxrTTp沈a5ehއ ?>*O֬?DO}[XSf<_M{ew9j xd:m\lW}| endstream endobj 78 0 obj << /Length1 1591 /Length2 8411 /Length3 0 /Length 9451 /Filter /FlateDecode >> stream xڍTT.L HK5twww 00!ݩtJHw#!)%"R)ֺwZgγwZ*5MVq+Hue` $58x@ ȉFKvꀜ]0 $A殏2)sG;epp8^ p N /C@lPf( 4ZI3^ ~~^q3 P6w9݋CaP?5je+7Gvm( $/ɣ yy 'ҖWx-/Go%/cގ0Gc _5puvz[_[,@6`(? ?C#8_ߌeB1=_v)m }I?*['!xrqX9y~n/7?QK'<U`sc=AHeygv(7oB2no5oGmxid7ǭP=MuAl2 ZyW@n#E RZA`._w Y?'.=Z¬~'K^<<oyf6 s}t< 9(?/7x;_C@ / / `wr|DӇY-z{l `w|L_1 cdx{c ¿*d6? i'`MedwnwDIb ZuO^ڔf8[\V4^c|m AXw^dZb;>N>: 0Wn E`g+Qo;1dyjt}<ɓtW/6)$ɢZG匮hSԓVbׂABW132Zc:ifǽ d-PiU魧\;g?#?.g =Oԝ;ܽ`ܰh['Hv|9A([oXKp=^.e9BXYS^ǘ,ZӔf+lI_0XݐkÉ 1d !Ԍy{Pǜcc>qHVA6 џlrT׳RLn&m2Qw5sWADʶ̾OiشijN߼6qb*9̌ B"@3~w&'*ͤko; v<jt0&(W)!F}{G\~vg|Ə'քmf$&Ke^{`Ụ:qu0yha_cct+:~ZV+>`kRGVJ_f+ՉԨ3 ?O%{^;UT-Փ|O:? HIp7kp\#U tO,M놇[9=a)[ r (z9"4X[^RgfAl'trG?`)/X78$V^"etIk:(e wknNğՈ|lu+SO$/FB%4il[q0:6MW;.}VJFz珻&<>fW9S=_cE]#D J3ONt5%V wRʤ,6H1).Q=:Ǐ[ Vsġ)Q}O-zRd٘ 莣{e <aj`CjHm}!I Oa>V{ u^JTط4ywiy&_: ٨e%6bܯ&|!jѦhFdt^Ke4vp*1Z$(/ݔ&[7vz*n ڄDE{,ÈgbLUhHڗ u>H`;7Ix#,Vs?2}Q;\M7`0'v5N4 rGb`P<:Enc7jX:^X7BƠ.,uRҽ0H˅hZG;|bwJy VRQ:אRYCI%O'%L4hvZ]7[K˷"IN]K_᪊ʀWv"9y\Ά{UH}qhzڙg9|K %߯o;2bzg}ڬb `yk1]-qrN_D\bcSg" cd]݆C|RqPmن%QcdUD-EM ݟ][zh ыh0P?o܅F G[ڎS˵ )q-- o*[Ҧ2)˿ #+n7I&C{&w[=yioA ի*⿦ɄuD&)V,|adXZy2xF3r)q 序QQ mr|gUHm`Vq-*QDzS4 džIj*wVY}DA?`\DVUΪ֊oPlHmXʵ!֐2˛riSZ[QS qJ&i99 ZGMSlDh^r{:mhv^?H;B3x,C?}D$ʃ4=V{X>z ؒz),טSSmrׅ`  ̠"0 1yf^_.KR{uu%z6;}nVZ%rf^u̷Sq΍ v'})G5eXTS9FBJf8h}F 4ytPrO:gk (+͢ŨgjMl.+e%@y՛Y @e;H! Bl|Cevx`u'VR̀l2#'K ڨO`uo0Rಾ3~S#=.Bs6^Xf϶\r3)#suóT֨A&?4m}=,Gī òk>X\i\`/ҝ=N(?RݎF sTg i7^xH._DŽ}KK۰}M5CB1pZ[[D%(bkQ(?:R)2@mAxyfG"yW9"Yɸ#%<:ʬtt%h}T3;Q-RZ%Uu8Tb }Eh}YV F2M>ͷhTA>I7?4D7[SH,_6y)(Vc_8 HcM ߲d3ZOҟ}9DG42 >|ܣAsX!8_bqa-c<pr3dJ_ƓMA%zV; Lj/5QrְkN8fAe9VXyj tHwFM`Y}5/!@+fI (FΝ2x^V^BZ^fon՝|nen %]S&Nb܊`zzF|2D(<2)eVa].St]BàZKƃ0BS,Ⱥз \!^Ѣ}4O4b t^R2ԜAd)uFXyӛ g#K\ Dd4^9 ;m]IׂU@$q-$^D=AS ?!cZ ZF>ٷ1oLx?.,N)q;r>^ɔhzVd=';/EJ4c HxI dHvArIXwE140w;ԱךrNI%8=D:-2>^8%3}PRs}3fku&RryaBגġxA &?${wfxnNJ1uv قN^C Z;B_ D̩^ LA~ٕNTϏ\Z;~+,{U& X'>ށ?LGE zƜ4 SR{5rtۖ>4 )(cˑRDR)L:zL1ʰ*C^[Իgށƭ#f gJb4l!{-yTEHYOxT ӻe{DM<'DݪL1KPr"M`M'QL=i/ g)^MDLޅ iYSɉ(uH\tP~D~[۹8sJŰhGa aC!`g gJî_qw8Q|N?+,w@Xh_elAw{dגͪU(7b$;S. ž$(>=[VLB-\(P%VэVwpn+Խ ʓdi8M ( 'O1jbe!Ҋw'=D5B-":~M~j\޼ng"#I70d51vY){l/yʜ jޫ*@T5?VaY ٨gL"<óEYFn7A_wOrK~:kbpDk:X6Vq !ZU'i7ꥴg_K5f>/~;,T9 eX7qNurQ¾_#F'9p Hg"eٻօ?UrŃKNpNj$84Ap 5F}Ե>&'ʊ!Va̱Xȏv÷?&2a>l)% Ź{3睧|oW~{%d6 GLo<$-y/˸];-+5lqa;uhS9ܜBe;iVrr|tğHN2|Do;\~H;di-E,I&W%%5yʼ4%g89>j ;L۔o.<0KL2so/Mr!ns !,@x,+Wa_6c`s/~ɫ֠n,^é2/Dc$RlCl*OWr.[tQ 9)gsY̑ [&#nc4VCu| =Gk"WaHd~jR{4~r唩r݌}qTh˨YR|'k|b!̍gWm;8K$ tFPMi Yeh~aG\70bEʊjʿ%NћԞKs6|o vbzf oYkOz0{tЏ9wwBvIg*9c0?'gMyNE9KJR)aMFzUDd /=9ݯO -r}m]e+zZ2qU~u UEݏYؽ2x kɩUo9m{o0^fɫ6'G2nߊeKܠqhWʤ|%yuΓ#!ؑ\53g2W\xk#w)qpv1#4ږUVDB34A>a c8;Ҹs\%N=GW<x4<4C.v{TuY;¹pފM.`WZalIܝХ^>ەt eu)ɖkpfdxcك9NI Ϋ7& UU_4qPc=pwbt6ov:LjL9/u4otUBR|.{4(F B $@.jvZ+rXXpžPcY*%3 {sh"Γf&c}O4VM ̌wDhPexӛ*uIҞ)?';]ܻ^;[ΨB6NIY܄ {Fk5A5P׻8 {{⩂\%^0JG0v[J5frݼO_H=^t2ina@-L皫;2QjE.פZU]+wS`-4fufޖz7WN T*4/O,O{d38 Lgq7O5JS5 %e&Vq5'K܍~ʝ,Az5Bf5 m=kM8=ѓ. Ҝ3;> stream xڍvT[6"%)84(1 -!= 1 JHtt7RJw J79kz֚g}5:2pKk @ UtA X(&O`Ɂ(7u8  ~ PoG8B rZy*p؅) QU^88|"\2` #J!A"xyy@.3TۀeC͚=So5J.)[9~!ay Pi k/ DP|6p~ _B*e@P{{`$I]ePy ;A2' 7,5` q*d~MDzNG8+1#_({>gTu֕vǬGoUapv}LI~ޥQ]87zr]kLXg(w^8˴ j&$7=CwON}w7B h?bkXߥƈlp[v3Qj;?ggڣ^<;\I$<ʠo`n3-|_3At=_* j)Lߐ#+-6&ړ<'9;EZ1Y y#}G;~)3,)sHJ ўH-"Z^4?lbUGj(w^dc] y~_RPFs7} ȧi-TfjxF ԀY(f h,L v!C* ްEM|yLL|VSu*':b c]")mlXHp`.;=@R8Y D5p2WFu?izt@isɶ3|>?T@zkD;NS'ʺ:_6M%tBGΘ@c^cl{Q9<}S|O+|ez3 ;wls(Ѣ==~= gp|rz-_?ۣ~𖾫Z m_PpB<] i:@cdke@3eݠ6;rE -u!S#OQ'*1SU}Gyq»m0p?=2Y  6thw;@so [:G9>Zo;Ylʿ}1H,Ypsɰ=δ/K7}H`F~d[*vO1RMJ C%DeSUmeOhǐyO=u~=Fbk&=i&> !NG PʋM61t|"Zy`S!c'[sg|C-/ԮMt).2M]RCe%rפzXە . TRA[I?Ѱu> **? Wti;t bE-n %\f[(%EW6n\0A;\nF{ܞ-D_{꘦R306$4{KH%q3cD|>ښ+UE'z}y|;36rdg``iy<>&Lm)Cs ;Hz==vsaˊ|tɶlboT_ZľsD(?2h8N=)V}xgZ:<2'WvniT]JFe@ٓln6rIY& bPSVUwlm>&-LH$iM tAv!G9\eHvhR} pqAfD`HWY=*Nk{g)bF4v{(Mk(tv4ctU/{E R8qɏ9Hzp|?c|H*d(|$|R$Mi+}1'*UY\֚ 2!tb_>WFsZUk̥}z؁n铞+Cm?lts|R8l yޒ*nGsUKՙŅ's5(RjV;EOqC0~F2sMƫ5{5CM/t+#IdxI+ +̦+~%w\Oxg~fvڹsAaRH+G;gНT62ڭ2]/Uee[;O$,Rmv^ƌٖ澬a]AlUe?ű;/oB_pʏC=bʡmU|Wv[/KY+'` r?yGݹZޑiADS3T艧͝fWU4HҶe2>ڔh{2t_E]!{ wE1d՝9>} Ti3ke.SJ>V޺Tp5 C, u>?l]ӯN' F`#@ =.RՔSjgۙf 6+H20vDIOK\\;]aZYa3ΜԻ>Gd c2.fӬ__;x;tzYBL&,mT_jsr#kDx pfc5Jf~z{6>.lTXT*C;WchWSwgW /`t;4;Xـ|")@0 Nfz_EfUPNEhsմe)~[3yt])l]&5Qѹ@MfGY:cBT'xpuu[$J:ITCJj19W>h31j oDS9ޞǿ\9'k9o Lm ]5vȸ+k_dSS&fXEMzK%JS!^Q7!;N&L! X5eۆy" mI]w@LW&OtV)ifI5~f[ޙ 2hЇlyF}-t 1RBG:M#%=cӉ6?ވ؃seahJTi8;"z֟*xlGm s>^05 V09T=lqT pw_NFE {c|Q ǔyZQMp/*]h+\N 쩁w_[/-bt\&X 1L0J=hG/Q `#&fCo+%H& ue""y%PjϞؔ`  PlSk" Ow56ůOYbC8Iꨢ f<*SgmJnzL -s`naQ[ׅO[h)3wXsbfx%0x)u2=5􍲤@c-yo{sΖs%;z7: J`){{42mM/yF#qLrJ5۵@3\|WעhvUxO$b*;Ͻ[91mD\qo?]A!9|8 -{D[Q#r3Ѿ0&{*ڈ=RPFX=g5[@|F&3̊+T)*Fr!hCuN#S^/LX±Tw2223'?W>>Ah L*}% `,ρ_ŷ,GPD=>N^Q] *ZmvRl;JXC%ьW(䍅ԫn?*/Q$:VԮO؆= rvVxQH/ש\Lҝ 3eQ`PF#pmъ7vMb߽ endstream endobj 82 0 obj << /Length1 1562 /Length2 7357 /Length3 0 /Length 8393 /Filter /FlateDecode >> stream xڍvT\.%1t( #!̐ !5CC%(/ ]R* ?}ufyv쳆󮮁=D `I8 p+Oi #ˮ 0"qB"ޮ@0"& B`ߎHOI"n#0/œmHHʹ$=ƹnG=}NF6;lD.b~MXv S !E":Yt0=rnf"&Cٍ+@.حyt O}T"&6ފi_}7xj3>JЏ|d*wU=/\6_J8Xxm(FAoNnj{L50z-N;.)Z,.oòT \%''Ӌ{wqn+~JTlˍ+ wэKqno>zWŢC2HKsz>eU9O"e#U&zrca͇r݅4BEt^٧[M7ZslS!VN#<ɐ77p!)X.nXY>΍L3~^7]qIS˪x4[7|~S|Csc]5j--c?!]Ŧlj%u1Ѓ7NrKCIHIE0<#ҷuN|KzuA% jR 7lIS1O*QNI*i }/K{n  t6unG /z |b # Иbv{:X(rjä\uZôgZ'}K~ e;xGw}ǬSHh}RqFE `ߚ e@k2 0Ly%~J{@gw xM+h>mQQ\yz/: l^<0Z\ZrֹbGx\F0k;/EI1<8ǓœOF,4oUͨ=#t/M_Ju(8gK6*_Z䣜6b: $YX3d^Yp@MtSgU`| 3zۋکgdS;LS|e7Qٖ)ύFqD?,XJTe_A.N>g(-sFai49!&b{m kN~)'gG-Yd(UBWQLns.'Oi +cג`7&`D`9!lb%Ubά 4J4X:Ú"0fMJ'#ޯM|i0g']Vz"qXZ7v/427SF^wxZxrw|YAգs*7>DNv'ܴE\6i|]Zges+JX1՞-KϏݯQ{ D K=glku:2#Q5gtJcі7VL/:C}m?{c{Hn2d=C`\gVi1O#\)WXx_5P:MqpjtydpCAv,d뇙N>~n8${luq,z?dSQGY-꽐_rN^+Y8ESl[JJcp-pLct 6~}w0&"43ۊ}w/*~=kC*]hX%]3|韬~wEdK!8plowfzfZ[bxy'N^gtQ0M'gz蓤 I5Ys=bpiiu>o;at %W h0f8~ؙuA{2洐v\CEpB Wr6EnQů:.Ǹ"As=9$XE6ڭQ`r0Fk3R;:d9n7S=%go 6gwBLy7ƨsUHjXk`s|nuQݺBӃoM|{t.5Ic [DHzr%WQ*MsǶ_ɖ)x^{_  x (oXcBA^Yf!^mISEۼCj|P[B ]Z~%{jC>3 Fse^4<.ܨ*O9=Ѽ\--(=KtX#1Yf%^GJ"OG|(ώ^6mq黌tlw?gwT]W}("mXxζANs w8h;i?&x@P]^NEL^DuKs/ںtw8lF]}0;K{XCZ;p֝%^-{O0GYg5% ̠jmpv׵ۨE)"fOzb71ΈlDݡbJ [*&M.(&3VB$47oBum,rnLyx=Q$A^rGʽ $xq_xfz H?+aTGx9N0<9t;FT)JV CD2QUa )$mGH׋F+yMYuJN;TSOkNGk :s 5 /KFJl;K2+jԐ/kw(pꉌFTJS4&/xBJi<$נHymt^J6Gkd%k7Lع˾D\2=GPdI YЀP#z$&$^|GCujlojЂ(F2%n(zqR<T/" eeS߼)B$57\:6Im-ԿjR\h+f` VټD<,]]&cá6izZ-Y_-2=Shd'\k _[Fq46 Pw3*GT0AY8]M=~weGw#PQE RUWǤZ^P>/35ekU{*plcU "f~na&ۚ"e3`v/=0'b-|VʓHs4׾Y OP\EaVڠet>gHe] 3d\j[ hHS}Iaz|N.4IQ."W\'~u""8H9 H @z$;n*scS|Pycxg +P\5c?ەJ7d2s~Q%F9}͞ M$e},-mL%ci,^!^=g(ӲϽĮPR(mTwJygIc3ꎏ0zOb>R/WЇ*JeIM(I\TRUS16щ1&&V~:8[b 5,;*cY?zzZXAwi`wP4OIç?$-tv#@4!O,r`QT*(pdm_?T{UyI2lN1yC?hUKhՃ K}Un-%}fO^$ x5zf ֏TM䩺66-L% pAx8kd<8Y~{ֽGݭZd{HRr *sT;p%렝H/lc]NEWړxur˳AD>@ӈ/gf@li5 =(eXbT eA+v =W[)y庄NH]v-}|8nC2ǽ(ȏA5A:ɰwnj/{[?祆 >o9\d-k99$q>޿;k+x6{zl4S'L(ޓ|^6xtTW2.HG9Ӱk1(ыTBg''W_O]Z%wZ^v] } L.`/pVK9m{}~-)ǃY{wb~JNe`"Ith@-Xm!Id+my A';j*:D"WW2*,h :[\T31?!gt skQ>z#W cRwb`EN=w(^Kض-߉K4%@~*k ٴXO5:+wdV~V4k6Ho[:U'X(td5v)#ZEEzA*؋AsX=&ɣq72^ZQ84jH- C UUy[34yʎ?_Bw6 ))n<h cFsJ3ԻxY3ۥTͭ'e[nt a2^ʿNYli$ǦMt~Bu6Sy [C/$|0IHtVd[o vчc˨B/)-@Olԣp~>X}ΤL,|g\>G:0f77Z>-"|Dž$"<&vslX`D=oeJ'p<5y%h%ן%q%P4 Pʲ_\Þ-7 %bގ7"b q&V%f#֚ PMc'_qa*}N0{a_~KޱԞ93^o~^OMGL~|FE/ Bq㕝I̅4E_]~zJhj`'#nYtRc05|IͱQ׷&_im/q;SM\#PŃu8*B9>pL<3m"M`KzOx4dX^U`:{[nj3Q(X/%smo$ 7%(Q$FLF?K:yey 2mByq +-N|R裾H6yA_)#d׺N#4u'BZ- h|λ -pcgUlçM'.d&G )$Hd%֥d[uɓ?ZgYg5^tFwv) yP']VJ#*Ss}> endstream endobj 84 0 obj << /Length1 1540 /Length2 6809 /Length3 0 /Length 7844 /Filter /FlateDecode >> stream xڍT64{@:B(ҥDJHBB WM@]zTMHW9_VJ=~<v=C>yD$چfa~!vv# Nnuu!PtPhj# w8@P (*)(&) t(<`6?@+"]av(t\`ny'+ BA({""0(Rp=G%@OOO~?N>@ݠPe ?;iBh"!0T:C9 ?DJCH'gP? uB@~Ap7$:A6hףּ*~n`W3ʍ + Er#?%+>wo:"߿W0 3sq+M( z큿 y;C;}[4 ? uy@(Ww:{E ((  7; k+ `. @' H_u4TUyPǩ I$D11f۪dTG"@D<(pg(_?wewsAN0Z(lh#_#_ ܝ׫gDa9~an*0/(D!zH7د{% ?>we]Pdw]e 5B"+țJ+U@~9l+'q; '򟾿Sk@mЧ #:nήHg/,( _${'zA3HTCmhE<'ߗ啎H+_{-LIkH%s?zQ'ﲂrPʽk |OA H:1Qkd$ɏfĺ7_o\wm>8HYQ;XVPfOH]c>ŝ+~^3\\|\8OJ2G%{(21K CAL45)c ZlT^_kb{bݧÍuH쮥cF߁D4IQ)WA09TL)dqɹܧ!–4ֱBp zp&!GԱtXV܇ +7eNF~m~6qdg J0mNlR9@f£,ќEvZqgOdcvJ=g7&5"5H7 "%&w/e|BttptxӅ[J5kw߶Lq= Yjt<.@=H5$\}U0 :YQi`E^Im쏸o 9uQ)kVÌߎvsnz5\a JE(.QFN\mO K=XrڠsEA ps.LBxR;C0$@]"xC ޶`.*oǜYs4YݥY7"F0XE@S]Κ;\蕂[p",7O)j] Y ܩl)ER{MR lsv"..03d*eOaHYK3P= "4|ͤmsTT9'R.tq2xN#Cxmhw `HJ 2uP2݁8;1S?6iBM=>JwW.&c*o7}8Vjljv=n$*I|IWTGDo)BLu/!-Qo8b~!s2Ȃ{~4:u 5r#ɱ8<5~ɭ#40auՒ;KO sb~n*ݐ5W*kꕻ%aq4Bb!h 2#f5l⼔397 3!F| uF ,O}-#) 8gw^u h]) ^Raq}?TiqUv>!ޱ *nO*xeUc5\'`cw>@*zNqξu9& GBo8$og):5@`ָAE UEYV`?b'ךءBlM-7}-pVtki$|/Gw}&t z|EדE,>t>M(aIQn}JۙV1R°Ԡz[:ED9 ocRx6[LUK*b(|\sr= 7qutք?5Lju?kRsc4c Ⱥ+s)-QQ\s /Q<0(WPhi|mQ 5An1xkxA0ϠnYXݻQ>'}~2oؠ+.v'sodޒ(Rq)؃z&7=v1gDLش\CC~8#63G/JZӶv·f8P]AqLXP Ƚ琈d\b O,|;H|t~T"{5=cx-ɉg#_vjD==}suDDYSY'Zo1Э;=cuK7 by}gQts,/vX (ãGPf\avj>b Ѩm3-F{ tcO݋5OWtOCps OyɷtW)(B qlV"~T[ǦL[$Ȓ-H,eD(AїU {|]w&vfI#ayƏ;uFm)d Z;[JkCI/?5 uQ,G\H]$tv8zE/jO&&{KDO1SdF^;gI9 )6MtV|4 RBO?2$2Zy %$ |]qr>׈@U׬XnOSnu*0>e;P{C MBP*+B}κ/2ؕ/)R;v8D¼viAn4SDAk=['g {sDOn3r-(6O\|aG,ig׹*M}hnᔦOc*#)`iw,Էyq8=Qoeu8ԝg/˘wJ ʍ©ݰN(}x)z:C,w"P vaI{/Q&J'.TK(nM}Ahqc6h Ɉ(᱌cOa\q4 =\-x~4AW}f{7L\07Ӯ gb9t^N!-y`Qq"l*#;(svABmc%:/Ycr5 $Jm(^s¢ >rW9rgeŜI]3rᎶP">ƪs/:Z<}ތU_e?{YYky7 =VpI@9W BOU/e+.:_B })i q<5ׯVmV[}=C ,&2ibS)4lB'|=Bo]E5O!l,WUsNϾNy3vd"ޡҤ-&é[ʂ3m+l8$9Nb/H=V;O4fiO- ǖj[||D+EAF~tUvs~T)y<ފlQA$N.֙$ wDFjdyւl:Zz]krᜍEW' 0ha%sP$g>Rv>L2I5snI]~2LMh:NS#*j_- yIS*Tup|Bz'mki/ a2[2y%,;3 Bvg:TZ[AVTQQ,-8Lid\E+UWUcRa1~ xOSUijoVh{|YrF-G{/,F-z1ф%E:UwP#u:&XI>GVʟ0vK 4F,,|q&Hޯ]$r1YF)iN+{kJYQ'=3ŭ6t `N^YHĩi8_]eSR 2ch; #vRt2/\+&ұ0sȴ3v*qq΂6K,L!Cq(mi U9YˀĈZ8F;"n,y>3 1K;t&?`P{)"q#X=d}.Y!eh~ܩ~niN;u!V,e>+]Olo$(=_렁ٲs'n1گcYDv_on[m =I&E1tUeDj,Օ+`NT^"B5yO?kڬMtkP ܌:z$!c_ i<FE4߼u( /c-8O!0Ҋ3KY=s\|=W- QS*7B*dksG< p4aoxbQ ΦAO:_^ցeQl"z롞VQ,KQC_&۹Urf9h 78h ^sRor(b"гnAl0M(j$6Sy{(b Si^zq)krH_56I/ UF{`(f4sc:rPC״;D?E5,߆wn3i"i&..\vrE&C]OwbUo1Y {TbhAHsŨyrH`~ً[/|ǒٰ "!\ar ҷtF\&Vmzm޴\K[Mv[F\ićT<>H.B sNA?JmӯSh3|t[ug.H JIc;TO\m6n~:[asx#R=Dy(gGm&9.(W©(F;cWA2Vwteho|[cN:KO5}PFn^S)o_MIkS#ɹ)4& $'&e#g't?z*DD]o'r3Ossc;bwSh2.nߗA /Dd3V,@n:T?Deݎߚ8SڼS#6|['dM8UOa(%J5@~lԗds3@|0 hۧ|׊=Ui(f ZOs֔Sx[2V) =v' {]a]ʞDr\|<=[c); SQw^JY}x p)dT UY׾P4"KT~&eƑET}UԵi\Vr#p|UR?/UyoFwta6A̝GB&[VL<ij2QVG"PJB@ƻ͐]!| D&7>ϕlTǽӝFeJ6ks7?5]{1nZW /!xPXg.S"su+?-+ڥS> stream xڍvTSk.H D6R!"JA%${ST" Ho*EHW.E@G=;]ޕv;ޛK~]kRbpׅ0@I n,`PLk92xX(8M㴰@ %d%e`0@uh@ h`1(w mg×G Ғဂ3 D`-匯D8p,+="#$E8Cnv gQn(a@  p- '4qGx`lPn8W踠0w _gC_И$1v- ށqD8cO a9PUxsG]pPw/BOYcuvFap_SFcYG EE.RW 7١p8LZBBL@(oЯ>.N_f<? `' @ۢ ?w' y+0`Fk';ތ7 `~3qB*F0OQ ץa11)@RZwo.`$Tb?g7 ϿTK|38 wMRpr?g_=pgPCԟIB٠=۫CCcWua1(LFqH?:Nh JG`Pq7 U 6OD\@!|@0D?aڠb8|b@ڊ׉Oo+5 ?wP($$y#ܡ&J bkTqw8o*YڨMiL ~=6 K#P^Vܾ;e,ݰdZ2ݷD=0)dɳNѵg?ZL7g+P!uB1"،64@ 1CXceӸپ4<ͮJ \ozY4^)($\a-p7Gd%9w:Ӕ+QgB8 ~ɗfl*-HOx#iIѼ|v[UB) C+!}PR@[I"Rb|WN-Zꛗ!\e1wiDzT3SRW[z<J6 ҼiγA Y^)Xy8tzԻ%m%D;&FԻFf3^uVrYjyݦ몭Hp Lde]5d&R.cNTP[9=!.ƥ:YOu2S8j`jJwT l\w_Jő^kmHV>)"+Jr+dp6]i#㎯8ʖFQYJ ?7?- 0 z}>YO2[JyuU1tOK}Jf۷EvmОk-_ e|$*wh/T9K_4O%XzA\J\7\!0l!~ha ^>WshTw`nŎF$ ݞYu;&7]]#Ww(zumWw&UhAa_> cDhe!D2WuFItzLV|6tBʚ̛#?s΀{J6չ;c%Wԍm鋋ϭ>h[ʼn^׈FqZ?CTܮT ѫF,mz#J;3܁.q舭mS۩m[C l"(vСHͮ%!PPS> m~?L%{w݋zNz@fH E'L3N#/ܜ52Üc孤TP9]Jz7f.yR!X{@o|Z1{24 q⽠Ku A'u"VwD>$ Rm±ʊ2 AF¾nLmIFХ#jр~Ugx WRhX~ڒ4k5{|"!"ZT)Pcm0^Vr ׄtdLs7$EMjT̔LdbCV\U8V>I;^}~X⽲q8|}4$I,I$qЌ3OYKN<`X[/zR"zM2˔Ί _ouU(r1Lr^SO>"=J#x4;`MTBTOpafܘt˪ HX&N\*VL\NjSЉ3MTnp{:O<P}7.ls_pu:V2ȃSϹ䤞sb{{L複N%@ 15%[?s  ߻g~[ zwξ1d"v!3=&z+;MW4#Ufl `r+եyU D }_ VëQVת5j;ԶEvD G^S2i\w#tt~όito"o7lߍǐsReqQ}[u3Ʈ̇/^X^:f~l.qv`ThR< &R02Т@Q.ڸrM^njWܻ,)I3BIN1}򝾚EZ;ሠk!H=1ZPbI.HS#]ONÍzc/k2M]&GNCOY&̶ r0."NE-uȨ퉞jKMXG\>YȆd ! zÅi&uL(/mzkaĨs]=zyHd[%Årw7_iH<"BFvvOgKbr=W,0^dkw\k[cqsV)7C1BwR;\ 7#t?ilVrGV58~O[>c Dt2ji_kվ|[_oZݿx SJqRXmEyn_g4؋sc3 JDm-k@tF&)-p3!V M1j9絙ި54(8<6t[p(45!b8"z~Ra9?DH%*fEI/]zO<{LV$e-X\:شCJpsrEePVi쁀rJK!zkht晈VLg o-0rm_Qt`鑕 y$'~:woU\R=Ӻ\xl؊NRBͫ2<1lb[jmٽ߼6 } 5T,Ip<ih":1+hB7J'sw3߭~z5DHjQL q Ge:iz'Rjrݗz<&.HXB&Dȉ3]>I:b{ ݰC 2K>yBF8MBkPRR1h/a1`@_޴w話U4󈕟9$=F#d:mDgWN/kg+=SC`Ӗ6wno=<(=Nb$ICgg+ :NƧn+پ>-Vwfü#UFuJkŨK'<0,Ƨǻ4JǦ"0sRo^K]o:܏2up1˟5:Uf.菁w"ƫtCD\&t!3mz--L~Yi ,HӢmWFRpOgĭe =풣Bu`-:Yvb% vg\| +?vuZ^t:ѵd<ӮhOP)Nɩ2ʸ͹[31;>#ğ 3L*NľӤfqo[$tElfV^U]1K'Wa.R2պ|l4r+0 th. X\I =a6z߁͗KOޣ<rQ`ڪy{9WO5"::4.XĦfzЂIrӋ %!  ug}Lu*R<ζ̌moǃ޼`]Uy)fx%Ӥ02U)5O=c2e>xl}x0<: Q)ҼTG-v!v@%si&oF:&ޯ#9RSsW0lrɔK}O3/V{PIK -K.\6ݘJ䌒GO{<TQxvw,9D u‡4R)|8i7+.T7P-NL"Lwxep/jfإ)=ë6R;hΪJlUf0gQJ9r|8 4QoHFȧPzq'cYF> stream xڍtTT_. 0t-)-2  1)ҥ % ݥ_޵]gs~~whZ-!JpO g,  `cӇ" l _@H&Psu E$E%||; P .lp'O*/ }; A@ @8*A=8 AzG )[$Itww962P-@AA!m.p=5P "\aVUr8kqxl+W"(w0 ;:`P h)i"= /G rA@(;du 蹀P' E4SVY!0 )@0=:küZXCaVֿHX: ήU\P  @-Wz}O'o#/ FB! @"\!+~~XBl0`5=~߯矿g(yYa/P_G[ o~a0?_goQmQf :y% FQZ80!7oHᷙ09D&5v5eM񿭪HjH4"*a=eD|(8'eIGf7`D.#{HcO1i/|bB@ a0K6bn0ŲSe0YA9|Nhzk5Qrߜٍ9pdXF*)@,.ʻ'g٨Q]"z%e;o8 ?y<01}lXT}/Ԫ8I5}3^e7薩Q3f$>sl\'ʷ,bid82|H?rե 2Hܤ'\`v&eƛKC҆<;Xs_1l 'E ~[sv%f3>39eRiv940v-[C5cf+{lC͋4,<~yfE TMųֽLZsX^c}D-s"=|Ute'L7CBxa\܀XfLHX/Đ x,-~!C{GPLVQ ? qJ7:~KOH9M{n|QF:6:Ŋ^;=>j98+ARlЧ/]*M R Vޭ*KA}L?C.+Z#:+ ޅ$V mrSb'S|?^ƴ7?Ju iZB9][O?;b}"sV$<& @3g_\Q)!%cve7ɍHEub_* j,٭[6Y>b{R?cB5s< Pܫ[AH5\Z#kQ̒r"րRl:1kwW5L}ƂAKNN uyOLtoBo& lw۵]vfBڛwY&EHm1%m:sǪ5S V,|fx]5?TbPaPRy _ti񣳹4RVBriŔ'wS]t+UX/?Hx,5Q?vXz?)gò"c=0wuە4"Ğ5-@˝,v4;|'+:>D][F Iѳ=4A]̏]!١+DnsDOa!fmTM"FA4qJ{l3V̛U%J,Cp}}" 'xZ慂 X^.r2NmzLHۡd#$`gތM1 /cTBCuӨ?ãq":tA+6a P[&`qNd|A>INA#@` ©+>'!X~l]/}nt_8Y7UiL%dIc 挔%$ ZL8\nYzWt`D{`|>߆+r{̵\tG?iu1אˆmq, :S"*8S-].6"T!ƃ2",;Fk| zq-K<mou {t5;&/R. LSn&Ŗ;ۙT}qϰr5Y]=F7n֟S @X؏7wj"؆͠ 'QG}c;Q/Mlҩd0dǭ^R̊6%a_s~ZD&'"6ؾ! ~MXdm45Bu{N,t.RF0Ym>zLzw5Tgo|"ZKw1"ט pJ$̒0) `K拏:OSx8d.N8Ϥv)Tt ݛRx"|&yZgu1'#'Dى#mL%j [D6 KO5hWl|Idjy134W\iJˏgITyJvʃmT(~' In~=gYbiMG̴2f@&fG{T8=Rr}fzxVyboHUV~0FٰmrjneB -ޙG6`+j&`;ͯXL _VTk9 7uN]>6aY]&*%Dk91L6[ɈR\ 3d+=wg7yUH  n#%8p`/ `2r7b˝\FuGM~ DǛ{l5AKޱ5NAShwKo?F3<`l1RrEcrsW蒧6;'Ic#[D:}͚Vs*Ƭ^cGTMtPcXLۂexq_Pri?eqm8mpzIx}u<$)|DIMX>E" iW}u3Ƥ?;3׼f6OGϴҙZU3E>]/s"WI9_Jࣗ&¸j5PjSV47Tz'#7NstzڀDž3`vdqd8Zpړ=x~B\ʸ4aP.n=PZMLh:XdŌ 5R0xw!jlD~>n0|GAA3Hn} ޲dOL9#5c$)>HK2~gzêU )ң/ooj!7D8x$w|aHT[&v?lk{ql# iSᴑl^11#E?}ipՑM+˽)EeӂX6yV5D@Y֚/s U rQ[Y뇓AĂZGrZG]Q =>)QJAj?0 .U4$UrMZ#ٴp3 Z X7{ȫR`R-8>Qqa&TR'8 .x6]N{4ДϏj,noot{;Y 7!ٳ<}C%ߞ9Tv6JGTQ.it0Wrxfg?^ WWWy"Z6m!˹%c=%:_ft颾t+XfT+ulx S/ YWi鐕1$d2E }Nw Hw?ACG`H&{FٚLX!^tDcko+z5{$D} /5M>"M8*Z )lW4NÑ"on@AUOKlԕ)Uzzʸn gZĦݛ Ww2 O)/ĸ ߼ڿuj'RϓUmV"d$?ٜnM]CO-L}BԫoT[fŦ2ػW0\r_`~S=Ṕp6)˴=6b3KR>q|"SY>C3#)H(V7Ӄjkȭ9bpP{pb^tv )YOށ<;3nBVB\YAy9 NI|_}Y-5nHHiH2k6Y=2ISnN͝ZAڬ6çKٳ;s"H|7@Xu4L @CHqOvbʼn01:K$ ma-!+e9pV|P7͞..8FV*`@,8f)jEV!!J*1F\?0CmU3 C8ӟFмt~n} U]f "ѽ|L!!SLLvG+Gx j{ dA|H2ZJzT I u$%ImKGߎ*{//+{瘗wO.Z)8i'cud>1%ܿO}I9Gm~IYirW_GfIWqxFJ]W͂Jn#7sc? \'Q8kImݳCR|yu 6X> ,s!ۜIBr !ϘO+2jAԈyOܢӵH)搞BͯO-ɢ ئ/(x9L}>bO!eM7ePg)7 f>UђD½$ФkJ[ec{$&h9WqiqHف nR!@^4ݯ}b8{^Ɏ5C|h2'1"4 kcR$`%:C|*$MD2e=}w^n؅"L楸^4b'ڠuZF _Zn/R#s~]'G n%5&a+Q%)VaY@ &HP(%+em5Om endstream endobj 90 0 obj << /Length1 2089 /Length2 16228 /Length3 0 /Length 17488 /Filter /FlateDecode >> stream xڌt ǶN&6gbض͉'m6'7s߷^U.]&'QP458330qeU$LL LL,p*NVՀ6\v8}D > emmRVfVg./\LL&&:pD \̍ )[#G<̜_\:d ̀ ʶF@'qAcd````GMp5w2(.@c% GP13wKlkj|̍6KmeI/c o^#s?ZظۘḼy1'7':V \ ̭ ? L &0ͭ7,jc,lkm qr#?sǾ3}66!sc?0vcT1wJm!Gf t311qpT*igk0(mnt4pޞV/13͍@Ss&;>ڏO:flkcG()."#OwU ٺ/F(qEK_b Qbç?SE}xQ>V/q~4/1df`q?Cz}\3Zq Bf#_?42}i/nO>.,>d~dn/H_??r~$jO[7)ҿ,>F_Qÿ#o|ٿ >|8 ?, ? sY>u~d/(OI0rv(+cL@7/[# *A|W 6ā]Q\akEMFK ,&K H.6H:)4ާGg}ί6ƦXMJC7t{G<MfД &#q88X3+g:$&NŎSGYطK@ͷRo2|Ɠ֟̒< i 2tSĝ);u%q-d$1 ޟ.bV!.7MHQKRJ+;eIOi8:,|"^2*It מ F1tB;J ?-&Uz%I#.N>x}<4L{fldlBg<>5~ʲ|=Ч>' 'G S2}Q!NACU떀'.ERm~$\J#괹kh{P-XKod `B1Rlh]#`$ϰ=>Rʝ5%}.d7浤d5Qp9i?ՖO@aX@JX?8N{8ִl&svV-6a0D*mE'Eh<)=G*M$` -WKqxrJ'Άlh^F=1DmɦLM/߀ ;lǁ|rҭEAv3V.ܼYyE7 !pzNPYⷜ;SvkgP%BэԈ'*ayGά<\9T|o64r;N>(Cq9yZd>)-<CYV)",#E{rޅן0Rb',bf7gJu~^ h?o$LSb;KbmP̬J晨W9<@v߂^TCV-G4)5;HvUODvfwgCQaAGIņ-w20J 7 7ufu} :b(ٝ+2^¢UBGLv.l\΃]ohm|\:~9ق J1Ct ֆ8k8t_LNVb`vڌCP]"uM[.yd˱! \Ӎ0 c\MLND>bƱdQ:3fTT^q1Yq]Ŀ^,W{ɘDse"愳U6Lj"Qm޸vfM` Q"P<`@.S݌KY{uWjYKb/ɲLXOŴPdȃ\n,zf~K9vʭCy!bVGy}7H UsUW.8q Df:׆1suҷOx&kp* 5!ϡtIgQ@[~1|SYnGΒ:$)qM_2] f\'"{F gV=^V^qŵiܔT, :<[6spV}/~\I[Q^A;"@g>$b?rXc"]- ؘd05wstئK#%0'DM݉ ߴkc`P:!VM1 4 q/Ѣ~96=1k>p[V!HRCP+ 94 N[oC>Ta:LSNxrRtfiUT梟K&[5X ũb,#"<ȷS.sW|)l!W8s[N:.W=߀_ X}/%,™_[KX 8~Y(lݱ>&CŌNwI F.XxPej֛E:>BZl=p61E6!pb{釂,g7:hܵQZ 쒼 s7W`&*_o#3>l:S\^`5~U${URl>p-kevhxԓIɿ/q핛i [5i8s? o1-2=a9#44$LOg_/51AU Bև 9ĐA^et>)ӥQGI4) m|"DJJD:c?a.w妇wԘ!Q׺;-dH|vˢJcGTg4$~A%93IR`VCUm: @Ɂhc ]@8 ^7ѩa]I $r\ sTt~\ds+2Xq|2V+קH5х7u$Tޔ`7=U$cs:2iNT񳕯7(NAcK3Fw[gy^J-`2(:.‚fdT|'̣yHU%C#C.)Y`;qjV.듹`^5Cz3E|ИUHOjO檂jk dC"m/@^/)-Jd]cIѪK<.ٗs?TZZl,~Ȣc6#ߎ=.>A_'_KM1sk+*1t*ܮos?ϪJ&k}\o>.Xsjn}+3Z}eT 8e/!Y/t$Ы{>ּaX 1 OCC StjEzih_"FY+vbj7B`Em@cL7c5]{ۉދJch6۫@΢x+rj+tYB[1P{! _lg$} [>Y3PQQ9Rn$[g*9.WǃDg_AMlNQlF[U.S{hf&OlÉ8+_$QYz/7jg?ī@ vK CT.ǴfxlcުJbi~Ti/T:ҿ[-sȑ84~\{m[ή}[il@{zN.EV|S+Ix=M LuH/wUtHɂ= `"'GlrB%0W];NS:veC1 =cӕsVZVkxhJ>B$76:쮚:.5ܪ߉o7pqW!њ/خC&h֠ny=fVkK+C>ZAZ2]jXUD]%Vɯ!nmj0mD[[:}r* Rs $V@ YXN3yi˂{w2j.Pp263JaXy*)\3Z,A-/<$St}{ȰR83絺GnQ|5el7REywo)s"\!Do,8*gtOGABGRm_ aF|8>=J03dHDL[7pQ!U8ࣙ/]ZIiXP2C?JNfPy ֔ zIsTCO*ݾ=5qy^@kHRK#+JG2<o%d{ / ^ TC.Q[9Ⱶ]Zl`?ۭe;%iA.5Q J!i\m#eD{196Dxh1J*[aR&`Bpњ?ʜ]< r#Gn!tF>*}8{4EgDx\l!k3}tүShw",fzk?JFC(=H;ULBZ8澔EG"IVw -BD#ߓx@ዜ_cgknjH<`DUd`Lѕ$(陑FGEC@J!\f] 6Z4LwhWnfbDF'"Ԗ@62q K)3f꼾f' rp+e||"Zs }Je7jq<wc+sΌF~p܃"BC7E 8q[F>h@(ϘYT'7Yf9+ȳȜ f*l^q۳zn 7~"U ^3CgU3/}QrC;qG;-`\nF3w2oIOpO=ns@݌Q#U5>qEJoTmc8C~+/P5Cj 6yo0,*BMNïǵ8cn)ԥnFJP۸g} 1O30)cE7+ތ,f/Qn1*c;ٲM(tat{IeD͛DqAe$ςdwpm8 !8j+|0QiMhfYJ.DB8@ãߞ+i&0~A|ݼU8uq2XfkF'}µߨԂ o;Ҧhi4x9=Nz۠t•44n5oD(7{:ZS(=5ugZKnnAgGVmZz^?'0oEŅ*Q)$,VjsvzP⻭l&kK=H0eרYhC̑ohyBe@G U'n {6N5 fYo{b *[RzL NܓH"]g&5#$?FXkؕ-%dJp 3 Tn嬆4@% N}X?quG"c39U={[lV[*f]ԍ\&'wwʑEٸ\Ο6={2lT,հK"N9N]lUdl<:Jv%%iޒb(@ ?l {=tL^q.x'ݨ_wEؖAva U|Ҁ&YXM B /r&]3u*y I1]_)joԛpW(9YSY!d1#qGS~w7s>д8fM3]Jw Dn7Y( J,(U2OT|)7,,a(r:a_xƞon*U4 'f`*O,0S7 '&jM^6Wl۰hfZ#`_/-W;qfB[J9=:3#bWzйTAagqᛨ:Ao}YzM7n ^ \|<SBkU)3ځ)[N`9wufxI'&HyqyQQ$Fy"ٝ gIOڑNm?94oLW',]toi-$7k!Z*9Zf vXmbԃo7# -Rͧ8*Hݘ %(tU\Ъ*tV%Eo- 2ӃPon.vDv%7˜";(;Ҽ/ب\_ ?Ș 7o*T"]8z =ػ9`Ӿ.: @ Az7oqes3B{}x*$jpQ<:4M[ȋx!_!?u *%y[BUX}Ū 4%r(rueRЬNK`ksF/> w%oWv GJ `i8.N|"/0>FZTE#S/( tɥ ||>ʂWpAwH5*M9V чR8^MM cŤ_,/NO!_liSJ;b.=laW݂_&C0R\қ#>z:)^lXRIKѠ?B&ChNKq#k٭/C|dD7aimD%t`{$9"NCbtzK '.DHE+:=+7a̿ |ee' ʚşa7vSiГ3;s 謽U~mdt*,J()bV:)܇ȣ2 ^7ʕ&dîΊY!-'TXhrjƥ,GꛇX=zH0Pg 18`c>m Ε2DĻ0Yܕ/? YeK\x 6$X^zww%G JK `1#p■Jc3^JSX;K Tcق9ROo-:*9:X8ޕthq*scB6uFtV$"(I#jxuoSob7d)77:F2S%) ů>eH!'AM9snC܋RXD1M!u_P> }qIێO.~g,1]xZMo{Wsyi*W4< S qWx9CE4`^r`w!O?g#tĖ Y@yX|&a%Ng/Tj=\n.MW,aEWX E= 0g;T<~#u6ok715y2V^nq˲D>tju3Vmc?) xi?㢡`mНSw5'1h`F;h( a}qbk+F>X_g}Nu\]6' '%rl3*uZ(+Һdm_yU[ v~Q~JCח+RNƁD ^ÑHA"| f>kY;2KM\U׆l|{ScmbΛFiafMDC+(,8#?<8bĵ,F~M<()jY,wНg6!*:#CմW'wXCX04p% n`Ar4-\LP{2G#ĥVIa2lu8 SPCX%wNMpDEb9F DJ]69!K\֕jcs;TF?5Ǽ#D@vi&=9d1xu2'U|SqzÜ{a((ԭ02bOw<Ɋj2ל!lℜt XG#RArB~]Uiiyǭj[^dq})kSS{ ϖKnV?`}}LP+Xq RI&9b/H9! ~Y̙ E =aiƝTIxb#D$HE` xƳpźH[f,s4>A1۪u*nprWl+'5}F=`٨rD`igO.-G(' OIsw*,/fPHtLz,vgP`VwڨYeh|[Y`T>`D\k;z ƲDOM hce&IJyO(t ?t8)w&ؽE@C_'۸߂'C=e-1="~ҫc(z̈fi7Mv  7$併J Em6;]f/% _k4"A@v]EMlUL x|K~L0mǜL-wn3y8-pl7z)e-[pf"e.%8 Bʩ;ЙE-{,-$4*USܘKVdZr*ZUaaQX=?TNPUJdd〨~c(/RԭY9p5x*GS/,=YPw7 YV+$=ٗɡU\>(gT{0=̗o6# : 9Z(?,~ r YCDKЯ4fՇ_7 d z>}*}xE$P'[Jq٬,'%BJnu+* .W. 8zy3Pe{ >&V*6v]gorgB%*QixI<>I6T+6&=[&w}e9ş// k>ir^gF=`=nbDG]1e 9k`P !"ɋ7|+t`cH/"/XJϢxJtRL╩jOR#_hԊMӥ s=DJ,z*x54cm1lr䜍w(ļ$OP͉gr𦢶;@e6P49[8i06~^Qba&'wp+C,A& V{@3H81Pb MhS`KuB)1&U\}SRXԨ^Q+#Uеu73eH1lm5< S*oF1`-bvvoAriYJ1\_ec( ģgaB]q_Wݝ]-O&$5/U&eR*ƋˊSwĹ\8 -#(<ݹ8g~J(iɅY5=.})>7#5ՌwQ[HZԣZbED^AɍLj(!;i!l/dPnVt«Q|c1X``#ś@AdF:7U&95sNϕ.E D$4W6U'vcu'`Ep0 #~á-M3iv6ݲb7GKt=u>ҽb@v_ d :^ҠTv~q5]1H]]O~&Flhq{RzQV3Da(A&*ajw #h.*7Z͏b'em]N SuVZ2 M6$Ywg 牔DGپW^$s_ ;P3%E sy}>N-ДAc}+,ڭH(ya&^D#1#Zxc^CR'\*!B)9[iX~)3. I!ݔVWeb0h41J9f4NxjY/M32g+ic;Ў(Fϔ2~ׂh;'19jfz&v_hC`"%j,/Pz[b^Da(|#ϠadpΡ%z;Ә5hLb=]3iͣEH%.3JħJ):hj" yE#+}LN Lz>#v=j=B~ŏJ͍.E Q$J۽L-?"瑂uZ?2 LP򪈱iչ3b+Ⱥ-?3Rdp}xRI0PO dl2;=2IݴRd桥hVXx;Ewה%GI\?٥&m38uE/|x `{C8g,;+=kJIo>ܧmva50lj2.aܣh$!} Tm.,@'nu&И|{.DzdH)7 sRWT#n`ڏ!~g싙AoZk[ݔIO)U$P8?'Q3=f=%@ӬбD/=܌,_5W$e]$*, gn35pN}'Mv&_( be ^ca|kl_F7K19T#"5a+ =D=M4\Sh}) ƍ[\wVdCOʃ:U*]#ΎZ;~ # fI$x6'լLdɘ*EK3Ot.*A%2euF?8Xy8ή4PY.JzMҫUVk/(& hc;d'*ں sI~ְE䟖ulEnnKOWeҏD d4GPvsP8m[9Er 좝t6!Lf'XxQ`N[mTWRb8"V=T}z|T5A}ݍfqk% ;^q\GlI6|o<3e7c5zˢ %#fZQmlnj:o<=:!µp<e42 )Z$+zS a@CAy/YZ$C1vsBdxu)Al[lSG̢o؜F:Uc(4n endstream endobj 92 0 obj << /Length1 1864 /Length2 11922 /Length3 0 /Length 13089 /Filter /FlateDecode >> stream xڍL-(NqSiNqwww-"E/g9%ff?TYA(io SPWga03123"PPm(4`',@cW󫡂@`eef23eh Y{;da篟jS [ djlP0vھf45ٛف͍։l!HCp9[TN@+ 2@'5F %? 5{sg7c0*^]\̀`kv<@hclpzdg0Jc;߆6NƮ cW?J7H_ rpvbt;k%mmvN}`svnv^!sof.Lv G6"d@g3337+Z2NC[`J2~!x9`׿XXf Sg dOW1?u`;@uX̿?03{;1<ݟVڻ ll6.''翣/HAx2vPx_4\ ?_g?0s0a>?\6woE.66cۂl _UJv Yꇏ(4uƔ \l$,WM՝]v ע׋9ȠĨk#!l V3e|=oh4<"MRfmp|348Cn4S5*x,u0b.=:̧Tn=1xW*>T%7 miscJ6EVy)纔年!XI9_|.au.U%eFOkQt/|>5w_t%\JIr9ZVbEe r"8\*ߢٙM!f/\Nt$ڦ<9=4U)d3-$sv?(F}YL[c꼿$W)x}ڬYJwa@YF&؏t y߭(N@/)8ۘ4Sa#La4V'%ocY%&׾ #O}eɭ4PJf' ! 3 ;CtC犱 Mx#fH c0IӏvV`McXFLdC3#ķ~sE3-qg0])u `O^bCP $S{2&82mEf5=׆s3LqHB Q](UUtߪfTr<)rE'4 zB~:@s,_[HEO ,'UU I[.:D8^*Arٺy_lt.>e`D QGT>CkvO(G*=L%)Hϫp&Ū"!kSbG;o$ejϛ["% B <հX&n)HmNӉ&CZA9n F/y0pQT{FH12v@݆>da,6P`JuXoJó5:ʊNߨ#PQzQ2xvK1`nK<βrd/삍/*V0n DITŖK;ϲ঑=cS@ޖvrZw9BP%ˠ#Cp=}' K{S$h+AJAמ.y&} :5# %E#?fP?2ڱٛx{:߃h˯zxD|HBGSПPvȰ0"`k41j*" 2A#Owe/1S}p6}EcH}uzt Ioq_9GSh<K yC{H6+NiCkzC/@1k$ѬY)!dĎ'U ބH]I ;Tˆ,}yt6$wV#]c5?j//>ʏν_ ekgT Wq?x a8jf y 0 Q%?~J{ʖ,.A}sծdՑ]>]ܤSœfJ$M]jMKˑ N'X,8B uBd}&*](榍3Yo6)q:rj{'fay~psN׫LW-֚k.r"翣P$M& 0ThϘ`5`0#|%ݘ Z鼭S\C Ĥ>Zo?"sNuw]'L9iz`Sj }>q@)S(D?D*,wWmm){r/}& ThCS!.o Aj ƾؤpHNnA~Ȇq#| Fuz]fttCͯuaUbpj&/PPCdS>iuQv`7{kR :2SrԊ 1¯\-KJLK? Kqmţ(Mj?G*Ç_&]JvTC%$fCYp;!lfn~匛O '$9[e`'YjQ]M3(pD埠>C1ȍfkJ^LirF‹½~_i;ۢ 5N_]l~oEu-Ra`a}psԍS²J'̱3f- Zg/ YrXiDQ6wLJ>,UЍr\!/Z{~|s2ߣ>E"BNN{6%J J=Ñ#ě> D'?+]/7"HKn(Hk)Q#La!7?_IE}b\E&s sEk Rc/!jR0b/5̯ff C6l'Ei䷕jv`,##f9*8P/i@RsBQouXZڐ{nO.!CLwUj\=/2/aK1FEbRMJc lbnڭ1VH=1_+NjbPHz ,U 2 8s2!XBgb|L~_ `J*IWT*eg3f P~`*dh`͡kkKXU8m틻q&-8X2F]ca=%(hdd[z0} .wf+؀7si_#i5CEF@@(܄Vn[:^ar# 1^M tv+ܖ dt$({eMi7Y]wE{ǩ; _RCk~[ͫ[ FFnZV>'rUQ)r*QIF!D A7͔J0.pAdTkt[=:?/&3q9 ӵ&)`NRW[/?`OU5d?ݿ̢ޖ5*a+0gEPeSBv%3X+"#1j?7u0pC#o#^>J&W`"rXc.өJR~ զ QcɃk<`uzL熴TrɒSV2^`3$yZDbCJ_Okcp[;[`Ԃ9Ɠn|,1te6ɈUx 6DnU⨥"K!j0AR!!rFFܣǨ"K:rP71whEHI?" W6&`|֋MPTG)rFI>  LظVx(\z4#pFor囲0I2YL۩LEDaK)52#ϕ@S^kq#n,1&DZ0|EXym6#_ [ =<.v ͩe7 EG"kj{jMtǙYI <[O7Ӕ;iҙytZ][!iIH-bNTVOYd hk~i5[ݶn#s tl %Kqyn6{:@w!-k/5-9eUǹw\TxÆk 5Lkv2FBR5̆PǏH238\p{LnS&j|1KќYO䑰qv4}bJi~ӱC_X>[#|D*?%.N)[GW#v*5Z9F_1 GΚ.ɐ'1*1מ!42?AARSlEڠ-R|ObM/*xQ~3=$y@l5ap 5RC47mXk*J> U)A,Wzn)*,°$|:[{(kO;00OXy+':ul>$3;d]"JE/VyS&u رt4pN41ݟ^$J`)_*? 6lK#Ӏӡyo~iKp&,.DB֤]j]W9ZXfc0NZ$ w0 RJ4Y Gc)zuLj&6 UX84 IRkUu9OWnrH, ÷9.evߊw|01"ҝǬN,CQMâČp񺪊 X &2Z+ (Jz_*la2:6R -=ɭms-v Ocaȱi" hqA;[s%~@Oyqe>qPX6Fmc27vU @G ۄg'ęqf_UJx׭P jJ}X۲)>Y $HP8u799V}DVߟA.ɾgŭ \1hLȷ:XOZВbd)S 3L"?T&zs0 vp3hʡ+ ƒ6fssW" <%ܚgUo~-J`_ޱ\28K|0^ܕv͆qڡou$auUv]3MR>$sطP% -ΨКo݇IvbWĶO{J2i*~˟,1޵ >oX47j3zqH{7L!aeW0{O 5+XL4ł]^H_ ?yYB)-)iIs2*كzO,zwI+!#~h>_\HMh<^m^Md&Ε@Fŵr?dEv̤Eh FwVeoJ]ݐw!I^脺!59ݾ̨,,4p}Y'RBLV-F=GxX` 52CQE͎T-jUu12d7qQ{;kCGgWv _ϓe([1mf5o |/~R$_IowCiv@:2{ai+_(sgɴaK0MkyzOACWN>D!bw+E f1%3w٨5K+HJ-<+`ϣfG"=,]JL+kQBƁ|:6ИQJƥmݠ;X{(1ͳ V-}.5G#+f*9c3EYIsB &Y6HVIu{owqxvmU?d zoU$iS۶ !뿺jrbF JJBdhcF,oK:}]5aXT@5&%Y̝5lnaܳi8؂zP١2䚯˳+YC@шlg}z4-iUd"5!a΀odox}@ՕaE=Mq~b)50VE5r$KL> VEK7M8^ROLx_Լ)~V6 }6>z}n*;*ɼ iOnnHL#\;J`FbG]^\k){LTvApjW^lQf\lށ)PѸ%C6˗(XGi3C?拏nrE] x *T1m6m~S7ӺWd|/>h2Fiv:_DTG[z^:.JփvpaL74u Xri u0:l (hPF-seNEcd +>4lY>o89٠xy$Dz3w La9 A׎aQrv,\ag ʰ2Tq1\n?~ZV#5"uƒ%]3dRpS`Gz}џş'&,X`G} P)_LlڜZ0]%oUkK@X؇SoKPLx`*kC;]oldz¨CovS:o3a?ݥ?i/ ?J*iUY$ן챯 4u32jNG?oR@@Oiӓ.&n/fE7b蠏d%hxL!*.*"闻yO@)6ԧb3Q|ǴaIܟ1\%.۔.@ZӺ<Ԅ oNm i|/k)R+&A@|=SѧMf:PJFDלCTDg 9 cWRQ0vy=7S?e'ڬӉ%<+Q:vRA.5|RQ=MꍪFd޽ؚ A)5m87ֹԽ[qx#kk:ס(u3g|΍$O[tb֯<6`a84̸e YtF|ұ0#^D@Fe =sxX35F14֐>`ѯV`eꭲJ[4 z,FÊw2,(zBo=le&"ZQ>qRe}$jy{i E)d}WT@)]x/rpz ,K ;V6`Lu̢wj+ ŪҏdPIM||7$7D}a7A$HƒnlѨ 'aiŻeUljfb,LLGrNx5i|)fE%zj4Y!S-}PPiQmPqiݍWq@<w0$xRz"kXJS:eD*DY`-rvP|7 {e*c4ɬd\Cx\uمG(P]z .޳w|ŕܶ4nB"./U_+`[`mu4; V9wB[x"Mrx|gR'VV4﯄-޳mޓRj$v}ҾHzJDbD{vP>T3~3^SBYgs7k; :KGl_ ,˱>dQ}R _t 4Lw$r @wd||lHԩO3{0wέmFm;t,z "qDTp^4=8^@KڊERo$3Z'ib>I{zJJTL7j-KLCxԵ{Ξ&hn*IU*xѷv/{m3½RK,Xv6]x7ClMUvN穹f͈@"hbtb0\0'rqٱܕ]imUjc6F[81kٸH]Iٛh SO2Z|RfL*bԍL%K$\)i{>TߣwC`bT`<~Wc׬HӚkžMA_LlI'%%9tS~R~UZ f娿e%e'B؊} (/[ܣGWJB#]mYEbpJ ElnZP|bIǁL5>pmg3ͬ9{x&l0{]rOl \~?Q=X4Dy6m@hLZӛ{#k5EQ|ͨo( Cu HeVF#rSv7{˵Fv9l ݙG"_l a(lyxK,iT>(f@7]txo }68+kH9upxD>'J6`A(^Gtk%wBM8>Q# '[DCچc]rz9uoz<2+.G,Đj"f*'97wsYZJY鲹ISPV}~hU&_ҥV<(#Rh@= mhhK⡤c?V9m^5@HISKEqy@i4Q{㗠:r+@M% %#Fi"6}芆^vc;1}3.G/ŏg 7TBK@> ?cE$G芁8wUaphAR؜?;LM0۴ \7+'-X)Dx!A8KD`ٻ8tx^X5_D-h z!㶺캒2"EyMRo ɧWpN߉yk |C:V-ؠ3\)h q.ȼϊ7"G4c٢6 h [sNuؖKL0/{窷pB"#F;"HO]*™ cd#B4 yqNFV5pnwB%ƣuQ/OK7\&,}Q,`3z %LͶpNRGR;a zVu&ڇ}mG~?ynUP)qrZmىO* endstream endobj 94 0 obj << /Length1 1342 /Length2 1316 /Length3 0 /Length 2172 /Filter /FlateDecode >> stream xڍS 8T/n7gJW)< yGl3{ffy1&"J:J9ݓ+=J‘Љt<*}~}{~ko244cL4*Rd*N24Bp!Jyio03& 28DL3ށ1V}7]P>,GH#2 ѵ1+=}L*%oWeElP87!BQ.6#k{ B!26 <8"a;LXGTCgZH*$*:10e<8tXBF1b9 n(b!r1b.t1BSHpR)As$^0v^W0MLPn,=YG5\^MBovOhr5xjgs/ߜh3 Z9R&wuk? -+zW5tޭ3[˞5uwkw*]_ Ku{oDȪb l(JWtz{:$عqeޒgZks?I2vUef n|s}gnWDZy}Oa%QV'-_eHi _:^k庿0Ͻ(иBܲ//Wîw̶ahš<(ǧzZஇ[Ku4lmsrCd&5"6fᑮn3pE.Y7{c޻eirE锸/Z@).}]vquJ>'>&D#rZ;_/e?Ͳ!'Ǽj9'eT)Zkr^yrOqʢig'?#i 7.Qk`d f_+M틛 qNj6nPmԨWb!*M>f3VT ^";*.MN_xJ#Q&+=wm RRB9 PęŒWckpϤ0ȳ(+ϩ􎹲Vy/? t,Vl&~o`^ŔO~+;3}c0vEIk-B zwng Xy]KOJn0go|u:ԂsLIE⟦v% Ao?tI9eg;" } ܏I.[o:` []C1ǪVg8*mIͻOmrFO4#x1*D;(=ngWfkˮpql3%0&+4=eЖCd5_Ff=4et?Rt!:UHnNNI@KY endstream endobj 96 0 obj << /Length1 1335 /Length2 1312 /Length3 0 /Length 2171 /Filter /FlateDecode >> stream xڍS XN3S&aܺ."?34\fϞR>mv6).(DC:nHĎ.(3%;<9qH 6poI7Mb`SX"xЉx""9N#*B$@W99!! ӓdHKMCv {b19U['*Yt:甾C$}"; ᝱_I1C`Y+La of_ oHs[FĨH9RK28*_z} %i*F!?%x!܇ѱ^km QR>@"7u :d(52v ,`HDƋɩ%(K zM]C 01,#q6vFu[z =$ds9gS[;?YnŒY}T'[ m]: v3+b(ziФ7|7]9Ǟ R)'VqvVh}-݋^d~ڟW{mv m ogFޝ\w8L_4jLm{:qW~%i6_>ngt(,Vc;љ%7ORy9߾Rop`TIB_|cW'"0;YinX甝g躾2{[)K5{4nf}ܥMu{CgL;2DȤoE-໭MDN[^mOUkL j+57xu*^?Agso܂654X抩Q(sVd5n9{Mblz]\wgt%]e[gi񵱚Kq.P6i& I>Mt/}n-)g{5e&yz?rRrs,C_zyfs,^q+ӥ;1ZۇU]]$OJ'~L0]kZzGɕs۬~13ǕK; [N T_v)̕mTpsj񩳇7}sMߔuFN|Y+|~٥ɽb+e’Jz+vPkuפc-3vw 丸W Y˜LO-gpaEn̋|76iO g&`$LA(wiShZ("u±z&gv*#f릺WW.;U#֊-߲]5+*0vV.˿Wq2k.%v9_LSjnm^8Eҝݠ>gORݛ\4<^~~V;}U6Kᮕe=gº .s -w-1-mC_28Zλ$/Ӳսk ]4;%DLA1iG궔 =+?Z1ĘZ .^1˦R EM(g(Xk2yK%YGL=~޺uF*EP ͎e棹Iv6^޲lWs7}l{P%Cխ7\$Yes4 }߀H1g&nMf5^΃K^/X#ooI/ endstream endobj 99 0 obj << /Producer (pdfTeX-1.40.13) /Creator (TeX) /CreationDate (D:20140528164458+02'00') /ModDate (D:20140528164458+02'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) kpathsea version 6.1.0) >> endobj 11 0 obj << /Type /ObjStm /N 72 /First 594 /Length 4746 /Filter /FlateDecode >> stream x\[Sɒ~Wn0]Kĉ/ }~~YJ-#`6¤*+K l&FhhXjEkBcMolhhݖM96ӤaEANӹ|z8yИac][KhyCvχC}4MumBF3$sc[>7X^7r0"ah"&'ljeTl"6\eшESGV-LΐvZd1C3+ Ha+$2pXӢ3x4AK~j~^vp:j/fËٴ0[t|59Nawܱ7< v??:|FSs L0<âo53jBI7$P#jbv2>05`O5ǬsZ_>`|L{5i}MJJ+ӑ~g2!q]y++4~§ph2.wfqlL^ہN=kxڇƳFZXbxlfan"ڼ+@q ,׽ɚm?{->zBy+xx(B2(`Lig3m(ҡ'ږИ2@[`Eh0E} x[lS@eҟv,=,' oݶ i:h5'K`Z[c>4h$~+ZYI:#f} g:MNፖ{s~{f- Qhb,C-]:'2e Y"fH07JM36}׶oCfEȴM'jfej_Ttb09!Gp2yʘXJzd:(i"7m6Q?l /SDk?.O b:ٲU&eiqT46f^$#d^C+=Ƨh$ *W-p[fKR'xb$ɞv"PYg&S gk@|Ot4#tw9^ϐ6P惰WNCtޤimFb%(xHsQiL*"m}(BkG{Zd~vG3y*k:Z2:jY*8YT9lbQBƁ"j'#Vq^ BBW+)vY0HJXYvoɼ<y JDB CEvٗGWju Ol-er}߲|#׵C W4'^r&)Sz&%s8>Yf_sJVAyVɔ%niuJR6+ً &szPb+ *؞bt0dq2N[HY_ORndc֋,كdn.|d%E nh1T;͓0P- V5F+~ˉ!Bm 9jLLp|uoc~ᬼS"xڄÕ&8H$2tQR!=QD( Qdrf=É"4#'(sZ*<º>%BHA FPpWlh.ƢG+3NBJPAzIY>~xԔY<2rG@֑}F[u(aE+Y=2MY- G-]8hi/G FT+,Z76X%P.X֘999-$9 v\Vr;D2glsWl[reWr3a54Ѩ%HrK+ZDGc [w["̧JZVZUxFV5^_ƳzuzHyDΖ.L,[*wkgXux:kD@Rk'OE9WA%'~Pܲܒ0e-Y,`)hUAmTJ{ܻS\#W<2ricٲBŒ+L)2WRg_%2_-NeKOk8ZD.5['lpb>,K0S2DttHv c()PLl9"XJ~)|IJU+23LK-&bVeTg.L#HУ\s>;oڭBWs@Z֋mKvM{r 1SsuI8 HfW*#ǤYMU j1G=TxERYp Heu2F$q%aZ8,zz_B 7 U2]$Yol%q p6Bˈ$4°^sz(VFi3SY~k8?Yކ5+*1qqD7[!DfOwM"h8Ĺzc(4(W+I  2i|hkJ-XoC9P ^ƊϺcqDo h8"r1B~12 rv5mn$pN2~ǂя{GOdٍ\'=f(7ηVQVN-('-t޸}`ܐURneȩߐ IWv>4}jc`~y(+k i]KN鷯<H|8Mr3˟<M3Bq ʃx:̾M+7f޽\et9 Z27z\mμsmxX3݁ywG[6^vu.t欻7?kFV ͙wUV5k R>nλsanl\Ptx_6K`k5SS+XYwJ5S]J:KfW g{ޡrS_uXU]Y3kV!ANao6%ѳ];xnfafi6I~#輦.̈́a v31k)9X_N(φOu?=u&ItKhQF endstream endobj 100 0 obj << /Type /XRef /Index [0 101] /Size 101 /W [1 3 1] /Root 98 0 R /Info 99 0 R /ID [<5F54133149540C82845575B0042201BA> <5F54133149540C82845575B0042201BA>] /Length 277 /Filter /FlateDecode >> stream x%ͻ2QI܂q ./$PQku@KgF0cFR)</(4={13uf1YXd̒uR&!)E vJ/U#U¾NT@:ʷa`Qg?F2ߪ1jNoTppj >O=f6|pe' endstream endobj startxref 211623 %%EOF espresso-5.1/PP/Doc/user_guide.aux0000644000175000017500000000411712341373153015205 0ustar mbamba\relax \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined \global\let\oldcontentsline\contentsline \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global\let\oldnewlabel\newlabel \gdef\newlabel#1#2{\newlabelxx{#1}#2} \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\ifx\hyper@anchor\@undefined \let\contentsline\oldcontentsline \let\newlabel\oldnewlabel \fi} \fi} \global\let\hyper@last\relax \gdef\HyperFirstAtBeginDocument#1{#1} \providecommand\HyField@AuxAddToFields[1]{} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1}} \@writefile{toc}{\contentsline {section}{\numberline {2}People and terms of use}{2}{section.2}} \@writefile{toc}{\contentsline {section}{\numberline {3}Compilation}{2}{section.3}} \@writefile{toc}{\contentsline {section}{\numberline {4}Usage}{2}{section.4}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Plotting selected quantities}{3}{subsection.4.1}} \@writefile{toc}{\contentsline {paragraph}{Planar averages}{3}{section*.2}} \@writefile{toc}{\contentsline {paragraph}{All-electron charge}{3}{section*.3}} \@writefile{toc}{\contentsline {paragraph}{About Bader's analysis}{3}{section*.4}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Band structure, Fermi surface}{3}{subsection.4.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Projection over atomic states, DOS}{4}{subsection.4.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Wannier functions}{4}{subsection.4.4}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.5}Interfaces to/from other code}{4}{subsection.4.5}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.6}Other tools}{5}{subsection.4.6}} \@writefile{toc}{\contentsline {section}{\numberline {5}Troubleshooting}{5}{section.5}} \@writefile{toc}{\contentsline {paragraph}{Some postprocessing codes complain that they do not find some files}{5}{section*.5}} \@writefile{toc}{\contentsline {paragraph}{{\em error in davcio} in postprocessing codes}{5}{section*.6}} espresso-5.1/PP/Doc/user_guide.pdf0000644000175000017500000054202012341373153015161 0ustar mbamba%PDF-1.5 % 62 0 obj << /Length 1740 /Filter /FlateDecode >> stream xXMo6WV-M1%N (rHs\jr(iw!K ^ 7CKWDh6")ggkmCX[\gohT`A,8ΖBP…I{ssvKb2Òu [&Ta5f|I?],o}rX\";r-Jðn.bW0C8S2t(.QE/N]ӖGQB=Cs{`2D2,c[,%#V)-iL [,-%Z45U_t8 N3DCr4vW|Bmz} %G]ʇpAaj;%/jGRNL)utEF)KݝY\ѹ~nMڕ])DJKEKaR cxD nGk(}^E\helu^k˟XZ #w|(is ]- _6a޹6wc1.jEF\>/2°+Kw$#nF`3IE.Qm\9FnuTPg?,/CGGx>LMZW_}at;MJ(eSʴs x*R4s9 l 1f 2GR$3ٔ^M0bgJX4B2PcFB=MFZ'4Wzq0e{EcC(ݲ5E>/o 8#ƙT YV0}lo=>rB8Xq*r_'`Yoc|M#b=bXgDN^9b0s^2FLlbSGO`-䡵ߌD]o}rwW0K*!*oѐ] meڹkM O=6lӵAVQUnEpN 7ST %(pm&'09Tۅ|zz ,kˢZ|&`djܢk NcM ا!n@OP(po:7>4z +G|p;&] X.K-Ѥ-ھNٸx7+;znK LvѦ=ҵ{б&us7Q{9蛘)xC`WH(z!X~@bџ['v [FT/z.q_r|x+6Q}*bzyħ蠎@aC8<¿Q&㋣vS ȫ,¡WC*`?pQ}^ue !Bth!^+!ea~~: x{67RG endstream endobj 48 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (../../Doc/quantum_espresso.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 72 0 R /BBox [0 0 531 181] /Resources << /ProcSet [ /PDF /ImageB /ImageC /ImageI ] /XObject << /Im1 73 0 R >>>> /Length 53 /Filter /FlateDecode >> stream x+TT(TH-JN-()MQ( *NU5Tp endstream endobj 73 0 obj << /Length 74 0 R /Type /XObject /Subtype /Image /Width 531 /Height 181 /ColorSpace 75 0 R /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream xxTU'Bh*MAAlkWյ VA)R(IH%Hm~wWoE'aZ&r~4 @u:O>OS/lIb RO^&M" w촛%.$f> quA&M4itc{* L5zշ]u )s<.Sg뾳 M4i3u-lPaC`3Ԑ&M4i2/(\yFDպ4`b[/|M4itË^T`6[Ah1؄fhSu߹MԣI1@)xM4i'cRF;Ahc3f n^V %h-Xsb[kr}5t0c=@hI񄎌M4is,J &0Cg V-%rS!7hEki}7Rw겮iRCܘÍ4󴩀5rZJŶ2h'\ԉҤI&MWKV#֗ hj"1Yƴ/ğ 5Dnu{jv[U^D[1i-[HsmePƪ*UF+iRqT'ckţ]JrdZJ3LɆlϡ#uQ%f @JD-ºTUeu@d-[I8~hw0J;7ys_e[B8G0md`( <4ʵrm\B8#G@qX(9GfEQbQ4(FwƇDzxV~'@n2VL>],kuT2c=35QO ڝLg*pkh!/M4в}eCQ/wFjl^!nlV J$*K;:hE rh9ZF ~(p! Br!w;ײ@BPɍ㸡EiQZ.)2BHn-ڪHg=34q1;ecˌBBϫthФI_Jx~6Ë2Dl* /$c "_pETJ S?yG=iKƋpYu2w+xQ47.` @@dpno@K[3XO43727fڂv~ߍ@4)819q,'jI]iȣMYK .SQVv03M4D Аu6UN3h]ԟ|G24rPAXLkXC#WqT_LR ',XQ-{Yn7Y[&ܨ2)ή6[*ժktGU*j=3;AvB.wg"Y> pqgKXeTBmRUEY:Ȑ$ ]%Wd@4iҤ/%F UIxh_:IZ/(xMWS3e{_ v&ƽV%UP}*1aH ay !cK]ˍ9}641gnr:?jn;$u5:$} mq·()?ɀ\h) L AhL4ŏpvg ~T8 綳,k'SPkMw(NMmvaWB~dh+8CV `ch%Ǡ4.%F岩r8+՜y4i gD0ߋ]~TBۤ']+Q(!!OQ%m͘.IY +u%rJfف̃EGhiH '9mU\:-@9}lsNͥPW5P.W1]:.DÅC9pn )+ y;a3?՜4s w ع ۋxnG7)=Abx8Ju4sY,ic1a\bKwa8&Hf\N\*&,N/%gV`ZHY[v3 E˥'9YM*f&wɨbZf5NtM4r c w/dlU=9ZCp{!qxvd̽,mjȹ<{$&`KC9(? e$FxI{XP>;($.T:dz=)؏D!-=8Ǐk >K:6K>D!}-ZIij1/41U6ԛ+%;G+8],'p,iNMLX"qj 1pŷPJ4T$5c?.mQyurk-k[kCs>4! 1A]*LO0Y7b$ib9{Z Z|]:j21(ZF;&Tex4i.沴q-f?#H;Uv1fߏT>=ߔ^ݻduVH-煆,2^: E1!/%_83o#'.SVϘwּp,a*KXpU@kN*b-LJI n#eB+юZgg@WrlWi.0C6jR*!Rnf7CZÔI\BBJ\IN *eDhCۮI?Y\"+!it+)=vhD %DH‘7OMgױ?`¾)&x>}3w1 q)$,FWpj..u,{ b4 +17MtZrk̽fjd=܈ 疨TL3.+;"9ɢp)@IǠSy;!g3ⰠIK 9"H^߳͘ V* }jҠ!sN7ZoC&M] яhd? OBS8O!g?顷ĕ`TLmL_=lͨlWv>xBsb+,˒$iV9*bkza=t?C2HOO!泄ZNdn!982iR~4A%vP!U5u=n9]Q)CD wgsةE4N&gм(5"˘\&M7T.q+k6@jBrclݰz,|hX|,OW '@ rtfDh55BGkT P| GAN0Fֈ)K!-}+%$YNCPkhCTA{ E$'uXX[%i*H} I"q(܏XV:Gl8>N|,HeosȅZ|Ys!t\A%!TzQWV&MC!;ˏ:U Z~ i!yMX,ϩN c7_. a'GhNRئ"h&0upd"Q*KzG%C*;WcYoeTFvDŽxnrv%Z_Y;MfVQ ;ЗI¡T/I6iҤIӟ iǦ*8Hp)Z,")0*OTGüFD*Z,c3Vab_U2 b87k60?__'afj xRΚL*VoI?-8Ȫqfp웦C"qxk5_4(EG OԵpj1 }'>Kg8b.ݫLLl'חLrIIdzn~kQ$h5U|է+lwff#cC<,H wayYnl,.S Rws M4CUWzeHӲ>[HsWo48)́bfE[%19@N,?.=bkwJ&M<b`r ^Wb|"\zS9Cr;,ur^()<+h}6m.Z|Q0J(7vUܽk";H}F^.5OU8Ø;CB'p4g'GaVcChm&MX4֌-ppM`"IiZ.C8#; }A$G? >$_XmJK'em[+r cfdZ@!~P+U@hW"W%xդx()[pǩy4 z8>\^Hs[.#YyXDj&M4aNA/5iRi ) LvCvCgC&1JamŘѐ;^)*X*EWqݪ2PY [ `?)ԪJS!@vK gpJ134KLN]{vӢäXD:pؗ6n]&MO}eQ.( AOm`j"R ހ)X9S_a hv4:wo$^ \v~ > Z/KO$C9vO'0oNgasnE+oca4`p5<Jc^+N1~,p=89 QȅѤ 4dF z܉  jl9@` 8/6Jb4vydnY '\%GhqZsz9;D#dnTݐE&MZJO0,JR5pSX4Am

f f ?>N"KFcjD!)d ̀ a)i%;2DC_/^!%`g_[ :qr0$FʿeFΎRRae/¾;7PAO@]:_+y!1P&M5rc:e(=lO]"|!6L~V:^/`zlr$ o FCN#aS y8&K~"{ң o NB&vTsMӪDh8meX!8ܕJ}*5—ou2~ -Ԑ-Uő&cz51t krrw͊@U 4WuU-|M4xKDs[+> {!w'0M[c,׷,qIZ:1 #G? ngo W~P҂;ף/#ựU6x OeGfB2\8}CR&^`2]"pHᘯlZv^X{S ÉOY7m҃PKVdʆ_dZ\&MfC"&Xe"?XahlUء=-BR)ļ ރCo\};捦_EwA${N_!rh$U mD7YWnhUI(85[,d2pp=gΎ`83L:(f+M4yJ<`j Mre )>]3ةos696~]x"v04x4,Pj dcWL sva%k#Ln ҥX!?L>b;f`u,?|0VjФIJ lO\)#f1y-Æ{a=X?4~+p(UUGɳGwÎDž@"ڎorik pZ7 E͒ZNJY q)?Kw v _b w$Ck,]u 4phҤw>1zI?ɹ0zBAc"c~KW%h|=ۅɆas!ggLmdtˮd>E](|*Y.؏ _Á7i$q}ȎI8,KBMGY$FB+C&M236L|8I^ h{ ~ЭcMwȫƱ%w⢍c1; 8G10,z.ycp|rvBQʁ FPWlV? Wä)L|l g2]XopC4sdb>O/2ʓC$ 84iOg?K0n& C'D> uNhw> ># =}43Tz}~g·a?kȁ*J_ݔTԤI#)FC>%+1$? KbN獀φçwC)ƍ5y@2m{u :^LgP#h81IZ eG9Zڥ/D0"\5?ĥpxyNt/N!fu Wb J;:5=פIHiV% $~6?[&'‚1Šn? op:H^O/ЗWAlz{8|8> oM!~KTV..;jp&5 ~VC #H mXtdqZٳ&M~ǡH0Dؾ@olDNz6`b?B>nbOOI7ӷs?o/ Ӹ?2Bw7~\R-E MOl}۠@ganxJ?M: $~#eNBkyJYM46p# ;c 8ˑhzk:^H & Gzzz>p? fOޏ=& DZ-p1ZzE38@ˁGJЀÐ/⑰2~;h2@a$4d6nOj5iڥMPm{#!ڭ8#nD@:&}a/vG|.6Η;ߛ=C& ?OOk](O:ĕ^_Jٿ?FY2rJ=r*n~3 wqѷ:{T e?qhФIop0BJx?C φ~}aܧ1^0ҝΆrh07os0Fa}"ecEǡ( T 8ӏ_ʲ6ZK鶗R]"Bs$[iL K_ oӵ'`5eEQ<=Z&M~8LK!lÃ򲻅9H ɤ!?6яxa 't|ɁuH77~0 )npQo,  y 4\u# d&7=G~諵ʎ,)+8.xH5X=H^~0NfG>ya.ʯ@&M~#8 (5%w×##A0fx'}6_ {B/wso'W[pA7Hoqe~t<;2]>TrIsʔ} Qe2jÝ vدDdfZb>~?$r]5ԇpF!MF ::Mu}8L.fMj@OM{(M9⅃rr9vc<6xg̼ V';eˎP}1@' 5i[ȡxŃc`D/6SCݡ;qc~Nf1lh̎%v`I,EwKۆbȹKXg^`"Oj(Mn>k.@WF}IۍJH9Ü@]ſ+5 I%̘AwryM==e{Py$ ~uA3|+lT^ Z;^ ei,gK3w-!l2DKJrs.vZ&M=āy 0s }2}OǛ#8p^PGkjkAttNGtʂ(wmtN诃i`S05ٸƓ^E @/~R*0s eP6)2aN:Ϟ\` [okWg>{vl]"m#]"{Dyy9{pcN$?aܖH@zdYTvwvV]P_ʯ¾?/qsRu6tPiҤ鷝J ,Kǿe0{/#tٓf V` XW nL1XcB' %HUIJj7z`J,JT&6Oy֋s;l7*9 }e9ciRKDqODyeHac{9faafbjfލu׮W__U}v7E9SB]}f㻳ϰf Ǐ rT9lz>BOޭ0NaN#Ӵ5rI aITiҤ7C=jd~8:q=a'E&:1󂳀Gnmm VVM+:A7"ߓw|Lj0F_4F(77fϜ;hkG]A#'SX';X1GBi'&j>[%yd8|v3ԭG{^'`ǽ~a>va~a!n{89qr vrฮN}NQn w;LmRk2AĜh("H\ 3G~~2g{>kФIo UJJbQp {cFہ8X0KfR\e\i5XRXb/O k'ѓL1cnv 1B7Ν:.!6Ǭ=­=ږ] X1U0Fdu0{nl>4ᱵV^ /,]#-ݣ|;;zrp߫s rgG~'gthmo^++7㈅P=ZGX:xrqyuCdĤEGT ,`=}͑lp?~Q&M~[k,Jq/ ew-܃,TjWQC>KKNgA//2kyd5dmAQVT&*8Z#zܲko^@O-A6.[ F#Uwpd4K {vއt^G[9E8pqᆀXgsc?vMcPy @ڀc?"nc2BMmG|bK/{N[?]n<8Y8FyDm3`(0nV`__Wa靰IzCNGFt5it# Eb%LrԐ =%pI hwu6Bl}]|=v<*A0*j6`4mtǜ}#\Ý"ݼw۸v8奆8XZEJZ*C[1b6&9DZisiߊ9(#s}^>ېwQ ՘Jot< x?]0 6 ^V h4iALX&$㾆o燳QnleMuVܕPbPȉaiam]]FŦB+s 1l '߽~ZYF8 rwtK|%hkc)8fI6.йg[k3wzw“6AukjSQ* Ezp['_XUn^N֎\\{࿊Bu]o x]@x&d8,+W XMVUI"DD06톽{vƦ *;uCWXX|e`"` spJ6aZ< tfuSNk`G} P* v8ncO0k(k/w`?1ǡNҭDo_\Өm//knimj,mHK9z('r#g&;6lyF3* bx í:؟= A+4y))?/M4iw jxb, cY?Wpg[fc_Iaiv554%X \tRg> UG@nbW zg>Xgu6 [Ֆcӷ 䇟sd53)smqUfhcx.v%AfKi{{G]]C{m]c}Cus륶KmuuS^{.{]í=E>|k l #þ@(f.n}. Czrco}.9l3inL 17\I~zup ttr 1`P] bJ]<_L4  tHT׬l7fPd z|BsCTIpb*׾, ׆'|Ʉ8v3eG=Zcïj8&KbCuֲmT&w^< R-?DHzT]Br:5Y + 2_⾆(@CG&\}\,Cm}E=1:d()-UI@_E(g$CccsMM7qT4U5ڀq.$ B͘F7 2O!KOQ.n6nuAzv,dx?9PL7Lddۡ!CIdeWpxogl7Ó q-s,8Dk Y)"WfC8QG^G1xtC=SYqr,‟ͻ?pPsģwK>[>T1B#&Bi ~-  kp7뛚ZD +3B8:ڕߣ(7ߞM-ogs.;g2@/nY *4iRD}c 飽>./ r$nvі9؂ j.wL<`Ð>G215 Q:odzph 4i[B4&5`uz>l '‡ׇD6xB?=ݰ1=htZΪ>(\}N%|yҍU~ QW& H35vg7 Ќuc@ܨ3\uIDDE+ehhh_،8yWff@/NV&bQIXI2/r3-Oߌ7}468@~/{&^H76g2n}rkkC[RkK̞7ל~^ܓ!ahF{ZSOu;<Ӹǟ|ӏ#)"kSG7mD9s5_Ojkkiknoxum]]]GG`4O|7/=T'վ=}ax|ÔNqF;cg_OIh5iteJ UA)a)L#~0&;'-`#\a3 teGqXЃome7k%ƏWBE^M;Ŋ-A[ݷכ6غm١s<'̱O.kO9ݶ׾Vg(+]7 qǺ cW3MMM*8Fkk {ȯecUo?j}wo@K '\{g7Lfoǰ YlVv2U)A[EI+O-e@O'ah5> o 37C=` {Z^Li3XMֲF88=CTFJu-H,"5<7ukbu:N=wxq8mss@-)г&׾t$w Uthii &_RC}ƓCDVR,u {ν::ٖx3tydz8W4+c4phҤW-bv8.OGq0g |< |L< }~pooƔ* |1F95985;+hs{xbhtɭf/v}oӃpQ_,UJ5I&MR&0N}QA賰>j"~,w;t8Ӈi}褾d:ԃY!8dKؾ,u;L} Xڸzx{xnw`mc=n'pgv=zD8r{_{8L`UݍE*8FP} K Mkl9yx9y-30^,-/[͑<焝784it t)RBld.`4|9f,=H~{bx~0ElHΖC`4tXȗ㡾@dP:)n?.s>E>WHG!Na=\|~~{Gm-Ĺ c0VWʍэ[qqTg'D"uDcB4";9~˻Os~[[ar;&vb%GC&M1ԦA6zj"^GaݰN?Cl9 oׇӻd:GjkǭO[ #dbD?CAMuoNvvyȹgvK`ۭ܂}ٺmsw斠uÈ`2Ꮓd2 jjL&J۹AY&,9R\k)(k^;H{ >]O:G@;a`H8*M4]- *Д!,GC$y8;&a:v=> >&${V`BtmhAlaCT6xqQFrS-6JyZ pid~;=9';8tu {=STx~>n'}:~CGsS;!_JY#¯M4Ds۫G::gGiUتH8 iҤIenH:$\ = ނi4x1^~<]=V^yᮎoGѦywȓ(C-L֢9dK[Nbk>4]f7^ ÊRʃ[;"k?]yzDx:xmtqﳧ@tW:XˢB|KijnkoVR7 tܫ#z=G k,U({߀*G?TNw.]ّxZzPه 8IK#d߉&MejzVN8|ނ iq㤧kDdtJam p?hbQY,%jGWG`+wݶ^l|J|}e}Z[(746WUs474֫3F;A;[#UUUF2P`9oS{W0+‘;aj^"UjҤJyH|J@NH]V3!z: ž=`c~q{̟燐tT$YZrp0+Jk ؔPqWߖ3)ܱ6{ȁwBE/M_PH`FeU Zeau5G#G:{GڨY_~a순lgwAk7C~t1`4phҤ'_Qg vAR8 B?ad~$ö`Ac7BqpN>Knܾ󢘴ӱowafbs1h݀&_/0U!S 鹗qǡBr]]+N?I4D;=`_?]^d2٨$L~1IKkҤ闱*Afhʣe>iY"9;>LATw9i"5\6`fEX9nPu7DQlkhim簨toV5D] ^P4yke1|=Q;| debM4phҤ骃*@_Aj2xKwu$y MKcgץCBTULVJӟ%$kdR14'1c'%Ɲ>,C\qyqݧsi\Rq9t=V8`-010UaUܱef):۔ڀkXyqbc_ 8JM42V̴SxZǠ !e$.S \8|88b>>Iaӽ _enLpk\Mes;]_79`lbͯ@˓GsssSSSCw"jkjjqeC5WB5vu@f\ a{CΞܷ;98{ZW|L}/`4`2]&Mz2v+C픺\tVѦ'؅H έ!iYpx'! CY#kɿ:{#'1cU8'\$L7Vzwf+y/Vu~*5T/_C'9'nhl掆}*(8y?v40No+0kA[r%Tx84i+~+I֚6$ZK C~dC.H&m!~pXs`8,1?:ߋ3q؁]q2Ԕn9&{.'7{Q]kmW/ 65 %<  tL51Ih)@BHBܛlY{\d[ͽWV_mo{Wb#/3z5sӾ',&WcO*Sֆ’$$ժ4ѓubhq R d X{vER0o;.o(_Ǯ\**);"v??yh[h ,&ݢ }++NjlxѤsU|Úm6d<|e|WTؔ#=\`П(\ pֈ<%YVhOJ^D+27HPMvKnFz+*Ԣ$뼌%9e\lCؖI?d?Z|f^7s*W"iv)󒑽$AF̃LuDvSN VBil^RE;Q e=Z-k1Ǩ Y_3yui"ixL>q}RNS0No_S8#IH;.jzQ{ȳf= 6t o𻲡+ʵ-?58;9| 8WJȉe|mT:*,^[F.1'j[Bu(8<˃*/>D]74X~1AM$ZI;ts"t}RIU U&ڟifx^ *jH1^U ^;׬"j0uUNêMk'w4  sdC\Yq"Gy#(q#J((8섯v493+: s/%ns U8eo-?ʘ@Rǝˑ?]tNАI٩ЇT&Dóu괌,[o-^ZV^yl/ZjufV2NwI]GNj%Y_2Qžqr`ւk+ïTMY6i:{ށ%T=}ӧ\KΉD=)EY>.WYN*V&_&${Yb ՗/+SOUi'$wZBI6MVe}*xY^,Udʘ' =?""9{%1ѴWz;ޭpf{?/LqQsxet#7ة*MxmN.3T[ĕh"~t7dt‰DB`,f}x,Q+:ٌ_|j6;."طQyH<<iTz;:;є@|ƼOj1b*s;v#TU21L_4Opq[GU5h_adfQ8g?~Ű,rfeE%)i3c j vTVV96 ;:p:'޵6 !q$0W0&93vRa|mL)q!.Sgu VOEC¡xO8EƄ4uRGsQEJ(ǯhDlP蓺>@yQ9.p$fZuuA"ԆqQn$DZh''' hq ,ឹX]VRҸ?WysQȴ'^ %m Q'Sب]2vފh%:)7.}/Qrf w}=h Ӥ&6b+I]C|<XP6<𸦰gܧS#j 1GRp#dw@##kfDB&zM8"DV&>/pU%҃6X8.cX,%!v$_`셀íU ZcnQG|H.;)p gZž7>.Y0Yg֊j.vuxJoo9;aW/YwߡfT~n.黁W&uU8贴 )jj-da;:Y<%eeZIi%>fQˀEv%AϏL-mea _@^4=98$͋FH,%*C3s%.3d}sW :ආZEҴ4%/ɿ[- 4X6C6VGN _B*kpb"!ye,-<^Qe⒆2U]z"АЖ=49Q%4RݡT0gW;T7Fq9Hd&ȢC.*Ð0%JL 7=P#p0ǰɌ؁o }zy$6~WF3 \}lP_aȏB4LbEcK{|8+G`sb=LoW4 y{nxѤ:!{;\6!;2_؅* ~ɊUKSR,vx<]T.㕗lۚGZ6 wM|" XI$ fM_G;BC*P]$J&N0?0!%.*v!HfvyY. ?FP+)Tj.gWF_|~VgF8C8+ɃT}Uq{g͒OG^!($atR`f5j1'$qsCt=mAf8^zE"Ci͟zy8{EkQA-]ܺKK]iVտ87y>)8!4b͟Ky~! " (M+W]jՆ5aɟIʪ 4M}SυEe9ǵ=o8 J}Dpzhz82 9ڄФۈ 8 v۞Y .vJW|>ySv*f pN%g4mtZ\X)OL Ӵ)22B41=bE4agB MbJn<)+|@X s3M$C+?7ibJ[g<階>`"qy"KLt_Av9~-/BPh~SXyN pd<[[xDyY?EĆ#f+av44, -6r{N73R|X8+gBǜ t 84,das"o\/Z!Uq׮}eUht8ؒ7 .c7[,!T^WP>CT"b?8e5?SM)*DqWf<ApY9k;?Eɍʛ;>WY'unr6)t{VZWEgX{EJ2\W- 5c%ϩP"pD&^b|לy`m$Q y04t -E|bU/wFKB,fอi~Ĕ 麘*URG: 4]TUwo8LZ"phH*zM!RUe_E (p铜2SQSYVEqY&FDۋ2GVFeL֦9E,D8 yZ}aU "_A='n(+9b.qc(o.!pXm.' ~Sq1Lr!14/ҿδusok;yJrK&m6tNR )ƒ%;a.iH{IS兪ٗ^S-ʗG*D|}F# ڂDdn TI}Cn^hjTz$*Fu +j&W$"ֽ0I4F(MHN!]|}e|⪰i ǷN<4!^̹HSZE-GiBƐm>07Nd y:(4L/)W+ (&v@` p!X0CVHC|Ec\8HF})g yڄ\J 8?pTV!pdAZzC 8P-#,G}qI4pKYa88J44v̙!jCz_@R` =_H%uEkUFrњtҞYsUU*k֨-FhXD潌]UK _xjhpLϒ>YX8>6'~cC=pPp #dfHA #3I I=(}PN.RŴ`8ubA~&~=ˉpM'G0c|!࠷"G5%kM筿r"1_E 9=pZ I1aWa'n(꛲۝2pCǷf lO8_p󍱛2LBY ^P1eqiFBL9e6M #9)C3]eΖg,7WɞVI0 p|+C`ΚrT)^/V>ݏwr=h8pl|uB;?C*?j8v ʟ`0C6W6슯<ށaa+5Z&_⠹8iCqD la3̹q,\l¥{P!>p 0WjPD&4XZWߌ Bb.Z6"]NA+{ DilYQĔ]r#GqMv읻@7'B޽'\[LX/-F[_LۧtK)^pěBs 5Oumj#Ӣ I+ zY89-{$[m%{x NI1ɣ]#S(iy͛rYqčoȬg1KxS^&ުWJ`7_/"t\Z 3CsՆ!{AR䕨Ok::7I* d0 n){ryh2ըkL/rD }Yf+7o^1'!m@Җ,ljj(02uV7HE `Kng{߱cgEy 8P2}GSxF0JQ4yEJVZd |/(a-[l yE~,B`2؛E-]lWn<4--p5YθhLu /nl+W','x]0ZPsc\"(2&Y5R^:wi[mLt'k#t:\ϊeщuDIy, FO^ݲB .$g!E8IHjJcw}y(=/9mAqyׂ[-?5+,gůa}w:W޹NPn T|J0xRCD ^Գh|B&B*G E/Ljƀcp4,rRNCWip4 _BR|5pЄ)3K#bjh^\@,v\Tgd:}V,$zoާrYv\,Ď@6Z)-ZXW Ξ=EU#LTU3]qIŅ Q8/_p/y֭[reZZj _,X@ dIϴ QXlgrŌÜ4$fԷ+g\C|@-Ja -B6k2?d8}}d$M`]9TU@h9چ?xV5ewroVM2&UZ|wW ]R!N B2_XO*jqrbQ9IÉiH1yNUB 0S)%v/3xF_MX6ti~~=\|pKtq]a"YA SIq-cn=i!:%D}V_>FCM)LY Tã* ci$5__|~8 U0!}c/Rai8ɤ43?)W$H;yue]ʰ∸s/(,EP_ +hN:s9'ްq j?+SRRp~dك2o޼Դ2Tv"pmmmhn;8JJoEpR֎MR+:3:ہ3sQhg@JAu xdedX8Bc70!,链ۨ]L -NGp* ߛWIT7_wߟ%_(\w_q% k6⪴u~px͆5×EIQ!0^Syo,8;VΊ-HYٚrclE&= =yyjCu%*IJn.rAxY~);QQ.+׊j9cdxȱ'7nڌP^Qwvw6~Pزm:C5Q6-iݾO;7w3ܶmMMMogaSNڵuGh sUUU&yI ;c̴aK6#[?p/>Xm>'+1BQy~7ד[1G۞zĪ|rn~@{%3*~SNdE}G Rp3rjij`0nP)ʊG K?q/=0^-yz;]_>hG!hcҕ!ʱ¼tmhy2EB@YJDĶ?r}OϾ_?l{+XXa{X 3n&EaM_{:1ڧh [- Sb˿c.uE h2k?h"- c AA?)#_⺑hkyBclZWڟA&lHY$HǷUPV#lz%: XU&0 d<-ߔ:t)2-8Q$ߞ(DJld^G8?7W'pI*"M5Cwݘ9/ߪC^rǺ^6 dOtVSV[|hN|_/>ehĀ~r/U|qĠ!\Z7|IՉo5Jc } LK&D{|>! 3P YcX #p9htb:4"&ӾI ,A&;VOfIfy(? 8DmVFjN nĽ4Q:xߞ3$٨"Zq E uϒ! EX*ZD&ŊmzIJ]m&. eE+uxûRH}@=J^0)1W>\M/CO?7NN#a)1[#wPu>4culTF],V%V͙'z憄Ze2ReR!|XvAcTO~gŊ5N  KuC?pu[r4Su2mDJ9 rhcC*?37dv q*aVƗn@ _>a\߅ᗡ -sl)ry&V[0Qd3P/urX[ FS9!1׉vQ SX/5B@A$lcgBdWQRXY"'YO{|%&HEZ{Bx+GOQC+[jQNwғpJ:Yʅwe׾@),j9a!gtڵ}AS%ʏL.VEk .-(~e:Aiw;ӓ;; .>0 g8ց z֣ug3J4F]eDBnOKD;!h dWfnl, ?;",%r~pJ&Μf#nM&7fBAԄ򫮄&30΢.-/n`a8\'@X0^<2n'1Ε`壴e̙[Cc3⌅qx5%[eH/p^ 8 t$96cF"pTz% 7_WWڂ[p AGAǫō`OW OM;F&=q= 1,u=Q-4F5UaƒsGnQ :\NV!>08KJaT؁XVF p =< ^496qn d7ʟ}`?#>1nܲnex|Exla5f {>YN`e<[_8$EجLۣ?AM9(񗙳7NqqCQʴs' ߸:QqX:9aڏZ1աI%S QպĔK-@XE/bbd:'>~`_gsf q=EMU'U849[DGƩ_F@#Y~+ad@`:I;McDh3HfҌL娩ZЬNJӗ%6]u{veW ccAC%fw2AcSLF(xeE$侭 e[P$d'ϿE~ZsIi2bt~ $8B`6?bxx-%e_9_Y"M4Dy-/Q984f.z^ ЏPgqlxs OR%(Aw#aŸx{?߽vgGIKٿ_ /]/Z%V)e8R/q̴^YͷLhp=iW-<|cbJXc`.p9%3ڇex đ QֿCV|dY4ME8<"1%19ؤL?ƧÞ͊0)C0(A M*v fAߡ(ǫ=nf([g }c56'.݇iB, foǖk*T%Qɹ2}B*վ(NY Lefw_ v|߿C"$'H&bhԱgTƚU]1>bJJOY\W tA ?(GtxOmvV6 uC|?]?k'/S0^(2'n.]c|-TZZүp|ШPH&U\IDjޖ^07vao.l JKg_wB@ʑRwb; rԶѢ9%;2vP<ѶrUjm\^dt.jY|2m̦l$=E3k>{@ف~0]$k){I`]W<~=gL&t;=X4B8yWs"&GŖG$VJN=}t?[^sag" p%(A&x4O>VC:tꞅ e?F(x6+^#l52JjIc5t$):we^4MBJ,)6_YhOSd']0نzFm#1`0F0O$$W⢊^ \ICNQv;=#kw`ijI[M(Dt 8,OzZ@M!aFM:.'t\' ⧠Uq;m\%(9 |fr υC3}'Xi ^}Ci],N턑 _dyԟYicSU?Uq8t )W~[?zY@龞#V,JV|]^}ŕ E i40?v1ȰN|Y~m㢛ˣS5<>":G \ K;_ɛl`?Fqxl:(hU=wɋf_+ngaߡ+E8C1Շ;HFs׬rUyҨ4ո*2@}y竿n]?l9}rp_k}v,@b}{zMgVw;R ) Ld.S o[jE{MP'x'+c JP-VdY`c9(}LY}ZXz3< o@GB8 &ƚAad놼ߚOn O(GkukU]|*2_xCW+;l - ]sX"l%n8!d ?mvTWos%c }aD즨%I1_.w,Ywu3o%zD}?FGKDE>j=mrsF1N|6IJåз l'efi"p.j^8!yﮈLȏXU$ڸ26zMdlAX\*H7ew~7պu$;H6IaDBU{8N9۾ƽ.)Y uqڨ]TVdLFxde%yژjUcCƋ(,ͽ)ASƗ֏e?W $.z nоD0K5rWYc(%4Fj_$ȒO7} 1%.97 X -:od"3tƌ,PU3#Ⲍ'\;os`և?|Ye;o5k S2Cuh\cul%ps+r2M&>(A JPc±N"w|zxX'M{ g@Ɲ[!s:>+lO{2rT*A% /-KqQ9ڿwopeMDdxmITAK@K,NDT! \c\!X-l“K&4%BMx~XXX)W8?:a+`;J3q/b7l>?P$vW r`QζJGareGJP/Lμ 7IK=7{I^(}[SrWJ$ƂJ,[@ }Gg'w-2LLM* -*6&tՆJ]Li$B_6hjt1_\S G󔎥$ê7P9Sλ[ȾCʽ _o΅"T8|Dr ))Y$G;QsJ#q6/OJ5%+ns{Sn%: st҈0Cuxd6TYkl!C_̍Q%W^47{SC8{*'׋JEuoz*+gC3*lt.г Gȯ%(߼({5vFe_c!_R nP"l])*N|GHV@쎱crrox Wѧx$+J=y(wo|GקLM7N3LO.TTM. / O('&eGN*pUU74cӕ ‘A2 a*> A}PɈhg‰V%(ߴ>VƁ$;hԕl KwCP h~ρ=҉l9m=h$f$DqSNsoD^ ր. z6sf츪8¿E =*}7e"*ʂP{ @H&I6 spwwC\16G~(!ս7!+w.C%pz+ R v JPr0 o[ OnCG* #Խ ŏ忄Wêc)(vr5ʪS3)V)hY2E`9)픏6c1lŒGJ3cew.epٲ|Rݡ(\%"\W|+\4/N<^NI%kV氞Z,SE/M޶^l|[;UyQhr80-@͖`FPZ$<e)o}Y)l%4N}^){J'v옯YGk@؏7 2O0H2>f6WEdvgicn -pAyߠq(!-alZ GVtLZ}D8q%(A}X".+C{3еvU6{ Ď_Ao`бDW$"Y{Hg#jiA!Ӓ}xb͇6d#ȇ%i&T!U=4Vsk (Sl=*72|*(A JP.:HoGPf8PHRm`?5zʟT:WK{qf S=;Hsse4! )xJ%{F$G??OkNU+iD}Y)p5!t{Po`>=%(?8l;w'#U5Dmy~T>'W> /Aй:g<= K%x|!ȒWFd[!Ux_U~4.maorP<^/~Iou JPX:KDͧM9GaO&t.m$6װO D=wI#{7i;H'[pf/O{"WѡQo:4!Cer[*wD9Y'C,)Kw9A JP.zL$Twq1LW'`Myʖw oAPoR|iW:,c3B2rTMSv{<òs@I=۔5v˭sa{J ͍o*( L г%TNyB*/7A JPƠ(#eзS9+ݙ鞚I'tIqxK+66v%wO%T2~nz睻;7y&H=wzo4gs!T{TrZ5BmaM(HF4η6T!wDeowfQv'5**b(Wf)l*>J'4wS϶G?6ΣW/@$GT%VqƦڤE444' YsR%&X\{yF?r'95;HJ{d!"W/խ&EJNIEX>~[Eu<@yPѠ\͚(Ģ[%)·AnM_GL f N)/5<2􌸆{&9]#u;z殑"N#b)~*5e.j- smEn6,X]xgzow+Q^ ϯUf^;*O*ZϢjS14:+yF{xZ̓QgV]xCA}$W̼V&*zhC M%9 RLihDcUU27ރZq|bOg6_tpXoѫ,<";)cr1f1W!7|~z V|*z%ܤ(Y Z͡hk{P՞㝿malu,-vAW@ Qv{?׫hbdPsߛ'fj\fq2kˮzϛ444>@lZXSkUz) &%&@8E&O/eUcVU*Vw\zW@ݾ$-V_[e36J g)x z+bNØ\ j9ƎY{Im೴d6ƲHS; 8twa;(+wA Q%_>#VH &?;CU2Y9Wôy2og1sChTUM$qH*r 6*?%KAUKFnNwDCCC=HiSQKvrJR*QjAuftI3d?B_ C=>wb@fZJsշj$,P;\Mumj3}+j9LuԄ0]&Xq&у,7g4-1;b?R1PK$`Lwc]jhh|JƥU\\6=11~7r'o?n*X%^̄MKR*|fVnDlhU5֬DV n샴 rQ .諠->_,UӴr>wv "hv}4}X\̴B(=˓/¤(MjVxpUp |nڢ`o ݥuSHO|A1rF%wE܏r)*=+,h$͵h.'9UV jMwNG/@5T~\FSdoD62-2_arM&ͅG&sb]Q޳iRm_(I+w9=R3>Y4Jd[bHg444>l@Z pEj<,"k{pd]F~Tھc`˹t~6 (3%jI_RTUi_͡0,QV 1*a TS{BlfhD=-+ aVO2T;jXOsdh@F\h181 mf2o.J^j2Ƈ N4a*Y Czd,1&=LW/aeZL} X&(܏qm+m*z!d!XW<Ȫ5e 6VUra}@&mcC̵<3YO$Z2!Yޑ)8K xbQ^)>caI7:CދJ1)xJ*?X(&U{*j]N ]vd$uQ6XT/Xl}wep9|O9I \@]C? .gל>m:OS!9 } r>sW&Xefh% ԰c?cH]FajUVﴽ][uW\*QK9e&)B.`\n:C~b;dvV^T ^ VFQ)!8X^Ȏ#?\yEPO=J C3YE&?ta+?O90qq:\h 9[3l<{h)<ve+[Y\h=/[;}Y rwIu foo *Z̘*EV%qelHZTqn>fg֎obf{()̉(m3p#(Uwf#?0{]F: ٤Kj"tu0]*ttJDdѯXYdq|BaGr_rQq|QK`zp/&8[j\h> stream x}OHQǿ%Be&RNW`oʶkξn%B.A1XI:b]"(73ڃ73{@](mzy(;>7PA+Xf$vlqd}䜛] UƬxiO:bM1Wg>q[ 2M'"()Y'ld4䗉2'&Sg^}8&w֚, \V:kݤ;iR;;\u?V\\C9u(JI]BSs_ QP5Fz׋G%t{3qWD0vz \}\$um+٬C;X9:Y^gB,\ACioci]g(L;z9AnI ꭰ4Iݠx#{zwAj}΅Q=8m (o{1cd5Ugҷtlaȱi"\.5汔^8tph0k!~D Thd6챖:>f&mxA4L&%kiĔ?Cqոm&/By#Ց%i'W:XlErr'=_ܗ)i7Ҭ,F|Nٮͯ6rm^ UHW5;?Ͱh endstream endobj 49 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (../../Doc/democritos.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 78 0 R /BBox [0 0 262 76] /Resources << /Font << /F0 79 0 R>> /XObject << /Im0 80 0 R >>/ProcSet [ /PDF /Text /ImageI ] >> /Length 39 >> stream q 262.047 0 0 76.2857 0 0 cm /Im0 Do Q endstream endobj 80 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [/FlateDecode] /Width 313 /Height 89 /ColorSpace 81 0 R /BitsPerComponent 8 /Length 82 0 R >> stream x|pUd_~{즊ԲQ7""6 *]ȈXhVk֗e %3 Q R/$H`E%1 ѐa Iȅ=}dz>s?(QQQQQQQQQQQot4]Ӭ2ۧ޵:#=Lepf2~NsgsIiuIq0 Ll x2="Gtrу-xB7gY}=>u8 5S=nq'qzwds8n^'#dKXDz<ҶنxOM,Qpy7#<~iu}Gp3#/x^)ۍUy?{DނrbX{a#-wڈH)a (tbWn(85X2xě۳ȼ(^nB,Eg2MhC;*M^W}nxZL)#RƈU܉ichN2h"S)cy1taBy*lݺ&RsQ1q#RG$yU:?\h4!T7u[\׮PugP5*. +9qH D⺋!q0p$J8=ìÞGۯc`%{L ]p=b3Ĭ&oέ/ٱH2aBs݀8,dU o>B!•,Ǖje)4B(pr Qwa>Vq=f9n}5D:ifˎR+4I{jvH<*p.V#prDHbxw$(| ڭ6"|Ns6>N;H4 D$#Ct4m"nb8vsё88x}ߪD>/k~;96n8cJw`hmU8MP28ՙc'cTi?/?~DɈCBgb Ct;`pcû#DJE8/V2{֩35}"ز<$)jֈ0ɭGСqޓc莩v:Uynh 1s7Ӕ*xLsݓ+RpkpEJx=%[)R<+7dW5IUC= 0Hgr k!Y)4ؘ:5#R."**l54LFR6` ov7@b$#ݞFb=BB/ 41MDDsqRe!5:]AKm6&sDw=~By0تTUdݸu"htce8#Gdnؐo#]9]a(vjOCQa8Lls'f_AdiT+$zYHHlUs9^5ODpwYؚb䛅AhN)n!SjaLLh%l̉" qo nQT4![h9~UqEUmWCc E G14E>>47 S+k1Z =̎;qYi' {' 'Y=M(t4SI6b#Isq%LO:q9L4rb ; I3%Se8ą=jNJE3Ýt wsƤaIŃD4M>1oQٗ-LF Y59Ks8|s}'Qq?P蓖8v"[`~/?nSݿ#jg'ㄉ5uǼs@w͛QDzıhYjg^AY4Re!B{Xy@E\fvv6;kM{QʖғGY#1($50ӉȮ,&Gs^pZ;'봄gTأ7y[AD>{9kg`)eg"B>^=4}SYU@9]x8u{t %ٕrnAlOS5o ݏdFGi²捘0Yc __8=7;wCQQ"pfIO{FMg؎]6Č{MMU\#egO/9KGy\='b*P<ٱĹNM>BB`Tɍ s$Ɓǘ$9-NjɯNՐJl#B EDH%VVI>]Rt nIҵ)G""{%6??j\\֥БRÏB5UV C6lo<أ__((x1ҡpiRI9a:B*oN}t˄wM%)-.//OP{jċWJk ?8P&;ebJl9ZÁo  ߽[ II꥽40߲Yag8 ZjRj4j@dHV'ɥh_:|- ?($Kp\N[qdA1,IPޠSZid F@OɕTwEVqdf5a3?ļ/ t߇ őZVc]=ز%˞M5~&vJnhh8NO͛RYPWT^u4ta3Yy_S0l_Wr%Ny༂ qJ bjڌ=YY' Lݑ7C/YQVHtKɂGOom%_Pd~ȼEl{a„ 7b,(~Ao^aQ_em]m6*.fGlȓ#b,Vkʎx[Rы=ғ_)S(Ze|?U@V*,23Z(S1EȊZ|*"_H4V*ȫRqk/U .S+F|>OڡU+ۢr9W{˅pd8 gX_G^w˿zeX+&n(n1CUvT.% U-I{Z`Ah&#?NCǤ]얛\~*C)WP\:"o|*t<,!wuUGjWSRo T{ZhSop0r1Ǵ;uÅ^=ς g1;Vz e5Tbc |BX\!%ʐn>~B IP!!zH{VJI] &WM@zE-ň81@))X3,Ѥm0J`Z2CR$xPٸ6|\Ilu*9>Pyۘ)w-Zv풢M=}z+dS=]+6m9WPv@܀RR޽|$}a+lWYDI:~- ߔx@~L+COїR9:IDI8[0`"N[5␎jyoކ* 9ȈSRU'{k‹Z:&4pL 2w^4f̘RUz|,BO q[qyS8;u ?-BwLh)wWeW#~RDR9VKwH.ݥ௠ZیP>6urTq WtK0KEZ|X^QW=אjgZg\3ZNID-Th佧V ?,joxNp ֲ@m8WN-ty3*d tu2ԟ q8;9X_/J8K"gzׄ qMtF[R%+>Eq1Zxn֢IChC>f,˓ʵNY-/A^D Q>܂[*)>EZ9f182dơJ-m=fJyǠ:/<'kl5Cos:+z#>lF_0uK{rf^ލ8W"nM ?Ȩ;@6TbU{)ԣ?[{'V;&ڨTl=C,ޅZ\ա*ӴU ݶ[۠{}*J#u+vCKŖn m[iv8iC·a :TR=J,r:?B#onӶmU SKw݋(*w}/B)N(U{4V8c9 \FĀ^Fc}jQGx(z̢hַ ^ MӏY,1Y 'etiZ4s-4Z DEΌ[+!"0\9&YSbqW'tm)h`>%evMB˜_1|/8q{5[֢!VGC%7|M9G}B A 4VWiqRi^\}];@ hX*oX#aR\ !g ;o9#J7:]?Yrj[ E.mrq P:ιZ>hJ#CG78/EW]+}Ъ{1ZN@LEU`mBwTmaQꕢŷ)ZHvr:މ &;|j n;lz /8@f|\fP04Fv\jU/5xVYm"#\Czo薾Ղ+H\*}GX9\87^tׂsbt#DrĐlv SOZV+hh{ wSzr*مWz^@<}`<[Z{SZQ тQq1 VmeU-'F"c:ЛA#K,kc;P'aDwXUQ%^#5 *巈F{ YxǨd/ɧ6T:D7ѣwH*K>JAemST79fZ _tK~{Z.fYt-rT&\v+.F/|)U:WW 0RB}TGi!Ic@Hj"_*gz`6^| i%Bc"m+fQHZjҬiD#:ClI/kURn 3V^ uih˚0"KogqeD|c"6 ~hg0ϓ @")~${I+ޔqy(K=̳ Sg@݂O+z+ P_z츕Wjz$,cЍf4ف B?(+)8AaWW] 3|lUZg 9_/b{Л_{zf.tЅ9ߧ`e6kkз 5O5C~=F:G:YL;I:Zi+AO08YWՈiӆ~@޴lډ\ߎiֺB!ldGE1>Pt©:c'ƪ*a_Yvtz.٨}]4w#GLY;/a)C֭%vYUI•t Y ^ e2իTVLt\ɍLP3e vz&|8dZ A4'F4\ .cWi(dn`vRe22L3F25I%`W~)ȿ!F/RI|gd2ȏ> stream 32f06i54h64i88g;;j?>nA@pEDuHGw HJt!OIuKMw( )!)OQ{$0RT~UV-1WY.2\Y0819_\3:b^:<;Aaefc=Che>D?EeiFLjnnnHNKOrrQWuuSXyxUZZ[}}\b_eydfz{fi|w}x~hpmrosptrvvxxz߀⃆ነ䋋㌒厔⑕唗留䙚曜眝¬鞟蟥ĭ褢礨馪ꧫ쩭͵魯ļϸ믱Ǿɽ endstream endobj 87 0 obj << /Length 2604 /Filter /FlateDecode >> stream xڥYKs8WrYʂH|eN<'ˮ( 0;n4H24uCG\L I'L jǧ w=̮PәC/+W4hTih鷭_p, C[OBvq%\\2.b`Lצn+ Ӡeޗi[-e=")ib*eViRSx0 (%~xJCӬ2>Ɖy8rSS蝔3d,dH&SRt&} pT!g? c]}3S8 yz_ܕaxl:л[Ru󀌆۬tB⩦٨HivlmJ"Ҋ;ANUȪd' K ƇO|V ) $ yZ$*MEfܯ(f~t[] SAF,mt_ƤqKmuS}kf*Ӏ~{.˺HzW]oMj7='w֠˶ZPI#I 9o=A։1KI$Cpo˟` \4Y<5 #6)`?ZUYjԪn)YG7ڴ[8 $a^}T8?1]_aR /z1.=e9PԶ'T袁gb8++4r&\9_[td:^( XZ, Y;9x)#_"kᖠn?#n%SenTyؚ=mi"} xw["o,LT[R?64&aP ;Ykt!h7ڢ3iK䕖Uh,ke;PDFט50VDCrP>K~oi`_ν5qsX|-@/ =T4PVm om(wwu`(;@0 3kNx!NըPA8z!- DЃ| hf3ȍq[Ok] I_4hJtƄE]BKd ϖc[E?ʌ #@shG NXˉܖO$ih$e̗]]wn3]4a ^Z4LȢU,q4E~ LI" I1sK2Jij݌JpoJ76X6!ʥz8'r4%|BBSRkJ0')7J,)Jt5FVǣ]44ey&9ՋТںEuGP_uK+)ERL<%PtGo/p\$ۍKǶȠ#&sG4%K =XS_6 %H;M#po3ljS[ m5׃B^סBD ʭj5,h/kϒ7E"*8jݜc%0|ȐRL2$JWeʓ?nMOv8x%ܵ WhG̡;mJ㘻Sλ qD۸> jU'֚u}6,qQ$)CAWi\ Z }ew?șV7p}S} IBy+Tֳi endstream endobj 93 0 obj << /Length 2904 /Filter /FlateDecode >> stream xڥYYsF~ׯ`e-s .SlIƉiש ZCʯ>iH/\۳+_-JvEe,~LۖvVQl".WJ.۲-fίdR$A@t #&{+Vk? q./Z=XCìhw3^ G<A$H%Dpxc!OZfm|Pl"+?xRq;O۔7O~oKIU8xwYOn瞰q |w :`7f)*(=xsDA/'GYצwUDA*"!UmT-lfogh^RWA䴂otM2h(v,.@\}Vv8;6'^J.Ӝ'p)qVش 8fk}#-c~ED {n)7!pìUU)54_RD^> @NSx.[G./l GrJ'QT-Js_X(MGEpMq*BzqNy#:fk@Zdx~td`yI8Xޥ;/"D#C\%O]͙ZH>Q" od"5u9Ó2}g}-Y@Vqn:{JW?]1tS&3>5;FqfooGGQEIfSY% &^û^(:QS*f1 q璊[CpsS4J.^0TK~PVE=ror([D?]{H4CڌRΪ.'u9 Xyby+xS6F%47>:;c upĂsDzt֔{"/Aۘz9?ɐ1mx޲1.c^1B6]\إngpXFB~(,;-mW'RUH-4_!)-xr3/0V۞G䅈i!-ɶ='/shZC&@1GF7V)ߣpP[n^&$?HG]+7-G!0< ǩZG4tǨ1^'.7pwb_u1bR0Lӽ_HW%;^f&;ѳ۳g\Xx=g-r;*tpP"LG׳Xq,4AZR@4g J_^iYi֐>9)Uuq6P\i1+!_bQ b.?k`<*RǺ0*(9EGH0mj`=mp!aaS)TCrPURH2WLgJAX) ԹӷuԴNy\4ѱ 'F.#Vyv80qBܦs0 B8o7tSc0;Yz^W:(O_K @tu<ȼj&ЊQ0'}2ɗ{0Xs+ȡhKs7@Q$ T&sz@ NzbL 3}*k?iAaO-򄟄҂X舃 < 8e}*v`8?lQ z ^("Ra >Pq/Uv !0<ljz||pyoƚC8HQClZQ7_3սjzrtǯ2 &UU}[}΢jhP;t۝8}V%E) L"J)3HFYϬx(\pƝ0oMwp&3uLu;AxU W~:g{9OaɑUnO \Ȭb?^oHRQO˦Vvt<~rcacd<* endstream endobj 101 0 obj << /Length 3395 /Filter /FlateDecode >> stream xrί h'|d%vY6QT>X, E_鞞Ēr0GOO{:?9}sh-VU$VJ|18itPݡ]n+j)tkj6>u`+RbQn&Ϻ<:kduqak.|*\mbJ:١.@D"ؾ@7NEYj6G@xJ<+fr >3JΠᦲ$"x[|[dHMH8m_w|9X$k;|:i-6BeiAjT5_t}^e9e]]@YTy +bG:PSpͳ+/4{aKq妵>h!$j}? Y,+]OK \Xq83HY^7}ޡt*-o-wKI* ]g]i|J:DzVt9-BWfMq芺z$m,Bzo?{{SO>?X+$"^XU?pA؋$^]۩d0 ZOVe)] 4S|:4jJMt&c 0$ T4J3jhtv`'hYc<1:>qZ$а+w?$O4R/7/ 'Oب ~#%+O41iD>m™7 S EP< ʻ2mrY3/@Q*c9K`0 7p~ Y𧞴EFK;rl7KrM$wC`Կ\e zBB`8&X/en!,+K?s#Q%L܄ҲEiWxBG)28,H MіzmV H ]Y\ޔF].!@jr,k{Gi;(򙛢WK;2 "H,D,D `pH>H%z@[%yg"֝q4Ght4 ~Ќ~'|Own<&Kpuq!Q"F̈(L CPD?pUr+aa,uٷ>L U(}s}7&bwX|/jE~E3_~_նqYM Tp}1!9 q_.CafZ,LPUED4$[PV}A:]:A~Xl/r1cfKK[>ė/ Xkw17OŠmiI|3ƻ+vC#"OIuqax%VaZy&Xz,lm^ʆ'qňXpfs jIv-b,t,\Ed ]6`s`F9 ydĊ16 Q׍S.Y&ʇ#Gz1ݑzMc"͋jR$pشn zŎ^lP[ǣA#-+ fAKJ*uјm/b@(nك-'}BuCJ  ^tnB>!%Y)0U?%dB!,.?YNac7%v)`lʻ9e q oLngSilTi-e~vZ2U ;ֶ4zo=Hzrw\U+?cy2ϨS>H99;&oXw`qllټ.AYvgM-ƍ 1L`c(fucrE%En A{ x,xT~qbc\9T0: Ӈ)}^Dss}yQNJ*i @ m"oዢoߟțI[:=A}o6pЃ8;rc-7{ 7>&0]S a)9Ž"p63yqyi‡#_^^ã@0Ԯ,/Ec 'd_XD֬EM@F+n>a/շeN~ ?kmZU2;qd3Ʒ@^L6>\Ge! }L݀s(yZ0. UrvV!Bq|HN#a?7bxSOdԷ zг\Ø^~Sq]O836*w(T̘%2*&u܅ULJ7B JR@&^U)X=&&N:ɼR^ m endstream endobj 109 0 obj << /Length 2152 /Filter /FlateDecode >> stream xڭXKs6WJkDl!:;lĞV=z_-l$AzA@(Z # UyDܗou4,`Cv!DALGzJd@$2eY4W%,~< =k$q[]|WouHLd\N]?FO>'ajO݈D]sjWH;3ѥ;ةVږUp$jh'6%MS@@EކiB$Q@H)CwgW K, DG"Mhiy Tݫ(CUd}&{o[IWqj%N?~%b(6eĤ GQc."$Gw"gtͩѲĊ٦5 2ǫIa҄;<ƏGaXivCD7 8J7=:c8tzزH2&c9՝mhD̬ -RY.78C>O-`ҝ@,tm FL"']1d_,gjv{ǐdLݓO8d=lP?P%,JI``q:ʳHB@,9F{= ԬbD A0_\~75pnjHB,Qt7Qnf!t"#(a:œwAf)0B)(0wmW%_b b0﮿c(#c}1ue%3Nm{Pj%Yw~ "eK pW-Y&9Tr" HN%00G.ClН}CDTlVvD]'][2ly,U AJWiydTwxH:.K\=K\ݧs5]¾GptR @ '7u ֨@T5&0)".Mϓmǩ١wiK젓lGODtĊvr[jVh{B?Ѧ*v&l0؏MuI+>/n8d$dQ"Bd0dNJ%ӗw#Ɓ]U'+Dx$"LF·V.?a; mCև+NoЖ$\“sc6 jJGd(yoyCHJCՅ4~[W}U{]rhgTz=hnR0̂.lT}^HMq\f*"R;^e:63BxvXb*?s? `z! _Zi9M0-hH{FN30!+<'w8ܳPےQw _v56XW' #G -L_EҤ_0^zSE7PP+wWDⷴK  tޠu)6qn_PtS'ji̠OUfK.&l&$-G :hhWEiĀcMnmt_lu4K9编·gMlFr 4pPV%?9ea)B)d,2Rh~R GDFd&2&f }1M:6̥;_x*yW_BO97@7K$~b71a~s׃m;?SߜB4aH Ӏz lp7\UE [џ@'eI3?^8V  endstream endobj 124 0 obj << /Length1 2084 /Length2 13394 /Length3 0 /Length 14652 /Filter /FlateDecode >> stream xڍP]-װ.!m]A{Cpww}'+=f={+ li²BLf:&822e3GKpd@{3k16}w5@ `dbdb`010phcw63lpd6nf&y/NqP h zho P14:W SGG[.zz:}+:{>J)@w ӷ- ljCEx7Xޏ8YJ2϶@2hHOO6Vnf&c3K ೘ # @y}g}3K}wŸW *сy/ FZX۸X{Y!ɖ^ ()7ft200qv) l:0k򰵱zy8;N@/;12 @3k@ۛ4ۏ?iwoOL/"NBB6ZVf-+#8T?};%mx8 %3ټ3@X 1?Gz(9YZ[Yxg'ِyh!KI:O?e4s3sɛ9Dyf@y?|3ghTO};зwcxo0&VV]m=8/=/ b FqEA z߈@/q?8ޙ;S7b+FwQ޳8ߑo~=?=JFz 7߇:qwɿ{~߷ydfk]3mfE7|f/.7d|Pww7_v'}9Fo|_vN6gfkbw+txay*K}x;w4]lu=ӿ{MD5 N߉?Q]ps6܁5mUx.;cd;jɔNHЉk=([7K/Gu!- OϺq;p }yG? `iv=_D)$7c ?T~~<NNON)7&lGn}Wē0 qqk_N'@IM2N UYGMITIu#}?2 _}@[Sq \0*NFsIu[C K?0)Ti~=!d?R& oX^YCbr]x'O5V7Y< `T)d9)Y2q$*\Q:$9c(eVK ꔢd!IVƑ<& Ǧ)@רa}k3XORv\G;&G'O:u& rFRšX6X#Xɭhc`hmt߭@l iqԀbvKLNvc!dW 6mј 诏e{޷[.X; \`ЭHst_'1 ][J0sRh-JIv ޞJc,!k}0S8]Rurn'K9MQ>F!M`HuߠUHuÝ,-c4{96?޼aVFOʻAA)ȗv uW >} I) zTB. lCˁ8ՙLj{@4AL|Ye׸*N_զ>raBk BYvPmu.~UѠLHQ[ND8ijVv?|TˈWFﭟ%/`2`y'4 o p.Oa~Ǻ'P{0k;r]3\م)F\fs)/OLz#21W\۵y믆YzEahDƜ|^0byŷ| h ;0, m@0j)8<|4:*|PW)!83iugB1ݷZ>e0W'_(=Yؔڏ"_O}},p5Us O-2bYUg)leE#9GPN(u]ш0ݒ"yђif ~=- mbLS]~a~˛pVƼQ.zG  z?\WT694'#Q!rHa ͎zcqJ.G vΜ~bv)=@@xn75I3FQ4Kx%E^AW&rձ]"=)3hZ[wEz$ZV"}]I+ӄ%y[]Zc! ]Ɯ0Jq_4.,|Syɼ$@i*56ѰJGAZc!WF1Ŧ!I51?\NsVmb 2e|?]eND]Oeev,IqKQkYKd7l%gQ)="y݆7bmZ;k(1*ڥbt6k3}""/z PXw$$[A]cnr;x3 263YcH0>>sn4i"z>lJ٧&5ijš7Cu}Z-,!Gwİ8.MDK¹BTlxγ+kH"֢3fЗ:J=Lm|:orY\'O}FVuP;}:`\4)H{P.4lqi2o1e$lQH2kHSw^o~'dX2 ƟW*6r3u*uv{K'fHe KLiUIگONp]NuF7,Mņ2! RP\ecAjarT-Urfg2Wb3 #_mPFtG7oڱ V*ҧسa>%a΂͋ Yɣ/}4G?F7W"$ӂ7P|, GcE235GE,v"Y9RA*yX;ɯ]yB'Bam*٧L(`4)<_ń%bJ,@S)ӘJ(;T5EY+Ae!Je yf|i`E,tc`s_1 2=wJ$zra=E2u$|)|]76A.tE1ΪL9XOkA>\צwo71o]{E xdb`XoK΍PzJ\G\R@[žA{MδRȬ/wʯW`Ч;68I;I0ƫƁI1u.x7rK<9/Eoꐭ/ u2DTiD*aqC`4̨][Il$xoDWἡ[$hO/NX9M k❵$ ;b-=Y[{QX;h44!ãE ,-l-EI@Jm>>1*'&GevIǑ ƶʶ ͳm1}%g\)77`254-pC6EΥ>SK$GPΖxwl˲ǟ-SƭRڲ;G$AyOiOoi0ĽH?{"m 7X8T~s;L\cޜKjKHxύ? (d7gjѽ,U@Ɔ)i1#X}ܖcUcq2x Qe8UmZTnⰡ,?Fu5XOcnC>}}"73fK1fgՈO9^ 3E,L2흌.̚t;N0lt'S -nf" r1f)Ro =Lz uK`XG&[ipIB@8+WP–}Q%8KKdMk|Mo49M2)./5ӅAZ%wIن9s,آZo4;A-)SR.w9%)7|s?ԃRxg񇒒ԛܽF Aκk .7/PSL9 Ÿl̿V'qyDzU/wm}`m'9 1[rvәǕ&FT|]uٖ5͚$|8A DyJ{ ܷ ip.<yBD%?}0n-//aPqL,:C0q~y+GF?z.cA{TWѻ'`k_ZmH%=6'bH.#8F0<5kx+0 ʚFw͂LW@S3l@; ÊQ1".(sWV"C9it&RG _eHjb4I>:*-Dn?vYW(г(2 qg`$/;BKʞ=dEyy ψP"g?8N.1|N84r#\ ;;*=0ltሪS$6%KMb]kZh좸I^- MT'MDx@Yb|~3;sŞm9i*벣Γ9ytD:9<ƶ="P?ca-"ou=s\Vi@ӣZ1%H1y_yK/_]8[Zw7CD|[PvȪbG&/km**R/'5rU dW8&0 *LGCb>w]=Ϩ1U,aǂ"W<䲦J_^܌uވLnq^?>֣D7zTP[u3--^lxjcqgR5_W60Wt\ưW"z=>GrX.R񅊪%=2g*,\1VMiZo 8\|-V#g:nm S@gFr0/!͵>³//I4F!ZWl6Q'3 ]͸= Ⳛ(ShHunY(FjlREO7RgDu^Y[ҵ\Y8݈qq6^#b ٫\J JИcK/*fKgul:w_%GzRy.7ϸRa>?/+~kϦn{~,1m%̵n"YvMtrӗ#P0☰~ M-)oyu S5;9RHy]5 wZY!F/Fw#3$n|#_FTCQzv=&uڶ󣌷Ð8[E#A):: x~ ɏS=YZ{L8bk1$ET< B n:oYe \׫#5zĞ>omgXp:lw wv)H(7`?2Ӛ ATBjT8so]Wo|NoBi8bδL_t2My怘 L)c`*i;ԫAË~:˃=PX$<%g˟:V%;dgڕʹrAsg j&V2Y^N@'}ru2U3lCL}7?)z"swzN^:C('+rDZ="^|P^&$U"K0֢OŎ/U w2nÔ6 knes[L56RY㩃 W2 }m{yDf}vyN9Yrں5)l:Pvy'poh6>>j< zhF\Ǩϕ6湵'`u;RR7ѣ9P/(_TD2ih% ]IY2l >bL +2bRk7Ax4J0py;%3 ڧ&' hъq5BaOINY#rs4ag-/Iyys;=8#̨߯/{ܳ\z-G>Whչༀ픺TI >]7LlvHEٻwz9iTi<&gan_/r̎*b}Z.w UOߒf<&`]pfQ 1 r5kl sXDS l{}]7}nY8L sEy.%k]IcwMxTS=#+;b}'G%9ODF394um E]3VfnQI%;Wbz#3BhmMo՝HQAM./a..XUCIz˂N)TG,V!˙pY}bcd#ڜ,&kwluVr-($?ܠz\N _T) !rJGMP)o Qr)Y"M޳oQztٳ;e5N 68u=MoX`d*ΪP`SD20X ?.@ !Qr }I1{23dI y=H\jֽTRCOV7Q0\ސU kl_*))^BYE йnBg*2A 'W TH &]Fĸ/Vs|i2 -x?HX3Rc 鐿J+<ą oN0ǫ^vP6ܬ_"6% J;њ81v"%S^@<- ?ۗtwPC؉ƽQB}lR>喹s`$m(GfuW[!\Xfr(Q;˺iOh E+eDF4a<_2 Bbe1 Ǽ ɟY;{ hQ6psU6Ohe2%p-|nl958:F ;0^IQ ' ?]KrfLsens#ӔC UOP@{.njZc G7{ ߼qefGDcr,! {8Ή} ݜ\Ɓ)FtjܥH2f]1q*'G_>+mM~QIp#AQχ CDA}T z+ 4`œI>Rv/ߗ4.R+y.@jo'R|f &fcJI7h:EB=9hF6}GRS넫|*a Uh;8FtԶ Я .ZL.RИ N4YG϶dW%G+0^s{m Eڊmuj"8,Lma^ϩlx} m]l2{k>*l85wU>#8bܡ!5C;[m঒dѽ*;:Ag~.vdM|d_0j1(*WnT4;ը5ZHKۼCg~D|kDԒzFhЍWe5_ @qi%IP eB=F@t̢:TjM!yQ=Qrtpz r .fOOUd'$Qp긪2]R {hd"drf&s`fHJM 10dZ,D 7oNrX;oÞ\pŒ4``:]钆Je-OXFya#aSg!inWZ܉r)RB$ ZzouR 9e,A^pٱ?^[Gίŵ$^WЦیYA7Wk ZMv~H@ \3suIV{7LT\W"9&}9 )0 s/r.'sB41a ƸF z_W-gc`}so/D&eyRq{F4TVj[CeK}Nd{wۺd %ؾZDfK|.-}l٥1m(}`aRbD#&` =]gbBUlXf&٘Y;ETJk3F)Jvyn4a uW (MzҷWLXya}AQ:x$_MAed:^ p#Dk2N1vΨ܊i}p~`!0cTFEtD+gؖ$FXJp}@@3ݍma=.]ѹ K]\cFghB%GWV^"eSy3~e2%?{ıZUR/mWR-ʑ dA".>9ȉiS21Dj`bs)>w=r;侘i[Xu0f%x|s!sп?~Ρ,#Ex5oi+fӎ練MbZO4G'xJ23He%;;Znm<7^|{Ha%>nL<@= ;Z+|mmKrKz+3N2xhy 0ȲNEX%%AqӷJX>@cɘ6^)m6n5~n/V=EM.RE1s'.5Ow#%at31n$VK+\L^V@3RO(4b3[!#=kہozH0ÃzW?v~l B+b p%UR$DٯGs ++~LZ$摚Ծ,練(= lyaB"eHkh̑hXK)A.!;n 4L <䵿>p>;RHr눮9 3Bim.[j@aԋz6#us~JnE7BHttIL!aR2tӆIY3 VzbEh2$9ryupo$gr !r>P4_bj?WSY071A&f"! \n0.yaAMPdz%啈->rYfFLTdHˏ$z3\ga3ԁw,6;*ԭXPV*EKxۣ]WD=1`Ѽ?8F~E̱.ekAB3I+rQϯ.z^nc VGg6MM9?b l/lِF0>c"8 lR[_mČ4>;c+89 iEwsI)ܧ:;^@[ rƧAHXBȄaĀ6,[p%]}R;[9 z q=o±닃2jO)F. \Z$l4g: 8٣C^(z"het.vt2jL4U4tFy;4H;L 믗]uA \1~~OxZ||*2iAm$]ͭR upwO\roZSCr(XhTUaF/N]\KZFÄg'-e *߻ ri:h )0+!r|T6GvKSr$pxCj_}r&jيΖ]"C@b]; ІMP:1Ui").f^cZ(FnWg`.EZIJE9)3T`0}΅GKG0VuR>wj($_g6tH\~~8ͨ+C0OUUH%$NYAι :.hfе P?ƨY[ &0NdX":SZmT5\~ [fJ$8SOZ'׃ ք^,[OqxC Ĝ+1Ps,SղʍD88%;s9a#1\8ߒ2ߎE!vMLj BnT%Bwׂd)y! d_؝.zx|^z5=Z |\f]xMu#W?zwbsB8ǭ0c~{ .}P >{-%TS¯?R>Jh_szɘ 8^[B0p6jJ;ɔle173o'[h×uIQY4HYDls#)Ѭ|H% 4D((mP*VP3ftlM{7Y05B7züxs] ȝso7fO"$^׹ v<2]Cw3˜2CΊ?xFsv4z51Ti P\Q0>Rc>WR0+{Lš=f}B9ނk *!vbud -RI*N,nVy6&t3NEцtMJ'E§5X.5a c=` ar0_r%jϸ)˧$PցfHa^\^22b}n `$֬;ӇK.ŭJ7CN6W\I|Lgć!ܾZr_ 0&qC'CNq;IGXFsC=mŽV[tmmp<h[b ShNc7Ho":&j9 x[Z>!>rG \ kt׊yb j]r#j( 3wR7T+ˡ3ݘ#Ž|Z#-ϓo GraJ7j'Vs0H!(Hkmr77znAS{ $ykrZI$/p-@He6иaOꄏ3 \2))^@],mV:Bre]$jl>uY٦?ZЈd5L%`. \U6c{'-HAU/)dGm?R,;v11 -9%kVf6SZM {W3LeFcsk%gCeC)EZ sOT&4`꯽>qsB"X~> pZ?]sԫ!I6?jKнID& #-aK#:6^W@hpY׉^nA'H[18lgEr$> M5Fؐsׯ- 񵣹cl,RE xD@s(* xҙ2ciuG2bn0rSJ Z%u?.d W4M:}QСb6*^]epPIh \lL \r@X= endstream endobj 126 0 obj << /Length1 1531 /Length2 7487 /Length3 0 /Length 8491 /Filter /FlateDecode >> stream xڍwuX6%%H@)5@nA 6E@ S:D%AE{?k׵>>y9gXty%8 PgeՃ dY $Q10ꖪT\~ ~Q  E#$ `W@A jc]鯯vK(r#`-vEK@n <ӂ]rsss;"yine Ё !Wl8^|V-GJnr# ۀC ]e5Y7_`KK/ ì~Hm= u[~o Po5i:H/|" wtPH_S" 'n05feK> QVu'fA@(? [ZD ;;| ZCn?`Wpx;_Z( av Pw)v_ΙE)ə4wZ^BQa!;}C߿:*ì?dܞ_R\? ۹S0 K_'% (us;.[o_!s7zEfs;ȿ0I>ؿ-/(C \tA n{n?e w%R2Ȯ"L֍gmP@ "vHDZ`f\zE{#Jp ;+C.vj.--&aV6juzNdG9SK=-9+VK1C-&&H$T"_.7:֬̂<܋W_@xkv{I$e[:i}CQOԗ'Abnʣ*?f< AkZklH"J3: f?K.bӱYi0G>M0@1^[_ Oiz伽1u{Wss}vwN1u>K`mg@Nܩ~%OM^d,m`Rt'-Uj:z\U\X\՛6#noT*M|P o}rr[ a'/UIn8DD ͰmB: IGo 2\]]0d - 3D17Qf ςhh"yy1{_ ${0_̀7`G}G QXиr7Űx.m)PetjuǒqgV"p{Kgd'R*%#w0bHL|<)<=WhT-$)r_Gu܂0[9BkWʹ3V9#0T}w<'RgQ@T%uΌT)Oãu3Kly؈#HL1kiR 2ubYUz,x77IϻS0^=;YvOV^ʅuP9j(f6gbҥWi;ypo?+$+#l?4l%l:Qd,tIEֶ$T亸ONMd,h{uʂO>9 f?WEZUjNL'/HzL"IY KkFY{C/&%]x].,6a-Ǒ5d{ͩ!pA*nAƖ?o=V Eӹ.\p|郗oޫ50XB=\`!30fR4EYUU堛|B,{^{vGA3ƟPd4lzҨWh&7nEqVjw2Ę}2-gEξۊJ¬@3L @<0{AT0ʡ8f)g.8 ;ҾT [y%1ot#h% ]탉  8,dyJ>('6Aqe?-BfY.~mZ Ona۽kyyINmCT?o1&&!mHu1g>Jl;CZ=7" hոws1 k=*_?ngҥ<Ӗ{ :?%V7h]@0-GOp_NZERlK슩nN8y{9N}t/%cFӗD+Gv*r2c=돲CM"؋ieCPRM3]8iʽިB 0F'nXL8%!\Sq]VF AAKɈiߙD~sPB]]bxڜi1f,@wJjb!^#{ѬLþs7t:8sr!6WG\jEP'is Ce2Qꐼ˯RLE&x9do$oiT0$;'FԶ_8 p`Ju`kk{wVl.'[6U}lZ̍F&YO Z xj4#Kb»1YmgOP; ;BtFJԥ+Eإ(!(TaT{lL.S1XV `8ͣal|_EގR >h绚!^m7uaXj CW!4!ů8'l<#{+# "e_>3qz@'}Jpﵩ vc1ճNk L kSkq3^)8 , a}k/uqemwc׮[GwYuꏶ4_({'B&(ӣw%L27ӀO.6qD/)Q͗it1U ?SQϔïLѱLO<_(zvqX{T[L QVAX#!ERCUc8Gjx~S\B#o;ž5@t:XC0[{+{\mY1iT̀Zm~_AZ(T)ƙ2sV\ElR*بHJ}SvT%y[ 9atLF+͡x)lbd7SSy+UR%Rdjl%(=N^N'8? 75P]lZ@Z4ZkW4 u㷷cLwޮc#_XQ;YnJaruk񳱦dM{ZDk3+I$41no+VP7(j.j4V@1iЀINZ*/ޥUt:Y-捖w4 YA^TZOdv? I`qKv3:#Hc6uN^LNVhM%F`TUn-K#e<&S94.56tb'ف3G+0S'ELӍ:)R=6<ƮsB\,sWDZEOm&fp)qLL>? |wp@UF ETn?Fe 107̉8gb+%- F #y R}-TV)+!)}ʟ\Yʦsk顳,Q(HO|;.Urn_^1 Z170}C#ׄQЮE:3OXPJFoAS' >֮ϔfo~=DΛ޻a+l#%p}\#ʻ77cQ6p`@bR TZ< ~y͹ltXDoi&F] Lۤ_qTweϋz~U T\~f}XadmMH0zζ-LۗL?L=w#5A[e XJmJD ϗ{ i95 ćw q-a^*4# QF'ނͯZ#T5o0cgM3?]AYY߿drU3-L s ${@2ts4F|JrYyp|~D}w5l?>yݗtpERyZu. `-;^4_N~#,ˇ'_ap;_9QKI=hTco}AOMVӼPp9'2N IJC>'r⤉/[JgLIIл!XF`:+ZueuO;LyCO8G TK~|YC׋iP[D3|YFմNxD6F6^͋IRWdyz/(t5oc'25?YA4*3w'Z1Uߵ@[,]' : Ky^А>8@cRx1P`KMnPW8uy7-iJ=$ݺ5uaObQ|{Ѯ޼KEP<Q- zlh]ig)}XUM{JSi՛C,IS&l.R:W|(ٚ_uxP1s 媚UQ֍OÛ/{J/{莿M"bnz,fy!E+/#19ZO7}*TRf'H]PD7W6Vu#YGDx0mG:J$Fy7 /"L5>UjamQJ=!*]zOх7%4ʼn#Oc?mːGPW Ϊ$&ga 1 Lg 5q>] R m-\+X rtz+vMcFb:j0U(=%LڅeZ8ԯ=%,jn18y#ʵ#7PU5.%R4oh(oXWM)4]oL.^0~ׅ\wnOm2?8aTC1tF6HE'sCCBV##jyC9#gx#X“}yA=Jtuċ ~C'&Ɏ&(4RڿADPBgWZnZ\wYL(e*??; ?xׅ!'jJUqύe*3 p%Qd UFU=wh܅~pjՔ?d*Q9ޝqtU%q't@ofcEAHj+i^IswsOcNpOYڏk T~,B5+kj!̚q//4^)"+c7g|vc ¢F4 ML۟Ĭ9$[aj#1yN-=a|OUMdY[+s %$*݈ų!κx?y_aHu%0Np%IRp}p f}h3]/ Ă{ghO+d.5ݹt G<\>r=$v|tbU'K~s #݅j)ZȽYn$H?` 9o@:r9zG{Gٝ`WϷa '>%V͛w<SY_E&*5.ml臨֜aqL9DoRMېJaFy/cN=!}$'F\)QY,s }i$ 7ojOLd_a7,j>ێ0#s3BfߨL轒 #J,$h-XQHu)ʣfw% W;*D1͝| hÝ!'f>L'?)e. KxY[hV%Oem~&`ݓRwhwr@@GpjVLWTT bkjڥM!pMnl=4}87D.T>]ʫV3~7pnP!}|SCI2-EMJ%Џʄyz#bV]0 endstream endobj 128 0 obj << /Length1 1561 /Length2 8130 /Length3 0 /Length 9155 /Filter /FlateDecode >> stream xڍT6LH,Hݒҝ..,4JJ Ht#ݭE+!''(F|OaP{_8!6@ܝp;T_;6[( .W =/go'/ ?g3Nf!q;?xy5` ~gF 0M /ϓݐApGoLVIQox^7  =w:V-0GB /w[ `ku]Bq7Pۿ+`Y}?/{$EwG nݑw [R :sw_ |(p[z sSyB!Z0ݟUܥwZ7دY;ܽ\.OnmAnZI>A!Ep7wHnP_D@?N» wɴvwuk ZLCX n<}>(vf=٩0jvYtsf 9̅CO U^' [ VnOǓ|NiԡыviEKCl;uYH||lJ`,TV ihj,|FE+jlխ.xI֊S\jYDgMK_{:ZTQ̡H2nڧsWYo}(d~@:(}lEK1i׻GŴ*(Z,+rLME^o(K "bJ*KD9bFlTXQٽ܇ ;ُ\riwup7m Tx`O4M˵'Tbj z6Ŀl WgXK2l x-ᣫ8{<c+.rxٶBzlMYcDZ:.U~S9<9Ít DE@d,⮝J9*XYl\Y/yM`+uE)'2lq(fF^Rn@`7)^3ȂsaYb@Bjg~[lהy Fu>o4fr!؅cۆVKkF,nƛ)Ёݾ;[G+[:<>=]o0fhb Pzlt5CϔigUa Cr_SH(67;HĿo qJC"AUNw`[$pm:p;6;ӑ\uȈVצ^$ziUsZi%~ТtC >KXCK˄(Ub):| toBؽ(%" ט]*c=¸'Ƿe}0{tX9F#r98)uܨ0/Y$1]YdlD׀ ȟ{^3F6'0Wi}ĥhLٖߪ!uQ`'eMS+ Y ֱ^v2!W= {dў,1hywW5=NNIPuX y1[=E*F4UZPDo pCa 4QYJ\=-,̧#'$ղ`rp 'PK2T#eh2qˉ a( T}C_`ﶁa% ۦuUEV1GwZ,f8/F)XwqX) ]ho9+}?u{v:u4aN & |m{"<8X~B*LxljlbLZył(#U&h&KUĸ.\8`bzu%6ۣ㬢;VH\9(YHNhxrKlP<N3]Qyr|{9o0~ant&Kg9\u9Ln٧w|Z-`C9Vjy)y1=  cWj}}ma_7U@2 N"A}6W~uk/~̺tɁ ',f#LV,&ȱn҇dqR͘uatM"=R8"Vݲv&).NwWRЈ-U&yM·_67[Jegl_[PYu[Q~{Rp=t&å}UyLa;qHݜRj"Zaԁػ.N9]twUdH5[`էw e)FɋP7h=Ib6Ǫ6ƨlL!fm{T"'u'}_:l TBk?p&~cU'"yJmZgRp=#:؀&CG9*w)/3&:+XJۄm 9׈omk"FO?ܬYa(+>m\bn,U3m}vlήl'K x1146ӉQOE?NV\=c0$d@{}>FP*v1߆KcG;UL Q:r,g԰ *MazNRrL3 Q3ekI]+J(?BN۳`>6Wd2z41\mTZAF 9pIEù\2'pg %<&vu–ZXp=֦-hBQYUNƅi]Qcn,m׶8 g5b4 {! K\,Y ?'u^?c4 %@G/sU=QK -[vnAI<}Vyuns3 Cx~,Lu{'Eba,aR~rt-!!IRh/qi8|7[S1tkX^@/-ۄ; L9nϥN0AZ'DP=**h)BZ8"PO5Pe麞ptߵ 슅OkJBrS߷dZV2$V}̑^֫h]}CD)cq/X%jyPLszYn VL橃QpS(Ic]7dm\=A>Cҭ1ؗ ܃yF?|lwQ9)c:J-㑮8-VvN }H#s^kdE*$lU*=?諒^Oo8 z}ʡTWĠzXFxC_K'+=#J[Ma;FA'0ED\d"oj5Gt֩ ~~lmhj ~Ջ_A駸TXcR>hiGb5H ;ǵ=7.RG7QmXz^ү%Oy'OSPכvAdSIU/:|G_nΒcZܚh&TaCc=mh8Ve!9%oR54&xeP",Cm._Kax&Mg&3۟0~3 <\u!ɻxUNbvYLd#R٠#O~ϧ4^`d+W"z(خrS#4L+:~thR^[Gx?7_{+@Wm4ҲQtj:!1z9AxiyɄ>֧f>6E{?wh.9'H8;sNIumc}H.heŽIpzqv탷Is ƎGyQOsSLQߊn/~:{Is|SHΫ0JGI ZBqr b 1y'FkDjm9KbdcזʬZ.GI5G;FO2Wk^Hfo&F-f NUqz,F@gPڄe,b{Xɰ?$CG\Sed೮WEf_[_+X`0čjw}apd'㧻fI)ч{|_5q)0˩ ^g̥|XoSOkA;YT].!/5aKgnXևV|NS4iIKHg~L pvԌY1%^7:2ӫ&+Z9nLN1!U[g}?aŊF*'+S /GE_?.8{3U.mh@P[ܖ_݆l8; >{ vP&i8 -~byֿ3|a /E[\lI1m.*M 3(G[$ɺ]@2?P"‰ȸW-u[XW'')>aV"G:Z̝9%h;ϣ8ͼȸqdH}0m`"%auh~&ui V2O諶Q38!{ѽܲ_N!JEE RcKˋ+6#{<5v_zċ52-k9 'wT=o~xq":2@mf ˀ>pȅ{J+"u;҉w<ƞBsPS@j t.Q&0n0 h]2Xɹ1괼L:Ok%jT 1QW%F{&AѪ.f(aʴ! I3s_3.?8OWWZ2܏m yX'"M$1 ${?`:TO[ lT6t)ޑ{`_^EEaZpwkGrT÷ ੘/f#UTLI ;a3JjMZenNܦRlgXtj@uɃ!37'(O!'l.f#`O~쒑m6;Át .d R0$JݘGb>aɿqE͖a~  ꟫3@х;M9P̩.$LA-˴Kg62?%%JE'a^WI.dK\M#LZHH@m'e 훷$ ƱVHp~1lh[  zYUEP`YDmzԗB%g̪$_㣐${աVo(# 5 0U](kh&= i#z2G9еtŀNۖlPý'GA^pSgC~9 Th^ɐnV61Bo6JW&, uzbFaM SOwDZ9zE0JR'ab6?q-PX, ??V{qpӉ_ufF3Ϩ-O>oP?/m:j2i-ڎ"c|Rޝj~FHX9Ϸ{d}CU2t_yܽ'?a y$vMdaqLU|jOQCʞ@vG,LY&  lgO J̑H _L}9Ibӓ`_S[Cgcq^>PV[ҡwB+5_$kM"ry >[t;4wo?^āʷ5}Y]\S'Ǡտmtcd1%MLUbjC^5c }5u(z7%̬^VR" * Ҽ燻Rj:}vBCJ[D ޢc/E#|df2\IUBr&RJh`Й&g/\<_=Sѱq&!| rT_/;/ NE~E[vJѤY.,GDŽ<LVlL/<Ȟs4jD~>xsO 22T-862t%A&4Kw8lզJLYѯ+' Ik;7c$Zl|BJX1i狑bp'wn4xj~l3gr |[sl.2\}:a"e'0D9Iv9_z'DH--&F+.D endstream endobj 130 0 obj << /Length1 1659 /Length2 10157 /Length3 0 /Length 11238 /Filter /FlateDecode >> stream xڍP\- , Bp{p `wwwww %$&'h#{꽚={u՛F]]jB\"in/&6n ێC!"bH;G HTBNn^Ko"Q t[T8P ws[Y `2gp 9́ n {hhA `E89]\\8v083 h` GgwU80`؟-%<l 1 br`[#Ꮳrc3wa09y,Bjga'v?ݍ}@[0=`@g&77l?Aw  ϛ,[\1k%%ֿZSJ `sx/^??@_'.w'I鯽aw U裠Aoeނ?B;U{"9'[?L?~/ƣˡ}\RuAn d^8qI$!VBgɁ]A`b6k؂! u( ?3q=ٟ. q\o z\>,j{'y@GG$?qy-@hC={,/Z@)p 8Gv9AN?QKG2?ioo6_1?P1f Y 5Qy+ >ppkNc7[1g梁6j%]7PRx M}⵲2{Ll>J9\e̞yl4P7d۱6y5㒂vY BnHc:en+ >-g/{\ K>vvՖf*Q9 o5?'y.&`=(,E5VI3ޥwm`xp S1}0OVtBR>]N~:<4J& t~bMfu>ɳ"ko5/wPJWp e9MِIy ۧ]Lt֕>#Z6^|s)b}A":Q=;:4怇_4@|w)V:"c0DĤD1&ͯb13OHCNXRn۫ۺMؖkϟջS;{F ҄/$C,kZ G'IIrN" _҇b(3N[Mo2 $Bi,sk-^ e0yhd\=agZȓ׋["Ie!ܾYMrv5Dnε ]ZQ+TѶI_ij)ؠ >Sݡ 5kK%ViSTCIs9V^!O S,J?FY4azxvFs67 ݤ&mZ3u$^ eÂMs4`M1Yfn-I«. P267S~:bl1f't{ٷbe%~3=>Ne I(#-weU4D1=^tR)B#QUStKa~){6+t!4M۠,~}g<.ԢYyB%霪Hc;P%498¨Jv~._J)eQɇɪXO10]8.S xեQ*7( jaOΨZe}3N}RpQ$aBѻvc*V$tqGXT/R06ڂA@r4 \e ?I^+лot Faz;ʹR &y1NA 签X|ZpkT>NQ滩9*`rMW{3:=jX>lzMmG҈TUݱ;1ސb#I;8~'"+Ca*/ٷ*Q>wR7{Mn-MDĄڱu\]<}l:ANܘ-1|-:g*,Ё,UC S=G^XeqR[%wE,m`P饸,Uhr|Tӱ،C­KocׯwԎ7*ZOQVQ IFͥZ={l5;sh>Mΰ>4䏵Q2,SM8vZalQw(iדQIJ}&I]HܧF_rNgi_c]~wt֜\%N (ubK#;_)Sw5Ȋ-}mG ifתnȥ9qI^·ԓ b2T9ovXMzƊ'?(+)_;/{E}n𭒻%ן8} ߘ^%;W#}v 8r؊V!G'v+ )^/s]Yx *GqvD35xP+Nl7v\%̴kmڶFfʒ. V"UG\3kg?h Lۘmiux ݛr\x1Xt;lb~*<}2cݼY(CF|;J9-bA1Zŀ(%\fm1t&(c~ݳIH:$d GN<7QhH}e3zkX NoVQq:'$@Li`OvIW$Xd#zZ8k$OSC λn ;BlRR 'شyytJ<=̰ZJ3v᫟ťO4$4?:!*!c lB||{Ab?:Tvvƫ@Piz/̔f8BHz=C=t}xם$G !+n!ςf$H.'W^]trs39JEMɫ"1pӵ4uxAr7{!|q /{9:͞J\ä;Ũ `Qa쇱Dknj|W-#yr* 6ۣZW7OwF]1)O&!5^`1qD%>OŠD!кzi("6ro.CE al$7p0KbNR]BфfkΡQ? њ&ޙΏVId 0vPGx١>v)^(?m|_&vr BxG$|(;ޘYtQ),?WvQ#'qj ʸם |@(䈋 -jhDy,6|rB"WZf]g$DSDt|KMc\UM@˺L"O =aLT"(E&ʞqu` imZfI^B45~Lϖý„. =u%"Ryҁnh"ďf)6aZz+䐦qYZg6|b)m ?ߨ|S$h1ټ>> ً *ӝeV?]Ur\mS~7 Ť?`})bKeRE蒻BV6}IzR /\!B  [c4k&v07S< GLՁuM;YUO!@6&v;2'ž4<}ڕ~*/ZuyB,YO7Xqdd)Zsk}xka% -67GaRRts p3/M~RfogVj8YWXSq̪ʆ]-)ďd?DÆttG&l$geRi'/H DWhߺ8͎ҪO4aZǘ&vz 6 ;@Svb*>FaSX / sg LK %KRj=ky§@"O6Q[u˱Lw|KK>-z_aO&aU?(Ԭ m>r)54 }(YP&-?>OP[[\EZSQ~|9( DDлcGHn724Fv*Eg_̹?hPʐ5:`t*hSΚ vƷA 7^0ry#y]>'oHbD>-SUWΞ'ilEQUXV;׬6,mRdP9p;|Cͽ \.EΐO+;ةD4tƱ1>㳫]ޯög_Lˈ~:M9o;N#b 8CōZC9[Q/!xL6Ex=d?Y'-⧶bOXrkBeCA=p|TzoQO9w e4&OO/4-5l`UvRLxd|pZ@ю/9k2Fсz|^BE4ne&[LiK*.8~և u7fYg?MsC7 z;- '0pCݤ4 bAψUE.ĥKBwöWY(|;`,$_Еg~0uQ}nG` 1ߊHxwSxϋyMڹt w&B%vP{A]f7yU !CX{|#2(#IS VʶBǡ <Դ%|zU)ja5w!8WH=(!QINF~'(fKMI`Q#RF" :Mkوck9̊_\CHtQ[K$U@bM.>]ۗV,FLM9-Odoo_.LlE0ͲUT)oS[2xJ JJ1&WQM_6X3=jwL1Dl輽$}MQS3INjĵZsFWXI/rs0RN.jr7>RעmKR4!W$ke+v_T1͑|$K4\ @cGН'0X)X '=b'o?A;-fPmgלȫzIOCI8=3|]Tt7&b1^)AAӻ=,,Fr0|nƲ7|.Sh9BXsQ0)4;"ʕ3SΨMjiOUlʮYGu%isFJ |NM./CE} >+gË[#Vn[ɽ< cçuaq"᩶C).*C 0>t=$uI4/btK*9_S@'!d) AXv}˗ZZelyL[!'KYOD+_sF$TLOЫ+f`2Ԑ̬us+_IwC(^lyӦkX0a% +BՎ(-#Pwmv-0;E2-)uӭnRd09hy}41E?*gC\W̹ Ţ䀱ۡ+N߰b.oeaYBJć oޜ7`WǾ+*왢["Y7>3" XŠ =>kA`; \e0pY 2~FؼT}F>R{Aȱ QXE\tgM!>.t:Q׵Ag4ȫV"Oߡ7k?q}BrE:iS5%j[ +tFb4K&|y1d0FSDž"јEQ> A&\L`CE4 Xv:F?"A&Mxoҋu1~)AīwUkܩj]+AMy5plC˕|Q`^A0ƖO!wd=/O@9TA|+Lr-1%!h5S_I6'"$Tg)"X* LhHȦ<(D\q*\$I" G{3A[Cd{;ii%OD?E22*҄QSRq{ڤ8QEh6| 5t}pa)Dqq>T+p9D ]$S'X%'%nϐiI56ޤJ^`*+ zGߵ4е@Eеt?ѢWOR~}Rs{ۼP| Ž,Fs$DV,%tJӭFpH-C59%{Ę򵟉6蝖O? 7/Cu۞!<:i 81f\mwCZjRz*p=OSU)cZO)=;))*d9BRkuψ\]-Z $4OpG ~u_X#FOKmF&ց8߸|]`Hblf)hVNVi5f^R?^zꌠPCO TLzk7$14vu5m 9PiQQ཰\|p;֚9S5ypdgi٥:46pۢ멢_N IMQnYWwGS.t2O3 -r訹$3Y нw?Km,b*𪔛dHVm^bbtE_4bN+熷$.~zy&;'/nY)ͅPĩKcODws[%ѓĩ#Lͭ/BiΗdDceh\ikN$}XlQ~*AԅHŸƝJY dohU qwcgsi\u:PRDR[ӫ>-X ub"\ײ$hJ3 ? CxN3s@ɌVѺobK%K] [.wש)+wA{D166sDG)SWör/Pml}W"n(}4z m9L?UꠉivWg*h(pF(En1IHF9y_F~ˑs.]Q9!H^$`&>ʾ AYQvqjղ _n~h9)dp|+Saj /4]j%6\ ,1ѠFdc\uz*VYNh~32hYӅ#z,k?ԌiCx0qPaໜу]B^ς.Z(WL!ܾ*띨~F>9j.\?%bP0YUSL"B%7$$F(\lPbxNE"uU~1%]M:e/ _YB 4#z{]m_AïRڦΙ3XTIz7F=V+j6Ta 硷85-<9]Av kE13WjgOA׺ƭ0wc5.) Εt( Ղƪ͊VK&ͦxlmH0Jco̻5]md8 mpX ѱxl%)R5Rl>OdEpyL]G>;l +#iMlu$lgt7T)G̞kd!O{b?M60ү.WO0:a}ChJi,W-LK{Od| ة摋oZ htXݢۊR6v#>70&(:yJxinzÀZ([!NvIFquas + {pd8 B7b`V9ԝ$'.RL ɗ6MVCTP?%DŽ2do1BwUQU*"SP_:KJM-d `]ԩcY[#BR[x߱(xF*/}u{(gݨ\o=&Q}=/#M9t~Շ"]5>y8`b\:RW\2pu,TZS&>$,Ac58O49DCFMA4'pZu/IRFl Ez(9") `S*>9ϓr̓I &հ㠄 mzʍSb0Ѿ| qaۓ# 0hJU2۫2drEc{n5^Nĭ%Sx'aSN:4Q7XaTT6EEGp\-[M //2{]x+ŗ,c gжMm endstream endobj 132 0 obj << /Length1 1455 /Length2 6655 /Length3 0 /Length 7643 /Filter /FlateDecode >> stream xڍtT6H(480t!H 1!% %!JJ|}5ks_̠-m* (n0H $ y@ >|ff]Yꊄ! >9 `~(XH@"'"\Erw5@C̲g/W }߯6+vXDDw9@ j }AQ^h&nB9zxx@<W[ v. eІ"Pk/u2|f ǯAy@\f#npk+}8@GI IVn`U bepr`p[  PPAyD#C`Kt!i- /xH+W3 Ƀ9 ֲ''(5jv/?u#<>60/nμzpTI >[( @]PO+;_u_n4_g3  }w(?-|0` B,08P?6z0O1=07S4pG/Sy?Ax||  /l o&pwT .Aoo /Ͱy:Mf(7 YK;;!N0G\vCu@ߩO9wT ACn87X$C*<֚0& 08T䠫@eg  D^/V?琇[!ɑO Gm |hZC=G%4f_ ך@^_ߖp'ȿ<`0?LtocXۿ?P' J,UHY4q3>Ef $yr`3vu# ^'6mZ&ܜܚzsJ8C#i hk&]4qm33W{/SRmUo-R%j]Aɚ%$2M=QE?ɣxo3:P=h}) E"/O+'SP@x[꾓AcH&KϠM/[ܼGir1ϊ{CI k" _+X8-w16Z|QA;y6|p#ݎ,3ʲC!ihj+#nynR+fEpgNOaz[T#մC/ zڲ;D4nJ$n:1+#GevѴ('B%"?:#V.<_Sso 縊C$'9t.>Rb ]q2qxç+߷̹rÁ%곡ٛ@l: W0k_OO{nQ'K/Cߑq0`~+|BI'҂o",g',Rsy\%/Cu/S!tz-ɘ$|})$NbV ]dzcy xs=4ӳ, 9j^ E0W%]"7},{#YnK+OޔVy|#b 1c%,+w}:s?]~i9S@|9(C&8o^UlqHRhfåTтhCt#tXFIJ,DDwQL OJ(G7Č5<=^_65o]iܵ9 %$j\:$@LVߧڜv~n U_ 𩄼l n8qZ^|CS``+}:{HbKGޮ4LGPRY/JX4e|mc;nKX՟\0Eȕ 0}:[n1Oۡ%Ԇ =t7G_D<} N3 j9U"3Ʃd>:N^ə*nz̘[Ge {S>zI}o1 *4z ˉm5m{f.9.٠ک)]2_55O _<}pajR@CMDp0k0tj:p9۝ b$fnKk W~?BM53DzmNS۪R_/YvLLOzIYۚ+x:^㍳DɟOVX`|,_Zl:ʿf{cSA L |ZĐZ HI9%3dh+X#Jcb~b,$&lxjwt"nR.ٯYnBqֈJ9"gYޗgpkz]ޙ$rcnTHh֘P/g0 m 0||CL@|sX5N~ŷM$0%5N!ehI5dƗ$ӶW?'Xu&g(Uw >cqT\1;X{urؐCmZ0HY݈G1^JHΤ.?1v0Wj{W_ZNfk=!U5+-!f5fI+h )??aHK.OQ$.tUbL' yy g1+zyGERuR<2ec h j: 0HW^cQ]ݍ_*ɥb&dEa&4IOT*Uf]+W?Zdl0eST Gլfј'n, /3,w=݋NNȢpv3dBGB }udA8s@4w0Pm75ʆD ϒ⿭Tۛ&]88t1|7 P?dod/$wv$Þ`llh>*5li6t %(iHx3|k tt]~VMQX0Gj]U[^ kVxbeu<3v.^zRv1(=WarQzj0#bSӁK go^Yvq.*1ECMH/<]rL9g5hZ/$ ;0!OGv8go2q̙zq)/gsUwKѝ vHa1z'?dtm /d#?͉W mO'^-Ճt,!U"G>>Wop1{w..ğS5:){诟bYPq#0<5)-ƲE)2Ԇ' Ϊr覬~$/k$d¹g(iVZvXi;ubYְe̳ HUR_O`ny\YTq9VscQB|/u" g`Q#!IނO5ؑO({i9ivZπQoMM++nJ(x+3!q 8a% _%3:աƯuKu|r}ۜMs+k.G(6+3,aun+",X.=vc}ֺ-a-ϖ@;QLɷba˅3/ LI}l*fDKnrpŤV{[_43TN0b"O~{fO.E9xI@eE[)UL*(ee";ٜQCD`DdTO YKVӢ`C} KACEkymĎ*$.D~,\Efǚ?voi~\NFX& ZZ . -3S#.20VH-) oO׍ĨzM J,I{ScX͈lax* O 뻟p`2'=!'FஙgFEX\Cfѧuk˟گFoDDUCtVZ 6x'7>=>Mޮ>Az7K{zl(P *\Gl^%> UŒT2VǭSNyҢre0~! "m+>`k94M䭧.U$}'澎Q˾x5U~`\r (EtnO~g*.D~ٌXMA r{V:"ePՏ/zBA_n"8F Nq[7G[} V?"Яz6$\p<\ڒK1I s2zsz`[4f&ٖK@*YO[=7޷Λu=?y_tVCGe䞯 VP1M؝4:'0CZ}@?D)*'>fFWYD&\ؔ1 iRכ%(`jC}ZQ;#r,ܦd&5zҵ=-+LJ1@n tr{:[կvӌC{C|$翆;(ɥ N!$0Lڜ'Wu+!EHrj GDE;*?j`I[\q@w [[ >-ܫoz~\-`_jGuP>"ԓhq;ey'V|L! 5ADsiq(Ŧsƕkf~%px.dgg:J._L\IjL!wG@UVjR\Wsc5L+1ty[a: L;SU,9 ~|vbFʑ"v5N4}-67xkR,3,&w˄T3Svf0qo'h"&3^Z_;h vE(Ϙ2>M5H1hp*["J]Cڛ )%R Ә#ph0dR?_zhH#ufOO8(hҒH ~)O)sdR}r8[\R#[Oyqzf΢zq _'a&)^zWbIJdAI]=pM?eăZx\a8$BOG͓9QN{rMOu{)wE;}M`*aT}%{M]rVف@{OYNjvjRVju]HoYtYbnV?5b6, 4P<-Y1y﬑5}OO܂G J۾4+$]^pџЛ^ݕr*+"9EUc Tq8B`}GN*2lVa7C敺z6p"g6KV-:LԽa/4ﶷq>1a\űS!G|.yH-ln'lm|ZoK{\&kww'VN#(60hRٴ_d@MׂyeˆRűN9t;fr[DÃ71K3guOĸ*]<7V>^*)#% ~Y:08930ݶ#%_G ?iѧUY+XcK']?3G,䮓ox93I"bbhV.Jm+<|iFg~ѵ0eThlsFF֚,7Q$w ,}vCxwͷFEw)ԅܵ'=-qMdrbi1IwP7WW٧ [?;WBIWֽx_"]q+LrՒy80eu[R^gX/SM IR_׼c !OP[Dzp긦 yM,+dQ ^luw'-ﴋ%~hq3D,{?4^c.h23Ry[_>|mk[hgi0߾#u؋\ j|a&CV;Ugv@M#o!f YׇAuu߲KKm.F=QSx1S%ߵ댆{]8LMWA1*^'` Ԯ endstream endobj 134 0 obj << /Length1 2561 /Length2 19261 /Length3 0 /Length 20726 /Filter /FlateDecode >> stream xڌPw&k 4X\&#WuoQm_CE$fdvrtgbcfH(XY9YY4An 'GH2I3w#@`ggeɕ i (1nTN> kwp|Zxv9]Af%3w8=@t6,,^^^fnNt/ @tZ*lWëTMۿNV^f@X`:=<-pr"@/c03@ ǿ,,}@+="0s oi73 -0,\Ann Jd+ RN@Gw7ĿI\kvN^~V GKpfrx$m!Y\<| maWxMgJ V" + ' "d0ZDVỂcOFtrc|Y%dUuN?&N; (?-U5럀rVNVbA @7dbb[m%$aoodo&{B |TKVZ<V |bm#M T[k3px{#P [`bce?:Y؁7V)-,;v.n"+xع~lzfG'w \^rsX qX  `,RE<? "Xd  `\ 0?EsQ\Tx\T 0?Es\4 0?Es\t 0">4E\`=x #K`-A@WcgN!]17Q_O2wpG8? ͟"mq:,{k.ܗr7d7Od.#jW bߐ@+?RKW f ~̃g{޹88;R*7 ߿5+fc{clIvr:w.n7a5I~Ym\~Xܽ? ? nrH@< t@ ĕE' 0ưz1"/)9}L:&GT4O!bic?vhoDW^N:#;SպMgO5}%A f=q앧*pEUu5$rm"bq_[r)^+0lJ}|̉j?ty%M׉ܞmlGT,rq)e)p?7.y:UR@o*L] rhࣄ[VAB,)R zѰ_+Kzbjp8w.9W#6U隌.bMp-M ɾzqШG;\[jJJj7n"5;բ Z43:|<DjڰK AD;|{6G˂T:ܟvc@D-7jHh.㵘0Am{{Y>'dE ӖFGس("#)ef>Jg*Mop@i q_a~L P9m=#/yMȓ gk^Q.d G՘E*ƒyqMbtySUCp]$ZуB/>np?kݵ_bQvwc%Ф3mT4b͸˽yOQn&SƗ Ҁ P׆8 :!/WZaR9\cIlN .xYmccWq#/Pm e%^xk?'e~4Jbv!X|v*M67f$R2-OnU*:vTΥ\LL!n3ğո na&$E)Y> +~!㹇33yl"F33_̰˨2Ey8D p9iS &Lfmhgw<'u"Eb'0d90$I3B[[ ;8/]w㟷Ф6h9v& dpL.|3 цR6/T lMUڽQ4 Z9*֬<lyA9r jZo$uQwDc&joTDyJK(K<}3󭵭~+;Q?{Ŋ5t oԳ.if9T?ml1VGZ!,=):9OIH>hwЎ׶̚{iH7U _se&<cyGE%ed0k )żV픆0Zamc!JfZ^l$+[ظ 3.ɇF}RwFHG93uAgKu$ȏ9Q-p{|x_%- S)/F"*9lQC5r%*m4[%"r"UW) U4i3uѶ˷D)'7]!Tu 1͔*e"TbRVB,zN*5Pmyܛ]0/bq5ss:m=޽SibJaqLɑGu0)F-%csts.Kz)$-MGu{^.":ȇy Jgt vU'w ΅֜ƠZ^j=1گ4G)QlHtȄuXE\0>=}3\!WXb(ll=*?8E@W TȚj1J@\a[=dROPo@JlSvǕ>3$Jav[^"΃o/-$k}&l!KFgK]YK#54ߎG ?#VS^8bF#"zCᚤ{?)WMcR5B]^8L!t11x%ߛ][ȱۺҌApnjDf26V?y-jBS:QUvNr32N$gRwǂSZ;e;=d8 j))`V t|{ld,F&ӑJ%Mcc\pj)Zn]!k GHT/`G0˕ y'2ӏN쨻]PQ #(hPJIrƈ=5ȳCm[! R|^Pn_}G[٭ϡѷ&-\3:.גuPo:~`k wLV W`Uó:1nz[͓ $_uCPο^K[]BK?(Uk_&:Ht u+9N!lW'j?mEZ57Jԭ, `}e|d&"E8ݺ땲\tzcB2 dU & ?؞NړX{@p̌oHv8Z?$&+$:jSW +W mLEh53b|Ԑ u`޳4R/c:F[qWk=x]PNm#b9𹦄ƃM=x( ,`U>c[ ŌGH@! iYπ^Wh\ C G[]&vD^`W~,QD@#v/7X'PHGV5~['29y@rTI8A72IwtҲ'Vhbԅ%;7",=i2GRd~шg>v-))*fƝ`gY ?o] yf`#?cyLrĞ~k; jea'W}Ec ”a jދDCݾVՇ Y#Z^ie&'&)a*rʓ4 Bj|sdɵ͞UqhP'1fu|qTM Xi-r-fZ"Ǥ\iE[,Ʈ\"|hjdA՛w3""LFXe'i5{̕hN4j)YoqOX]55UKp)9D^* D 'KiDY@dC7"ńIl{ڀ\OpHJTkBL;G|FÐ OR rJĦ,I[o7 Z m`1Te}R}oAVP;+r >Mg}DcЉa貰s[{kZbUOcsJO:u7UpgS VF'ߦ˜v;nr,dU! ۔HhȂ0(x&3>tv_;ppril*ʡSDӠ he,7Wׄ/+mSB G&-4AtW\09u( HZgBģq.YLU&]v-3a 78;)YgۘL㈶+Z xT4_:u[fKz/1:_[6c'JzaΓA 5gW֠G7Ak޼bRi8p>Rsh9YDϚ|lUS\ZW4f:&"c<#rPz \AcqAC*A?Oga^םʇSر~Ytp {ADث;1Y)7-l2w1;zhGUcnILqpUM.!||@ 8#9?_NNE-M gˀ`aOvb9ġƍ3BVGtֶb4ޑ⪖u%Ƴ sh H ,PPBJ|$kۏb ʡ'wmWfk$hbh{VQ~˨=}QPuԩ#g(8uuRj,j3,+P=ʠ&if (tؽEdzPb )F$ҺI'K`c]R 0(@ ʒY:ZW{w@4ͳixVĵ̳)Ū ޛoΨ#Hy 6!.7uwr~Tr-ɧkf2X|Yc(|Ծ<+ϏWDBJ?! !?IN/ps 0[`\/+%>߱OlG[bHV}*^mg>_NGV턕G`,)Ua G,o@WPp}M H$yaH8R҃%ŝ[Qz38#$Wx3MR׊_Lky}V6CNR^,4VE}KeS:w8=kYtHtvks,&)qQIow9+Y(ݑKeoC%-Ko%gȾ"Lڤ$3R&pmӳȯCzky OHhJY痘z mIX/]@PGo :I-w+=vY{t\f|\t2B M" o8M ƙ'x|Y8y ś.izuQMyTnZLxN yA'bKZ`فV`o{E7y[f](u)v Vh=i5y^-^CH)[Q~<^ kP京+ex=-q Hy8*_]DnkΏ(8K80_yFXB캥 *D>a'p~L5jW8&QG;nz sz`7!#3qZz'=B֯Vd=t_!+M|i<'Ea+J`6ݭ7I4 F΢JHv 3RZ= {|GhuKJ TxhPaG6+'bFٵ\ʗteFYu7zU}vwH'k2t\jM,cZʧ{;cQc)i{ӌLXE1ς9i4@'ԧzgCj(b(`ȸV͐ӲNɱn(, ZKLS(fylbC:IBAYk/P_u-Z}{Qn?Ԍs>o[Z2P8dv0:3^{i@S)֩+[z+AgT-rp=۬D(:P8C^,|?Rj>YR#E,jJd1vq͵Ougxm`81KL'jXJ3T t69g/呿3!ؠ򥟿KkpSB~+7.wZCswt)I eRԕӐ?ŵ؊c~%v{L3}Y.s~:qrOW'v^7zEX\O=awۓ[2ҫ/V<.gnf-5"m`좍Oazfqc3$-Se8zqwouJY#^g=St JdH!*RʶR9w5^?_ Iam]bT^ -7<hHxt}wb3eYy꽷<.ң!K? IAZbR 4}S[M6 ]8kZ#uMjOvW8A[$2LԸ̗@ 崩( ]:"$t%b FO,QxpR-`^%)J`~BGdX;wzE#&6zCiӰ@hqxǘg% '1b[g6VTᅦ4٭q;>zRҎ0#zP{I%i .5sh?6CNHpu _/fPe]/~zG-< VNWUXW2QXu"6|rb]]嗫'#i~|hJ#*F&~Ucū0&C/uu= jWgǠ`+_[vM\-?/\Y˺ uXFFpU[ Wu!V5K@^S-CژR{N<%qU`pd>y^Jb*2\dV| Jwt8n*#wO 6Tstf+E~{Z3<W/;uֻЖ" ,IJXv@ٕqoeAD)xIoӜefo:kEI*֧hCP3ՇvybGYbbوOz[;IX> r͂UZ'K(_2ȯ{+rDŽHahItȗI>Pj@\.^dIJ[cxa Ԯb$Ym1 {UݱVq!^AD1f#C2Dkڡ6FߵϸV^; I9g<;p$a0eug1LU{=Q.S퟈Q$t%[ة5'j_8&WeeVyhO8JǏFټl{{bfrdQYF6RxaI2,i%0M#M5ZH(z l5f/_ *ãdIXA@IT}4of7M$|L`xLņJ_^Nc[4=-6&k9Jm{+0B.Mɮ#biF?&pY_~W]qY7;}y !:LiK}G1#mTL ^-U ΄ކf=CjdqV?ǜ̆>n4"nkBT涾ƚ3OXAK_77һ }LQf1H-;t7M*}`FٶP*Ӎ iF&:˥͡#6\pB֪ɝChZBĆƷp 隙##?cQ{(S+2̣2whu`L&B3Tfavis/ǣjani[bVTll.UNڢQ*`Xլd߼lj;ݸ?9|"{+Oş^./X5fq0ǶoU*VW)ҏb6=j䞣΀+hKt鍽7O # -yMͤP,WZ#m'R߹XP.E`$q;zַlURMmcyͱn>Ó,ُO3jejӈ[4 `+tFo~Ą8)jMW |@\qC[npi^#P NG#bxrqH )F~W[s%$Ĕ ==6BMY׺\S"ZGx*G1srY5uljiF4RՈٝ%/Q''jG*Ac-waۙlǶ籷7Z{m󿟾]?>9Pum73.Qcgdu4u"F&euu+T}]c V83^Ż2dž/,HLm<s}DFQF?_NStP$X+=z?2:Xm9QݘMRs::+}8&Cq pe$ixV W7iu/2|dhjy+LșRQY^K\h+[8r2l@* `>W%Sb5qr k y9Cv g*Ŭ&^uGhrox-WA5L.!gwbcREMbHVIA(yy> 5Ɉ3VΠ3%}H^Yc*K :z49k!Kkʾ'ͅ"!LVXqvu1Z]>n/-aɊ ˻Im!/S5)k\ԉ:nW+wL)Ĭ/sʤUo&/#Ghknx)aB{_ y ]S՝0\|q&B RhNNqu;_6/3Դjkz!A+ހVU^<#Lvs:uP4eisJ9qȋ}Ҽk S^?- ޖqlatLxka,3ҞnL΍[.w?p6 jp􄟡?v.:>,:Xy{,R)Y3&Ra;lwԴ!9q@ͦX7aņܨ]-C$a\uۖW$+~N֠(ưxoft7Qa5kP4sIM݇4e xvZ3ohV\+v1[ʼn!7e|"48GUTҫtPZj=`lOK! Ø Mǡnkd?QFtGBg.& AAFOd<ޱ~I $bOz2pn UÑaɨ >򫴟Og@Ո2 .vc~q@ٜ |&W JL5TZ@6Ezet;GhC E.4+&-E)(6ۦsjAuFmz㇤~!FD}xk3NRPߨOU5H Ge67l5-SWRڣ%.v 񭲎|\E;ck=yuy4q0zD##q,_LWWJo-]g㵒Y\u[ܱSΌ0eK_'>yiJegz;#%o, 偬= d%e9V:YnwL_X> 47*.:gzcZ&:r>ULfKV~\6VT;E 5ezxxr69勞#OyB"2Ɛ4e| {#p`횹1W2{8k4v{( Oz:.7PO?'~5ԲbO*ļش"@#Lpe%x8#wotRd`L(4hs'`ݭx \Ve7sWf"!2xL*!!m+:vo4* @fFM8Xos:YZ~V}fbx;1VC Y HZQ_MwWԮU%.BX+>4pye& CnZzV~@]v{/-wRCL>[T]Kl UEu5m'mB%ꂑ"4`!P̨iqs^rܒ 9\O/VvkV»9.U%2A@/(Z6Mͮ4ўo\ .b/ATkrgK$Br7;hj\.:kL-dO;z"[j!/j [kNu=J5z{bu+簋5B L2 tl>"[E胖4j{]!oQiF>ZZ8\|[t>הJ(K:<ϫ ~Fpԗkۉi !!"??źWO,L;"svsSo}Yޓ5 L e^MH1ɜst_6qFN$iJu+7&}e:c#<ݤhG ⑛Є4M_um-vA[ˬtI7C&Cğ"AUĶLhJ"BfM%ȈDRtT[#ES?; 5m6I&N]D&+*EK! `?0dy* YN5A)}5hR9)k3G$ASaIJA#dCl,{CBUj^%~lpHShpp3&4H3Vp7A4upM%5:[ `W'~M3l K#e قx .J؂E`L W`Pey8 f9 {LZq2=N{S~֣' $|ogZdD1 lq&!TsS=OS_DbBå]O4s4x/KlO>q}#Bؙ{| X >! Vn+k_d.g0<ti~sI҅|>D- rd+m:(W'$"7c}dR;vaN(0ķgNϚzwBqQO$38uv>T!W6@FԍiʼIɯ:ZɜAR<m)q.Sڪz4?aŃ'0:nO񎊯Z 5 v?f)FlBV V{ 8/?5ޤף2Weѣx7 ݅sUѻ)J0v[Y(Y߰`xov>F k Ac)w#8: @B,,od>>7P|ЄedÝ6?14U6$kքUtt mP4U6 ˴D֛Qɐo KF-W]*̯>bl" b4GTb4cZ !Tbab}lWMNvԔ&dLu &kַY/`/R^s|w -6:HUnb_O ~Cpx(|:Z uPmC>:nx>,qф*)S}^I.o {ΠO/QgQ2-;Rƺ-HH>/ OHk -yRS|C\Ovo99!ب:)7HaM5zBlNKQ\6LjœxbvO<tV**hVa-B&t>\!4x`,aG -S ΰ4QщK4bZqAW!@~[zSprH zehCF (_I*f ^{ <յkfTɻOe6Kv^ya(0ҕ0K03r[?"eYZ g %! ! *<4fKg@C8(wjQe?!B^+H I7Ah[$ʹ#P[\,t-,>KLƚُyݸi<i)qq-'[X|NV6aaR֣+swt3඙4ʳX_[۪(e@}(hގn#rCJe9=U(uE}_ /k'vfa;End(3\Q< (x'xN7n-?Q6T.&{76jyaGbaru%:˿z+5YzgX3*c,{~s[8jxˡgCX$t$1*BD0̄۶5'i_Q\^peI.qnTcԧcJ`o[iֆeot"jn빤V+y+^ިC.Bi+ǹ _pnnk`Xw4Wlcoc& i0#>qFPI1CJ$eŃkl:bθp%SM*tr5a =%tr r`1iWxFrC =$ֹ!O&f暦}yhy/.uoo&' ~4ʟB} '(:\Ui1k90jAa>`*r JP2 eGO% G}-lΊ^j^s$OjZi^5,t9|j5+{5^m(Da(qګ8hfsM[_ql*tϪA%IsC!1ko9Z|wqpd9څ+"O&6*\%RsU o%Ph 2aZ2I6 &F'wZCa-Md޳|G Pn" R[OhNZa Zf&I²-x J!Ջ6ѩQhyaQ7ݿA/sX9W]k3]iьy-dۨʪ /I-5nCt|q/!O\#@Ym;]HZ sŻ UxX c6eY mP>w e7#b%FM/|D]@O3?*t~ endstream endobj 136 0 obj << /Length1 1669 /Length2 8824 /Length3 0 /Length 9902 /Filter /FlateDecode >> stream xڍP\]- Aˠ,;w : 3[w Npw,.%ޚ3gݻ{]JUUjB\X9؀I%u^ri]@(t 'g0"/I''e\\@ $2u[ PNvyW9#r= ln (Xv47h@ `vqq`gwwwg3wf:Y0.u3 dU0@Gel(tMk x" W 9@C@,?w?W ^ljnw0x!VK"Å` hj }Zof 35{r)@F\ `T9;\ٜvJd锥!P{{W~R`'ӱ{Y['C,,a;tyP@. 9@kz:~9~Oz;@OE|?ogS7o l0Y!(DA;='q~= weU4o`yFjͪ O@y%G OgWnωawe蓔Ao?=8{E)qmfmMv:<)i*O_WUi:!Vv#YP[! B+?y3}Ozzn) 1Z;NS''SO8yxOjl;T/򫣼ObEF|<vѯ|-|Av˿! x | r?n'OM|'7.~+o; >/ `w9)'SԐ@CljCoIYG'uRY:\` %1Ve:]'}Zڔf[|oG o}vso>݆2``x]?s2VMG@[.\GW> |>Yᰙmeob ̲]XɑpN<0.&qr)Q|pzqZt&%'"MV .)jfP2:DSbxfTIj-1s|%.Y'#jFMf KfPa8l> \iz ]1*_?#_ުhB~.¢jo'rFNI1Y{1A M1%g4[1Tպ)׾VYr8Ž#nDnCo{7u.w<6'Wݓп$eK͜qi|`~]Ъ5RrU3&En MKDҗ?,~ɫÈ 1d !ֈywPϜce:~DN^6 џlrX ߣJLn&mup6Q-K7A8{́iشċn|Z81eFƆiE7ZCgV~÷f0W/Y͎7zXt_YWixԇwQ_n1YE>|kF6J31R Y%zQ/%t|2K!^|Inz)mayL5-5:I/qӞ 2=NC Mc7 ŇD{9tB):U2Fac/ǣGݩpTLP?s_a,NZFJ,ԑv@rgplc\\ĕC4|BK^mK10V6G6E(4|/P6VeTBS"_M~T+c+vN3 WkwEޣ)`) X'8$VZ"u|Is:8ewk^n *5pZ㒖|lu:@OSEGp%jFB%pՉhۖ16W/.}VʧFOz&T=;(ףuhvH⡹r^|юt2)5K v 8:)7; q8NWڴ/ᆦ ? bi^"7fc,:U+W#ZyZ}d|;?yPƚ''F.ꎍ0Z1}u] 7ë>Ľ)9lԄ։ZǗe^ک1Bg1kl icB@_eތ<2uÖzwPq_ҹ;׸f:,.Р7JKK&7v$i/9ui}ξ`m/;Ta??S8 0o5u dw{/"ԅ?)3hѲ?*va7M &. 5u7nw†V+N=72EtZu}}MyXC] 7uTιؼXq;EFQyrxInL- Ͽo^ʯtGyM7耤ٻj_:Åv񥘆Slu(.k!3]#`;7Qd#(V{?2YJL䶨*tDrՓm֔%v4 bG1 \`P<:ENC7bV,SJ,h]SPorZ^nr]땞hZ|R=*yP+)\`Sh6rYIAn2B ưn˱tap~6x kvkQZ (nCU77lTn|Tm fT@OO:Ko0xg:78DOp^eel]<^e''jUNtY,+%6uX4M7M$x%PQ . !ѩOڅć`C ` EZ@ϟ[R ژ`zh6 ]>ꋀ0( 3gzpL^+x^rm${ ^ vM߻鿓VCll+O28F%#mZ½IT<\9Fz!B9dQReM-AD^;v=J!6lC<#evX`WR-l CUgxZ \J0h)0Y Smq,4Q؋QlٖC~̠:|̈X(xc9jsXI2eMl7ҿýfYj,E W}^3f*ۜ&+KTwG[ /-Z7eQxzv07i)~o%viW*Lki ^xREmKw"e";uk&or'I=(y#C9qu^`$[OεI9E2q.?"{Lzi'zJfmDS@A?پaPDG}ַ?]t)$⯠ǛQ% hw,ٌf/.bj:!CxѭMLoѠدS\.Y#ݧujely< '6uj|oL2e<Do7qNZɞ=g <#j¬2x7'&+#rZQ}gҙQ$XVv[zo +!@ +fk)4V8˛;g񸮺zfol՟|nan %]S"N*e1gnE0KD^U G>o{H;[8$wȔ-6ߖ0({WH1Pj_yiY_  ]8ip1WdddF(v( x =?{917y g?d){mGXyӛ{r>=c2h1_/q&5uHۺT,ZTĵJF!Р(j]G,sdRE-I#\ؘ7"|  Q/嘸xT[6v`5^Z3cWЊeq W4# DZ֫ȑ쬉/ȃ<:IX>E1od1P /g3㜒Jp0y2w.2iHq̙c_R{cBlJ4)MR*V蝶-ގaS`C$6Al4/ONKA?\!/Dĩ`)sm%SС_v##_j[)²^U %`"llR<*Rx 9+h:§[穊3a պuJk7=!8Nij%h^.nQz3u [ ˑ7RDRM S*@ZPg2%H*H_ xH?@4jK\1l|%FZN6rlךiNU w,K'Jp8OP>|Pu$:OԩNꥊ'^ =`Xik8:cQ?z24Kc"^Ry2=1Aw&nTlI%'v05"wE ]kޭ8>bOфr԰6`W.*_p`w8=K|?+ w,@ PX w+dPגMj)7`b%S-]=IzbO#[1 G Tp\Z?D]B} _r-b8zv 3ɾRn(wx,=r6iUfT(q=NH$p<mgr96/.;>IE/e)8\hp'V}7׾{Cd`U vwR h_ HI}I)`!1E]Ȋid|ymXV;!@ A^EcR&﷐(i_r'|"2Q1q΋va]+۲EX4`k(cHrfSZ9e!xO(d Kj4).|Cu6WHL^/4Ρ1HSUYAX.ݽ~3~O5cwJ>jfG[W[R+ 3~,n3A?1*  7x=VR>k ~ RF9nj}nEq[q$ԗ䕚ffΝ|a24+jIUZ^ru% Szo[,,t[ÛfLTT цn1Eiu_zXg:QI #gzܝT#/p*,LDw]f0| Eؐ T:~%C BQQ;,qZԗOa?ΉVƜ,) q35n UaڷL/;wUCCTPPԓhQ;x?ʄo~ =Wh9/]sV8gT2]woNTy!x\ihɰU7SsĒ!wmf?$M>q+EoD V ~)bkM`.R|\"o5L8,QxRw<yeGHn]0LV^PPZ\8DR ./rcH|.zYG>][TZZ1 [9r8-{ {Id9*AqX4/0/>>EqU׶OK̜k͡yI`uB糊P@Цʽ.I- WJDt:_YѺgiQ&]]dphE7ϰ睓N%7 *;rhɨ6."l3MS(n~+9B9 RPR2)Dl'PrXM ?E?X}q&3PfJX"bG4#l@V8^w`K\s|ϑS0#Hd5Z{-cfVF}8xEta8QlI"Hj&\U롮L"Ӿs*&8"8[I@ebtHk\L(wu$dz.f5O׫}\h{#qORh.(Ïɔqqyyh%vF 6IDձW\3GW,vWgp( hۗx6"DKn+xx_vTnsY pՍǑXH9_܊2b8k\C+l%TAU&Mg/z9.YP(#gū҈ɾ(>֍6g6u!A3znhDҐ OlNagKxR_(taܓ&-\*cLd|z1 \QH _]g) BLF`t?7ɇOTdLL#|uI. "$CƾpҽVU@<x{)P%ߩ/@Ru^SaRR)2:8T y~PޜCC* G_ۈMga1kj|72tdKtVbTL}Vʌ˵(TRY>B]QuR;aəD_M !U'†R=9.pO H#k\d ?UssV `ezAz5e䝩?W&͗Y0]Zؖ}';Vj;*eZ97kհ껍Mq &~]VkEˤo74m-hR^a>Q g A6(Mm`;՜U@ntd-,ģ?Gƹ d.7 6W 9" xRһ%5"= Y *ZJG=> IZd?F 55\8vXN%K{RwXc^2rog%V}>3DSc̒(h}oEwY &񳑴ItqH}|= G |aVz|]cH喬Ψ@1nDP1jN$$rouwk/Q$^IWNzTUJ[A`uIrA[FޙyA b!ON9V录Ben Cse;\)x4nk4vd,S-3x6x ?%z? > n r˪r9adM*`}D:|}鑽ڇؽB1D>+!,k5: }{#td{FwmAmmv X%̖h>U|O5] ^mgTe-GpŎFJB%t.nž&{3R;O Jg2cT endstream endobj 138 0 obj << /Length1 1412 /Length2 6258 /Length3 0 /Length 7215 /Filter /FlateDecode >> stream xڍtTk/Hw#)=tJwJJ 00- H -ߨ;kݻf<ٿ1)lA0(/(P1 ᳱ->)àRˮ Q:e$Mhz@@aPL (.%((x:MgSNHTN;.PRRw8@@:6H'+ `>J)DI xyy۸"ap\/0 `B {/]Wo`lc'0(l"PP{ 0蹁8O%C\l>`# TH^ Cxڀ!6(ߍT 6(|CnH? PW%@` (?e0ducu¼~`/n&PHC/ ?:G *(((.  o;'_ɍ}@ը`nPCxH(-{` rC9Q(~,QܲA!>q=\}S}eu߀1)*¼~|b>!QAPP\ :;?[o7dԀ: oqu. c?C},w?o+/aqC|XDm v}: {[56P:BD0B #CP> eC횝 )A&BҿK@`vNHT `D~@rڃ !Q! k"cK[F@zE$ ſ*ym T[˿WN줟9H-G.[065fЫec89]U$^ꎎ#z Bn sINE^bp_QwBI2dF%$3kѼ2Әx^dvG[+ZOcBQ N#{mw6ŵtdץ}<|^N624 M36vhG\6E~J)b#6(MB͌=?a]XQ8r&xZ A? zr7?؇t`1C 6<GX{l[c65vnv{Uu :yْv`]JdEЄ![M:ofZ-kQwI]2J+­d屰])\49శGjBYmFSAjwc=tKml6|J .0X9SvS[txG=f뱱/D蔒eeG {r5X Guk=ʜ%Eu݁1b\èqF*yk_;?s}ߊaj4"Z>1zn'o(:̮{St$7g܋1?&5GVUaM]Z[ȏ"UŀUfyX#G/&FMF38W#XrA)Ju$=^WZpr4Pxa6Gg)r<}ѧSs5P}O'8@fdFГLՖ\d3P7MdeEB̩.k MP!o%;N94rF7/GRcP,ޙTM FeƭJ:Cؓ$Lԯ7e&m|е#+}tB[<\|2O(:Ltd<ؒ1Btcy_R/^`%z k|/XP׍ji18*D?aAݦ97[D8#p,֍_=fA|oXIm[#'d]ϗi̎dx^&Z_a=MADv;pcț1vGf֓˓}͟nW]opR & uT\=N!}4v\>&?Vtb@M8y 2G+qӺܑ*W181=3ZC_e[Įx. 91֦ŗj!o*[;-QVV0MLxh: :g-MB晴LfjS74[&R# IgJڨgDM 1,IKr3=p)(^#s⍂Ly./B)578QAC%^6\9~N] 2t#DY*넭S\aWO2r}tn"h;ౖ nl)z4+Cs$齴 ysĴ ZЙf#cM >_?Z,ؔw7XٛX5f19 m^J >~;mjdKU*l5$JRiŹYؙтs*cY<({i%, f !i9o̵8%62U)$ֆl_?ͥeN:n#y*8K^76M^jn%G0rܔbRrrw^ad<9$n.wN{V,] IE^#إ?to;C˙kdW' {f-P{By6BCy\&FyMKt> ON~`5&<~߯0{Mwdw|V#;EUjv1ߓЇW3MDb6#ww7,)x0|uCyd"uμq^DĈ1.)ejhFs)@jXޯ4h'do/H!S4dRvb6A<=e)EROd^uX@[bHqB^=3Utqrd@bL+_ѝOqBh-x1 Ji/x [AY<1sP271ΐʔw (a5pêd#w&{`v}1߸F_B˭'vN5P%g ,^WQ z(r AaO\ VRf+ *E. gAq:7Rq?g 8}HAq4PWOiYgtw@j3]x{6i#r|HBl~?Zƪ"k%V69JmYކ+2D. |SjI+RV[q5ÂAoo}fo{ڢ">; pcǥ!xFqZ{V/g;y9!jVtl:9SKd?ÆYtڌ=_SK2T/pC%.dxy$( {v(h;YNzDjQ_[Ezb3'lE=r"=4la"_.v+I}6SבqMYT[>ϥKfzSfa$EP:>>M+}wؚ}eރvlY_>z{bLJh0T ux,@-߆7<.L^(A̹c_-bO$~4s<[j0;iwy!!O-wp׽ ˛@Zv:]thL͹,p5a kLJڥh$t&x;014# !{iRrbhоSb,tnқi(,%EU)okEeeႫqS `PYT Ξ{UמHv{R/]F hhD`o kg7'>QqÏKT gdBy׽3Cxkk=ʦpcꁯ86٤DQ#e~ё"$nv }:-@TFgΠ]kT.t]YO.)GZ쵔u6{E7%ԊH.9Z!_F֨4Tu.G&jCUyӘ8O.$ӣAh~'[ZƜLJzV#Gneפ EԅT~5&uQno10k3ێٕnstU}>"@V}HnLt8*k+%y¼eOiJWnd:T ŶŗT͎7Zl0z.#B7Oٻ7j';>fvLZ$X''ő,86D!4Zd_>8PGEF~]$x^z%UL~qW燮Fjҫ48Ji d yƧ&+vaEJRR$cY*iOby{x9OcmFDMeS,!CPmWGWHQܯe)=F49JљߞNn?إsF}XP_g_$D} Rd6=;M.}3ܭk|p'f|@/kV hqy*RsuBEFs7Z` endstream endobj 140 0 obj << /Length1 1403 /Length2 6029 /Length3 0 /Length 6987 /Filter /FlateDecode >> stream xڍx4ֶ Zhчu{NDc0D{ !: G'JM=5k={_{p (!mHZ$(i PD&0пD&Pw ;ؔh P<@"H\ Re'-xD@QDJHWw#S[7Pp `@v`*Bp!}#*%$%vA "dy^0#{B(t.?8F0_C= ` p@aB<vPw:PC E Ht%!~!+C8ap(@WUKv`8 {ap-{`>a sEQ0/B`ڬSB@hѯ)ܡL}3{eCa*dy@5`0&h(PRLLG_|\~HW=4f|P@  B`gǘ1X1>(TL PSQ H H .. guoz`؟GF =  L&GƆ :HP\@!,{Gpo?_v} 0z@cfCCM 6^ 43# @P0o qKK!Q_L_>A1~g]ikE`wwF(U;oH4&G:X(@#1vxc0^u( !ABÜ^(0x l୬vF'E9g9jgM)ؽ37W11|Qwnrz>Ko]P`qI0&NqDfckb:s.#rPr(9%gMg@)ub?1ge_E?"naakhimn_Qfo؋J:*ytIPXJilt.86? ےD<to>~QY>b1.Dr99ڑ&]t(ZߋK \֞Bka/4?snLK ||(gv7]auZ/yҌ%qmPO! dpYG& &*bZYd5OB^TA~^[Cyɹq#Y#mLBsp)rRJ/L/= iI>^?@^~KMD[C!a+·6:\a'gZS=~o#IAB]CxtjdwL3_vpm{7\RI +D[-Z'=O,ΤmZ}j9pQᦨ M5.)B;S8$PmxC BѾh.@Sk9BqQ/ 8DU⇧ȇBfbo}]_n[1(hE[)=h(4O~Whru%n-rEK9R=͏D=IG5A߆$9?0aa2VI=*jI> gQyEmzɬgX_$DPRMi? Rpc.G}yahPeYAVY;8Ϫq+ԫwPFOJgu9!}r\?o"epc o*ItBYϋ5:$JCT&ȺEּdTZa륕*7eN4PJ+Wv$#%pMgkV8׳®Ϧ,Tu憜zHd 32Ө-Aч1n/N(h1ܬš[ rWËIlƥr'ur)3a➤2z TY|NաHZf}kG$2E' (>5ANF\tl_㇓~YYki;3P\J>k5/^[B%Rjn\t[74.91$}/!U,n9c%'pñX`;h4b5y|dI!OKhBpu %Ydm cV}[ 0d+NvaeM z%(CXX2Z'xP;>qVNi)7"5?(?1FzuE .O} ):p@}|j]) ج2Yg[|'?ES2Œu<{K >L4X껞v'2wK=Lտ9,LCOӠ*M<8HqKYV-)ɱqCX?զ }bjjx3rwSWUf@K#[a,!>.ع./jJ> 7!汫brԋ߷j~89n71Ii+ϹADi.F@x$wvmX6XDf'TkFKjYǴOu韝{W Ǭ8ȁ W{.amXd.ȩ{7[_k@ Oڏ:wA@B礱*w3"!,*d:G>GbMty/#xxH"OKa)5dEI"8tgX$s*8xĒjO&~1~i_<>>*[G,4qr%-B}S;f~seBЗB%*[tS.T3oԝZ̊ {D>7qFY-b U>$յZ[r灻(Bqb^2aL[@{Ȳ=Hud2'8Iɏ I3[ɻlكh;!حiTެEGaeW%RO?4 ~Z6J]$l~8fM/8r_:6GT_*[k)s|f /B S(`xηiꆌ9F@Be -tAjk ؑT/tc˃Hd|MZzdH>.Ef쇒*4N2DO,yݬ&9+V0Uwb֧=۫nXV^/Oka,Jzg=a1a_zMgEIKݞ6jўtz_3 zTFaSu$+RS"sE=+  A\.{YƟ%]Y;Kmp̔%+ydYq,b&Wn^y?HF;;sIQ._XtҎg"u;"rt a#n9hBix:ì{̚Q}zʷ(csR\S6~M}̀o׏<#rSI9HH ^͔m{*BUEK8'f-zB m)t\"(IXŢclsqayY5W/L%4d=K_,Jh!Q"䑲Yw迦O%Tku6b%,b]Z EJ6O]lGI;<'ҕskr;co$׎^t;(<"h["WH] iEt:Z=K&Ij}7śuР<ɚ{81%]Wv*wO{*j,rk,ו/NYL.i ~D"d>{mJ=s6O(oi<AG6V^8UDo|I!Ҋqǎ7M]3w^r#_= _w_Ub}#rȾc魖bw±\' LN }plHlプ:0B*\WtEo#̫zf9$^[ڕM=dV0Y ?4C!RL2 1Zt+%!.T ߳b, F<˃(v Z1SJ%^O!{ZN?㡏5+#;|ݺsj\b^GbfȻ5u#s,KL{,vƂTf"S"XflIL{iԼ|1 _{s"g,y ZtͰ3Pس Kc*u!{T#wbzAB/𾏢x9;|y4GX=#[lg\_YeE~h{۟[ML3%פR;s!LnPSO.K~xZU[^l:DxBFIC%2`Hjx^xYv56KߴYշ{?Z!NJs˕ssc {;2Sd՟=WE iƤ ]Z%u)r:Uzj턜7:83-nN|UNѓg\hԗ`;Hr0q/h,ӇZ=w^G9XpG+fvPh5b-hk ~jɗa˂ifAgќyK"'krTUGO(νʨPꥪ޷GKI:$g̬WxҒe` Y%WDS8pHG1R&v#SYSSĘG&5 _+,/w1r^+/_=}b+Ք6_:Q8U9dS'8vd`'=b7eTo F?liG:Vt?V^.}|>V6L+Vi> stream xڍTTm6LI҈2ݝҝ3!]JItw# H#-ݝJ>k}ߚΜkuCK"Ad0'vV6&;VdGM qpaXH:@@N a mvv^66?p (0#6$ji+ n q`edЀC!N dd'lY"W@qp(^l!ScŦhZARh-\AB`5.00АWA`+e pW (3nkCa " A6p?! ~Ȉ@s4w99:Bm~q 8fiXnk 99bO 1G;Z0ElԂA!R Dw2K@̭hA~+ D? Qdl ;Wb#ՆHl89AAh"]=\̏p"\ ~ WlcRC? qcO_V6('weYzyz*eC_R33lRet=b`#g. gbTU= f!G%guf}SNؒNTlX]]b ]Va||8(MM%#9 {"u9] ]J$~`x-Ch:]m&b?m c0sS"9{1`E8*EV,ey\4523rtU2olɀ?2'd̔ wƟ]*d`Z6>g]".V^tu,Rvw9'`A ĝUޱ$ S+ٶݚNHtI8y 8oN,8\*-ʹP+?rI<8Nu|,G19GI#ڹ$ɸc+8/aRJ~B\1=Dzo0EY\6Nխ?xw;;-?Yndsi&]Q{T @" x/]7E7k:d8?^X+yl)Pރݳd{^F$եHƁRoŌy#2:}?mmOGlEK>-mȼ8l~B8ޤJը=dW1DTZ5 Ӥp[k ]z'_Kw규ːp$\.?,S7YbZWEdI`e12*@7t-FlyҐȌU^Χ=&\RK)&=b.u^q)4jj򐓢wtpf\qUEZ?L)Tvm śؔXAz?->Gvt-0 :)JXkI)KD97V#(*> ' *d<ۧ/+CKI'y%]Mܪx$F%ƞpM 5V4akxt[n fdi޻Gd>0e?=#J'/ݼ#!ΩI2tc!cȵTx}?mJkanw$r8󗏝=+^ivxdq1㢭j+hHSO g5DI) W9d+g)+i"WP[Q/1N{A4"q --=V|0(!5۩"OyU8b|jS3ryµJXzgJ(dËgluq\7o?wH^T)tڮOU6,Đl ɜH//ߟs@ea0֩f>~ +5ҊV,k99.F9DA4w  =JzEEX$`mku< yZ)fys~q" %Pr9$˒!.]%hƫ(_CK֣a-;-2iGnJ {Q^% v(cz[3'*[t͊;Z06RG;P4JGM(e>L'+RTt먭->AYgxTsraZ>ѵE#x[]KXu:mJ*+2`uGR<+ '[t8>% 5e奻Y7pl=iԏANc+ag%Y̺ʐ}Nձ\*ih3&*WNg4 5XbIMM3peBvIF,ʾH 4} 7@sȡb)eiq”&l t&Qi mO *IfQpshhIDŽYkLA*i i0]-SGno^7 ~ =Hj# ;q|8O./n:2ОRv6{%; 0-A c[3AULKDBOr& <5ҖovQrK!yѴA"‹8H<:8MSZ v:ioy>/^lhcWQn9+χ6,{xv_h6(ƿEK4xi2)cg6ef}aqJph#bWwH~v3BL;&K\=3O4|o(\k~'1 * NaŮ]';| K,(iܟzD1ZH'jH@"eSE[<<{(yopZnÊfRieY>n*UבJJjt!f[v{tT`EW9~^B 'Y$~eBtΡǯ,se6om0zyܵ5cEv6:΅l(H~Ƙ*C.<@ |͜^FR{ƭ(eҶ_D!ئo첵Z 'i\@zE>r}˼ Vf1χ|VC ?O_N^+}ȱx\luKdR2K^BqS/v%o QW첇etn/O=ߋJWҮеqXEXcP釆Tס㉶8} 0։쁦{D ~ې#gptyR4|K~2slr9kltƓIv:x1Pu]Q촯jSg65Ia0ܷUp8o~ln55 Vy 3A5Bѱ.8\2;f9 V 8Nm9S:)@1q;#8=d$:Q.1CbQYkR>h۹i%.*YBkt! Ua|,2B$cĵm7j}Lv&>zGDv tZg |yI(#/(k<[-c+en8^D7:DXvFZ_̠&& iڔ )i`%` 5_bngҬUž71ȃ++t>GKzqjb9:ƛ+6)=< xOXHruW#UgpK}.j~_k+\/QH-ޠ7<鱡afZ1ʍoL3 >#D^X)pa iR2Y\ӗƨW52|tGYW,g>Skp`?,d lJUke7Ba!qw46Gv"u87}܎5ҪI(O 8"d|8ZGskM}k|"ɇ?>1}Ta^egY`B%- -a ;\0ZOï0Fqs# E<S}CH7 )4ՋkH?CIb}H\%[ۣemޥbUJTK5G> irud~JT?f>iW>]:Wdpms0 3$^qoulYV,VQa#f =![J] ΫzgQ,4v3)w/6'N~+~E`o=`>CqTv^BS=\ӓ!45;9DbmlO/p}3Q Ok>". jrZq%)ˁ'9:^tCVُ3c{YB:uhgba:7oh_~SxMHͶl7DìUb>7:X]3?m9LM6l3+t$G7$h{$`:P;bDT9Z^Ryhw?rDJm-%g<̃x%rsJ$*L})dZPw u@EdatDt_GN0kA>|3]q?.&7+C=}[wqW?b?Uz8kӆ\oL5R_uB川8=珊!@T{C\[Ǘ//(Ie/m!{/$-oM)M|@9n>?2v3Cc5|i9N+|OOȢNhh^OE؋jN&X&g&V&v'Nq[qBIO،h!C/f.vr1hOlqsYFBUUqm+O4 toz"ĕOp# 75>DS4yE)/3\b80` #$¼HxV۽ί!TNjl9gT;۷\oV4NםߚyM<<^8>Tx$uMc@c1I uW~Vtpl5('i$)rhtxL3l„Fײt4w$5~6|}[#q5\,ra[ u@ڬr爣^DZI\ca o3>|-fAH+ F 2/V~5tq WGzN1u =i`7%c9xV Gw+ ˞y" ~R+ vb2:\+];QURS.*<I-j='tCa%XvW:W")C̎UR)`= KQ 6z@Q(Y;sN|ՑU1LI{r7(\˻K/~̎0ev8=-TT[tseķɌA?:.~>%2V-^3nVr9{g,zXf,YFbJW9$U-|G];,~uVtF`z HPY+_$6 ~NqdzglhzQ4m Du -vPlA1<;#x6EeJ1U@ڧKlo_89؞=0"~lW̙flJHKZdUlh)+C·v2r CytSo6lԝ+#nk^G7H_Eƿ(.7`f3vpS)ISqGuM̀ΐ,iItEcpjpӛI,IY[u|n{vXb=m0`Ď(rѫk+W@2w^ctt8\[v.+#g )7#|SD >%N6dMcEpo_U✌[.ھ@~3)izRA2&︻Wҳ|eUmc~~']dV̍tJHmoJP74JDaNOGxHíڀD|(v. ^ߣ'bt2?B],3&mgM1xrZkXS&nmm&|Uog2GCtO"$ǣeyo$Wfޅ^U-/nJ6P+=Ǯq㨝}'AG<)w7\{{PP7Svt>T厔'&^|@&id5$`E4qCj Оz> stream xZ[o~ׯط&hýߊ/6iMƁ"1[Yt$*M7Dٖe'~:8LvsfvdYsXL |$ >LI|BO)Ld2 Si阊L[I,uLkff0cpxLf3Yi{ps "cNCł%ᢓ{``LJ/z*A{ KR h'n#nB?/DJt. YϔgIQ4AkH iAl @cȩd{d %ZB `у,HA+zN޸CԈ]Tv!z/X ` hi3\-44JƄit" p1#oYO4$09yry= O&&a <XR$0悠(h8%lOBI>.D`li D";iMAH4HtXC+z?1I.{4-MU sY{Xeò?\LY}frs:?S_\V{LǴ& ¹쇣i6-GX+?n*8 m*fg*6MMBN?ojv_o?Wxl6N+4 I)kj~6/XݜϠne/}Sףz۝LQ9=k5w@`GU)=O=~d~)CRaz6!krX읠mBE=-x\;ʐM7o.߲Ȍe.VIp wG?*Ğ,m;!{ &h0{q V ͒'Ϳpw/s7`{v x$i ?jE=TM=Mr#iqX ^R҃ xyC5BM%Y5*O!j<,?qo{PǏg&e޿550}*j_ƀ6E=x>Ca-ڭS5(qQͦ QϻБ"!#Ƴj7'r (OS~w)avаw^Nd ODzCP:J8mۓ-Q $%VE:ŢF[P/pHޭR臗B"z*laQr R"@SuRX**+pC*_Yۃ"I @ՐTq(EAS +s11%/ׅE($$CYDP"~P/A]m" SDyQ܃10 5cj@ݞV )G*)x6#Cdѭm yn"SBN5RbMm̈́>¹vLW[b;F\=UL 2E%Ʋƹ> j}WgK4 :"ftio24GoLVuYgs@v!x-G}Q~գS72<ܸJE:F2 #6)Q8{K/aX7Wx^8]u_&ы;G 1L0mt9#If:*7Oec *t;PXq9>W}N/NAJ>7,n3|LGgO7jzw6@UΌצYĵ<" Qbt+L6&!% NFd+,Z+ݱhPN:h<=*|@ (C GCr MF}xԴFA3&ˀykHcjEDL<^lM\@/g7GYG2t&`%Cv4QwY١hHskhp"b/4QS=l=m3otX x&bAfR;ڝsӎASYK!D[I( a- 28Md)cZA#9;BGRG0hbҌHGiq *x,z @uk'ci<ή7g\p#C٢T۽l vA/VaRǨ_ .m9ZRt! \Nx: |3V?lB.(ԈJ$gQcV }LO9d%۷JP-X]WGo&c9꺑fw2}zbANpL\qv懫Ԝ SljNtڬCM4($x9قlwy2Pt8,FKxk˱#YҠSS+aS haE4:Y8 $O9|Х/P h8r pڍ_0_]XZ11%?{NZu;[ucIcxIֲ8])IRWMLIU~l.x)jUARof>kAg1l)BT*K0FnʔZA9 Rψ$\8$UayvtNP&W,q}ܝɜY+oS4.igχgFl?s~Gyq/e9!?cl'|ʧg>,yOg8[`RkM;z{Ɂ7TEoOZ>fiU֪}؎V%LU};mkoQ MNx+hډ5p񪣗]~Iyɏ~yg{~nEs`ۣAsޢaruUeZKgn%uQOڇZ﵁0^JG?_쿂VGk}irfC-J;8r~r鷻_o`r+d7EEV夜VS8돺iptc&ͅ p'C[NU+xɣ~Gui4&٣vGzTt=_OOŲWFvn{WO=ք-x{-u^C?o;> endobj 144 0 obj << /Type /ObjStm /N 30 /First 239 /Length 935 /Filter /FlateDecode >> stream xڝWN@}W#E*PnᒆZ>ήc7KlΜsסM2 n( PW@  (P.Bh rP!BKBrfr, 0GyZ`?i7y,1YVk,U9 5*sL" K,H48"R|/92I/^oJ4IwEFp|:}Q|q;/^uj4nb(Nғl@Iҫ|X_l h48EËavm߾z4B#v݄ ;Owzza]vٚ<ڜ}rxpeo5zοO<Uc:.$3\MgEd8uٯǃ!OeeO?EgHRG~ `|udy:-g@vJ?,uaQ> ;@8G<SҺv *yWk*;<0!a `bjϊ50"aIL*ZU~%m\bRlA7⪶!aY=%kBc=Xրӈ4 [VeO9nEmPi2p6 bWxfSӓ(;|u&Gx+4XE~[^PUC]m5o׌ k:^ Vl ӮƐ>\%&۸(R7M_r2G}LGHWdqTe]K[PUnj'qյ}=Ux>bwìgIu ~ևWcc}]~_o'K<@45X! endstream endobj 155 0 obj << /Type /XRef /Index [0 156] /Size 156 /W [1 3 1] /Root 153 0 R /Info 154 0 R /ID [<389B6D640EFDD39752783B5B06D29812> <389B6D640EFDD39752783B5B06D29812>] /Length 407 /Filter /FlateDecode >> stream x%һNTQ񵶣WEA@@.2((XCa ’  Z/쵏a0 DzZ$]&S+#S%R $pS@: RR 5% hEhS-OMcԴs*JVu7nm Yhu у6)ĨW%iYTUHCzQZ]ulvsBn^ 趺z`4yAax/a=0 ` 5̸Wup|7_+u_kSs4!O靇B{7<|RZk"w+h{:x3}o.FYB; endstream endobj startxref 180601 %%EOF espresso-5.1/PP/Doc/INPUT_pw2bgw.def0000644000175000017500000002164612341372773015217 0ustar mbambainput_description -distribution {Quantum Espresso} -package PWscf -program pw2bgw.x { toc {} intro { Converts the output files produced by pw.x to the input files for BerkeleyGW. You cannot use USPP, PAW, or spinors in a pw.x run for BerkeleyGW. You cannot use "K_POINTS gamma" in a pw.x run for BerkeleyGW. Use "K_POINTS { tpiba | automatic | crystal }" even for the Gamma-point calculation. It is recommended to run a pw.x "bands" calculation with "K_POINTS crystal" and a list of k-points produced by kgrid.x, which is a part of BerkeleyGW package (see BerkeleyGW documentation for details). You can also run a pw.x "nscf" calculation instead of "bands", but in this case pw.x may generate more k-points than provided in the input file of pw.x. If this is the case for your calculation you will get errors in BerkeleyGW. Examples showing how to run BerkeleyGW on top of Quantum ESPRESSO including the input files for pw.x and pw2bgw.x are distributed together with the BerkeleyGW package. Structure of the input data: ============================ &INPUT_PW2BGW ... / } namelist INPUT_PW2BGW { var prefix -type STRING { status { MANDATORY } info { prefix of files saved by program pw.x } } var outdir -type STRING { default { './' } info { the scratch directory where the massive data-files are written } } var real_or_complex -type INTEGER { default { 2 } info { 1 | 2 1 for real flavor of BerkeleyGW (for systems with inversion symmetry and time-reversal symmetry) or 2 for complex flavor of BerkeleyGW (for systems without inversion symmetry and time-reversal symmetry) } } var symm_type -type STRING { default { 'cubic' } info { 'cubic' | 'hexagonal' type of crystal system, 'cubic' for space groups 1 ... 142 and 195 ... 230 and 'hexagonal' for space groups 143 ... 194. Only used if ibrav = 0 in a pw.x run. Written to BerkeleyGW WFN, RHO, VXC and VKB files but no longer used (except in SAPO code in BerkeleyGW). You can use the default value for all systems. Don't set to different values in different files for the same system or you will get errors in BerkeleyGW. } } var wfng_flag -type LOGICAL { default { .FALSE. } info { write wavefunctions in G-space to BerkeleyGW WFN file } } var wfng_file -type STRING { default { 'WFN' } info { name of BerkeleyGW WFN output file. Not used if wfng_flag = .FALSE. } } var wfng_kgrid -type LOGICAL { default { .FALSE. } info { overwrite k-grid parameters in BerkeleyGW WFN file. If pw.x input file contains an explicit list of k-points, the k-grid parameters in the output of pw.x will be set to zero. Since sigma and absorption in BerkeleyGW both need to know the k-grid dimensions, we patch these parameters into BerkeleyGW WFN file } } var wfng_nk1 -type INTEGER { default { 0 } info { number of k-points along b_1 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. } } var wfng_nk2 -type INTEGER { default { 0 } info { number of k-points along b_2 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. } } var wfng_nk3 -type INTEGER { default { 0 } info { number of k-points along b_3 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. } } var wfng_dk1 -type REAL { default { 0.0 } info { k-grid offset (0.0 unshifted, 0.5 shifted by half a grid step) along b_1 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. } } var wfng_dk2 -type REAL { default { 0.0 } info { k-grid offset (0.0 unshifted, 0.5 shifted by half a grid step) along b_2 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. } } var wfng_dk3 -type REAL { default { 0.0 } info { k-grid offset (0.0 unshifted, 0.5 shifted by half a grid step) along b_3 reciprocal lattice vector. Not used if wfng_kgrid = .FALSE. } } var wfng_occupation -type LOGICAL { default { .FALSE. } info { overwrite occupations in BerkeleyGW WFN file } } var wfng_nvmin -type INTEGER { default { 0 } info { index of the lowest occupied band (normally = 1). Not used if wfng_occupation = .FALSE. } } var wfng_nvmax -type INTEGER { default { 0 } info { index of the highest occupied band (normally = number of occupied bands). Not used if wfng_occupation = .FALSE. } } var rhog_flag -type LOGICAL { default { .FALSE. } info { write charge density in G-space to BerkeleyGW RHO file. Only used for the GPP model in sigma code in BerkeleyGW } } var rhog_file -type STRING { default { 'RHO' } info { name of BerkeleyGW RHO output file. Only used for the GPP model in sigma code in BerkeleyGW. Not used if rhog_flag = .FALSE. } } var rhog_nvmin -type INTEGER { default { 0 } info { index of the lowest band used for calculation of charge density. This is needed if one wants to exclude semicore states from charge density used for the GPP model in sigma code in BerkeleyGW. Make sure to include the same k-points as in scf calculation. Self-consistent charge density is used if rhog_nvmin = 0 and rhog_nvmax = 0. Not used if rhog_flag = .FALSE. BEWARE: this feature is highly experimental and may not work at all in parallel, with pools, with spins, etc. } } var rhog_nvmax -type INTEGER { default { 0 } info { index of the highest band used for calculation of charge density. See description of rhog_nvmin for more details } } var vxcg_flag -type LOGICAL { default { .FALSE. } info { write local part of exchange-correlation potential in G-space to BerkeleyGW VXC file. Only used in sigma code in BerkeleyGW, it is recommended to use vxc_flag instead } } var vxcg_file -type STRING { default { 'VXC' } info { name of BerkeleyGW VXC output file. Only used in sigma code in BerkeleyGW, it is recommended to use vxc_flag instead. Not used if vxcg_flag = .FALSE. } } var vxc0_flag -type LOGICAL { default { .FALSE. } info { write Vxc(G = 0) to text file. Only for testing, not required for BerkeleyGW } } var vxc0_file -type STRING { default { 'vxc0.dat' } info { name of output text file for Vxc(G = 0). Only for testing, not required for BerkeleyGW. Not used if vxc0_flag = .FALSE. } } var vxc_flag -type LOGICAL { default { .FALSE. } info { write matrix elements of exchange-correlation potential to text file. Only used in sigma code in BerkeleyGW } } var vxc_file -type STRING { default { 'vxc.dat' } info { name of output text file for Vxc matrix elements. Only used in sigma code in BerkeleyGW. Not used if vxc_flag = .FALSE. } } var vxc_integral -type STRING { default { 'g' } info { 'g' | 'r' 'g' to compute matrix elements of exchange-correlation potential in G-space. 'r' to compute matrix elements of the local part of exchange-correlation potential in R-space. It is recommended to use 'g'. Not used if vxc_flag = .FALSE. } } var vxc_diag_nmin -type INTEGER { default { 0 } info { minimum band index for diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE. } } var vxc_diag_nmax -type INTEGER { default { 0 } info { maximum band index for diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE. } } var vxc_offdiag_nmin -type INTEGER { default { 0 } info { minimum band index for off-diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE. } } var vxc_offdiag_nmax -type INTEGER { default { 0 } info { maximum band index for off-diagonal Vxc matrix elements. Not used if vxc_flag = .FALSE. } } var vxc_zero_rho_core -type LOGICAL { default { .TRUE. } info { set to .TRUE. to zero out NLCC or to .FALSE. to keep NLCC when computing exchange-correlation potential. This flag has no effect for pseudopotentials without NLCC. BEWARE: setting vxc_zero_rho_core to .FALSE. will produce incorrect results. This functionality is only included for testing purposes and is not meant to be used in a production environment } } var vscg_flag -type LOGICAL { default { .FALSE. } info { write local part of self-consistent potential in G-space to BerkeleyGW VSC file. Only used in SAPO code in BerkeleyGW } } var vscg_file -type STRING { default { 'VSC' } info { name of BerkeleyGW VSC output file. Only used in SAPO code in BerkeleyGW. Not used if vscg_flag = .FALSE. } } var vkbg_flag -type LOGICAL { default { .FALSE. } info { write Kleinman-Bylander projectors in G-space to BerkeleyGW VKB file. Only used in SAPO code in BerkeleyGW } } var vkbg_file -type STRING { default { 'VKB' } info { name of BerkeleyGW VKB output file. Only used in SAPO code in BerkeleyGW. Not used if vkbg_flag = .FALSE. } } } } espresso-5.1/PP/Doc/Makefile0000644000175000017500000000373212341372773014004 0ustar mbambaHELPDOC = ../../dev-tools/helpdoc LATEX = pdflatex HTMLS = INPUT_PP.html \ INPUT_PROJWFC.html \ INPUT_DOS.html \ INPUT_BANDS.html \ INPUT_pw_export.html \ INPUT_pw2bgw.html \ INPUT_bgw2pw.html PDFS = eps_man.pdf user_guide.pdf AUXS = $(PDFS:.pdf=.aux) LOGS = $(PDFS:.pdf=.log) OUTS = $(PDFS:.pdf=.out) TOCS = $(PDFS:.pdf=.toc) XMLS = $(HTMLS:.html=.xml) TXTS = $(HTMLS:.html=.txt) doc: all all: pdf defs pdf: $(PDFS) $(PDFS): %.pdf: %.tex $(LATEX) $< $(LATEX) $< defs: link_input_xx $(HTMLS) link_on_main_doc $(HTMLS): %.html: %.def $(HELPDOC) $< $(TXTS): %.txt: %.def $(HELPDOC) $< link_input_xx: @(if test ! -f input_xx.xsl; then \ (if test -f ../../dev-tools/input_xx.xsl; then \ (ln -sf ../../dev-tools/input_xx.xsl input_xx.xsl) ; \ else \ echo ; \ echo " Sorry, can not find input_xx.xsl html style file !!!" ; \ echo ; \ fi) ; fi) link_on_main_doc: -@( cd ../../Doc ; ln -fs ../PP/Doc/INPUT_PP.html . ; \ ln -fs ../PP/Doc/INPUT_PP.xml . ; \ ln -fs ../PP/Doc/INPUT_PP.txt . ; \ ln -fs ../PP/Doc/INPUT_PROJWFC.html . ; \ ln -fs ../PP/Doc/INPUT_PROJWFC.xml . ; \ ln -fs ../PP/Doc/INPUT_PROJWFC.txt . ; \ ln -fs ../PP/Doc/INPUT_DOS.html . ; \ ln -fs ../PP/Doc/INPUT_DOS.xml . ; \ ln -fs ../PP/Doc/INPUT_DOS.txt . ; \ ln -fs ../PP/Doc/INPUT_BANDS.html . ; \ ln -fs ../PP/Doc/INPUT_BANDS.xml . ; \ ln -fs ../PP/Doc/INPUT_BANDS.txt . ; \ ln -fs ../PP/Doc/INPUT_pw_export.html . ; \ ln -fs ../PP/Doc/INPUT_pw_export.xml . ; \ ln -fs ../PP/Doc/INPUT_pw_export.txt . ; \ ln -fs ../PP/Doc/INPUT_pw2bgw.html . ; \ ln -fs ../PP/Doc/INPUT_pw2bgw.xml . ; \ ln -fs ../PP/Doc/INPUT_pw2bgw.txt . ; \ ln -fs ../PP/Doc/INPUT_bgw2pw.html . ; \ ln -fs ../PP/Doc/INPUT_bgw2pw.xml . ; \ ln -fs ../PP/Doc/INPUT_bgw2pw.txt .) clean: - rm -f $(PDFS) $(AUXS) $(LOGS) $(OUTS) $(TOCS) - rm -f $(HTMLS) $(TXTS) $(XMLS) input_xx.xsl *~ - rm -rf ../../Doc/$(HTMLS) - rm -rf ../../Doc/$(XMLS) - rm -rf ../../Doc/$(TXTS) espresso-5.1/PP/Doc/INPUT_DOS.html0000644000175000017500000002340112341373153014622 0ustar mbamba

Input File Description

Program: dos.x / PWscf / Quantum Espresso

TABLE OF CONTENTS

INTRODUCTION

&DOS

prefix | outdir | ngauss | degauss | Emin | Emax | DeltaE | fildos

Notes

Output
Important !

INTRODUCTION

Purpose of dos.x:
    calculates the Density of States (DOS)
    (separated into up and down components for DSDA)


Structure of the input data:
============================

   &DOS
     ...
   /
IMPORTANT: since v.5 namelist name is &dos and no longer &inputpp
   

Namelist: DOS

prefix CHARACTER
Default: 'pwscf'
prefix of input file produced by pw.x
(wavefunctions are not needed)
         
outdir CHARACTER
Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise
directory containing the input data,
i.e. the same as in pw.x
         
ngauss INTEGER
Default: 0
Status: optional
Type of gaussian broadening:

    =  0  Simple Gaussian (default)

    =  1  Methfessel-Paxton of order 1

    = -1  Marzari-Vanderbilt "cold smearing"

    =-99  Fermi-Dirac function
         
degauss REAL
gaussian broadening, Ry (not eV!)          see below
         
Emin, Emax REAL
Default: band extrema
min, max energy (eV) for DOS plot. If unspecified, the
lower and/or upper band value, plus/minus 3 times the
value of the gaussian smearing if present, will be used.
         
DeltaE REAL
energy grid step (eV)
         
fildos CHARACTER
Default: "prefix".dos
output file containing DOS(E)
         

Notes

Output

The total DOS (states/eV plotted vs E in eV) is written to file "fildos"
         

Important !

The tetrahedron method is used if

    - the input data file has been produced by pw.x using the option
      occupations='tetrahedra', AND

    - a value for degauss is not given as input to namelist &dos


Gaussian broadening is used in all other cases:

    - if degauss is set to some value in namelist &dos, that value
      (and the optional value for ngauss) is used

    - if degauss is NOT set to any value in namelist &dos, the
      value of degauss and of ngauss are read from the input data
      file (they will be the same used in the pw.x calculations)

    - if degauss is NOT set to any value in namelist &dos, AND
      there is no value of degauss and of ngauss in the input data
      file, degauss=DeltaE (in Ry) and ngauss=0 will be used
         

This file has been created by helpdoc utility.
espresso-5.1/PP/Doc/INPUT_bgw2pw.xml0000644000175000017500000000607012341373154015245 0ustar mbamba Converts BerkeleyGW WFN and RHO files to the format of pw.x. This can be useful, for example, if you generate the plane waves on top of the valence bands and want to diagonalize them in pw.x. Look at the documentation for SAPO code in BerkeleyGW for more information. bgw2pw.x reads common parameters from file prefix.save/data-file.xml and writes files prefix.save/charge-density.dat (charge density in R-space), prefix.save/gvectors.dat (G-vectors for charge density and potential), prefix.save/K$n/eigenval.xml (eigenvalues and occupations for nth k-point), prefix.save/K$n/evc.dat (wavefunctions in G-space for nth k-point), and prefix.save/K$n/gkvectors.dat (G-vectors for nth k-point). bgw2pw.x doesn't modify file prefix.save/data-file.xml so make changes to this file manually (for example, you will need to change the number of bands if you are using bgw2pw.x in conjunction with SAPO code in BerkeleyGW). Structure of the input data: ============================ &INPUT_BGW2PW ... / MANDATORY prefix of files saved by program pw.x './' the scratch directory where the massive data-files are written 2 1 | 2 1 for real flavor of BerkeleyGW (for systems with inversion symmetry and time-reversal symmetry) or 2 for complex flavor of BerkeleyGW (for systems without inversion symmetry and time-reversal symmetry) .FALSE. read wavefunctions in G-space from BerkeleyGW WFN file 'WFN' name of BerkeleyGW WFN input file. Not used if wfng_flag = .FALSE. 0 number of bands to write (0 = all). Not used if wfng_flag = .FALSE. .FALSE. read charge density in G-space from BerkeleyGW RHO file 'RHO' name of BerkeleyGW RHO input file. Not used if rhog_flag = .FALSE. espresso-5.1/archive/0000755000175000017500000000000012364233554012732 5ustar mbambaespresso-5.1/archive/README0000644000175000017500000000004312341373013013575 0ustar mbambaArchive contains the .tar.gz files espresso-5.1/archive/iotk-1.2.beta.tar.gz0000644000175000017500000205320612341373013016235 0ustar mbambawVR\{SȖϿhˋB\3zVſ`$)Ÿ+@Ob*)%~tWs@ D{.2 iGM˿ BʟKz+M`LXj}9ɗ>`B\'.'HVeg" hf uU%ê?) H1&h2(xVL2pYe"ҎѐĐ|!bF}CXl #,R(JӐ.q鹑!,ZG8Xc#JdR.#,E>ON}/xO@AR9i3q_v/ ^ـ̏+]d6QgrG hAx$[%MJe~ePЄ>OC(+&fRKk_rQeSDu4nos [VBYw7-7Gq uzKxQH[="*"u$bD"ͯPgG\4"oz>qE ʣjC%uÈ0:a{yh<{d?8M0V"FL{z B2`"DH)^(l#7 ʈ5} 3.*N>ox''\* '4c}.gg7?E2mfŨ dmA`?c uL.@R">G ?:|kӸ #2QxXqJ9B0 !OXF;42e*NJl7O8ϝsʾnD#@G N~XN$A[ SBNbT"0ANru\9s?3hqi."O("L*Pg#8ݻaTCi^T&&Qp+u_~S Y#fTG_F/j2 B&>^Fnclg\L/͵ges*gI%~ ٷ4>qZ|||z(jN醩9(JDa+)I1xy D,(96Y|SS.:}*R2ܼaVp!Ű>i(.!yRQΐxV)'C7O7"WX]&꧚e CHV\Ԁh\P}U3{љ[mYǸ>~M2yj~I?*=&ڝU1I{4wMw:mu{kߣ\9SԨaϑgEF'etFQf>j э%vv3Yy|ڔ5/ovFE_ n(i8ޕ;ۮzl,GA$TNn3Krٜ7G53 nnmF7+{i"ؔr!9eG{;^ʑ[ ivGF:+Z:˛cيKnߴҏߴNHbĄX98 Z$o,ewlH?fsV݃J>lojY`T]hEU[0M Vn,ͅ ~d|vDlwg"V[BCb`JVS*u[ 6h ь⬩ . Z}v[tTrdpCN4HLrbO0f_V]yXokrwVGD/Y(!N;k)ًG^֞%: -4kkʽ]fHzb]W8gJeSs KQ'٫1݂:"ɰ(1=$˔qt >O1K/T "'q@Ƒ˨W":MǬ!"fK]39N,bu4-Eۀ@/ |;t*vwaO|ťa:TVМn;}{;?z+gW|=>}z{,>~:xtDJCb"<"$&O}2R?^}~_I'}jf xĦU :3vl4]@)kC-~T'cz #67۶x+D8Ά~)ħB{N=*1o~2g2ߨ FO}90h_? ׌yVͬ!5\Rs*%tꌞ 60#;uPTE9*Q-hl5|h5%XAEYvyAeI\|6"kyf1ziv9Z0 ܕ*/!h(ħW%+7Y|36`ι +oOKc|'@0쩱cMfH!mQdE;qI'0?6pUdp aJQ- Gb9[ )ۏ6OO0Ҧ|~:mx6"QbƔ #,vP"<P33:=NkH\6hu^[>; _4a:,#f:{/p"`:SJ[:vhpJBZvb)R4Ez]o,6޲hO /F6ASܰ;+JŽ<|ih8AhhZw?GAlff@K8=+FG}]t"U:wjPݞ'!hkwjn^j>ϻrvE,elqsV$z}6To4Z{I2lMKZP5D`VjsE[8UE?T1l}]T6Ⱥ ̧ %rVkRZz7YZ-Ea SQ`3hwR9{pzWKnu"i]D:PS q,Wc);rqC.Gxk%lRMm]vuN Hٞ &6Y>m@`ē>Sz(trݿ w>=1=؛=oM6Y̲l?Z*3,K ,YY6fYrfYg< Y0ςyM̳<Sjq4UwW763 5va-USn= XFzH%3(ޘl^Lxb|Ӈw[Jv?um%OrEH@\ċIm>g/)>b#ɖ=3֌oƟ;1l@0aT(~M!?5v.OULi崆լE.u,V8y8 TrpڵKt( >D==ycEo)j,M?{5= 6he2nBUȻ5v -SF 56UMFtuZD>r4yiC<1xG ^ 6 *;x]}.{R׼5HyRU{ qiڠ@;F촪1j*-٢kb'(a#PR"ʷ)7}Q'+83M^Q]4B悪m0uQ4%oWώmJ@u)8W5>yMkN[>EGЭL.f~2ي* f=`?LX\Wm;#h.Brlr8G!KLWL*nT1|lRqȄR F  Rmzgb4\u.wx| ZmY ,rjI}]xκ߹՜x:RK سc.<QX;}ü/)WCU>.67=t7zfJQ/ J[Q@"wQ?!yR85%˘?=/qƆjՓJ=|E;K-w']RUe(V+m\..3*T;ƈ?R7bkSXxދ䅭=KI)ttdz-= KgR\ yNKN$)̴݅ (DNc#l'xsev2u+aU{WPd'm֝HQL]urSuWLVkK~9{=pZrMWv\RVUA[%)uTD+Q&ZfQT4#DW&FWgN¬j얎"StߏN#.S@/ c(?4-0G]=~e8 q!⎪w7ECWnܜLtS%!4lCŎu#8x2l;8@U0wu) }"2b O*&iBctYZ>_M"x[8ERfLS%d׍{> sMUVjS_+.LI!OhJY5M混tcoօȔD*R|¯ ^zv~z|򡚨 ɩ];)4Oi0O S0k(hW /Qk9 -e[U%2 .Ql)]ԑ1>[%XyFLT*ð&q0i6vZqvggx-_t=* Cre@uiM`")wvlPr+3Cqe7qRcɳ+1mͳN9CLye?VU P WgkL33s:Pé+&R,lKx8((wr"v+EΫX۷IvoX N7Lju)+ -xVA9Zzj!ދaqiWF={kCKQvnJv]E;ϙ&蟽0Xn[٤,soN.⧢ԨxDwKLES ^۷MQo1y~׀k'w:]&`8YY`] Н#2ag0N򋝄a+̓&\KӃzzٽ=̚gJJNɷlHf~Y(k*Hbd $G'*F lmzol팺K*ܙHXf"uD.FoFy"w٥BXE ;YtN/)P*A>Wa9ѩ/-v/\Zb1J:A$8pMdReFhFhP#yhFuhLc){# N|wArs#(HcEq,̨, Uo#l0AlTOn1Me'.WqZfjՙLVv)?Tf׍qc|lG3AE/_N45ˮd>I__߮lo{edImmj7ծծ93%vjT䬨F.{ vۊQ0.FAM]͡#iO!:#QN3?8Cz.zC:1< 4z*s9ۙ q3dO۴)'Ӟg*[3Z&lsF(-uB95)C8FOT36tpB l`=^0kw/Fώoi14mYZk֗agV>bU^_h}P&^U36KlַċD='0n˚D[~+טQp3oٶڶm[Al[g%ybⶭmmSöul[';`ٶ.ڶm[Al[w%}bⶭmݥmSöul[ FĠxg=hI\]㔮5KD֞j_JxR"1{!VaÉKdGԴd34 ThipwH+qn`#~/(#[ʚ!GMT'~WFliM>!5\[˻LDS^}i3J(bL*\^ҺU)PyȤxx0J- CI]?+USSզRS ĶtRnƩ-rhțۤ*47?;A^0gI(#(k LKp[^q#й 0YR)n} .29a>t2jh$[J[ B7˔Gڿ24x"*};p?{9v'7mN †g8$7גĤZnC$+'%1ǺU2>) sp"Iq\\^"9+F`D'*)A~av6q\J]Xn%yJ|J;W, jpQ:bk^I2+L#)Zi^S=+~q8C!CrƔFõ .gVF;Ayԙ "%_;wP{Q RBkV7dW+% UekNydHk CBqHo^&V)'uv8#7-4450O:0t",aD\ȾdFv7?ս_꽋92P3 ͧ/ PН!b]$o$oxZz/===< y;Pv2wfh֋oW'W ( 6^-3"1+?[-aAj [ ';Q\dxw0R1"2T$zM0#X{u qH8[?1k:o5y{dFG|S 7HHYn z<N| ]EscE~ut9"*;$Hh7Q@?~^+ϵEl!|pd{2>,ytG8`|Bd*F3?VgeĜ].#8/"TkL\@rMQ!$z/—ZkFvi >oPOg.c5NSQ56ےb)NԤQmg([*C#Aьe<(WFnrzvTh[8ڸ\2{2I5֫I ㌖U,>\ݵOz؂f8:,<6uNnztUsf8 .h.= pq о4ޙa|(ȤI&7L(e``,_6Xr4HM;D @`-Sxklm-l%aɣԀڭz-\ݸLR->2e#@ alQԫ~yu-C^|95\\(yU]U`DC8"_ Flm 0/Ɠlg(b騛?V)-= KgR\ OK;nnvx(VRuxgWƉ|ڭ WYi!o%W P )UW֮ @wA!!E(4#<ExEx0Sԅ_ԩ9g+ψ!~E%'* 0#|<_hb!-!|'6"Yd ! <# CxG( 1aaa=QGD'o/ ~qxvd^gߎM{*ݧ??`Q87 8 H?"^t ==tLtN !AH? ҡے&Zl"A?:=D)iOĝ^Ē2(Xhzr+ꖩCjc/V>5h ZÓÓo赳kjHpX΁6Ldz{qG~wz+yχ|<<%~tvKYH2}JV* 7a0뇣oD;8]@yw{}_/4 |A^ }*]|VmWnL|tDpl_' fj:B"}Q 9 ?0?)3a\ο}OU/I#7 ۩D7P29& B٥ס?kb>eXO6^ƫkGV^lcEdqƨ¨LVz#h}IYDkpbxC?h3IGL!\~f`gr{Cp `\wt[5J ;.!bsCj μc ZE Q@( fU2f~ @E!3QE'!]yz]ֵQ?sM:?`7,\i6bMmڣE^™ӣ߈\)H/UOٟo3D@>{v:t?*RJ]ZϚW-DaM\ߨ>й~jw CN_s d8Mh4toC?T@[EQ4M[ &x&ƶ׮ ]fEf(j=x~sIMtrQU>D؆=cVG;&mXj.YQ:,&(Gs WF+^_~-N y%nJL% @}5Ʉ\WAped45{0|:}e KԊ#3$'Ɛ#{?N0rkd˴xG!ȺZS\ \Qc°+I,RVG 3Mkq 6󝩦{x*k$@I@j{tU d[:cݚ"s.M+ u-zMCod~~sNIA,oueS̴&oty,O]16Nż.:Tw>^oʛT3d]ϫ2kU/˗iar$Wr0? GJ~QXU),1[RɁْ'-xW%-i`e'LjDJșp&6 M0miL,6QG 0}I)zTHiHDjd>=1=؛=O$, fYei-eDY,K{,K,9, ̳`,g78ocNac /_]Ju*j$J/zGfŒgI#r|>dn}c  0|`[~ױ]x b6 5[nic*+ ϫր1lZ7])2&O5&4`&4Ib-D@ ̱<B]KX3<%Dz8fS _<ǂe, fY0RɁY'eI rv0Yƚ, _511ׂ. Z0̵ׂ s-k\ Z0ג'ײbvRp|=}؟Ïu㿷Nwﴚ#;⿏=@<x1"΂h~3QpB3 P U?X8)v7:Ê|-z nzkdĩK_*po(~vbܳu؂uNJ:򋑑:hأle8Ʒ1ݠc>'ӅFwyP#O;W{6Et?Ȓ NAz rSfNi\iȪFaH95ff7B16-GԔIa&~Hːm6$EGIx zV)n-mMtw?/ڕ=J6 (ZVgdD1/)>b#ɖ=3֌oƟ;1l@0aTHfAyR?&EW~|ǪLrZj"U:+<B*a9XWZӍ :SRTWK"l"_t"ʷXn-,w$G엷ַm@Q0DF,Ct%9 Vmp3#3.=WBHEl)k#MUQ[DUX|&wDV:W"dQs&d2MbhG>=p((P, }.{R׼58!Du*9=Hո4mPj#vZSP5l5b [굔msWRE.gz?{F⢺WTW*,\Pu:z#ưn= Qm[zbsU]@ L^Q>ʄneb?pi4oVTm0`1l4uՆ\R,n5VT 3 n(cԫ)dԘ CofYU}a8aGE[:LJjH?:PRL5 *٣ pFkyо?j{]/<ի|$z +{SZ8tuX&D9U"ŒN6TH^G0'8&C~? .N5%C[aVSF U$Zh#c1 {SgV#)`SO}H,iqQPs跊*{P-]c kv)I31CɼPM) @wͺPrǝVEOVUUOO>T655]Q>9k'F\: f8af Źm U%j-z%b˶*WFe3- :29g+ψb?Set$&>xw;?:ڦW~NKc< e⋮gvZZaH^. L"Y/>NU4 PCne=sȷ"WZl{f2?Cj,y6sE=&y)vHY)/LY_3ǪQ;*lmU}ff:[j8UzD}m "'2PYnRyk2Ɏ K "XS[m.eoxVA9Zzj!ދaqibWF={kCKQvnJv]E;ϙ蟽0Xn[٤,soN.⧢vxD^GLES ^캷MQo1y~׀xg'w:]&`8YY`] Н#2ag0N򋝄a+̓&\KӃzzٽ=̚gJJNɷlHf~Y(k*Hbd $G'*F lmzol팺K*ܙHXf"uD.8[E9=97:u%2N;EA+_R:FiUW;;ZiL |A4rD#/ȷnܗi,`âi0O.H{3` Ycu(eQrտm>v@\ښ  -}*NSLB͸:bTzBQ67.E1^Ҙ8¿G1~/h?ˉfٵp5I[S-olKLV۩3[1'~FN*6⏜ۨuVeOa`c[Q0 3(#uoUT9q#)/Xgbd0;jI7uPǂrpTۥBo'a˻qH>9RTzJ28 >;S!g]<FOe0g;3=A3{i6vyLeO}f?Qd)Q90J??GPj(z {JNd=#L8 {}:3v}[7rO;1c݋ѳc|Z MzַV1ekX򙕖ϮXsת?io% BU%GR.[33"!QQZ׫:THjHUiQs65&?%C-U6Zgk؈Ṿ8 ~%kV踲bQrI_j<='ծ:kZtOH G!W.єl}Z~?X- Wm.sU j2)^B)^)RK¤PRJTbTif.m6qjkE3pZ6i  (ONxg恾 yƇYm<Lje7Jo嚵>0.W za_t0.Lrmgfv!l*+jNuO}lE|6iDin>1kVಿ7=脻9M2%,bFa [΁uEw.dN&Gඡbbt`+d2vOI80bt U0w) } '<5wKmgd!.0ևFlS.*'jf=B ^2JOD&^%!FbMC gZ\+Mzde$XҲJf'%TazN0).Ғk_$U^2s~Bh{dW%%1=0F9+^ sD6Rɝ[i'eA-.W_Glp+)Bfӓv$=%@+Mk gϷ< gp1Dv]].Әh6s'(o:s!R\>k|}rj/jXJ[H} z֘jdֵlq)L7i-aB6I-JS"nG>x’擦I&#N8 ٷÝ,ޣ(f㧺Kw󝵾W`4YjWdj3Ӛ_{]]_쯢M0Dm?OY6'?𿧇'8C8o'jWܮ\~cSr z7]JekeFqøB$Fcg+28 B7_xd' ft]*FdO$]0 `k0ru!i'\x'{MC&}8}Rf)׍Ao:Ty҉OH`wq@ȯ.S@EtD]moz&hϋv%Avh-/[nLzOfGO' .r&gB<} e0$[,|XK!:C#T[q.6O(^"R][p =BoYLxܪ nfrɰfҌYXX͇%nO\h*LeygE$jKV]w 7$DEQ]Rk} XB.ag qie }*f[rQ,7I2"ʷ eKe(s$(41MnQώmGCfzO&84[tϺ߹՜x:RK س1qm탍 Kߤ6 6TK=?]YM?Gs{_u =ܠ[:= o9-$,yPU/ QGF ?Y|;9-z/Ue(V+3 %ʺ0S #]vHGd߈Ma&xƒ̂%SyS[6=u*q'aRY`•K!ִsbii'ͮ%݊?X Y<J8OQ*+?3-d_8!J]ڕ=($D(Fs@xGx/b&>q:U>l}c1x <#<dD&Bx T,%ϓdFB6K0?Gxwb0EB!! <# <# '20آ_b0eaa/ώl?!ΏL]77 16{8E!WXemgDrQ/Zd2b Qϑ5U 6}|۹h>niYA&^@gr;}rN}kC4vMzW'fCyE>;:(aDF_A@{aiGCNaxȗ$3B &'wB-;Lo" Z?>|!(}?"Л?`LMS?"^t ==tLt燝~C~}LK{%M t7VN"Tdv=wzUKʠɭ8@Rr0A[ג|%}C]SowoY\0jiiq'GggSrH>|r.!gA U )Y*L&".W:hHwAA_h GyYD* Ymp?{9K[Ƿ\= 39y=NA~D3CBV4rvAZFYl\>(^L>h >HtgQ dB dZsP*9]E,A9Hs9Uq11Ȫ_C d B d * 2]*d *PT$1EGƠD.)A<^\X;EԒr7HYv xxgǓ'x$|< ip6$'.(M%Sw<+J8!悰W\qWH{er%*;+$̪SLxGp2 2 2 2 &F;VC 2 ZxTx*~j?DdQ0ﴊY@ m00;hFMHj6HjSLR=AR;a8DR ݫʦY3dA'b`I, lw@a!cYlfe1k D#nAaRH SPa$B}h7.@ c@r-~ߵuFoFovB])%Xv1 2Mb#b}#7b}[Y>FoFy"w٥BXE ;YtN/)P*A>Wa9ѩ/-v/\Zb1J:A$8pMdReFhFhP#yhFuhLc){# N|wArs#(HcEq,̨, Uo#l0AlTOn1Me'.WqZfjՙLVv)?Tf׍qc|lG3AE/_N45ˮd>I__ߪloye[dNmmj7ծծ93%vjT䬨F.{ vۊQ0.FAM]͡#iO!:#QN3?8Cz.zC:1< 4z*s9ۙ q3dO۴)'Ӟg*[3Z&ḰQZ 1QZ׫r:THjHUiQs65&?"C U6ZgG؈Ṿ& ~%kVhaQiIG'rᄴuBo{x]+~ aʖZf"<؜_kY2F+TR!bRI eJC @īsiIhR2ru:J\*ML%ͦ2w3N=hFm@&uU9tμAE=  F"! .5%C[ã; fI파1:eyՈm SeߢA3ԌL u"_뷊M=o1?Δ!d^|RAL'8=tL=~W=;?=>PM.C0iڹ ^2JO D&^%!FbM) gZ\+Lzde$XҲJf'%TazN.Ғk_$U^2s~h<{dW%%1=0<8=rWRwZzl^;N˂Z<>#\;څWR̊'HzJ=iUBϊoy@a!c\1pmSNP6uh|t{a ^B?@ 1YJkUZS-n6ZP+Pm_#[DJsI(|lM=n %'M ̓LG&H! +o;YGQOuzb;k}=<'hΌo)? h3:tgȧ5b_Eɛ`:*~PmKO~OOp+N>"=(]3j \]ڇbo4Ļɕ|H;BlEˌfqHƊVdb qpn9Z913NW?^#,/йTDǟ 1ax^{/~]B4N"`3O [Mكpʒ%Q2u0ĥBWX_\p=R%0MJ=sD"|![4_<|&@̀No]L΄QyxdyV Mۍ}`\I"ʷXX1͗B`u#G엷ַ]m@Q0DF,{B ߲6U(a#6K<1XA uUY&1'MW%ξŋH::\@oh\=}FwK5p u#4Q7i3'JKmEb'DjR(߶3-̑LhF2~+#7E=;vgmlP.w =PߤUʤqFK*h'M=lA3APY:'7Z{V*9r34cងWB 8[zچE"_F04s> `zdRq{ؤcG&2M0/PZ,@9RۦP"Kn)b-w臦)glѽv>~VsH/)bϖ8d66,}(P/Uwnf%C7%S̿~y[*rB[og`Hg&EtIB(5v^ W7.£T@n8 P=vDs[j_^mPWfN J^uWa"b i5F,Q$C[$Tۙ#J$0=Xmz:U-rKOم+BiN]}=JDx62ٕ}q"v+UVfZ[)BEq6CJ,B#x镵+-4zPHFQ@! FG^~L|u!<u"|(y3b@xGx_7@Q L#pXHK';:nHm 3Y)?|a2~0a>;q8C!BxGxGxOdaE%$`ô_x2:1ot/䈾T/WW?7W&}vσ괻Vju5[gdogx<ߤ>/ n糽OA'#Pnr{? ]ӷI^j$$Σ(IuQx9z4H4}O7,9i0 r>6dFۛ@ǘڥ{xZ`ӛH'_ gq0(Л?`[x/:r&:Bރ!f'ߐ wSF/mo-6 kt(sv"'] bI,-4{=5T!Nz-O_W75$ xK,ARM=8mϣSz+yχ|<<%~tvKYH2}JV*s7a0뇣oD;8]@yw{}/4 A^ }K<]8|M'VmonL|tDpl_' fj:B"NeVy X ,DvN5M Nd='O%X\&Q8%]Р 1  1  1{WEb4bu Q %V 5ʒϲh)"✴HDHDHPJȡL!9@ $rxGޑ74تW,7%J$o 4 ;4ӢZ׫Ofr0R9lq " _Xq3 h"ծϜn$^S2i~~BZJ PyXx%"D1ddX/ 1jXZ0!WY!?lp RĤ"Ƹ+m_D畍5pcQ13cr!grF grF!"grF 9#D39#2U3"l}c1x grF3".GM^__Wc䍀+¯_2 S)YQ4E:q?8cX ҁo+nJI{zpC$v<+T"H oEB:N+DD 7ƱFGl~/sr$l, x B>j Y~= t~"V=B'B, }|}x~~~\h 3x͊ʶ"1#1#q)B2 ~\!y?Fc?Fc?.zxcb*xBc| /qJa!##>Y`@Nxm2[Fd@Fd@yBLU@1>[%XyF !70  2B #ˍ,'ۂ@>@dNIa1@@e!2!#rZ@@&ނ@!TBgu9z{t=ɏݫk&}vσZv{9xljzF׃<<ɿ&]yI_};}r>`Յwi횾Nfw|'wT#!uEan)T _A@{aZNaK|Fboe7L[S^ Lo" ?>|!(}?"痣p@oq~Dn:{v{șyfzC~}L0y{%M ԧQsO?:=xhOĝ^Ē2Bhzr+ACj-/;5h ZÓÓo赳kjHpX6Ldz{qGԆz+yχ|<<%~tvKYH2}JV* 0QEJ7 u.<;ڽ>nф / I.; n͡]J< @my@ϣt $lZVy@ȗç5XDhs2Q7 Hz"!툍M |'ƔYϬhu+R ڨ [M6_׬P([կC%U@wvu^6G-oAk=gZ\Uϫ܍So:UK~ـ(P7[JiE)ؓN-;w6#H2~Z h{_ ~]9^3)NIw78._|7878]8f};:lqL/>z;;.x"?8M=?zjr;hoG#mt("_=~sHnj#}  X,ط״we}vg+x'{c^?qg_ɷxaMOm6Wns^Nn8J7pȣWUڏQUzOUyh5c$ Ma4 0>\HѸE_E3;n4 .^Wx?5~ s,j>v b&Y?GAS6AvOCg-nEx\^sSҍYZsj$tfMtؑO;&o(# }1@dvW(a^* 2F浇I@c( e)u^˻W4)bJ^uqx/׾Nj#B9KO2u?3.1|ٽE֤% 6 ͚i^Z;y?bL,Z<31T\l.fcidP$R ģOxAN{=I4Y`vksw&5ݵ § j0P#yf<\qpn*ūStilWmIO "?X$ 1 n{^&v8v"v3/>N^K+<%ye 2  9îJllIQgk3wynYZxz 1,mC'4?h]RѼ}$#x>O4wz s.7"ȴ.1,NA ޓ!9,`#{0:X7P"DAoL<@G"|8袄Ff-#I8yz1 Y+"nbaѮսeW6$Z䦱PL*BW7v ?t&:- zB }C) YW]X,F˥J`a]LӅ&v$7jI$Zo,P:pf!|a­XvEf?{ {v'm .Kt]YR / [Usf\Ȥ~1al2|cjHRŝiB2DDui$ KV9Dy}a& U\Һ\cA5.?MN1K/KMX>ppe)|&[n) ,f-ڏ|e,oQώmk'i Rr׽?>Gg\iIs1ïOzjfx9`^ *V{VdҞ\\^$&zg,?+>4zg(0`zdRq{ؤcG&2M0S6@r4HuH?7t̮y $$q{W*,1Sέ+ӑ"7bO8~1 ǁ 6v+zV*.+5,eIIP jXunIL̺Z7?_[@Jٕ e}uIկ*lρJx h6P kLa|n3%i8fH<j)eaH}6N@AVEOV8g'ʉAvEԮs᧪NU¬8^_1-D=T/]V( MFAtARG&l}c19^OSyMGU$&>xw;?:ڦW~NKc< ⋮gvZZaH^b . L"5rWkGVP*x&zTɞ9[+]Zͽq3)ǟ!5ɽBĒ oknu"ubh!1׌t׃וLOZQg\!M5&:tGDTEWzhIooFAŠKqG@~c?k h*}jN֥p&!/z\j x&PNx36t<)26edԚЮlm9E7P}-"_썞 O+0L곕 >I7_޳+Y]kzq׼Xe̩EcX1j48+b R|ݍ"";B?)Bhwv/TEhQg}ABhwvOD-"ξghJłQBh4|2? %&5}]NFB< _S(f^MD4x2 P/3 0{PpoQCLy~0Vp| ~!|_c8Q@`H.}#g#=AvT B9|]0eݖ6bPF i!HI{" Bד[QLRs{0pA[ג|%}C]SG2a*մ?ӎ<:};_OO|><=?~)󧳣]B΂@SR1SPMY?E\tx#ѐ\:̃ S?~1M TXa pFo9vdgrPe?#z6;f:fp埇4ۭVkiis\-5^Gţ(b1X8 Ӓ27c^ƺ:;ז̜8qۀk6U*8{|,463y'GN[~Vu<ч9XzS_ZUCё~|nޯw$}PB;U mڋ+vڎ +!:JY\ %tqYX i-MUBקJf(J0mbc!~as  jm"ӑhj!bJ8kz}oZ0.xͰǭM1)QXaqD] яě 㥆 ZW~^Qvt* Ĺm:#Ui3Ǽ>UǼ=1otN1羅yg1dy'k;NƼg̻c]u̻cnAǼ1f ۫(0b0#ڝ?PIՏ>SG4 UuQjՐR ~g׻ȱ9_^+9LIuWtlj'r20Nq/+WإYkrcf0f9]e̖s4cp}ǣ>TkҪ#/lw.tݙv>?#,HL'3| `މҙnvgfg:z[+[]B `E5 Ѣ{kB'~wc:dD,f_P2o2w ]ЎV&fAm;AMBtm1>NTXM89 Μu˪׍~s1xWz:Y|79F&ٓg/jֹ!m^j&7/1} `++_z?K'NAW /&lqq)ҤHc*=rn^g.4@Z*/tbtu(\/.!;#L(+<} 4[bUB|~pn KaBu/]K" g2T̻z I~M%م,bʧuЧNSkzf>y@8>0YTK$4e2hM|]E} !KJsCLYDe]vbpx_Ȗ %@?qcA`VI"ʷXFQ)B`u8F엷ַ㔣(g}FOOETک-({*\7@(߶Z AF3 a GA2 gGՎubqq^oR9ig}Չa╯bQ-ꮍf~ÙuGGɍdV# r,Rh-@=cq\`Ŗe.CwO/ܬG&wM* >6}dB)cP eJ(GST۴|p BG.֢z~Zy:Ez-wq޲wn5'^៎/liph`c7)] |DR  4}6ЛM?Gɤs_rqR'Lymoǩ[,SڴL }6?UQ=0:L@m!tUmYZp 1N1be$qDǃbtCj1RuxgcuQ|ڭ W1𝋀(2-C `051OlToOs,WDr 6Ets)xWJ.mǻ*YK:LlMK)ifWьuuVD$Y Ll)Sh2jD }f*{5tGaF魀͏ѡ[^qK+BgIvcH|[a굠*4 :,~v _y/Kg ߏNw.S,MCڗ:cým-[ Q΅Sd<-Dboy混t|BA:kUd^C5Q9.1zNOUXbUXW徒,Y&5Q`eG;VKð&q0Ӑcl+i%1gyv.Vlk<(Ҥ]gkIP@n­4y"WZZ0p : qD,IH& /MY_3[h%;&YH ns§Oqm8ifZr$87MY9{%~dV,6txҔm'X1"t |fefLljt\蝅^Zd'_$U`2s~h@vW%%I=<<8)5rc=TwG\J%wno]ؾ+Fl>#t;ƾ8څWR̊'zJ4=BNϊoy@a!cp\4pm NP6uT僻\>ҽk|}rp/jXJ[H} z ֘XkdM/s57u-aؕ©vU-MSbnM>B擦I)ӣNԐu ٷÝ,(f㧺Kw{Aˁw)#,FGXxGXxGXxtR!,|CXx/@ <#,|-#,(4#8<EpxFpx0S_ԩ9g+ψ!8~݀E%+* P#8|<_hb!/!8|L'p."Y,eq& !"!#[wX38"GxGxDI"![!K\ ",D| D|!S G  uA$A$g=SAK :#H|Afe/}CGx$A$A$A$I e A$!HC< 9 ! H<OI [[^$AH~>ZYGxrk@ @E,(PotE4*'NB#T|Q*Bw<#PGxGu EP0"T|Py9h *eT n&T`G+ވvp4$ h}_h GX,(V-4VminL|tDpl_' fj:B"‘+s xċ x,Sj_(#`<;x yw y:;@WHށHޱxYaD5iC7^'t Nec>fpbX6CӆUfLl}|f+)VOk[ e9PU=kq˖c -b-$AeV2n PJVKN?d"Vˤe.,\L?PW #Ԓ0>R1u:Xm*5UKlMG)efZь/"MB_} {yCpt<1bٍ[af8 4^8+ %uۙ&w{1ʻ"SS[@M'FQFLںtM?:.DpSLɳ4CQXd+7Ŗs`l$fv>@ 9;D#:8m؁؊*99̀ݓ.}8]Cpu f]@!jJD- Oͷw'ݒccte)ʾEgO=FAE oT{P-]c kv)I31CɼP ,샘p~{K;Ns_{蘢/;sQͭ4׫|&,Y~OjG\?J!#i__l}c$?a: k$biCƓLMK3z;.A0O,̬w9;/IqImyr~fl6<Ù'&&5׊v"'YY=)>օIUII@; k%pQʶWr\/ͫTrV=bYpPgr\JY`IO JSBY-;,b BW44Mp92 ۦ\H!n/,_ܹڋZR_(5&+Z)Yu*[kuʣ%FZKj%;lDR}2ҔHi8%Ñ-myҁȤ)d|#Bp'7JR]|gx<aqUm>|ZG W^W"yL'|[fֻM~<Px ɇZkF0ߘT6C^|xW?=/i@Y(hQ0nX1يLl! :Wk 'zf8ى'+s]"I׻< o1k/ ܯk]CI8z^yC#{0:NTYDDuc[&UtS*]C>+򫣧.P!QGD:]x|(Z/d ˖[%ޓ ⭋ə0j#6z_tBϔJ"i }+ID +R,P}?{< 6h;bOP[&jE2lن4rVaɣ[>)=+"#W4y =+$*tYٷxIZcRUk" $#o|gT~Z_VP7Kch|j\~68@ &ݬG&wM* >6}dB)c )Em bk!)֢z~hyz:iݻkwn5'^៎/li@\h`c7鶍 R?oO}hfV2tӏQ2\헇oB!7(_{N.[ckkag. KnKneBxj-Oǎhxc^m˫tUm ̩Bɫ*LT;ƈ%jb7bkS1`;`DɔdMOGJE\nIX:rpR5xZvsCI4¿7tF?Ҿ0NneTJL y+}5žW(ΆbHEw~/ve¿_ ( (D(/#O.GNU1>[%XyF 70(*>QaDB. i d'=Yd&+/Laaݽ# k:3z-ZJȳoa |~rtvF:%/O/?rRŠL̈́jr(a^W hB=_ABJ_༇3x|ձ ?*+ Gѳ94I4+<$nZ;N/gH҇tj }Ȓ b "҇!҈ ҈ YF"Vx$҈@`uA4FDH#4"0"҈ ҈ ҈ ȣ iD$҈ HBx+HiDFiD:1EiDFH!҈ HARAAӈt/^IEҖFDUخGo iE 1W^E^E^E662q)ҋ H1*ҋw<#"AzAzuߕ w^"މ ҋȯX~H/'kFn^D%AH/ݔg 3@7RL Ҏ Ҏ{4AɎoy@a!cviGviGv1}#"HyH;R"#\vn\vD@>@.#<#<gJ"| ]Gy/ȬLo ##<#<#<?:@L!<@ G@>@7G) @~k+#c? R/ /^52 |kC(4#<EyFy0S0#_ԩ09g+ψ!aFaF~@F%1* #|<#_h`b!2!|ܥ''/Dⳤyc/L>Lݝ#g9LFpFjA4vMzW'fCyE>;:aDFJW j? ް>D0jo&9Ly9|0p| ~!|_c8Q@`H.}#g#=v: B9|]0e ݖ6bPOF ,TDE=wzUK Xɭ~} H|Ԡ-k_rNOOOOοή ][b|0g㴁?NN8W󓣳3)9$OϏ}xxJ>9h *eT n&T`G+ވvp4$ h7_h G5,($j܆I gti+6-cA&UV@>:gsu? iRSiu|9;D-W#W17"$X4ԾP";cyCd(H;:;Z::d@d@p#SG٥BLE :#YtdH/)c[T-)WӍey0y06`Hۉ<9y0r+ y0y0JƒwaC"a0T"`{Brenf\Y1*=(aeY/iL͎yߎaAUmv?fʗF4TLSQ8KFΚ?]\O&oVVۙvR[x[?XRiFOGΊm:j+벧0z`G0(bđ:e**83 12:K(cA98R[7ēK08$^)Bd% P)볮cÃPN2_=NMrB; M˨e(yEãN(u5A=%|xj&ӆnٽ>;N>l1|pٱm>- =[V͘25,JgWRk՟ִϷ s{ƣv)-y!x2ue斥jZRRWT',nK^R=5}'Zv.K[juKyKYRuؓx,UgiKh:,Uo$h*#dG9Rv}V <+0$eE1i 9e&w"%'rTֹH07HhHߜN?WZuq<&rጓ\/u'E[{~j֪I^졆DX5j.a#Pn:)2|Pe!q^D`WoC+6Qў_t۩pZ^@7 rH-2xMkѧOY4u)z rDmekn5Hߴ$ tO9N%uJ&`fQJU4#+Ve`\nLS:S }f{o8p$&ϣ|SvVXYk3h0 /boy6> BgIvI#fX̦.SgɨFIf #n++k1ߏN F.S,P% Mfe! ['/O0|¸Id+~Ď( ζm*vDJxNN&3ѤK #F\]YxPo0g S] $vFbci}j6bੲoQ|iH&qQPs[&՞7TK|FטZvAgJ q̐x2/>) &W:&ËLC׫|& T$zLOj˧G\J=J#Xi_^l}c$f=a: k$Y#ű6S׌ pl*(/(:x ̥X@EY !fSBp2oY\^̋襆0oIG,XowJ2~Hwz"#2 %HLqoNi,ȖXP +SӒ:΋iNd 5,3dN?G`e\b`!vߴ1[1X pIn%I͵įIVVOJbu!-d}R2AOD .gB.-V1Er^+%S=W;:6(OvUR3ЃÃ(qe+uwaU*y+\,83E ]xx%EȬxzr0ݎDsPUzM! 1eS &TamSg.xVG| OAE-Ki AX_,V5:ђf#% _F5"zXiJ4WԍPX|N-@eb  aELǗ/:ugJLg%@ߴX$||)]g>r~yj}=NEI CDjra'Tp-k [L"6lCq9 -$ p Wist,X[1qѪ5DD73Ҽ _j+^٥14 A5.?M8!OETZlK.;I&RRDl eeF30 _-Qm=hrcL&M2}l\~لbє"61\uOktC?4Mɼ=Kg]ܵcY;OG|I{4w }aFֆ|Kwp3+G(b]C·~P/z=SDu?3)KG[[qZ|drG#آW,]o[bu0sjP򪬻 1N1be$qD&a_'/<,Q2%9jQ7Rl[z.,&\bM;'6vPҭ3 %)Ϯ+[xR3BJf_M*RdK]h׃BB4 Qh4Gx7:"` SsG;VC #<#JOT@`"GxЀKBZB?d2"3R/Mnkֻ:iڡ"HH~GQX0"r e׫ihr5ޟoX2#`J|FɌPc7: P%7?NA>`Q87 8 H?"^t ==tLt.!AH? hے&Zl#E?:=NiOĝ^Ē2Zhzr+Cj/>5h ZÓÓo赳kjIpX&6Ldz{qG~wz+yχ|<<%~tvKYH2}JV*7a0뇣oD;8]@yw{}/4 A^ }=]B|uS(VmnL|tDpl_' fj:B" ۋt<&1Es?L@@Yɪ8)T8 xKt B<ž[ĺB2`</cLzu G> .Ƣ|[VL=7Ba؍̕x$ N  w3pi% zw_SXt#t3- U&H;E{ 2-:VȆdX5Ҷn=叔93j\y>^ _r hu32Ko7L^dV^5e̙W7bI-z\WϷ&9FW ў{vJ5!TXL@E.wǨܢ"?/?]X3!R%'x1$TTOL2KR{\;_,oTV}:ܶ-i+\xSFX]YsK-ww/Ud7qJe7jo6խ7r)[7~ŎIJ,h| i2"=хU{U5I㚤:wGoz׳:OQҲ!XFWizREW}Qr+md(N$2̆*nIfk>v'm>&<ߘwz\TJ"FtCE,1]>ŬY̻`.wK&]|ޥ+`.̼)̾`/} f_Մ̾`/}ɗ}.}%/]̾$g_Ͼce _0̿`h/O>+`/+Y`0, faՄY`0ɗ_* _Y* IM5^^W3 K?F 1 8yfT@W*|AX `޿OУykV%||~E-,%bcZ'T\.3{?/;@`4̪ӽpFQt .VC^r?GVѣ4DzGD8#^u5"?!0$#M.K'r/+D˿#ץЏI{٤'Z#:bq2zhGa7>ZgyFͩuGàc&6 knȄFZn/.)L@$~ԚZ$A.\Öt!WrK/+l̠-ofN lqp4ytq9];t|1.h'K^`h37c0ǔ׬xM@w b翖f_k4ɣ\_ŵRqu6_63f7VI/ՙgfLzy^޲W={ҫɓ=&ܓX-\67e8-p0# Nl-I~$$˺XSB%5wMFz"oc|NRIb4'f;I'];MT|˞$Et,6I|ӣ )OORLht'S/qVfy욧8+\; >r95OqVTw n&|ckDr,0+JDZLDVEs䜡jM,OS^t')KugIu*\վ{qvgIOPyӝ.՝&iO ||㟨RT}*`;eI>i3TuӞmI>III3XuӞ]ʧ`%Neu<\2ce-댺yp's!^ʃ%VG8i. <롛$Ƿh[Ƀ~(p13ړtHqkĀ^wzb,Ն`?4Wqz;?hnCr=sWR}-y hOp,eE٬k&f>f~}BfXhGquFH4wKi@PkuA@IP/P9{D@jN|o,`]婫' NS ڄ6h+pvṛZ[s1Is1Y8`61)l̓$=H6fed0'9`Ns2L0'9`Ns2yr2Kd*Kd2,݋:3t[+ O={v/-Dg'\^/I{׫>!*a;rv!/VyUmo۞ he'>L|<@⣦,mfG"`3  f@0&ĜAĜ &L2&&0M0a0i/0ic$3a@2 L0eRɁ)2}=S&2i4i' ُL`'8I0qL`'≓veI;? ]l#;⿏=+,A/ ~2URsݷ "%'`*O#Ի< oŧvp ێ]"?doOO]9)g+d34t.G`dը$Os 3K[[R#Ajʾ0fLH{]EҶEEkUBTTknķ$6&gJڞ?p%"lAXKlSG+G92bIC~{}dkd ȷ`Vϝh6u0LF Q4-b?=V}W鯺ԱX4R ƺf:nЙZ WOQrspky]g%9bODFn!"5e0{G(4|Oj8q9큸Gz .dsLYvnj:;"ڨºWo6M%*ֹj&J<6!{嘕ik ڋzyc-"[ %/ 2Oj .U ' ߠ SmΫc*ܓ-(Bd5$LQ͟|6^BꣾpMϣH\Tjt\eu GQoڏ|)yzvTh[wֽޤ\ո5a7Pm>R.oڨ\_eB4?f6IS[ GW":'7Z 2M`q]!( ۵k-@=cq\`y-M;y.dq9LYL*nTA|lRqȄR F r Rm~gb4\u.wx| ZnY ,rjEWI}]5}s9 tȗ~g f>ذpT8=9:u%2(kYY~5{[$BD~xH'\_=GFoZ>=CLnr5iISN]{ƴL }6?U먞dfSTʛV4#Dp e6SQ#YmVk_p4hQY4kU.V{ reJV1s\K0wvW:ce (qG;NxܛºlL%:4lC#8x2cz=U0w) }2h O&iUOctY7Z>_M"x[8^fLS%d׍{> %FUԈjS_+.LI!OڏJY҃M混tcoօȔ[*R|¯$^zv~z|򡚨 2Щ]*|6Oi0O S0k(hWp /Q3: FeU(2 GQ4*]ԑ1>[%XyFLTð&q41i6vZqvggxM_t=* CreUMuiM`P\;A VC(@U@J!ߊ^ik); 9qYC"Ygp4e}hfG׫3.$٦&t"Ԁ*q,yD;k DX۹Iwo R7Ku)+q㺡r%9Ύpʕb^;3s0㍳{C:[0wl* ZkMn\vMlCvT%c䋽SJ{Iݶ2dm3/Gߜ~yϺďla7a?~֏'HLES ^8MQB1y~Bh'-Hw:]&`8YdY` p#02. 1r;O~$h̓\KSzʳ)KZJ< << e´[,X)1:~JoJeTX%%m=N%6p76qY=ZK*پyX:ԢQuD.h擦I-NhTNndQޅ |<#<k]FyGy/yeϔD, _Y&1K@>FGyGyGytR!|Cy/@ <#|-#<oH= S#֖WG @>^@^5kd@׆# QhGy7:0"20#` aFSasG;VC #<#JcT@#GxFLBdBg9LFpFjA4vMzW'fCyE>;:aDFJW j? ް>D0jo&9Ly9|0p| ~!|_c8Q@`H.}#g#=v: B9|]0e ݖ6bPOF ,TDE=wzUK Xɭ~} H|Ԡ-k_rNOOOOοή ][b|0g㴁?NN8W󓣳3)9$OϏ}xxJ>9h *eT n&T`G+ވvp4$ h7_h G5,($j܆I gti+6-cA&UV@>:gsi6ȯhWyH5FN< !xh"0G Ǣ7RoF!w qw#9tH܁"qGy]GGB!9$(XH܁Ha qw qw;.wF($(PH܁ɢ#qG|Iᗲw|)w qwlub0wCZw$Iܑ[aH܁HQE⎢Mw䩓E⎍nCts)xWJ.$2yug-8(DqS$(P8$Ђqh7.@a@PPr]ʠ Zaa y 3%ˮ#,<dVI7DXxaaaaT _&a ?# c R#,|񔄰 a1w§T",<‹]]Ox=8DDa@" FG^āL|x!8<u"8|(y3b@pxGpx_7`Q T#XK'S@nHs(KYy!DFGxGxGxtR!H|Cx/@<#H|-#HVA$^50 P|kP(4B#T?d2"3RZMnkֻ:i7+!Qy`(8#2 /PAN&Wi!? !@^gMfB{x>Wӛ'_ gq0(Л?`[x/:r&:Bރmaސ wSƭmo-6uvjOEN;}A@qW ܊Ba*ˀG u|/+z% SvO;N_?޿?>?9:;#?CݗϟΎv 9 bPOJp8fB59 fpqѿhGCrݿ 0vOݗp4%bRo`բkAY8`.m%f6< Q@Glw:u? i[N< !xh)"0B<b<f=<LZc&ħU$2y 2y,LXv< XɣXb!2y U3LLQnd(TQɣHB!2y$L%_!LՉ/Q@&iݑ#'Gn!2y GI@>e||||%XyF <60|kP1fP< ^DqJFa:UF>l}c1x <#<ȯȨd8F0Bya T,D&ϓ$#0H|4oYyLP"<#SC0yG0 1LL=qSG0D0/?XL <;a^gߎM{/}ǣ/W?7W&}vσ[ֳVju5[NY{s?%ٷ?O7麬KBl|FdDgkOowun6;WC8 ɯ( +@Mp~Fd^NTz5 Mf C C!蜟HMfB{x>ӛ'_ gq0(Л?`[x/:r&:Bރ`ސ wSFmo-6djOETN;}>qW ܊`*ڧˀG u|/+zZ %ͧ S~vO;N_?޿?>?9:;#?CݗϟΎv 9 bPOJp fB59 fpqѿhGCrݿ 0vO}p4^#Ro`Im(pFo2vdgrPe?#z6;f:fp埇4ۭVki <\\\#^LcԛRB#Y;;ؑDd@Ǝ<ˮ#c#aܣfhGd@dj?:: ÍLe :J#2uI(d@dё#QK S+֎oQu\M7C]B @ ؄z6ƃ!m'`ȭ0@ ( FB<i,c 0#ˆ JS0ԝ"ƊR7N! :p{ R]^6΄3 a5@n Pk4\mmmmQgĐbmVn =Fn z"¨?m\p25ZrSE ]E.BOm.N.bf* ({  2@$X  wX38"d@dX9DYLB*qLj|PRԨ#*uF/CR%IPb ڍ *G;໵w &wu111P;b|gJ"w ]Go.ȬLC9*6X߈XV0@]v4B!wBoNK `}}p*Էrн9{XsntK+Dew.n8W*uFw;Nwp3\ӸG(z#9#&ԃhF^<%!9omy/X ȇE##`0F]\ܟ72 f<XQ 3*ˢ7-}쀸54[%`a ŧUqufŨ*Sl,n]bf1q4;;*'Uŷuc8(_&ьP˗k3MͲkG8.;k׷*v>[rٖ>vR[x[dMmmkNbIaU>m9+*Q먭˞¤Ƕ` fQPGxߪ@s(GS_$`vo/KmO.$wx}r  4dZCqT|v(BϺy C9avfzfL;6m ,4V$.R|9#s`~ :Q!zG @'pLgtg8nvb D/5gNJ6oZ5cbˀװ3+-]I*vUZ>J(/AJV^ۥ\i[ ^+r[ju[y[YVuسxlUgi[b:lU'{o٪.ڪmUAlUw%[}bⶪUݥmSwUݺADb)H e8 gz5PxtTt&6dݒQR$Cjp3jϭ 6=f|}gi oʽ8o3N}&Rfp3A!O*_Qj'yD7:5 +;O#y;BQSX24B}G, #}s:S#._jEWpxރ^4E3NZsԉ(Om\'U{!avZDv@MI-OcPBw6bGxo_?arTDE{o|6ħ\8!v^/^ |j`&6ggV,Q TXT҅u٢RG858\$rZԇL~&\uN+3`ȳ8BnQ>*Qz+,׬5A4t /sAu!n;S$,fSy\4\QCkc ݳdH#'3lQwI,YNٵG'܅( )yfrHK[妵 1sa%s2?bW(ݶ ;IQ%<''0jҥOBH, 7DMVੳY|`k;#c1wYޠ>|l5bv1ETٷ(>q=5&Bzݸ(ȹbj%>kLa|n3%i8fH<0} oozǩ+rzO&UOO>TLvn:OE'e#.|L4c/k|>JޱXǞ05KAOߝVm+i%1gyv._lk<8(Ӥ]oIP@nF4y"WZVPt +dI.pOGLY_3 lZ~`{^ÔF)b52b9f7&GM bpqy8/DqVso(['u!xcߍ* xz"ݩ$4Dn["m=_9#[vbWCƓLMK/z;.A0O,̬w9;IqImyr~flŰ1<Ù'&&5׊0"'YY=)>օIUII@; xOcǕm݅冖^"W筴{pŲ厫#6v!t;AAZ5г[wX38";.iLi4\TeM0Z)B.^X5>s,-=P`ukLV|RZU8GK0J|!T׈eb)\qR7Jj#[VLXv!-8eyv'm/ .-v8ŞPM&[tϺ߹՜x:RK س1Yl탍 Kߤ6 6TK=?]YM?Gz_u3 =ܠ[:=X&I]Jޱo`< PT2|!<È\*Nzo#|!R%LV_# <{1Gxώoy@a!caaExlQI/Ixr100gG6 oG݋=9/?~pc뢳{ssh׫n<8?֫WWZv{9xltZgdgx<ߤ>/ n糽OA'#Pnr{? ]ӷI^j$$Σ(IuQx9z4H4}O7,9i0 r>6dFۛ@ǘڥ{xZ`ӛH'_ gq0(Л?`[x/:r&:Bރ!f'ߐ wSF/mo-6 kt(sv"'] bI,-4{=5T!Nz-O_W75$ xK,ARM=8mϣw;=x|z쌼tJw_>_N?:;%,A>%+ù 0QEJ7 u.<;ڽ>nфz / J%. &gti+67dA&UV@>:gsi6ȯhWyH5FN< !Rh-"Hg!*x1A*EJ %+Dtg*$3A2Hf Is*LLD2,d&DsHfR,L*A2$3A2$3) R9]*$3)PHfR$LEG2D/e!3R$3A2$3a$3) Hf$L̤$d&d&E$.M%3S'd&+8A:hPB+9@$ o\Fk8SM)MD-pR R R R &F;VCJ R Z)MTD)M*~j4AJ1GCi'=J- R I1)M)M)M,I~R ZGCb$6y&59"  v 1MMMRa^ڵ/ 4|!" QhtGpx7:"` SsG;VCp #8<#8JWT@"GpxLB^Bp[%XyF 70PP.*nQ*aDB1 +=y@#T|!%UV \|ar00>;q8C!BxGxGxO0)0$߯,ώu,ĝ#7${il ]+~= (h[чw.\=~Ynj>m^ٿ1krqoInmK{#1e25Pp~X?L0~JWoahO^1L1Y3!L{?JD|܌0!h%a}\.!FQ{.{!g!~P'}%8:==xOPv| „Ewb {h8T_N>wr쌽tʎ_>_N?:;f,>&kရ!pø? ;{:Q| A}CP,^ncT W-X !fEwLẙ~؅={{e8cߏmZCƾQÅQzx1Q^A& p\N~G@̊jkA0z~VCvAW5ޘfU?rQ@

֙8Ϟ0&]4[RhWSG/I P\=j Pxsh۠ ">='Bvl^7A8OVG, ĔivF-^eSf|Gaʬz:ѡn?(vM''p,YŽvnȐeaOO~oxԺ|0l:ҽ<1l rz\{,'{+Cr'_ r\t.DdvѸs{ eu?xG6>EfVf 䤒bb|^_2 f f wv*oټ>EsODXP+x1D-7Xź^p4V.mA:A [cPFdtV*0zdA뵟3:-=`ځ|(p7TZMJ~T*U 9lǿA|Ʒ h{k.LU%ۮ\wKHJb\Ϋ KEjPJqr!\n%ң9 +=(Q[i[u< н0DOb%Аt Lfw&HI'8%fwuVPGzF*R.k/ 兴mr we]- ZnWV:4RK_"t$Xъ%hR>oV y@B< 4D'$ IyuH 'I7ov^&0Yä59Lr&&mr:Lr˄\&2!ɚ rNFx"~2ԯa_u &u_ҟ_7cEy5SZ)rnJ|zQRʬl<{',6m.ϽUssmޏ{,ebc-kF15Y)}::;rk,Ȩ]VCj^4sɖvB"jiwy,[?INg_=gg>u~Yކ(j C7% *XLMNirM'áR4b^4b6eyϣu\M9NgH:.[5R$A[IX胐)=QPB6u#ʫG+_zS٬dOw, <լ:+aLEGiN1LE/8v72b lV a2ִ6"^7*z ~}["4ې\&).g\yiC //}ZJ)Z|6W/KqGݹ;FW*ns b\c|rezEU(ۖv9wo~cM#pdl"!l%&;CZTx86))׌Pԋ9Kw>]k{cyc Ѕ +4xSүn-vOuGz3':B-CXt{5c Ѫoa2Z~ rS" o ~!>g_uEZ%w W*ksV夘'*}JtJ*՝[t:*7Ia 1ʞok^Z#,1^ȡw:/N~bG@ϯlkY,VWޑ=Qӡ(0TV𻏋bu%KԚwD.z0Co7/{ x*2bh44i<}__ΰV7Zm Zϭ vxn;Dm:L.8F0Y4T=Ԗ3SJHEaU4TRuV`((SKOyWx 7FTpJ:!/.T*ڼYFhoous[Fi`eS. nJZ. , F61*[bLPe0&W5&*?FzLnX2%kS|Xup:ڒ}E~\DEP'@Cz#ͺ*lIg|nޛ{{o퓏O´ݞboo߲Y=O1A19?ٞ.7'T8'Kt9)ߎNޞW^,{L}sT$1U˙ ұl3K #n'%!5I6R`<\92M! +7- %ZhIc kU9ɴDQ$aWf2ie+ɄT=5SjZ ko־WX^a{A2jϯЇfZ֮.=ii{]=-}+2z,QqsX׸Sc[sja%_OpdլW=W.=ii{0Z=-}k= WX_%Aρ[D:bɤ٧/oss=8ϏsCZ\A+ޅq[o!b)|GsN32! M$Gx0CP(I7FC%|:= #w#|̣VpkEqmSB\R`9KGr(-:Y$ TU {ZԺ:%o\WedJUT2b{{ۻoރwz{_V{;5D]͢1 ڊ2F,2N/ݢ)V<[K8Y5߱O=ac#ّ?՗ t1rèvڳ2pFǨv.è"Fʨ3joq+y_ĨYpF/QMS!G t8L7<(_H~n>d焥PRjiJ-[EzQ7,JN ^WIlo%%[ԺdZ^ZAIn*)U')é%zqqR8LI.\FpVF-PI5.QyJ5U3+)ᬌZk\KFdWRY@%E׸0F=J%KPl9rʥBUYrLeq@Wh`){V8r7иV29 9dj Zx/$%f_OfbQbؒAsf_wOfbQbؒ/3f_SOfbuQb(E[`>lQ^F*+SjgxS+O![En?h{(٢e׸VP.FIGpj^\5/&S'WQ~C=Q T=t cTbM jz8+ƨ<ĒFpVF-P=5.QSIQ7RMezhI*b FO?#(7ZJ\(2Hl"`͛o5>TײtMㅃNɇ1"h&0XJAm}{LXQ_ŬadHJ_]kIJ+VdVDevKS͹[WDm3O˚HL'uc`CǦaaE?% r `T_Dbp[>%!M^sVgDM>G{㩄`O`+36h`S*YžiHǽG[rC ?Nݒb1 j#={4 Xq݋0dWjq8 "+ {ՎVJqWo0w/bäRM xeN{n]>J3G+f7{|~d&H|+.Ty[USwCGZGrzuԝQQކd\ھqwoj<<ܳ~ۇZv`Uknu~rkcfq8 '\ ǝO\Ls ExP}-46Y{ww%󊽏w2s(z#2'*"6^AE?VhxF)XPw 3Vo.E 7#Z}F#x>D '8n43[7%r&&'E1欀U`{&k?O֢i,X?Dá|s˂Ra-&ǀ o1h}qɇ?N?wN|tz~ˇSOgیEb12db~qG?{e6kTLwмᩣ"`Oxt@S?ޅZ `pwv#;>. /1nZ/[{}9;av^'hRpի$õ@/bؾ/- G W玺`tlI ^A܁*s $DP)vl39s=E^ ޓ1aGXuCxӌk놙fD\ }Y1ȝW{c{Wv=`.*OQb9We9U.=RR AW"$R!2W1S]59nvN6ŚYaNVߝ3`FB;8Lz  G`>u QKfK_I4ǥSWD8J7g~]e«YK Y5P, ɠU̵@ k&fuPJ[Eu&  UB.5g<Bgz- oN' YiWzhϷބuFthaA.NʽllZۈI伎fPhjq"p B~\YAҲT ήb'j}$Oa Y񀣀7؉/ݥ1/c) f5t.~d60W4vޯxީcX9ѱrH)+Z! VȵBuZyڮrJC%V\$ 9XB/r,`! 9XBrL`9rXr8M1{؅+9w=wڣqMѿ'p ;a2N 4] jI|v+Ƅ"{H̐,Xj}pj5HV,-FX?B(#o4CʤД `͏dFV!w|ބVMod-B%N4o`i tI?$ڪ_ݽ_/%kV}k?~򡽤igC߸!./YN/?oK6!hS?1͉Acj|7{fg$ukWUHTc;$!_Q-rr妁 U*IY" TyJ`j_H:g8޳z">G D7X7ѵ|$ήN;vpP_qC|Nфh؍aq5G9}[ Y+V8ŌS]|cw 1i 3V*Ί&ŸfNی0(xڱsoU-Ul:c 39w2yŇ[̫QeKZP5fZ*Ym^0¸6RPiLSZK|z]j!uC4ID]?]]1V^VU=}̡{oʹ^2Fŷp8Q(I)ۮOݭut[]eAl|%Oj>{Ygc7\_]1x&Ǩî6pMx]blFvlx"ʶ"Xl:,/k5R ȑҚSUe@~yP]J);9_7yM^xv-=@"PVKgɚIS-1Djts;mކVKα]$Ql?Z<5|.•?p-%oBZ.kLsQ\VZ6;scfR(LU5\ |$Tp ,YR^Ыˌ__Ga/J.W,ď: .ǭVk.m?Λ}Dy~Fk Wdhlnauu}|D%MJO.d r9YWA ~wFQ?a֎cB-!.x}^Jݒ;EJ*I__t|?p/N {%/F 綘7;-{z09񳒭\VԖ$7Zu3x:bΏ>`YC1g2ƒl*QH|Whلє-2߭VZKblZ5=xّxMtAuI16K8Q|6|0! ``ff҃}<.c?Uj?#??>aw8LI_UƊP6`Njb~ֺa߽COؽc8Qd|ӷ.7€ښ5Z"/X 2pRq^BVƭFpv*"Er|P+]|B-7~w sf?_hJ]Bs ԷKOŚk}.֖@r ~Ի_.>/ gmb <^8:=鲈OxۭWݶcux&C\d'?)S|EM^+HOC aar3va4,.f6T>NDM`^Q /ܵe.gӇͫf~˫Aö F?g;n^:UPy9 ޲[5|8 Q5+,]o[ o1\_g>Iݡ߀|5^gf7bt?i?iIdWњO19ƴl9͵_A:.zu1u\M!ٌ!YD+hnY$y~Z!9B6dZYCyc/'[CtiQ`= U[uXCQWP?qtfB Yiim12hĠhrwGz7PKj:?>cAu4cw*ɫsnfQv6\5Y^V>ѲY32f5)b_,-GԷA27Nv:bezB+iB7_:UYaIc6#5 4aJzdT yب cJGF0P6(`!!I7#uR B`tjx`8%n [Noz_NwqUyxk?; ^ܡ0sfl݊AK8`c^toЫ&KR RMTV哸"a1&"HXDLQ|/ͧFM7M Q¦l,.ve;[kSk⤳tr '2)%'30ڬPo{\Gvb+Q2}0f oZcMBrO)׵uW^>wݱ5/íwQ`e\k8d.as w`-nqa&L16!ΰË\Mj /(`tߵ Ű\xv.ksԎBB{5k_\>*Ȝ+&CYin4nV!*|7UCgW#;w촨F7j/n;tVo`}U(o6"K[7d"[e5\z"UdYni5cdgl'߶$JU qp "CgQ=glu\Fݐ+ńYRx!HA+Өė1[^`^#[B!K\2ۙ޶〝!.PEA2 4a?Hd RmG7S4g#ZΎ}u\ m=P*b1M@d> ߎwZ yu,vvP}'c: uۃ W TǓcyN6.UDIelsD7{GxN3+_ZEXx4R }jLAX@x!+$e¶-Ng?myۏjjlppqU 0V^ӑ7B2bH TJA'M I/[5E>%xө||_e4$we@gFsJU C5Ɠd3T1z}x lOJB@_Tž?+%o_yzLCN)aIF;o;:=z{~|ZwE˖cM|t^Nj!GzeIu Al4)87 2c._ ^j@j.81t_ O3oejuQ"Vv>(kI}o2HQgJ6涝 :ltSXD@tH7&ftKfbIP j"-N/Hzm F1ViHUc)+_>Dԑ^D9Oq29x=U;k:IQՂNXlAu=A7˩ D{jfpjvsmږRn4%6EN<^yf0ho1wf 0 E^Hv tȵWEV dJl9[%4|U.|/ʖi%t4נ%P`)36̖P-ԤHFM) ̤6zjhQI4ku-Pm* =tD<{ $ϓ~܅?h0X8bxot=6L6CO(Ģhod ?F&4m涗)tʰi [ 2~5@Yo?NO>_4f]$jNJ~|7x藓'bߝ<>;c>#GϟΎ;"bdɚxTfE0B"nABPnqdC@Sx$ӻPKڿ&<fEs?BM݀2G[!c_Ύvzw,,r[Xkt܄N+hwVȐ\7( T(K~mESSf\",6cdAzB<)]ve/]W@b g\9kY(R-HJ=Fe;+Nq3e$;+5|6MV>u,|y^^Z^Ȯ. e0'_8vIHgzlu7}Y4#€ Ɔ1TQ9 Q۫ϼxA>2r]#SI Z`Ldjb]źi!5Q); J;t==~ҡI..z7-*Gz0+PO00%z*NaeN7Gi~?!4zì&~|u  5AgsgLu&hqA7b&8<ؕMv4$ {e_)ba\),2{DRʏw6tt;:_{wdԖZn6v',λ#NwN?:??<.)_ }'&n?شQԏcHӪU$"\?;}9x~G렭z0X\>r+HO<[{(3иXsY,>>"|Cd \R( Y l-_ F׋syw> ֗.+*)?߅ >y 8 5ْ2#WEC7oϿ#[3ҏ`X6+t{ 4iPhՇxoC!Eqy5",;. E#"~TY`W2'G$T+hsWuCN]P3c{3*;IFGx~^1a/ty}=Kb3mqsv [?{ȡj:iH-`xh)'R3O#-g^ 86SsN SӞ%'vrT0Jrag_4yvy%p68]ʰנּ4! vEE [6tٻE?%w:o#ZyT/7i s kmly#1KY\ 辸{=W3Q[W-m/!#L.dQ83ؿ@!2ǹ.dYlK?W޹`|buIC*WOwx8ADvyLxEҧɞ73SdŚ2G vbJG9+o5v9OtiACZ Ȍ˫qhˆ;̚{M6D 8]~_ Pk~q?erDQ~? 2[8]ODB5 ~zD1Pqѷ>ӍHc@ ?N?lK ۊ%K ~_ ܮTRHJ gvCƾSָ'@m{l@7VwoWrY ;?kVto$LUrޯqڛ[QV>tc)śkK&'оdۛvDLJrT̉PV)*JWQJ+^ɫ4iBa[ȝ ϫ s0£'PKf[2@M߻N{ LMGl'O>_,q%h傘ro80Ik?:ZF9vNu2K4Geq<[t[QKxZj6;G*_WJ)O0w/؛zR[6y8 wϓ %bC*@qQN`,&ؤŬn"Yq`ɜBE 1Kv6*e.T:؇.R}{< HfVڵta4GoqR# ]PS5FIҍ:rx*6:GF?xXxDX#b㼼 7*EV#oL7pvo!ycƐ?1! cmp?c+crFq/ X䜍q6;; y.B54=^ ͧ#sp uVGջ쳫Zɂ` w2o۰}~{00jp2cxp,ܩX]8@9Qs&x!<̊"V3V0;)]r?H1ZA*SP.^H g@.; &O[޽%|U$Ft3Lbt䍐3Bo=-R-wfS2%egco5w:ӓћ LN~&x r*P1F//xmWIPhKB R3g+O?H7%:,iZ s'^oGGoϏOU_zRw霙ϙVbtI-_7H ˄s;AP%h ^ ڝ ڝu =;є Fݫ&]  }~͍sK z =uUi }fu;;{̢N$Ibp&3~=j(hCOpՏ}cWswV>8{;|ۂ;؜v>-L{5?+{&/w>M}xhc}[oy;H~Fq _#֏/ f_(b[D?q$#d y@ 1fo%7#L}F#x>DIg' /`pn:{;lșl{rE1}9gGd}<'(;ǢH=P1P=4*o/'Nֿ;9x|v}:eG/N/?o3vEL58ًa A=vE(慠gOՇ!H/*+,[XGw̱ẙ~؅={{e8cߏmZCƾQŤzяQÎA& W9q\N~G鳌`oă`Hu,f]qSy2>B~_hUlȽRz g6teLVV5~ }<>gVbשlq)ǀa@9h6<)8t.//ڃ$:9X IZ ,@ZnP}tQ$B}TG E`;89ؔ&Hנ?ռ;*ߗ1uU5xM1<=>Y`IuE-Q,N\=;'GREpW𲅩95dxcqǃf] HMM_ժcwͰ7EomX[VW 3U/ o¯ N ˽g ^.2s2FBa> g0y od P=ũ R6XK:i4oVSs8σqhVkua)1v9ttUprOc@}a JN}!6}K8D\}O9m&74.҈}mgdo+e~k:=b,3j E$oM߇\ g]"#pib[+yd*RAtz‹+V>uL5=~yng/Hи82#99Ø ~]Co(UyC49?ibcAmZEx`9|Xb=ƎA]sӣ ZGSM>x4$jJ~`h%?*|{_ʢ#{W>㦈4=7gAІΒnXIKHjbu򧔮\$@3b9ґ6r_ږJ6hM/w9q,B'CO=Z/CsTu -I\ޔ@.$1W%[}1Kz!U~YϨ%,/l͍](AG(~n1erNҩ0{[ZAF,:VSE/k;G[\_WJi)O0^w/2.Nv}-<;ܲɐ|GkO;Bj;;2I+Y܌khSOݚi<ܱVnQ_h~뗽iSN*Wi; jK‚F~ji [J57rox3zltw‘1lvWcņϽI>KyynUDFy-__5H##bG?T#<}%JE3}%yKkp{KZ%9yK-ie;L剔g"Drۄ&_6! Mm2D }rgݭFD1NnԑÃ"U yY˲z/Kk&/ ,-{Yڳ{Yee B~򳐟,k68,5G!?,<-Z򶐷-m!o y[ے&򶐷-m!oK5oK{&o fFǧ틽ۭWv_{{ ?;Vx6]ѓ.&"}7֦ùWE sNlwIhtYb$ypr]60okG9U\۬rV֐揞0NF9w0$_A~C(_+H{EHl6߀5^gMJj4!ͅ-215Yٵxng2y"\ .S26 $4ϝYFB 3c=gljf0UgȢFu[{G O/x?/FIoېf1 _ b+"{ `>w[v,R^;;< J$oX!$ovj.X5¯&)YID*)9XTlB3kR IR^ L+Սc2k撨n +Cj:w;ͿxvvL È5ʦFFV`~K]%yVq=1d5N0׽[Ws_UI̱YEnxc}m,"is Ul0s7E5T7Nemڢ.֩&_ЕEԃTy}c E]UzBQSd"VITub+LPy CMq΃F|,PYG3H1vZ>gXv Gd B,Ew#Z6K›QW–&,?E 6HƩ&)"X!bahn`ڀc-?XF 4fcD ,Sj#JȻFPUB>2}lyD<|?±\'-@,aMͬvx}Y֘ 4rrҽ̫[Q@_-x$`kbnoPV&ލYv9do}IZJ]KgY}OVN)#sObaT`z:ŷ{܎j:>4R!UieT&~\ښ!) ]߂ɁLsɰ s?ԛĞ|<kw{lɊ7-&_1A=Wjg*ݵX^>w%3}/ưwQ`d^kØdgs prH̃pL̙bmCa\5^*Vrԁ!S~OFryȬ=vZ 7 ޫć/ևOT 8M57JV̊@Y}REҐ[lYkp,/>jAsN Uo]mN-] jR`\%aE0n>,Dj$.C*Ey%t Ϝ(jb6@g#D' V$jAHpdR9fFx2\TOȘGX>&|GӺ«xX? BWI|#Z@rBӗQ 1p* ߖAf,ٷxd A"#Ḃ2Gt23q#>|^DI2KCyZdhb冈u(^%aE/ U*HaT蟕<=!Qg谤Ij;̝x=G#z՗^k:gsDXt=vR 9+C-a­K bHy9X0'մvJR[ mvЉ9Rx8<%R2VY:be'&ZT OYMVs9!*LFVܶsqn Ps_ap{bd4 Y0rtv` n[A[ |1%xOYQЈT+|3~J#š5Tyd`Ӎ{=U;k:g|j' gj\sMCvcSh^ot]b^XveWmvyOSvqB~0lFWc PY,ܛ]0{n; @s] a7M5,s y!VG~h#Gَ|_(qy*΅89i:87?YAI~?+0.КqWzg*hY4Snws *r| 4؂ʃ\]x/6fWC*WU͵[:cа͗*a'\8xYzaݵX+ .zA2[;$-,9"ל+YY(1y0o<Ӭ]Dn鞚8+K%\dd}5Z0cBYPk",'Z]7ꦑ0F´YVJ6Ӭ5M>6CMLL󤍔VʌՐ˲h"bi [<~6P}ʠ OF ` `gH,N &bW!,|ڍ O O O "XM"` ~ "XeLy'X ['Xx ,<¯`W,F_kB^"p*Jr5n R@x" ">/#x'r;$-,9"'x'xXI "  7T9DY ""`6O F $@ $@LgHHN &bW!H|ڍO O O "M"@ $~ "eLy' ['x H<į$@WHyxgm:h=k탃W~. cϾ`0矼re7¼Χ~YCk};Opmww_?xx/(axeUEl4 'nGb$aZڝ! a-Q"fhG( wq7"-]G=vy{ 9 aPz?((-5Yc@i 'pڄFߣZ" b[( ~A]F/|(89ӗsvO?k&,DMUCáߏOorOlggݧSv>}r6cgQX1Y h O4c]܍;h^T}brbOjZ1,2 `Ҍ#`V>. /K~njl2xdxRj<P=rk C<(J2^σyP|g+OQ>A<(X4܆ʭ!Ѣ|It |ȣ|Uo*yh'hy幁6@AY=(GvFY=(e(C2ì.ՃzPV᱘>֬6RVͱVRV 1[N͗3e!x|||lO OF @ @gHN &bW!|ڍ O O O "M" @~ "eLy' ['y <ȯ@W<?j O.@sXF} y'y#/-#O0K#eBF`u|Yy/yc#A0#O0#h 1ZC#' F~ `.=>Z8>7oY{LPk$0y'0N Lm+lL0L L Lc7%0yl6Kt`򇳂f=-:kO;V(پqwA؅>yxgm^ޫ֫W{آ_x&L{5?+{&w>M}xa}[oy;H~Fq S_#֏/ _(b[D?q>Z#d c~`J 1fo̎%7#Lu}F#x>DIg' /`pn:{;lșl{E1_`]$j|=~|7x藓'bߝ<>;c>#GϟΎ;"bdɚx fE0B"nABMnFC% } d(.Ԓo2v#;YУg|oo7` Gc,cV{ؗ#eu X(GWԗ&+*wJU jP QR+ 2 #fCꐎsz0t8W\Q$ۣq YM xt9y"FZXd OJ1B 7y|cqZe7»tަoܮi=qQ7[tAsurjbAmQCpJ隴 ,3JaS;_ӝ<+$C:}.-FĘw_v^/ "I[9!n(f<6y^vZmR PFgg[ 0z5+s 2C ښq?5ah^E 2"B#k6EZ'x2&e\2iB8)㤌2NqRIxe]UQH e|2N8)㤌2f|"eqR^+V(KF2>MSH'eqRI_3>2N8)(w}i)J1iB8)㤌2NqRI@e\kۅxq̸*Dʸd)4qRI'e5)㤌2x^̸|\3 2.A4M!eqRI'e|D8)㤌?23.njBKF2>MSH'eqRI_3>2N8)Ō.Q2K<15i6tpRi )ऀN 8)k'RI'paki>USH&훴oҾI^3>M7i}Ep^o)}M7iߤ}H&훴־Yq 8/A7~OҾI&훴oҾ׌O}Mkyqo?CU'K 5\14iB8i⤉&N4qI@M\kۅxq$*Dʸd)4qRI'e5)㤌2x^T|\ 2.A4M!eqRI'e|D8)㤌?2$.ljBKF2>MSH'eqRI_3>2N8)ƌvtzs֢=5\nORI5'՜TsR׌OjNC]Db |rN9)礜rf|"圔sRWƔ%Q)3H9)rN9)礜H9'圔U(1@I.Fʹ RΧo )礜rN9)k'RI9'|ysS25 w)`j9[-KThmg@r)5<})Bˬ^X!ˬ1KGF. ՞u6vgt/xl}чūw.\=V>8{;|:8:==xOPv| ҅Ew+P1P=4*ЏG|89[{G'o|8:e~tvY)#3}L,*o^4H't.B5#y!?|+)C9R?`|EchezjI7<•}_`Ē1nZ/[ rvT՞\|&'|G`N\v#Ѐ@/bb%op&&~u*oWz`^tx7"]Ow0o"jMnn8A/W7}M<墨avaz3vIRMT%B)X$ :!rqto; Ϲ] )6`z 窚qXt9;~|c5;{(py[ǜV àLr qZN >3YfmhM߯?Zo,_V|%hn5QK1Itzs f|%p4 kQ |$OJʼvdGK8q Թlf 4||^_X[-Q!lj| Gu$nbD6,+䣟P1Ƌѵ% n mr|x8+5^ؕ~f5pP2αȦA !~,Ύ=vvΎ0</7s~+iRU%^ջd![WwaSMAE5+A(=5ƭX5ȼm窑fG|Ur. ZU0'-3heU(kk&GSF}, ,BCk=Z56CisEX5 8mV1(x:xDm5\> ]W/p3p3 ;5[LLjQTV:[ɹejh"/x>#Z5GofqT<6G fRcS4abY_6,Lw}-<;Z*6%.W<7=O?ѹ"VTy;b\*"ki#d(P#@ȥ"^$1z2;7+ld={4ěpܽЈ-,u -؁-uxh8IQG~mJz3R:NxCa3vIZNgWlO_>@xQZOėZ5b8Ȳ95=۳MP^/w?[LnM9sH}1!o ycCޘuyޘJޘ1Y?f<2! d'C>ɐO&M! d'C>*>Ù|2|2u;HWϓO{>ʜ{E?tҘ 𘃽cHvOŒ5X5X5XAO5 Udb 5(5(PX(N*ƠUc0[dc G1Цw,;))C1S0eL˭S`5ML1\ge y]B^ey]e%G!˒.l|/{! ^B䳉|/{! ^R?e6e|/}/{B/}YAޗ'}9}Qytb/! `C>|0l" `C>T99xxLMc/+ǽVkC\HHU{bҘ 0 i?Qt0wmNfqq7[ S̬-aAhS.ršvՅ5^}&LVM$5 6&[aY.oW{9sk#tf':%ϧf 04%e<$دcs?}slr/!kZ wt1/*: A[PКN19]-w;,ZBń1dpI[W[*x*)Z 1C.?d(YFBo5 ].P Yhnk46j%ث( &҆kBljz {w}XbSSYd$_l_3F㆘wy6qpZp4vc?{ -|q"g`J;5U,JWꔬx$N"IBj,*cݙSe ??oƱ@5sITO_Uӹ'CoUofZ?]FMVJ.b_Lu83lz8@zHF]' u\b7X"r7E ba6om9#t~N%:!zk lp{Pe}Z._ЕEԃTi}c A]UZBQOE Yiim1*hĠh2T=zo2e,Gu6cAG:Aڍqә *bjau,xeoӫE-UCO^Q5|E[Ө a+aJc"RpD}.XƩ NUL,WCh%rݨi PZ~2*+8i~&LW*!UB1|lT ȈeZHRͮkrTX5]4e5g[c[I.3ogG}yfwa <5gbo6o%qC15=SGb1]_rx \0;-vь=OGd©cu,XEP}'cV sW<,#TI:+3G?$* %=a͎F9QŬ(Zh=cҸ w2bᅴ| Cpj";n?J{eC3O4G{ E0Vq.EHA=޽=glJOe͝o,̪2pS,yQq)ɻ9H? jsj.lAu=Amz7˩UF3jʞHKg,7Ke "l '<[c7K6[tE^1v t5F!FV&dsJiV\"gOM_ݕJ%SD-eM1U.U X&(lTJ}4lG2,o=xJH%TA4=%>xY@00F 8}_7r1{eﹶUͭUa ls jb+ROkW[ +U=k TI<͙iTn\I,]n|8**+WbըHf0.Wj3Mh&\<'78ɓQSn*.׼6{Ѩėp[^`^Ɨ)a%ƺeT3CN#X\&d1pet i-ua?(JIf!VKإdD]vQ`Dg|]T ~YUNf X['d_<ͩq+WP"۶+B }1&,} 7UwhC Jz.dpOtw˲cZw2bᅴ|dz<#"O[޽|m*7. k5)y#$#̼G-ADpr{ H(_S{4^4;;9Ur5Ŧ'7˦SWAj=VYe+럕<=YOKA 9ӣ^-uǚΙJY ;fUyȂy8 TWDJR"~]!ݗ&S"=ftb -fXkI}+ plaE?f{TD1CDLފs)aE)M02'c H ̼^Y5}i ij?8ոr(2١<9"pX퀊m̔L*-.KOM\^)+Mѡ{I',tK8/ a7M5,s pO?}.6rh;o1[)XpVqn.ıINͅʤ2|M(*nOК }pW%gT.ùVi|^5\='HwW̞U+p` + Ks^NʮV݅UWU͵[:cqаǗ*a\8xY{z1ݵX+*bLewH[XsE ]WnL%42!̝üU, U@)_ዣQ{Z d*]"5hIXc쫵 3.e &Zt,i41O0YlX )_CH:=J ~hz?}__.z^{NG\_'883  Ű%o)X$on2j~8=.zN>;0vyc+oa,.f6,IAM\\ftMܔ+Z܌[ND5Vv~9#skH̀s4|TD6/5'g"`yc':}&hB }FRu! )qbk+L}3d&sYDedTVC*vYe$Q8_\u4p!`*iՙ5 (|1JC>N-B`貛Ť!ÀiTtX/[F_kBZ"*Iq5m_ x&k6?'x` ܊v t` ` `=Q'f$ 1ONߞ036:; [>?y{abw ׫}p{p~n^v9?[킍c0k+W|C/Lp;|;5P߷$z 6Y{ww%󊽏w2k8G_&f^%QFë0~$Q/Fɘb$=%(A܌0!h%a}\.!FQ{.{!g!d~v'}%̛jid'3Dbd&ǫI!OG!+!BV6}KjDt}ODkmt&%m3`Ձ?EoзA|VqR^f&6PtzTX}3Dp`[6+y$^RAtz%+\Vz._!_Xhz )NBWA>Cʁ#9Y VCo1[9?ibc!(iK:x\Gceįq3dt=L/J L_QG^93*c ~ɇBݧZGboWvKw3 ]@Js$,9l4Ũ-V)zf˹ ZU+(D6+ԶUz*y'|Q#c-x:n R|(иi(ZD,3t!*V^pTCe>&%-ZnWV:`K_@4(ũ Xj%X},},mTe!/ yYB^5ey^v%/KC^%zYY k!_ ZB򵐯%Mk!_ ZB*L 0\68ݹw[=uM_ٹbh|q3MQDmjIF)<FQtbT_nJ@VK4bhezv d8waX[`.6E$ϸsa5({weTt\p?gVBAw@A.A?(ǀ(,]LD2?ż˽*(]XęMfqqw\֟~!JFBhg݄Eg*%r 2pN6G&7ѭjrp`ݹevˉuAPs4|8~(q(}tS00|ė$qX= o12.}@d57܋o@C^b|Ee6wt1*NT&u5b>r:Ue19%LEK[7˃ARSmq,#nm7* #TgʴȢFu[>ABTl(  B|[z=Zd~uoKg#ޓ| ]T|bɎPdao8`Ъa௘1‡'^SsQŢ4~5NɊO$TI!Ƣ&ڝYQfHʠP`nt\3Duf૛Cj:(P=՛+nqg6Ok@h^! |[=bo-*)-yxPz>ƴlƉJy/A׽[s8"#k?*(6<Ɛ%XDw_o`Z7Ty|bg U捓]絶ꀴT/ӢzA꾱*O=Y) Vb" _IT*iPy:,d4BM/Y<|ǂu4cw*ɫsn/(;|^mRnuB,q7P_h,m:4>f6)b_,EGԷA27Nm8rq\=Pol Cu, 8_:QUYaIc6FPaJzdT yب cJGF0P6(`Fov]G8뤥8颙/p=K$Fmz_NwqUyxk?; 3AB.𬱱6,/m倽9:{kd5x_pw <٬>ͧr+=ʘ`j<S q;bl:G)>B6[.|']ښ9S@psM%'30EڲPo{\Gyb+*0f oZcMBrTk3g6l}Kr{d_-aa.t΋=ɼֆ1\%v ҔvɅ3ŀ,8.c/r;j.TZCƍ-Yݟ{V.n:W[qN_-kqjneABv]Y_ 2RCi玤nI6Ӎ˫a9uyuUDB%* -"u!\M&VV#Iu2W)T.+Hܯ0Vˢ{l3h2۶$Xi$TG*S\b-ʹl{{ n4ɛ˨r?%" aAR_V "8~u2FhJ% ?%ʅ/m;i;W4!-2Po8DƈyBvx0{Q 0d8t6VY'2vߎ? }BL,`{DF4 `@x7Z%ʂ` w2q0~ {0>0⺗p72!xp,(X`DWWQwE+( mv<hωfEQOw7[ )( /}LT-wQM f*cq\#& 1wk:RFHF əy@i;~)lUS3Q1;\OCrW&n ـk?Th=fUR!QѦJwsyv6kCML͖vˌh"bi-["x/|lO OF @ @gHN &bW!|ڍ O O O "M" @~ "eLy' ['y <ȯ@W<?j O.@sXF} y'y#/-#O0K#eBF`u|Yy/yc#A0#O0#h 1ZC#' F~ `.=>Z8>7oY{LPk$0y'0N Lm+lL0L L Lc7%0yl6Kt`򇳂f=-:kO;1Sn_;7vzY?ww[Zv`Ukz.ބ cϾ`0矼re7„Χ~Y: `};Opmww_?xx/(ajxeUEl4 'nG b!ȁLɝ!ƚ a-Q"fhG( wq7"-]G=vy{ 9 aPpy?((I-5Yc@i'*ڄFߣZ" Cb[ ~A>]F$|(89ӗsvO?k,DMܚUCáߏOorOlggݧSv>}r6cgQX1YO h O4c]܍;h^T}ֈrbO$ œޅZ 0[v~d0+bazlh%?blj^vrvwd}+ۇ$5ZVׯW W[Xsr@;9YN+_G] ;rBiR& 4HWUH]D χRGx%᷽čj}!ҹ2 P' mfrY כJZDBA~!s<7aj5FNZ]Ï)lZ>yM}_ WT[o)CVA*.yy$EKWb:G<`.?`䖄 e9 g4 X,B[nF)DBeק+(UtU~=`:䯎{TU yIC)v]y22*M`\Bċ-i~cVjFB,%-8tmܭNr2cZU.Ί6Ӆۮ2n?SSh"v}qی:VƟ`ևOO}h_Rqp~쾢(?(#/)8{ ]sG=?0@]S ?6L r+<鬙 VD) ]:*VAդllJ祐UMF fhHͱ)K[qxs\1tR ϼϖmT+2Τc2kX| 5O{bx2`W q:8O`rhog 4 V !q"IW)7ŗC5b[0Ģ nSgu=ux K:hs ATGcvǼ*𴉽FܳB~|tBCE54(ߗ)\hDFj˧-Tk&G2&s&.>'~P5Qs%%%~5=9|`{=ߞu@)4<>C"Vs>VG5 + 0r86[͠΂zs T~tFSզU/ f, Q]QcWTm!~ѯ̪K*HsKFk:1i!R$ إA_DD clT! >;_-=aqk(#SPꁏ"֛%e5Q iv!R@NWJN'1Ġt7h^--L?dqWUBx4h'3RI ¼/dU2S 7㖀 1(MfEٓ+e=51n`AK KuN2<7)y>~?=)ְRP#imx7WצןSR Fqd:yx%QT]qjNP-hz?Re>ZZ(pJblfuX<`H3l=LFcN3c0Y->hI AlO[,&^p4V[.mAI:Aw0cPKFdw`V~༄mΎ=`ׁ|(q}ZMJ~T*U 9lǿzW>4υ\9:KNJ$/DQ [S`-j=KD 4#s)I(W\UQPےW)aaJ |Q#c-x:n R|(иi(Zd{Sf]3t!*V^RиTCe>&%-ZnWV:UVU-iP>*զ՗5u_£7 w:_WJi)O0^w/wDv}-<;ܲIșWL>3XZcgR,e!/ yYlp{Y  <MwդBJ̓{"'C3nceK9FO'J(D*P B'xF(9(xҋN@/SӸ-5 \_@aO56Yn4 - -ЌXWQV_<ω-ٮW'ٮ fٮQ-:<ήEହC8k5M1ʋ^O! xwyG|%+Y_I!|CJL %? ӄ&rӄ&4)`8 |,U|,Soc! @O~z ,e!/˺ ;kXElNEPEPEPE䳉"("("DqW)`Nw\ge y]B^ey]e%G!˒.l|/{! ^B䳉|/{! ^R?e6e|/}/{B/}YAޗ'}9}Qytb/! `C>|0l" `C>T99xx<Ƿ~?Wkz_C\HHp pzDNNqG<_AOՙ"xCxr.|U2Cy :W YH~rʒ_|]0 /}G~q?_y3N7w=[x͏7&s87搼1S{cCǐ?168119jcxd+C^ʐW2!L>+C^ʐW2ռ23yek3ye"]ƴlƉxA}a :.rCv|4v6cHkx !Kt=v: aeZ+DW.AQjg U捽>?': ! rszoMV8: <ț!;-M-PFMj}Y%5AXС8fvcNu1y|ΰ:m÷U%&!t((RtTTI1K1O{jfi9 qji,ZI0T]7,]mԱ sN1a S:#JȻFPUB>2}lyD4|Z>±\'-@,aMͬvx}Y֘ 4rҽ̫[Q@<~gɌM[16yilm܋^#sh$]L&e]>[I#Ƥ[4'6Os'|/ͧFM7M Q¦l,.ve;[kSk6HgK8E*Ӣ`{ζ F!p/2֎ $Qn*¯[n_ƈ,AG\eT3ümG;m7\Ċ&dôei-('~!Ib;ڎ}7>Fq/ d䜍q6;; y.B54=^ ͧ#s@p uVGջZɢ w2o۰ΏNZ=@q5Kl \A}x5|\t@B?U1\a"Sl9ܘ.%Be/݋ܷ8 }a뵑+qx[UЊ_ A*ƺSV.~}8$ս d!r U8?t^OΚZ k't3VMkB*У]`1umtW.afֶ{Uh[]޳+dhC1՘vfWG/p-iZce؍z$zM\}C ]Q+C$Q<߹) >ԽYų&y4Gs=ӎ")p'oU0urtO9/9y7_Zm.OW+-9ay4rjTt.ڙxZe7\۸ 3|9}&Wa1]zBd9/3C2ì.r-纸^*qYvV3*KF)_ዣ-{Z d*]"5hIVXcʌ .e 5&`3;L3oPZ`&d$͚H][c3F>D&i11O*Yl-܈__G[KPHw_.! ԝ@ݍ&;;* IuU ԝ@aHKJ+$PwuO@ ԝ@ ԝ@ ԝ@UI;A꾌)ON؁a.Nk;D9NƠ@ a ԝ@sBh@9C=ZC5;APv_v'h2\N:T ڽB}1v hwv'hwv'hA"hwvE-bοz4Q"h*IhCv__sܒG>x'wxwyUZx'wx_mde:Y]DNN(1I&x? 65;?i_3J;cMZW?]^󟇇{azj{Z{{h iaسq8 '\ 0ydi2|8cEClo5zd+>Gbd4k:~|`0;zD ${ %D!P/'ccfg7C x U(aZ/C4 J><]xC܍#vFQ]aCdC;O,9~.JxvK}M0P^@imBH -on{YR_ᭌYB n/#N>Pe9;'?A5?E&$Pǧ0y?rOlggݧSv>}r6cgQX1Y) h O4c]܍;h^zT}rbOºzdzjI7;G}]ѳ _1]DCƾQŔ.\d Qc𣨇]?6L tȹ| Pg- DIA c׹uMa˜ LxxgCA5  pƃ7j@9WM$/̵]-wa_9tha\uLYsKqhD WeP~+3 +ݑ!B6ȴC[7g=pЙm^~|Ss}C|?کY2Dß˃}3wPܽ;(~?=Je pKеjM:kw%ma}y8{EJ۽I`so[%?T'6z0Sp$aQPJhUpf_sN^ сjf*,oR!Q~3S|z]Ӷ!lNr.Iq`.YYbn[[o Vhv+\0:Ɋx8D7( F͉,hsFN7yq!OM+|{CZH2IޕϠ% i;kAM)FeKȉnXW*Ҩ˰4*idy͔k`:kB 4 =yUlhi|Zowd/gw0!@-Ŋi/DwK~N-v+E\UWV:ZK_4=ŨyhuZN*=!c*`^񙎑P@'MPPo)yu뵥lp6pk)%bC[g|DalO;ic/IBuy["YH&YmX.dɴw]Cɛ,%Xf976GP$, ?ekxrFAGn⁙BWa4Nu.:}_Kד>2_rhw\9 WaK5"z4f#EX@/H WIGk }HqQPG^8E\j6 xZV4Sǃ{0=B"#7{=   `T8-u{CG `,X~! [5ؗeؙyQeSx 9e ]=ͩjoAZ٣}eCZMulsƛ hJzo$e~ 0Q-AS >+N%ƐK֑>V@%(G GR2LFŷ$eF 1oHG9؉2fLSN^E s#sψEb+og+IuU W[r >-5M*iYh^N<ĒμE/ t7mL" :3rLJ̹(#&D%g~ J,;#~E̤aBv'|vR9GlKm]mM/~/^-\hmK_:5OO.&9l(]؁3;<: 6j ..T}ӧḆ5V!&h3ybSfi*ghQH UNFIlwЗ07hD?6^Wՙ "h6߀ć5^)@ߌ&2YNhӊ5(ٵxޒngdN'NVjb #e3[vZ@NUX٘e$eDʈy$"rL,j^$#a/a|~:_k2.>uڢ.cSM+WO:G_ʫk(ꪊW8j 1oHT]떆r]cw*z|ΰ:mB%t7ڤN$=/>Q@|ո~n6mA}>f6)b_,EGԷA2X۫N`d9l.u pB[sdT`U6)7lx.H MRUB=6بc#oQ-BCov]G8뤥rͬvhdHng[c8ޗ]܍eg^ώ/h`vpB!37|Y>CByMgFBI#waG/7/MS~a,Φ#~4C, [oe1t, &L:g Hqr R2,~x2\-&'=5{̼JD&+޴,ƚ|;\b$-ݵX^>w%=/ưwQ`d^kØdfVTxP;1>E*ݢ{ζ F!<?%" aAԁZRxOcIW/&%fj巼AG \`zng{ێ!vڎGvMt˰L3:[<2N}|(vA202: +zvЬ;]LoT!&iz"#bOGgp0 wVGUlLeӆ;mu-yA`}`u/B'p?odCXSQl8fUwJ Jz.dO',;sYQ*zfG9M#FV+He  i_!,ez0Dv:i˻~TScco1wĈnpBCrf^?Px8lJD lLp$N~v~z}=9zӐܕa*u6$OAPe\s>%cF3`/7hF* -IШRA {B}1_:%D%MRkbīk,+z՗^k:gsDLXt=vR 9+C-j­K b#2M]np` PSM{i\/nmC/S"13oeu1$Vv(kI^=d5@4dm;w覰Q5#,FZY̰S8F^ cm+hK/Ӥ(SV8&:ۯz '\ HQ3Sɨnڙ57S' Xgj\MCvT g6UTk!kL*-.Ytnt򚇐ga61^ͮ _=q a7M5,s |!VG~h#Gَ|(q*υ=i<7cYeI@XsB~5w({褃 oCZ_bLlu_pg?sv^`_Pˬ+lL0\.JhdeBüUL9{j@lVB/JHs Z֘2km̯ eB$k@C,X3٪M;oŒZ`GdEP]ccV>thi41OlYl,5)S//HO o4 @ @~-+{$o Ok2*(&y<ȧH O O O*$@׀ _Ɣ'y%y'b1 @~e+c? _/K //D>z 舵Xk'yJ02L0#4Y&` F~]*W蟕<=F0#O0#O02050"yO`iF\ !ȯsC%6@'0yL Lƾv t L L=vS'0f$0 1^N&8+am0y~r_3J;ڨG.~ܝp?ڭgv}pwluxl 7aسq8 '\ 0di2|8cXo5zdm诗+>Gbd4k:~|`8zD $ŸDqH/'ccSrg7CGx fvp(a/C4 J><]xC܍#vFQ]aCdC;tO,9~.JxRvK}M0d `6hზ7,H)XVFbO ʲ?N}qtzzϟ$"QC@pӷG|89[{G'o|8:e~tvY)#3}L,S7Cd/q$Hw uxA7wnr{?U5"܀.I !C$Ew̖ẙ~؅={{e8cߏmZCƾQW1yxx$z" p]W8BE0ĂYXycOi׊u+w\/$[y ^HM3M>S~s/2y_Ȧ6c}KQ{bՏo2| sU`m-V2TdDӊ,nbҘFmյZhzPvr_{,SY+C ǧ_ ðWQ">q{Vɞ!<ͬ8gb|^_X"Q!BhBHbD [^{Т'TL){d4%btm[o[oǶVhX.{Y|LCo<"_F̍LD^9S#mgށ|`q OMJT*]K2ޕϠ% iy8aA "PIݱ%$,Cb 'Ī\Ġ@]b98)jŋ+'5jb* )lefWe%' hj[p 9{grJu0E˘ @}t%ToҀTCeһ lwQ_ ^HKfPWK)ʺg[X'-ΨWV:␖jK_U˔,@yhMVNQ<3*`^)5%PI&NE] rחڲiؘ]tǔ tbG%=O bPMZ;[UTJSDj#E"p..Td]u>A}_;:ZtRެvh<7M8^W[hD4Ro}m^8uh8IQG~#Ϸ/p?xXX#bsos}R77//<[~nk4=?e|.S\B^ׅ.68..9 y]uYe|0g`C>`&Am&p.c/oi??[^r !.$G$R[\i*6n,VFm8gl5ІNp+Lͽ:]sua ҫ_%ki8|iDjdZ}e24̀Q>_NAu2JA_&ȈdpqOͯ쾱.N;i8NlOΞ%:۲$g~P Eȥm BP*|jG?$auI~k=먑,9JDbto 1 U6"6bqz7[ V&8@;>*lpr%$m{[ EN)iDx-DlJ}_^=Dl+(ŴDeҚ/LʲyQaYY G4|*ҡYWuV+_5ʊXsK([-j{cuc(1TmπeיCC/V'-*i3cp6WS#D1r%bˌiwg<~OۧɗPW {[X:nW&XPke'_upI<@5ɶ,NhPm'mԃá.D÷E -\7Y.Yo!"B/YB_csמZ=qV?G_ /"{׎ "`7oDAnz[;uFUEYO"nDZǶb-~Ӿ^2MKxqآ /T^0R\Ǔ16(oYբ]Ja> h-D:f&0;$G3>5ń'HhW0 i2:7$ZUDRs6#+)qYdxO9חwaW,8N#OxQo]]_]ۊ%wApħ(Ϫ kZcXPQW^ !PCx!I MJTAg`~j%\ifLBމKG`5m揓˓7ק[Wi/9"ϑX|LNqnbVhY ]zDp(ǽR/WE(xNxRoS^p [sm<2%phJeMNtDn-xhB竤f 1]'8]ş~H;[]n s D 0rřWgqz M58tVB8΂@̮V4¿y(8IΰNc4"I>dڶ,ܐ[2?8{7nS1q& t&z5.ݹlفɵ)T\/{.r!u;}-/_d[aWxY>x ڌ(tb/&g/n wajiFřXz,lUyxKKv:yv8:KqrSup?)DK0]@ ^qg8:?rI0:BNz`< a}5eP'2{9<{oЩneB6b:2a',}lU=nDi'$:-$29$0EasW\4] )&I3T: [37ncwzͣ R݃dd`IvZfl-d\rBk8EH ժۮMF6Ө4l4dUD4ob2J2~Z3m(SthkaxPQ>P?gPxGXx  aIoea•I#FXx",<ӈ   7*oa0 _#,<oa" ,<7H m ?2OEXxptm)  Y;DDc@""8#8<ïm$TVEpx}s1`>,j^QiDpF05 y M<d=#oE^f7sB#D収z[ Zp$uӵ-EӓMIKAAHF(U| ja?ȵ?o: qoǧ>z%琼"6m6H*]2opz,:wo3oaMm$]-j$ts ]t'xD7l[2'ǻOr];kn-3quKW(ZܞXs|]{kJnXБ+t vQgb{xWkr vmm/K;NQsWK wE:o6]n-/`5hY>]ϓ˓?Ӳ{L[b3mj1/hiO/Akvv~vzꊼpINǓ7O.O?\reY@L=Rrj-CLץMEyb_iig=XxAgZ.j\.mş$푃ȵ{8O^>;z7]B'Ũtuy|.؉z)I0OV_<'x&G@_=G/Q*bLڃI{CbҞ XvlH0cO{0cf ņa؃{0cOc1cOG{Z3(ӤAa?t;>-zs`S+c/i`cD=f,=$KPl1EOS{N#B\brjbd+}u`uMa\a.'KOpCRR# f <ۣf <3`x0O+͌a 3`R3p1tj*1<ۘ;^3I#}gf;uYw<d)w)۩xcuZä:T&Π.:t0өwBB"CSt0t:NGcܸt:밪5NY4U2Y 1ND:-!ru@@#j@ՎPJCjB#T{ kX[0`ujG&dp]jՎP4"T;B#T;B#T;B#Tƍ 40jG !ՎPՎP2"T;B7fDvjo⊐8ՎP`T{B ,B#T{$x8Zµ|֋ dFC2 `;#`{.̼؎k>o!`;7U`~j%\if +lGvlGvlo#`{,:AvQ&Ȱlp!l;¶#l{N"l;¶#l{"mGvmGvmAa7-DfmmXF¶m?@ ێܮt=!p;7氆%]GvnoK& ۥVO##p;#p;#p;oܨMCvno}"܎^.c/#p{c@nG&܎ n?0nOEvnׄϖ1u;4 ߎ(· c/·#|چO"!\ߎMeUo7gI;WC ۛ2RD~f&!|;2iefA=]UcAĽ N L L#;#;kL cD#3q?dqg1^şL+s=9?ow~/}9ϣa`/`x_^_|qҾo%<{VK\;Ό^m! God?ڡwR&\@{%3v׻e׹[~/" kjjIו% ޞ]]73`-\D-ץ߽b<#W3{B+kZdGx[Sr꽅\,?˦ûZ 3bۗo-EF.LiOD]- 2YhyatlZ }5hY>]ϓ˓?Ӳ{[bN0b<_>юޟ^83yᒜ'go>\.?~:%ʲ$:"{$ZˇNK;8WNIJiga$+ 3lt} DfoOڢIJxBgjqP !~1d?s~`~<~6_e`RLJII0) &% 1)IP14,IIZ0`uLJIII `2LFd$`2 c2 fPId$$~蘌$v|ZKB2n)vBǕq(I_Ƚ)rʜJ}`Qy0fh0fmc<hUt짦H,tՄ!G`L DŽ0flyh<0O"1Py4U1>Kڹf`>0flM߈,&5^lnla ̑Q;8]P0G/잫sy=b똇)~ŖG BW17dx&F_SP&rIQ'mXNP'aP;g?{ehx KN%esT:rpF/ƃˋ7wf9m߶^kڄl`:sZ0{8/.lSTdY=- \UlM%%x7ͶABa DFM|Q2ZH7?}J!w#Q^jxh:U|eZLnSC:5̽N=7zǯSCujrS#\SSBMujYFשFujdN$4ELXvkS YSb"׉J_(| ȟ"" =kvBL8k홵4F}3GPw#xoxsL,ܙge3_5CɏjN>=$n2=qmP W2H}BUGOWml=` KGp|4G܎'> 5d7C84Sr}!^o%;({m͝F$.$bU%#tԑ3pTd(- l@Дx_?=X0xT/'1UZc6Ho5R-cqKR] G6|D|lM GIn,M &xp xh-P-9 Szhf;AE31% -jm3.C4n&*{u Q֖5tuNj'z❌z@YS8r@Uagfn8¾Ŋ= "%٩n`pڨ Ul]ԊMR[^.Y/)/Xd,kyFeek `POYzdJHGޠGAf[ˮ :P#*%Kr,!u%$<4ݝ5Y_-Хd&sA?W  apX8O"@v3K&y|<{>y̬ vVho(8Go3'7S8$ ɼɱ/L~Gy\tOwuu}yvn+> 'j`Ϯl 嵓TԦ#v厤b&ѿ$wiS,iJ3cqIXMhzɛ˭+ߴӗO%K#. dhgI"XS%jG9r.C\rlM qķvpdK,$∘ kJ751hG(%e2&2T"59a3r,jV&Ȋac[W`RMe뤫K-t *MM[ s&Cci9&Kc`J\C I}K#4R]4x)#&jZFyřXzLl=+b3Xɟ!Ⱔ<}HOp%,K€?;}ޕ4 zu= &؄$k`&W;T,.Nȧ%=9go ;6Seu.s`ol}q@Ps:cG]Iʬ~=dl0/Wg ayi YTKk贐m^q韔EtAJ_NEqly% qex&i{L2i$+Ռ&EԶYRB Ju{ufSh! 5fnJ2Y2M̳;&@fZ (\1ӎWKE˝R?/;/|2[sqer.P97[%*+>' Džu47}V/^\#2a,AMdchҠTfhp[}1ld6kyg#iObl @7(wk^IJtW¢d~t*7_Yۓ8$]cSna,W ߛ-EÒ~N@== +n3{9[1`u#g_c[sNW+dvY9ʞI;Lm2cf; D?vX'X##P[u(q;}HK퍂H*$Zs[iq>a)*^,?IaY@9 ۳Sq?yru`6|FZEBzyfq`迲>} Fqaݦ+6*nؠv\mbM9aˇP @YfT;CʴL P]q}еr=~j/ ^¬қ[ =q0t X&>gY_ހt&g>)`Kjϼm(KKefwNզ&`#ɢK ?2 y¶ =j{yJ_ªtd`B,+_=gf9w>b=PC- j@.3D(Mc9뇢-.7nEE ..bOr5U۔T?ѻ[KɥǽpC%rNfFd]p$S`zɮǡ$FC0 (;#({.Lʎk>l!(;7U`~j%\if A+eGPveGPveo#({,APvQ&ǰ_Plr`f8=9UZ N L LB#4;B#4;Bk ͎ctDhX3@rAgfgW-^'s5}{bV ow?~>F0st4< ~x B^|ǕKH3Z}X-r83{Ia7rO!yg;_)Elu$,]2oN[Xqɰ6ޮTp({ķ?8t%xGta<Z<xw[K{gͭxF>ngV>'ܵ%̽{ !oac~&Mw,`/&Zm!]'0JҞZ#e(@tyj֣-вϳ?>|&'ɟ''ןet#W| a:x| ?|qg۳ӫ+%9!O.|:?$?]~puKȕeI1uDH 7Jɩ33^vp6%eS)xSgQ>ވ.mş푃ȵEe =.B~??" 2=I롹 ވ̈́L`tn*`tLiy=|?1\?d,u<0Ta$M; *ނ@='{k~ ; 1]5˭N8Qu(;)N<#1QO2 'AWB{k¼u~\O9nB7cP(19Eb0 OJW[, 5QqIƫ( glsǃ_\QqJ+[{xe@% XJg} $Sˮ䴽c1j[^}ʷ\M ]bɃ~Dўҽpc!GI ې"`א l*=G*˸|EE"1 CҩYLIh#!Q Eq0H*C==R$aٕ/$ԅOh$nH!>V7~`_>j-;~znoKn9/0 ̀/Z?fY}F3yK45wB7d8Qx*oq~vC*&'9yh%RN6}jK8 6wiКs,^ R%>A?i[TLALռUG/( Ǒ.ۥX$b.9R0T-(yPQ侗q3svFg0 6u,0^N6>\pȶX0{xd#v(lb~(PfPA6rHM¾':5u0/ށ2@ȁ.t ](Bis yPF.%](ksDi)HAG :RБt#)HAG :R:RF)NvG)1t:RЕt+])MctMAO|'>Ai"1$=&JX_*|b_3矱>oOAZs~zӣ!sOO{]J,ze苉/&/1Ao zc4@o̳ycbT)> d'>ɠO}2蓉'd'>ɠO's's9K \Z OѰy0U|Η&(gY?p s, Y'|ͷݎbDUf¨XÃɄ=9/,.~opre,:!? |VW+7٢G wy5]YtKe. lGʢ{8dP Y;kKBԾ8\je`܌Exˣ!IE|bͳ =Zl:^B|Iڍ )"C`{Hz۠hEh妷=nuཽrP߶Dwhk_ݎ-_ә&ͨFg[ſu6{-Sw_I'ȷ whBaطV)fc22IdB O?%ڟ}r@d+ @TA`;jϩ//>!Dw9k bFjeyTXH)S=Ɨ/zMwtfIJEoǓk2#~ӦpKg5/[H >FGQ'3@ÐO p Ks9N0nw POۛ?~wt0B_%qR !'<;GJܣ$ #qK%xo#q$8JSzQʍ|L%L%5 5} 55mѦ6RO淍ZYn/CoL7&;GWǠ?1is?cT)#> ze+^ʠW2蕉'ze+^ʠW+ N+pDo⣂D߼/ 4Gxm 0QQ㸫6D#| 4f˥,|@}jJW`S@4c u[[?=%-:l紵F:s^+Y8ZL_tW+Xz[?nA6ob)pt}A-Xĩ(T7]oucwmKO۾}gTyUTP^:m[7f&Mtl =SwVR~og F^WT"KI jn/Z_*C* ? ?E wN< <.T&:G0H'W{#-~3NV6]5ӿ2LXK na}  .؞\2(A  6x|߆^HB8( &$f)a{ ɟڻ|;\ (q,`L$+<U^h6j5`zm \F ;#*{Ǻ*׈ YdB,5HRh!=܀x.)qk@!]j3B'ռ 0LX6-! ~;Hҫ ?9(h/"{a2-/<,")Ux\ۅ&vp)$ PMiNmhl GqN'j>?՝<=9?=aã>xGǨ vXG}h>pӧ"Oa\뱴{Z?6C`|aQ=͆jBiFhWt*q؂. }!<`g7H8@D:qqNj|FЋOfl QuryB7:͇r77E-zs-K& #N߀ӝ鯞vyj?Uvnu4`eݸOQto 2 U62w]x2.f5"lAZ>< '/ﴂ DĝꄉE/Q*҆ŭ e3lr& Rl_m|WQ7QU¢OE2({{PXţe !~{G`R·giMhz| \M39fUT¨NV2PI ҬE:jXv%Fp9FFXR\zՒV:q!G Tmπe9c[ݚ{|hQIKie7=,ޘ ˌA.8(@&0VAvԄ 羥3sq 6n )vdp O3t> VW Cd[5w~<=+*uHx׸6irzsʪ+MjOB: 88>{Csejۦ.?Z˙(5Jp/xWqEݞ?vX'9B{V}ZURr] V--R48<+cFY~vk:'OY{r[=Y=5*U7 K#l:l?W ڙ5l`RڰQnFM_|7lPiZhx0ax)ɀJUmsCC7ͨvȯfkđS7ߧ]{M׏T 2^#a|ZKUCpഢm@L`nuGkO#b.7?f~M*\L>!-Bϲ  h>E12Ь͎.DRBngrآuNC 6KKй˭Ҥφ17pXa'K<|^D{w.VIk?@Xc?źY}=N7cټ;j_uj NP2 [ XAƌК~^Krs`V\p"H"$WSXЋxhw-B,K{a4ynȅ:s! j%UyC!h:PX. i1Ѱh`ԸZРƫjq닔-(9ڋk[@cu %ܷ5|RqJضg7r͈q#To=3aMeѴHlB4R e3wfd!D('a0-,l/.[uͭ5Ղ>쾇o{NJ1IzlQZИ:[daڐYiD DKpiA:6AP [bya"R T.,ά,$g kO'AWn FÆB^^qzU#`W(|B3QDZ@la:uF DQzO"o[G'd&-:B3x,Ņ;nshaΚ,UR2 L9;k9<&$E413!&?v)tc).& /M;}$ yL⛮fv[tzEF"#`-ǕVC9ո$(BunFzcOZm8kA!o.oCSBؒ 6:rI1 kJVW̖cBp?:wA"BN/L?5%"XN*@Xyz,_Xr w U(,:yUwҊEW?U!IfUH[f[WA-i?/{7n( PoMAM[7]ـǭQI{p';WalEgзHwW|amu*VS ͈BG{\n_Ex{c-!/P'ֿĚkfJf7X 3Xɟ!Ⱔ<޹ }{ijYW=GUNq$:KڹBW0!vGhX"=)5 F M\ac G^_un7݇;JNHtZHdrH`]cEwx$6(Q'3;?Y>WO.&{K]v~/s8GGOaxb? "Ci!/ʥ}?=ngY;CfL[.:Σ1B8, 4o%~}Zxޯ:BnjqCb"e<ZhOA:| + 'RR,>P@rjIkǙPB8O =}K!yg;_)EluA]2opz,:wo3@KraMm@]-r$Ts6 ]u'xDk/XҪ.>suwיּ-]hs{b5v#eÙC0^4lbw"K[yv{'rME>:W+?oOpOW':WW^N N#gתycmT[ D-h}rAPt(0X ^m#F~d RߤU0[tYOx.9 ~Q~Y{\d5Y{Bh MBB%ʯa͇hT4¤?Nu/ #? ^p?gpJ>\|&]?ήO'if|A]2^-V yKk Y [omeBnwj}fGjy,\u #vcfo_t>dף9Yw3j>^}b&7rOXFΝ+2`ھrVr.~cmw 'geUX.nX.貝ql!h칝t_165⏁Pc'/6&qKve{>amvv(ߏ~o)9J& Ȅg'o}2>x~τ/*_ 76kl0a\cFZ8>}6Ђ0NA|cƢ_ 5b(k@8Kx/o8k,ʌ1 2ELcƢ}H ğOmDğQGßGŸ0efa=jxn+RjZĴ4ii0aLKؖF1-bZEZ  .pGtˣm)r0|Rka(B DA m"kPӀ$i@C?T`?5,b=,hځ~r6 9)XF-*WkfB73UH"0Bjh}|K_jL)a/4!ˤT%b%~?%|xJz޴k-!Rӷ'ί;| Uq; 7.ޞc<p_ n-0E· =Z%;SE8ԕ537373kfofof(L* 0TPLN.mfo&D')`&== 3{j4f,e>i&Xʾ}nFNP0,>rnjAn"7fG2/~ }k9'mn%ߟT>uu9Ym GA(>vqa1ru^5+%K /چ~M' O^G0(wַ`'/"N .W^pgS{L#&yM k/a_]*M8)1gsޱQ:*I]Rۼ>['سMXd֌ f~b:cM__o%ev4[)$CÁز_&|e* }th-0^RP"cO4V'cfRLgޠZY1BV@4- 20ж0P(C ` )8lht (U[<~qS>V]QAFe~ S?E/XE<6VjٍђX:Z񵅺*Rl c2ڦTq"mU炋 }b[e M&ub^AmZh7WL?lᯃЎbjHW`5os/g&x_ϴC;}$fݡ 0Mi7ȳU R00Y YR0Ȱ ̗A`g)4%Kd)dY R0ȳUJR00Y YA`` ,qi7̰ Ma`h 3,C`a)Y *%MR04Y Ya`h ,qhg Ma`a)/%K pY93.F]xeX lɴf+HO;#[llK@W֌&KA6[AJ)1_ mBSb iu)0.R`d+Еο:nH Q4`՘]J%܅j$ΝlZNW8f)f][x) 0HW(}J "]4:gYR*%`)ҕR+Jt$7vl&KU V+Bf[hRVR)iJ̗d[P/&Pfe] l˰*teiVR)vF ]8ڙ*t#[MlJISb$*tҧ|)0U`2.R`dЕ]V+LlJ3UV+*teldUTJ V+>%K"vY#[l<2,F ]Y= fJ% t&j q"#)KHɘ$R.n"cx;R.nq-xP=iшHr)H, ERX2,1d2Y"%ɔ!YȔbO%S R"L&VH$r"咤8e F, 8 )BwC)6ȔI1d2bS`jĐ)%?R2ANLlt7|D cg#S&)6:G ƐT쑂 dvTOC&CzLfH)6:G 3UǓjP)t7bӷGL)C&S)6:kG F$҅'d,V N_W""Xb5Znj`|auK)1f=tta/y  HH+̎-mdJ3pG 3pTr_:ǗMga&1.j%H_8E3HV_:E,ŗMgCcPGf&B#h2+}%Ic%d2 2&Ǝ: |cĺcʤn20M$W2ovcA1Mb݂qeR|7&iƸi|c waiP'wXg\V0MƻIK5h+&Cda71vԉe4n\V&า+ aqnh+7 cڠN&2)|cw4w\41MF(nb|7 ƻI >L +&#$͵W4Lwn22Mԉ!8a\0+Y0 ! ưB ء~71CF+7|a7`7 L &)|hS&u7ѕLc$+$AVHM ʤn+ 黉`2Rw]4V0M2M2\j*BDW&&f0q%YoMt%oӠN&~]1M &qEt71芦Bob)W4Lw#l +&&~38Ӹi`ddHT0`DL"+M̐TJ&$r5q71J&$+A1M&2)|cM a㊦nb7Me컉D 黉DW2Lwh+&&~]V7I &~]V0JDW2L&ڢ)DW2o&^컉$Towd*ߘ&&~]41ML&}71*Bnb7ѕLeo+ DW4'lT>jafi6CC渢)}NCS4縲z>4r+Ç1 ":d ƭ_Y $MV$W&o 2]Iʴ)|JV۠N+oeiqeRX`+ӕMaL [d+B}ԉeMw\DV0rژǕLfM pxnbѕL#MVwri߷W˽%A2Ha/هt;/iat`C9$l+M~[yI^.ٷ_E\nm~&OΊ(YXS<,"UtYtъ. e8wwȹwZgvfOhs{b]]{kJnXБ+֡͏3X6Z D=,x _*vilL{'kjItJ9kyú ҁ~g3rkkݭf=-K<çkrryryyrqgZvyoo~xٴa:x| ?|qg۳ӫ+%9!O.|:?$?]~puKȕeI1uDH|G|p(%rl\>tz]ٔ܏Zt'voL&2̙aU|L;2w=tK[G{#?k"g ѫ{7]B'NDȧNN (4(ABZ; <[%*Etn6vM(Νy\_t:C^OZ-3l;}G_S:;}t:OtFo}7 b7}˱?lnTy!6(6/zS숽3[=ݞk==juFwto/֢G ,%t6KymJ/mTAy䞾jBߴ=?tZ 5 lC U"?o +] hʛ] wNLtR .1juU wFKwL`_`_wQf%3}Ufdf2SDfz(5m*5|R3D)&5(7*7|r3B)*7(9*9$%NvT9';(;eJOP|sSN~<(w w Z,](NmA NAN6 :yZ'3ŝ<<TZ'5ŝ<FH K䥀g7P[fC%]S12.Iɖi@!z`6Y~ e i]rRSgJ jd풔:^RPV%+=0uYAiiԙf#]RSg vILALim6FbPf%3 ̴Nf 8g6l̠:)ڨW!Rr:)ڨo1r:)ڨχA:)ڨϟQ:)ڨϷa҃:1r6#i :y6_ eڨfA'OdD4!3Nj;yLJ!Rr:)3A JN$d5$9(;N:lNz;yLba҃:1rIh#iF!:y6_ %ڨfA'Od\7!3Nj;y{!Rr:)3 JN$|8$9(;N:slNz;y̓a҃:1rə#i ":y6_ ڨfA'Odt:!3Nj;yL!Rr:)3 JN$Δ;$9(;N:lNz;yLųa҃:Iqqry2WVr1ٝ˧¥0~JnMtPVjtmB*[%i2RB)*[AyRrB9*,[]rBI*:[yBY*H[ѕBi "4ON7Nsh!}:ɹILr<9+ʎuլti^,i\~t!mZt3k^fqbk[rxP' X"m3qC.r1ԙŞ@Ol;O+z^#lY]&<](y^DRQjc6`C/D«Ux{Չof^o-GQc>k 8w1Dk%(1 rm"\TfO\@gFHp@2E:SPW(֙]&(euH+䋍 kyPk е܅iw-v-okR[kyPܵ<۵ oeZkyPkys]m kyPky]m EkyPkyE]˛  tan 47E+®Aݮkt-ohW(Fannrrk w5<,ZZLyEr2kyXkyS]mʴaqn/, qan& 1.ranf27A+®aݮMht-oPW(օ]ú]˛/Z$ѮP\ˣܮQݮ&d:FsjyTܵ<۵6JmeQqn .*iѣQݮ_t-Y+®QݮMbt-]+®Qݮet-o8W(Ѕ]ˣ]˛.ZP Gu7_ѵI]p'.OA̮eY6ײff^rLut-Cc]kܮe\-k9Ȣk9F]kٗܮe\.DZwZ/{]^u7^|`ϚEB!Z˵ ,1FA]+e\BfO\@w-{MZ~&]HP|* :kk.rE;ShW(Feͺ]MGsjHe]˛)ZnVZ.kkf .*iEr-{MZ\ErEB!.Z/3bt-]+®r-? QF&s]ص\_g"ZP ˵l]˛$ k9GeYnrӱѵi.kkff+(Zٵ oeZt\^57W|ѵfP ˵ ]m Ek\Bѵ \@v-חk47E+®r-?F&vmZΑkY֬۵t,|t-?FZٵ6Jme"&jv-ok[]$ײDͮ_t-Y+®r-?!FrBQ.Z/et-o8W(Ѕ]Z~&M źk\FѵI]p'/OOs$Zfjs*N7[⡏yɺK^4)]#YHWn/2_ yCSuP|%w 13ro **1a!l=ļ~] 6NJdy--mgb[u~7\pK]ޘϺ*rn&(1pUB߳}B\ |D9ݏ#1Vx Yr\a@D?h5~"y:)ǍkZ2\$?1_wCتDT-mV%%pE?n*-ǭ/Ƌ/q/U q1?n}Iw3*QNH!̪m:;qmoW Euq7P:яo2ZHz`^N?F)qiV IPaE?n;*-ǭ/F,q+U n1?n}Y~7\pяnJ|q~pUB\̏[_g AJ9jq~@ۛ%n켼~~ NiV-ׯӏb~ܸf+(E2uq7TXяNJdqK"~mU[̏[_J \[xb~n"\֗.1q7Cd??3G\Y6off^nLutCc]g]-7Ȣ7F]ח^<.D5Zw*/{^u7^|`ϚEB!+ ,1FA]+NbBfO\@w{M9~&]HP|* :#k._rE;ShW(FY{eͺ]MGvGsjH_]˛)ZnVZ.kf .*iErzMZ\ErEB!.Z/3bt-]+®R? QF&s]ص\_g"ZP Kl]˛$ k9G"aYnrѵi.Zkff+($ٵ oeZt^57W|ѵfP I ]m Ek,Bѵ \@v-ח47E+®2?F&vmZΑX֬۵t{t-?Fd;ٵ6Jme"&jv-ok[]$#Dͮ_t-Y+®$?!FrBQ.Z/qet-o8W(Ѕ]R~&M źkFѵI]p8/!7Ž&hNnk4xV1o6@;:SLWV$2co6s^z̧Ѯ@?W2o6rrQKuF15YZ$ԥ^u;v8["c81wni+3y~GSdP16@F;Y-"':E2F{ n>!P7gjؠ|Ph*S4SSy#9M5h*T>(T>TXFSyLLzL fo47T>(T>Th&GSyLLzL gu47T>(T>TxGSyM3S|X,T>TXFSyLLzL fo47T>,T>Th&GSyLLzL gu47T>,T>TxGSyMC3S|TGh*S4SSy#9M5GGh*T>*T>TXFSyLLzL fo47T^$}ZLfr47T^${ZL gu47T^$!zZLgx47T*]D=M^*-yM1[e*CCL>5{-Uk*o2'|8Sy~~T3bQSRftnvR+I|v,j*ZTt.7g¦rjMg|Xz&/l*ZT&/7ѫg¦rjM`2}#ٽz/l*ZT/7g{#Sy~r@=5-ʽj17T^rZL ei4l*/kSycM 0UT썦K*ZTh&GSyL%`{-b*o8aʽj17T@SyV(\6P|ͨDh*orZLd4h*/kSyCYM5K*ZTXFSyL%`{-b*o0{!ʽj17T Sy X^Kh*orZLgx47TU.* c*_3*b*/kSy#9M5K*ZTPFSyͦʽj17TSy X^Kh*orZLfr47T^VR-:f*/kSyM 4a_*g+6Uy㺺ø`VqL&fj y3,8U#7W]+jTkn.ț3sa6oZvv, [y3՚%1uŌ]v͛pt.7+f–jLfw ,^1ۥ󣂳5إ׌v&ۥKTonߢ]zt ߼Md`Kc.ߛ7S]lv%yfK7.]]nLv4ڥK͛.dFt3%rfK7.t 7j`^3ڥl.p7S]y|v%kfK7.]]0mLvf1ڥK͛.TfFtvy3ۥh.],6oztͰK͛.lFtsiP&?5]]z͘6hn]tkLv-ڥKe͛.DFt=vy3ۥh.]N5oztSڥK@Ton.K]~t ԼMflK7.]4oztͱKK?CL*N{^ QTo:v TWXTɜZ1s 2۵ψE^KZҽqzIL!ٱAkZv0殞 r7bc꙼kZw<6@F ddakZx[\PLQe׌KZTHNFSyj17T^lZLel47T^zR-7b*/OkSyM 2TᬎKZTxGSyMi(ܢX~ n@=5-j17T^nZL ei4l*/kSycM 0T썦KZTh&GSyL%~{-b*o8a`j17T@Sy0(\6P|HDh*opZLd4h*/?kSyCYM5K@ZTXFSyL%`{-b*o0{!Pǽj17T Sy 8^Kh*odrZLgx47TUɛh^UW4{BsߛY ʹˀ6,lJؘ۪ > z녹:3¤ ~[[YyN L_ja3Vņְ}_7mUlo+u@qVFV@BbP 7mUlo C6ZĆDBv@uhvq7X;v:ޟƫ!n:y?^h/B F%Ztze@۬#Nvi1"Sf#mzt2h=%Rv;*jt2̜qUķ#T{F`{A" xoX1ݰCk< yod{y(dy7;8$!KU{^{̼Syπoy/Eߓ*潵{{^'Mdyo-^oS=Yb[W9{=V*YAÙMW -W9-EcE䴵(uiUqZ._(rH9*N֢!Ui1zRU׫5E CKDKQdyo-*^y&mTeA:Ek4\e)r53fWqbZ&r/CGٟt5y)|y~ud>gw~OO?yt4 aE0 ã) 񟕻/yοW.~9o1 .FggaomK;rBޞthho-~ΞY[~mao&uMB?Qh9 VxmbY3o텻q%+G+x@in.v>o@Qق୳X.h>@(Q?T0ǻ7+Y#d .zԴºkt@h}h Jkcī]x:'gE{g5zMEV D_-ly!R\j:D4Ԍ5qS(Hn&(@yMn{wXY&M藋_g2s\K 7 5䷓7xݑ3&YLSV;5N2䛳% PΛ,_iEPnEoĹc4^LSG.@Ȝd*S6eۚVN&{~.eJj|%ٸ)egR'\$1_x՗aa3"?ԽaOPc\[Gw88Bh.އՒ ׎3#{6ty<>mcM G;CvR䷕ڝ(SC[Pu gU}S].ݭ鞳i=6nbmG.>suw9ݚfꖪ=TS Tw}bBGDG C3l=*c.?ݾ|hGwZ͵إ~j%?R8=nͦkjj֣-вϳ?>|&'ɟ''ןeT7@5 QQlD;NxzIϋ']޿=8"o?\R5ٛO'ˏNw ,Ib a?n*˱=s?J&SIJɄP99/l\C^_]ڊ?=ܓ9\[L-8ZApG~s%|BG|:N0QPMZ޲SKo6ZdoV} j0,։X`7߷5l%rnoq.o 9v4*۝655 AH{Th5%=S=orjJ p5AC} 5*z:P}fYjc9"ۦ'bGNhֿS6nyH+:[!ar~vAQkEVȥa~M}T'ʚT,gt5buk-Yt-}}PWšXt.H M0iq(=gt`BWWǬa kx_0rZpW *)tb̺Fm>ҳ_1Ӈh=Pbv2*jK6[|L)Sɪ+*!lV5>V ~`7bA rqd0Aa4WӸ2'A}sxeNcXKPJ mAL[5хw[w66% ,qIbpqw+$L"M$! 0(͉#&Bz%Y6, eƒgM`c[~CGsL!ʬQw==,e//35<. \yLzt6O[oBwߊ3^j5̿`l4N1(6*CF -r,͜ƥyHw|Y6/!Bd]DK]o&b. cS w@;7Z#2 ΌtO3 os {wΝuM_0dt ]sN_Ru d8{bQ5.voO K;_0h -XT8i Mml^*q.17p~_uF՟DUzr-&xՓ!<ʯiCtk^yVąUkplM@B6?NI#&S)~\la>ޭَQ$vd 4$#zke/D`̛cld'?>0zK;cڌ% O1ܖROWyő b PQ}頏 *YSf"%>y}r{w!jڄ#`* k,< 3_g4ϨY|“\M{ Ft|PQ) ʩ#O_#:U/ȇyi $(<עf~R[, q_5w@6{'΋H8?NJ?GǵAď7z F{ :[y8vy;^z6C֤0lU*?oO=yV.ޕs-{SNǾC_P G ~W?LQQ|wJ/% /C*1a+ smU<%rky3JG)h ΆgtH[O!irQkXL}|f ;6i*@OJi<坒(|&r6DJ 6bj~nVHHq}r32ҌE&O}chDFL~<0o 3Mj8Ex8h33SN0ו]8t6,Jl70'-'vL5EP{?d ߏ7Kñ3&ӝ~s\JۨYXZV,GkrjtdtdJ] pIW}Ģt[1yMa$0!0Va ^*$\4VHw"W*6=:B$:kM^)#WZzW`ʾ Fi%ujͶ5q.^vTNB \L r  -cZ+q.z@#&NC]T4"ի /Ip2A.` lb#7Ej7i!.]`dbnHTK=zEzSuڰ-EzF0FO('KvMPx G*TOCX8N=0& b?af'7L+||ZWe5 4T\31̾JݖH[c7#(e㎊:t([@9F3{Vt1/Ftl4ҡTӿWH~"o^) `|n)-D0/+LV[K'HHD3VcUSXxYu@b b0pVLGww:!,*Gx%_B(6}\h⏄Du S5C,%A?U_ 1W8N<4?=.0y4:n[nX >SSrƉ OáNL:J s徆 F}$-#N L+oT[,)n鷁i] ͗|!i$gI{2z1K{1z] M{aШe6aAN-* Ef^ }3+3{x? S'M?hAOvsK{L?]v_\ z3k59*ͳ ]~ SIRXЋ[(=ta <'Do" 7]%T> D{Kw pgC| S{ ]g@hQ$$#-6R"Y7.9mx~ܗDҁn Vekgz%bh#Nd [f2ѹZ:;t yL<@1UItY=^G )wr Vl8xBYQ c17I`}.{J1&W Z E1-壏g 14|Sl4ψ}4 r6:B6690[ݻp/sME[{{#j+ޤDA^okNSINQE (?_w˽iX<2=W|V_6 &nʒֿV XO1qM߼ebsӦ\Z$ĤB6t\`8Tp@[ }gLkح9I!@UNhɴP\&'px J4[OƾVx%*81g3SzԚ0J Uehn ]kWסԙ@ aw~؅RT:Ua&t_!/$qIZyxlwhi#)*] H ~֪S { aI70@>}4-P ^hoA ]tfT@ ('",FpLbZ.NT1ǃ5Ϭy8R,4lo{z? 7cRj7%d9tr 墌ZvgZ䢅`w0𴻅(GrDG~DקOHEtp'VG' eJ\8SB(Fi+q'TkD_N=׆\Kp3p{vX3K=?lb&֔6uR?Y66z<8Tӂ`p|h~N(qMڌbe,)eŎC`r=NsVW_"ǜ%8ԚqJ>dJo_Gu .0bٔEz3MI®dџ6e2;WrZRμjMSͺ@a&\@bEJ" ]D,|wE{}7G{BMU!s˚¡0KTv9i~u}7b39\9ȝ}=Kql_)!̓A{0-3DӃvj^gUf{G{~D K]g# 2f5)btr)?3NVֿVTg$~w4;YDqi[ulfrcedz8V站fڣdz{ɪ1>RV&W<ѕHyCW|cx2bL7\Cb-ׁtҹ#b@DМiqIزIŽ/傳. Vfmy11uEoM%RQ/wM&mư\Ai;}ow}{`]~;y'>cu}/Rk6I&.#HAYW!8妠 ʮɝggq .N=5VyϿaigr?8\qJN/~Dm7_VDJ`Hd Ed{:$W!ߏH_3+QUͣ-W5NWDۻzsrqQTQr祐f@*]u7_F3?dzF׀QKČܓZ"bU4QfK#1*{Wq_\ ʞY./EGl[ߙar# y RVx9 -3#7H6/OtԨs^V"O?1܆:эLy7,wI9y?.~/$R;忱\̝@|6^Ux}[Mv<.\O. gO"̋ŒP @\k⽰θqPck#$U4shM3Hf!oS1,k5$]YYwwx)f:oB\[r3_Qlv ri/Q& K2s 5=cPz n%YcahrXt|nʮxF)fW4gCM_'o$KZY[8<YÙL)]wUc՘(2DFeN^VytchUFy-Ɣ2).Bg>*~'6]qyo,jrs"d6ޜɰ/0yʽ6yY<%{,K!YKRx@7U*gỦ[Kgᡰ@4c&…蒰Le!#Gx׈U} @:g/Lݍݥp[ WA1P@,6HnDD|ʍZP+qWT NޠzM()Zt(90jfOO`hUGMa&l0ϭNC{xio]P;]|T!64e5IM}Ʀ(/˦:!xR~;ox^< <. #{GJ+b,a&y;+=a<@7Y|f|#{#_[ iTu%l f|  d`=yD1X@FW3t5љ{@1Ji&T4Eyc ꁳ;tz$ޑe}R;TPBeƴ |NLnVy4%){./ f7Z aO`msܳٵY=ҽ{Ɉ3ZZi/WoϋU\EٿzyϋbDZXO3W}< ٤2GvaK_ II 1<1dU:*}@ 7wpUJm9G{A*e1}n:r֓#mi+_u˹J,uhO͖ϣK(X0 5%3j,(q{صb9W=\8r,7M3 q<4 v@:gK ?aF;!&?4(Y=,lwo)ԏB 2n{g͕ =ӵZ,<*- ;ڀ*@g%lDPzYs;*&4StʣbĒάtp,s ]8ztu(Lia.ٮn}Y!Xg@P9mGvm0Nӌ"fCA.ܚеp !gŤ@=q9YN[_7"ehn|2ޛUd YRi緾)s,CP1ݗ+~eSYUVQ޸fVf߽i;p4b?`pp0<^/Hך}Vr {<;w\[yItVrM^m0v;/iat`C9$l+ CVkw^Ң03o-s6^X?'gŜ kj^,s!9 ZwOhEO<P2wȹw5t ZܞXsq#]O]\;2~K0'ޟ^8 ꟡oϮ/N INǓ7O.O?\reY@L=)AO؞| +f'l6S9K2'(;w=!٥ۣ=푃ȵ6`"OzjqP !~k/wJhf+k f~gY-Xw |V} j0,M;rsK1'/ޟ2?:7ΚxoA_D7\Z_mX^O8{} BC?z.RKg E;EZeʈ͜.,>e.9&G?r< n UG`˒2)Jb5HI_BF.2"$(ɏۣa|/[~ϳ?t6M*-Y]YM #m$鋵B)WIlS*[=ѹ'\bF4l[GczR{?j\ɀU0źv1֯ǁUVXu m`!r[Wyux.5b{]9Z2[MBfdR?ZdȈ=x/^J`b"V~b J*';EϸJ#G#e(v8_N?|; ;><3{.C$Q{ kx-nҚ^k[RrWM{H~'1(ުB~54<0䓠+=1pcH9иyaDtӏR? C5N<0[m}Kj {G)t)P(T ܂ oѳ\bc)L啻D0jHBw+c8:KTܧj6:@h6"\$X ZOBy$Y4#:4h(WL5!9-Uyܧu/VR&ouq,d .C'C~/Esb%k\I ,H5@г 6M#.;JAE*8[Y y ,᷼&- P5@HQ7LF\g]ANF)޶8ƑRSSy;7z>>ikL@)C+tW[dD<*lsG&w1|W?AhU|}#V rwLgq@R3zF`B?]<=Y]im=>^ 1D̜oZd q:\!jӯJ+ VvU-/Ǟ7kHߴЁ&b6:Msѥ̹O,S.d6 esє?硶\1r()-A2 wpeb懠o-tYYY!yփ=a^nw]^X5( މKeQ53zNeb|b"2r=_68 wGVOO }64g|T"~ Ő+#-9z)˱G/H-4}划;(8iav$FphԎ!>wI5&ǚ樮þJT#[(DثBwld {{d,Q0UEb|:ΨǶz/`蒕 &Ρˑ gjs@HoS}㰀DBE1hk_OJI,`Kx2nuށ7jcuSEV7qD#Pt`3ff! PB 4ҕ.sܟZFE:&V w5>yeg4V2}K_[<rkwh1|J%Y.s΁o]ޞܳ´ЇhY@TGHzHO}R=hsgyuJ1Wh7 Zb4??st_<(9 CaOy@өȾrDp?ܲtzs;r|r+(ĵVncm>T>?J*u~Q<Ж%W/NHJnu-1$V"x)5>m1 o 2!Ry%SBfc\$SţLj(ZJ/Gw^X(Vv# X-Iea]H < H5 m{BAQ"v#)i /)Qeߕk#"*חLK~pEcyMTumz2㺝g;A+gqpQ'3MA͈|$Q&ʕ9fq2xkDڧ /sxe'39_gZR!0FLj cbӍytsΑHn;G?vG0zK[|oI[꠷dmޒm%X~vEƊLo1tۄ&6A MȄiJr`1L4^syYsxYe {Yb򜣗%e顟,gA? Ygy~%FA?,<-ZzmAo z[ۂ%LmAo z[ۂ3o RUЗu4xaqd_杖;Njz.3^%7/p'l0w{Xs:hmjq= *׳BnKo&٣ŤO$ =arb .#x  U~As[ nܧr]yc1U$SdfsD՞'#-۱|qDe5a L$IcmaWiPQdB2hzHrJˋRpmq( &aR$'$,|\D X2='T7u]gbSetͪQk×Ph PI ҬE:jX_+{aQeEX:QR%E|˭@U= 't⺱C<+:s>գE%-rvYZb 0Aܶz|10ה4Nux[mR bJ6D{[mq[:3">Q"h1q;2iĊ۞aV6g1 adz ɶ,kp=K|׾& o&MWon5Ԩk/|쥷m겔^%y6-2^>Dݞ?vX'9B=0eP`6WKAp4KK@ cFY~6k:'Z{'iVOh@ E 78ۀODeiBv碻q|`RڰQnFM_|7lPiZ`H_ƏRnQb7L5x@ȩDCnJ⿴Akt$/O|גspo@]hvʰKZdTTH.,_DUrT dPXQ3fGUfUR W&=Smh20t~m&"!)lóa u"y#WkUNbl JWHSϔ>\{f"Fb@͘6Hd[f_J#xu얈ʊJz|mQZkI/t¾ iD DKpAg6AP[qy",SU,ά1",lgñQ kO)+¡ܨ EfK1P7Kf \V @}:uX𒫧E2zO"q[1'_o@>2Kuآ /T쾑1{R\ӓQ6nYբ]Ja><h-DI:f&0;$7>5ń'HW0 i2:7ZUĈRs6#+)qYdxQ9waW,8N#Oxo]]_]ۊ%wap (Ϫ kZcXPQWp 3PFxAI MJШTAg`~j%\ifLBޒKG`5񭉱揓˓7`-M;}$ yL⛮fv[tzEFˢ#`-ǕD9 $(BuFzcOZm8kA!o.CS·1_mu5$vhGהx}Z=_%5[:*Idlrr]@(N 'jXLD+μ<ÈKh"Yǹ;̶qdvUv,kEJr% Wζey"㽩ltCxhI47ѫq6oteL.RH⌑3UwS1! Ϡo~i"j*֏HfD=.w}B?{~vK@ ;-UK7.ĚkfYf7X p3Xҟ]l䰶< GY]˳Nq%zC$S)'jC1C't&<q=' PH]=ͺ^DD&(l`K'\4kB!C:iJd~w摗0mlκByA{К̮1iN̯T+Ra[h '`|I8YuuKjȊfJ2-M̳6[&-#vDfO˷5y bj m-Ln>>@^2#<#|#+kX[0`uGpe҈@^ 4"<#<#<#ƍ 40G ! [Gy< ##|m+#&'"<ȋ>ƶD@TF> <#|#/,#0k>|!<7UF`~j%\if a+GyGZc@#GyFLBdByߥ'Y7RegD0yG0I Lm5OHtZHdrH`LLL^c7E0y4%ɷx L(/Q'PqZqfl oǧ>z%琼"6mvR\.ٷ *B[Xq9÷6߮tY%9pׄ9<;aŃ NwȹwZgvfOhs{b5v#?O./O.?L.辶@oyhtT|D;NxzZ䷳gWWKrB>\^t~rI>~t+˒$bn=8Sk9g.g:.lJ_-:J7gǧLs8s?JJס&Udvi+ [nD-J,|'tFVP8w %ߟB~??" &Q|lG`a=b'=Y9B؎D{GMj\8">G^N7ùێ:ێNHtZHdrH`aa]cEvm$¶} } >B8\aە.#p;9nGְ$`܎M`ɤ"p iDvnGvnGvnGi`܎ Ce uEvno!q ܎2P=n|f <4EvaEvo_I$ S,iJ3c^| |;·#|;·#|{sPcQ·ԏ,$o7qG=5 |{ָ"; #;ǻj,#;;!i!!)BwqGwqGw)A}s̐{d\  : s5i{b'g7-/ћ.v?|o+׵;yv̾]@<=naYu gšڀzZueI肷@@C'xDMk X29.>suwיּ̞Ě֔>zo#W#-,IJւD=B5m}/K;6SQsWK twE47D_zZyvLJO3ϴj6LGϗO㴁o5N~;;? {v}qzuE~$'ٛO'ˏNw ,Ib ăC)9c{Φ~բ<쯴{c=>eÙCq/3J >F{|&٥ۃd =r(,q6ZApG~s%|BG|:$K$r)E`K왜kKT"?W f+l%J1[Il%%$&,%$?#&,iπe1aɆ$,,iְ0g ,%@Y9K0g ,i 9,i0gIk9K4(Y9K⇎9Kbg~iK5%3&KD0y10 /%-_+¤v0`Db"Bi+e"CHEiH|R!b)$#mM0 f7r(M0 f7&`vnR,iJ3cݤ&ݤ&x*1 8_\ۘ'j3Is,tN0I33N SwR˳N3l'`gE=;\LP0J"LP0 BT(ƥBY!vP-h Qr&DQ̗r(3E ^@|G J@@y_YÒ ߂ˮ#<7+FR7Dy@@@7nT ߦ!<7`@ Gy78"<#|EAyo@k^@7@ @>!^@^|1%2 |̧"ƀG4aFaEyaFy_I$ aF0S,iJ3c#_| <#<ȗ d2!<ӈ0fj"ț.5>z`Fϖ-;% #-/ћ.v?|o+׵;v̾]@8naYu gf šڀCzZR_*{ĚSƳlkŃ wȹwZgvfOhs{b]]{kJnXБ+v;gb{xWk* vm6]`i*ڥ~ 퉨%?R ;""Mק[f=-K<çkrryryyrqgZvyOW b}xK̚Og8m?hϮ?Cߞ]_^]. xry}%㇫]B,K#GbPJN؞|)4O,+ޘ&OpP ?ÖD_C&Edvi+ [nD-J,|'tFVP8w %ߟ?;!N:eYdslmcc# X<9#i_mʨdUҶ\WY }+ t{ԧC<.⾜c F;rvx}^&HbZD\~!;/[(DRJ eW }ē 9Hkވ`p.wn 'V|/@*:Nά߅M\=5,4] *}XwNC2[ݘer eO4?}QKX4p$,M^@aO.4]<.Og潦'r\ ޟ]?ή珧lu9气S`o88Gx?bKE?!ɱ3b”"(=> 4Ƨ:I >⇬3~ >G+y]??rx+ #q79NRuek//=Ă XJ8W]*H43i{{[!c,tGoy*r51x+̆j*B?#3I) 9+:. }Obb:5$UOl\>N(Ve4*SHR[JK':GL/3]蚼X6 Rn~)?[ZV53Ev1$a!!^ nHE>VV~iy_E,/%}ZwkVnoKn9/T1%Z?fYbR}F3zw4ŊwB7qW58EZ䡕TTr:y֫-%PͶM6D]ʲ]1PhkknPOrr8UF&O#j-,6(]~?3bIJoPD[MBܬ^R@Oq,vwاM4:6S(lXPI,β _?lj1s<[6fHLfEW#:mFFE>Fͬ0NUR5u:X:Vr:Vбtk]+ZiskyV]+1VZ)ӹ& :XF/t,`A :XtduewhdlK€I?F GW?w{ջ3hP 8=ԕ>ZSKtOKS0E>!v5+U2A+jNSe|B}z}[0ۖe+ Y$g 1e5m(0c2.$%kz/őqdIޙG"[RO(R$ek[hdMbIM TBU)>l6{QwHI[igM0_K+.0N[eViҘB5+#Mֿt-?媐#-NVs#4*JR8OǷ7k]ebtBp<^z -=:W ;J24RndPrGҹHU&7$QXn'8Cgaԥ7%GU_%%=֖^6SjmzE(:(bhGUDW,v.aKᦍaF rio?PAFl7rNj=FNؗdFSz漟G!ߔ|w qAل>Qtq1{p6Tv\*ڼqYcLu݃ahC0ʾ㚊;PxNeAXNnR1C7 TDk7;3:.E2ciZ!qg夆yi"Uu8,xbTbKF^reg4,":Xe"#ЃH)ʸfu7Z.ű, 1siA,C rNZ0Lz/3)YU%nlRc4r¦W2&Wo[2+W L.jmWg8rܕn}sݙ(m.@PΒ!UUQu?% qmSx:P]U1DP5 Mqw|r~gDє!5'%wt:Bm=mtpsຓs)ҚgUy# m$bv۳ U5uNzh466}]5^?Rώ9m.h f:znc2dC1F@~*R=IK|>WT e `ԉ ;:F"DŽs_Vk;)AH`qDē"NRiIK:)޵ t-K 20N5b^eˎ7 x^'lҩmZҷLA3Bk.0v--["W-Xb18'rlݑVJf:cCKċ U[kPw8{NW:]4k[D:K#Ye褨V}RYWlL4ؗ> N_"{iʄ8L)levoh ,@(j\$c)X/.{o:&ޠϖ[""n s&遦v* k8[ʠ }pGтaSPJLkw!,BHIpbLF@N_2o~7pqxqѰP@jE.zy2ćB15OfSA@}QQDxSjM*6z;=sub}0ѝ}'`N^-=L`&3q-MFtѻ3ѣZ]J6D-#D)1$)!fOc?]}n5ń'H b=< F^Mի)[n(D7^n'!eH+uca_H]\-MA ;>%,C/.O>cN1 A]ءBGt.lcDPyѤ Jqc);*>)IO*H"g2p.9yC ɥXMB{`īy^zv1#9:7]vڥ[\lY"e>ptimd*c/d+` *0(xƞB̵q%Z8J+1 S㐴K6L\SNd )*lJ>:dp!bM$a*2/(O+bQ]xupKx(`5o/,>Vq$,r[ <*_A6Md}|3)oe['J>Ӕ (dNkB~؃2`/H2-/epJT:&/Y IlD图ݾ'`ofI nFee2{ l+C,%L8\) <^|(s]\]&Tgi'p`m-rd6 C=d[SڮE%aI1Opl۠t0]"#YfȽ6_2-$ϛ>Ӑ(BD5Z:NNuֲNuVZ:l,NuTgu;~dZ:)'|k:uju`-J37Su`u;~:ȴN4C1I$) ELXvS Y )I1nE /4q4f&"b)ru=nwXLȵpB(WҼ[9sG82EOs _\;l~&_UnO96+zN>=$n2=a2AE?ZLdJWm` KG0<*>_ӇjYc7;e\80Cߨ%v,.(SouVOF$.$bUi@kR:24 Sr!SD8z|Cx bYRo`V+# 7& 5LQKIu>*m!e1%Uڭ%w. pd 욉I텊]ѱ(^ RWMOS3ѣ]J6D-GSc_Ib8cp*aX>\_[b^I<:`rA`դl^UGmT`{EKd/IHd3J]ca_tk }W{W^$8zJLv [ 4YPqi,~X!/zy_V-=Ȯ=>XK`{:c[|+tJj dO5GU91%aC9f~][' llft<7RdL|(C +lTY)"-ρXV]D\rR> ԁtuMMBTV?,ZIǥ‰xCx![5:CRV,;fQ]JFcygKqdS"#g1d Q>bbý]g;c?[YpNipW=ϼ)Kzݿ*egKef::NDiQdq LHۖG-us/ImV+ 3ubYC.nsvY~IJ=нC- jy>5HXpyOȿ ^gt]Q&~?+< |/BWɛNwGzhOO=ҟx6!`c~$Ow?zKm˷[` ?Šۤ~$퉨$A8R MD27.ZZqz篗O?Ҳ;-1m*gO㴁OJk|O˳ 99&_/Ot|N|=d ϓ$bH 7'CoGS>?){!?zSi!&T݅2$菰}7.m%o rhɥG/rby2Aߏ QzhN##0UPfp3:-2)>0&кI>VI;<|,y>3`u%y>>>5,L>0ՇÂ>0TTU̠0G>0G1G/U!~`BC߄1G ~s~d`~`ڏ\Q_3?bn<`<:OL+y0H';(rM0)& jb`RL IA0)& WaR `R\(2Qp:15q_Sۚ zp39k( HD( ;0#8چO"^eU¹䕃c~ 8<#8< XT1!8<ÇlDpR0 y x*bn y)k_B#D98`?A>zt:7ыQsLz+}E?Wa><r2ivq'O{Go O)E||:kΟ@9&<2̾Gf }$贘:k&~?S @G.DGX[Eݏ^r+tvmN06iH{"j:IBw(LͧKصm%^%9>q|~~|v珴.&{xKO8m?~:z||Nɗ_?/_Ͽ|8%$."+ ЛєO)hHeiT}yxZ U,a( #Zt/he.XDK[ ۂ-rwrQby˨?CnwE~LgPcBRiwzqy<4RPp3<zȭ-΢y<0y&y$QBbLށ;>:&ؒb v`La`LځI;0iGi1iGGI;*3(LQAaL?tL;8KBn/n֬Kіr7=Hw Sb`J L)16AĐk'Ș#30%IFJ 4V†91%ˉ&w916 ̨k{1Se0듊|KT,B %` Ly)/ 0S^` Ly)/6%'ÔPcLyHuR[]FB₭LqY$4ߔY$0f(g ,pY$uֻW+G{0I&xI"],N$$Dː([H9`&$$bee9CTI!"-ךw!y* 0’y4Sby ]0 w w{96|?O&b|#7b|#7b|GL]D Xv1$R4bVgXX߈myKXUb}WfP]A!7b}cg~IVDoegspZ{؈\6Z8/zB_x-s1vS wh2i1)2D#G4rD#G4M|DB4rD#/l{-i~`ò̃=Ã0+cbFmYTLz^~kC[AP\x27Eȕ[+UWWZVJ+U͜Wc.R=7zǮTL+U7oTRRe:Xi:xf3gR,R=7zǮTV~4%7e#o> !]֮?{Jg% rp4+&Sd_\,u-H+ VbטH8!w1oL>h%5ˀ ǟPQ8{IhHG8?k#Y-{w쾾znm g }p%gB.͹V3E|^5%]=VHwr m^UKp@+ ksOc\ʶV=e^›Wet[;aqPǧ2 >xY,{z1ݶ'X3J"uN&4y DC &tU\1]٩R1+fQA.o^x9 _PLRp$ ]J Ӫ3E6L[IW2ydG-"W;,au0Sjp!ULH ;ֈ9jeI,G ݋Xn0ƓWlgfu!<UT> 璓W!7@QJLK T.%tx |)\L֪_# gLF7FE@SGCyC>GJzc/ȗʟ7z?%lz :r!:B>.H<~~hۖo-tI;SQsIp ]=>h ,_/ٟ?egwt &ޣ[b0UϞhi8g'srL_|z.!'I tYnPO(%ެ|RNiGCr(HקZB<M>eYIa[hNp %]JdmÿK#_Fw-d:i;!_/1b;qd4q foX(H:1#@r#'|&:CwܘSN*j\l) *N S0S;.>9SI)6ͤa>)whϸJ#w.-O0GU̓ ~8$$:a;; E]՚z^YWJ;ۍc̍xFbYB~iā|r&JSH;̵ ,ÛW>SΩFf(JLNwUau 2h-XuhȖ9-o:ʧ) >y.]yלnA9Tq<+[{I?әl2(J $ $huSF1%moޣ`1wF啛 }~$[<@,yЏIS$+er¦е\tELj֢]C60ewSa8U&iNVBR"C&>Q1/ DTVLU [ʳ9m%Y3*e OP =x@.ۦ"njL& L :hYx)AG/o+Vf.OX&ӟ`b`AfYwh /l;ib;e2hk(E[ܡ_念^R!HH,C+tRw.|l;ڴPINR U)k9O& oLJ#{RJG}F,x̨dN%o`H :{N>1=^/Mt*cAlÉJ]34LeοaiL'`p=4!1%19-oCF.|[ScXaUR#u0[۱rc+ 8Vеtk]+et#\Lؠf"dH1&PCFm"%eHq)Ji5[N*h9dR(,O*hYѹ2[I>XA1_ӟ>o V"DMdn}n` Cד_Nί~;=e-:/.z{Rdn0 WJ'SKpڤצ,Ej:9xkc^5Q\N7Wr-o25L' k:xp~8M9gpxHO?WdHa bǧptm8V3wO{]Y~|~@~ dg|~H~_VOO\v!Ys!\JT _^${% ysxؕ2~|f^MRIJo1ڡ2lbsX={bG)e~:,|ad?JMњS,u|"4kmcME9Tḽ~zg?_vfFo{{"6cY芵V_ontY?cA;ԃ&S ΅ }F7&fT3u(_Vds`A`,]Z ʰkqp'RN.-&u*T` ,ĥOXi}ņR[MoDԊ&j R -{y)ë1?\/1!<:{=U )IT5Ш]u۞)M⚣=98_אS$@Y0};Z^w_ -'{0Lz$pvG,ê yQngm{Ú+M%]Sg߈fa QztnM>G⛸al,'Zwħ㥌x&uqD,W9>Ih%h(KBiA'!ۦE^ [L&̸!A]r g1H+%CYbWx;VOpQװ Bl*h|]m'9Y3W,3Q >I-R4cLE(>9t){6*0̄[& *lz#49LZd;v[cȦW/I'76>B/ة˵H?}J{!jσ+_OKP9 6[otQZ0 uDXX21[w^@/"?(~೛XӲ"6hI!b&D3=;,bU{&Sn7&tgOzyXxj',>z篗_^v@wjlb %3v#.Mx#90×TZ:]vDx3&Ŭ&\5EFX3~.~=`mU]zVI)/n 3#2?קj"\Ϙ'&9D=$]ENGt :4J*wh¦7]>E?DZ}k_s"xo34Cu{VXzKBÂk1x̖I_ 8l̢%aI΋4$5CA(Q+D߳)\f`D_0'ܕ+EcQ-8b_J(JyT JFXW!qRRA)֤ry9b)9r\$'HͲ$$[\,YH',,Gdi>ԥ͒!(]#g9FI.@s0:w 6:QQ ݂e9s`sYy-\^yF.@3V0:lt>(oV0:lt.ѹ)|PѹlRFr`s%I|Pѹ\,`t>(\NYFi.@s0:lt.4< 9 6:WQ dshnq[YK/yM((PV0:F 2:R\btVdt.QbtVdt.$ ɫU#K,(*FgHAFR2JsҼY5RѹҌ\c)(aY(z$]4rJw(}+U#وK)h).@W1F TQ(@W1F VQ UȪ%ddyj rei^Ÿ)Ⱦ\riFy.@W14F 5^Q LFЊe݂`As|5bHFr0 ΅TQ(@s0:j\Z9FI.@s0:p\bIFY.@s0:v\jYFi.@s0:|\riFy.@s0:\zyF.@3Du 6: UU#%ht.@s0:\R)Fu9\nri%I\r%eY\rei\rɥy\r%dt^ sY-. 4:WAW_Vkt.ѹ)\sIՍ8sḁc$9sa0%dd9saͥe9sa%f9saPΥg$:˓PU a$ܷdDGqߔkh <Ԅԯ?fMX珧?e!U5nNLT|ѬMy ub?c'J1iߎ?= mZtO⚗3꿼#NLuDŽr$3(f^ʞ0HC|bCVT3!]s`QΣxVJMV wFs 'JÔjmӤjUhZ-,s+igbmԪZh#}kɕں V)[FWXS,IӬJma'N\&ZSm+'[YG1Xn9M|'ܖN*Md(=%C 64%`pLItU5D^Gźƶsk%RT8(5 ]cu-1FVkl$6umBX]cKqQklƶ5DGźƶ}klk\cKdeqQklƶ58F˞8&ؼ1nOE$ƪ["{b]c95VItm ʺƖhXN+tU5D!Gźƶyrk%2 9(5S ]c[["9b]c>55%rG9(5 ]c[KKo%eOoyClv MI7n"S]cUr-cFGklt_6umBXe]cKdsQkl{*["!b]c<5Vyym)p-BFmhm醮r%;=Z9L酫L hX5(5*eSJkטj 3\yM`Ub+Tƞom4D[5(5L&ZSm+'[ 1FAg3p[:42Ɩ5&+;)ƶ5R1FGkl\cb]c:5VYJTźƶwZkҮr6umBX]c+Sm)pkLQkl'ƶ5R1Fn*XZ1Ql\cjckl]c+SmyJV5(5 ]cukLQkl{*[)טjX6O.tU5R1Fb JTźƶ}klk\c+Sm醮rŖ5&+;)ƶ5R1FGkl\cb]c:5VYJTźƶwZkҮr6umBX]c+Sm)pkLQkl'ƶ5R1Fn*XZO$crN{&BuV@aB rmѝ_KLy;p{ _(ᵵӧ*^'.@A-D9LmHJ+x9z*2k:UfB  ӔڶIUi7PjUnkVe& )@Ang0r^8*3PdbCGPZ)o@?CUR.@~>自j\P[:UE?Jٸxv*~ro CmB?TP+e i~Vʫ( PJˢeI*;h'R,@~-5自jXP[9}U5?Jɰxt~R_ CmTB?TUP+%  ~*VJk( PUCĊ7Pj' ,+UvLCmjTP[8kU%?Jxrj~2O Cm$B?TP+ ک~V*( PUCC7PjZ)co@?ԖO.Cm*-?ϿteRDɪEyT= E7IT[*v Ls`yj V#KT*jT_U8wW6 Xmj0J2* Sbyj O|&֖M*M\ZZ`r5nUiRmzS,IӬJmj 3hyNlUn+8Tžtwm锫Ҥ[&kZk숝~JyTźƶsk2[6umBXe]c+RmiJV~(5͓ ]cwKQklƶ5R,FmhJ9Tźƶkl\ciYDeiɪ"wZKQkl;*[)ٖjXضN(tU5R-FVkl\b]c<5VyJ)Tźƶ{kl+\c+%RmqKQklƶ5K[&Zk츦~JپTźƶsk6umBXe]c+eSmiJV(5͓ ]cw5LQklƶ5R1FmhJTźƶkl\c~=>?~yrT1U0XOLQKZMq8ʒ,m,wiÚP n #ο(tzo vo;yt5~oNsx}oiyAAg>B^xǕKt0}r9ot!o*ج$'O{Go O)E||:k/iK'B @G.DGX.H<~~)}B:m6"]BG &ac5w$G kn@uGFڃ f>jhY察^?tGZvvGW*=z%҆騂xD;N䜮\g?~:z||Nɗ_?/_Ͽ|8%$."+&'CoGS>?){!?zx8ox #:x2koOeg6rE{"'%G"sϓ J~L~nﴻG|8^2L(A;Xoɍ?5 =Rg1/{WϿ/A0KOft>?}fBL(iO59T[w돯7cNzO`˝wSMLv=wa1E1*lzx|OX8c8 jX)RMQDDuIU5E?A#xlU%wBTJFlVߛ7hJ&UH(BUd "\]cFA[UBVQԡ20Q˧cxߑ[x eÄMuֻ20\(A穢d4dk&ὥ}xS` PdDm߶=`;{ӧҽ TV~` k't'gla5{&FHؐXӹ ZXo]]}8truEtzFi ޣ{[tIz;;"@}.pę1xz)>q:а~QJNY0g7FAvkNDjpK}(m) Ҏ!vk̜:.vyzIbeGR%.;%2E&«Wo+dq7fNQfde:S:T85{UD-.xvSfuJ lעK.EVbz' iIqT1bPF5l|UU9Dz#YO(VB؟Y_`1 k8PL!=ZXN+DNw>폇),|Tf $vٿ%⚜<,>X(Gq,\֘fctz b6Cf3,j=|-+6w T ض4I%*k=Mmޔ*\;Cd04U2M #B!•B-bNJYޤ-KoԹ o6*F%&]5yYLL|FU ?fsAO#tWQJqh$s;M١M:cZj?٩4TP;K:t*i2IUp26=e׊ íQmƟ=n[^]UfLw"_dK*&Z,[Fciy0FefO0Ͷ-ZsS4E8>FnJ]Wa*l_]+ ]pt?观mUyw3 u\ƨTrÛ CdԢ_:6T^އ%^xx :%)"Z!"Vse :_tyvh7fy;?@ MM7Dդ)nQɷ^?YΞ7MsE[i:R$e~k$f\4ÕDG`CC\|rp%/JǰʺzER ޲GHA8$m׶tB*frMe&T /(oS8Q?BM/4va)?PvRjb{JSRڝ( XGXcʑ*×ŦUXȍag02*X]ͫ\c2Hh\ bzۤG 1` F§Z<^7V<&.-dqbWg&%2do&?e̔B8p{*ތ.+UւTȟ=A]P{e=I%ս)}`F91R=mzVSVYSm/^7z1^XUwv캇1uתZEvbShI81#xli#g{x[s;r¬hۖhCG;m`~ͪĪ 3{{E^ѿ5m?|-ڴ>KJcyagPl5* d;oiKyXcfdvkBxN% ((qPI0Z2% G `;b"T ]Y nftfqoJTN!NK7w~lQ%'lG(b2f!MP0nC{zR5F&&K_wfi[}9!f kQ\U1RA(e}FGUK? ,r=VG*qBWr3Fl7DM51'fX U&Eb sUk5%ÓS¿sP鞞}o|7#N}8NOaot1g j2Q4wh_Puڑy($RSf$^?|^xIBAW|)ê֦ Ŏ^<ުC/lR]4,?ڙk5!vE(f=Su17o{q7zMy9u9 }iA.;$~ Gnʈ@*'Ҿ6Ԍ&aS6"VF_iMaBN-Nd^oIa[Ҏ_U~v,cbۻ:l=uۜI `DkDẈGB^{6ա\~{{rjoϢǓzSڡ8c8J&Zb EB{PD[*G3Zj- MJ2* 9;L/?.? HlzD3n= WaEPCokYqp^&mu/v]or᭴}ƽ0a3W˘8_dy{/_$5oXFh2'R]4A&A-=J|q11HEb9]L+_̸3.0c Hn"+K* f+sb[r ![:jy^]ٜMt2(r=%tn =UhSތdrȱ?~tə=HR#ʗ7QsHG:ؔ^p%ic7vƽ)r\.f6K*kỌK=v̙]lٱYXaଉ(}VUĹ&ZE ZESMbWk)(8aqe>֖c_4e )'2),D̏dEqqN0H8eGsיR7g/z_on8X(Yޢ_<0q&00V l`:ml>crp 7CS8V5JGd(ť 1>9 tW`_H/ /UH- 8 (=%XAyo^Mvvk 2F]Bt`Ӑl\9~i*5k`4֨ R {,邐`Æacj]/Ŵf/j3s†e I+av1 {PEזpVI#8rN6QQ*:E@eR+:=~\t9ai0a߿|:Uw+c~GG]~Nsx}ou/ȪǓ;\@Bl|FdD~G(~MvM?ء!#g.ȿ?R$R}fx?ɜWcHIA蒵Gᗀ<#z4SiMx|SGoT2g"Z?ԟx6'VtBt|h#|= `'ݶ|hHϠ84iȨ0殓H@tfUnm%^%9>q|~~|v珴.ބyKDsQ/af+doOI"rt:Bm&2zQu>p3eR-mZV1BC}Pm'( BCq9U  @ ;DNǶf]Iߓ{.Sv HxqآӲ*vH~ƳL\Ǔ1.`o=ѥdhLK8Mbb49)&p@ZWb|WQ'.3 D”=爘R6^UDra48LTR$$ yNr, &߱MA p4vMQTӳA)5JҋjJ2-X 5|pAEWx-|DhQ&?%DT ¹䕃c_'c5L_Ϗ_Wi-92#X|u0h]Uņ+2ZGMp(]ݗ[P`PNxR5T2\h`k:>/Q"(0:QrFbDהxN=_'5[zt0lHJ-w&T״ aeу`"KJ+38X~r0 RiRȯj)>iEY@c @|Pp0 #8 ~_R‚9Gƒl>0\Yy`edKzӝkj4Ue),צa^=)SY.ĸn[/C"rl lĨNhOZ~rjVt~%viKi*K,3,߆?n4 (t=Qbw"`1{v?(ǚaiFe2{,lUyVKKv''}pz;8:sqr3+XtS~$J },; 4G[,t~X@㫖ँdWĆq91jD^=-ݷҩneB6b:lcNg-lu۪`MπDie 0,骸tiE#&DARL1+fє \ҽsx~l^t^(A{Кcl[s%Y6׀[NZ]+hv%.snXU]2vi&ibj&6鶐Ҝi1HlX Y_NHiCMf+/ubw, a^2#,<#,|)o!;Da+0`uGXHe҈^ !aaa~FU#,|  η  ! ,<—H m  >!Ra^|\>vҀDፎ"8#8<ïm$_VQEp )KN^98#8<#8|ހE+*!P#8|F/5S>,K欐!D<r2ivq'O{Go O)E||:kΟ@9&<2̾Gf }$贘:k&~?S @G.DGX[Eݏ^r+tvmN06iH{"j:IBw(LͧKصm%^%9>q|~~|v珴.&{xKO8ms:{.>tz'/痧~:>'_|qKȅI1]DV$Jɡ7)Sѐ=?GXxQGص^,\pI3v[ңȗQ@9z1~<ΠDŽwND׋cP;Seж屰W.$B~eChY=0fdH`ibFfGF8]E@0fL q3$eQ0H dI3x*LV\ 0sf.f.0sf.(0s:|d|u~0'*fR*P>l1oq1oAXf cr]µIk =o:0\jdWSYԶӰʼ^q qkJScK>PZUbp[,I-N09ABLxhͧ<u!ƽ B D[)tؓ4g?$c0&@ bLL : 0BYD dO\r1L~`Lo0pS hp:1 ` / SXW Q-K"߷ cBց-o|ƉƇ"1#@c8N j@c8F ڊppǕWi`p%c#1#1#qȃ ײT"1#qBc9+p|8!8"|Ac>aa]Z?0sL*9."q%'C aa#s0sf|aaa0.s|X![Zqggm۠щ`v`v\0F,;Fc;Fc4h `LJY\>_N>7 { 珧?u7_<:?t/ڝN=z>:lw__3!/nx<ʥ}_[?g{3\N&#?# ,)oMҡڡ!#O~O~ /顚p7fx?2(Eor=Q!:&{?S <  |y)7|_xGSϦwސ\?z##"ԏG/`ߝݶ|hEҠ* GM'ОN#ex~AYҁ~t1E[e~zI$]#-;K=3҆騂xD;N.g?~:z||Nɗ_?/_Ͽ|8%$."+ClRrhʇ'evp4$wGy{}<<-ф0^f! VB}EN.=J,|sϓ J~L~nﴻG|8Fu蜩Ed| QFn7Z}>oti蟦!{<2UWA ]{Niyxr*bpjquW_kvnHvCϾϘ3A㈃JY笐_(U Xabs7xv۸R픃lBp ݉N)K|Rz2LBA+ْ@ͫ{|J#|J%3=i&P٫8~Zhv@[7e)i{{}ōj[^\M2}bɃ~Mrww'tZjmwKI15א;*@ǝ%sԋ XfQrRDML|R# {1ŲaJ䡶<{V3MR>0zӈmZ|OߪL GoBvEz % } `ԪlV kd,[3М,{nmt!l}WMSx'\LF#dy;vY #aYɂeh%pNj`|_Յ!^ۈ% sqL?`-P3Uh2d9}ccݽ^H;"gl ghbA-8&C>iL'`p=ї|vd;aybIl␯s|cf幋ZvW>}.sY^.u)p{]2y]b뒧ߥJ}/{A ^O&}/{AKRR^e! z_lޗg}9}QyvKjy`>}0AL<>}0Y|0K`2;_>cCG7?"#?"c?\nK?3 h6:ID_8³2Ÿ/8菊q9 z]^ץl^guIDLSxfK~*y^}/{AK<}/Y|/ a?j ceqGE/}A z_R6@˳$b?<}Y%_K<0A `>&LA `>,>ZK`6?&̛V|>vk?ڈC0 qfZbvZ:߃엶#j10_Y?.}g]Y N 5Ʊ/h/Z3aO+p*zԍRݠ>ettz]'̿$vu Ku@t{bc׫&$%CmEl`;vl& 6Mhd7Ƀ& <&6v`6-:uj"hO7-Y;>F;_wScк>E_ts)zK?{-ȻWor?9w{#Fo#wZ<X<G<;~2*L? ~ OYqqTuBi-INoߠy[DȎlfr)EB"Eز41ޗbT0%HC/0 [L24m+~\!IW~QxZfM~8_=L]lC]-G)V Er!{2N= ֛5f mX2q6KݟN'*F_w8{0j:YW}~QyEΨ2""^~{)G׌|ju,Z$~zz'g/<:F0% e鵦gGm[ŗ 0/8(nm8`2VAvXL)oMU}Υo6M-.zߛ@!I#b(h/絶̷G1n ! Ar' Y杹1KJ[TEUTdIT$@;V*SO TQ,5s@ {m5D|^5|jP3s>DsQ:Ĕɂ %m4[!}{*OsjCN{/*M6):7 F9(4PoZڴqt =҄hOy؆f(: sk'Xd 4biU:ygP~"*,M4zgȓb&լ-_mT\AܶQwmUԪ7(`!5ƏL쓆J*Xaq([F-GN-;nOssWM׏T5#a|q[Z k`o@RVz6Gл}n?_cxG+P^SZlfSޓ&DG艖P@a":~g̎quZhI/(_z{&YƖ.=v5p$ ZI GM$Ok ]9vQ0M;/yW:ƴ֕OJnҠS6Q9D"aE3b6X䓊iKZz}u-fNh([ٿm| , f$v KKN͵7Ń>얈ʜJz|( 6ZR2l:kSs@`_GTqiDc[}+;l]tL=:T-\CQ+1",lfB<^Kph(,7AVdb1q})CL,S/i6w[YULEŽ'խuWG`*6&L%:li oCd&(v(y77`?zTWK&pE;%<&J$E=;Čr lV0ı8| 2C@L {烧ȫI`PuzU#f #+TR$$ yΣr, &߱MA pvMjgQg PQ:^To61Jj(h  QA4 $J$3S8rpL!a&51vz|~n/M;mĘΑa⛮A;ҭZ.6Ĭ^Ѳ&86Xo2D9K $X F:Gk_smt9x}i אHݢ&) !)zNj:* Idlrnr]@U~څ^xg^Aab8 t'VB_4Y\'( q|Pe6"J!nCLW$HxpV7˄TxܬENĭƥi6v\ kBL.f9my:0ҿ }y%6K?11 (t|1 xl怄l;-uK7xyee*}upg?%I%Fk;㽟p ?>sq{SwyVcY[e@s2B ~;=tAg!OzgE?Z>>@^2#<#|)+;D+0`uGHe҈@^ !@@@@~FU#|  η  ! <ȗH m  @>!^@^|192 |gC(5#<EyaFy_I$ aF0S8rp a7GyG*cTB#G#_j`r!2!|ߥ'Y ȗYQemKD0yG0I Lm3$a1X`&`&`)#,L"䏖?-&Ϯ{X Ӟ`/z>98`?v92?#tJM ~B<3 x8O!+M #e~='Otz'/痧~:>'_|qKȅI1]DV$[Jɡ7)Sѐ=?nG5xQGؒBk(ܤp2v[ңȗQ@9z1~<ΠDŽwND׋睿%99?CUK\D7gW^r.Џ«D 1-8Ft9-7>K=XoH/_,&WO^ǽ)ùT2ACZH(z< gV艌Trz_N*O=tc[aqOylA,ꥼvOkR&ћzOQdM϶+L>S xAƫK緳;8]-qmRar*0Q`uk+Ì{Vퟰ6_[=UEHV<Bֳ+ڝ aL3;E&OB2K])[4o4mƽG)JΧ1Fq&1Q GlP6@q$,'8'}Qt64ZRS`mFY tEUDq{+M\mML4G>9[1mncSɭi3-3~~@ }6^*0VAR// _8%ӳtŢо4!;[5&9|s49P{ό+J%6񭔛%&$"vOo^}0a' wQ$YMr$c < _I wzsw[s!N Kzڲ_2芧X_ [>tˢgY[32hNEs_åMeˠ{㠘oҖyE;" djʀ>|`10mi̽f7-}S/ۯ)#jڰVh^~-M_ P3b_@d;Y&S2u;ヒ^wZd[XEptBG%5T߳d\iO2o&./:ټOr,ߋGGsh:zp}ğ:;&4_gbL%nVnؔߪ)8R{6cNSYgaX?|fd1 =vوϧM8ny߮?<h2e@5q7c}HbY\!C_ڟ)b |Kϟ/Yq~{ʢ:m󻑵8*`0$itW4[)#.x~%gZ9tIs][;$tN>؃>V~ZW $Ή/o-{=q>_N~M?Q3/T1alΩ~JϿi^Ϙ6o#fY!8'X# =&-|cљž_"/8ye6I#B7 < dI8/ӿ_0o:*@uh0&]yלnA9^qT- YJ>h7'u`8^/Mtc)5oʀ]34 ]WX4y0zB8pHPnWrRi CMrg# |W>F0!URquj@q:Pt%](BA PЅR6@vPbtͅnt#)^HAG :RБt#)HYԑr#堶#)1%)HHAW RЕtM8Е])鮔5])ktL;*PA :TСtC*PA :Tu.P9-P#=q؟>=;}0Vh!mAjݠZVCa[#6O}4X ӕdf$-R|CsQ9TagT OY8qqTuBi-INoߠy[dlfkp".H,s 4)!X0D~: [L24m kX.\|~Q`["E%zE+Is[s^6\ ~j?Zb𓿰Y$򇻧)dC&X_6[oN01 C`TbozirU ׂ/;=Vvyi"Uu8,xbTbF^#3jD~Wd]2Q5c(1T΀eיErw7 q3mn SҠ]VTzv;8Lo0-d084t2 )d2VAvXgL)oMU}Υo6M-.z芐4&jHe҈5>E:66ߡ(&Г(P ICygMi҇$A5.MbSoʫ!8@RS%Ba棑;rϘU2?:>$>_PL-]P'z-|kmp$ ZIHwXlC߄#&'_Yl.Xjb qVPYƌ51 VW+7Oraν$d n\{>[<3on(H̙ڍҪp_KRMFmԝwbpe рnG꼅k(`2j"FD-|3ی^菧k[": ˍzfЬXL'g\_ x <-bMGZ`껭V׍*c^EAŽ'խuWG(6&L%:li oCd&(v_nnDM0gSvJxL4Iz*3w7OW.ۭpMu1ac/p$ezAzaOWS"F̖J%. F0W)IHd3JGXRMtc@$;>%,3 /.O>c> A]1Bgt.lcDPѤp 3F;*h>)IO *H"g2p.9yC oɥXMBkbī%XWi-92#1Y|u0h]Uņ+2ZGMҔ(]ݠ[P`PPS5T2\hk.;>/Q"10:I[ф5^?$SI]'8]şa I;[Mn ¯opD>!ҀGaFa䍎" #<ȯm$0#_VQE )KN^980#<#|@F1*!#|F/50SF>,FaK߲MP"<#|`&`6e 0,B0yG0yG0yL~l&_b`G˂Ֆg=^siO{`7ݛ}ysp~uNsx}o;o^M? ŭ'w\+y&Akx2i.6mzXfj7t;Q58x?_ҷrYȿS.boٟGt)4>Gou?%QHfY({akC4˿;ķ':e5apL=%t}{8^@ :-}8) At$q0OIq1%-;b^I*٧>lHG:^ ]i[&s}ebIN&0ʕZN-KYTG`7b/}W>ȣ^ѣшK}lO uѹ:it\:Vxǐ [1XºAX7,(7o 9F -xzC\7V{ъWxlr&=o>xӖK(זi%;d'cDpK6f-OMt@K(^J7h[TE!_ !r.3JΙf5|'"Pj+VX_$8!Ōo#?f!<£/[W^yU?d:tY;?5!x M6őx@?=>Hw}@5:fcLXI4橦V{8!бY7OwW=:L ٫z!+f':'?Xv985siBG{Vc^4Ew:|h~-=>c#z̨#:s:[di:pOc/h[_\;otj'o ˱U 8⯦\=8"G*{BT~;j7k"SC]uK DڸWY. aN֕Yѩ!չBdf "f_SުB=nTƚdͿ) T\(Ԕ2d 5 ՠԋߵR\?A- A Fz*b/V N_"8e}Sp)W|VU?CcP^U?5=Wr|@ڳzX^Od]V=mCQ[;Jm7Zu{T{=}g)PoQ [xwQ0F_uD8HfyV(u^OZLKp%n&*ٛpJ`K PPBCղQYy)G'PD̯GV#)yg;oHXБ :G/h;m˷[d”L \M'E{"j:If聑#с~̾XE[e~zI$]#sӉNGsh`Ϟhi8g'srL_|z.!'I tYv'CoGS>?){!?z=i!&[0#$'$wi+![T-rwrLы9v[ ]iߏ vw5D43YL7<` CGx()/{WϿ/A0jEm,\K~ɧJo.<Њt%6i2$zi50S/cݣncVb&ĩ=$^̈axqKmnfTRp!2x~VE/ꚏx_5 zyȿ7:w<ԅ'80f/5#`,ɥ_H^CtH8efÃ7)*wB4;jM=ViߚFxבG[wM0'g*7<7GN#P1@(19Eb.,hUz`i`MӆDDBMG@2%G"L^9^r}+_XZK4f (?UM2~ab_ A2Mn3%moޣ`붴Wn/-W onrɃ~&Bww'tFZHNy7t%&Fc`☀3"/GGXzSI(©",+tjSEHLOwO*xKL2B4RVFxC=k=P5$a.%(_ՅO~Vi)D=}32u+S a2B-F.Zw)AG/o8 ~RjU'a-,L М,/1.GJ-]k7( (Qw8Q(]Czk79Qk,XVR- Ʒ^U]ܴ[ѦM6mmʲD*]Z`vÚkN;EI>7F&E5o<(>G<&3bI7HL 󾈳|k!6 < }fc{6v2A 'Ϧrߟ m4j`?토 1̃uو?ذ#47;!?nu’~L}P l7 }$|>|Db>1Y!{ɞD?\`΂ehߔ?z#mNy"~yeu,\#.wA ]&wy~D 4.ky/}A z_ē /}A z_ƤVk) "M&x_Tt}xz_/e<{K"dʃ_T^ 0A/ zaɄ^ 0YRfG@k[Q$?wo-7!{!Zh #/tSi.1%z(< |UztVβϲdCWqh{Y|k}-;BM;'_~rZjvZBr ޤ~FHoo5Yj/:褓zN!itţzqcuI"uQ-\ 5zFզs"cyÃ`i*>Z5ݿߓa*Qc-cz7äuTJ64BN1WrH*A[ =&zܼb5{bh6Ǥ`-os=1iMzs1f@5 И @/c)zÏqtnO<c?w7AgFgN;B,wLqn&9US~!Qھ'$>dGs.#+؟N *5`EfF/5b3ԧb_ O٭E׿7$aD|_ ,t]tk: ]w5}eo=xGcVLrzZ10(Fjv c2/.)MŨ`JZY`0"iF I~+j\!I=~QQXZĒfM~8_=D8l+ŭvG)n5 Er {2N􎱭֛5f mX2A۟N'F_w8{Y:YW}~QypΨ*""^辯{C׌|ČOP:]g c?[Yp\ripcTS#D1r|櫃Voe&S/ J)N{ JX}'¸~&cjdKD[u\f"b7mW L7hVgX&2;T\ J7$ w1O;s#UXP7ÍvPyU1DQ5Xj 1⤀6j1\%mjTG}$g7|:BMPYɂ m4[!}{*Osjp3N{/*M6):7 F9(4PoZڴq t =҄hOy؆f(: sk'Xd 4bi*ygP~"*,ˍ4zgȓb&լ-_mT\AܶQwmUԪ7(`ۆ!5ƏL쓆J*Xaq([9F-GN-7nOssWM׏T5#a|q[Z .>k`o@RVz6л-n?_cxG+PRZffSގ%DG艖@a} :~g̎quZhI/(_z{&YƖ.=v5Ep$ ZIȕ GM$Ow~BMˣj#u#}Ӭq&S͎"-<56PV"r }zk?g\k1b?n1}q͛Tӊ#BWƂ$b=i0ݤ0m&rDfPm'* dnO̴X,ل8(lfvoh ,d(`U\$c-j/.{o:6ޠϖ  "ns&$Ѵv*\v׏pu>b#hh 󕈧Ou'"3b;\a+B4|[a걠:o,ZѿdA - 6c?ZgC?G_ `kG"`|G hjxݨeBd((vT=Ým͈:N.S?eEe/T^0g'c}xQ͈.%C`ϖ_hTg 3)fn3nk O{'.3 T ;{>x< C""̖J%. F0W)IHd3J>XR_Mtc@$;>%,/.O>cN: A]B[t.lcDTR^ !CD;*D>)aIO *H"g2p.9yC ɥXMBaīy^z"92#X|u0h]Uņ+2ZGMp(]ݗ[P`PNxR5T2\h`k:>/Q"(0:II0ф5^?$SI]'8]şaH;[Mn `p<у`"KJ+38X~r0 Rkdqv,uuCI5҈'` Y^!_tYPN*Rq#:}\SC)P2rm 5׋=ew1˅m1}e[_Λ-ᔭ4z&֏_akIlDZn_L7sg3[E[ڿ|-,UxZ,O. 6r&gɉNYdmu%/dB%w&;. B~/V34E_5&>V@996P%8iٕ!Fc\m̶=egV[Tv2CfO1ea'}YxúmUOg@\H"uN4[z DC tU\4] )&I3E*ܕ=- <7EW5Ⱥ=&Z5Wjs $جյfW;9Hr*ݪڮ&XM3LS4mMMLLSyFd+eji&ϱULM> ?XA3(<#,eGXxGXRBv$W` %ʤ#, aC6",<#,<#,<#,֍ a40GX a1a3oa~CAXx/a ^a ,|B,#,ѵ/ 4|g(5#8<EpxaFpx_I$ S8rp 7GpxGp*WTB"Gp_jr!/!8|OY 8×Y!/em;KCxG !"!-3$a1X+)B#DY("" ?- A"DGx׺  _;D XvA$$R4b!#H|FGxGxGxߺQ!H| _!H:<#H|-#Hoࢊ*>d#Bŗ\L_CPpvVWY00>z:CxGtz DC !`<#`<#`VmvJr1ekƳk/ \t9a 4)[\w+c~GG]QhEvߴG/G7/o'~@ȋ[?OriWy泽A.'͟l~w&P~ސR'?ϧS .)D_o#[?~dv~0HNvo!:՞^~ g_'o:}^/??o,Bg-&Zl4Liv '殓H+4{7yt|]{ /|>jhY察^?gHbBGČa:*z=ю~?9+q?N/N..ȇ|9><}9狓]B.vJKǠ|ii]#S1!~˞gFa5:(xXwUkyefGl74@*+uB~i㠁|r&Jȃ:; ůÛW>jSZe=fJLN|sUa8 2)XuȖ_L7Sʔ<׼kNׇ V*8IL=o6^Kߺ)2WчLGVM>j Ko#+=ɥ{vJv t%~!]1B`א *=ǝ +sTDb>$jSEHD,HԻ'5'#{Y^)JVPYJ9m%YӔ(eMP =l#ϦnaL &8hYu)AG/o+f.7KX&ӟ`abw8\fY.wh A kf;e2i(E[ܡ_念^R13H,C+tRt.c;ڴPMaR mUOk9O&voLJj޺?P榅H}F,s̨dAm7ǃog6S녴)`,j88}6˶p&rkki7t2^O{^~وg{;</F.:W>FmVeT׶&Bw;Pt%](BA PЅR6@vPbtͅnt#)^HAG :RБt#)HYԑr#堶#)1%)HHAW RЕtM8Е])鮔5])ktL;*PA :TСtC*PA :Tu.PS$b>a߿|:~N۶7?"#?"c]p-րxn&Z0C3R˄S!7׻i-zq4 Cf~Lθ\2)GIWJ6m[;yl1]H[&XKY=-V#ŤT3kLV֢#IN~sgdһ<"O;xCAGBdLƸ8y}-H94$oм-0F633 "l%GiAm#!ULq0JHvC4"~QN_AE%zvE+Isp^\l|j 37'aHV>Tryg&ÖL#CfjY!ECrRü4k:?<1*rU#5'cxWd)޲ Q5c(1T΀eיgErw7 q3mn SҠ]Sz\ ;8?oL0-d1,Q70BgNX1fFV4V"՛<,W慃n!I#fvuym!]9ZG11D/o!I.Birȇ$A5.Mb !*7XX 1D% C\m+4C$ 7 ?)YB sj? wөE#MOΥ Jk6O%/гJZ :ʄeB=Pi'; 굴Vn]X8 \b]ԱHZ)Y; DJc-lb8'pe쑺ZՊ- (u=[%YNM46uʧEZgl੺"D(57W]/Ξ6֠ԕcRqݴC !#UVꉨ '%5ihTm bf"a1T!Iš%v*E!LLځr<cco&F[U"O 1E27Sr lUϼ!H!N1gґj7Jd~sKy40V9 Z0/#Z!\PQw"1cní.DEMnĵɨ KofUOgEp4teZŐ^zr 1PLk"TDnkyjjxݨeyUN<#z1+;]Ě9tK:Ma)UP+9zMf&wG*At)},0bDh"8cpAa\-t X8O"ARfdw|4y5) ]D*blT`{JJD!13AS}!Ud@;)DӮ^2Zͽ^c=8Pᓁ;)4Jҋj8FT [ ŽMz]h ;ز-pD`K$r& 璓WI~?V\:$N_Ϗ_Wi-92#L|u0h]Uņ+2Z GM2_Rq V:"j,/da\7q|)^roDh=&_auµv' kJ~H -@=Np?ۅR0l6=.*jfbGXIXA 38X>r0[ NG%ۤeo? #ZϢCWMq_-"p[Z֌}Sj4eJ,:Y渐`ymy:,ҿ }y"Fx?ڍF:^nE{c<~6s|-3ֲ.NOfgX>)#WM݃{޽=%gLJOηdopfe~Ykjf $'gjF zoˡVFKj̞Hk',3iKf uV8[e7K6[tIf.!Qs"K\4kB8xELdry;#a;yxzͣF4KeUL*We"fmn8@Ive 6LǨ6meoSfŘgmKEln(j\ZZV;໽w'wm111#v.WH"w,߈]L[a!7b}#ַCoFo. 'b}W}T]A!wX߈?t_%[}/϶J S!{ku)ZtΉވV!XrnU\V_:kY:+Ug6w_:Z蝰Vu2U#VuqZ}eꮴVuY|:֪kswZʹVu%B'taG)$₎l`g9rيR~:;}X(ZuҊ`c#`k+w߭|> $M7" ɩτ n{6Pvɓ٪T7'JC k=5 ;O"0# -X24BuG,zfe#}LCgޱ;vLqR. ՒJ;PPm7ͺ\'u{#C*rd5)ujgEh;W`=Q&JSVh2aQic pG:r irn{p_+} T.-4X4،^kY/22F#T!bP(l4[ThN<8$N<:9- MB&?THb# LSɜNĢlI*:3hr=IHGRQ7S4%'˱'c5CAb&^/O+ߴӖOeߗȘ2i'[P`Ȝ/i 9ZV3<|)^rG>Y21ܓ-n&) FBHldgÔN1MQLaYKNo6↰$HQ7=1.kzaMg%{C:iB#XoVұJHPf"I"YmtLH2-/KM٪,WJ}Px֩+ݒ:niFe2{,lUd@G?I$amyΔac3s3&:5sE ?IVwJu!ɫd}#Kf J#uM CT V?/ZI{ȥډEx!4]:LR<fo]LFy'qqd"#m!p Q>bci]g>c?[YpNipc6y3!&X\&zbUmI" EG$:'Z{v򀕃sp|Mx5ygP~"*,۲Wfzf@ LY[6*mۨm J-60˯ڠ4[R4吚m1TUܷxʵiFC74MŴKߧݹkGWّ08-- z98Fֆ`R?oG}JOP 1w/G~tvg tBGog`އs&a2 VR@V .fCJ#VN$mp\AGgx6RÇ !juWf"Fbe iFQ,Kb9Rf^r#5r`;3cDňd^-VB]ni!ܺqjmzCxGt+z DC ! <# <# 20mVIyr1β0 +/SEM2>?9Ծ߽ا7Qxxt~t:7ыQMY>yqɿW.~ |y>?d2"3B~O>z$џz=5dF7 ]])_ )$}?>}%޵m#ig1O5CPu℮RQ#$"! EjRǟan"$Nwt}x~MyI3}LV,s7cA4Ô7u.bG^z3p8V8O΀Ipđ.m%ouCr3("iSO݀6N'Gv0 v |~L[cSD}8EzJ}K rv1?6((nps0&E}Lۉ+џ-M+yC~A {:>h7 ֣Q5_-1YV 3VhzsIU2R&h򇚁c[6ńy51k@ޞeq ?βaɢPHtiu#d'R$F^p|!V*'җ_cX[I~$ c"-g㹂=gfgu,+"-8A =2O8,ƵUvC/饵; 8]՚O7^E?-b7"DW)4ކIɅ{BČbϲ6#QjvX2Cz+@@7PɩEz|pZ:vځn&,,s~$2ǂ\?sxp8ȈӶ6 [jbd`HJT~`AU[tڥ7Pb`m> TrЏIσm=B%J_5c}>@l0k藿rK1ɹ]$Ŧ:|/V*=Qӱ$UK#|VDa8&?SJYH*a.I. ApY;]}1 #<3 (-L m3wt]ϗD:&x́o6:FRDH>*K[䱎rD-k w=91\)yx%mΌ@'E_M&nP#ԖMF6e"Dm#+AӎmMK* {elRkdIlsk۰XrjG;fb9sH|jeZ\cDޖI/5+)U^=qqozu A8odᴥH ;Imh$q56:z_:j^n›PgY"i; ,f̲ q%qP:x*V^xځOm7xGKߚ'*/ 71`# ɦ" *q#!N$$Mu8JӤu`7\G6 9`01?k$ĀIN3gҀI! `C&2tC&9L$d,4 j6 0p  `' N0p ``{:{R~7a%w=⿯BwGW :wr>[ #Vn|Vheݸ4]Ztfdq~w1BK)S. ɊTw+ 'nStys}B m!\@7^+_r0<0GTI;Fdg%k.iZ]1"Kj]Ȫ0:oG-95x.0zGJ@ZΩRJ?\.҆[zt 茕QKIVBZXP@J{?,ړ=#Cx _K-;ˬu_*۪OnT%s>t0}i/\ 072T|Z.j?ZTgdţL$T UƲ%*N I| tԍk(oJC:0H_{\);LfBJZҁHZV~9LfL_[U-yV/,y1m۹2Ѱ5JhKʒЧf "r/;r#-lx}H5(\JOZ7V^WzTE3A5.?- 2sU0#vRfyܟQӰJl(KM-U;)MR M菳QzӅNG)٨|LV:)-D&Юt"J68YAt\3`-蜮Rte+/v'evOh4H|  EWH`?R14sMFQ?JS8ir{L {рtQqQhj7J_sNPO `_?/U$QqFvLGT]p3E)]L0HD!lk_xp vB_V%:[~ǧ橐 )zDZ0 tw.5sʬq"; _olLteO$Lbl4!;Oı4sUԟwz* }a&E@됌!b&di?ڇaЋҾFef@0UDvYaԐc!h诊){P.b k!13=} mxz{K;v-D6$?a9:[n}39jّ)l4$LQP%L3/%R)=.;r)*ɧ,I.4A %SA>kWVIy?%T6gM[o c:;OU⋮G@[aO 9ˡ%% 89s4,X&^*KErY7m|)Y %&𿵙qH!'S,% dzTCp?õ/LAgBUJGo_!"DOn"nES,V6n#n0/ xM7fF*:S(IXΥ]@Ʀߣ{VmҴl@N:/&nt^[^xQ 97_ٔhU{壖՘B.ͮH'`ߘ/=%@!$}3S—Gwe|@' ֖2_8#ʪ$HV%m~&b_:V^J>EףhnUy&9`؋g:֘ϻtU!J+`pѷvuMO:p霪gH",]!YDVL҃[cۊ!7q#7qe7*ND!7q瓎@ܹy}/@j\í\tcAtES{m/M;E_o{}:ha "^ބg^"H!N8#N8ℯ=8u#N֕Ba#L0p0$Tع(x|_E+h{RzFԻY]g%=GKr+9c(=XzNb|٤)nfy08! a)"KYX̕A#6Fя wE1 'wir=;GY:(Iӓ/6M5Col!7ؾ}st$< !|Em$UvVJaԟ.QK}]FES_8`tojO/!yദ+l .<+vr}T4zI<8 >: !^!P'Ɵ_W'y)"~pZԆEi!x8`yFcL< v=* ;M NtCbk!qrّ4i0Aj:*[aF&k@ Xj8қNYp]?!t.crxD"F(mizJ@kM{!*BX"[BG @Ud(JGKEQ+𷂊e eO/xmSx XnՀ1Ո*F-2WxIkѠO/(ح*h4VSP?b yC}ءK.Tt'7IsJLEr-m6 %qRRE32co]% 0ʵUu'8]?J^rOw^4HӴZ(Q*̬5 QOK0-/APy¨NUQqY;]pajE{`'x3@fU͒ n6+Zl`rk'<虻hS,0GeuIhkTsf#s0%>eLf/jm+*vpDzLxNN(]I= LAtu']DJ6D-OwU둌!bna}NX@x!k$8@v֙DvYaԐcmW~7K|DZ*)y#QCbf~UG$-샬wt{Cnt tg'fNzv5^䢷qɫ),ܕgR#"wBuDșxͷ8>kڪW~V(ٙώ*+̺W+ɂE8 \R޵ֆ5h9CJ8KOŞX(1 גY!BZfTT-d}9k悆5dȱW[p8lRl<.y ^+5@l@NھBJu,kM[ HgFB;h5Jc`J^-oBߜ~TjnzzԕƓ.YuT,k;+~4&kJf;hk AKG$8A)ՅP%歓g.Ug| /Y5SiA7]S>mlt,[5.dM5zfWh#un\Dh1%'w,v<@W-d 1׎zKڻOm׹RdNapqUmc C!<@|4'UtUq t_GwvtoG6w'$4vhҡwfh:MM*m&U-ϖSib/bn onѽXK]ŎV?*/Ƹd(g To˃&kbr 8G[<wg{h cO|kMe!P9i_Ջ E}ߠ &35CQ5U[}b(Ďȣ$Q޶ @V?q$1JBkjz@tgN)"^s_lp ,` nh꧈=l53Qrst0etbUr0kNh%xzk,?+׳߀Iwf80ic=2{lTqQŕ##J)F oQ#@]? @`-8Z4])aV[I.ẂWQ@b`}򬑶 6v+=|P\*Iw^d@7EPVֳSx 1W%_{mREl.+][oۤEyE;ʑ6MӸ . WIt|5K_XL I4r:wBFC~͘j{ES(I3)}4ސ|^>}C܏FiDz){u4 wБs; b9|]R P~h1 k?^6=8%iOě^d2Vhz|+)c^/#(>,⏏/ŗ_賓kHtXL6LJz=8m㳷7~;przxFȧ?O>}&+Ƀ1 aIBśwQ1vGd8Sse>O_`ET8H79\DY4Dϧn@~x#Bv;an{|>?²ZH.TrhO쿏z 31a\N}eO5߰B$G(*tk3˜z5!_d.{J/G5Ԅy-/c\5U XCEK9FFib5g8jhJJl0){rJpנݏ0 `&SC)w])7FVӢ0ϵ]@l[=@lbg d܃[SijSl8`L&,_^:!C 2a^,!מ{ƀ?;Ubp.Yy,C! %tB&;5WO/ԦtM<CG#I(hw }ߚ|}%\ꀄWg9[a<ތo(5Mnn`vA`5մof05plA?^AKSJ{ 7T%pt 6dmMj-ɶ|M%;;>dRFk65i)Z$tFeI!/l8teCq(s [u#_MPKvVcMPbjr ui227 ?TA\9(*wkrɧTB U5/2|IaҀBpڀV[3oT(ϟ2|(oyvFgT 2 wGe1(G[ܢѝpkYkyN+ifr>)zmhql06FveS%jCkטkN;~2-%o~I ?2k͏qWnb H1 `e6[셶EX<7m筯s6_H`q ޤ]ma,|PD+\8&Rίe]'qdXK?!okշ,M3eQTSk  }CB#!F*F.#i`tDGX:Њz:kp`JJSc%+ii@FKZeTj1"M0hA/ `&4?h1xO2ݧ^ /!tR3ٛƅM롊L47|L'M]3cK'rìhQ.zP̴מ{ƤiQt5~\_LK=(Ty>QdPՔ*6BMf~֙8/yN5hE'B}3HiP93`݌!u5 Rڦ`}7`L%1,/א4ېj.x2"klRk1dMk'/i@[PKSɮL֥tLeIwt{a,ECa%g'l!r Z4[H,X}WoKEֵfRRY%WF0d5ǖl k,b*ǷBd@/{2G(zBGZ;t᭚ 0QGX1o0N7O죵",y<`# Hs1s&0) L`0 1`00`4`~0d! `ȤnC&O;d)82yIpdU%|<=8 N0p  '8 N0pR884ft_^2?{__-=;|u!*.Gw!{YY,wmLx½ex8A.-l:f37895Wo{ p 6WlwE卄6올+.lAEwֽђB홵ܽƥ~ˉuΊAPp]t/րNF9yp5Oe<8Hz 5ݘ%cD=] b˃j|ڹkף مD_ѤCyc|8]G=j:Ai̭s t0#L-`,K `J/@̘)&fHڶkXi :H&vV ZP\J{?/ړ=Cx ق?Z/lIE~{}2I5tg[4iy'چC@eaoC ~LA3F >ce)m\0HթȊGI$ke%Q,Uo"!wB%QRU86`u}Ϳ5v~љ6hs!9rǹ ~,Z8x%y%ֱ1`;W5V3[l 5蛌tlu)"/ f"5W7E{sLaN#Q 蓖|捹g%e-GU:$T"@; 3^l3OhXf 1`ꆊDy[?/Z1Q_ pV'$m/.GGM2>D clOy1y|vXp[Ň9#w֤\U.a7 *ayTfYF3*c1ôO{؂f: sr5ZɰЬ];Yn5rN3XWj f#F7U\>2}lQCm|) fv~&b4L.ux}GZnYjLrj :y}9]+[9j?; sأ G>ذ0*+ʒTseՑ1JozC-zr4vLY!D7휾}joӖ'[Wf*eЮ"K68A \@5qX-M΁7glo$F `)\O#nA='d47Qǔ )I)*vU8w̏%Q$ ny fOp"Ͼ3;fw84.-2P]p eA"rDYBf(Q ˊth7;̤Y+3v؋?OT!'S@/i6ia-{[]k\IfdUw7ԭu?($s0Q{ e0؊7!pt<d{ϹGWWQEVd`3LيTxҢ#<'Ke=C2t7j>_AS@/^H'NTg=QC (*rqCGt1|vj:RF'-]Ͷ`I8Vؐ&ow󋳓\樽OKpW&v(k?Th2MF9C0m(hחp MQюJ$q%I)L]J^Yy$&~SrRu$&N?Ύ^WRByǘ|vDsVX;CreYMu Fl4N+Q|[p!2 SE{BZ;[fȎ!%K< omu1$Rv(ባkI^;_g5S@]'8_şY":9wm Te7L<4؞i1Sn8F^,AHYsn0 R7f*S(Kqr]Q>c6t %L?sqVco ['m  R[`ߌ+Ӗm1۩r P`؍rUګT!@{% A {o|9b2S(BϽ)g:;h{ڿ2Gife/ AK$A#KBE7gh4+|Cd-)F9èatI}r;$"ri -th3liOn:=>wH?oI,4F-䯳TksB;H?Ϧn=t w,`'#n`HnEXqYΎ~:FoPDDiJ?{7$ty/ш]½KjAGEG;0_HK巉Bw-1ikNCDeAF)f:J=2bE"À@%\9:B::;;: }vrM-EE%4ӆ)UTOxEN>\|޿;8=>?'>#GgOϏ 9"b`Ɋp fL99&xrҿP񦴃ET(ѥ~&ǣo^@ $B#]J&%mgr D> {}*)O5O@~x#Bv;anT! 8pz)9jY1ut 00[ZE#-VuoS,q)}ģFV})?PIo6s=y@J#9{E!?0a|r!~&Y2D$*G̎߼g-,R紡ճ)39Gr\>>)^4_ |DʢQeO(RhqJDz| _,~([荻(8F=p;h8;bE%45J΄D܃efbsX)c`4f%јc6/"1`Lc2 dل1`Lc29+&SL;.Ao"_Pxzk?󟫸'xjAr<9ub_XݥRL{/wfh*'.䀃/z;{@mf8b8@dz҅YB@7(_+:%1`(@Uh^wQ]|}(#r(O@p]˃zڹkHT Q#G9Y5xܓ-^9ȷSH[YVzheTUAϝ.#ine菕D.V"ZTX6X{?/ړ=/J81 RwZuW_,*BY7 ;r=Ky0FVE YW,YSSu<. I| t⢂qL C: I_{\2}l *F 0I77a__^kjUYnYjLrjyTy}9=S9j?; sأ·e>ذ0X_t)_KoO%zh OxX?ᙝ*m6Q5)Cm"sB[ogRdLu;T| dst~ 'Taӓ"llj=y</Mh0V+mˌN.T]`+ ,P;Hr%ЯĖư7G {y1I_܃p\̙amCaƋN[^r4 4n}o,Lwi*PZmET^c't| >d.UfJRhjY|V&ʪEbYC-zr@4vڅ5Z?Fa5[)Ю4"BKy68ٯA\!< Ү22ryf؀JN(ߎ(W+m $SH$[j6E(Me1U!k^GD>q)W|2;0Vhӯ nHsAuqI2?dI Al&_9Ɂ8,W3Sd<2`/8>Q XxL5 T8Gppkgoue>VbuTq]`!s0?{9Lb!o<Oq<s*O⻈ZFT l>[q OwDuHƐ1sl&{SG0t  i_#I2`*"P[F 96̋ -0V۩H!3}JZ^tc7ۂA$ḕ[aCOS6/NN7sv:-]Z|PM4 U´8գ^_z-\"C4CSD;*E4"JP2v)ye员S"Iahw;o8:;z{>lKo c:;⋮G@[aO 9ˡ0% 8CIwv^n,`wrI"_ ^jdkn:>,yDQ&YHI% 3Vx|Lu|fi#dnߙN_*Ps0A`{'8KJ_{{!b c|+K؛իxjO٣,uEIRp2|^;!8Yl-:6HnO恵&~3<ևN[lʱ)nB/b7UibV1VX<@q?+0!PÇ83SK 5 W ɰɻ`O 4 AAuA,]1)g>fBuwdEk4*=8cP͗*ؗ'\:py,zcx+ .zI2_⊅8!lwz\4pu Pa:yX僻=3K |ytWvpϪJH} z ' ֘2_kcÜKeR} $n.ơSCy^J>Scj&orUm&9Ӕ`Kx [ iT/KxB#(SGXx׺  _SȞ!@:#,|MFe /mCGXL    BXM" a!,CLyGX [GXx_{a$GX- ~,|A,#,ڥ/ 4|5#8<EpxFpx0_סv)yeï@,0!8##H<#H<#HqҼ*:T*|.%<C**~EC"GL_k z!0!T|x'Esb_ #`<ƻ3Gx/Y X#b00=RGD qX0/`Acxvڮߏ&|)uožc^=N,t:{½g3V[oseoun A.!w][oۤCEyE;ʑ6MӸ . 2WIt|5K_I4r:bBC ͘N{E',(I3)}4ސ|^>}C܏FiDz){u4 wБst ; b9|] P~h1 iQLiv'm/ 2J+4{=”1Ua }ur /5U&$xKOTmv6?G|8wrqz|~N}<#Gȧg>orELp͘rrMz0MirݻQ|GףL2a 2d/jѵ jX8ҥd hv@~&eVD> {}*)N[!!Ϗ[c{:Ӊl=GX7Q:E\YZ!Efwȋq,)r*`l۷^PN;70QT~s',/U%f-aϘxE# 'UVAНӌ+ۺ#3)[9ܤRltu5Qf8ԃ,v nXWɁWV=DɅ{BnB ugH~\ymWX+EA7Pfr`>>)^4_N$ CͨI|DfQѲ'O)sd8%|t|{yj58&Ҁeo:曌`%ɪ#}o-k?gTs4&X,:C_}~KmR[A<-T_#+>=YJą| Kc 4J掑DI~e]_X 4HeNË'-Zb-ev/ LV2̶?SJ}Wʿ[`VFG%.۶e.wʴpL&˹l<_,-]Wu=n;hʥt8;E%45˪>ڃeFb?BGDG,w=pJGj17,FK ^̓?>TT[J-6pEYt*1aK]؂C_ kپYHXJw>+$^b\ t QH5 2Q$Q|}(#'0y&˃*vڹk# Ȫ9Zb":Q ACc"ltw "bh ,CW^M ]1E8UUgEpK/Ǹr$Rvf%9&$m!5BDS2Ayh6ʶJ0UO:-L_%4_5T:O:Y?8UBmp Io| t_׍xk(o 9ˮЅدol.ۈδa*E,=t9na}+tk\TpeڒYe65ȲE:R2h5D5<1VV>u7cH˝}Y9DYc^%KZ*￲գ*ܝَ qiPx\U1j\6!F(Dyۮ ʠ q0h&ƸmMy]#V;+}+EwkBUN^US ~n mdJ23Mbu۳Uc:'wW;ݰ`UXtV9 ĵs喛-@]cq^,WtW+ = +:F=<XV89$$ 7c7Sgsm8wm,yqoB:_i]f/prBq* xoE=G8ֿ5rFb4~aN-+!} [p`:C:X!]ss1gY p.ض#}r0H;&z r7>+#MvV5{,C2KMFM+峡,37T4I:7"7?/N:(h-Q,]O&L hWI:kQm?I_f,Qь RpRX?KL|eB<Tn$ӻߎI OAb< G*柂zN(Gi 'M.~z/S"#. S6.MFp}JI|BDKpX+_EygdwdZpDN7Y(Ꙓl$DNh~yf(Q N`7-e%ZY^q|m k~Ae pj~w)w]<0y"먺x`DWO"N`+*vFO9DK1?0]]EI|Q0gˁIaR !fOc}NX@x!k$89Pf SEdF 964H -0V۩H!3SJZtc7ۂA$[aCO6/NN7sv1-]ةF|PM4 U´8^_*\"2(s);*|"RJP2v)ye员S"Iah;o8:;z{q|ִUP13T%zNkĐjYl]S/n>N-E8 PAn⥢Tk!K̭q3琒%Zx^b[Y]pIx2eZ_kLfK53\+rt=!Tet %!bM$&2PV>⺈jkV0Žׄ~co̥Ⱪ3e?7Oe{@JKdP%ց+M_G孭,D%'i;mـ*'uN Mȋ*X>[sWoN))Ѩh&ˇC#&1R].ڛ]N1_zv?KP3Bx;+~4&kez;hxt'ca3$E 0~X: !^!P'Ɵ_W'y)"~pZԆEi!x8`yFcL< v=* ;M NtCbk!qrّ4i0Aj:*[aF&k@ Xj8қNYp]?!t.crxD"F(mizJ@kM{!*BX"[BG @Ud(JGKEQ+𷂊e eO/xmSx XnՀ1Ո*F-2WxIkѠO/(ح*h4VSP?b yC}ءK.Tt'7IsJLEr-m6 %qRRE32co]% 0ʵUu'8]?J^rOw^4HӴZ(Q*̬5 QOK0-/APy¨NUQqY;]pajE{`'x3@fU͒ n6+Zl`rk'<虻hS,0GeuIhkTsf#s0%>eLf/jm+*vpDzLxNN(]I= LAtu']DJ6D-OwU둌!bna}NX@x!k$8@v֙DvYaԐcmW~7K|DZ*)y#QCbf~UG$-샬wt{Cnt tg'fNzv5^䢷qɫ),ܕgR#"wBuDșxͷ8>kڪW~V(ٙώ*+̺W+ɂE8 \R޵ֆ5h9CJ8KOŞX(1 גY!BZfTT-d}9k悆5dȱW[p8lRl<.y ^+5@l@NھBJu,kM[ HgFB;h5Jc`J^-oBߜ~TjnzzԕƓ.YuT,k;+~4&kJf;hk AKG$8A)ՅP%歓g.Ug| /Y5SiA7]S>mlt,[5.dM5zfWh#un\Dh1%'w,v<@W-d 1׎zKڻOm׹RdNapqUmc C!<@|4'UtUq 3]!v?ߎl,NIidѺC7+?>,{uOxT/M ^ū=[- *^2/ݠ{*‹'~~;@U^qP>zM4z*7Z2qIf?5xrƞ˛?" sCy$QU쟂.ns>:cyuuq)I=P77- ]ɢ=*L8o_fnNRvNG r~HqX={ݫxdVSlC(7g76d(o1ˮ3)_^s vilUHIvYnm&a5f*0 gÜ|Քt/(s\I:W,""W!KYV b\j=m rÁ(ݷW|V/rӀ٣t A5.?-Lffkׇj(*&IJQGIm C,hI1clOyg -' R4Ex|YJ*VWݮO{jfX9`9 `֜JVEAzf PX~W>gF q> azdTq}بc+GFR044G24%I7C&zZ'qh֡Rfì=ޗ]ܵe;>*(Y#mlVzfi#j=TjۓCҽ,ҁnz?ܭg婧י<bJtӭLۤl) ]VyPTo 7nG_Yɪ}s"[W+oB:_3\ez]y_`+ ,8;q5w}Z^B#4;BF+B#4;BW X#b=OfGhtDh >ޙ 3ߏٷ&IN~]w>yxgWx,t:{½gNxx,9ݗB}{{ >}|v'7> x0Fߚ/['~p䂜~<=n ^7,cCӶF~?7X,x6o4(n>ѧF㻨=؀~fڄ58"z?{7mF|BC맠굛mvK `*O١|Qx(cM<Z[WoP} @zH|9#>p" wVy/,oAx3g×SeۏtF_uw Aw½{{{WqAdtBxHOH 6iph>][oۤEyE;ʑ6MӘ8%2I׫t|5K_XLI4SJ*jQ|]u{E S>#XQrBg!JSh%!4}҈Rr h@.{##ؽx/$wQJtCmŀPG??Q6=hOě^d2nhz|+NPBTK]Ft䯓?>~ G__GggG_~NKbʴaJUMiiqɇ/w'3rD>]||6!Q$Y 1Y1 aIBśwQ1vGշ3p8}cd/@,s+]J&j(mgrQfEӰק={{mN?a:iIrE`ݙ*;e w5D}$3k'՝2;N@X &wu111W;b|gH",߈]QYD1rTe7,Fo|X߈XߵDM 7(QX#w.}yo.V^7 oZ6?e4&~+_B:Fi"q^g^I!9#9=Fhc#ږu"a#`p1$GQ0摐%fNJX8јRFԻYib`dbHglI>/0M̲3F'dicY#,R$3)3a9??~&(1pPLӗss3Mβg(K5I; ;SolGLV [W~aV́_,)ʇbF:ruSt=x#~V v1ZH2[%he(u&G74Sc~z p)@u]a+lp晼C%ȁ)HPi Q^Y><><2=9Ĝ8gwʇmѐܙiWi3?]F-Q:9+JZ1]ރ^7E3 Zc}8Pf(lMB$FU$B+lTD@NA-OcPB wl6Q+B9 JhO]!? /H='ֵvAhea"/ɂ>ڵ #i1C"VOt`jQU 8%qٹXiNhR2+AUt:h9"Ky68ӷƺU:KWպ^3i/~z/([iZ (}k؍('%]얗 `__AS@/^H'Rf$~}5`kUI -0V۩H!3:'iadtr_~<8;9}OC0Tu*ӫP-vXe$[\O^EH)fTcL>kWV&z*HkYVByǘ|vDW~_`%E_oN,`@~E\/6v(gDR'dZ^졅_u`}-io΁-'jG9LEj:3kXrW&%̆bqq8/DqVco ['m_AHJ:R&~3$rDfcS)ZS-%HDOqWoNa,5e7eWCII, K/;.~4&kYfZ;񔝁 AK$Aօ)RbW"o#:ӆb#X %*}+dtk\THafҒǙ[X9n<>XQ=3r'_֣b^4].7,q-[D˛1rmlC@67y_}Uag qipx23^>USEa5(B MJm;BeeGKc{*ȫ$6F>;vGmlPNw=)5w֫W"ZVjꦍ~4*7GɍN7,&X8nV2,ܓg PX~X>XE7fDf·"LY*U@|lTqȈR bF P$fv~($P/X OM:ClGrҽv}Us~vЗ~GK0CHYHZQ/лtG /^)~yJ𭳿bC nӃT>3"$j-pƭ(+H ?Y5 =Gs[$j_Mh0V+3 )J+7crljIDֿ&_/<aL2 O|X/7 80sfpk9񢰓mg_?Ҹ\x625ٙ=q"gQ{f2r}鯐Q\P%..=va׃BBu5#<ExEx0ԅ_סv)ye@(0|!<gbDZ. i D'=Qw L666?Gxwb0_E_@\G8# <# <{<0+0➜ 3/ < aّgxmu1FwҤ#%'o>}ݾywإ׫}p< ;ޫpnx{,.]%<F\zAidtBxHOH lH};Oo6o^r$&M4n@8%2zUE$_MH bfNvƐ3znQM%AܤPx|Ҕ~>EIoH>M/q!G4"½:{;ȹyXD1.JXyv(MjE/sv<'m/ 2J,-4{=9Ԕ1N}ur /5ռ$xK,AT%v6?G|8wrqz|~N}<#Gȧg>orEL͘rrMz0MirݻQ|GףL22d/Ӆ3k=qK[@ݐL."ʬ|TSxoo7 <!0 B||~L\dwR&bLf V*|R&;2*&X,ItUL V1lXT1ܣbn9X`+`^KjMK6*^1Da:KzI>X$* aajGLp8%ZbSX`6 lXoxѽF=jlz +j`E'[QC X5z⊅8!V (YIJcuZ>hB#눞E*,Rf+R8C |||4[ۈ߈߈Ng_=C17`uF"99d!7b}#ַCoFo 'b}o:U1D!wBo'ss`}}p!Էrн9}{rn -6}XZb1Jw;Nw2<M |A4rD#׶iu##Iԟ&i|=?0,1;V$Ƽ_6Jc; Km- @sF p=`{N|inf02=!Hai"YOi̕A#6Fя e2 'ir=;GY(Iӟ_6O}tPLV;vvJ[/lu9K%vrTT̨\G{ vJaԟ.QK]͠<E_`tojO/!9+l .: !g܇PF'3ǟ=N-r;3 *y>˨TQs`%-zD5B95)C8` @ƪxDgzTv}[7rO;1cȼl_:gi*l[_Z }z@۽}P^Y,3^R%]S3"!QWct*7tTE.m6%qrkE32p5 uѪu+~_?J^rOwS^4gIӴZE,Q*,׬5QOK0-/AP#y(U$QqY;ĽN]pyEΩP'xJ3pun.|lr)<虻S0G%,c$15^ 939芟C4;[Q&<' TK#SV!.U%a';snIHƐ1wY^>| L^, 5O>s?I"0jȱbj%>[a|sSӑ7B5$fWuP>JNooz7:+ї񝙨V6/NN7S̒Yʥj,9x ,Y=P#% 9𴅕D(<[Q7s`kXڑW XmaI !!*EsG\> 牢{mIWRi<*cߌ+M٘Ttn%T,Bu1\U/KMMYBPxe4 Ò:iN˸ IyVz~r;ϏoU; †G87ĠRn!bŃc](*aHPC18RIqX\kV,1w ;>6 yjf hgRʶU*\k4*=8csPǗ*՗\:py,z3x+*b\e5  qC .t cJfV;y U@)_ˣS{V TDk9VWƔW`]*˖gM$Yu]Bq OoWZ)'u;#W5frK3M I;&=8 ٯÛߣ(৶KoRdNaqUmCLC#<@w|X'Utq 1!vQx ;ZFKF0߬86C\|x?=Ri@+7xVR/n\o~9#s[܀ t^Nv`fyA%cD$:d]7`ܯk]\I8ޚS`wy]C[{^>e.w) FUt,t ]C>󫣧Ka I%MmM CD lhO:H>N$-@e7J)h'2ã[g9S1 `Fe6X,ӈ|Д$ bk!עZ~h (uz_Nwq׎їjώ/h Fw(\i`c3m Z+Jߞzhe2tKQ4e=/OuW/|Bҭ3uzp[[ stYQr@V-\޸%[|'hxc^m˳tV |afpr!Uiw&b,V0@"ɕC[$Lۙ9#6Iaz^b鰛O+[b nb ;7^v@[G7¾7xFƻ?;Ӿ0Nl"*pP3BLf_N/2ˡ dťg.  zPH.Fs@xGx/|F>q:T|.%<C~EOTC`"GL_kz!-!|'"&00^ aa˽k+"BxGxGxgay%~Cܓw慁a?; <; |cfIGr߫w]zg?᫃Yt^?톇{gdt-Z/!ٷ7߼> N';\CxBZ^C}޶Igww󊼏w#1mq #\\)Ɨ $_("jD!htBP31pj(IQrBg!JSh%!4}҈Rr h@.{##(?vJs(a%:ۡ6b@5֢"}x~MyI3}LV, 7cA4Ô7u.bG^W3p8/˜JpÑ.m%o:r3("iSO݀6N'Gv0 v |~Cʇ|+,tˇa,#eDq#XFN!eD6`u,#eDj2*(2"62"XF$#2"XFˈ`,#eDUXFd2"XFaXFˈTb,#eDV,#eD$,#eDֶb,#ʈVF [ˈ`q2lڣeEA2WX^ˋ`y,/E$cH`y |by,/RE*gR#1,/y`y,/EȲ6 wX^ˋdb"D#S^Es#Pnf@,;eG숻Gò#Xvˎ{,W,1DeG#Xv1Ų#Xvy+Ȇ-g+;j޲#;9"|<#<k]FyGyyeϐD Xv@&b!#|&FGyGyGytT!& _@!<#|-#<ȯ= c#ږWG X @ _@^\%2 |ε"ڀGaFa䍎" # N';\CxBZA}޶Igww󊼏w#1mqJ\\)Ɨ _("jD0>xhtB)3\1Gp(QrBg!JSh%!4}҈Rr h@.{##(v:s(aE:ۡ6b@%Ӣ ?^6=xhOě^d2Vhz|+2)c.#>,⏏/ŗ_賓k)Ht76L{=8m㳷7~;przxFȧ?O>}&+)1 aIBśwQ1vGmd8SeD_`I>:NR8ҥd Zv@~&eVD> {}*)N[!!Ϗ w=<(S*^l47oG` g4gwQ0 )iܰLa*|]0dM Km'&B{| f6F^GEzÀ>/Vdc'aHRQQ x41@SP6༟%\徐SVf]~d2=lS[wăL-eiwa㤼1ZMYu_Oz<HroLa!iēqo$M5*LXtB.^ d֝AB=<_wƫ:\XBJ脒Mdwjfm1j'x_G}+8};N_MÛ%y:gYcFeQBL!5j fs:xPj N_Ʋrސ(xYwUk~y3.E⹞Q@ J#95FV࢐05|OHQWvbUЙ3 yCJ є#9_//TCN;c0ե.s~$2BS":KKΩo9Vh"]LR; GLe^ɋsY#=t$!Ák?gT@sl_dC%/·4ثRA?%l)]ۈ.{ٛBhKB!lJOI~`-)pzKa ,#sIIzW5QUhm4{)UQ#dSx6?SJYN*S⢿.D!l{l!*idÙ}NaCJ66_AC)l|In7˼Fn3k* h;ᣲ?u#L-nя^N۵5Or]ᕴH39a|6_4EAMR[6y #;زܣ2WF5I?6?ؤ As5¸+taw̼VD`VB[",Л6e׹J/v`08MoҿpA>Օ[ւm.a稲8ҩe1v0Q`Iq ki 0ւ`c-kXK.0ւ`c-Ub-b-?Gpx__=4၃BU\>BL LW3gd40j,4bf403063jAfe=qPqP`4k>̃*FX~g Rn>>LBb&Bv+D0303,wf"`&Œz&,a,&/s8,c13b0`41uyјJј1+,?y`Lc2 d0&&`Lc2L\1\1C<.AoGgGo/XYk/tU\xOTN^fv+m/.W_=*8]/pe ;o [CqUENur/#ס.F@9/s[cunЁXVGu2JBMҘƞ_#=3!ݘ%cD*E Lz Us׮^am ILtFcۚX19]HA(MnG:6&71]By*)AZJ1cI(෢,lxXa<(zmqGOlaCE!T@Tֶ%$m>PB,۩%N }R^ߧltZU[4i*mhLժb ɩ~LA3F >Yg7QU`\0HթȊGI$ke,U"I!NCF%Qb:xus]g1&)_^s |iLE,]t }+stk\Tfqi,+,1m۹%boЄGd<+ZS6Ok{lHv7c\Cå- Z*@Z:+#thٺa`OEaPȼ b4wa19:"3ac4Uŕ 8Ll5"~Ea*DHE\U{|TeQŕ##J)F#6(mbovMZo"I$P/X 3چѷx% PK[I.ẂWQ@_osd~Va*KxQCЬd!6\+shL{e?D~I'6Jfޱ%6R1Ӗ!X@:NkɰhzfjsYb_FvRk6dtV ,ØA}H@gzt0kq7k2,ySJ7G\=]U^GS:q|XLQ+s1G~6XDXΊf:OgR{M_N8A_ ihnR.՞Dw` i֏{dۙv> vlzJy(հ\(˄S0* (M菳 z|f=Я:OƧN4g£UXDj)sfCSZ'N4#H;W)A)K β hqN>dvOhvVX8.@c9}ܞm2QB^e1AE.RJ2e~&dr*aPF/Cx2=S ^bjhX<i:e7?j2n@xHP2v)ye员S"Hahq;4\[o c:;O⋮G@[aO 9ˡ% 8y͒s,X~w*KErzsHɒ7\o AOK xAa:?DcRS4cl,PƄڊcW"tUcj,,!w ,Nh4 5 ЃP1)J*ݝI~qFrk̃4OH|qL0n95r-p:l"L_ݕ]lΊ&]<+ {z6ճT^.MfZcC3;O^zm |6<6v<6ȪFLs*Q,UTܭH g֛/E0/lFj2Y#,P{;<6ηu0~LNu 'xfUH=cMƣS8neg9%?0/JKsr83֑-O*΁U* KdonB]kNfx#٨={(>_&̏cXSa) &ʆr Ҭfza1Ѣ%2hҠo]]I,ɜSxCS-<3?r]_Xz9͡* g֤0ߺg]` y0;Q"ljexvi'zH/9$J/C18v`v|3=؊F7e.#Z.{^,,)exD?PDzzh_xB6Y9ҧBHV :Pcl v8m)W,SWZxpl2ʠ <Mה|4Zm+S;i{/=.Wxɝn`%/"/*X猆e.4͊_gӱ;ޕRs3ޔ|^Gw\!ZVbB't27&5 +<`UU!12XP12Ŭ2Xư|.%<2+12^,cX2ZfrYa~e WvF]ʘ Ψ3`+DLh7YX/bE95Cf멿bŚDE7,x,U1X#bBkbB*ĸjC 2YUqVXA !NY+HW3O+HV[A$d5$$֐XCkHb R5$dI֐XCrɌ\Jb I!5$$֐H&5$d 1屆$֐XCkH։=XCr*$֐֐{CjHv 9tB-FbSv7@bGFb/Fb/Fb@5O L|"x1c"xq]J^Yy$+#x1;'/FAb/Fb/qFκ;^\6CaakB#1Beaamaܙ<,^~?fNwL^^?>}߱KWszYt^{v=,i:%<F\ztq:?x<$'?dI'kzmtvw?x|G9ߦi7 :N0L zDIW$GDj jg 7c[wQs&qg!JSh%!4}҈Rr h@.{##Sv s(aP~h1 Զke?6=hOě^d20Chz|+N)c/#;,⏏/ŗ_賓k;It76LJz=8m3KO/~;przxFȧ?O>}&+C͘rrMz0MirݻQ|GףL2 2Od/P/ ;ҥd ~; ?2+"> otOyDUFaa5O\bo&l1AYC73n @_tTG|׺@C +!!!S :"ߗerM6_W1U͠g qipx"Ptҕd+ h>j g$}/TGJq_&؞ *9ڷF>;vbq-|Z`jZk4V ƹR/%%XRb#’D5 KJ<ĔwsTP:!}E%VT+&`AAQɅJ+7#[a0dyE+/~%4п)LŠXbm+BF_q#{1Y},:DkWVa@`VPeXuV? MB˫!L#+''y ,\2=نXa!E(=ǕxC,'(H~E&3Ty8!PE ݑU>" EE*ؗ'\~-|u۫^MP%|k+"qҔJ XkʧYaV,M$v]r9Xm&%'<欜8 I  ?(>?ePxGXx  < ˮ#,kWV!8 l +!P#8|&F5SJ\8>"̹AQM!"!}B#D##H<#H<#HqҼ*:T*|.%<C**~EC"GL_k z!0!T|x'Esb_ #`<ƻ3Gx/Y X#b00=RGD qX0/`Acxvڮߏ&ɗo?_~];vj<<3~vWv_= ;ޫpnxY{+]tKy-F7ﹲ7 ;,v|{߮魷mߢ"HL~i܀ qJe׫$H:|%/$Iz9i1!t!fL=ܢ?Jx|ܤPx|Ҕ~>EIoH>M/q!G4"½:{;ȹyD1.JXmv(Mj촨OM;}N@涗 ߊDaJˈOm>K: rtutvvtz*E% SrO;NN>\|޿;8=>?'>#GgOϏ 9"b`Ɋp8fL99&xrҿP񦴃ET(Q~&԰zQ2XZp5 ,V2P4c; ?2+"> otOyDUFaxh!"0zo:buX#<˦R5٨GGZXwa<ku`ձ^b!p!"Ձ:VZ裫@nQ7Zun3(Vǜ:4gl:ga@PP@)#,zpڀDፎ"8#8 Z$A$Aky&3$$~]Gxɨ,Am A$A$A$AUI!H<׀ ) _a  +b#H| A$1T/ȕEx_$ϹVQZ< TkWV!T PPl -!`B#T|&F5S*J\TB"عacM 0#`<Ɨ,W,1D_)#`cS"`8,g?01`<;lmIuۣ׽w]zg?:ᳰ 톇aYk]tKy-F7ﹲ7 ;,v|{߮魷mҡڢ"HL~i܀ qJe׫$H:|%/$Iz9i1!t!fL=ܢ?Jx|ܤPx|Ҕ~>EIoH>M/q!G4"½:{;ȹyD1.JXmv(Mj촨OM;}N@涗 ߊDaJˈOm>K: rtutvvtz*E% SrO;NN>\|޿;8=>?'>#GgOϏ 9"b`Ɋp8fL99&xrҿP񦴃ET(Q~&԰zQ2XZp5 ,V2P4c; ?2+"> otOyDn' ípoGXC {:Ӊl=GX7Q:E\YZ!Efwȋq,)*` n% sS* @~>WzR¡[Ub-j1y[>0qBPey?hhA;;;culM,FZZjMo>o6C=Ȣm@U~%xeesQmL4\'&a_G})|v%ۮXtze&H9ED 24)Ќ:TGd au-~B2GFS":GKKηo9Vh" X{I/63 lx P2yQ:;XsFUQ1GNKoŢ35)>&BA?%=?B3ړtNH\ǰ$8ːAcdII[@寍UR<s\$U /fTgPh4󧰗UX**0YB0ۂ[:Li+f\)nQF[] esslۖ;՗*?2,"~ѲSwQ_s-Һ)RuWP['sϗМ,Zo6:jY>*1KXG9,Y5-l]ˠd+u`^I5#InES j֗ڲhNDlJԆK^/לv'mN|M:tr= &* f͓jj#T"1.Y`[G,ѱ3N7;Yiq&j hZ.- gI?nvy>lL`[f'qW<~dw5P\4ΞAmP5sٟ?沏1b.u F]0Q <~KQ,3I`c/{ ^0&`c/{K\\}^揽`e F_0`n/O>rP)c`/ˍlVc0 `01 c0 `0S%s0W CA?^?>vWq!#?"#?fg h>:ɒx8F1"qcDn#O5"3E2#%\^Iīae1UE :CT Yqze1.v+_vǸ81.n0.qz\\{keɋ9X̱`41hLFc|4R4&hJ1ˏl^Dc2 d0&1 c2 d0&S%&s8WL1WLpgZw??}8*s+'x4@.s֓'s =%K'f`AMʘqqLQAу%Fɹ V1rxJA! 1נ^n5X_vk5m5@V6ޚ%@2Ecf?TO.x c0mp`n:2B;|+{Q_z;{3%1W[ʙvtgZ<ྩgJ,kpw? ? Ciơ\X'-&(;@Y(?NoFiFKK84#Y86CP9m96E=tG" +Feb-1a-3ު-oHnX^T޸x}ysB)%r)f#k<)C[e<NnD[SLi<T -R1R3M@m7c%2?0韰%ioݰhgE{@%|![TKъÒ("oS&IFf|&->@0`THV^1?--fLrQi"U:#+g'Jh5Tqq?gHPo\;DyeC: Ϳ5 y~љ6hen@GB0ݚW3bY>\iv +cJsUcLY~ [D&{M>&;]"bka$阃nu7cTQ!X[<2ׇ9W ! 0xۖ=igޘ}DJ),HոH(N3ȌV%c̒5&yBt3 Km>)h6}&`{G8{N⡶T&;WpE cܶ^>;v8#wV\U.a _6~nmLeL2f4)b[ g3:uNnva1f B+kIou1} F Fr(¤yȨQ FW(`aP<4qHjٵX' @`-k^Fqz$Ztz_NwqWMjώ.h8p\&a֎E0KnߐAϢK ǼTLu6_J(S \8Y@:jιaӓglj=yWPr{lΊ7X.38Lw*' c~o?IDֿFb4~asO-.$}<[px::*^s s1gY y. F$}؄$x$"Iq=lr'xseLRm+`=K(\#NM'FS:Ӣ,37TC47ڢ7?/bARIJtNk^*h=2R^C]%Er-m6%qHE3TʹJr]UeeVIk&N'Kٿ ĩR jEJ`?R1MsMFQ?JS8r{L+{рYtQj7J_iNQO ;ᖗ `_t\*R˨8cZ}S-L. "QϦe '5&x$"8 6ӗͬr Q@a7ue%Z^q| 9k~Ae pO~5{u,C:.WQuq+{CĚ;tq؟D`2؊p4t<'dw1{?"jQU2&ly=iUL!C:O/ ) /}'ILavè!G_U\# >w;5)y#QCbf~UMI @wf[0$y+lH r;f.sԦ%+';wRiϵI4&J$HAKTK,艖pɖl WIeK- R( YHLʋ)ʤ0I'̝xͷz7m1숎2E#vZ'P˲`h$Iwvl,`r33"_ ^jen8>,y4D=&YvHY'\% 3Vx|Lu|k`nζ?*N0Q]N<8{A{[/b^ھ c|);؛xxjM٣,͓'a=$C ^Tu cDLeWJ={kCKQylJN[Eʙb7g/ V.V4c˜U/ﱋlVl4B*ijLvLfWo̗lPgh0MY˴w.N!h{3OpGG N0V .%DA=؞|:_iaeg6LO25ƲFXڥHfSsg>r~2~(+MQc| z /feQ2J;kׇ ;S7]6սV_꾷}s$K =a#Q\Gme&]߷Fè?]L8RǻLVIAyj5h49k}ڟ[S=5~jJjoA% n,w̎r>j2ƓxVa/K7*bhbnMeEYKb<5Pj#V Q}"g i4ӅZ\L|-g㝔vi'zH/zQ@p$23v`! ,fV2B-Ge* (BKFz3)^gZuqL=y\D857:de=VT9kѸi/DbPE"VHՁKdK24v ThpH_`;|&j~sV82{ahs _@W /C=#xִbAe]/z>ڴI"f1/VOt`QU64%n9XiN@R?Ut:׹h"Ky68YɷjU: VպҔ^)i/;~z/ iZ(}k،('%\얗 `__AS@/^H'>f$~}5`kUI -0V۩H!3:'iadEtr_~<8;9}O@0Su*ѫP-vX$[RO^H)fTYL>kWVU&zHkXW~V(ٙώ*U+̺WyɂE8 \ǯ޵F(:CJ&Dv,Yۋ=Pcm% 29@5D(<[CQGs`͵kXDcޤِ5]7X#,.`RC6j d+4QQDZvoƕ#DNulzCC[!xjDu阘)N*?WWJ]u(i<邕aIEe܏$z*H8okt:L{wȯ]GwvtoG0Niy풱¥70?>,I|.xOTs@.P ^ԋ[-'"+_27ݠc|*"/~2;GX^xs>rzM4%z*Z2qh?15xrƞ*ݬ?"+2uCyQU/; ]FB8R,;$jvIh/Q@{?/ړϴIl!lͩbR  aYT Ǘ{ϐ*m>0<->V7`u#%5kq.63m- )i.-v<ŞPѷM&LfL$&a!-yx薯Es<#WqNj=*(ҕrsg߲E#a[v 6$DE 4`ůEh >oPO#* DbDhR(oPE(+(8ZSA^%5am=hr3LM^L6&`RUyV7m4S(K9:uNnva1*9t#5'aងWD 8[*1F s> azdTq}بc+GFR044_24%I7C&zZxh֡fì=Jޗ]ܵce;<=ZQJF>ذF֊@}'ޥ;Zx MY]SouBbPtLܤRٜ) ]yPUoq 7n%G_1eɪG="W,oB:_|5\HyU]`+ ,P;Hr%ЯĖ0 b4~vfΈ cyXlx:J~酹3À,Xl3#p^HK_%::mn@d ! <# CxGr/⊅8!aaExl^Il0yaaώl׽w]zg?:Nsp*;|}Fj8B}{{ tq:?x<$'V$'kzmt?x|G9ߦi7\ua|@=*"&{I @t$1^N'TLUv;cӿS uΌ~ JnR(?L>DiJ?{7$øO_Q^Jn^z ={t\t.B~}%Dg;&Z [tOM;}S涗 ߊljJjˈAOm>K: rtutvvtz`E% ShrO;NN>\|޿;8=>?'>#GgOϏ 9"b`ɊpfL99&xrҿP񦴃ET(Q~&zkV2X N8ҥd v@~&eVD> {}*)N[!!Ϗ ۋyxlf_`w eR,@RҪ,Ẑ"pnNrO_VD0ǡwKX/W(_X<Ea+=)d}-1k= PxX˼Tzyq8jz،nXfj44AaۓqjgCngyH:(YwUk~yae)m b763WAV;".  ܻ@T=|»հdWnnVϥɁ'||R~h0|oAQ dE=m棟P>̑┈?xF8H^KMoLo2!L^ftQȇқl`}~_n-Ioi3!]Rggm.YBeTT2w-Jqr |)CDr.pN*3N Z*{(U*UJRX,b(JeW-l nx3gqFoua4~1Mm[|W_L GȴoTE"nNBoEI|CJ붃\JA׍_Am#, !Z?_BsZѮLxLJ=ZfdN,qc刲dy[v-Γ4\)yx%֌@'E_ĻM7[_j&acd:*Q*G{% h^s-:My26)е5,6EPXyĸd&S &oeM8ޏ%%O<iww2h,m08jMoҿp>&;ۂp:AZxf'RF iv2(GŠOH>F׷-M!`lkXJ>7?e.3D]0q`.uwyqJq.wYfeb/} F_0`%M} F_0їjї//}ɏ}9L`/K_|R%˃_٬ Fa0 Q`0gFa0 Q`Z`(Ac(*q4=чe`?U _ ?BGDG,!8hh$vE,+H҂G8bn3C9%R3uO]ruv1A|C;\딆Wd! YY6t 1b6rC 1Q$+/?Tݯ ƘB*"mOd܀XiL)IQ _wTU Qj[3ݝigE{w|![GS2Kiyh6 0UڐO:!-`QPsf,PȖja4kS3HP%WJxJΐ)' @wvX*v.C:^H_{\;LfBJZ5Iѷ2LfL/^-yյS/,[┫+("^*\sce =Sw3d$0'(n_IK>cUae'GU;!T"𺫙٪dc ETQ5'B(QU%]_5TU+W-hIyL=URYu|vXp[jDm))69W-nCyUk^jP|tI4 ʘg2c̰k4SVoot0etbUy֡[V*4SN[ouDZF Fr(¤ȨQ FW(`aCDiDi~k{>zN&zZ wCMM:#-6,q5&Hl9ܞtU.}yxy}/P#_ጓ 6v+,/V.gR*[-w^2S ƋcSM|ӬͺGH&\[SZNylM͖y-xpRKOOf`˯YFb_WΊ7X.3g8OוwW`Ȃ#W_l9 z~}1Y'8n%]0l}=7N#Ŝf1v?{oƑϿETd2BDHGX88豤VԒ IlU][5#u׾:uçҬ-dآQůwl\^ڥG( T(n"<4(% օFxi#X WYN5-xņm:/fP>^ۘڛTk:k.yEXj;O i]r&MQwsb2Rt5\F?z傼HJkrP`泦D SY!.If4E2j8F_mgA:ĘN1-mdӅBVt?fG" )nÓQn a^MH2*b"UW2 |ŵNlrFb]iys#aԭ~I5v-ݭ ~vx̊Is֢%tkzOZ;`ڊLneL[A~d\-U~r58or] HjdݹJkKFW.&8cbDCCD&T'd[6tSq'c6F=8= ڣMNz)Cus `쬦/}qfGJRzr5)Ht|j?cUl5ej:h%-o_Y+n`xEӀY{w ])VH <6MzQ4 ༣ 5dteOw_qsU1Wy]19Uq0 KU5wkG?'~+?WN+?5 2uff>Ks3czP{iPDF8q64Rg;gsfغݜ Z\V4L^ޒ}^]lZF]r!`lWNgnnoӆ̍*8Cf.YB$ )D*!N9\(8r i=Ɖm'BDH\@4-%RQf9Ƚ%5 .rSV\ T(Pk:wJJfo~ #=/2VG ټNo9=='e:tUI 5 9&KޮН3a 0ue7(4+CF<>RImNV\m^}3-Ӯ\Od~sr kySt0؂!NhÉf\3fV}Х)I-27!g,%4,1O˧gI67$'JH'$;-*39ʙ$׺JM.!p,{}13CP{fu)GedJ}eY<2BկMA0<N$ DӒǿSmkI =f&Z9]IdU /t+#fdA'PZ ^@PV =PT+$ úT{%,i-5WX@P4PT{^@PT{U5uj/ڿPcPT{^@°jbj){ N^@P_0T PS a =c~ 9 K58p{^3O1- ٛ@M('|>6×EC3|{4oao^ W^Koa~>,UΌ`> o/ /eo/'I_lR>:2i |e~5Hoe Ľqec ĽqLQ^ {# -@ qJq_/u V+v]ۻ6kǫ>%^[w:Vo^啕˫w|guyCF?BߏcR0QQU?#5<ZnFaxv6+jeiimP=qa0Vdt*NGoap WO#+#A~/BunC#9;vq~WOa2oʏAG\RGؐizd< X`H1#Vj˺6)C ?!s}2ShASbϣMCG߆@ODwPUl>}v;_͝_B9Pc $R@Ы]Bá'`k{WlÝzjljJb̼A6CFs鍡ݎ:0 |\^kp_>U>$3PJ2U Ra߆=cեz#Lե;J=;hI,->&z%aRD) -P4bqJ8%ES2qfUR*)B?cnzoDι"Zɗխ"ZIV2)Jh%E/VVtV%uVRD+"ZM|-KYR,)b|օaE̒/0fEؒÖ<`E"rI+\0E/u/I `/NaɌh?yi{% T0\ p4qg8|YlUŤbRD117&+QL(&E"IŤbRD1;W93VD1QD1)h#Q..bL6Llp&r-("M&_fD[E U"Up~%Il7M&Md5$pR8)| NLrpR8)N'9ѿ]$v1NM0'_vsaN,a"Xu(@'¯(Z _V X/`H/%YM/` X/dUNq yO/` X/` X] Xc,| t[/`g,| /`ῼA*` Xv,~m6X),| /u/>" pwZË/?ZU/ԥZ0?}r*g pO08|_7 X}@E8|LcE0}YK8, _+5W_/ 콬/ %yBӢ2)* "/ sD|wP_zk CįS "~/@ xH|_ _OrΒ,@⿂ H*׼a_'X H|_ H߮WHԱ$:T-_ 3o $DS _  Hg;^ $>H[$O־ OŀE|(T|_@; -E\@P*cU@P_R-g>Ks3cT'*/ .p@*O,*~}e@ůP_+Uz/FX`|vV`r[`andoWoNX:s{m޹]ZZ]]啕˫w|gv܀R8 ~?Iz~0` J>bx?mȼ~(?V|urIaC!rԻco!VX-ڤĪfgh0( 4YƊŞG1 >VH~:|P5w~U4;ޅs &*xpI$䇂Wp]Bá'`k{WlÝzjljJb̼A6CFs鍡ݎ:0 |}\^k0_1U&`](%*ͨU0 ^oÌ1?Pz#L2$48 GTΉ㝘@ ' Z:EE\@5Kf4/TJ"`BCY`\,tSF'G{2#^fƖn +\gqn#kƺa/*@t51od Kϓ3 n +5הf-yiC[b]pT ˆ/h>yR諈>ڤ/ DNX_|2ģ`L@aʥ#J S 飍)UY`*8q(o)wesO񼺾}~ӥھi6hg4FQpTdo߰5"FȘX*JK xH t4 ryaoMMfgB]y-?HpC )vf&LLc]PJ{lɏ5s+Q 0Mj'}ҒY0bQ,o*TL>WMm5쁘}z]DfJ#W ~C)962r)l|oW av繒b ry$ ׇE1 )ÕjIHG$dJbv)~YR4BBJdG?gbye:i`D o%.« \4)/}sNfc8(K"Η~jP{hr ^29R^w_( a2bS5ȴ/6FH3D((ȔIYSf.n:cH+ ͭ7Fv[(`?jvNMhE璛qbhbO)WW2|{?VWW O.y[ǭ~s[={ 7[;-g'YU3GŇ.)!yTs7mNM! ×a|5#s!;v6Z|Hr#mЩy rDy;`zH*vM-,Sq$B$`{8RaP1/==}r Z* ޷ C4_÷%zۉz8LGcM?$~f0@ڏ3H&>:z )y"$aKSM1vQa\Hf*޼2>UЙ6FEA;/eo6ͪR_ E[,+~{sxt c(M0 ~qiY5QEEuDN} 1׸L+l08^BEzܫzu'ƙEcO;D{K Tkf˴O˔h=ډ0{ojԿ0>TMUڡX1;EwpcЀM>*}FVVL#YDVb!}wyZuq[Snc,Y_YGA[Ɖ44+`NG6.8 ;,$l8AT%aqůU2 ՁA ~!` ;/-i*#h!`;4u]Z,$v鎙JL[\zLxv:.^0%_`L0ϷqFeʡ!"N9UdJHEtiƇ~O'6ZooP Ňbz,nFU5\1룡d;A@6vz#T@N:޽gCYFH$8rsZ䆨8ZcIMd:H)W4(j.tPv]8y 2]¹r}BG#q\(qD.KX Y׳bS6q_1 P 4.#,NƁjYMC.ɒm\&틄r =؄F(8 `0L$j'TJHdԉMK_q 8Uiк &sV9q}΂@$gd*y6wwnn04ޯ[;F|} _Q§mm6u%y Pi܌`Awq4ؿ1e@\.^B& "NARU /I‰t.w:À!K@J|R%^{'=<ɾ #NB1:ÌW>Ȟ7<(Q4 wj*D!`X~B J2f%<a?WY4tCOpx Ν#Mjj4rmcЅl7ZRY< B5xɚo7dG&܄]'8I`=`?3F>ƪӽ+y)ף'@$0dj& 5Sq!o*)ֻtKB<|}#)_YzD(9WqƏlWUFcK.&O7Z eQ2@U&9 Ⱪ0FNO5e#8㊅Alfwe]ojdYH%DyQ1(|vB]d$E-AYF |!0 N$', #s#ѦmnYmT?IRHH +&z_;[@yc#Ef8Xh@qLah3CgN܁pD;ZqE9r;2{_X{U-KIqxa{ .7H: N`ńq]$zV*䔃Uza9b-^,*9pDGN{Q[zӆw>I vI6Щ̔d"3=FẪ.VDF8Iu!W"D˒d > ٙ[I[*l7JPڹ.69-{ l$dҋ8X Bl!#cr@*)(~qJ~4k̛8E<#EIeIVnlu;vs9Ň}U6p! DإTnX~7rfa+b òCEF,00 .<0!\jkx'd"kv»53#2Q4,qI#5PU.fp0z(<5&ɈT[0`EļN J!pGdY`坎2vϚ:ڬkV:X#;TO; E ѡ*gOyX0ѐH8s{VP Re:Y6*ELfVk\ցq@N) C,7tj.ǺO*\N&@H7iGSdd0hL %OJ#3܆#f<gZ&Ʀ"E*''4D Re8թ ZIYzS,"c( OdFnaMZ ĉ`Dɒ'mYWp0(Yxp5Z2sb)[,pc2x?U [f=,Dxz`HFC.'jWETnCi}l[8`=/>oI ‚jn3%]R?pT J4Z/S  ǚ(u m9@:Eygj7X:BZhEG9]:QiwQ'Uh'oL]AΚK&4S[d7wU[ J&wo1M%y.y@JRK.\72BH&rX(2ON̗C#D)ّvhA[]nt}rX09On6a,4@[кӔ)})aצߚWFz6L) `Y_SV*8b,U$mkN9+n;y6C\zDȷ![*~p{=}]!|@yг6aH`H>Qe]e`=lz5 ^ynY' £FBmhr!'@i>* T6ӆZGWbD-+ B\=44z5tQL#RIatPƎ(#5dFRG<-'9QU .-Ǩ5$Xq#sip!)F84Z鮱pxmn;5Uָn"0Ujʐi]RQK61=R5T$\jڞ)d3e⺟"+]@I]6ru3Dܑ݁CZ9KYpH lhp"5n^ fFh* e4%Q`!ט$dX=†ȩ8 1DeاlW#IKaC} `qːyr06rnJꊥLw굕l R X][ BRI4Ll*cEkl"PoծNU')=N7hCho~՛і9M Sҗ0 n3mT)|^NM u²8JB{H ރÀ(l\h`Ŀ!cbxjpz0yOpJ>q2q|`ss* cGt+;(!=pR&ϢV2;'k#vx4-Jf؝D<=OK1%J1'|'9XIkXEp( WœE{7OuKek[~̗U@8qFW78^9[2jPfQgĤk 8C_>l(1tڻ׸P Fǟ>QOtX{?#&GAFŮ1 @5u| i_sk+'=NO3~5吰GR$="II9}WqY{ !B hèm}sw@NЇZaûQNzK5\I 1+56ASYxPw ;:{a/>Nt*'xγs/q&R5I*DIZ浐RZ ;ĹWѓ1oҺԎԓw' rX]MΛLGiS#U]ش[O//gblcAy3@F|[DDdOҜ< 5IF~wtɾND(ACD\  tI.2\*5 J/1Fiz *!aƦ&yJ(GjYU2 u|e4ʧw}=DÙܝ݄v6Pa*@ zQi31􋷽tKTC& eL# /hpʻnKBB I?!Dby<#gv=tk'J~ʕdSZ A`h;C#z'#lxQg]<ډtIB@f<2.։2~<0XD}]N@*>%!8in_Bj\ YȄt(d{E6kAUBx+”r@|dO+>WQ<gRꆴS]Хn?咄fY No`\N4DcAit›d|G*IyA)QԉE`sR:]\bӕeNV]ئ4)@0WtHj["!DD8XT'Q'|i]D7ˆ?mQsj ;{8f}kɘE#x (X:GCl({cNKK}v 6 IH9䉳1\`TDf]-!\/dZց|z% =j-KnR:M^߄ kmljC'*=Z'9yUdnY E9}3fnk5=jHk{Yd!0 Ns}ьEAiq됛O)&HLOud^Nj1F6{FGLiV~'i "e* #aBDBi:F `xחSd9cE~RAwv/DkAk젥 JցFFxZj|ܪbtY`vwakPnBi~Uͽ=(`7y盭C˓֎ق61֎epk1X ['[P(kn[>eC3طίO[;Eб~ @ ;P:t xVavJxuU5϶޳݃vp@5MA0P&šGu'AjGíav!%Tsi>8V;Mh/:hIkn+Rvw]Ƀm~Ar| zzقa2_,"_a_WTk;UC,] p66E@U HU6 s 6wa3Ex &L'됧Lĵ-L|RwvZlME-Zoxvjnn>ۇ)0l\=jnm?ǩ Լ CEZK&`!VJk@m=m>B{Sɚޢ^8ؒ1GX'Ht>Å=yDM xx+R`|"PI@xYbK)<z3)=$j ~MUn[IQ?]KɛDn SAd@FPNZe_I +p*ָ Jt~8ˌNjco[$=&Fh&+OGX1B=~T4 Fƚ$J )!L]V1A8pa'V)] @!X  mTW`QY.hrj" V+ꬹYjzūؠNX$SńHdN A8ҘF ڼoP2եr'$1cY>)bmUii/m8v#r5҂xW$.A%\Av̲&]*I@xejX^~{u?i/,7Y?v*"ϧ}1ntO|Q޿=?&똾nIo? xh?gÿW<P=q(zZvDlt"n6Y[~%?wqv}q]hfӻM~亂 ѿV)D'(9 Ǖx}Ȟ0MXbBHTGQűgXp$\ok?pgהq Q7kCz !YܟpZoGgh`ȆkUpak2 ȰlR}!2fPy"ufX4_0Q4WO ].T=FlFݜ*t^78$tW18:.޸gkSxoVDI P{-vC.n0;jiHR 8tCe \vj!UsoKi7{ibf]G6$'VOtł1h)cm]O0lM"znΨx\bԤԣh4.͋J{ ũJ|N"?`f mI '̖: <8G(%͜"jQ mԾa h>D(U #GsiIQ#[h.]'0=-9~iPj.A&ꒂ_L}HdC%46A=h5 OӍe eٽlT@|3 Y-0k|k%H5H.G3N&D^x|6Rp%gk Oӵ[FI\҄9V|5= `eAfբF@t` 6ӱݦp^f$kMBP}%1ri?QgF %P\^ܰE6VlbN1 C&̗d&Fm*3&&dEH^dNca -:krԎ+2M0! h͙=e5܉5O2@-jIP6̒Jv0q4uzݝۿӧh-έb$ C)<WIxbby`}7ၴ-xPX*W*M3󗱆rvc`Nó~U,Kd wpJmRKLwq? ,!7 ւ–X3#%IUb6 ⪎/$dR|x94eZ2eeY931LM=++l4>knG[ۭYBо8JJPD :"$>ma2?/[N/1B}s;.;h`u5ȗؠJѬ96;yׯ;OaONY+ HzaHZMb< me6*{$0|>j@,ݒw҅;jnQ+Hp%)!Gr&FK&tb= >MxgL%*M z8M{U_cAti&Dŋ(;wƌ-:JZX⌝oI+g= (GQn꼝rƮd,rj\;Uh4,!+M֦}a;Ipcq2؜U,*;-*7mNFzJ81-98-.$_. W Wϰ_QAlo j*~e"D؃m0$¦p Miw 5")C 2[5/0#A20}|ex#g=^˙|JQ$rf_3ٔ&ͿL2vq{q״I\F`%Dڀ~1QiE0C$(,'fv$U:V 1A{S>Tll)Cm*6nixnHDl:S2м&9N4c3dEUb53j7Km R*S9r=>N >>NVO&NJf'#&k!wSXڊ@W8)Xa67?lФqNDjy={y?Ts_}KRĪ$SCC5z10](8+u/'oFg"6Gv9袉-]SjXJ%N4bpK$raEDw68tŭ&q-M.XNz( P*W!_Hi%Y|2,r5"QmOL%Ptjx4sH3k+}qw9j8$6Wl#t L`MRJbHGgmRrN( ST:$?AAVJ-I㧔Q#g[zcSFNWCVzh[QJG:&{6~ck';*=UH1h]9O{j+)8Y~Ɩr:v9fSzW~j9F㧵J<ۤ!CqӗmlnWv[[VsݟD?k7T% F; c--9#  d፮&hD.U(҈lYl0<B9:J O5Bӏ,0dܞm7&rh8UCdϮ A%u<&7P" 1V6^gt[K!Fc}Qq%1hRRýg*?I{GP/(!P1Nan>o?f*d7v(' h);`HFMY!'i`I:{'͢mbi|5N4g]D3 D>!#FJsCu7tp@!,O8%h DKmBZL*)ԥ<]IdNkbծ1$ǰ[b$ _pwҲk5vjB\]ޮީ;&Φ=$d>С}n5SLOgƭW@7jXN\8֭i+ CGV8L59, dc ?Jo ەO(P\MQ ZgEw" 7g=K\. ŖG")F(Ӊ@,eի& aH?fŽpa+'TcSI6Ad7? r/h¶}FFU-F$³@2:Iu$3X斔3l?Rb~6;K!gVêaQkjN{4,A?.w>Gō1weee}%E,.iqbye0z'#" GIrDK}yG^3l]H0y|l} ǜ&?,(2݁[Jb"PCCvI.&_ Z1?NJ"ȜjKG;@')YvO)>.s {zKCN؃zg82܀ɲ8#DB8 PE )AC+BUP5 t7Fbtc+(zT}Df)ޥéOx[]}w!~` jg51`00ޑD3y NzKi;s  RUt9"J@R<%!Ө\][&ڴتXu8|h`_#G |QߌZ$Z ?c".-}bF asM`~~ծv߱ ` N$hBsekDżMR@ڒG,<|_woaT2̐k!u|O$]AI}˿w%ʼl 3ܛ+/2e 4)vUZhht{$0_߾}} &"bL[=!FgpcK J Rm{ q圴v>Dc#te7k(PPȿ*]P\&d[9WS9eZuι&ДjBo)"^w%@ 6LN77g]^uh(,wxh.-w=k|l ")Uز=;$2Fš~KƥIR&: rU\yR;FӶ[! sZ+ VY'rk x,B <<ؾ51f53s<%҈b''( / *ܶLq^!Ą=cKf شL̀KG>_%ᑦeętu\xbǘG_]@F#YjЄ9qjEgbE"A5vx64~&nTxj^9 #Щ%3'7oW., ['Edҏ6wɦ 9Voh_B#=j-~$4R^9Y> Z˵%֖<}KoW˫LiBcxc;UGu=Iu\{Mg 1U+@ބƒ`*ai[,*2 )"k5gh+MAMbT b [gF*:Vd,qdԘo8/wad&ۄ`cb˛gty?L46)]|uLYdgf t)N7vK/*,*,zKeV?e%6Q 2!Հ{ʗ {;j="PNdͬ<4Ũ?q{FhA5021qH EOΝkށ14pxHσhѦ'وj&'lwhR$ĎbرubcLSCS_M`j6\ bxgmٲ^H iV3LV\|tا|AﳛϺIfmXDq.8Q(E"sK\Jp2M,+;3#ᜋpιG /^8[]@"so$f}IeL3VgnGDgБ`旗%2(U}~B00dKÍrAF&"5˭ZeRouGA YAdUlR1b)aFmLIНHпXf3!SnlhcCN_ndnD G_[}H+h9[َR"b7"O 3JF#~_K#)7' 9~C1o&8w\c6qY/W+p- m媔]O]9Qн/. }#ZC\L'l;y0Kt1wsN=$gTA׋ni`c{'l[2² "_MC>ydٷo~ap/]l[GWNl>6tMagn+r1׌6J'$HC`9VjأԬx ^JEFwG{R\˟5-^ UFmОb 'ѵHJb3[eV;J H\#+- / :}lpko׎/!jnF i>m;`/5$>pa4T J?:s0BĜ܈1k#0<#knᚕR368R8!xޡrئMU -k}pk{p "vWOStI mOXɉk„l zzqoE]Dt-{WFNL`ְo[ y@83[ժ*Ֆk+[b6钩xHfqFpCѶB~vwZv~WW iWU1ڰLJDJz Ydnd`[9Yf $(*كvvuuaY>R[;[[Uzyp6"kvmVSLൻtUxn lTֹT!tƗCDŽ(ZCm$LO_4e;@AhrⴧuhMO$f _8QT9.X_r6wmٵ=7 ,:re amxR141/;Z[;mDZq_v0@}x.-/{)>U{ffm~X#⦱fS8 vcc,8V9Cʘ:G2ja q3*q>54Y[|x QP:Rz VղeE HbY jv`sٸ1H\T =eA&AS E+Yyz!ȕO$NyA0wov"I_oA hPұqPGv.jQc(lFKxmjk>Q2:=5vaoc]pb2Zlq SfL IFd YeN_ : JE߄èOŠ h1$z7/1.Qi0*WtNZF |C­k_G)_hOq#h4-,hPisA=JlKyM>bI OhpAzaq OqjJZ8>Ad`?8g,& OȒeua8"Ҿi+a::Co?vi7:ӈ[ jW☰>EAU$ YO5D#ӗȘ:/H7^`W)R/eKݘihvA"՟mVfYbhkquG ؄0O4{i? t)Q R&j5-k 8F( 7,B.ZvG[Sf1IQS+>7K [N~u8Sļ΅l2Nu\q(0>$r,x"Ft&[PZ:,Xc5vok 8]0s"l&8B&! nOk %k#,v?a -SQ<5Hıۑ(SȐ|ц|GMa)UKtQ-ìBL뇵7FO~xip+PM1!Ȁ%*]J4;oowF~Mo2TyE H%x["Ju5, ώ|_Jb]gg2|aR\cd(m145B' .3=sl3)"b&_8^v-tok)LgTtUqģY 1H} /47. mZΔokel^4sn@OZqa*xUUZ8i.H``WhM{1`RlL?M JJS\PdT!")LB&Aܖhtgǵu@aXRۉvyxv]"x]~(+rR܈v5.[Ͳ7 t>龹9r 9X 4qu7jjS~';A\5MG" 5 EYt[NzW\j%˴">h排7h/zк8A= CܐbC.Βj >Rz灾a;mQImn84hCD  w?㎲N$k ]լja #tڄ7E'; `l= M CD*j֪ҵrÃ[,:"nS M1a'ǩ*/x{iyu} oC渟r;_PۅS|5l}yRk}}uOq?ΉoD(ܣ8!m)f4!Y,<[~U .)@I2!]dq3/A]<}܎2[bGݺp1CWɻKp~a5K.m Q+OE}ޕ?rKxE{NQ#ʽ.E,zN4cӇ T+R]]oE stx Y ܟߣi;q7Z!wď9z|{<Ə"\MFA3(]^L q>kno6Z H"wkzO8H0=PX B%%jiskq{鮤_FǔAjb C#~zFy0X\-gly͛әUkgj<|,7s _V{eQ@;piB5uu/yL44(篒dyt{^/54 ŪټsX 9+#lZ4P;>@_ G\Ysz=?׏*/jJ\A^@~R_4PpRSuO~AoXI*н1:>Q&]Q%mNkgl=zd~~~gJsN%sN9#iyeum qOpl+9*)>0<;q Ak<ݗ ɩ_J|\IzJH9罨FqbՍRT+`sdf7w6I`r԰OvЖnx1ytD7圕_}+y6)4v:v˱x4?x@oaޒ6v">F[8ŗbh+zjLnE)0*‹#᪂CлD{o=:h?w}sBu-|,Qb =x:qbikf:'Nh^_˩#. 4  8B1oPLMɷ{dXWb023{! [D2]OP5ؐ -^s&{'D:@9%~@I+wC牆,W*tI?u}Y.W\{"EKa[R !ˢ%29Ȗt4*/dKA%V寕~jd~\vn5Ȭ'~UD MaF\FSd/Fzn$䳓7Ajߔ3w=JyF(ETg !kNt&ԁ͗iK&⭖8>G8j55rY1Ne#:D5*.& Yu 0@6ZՔJAJR= 05*YrJ U/bF=uQ w򐠟ʋЌ1yc^#6#F2X$ܘhrkT_'nq CUj!Z{ ( Pz~s$,N HXJ̿ڑquXv`~4[򋹗<:x#ЩU-F%={hGc;.${v &<ۻKG 9+DcuRa8X̍f àsȣM`QR_H;VbVXcP˝.v-qdkF?y{Ӽ+3Jnaetք:B(N`52g%kKl찇E/7ChiQ)ɈH@ G .ǀpAvEh&K=HHw =WpG;+_%&ݜ<՚ 6EU@1{VXØ qg(Eᵣ'ԡ͇,JxZ~~p$Bvڅ":c$8U2:"o8;ÀUA6DdJ%!57P$PWPcMXz[J-.j*.)V?ոK,[bH4s~7:jZ-Ug\]ݺU;{+qsT71Ch|ol_̳y}Yo-;*#*jpygn]=1R[}Zb'&11Vx%)a3)QRУ$4$C}ϓ!cZj $N4@<;TXF^&AS~Eы?@R/q!U+6=^K+&ϋ=Tu!E2'bژv#C̼79{Qx޾e #|Ye?k^$+DFmLBg6]Y'Q 1$I߄!At:zG(^VaӷEӸ@b7IyIî Cg;Tm5#6Jh:%'D&0͒}+2.N^PȞ6%yjn 5Lt,%Y}ۆZbЖ_\\h,p}̓xEubn4axYm%Q~e%g$q|H Ls˩VoRn~zE{hvгً !\LTftsdK"Yyto'4;CTQMe{|_/1i٣l(b|_o?+Σ/6(UzI ՟W*FMGoљG;곇 w$$2(p,{@zZbt7{06E^!Z0=73|`MFGq8($%h%&Qrx&a+ֲ?|5i 4@sYiX]_/!cƆW,|_/wXo<$F{!Ԙz]}d v+ bKQa'/ K>ՏEIߡ1SۺK \䂩W2KM3sd,VΡXCzTR锆Y6|61,6ڲbhU7J2̉1d/fWfoN;i vbqex"z H,:<J'ʴ51.1)o.rx3@{j˵՚ Y6{DE: ý0rZ7lS4킭,=D# DGa?f>~C%4j'081#\(nrz/t`צudx3O\9Z`0]1)BEA3F5oNH\ʸHӘ]2$aO^sVZ2ys{Y-Q`5>FTн35+D@CmAǯҝ;ؒk>22pC>%WUn)(+B(x 0)snnqnpHn3P+]rkd6/DX$|@N$FgS8h5:/F/,j,0%CmU8'+LJq(vzQKkmZ{:?XFbMec))kds5-PwU\_ߪwGj4WGGÿ31KU"bDclI +ǣMdh5L_ݰ߯#갹oQy+(L8P\Kc_598 ~uOμoa/ ܯ Ik˶zcfvnx/+}B%){Re *&%EPLIjGM8 yี>&u &U iJis(v_Ód;&k8󐙜㇭G8*<^aj+\+Y ְ.N_@92mbeHB3#{_lo=8~> b=y|=K2=g rlV]Qt㭝~v~+ `BLx:ڄeʗy|y))fJƇba_vj>y)9y)?y"@M4_ݞWw; atsV̸'p]YI~0AE:-KJ6c4#tJ!K{Lgk|cP(Y4ƍS|r:PˎR:&ɢ''zDVt磛B6e45BmTVJJIK۽N@ td#ψY4*swC^R.{cq;8P,YRrqc+7Zw4؈!(͜ %sFUR@_vh=3f_/I_bn$i *51O8o;Z"k}̇PD'ћ@瞧Eye/?wRYZ'e5SsY* Gm 7*-ǩ\jIytڥyde;M'hUw/!n$'^e6d=1G]m#ppa25b ג~ba&;tc6ޟhт(м6MZXI&V7ثGz}x|S9C]djh!yOF{=}t.LukFL8oJ5Qz1?YQsqw!q'i'h1 AAN+qI.&.eZߙٗ!w%eRL+=֑U.#s(3}3U1kɣ<ceN!;*l*sDMEd8Dz GiruO՜Ow-/UU=18L>)5Z8=V A^uv'[OexU}:ʛ>mRA M/,EQkob?';tXMqU奵 _-M/q7N?kByOv;+?+JjY_^+ OT_kp/em{ߪC^iR^0K{)Cx/e ߽2tlw6llv6d~6"GSAJ5r V(oeXQ;Tt)1BVcե,+yYת+K)&li ; 3:;BymZfExHtVԿ09i+Z OGO9p"SlFwtI ![ ॣa~᩵Z$ۄ(-A>|aەoW6˹aSޙ]ٶlF *K 4uGԮ}dԍDhڗJ:[S=޺ꕫlu364?|Op'NUAv`]ԖumRb a(KzW cj轪cCD9:lD9U(Q:|P5w~U4;%V ;0":" "vALc9$4%~ ]6EÑfJIV!t% VWA0ӦRK+ˋ˫Kwzvn|RsDtYy!XrmcTƦglׂ\ Ǩxy('tإ#Zv,|dKOٮ(-`T08\JL7^Țj~ ͥ7K\6wp\ov>Mk-eSy -rVWK- ̭SKsb:0N=g >rAf޴zA~N γdWSZ%+?re8WԔ$z$#8%Ǽ$dZ[R9%ɴfvRk~'%g9/MeJ>ydT1-ZS"[[jZL'4WJ?M$f>Oʹ%ެs"މ׹j{3]we>4+&&DF?!:sK>g7=kiۅ|8j[S5"{Y0:eKw$!a OSƚ)~uy| ?1s֍~~!$ҦhZ'kĻ o5iq݃~%sjH)P@CcH]a7G! 8GpLKLJL\kcjNhmb`'tYj1Eg;[Ov nW0F%*i>W?Ǫ°T>kSl;WbDJtN(zn[eXiq8 IT~Q:MhI*93NRܠ ,e/ʺsQ9s`l @[%t(?qh.kbN+1WD^O_V?MP{xpeT*.І= m2>ۋ*>9zy7ҊMB.~A 꼑jdn,C))̅2Ε4u` w8V&amp9DrۺLP#ꃢJ'p< $Jc`Hs;(!Q  r *pb 4$k6SVbE=BApXr3Vr[Uxu"p }56ޥfqO,ܟ'I%$M׀.8|Kab^4ŁF(ԍI2TիY8>6n7wmۜpsjz<f ռ^McM#J:DW.  ylm/D/+ W*y×Z*VkjXwbf`qf I/51浿ϕ;W׋ߧR몔KnNw+Sqe*Lŕ2閺fG/c9V9;'䘠ÄbIy޽vkLV_;5Ĩ):K~ _cXsO 6Zްj4\qIν\˩dD$V'g:/ŭMz}Α)HqdӪ^}s$RZ*ٴג'>©[jyiBܾ1o`L'_OUJ='@H=3ct#NOpߙ,<*ҳ?onJk+|qM_Zj(3Oa'vQIy$"4F pC1vYN$$bMqNeIc`=?5 n5kݴ 3@[䜜`343.*>?aw%C<8EN)$p3="[ UKH^)W}̛bl*N`gotЬ^J8wUEwnzJtB3 oOZ& ^g(kҒYa {m N+N'Q%R ;ی]]sܚjӻ>sWn-\9m؄O|{5'eCjz'jaY7WJ^ rkb'17zI?{F'tD7`X%~d )FC_P/_2utQ' Dbk'!T4WJϒ,^_wTrQp-uRm4@5pC5ercLy*l+0%C1KjA'@.VPrwCxT񬗏Je:>'LG%=~̬*E]7RUw-/Y~S|,?U(WBft[lx3@i&Pofֿ˰fpwf~ lu.V1c{6hVė)|FT_/3E|"5)7}e r'+][/?G9PLVWrsk,QJѷ'24ʹb&3[s4Pg\f#(ruEP"KKAJE&B$9E 6P&Q !{[jl[٘[\YXynq~2V2z~nZձ2 ʟ;~k^ؖwi+9Q13{8gvjc4&/?nqz{y93|[ۭAKnom,Q*hX}wS|Sh-t'8[o00t8<3hZGv=jʓR~V> w:Aad|ˏH|ꙂsE],C͇ós|:`]$8}<j"l`k5Xh?vsik~! v~t"aH'C99< N1| ptv>ʧaݪ(GEQ 'b #iNQ/A{.$`7MJ>o\gnнQ?1J/kl  hՇ 8[1 k, Ѻ}ŧ0v;Ӫ!UF`T*4BL- .RC Ά~OqRHF8ܪ?:ioP*< n71'(#p,F kt=҆0!&QZek8 *tׅK6` C0ԠiT45Sp# VlUݪxǁxMB'X9UҎY >LZWk1НAA E@:8UdR) ^iNHhRWkgUSMPA$Fhظ몪gSTOP~:NnA j&HiiJ)?P5~iK/=:I@͢?߾R70e~dvp>my*kM"M~:IW ' y&@, 3ژ!f \X|XaŴOqmdhgg:JkhZujY _ 3#5< R DYz@}"{M돤ʊ)qggR## 6FBYl.$> :Zu5z8%#F?̂rG ǣj}p[>n("F&SX| r64dUF=K^'"Sl.AʒP#$iژu*fۤDpȠLk0 6 /8ҩJ(ilW8T:z$vVc.G`Fзfgay^ Ґ`k:"mNѐۆ~8: e  gE0a2!̡ew"d}PqWfEРy"x3 Ԟf3yݏv^NY84h.+q=C"ţJ&0v7ֹl6L>\FDm2,ܓ2 ىF_@}a}/Fxvl$vp4O#~_KmJy|PՠCa$V'a>ྍ=XV?6!Ui9Q&Zy=^o!nʘMv\)L.ow>qZZt>; `:PsKYwka4=C5!S_DA҇]O,/>\O4䍀'ȡV:hϏ~;Ï\mCiRU-]Kjdi]=榗6^Ʀ<'DlA([I!FhKxTɈ8„>:R~3wȆV^Jv|b9zBIlHd*V!z!#YS +']ڤ g6yvK r:*Z=!;%]o5Q:4}ɯ'<@9Wd]DCO#_}꠱WQ9xV6ܟ@OEnOZEzl?5wO[ 9Ͽ4yQNټvm&SʋS&֙O)/ާ΃4UÉ:)y/S/rǃ!P/ݝy;K ¡boNоwH0]Eb*` eًC~Riҹ? ѹd Fh U&adK5]&k 䁞miIV뗃(y9f//" %e$t8G3NڝLe ݘ!{S.ѥrUڝrNLND]%c2 uV&8vIJ5w O;r(yS()sV? ;KwB)>۸/,g-QֶC~: oC =߾)Z@?#"p7p` '{F\XV)|iN\j.uD1I|0T- QnR-|t->V%A֔ϻA4وkO<8+!|# +Ʇ@R+lȒ4cӇ ~K4wvA\CCvӺc9}i~]ݧ)?Oʈ)eeB26JYh4Q~|L'vi),"(4hI~'cv ڒz֎z׼9Yv~f?u9U/+=(_4٨Pwn<5q}Dgsw{yH/7)4|z9z4B6)l1<8R;&~ku1@?N PW95ǽjly'W8=mJ |f4o}ƚ'wC@iRѭwCJyz Z-,Y,{]gVng}*I&W x\/54 Ūټse✘<I_Ya_/`¥q _ο[8/os|~T~Q#5.)%ko#GА*u]]TÊHR奈촆ʯh4q~tb}k3LF7Q|$sXl n1E{x *$nv'8=;G߇heI:<(7l>l=zd~~~gJsN%sN9#iy.e]{m؟}g+b'jɉ6HHNELdJss̯U Ta}(uy>6ĪzpOݭ2& Jnmzz찧OvЖFx1ytD7圕_}+yV4v:c عWaL8Gh–[y;^' r/űq ?Bq&1 c|[ґ^WetOVB/c {vsNخtұD2P49ᯍy?4H8nyO?-So(N;elIb !"PK̷u xݧO;99S])LEnfҡ-am10EQ8b/O $|ŊFƑFeվzCx:3` JyF۲珻ltXFgx`Ptժ`Xŗp&_@ŊtUdm[֎sŪP(7[^vx2b%:1G e/UIE9=5NpjR{[ρX'è_َz Ӆ@ͽXzY`k"QKH~fˏNzܦb >l7࿛W毇7e0R&-,uRIW.]S2y}з Fq~bl'ӅdWaGd1N"x?ұ@"C: XC9 jF {3z|D5.R(#U+ͤ&(h꽄bn_nw~-a j9cjq+2$3.۷&ԩʜeFq{[>P8SjlE/7Chi)ɈH .1Z)A̳yf7aXEFR;:L.[pb߽>^~wY-1nvsTkn0V'7O;@ZU0Pؙ!"jPRC%|'?ɈЌIi}_[I?JUmEE {wc>-1sÓlE.2`v9bh ytTٖ`6RHK8'kZs ^v~8V_kI+䫤VV2eN?~e6K9a@ h̟\j%"!$4/CEI\n!\.,BƎ-+0z hjB o$6k׏p̍qHļg >swl5/q6<(:¨1Zdo*;<]/j/Wrѽ]h,X?W%K93fX8='v/7>CF]k{|3J iQEbI?_da='_7E"]M!ݙ ~Z$Xߓ:ȫ:f&`MM3XQ{|_;BMgҝ_{ˎA[-J~4R &RPoCsj/|sq剮IjǪJ-W-z#ao5>ָZVHƄ̒' b~&c<J 7ޒ~+\c$ /iț3@{̔f'%)|Y,ɂ)2)QM\夦rYk0- vo#|u/%]v|Yd3 gX|s)ɸr\ XuS$QnKQt~?釮ERMH?HvZkدֈjrFőR֩OgO#3j/75N3e9B;9ϲ5ORݟf&ivvD΍_7Ew%/URHl|&xx:0㦬hQB_뻙!i>7(Z<1WioJ~Xߓi_"*F0'3a}w 1%6W+'\v*Y-dOW8e|_p&֍!|_/qGa^>|5݁hfOybFzLVۍ05l̓d0Ov!ed Sݟ#(#(z=A|My~As"PX^[輞fZ 'g}:)yγ'n2|J_)E>ܡMMbԑyz։eir $N'Ňd]Rfwq03~_/ѭb=0=K5nh-~$HWMR(~?'I"=DeSJ](z~̔`'_7;M zWW!ϼZϳI3OrJr8wL۟X_Rod¤_WS>ͩeh"SmZRXʳXߓip2ע~:|TOMBEO{=j1KjΎQWMc#5> # ʘ|5߸hm;d U'_7+ZPsk2l9E5G>bNjQŜyMssɘhŜfk3H' ~nk`(z]Eb5Bk@ [m`eowt&Ź8$PTu;}>]t t*Np_queKE 2'h;X|8H1:5[$0j9E$/S%\JL8mIaQT:Kq٤%b7GN R[$UZl^ %cGRأMe\r=ڴKrr3>yWNaOiEeK"/E/:䗟VӋH%JBhM/1AmkxEC.>(F~ |:5(萉7M# i!0E"vE6) ٬?{Vk*>g$Αfk4Kv/@S?qui 0U̗PSX] PlC yh ~4: 9W$jԇ rJ,+$O$w,y8{UR*GmUTc+ .1*V |; .8/#u =5fǦ$)CJή}auJi &5($IIy8o`{G)p9u 5d iUܴ6Qe9;mPdhlY'l™w`5JZZKTS/ f-GxE'FS<.I~Fx2CDh F a f東G/#:LnZ=mXn+nüfO#P>_f2 @Kn1TnӮǖ&WUZ50PbH' Sr>uazC$b;H:&0!=XacsȡEx!t&mB^D(OvHYע>drE ofeU%X2AmfۘA  𶃢%V@0^;&K`> vbK )y*NBTof5Q$6uK)#HQjRV/Q9Y"8JʕEinMЪ*RE\"H)wh?*(1s8_xjEnMoGH+c'e'"Hk*_.xLl)G632pr4}R)aqeSIJUdԷr8U nid ,މnP`5}9EMze}C.4k_g-~5$H^o*ɚ^ 5Fk5gxljDPi-h'oJrͼVƬ1O2PJaE-V[BsLl20@cOYSK@J;Q[$0+4dmNȜeGfߡߔꗧV^h.DbR`RKF} *E P=|kKpE~VdݍLWqp9Rcߤ8@XEHhD Ar(!䊊O^(*.sѷi:K*E3mMG>#5p,{; Gl\aqRGn .zPt<1g)Lv_@s]V癗J/yoW$ |6G yE;@׫QðWͭ=(TwkMFJ$CofTCtH{cXe yo(6ۊ_QY{<92驲i5XO=[D7x+Y;ᏍCHnFYoזtjōXY-\k)骒6=⚢hy4a*e-9lg("J3GWK?Z8HŹaBq"s)=KcUm Tec@/ሼ ; ЋQM`(m)Eʬ&#,|=IL*s_qy)ʊ&/28QEi'lsH]-ÎㆰSo.[jzvzZ;?o[7Jjno+V3(}%4jo΀ғ\%:(- 6Q+sٗ%/-PC_MrRi:ry&&??J rs"Qi[QiQwҔK!7[O߹WH+֔WE_zOS7-0ۜ6Fuu NXR]71ŸZh:3aLP%aM3'E2$IoxBC3.Մbs܊7j&Թ9InʹUMbfӟ<،cHnD`;@Y:hӁJji;Cqu¥~z;/Y@. ,71"0 I205LYLXsYY!hg7'puV,ք6,Ƃ9&Nk~S`C,[gbsjp9۞V8 NjS K&>6G8r !a B+$GFI.4PyD#hchEwr9Ss}H&=oo48&u.oה%\ f"x#d7Jbڪvsw,ީ sӳ9W^yxt(\C DJY\LH6Д3iKB]Woםt/?_kEa%,0a6Vghr#eJ#'e!@́1 ~/yM)co(1-5 C C )MƊ1$Ep~ "PAٌI qH.g[{Tm3>C%ӂe"J&`2\\ rc˅z Y]I"|em. .QEL4èGoz _˚br"`cpyCG8Aсۉ ;l0Ǒxr 0kIh$0~>G_nh껺醪/TBE0:mpX+Pu#_Yd rBft?BE}Fc>К0'bFeAX8/@B8cʞ M:5aUDruspe!<+&~KcJ\J~(ۗ+U7F nܡɟ D'YC^e.l/WdJk(I8d`D(ZH 9`f-@bCBa&/+«tsOE]QxE@GHg/:maMQD|hC6jCsR iHZډYܹg` zвSƚc=$P =y Ld1ZJQœ~4Q2ػh=0@ ?7ΊK䖔9ǚc!imِc חGKyV j)e?tXD_ʷ&ΊS5fxev:YTPŻq?ø_FjMu<_(_) jU:'I7e.t)obrrD)\oM%i079:k/Jb/[_ϣ$nnQ"Jq^, }A/>g.>@ZChZ{-ۥ|Z^gaZ'KYIab=c; _LCYY(.޸NdU~BcVԎO~P9S lKK∬L3I7_ ډWU_&.EAu u~C\ 禌r틱XP@ߌZc 9(t=^F8G}t9@^Ւm7"]Ny8w4?G#kTM)i .gZ|J6;'E#.f”D$ɂ6T ?j;>+UgY ZA8J ؂7pBJ T -T=7&SbO$j'ҩ$?xޠ'|yۅ@H x±0V(Gjm^ۨݯ==}W֪kFm}ͷD*axY0gvfGvm4NH9D!9e:*̤eJ٧ۈDI4$%>]Y "9gh0PBQ`-+h=HVxES7#"H b&9(Fr1ubLNCR+S$9%]'_C7kE^ gOH-TEzئً^'ͳ3G:/DM Fsᖡ`H B&:GuxPǕXTy*l<<ͯ݇ -c',0 %{MٛnF|lQ{ɜSu{J&swϯ[G''rkJ%D|1 U_9SDi+wm1)N!1, mt6@?~l2LчVTA3U{+痤iV+'"c}%AoP'OR:Ma΅:ՉdRy,DusHZ)\6A~!f OCVT=&CxD;2yp,ѨXߎ<$r˟ {{]9uż"O.;N1j$KB?k:ɖԵQ$}+c{(xU#<t3Ա 5?#Kadnv}v}vAu=::p*f}zw;A| 2vZxn|¤&?_:DR:AXqy2%:jB6~Vˑk~K#m !u'irerX&̹d4 OEjcL{m^:Bx_z|_򸹞ڈ@ҽΝ$az ό4k2J@U %)"צFF}*zCHw3eA>/GI^ $Һ7U`똿`]dV'NA랗φV_a6?5_ك-Oo_v;ZwGG5j>cO]Ǵϴ)ڶ7cҔYH=AbWH3Qq\_)#Aұ1w2,l7W }p4\9i?`wCJix9ww;o@yBj~8d=Uf|8O )B(vߡ;{vh>f/ cr5l$ /b@@T"G -1ԂCvIctN'8\Rpý6Bf PFt(ţ=iOYӆ!j7 ,G˩X 9.E f?ДQ"\`od*|U ɥhd G71vЭM2 {^nP;:6.0{r "DhPJX J8! D Ovx#Ė-BCdm MJ{ǯpPdɍyNDrieb2 9-lX"BSp4 وlة\iqrCԱkT@Ko\k\wKWc_BYWT_ $iY<w[T \ 94_YĄMt8(_R@uyLC)zA{PL[Y9F(@2ݾR%~ KhǙNlI}'7PJHdP_YY(p]-lhh5X}CI+LpRٰDD<0+_W+fAF"^-v/</ < T0!훕ͼÏxUl6,IҼZb.oO%~%8 A3ъFV(jX,V<C #Aͫ:y*ѐQՠ zWaJK Ң/ E$z6u`@+8:'YEt-p5ו֨[Yjw:/ GL1Y=m>HIK6F}3ztGhm6֬6D, .;HN.jܰWn}֍l̝4˕re^1"Ez9:K/nғTl}%p×GnCn1u C Vhݧ㓣:*O31C'8.T,IQeK_O=XO~8T~ 8"qߜ\,ݤѩj {Om+g;҉CX8;₱"J{dgx,ʏ`V?5tvҒ'{',G2Z\ow{}9YGx']2"M>,pbcwEhAG?~i,wB6ԴN'{{v5Zꮗ"؀A8D#dЍF4ɀnȽ~LGՅB`l rW%D,CX(@#"!y[*͏2lXql;j;'[{[GzuSQAbⳟ1PbG$8,D.g[{2 ~x镂FWS 0,WɯurYr*hBՠ?sp}~VH/ {G@0ۡrBr ޸ҟ 9llmS6Oݝc7z::9l<8<:[ɳ6>z8T`{? ?v5@YϚ/Baf`|Q}hLxqj࿨v*M]X%8g#Di izĥ~1ܙTĮ@UWVry|B%z\T)1vDY2JɖmpeS zMHH*t.{ȸyI<'I"@Dlޤ5>d*)Ha 7-:tAN@ۊ A7úIz>8kzqu׏iq|u揼L8>[o=Oywxt|˯/oTB982i'FPjum}}Ns@p&D,{ҟei{uxuu|p(w2@ U΢~%˕ihӵ !m*}ً;mGZȏ2,.l [z~3oTl3:D%Ik>UK ] ]$sV~4@,&dZAkag&^>L/X{Il} .Cǘ `0' ~<*{iӪԿl6a79T7I=C偉) A#d$玅:.]΂)4Z/ z$:':bgK{1DlP@+d.v[:Ad˟m}N>S~܉Ge_ZT S5WZJy|Q9#6k*⯼Sm,\rN5H+ uҁ0g"l51Bpft9XOL#IuL؆R=}֣&7JE!0camf;Hw5!yPl\fr, -Sm @#ȆXs@ Q`#rB l24#!e/Ku'!S%SJ&/ybV4\P DNy% ḼN2qHv,%?lGp L0P њD" <]р!^_8nI)x> C(gg%ԑhB2x ꆶ?x9խq1W,G %:'8/swDRojjs +#v)W,2x8s3ݸwn3֐;pxkxvC;$=2b^X(ItIG{Htׁ2T { OO\P&Q2uD[1)`fwY"bM.@) 2ϘI.(rK)oԡe )AnEEӻ^K.",{{9 m0cдy%<DaK e- &}E/ !.'C+ґ- '"btݽƑG2]AGboeym,V҈mA[T!bH8Mϼ%"IDD[ĹL*0O+[\< q\E` mN~8Ɛ7&ɓ ӾO`Gt%fw(-rU a2¾WDz\+Wj̞p^Y+g?5v`)dIT)(dRHFǑBAr~Y~GoI1(݃?PU$=JAiC脘YԂA~xH4TF C/슃6ƂKvxo2_y7eƄ%fd]# 犰˼ո-1_7y2 z G=3HSH9*i3dN|%DRua9M#o›+#FIIWQM"*#rc# i#WYIa&%ϜRsK \e/g|L,VRfEhH\nYt2IQM4fb'.]Ei\59榿Ea4.J )5U_x$AZlqTY)1ѻthp뭲r.$]r 3{g@n^zɱ|__tLcFBd*˂<">i4Wch3AXi^WawtUE}d8P0t@ ^f(ɛ#`tdV'ELSdzXDN}V3͙jdӐZUoeVV7Pm;4;M}7"ĉ%),ԋ{I1CZ ΰ2{GS>sTQɊXa ^d6Q/J4.-R%R51:Y OCa=GC[МG']L %=F9oGXn]9K [1I 0v1q4r^Vzam{Zpc%xҌlj6p%V8Eecn Ed'd,B~c#t,$rE^ +2 HUGqi⋄y g TXvUzZ$x("$! VT|(/VuɞU&z#_I " ;*~=[oP?]F!֤4>s`^r tex (Jíg/`jsnHùJ͞0Ix2cjƞG*>g*6M0TR_qqIxŨoZ^:_:<}.yJ CGh2F!bˊT*U6ERyTTo͑5sG !@< 3%Gd&Vɋ8 *X#ؤ!Ih~T䭛2`+nn筧 Ts"a* H).2d"S+!L{|JtjK]Y_:';m!'eE|gQ9~቎HR1 +ƑCwQIHO[p2`jc9v=u;2q$q-(Ao:Y/qlv)"E'0:I(iPGGPcnfc?: }m}r 7{G7D":(jxAu~/1~dlI:$$F:+Wi䧛ƢEu*QLJj=j=3F*FfW3SReZOZLJ1Ukvd>aǧʷ-dک?&>dڇ~7iiL3##eR(mgWt>ۼ$PTikф \1Ki0Qš #g d p"n!(rpROK'/x/x$f7P 9*pfSr'$KBt›Lts ͂3Y՚iIxF09'fn+-JD[w|[N)*w_t;4]iL&sjKV* ]p'< YRQ#/ph 2HlF(ȳ>>K"Gh0|lW砳a|M-jD1Z`lDAPp_*2 5dW Jlz^VK߿ZyT,OvPZ5R0ȰXܨuϞ>ٸ8ӡ*Y4n^!^vmlX K˕ lqh[1O|.U9j*'M%`1SSeҲ ;|0_3ԇR\˗5Эr_T:`K2G9FST 0`DWjo 斤1Q{8HoF(!jVjbTgV^KU쥈U&:+qobTQ<Ń"]0 ϛL}"6uȢatYIҚFj+DWPYTVBsJ:1ٜ$3ApmGiԱ6M-1k+l0 l#o.zH,Fl -LmD-:QT bPm(idPqJ.db(T[|*92gDY>`IHoFBx_\S|eD;JȰj\bz?SsϻbEܸj޾\(%ьb< Y,27!wD[/+>Wҥs9DuܒdBHy/PTxUgf X9oaʔ%AT4 K\1vC9-</g@Z]OsvD]Nqdl]t+dݾMGu:TpS,'|F umi.&םS6dbï0ݟ̂"@ Q*`JHf^ P'3FK#SjV)Jc\MF&ueOi6Y)t6CޗfħK= TeUeY_鎰ݦ <l%fAjMil>RN - S_ޔ,ꬳlZ-Ƙ=y&Ǩm=B0Du}Hĩq U}݅x4NX~(a<@"`%jAlʊϱPhTtdX6 Pt\*7դð-yMg޻v /meY6H$2!" ]a%#p)ޱ6p":^r;WFs(xZS2 +L|X;spTJF7B !#5LYܹM_ȎdyJT}\f.3&@c#6:mTN@0 4Ա$Ikv+YkW0eGh$-vClPZ0k,l;z :S_;8`m*ju88$7w 6B!VkP.ii9&M̫1&d+T^owD?Lb2N~CR.6yȿwQ`~Y~m~Du!E(dm+Jj<q954ofwc~R rసL$2ZwWPMPz$]7|\z$cף1A᪶c&Xy-Gp,+VVNh=[N*8&Tm29#tQe`c~>\w~WWՇZ]{^}km5%D/<˶_X(-j[, PG-hwZGz6֯Ӷt}϶yꡖ7[xd"-ҧ0Wvv@BkN_4u%ytzwBSOOvwDԼlXt#~%TtԘ_3"Ui<ɀ qp.R^h ÅNc{燻On\tp[Xkwwڌ`wb+ɂ~]l;y| ?G-O(vO/߇[y!5=/^9y (aٳSbTmtoq Egg4u pi:BZç 7G'z_PDq{B&w9-^>"4"loA@'Ro,DS奰"s "Ƌ٭67^+ 5C >=<8yT{[;[<ŻQ"/ %vlY@Y7?=yQ4ZP ZOשl~k~uؼr5p+{ʔ3_jdˋf6Sﯮ_2s&goiH!@>Eepw1[5dZ:ʭw n n:<$,Y˯~oFzđۓx~Y7[Ӣx4Ƃ.! w㋨P#A+UmZ&#}oY2Cy4eIXBvÓu]&פE{_^:-&]jdR{ =^F2#q}q߯7][`]A;r_W'w3&,]5c'@~nU!vc%cpDm]8H_(nh ) !YbC]$Ӷ<=E=Kmi56%ߩH(b J%$ + ZjEƣru ؄WbtNY!Cfb]/c~Q'QJ;NF_X7ab}T`xNcl%l:Z8Ai4<@2b)is38m!hLO6yg2{D֡ךeSڵ ڵee|za؛)MVG*wBʁofa33s4|ILz뚺m M +N"]5Ҧu|(肬iS&ifuZܰRo1s=I]kX Xy| ~'S^w !' b =|# 5̷ݾfw:LƸMXگ!TmQ੹94oTEPH&Ө$GeBI ȵQ:^P`[nm)~9:A0Z"ó7JL V y7V'ƺ%!a3uêvJK~a"db}XX|\DnAS#~];ۻB4VƌUGgbb@av#M Cr~PєRtҙ;  3pŎ50\vNjBPz lrco0vr.[@vv{rZ~5nAOAQ]5(ݑ?#ۛ΃{ Ϭ3ޚ>ĵXi8u*TyRA(k6Nm'9ӟJ^dfR9F^e: O)`ʲ)S7_Y>_Yjp8,{-vz|kS5ӣLz8=Q9ԸyGF58yI+-/Wɯuri#oBՠ?Qωv5"1>ͦ3wrܪwR9 9lFx #d0V4dy48t$!ҵUf#49c`:f ɂWEebiASL6^!%4ub㜩x꼏WK\JܪZPtFy^\BʌTilsr]JӭL{6+[ĵK}Ȧ10Lxz[aп !*$|pֆe^?>LF77e==<o4LL(<643 KyIchlcJY S(['Cexv6rl*cd0MvUK4+`36-@!MH9R['iCu[A6;KCe?DODUPG`#EԻWAH1b3QE-&c ;: Y hI-*U؂kQ=9x n6HȞ42TDŽmb|R {?iX CS0DGX An=uyQ0[ѧiwwt.R{a(e,:J/Kh7V*xB%~0orbߤ+L mto@0O2셗W;HTDT[b\ ȅ]b2Nk'c9q-W3ViG/YFnLэ3C=H2%D"%xˍSH#fSӏvz\"M#mj @cI0'9*}trșQY+NX#SgxjJFAf9"^hy 4Tk"GB&pby_iK} Icy/ϯ4iWiLjSa6y;%OC4F JG@drh$3ABW;|&m 2}1(NYvi[bHC8 QM=H@yCԃ9bQTs[ZKƁ cg;ٔfcX莋+bo1=sQqZ{rnT0}k@"#]%SQ+%=!r3EN1 Ɨ=Ras`*  $ʑ݆c> [#m&7_Ll7_ֲW_ߺ&^ĩNrͷ_DM'G jpQ@Gגh`o;Jжa!,E㑰j !l;m$e\n}_kEt;8~S6HޝCL) 1ѫ;3.XUta@rR?:0; wY K;颹N)Eӝ,><Q;4!^< *6\,$,x=Sz5"8&oザN>}ågUbxV G)ak}d'k2Wf]>I}E|g;-^*0BB\Z~Hz*^x'z^mw=&X e B81v=p̈ F:6>ucaWJj#RnD-On.t-m!}l N[^[3laЫ7-QPBC:QpGWͣXeϳ1;nN&^z2%ͫ~0d/ trB7"SYI Qͫ~22F$%OKS?/wԋf{M5Ր͙Tn^zQhmXYmZ=IJr MXyoE p*&MIt,Go%l7b*7s&XN)/#S}yIZTiU.d_02|RiWr-AfA{0d Cƞ]>gjI%_7W.SnQ\23fAޔ7<ӔN;z ͫ__uubeJ"$^I|"]:0t$jk8/қ_)u 9Dğ.`y W Ԅ@x$şK؍{!XU]W2#UhCL,ݼʷ$ brwW}(B}"kr|Wd3y}:_9m^zqcN!+R59Ďͫ'~bIW^欪|Z:_n^M9d%ӧ_[I(ϖ+zWU2k2Oeo&ڡ mQToӚcbG[Vb2zR֙!S~:_G*yoEשaO2ٜ uh:Y`G[UAs=9nǍүM_q{Q| aW^Tdɚy/5vx<*=|ĸLA?w=B2V&42M H}EreXUUERIj0?w~S/)Vg'\lTFd,Mh:YtHԋZn'ubH7"Mwhݼ707 ngM螵Sg%n] ݮy0I'B+=5iA!Է݃<=JFͲ3z'N=(˜ރvRQ:Scfe>=KfaI'BdJ~fϋ%;?ܮM D̞yv֩geiz Ӓg$N'd*H]N1?y%@zj~o+%o-z$.&ͫ~S/םs8IY_nu|rfM^6$T(ۜ SH}ݼ7;Mu[{ٯJF;^'N2 I/zw=n{2:RbzcdE]Ϋ.C3Jj.DU2HY aWk:.D(ǔO0AUj)O4jH}L;z7M)yXr_zߑ] Yݼ7`hB@qݼ7dA Wwj (Yjz3g\Qt1'Ksu1KYb􉺘!{9Y5;S#3떓| f\O uU^z3{c#7:ɴOиW^\j%r5%KL9= ~Z w0%i9ߔإ7*!n^zIw)X]IWn"$I/z73M&{ϔ%6v|я@Q5 z<ͭ ͓)aذ[\AUa LTzZj 0S w*dA !LT5 =}QtDJ (5I'~:Z7XA`LHEEM.λFyAR5(tmJG GHb&/eD!Qmq̖չ륒5A/`g}i$u+|QJU_n(I}g x b[BERXA6_0! Z5= ԟt^/\"/w4<%d͛NpSX:g!ćrx Q7e="!~*>mc' nY|Puq^FGZ ЌYaB怋T&^Wed߉G!(%E5'Qt33.ۑ2roEghBMhE̼rRJaG6Vǐͦ'd+G Q䱈F )4a izƆeʫfRY6fY7w;+F>Sՙ?L8Śj6:,K9(ck(Ĩ`q?}̚b0evۑ5c!^@,ngH"SEȺV^/|tr.f4 _nwT&m4$&)y;~p6<5 1rCjE0&}ݬ~ s- 5ЖC_idx9qn2#q6TLe0h:Z$0k+7.n2i&DLcI+!:)zQYɧ@tO%'N \zmJnƚ*}:+}:`gH%R=^_N-T _~ZJB.C:3E20!3_-Of}Qf߷LBRe&da*J6z:ft-ģB&4ٰ Kq,HEUirrB"d+#pR-D[GA'bv4MRH -{0\GhDr=T_%jI>5O#^y\鵙i vJaΰʠA0l_FxJP!OjU޽{@D~uB2h8e4P.0(8@@Qh- &y%:*Wrk2 $Cw"Xhԛ55@3n6!m[1s9hO(.Edtռ=ij5d-er 4/QofD!n&^Lyy` ÎҀB$d8tb]1:+#.{0nM"%ED&k mDWC2.cRdzm:- Cib<%m"ۘ@\A<຃%y[\,\iٮx]!#òbAThω`:*^U]m& |źuߚebD([[/+>l2 GQ<0UsK +X)B)E34`iyUKFrHއR S-T =vĩm-vkD+AZ]'K<Gƾ'KBd}r@JLgULv>c|Urc4-pYހ|9EeI =[ $!eiT)3SJSFK#SjV)Jm\M]zJoev.IJ!vtS]x|0ʴ kR#:8VtAVqv2|,H)5QY#U|zgu@* |)H\ŘkcQB&tdt#MCSpnMֳ 9}|ͱMi&91HtĨ&Olg έnA.ZˆV3o Ic%]mb9ÆWJ@f!s Q": VM[̖XV>KX⼮9?go8~΀!M93dA 0 Xo|'ɮܓc+%i"(Td[yIшwYr scS1 )=|lcT$K# d<˚,VFʹZAy" ̤q:R <3eII?ʺ0/Im G9H/FqZcpkghJ|O{t&7jG@0GG||DDR!@3vJB9H.:|XA鏭ҿ[ WPmt?kXqCM7J}1VZWMY (R~6TjlOIllnq9S%51XMɢ跏TI[=y5UpϚI\]̼JM:q |PHO:#Z4Ȃm(.jzJiݽ[~OIzkVNvp&ZK?x8dlmwdfaSaYêynb 7iͷV4 ÏmAY+4!l݊Ͽ"_'+FDگ0'bd8/'@B8cM:5ډ]UDouipe!<+&~Kc"J~Pf+U7F mܡɟ D'e?*.l/WdJk(7d%'Z 9E}`)@4CBa&/+[tfsOE{VQxE6TGHg/:smaMQDAhC6BsER iZډYܹg` zвSƚc<$PS S=Y˩6Sz .[6հMaǭ8M gyW(POL8b^ idߧ(xp=ͥI;xO q "=9r\mLɪoiJLE,ƍvxpiVc~C0,F .Z3  ehD=?%eXHwpB}6X<%RtՂlZ E@CZ$h?'FV'?ޗD7򭅉 =TvNV7Tgn0ׄZhg'oXWJZUni57MqllqKd6}-2] ;ì,2QJ=*[xSIAd$}em-M.έ'$RXJ(`b7˂"_싏٪mO"p6ZgDv)ƷYI\aa4BRX&XNPeʯ7cUU_5΀'SүTΔB<Ғ8"L ctvUɦKA}P]fC+ȹ)Hb :&P7dXB='A @Q۫/Q As5s8mdք|HS}tG#HU+hSz#$?O]& qX 5[vM9 -&; 6%-]Pɾ܎>gOY/t#6ҬIgoH0%П}Mtœí}֥4@4jq< M,1=o>)Ԑ :q^oMVνlYI TOE$}[{{y:A%O sQk˯ Z&ca P~kZmQ_{P{XV]UjoQTN :àaΨc]̾wMRJvT$J\]xp2y@fR2OЇsm$@x䪯 Ds"Q :S6m}Xe9e6htW?s "C|+z F=SʊoTL~g_㓧Gb)֋0 b`2< @a: y$ t~>f\3Xw!'U]` KCjSH!<`A־L̠:o8 3>>d;=ܝ>s <ŁL7r>+gaRZAƯ?o")W{'ɝ!/Sӭ.dgZݮNlI$1Fߩl,]p'Z(+WœKFhY4Os]*5*V`^w ! jb)h鮒GJ2c-6τf5}s8̯ǘ%멍Hz. ܉OVH&Ө$d\uPB*rmjd稢W=t$z78St1Sr/){A. I{SoY\ V J)huylyq阺ai/V[`cScX_=т,k7QͮuwTyTv i3uyLLm \c?&͘E)t-v47 ?kB>BD/6:hs'abv~}kGv7W/lܝqw縻s Ŀ,d~_۪ᇉ#JR `&n_ʇ[ޟr0,t_hڽCwhޟvi0+q[SI"ͯJ*I% C-;m4F?~%gɣ;{{Bf PFttţiOY!j ,GʡH 9v.E fO?ДQ"\`d{UrɥhT G71vЍM2 {In/P;:6.0{r "DhP|JX JG8! D Ovw#Ė-Bd] MJƯpPdxNDie b2 9-lH"Bӧo4 hlة\iq8nӱk?@K[k\wKOc_BYWT_ $iI<߉w[T Vp5ו֨[Yjw:/ GL1Y=k>HIKK6F-+F9"˜5vÒš)g rE͘@;¸QfRlk9FH/gQ%V[IzjKbDn20ryӍ|R {ޱ<'O[G['GuQҧf)c!Nl\b Y:ӓ!!P70{{0p2pD 9XCHɡ/fVNuL雇uQ pFw³c+E(7$,XNX~Sk%ONXud4%n Ѐ./~j8<=ؗ' XaP<lh>Ok8 ]/!$p4a_ɠh{[=ߓ#%又 &0J8YS*QvE^CRroe6P%ب$z3v*vNg?a'!c<Ģ!NIpXH]϶vV7e,+ 6קByʛ_q'& aXZ/_wTfAi#8h^6o=aCl4i]nm??'[Obos8:׽=>:m/;'[0n iutrxqytP 38'o gm|}q7ƒ~>kxa8kyqu׏)q|u揼L8>[o=Oywxt|˯/oTB982i'FPjum}}Ns@p&D{ײ=:j<::>8;WT} *gQ\|ʴOR:懐 6ݾ6eE #fN6}k­v=M*]QyzВG~ܪ%鄮ei+?p]y-WN5ܰ3CN& ]__ ,= Hv>Hס^  /cER?=iUs_6k`$! ݑM2AsBmaJ^m.gP]H~uPW=qUAlړwa=t"6$ ]H2);g]wM O6>xlk'^)?D tm Ps-F ՚v׫I}% VEƨ՜}S^{5f%q]Ba}k|gPf>_Ps -2N7Uec0_RxO6)whrRY)%K3%  [W)F0.H$֕d:@W6U!8SpA:@DF:&lCv>Qh%1؋6$kŏ v(%6.I39᩶n d+\?sy ((APi9Yx Uh6Žԑ蒗9ޓ))%_<`X+]("TOH&6'_ja8N$^v#8^[&ˇq(~ h VHLd"]s]h@$]<셡hųH2! NJu3[ϋdX궸+>yOW;x"PTͷ^5 f +MAe<9NGәnܻwk 8R5y!͊1/p s #Ƚ\}UR@)DD醽'. [}y(ljjm(:Cbzx|]M0,E mG1Rts&g$E^IXEm`Rķk ȿ2] =I "uhyjq~ZkC'ɉJE]{y~=rĴ+BXVIeivNɸs=샏:(J2?!Pn_@dr4S+直ܠ@(>gc2pfY~GlI/(e݃?PU$1JAȟiB脘YA}xHS: C/b߸6t*ƂKvxo,_yeƄ%fd]# 犰˼ո-1]7y2 z G=3HSB!*Qi3dJ|%@Rta!S8M#W*#&IDIWQMt"qc# i#'YIa&%RsK[e.a|,VR&ŭhH\nSsIQ 4bab'.Di\59榿9U4.J (U_l$AZlqSY)1ѻt8pr.$r 3{g@n^zɱ|__t8cFBdڬ*˂i3Wc\3AXi^WawtUE}d8}P0t@ ^f(ɛ#`tdVv'ELSdzXDN}V3͙jdӐZUoeVV7Pm;4;M}7"Ć%),ԋ{IqBZ ~ΰ2{GSL EzLN?ktveUEa6D>>sTQɊXa ^dQ/J^4.-R%R51:YəOCa:G=[МG'\L %:F9lۦGXnW9K Zנ1RI v1q4r^VzaKl{Zpc% xҌlJ6P%8EUcn Ec'd B~c6#t,$rE^ +2 HUFqiꂋy g TV vUzZ$x("$! VT<(/VuɞU&z#_H " ;*~=[oP?]!F!֤4>m`^bx (Jíg#`j snHQù2͞0Ix2cꟃFG>g*6MU0T]aqIbXŨoT:_:<}-xJ CGh2FbˊyT*U6ERyTTo͑5sG !@; I3%Gd&Vɋ8 *X#ؤ!Ih~T䭛2`+nn筧 Ts"a* H)+2d"S+!L{|JtjKY_:':ҵm!'eE|gQ}9~቎HR1 +ƑCwQIHOYp2`jc9v=u;2q$q-(Ao:Y/qlv)"E'0:I(iPGcnfc?: }m}q 7{G7D":(jxAu~/ѹ~dLI:$F: Wi䧛Ƣ#Eu*QLJj=j=3F*FfW3SReZOZLJ1Ukvd>aǧʷ-dک?&>dڇ~7iiLPcc+؉e:e^G⩴`h†+xYJ4v(āXrxf_KQ_8NҎp98zR 祓RiPNq(zJgh Mވ@? 9%:M ѕ{DȹyXf@jԴ$uWۗn3H7Ǖ "-GH6b-x/\GLfN`.wʁ4Yt9u{%R`x8;,[)؎۞lBCIxf5YXlYNYN[#4>0NXNVYV5"a K 6F (8B{+^?JnR/_<|u' (xRZd0g+iFTHugRlWP9,G7 ] /J;Wtmn6MNEXԧf>KȪ5F“VĒ:pN)2UYs6 3i",0$i7# E)~ uncXM5Hq1]j"na5QK/_JrLJhbakgkIY;"-+9W"\DҺjnI2U`o^RP[p*<Vʈ檌.b3~w̷0eʒ HAFRQ*kqp!U՜mVS ɮ9I;Ԟ'Qӊ82.tWn&룺}*}LgULv>46݁ ) 21hW^JO> Y(K/SL3SJIЙ uZ#j̩5%1 &#S4Eir:!N3Mu᥊*c̲*߲IɯntGXnYm 4De6zVv'X/l}oJ yuY6DxfaLў<-cԦ `<$Ԙ*>rTҸ;A'JP0[D^p0feI69OeE_ X toqa4*S:2ՏFuOi(_wK:Q.jaf1c;rڏΗòGHɬT$Gm@^МdMђu8IUXK8WTLc/x+8B <-)_ᅕ{E&<~Y[98*%r UU~ܿ AKz٦gj/de2<%{FnCx@ KK w6*iGx' IX怤s5}H'S Y. e*&w ͂{9bb|țŒxTLcs/?fs4z/hm-8P0^'R_$7MfLkdrA`f3.WV1n5YLvޕP@tΠ\Sa yj6ټjfmU+ \)dԮجز[4fyrJ;!5(%_c =PY } _ ^ICAM۶{:K~q\IV~HD]GXc! +4(Qa[t Le1sl*q"tO&1aJ!{)a<7;J(MR0Xd9,h6I "t%5dlŜ7ab3SPd~ƻ1u?)bFR^ JAxApXLrZ&[ Wduv[:_I+f (&K =yOT.io>.=UFX مBoUۆ1f}<֖hAx8B+)puogd9ZiTO[eݤv>m<;T<|õꃍ[XbV# W1-ݼ^UbRX%c1/7+ Ixh`#֤*4_IO %H}v6\̉RBlJhK$Юuf[!Z["3ZQ$F0 [!:HPdD=仇_T8}gpw|Uz3 YH6aEipkq"=k_(O&_ԝn+6B ~0|Q:6R6NͤI=od d\^{ 3r""a8gaY $|uGA}㯪8ynD8'JNQ~*T[ްv߯Z͕J%/>#!G,Dj,}'_n_ Q< ?`ƃH4f7V7yV^&#VMr2kÇkwK<6=2OCg(ʪkG6zZpOgrKBo{X0tͨU#lkdk 2⥱J#{+ϛ4ℏeȩl<#[@Zx$NOfq-vzkxdh \Y.Kꂡ=KVho lu#Ag=ZٱiNZɟ%mn<С1 6tL!,j Iɑ$i] @C1ԃ#.fy"B]|z\>D!v!ȁ CXk rE. =|\LsbF'mznśLt4zL>yVI!ӌx;';Md(/<Otq5t>ڜ'çʧM%S࿂DraʘCnՍK! 7ZTCackY㳕U w$knw311k뤟h`ZjK< E-0XgKEԱ/ac QNNc d5W8r7J'ʘWO/ONC=}O`]~?ho~Y? +x9y+Q $Me:c4OdRR`[5!+!U"}m}B6ZK>D QEHGZd L)I;(<]N$Z4u"-HǤ8 sG(Q|K=k\,CgH&#,j[Q2Jm>U}f"jR1A,qA7#}}x6ѲK>9Xey 4)AK0"|0I=$XR 'I")V?'Ϩ:"g޽S0 V~&Xsˈya!~\4znVTW Fn-|oힿ`΅ݐ8(bvJI&ѯ Sa?`_)%F?)u8a.@[DQG 1wgZqn J90V~ڞw-JSat4i+ob%i-;uR\BC ]8^IEw2c .'y>m<|pG}Ǧ</a'@+t`y哫z9rŕbMR,_2SY%b;lLv jnn"rG'Oh[Q++ V{.j729I@؅q_dW^OU@z `q6 foB8 )L/+Nd5 !\)Y^cLce%=j{|*IO6z3rzj+@l񣠯#2%)b6;cB71z@r:ʺOKhgxN rKc~k$ Y n^E4p*KU$$s'+WH6IPz@O슰~:xր}lp)xYuk_|,c躘1%t^VuÃÚ5ՠǕUOn6RRSxܾtXk||z:g7gQ+(ʷûqx>_~[-Qc^>8 <4J5ld:Ůp.}%9ENp@r躵9` \`eKtuFxO6ib:Bi'BvaNaeJp 22bJE^h#J@_I$OCrW6iQ*>PRzOM/lfM:s\ \oN[MbsJlNY d^LS }S=OMีw"'=C4ŏ2B&5$rW )t60%yE}3`@J@fr94dD.{-߾"Lysn6rg%vacDz*=d(=ҜPȓ}eZGARgE?skgA*v-95nIF KJ% P%x%/U\09sѠ n9=Gԇ^!pv5%J(6X ;pMeLL0z2 [&ќ l:? dW{[ڬ2ezZ9p9䅜MM 1 };cG@b}?S̭e-֤ -eC5Pvp6#nB$/= ˽!-N A?8I=ppd!48p~ɘ L4Ao<#E7MG%\ϫV=g??G?&~wOxq\w/;ɂ&L/',J佥$)|@+JAApnQ$DC}e zY(%Y%4LASuR+Wk:NPXU{\ϻYcRnZ5,Į Z_R] lTQLfyNyhQEԅ}KKWޤi U "g&dMjC(?pYᝊ|پnVVLC,66Ue }´ZJ(].C&HA 8hrgeiUOdTnADaF*O;P-2G^[#F·>ApiJm^2b;2WO^Hc8舝Ɠ#m_][<0O&XMn6"R+bwQ\HGUє_j60MH{4E Be7$Q:2N=h܍ "t^u*TRP-$Uʲpb 'JUliWbi[)E󾒂afls4Vai$OUS"h^(w"blmWap`aALBhŠe HG}ZK6U7;mVS¢2_ݨc kELz8RhJ@ 3*%s1ͭtw$b&?DnYd"S25-MamիB)0K̍*P˶dZY)J 4&2^JLZ-CH_p^~U+{3:K5d^1&=lxtTdSDqqz`&_ddDZ<{&`+YP- 6ZdhS7WtAhL arHh:ς>8< HhjA>HM厎wvv[ϞWr98)\Io$Kb 6Xƻ`dPY"F"`6(eM&ƋcOˋ>8^CoOj r!D<9L@NNhVCA,vQHH*'?{RFoù^P*oJ36ybi=t`8VnS00-0]&9O)5SN0#\DdW;/76Z϶~n? ](+*F'{~ptx3GPm촎8T\NIzG(?-XH,2]E)e "OVj#]HX"%D%vi%]:(]r @ԱF3t69 Mm<;.jW?=\U11hOWF~Mc@I&^w$Дp^M aKd ϒQ4B %ݜ٥e uilauY50X'`o@Es9P0INr{'o*Z/V$+Ov:mf.m,c;٥b`rjP%czSLvguxsqw [b,L[4 hھ0,WT]S!X'YkP *nO%j5`?]|ДpK(ty<)mNN\:ЖH~VOhi8KP#(As.ڙ^Um-ǍW[ ]9)Y'FM6Tu6ߗ\98_+߽w*ZeD [y)+RUd(- Њsty>`rgq$b-h*y*X&h [CZ$L+-Wkz /%{v+2d5=RuHHLf,ʼnSCNj h{.YxHQ%go v,++!~@2(1!.4K]HI .'[Ѩm,'2o(ݖ9Ub(S]!5;wЦwi5XxdgB̟%g:"/9D 7G_Xe3 w84P[2V3 Zs0uUi8j!: |j*rf^E[bU@^HBXp-7)61AyGE(Dp`#jZRҵeL3<]4l(}?1;$GijYAoU !pPMݧ(r]yzCE9剿ƛϻU.P v~@ iF݆M!Q\ ˞{MfU~&4c;͟IJQNzIxb3QWӼ{Aɐ8@E縯Sc][: bQ,Uގa2NxɠMbPNEW,:6 Y S,|ρU4*IF~dGi }*1݌;2ƠMn| ^+FgXϣa+'y$%Uq-\7oƘr?ƦzPE'q/䑊,/['mɻ7A? P1,‰Sv&;bKb;I0 aLbKV`GQ7*Pt]uDiqiMҞ9ͤh93&_ʛzgvMB-[Bb52׻I|@.$qak'KL9t$c/2=qME/&]@ k'lއ.]"EmGEKL6xEeh-@H h4HhUI5ƀ>;hx'Ix*.aXœE݈wu&ퟥZ="0H{qPR}sUf~]34< #GڷPCs3Q zMB46VC Fw@JuNNꔒUuoi= 0j TMJ,Ⓦ&s,erH7׭5O,ɬotk霺=TA{T\Ly֞tM+ٷdSCZZyɶ|"gSD(bܞYaO]KSnqЧ빅cNmp],9-H6r铀>r^#6ÐfZڃNf`zHsީ_, '/cLJki7?~ǵl^cz ϷMuvC6vM 7Y/H k{WOΆ 􍉵HTE䛘!ދ*Gwl&SH6k=Af9jY2d}NK(7-HCDښkP$=E4g>YmO[<.qbzOvAG\_wsrA!-9JN\?Ǎ'z3)͞e2٩F-k:5Nԯ0v8[ҏӼXAC]vʺr(D Y{SsϪm9T;_q<_'?nW֪ikw/񈜚 |C:zmK):)"ihQed)k-#=&f=$:5öIVG8zA47xl ~;=?ª-AA)1 84!#ԃG3̈'n0LQ7= !g&& pM-aC=̄\(tXPg5 6$5BM6Ă J!Ӧ)7~""P>KxjV#̪ҙ,@,!%xTM;)4 Hh GM`ZT%&p!yImu&͡jv"SDj{+bӬ)׋c^Y2HCfL+bUťXE&{ mla2+BjHL誏(Ab,%/L,ߟGOaM9y&rTie/T#. k"PmQK5q1CDǵm!Kbiѩuv:Dž<=1SZdw) BL䁙q|30 _o$<3CN~4`oʘ#UV?X_OLq9g?U?X/L&~Ipqgor_Vyfa>Isc#5 w_$ɣUëpX>QQxMUI;a0$V~|3c7#2յxpEU~fds~ē=wHL7:g]twϔw%Hp~f?N~U vñt\PoYdZe-.ګW+jZ X]]9~iqo1y'ޫW ^qO}=bٳhs/mN O LVAƀWʴMתk".1rH˄q5t^<Fvb=ˎb{18yX00 Xak%\+ %DD /,OXfH?7+a㫚8 Vk CK=eɉE:Q9,۸AoT@+Bɺ<5 PM: j9CL@~8حkl eu\s:DqܩR'B,~69"RA:Ih5@D`z:-W`a8atEI;w") h6xv: Oz] XDQyuYibmL{߯~FWa)!^ps.Y+h0[ pmQZyp> Sة-1Sǔ[ Nm$p "j @#p&7[nJ( \Hj=[q^@cxhhlmH׎F7k|2lUqL<ޤp K.Z\7p{є~OU͝kE MM@ɨÔĪ"d />`כ^K=L_`x813 Z=O[KܴƄ/=Ս5KҧGÜΘxR<np+8 -Pʰes) "@D`~oFa=U_8A}5qߔ&sNaU !Q`1gVD2!y׼3<%Gki'+EV8l֐@aT?=bU#0KŶ]ߧ]<wvhn^cӒ35Wi>/.adDrI*,wCy]]@YvpE!$ DԭvEjX _'C,pahBn^vP`"Qp u미eL BGnKH ~: هpLuaD?Wq]+ kXAС5p;((ez8Ϋr*#ILq8<ڄ nEfG\{׆6da|~EG(Aº 1lxUiHE#quH9'ƒfoUus1e_Ƈz8 )Fìepq,\ŃX+ G?АKESNR>0$T8) ROiE\zZxgDTvP|qq:vz}.a8tdzO@xƷəq?lc#e+~Q< [c(F叐8RO21Hl-B6h >*jhv/nQ5|dpqG=qi#+̅B=BU&>Q8»3Q("͸`2Aˆ8"/F]ps1uy( !E-^" $8C:8"nNwfssFnt(oaIh?Upw,~ K #ᢟc O'} ruC&SY֖KPx&T2 Ď+\ > f`!r+T1xg!$fu-T}w .$ f똊» ߘM[_En঵mVU x'M|+Ņ!@rQxyd!Q5X_&j m SЛ$M*W$]{7jz5?isԥS4)A7<q<} q?bu@~sݡ|KEvz(JFYx=d;|I4 V_R5ǟ?]BC}UU %NG"jȭQwǤR>xq^yjp@b;"3@Z'{ PKL4k&HBI9#DSow* (w]'^+b)E]I)@kAHG1L"C)t/"Ke|- E@#8TY=Wv2o3UGH u3xڊFf׾ rGGtɫڻ^:w 3oXRȍu œ:b/\NpX&lmI4!f. mfψnIktA@$er4?qAQBth@?d$1rϟom_lolm"b*U{P$X#/L`a8m_ Kj_֌>ۨ4hGy6?E(KxЩYpHE^jH*zplFcoz=+|sŭn[^o8/򃚇_jUͣ:̯;]e ouisчk0CeVۻuufo2CA>.0pwa4`wPYWU?nc֣ bKpt{ߝzt3VrJ6IGċFp#hOL%ji _+(/Zt|"o(ȇN2f>;,? w=k?wA5rr!z Üi G<wMv6ַJx8DZыa ϓݱ'΂A\$$"Zu'")2xzG֣AGhYr]уzCUhKC22埈f}0D2s Ez$bgFhBfaӖ G؍B8?E wWoƉzh tS Q#V#by8I΍ap::3 jh+'E(vhgh،0c7(^k͟(8^VQE}c%!2)k>h4C6bL082$<6`DrK(gm?!? -/>>;k*z]⥉a Iiٗ"eXDtǿ;3\A6FXb~'掦9aul~ ~ԏ>lnH>㱢sd4Q/J};7 dGQ9 7jvs:u]x"141VK} sj+tt ]su?>}:ydZ{@<].4(w\v QqWvDO38A~D a[V72R =6+ #x*R#r"*Jɯ[ȁ̺{`1lT =.&zze+@Tɲ#bOO)h4we`,G! ]Zkw֧x h,wLn^IL 2:t%2WqЦ<ڀCs .v EХ3 GQyƖ'r?qb`\FBYR݇=D sīppGpGeaFO'J?O >/BO[,-rLx2 /zxU&?2 tǨoF!*^nZi*VJ]YKtg;̩7dY)쿑y4ŃP$*E DnyJ~*R$!6"$m]]oHj<7ڑkʗҸLϭ9][K@nX]Ȭ܅+֛QX3 xq X@.pr@pl[d< 0n-m&Ϝq;[d )ܜ5r'`+"K(24n ?ö$6VyaMe+rjռ)Tnɴ%Dg.F^x# qMp->߼b%9d+t ^Ew1O ,&`ȵQ؁z,^*iN=7aoR,!@r WUP˴hA>I q_MᒜALh,ѴX`.̓߭% f@dy {YsCe]+.SF:?:i~xT8=pNJrbPh4f5q%u0UU||OVTlZltgzXg>*1CC4+Y&4=/';y:qrl-HJVI-pDFͦoDdcsJۙOijz,ߝCK)1FNeW6#V/fJ?'ނNaM)ʌe)LEY;^-1jB={M)բw3MLoױ +֟n Fb"P@Xh3DT%lI F[bn+׌>W 4v)Aɘ\Qע&ȿpP?봻w#^H @0њuD\H](t~}V͂75ی&d{^)@#o4zss$䒾LiFɞc(Qk[父ĀJS I̚T4{?(\CU[@N_sl*T )SW]EZ$_}@0 I35T;p /05 3eMpp]cta#Qt3Y\B?wNhw\)P8,)HR⃉$cD Î l(UMsW[{ԥݾ&S\تsӘ)e]M)-l$IU1wQg2,Z͘ *4c"(2gܭ2cجyhq&Tb5*Dyճg۝oqh.W<[CЭyۀ8 ]v\BeyHFAi}}oyL?5vsԒbLvV2EB!6K~P6ˮyfnOsج/MNK6~O}'QLWܷij!Xo51DKAvsxf:0 Y+FokI(ϧ5`QcK].u kIs?&~&8yP>P}iL3xN~k|p~:zּ:c$Suke Rc`f53!ÄToI.##nۘ>'a?;>˫QG5Rs "hQRIH0Q:!s9^bdM߬ b:,Bz_FʭML+TĸTn' xU_NUС: hNVe*}u\YZ[S}0Y]uҁ4´Φ&p=; 'H%zx{6dC3Ts>k'ohiM1*<R̤Q*LIBZRÏyi15,׏:ThQyQvN Xc( cW&84η;g#L0ܲss;feLQl08 /Ttkg9\U \Sn"rpyu\kI Dc=3yԂE|Y[Y<}v ;F':Pg$Yu 0̢ 33"<ڑ٢U=z(P%ae&`0?q 9 Mx@=W',PxEA:8-rQR>IIQ&xScIK-D2~,A?9dTMk32%Xc@VxDrͣ !ENSH`HNW5zWL;f>ZPntY@|\de:Hi#w?&_/~~|"MZM80c^s*ov)` 'ipW,!ޥ^ͦsn\0TRc>/M.9p6NeCFY^tHo4d tG:[Ju(X̴ϭϋ0׭wUU\׍9{QIH0>)27Wó t3Z g*"DM[6KD|OU>Y Pxnan9/g˃զQQ*, $D6RMi~[DdRyL*ӧ {.Mд{BQb0%(GKorꫛB6\G2YOgl^sKhM}.j{]xo6|L\FEf 0f u, mwŻq@dov>\e-{D!$8YVRb6d|Mgg+p?NL̖b~LtnP8il1Us^J>Nsao?V^6C5QҧSsV{S'cd|2L)rX4開K}Cp_~TzdJ"#/IX4Sn|%B5/i+mc<\;۫N?|>H *l8 ;Q{L)ҁ56 hGYr{md*7nM ti e$gOʥVDqc\ %!Uʫ3P@VB+uu8o@=`/tow%3XI A {YWW'f~>ۋE[ۇG;{j} s7Eak2yH,vl.nu ^RF-C+eZbSti )I/YzPt9D=6U}ă\m׍ |%cl2{@(UΕ$~e4 L#k͞f F30 R2dRI6tǃ=!:ir,RЛ(uQ|reӌyybz=y\oNMm6c|[G9){*FӺoZFW9wg:<&ۧY&@A/'cE*]mcR5B3U+PN mͿA٨͠z6:t#<EQ53ʀ.I6u}U$mԂCExO7ڋrJѡzwK@?0 Ht%,6ܨhh'";ϥ pT8_`xcs?'ɃWJ7I  {iG˝ˌXA-Uj͠yjVuhL³cYV{qʸy34m!umBɉ%6^S*'UItz:9@(O>Z T>f E𶳼]qȑF_|m #:Bn }QuA'Tbv"Ҩxֺ\&A0I+LG܍Tɒͽ_)3VV7_i8oU}|-TֶYi<|q,=~޾[r-5PzYmL) .˼8Yj M?sۤ"^?7+xIöPfxTtRs'T/)aE =9 W)d@3 &O]$egVS]+LkPxUf&4){XsjCA %"s2<7eGM6s< EL 쏾fb/4-4B'3:s4;n N g02$++XnJc\x2q[ X0uYcq-'2ZN.L]ʾv DPp4`d=/~3w# g3ء?hn{=uk[ Bdf}P}huOr)[Ejܵv9r򩊯ܭBҷ -yN*w Q?RmM[}BOa\߇(TCG A.RǜVdɚDFO.{ H>P4t1=5m*9 F!Dc-keM*>8˒- [3'DYGDpT!sUӜ6 !AJQJ`LǥUhtybNI Hb.Bؤw kݸG 1ݜ0I'n / h&,4DpC$萦Qz a]s{P4N3Mc`bA`o"vLe=SH0 NeaTo)6Ȼ%(԰~ z*ufxow8"o{U!_%!HQY?-LZtl{NIOtEenڅzY[d1Z%PU%F'Ic8pR9V QͰS:_(̈i5uO jev͊8%0. 2.ȽI-Z&_T~!Nn,q+R_A"j<, 1Fpr4"JH|r9əžH1o~(N3˻!ژ>4VelOf'ljEӓz)';b_SnR6NO)Xh7v[[4yF|޲Qv"AGZ _tJdEO[fGFb&IqqΆ̓nYdŽH6lNDҪ\։GJG^ƺ-Ϊhz :li_jڿfKබ˷t6߉i+۔-Kb0k.Ll0tڑv;ױXc+q#]a$=|7Z(gSU]bCNnR 麇uP0c4CIN|)L[bxw{?nsĬhԵN-Fw%G1cDٰ=QHɏ~<~KG.gW@'hqdNo VTv|xqUQ1[9>wts{I3ĖJ6 acm4.N™3A=MMzCre L}GIg=9)NaVsv7.r `UkN8\|C @˲ʼndI>Nߴ<No ͍ V3;/ H<5wF+I .hk3BKTTܩS~(.;%䮛rCI9n(yԍ xn2#b һlZA^Փ84}ޅNiS&'S.gάQ IƫEG5p Ob}Z,%Ғ@#S{8}&ϭhLܻh44Ʀ?1s,M $y6} uߦ+!]s6n5J{R= _ڔ3~|!AjOA 9D{Ӽ?+G;;mb~;JTi{*AI8-Պ6qF;~v??qFdU}.g (ݶWӕ O9kޣ98o)8''kS$z==N&Pl.1'u1VGzU٢~2%Ay~`:/q) /HB`4?ؚ/{Zox4sj'ݭ+sN@KRFxZԯfI܎(>ݥDc+ӵ^'!MmǶrx%.1vw( sa!RG@;0A9A |.@OpԀ#Ed N')ϛ=2J o"}0(M@X{:Iy 0}s%{ XumUؐp}H+RFwpo@ӓD@;5(}F+9B{k ي;׋Ϡ/VhpW%Gk 粋F d0G͔xؔYw(mr?/ :[Ūpfa}dЉ(\$ggrE1 kdL`c!*$kQ@!:Z4Hh3_v!!+w=hQkb!8!)PULL.60M{& 1ƽX6LT!يSS%c oX/BC+8,+|Cfg’.›gWɫPp뵛7-xKIc +sQA᳡oR/i Il\FpCJu- ͌VTżRnLrpB4%S`J(RumtY8msB.h(d0Py2gl<^{ ދGI )^^Qإ1qޮLo>!kh0@-~"<n .+Typ{ck~:9>4@) 0ҫQJx0e B Ȋx? ª*}k3"CC(s# t!g=c RQ-Y5=ufcL;!4G ,VzU?1S"-JTJt*NF]#4JDE Qؙ2 j/c` .pzwDϡ٠$ LE:/3u`a$4A-ςIT.2ŞMb)([h,Ő 4ɄXFR@4 [lTP?ˆGdԦ:217|{2*}qĄ$rl'ahd>@hh99Ucԉ{E4V{8òIwD QsSlj ӳU/-̝fj+[I8Y8l{>qwPt/@n/jj< 'u@WFkO75ʫ3rky 0 ؁]8Dvu?8,15fhR IAqkYFlZ>i*$/T! %џ-)ȁVz*tP"F}%c,;a(<.2CD>R> coJ*~2WӇ`iG©IC% :hH@r^5+֡!_-x/P({xEFE\=ҹJ*T'rI'?:'lmz̳F0zڊCgOre~I/u= >%Ms49uek6Fh@U":0"k*m2p =BST# ԔFXU]4Aԛj}]=/߫c=441ۻ*!$M|{Y1FV+}4W?_Ļ}Hv hFag*UR5Z뾅$\YJ5) w?k'W'/ի'*ރUxw!ca2)J#QD[ћ̓U5$Ƃ?5>$TmKK!A#&^s~ +jRYNI$զZ \\Bst ]F.͍:[ɜ ;cvRIp{ y' O׊ m<1;L!#w7O7SLQʸY4-kBeln:slIb"]PQxxKp9_qc+s#PrG_->1PmNSfNJĕ%FBr{opŃ I:ybW!C{=N=햲۩7Q孧x[^kxQQ~Lyikʇ 5ドJ%`H[8"ch -xmE8gT?Pb(h`}cHLq/y{L3[/rbRhgŒO>r}9U1g ֚}& xq"I {|8!t +weX;Cy݂77˱13u҉Bzm)6 $vT1lMDǹ4^qy6lUG1_Z,t,gBO%0/L2M :K/w-Eu/EclSo]; y1P\49q]WpMRzkn/G rEEX^t<Ӓ{Sv9JKGش8iQH8Ng+=o^cXŲ[f1^|Q 0ˀ[4b8瞅l'w90 kq!'SHsry"I?C ǡ%Dg4^U4[yRwndIm&ߐN!DQMXCJ[Qn<ͪ?x`(t%u2OUu1a$6)~U[AY砫SC=/Ø#[R'EKi"{ҏ%tAJ9f>[E4Xߠ$!gU4x&FJ ;q(8#6k?Fss$3cg%S蜞g@.F:t6^^?$%&4/1xyXb aCOn0DB6$&)ip B=03#r0Ex*켫fQ}>OXgъŜvhqpE7S1Õ +%r6q[u:9~"ͧO6cxu QzUC3q\Uddf}ɼop 0(FoB3W@ :o̪L^VU |š38D]hh|YE@~D-}yuKᦠHi/f_4B=x(2xwަؼc$pT}֮%CL>_zBALrىx׸3 hi3t8*mCnքpF+($!$M5p AMNc猚V=_hFQ'pmk [gwl RF&).PSOڛ1 `OQOg|3yJeډdu` ("Ey`D5TKStuՃ9frK{rDT)T.՟/-.>-jsquyI=Xg 44^ zy!i0JbbX?&~ {MXsVed ߒt\bdjN:~(ax(kFoyH3T~ð<)V`Qܣ_~ϓ暊 :*#K(*hu)ZZz1G`جx`Kܻ9Rt' cN>I\¡$ZqZ'b՚Jl~GAre`z`N/΄売S ԍ2Crʿ #I%15R je)5H|8%5l Mj;#HC"}6J2 "MNE^xrEKRsƟ8vLvfSNCh""x)&6FOS>45#;{Ӽ(/X"MR01!]ʷ[j%>b!zġb%(%qnۃХ?D+vamȁ>?SAv IbP1v^difQ]3s~iM136~nKl*,3yR0 L`uYO\{2ݲ1>Ihr:[C4.5M5S6/TMt&n(}Rk\NZ+ڦǵI-R68Pv<Čhm,Mx%Vx;`x4b63P mzvH6g7 c2YeSO3.=# sxEm&NÔ 67 9ӎ9認'y-We tXżziXE/22f3J}x~MmQb=r6L}eY$sXDi &(Ux=jq8!@eP,[I4SX1f:nG`DnP@<~$zc N ߗZÖjqo(۵CWU `\Kk~ol]eIFdV)UYG9 nŜE jvr|%qw55' o^ÖYL~~{SgQ%o?ӨN3Cgd v,{aBq[u/}y~zH='[i'd>[QF2uûTy9=XU󩻖̻UJwHJVbNgҼ_%tnҝwPWGZGl?FvZv^UħwR{z,kНzE*Q~Fjn}x.F+P~~ږ94+0g* a T;x_Qטvis*\NKa]0nv jM8QDڨ#D7}΀L&n,v崖9wx,@K>iϊO ZͫJT9]W跕uun>ύ[ݵqŠ! (Cdz?KL8_i)Nь;A]x2qJ/ּ_K8 P]9Jp_Ћ{aEIZs :r^]0mpd5oZgsOEmy>,py]IގN@+T ]7貿UQܲFZ z떷A^|{k ZUfJ[d@y;9JfSYcڎlab.Q}W8о'E* cD185崩+z) ֆ ;vrHj-u__8sL9Aflc2/q'Qn7|D#a1gh6G?A wY*툍s" l n =6}#O&B\DyiwhPI0ߢ_# ZW,}g^F2ۭ{]4o%)"xw0x5;K\"&6,QP>~|~{o =/\W(ЎUd+ysR~# ĉUوo^ pnxwKQkWT<Nhk1Er&7"1"!l%TF5l%6 ]0M+ƺ\1R[+#~E5g)[^W 'iOȍ7\]͂9Y B`l, 8co=^ u 5oՉA /˝p.#ػTVJm"M\6>f|U͗^/[<_pt-9薭LU((8V(XR3۸u藽Bs<-10<3;6A #66&j$q_hGpŻ)h75 Aڃ 6va2 վ6<$+ȟ8Ƒjqpi< <=2 xU 5!H8,dY|$*cDkƣgF@)ކݒi*<Eys:Q6 8#$Jk}bƎݤF&?l=MavGļz󉝁1x|5p7UNc9qk {X4(. E\ڽI'BN9 a71x&NRf'6>a)Gxt "cM!Y)l H2KR7[nvl5 WQS{^7o T{4RC,JMNO]A3yeGҎՕd:O=յS9d14$"% j,5W$T{rlկLF]zR3W~hˡ( e5r* (ЪS` <)bud )N̹^GɿGO|:Oܤ]u.{ǹ)2@&o{1c1%^f8Cm s' MbC= [5`ͣj{kŃ@|sJ,Ba vL$ۄ`#ؠxCgwqtᖀLn,e؂i YLfa!FeĴ g# [T). [7:@/{I`l}\7-zM)<'5z"&1XK˜R H$ 8!td~1Kir.83͸L8$5:h&| 21Gq _oop+bۯ>0͙p'FMf׾bwR_!@nv2]VE}iXrrwt\-xs-L3ALxםMAG(%ĺdu=}.)ZߙM> IF u{7.W8/76hJFC]Pׯ9M(.@J0 ԵA2g1U%n 6g4h3hz~2Yع#ͽW k[`c(JX#Ixr1} Ŭh IFZ!Ρ-UIݓaGx :q\x)Glw6At(#=oy& D0/vIad$ ?]8ukk2nI;Z~{xwk42ij XdwڻZFqkh(=nv $H&bɫk NxW_ 'l⸶26 W׋d0Gę2F+_]&.mmo콮Dn~j-p?SsM!FOT0.LB.ferX,ykBB4~rь[_Ш=?Hoر*+uyTeY2q=A!FjB Z0F~$kE7&#a~29{aV&&'*K9oGa?/tN.]}C-lJ]m0~ ]eΑۅخv)ikKpڲ& 8[LԬ#&('I܎Yt-(pb*ECwkȣd g| ^q迠R_],u2;#%g/0Iono]ZF'tt L Ȋ^cp ' Pֱu\U~xH ɲ*}0zޱ2o@ jEK XNX&z&mfhÇR)tRR:ZF/(-eW62bywK x pDe UYey|nGXI Bj6bS@1Tێo$=',`+V #ԬXAНw?9Wn*.y Ɛn6JLt;KU[@/jp*8wi1ML@_]<>`,kI,uC8IG>n{Ci ?|ʡUp5cKFZ .c辽ș 璣67狅XOh$ k/`JA签]PF ] fDŽ8 H:0&Gפ_4ފ;)[N"6hi G^SXXa !>tz §!G6c_LQ;q0%M뉫vvuyU83c<Ś'(w+Z`TR󑜕c ΕMz3 __74Tv*Rf$>r2ޛ> zE7cM)DE!Eͣ:l#1aSJ;"0Ŀ B$p1#2!1c/>ast,dXΨq waּ>ٯhCxp7o>Ib獷G!1iP?B^; X"@cnưdj7dѢ~kzy'Gz`etc/Ïy/m7i0OFnvaoܥhO( IpdM8EDb---=[؎9uGԦ~= lQp܏Ewz`Ed z4uꧠte{4I`4e|56vS33|j|nnw;G;H^'mǖ |~^WWYd <*as4H\]} W*;qI0@(LvVꋋ[) Ĭѷۇ;{/Go[8#v^Bz5 {#D9#[D&0iwphbd;p^/; fYrw{nE{ lz5Lja[0]$#|〶\,Hx`Pn Lq4E2!o7jǃOs Y [?a$ i3gG_/[Ys,TH;`zx=xh1>;5O;p ;V{67yfҚpY- IQvp `>9>:RՆ:8<|qmc\tfQ 3&0pD=p!l[ xxsr>: 3c( !Fݨܳݴ'N[U)tfPz:`je l6kUhqjchִܬ vc#ocm?~?/{Wxi-6./Z]MP:ߧпo/9y&t<M NRr(>?([M0WcQ}IEiYű~Z&^{ͩ?xͩ?v͚ڜlNY&/<0Ϭ9 >T%@:rN/Rx|Q@U#ǰXFm5OTRu㼂?ۻ?obT6sqhԌ`Xc^ٜh U'a>p tq,QmkDqQu #&ZwߏYHN{t< .dy^niԀhBQ3ԏTU>Ϫ(|wUA{C[QS7X4~mŀ \}ԆN Oͬ4X y]K#ER7*S\V^_@T*8*loW^2N STQ _>omȿS;/7hHxsV :ntb Fsɪ􆑅(cfhi`>'X{.Z^I<@6坳HkPuuU*U=]8ˎK:Zתj֗UItǍŕ"%YZ}/?݆r2_ZY*̉5ez DǸE<)y/%0mRh识imW`7lѵ8}čF&/V OWPߝ:_tc_woW;¢S;;g u3 1՛|% cvzZsV? ȉo :{Ujul6?&= ئtqJ2_q_ z2Jd.NJ!Į;?ww߯vnȗ-ܵEwkzȨAs@8;nk%xVTز\) AԳg;"LY`ΰrg=.6?czQ}P{sm&zP#pt҈Ph.Vq4 HeC*b"QNgK)~zak~-{=y/i.!蓢} U$&VmM] ǵ%\$Z7(ȂX<ѦјF~ΛHU1 dNH,`1,^<CFt[G({$a2kz))vr0;G AYBS:Q1Gb۠2u˅ȜZB|Sx4:P,k>(9uB%~o_@Xn[C65eW6ƴ)3ضD)(DZv!ekE LUϚ3e)Z3sh~JчGLJ;[@)uf[/|QZL*\|v{kgx{{>z>%~jgx; ݀#1!#o;>X+B`n핟Z60 Fw֪B|GSrA=94%ݧEl[^*v7 ŧ56^Ci^h3$> صbc Zɧ|xS ҅KnOX.u(GH]Jל*n*7%/fnk3 ¢Ӵ^{#ش[ЫcUx~-fz#ҁN~gv*>|_8a~?iJDvnU~-/0lӱ'yÿل¶JOp Koh<%P $o&³ |Ktp?]nS߼7әИkt܌t"! 4HAj@;ѨF|+aW ͔k6z)Q^zd^ԼwgS^z0)z]>gvJV>1 :g-. 0 krazkj`AIg}ۖu&@"qL|xFhH$70(17>? .tͭ_kwz+Gd0TVWUɻX ַ`eJYL,d`G+1?bTL*3hԶ7ߑ hv/"{o)P0U1z/V{t 1nRYnz[Α?V>o ߹bc3 Z2YU|~Tl:;mu:x` ˣ8* \ ͘l!ԒU7k[7:zx{:uN ԍjG#W!n-6$̈́qoYgVA 8"ӯ lS}ᨀxcPxБJ ,D[ Zpd; ҖwyNz&zU$pLNE,ŁZrȖ|S  ZTϷ_Lg;qh*d  k΂ J^?`h$$ s] 5:1|+%-'D͸q1Z$؞-2qz"և-,bGOߎ-AW*Al\ԛ8 *I (y ǁT(!|u)}bYͰQ=KfNJ@~s)8I(H2RL:36Ko(Bj E{OqZVQ>fp"QwUD`\P8F'`옍t:[§Iq%"l%0Vq@HHxDP)8P 360e`1hv1<섖=NݡCfupe\21ݟW!`@$CB¬;q̂R/.A,l{XQ0p]1i&ݔtI*F}1,AW΍c('@NJ1TW "kUpFD+: N3mhBRixFCl4_.pоN+!A1GZі\(VMRD놃rWjCtDYNdYa9phgGh|#c8LePHCD8R-@y'z~wnF)~"Rn^},Wϩ}y#}&Y='Ey3RDŽi ]yv0T%Iv!N\Կ5_--7#EC#@K奊%U#G%l|+)g8SBE4 &vs ߫Xbײ. E '96 )B0/n@5 AQb;IuP 8?PH r@@iF7 2 wv$ t$P$,mDϱ4Ist@,xо qKc Q)V(u➏sBlf/`,"JTVtͨ5 %형_\l# k]ks^ ]9g xBn{Pp8:BEU,Ml=&5aT,PC0Te!8f&v/$y9C {$IpjlC{RFŔMI4V(bZW݊7%98Qa*.6[v%Kۿ`uR0s J8j9@sl=}ZY *-8(?."j^\q$ԲGbyYmOVns[vR8m9ƉXCJARŽ1dLBp\&\炫#Ps2uXm7t)dzMwN.}^ϩw?j}QAVI|:;{_$<|US2OʵW#`o%m3Jƨ#\tծ7E}~XcX<nG&R~ܶf s 6!TdS7[/>^5<RX'!`,P5k)HNCݣNacVkZx5_`'d^$zvTE屚C]D7j" D;&V=]嚆5Ξ뮶^oNqe72(-G(ӆ;hf8O|=W^[ImF@M* RX3.)NPth5@=V/|lZu׈}]/!tWrye4vUMk*-M4{5s{ݲ .a]DoQH"ХIã C>k1.[v-76g_N@~JIr=2' #E \iIF>|g0.M`f9>2yŴ]_nV2E'C1?E}uz|gLg[]^ *RUhY?kR[)pj+=/h y36qcWГGx&9:x߿_ zIÇJ}FQ~G|5wQy݆HzpqK~laNhK-e[o7hЁ:;{^louhRo3l0pYKhYৼ)ZKMѬYKMͬ)YKMɬX'?/iq??Xp\䠸llhrr\G~Z3 ]C8_Txqr+̀r6?_m/>_ЗY_ \?{)ÿjkmެ/g¥-?L=e+ yh@43XU$Bʸߔ$6equi[LAwO Wm]ZS.n_[ֿ^ť_ a&JakqVh2)2ZB[BϞCuk= W ~jqfQQؚxT(PfAS0ĕ8./mv0A Γ*yfUGT8J́,#vB 5}& 5J1Vv% i/y`ED (LշEȹr~& kdzJXBv΀uR'cOF9[} Vcp< PS4D+ׂ=?>\?p{V<);xMik}z9YD*/q?L(,& [64>cku+*AUi6g~lSDMTZG`R,$"x t{8NI#l$V8#Sdya"{inꮩbzi6Oɂ_Q&hXL:5HΣ.gPReT;| vA/K8d01Y1t%zxxXL|f)9+{r`1~{`loSw`Viݥ`؈̸;gre^RD2`gj:dYug}I;/|XXzLeߛ[L9NCWq\^|}2^aL6G#8h&(๎LgJ1vcv0EP$ dL킄3fjok3!xH83' Ar f˜fL`{!f<0h8 I9cBκyc-hLޢ<1T ~c2>G 4Qם*le]g]s66^WIZ*FNAx[^,.Ο/9ҞR5H+HH5e(D-Q=`Y 66J9`.Q)B1]W[Sq'jfh6ݿ_԰=}lAkpK+jwR`ӺgE4D; cOUL`h2&G? ߏޫߠïOmFN6Qo1P@ Aǒ dէ=J k-)z4"=`}fl0sw%I_RA۪Dw=d_[rQC Ÿ)sExs:6r4hǽx0QLAKPCH9w&^ &xt49pcn908MJ qY,;T1&dʁEFzh{h %q-JI+#66t ERUEOHha8(Q 1ND AH7 =gmĆ& .F[ǵE{dDZ}v|68QdoSZ/0ɘ杆Dq!s0mu4( p2D J0 vgD-_z_L2 ǣuk F[vUx!JA0JRy3&R_-5lGOsUE㸾+1-r^mk}z9zK;*T q<6H6BƤE*7srP a^Agc,{)iLeZ0F< A xs)t$ֽKMEӂ}W~V~Ef ᑨ_׬83n|aէ s$J28(:RgYNLHGG ޯG>9oCnl/ dxn4lʼn /TO8)N*>,ߓJqԀgS]6FDm8 HfN΂~0OFZ<'KO`FEm_9ӚiIn kM DnK ]- ZdTTثώ/5 - 3bܜ 󉳶( ӐɊv5&(cF6x#yDcV֖ )dLT6OL :um=7%0*uuP8˧a/ 1z}SK&J^#M}^9uhvdO]8gsYjG#R,XKu-9޿i>~ȣ'H?`|8J>CܷO>؟Va;x~Ce yV8 F}iC_OG~//G ~G%<,G tas tGˋ ?.3~>0fbX/oW9 c }<z$ _^+@Ej?KR)| O|9+;ˑ_W%oW&w)Yyn( =r 䴩" ~_/?Uy5h..N?N0} ɲF ᶈG0vz8 ??s |A/>l oFAx#->G l\r~OzSZ~, s~GCoۓkWOS5FE- 9c,>> |>y\6Uh RxIiCLlpߟ\db_ 䐂Mmd,1Vfh.e6@4HA~. -/i?b,$uH!&Sԯ _y,rB|b1pCNXE (/UtDUXE3!/JJ{ʞԁchWJky鴖!5I6YS cdJIIQL=fj?Ut_~ky2jkkdx#wTX}x08k 7-z^啇9G.s{@9ڦ¨_|? mg傩s9_O_Vn//R?<@H\h(/U𗞩H./"@eq8 ^5$bgO b~~G^Ed6 =F<_bșĞPq"%BK%Ղ":ďcamL86)7,:8kϫ\q jVu9r^"&)!,Or9f{2ŖŖ=ZLc-F\)#,P(Ud-LBeC'UY"(rBE5q@YTp0̑|[W2FTX#O`d17d_ c&¼9LFɊCsz%+X+a#U5?˒kfL!VjOV`py.ڗwv/Y]1zHyiZL|]1,qvwݨ1q-0T9Z(3 :f䫰z&{ -f';fl:TW`#~dby/>WL${]=2aUAϚ (.wz7ɥ?k`hBey'VV 1\ v@71'^ XlMg&H$zk)A;IRs3!OsPڣF#;W仢ZS)7IJK9nWkj9H opj5&@M?gM#_MSKttQx}&:icn×JaZ>GRP HANKCk!m$/ZY-”/s|H8ŦT_q>z*XֹxJwiJVpӋ4${՗/Mo0=+O/VRܻc`z08՟soWZ)Eu j /=֜XO ϟ.ç_[42fIjs-;op)'9]['*fj@+}6<%œڙH,2GHtaG@d:_ח~`ebq3+{xw|p]h*{h5C aL9TR2!6 ?R>0z#ciYWZ|n(z?Ɍ^>4LCL'fC423tNݔC^`V ΄4zQ,d^ԉgWsRV#c-BZ~-|w 2&2.bS+\*|\LfrΔj qaʜb5FN 9a<&'ȶivih*Cq#ɵT6GoOƣO^~=W#Irx]vc`]g-9^.^yKuK4Lb^ r8&Jy޴$O0n}yOs5m=qexe)6Ιc˛*ʱb)ͮOo~Y`7I [N/c@f M<12 SY"#w|J*5G]F>9Mn&7&+-GO}5r\oye'O=uw엾4GpˋZwhLt>{kSk9-/ϴW+Wծ:9|, xr0 FYbzM\t c .6hҾ=kǘ@ oGAcg bbv n@ >J%a"Df#xл@T1|J⑎1͉86wYTMWslh˾fbld ^I6,DG|Lw=X&4i'A]SdJB|tzAf9(e=spΞKHy")^LsG l1+m5kCjMpsQhq_J׀x0v M! к ҂@F>} F1*{憿x:̟℧#hEԴǍ `։@>s>iHB1 eӹ/HSOЊ? cMG?̍ 9T/pb)N(1u>p.2J&A;qፆ=PT>OGp9TF3;K+wk/;ekFRd]֤m9!e*'Qؗy280ϭ j^F&>5 ,uMAk5e'gnDɒ/].yiG wWFmx zl#->aΞ5ܴH ϥB5nՑ\M؈Yxϊ픋S伹>KZ- rkAn\YNjkFuZWB݁wUһ."$x0V`P =DNB' #})w2qA4N /Eb )g n}cE8ֽxPnm8Ixtcꢗ"R9fLp"1s DK(`&CЍC;m1dr3plP֠$:=:хoouELxLuHjsIx`0t !$#4Z%]2M~d l "U&p@¿?w륭G-Rz#Ik s-ʥyڬ?F=V&} w^}Vz[ջx U_3zR*z룊U9nM|鿽kgp',^mnܿ56lIJV<8H_c ?;x C78<^ aQӚiN7wvt«w[/wH;t?NdkhZH[5! Vzz|A qiB0 {;/ `ЋNg1>h+3vݻW(+8w[ەrߎ29`5w&iݰIoN{A҂r]ulVr/ sTvw`cZȅ~WU؁%eJ$-+7 ;+,-ٷGCݒ!0~b _?K?|366aK"BU-֛dމΠERq[$5Yh w"}K~ԑ|$"@ѵ8 I|/t+)/GR& ȜNaK#FĂ{$ZAЏEk뗽;З+4>;?g^;x`w_8WE ׳pԺ᏷_o~:bua4G_ۖ6{b s m2EdiЉ D]84(yopkpx[[3@OmoTDI~^iեuqE<՜fҶ -w#I=v ۰ahbR F6d^u~ŧ|{>Ay(N8~hD* {{/fk`xÒ;&L`tE=~I m|ݠIVgUx-qMe2xSWd/ A.I:lON O O(WURSyVLA2kh }l0{AԸMHo‰L3p=N' ֑2X 锉:8+sr/fYbUa>(?NdKot&tQ*HB­KNl_qYH]+]PDzRP|+D™*(IG\ڦly AN(=-cg]p J2ڙp1QcA}J7,D]ĩP침C.F>%E0ݴx+|38\zO!g7P 9~@ ]F[z=v:%X8ӃԙC,`um`.6|;'\7 V!7<@ ]GIJ>ij畇^fɇEp*,j'_Z#%ߊN}:M}-w zhe]{o;?+yt%[SٓΩ{fCM&Mfj녭~ܙ|Umqv؀6` 肪xveW(f&L3=zip<$!:~P)^”#L&JtHӣcx֮c6 Gx%,\Ee.-'(Wu0L1W8Lx 4} Qs*n3(薋tn &A* 2ca괅x^]V߫M`na}iqq0QwF`4eQ[+U-M-Buʹdr9K/ @6+L'śH D[3 ;abOtվl![¯}yKM 7,;pWrЗ; jVMd~& IeVVF:}4s 8{-H)m_4sb7=U4<@k|@,"%~Bw=:-^'+dG5txlU'_ Qadxȃd4Ect i_dx"=%8GZNCRՑO@g S8+;cxN,ɜǽ;ܠ);l;+0!͘N钃v)rKg9t=UL'.ȚPhx+!Dw7|qc J4mxmun4EYo&пUBͳ  _w)xyL dUnexnImBd{AY]mu r:E)Sj2(RUv9>If*^+|pexsM{;n Âgاrݮ\ng0F s O 5w'lG6E?9r^Z@qwޝtozw翷_cc *JZ&l-25ĚG^ݒ;מX#37DGqܮۮ>,U0kZ3{ ݗER/7ӱ:j@UUPPukv߷[o7vww^W W6ԛ5zGs+n9LpkqS$2P)h\㊽J% Yot?^_nf ϋSr&hjWSd.ъMz`vL;vCY݃:q1K6uAhӠŊ!Hi7Jk8&@P;6W5) l1~c ];m/4̃;Ē(ؿ gpJܲtw&ny.{npkӌܶseQ;p?qA Us HIx6XdUYi~Ct:GS`l; );L6{t1Gn^Q H0{D>6>-\t6P t g2N2sqagpά ѕhFz[^ N+=դ*YI,噳w~55C4]_j>k8)5Q'x.`hnx)E4~ ,F?@;R6tﹹx;F@EJA/-W&AS\&}N9 #ɝlǑLt?7[ABcva#gN)Ih{/.id\&T9Vy\.|F.&Sr~Rj3SG9&#KiȌ;z%RXj+p;njRue2Wnm.f~2ӥ۞:=Z,VQb&?UD,߹L3:}ܱFp0戤|E4ZXWTQ nE>z W$O=WuHh)Qm^m߯{klQNjg8DT\"ξM|vgjG%pԖKwf\/̰I;g뵝vc 2v$r5xQ"}ƶNnQ8aG stp@7מ|@.sQCwh0Ef4n+ xF}8ԡOSΑ69acT@"˫]pUp] 0Tn8AS0U @ gE  9H;:T+K{@،ɑWLݜSEF+6v.bZKL"uҏ-D6Z<֓s h'(X!^gt]omj]󕻝aP Qt*yOxT2er:[I9F@b{lj77xj1|,̦Ԉބu򡭧MɩDbsL(< eHoKe"k.U/ă -=+:tEto &p[xJJMdi$ غ9dD-gUmB8( *9Pp7b6o:ךtB-^\(w kFU 1 QԸ&6«Ǐ[?nlуݍ׭wGoʻ Uۚ͡kA7ndi%=;?=]//ؒM;v^рA #:WHꯅ^W:w)xbWW8Ll nL%J1 T/hS_H ]H8t->SIĿqA ,Ow}.%=9z>$.-Wp^8RsJO* `ßBs]0"C͜zcz"k"O6X݋O+=$ iZwJ4ġ<6LfjC. evEH^DZt ~X{]mda9rh$WYt85,C`M 5(|][+f>c5"`YCywP /4ov^.-N:RUv7.QQLo`G: g!虂CĖFfիYo?R/[ܥ?뎝vAFŌ5v+<;kmCGp.vcj=u٧㑋_/tXZ91 9&d vB?:O%͙pϧ|nQs)_`dN}1NɘtCcҡd}zo̢L#o uA敟.&1ƦT!ưF)p6"['MZcBX8X*ƽ$՝A] G#{V߫z~;h: QNBSSŁ)<ǍST=DRK|՝yR}׊J0q~z cҐgSReV3+M]>ɨ_i9FEݼ_.D覒0sH o oh QF (14뜲1: ܽQ3s T<KO 9&p9v *VvU֍a( 1]W]sg2gztw9:`)HE4fU}Ƶh`|N0u֪fhbV^F7H݊ӦX !+ L^{RN|'ԡΞ8 )Uդe"ȔB]2krg4~=q/կvJ^UrG$]~WWꌰ=Oo6MerY1 \4c_W4V m|= O+Y,PQk f"eBVA piP+\a:-՛ecəGVsyQTqSh-v@dl<3R\J]5{龳QL비țe:A+\f4q7wfwGpocWO_=?֨=m!=Ya%d O"=NQs@D򓖚z6ViZ,b'K639 8ݮ.1|pS8RejD ujB>7)cbCm ZB0{Q;nJ3IPREJR:5' e|MA S "TϪ:Qa9 UM |)5vRjt/#ÐZ̅mB{gWG@ {+4Rʃf(fB붽0* [/7H)[?m w_ln즫{S4v_m v>>Yt)٫0!\̙P'FW3I_Zz 暞O%_SKFpi'yFg^yG٪ L-~60IGl6\z\y//Z$`E`r7jFFr[pBq>-Hg[`H# #\ި{ Yj)KΩzT3ތ*oVz5 Cu\W+ avmleOKg(-8&R(Ӏ!߁Z)5aሜ4;n oabS Џ(ިh ݘSLỷslMߩɺwSA^e\H̅zBmGoZ><{"*zaI+j /tkZZLG{e޻ͷ[kd/\Q>OGD]ţJOK2|P,(~}NyEƤC sV 5H)S35o ί|z _nUX $>lD[6v77נ# bp`=؄]ܯW$,u\*][Y|&egE}NF_V}8O>S:Sބ?/nfk#z*sYݭc<vo<J!5[Ϸ^n?oztP yo9{|p[ۇ 3(@/;ϷspNp u)Dt& ܫFSϻL)ܜKzz`L,:3#u.C]%s0qBx{^?[lɒsR*NZ/łWE=b8<2/yF7k!Dij9(YO FAy(pivL@ǥW_R\(wx/^L/OҘ/Q45Uc\DIє2{|bR+:*en?7y;X,%^V0 a4r]C<r׉`ܺ dYiGPb͐=lY a蜡`M?a4_Qf>>(n=j>~ο|o_JGfx^/ݻ G}brDw܄!#:ƫCyr|#!>)fPL ŏH\ {>/(l#D܆Xu#_Gk"ڬ Bn7&I|Ia-I{Ex~ZixXk @) Fy/R2w)᱾6%vf5tf<@e`nQ6Ձ}KJNc8#l~!Q Ǵv(oBmMJ!ޔ<dυ::j}c20PTDc:'΢?`:SG|R4Q%fA" \–0Hm+ry8х)ІϷs`(?D]1*r&;Gε͡WZv(k{+0}u7; hʅ6a%`<\й0!qO}ҦЌIt,6@Œƭ DRI'ܢ|Snl-^PTLS:bŽ$-EY -F( <7d.FrndY̪mgLse֒B&G &x;x8U#ycV /}@FfX"=!Ht=XDh"V "`*rg.@ ,$]8;:zT}`ȪdN)r#Ž"Qu`hf ;PۡOLah:n+VtgAeu@Mx8`!HmE8m^ S5tCx:s IiFrzb>jo5H<0(zHﺮخWDd Exg5ۨrBU%~$ړaP*-w ˋMX$| HҫkU."*'*`G6jR+ʨƗ߁[8!M޽jgG;/YfqT"~yP1juE`|K!1YP= ŗ,SˏNzܦ("M'j @W,di!r"ORl3JJkVƆnc1\F,hCuZo f=<"^ FjeŸ|JlsE~{@DۣO'+ؾo,IAhuI]PF$.~x 4䷣\!&G77(YeEp'J?nJŭ#+{ԁHDh7C@I\ݝGTc6 Yc4Юl "n|o }XW Y/NGP}Cw1((3i ^@I`7`, 8MYcb Db5NDWBC!2-e /<ǎ9&DG]ʌ80~#c3pAcy~7_$lZ|s([>Fz/IUj%Ҭ#$K'HW5:E]l~y,MfjBɬhm_q'Z}BT.PX:D Ah =?b41м| T@ki#Lohv(LڅR[rQ/Q c#H* ,0t!QzƱiHBɅ?Ox;<2 }s@txrACIr:;Q$=/$"V)NPr|ùD)PhG ohz&gvZ77.gfR!+-uSi6hk_.Q~p8 BHg'nik`Nғf8p̐zn5(,7w!J=D5QnLبw}6 E݋Љ yz> IJbD3l Rs&4.g. HPw1pv څgmw@B~-8Q,5 b.11Oe91.`ko~F'0? 'Z5E\|Pdj1g%"bus g~,Oj/]F @K2'Pu㔄4xˣ-ҟ'Clޜ#SMFq+u<+ ZNUJ)UI8ԣ~RdW"(9~O2C z2@' 3HLQ&Gha* iظW9~OAx]!3>!Y9~OA qGʫ:y3Us8,h](?' QTx-Э7x8j tXM*˫7H99T˪&,_Ѓs?CLò`<ǏbX&YKׄQ>]Y UPAkC#[ r~G&-.1g K{r=~OQBʉ$9l<Ǐj Ɖl\&?'6U}fl9~υ-C̟|Ov#e6n-xVM2[dLfQ?*}Q{9фdB~5gcDT5b {ĔdBfZoKdԃM L9–NFZ:_̖x_SsYNϛc~RQey\l@5_Q?Y>rgi;FQ;0q +J(fzU? ŭMyUx7$|1Gˀ&3XfrJ2A73N_7x' ^vcyerrSi$c[ƩlwzK3>ƏI=a7?M !ԃ{4-ߢ/sԃXB\,͞J#k$&dK{_i6YS)Ʉx+#5qIT!1nfAyThYVbbz:k*%AYԷ[U2%>%[h}eR1d˞5bgäD5{]$ ambS'“-8ؘBd=#s2+&% q b?GĐ/V=0%zFɛc sԃ`h],eR֛b<řІc/2TlJR\LHۯ)?'M z9p9Y鬩dB$;f6AOݟԼ/r̼_֣S3jj)DQ?hА2H]|1G[:#.0ƨĘW|Goq}NC9ѢdB~5W Q?1kNQ~R[jt<$[~1GTLR GĠq0p2c9~O-V Z ([ &ObN~sq1kb.u1'S>{9-;Sx%-_b.Sa\W'^]bk1\F'^7Ezk(k\Ĕq\?|G M4>AXܸwh /sCrdR)k8b/sf܄hFm?T%,aF_ /cnCnL*׿DS0>wZCYJfPr*>4T}ʣB';/ooRҞ ZmY5:M0R`E=zEpzHDQeR4DM +C/}!OcLֱեժq4A\jҘ5Hx]j.xF.@ȥQX-yM01^[9K.2-FkA)&0P5ⳟ6wX% ѸeL6Z>Iժlˆj{(v1V:^J>j峛ce_ n0.! No0D aKO Ë9 Ft%"{ƓǁDlyqnj9V.%GC$[0QHn2XuT ΣO#L(p:t.СTͺ̺l,t՚=&asd@,WUIÌj.'`)}($c'efw4lBUo 0LHC#e}_+^Y');_# c>'YAFF}h6GRG=AH؁R^$' qy;iFCweԉ.K8ƕk2|aZ"K9)97PȅQ,#sĖf0(6~ N5x+HhsY[$K*KZ0tjXОG>v g_€ R|V'=nǶU!6Lgob'quҡ Lo\% Q=U?!Cb?(3-5БE__w>9 8;ȌP1W%8jO3YfB<&m IV E[U 6+ȘɃ$t^-JK"ݑ WrA M˵'vX] GZ['98&4` P "n#84dOK\6e?@/1Pѫ_l\8PVfV~ɭ*٬HWPT$6}P(('R!I"B/I"`'5qW!Aua^5˛Ꮒf+98\6~ ZĆC*[h;ga"h1AJ⫸b} i6n0GYsoE(ASu$)8ų-SֆWM8f:sDt#ہȩUh*0ha驫^8Ѡ(U eJNk^eMZV7X\ zT%띘2PaRZBF6uFsutH!*]U (-e 75#oґPguB+_ կPE+ϣp4@vv;цGhF3p7Jퟂ6 zZ#X- AJJ}!";Ψ—bcz4~t޻P3ʒI/tqa#d<UgVY<|c޲0DP/i焟''Kl2j7&NNJr*pR4$U7H`|pePO 9vYuϪYSؕa[EW2tmʇYJ9zKx>4tR(e_M{dx$FĒ0SfaҘ,41'K :n7]<$q1ָ {@7 kGI8ĖFÁ T.ąAc&;Pt(j!Kaeݍ[f2<ǪڸEXfVHi(Y읟1f3_IeuBd<0} <^]4;5 B Rx@DLPH#]#kI,mcLoG5# ]x[TR&Q.%,rY;c`cpTdL h*d M|42 +iiyS+i Cwh;#mH[x /=6(EROmY^~(8+olYm@FQ`D,)=uR}q(F-٠mt OcHǨR=.Ceex3llMaݏ Щwg*ɔ {-ZZ B/05eU⟼O#Ç3'`x=gKXDV]zlfqfرCu4gpF1 OjxYaD.kfVW_ >S%O,fT laVЈ0H01kCoT> ay)U4ȶS#,9N[ߣ{ ьzP<{XAC)|4"iy\Nʈ@*gC~c2>ɕB$1YMfCcI!E5:tpg;*w aC1l\?@=d> q#WC{~đwC-Eޘ3<VoӭJepJT&ʲU^c4x@nEXҘ[Ѩ< ?ennCl܊Oj_'y[d"oִe_c< š@yHdGa*M->lgg'/ER(Mٗ2@ŽàI -ҕ9?㨷 ZYɡ1EJɂxX00" hNtWguhe1ڒWߚ<ΥZa(rř\̗0aiJiutSs2$ 5Umh@5KyGډ!eD$Z VFrmxz^W7Ph.,^B3E`@DlQ8?xsCFa,TM p%}LlHW Կ#Ok?~_|Q|R /$;g=Hzqn݃>W9x8yghw먅 &sЌZ&n$?tL}䘓q2 'pRi[G &Y!G0G9D[8E[':7Co{[w*9 m64| T6. z[sXdE;~}# Q`ae5{c9ܶ3tÓ&|$˫,O)ẇU(QbX̊@kB cXfWqy2}8t0Ԭ&"b#3mom0F:u͓}2If2(׶*cDcsЫOgtb#"XK٤(GUOuJ .maX B̨TPwPǘÀ1}!`a7 m#nZmx>Jme% Rj1e82WsgIV1٢¸jx%@Fpt6)?|[f2Stk%+ * S ,GW.HUrտgzeQλ[L7V`>eMHnM:aDOFC g=]p& >*"uPlVЮcN[-g3k| pZH,:PC7UG@|v8ց#븞=q9OD2twwS;3p6,VҪ;~̰\,ȰUcֿ*Jn(x*]~'~V~5C 9zvT~4Yc>;HYu`FS ŕ^6e1Ɲ+b:8[V(/Qbx ȈQq#1!yfGQ[Pbk*^֕.w߱7!| Pg \[('X@h`@',8+GŴdc*Kȳ3s.xju QVVV;2v*tF_u벰w-Tƾ7WʈUF7pr㶫AU"~LfId$"nWpOML{TG L gWFn <`3pm?\Oҽv9dIQkmZ m.:1t!3ri oZLa^>3G.R_!_ZR2ytܝAըmb<2|J88W`UA ;G ^7Qq/RnAa] …Hf]hGARZsaxj|nf6K6PqgI]5)oT>ѯQՂ5Uh]Ȝwm/wp iKvwQÝ;{G3 l(Z6xM^Gdxȓ+&f9PR63B1$  ?ed*bz¶#YV+u=pL̲J2-ndG1j% ҴG{njB*WS$MΐчUCbJ6z6,P,9rIk}EpdTJqR$z?/2`Ej{y&mK:GX9`ވD~P=.xr{1 &ldSSyha70+vAuW Mf> 81!HD poŒp8[F<ܢ "$/7t8e+FBB̳Dlx(rNaȉ(I$@ ޛF $hӲ#++aQK/8lD-'#P]Z%"Q GbQpt9&$Lt$PpV|L!m0V H-h M9#R)ȴ>UIGnܚVf, 쬜X/|`!ǨQ8")t}x[r{ Ft)D$E)IWq E\ޤ7|#AAgȟXK&9@t/x\Fa(8s!L]ܞzY:&'e1VJ.D dz?frMx=N \ئ0-W%'y%F^/LjEo+ Id]y{W+FOQpI0αoDzr;3K:E۪=)UV׎'UĀ! H=t.|@Gl"QƤ i%1ш:j<%eΚr$CpZ}*4Jev#$ILVu 4lvUb@Oc{Qz{umw:&QfF%1mٻ 13|5[|n5N¶vu;]HIUb')"u9ex qmЕ確jy?I &}{A4;K!qƎ<0eL'AyQubS4+T nFd(id tIhxīf_D ë9֪+!rAD*D|/.K;VJHb@Q ob ͍>O3j4$Qnhn79!h톾H{vC_m~6Kyu)m~6c9f 2߿M_ K?1Ik_ 4XU] s*CURZE~%5Ne&d>0?r{K)z=N/; #jUf?NtAοU.(s/pH<&_k.,Lk/Y0P+:17v0|X +Ѱ$nt }C z^$b &&9p!J:.-MoZ]0vC#orLV薑g]n(vk6lt6țlz97A&rj&%tݜTSxF?435!b,v'վcQ7yctn{C2mtȷݖ.In Է81, 8A:Y2 έLYT]n`d7i :owu[n M׽6$d4‡10ƔOF/Гn@V%smyby;[7pib36cP7[7+U݂4|&3.eJIIB|l%qy;l6>8>g̚K=:m6f/}#ɵc8LD-12P@'(aZ[$Tb-D<5Egd48':L$- `&~ ȟeLفs+㬊ﺚ>F_FsM)Q*'pMýWh통庺TWyIac$G9KhX̽ߝi{~s9v+iɒ }FK{f}tS ouqH7MsQ74Cgui6obGl?^?A'dFOczN[)`}SiT,uf:M3NӜNidg)4)L .7-bC >'bkhG4'Ǘ4 Nc4D\z:Y@Z2~ k?i^H Ɉ0z13.K^/"HȈQcy$Cul`- Up&dgw[RyĒA< PbP]4bvJH5yp{{G+Zr^R/ZKBi<KBqGeeP”V9[q..Kbp{eRShPCB6 00Dٍ :Υ#qgP&#hrL )\?{V5iG.!]t(]"Az#E#߉MN~ԻGAXN(Eb+g lF^Ҩw:srF9{@CiAmB\5Э@UxJGnй:SƖN0I0RϟjgnAL;{:VÇ T*zx؜^#|7UG*, +[Rѐ7rtK[86W/Hg\uyMFWl0ⴟCcT-DwѶ%epz^ߋ^G' !އZGǏ^Ff|#Ei( "^.y?]L;3R.ܗ慱J `t~aRC%M cF:/BMnȹ<6$ɤ`u呵ϒ,:IW%:Hk'L"?s,Tg&32~єwJ2uRm0hA")>gh%Erx#eON|Dq4^n(B0Bp6mk_%(3$ FpxA_.NunַnQ8Aiv2!Б:\-gS9x}N<)tLRe%bEon7[;Ow6>M"| n6S}dl68+zjV9HtmL M%::eXO sr~* 9A9'([wNP~VƋS}ؒYo@%KW4O _~ 5TS05UmQ\rޝ%]B=r1ٌFQ-RrC?ca]lr_u~ :le0u2LI}'{3+M3CnNɛ[uJ:%)Iz>2C ܀0^+#qv-B`g(Q&}_`5P'"9Vx}+б&^'tmls)9jrmU(ܞ"}SΪ"8A3ϯ/vuL}4 IAJEA1=XLGk9S/d-mt%!a&/`N()<)r 8GG"up]KE(~h|?ފ+ُ_FџDq(KU@%-oMw’֥1zE셗decz1K7`-=`'rC4\F{%jn[*QL(%95omqSPs:ft7dR M3޹S 6[9C∳饢$/"_w"VVk==Hǃ!ڣn`2NCK^Ҹ[7=`4כŚr3ClѡG3`2/߻ptQTzUQp~ˢ:IyJ7sf( Ώohe{2$bcSY~kHG990PŅא[cyat^jSyhAST$Ckx#[SFQeVD~\(vV,ӷqWWi7dY̑E&Wn*.TTTͫi9wi2n!E-XIM$>Oə?x<ΰ}!u I!,,f;orc͂Zv\ uɄ/o.aRSI>h!y<},Os?KҼ4kp\Xnv|zP962>bO1@RwSnf!B3 nFnfeН,c W<ƜCBwtғ1Dʁغ޺$Q,@_Ir]WW2+*64*MʀCj,RnB.ΉǐהvZ`46ei2J t9Rl6^(߾û͙I^s|Ne%-:*IPK0ᡵVoc]b̷e74/v[Yi-ٜ3Xq,_9Bbz^]뭁3.+WMVULUg#1eSԾniZ̪6m HO36?͡6 [(@\ :A{A9 l͜G3=V9'9a`šEwr 0,"3t}gg>}[\JgRde$Ws~>dzc\Mo\5|"E0ogxfg~<3CS{Idr) LwEHNoB'|NIߌQ450fO<0c;cԊX1̼!=XOdo $5Aj9C |G>m,ѵÈ`0ȓ٢P!O>>hHr\ٸム[׻E%89l5\;b`A_1I %OHr2'Nq!i0sαE6H_$ݒ՜ɜHC9(@.QHVc4 6H> \ HZte+-?T -A)nVj".yiěrneEG߀&K}:6얽]w?~r~$~05iUuŕo1B-NkO>ƈ +#vGє0"\ * "snw#|zJt3ab bG6Gqy2Ul3L#`˱=:(-u37$|u!b4cC'08X:`)儓e. N\8vŢmMYƧ|/4 Zr3 & +D]08a[,Zj!?GY}rLh=QfFf{eӮ20317I/ij>2譂>SDN6vM"%Vm4 ×u'XtEc~C\%t깨Cǟ9Sɮ#bo>x8{k^PgQt@ϧ_w:PTB Obq42̑rJ%6sHqؾ(t_ΣZ͋pU'nQtz0Ç)a+n"w{*2Ia'$~:kiA08hfX2Q}B ]r2UM5&[ /u;=OvTw@/| ݞzhn<݁z/}s svq40ǔ~gusmu}k}2o4]Fd&x/|Q;:#Gɒ Ifjzx*H<؇z%)K-Ȫd貄0F.d?^V8"/4E! x"[ڤBSkBf؝}7ο+c `1=2k߇νJV]fE*o1Wv2VןCj#?NsB`͜Mp9 M՟ܶWwsg3@DÉgȻnJ1{|(qDH鹵O*+4}on`[nC 4GpeqmBJwSMp aZG^@s_tc#߁8pTN4&5۝_?[3t;˃ g. >"c,?1 N˃=+jPjآ 6i4OX~+Hu(`Kޠ1\CpM7 F8A8~ -z@?@HJssэƣ1c(܇Xþ#2v_m *]VYsa,Ͻ's(-#2=4Vb];>YNʗ+V =(g0ho|ؑO'Θ$q4CG̭ΗIq;!݅f+F. !Xd.GP#?Ų|Y` ƛ(qԌ65eԪ\(KeIr[ qIW azy4k#]H}[Gb=ʝpldb/dY^?~YClhď;j:bKW4{/ ?T[EAGZ#7} iMm.> K/O-lIC4q♚}t8;m=Cs ;ƣ2iglƶn3^ܜT% 巙։b:r0R:hGI @(BkA_09ԡE1-74b;`KܙY1q ,$w0P3u П`cnfƼ0cΘ;z X ƍk !>M4u41b+]m .qeaVPcuYT `\|Htn|'o Նˤ7cZXN29^tr [&r ǿm=iBd=tnprVeϷ = 04^)&(Dv 8-^+MeVWjJ疮4'@.E)ˉg"6 n~&pEYo\QcXTz/IcJCW+762=00xyN*q(h N7O 'PNSj k5̐=S??KkZy% IE鉌x0 fR[hڸ^5,OSQH~Sصn^Yp5,G@Ka͌w,X ਥŗPUP=AF$0*&Kzqj髁@$;X,t2Pn?`J0lm7瞋c:>9 }y X)޲BUG^Ƚ#)O8IJ.p*,\ϋyYF 1nEEar LnM(cS cjY-*YR1c w= ]Ԛr)v sHk)Ep<h3 O("aO<-BuW+Fe`!3"D~ֻA㼷s^SeZU9/zw9$ @"P8t:t%gxNn0 !BAo%0 (jc|EyȊ%3iF2:x.զh :3};lNIT춸1tmEiK {Ԓ4e}_<;x0t&Ap]Z QF?#9:D9LP ǯdo&`v!]xn8fk噋.qz2] '֋4QEe$ŻSJsELcR+䓥 Q~x]>)ʕfXz[Q%[iSuee[]==ԩ4;3/!ZM%5aE^U*:Qs~E;LZ%zfX<領#嵀zСG fu޳Uo1Il41n&5qZ:na EuC1aT{AMt\d Vs!wM%0+g8,v7~C?BFu/p+,k{, iDrcMGzsN-urRu?m/Wr,\8f5HtAʛ SJ/X>"EISgir4Ϣ?0mЈd3{xvv4r&ӔKɨL_ ʑM,95 KJ=tC*NlU*^Y999''䜜\⨠`5" 她і%8y`fb)q.@?b -q@h6\jER׍Ăj݂ 5iO0AY)i_OQFg5뼬L=3iVlu)6H260P7Hƙm'kvj}STv6_xXI;\ WDclݡic[}), jL9",*RL`9iG^{Z^y] ۙ{=owF4{ZA}jfP;{DK^K䙻]+{]:.ۻtIq|zj_]u'FqFW -ÅeV=8f਱@=]|KUAte+W R9Hr ỴC\B"JXXMmj-۔8^5 .,0!g okvA| D>.XDfXߨ#`,w?9ނ]oGS l%e?X`;!xʩmxF-16S{CLa~q^ <:; z@"vgb" #B#QCs  zȥ[CE*<>NFKϩ~G#H륄TMhaEc龱" Q>Yk&P3K>2Wy= 1n,G;FcZ]O,qxl:8kDviTtR:_ TE"Ze% X\F"%o*lKBpwLm ih2GX6`Z_<[^N|+e(b)uSnc7ra2>s-(=5P7݀QG K%VZAgi(w(C=u 2ðG6dE7%B `Rߟ.2V:oQ 򁫉f@jc= *f}JLaJ(XuJzϨQ:Ԗ({>j_ݮCPĞڃw6z+UF_xQdazػvRŊKͿ_bf.Kay)Фb~AB$D~&PSBF-#4zl<"dT.8BOɂ9UAFͤQ⯘>A CaD9PZ)o92'SdʜL)~cb"U /NIjZӒ$X@To"IxԽeõ+)Xn (-V٭3Mq7OJueAwb [2JPSXV6?)XA[q+mu! [;e;Oifc ČyFXKB LsY'/KxVz]8rƁcvvREњЫhf ]_݅aLpt(k Wm+16u(IΪLv&5+I?&L FS$T N;9 $׵~G>9xǞ3popKWsBCxêD^yQBJ 9%=pr&VCB]g!>dƼQEcdBH ALq<~jGbxubJ9zp0@"+4YtEC&ݹ9ŵdpCN| /=C)Wazz|9í8 ̻wnȕ qzCEClT o)2hr NՍe M`?9% =wFlDMic a#_z/h;:WW7L.7q#Ŭs VDs:~F>Zf`ιîm܉K7r!k,ţXAņ/O3(#B 13Uq\JfŒṳSBK=uzI%A q~1Hn<*O1g S \#2 p/lShs3?ssGo|Kz{W[ea;l6#o} 2†f4cDZނ‹1"4/#+{6}}tY9=gθoFd>g>3[ʱb [$lIz0꘭\G! UwJiVɂ|#CZ yl'WV,B4gl%y\^ !:?DC[#ω9̉e1.k_awΣ;pCn}}&#R< # D/p:8 (s\]+(URt,1N[b+ߑa_25R_}jm"NX$Aٕ92'WG.|kJ99*9osQWTw¡,Y<ƜzS+<9z_ks?sk1[XnM)a9J:vN)8?[Ñx}NQ}(hNMyHzh4).T]P)s A!'+P*5e^̈́¦9z;Fj/p(=ʟ6U|Jq[Z"KkZs937~5f(j{{<4&[ -³9S8g ?7p ι9.qY98?ˮFϜ CP&_JؐK _w(܀ jszGJ8t !Yb+:C#`8>ƃF:cD`=}p3];7gN5hٍ]UE"S쓓p4t_Mpc Y;!F]ϋ9l:00Нk7 dreN{0hjx3\C3qXB^ /f5dCsڛ5pcCJBR ӻY 6X6l>$>G}Hg)_#R#964Z2Qb){89c9Jb9(2TNQ)9E;g9Emew#`'j/e؜ t?{ۑ4|28>/E'sI9??dԿkR9??sy9u6e?[3{@#~.r~TΏ9>ϱ }XhN]I?CDC=t,q~ &V_is4GAs4ɿ~<$/mBq% ۀ3lޥ~# F!]2Hڨґ }2͋PqLe3X4sIGܼq~Ϗoݼz}?sV0!zU@Z@K𣩑pDe)Ss|^{XdKg eu5Y+q5W')ω)o>i5@s 9a9]'e'Yn=[k 3h^˧ /t;n3v1)tf=eCw\)[PpQ4YawFpF QZH^9^NЍL▅_Np0YfٌT@8䍫=7r9QDA ?uu`{"lS/ogA/L4'z'y(?Ůsssg-GN?jp<+$rQ ϱKj(8J{4k/nrw#=+D[hboVCf=4YsV(ֻX8b Zᰍ$`+E#sH ;7a۝a/Fn&}[w]b :m⥛Y悁^^oX[OL} F() o߅ڠ3hxRXʍ G*\&qOQ0s[ k8vvk &j6&z2͂[͚qod nI7 Qx"^gw*bTEvH*NQÎ8aESd%Ǣnmh䫻 ~4} >@Bq2@- 0wMl奔`Wg3NA1"1DdhwPJdjs|Fysj:j'mq |'rHUǻSn47Vdfe{tέ=`cliwAٕ _}jKRTLoL,ϸ#9# %I.v% 3tI|9FR0ƊPTiA}I5@^HsjjP`(_C5~ wn~+lXhX(dwR&IЍՄǫ,3h92 aY3Ug[Gt)M#xmF<8QEJc6|oq̵BEIrAJH*H? :!+ֹ?jSscݿb ?nU8i7^i1B-Fi02hO0/}>'1K̓r'gIe.jBS?0ɰL}C ǿj| , ;ׁL&.!8т_"JuJ_ gj}u hʠ+j|.ﴍv^2Py@?;AI}TT~ϟz"!&^1b]PV+@(@RPmh /fοk:=?ÞdS]~euM5`j2?]t.xeH"*C3!,eH8 Ib ʶ2.tMc*K4ΒhSXԵHId6e=xq mтzx:%x&t݆e_m_Q~4FΒ!HԔd.7M휲Ssv.7$Te~2?X"OdX'(@ҮQ$&;q=$kqse}{~7$N.8| /Hi#:CV*wTtB.9$˚HWL-ޑH.Z{w|Rڣz,R - ~x,@J}ba(dX>ZǬJmm7$RL1jTNp;i]|rGa)\6_ݙA1EaJ2_%[C%%ⰆjcpWTI g.vMS.b4I-QvNH$#gXPӘ6›{:g^ϋn&b"sj(??x%F{T*sVR /3ImNX~4>D!J޸qO@JfT 0S{:M7f[GVƟ߬ȓYpαXrV\821fd{YG|HA|ւ3 ffIZ"9rRtDARt!ud4 #a'!~Elqޟr㟁k67L c4 ?|혅 `6` ٩+0m㋬ `5r ʋ.͙Z=3$U.m087Ό"n^𧙚xKxnoQMo >hC(9iziz䊦&8gہ=f܏gcݺ#bwnP]'"獫*&P%%u:im=[\bqs(ώ(o (05,Y16$F!C6uS?F#ۭ/Ub2 eLB*+tI-Ņ"*O^Z2&]A;%'ג(: n[V\ ,^mvv6g;\*] A;Svi[AlC|$?NTT4EQy^Sx*74N:,'g(Wn}x0]ܘ"kD X9a5|8h"Fr?>~Vci&aϺBNҽ|Vw#Lqx>DͬFJ%b݁!>w3wіLMP23rp'YyqZs\4Es\t\4LYl^6V+3LITsFD"ĥ>cL Q+T'X&Aa>mhP%ie b?eL^͉oxybN]CXse>jGE̎cOym/0_6 pXžjoU|<0--5-ITsaol{nv{: wcJUܨo0J7in5Ws;cpW&I Aιؙ;cs@ر3'T[*X["tA\Q"g@m*d8v\,V{(*= #+Njk}/l6 Y)s:>$բ9=2GH6ʸ`$-rΙ3?rGߏ#gIT8},kg&O_ ~Y|K|1;l]xf]+w]G+kH6\s~Z+ 8|Bnh> }1Mc }#t*¦3˭8VakkYg[@g7}4ǐ跦8?Gbʨ69l<4333!?*O}}Ҷ<1L eDK#%Ǜ]m07˹ɖu Z}N) 9+ R.  9.4L1R7f=:bR",DSɀ%X?͉L&\/n[,;1\O]=\aD :- %X>.~ߩ.#>DK74Zz誎K%r$yN K< 8u;Cicܮ7v]F㖭0GGޠw˺3<k9%7 Fau}*ˣ2No-n6:. 94 gyĢؕ@9c !F3Ϧ'tQ:}s#Z'lI5Ge6`G'ȣj~lb pQX, ۣ%Y,]C]LR8aًPUIHL p7cF<0ash#i¹ cʡ:oe z [{iɮ(8("w9usб6v$c/SQsN̲ṳ`6v%y18B[]bU]mA=tN: ?}w%j"e#u,''Nc`+` ϘJIdJ[?Ȑᨍ9^T˯CIFThci>a Elyqt'% ~0~NJHsRMR!ҍh}a}ٹLct"Ac(PHΥm5[';O[Ovv^1.62j5:bWVQ N iO#łKKmLV,YU˴ VNVh 腳 ,meh-jtd;FLƭ75ӋkGDqX,cܦXLv /^O7@ EX$&\x*taC1x@}$rӠ$s w]]M\aH|\ȰBatZjgO*'V5a C %M0B7qA`<1^c*ƻD@Q;e y.A=—jRrC5M%@nť XBnHR%t. E  q*SѲ+0pyK6zx zyGu+Ulkdr^jE\K`} P]+E \ 'J`@Thݮ`jٯ+21,,h]êZ/]UFRu FaxwȪZ%)+s%\kĐ27tD\YHYm3 No#@D ZZCS .r q $b['Xs5 Hb-?/"\ѐv;1NrXX m}%{3ʩ5Xt4A9<ף z&RđW4xO\`r@Xl0Tq钱;~咀(Ry&͟]45SNu9( ^ Ԩͅr}) jto xNVdB( IO϶~VdzFg z]yx>mXzѿPD?S7p !#b&I".874^o'H%w\V7`x,Rū5աeїT pƵE^fU$_2B/9( r.{l%GC.VFnIϴ; Y$'&H?N|n\Ի6LaDS%o&d]|)]Nm{i8B8W#?&?֥yGp&}bMSJà3j3pM'WOaܳ9tUx= {Ma:s9*:$F[T`w!/;Ϸsꊆſ7kS@j4{K:I`T70Ak45ׇ~* 6œ%T^0o1V ŋ{zj/Ol(TYϛ5< `ԬYKu!]I[(9n-GI`}쇀1 SPSr(N!&^L/Ou`ljہA  UVL;Q5߁oq ;'bÊd)AruP$I4ﺝP4Bc A'RfCwCu9B6gy%7ŇڞE(K-:g(=xa.oWYw6[@>}>?ãj`Y;޹A+k?xBkBJtE(],ojM},O2@ <bi$7 YIgch}n_`a&6Ī:* f 66hnvY4MSYA[*rJ~ZiHJ]L]kMY0ʋ{Ns1Ko<vf5tf<@eă# ݆HP%68WR~` ]dbD pQ!߄nۀZ%z>4 U@YL]2)Qtm DD A?F?lMb}m|kq=)?D 'ܙ+u !hq1jQrero8>%7P{7̞UxgaE,6!aq:CVJXPuɒ,Kjpn%rPlthɎz $K>),AJ\B1KC{TK_EVYY0&Ab]*NҬĨJe ҂f2b#972,gf_6j~3y=BQ+.؋NR4C?; mxq,!W[AϑDS,NcXJ0wV9/;s*лDLA#!Ѝ _:|&J攗@ԄW$Y{E5+eA}bB Ƣb1%u DNK]:mɠ F0?q(9pt$&) (r[QOlç!,f+qPdy̭|*cIhd\~RQH4?)ЎlNd>%&p~zpIG 9uJCqV9 A*kS㤖 ?.#tz@>,J 蔤h%Z[W2K(x2O,.nބ-`QXDWdҕd=aT0z1V Ab:}6.,kSg:2vGfWB㻑#'ۡ송T;<8!kY*ʒ? )htPlMq` NV?Z8/޺%JjNxhͿ1LU?)A +Ew$AgDwZXCC#/ Bj>fVLrJ.GG: ̶?p!$Q} '5}AKIPB@,_?CsΊ51Z5u@Nem RHlA[Z)bHOteK|EDsaZV_\x X\o6"=M#,1M{:L󈮾bU+'+Gk% \[; ̘;7oQϿ ڬ+O8'pNأ,*Iqg[a;9dR$PRC4* 2P8T9/t"#")C/2e?O bŻ'tzf"xeXoڣIC K$$OgvRvL-J$mkgL=ͮn[\oQTʦgmOr'uYGl@:7(iE&\^ \x5VՋ J 1XQ*ZaM"4!/C*D?ȟ#0dd1JژJt]k,M2+UpXHKn2){ qo"2ƊjxYf3NcNXhFXJ8\!i㊸p#W0wm2bq. Fðd~# 7ϼr=q9#1 @.xCuF " ˟^Qh I8BKMkuQЍP44~85>H |X6eY3\UC wP.U)3 l׽A|R_mfTޟ$6xЮK^L+I\pƗRAQ,(o17QKtYC W R*!P@ضSQָRe0ZRh4N+_V:V`%2VE*++ֱ&^x݈MH5Uga%jcJK %!2H# S\_"Ad9ym#cQQ:ɩFKbIEL]]$թ rXFµ ?ǏI=_memȹg;\Ƨ_1FCy)*ZVd%"1=CM#ƼdD/{p+㡛@S'n4[ =ҋ#uZZr~im^&#e̛VSjq9tJDf0׀:ލ5qIcyoӠ0dT,zU+l#^' KB""Tʩ;ݘhUAdKt{)`C]L4X 2=.ޱ!P;jOR+ V$YU M 3Y^C.=4%: 04@e#q8ֵBAI;k { \mc@ř31$"ll'ZxF.9ژf9`]nmoopEtI< CWQ 1g'8ԄKI MM,ЮkSd'@f TaxQ 9=exDjVߑ(Z=mFFtT˺l)*V}5ȅ=+BRqҨoؒ>R@#򶎒yDRMךSr 0Y(T [{çd3 dK+4FE5BE”X̃C7؉ (DadSD偖R(!K[+6 TM9Q ՘a0~6_JDtaIO2oj 9,@$MfH$T! `(nH`Ȱojk'W~s}S+ꩲP! Dd''hiX"I"hA[Tʁ:) +?s ?*!||l=&o&ɔTNi d)GLJ;{Oc#Nӹ {\gc*\ǵ!k-;|Yt3GKJtz?/= DO1̛_+X q 6q6ln. -Ace (@'/u?#'fp7tEgJL0_u4oXaRNS{vJW':T{k{0=W-:PgD   S#&C|_Z I?#r{%=Gt~Mf *Wj܋a{?:݆v;~'F1P;?t_ڃ  ]>p_F/{b ^3R>hty9s/1Q %[n>T/׋a%վ q{\oF#Y=sG^h[ݭʋh&zN'gNsI0$cրn:sƻ9*Q-OQx|7=nxKߏm|SNߔx wC? |Svl}eBqҥ[EqA!;<:"({m7T*!_JIw/0@?Fo`bW}vP}Rz;-JC6=TL ԲpѝAR?s92X * sM+G/a5R?qKN{}-XtHDѢzNUe'R!Ɛ}gS34yas(?Ư8P|ɥ4U%ە&;,,v6hhl: A*g.k˄38yBj၆ a 9GߡXf)\Gqg*d_khw_ԉ櫀$m*%)g?z*D^~TUozX~s"yAkKLU YUh\z8V+R *͓ﯮUybVYL \Y>iqڧ9qgxljR4^$>FF㨫09K,'K1*qcNi &鹈e:/R8(l63~k.|(F)hyCRěaAEvC3 {$R^}uyR)roʘU^.PS>y-+@բ %^:rU?Gȗ,ݟ)^Q7l.)A vP+gR^n"%efe"4Yk ssp*Cwa e3q$a f&O(Օq3msβM%(uvbcM67eE bb(ג4f})Y2WR*$$/rH TEH$:RVĉZz=5nW|nq G]X75ϳBֿE!wD["_^Bغ)Xp%E$f$3_N.1*PK* Nzx*Z ۼ 'v,_$Ry 3k&a-ٚE+:Ƭ-XhNNQ6CU1` oLgOY3T}r' @9wJakjyTȴgtW0cF^.7LMG/f֒Wsk?=AT7$cp0B?]v V,j`1XֆI'i(_K2S!Ip|ZJ~/pxڏKk-,V*U*cVR*L2a>KGS4(f"`/xuiZ-hWxc^"_U膢Ki*#| AK(X~&TB\o,u9 /vl( g!UF= ( n B IC"ftsXˑ)*OG JҘI)\ &ۈrDt[kSb)JK9~5' }XP4[7AgRo$;bfڕΞ7q)89-Ub`G fqӵ)]u2(i;bI>z2X5 ֵ~'%o ◭qzP?xT=`زa U:.UKʌd(O{Jy 8 " \B2l59/'.Cr?jV.TNVOV9aaq+,őy|)՞zKˬR;GcyR"f6uMd'k;R/s%,8U`-IH3UVdKT nS]S))hu}j&S\)hFqJ[;6#H+WSg>H¢ 3(,V H!Ha0pVGC3,#uSE;c!J_+Hy<g!~m|2!42ZbIsr&4sEb1ZLAǰ34;w(ơ8qPN }|$x2,"a8qyy7XB]p}m-Wi>}dzGoD )f+XcפYdmL<ϩxo*I.}A,(H9) :[OV{t:'k}|p3KbSQDÉa!m"ya0Yb(/3?[r#l\As0={X kxMߐĨSؔdʯPCbY}ta~^|OSf3Əݗ ϋ-cr[ـSK析^C!rv#!@C-x!.Y=EZ[G/ƀÙoT*"@ OEnTаߒN%FrOZYlE^z8g|ԞK.Pd%NQ ;۵Ѧ<:^B((t7K+R:wy-֠ضY'VL{!S Eͧ|NzȜOYZ.Mva7FƷđ]"QWj[%aObW5[nuG[$v 79֕-=#,A\<faܐ~ˠx3⣏@Ef(9R}̬ Q^&F:!ć hW'0TMU q Y1!T$sXJneIdJeD;,33Z~+o:IƔWˊ&qLD%1ghGmk1~W?zS3Wb+cd)YQ̒Ҿ{dY h# TkTe(o1 ,%f a8:!xX 94A'K36U0ҜZ:WFUgV6hZ#d; [kH41_//:M8vNq(VB, (\;v%>>kI1GB=Q\K*Uxٻ}-U\DwEZV0H4*w_ sE= 6ȤpdpΩ:^vvF 9`~eGgTnĈ^JI=a@si薰 ,[v(i&~tIBnKS=Z:Or}3(x7rㆦ-zQk_0nO}I?టqLFcJgǠ0[*g ei!PxėȹNj`),]]13LC/\ Y6#>I}|rs_qp̸U{cީ8=7H]k߃X5iŠB/>(_eXO<-tKp[o< ! WHo`Tl5 5}*4b?Z@к3u t`}5ON+pg?ea?;{`EƈN(t,n фL(足S\DV% H-sefG#c0m_#9xP)Jq,VR8ҟ;nύܟ띢n57Pa5u>( z>ɻ:`]^Y]]^VVV[W_b.1oPw!7GmE$Eaj?R| eyv_k=>N>ҿW*]W+3Bm{".?.e[%b#M<ѩcw$!w =rPy0,쉃Yk]f$L /Hd(Uu4)uUUx/Vv%zDqIVOnK:0E|}F^)D7;_į[[{ǿmj]ԟcJ+}:~~X3(hgw7 ZdxoH)7<]rD,5RH0V\!"'_֣;qS,!kS ;}^)AG,I@by$۰`;2ZԒ Rj$$tWd53\UB6C8q4(sT+Xk0xDC0S`GgGǭfXC,$ϱbBwJdl[@Ŏ?.x8Ď\"VB7j-l9(q~p4N0zR+7懒qRPdT qw=$CAL}>.@d{GsCjmlxUZ(L.#NWg 30X DGXh>luFM5'_Nw#_Z[ȇ@= ݞ|N>-U)mNĩTJ1Ez#t :tɖ-EZ R- բv)" (aa?X;Ò.r Р1zX3nE6쑗[@\_K6з2}Snf, uW^ёH85@T鏎CVOd,_8~vm8!vFDoUVW\ZRe(ϡƏ6hP Uјhz|8;a՗wqUNoGax\^洋qqիA6 XV7E#\(WUߍ+ƻf<-c'll*( gIw%)ʹ z,)$`R[X@~ڟ}F* dE6/K_X#i!\c*dxZrQ`xpxɏ+9 $((n4$-䰓Tny$嘇Z1IkOɋZA?˰}-X묵l,:[d9[> ѱ [S:EM5b%ΰᚣF6* TVTbY‹^f33K*QGfD/xD `M1͒/20jq# ^zxwGަ>wwow_ݥs xaa$W(CQXE HYp$Ax`n,@)6ސ2$y]Y-ȓsȸdU?(C QĢVl{E~W+#2|lhv]}Va?ۇ{ۻí㝽`l/h w6ztLB$또J&_- " Ν $~|v TQ brRLP-/U`<B 2:2o e1~\J Ͻn l<\D9 T .=YPD*z`ܫ-k >*&lw¹z#o)wbEjբ|ϊA !bG"Y\`Fc-qh6+:@exm43. 8 *~GAǹQ;JH ļa0: i"Ҽ+t]lmMf^ ;iPZ,=xR8k:eO삃Jc%ruE([Sv}XZ]Y^Wʗ*v9O5koS`%+Xg*YT{y.Q[e&ZS9ؠ=ն:_vM\~'=l>&4=Lڕݮ\,Vߒ>~oqY<<}/L灬G{[$.ޚKjP^e^&ˠ]̽#*=qQѕ*}Wڸjv_λ__FFŭGO>v_~}aL 7 f Gϱ_bP쇙N;U;Vb&O+P`8Zw|A*Ss8 OB"S m! ~GنK{ <eE?i@Urdu&,!X7Q‰|?ZOR{}e1 =C~Qz&x 5yyu0\ ZKdA?}l,W~Q=͛7w单ګP&"]zT_,)YO+v/^֟`a>\>JV5\ Jmz0k; R0.KwGZULy?_ _^] Y^O,m;C DhDZnb0Tg)>kpH %_\nk9%B P6: HdLJG?,@˯i/9 Tk؂p7`a@&uhV@ߜ.`>=8GkJaN=tz=Y x3zny|P#Q 'm6؍Xb5IxW Rq3g؉ukv^#pɊQ+YɄ)/@7{'W7kw34<2"4\4R~wt\J3}*)%3p|tP g9w%RJmbFG~Nz԰g  @ x)%񧨻QN%υåJeh܂rhY`]]Z<}jy>S-&K%L1a; /gq^6,h|3y#Tߒ*𓮯$) Q}Q%YiH;n(c\P#KۉrYG|8BJq M5݂:-".HuJh=4Z]¦Z"bUOXiROT??ʋ tIJapݫ&S/3M&(lN qF` g_]|Qp%=c&c2/^锭 0g9]uyz 3էg]֮8N4錄םV% uR9bU̪Uڄ)˭g‰UifdʤH|PYrT{p2ô)c9dN D(- ֲK=>yYv,_RA)`.[@Y]^]hrK`W d c| .46v8whM Dc_Pb{Q=t*ZIҼTj?(<.d6 H[w y2(%6 QaP6bTx] bRLs ACȌ7/t̝KyZ%Ay?zZ/-lὩs@@[+6d~V/lr/UWz3YH(*(XCtY`2d24IQzZKda%7$?pxѴxDGϷ^#MaWTi@Hm>Vvg@&v5Zʹv^j!/?  RXT//^nE)^ ] ub 2Zn ~sh! +u_o?|0_crb[xqo*Vs5q5?њ3^cmTvΫ47dVfvƖ$R?\_ HQG% pZ6-()y"G@9{P;{#Xd70=D__2ZRu@{k Ȋ 1mWG$ɸwņ^rg&IyZyƫ׵NH r/E"1H@Vzn `/=[v6}Q wb^,b,+?\NrxXݲU)ɟ~O[z-46 Bۂ;bT UrX-ssq-.2.t ܃}n$ "sBЅ 뼼s>sI%,PV֠TOԧ%"[0R^|r`sʼϒʙNAݪ '{lۅT\ %v!M"RQ=2tS~[SKmaE tׄD؆56/biL`2I}6;N5if`{Sx?GRw 1n(!.QNQZ ƒRs1*ڒm:_:6zH~GGYv +5n^WZ^xTۯR2-*ypS nԒ/Y*t"9@12fN^<;PK^3ݗ^-?R&1lj][IX:jF~#DVKLX5޺nDaZʸ4I8FnY!k@ny- <}|4XQ*j|a:Z(Yi-0`% 8k/ձ-mnk5|`yYeX Hgij(hYߔ=X豬t#hױ~T$]G&yh" xYL!^;C:j\A&,6LˬZI?+ m`%@ʧ&b`edS!\HQ!7E[һ$fm((2{a؈> fqR}&{c6FsdB5YdBHLRƍ 9H ̌5g.O\3e,KQ#i@fX n< 1̐73c?zRb騷@(ﺃnrۃlsSXla{~L 6iնu2i\G`T>o,yy^>(.(S[? Az,3Ի|z|X;o~r 4A6md,`{p6 +:qGp7n0 {7J,%pl<^ Lv0DW a{Cl2R:T[%eHibO^FɆ:]n a5цթm}H26QO90K)̦fɪ291hpz懔m&) c .i7-`y*= dtZFoQ}Fڦ]1#ɶZK]זד)eaw&u11m5ƮGnÏɒ͕F3/kmkYbՂ* ȉtz${M[]3l96ҿڪY-b0mZ7Q'ڽp-g;CcíʿUlX ? 1/2g9_^֋_mU &&L$`VPkRBxxd_ñ;^۶+s;rn:A2z`m5dO֖_-NXy@O^xt_Umvۑ>HԉN7TJ V8A̘<Coo}~ ^T$?sQd_PR8bF\MU'G]Q$Y@eA{]y)Rq'•fvs-8yg0L]!bPj=yD!ėƹ?B-"M(Ao-K8M1YBN`NXhq]3AM i#YJ)ݪ`t>Rk%Yv"oę/5 GmqX 3BYBW(9iZs_wl2σw:0FZK1P`ZAFkXw4*}G6FÓ ʎOR3QYY7%s ޤ(b/a `\?FOi7q/ lqlt? X!AP(cY2Uzge/iAA][6~Ơ*u;LkB. e=sÀ GjPI8m4L:؂$WIGH݂'g%g)V/Z-jYJ*NHI+9G<ʨQGF=LHioД5##Ny95=yS"fmrK~UsL}f}fAc,~o:dB`uecPo7EVQҵ&􃨣[rKor"l)嗺,g4.Ϻt\玑\ۿmF?3=,gVkL?`M D:z@W*Vjy:0XhqşPCbYW$v#\ ?@!9⬇dŮ ^+b7ި Ajj~".W;.o_zU/vW::zP7~Ye\r+.Ye-{NK6{0DW%&@L>@MBx~"00CNhYĔ!IkeA0W6^>zOLPL!FŲB4mF]o߮+χEa Ja}R?BgB>!)dT9VK1N{i ȍnhbb0ఘ uL,cL8(JNK:nB1<"#vr-Հ%kʧFڨ r]ύZ9]Rwcd5}`N]V뮭VO_)NdJ\C Tj`bxݮn @0 H-m}ռNS"ʗQY(9ʛШ'g6[ vnjAt4@ G lKL2CLJE%ёAӤ m~}8N`)WݑJ~i["  *W;+-M!j~ ޸3{e^ Ir—ćF8%?@h40e+{~K}~>Sߕs;hzdxz~ ߻cyxgDE{: >cJ;4H9!y-ӸZQŎpAE iUj9E@ 轃)?Fa2n8ZБjBi Y E!0\6q"N,3X< /P_ՇNWWB"'|Uq붟)/v gPtNjkV~Z卣OL8( Qlǫ՚q%t:le t3sV~<v {иh<'e KE|~P`ᩲ; .dM!L볌v3F;,q.VqՃ t1K?g/H#]rUlփ/ ,o m$O $ ;1Z0''I6d3~ݽ{ ЏWuuUuuU~t_cs*{ >v*5th4O" e݄xtcu몆c}%P+_:B |Y J51R9ׯDͿhIr9P+ "뜲ybŠ%R5!, uIE6g]?-/oVSӅYl3NV,~}hF[E(VWU;ΰ Y\|?x%|r3\狃ב0RnT7+VOQ&2_2X)֓{{F2~2xKtd»S%:4p(1IH`tPM9>>W8bGC!q'`&Ma.(չ ־U*k8VI_-/s9g=٣gї? K$x5ӸqܦVp/Қm'6'o.#N4Uy'y2uOxdD*vrwθt v9T5|:aUCftWZܤ0~5 ȹH;].}R* ed`\P}9HGLd@%RwȜkBepB㗱ZvdNkǨ^jËpL1|)㝿>\s:9;ށ~⏷~f_j҈q<"cdHet+)7Yx&JB_cίUuc5{{E GrZ;os@{zv +;N香w+ c.ĕ-X 2x Q+˵-^F7C~˪syyֹcŏF}U$z\ 9򾵏91w 5gMRđSa1ChϮޑbV o 5k˝ un8jah׸Qo\M_mr_gpV9x:%45g?E`e΅+rX6*Cudq4UXB)[JdhEemFa|zR\1Ik?R#ƤEaG*ŝǿ>HGmS"G >V 0V?珢LrW?vOߟ FڃuOANWCsn;<ȼ3vb͍[Gν9G.lNWWfTי{+vz_)gqD-HQA8WK_Œ< #|.<6.R փjWRI##l)XO)̍!'ϺNKvj3Hha/49{j{Zwb?$=5-zNf:uطʫ+SWQ+aY˴v[J5ֶg{  oqh5n߱cvJvE%x;D qdb0g0^`>Kx|hՐJ_tYM9D@SKxFu'$ kɁZܛ7.\vA}hQnC1a/d4—Og6]#I:&&;NFIoqM1 hs/t-yK_ :hi5NPϟMtI%,.w>㉥G#?*i$\C^v:s G}ңӟ?CaԞ2K'ϑzU<2,<1@pB:(툗5b/Q?ܓ{+rDh E짃Y?\l{i$,W 4PEz+ߤ_LڤibGMUng% ]O.6ڸ$ZtTD( |`D)F{y.{1tg/lQ![kӝrQ9-4zœك5Zw.rI-PBjSϴ M)Rr $G$ 󀖢<?bE^k7eoU~*uM9 ;/A( <(W؂ v/ս q#| g9PG,|6AiYA OuDߊ )kG';v؎mq* k baWp|uEc jZdbsȢ N/B"jiuN:wjGh0-T;KZGT -b֓Y k k jTV^b1%?1W3K&!fZZBT#)CK+Ȱ`M<<8 ؝H*6w |mWo`wCo(!`%]U^Ȏ=Ufh |SC S@ ڃ_6hu{D? Sjpmƫ}U+h}jX_ۍo{nu{cGim4fW9ג} JĹy{Pٽl6l{eNc8V nw*" )#FnAod_c>>M]˙Nzzem.Q<ݨġbCǮ0儼 2`a$^Kw&u߈wҥ=lAY=g-Q&AaNlW5 ; 84%3i *VH.WJ"`hh?GmsӡW+h& ȒHsZ=` ))R))qbC1U- Jb4.bҟC÷=:j^j`KoMw(x0B1"^bܚ!5)={wgH?'Uԉ> \Y:~|~x43>8C;~"QHd :gg31tsta,g_aNs]!S1%]*s z'cOtWan<#"7Wqsr9}nu{3g 0_7Yh7Ȇ'B%?.({)(d {M6a9)Z YHAM%C 5] hn 4{Ub33q"zOT'Z{E% (ys>z1=Oؗ)1w6p˩<\,CNfK<0QBU<LRO.@ .ORGJphəEEVz25nOh,U7|ʨm$p8+CD䆬;'@[N PYSfv1]eo@j-T+z $w: ĝRsC|/۪~/PC$ ) !!@.* 8 ֙aA`7tKFhvvڱ2xDSoᜊ2]ɔ by=0ِL7~ X@d刲Xٔ L uvhqB`B!N &:[3`#IѠb%$~;ͪӻd oaI;h~gMXX+ZlWaEbܐ$uE$|yA{ɖ0#g;,wL͕@<"g 9$a#l{RxXaĉ-/nBJ@1 ҥ*rB"8%[>Yޔ3 zW8Y%rnj_nFnˤ !J`^ݷH  d'y%J;GFT:X8i JG&)p9$2^MC TctcG+4\LC4B7 h  Eav"- zq1fzE)Hm*šɂ#]6T9˽ d[; X\ESr҈4G/,R" "PQ05[OHV *tRϓj ):n\+٢b?/r OlV ˙-$铯WM($APDۊЭ雠R?~/VjƏ#Ja"*ع-50[LtO,\s;[vkC}@Q#㫻I I!q=p1RK7RNkuN[Aŋȥ 'e?I)sEUM.3GH }BoY7<7Ltv/6T MzySl BBg w8h}Lʦ-tIءJyk1YU3L tA%[RRj.;⒵BB/r瘃 3Tgid7y`DPOFIo  >kǴ皟b?#׊ goŲ5u&b7HBX 28,3~?o=\%;Ȥuwn  :͢Í"x^)HYH=iIƭ"?Or9p`}g&0~82+53*1,=%ux [!^ѡsoLjaiN@>Ws?@:>C* iݼ\D;.駸ƽf9;ڬIS|ҧ|T.pbIp\"Cʇu"̃lpd{<09GMAxȿ5@F4ej1mR)d'a$ZwJ!rWv65XJBB!t;0߃[NNw%qXv*'ɰ{ti{ͷ6|omͷ6|omͷ6|omͷ6|omͷw~ despresso-5.1/Modules/0000755000175000017500000000000012341373044012713 5ustar mbambaespresso-5.1/Modules/error_handler.f900000644000175000017500000001621412341373034016064 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE errore( calling_routine, message, ierr ) !---------------------------------------------------------------------------- ! ! ... This is a simple routine which writes an error message to output: ! ... if ierr <= 0 it does nothing, ! ... if ierr > 0 it stops. ! ! ... **** Important note for parallel execution *** ! ! ... in parallel execution unit 6 is written only by the first node; ! ... all other nodes have unit 6 redirected to nothing (/dev/null). ! ... As a consequence an error not occurring on the first node ! ... will be invisible. For T3E and ORIGIN machines, this problem ! ... is solved by writing an error message to unit * instead of 6. ! ... Whenever possible (IBM SP machines), we write to the standard ! ... error, unit 0 (the message will appear in the error files ! ... produced by loadleveler). ! USE mp, ONLY : mp_abort USE mp_world, ONLY : mpime, world_comm USE io_global, ONLY : stdout USE io_files, ONLY : crash_file #if defined(__PTRACE) && defined(__INTEL) USE ifcore, ONLY : tracebackqq #endif ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: calling_routine, message ! the name of the calling calling_routine ! the output message INTEGER, INTENT(IN) :: ierr ! the error flag INTEGER :: crashunit INTEGER, EXTERNAL :: find_free_unit CHARACTER(LEN=6) :: cerr ! ! IF ( ierr <= 0 ) RETURN ! ! ... the error message is written un the "*" unit ! WRITE( cerr, FMT = '(I6)' ) ierr WRITE( UNIT = *, FMT = '(/,1X,78("%"))' ) WRITE( UNIT = *, FMT = '(5X,"Error in routine ",A," (",A,"):")' ) & TRIM(calling_routine), TRIM(ADJUSTL(cerr)) WRITE( UNIT = *, FMT = '(5X,A)' ) TRIM(message) WRITE( UNIT = *, FMT = '(1X,78("%"),/)' ) ! #if defined (__MPI) && defined (__AIX) ! ! ... in the case of ibm machines it is also written on the "0" unit ! ... which is automatically connected to stderr ! WRITE( UNIT = 0, FMT = '(/,1X,78("%"))') WRITE( UNIT = 0, FMT = '(5X,"Error in routine ",A," (",A,"):")' ) & TRIM(calling_routine), TRIM(ADJUSTL(cerr)) WRITE( UNIT = 0, FMT = '(5X,A)' ) TRIM(message) WRITE( UNIT = 0, FMT = '(1X,78("%"),/)' ) ! #endif ! WRITE( *, '(" stopping ...")' ) ! CALL flush_unit( stdout ) ! #ifdef __PTRACE #ifdef __INTEL call tracebackqq(user_exit_code=-1) #else WRITE( UNIT = 0, FMT = '(5X,A)' ) "Printing strace..." CALL ptrace() #endif #endif ! #if defined (__MPI) ! ! .. write the message to a file and close it before exiting ! .. this will prevent loss of information on systems that ! .. do not flush the open streams ! .. added by C.C. ! crashunit = find_free_unit () OPEN( UNIT = crashunit, FILE = crash_file, & POSITION = 'APPEND', STATUS = 'UNKNOWN' ) ! WRITE( UNIT = crashunit, FMT = '(/,1X,78("%"))' ) WRITE( UNIT = crashunit, FMT = '(5X,"task #",I10)' ) mpime WRITE( UNIT = crashunit, & FMT = '(5X,"from ",A," : error #",I10)' ) calling_routine, ierr WRITE( UNIT = crashunit, FMT = '(5X,A)' ) message WRITE( UNIT = crashunit, FMT = '(1X,78("%"),/)' ) ! CLOSE( UNIT = crashunit ) ! ! ... try to exit in a smooth way ! CALL mp_abort ( 1, world_comm ) ! #endif ! STOP 1 ! RETURN ! END SUBROUTINE errore ! !---------------------------------------------------------------------- SUBROUTINE infomsg( routine, message ) !---------------------------------------------------------------------- ! ! ... This is a simple routine which writes an info message ! ... from a given routine to output. ! USE io_global, ONLY : stdout, ionode ! IMPLICIT NONE ! CHARACTER (LEN=*) :: routine, message ! the name of the calling routine ! the output message ! IF ( ionode ) THEN ! WRITE( stdout , '(5X,"Message from routine ",A,":")' ) routine WRITE( stdout , '(5X,A)' ) message ! END IF ! RETURN ! END SUBROUTINE infomsg ! module error_handler implicit none private public :: init_error, add_name, chop_name, error_mem, warning type chain character (len=35) :: routine_name type(chain), pointer :: previous_link end type chain type(chain), pointer :: routine_chain contains subroutine init_error(routine_name) implicit none character (len=*), intent(in) :: routine_name allocate(routine_chain) routine_chain%routine_name = routine_name nullify(routine_chain%previous_link) return end subroutine init_error subroutine add_name(routine_name) implicit none character (len=*), intent(in) :: routine_name type(chain), pointer :: new_link allocate(new_link) new_link%routine_name = routine_name new_link%previous_link => routine_chain routine_chain => new_link return end subroutine add_name subroutine chop_name implicit none type(chain), pointer :: chopped_chain chopped_chain => routine_chain%previous_link deallocate(routine_chain) routine_chain => chopped_chain return end subroutine chop_name recursive subroutine trace_back(error_code) implicit none integer :: error_code write(unit=*,fmt=*) " Called by ", routine_chain%routine_name if (.not.associated(routine_chain%previous_link)) then write(unit=*,fmt=*) & " +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++" write(unit=*,fmt=*) " " if( error_code > 0 ) then stop else return end if end if routine_chain => routine_chain%previous_link call trace_back(error_code) end subroutine trace_back subroutine error_mem(message,error_code) character (len=*), intent(in) :: message integer, intent(in), optional :: error_code integer :: action_code type(chain), pointer :: save_chain if (present(error_code)) then action_code = error_code else action_code = 1 end if if( action_code /= 0 ) then write(unit=*,fmt=*) " " write(unit=*,fmt=*) & " +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++" if( action_code > 0 ) then write(unit=*,fmt=*) " Fatal error in routine `", & trim(routine_chain%routine_name),"': ",message else write(unit=*,fmt=*) " Warning from routine `", & trim(routine_chain%routine_name),"': ",message save_chain => routine_chain end if write(unit=*,fmt=*) & " +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++" routine_chain => routine_chain%previous_link call trace_back(action_code) routine_chain => save_chain end if return end subroutine error_mem subroutine warning(message) character (len=*), intent(in) :: message call error_mem(message,-1) return end subroutine warning end module error_handler espresso-5.1/Modules/qexml.f900000644000175000017500000050177212341373034014374 0ustar mbamba! ! Copyright (C) 2006 WanT Group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE qexml_module !---------------------------------------------------------------------------- ! ! This module contains some common subroutines used to read and write ! in XML format the data produced by Quantum ESPRESSO package. ! ! Written by Andrea Ferretti (2006). ! Modified by Simone Ziraldo (2013). ! ! Important parts of the implementation are taken from xml_io_base.f90 ! (written by Carlo Sbraccia) in the Quantum ESPRESSO distribution, ! under the GNU-GPL licensing: ! ! Copyright (C) 2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! USE iotk_module USE kinds, ONLY : DP IMPLICIT NONE ! PRIVATE SAVE ! ! definitions for the fmt ! CHARACTER(5), PARAMETER :: fmt_name = "QEXML" CHARACTER(5), PARAMETER :: fmt_version = "1.4.0" ! ! some default for kinds ! !INTEGER, PARAMETER :: dbl = selected_real_kind( 14, 200 ) ! ! internal data to be set ! CHARACTER(256) :: datadir_in, datadir_out INTEGER :: iunit, ounit ! ! vars to manage back compatibility ! CHARACTER(10) :: qexml_current_version = " " CHARACTER(10) :: qexml_default_version = trim( fmt_version ) LOGICAL :: qexml_current_version_init = .false. LOGICAL :: qexml_version_before_1_4_0 = .false. ! CHARACTER(iotk_attlenx) :: attr ! ! ! end of declarations ! PUBLIC :: qexml_current_version, qexml_default_version PUBLIC :: qexml_current_version_init ! PUBLIC :: qexml_init, qexml_openfile, qexml_closefile ! PUBLIC :: qexml_write_header, qexml_write_control, qexml_write_status_cp, qexml_write_cell, & qexml_write_moving_cell, qexml_write_ions, qexml_write_symmetry, qexml_write_efield, & qexml_write_planewaves, qexml_write_spin, qexml_write_magnetization, & qexml_write_xc, qexml_write_exx, & qexml_write_occ, qexml_write_bz, qexml_write_para, & qexml_write_phonon, & qexml_write_bands_pw,qexml_write_bands_cp, qexml_write_bands_info, qexml_write_eig, & qexml_write_gk, qexml_write_wfc, qexml_write_rho ! PUBLIC :: qexml_read_header, qexml_read_status_cp, qexml_read_cell, qexml_read_moving_cell, qexml_read_ions, & qexml_read_symmetry, qexml_read_efield, & qexml_read_planewaves, qexml_read_spin, qexml_read_xc, & qexml_read_occ, qexml_read_bz, qexml_read_phonon, & qexml_read_bands_pw, qexml_read_bands_cp, qexml_read_bands_info, & qexml_read_gk, qexml_read_wfc, qexml_read_rho, qexml_read_magnetization, & qexml_read_exx, qexml_read_para ! PUBLIC :: qexml_wfc_filename, qexml_create_directory, qexml_save_history, & qexml_kpoint_dirname, qexml_restart_dirname ! CONTAINS ! !------------------------------------------- ! ... basic (public) subroutines !------------------------------------------- ! !------------------------------------------------------------------------ SUBROUTINE qexml_init( unit_in, unit_out, dir, dir_in, dir_out, & datafile, datafile_in, datafile_out ) !------------------------------------------------------------------------ ! ! just init module data ! IMPLICIT NONE INTEGER, INTENT(in) :: unit_in INTEGER, OPTIONAL, INTENT(in) :: unit_out CHARACTER(*), OPTIONAL, INTENT(in) :: dir CHARACTER(*), OPTIONAL, INTENT(in) :: dir_in, dir_out CHARACTER(*), OPTIONAL, INTENT(in) :: datafile CHARACTER(*), OPTIONAL, INTENT(in) :: datafile_in, datafile_out ! iunit = unit_in ounit = unit_in IF ( present( unit_out ) ) ounit = unit_out ! ! datadir_in = "./" datadir_out = "./" ! ! first check whether datafile is given ! IF ( present( datafile ) ) THEN ! datadir_in = datafile CALL qexml_basename ( datadir_in, "data-file.xml") ! datadir_out = datadir_in ! ENDIF ! IF ( present( datafile_in ) ) THEN ! datadir_in = datafile_in CALL qexml_basename ( datadir_in, "data-file.xml") ! ENDIF ! IF ( present( datafile_out ) ) THEN ! datadir_out = datafile_out CALL qexml_basename ( datadir_out, "data-file.xml") ! ENDIF ! ! the presence of directories overwirtes any info ! about datafiles ! IF ( present( dir ) ) THEN datadir_in = trim(dir) datadir_out = trim(dir) ENDIF ! IF ( present( dir_in ) ) THEN datadir_in = trim(dir_in) ENDIF ! IF ( present( dir_out ) ) THEN datadir_out = trim(dir_out) ENDIF ! END SUBROUTINE qexml_init ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_openfile( filename, action, binary, ierr) !------------------------------------------------------------------------ ! ! open data file ! IMPLICIT NONE ! CHARACTER(*), INTENT(in) :: filename CHARACTER(*), INTENT(in) :: action ! ("read"|"write") LOGICAL, OPTIONAL, INTENT(in) :: binary INTEGER, INTENT(out) :: ierr ! LOGICAL :: binary_ ierr = 0 binary_ = .false. IF ( present(binary) ) binary_ = binary ! SELECT CASE ( trim(action) ) CASE ( "read", "READ" ) ! CALL iotk_open_read ( iunit, FILE = trim(filename), IERR=ierr ) IF ( ierr/=0 ) RETURN ! CALL qexml_read_header( FORMAT_VERSION=qexml_current_version, IERR=ierr ) IF ( ierr/=0 ) qexml_current_version = trim( qexml_default_version ) ! ! CASE ( "write", "WRITE" ) ! CALL iotk_open_write( iunit, FILE = trim(filename), BINARY=binary_, IERR=ierr ) IF ( ierr/=0 ) RETURN ! qexml_current_version = trim( qexml_default_version ) ! CASE DEFAULT ierr = 1 END SELECT ! ! init logical variables for versioning ! qexml_version_before_1_4_0 = .false. ! IF ( trim( qexml_version_compare( qexml_current_version, "1.4.0" )) == "older" ) & qexml_version_before_1_4_0 = .true. ! qexml_current_version_init = .true. ! ! END SUBROUTINE qexml_openfile ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_closefile( action, ierr) !------------------------------------------------------------------------ ! ! close data file ! IMPLICIT NONE ! CHARACTER(*), INTENT(in) :: action ! ("read"|"write") INTEGER, INTENT(out) :: ierr ! ierr = 0 ! SELECT CASE ( trim(action) ) CASE ( "read", "READ" ) ! CALL iotk_close_read( iunit, IERR=ierr ) ! CASE ( "write", "WRITE" ) ! CALL iotk_close_write( iunit, IERR=ierr ) ! CASE DEFAULT ierr = 2 END SELECT ! END SUBROUTINE qexml_closefile ! !------------------------------------------- ! ... basic (private) subroutines !------------------------------------------- ! !------------------------------------------------------------------------ FUNCTION int_to_char( i ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! INTEGER, INTENT(in) :: i CHARACTER (len=6) :: int_to_char ! ! IF ( i < 10 ) THEN ! WRITE( UNIT = int_to_char , FMT = "(I1)" ) i ! ELSEIF ( i < 100 ) THEN ! WRITE( UNIT = int_to_char , FMT = "(I2)" ) i ! ELSEIF ( i < 1000 ) THEN ! WRITE( UNIT = int_to_char , FMT = "(I3)" ) i ! ELSEIF ( i < 10000 ) THEN ! WRITE( UNIT = int_to_char , FMT = "(I4)" ) i ! ELSE ! WRITE( UNIT = int_to_char , FMT = "(I5)" ) i ! ENDIF ! END FUNCTION int_to_char ! ! !-------------------------------------------------------------------------- SUBROUTINE qexml_basename( str, extension ) !-------------------------------------------------------------------------- ! ! perform the basename operation on the string str, eliminating ! any ending (rightmost) occurrence of extension ! CHARACTER(*), INTENT(inout) :: str CHARACTER(*), INTENT(in) :: extension ! INTEGER :: ind, strlen, extlen, i ! IF( len_trim(extension) == 0 .or. len_trim(str) == 0 ) RETURN ! strlen = len_trim( str ) extlen = len_trim( extension ) ind = index( str, trim(extension), BACK=.true. ) ! IF ( ind <= 0 .or. ind > strlen ) RETURN ! ! we want to cut only the last part of the name ! any intermediate matching is rejected ! IF ( strlen -ind +1 /= extlen ) RETURN ! DO i = ind, strlen str(i:i) = ' ' ENDDO ! END SUBROUTINE qexml_basename ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_version_parse(str, major, minor, patch, ierr) !-------------------------------------------------------------------------- ! ! Determine the major, minor and patch numbers from ! a version string with the fmt "i.j.k" ! ! The ierr variable assumes the following values ! ! ierr < 0 emtpy string ! ierr = 0 no problem ! ierr > 0 fatal error ! IMPLICIT NONE CHARACTER(*), INTENT(in) :: str INTEGER, INTENT(out) :: major, minor, patch, ierr ! INTEGER :: i1, i2, length INTEGER :: ierrtot CHARACTER(10) :: num(3) ! major = 0 minor = 0 patch = 0 length = len_trim( str ) ! IF ( length == 0 ) THEN ! ierr = -1 RETURN ! ENDIF i1 = scan( str, ".") i2 = scan( str, ".", BACK=.true.) ! IF ( i1 == 0 .or. i2 == 0 .or. i1 == i2 ) THEN ! ierr = 1 RETURN ! ENDIF ! num(1) = str( 1 : i1-1 ) num(2) = str( i1+1 : i2-1 ) num(3) = str( i2+1 : ) ! ierrtot = 0 ! READ( num(1), *, IOSTAT=ierr ) major IF (ierr/=0) RETURN ! READ( num(2), *, IOSTAT=ierr ) minor IF (ierr/=0) RETURN ! READ( num(3), *, IOSTAT=ierr ) patch IF (ierr/=0) RETURN ! END SUBROUTINE qexml_version_parse ! !-------------------------------------------------------------------------- FUNCTION qexml_version_compare(str1, str2) !-------------------------------------------------------------------------- ! ! Compare two version strings; the result is ! ! "newer": str1 is newer that str2 ! "equal": str1 is equal to str2 ! "older": str1 is older than str2 ! " ": str1 or str2 has a wrong format ! IMPLICIT NONE CHARACTER(*) :: str1, str2 CHARACTER(10) :: qexml_version_compare ! INTEGER :: version1(3), version2(3) INTEGER :: basis, icheck1, icheck2 INTEGER :: ierr ! qexml_version_compare = " " ! CALL qexml_version_parse( str1, version1(1), version1(2), version1(3), ierr) IF ( ierr/=0 ) RETURN ! CALL qexml_version_parse( str2, version2(1), version2(2), version2(3), ierr) IF ( ierr/=0 ) RETURN ! ! basis = 1000 ! icheck1 = version1(1) * basis**2 + version1(2)* basis + version1(3) icheck2 = version2(1) * basis**2 + version2(2)* basis + version2(3) ! IF ( icheck1 > icheck2 ) THEN ! qexml_version_compare = 'newer' ! ELSEIF( icheck1 == icheck2 ) THEN ! qexml_version_compare = 'equal' ! ELSE ! qexml_version_compare = 'older' ! ENDIF ! END FUNCTION qexml_version_compare ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_create_directory( dirname, ierr ) !------------------------------------------------------------------------ ! USE wrappers, ONLY : f_mkdir_safe ! CHARACTER(len=*), INTENT(in) :: dirname INTEGER, INTENT(out) :: ierr ! INTEGER :: iunaux ! ierr = 0 CALL iotk_free_unit( iunaux ) ! ierr = f_mkdir_safe( TRIM(dirname) ) ! IF ( ierr/=0 ) RETURN ! ! ... check whether the scratch directory is writable ! OPEN( iunaux , FILE = trim( dirname ) // '/test', IOSTAT = ierr ) IF ( ierr/=0 ) RETURN ! CLOSE( iunaux , STATUS = 'DELETE' ) ! RETURN ! END SUBROUTINE qexml_create_directory ! ! !------------------------------------------------------------------------ FUNCTION qexml_kpoint_dirname( basedir, ik ) !------------------------------------------------------------------------ ! CHARACTER(LEN=256) :: qexml_kpoint_dirname CHARACTER(LEN=*), INTENT(IN) :: basedir INTEGER, INTENT(IN) :: ik ! CHARACTER(LEN=256) :: kdirname CHARACTER(LEN=5) :: kindex CHARACTER(LEN=6) :: kindex1 ! IF (ik<99999) THEN WRITE( kindex, FMT = '( I5.5 )' ) ik kdirname = TRIM( basedir ) // '/K' // kindex ELSEIF (ik<999999) THEN WRITE( kindex1, FMT = '( I6.6 )' ) ik kdirname = TRIM( basedir ) // '/K' // kindex1 ELSE call errore('qexml_kpoint_dirname','ik too large, increase format',1) ENDIF ! qexml_kpoint_dirname = TRIM( kdirname ) ! RETURN ! END FUNCTION qexml_kpoint_dirname ! ! !------------------------------------------------------------------------ FUNCTION qexml_wfc_filename( basedir, name, ik, ipol, tag, extension, dir ) !------------------------------------------------------------------------ ! CHARACTER(len=256) :: qexml_wfc_filename CHARACTER(len=*), INTENT(in) :: basedir CHARACTER(len=*), INTENT(in) :: name INTEGER, INTENT(in) :: ik INTEGER, OPTIONAL, INTENT(in) :: ipol CHARACTER(*), OPTIONAL, INTENT(in) :: tag CHARACTER(*), OPTIONAL, INTENT(in) :: extension LOGICAL, OPTIONAL, INTENT(in) :: dir ! CHARACTER(len=256) :: filename, tag_, ext_ LOGICAL :: dir_true ! ! filename = '' tag_ = '' ext_ = '.dat' dir_true = .true. ! IF ( present( tag ) ) tag_ = '_'//trim(tag) IF ( present( extension ) ) ext_ = '.'//trim(extension) ! IF ( present( ipol ) ) THEN ! WRITE( filename, FMT = '( I1 )' ) ipol ! ENDIF IF (PRESENT(dir)) dir_true=dir ! IF (dir_true) THEN filename = TRIM( qexml_kpoint_dirname( basedir, ik ) ) // '/' // & & TRIM( name ) // TRIM( filename ) // TRIM( tag_ ) // TRIM( ext_) ELSE filename = TRIM( qexml_kpoint_dirname( basedir, ik ) ) // '_' // & & TRIM( name ) // TRIM( filename ) // TRIM( tag_ ) // TRIM( ext_) ENDIF ! ! qexml_wfc_filename = trim( filename ) ! RETURN ! END FUNCTION qexml_wfc_filename ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_save_history( dirname, iter, ierr ) !------------------------------------------------------------------------ ! ! ... a copy of the xml descriptor (data-file.xml) is saved in the ! ... history subdir ! USE io_files, ONLY : xmlpun_base ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(IN) :: iter INTEGER, INTENT(OUT) :: ierr ! ! ierr = 0 ! #if defined (__VERBOSE_SAVE) ! CHARACTER(LEN=256) :: filename CHARACTER(LEN=6) :: hindex ! CALL qexml_create_directory( TRIM( dirname ) // '/history', ierr ) ! IF ( ierr /= 0) RETURN ! WRITE( hindex, FMT = '(I6.6)' ) iter ! ! filename = TRIM( dirname ) // '/history/' // & & TRIM( xmlpun_base ) // hindex // '.xml' ! CALL qexml_copy_file( TRIM( dirname ) // "/" // TRIM( xmlpun ), & TRIM( filename ), ierr ) ! ! ! #endif ! RETURN ! END SUBROUTINE qexml_save_history ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_copy_file( file_in, file_out, ierr ) !------------------------------------------------------------------------ ! CHARACTER(len=*), INTENT(in) :: file_in, file_out INTEGER, INTENT(out):: ierr ! CHARACTER(len=256) :: string INTEGER :: iun_in, iun_out, ios ! ! ierr = 0 ! CALL iotk_free_unit( iun_in, ierr ) IF ( ierr /= 0) RETURN CALL iotk_free_unit( iun_out, ierr ) IF ( ierr /= 0) RETURN ! OPEN( UNIT = iun_in, FILE = file_in, STATUS = "OLD", IOSTAT=ierr ) IF ( ierr /= 0) RETURN OPEN( UNIT = iun_out, FILE = file_out, STATUS = "UNKNOWN", IOSTAT=ierr ) IF ( ierr /= 0) RETURN ! copy_loop: DO ! READ( UNIT = iun_in, FMT = '(A256)', IOSTAT = ios ) string ! IF ( ios < 0 ) exit copy_loop ! WRITE( UNIT = iun_out, FMT = '(A)' ) trim( string ) ! ENDDO copy_loop ! CLOSE( UNIT = iun_in ) CLOSE( UNIT = iun_out ) ! RETURN ! END SUBROUTINE qexml_copy_file ! ! !------------------------------------------------------------------------ FUNCTION check_file_exst( filename ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! LOGICAL :: check_file_exst CHARACTER(len=*) :: filename ! LOGICAL :: lexists ! INQUIRE( FILE = trim( filename ), EXIST = lexists ) ! check_file_exst = lexists RETURN ! END FUNCTION check_file_exst ! ! !------------------------------------------------------------------------ FUNCTION qexml_restart_dirname( outdir, prefix, runit ) !------------------------------------------------------------------------ ! CHARACTER(len=256) :: qexml_restart_dirname CHARACTER(len=*), INTENT(in) :: outdir, prefix INTEGER, INTENT(IN) :: runit ! CHARACTER(len=256) :: dirname INTEGER :: strlen CHARACTER(LEN=6), EXTERNAL :: int_to_char ! ! ... main restart directory ! !dirname = trim( prefix ) // '.save' dirname = TRIM( prefix ) // '_' // TRIM( int_to_char( runit ) )// '.save' ! IF ( len( outdir ) > 1 ) THEN ! strlen = len_trim( outdir ) IF ( outdir(strlen:strlen) == '/' ) strlen = strlen -1 ! dirname = outdir(1:strlen) // '/' // dirname ! ENDIF ! qexml_restart_dirname = trim( dirname ) ! RETURN ! END FUNCTION qexml_restart_dirname ! !------------------------------------------- ! ... write subroutines !------------------------------------------- ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_header( creator_name, creator_version ) !------------------------------------------------------------------------ ! IMPLICIT NONE CHARACTER(len=*), INTENT(in) :: creator_name, creator_version CHARACTER(iotk_attlenx) :: attr ! CALL iotk_write_begin( ounit, "HEADER" ) ! CALL iotk_write_attr(attr, "NAME",trim(fmt_name), FIRST=.true.) CALL iotk_write_attr(attr, "VERSION",trim(fmt_version) ) CALL iotk_write_empty( ounit, "FORMAT", ATTR=attr ) ! CALL iotk_write_attr(attr, "NAME",trim(creator_name), FIRST=.true.) CALL iotk_write_attr(attr, "VERSION",trim(creator_version) ) CALL iotk_write_empty( ounit, "CREATOR", ATTR=attr ) ! CALL iotk_write_end( ounit, "HEADER" ) ! END SUBROUTINE qexml_write_header ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_control( pp_check_flag, lkpoint_dir, q_real_space, beta_real_space) !------------------------------------------------------------------------ ! IMPLICIT NONE LOGICAL, OPTIONAL, INTENT(IN) :: pp_check_flag, lkpoint_dir, q_real_space, beta_real_space CALL iotk_write_begin( ounit, "CONTROL" ) ! ! This flag is used to check if the file can be used for post-processing IF ( PRESENT( pp_check_flag ) ) & CALL iotk_write_dat( ounit, "PP_CHECK_FLAG", pp_check_flag ) ! ! This flag says how eigenvalues are saved IF ( PRESENT( lkpoint_dir ) ) & CALL iotk_write_dat( ounit, "LKPOINT_DIR", lkpoint_dir ) ! ! This flag says if Q in real space has to be used IF ( PRESENT( q_real_space ) ) & CALL iotk_write_dat( ounit, "Q_REAL_SPACE", q_real_space ) ! This flag says if Beta functions were treated in real space IF ( PRESENT( beta_real_space ) ) & CALL iotk_write_dat( ounit, "BETA_REAL_SPACE", beta_real_space ) ! CALL iotk_write_end( ounit, "CONTROL" ) ! END SUBROUTINE qexml_write_control ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_status_cp( nfi,simtime,time_units,title, & ekin, eht, esr, eself, epseu, enl, exc, vave, enthal, & energy_units) !------------------------------------------------------------------------ ! INTEGER, INTENT(in) :: nfi REAL(DP), INTENT(in) :: simtime, ekin,eht,esr,eself,epseu,enl,exc,vave,enthal CHARACTER(len=*), INTENT(in) :: time_units, title, energy_units CALL iotk_write_begin( ounit, "STATUS" ) ! CALL iotk_write_attr( attr, "ITERATION", nfi, FIRST = .TRUE. ) CALL iotk_write_empty( ounit, "STEP", attr ) ! CALL iotk_write_attr( attr, "UNITS", time_units, FIRST = .TRUE. ) CALL iotk_write_dat( ounit, "TIME", simtime, ATTR = attr ) ! CALL iotk_write_dat( ounit, "TITLE", title ) ! CALL iotk_write_attr( attr, "UNITS", energy_units, FIRST = .TRUE. ) CALL iotk_write_dat( ounit, "KINETIC_ENERGY", ekin, ATTR = attr ) CALL iotk_write_dat( ounit, "HARTREE_ENERGY", eht, ATTR = attr ) CALL iotk_write_dat( ounit, "EWALD_TERM", esr, ATTR = attr ) CALL iotk_write_dat( ounit, "GAUSS_SELFINT", eself, ATTR = attr ) CALL iotk_write_dat( ounit, "LPSP_ENERGY", epseu, ATTR = attr ) CALL iotk_write_dat( ounit, "NLPSP_ENERGY", enl, ATTR = attr ) CALL iotk_write_dat( ounit, "EXC_ENERGY", exc, ATTR = attr ) CALL iotk_write_dat( ounit, "AVERAGE_POT", vave, ATTR = attr ) CALL iotk_write_dat( ounit, "ENTHALPY", enthal, ATTR = attr ) ! CALL iotk_write_end( ounit, "STATUS" ) ! END SUBROUTINE qexml_write_status_cp ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_cell( ibravais_latt, celldm, alat, & a1, a2, a3, b1, b2, b3, alat_units, a_units, b_units, & do_mp, do_mt, do_esm) !------------------------------------------------------------------------ ! INTEGER, INTENT(in) :: ibravais_latt REAL(DP), INTENT(in) :: celldm(6), alat REAL(DP), INTENT(in) :: a1(3), a2(3), a3(3) REAL(DP), INTENT(in) :: b1(3), b2(3), b3(3) CHARACTER(len=*), INTENT(in) :: alat_units, a_units, b_units LOGICAL, INTENT(in) :: do_mp, do_mt, do_esm ! CHARACTER(len=256) :: bravais_lattice, es_corr ! CALL iotk_write_begin( ounit, "CELL" ) ! SELECT CASE ( ibravais_latt ) CASE( 0 ) bravais_lattice = "free" CASE( 1 ) bravais_lattice = "cubic P (sc)" CASE( 2 ) bravais_lattice = "cubic F (fcc)" CASE( 3 ) bravais_lattice = "cubic I (bcc)" CASE( 4 ) bravais_lattice = "Hexagonal and Trigonal P" CASE( 5 ) bravais_lattice = "Trigonal R" CASE( 6 ) bravais_lattice = "Tetragonal P (st)" CASE( 7 ) bravais_lattice = "Tetragonal I (bct)" CASE( 8 ) bravais_lattice = "Orthorhombic P" CASE( 9 ) bravais_lattice = "Orthorhombic base-centered(bco)" CASE( 10 ) bravais_lattice = "Orthorhombic face-centered" CASE( 11 ) bravais_lattice = "Orthorhombic body-centered" CASE( 12 ) bravais_lattice = "Monoclinic P" CASE( 13 ) bravais_lattice = "Monoclinic base-centered" CASE( 14 ) bravais_lattice = "Triclinic P" END SELECT ! IF(do_mp)THEN es_corr = "Makov-Payne" ELSE IF(do_mt) THEN es_corr = "Martyna-Tuckerman" ELSE IF(do_esm) THEN es_corr = "ESM" ELSE es_corr = "None" ENDIF ! CALL iotk_write_dat( ounit, & "NON-PERIODIC_CELL_CORRECTION", TRIM( es_corr ) ) ! CALL iotk_write_dat( ounit, & "BRAVAIS_LATTICE", trim( bravais_lattice ) ) ! ! CALL iotk_write_attr( attr, "UNITS", trim(alat_units), FIRST = .true. ) CALL iotk_write_dat( ounit, "LATTICE_PARAMETER", alat, ATTR = attr ) ! CALL iotk_write_dat( ounit, "CELL_DIMENSIONS", celldm(1:6) ) ! CALL iotk_write_attr ( attr, "UNITS", trim(a_units), FIRST = .true. ) CALL iotk_write_begin( ounit, "DIRECT_LATTICE_VECTORS" ) CALL iotk_write_empty( ounit, "UNITS_FOR_DIRECT_LATTICE_VECTORS", & ATTR=attr ) CALL iotk_write_dat( ounit, "a1", a1(:) * alat, COLUMNS=3 ) CALL iotk_write_dat( ounit, "a2", a2(:) * alat, COLUMNS=3 ) CALL iotk_write_dat( ounit, "a3", a3(:) * alat, COLUMNS=3 ) CALL iotk_write_end( ounit, "DIRECT_LATTICE_VECTORS" ) ! CALL iotk_write_attr ( attr, "UNITS", trim(b_units), FIRST = .true. ) CALL iotk_write_begin( ounit, "RECIPROCAL_LATTICE_VECTORS" ) CALL iotk_write_empty( ounit, "UNITS_FOR_RECIPROCAL_LATTICE_VECTORS", & ATTR=attr ) CALL iotk_write_dat( ounit, "b1", b1(:), COLUMNS=3 ) CALL iotk_write_dat( ounit, "b2", b2(:), COLUMNS=3 ) CALL iotk_write_dat( ounit, "b3", b3(:), COLUMNS=3 ) CALL iotk_write_end( ounit, "RECIPROCAL_LATTICE_VECTORS" ) ! CALL iotk_write_end( ounit, "CELL" ) ! END SUBROUTINE qexml_write_cell ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_moving_cell(lmovecell, cell_factor) !------------------------------------------------------------------------ ! LOGICAL, INTENT(IN) :: lmovecell REAL(DP), INTENT(IN) :: cell_factor ! CALL iotk_write_begin( ounit, "MOVING_CELL" ) CALL iotk_write_dat( ounit, "CELL_FACTOR", cell_factor) CALL iotk_write_end( ounit, "MOVING_CELL" ) ! END SUBROUTINE qexml_write_moving_cell ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_ions( nsp, nat, atm, ityp, psfile, pseudo_dir, & amass, amass_units, tau, tau_units, & if_pos, dirname, pos_unit ) !------------------------------------------------------------------------ ! USE wrappers, ONLY: f_copy ! INTEGER, INTENT(in) :: nsp, nat INTEGER, INTENT(in) :: ityp(:) CHARACTER(len=*), INTENT(in) :: atm(:) CHARACTER(len=*), INTENT(in) :: psfile(:) CHARACTER(len=*), INTENT(in) :: pseudo_dir CHARACTER(len=*), INTENT(in) :: dirname REAL(DP), INTENT(in) :: amass(:) CHARACTER(len=*), INTENT(in) :: amass_units REAL(DP), INTENT(in) :: tau(:,:) CHARACTER(len=*), INTENT(in) :: tau_units INTEGER, INTENT(in) :: if_pos(:,:) REAL(DP), INTENT(in) :: pos_unit ! INTEGER :: i, flen, flen2, ierrl CHARACTER(len=256) :: file_pseudo_in, file_pseudo_out LOGICAL :: pseudo_exists ! ! CALL iotk_write_begin( ounit, "IONS" ) ! CALL iotk_write_dat( ounit, "NUMBER_OF_ATOMS", nat ) ! CALL iotk_write_dat( ounit, "NUMBER_OF_SPECIES", nsp ) ! flen = len_trim( pseudo_dir ) flen2 = len_trim( dirname ) ! CALL iotk_write_attr ( attr, "UNITS", trim(amass_units), FIRST = .true. ) CALL iotk_write_empty( ounit, "UNITS_FOR_ATOMIC_MASSES", ATTR = attr ) ! DO i = 1, nsp ! CALL iotk_write_begin( ounit, "SPECIE"//trim(iotk_index(i)) ) ! CALL iotk_write_dat( ounit, "ATOM_TYPE", atm(i) ) ! CALL iotk_write_dat( ounit, "MASS", amass(i) ) ! CALL iotk_write_dat( ounit, "PSEUDO", trim( psfile(i) ) ) ! CALL iotk_write_end( ounit, "SPECIE"//trim(iotk_index(i)) ) ! ! copy pseudopotential file into data directory ! IF ( pseudo_dir(flen:flen) /= '/' ) THEN file_pseudo_in = pseudo_dir(1:flen) // '/' // TRIM(psfile(i)) ELSE file_pseudo_in = pseudo_dir(1:flen) // TRIM(psfile(i)) ENDIF ! IF ( dirname(flen2:flen2) /= '/' ) THEN file_pseudo_out = dirname(1:flen2) // '/' // TRIM(psfile(i)) ELSE file_pseudo_out = dirname(1:flen2) // TRIM(psfile(i)) END IF ! IF ( file_pseudo_in .ne. file_pseudo_out ) THEN ! INQUIRE ( FILE=file_pseudo_in, EXIST = pseudo_exists ) IF ( pseudo_exists ) THEN ierrl = f_copy( file_pseudo_in, file_pseudo_out ) ELSE CALL infomsg( 'write_ions', & 'file ' // TRIM( file_pseudo_in) // ' not present' ) END IF ! END IF ! ENDDO ! ! CALL iotk_write_dat( ounit, "PSEUDO_DIR", trim( pseudo_dir) ) ! CALL iotk_write_attr( attr, "UNITS", trim(tau_units), FIRST = .true. ) CALL iotk_write_empty( ounit, "UNITS_FOR_ATOMIC_POSITIONS", ATTR = attr ) ! DO i = 1, nat ! CALL iotk_write_attr( attr, "SPECIES", atm( ityp(i) ), FIRST = .true. ) CALL iotk_write_attr( attr, "INDEX", ityp(i) ) CALL iotk_write_attr( attr, "tau", tau(:,i)*pos_unit ) CALL iotk_write_attr( attr, "if_pos", if_pos(:,i) ) CALL iotk_write_empty( ounit, "ATOM" // trim( iotk_index( i ) ), attr ) ! ENDDO ! CALL iotk_write_end( ounit, "IONS" ) ! END SUBROUTINE qexml_write_ions ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_symmetry( ibrav, nrot, nsym, invsym, noinv, & time_reversal, no_t_rev, ft, & s, sname, s_units, irt, nat, t_rev ) !------------------------------------------------------------------------ ! INTEGER, INTENT(in) :: ibrav, nrot, nsym LOGICAL, INTENT(in) :: invsym, noinv, time_reversal, no_t_rev INTEGER, INTENT(in) :: s(:,:,:), irt(:,:), nat, t_rev(:) REAL(DP), INTENT(in) :: ft(:,:) CHARACTER(LEN=*), INTENT(in) :: sname(:),s_units ! INTEGER :: i ! ! CALL iotk_write_begin( ounit, "SYMMETRIES" ) ! CALL iotk_write_dat( ounit, "NUMBER_OF_SYMMETRIES", nsym ) CALL iotk_write_dat( ounit, "NUMBER_OF_BRAVAIS_SYMMETRIES", nrot ) ! CALL iotk_write_dat( ounit, "INVERSION_SYMMETRY", invsym ) ! CALL iotk_write_dat( ounit, "DO_NOT_USE_TIME_REVERSAL", noinv ) ! CALL iotk_write_dat( ounit, "TIME_REVERSAL_FLAG", time_reversal ) ! CALL iotk_write_dat( ounit, "NO_TIME_REV_OPERATIONS", no_t_rev ) ! CALL iotk_write_dat( ounit, "NUMBER_OF_ATOMS", nat ) ! CALL iotk_write_attr( attr, "UNITS", TRIM(s_units), FIRST = .TRUE. ) CALL iotk_write_empty( ounit, "UNITS_FOR_SYMMETRIES", ATTR = attr ) ! DO i = 1, nsym ! CALL iotk_write_begin( ounit, "SYMM" // TRIM( iotk_index( i ) ) ) ! CALL iotk_write_attr ( attr, "NAME", TRIM( sname(i) ), FIRST=.TRUE. ) CALL iotk_write_attr ( attr, "T_REV", t_rev(i) ) CALL iotk_write_empty( ounit, "INFO", ATTR = attr ) ! CALL iotk_write_dat( ounit, "ROTATION", s(:,:,i), COLUMNS=3 ) CALL iotk_write_dat( ounit, "FRACTIONAL_TRANSLATION", ft(:,i), COLUMNS=3 ) ! IF ( nat > 0 ) & CALL iotk_write_dat( ounit, "EQUIVALENT_IONS", irt(i,1:nat), COLUMNS=8 ) ! CALL iotk_write_end( ounit, "SYMM" // TRIM( iotk_index( i ) ) ) ! ENDDO ! ! ... the following are the symmetries of the Bravais lattice alone ! ... (they may be more than crystal, i.e. basis+lattice, symmetries) ! DO i = nsym+1, nrot ! CALL iotk_write_begin( ounit, "SYMM" // TRIM( iotk_index( i ) ) ) ! CALL iotk_write_attr ( attr, "NAME", TRIM( sname(i) ), FIRST=.TRUE. ) CALL iotk_write_empty( ounit, "INFO", ATTR = attr ) CALL iotk_write_dat( ounit, "ROTATION", s(:,:,i), COLUMNS=3 ) ! CALL iotk_write_end( ounit, "SYMM" // TRIM( iotk_index( i ) ) ) ! ENDDO ! CALL iotk_write_end( ounit, "SYMMETRIES" ) ! END SUBROUTINE qexml_write_symmetry ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_efield( tefield, dipfield, edir, emaxpos, eopreg, eamp ) !------------------------------------------------------------------------ ! LOGICAL, INTENT(in) :: tefield ! if .TRUE. a finite electric field ! is added to the local potential LOGICAL, INTENT(in) :: dipfield ! if .TRUE. the dipole field is subtracted INTEGER, INTENT(in) :: edir ! direction of the field REAL(DP), INTENT(in) :: emaxpos ! position of the maximum of the field (00) CALL iotk_write_dat(ounit,"LAMBDA",lambda) ! CALL iotk_write_end( ounit, "MAGNETIZATION_INIT" ) ! RETURN ! END SUBROUTINE qexml_write_magnetization ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_xc( dft, nsp, lda_plus_u, lda_plus_u_kind, U_projection, & Hubbard_lmax, Hubbard_l, Hubbard_U, Hubbard_J, Hubbard_J0, & Hubbard_beta, Hubbard_alpha, & inlc, vdw_table_name, pseudo_dir, dirname ) !------------------------------------------------------------------------ ! CHARACTER(LEN=*), INTENT(IN) :: dft LOGICAL, INTENT(IN) :: lda_plus_u INTEGER, OPTIONAL, INTENT(IN) :: lda_plus_u_kind INTEGER, OPTIONAL, INTENT(IN) :: nsp CHARACTER(LEN=*), OPTIONAL, INTENT(IN) :: U_projection INTEGER, OPTIONAL, INTENT(IN) :: Hubbard_lmax INTEGER, OPTIONAL, INTENT(IN) :: Hubbard_l(:) REAL(DP), OPTIONAL, INTENT(IN) :: Hubbard_U(:), Hubbard_J(:,:), Hubbard_alpha(:), & Hubbard_J0(:), Hubbard_beta(:) INTEGER, OPTIONAL, INTENT(IN) :: inlc CHARACTER(LEN=*), OPTIONAL, INTENT(IN) :: vdw_table_name, pseudo_dir, dirname ! INTEGER :: i, flen, ierrl CHARACTER(LEN=256) :: file_table ! CALL iotk_write_begin( ounit, "EXCHANGE_CORRELATION" ) ! CALL iotk_write_dat( ounit, "DFT", dft ) ! CALL iotk_write_dat( ounit, "LDA_PLUS_U_CALCULATION", lda_plus_u ) ! IF ( lda_plus_u ) THEN ! IF ( .NOT. PRESENT( Hubbard_lmax ) .OR. & .NOT. PRESENT( Hubbard_l ) .OR. & .NOT. PRESENT( Hubbard_U ) .OR. & .NOT. PRESENT( nsp ) )& CALL errore( 'write_xc', & ' variables for LDA+U not present', 1 ) ! CALL iotk_write_dat( ounit, "NUMBER_OF_SPECIES", nsp ) ! CALL iotk_write_dat( ounit, "HUBBARD_LMAX", Hubbard_lmax ) ! CALL iotk_write_dat( ounit, "HUBBARD_L", Hubbard_l(1:nsp) ) ! CALL iotk_write_dat( ounit, "HUBBARD_U", Hubbard_U(1:nsp) ) ! IF ( PRESENT( lda_plus_u_kind ) ) & CALL iotk_write_dat( ounit, "LDA_PLUS_U_KIND", lda_plus_u_kind ) ! IF ( PRESENT( lda_plus_u_kind ) ) & CALL iotk_write_dat( ounit, "U_PROJECTION_TYPE", trim(U_projection) ) ! IF ( PRESENT( Hubbard_J ) ) & CALL iotk_write_dat( ounit, "HUBBARD_J", Hubbard_J(1:3,1:nsp), COLUMNS = 3) ! IF ( PRESENT( Hubbard_J0 ) ) & CALL iotk_write_dat( ounit, "HUBBARD_J0", Hubbard_J0(1:nsp) ) ! IF ( PRESENT( Hubbard_alpha ) ) & CALL iotk_write_dat( ounit, "HUBBARD_ALPHA", Hubbard_alpha(1:nsp) ) ! IF ( PRESENT( Hubbard_beta ) ) & CALL iotk_write_dat( ounit, "HUBBARD_BETA", Hubbard_beta(1:nsp) ) ! END IF ! ! Vdw kernel table ! CALL iotk_write_dat( ounit, "NON_LOCAL_DF", inlc ) IF ( inlc == 1 .OR. inlc ==2 ) THEN IF ( .NOT. PRESENT( vdw_table_name ) .OR. & .NOT. PRESENT( pseudo_dir ) .OR. & .NOT. PRESENT( dirname )) & CALL errore( 'write_xc', & ' variable vdw_table_name not present', 1 ) CALL iotk_write_dat( ounit, "VDW_KERNEL_NAME", vdw_table_name ) ! ! Copy the file in .save directory ! flen = LEN_TRIM( pseudo_dir ) IF ( pseudo_dir(flen:flen) /= '/' ) THEN file_table = pseudo_dir(1:flen) // '/' // vdw_table_name ELSE file_table = pseudo_dir(1:flen) // vdw_table_name END IF ! CALL qexml_copy_file( TRIM( file_table ), TRIM( dirname ) // "/" // TRIM( vdw_table_name ),ierrl ) ! END IF ! ! CALL iotk_write_end( ounit, "EXCHANGE_CORRELATION" ) ! END SUBROUTINE qexml_write_xc ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_exx( x_gamma_extrapolation, nqx1, nqx2, nqx3, & exxdiv_treatment, yukawa, ecutvcut, exx_fraction, & gau_parameter, screening_parameter, exx_is_active ) !------------------------------------------------------------------------ ! LOGICAL, INTENT(IN) :: x_gamma_extrapolation, exx_is_active INTEGER, INTENT(IN) :: nqx1, nqx2, nqx3 CHARACTER(LEN=*), INTENT(IN) :: exxdiv_treatment REAL(DP), INTENT(IN) :: yukawa, ecutvcut, exx_fraction REAL(DP), INTENT(IN) :: screening_parameter REAL(DP), INTENT(IN) :: gau_parameter ! CALL iotk_write_begin(ounit, "EXACT_EXCHANGE" ) call iotk_write_dat(ounit, "x_gamma_extrapolation", x_gamma_extrapolation) call iotk_write_dat(ounit, "nqx1", nqx1) call iotk_write_dat(ounit, "nqx2", nqx2) call iotk_write_dat(ounit, "nqx3", nqx3) call iotk_write_dat(ounit, "exxdiv_treatment", exxdiv_treatment) call iotk_write_dat(ounit, "yukawa", yukawa) call iotk_write_dat(ounit, "ecutvcut", ecutvcut) call iotk_write_dat(ounit, "exx_fraction", exx_fraction) call iotk_write_dat(ounit, "screening_parameter", screening_parameter) call iotk_write_dat(ounit, "gau_parameter", gau_parameter) call iotk_write_dat(ounit, "exx_is_active", exx_is_active) CALL iotk_write_end(ounit, "EXACT_EXCHANGE" ) ! END SUBROUTINE qexml_write_exx ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_occ( lgauss, ngauss, degauss, degauss_units, ltetra, ntetra, tetra, & tfixed_occ, lsda, nstates_up, nstates_dw, input_occ ) !------------------------------------------------------------------------ ! LOGICAL, INTENT(in) :: lgauss, ltetra, tfixed_occ, lsda INTEGER, OPTIONAL, INTENT(in) :: ngauss, ntetra, nstates_up, nstates_dw INTEGER, OPTIONAL, INTENT(in) :: tetra(:,:) REAL(DP), OPTIONAL, INTENT(in) :: degauss, input_occ(:,:) CHARACTER(*), OPTIONAL, INTENT(in) :: degauss_units ! INTEGER :: i ! ! CALL iotk_write_begin( ounit, "OCCUPATIONS" ) ! CALL iotk_write_dat( ounit, "SMEARING_METHOD", lgauss ) ! IF ( lgauss ) THEN ! CALL iotk_write_dat( ounit, "SMEARING_TYPE", ngauss ) ! CALL iotk_write_attr( attr, "UNITS", trim(degauss_units), FIRST = .true. ) ! CALL iotk_write_dat( ounit, "SMEARING_PARAMETER", degauss , ATTR = attr ) ! ENDIF ! CALL iotk_write_dat( ounit, "TETRAHEDRON_METHOD", ltetra ) ! IF ( ltetra ) THEN ! CALL iotk_write_dat( ounit, "NUMBER_OF_TETRAHEDRA", ntetra ) ! DO i = 1, ntetra ! CALL iotk_write_dat( ounit, "TETRAHEDRON" // & & iotk_index( i ), tetra(1:4,i) ) ! ENDDO ! ENDIF ! CALL iotk_write_dat( ounit, "FIXED_OCCUPATIONS", tfixed_occ ) ! IF ( tfixed_occ ) THEN ! CALL iotk_write_attr( attr, "lsda" , lsda, FIRST = .true. ) CALL iotk_write_attr( attr, "nstates_up", nstates_up ) CALL iotk_write_attr( attr, "nstates_down", nstates_dw ) ! CALL iotk_write_empty( ounit, 'INFO', ATTR = attr ) ! CALL iotk_write_dat( ounit, "INPUT_OCC_UP", input_occ(1:nstates_up,1) ) ! IF ( lsda ) & CALL iotk_write_dat( ounit, "INPUT_OCC_DOWN", input_occ(1:nstates_dw,2) ) ! ENDIF ! CALL iotk_write_end( ounit, "OCCUPATIONS" ) ! END SUBROUTINE qexml_write_occ ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_bz( num_k_points, xk, wk, k1, k2, k3, & nk1, nk2, nk3, k_units, qnorm, & nks_start, xk_start, wk_start ) !------------------------------------------------------------------------ ! INTEGER, INTENT(in) :: num_k_points, k1, k2, k3, nk1, nk2, nk3 REAL(DP), INTENT(in) :: xk(:,:), wk(:) CHARACTER(*), INTENT(in) :: k_units REAL(DP), INTENT(IN) :: qnorm INTEGER, INTENT(IN), OPTIONAL :: nks_start REAL(DP), INTENT(IN), OPTIONAL :: xk_start(:,:), wk_start(:) ! INTEGER :: ik ! ! CALL iotk_write_begin( ounit, "BRILLOUIN_ZONE" ) ! CALL iotk_write_dat( ounit, "NUMBER_OF_K-POINTS", num_k_points ) ! CALL iotk_write_attr( attr, "UNITS", trim(k_units), FIRST = .true. ) CALL iotk_write_empty( ounit, "UNITS_FOR_K-POINTS", attr ) ! CALL iotk_write_attr( attr, "nk1", nk1, FIRST = .true. ) CALL iotk_write_attr( attr, "nk2", nk2 ) CALL iotk_write_attr( attr, "nk3", nk3 ) CALL iotk_write_empty( ounit, "MONKHORST_PACK_GRID", attr ) CALL iotk_write_attr( attr, "k1", k1, FIRST = .true. ) CALL iotk_write_attr( attr, "k2", k2 ) CALL iotk_write_attr( attr, "k3", k3 ) CALL iotk_write_empty( ounit, "MONKHORST_PACK_OFFSET", attr ) ! DO ik = 1, num_k_points ! CALL iotk_write_attr( attr, "XYZ", xk(:,ik), FIRST = .true. ) ! CALL iotk_write_attr( attr, "WEIGHT", wk(ik) ) ! CALL iotk_write_empty( ounit, "K-POINT" // & & trim( iotk_index(ik) ), attr ) ! ENDDO ! ! ... these are k-points and weights in the Irreducible BZ ! IF (present(nks_start).and.present(xk_start).and.present(wk_start)) THEN ! CALL iotk_write_dat( ounit, "STARTING_K-POINTS", nks_start ) ! DO ik = 1, nks_start ! CALL iotk_write_attr( attr, "XYZ", xk_start(:,ik), FIRST = .TRUE. ) ! CALL iotk_write_attr( attr, "WEIGHT", wk_start(ik) ) ! CALL iotk_write_empty( ounit, "K-POINT_START" // & & TRIM( iotk_index(ik) ), attr ) ! END DO ENDIF ! CALL iotk_write_dat( ounit, "NORM-OF-Q", qnorm ) ! CALL iotk_write_end( ounit, "BRILLOUIN_ZONE" ) ! END SUBROUTINE qexml_write_bz ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_para( kunit, nproc, nproc_pool, nproc_image, & ntask_groups, nproc_pot, nproc_bgrp, nproc_ortho ) !------------------------------------------------------------------------ ! INTEGER, INTENT(IN) :: kunit, nproc, nproc_pool, nproc_image, & ntask_groups, nproc_pot, nproc_bgrp, nproc_ortho ! ! CALL iotk_write_begin( ounit, "PARALLELISM" ) CALL iotk_write_dat( ounit, & "GRANULARITY_OF_K-POINTS_DISTRIBUTION", kunit ) CALL iotk_write_dat( ounit, "NUMBER_OF_PROCESSORS", nproc ) CALL iotk_write_dat( ounit, & "NUMBER_OF_PROCESSORS_PER_POOL", nproc_pool ) CALL iotk_write_dat( ounit, & "NUMBER_OF_PROCESSORS_PER_IMAGE", nproc_image ) CALL iotk_write_dat( ounit, "NUMBER_OF_PROCESSORS_PER_TASKGROUP", & ntask_groups ) CALL iotk_write_dat( ounit, "NUMBER_OF_PROCESSORS_PER_POT", & nproc_pot ) CALL iotk_write_dat( ounit, "NUMBER_OF_PROCESSORS_PER_BAND_GROUP", & nproc_bgrp ) CALL iotk_write_dat( ounit, "NUMBER_OF_PROCESSORS_PER_DIAGONALIZATION", & nproc_ortho ) CALL iotk_write_end( ounit, "PARALLELISM" ) ! ! END SUBROUTINE qexml_write_para ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_phonon( modenum, xqq, q_units ) !------------------------------------------------------------------------ ! INTEGER, INTENT(in) :: modenum REAL(DP), INTENT(in) :: xqq(:) CHARACTER(*), INTENT(in) :: q_units ! ! CALL iotk_write_begin( ounit, "PHONON" ) ! CALL iotk_write_dat( ounit, "NUMBER_OF_MODES", modenum ) ! CALL iotk_write_attr( attr, "UNITS", trim(q_units), FIRST = .true. ) CALL iotk_write_empty( ounit, "UNITS_FOR_Q-POINT", attr ) ! CALL iotk_write_dat( ounit, "Q-POINT", xqq(:), COLUMNS=3 ) ! CALL iotk_write_end( ounit, "PHONON" ) ! END SUBROUTINE qexml_write_phonon ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_bands_info( num_k_points, natomwfc, & nbnd, nbnd_up, nbnd_down, & nspin, nelec, nel_up, nel_down, & energy_units, k_units, & ef, two_fermi_energies ,& ef_up, ef_down, noncolin ) !------------------------------------------------------------------------ ! INTEGER, INTENT(in) :: num_k_points, natomwfc, nbnd, nbnd_up, nbnd_down, & nspin, nel_up, nel_down REAL(DP), INTENT(in) :: nelec CHARACTER(*), INTENT(in) :: energy_units, k_units LOGICAL, INTENT(in), OPTIONAL :: noncolin,two_fermi_energies REAL(DP), INTENT(in), OPTIONAL :: ef,ef_up,ef_down ! ! CALL iotk_write_begin( ounit, "BAND_STRUCTURE_INFO" ) ! CALL iotk_write_dat ( ounit, "NUMBER_OF_K-POINTS", num_k_points ) ! CALL iotk_write_dat ( ounit, "NUMBER_OF_SPIN_COMPONENTS", nspin ) ! IF (present(noncolin)) CALL iotk_write_dat ( ounit, "NON-COLINEAR_CALCULATION", noncolin ) ! CALL iotk_write_dat ( ounit, "NUMBER_OF_ATOMIC_WFC", natomwfc ) ! IF ( nspin == 2 ) THEN ! CALL iotk_write_attr( attr, "UP", nbnd_up, FIRST = .TRUE. ) CALL iotk_write_attr( attr, "DW", nbnd_down ) CALL iotk_write_dat( ounit, & "NUMBER_OF_BANDS", nbnd, ATTR = attr ) CALL iotk_write_attr( attr, "UP", nel_up, FIRST = .TRUE. ) CALL iotk_write_attr( attr, "DW", nel_down ) CALL iotk_write_dat( ounit, & "NUMBER_OF_ELECTRONS", nelec, ATTR = attr ) ELSE ! CALL iotk_write_dat ( ounit, "NUMBER_OF_BANDS", nbnd ) CALL iotk_write_dat ( ounit, "NUMBER_OF_ELECTRONS", nelec ) ! END IF ! CALL iotk_write_attr ( attr, "UNITS", trim(k_units), FIRST = .TRUE. ) CALL iotk_write_empty( ounit, "UNITS_FOR_K-POINTS", ATTR = attr ) ! CALL iotk_write_attr ( attr, "UNITS", trim(energy_units), FIRST = .TRUE. ) CALL iotk_write_empty( ounit, "UNITS_FOR_ENERGIES", ATTR = attr ) ! ! ! IF (present(two_fermi_energies) ) THEN IF (two_fermi_energies) THEN ! CALL iotk_write_dat( ounit,"TWO_FERMI_ENERGIES",two_fermi_energies) CALL iotk_write_dat( ounit, "ELECTRONS_UP", nel_up ) CALL iotk_write_dat( ounit, "ELECTRONS_DOWN", nel_down ) CALL iotk_write_dat( ounit, "FERMI_ENERGY_UP", ef_up ) CALL iotk_write_dat( ounit, "FERMI_ENERGY_DOWN", ef_down ) ! ELSE ! IF (present(ef)) CALL iotk_write_dat( ounit, "FERMI_ENERGY", ef ) ! ENDIF ELSE ! IF (present(ef)) CALL iotk_write_dat( ounit, "FERMI_ENERGY", ef ) ! ENDIF ! CALL iotk_write_end ( ounit, "BAND_STRUCTURE_INFO" ) ! ! END SUBROUTINE qexml_write_bands_info ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_bands_pw( nbnd, num_k_points, nspin, xk, wk, wg , et, energy_units, lkpoint_dir ,auxunit, dirname ) !------------------------------------------------------------------------ ! INTEGER, INTENT(in) :: nbnd,num_k_points,nspin,auxunit REAL(DP), INTENT(in) :: xk(:,:),wk(:),wg(:,:),et(:,:) CHARACTER(*), INTENT(IN) :: energy_units LOGICAL, INTENT(in) :: lkpoint_dir CHARACTER(len=*), INTENT(in) :: dirname ! REAL(DP), ALLOCATABLE :: raux(:) INTEGER :: ik,ispin,ik_eff CHARACTER(LEN=256) :: filename ! ! CALL iotk_write_begin( ounit, "EIGENVALUES" ) ! ALLOCATE( raux( nbnd) ) ! DO ik = 1, num_k_points ! ! CALL iotk_write_begin( ounit, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! CALL iotk_write_dat( ounit, "K-POINT_COORDS", xk(:,ik), COLUMNS=3 ) ! CALL iotk_write_dat( ounit, "WEIGHT", wk(ik) ) ! ! IF ( nspin == 2 ) THEN ! ispin = 1 ! IF (lkpoint_dir) THEN ! filename = qexml_wfc_filename(".",'eigenval1', ik, EXTENSION='xml',& DIR=lkpoint_dir ) ! CALL iotk_link( ounit, "DATAFILE.1", & filename, CREATE = .FALSE., BINARY = .FALSE. ) ELSE CALL iotk_write_begin( auxunit, & "DATA_EIG"//TRIM( iotk_index( ik ) )//"_SPIN_UP" ) ENDIF ! IF ( wk(ik) == 0.D0 ) THEN ! raux = wg(:,ik) ! ELSE ! raux = wg(:,ik) / wk(ik) ! END IF ! ! IF (lkpoint_dir) THEN filename = qexml_wfc_filename( dirname, 'eigenval1', ik, & EXTENSION='xml', DIR=lkpoint_dir ) ! CALL qexml_write_eig( auxunit, filename, nbnd, et(:, ik), & trim(energy_units), OCC = raux(:), IK=ik, ISPIN=ispin ) ELSE filename=' ' CALL qexml_write_eig( auxunit, filename, nbnd, et(:, ik), & trim(energy_units), OCC = raux(:), IK=ik, ISPIN=ispin, & LKPOINT_DIR=.FALSE. ) ENDIF ! ispin = 2 ! ik_eff = ik + num_k_points ! IF (lkpoint_dir) THEN filename = qexml_wfc_filename( ".", 'eigenval2', ik, & EXTENSION='xml', DIR=lkpoint_dir ) ! CALL iotk_link( ounit, "DATAFILE.2", & filename, CREATE = .FALSE., BINARY = .FALSE. ) ELSE CALL iotk_write_end( auxunit, & "DATA_EIG"//TRIM( iotk_index( ik ) )//"_SPIN_UP" ) CALL iotk_write_begin( auxunit, & "DATA_EIG"//TRIM( iotk_index( ik ) )//"_SPIN_DW" ) ENDIF ! IF ( wk(ik_eff) == 0.D0 ) THEN ! raux = wg(:,ik_eff) ! ELSE ! raux = wg(:,ik_eff) / wk(ik_eff) ! END IF ! IF (lkpoint_dir) THEN filename = qexml_wfc_filename( dirname, 'eigenval2', ik, & EXTENSION = 'xml', DIR=lkpoint_dir ) ! CALL qexml_write_eig( auxunit, filename, nbnd, et(:, ik_eff) , & trim(energy_units), OCC = raux(:), IK = ik, ISPIN = ispin) ELSE filename=' ' CALL qexml_write_eig( auxunit, filename, nbnd, et(:, ik_eff) , & trim(energy_units), OCC = raux(:), IK = ik, & ISPIN = ispin, LKPOINT_DIR=.false.) CALL iotk_write_end( auxunit, & "DATA_EIG"//TRIM( iotk_index( ik ) )//"_SPIN_DW" ) ENDIF ! ELSE ! IF (lkpoint_dir) THEN filename = qexml_wfc_filename( ".", 'eigenval', ik, & EXTENSION='xml', DIR=lkpoint_dir ) ! CALL iotk_link( ounit, "DATAFILE", & filename, CREATE = .FALSE., BINARY = .FALSE. ) ELSE CALL iotk_write_begin( auxunit, & "DATA_EIG"//TRIM( iotk_index( ik ) ) ) ENDIF ! IF ( wk(ik) == 0.D0 ) THEN ! raux(:) = wg(:,ik) ! ELSE ! raux(:) = wg(:,ik) / wk(ik) ! END IF ! IF (lkpoint_dir) THEN filename = qexml_wfc_filename( dirname, 'eigenval', ik, & EXTENSION='xml', DIR=lkpoint_dir ) ! CALL qexml_write_eig( auxunit, filename, nbnd, et(:, ik), & trim(energy_units), OCC = raux(:), IK = ik ) ELSE filename=' ' CALL qexml_write_eig( auxunit, filename, nbnd, et(:, ik), & trim(energy_units), OCC = raux(:), IK = ik, & LKPOINT_DIR=.false. ) CALL iotk_write_end( auxunit, & "DATA_EIG"//TRIM( iotk_index( ik ) ) ) ENDIF ! END IF ! CALL iotk_write_end( ounit, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! ENDDO ! ! DEALLOCATE ( raux ) ! ! CALL iotk_write_end( ounit, "EIGENVALUES" ) ! END SUBROUTINE qexml_write_bands_pw ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_bands_cp( nbnd, num_k_points, nspin, iupdwn, nupdwn, xk, wk, et, tksw, & occ0, occm, energy_units, k_units, auxunit ,dirname ) !------------------------------------------------------------------------ ! ! INTEGER, INTENT(in) :: nbnd,num_k_points,nspin, iupdwn(2),nupdwn(2),auxunit REAL(DP), INTENT(in) :: xk(:,:),wk(:),et(:,:) CHARACTER(len=*), INTENT(in) :: dirname,k_units,energy_units LOGICAL, INTENT(in) :: tksw REAL(DP), INTENT(in) :: occ0(:) REAL(DP), INTENT(in) :: occm(:) ! ! REAL(DP), ALLOCATABLE :: dtmp(:) INTEGER :: iss, ik CHARACTER(LEN=4) :: cspin CHARACTER(LEN=256) :: filename ! ! CALL iotk_write_begin( ounit, "EIGENVALUES" ) ! DO ik = 1, num_k_points ! CALL iotk_write_begin( ounit, "K-POINT" // TRIM( iotk_index(ik) ) ) ! CALL iotk_write_attr( attr, "UNITS", "2 pi / a", FIRST = .TRUE. ) CALL iotk_write_dat( ounit, "K-POINT_COORDS", xk(:,ik), ATTR = attr ) ! CALL iotk_write_dat( ounit, "WEIGHT", wk(ik) ) ! ALLOCATE( dtmp ( nbnd ) ) ! DO iss = 1, nspin ! cspin = iotk_index( iss ) ! dtmp = 0.0d0 ! IF( tksw ) THEN ! ! IF( nspin == 2 ) THEN IF( iss == 1 ) filename = qexml_wfc_filename( ".", 'eigenval1', ik, EXTENSION='xml' ) IF( iss == 2 ) filename = qexml_wfc_filename( ".", 'eigenval2', ik, EXTENSION='xml' ) ! IF( iss == 1 ) CALL iotk_link( ounit, "DATAFILE.1", & filename, CREATE = .FALSE., BINARY = .FALSE. ) IF( iss == 2 ) CALL iotk_link( ounit, "DATAFILE.2", & filename, CREATE = .FALSE., BINARY = .FALSE. ) IF( iss == 1 ) filename = qexml_wfc_filename( dirname, 'eigenval1', ik, EXTENSION='xml' ) IF( iss == 2 ) filename = qexml_wfc_filename( dirname, 'eigenval2', ik, EXTENSION='xml' ) ELSE filename = qexml_wfc_filename( ".", 'eigenval', ik, EXTENSION='xml' ) CALL iotk_link( ounit, "DATAFILE", filename, CREATE = .FALSE., BINARY = .FALSE. ) filename = qexml_wfc_filename( dirname, 'eigenval', ik, EXTENSION='xml' ) END IF dtmp ( 1:nupdwn( iss ) ) = occ0( iupdwn( iss ) : iupdwn( iss ) + nupdwn( iss ) - 1 ) / wk(ik) ! CALL qexml_write_eig( auxunit, filename, nbnd, et( 1:nbnd, iss) , energy_units, & OCC = dtmp(:), IK=ik, ISPIN=iss ) END IF ! CALL iotk_write_dat( ounit, "OCC0" // TRIM( cspin ), & occ0( iupdwn( iss ) : iupdwn( iss ) + nupdwn( iss ) - 1 ) ) ! CALL iotk_write_dat( ounit, "OCCM" // TRIM( cspin ), & occm( iupdwn( iss ) : iupdwn( iss ) + nupdwn( iss ) - 1 ) ) ! END DO ! DEALLOCATE( dtmp ) ! CALL iotk_write_end( ounit, "K-POINT" // TRIM( iotk_index(ik) ) ) ! END DO ! CALL iotk_write_end( ounit, "EIGENVALUES" ) ! ! END SUBROUTINE qexml_write_bands_cp ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_eig( iuni, filename, nbnd, eig, energy_units, & occ, ik, ispin, lkpoint_dir ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iuni INTEGER, INTENT(IN) :: nbnd REAL(DP), INTENT(IN) :: eig(:) CHARACTER(*), INTENT(IN) :: energy_units REAL(DP), OPTIONAL, INTENT(IN) :: occ(:) INTEGER, OPTIONAL, INTENT(IN) :: ik, ispin LOGICAL, OPTIONAL, INTENT(IN) :: lkpoint_dir CHARACTER(LEN=256), INTENT(IN) :: filename LOGICAL :: lkpoint_dir0 ! lkpoint_dir0=.TRUE. IF (present(lkpoint_dir)) lkpoint_dir0=lkpoint_dir ! ! IF (lkpoint_dir0) CALL iotk_open_write ( iuni, & FILE = TRIM( filename ), BINARY = .FALSE. ) ! CALL iotk_write_attr ( attr, "nbnd", nbnd, FIRST=.TRUE. ) IF ( PRESENT( ik) ) CALL iotk_write_attr ( attr, "ik", ik ) IF ( PRESENT( ispin) ) CALL iotk_write_attr ( attr, "ispin", ispin ) CALL iotk_write_empty( iuni, "INFO", ATTR = attr ) ! CALL iotk_write_attr ( attr, "UNITS", TRIM(energy_units), FIRST = .TRUE. ) CALL iotk_write_empty( iuni, "UNITS_FOR_ENERGIES", ATTR=attr) ! CALL iotk_write_dat( iuni, "EIGENVALUES", eig(:) ) ! IF ( PRESENT( occ ) ) THEN ! CALL iotk_write_dat( iuni, "OCCUPATIONS", occ(:) ) ! ENDIF ! IF (lkpoint_dir0) CALL iotk_close_write ( iuni ) ! ! END SUBROUTINE qexml_write_eig ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_wfc( nbnd, nkpts, nspin, ik, ispin, ipol, igk, ngw, igwx, & gamma_only, wf, wf_kindip, scale_factor ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nbnd, nkpts, nspin INTEGER, INTENT(in) :: ik INTEGER, OPTIONAL, INTENT(in) :: ispin, ipol INTEGER, INTENT(in) :: ngw, igwx LOGICAL, INTENT(in) :: gamma_only INTEGER, OPTIONAL, INTENT(in) :: igk(:) COMPLEX(DP), OPTIONAL, INTENT(in) :: wf(:,:) COMPLEX(DP), OPTIONAL, INTENT(in) :: wf_kindip(:,:) REAL(DP), OPTIONAL, INTENT(in) :: scale_factor ! INTEGER :: iunaux, ierr INTEGER :: ig, ib CHARACTER(256) :: filename COMPLEX(DP), ALLOCATABLE :: wtmp(:) ierr = 0 ! IF ( present( ispin ) .and. present( ipol ) ) THEN ! ierr = 1 RETURN ! ENDIF ! ! open the file to write ! CALL iotk_free_unit( iunaux ) ! IF ( present( ispin ) ) THEN ! filename = trim( qexml_wfc_filename( datadir_out, 'evc', ik, ispin ) ) ! ELSEIF ( present( ipol ) ) THEN ! filename = trim( qexml_wfc_filename( datadir_out, 'evc', ik, ipol ) ) ! ELSE ! filename = trim( qexml_wfc_filename( datadir_out, 'evc', ik ) ) ! ENDIF ! CALL iotk_open_write ( iunaux, FILE = trim(filename), ROOT="WFC", BINARY=.true., IERR=ierr ) IF (ierr/=0) RETURN ! ! CALL iotk_write_attr( attr, "ngw", ngw, FIRST = .true. ) CALL iotk_write_attr( attr, "igwx", igwx ) CALL iotk_write_attr( attr, "gamma_only", gamma_only ) CALL iotk_write_attr( attr, "nbnd", nbnd ) CALL iotk_write_attr( attr, "ik", ik ) CALL iotk_write_attr( attr, "nk", nkpts ) CALL iotk_write_attr( attr, "ispin", ispin ) CALL iotk_write_attr( attr, "nspin", nspin ) IF ( present( scale_factor) ) CALL iotk_write_attr( attr, "scale_factor", scale_factor ) ! CALL iotk_write_empty( iunaux, "INFO", attr ) ! ! IF ( present( wf ) ) THEN ! ! write wfcs without any G-reordering ! DO ib = 1, nbnd ! CALL iotk_write_dat( iunaux, "evc" // trim(iotk_index( ib )), wf( 1: ngw, ib) ) ! ENDDO ! ENDIF ! ! IF ( present( wf_kindip ) ) THEN ! ! we need to reorder wfcs in terms of G-vectors ! we need the igk map ! IF ( .not. present( igk ) ) THEN ierr = 71 RETURN ENDIF ! ALLOCATE( wtmp( ngw ) ) ! DO ib = 1, nbnd ! DO ig = 1, ngw ! wtmp( ig ) = wf_kindip( igk(ig), ib) ! ENDDO ! CALL iotk_write_dat( iunaux, "evc" // trim(iotk_index( ib )), wtmp( 1: ngw) ) ! ENDDO ! DEALLOCATE( wtmp ) ! ENDIF ! ! CALL iotk_close_write( iunaux ) ! END SUBROUTINE qexml_write_wfc ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_write_rho( nr1, nr2, nr3, rho, nr1x, nr2x, rhov, binary ) !------------------------------------------------------------------------ ! ! Writes charge density rho, one plane at a time. ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nr1, nr2, nr3 INTEGER, OPTIONAL, INTENT(in) :: nr1x, nr2x REAL(DP), OPTIONAL, INTENT(in) :: rho(:,:,:), rhov(:) LOGICAL, OPTIONAL, INTENT(in) :: binary ! INTEGER :: iunaux, nr1x_, nr2x_, ip, i1, i2, i LOGICAL :: binary_ CHARACTER(256) :: filename REAL(DP), ALLOCATABLE :: plane(:,:) ! ! CALL iotk_free_unit( iunaux ) ! binary_ = .true. IF ( present (binary) ) binary_ = binary ! IF ( binary_ ) THEN ! filename = trim( datadir_out ) // '/' //'charge-density.dat' ! ELSE ! filename = trim( datadir_out ) // '/' //'charge-density.xml' ! ENDIF ! CALL iotk_open_write( iunaux, FILE = trim(filename), BINARY=binary_ ) ! ! CALL iotk_write_begin( iunaux, "CHARGE-DENSITY" ) ! CALL iotk_write_attr( attr, "nr1", nr1, FIRST = .true. ) CALL iotk_write_attr( attr, "nr2", nr2 ) CALL iotk_write_attr( attr, "nr3", nr3 ) ! CALL iotk_write_empty( iunaux, "INFO", attr ) ! ! IF ( present( rho ) ) THEN ! DO ip = 1, nr3 ! CALL iotk_write_dat( iunaux, "z"//trim(iotk_index(ip)), rho(1:nr1,1:nr2,ip) ) ! ENDDO ! ELSEIF ( present( rhov ) ) THEN ! nr1x_ = nr1 IF ( present( nr1x )) nr1x_ = nr1x nr2x_ = nr2 IF ( present( nr2x )) nr2x_ = nr2x ! IF ( nr1x_ /= nr1 .or. nr2x_ /= nr2 ) THEN ! ! we need to separately reconstruct the rho-plane ! ALLOCATE( plane(nr1, nr2 ) ) ! DO ip = 1, nr3 ! DO i2 = 1, nr2 DO i1 = 1, nr1 ! i = (nr1x_ * nr2x_) * ( ip -1 ) + nr1x_ * ( i2 -1 ) + i1 ! plane( i1, i2) = rhov( i ) ! ENDDO ENDDO ! CALL iotk_write_dat( iunaux, "z"//trim(iotk_index(ip)), plane ) ! ENDDO ! DEALLOCATE( plane ) ! ELSE ! DO ip = 1, nr3 ! i1 = ( nr1 * nr2 ) * ( ip -1 ) + 1 i2 = ( nr1 * nr2 ) * ip ! CALL iotk_write_dat( iunaux, "z"//trim(iotk_index(ip)), rhov(i1:i2) ) ! ENDDO ! ENDIF ! ENDIF ! ! CALL iotk_write_end( iunaux, "CHARGE-DENSITY" ) ! CALL iotk_close_write( iunaux ) ! ! END SUBROUTINE qexml_write_rho ! !------------------------------------------- ! ... read subroutines !------------------------------------------- ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_header( creator_name, creator_version, & format_name, format_version, ierr ) !------------------------------------------------------------------------ ! IMPLICIT NONE CHARACTER(len=*), OPTIONAL, INTENT(out) :: creator_name, creator_version CHARACTER(len=*), OPTIONAL, INTENT(out) :: format_name, format_version INTEGER, INTENT(out) :: ierr ! CHARACTER(256) :: creator_name_, creator_version_ CHARACTER(256) :: format_name_, format_version_ ! ierr = 0 ! ! CALL iotk_scan_begin( iunit, "HEADER", IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_empty( iunit, "FORMAT", ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr(attr, "NAME", format_name_, IERR=ierr) IF (ierr/=0) RETURN CALL iotk_scan_attr(attr, "VERSION", format_version_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_empty( iunit, "CREATOR", ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr(attr, "NAME", creator_name_, IERR=ierr) IF (ierr/=0) RETURN CALL iotk_scan_attr(attr, "VERSION", creator_version_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_end( iunit, "HEADER", IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( present(creator_name) ) creator_name = trim(creator_name_) IF ( present(creator_version) ) creator_version = trim(creator_version_) IF ( present(format_name) ) format_name = trim(format_name_) IF ( present(format_version) ) format_version = trim(format_version_) ! END SUBROUTINE qexml_read_header ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_status_cp( nfi,simtime,time_units,title, & ekin, eht, esr, eself, epseu, enl, exc, vave, enthal, & energy_units, found, ierr ) !------------------------------------------------------------------------ ! INTEGER, OPTIONAL, INTENT(OUT) :: nfi REAL(DP), OPTIONAL, INTENT(OUT) :: simtime, ekin,eht,esr,eself,epseu,enl,exc,vave,enthal CHARACTER(len=*), OPTIONAL, INTENT(OUT) :: time_units, title, energy_units LOGICAL,INTENT(OUT) :: found INTEGER, INTENT(OUT) :: ierr ! INTEGER :: nfi_ REAL(DP) :: simtime_, ekin_,eht_,esr_,eself_,epseu_,enl_,exc_,vave_,enthal_ CHARACTER(len=256) :: time_units_, title_, energy_units_ ! CALL iotk_scan_begin( iunit, "STATUS", ATTR=attr, FOUND = found ) IF ( (ierr /= 0).OR.(.NOT.found) ) RETURN ! CALL iotk_scan_empty( iunit, "STEP", ATTR = attr, IERR = ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "ITERATION", nfi_, IERR = ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "TIME", simtime_, ATTR = attr, IERR = ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "UNITS", time_units_, IERR = ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "TITLE", title_, IERR = ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "KINETIC_ENERGY", ekin_, ATTR = attr, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "UNITS", energy_units_, IERR = ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "HARTREE_ENERGY", eht_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "EWALD_TERM", esr_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "GAUSS_SELFINT", eself_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "LPSP_ENERGY", epseu_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "NLPSP_ENERGY", enl_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "EXC_ENERGY", exc_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "AVERAGE_POT", vave_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "ENTHALPY", enthal_,IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_end( iunit, "STATUS", IERR=ierr ) IF (ierr/=0) RETURN ! ! IF (present(nfi)) nfi = nfi_ IF (present(simtime)) simtime = simtime_ IF (present(time_units)) time_units = time_units_ IF (present(title)) title = title_ IF (present(ekin)) ekin = ekin_ IF (present(eht)) eht = eht_ IF (present(esr)) esr = esr_ IF (present(eself)) eself = eself_ IF (present(epseu)) epseu = epseu_ IF (present(enl)) enl = enl_ IF (present(exc)) exc = exc_ IF (present(vave)) vave = vave_ IF (present(enthal)) enthal = enthal_ IF (present(energy_units)) energy_units = energy_units_ ! END SUBROUTINE qexml_read_status_cp ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_cell( bravais_lattice, celldm, alat, & a1, a2, a3, b1, b2, b3, alat_units, a_units, b_units, es_corr, ierr ) !------------------------------------------------------------------------ ! CHARACTER(len=*), OPTIONAL, INTENT(out) :: bravais_lattice REAL(DP), OPTIONAL, INTENT(out) :: celldm(6), alat REAL(DP), OPTIONAL, INTENT(out) :: a1(3), a2(3), a3(3) REAL(DP), OPTIONAL, INTENT(out) :: b1(3), b2(3), b3(3) CHARACTER(len=*), OPTIONAL, INTENT(out) :: alat_units, a_units, b_units CHARACTER(len=*), OPTIONAL, INTENT(out) :: es_corr INTEGER, INTENT(out) :: ierr ! CHARACTER(256) :: bravais_lattice_ CHARACTER(256) :: alat_units_, a_units_, b_units_,es_corr_ REAL(DP) :: celldm_(6), alat_ REAL(DP) :: a1_(3), a2_(3), a3_(3) REAL(DP) :: b1_(3), b2_(3), b3_(3) ! ierr=0 ! ! CALL iotk_scan_begin( iunit, "CELL" ) ! CALL iotk_scan_dat( iunit, "BRAVAIS_LATTICE", bravais_lattice_, IERR=ierr ) IF ( ierr /= 0 ) RETURN ! ! CALL iotk_scan_dat( iunit, "NON-PERIODIC_CELL_CORRECTION", es_corr_, IERR=ierr) IF ( ierr /= 0 ) RETURN ! ! CALL iotk_scan_dat( iunit, "LATTICE_PARAMETER", alat_, ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN ! ! CALL iotk_scan_attr( attr, "UNITS", alat_units_, IERR=ierr ) IF ( ierr /= 0 ) RETURN ! ! CALL iotk_scan_dat( iunit, "CELL_DIMENSIONS", celldm_, IERR=ierr ) IF (ierr/=0) RETURN ! ! CALL iotk_scan_begin( iunit, "DIRECT_LATTICE_VECTORS", IERR=ierr ) IF (ierr/=0) RETURN ! ! CALL iotk_scan_empty( iunit, "UNITS_FOR_DIRECT_LATTICE_VECTORS", & ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "UNITS", a_units_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_dat( iunit, "a1", a1_(:), ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_dat( iunit, "a2", a2_(:), IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_dat( iunit, "a3", a3_(:), IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_end( iunit, "DIRECT_LATTICE_VECTORS", IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_begin( iunit, "RECIPROCAL_LATTICE_VECTORS", IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_empty( iunit, "UNITS_FOR_RECIPROCAL_LATTICE_VECTORS", & ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "UNITS", b_units_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_dat( iunit, "b1", b1_(:), ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_dat( iunit, "b2", b2_(:), IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_dat( iunit, "b3", b3_(:), IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_end( iunit, "RECIPROCAL_LATTICE_VECTORS", IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_end( iunit, "CELL", IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( present(bravais_lattice) ) bravais_lattice = bravais_lattice_ IF ( present(celldm) ) celldm = celldm_ IF ( present(alat) ) alat = alat_ IF ( present(a1) ) a1 = a1_ IF ( present(a2) ) a2 = a2_ IF ( present(a3) ) a3 = a3_ IF ( present(b1) ) b1 = b1_ IF ( present(b2) ) b2 = b2_ IF ( present(b3) ) b3 = b3_ IF ( present(alat_units) ) alat_units = trim(alat_units_) IF ( present(a_units) ) a_units = trim(a_units_) IF ( present(b_units) ) b_units = trim(b_units_) IF ( present(es_corr) ) es_corr = trim(es_corr_) ! END SUBROUTINE qexml_read_cell ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_moving_cell(lmovecell, cell_factor, ierr) !------------------------------------------------------------------------ ! LOGICAL, INTENT(OUT) :: lmovecell REAL(DP), INTENT(OUT) :: cell_factor INTEGER, INTENT(OUT) :: ierr ! LOGICAL :: found ! CALL iotk_scan_begin( iunit, "MOVING_CELL", found=lmovecell, IERR=ierr ) ! IF (lmovecell) THEN CALL iotk_scan_dat( iunit, "CELL_FACTOR", cell_factor, IERR=ierr) IF (ierr/=0) RETURN ! CALL iotk_scan_end( iunit, "MOVING_CELL", IERR=ierr ) IF (ierr/=0) RETURN END IF ! END SUBROUTINE qexml_read_moving_cell ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_ions( nsp, nat, atm, ityp, psfile, amass, amass_units, & tau, tau_units, if_pos, pseudo_dir, ierr ) !------------------------------------------------------------------------ ! INTEGER, OPTIONAL, INTENT(out) :: nsp, nat INTEGER, OPTIONAL, INTENT(out) :: ityp(:) CHARACTER(len=*), OPTIONAL, INTENT(out) :: atm(:) CHARACTER(len=*), OPTIONAL, INTENT(out) :: psfile(:) REAL(DP), OPTIONAL, INTENT(out) :: amass(:) CHARACTER(len=*), OPTIONAL, INTENT(out) :: amass_units REAL(DP), OPTIONAL, INTENT(out) :: tau(:,:) INTEGER, OPTIONAL, INTENT(out) :: if_pos(:,:) CHARACTER(len=*), OPTIONAL, INTENT(out) :: tau_units CHARACTER(len=*), OPTIONAL, INTENT(out) :: pseudo_dir INTEGER, INTENT(out) :: ierr ! INTEGER :: nat_, nsp_ CHARACTER(256) :: tau_units_, amass_units_ INTEGER, ALLOCATABLE :: ityp_(:) CHARACTER(3), ALLOCATABLE :: atm_(:) CHARACTER(256), ALLOCATABLE :: psfile_(:) CHARACTER(256) :: pseudo_dir_ REAL(DP), ALLOCATABLE :: amass_(:) REAL(DP), ALLOCATABLE :: tau_(:,:) INTEGER, ALLOCATABLE :: if_pos_(:,:) ! INTEGER :: i ! ierr=0 ! ! CALL iotk_scan_begin( iunit, "IONS", IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "NUMBER_OF_ATOMS", nat_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "NUMBER_OF_SPECIES", nsp_ ) IF (ierr/=0) RETURN ! CALL iotk_scan_empty( iunit, "UNITS_FOR_ATOMIC_MASSES", ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "UNITS", amass_units_, IERR=ierr ) IF (ierr/=0) RETURN ! IF ( present(nat) ) nat = nat_ IF ( present(nsp) ) nsp = nsp_ ! ALLOCATE( atm_(nsp_) ) ALLOCATE( amass_(nsp_) ) ALLOCATE( psfile_(nsp_) ) ! DO i = 1, nsp_ ! IF ( qexml_version_before_1_4_0 ) THEN ! CALL iotk_scan_dat( iunit, "ATOM_TYPE", atm_(i), IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_dat( iunit, trim( atm_(i) ) // "_MASS", amass_(i), IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_dat( iunit, "PSEUDO_FOR_" // trim( atm_(i) ), & psfile_(i), IERR=ierr ) IF (ierr/=0) RETURN ! ELSE ! ! current version ! CALL iotk_scan_begin( iunit, "SPECIE"//trim(iotk_index(i)), IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "ATOM_TYPE", atm_(i), IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_dat( iunit, "MASS", amass_(i), IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_dat( iunit, "PSEUDO", psfile_(i), IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_end( iunit, "SPECIE"//trim(iotk_index(i)), IERR=ierr ) IF (ierr/=0) RETURN ! ENDIF ! ENDDO ! CALL iotk_scan_dat( iunit, "PSEUDO_DIR", pseudo_dir_ ) ! CALL iotk_scan_empty( iunit, "UNITS_FOR_ATOMIC_POSITIONS", ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "UNITS", tau_units_, IERR=ierr ) IF (ierr/=0) RETURN ! ALLOCATE( ityp_(nat_) ) ALLOCATE( tau_(3,nat_) ) ALLOCATE( if_pos_(3,nat_) ) ! DO i = 1, nat_ ! CALL iotk_scan_empty( iunit, & "ATOM" // trim( iotk_index(i) ), ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "INDEX", ityp_(i), IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "tau", tau_(:,i), IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "if_pos", if_pos_(:,i), IERR=ierr ) IF (ierr/=0) RETURN ! ENDDO ! CALL iotk_scan_end( iunit, "IONS", IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( present(nsp) ) nsp = nsp_ IF ( present(nat) ) nat = nat_ IF ( present(atm) ) atm(1:nsp_) = atm_ IF ( present(amass) ) amass(1:nsp_) = amass_ IF ( present(amass_units) ) amass_units = trim(amass_units_) IF ( present(psfile) ) psfile(1:nsp_) = psfile_(1:nsp_) IF ( present(ityp) ) ityp(1:nat_) = ityp_ IF ( present(tau_units) ) tau_units = trim(tau_units_) IF ( present(tau) ) tau(1:3, 1:nat_) = tau_ IF ( present(if_pos) ) if_pos(1:3, 1:nat_) = if_pos_ IF ( present(pseudo_dir) ) pseudo_dir = pseudo_dir_ ! DEALLOCATE( atm_ ) DEALLOCATE( amass_ ) DEALLOCATE( psfile_ ) DEALLOCATE( ityp_ ) DEALLOCATE( tau_ ) DEALLOCATE( if_pos_ ) ! END SUBROUTINE qexml_read_ions ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_magnetization(starting_magnetization, angle1, angle2, & nsp, two_fermi_energies, i_cons, mcons, bfield, & ef_up, ef_dw, nelup, neldw, lambda, energy_units, found, ierr) !------------------------------------------------------------------------ ! IMPLICIT NONE INTEGER, OPTIONAL, INTENT(OUT) :: nsp, i_cons REAL(DP), OPTIONAL, INTENT(OUT) :: starting_magnetization(:), & angle1(:), angle2(:), mcons(:,:), & bfield(:), ef_up, ef_dw, nelup, neldw, lambda LOGICAL, OPTIONAL, INTENT(OUT) :: two_fermi_energies LOGICAL, OPTIONAL, INTENT(OUT) :: found CHARACTER(*), OPTIONAL, INTENT(OUT) :: energy_units INTEGER, INTENT(OUT) :: ierr ! INTEGER :: i INTEGER :: nsp_, i_cons_ LOGICAL :: two_fermi_energies_,found_,found2 REAL(DP) :: ef_up_, ef_dw_, nelup_, neldw_, lambda_, bfield_(3) REAL(DP), ALLOCATABLE :: angle1_(:), angle2_(:) REAL(DP), ALLOCATABLE :: mcons_(:,:), starting_magnetization_(:) CHARACTER(256) :: energy_units_ ! ! CALL iotk_scan_begin( iunit, "MAGNETIZATION_INIT", IERR=ierr, FOUND = found_ ) ! IF (found_) THEN ! CALL iotk_scan_dat(iunit,"CONSTRAINT_MAG", i_cons_) ! CALL iotk_scan_dat( iunit, "NUMBER_OF_SPECIES", nsp_ ) ! ALLOCATE( starting_magnetization_(nsp_) ) ALLOCATE( angle1_(nsp_) ) ALLOCATE( angle2_(nsp_) ) IF ( i_cons_ ==1 .OR. i_cons==2 ) ALLOCATE( mcons_(3,nsp_) ) ! DO i=1,nsp_ ! CALL iotk_scan_begin( iunit, "SPECIE"//TRIM(iotk_index(i)) ) ! CALL iotk_scan_dat( iunit, "STARTING_MAGNETIZATION", & starting_magnetization_(i) ) CALL iotk_scan_dat( iunit, "ANGLE1", angle1_(i) ) CALL iotk_scan_dat( iunit, "ANGLE2", angle2_(i) ) ! ! IF (i_cons_==1.OR.i_cons_==2) THEN ! CALL iotk_scan_dat( iunit, "CONSTRANT_1", mcons_(1,i) ) CALL iotk_scan_dat( iunit, "CONSTRANT_2", mcons_(2,i) ) CALL iotk_scan_dat( iunit, "CONSTRANT_3", mcons_(3,i) ) ! ENDIF ! CALL iotk_scan_end( iunit, "SPECIE"//TRIM(iotk_index(i)) ) ! ENDDO ! IF ( i_cons_ ==1 .OR. i_cons_ ==2 ) THEN ! mcons_(1:3,1:nsp_) = mcons_ ! DEALLOCATE( mcons_ ) ! ENDIF ! IF (i_cons_==3) THEN ! ALLOCATE( mcons_(3,1) ) ! CALL iotk_scan_dat( iunit, "FIXED_MAGNETIZATION_1", mcons_(1,1) ) CALL iotk_scan_dat( iunit, "FIXED_MAGNETIZATION_2", mcons_(2,1) ) CALL iotk_scan_dat( iunit, "FIXED_MAGNETIZATION_3", mcons_(3,1) ) ! IF (present(mcons) ) mcons(1:3,1:1) = mcons_ ! DEALLOCATE( mcons_) ! ELSE IF (i_cons_==4) THEN ! CALL iotk_scan_dat( iunit, "MAGNETIC_FIELD_1", bfield_(1) ) CALL iotk_scan_dat( iunit, "MAGNETIC_FIELD_2", bfield_(2) ) CALL iotk_scan_dat( iunit, "MAGNETIC_FIELD_3", bfield_(3) ) ! IF (present(bfield)) bfield(1:3) = bfield_(1:3) ! ENDIF ! CALL iotk_scan_dat(iunit,"TWO_FERMI_ENERGIES", & two_fermi_energies_,FOUND=found2 ) IF ( .not. found2 ) two_fermi_energies_=.FALSE. ! IF (two_fermi_energies_) THEN ! CALL iotk_scan_empty( iunit, "UNITS_FOR_ENERGIES", ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "UNITS", energy_units_, IERR=ierr ) ! ALLOCATE( mcons_(3,1) ) ! CALL iotk_scan_dat( iunit, "FIXED_MAGNETIZATION", mcons_(3,1) ) CALL iotk_scan_dat( iunit, "ELECTRONS_UP", nelup_ ) CALL iotk_scan_dat( iunit, "ELECTRONS_DOWN", neldw_ ) CALL iotk_scan_dat( iunit, "FERMI_ENERGY_UP", ef_up_ ) CALL iotk_scan_dat( iunit, "FERMI_ENERGY_DOWN", ef_dw_ ) ! IF (present(mcons) ) mcons(3,1) = mcons_(3,1) IF (present(ef_up) ) ef_up = ef_up_ IF (present(ef_dw) ) ef_dw = ef_dw_ IF (present(nelup) ) nelup = nelup_ IF (present(neldw) ) neldw = neldw_ IF (present(energy_units) ) energy_units = trim(energy_units_) ! DEALLOCATE( mcons_) ! ENDIF ! lambda_ = 0.0d0 IF (i_cons_ > 0) CALL iotk_scan_dat(iunit,"LAMBDA",lambda_) ! CALL iotk_scan_end( iunit, "MAGNETIZATION_INIT" ) ! IF (present(nsp)) nsp = nsp_ IF (present(two_fermi_energies)) two_fermi_energies = two_fermi_energies_ IF (present(i_cons)) i_cons = i_cons_ ! IF (present(lambda) ) lambda = lambda_ IF (present(starting_magnetization) ) starting_magnetization(1:nsp_) = starting_magnetization_ IF (present(angle1) ) angle1(1:nsp_) = angle1_(1:nsp_) IF (present(angle2) ) angle2(1:nsp_) = angle2_(1:nsp_) ! END IF ! IF (present(found)) found = found_ IF ( (.NOT. present(found)) .AND. ( .NOT. found_) ) ierr = 1 ! ! END SUBROUTINE qexml_read_magnetization ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_symmetry( nsym, nrot, invsym, noinv, time_reversal, no_t_rev, & trasl, s, sname, s_units, t_rev, & irt, nat, found, ierr ) !------------------------------------------------------------------------ ! INTEGER, OPTIONAL, INTENT(out) :: nsym, nrot LOGICAL, OPTIONAL, INTENT(out) :: invsym, noinv, time_reversal, no_t_rev INTEGER, OPTIONAL, INTENT(out) :: s(:,:,:) REAL(DP), OPTIONAL, INTENT(out) :: trasl(:,:) CHARACTER(len=*), OPTIONAL, INTENT(out) :: sname(:) CHARACTER(len=*), OPTIONAL, INTENT(out) :: s_units INTEGER, OPTIONAL, INTENT(out) :: t_rev(:) INTEGER, OPTIONAL, INTENT(out) :: irt(:,:), nat LOGICAL, INTENT(out) :: found INTEGER, INTENT(out) :: ierr ! INTEGER :: nsym_ INTEGER :: nrot_ CHARACTER(256) :: sname_(48), s_units_ LOGICAL :: invsym_, noinv_, time_reversal_, no_t_rev_ INTEGER :: s_(3,3,48) REAL(DP) :: trasl_(3,48) INTEGER :: t_rev_(48) INTEGER :: nat_ INTEGER, ALLOCATABLE :: irt_(:,:) INTEGER :: i LOGICAL :: found_tmp ! ! ierr=0 ! ! CALL iotk_scan_begin( iunit, "SYMMETRIES", FOUND=found ,IERR=ierr ) IF ((ierr/=0).OR.(.NOT.found)) RETURN ! CALL iotk_scan_dat( iunit, "NUMBER_OF_SYMMETRIES", nsym_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "NUMBER_OF_BRAVAIS_SYMMETRIES", & nrot_, FOUND=found_tmp, IERR=ierr ) IF (ierr/=0) RETURN IF (.NOT. found_tmp) nrot_ = nsym_ ! CALL iotk_scan_dat( iunit, "INVERSION_SYMMETRY", invsym_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "DO_NOT_USE_TIME_REVERSAL", & noinv_, FOUND = found_tmp, IERR=ierr ) IF (ierr/=0) RETURN IF (.NOT. found_tmp) noinv_ = .FALSE. ! CALL iotk_scan_dat( iunit, "TIME_REVERSAL_FLAG", & time_reversal_, FOUND = found_tmp, IERR=ierr ) IF (ierr/=0) RETURN IF (.NOT. found_tmp) time_reversal_ = .TRUE. ! CALL iotk_scan_dat( iunit, "NO_TIME_REV_OPERATIONS", & no_t_rev_, FOUND = found_tmp, IERR=ierr ) IF (ierr/=0) RETURN IF (.NOT. found_tmp) no_t_rev_ = .FALSE. ! CALL iotk_scan_dat( iunit, "NUMBER_OF_ATOMS", nat_, IERR=ierr ) IF (ierr/=0) RETURN ! ALLOCATE( irt_(48, nat_) ) ! CALL iotk_scan_empty( iunit, "UNITS_FOR_SYMMETRIES", ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "UNITS", s_units_, IERR=ierr ) IF (ierr/=0) RETURN ! DO i = 1, nsym_ ! CALL iotk_scan_begin( iunit, "SYMM"//trim( iotk_index( i ) ), IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_empty( iunit, "INFO", ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "NAME", sname_(i), IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "T_REV", t_rev_(i), IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "ROTATION", s_(1:3,1:3,i), IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "FRACTIONAL_TRANSLATION", trasl_(1:3,i), IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "EQUIVALENT_IONS", irt_(i,1:nat_), IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_end( iunit, "SYMM"//trim( iotk_index( i ) ), IERR=ierr ) IF (ierr/=0) RETURN ! ENDDO ! DO i = nsym_+1, nrot_ ! CALL iotk_scan_begin( iunit, "SYMM" // TRIM( iotk_index( i ) ), IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_empty( iunit, "INFO", ATTR = attr, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "NAME", sname_(i), IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "ROTATION", s_(1:3,1:3,i), IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_end( iunit, "SYMM" // TRIM( iotk_index( i ) ), IERR=ierr ) IF (ierr/=0) RETURN ! END DO ! CALL iotk_scan_end( iunit, "SYMMETRIES", IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( present(nsym) ) nsym = nsym_ IF ( present(nrot) ) nrot = nrot_ IF ( present(invsym) ) invsym = invsym_ IF ( present(noinv) ) noinv = noinv_ IF ( present(time_reversal) ) time_reversal = time_reversal_ IF ( present(no_t_rev) ) no_t_rev = no_t_rev_ IF ( present(nat) ) nat = nat_ IF ( present(trasl) ) trasl(1:3, 1:nsym_) = trasl_(1:3, 1:nsym_) IF ( present(s) ) s(1:3, 1:3, 1:nrot_) = s_(1:3, 1:3, 1:nrot_) IF ( present(irt) ) irt(1:nsym_, 1:nat_) = irt_(1:nsym_, 1:nat_) IF ( present(sname) ) THEN DO i = 1, nrot_ sname( i ) = trim( sname_( i ) ) ENDDO ENDIF IF ( present(s_units) ) s_units = trim( s_units_ ) IF ( present(t_rev) ) t_rev( 1:nsym_ ) = t_rev_( 1:nsym_ ) ! DEALLOCATE( irt_ ) ! END SUBROUTINE qexml_read_symmetry ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_efield( tefield, dipfield, edir, emaxpos, eopreg, eamp, found, ierr ) !---------------------------------------------------------------------- ! IMPLICIT NONE ! LOGICAL, OPTIONAL, INTENT(out) :: tefield, dipfield INTEGER, OPTIONAL, INTENT(out) :: edir REAL(DP), OPTIONAL, INTENT(out) :: emaxpos, eopreg, eamp LOGICAL, INTENT(out) :: found INTEGER, INTENT(out) :: ierr ! LOGICAL :: tefield_, dipfield_ INTEGER :: edir_ REAL(DP) :: emaxpos_, eopreg_, eamp_ ! ierr = 0 ! CALL iotk_scan_begin( iunit, "ELECTRIC_FIELD", FOUND=found, IERR=ierr ) IF ( ( .NOT. found ).OR.( ierr /= 0 ) ) RETURN ! ! CALL iotk_scan_dat( iunit, "HAS_ELECTRIC_FIELD", tefield_, IERR=ierr ) IF ( ierr /= 0 ) RETURN ! CALL iotk_scan_dat( iunit, "HAS_DIPOLE_CORRECTION", dipfield_, IERR=ierr ) IF ( ierr /= 0 ) RETURN ! CALL iotk_scan_dat( iunit, "FIELD_DIRECTION", edir_, IERR=ierr ) IF ( ierr /= 0 ) RETURN ! CALL iotk_scan_dat( iunit, "MAXIMUM_POSITION", emaxpos_, IERR=ierr ) IF ( ierr /= 0 ) RETURN ! CALL iotk_scan_dat( iunit, "INVERSE_REGION", eopreg_, IERR=ierr ) IF ( ierr /= 0 ) RETURN ! CALL iotk_scan_dat( iunit, "FIELD_AMPLITUDE", eamp_, IERR=ierr ) IF ( ierr /= 0 ) RETURN ! CALL iotk_scan_end( iunit, "ELECTRIC_FIELD", IERR=ierr ) IF ( ierr /= 0 ) RETURN ! ! IF ( present(tefield) ) tefield = tefield_ IF ( present(dipfield) ) dipfield = dipfield_ IF ( present(edir) ) edir = edir_ IF ( present(emaxpos) ) emaxpos = emaxpos_ IF ( present(eopreg) ) eopreg = eopreg_ IF ( present(eamp) ) eamp = eamp_ ! END SUBROUTINE qexml_read_efield ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_exx( x_gamma_extrapolation, nqx1, nqx2, nqx3, & exxdiv_treatment, yukawa, ecutvcut, exx_fraction, & screening_parameter, gau_parameter, exx_is_active,& found, ierr ) !---------------------------------------------------------------------- ! IMPLICIT NONE ! LOGICAL, OPTIONAL, INTENT(OUT) :: x_gamma_extrapolation, exx_is_active INTEGER, OPTIONAL, INTENT(OUT) :: nqx1, nqx2, nqx3 CHARACTER(LEN=*), OPTIONAL, INTENT(OUT) :: exxdiv_treatment REAL(DP), OPTIONAL, INTENT(OUT) :: yukawa, ecutvcut, exx_fraction REAL(DP), OPTIONAL, INTENT(OUT) :: screening_parameter REAL(DP), OPTIONAL, INTENT(OUT) :: gau_parameter LOGICAL, INTENT(out) :: found INTEGER, INTENT(out) :: ierr ! LOGICAL :: x_gamma_extrapolation_, exx_is_active_ INTEGER :: nqx1_, nqx2_, nqx3_ REAL(DP) :: yukawa_, ecutvcut_, exx_fraction_ REAL(DP) :: screening_parameter_ REAL(DP) :: gau_parameter_ CHARACTER(LEN=80) :: exxdiv_treatment_ ! ! ierr = 0 ! CALL iotk_scan_begin( iunit, "EXACT_EXCHANGE", FOUND=found, IERR=ierr ) IF ( ( .NOT. found ).OR.( ierr /= 0 ) ) RETURN ! call iotk_scan_dat(iunit, "x_gamma_extrapolation", x_gamma_extrapolation_, IERR=ierr) IF ( ierr /= 0 ) RETURN ! call iotk_scan_dat(iunit, "nqx1", nqx1_, IERR=ierr) IF ( ierr /= 0 ) RETURN ! call iotk_scan_dat(iunit, "nqx2", nqx2_, IERR=ierr) IF ( ierr /= 0 ) RETURN ! call iotk_scan_dat(iunit, "nqx3", nqx3_, IERR=ierr) IF ( ierr /= 0 ) RETURN ! call iotk_scan_dat(iunit, "exxdiv_treatment", exxdiv_treatment_, IERR=ierr) IF ( ierr /= 0 ) RETURN ! call iotk_scan_dat(iunit, "yukawa", yukawa_, IERR=ierr) IF ( ierr /= 0 ) RETURN ! call iotk_scan_dat(iunit, "ecutvcut", ecutvcut_, IERR=ierr) IF ( ierr /= 0 ) RETURN ! call iotk_scan_dat(iunit, "exx_fraction", exx_fraction_, IERR=ierr) IF ( ierr /= 0 ) RETURN ! call iotk_scan_dat(iunit, "screening_parameter", screening_parameter_, IERR=ierr) IF ( ierr /= 0 ) RETURN ! ! Check if existing, for back-compatibility call iotk_scan_dat(iunit, "gau_parameter", gau_parameter_, FOUND=found, IERR=ierr) IF ( ierr /= 0 ) RETURN ! call iotk_scan_dat(iunit, "exx_is_active", exx_is_active_, IERR=ierr) IF ( ierr /= 0 ) RETURN ! CALL iotk_scan_end(iunit, "EXACT_EXCHANGE", IERR=ierr) IF ( ierr /= 0 ) RETURN ! ! IF ( present(x_gamma_extrapolation) ) x_gamma_extrapolation = x_gamma_extrapolation_ IF ( present(nqx1) ) nqx1 = nqx1_ IF ( present(nqx2) ) nqx2 = nqx2_ IF ( present(nqx3) ) nqx3 = nqx3_ IF ( present(exxdiv_treatment) ) exxdiv_treatment = exxdiv_treatment_ IF ( present(yukawa) ) yukawa = yukawa_ IF ( present(ecutvcut) ) ecutvcut = ecutvcut_ IF ( present(exx_fraction) ) exx_fraction = exx_fraction_ IF ( present(screening_parameter) ) screening_parameter = screening_parameter_ ! Check if found, for back-compatibility IF ( present(gau_parameter) .AND. found ) gau_parameter = gau_parameter_ IF ( present(exx_is_active) ) exx_is_active = exx_is_active_ ! found = .TRUE. ! END SUBROUTINE qexml_read_exx ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_planewaves( ecutwfc, ecutrho, npwx, gamma_only, & nr1, nr2, nr3, ngm, nr1s, nr2s, nr3s, ngms, & nr1b, nr2b, nr3b, igv, cutoff_units, ierr ) !------------------------------------------------------------------------ ! ! INTEGER, OPTIONAL, INTENT(out) :: npwx, nr1, nr2, nr3, ngm, & nr1s, nr2s, nr3s, ngms, nr1b, nr2b, nr3b INTEGER, OPTIONAL, INTENT(out) :: igv(:,:) REAL(DP), OPTIONAL, INTENT(out) :: ecutwfc, ecutrho LOGICAL, OPTIONAL, INTENT(out) :: gamma_only CHARACTER(*), OPTIONAL, INTENT(out) :: cutoff_units INTEGER, INTENT(out) :: ierr ! INTEGER :: npwx_, nr1_, nr2_, nr3_, ngm_, & nr1s_, nr2s_, nr3s_, ngms_, nr1b_, nr2b_, nr3b_ REAL(DP) :: ecutwfc_, ecutrho_ CHARACTER(256) :: cutoff_units_ LOGICAL :: gamma_only_ ! ierr = 0 ! CALL iotk_scan_begin( iunit, "PLANE_WAVES", IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_empty( iunit, "UNITS_FOR_CUTOFF", ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "UNITS", cutoff_units_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "WFC_CUTOFF", ecutwfc_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "RHO_CUTOFF", ecutrho_ , IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "MAX_NUMBER_OF_GK-VECTORS", npwx_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "GAMMA_ONLY", gamma_only_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_empty( iunit, "FFT_GRID", ATTR = attr, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "nr1", nr1_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "nr2", nr2_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "nr3", nr3_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "GVECT_NUMBER", ngm_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_empty( iunit, "SMOOTH_FFT_GRID", ATTR = attr, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "nr1s", nr1s_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "nr2s", nr2s_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "nr3s", nr3s_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "SMOOTH_GVECT_NUMBER", ngms_, IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( present( igv ) ) THEN ! CALL iotk_scan_begin( iunit, "G-VECTORS", IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "g", igv(1:3,1:ngm_), IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_end( iunit, "G-VECTORS", IERR=ierr ) IF (ierr/=0) RETURN ! ENDIF ! ! CALL iotk_scan_empty( iunit, "SMALLBOX_FFT_GRID", ATTR = attr, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "nr1b", nr1b_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "nr2b", nr2b_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "nr3b", nr3b_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_end( iunit, "PLANE_WAVES", IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( present( ecutwfc ) ) ecutwfc = ecutwfc_ IF ( present( ecutrho ) ) ecutrho = ecutrho_ IF ( present( npwx ) ) npwx = npwx_ IF ( present( gamma_only ) ) gamma_only = gamma_only_ IF ( present( nr1 ) ) nr1 = nr1_ IF ( present( nr2 ) ) nr2 = nr2_ IF ( present( nr3 ) ) nr3 = nr3_ IF ( present( ngm ) ) ngm = ngm_ IF ( present( nr1s ) ) nr1s = nr1s_ IF ( present( nr2s ) ) nr2s = nr2s_ IF ( present( nr3s ) ) nr3s = nr3s_ IF ( present( ngms ) ) ngms = ngms_ IF ( present( nr1b ) ) nr1b = nr1b_ IF ( present( nr2b ) ) nr2b = nr2b_ IF ( present( nr3b ) ) nr3b = nr3b_ IF ( present( cutoff_units ) ) cutoff_units = trim( cutoff_units_ ) ! END SUBROUTINE qexml_read_planewaves ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_gk( ik, npwk, npwkx, gamma_only, xk, k_units, index, igk, ierr ) !------------------------------------------------------------------------ ! INTEGER, INTENT(in) :: ik INTEGER, OPTIONAL, INTENT(out) :: npwk, npwkx LOGICAL, OPTIONAL, INTENT(out) :: gamma_only REAL(DP), OPTIONAL, INTENT(out) :: xk(3) CHARACTER(*), OPTIONAL, INTENT(out) :: k_units INTEGER, OPTIONAL, INTENT(out) :: igk(:,:), index(:) INTEGER, INTENT(out) :: ierr ! CHARACTER(256) :: filename, k_units_ INTEGER :: npwk_, npwkx_ LOGICAL :: gamma_only_ REAL(DP) :: xk_(3) INTEGER :: iunaux ! ierr = 0 ! CALL iotk_free_unit( iunaux ) filename = qexml_wfc_filename( datadir_in, 'gkvectors', ik ) ! CALL iotk_open_read ( iunaux, FILE = trim(filename), IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunaux, 'NUMBER_OF_GK-VECTORS', npwk_, IERR=ierr) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunaux, 'MAX_NUMBER_OF_GK-VECTORS', npwkx_, IERR=ierr) IF (ierr/=0) RETURN ! IF ( qexml_version_before_1_4_0 ) THEN ! IF ( present( gamma_only ) ) THEN ! CALL qexml_read_planewaves( GAMMA_ONLY=gamma_only_, IERR=ierr) IF (ierr/=0) RETURN ! ENDIF ! ELSE ! CALL iotk_scan_dat( iunaux, 'GAMMA_ONLY', gamma_only_, IERR=ierr) IF (ierr/=0) RETURN ! ENDIF ! CALL iotk_scan_dat( iunaux, 'K-POINT_COORDS', xk_, ATTR=attr, IERR=ierr) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, 'UNITS', k_units_, IERR=ierr) IF (ierr/=0) RETURN ! IF ( present( index ) ) THEN ! CALL iotk_scan_dat( iunaux, 'INDEX', index(1:npwk_), IERR=ierr) IF (ierr/=0) RETURN ! ENDIF ! IF ( present( igk ) ) THEN ! CALL iotk_scan_dat( iunaux, 'GRID', igk(1:3, 1:npwk_), IERR=ierr) IF (ierr/=0) RETURN ! ENDIF ! CALL iotk_close_read ( iunaux, IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( present( npwk ) ) npwk = npwk_ IF ( present( npwkx ) ) npwkx = npwkx_ IF ( present( gamma_only ) ) gamma_only = gamma_only_ IF ( present( xk ) ) xk(1:3) = xk_(1:3) IF ( present( k_units ) ) k_units = trim(k_units_) ! END SUBROUTINE qexml_read_gk ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_spin( lsda, noncolin, npol, lspinorb, domag, ierr ) !------------------------------------------------------------------------ ! LOGICAL, OPTIONAL, INTENT(out) :: lsda, noncolin, lspinorb, domag INTEGER, OPTIONAL, INTENT(out) :: npol INTEGER, INTENT(out) :: ierr ! LOGICAL :: lsda_, noncolin_, lspinorb_, domag_,found INTEGER :: npol_ ! ierr = 0 ! CALL iotk_scan_begin( iunit, "SPIN", IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "LSDA", lsda_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "NON-COLINEAR_CALCULATION", noncolin_, IERR=ierr, FOUND=found ) IF (ierr/=0) RETURN IF ( .not. found ) noncolin_ = .FALSE. ! npol_ = 1 ! IF ( noncolin_ ) THEN ! CALL iotk_scan_dat( iunit, "SPINOR_DIM", npol_, IERR=ierr ) IF (ierr/=0) RETURN ! ENDIF ! CALL iotk_scan_dat( iunit, "SPIN-ORBIT_CALCULATION", lspinorb_, IERR=ierr, FOUND=found ) IF (ierr/=0) RETURN IF ( .NOT. found ) lspinorb_ = .FALSE. ! CALL iotk_scan_dat( iunit, "SPIN-ORBIT_DOMAG", domag_, IERR=ierr, FOUND=found ) IF ( .NOT. found ) domag_ = .FALSE. IF (ierr/=0) RETURN ! CALL iotk_scan_end( iunit, "SPIN", IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( present( lsda ) ) lsda = lsda_ IF ( present( noncolin ) ) noncolin = noncolin_ IF ( present( npol ) ) npol = npol_ IF ( present( lspinorb ) ) lspinorb = lspinorb_ IF ( present( domag ) ) domag = domag_ ! END SUBROUTINE qexml_read_spin ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_xc( dft, lda_plus_u, lda_plus_u_kind, U_projection, & Hubbard_lmax, Hubbard_l, nsp, Hubbard_U, Hubbard_J,& Hubbard_J0, Hubbard_alpha, Hubbard_beta, & inlc, vdw_table_name, ierr ) !---------------------------------------------------------------------- ! CHARACTER(len=*), OPTIONAL, INTENT(out) :: dft LOGICAL, OPTIONAL, INTENT(out) :: lda_plus_u INTEGER, OPTIONAL, INTENT(out) :: lda_plus_u_kind ! INTEGER, OPTIONAL, INTENT(out) :: Hubbard_lmax INTEGER, OPTIONAL, INTENT(out) :: Hubbard_l(:) INTEGER, OPTIONAL, INTENT(out) :: nsp REAL(DP), OPTIONAL, INTENT(out) :: Hubbard_U(:), Hubbard_J(:,:),& Hubbard_alpha(:), & Hubbard_J0(:), Hubbard_beta(:) INTEGER, OPTIONAL, INTENT(out) :: inlc CHARACTER(LEN=*), OPTIONAL, INTENT(out) :: U_projection CHARACTER(LEN=*), OPTIONAL, INTENT(out) :: vdw_table_name ! INTEGER, INTENT(out) :: ierr ! CHARACTER(256) :: dft_, vdw_table_name_, U_projection_ LOGICAL :: lda_plus_u_, found INTEGER :: Hubbard_lmax_, nsp_,lda_plus_u_kind_, inlc_ INTEGER, ALLOCATABLE :: Hubbard_l_(:) REAL(DP), ALLOCATABLE :: Hubbard_U_(:), Hubbard_J_(:,:) REAL(DP), ALLOCATABLE :: Hubbard_alpha_(:), Hubbard_J0_(:), Hubbard_beta_(:) ! ierr = 0 ! ! CALL iotk_scan_begin( iunit, "EXCHANGE_CORRELATION", IERR=ierr ) IF ( ierr/=0 ) RETURN ! CALL iotk_scan_dat( iunit, "DFT", dft_, IERR=ierr ) IF ( ierr/=0 ) RETURN ! CALL iotk_scan_dat( iunit, "LDA_PLUS_U_CALCULATION", lda_plus_u_, FOUND=found, IERR=ierr ) IF ( ierr/=0 ) RETURN IF ( .NOT. found ) lda_plus_u_ = .FALSE. ! IF ( lda_plus_u_ ) THEN ! CALL iotk_scan_dat( iunit, "NUMBER_OF_SPECIES", nsp_, IERR=ierr ) IF ( ierr/=0 ) RETURN ! CALL iotk_scan_dat( iunit, "HUBBARD_LMAX", Hubbard_lmax_, IERR=ierr ) IF ( ierr/=0 ) RETURN ! ALLOCATE( Hubbard_l_(1:nsp_) ) ALLOCATE( Hubbard_U_(nsp_) ) ! CALL iotk_scan_dat( iunit, "HUBBARD_L", Hubbard_l_, IERR=ierr ) IF ( ierr/=0 ) RETURN ! CALL iotk_scan_dat( iunit, "HUBBARD_U", Hubbard_U_, IERR=ierr ) IF ( ierr/=0 ) RETURN ! IF ( PRESENT (lda_plus_u_kind) ) THEN CALL iotk_scan_dat( iunit, "LDA_PLUS_U_KIND", lda_plus_u_kind_, FOUND = found, IERR=ierr ) IF ( ierr/=0 ) RETURN END IF ! IF ( PRESENT (U_projection) ) THEN CALL iotk_scan_dat( iunit, "U_PROJECTION_TYPE", U_projection_, FOUND = found, IERR=ierr ) IF ( ierr/=0 ) RETURN IF ( .NOT. found ) U_projection_='atomic' ! for compatibility END IF ! IF ( PRESENT (Hubbard_J) ) THEN ALLOCATE( Hubbard_J_(3,nsp_) ) CALL iotk_scan_dat( iunit, "HUBBARD_J", Hubbard_J_, FOUND = found, IERR=ierr ) IF ( ierr/=0 ) RETURN END IF ! IF ( PRESENT (Hubbard_J0) ) THEN ALLOCATE( Hubbard_J0_(nsp_) ) CALL iotk_scan_dat( iunit, "HUBBARD_J0", Hubbard_J0_, FOUND = found, IERR=ierr ) IF ( ierr/=0 ) RETURN END IF ! IF ( PRESENT (Hubbard_alpha) ) THEN ALLOCATE( Hubbard_alpha_(nsp_) ) CALL iotk_scan_dat( iunit, "HUBBARD_ALPHA", Hubbard_alpha_, FOUND = found, IERR=ierr ) IF ( ierr/=0 ) RETURN END IF ! IF ( PRESENT (Hubbard_beta) ) THEN ALLOCATE( Hubbard_beta_(nsp_) ) CALL iotk_scan_dat( iunit, "HUBBARD_BETA", Hubbard_beta_, FOUND = found, IERR=ierr ) IF ( ierr/=0 ) RETURN END IF ! ENDIF ! CALL iotk_scan_dat( iunit, "NON_LOCAL_DF", inlc_, FOUND = found ) IF ( found ) THEN ! IF ( inlc_ == 1 .OR. inlc_ == 2 ) THEN ! CALL iotk_scan_dat( iunit, "VDW_KERNEL_NAME", vdw_table_name_ ) ! ENDIF ! ELSE ! inlc_ = 0 ! ENDIF ! CALL iotk_scan_end( iunit, "EXCHANGE_CORRELATION", IERR=ierr ) IF ( ierr/=0 ) RETURN ! ! IF ( present( dft ) ) dft = dft_ IF ( present( lda_plus_u ) ) lda_plus_u = lda_plus_u_ ! IF ( lda_plus_u_ ) THEN ! IF ( present( nsp ) ) nsp = nsp_ IF ( present( lda_plus_u_kind ) ) lda_plus_u_kind = lda_plus_u_kind_ IF ( present( U_projection ) ) U_projection = U_projection_ IF ( present( Hubbard_lmax ) ) Hubbard_lmax = Hubbard_lmax_ IF ( present( Hubbard_l ) ) Hubbard_l(1:nsp_) = Hubbard_l_(:) IF ( present( Hubbard_U ) ) Hubbard_U(1:nsp_) = Hubbard_U_(1:nsp_) IF ( present( Hubbard_J ) ) Hubbard_J(1:3,1:nsp_) = Hubbard_J_(1:3,1:nsp_) IF ( present( Hubbard_J0 ) ) Hubbard_J0(1:nsp_) = Hubbard_J0_(1:nsp_) IF ( present( Hubbard_alpha ) ) Hubbard_alpha(1:nsp_) = Hubbard_alpha_(1:nsp_) IF ( present( Hubbard_beta ) ) Hubbard_beta(1:nsp_) = Hubbard_beta_(1:nsp_) ! DEALLOCATE( Hubbard_l_ ) DEALLOCATE( Hubbard_U_ ) DEALLOCATE( Hubbard_J_ ) DEALLOCATE( Hubbard_J0_ ) DEALLOCATE( Hubbard_alpha_ ) DEALLOCATE( Hubbard_beta_ ) ! ENDIF ! IF (present(inlc) ) inlc = inlc_ ! IF ( inlc_ == 1 .OR. inlc_ == 2 ) THEN IF (present( vdw_table_name) ) vdw_table_name = vdw_table_name_ ENDIF ! ! END SUBROUTINE qexml_read_xc ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_occ( lgauss, ngauss, degauss, degauss_units, & ltetra, ntetra, tetra, tfixed_occ, & nstates_up, nstates_dw, input_occ, ierr ) !------------------------------------------------------------------------ ! LOGICAL, OPTIONAL, INTENT(out) :: lgauss, ltetra, tfixed_occ INTEGER, OPTIONAL, INTENT(out) :: ngauss, ntetra INTEGER, OPTIONAL, INTENT(out) :: tetra(:,:) INTEGER, OPTIONAL, INTENT(out) :: nstates_up, nstates_dw REAL(DP), OPTIONAL, INTENT(out) :: degauss, input_occ(:,:) CHARACTER(*), OPTIONAL, INTENT(out) :: degauss_units INTEGER, INTENT(out) :: ierr ! LOGICAL :: lgauss_, ltetra_, tfixed_occ_ INTEGER :: ngauss_, ntetra_, nstates_up_, nstates_dw_ LOGICAL :: lsda_ REAL(DP) :: degauss_ CHARACTER(256) :: degauss_units_ INTEGER, ALLOCATABLE :: tetra_(:,:) INTEGER :: i LOGICAL :: lfound,found ! ierr = 0 ! CALL iotk_scan_begin( iunit, "OCCUPATIONS", IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "SMEARING_METHOD", lgauss_, FOUND=found, IERR=ierr ) IF (ierr/=0) RETURN IF ( .NOT. found ) lgauss_ = .FALSE. ! ! ngauss_=0 degauss_=-1.0d0 degauss_units_="none" ! IF ( lgauss_ ) THEN ! CALL iotk_scan_dat( iunit, "SMEARING_TYPE", ngauss_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "SMEARING_PARAMETER", degauss_ , & ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( ATTR, "UNITS", degauss_units_, IERR=ierr ) IF (ierr/=0) RETURN ! ENDIF ! CALL iotk_scan_dat( iunit, "TETRAHEDRON_METHOD", ltetra_, FOUND=found, IERR=ierr ) IF (ierr/=0) RETURN IF ( .NOT. found ) ltetra_ = .FALSE. ! ! ntetra_ = 0 IF ( ltetra_ ) THEN ! CALL iotk_scan_dat( iunit, "NUMBER_OF_TETRAHEDRA", ntetra_, IERR=ierr ) IF (ierr/=0) RETURN ! ALLOCATE( tetra_(4, ntetra_) ) ! DO i = 1, ntetra_ ! CALL iotk_scan_dat( iunit, "TETRAHEDRON"//iotk_index(i), & tetra_(1:4,i), IERR=ierr ) IF (ierr/=0) RETURN ! ENDDO ! ENDIF ! CALL iotk_scan_dat( iunit, "FIXED_OCCUPATIONS", tfixed_occ_, FOUND=found, IERR=ierr ) IF (ierr/=0) RETURN IF ( .NOT. found ) tfixed_occ_ = .FALSE. ! nstates_up_=0.0d0 nstates_dw_=0.0d0 ! IF ( tfixed_occ_ .and. ( present(input_occ) .or. & present(nstates_up) .or. present(nstates_dw) ) ) THEN ! CALL iotk_scan_empty( iunit, "INFO", ATTR=attr, IERR=ierr) IF (ierr /=0 ) RETURN ! CALL iotk_scan_attr( attr, "lsda", lsda_, IERR=ierr ) IF (ierr /=0 ) RETURN ! IF ( qexml_version_before_1_4_0 ) THEN ! CALL iotk_scan_attr( attr, "nelup", nstates_up_, IERR=ierr ) IF (ierr /=0 ) RETURN CALL iotk_scan_attr( attr, "neldw", nstates_dw_, IERR=ierr ) IF (ierr /=0 ) RETURN ! ELSE ! ! current version ! CALL iotk_scan_attr( attr, "nstates_up", nstates_up_, IERR=ierr ) IF (ierr /=0 ) RETURN CALL iotk_scan_attr( attr, "nstates_down", nstates_dw_, IERR=ierr ) IF (ierr /=0 ) RETURN ! ENDIF ! IF ( present( input_occ ) ) THEN ! ! CALL iotk_scan_dat( iunit, "INPUT_OCC_UP", input_occ(1:nstates_up_,1), IERR=ierr ) IF (ierr/=0) RETURN ! IF ( lsda_ ) THEN ! CALL iotk_scan_dat( iunit, "INPUT_OCC_DOWN", input_occ(1:nstates_dw_,2), IERR=ierr ) IF (ierr/=0) RETURN ! ENDIF ! ENDIF ! ENDIF ! CALL iotk_scan_end( iunit, "OCCUPATIONS", IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( present( lgauss )) lgauss = lgauss_ IF ( present( ltetra )) ltetra = ltetra_ IF ( present( tfixed_occ )) tfixed_occ = tfixed_occ_ IF ( present( ngauss )) ngauss = ngauss_ IF ( present( ntetra )) ntetra = ntetra_ IF ( present( degauss )) degauss = degauss_ IF ( present( degauss_units )) degauss_units = trim(degauss_units_) IF ( present( nstates_up )) nstates_up = nstates_up_ IF ( present( nstates_dw )) nstates_dw = nstates_dw_ ! IF ( ltetra_ ) THEN ! IF ( present( tetra ) ) tetra(1:4, 1:ntetra_) = tetra_ ! DEALLOCATE( tetra_ ) ! ENDIF END SUBROUTINE qexml_read_occ ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_bz( num_k_points, xk, wk, k1, k2, k3, nk1, nk2, nk3, & nks_start, xk_start, wk_start, qnorm, & k_units, ierr ) !------------------------------------------------------------------------ ! INTEGER, OPTIONAL, INTENT(out) :: num_k_points, k1, k2, k3, nk1, nk2, nk3, & nks_start REAL(DP), OPTIONAL, INTENT(out) :: xk(:,:), wk(:), qnorm REAL(DP), OPTIONAL, ALLOCATABLE, INTENT(out) :: xk_start(:,:), wk_start(:) CHARACTER(*), OPTIONAL, INTENT(out) :: k_units INTEGER, INTENT(out) :: ierr ! INTEGER :: num_k_points_, k1_, k2_, k3_, nk1_, nk2_, nk3_,nks_start_ CHARACTER(256) :: k_units_ REAL(DP) :: qnorm_ REAL(DP), ALLOCATABLE :: xk_(:,:), wk_(:) REAL(DP), ALLOCATABLE :: xk_start_(:,:), wk_start_(:) ! INTEGER :: ik, i LOGICAL :: found ! ierr = 0 ! CALL iotk_scan_begin( iunit, "BRILLOUIN_ZONE", IERR=ierr ) IF ( ierr/=0 ) RETURN ! CALL iotk_scan_dat( iunit, "NUMBER_OF_K-POINTS", num_k_points_, IERR=ierr ) IF ( ierr/=0 ) RETURN ! ! CALL iotk_scan_empty( iunit, "UNITS_FOR_K-POINTS", ATTR=attr, IERR=ierr ) IF ( ierr/=0 ) RETURN CALL iotk_scan_attr( attr, "UNITS", k_units_, IERR=ierr ) IF ( ierr/=0 ) RETURN ! CALL iotk_scan_empty( iunit, "MONKHORST_PACK_GRID", ATTR=attr, IERR=ierr ) IF ( ierr/=0 ) RETURN ! CALL iotk_scan_attr( attr, "nk1", nk1_, IERR=ierr ) IF ( ierr/=0 ) RETURN CALL iotk_scan_attr( attr, "nk2", nk2_, IERR=ierr ) IF ( ierr/=0 ) RETURN CALL iotk_scan_attr( attr, "nk3", nk3_, IERR=ierr ) IF ( ierr/=0 ) RETURN ! ! CALL iotk_scan_empty( iunit, "MONKHORST_PACK_OFFSET", ATTR=attr, IERR=ierr ) IF ( ierr/=0 ) RETURN ! CALL iotk_scan_attr( attr, "k1", k1_, IERR=ierr ) IF ( ierr/=0 ) RETURN CALL iotk_scan_attr( attr, "k2", k2_, IERR=ierr ) IF ( ierr/=0 ) RETURN CALL iotk_scan_attr( attr, "k3", k3_, IERR=ierr ) IF ( ierr/=0 ) RETURN ! ! ALLOCATE( xk_( 3, num_k_points_ ) ) ALLOCATE( wk_( num_k_points_ ) ) ! DO ik = 1, num_k_points_ ! CALL iotk_scan_empty( iunit, "K-POINT" // trim( iotk_index(ik) ), & ATTR=attr, IERR=ierr ) IF ( ierr/=0 ) RETURN ! CALL iotk_scan_attr( attr, "XYZ", xk_(:,ik), IERR=ierr ) IF ( ierr/=0 ) RETURN ! CALL iotk_scan_attr( attr, "WEIGHT", wk_(ik), IERR=ierr ) IF ( ierr/=0 ) RETURN ! ENDDO ! nks_start_=0 ! IF ( present(nks_start) .or. present(xk_start) .or. present(wk_start) ) THEN ! CALL iotk_scan_dat( iunit, "STARTING_K-POINTS", nks_start_, & FOUND = found ) IF (.NOT. found) nks_start_=0 ! IF (nks_start_ > 0 ) THEN ! ALLOCATE( xk_start_(3,nks_start_) ) ALLOCATE( wk_start_(nks_start_) ) ! END IF ! DO ik = 1, nks_start_ ! CALL iotk_scan_empty( iunit, "K-POINT_START" // & & TRIM( iotk_index( ik ) ), ATTR=attr ) ! CALL iotk_scan_attr( attr, "XYZ", xk_start_(:,ik) ) ! CALL iotk_scan_attr( attr, "WEIGHT", wk_start_(ik) ) ! END DO ! END IF ! CALL iotk_scan_dat( iunit, "NORM-OF-Q", qnorm_, FOUND = found ) IF (.not. found) qnorm_=0.0_DP ! ! CALL iotk_scan_end( iunit, "BRILLOUIN_ZONE", IERR=ierr ) IF ( ierr/=0 ) RETURN ! ! IF ( present( num_k_points ) ) num_k_points = num_k_points_ IF ( present( nk1 ) ) nk1 = nk1_ IF ( present( nk2 ) ) nk2 = nk2_ IF ( present( nk3 ) ) nk3 = nk3_ IF ( present( k1 ) ) k1 = k1_ IF ( present( k2 ) ) k2 = k2_ IF ( present( k3 ) ) k3 = k3_ IF ( present( k_units ) ) k_units = trim(k_units_) IF ( present( xk ) ) xk(1:3,1:num_k_points_) = xk_(:,:) IF ( present( wk ) ) wk(1:num_k_points_) = wk_(:) IF ( present( nks_start ) ) nks_start = nks_start_ ! IF ( nks_start_>0 .AND. present( xk_start ) ) THEN IF (.NOT.ALLOCATED(xk_start)) ALLOCATE(xk_start(3,nks_start_)) xk_start(1:3,1:nks_start_) = xk_start_(:,:) ENDIF IF ( nks_start_>0 .AND. present( wk_start ) ) THEN IF (.NOT.ALLOCATED(wk_start)) ALLOCATE(wk_start(nks_start_)) wk_start(1:nks_start_) = wk_start_(:) ENDIF ! IF ( present( qnorm ) ) qnorm = qnorm_ ! DEALLOCATE( xk_ ) DEALLOCATE( wk_ ) IF (ALLOCATED(xk_start_)) DEALLOCATE(xk_start_) IF (ALLOCATED(wk_start_)) DEALLOCATE(wk_start_) ! END SUBROUTINE qexml_read_bz ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_para( kunit, nproc, nproc_pool, nproc_image, & ntask_groups, nproc_pot, nproc_bgrp, nproc_ortho, found, ierr ) !------------------------------------------------------------------------ ! INTEGER, OPTIONAL, INTENT(OUT) :: kunit, nproc, nproc_pool, nproc_image, & ntask_groups, nproc_pot, nproc_bgrp, nproc_ortho LOGICAL, INTENT(OUT) :: found INTEGER, INTENT(OUT) :: ierr ! INTEGER :: kunit_, nproc_, nproc_pool_, nproc_image_, ntask_groups_, & nproc_pot_, nproc_bgrp_, nproc_ortho_ ! LOGICAL :: found2 ! ! CALL iotk_scan_begin( iunit, "PARALLELISM", FOUND=found,IERR=ierr ) IF ((.NOT. found ) .OR. (ierr /= 0 ) ) RETURN ! CALL iotk_scan_dat( iunit, & "GRANULARITY_OF_K-POINTS_DISTRIBUTION", kunit_ ) ! CALL iotk_scan_dat( iunit, "NUMBER_OF_PROCESSORS", nproc_, FOUND=found2 ) IF ( .NOT. found2) nproc_=1 !compatibility ! CALL iotk_scan_dat( iunit, & "NUMBER_OF_PROCESSORS_PER_POOL", nproc_pool_, FOUND=found2 ) IF ( .NOT. found2) nproc_pool_=1 ! compatibility ! CALL iotk_scan_dat( iunit, & "NUMBER_OF_PROCESSORS_PER_IMAGE", nproc_image_, FOUND=found2 ) IF ( .NOT. found2) nproc_image_=1 ! compatibility ! CALL iotk_scan_dat( iunit, "NUMBER_OF_PROCESSORS_PER_TASKGROUP", & ntask_groups_, FOUND=found2 ) IF ( .NOT. found2) ntask_groups_=1 ! compatibility ! CALL iotk_scan_dat( iunit, "NUMBER_OF_PROCESSORS_PER_POT", & nproc_pot_, FOUND=found2 ) IF ( .NOT. found2) nproc_pot_=1 ! compatibility ! CALL iotk_scan_dat( iunit, "NUMBER_OF_PROCESSORS_PER_BAND_GROUP", & nproc_bgrp_, FOUND=found2 ) IF ( .NOT. found2) nproc_bgrp_=1 ! compatibility ! CALL iotk_scan_dat( iunit, "NUMBER_OF_PROCESSORS_PER_DIAGONALIZATION", & nproc_ortho_, FOUND=found2 ) IF ( .NOT. found2) nproc_ortho_=1 ! compatibility ! CALL iotk_scan_end( iunit, "PARALLELISM" ) ! ! IF (present(kunit)) kunit = kunit_ IF (present(nproc)) nproc = nproc_ IF (present(nproc_pool)) nproc_pool = nproc_pool_ IF (present(nproc_image)) nproc_image = nproc_image_ IF (present(ntask_groups)) ntask_groups = ntask_groups_ IF (present(nproc_pot)) nproc_pot = nproc_pot_ IF (present(nproc_bgrp)) nproc_bgrp = nproc_bgrp_ IF (present(nproc_ortho)) nproc_ortho = nproc_ortho_ ! END SUBROUTINE qexml_read_para ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_phonon( modenum, xqq, q_units, ierr ) !------------------------------------------------------------------------ ! INTEGER, OPTIONAL, INTENT(out) :: modenum REAL(DP), OPTIONAL, INTENT(out) :: xqq(:) CHARACTER(*), OPTIONAL, INTENT(out) :: q_units INTEGER, INTENT(out) :: ierr ! INTEGER :: modenum_ CHARACTER(256) :: q_units_ ! ierr = 0 ! CALL iotk_scan_begin( iunit, "PHONON", IERR=ierr ) IF ( ierr/=0 ) RETURN ! CALL iotk_scan_dat( iunit, "NUMBER_OF_MODES", modenum_, IERR=ierr ) IF ( ierr/=0 ) RETURN ! CALL iotk_scan_empty( iunit, "UNITS_FOR_Q-POINT", attr, IERR=ierr ) IF ( ierr/=0 ) RETURN CALL iotk_scan_attr( attr, "UNITS", q_units_, IERR=ierr ) IF ( ierr/=0 ) RETURN ! IF ( present (xqq) ) THEN ! CALL iotk_scan_dat( iunit, "Q-POINT", xqq(:), IERR=ierr ) IF ( ierr/=0 ) RETURN ! ENDIF ! CALL iotk_scan_end( iunit, "PHONON", IERR=ierr ) IF ( ierr/=0 ) RETURN ! ! IF ( present (modenum) ) modenum = modenum_ IF ( present (q_units) ) q_units = trim(q_units_) ! END SUBROUTINE qexml_read_phonon ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_bands_info( num_k_points, natomwfc, & nbnd, nbnd_up, nbnd_down, & nspin, nelec, nel_up, nel_down, & ef, two_fermi_energies, & ef_up, ef_dw ,energy_units, k_units, & noncolin, ierr ) !------------------------------------------------------------------------ ! INTEGER, OPTIONAL, INTENT(out) :: nbnd, nbnd_up, nbnd_down, num_k_points, nspin, natomwfc, nel_up,nel_down LOGICAL, OPTIONAL, INTENT(out) :: noncolin, two_fermi_energies REAL(DP), OPTIONAL, INTENT(out) :: ef, nelec, ef_up, ef_dw CHARACTER(*), OPTIONAL, INTENT(out) :: energy_units, k_units INTEGER, INTENT(out) :: ierr ! INTEGER :: nbnd_, nbnd_up_, nbnd_down_, num_k_points_, nspin_, natomwfc_, nel_up_, nel_down_ LOGICAL :: noncolin_, two_fermi_energies_ REAL(DP) :: ef_, nelec_, ef_up_, ef_dw_ CHARACTER(256) :: energy_units_, k_units_ ! LOGICAL :: found ! ierr = 0 ! ! CALL iotk_scan_begin( iunit, "BAND_STRUCTURE_INFO", IERR=ierr ) IF (ierr/=0) RETURN ! ! CALL iotk_scan_dat ( iunit, "NUMBER_OF_K-POINTS", num_k_points_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat ( iunit, "NUMBER_OF_SPIN_COMPONENTS", nspin_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat ( iunit, "NON-COLINEAR_CALCULATION", noncolin_, FOUND=found, IERR=ierr ) IF (ierr/=0) RETURN IF (.NOT. found) noncolin_ = .FALSE. ! CALL iotk_scan_dat ( iunit, "NUMBER_OF_ATOMIC_WFC", natomwfc_, IERR=ierr ) IF (ierr/=0) RETURN ! nbnd_up_ = 0 nbnd_down_ = 0 nel_up_ = 0.0d0 nel_down_ = 0.0d0 ! IF ( nspin_ == 2 ) THEN ! CALL iotk_scan_dat( iunit, & "NUMBER_OF_BANDS", nbnd_, ATTR = attr, IERR = ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "UP", nbnd_up_, IERR = ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "DW", nbnd_down_, IERR = ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, & "NUMBER_OF_ELECTRONS", nelec_, ATTR = attr, IERR = ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "UP", nel_up_, IERR = ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "DW", nel_down_, IERR = ierr ) IF (ierr/=0) RETURN ! ELSE ! CALL iotk_scan_dat( iunit, "NUMBER_OF_BANDS", nbnd_, IERR = ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "NUMBER_OF_ELECTRONS", nelec_, IERR = ierr ) IF (ierr/=0) RETURN ! END IF ! CALL iotk_scan_empty( iunit, "UNITS_FOR_K-POINTS", ATTR = attr, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr ( attr, "UNITS", k_units_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_empty( iunit, "UNITS_FOR_ENERGIES", ATTR = attr, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr ( attr, "UNITS", energy_units_, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_dat( iunit, "TWO_FERMI_ENERGIES", two_fermi_energies_, FOUND = found) IF ( .not. found ) two_fermi_energies_=.FALSE. ! ef_up_ =0.0d0 ef_dw_ =0.0d0 ef_ =0.0d0 ! IF ( two_fermi_energies_ ) THEN ! CALL iotk_scan_dat( iunit, "FERMI_ENERGY_UP", ef_up_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_dat( iunit, "FERMI_ENERGY_DOWN", ef_dw_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_dat( iunit, "ELECTRONS_UP", nel_up_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_dat( iunit, "ELECTRONS_DOWN", nel_down_, IERR=ierr ) IF (ierr/=0) RETURN ! ELSE ! CALL iotk_scan_dat ( iunit, "FERMI_ENERGY", ef_ , FOUND=found ) IF (ierr/=0) RETURN ! ! END IF ! CALL iotk_scan_end( iunit, "BAND_STRUCTURE_INFO", IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( present( nbnd ) ) nbnd = nbnd_ IF ( present( nbnd_up ) ) nbnd_up = nbnd_up_ IF ( present( nbnd_down ) ) nbnd_down = nbnd_down_ IF ( present( num_k_points ) ) num_k_points = num_k_points_ IF ( present( nspin ) ) nspin = nspin_ IF ( present( noncolin ) ) noncolin = noncolin_ IF ( present( natomwfc ) ) natomwfc = natomwfc_ IF ( present( nelec ) ) nelec = nelec_ IF ( present( nel_up ) ) nel_up = nel_up_ IF ( present( nel_down ) ) nel_down = nel_down_ IF ( present( ef ) ) ef = ef_ IF ( present( two_fermi_energies ) ) two_fermi_energies = two_fermi_energies_ IF ( present( ef_up ) ) ef_up = ef_up_ IF ( present( ef_dw ) ) ef_dw = ef_dw_ IF ( present( energy_units ) ) energy_units = trim( energy_units_ ) IF ( present( k_units ) ) k_units = trim( k_units_ ) ! ! END SUBROUTINE qexml_read_bands_info ! ! !-------------------------------------------------------------------------- SUBROUTINE qexml_read_bands_pw( num_k_points, nbnd, nkstot, lsda, lkpoint_dir, & filename, isk, et, wg , ierr ) !------------------------------------------------------------------------ ! INTEGER, INTENT(in) :: num_k_points, nbnd, nkstot LOGICAL, INTENT(in) :: lsda, lkpoint_dir CHARACTER(LEN=*), INTENT(in) :: filename INTEGER, INTENT(out), OPTIONAL :: isk(:) REAL(DP), INTENT(out), OPTIONAL :: et(:,:), wg(:,:) INTEGER, INTENT(out):: ierr ! INTEGER :: ik, ik_eff, iunaux INTEGER :: isk_(nkstot) REAL(DP) :: et_(nbnd, nkstot),wg_(nbnd, nkstot) LOGICAL :: found ! ! IF ( .NOT. lkpoint_dir) THEN ! CALL iotk_free_unit( iunaux ) ! CALL iotk_open_read ( iunaux, FILE = trim(filename), IERR=ierr ) IF (ierr/=0) RETURN ! END IF ! ! CALL iotk_scan_begin( iunit, "EIGENVALUES", IERR=ierr ) IF (ierr/=0) RETURN ! k_points_loop: DO ik = 1, num_k_points ! CALL iotk_scan_begin( iunit, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! IF ( lsda ) THEN ! isk_(ik) = 1 ! IF (lkpoint_dir) THEN CALL iotk_scan_begin(iunit, "DATAFILE"//TRIM(iotk_index(1)) , FOUND = found) IF (.NOT. found ) GO TO 10 ! workaround: PW-CP compatibility CALL iotk_scan_dat ( iunit, "EIGENVALUES", et_(:,ik) ) CALL iotk_scan_dat ( iunit, "OCCUPATIONS", wg_(:,ik) ) CALL iotk_scan_end ( iunit, "DATAFILE"//TRIM(iotk_index(1)) ) ELSE CALL iotk_scan_begin( iunaux, & "DATA_EIG"//TRIM( iotk_index(ik) )//"_SPIN_UP", FOUND=found ) IF (.NOT. found ) GO TO 10 ! workaround: PW-CP compatibility CALL iotk_scan_dat ( iunaux, "EIGENVALUES", et_(:,ik) ) CALL iotk_scan_dat ( iunaux, "OCCUPATIONS", wg_(:,ik) ) CALL iotk_scan_end( iunaux, & "DATA_EIG"//TRIM( iotk_index( ik ) )//"_SPIN_UP") ENDIF ! 10 CONTINUE ! ik_eff = ik + num_k_points isk_(ik_eff) = 2 ! IF (lkpoint_dir) THEN CALL iotk_scan_begin(iunit,"DATAFILE"//TRIM(iotk_index(2)) & , FOUND = found) IF (.NOT. found ) GO TO 20 ! workaround: PW-CP compatibility CALL iotk_scan_dat ( iunit, "EIGENVALUES", et_(:,ik_eff) ) CALL iotk_scan_dat ( iunit, "OCCUPATIONS", wg_(:,ik_eff) ) CALL iotk_scan_end( iunit, "DATAFILE"//TRIM(iotk_index(2)) ) ELSE CALL iotk_scan_begin( iunaux, & "DATA_EIG"//TRIM( iotk_index(ik) )//"_SPIN_DW", FOUND=found ) IF (.NOT. found ) GO TO 20 ! workaround: PW-CP compatibility CALL iotk_scan_dat ( iunaux, "EIGENVALUES", et_(:,ik_eff) ) CALL iotk_scan_dat ( iunaux, "OCCUPATIONS", wg_(:,ik_eff) ) CALL iotk_scan_end( iunaux, & "DATA_EIG"//TRIM( iotk_index( ik ) )//"_SPIN_DW") ENDIF ! 20 CONTINUE ! ELSE ! isk_(ik) = 1 ! IF (lkpoint_dir) THEN CALL iotk_scan_begin( iunit, "DATAFILE" , FOUND = found) IF (.NOT. found ) GO TO 15 ! workaround: PW-CP compatibility CALL iotk_scan_dat ( iunit, "EIGENVALUES", et_(:,ik) ) CALL iotk_scan_dat ( iunit, "OCCUPATIONS", wg_(:,ik) ) CALL iotk_scan_end ( iunit, "DATAFILE" ) ELSE CALL iotk_scan_begin( iunaux, & "DATA_EIG"//TRIM( iotk_index(ik) ), FOUND = found ) IF (.NOT. found ) GO TO 15 ! workaround: PW-CP compatibility CALL iotk_scan_dat ( iunaux, "EIGENVALUES", et_(:,ik) ) CALL iotk_scan_dat ( iunaux, "OCCUPATIONS", wg_(:,ik) ) CALL iotk_scan_end( iunaux, & "DATA_EIG"//TRIM( iotk_index( ik ) )) ENDIF 15 CONTINUE ! END IF ! CALL iotk_scan_end( iunit, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! END DO k_points_loop ! CALL iotk_scan_end( iunit, "EIGENVALUES", IERR=ierr ) IF (ierr/=0) RETURN ! IF (.NOT.lkpoint_dir) THEN CALL iotk_close_read ( iunaux, IERR=ierr ) IF (ierr/=0) RETURN END IF ! IF ( present( isk ) ) isk( 1:nkstot ) = isk_(:) IF ( present( et ) ) et( 1:nbnd, 1:nkstot ) = et_(:,:) IF ( present( wg ) ) wg( 1:nbnd, 1:nkstot ) = wg_(:,:) ! END SUBROUTINE qexml_read_bands_pw ! ! !----------------------------------------------------------------------------- SUBROUTINE qexml_read_bands_cp( num_k_points, nbnd_tot, nudx , nspin, iupdwn, & nupdwn, occ0, occm, ierr ) !----------------------------------------------------------------------------- ! INTEGER, INTENT(OUT) :: ierr REAL(DP), INTENT(OUT) :: occ0(:) REAL(DP), INTENT(OUT) :: occm(:) ! INTEGER, INTENT(in) :: num_k_points, nspin, nbnd_tot, nudx INTEGER, INTENT(IN) :: iupdwn(:) INTEGER, INTENT(IN) :: nupdwn(:) ! INTEGER :: ik, iss, ik_eff CHARACTER(LEN=4) :: cspin REAL(DP), ALLOCATABLE :: occ_(:) REAL(DP) :: wk_ LOGICAL :: found ! CALL iotk_scan_begin( iunit, "EIGENVALUES", IERR=ierr ) IF (ierr /= 0) RETURN ! ! k_points_loop1: DO ik = 1, num_k_points ! CALL iotk_scan_begin( iunit, "K-POINT" // TRIM( iotk_index(ik) ) ) ! CALL iotk_scan_dat( iunit, "WEIGHT", wk_ ) ! ! DO iss = 1, nspin ! cspin = iotk_index( iss ) ! ik_eff = ik + ( iss - 1 ) * num_k_points ! ALLOCATE( occ_ ( MAX( nudx , nbnd_tot ) ) ) ! occ_ = 0.0d0 ! CALL iotk_scan_dat( iunit, "OCC0" // TRIM( cspin ), occ_ ( 1 : nupdwn( iss ) ), FOUND = found ) ! IF( .NOT. found ) THEN ! IF( nspin == 1 ) THEN CALL iotk_scan_begin( iunit, "DATAFILE", FOUND = found ) ELSE CALL iotk_scan_begin( iunit, "DATAFILE"//TRIM(cspin), FOUND = found ) END IF ! CALL iotk_scan_dat ( iunit, "OCCUPATIONS", occ_( 1:nbnd_tot ) ) IF( nspin == 1 ) THEN CALL iotk_scan_end( iunit, "DATAFILE" ) ELSE CALL iotk_scan_end( iunit, "DATAFILE"//TRIM(cspin) ) END IF ! IF( found ) THEN occ0( iupdwn( iss ) : iupdwn( iss ) + nupdwn( iss ) - 1 ) = occ_ ( 1:nupdwn( iss ) ) * wk_ occm( iupdwn( iss ) : iupdwn( iss ) + nupdwn( iss ) - 1 ) = occ_ ( 1:nupdwn( iss ) ) * wk_ END IF ! ELSE ! occ0( iupdwn( iss ) : iupdwn( iss ) + nupdwn( iss ) - 1 ) = occ_ ( 1:nupdwn( iss ) ) ! CALL iotk_scan_dat( iunit, "OCCM" // TRIM( cspin ), occ_ ( 1 : nupdwn( iss ) ), FOUND = found ) ! IF( found ) THEN occm( iupdwn( iss ) : iupdwn( iss ) + nupdwn( iss ) - 1 ) = occ_ ( 1:nupdwn( iss ) ) END IF ! END IF ! DEALLOCATE ( occ_ ) ! IF( .NOT. found ) THEN ierr = 1 RETURN END IF ! END DO ! CALL iotk_scan_end( iunit, "K-POINT" // TRIM( iotk_index(ik) ), IERR = ierr ) IF (ierr /= 0) RETURN ! END DO k_points_loop1 ! CALL iotk_scan_end ( iunit, "EIGENVALUES", IERR = ierr ) IF (ierr /= 0) RETURN ! ! END SUBROUTINE qexml_read_bands_cp ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_wfc( ibnds, ibnde, ik, ispin, ipol, igk, ngw, igwx, & gamma_only, wf, wf_kindip, ierr ) !------------------------------------------------------------------------ ! ! read wfc from IBNDS to IBNDE, for kpt IK and spin ISPIN ! WF is the wfc on its proper k+g grid, while WF_KINDIP is the same wfc ! but on a truncated rho grid (k-point indipendent) ! INTEGER, INTENT(in) :: ibnds, ibnde, ik INTEGER, OPTIONAL, INTENT(in) :: ispin, ipol INTEGER, OPTIONAL, INTENT(in) :: igk(:) INTEGER, OPTIONAL, INTENT(out) :: ngw, igwx LOGICAL, OPTIONAL, INTENT(out) :: gamma_only COMPLEX(DP), OPTIONAL, INTENT(out) :: wf(:,:), wf_kindip(:,:) INTEGER, INTENT(out) :: ierr ! INTEGER :: iunaux INTEGER :: ngw_, igwx_, ig, ib, lindex LOGICAL :: gamma_only_ COMPLEX(DP), ALLOCATABLE :: wf_(:) CHARACTER(256) :: filename ierr = 0 ! ! ! few check ! IF ( present( ispin ) .and. present( ipol ) ) THEN ! ierr = 1 RETURN ! ENDIF ! ! ! read the main data ! CALL iotk_free_unit( iunaux ) ! IF ( present( ispin ) ) THEN ! filename = trim( qexml_wfc_filename( datadir_in, 'evc', ik, ispin ) ) ! ELSEIF ( present( ipol ) ) THEN ! filename = trim( qexml_wfc_filename( datadir_in, 'evc', ik, ipol ) ) ! ELSE ! filename = trim( qexml_wfc_filename( datadir_in, 'evc', ik ) ) ! ENDIF ! CALL iotk_open_read ( iunaux, FILE = trim(filename), IERR=ierr ) IF (ierr/=0) RETURN ! ! CALL iotk_scan_empty( iunaux, "INFO", ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "ngw", ngw_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "igwx", igwx_, IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( qexml_version_before_1_4_0 ) THEN ! IF ( present( gamma_only ) ) THEN ! CALL qexml_read_planewaves( GAMMA_ONLY=gamma_only_, IERR=ierr) IF (ierr/=0) RETURN ! ENDIF ! ELSE ! CALL iotk_scan_attr( attr, 'gamma_only', gamma_only_, IERR=ierr) IF (ierr/=0) RETURN ! ENDIF ! ! IF ( present( wf ) ) THEN ! lindex = 0 ! DO ib = ibnds, ibnde ! lindex = lindex + 1 ! CALL iotk_scan_dat( iunaux, "evc"//trim(iotk_index(ib)), & wf( 1:igwx_, lindex ), IERR=ierr ) IF (ierr/=0) RETURN ! ENDDO ! ENDIF ! IF ( present( wf_kindip ) ) THEN ! ALLOCATE( wf_(igwx_ ), STAT=ierr ) IF (ierr/=0) RETURN ! IF ( .not. present( igk ) ) THEN ierr = 3 RETURN ENDIF ! IF ( maxval( igk( 1: igwx_ ) ) > size( wf_kindip, 1) ) THEN ierr = 4 RETURN ENDIF ! ! lindex = 0 ! DO ib = ibnds, ibnde ! lindex = lindex + 1 ! CALL iotk_scan_dat( iunaux, "evc"//trim(iotk_index( ib ) ), & wf_(1:igwx_), IERR=ierr ) IF (ierr/=0) RETURN ! ! use the igk map to do the transformation ! wf_kindip(:, lindex) = 0.0_DP ! DO ig = 1, igwx_ ! wf_kindip( igk( ig ), lindex ) = wf_( ig ) ! ENDDO ! ENDDO ! DEALLOCATE( wf_, STAT=ierr ) IF (ierr/=0) RETURN ! ENDIF ! CALL iotk_close_read ( iunaux, IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( present( ngw ) ) ngw = ngw_ IF ( present( igwx ) ) igwx = igwx_ IF ( present( gamma_only ) ) gamma_only = gamma_only_ ! END SUBROUTINE qexml_read_wfc ! ! !------------------------------------------------------------------------ SUBROUTINE qexml_read_rho( nr1, nr2, nr3, rho, ip, rhoz, ierr ) !------------------------------------------------------------------------ ! ! Reads charge density rho, as a whole or one plane at a time. ! if RHO is specified, the whole charge density is read; ! if RHOZ is specified only the IP-th plane is read ! IMPLICIT NONE ! INTEGER, OPTIONAL, INTENT(out) :: nr1, nr2, nr3 INTEGER, OPTIONAL, INTENT(in) :: ip REAL(DP), OPTIONAL, INTENT(out) :: rho(:,:,:), rhoz(:) INTEGER, INTENT(out) :: ierr ! INTEGER :: nr1_, nr2_, nr3_, ip_ INTEGER :: iunaux LOGICAL :: lexists CHARACTER(256) :: filename ierr = 0 ! ! CALL iotk_free_unit( iunaux ) ! filename = trim( datadir_in ) // '/' // 'charge-density.dat' lexists = check_file_exst( trim(filename) ) ! IF ( .not. lexists ) THEN ! filename = trim( datadir_in ) // '/' // 'charge-density.xml' lexists = check_file_exst( trim(filename) ) ! ENDIF ! IF ( .not. lexists ) THEN ! ierr = -1 RETURN ! ENDIF ! CALL iotk_open_read( iunaux, FILE = filename, IERR=ierr ) IF ( ierr/=0 ) RETURN ! ! CALL iotk_scan_begin( iunaux, "CHARGE-DENSITY", IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_empty( iunaux, "INFO", ATTR=attr, IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_scan_attr( attr, "nr1", nr1_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "nr2", nr2_, IERR=ierr ) IF (ierr/=0) RETURN CALL iotk_scan_attr( attr, "nr3", nr3_, IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( present( rhoz ) ) THEN ! IF ( .not. present( ip ) ) THEN ierr = 71 RETURN ENDIF ! CALL iotk_scan_dat( iunaux, "z"//trim(iotk_index(ip)), rhoz, IERR=ierr) IF (ierr/=0) RETURN ! ENDIF ! ! IF ( present( rho ) ) THEN ! DO ip_ = 1, nr3_ ! CALL iotk_scan_dat( iunaux, "z"//trim(iotk_index(ip_)), rho(1:nr1_,1:nr2_,ip_), & IERR=ierr) IF (ierr/=0) RETURN ! ENDDO ! ENDIF ! CALL iotk_scan_end( iunaux, "CHARGE-DENSITY", IERR=ierr ) IF (ierr/=0) RETURN ! CALL iotk_close_read( iunaux, IERR=ierr ) IF (ierr/=0) RETURN ! ! IF ( present( nr1 ) ) nr1 = nr1_ IF ( present( nr2 ) ) nr2 = nr2_ IF ( present( nr3 ) ) nr3 = nr3_ ! END SUBROUTINE qexml_read_rho ! ! END MODULE qexml_module espresso-5.1/Modules/fd_gradient.f900000644000175000017500000001641712341373034015511 0ustar mbamba! ! Copyright (C) 2006-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! !---------------------------------------------------------------------- ! Module to compute finite differences gradients on dense real space grid ! Written by Oliviero Andreussi !---------------------------------------------------------------------- ! !=----------------------------------------------------------------------=! MODULE fd_gradient !=----------------------------------------------------------------------=! USE kinds, ONLY: DP IMPLICIT NONE CONTAINS !=----------------------------------------------------------------------=! SUBROUTINE calc_fd_gradient( nfdpoint, icfd, ncfd, nnr, f, grad ) !=----------------------------------------------------------------------=! USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE mp, ONLY : mp_sum USE mp_bands, ONLY : me_bgrp, intra_bgrp_comm USE fft_base, ONLY : grid_scatter IMPLICIT NONE ! INTEGER, INTENT(IN) :: nfdpoint INTEGER, INTENT(IN) :: ncfd INTEGER, INTENT(IN) :: icfd(-nfdpoint:nfdpoint) INTEGER, INTENT(IN) :: nnr REAL( DP ), DIMENSION( nnr ), INTENT(IN) :: f REAL( DP ), DIMENSION( 3, nnr ), INTENT(OUT) :: grad INTEGER :: index0, i, ir, ir_end, ipol, in INTEGER :: ix(-nfdpoint:nfdpoint),iy(-nfdpoint:nfdpoint),iz(-nfdpoint:nfdpoint) INTEGER :: ixc, iyc, izc, ixp, ixm, iyp, iym, izp, izm REAL( DP ), DIMENSION( :, : ), ALLOCATABLE :: gradtmp ! grad = 0.D0 ! ALLOCATE( gradtmp( 3, dfftp%nr1x*dfftp%nr2x*dfftp%nr3x ) ) gradtmp = 0.D0 ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! DO ir = 1, ir_end ! i = index0 + ir - 1 iz(0) = i / (dfftp%nr1x*dfftp%nr2x) i = i - (dfftp%nr1x*dfftp%nr2x)*iz(0) iy(0) = i / dfftp%nr1x ix(0) = i - dfftp%nr1x*iy(0) ! DO in = 1, nfdpoint ix(in) = ix(in-1) + 1 IF( ix(in) .GT. dfftp%nr1x-1 ) ix(in) = 0 ix(-in) = ix(-in+1) - 1 IF( ix(-in) .LT. 0 ) ix(-in) = dfftp%nr1x-1 iy(in) = iy(in-1) + 1 IF( iy(in) .GT. dfftp%nr2x-1 ) iy(in) = 0 iy(-in) = iy(-in+1) - 1 IF( iy(-in) .LT. 0 ) iy(-in) = dfftp%nr2x-1 iz(in) = iz(in-1) + 1 IF( iz(in) .GT. dfftp%nr3x-1 ) iz(in) = 0 iz(-in) = iz(-in+1) - 1 IF( iz(-in) .LT. 0 ) iz(-in) = dfftp%nr3x-1 ENDDO ! DO in = -nfdpoint, nfdpoint i = ix(in) + iy(0) * dfftp%nr1x + iz(0) * dfftp%nr1x * dfftp%nr2x + 1 gradtmp(1,i) = gradtmp(1,i) - icfd(in)*f(ir)*dfftp%nr1x i = ix(0) + iy(in) * dfftp%nr1x + iz(0) * dfftp%nr1x * dfftp%nr2x + 1 gradtmp(2,i) = gradtmp(2,i) - icfd(in)*f(ir)*dfftp%nr2x i = ix(0) + iy(0) * dfftp%nr1x + iz(in) * dfftp%nr1x * dfftp%nr2x + 1 gradtmp(3,i) = gradtmp(3,i) - icfd(in)*f(ir)*dfftp%nr3x ENDDO ! ENDDO ! #if defined (__MPI) DO ipol = 1, 3 CALL mp_sum( gradtmp(ipol,:), intra_bgrp_comm ) CALL grid_scatter( gradtmp(ipol,:), grad(ipol,:) ) ENDDO #else grad = gradtmp #endif ! DEALLOCATE( gradtmp ) ! DO ir = 1,nnr grad(:,ir) = MATMUL( bg, grad(:,ir) ) ENDDO grad = grad / DBLE(ncfd) / alat ! RETURN END SUBROUTINE calc_fd_gradient SUBROUTINE init_fd_gradient( ifdtype, nfdpoint, ncfd, icfd ) USE kinds, ONLY : DP IMPLICIT NONE ! INTEGER, INTENT(IN) :: ifdtype, nfdpoint INTEGER, INTENT(OUT) :: ncfd INTEGER, INTENT(OUT) :: icfd(-nfdpoint:nfdpoint) ! INTEGER :: in ! ncfd = 0 icfd = 0 ! SELECT CASE ( ifdtype ) ! CASE ( 1 ) ! (2N+1)-point Central Differences IF ( nfdpoint .EQ. 1 ) THEN ncfd = 2 icfd( 1 ) = 1 ELSE IF ( nfdpoint .EQ. 2 ) THEN ncfd = 12 icfd( 2 ) = -1 icfd( 1 ) = 8 ELSE IF ( nfdpoint .EQ. 3 ) THEN ncfd = 60 icfd( 3 ) = 1 icfd( 2 ) = -9 icfd( 1 ) = 45 ELSE IF ( nfdpoint .EQ. 4 ) THEN ncfd = 840 icfd( 4 ) = -3 icfd( 3 ) = 32 icfd( 2 ) =-168 icfd( 1 ) = 672 ELSE WRITE(*,*)'ERROR: wrong number of points',nfdpoint,& &' for finite difference type ',ifdtype STOP ENDIF ! CASE ( 2 ) ! Low-Noise Lanczos Differentiators ( M = 2 ) IF ( nfdpoint .GE. 2 ) THEN ncfd = (nfdpoint)*(nfdpoint+1)*(2*nfdpoint+1)/3 DO in = 1,nfdpoint icfd( in ) = in ENDDO ELSE WRITE(*,*)'ERROR: wrong number of points',nfdpoint,& &' for finite difference type ',ifdtype STOP END IF ! CASE ( 3 ) ! Super Lanczos Low-Noise Differentiators ( M = 4 ) IF ( nfdpoint .EQ. 3 ) THEN ncfd = 252 icfd( 3 ) = -22 icfd( 2 ) = 67 icfd( 1 ) = 58 ELSE IF ( nfdpoint .EQ. 4 ) THEN ncfd = 1188 icfd( 4 ) = -86 icfd( 3 ) = 142 icfd( 2 ) = 193 icfd( 1 ) = 126 ELSE IF ( nfdpoint .EQ. 5 ) THEN ncfd = 5148 icfd( 5 ) =-300 icfd( 4 ) = 294 icfd( 3 ) = 532 icfd( 2 ) = 503 icfd( 1 ) = 296 ELSE WRITE(*,*)'ERROR: wrong number of points',nfdpoint,& &' for finite difference type ',ifdtype STOP ENDIF ! CASE ( 4 ) ! Smooth Noise-Robust Differentiators ( n = 2 ) IF ( nfdpoint .EQ. 2 ) THEN ncfd = 8 icfd( 2 ) = 1 icfd( 1 ) = 2 ELSE IF ( nfdpoint .EQ. 3 ) THEN ncfd = 32 icfd( 3 ) = 1 icfd( 2 ) = 4 icfd( 1 ) = 5 ELSE IF ( nfdpoint .EQ. 4 ) THEN ncfd = 128 icfd( 4 ) = 1 icfd( 3 ) = 6 icfd( 2 ) = 14 icfd( 1 ) = 14 ELSE IF ( nfdpoint .EQ. 5 ) THEN ncfd = 512 icfd( 5 ) = 1 icfd( 4 ) = 8 icfd( 3 ) = 27 icfd( 2 ) = 48 icfd( 1 ) = 42 ELSE WRITE(*,*)'ERROR: wrong number of points',nfdpoint,& &' for finite difference type ',ifdtype STOP ENDIF ! CASE ( 5 ) ! Smooth Noise-Robust Differentiators ( n = 4 ) IF ( nfdpoint .EQ. 3 ) THEN ncfd = 96 icfd( 3 ) = -5 icfd( 2 ) = 12 icfd( 1 ) = 39 ELSE IF ( nfdpoint .EQ. 4 ) THEN ncfd = 96 icfd( 4 ) = -2 icfd( 3 ) = -1 icfd( 2 ) = 16 icfd( 1 ) = 27 ELSE IF ( nfdpoint .EQ. 5 ) THEN ncfd = 1536 icfd( 5 ) = -11 icfd( 4 ) = -32 icfd( 3 ) = 39 icfd( 2 ) = 256 icfd( 1 ) = 322 ELSE WRITE(*,*)'ERROR: wrong number of points',nfdpoint,& &' for finite difference type ',ifdtype STOP ENDIF ! CASE DEFAULT ! WRITE(*,*)'ERROR: finite difference type unknown, ifdtype=',ifdtype STOP ! END SELECT ! DO in = 1,nfdpoint icfd( -in ) = - icfd( in ) ENDDO ! RETURN ! END SUBROUTINE init_fd_gradient !=----------------------------------------------------------------------=! END MODULE fd_gradient !=----------------------------------------------------------------------=! espresso-5.1/Modules/sic.f900000644000175000017500000001244412341373034014015 0ustar mbamba! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE sic_module !------------------------------------------------------------------------------! ! ! The versions after 3.0 contain also the self-interaction-correction method ! has proposed by Mauri et al. (PRB 2005), taking also into account the 'comment' ! proposed by Sprik et al. (ICR 2005). ! Thus, we introduce the parameters sic_alpha and sic_epsilon to correct the ! exchange-correlation and the electronic hartree potentials, respectively. ! They are two empirical parameters, thus to remain in a ab-initio ! set them equal to 1.0_DP. ! Sprik et al. showed that, in same cases, i.e. OH radical, it should be better ! to under estimate the correction to ex-ch, since in same way the exch already ! corrects the electronic hartree part. ! HOW AND WHEN USE THE SIC:: ! Fran's personal considerations: ! the SIC is a way to correct the self-interaction WHEN ! ONE and only ONE e- lives in an unpaired electronic level ! we have choosen for it the spin up ! Remember to select nspin == 2 and nelup = neldw + 1 ! the other e- are fictitious calculate in a LSD approach: ! infact, even if the paired e- feel a different potential (for spin up and spin dw) ! we constrain them to have the same force, and the same eigenvalues, the same eigenstates ! When you applied this SIC scheme to a molecule or to an atom, which are neutral, ! remember that you have to consider another correction to the energy level as proposed ! by Landau: infact if you start from a neutral system and subtract the self-intereaction ! the unpaired e- feels a charge system. Thus remeber a correction term ~2.317(Madelung)/2L_box USE kinds, ONLY: DP ! IMPLICIT NONE SAVE INTEGER, ALLOCATABLE :: ind_localisation(:) INTEGER :: nat_localisation = 0 LOGICAL :: print_localisation = .FALSE. ! Calculates hartree energy around specified atoms INTEGER :: self_interaction = 0 REAL(DP) :: sic_epsilon = 0.0_DP REAL(DP) :: sic_alpha = 0.0_DP REAL(DP) :: sic_rloc = 0.0_DP REAL(DP), ALLOCATABLE :: pos_localisation(:,:) !------------------------------------------------------------------------------! CONTAINS !------------------------------------------------------------------------------! SUBROUTINE sic_initval( nat_ , id_loc_ , sic_ , sic_epsilon_ , sic_alpha_, sic_rloc_ ) IMPLICIT NONE INTEGER, INTENT(IN) :: nat_ INTEGER, INTENT(IN) :: id_loc_ (:) CHARACTER(LEN=*), INTENT(IN) :: sic_ REAL(DP), INTENT(IN) :: sic_epsilon_ REAL(DP), INTENT(IN) :: sic_alpha_ REAL(DP), INTENT(IN) :: sic_rloc_ select case ( TRIM( sic_ ) ) case ( 'sic_mac' ) self_interaction = 2 case default self_interaction = 0 end select sic_epsilon = sic_epsilon_ sic_alpha = sic_alpha_ sic_rloc = sic_rloc_ ! counting the atoms around which i want to calculate the charge localization IF( ALLOCATED( ind_localisation ) ) DEALLOCATE( ind_localisation ) ALLOCATE( ind_localisation( nat_ ) ) ind_localisation( 1 : nat_ ) = id_loc_ ( 1 : nat_ ) nat_localisation = COUNT( ind_localisation > 0 ) IF( ALLOCATED( pos_localisation ) ) DEALLOCATE( pos_localisation ) ALLOCATE( pos_localisation( 4, MAX( nat_localisation, 1 ) ) ) ! IF( nat_localisation > 0 ) print_localisation = .TRUE. ! RETURN END SUBROUTINE sic_initval !------------------------------------------------------------------------------! SUBROUTINE deallocate_sic() IMPLICIT NONE IF( ALLOCATED( pos_localisation ) ) DEALLOCATE( pos_localisation ) IF( ALLOCATED( ind_localisation ) ) DEALLOCATE( ind_localisation ) RETURN END SUBROUTINE deallocate_sic !------------------------------------------------------------------------------! SUBROUTINE sic_info( ) USE io_global, ONLY: stdout IMPLICIT NONE ! ! prints the type of USIC we will do : ! IF( self_interaction == 0 ) THEN RETURN END IF WRITE(stdout, 591) WRITE(stdout, 592) self_interaction WRITE(stdout, 593) !!select case (self_interaction) IF ( self_interaction /= 0 ) THEN write(stdout,*) & ' Unpaired-electron self-interaction correction by Mauri', self_interaction write(stdout,*) & ' E_USIC_EHTE = U_hartree[rho_up + rho_dw]- sic_espilon * U_hartree[rho_up-rhp_down]' write(stdout,*) & ' E_USIC_XC = E_xc[rho_up,rho_dw] - sic_alpha( E_xc[rho_up,rho_dw] + E_xc[rho_dw, rho_dw]) ' END IF !!select 591 FORMAT( 3X,' ') 592 FORMAT( 3X,'Introducing a Mauri Avezac Calandra Self_Interaction Correction: ', I3) 593 FORMAT( 3X,'----------------------------------------') RETURN END SUBROUTINE sic_info !------------------------------------------------------------------------------! END MODULE sic_module !------------------------------------------------------------------------------! espresso-5.1/Modules/constants.f900000644000175000017500000001346012341373034015252 0ustar mbamba! ! Copyright (C) 2002-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE constants !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! ! ... The constants needed everywhere ! IMPLICIT NONE ! SAVE ! ! ... Mathematical constants ! REAL(DP), PARAMETER :: pi = 3.14159265358979323846_DP REAL(DP), PARAMETER :: tpi = 2.0_DP * pi REAL(DP), PARAMETER :: fpi = 4.0_DP * pi REAL(DP), PARAMETER :: sqrtpi = 1.77245385090551602729_DP REAL(DP), PARAMETER :: sqrtpm1= 1.0_DP / sqrtpi REAL(DP), PARAMETER :: sqrt2 = 1.41421356237309504880_DP ! ! ... Physical constants, SI (NIST CODATA 2006), Web Version 5.1 ! http://physics.nist.gov/constants REAL(DP), PARAMETER :: H_PLANCK_SI = 6.62606896E-34_DP ! J s REAL(DP), PARAMETER :: K_BOLTZMANN_SI = 1.3806504E-23_DP ! J K^-1 REAL(DP), PARAMETER :: ELECTRON_SI = 1.602176487E-19_DP ! C REAL(DP), PARAMETER :: ELECTRONVOLT_SI = 1.602176487E-19_DP ! J REAL(DP), PARAMETER :: ELECTRONMASS_SI = 9.10938215E-31_DP ! Kg REAL(DP), PARAMETER :: HARTREE_SI = 4.35974394E-18_DP ! J REAL(DP), PARAMETER :: RYDBERG_SI = HARTREE_SI/2.0_DP ! J REAL(DP), PARAMETER :: BOHR_RADIUS_SI = 0.52917720859E-10_DP ! m REAL(DP), PARAMETER :: AMU_SI = 1.660538782E-27_DP ! Kg REAL(DP), PARAMETER :: C_SI = 2.99792458E+8_DP ! m sec^-1 REAL(DP), PARAMETER :: MUNOUGHT_SI = fpi*1.0E-7_DP ! N A^-2 REAL(DP), PARAMETER :: EPSNOUGHT_SI = 1.0_DP / (MUNOUGHT_SI * & C_SI**2) ! F m^-1 ! ! ... Physical constants, atomic units: ! ... AU for "Hartree" atomic units (e = m = hbar = 1) ! ... RY for "Rydberg" atomic units (e^2=2, m=1/2, hbar=1) ! REAL(DP), PARAMETER :: K_BOLTZMANN_AU = K_BOLTZMANN_SI / HARTREE_SI REAL(DP), PARAMETER :: K_BOLTZMANN_RY = K_BOLTZMANN_SI / RYDBERG_SI ! ! ... Unit conversion factors: energy and masses ! REAL(DP), PARAMETER :: AUTOEV = HARTREE_SI / ELECTRONVOLT_SI REAL(DP), PARAMETER :: RYTOEV = AUTOEV / 2.0_DP REAL(DP), PARAMETER :: AMU_AU = AMU_SI / ELECTRONMASS_SI REAL(DP), PARAMETER :: AMU_RY = AMU_AU / 2.0_DP ! ! ... Unit conversion factors: atomic unit of time, in s and ps ! REAL(DP), PARAMETER :: AU_SEC = H_PLANCK_SI/tpi/HARTREE_SI REAL(DP), PARAMETER :: AU_PS = AU_SEC * 1.0E+12_DP ! ! ... Unit conversion factors: pressure (1 Pa = 1 J/m^3, 1GPa = 10 Kbar ) ! REAL(DP), PARAMETER :: AU_GPA = HARTREE_SI / BOHR_RADIUS_SI ** 3 & / 1.0E+9_DP REAL(DP), PARAMETER :: RY_KBAR = 10.0_DP * AU_GPA / 2.0_DP ! ! ... Unit conversion factors: 1 debye = 10^-18 esu*cm ! ... = 3.3356409519*10^-30 C*m ! ... = 0.208194346 e*A ! ... ( 1 esu = (0.1/c) Am, c=299792458 m/s) ! REAL(DP), PARAMETER :: DEBYE_SI = 3.3356409519_DP * 1.0E-30_DP ! C*m REAL(DP), PARAMETER :: AU_DEBYE = ELECTRON_SI * BOHR_RADIUS_SI / & DEBYE_SI ! REAL(DP), PARAMETER :: eV_to_kelvin = ELECTRONVOLT_SI / K_BOLTZMANN_SI REAL(DP), PARAMETER :: ry_to_kelvin = RYDBERG_SI / K_BOLTZMANN_SI ! ! .. Unit conversion factors: Energy to wavelength ! REAL(DP), PARAMETER :: EVTONM = 1E+9_DP * H_PLANCK_SI * C_SI / & &ELECTRONVOLT_SI REAL(DP), PARAMETER :: RYTONM = 1E+9_DP * H_PLANCK_SI * C_SI / RYDBERG_SI ! ! Speed of light in atomic units ! REAL(DP), PARAMETER :: C_AU = C_SI / BOHR_RADIUS_SI * AU_SEC ! ! ... zero up to a given accuracy ! REAL(DP), PARAMETER :: eps4 = 1.0E-4_DP REAL(DP), PARAMETER :: eps6 = 1.0E-6_DP REAL(DP), PARAMETER :: eps8 = 1.0E-8_DP REAL(DP), PARAMETER :: eps12 = 1.0E-12_DP REAL(DP), PARAMETER :: eps14 = 1.0E-14_DP REAL(DP), PARAMETER :: eps16 = 1.0E-16_DP REAL(DP), PARAMETER :: eps24 = 1.0E-24_DP REAL(DP), PARAMETER :: eps32 = 1.0E-32_DP ! REAL(DP), PARAMETER :: gsmall = 1.0E-12_DP ! REAL(DP), PARAMETER :: e2 = 2.0_DP ! the square of the electron charge REAL(DP), PARAMETER :: degspin = 2.0_DP ! the number of spins per level ! !!!!!! COMPATIBIILITY ! REAL(DP), PARAMETER :: BOHR_RADIUS_CM = BOHR_RADIUS_SI * 100.0_DP REAL(DP), PARAMETER :: BOHR_RADIUS_ANGS = BOHR_RADIUS_CM * 1.0E8_DP REAL(DP), PARAMETER :: ANGSTROM_AU = 1.0_DP/BOHR_RADIUS_ANGS REAL(DP), PARAMETER :: DIP_DEBYE = AU_DEBYE REAL(DP), PARAMETER :: AU_TERAHERTZ = AU_PS REAL(DP), PARAMETER :: AU_TO_OHMCMM1 = 46000.0_DP ! (ohm cm)^-1 REAL(DP), PARAMETER :: RY_TO_THZ = 1.0_DP / AU_TERAHERTZ / FPI REAL(DP), PARAMETER :: RY_TO_GHZ = RY_TO_THZ*1000.0_DP REAL(DP), PARAMETER :: RY_TO_CMM1 = 1.E+10_DP * RY_TO_THZ / C_SI ! END MODULE constants ! perl script to create a program to list the available constants: ! extract with: grep '^!XX!' constants.f90 | sed 's,!XX!,,' > mkconstlist.pl ! then run: perl mkconstlist.pl constants.f90 > testme.f90 ! and compile and run: testme.f90 !XX!#!/usr/bin/perl -w !XX! !XX!use strict; !XX! !XX!print <) { !XX! if ( /REAL\s*\(DP\)\s*,\s*PARAMETER\s*::\s*([a-zA-Z_0-9]+)\s*=.*$/ ) { !XX! print " WRITE (*,'(A18,G24.17)') '$1:',$1\n"; !XX! } !XX!} !XX! !XX!print <0) or before (isgn<0) the fft on z direction ! ! ... Note that if isgn=+/-1 (fft on rho and pot.) all fft's are needed ! ... and all planes(i) are set to 1 ! ! This driver is based on code written by Stefano de Gironcoli for PWSCF. ! Task Group added by Costas Bekas, Oct. 2005, adapted from the CPMD code ! (Alessandro Curioni) and revised by Carlo Cavazzoni 2007. ! USE fft_scalar, ONLY : cft_1z, cft_2xy USE fft_base, ONLY : fft_scatter USE kinds, ONLY : DP USE fft_types, ONLY : fft_dlay_descriptor USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP), INTENT(inout) :: f( : ) ! array containing data to be transformed TYPE (fft_dlay_descriptor), INTENT(in) :: dfft ! descriptor of fft data layout INTEGER, INTENT(in) :: isgn ! fft direction LOGICAL, OPTIONAL, INTENT(in) :: use_task_groups ! specify if you want to use task groups parallelization ! INTEGER :: me_p INTEGER :: n1, n2, n3, nx1, nx2, nx3 COMPLEX(DP), ALLOCATABLE :: yf(:), aux (:) INTEGER :: planes( dfft%nr1x ) LOGICAL :: use_tg ! ! IF( present( use_task_groups ) ) THEN use_tg = use_task_groups ELSE use_tg = .false. ENDIF ! IF( use_tg .and. .not. dfft%have_task_groups ) & CALL errore( ' tg_cft3s ', ' call requiring task groups for a descriptor without task groups ', 1 ) ! n1 = dfft%nr1 n2 = dfft%nr2 n3 = dfft%nr3 nx1 = dfft%nr1x nx2 = dfft%nr2x nx3 = dfft%nr3x ! IF( use_tg ) THEN ALLOCATE( aux( dfft%nogrp * dfft%tg_nnr ) ) ALLOCATE( YF ( dfft%nogrp * dfft%tg_nnr ) ) ELSE ALLOCATE( aux( dfft%nnr ) ) ENDIF ! me_p = dfft%mype + 1 ! IF ( isgn > 0 ) THEN ! IF ( isgn /= 2 ) THEN ! IF( use_tg ) & CALL errore( ' tg_cft3s ', ' task groups on large mesh not implemented ', 1 ) ! CALL cft_1z( f, dfft%nsp( me_p ), n3, nx3, isgn, aux ) ! planes = dfft%iplp ! ELSE ! CALL pack_group_sticks() ! IF( use_tg ) THEN CALL cft_1z( yf, dfft%tg_nsw( me_p ), n3, nx3, isgn, aux ) ELSE CALL cft_1z( f, dfft%nsw( me_p ), n3, nx3, isgn, aux ) ENDIF ! planes = dfft%iplw ! ENDIF ! CALL fw_scatter( isgn ) ! forwart scatter from stick to planes ! IF( use_tg ) THEN CALL cft_2xy( f, dfft%tg_npp( me_p ), n1, n2, nx1, nx2, isgn, planes ) ELSE CALL cft_2xy( f, dfft%npp( me_p ), n1, n2, nx1, nx2, isgn, planes ) ENDIF ! ELSE ! IF ( isgn /= -2 ) THEN ! IF( use_tg ) & CALL errore( ' tg_cft3s ', ' task groups on large mesh not implemented ', 1 ) ! planes = dfft%iplp ! ELSE ! planes = dfft%iplw ! ENDIF IF( use_tg ) THEN CALL cft_2xy( f, dfft%tg_npp( me_p ), n1, n2, nx1, nx2, isgn, planes ) ELSE CALL cft_2xy( f, dfft%npp( me_p ), n1, n2, nx1, nx2, isgn, planes) ENDIF ! CALL bw_scatter( isgn ) ! IF ( isgn /= -2 ) THEN ! CALL cft_1z( aux, dfft%nsp( me_p ), n3, nx3, isgn, f ) ! ELSE ! IF( use_tg ) THEN CALL cft_1z( aux, dfft%tg_nsw( me_p ), n3, nx3, isgn, yf ) ELSE CALL cft_1z( aux, dfft%nsw( me_p ), n3, nx3, isgn, f ) ENDIF ! CALL unpack_group_sticks() ! ENDIF ! ENDIF ! DEALLOCATE( aux ) ! IF( use_tg ) THEN DEALLOCATE( yf ) ENDIF ! RETURN ! CONTAINS ! SUBROUTINE pack_group_sticks() INTEGER :: ierr ! IF( .not. use_tg ) RETURN ! IF( dfft%tg_rdsp(dfft%nogrp) + dfft%tg_rcv(dfft%nogrp) > size( yf ) ) THEN CALL errore( 'pack_group_sticks' , ' inconsistent size ', 1 ) ENDIF IF( dfft%tg_psdsp(dfft%nogrp) + dfft%tg_snd(dfft%nogrp) > size( f ) ) THEN CALL errore( 'pack_group_sticks', ' inconsistent size ', 2 ) ENDIF CALL start_clock( 'ALLTOALL' ) ! ! Collect all the sticks of the different states, ! in "yf" processors will have all the sticks of the OGRP #if defined __MPI CALL MPI_ALLTOALLV( f(1), dfft%tg_snd, dfft%tg_psdsp, MPI_DOUBLE_COMPLEX, yf(1), dfft%tg_rcv, & & dfft%tg_rdsp, MPI_DOUBLE_COMPLEX, dfft%ogrp_comm, IERR) IF( ierr /= 0 ) THEN CALL errore( 'pack_group_sticks', ' alltoall error 1 ', abs(ierr) ) ENDIF #endif CALL stop_clock( 'ALLTOALL' ) ! !YF Contains all ( ~ NOGRP*dfft%nsw(me) ) Z-sticks ! RETURN END SUBROUTINE pack_group_sticks ! SUBROUTINE unpack_group_sticks() ! ! Bring pencils back to their original distribution ! INTEGER :: ierr ! IF( .not. use_tg ) RETURN ! IF( dfft%tg_usdsp(dfft%nogrp) + dfft%tg_snd(dfft%nogrp) > size( f ) ) THEN CALL errore( 'unpack_group_sticks', ' inconsistent size ', 3 ) ENDIF IF( dfft%tg_rdsp(dfft%nogrp) + dfft%tg_rcv(dfft%nogrp) > size( yf ) ) THEN CALL errore( 'unpack_group_sticks', ' inconsistent size ', 4 ) ENDIF CALL start_clock( 'ALLTOALL' ) #if defined __MPI CALL MPI_Alltoallv( yf(1), & dfft%tg_rcv, dfft%tg_rdsp, MPI_DOUBLE_COMPLEX, f(1), & dfft%tg_snd, dfft%tg_usdsp, MPI_DOUBLE_COMPLEX, dfft%ogrp_comm, IERR) IF( ierr /= 0 ) THEN CALL errore( 'unpack_group_sticks', ' alltoall error 2 ', abs(ierr) ) ENDIF #endif CALL stop_clock( 'ALLTOALL' ) RETURN END SUBROUTINE unpack_group_sticks ! SUBROUTINE fw_scatter( iopt ) !Transpose data for the 2-D FFT on the x-y plane ! !NOGRP*dfft%nnr: The length of aux and f !nr3x: The length of each Z-stick !aux: input - output !f: working space !isgn: type of scatter !dfft%nsw(me) holds the number of Z-sticks proc. me has. !dfft%npp: number of planes per processor ! ! USE fft_base, ONLY: fft_scatter ! INTEGER, INTENT(in) :: iopt ! IF( iopt == 2 ) THEN ! IF( use_tg ) THEN ! CALL fft_scatter( dfft, aux, nx3, dfft%nogrp*dfft%tg_nnr, f, dfft%tg_nsw, dfft%tg_npp, iopt, use_tg ) ! ELSE ! CALL fft_scatter( dfft, aux, nx3, dfft%nnr, f, dfft%nsw, dfft%npp, iopt ) ! ENDIF ! ELSEIF( iopt == 1 ) THEN ! CALL fft_scatter( dfft, aux, nx3, dfft%nnr, f, dfft%nsp, dfft%npp, iopt ) ! ENDIF ! RETURN END SUBROUTINE fw_scatter ! SUBROUTINE bw_scatter( iopt ) ! USE fft_base, ONLY: fft_scatter ! INTEGER, INTENT(in) :: iopt ! IF( iopt == -2 ) THEN ! IF( use_tg ) THEN ! CALL fft_scatter( dfft, aux, nx3, dfft%nogrp*dfft%tg_nnr, f, dfft%tg_nsw, dfft%tg_npp, iopt, use_tg ) ! ELSE ! CALL fft_scatter( dfft, aux, nx3, dfft%nnr, f, dfft%nsw, dfft%npp, iopt ) ! ENDIF ! ELSEIF( iopt == -1 ) THEN ! CALL fft_scatter( dfft, aux, nx3, dfft%nnr, f, dfft%nsp, dfft%npp, iopt ) ! ENDIF ! RETURN END SUBROUTINE bw_scatter ! END SUBROUTINE tg_cft3s ! END MODULE fft_parallel espresso-5.1/Modules/read_ncpp.f900000644000175000017500000002027412341373034015172 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine read_ncpp (iunps, np, upf) !----------------------------------------------------------------------- ! USE kinds, only: dp USE parameters, ONLY: lmaxx use funct, only: set_dft_from_name, dft_is_hybrid USE pseudo_types implicit none ! TYPE (pseudo_upf) :: upf integer :: iunps, np ! real(DP) :: cc(2), alpc(2), aps(6,0:3), alps(3,0:3), & a_nlcc, b_nlcc, alpha_nlcc real(DP) :: x, vll real(DP), allocatable:: vnl(:,:) real(DP), parameter :: rcut = 10.d0, e2 = 2.d0 real(DP), external :: qe_erf integer :: nlc, nnl, lmax, lloc integer :: nb, i, l, ir, ios=0 logical :: bhstype, numeric ! !==================================================================== ! read norm-conserving PPs ! read (iunps, *, end=300, err=300, iostat=ios) upf%dft if (upf%dft(1:2) .eq.'**') upf%dft = 'PZ' read (iunps, *, err=300, iostat=ios) upf%psd, upf%zp, lmax, nlc, & nnl, upf%nlcc, lloc, bhstype if (nlc > 2 .or. nnl > 3) & call errore ('read_ncpp', 'Wrong nlc or nnl', np) if (nlc*nnl < 0) call errore ('read_ncpp', 'nlc*nnl < 0 ? ', np) if (upf%zp <= 0d0 .or. upf%zp > 100 ) & call errore ('read_ncpp', 'Wrong zp ', np) ! ! In numeric pseudopotentials both nlc and nnl are zero. ! numeric = (nlc <= 0) .and. (nnl <= 0) ! if (lloc == -1000) lloc = lmax if (lloc < 0 .or. lmax < 0 .or. & .not.numeric .and. (lloc > min(lmax+1,lmaxx+1) .or. & lmax > max(lmaxx,lloc)) .or. & numeric .and. (lloc > lmax .or. lmax > lmaxx) ) & call errore ('read_ncpp', 'wrong lmax and/or lloc', np) if (.not.numeric ) then ! ! read here pseudopotentials in analytic form ! read (iunps, *, err=300, iostat=ios) & (alpc(i), i=1,2), (cc(i), i=1,2) if (abs (cc(1)+cc(2)-1.d0) > 1.0d-6) & call errore ('read_ncpp', 'wrong pseudopotential coefficients', 1) do l = 0, lmax read (iunps, *, err=300, iostat=ios) (alps(i,l), i=1,3), & (aps(i,l), i=1,6) enddo if (upf%nlcc ) then read (iunps, *, err=300, iostat=ios) & a_nlcc, b_nlcc, alpha_nlcc if (alpha_nlcc <= 0.d0) call errore('read_ncpp','alpha_nlcc=0',np) endif endif read (iunps, *, err=300, iostat=ios) upf%zmesh, upf%xmin, upf%dx, & upf%mesh, upf%nwfc if ( upf%mesh <= 0) & call errore ('read_ncpp', 'wrong number of mesh points', np) if ( upf%nwfc < 0 .or. & (upf%nwfc < lmax .and. lloc == lmax) .or. & (upf%nwfc < lmax+1 .and. lloc /= lmax) ) & call errore ('read_ncpp', 'wrong no. of wfcts', np) ! ! Here pseudopotentials in numeric form are read ! ALLOCATE ( upf%chi(upf%mesh,upf%nwfc), upf%rho_atc(upf%mesh) ) upf%rho_atc(:) = 0.d0 ALLOCATE ( upf%lchi(upf%nwfc), upf%oc(upf%nwfc) ) allocate (vnl(upf%mesh, 0:lmax)) if (numeric ) then do l = 0, lmax read (iunps, '(a)', err=300, iostat=ios) read (iunps, *, err=300, iostat=ios) (vnl(ir,l), ir=1,upf%mesh ) enddo if ( upf%nlcc ) then read (iunps, *, err=300, iostat=ios) (upf%rho_atc(ir), ir=1,upf%mesh) endif endif ! ! Here pseudowavefunctions (in numeric form) are read ! do nb = 1, upf%nwfc read (iunps, '(a)', err=300, iostat=ios) read (iunps, *, err=300, iostat=ios) upf%lchi(nb), upf%oc(nb) ! ! Test lchi and occupation numbers ! if (nb <= lmax .and. upf%lchi(nb)+1 /= nb) & call errore ('read_ncpp', 'order of wavefunctions', 1) if (upf%lchi(nb) > lmaxx .or. upf%lchi(nb) < 0) & call errore ('read_ncpp', 'wrong lchi', np) if (upf%oc(nb) < 0.d0 .or. upf%oc(nb) > 2.d0*(2*upf%lchi(nb)+1)) & call errore ('read_ncpp', 'wrong oc', np) read (iunps, *, err=300, iostat=ios) ( upf%chi(ir,nb), ir=1,upf%mesh ) enddo ! !==================================================================== ! PP read: now setup ! IF ( numeric ) THEN upf%generated='Generated by old ld1 code (numerical format)' ELSE upf%generated='From published tables, or generated by old fitcar code (analytical format)' END IF call set_dft_from_name( upf%dft ) ! ! calculate the number of beta functions ! upf%nbeta = 0 do l = 0, lmax if (l /= lloc ) upf%nbeta = upf%nbeta + 1 enddo ALLOCATE ( upf%lll(upf%nbeta) ) nb = 0 do l = 0, lmax if (l /= lloc ) then nb = nb + 1 upf%lll (nb) = l end if enddo ! ! compute the radial mesh ! ALLOCATE ( upf%r(upf%mesh), upf%rab(upf%mesh) ) do ir = 1, upf%mesh x = upf%xmin + DBLE (ir - 1) * upf%dx upf%r(ir) = exp (x) / upf%zmesh upf%rab(ir) = upf%dx * upf%r(ir) enddo do ir = 1, upf%mesh if ( upf%r(ir) > rcut) then upf%kkbeta = ir go to 5 end if end do upf%kkbeta = upf%mesh ! ! ... force kkbeta to be odd for simpson integration (obsolete?) ! 5 upf%kkbeta = 2 * ( ( upf%kkbeta + 1 ) / 2) - 1 ! ALLOCATE ( upf%kbeta(upf%nbeta) ) upf%kbeta(:) = upf%kkbeta ALLOCATE ( upf%vloc(upf%mesh) ) upf%vloc (:) = 0.d0 ! if (.not. numeric) then ! ! bring analytic potentials into numerical form ! IF ( nlc == 2 .AND. nnl == 3 .AND. bhstype ) & CALL bachel( alps(1,0), aps(1,0), 1, lmax ) ! do i = 1, nlc do ir = 1, upf%kkbeta upf%vloc (ir) = upf%vloc (ir) - upf%zp * e2 * cc (i) * & qe_erf ( sqrt (alpc(i)) * upf%r(ir) ) / upf%r(ir) end do end do do l = 0, lmax vnl (:, l) = upf%vloc (1:upf%mesh) do i = 1, nnl vnl (:, l) = vnl (:, l) + e2 * (aps (i, l) + & aps (i + 3, l) * upf%r (:) **2) * & exp ( - upf%r(:) **2 * alps (i, l) ) enddo enddo if ( upf%nlcc ) then upf%rho_atc(:) = ( a_nlcc + b_nlcc*upf%r(:)**2 ) * & exp ( -upf%r(:)**2 * alpha_nlcc ) end if ! end if ! ! assume l=lloc as local part and subtract from the other channels ! if (lloc <= lmax ) & upf%vloc (:) = vnl (:, lloc) ! lloc > lmax is allowed for PP in analytical form only ! it means that only the erf part is taken as local part do l = 0, lmax if (l /= lloc) vnl (:, l) = vnl(:, l) - upf%vloc(:) enddo ! ! compute the atomic charges ! ALLOCATE ( upf%rho_at (upf%mesh) ) upf%rho_at(:) = 0.d0 do nb = 1, upf%nwfc if ( upf%oc(nb) > 0.d0) then do ir = 1, upf%mesh upf%rho_at(ir) = upf%rho_at(ir) + upf%oc(nb) * upf%chi(ir,nb)**2 enddo endif enddo !==================================================================== ! convert to separable (KB) form ! ALLOCATE ( upf%beta (upf%mesh, upf%nbeta) ) ALLOCATE ( upf%dion (upf%nbeta,upf%nbeta), upf%lll (upf%nbeta) ) upf%dion (:,:) = 0.d0 nb = 0 do l = 0, lmax if (l /= lloc ) then nb = nb + 1 ! upf%beta is used here as work space do ir = 1, upf%kkbeta upf%beta (ir, nb) = upf%chi(ir, l+1) **2 * vnl(ir, l) end do call simpson (upf%kkbeta, upf%beta (1, nb), upf%rab, vll ) upf%dion (nb, nb) = 1.d0 / vll ! upf%beta stores projectors |beta(r)> = |V_nl(r)phi(r)> do ir = 1, upf%kkbeta upf%beta (ir, nb) = vnl (ir, l) * upf%chi (ir, l + 1) enddo upf%lll (nb) = l endif enddo deallocate (vnl) ! ! for compatibility with USPP ! upf%nqf = 0 upf%nqlc= 0 upf%tvanp =.false. upf%tpawp =.false. upf%has_so=.false. ! ! Set additional, not present, variables to dummy values allocate(upf%els(upf%nwfc)) upf%els(:) = 'nX' allocate(upf%els_beta(upf%nbeta)) upf%els_beta(:) = 'nX' allocate(upf%rcut(upf%nbeta), upf%rcutus(upf%nbeta)) upf%rcut(:) = 0._dp upf%rcutus(:) = 0._dp ! return 300 call errore ('read_ncpp', 'pseudo file is empty or wrong', abs (np) ) end subroutine read_ncpp espresso-5.1/Modules/wavefunctions.f900000644000175000017500000000375712341373034016141 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE wavefunctions_module !=----------------------------------------------------------------------------=! USE kinds, ONLY : DP IMPLICIT NONE SAVE ! COMPLEX(DP), ALLOCATABLE, TARGET :: & evc(:,:) ! wavefunctions in the PW basis set ! noncolinear case: first index ! is a combined PW + spin index ! COMPLEX(DP) , ALLOCATABLE, TARGET :: & psic(:), & ! additional memory for FFT psic_nc(:,:) ! as above for the noncolinear case ! ! ! electronic wave functions, CPV code ! distributed over gvector and bands ! COMPLEX(DP), ALLOCATABLE :: c0_bgrp(:,:) ! wave functions at time t COMPLEX(DP), ALLOCATABLE :: cm_bgrp(:,:) ! wave functions at time t-delta t COMPLEX(DP), ALLOCATABLE :: phi_bgrp(:,:) ! |phi> = s'|c0> = |c0> + sum q_ij |i> ! for hybrid functionals in CP with Wannier functions COMPLEX(DP), ALLOCATABLE :: cv0(:,:) ! Lingzhu Kong CONTAINS SUBROUTINE deallocate_wavefunctions IF( ALLOCATED( cv0) ) DEALLOCATE( cv0) ! Lingzhu Kong IF( ALLOCATED( c0_bgrp ) ) DEALLOCATE( c0_bgrp ) IF( ALLOCATED( cm_bgrp ) ) DEALLOCATE( cm_bgrp ) IF( ALLOCATED( phi_bgrp ) ) DEALLOCATE( phi_bgrp ) IF( ALLOCATED( psic_nc ) ) DEALLOCATE( psic_nc ) IF( ALLOCATED( psic ) ) DEALLOCATE( psic ) IF( ALLOCATED( evc ) ) DEALLOCATE( evc ) END SUBROUTINE deallocate_wavefunctions !=----------------------------------------------------------------------------=! END MODULE wavefunctions_module !=----------------------------------------------------------------------------=! espresso-5.1/Modules/autopilot.f900000644000175000017500000007106712341373034015265 0ustar mbamba! autopilot.f90 !******************************************************************************** ! autopilot.f90 Copyright (c) 2005 Targacept, Inc. !******************************************************************************** ! The Autopilot Feature suite is a user level enhancement that enables the ! following features: ! automatic restart of a job; ! preconfiguration of job parameters; ! on-the-fly changes to job parameters; ! and pausing of a running job. ! ! For more information, see README.AUTOPILOT in document directory. ! ! This program is free software; you can redistribute it and/or modify it under ! the terms of the GNU General Public License as published by the Free Software ! Foundation; either version 2 of the License, or (at your option) any later version. ! This program is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY FOR A PARTICULAR ! PURPOSE. See the GNU General Public License at www.gnu.or/copyleft/gpl.txt for ! more details. ! ! THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. ! EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES ! PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, ! INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND ! FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND THE ! PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, ! YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! ! IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING, ! WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE ! THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY ! GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR ! INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA ! BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A ! FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER ! OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! ! You should have received a copy of the GNU General Public License along with ! this program; if not, write to the ! Free Software Foundation, Inc., ! 51 Franklin Street, ! Fifth Floor, ! Boston, MA 02110-1301, USA. ! ! Targacept's address is ! 200 East First Street, Suite 300 ! Winston-Salem, North Carolina USA 27101-4165 ! Attn: Molecular Design. ! Email: atp@targacept.com ! ! This work was supported by the Advanced Technology Program of the ! National Institute of Standards and Technology (NIST), Award No. 70NANB3H3065 ! !******************************************************************************** MODULE autopilot !--------------------------------------------------------------------------- ! ! This module handles the Autopilot Feature Suite ! Written by Lee Atkinson, with help from the ATP team at Targacept, Inc ! Created June 2005 ! Modified by Yonas Abraham, Sept 2006 ! ! The address for Targacept, Inc. is: ! 200 East First Street, Suite ! 300, Winston-Salem, North Carolina 27101; ! Attn: Molecular Design. ! ! See README.AUTOPILOT in the Doc directory for more information. !--------------------------------------------------------------------------- USE kinds USE parser, ONLY : read_line IMPLICIT NONE SAVE INTEGER, parameter :: MAX_INT = huge(1) INTEGER, parameter :: max_event_step = 32 !right now there can be upto 32 Autopilot Events INTEGER, parameter :: n_auto_vars = 10 !right now there are only 10 Autopilot Variables INTEGER :: n_events INTEGER :: event_index = 0 INTEGER :: max_rules = 320 !(max_event_step * n_auto_vars) INTEGER :: n_rules INTEGER :: event_step(max_event_step) INTEGER :: current_nfi LOGICAL :: pilot_p = .FALSE. ! pilot property LOGICAL :: restart_p = .FALSE. ! restart property LOGICAL :: pause_p = .FALSE. ! pause property INTEGER :: pilot_unit = 42 ! perhaps move this to io_files CHARACTER(LEN=256) :: pilot_type ! AUTOPILOT VARIABLES ! These are the variable tables which change the actual variable ! dynamically during the course of a simulation. There are many ! parameters which govern a simulation, yet only these are allowed ! to be changed using the event rule mechanism. ! Each of these tables are ytped according to their variable ! and begin with event_ ! &CONTROL INTEGER :: rule_isave(max_event_step) INTEGER :: rule_iprint(max_event_step) REAL(DP) :: rule_dt(max_event_step) ! &SYSTEM ! &ELECTRONS REAL(DP) :: rule_emass(max_event_step) CHARACTER(LEN=80) :: rule_electron_dynamics(max_event_step) REAL(DP) :: rule_electron_damping(max_event_step) ! &IONS CHARACTER(LEN=80) :: rule_ion_dynamics(max_event_step) REAL(DP) :: rule_ion_damping(max_event_step) CHARACTER(LEN=80) :: rule_ion_temperature(max_event_step) REAL(DP) :: rule_tempw(max_event_step) ! &CELL ! &PHONON ! Each rule also needs to be correlated (flagged) against the event time table ! This is used to flag the a given variable is to be changed on an ! event. Initially all set to false, a rule against an event makes it true ! Each of these flags are LOGICALs and begin with event_ ! &CONTROL LOGICAL :: event_isave(max_event_step) LOGICAL :: event_iprint(max_event_step) LOGICAL :: event_dt(max_event_step) ! &SYSTEM ! &ELECTRONS LOGICAL :: event_emass(max_event_step) LOGICAL :: event_electron_dynamics(max_event_step) LOGICAL :: event_electron_damping(max_event_step) ! &IONS LOGICAL :: event_ion_dynamics(max_event_step) LOGICAL :: event_ion_damping(max_event_step) LOGICAL :: event_ion_temperature(max_event_step) LOGICAL :: event_tempw(max_event_step) ! &CELL ! &PHONON PRIVATE PUBLIC :: auto_check, init_autopilot, card_autopilot, add_rule, & & assign_rule, restart_p, max_event_step, event_index, event_step, rule_isave, & & rule_iprint, rule_dt, rule_emass, rule_electron_dynamics, rule_electron_damping, & & rule_ion_dynamics, rule_ion_damping, rule_ion_temperature, rule_tempw, & & event_isave, event_iprint, event_dt, event_emass, & & event_electron_dynamics, event_electron_damping, event_ion_dynamics, & & current_nfi, pilot_p, pilot_unit, pause_p,auto_error, parse_mailbox, & & event_ion_damping, event_ion_temperature, event_tempw CONTAINS !---------------------------------------------------------------------------- SUBROUTINE auto_error( calling_routine, message) !---------------------------------------------------------------------------- ! This routine calls errore based upon the pilot property flag. ! If the flag is TRUE, the simulation will not stop, ! but the pause property flag is set to TRUE, ! causing pilot to force a state of sleep, ! until the user can mail proper commands. ! Otherwise, its assumed that dynamics have not started ! and this call is an indirect result of read_cards. ! Thus the simulation will stop. ! Either way errore will always issues a warning message. USE io_global, ONLY : ionode_id USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: calling_routine, message ! the name of the calling calling_routinee ! the output message INTEGER :: ierr ! the error flag IF (pilot_p) THEN ! if ierr < 0 errore writes the message but does not stop ierr = -1 pause_p = .TRUE. !call mp_bcast(pause_p, ionode_id, world_comm) ELSE ! if ierr > 0 it stops ierr = 1 ENDIF CALL errore( calling_routine, message, ierr ) END SUBROUTINE auto_error !----------------------------------------------------------------------- ! AUTO (restart) MODE ! ! Checks if restart files are present, just like what readfile_cp does, ! which calls cp_readfile which create a path to restart.xml. ! This could be checked with inquire, as in check_restartfile. ! If restart_mode=auto, and restart.xml is present, ! then restart_mode="restart", else its "from_scratch". ! Set other associated vars, appropriately. ! ! Put this in setcontrol_flags on the select statement !----------------------------------------------------------------------- LOGICAL FUNCTION auto_check (ndr, outdir) USE io_global, ONLY: ionode, ionode_id USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm IMPLICIT NONE INTEGER, INTENT(IN) :: ndr ! I/O unit number CHARACTER(LEN=*), INTENT(IN) :: outdir CHARACTER(LEN=256) :: dirname, filename CHARACTER (LEN=6), EXTERNAL :: int_to_char LOGICAL :: restart_p = .FALSE. INTEGER :: strlen ! right now cp_readfile is called with outdir = ' ' ! so, in keeping with the current design, ! the responsibility of setting ! ndr and outdir is the calling program IF (ionode) THEN dirname = 'RESTART' // int_to_char( ndr ) IF ( LEN( outdir ) > 1 ) THEN strlen = index(outdir,' ') - 1 dirname = outdir(1:strlen) // '/' // dirname END IF filename = TRIM( dirname ) // '/' // 'restart.xml' INQUIRE( FILE = TRIM( filename ), EXIST = restart_p ) auto_check = restart_p END IF CALL mp_bcast(auto_check, ionode_id, world_comm) return END FUNCTION auto_check !----------------------------------------------------------------------- ! INITIALIZE AUTOPILOT ! ! Must be done, even if not in use. ! Add this as a call in read_cards.f90 sub: card_default_values !----------------------------------------------------------------------- SUBROUTINE init_autopilot IMPLICIT NONE integer :: event pause_p = .FALSE. ! Initialize all events to an iteration that should never occur DO event=1,max_event_step event_step(event) = MAX_INT ENDDO n_events = 0 n_rules = 0 event_index = 1 ! Initialize here ! &CONTROL event_isave(:) = .false. event_iprint(:) = .false. event_dt(:) = .false. ! &SYSTEM ! &ELECTRONS event_emass(:) = .false. event_electron_dynamics(:) = .false. event_electron_damping(:) = .false. ! &IONS event_ion_dynamics(:) = .false. event_ion_damping(:) = .false. event_ion_temperature(:) = .false. event_tempw(:) = .false. ! &CELL ! &PHONON rule_isave(:) = 0 rule_iprint(:) = 0 rule_dt(:) = 0.0_DP rule_emass(:) = 0.0_DP rule_electron_dynamics(:) = 'NONE' rule_electron_damping(:) = 0.0_DP rule_ion_dynamics(:) = 'NONE' rule_ion_damping(:) = 0.0_DP rule_ion_temperature(:) = 'NOT_CONTROLLED' rule_tempw(:) = 0.01_DP END SUBROUTINE init_autopilot !----------------------------------------------------------------------- ! subroutine CARD_AUTOPILOT ! ! called in READ_CARDS and in PARSE_MAILBOX !----------------------------------------------------------------------- SUBROUTINE card_autopilot( input_line ) USE io_global, ONLY: ionode, ionode_id USE mp, ONLY : mp_bcast USE mp_world, ONLY : world_comm IMPLICIT NONE INTEGER :: i, j, linelen CHARACTER(LEN=256) :: input_line LOGICAL :: process_this_line = .FALSE. LOGICAL :: endrules = .FALSE. LOGICAL :: tend = .FALSE. LOGICAL, SAVE :: tread = .FALSE. LOGICAL, EXTERNAL :: matches CHARACTER(LEN=1), EXTERNAL :: capital !ASU: copied this here since it seems not to be executed during each ! call of the routine. Needed for multiple rules in same block process_this_line = .FALSE. endrules = .FALSE. tend = .FALSE. tread = .FALSE. ! This is so we do not read a autopilot card twice from the input file IF (( .NOT. pilot_p ) .and. tread ) THEN CALL errore( ' card_autopilot ', ' two occurrences', 2 ) END IF ! If this routined has been called from parse_mailbox ! the pilot_type should be set IF ( pilot_p ) THEN ! IF its MANUAL then process this line first! ! other skip this line and get the next IF (TRIM(pilot_type) .eq. 'MANUAL') THEN process_this_line = .TRUE. ELSE IF (TRIM(pilot_type) .eq. 'PILOT') THEN process_this_line = .FALSE. ELSE IF (TRIM(pilot_type) .eq. 'AUTO') THEN process_this_line = .FALSE. ELSE IF( ionode ) WRITE(*,*) 'AUTOPILOT: UNRECOGNIZED PILOT TYPE!', TRIM(pilot_type), '====' GO TO 10 END IF ELSE ! this routine is called from read_cards pilot_type = 'AUTO' process_this_line = .FALSE. END IF j=0 ! must use a local (j) since n_rules may not get updated correctly DO WHILE ((.NOT. endrules) .and. j<=max_rules) j=j+1 IF (j > max_rules) THEN CALL auto_error( ' AutoPilot ','Maximum Number of Dynamic Rules May Have Been Execced!') go to 10 END IF ! Assume that pilot_p is an indicator and that ! this call to card_autopilot is from parse_mailbox ! and not from read_cards IF(pilot_p) THEN IF ( .NOT. process_this_line ) THEN ! get the next one CALL read_line( input_line, end_of_file = tend) END IF ELSE ! from read_cards CALL read_line( input_line, end_of_file = tend) END IF linelen = LEN_TRIM( input_line ) DO i = 1, linelen input_line( i : i ) = capital( input_line( i : i ) ) END DO ! If ENDRULES isnt found, add_rule will fail ! and we run out of line anyway IF ( tend .or. matches( 'ENDRULES', input_line ) ) GO TO 10 ! Assume this is a rule CALL ADD_RULE(input_line) ! now, do not process this line anymore ! make sure we get the next one process_this_line = .FALSE. END DO IF( ionode ) WRITE(*,*) 'AUTOPILOT SET' 10 CONTINUE END SUBROUTINE card_autopilot !----------------------------------------------------------------------- ! ADD RULE !----------------------------------------------------------------------- SUBROUTINE add_rule( input_line ) USE io_global, ONLY: ionode, ionode_id IMPLICIT NONE integer :: i, j, linelen integer :: eq1_pos, eq2_pos, plus_pos, colon_pos CHARACTER(LEN=256) :: input_line CHARACTER(LEN=32) :: var_label CHARACTER(LEN=32) :: value_str INTEGER :: on_step, now_step, plus_step integer :: ios integer :: event LOGICAL, EXTERNAL :: matches CHARACTER(LEN=1), EXTERNAL :: capital ! this is a temporary local variable event = n_events ! important for parsing i=0 j=0 eq1_pos = 0 eq2_pos = 0 plus_pos = 0 colon_pos = 0 linelen=LEN_TRIM( input_line ) ! Attempt to get PLUS SYMBOL i = 1 do while( (plus_pos .eq. 0) .and. (i <= linelen) ) i = i + 1 if(input_line( i : i ) .eq. '+') then plus_pos = i endif end do ! Attempt to get a colon i = 1 do while( (colon_pos .eq. 0) .and. (i <= linelen) ) i = i + 1 if(input_line( i : i ) .eq. ':') then colon_pos = i endif end do ! Attempt to get first equals i = 1 do while( (eq1_pos .eq. 0) .and. (i <= linelen) ) i = i + 1 if(input_line( i : i ) .eq. '=') then eq1_pos = i endif end do ! Attempt to get second equals if ((eq1_pos .ne. 0) .and. (eq1_pos < colon_pos)) then i = colon_pos + 1 do while( (eq2_pos .eq. 0) .and. (i <= linelen) ) i = i + 1 if(input_line( i : i ) .eq. '=') then eq2_pos = i endif end do endif ! Complain if there is a bad parse if (colon_pos .eq. 0) then call auto_error( ' AutoPilot ','Missing colon separator') go to 20 endif if (eq1_pos .eq. 0) then call auto_error( ' AutoPilot ','Missing equals sign') go to 20 endif if ((plus_pos > 0) .and. (eq1_pos < colon_pos)) then call auto_error( ' AutoPilot ','equals and plus found prior to colon') go to 20 endif !================================================================================ ! Detect events IF ( (pilot_type .eq. 'MANUAL') .or. (pilot_type .eq. 'PILOT') ) THEN !------------------------------------------- !Do the equivalent of the following: !READ(input_line, *) now_label, plus_label1, plus_step, colon_label, var_label, eq_label2, value_str !Format: ! [NOW [+ plus_step] :] var_label = value_str !------------------------------------------- ! if there is a NOW, get it and try to get plus and plus_step IF ( matches( 'NOW', input_line ) ) THEN ! Attempt to get PLUS_STEP plus_step = 0 ! if all is non-trivial, read a PLUS_STEP if ((plus_pos > 0) .and. (colon_pos > plus_pos)) then ! assume a number lies between read(input_line(plus_pos+1:colon_pos-1),*,iostat=ios) plus_step if(ios .ne. 0) then CALL auto_error( ' AutoPilot ','Value Type Mismatch on NOW line!') go to 20 end if end if ! set NOW event now_step = current_nfi + plus_step ELSE ! set NOW event now_step = current_nfi END IF !================================================================================ ! set event ! ! Heres where it get interesting ! We may have a new event , or not! :) IF ( ((event-1) .gt. 0) .and. ( now_step .lt. event_step(event-1)) ) THEN IF( ionode ) write(*,*) ' AutoPilot: current input_line', input_line CALL auto_error( ' AutoPilot ','Dynamic Rule Event Out of Order!') go to 20 ENDIF IF ( (event .eq. 0) .or. ( now_step .gt. event_step(event)) ) THEN ! new event event = event + 1 IF (event > max_event_step) THEN IF( ionode ) write(*,*) ' AutoPilot: current input_line', input_line CALL auto_error( ' AutoPilot ','Maximum Number of Dynamic Rule Event Exceeded!') go to 20 ENDIF event_step(event) = now_step n_events = event ENDIF ELSE IF ( matches( 'ON_STEP', input_line ) ) THEN ! Assuming pilot_type is AUTO ! if it isnt and ON_STEP these rules wont take anyway !------------------------------------------- !Do the equivalent of the following: !READ(input_line, *) on_step_label, eq_label1, on_step, colon_label, var_label, eq_label2, value_str !Format: ! ON_STEP = on_step : var_label = value_str !------------------------------------------- IF( ionode ) write(*,*) 'ADD_RULE: POWER STEERING' ! Attempt to get ON_STEP on_step = MAX_INT ! if all is non-trivial, read a PLUS_STEP if ((eq1_pos > 0) .and. (colon_pos > eq1_pos)) then ! assume a number lies between read(input_line(eq1_pos+1:colon_pos-1),*,iostat=ios) on_step if(ios .ne. 0) then CALL auto_error( ' AutoPilot ','Value Type Mismatch on ON_STEP line!') go to 20 end if end if !================================================================================ ! set event ! ! Heres where it get interesting ! We may have a new event , or not! :) IF ( ((event-1) .gt. 0) .and. ( on_step .lt. event_step(event-1)) ) THEN IF( ionode ) write(*,*) ' AutoPilot: current input_line', input_line CALL auto_error( ' AutoPilot ','Dynamic Rule Event Out of Order!') go to 20 ENDIF IF ( (event .eq. 0) .or. (on_step .gt. event_step(event)) ) THEN ! new event event = event + 1 IF (event > max_event_step) THEN IF( ionode ) write(*,*) ' AutoPilot: current input_line', input_line CALL auto_error( ' AutoPilot ','Maximum Number of Dynamic Rule Event Exceeded!') go to 20 ENDIF event_step(event) = on_step n_events = event ENDIF END IF ! Event Detection Complete !------------------------------------- ! Now look for a label and a value !------------------------------------- if (eq2_pos .eq. 0) then var_label = input_line(colon_pos+1: eq1_pos-1) read( input_line(eq1_pos+1:linelen), *, iostat=ios) value_str if(ios .ne. 0) then CALL auto_error( ' AutoPilot ','Value Type Mismatch on NOW_STEP line!') go to 20 end if else var_label = input_line(colon_pos+1: eq2_pos-1) read( input_line(eq2_pos+1:linelen), *, iostat=ios) value_str if(ios .ne. 0) then CALL auto_error( ' AutoPilot ','Value Type Mismatch on ON_STEP line!') go to 20 end if endif ! The Assignment must lie outside the new event scope since ! there can exists more than one rule per event IF ( (n_rules+1) .gt. max_rules) THEN IF( ionode ) write(*,*) ' AutoPilot: current n_rules', n_rules CALL auto_error( ' AutoPilot ', ' invalid number of rules ') go to 20 END IF call assign_rule(event, var_label, value_str) !IF( ionode ) write(*,*) ' Number of rules: ', n_rules CALL flush_unit(6) 20 CONTINUE END SUBROUTINE add_rule !----------------------------------------------------------------------- ! ASSIGN_RULE !----------------------------------------------------------------------- SUBROUTINE assign_rule(event, var, value) USE input_parameters, ONLY : isave, iprint, dt, tempw USE io_global, ONLY: ionode, ionode_id IMPLICIT NONE INTEGER :: i, event, varlen CHARACTER(LEN=32) :: var CHARACTER(LEN=32) :: value INTEGER :: int_value REAL :: real_value REAL(DP) :: realDP_value LOGICAL :: assigned LOGICAL, EXTERNAL :: matches CHARACTER(LEN=1), EXTERNAL :: capital var = TRIM(var) varlen = LEN_TRIM(var) DO i = 1, varlen var( i : i ) = capital( var( i : i ) ) END DO IF( ionode ) write(*,'(" Reading rule: ",A20,A20)' ) var, value assigned = .TRUE. IF ( matches( "ISAVE", var ) ) THEN read(value, *) int_value rule_isave(event) = int_value event_isave(event) = .true. ELSEIF ( matches( "IPRINT", var ) ) THEN read(value, *) int_value rule_iprint(event) = int_value event_iprint(event) = .true. ELSEIF ( matches( "DT", var ) ) THEN read(value, *) real_value rule_dt(event) = real_value event_dt(event) = .true. !IF( ionode ) write(*,*) 'RULE_DT', rule_dt(event), 'EVENT', event ELSEIF ( matches( "EMASS", var ) ) THEN read(value, *) realDP_value rule_emass(event) = realDP_value event_emass(event) = .true. ELSEIF ( matches( "ELECTRON_DYNAMICS", var ) ) THEN read(value, *) value if ((value .ne. 'SD') .and. (value .ne. 'VERLET') .and. (value .ne. 'DAMP') .and. (value .ne. 'NONE')) then call auto_error(' autopilot ',' unknown electron_dynamics '//trim(value) ) assigned = .FALSE. go to 40 endif rule_electron_dynamics(event) = value event_electron_dynamics(event) = .true. ELSEIF ( matches( "ELECTRON_DAMPING", var ) ) THEN read(value, *) realDP_value rule_electron_damping(event) = realDP_value event_electron_damping(event) = .true. ELSEIF ( matches( "ION_DYNAMICS", var ) ) THEN read(value, *) value if ((value .ne. 'SD') .and. (value .ne. 'VERLET') .and. (value .ne. 'DAMP') .and. (value .ne. 'NONE')) then call auto_error(' autopilot ',' unknown ion_dynamics '//trim(value) ) assigned = .FALSE. go to 40 endif rule_ion_dynamics(event) = value event_ion_dynamics(event) = .true. ELSEIF ( matches( "ION_DAMPING", var ) ) THEN read(value, *) realDP_value rule_ion_damping(event) = realDP_value event_ion_damping(event) = .true. ELSEIF ( matches( "ION_TEMPERATURE", var ) ) THEN read(value, *) value if ((value .ne. 'NOSE') .and. (value .ne. 'NOT_CONTROLLED') .and. (value .ne. 'RESCALING')) then call auto_error(' autopilot ',' unknown ion_temperature '//trim(value) ) assigned = .FALSE. go to 40 endif rule_ion_temperature(event) = value event_ion_temperature(event) = .true. ELSEIF ( matches( "TEMPW", var ) ) THEN read(value, *) realDP_value rule_tempw(event) = realDP_value event_tempw(event) = .true. ELSE CALL auto_error( 'autopilot', ' ASSIGN_RULE: FAILED '//trim(var)//' '//trim(value) ) END IF 40 if (assigned) then n_rules = n_rules + 1 else IF( ionode ) write(*,*) ' Autopilot: Rule Assignment Failure ' CALL auto_error( 'autopilot', ' ASSIGN_RULE: FAILED '//trim(var)//' '//trim(value) ) endif END SUBROUTINE assign_rule !----------------------------------------------------------------------- ! PARSE_MAILBOX ! ! Read the mailbox with a mailbox parser ! if it starts with ON_STEP, then apply to event table etc ! if not the try to establish that its a variable to set right now !----------------------------------------------------------------------- SUBROUTINE parse_mailbox () USE io_global, ONLY: ionode, ionode_id USE mp, ONLY : mp_bcast, mp_barrier USE mp_world, ONLY : world_comm IMPLICIT NONE INTEGER :: i CHARACTER(LEN=256) :: input_line LOGICAL :: tend CHARACTER(LEN=1), EXTERNAL :: capital LOGICAL, EXTERNAL :: matches ! we can use this parser routine, since parse_unit=pilot_unit CALL read_line( input_line, end_of_file=tend ) IF (tend) GO TO 50 DO i = 1, LEN_TRIM( input_line ) input_line( i : i ) = capital( input_line( i : i ) ) END DO ! This conditional implements the PAUSE feature calling init_auto_pilot, ! will reset this modules global PAUSE_P variable to FALSE IF ( matches( "PAUSE", input_line ) .or. & matches( "SLEEP", input_line ) .or. & matches( "HOVER", input_line ) .or. & matches( "WAIT", input_line ) .or. & matches( "HOLD", input_line ) ) THEN IF( ionode ) write(*,*) 'SLEEPING' IF( ionode ) write(*,*) 'INPUT_LINE=', input_line pause_p = .TRUE. ! now you can pass continue to resume ELSE IF (matches( "CONTINUE", input_line ) .or. & matches( "RESUME", input_line ) ) THEN IF( ionode ) write(*,*) 'RUNNING' IF( ionode ) write(*,*) 'INPUT_LINE=', input_line pause_p = .FALSE. ! Now just quit this subroutine ELSE ! Also, We didnt see a PAUSE cmd! pause_p = .FALSE. ! now lets detect the mode for card_autopilot ! even though this line will be passed to it the first time IF ( matches( "AUTOPILOT", TRIM(input_line) ) ) THEN IF( ionode ) WRITE(*,*) ' New autopilot course detected' pilot_type ='AUTO' ELSE IF (matches( "PILOT", TRIM(input_line) ) ) THEN IF( ionode ) WRITE(*,*) ' Relative pilot course correction detected' pilot_type ='PILOT' ELSE IF (matches( "NOW", TRIM(input_line) ) ) THEN IF( ionode ) WRITE(*,*) ' Manual piloting detected' pilot_type ='MANUAL' ELSE ! Well lets just pause since this guys is throwing trash IF( ionode ) WRITE(*,*) ' Mailbox contents not understood: pausing' pause_p = .TRUE. ENDIF END IF IF (pause_p) GO TO 50 ! ok if one adds a rule during steering` ! event table must be cleared (from steer point) forward ! ! Every nodes gets this (and the call to card_autopilot ! which calls add_rule, which calls assign_rule, etc ! In this way we sync the event table ! Then we shouldn't have to sync employ_rules variable ! changes, or their subroutine side effects (like ions_nose_init) CALL init_autopilot() CALL card_autopilot( input_line ) 50 CONTINUE end subroutine parse_mailbox END MODULE autopilot espresso-5.1/Modules/ws_base.f900000644000175000017500000001720012341373034014655 0ustar mbamba! ! Copyright (C) 2009 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE ws_base !============================================================================ ! ! Module containing type definitions and auxiliary routines to deal with ! basic operations on the Wigner-Seitz cell associated to a given set ! of Bravais fundamental lattice vectors. ! ! Should contain low level routines and no reference to other modules ! (with the possible exception of kinds and parameters) so as to be ! call-able from any other module. ! ! content: ! ! - ws_type : derived type definition used to encoded the auxiliary ! quantities needed by the other WS functions or routines ! ! - ws_init(a,ws) ! : a routine that initializes a ws_type variable ! ! - ws_clear(ws) ! : a routine that un-sets a ws_type variable ! ! - ws_test(ws) ! : a routine that tests whether a ws_type variable has been ! initialized ! ! - ws_vect(r,ws,r_ws) ! : a routine that given a vector returns an equivalent ! vector inside the WS cell ! ! - ws_dist(r,ws) ! : a routine that, given a vector, returns the shortest ! distance from any point in the Bravais lattice ! ! - ws_weight(r,ws) ! : a routine that given a vector ! returns 1.0 if the vector is inside the WS cell ! returns 0.0 if the vector is outside the WS cell ! returns 1/(1+NR) if the vector is on the frontier of the ! WS cell and NR is the number of Bravais ! lattice points whose distance is the same ! as the one from the origin ! !============================================================================ ! USE kinds, ONLY: dp ! IMPLICIT NONE ! TYPE ws_type PRIVATE ! this means (I hope) that internal variables can only ! be accessed through calls of routines inside the module. REAL(DP) :: & a(3,3), & ! the fundamental Bravais lattice vectors aa(3,3), & ! a^T*a b(3,3), & ! the inverse of a, i.e. the transponse of the fundamental ! reciprocal lattice vectors norm_b(3) ! the norm of the fundamental reciprocal lattice vectors LOGICAL :: & initialized = .FALSE. ! .TRUE. when initialized END TYPE ws_type PRIVATE PUBLIC :: ws_type, ws_init, ws_clean, ws_test, ws_vect, ws_dist, ws_weight, ws_dist_stupid !============================================================================ ! CONTAINS !--------------------------------------------------------------- SUBROUTINE ws_init(a,ws) !--------------------------------------------------------------- REAL(DP), INTENT(IN) :: a(3,3) TYPE(ws_type), INTENT(OUT) :: ws REAL(DP) :: garbage INTEGER :: i ! ws%a = a CALL invmat( 3, ws%a, ws%b, garbage ) ! invmat is defined in flib ws%aa = MATMUL(TRANSPOSE(a),a) do i=1,3 ws%norm_b(i) = DSQRT(SUM(ws%b(i,:)*ws%b(i,:))) end do ws%initialized = .TRUE. RETURN END SUBROUTINE ws_init ! !--------------------------------------------------------------- SUBROUTINE ws_clean(ws) !--------------------------------------------------------------- TYPE(ws_type), INTENT(OUT) :: ws ws%initialized = .FALSE. RETURN END SUBROUTINE ws_clean ! !--------------------------------------------------------------- SUBROUTINE ws_test(ws) !--------------------------------------------------------------- TYPE(ws_type), INTENT(IN) :: ws IF (.NOT.ws%initialized) CALL errore & ('ws_test','trying to use an uninitialized ws_type variable',1) RETURN END SUBROUTINE ws_test !--------------------------------------------------------------- SUBROUTINE ws_vect(r,ws,r_ws) !--------------------------------------------------------------- REAL(DP), INTENT(IN) :: r(3) TYPE(ws_type), INTENT(IN) :: ws REAL(DP), INTENT(OUT) :: r_ws(3) REAL(DP) :: x(3), y(3), c, ctest INTEGER :: lb(3), ub(3), i1, i2, i3, m(3) CALL ws_test(ws) x = MATMUL(ws%b,r) x(:) = x(:) - NINT(x(:)) c = SUM(x*MATMUL(ws%aa,x)) m = 0 lb(:) = NINT ( x(:) - DSQRT (c) * ws%norm_b(:) ) ! CEILING should be enough for lb but NINT might be safer ub(:) = NINT ( x(:) + DSQRT (c) * ws%norm_b(:) ) ! FLOOR should be enough for ub but NINT might be safer DO i1 = lb(1), ub(1) DO i2 = lb(2), ub(2) DO i3 = lb(3), ub(3) y = x - (/i1,i2,i3/) ctest = SUM(y*MATMUL(ws%aa,y)) IF (ctest < c) THEN c = ctest m = (/i1,i2,i3/) END IF END DO END DO END DO y = x-m r_ws = MATMUL(ws%a,y) RETURN END SUBROUTINE ws_vect ! !--------------------------------------------------------------- FUNCTION ws_dist_stupid(r,ws) !--------------------------------------------------------------- REAL(DP), INTENT(IN) :: r(3) TYPE(ws_type), INTENT(IN) :: ws REAL(DP) :: ws_dist_stupid REAL(DP) :: r_ws(3) integer :: i1,i2,i3 real(DP) :: rr, rmin, rtest(3) CALL ws_test(ws) rmin = 1.d+9 do i1=-3,3 do i2=-3,3 do i3=-3,3 rtest(:) = r(:) + ws%a(:,1)*i1 + ws%a(:,2)*i2 + ws%a(:,3)*i3 rr = sum(rtest(:)**2) if (rr < rmin) rmin = rr end do end do end do ws_dist_stupid = DSQRT(rmin) RETURN END FUNCTION ws_dist_stupid ! !--------------------------------------------------------------- FUNCTION ws_dist(r,ws) !--------------------------------------------------------------- REAL(DP), INTENT(IN) :: r(3) TYPE(ws_type), INTENT(IN) :: ws REAL(DP) :: ws_dist REAL(DP) :: r_ws(3) CALL ws_test(ws) CALL ws_vect(r,ws,r_ws) ws_dist = DSQRT(SUM(r_ws**2)) RETURN END FUNCTION ws_dist ! !--------------------------------------------------------------- FUNCTION ws_weight(r,ws) !--------------------------------------------------------------- REAL(DP), INTENT(IN) :: r(3) TYPE(ws_type), INTENT(IN) :: ws REAL(DP) :: ws_weight REAL(DP) :: x(3), y(3), c, ctest INTEGER :: lb(3), ub(3), i1, i2, i3, m(3) REAL(DP), PARAMETER :: eps6 = 1.0E-6_DP ws_weight = 0.0_DP CALL ws_test(ws) x = MATMUL(ws%b,r) c = SUM(x*MATMUL(ws%aa,x)) lb(:) = NINT ( x(:) - DSQRT (c) * ws%norm_b(:) ) ! CEILING should be enough for lb but NINT might be safer ub(:) = NINT ( x(:) + DSQRT (c) * ws%norm_b(:) ) ! FLOOR should be enough for ub but NINT might be safer DO i1 = lb(1), ub(1) DO i2 = lb(2), ub(2) DO i3 = lb(3), ub(3) y = x - (/i1,i2,i3/) ctest = SUM(y*MATMUL(ws%aa,y)) IF (ctest < c - eps6 ) THEN ws_weight = 0.0_DP RETURN END IF IF (ctest < c + eps6 ) THEN ws_weight = ws_weight + 1.0_DP END IF END DO END DO END DO IF (ws_weight == 0.0_DP) CALL errore ('ws_weight','unexpected error',1) ws_weight = 1.0_dp / ws_weight RETURN END FUNCTION ws_weight ! END MODULE ws_base espresso-5.1/Modules/mp_pools.f900000644000175000017500000000637112341373034015071 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE mp_pools !---------------------------------------------------------------------------- ! USE mp, ONLY : mp_barrier, mp_size, mp_rank, mp_comm_split USE parallel_include ! IMPLICIT NONE SAVE ! ! ... Pool groups (processors within a pool of k-points) ! ... Subdivision of image group, used for k-point parallelization ! INTEGER :: npool = 1 ! number of "k-points"-pools INTEGER :: nproc_pool = 1 ! number of processors within a pool INTEGER :: me_pool = 0 ! index of the processor within a pool INTEGER :: root_pool = 0 ! index of the root processor within a pool INTEGER :: my_pool_id = 0 ! index of my pool INTEGER :: inter_pool_comm = 0 ! inter pool communicator INTEGER :: intra_pool_comm = 0 ! intra pool communicator ! INTEGER :: kunit = 1 ! granularity of k-point distribution ! kunit=1 standard case. In phonon k and k+q must ! be on the same pool, so kunit=2. ! CONTAINS ! !---------------------------------------------------------------------------- SUBROUTINE mp_start_pools( npool_, parent_comm ) !--------------------------------------------------------------------------- ! ! ... Divide processors (of the "parent_comm" group) into "pools" ! ... Requires: npool_, read from command line ! ... parent_comm, typically world_comm = group of all processors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: npool_, parent_comm ! INTEGER :: parent_nproc = 1, parent_mype = 0 ! #if defined (__MPI) ! parent_nproc = mp_size( parent_comm ) parent_mype = mp_rank( parent_comm ) ! ! ... npool_ must have been previously read from command line argument ! ... by a call to routine get_command_line ! npool = npool_ IF ( npool < 1 .OR. npool > parent_nproc ) CALL errore( 'mp_start_pools',& 'invalid number of pools, out of range', 1 ) IF ( MOD( parent_nproc, npool ) /= 0 ) CALL errore( 'mp_start_pools', & 'invalid number of pools, parent_nproc /= nproc_pool * npool', 1 ) ! ! ... number of cpus per pool of k-points (created inside each parent group) ! nproc_pool = parent_nproc / npool ! ! ! ... my_pool_id = pool index for this processor ( 0 : npool - 1 ) ! ... me_pool = processor index within the pool ( 0 : nproc_pool - 1 ) ! my_pool_id = parent_mype / nproc_pool me_pool = MOD( parent_mype, nproc_pool ) ! CALL mp_barrier( parent_comm ) ! ! ... the intra_pool_comm communicator is created ! CALL mp_comm_split ( parent_comm, my_pool_id, parent_mype, intra_pool_comm ) ! CALL mp_barrier( parent_comm ) ! ! ... the inter_pool_comm communicator is created ! CALL mp_comm_split ( parent_comm, me_pool, parent_mype, inter_pool_comm ) ! #endif ! RETURN END SUBROUTINE mp_start_pools ! END MODULE mp_pools espresso-5.1/Modules/ptoolkit.f900000644000175000017500000037624612341373034015121 0ustar mbamba! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !==----------------------------------------------==! MODULE parallel_toolkit !==----------------------------------------------==! USE kinds, ONLY : DP USE parallel_include IMPLICIT NONE SAVE PRIVATE PUBLIC :: rep_matmul_drv PUBLIC :: zrep_matmul_drv PUBLIC :: dsqmdst, dsqmcll, dsqmred, dsqmsym PUBLIC :: zsqmdst, zsqmcll, zsqmred, zsqmher CONTAINS ! --------------------------------------------------------------------------------- SUBROUTINE dsqmdst( n, ar, ldar, a, lda, desc ) ! ! Double precision SQuare Matrix DiSTribution ! This sub. take a replicated square matrix "ar" and distribute it ! across processors as described by descriptor "desc" ! USE kinds USE descriptors ! implicit none ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: ldar REAL(DP) :: ar(ldar,*) ! matrix to be splitted, replicated on all proc INTEGER, INTENT(IN) :: lda REAL(DP) :: a(lda,*) TYPE(la_descriptor), INTENT(IN) :: desc ! REAL(DP), PARAMETER :: zero = 0_DP ! INTEGER :: i, j, nr, nc, ic, ir, nx ! IF( desc%active_node <= 0 ) THEN RETURN END IF nx = desc%nrcx ir = desc%ir ic = desc%ic nr = desc%nr nc = desc%nc IF( lda < nx ) & CALL errore( " dsqmdst ", " inconsistent dimension lda ", lda ) IF( n /= desc%n ) & CALL errore( " dsqmdst ", " inconsistent dimension n ", n ) DO j = 1, nc DO i = 1, nr a( i, j ) = ar( i + ir - 1, j + ic - 1 ) END DO DO i = nr+1, nx a( i, j ) = zero END DO END DO DO j = nc + 1, nx DO i = 1, nx a( i, j ) = zero END DO END DO RETURN END SUBROUTINE dsqmdst SUBROUTINE zsqmdst( n, ar, ldar, a, lda, desc ) ! ! double complex (Z) SQuare Matrix DiSTribution ! This sub. take a replicated square matrix "ar" and distribute it ! across processors as described by descriptor "desc" ! USE kinds USE descriptors ! implicit none ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: ldar COMPLEX(DP) :: ar(ldar,*) ! matrix to be splitted, replicated on all proc INTEGER, INTENT(IN) :: lda COMPLEX(DP) :: a(lda,*) TYPE(la_descriptor), INTENT(IN) :: desc ! COMPLEX(DP), PARAMETER :: zero = ( 0_DP , 0_DP ) ! INTEGER :: i, j, nr, nc, ic, ir, nx ! IF( desc%active_node <= 0 ) THEN RETURN END IF nx = desc%nrcx ir = desc%ir ic = desc%ic nr = desc%nr nc = desc%nc IF( lda < nx ) & CALL errore( " zsqmdst ", " inconsistent dimension lda ", lda ) IF( n /= desc%n ) & CALL errore( " zsqmdst ", " inconsistent dimension n ", n ) DO j = 1, nc DO i = 1, nr a( i, j ) = ar( i + ir - 1, j + ic - 1 ) END DO DO i = nr+1, nx a( i, j ) = zero END DO END DO DO j = nc + 1, nx DO i = 1, nx a( i, j ) = zero END DO END DO RETURN END SUBROUTINE zsqmdst ! --------------------------------------------------------------------------------- SUBROUTINE dsqmcll( n, a, lda, ar, ldar, desc, comm ) ! ! Double precision SQuare Matrix CoLLect ! This sub. take a distributed square matrix "a" and collect ! the block assigned to processors into a replicated matrix "ar", ! matrix is distributed as described by descriptor desc ! USE kinds USE descriptors ! implicit none ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: ldar REAL(DP) :: ar(ldar,*) ! matrix to be merged, replicated on all proc INTEGER, INTENT(IN) :: lda REAL(DP) :: a(lda,*) TYPE(la_descriptor), INTENT(IN) :: desc INTEGER, INTENT(IN) :: comm ! INTEGER :: i, j #if defined __MPI ! INTEGER :: np, nx, ipc, ipr, npr, npc, noff INTEGER :: ierr, ir, ic, nr, nc REAL(DP), ALLOCATABLE :: buf(:,:) ! IF( desc%active_node > 0 ) THEN ! np = desc%npr * desc%npc nx = desc%nrcx npr = desc%npr npc = desc%npc ! IF( desc%myr == 0 .AND. desc%myc == 0 ) THEN ALLOCATE( buf( nx, nx * np ) ) ELSE ALLOCATE( buf( 1, 1 ) ) END IF ! IF( lda /= nx ) & CALL errore( " dsqmcll ", " inconsistent dimension lda ", lda ) ! IF( desc%n /= n ) & CALL errore( " dsqmcll ", " inconsistent dimension n ", n ) ! CALL mpi_gather( a, nx*nx, mpi_double_precision, & buf, nx*nx, mpi_double_precision, 0, desc%comm , ierr ) ! IF( ierr /= 0 ) & CALL errore( " dsqmcll ", " in gather ", ABS( ierr ) ) ! IF( desc%myr == 0 .AND. desc%myc == 0 ) THEN DO ipc = 1, npc CALL descla_local_dims( ic, nc, n, desc%nx, npc, ipc-1 ) DO ipr = 1, npr CALL descla_local_dims( ir, nr, n, desc%nx, npr, ipr-1 ) noff = ( ipc - 1 + npc * ( ipr - 1 ) ) * nx DO j = 1, nc DO i = 1, nr ar( i + ir - 1, j + ic - 1 ) = buf( i, j + noff ) END DO END DO END DO END DO END IF ! DEALLOCATE( buf ) ! END IF ! CALL mpi_bcast( ar, ldar * n, mpi_double_precision, 0, comm, ierr ) ! IF( ierr /= 0 ) & CALL errore( " dsqmcll ", " in bcast ", ABS( ierr ) ) #else DO j = 1, n DO i = 1, n ar( i, j ) = a( i, j ) END DO END DO #endif RETURN END SUBROUTINE dsqmcll SUBROUTINE zsqmcll( n, a, lda, ar, ldar, desc, comm ) ! ! double complex (Z) SQuare Matrix CoLLect ! This sub. take a distributed square matrix "a" and collect ! the block assigned to processors into a replicated matrix "ar", ! matrix is distributed as described by descriptor desc ! USE kinds USE descriptors ! implicit none ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: ldar COMPLEX(DP) :: ar(ldar,*) ! matrix to be merged, replicated on all proc INTEGER, INTENT(IN) :: lda COMPLEX(DP) :: a(lda,*) TYPE(la_descriptor), INTENT(IN) :: desc INTEGER, INTENT(IN) :: comm ! INTEGER :: i, j #if defined __MPI ! INTEGER :: np, nx, ipc, ipr, npr, npc, noff INTEGER :: ierr, ir, ic, nr, nc COMPLEX(DP), ALLOCATABLE :: buf(:,:) ! IF( desc%active_node > 0 ) THEN ! np = desc%npr * desc%npc nx = desc%nrcx npr = desc%npr npc = desc%npc ! IF( desc%myr == 0 .AND. desc%myc == 0 ) THEN ALLOCATE( buf( nx, nx * np ) ) ELSE ALLOCATE( buf( 1, 1 ) ) END IF ! IF( lda /= nx ) & CALL errore( " zsqmcll ", " inconsistent dimension lda ", lda ) ! IF( desc%n /= n ) & CALL errore( " zsqmcll ", " inconsistent dimension n ", n ) ! CALL mpi_gather( a, nx*nx, mpi_double_complex, & buf, nx*nx, mpi_double_complex, 0, desc%comm , ierr ) ! IF( ierr /= 0 ) & CALL errore( " zsqmcll ", " in gather ", ABS( ierr ) ) ! IF( desc%myr == 0 .AND. desc%myc == 0 ) THEN DO ipc = 1, npc CALL descla_local_dims( ic, nc, n, desc%nx, npc, ipc-1 ) DO ipr = 1, npr CALL descla_local_dims( ir, nr, n, desc%nx, npr, ipr-1 ) noff = ( ipc - 1 + npc * ( ipr - 1 ) ) * nx DO j = 1, nc DO i = 1, nr ar( i + ir - 1, j + ic - 1 ) = buf( i, j + noff ) END DO END DO END DO END DO END IF ! DEALLOCATE( buf ) ! END IF ! CALL mpi_bcast( ar, ldar * n, mpi_double_complex, 0, comm, ierr ) ! IF( ierr /= 0 ) & CALL errore( " zsqmcll ", " in bcast ", ABS( ierr ) ) #else DO j = 1, n DO i = 1, n ar( i, j ) = a( i, j ) END DO END DO #endif RETURN END SUBROUTINE zsqmcll ! --------------------------------------------------------------------------------- SUBROUTINE dsqmwpb( n, a, lda, desc ) ! ! Double precision SQuare Matrix WiPe Border subroutine ! USE kinds USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda REAL(DP) :: a(lda,*) ! matrix to be redistributed into b TYPE(la_descriptor), INTENT(IN) :: desc ! INTEGER :: i, j ! DO j = 1, desc%nc DO i = desc%nr + 1, desc%nrcx a( i, j ) = 0_DP END DO END DO DO j = desc%nc + 1, desc%nrcx DO i = 1, desc%nrcx a( i, j ) = 0_DP END DO END DO ! RETURN END SUBROUTINE dsqmwpb ! --------------------------------------------------------------------------------- SUBROUTINE dsqmsym( n, a, lda, desc ) ! ! Double precision SQuare Matrix SYMmetrization ! USE kinds USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda REAL(DP) :: a(lda,*) TYPE(la_descriptor), INTENT(IN) :: desc #if defined __MPI INTEGER :: istatus( MPI_STATUS_SIZE ) #endif INTEGER :: i, j INTEGER :: comm INTEGER :: nr, nc, dest, sreq, ierr, sour REAL(DP) :: atmp #if defined __MPI IF( desc%active_node <= 0 ) THEN RETURN END IF IF( n /= desc%n ) & CALL errore( " dsqmsym ", " wrong global dim n ", n ) IF( lda /= desc%nrcx ) & CALL errore( " dsqmsym ", " wrong leading dim lda ", lda ) comm = desc%comm nr = desc%nr nc = desc%nc IF( desc%myc == desc%myr ) THEN ! ! diagonal block, procs work locally ! DO j = 1, nc DO i = j + 1, nr a(i,j) = a(j,i) END DO END DO ! ELSE IF( desc%myc > desc%myr ) THEN ! ! super diagonal block, procs send the block to sub diag. ! CALL GRID2D_RANK( 'R', desc%npr, desc%npc, & desc%myc, desc%myr, dest ) CALL mpi_isend( a, lda*lda, MPI_DOUBLE_PRECISION, dest, 1, comm, sreq, ierr ) ! IF( ierr /= 0 ) & CALL errore( " dsqmsym ", " in isend ", ABS( ierr ) ) ! ELSE IF( desc%myc < desc%myr ) THEN ! ! sub diagonal block, procs receive the block from super diag, ! then transpose locally ! CALL GRID2D_RANK( 'R', desc%npr, desc%npc, & desc%myc, desc%myr, sour ) CALL mpi_recv( a, lda*lda, MPI_DOUBLE_PRECISION, sour, 1, comm, istatus, ierr ) ! IF( ierr /= 0 ) & CALL errore( " dsqmsym ", " in recv ", ABS( ierr ) ) ! DO j = 1, lda DO i = j + 1, lda atmp = a(i,j) a(i,j) = a(j,i) a(j,i) = atmp END DO END DO ! END IF IF( desc%myc > desc%myr ) THEN ! CALL MPI_Wait( sreq, istatus, ierr ) ! IF( ierr /= 0 ) & CALL errore( " dsqmsym ", " in wait ", ABS( ierr ) ) ! END IF #else DO j = 1, n ! DO i = j + 1, n ! a(i,j) = a(j,i) ! END DO ! END DO #endif RETURN END SUBROUTINE dsqmsym SUBROUTINE zsqmher( n, a, lda, desc ) ! ! double complex (Z) SQuare Matrix HERmitianize ! USE kinds USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda COMPLEX(DP) :: a(lda,lda) TYPE(la_descriptor), INTENT(IN) :: desc #if defined __MPI INTEGER :: istatus( MPI_STATUS_SIZE ) #endif INTEGER :: i, j INTEGER :: comm, myid INTEGER :: nr, nc, dest, sreq, ierr, sour COMPLEX(DP) :: atmp COMPLEX(DP), ALLOCATABLE :: tst1(:,:) COMPLEX(DP), ALLOCATABLE :: tst2(:,:) #if defined __MPI IF( desc%active_node <= 0 ) THEN RETURN END IF IF( n /= desc%n ) & CALL errore( " zsqmsym ", " wrong global dim n ", n ) IF( lda /= desc%nrcx ) & CALL errore( " zsqmsym ", " wrong leading dim lda ", lda ) comm = desc%comm nr = desc%nr nc = desc%nc IF( desc%myc == desc%myr ) THEN ! ! diagonal block, procs work locally ! DO j = 1, nc a(j,j) = CMPLX( DBLE( a(j,j) ), 0_DP, KIND=DP ) DO i = j + 1, nr a(i,j) = CONJG( a(j,i) ) END DO END DO ! ELSE IF( desc%myc > desc%myr ) THEN ! ! super diagonal block, procs send the block to sub diag. ! CALL GRID2D_RANK( 'R', desc%npr, desc%npc, & desc%myc, desc%myr, dest ) CALL mpi_isend( a, lda*lda, MPI_DOUBLE_COMPLEX, dest, 1, comm, sreq, ierr ) ! IF( ierr /= 0 ) & CALL errore( " zsqmher ", " in mpi_isend ", ABS( ierr ) ) ! ELSE IF( desc%myc < desc%myr ) THEN ! ! sub diagonal block, procs receive the block from super diag, ! then transpose locally ! CALL GRID2D_RANK( 'R', desc%npr, desc%npc, & desc%myc, desc%myr, sour ) CALL mpi_recv( a, lda*lda, MPI_DOUBLE_COMPLEX, sour, 1, comm, istatus, ierr ) ! IF( ierr /= 0 ) & CALL errore( " zsqmher ", " in mpi_recv ", ABS( ierr ) ) ! DO j = 1, lda DO i = j + 1, lda atmp = a(i,j) a(i,j) = a(j,i) a(j,i) = atmp END DO END DO DO j = 1, nc DO i = 1, nr a(i,j) = CONJG( a(i,j) ) END DO END DO ! END IF IF( desc%myc > desc%myr ) THEN ! CALL MPI_Wait( sreq, istatus, ierr ) ! IF( ierr /= 0 ) & CALL errore( " zsqmher ", " in MPI_Wait ", ABS( ierr ) ) ! END IF #if defined __PIPPO CALL MPI_Comm_rank( comm, myid, ierr ) ALLOCATE( tst1( n, n ) ) ALLOCATE( tst2( n, n ) ) tst1 = 0.0d0 tst2 = 0.0d0 do j = 1, desc%nc do i = 1, desc%nr tst1( i + desc%ir - 1, j + desc%ic - 1 ) = a( i , j ) end do end do CALL MPI_REDUCE( tst1, tst2, n*n, MPI_DOUBLE_COMPLEX, MPI_SUM, 0, comm, ierr ) IF( myid == 0 ) THEN DO j = 1, n ! IF( tst2(j,j) /= CMPLX( DBLE( tst2(j,j) ), 0_DP, KIND=DP ) ) & WRITE( 4000, * ) j, tst2(j,j) ! DO i = j + 1, n ! IF( tst2(i,j) /= CONJG( tst2(j,i) ) ) WRITE( 4000, * ) i,j, tst2(i,j) ! END DO ! END DO END IF DEALLOCATE( tst1 ) DEALLOCATE( tst2 ) #endif #else DO j = 1, n ! a(j,j) = CMPLX( DBLE( a(j,j) ), 0_DP, KIND=DP ) ! DO i = j + 1, n ! a(i,j) = CONJG( a(j,i) ) ! END DO ! END DO #endif RETURN END SUBROUTINE zsqmher ! --------------------------------------------------------------------------------- SUBROUTINE dsqmred( na, a, lda, desca, nb, b, ldb, descb ) ! ! Double precision SQuare Matrix REDistribution ! ! Copy a global "na * na" matrix locally stored in "a", ! and distributed as described by "desca", into a larger ! global "nb * nb" matrix stored in "b" and distributed ! as described in "descb". ! ! If you want to read, get prepared for an headache! ! Written struggling by Carlo Cavazzoni. ! USE kinds USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: na INTEGER, INTENT(IN) :: lda REAL(DP) :: a(lda,lda) ! matrix to be redistributed into b TYPE(la_descriptor), INTENT(IN) :: desca INTEGER, INTENT(IN) :: nb INTEGER, INTENT(IN) :: ldb REAL(DP) :: b(ldb,ldb) TYPE(la_descriptor), INTENT(IN) :: descb INTEGER :: ipc, ipr, npc, npr INTEGER :: ipr_old, ir_old, nr_old, irx_old INTEGER :: ipc_old, ic_old, nc_old, icx_old INTEGER :: myrow, mycol, ierr, rank INTEGER :: col_comm, row_comm, comm, sreq INTEGER :: nr_new, ir_new, irx_new, ir, nr, nrtot, irb, ire INTEGER :: nc_new, ic_new, icx_new, ic, nc, nctot, icb, ice INTEGER :: ib, i, j, myid INTEGER :: nrsnd( desca%npr ) INTEGER :: ncsnd( desca%npr ) INTEGER :: displ( desca%npr ) INTEGER :: irb_new( desca%npr ) INTEGER :: ire_new( desca%npr ) INTEGER :: icb_new( desca%npr ) INTEGER :: ice_new( desca%npr ) REAL(DP), ALLOCATABLE :: buf(:) REAL(DP), ALLOCATABLE :: ab(:,:) REAL(DP), ALLOCATABLE :: tst1(:,:) REAL(DP), ALLOCATABLE :: tst2(:,:) #if defined __MPI INTEGER :: istatus( MPI_STATUS_SIZE ) #endif IF( desca%active_node <= 0 ) THEN RETURN END IF ! preliminary consistency checks IF( nb < na ) & CALL errore( " dsqmred ", " nb < na, this sub. work only with nb >= na ", nb ) IF( nb /= descb%n ) & CALL errore( " dsqmred ", " wrong global dim nb ", nb ) IF( na /= desca%n ) & CALL errore( " dsqmred ", " wrong global dim na ", na ) IF( ldb /= descb%nrcx ) & CALL errore( " dsqmred ", " wrong leading dim ldb ", ldb ) IF( lda /= desca%nrcx ) & CALL errore( " dsqmred ", " wrong leading dim lda ", lda ) npr = desca%npr myrow = desca%myr npc = desca%npc mycol = desca%myc comm = desca%comm #if defined __MPI ! split communicator into row and col communicators CALL MPI_Comm_rank( comm, myid, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Comm_rank 1 ", ABS( ierr ) ) CALL MPI_Comm_split( comm, mycol, myrow, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Comm_split 1 ", ABS( ierr ) ) CALL MPI_Comm_split( comm, myrow, mycol, row_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Comm_split 2 ", ABS( ierr ) ) CALL MPI_Comm_rank( col_comm, rank, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Comm_rank 2 ", ABS( ierr ) ) IF( rank /= myrow ) & CALL errore( " dsqmred ", " building col_comm ", rank ) CALL MPI_Comm_rank( row_comm, rank, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Comm_rank 3 ", ABS( ierr ) ) IF( rank /= mycol ) & CALL errore( " dsqmred ", " building row_comm ", rank ) ALLOCATE( buf( descb%nrcx * descb%nrcx ) ) ALLOCATE( ab( descb%nrcx, desca%nrcx ) ) ! write( 3000 + myid, * ) 'na, nb = ', na, nb DO j = 1, descb%nc DO i = 1, descb%nr b( i, j ) = 0.0d0 END DO END DO ab = 0.0d0 ! first redistribute rows, column groups work in parallel DO ipr = 1, npr ! CALL descla_local_dims( ir_new, nr_new, nb, descb%nx, npr, ipr-1 ) ! irx_new = ir_new + nr_new - 1 ! write( 3000 + myid, * ) 'ir_new, nr_new, irx_new = ', ir_new, nr_new, irx_new ! DO ipr_old = 1, npr ! CALL descla_local_dims( ir_old, nr_old, na, desca%nx, npr, ipr_old-1 ) ! irx_old = ir_old + nr_old - 1 ! ! write( 3000 + myid, * ) 'ir_old, nr_old, irx_old = ', ir_old, nr_old, irx_old ! IF( ir_old >= ir_new .AND. ir_old <= irx_new ) THEN ! nrsnd( ipr_old ) = MIN( nr_old, irx_new - ir_old + 1 ) irb = 1 ire = nrsnd( ipr_old ) irb_new( ipr_old ) = ir_old - ir_new + 1 ire_new( ipr_old ) = irb_new( ipr_old ) + nrsnd( ipr_old ) - 1 ! ELSE IF( ir_new >= ir_old .AND. ir_new <= irx_old ) THEN ! nrsnd( ipr_old ) = irx_old - ir_new + 1 irb = ir_new - ir_old + 1 ire = nr_old irb_new( ipr_old ) = 1 ire_new( ipr_old ) = nrsnd( ipr_old ) ! ELSE nrsnd( ipr_old ) = 0 irb = 0 ire = 0 irb_new( ipr_old ) = 0 ire_new( ipr_old ) = 0 END IF ! ! write( 3000 + myid, * ) 'ipr_old, nrsnd = ', ipr_old, nrsnd( ipr_old ) ! write( 3000 + myid, * ) 'ipr_old, irb, ire = ', ipr_old, irb, ire ! write( 3000 + myid, * ) 'ipr_old, irb_new, ire_new = ', ipr_old, irb_new( ipr_old ), ire_new( ipr_old ) ! IF( ( myrow == ipr_old - 1 ) .AND. ( nrsnd( ipr_old ) > 0 ) ) THEN IF( myrow /= ipr - 1 ) THEN ib = 0 DO j = 1, desca%nc DO i = irb, ire ib = ib + 1 buf( ib ) = a( i, j ) END DO END DO CALL mpi_isend( buf, ib, MPI_DOUBLE_PRECISION, ipr-1, ipr, col_comm, sreq, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_isend ", ABS( ierr ) ) ELSE DO j = 1, desca%nc ib = irb DO i = irb_new( ipr_old ), ire_new( ipr_old ) ab( i, j ) = a( ib, j ) ib = ib + 1 END DO END DO END IF END IF ! IF( nrsnd( ipr_old ) /= ire - irb + 1 ) & CALL errore( " dsqmred ", " somthing wrong with row 1 ", nrsnd( ipr_old ) ) IF( nrsnd( ipr_old ) /= ire_new( ipr_old ) - irb_new( ipr_old ) + 1 ) & CALL errore( " dsqmred ", " somthing wrong with row 2 ", nrsnd( ipr_old ) ) ! nrsnd( ipr_old ) = nrsnd( ipr_old ) * desca%nc ! END DO ! IF( myrow == ipr - 1 ) THEN DO ipr_old = 1, npr IF( nrsnd( ipr_old ) > 0 ) THEN IF( myrow /= ipr_old - 1 ) THEN CALL mpi_recv( buf, nrsnd(ipr_old), MPI_DOUBLE_PRECISION, ipr_old-1, ipr, col_comm, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_recv ", ABS( ierr ) ) CALL mpi_get_count( istatus, MPI_DOUBLE_PRECISION, ib, ierr) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_get_count ", ABS( ierr ) ) IF( ib /= nrsnd(ipr_old) ) & CALL errore( " dsqmred ", " somthing wrong with row 3 ", ib ) ib = 0 DO j = 1, desca%nc DO i = irb_new( ipr_old ), ire_new( ipr_old ) ib = ib + 1 ab( i, j ) = buf( ib ) END DO END DO END IF END IF END DO ELSE DO ipr_old = 1, npr IF( myrow == ipr_old - 1 .AND. nrsnd( ipr_old ) > 0 ) THEN CALL MPI_Wait( sreq, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Wait ", ABS( ierr ) ) END IF END DO END IF ! END DO ! then redistribute cols, row groups work in parallel DO ipc = 1, npc ! CALL descla_local_dims( ic_new, nc_new, nb, descb%nx, npc, ipc-1 ) ! icx_new = ic_new + nc_new - 1 ! ! write( 3000 + myid, * ) 'ic_new, nc_new, icx_new = ', ic_new, nc_new, icx_new ! DO ipc_old = 1, npc ! CALL descla_local_dims( ic_old, nc_old, na, desca%nx, npc, ipc_old-1 ) ! icx_old = ic_old + nc_old - 1 ! ! write( 3000 + myid, * ) 'ic_old, nc_old, icx_old = ', ic_old, nc_old, icx_old ! IF( ic_old >= ic_new .AND. ic_old <= icx_new ) THEN ! ncsnd( ipc_old ) = MIN( nc_old, icx_new - ic_old + 1 ) icb = 1 ice = ncsnd( ipc_old ) icb_new( ipc_old ) = ic_old - ic_new + 1 ice_new( ipc_old ) = icb_new( ipc_old ) + ncsnd( ipc_old ) - 1 ! ELSE IF( ic_new >= ic_old .AND. ic_new <= icx_old ) THEN ! ncsnd( ipc_old ) = icx_old - ic_new + 1 icb = ic_new - ic_old + 1 ice = nc_old icb_new( ipc_old ) = 1 ice_new( ipc_old ) = ncsnd( ipc_old ) ! ELSE ncsnd( ipc_old ) = 0 icb = 0 ice = 0 icb_new( ipc_old ) = 0 ice_new( ipc_old ) = 0 END IF ! ! write( 3000 + myid, * ) 'ipc_old, ncsnd = ', ipc_old, ncsnd( ipc_old ) ! write( 3000 + myid, * ) 'ipc_old, icb, ice = ', ipc_old, icb, ice ! write( 3000 + myid, * ) 'ipc_old, icb_new, ice_new = ', ipc_old, icb_new( ipc_old ), ice_new( ipc_old ) IF( ( mycol == ipc_old - 1 ) .AND. ( ncsnd( ipc_old ) > 0 ) ) THEN IF( mycol /= ipc - 1 ) THEN ib = 0 DO j = icb, ice DO i = 1, descb%nrcx ib = ib + 1 buf( ib ) = ab( i, j ) END DO END DO CALL mpi_isend( buf, ib, MPI_DOUBLE_PRECISION, ipc-1, ipc, row_comm, sreq, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_isend 2 ", ABS( ierr ) ) ELSE ib = icb DO j = icb_new( ipc_old ), ice_new( ipc_old ) DO i = 1, descb%nrcx b( i, j ) = ab( i, ib ) END DO ib = ib + 1 END DO END IF END IF IF( ncsnd( ipc_old ) /= ice-icb+1 ) & CALL errore( " dsqmred ", " somthing wrong with col 1 ", ncsnd( ipc_old ) ) IF( ncsnd( ipc_old ) /= ice_new( ipc_old ) - icb_new( ipc_old ) + 1 ) & CALL errore( " dsqmred ", " somthing wrong with col 2 ", ncsnd( ipc_old ) ) ! ncsnd( ipc_old ) = ncsnd( ipc_old ) * descb%nrcx ! END DO ! IF( mycol == ipc - 1 ) THEN DO ipc_old = 1, npc IF( ncsnd( ipc_old ) > 0 ) THEN IF( mycol /= ipc_old - 1 ) THEN ib = icb_new( ipc_old ) CALL mpi_recv( b( 1, ib ), ncsnd(ipc_old), MPI_DOUBLE_PRECISION, ipc_old-1, ipc, row_comm, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_recv 2 ", ABS( ierr ) ) CALL MPI_GET_COUNT( istatus, MPI_DOUBLE_PRECISION, ib, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_GET_COUNT 2 ", ABS( ierr ) ) IF( ib /= ncsnd(ipc_old) ) & CALL errore( " dsqmred ", " somthing wrong with col 3 ", ib ) END IF END IF END DO ELSE DO ipc_old = 1, npc IF( mycol == ipc_old - 1 .AND. ncsnd( ipc_old ) > 0 ) THEN CALL MPI_Wait( sreq, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in MPI_Wait 2 ", ABS( ierr ) ) END IF END DO END IF ! END DO DEALLOCATE( ab ) DEALLOCATE( buf ) CALL mpi_comm_free( col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_comm_free 1 ", ABS( ierr ) ) CALL mpi_comm_free( row_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " dsqmred ", " in mpi_comm_free 2 ", ABS( ierr ) ) #if defined __PIPPO ! this is for debugging, tests through global matrix, if ! the two matrix (pre and before the redistribution) coincide. ALLOCATE( tst1( nb, nb ) ) ALLOCATE( tst2( nb, nb ) ) ALLOCATE( ab( nb, nb ) ) ab = 0.0d0 do j = 1, desca%nc do i = 1, desca%nr ab( i + desca%ir - 1, j + desca%ic - 1 ) = a( i , j ) end do end do CALL MPI_REDUCE( ab, tst1, nb*nb, MPI_DOUBLE_PRECISION, MPI_SUM, 0, comm, ierr ) ab = 0.0d0 do j = 1, descb%nc do i = 1, descb%nr ab( i + descb%ir - 1, j + descb%ic - 1 ) = b( i , j ) end do end do CALL MPI_REDUCE( ab, tst2, nb*nb, MPI_DOUBLE_PRECISION, MPI_SUM, 0, comm, ierr ) IF( myid == 0 ) THEN write( 1000, * ) na, nb, SUM( ABS( tst2 - tst1 ) ) END IF DEALLOCATE( ab ) DEALLOCATE( tst2 ) DEALLOCATE( tst1 ) #endif #endif RETURN END SUBROUTINE dsqmred SUBROUTINE zsqmred( na, a, lda, desca, nb, b, ldb, descb ) ! ! double complex (Z) SQuare Matrix REDistribution ! ! Copy a global "na * na" matrix locally stored in "a", ! and distributed as described by "desca", into a larger ! global "nb * nb" matrix stored in "b" and distributed ! as described in "descb". ! ! If you want to read, get prepared for an headache! ! Written struggling by Carlo Cavazzoni. ! USE kinds USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: na INTEGER, INTENT(IN) :: lda COMPLEX(DP) :: a(lda,lda) ! matrix to be redistributed into b TYPE(la_descriptor), INTENT(IN) :: desca INTEGER, INTENT(IN) :: nb INTEGER, INTENT(IN) :: ldb COMPLEX(DP) :: b(ldb,ldb) TYPE(la_descriptor), INTENT(IN) :: descb INTEGER :: ipc, ipr, npc, npr INTEGER :: ipr_old, ir_old, nr_old, irx_old INTEGER :: ipc_old, ic_old, nc_old, icx_old INTEGER :: myrow, mycol, ierr, rank INTEGER :: col_comm, row_comm, comm, sreq INTEGER :: nr_new, ir_new, irx_new, ir, nr, nrtot, irb, ire INTEGER :: nc_new, ic_new, icx_new, ic, nc, nctot, icb, ice INTEGER :: ib, i, j, myid INTEGER :: nrsnd( desca%npr ) INTEGER :: ncsnd( desca%npr ) INTEGER :: displ( desca%npr ) INTEGER :: irb_new( desca%npr ) INTEGER :: ire_new( desca%npr ) INTEGER :: icb_new( desca%npr ) INTEGER :: ice_new( desca%npr ) COMPLEX(DP), ALLOCATABLE :: buf(:) COMPLEX(DP), ALLOCATABLE :: ab(:,:) COMPLEX(DP), ALLOCATABLE :: tst1(:,:) COMPLEX(DP), ALLOCATABLE :: tst2(:,:) #if defined __MPI INTEGER :: istatus( MPI_STATUS_SIZE ) #endif IF( desca%active_node <= 0 ) THEN RETURN END IF ! preliminary consistency checks IF( nb < na ) & CALL errore( " zsqmred ", " nb < na, this sub. work only with nb >= na ", nb ) IF( nb /= descb%n ) & CALL errore( " zsqmred ", " wrong global dim nb ", nb ) IF( na /= desca%n ) & CALL errore( " zsqmred ", " wrong global dim na ", na ) IF( ldb /= descb%nrcx ) & CALL errore( " zsqmred ", " wrong leading dim ldb ", ldb ) IF( lda /= desca%nrcx ) & CALL errore( " zsqmred ", " wrong leading dim lda ", lda ) npr = desca%npr myrow = desca%myr npc = desca%npc mycol = desca%myc comm = desca%comm #if defined __MPI ! split communicator into row and col communicators CALL MPI_Comm_rank( comm, myid, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Comm_rank 1 ", ABS( ierr ) ) CALL MPI_Comm_split( comm, mycol, myrow, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Comm_split 1 ", ABS( ierr ) ) CALL MPI_Comm_split( comm, myrow, mycol, row_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Comm_split 2 ", ABS( ierr ) ) CALL MPI_Comm_rank( col_comm, rank, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Comm_rank 2 ", ABS( ierr ) ) IF( rank /= myrow ) & CALL errore( " zsqmred ", " building col_comm ", rank ) CALL MPI_Comm_rank( row_comm, rank, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Comm_rank 3 ", ABS( ierr ) ) IF( rank /= mycol ) & CALL errore( " zsqmred ", " building row_comm ", rank ) ALLOCATE( buf( descb%nrcx * descb%nrcx ) ) ALLOCATE( ab( descb%nrcx, desca%nrcx ) ) DO j = 1, descb%nc DO i = 1, descb%nr b( i, j ) = ( 0_DP , 0_DP ) END DO END DO ab = ( 0_DP , 0_DP ) ! first redistribute rows, column groups work in parallel DO ipr = 1, npr ! CALL descla_local_dims( ir_new, nr_new, nb, descb%nx, npr, ipr-1 ) ! irx_new = ir_new + nr_new - 1 ! DO ipr_old = 1, npr ! CALL descla_local_dims( ir_old, nr_old, na, desca%nx, npr, ipr_old-1 ) ! irx_old = ir_old + nr_old - 1 ! IF( ir_old >= ir_new .AND. ir_old <= irx_new ) THEN ! nrsnd( ipr_old ) = MIN( nr_old, irx_new - ir_old + 1 ) irb = 1 ire = nrsnd( ipr_old ) irb_new( ipr_old ) = ir_old - ir_new + 1 ire_new( ipr_old ) = irb_new( ipr_old ) + nrsnd( ipr_old ) - 1 ! ELSE IF( ir_new >= ir_old .AND. ir_new <= irx_old ) THEN ! nrsnd( ipr_old ) = irx_old - ir_new + 1 irb = ir_new - ir_old + 1 ire = nr_old irb_new( ipr_old ) = 1 ire_new( ipr_old ) = nrsnd( ipr_old ) ! ELSE nrsnd( ipr_old ) = 0 irb = 0 ire = 0 irb_new( ipr_old ) = 0 ire_new( ipr_old ) = 0 END IF ! IF( ( myrow == ipr_old - 1 ) .AND. ( nrsnd( ipr_old ) > 0 ) ) THEN IF( myrow /= ipr - 1 ) THEN ib = 0 DO j = 1, desca%nc DO i = irb, ire ib = ib + 1 buf( ib ) = a( i, j ) END DO END DO CALL mpi_isend( buf, ib, MPI_DOUBLE_COMPLEX, ipr-1, ipr, col_comm, sreq, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in mpi_isend 1 ", ABS( ierr ) ) ELSE DO j = 1, desca%nc ib = irb DO i = irb_new( ipr_old ), ire_new( ipr_old ) ab( i, j ) = a( ib, j ) ib = ib + 1 END DO END DO END IF END IF ! IF( nrsnd( ipr_old ) /= ire - irb + 1 ) & CALL errore( " zsqmred ", " somthing wrong with row 1 ", nrsnd( ipr_old ) ) IF( nrsnd( ipr_old ) /= ire_new( ipr_old ) - irb_new( ipr_old ) + 1 ) & CALL errore( " zsqmred ", " somthing wrong with row 2 ", nrsnd( ipr_old ) ) ! nrsnd( ipr_old ) = nrsnd( ipr_old ) * desca%nc ! END DO ! IF( myrow == ipr - 1 ) THEN DO ipr_old = 1, npr IF( nrsnd( ipr_old ) > 0 ) THEN IF( myrow /= ipr_old - 1 ) THEN CALL mpi_recv( buf, nrsnd(ipr_old), MPI_DOUBLE_COMPLEX, ipr_old-1, ipr, col_comm, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in mpi_recv 1 ", ABS( ierr ) ) CALL MPI_GET_COUNT( istatus, MPI_DOUBLE_COMPLEX, ib, ierr) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_GET_COUNT 1 ", ABS( ierr ) ) IF( ib /= nrsnd(ipr_old) ) & CALL errore( " zsqmred ", " somthing wrong with row 3 ", ib ) ib = 0 DO j = 1, desca%nc DO i = irb_new( ipr_old ), ire_new( ipr_old ) ib = ib + 1 ab( i, j ) = buf( ib ) END DO END DO END IF END IF END DO ELSE DO ipr_old = 1, npr IF( myrow == ipr_old - 1 .AND. nrsnd( ipr_old ) > 0 ) THEN CALL MPI_Wait( sreq, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Wait 1 ", ABS( ierr ) ) END IF END DO END IF ! END DO ! then redistribute cols, row groups work in parallel DO ipc = 1, npc ! CALL descla_local_dims( ic_new, nc_new, nb, descb%nx, npc, ipc-1 ) ! icx_new = ic_new + nc_new - 1 ! DO ipc_old = 1, npc ! CALL descla_local_dims( ic_old, nc_old, na, desca%nx, npc, ipc_old-1 ) ! icx_old = ic_old + nc_old - 1 ! IF( ic_old >= ic_new .AND. ic_old <= icx_new ) THEN ! ncsnd( ipc_old ) = MIN( nc_old, icx_new - ic_old + 1 ) icb = 1 ice = ncsnd( ipc_old ) icb_new( ipc_old ) = ic_old - ic_new + 1 ice_new( ipc_old ) = icb_new( ipc_old ) + ncsnd( ipc_old ) - 1 ! ELSE IF( ic_new >= ic_old .AND. ic_new <= icx_old ) THEN ! ncsnd( ipc_old ) = icx_old - ic_new + 1 icb = ic_new - ic_old + 1 ice = nc_old icb_new( ipc_old ) = 1 ice_new( ipc_old ) = ncsnd( ipc_old ) ! ELSE ncsnd( ipc_old ) = 0 icb = 0 ice = 0 icb_new( ipc_old ) = 0 ice_new( ipc_old ) = 0 END IF ! IF( ( mycol == ipc_old - 1 ) .AND. ( ncsnd( ipc_old ) > 0 ) ) THEN IF( mycol /= ipc - 1 ) THEN ib = 0 DO j = icb, ice DO i = 1, descb%nrcx ib = ib + 1 buf( ib ) = ab( i, j ) END DO END DO CALL mpi_isend( buf, ib, MPI_DOUBLE_COMPLEX, ipc-1, ipc, row_comm, sreq, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in mpi_isend 2 ", ABS( ierr ) ) ELSE ib = icb DO j = icb_new( ipc_old ), ice_new( ipc_old ) DO i = 1, descb%nrcx b( i, j ) = ab( i, ib ) END DO ib = ib + 1 END DO END IF END IF IF( ncsnd( ipc_old ) /= ice-icb+1 ) & CALL errore( " zsqmred ", " somthing wrong with col 1 ", ncsnd( ipc_old ) ) IF( ncsnd( ipc_old ) /= ice_new( ipc_old ) - icb_new( ipc_old ) + 1 ) & CALL errore( " zsqmred ", " somthing wrong with col 2 ", ncsnd( ipc_old ) ) ! ncsnd( ipc_old ) = ncsnd( ipc_old ) * descb%nrcx ! END DO ! IF( mycol == ipc - 1 ) THEN DO ipc_old = 1, npc IF( ncsnd( ipc_old ) > 0 ) THEN IF( mycol /= ipc_old - 1 ) THEN ib = icb_new( ipc_old ) CALL mpi_recv( b( 1, ib ), ncsnd(ipc_old), MPI_DOUBLE_COMPLEX, ipc_old-1, ipc, row_comm, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in mpi_recv 2 ", ABS( ierr ) ) CALL MPI_GET_COUNT( istatus, MPI_DOUBLE_COMPLEX, ib, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_GET_COUNT 2 ", ABS( ierr ) ) IF( ib /= ncsnd(ipc_old) ) & CALL errore( " zsqmred ", " somthing wrong with col 3 ", ib ) END IF END IF END DO ELSE DO ipc_old = 1, npc IF( mycol == ipc_old - 1 .AND. ncsnd( ipc_old ) > 0 ) THEN CALL MPI_Wait( sreq, istatus, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in MPI_Wait 2 ", ABS( ierr ) ) END IF END DO END IF ! END DO DEALLOCATE( ab ) DEALLOCATE( buf ) CALL mpi_comm_free( col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in mpi_comm_free 1 ", ABS( ierr ) ) CALL mpi_comm_free( row_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " zsqmred ", " in mpi_comm_free 2 ", ABS( ierr ) ) #if defined __PIPPO ! this is for debugging, tests through global matrix, if ! the two matrix (pre and before the redistribution) coincide. ALLOCATE( tst1( nb, nb ) ) ALLOCATE( tst2( nb, nb ) ) ALLOCATE( ab( nb, nb ) ) ab = 0.0d0 do j = 1, desca%nc do i = 1, desca%nr ab( i + desca%ir - 1, j + desca%ic - 1 ) = a( i , j ) end do end do CALL MPI_REDUCE( ab, tst1, nb*nb, MPI_DOUBLE_COMPLEX, MPI_SUM, 0, comm, ierr ) ab = 0.0d0 do j = 1, descb%nc do i = 1, descb%nr ab( i + descb%ir - 1, j + descb%ic - 1 ) = b( i , j ) end do end do CALL MPI_REDUCE( ab, tst2, nb*nb, MPI_DOUBLE_COMPLEX, MPI_SUM, 0, comm, ierr ) IF( myid == 0 ) THEN write( 4000, * ) na, nb, SUM( ABS( tst2 - tst1 ) ) END IF DEALLOCATE( ab ) DEALLOCATE( tst2 ) DEALLOCATE( tst1 ) #endif #endif RETURN END SUBROUTINE zsqmred ! --------------------------------------------------------------------------------- SUBROUTINE rep_matmul_drv( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC, comm ) ! ! Parallel matrix multiplication with replicated matrix ! written by Carlo Cavazzoni ! implicit none ! CHARACTER(LEN=1), INTENT(IN) :: transa, transb INTEGER, INTENT(IN) :: m, n, k REAL(DP), INTENT(IN) :: alpha, beta INTEGER, INTENT(IN) :: lda, ldb, ldc REAL(DP) :: a(lda,*), b(ldb,*), c(ldc,*) INTEGER, INTENT(IN) :: comm ! ! DGEMM PERFORMS ONE OF THE MATRIX-MATRIX OPERATIONS ! ! C := ALPHA*OP( A )*OP( B ) + BETA*C, ! ! WHERE OP( X ) IS ONE OF ! ! OP( X ) = X OR OP( X ) = X', ! ! ALPHA AND BETA ARE SCALARS, AND A, B AND C ARE MATRICES, WITH OP( A ) ! AN M BY K MATRIX, OP( B ) A K BY N MATRIX AND C AN M BY N MATRIX. ! ! ! #if defined __MPI ! INTEGER :: ME, I, II, J, JJ, IP, SOUR, DEST, INFO, IERR, ioff, ldx INTEGER :: NB, IB_S, NB_SOUR, IB_SOUR, IBUF INTEGER :: nproc, mpime, q, r REAL(DP), ALLOCATABLE :: auxa( : ) REAL(DP), ALLOCATABLE :: auxc( : ) ! ! ... BODY ! CALL MPI_COMM_SIZE(comm, NPROC, IERR) CALL MPI_COMM_RANK(comm, MPIME, IERR) IF ( NPROC == 1 ) THEN ! if there is only one proc no need of using parallel alg. CALL dgemm(TRANSA, TRANSB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc) RETURN END IF ME = MPIME + 1 Q = INT( m / NPROC ) R = MOD( m , NPROC ) ! ... Find out the number of elements in the local block ! along "M" first dimension os matrix A NB = Q IF( ME <= R ) NB = NB + 1 ! ... Find out the global index of the local first row IF( ME <= R ) THEN ib_s = (Q+1)*(ME-1) + 1 ELSE ib_s = Q*(ME-1) + R + 1 END IF ldx = m / nproc + 1 ALLOCATE( auxa( MAX( n, k ) * ldx ) ) ALLOCATE( auxc( MAX( n, m ) * ldx ) ) IF( TRANSA == 'N' .OR. TRANSA == 'n' ) THEN ibuf = 0 ioff = ib_s - 1 DO J = 1, k DO I = 1, NB auxa( ibuf + I ) = A( I + ioff, J ) END DO ibuf = ibuf + ldx END DO ELSE ibuf = 0 ioff = ib_s - 1 DO J = 1, k DO I = 1, NB auxa( ibuf + I ) = A( J, I + ioff ) END DO ibuf = ibuf + ldx END DO !ioff = ib_s - 1 !call mytranspose( A( 1, ioff + 1 ), lda, auxa(1), ldx, m, nb) END IF IF( beta /= 0.0_DP ) THEN ibuf = 0 ioff = ib_s - 1 DO J = 1, n DO I = 1, NB auxc( ibuf + I ) = C( I + ioff, J ) END DO ibuf = ibuf + ldx END DO END IF CALL dgemm( 'N', transb, nb, n, k, alpha, auxa(1), ldx, B, ldb, beta, auxc(1), ldx ) ! ... Here processors exchange blocks DO IP = 0, NPROC-1 ! ... Find out the number of elements in the block of processor SOUR NB_SOUR = q IF( (IP+1) .LE. r ) NB_SOUR = NB_SOUR+1 ! ... Find out the global index of the first row owned by SOUR IF( (IP+1) .LE. r ) THEN ib_sour = (Q+1)*IP + 1 ELSE ib_sour = Q*IP + R + 1 END IF IF( mpime == ip ) auxa(1:n*ldx) = auxc(1:n*ldx) CALL MPI_BCAST( auxa(1), ldx*n, mpi_double_precision, ip, comm, IERR) IF( ierr /= 0 ) & CALL errore( " rep_matmul_drv ", " in MPI_BCAST ", ABS( ierr ) ) IBUF = 0 ioff = IB_SOUR - 1 DO J = 1, N DO I = 1, NB_SOUR C( I + ioff, J ) = AUXA( IBUF + I ) END DO IBUF = IBUF + ldx END DO END DO DEALLOCATE( auxa, auxc ) #else ! if we are not compiling with __MPI this is equivalent to a blas call CALL dgemm(TRANSA, TRANSB, m, N, k, alpha, A, lda, B, ldb, beta, C, ldc) #endif RETURN END SUBROUTINE rep_matmul_drv SUBROUTINE zrep_matmul_drv( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC, comm ) ! ! Parallel matrix multiplication with replicated matrix ! written by Carlo Cavazzoni ! implicit none ! CHARACTER(LEN=1), INTENT(IN) :: transa, transb INTEGER, INTENT(IN) :: m, n, k COMPLEX(DP), INTENT(IN) :: alpha, beta INTEGER, INTENT(IN) :: lda, ldb, ldc COMPLEX(DP) :: a(lda,*), b(ldb,*), c(ldc,*) INTEGER, INTENT(IN) :: comm ! ! DGEMM PERFORMS ONE OF THE MATRIX-MATRIX OPERATIONS ! ! C := ALPHA*OP( A )*OP( B ) + BETA*C, ! ! WHERE OP( X ) IS ONE OF ! ! OP( X ) = X OR OP( X ) = X', ! ! ALPHA AND BETA ARE SCALARS, AND A, B AND C ARE MATRICES, WITH OP( A ) ! AN M BY K MATRIX, OP( B ) A K BY N MATRIX AND C AN M BY N MATRIX. ! ! ! #if defined __MPI ! INTEGER :: ME, I, II, J, JJ, IP, SOUR, DEST, INFO, IERR, ioff, ldx INTEGER :: NB, IB_S, NB_SOUR, IB_SOUR, IBUF INTEGER :: nproc, mpime, q, r COMPLEX(DP), ALLOCATABLE :: auxa( : ) COMPLEX(DP), ALLOCATABLE :: auxc( : ) ! ! ... BODY ! CALL MPI_COMM_SIZE(comm, NPROC, IERR) CALL MPI_COMM_RANK(comm, MPIME, IERR) IF ( NPROC == 1 ) THEN ! if there is only one proc no need of using parallel alg. CALL zgemm(TRANSA, TRANSB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc) RETURN END IF ME = MPIME + 1 Q = INT( m / NPROC ) R = MOD( m , NPROC ) ! ... Find out the number of elements in the local block ! along "M" first dimension os matrix A NB = Q IF( ME <= R ) NB = NB + 1 ! ... Find out the global index of the local first row IF( ME <= R ) THEN ib_s = (Q+1)*(ME-1) + 1 ELSE ib_s = Q*(ME-1) + R + 1 END IF ldx = m / nproc + 1 ALLOCATE( auxa( MAX( n, k ) * ldx ) ) ALLOCATE( auxc( MAX( n, m ) * ldx ) ) IF( TRANSA == 'N' .OR. TRANSA == 'n' ) THEN ibuf = 0 ioff = ib_s - 1 DO J = 1, k DO I = 1, NB auxa( ibuf + I ) = A( I + ioff, J ) END DO ibuf = ibuf + ldx END DO ELSE ibuf = 0 ioff = ib_s - 1 DO J = 1, k DO I = 1, NB auxa( ibuf + I ) = CONJG( A( J, I + ioff ) ) END DO ibuf = ibuf + ldx END DO !ioff = ib_s - 1 !call mytranspose( A( 1, ioff + 1 ), lda, auxa(1), ldx, m, nb) END IF IF( beta /= 0.0_DP ) THEN ibuf = 0 ioff = ib_s - 1 DO J = 1, n DO I = 1, NB auxc( ibuf + I ) = C( I + ioff, J ) END DO ibuf = ibuf + ldx END DO END IF CALL zgemm( 'N', transb, nb, n, k, alpha, auxa(1), ldx, B, ldb, beta, auxc(1), ldx ) ! ... Here processors exchange blocks DO IP = 0, NPROC-1 ! ... Find out the number of elements in the block of processor SOUR NB_SOUR = q IF( (IP+1) .LE. r ) NB_SOUR = NB_SOUR+1 ! ... Find out the global index of the first row owned by SOUR IF( (IP+1) .LE. r ) THEN ib_sour = (Q+1)*IP + 1 ELSE ib_sour = Q*IP + R + 1 END IF IF( mpime == ip ) auxa(1:n*ldx) = auxc(1:n*ldx) CALL MPI_BCAST( auxa(1), ldx*n, mpi_double_complex, ip, comm, IERR) IF( ierr /= 0 ) & CALL errore( " zrep_matmul_drv ", " in MPI_BCAST ", ABS( ierr ) ) IBUF = 0 ioff = IB_SOUR - 1 DO J = 1, N DO I = 1, NB_SOUR C( I + ioff, J ) = AUXA( IBUF + I ) END DO IBUF = IBUF + ldx END DO END DO DEALLOCATE( auxa, auxc ) #else ! if we are not compiling with __MPI this is equivalent to a blas call CALL zgemm(TRANSA, TRANSB, m, N, k, alpha, A, lda, B, ldb, beta, C, ldc) #endif RETURN END SUBROUTINE zrep_matmul_drv !==----------------------------------------------==! END MODULE parallel_toolkit !==----------------------------------------------==! ! ! !=----------------------------------------------------------------------------=! ! ! ! Cannon's algorithms for parallel matrix multiplication ! written by Carlo Cavazzoni ! ! ! SUBROUTINE sqr_mm_cannon( transa, transb, n, alpha, a, lda, b, ldb, beta, c, ldc, desc ) ! ! Parallel square matrix multiplication with Cannon's algorithm ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: transa, transb INTEGER, INTENT(IN) :: n REAL(DP), INTENT(IN) :: alpha, beta INTEGER, INTENT(IN) :: lda, ldb, ldc REAL(DP) :: a(lda,*), b(ldb,*), c(ldc,*) TYPE(la_descriptor), INTENT(IN) :: desc ! ! performs one of the matrix-matrix operations ! ! C := ALPHA*OP( A )*OP( B ) + BETA*C, ! ! where op( x ) is one of ! ! OP( X ) = X OR OP( X ) = X', ! ! alpha and beta are scalars, and a, b and c are square matrices ! #if defined (__MPI) ! include 'mpif.h' ! #endif ! integer :: ierr integer :: np integer :: i, j, nr, nc, nb, iter, rowid, colid logical :: ta, tb INTEGER :: comm ! ! real(DP), allocatable :: bblk(:,:), ablk(:,:) ! #if defined (__MPI) ! integer :: istatus( MPI_STATUS_SIZE ) ! #endif ! IF( desc%active_node < 0 ) THEN ! ! processors not interested in this computation return quickly ! RETURN ! END IF IF( n < 1 ) THEN RETURN END IF IF( desc%npr == 1 ) THEN ! ! quick return if only one processor is used ! CALL dgemm( TRANSA, TRANSB, n, n, n, alpha, a, lda, b, ldb, beta, c, ldc) ! RETURN ! END IF IF( desc%npr /= desc%npc ) & CALL errore( ' sqr_mm_cannon ', ' works only with square processor mesh ', 1 ) ! ! Retrieve communicator and mesh geometry ! np = desc%npr comm = desc%comm rowid = desc%myr colid = desc%myc ! ! Retrieve the size of the local block ! nr = desc%nr nc = desc%nc nb = desc%nrcx ! #if defined (__MPI) CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) & CALL errore( " sqr_mm_cannon ", " in MPI_BARRIER ", ABS( ierr ) ) #endif ! allocate( ablk( nb, nb ) ) DO j = 1, nc DO i = 1, nr ablk( i, j ) = a( i, j ) END DO END DO ! ! Clear memory outside the matrix block ! DO j = nc+1, nb DO i = 1, nb ablk( i, j ) = 0.0_DP END DO END DO DO j = 1, nb DO i = nr+1, nb ablk( i, j ) = 0.0_DP END DO END DO ! ! allocate( bblk( nb, nb ) ) DO j = 1, nc DO i = 1, nr bblk( i, j ) = b( i, j ) END DO END DO ! ! Clear memory outside the matrix block ! DO j = nc+1, nb DO i = 1, nb bblk( i, j ) = 0.0_DP END DO END DO DO j = 1, nb DO i = nr+1, nb bblk( i, j ) = 0.0_DP END DO END DO ! ! ta = ( TRANSA == 'T' .OR. TRANSA == 't' ) tb = ( TRANSB == 'T' .OR. TRANSB == 't' ) ! ! Shift A rowid+1 places to the west ! IF( ta ) THEN CALL shift_exch_block( ablk, 'W', 1 ) ELSE CALL shift_block( ablk, 'W', rowid+1, 1 ) END IF ! ! Shift B colid+1 places to the north ! IF( tb ) THEN CALL shift_exch_block( bblk, 'N', np+1 ) ELSE CALL shift_block( bblk, 'N', colid+1, np+1 ) END IF ! ! Accumulate on C ! CALL dgemm( TRANSA, TRANSB, nr, nc, nb, alpha, ablk, nb, bblk, nb, beta, c, ldc) ! DO iter = 2, np ! ! Shift A 1 places to the east ! CALL shift_block( ablk, 'E', 1, iter ) ! ! Shift B 1 places to the south ! CALL shift_block( bblk, 'S', 1, np+iter ) ! ! Accumulate on C ! CALL dgemm( TRANSA, TRANSB, nr, nc, nb, alpha, ablk, nb, bblk, nb, 1.0_DP, c, ldc) ! END DO deallocate( ablk, bblk ) RETURN CONTAINS SUBROUTINE shift_block( blk, dir, ln, tag ) ! ! Block shift ! IMPLICIT NONE REAL(DP) :: blk( :, : ) CHARACTER(LEN=1), INTENT(IN) :: dir ! shift direction INTEGER, INTENT(IN) :: ln ! shift length INTEGER, INTENT(IN) :: tag ! communication tag ! INTEGER :: icdst, irdst, icsrc, irsrc, idest, isour ! IF( dir == 'W' ) THEN ! irdst = rowid irsrc = rowid icdst = MOD( colid - ln + np, np ) icsrc = MOD( colid + ln + np, np ) ! ELSE IF( dir == 'E' ) THEN ! irdst = rowid irsrc = rowid icdst = MOD( colid + ln + np, np ) icsrc = MOD( colid - ln + np, np ) ! ELSE IF( dir == 'N' ) THEN irdst = MOD( rowid - ln + np, np ) irsrc = MOD( rowid + ln + np, np ) icdst = colid icsrc = colid ELSE IF( dir == 'S' ) THEN irdst = MOD( rowid + ln + np, np ) irsrc = MOD( rowid - ln + np, np ) icdst = colid icsrc = colid ELSE CALL errore( ' sqr_mm_cannon ', ' unknown shift direction ', 1 ) END IF ! CALL GRID2D_RANK( 'R', np, np, irdst, icdst, idest ) CALL GRID2D_RANK( 'R', np, np, irsrc, icsrc, isour ) ! #if defined (__MPI) ! CALL MPI_SENDRECV_REPLACE(blk, nb*nb, MPI_DOUBLE_PRECISION, & idest, tag, isour, tag, comm, istatus, ierr) IF( ierr /= 0 ) & CALL errore( " sqr_mm_cannon ", " in MPI_SENDRECV_REPLACE ", ABS( ierr ) ) ! #endif RETURN END SUBROUTINE shift_block SUBROUTINE shift_exch_block( blk, dir, tag ) ! ! Combined block shift and exchange ! only used for the first step ! IMPLICIT NONE REAL(DP) :: blk( :, : ) CHARACTER(LEN=1), INTENT(IN) :: dir INTEGER, INTENT(IN) :: tag ! INTEGER :: icdst, irdst, icsrc, irsrc, idest, isour INTEGER :: icol, irow ! IF( dir == 'W' ) THEN ! icol = rowid irow = colid ! irdst = irow icdst = MOD( icol - irow-1 + np, np ) ! irow = rowid icol = MOD( colid + rowid+1 + np, np ) ! irsrc = icol icsrc = irow ! ELSE IF( dir == 'N' ) THEN ! icol = rowid irow = colid ! icdst = icol irdst = MOD( irow - icol-1 + np, np ) ! irow = MOD( rowid + colid+1 + np, np ) icol = colid ! irsrc = icol icsrc = irow ELSE CALL errore( ' sqr_mm_cannon ', ' unknown shift_exch direction ', 1 ) END IF ! CALL GRID2D_RANK( 'R', np, np, irdst, icdst, idest ) CALL GRID2D_RANK( 'R', np, np, irsrc, icsrc, isour ) ! #if defined (__MPI) ! CALL MPI_SENDRECV_REPLACE(blk, nb*nb, MPI_DOUBLE_PRECISION, & idest, tag, isour, tag, comm, istatus, ierr) IF( ierr /= 0 ) & CALL errore( " sqr_mm_cannon ", " in MPI_SENDRECV_REPLACE 2 ", ABS( ierr ) ) ! #endif RETURN END SUBROUTINE shift_exch_block END SUBROUTINE sqr_mm_cannon !=----------------------------------------------------------------------------=! SUBROUTINE sqr_zmm_cannon( transa, transb, n, alpha, a, lda, b, ldb, beta, c, ldc, desc ) ! ! Parallel square matrix multiplication with Cannon's algorithm ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: transa, transb INTEGER, INTENT(IN) :: n COMPLEX(DP), INTENT(IN) :: alpha, beta INTEGER, INTENT(IN) :: lda, ldb, ldc COMPLEX(DP) :: a(lda,*), b(ldb,*), c(ldc,*) TYPE(la_descriptor), INTENT(IN) :: desc ! ! performs one of the matrix-matrix operations ! ! C := ALPHA*OP( A )*OP( B ) + BETA*C, ! ! where op( x ) is one of ! ! OP( X ) = X OR OP( X ) = X', ! ! alpha and beta are scalars, and a, b and c are square matrices ! #if defined (__MPI) ! include 'mpif.h' ! #endif ! INTEGER :: ierr INTEGER :: np INTEGER :: i, j, nr, nc, nb, iter, rowid, colid LOGICAL :: ta, tb INTEGER :: comm ! ! COMPLEX(DP), ALLOCATABLE :: bblk(:,:), ablk(:,:) COMPLEX(DP) :: zone = ( 1.0_DP, 0.0_DP ) COMPLEX(DP) :: zzero = ( 0.0_DP, 0.0_DP ) ! #if defined (__MPI) ! integer :: istatus( MPI_STATUS_SIZE ) ! #endif ! IF( desc%active_node < 0 ) THEN ! ! processors not interested in this computation return quickly ! RETURN ! END IF IF( n < 1 ) THEN RETURN END IF IF( desc%npr == 1 ) THEN ! ! quick return if only one processor is used ! CALL zgemm( TRANSA, TRANSB, n, n, n, alpha, a, lda, b, ldb, beta, c, ldc) ! RETURN ! END IF IF( desc%npr /= desc%npc ) & CALL errore( ' sqr_zmm_cannon ', ' works only with square processor mesh ', 1 ) ! ! Retrieve communicator and mesh geometry ! np = desc%npr comm = desc%comm rowid = desc%myr colid = desc%myc ! ! Retrieve the size of the local block ! nr = desc%nr nc = desc%nc nb = desc%nrcx ! #if defined (__MPI) CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) & CALL errore( " sqr_zmm_cannon ", " in MPI_BARRIER ", ABS( ierr ) ) #endif ! allocate( ablk( nb, nb ) ) DO j = 1, nc DO i = 1, nr ablk( i, j ) = a( i, j ) END DO END DO ! ! Clear memory outside the matrix block ! DO j = nc+1, nb DO i = 1, nb ablk( i, j ) = zzero END DO END DO DO j = 1, nb DO i = nr+1, nb ablk( i, j ) = zzero END DO END DO ! ! allocate( bblk( nb, nb ) ) DO j = 1, nc DO i = 1, nr bblk( i, j ) = b( i, j ) END DO END DO ! ! Clear memory outside the matrix block ! DO j = nc+1, nb DO i = 1, nb bblk( i, j ) = zzero END DO END DO DO j = 1, nb DO i = nr+1, nb bblk( i, j ) = zzero END DO END DO ! ! ta = ( TRANSA == 'C' .OR. TRANSA == 'c' ) tb = ( TRANSB == 'C' .OR. TRANSB == 'c' ) ! ! Shift A rowid+1 places to the west ! IF( ta ) THEN CALL shift_exch_block( ablk, 'W', 1 ) ELSE CALL shift_block( ablk, 'W', rowid+1, 1 ) END IF ! ! Shift B colid+1 places to the north ! IF( tb ) THEN CALL shift_exch_block( bblk, 'N', np+1 ) ELSE CALL shift_block( bblk, 'N', colid+1, np+1 ) END IF ! ! Accumulate on C ! CALL zgemm( TRANSA, TRANSB, nr, nc, nb, alpha, ablk, nb, bblk, nb, beta, c, ldc) ! DO iter = 2, np ! ! Shift A 1 places to the east ! CALL shift_block( ablk, 'E', 1, iter ) ! ! Shift B 1 places to the south ! CALL shift_block( bblk, 'S', 1, np+iter ) ! ! Accumulate on C ! CALL zgemm( TRANSA, TRANSB, nr, nc, nb, alpha, ablk, nb, bblk, nb, zone, c, ldc) ! END DO deallocate( ablk, bblk ) RETURN CONTAINS SUBROUTINE shift_block( blk, dir, ln, tag ) ! ! Block shift ! IMPLICIT NONE COMPLEX(DP) :: blk( :, : ) CHARACTER(LEN=1), INTENT(IN) :: dir ! shift direction INTEGER, INTENT(IN) :: ln ! shift length INTEGER, INTENT(IN) :: tag ! communication tag ! INTEGER :: icdst, irdst, icsrc, irsrc, idest, isour ! IF( dir == 'W' ) THEN ! irdst = rowid irsrc = rowid icdst = MOD( colid - ln + np, np ) icsrc = MOD( colid + ln + np, np ) ! ELSE IF( dir == 'E' ) THEN ! irdst = rowid irsrc = rowid icdst = MOD( colid + ln + np, np ) icsrc = MOD( colid - ln + np, np ) ! ELSE IF( dir == 'N' ) THEN irdst = MOD( rowid - ln + np, np ) irsrc = MOD( rowid + ln + np, np ) icdst = colid icsrc = colid ELSE IF( dir == 'S' ) THEN irdst = MOD( rowid + ln + np, np ) irsrc = MOD( rowid - ln + np, np ) icdst = colid icsrc = colid ELSE CALL errore( ' sqr_zmm_cannon ', ' unknown shift direction ', 1 ) END IF ! CALL GRID2D_RANK( 'R', np, np, irdst, icdst, idest ) CALL GRID2D_RANK( 'R', np, np, irsrc, icsrc, isour ) ! #if defined (__MPI) ! CALL MPI_SENDRECV_REPLACE(blk, nb*nb, MPI_DOUBLE_COMPLEX, & idest, tag, isour, tag, comm, istatus, ierr) IF( ierr /= 0 ) & CALL errore( " sqr_zmm_cannon ", " in MPI_SENDRECV_REPLACE 1 ", ABS( ierr ) ) ! #endif RETURN END SUBROUTINE shift_block ! SUBROUTINE shift_exch_block( blk, dir, tag ) ! ! Combined block shift and exchange ! only used for the first step ! IMPLICIT NONE COMPLEX(DP) :: blk( :, : ) CHARACTER(LEN=1), INTENT(IN) :: dir INTEGER, INTENT(IN) :: tag ! INTEGER :: icdst, irdst, icsrc, irsrc, idest, isour INTEGER :: icol, irow ! IF( dir == 'W' ) THEN ! icol = rowid irow = colid ! irdst = irow icdst = MOD( icol - irow-1 + np, np ) ! irow = rowid icol = MOD( colid + rowid+1 + np, np ) ! irsrc = icol icsrc = irow ! ELSE IF( dir == 'N' ) THEN ! icol = rowid irow = colid ! icdst = icol irdst = MOD( irow - icol-1 + np, np ) ! irow = MOD( rowid + colid+1 + np, np ) icol = colid ! irsrc = icol icsrc = irow ELSE CALL errore( ' sqr_zmm_cannon ', ' unknown shift_exch direction ', 1 ) END IF ! CALL GRID2D_RANK( 'R', np, np, irdst, icdst, idest ) CALL GRID2D_RANK( 'R', np, np, irsrc, icsrc, isour ) ! #if defined (__MPI) ! CALL MPI_SENDRECV_REPLACE(blk, nb*nb, MPI_DOUBLE_COMPLEX, & idest, tag, isour, tag, comm, istatus, ierr) IF( ierr /= 0 ) & CALL errore( " sqr_zmm_cannon ", " in MPI_SENDRECV_REPLACE 2 ", ABS( ierr ) ) ! #endif RETURN END SUBROUTINE shift_exch_block END SUBROUTINE sqr_zmm_cannon ! ! ! ! SUBROUTINE sqr_tr_cannon( n, a, lda, b, ldb, desc ) ! ! Parallel square matrix transposition with Cannon's algorithm ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda, ldb REAL(DP) :: a(lda,*), b(ldb,*) TYPE(la_descriptor), INTENT(IN) :: desc ! #if defined (__MPI) ! INCLUDE 'mpif.h' ! #endif ! INTEGER :: ierr INTEGER :: np, rowid, colid INTEGER :: i, j, nr, nc, nb INTEGER :: comm ! REAL(DP), ALLOCATABLE :: ablk(:,:) ! #if defined (__MPI) ! INTEGER :: istatus( MPI_STATUS_SIZE ) ! #endif ! IF( desc%active_node < 0 ) THEN RETURN END IF IF( n < 1 ) THEN RETURN END IF IF( desc%npr == 1 ) THEN CALL mytranspose( a, lda, b, ldb, n, n ) RETURN END IF IF( desc%npr /= desc%npc ) & CALL errore( ' sqr_tr_cannon ', ' works only with square processor mesh ', 1 ) IF( n /= desc%n ) & CALL errore( ' sqr_tr_cannon ', ' inconsistent size n ', 1 ) IF( lda /= desc%nrcx ) & CALL errore( ' sqr_tr_cannon ', ' inconsistent size lda ', 1 ) IF( ldb /= desc%nrcx ) & CALL errore( ' sqr_tr_cannon ', ' inconsistent size ldb ', 1 ) comm = desc%comm rowid = desc%myr colid = desc%myc np = desc%npr ! ! Compute the size of the local block ! nr = desc%nr nc = desc%nc nb = desc%nrcx ! allocate( ablk( nb, nb ) ) DO j = 1, nc DO i = 1, nr ablk( i, j ) = a( i, j ) END DO END DO DO j = nc+1, nb DO i = 1, nb ablk( i, j ) = 0.0_DP END DO END DO DO j = 1, nb DO i = nr+1, nb ablk( i, j ) = 0.0_DP END DO END DO ! CALL exchange_block( ablk ) ! #if defined (__MPI) CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) & CALL errore( " sqr_tr_cannon ", " in MPI_BARRIER ", ABS( ierr ) ) #endif ! DO j = 1, nr DO i = 1, nc b( j, i ) = ablk( i, j ) END DO END DO ! deallocate( ablk ) RETURN CONTAINS SUBROUTINE exchange_block( blk ) ! ! Block exchange ( transpose ) ! IMPLICIT NONE REAL(DP) :: blk( :, : ) ! INTEGER :: icdst, irdst, icsrc, irsrc, idest, isour ! irdst = colid icdst = rowid irsrc = colid icsrc = rowid ! CALL GRID2D_RANK( 'R', np, np, irdst, icdst, idest ) CALL GRID2D_RANK( 'R', np, np, irsrc, icsrc, isour ) ! #if defined (__MPI) ! CALL MPI_SENDRECV_REPLACE(blk, nb*nb, MPI_DOUBLE_PRECISION, & idest, np+np+1, isour, np+np+1, comm, istatus, ierr) IF( ierr /= 0 ) & CALL errore( " sqr_tr_cannon ", " in MPI_SENDRECV_REPLACE ", ABS( ierr ) ) ! #endif RETURN END SUBROUTINE END SUBROUTINE ! SUBROUTINE redist_row2col( n, a, b, ldx, nx, desc ) ! ! redistribute a, array whose second dimension is distributed over processor row, ! to obtain b, with the second dim. distributed over processor clolumn ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: ldx, nx REAL(DP) :: a(ldx,nx), b(ldx,nx) TYPE(la_descriptor), INTENT(IN) :: desc ! #if defined (__MPI) ! INCLUDE 'mpif.h' ! #endif ! INTEGER :: ierr INTEGER :: np, rowid, colid INTEGER :: comm INTEGER :: icdst, irdst, icsrc, irsrc, idest, isour ! #if defined (__MPI) ! INTEGER :: istatus( MPI_STATUS_SIZE ) ! #endif ! IF( desc%active_node < 0 ) THEN RETURN END IF IF( n < 1 ) THEN RETURN END IF IF( desc%npr == 1 ) THEN b = a RETURN END IF IF( desc%npr /= desc%npc ) & CALL errore( ' redist_row2col ', ' works only with square processor mesh ', 1 ) IF( n /= desc%n ) & CALL errore( ' redist_row2col ', ' inconsistent size n ', 1 ) IF( nx /= desc%nrcx ) & CALL errore( ' redist_row2col ', ' inconsistent size lda ', 1 ) comm = desc%comm rowid = desc%myr colid = desc%myc np = desc%npr ! irdst = colid icdst = rowid irsrc = colid icsrc = rowid ! CALL GRID2D_RANK( 'R', np, np, irdst, icdst, idest ) CALL GRID2D_RANK( 'R', np, np, irsrc, icsrc, isour ) ! #if defined (__MPI) ! CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) & CALL errore( " redist_row2col ", " in MPI_BARRIER ", ABS( ierr ) ) ! CALL MPI_SENDRECV(a, ldx*nx, MPI_DOUBLE_PRECISION, idest, np+np+1, & b, ldx*nx, MPI_DOUBLE_PRECISION, isour, np+np+1, comm, istatus, ierr) IF( ierr /= 0 ) & CALL errore( " redist_row2col ", " in MPI_SENDRECV ", ABS( ierr ) ) ! #else b = a #endif ! RETURN END SUBROUTINE redist_row2col ! ! ! SUBROUTINE cyc2blk_redist( n, a, lda, nca, b, ldb, ncb, desc ) ! ! Parallel square matrix redistribution. ! A (input) is cyclically distributed by rows across processors ! B (output) is distributed by block across 2D processors grid ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda, nca, ldb, ncb REAL(DP) :: a( lda, nca ), b( ldb, ncb ) TYPE(la_descriptor), INTENT(IN) :: desc ! #if defined (__MPI) ! include 'mpif.h' ! #endif ! integer :: ierr, itag integer :: np, ip, me, nproc, comm_a integer :: ip_ir, ip_ic, ip_nr, ip_nc, il, nbuf, ip_irl integer :: i, ii, j, jj, nr, nc, nb, nrl, irl, ir, ic INTEGER :: me_ortho(2), np_ortho(2) ! real(DP), allocatable :: rcvbuf(:,:,:) real(DP), allocatable :: sndbuf(:,:) TYPE(la_descriptor) :: ip_desc ! character(len=256) :: msg ! #if defined (__MPI) IF( desc%active_node < 0 ) THEN RETURN END IF np = desc%npr ! dimension of the processor mesh nb = desc%nrcx ! leading dimension of the local matrix block me = desc%mype ! my processor id (starting from 0) comm_a = desc%comm nproc = desc%npr * desc%npc IF( np /= desc%npc ) & CALL errore( ' cyc2blk_redist ', ' works only with square processor mesh ', 1 ) IF( n < 1 ) & CALL errore( ' cyc2blk_redist ', ' incorrect first argument (n <= 0)', 1 ) IF( desc%n < nproc ) & CALL errore( ' cyc2blk_redist ', ' number of bands < number of proc ', 1 ) nbuf = (nb/nproc+2) * nb ! ALLOCATE( sndbuf( nb/nproc+2, nb ) ) ALLOCATE( rcvbuf( nb/nproc+2, nb, nproc ) ) ! ! loop over all processors ! DO ip = 0, nproc - 1 ! ! 2D proc ortho grid sizes ! np_ortho(1) = desc%npr np_ortho(2) = desc%npc ! ! compute other processor coordinates me_ortho ! CALL GRID2D_COORDS( 'R', ip, np_ortho(1), np_ortho(2), me_ortho(1), me_ortho(2) ) ! ! initialize other processor descriptor ! CALL descla_init( ip_desc, desc%n, desc%nx, np_ortho, me_ortho, desc%comm, 1 ) IF( ip_desc%nrcx /= nb ) & CALL errore( ' cyc2blk_redist ', ' inconsistent block dim nb ', 1 ) ! IF( ip_desc%active_node > 0 ) THEN ip_nr = ip_desc%nr ip_nc = ip_desc%nc ip_ir = ip_desc%ir ip_ic = ip_desc%ic ! DO j = 1, ip_nc jj = j + ip_ic - 1 il = 1 DO i = 1, ip_nr ii = i + ip_ir - 1 IF( MOD( ii - 1, nproc ) == me ) THEN CALL check_sndbuf_index() sndbuf( il, j ) = a( ( ii - 1 )/nproc + 1, jj ) il = il + 1 END IF END DO END DO END IF CALL mpi_barrier( comm_a, ierr ) CALL mpi_gather( sndbuf, nbuf, mpi_double_precision, & rcvbuf, nbuf, mpi_double_precision, ip, comm_a, ierr ) IF( ierr /= 0 ) & CALL errore( " cyc2blk_redist ", " in mpi_gather ", ABS( ierr ) ) END DO ! nr = desc%nr nc = desc%nc ir = desc%ir ic = desc%ic ! DO ip = 0, nproc - 1 DO j = 1, nc il = 1 DO i = 1, nr ii = i + ir - 1 IF( MOD( ii - 1, nproc ) == ip ) THEN CALL check_rcvbuf_index() b( i, j ) = rcvbuf( il, j, ip+1 ) il = il + 1 END IF END DO END DO END DO ! DEALLOCATE( rcvbuf ) DEALLOCATE( sndbuf ) #else b( 1:n, 1:n ) = a( 1:n, 1:n ) #endif RETURN CONTAINS SUBROUTINE check_sndbuf_index() CHARACTER(LEN=38), SAVE :: msg = ' check_sndbuf_index in cyc2blk_redist ' IF( j > SIZE(sndbuf,2) ) CALL errore( msg, ' j > SIZE(sndbuf,2) ', ip+1 ) IF( il > SIZE(sndbuf,1) ) CALL errore( msg, ' il > SIZE(sndbuf,1) ', ip+1 ) IF( ( ii - 1 )/nproc + 1 < 1 ) CALL errore( msg, ' ( ii - 1 )/nproc + 1 < 1 ', ip+1 ) IF( ( ii - 1 )/nproc + 1 > lda ) CALL errore( msg, ' ( ii - 1 )/nproc + 1 > SIZE(a,1) ', ip+1 ) IF( jj < 1 ) CALL errore( msg, ' jj < 1 ', ip+1 ) IF( jj > n ) CALL errore( msg, ' jj > n ', ip+1 ) RETURN END SUBROUTINE check_sndbuf_index SUBROUTINE check_rcvbuf_index() CHARACTER(LEN=38), SAVE :: msg = ' check_rcvbuf_index in cyc2blk_redist ' IF( i > ldb ) CALL errore( msg, ' i > ldb ', ip+1 ) IF( j > ldb ) CALL errore( msg, ' j > ldb ', ip+1 ) IF( j > nb ) CALL errore( msg, ' j > nb ', ip+1 ) IF( il > SIZE( rcvbuf, 1 ) ) CALL errore( msg, ' il too large ', ip+1 ) RETURN END SUBROUTINE check_rcvbuf_index END SUBROUTINE cyc2blk_redist SUBROUTINE cyc2blk_zredist( n, a, lda, nca, b, ldb, ncb, desc ) ! ! Parallel square matrix redistribution. ! A (input) is cyclically distributed by rows across processors ! B (output) is distributed by block across 2D processors grid ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda, nca, ldb, ncb COMPLEX(DP) :: a( lda, nca ), b( ldb, ncb ) TYPE(la_descriptor), INTENT(IN) :: desc ! #if defined (__MPI) ! include 'mpif.h' ! #endif ! integer :: ierr, itag integer :: np, ip, me, nproc, comm_a integer :: ip_ir, ip_ic, ip_nr, ip_nc, il, nbuf, ip_irl integer :: i, ii, j, jj, nr, nc, nb, nrl, irl, ir, ic INTEGER :: me_ortho(2), np_ortho(2) ! COMPLEX(DP), allocatable :: rcvbuf(:,:,:) COMPLEX(DP), allocatable :: sndbuf(:,:) TYPE(la_descriptor) :: ip_desc ! character(len=256) :: msg ! #if defined (__MPI) IF( desc%active_node < 0 ) THEN RETURN END IF np = desc%npr ! dimension of the processor mesh nb = desc%nrcx ! leading dimension of the local matrix block me = desc%mype ! my processor id (starting from 0) comm_a = desc%comm nproc = desc%npr * desc%npc IF( np /= desc%npc ) & CALL errore( ' cyc2blk_zredist ', ' works only with square processor mesh ', 1 ) IF( n < 1 ) & CALL errore( ' cyc2blk_zredist ', ' n less or equal zero ', 1 ) IF( desc%n < nproc ) & CALL errore( ' cyc2blk_zredist ', ' nb less than the number of proc ', 1 ) ! nbuf = (nb/nproc+2) * nb ! ALLOCATE( sndbuf( nb/nproc+2, nb ) ) ALLOCATE( rcvbuf( nb/nproc+2, nb, nproc ) ) DO ip = 0, nproc - 1 ! ! 2D proc ortho grid sizes ! np_ortho(1) = desc%npr np_ortho(2) = desc%npc ! ! compute other processor coordinates me_ortho ! CALL GRID2D_COORDS( 'R', ip, np_ortho(1), np_ortho(2), me_ortho(1), me_ortho(2) ) ! ! initialize other processor descriptor ! CALL descla_init( ip_desc, desc%n, desc%nx, np_ortho, me_ortho, desc%comm, 1 ) ip_nr = ip_desc%nr ip_nc = ip_desc%nc ip_ir = ip_desc%ir ip_ic = ip_desc%ic ! DO j = 1, ip_nc jj = j + ip_ic - 1 il = 1 DO i = 1, ip_nr ii = i + ip_ir - 1 IF( MOD( ii - 1, nproc ) == me ) THEN CALL check_sndbuf_index() sndbuf( il, j ) = a( ( ii - 1 )/nproc + 1, jj ) il = il + 1 END IF END DO END DO CALL mpi_barrier( comm_a, ierr ) CALL mpi_gather( sndbuf, nbuf, mpi_double_complex, & rcvbuf, nbuf, mpi_double_complex, ip, comm_a, ierr ) IF( ierr /= 0 ) & CALL errore( " cyc2blk_zredist ", " in mpi_gather ", ABS( ierr ) ) END DO ! nr = desc%nr nc = desc%nc ir = desc%ir ic = desc%ic ! DO ip = 0, nproc - 1 DO j = 1, nc il = 1 DO i = 1, nr ii = i + ir - 1 IF( MOD( ii - 1, nproc ) == ip ) THEN CALL check_rcvbuf_index() b( i, j ) = rcvbuf( il, j, ip+1 ) il = il + 1 END IF END DO END DO END DO ! ! DEALLOCATE( rcvbuf ) DEALLOCATE( sndbuf ) #else b( 1:n, 1:n ) = a( 1:n, 1:n ) #endif RETURN CONTAINS SUBROUTINE check_sndbuf_index() CHARACTER(LEN=40), SAVE :: msg = ' check_sndbuf_index in cyc2blk_zredist ' IF( j > SIZE(sndbuf,2) ) CALL errore( msg, ' j > SIZE(sndbuf,2) ', ip+1 ) IF( il > SIZE(sndbuf,1) ) CALL errore( msg, ' il > SIZE(sndbuf,1) ', ip+1 ) IF( ( ii - 1 )/nproc + 1 < 1 ) CALL errore( msg, ' ( ii - 1 )/nproc + 1 < 1 ', ip+1 ) IF( ( ii - 1 )/nproc + 1 > SIZE(a,1) ) CALL errore( msg, ' ( ii - 1 )/nproc + 1 > SIZE(a,1) ', ip+1 ) IF( jj < 1 ) CALL errore( msg, ' jj < 1 ', ip+1 ) IF( jj > n ) CALL errore( msg, ' jj > n ', ip+1 ) RETURN END SUBROUTINE check_sndbuf_index SUBROUTINE check_rcvbuf_index() CHARACTER(LEN=40), SAVE :: msg = ' check_rcvbuf_index in cyc2blk_zredist ' IF( i > ldb ) CALL errore( msg, ' i > ldb ', ip+1 ) IF( j > ldb ) CALL errore( msg, ' j > ldb ', ip+1 ) IF( j > nb ) CALL errore( msg, ' j > nb ', ip+1 ) IF( il > SIZE( rcvbuf, 1 ) ) CALL errore( msg, ' il too large ', ip+1 ) RETURN END SUBROUTINE check_rcvbuf_index END SUBROUTINE cyc2blk_zredist SUBROUTINE blk2cyc_redist( n, a, lda, nca, b, ldb, ncb, desc ) ! ! Parallel square matrix redistribution. ! A (output) is cyclically distributed by rows across processors ! B (input) is distributed by block across 2D processors grid ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda, nca, ldb, ncb REAL(DP) :: a( lda, nca ), b( ldb, ncb ) TYPE(la_descriptor), INTENT(IN) :: desc ! #if defined (__MPI) ! include 'mpif.h' ! #endif ! integer :: ierr, itag integer :: np, ip, me, comm_a, nproc integer :: ip_ir, ip_ic, ip_nr, ip_nc, il, nbuf, ip_irl integer :: i, ii, j, jj, nr, nc, nb, nrl, irl, ir, ic INTEGER :: me_ortho(2), np_ortho(2) ! REAL(DP), allocatable :: rcvbuf(:,:,:) REAL(DP), allocatable :: sndbuf(:,:) TYPE(la_descriptor) :: ip_desc ! character(len=256) :: msg ! #if defined (__MPI) IF( desc%active_node < 0 ) THEN RETURN END IF np = desc%npr ! dimension of the processor mesh nb = desc%nrcx ! leading dimension of the local matrix block me = desc%mype ! my processor id (starting from 0) comm_a = desc%comm nproc = desc%npr * desc%npc IF( np /= desc%npc ) & CALL errore( ' blk2cyc_redist ', ' works only with square processor mesh ', 1 ) IF( n < 1 ) & CALL errore( ' blk2cyc_redist ', ' n less or equal zero ', 1 ) IF( desc%n < nproc ) & CALL errore( ' blk2cyc_redist ', ' nb less than the number of proc ', 1 ) ! nbuf = (nb/nproc+2) * nb ! ALLOCATE( sndbuf( nb/nproc+2, nb ) ) ALLOCATE( rcvbuf( nb/nproc+2, nb, nproc ) ) ! nr = desc%nr nc = desc%nc ir = desc%ir ic = desc%ic ! DO ip = 0, nproc - 1 DO j = 1, nc il = 1 DO i = 1, nr ii = i + ir - 1 IF( MOD( ii - 1, nproc ) == ip ) THEN sndbuf( il, j ) = b( i, j ) il = il + 1 END IF END DO END DO CALL mpi_barrier( comm_a, ierr ) CALL mpi_gather( sndbuf, nbuf, mpi_double_precision, & rcvbuf, nbuf, mpi_double_precision, ip, comm_a, ierr ) IF( ierr /= 0 ) & CALL errore( " blk2cyc_redist ", " in mpi_gather ", ABS( ierr ) ) END DO ! DO ip = 0, nproc - 1 ! ! 2D proc ortho grid sizes ! np_ortho(1) = desc%npr np_ortho(2) = desc%npc ! ! compute other processor coordinates me_ortho ! CALL GRID2D_COORDS( 'R', ip, np_ortho(1), np_ortho(2), me_ortho(1), me_ortho(2) ) ! ! initialize other processor descriptor ! CALL descla_init( ip_desc, desc%n, desc%nx, np_ortho, me_ortho, desc%comm, 1 ) ! ip_nr = ip_desc%nr ip_nc = ip_desc%nc ip_ir = ip_desc%ir ip_ic = ip_desc%ic ! DO j = 1, ip_nc jj = j + ip_ic - 1 il = 1 DO i = 1, ip_nr ii = i + ip_ir - 1 IF( MOD( ii - 1, nproc ) == me ) THEN a( ( ii - 1 )/nproc + 1, jj ) = rcvbuf( il, j, ip+1 ) il = il + 1 END IF END DO END DO END DO ! DEALLOCATE( rcvbuf ) DEALLOCATE( sndbuf ) #else a( 1:n, 1:n ) = b( 1:n, 1:n ) #endif RETURN END SUBROUTINE blk2cyc_redist SUBROUTINE blk2cyc_zredist( n, a, lda, nca, b, ldb, ncb, desc ) ! ! Parallel square matrix redistribution. ! A (output) is cyclically distributed by rows across processors ! B (input) is distributed by block across 2D processors grid ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: lda, nca, ldb, ncb COMPLEX(DP) :: a( lda, nca ), b( ldb, ncb ) TYPE(la_descriptor), INTENT(IN) :: desc ! #if defined (__MPI) ! include 'mpif.h' ! #endif ! integer :: ierr, itag integer :: np, ip, me, comm_a, nproc integer :: ip_ir, ip_ic, ip_nr, ip_nc, il, nbuf, ip_irl integer :: i, ii, j, jj, nr, nc, nb, nrl, irl, ir, ic INTEGER :: me_ortho(2), np_ortho(2) ! COMPLEX(DP), allocatable :: rcvbuf(:,:,:) COMPLEX(DP), allocatable :: sndbuf(:,:) TYPE(la_descriptor) :: ip_desc ! character(len=256) :: msg ! #if defined (__MPI) IF( desc%active_node < 0 ) THEN RETURN END IF np = desc%npr ! dimension of the processor mesh nb = desc%nrcx ! leading dimension of the local matrix block me = desc%mype ! my processor id (starting from 0) comm_a = desc%comm nproc = desc%npr * desc%npc IF( np /= desc%npc ) & CALL errore( ' blk2cyc_zredist ', ' works only with square processor mesh ', 1 ) IF( n < 1 ) & CALL errore( ' blk2cyc_zredist ', ' n less or equal zero ', 1 ) IF( desc%n < nproc ) & CALL errore( ' blk2cyc_zredist ', ' nb less than the number of proc ', 1 ) ! nbuf = (nb/nproc+2) * nb ! ALLOCATE( sndbuf( nb/nproc+2, nb ) ) ALLOCATE( rcvbuf( nb/nproc+2, nb, nproc ) ) ! nr = desc%nr nc = desc%nc ir = desc%ir ic = desc%ic ! DO ip = 0, nproc - 1 DO j = 1, nc il = 1 DO i = 1, nr ii = i + ir - 1 IF( MOD( ii - 1, nproc ) == ip ) THEN sndbuf( il, j ) = b( i, j ) il = il + 1 END IF END DO END DO CALL mpi_barrier( comm_a, ierr ) CALL mpi_gather( sndbuf, nbuf, mpi_double_complex, & rcvbuf, nbuf, mpi_double_complex, ip, comm_a, ierr ) IF( ierr /= 0 ) & CALL errore( " blk2cyc_zredist ", " in mpi_gather ", ABS( ierr ) ) END DO ! DO ip = 0, nproc - 1 ! ! 2D proc ortho grid sizes ! np_ortho(1) = desc%npr np_ortho(2) = desc%npc ! ! compute other processor coordinates me_ortho ! CALL GRID2D_COORDS( 'R', ip, np_ortho(1), np_ortho(2), me_ortho(1), me_ortho(2) ) ! ! initialize other processor descriptor ! CALL descla_init( ip_desc, desc%n, desc%nx, np_ortho, me_ortho, desc%comm, 1 ) ! ip_nr = ip_desc%nr ip_nc = ip_desc%nc ip_ir = ip_desc%ir ip_ic = ip_desc%ic ! DO j = 1, ip_nc jj = j + ip_ic - 1 il = 1 DO i = 1, ip_nr ii = i + ip_ir - 1 IF( MOD( ii - 1, nproc ) == me ) THEN a( ( ii - 1 )/nproc + 1, jj ) = rcvbuf( il, j, ip+1 ) il = il + 1 END IF END DO END DO END DO ! DEALLOCATE( rcvbuf ) DEALLOCATE( sndbuf ) #else a( 1:n, 1:n ) = b( 1:n, 1:n ) #endif RETURN END SUBROUTINE blk2cyc_zredist ! ! ! ! Double Complex and Double Precision Cholesky Factorization of ! an Hermitan/Symmetric block distributed matrix ! written by Carlo Cavazzoni ! ! SUBROUTINE qe_pzpotrf( sll, ldx, n, desc ) ! use descriptors use parallel_include use kinds ! implicit none ! integer :: n, ldx TYPE(la_descriptor), INTENT(IN) :: desc real(DP) :: one, zero complex(DP) :: sll( ldx, ldx ), cone, czero integer :: myrow, mycol, ierr integer :: jb, info, ib, kb integer :: jnr, jir, jic, jnc integer :: inr, iir, iic, inc integer :: knr, kir, kic, knc integer :: nr, nc integer :: rcomm, ccomm, color, key, myid, np complex(DP), allocatable :: ssnd( :, : ), srcv( :, : ) one = 1.0_DP cone = 1.0_DP zero = 0.0_DP czero = 0.0_DP #if defined __MPI myrow = desc%myr mycol = desc%myc myid = desc%mype np = desc%npr IF( desc%npr /= desc%npc ) THEN CALL errore( ' pzpotrf ', ' only square grid are allowed ', 1 ) END IF IF( ldx /= desc%nrcx ) THEN CALL errore( ' pzpotrf ', ' wrong leading dimension ldx ', ldx ) END IF nr = desc%nr nc = desc%nc ALLOCATE( ssnd( ldx, ldx ) ) ALLOCATE( srcv( ldx, ldx ) ) DO jb = 1, np ! ! Update and factorize the current diagonal block and test ! for non-positive-definiteness. ! CALL descla_local_dims( jir, jnr, n, desc%nx, np, jb-1 ) ! ! since we loop on diagonal blocks/procs we have jnc == jnr ! jnc = jnr ! ! prepare row and colum communicators IF( ( myrow >= ( jb-1 ) ) .AND. ( mycol <= ( jb-1 ) ) ) THEN color = mycol key = myrow ELSE color = np key = myid END IF ! CALL mpi_comm_split( desc%comm , color, key, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_comm_split 1 ", ABS( ierr ) ) ! IF( myrow >= jb-1 .and. mycol <= jb-1 ) THEN color = myrow key = mycol ELSE color = np key = myid END IF ! CALL mpi_comm_split( desc%comm, color, key, rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_comm_split 2 ", ABS( ierr ) ) ! ! here every process can work independently, then we need a reduce. ! IF( jb > 1 ) THEN ! DO ib = 1, jb - 1 IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( ib - 1 ) ) ) THEN ! ! this is because only the lover triangle of ssnd will be set to 0 by ZHERK ! ssnd = 0.0_DP ! ! remember: matrix ssnd is nr*nr, and procs on the diagonale have nr == nc ! CALL ZHERK( 'L', 'N', nr, nc, -ONE, sll, ldx, zero, ssnd, ldx ) ! END IF END DO IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN ssnd = sll END IF ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol <= ( jb - 1 ) ) ) THEN ! ! accumulate on the diagonal block/proc ! CALL mpi_barrier( rcomm, ierr ) CALL MPI_REDUCE( ssnd, sll, ldx*ldx, MPI_DOUBLE_COMPLEX, MPI_SUM, jb-1, rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in MPI_REDUCE 1 ", ABS( ierr ) ) ! END IF ! END IF ! ! Only proj ( jb-1, jb-1 ) operates this ! info = 0 ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL ZPOTF2( 'L', jnr, sll, ldx, INFO ) IF( info /= 0 ) & CALL errore( " pzpotrf ", " problems computing cholesky decomposition ", ABS( info ) ) END IF ! IF( ( jb > 1 ) .AND. ( jb < np ) ) THEN ! ! Compute the current block column. ! ! processors ( 1 : jb - 1, jb ) should bcast their blocs ! along column to processor ( 1 : jb - 1, jb + 1 : nb ) ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol < ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( sll, ldx*ldx, MPI_DOUBLE_COMPLEX, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_bcast 1 ", ABS( ierr ) ) ELSE IF( ( myrow > ( jb - 1 ) ) .AND. ( mycol < ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( srcv, ldx*ldx, MPI_DOUBLE_COMPLEX, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_bcast 2 ", ABS( ierr ) ) END IF ! DO ib = jb + 1, np CALL descla_local_dims( iir, inr, n, desc%nx, np, ib-1 ) DO kb = 1, jb - 1 CALL descla_local_dims( kic, knc, n, desc%nx, np, kb-1 ) IF( ( myrow == ( ib - 1 ) ) .AND. ( mycol == ( kb - 1 ) ) ) THEN CALL zgemm( 'N', 'C', inr, jnr, knc, -CONE, sll, ldx, srcv, ldx, czero, ssnd, ldx ) END IF END DO IF( ( myrow == ( ib - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN ssnd = sll END IF END DO ! ! processors ( jb, jb + 1 : nb ) should collect block along row, ! from processors ( 1 : jb - 1, jb + 1 : nb ) ! DO kb = jb + 1, np IF( ( myrow == ( kb - 1 ) ) .AND. ( mycol <= ( jb - 1 ) ) ) THEN IF( ( jb == 1 ) ) THEN IF( mycol == ( jb - 1 ) ) THEN sll = ssnd END IF ELSE CALL mpi_barrier( rcomm, ierr ) CALL MPI_REDUCE( ssnd, sll, ldx*ldx, MPI_DOUBLE_COMPLEX, MPI_SUM, jb-1, rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_reduce 2 ", ABS( ierr ) ) END IF END IF END DO ! END IF ! IF( jb < np ) THEN ! ! processor "jb,jb" should broadcast his block to procs ( jb+1 : nb, jb ) ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( sll, ldx*ldx, MPI_DOUBLE_COMPLEX, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_bcast 3 ", ABS( ierr ) ) ELSE IF( ( myrow > ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( srcv, ldx*ldx, MPI_DOUBLE_COMPLEX, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_bcast 4 ", ABS( ierr ) ) END IF ! DO ib = jb + 1, np IF( ( myrow == ( ib - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL ZTRSM( 'R', 'L', 'C', 'N', nr, nc, CONE, srcv, ldx, sll, ldx ) END IF END DO ! END IF ! CALL mpi_comm_free( rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_comm_free 1 ", ABS( ierr ) ) ! CALL mpi_comm_free( ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pzpotrf ", " in mpi_comm_free 2 ", ABS( ierr ) ) ! END DO DEALLOCATE( srcv, ssnd ) #else CALL ZPOTRF( 'L', n, sll, ldx, info ) IF( info /= 0 ) & CALL errore( " pzpotrf ", " problems computing cholesky decomposition ", ABS( info ) ) #endif return END SUBROUTINE qe_pzpotrf ! now the Double Precision subroutine SUBROUTINE qe_pdpotrf( sll, ldx, n, desc ) ! use descriptors use parallel_include use kinds ! implicit none ! integer :: n, ldx TYPE(la_descriptor), INTENT(IN) :: desc REAL(DP) :: one, zero REAL(DP) :: sll( ldx, ldx ) integer :: myrow, mycol, ierr integer :: jb, info, ib, kb integer :: jnr, jir, jic, jnc integer :: inr, iir, iic, inc integer :: knr, kir, kic, knc integer :: nr, nc integer :: rcomm, ccomm, color, key, myid, np REAL(DP), ALLOCATABLE :: ssnd( :, : ), srcv( :, : ) one = 1.0_DP zero = 0.0_DP #if defined __MPI myrow = desc%myr mycol = desc%myc myid = desc%mype np = desc%npr IF( desc%npr /= desc%npc ) THEN CALL errore( ' pdpotrf ', ' only square grid are allowed ', 1 ) END IF IF( ldx /= desc%nrcx ) THEN CALL errore( ' pdpotrf ', ' wrong leading dimension ldx ', ldx ) END IF nr = desc%nr nc = desc%nc ALLOCATE( ssnd( ldx, ldx ) ) ALLOCATE( srcv( ldx, ldx ) ) DO jb = 1, np ! ! Update and factorize the current diagonal block and test ! for non-positive-definiteness. ! CALL descla_local_dims( jir, jnr, n, desc%nx, np, jb-1 ) ! ! since we loop on diagonal blocks/procs we have jnc == jnr ! jnc = jnr ! ! prepare row and colum communicators IF( ( myrow >= ( jb-1 ) ) .AND. ( mycol <= ( jb-1 ) ) ) THEN color = mycol key = myrow ELSE color = np key = myid END IF ! CALL mpi_comm_split( desc%comm , color, key, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_comm_split 1 ", ABS( ierr ) ) ! IF( myrow >= jb-1 .and. mycol <= jb-1 ) THEN color = myrow key = mycol ELSE color = np key = myid END IF ! CALL mpi_comm_split( desc%comm, color, key, rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_comm_split 2 ", ABS( ierr ) ) ! ! here every process can work independently, then we need a reduce. ! IF( jb > 1 ) THEN ! DO ib = 1, jb - 1 IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( ib - 1 ) ) ) THEN ! ! this is because only the lover triangle of ssnd will be set to 0 by ZHERK ! ssnd = 0_DP ! ! remember: matrix ssnd is nr*nr, and procs on the diagonale have nr == nc ! CALL DSYRK( 'L', 'N', nr, nc, -ONE, sll, ldx, zero, ssnd, ldx ) ! END IF END DO IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN ssnd = sll END IF ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol <= ( jb - 1 ) ) ) THEN ! ! accumulate on the diagonal block/proc ! CALL MPI_REDUCE( ssnd, sll, ldx*ldx, MPI_DOUBLE_PRECISION, MPI_SUM, jb-1, rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in MPI_REDUCE 1 ", ABS( ierr ) ) ! END IF ! END IF ! ! Only proj ( jb-1, jb-1 ) operates this ! info = 0 ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL DPOTRF( 'L', jnr, sll, ldx, INFO ) IF( info /= 0 ) & CALL errore( " pdpotrf ", " problems computing cholesky decomposition ", ABS( info ) ) END IF ! IF( ( jb > 1 ) .AND. ( jb < np ) ) THEN ! ! Compute the current block column. ! ! processors ( 1 : jb - 1, jb ) should bcast their blocs ! along column to processor ( 1 : jb - 1, jb + 1 : nb ) ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol < ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( sll, ldx*ldx, MPI_DOUBLE_PRECISION, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_bcast 1 ", ABS( ierr ) ) ELSE IF( ( myrow > ( jb - 1 ) ) .AND. ( mycol < ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( srcv, ldx*ldx, MPI_DOUBLE_PRECISION, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_bcast 2 ", ABS( ierr ) ) END IF ! DO ib = jb + 1, np CALL descla_local_dims( iir, inr, n, desc%nx, np, ib-1 ) DO kb = 1, jb - 1 CALL descla_local_dims( kic, knc, n, desc%nx, np, kb-1 ) IF( ( myrow == ( ib - 1 ) ) .AND. ( mycol == ( kb - 1 ) ) ) THEN CALL dgemm( 'N', 'T', inr, jnr, knc, -ONE, sll, ldx, srcv, ldx, zero, ssnd, ldx ) END IF END DO IF( ( myrow == ( ib - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN ssnd = sll END IF END DO ! ! processors ( jb, jb + 1 : nb ) should collect block along row, ! from processors ( 1 : jb - 1, jb + 1 : nb ) ! DO kb = jb + 1, np IF( ( myrow == ( kb - 1 ) ) .AND. ( mycol <= ( jb - 1 ) ) ) THEN IF( ( jb == 1 ) ) THEN IF( mycol == ( jb - 1 ) ) THEN sll = ssnd END IF ELSE CALL MPI_REDUCE( ssnd, sll, ldx*ldx, MPI_DOUBLE_PRECISION, MPI_SUM, jb-1, rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_reduce 2 ", ABS( ierr ) ) END IF END IF END DO ! END IF ! IF( jb < np ) THEN ! ! processor "jb,jb" should broadcast his block to procs ( jb+1 : nb, jb ) ! IF( ( myrow == ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( sll, ldx*ldx, MPI_DOUBLE_PRECISION, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_bcast 3 ", ABS( ierr ) ) ELSE IF( ( myrow > ( jb - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL mpi_barrier( ccomm, ierr ) CALL mpi_bcast( srcv, ldx*ldx, MPI_DOUBLE_PRECISION, 0, ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_bcast 4 ", ABS( ierr ) ) END IF ! DO ib = jb + 1, np IF( ( myrow == ( ib - 1 ) ) .AND. ( mycol == ( jb - 1 ) ) ) THEN CALL DTRSM( 'R', 'L', 'T', 'N', nr, nc, ONE, srcv, ldx, sll, ldx ) END IF END DO ! END IF ! CALL mpi_comm_free( rcomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_comm_free 1 ", ABS( ierr ) ) CALL mpi_comm_free( ccomm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdpotrf ", " in mpi_comm_free 2 ", ABS( ierr ) ) ! END DO DEALLOCATE( srcv, ssnd ) #else CALL DPOTRF( 'L', n, sll, ldx, info ) IF( info /= 0 ) & CALL errore( " pzpotrf ", " problems computing cholesky decomposition ", ABS( info ) ) #endif return END SUBROUTINE qe_pdpotrf ! ! ! ! SUBROUTINE qe_pztrtri ( sll, ldx, n, desc ) ! pztrtri computes the parallel inversion of a lower triangular matrix ! distribuited among the processes using a 2-D block partitioning. ! The algorithm is based on the schema below and executes the model ! recursively to each column C2 under the diagonal. ! ! |-------|-------| |--------------------|--------------------| ! | A1 | 0 | | C1 = trtri(A1) | 0 | ! A = |-------|-------| C = |--------------------|--------------------| ! | A2 | A3 | | C2 = -C3 * A2 * C1 | C3 = trtri(A3) | ! |-------|-------| |--------------------|--------------------| ! ! The recursive steps of multiplication (C2 = -C3 * A2 * C1) is based on the Cannon's algorithms ! for parallel matrix multiplication and is done with BLACS(dgemm) ! ! ! Arguments ! ============ ! ! sll = local block of data ! ldx = leading dimension of one block ! n = size of the global array diributed among the blocks ! desc = descriptor of the matrix distribution ! ! ! written by Ivan Girotto ! USE kinds USE parallel_include USE descriptors IMPLICIT NONE INTEGER, INTENT( IN ) :: n, ldx TYPE(la_descriptor), INTENT(IN) :: desc COMPLEX(DP), INTENT( INOUT ) :: sll( ldx, ldx ) COMPLEX(DP), PARAMETER :: ONE = (1.0_DP, 0.0_DP) COMPLEX(DP), PARAMETER :: ZERO = (0.0_DP, 0.0_DP) #if defined __MPI INTEGER :: status(MPI_STATUS_SIZE) #endif INTEGER :: req(2), ierr, col_comm INTEGER :: send, recv, group_rank, group_size INTEGER :: myrow, mycol, np, myid, comm ! counters INTEGER :: k, i, j, count, step_count, shiftcount, cicle INTEGER :: C3dim ! Dimension of submatrix B INTEGER :: nc, nr ! Local dimension of block INTEGER :: info, sup_recv INTEGER :: idrowref, idcolref, idref, idrecv ! B and BUF_RECV are used to overload the computation of matrix multiplication and the shift of the blocks COMPLEX(DP), ALLOCATABLE, DIMENSION( :, : ) :: B, C, BUF_RECV COMPLEX(DP) :: first myrow = desc%myr mycol = desc%myc myid = desc%mype np = desc%npr comm = desc%comm IF( desc%npr /= desc%npc ) THEN CALL errore( ' pztrtri ', ' only square grid are allowed ', 1 ) END IF IF( ldx /= desc%nrcx ) THEN CALL errore( ' pztrtri ', ' wrong leading dimension ldx ', ldx ) END IF nr = desc%nr nc = desc%nc ! clear elements outside local meaningful block nr*nc DO j = nc+1, ldx DO i = 1, ldx sll( i, j ) = zero END DO END DO DO j = 1, ldx DO i = nr+1, ldx sll( i, j ) = zero END DO END DO #if defined __MPI ALLOCATE( B( ldx, ldx ) ) ALLOCATE( C( ldx, ldx ) ) ALLOCATE( BUF_RECV ( ldx, ldx ) ) IF( np == 2 ) THEN ! ! special case with 4 proc, 2x2 grid ! IF( myrow == mycol ) THEN CALL compute_ztrtri() END IF ! CALL GRID2D_RANK( 'R', np, np, 1, 0, idref ) ! IF( myrow == 0 .AND. mycol == 0 ) THEN CALL MPI_Send(sll, ldx*ldx, MPI_DOUBLE_COMPLEX, idref, 0, comm, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in mpi_send 1 ", ABS( ierr ) ) END IF ! IF( myrow == 1 .AND. mycol == 1 ) THEN CALL MPI_Send(sll, ldx*ldx, MPI_DOUBLE_COMPLEX, idref, 1, comm, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in mpi_send 2 ", ABS( ierr ) ) END IF ! IF( myrow == 1 .AND. mycol == 0 ) THEN ! CALL GRID2D_RANK( 'R', np, np, 0, 0, i ) CALL GRID2D_RANK( 'R', np, np, 1, 1, j ) ! CALL MPI_Irecv( B, ldx*ldx, MPI_DOUBLE_COMPLEX, i, 0, comm, req(1), ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in mpi_irecv 3 ", ABS( ierr ) ) ! CALL MPI_Irecv( C, ldx*ldx, MPI_DOUBLE_COMPLEX, j, 1, comm, req(2), ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in mpi_irecv 4 ", ABS( ierr ) ) ! CALL MPI_Wait(req(1), status, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Wait 5 ", ABS( ierr ) ) ! CALL zgemm('N', 'N', ldx, ldx, ldx, ONE, sll, ldx, b, ldx, ZERO, buf_recv, ldx) ! CALL MPI_Wait(req(2), status, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Wait 6 ", ABS( ierr ) ) ! CALL zgemm('N', 'N', ldx, ldx, ldx, -ONE, c, ldx, buf_recv, ldx, ZERO, sll, ldx) ! END IF ! IF( myrow == 0 .AND. mycol == 1 ) THEN ! sll = zero ! END IF ! DEALLOCATE( b, c, buf_recv ) ! RETURN ! END IF IF( myrow >= mycol ) THEN ! ! only procs on lower triangle partecipates ! CALL MPI_Comm_split( comm, mycol, myrow, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Comm_split 9 ", ABS( ierr ) ) CALL MPI_Comm_size( col_comm, group_size, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Comm_size 10 ", ABS( ierr ) ) ! CALL MPI_Comm_rank( col_comm, group_rank, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Comm_rank 11 ", ABS( ierr ) ) ! ELSE ! ! other procs stay at the window! ! CALL MPI_Comm_split( comm, MPI_UNDEFINED, MPI_UNDEFINED, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Comm_split 12 ", ABS( ierr ) ) ! sll = zero ! END IF ! ! Compute the inverse of a lower triangular ! along the diagonal of the global array with BLAS(ztrtri) ! IF( mycol == myrow ) THEN ! CALL compute_ztrtri() ! ELSE IF( myrow > mycol ) THEN ! buf_recv = sll ! END IF IF( myrow >= mycol ) THEN ! ! Broadcast the diagonal blocks to the processors under the diagonal ! CALL MPI_Bcast( sll, ldx*ldx, MPI_DOUBLE_COMPLEX, 0, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Bcast 13 ", ABS( ierr ) ) ! END IF ! Compute A2 * C1 and start the Cannon's algorithm shifting the blocks of column one place to the North ! IF( myrow > mycol ) THEN ! CALL zgemm( 'N', 'N', ldx, ldx, ldx, ONE, buf_recv, ldx, sll, ldx, ZERO, c, ldx ) ! send = shift( 1, group_rank, 1, ( group_size - 1 ), 'N' ) recv = shift( 1, group_rank, 1, ( group_size - 1 ), 'S' ) ! CALL MPI_Sendrecv( c, ldx*ldx, MPI_DOUBLE_COMPLEX, send, 0, buf_recv, & ldx*ldx, MPI_DOUBLE_COMPLEX, recv, 0, col_comm, status, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Sendrecv 14 ", ABS( ierr ) ) ! END IF ! Execute the Cannon's algorithm to compute ricorsively the multiplication of C2 = -C3 * A2 * C1 ! DO count = ( np - 2 ), 0, -1 C3dim = (np-1) - count ! Dimension of the submatrix C3 first = ZERO cicle = 0 IF( ( myrow > count ) .AND. ( mycol >= count ) ) THEN idcolref = count + 1 idrowref = myrow CALL GRID2D_RANK( 'R', np, np, idrowref, idcolref, idref ) idrecv = idref - 1 ! Compute C2 = -C3 * A2 * C1 DO shiftcount = count, np-2 IF(mycol>count)THEN ! Execute the virtual shift of the matrix C3 along the row in order to know which processor ! have to send the block to C2 IF( cicle == 0)THEN ! virtual shift of the block i,j of the submatrix C3 i place to West send = shift(idref, myid, myrow-count, C3dim, 'W') ELSE ! virtual shift of the block i,j of the submatrix C3 i place to West send = shift(idref, send, 1, C3dim, 'E') END IF IF(send==idref)THEN CALL MPI_Send(sll, ldx*ldx, MPI_DOUBLE_COMPLEX, idrecv, myid, comm, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Send 15 ", ABS( ierr ) ) END IF ELSE IF( cicle == 0)THEN ! virtual shift of the block i,j of the submatrix C3 i place to West sup_recv = shift(idref, myid+1, myrow-count, C3dim, 'E') ELSE ! virtual shift of the block i,j of the submatrix C3 i place to West sup_recv = shift(idref, sup_recv, 1, C3dim, 'W') END IF CALL MPI_Recv(C, ldx*ldx, MPI_DOUBLE_COMPLEX, sup_recv, sup_recv, comm, status, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Recv 16 ", ABS( ierr ) ) send = shift(1, group_rank, 1, (group_size-1), 'S') recv = shift(1, group_rank, 1, (group_size-1), 'N') ! with the no-blocking communication the computation and the shift of the column block are overapped ! IF( MOD( cicle, 2 ) == 0 ) THEN CALL MPI_Isend(BUF_RECV, ldx*ldx, MPI_DOUBLE_COMPLEX, send, group_rank+cicle, col_comm, req(1), ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Isend 17 ", ABS( ierr ) ) CALL MPI_Irecv(B, ldx*ldx, MPI_DOUBLE_COMPLEX, recv, recv+cicle, col_comm, req(2), ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Irecv 18 ", ABS( ierr ) ) CALL zgemm('N', 'N', ldx, ldx, ldx, -ONE, C, ldx, BUF_RECV, ldx, first, sll, ldx) ELSE CALL MPI_Isend(B, ldx*ldx, MPI_DOUBLE_COMPLEX, send, group_rank+cicle, col_comm, req(1), ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Isend 19 ", ABS( ierr ) ) CALL MPI_Irecv(BUF_RECV, ldx*ldx, MPI_DOUBLE_COMPLEX, recv, recv+cicle, col_comm, req(2), ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Irecv 20 ", ABS( ierr ) ) CALL zgemm('N', 'N', ldx, ldx, ldx, -ONE, C, ldx, B, ldx, ONE, sll, ldx) END IF ! CALL MPI_Wait(req(1), status, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Wait 21 ", ABS( ierr ) ) ! CALL MPI_Wait(req(2), status, ierr) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in MPI_Wait 22 ", ABS( ierr ) ) ! END IF cicle = cicle + 1 first = ONE END DO END IF END DO IF( myrow >= mycol ) THEN CALL mpi_comm_free( col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pztrtri ", " in mpi_comm_free 25 ", ABS( ierr ) ) END IF DEALLOCATE(B) DEALLOCATE(C) DEALLOCATE(BUF_RECV) #else CALL compute_ztrtri() #endif CONTAINS SUBROUTINE compute_ztrtri() ! ! clear the upper triangle (excluding diagonal terms) and ! DO j = 1, ldx DO i = 1, j-1 sll ( i, j ) = zero END DO END DO ! CALL ztrtri( 'L', 'N', nr, sll, ldx, info ) ! IF( info /= 0 ) THEN CALL errore( ' pztrtri ', ' problem in the local inversion ', info ) END IF ! END SUBROUTINE compute_ztrtri INTEGER FUNCTION shift ( idref, id, pos, size, dir ) IMPLICIT NONE INTEGER :: idref, id, pos, size CHARACTER ( LEN = 1 ) :: dir IF( ( dir == 'E' ) .OR. ( dir == 'S' ) ) THEN shift = idref + MOD ( ( id - idref ) + pos, size ) ELSE IF( ( dir == 'W' ) .OR. ( dir == 'N' ) ) THEN shift = idref + MOD ( ( id - idref ) - pos + size, size ) ELSE shift = -1 END IF RETURN END FUNCTION shift END SUBROUTINE qe_pztrtri ! now the Double Precision subroutine SUBROUTINE qe_pdtrtri ( sll, ldx, n, desc ) ! pztrtri computes the parallel inversion of a lower triangular matrix ! distribuited among the processes using a 2-D block partitioning. ! The algorithm is based on the schema below and executes the model ! recursively to each column C2 under the diagonal. ! ! |-------|-------| |--------------------|--------------------| ! | A1 | 0 | | C1 = trtri(A1) | 0 | ! A = |-------|-------| C = |--------------------|--------------------| ! | A2 | A3 | | C2 = -C3 * A2 * C1 | C3 = trtri(A3) | ! |-------|-------| |--------------------|--------------------| ! ! The recursive steps of multiplication (C2 = -C3 * A2 * C1) is based on the Cannon's algorithms ! for parallel matrix multiplication and is done with BLACS(dgemm) ! ! ! Arguments ! ============ ! ! sll = local block of data ! ldx = leading dimension of one block ! n = size of the global array diributed among the blocks ! desc = descriptor of the matrix distribution ! ! ! written by Ivan Girotto ! USE kinds USE parallel_include USE descriptors IMPLICIT NONE INTEGER, INTENT( IN ) :: n, ldx TYPE(la_descriptor), INTENT(IN) :: desc REAL(DP), INTENT( INOUT ) :: sll( ldx, ldx ) REAL(DP), PARAMETER :: ONE = 1.0_DP REAL(DP), PARAMETER :: ZERO = 0.0_DP #if defined __MPI INTEGER :: status(MPI_STATUS_SIZE) #endif INTEGER :: req(2), ierr, col_comm INTEGER :: send, recv, group_rank, group_size INTEGER :: myrow, mycol, np, myid, comm ! counters INTEGER :: k, i, j, count, step_count, shiftcount, cicle INTEGER :: C3dim ! Dimension of submatrix B INTEGER :: nc, nr ! Local dimension of block INTEGER :: info, sup_recv INTEGER :: idrowref, idcolref, idref, idrecv ! B and BUF_RECV are used to overload the computation of matrix multiplication and the shift of the blocks REAL(DP), ALLOCATABLE, DIMENSION( :, : ) :: B, C, BUF_RECV REAL(DP) :: first myrow = desc%myr mycol = desc%myc myid = desc%mype np = desc%npr comm = desc%comm IF( desc%npr /= desc%npc ) THEN CALL errore( ' pdtrtri ', ' only square grid are allowed ', 1 ) END IF IF( ldx /= desc%nrcx ) THEN CALL errore( ' pdtrtri ', ' wrong leading dimension ldx ', ldx ) END IF nr = desc%nr nc = desc%nc ! clear elements outside local meaningful block nr*nc DO j = nc+1, ldx DO i = 1, ldx sll( i, j ) = zero END DO END DO DO j = 1, ldx DO i = nr+1, ldx sll( i, j ) = zero END DO END DO #if defined __MPI ALLOCATE( B( ldx, ldx ) ) ALLOCATE( C( ldx, ldx ) ) ALLOCATE( BUF_RECV ( ldx, ldx ) ) IF( np == 2 ) THEN ! ! special case with 4 proc, 2x2 grid ! IF( myrow == mycol ) THEN CALL compute_dtrtri() END IF ! CALL GRID2D_RANK( 'R', np, np, 1, 0, idref ) ! IF( myrow == 0 .AND. mycol == 0 ) THEN CALL MPI_Send(sll, ldx*ldx, MPI_DOUBLE_PRECISION, idref, 0, comm, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Send 1 ", ABS( ierr ) ) END IF ! IF( myrow == 1 .AND. mycol == 1 ) THEN CALL MPI_Send(sll, ldx*ldx, MPI_DOUBLE_PRECISION, idref, 1, comm, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Send 2 ", ABS( ierr ) ) END IF ! IF( myrow == 1 .AND. mycol == 0 ) THEN ! CALL GRID2D_RANK( 'R', np, np, 0, 0, i ) CALL GRID2D_RANK( 'R', np, np, 1, 1, j ) ! CALL MPI_Irecv( B, ldx*ldx, MPI_DOUBLE_PRECISION, i, 0, comm, req(1), ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Irecv 3 ", ABS( ierr ) ) ! CALL MPI_Irecv( C, ldx*ldx, MPI_DOUBLE_PRECISION, j, 1, comm, req(2), ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Irecv 4 ", ABS( ierr ) ) ! CALL MPI_Wait(req(1), status, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Wait 5 ", ABS( ierr ) ) ! CALL dgemm('N', 'N', ldx, ldx, ldx, ONE, sll, ldx, b, ldx, ZERO, buf_recv, ldx) ! CALL MPI_Wait(req(2), status, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Wait 6 ", ABS( ierr ) ) ! CALL dgemm('N', 'N', ldx, ldx, ldx, -ONE, c, ldx, buf_recv, ldx, ZERO, sll, ldx) ! END IF ! IF( myrow == 0 .AND. mycol == 1 ) THEN ! sll = zero ! END IF ! DEALLOCATE( b, c, buf_recv ) ! RETURN ! END IF IF( myrow >= mycol ) THEN ! ! only procs on lower triangle partecipates ! CALL MPI_Comm_split( comm, mycol, myrow, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Comm_split 9 ", ABS( ierr ) ) CALL MPI_Comm_size( col_comm, group_size, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Comm_size 10 ", ABS( ierr ) ) CALL MPI_Comm_rank( col_comm, group_rank, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Comm_rank 11 ", ABS( ierr ) ) ! ELSE ! ! other procs stay at the window! ! CALL MPI_Comm_split( comm, MPI_UNDEFINED, MPI_UNDEFINED, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Comm_split 12 ", ABS( ierr ) ) ! sll = zero ! END IF ! ! Compute the inverse of a lower triangular ! along the diagonal of the global array with BLAS(ztrtri) ! IF( mycol == myrow ) THEN ! CALL compute_dtrtri() ! ELSE IF( myrow > mycol ) THEN ! buf_recv = sll ! END IF IF( myrow >= mycol ) THEN ! ! Broadcast the diagonal blocks to the processors under the diagonal ! CALL MPI_Bcast( sll, ldx*ldx, MPI_DOUBLE_PRECISION, 0, col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Bcast 13 ", ABS( ierr ) ) ! END IF ! Compute A2 * C1 and start the Cannon's algorithm shifting the blocks of column one place to the North ! IF( myrow > mycol ) THEN ! CALL dgemm( 'N', 'N', ldx, ldx, ldx, ONE, buf_recv, ldx, sll, ldx, ZERO, c, ldx ) ! send = shift( 1, group_rank, 1, ( group_size - 1 ), 'N' ) recv = shift( 1, group_rank, 1, ( group_size - 1 ), 'S' ) ! CALL MPI_Sendrecv( c, ldx*ldx, MPI_DOUBLE_PRECISION, send, 0, buf_recv, & ldx*ldx, MPI_DOUBLE_PRECISION, recv, 0, col_comm, status, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Sendrecv 14 ", ABS( ierr ) ) ! END IF ! Execute the Cannon's algorithm to compute ricorsively the multiplication of C2 = -C3 * A2 * C1 ! DO count = ( np - 2 ), 0, -1 C3dim = (np-1) - count ! Dimension of the submatrix C3 first = ZERO cicle = 0 IF( ( myrow > count ) .AND. ( mycol >= count ) ) THEN idcolref = count + 1 idrowref = myrow CALL GRID2D_RANK( 'R', np, np, idrowref, idcolref, idref ) idrecv = idref - 1 ! Compute C2 = -C3 * A2 * C1 DO shiftcount = count, np-2 IF(mycol>count)THEN ! Execute the virtual shift of the matrix C3 along the row in order to know which processor ! have to send the block to C2 IF( cicle == 0)THEN ! virtual shift of the block i,j of the submatrix C3 i place to West send = shift(idref, myid, myrow-count, C3dim, 'W') ELSE ! virtual shift of the block i,j of the submatrix C3 i place to West send = shift(idref, send, 1, C3dim, 'E') END IF IF(send==idref)THEN CALL MPI_Send(sll, ldx*ldx, MPI_DOUBLE_PRECISION, idrecv, myid, comm, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Send 15 ", ABS( ierr ) ) END IF ELSE IF( cicle == 0)THEN ! virtual shift of the block i,j of the submatrix C3 i place to West sup_recv = shift(idref, myid+1, myrow-count, C3dim, 'E') ELSE ! virtual shift of the block i,j of the submatrix C3 i place to West sup_recv = shift(idref, sup_recv, 1, C3dim, 'W') END IF CALL MPI_Recv(C, ldx*ldx, MPI_DOUBLE_PRECISION, sup_recv, sup_recv, comm, status, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Recv 16 ", ABS( ierr ) ) send = shift(1, group_rank, 1, (group_size-1), 'S') recv = shift(1, group_rank, 1, (group_size-1), 'N') ! with the no-blocking communication the computation and the shift of the column block are overapped IF( MOD( cicle, 2 ) == 0 ) THEN ! CALL MPI_Isend(BUF_RECV, ldx*ldx, MPI_DOUBLE_PRECISION, send, group_rank+cicle, col_comm, req(1), ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Isend 17 ", ABS( ierr ) ) CALL MPI_Irecv(B, ldx*ldx, MPI_DOUBLE_PRECISION, recv, recv+cicle, col_comm, req(2), ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Irecv 18 ", ABS( ierr ) ) ! CALL dgemm('N', 'N', ldx, ldx, ldx, -ONE, C, ldx, BUF_RECV, ldx, first, sll, ldx) ! ELSE ! CALL MPI_Isend(B, ldx*ldx, MPI_DOUBLE_PRECISION, send, group_rank+cicle, col_comm, req(1), ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Isend 19 ", ABS( ierr ) ) CALL MPI_Irecv(BUF_RECV, ldx*ldx, MPI_DOUBLE_PRECISION, recv, recv+cicle, col_comm, req(2), ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Irecv 20 ", ABS( ierr ) ) ! CALL dgemm('N', 'N', ldx, ldx, ldx, -ONE, C, ldx, B, ldx, ONE, sll, ldx) ! END IF ! CALL MPI_Wait(req(1), status, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Wait 21 ", ABS( ierr ) ) CALL MPI_Wait(req(2), status, ierr) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in MPI_Wait 22 ", ABS( ierr ) ) ! END IF cicle = cicle + 1 first = ONE END DO END IF END DO IF( myrow >= mycol ) THEN CALL mpi_comm_free( col_comm, ierr ) IF( ierr /= 0 ) & CALL errore( " pdtrtri ", " in mpi_comm_free 25 ", ABS( ierr ) ) END IF DEALLOCATE(B) DEALLOCATE(C) DEALLOCATE(BUF_RECV) #else CALL compute_dtrtri() #endif CONTAINS SUBROUTINE compute_dtrtri() ! ! clear the upper triangle (excluding diagonal terms) and ! DO j = 1, ldx DO i = 1, j-1 sll ( i, j ) = zero END DO END DO ! CALL dtrtri( 'L', 'N', nr, sll, ldx, info ) ! IF( info /= 0 ) THEN CALL errore( ' pdtrtri ', ' problem in the local inversion ', info ) END IF ! END SUBROUTINE compute_dtrtri INTEGER FUNCTION shift ( idref, id, pos, size, dir ) IMPLICIT NONE INTEGER :: idref, id, pos, size CHARACTER ( LEN = 1 ) :: dir IF( ( dir == 'E' ) .OR. ( dir == 'S' ) ) THEN shift = idref + MOD ( ( id - idref ) + pos, size ) ELSE IF( ( dir == 'W' ) .OR. ( dir == 'N' ) ) THEN shift = idref + MOD ( ( id - idref ) - pos + size, size ) ELSE shift = -1 END IF RETURN END FUNCTION shift END SUBROUTINE qe_pdtrtri SUBROUTINE qe_pdsyevd( tv, n, desc, hh, ldh, e ) USE kinds USE descriptors USE dspev_module, ONLY : pdspev_drv IMPLICIT NONE LOGICAL, INTENT(IN) :: tv ! if tv is true compute eigenvalues and eigenvectors (not used) INTEGER, INTENT(IN) :: n, ldh ! n = matrix size, ldh = leading dimension of hh TYPE(la_descriptor), INTENT(IN) :: desc ! desc = descrittore della matrice REAL(DP) :: hh( ldh, ldh ) ! input: hh = matrix to be diagonalized REAL(DP) :: e( n ) ! output: hh = eigenvectors, e = eigenvalues INTEGER :: nrlx, nrl REAL(DP), ALLOCATABLE :: diag(:,:), vv(:,:) CHARACTER :: jobv nrl = desc%nrl nrlx = desc%nrlx ALLOCATE( diag( nrlx, n ) ) ALLOCATE( vv( nrlx, n ) ) jobv = 'N' IF( tv ) jobv = 'V' ! ! Redistribute matrix "hh" into "diag", ! matrix "hh" is block distributed, matrix diag is cyclic distributed CALL blk2cyc_redist( n, diag, nrlx, n, hh, ldh, ldh, desc ) ! CALL pdspev_drv( jobv, diag, nrlx, e, vv, nrlx, nrl, n, & desc%npc * desc%npr, desc%mype, desc%comm ) ! IF( tv ) CALL cyc2blk_redist( n, vv, nrlx, n, hh, ldh, ldh, desc ) ! DEALLOCATE( vv ) DEALLOCATE( diag ) RETURN END SUBROUTINE SUBROUTINE qe_pzheevd( tv, n, desc, hh, ldh, e ) USE kinds USE descriptors USE zhpev_module, ONLY : pzhpev_drv IMPLICIT NONE LOGICAL, INTENT(IN) :: tv ! if tv is true compute eigenvalues and eigenvectors (not used) INTEGER, INTENT(IN) :: n, ldh ! n = matrix size, ldh = leading dimension of hh TYPE(la_descriptor), INTENT(IN) :: desc ! desc = descrittore della matrice COMPLEX(DP) :: hh( ldh, ldh ) ! input: hh = matrix to be diagonalized REAL(DP) :: e( n ) ! output: hh = eigenvectors, e = eigenvalues INTEGER :: nrlx, nrl COMPLEX(DP), ALLOCATABLE :: diag(:,:), vv(:,:) CHARACTER :: jobv nrl = desc%nrl nrlx = desc%nrlx ! ALLOCATE( diag( nrlx, n ) ) ALLOCATE( vv( nrlx, n ) ) ! jobv = 'N' IF( tv ) jobv = 'V' CALL blk2cyc_zredist( n, diag, nrlx, n, hh, ldh, ldh, desc ) ! CALL pzhpev_drv( jobv, diag, nrlx, e, vv, nrlx, nrl, n, & desc%npc * desc%npr, desc%mype, desc%comm ) ! if( tv ) CALL cyc2blk_zredist( n, vv, nrlx, n, hh, ldh, ldh, desc ) ! DEALLOCATE( vv ) DEALLOCATE( diag ) RETURN END SUBROUTINE SUBROUTINE sqr_dsetmat( what, n, alpha, a, lda, desc ) ! ! Set the values of a square distributed matrix ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: what ! what = 'A' set all the values of "a" equal to alpha ! what = 'U' set the values in the upper triangle of "a" equal to alpha ! what = 'L' set the values in the lower triangle of "a" equal to alpha ! what = 'D' set the values in the diagonal of "a" equal to alpha INTEGER, INTENT(IN) :: n ! dimension of the matrix REAL(DP), INTENT(IN) :: alpha ! value to be assigned to elements of "a" INTEGER, INTENT(IN) :: lda ! leading dimension of a REAL(DP) :: a(lda,*) ! matrix whose values have to be set TYPE(la_descriptor), INTENT(IN) :: desc ! descriptor of matrix a INTEGER :: i, j IF( desc%active_node < 0 ) THEN ! ! processors not interested in this computation return quickly ! RETURN ! END IF SELECT CASE( what ) CASE( 'U', 'u' ) IF( desc%myc > desc%myr ) THEN DO j = 1, desc%nc DO i = 1, desc%nr a( i, j ) = alpha END DO END DO ELSE IF( desc%myc == desc%myr ) THEN DO j = 1, desc%nc DO i = 1, j - 1 a( i, j ) = alpha END DO END DO END IF CASE( 'L', 'l' ) IF( desc%myc < desc%myr ) THEN DO j = 1, desc%nc DO i = 1, desc%nr a( i, j ) = alpha END DO END DO ELSE IF( desc%myc == desc%myr ) THEN DO j = 1, desc%nc DO i = j + 1, desc%nr a( i, j ) = alpha END DO END DO END IF CASE( 'D', 'd' ) IF( desc%myc == desc%myr ) THEN DO i = 1, desc%nr a( i, i ) = alpha END DO END IF CASE DEFAULT DO j = 1, desc%nc DO i = 1, desc%nr a( i, j ) = alpha END DO END DO END SELECT ! RETURN END SUBROUTINE sqr_dsetmat SUBROUTINE sqr_zsetmat( what, n, alpha, a, lda, desc ) ! ! Set the values of a square distributed matrix ! USE kinds, ONLY : DP USE descriptors ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: what ! what = 'A' set all the values of "a" equal to alpha ! what = 'U' set the values in the upper triangle of "a" equal to alpha ! what = 'L' set the values in the lower triangle of "a" equal to alpha ! what = 'D' set the values in the diagonal of "a" equal to alpha ! what = 'H' clear the imaginary part of the diagonal of "a" INTEGER, INTENT(IN) :: n ! dimension of the matrix COMPLEX(DP), INTENT(IN) :: alpha ! value to be assigned to elements of "a" INTEGER, INTENT(IN) :: lda ! leading dimension of a COMPLEX(DP) :: a(lda,*) ! matrix whose values have to be set TYPE(la_descriptor), INTENT(IN) :: desc ! descriptor of matrix a INTEGER :: i, j IF( desc%active_node < 0 ) THEN ! ! processors not interested in this computation return quickly ! RETURN ! END IF SELECT CASE( what ) CASE( 'U', 'u' ) IF( desc%myc > desc%myr ) THEN DO j = 1, desc%nc DO i = 1, desc%nr a( i, j ) = alpha END DO END DO ELSE IF( desc%myc == desc%myr ) THEN DO j = 1, desc%nc DO i = 1, j - 1 a( i, j ) = alpha END DO END DO END IF CASE( 'L', 'l' ) IF( desc%myc < desc%myr ) THEN DO j = 1, desc%nc DO i = 1, desc%nr a( i, j ) = alpha END DO END DO ELSE IF( desc%myc == desc%myr ) THEN DO j = 1, desc%nc DO i = j + 1, desc%nr a( i, j ) = alpha END DO END DO END IF CASE( 'D', 'd' ) IF( desc%myc == desc%myr ) THEN DO i = 1, desc%nr a( i, i ) = alpha END DO END IF CASE( 'H', 'h' ) IF( desc%myc == desc%myr ) THEN DO i = 1, desc%nr a( i, i ) = CMPLX( DBLE( a(i,i) ), 0_DP, KIND=DP ) END DO END IF CASE DEFAULT DO j = 1, desc%nc DO i = 1, desc%nr a( i, j ) = alpha END DO END DO END SELECT ! RETURN END SUBROUTINE sqr_zsetmat espresso-5.1/Modules/read_xml.f900000644000175000017500000004224612341373034015035 0ustar mbamba! !---------------------------------------------------------! ! This module handles the reading of fields and cards ! ! in case of xml input ! ! ! ! written by Simone Ziraldo (08/2010) ! !---------------------------------------------------------! MODULE read_xml_module ! ! USE input_parameters ! USE io_global, ONLY : ionode, ionode_id, xmlinputunit => qestdin USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm USE iotk_module, ONLY : iotk_attlenx ! ! ...default and checkin of fields ! USE read_namelists_module, ONLY : control_defaults, system_defaults,& electrons_defaults, wannier_ac_defaults, ions_defaults, & cell_defaults, press_ai_defaults, wannier_defaults, control_bcast, & system_bcast, electrons_bcast, ions_bcast,cell_bcast, & press_ai_bcast, wannier_bcast, wannier_ac_bcast, control_checkin, & system_checkin, electrons_checkin, ions_checkin, cell_checkin, & wannier_checkin, wannier_ac_checkin, fixval ! ! USE read_xml_fields_module, ONLY : read_xml_fields USE read_xml_cards_module, ONLY : card_xml_atomic_species, card_xml_atomic_list, & card_xml_chain, card_xml_cell, card_xml_kpoints, card_xml_occupations, & card_xml_constraints, card_xml_climbing_images, card_xml_plot_wannier, card_default, card_bcast ! ! IMPLICIT NONE ! SAVE ! PRIVATE ! PUBLIC :: read_xml ! CONTAINS ! ! !--------------------------------------------------------! ! This routine organizes the reading of the xml file ! ! depending on the program ! !--------------------------------------------------------! SUBROUTINE read_xml( prog, attr ) ! ! IMPLICIT NONE ! ! CHARACTER(len = 2), INTENT(IN) :: prog CHARACTER(len = *), INTENT(IN) :: attr INTEGER :: ierr ! SELECT CASE (prog) ! CASE ('PW') ! CALL read_xml_common( attr, 'PW' ) CALL read_xml_pw() ! CASE ('CP') ! CALL read_xml_common( attr, 'CP' ) CALL read_xml_cp() ! CASE default ! CALL errore('read_xml', "xml input isn't implemented for "//prog//' program', 1) ! END SELECT ! ! RETURN ! END SUBROUTINE read_xml ! ! !--------------------------------------------------------! ! Common part of the reading: setting default values, ! ! reading of cell and atomic_species cards ! !--------------------------------------------------------! SUBROUTINE read_xml_common( attr, prog ) ! ! USE iotk_module, ONLY : iotk_scan_attr ! ! IMPLICIT NONE ! ! CHARACTER (len = *), INTENT(IN) :: attr, prog ! CHARACTER (len = 256) :: dummy INTEGER :: ierr LOGICAL :: found ! ! ! ... default settings for all parameters ! CALL control_defaults( prog ) CALL system_defaults( prog ) CALL electrons_defaults( prog ) CALL ions_defaults( prog ) CALL cell_defaults( prog ) CALL wannier_defaults( prog ) CALL wannier_ac_defaults( prog ) ! ! ! ... reading the attributes of the xml root node ! IF (ionode) THEN ! CALL iotk_scan_attr( attr, 'calculation', dummy, found = found, ierr = ierr ) IF ( .not. found ) CALL errore( 'read_xml_cp', 'attribute calculation of root & &node is compulsory', abs(ierr) ) ! IF ( ierr /= 0 ) CALL errore( 'read_xml_cp', 'error reading calculation & &attribute of root node', 1 ) calculation = trim( dummy ) ! CALL iotk_scan_attr( attr, 'prefix', dummy, found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_cp', 'error reading prefix attribute & &of root node', abs(ierr) ) IF ( found ) prefix = trim( dummy ) ! CALL iotk_scan_attr( attr, 'title', dummy, found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_cp', 'error reading title attribute & &of root node', 1 ) IF ( found ) title = trim( dummy ) ! END IF ! ! ... bcast the read attributes ! CALL mp_bcast( calculation, ionode_id, intra_image_comm ) CALL mp_bcast( prefix, ionode_id, intra_image_comm ) CALL mp_bcast( title, ionode_id, intra_image_comm ) ! ! ... fixing some default values using the calculation variable ! CALL fixval( prog ) ! ! ... why this is compulsory? ( read autopilot.f90 ) CALL card_default( 'INIT_AUTOPILOT' ) ! ! ! ... reading CELL card ! CALL card_default( 'CELL' ) ! IF ( ionode ) THEN ! CALL card_xml_cell( ) ! END IF ! CALL card_bcast( 'CELL' ) ! ! ! ... reading ATOMIC_SPECIES card ! CALL card_default( 'ATOMIC_SPECIES' ) ! IF ( ionode ) THEN ! CALL card_xml_atomic_species( ) ! END IF ! CALL card_bcast( 'ATOMIC_SPECIES' ) ! RETURN ! END SUBROUTINE read_xml_common ! ! !--------------------------------------------------------! ! The remaining part of the reading for PW: fields and ! ! other cards ! !--------------------------------------------------------! SUBROUTINE read_xml_pw( ) ! ! USE iotk_module, ONLY : iotk_scan_begin, iotk_scan_end USE iotk_unit_interf, ONLY : iotk_rewind ! ! IMPLICIT NONE ! ! INTEGER :: ierr CHARACTER (len = iotk_attlenx) :: attr CHARACTER (len = 30) :: field, card LOGICAL :: found_al, found ! ! ! ... reading ATOMIC_LIST or CHAIN cards ! CALL card_default( 'ATOMIC_LIST' ) CALL card_default( 'CHAIN' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, 'atomic_list', found = found_al, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_pw', 'error scanning begin & &of atomic_list card', abs(ierr) ) ! IF ( found_al ) THEN ! CALL iotk_scan_end( xmlinputunit, 'atomic_list', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_pw', 'error scanning end & &of atomic_list card', abs( ierr ) ) ! CALL card_xml_atomic_list( ) ! ELSE ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! CALL iotk_scan_begin( xmlinputunit, 'chain', found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_pw', 'error scanning begin & &of chain card', abs( ierr ) ) ! IF ( found ) THEN CALL iotk_scan_end( xmlinputunit, 'chain', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_pw', 'error scanning & &end of chain card', ABS( ierr ) ) CALL card_xml_chain( ) ELSE CALL errore('read_xml_pw',"neither atomic_list nor chain found", 1 ) ENDIF ENDIF ENDIF ! CALL mp_bcast( found_al, ionode_id, intra_image_comm) ! IF (found_al) THEN CALL card_bcast( 'ATOMIC_LIST' ) ELSE CALL card_bcast( 'CHAIN' ) ENDIF ! ! ! ! ... reading all the FIELDS ! ! ! ... we need to know if startingwfc and starting pot are set startingwfc = 'none' startingpot = 'none' ! IF (ionode) THEN ! CALL read_xml_fields() ! END IF ! ! ! ... some fixval that the previous call of fixval wasn't ! ... able to do ! IF ( calculation == 'nscf' .or. calculation == 'bands' ) THEN ! IF (startingpot == 'none') startingpot = 'file' IF (startingwfc == 'none') startingwfc = 'atomic+random' ! ELSE IF ( restart_mode == 'from_scratch' ) THEN ! IF (startingwfc == 'none') startingwfc = 'atomic+random' IF (startingpot == 'none') startingpot = 'atomic' ! ELSE ! IF (startingwfc == 'none') startingwfc = 'file' IF (startingpot == 'none') startingpot = 'file' ! END IF ! ! ! ! ... checkin of all the parameters inserted in the fields ! IF ( ionode ) THEN ! CALL control_checkin( 'PW' ) CALL system_checkin( 'PW' ) CALL electrons_checkin( 'PW' ) CALL ions_checkin( 'PW' ) CALL cell_checkin( 'PW' ) CALL wannier_checkin( 'PW' ) CALL wannier_ac_checkin( 'PW' ) ! END IF ! ! ! ... bcast all the field parameters ! CALL control_bcast( ) CALL system_bcast( ) CALL electrons_bcast( ) CALL ions_bcast( ) CALL cell_bcast() CALL press_ai_bcast() CALL wannier_bcast() CALL wannier_ac_bcast() ! ! ! ... second step : reading of the remaining cards ! ! ! ... reading CONSTRAINTS card ! card = 'constraints' CALL card_default( 'CONSTRAINTS' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim(card), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_constraints( ) ! CALL iotk_scan_end( xmlinputunit, trim(card), ierr = ierr) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id, intra_image_comm ) ! IF ( found ) CALL card_bcast( 'CONSTRAINTS' ) ! ! ! ... reading K_POINTS card ! card = 'k_points' CALL card_default( 'K_POINTS' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim( card ), attr = attr, found = found,& ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_kpoints( attr ) ! CALL iotk_scan_end( xmlinputunit, trim( card ), ierr = ierr) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! CALL errore('read_xml_pw', 'K_POINTS card was not found', 1) ! END IF ! END IF ! CALL card_bcast( 'K_POINTS' ) ! ! ! ... reading OCCUPATIONS card ! card = 'occupations' CALL card_default( 'OCCUPATIONS' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim( card ), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_occupations() ! CALL iotk_scan_end( xmlinputunit, trim( card ), ierr = ierr ) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id, intra_image_comm ) ! IF ( found ) CALL card_bcast( 'OCCUPATIONS' ) ! ! ! ... reading CLIMBING_IMAGES card ! card = 'climbing_images' CALL card_default( 'CLIMBING_IMAGES' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim( card ), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_climbing_images() ! CALL iotk_scan_end( xmlinputunit, trim( card ), ierr = ierr ) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id, intra_image_comm ) ! IF ( found ) CALL card_bcast( 'CLIMBING_IMAGES' ) ! ! ! ! RETURN ! 9 CALL errore('read_xml_pw', 'error reading begin tag of '//card//' card', ABS( ierr ) ) 10 CALL errore('read_xml_pw', 'error reading end tag of '//card//' card', ABS( ierr ) ) ! ! END SUBROUTINE read_xml_pw ! ! ! !--------------------------------------------------------! ! The rest of the reading for CP program : fileds and ! ! other cards ! !--------------------------------------------------------! SUBROUTINE read_xml_cp( ) ! ! USE iotk_module, ONLY : iotk_scan_begin, iotk_scan_end USE iotk_unit_interf, ONLY : iotk_rewind ! ! IMPLICIT NONE ! ! INTEGER :: ierr CHARACTER (len = iotk_attlenx) :: attr CHARACTER (len = 30) :: field, card LOGICAL :: found ! ! ! ... reading ATOMIC_LIST cards ! ! CALL card_default( 'ATOMIC_LIST' ) ! IF ( ionode ) THEN ! IF ( ( trim( calculation ) == 'neb' ) .or. ( trim( calculation ) == 'smd' ) ) THEN CALL card_xml_chain ( ) ELSE CALL card_xml_atomic_list ( ) END IF ! END IF ! CALL card_bcast( 'ATOMIC_LIST' ) ! ! ! ... reading all the FIELDS ! IF (ionode) THEN ! CALL read_xml_fields() ! END IF ! ! ! ... checkin of all the parameters inserted in the fields ! IF ( ionode ) THEN ! CALL control_checkin( 'CP' ) CALL system_checkin( 'CP' ) CALL electrons_checkin( 'CP' ) CALL ions_checkin( 'CP' ) CALL cell_checkin( 'CP' ) CALL wannier_checkin( 'CP' ) CALL wannier_ac_checkin( 'CP' ) ! END IF ! ! ! ... bcast all the field parameters ! CALL control_bcast( ) CALL system_bcast( ) CALL electrons_bcast( ) CALL ions_bcast( ) CALL cell_bcast() CALL press_ai_bcast() CALL wannier_bcast() CALL wannier_ac_bcast() ! ! ! ... second step : reading of the remaining cards ! ! ! ... reading CONSTRAINTS card ! card = 'constraints' CALL card_default( 'CONSTRAINTS' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim(card), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_constraints( ) ! CALL iotk_scan_end( xmlinputunit, trim(card), ierr = ierr) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id, intra_image_comm ) ! IF ( found ) CALL card_bcast( 'CONSTRAINTS' ) ! ! ... reading OCCUPATIONS card ! card = 'occupations' CALL card_default( 'OCCUPATIONS' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim( card ), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_occupations() ! CALL iotk_scan_end( xmlinputunit, trim( card ), ierr = ierr ) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id, intra_image_comm ) ! IF ( found ) CALL card_bcast( 'OCCUPATIONS' ) ! ! ! ... reading CLIMBING_IMAGES card ! card = 'climbing_images' CALL card_default( 'CLIMBING_IMAGES' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim( card ), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_climbing_images() ! CALL iotk_scan_end( xmlinputunit, trim( card ), ierr = ierr ) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id, intra_image_comm ) ! IF ( found ) CALL card_bcast( 'CLIMBING_IMAGES' ) ! ! ! ... reading CLIMBING_IMAGES card ! card = 'plot_wannier' CALL card_default( 'PLOT_WANNIER' ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( xmlinputunit, trim( card ), found = found, ierr = ierr ) IF ( ierr /= 0 ) GO TO 9 ! IF ( found ) THEN ! CALL card_xml_plot_wannier() ! CALL iotk_scan_end( xmlinputunit, trim( card ), ierr = ierr ) IF ( ierr /= 0 ) GOTO 10 ! ELSE ! ! ... due to a iotk problem with gfortran compiler CALL iotk_rewind( xmlinputunit ) ! END IF ! END IF ! CALL mp_bcast ( found, ionode_id, intra_image_comm ) ! IF ( found ) CALL card_bcast( 'PLOT_WANNIER' ) ! ! ! ! RETURN ! 9 CALL errore('read_xml_pw', 'error reading begin tag of '//card//' card', ABS( ierr ) ) 10 CALL errore('read_xml_pw', 'error reading end tag of '//card//' card', ABS( ierr ) ) ! ! END SUBROUTINE read_xml_cp ! ! ! END MODULE read_xml_module espresso-5.1/Modules/qmmm.f900000644000175000017500000001606412341373034014210 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !==-----------------------------------------------------------------------==! MODULE qmmm !==---------------------------------------------------------------------==! USE io_global, ONLY : ionode, ionode_id, stdout USE mp_world, ONLY : world_comm USE mp, ONLY : mp_bcast, mp_barrier, mp_abort USE kinds, ONLY : DP USE parallel_include IMPLICIT NONE ! SAVE ! PRIVATE ! ! ... MPI communicator to the QM/MM control process, if MPI is used INTEGER :: qmmm_comm = MPI_COMM_NULL ! ... number of QM/MM steps INTEGER :: qmmm_step = -1 ! INTEGER :: qmmm_mode = -1 ! mode = <0: QM/MM disabled ! mode = 0: not properly set up ! mode = 1: mechanical coupling ! mode = 2: electrostatic coupling ! ! verbosity level INTEGER :: qmmm_verb = -1 ! ! message tags. keep consistent with MM code INTEGER, PARAMETER :: QMMM_TAG_OTHER=0 INTEGER, PARAMETER :: QMMM_TAG_SIZE=1 INTEGER, PARAMETER :: QMMM_TAG_COORD=2 INTEGER, PARAMETER :: QMMM_TAG_FORCE=3 ! ! convert forces to LAMMPS "real" units REAL(DP), PARAMETER :: QMMM_FORCE_CONV = 592.91102087727177_DP ! ! Number of atoms of the QM/MM systems INTEGER :: nat_qm ! buffer for converting forces and positions REAL(DP), ALLOCATABLE :: tmp_buf(:,:) ! center of mass of the system REAL(DP), DIMENSION(3) :: r0 = (/ 0.0_DP, 0.0_DP, 0.0_DP /) LOGICAL :: do_init_r0 = .TRUE. PUBLIC :: qmmm_config, qmmm_initialization, qmmm_shutdown PUBLIC :: qmmm_update_positions, qmmm_update_forces, qmmm_add_mm_field CONTAINS ! configure the qm/mm interface SUBROUTINE qmmm_config( mode, comm, verbose, step ) IMPLICIT NONE INTEGER, OPTIONAL, INTENT(IN) :: mode, comm, verbose, step IF (PRESENT(mode)) qmmm_mode = mode IF (PRESENT(comm)) qmmm_comm = comm IF (PRESENT(verbose)) qmmm_verb = verbose IF (PRESENT(step)) qmmm_step = step END SUBROUTINE qmmm_config SUBROUTINE qmmm_initialization USE input_parameters, ONLY : calculation, nstep, nat ! IMPLICIT NONE INTEGER :: ierr IF (qmmm_mode < 0) RETURN ! send global configuration parameters to all ranks CALL mp_bcast(qmmm_mode, ionode_id, world_comm) CALL mp_bcast(qmmm_step, ionode_id, world_comm) nat_qm = nat IF (ionode) THEN WRITE(stdout,'(/,5X,A)') "QMMM: Initializing QM/MM interface" IF (qmmm_comm /= MPI_COMM_NULL) THEN WRITE(stdout,'(5X,A)') "QMMM: Using MPI based communication" ELSE WRITE(stdout,'(5X,A)') "QMMM: Using MS2 daemon based communication" END IF IF (qmmm_mode == 0) THEN WRITE(stdout,'(5X,A)') "QMMM: Running in dummy mode" ELSE IF (qmmm_mode == 1) THEN WRITE(stdout,'(5X,A)') "QMMM: Using mechanical coupling" ELSE IF (qmmm_mode == 2) THEN WRITE(stdout,'(5X,A)') "QMMM: Using electrostatic coupling" END IF END IF ! make sure we have sane settings IF (TRIM( calculation ) /= 'md' ) THEN if (ionode) & WRITE(stdout,'(5X,A)') "QMMM Error: 'md' calculation required." CALL mp_abort(255,world_comm) END IF IF (nstep /= qmmm_step) THEN IF (ionode) WRITE(stdout,'(5X,A,I6,A,I6)') & 'QMMM: Adjusting number of steps from', nstep, ' to', qmmm_step nstep = qmmm_step END IF ! only ionode communicates with MM master IF (ionode) THEN IF (qmmm_comm /= MPI_COMM_NULL) THEN #if defined(__MPI) CALL mpi_send(nat_qm,1,MPI_INTEGER,0,QMMM_TAG_SIZE,qmmm_comm,ierr) #else WRITE(stdout,*) 'Use of QM/MM requires compilation with MPI' STOP 200 #endif END IF END IF CALL mp_bcast(nstep, ionode_id, world_comm) ! temporary storage ALLOCATE( tmp_buf(3,nat_qm) ) END SUBROUTINE qmmm_initialization ! private subroutine SUBROUTINE qmmm_center_molecule USE cell_base, ONLY : alat, at USE ions_base, ONLY : nat USE ions_base, ONLY : tau IMPLICIT NONE LOGICAL, SAVE::firstexec = .TRUE. INTEGER:: i ! New geometric center REAL(DP), DIMENSION(3):: gc = (/0.0d0, 0.0d0, 0.0d0/) REAL(DP), DIMENSION(3):: qm_bc = (/0.5d0, 0.5d0, 0.5d0/) IF (firstexec) THEN ! Take the geometric center during first call r0 = SUM(tau, dim = 2) / nat WRITE(stdout,'(5X,A,3F10.6)') 'QMMM: r0(old) ', r0 r0 = MATMUL(at,qm_bc) WRITE(stdout,'(5X,A,3F10.6)') 'QMMM: r0(new) ', r0 firstexec = .FALSE. END IF ! Recenter the system. gc = SUM(tau, dim = 2) / nat ! delta = r0 - r1 DO i = 1, nat tau(1,i) = tau(1,i) - gc(1) + r0(1) tau(2,i) = tau(2,i) - gc(2) + r0(2) tau(3,i) = tau(3,i) - gc(3) + r0(3) END DO END SUBROUTINE qmmm_center_molecule ! update positions of the QM system from MM-master SUBROUTINE qmmm_update_positions USE constants, ONLY : bohr_radius_angs USE cell_base, ONLY : alat USE ions_base, ONLY : tau IMPLICIT NONE INTEGER :: ierr IF (qmmm_mode < 0) RETURN IF (ionode .and. (qmmm_verb > 0)) & WRITE(stdout,'(/,5X,A)') 'QMMM: update positions' ! Receive coordinates (from LAMMPS) and broadcast to all processors IF (ionode) THEN #if defined(__MPI) CALL mpi_recv(tau(1,1),3*nat_qm,MPI_DOUBLE_PRECISION, & 0,QMMM_TAG_COORD,qmmm_comm,MPI_STATUS_IGNORE,ierr) ! convert from angstrom to alat units tau = tau / (alat * bohr_radius_angs) #else WRITE(stdout,*) 'Use of QM/MM requires compilation with MPI support' STOP 201 #endif CALL qmmm_center_molecule END IF CALL mp_bcast(tau, ionode_id, world_comm) END SUBROUTINE qmmm_update_positions ! communicate forces of the QM system to MM-master SUBROUTINE qmmm_update_forces(force) REAL(DP), INTENT(IN) :: force(:,:) INTEGER :: ierr IF (qmmm_mode < 0) RETURN IF (ionode .and. (qmmm_verb > 0)) & WRITE(stdout,'(/,5X,A)') 'QMMM: update forces' IF (ionode) THEN #if defined(__MPI) ! convert from atomic to real units tmp_buf = force * QMMM_FORCE_CONV CALL mpi_send(tmp_buf,3*nat_qm,MPI_DOUBLE_PRECISION, & 0,QMMM_TAG_FORCE,qmmm_comm,ierr) #else WRITE(stdout,*) 'Use of QM/MM requires compilation with MPI support' STOP 201 #endif END IF END SUBROUTINE qmmm_update_forces ! add electrostatic field of MM system to QM system SUBROUTINE qmmm_add_mm_field IF (qmmm_mode /= 2) RETURN IF (ionode .and. (qmmm_verb > 0)) & WRITE(stdout,'(/,5X,A)') 'QMMM: add mm field' END SUBROUTINE qmmm_add_mm_field ! cleanup of QM/MM. free resources SUBROUTINE qmmm_shutdown IMPLICIT NONE ! IF (qmmm_mode < 0) RETURN IF (ionode) THEN WRITE(stdout,'(/,5X,A)') "QMMM: Shutting down QM/MM coupling" END IF deallocate( tmp_buf ) END SUBROUTINE qmmm_shutdown END MODULE qmmm espresso-5.1/Modules/io_files.f900000644000175000017500000003220212341373034015022 0ustar mbamba! ! Copyright (C) 2002-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE io_files !=----------------------------------------------------------------------------=! ! USE parameters, ONLY: ntypx ! ! ... I/O related variables: file names, units, utilities ! IMPLICIT NONE ! SAVE ! ... directory for all temporary files CHARACTER(len=256) :: tmp_dir = './' ! ... directory for large files on each node. Default: same as tmp_dir CHARACTER(len=256) :: wfc_dir = 'undefined' ! ... prefix is prepended to all file (and directory) names CHARACTER(len=256) :: prefix = 'os' ! ... for parallel case and distributed I/O: node number CHARACTER(len=6) :: nd_nmbr = '000000' ! ... directory where pseudopotential files are found CHARACTER(len=256) :: pseudo_dir = './' ! ... location of PP files after a restart from file CHARACTER(len=256) :: pseudo_dir_cur = ' ' CHARACTER(len=256) :: psfile( ntypx ) = 'UPF' CHARACTER(len=256) :: outdir = './' ! CHARACTER(len=256) :: qexml_version = ' ' ! the format of the current qexml datafile LOGICAL :: qexml_version_init = .FALSE. ! whether the fmt has been read or not ! CHARACTER(LEN=256) :: input_drho = ' ' ! name of the file with the input drho CHARACTER(LEN=256) :: output_drho = ' ' ! name of the file with the output drho ! CHARACTER(LEN=5 ), PARAMETER :: crash_file = 'CRASH' CHARACTER (LEN=261) :: exit_file = 'os.EXIT' ! file required for a soft exit ! CHARACTER (LEN=9), PARAMETER :: xmlpun_base = 'data-file' CHARACTER (LEN=13), PARAMETER :: xmlpun = xmlpun_base // '.xml' ! ! ... The units where various variables are saved ! ... Only units that are kept open during the run should be listed here ! INTEGER :: iunres = 1 ! unit for the restart of the run INTEGER :: iunpun = 4 ! unit for saving the final results INTEGER :: iunwfc = 10 ! unit with wavefunctions INTEGER :: iunoldwfc = 11 ! unit with old wavefunctions INTEGER :: iunoldwfc2 = 12 ! as above at step -2 INTEGER :: iunhub = 13 ! unit for saving Hubbard-U atomic wfcs INTEGER :: iunsat = 14 ! unit for saving (orthogonal) atomic wfcs * S INTEGER :: iunmix = 15 ! unit for saving mixing information INTEGER :: iunigk = 16 ! unit for saving indices ! INTEGER :: iunexit = 26 ! unit for a soft exit INTEGER :: iunupdate = 27 ! unit for saving old positions (extrapolation) INTEGER :: iunnewimage = 28 ! unit for parallelization among images INTEGER :: iunlock = 29 ! as above (locking file) ! INTEGER :: iunbfgs = 30 ! unit for the bfgs restart file ! INTEGER :: iuntmp = 90 ! temporary unit, when used must be closed ASAP ! INTEGER :: nwordwfc = 2 ! length of record in wavefunction file INTEGER :: nwordatwfc = 2 ! length of record in atomic wfc file INTEGER :: nwordwfcU = 2 ! length of record in atomic hubbard wfc file INTEGER :: nwordwann = 2 ! length of record in sic wfc file ! !... finite electric field ! INTEGER :: iunefield = 31 ! unit to store wavefunction for calculating ! electric field operator INTEGER :: iunefieldm = 32 ! unit to store projectors for hermitean ! electric field potential INTEGER :: iunefieldp = 33 ! unit to store projectors for hermitean ! electric field potential ! ! ... For Wannier Hamiltonian ! INTEGER :: iunwpp = 113 INTEGER :: iunwf = 114 INTEGER :: nwordwpp = 2 INTEGER :: nwordwf = 2 ! CONTAINS ! !-------------------------------------------------------------------------- SUBROUTINE delete_if_present( filename, in_warning ) !-------------------------------------------------------------------------- ! USE io_global, ONLY : ionode, stdout ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: filename LOGICAL, OPTIONAL, INTENT(IN) :: in_warning LOGICAL :: exst, warning INTEGER :: iunit INTEGER, EXTERNAL :: find_free_unit ! IF ( .NOT. ionode ) RETURN ! INQUIRE( FILE = filename, EXIST = exst ) ! IF ( exst ) THEN ! iunit = find_free_unit() ! warning = .FALSE. ! IF ( PRESENT( in_warning ) ) warning = in_warning ! OPEN( UNIT = iunit, FILE = filename , STATUS = 'OLD' ) CLOSE( UNIT = iunit, STATUS = 'DELETE' ) ! IF ( warning ) & WRITE( UNIT = stdout, FMT = '(/,5X,"WARNING: ",A, & & " file was present; old file deleted")' ) filename ! END IF ! RETURN ! END SUBROUTINE delete_if_present ! !-------------------------------------------------------------------------- FUNCTION check_writable ( file_path, process_id ) RESULT ( ios ) !-------------------------------------------------------------------------- ! ! ... if run by multiple processes, specific "process_id" to avoid ! ... opening, closing, deleting the same file from different processes ! ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: file_path INTEGER, OPTIONAL, INTENT(IN) :: process_id ! INTEGER :: ios ! CHARACTER(LEN=6), EXTERNAL :: int_to_char ! ! ... check whether the scratch directory is writable ! ... note that file_path should end by a "/" ! IF ( PRESENT (process_id ) ) THEN OPEN( UNIT = 4, FILE = TRIM(file_path) // 'test' // & & TRIM( int_to_char ( process_id ) ), & & STATUS = 'UNKNOWN', FORM = 'UNFORMATTED', IOSTAT = ios ) ELSE OPEN( UNIT = 4, FILE = TRIM(file_path) // 'test', & STATUS = 'UNKNOWN', FORM = 'UNFORMATTED', IOSTAT = ios ) END IF ! CLOSE( UNIT = 4, STATUS = 'DELETE' ) ! !----------------------------------------------------------------------- END FUNCTION check_writable !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine diropn (unit, extension, recl, exst, tmp_dir_) !----------------------------------------------------------------------- ! ! this routine opens a file named "prefix"."extension" in tmp_dir ! for direct I/O access ! If appropriate, the node number is added to the file name ! #if defined(__SX6) # define DIRECT_IO_FACTOR 1 #else # define DIRECT_IO_FACTOR 8 #endif ! ! the record length in direct-access I/O is given by the number of ! real*8 words times DIRECT_IO_FACTOR (may depend on the compiler) ! USE kinds implicit none ! ! first the input variables ! character(len=*) :: extension ! input: name of the file to open character(len=*), optional :: tmp_dir_ ! optional variable, if present it is used as tmp_dir integer :: unit, recl ! input: unit of the file to open ! input: length of the records logical :: exst ! output: if true the file exists ! ! local variables ! character(len=256) :: tempfile, filename ! complete file name integer :: ios integer*8 :: unf_recl ! used to check I/O operations ! length of the record logical :: opnd ! Check if the optional variable tmp_dir is included ! ! if true the file is already opened ! if (unit < 0) call errore ('diropn', 'wrong unit', 1) ! ! we first check that the file is not already openend ! ios = 0 inquire (unit = unit, opened = opnd) if (opnd) call errore ('diropn', "can't open a connected unit", abs(unit)) ! ! then we check the filename extension ! if (extension == ' ') call errore ('diropn','filename extension not given',2) filename = trim(prefix) // "." // trim(extension) if (present(tmp_dir_)) then tempfile = trim(tmp_dir_) // trim(filename) //nd_nmbr else tempfile = trim(tmp_dir) // trim(filename) //nd_nmbr endif inquire (file = tempfile, exist = exst) ! ! the unit for record length is unfortunately machine-dependent ! unf_recl = DIRECT_IO_FACTOR * int(recl, kind=kind(unf_recl)) if (unf_recl <= 0) call errore ('diropn', 'wrong record length', 3) ! open (unit, file = trim(adjustl(tempfile)), iostat = ios, form = 'unformatted', & status = 'unknown', access = 'direct', recl = unf_recl) if (ios /= 0) call errore ('diropn', 'error opening '//trim(tempfile), unit) return !----------------------------------------------------------------------- end subroutine diropn !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine seqopn (unit, extension, formatt, exst, tmp_dir_) !----------------------------------------------------------------------- ! ! this routine opens a file named "prefix"."extension" ! in tmp_dir for sequential I/O access ! If appropriate, the node number is added to the file name ! implicit none ! ! first the dummy variables ! character(len=*) :: formatt, extension ! input: name of the file to connect ! input: 'formatted' or 'unformatted' character(len=*), optional :: tmp_dir_ ! optional variable, if present it is used as tmp_dir integer :: unit ! input: unit to connect logical :: exst ! output: true if the file already exist ! ! here the local variables ! character(len=256) :: tempfile, filename ! complete file name integer :: ios ! integer variable to test I/O status logical :: opnd ! true if the file is already opened if (unit < 1) call errore ('seqopn', 'wrong unit', 1) ! ! test if the file is already opened ! ios = 0 inquire (unit = unit, opened = opnd) if (opnd) call errore ('seqopn', "can't open a connected unit", & abs (unit) ) ! ! then we check the extension of the filename ! if (extension.eq.' ') call errore ('seqopn','filename extension not given',2) filename = trim(prefix) // "." // trim(extension) ! Use the tmp_dir from input, if available if ( present(tmp_dir_) ) then tempfile = trim(tmp_dir_) // trim(filename) else tempfile = trim(tmp_dir) // trim(filename) end if if ( trim(nd_nmbr) /= '1' .and. trim(nd_nmbr) /= '01' .and. & trim(nd_nmbr) /= '001' .and. trim(nd_nmbr) /= '0001' .and. & trim(nd_nmbr) /= '00001' .and. trim(nd_nmbr) /= '000001' ) then ! ! do not add processor number to files opened by processor 1 ! in parallel execution: if only the first processor writes, ! we do not want the filename to be dependent on the number ! of processors ! tempfile = trim(tempfile) // nd_nmbr end if inquire (file = tempfile, exist = exst) ! ! Open the file ! open (unit = unit, file = tempfile, form = formatt, status = & 'unknown', iostat = ios) if (ios /= 0) call errore ('seqopn', 'error opening '//trim(tempfile), unit) return !----------------------------------------------------------------------- end subroutine seqopn !----------------------------------------------------------------------- ! !=----------------------------------------------------------------------------=! END MODULE io_files !=----------------------------------------------------------------------------=! ! !---------------------------------------------------------------------------- SUBROUTINE davcio( vect, nword, unit, nrec, io ) !---------------------------------------------------------------------------- ! ! ... direct-access vector input/output ! ... read/write nword words starting from the address specified by vect ! USE io_global, ONLY : stdout USE kinds, ONLY : DP ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nword, unit, nrec, io ! input: the dimension of vect ! input: the unit where to read/write ! input: the record where to read/write ! input: flag if < 0 reading if > 0 writing REAL(DP), INTENT(INOUT) :: vect(nword) ! input/output: the vector to read/write ! INTEGER :: ios ! integer variable for I/O control LOGICAL :: opnd CHARACTER*256 :: name ! ! CALL start_clock( 'davcio' ) ! IF ( unit <= 0 ) CALL errore( 'davcio', 'wrong unit', 1 ) IF ( nrec <= 0 ) CALL errore( 'davcio', 'wrong record number', 2 ) IF ( nword <= 0 ) CALL errore( 'davcio', 'wrong record length', 3 ) IF ( io == 0 ) CALL infomsg( 'davcio', 'nothing to do?' ) ! INQUIRE( UNIT = unit, OPENED = opnd, NAME = name ) ! IF ( .NOT. opnd ) & CALL errore( 'davcio', 'unit is not opened', unit ) ! ios = 0 ! IF ( io < 0 ) THEN ! READ( UNIT = unit, REC = nrec, IOSTAT = ios ) vect IF ( ios /= 0 ) CALL errore( 'davcio', & & 'error while reading from file "' // TRIM(name) // '"', unit ) ! ELSE IF ( io > 0 ) THEN ! WRITE( UNIT = unit, REC = nrec, IOSTAT = ios ) vect IF ( ios /= 0 ) CALL errore( 'davcio', & & 'error while writing from file "' // TRIM(name) // '"', unit ) ! END IF ! CALL stop_clock( 'davcio' ) ! RETURN ! END SUBROUTINE davcio espresso-5.1/Modules/read_cards.f900000644000175000017500000016274212341373034015335 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------------- MODULE read_cards_module !--------------------------------------------------------------------------- ! ! ... This module handles the reading of cards from standard input ! ... Original version written by Carlo Cavazzoni ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : angstrom_au USE parser, ONLY : field_count, read_line, get_field, parse_unit USE io_global, ONLY : ionode, ionode_id ! USE input_parameters ! IMPLICIT NONE ! SAVE ! PRIVATE ! PUBLIC :: read_cards ! ! ... end of module-scope declarations ! ! ---------------------------------------------- ! CONTAINS ! ! ... Read CARDS .... ! ! ... subroutines ! !---------------------------------------------------------------------- SUBROUTINE card_default_values( ) !---------------------------------------------------------------------- ! USE autopilot, ONLY : init_autopilot ! IMPLICIT NONE ! ! ! ... mask that control the printing of selected Kohn-Sham occupied ! ... orbitals, default allocation ! CALL allocate_input_iprnks( 0, nspin ) nprnks = 0 ! ! ... Simulation cell from standard input ! trd_ht = .false. rd_ht = 0.0_DP ! ! ... dipole ! tdipole_card = .false. ! ! ... Constraints ! nconstr_inp = 0 constr_tol_inp = 1.E-6_DP ! ! ... ionic mass initialization ! atom_mass = 0.0_DP ! ! ... dimension of the real space Ewald summation ! iesr_inp = 1 ! ! ... k-points ! k_points = 'gamma' tk_inp = .false. nkstot = 1 nk1 = 0 nk2 = 0 nk3 = 0 k1 = 0 k2 = 0 k3 = 0 ! ! ... Electronic states ! tf_inp = .false. ! ! ... ion_velocities ! tavel = .false. ! CALL init_autopilot() ! RETURN ! END SUBROUTINE card_default_values ! ! !---------------------------------------------------------------------- SUBROUTINE read_cards ( prog, unit ) !---------------------------------------------------------------------- ! USE autopilot, ONLY : card_autopilot ! IMPLICIT NONE ! INTEGER, INTENT(IN), optional :: unit ! CHARACTER(len=2) :: prog ! calling program ( PW, CP, WA ) CHARACTER(len=256) :: input_line CHARACTER(len=80) :: card CHARACTER(len=1), EXTERNAL :: capital LOGICAL :: tend INTEGER :: i ! ! read_line reads from unit parse_unit ! IF (present(unit)) THEN parse_unit = unit ELSE parse_unit = 5 END IF ! CALL card_default_values( ) ! 100 CALL read_line( input_line, end_of_file=tend ) ! IF( tend ) GOTO 120 IF( input_line == ' ' .OR. input_line(1:1) == '#' .OR. & input_line(1:1) == '!' ) GOTO 100 ! READ (input_line, *) card ! DO i = 1, len_trim( input_line ) input_line( i : i ) = capital( input_line( i : i ) ) ENDDO ! IF ( trim(card) == 'AUTOPILOT' ) THEN ! CALL card_autopilot( input_line ) IF ( prog == 'PW' .and. ionode ) & WRITE( stdout,'(A)') 'Warning: card '//trim(input_line)//' ignored' ! ELSEIF ( trim(card) == 'ATOMIC_SPECIES' ) THEN ! CALL card_atomic_species( input_line, prog ) ! ELSEIF ( trim(card) == 'ATOMIC_POSITIONS' ) THEN ! CALL card_atomic_positions( input_line, prog ) ! ELSEIF ( trim(card) == 'ATOMIC_FORCES' ) THEN ! CALL card_atomic_forces( input_line, prog ) ! ELSEIF ( trim(card) == 'CONSTRAINTS' ) THEN ! CALL card_constraints( input_line ) ! ELSEIF ( trim(card) == 'DIPOLE' ) THEN ! CALL card_dipole( input_line ) IF ( prog == 'PW' .and. ionode ) & WRITE( stdout,'(A)') 'Warning: card '//trim(input_line)//' ignored' ! ELSEIF ( trim(card) == 'ESR' ) THEN ! CALL card_esr( input_line ) IF ( prog == 'PW' .and. ionode ) & WRITE( stdout,'(A)') 'Warning: card '//trim(input_line)//' ignored' ! ELSEIF ( trim(card) == 'K_POINTS' ) THEN ! IF ( ( prog == 'CP' ) ) THEN IF( ionode ) & WRITE( stdout,'(A)') 'Warning: card '//trim(input_line)//' ignored' ELSE CALL card_kpoints( input_line ) ENDIF ! ELSEIF ( trim(card) == 'OCCUPATIONS' ) THEN ! CALL card_occupations( input_line ) ! ELSEIF ( trim(card) == 'CELL_PARAMETERS' ) THEN ! CALL card_cell_parameters( input_line ) ! ELSEIF ( trim(card) == 'ATOMIC_VELOCITIES' ) THEN ! CALL card_ion_velocities( input_line ) ! ELSEIF ( trim(card) == 'KSOUT' ) THEN ! CALL card_ksout( input_line ) IF ( ( prog == 'PW' ) .and. ionode ) & WRITE( stdout,'(a)') 'Warning: card '//trim(input_line)//' ignored' ! ELSEIF ( trim(card) == 'PLOT_WANNIER' ) THEN ! CALL card_plot_wannier( input_line ) ELSEIF ( trim(card) == 'WANNIER_AC' .and. ( prog == 'WA' )) THEN ! CALL card_wannier_ac( input_line ) ELSE ! IF ( ionode ) & WRITE( stdout,'(A)') 'Warning: card '//trim(input_line)//' ignored' ! ENDIF ! ! ... END OF LOOP ... ! ! GOTO 100 ! 120 CONTINUE ! RETURN ! END SUBROUTINE read_cards ! ! ... Description of the allowed input CARDS ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! ATOMIC_SPECIES ! ! set the atomic species been read and their pseudopotential file ! ! Syntax: ! ! ATOMIC_SPECIE ! label(1) mass(1) psfile(1) ! ... ... ... ! label(n) mass(n) psfile(n) ! ! Example: ! ! ATOMIC_SPECIES ! O 16.0 O.BLYP.UPF ! H 1.00 H.fpmd.UPF ! ! Where: ! ! label(i) ( character(len=4) ) label of the atomic species ! mass(i) ( real ) atomic mass ! ( in u.m.a, carbon mass is 12.0 ) ! psfile(i) ( character(len=80) ) file name of the pseudopotential ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_atomic_species( input_line, prog ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line CHARACTER(len=2) :: prog INTEGER :: is, ip, ierr CHARACTER(len=4) :: lb_pos CHARACTER(len=256) :: psfile ! ! IF ( taspc ) THEN CALL errore( ' card_atomic_species ', ' two occurrences', 2 ) ENDIF IF ( ntyp > nsx ) THEN CALL errore( ' card_atomic_species ', ' nsp out of range ', ntyp ) ENDIF ! DO is = 1, ntyp ! CALL read_line( input_line ) READ( input_line, *, iostat=ierr ) lb_pos, atom_mass(is), psfile CALL errore( ' card_atomic_species ', & 'cannot read atomic specie from: '//trim(input_line), abs(ierr)) atom_pfile(is) = trim( psfile ) lb_pos = adjustl( lb_pos ) atom_label(is) = trim( lb_pos ) ! DO ip = 1, is - 1 IF ( atom_label(ip) == atom_label(is) ) THEN CALL errore( ' card_atomic_species ', & & ' two occurrences of the same atomic label ', is ) ENDIF ENDDO ! ENDDO taspc = .true. ! RETURN ! END SUBROUTINE card_atomic_species ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! ATOMIC_POSITIONS ! ! set the atomic positions in the cell ! ! Syntax: ! ! ATOMIC_POSITIONS (units_option) ! label(1) tau(1,1) tau(2,1) tau(3,1) mbl(1,1) mbl(2,1) mbl(3,1) ! label(2) tau(1,2) tau(2,2) tau(3,2) mbl(1,2) mbl(2,2) mbl(3,2) ! ... ... ... ... ... ! label(n) tau(1,n) tau(2,n) tau(3,n) mbl(1,3) mbl(2,3) mbl(3,3) ! ! Example: ! ! ATOMIC_POSITIONS (bohr) ! O 0.0099 0.0099 0.0000 0 0 0 ! H 1.8325 -0.2243 -0.0001 1 1 1 ! H -0.2243 1.8325 0.0002 1 1 1 ! ! Where: ! ! units_option == crystal position are given in scaled units ! units_option == bohr position are given in Bohr ! units_option == angstrom position are given in Angstrom ! units_option == alat position are given in units of alat ! ! label(k) ( character(len=4) ) atomic type ! tau(:,k) ( real ) coordinates of the k-th atom ! mbl(:,k) ( integer ) mbl(i,k) > 0 the i-th coord. of the ! k-th atom is allowed to be moved ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_atomic_positions( input_line, prog ) ! USE wrappers, ONLY: feval_infix ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line CHARACTER(len=2) :: prog CHARACTER(len=4) :: lb_pos INTEGER :: ia, k, is, nfield, idx, rep_i LOGICAL, EXTERNAL :: matches LOGICAL :: tend ! INTEGER :: ifield, ierr REAL(DP) :: field_value CHARACTER(len=256) :: field_str, error_msg ! ! IF ( tapos ) THEN CALL errore( 'card_atomic_positions', 'two occurrences', 2 ) ENDIF IF ( .not. taspc ) THEN CALL errore( 'card_atomic_positions', & & 'ATOMIC_SPECIES must be present before', 2 ) ENDIF IF ( ntyp > nsx ) THEN CALL errore( 'card_atomic_positions', 'nsp out of range', ntyp ) ENDIF IF ( nat < 1 ) THEN CALL errore( 'card_atomic_positions', 'nat out of range', nat ) ENDIF ! CALL allocate_input_ions(ntyp,nat) ! if_pos = 1 ! sp_pos = 0 rd_pos = 0.0_DP na_inp = 0 ! IF ( matches( "CRYSTAL", input_line ) ) THEN atomic_positions = 'crystal' ELSEIF ( matches( "BOHR", input_line ) ) THEN atomic_positions = 'bohr' ELSEIF ( matches( "ANGSTROM", input_line ) ) THEN atomic_positions = 'angstrom' ELSEIF ( matches( "ALAT", input_line ) ) THEN atomic_positions = 'alat' ELSE IF ( trim( adjustl( input_line ) ) /= 'ATOMIC_POSITIONS' ) THEN CALL errore( 'read_cards ', & & 'unknown option for ATOMIC_POSITION: '& & // input_line, 1 ) ENDIF CALL infomsg( 'read_cards ', & & 'DEPRECATED: no units specified in ATOMIC_POSITIONS card' ) IF ( prog == 'CP' ) atomic_positions = 'bohr' IF ( prog == 'PW' ) atomic_positions = 'alat' CALL infomsg( 'read_cards ', & & 'ATOMIC_POSITIONS: units set to '//TRIM(atomic_positions) ) ENDIF ! reader_loop : DO ia = 1,nat ! CALL read_line( input_line, end_of_file = tend ) IF ( tend ) CALL errore( 'read_cards', & 'end of file reading atomic positions', ia ) ! CALL field_count( nfield, input_line ) ! IF ( sic /= 'none' .and. nfield /= 8 ) & CALL errore( 'read_cards', & 'ATOMIC_POSITIONS with sic, 8 columns required', 1 ) ! IF ( nfield /= 4 .and. nfield /= 7 .and. nfield /= 8) & CALL errore( 'read_cards', 'wrong number of columns ' // & & 'in ATOMIC_POSITIONS', ia ) ! read atom symbol (column 1) and coordinate CALL get_field(1, lb_pos, input_line) lb_pos = trim(lb_pos) ! error_msg = 'Error while parsing atomic position card.' ! read field 2 (atom X coordinate) CALL get_field(2, field_str, input_line) rd_pos(1,ia) = feval_infix(ierr, field_str ) CALL errore('card_atomic_positions', error_msg, ierr) ! read field 2 (atom Y coordinate) CALL get_field(3, field_str, input_line) rd_pos(2,ia) = feval_infix(ierr, field_str ) CALL errore('card_atomic_positions', error_msg, ierr) ! read field 2 (atom Z coordinate) CALL get_field(4, field_str, input_line) rd_pos(3,ia) = feval_infix(ierr, field_str ) CALL errore('card_atomic_positions', error_msg, ierr) ! IF ( nfield >= 7 ) THEN ! read constrains (fields 5-7, if present) CALL get_field(5, field_str, input_line) READ(field_str, *) if_pos(1,ia) CALL get_field(6, field_str, input_line) READ(field_str, *) if_pos(2,ia) CALL get_field(7, field_str, input_line) READ(field_str, *) if_pos(3,ia) ENDIF ! IF ( nfield == 8 ) THEN CALL get_field(5, field_str, input_line) READ(field_str, *) id_loc(ia) ENDIF ! match_label: DO is = 1, ntyp ! IF ( trim(lb_pos) == trim( atom_label(is) ) ) THEN ! sp_pos(ia) = is exit match_label ! ENDIF ! ENDDO match_label ! IF( ( sp_pos(ia) < 1 ) .or. ( sp_pos(ia) > ntyp ) ) THEN ! CALL errore( 'read_cards', 'species '//trim(lb_pos)// & & ' in ATOMIC_POSITIONS is nonexistent', ia ) ! ENDIF ! is = sp_pos(ia) ! na_inp(is) = na_inp(is) + 1 ! ENDDO reader_loop ! tapos = .true. ! RETURN ! END SUBROUTINE card_atomic_positions ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! ATOMIC_FORCES ! ! read external forces (in atomic units) from standard input ! ! Syntax: ! ! ATOMIC_FORCES ! label Fx(1) Fy(1) Fz(1) ! ..... ! label Fx(n) Fy(n) Fz(n) ! ! Example: ! ! ??? ! ! Where: ! ! label (character(len=4)) atomic label ! Fx(:), Fy(:) and Fz(:) (REAL) x, y and z component of the external force ! acting on the ions whose coordinate are given ! in the same line in card ATOMIC_POSITION ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_atomic_forces( input_line, prog ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line CHARACTER(len=2) :: prog INTEGER :: ia, k, nfield CHARACTER(len=4) :: lb ! ! IF( tforces ) THEN CALL errore( ' card_atomic_forces ', ' two occurrences ', 2 ) ENDIF ! IF( .not. tapos ) THEN CALL errore( ' card_atomic_forces ', & & ' ATOMIC_SPECIES must be present before ', 2 ) ENDIF ! rd_for = 0.0_DP ! DO ia = 1, nat ! CALL read_line( input_line ) CALL field_count( nfield, input_line ) IF ( nfield == 4 ) THEN READ(input_line,*) lb, ( rd_for(k,ia), k = 1, 3 ) ELSEIF( nfield == 3 ) THEN READ(input_line,*) ( rd_for(k,ia), k = 1, 3 ) ELSE CALL errore( ' iosys ', ' wrong entries in ATOMIC_FORCES ', ia ) ENDIF ! ENDDO ! tforces = .true. ! RETURN ! END SUBROUTINE card_atomic_forces ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! K_POINTS ! ! use the specified set of k points ! ! Syntax: ! ! K_POINTS (mesh_option) ! n ! xk(1,1) xk(2,1) xk(3,1) wk(1) ! ... ... ... ... ! xk(1,n) xk(2,n) xk(3,n) wk(n) ! ! Example: ! ! K_POINTS ! 10 ! 0.1250000 0.1250000 0.1250000 1.00 ! 0.1250000 0.1250000 0.3750000 3.00 ! 0.1250000 0.1250000 0.6250000 3.00 ! 0.1250000 0.1250000 0.8750000 3.00 ! 0.1250000 0.3750000 0.3750000 3.00 ! 0.1250000 0.3750000 0.6250000 6.00 ! 0.1250000 0.3750000 0.8750000 6.00 ! 0.1250000 0.6250000 0.6250000 3.00 ! 0.3750000 0.3750000 0.3750000 1.00 ! 0.3750000 0.3750000 0.6250000 3.00 ! ! Where: ! ! mesh_option == automatic k points mesh is generated automatically ! with Monkhorst-Pack algorithm ! mesh_option == crystal k points mesh is given in stdin in scaled ! units ! mesh_option == tpiba k points mesh is given in stdin in units ! of ( 2 PI / alat ) ! mesh_option == gamma only gamma point is used ( default in ! CPMD simulation ) ! mesh_option == tpiba_b as tpiba but the weights gives the ! number of points between this point ! and the next ! mesh_option == crystal_b as crystal but the weights gives the ! number of points between this point and ! the next ! mesh_option == tpiba_c the code expects three k points ! k_0, k_1, k_2 in tpiba units. ! These points define a rectangle ! in reciprocal space with vertices k_0, k_1, ! k_2, k_1+k_2-k_0: k_0 + \alpha (k_1-k_0)+ ! \beta (k_2-k_0) with 0<\alpha,\beta < 1. ! The code produces a uniform mesh n1 x n2 ! k points in this rectangle. n1 and n2 are ! the weights of k_1 and k_2. The weight of k_0 ! is not used. Useful for contour plots of the ! bands. ! mesh_option == crystal_c as tpiba_c but the k points are given ! in crystal coordinates. ! ! ! n ( integer ) number of k points ! xk(:,i) ( real ) coordinates of i-th k point ! wk(i) ( real ) weights of i-th k point ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_kpoints( input_line ) ! USE bz_form, ONLY : transform_label_coord USE input_parameters, ONLY : ibrav, celldm, point_label_type IMPLICIT NONE ! CHARACTER(len=256) :: input_line, buffer INTEGER :: i, j INTEGER :: nkaux INTEGER, ALLOCATABLE :: wkaux(:) REAL(DP), ALLOCATABLE :: xkaux(:,:) INTEGER :: npk_label, nch CHARACTER(LEN=3), ALLOCATABLE :: letter(:) INTEGER, ALLOCATABLE :: label_list(:) REAL(DP) :: delta, wk0 REAL(DP) :: dkx(3), dky(3) LOGICAL, EXTERNAL :: matches LOGICAL :: tend,terr LOGICAL :: kband = .false. LOGICAL :: kband_plane = .false. ! ! IF ( tkpoints ) THEN CALL errore( ' card_kpoints ', ' two occurrences', 2 ) ENDIF ! IF ( matches( "AUTOMATIC", input_line ) ) THEN ! automatic generation of k-points k_points = 'automatic' ELSEIF ( matches( "CRYSTAL", input_line ) ) THEN ! input k-points are in crystal (reciprocal lattice) axis k_points = 'crystal' IF ( matches( "_B", input_line ) ) kband=.true. IF ( matches( "_C", input_line ) ) kband_plane=.true. ELSEIF ( matches( "TPIBA", input_line ) ) THEN ! input k-points are in 2pi/a units k_points = 'tpiba' IF ( matches( "_B", input_line ) ) kband=.true. IF ( matches( "_C", input_line ) ) kband_plane=.true. ELSEIF ( matches( "GAMMA", input_line ) ) THEN ! Only Gamma (k=0) is used k_points = 'gamma' ELSE ! by default, input k-points are in 2pi/a units k_points = 'tpiba' ENDIF ! IF ( k_points == 'automatic' ) THEN ! ! ... automatic generation of k-points ! nkstot = 0 CALL read_line( input_line, end_of_file = tend, error = terr ) IF (tend) GOTO 10 IF (terr) GOTO 20 READ(input_line, *, END=10, ERR=20) nk1, nk2, nk3, k1, k2 ,k3 IF ( k1 < 0 .or. k1 > 1 .or. & k2 < 0 .or. k2 > 1 .or. & k3 < 0 .or. k3 > 1 ) CALL errore & ('card_kpoints', 'invalid offsets: must be 0 or 1', 1) IF ( nk1 <= 0 .or. nk2 <= 0 .or. nk3 <= 0 ) CALL errore & ('card_kpoints', 'invalid values for nk1, nk2, nk3', 1) ALLOCATE ( xk(3,1), wk(1) ) ! prevents problems with debug flags ! ! when init_startk is called in iosys ELSEIF ( ( k_points == 'tpiba' ) .or. ( k_points == 'crystal' ) ) THEN ! ! ... input k-points ! CALL read_line( input_line, end_of_file = tend, error = terr ) IF (tend) GOTO 10 IF (terr) GOTO 20 READ(input_line, *, END=10, ERR=20) nkstot ! IF (kband) THEN ! ! Only the initial and final k points of the lines are given ! nkaux=nkstot ALLOCATE(xkaux(3,nkstot), wkaux(nkstot)) ALLOCATE ( letter(nkstot) ) ALLOCATE ( label_list(nkstot) ) npk_label=0 DO i = 1, nkstot CALL read_line( input_line, end_of_file = tend, error = terr ) IF (tend) GOTO 10 IF (terr) GOTO 20 DO j=1,256 ! loop over all characters of input_line IF ((ICHAR(input_line(j:j)) < 58 .AND. & ! a digit ICHAR(input_line(j:j)) > 47) & .OR. ICHAR(input_line(j:j)) == 43 .OR. & ! the + sign ICHAR(input_line(j:j))== 45 .OR. & ! the - sign ICHAR(input_line(j:j))== 46 ) THEN ! a dot . ! ! This is a digit, therefore this line contains the coordinates of the ! k point. We read it and exit from the loop on the characters ! READ(input_line,*, END=10, ERR=20) xkaux(1,i), & xkaux(2,i), xkaux(3,i), wk0 wkaux(i) = NINT ( wk0 ) ! beware: wkaux is integer EXIT ELSEIF ((ICHAR(input_line(j:j)) < 123 .AND. & ICHAR(input_line(j:j)) > 64)) THEN ! ! This is a letter, not a space character. We read the next three ! characters and save them in the letter array, save also which k point ! it is ! npk_label=npk_label+1 READ(input_line(j:),'(a3)') letter(npk_label) label_list(npk_label)=i ! ! now we remove the letters from input_line and read the number of points ! of the line. The next two line should account for the case in which ! there is only one space between the letter and the number of points. ! nch=3 IF ( ICHAR(input_line(j+1:j+1))==32 .OR. & ICHAR(input_line(j+2:j+2))==32 ) nch=2 buffer=input_line(j+nch:) READ(buffer,*,err=20) wkaux(i) EXIT ENDIF ENDDO ENDDO IF ( npk_label > 0 ) & CALL transform_label_coord(ibrav, celldm, xkaux, letter, & label_list, npk_label, nkstot, k_points, point_label_type ) DEALLOCATE(letter) DEALLOCATE(label_list) ! Count k-points first nkstot=SUM(wkaux(1:nkaux-1))+1 DO i=1,nkaux-1 IF (wkaux(i)==0) nkstot=nkstot+1 ENDDO ALLOCATE ( xk(3,nkstot), wk(nkstot) ) ! ! generate the points along the lines ! CALL generate_k_along_lines(nkaux, xkaux, wkaux, xk, wk, nkstot) DEALLOCATE(xkaux) DEALLOCATE(wkaux) ELSEIF (kband_plane) THEN ! ! Generate a uniform mesh of k points on the plane defined by ! the origin k_0, and two vectors applied in k_0, k_1 and k_2. ! IF (nkstot /= 3) CALL errore ('card_kpoints', & 'option _c requires 3 k points',i) nkaux=nkstot ALLOCATE(xkaux(3,nkstot), wkaux(nkstot)) DO i = 1, nkstot CALL read_line( input_line, end_of_file = tend, error = terr ) IF (tend) GOTO 10 IF (terr) GOTO 20 READ(input_line,*, END=10, ERR=20) xkaux(1,i), xkaux(2,i), & xkaux(3,i), wk0 wkaux(i) = NINT ( wk0 ) ! beware: wkaux is integer ENDDO ! Count k-points first nkstot = wkaux(2) * wkaux(3) ALLOCATE ( xk(3,nkstot), wk(nkstot) ) CALL generate_k_in_plane(nkaux, xkaux, wkaux, xk, wk, nkstot) DEALLOCATE(xkaux) DEALLOCATE(wkaux) ELSE ! ! Reads on input the k points ! ALLOCATE ( xk(3, nkstot), wk(nkstot) ) DO i = 1, nkstot CALL read_line( input_line, end_of_file = tend, error = terr ) IF (tend) GOTO 10 IF (terr) GOTO 20 READ(input_line,*, END=10, ERR=20) xk(1,i),xk(2,i),xk(3,i),wk(i) ENDDO ENDIF ! ELSEIF ( k_points == 'gamma' ) THEN ! nkstot = 1 ALLOCATE ( xk(3,1), wk(1) ) xk(:,1) = 0.0_DP wk(1) = 1.0_DP ! ENDIF ! tkpoints = .true. tk_inp = .true. ! RETURN 10 CALL errore ('card_kpoints', ' end of file while reading ' & & // trim(k_points) // ' k points', 1) 20 CALL errore ('card_kpoints', ' error while reading ' & & // trim(k_points) // ' k points', 1) ! END SUBROUTINE card_kpoints ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! OCCUPATIONS ! ! use the specified occupation numbers for electronic states. ! Note that you should specify 10 values per line maximum! ! ! Syntax (nspin == 1): ! ! OCCUPATIONS ! f(1) .... .... f(10) ! f(11) .... f(nbnd) ! ! Syntax (nspin == 2): ! ! OCCUPATIONS ! u(1) .... .... u(10) ! u(11) .... u(nbnd) ! d(1) .... .... d(10) ! d(11) .... d(nbnd) ! ! Example: ! ! OCCUPATIONS ! 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ! 2.0 2.0 2.0 2.0 2.0 1.0 1.0 ! ! Where: ! ! f(:) (real) these are the occupation numbers ! for LDA electronic states. ! ! u(:) (real) these are the occupation numbers ! for LSD spin == 1 electronic states ! d(:) (real) these are the occupation numbers ! for LSD spin == 2 electronic states ! ! Note, maximum 10 values per line! ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_occupations( input_line ) ! USE wrappers, ONLY: feval_infix ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line, field_str INTEGER :: is, nx10, i, j, nspin0 INTEGER :: nfield, nbnd_read, nf, ierr LOGICAL :: tef ! ! IF ( tocc ) THEN CALL errore( ' card_occupations ', ' two occurrences', 2 ) ENDIF nspin0=nspin IF (nspin == 4) nspin0=1 ! ALLOCATE ( f_inp ( nbnd, nspin0 ) ) DO is = 1, nspin0 ! nbnd_read = 0 DO WHILE ( nbnd_read < nbnd) CALL read_line( input_line, end_of_file=tef ) IF (tef) CALL errore('card_occupations',& 'Missing occupations, end of file reached',1) CALL field_count( nfield, input_line ) ! DO nf = 1,nfield nbnd_read = nbnd_read+1 IF (nbnd_read > nbnd ) EXIT CALL get_field(nf, field_str, input_line) ! f_inp(nbnd_read,is) = feval_infix(ierr, field_str ) CALL errore('card_occupations',& 'Error parsing occupation: '//trim(field_str), nbnd_read*ierr) ENDDO ENDDO ! ENDDO ! tf_inp = .true. tocc = .true. ! RETURN ! END SUBROUTINE card_occupations ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! DIPOLE ! ! calculate polarizability ! ! Syntax: ! ! DIPOLE ! ! Where: ! ! no parameters ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_dipole( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line ! ! IF ( tdipole ) THEN CALL errore( ' card_dipole ', ' two occurrences', 2 ) ENDIF ! tdipole_card = .true. tdipole = .true. ! RETURN ! END SUBROUTINE card_dipole ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! IESR ! ! use the specified number of neighbour cells for Ewald summations ! ! Syntax: ! ! ESR ! iesr ! ! Example: ! ! ESR ! 3 ! ! Where: ! ! iesr (integer) determines the number of neighbour cells to be ! considered: ! iesr = 1 : nearest-neighbour cells (default) ! iesr = 2 : next-to-nearest-neighbour cells ! and so on ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_esr( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line ! IF ( tesr ) THEN CALL errore( ' card_esr ', ' two occurrences', 2 ) ENDIF CALL read_line( input_line ) READ(input_line,*) iesr_inp ! tesr = .true. ! RETURN ! END SUBROUTINE card_esr ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! CELL_PARAMETERS ! ! use the specified cell dimensions ! ! Syntax: ! ! CELL_PARAMETERS (cell_option) ! HT(1,1) HT(1,2) HT(1,3) ! HT(2,1) HT(2,2) HT(2,3) ! HT(3,1) HT(3,2) HT(3,3) ! ! cell_option == alat lattice vectors in units of alat ! cell_option == bohr lattice vectors in Bohr ! cell_option == angstrom lattice vectors in Angstrom ! ! Example: ! ! CELL_PARAMETERS ! 24.50644311 0.00004215 -0.14717844 ! -0.00211522 8.12850030 1.70624903 ! 0.16447787 0.74511792 23.07395418 ! ! Where: ! ! HT(i,j) (real) cell dimensions ( in a.u. ), ! note the relation with lattice vectors: ! HT(1,:) = A1, HT(2,:) = A2, HT(3,:) = A3 ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_cell_parameters( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line INTEGER :: i, j LOGICAL, EXTERNAL :: matches ! ! IF ( tcell ) THEN CALL errore( ' card_cell_parameters ', ' two occurrences', 2 ) ENDIF ! IF ( matches( "BOHR", input_line ) ) THEN cell_units = 'bohr' ELSEIF ( matches( "ANGSTROM", input_line ) ) THEN cell_units = 'angstrom' ELSEIF ( matches( "ALAT", input_line ) ) THEN cell_units = 'alat' ELSE cell_units = 'none' CALL infomsg( 'read_cards ', & & 'DEPRECATED: no units specified in CELL_PARAMETERS card' ) ! Cell parameters are set in cell_base_init ENDIF ! DO i = 1, 3 CALL read_line( input_line ) READ(input_line,*) ( rd_ht( i, j ), j = 1, 3 ) ENDDO ! trd_ht = .true. tcell = .true. ! RETURN ! END SUBROUTINE card_cell_parameters ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! ATOMIC_VELOCITIES ! ! read velocities (in atomic units) from standard input ! ! Syntax: ! ! ATOMIC_VELOCITIES ! label(1) Vx(1) Vy(1) Vz(1) ! .... ! label(n) Vx(n) Vy(n) Vz(n) ! ! Example: ! ! ??? ! ! Where: ! ! label (character(len=4)) atomic label ! Vx(:), Vy(:) and Vz(:) (REAL) x, y and z velocity components of ! the ions ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_ion_velocities( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line INTEGER :: ia, k, is, nfield CHARACTER(len=4) :: lb_vel ! ! IF( tionvel ) THEN CALL errore( ' card_ion_velocities ', ' two occurrences', 2 ) ENDIF ! IF( .not. tapos ) THEN CALL errore( ' card_ion_velocities ', & & ' ATOMIC_SPECIES must be present before ', 2 ) ENDIF ! rd_vel = 0.0_DP sp_vel = 0 ! IF ( ion_velocities == 'from_input' ) THEN ! tavel = .true. ! DO ia = 1, nat ! CALL read_line( input_line ) CALL field_count( nfield, input_line ) IF ( nfield == 4 ) THEN READ(input_line,*) lb_vel, ( rd_vel(k,ia), k = 1, 3 ) ELSE CALL errore( ' iosys ', & & ' wrong entries in ION_VELOCITIES ', ia ) ENDIF ! match_label: DO is = 1, ntyp IF ( trim( lb_vel ) == atom_label(is) ) THEN sp_vel(ia) = is exit match_label ENDIF ENDDO match_label ! IF ( sp_vel(ia) < 1 .or. sp_vel(ia) > ntyp ) THEN CALL errore( ' iosys ', ' wrong LABEL in ION_VELOCITIES ', ia ) ENDIF ! ENDDO ! ENDIF ! tionvel = .true. ! RETURN ! END SUBROUTINE ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! CONSTRAINTS ! ! Ionic Constraints ! ! Syntax: ! ! CONSTRAINTS ! NCONSTR CONSTR_TOL ! CONSTR_TYPE(.) CONSTR(1,.) CONSTR(2,.) ... { CONSTR_TARGET(.) } ! ! Where: ! ! NCONSTR(INTEGER) number of constraints ! ! CONSTR_TOL tolerance for keeping the constraints ! satisfied ! ! CONSTR_TYPE(.) type of constrain: ! 1: for fixed distances ( two atom indexes must ! be specified ) ! 2: for fixed planar angles ( three atom indexes ! must be specified ) ! ! CONSTR(1,.) CONSTR(2,.) ... ! ! indices object of the constraint, as ! they appear in the 'POSITION' CARD ! ! CONSTR_TARGET target for the constrain ( in the case of ! planar angles it is the COS of the angle ). ! this variable is optional. ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_constraints( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line INTEGER :: i, nfield ! ! IF ( tconstr ) CALL errore( 'card_constraints', 'two occurrences', 2 ) ! CALL read_line( input_line ) ! CALL field_count( nfield, input_line ) ! IF ( nfield == 1 ) THEN ! READ( input_line, * ) nconstr_inp ! ELSEIF ( nfield == 2 ) THEN ! READ( input_line, * ) nconstr_inp, constr_tol_inp ! ELSE ! CALL errore( 'card_constraints', 'too many fields', nfield ) ! ENDIF WRITE(stdout,'(5x,a,i4,a,f12.6)') & 'Reading',nconstr_inp,' constraints; tolerance:', constr_tol_inp ! CALL allocate_input_constr() ! DO i = 1, nconstr_inp ! CALL read_line( input_line ) ! READ( input_line, * ) constr_type_inp(i) ! CALL field_count( nfield, input_line ) ! IF ( nfield > nc_fields + 2 ) & CALL errore( 'card_constraints', & 'too many fields for this constraint', i ) ! SELECT CASE( constr_type_inp(i) ) CASE( 'type_coord', 'atom_coord' ) ! IF ( nfield == 5 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_inp(4,i) ! WRITE(stdout,'(7x,i3,a,i3,a,i2,a,2f12.6)') i, & ') '//constr_type_inp(i)(1:4),int(constr_inp(1,i)) ,& ' coordination wrt type:', int(constr_inp(2,i)), & ' cutoff distance and smoothing:', constr_inp(3:4,i) ELSEIF ( nfield == 6 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_inp(4,i), & constr_target_inp(i) ! constr_target_set(i) = .true. ! WRITE(stdout,'(7x,i3,a,i3,a,i2,a,2f12.6,a,f12.6)') i, & ') '//constr_type_inp(i)(1:4),int(constr_inp(1,i)) , & ' coordination wrt type:', int(constr_inp(2,i)), & ' cutoff distance and smoothing:', constr_inp(3:4,i), & '; target:', constr_target_inp(i) ELSE ! CALL errore( 'card_constraints', 'type_coord, ' // & & 'atom_coord: wrong number of fields', nfield ) ! ENDIF ! CASE( 'distance' ) ! IF ( nfield == 3 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i) ! WRITE(stdout,'(7x,i3,a,2i3)') & i,') distance between atoms: ', int(constr_inp(1:2,i)) ELSEIF ( nfield == 4 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_target_inp(i) ! constr_target_set(i) = .true. ! WRITE(stdout,'(7x,i3,a,2i3,a,f12.6)') i, & ') distance between atoms: ', int(constr_inp(1:2,i)), & '; target:', constr_target_inp(i) ELSE ! CALL errore( 'card_constraints', & & 'distance: wrong number of fields', nfield ) ! ENDIF ! CASE( 'planar_angle' ) ! IF ( nfield == 4 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i) ! WRITE(stdout, '(7x,i3,a,3i3)') & i,') planar angle between atoms: ', int(constr_inp(1:3,i)) ELSEIF ( nfield == 5 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_target_inp(i) ! constr_target_set(i) = .true. ! WRITE(stdout, '(7x,i3,a,3i3,a,f12.6)') i, & ') planar angle between atoms: ', int(constr_inp(1:3,i)), & '; target:', constr_target_inp(i) ELSE ! CALL errore( 'card_constraints', & & 'planar_angle: wrong number of fields', nfield ) ! ENDIF ! CASE( 'torsional_angle' ) ! IF ( nfield == 5 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_inp(4,i) ! WRITE(stdout, '(7x,i3,a,4i3)') & i,') torsional angle between atoms: ', int(constr_inp(1:4,i)) ELSEIF ( nfield == 6 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_inp(4,i), & constr_target_inp(i) ! constr_target_set(i) = .true. ! WRITE(stdout, '(7x,i3,a,4i3,a,f12.6)') i, & ') torsional angle between atoms: ', int(constr_inp(1:4,i)),& '; target:', constr_target_inp(i) ELSE ! CALL errore( 'card_constraints', & & 'torsional_angle: wrong number of fields', nfield ) ! ENDIF ! CASE( 'bennett_proj' ) ! IF ( nfield == 5 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_inp(4,i) ! WRITE(stdout, '(7x,i3,a,i3,a,3f12.6)') i, & ') bennet projection of atom ', int(constr_inp(1,i)), & ' along vector:', constr_inp(2:4,i) ELSEIF ( nfield == 6 ) THEN ! READ( input_line, * ) constr_type_inp(i), & constr_inp(1,i), & constr_inp(2,i), & constr_inp(3,i), & constr_inp(4,i), & constr_target_inp(i) ! constr_target_set(i) = .true. ! WRITE(stdout, '(7x,i3,a,i3,a,3f12.6,a,f12.6)') i, & ') bennet projection of atom ', int(constr_inp(1,i)), & ' along vector:', constr_inp(2:4,i), & '; target:', constr_target_inp(i) ELSE ! CALL errore( 'card_constraints', & & 'bennett_proj: wrong number of fields', nfield ) ! ENDIF ! CASE DEFAULT ! CALL errore( 'card_constraints', 'unknown constraint ' // & & 'type: ' // trim( constr_type_inp(i) ), 1 ) ! END SELECT ! ENDDO ! tconstr = .true. ! RETURN ! END SUBROUTINE card_constraints ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! KSOUT ! ! Enable the printing of Kohn Sham states ! ! Syntax ( nspin == 2 ): ! ! KSOUT ! nu ! iu(1) iu(2) iu(3) .. iu(nu) ! nd ! id(1) id(2) id(3) .. id(nd) ! ! Syntax ( nspin == 1 ): ! ! KSOUT ! ns ! is(1) is(2) is(3) .. is(ns) ! ! Example: ! ! ??? ! ! Where: ! ! nu (integer) number of spin=1 states to be printed ! iu(:) (integer) indexes of spin=1 states, the state iu(k) ! is saved to file KS_UP.iu(k) ! ! nd (integer) number of spin=2 states to be printed ! id(:) (integer) indexes of spin=2 states, the state id(k) ! is saved to file KS_DW.id(k) ! ! ns (integer) number of LDA states to be printed ! is(:) (integer) indexes of LDA states, the state is(k) ! is saved to file KS.is(k) ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_ksout( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line INTEGER :: i, s, nksx TYPE occupancy_type INTEGER, POINTER :: occs(:) END TYPE occupancy_type TYPE(occupancy_type), ALLOCATABLE :: is(:) ! IF ( tksout ) THEN CALL errore( ' card_ksout ', ' two occurrences', 2 ) ENDIF ! nprnks = 0 nksx = 0 ! ALLOCATE ( is (nspin) ) ! DO s = 1, nspin ! CALL read_line( input_line ) READ(input_line, *) nprnks( s ) ! IF ( nprnks( s ) < 1 ) THEN CALL errore( ' card_ksout ', ' wrong number of states ', 2 ) ENDIF ! ALLOCATE( is(s)%occs( 1:nprnks(s) ) ) ! CALL read_line( input_line ) READ(input_line, *) ( is(s)%occs(i), i = 1, nprnks( s ) ) ! nksx = max( nksx, nprnks( s ) ) ! ENDDO ! CALL allocate_input_iprnks( nksx, nspin ) ! DO s = 1, nspin ! DO i = 1, nprnks( s ) ! iprnks( i, s ) = is(s)%occs(i) ! ENDDO ! DEALLOCATE( is(s)%occs ) ! ENDDO ! DEALLOCATE( is ) ! tksout = .true. ! RETURN ! END SUBROUTINE ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! PLOT WANNIER ! ! Needed to specify the indices of the wannier functions that ! have to be plotted ! ! Syntax: ! ! PLOT_WANNIER ! index1, ..., indexN ! ! Where: ! ! index1, ..., indexN are indices of the wannier functions ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_plot_wannier( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line LOGICAL, EXTERNAL :: matches ! INTEGER :: i, ib CHARACTER(len=5) :: i_char CHARACTER(len=6), EXTERNAL :: int_to_char ! ! IF ( twannier ) & CALL errore( 'card_plot_wannier', 'two occurrences', 2 ) ! IF ( nwf > 0 ) THEN ! IF ( nwf > nwf_max ) & CALL errore( 'card_plot_wannier', 'too many wannier functions', 1 ) ! CALL read_line( input_line ) ! ib = 0 ! DO i = 1, nwf_max ! i_char = int_to_char( i ) ! IF ( matches( ' ' // trim( i_char ) // ',', & ' ' // trim( input_line ) // ',' ) ) THEN ! ib = ib + 1 ! IF ( ib > nwf ) & CALL errore( 'card_plot_wannier', 'too many indices', 1 ) ! wannier_index(ib) = i ! ENDIF ! ENDDO ! ENDIF ! twannier = .true. ! RETURN ! END SUBROUTINE card_plot_wannier ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- ! ! ! TEMPLATE ! ! This is a template card info section ! ! Syntax: ! ! TEMPLATE ! RVALUE IVALUE ! ! Example: ! ! ??? ! ! Where: ! ! RVALUE (real) This is a real value ! IVALUE (integer) This is an integer value ! !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_template( input_line ) ! IMPLICIT NONE ! CHARACTER(len=256) :: input_line ! ! IF ( ttemplate ) THEN CALL errore( ' card_template ', ' two occurrences', 2 ) ENDIF ! ! .... CODE HERE ! ttemplate = .true. ! RETURN ! END SUBROUTINE ! ! !------------------------------------------------------------------------ ! BEGIN manual !---------------------------------------------------------------------- !WANNIER_AC !Wannier# 1 10.5 15.7 2 !atom 1 !d 1 0.45 !p 3 0.55 !Wannier# 2 10.5 15.7 1 !atom 3 !p 1 0.8 !Spin#2: !Wannier# 1 10.5 15.7 2 !atom 1 !d 1 0.45 !p 3 0.55 !Wannier# 2 10.5 15.7 1 !atom 3 !p 1 0.8 !---------------------------------------------------------------------- ! END manual !------------------------------------------------------------------------ ! SUBROUTINE card_wannier_ac( input_line ) ! USE wannier_new, ONLY: nwan IMPLICIT NONE ! CHARACTER(len=256) :: input_line INTEGER :: i,j,k, nfield, iwan, ning, iatom,il,im,ispin LOGICAL :: tend REAL :: c, b_from, b_to CHARACTER(len=10) :: text, lo ispin = 1 ! DO i = 1, nwan ! CALL read_line( input_line, end_of_file = tend ) ! IF ( tend ) & CALL errore( 'read_cards', & 'end of file reading trial wfc composition', i ) ! CALL field_count( nfield, input_line ) ! IF ( nfield == 4 ) THEN READ(input_line,*) text, iwan, b_from, b_to ning = 1 ELSEIF ( nfield == 5 ) THEN READ(input_line,*) text, iwan, b_from, b_to, ning ELSE CALL errore( 'read_cards', & 'wrong format', nfield ) ENDIF IF(iwan/=i) CALL errore( 'read_cards', 'wrong wannier order', iwan) ! Read atom number CALL read_line( input_line, end_of_file = tend ) READ(input_line,*) text, iatom ! wan_data(iwan,ispin)%iatom = iatom wan_data(iwan,ispin)%ning = ning wan_data(iwan,ispin)%bands_from = b_from wan_data(iwan,ispin)%bands_to = b_to ! DO j=1, ning CALL read_line( input_line, end_of_file = tend ) ! IF ( tend ) & CALL errore( 'read_cards', & 'not enough wavefunctions', j ) IF (ning==1) THEN READ(input_line,*) lo,im c = 1.d0 ELSE READ(input_line,*) lo,im,c ENDIF SELECT CASE(trim(lo)) CASE('s') il = 0 CASE('p') il = 1 CASE('d') il = 2 CASE('f') il = 3 CASE DEFAULT CALL errore( 'read_cards', & 'wrong l-label', 1 ) END SELECT wan_data(iwan,ispin)%ing(j)%l = il wan_data(iwan,ispin)%ing(j)%m = im wan_data(iwan,ispin)%ing(j)%c = c ENDDO ENDDO !Is there spin 2 information? CALL read_line( input_line, end_of_file = tend ) ! IF ( .not. tend ) THEN READ(input_line,*) text IF ( trim(text) == 'Spin#2:') THEN ! ok, there is spin 2 data ispin = 2 ! DO i = 1, nwan ! CALL read_line( input_line, end_of_file = tend ) ! IF ( tend ) & CALL errore( 'read_cards', & 'end of file reading trial wfc composition', i ) ! CALL field_count( nfield, input_line ) ! IF ( nfield == 4 ) THEN READ(input_line,*) text, iwan, b_from, b_to ning = 1 ELSEIF ( nfield == 4 ) THEN READ(input_line,*) text, iwan, b_from, b_to, ning ELSE CALL errore( 'read_cards', & 'wrong format', nfield ) ENDIF IF(iwan/=i) CALL errore( 'read_cards', 'wrong wannier order', iwan) ! Read atom number CALL read_line( input_line, end_of_file = tend ) READ(input_line,*) text, iatom ! wan_data(iwan,ispin)%iatom = iatom wan_data(iwan,ispin)%ning = ning wan_data(iwan,ispin)%bands_from = b_from wan_data(iwan,ispin)%bands_to = b_to ! DO j=1, ning CALL read_line( input_line, end_of_file = tend ) ! IF ( tend ) & CALL errore( 'read_cards', & 'not enough wavefunctions', j ) IF (ning==1) THEN READ(input_line,*) lo,im c = 1.d0 ELSE READ(input_line,*) lo,im,c ENDIF SELECT CASE(trim(lo)) CASE('s') il = 0 CASE('p') il = 1 CASE('d') il = 2 CASE('f') il = 3 CASE DEFAULT CALL errore( 'read_cards', & 'wrong l-label', 1 ) END SELECT wan_data(iwan,ispin)%ing(j)%l = il wan_data(iwan,ispin)%ing(j)%m = im wan_data(iwan,ispin)%ing(j)%c = c ENDDO ENDDO ENDIF ENDIF ! RETURN ! END SUBROUTINE card_wannier_ac END MODULE read_cards_module espresso-5.1/Modules/stick_base.f900000644000175000017500000005136612341373034015354 0ustar mbamba! ! Copyright (C) 2002-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------= MODULE stick_base !=----------------------------------------------------------------------= USE kinds USE io_global, ONLY: ionode IMPLICIT NONE PRIVATE SAVE PUBLIC :: sticks_maps, sticks_sort, sticks_countg, sticks_dist, sticks_pairup PUBLIC :: sticks_owner, sticks_deallocate, sticks_maps_scalar, sticks_ordered_dist ! ... sticks_owner : stick owner, sticks_owner( i, j ) is the index of the processor ! ... (starting from 1) owning the stick whose x and y coordinate are i and j. INTEGER, ALLOCATABLE, TARGET :: sticks_owner( : , : ) !=----------------------------------------------------------------------= CONTAINS !=----------------------------------------------------------------------= SUBROUTINE sticks_maps( tk, ub, lb, b1, b2, b3, gcut, gcutw, gcuts, st, stw, sts, me, nproc, comm ) USE mp, ONLY: mp_sum LOGICAL, INTENT(in) :: tk ! if true use the full space grid INTEGER, INTENT(in) :: ub(:) ! upper bounds for i-th grid dimension INTEGER, INTENT(in) :: lb(:) ! lower bounds for i-th grid dimension REAL(DP) , INTENT(in) :: b1(:), b2(:), b3(:) ! reciprocal space base vectors REAL(DP) , INTENT(in) :: gcut ! cut-off for potentials REAL(DP) , INTENT(in) :: gcutw ! cut-off for plane waves REAL(DP) , INTENT(in) :: gcuts ! cut-off for smooth mesh INTEGER, INTENT(out) :: st( lb(1): ub(1), lb(2):ub(2) ) ! stick map for potential INTEGER, INTENT(out) :: stw(lb(1): ub(1), lb(2):ub(2) ) ! stick map for wave functions INTEGER, INTENT(out) :: sts(lb(1): ub(1), lb(2):ub(2) ) ! stick map for smooth mesh INTEGER, INTENT(in) :: me ! my proc id (starting from 0) INTEGER, INTENT(in) :: nproc ! number of proc in the g-vec group INTEGER, INTENT(in) :: comm ! communicator of the g-vec group INTEGER :: i, j, k, kip REAL(DP) :: gsq stw = 0 st = 0 sts = 0 ! ... Here find the basic maps of sticks st, stw and sts for the potential ! ... cut-off gcut, wavefunction cut-off gcutw, and smooth mesh cut-off gcuts ! ... st(i,j) will contain the number of G vectors of the stick whose ! ... indices are (i,j). #if defined (__EKO) WRITE(*,*) ! Workaround for EKOPath compiler bug #endif IF( .not. tk ) THEN kip = 0 + abs(lb(3)) + 1 IF( mod( kip, nproc ) == me ) THEN st (0,0) = st (0,0) + 1 stw(0,0) = stw(0,0) + 1 sts(0,0) = sts(0,0) + 1 ENDIF DO i= 0, 0 DO j= 0, 0 DO k= 1, ub(3) kip = k + abs(lb(3)) + 1 IF( mod( kip, nproc ) == me ) THEN gsq= (dble(i)*b1(1)+dble(j)*b2(1)+dble(k)*b3(1) )**2 gsq=gsq+(dble(i)*b1(2)+dble(j)*b2(2)+dble(k)*b3(2) )**2 gsq=gsq+(dble(i)*b1(3)+dble(j)*b2(3)+dble(k)*b3(3) )**2 IF(gsq.le.gcut ) THEN st(i,j) = st(i,j) + 1 IF(gsq.le.gcutw) THEN stw(i,j) = stw(i,j) + 1 ENDIF IF(gsq.le.gcuts) THEN sts(i,j) = sts(i,j) + 1 ENDIF ENDIF ENDIF ENDDO ENDDO ENDDO DO i = 0, 0 DO j = 1, ub(2) DO k = lb(3), ub(3) kip = k + abs(lb(3)) + 1 IF( mod( kip, nproc) == me ) THEN gsq= (dble(i)*b1(1)+dble(j)*b2(1)+dble(k)*b3(1) )**2 gsq=gsq+(dble(i)*b1(2)+dble(j)*b2(2)+dble(k)*b3(2) )**2 gsq=gsq+(dble(i)*b1(3)+dble(j)*b2(3)+dble(k)*b3(3) )**2 IF(gsq.le.gcut ) THEN st(i,j) = st(i,j) + 1 IF(gsq.le.gcutw) THEN stw(i,j) = stw(i,j) + 1 ENDIF IF(gsq.le.gcuts) THEN sts(i,j) = sts(i,j) + 1 ENDIF ENDIF ENDIF ENDDO ENDDO ENDDO DO i = 1, ub(1) DO j = lb(2), ub(2) DO k = lb(3), ub(3) kip = k + abs(lb(3)) + 1 IF( mod( kip, nproc) == me ) THEN gsq= (dble(i)*b1(1)+dble(j)*b2(1)+dble(k)*b3(1) )**2 gsq=gsq+(dble(i)*b1(2)+dble(j)*b2(2)+dble(k)*b3(2) )**2 gsq=gsq+(dble(i)*b1(3)+dble(j)*b2(3)+dble(k)*b3(3) )**2 IF(gsq.le.gcut ) THEN st(i,j) = st(i,j) + 1 IF(gsq.le.gcutw) THEN stw(i,j) = stw(i,j) + 1 ENDIF IF(gsq.le.gcuts) THEN sts(i,j) = sts(i,j) + 1 ENDIF ENDIF ENDIF ENDDO ENDDO ENDDO ELSE DO i= lb(1), ub(1) DO j= lb(2), ub(2) DO k= lb(3), ub(3) kip = k + abs(lb(3)) + 1 IF( mod( kip, nproc ) == me ) THEN gsq= (dble(i)*b1(1)+dble(j)*b2(1)+dble(k)*b3(1) )**2 gsq=gsq+(dble(i)*b1(2)+dble(j)*b2(2)+dble(k)*b3(2) )**2 gsq=gsq+(dble(i)*b1(3)+dble(j)*b2(3)+dble(k)*b3(3) )**2 IF(gsq.le.gcut ) THEN st(i,j) = st(i,j) + 1 ENDIF IF(gsq.le.gcutw) THEN stw(i,j) = stw(i,j) + 1 ENDIF IF(gsq.le.gcuts) THEN sts(i,j) = sts(i,j) + 1 ENDIF ENDIF ENDDO ENDDO ENDDO ENDIF CALL mp_sum(st , comm ) CALL mp_sum(stw , comm ) CALL mp_sum(sts , comm ) #if defined __STICKS_DEBUG ! Test sticks WRITE( 6,*) 'testtesttesttesttesttesttesttesttesttest' WRITE( 6,*) 'lb = ', lb(1), lb(2) WRITE( 6,*) 'ub = ', ub(1), ub(2) WRITE( 6,*) 'counts = ', count( st > 0 ), count( stw > 0 ), count( sts > 0 ) WRITE( 6,*) 'cut-offs = ', gcut, gcutw, gcuts WRITE( 6,*) 'b1 = ', b1(1:3) WRITE( 6,*) 'b2 = ', b2(1:3) WRITE( 6,*) 'b3 = ', b3(1:3) DO i = lb(1), ub(1) DO j = lb(2), ub(2) WRITE( 6,'(2I4,3I6)') i,j,st(i,j),stw(i,j),sts(i,j) ENDDO ENDDO WRITE( 6,*) 'testtesttesttesttesttesttesttesttesttest' ! Test sticks #endif RETURN END SUBROUTINE sticks_maps !=----------------------------------------------------------------------= SUBROUTINE sticks_maps_scalar( lgamma, ub, lb, b1, b2, b3, gcutm, gkcut, gcutms, stw, ngm, ngms ) LOGICAL, INTENT(in) :: lgamma ! if true use gamma point simmetry INTEGER, INTENT(in) :: ub(:) ! upper bounds for i-th grid dimension INTEGER, INTENT(in) :: lb(:) ! lower bounds for i-th grid dimension REAL(DP) , INTENT(in) :: b1(:), b2(:), b3(:) ! reciprocal space base vectors REAL(DP) , INTENT(in) :: gcutm ! cut-off for potentials REAL(DP) , INTENT(in) :: gkcut ! cut-off for plane waves REAL(DP) , INTENT(in) :: gcutms ! cut-off for smooth mesh ! INTEGER, INTENT(out) :: ngm, ngms ! ! stick map for wave functions, note that map is taken in YZ plane ! INTEGER, INTENT(out) :: stw( lb(2) : ub(2), lb(3) : ub(3) ) INTEGER :: i1, i2, i3, n1, n2, n3 REAL(DP) :: amod ngm = 0 ngms = 0 stw = 0 n1 = max( abs( lb(1) ), abs( ub(1) ) ) n2 = max( abs( lb(2) ), abs( ub(2) ) ) n3 = max( abs( lb(3) ), abs( ub(3) ) ) loop1: DO i1 = - n1, n1 ! ! Gamma-only: exclude space with x<0 ! IF (lgamma .and. i1 < 0) CYCLE loop1 ! loop2: DO i2 = - n2, n2 ! ! Gamma-only: exclude plane with x=0, y<0 ! IF(lgamma .and. i1 == 0.and. i2 < 0) CYCLE loop2 ! loop3: DO i3 = - n3, n3 ! ! Gamma-only: exclude line with x=0, y=0, z<0 ! IF(lgamma .and. i1 == 0 .and. i2 == 0 .and. i3 < 0) CYCLE loop3 ! amod = (i1 * b1 (1) + i2 * b2 (1) + i3 * b3 (1) ) **2 + & (i1 * b1 (2) + i2 * b2 (2) + i3 * b3 (2) ) **2 + & (i1 * b1 (3) + i2 * b2 (3) + i3 * b3 (3) ) **2 IF (amod <= gcutm) ngm = ngm + 1 IF (amod <= gcutms) ngms = ngms + 1 IF (amod <= gkcut ) THEN stw( i2, i3 ) = 1 IF (lgamma) stw( -i2, -i3 ) = 1 ENDIF ENDDO loop3 ENDDO loop2 ENDDO loop1 RETURN END SUBROUTINE sticks_maps_scalar !=----------------------------------------------------------------------= SUBROUTINE sticks_sort( ngc, ngcw, ngcs, nct, idx, nproc ) ! ... This subroutine sorts the sticks indexes, according to ! ... the length and type of the sticks, wave functions sticks ! ... first, then smooth mesh sticks, and finally potential ! ... sticks ! lengths of sticks, ngc for potential mesh, ngcw for wave functions mesh ! and ngcs for smooth mesh INTEGER, INTENT(in) :: ngc(:), ngcw(:), ngcs(:) INTEGER, INTENT(in) :: nproc ! number of proc in the g-vec group ! nct, total number of sticks INTEGER, INTENT(in) :: nct ! index, on output, new sticks indexes INTEGER, INTENT(out) :: idx(:) INTEGER :: mc, nr3x, ic REAL(DP) :: dn3 REAL(DP), ALLOCATABLE :: aux(:) nr3x = maxval( ngc(1:nct) ) + 1 dn3 = REAL( nr3x ) IF( nproc > 1 ) THEN ALLOCATE( aux( nct ) ) DO mc = 1, nct aux(mc) = ngcw(mc) aux(mc) = dn3 * aux(mc) + ngcs(mc) aux(mc) = dn3 * aux(mc) + ngc(mc) aux(mc) = -aux(mc) idx(mc) = 0 ENDDO CALL hpsort( nct, aux(1), idx(1)) DEALLOCATE( aux ) ELSE ic = 0 DO mc = 1, nct IF( ngcw(mc) > 0 ) THEN ic = ic + 1 idx(ic) = mc ENDIF ENDDO DO mc = 1, nct IF( ngcs(mc) > 0 .and. ngcw(mc) == 0 ) THEN ic = ic + 1 idx(ic) = mc ENDIF ENDDO DO mc = 1, nct IF( ngc(mc) > 0 .and. ngcs(mc) == 0 .and. ngcw(mc) == 0 ) THEN ic = ic + 1 idx(ic) = mc ENDIF ENDDO ENDIF #if defined __STICKS_DEBUG WRITE( 6,*) '-----------------' WRITE( 6,*) 'STICKS_SORT DEBUG' DO mc = 1, nct WRITE( 6, fmt="(4I10)" ) idx(mc), ngcw( idx(mc) ), ngcs( idx(mc) ), ngc( idx(mc) ) ENDDO WRITE( 6,*) '-----------------' #endif RETURN END SUBROUTINE sticks_sort !=----------------------------------------------------------------------= SUBROUTINE sticks_countg( tk, ub, lb, st, stw, sts, in1, in2, ngc, ngcw, ngcs ) INTEGER, INTENT(in) :: ub(:), lb(:) INTEGER, INTENT(in) :: st( lb(1): ub(1), lb(2):ub(2) ) ! stick map for potential INTEGER, INTENT(in) :: stw(lb(1): ub(1), lb(2):ub(2) ) ! stick map for wave functions INTEGER, INTENT(in) :: sts(lb(1): ub(1), lb(2):ub(2) ) ! stick map for smooth mesh LOGICAL, INTENT(in) :: tk INTEGER, INTENT(out) :: in1(:), in2(:) INTEGER, INTENT(out) :: ngc(:), ngcw(:), ngcs(:) INTEGER :: j1, j2, i1, i2, nct, min_size ! ! ... initialize the sticks indexes array ist ! ... nct counts columns containing G-vectors for the dense grid ! ... ncts counts columns contaning G-vectors for the smooth grid ! nct = 0 ngc = 0 ngcs = 0 ngcw = 0 min_size = min( size( in1 ), size( in2 ), size( ngc ), size( ngcw ), size( ngcs ) ) DO j2 = 0, ( ub(2) - lb(2) ) DO j1 = 0, ( ub(1) - lb(1) ) i1 = j1 IF( i1 > ub(1) ) i1 = lb(1) + ( i1 - ub(1) ) - 1 i2 = j2 IF( i2 > ub(2) ) i2 = lb(2) + ( i2 - ub(2) ) - 1 IF( st( i1, i2 ) > 0 ) THEN ! this sticks contains G-vectors nct = nct + 1 IF( nct > min_size ) & CALL errore(' sticks_countg ',' too many sticks ', nct ) in1(nct) = i1 in2(nct) = i2 ngc(nct) = st( i1 , i2) IF( stw( i1, i2 ) .gt. 0 ) ngcw(nct) = stw( i1 , i2) IF( sts( i1, i2 ) .gt. 0 ) ngcs(nct) = sts( i1 , i2) ENDIF ! WRITE(7,fmt="(5I5)") i1, i2, nct, ngc(nct), ngcw( nct ) ENDDO ENDDO RETURN END SUBROUTINE sticks_countg !=----------------------------------------------------------------------= SUBROUTINE sticks_dist( tk, ub, lb, idx, in1, in2, ngc, ngcw, ngcs, nct, & ncp, ncpw, ncps, ngp, ngpw, ngps, stown, stownw, stowns, nproc ) LOGICAL, INTENT(in) :: tk INTEGER, INTENT(in) :: ub(:), lb(:), idx(:) INTEGER, INTENT(out) :: stown( lb(1): ub(1), lb(2):ub(2) ) ! stick map for potential INTEGER, INTENT(out) :: stownw(lb(1): ub(1), lb(2):ub(2) ) ! stick map for wave functions INTEGER, INTENT(out) :: stowns(lb(1): ub(1), lb(2):ub(2) ) ! stick map for smooth mesh INTEGER, INTENT(in) :: in1(:), in2(:) INTEGER, INTENT(in) :: ngc(:), ngcw(:), ngcs(:) INTEGER, INTENT(in) :: nct INTEGER, INTENT(out) :: ncp(:), ncpw(:), ncps(:) INTEGER, INTENT(out) :: ngp(:), ngpw(:), ngps(:) INTEGER, INTENT(in) :: nproc ! number of proc in the g-vec group INTEGER :: mc, i1, i2, i, j, jj ncp = 0 ncps = 0 ncpw = 0 ngp = 0 ngps = 0 ngpw = 0 stown = 0 stownw = 0 stowns = 0 DO mc = 1, nct i = idx( mc ) ! ! index contains the desired ordering of sticks (see above) ! i1 = in1( i ) i2 = in2( i ) ! IF ( ( .not. tk ) .and. ( (i1 < 0) .or. ( (i1 == 0) .and. (i2 < 0) ) ) ) GOTO 30 ! jj = 1 IF ( ngcw(i) > 0 ) THEN ! ! this is an active sticks: find which processor has currently ! the smallest number of plane waves ! DO j = 1, nproc IF ( ngpw(j) < ngpw(jj) ) THEN jj = j ELSEIF ( ( ngpw(j) == ngpw(jj) ) .and. ( ncpw(j) < ncpw(jj) ) ) THEN jj = j ENDIF ENDDO ELSE ! ! this is an inactive sticks: find which processor has currently ! the smallest number of G-vectors ! DO j = 1, nproc IF ( ngp(j) < ngp(jj) ) jj = j ENDDO ENDIF ! ! potential mesh ncp(jj) = ncp(jj) + 1 ngp(jj) = ngp(jj) + ngc(i) stown(i1,i2) = jj ! smooth mesh IF ( ngcs(i) > 0 ) THEN ncps(jj) = ncps(jj) + 1 ngps(jj) = ngps(jj) + ngcs(i) stowns(i1,i2) = jj ENDIF ! wave functions mesh IF ( ngcw(i) > 0 ) THEN ncpw(jj) = ncpw(jj) + 1 ngpw(jj) = ngpw(jj) + ngcw(i) stownw(i1,i2) = jj ENDIF 30 CONTINUE ENDDO RETURN END SUBROUTINE sticks_dist !=----------------------------------------------------------------------= SUBROUTINE sticks_pairup( tk, ub, lb, idx, in1, in2, ngc, ngcw, ngcs, nct, & ncp, ncpw, ncps, ngp, ngpw, ngps, stown, stownw, stowns, nproc ) LOGICAL, INTENT(in) :: tk INTEGER, INTENT(in) :: ub(:), lb(:), idx(:) INTEGER, INTENT(inout) :: stown( lb(1): ub(1), lb(2):ub(2) ) ! stick map for potential INTEGER, INTENT(inout) :: stownw(lb(1): ub(1), lb(2):ub(2) ) ! stick map for wave functions INTEGER, INTENT(inout) :: stowns(lb(1): ub(1), lb(2):ub(2) ) ! stick map for wave functions INTEGER, INTENT(in) :: in1(:), in2(:) INTEGER, INTENT(in) :: ngc(:), ngcw(:), ngcs(:) INTEGER, INTENT(in) :: nct INTEGER, INTENT(out) :: ncp(:), ncpw(:), ncps(:) INTEGER, INTENT(out) :: ngp(:), ngpw(:), ngps(:) INTEGER, INTENT(in) :: nproc ! number of proc in the g-vec group INTEGER :: mc, i1, i2, i, jj IF ( .not. tk ) THEN ! when gamma symmetry is used only the sticks of half reciprocal space ! are generated, then here we pair-up the sticks with those of the other ! half of the space, using the gamma symmetry relation ! Note that the total numero of stick "nct" is not modified DO mc = 1, nct i = idx(mc) i1 = in1(i) i2 = in2(i) IF( i1 == 0 .and. i2 == 0 ) THEN jj = stown( i1, i2 ) IF( jj > 0 ) ngp( jj ) = ngp( jj ) + ngc( i ) - 1 jj = stowns( i1, i2 ) IF( jj > 0 ) ngps( jj ) = ngps( jj ) + ngcs( i ) - 1 jj = stownw( i1, i2 ) IF( jj > 0 ) ngpw( jj ) = ngpw( jj ) + ngcw( i ) - 1 ELSE jj = stown( i1, i2 ) IF( jj > 0 ) THEN stown( -i1, -i2 ) = jj ncp( jj ) = ncp( jj ) + 1 ngp( jj ) = ngp( jj ) + ngc( i ) ENDIF jj = stowns( i1, i2 ) IF( jj > 0 ) THEN stowns( -i1, -i2 ) = jj ncps( jj ) = ncps( jj ) + 1 ngps( jj ) = ngps( jj ) + ngcs( i ) ENDIF jj = stownw( i1, i2 ) IF( jj > 0 ) THEN stownw( -i1, -i2 ) = jj ncpw( jj ) = ncpw( jj ) + 1 ngpw( jj ) = ngpw( jj ) + ngcw( i ) ENDIF ENDIF ENDDO ENDIF IF( allocated( sticks_owner ) ) DEALLOCATE( sticks_owner ) ALLOCATE( sticks_owner( lb(1): ub(1), lb(2):ub(2) ) ) sticks_owner( :, : ) = abs( stown( :, :) ) RETURN END SUBROUTINE sticks_pairup !=----------------------------------------------------------------------= SUBROUTINE sticks_ordered_dist( tk, ub, lb, idx, in1, in2, ngc, ngcw, ngcs, nct, & ncp, ncpw, ncps, ngp, ngpw, ngps, stown, stownw, stowns, nproc ) ! ! This routine works as sticks_dist only it distributes the sticks according to sticks_owner. ! This ensures that the gvectors for any 'smooth like grid' remain on the same proc as the ! original grid. ! LOGICAL, INTENT(in) :: tk INTEGER, INTENT(in) :: ub(:), lb(:), idx(:) INTEGER, INTENT(out) :: stown( lb(1): ub(1), lb(2):ub(2) ) ! stick map for potential INTEGER, INTENT(out) :: stownw(lb(1): ub(1), lb(2):ub(2) ) ! stick map for wave functions INTEGER, INTENT(out) :: stowns(lb(1): ub(1), lb(2):ub(2) ) ! stick map for smooth mesh INTEGER, INTENT(in) :: in1(:), in2(:) INTEGER, INTENT(in) :: ngc(:), ngcw(:), ngcs(:) INTEGER, INTENT(in) :: nct INTEGER, INTENT(out) :: ncp(:), ncpw(:), ncps(:) INTEGER, INTENT(out) :: ngp(:), ngpw(:), ngps(:) INTEGER, INTENT(in) :: nproc ! number of proc in the g-vec group INTEGER :: mc, i1, i2, i, j, jj ncp = 0 ncps = 0 ncpw = 0 ngp = 0 ngps = 0 ngpw = 0 stown = sticks_owner stownw = 0 stowns = 0 DO mc = 1, nct i = idx( mc ) ! ! index has no effect in this case ! i1 = in1( i ) i2 = in2( i ) ! IF ( ( .not. tk ) .and. ( (i1 < 0) .or. ( (i1 == 0) .and. (i2 < 0) ) ) ) GOTO 30 ! ! potential mesh set according to sticks_owner jj = stown(i1,i2) ncp(jj) = ncp(jj) + 1 ngp(jj) = ngp(jj) + ngc(i) ! smooth mesh IF ( ngcs(i) > 0 ) THEN ncps(jj) = ncps(jj) + 1 ngps(jj) = ngps(jj) + ngcs(i) stowns(i1,i2) = jj ENDIF ! wave functions mesh IF ( ngcw(i) > 0 ) THEN ncpw(jj) = ncpw(jj) + 1 ngpw(jj) = ngpw(jj) + ngcw(i) stownw(i1,i2) = jj ENDIF 30 CONTINUE ENDDO RETURN END SUBROUTINE sticks_ordered_dist !=----------------------------------------------------------------------= SUBROUTINE sticks_deallocate IF( allocated( sticks_owner ) ) DEALLOCATE( sticks_owner ) RETURN END SUBROUTINE sticks_deallocate !=----------------------------------------------------------------------= END MODULE stick_base !=----------------------------------------------------------------------= espresso-5.1/Modules/plugin_arguments.f900000644000175000017500000000464112341373034016622 0ustar mbamba! ! Copyright (C) 2010-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE plugin_arguments() !----------------------------------------------------------------------------- ! ! check for presence of command-line option "-plugin_name" or "--plugin_name" ! where "plugin_name" has to be set here. If such option is found, variable ! "use_plugin_name" is set and usage of "plugin_name" is thus enabled. ! Currently implemented: "plumed", "pw2casino" (both case-sensitive) ! USE kinds, ONLY : DP ! USE io_global, ONLY : stdout ! USE plugin_flags ! ! IMPLICIT NONE ! INTEGER :: iiarg, nargs, iargc, i, i0 CHARACTER (len=1), EXTERNAL :: lowercase CHARACTER (len=256) :: arg ! ! #if defined(__ABSOFT) # define getarg getarg_ # define iargc iargc_ #endif ! nargs = iargc() ! add here more plugins use_plumed = .false. use_pw2casino = .false. use_environ = .false. ! DO iiarg = 1, nargs CALL getarg( iiarg, plugin_name) IF ( plugin_name(1:1) == '-') THEN i0 = 1 IF ( plugin_name(2:2) == '-') i0 = 2 arg = ' ' DO i=i0+1, LEN_TRIM (plugin_name) arg(i-i0:i-i0) = lowercase (plugin_name(i:i)) END DO ! write(0,*) "plugin_name: ", trim(arg) ! add here more plugins IF ( TRIM(arg)=='plumed' ) THEN use_plumed = .true. END IF IF ( TRIM(arg)=='pw2casino' ) THEN use_pw2casino = .true. ENDIF IF ( TRIM(arg)=='environ' ) THEN use_environ = .true. ENDIF ENDIF ENDDO ! RETURN ! END SUBROUTINE plugin_arguments ! !---------------------------------------------------------------------------- SUBROUTINE plugin_arguments_bcast(root,comm) !---------------------------------------------------------------------------- ! ! broadcast plugin arguments ! USE mp, ONLY : mp_bcast USE plugin_flags ! IMPLICIT NONE ! integer :: root integer :: comm ! CALL mp_bcast(use_plumed,root,comm) ! CALL mp_bcast(use_pw2casino,root,comm) ! CALL mp_bcast(use_environ,root,comm) ! ! write(0,*) "use_plumed: ", use_plumed ! RETURN ! END SUBROUTINE plugin_arguments_bcast espresso-5.1/Modules/random_numbers.f900000644000175000017500000001173212341373034016251 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE random_numbers !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! IMPLICIT NONE ! INTERFACE gauss_dist ! MODULE PROCEDURE gauss_dist_scal, gauss_dist_vect ! END INTERFACE ! CONTAINS ! !------------------------------------------------------------------------ FUNCTION randy ( irand ) !------------------------------------------------------------------------ ! ! x=randy(n): reseed with initial seed idum=n ( 0 <= n <= ic, see below) ! if randy is not explicitly initialized, it will be ! initialized with seed idum=0 the first time it is called ! x=randy() : generate uniform real(DP) numbers x in [0,1] ! REAL(DP) :: randy INTEGER, optional :: irand ! INTEGER , PARAMETER :: m = 714025, & ia = 1366, & ic = 150889, & ntab = 97 REAL(DP), PARAMETER :: rm = 1.0_DP / m INTEGER :: j INTEGER, SAVE :: ir(ntab), iy, idum=0 LOGICAL, SAVE :: first=.true. ! IF ( present(irand) ) THEN idum = MIN( ABS(irand), ic) first=.true. END IF IF ( first ) THEN ! first = .false. idum = MOD( ic - idum, m ) ! DO j=1,ntab idum=mod(ia*idum+ic,m) ir(j)=idum END DO idum=mod(ia*idum+ic,m) iy=idum END IF j=1+(ntab*iy)/m IF( j > ntab .OR. j < 1 ) call errore('randy','j out of range',ABS(j)+1) iy=ir(j) randy=iy*rm idum=mod(ia*idum+ic,m) ir(j)=idum ! RETURN ! END FUNCTION randy ! !------------------------------------------------------------------------ SUBROUTINE set_random_seed ( ) !------------------------------------------------------------------------ ! ! poor-man random seed for randy ! INTEGER, DIMENSION (8) :: itime INTEGER :: iseed, irand ! CALL date_and_time ( values = itime ) ! itime contains: year, month, day, time difference in minutes, hours, ! minutes, seconds and milliseconds. iseed = ( itime(8) + itime(6) ) * ( itime(7) + itime(4) ) irand = randy ( iseed ) ! END SUBROUTINE set_random_seed ! !----------------------------------------------------------------------- FUNCTION gauss_dist_scal( mu, sigma ) !----------------------------------------------------------------------- ! ! ... this function generates a number taken from a normal ! ... distribution of mean value \mu and variance \sigma ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: mu REAL(DP), INTENT(IN) :: sigma REAL(DP) :: gauss_dist_scal ! REAL(DP) :: x1, x2, w ! ! gaussian_loop: DO ! x1 = 2.0_DP * randy() - 1.0_DP x2 = 2.0_DP * randy() - 1.0_DP ! w = x1 * x1 + x2 * x2 ! IF ( w < 1.0_DP ) EXIT gaussian_loop ! END DO gaussian_loop ! w = SQRT( ( - 2.0_DP * LOG( w ) ) / w ) ! gauss_dist_scal = x1 * w * sigma + mu ! RETURN ! END FUNCTION gauss_dist_scal ! !----------------------------------------------------------------------- FUNCTION gauss_dist_vect( mu, sigma, dim ) !----------------------------------------------------------------------- ! ! ... this function generates an array of numbers taken from a normal ! ... distribution of mean value \mu and variance \sigma ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: mu REAL(DP), INTENT(IN) :: sigma INTEGER, INTENT(IN) :: dim REAL(DP) :: gauss_dist_vect( dim ) ! REAL(DP) :: x1, x2, w INTEGER :: i ! ! DO i = 1, dim, 2 ! gaussian_loop: DO ! x1 = 2.0_DP * randy() - 1.0_DP x2 = 2.0_DP * randy() - 1.0_DP ! w = x1 * x1 + x2 * x2 ! IF ( w < 1.0_DP ) EXIT gaussian_loop ! END DO gaussian_loop ! w = SQRT( ( - 2.0_DP * LOG( w ) ) / w ) ! gauss_dist_vect(i) = x1 * w * sigma ! IF ( i >= dim ) EXIT ! gauss_dist_vect(i+1) = x2 * w * sigma ! END DO ! gauss_dist_vect(:) = gauss_dist_vect(:) + mu ! RETURN ! END FUNCTION gauss_dist_vect ! END MODULE random_numbers espresso-5.1/Modules/parser.f900000644000175000017500000003064612341373034014537 0ustar mbamba! ! Copyright (C) 2001-2004 Carlo Cavazzoni and PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! ... SUBROUTINE field_count: accepts two string (one of them is optional) ! and one integer and count the number of fields ! in the string separated by a blank or a tab ! character. If the optional string is specified ! (it has anyway len=1) it is assumed as the ! separator character. ! Ignores any character following the exclamation ! mark (fortran comment) ! ! ... SUBROUTINE con_cam: counts the number of fields in a string ! separated by the optional character ! ! ... SUBROUTINE field_compare: accepts two strings and one integer. Counts the ! fields contained in the first string and ! compares it with the integer. ! If they are less than the integer calls the ! routine error and show by the second string the ! name of the field where read-error occurred. ! ! ... SUBROUTINE version_parse: Determine the major, minor and patch numbers ! from a version string with the fmt "i.j.k" ! ! ... FUNCTION version_compare: Compare two version strings; the result can be ! "newer", "equal", "older", "" ! ! !---------------------------------------------------------------------------- MODULE parser !---------------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE kinds, ONLY : DP ! PRIVATE ! PUBLIC :: parse_unit, field_count, read_line, get_field PUBLIC :: version_parse, version_compare ! INTEGER :: parse_unit = 5 ! normally 5, but can be set otherwise ! CONTAINS ! ! !-------------------------------------------------------------------------- PURE SUBROUTINE field_count( num, line, car ) !-------------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER, INTENT(OUT) :: num CHARACTER(LEN=*), INTENT(IN) :: line CHARACTER(LEN=1), OPTIONAL, INTENT(IN) :: car #if defined (__XLF) ! ... with the IBM xlf compiler some combination of flags lead to ! ... variables being defined as static, hence giving a conflict ! ... with PURE function. We then force the variable to be AUTOMATIC CHARACTER(LEN=1), AUTOMATIC :: sep1, sep2 INTEGER, AUTOMATIC :: j #else CHARACTER(LEN=1) :: sep1, sep2 INTEGER :: j #endif ! ! num = 0 ! IF ( .NOT. present(car) ) THEN ! sep1 = char(32) ! ... blank character sep2 = char(9) ! ... tab character ! DO j = 2, MAX( LEN( line ), 256 ) ! IF ( line(j:j) == '!' .OR. line(j:j) == char(0) ) THEN ! IF ( line(j-1:j-1) /= sep1 .AND. line(j-1:j-1) /= sep2 ) THEN ! num = num + 1 ! END IF ! EXIT ! END IF ! IF ( ( line(j:j) == sep1 .OR. line(j:j) == sep2 ) .AND. & ( line(j-1:j-1) /= sep1 .AND. line(j-1:j-1) /= sep2 ) ) THEN ! num = num + 1 ! END IF ! END DO ! ELSE ! sep1 = car ! DO j = 2, MAX( LEN( line ), 256 ) ! IF ( line(j:j) == '!' .OR. & line(j:j) == char(0) .OR. line(j:j) == char(32) ) THEN ! IF ( line(j-1:j-1) /= sep1 ) num = num + 1 ! EXIT ! END IF ! IF ( line(j:j) == sep1 .AND. line(j-1:j-1) /= sep1 ) num = num + 1 ! END DO ! END IF ! RETURN ! END SUBROUTINE field_count ! ! !-------------------------------------------------------------------------- SUBROUTINE read_line( line, nfield, field, end_of_file, error ) !-------------------------------------------------------------------------- ! USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm USE io_global, ONLY : ionode, ionode_id ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(OUT) :: line CHARACTER(LEN=*), OPTIONAL, INTENT(IN) :: field INTEGER, OPTIONAL, INTENT(IN) :: nfield LOGICAL, OPTIONAL, INTENT(OUT) :: end_of_file, error LOGICAL :: tend, terr ! ! IF( LEN( line ) < 256 ) THEN CALL errore(' read_line ', ' input line too short ', MAX(LEN(line),1) ) END IF ! tend = .FALSE. terr = .FALSE. IF ( ionode ) THEN 30 READ (parse_unit, fmt='(A256)', ERR=15, END=10) line IF( line == ' ' .OR. line(1:1) == '#' ) GO TO 30 GO TO 20 10 tend = .TRUE. GO TO 20 15 terr = .TRUE. 20 CONTINUE END IF ! CALL mp_bcast( tend, ionode_id, intra_image_comm ) CALL mp_bcast( terr, ionode_id, intra_image_comm ) CALL mp_bcast( line, ionode_id, intra_image_comm ) ! IF( PRESENT(end_of_file) ) THEN end_of_file = tend ELSE IF( tend ) THEN CALL infomsg(' read_line ', ' end of file ' ) END IF IF( PRESENT(error) ) THEN error = terr ELSE IF( terr ) THEN CALL infomsg(' read_line ', ' read error ' ) END IF IF( PRESENT(field) .and. .not.(tend.or.terr) ) & &CALL field_compare( line, nfield, field ) ! END SUBROUTINE read_line ! ! !-------------------------------------------------------------------------- SUBROUTINE field_compare( str, nf, var ) !-------------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: var INTEGER, INTENT(IN) :: nf CHARACTER(LEN=*), INTENT(IN) :: str INTEGER :: nc ! CALL field_count( nc, str ) ! IF( nc < nf ) & CALL errore( ' field_compare ', & & ' wrong number of fields: ' // TRIM( var ), 1 ) ! RETURN ! END SUBROUTINE field_compare ! ! !-------------------------------------------------------------------------- SUBROUTINE con_cam(num, line, car) !-------------------------------------------------------------------------- CHARACTER(LEN=*) :: line CHARACTER(LEN=1) :: sep CHARACTER(LEN=1), OPTIONAL :: car INTEGER :: num, j num = 0 IF (len(line) .GT. 256 ) THEN WRITE( stdout,*) 'riga ', line WRITE( stdout,*) 'lunga ', len(line) num = -1 RETURN END IF WRITE( stdout,*) '1riga ', line WRITE( stdout,*) '1lunga ', len(line) IF ( .NOT. present(car) ) THEN sep=char(32) !char(32) is the blank character ELSE sep=car END IF DO j=2, MAX(len(line),256) IF ( line(j:j) == '!' .OR. line(j:j) == char(0)) THEN RETURN END IF IF ( (line(j:j) .EQ. sep) .AND. & (line(j-1:j-1) .NE. sep) ) THEN num = num + 1 END IF END DO RETURN END SUBROUTINE con_cam ! !-------------------------------------------------------------------------- SUBROUTINE version_parse(str, major, minor, patch, ierr) !-------------------------------------------------------------------------- ! ! Determine the major, minor and patch numbers from ! a version string with the fmt "i.j.k" ! ! The ierr variable assumes the following values ! ! ierr < 0 emtpy string ! ierr = 0 no problem ! ierr > 0 fatal error ! IMPLICIT NONE CHARACTER(*), INTENT(in) :: str INTEGER, INTENT(out) :: major, minor, patch, ierr ! INTEGER :: i1, i2, length INTEGER :: ierrtot CHARACTER(10) :: num(3) ! major = 0 minor = 0 patch = 0 length = LEN_TRIM( str ) ! IF ( length == 0 ) THEN ! ierr = -1 RETURN ! ENDIF i1 = SCAN( str, ".") i2 = SCAN( str, ".", BACK=.TRUE.) ! IF ( i1 == 0 .OR. i2 == 0 .OR. i1 == i2 ) THEN ! ierr = 1 RETURN ! ENDIF ! num(1) = str( 1 : i1-1 ) num(2) = str( i1+1 : i2-1 ) num(3) = str( i2+1 : ) ! ierrtot = 0 ! READ( num(1), *, IOSTAT=ierr ) major IF (ierr/=0) RETURN ! READ( num(2), *, IOSTAT=ierr ) minor IF (ierr/=0) RETURN ! READ( num(3), *, IOSTAT=ierr ) patch IF (ierr/=0) RETURN ! END SUBROUTINE version_parse ! !-------------------------------------------------------------------------- FUNCTION version_compare(str1, str2) !-------------------------------------------------------------------------- ! ! Compare two version strings; the result is ! ! "newer": str1 is newer that str2 ! "equal": str1 is equal to str2 ! "older": str1 is older than str2 ! " ": str1 or str2 has a wrong format ! IMPLICIT NONE CHARACTER(*) :: str1, str2 CHARACTER(10) :: version_compare ! INTEGER :: version1(3), version2(3) INTEGER :: basis, icheck1, icheck2 INTEGER :: ierr ! version_compare = " " ! CALL version_parse( str1, version1(1), version1(2), version1(3), ierr) IF ( ierr/=0 ) RETURN ! CALL version_parse( str2, version2(1), version2(2), version2(3), ierr) IF ( ierr/=0 ) RETURN ! ! basis = 1000 ! icheck1 = version1(1) * basis**2 + version1(2)* basis + version1(3) icheck2 = version2(1) * basis**2 + version2(2)* basis + version2(3) ! IF ( icheck1 > icheck2 ) THEN ! version_compare = 'newer' ! ELSEIF( icheck1 == icheck2 ) THEN ! version_compare = 'equal' ! ELSE ! version_compare = 'older' ! ENDIF ! END FUNCTION version_compare ! !-------------------------------------------------------------------------- SUBROUTINE get_field(n, field, str, sep) !-------------------------------------------------------------------------- ! Extract whitespace-separated nth block from string IMPLICIT NONE INTEGER,INTENT(IN) :: n CHARACTER(len=*),INTENT(OUT) :: field CHARACTER(len=*),INTENT(IN) :: str CHARACTER(len=1),OPTIONAL,INTENT(IN) :: sep INTEGER :: i,j,z ! block start and end INTEGER :: k ! block counter CHARACTER(len=1) :: sep1, sep2 !print*, "------------- parser start -------------" !print '(3a)', "string: -->", str,"<--" IF(present(sep)) THEN sep1 = sep sep2 = sep ! redundant, but easy ELSE sep1 = char(32) ! ... blank character sep2 = char(9) ! ... tab char ENDIF ! k = 1 ! counter for the required block ! DO i = 1,len(str) ! look for the beginning of the required block z = MAX(i-1,1) !print '(2a1,3i4,2l)', str(i:i), str(z:z), i,z,k,n,& ! (str(i:i) == sep1 .or. str(i:i) == sep2), (str(z:z) /= sep1 .and. str(z:z) /= sep2) IF( k == n) EXIT IF( (str(i:i) == sep1 .or. str(i:i) == sep2) & .and. & (str(z:z) /= sep1 .and. str(z:z) /= sep2) & ) & k = k+1 ENDDO ! !print*, "i found: ",i DO j = i,len(str) ! look for the beginning of the next block z = MAX(j-1,1) IF( (str(j:j) == sep1 .or. str(j:j) == sep2) & .and. & (str(z:z) /= sep1 .and. str(z:z) /= sep2) & ) & k = k+1 IF( k >n) EXIT ENDDO !print*, "j found: ",j ! IF (j <= len(str)) THEN ! if we are here, the reqired block was followed by a separator ! and another field, we have to trash one char (a separator) field = TRIM(adjustl(str(i:j-1))) !print*, "taking: ",i,j-2 ELSE ! if we are here, it was the last block in str, we have to take ! all the remaining chars field = TRIM(adjustl(str(i:len(str)))) !print*, "taking from ",i ENDIF !print*, "------------- parser end -------------" END SUBROUTINE get_field END MODULE parser espresso-5.1/Modules/atom.f900000644000175000017500000000154712341373034014201 0ustar mbamba! ! Copyright (C) 2004-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE atom ! ! ... The variables needed to describe the atoms and related quantities ! USE radial_grids, ONLY : radial_grid_type ! SAVE ! type(radial_grid_type), allocatable, target :: & rgrid(:) ! the information on atomic radial grids. ! NB: some of the subsequent data are therefore redundant ! and will be eliminated in due course asap INTEGER, ALLOCATABLE :: & msh(:) ! the point at rcut ! END MODULE atom espresso-5.1/Modules/fft_base.f900000644000175000017500000007330412341373034015012 0ustar mbamba! ! Copyright (C) 2006-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! !---------------------------------------------------------------------- ! FFT base Module. ! Written by Carlo Cavazzoni !---------------------------------------------------------------------- ! !=----------------------------------------------------------------------=! MODULE fft_base !=----------------------------------------------------------------------=! USE kinds, ONLY: DP USE parallel_include USE fft_types, ONLY: fft_dlay_descriptor IMPLICIT NONE ! ... data structure containing all information ! ... about fft data distribution for a given ! ... potential grid, and its wave functions sub-grid. TYPE ( fft_dlay_descriptor ) :: dfftp ! descriptor for dense grid ! Dimensions of the 3D real and reciprocal space FFT grid ! relative to the charge density and potential ("dense" grid) TYPE ( fft_dlay_descriptor ) :: dffts ! descriptor for smooth grid ! Dimensions of the 3D real and reciprocal space ! FFT grid relative to the smooth part of the charge density ! (may differ from the full charge density grid for USPP ) TYPE ( fft_dlay_descriptor ) :: dfftb ! descriptor for box grids ! Dimensions of the 3D real and reciprocal space ! FFT grid relative to the "small box" computation ! of the atomic augmentation part of the ! charge density used in USPP (to speed up CPV iterations) SAVE PRIVATE PUBLIC :: fft_scatter, grid_gather, grid_scatter PUBLIC :: dfftp, dffts, dfftb, fft_dlay_descriptor PUBLIC :: cgather_sym, cgather_smooth, cgather_custom PUBLIC :: cscatter_sym, cscatter_smooth, cscatter_custom PUBLIC :: gather_smooth, scatter_smooth PUBLIC :: tg_gather, tg_cgather !=----------------------------------------------------------------------=! CONTAINS !=----------------------------------------------------------------------=! ! ! ! ! ALLTOALL based SCATTER, should be better on network ! with a defined topology, like on bluegene and cray machine ! !----------------------------------------------------------------------- SUBROUTINE fft_scatter ( dfft, f_in, nr3x, nxx_, f_aux, ncp_, npp_, isgn, use_tg ) !----------------------------------------------------------------------- ! ! transpose the fft grid across nodes ! a) From columns to planes (isgn > 0) ! ! "columns" (or "pencil") representation: ! processor "me" has ncp_(me) contiguous columns along z ! Each column has nr3x elements for a fft of order nr3 ! nr3x can be =nr3+1 in order to reduce memory conflicts. ! ! The transpose take places in two steps: ! 1) on each processor the columns are divided into slices along z ! that are stored contiguously. On processor "me", slices for ! processor "proc" are npp_(proc)*ncp_(me) big ! 2) all processors communicate to exchange slices ! (all columns with z in the slice belonging to "me" ! must be received, all the others must be sent to "proc") ! Finally one gets the "planes" representation: ! processor "me" has npp_(me) complete xy planes ! ! b) From planes to columns (isgn < 0) ! ! Quite the same in the opposite direction ! ! The output is overwritten on f_in ; f_aux is used as work space ! ! If optional argument "use_tg" is true the subroutines performs ! the trasposition using the Task Groups distribution ! #ifdef __MPI USE parallel_include #endif USE kinds, ONLY : DP IMPLICIT NONE TYPE (fft_dlay_descriptor), INTENT(in) :: dfft INTEGER, INTENT(in) :: nr3x, nxx_, isgn, ncp_ (:), npp_ (:) COMPLEX (DP), INTENT(inout) :: f_in (nxx_), f_aux (nxx_) LOGICAL, OPTIONAL, INTENT(in) :: use_tg #ifdef __MPI INTEGER :: dest, from, k, offset, proc, ierr, me, nprocp, gproc, gcomm, i, kdest, kfrom INTEGER :: me_p, nppx, mc, j, npp, nnp, ii, it, ip, ioff, sendsiz, ncpx ! LOGICAL :: use_tg_ #if defined __HPM ! CALL f_hpmstart( 10, 'scatter' ) #endif ! ! Task Groups use_tg_ = .false. IF( present( use_tg ) ) use_tg_ = use_tg me = dfft%mype + 1 ! IF( use_tg_ ) THEN ! This is the number of procs. in the plane-wave group nprocp = dfft%npgrp ELSE nprocp = dfft%nproc ENDIF ! CALL start_clock ('fft_scatter') ! ncpx = 0 nppx = 0 IF( use_tg_ ) THEN DO proc = 1, nprocp gproc = dfft%nplist( proc ) + 1 ncpx = max( ncpx, ncp_ ( gproc ) ) nppx = max( nppx, npp_ ( gproc ) ) ENDDO ELSE DO proc = 1, nprocp ncpx = max( ncpx, ncp_ ( proc ) ) nppx = max( nppx, npp_ ( proc ) ) ENDDO IF ( dfft%nproc == 1 ) THEN nppx = dfft%nr3x END IF ENDIF sendsiz = ncpx * nppx ! ierr = 0 IF (isgn.gt.0) THEN IF (nprocp==1) GO TO 10 ! ! "forward" scatter from columns to planes ! ! step one: store contiguously the slices ! offset = 1 DO proc = 1, nprocp from = offset IF( use_tg_ ) THEN gproc = dfft%nplist(proc)+1 ELSE gproc = proc ENDIF dest = 1 + ( proc - 1 ) * sendsiz ! DO k = 1, ncp_ (me) kdest = dest + (k - 1) * nppx - 1 kfrom = from + (k - 1) * nr3x - 1 DO i = 1, npp_ ( gproc ) f_aux ( kdest + i ) = f_in ( kfrom + i ) ENDDO ENDDO offset = offset + npp_ ( gproc ) ENDDO ! ! maybe useless; ensures that no garbage is present in the output ! f_in = 0.0_DP ! ! step two: communication ! IF( use_tg_ ) THEN gcomm = dfft%pgrp_comm ELSE gcomm = dfft%comm ENDIF ! CALL mpi_barrier (gcomm, ierr) ! why barrier? for buggy openmpi over ib CALL mpi_alltoall (f_aux(1), sendsiz, MPI_DOUBLE_COMPLEX, f_in(1), sendsiz, MPI_DOUBLE_COMPLEX, gcomm, ierr) IF( abs(ierr) /= 0 ) CALL errore ('fft_scatter', 'info<>0', abs(ierr) ) ! 10 CONTINUE ! f_aux = (0.d0, 0.d0) ! IF( isgn == 1 ) THEN !!$omp parallel default(none) private(ip,ioff,i,mc,it,j) shared(dfft,nppx,sendsiz,me,f_in,f_aux) !!$omp do DO ip = 1, dfft%nproc ioff = dfft%iss( ip ) DO i = 1, dfft%nsp( ip ) mc = dfft%ismap( i + ioff ) it = ( i - 1 ) * nppx + ( ip - 1 ) * sendsiz DO j = 1, dfft%npp( me ) f_aux( mc + ( j - 1 ) * dfft%nnp ) = f_in( j + it ) ENDDO ENDDO ENDDO !!$omp end do !!$omp end parallel ELSE IF( use_tg_ ) THEN npp = dfft%tg_npp( me ) nnp = dfft%nr1x * dfft%nr2x ELSE npp = dfft%npp( me ) nnp = dfft%nnp ENDIF ! !!$omp parallel default(none) private(ip,ioff,i,mc,it,j,gproc,ii) shared(dfft,nppx,npp,nnp,sendsiz,use_tg_,f_in,f_aux) !!$omp do DO ip = 1, dfft%nproc IF( use_tg_ ) THEN gproc = ( ip - 1 ) / dfft%nogrp + 1 IF( MOD( ip - 1, dfft%nogrp ) == 0 ) ii = 0 ELSE gproc = ip ii = 0 ENDIF ! ioff = dfft%iss( ip ) ! DO i = 1, dfft%nsw( ip ) ! mc = dfft%ismap( i + ioff ) ! it = ii * nppx + ( gproc - 1 ) * sendsiz ! DO j = 1, npp f_aux( mc + ( j - 1 ) * nnp ) = f_in( j + it ) ENDDO ! ii = ii + 1 ! ENDDO ! ENDDO !!$omp end do !!$omp end parallel END IF ELSE ! ! "backward" scatter from planes to columns ! IF( isgn == -1 ) THEN DO ip = 1, dfft%nproc ioff = dfft%iss( ip ) DO i = 1, dfft%nsp( ip ) mc = dfft%ismap( i + ioff ) it = ( i - 1 ) * nppx + ( ip - 1 ) * sendsiz DO j = 1, dfft%npp( me ) f_in( j + it ) = f_aux( mc + ( j - 1 ) * dfft%nnp ) ENDDO ENDDO ENDDO ELSE IF( use_tg_ ) THEN npp = dfft%tg_npp( me ) nnp = dfft%nr1x * dfft%nr2x ELSE npp = dfft%npp( me ) nnp = dfft%nnp ENDIF DO ip = 1, dfft%nproc IF( use_tg_ ) THEN gproc = ( ip - 1 ) / dfft%nogrp + 1 IF( MOD( ip - 1, dfft%nogrp ) == 0 ) ii = 0 ELSE gproc = ip ii = 0 ENDIF ! ioff = dfft%iss( ip ) ! DO i = 1, dfft%nsw( ip ) ! mc = dfft%ismap( i + ioff ) ! it = ii * nppx + ( gproc - 1 ) * sendsiz ! DO j = 1, npp f_in( j + it ) = f_aux( mc + ( j - 1 ) * nnp ) ENDDO ! ii = ii + 1 ! ENDDO ENDDO END IF IF( nprocp == 1 ) GO TO 20 ! ! step two: communication ! IF( use_tg_ ) THEN gcomm = dfft%pgrp_comm ELSE gcomm = dfft%comm ENDIF ! CALL mpi_barrier (gcomm, ierr) ! why barrier? for buggy openmpi over ib CALL mpi_alltoall (f_in(1), sendsiz, MPI_DOUBLE_COMPLEX, f_aux(1), sendsiz, MPI_DOUBLE_COMPLEX, gcomm, ierr) IF( abs(ierr) /= 0 ) CALL errore ('fft_scatter', 'info<>0', abs(ierr) ) ! ! step one: store contiguously the columns ! f_in = 0.0_DP ! offset = 1 DO proc = 1, nprocp from = offset IF( use_tg_ ) THEN gproc = dfft%nplist(proc)+1 ELSE gproc = proc ENDIF dest = 1 + ( proc - 1 ) * sendsiz ! DO k = 1, ncp_ (me) kdest = dest + (k - 1) * nppx - 1 kfrom = from + (k - 1) * nr3x - 1 DO i = 1, npp_ ( gproc ) f_in ( kfrom + i ) = f_aux ( kdest + i ) ENDDO ENDDO offset = offset + npp_ ( gproc ) ENDDO 20 CONTINUE ENDIF CALL stop_clock ('fft_scatter') #endif #if defined __HPM ! CALL f_hpmstop( 10 ) #endif RETURN END SUBROUTINE fft_scatter !---------------------------------------------------------------------------- SUBROUTINE grid_gather( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... gathers nproc distributed data on the first processor of every pool ! ! ... REAL*8 f_in = distributed variable (nxx) ! ... REAL*8 f_out = gathered variable (nr1x*nr2x*nr3x) ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! REAL(DP) :: f_in( : ), f_out( : ) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), recvcount(0:dfftp%nproc-1) ! IF( size( f_in ) < dfftp%nnr ) & CALL errore( ' grid_gather ', ' f_in too small ', dfftp%nnr - size( f_in ) ) ! CALL start_clock( 'gather' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! recvcount(proc) = dfftp%nnp * dfftp%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + recvcount(proc-1) ! ENDIF ! ENDDO ! info = size( f_out ) - displs( dfftp%nproc - 1 ) - recvcount( dfftp%nproc - 1 ) ! IF( info < 0 ) & CALL errore( ' grid_gather ', ' f_out too small ', -info ) ! info = 0 ! CALL MPI_GATHERV( f_in, recvcount(dfftp%mype), MPI_DOUBLE_PRECISION, f_out, & recvcount, displs, MPI_DOUBLE_PRECISION, dfftp%root, & dfftp%comm, info ) ! CALL errore( 'grid_gather', 'info<>0', info ) ! CALL stop_clock( 'gather' ) ! #else CALL errore('grid_gather', 'do not use in serial execution', 1) #endif ! RETURN ! END SUBROUTINE grid_gather !---------------------------------------------------------------------------- SUBROUTINE grid_scatter( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... scatters data from the first processor of every pool ! ! ... REAL*8 f_in = gathered variable (nr1x*nr2x*nr3x) ! ... REAL*8 f_out = distributed variable (nxx) ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! REAL(DP) :: f_in( : ), f_out( : ) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), sendcount(0:dfftp%nproc-1) ! IF( size( f_out ) < dfftp%nnr ) & CALL errore( ' grid_scatter ', ' f_out too small ', dfftp%nnr - size( f_in ) ) ! CALL start_clock( 'scatter' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! sendcount(proc) = dfftp%nnp * dfftp%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + sendcount(proc-1) ! ENDIF ! ENDDO ! info = size( f_in ) - displs( dfftp%nproc - 1 ) - sendcount( dfftp%nproc - 1 ) ! IF( info < 0 ) & CALL errore( ' grid_scatter ', ' f_in too small ', -info ) ! info = 0 ! CALL MPI_SCATTERV( f_in, sendcount, displs, MPI_DOUBLE_PRECISION, & f_out, sendcount(dfftp%mype), MPI_DOUBLE_PRECISION, & dfftp%root, dfftp%comm, info ) ! CALL errore( 'grid_scatter', 'info<>0', info ) ! IF ( sendcount(dfftp%mype) /= dfftp%nnr ) f_out(sendcount(dfftp%mype)+1:dfftp%nnr) = 0.D0 ! CALL stop_clock( 'scatter' ) ! #else CALL errore('grid_scatter', 'do not use in serial execution', 1) #endif ! RETURN ! END SUBROUTINE grid_scatter ! ! ... "gather"-like subroutines ! !----------------------------------------------------------------------- SUBROUTINE cgather_sym( f_in, f_out ) !----------------------------------------------------------------------- ! ! ... gather complex data for symmetrization (in phonon code) ! ... COMPLEX*16 f_in = distributed variable (nrxx) ! ... COMPLEX*16 f_out = gathered variable (nr1x*nr2x*nr3x) ! USE mp, ONLY : mp_barrier USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP) :: f_in( : ), f_out(:) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), recvcount(0:dfftp%nproc-1) ! ! CALL start_clock( 'cgather' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! recvcount(proc) = 2 * dfftp%nnp * dfftp%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + recvcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dfftp%comm ) ! CALL MPI_ALLGATHERV( f_in, recvcount(dfftp%mype), MPI_DOUBLE_PRECISION, & f_out, recvcount, displs, MPI_DOUBLE_PRECISION, & dfftp%comm, info ) ! CALL errore( 'cgather_sym', 'info<>0', info ) ! ! CALL mp_barrier( dfftp%comm ) ! CALL stop_clock( 'cgather' ) ! #else CALL errore('cgather_sym', 'do not use in serial execution', 1) #endif ! RETURN ! END SUBROUTINE cgather_sym ! !---------------------------------------------------------------------------- SUBROUTINE cgather_smooth ( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... gathers data on the smooth AND complex fft grid ! ! ... gathers nproc distributed data on the first processor of every pool ! ! ... COMPLEX*16 f_in = distributed variable ( dffts%nnr ) ! ... COMPLEX*16 f_out = gathered variable (nr1sx*nr2sx*nr3sx) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP) :: f_in(:), f_out(:) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), recvcount(0:dfftp%nproc-1) ! ! CALL start_clock( 'gather' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! recvcount(proc) = 2 * dffts%nnp * dffts%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + recvcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dfftp%comm ) ! CALL MPI_GATHERV( f_in, recvcount(dfftp%mype), MPI_DOUBLE_PRECISION, f_out, & recvcount, displs, MPI_DOUBLE_PRECISION, dfftp%root, & dfftp%comm, info ) ! CALL errore( 'cgather_smooth', 'info<>0', info ) ! CALL stop_clock( 'gather' ) ! #else CALL errore('cgather_smooth', 'do not use in serial execution', 1) #endif ! RETURN ! END SUBROUTINE cgather_smooth ! !---------------------------------------------------------------------------- SUBROUTINE cgather_custom ( f_in, f_out, dfftt ) !---------------------------------------------------------------------------- ! ! ... gathers data on the custom AND complex fft grid ! ! ... gathers nproc distributed data on the first processor of every pool ! ! ... COMPLEX*16 f_in = distributed variable ( dfftt%nnr ) ! ... COMPLEX*16 f_out = gathered variable (nr1sx*nr2sx*nr3sx) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP) :: f_in(:), f_out(:) TYPE ( fft_dlay_descriptor ), INTENT(IN) :: dfftt ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), recvcount(0:dfftp%nproc-1) ! ! CALL start_clock( 'gather' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! recvcount(proc) = 2 * dfftt%nnp * dfftt%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + recvcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dfftp%comm ) ! CALL MPI_GATHERV( f_in, recvcount(dfftp%mype), MPI_DOUBLE_PRECISION, f_out, & recvcount, displs, MPI_DOUBLE_PRECISION, dfftp%root, & dfftp%comm, info ) ! CALL errore( 'cgather_custom', 'info<>0', info ) ! CALL stop_clock( 'gather' ) ! #else CALL errore('cgather_custom', 'do not use in serial execution', 1) #endif ! RETURN ! END SUBROUTINE cgather_custom ! ! ... "scatter"-like subroutines ! !---------------------------------------------------------------------------- SUBROUTINE cscatter_sym( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... scatters data from the first processor of every pool ! ! ... COMPLEX*16 f_in = gathered variable (nr1x*nr2x*nr3x) ! ... COMPLEX*16 f_out = distributed variable (nxx) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP) :: f_in(:), f_out(:) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), sendcount(0:dfftp%nproc-1) ! ! CALL start_clock( 'cscatter_sym' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! sendcount(proc) = 2 * dfftp%nnp * dfftp%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + sendcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dfftp%comm ) ! CALL MPI_SCATTERV( f_in, sendcount, displs, MPI_DOUBLE_PRECISION, & f_out, sendcount(dfftp%mype), MPI_DOUBLE_PRECISION, & dfftp%root, dfftp%comm, info ) ! CALL errore( 'cscatter_sym', 'info<>0', info ) ! IF ( sendcount(dfftp%mype) /= dfftp%nnr ) f_out(sendcount(dfftp%mype)+1: dfftp%nnr ) = 0.D0 ! CALL stop_clock( 'cscatter_sym' ) ! #else CALL errore('cscatter_sym', 'do not use in serial execution', 1) #endif ! RETURN ! END SUBROUTINE cscatter_sym ! !---------------------------------------------------------------------------- SUBROUTINE cscatter_smooth( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... scatters data on the smooth AND complex fft grid ! ... scatters data from the first processor of every pool ! ! ... COMPLEX*16 f_in = gathered variable (nr1sx*nr2sx*nr3sx) ! ... COMPLEX*16 f_out = distributed variable ( dffts%nnr) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP) :: f_in(:), f_out(:) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), sendcount(0:dfftp%nproc-1) ! ! CALL start_clock( 'scatter' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! sendcount(proc) = 2 * dffts%nnp * dffts%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + sendcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dfftp%comm ) ! CALL MPI_SCATTERV( f_in, sendcount, displs, MPI_DOUBLE_PRECISION, & f_out, sendcount(dfftp%mype), MPI_DOUBLE_PRECISION, & dfftp%root, dfftp%comm, info ) ! CALL errore( 'scatter', 'info<>0', info ) ! IF ( sendcount(dfftp%mype) /= dffts%nnr ) f_out(sendcount(dfftp%mype)+1: dffts%nnr ) = 0.D0 ! CALL stop_clock( 'scatter' ) ! #else CALL errore('cscatter_smooth', 'do not use in serial execution', 1) #endif ! RETURN ! END SUBROUTINE cscatter_smooth ! !---------------------------------------------------------------------------- SUBROUTINE cscatter_custom( f_in, f_out, dfftt ) !---------------------------------------------------------------------------- ! ! ... scatters data on the custom AND complex fft grid ! ... scatters data from the first processor of every pool ! ! ... COMPLEX*16 f_in = gathered variable (nr1sx*nr2sx*nr3sx) ! ... COMPLEX*16 f_out = distributed variable ( dfftt%nnr) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP) :: f_in(:), f_out(:) TYPE ( fft_dlay_descriptor ), INTENT(IN) :: dfftt ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dfftp%nproc-1), sendcount(0:dfftp%nproc-1) ! ! CALL start_clock( 'scatter' ) ! DO proc = 0, ( dfftp%nproc - 1 ) ! sendcount(proc) = 2 * dfftt%nnp * dfftt%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + sendcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dfftp%comm ) ! CALL MPI_SCATTERV( f_in, sendcount, displs, MPI_DOUBLE_PRECISION, & f_out, sendcount(dfftp%mype), MPI_DOUBLE_PRECISION, & dfftp%root, dfftp%comm, info ) ! CALL errore( 'scatter', 'info<>0', info ) ! IF ( sendcount(dfftp%mype) /= dfftt%nnr ) f_out(sendcount(dfftp%mype)+1: dfftt%nnr ) = 0.D0 ! CALL stop_clock( 'scatter' ) ! #else CALL errore('cscatter_custom', 'do not use in serial execution', 1) #endif ! RETURN ! END SUBROUTINE cscatter_custom ! !---------------------------------------------------------------------------- SUBROUTINE gather_smooth ( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... gathers data on the smooth AND real fft grid ! ! ... gathers nproc distributed data on the first processor of every pool ! ! ... REAL*8 f_in = distributed variable ( dffts%nnr ) ! ... REAL*8 f_out = gathered variable (nr1sx*nr2sx*nr3sx) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! REAL(DP) :: f_in(:), f_out(:) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dffts%nproc-1), recvcount(0:dffts%nproc-1) ! ! CALL start_clock( 'gather' ) ! DO proc = 0, ( dffts%nproc - 1 ) ! recvcount(proc) = dffts%nnp * dffts%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + recvcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dffts%comm ) ! CALL MPI_GATHERV( f_in, recvcount(dffts%mype), MPI_DOUBLE_PRECISION, f_out, & recvcount, displs, MPI_DOUBLE_PRECISION, dffts%root, & dffts%comm, info ) ! CALL errore( 'gather', 'info<>0', info ) ! CALL stop_clock( 'gather' ) ! #else CALL errore('gather_smooth', 'do not use in serial execution', 1) #endif ! RETURN ! END SUBROUTINE gather_smooth ! !---------------------------------------------------------------------------- SUBROUTINE scatter_smooth( f_in, f_out ) !---------------------------------------------------------------------------- ! ! ... scatters data on the smooth AND real fft grid ! ... scatters data from the first processor of every pool ! ! ... REAL*8 f_in = gathered variable (nr1sx*nr2sx*nr3sx) ! ... REAL*8 f_out = distributed variable ( dffts%nnr) ! USE mp, ONLY : mp_barrier USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! REAL(DP) :: f_in(:), f_out(:) ! #if defined (__MPI) ! INTEGER :: proc, info INTEGER :: displs(0:dffts%nproc-1), sendcount(0:dffts%nproc-1) ! ! CALL start_clock( 'scatter' ) ! DO proc = 0, ( dffts%nproc - 1 ) ! sendcount(proc) = dffts%nnp * dffts%npp(proc+1) ! IF ( proc == 0 ) THEN ! displs(proc) = 0 ! ELSE ! displs(proc) = displs(proc-1) + sendcount(proc-1) ! ENDIF ! ENDDO ! CALL mp_barrier( dffts%comm ) ! CALL MPI_SCATTERV( f_in, sendcount, displs, MPI_DOUBLE_PRECISION, & f_out, sendcount(dffts%mype), MPI_DOUBLE_PRECISION, & dffts%root, dffts%comm, info ) ! CALL errore( 'scatter', 'info<>0', info ) ! IF ( sendcount(dffts%mype) /= dffts%nnr ) f_out(sendcount(dffts%mype)+1: dffts%nnr ) = 0.D0 ! CALL stop_clock( 'scatter' ) ! #else CALL errore('scatter_smooth', 'do not use in serial execution', 1) #endif ! RETURN ! END SUBROUTINE scatter_smooth ! SUBROUTINE tg_gather( dffts, v, tg_v ) ! USE parallel_include ! USE fft_types, ONLY : fft_dlay_descriptor ! T.G. ! NOGRP: Number of processors per orbital task group IMPLICIT NONE TYPE(fft_dlay_descriptor), INTENT(in) :: dffts REAL(DP) :: v(:) REAL(DP) :: tg_v(:) INTEGER :: nsiz, i, ierr, nsiz_tg INTEGER :: recv_cnt( dffts%nogrp ), recv_displ( dffts%nogrp ) nsiz_tg = dffts%tg_nnr * dffts%nogrp IF( size( tg_v ) < nsiz_tg ) & CALL errore( ' tg_gather ', ' tg_v too small ', ( nsiz_tg - size( tg_v ) ) ) nsiz = dffts%npp( dffts%mype+1 ) * dffts%nr1x * dffts%nr2x IF( size( v ) < nsiz ) & CALL errore( ' tg_gather ', ' v too small ', ( nsiz - size( v ) ) ) ! ! The potential in v is distributed across all processors ! We need to redistribute it so that it is completely contained in the ! processors of an orbital TASK-GROUP ! recv_cnt(1) = dffts%npp( dffts%nolist(1) + 1 ) * dffts%nr1x * dffts%nr2x recv_displ(1) = 0 DO i = 2, dffts%nogrp recv_cnt(i) = dffts%npp( dffts%nolist(i) + 1 ) * dffts%nr1x * dffts%nr2x recv_displ(i) = recv_displ(i-1) + recv_cnt(i-1) ENDDO ! clean only elements that will not be overwritten ! DO i = recv_displ(dffts%nogrp) + recv_cnt( dffts%nogrp ) + 1, size( tg_v ) tg_v( i ) = 0.0d0 ENDDO #if defined (__MPI) CALL MPI_Allgatherv( v(1), nsiz, MPI_DOUBLE_PRECISION, & tg_v(1), recv_cnt, recv_displ, MPI_DOUBLE_PRECISION, dffts%ogrp_comm, IERR) IF( ierr /= 0 ) & CALL errore( ' tg_gather ', ' MPI_Allgatherv ', abs( ierr ) ) #endif END SUBROUTINE tg_gather ! ! Complex version of previous routine ! SUBROUTINE tg_cgather( dffts, v, tg_v ) ! USE parallel_include ! USE fft_types, ONLY : fft_dlay_descriptor ! T.G. ! NOGRP: Number of processors per orbital task group IMPLICIT NONE TYPE(fft_dlay_descriptor), INTENT(in) :: dffts COMPLEX(DP) :: v(:) COMPLEX(DP) :: tg_v(:) INTEGER :: nsiz, i, ierr, nsiz_tg INTEGER :: recv_cnt( dffts%nogrp ), recv_displ( dffts%nogrp ) nsiz_tg = dffts%tg_nnr * dffts%nogrp IF( size( tg_v ) < nsiz_tg ) & CALL errore( ' tg_gather ', ' tg_v too small ', ( nsiz_tg - size( tg_v ) ) ) nsiz = dffts%npp( dffts%mype+1 ) * dffts%nr1x * dffts%nr2x IF( size( v ) < nsiz ) & CALL errore( ' tg_gather ', ' v too small ', ( nsiz - size( v ) ) ) ! ! The potential in v is distributed across all processors ! We need to redistribute it so that it is completely contained in the ! processors of an orbital TASK-GROUP ! recv_cnt(1) = dffts%npp( dffts%nolist(1) + 1 ) * dffts%nr1x * dffts%nr2x recv_displ(1) = 0 DO i = 2, dffts%nogrp recv_cnt(i) = dffts%npp( dffts%nolist(i) + 1 ) * dffts%nr1x * dffts%nr2x recv_displ(i) = recv_displ(i-1) + recv_cnt(i-1) ENDDO ! clean only elements that will not be overwritten ! DO i = recv_displ(dffts%nogrp) + recv_cnt( dffts%nogrp ) + 1, size( tg_v ) tg_v( i ) = (0.0d0,0.0d0) ENDDO ! ! The quantities are complex, multiply the cunters by 2 and gather ! real numbers ! nsiz = 2 * nsiz recv_cnt = 2 * recv_cnt recv_displ = 2 * recv_displ #if defined (__MPI) CALL MPI_Allgatherv( v(1), nsiz, MPI_DOUBLE_PRECISION, & tg_v(1), recv_cnt, recv_displ, MPI_DOUBLE_PRECISION, dffts%ogrp_comm, IERR) IF( ierr /= 0 ) & CALL errore( ' tg_cgather ', ' MPI_Allgatherv ', abs( ierr ) ) #endif END SUBROUTINE tg_cgather !=----------------------------------------------------------------------=! END MODULE fft_base !=----------------------------------------------------------------------=! espresso-5.1/Modules/dspev_drv.f900000644000175000017500000004661012341373034015235 0ustar mbamba! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! MODULE dspev_module IMPLICIT NONE SAVE PRIVATE PUBLIC :: pdspev_drv, dspev_drv #if defined __SCALAPACK PUBLIC :: pdsyevd_drv #endif CONTAINS SUBROUTINE ptredv( tv, a, lda, d, e, v, ldv, nrl, n, nproc, me, comm ) ! ! Parallel version of the famous HOUSEHOLDER tridiagonalization ! Algorithm for simmetric matrix. ! ! AUTHOR : Carlo Cavazzoni - SISSA 1997 ! comments and suggestions to : carlo.cavazzoni@cineca.it ! ! REFERENCES : ! ! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING. ! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING, ! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE. ! ! PARALLEL NUMERICAL ALGORITHMS, ! T.L. FREEMAN AND C.PHILLIPS, ! PRENTICE HALL INTERNATIONAL (1992). ! ! ! ! INPUTS : ! ! TV if it is true compute eigrnvectors "v" ! ! A(NRL,N) Local part of the global matrix A(N,N) to be reduced, ! only the upper triangle is needed. ! The rows of the matrix are distributed among processors ! with blocking factor 1. ! Example for NPROC = 4 : ! ROW | PE ! 1 | 0 ! 2 | 1 ! 3 | 2 ! 4 | 3 ! 5 | 0 ! 6 | 1 ! .. | .. ! ! LDA LEADING DIMENSION OF MATRIX A. ! ! LDV LEADING DIMENSION OF MATRIX V. ! ! NRL NUMBER OF ROWS BELONGING TO THE LOCAL PROCESSOR. ! ! N DIMENSION OF THE GLOBAL MATRIX. ! ! NPROC NUMBER OF PROCESSORS. ! ! ME INDEX OF THE LOCAL PROCESSOR (Starting from 0). ! ! ! OUTPUTS : ! ! V(NRL,N) Orthogonal transformation that tridiagonalize A, ! this matrix is distributed among processor ! in the same way as A. ! ! D(N) Diagonal elements of the tridiagonal matrix ! this vector is equal on all processors. ! ! E(N) Subdiagonal elements of the tridiagonal matrix ! this vector is equal on all processors. ! ! USE kinds, ONLY : DP IMPLICIT NONE LOGICAL, INTENT(IN) :: tv INTEGER, intent(in) :: N, NRL, LDA, LDV INTEGER, intent(in) :: NPROC, ME, comm REAL(DP) :: A(LDA,N), D(N), E(N), V(LDV,N) ! REAL(DP), external ::ddot ! REAL(DP) :: g, scalef, sigma, kappa, f, h, tmp REAL(DP), ALLOCATABLE :: u(:) REAL(DP), ALLOCATABLE :: p(:) REAL(DP), ALLOCATABLE :: vtmp(:) REAL(DP) :: tu, tp, one_over_h REAL(DP) :: one_over_scale REAL(DP) :: redin(3), redout(3) REAL(DP), ALLOCATABLE :: ul(:) REAL(DP), ALLOCATABLE :: pl(:) integer :: l, i, j, k, t, tl, ierr integer :: kl, jl, ks, lloc integer, ALLOCATABLE :: is(:) integer, ALLOCATABLE :: ri(:) ! .......... FOR I=N STEP -1 UNTIL 1 DO -- .......... IF( N == 0 ) THEN RETURN END IF ALLOCATE( u( n+2 ), p( n+1 ), vtmp( n+2 ), ul( n ), pl( n ), is( n ), ri( n ) ) DO I = N, 1, -1 IS(I) = (I-1)/NPROC RI(I) = MOD((I-1),NPROC) ! owner of I-th row IF(ME .le. RI(I) ) then IS(I) = IS(I) + 1 END IF END DO DO I = N, 2, -1 L = I - 1 ! first element H = 0.0_DP IF ( L > 1 ) THEN SCALEF = 0.0_DP DO K = 1, is(l) SCALEF = SCALEF + DABS( A(K,I) ) END DO #if defined __MPI CALL reduce_base_real( 1, scalef, comm, -1 ) #endif IF ( SCALEF .EQ. 0.0_DP ) THEN ! IF (RI(L).EQ.ME) THEN E(I) = A(is(L),I) END IF ! ELSE ! ...... CALCULATION OF SIGMA AND H ONE_OVER_SCALE = 1.0_DP/SCALEF SIGMA = 0.0_DP DO k = 1,is(L) A(k,I) = A(k,I) * ONE_OVER_SCALE SIGMA = SIGMA + A(k,I)**2 END DO IF( ri(l) .eq. me ) THEN F = A( is(l), i ) ELSE F = 0.0_DP END IF ! CONSTRUCTION OF VECTOR U vtmp( 1:l ) = 0.0_DP k = ME + 1 DO kl = 1,is(l) vtmp(k) = A(kl,I) k = k + NPROC END DO DO kl = 1,is(l) UL(kl) = A(kl,I) END DO #if defined __MPI vtmp( l + 1 ) = sigma vtmp( l + 2 ) = f CALL reduce_base_real_to( L + 2, vtmp, u, comm, -1 ) sigma = u( l + 1 ) f = u( l + 2 ) #else u(1:l) = vtmp(1:l) #endif G = -SIGN(SQRT(SIGMA),F) H = SIGMA - F*G ONE_OVER_H = 1.0_DP/H E(I) = SCALEF*G U(L) = F - G IF( RI(L) == ME ) THEN UL(is(l)) = F - G A(is(l),I) = F - G END IF ! CONSTRUCTION OF VECTOR P DO J = 1,L vtmp(j) = 0.0_DP DO KL = 1, IS(J) vtmp(J) = vtmp(J) + A(KL,J) * UL(KL) END DO IF( L > J .AND. ME == RI(J) ) then DO K = J+1,L vtmp(J) = vtmp(J) + A(IS(J),K) * U(K) END DO END IF vtmp(J) = vtmp(J) * ONE_OVER_H END DO KAPPA = 0.5_DP * ONE_OVER_H * ddot( l, vtmp, 1, u, 1 ) #if defined __MPI vtmp( l + 1 ) = kappa CALL reduce_base_real_to( L + 1, vtmp, p, comm, -1 ) kappa = p( l + 1 ) #else p(1:l) = vtmp(1:l) #endif CALL daxpy( l, -kappa, u, 1, p, 1 ) CALL DGER( is(l), l, -1.0_DP, ul, 1, p, 1, a, lda ) CALL DGER( is(l), l, -1.0_DP, p( me + 1 ), nproc, u, 1, a, lda ) END IF ELSE IF(RI(L).EQ.ME) THEN G = A(is(l),I) END IF #if defined __MPI CALL bcast_real( g, 1, ri( L ), comm ) #endif E(I) = G END IF D(I) = H END DO E(1) = 0.0_DP D(1) = 0.0_DP IF( tv ) THEN DO J = 1,N V(1:nrl,J) = 0.0_DP IF(RI(J).EQ.ME) THEN V(IS(J),J) = 1.0_DP END IF END DO DO I = 2,N L = I - 1 LLOC = IS(L) ! IF( D(I) .NE. 0.0_DP ) THEN ! ONE_OVER_H = 1.0_DP/D(I) ! IF( lloc > 0 ) THEN CALL DGEMV( 't', lloc, l, 1.0d0, v(1,1), ldv, a(1,i), 1, 0.0d0, p(1), 1 ) ELSE P(1:l) = 0.0d0 END IF #if defined __MPI CALL reduce_base_real_to( L, p, vtmp, comm, -1 ) #else vtmp(1:l) = p(1:l) #endif IF( lloc > 0 ) THEN CALL DGER( lloc, l, -ONE_OVER_H, a(1,i), 1, vtmp, 1, v, ldv ) END IF END IF END DO END IF DO I = 1,N U(I) = 0.0_DP IF(RI(I).eq.ME) then U(I) = A(IS(I),I) END IF END DO #if defined __MPI CALL reduce_base_real_to( n, u, d, comm, -1 ) #else D(1:N) = U(1:N) #endif DEALLOCATE( u, p, vtmp, ul, pl, is, ri ) RETURN END SUBROUTINE ptredv !==----------------------------------------------==! SUBROUTINE ptqliv( tv, d, e, n, z, ldz, nrl, mpime, comm ) ! ! Modified QL algorithm for CRAY T3E PARALLEL MACHINE ! calculate the eigenvectors and eigenvalues of a matrix reduced to ! tridiagonal form by PTREDV. ! ! AUTHOR : Carlo Cavazzoni - SISSA 1997 ! comments and suggestions to : carlo.cavazzoni@cineca.it ! ! REFERENCES : ! ! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING. ! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING, ! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE. ! ! PARALLEL NUMERICAL ALGORITHMS, ! T.L. FREEMAN AND C.PHILLIPS, ! PRENTICE HALL INTERNATIONAL (1992). ! ! NOTE : the algorithm that finds the eigenvalues is not parallelized ! ( it scales as O(N^2) ), I preferred to parallelize only the ! updating of the eigenvectors because it is the most costly ! part of the algorithm ( it scales as O(N^3) ). ! For large matrix in practice all the time is spent in the updating ! that in this routine scales linearly with the number of processors, ! in fact there is no communication at all. ! ! ! INPUTS : ! ! TV if it is true compute eigrnvectors "z" ! ! D(N) Diagonal elements of the tridiagonal matrix ! this vector is equal on all processors. ! ! E(N) Subdiagonal elements of the tridiagonal matrix ! this vector is equal on all processors. ! ! N DIMENSION OF THE GLOBAL MATRIX. ! ! NRL NUMBER OF ROWS OF Z BELONGING TO THE LOCAL PROCESSOR. ! ! LDZ LEADING DIMENSION OF MATRIX Z. ! ! Z(LDZ,N) Orthogonal transformation that tridiagonalizes the original ! matrix A. ! The rows of the matrix are distributed among processors ! with blocking factor 1. ! Example for NPROC = 4 : ! ROW | PE ! 1 | 0 ! 2 | 1 ! 3 | 2 ! 4 | 3 ! 5 | 0 ! 6 | 1 ! .. | .. ! ! ! ! OUTPUTS : ! ! Z(LDZ,N) EIGENVECTORS OF THE ORIGINAL MATRIX. ! THE Jth COLUMN of Z contains the eigenvectors associated ! with the jth eigenvalue. ! The eigenvectors are scattered among processors (4PE examp. ) ! eigenvector | PE ! elements | ! V(1) | 0 ! V(2) | 1 ! V(3) | 2 ! V(4) | 3 ! V(5) | 0 ! V(6) | 1 ! .... .. ! ! D(N) Eigenvalues of the original matrix, ! this vector is equal on all processors. ! ! ! ! USE kinds, ONLY : DP IMPLICIT NONE LOGICAL, INTENT(IN) :: tv INTEGER, INTENT(IN) :: n, nrl, ldz, mpime, comm REAL(DP) :: d(n), e(n) REAL(DP) :: z(ldz,n) INTEGER :: i, iter, mk, k, l, m, ierr REAL(DP) :: b, dd, f, g, p, r, c, s REAL(DP), ALLOCATABLE :: cv(:,:) REAL(DP), ALLOCATABLE :: fv1(:) REAL(DP), ALLOCATABLE :: fv2(:) ALLOCATE( cv( 2,n ) ) ALLOCATE( fv1( nrl ) ) ALLOCATE( fv2( nrl ) ) do l = 2,n e(l-1) = e(l) end do do l=1,n iter=0 1 do m=l,n-1 dd = abs(d(m))+abs(d(m+1)) if ( abs(e(m))+dd .eq. dd ) goto 2 end do m=n 2 if ( m /= l ) then if ( iter == 200 ) then call errore(' tqli ',' too many iterations ', iter) end if iter=iter+1 ! ! iteration is performed on one processor and results broadcast ! to all others to prevent potential problems if all processors ! do not behave in exactly the same way (even with the same data!) ! if ( mpime == 0 ) then g=(d(l+1)-d(l))/(2.0_DP*e(l)) r=pythag(g,1.0_DP) g=d(m)-d(l)+e(l)/(g+sign(r,g)) s=1.0_DP c=1.0_DP p=0.0_DP do i=m-1,l,-1 f=s*e(i) b=c*e(i) r=pythag(f,g) e(i+1)=r if ( r == 0.0_DP) then d(i+1)=d(i+1)-p e(m)=0.0_DP goto 1 endif c=g/r g=d(i+1)-p s=f/r r=(d(i)-g)*s+2.0_DP*c*b p=s*r d(i+1)=g+p g=c*r-b ! cv(1,i-l+1) = c cv(2,i-l+1) = s !cv(1,i) = c !cv(2,i) = s end do ! d(l)=d(l)-p e(l)=g e(m)=0.0_DP end if #if defined __MPI CALL bcast_real( cv, 2*(m-l), 0, comm ) CALL bcast_real( d(l), m-l+1, 0, comm ) CALL bcast_real( e(l), m-l+1, 0, comm ) #endif if( tv ) then do i=m-1,l,-1 do k=1,nrl fv2(k) =z(k,i+1) end do do k=1,nrl fv1(k) =z(k,i) end do c = cv(1,i-l+1) s = cv(2,i-l+1) do k=1,nrl z(k,i+1) =s*fv1(k) + c*fv2(k) z(k,i) =c*fv1(k) - s*fv2(k) end do end do end if goto 1 endif end do DEALLOCATE( cv ) DEALLOCATE( fv1 ) DEALLOCATE( fv2 ) RETURN END SUBROUTINE ptqliv !==----------------------------------------------==! SUBROUTINE peigsrtv(tv,d,v,ldv,n,nrl) USE kinds, ONLY : DP ! ! This routine sorts eigenvalues and eigenvectors ! generated by PTREDV and PTQLIV. ! ! AUTHOR : Carlo Cavazzoni - SISSA 1997 ! comments and suggestions to : carlo.cavazzoni@cineca.it ! IMPLICIT NONE LOGICAL, INTENT(IN) :: tv INTEGER, INTENT (IN) :: n,ldv,nrl REAL(DP), INTENT(INOUT) :: d(n),v(ldv,n) INTEGER :: i,j,k REAL(DP):: p do 13 i=1,n-1 k=i p=d(i) do j=i+1,n if(d(j).le.p)then k=j p=d(j) endif end do if(k.ne.i)then d(k)=d(i) d(i)=p ! ! Exchange local elements of eigenvectors. ! if( tv ) then do j=1,nrl p=v(j,i) v(j,i)=v(j,k) v(j,k)=p END DO end if endif 13 continue return END SUBROUTINE peigsrtv ! !------------------------------------------------------------------------- FUNCTION pythag(a,b) USE kinds, ONLY : DP IMPLICIT NONE REAL(DP) :: a, b, pythag REAL(DP) :: absa, absb absa=abs(a) absb=abs(b) if(absa.gt.absb)then pythag=absa*sqrt(1.0_DP+(absb/absa)**2) else if(absb.eq.0.0_DP)then pythag=0.0_DP else pythag=absb*sqrt(1.0_DP+(absa/absb)**2) endif endif return END FUNCTION pythag ! !==----------------------------------------------==! SUBROUTINE pdspev_drv( jobz, ap, lda, w, z, ldz, & nrl, n, nproc, mpime, comm ) USE kinds, ONLY : DP IMPLICIT NONE CHARACTER, INTENT(IN) :: JOBZ INTEGER, INTENT(IN) :: lda, ldz, nrl, n, nproc, mpime INTEGER, INTENT(IN) :: comm REAL(DP) :: ap( lda, * ), w( * ), z( ldz, * ) REAL(DP), ALLOCATABLE :: sd( : ) LOGICAL :: tv ! IF( n < 1 ) RETURN ! tv = .false. IF( jobz == 'V' .OR. jobz == 'v' ) tv = .true. ALLOCATE ( sd ( n ) ) CALL ptredv( tv, ap, lda, w, sd, z, ldz, nrl, n, nproc, mpime, comm) CALL ptqliv( tv, w, sd, n, z, ldz, nrl, mpime, comm) DEALLOCATE ( sd ) CALL peigsrtv( tv, w, z, ldz, n, nrl) RETURN END SUBROUTINE pdspev_drv !==----------------------------------------------==! SUBROUTINE dspev_drv( JOBZ, UPLO, N, AP, W, Z, LDZ ) USE kinds, ONLY : DP IMPLICIT NONE CHARACTER :: JOBZ, UPLO INTEGER :: IOPT, INFO, LDZ, N REAL(DP) :: AP( * ), W( * ), Z( LDZ, * ) REAL(DP), ALLOCATABLE :: WORK(:) IF( n < 1 ) RETURN ALLOCATE( work( 3*n ) ) #if defined __ESSL IOPT = 0 IF((JOBZ .EQ. 'V') .OR. (JOBZ .EQ. 'v') ) iopt = iopt + 1 IF((UPLO .EQ. 'U') .OR. (UPLO .EQ. 'u') ) iopt = iopt + 20 CALL DSPEV(IOPT, ap, w, z, ldz, n, work, 3*n) #else CALL DSPEV(jobz, uplo, n, ap(1), w(1), z(1,1), ldz, work, INFO) IF( info .NE. 0 ) THEN CALL errore( ' dspev_drv ', ' diagonalization failed ',info ) END IF #endif DEALLOCATE( work ) RETURN END SUBROUTINE dspev_drv #if defined __SCALAPACK SUBROUTINE pdsyevd_drv( tv, n, nb, s, lds, w, ortho_cntx ) USE kinds, ONLY : DP USE mp_bands, ONLY: nproc_bgrp, me_bgrp, intra_bgrp_comm, root_bgrp USE mp_diag, ONLY: ortho_comm USE mp, ONLY: mp_comm_free #ifdef __ELPA USE elpa1 #endif IMPLICIT NONE LOGICAL, INTENT(IN) :: tv ! if tv is true compute eigenvalues and eigenvectors (not used) INTEGER, INTENT(IN) :: nb, n, ortho_cntx ! nb = block size, n = matrix size, ortho_cntx = BLACS context INTEGER, INTENT(IN) :: lds ! lds = leading dim of s REAL(DP) :: s(:,:), w(:) ! input: s = matrix to be diagonalized ! output: s = eigenvectors, w = eigenvalues INTEGER :: desch( 10 ) REAL(DP) :: rtmp( 4 ) INTEGER :: itmp( 4 ) REAL(DP), ALLOCATABLE :: work(:) REAL(DP), ALLOCATABLE :: vv(:,:) INTEGER, ALLOCATABLE :: iwork(:) INTEGER :: LWORK, LIWORK, info CHARACTER :: jobv INTEGER :: i #ifdef __ELPA INTEGER :: nprow,npcol,my_prow, my_pcol,mpi_comm_rows, mpi_comm_cols #endif IF( SIZE( s, 1 ) /= lds ) & CALL errore( ' pdsyevd_drv ', ' wrong matrix leading dimension ', 1 ) ! IF( tv ) THEN ALLOCATE( vv( SIZE( s, 1 ), SIZE( s, 2 ) ) ) jobv = 'V' ELSE CALL errore('pdsyevd_drv','PDSYEVD does not compute eigenvalue only',1) END IF CALL descinit( desch, n, n, nb, nb, 0, 0, ortho_cntx, SIZE( s, 1 ) , info ) IF( info /= 0 ) CALL errore( ' pdsyevd_drv ', ' desckinit ', ABS( info ) ) lwork = -1 liwork = 1 itmp = 0 rtmp = 0.0_DP #ifdef __ELPA CALL BLACS_Gridinfo(ortho_cntx,nprow, npcol, my_prow,my_pcol) CALL GET_ELPA_ROW_COL_COMMS(ortho_comm, my_prow, my_pcol,mpi_comm_rows, mpi_comm_cols) CALL SOLVE_EVP_REAL(n, n, s, lds, w, vv, lds ,nb ,mpi_comm_rows, mpi_comm_cols) IF( tv ) s = vv IF( ALLOCATED( vv ) ) DEALLOCATE( vv ) CALL mp_comm_free ( mpi_comm_rows ) CALL mp_comm_free ( mpi_comm_cols ) #else CALL PDSYEVD( jobv, 'L', n, s, 1, 1, desch, w, vv, 1, 1, desch, rtmp, lwork, itmp, liwork, info ) IF( info /= 0 ) CALL errore( ' pdsyevd_drv ', ' PDSYEVD ', ABS( info ) ) lwork = MAX( 131072, 2*INT( rtmp(1) ) + 1 ) liwork = MAX( 8*n , itmp(1) + 1 ) ALLOCATE( work( lwork ) ) ALLOCATE( iwork( liwork ) ) CALL PDSYEVD( jobv, 'L', n, s, 1, 1, desch, w, vv, 1, 1, desch, work, lwork, iwork, liwork, info ) IF( info /= 0 ) CALL errore( ' pdsyevd_drv ', ' PDSYEVD ', ABS( info ) ) IF( tv ) s = vv IF( ALLOCATED( vv ) ) DEALLOCATE( vv ) DEALLOCATE( work ) DEALLOCATE( iwork ) #endif !#ifdef __ELPA ! uncomment only if you want to printout eigenv* for debug ! ! purposes ! ALLOCATE ( work (n) ) ! CALL PDLAPRNT( N, N, s, 1, 1, desch, 0, 0, 's', 99, WORK ) ! DO i=1,N ! WRITE(88,*)i,w(i) ! END DO ! DEALLOCATE( work ) !#else ! ALLOCATE ( work (n) ) ! write(*,*)n ! CALL PDLAPRNT( N, N, s, 1, 1, desch, 0, 0, 's', 100, WORK ) ! DO i=1,N ! WRITE(200,*)i,w(i) ! END DO ! DEALLOCATE( work ) !#endif RETURN END SUBROUTINE pdsyevd_drv #endif END MODULE dspev_module espresso-5.1/Modules/fft_interfaces.f900000644000175000017500000003307612341373034016225 0ustar mbamba! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Extracted from "cp_interfaces", written by Carlo Cavazzoni !=----------------------------------------------------------------------------=! MODULE fft_interfaces !=----------------------------------------------------------------------------=! IMPLICIT NONE PRIVATE PUBLIC :: fwfft, invfft INTERFACE invfft SUBROUTINE invfft_x( grid_type, f, dfft, ia ) USE fft_types, only: fft_dlay_descriptor USE kinds, ONLY: DP IMPLICIT NONE INTEGER, OPTIONAL, INTENT(IN) :: ia CHARACTER(LEN=*), INTENT(IN) :: grid_type TYPE(fft_dlay_descriptor), INTENT(IN) :: dfft COMPLEX(DP) :: f(:) END SUBROUTINE END INTERFACE INTERFACE fwfft SUBROUTINE fwfft_x( grid_type, f, dfft ) USE fft_types, only: fft_dlay_descriptor USE kinds, ONLY: DP IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN) :: grid_type TYPE(fft_dlay_descriptor), INTENT(IN) :: dfft COMPLEX(DP) :: f(:) END SUBROUTINE END INTERFACE !=----------------------------------------------------------------------------=! END MODULE !=----------------------------------------------------------------------------=! ! ! ! Copyright (C) 2002-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ---------------------------------------------- ! These subroutines written by Carlo Cavazzoni ! Last modified August 2010 by Paolo Giannozzi ! ---------------------------------------------- !----------------------------------------------------------------------- subroutine invfft_x( grid_type, f, dfft, ia ) !----------------------------------------------------------------------- ! grid_type = 'Dense' ! inverse fourier transform of potentials and charge density ! on the dense grid . On output, f is overwritten ! grid_type = 'Smooth' ! inverse fourier transform of potentials and charge density ! on the smooth grid . On output, f is overwritten ! grid_type = 'Wave' ! inverse fourier transform of wave functions ! on the smooth grid . On output, f is overwritten ! grid_type = 'Box' ! not-so-parallel 3d fft for box grid, implemented only for sign=1 ! G-space to R-space, output = \sum_G f(G)exp(+iG*R) ! The array f (overwritten on output) is NOT distributed: ! a copy is present on each processor. ! The fft along z is done on the entire grid. ! The fft along xy is done only on planes that have components on the ! dense grid for each processor. Note that the final array will no ! longer be the same on all processors. ! grid_type = 'Custom' ! inverse fourier transform of potentials and charge density ! on a custom defined grid specified by dfft. On output, f ! is overwritten ! grid_type = 'CustomWave' ! inverse fourier transform of wave functions ! on a custom defined grid specified by dfft. On output, f ! is overwritten ! ! USE kinds, ONLY: DP use fft_base, only: dfftp, dffts, dfftb use fft_scalar, only: cfft3d, cfft3ds, cft_b, cft_b_omp use fft_parallel, only: tg_cft3s USE fft_types, only: fft_dlay_descriptor IMPLICIT none TYPE(fft_dlay_descriptor), INTENT(IN) :: dfft INTEGER, OPTIONAL, INTENT(IN) :: ia CHARACTER(LEN=*), INTENT(IN) :: grid_type COMPLEX(DP) :: f(:) ! INTEGER :: imin3, imax3, np3 IF( grid_type == 'Dense' ) THEN IF( dfft%nr1 /= dfftp%nr1 .OR. dfft%nr2 /= dfftp%nr2 .OR. & dfft%nr3 /= dfftp%nr3 .OR. dfft%nr1x /= dfftp%nr1x .OR. & dfft%nr2x /= dfftp%nr2x .OR. dfft%nr3x /= dfftp%nr3x ) & CALL errore( ' invfft ', ' inconsistent descriptor for Dense fft ', 1 ) call start_clock( 'fft' ) ELSE IF( grid_type == 'Smooth' ) THEN IF( dfft%nr1 /= dffts%nr1 .OR. dfft%nr2 /= dffts%nr2 .OR. & dfft%nr3 /= dffts%nr3 .OR. dfft%nr1x /= dffts%nr1x .OR. & dfft%nr2x /= dffts%nr2x .OR. dfft%nr3x /= dffts%nr3x ) & CALL errore( ' invfft ', ' inconsistent descriptor for Smooth fft ', 1) call start_clock( 'ffts' ) ELSE IF( grid_type == 'Wave' ) THEN IF( dfft%nr1 /= dffts%nr1 .OR. dfft%nr2 /= dffts%nr2 .OR. & dfft%nr3 /= dffts%nr3 .OR. dfft%nr1x /= dffts%nr1x .OR. & dfft%nr2x /= dffts%nr2x .OR. dfft%nr3x /= dffts%nr3x ) & CALL errore( ' invfft ', ' inconsistent descriptor for Wave fft ' , 1 ) call start_clock('fftw') ELSE IF( grid_type == 'Box' ) THEN IF( dfft%nr1 /= dfftb%nr1 .OR. dfft%nr2 /= dfftb%nr2 .OR. & dfft%nr3 /= dfftb%nr3 .OR. dfft%nr1x /= dfftb%nr1x .OR. & dfft%nr2x /= dfftb%nr2x .OR. dfft%nr3x /= dfftb%nr3x ) & CALL errore( ' invfft ', ' inconsistent descriptor for Box fft ', 1 ) !$omp master ! ! clocks called inside a parallel region do not work properly! ! in the future we probably need a thread safe version of the clock ! call start_clock( 'fftb' ) !$omp end master ELSE IF( grid_type == 'Custom' ) THEN call start_clock('fftc') ELSE IF( grid_type == 'CustomWave' ) THEN call start_clock('fftcw') ELSE call errore( ' invfft ', ' unknown grid: '//grid_type , 1 ) END IF #if defined __MPI && !defined __USE_3D_FFT IF( grid_type == 'Dense' ) THEN call tg_cft3s( f, dfftp, 1 ) ELSE IF( grid_type == 'Smooth' ) THEN call tg_cft3s( f, dffts, 1 ) ELSE IF( grid_type == 'Wave' ) THEN call tg_cft3s( f, dffts, 2, dffts%have_task_groups ) ELSE IF( grid_type == 'Custom' ) THEN CALL tg_cft3s( f, dfft, 1 ) ELSE IF( grid_type == 'CustomWave' ) THEN CALL tg_cft3s( f, dfft, 2, dfft%have_task_groups ) ELSE IF( grid_type == 'Box' .AND. dfftb%np3( ia ) > 0 ) THEN #if defined __OPENMP && defined __FFTW call cft_b_omp( f, dfftb%nr1, dfftb%nr2, dfftb%nr3, & dfftb%nr1x, dfftb%nr2x, dfftb%nr3x, & dfftb%imin3( ia ), dfftb%imax3( ia ), 1 ) #else call cft_b( f, dfftb%nr1, dfftb%nr2, dfftb%nr3, & dfftb%nr1x, dfftb%nr2x, dfftb%nr3x, & dfftb%imin3( ia ), dfftb%imax3( ia ), 1 ) #endif END IF #else IF( grid_type == 'Dense' ) THEN call cfft3d( f, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, 1) ELSE IF( grid_type == 'Smooth' ) THEN call cfft3d( f, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x, dffts%nr2x, dffts%nr3x, 1) ELSE IF( grid_type == 'Wave' ) THEN #if defined __MPI && defined __USE_3D_FFT call cfft3d( f, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x, dffts%nr2x, dffts%nr3x, 1) #else call cfft3ds( f, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x, dffts%nr2x, dffts%nr3x, 1, & dffts%isind, dffts%iplw ) #endif ELSE IF( grid_type == 'Box' ) THEN #if defined __OPENMP && defined __FFTW call cft_b_omp( f, dfftb%nr1, dfftb%nr2, dfftb%nr3, & dfftb%nr1x, dfftb%nr2x, dfftb%nr3x, & dfftb%imin3( ia ), dfftb%imax3( ia ), 1 ) #else call cfft3d( f, dfftb%nr1, dfftb%nr2, dfftb%nr3, & dfftb%nr1x, dfftb%nr2x, dfftb%nr3x, 1) #endif ELSE IF( grid_type == 'Custom' ) THEN CALL cfft3d( f, dfft%nr1, dfft%nr2, dfft%nr3, & dfft%nr1x, dfft%nr2x, dfft%nr3x, 1) ELSE IF( grid_type == 'CustomWave' ) THEN #if defined __MPI && defined __USE_3D_FFT CALL cfft3d( f, dfft%nr1, dfft%nr2, dfft%nr3, & dfft%nr1x, dfft%nr2x, dfft%nr3x, 1) #else CALL cfft3ds( f, dfft%nr1, dfft%nr2, dfft%nr3, & dfft%nr1x, dfft%nr2x, dfft%nr3x, 1, & dfft%isind, dfft%iplw ) #endif END IF #endif IF( grid_type == 'Dense' ) THEN call stop_clock( 'fft' ) ELSE IF( grid_type == 'Smooth' ) THEN call stop_clock( 'ffts' ) ELSE IF( grid_type == 'Wave' ) THEN call stop_clock('fftw') ELSE IF( grid_type == 'Box' ) THEN !$omp master call stop_clock( 'fftb' ) !$omp end master ELSE IF( grid_type == 'Custom' ) THEN call stop_clock('fftc') ELSE IF( grid_type == 'CustomWave' ) THEN call stop_clock('fftcw') END IF ! return end subroutine invfft_x !----------------------------------------------------------------------- subroutine fwfft_x( grid_type, f, dfft ) !----------------------------------------------------------------------- ! grid_type = 'Dense' ! forward fourier transform of potentials and charge density ! on the dense grid . On output, f is overwritten ! grid_type = 'Smooth' ! forward fourier transform of potentials and charge density ! on the smooth grid . On output, f is overwritten ! grid_type = 'Wave' ! forward fourier transform of wave functions ! on the smooth grid . On output, f is overwritten ! grid_type = 'Custom' ! forward fourier transform of potentials and charge density ! on a custom defined grid specified by dfft. On output, f ! is overwritten ! grid_type = 'CustomWave' ! forward fourier transform of wave functions ! on a custom defined grid specified by dfft. On output, f ! is overwritten ! USE kinds, ONLY: DP use fft_base, only: dfftp, dffts use fft_scalar, only: cfft3d, cfft3ds use fft_parallel, only: tg_cft3s USE fft_types, only: fft_dlay_descriptor implicit none TYPE(fft_dlay_descriptor), INTENT(IN) :: dfft CHARACTER(LEN=*), INTENT(IN) :: grid_type COMPLEX(DP) :: f(:) IF( grid_type == 'Dense' ) THEN IF( dfft%nr1 /= dfftp%nr1 .OR. dfft%nr2 /= dfftp%nr2 .OR. & dfft%nr3 /= dfftp%nr3 .OR. dfft%nr1x /= dfftp%nr1x .OR. & dfft%nr2x /= dfftp%nr2x .OR. dfft%nr3x /= dfftp%nr3x ) & CALL errore( ' fwfft ', ' inconsistent descriptor for Dense fft ', 1 ) call start_clock( 'fft' ) ELSE IF( grid_type == 'Smooth' ) THEN IF( dfft%nr1 /= dffts%nr1 .OR. dfft%nr2 /= dffts%nr2 .OR. & dfft%nr3 /= dffts%nr3 .OR. dfft%nr1x /= dffts%nr1x .OR. & dfft%nr2x /= dffts%nr2x .OR. dfft%nr3x /= dffts%nr3x ) & CALL errore( ' fwfft ', ' inconsistent descriptor for Smooth fft ', 1 ) call start_clock( 'ffts' ) ELSE IF( grid_type == 'Wave' ) THEN IF( dfft%nr1 /= dffts%nr1 .OR. dfft%nr2 /= dffts%nr2 .OR. & dfft%nr3 /= dffts%nr3 .OR. dfft%nr1x /= dffts%nr1x .OR. & dfft%nr2x /= dffts%nr2x .OR. dfft%nr3x /= dffts%nr3x ) & CALL errore( ' fwfft ', ' inconsistent descriptor for Wave fft ', 1 ) call start_clock( 'fftw' ) ELSE IF( grid_type == 'Custom' ) THEN call start_clock('fftc') ELSE IF( grid_type == 'CustomWave' ) THEN call start_clock('fftcw') ELSE call errore( ' fwfft ', ' unknown grid: '//grid_type , 1 ) END IF #if defined __MPI && !defined __USE_3D_FFT IF( grid_type == 'Dense' ) THEN call tg_cft3s(f,dfftp,-1) ELSE IF( grid_type == 'Smooth' ) THEN call tg_cft3s(f,dffts,-1) ELSE IF( grid_type == 'Wave' ) THEN call tg_cft3s(f,dffts,-2, dffts%have_task_groups ) ELSE IF( grid_type == 'Custom' ) THEN CALL tg_cft3s( f, dfft, -1 ) ELSE IF( grid_type == 'CustomWave' ) THEN CALL tg_cft3s( f, dfft, -2, dfft%have_task_groups ) END IF #else IF( grid_type == 'Dense' ) THEN call cfft3d( f, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, -1) ELSE IF( grid_type == 'Smooth' ) THEN call cfft3d( f, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x, dffts%nr2x, dffts%nr3x, -1) ELSE IF( grid_type == 'Wave' ) THEN #if defined __MPI && defined __USE_3D_FFT call cfft3d( f, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x, dffts%nr2x, dffts%nr3x, -1) #else call cfft3ds( f, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x, dffts%nr2x, dffts%nr3x, -1, & dffts%isind, dffts%iplw ) #endif ELSE IF( grid_type == 'Custom' ) THEN CALL cfft3d( f, dfft%nr1, dfft%nr2, dfft%nr3, & dfft%nr1x, dfft%nr2x, dfft%nr3x, -1) ELSE IF( grid_type == 'CustomWave' ) THEN #if defined __MPI && defined __USE_3D_FFT CALL cfft3d( f, dfft%nr1, dfft%nr2, dfft%nr3, & dfft%nr1x, dfft%nr2x, dfft%nr3x, -1) #else CALL cfft3ds( f, dfft%nr1, dfft%nr2, dfft%nr3, & dfft%nr1x, dfft%nr2x, dfft%nr3x, -1, & dfft%isind, dfft%iplw ) #endif END IF #endif IF( grid_type == 'Dense' ) THEN call stop_clock( 'fft' ) ELSE IF( grid_type == 'Smooth' ) THEN call stop_clock( 'ffts' ) ELSE IF( grid_type == 'Wave' ) THEN call stop_clock( 'fftw' ) ELSE IF( grid_type == 'Custom' ) THEN call stop_clock('fftc') ELSE IF( grid_type == 'CustomWave' ) THEN call stop_clock('fftcw') END IF return end subroutine fwfft_x espresso-5.1/Modules/read_upf_v2.f900000644000175000017500000007067112341373034015441 0ustar mbamba! ! Copyright (C) 2008-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE read_upf_v2_module !=----------------------------------------------------------------------------=! ! this module handles the reading of pseudopotential data ! ... declare modules USE kinds, ONLY: DP USE pseudo_types, ONLY: pseudo_upf USE radial_grids, ONLY: radial_grid_type USE parser, ONLY : version_compare USE iotk_module ! PRIVATE PUBLIC :: read_upf_v2 CONTAINS !------------------------------------------------+ SUBROUTINE read_upf_v2(u, upf, grid, ierr) ! !---------------------------------------------+ ! Read pseudopotential in UPF format version 2, uses iotk ! USE pseudo_types, ONLY: nullify_pseudo_upf, deallocate_pseudo_upf USE radial_grids, ONLY: radial_grid_type, nullify_radial_grid IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data TYPE(radial_grid_type),OPTIONAL,INTENT(INOUT),TARGET :: grid ! INTEGER,OPTIONAL,INTENT(OUT):: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_namlenx) :: root CHARACTER(len=iotk_attlenx) :: attr INTEGER :: ierr_ LOGICAL :: found LOGICAL,EXTERNAL :: matches CHARACTER(len=6),PARAMETER :: max_version = '2.0.1' ! ! Prepare the type . Should be done where upf is instantiated ! CALL deallocate_pseudo_upf(upf) ! CALL nullify_pseudo_upf(upf) ! ! IF(present(grid)) call nullify_radial_grid(grid) ! nullify(upf%grid) ! ! Initialize the file CALL iotk_open_read(u, attr=attr, root=root, ierr=ierr_) ! IF((abs(ierr_)>0) .or. .not. matches('UPF',root) ) THEN ! CALL iotk_close_read(u,ierr=ierr_) IF(.not. present(ierr)) & CALL errore('read_upf_v2','Cannot open UPF file.',1) ierr = 1 RETURN ENDIF CALL iotk_scan_attr(attr, 'version', upf%nv) IF (version_compare(upf%nv, max_version) == 'newer') & CALL errore('read_upf_v2',& 'Unknown UPF format version: '//TRIM(upf%nv),1) ! ! Skip human-readable header CALL iotk_scan_begin(u,'PP_INFO',found=found) if(found) CALL iotk_scan_end(u,'PP_INFO') ! ! Read machine-readable header CALL read_upf_header(u, upf) IF(upf%tpawp .and. .not. present(grid)) & CALL errore('read_upf_v2', 'PAW requires a radial_grid_type.', 1) ! ! CHECK for bug in version 2.0.0 of UPF file IF ( version_compare(upf%nv, '2.0.1') == 'older' .and. upf%tvanp .and. & .not. upf%tpawp ) CALL errore('read_upf_v2',& 'Ultrasoft pseudopotentials in UPF format v.2.0.0 are & & affected by a bug compromising their quality. Please & & regenerate pseudopotential file for '//TRIM(upf%psd), 1) ! Read radial grid mesh CALL read_upf_mesh(u, upf, grid) ! Read non-linear core correction charge ALLOCATE( upf%rho_atc(upf%mesh) ) IF(upf%nlcc) THEN CALL iotk_scan_dat(u, 'PP_NLCC', upf%rho_atc) ELSE ! A null core charge simplifies several functions, mostly in PAW upf%rho_atc(1:upf%mesh) = 0._dp ENDIF ! Read local potential IF(.not. upf%tcoulombp) THEN ALLOCATE( upf%vloc(upf%mesh) ) CALL iotk_scan_dat(u, 'PP_LOCAL', upf%vloc) ENDIF ! Read nonlocal components: projectors, augmentation, hamiltonian elements CALL read_upf_nonlocal(u, upf) ! Read initial pseudo wavefunctions ! (usually only wfcs with occupancy > 0) CALL read_upf_pswfc(u, upf) ! Read all-electron and pseudo wavefunctions CALL read_upf_full_wfc(u, upf) ! Read valence atomic density (used for initial density) ALLOCATE( upf%rho_at(upf%mesh) ) CALL iotk_scan_dat(u, 'PP_RHOATOM', upf%rho_at) ! Read additional info for full-relativistic calculation CALL read_upf_spin_orb(u, upf) ! Read additional data for PAW (All-electron charge, wavefunctions, vloc..) CALL read_upf_paw(u, upf) ! Read data for gipaw reconstruction CALL read_upf_gipaw(u, upf) ! ! Close the file (not the unit!) CALL iotk_close_read(u) ! IF( present(ierr) ) ierr=0 RETURN CONTAINS ! SUBROUTINE read_upf_header(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr CHARACTER(len=256) :: dft_buffer ! needed to allow the string defining the ! DFT flavor to be longer than upf%dft ! (currntly 25) without getting iotk upset. ! An error message is issued if trimmed ! dft_buffer exceeds upf%dft size. INTEGER :: len_buffer ! INTEGER :: nw ! ! Read HEADER section with some initialization data CALL iotk_scan_empty(u, 'PP_HEADER', attr=attr) CALL iotk_scan_attr(attr, 'generated', upf%generated, default=' ') CALL iotk_scan_attr(attr, 'author', upf%author, default='anonymous') CALL iotk_scan_attr(attr, 'date', upf%date, default=' ') CALL iotk_scan_attr(attr, 'comment', upf%comment, default=' ') ! CALL iotk_scan_attr(attr, 'element', upf%psd) CALL iotk_scan_attr(attr, 'pseudo_type', upf%typ) CALL iotk_scan_attr(attr, 'relativistic', upf%rel) ! CALL iotk_scan_attr(attr, 'is_ultrasoft', upf%tvanp) CALL iotk_scan_attr(attr, 'is_paw', upf%tpawp) CALL iotk_scan_attr(attr, 'is_coulomb', upf%tcoulombp, default=.false.) ! CALL iotk_scan_attr(attr, 'has_so', upf%has_so, default=.false.) CALL iotk_scan_attr(attr, 'has_wfc', upf%has_wfc, default=upf%tpawp) CALL iotk_scan_attr(attr, 'has_gipaw', upf%has_gipaw, default=.false.) !EMINE CALL iotk_scan_attr(attr, 'paw_as_gipaw', upf%paw_as_gipaw, default=.false.) ! CALL iotk_scan_attr(attr, 'core_correction',upf%nlcc) ! CALL iotk_scan_attr(attr, 'functional', upf%dft) CALL iotk_scan_attr(attr, 'functional', dft_buffer) len_buffer=len_trim(dft_buffer) if (len_buffer > len(upf%dft)) & call errore('read_upf_v2','String defining DFT is too long',len_buffer) upf%dft=TRIM(dft_buffer) CALL iotk_scan_attr(attr, 'z_valence', upf%zp) CALL iotk_scan_attr(attr, 'total_psenergy', upf%etotps, default=0._dp) CALL iotk_scan_attr(attr, 'wfc_cutoff', upf%ecutwfc, default=0._dp) CALL iotk_scan_attr(attr, 'rho_cutoff', upf%ecutrho, default=0._dp) CALL iotk_scan_attr(attr, 'l_max', upf%lmax, default=0) CALL iotk_scan_attr(attr, 'l_max_rho', upf%lmax_rho, default=2*upf%lmax) CALL iotk_scan_attr(attr, 'l_local', upf%lloc, default=0) CALL iotk_scan_attr(attr, 'mesh_size', upf%mesh) CALL iotk_scan_attr(attr, 'number_of_wfc', upf%nwfc) CALL iotk_scan_attr(attr, 'number_of_proj', upf%nbeta) ! !CALL iotk_scan_end(u, 'PP_HEADER') !CALL debug_pseudo_upf(upf) ! RETURN END SUBROUTINE read_upf_header ! SUBROUTINE read_upf_mesh(u, upf, grid) USE radial_grids, ONLY: allocate_radial_grid IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data TYPE(radial_grid_type),OPTIONAL,INTENT(INOUT),TARGET :: grid ! INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr LOGICAL :: found ! CALL iotk_scan_begin(u, 'PP_MESH', attr=attr) CALL iotk_scan_attr(attr, 'dx', upf%dx, default=0._dp) CALL iotk_scan_attr(attr, 'mesh', upf%mesh, default=upf%mesh) CALL iotk_scan_attr(attr, 'xmin', upf%xmin, default=0._dp) CALL iotk_scan_attr(attr, 'rmax', upf%rmax, default=0._dp) CALL iotk_scan_attr(attr, 'zmesh',upf%zmesh, default=0._dp) IF (present(grid)) THEN CALL allocate_radial_grid(grid, upf%mesh) ! grid%dx = upf%dx grid%mesh = upf%mesh grid%xmin = upf%xmin grid%rmax = upf%rmax grid%zmesh = upf%zmesh ! upf%grid => grid upf%r => upf%grid%r upf%rab => upf%grid%rab ELSE ALLOCATE( upf%r( upf%mesh ), upf%rab( upf%mesh ) ) ENDIF ! CALL iotk_scan_dat(u, 'PP_R', upf%r(1:upf%mesh)) CALL iotk_scan_dat(u, 'PP_RAB', upf%rab(1:upf%mesh)) ! IF (present(grid)) THEN ! Reconstruct additional grids upf%grid%r2 = upf%r**2 upf%grid%sqr = sqrt(upf%r) upf%grid%rm1 = upf%r**(-1) upf%grid%rm2 = upf%r**(-2) upf%grid%rm3 = upf%r**(-3) ENDIF CALL iotk_scan_end(u, 'PP_MESH') ! RETURN END SUBROUTINE read_upf_mesh ! SUBROUTINE read_upf_nonlocal(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb,mb,ln,lm,l,nmb,ierr=0 !INTEGER :: nb_=-1,mb_=-1,l_=-1,nmb_=-1 REAL(DP):: zeros(upf%mesh) LOGICAL :: isnull, found zeros=0._dp ! ! modified by AF !IF (upf%tcoulombp) RETURN IF (upf%tcoulombp) upf%nbeta = 0 ! ! Allocate space for non-local part IF ( upf%nbeta == 0) then upf%nqf = 0 upf%nqlc= 0 upf%qqq_eps= -1._dp upf%kkbeta = 0 ALLOCATE( upf%kbeta(1), & upf%lll(1), & upf%beta(upf%mesh,1), & upf%dion(1,1), & upf%rinner(1), & upf%qqq(1,1), & upf%qfunc(upf%mesh,1),& upf%qfcoef(1,1,1,1), & upf%rcut(1), & upf%rcutus(1), & upf%els_beta(1) ) ! !CALL iotk_scan_end(u, 'PP_NONLOCAL') RETURN END IF ! ! CALL iotk_scan_begin(u, 'PP_NONLOCAL') ! ALLOCATE( upf%kbeta(upf%nbeta), & upf%lll(upf%nbeta), & upf%beta(upf%mesh, upf%nbeta), & upf%dion(upf%nbeta, upf%nbeta),& upf%rcut(upf%nbeta), & upf%rcutus(upf%nbeta), & upf%els_beta(upf%nbeta) ) ! ! Read the projectors: DO nb = 1,upf%nbeta CALL iotk_scan_dat(u, 'PP_BETA'//iotk_index( nb ), & upf%beta(:,nb), attr=attr) CALL iotk_scan_attr(attr, 'label', upf%els_beta(nb), default='Xn') CALL iotk_scan_attr(attr, 'angular_momentum', upf%lll(nb)) CALL iotk_scan_attr(attr, 'cutoff_radius_index', upf%kbeta(nb), default=upf%mesh) CALL iotk_scan_attr(attr, 'cutoff_radius', upf%rcut(nb), default=0._dp) CALL iotk_scan_attr(attr, 'ultrasoft_cutoff_radius', upf%rcutus(nb), default=0._dp) ! ! Old version of UPF PPs v.2 contained an error in the tag. ! To be able to read the old PPs we need the following ! IF ( upf%rcutus(nb)==0._DP) & CALL iotk_scan_attr(attr,'norm_conserving_radius',upf%rcutus(nb), & default=0._dp) ENDDO ! ! Read the hamiltonian terms D_ij CALL iotk_scan_dat(u, 'PP_DIJ', upf%dion, attr=attr) ! CALL iotk_scan_attr(attr, 'non_zero_elements', upf%nd) ! ! Read the augmentation charge section augmentation : & IF(upf%tvanp .or. upf%tpawp) THEN ! CALL iotk_scan_begin(u, 'PP_AUGMENTATION', attr=attr) CALL iotk_scan_attr(attr, 'q_with_l', upf%q_with_l) CALL iotk_scan_attr(attr, 'nqf', upf%nqf) CALL iotk_scan_attr(attr, 'nqlc', upf%nqlc, default=2*upf%lmax+1) IF (upf%tpawp) THEN CALL iotk_scan_attr(attr,'shape', upf%paw%augshape, default='UNKNOWN') CALL iotk_scan_attr(attr,'cutoff_r', upf%paw%raug, default=0._dp) CALL iotk_scan_attr(attr,'cutoff_r_index', upf%paw%iraug, default=upf%mesh) CALL iotk_scan_attr(attr,'l_max_aug', upf%paw%lmax_aug, default=upf%lmax_rho) ENDIF ! a negative number means that all qfunc are stored CALL iotk_scan_attr(attr,'augmentation_epsilon',upf%qqq_eps, default=-1._dp) ! ALLOCATE( upf%rinner( upf%nqlc ) ) ALLOCATE( upf%qqq ( upf%nbeta, upf%nbeta ) ) IF ( upf%q_with_l ) THEN ALLOCATE( upf%qfuncl ( upf%mesh, upf%nbeta*(upf%nbeta+1)/2, 0:2*upf%lmax ) ) upf%qfuncl=0._dp ELSE ALLOCATE( upf%qfunc (upf%mesh, upf%nbeta*(upf%nbeta+1)/2) ) ENDIF ! ! Read the integrals of the Q functions CALL iotk_scan_dat(u, 'PP_Q',upf%qqq ) ! ! read charge multipoles (only if PAW) IF( upf%tpawp ) THEN ALLOCATE(upf%paw%augmom(upf%nbeta,upf%nbeta, 0:2*upf%lmax)) CALL iotk_scan_dat(u, 'PP_MULTIPOLES', upf%paw%augmom) ENDIF ! ! Read polinomial coefficients for Q_ij expansion at small radius IF(upf%nqf <= 0) THEN upf%rinner(:) = 0._dp ALLOCATE( upf%qfcoef(1,1,1,1) ) upf%qfcoef = 0._dp ELSE ALLOCATE( upf%qfcoef( MAX( upf%nqf,1 ), upf%nqlc, upf%nbeta, upf%nbeta ) ) CALL iotk_scan_dat(u, 'PP_QFCOEF',upf%qfcoef, attr=attr) CALL iotk_scan_dat(u, 'PP_RINNER',upf%rinner, attr=attr) ENDIF ! ! Read augmentation charge Q_ij ultrasoft_or_paw : & IF( upf%tvanp) THEN DO nb = 1,upf%nbeta ln = upf%lll(nb) DO mb = nb,upf%nbeta lm = upf%lll(mb) nmb = mb * (mb-1) /2 + nb q_with_l : & IF( upf%q_with_l ) THEN DO l = abs(ln-lm),ln+lm,2 ! only even terms CALL iotk_scan_dat(u, 'PP_QIJL'//iotk_index((/nb,mb,l/)),& upf%qfuncl(:,nmb,l),default=zeros,attr=attr) IF( upf%tpawp) upf%qfuncl(upf%paw%iraug+1:,nmb,l) = 0._dp ENDDO ELSE q_with_l CALL iotk_scan_dat(u, 'PP_QIJ'//iotk_index((/nb,mb/)),& upf%qfunc(:,nmb),attr=attr,default=zeros) ENDIF q_with_l ENDDO ENDDO ! ENDIF ultrasoft_or_paw ! CALL iotk_scan_end(u, 'PP_AUGMENTATION') ! ENDIF augmentation ! ! Maximum radius of beta projector: outer radius to integrate upf%kkbeta = MAXVAL(upf%kbeta(1:upf%nbeta)) ! For PAW augmentation charge may extend a bit further: IF(upf%tpawp) upf%kkbeta = MAX(upf%kkbeta, upf%paw%iraug) ! CALL iotk_scan_end(u, 'PP_NONLOCAL') ! RETURN END SUBROUTINE read_upf_nonlocal ! SUBROUTINE read_upf_pswfc(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nw ! CALL iotk_scan_begin(u, 'PP_PSWFC') ! ALLOCATE( upf%chi(upf%mesh,upf%nwfc) ) ALLOCATE( upf%els(upf%nwfc), & upf%oc(upf%nwfc), & upf%lchi(upf%nwfc), & upf%nchi(upf%nwfc), & upf%rcut_chi(upf%nwfc), & upf%rcutus_chi(upf%nwfc), & upf%epseu(upf%nwfc) & ) ! DO nw = 1,upf%nwfc CALL iotk_scan_dat(u, 'PP_CHI'//iotk_index(nw), & upf%chi(:,nw), attr=attr) CALL iotk_scan_attr(attr, 'label', upf%els(nw), default='Xn') CALL iotk_scan_attr(attr, 'l', upf%lchi(nw)) CALL iotk_scan_attr(attr, 'occupation', upf%oc(nw)) CALL iotk_scan_attr(attr, 'n', upf%nchi(nw), default=upf%lchi(nw)-1) CALL iotk_scan_attr(attr, 'pseudo_energy', upf%epseu(nw), default=0._dp) CALL iotk_scan_attr(attr, 'cutoff_radius', upf%rcut_chi(nw),default=0._dp) CALL iotk_scan_attr(attr, 'ultrasoft_cutoff_radius', upf%rcutus_chi(nw),default=0._dp) ENDDO ! CALL iotk_scan_end(u, 'PP_PSWFC') ! RETURN END SUBROUTINE read_upf_pswfc SUBROUTINE read_upf_full_wfc(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr LOGICAL :: exst ! INTEGER :: nb ! IF(.not. upf%has_wfc) RETURN ! CALL iotk_scan_begin(u, 'PP_FULL_WFC') ! ALLOCATE( upf%aewfc(upf%mesh, upf%nbeta) ) DO nb = 1,upf%nbeta CALL iotk_scan_dat(u, 'PP_AEWFC'//iotk_index(nb), & upf%aewfc(:,nb), attr=attr) ENDDO IF (upf%has_so .and. upf%tpawp) THEN ALLOCATE( upf%paw%aewfc_rel(upf%mesh, upf%nbeta) ) nb_loop: DO nb = 1,upf%nbeta CALL iotk_scan_dat(u, 'PP_AEWFC_REL'//iotk_index(nb), & upf%paw%aewfc_rel(:,nb), attr=attr, found=exst) IF (.not.exst) THEN upf%paw%aewfc_rel=0.0_DP EXIT nb_loop ENDIF ENDDO nb_loop ENDIF ALLOCATE( upf%pswfc(upf%mesh, upf%nbeta) ) DO nb = 1,upf%nbeta CALL iotk_scan_dat(u, 'PP_PSWFC'//iotk_index(nb), & upf%pswfc(:,nb), attr=attr) ENDDO CALL iotk_scan_end(u, 'PP_FULL_WFC') ! END SUBROUTINE read_upf_full_wfc ! SUBROUTINE read_upf_spin_orb(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nw, nb ! IF (.not. upf%has_so) RETURN ! CALL iotk_scan_begin(u, 'PP_SPIN_ORB') ! ALLOCATE (upf%nn(upf%nwfc)) ALLOCATE (upf%jchi(upf%nwfc)) ! DO nw = 1,upf%nwfc CALL iotk_scan_empty(u, 'PP_RELWFC'//iotk_index(nw),& attr=attr) !CALL iotk_scan_attr(attr, 'els', upf%els(nw)) ! already read CALL iotk_scan_attr(attr, 'nn', upf%nn(nw)) !CALL iotk_scan_attr(attr, 'lchi', upf%lchi(nw)) ! already read CALL iotk_scan_attr(attr, 'jchi', upf%jchi(nw)) !CALL iotk_scan_attr(attr, 'oc', upf%oc(nw)) ! already read ENDDO ! ALLOCATE(upf%jjj(upf%nbeta)) ! DO nb = 1,upf%nbeta CALL iotk_scan_empty(u, 'PP_RELBETA'//iotk_index(nb),& attr=attr) CALL iotk_scan_attr(attr, 'lll', upf%lll(nb)) CALL iotk_scan_attr(attr, 'jjj', upf%jjj(nb)) ENDDO ! CALL iotk_scan_end(u, 'PP_SPIN_ORB') ! RETURN END SUBROUTINE read_upf_spin_orb ! SUBROUTINE read_upf_paw(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong ! CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb,nb1 IF (.not. upf%tpawp ) RETURN CALL iotk_scan_begin(u, 'PP_PAW', attr=attr) CALL iotk_scan_attr(attr, 'paw_data_format', upf%paw_data_format) IF(upf%paw_data_format /= 2) & CALL errore('read_upf_v2::paw',& 'Unknown format of PAW data.',1) CALL iotk_scan_attr(attr, 'core_energy', upf%paw%core_energy, default=0._dp) ! ! Full occupation (not only > 0 ones) ALLOCATE( upf%paw%oc(upf%nbeta) ) CALL iotk_scan_dat(u, 'PP_OCCUPATIONS',upf%paw%oc) ! ! All-electron core charge ALLOCATE( upf%paw%ae_rho_atc(upf%mesh) ) CALL iotk_scan_dat(u, 'PP_AE_NLCC', upf%paw%ae_rho_atc) ! ! All-electron local potential ALLOCATE( upf%paw%ae_vloc(upf%mesh) ) CALL iotk_scan_dat(u, 'PP_AE_VLOC', upf%paw%ae_vloc) ! ALLOCATE(upf%paw%pfunc(upf%mesh, upf%nbeta,upf%nbeta) ) upf%paw%pfunc(:,:,:) = 0._dp IF (upf%has_so) THEN ALLOCATE(upf%paw%pfunc_rel(upf%mesh, upf%nbeta,upf%nbeta) ) upf%paw%pfunc_rel(:,:,:) = 0._dp ENDIF DO nb=1,upf%nbeta DO nb1=1,nb upf%paw%pfunc (1:upf%mesh, nb, nb1) = & upf%aewfc(1:upf%mesh, nb) * upf%aewfc(1:upf%mesh, nb1) IF (upf%has_so) THEN upf%paw%pfunc_rel (1:upf%paw%iraug, nb, nb1) = & upf%paw%aewfc_rel(1:upf%paw%iraug, nb) * & upf%paw%aewfc_rel(1:upf%paw%iraug, nb1) ! ! The small component is added to pfunc. pfunc_rel is useful only ! to add a small magnetic contribution ! upf%paw%pfunc (1:upf%paw%iraug, nb, nb1) = & upf%paw%pfunc (1:upf%paw%iraug, nb, nb1) + & upf%paw%pfunc_rel (1:upf%paw%iraug, nb, nb1) ENDIF upf%paw%pfunc(upf%paw%iraug+1:,nb,nb1) = 0._dp ! upf%paw%pfunc (1:upf%mesh, nb1, nb) = upf%paw%pfunc (1:upf%mesh, nb, nb1) IF (upf%has_so) upf%paw%pfunc_rel (1:upf%mesh, nb1, nb) = & upf%paw%pfunc_rel (1:upf%mesh, nb, nb1) ENDDO ENDDO ! ! Pseudo wavefunctions (not only the ones for oc > 0) ! All-electron wavefunctions ALLOCATE(upf%paw%ptfunc(upf%mesh, upf%nbeta,upf%nbeta) ) upf%paw%ptfunc(:,:,:) = 0._dp DO nb=1,upf%nbeta DO nb1=1,upf%nbeta upf%paw%ptfunc (1:upf%mesh, nb, nb1) = & upf%pswfc(1:upf%mesh, nb) * upf%pswfc(1:upf%mesh, nb1) upf%paw%ptfunc(upf%paw%iraug+1:,nb,nb1) = 0._dp ! upf%paw%ptfunc (1:upf%mesh, nb1, nb) = upf%paw%ptfunc (1:upf%mesh, nb, nb1) ENDDO ENDDO ! ! Finalize CALL iotk_scan_end(u, 'PP_PAW') RETURN END SUBROUTINE read_upf_paw ! SUBROUTINE read_upf_gipaw(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong ! CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb IF (.not. upf%has_gipaw ) RETURN CALL iotk_scan_begin(u, 'PP_GIPAW', attr=attr) CALL iotk_scan_attr(attr, 'gipaw_data_format', upf%gipaw_data_format) IF(upf%gipaw_data_format /= 2) & CALL infomsg('read_upf_v2::gipaw','Unknown format version') ! CALL iotk_scan_begin(u, 'PP_GIPAW_CORE_ORBITALS', attr=attr) CALL iotk_scan_attr(attr, 'number_of_core_orbitals', upf%gipaw_ncore_orbitals) ALLOCATE ( upf%gipaw_core_orbital_n(upf%gipaw_ncore_orbitals) ) ALLOCATE ( upf%gipaw_core_orbital_el(upf%gipaw_ncore_orbitals) ) ALLOCATE ( upf%gipaw_core_orbital_l(upf%gipaw_ncore_orbitals) ) ALLOCATE ( upf%gipaw_core_orbital(upf%mesh,upf%gipaw_ncore_orbitals) ) DO nb = 1,upf%gipaw_ncore_orbitals CALL iotk_scan_dat(u, 'PP_GIPAW_CORE_ORBITAL'//iotk_index(nb), & upf%gipaw_core_orbital(:,nb), attr=attr) CALL iotk_scan_attr(attr, 'label', upf%gipaw_core_orbital_el(nb)) CALL iotk_scan_attr(attr, 'n', upf%gipaw_core_orbital_n(nb)) CALL iotk_scan_attr(attr, 'l', upf%gipaw_core_orbital_l(nb)) ENDDO CALL iotk_scan_end(u, 'PP_GIPAW_CORE_ORBITALS') ! ! Read valence all-electron and pseudo orbitals and their labels ! IF (upf%paw_as_gipaw) THEN !READ PAW DATA INSTEAD OF GIPAW upf%gipaw_wfs_nchannels = upf%nbeta ALLOCATE ( upf%gipaw_wfs_el(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ll(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcut(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcutus(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ae(upf%mesh,upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ps(upf%mesh,upf%gipaw_wfs_nchannels) ) DO nb = 1,upf%gipaw_wfs_nchannels upf%gipaw_wfs_el(nb) = upf%els_beta(nb) upf%gipaw_wfs_ll(nb) = upf%lll(nb) upf%gipaw_wfs_ae(:,nb) = upf%aewfc(:,nb) ENDDO DO nb = 1,upf%gipaw_wfs_nchannels upf%gipaw_wfs_ps(:,nb) = upf%pswfc(:,nb) ENDDO ALLOCATE ( upf%gipaw_vlocal_ae(upf%mesh) ) ALLOCATE ( upf%gipaw_vlocal_ps(upf%mesh) ) upf%gipaw_vlocal_ae(:)= upf%paw%ae_vloc(:) upf%gipaw_vlocal_ps(:)= upf%vloc(:) DO nb = 1,upf%gipaw_wfs_nchannels upf%gipaw_wfs_rcut(nb)=upf%rcut(nb) upf%gipaw_wfs_rcutus(nb)=upf%rcutus(nb) ENDDO ELSEIF (upf%tcoulombp) THEN upf%gipaw_wfs_nchannels = 1 ALLOCATE ( upf%gipaw_wfs_el(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ll(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcut(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcutus(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ae(upf%mesh,upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ps(upf%mesh,upf%gipaw_wfs_nchannels) ) DO nb = 1,upf%gipaw_wfs_nchannels upf%gipaw_wfs_el(nb) = "1S" upf%gipaw_wfs_ll(nb) = 0 upf%gipaw_wfs_ae(:,nb) = 0.0d0 upf%gipaw_wfs_ps(:,nb) = 0.0d0 ENDDO ALLOCATE ( upf%gipaw_vlocal_ae(upf%mesh) ) ALLOCATE ( upf%gipaw_vlocal_ps(upf%mesh) ) upf%gipaw_vlocal_ae(:)= 0.0d0 upf%gipaw_vlocal_ps(:)= 0.0d0 DO nb = 1,upf%gipaw_wfs_nchannels upf%gipaw_wfs_rcut(nb)=1.0d0 upf%gipaw_wfs_rcutus(nb)=1.0d0 ENDDO ELSE CALL iotk_scan_begin(u, 'PP_GIPAW_ORBITALS', attr=attr) CALL iotk_scan_attr(attr, 'number_of_valence_orbitals', upf%gipaw_wfs_nchannels) ALLOCATE ( upf%gipaw_wfs_el(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ll(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcut(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcutus(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ae(upf%mesh,upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ps(upf%mesh,upf%gipaw_wfs_nchannels) ) DO nb = 1,upf%gipaw_wfs_nchannels CALL iotk_scan_begin(u, 'PP_GIPAW_ORBITAL'//iotk_index(nb), attr=attr) CALL iotk_scan_attr(attr, 'label', upf%gipaw_wfs_el(nb)) CALL iotk_scan_attr(attr, 'l', upf%gipaw_wfs_ll(nb)) CALL iotk_scan_attr(attr, 'cutoff_radius', upf%gipaw_wfs_rcut(nb)) CALL iotk_scan_attr(attr, 'ultrasoft_cutoff_radius', upf%gipaw_wfs_rcutus(nb),& default=upf%gipaw_wfs_rcut(nb)) ! read all-electron orbital CALL iotk_scan_dat(u, 'PP_GIPAW_WFS_AE', upf%gipaw_wfs_ae(:,nb)) ! read pseudo orbital CALL iotk_scan_dat(u, 'PP_GIPAW_WFS_PS', upf%gipaw_wfs_ps(:,nb)) ! CALL iotk_scan_end(u, 'PP_GIPAW_ORBITAL'//iotk_index(nb)) ENDDO CALL iotk_scan_end(u, 'PP_GIPAW_ORBITALS') !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Read all-electron and pseudo local potentials ALLOCATE ( upf%gipaw_vlocal_ae(upf%mesh) ) ALLOCATE ( upf%gipaw_vlocal_ps(upf%mesh) ) CALL iotk_scan_begin(u, 'PP_GIPAW_VLOCAL') CALL iotk_scan_dat(u, 'PP_GIPAW_VLOCAL_AE',upf%gipaw_vlocal_ae(:)) CALL iotk_scan_dat(u, 'PP_GIPAW_VLOCAL_PS',upf%gipaw_vlocal_ps(:)) CALL iotk_scan_end(u, 'PP_GIPAW_VLOCAL') ENDIF CALL iotk_scan_end(u, 'PP_GIPAW') RETURN END SUBROUTINE read_upf_gipaw ! END SUBROUTINE read_upf_v2 ! END MODULE read_upf_v2_module espresso-5.1/Modules/zhpev_drv.f900000644000175000017500000012634112341373034015250 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE zhpev_module IMPLICIT NONE SAVE PRIVATE PUBLIC :: pzhpev_drv, zhpev_drv #if defined __SCALAPACK PUBLIC :: pzheevd_drv #endif CONTAINS ! !------------------------------------------------------------------------- SUBROUTINE pzhptrd( n, nrl, ap, lda, d, e, tau, nproc, me, comm ) !------------------------------------------------------------------------- ! ! Parallel MPI version of the LAPACK routine ZHPTRD ! ! Carlo Cavazzoni (carlo.cavazzoni@cineca.it) -- CINECA ! Dicember 12, 1999 ! ! REFERENCES : ! ! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING. ! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING, ! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE. ! ! PARALLEL NUMERICAL ALGORITHMS, ! T.L. FREEMAN AND C.PHILLIPS, ! PRENTICE HALL INTERNATIONAL (1992). ! ! LAPACK routine (version 2.0) -- ! Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., ! Courant Institute, Argonne National Lab, and Rice University ! USE kinds, ONLY : DP USE io_global, ONLY : stdout IMPLICIT NONE ! .. __SCALAR Arguments .. INTEGER LDA, N, NRL, NPROC, ME, comm ! .. ! .. Array Arguments .. REAL(DP) D( * ), E( * ) COMPLEX(DP) AP(LDA, * ), TAU( * ) ! .. ! ! Purpose ! ======= ! ! PZHPTRD reduces a complex Hermitian distributed matrix AP to ! real symmetric tridiagonal form T by a unitary similarity ! transformation: Q**H * A * Q = T. ! ! Arguments ! ========= ! ! N (input) INTEGER ! The order of the mglobal atrix AP. N >= 0. ! ! NRL (input) INTEGER ! The number of local rows of the matrix AP. NRL >= 0. ! ! AP (input/output) COMPLEX(DP) array, dimension (LDA,N) ! On entry, the Hermitian matrix AP. ! The rows of the matrix are distributed among processors ! with blocking factor 1. ! Example for NPROC = 4 : ! ROW | PE ! 1 | 0 ! 2 | 1 ! 3 | 2 ! 4 | 3 ! 5 | 0 ! 6 | 1 ! .. | .. ! On exit, the diagonal and first subdiagonal ! of A are overwritten by the corresponding elements of the ! tridiagonal matrix T, and the elements below the first ! subdiagonal, with the array TAU, represent the unitary ! matrix Q as a product of elementary reflectors; ! ! LDA (input) INTEGER ! Leading dimension of the local matrix AP, LDA > NRL ! ! D (output) DOUBLE PRECISION array, dimension (N) ! The diagonal elements of the tridiagonal matrix T: ! D(i) = AP(i,i). ! ! E (output) DOUBLE PRECISION array, dimension (N-1) ! The off-diagonal elements of the tridiagonal matrix T: ! E(i) = A(i+1,i) ! ! TAU (output) COMPLEX(DP) array, dimension (N-1) ! The __SCALAR factors of the elementary reflectors (see Further ! Details). ! ! NPROC (input) INTEGER ! Number of processors ! ! ME (input) INTEGER ! Index of the local processor ( 0, 1, 2, ..., NPROC-1 ) ! ! Further Details ! =============== ! ! the matrix Q is represented as a product of elementary ! reflectors ! ! Q = H(1) H(2) . . . H(n-1). ! ! Each H(i) has the form ! ! H(i) = I - tau * v * v' ! ! where tau is a complex __SCALAR, and v is a complex vector with ! v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP, ! overwriting A(i+2:n,i), and tau is stored in TAU(i). ! ! ===================================================================== ! ! .. Parameters .. COMPLEX(DP) ONE, ZERO, HALF PARAMETER ( ONE = ( 1.0_DP, 0.0_DP ),ZERO = ( 0.0_DP, 0.0_DP ), & & HALF = ( 0.5_DP, 0.0_DP ) ) REAL(DP) RONE, RZERO PARAMETER ( RONE = 1.0_DP, RZERO = 0.0_DP ) INTEGER QI INTEGER IL(N+1) INTEGER OW(N+1) COMPLEX(DP) CTMP COMPLEX(DP) CTMPV(N+1) COMPLEX(DP) TAUL(N+1) COMPLEX(DP) APKI(N+1) REAL(DP) TMP REAL(DP) TMPV(N+1) ! .. ! .. Local __SCALARs .. INTEGER J, I, I1, K, I2, NI1, JL INTEGER KL, J1 COMPLEX(DP) ALPHA, TAUI INTEGER KNT, IERR REAL(DP) ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM ! .. ! .. External Subroutines .. EXTERNAL zaxpy EXTERNAL zdscal, zscal ! .. ! .. External Functions .. COMPLEX(DP) zdotc EXTERNAL zdotc REAL(DP) DLAMCH, DLAPY3, DZNRM2 COMPLEX(DP) ZLADIV EXTERNAL DLAMCH, DLAPY3, DZNRM2, ZLADIV ! .. ! .. Intrinsic Functions .. INTRINSIC DABS, DBLE, AIMAG, SIGN ! ! .. Executable Statements .. ! ! Quick return if possible ! IF(N.LE.0) THEN RETURN END IF DO I = 1,N+1 QI = (I-1)/NPROC OW(I) = MOD((I-1),NPROC) IF(ME .le. OW(I) ) then IL(I) = QI + 1 ELSE IL(I) = QI END IF END DO ! ! Reduce the lower triangle of A. ! IF (OW(1).EQ.ME) THEN AP( IL(1), 1 ) = DBLE( AP( IL(1), 1 ) ) END IF DO I = 1, N - 1 ! ! Generate elementary reflector H(i) = I - tau * v * v' ! to annihilate A(i+2:n,i) ! IF (OW(I+1).EQ.ME) THEN ALPHA = AP( IL(I+1), I ) END IF #if defined __MPI CALL BCAST_REAL( ALPHA, 2, OW(I+1), comm ) #endif IF( (N-I).LE.0 ) THEN TAUI = RZERO ELSE IF(OW(I+2).EQ.ME) THEN I2 = IL(I+2) ELSE I2 = IL(I+2) + 1 ! I+2 ENDIF NI1 = NRL - I2 + 1 ! N-I-1 IF((N-I-1).GT.0) THEN IF( NI1 .GT. 0 ) THEN XNORM = DZNRM2( NI1, AP( I2, I ), 1 ) ELSE XNORM = 0.0_DP END IF #if defined __MPI XNORM = XNORM ** 2 CALL reduce_base_real( 1, xnorm, comm, -1 ) XNORM = SQRT( xnorm ) #endif ELSE XNORM = 0.0_DP ENDIF ALPHR = DBLE( ALPHA ) ALPHI = AIMAG( ALPHA ) IF( XNORM.EQ.RZERO .AND. ALPHI.EQ.RZERO ) THEN TAUI = RZERO ELSE BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' ) RSAFMN = RONE / SAFMIN IF( DABS( BETA ).LT.SAFMIN ) THEN KNT = 0 10 CONTINUE KNT = KNT + 1 IF(NI1.GT.0) THEN CALL zdscal( NI1, RSAFMN, AP( I2, I ), 1 ) ENDIF BETA = BETA*RSAFMN ALPHI = ALPHI*RSAFMN ALPHR = ALPHR*RSAFMN IF( DABS( BETA ).LT.SAFMIN ) GO TO 10 IF((N-I-1).GT.0) THEN XNORM = DZNRM2( NI1, AP( I2, I ), 1 ) #if defined __MPI XNORM = XNORM ** 2 CALL reduce_base_real( 1, xnorm, comm, -1 ) XNORM = SQRT( XNORM ) #endif ELSE XNORM = 0.0_DP ENDIF ALPHA = CMPLX( ALPHR, ALPHI, KIND=DP ) BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) TAUI = CMPLX( (BETA-ALPHR)/BETA, -ALPHI/BETA, KIND=DP ) ALPHA = ZLADIV( ONE, ALPHA-BETA ) IF(NI1.GT.0) THEN CALL zscal( NI1, ALPHA, AP( I2, I ), 1 ) ENDIF ALPHA = BETA DO J = 1, KNT ALPHA = ALPHA*SAFMIN END DO ELSE TAUI = CMPLX( (BETA-ALPHR)/BETA, -ALPHI/BETA, KIND=DP ) ALPHA = ZLADIV( ONE, ALPHA-BETA ) IF(NI1.GT.0) THEN CALL zscal( NI1, ALPHA, AP( I2, I ), 1 ) ENDIF ALPHA = BETA END IF END IF ENDIF ! E( I ) = ALPHA ! IF( TAUI.NE.ZERO ) THEN ! ! Apply H(i) from both sides to A(i+1:n,i+1:n) ! ! ... AP( I+1, I ) = ONE IF (OW(I+1).EQ.ME) THEN AP( IL(I+1), I ) = ONE END IF ! ! Compute y := tau * A * v storing y in TAU(i:n-1) ! ! ... broadcast A(K,I) IF(OW(I+1).EQ.ME) THEN I1 = IL(I+1) ELSE I1 = IL(I+1) + 1 ! I+2 ENDIF #if defined __MPI DO J = I+1, N CTMPV(J) = ZERO END DO DO JL = I1, NRL J = ME + (JL-1)*NPROC + 1 CTMPV(J) = AP(JL,I) END DO CALL reduce_base_real_to( 2*(n - i) , ctmpv( i + 1 ), apki( i + 1 ), comm, -1 ) #else DO J = I+1,N APKI(J) = AP(J,I) ENDDO #endif DO J = I+1, N+1 TAU(J-1) = ZERO END DO DO JL = I1, NRL J = ME + (JL-1)*NPROC + 1 TAU(J-1) = ZERO DO K = I+1, J TAU(J-1) = TAU(J-1) + TAUI * AP(JL,K) * APKI(K) END DO END DO DO J = I+1, N IF(OW(J+1).EQ.ME) THEN J1 = IL(J+1) ELSE J1 = IL(J+1) + 1 ! I+2 ENDIF DO KL = J1, NRL K = ME + (KL-1)*NPROC + 1 TAU(J-1) = TAU(J-1) + TAUI * CONJG(AP(KL,J)) * APKI(K) END DO END DO #if defined __MPI ! ... parallel sum TAU CALL reduce_base_real( 2*(n - i + 1), tau( i ), comm, -1 ) #endif ! ! Compute w := y - 1/2 * tau * (y'*v) * v ! ! ... ALPHA = -HALF*TAUI*zdotc(N-I,TAU(I),1,AP(I+1,I),1) JL = 1 DO J = I, N IF(OW(J+1).EQ.ME) THEN TAUL(JL) = TAU(J) JL = JL + 1 END IF END DO IF(OW(I+1).EQ.ME) THEN I1 = IL(I+1) ELSE I1 = IL(I+1) + 1 ! I+1 ENDIF NI1 = NRL - I1 + 1 ! N-I IF ( NI1 > 0 ) THEN ALPHA = -HALF*TAUI*zdotc(NI1,TAUL(1),1,AP(I1,I),1) ELSE ALPHA = 0.0_DP END IF #if defined __MPI CALL reduce_base_real( 2, alpha, comm, -1 ) #endif #if defined __MPI IF ( NI1 > 0 ) CALL zaxpy(NI1,ALPHA,AP(I1,I),1,TAUL(1),1) JL = 1 DO J = I, N CTMPV(J) = ZERO IF(OW(J+1).EQ.ME) THEN CTMPV(J) = TAUL(JL) JL = JL + 1 END IF END DO CALL reduce_base_real_to( 2*(n - i + 1) , ctmpv( i ), tau( i ), comm, -1 ) #else CALL zaxpy(N-I,ALPHA,AP(I+1,I),1,TAU(I),1) #endif ! ! Apply the transformation as a rank-2 update: ! A := A - v * w' - w * v' ! ! ... broadcast A(K,I) IF(OW(I+1).EQ.ME) THEN I1 = IL(I+1) ELSE I1 = IL(I+1) + 1 ! I+2 ENDIF #if defined __MPI DO J = I+1, N CTMPV(J) = ZERO END DO DO JL = I1, NRL J = ME + (JL-1)*NPROC + 1 CTMPV(J) = AP(JL,I) END DO CALL reduce_base_real_to( 2*(n - i) , ctmpv( i + 1 ), apki( i + 1 ), comm, -1 ) #else DO J = I+1, N APKI(J) = AP(J,I) END DO #endif DO K = I+1,N DO JL = I1,NRL J = ME + (JL-1)*NPROC + 1 AP(JL,K) = AP(JL,K) - ONE * AP(JL,I) * CONJG(TAU(K-1)) - & & CONJG(ONE) * TAU(J-1) * CONJG(APKI(K)) END DO END DO ! END IF IF(OW(I+1).EQ.ME) THEN AP(IL(I+1),I) = E( I ) END IF IF(OW(I).EQ.ME) THEN D( I ) = DBLE(AP( IL(I),I )) END IF #if defined __MPI CALL BCAST_REAL(D(I),1,OW(I),comm) #endif TAU( I ) = TAUI END DO IF(OW(I).EQ.ME) THEN D( N ) = DBLE(AP( IL(I),I )) END IF #if defined __MPI CALL BCAST_REAL(D(N),1,OW(I),comm) #endif ! RETURN ! ! End of ZHPTRD ! END SUBROUTINE pzhptrd !==----------------------------------------------==! SUBROUTINE pzupgtr( n, nrl, ap, lda, tau, q, ldq, nproc, me, comm) USE kinds, ONLY : DP USE io_global, ONLY : stdout ! ! Parallel MPI version of the LAPACK routine ZUPGTR ! ! Carlo Cavazzoni (carlo.cavazzoni@cineca.it) -- CINECA ! Dicember 12, 1999 ! ! REFERENCES : ! ! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING. ! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING, ! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE. ! ! PARALLEL NUMERICAL ALGORITHMS, ! T.L. FREEMAN AND C.PHILLIPS, ! PRENTICE HALL INTERNATIONAL (1992). ! ! LAPACK routine (version 2.0) -- ! Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., ! Courant Institute, Argonne National Lab, and Rice University IMPLICIT NONE ! ! .. __SCALAR Arguments .. INTEGER INFO, LDQ, N, LDA, NRL, NPROC, ME, comm ! .. ! .. Array Arguments .. COMPLEX(DP) AP(LDA, * ), Q( LDQ, * ), TAU( * ) ! .. ! ! Purpose ! ======= ! ! PZUPGTR generates a complex unitary matrix Q which is defined as the ! product of n-1 elementary reflectors H(i) of order n, as returned by ! PZHPTRD : ! ! Q = H(1) H(2) . . . H(n-1). ! ! Arguments ! ========= ! ! N (input) INTEGER ! The order of the mglobal atrix AP. N >= 0. ! ! NRL (input) INTEGER ! The number of local rows of the matrix AP. NRL >= 0. ! ! AP (input) COMPLEX(DP) array, dimension (LDA,N) ! The vectors which define the elementary reflectors, as ! returned by PZHPTRD. ! The rows of the matrix are distributed among processors ! with blocking factor 1. ! Example for NPROC = 4 : ! ROW | PE ! 1 | 0 ! 2 | 1 ! 3 | 2 ! 4 | 3 ! 5 | 0 ! 6 | 1 ! .. | .. ! ! LDA (input) INTEGER ! Leading dimension of the local matrix AP, LDA > NRL ! ! TAU (input) COMPLEX(DP) array, dimension (N-1) ! TAU(i) must contain the __SCALAR factor of the elementary ! reflector H(i), as returned by PZHPTRD. ! ! Q (output) COMPLEX(DP) array, dimension (LDQ,N) ! The N-by-N unitary matrix Q. ! The rows of the matrix are distributed among processors ! in the same way of the matrix AP ! ! LDQ (input) INTEGER ! The leading dimension of the array Q. LDQ >= max(1,NRL). ! ! NPROC (input) INTEGER ! Number of processors ! ! ME (input) INTEGER ! Index of the local processor ( 0, 1, 2, ..., NPROC-1 ) ! ! ===================================================================== ! ! .. Parameters .. COMPLEX(DP) ONE, ZERO PARAMETER ( ONE = (1.0_DP,0.0_DP), ZERO = (0.0_DP,0.0_DP) ) ! change the following parameters to tune the performances ! INTEGER, PARAMETER :: opt_zgemv = 40 INTEGER, PARAMETER :: opt_zgerc = 40 INTEGER QI INTEGER IL(N+1) INTEGER OW(N+1) COMPLEX(DP) CTMP COMPLEX(DP) WORK(N+1) ! .. ! .. Local __SCALARs .. INTEGER :: I, IINFO, J, K, JL, KL, J1, I1, I2, NI1, L, IERR INTEGER :: ibeg, iend, nr INTEGER, EXTERNAL :: ldim_cyclic, lind_cyclic ! .. ! .. Executable Statements .. ! ! Test the input arguments ! ! Quick return if possible ! IF( N == 0 ) THEN RETURN END IF nr = ldim_cyclic( n, nproc, me ) ! IF( nr /= nrl ) & CALL errore( " pzupgtr ", " inconsistent dimensions ", nrl ) ! ibeg = lind_cyclic( 1, n, nproc, me ) iend = lind_cyclic( nr, n, nproc, me ) ! DO I = 1,N+1 QI = (I-1)/NPROC OW(I) = MOD((I-1),NPROC) IF(ME .le. OW(I) ) then IL(I) = QI + 1 ELSE IL(I) = QI END IF END DO ! ! Unpack the vectors which define the elementary reflectors and ! set the first row and column of Q equal to those of the unit ! matrix ! IF(OW(1).EQ.ME) THEN Q( IL(1), 1 ) = ONE DO KL = 2, NRL Q( KL, 1 ) = ZERO END DO DO J = 2, N Q( IL(1), J ) = ZERO END DO ELSE DO KL = 1, NRL Q( KL, 1 ) = ZERO END DO ENDIF DO J = 2, N IF(OW(J+1).EQ.ME) THEN J1 = IL(J+1) ELSE J1 = IL(J+1) + 1 ENDIF DO KL = J1, NRL Q( KL, J ) = AP( KL, J-1 ) END DO END DO IF( N.GT.1 ) THEN ! ! Generate Q(2:n,2:n) ! DO I = N-1, 1, -1 ! ! Apply H(i) to A(i:m,i:n) from the left ! IF( I.LT.(N-1) ) THEN IF(OW(I+1).EQ.ME) THEN Q( IL(I+1), I+1 ) = ONE END IF ! ! Form H * C ! IF( TAU(I).NE.ZERO ) THEN ! ! w := C' * v ! IF(OW(I+1).EQ.ME) THEN I1 = IL(I+1) ELSE I1 = IL(I+1) + 1 ENDIF ! IF( N-1-I > OPT_ZGEMV ) THEN IF( NRL-I1+1 > 0 ) THEN CALL zgemv( 'C', NRL-I1+1, N-1-I, one, Q( I1, I+1+1 ), ldq, Q( I1, I+1 ), 1, zero, work, 1 ) ELSE work( 1 : N-1-I ) = 0.0_DP END IF ELSE DO J = 1, N-1-I CTMP = ZERO DO KL = I1, NRL CTMP = CTMP + CONJG( Q( KL, J+I+1 ) ) * Q( KL,I+1 ) END DO WORK(J) = CTMP END DO END IF #if defined __MPI CALL reduce_base_real( 2*(n - 1 - i), work, comm, -1 ) #endif ! ! C := C - v * w' ! IF( N-1-I > opt_zgerc ) THEN IF( NRL-I1+1 > 0 ) THEN CALL zgerc( NRL-I1+1, N-1-I, -TAU(I), Q(I1, I+1), 1, work, 1, Q( I1, 1+I+1 ), ldq ) END IF ELSE DO J = 1, N-1-I CTMP = -TAU(I) * CONJG( WORK( J ) ) DO KL = I1, NRL Q( KL, J+I+1 ) = Q( KL, J+I+1 ) + CTMP * Q(KL, I+1) END DO END DO END IF END IF END IF IF( I.LT.(N-1) ) THEN IF(OW(I+2).EQ.ME) THEN I2 = IL(I+2) ! I+2 ELSE I2 = IL(I+2) + 1 ! local ind. of the first element > I+2 ENDIF NI1 = NRL - I2 + 1 ! N-I-1 IF ( NI1 > 0 ) CALL zscal( NI1, -TAU( I ), Q( I2, I+1 ), 1 ) END IF IF(OW(I+1).EQ.ME) THEN Q( IL(I+1), I+1 ) = ONE - TAU( I ) END IF ! ! Set A(1:i-1,i) to zero ! DO L = 1, I - 1 IF(OW(L+1).EQ.ME) THEN Q( IL(L+1), I+1 ) = ZERO END IF END DO END DO END IF RETURN ! ! End of ZUPGTR ! END SUBROUTINE pzupgtr !==----------------------------------------------==! SUBROUTINE pzsteqr( compz, n, nrl, d, e, z, ldz, nproc, me, comm ) ! ! Parallel MPI version of the LAPACK routine ZHPTRD ! ! Carlo Cavazzoni (carlo.cavazzoni@cineca.it) -- CINECA ! Dicember 12, 1999 ! ! REFERENCES : ! ! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING. ! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING, ! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE. ! ! PARALLEL NUMERICAL ALGORITHMS, ! T.L. FREEMAN AND C.PHILLIPS, ! PRENTICE HALL INTERNATIONAL (1992). ! ! LAPACK routine (version 2.0) -- ! Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., ! Courant Institute, Argonne National Lab, and Rice University ! USE kinds, ONLY : DP USE io_global, ONLY : stdout IMPLICIT NONE ! .. __SCALAR Arguments .. CHARACTER COMPZ INTEGER LDZ, N, NRL, NPROC, ME, comm ! .. ! .. Array Arguments .. REAL(DP) D( * ), E( * ) COMPLEX(DP) Z( LDZ, * ) ! .. ! ! Purpose ! ======= ! ! PZSTEQR computes all eigenvalues and, optionally, eigenvectors of a ! symmetric tridiagonal matrix using the implicit QL or QR method. ! The eigenvectors of a full or band complex Hermitian matrix can also ! be found if PZHPTRD has been used to reduce this ! matrix to tridiagonal form. ! ! Arguments ! ========= ! ! COMPZ (input) CHARACTER*1 ! = 'N': Compute eigenvalues only. ! = 'V': Compute eigenvalues and eigenvectors of the original ! Hermitian matrix. On entry, Z must contain the ! unitary matrix used to reduce the original matrix ! to tridiagonal form. ! = 'I': Compute eigenvalues and eigenvectors of the ! tridiagonal matrix. Z is initialized to the identity ! matrix. ! ! N (input) INTEGER ! The order of the mglobal atrix AP. N >= 0. ! ! NRL (input) INTEGER ! The number of local rows of the matrix AP. NRL >= 0. ! ! D (input/output) DOUBLE PRECISION array, dimension (N) ! On entry, the diagonal elements of the tridiagonal matrix. ! On exit, if INFO = 0, the eigenvalues in ascending order. ! ! E (input/output) DOUBLE PRECISION array, dimension (N-1) ! On entry, the (n-1) subdiagonal elements of the tridiagonal ! matrix. ! On exit, E has been destroyed. ! ! Z (input/output) COMPLEX(DP) array, dimension (LDZ, N) ! On entry, if COMPZ = 'V', then Z contains the unitary ! matrix used in the reduction to tridiagonal form. ! On exit if COMPZ = 'V', Z contains the ! orthonormal eigenvectors of the original Hermitian matrix, ! and if COMPZ = 'I', Z contains the orthonormal eigenvectors ! of the symmetric tridiagonal matrix. ! If COMPZ = 'N', then Z is not referenced. ! The rows of the matrix are distributed among processors ! with blocking factor 1, i.e. for NPROC = 4 : ! ROW Index | Processor index owning the row ! 1 | 0 ! 2 | 1 ! 3 | 2 ! 4 | 3 ! 5 | 0 ! 6 | 1 ! .. | .. ! ! LDZ (input) INTEGER ! The leading dimension of the array Z. LDZ >= 1, and if ! eigenvectors are desired, then LDZ >= max(1,NRL). ! ! NPROC (input) INTEGER ! Number of processors ! ! ME (input) INTEGER ! Index of the local processor ( 0, 1, 2, ..., NPROC-1 ) ! ! ===================================================================== ! ! .. Parameters .. REAL(DP) RZERO, RONE, TWO, THREE, CTEMP, STEMP PARAMETER ( RZERO = 0.0_DP, RONE = 1.0_DP, TWO = 2.0_DP, & & THREE = 3.0_DP ) COMPLEX(DP) ZERO, ONE,ZTEMP PARAMETER ( ZERO = ( 0.0_DP, 0.0_DP ), ONE = ( 1.0_DP, 0.0_DP ) ) INTEGER MAXIT PARAMETER ( MAXIT = 30 ) ! .. INTEGER :: QI, KL, INFO INTEGER :: IL(N+1) INTEGER :: OW(N+1) REAL(DP) :: WORK(2*N) REAL(DP) :: dvar(6) ! .. Local __SCALARs .. INTEGER I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND, & & LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1, & & NM1, NMAXIT, IERR REAL(DP) ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2, & & S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST ! .. ! .. External Functions .. LOGICAL LSAME REAL(DP) DLAMCH, DLANST, DLAPY2 EXTERNAL LSAME, DLAMCH, DLANST, DLAPY2 ! .. ! .. External Subroutines .. EXTERNAL DLAE2, DLAEV2, DLARTG, DLASCL, DLASRT, XERBLA EXTERNAL ZLASET, ZLASR, ZSWAP ! .. ! .. Intrinsic Functions .. INTRINSIC DABS, MAX, SIGN, SQRT ! .. ! .. Executable Statements .. ! ! Test the input parameters. ! INFO = 0 ! DEBUG START ! if( n > 400 ) then ! write( 4000 + me, * ) LDZ, N, NRL, NPROC, ME, comm ! do i = 1, n ! write( 4000 + me, * ) d( i ) ! end do ! do i = 1, n ! write( 4000 + me, * ) e( i ) ! end do ! do j = 1, n ! do i = 1, nrl ! write( 4000 + me, * ) z( i, j ) ! end do ! end do ! close( 4000 + me ) ! call mpi_barrier( comm, i ) ! stop 'qui' ! end if ! DEBUG END ! IF( LSAME( COMPZ, 'N' ) ) THEN ICOMPZ = 0 ELSE IF( LSAME( COMPZ, 'V' ) ) THEN ICOMPZ = 1 ELSE IF( LSAME( COMPZ, 'I' ) ) THEN ICOMPZ = 2 ELSE ICOMPZ = -1 END IF IF( ICOMPZ.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( (LDZ.LT.1) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX(1,NRL) ) ) THEN INFO = -6 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZSTEQR', -INFO ) RETURN END IF ! ! Quick return if possible ! IF(N.LE.0) THEN RETURN END IF ! DO I = 1,N+1 QI = (I-1)/NPROC OW(I) = MOD((I-1),NPROC) IF(ME .le. OW(I) ) then IL(I) = QI + 1 ELSE IL(I) = QI END IF END DO IF( N.EQ.1 ) THEN IF( ICOMPZ.EQ.2 .AND. OW(1).EQ.ME ) Z( IL(1), 1 ) = ONE RETURN END IF ! ! Determine the unit roundoff and over/underflow thresholds. ! We ensure that all procs have the same data! ! EPS = DLAMCH( 'E' ) EPS2 = EPS**2 SAFMIN = DLAMCH( 'S' ) SAFMAX = RONE / SAFMIN SSFMAX = SQRT( SAFMAX ) / THREE SSFMIN = SQRT( SAFMIN ) / EPS2 ! dvar(1) = EPS dvar(2) = EPS2 dvar(3) = SAFMIN dvar(4) = SAFMAX dvar(5) = SSFMAX dvar(6) = SSFMIN ! CALL BCAST_REAL( dvar, 6, 0, comm ) ! EPS = dvar(1) EPS2 = dvar(2) SAFMIN = dvar(3) SAFMAX = dvar(4) SSFMAX = dvar(5) SSFMIN = dvar(6) ! ! Compute the eigenvalues and eigenvectors of the tridiagonal ! matrix. ! IF( ICOMPZ.EQ.2 ) THEN CALL ZLASET( 'Full', NRL, N, ZERO, ZERO, Z, LDZ ) DO J = 1, N IF(OW(J).EQ.ME) THEN Z( IL(J), J ) = ONE END IF END DO END IF ! NMAXIT = N*MAXIT JTOT = 0 ! ! Determine where the matrix splits and choose QL or QR iteration ! for each block, according to whether top or bottom diagonal ! element is smaller. ! L1 = 1 NM1 = N - 1 ! 10 CONTINUE IF( L1 .GT. N ) GO TO 160 IF( L1 .GT. 1 ) E( L1-1 ) = RZERO IF( me == 0 ) THEN IF( L1.LE.NM1 ) THEN DO M = L1, NM1 TST = DABS( E( M ) ) IF( TST .EQ. RZERO ) GO TO 30 IF( TST .LE. ( SQRT(DABS(D(M)))*SQRT(DABS(D(M+1))) ) * EPS ) THEN E( M ) = RZERO GO TO 30 END IF END DO END IF M = N ! 30 CONTINUE END IF CALL BCAST_REAL( e( l1 ), nm1-l1+1, 0, comm ) CALL BCAST_INTEGER( m, 1, 0, comm ) L = L1 LSV = L LEND = M LENDSV = LEND L1 = M + 1 IF( LEND.EQ.L ) GO TO 10 ! ! Scale submatrix in rows and columns L to LEND ! ANORM = DLANST( 'I', LEND-L+1, D( L ), E( L ) ) ISCALE = 0 IF( ANORM.EQ.RZERO ) GO TO 10 IF( ANORM.GT.SSFMAX ) THEN ISCALE = 1 CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N, INFO ) CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N, INFO ) ELSE IF( ANORM.LT.SSFMIN ) THEN ISCALE = 2 CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N, INFO ) CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N, INFO ) END IF ! ! Choose between QL and QR iteration ! IF( DABS( D( LEND ) ).LT.DABS( D( L ) ) ) THEN LEND = LSV L = LENDSV END IF ! IF( LEND.GT.L ) THEN ! ! QL Iteration ! ! Look for small subdiagonal element. ! 40 CONTINUE IF( me == 0 ) THEN IF( L.NE.LEND ) THEN LENDM1 = LEND - 1 DO M = L, LENDM1 TST = DABS( E( M ) )**2 IF( TST.LE.( EPS2*DABS(D(M)) )*DABS(D(M+1))+ SAFMIN )GO TO 60 END DO END IF ! M = LEND ! 60 CONTINUE END IF CALL BCAST_INTEGER( m, 1, 0, comm ) IF( M.LT.LEND ) E( M ) = RZERO P = D( L ) IF( M.EQ.L ) THEN ! ! Eigenvalue found. ! D( L ) = P L = L + 1 IF( L.LE.LEND ) GO TO 40 GO TO 140 END IF ! ! If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 ! to compute its eigensystem. ! IF( M.EQ.L+1 ) THEN IF( ICOMPZ.GT.0 ) THEN CALL DLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S ) WORK( L ) = C WORK( N-1+L ) = S CTEMP = WORK( L ) STEMP = WORK( N-1+L ) IF( ( CTEMP.NE.RONE ) .OR. ( STEMP.NE.RZERO ) ) THEN DO KL = 1, NRL ZTEMP = Z( KL, 1+L ) Z( KL, 1+L ) = CTEMP*ZTEMP - STEMP*Z( KL, L ) Z( KL, L ) = STEMP*ZTEMP + CTEMP*Z( KL, L ) END DO END IF ELSE CALL DLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 ) END IF D( L ) = RT1 D( L+1 ) = RT2 E( L ) = RZERO L = L + 2 IF( L.LE.LEND ) GO TO 40 GO TO 140 END IF ! IF( JTOT.EQ.NMAXIT ) GO TO 140 JTOT = JTOT + 1 ! ! Form shift. ! ! ! iteration is performed on one processor and results broadcast ! to all others to prevent potential problems if all processors ! do not behave in exactly the same way (even with the same data!) ! if ( me == 0 ) then G = ( D( L+1 )-P ) / ( TWO*E( L ) ) R = DLAPY2( G, RONE ) G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) ) ! S = RONE C = RONE P = RZERO ! ! Inner loop ! MM1 = M - 1 DO I = MM1, L, -1 F = S*E( I ) B = C*E( I ) CALL DLARTG( G, F, C, S, R ) IF( I.NE.M-1 ) E( I+1 ) = R G = D( I+1 ) - P R = ( D( I )-G )*S + TWO*C*B P = S*R D( I+1 ) = G + P G = C*R - B ! ! If eigenvectors are desired, then save rotations. ! IF( ICOMPZ.GT.0 ) THEN WORK( I ) = C WORK( N-1+I ) = -S END IF END DO D( L ) = D( L ) - P E( L ) = G END IF #if defined __MPI CALL BCAST_REAL( d( L ), m - l + 1, 0, comm ) CALL BCAST_REAL( e( L ), m - l + 1, 0, comm ) #endif ! ! If eigenvectors are desired, then apply saved rotations. ! IF( ICOMPZ.GT.0 ) THEN #if defined __MPI CALL BCAST_REAL( work, 2*n, 0, comm ) #endif DO J = M - L + 1 - 1, 1, -1 CTEMP = WORK( L + J -1) STEMP = WORK( N-1+L + J-1) IF( ( CTEMP.NE.RONE ) .OR. ( STEMP.NE.RZERO ) ) THEN DO KL = 1, NRL ZTEMP = Z( KL, J+1+L-1 ) Z( KL, J+1+L-1 ) = CTEMP*ZTEMP - STEMP*Z( KL, J+L-1 ) Z( KL, J+L-1 ) = STEMP*ZTEMP + CTEMP*Z( KL, J+L-1 ) END DO END IF END DO END IF ! GO TO 40 ! ELSE ! ! QR Iteration ! ! Look for small superdiagonal element. ! 90 CONTINUE IF( me == 0 ) THEN IF( L.NE.LEND ) THEN LENDP1 = LEND + 1 DO 100 M = L, LENDP1, -1 TST = DABS( E( M-1 ) )**2 IF( TST.LE.(EPS2*DABS(D(M)))*DABS(D(M-1))+ SAFMIN )GO TO 110 100 CONTINUE END IF ! M = LEND ! 110 CONTINUE END IF CALL BCAST_INTEGER( m, 1, 0, comm ) IF( M.GT.LEND ) E( M-1 ) = RZERO P = D( L ) IF( M.EQ.L ) THEN ! ! Eigenvalue found. ! D( L ) = P L = L - 1 IF( L.GE.LEND ) GO TO 90 GO TO 140 END IF ! ! If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 ! to compute its eigensystem. ! IF( M.EQ.L-1 ) THEN IF( ICOMPZ.GT.0 ) THEN CALL DLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S ) WORK( M ) = C WORK( N-1+M ) = S CTEMP = WORK( M ) STEMP = WORK( N-1+M ) IF( ( CTEMP.NE.RONE ) .OR. ( STEMP.NE.RZERO ) ) THEN DO KL = 1, NRL ZTEMP = Z( KL, L) Z( KL, L ) = CTEMP*ZTEMP - STEMP*Z( KL, L-1 ) Z( KL, L-1 ) = STEMP*ZTEMP + CTEMP*Z( KL, L-1 ) END DO END IF ELSE CALL DLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 ) END IF D( L-1 ) = RT1 D( L ) = RT2 E( L-1 ) = RZERO L = L - 2 IF( L.GE.LEND ) GO TO 90 GO TO 140 END IF ! IF( JTOT.EQ.NMAXIT ) GO TO 140 JTOT = JTOT + 1 ! ! Form shift. ! ! ! iteration is performed on one processor and results broadcast ! to all others to prevent potential problems if all processors ! do not behave in exactly the same way (even with the same data!) ! if ( me == 0 ) then G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) ) R = DLAPY2( G, RONE ) G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) ) ! S = RONE C = RONE P = RZERO ! ! Inner loop ! LM1 = L - 1 DO I = M, LM1 F = S*E( I ) B = C*E( I ) CALL DLARTG( G, F, C, S, R ) IF( I.NE.M ) E( I-1 ) = R G = D( I ) - P R = ( D( I+1 )-G )*S + TWO*C*B P = S*R D( I ) = G + P G = C*R - B ! ! If eigenvectors are desired, then save rotations. ! IF( ICOMPZ.GT.0 ) THEN WORK( I ) = C WORK( N-1+I ) = S END IF END DO D( L ) = D( L ) - P E( LM1 ) = G END IF #if defined __MPI CALL BCAST_REAL( d(M), L - M + 1, 0, comm) CALL BCAST_REAL( e(M), L - M + 1, 0, comm ) #endif ! ! If eigenvectors are desired, then apply saved rotations. ! IF( ICOMPZ.GT.0 ) THEN #if defined __MPI CALL BCAST_REAL(work,2*n,0,comm) #endif DO J = 1, L - M CTEMP = WORK( M+J-1 ) STEMP = WORK( N-1+M+J-1 ) IF( ( CTEMP.NE.RONE ) .OR. ( STEMP.NE.RZERO ) ) THEN DO KL = 1, NRL ZTEMP = Z( KL, J+M ) Z( KL, J+M ) = CTEMP*ZTEMP - STEMP*Z(KL, J+M-1) Z( KL, J+M-1 ) = STEMP*ZTEMP + CTEMP*Z(KL, J+M-1) END DO END IF END DO END IF ! GO TO 90 ! END IF ! ! Undo scaling if necessary ! 140 CONTINUE IF( ISCALE.EQ.1 ) THEN CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1, & & D( LSV ), N, INFO ) CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ), & & N, INFO ) ELSE IF( ISCALE.EQ.2 ) THEN CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1, & & D( LSV ), N, INFO ) CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ), & & N, INFO ) END IF ! ! Check for no convergence to an eigenvalue after a total ! of N*MAXIT iterations. ! IF( JTOT .EQ. NMAXIT ) THEN DO 150 I = 1, N - 1 IF( E( I ) .NE. RZERO ) INFO = INFO + 1 150 CONTINUE WRITE(6,*) 'WARNING pzsteqr, convergence not achieved INFO = ', INFO RETURN END IF GO TO 10 ! ! Order eigenvalues and eigenvectors. ! 160 CONTINUE IF( ICOMPZ.EQ.0 ) THEN ! ! Use Quick Sort ! CALL DLASRT( 'I', N, D, INFO ) ! ELSE ! ! Use Selection Sort to minimize swaps of eigenvectors ! DO 180 II = 2, N I = II - 1 K = I P = D( I ) DO 170 J = II, N IF( D( J ).LT.P ) THEN K = J P = D( J ) END IF 170 CONTINUE IF( K.NE.I ) THEN D( K ) = D( I ) D( I ) = P CALL ZSWAP( NRL, Z( 1, I ), 1, Z( 1, K ), 1 ) END IF 180 CONTINUE END IF RETURN ! ! End of ZSTEQR ! END SUBROUTINE pzsteqr !==----------------------------------------------==! SUBROUTINE zhpev_drv( JOBZ, UPLO, N, AP, W, Z, LDZ ) USE kinds, ONLY : DP USE io_global, ONLY : stdout IMPLICIT NONE CHARACTER :: JOBZ, UPLO INTEGER :: IOPT, INFO, LDZ, N COMPLEX(DP) :: AP( * ), Z( LDZ, * ) REAL(DP) :: W( * ) REAL(DP), ALLOCATABLE :: RWORK(:) COMPLEX(DP), ALLOCATABLE :: ZWORK(:) #if defined __ESSL IOPT = 0 IF((JOBZ .EQ. 'V') .OR. (JOBZ .EQ. 'v') ) iopt = iopt + 1 IF((UPLO .EQ. 'U') .OR. (UPLO .EQ. 'u') ) iopt = iopt + 20 ALLOCATE( rwork( 4*n ) ) CALL ZHPEV(IOPT, ap, w, z, ldz, n, rwork, 4*n) DEALLOCATE( rwork ) #else ALLOCATE( rwork( MAX(1, 3*n-2) ), zwork( MAX(1, 2*n-1)) ) CALL ZHPEV(jobz, uplo, n, ap, w, z, ldz, zwork, rwork, INFO) DEALLOCATE( rwork, zwork ) IF( INFO .NE. 0 ) THEN CALL errore( ' dspev_drv ', ' diagonalization failed ',INFO ) END IF #endif RETURN END SUBROUTINE zhpev_drv !==----------------------------------------------==! SUBROUTINE pzhpev_drv( jobz, ap, lda, w, z, ldz, & nrl, n, nproc, mpime, comm ) USE kinds, ONLY : DP IMPLICIT NONE CHARACTER :: JOBZ INTEGER, INTENT(IN) :: lda, ldz, nrl, n, nproc, mpime INTEGER, INTENT(IN) :: comm COMPLEX(DP) :: ap( lda, * ), z( ldz, * ) REAL(DP) :: w( * ) REAL(DP), ALLOCATABLE :: rwork( : ) COMPLEX(DP), ALLOCATABLE :: cwork( : ) ! ALLOCATE( rwork( n ) ) ALLOCATE( cwork( n ) ) ! CALL pzhptrd( n, nrl, ap, lda, w, rwork, cwork, nproc, mpime, comm) IF( jobz == 'V' .OR. jobz == 'v' ) THEN CALL pzupgtr( n, nrl, ap, lda, cwork, z, ldz, nproc, mpime, comm) END IF CALL pzsteqr( jobz, n, nrl, w, rwork, z, ldz, nproc, mpime, comm) DEALLOCATE( cwork ) DEALLOCATE( rwork ) RETURN END SUBROUTINE pzhpev_drv !==----------------------------------------------==! #if defined __SCALAPACK SUBROUTINE pzheevd_drv( tv, n, nb, h, w, ortho_cntx ) USE kinds, ONLY : DP USE mp_diag, ONLY : ortho_comm USE mp, ONLY : mp_comm_free #ifdef __ELPA USE elpa1 #endif IMPLICIT NONE LOGICAL, INTENT(IN) :: tv ! if tv is true compute eigenvalues and eigenvectors (not used) INTEGER, INTENT(IN) :: nb, n, ortho_cntx ! nb = block size, n = matrix size, ortho_cntx = BLACS context COMPLEX(DP) :: h(:,:) ! input: h = matrix to be diagonalized ! output: h = eigenvectors REAL(DP) :: w(:) ! output: w = eigenvalues COMPLEX(DP) :: ztmp( 4 ) REAL(DP) :: rtmp( 4 ) INTEGER :: itmp( 4 ),ldw COMPLEX(DP), ALLOCATABLE :: work(:) COMPLEX(DP), ALLOCATABLE :: v(:,:) REAL(DP), ALLOCATABLE :: rwork(:) INTEGER, ALLOCATABLE :: iwork(:) INTEGER :: LWORK, LRWORK, LIWORK INTEGER :: desch( 10 ), info CHARACTER :: jobv #ifdef __ELPA INTEGER :: nprow,npcol,my_prow, my_pcol,mpi_comm_rows, mpi_comm_cols #endif ! IF( tv ) THEN ALLOCATE( v( SIZE( h, 1 ), SIZE( h, 2 ) ) ) jobv = 'V' ELSE CALL errore('pzheevd_drv', 'pzheevd does not compute eigenvalue only',1) END IF call descinit( desch, n, n, nb, nb, 0, 0, ortho_cntx, size(h,1), info ) #ifdef __ELPA CALL BLACS_Gridinfo( ortho_cntx, nprow, npcol, my_prow, my_pcol ) call GET_ELPA_ROW_COL_COMMS(ortho_comm, my_prow, my_pcol,mpi_comm_rows,mpi_comm_cols) call solve_evp_complex(n, n, h, size(h,1), w, v, size(h,1), nb, & mpi_comm_rows, mpi_comm_cols) h = v CALL mp_comm_free( mpi_comm_rows ) CALL mp_comm_free( mpi_comm_cols ) #else ! lwork = -1 lrwork = -1 liwork = -1 ! CALL PZHEEVD( 'V', 'L', n, h, 1, 1, desch, w, v, 1, 1, & desch, ztmp, LWORK, rtmp, LRWORK, itmp, LIWORK, INFO ) IF( info /= 0 ) CALL errore( ' cdiaghg ', ' PZHEEVD ', ABS( info ) ) lwork = INT( REAL(ztmp(1)) ) + 1 lrwork = INT( rtmp(1) ) + 1 liwork = itmp(1) + 1 ALLOCATE( work( lwork ) ) ALLOCATE( rwork( lrwork ) ) ALLOCATE( iwork( liwork ) ) CALL PZHEEVD( 'V', 'L', n, h, 1, 1, desch, w, v, 1, 1, & desch, work, LWORK, rwork, LRWORK, iwork, LIWORK, INFO ) IF( info /= 0 ) CALL errore( ' cdiaghg ', ' PZHEEVD ', ABS( info ) ) IF( tv ) h = v #endif IF( ALLOCATED (rwork) )DEALLOCATE( work ) IF ( ALLOCATED (rwork) )DEALLOCATE( rwork ) IF ( ALLOCATED (iwork) )DEALLOCATE( iwork ) IF( ALLOCATED( v ) ) DEALLOCATE( v ) RETURN END SUBROUTINE pzheevd_drv #endif END MODULE zhpev_module espresso-5.1/Modules/set_signal.f900000644000175000017500000000662112341373034015367 0ustar mbambaMODULE set_signal ! This module is a Fortran 2003 interface to the customize_signals.c C file ! Compatible with Intel/PGI/Gcc(>=4.3) compilers ! This module is compiled only if the following preprocessing option ! is enabled #if defined __TRAP_SIGUSR1 USE iso_c_binding USE io_global, ONLY : stdout USE mp_world, ONLY : root, world_comm, mpime USE mp, ONLY : mp_bcast IMPLICIT NONE LOGICAL,VOLATILE::signal_trapped INTERFACE FUNCTION init_signal_USR1(new_handler) BIND(c, name = "init_signal_USR1") USE iso_c_binding TYPE(C_FUNPTR),VALUE,INTENT(IN):: new_handler INTEGER(C_INT)::init_signal_USR1 END FUNCTION init_signal_USR1 FUNCTION init_signal(signum, new_handler) BIND(c, name = "init_signal") USE iso_c_binding INTEGER(C_INT),VALUE :: signum TYPE(C_FUNPTR), VALUE,INTENT(IN) :: new_handler INTEGER(C_INT)::init_signal END FUNCTION init_signal END INTERFACE CONTAINS SUBROUTINE set_signal_USR1(routine) USE iso_c_binding TYPE(C_FUNPTR),TARGET::ptr INTERFACE SUBROUTINE routine(signal) bind(C) USE iso_c_binding INTEGER(C_INT),VALUE, INTENT(IN)::signal END SUBROUTINE routine END INTERFACE ptr = C_FUNLOC(routine) IF (init_signal_USR1(ptr) .NE. 0) THEN CALL errore("set_signal_USR1", "The association of signal USR1 failed!", 1) ENDIF END SUBROUTINE set_signal_USR1 ! Unused. Here for possible future developments SUBROUTINE set_signal_action(signal, routine) USE iso_c_binding INTEGER::signal TYPE(C_FUNPTR),TARGET::ptr INTERFACE SUBROUTINE routine(signal) bind(C) USE iso_c_binding INTEGER(C_INT),VALUE::signal END SUBROUTINE routine END INTERFACE ptr = C_FUNLOC(routine) IF (init_signal(signal, ptr) .NE. 0) THEN CALL errore("set_signal", "The association of the signal failed!", 1) ENDIF END SUBROUTINE set_signal_action ! Sets the signal_trapped flag on all nodes/processors ! Only the master will use the signal, though SUBROUTINE custom_handler(signum) BIND(c) USE iso_c_binding INTEGER(C_INT),VALUE,INTENT(IN):: signum WRITE(UNIT = stdout, FMT = *) " **** Trapped signal", signum signal_trapped = .TRUE. END SUBROUTINE custom_handler ! Set the signal handler for SIGUSR1 to 'custom_handler' ! Every processor will trap the signal, howver only 0 will actually ! use the result (required since the default action for SIGUSR1 is ! exit) SUBROUTINE signal_trap_init USE iso_c_binding WRITE(UNIT = stdout, FMT=*) " signal trapping enabled: kill the code with -SIGUSR1 to stop cleanly the simulation " CALL set_signal_USR1(custom_handler) END SUBROUTINE signal_trap_init FUNCTION signal_detected() LOGICAL::signal_detected ! If the signal is trapped, set the exit status and broadcast it ! DO NOT broadcast the signal_trapped variable or you will be Very ! Sorry signal_detected = signal_trapped CALL mp_bcast(signal_detected, root, world_comm) END FUNCTION signal_detected #else USE io_global, ONLY : stdout CONTAINS ! Place holders to employ when the signal trapping feature is disabled SUBROUTINE signal_trap_init WRITE(UNIT = stdout, FMT=*) " signal trapping disabled: compile with " WRITE(UNIT = stdout, FMT=*) " -D__TRAP_SIGUSR1 to enable this feature" END SUBROUTINE signal_trap_init FUNCTION signal_detected() LOGICAL::signal_detected signal_detected = .FALSE. END FUNCTION signal_detected #endif END MODULE set_signal espresso-5.1/Modules/check_stop.f900000644000175000017500000001311412341373034015354 0ustar mbamba! ! Copyright (C) 2002-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! ... This module contains functions nd variables used to check if the code ! ... should be smoothly stopped. In order to use this module, function ! ... check_stop_init must be called (only once) at the beginning of the calc. ! ... Function check_stop_now returns .TRUE. if either the user has created ! ... an "exit" file, or if the elapsed wall time is larger than max_seconds, ! ... or if these conditions have been met in a provious call of check_stop_now. ! ... Moreover, function check_stop_now removes the exit file and sets variable ! ... stopped_by_user to .true.. ! !------------------------------------------------------------------------------! MODULE check_stop !------------------------------------------------------------------------------! ! USE kinds ! IMPLICIT NONE ! SAVE ! REAL(DP) :: max_seconds = 1.E+7_DP REAL(DP) :: init_second LOGICAL :: stopped_by_user = .FALSE. LOGICAL, PRIVATE :: tinit = .FALSE. ! CONTAINS ! ! ... internal procedures ! !----------------------------------------------------------------------- SUBROUTINE check_stop_init() !----------------------------------------------------------------------- ! USE input_parameters, ONLY : max_seconds_ => max_seconds USE io_global, ONLY : stdout USE io_files, ONLY : prefix, exit_file #if defined __TRAP_SIGUSR1 USE set_signal, ONLY : signal_trap_init #endif ! IMPLICIT NONE ! REAL(DP), EXTERNAL :: cclock ! IF ( tinit ) & WRITE( UNIT = stdout, & FMT = '(/,5X,"WARNING: check_stop already initialized")' ) ! ! ... the exit_file name is set here ! exit_file = TRIM( prefix ) // '.EXIT' ! IF ( max_seconds_ > 0.0_DP ) max_seconds = max_seconds_ ! init_second = cclock() tinit = .TRUE. ! #if defined __TRAP_SIGUSR1 CALL signal_trap_init ( ) #endif ! RETURN ! END SUBROUTINE check_stop_init ! !----------------------------------------------------------------------- FUNCTION check_stop_now( inunit ) !----------------------------------------------------------------------- ! USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm USE io_global, ONLY : ionode, ionode_id, meta_ionode, stdout USE io_files, ONLY : tmp_dir, exit_file, iunexit #if defined __TRAP_SIGUSR1 USE set_signal, ONLY : signal_detected #endif ! IMPLICIT NONE ! INTEGER, OPTIONAL, INTENT(IN) :: inunit ! INTEGER :: unit LOGICAL :: check_stop_now, tex LOGICAL :: signaled REAL(DP) :: seconds REAL(DP), EXTERNAL :: cclock ! IF ( stopped_by_user ) THEN check_stop_now = .TRUE. RETURN END IF ! ! ... cclock is a C function returning the elapsed solar ! ... time in seconds since the Epoch ( 00:00:00 1/1/1970 ) ! IF ( .NOT. tinit ) & CALL errore( 'check_stop_now', 'check_stop not initialized', 1 ) ! unit = stdout IF ( PRESENT( inunit ) ) unit = inunit ! check_stop_now = .FALSE. ! signaled = .FALSE. ! IF ( ionode ) THEN ! ! ... Check first if exit file exists in current directory ! INQUIRE( FILE = TRIM( exit_file ), EXIST = tex ) ! IF ( tex ) THEN ! check_stop_now = .TRUE. OPEN( UNIT = iunexit, FILE = TRIM( exit_file ) ) CLOSE( UNIT = iunexit, STATUS = 'DELETE' ) ! ELSE ! ! ... Check if exit file exists in scratch directory ! INQUIRE( FILE = TRIM(tmp_dir) // TRIM( exit_file ), EXIST = tex ) ! IF ( tex ) THEN ! check_stop_now = .TRUE. OPEN( UNIT = iunexit, FILE = TRIM(tmp_dir) // TRIM(exit_file) ) CLOSE( UNIT = iunexit, STATUS = 'DELETE' ) ! ELSE seconds = cclock() - init_second check_stop_now = ( seconds > max_seconds ) END IF ! END IF ! END IF ! #if defined __TRAP_SIGUSR1 signaled = signal_detected() check_stop_now = check_stop_now .OR. signaled tex = tex .OR. signaled #endif ! CALL mp_bcast( check_stop_now, ionode_id, intra_image_comm ) ! IF ( check_stop_now .AND. meta_ionode ) THEN ! IF ( tex ) THEN ! WRITE( UNIT = unit, & FMT = '(/,5X,"Program stopped by user request")' ) ! ELSE ! WRITE( UNIT = unit, & FMT = '(/,5X,"Maximum CPU time exceeded")' ) WRITE( UNIT = unit, & FMT = '(/,5X,"max_seconds = ",F10.2)' ) max_seconds WRITE( UNIT = unit, & FMT = '(5X,"elapsed seconds = ",F10.2)' ) seconds ! END IF ! END IF ! stopped_by_user = check_stop_now ! RETURN ! END FUNCTION check_stop_now ! END MODULE check_stop espresso-5.1/Modules/splinelib.f900000644000175000017500000002014412341373034015214 0ustar mbamba! ! Copyright (C) 2004-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------------- MODULE splinelib !--------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! IMPLICIT NONE ! PRIVATE ! PUBLIC :: dosplineint, spline, splint, splint_deriv ! INTERFACE dosplineint ! MODULE PROCEDURE dosplineint_1D, dosplineint_2D ! END INTERFACE ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE spline( xdata, ydata, startu, startd, d2y ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: xdata(:), ydata(:), startu, startd REAL(DP), INTENT(OUT) :: d2y(:) ! INTEGER :: i, k, ydim REAL(DP) :: p, sig REAL(DP), ALLOCATABLE :: u(:) ! ! ydim = SIZE( ydata ) ! ALLOCATE( u( ydim ) ) ! u(1) = startu d2y(1) = startd ! DO i = 2, ydim - 1 ! sig = ( xdata(i) - xdata(i-1) ) / ( xdata(i+1) - xdata(i-1) ) p = sig * d2y(i- 1) + 2.0_DP d2y(i) = ( sig - 1.0_DP ) / p u(i) = ( 6.0_DP * ( ( ydata(i+1) - ydata(i) ) / & ( xdata(i+1) - xdata(i) ) - ( ydata(i) - ydata(i-1) ) / & ( xdata(i) - xdata(i-1) ) ) / & ( xdata(i+1) - xdata(i-1) ) - sig * u(i-1) ) / p ! END DO ! d2y(ydim) = 0 ! DO k = ydim - 1, 1, -1 ! d2y(k) = d2y(k) * d2y(k+1) + u(k) ! END DO ! DEALLOCATE( u ) ! END SUBROUTINE spline ! !------------------------------------------------------------------------ FUNCTION splint( xdata, ydata, d2y, x ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: xdata(:), ydata(:), d2y(:) REAL(DP), INTENT(IN) :: x ! REAL(DP) :: splint INTEGER :: khi, klo, xdim REAL(DP) :: a, b, h ! ! xdim = SIZE( xdata ) ! klo = 1 khi = xdim ! klo = MAX( MIN( locate( xdata, x ), ( xdim - 1 ) ), 1 ) ! khi = klo + 1 ! h = xdata(khi) - xdata(klo) ! a = ( xdata(khi) - x ) / h b = ( x - xdata(klo) ) / h ! splint = a * ydata(klo) + b * ydata(khi) + & ( ( a**3 - a ) * d2y(klo) + ( b**3 - b ) * d2y(khi) ) * & ( h**2 ) / 6.0_DP END FUNCTION splint !------------------------------------------------------------------------ FUNCTION splint_deriv( xdata, ydata, d2y, x ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: xdata(:), ydata(:), d2y(:) REAL(DP), INTENT(IN) :: x ! REAL(DP) :: splint_deriv INTEGER :: khi, klo, xdim REAL(DP) :: a, b, da, db, h ! ! xdim = SIZE( xdata ) ! klo = 1 khi = xdim ! klo = MAX( MIN( locate( xdata, x ), ( xdim - 1 ) ), 1 ) ! khi = klo + 1 ! h = xdata(khi) - xdata(klo) ! a = ( xdata(khi) - x ) / h b = ( x - xdata(klo) ) / h da = -1.0_DP / h db = 1.0_DP / h ! splint_deriv = da * ydata(klo) + db * ydata(khi) + & ( ( 3.0_DP*a**2 - 1.0_DP ) * da * d2y(klo) + & ( 3.0_DP*b**2 - 1.0_DP ) * db * d2y(khi) ) * & ( h**2 ) / 6.0_DP END FUNCTION splint_deriv !------------------------------------------------------------------- FUNCTION locate( xx, x ) !------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: xx(:) REAL(DP), INTENT(IN) :: x ! INTEGER :: locate INTEGER :: n, jl, jm, ju LOGICAL :: ascnd ! ! n = SIZE( xx ) ascnd = ( xx(n) >= xx(1) ) jl = 0 ju = n + 1 ! main_loop: DO ! IF ( ( ju - jl ) <= 1 ) EXIT main_loop ! jm = ( ju + jl ) / 2 ! IF ( ascnd .EQV. ( x >= xx(jm) ) ) THEN ! jl = jm ! ELSE ! ju = jm ! END IF ! END DO main_loop ! IF ( x == xx(1) ) THEN ! locate = 1 ! ELSE IF ( x == xx(n) ) THEN ! locate = n - 1 ! ELSE ! locate = jl ! END IF ! END FUNCTION locate ! ! !------------------------------------------------------------------------ SUBROUTINE dosplineint_1D( old_mesh, old_vec, new_mesh, new_vec ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL (DP), INTENT(IN) :: old_mesh(:), new_mesh(:) REAL (DP), INTENT(IN) :: old_vec(:) REAL (DP), INTENT(OUT) :: new_vec(:) ! REAL (DP), ALLOCATABLE :: d2y(:) INTEGER :: i INTEGER :: old_dim, new_dim ! ! old_dim = SIZE( old_vec ) new_dim = SIZE( new_vec ) ! IF ( old_dim /= SIZE( old_mesh ) ) & CALL errore( 'dosplineint', & 'dimensions of old_mesh and old_vec do not match', 1 ) ! IF ( new_dim /= SIZE( new_mesh ) ) & CALL errore( 'dosplineint', & 'dimensions of new_mesh and new_vec do not match', 1 ) ! ALLOCATE( d2y( old_dim ) ) ! d2y = 0 ! CALL spline( old_mesh , old_vec(:), 0.0_DP, 0.0_DP, d2y ) ! DO i = 1, new_dim ! new_vec(i) = splint( old_mesh, old_vec(:), d2y, new_mesh(i) ) ! END DO ! DEALLOCATE( d2y ) ! END SUBROUTINE dosplineint_1D ! !------------------------------------------------------------------------ SUBROUTINE dosplineint_2D( old_mesh, old_vec, new_mesh, new_vec ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL (DP), INTENT(IN) :: old_mesh(:), new_mesh(:) REAL (DP), INTENT(IN) :: old_vec(:,:) REAL (DP), INTENT(OUT) :: new_vec(:,:) ! REAL (DP), ALLOCATABLE :: d2y(:) INTEGER :: dim, i, j INTEGER :: old_dim, new_dim ! ! dim = SIZE( old_vec, 1 ) ! IF( dim /= SIZE( new_vec, 1 ) ) & CALL errore( 'dosplineint', & 'dimensions of old_vec and new_vec do not match', 1 ) ! old_dim = SIZE( old_vec, 2 ) new_dim = SIZE( new_vec, 2 ) ! IF ( old_dim /= SIZE( old_mesh, 1 ) ) & CALL errore( 'dosplineint', & 'dimensions of old_mesh and old_vec do not match', 1 ) ! IF ( new_dim /= SIZE( new_mesh, 1 ) ) & CALL errore( 'dosplineint', & 'dimensions of new_mesh and new_vec do not match', 1 ) ! ALLOCATE( d2y( old_dim ) ) ! DO i = 1, dim ! d2y = 0 ! CALL spline( old_mesh , old_vec(i,:), 0.0_DP, 0.0_DP, d2y ) ! DO j = 1, new_dim ! new_vec(i,j) = splint( old_mesh, old_vec(i,:), d2y, new_mesh(j) ) ! END DO ! END DO ! DEALLOCATE( d2y ) ! END SUBROUTINE dosplineint_2D ! END MODULE splinelib espresso-5.1/Modules/read_input.f900000644000175000017500000000473512341373034015375 0ustar mbamba! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE read_input !--------------------------------------------------------------------------- ! USE kinds, ONLY: DP ! IMPLICIT NONE SAVE ! PRIVATE PUBLIC :: read_input_file, has_been_read ! LOGICAL :: has_been_read = .FALSE. ! CONTAINS ! !------------------------------------------------------------------------- SUBROUTINE read_input_file ( prog, input_file_ ) !------------------------------------------------------------------------- ! USE input_parameters, ONLY : reset_input_checks USE read_namelists_module, ONLY : read_namelists USE read_cards_module, ONLY : read_cards USE io_global, ONLY : ionode, ionode_id, qestdin USE xml_input, ONLY : xml_input_dump USE read_xml_module, ONLY : read_xml USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm USE iotk_module, ONLY : iotk_attlenx USE open_close_input_file, ONLY : open_input_file, close_input_file ! IMPLICIT NONE ! CHARACTER(LEN=2), INTENT (IN) :: prog CHARACTER(LEN=*), INTENT (IN) :: input_file_ ! CHARACTER(LEN=iotk_attlenx) :: attr LOGICAL :: xmlinput INTEGER :: ierr ! IF ( ionode ) THEN IF ( prog == 'CP' ) CALL xml_input_dump() ierr = open_input_file( input_file_, xmlinput, attr) END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr > 0 ) CALL errore('read_input', 'opening input file',ierr) CALL mp_bcast( xmlinput, ionode_id, intra_image_comm ) CALL mp_bcast( attr, ionode_id, intra_image_comm ) ! CALL reset_input_checks () ! IF ( xmlinput ) THEN ! CALL read_xml ( prog, attr ) ! ELSE ! ! ... Read NAMELISTS ! CALL read_namelists( prog, qestdin ) ! ! ... Read CARDS ! CALL read_cards ( prog, qestdin ) ! END IF IF ( ionode) ierr = close_input_file( ) ! has_been_read = .TRUE. ! RETURN ! END SUBROUTINE read_input_file ! END MODULE read_input espresso-5.1/Modules/coulomb_vcut.f900000644000175000017500000002775512341373034015753 0ustar mbamba! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Written by Giovanni Bussi ! Adapted to QE by Andrea Ferretti & Layla Martin Samos ! !---------------------------------- MODULE coulomb_vcut_module !---------------------------------- ! IMPLICIT NONE PRIVATE ! ! general purpose parameters ! INTEGER, PARAMETER :: DP=KIND(1.0d0) REAL(DP), PARAMETER :: PI = 3.14159265358979323846_DP REAL(DP), PARAMETER :: TPI = 2.0_DP * pi REAL(DP), PARAMETER :: FPI = 4.0_DP * pi REAL(DP), PARAMETER :: e2 = 2.0_DP REAL(DP), PARAMETER :: eps6 = 1.0E-6_DP ! ! definitions ! TYPE vcut_type REAL(DP) :: a(3,3) REAL(DP) :: b(3,3) REAL(DP) :: a_omega REAL(DP) :: b_omega REAL(DP), POINTER :: corrected(:,:,:) REAL(DP) :: cutoff LOGICAL :: orthorombic END TYPE vcut_type ! PUBLIC :: vcut_type PUBLIC :: vcut_init PUBLIC :: vcut_get PUBLIC :: vcut_spheric_get PUBLIC :: vcut_destroy PUBLIC :: vcut_info CONTAINS !------------------------------------------ SUBROUTINE vcut_init(vcut,a,cutoff) !------------------------------------------ ! TYPE(vcut_type), INTENT(OUT) :: vcut REAL(DP), INTENT(IN) :: a(3,3) REAL(DP), INTENT(IN) :: cutoff INTEGER :: n1,n2,n3 INTEGER :: i1,i2,i3 INTEGER :: ierr REAL(DP) :: q(3) CHARACTER(9) :: subname='vcut_init' REAL(DP) :: mod2a(3) vcut%cutoff=cutoff vcut%a=a vcut%b= TPI * transpose(num_inverse(vcut%a)) vcut%b_omega=num_determinant(vcut%b) vcut%a_omega=num_determinant(vcut%a) ! automatically finds whether the cell is orthorombic or not vcut%orthorombic=.false. mod2a=sum(vcut%a**2,1) if(sum(vcut%a(:,1)*vcut%a(:,2))/(mod2a(1)*mod2a(2)) vcut%cutoff**2 ) CYCLE ! vcut%corrected(i1,i2,i3) = & vcut_formula(q,vcut%a,vcut%b,vcut%a_omega,vcut%b_omega,vcut%orthorombic) ! ENDDO ENDDO ENDDO ! END SUBROUTINE vcut_init !------------------------------------------ SUBROUTINE vcut_info(iun, vcut) !------------------------------------------ ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iun TYPE(vcut_type), INTENT(IN) :: vcut ! INTEGER :: i, n(3) ! IF ( ASSOCIATED( vcut%corrected ) ) THEN ! DO i = 1, 3 n(i) = ( SIZE( vcut%corrected, i) -1 ) / 2 ENDDO ! WRITE(iun, "( 2x,'Cutoff: ',f6.2,4x,' n grid: ',3i4,/)") vcut%cutoff, n(:) ! ENDIF ! END SUBROUTINE vcut_info !------------------------------------------ SUBROUTINE vcut_destroy(vcut) !------------------------------------------ ! TYPE(vcut_type), INTENT(INOUT) :: vcut INTEGER :: ierr ! DEALLOCATE(vcut%corrected, STAT=ierr) IF ( ierr/=0 ) CALL errore('vcut_destroy','deallocating vcut',ABS(ierr)) ! END SUBROUTINE vcut_destroy !------------------------------------------ FUNCTION vcut_get(vcut,q) RESULT(res) !------------------------------------------ ! TYPE(vcut_type), INTENT(IN) :: vcut REAL(DP), INTENT(IN) :: q(3) REAL(DP) :: res ! REAL(DP) :: i_real(3) INTEGER :: i(3) CHARACTER(8) :: subname='vcut_get' ! i_real=(MATMUL(TRANSPOSE(vcut%a),q))/ TPI i=NINT(i_real) ! ! internal check IF( SUM( (i-i_real)**2 ) > eps6 ) & CALL errore(subname,'q vector out of the grid',10) ! IF( SUM(q**2) > vcut%cutoff**2 ) THEN ! ! usual form of Coulomb potential res = FPI * e2 / SUM(q**2) ! ELSE ! IF( i(1)>ubound(vcut%corrected,1) .OR. i(1)ubound(vcut%corrected,2) .OR. i(2)ubound(vcut%corrected,3) .OR. i(3) 1d-5) then write(0,*) "AHIA",sum((matmul(inv,a)-eye3)**2) write(0,*) "A",a write(0,*) "inv",inv write(0,*)">>", matmul(inv,a) stop end if end function num_inverse function num_determinant(a) result(det) real(dp), intent(in) :: a(3,3) real(dp) :: det det = a(1,1)*a(2,2)*a(3,3) + a(1,2)*a(2,3)*a(3,1) + a(1,3)*a(2,1)*a(3,2) & - a(1,1)*a(2,3)*a(3,2) - a(1,2)*a(2,1)*a(3,3) - a(1,3)*a(2,2)*a(3,1) end function num_determinant !!! end tools from sax !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! END MODULE coulomb_vcut_module espresso-5.1/Modules/parameters.f900000644000175000017500000000135212341373034015376 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! MODULE parameters IMPLICIT NONE SAVE INTEGER, PARAMETER :: & ntypx = 10, &! max number of different types of atom npsx = ntypx, &! max number of different PPs (obsolete) nsx = ntypx, &! max number of atomic species (CP) npk = 40000, &! max number of k-points lmaxx = 3, &! max non local angular momentum (l=0 to lmaxx) lqmax= 2*lmaxx+1 ! max number of angular momenta of Q END MODULE parameters espresso-5.1/Modules/read_xml_cards.f900000644000175000017500000022450212341373034016206 0ustar mbamba! ! !-------------------------------------------------------------! ! This module handles the cards reading for xml input ! ! ! ! written by Simone Ziraldo (08/2010) ! !-------------------------------------------------------------! ! ! cards not yet implemented: ! KSOUT ! AUTOPILOT ! ATOMIC_FORCES ! PLOT_WANNIER ! WANNIER_AC ! DIPOLE ! ESR ! ! to implement these cards take inspiration from file read_cards.f90 ! MODULE read_xml_cards_module ! ! USE io_global, ONLY : xmlinputunit => qestdin USE iotk_module, ONLY : iotk_scan_begin, iotk_scan_end, iotk_scan_dat,& iotk_scan_dat_inside, iotk_scan_attr, iotk_attlenx USE read_xml_fields_module, ONLY : clean_str USE kinds, ONLY : DP ! USE io_global, ONLY : stdout ! USE input_parameters ! ! IMPLICIT NONE ! SAVE ! PRIVATE ! PUBLIC :: card_xml_atomic_species, card_xml_atomic_list, card_xml_chain, card_xml_cell, & card_xml_kpoints, card_xml_occupations, card_xml_constraints, card_xml_climbing_images, & card_xml_plot_wannier, card_default, card_bcast ! ! ! CONTAINS ! ! !--------------------------------------------------------------------------! ! This subroutine sets all the cards default values; as an input ! ! takes the card name that you want to set ! !--------------------------------------------------------------------------! SUBROUTINE card_default( card ) ! ! USE autopilot, ONLY : init_autopilot ! USE read_namelists_module, ONLY : sm_not_set ! ! IMPLICIT NONE ! ! CHARACTER( len = * ),INTENT( IN ) :: card ! ! SELECT CASE ( trim(card) ) ! CASE ('INIT_AUTOPILOT') CALL init_autopilot() ! CASE ('ATOMIC_LIST') ! ! ... nothing to initialize ! ... because we don't have nat ! CASE ('CHAIN' ) ! ! ... nothing to initialize ! ... because we don't have nat ! CASE ('CELL') trd_ht = .false. rd_ht = 0.0_DP ! CASE ('ATOMIC_SPECIES') atom_mass = 0.0_DP hubbard_u = 0.0_DP hubbard_j = 0.0_DP hubbard_j0 = 0.0_DP hubbard_alpha = 0.0_DP hubbard_beta = 0.0_DP starting_magnetization = sm_not_set starting_ns_eigenvalue = -1.0_DP angle1 = 0.0_DP angle2 = 0.0_DP ion_radius = 0.5_DP nhgrp = 0 fnhscl = -1.0_DP tranp = .false. amprp = 0.0_DP ! CASE ('K_POINTS') k_points = 'gamma' tk_inp = .false. nkstot = 1 nk1 = 0 nk2 = 0 nk3 = 0 k1 = 0 k2 = 0 k3 = 0 ! CASE ('OCCUPATIONS') tf_inp = .FALSE. ! CASE ('CONSTRAINTS') nconstr_inp = 0 constr_tol_inp = 1.E-6_DP ! CASE ('CLIMBING_IMAGES') ! ... nothing to initialize ! CASE ('PLOT_WANNIER') ! ! wannier_index = ! CASE ('KSOUT') ! ... not yet implemented in xml reading CALL allocate_input_iprnks( 0, nspin ) nprnks = 0 ! CASE ('DIPOLE') ! ... not yet implemented in xml reading tdipole_card = .FALSE. CASE ('ESR') ! ... not yet implemented in xml reading iesr_inp = 1 ! CASE ('ION_VELOCITIES') ! ... not yet implemented in xml reading tavel = .false. ! CASE DEFAULT CALL errore ( 'card_default', 'You want to initialize a card that does & ¬ exist or is not yet implemented ( '//trim(card)//' card)', 1 ) ! END SELECT ! ! END SUBROUTINE card_default ! ! ! ! !---------------------------------------------------------------------------! ! This subroutine broadcasts the varibles defined in the various cards; ! ! the input string is the name of the card that you want to broadcast ! !---------------------------------------------------------------------------! SUBROUTINE card_bcast( card ) ! ! USE io_global, ONLY : ionode, ionode_id ! USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! ! CHARACTER( len = * ),INTENT( IN ) :: card INTEGER :: nspin0 ! ! SELECT CASE ( trim(card) ) ! ! CASE ( 'CELL' ) CALL mp_bcast( ibrav, ionode_id, intra_image_comm ) CALL mp_bcast( celldm, ionode_id, intra_image_comm ) CALL mp_bcast( A, ionode_id, intra_image_comm ) CALL mp_bcast( B, ionode_id, intra_image_comm ) CALL mp_bcast( C, ionode_id, intra_image_comm ) CALL mp_bcast( cosAB, ionode_id, intra_image_comm ) CALL mp_bcast( cosAC, ionode_id, intra_image_comm ) CALL mp_bcast( cosBC, ionode_id, intra_image_comm ) CALL mp_bcast( cell_units, ionode_id, intra_image_comm ) CALL mp_bcast( rd_ht, ionode_id, intra_image_comm ) CALL mp_bcast( trd_ht, ionode_id, intra_image_comm ) ! CASE ( 'ATOMIC_SPECIES' ) CALL mp_bcast( ntyp, ionode_id, intra_image_comm ) CALL mp_bcast( atom_mass, ionode_id, intra_image_comm ) CALL mp_bcast( atom_pfile, ionode_id, intra_image_comm ) CALL mp_bcast( atom_label, ionode_id, intra_image_comm ) CALL mp_bcast( taspc, ionode_id, intra_image_comm ) CALL mp_bcast( hubbard_u, ionode_id, intra_image_comm ) CALL mp_bcast( hubbard_j, ionode_id, intra_image_comm ) CALL mp_bcast( hubbard_j0, ionode_id, intra_image_comm ) CALL mp_bcast( hubbard_alpha, ionode_id, intra_image_comm ) CALL mp_bcast( hubbard_beta, ionode_id, intra_image_comm ) CALL mp_bcast( starting_magnetization, ionode_id, intra_image_comm ) CALL mp_bcast( starting_ns_eigenvalue, ionode_id, intra_image_comm ) CALL mp_bcast( angle1, ionode_id, intra_image_comm ) CALL mp_bcast( angle2, ionode_id, intra_image_comm ) CALL mp_bcast( ion_radius, ionode_id, intra_image_comm ) CALL mp_bcast( nhgrp, ionode_id, intra_image_comm ) CALL mp_bcast( fnhscl, ionode_id, intra_image_comm ) CALL mp_bcast( tranp, ionode_id, intra_image_comm ) CALL mp_bcast( amprp, ionode_id, intra_image_comm ) ! CASE ( 'ATOMIC_LIST' ) CALL mp_bcast( atomic_positions, ionode_id, intra_image_comm ) CALL mp_bcast( nat, ionode_id, intra_image_comm ) ! ... ionode has already done it inside card_xml_atomic_list IF (.not.ionode) THEN CALL allocate_input_ions( ntyp, nat ) END IF CALL mp_bcast( if_pos, ionode_id, intra_image_comm ) CALL mp_bcast( na_inp, ionode_id, intra_image_comm ) CALL mp_bcast( sp_pos, ionode_id, intra_image_comm ) CALL mp_bcast( rd_pos, ionode_id, intra_image_comm ) CALL mp_bcast( sp_vel, ionode_id, intra_image_comm ) CALL mp_bcast( rd_vel, ionode_id, intra_image_comm ) CALL mp_bcast( tapos, ionode_id, intra_image_comm ) ! CASE ( 'CONSTRAINTS' ) CALL mp_bcast( nconstr_inp, ionode_id, intra_image_comm ) CALL mp_bcast( constr_tol_inp, ionode_id, intra_image_comm ) IF ( .not.ionode ) CALL allocate_input_constr() CALL mp_bcast( constr_type_inp, ionode_id, intra_image_comm ) CALL mp_bcast( constr_target_inp, ionode_id, intra_image_comm ) CALL mp_bcast( constr_target_set, ionode_id, intra_image_comm ) CALL mp_bcast( constr_inp, ionode_id, intra_image_comm ) ! CASE ( 'K_POINTS' ) CALL mp_bcast( k_points, ionode_id, intra_image_comm ) CALL mp_bcast( nkstot, ionode_id, intra_image_comm ) CALL mp_bcast( nk1, ionode_id, intra_image_comm ) CALL mp_bcast( nk2, ionode_id, intra_image_comm ) CALL mp_bcast( nk3, ionode_id, intra_image_comm ) CALL mp_bcast( k1, ionode_id, intra_image_comm ) CALL mp_bcast( k2, ionode_id, intra_image_comm ) CALL mp_bcast( k3, ionode_id, intra_image_comm ) IF ( .not.ionode ) ALLOCATE( xk(3,MAX(1,nkstot)), wk(MAX(1,nkstot)) ) CALL mp_bcast( xk, ionode_id, intra_image_comm ) CALL mp_bcast( wk, ionode_id, intra_image_comm ) ! CASE ( 'OCCUPATIONS' ) IF ( .not.ionode ) THEN nspin0 = nspin if ( nspin == 4 ) nspin0 = 1 ALLOCATE( f_inp (nbnd, nspin0 ) ) END IF CALL mp_bcast( f_inp, ionode_id, intra_image_comm ) ! CASE ( 'PLOT_WANNIER' ) CALL mp_bcast( wannier_index, ionode_id, intra_image_comm ) ! CASE DEFAULT CALL errore ( 'card_bcast', 'You want to broadcast a card that does & ¬ exist or is not yet implemented', 1 ) ! ! END SELECT ! ! ! END SUBROUTINE card_bcast ! ! !-------------------------------------------------------------------------! ! Hereafter there are the reading of the xml cards ! ! For more information see the Help file ! !-------------------------------------------------------------------------! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! CELL (compulsory) ! ! ! ! specify the cell of your calculation ! ! ! ! Syntax: ! ! ! ! ! ! depends on the type ! ! ! ! ! ! sym can be cubic or exagonal ! ! ! ! if: ! ! ! ! 1) type is qecell, inside CELL node there is: ! ! ! ! ! ! ! ! celldm(2) celldm(3) celldm(4) celldm(5) celldm(6) ! ! ! ! ! ! ! ! 2) type is abc, inside CELL node there is: ! ! ! ! ! ! A B C cosAB cosAC cosBC ! ! ! ! ! ! 3) type is matrix, inside there will be: ! ! ! ! ! ! ! ! HT(1,1) HT(1,2) HT(1,3) ! ! HT(2,1) HT(2,2) HT(2,3) ! ! HT(3,1) HT(3,2) HT(3,3) ! ! ! ! ! ! ! ! ! ! Where: ! ! HT(i,j) (real) cell dimensions ( in a.u. ), ! ! note the relation with lattice vectors: ! ! HT(1,:) = A1, HT(2,:) = A2, HT(3,:) = A3 ! ! units can be bohr (default) or alat (in this case you ! ! have to specify alat) ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_cell ( ) ! IMPLICIT NONE ! ! CHARACTER( LEN = iotk_attlenx ) :: attr, attr2 CHARACTER( LEN = 20 ) :: option,option2 INTEGER :: i, j, ierr LOGICAL :: found REAL( kind = DP ), DIMENSION(6) :: vect_tmp ! ! ! CALL iotk_scan_begin( xmlinputunit, 'cell', attr = attr, found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_cell', 'error scanning begin of cell & &card', ABS( ierr ) ) ! IF ( found ) THEN ! CALL iotk_scan_attr( attr, 'type', option, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning type & &attribute of cell node', abs(ierr) ) ! ! IF ( trim(option) == 'qecell' ) THEN ! CALL iotk_scan_begin( xmlinputunit, 'qecell', attr2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning begin & &of qecell node', abs(ierr) ) ! CALL iotk_scan_attr( attr2, 'ibrav', ibrav, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading ibrav & &attribute of qecell node', abs(ierr) ) ! CALL iotk_scan_attr(attr2, 'alat', celldm(1), ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading alat & &attribute of qecell node', abs(ierr) ) ! CALL iotk_scan_dat_inside( xmlinputunit, celldm(2:6), ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading data inside & &qecell node', abs(ierr) ) ! CALL iotk_scan_end( xmlinputunit, 'qecell', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning end of & &qecell node', abs(ierr) ) ! ELSE IF ( trim(option) == 'abc' ) THEN ! CALL iotk_scan_begin(xmlinputunit, 'abc', attr2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning begin & &of abc node', abs(ierr) ) ! CALL iotk_scan_attr( attr2, 'ibrav', ibrav, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading ibrav & &attribute of abc node', abs(ierr) ) ! CALL iotk_scan_dat_inside( xmlinputunit, vect_tmp, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading data inside & &abc node', abs(ierr) ) ! A = vect_tmp(1) B = vect_tmp(2) C = vect_tmp(3) cosAB = vect_tmp(4) cosAC = vect_tmp(5) cosBC = vect_tmp(6) ! CALL iotk_scan_end(xmlinputunit,'abc', ierr = ierr) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning end of & &abc node', abs(ierr) ) ! ELSE IF (trim(option)=='matrix') THEN ! ibrav = 0 ! CALL iotk_scan_begin( xmlinputunit, 'matrix', attr2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning begin & &of matrix node', abs(ierr) ) ! CALL iotk_scan_attr( attr2, 'units', option2, found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading units attribute & &of matrix node', abs(ierr) ) ! IF (found) THEN IF ( trim(option2) == 'alat' ) THEN ! cell_units = 'alat' ! CALL iotk_scan_attr(attr2, 'alat', celldm(1), ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading alat& &attribute of MATRIX node', abs(ierr) ) ! ELSE IF ( trim(option2) == 'bohr' ) THEN ! cell_units = 'bohr' ! ELSE ! CALL errore( 'card_xml_cell', 'invalid units attribute', abs(ierr) ) ! END IF ELSE ! cell_units = 'bohr' ! END IF ! ! CALL iotk_scan_dat_inside( xmlinputunit, rd_ht, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error reading data inside & &matrix node', abs(ierr) ) ! rd_ht = transpose( rd_ht ) trd_ht = .TRUE. ! CALL iotk_scan_end( xmlinputunit, 'matrix', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_cell', 'error scanning end of & &matrix node', abs(ierr) ) ! ELSE CALL errore( 'card_xml_cell', 'type '//trim(option)//' in cell node does not exist', 1 ) END IF ! CALL iotk_scan_end( xmlinputunit, 'cell', ierr = ierr) IF ( ierr /= 0 ) CALL errore( 'read_xml_pw', 'error scanning end of cell & &card', ABS( ierr ) ) ELSE ! CALL errore( 'read_xml_pw', 'cell card not found', 1 ) ! END IF ! ! RETURN ! END SUBROUTINE card_xml_cell ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! ATOMIC_SPECIES (compulsory) ! ! ! ! set the atomic species and their pseudopotential files ! ! ! ! Syntax: ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! mass(i) ! ! ! ! ! ! ! ! ! ! ! ! psfile(i) ! ! ! ! ! ![ optional ! ! ! ! ! ! starting_magnetization(i) ! ! ! ! ! ! ! ! ! ! ! ! hubbard_alpha(i) ! ! ! ! ! ! ! ! ! ! ! ! hubbard_alpha(i) ! ! ! ! ! ! ! ! ! ! ! ! starting_ns_eigenvalue(ns , ispin, i ) ! ! ! ! ! ! ! ! ! ! ! ! angle1(i) ! ! ! ! ! ! ! ! ! ! ! ! angle2(i) ! ! ! ! ! ! ! ! ! ! ! ! ion_radius(i) ! ! ! ! ! ! ! ! ! ! ! ! nhgrp(i) ! ! ! ! ! ! ! ! ! ! ! ! fnhscl(i) ! ! ! ! ! ! ! ! ! ! ! ! tranp(i) ! ! ! ! ! ! ! ! ! ! ! ! amprp(i) ! ! ! ! ! !] ! ! ! ! .... ! ! .... ! ! ! ! ! ! Where: ! ! ! ! only the pseudofile property is compulsory, the others are optional! ! ! ! label(i) ( character(len=4) ) label of the atomic species ! ! mass(i) ( real ) atomic mass ! ! ( in u.m.a, carbon mass is 12.0 ) ! ! psfile(i) ( character(len=80) ) pseudopotential filename ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_atomic_species( ) ! IMPLICIT NONE ! ! INTEGER :: is, ip, ierr, direction CHARACTER( LEN = 4 ) :: lb_pos CHARACTER( LEN = 256 ) :: psfile CHARACTER( LEN = iotk_attlenx ) :: attr, attr2 LOGICAL :: found, psfile_found ! ! ! CALL iotk_scan_begin( xmlinputunit, 'atomic_species', attr = attr, found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_xml_pw', 'error scanning begin of atomic_species & &card', ABS( ierr ) ) ! IF ( found ) THEN ! CALL iotk_scan_attr( attr, 'ntyp', ntyp, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &reading ntyp attribute inside atomic_species node', abs( ierr ) ) ! IF( ntyp < 0 .OR. ntyp > nsx ) & CALL errore( 'card_xml_atomic_species', & ' ntyp is too large', MAX( ntyp, 1) ) ! DO is = 1, ntyp ! CALL iotk_scan_begin( xmlinputunit, 'specie', attr = attr2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &scanning specie node', abs( ierr ) ) ! CALL iotk_scan_attr( attr2, 'name', lb_pos, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &reading name attribute of specie node', abs( ierr ) ) ! psfile_found = .false. ! DO CALL iotk_scan_begin( xmlinputunit, 'property', attr = attr2, & direction = direction, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &scanning begin property node', abs( ierr ) ) ! IF (direction == -1) EXIT ! CALL read_property( attr2 ) ! ! CALL iotk_scan_end( xmlinputunit, 'property', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &scanning end of property node', abs( ierr ) ) END DO ! CALL iotk_scan_end( xmlinputunit, 'property', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &scanning end of property node', abs( ierr ) ) ! CALL iotk_scan_end( xmlinputunit, 'specie', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error & &scanning end of specie node', abs( ierr ) ) ! IF (.not. psfile_found ) CALL errore( 'card_xml_atomic_species', & 'no pseudofile found', abs( is ) ) ! atom_pfile(is) = trim( psfile ) lb_pos = adjustl( lb_pos ) atom_label(is) = trim( lb_pos ) ! ! DO ip = 1, is - 1 ! IF ( atom_label(ip) == atom_label(is) ) THEN CALL errore( ' card_xml_atomic_species ', & ' two occurrences of the same atomic label', is ) ENDIF ENDDO ! ENDDO ! ! ... this variable is necessary to mantain compatibility. ! ... With new xml input the compulsory of atomic_species is already given ! taspc = .true. ! CALL iotk_scan_end( xmlinputunit, 'atomic_species', ierr = ierr ) IF (ierr/=0) CALL errore( 'card_xml_atomic_species', 'error scanning end of & &atomic_species node', ABS( ierr ) ) ! ELSE ! CALL errore( 'read_xml_pw', 'atomic_species card not found', 1 ) ! ENDIF ! RETURN ! CONTAINS ! SUBROUTINE read_property ( attr_in) ! IMPLICIT NONE ! CHARACTER( len = * ), INTENT( in ) :: attr_in INTEGER :: index1, index2 CHARACTER( len = 50 ) :: prop_name ! CALL iotk_scan_attr( attr_in, 'name', prop_name, ierr = ierr ) IF (ierr/=0) CALL errore( 'card_xml_atomic_species', 'error reading name & &attribute of property node', ABS( is ) ) SELECT CASE ( trim(prop_name) ) ! CASE ( 'mass' ) CALL iotk_scan_dat_inside( xmlinputunit, atom_mass(is) , ierr = ierr) ! CASE ( 'pseudofile' ) CALL iotk_scan_dat_inside( xmlinputunit, psfile, ierr = ierr) psfile = clean_str( psfile ) psfile_found = .true. ! CASE ( 'starting_magnetization' ) CALL iotk_scan_dat_inside( xmlinputunit, starting_magnetization( is ),& ierr = ierr) ! CASE ( 'hubbard_alpha' ) CALL iotk_scan_dat_inside( xmlinputunit, hubbard_alpha( is ),& ierr = ierr) ! CASE ( 'hubbard_beta' ) CALL iotk_scan_dat_inside( xmlinputunit, hubbard_beta( is ),& ierr = ierr) ! CASE ( 'hubbard_u' ) CALL iotk_scan_dat_inside( xmlinputunit, hubbard_u( is ),& ierr = ierr) ! CASE ( 'hubbard_j' ) CALL iotk_scan_dat_inside( xmlinputunit, hubbard_j( :, is ),& ierr = ierr) ! CASE ( 'hubbard_j0' ) CALL iotk_scan_dat_inside( xmlinputunit, hubbard_j0( is ),& ierr = ierr) ! CASE ( 'starting_ns_eigenvalue' ) ! CALL iotk_scan_attr( attr_in, 'ns', index1, ierr = ierr ) IF (ierr/=0) CALL errore( 'card_xml_atomic_species', 'error reading ns & &attribute of property node', ABS( is ) ) ! CALL iotk_scan_attr( attr_in, 'ispin', index2, ierr = ierr ) IF (ierr/=0) CALL errore( 'card_xml_atomic_species', 'error reading ispin & &attribute of property node', ABS( is ) ) ! CALL iotk_scan_dat_inside( xmlinputunit, & starting_ns_eigenvalue( index1, index2, is), ierr = ierr) ! CASE ( 'angle1' ) CALL iotk_scan_dat_inside( xmlinputunit, angle1( is ),& ierr = ierr) ! CASE ( 'angle2' ) ! CALL iotk_scan_dat_inside( xmlinputunit, angle2( is ),& ierr = ierr) ! CASE ( 'ion_radius' ) ! CALL iotk_scan_dat_inside( xmlinputunit, ion_radius( is ),& ierr = ierr) ! CASE ( 'nhgrp' ) ! CALL iotk_scan_dat_inside( xmlinputunit, nhgrp( is ),& ierr = ierr) ! CASE ( 'fnhscl' ) ! CALL iotk_scan_dat_inside( xmlinputunit, fnhscl( is ),& ierr = ierr) ! CASE ( 'tranp' ) ! CALL iotk_scan_dat_inside( xmlinputunit, tranp( is ),& ierr = ierr) ! CASE ( 'amprp' ) ! CALL iotk_scan_dat_inside( xmlinputunit, amprp( is ),& ierr = ierr) ! CASE DEFAULT CALL errore( 'card_xml_atomic_species', 'property '& //trim(prop_name)//' not known', abs( is ) ) END SELECT ! ! IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_species', 'error reading ' & //trim(prop_name)//' data', abs( is ) ) ! END SUBROUTINE read_property ! END SUBROUTINE card_xml_atomic_species ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! ! ! ATOMIC_LIST (compulsory for PW) ! ! ! ! set the atomic positions ! ! ! ! Syntax: ! ! ! ! ! ! ! ! ! ! ! ! tau(1,1) tau(2,1) tau(3,1) ! ! ! ! ! ! ! ! ... ! ! ! ! ! ! Where: ! ! ! ! units_option == crystal position are given in scaled units ! ! units_option == bohr position are given in Bohr ! ! units_option == angstrom position are given in Angstrom ! ! units_option == alat position are given in units of alat ! ! ! ! label(k) ( character(len=4) ) atomic type ! ! tau(:,k) ( real ) coordinates of the k-th atom ! ! mbl(:,k) ( integer ) mbl(i,k) > 0 the i-th coord. of the ! ! k-th atom is allowed to be moved ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_atomic_list( ) ! IMPLICIT NONE ! ! CHARACTER( len = iotk_attlenx ) :: attr INTEGER :: ierr, is LOGICAL :: found ! ! CALL iotk_scan_begin( xmlinputunit, 'atomic_list', attr, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_list', 'error scanning begin & &of atomic_list node', abs(ierr) ) ! CALL iotk_scan_attr( attr, 'units', atomic_positions, found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_list', 'error reading units & &attribute of atomic_list node', abs(ierr) ) ! IF ( found ) THEN IF ( (trim( atomic_positions ) == 'crystal') .or. & (trim( atomic_positions ) == 'bohr') .or. & (trim( atomic_positions ) == 'angstrom').or. & (trim( atomic_positions ) == 'alat') ) THEN atomic_positions = trim( atomic_positions ) ELSE CALL errore( 'car_xml_atom_lists', & 'error in units attribute of atomic_list node, unknow '& & //trim(atomic_positions)//' units', 1 ) ENDIF ELSE ! ... default value atomic_positions = 'alat' ENDIF ! CALL iotk_scan_attr( attr, 'nat', nat, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_list', 'error reading nat attribute & &of atomic_list node', abs(ierr) ) ! IF ( nat < 1 ) THEN CALL errore( 'card_xml_atomic_list', 'nat out of range', nat ) END IF ! ! ... allocation of needed arrays CALL allocate_input_ions( ntyp, nat ) ! if_pos = 1 sp_pos = 0 rd_pos = 0.0_DP sp_vel = 0 rd_vel = 0.0_DP na_inp = 0 ! ! CALL read_image( 1, rd_pos, rd_vel ) ! CALL iotk_scan_end( xmlinputunit, 'atomic_list', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_atomic_list', 'error scanning end of & &atomic_list node', abs( ierr ) ) ! ! tapos = .true. ! RETURN ! ! END SUBROUTINE card_xml_atomic_list ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-! ! ! ! ! ! CHAIN (used in neb and smd calculation) OBSOLETE, NOT IMPLEMENTED ! ! ! ! set the atomic positions for a chian ! ! ! ! Syntax: ! ! ! ! ! ! ! ! ! ! ! ! ! ! tau(1,1) tau(2,1) tau(3,1) ! ! ! ! ! ! ! ... ! ! ! ! ! ! ... ! ! ! ! ... ! ! ! ! ! ! ! ! Where: ! ! ! ! notation of atomic_list node is the same of the atomic_list cards. ! ! the difference is that inside the chain card you put more atomic_list node ! ! with the attribute num that indicates the number of the image ! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-! ! SUBROUTINE card_xml_chain( ) ! IMPLICIT NONE ! ! CHARACTER( LEN = iotk_attlenx ) :: attr LOGICAL :: found,end_of_chain INTEGER :: ierr REAL (DP), DIMENSION( :, :), ALLOCATABLE :: tmp_image ! ! end_of_chain = .false. RETURN ! END SUBROUTINE card_xml_chain ! ! ... Subroutine that reads a single image inside chain node ! SUBROUTINE read_image( image, image_pos, image_vel ) ! IMPLICIT NONE ! INTEGER, INTENT( in ) :: image REAL( DP ), INTENT( inout ), DIMENSION( 3, nat ) :: image_pos REAL( DP ), INTENT( inout ), DIMENSION( 3, nat ), OPTIONAL :: image_vel ! ! INTEGER :: ia, idx, ierr, is, direction CHARACTER( len = iotk_attlenx ) :: attr CHARACTER( len = 4 ) :: lb_pos LOGICAL :: found_vel, read_vel REAL( DP ) :: default ! default = 1.0_DP ! ia = 0 ! read_vel = .true. IF (present(image_vel)) read_vel = .true. ! DO ! CALL iotk_scan_begin( xmlinputunit, 'atom', attr = attr, & direction = direction, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_image', 'error scanning begin of & &atom node', abs(ierr) ) ! IF (direction == -1) THEN IF (ia < nat) CALL errore( 'read_image', & 'less atoms than axpected in atomic_list', image ) EXIT END IF ! ia = ia + 1 ! IF ( ia > nat) CALL errore( 'read_image', & 'more atoms than axpected in atomic_list', image ) ! ! ... compulsory name attribute CALL iotk_scan_attr( attr, 'name', lb_pos, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_image', 'error reading & &name attribute of atom node', abs(ierr) ) ! CALL iotk_scan_dat( xmlinputunit,'position', image_pos( 1:3, ia ), attr = attr, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_image', 'error reading position data of & &atom node', abs(ierr) ) ! IF (read_vel) THEN CALL iotk_scan_begin( xmlinputunit, 'velocity', & found = found_vel, ierr = ierr) IF ( ierr /= 0 ) CALL errore( 'read_al_image', 'error scanning begin of & &velocity node', abs(ierr) ) ! IF (found_vel) THEN ! CALL iotk_scan_dat_inside( xmlinputunit, image_vel( 1:3, ia ), ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_al_image', 'error reading & &velocity', abs(ierr) ) ! CALL iotk_scan_end( xmlinputunit, 'velocity', ierr = ierr) IF ( ierr /= 0 ) CALL errore( 'read_al_image', 'error scanning end of & &velocity node', abs(ierr) ) ! ENDIF ENDIF ! CALL iotk_scan_end( xmlinputunit, 'atom', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_image', 'error scanning end of & &atom node', abs(ierr) ) ! ! IF ( image == 1 ) THEN ! CALL iotk_scan_attr( attr, 'ifx', if_pos(1,ia), default = 1, ierr=ierr ) IF ( ierr /= 0) CALL errore( 'read_image', & 'error reading ifx attribute of atom node', image ) ! CALL iotk_scan_attr( attr, 'ify', if_pos(2,ia), default = 1, ierr = ierr ) IF ( ierr /= 0) CALL errore( 'read_image', & 'error reading ify attribute of atom node', image ) ! CALL iotk_scan_attr( attr, 'ifz', if_pos(3,ia), default = 1, ierr = ierr ) IF ( ierr /= 0) CALL errore( 'read_image', & 'error reading ifz attribute of atom node', image ) ! lb_pos = adjustl( lb_pos ) ! match_label_path: DO is = 1, ntyp ! IF ( trim( lb_pos ) == trim( atom_label(is) ) ) THEN ! sp_pos( ia ) = is IF (found_vel .and. read_vel) sp_vel( ia) = is ! EXIT match_label_path ! ENDIF ! ENDDO match_label_path ! IF ( ( sp_pos( ia ) < 1 ) .or. ( sp_pos( ia ) > ntyp ) ) CALL errore( & 'read_image', 'wrong name in atomic_list node', ia ) ! is = sp_pos( ia ) ! na_inp( is ) = na_inp( is ) + 1 ! ENDIF ! ENDDO ! CALL iotk_scan_end( xmlinputunit, 'atom', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'read_image', 'error scanning end of & &atom node', abs(ierr) ) ! IF ( image == 1) THEN DO is = 1, ntyp IF( na_inp( is ) < 1 ) & CALL errore( 'read_image', 'no atom found in atomic_list for '& //trim(atom_label(is))//' specie', is ) ENDDO ENDIF ! RETURN ! END SUBROUTINE read_image ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! K_POINTS ! ! ! ! use the specified set of k points ! ! ! ! Syntax: ! ! ! ! ! ! ! ! if mesh_option = tpiba, crystal, tpiba_b or crystal_b : ! ! ! ! ! ! ! ! xk(1,1) xk(2,1) xk(3,1) wk(1) ! ! ... ... ... ... ! ! xk(1,n) xk(2,n) xk(3,n) wk(n) ! ! ! ! ! ! ! ! else if mesh_option = automatic ! ! ! ! ! ! nk1 nk2 nk3 k1 k2 k3 ! ! ! ! ! ! ! ! ! ! ! ! ! ! Where: ! ! ! ! mesh_option == automatic k points mesh is generated automatically ! ! with Monkhorst-Pack algorithm ! ! mesh_option == crystal k points mesh is given in stdin in scaled ! ! units ! ! mesh_option == tpiba k points mesh is given in stdin in units ! ! of ( 2 PI / alat ) ! ! mesh_option == gamma only gamma point is used ( default in ! ! CPMD simulation ) ! ! mesh_option == tpiba_b as tpiba but the weights gives the ! ! number of points between this point ! ! and the next ! ! mesh_option == crystal_b as crystal but the weights gives the ! ! number of points between this point and ! ! the next ! ! ! ! n ( integer ) number of k points ! ! xk(:,i) ( real ) coordinates of i-th k point ! ! wk(i) ( real ) weights of i-th k point ! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_kpoints( attr ) ! IMPLICIT NONE ! CHARACTER( len = * ), INTENT( in ) :: attr ! LOGICAL :: kband = .FALSE. CHARACTER( len = 20 ) :: type CHARACTER( len = iotk_attlenx ) :: attr2 INTEGER :: i,j, nk, ndiv, nkaux, ierr INTEGER, DIMENSION( 6 ) :: tmp REAL( DP ), DIMENSION( : , : ), ALLOCATABLE :: points_tmp REAL( DP ) :: delta ! ! CALL iotk_scan_attr(attr, 'type', type, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_kpoints', 'error reading type attribute & &of k_points node', abs( ierr ) ) ! SELECT CASE ( trim( type ) ) ! CASE ('automatic') !automatic generation of k-points k_points = 'automatic' ! CASE ('crystal') ! input k-points are in crystal (reciprocal lattice) axis k_points = 'crystal' ! CASE ('crystal_b') k_points = 'crystal' kband=.true. ! CASE ('tpiba') ! input k-points are in 2pi/a units k_points = 'tpiba' ! CASE ('tpiba_b') k_points = 'tpiba' kband=.true. ! CASE ('gamma') ! Only Gamma (k=0) is used k_points = 'gamma' ! CASE DEFAULT ! by default, input k-points are in 2pi/a units k_points = 'tpiba' ! END SELECT ! IF ( k_points == 'automatic' ) THEN ! ! ... automatic generation of k-points ! nkstot = 0 ALLOCATE ( xk(3,1), wk(1) ) CALL iotk_scan_dat( xmlinputunit, 'mesh', tmp, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_kpoints', 'error reading data inside mesh & &node', abs( ierr ) ) ! nk1 = tmp( 1 ) nk2 = tmp( 2 ) nk3 = tmp( 3 ) k1 = tmp( 4 ) k2 = tmp( 5 ) k3 = tmp( 6 ) ! ! ... some checks ! IF ( k1 < 0 .or. k1 > 1 .or. & k2 < 0 .or. k2 > 1 .or. & k3 < 0 .or. k3 > 1 ) CALL errore & ('card_xml_kpoints', 'invalid offsets: must be 0 or 1', 1) ! IF ( nk1 <= 0 .or. nk2 <= 0 .or. nk3 <= 0 ) CALL errore & ('card_xml_kpoints', 'invalid values for nk1, nk2, nk3', 1) ! ELSE IF ( ( k_points == 'tpiba' ) .OR. ( k_points == 'crystal' ) ) THEN ! ! ... input k-points are in 2pi/a units ! CALL iotk_scan_begin( xmlinputunit, 'mesh', attr2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_kpoints', 'error scanning begin of mesh & &node', abs( ierr ) ) ! CALL iotk_scan_attr( attr2, 'npoints', nkstot, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_kpoints', 'error reading attribute npoints of mesh & &node', abs( ierr ) ) ! allocate( points_tmp(4,nkstot) ) ! CALL iotk_scan_dat_inside( xmlinputunit, points_tmp, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_kpoints', 'error reading data inside mesh & &node', abs( ierr ) ) ! IF ( kband ) THEN ! nkaux=nkstot nkstot = 0 DO i = 1, nkaux-1 nkstot = nkstot + NINT ( points_tmp(4,i) ) END DO nkstot = nkstot + 1 ! ALLOCATE ( xk(3,nkstot), wk(nkstot) ) ! nk = 1 wk(nk) = 0.0_dp xk(:, nk) = points_tmp(1:3, 1 ) ! DO i = 2, nkaux ! ndiv = NINT(points_tmp(4,i-1)) delta = 1.0_DP/ndiv ! DO j=1, ndiv ! nk = nk+1 IF ( nk > SIZE (xk,2) ) CALL errore & ('card_xml_kpoints', 'too many k-points',nkstot) ! xk( :, nk ) = points_tmp(1:3, i-1 ) + & delta*j*( points_tmp(1:3,i)-points_tmp(1:3,i-1) ) wk(nk) = wk(nk-1) + & SQRT( (xk(1,nk)-xk(1,nk-1))**2 + & (xk(2,nk)-xk(2,nk-1))**2 + & (xk(3,nk)-xk(3,nk-1))**2 ) ! ENDDO ! ENDDO ! IF ( nk /= SIZE (xk,2) ) CALL errore & ('card_xml_kpoints', 'internal error in k-point computation',nk) ! ELSE ! ALLOCATE ( xk(3,nkstot), wk(nkstot) ) xk( :, 1:nkstot ) = points_tmp( 1:3, : ) wk( 1:nkstot ) = points_tmp( 4, : ) ! END IF deallocate( points_tmp ) ! CALL iotk_scan_end( xmlinputunit, 'mesh', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_kpoints', 'error scanning end of mesh & &node', abs( ierr ) ) ! ELSE IF ( k_points == 'gamma' ) THEN ! nkstot = 1 ALLOCATE ( xk(3,1), wk(1) ) xk(:, 1) = 0.0_DP wk(1) = 1.0_DP ! ENDIF ! tk_inp = .TRUE. ! RETURN ! ! END SUBROUTINE card_xml_kpoints ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! OCCUPATIONS (optional) ! ! ! ! use the specified occupation numbers for electronic states. ! ! ! ! Syntax (nspin == 1) or (nspin == 4): ! ! ! ! ! ! ! ! f(1) ! ! .... ! ! .... ! ! f(nbnd) ! ! ! ! ! ! ! ! Syntax (nspin == 2): ! ! ! ! ! ! ! ! u(1) ... u(nbnd) ! ! d(1) ... d(nbnd) ! ! ! ! ! ! ! ! Where: ! ! ! ! f(:) (real) these are the occupation numbers ! ! for LDA electronic states. ! ! ! ! u(:) (real) these are the occupation numbers ! ! for LSD spin == 1 electronic states ! ! d(:) (real) these are the occupation numbers ! ! for LSD spin == 2 electronic states ! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_occupations( ) ! ! IMPLICIT NONE ! INTEGER :: nspin0, ierr REAL( DP ), ALLOCATABLE :: tmp_data(:) ! ! nspin0 = nspin IF (nspin == 4) nspin0 = 1 ! IF (nbnd==0) CALL errore( 'card_xml_occupation', 'nbdn is not defined ', 1 ) ! allocate ( f_inp ( nbnd, nspin0 ) ) ! IF ( nspin0 == 2 ) THEN ! CALL iotk_scan_dat_inside( xmlinputunit, f_inp, ierr = ierr ) ! IF ( ierr /= 0 ) CALL errore( 'card_xml_occupations', 'error reading data inside & &occupations node', abs( ierr ) ) ! ELSE IF ( nspin0 == 1 ) THEN ! ALLOCATE( tmp_data( nbnd ) ) ! CALL iotk_scan_dat_inside(xmlinputunit, tmp_data, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_occupations', 'error reading data inside & &occupations node', abs( ierr ) ) ! f_inp(:,1) = tmp_data ! DEALLOCATE( tmp_data ) ! END IF ! RETURN ! ! END SUBROUTINE card_xml_occupations ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! CONSTRAINTS (optional) ! ! ! ! Ionic Constraints ! ! ! ! Syntax: ! ! ! ! ! ! ! ! ! ! ! ! constr(1,1) constr(2,1) constr(3,1) constr(4,1) ! ! ! ! ! ! ! ! ... ! ! ... ! ! ! ! ! ! ! ! ! ! ! ! Where: ! ! ! ! nconstr(INTEGER) number of constraints ! ! ! ! constr_tol tolerance for keeping the constraints ! ! satisfied ! ! ! ! constr_type(.) type of constrain: ! ! 1: for fixed distances ( two atom indexes must ! ! be specified ) ! ! 2: for fixed planar angles ( three atom indexes! ! must be specified ) ! ! ! ! constr_target(.) target for the constrain ( in the case of ! ! planar angles it is the COS of the angle ). ! ! this variable is optional. ! ! ! ! ! ! constr(1,.) constr(2,.) ... ! ! ! ! indices object of the constraint ! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_constraints( ) ! ! IMPLICIT NONE ! ! LOGICAL :: found CHARACTER( len = iotk_attlenx ) :: attr2,attr INTEGER :: i, ierr, direction ! ! nconstr_inp = 0 ! DO ! CALL iotk_scan_begin( xmlinputunit, 'constraint', direction = direction, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error scanning begin of constraint node', nconstr_inp ) ! CALL iotk_scan_end( xmlinputunit, 'constraint', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error scanning end of constraint node', nconstr_inp ) ! IF (direction == -1) EXIT ! nconstr_inp = nconstr_inp + 1 ! ENDDO CALL iotk_scan_end( xmlinputunit, 'constraints', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error scanning end of constraints node', abs(ierr) ) ! ... already did, it can not gives error CALL iotk_scan_begin( xmlinputunit, 'constraints', attr ) ! CALL iotk_scan_attr( attr, 'tol', constr_tol_inp, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error reading tol attribute of constraints node', abs( ierr ) ) ! ! WRITE( stdout, '(5x,a,i4,a,f12.6)' ) & 'Reading',nconstr_inp,' constraints; tolerance:', constr_tol_inp ! CALL allocate_input_constr() ! DO i = 1, nconstr_inp ! CALL iotk_scan_begin( xmlinputunit, 'constraint', attr2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error scanning begin of constraint node', abs( ierr ) ) ! CALL iotk_scan_attr( attr2, 'type', constr_type_inp(i), ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error reading type attribute of constraint node', abs( ierr ) ) ! CALL iotk_scan_attr( attr2, 'target', constr_target_inp(i), found = found, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error reading target attribute of constraint node', abs( ierr ) ) ! IF ( found ) constr_target_set(i) = .TRUE. ! SELECT CASE( constr_type_inp(i) ) ! CASE( 'type_coord', 'atom_coord' ) ! CALL iotk_scan_dat_inside( xmlinputunit, constr_inp(:,i), ierr = ierr ) IF ( ierr /= 0 ) GO TO 10 ! IF ( .not.constr_target_set(i) ) THEN ! WRITE( stdout, '(7x,i3,a,i3,a,i2,a,2f12.6)' ) & i,') '//constr_type_inp(i)(1:4),int( constr_inp(1,i) ),& ' coordination wrt type:', int( constr_inp(2,i) ), & ' cutoff distance and smoothing:', constr_inp(3:4,i) ! ELSE ! WRITE( stdout, '(7x,i3,a,i3,a,i2,a,2f12.6,a,f12.6)') & i,') '//constr_type_inp(i)(1:4),int( constr_inp(1,i) ),& ' coordination wrt type:', int( constr_inp(2,i) ), & ' cutoff distance and smoothing:', constr_inp(3:4,i), & '; target:', constr_target_inp(i) ! END IF ! CASE( 'distance' ) ! CALL iotk_scan_dat_inside( xmlinputunit, constr_inp(:,i), ierr = ierr ) IF ( ierr /= 0 ) GO TO 10 ! IF ( .not.constr_target_set(i) ) THEN ! WRITE( stdout, '(7x,i3,a,i3,a,i3)' ) & i,') distance from atom:', int( constr_inp(1,i) ), & ' to:', int( constr_inp(2,i) ) ! ELSE ! WRITE( stdout, '(7x,i3,a,i3,a,i3,a,f12.6)' ) & i,') distance from atom', int( constr_inp(1,i) ), & ' to atom', int( constr_inp(2,i) ), & '; target:', constr_target_inp(i) ! ENDIF ! CASE( 'planar_angle' ) ! CALL iotk_scan_dat_inside( xmlinputunit, constr_inp(:,i), ierr = ierr ) IF ( ierr /= 0 ) GO TO 10 ! IF ( .not.constr_target_set(i) ) THEN ! WRITE( stdout, '(7x,i3,a,3i3)') & i,') planar angle between atoms: ', int( constr_inp(1:3,i) ) ! ELSE ! WRITE(stdout, '(7x,i3,a,3i3,a,f12.6)') & i,') planar angle between atoms: ', int( constr_inp(1:3,i) ),& '; target:', constr_target_inp(i) ! ENDIF ! CASE( 'torsional_angle' ) ! CALL iotk_scan_dat_inside( xmlinputunit, constr_inp(:,i), ierr = ierr ) IF ( ierr /= 0 ) GO TO 10 ! IF ( .not.constr_target_set(i) ) THEN ! WRITE( stdout, '(7x,i3,a,4i3)' ) & i,') torsional angle between atoms: ', int( constr_inp(1:4,i) ) ! ELSE ! WRITE( stdout, '(7x,i3,a,4i3,a,f12.6)' ) & i,') torsional angle between atoms: ', int( constr_inp(1:4,i) ), & '; target:', constr_target_inp(i) ! ENDIF ! CASE( 'bennett_proj' ) ! CALL iotk_scan_dat_inside( xmlinputunit, constr_inp(:,i), ierr = ierr ) IF ( ierr /= 0 ) GO TO 10 ! IF (.not.constr_target_set(i)) THEN ! WRITE( stdout, '(7x,i3,a,i3,a,3f12.6)' ) & i,') bennet projection of atom ', int( constr_inp(1,i) ),& ' along vector:', constr_inp(2:4,i) ! ELSE ! WRITE(stdout, '(7x,i3,a,i3,a,3f12.6,a,f12.6)') & i,') bennet projection of atom ', int( constr_inp(1,i) ),& ' along vector:', constr_inp(2:4,i), & '; target:', constr_target_inp(i) ENDIF ! CASE DEFAULT ! CALL errore( 'card_xml_constraints', 'unknown constraint ' // & & 'type: ' // trim( constr_type_inp(i) ), 1 ) ! END SELECT ! CALL iotk_scan_end( xmlinputunit, 'constraint', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_constraints', & 'error scanning end of constraint node', abs( ierr ) ) ! ENDDO ! RETURN ! ! 10 CALL errore( 'card_xml_constraints', 'error reading data inside constraint node', i ) ! ! END SUBROUTINE card_xml_constraints ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! CLIMBING_IMAGES (optional) OBSOLETE, NOT IMPLEMENTED ! ! ! ! Needed to explicitly specify which images have to climb ! ! ! ! Syntax: ! ! ! ! ! ! ! ! ! ! index1 ! ! index2 ! ! ... ! ! indexN ! ! ! ! ! ! ! ! ! ! ! Where: ! ! ! ! index1, ..., indexN are indices of the images that have to climb ! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_climbing_images( ) ! RETURN ! END SUBROUTINE card_xml_climbing_images ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! ! ! PLOT_WANNIER (optional) ! ! ! ! Needed to specify the indices of the wannier functions that ! ! have to be plotted ! ! ! ! Syntax: ! ! ! ! ! ! ! ! ! ! index1 ! ! ..... ! ! indexN ! ! ! ! ! ! ! ! ! ! Where: ! ! ! ! index1, ..., indexN are indices of the wannier functions ! ! ! ! ! ! ! !_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_! ! SUBROUTINE card_xml_plot_wannier( ) ! IMPLICIT NONE ! ! INTEGER :: i, j, ib, ni, ierr INTEGER, DIMENSION(:), ALLOCATABLE :: tmp CHARACTER (LEN=iotk_attlenx) :: attr ! ! ! CALL iotk_scan_begin( xmlinputunit, 'wf_list', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_plot_wannier', 'error scanning begin of & &wf_list node', abs( ierr ) ) ! IF ( nwf > 0 ) THEN CALL iotk_scan_begin( xmlinputunit, 'integer', attr, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_plot_wannier', 'error scanning begin of & &integer node', abs( ierr ) ) ! CALL iotk_scan_end( xmlinputunit, 'integer', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_plot_wannier', 'error scanning end of & &integer node', abs( ierr ) ) ! CALL iotk_scan_attr( attr, 'n1', ni , ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_plot_wannier', 'error reading n1 attribute of & &integer node', abs( ierr ) ) ! IF ( (ni < 1) .or. (ni > nwf) ) CALL errore( 'card_xml_plot_wannier', 'invalid value & &of n1', abs( ni ) ) ! allocate( tmp( ni ) ) ! CALL iotk_scan_dat_inside( xmlinputunit, tmp, ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_plot_wannier', 'error reading data inside & & data', abs( ierr ) ) ! CALL iotk_scan_end( xmlinputunit, 'wf_list', ierr = ierr ) IF ( ierr /= 0 ) CALL errore( 'card_xml_plot_wannier', 'error scanning end of & &wf_list node', abs( ierr ) ) ! ! ordering in ascending order ib = 1 DO j = 1, nwf ! DO i = 1, ni IF ( tmp(i) == j ) THEN wannier_index(ib) = j ib = ib + 1 ENDIF ENDDO ! ENDDO ! deallocate( tmp ) ! ENDIF ! RETURN ! END SUBROUTINE card_xml_plot_wannier ! END MODULE read_xml_cards_module espresso-5.1/Modules/command_line_options.f900000644000175000017500000002001312341373034017426 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE command_line_options !---------------------------------------------------------------------------- ! ! ... Utilities to read command-line variables and to set related variables: ! ... "get_command_line()" with no arguments: ! ... reads the command line, ! ... interprets QE-specific variables, ! ... stores the corresponding values ! ... (nimage, npot, npool, ntg, nband, ndiag), ! ... broadcasts them to all processors, ! ... leaves the rest of the command line ! ... (including the code name) in "command_line" ! ... "get_command_line(input_command_line)" with a string argument: ! ... as above, but reading from the input string ! ... Variables are read on one processor and broadcast to all others ! ... because there is no guarantee that all processors have access to ! ... command-line options in parallel execution. ! ... "set_command_line" directly sets nimage, npot, npool, ntg, nband, ndiag. ! ... Useful to initialize parallelism when QE is used as a library ! USE mp, ONLY : mp_bcast USE mp_world, ONLY : root, world_comm USE io_global, ONLY : meta_ionode ! IMPLICIT NONE SAVE ! ! ... Number of arguments in command line INTEGER :: nargs = 0 ! ... QE arguments read from command line INTEGER :: nimage_= 1, npool_= 1, npot_= 1, ndiag_ = 0, nband_= 1, ntg_= 1 ! ... Indicate if using library init LOGICAL :: library_init = .FALSE. ! ... input file name read from command line CHARACTER(LEN=256) :: input_file_ = ' ' ! ... Command line arguments that were not identified and processed CHARACTER(LEN=512) :: command_line = ' ' ! CONTAINS ! SUBROUTINE get_command_line ( input_command_line ) IMPLICIT NONE CHARACTER(LEN=*), OPTIONAL :: input_command_line INTEGER :: narg ! Do not define iargc as external: gfortran doesn't like it INTEGER :: iargc LOGICAL :: read_string CHARACTER(LEN=256) :: arg CHARACTER(LEN=6), EXTERNAL :: int_to_char ! command_line = ' ' read_string = PRESENT ( input_command_line ) ! ! command line parameters have already been set via set_command_line() IF (library_init) GO TO 20 ! IF (read_string) THEN nargs = my_iargc ( input_command_line ) ELSE nargs = iargc() ENDIF CALL mp_bcast ( nargs, root, world_comm ) ! ! ... Only the first node reads and broadcasts ! IF ( .NOT. meta_ionode ) GO TO 20 ! arg = ' ' narg=0 10 CONTINUE IF (read_string) THEN CALL my_getarg ( input_command_line, narg, arg ) ELSE CALL getarg ( narg, arg ) ENDIF narg = narg + 1 SELECT CASE ( TRIM(arg) ) CASE ( '-i', '-in', '-inp', '-input' ) IF (read_string) THEN CALL my_getarg ( input_command_line, narg, input_file_ ) ELSE CALL getarg ( narg, input_file_ ) ENDIF IF ( TRIM (input_file_) == ' ' ) GO TO 15 narg = narg + 1 CASE ( '-ni', '-nimage', '-nimages' ) IF (read_string) THEN CALL my_getarg ( input_command_line, narg, arg ) ELSE CALL getarg ( narg, arg ) ENDIF READ ( arg, *, ERR = 15, END = 15) nimage_ narg = narg + 1 CASE ( '-npot', '-npots' ) IF (read_string) THEN CALL my_getarg ( input_command_line, narg, arg ) ELSE CALL getarg ( narg, arg ) ENDIF READ ( arg, *, ERR = 15, END = 15) npot_ narg = narg + 1 CASE ( '-nk', '-npool', '-npools') IF (read_string) THEN CALL my_getarg ( input_command_line, narg, arg ) ELSE CALL getarg ( narg, arg ) ENDIF READ ( arg, *, ERR = 15, END = 15) npool_ narg = narg + 1 CASE ( '-nt', '-ntg', '-ntask_groups') IF (read_string) THEN CALL my_getarg ( input_command_line, narg, arg ) ELSE CALL getarg ( narg, arg ) ENDIF READ ( arg, *, ERR = 15, END = 15) ntg_ narg = narg + 1 CASE ( '-nb', '-nband', '-nbgrp', '-nband_group') IF (read_string) THEN CALL my_getarg ( input_command_line, narg, arg ) ELSE CALL getarg ( narg, arg ) ENDIF READ ( arg, *, ERR = 15, END = 15) nband_ narg = narg + 1 CASE ( '-nd', '-ndiag', '-northo', '-nproc_diag', '-nproc_ortho') IF (read_string) THEN CALL my_getarg ( input_command_line, narg, arg ) ELSE CALL getarg ( narg, arg ) ENDIF READ ( arg, *, ERR = 15, END = 15) ndiag_ narg = narg + 1 CASE DEFAULT command_line = TRIM(command_line) // ' ' // TRIM(arg) END SELECT IF ( narg > nargs ) GO TO 20 GO TO 10 ! ... something wrong: notify and continue 15 CALL infomsg ('get_command_line', 'unexpected argument # ' // & & int_to_char(narg) // ':' //TRIM(arg)) narg = narg + 1 GO TO 10 ! ... normal exit 20 CONTINUE CALL mp_bcast( command_line, root, world_comm ) CALL mp_bcast( input_file_ , root, world_comm ) CALL mp_bcast( nimage_, root, world_comm ) CALL mp_bcast( npot_ , root, world_comm ) CALL mp_bcast( npool_ , root, world_comm ) CALL mp_bcast( ntg_ , root, world_comm ) CALL mp_bcast( nband_ , root, world_comm ) CALL mp_bcast( ndiag_ , root, world_comm ) END SUBROUTINE get_command_line ! INTEGER FUNCTION my_iargc ( input_command_line ) IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN) :: input_command_line CHARACTER(LEN=1) :: previous, current INTEGER :: i my_iargc = 0 previous = ' ' DO i=1,LEN_TRIM(input_command_line) current = input_command_line(i:i) IF ( current /= ' ' .AND. previous == ' ' ) my_iargc = my_iargc+1 previous = current END DO END FUNCTION my_iargc ! SUBROUTINE my_getarg ( input_command_line, narg, arg ) IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN) :: input_command_line INTEGER, INTENT(IN) :: narg CHARACTER(LEN=*), INTENT(OUT) :: arg CHARACTER(LEN=1) :: previous, current INTEGER :: iarg, i, indx iarg = 0 previous = ' ' arg = ' ' indx= 0 DO i=1,LEN_TRIM(input_command_line) current = input_command_line(i:i) IF ( current /= ' ' .AND. previous == ' ' ) iarg = iarg+1 IF ( iarg == narg ) THEN indx = indx + 1 arg(indx:indx) = current IF ( indx == LEN(arg) ) RETURN ELSE IF ( iarg > narg ) THEN RETURN END IF previous = current END DO END SUBROUTINE my_getarg SUBROUTINE set_command_line ( nimage, npot, npool, ntg, nband, ndiag) ! directly set command line options without going through the command line IMPLICIT NONE INTEGER, INTENT(IN), OPTIONAL :: nimage, npot, npool, ntg, nband, ndiag ! IF ( PRESENT(nimage) ) nimage_ = nimage IF ( PRESENT(npot) ) npot_ = npot IF ( PRESENT(npool) ) npool_ = npool IF ( PRESENT(ntg) ) ntg_ = ntg IF ( PRESENT(nband) ) nband_ = nband IF ( PRESENT(ndiag) ) ndiag_ = ndiag ! library_init = .TRUE. ! END SUBROUTINE set_command_line ! END MODULE command_line_options espresso-5.1/Modules/zdotc_wrapper.f900000644000175000017500000000171012341373034016114 0ustar mbamba! ! Copyright (C) 2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! Wrapper for nonstandard implementation of complex BLAS function zdotc ! (e.g. some versions of optimized BLAS for Mac) ! In order to activate it, add -Dzdotc=zdotc_wrapper to DFLAGS in make.sys !-------------------------------------------------------------------------- FUNCTION zdotc_wrapper(n,a,ia,b,ib) RESULT(c) !-------------------------------------------------------------------------- USE kinds, ONLY: dp IMPLICIT NONE COMPLEX(dp), INTENT(in) :: a(*), b(*) INTEGER, INTENT(in):: n,ia,ib COMPLEX(dp) :: c #ifdef zdotc #undef zdotc CALL zdotc(c,n,a,ia,b,ib) #else c=0.0_dp #endif RETURN END FUNCTION zdotc_wrapper espresso-5.1/Modules/wave_base.f900000644000175000017500000005003112341373034015165 0ustar mbamba! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! BEGIN manual !==----------------------------------------------==! MODULE wave_base !==----------------------------------------------==! ! (describe briefly what this module does...) ! ---------------------------------------------- ! END manual USE kinds IMPLICIT NONE SAVE PRIVATE REAL(DP) :: frice = 0.0_DP ! friction parameter for electronic ! damped dynamics REAL(DP) :: grease = 0.0_DP ! friction parameter for electronic ! damped dynamics PUBLIC :: dotp, hpsi, rande_base, gram_kp_base, gram_gamma_base PUBLIC :: converg_base, rande_base_s, scalw PUBLIC :: wave_steepest PUBLIC :: wave_verlet PUBLIC :: wave_speed2 PUBLIC :: frice, grease INTERFACE dotp MODULE PROCEDURE dotp_gamma, dotp_kp, dotp_gamma_n, dotp_kp_n END INTERFACE INTERFACE hpsi MODULE PROCEDURE hpsi_gamma, hpsi_kp END INTERFACE INTERFACE converg_base MODULE PROCEDURE converg_base_gamma, converg_base_kp END INTERFACE !==----------------------------------------------==! CONTAINS !==----------------------------------------------==! SUBROUTINE gram_kp_base(wf, gid) USE mp, ONLY: mp_sum COMPLEX(DP) :: wf(:,:) INTEGER, INTENT(IN) :: gid COMPLEX(DP), PARAMETER :: one = ( 1.0_DP,0.0_DP) COMPLEX(DP), PARAMETER :: onem = (-1.0_DP,0.0_DP) COMPLEX(DP), PARAMETER :: zero = ( 0.0_DP,0.0_DP) REAL(DP), PARAMETER :: small = 1.e-16_DP COMPLEX(DP), ALLOCATABLE :: s(:) REAL(DP) :: anorm INTEGER :: ib, ngw, nb ngw = SIZE(wf, 1) nb = SIZE(wf, 2) ALLOCATE( s(nb) ) DO ib = 1, nb IF(ib > 1)THEN s = zero CALL ZGEMV & ('C', ngw, ib-1, one, wf(1,1), ngw, wf(1,ib), 1, zero, s(1), 1) CALL mp_sum(s,gid) CALL ZGEMV & ('N', ngw, ib-1, onem, wf(1,1), ngw, s(1), 1, one, wf(1,ib), 1) END IF anorm = SUM( DBLE( wf(:,ib) * CONJG(wf(:,ib)) ) ) CALL mp_sum(anorm, gid) anorm = 1.0_DP / MAX( SQRT(anorm), small ) CALL zdscal(ngw, anorm, wf(1,ib), 1) END DO DEALLOCATE( s ) RETURN END SUBROUTINE gram_kp_base !==----------------------------------------------==! !==----------------------------------------------==! ! BEGIN manual SUBROUTINE gram_gamma_base(wf, gzero, gid) ! Gram-Schmidt ortogonalization procedure ! input: cp(2,ngik,n) = ( .... ) ! ( .... ) ! ( ...............................................) ! ( .... ) ! output: the same orthogonalized ! ---------------------------------------------- ! line 7&8 : s(k) = - k=1,..,i-1 (orthonormal) ! i (non-orthogonal) ! line 9 : s(k) = 2*sum_g{} + s(k) ! line 10 : = - sum_k {s(k) } ! lines 12-15: normalize |psi(i)> ! note: line 2 com. out due to im()=0 for all k (gam. p. is ass.) ! s(k) is added in 9 to av. doub. count. of ! |psi(i)> after line 10 is orthogonal to |psi(k)> k=1,...,i-1 ! ---------------------------------------------- ! END manual USE mp, ONLY: mp_sum COMPLEX(DP), INTENT(INOUT) :: wf(:,:) INTEGER, INTENT(IN) :: gid LOGICAL, INTENT(IN) :: gzero REAL(DP), PARAMETER :: one = 1.0_DP REAL(DP), PARAMETER :: two = 2.0_DP REAL(DP), PARAMETER :: onem = -1.0_DP REAL(DP), PARAMETER :: zero = 0.0_DP REAL(DP), PARAMETER :: small = 1.e-16_DP REAL(DP) :: dnrm2 REAL(DP), ALLOCATABLE :: s(:) REAL(DP) :: anorm, wftmp INTEGER :: ib, nwfr, ngw, nb ngw = SIZE(wf, 1) nb = SIZE(wf, 2) nwfr = SIZE(wf, 1) * 2 ALLOCATE( s(nb) ) DO ib = 1, nb IF(ib.GT.1)THEN s = zero ! ... only the processor that own G=0 IF(gzero) THEN wftmp = -DBLE(wf(1,ib)) CALL daxpy(ib-1, wftmp, wf(1,1), nwfr, s(1), 1) END IF CALL DGEMV('T', nwfr, ib-1, two, wf(1,1), nwfr, wf(1,ib), 1, one, s(1), 1) CALL mp_sum(s, gid) !WRITE( stdout, fmt = '(I3, 16F8.2)' ) mpime, s(1:nb) CALL DGEMV('N', nwfr, ib-1, onem, wf(1,1), nwfr, s(1), 1, one, wf(1,ib), 1) END IF IF(gzero) THEN anorm = dnrm2( 2*(ngw-1), wf(2,ib), 1) anorm = 2.0_DP * anorm**2 + DBLE( wf(1,ib) * CONJG(wf(1,ib)) ) ELSE anorm = dnrm2( 2*ngw, wf(1,ib), 1) anorm = 2.0_DP * anorm**2 END IF CALL mp_sum(anorm, gid) anorm = 1.0_DP / MAX( small, SQRT(anorm) ) CALL dscal( 2*ngw, anorm, wf(1,ib), 1) END DO DEALLOCATE( s ) RETURN END SUBROUTINE gram_gamma_base !==----------------------------------------------==! !==----------------------------------------------==! FUNCTION hpsi_kp( c, dc ) ! (describe briefly what this routine does...) ! ---------------------------------------------- IMPLICIT NONE COMPLEX(DP) :: zdotc COMPLEX(DP) :: c(:,:) COMPLEX(DP) :: dc(:) COMPLEX(DP), DIMENSION( SIZE( c, 2 ) ) :: hpsi_kp INTEGER :: jb, ngw, nx ! ... end of declarations ! ---------------------------------------------- IF( SIZE( c, 1 ) /= SIZE( dc ) ) & CALL errore(' hpsi_kp ', ' wrong sizes ', 1 ) ngw = SIZE( c, 1 ) nx = SIZE( c, 2 ) DO jb = 1, nx hpsi_kp( jb ) = - zdotc( ngw, c(1,jb), 1, dc(1), 1) END DO RETURN END FUNCTION hpsi_kp !==----------------------------------------------==! !==----------------------------------------------==! FUNCTION hpsi_gamma( gzero, c, ngw, dc, n, noff ) IMPLICIT NONE COMPLEX(DP) :: c(:,:) COMPLEX(DP) :: dc(:) LOGICAL, INTENT(IN) :: gzero INTEGER, INTENT(IN) :: n, noff, ngw REAL(DP), DIMENSION( n ) :: hpsi_gamma COMPLEX(DP) :: zdotc INTEGER :: j IF(gzero) THEN DO j = 1, n hpsi_gamma(j) = & - DBLE( (2.0_DP * zdotc(ngw-1, c(2,j+noff-1), 1, dc(2), 1) + c(1,j+noff-1)*dc(1)) ) END DO ELSE DO j = 1, n hpsi_gamma(j) = - DBLE( (2.0_DP * zdotc(ngw, c(1,j+noff-1), 1, dc(1), 1)) ) END DO END IF RETURN END FUNCTION hpsi_gamma !==----------------------------------------------==! !==----------------------------------------------==! ! BEGIN manual SUBROUTINE converg_base_gamma(gzero, cgrad, gemax, cnorm, comm) ! this routine checks for convergence, by computing the norm of the ! gradients of wavefunctions ! version for the Gamma point ! ---------------------------------------------- ! END manual USE mp, ONLY: mp_sum, mp_max IMPLICIT NONE ! ... declare subroutine arguments COMPLEX(DP) :: cgrad(:,:,:) LOGICAL, INTENT(IN) :: gzero INTEGER, INTENT(IN) :: comm REAL(DP), INTENT(OUT) :: gemax, cnorm ! ... declare other variables INTEGER :: imx, IZAMAX, i, nb, ngw REAL(DP) :: gemax_l ! ... end of declarations ! ---------------------------------------------- ngw = SIZE( cgrad, 1) nb = SIZE( cgrad, 2) gemax_l = 0.0_DP cnorm = 0.0_DP DO i = 1, nb imx = IZAMAX( ngw, cgrad(1, i, 1), 1 ) IF ( gemax_l < ABS( cgrad(imx, i, 1) ) ) THEN gemax_l = ABS ( cgrad(imx, i, 1) ) END IF cnorm = cnorm + dotp(gzero, cgrad(:,i,1), cgrad(:,i,1), comm) END DO CALL mp_max(gemax_l, comm) CALL mp_sum(nb, comm) CALL mp_sum(ngw, comm) gemax = gemax_l cnorm = SQRT( cnorm / (nb * ngw) ) RETURN END SUBROUTINE converg_base_gamma ! ---------------------------------------------- ! ---------------------------------------------- ! BEGIN manual SUBROUTINE converg_base_kp(weight, cgrad, gemax, cnorm, comm) ! this routine checks for convergence, by computing the norm of the ! gradients of wavefunctions ! version for generic k-points ! ---------------------------------------------- ! END manual USE mp, ONLY: mp_sum, mp_max IMPLICIT NONE ! ... declare subroutine arguments COMPLEX(DP) :: cgrad(:,:,:) REAL(DP), INTENT(IN) :: weight(:) REAL(DP), INTENT(OUT) :: gemax, cnorm INTEGER, INTENT(IN) :: comm ! ... declare other variables INTEGER :: nb, ngw, nk, iabs, IZAMAX, i, ik REAL(DP) :: gemax_l, cnormk COMPLEX(DP) :: zdotc ! ... end of declarations ! ---------------------------------------------- ngw = SIZE( cgrad, 1) nb = SIZE( cgrad, 2) nk = SIZE( cgrad, 3) gemax_l = 0.0_DP cnorm = 0.0_DP DO ik = 1, nk cnormk = 0.0_DP DO i = 1, nb iabs = IZAMAX( ngw, cgrad(1,i,ik), 1) IF( gemax_l < ABS( cgrad(iabs,i,ik) ) ) THEN gemax_l = ABS( cgrad(iabs,i,ik) ) END IF cnormk = cnormk + DBLE( zdotc(ngw, cgrad(1,i,ik), 1, cgrad(1,i,ik), 1)) END DO cnormk = cnormk * weight(ik) cnorm = cnorm + cnormk END DO CALL mp_max(gemax_l, comm) CALL mp_sum(cnorm, comm) CALL mp_sum(nb, comm) CALL mp_sum(ngw, comm) gemax = gemax_l cnorm = SQRT( cnorm / ( nb * ngw ) ) RETURN END SUBROUTINE converg_base_kp !==----------------------------------------------==! !==----------------------------------------------==! REAL(DP) FUNCTION wdot_gamma(gzero, ng, a, b) LOGICAL, INTENT(IN) :: gzero COMPLEX(DP) :: a(:), b(:) INTEGER, OPTIONAL, INTENT(IN) :: ng REAL(DP) :: ddot INTEGER :: n n = MIN( SIZE(a), SIZE(b) ) IF ( PRESENT (ng) ) n = MIN( n, ng ) IF ( n < 1 ) & CALL errore( ' wdot_gamma ', ' wrong dimension ', 1 ) IF (gzero) THEN wdot_gamma = ddot( 2*(n-1), a(2), 1, b(2), 1) wdot_gamma = 2.0_DP * wdot_gamma + DBLE( a(1) ) * DBLE( b(1) ) ELSE wdot_gamma = 2.0_DP * ddot( 2*n, a(1), 1, b(1), 1) END IF RETURN END FUNCTION wdot_gamma !==----------------------------------------------==! !==----------------------------------------------==! REAL(DP) FUNCTION dotp_gamma(gzero, ng, a, b, comm) ! ... Compute the dot product between distributed complex vectors "a" and "b" ! ... representing HALF-SPACE complex wave functions, with the G-point symmetry ! ... a( -G ) = CONJG( a( G ) ). Only half of the values plus G=0 are really ! ... stored in the array. ! ! ... dotp = < a | b > ! USE mp, ONLY: mp_sum REAL(DP) :: ddot REAL(DP) :: dot_tmp INTEGER, INTENT(IN) :: ng LOGICAL, INTENT(IN) :: gzero INTEGER, INTENT(IN) :: comm COMPLEX(DP) :: a(:), b(:) INTEGER :: n n = MIN( SIZE(a), SIZE(b) ) n = MIN( n, ng ) IF ( n < 1 ) & CALL errore( ' dotp_gamma ', ' wrong dimension ', 1 ) ! ... gzero is true on the processor where the first element of the ! ... input arrays is the coefficient of the G=0 plane wave ! IF (gzero) THEN dot_tmp = ddot( 2*(n-1), a(2), 1, b(2), 1) dot_tmp = 2.0_DP * dot_tmp + DBLE( a(1) ) * DBLE( b(1) ) ELSE dot_tmp = ddot( 2*n, a(1), 1, b(1), 1) dot_tmp = 2.0_DP*dot_tmp END IF CALL mp_sum( dot_tmp, comm ) dotp_gamma = dot_tmp RETURN END FUNCTION dotp_gamma !==----------------------------------------------==! !==----------------------------------------------==! REAL(DP) FUNCTION dotp_gamma_n(gzero, a, b, comm) ! ... Compute the dot product between distributed complex vectors "a" and "b" ! ... representing HALF-SPACE complex wave functions, with the G-point symmetry ! ... a( -G ) = CONJG( a( G ) ). Only half of the values plus G=0 are really ! ... stored in the array. USE mp, ONLY: mp_sum LOGICAL, INTENT(IN) :: gzero INTEGER, INTENT(IN) :: comm COMPLEX(DP) :: a(:), b(:) INTEGER :: n n = MIN( SIZE(a), SIZE(b) ) IF ( n < 1 ) & CALL errore( ' dotp_gamma_n ', ' wrong dimension ', 1 ) dotp_gamma_n = dotp_gamma(gzero, n, a, b, comm) RETURN END FUNCTION !==----------------------------------------------==! !==----------------------------------------------==! COMPLEX(DP) FUNCTION dotp_kp(ng, a, b, comm) ! ... Compute the dot product between distributed complex vectors "a" and "b" ! ... representing FULL-SPACE complex wave functions USE mp, ONLY: mp_sum COMPLEX(DP) :: zdotc INTEGER, INTENT(IN) :: ng COMPLEX(DP) :: a(:),b(:) INTEGER, INTENT(IN) :: comm COMPLEX(DP) :: dot_tmp INTEGER :: n n = MIN( SIZE(a), SIZE(b) ) n = MIN( n, ng ) IF ( n < 1 ) & CALL errore( ' dotp_kp ', ' wrong dimension ', 1 ) dot_tmp = zdotc(ng, a(1), 1, b(1), 1) CALL mp_sum(dot_tmp, comm) dotp_kp = dot_tmp RETURN END FUNCTION dotp_kp !==----------------------------------------------==! !==----------------------------------------------==! COMPLEX(DP) FUNCTION dotp_kp_n(a, b, comm) ! ... Compute the dot product between distributed complex vectors "a" and "b" ! ... representing FULL-SPACE complex wave functions USE mp, ONLY: mp_sum COMPLEX(DP) zdotc COMPLEX(DP), INTENT(IN) :: a(:),b(:) INTEGER, INTENT(IN) :: comm COMPLEX(DP) :: dot_tmp INTEGER :: n n = MIN( SIZE(a), SIZE(b) ) IF ( n < 1 ) & CALL errore( ' dotp_kp_n ', ' wrong dimension ', 1 ) dot_tmp = zdotc( n, a(1), 1, b(1), 1) CALL mp_sum( dot_tmp, comm ) dotp_kp_n = dot_tmp RETURN END FUNCTION dotp_kp_n !==----------------------------------------------==! !==----------------------------------------------==! COMPLEX(DP) FUNCTION wdot_kp(ng, a, b) ! ... Compute the dot product between complex vectors "a" and "b" ! ... representing FULL-SPACE complex wave functions ! ... Note this is a _SCALAR_ subroutine COMPLEX(DP) :: a(:), b(:) INTEGER, INTENT(IN), OPTIONAL :: ng COMPLEX(DP) :: zdotc INTEGER :: n n = MIN( SIZE(a), SIZE(b) ) IF ( PRESENT (ng) ) n = MIN( n, ng ) IF ( n < 1 ) & CALL errore( ' dotp_kp_n ', ' wrong dimension ', 1 ) wdot_kp = zdotc(n, a(1), 1, b(1), 1) RETURN END FUNCTION wdot_kp !==----------------------------------------------==! !==----------------------------------------------==! SUBROUTINE rande_base(wf,ampre) ! randomize wave functions coefficients ! ---------------------------------------------- USE random_numbers, ONLY : randy IMPLICIT NONE ! ... declare subroutine arguments COMPLEX(DP) :: wf(:,:) REAL(DP), INTENT(IN) :: ampre ! ... declare other variables INTEGER i, j REAL(DP) rranf1, rranf2 ! ... end of declarations ! ---------------------------------------------- DO i = 1, SIZE(wf, 2) DO j = 1, SIZE( wf, 1) rranf1 = 0.5_DP - randy() rranf2 = 0.5_DP - randy() wf(j,i) = wf(j,i) + ampre * CMPLX(rranf1, rranf2, KIND=DP) END DO END DO RETURN END SUBROUTINE rande_base !==----------------------------------------------==! SUBROUTINE rande_base_s(wf,ampre) ! randomize wave functions coefficients ! ---------------------------------------------- USE random_numbers, ONLY : randy IMPLICIT NONE ! ... declare subroutine arguments COMPLEX(DP) :: wf(:) REAL(DP), INTENT(IN) :: ampre ! ... declare other variables INTEGER j REAL(DP) rranf1, rranf2 ! ... end of declarations ! ---------------------------------------------- DO j = 1, SIZE( wf ) rranf1 = 0.5_DP - randy() rranf2 = 0.5_DP - randy() wf(j) = wf(j) + ampre * CMPLX(rranf1, rranf2, KIND=DP) END DO RETURN END SUBROUTINE rande_base_s !==----------------------------------------------==! !==----------------------------------------------==! REAL(DP) FUNCTION scalw(gzero, RR1, RR2, metric, comm) USE mp, ONLY: mp_sum IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: rr1(:), rr2(:), metric(:) LOGICAL, INTENT(IN) :: gzero INTEGER, INTENT(IN) :: comm INTEGER :: ig, gstart, ngw REAL(DP) :: rsc ngw = MIN( SIZE(rr1), SIZE(rr2), SIZE(metric) ) rsc = 0.0_DP gstart = 1 IF (gzero) gstart = 2 DO ig = gstart, ngw rsc = rsc + rr1( ig ) * CONJG( rr2( ig ) ) * metric( ig ) END DO CALL mp_sum(rsc, comm) scalw = rsc RETURN END FUNCTION scalw !==----------------------------------------------==! !==----------------------------------------------==! SUBROUTINE wave_steepest( CP, C0, dt2m, grad, ngw, idx ) IMPLICIT NONE COMPLEX(DP), INTENT(OUT) :: CP(:) COMPLEX(DP), INTENT(IN) :: C0(:) COMPLEX(DP), INTENT(IN) :: grad(:) REAL(DP), INTENT(IN) :: dt2m(:) INTEGER, OPTIONAL, INTENT(IN) :: ngw, idx ! IF( PRESENT( ngw ) .AND. PRESENT( idx ) ) THEN CP( : ) = C0( : ) + dt2m(:) * grad( (idx-1)*ngw+1 : idx*ngw ) ELSE CP( : ) = C0( : ) + dt2m(:) * grad(:) END IF ! RETURN END SUBROUTINE wave_steepest !==----------------------------------------------==! !==----------------------------------------------==! SUBROUTINE wave_verlet( cm, c0, ver1, ver2, ver3, grad, ngw, idx ) IMPLICIT NONE COMPLEX(DP), INTENT(INOUT) :: cm(:) COMPLEX(DP), INTENT(IN) :: c0(:) COMPLEX(DP), INTENT(IN) :: grad(:) REAL(DP), INTENT(IN) :: ver1, ver2, ver3(:) INTEGER, OPTIONAL, INTENT(IN) :: ngw, idx ! IF( PRESENT( ngw ) .AND. PRESENT( idx ) ) THEN cm( : ) = ver1 * c0( : ) + ver2 * cm( : ) + ver3( : ) * grad( (idx-1)*ngw+1:idx*ngw) ELSE cm( : ) = ver1 * c0( : ) + ver2 * cm( : ) + ver3( : ) * grad( : ) END IF ! RETURN END SUBROUTINE wave_verlet !==----------------------------------------------==! !==----------------------------------------------==! FUNCTION wave_speed2( cp, cm, wmss, fact ) IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: cp(:) COMPLEX(DP), INTENT(IN) :: cm(:) REAL(DP) :: wmss(:), fact REAL(DP) :: wave_speed2 REAL(DP) :: ekinc COMPLEX(DP) :: speed INTEGER :: j speed = ( cp(1) - cm(1) ) ekinc = fact * wmss(1) * CONJG( speed ) * speed DO j = 2, SIZE( cp ) speed = ( cp(j) - cm(j) ) ekinc = ekinc + wmss(j) * CONJG( speed ) * speed END DO wave_speed2 = ekinc RETURN END FUNCTION wave_speed2 !==----------------------------------------------==! END MODULE wave_base !==----------------------------------------------==! espresso-5.1/Modules/input_parameters.f900000644000175000017500000017221712341373034016626 0ustar mbamba! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !=----------------------------------------------------------------------------=! ! MODULE input_parameters ! !=----------------------------------------------------------------------------=! ! ! this module contains ! 1) the definitions of all input parameters ! (both those read from namelists and those read from cards) ! 2) the definitions of all namelists ! 3) routines that allocate data needed in input ! Note that all values are initialized, but the default values should be ! set in the appropriate routines contained in module "read_namelists" ! The documentation of input variables can be found in Doc/INPUT_PW.* ! (for pw.x) or in Doc/INPUT_CP (for cp.x) ! Originally written by Carlo Cavazzoni for FPMD ! !=----------------------------------------------------------------------------=! ! USE kinds, ONLY : DP USE parameters, ONLY : nsx, lqmax USE wannier_new,ONLY : wannier_data ! IMPLICIT NONE ! SAVE ! !=----------------------------------------------------------------------------=! ! BEGIN manual ! ! ! * DESCRIPTION OF THE INPUT FILE ! (to be given as standard input) ! ! The input file has the following layout: ! ! &CONTROL ! control_parameter_1, ! control_parameter_2, ! ....... ! control_parameter_Lastone ! / ! &SYSTEM ! sistem_parameter_1, ! sistem_parameter_2, ! ....... ! sistem_parameter_Lastone ! / ! &ELECTRONS ! electrons_parameter_1, ! electrons_parameter_2, ! ....... ! electrons_parameter_Lastone ! / ! &IONS ! ions_parameter_1, ! ions_parameter_2, ! ....... ! ions_parameter_Lastone ! / ! &CELL ! cell_parameter_1, ! cell_parameter_2, ! ....... ! cell_parameter_Lastone ! / ! ATOMIC_SPECIES ! slabel_1 mass_1 pseudo_file_1 ! slabel_2 mass_2 pseudo_file_2 ! ..... ! ATOMIC_POSITIONS ! alabel_1 px_1 py_1 pz_1 ! alabel_2 px_2 py_2 pz_2 ! ..... ! CARD_3 ! .... ! CARD_N ! ! -- end of input file -- ! !=----------------------------------------------------------------------------=! ! CONTROL Namelist Input Parameters !=----------------------------------------------------------------------------=! ! CHARACTER(len=80) :: title = ' ' ! a string describing the current job CHARACTER(len=80) :: calculation = 'none' ! Specify the type of the simulation ! See below for allowed values CHARACTER(len=80) :: calculation_allowed(15) DATA calculation_allowed / 'scf', 'nscf', 'relax', 'md', 'cp', & 'vc-relax', 'vc-md', 'vc-cp', 'bands', 'neb', 'smd', 'cp-wf', & 'cp-wf-nscf','cp-wf-pbe0', 'pbe0-nscf'/ ! Lingzhu Kong CHARACTER(len=80) :: verbosity = 'default' ! define the verbosity of the code output CHARACTER(len=80) :: verbosity_allowed(6) DATA verbosity_allowed / 'debug', 'high', 'medium', 'default', & 'low', 'minimal' / CHARACTER(len=80) :: restart_mode = 'restart' ! specify how to start/restart the simulation CHARACTER(len=80) :: restart_mode_allowed(3) DATA restart_mode_allowed / 'from_scratch', 'restart', 'reset_counters' / INTEGER :: nstep = 10 ! number of simulation steps, see "restart_mode" INTEGER :: iprint = 10 ! number of steps/scf iterations between successive writings ! of relevant physical quantities to standard output INTEGER :: isave = 100 ! number of steps between successive savings of ! information needed to restart the run (see "ndr", "ndw") ! used only in CP LOGICAL :: tstress = .true. ! .TRUE. calculate the stress tensor ! .FALSE. do not calculate the stress tensor LOGICAL :: tprnfor = .true. ! .TRUE. calculate the atomic forces ! .FALSE. do not calculate the atomic forces REAL(DP) :: dt = 1.0_DP ! time step for molecular dynamics simulation, in atomic units ! CP: 1 a.u. of time = 2.4189 * 10^-17 s, PW: twice that much ! Typical values for CP simulations are between 1 and 10 a.u. ! For Born-Oppenheimer simulations, larger values can be used, ! since it mostly depends only upon the mass of ions. INTEGER :: ndr = 50 ! Fortran unit from which the code reads the restart file INTEGER :: ndw = 50 ! Fortran unit to which the code writes the restart file CHARACTER(len=256) :: outdir = './' ! specify the directory where the code opens output and restart ! files. When possible put this directory in the fastest available ! filesystem ( not NFS! ) CHARACTER(len=256) :: prefix = 'prefix' ! specify the prefix for the output file, if not specified the ! files are opened as standard fortran units. CHARACTER(len=256) :: pseudo_dir = './' ! specify the directory containing the pseudopotentials REAL(DP) :: refg = 0.05_DP ! Accurancy of the interpolation table, interval between ! table values in Rydberg CHARACTER(len=256) :: wfcdir = 'undefined' ! scratch directory that is hopefully local to the node ! to store large, usually temporary files. REAL(DP) :: max_seconds = 1.0E+7_DP ! smoothly terminate program after the specified number of seconds ! this parameter is typically used to prevent an hard kill from ! the queuing system. REAL(DP) :: ekin_conv_thr = 1.0E-5_DP ! convergence criterion for electron minimization ! this criterion is met when "ekin < ekin_conv_thr" ! convergence is achieved when all criteria are met REAL(DP) :: etot_conv_thr = 1.0E-4_DP ! convergence criterion for ion minimization ! this criterion is met when "etot(n+1)-etot(n) < etot_conv_thr", ! where "n" is the step index, "etot" the DFT energy ! convergence is achieved when all criteria are met REAL(DP) :: forc_conv_thr = 1.0E-3_DP ! convergence criterion for ion minimization ! this criterion is met when "MAXVAL(fion) < forc_conv_thr", ! where fion are the atomic forces ! convergence is achieved when all criteria are met CHARACTER(len=80) :: disk_io = 'default' ! Specify the amount of I/O activities LOGICAL :: tefield = .false. ! if .TRUE. a sawtooth potential simulating a finite electric field ! is added to the local potential = only used in PW LOGICAL :: tefield2 = .false. ! if .TRUE. a second finite electric field is added to the local potential ! only used in CP LOGICAL :: lelfield = .false. ! if .TRUE. a static homogeneous electric field is present ! via the modern theory of polarizability - differs from tefield! LOGICAL :: lorbm = .false. ! if .TRUE. an orbital magnetization is computed (Kubo terms) LOGICAL :: dipfield = .false. ! if .TRUE. the dipole field is subtracted ! only used in PW for surface calculations LOGICAL :: lberry = .false. ! if .TRUE., use modern theory of the polarization LOGICAL :: lcalc_z2 = .false. ! if .TRUE., calculate Z2 without inversion symmetry REAL(DP) :: z2_m_threshold = 0.8d0, z2_z_threshold = 0.05d0 ! threshold for realizing the parallel transport gauge INTEGER :: gdir = 0 ! G-vector for polarization calculation ( related to lberry ) ! only used in PW INTEGER :: nppstr = 0 ! number of k-points (parallel vector) ( related to lberry ) ! only used in PW INTEGER :: nberrycyc = 1 !number of covergence cycles on electric field LOGICAL :: wf_collect = .false. ! This flag controls the way wavefunctions are stored to disk: ! .TRUE. collect wavefunctions from all processors, store them ! into a single restart file on a single processors ! .FALSE. do not collect wavefunctions, store them into distributed ! files ! Only for PW and only in the parallel case INTEGER :: printwfc=1 ! if <0 do nothing, if==0 print rho and fort.47, if == nband print band LOGICAL :: saverho = .true. ! This flag controls the saving of charge density in CP codes: ! .TRUE. save charge density to restart dir ! .FALSE. do not save charge density LOGICAL :: tabps = .false. ! for ab-initio pressure and/or surface ! calculations LOGICAL :: lkpoint_dir = .true. ! opens a directory for each k point LOGICAL :: use_wannier = .false. ! use or not Wannier functions LOGICAL :: lecrpa = .FALSE. ! if true symmetry in scf run is neglected for RPA Ec calculation ! LOGICAL :: tqmmm = .FALSE. ! QM/MM coupling. enabled if .true. CHARACTER(len=256) :: vdw_table_name = ' ' CHARACTER(len=10) :: point_label_type='SC' CHARACTER(len=80) :: memory = 'default' ! controls memory usage CHARACTER(len=80) :: memory_allowed(3) DATA memory_allowed / 'small', 'default', 'large' / ! if memory = 'small' then QE tries to use (when implemented) algorithms using less memory, ! even if they are slower than the default ! if memory = 'large' then QE tries to use (when implemented) algorithms using more memory ! to enhance performance. NAMELIST / control / title, calculation, verbosity, restart_mode, & nstep, iprint, isave, tstress, tprnfor, dt, ndr, ndw, outdir, & prefix, wfcdir, max_seconds, ekin_conv_thr, etot_conv_thr, & forc_conv_thr, pseudo_dir, disk_io, tefield, dipfield, lberry, & gdir, nppstr, wf_collect, printwfc, lelfield, nberrycyc, refg, & tefield2, saverho, tabps, lkpoint_dir, use_wannier, lecrpa, & tqmmm, vdw_table_name, lorbm, memory, point_label_type, & lcalc_z2, z2_m_threshold, z2_z_threshold ! !=----------------------------------------------------------------------------=! ! SYSTEM Namelist Input Parameters !=----------------------------------------------------------------------------=! ! INTEGER :: ibrav = 14 ! index of the the Bravais lattice ! Note: in variable cell CP molecular dynamics, usually one does ! not want to put constraints on the cell symmetries, thus ! ibrav = 14 is used REAL(DP) :: celldm(6) = 0.0_DP ! dimensions of the cell (lattice parameters and angles) REAL(DP) :: a = 0.0_DP REAL(DP) :: c = 0.0_DP REAL(DP) :: b = 0.0_DP REAL(DP) :: cosab = 0.0_DP REAL(DP) :: cosac = 0.0_DP REAL(DP) :: cosbc = 0.0_DP ! Alternate definition of the cell - use either this or celldm INTEGER :: nat = 0 ! total number of atoms INTEGER :: ntyp = 0 ! number of atomic species INTEGER :: nbnd = 0 ! number of electronic states, this parameter is MANDATORY in CP REAL(DP):: tot_charge = 0.0_DP ! total system charge REAL(DP) :: tot_magnetization = -1.0_DP ! majority - minority spin. ! A value < 0 means unspecified REAL(DP) :: ecutwfc = 0.0_DP ! energy cutoff for wave functions in k-space ( in Rydberg ) ! this parameter is MANDATORY REAL(DP) :: ecutrho = 0.0_DP ! energy cutoff for charge density in k-space ( in Rydberg ) ! by default its value is "4 * ecutwfc" INTEGER :: nr1 = 0 INTEGER :: nr2 = 0 INTEGER :: nr3 = 0 ! dimensions of the real space grid for charge and potentials ! presently NOT used in CP INTEGER :: nr1s = 0 INTEGER :: nr2s = 0 INTEGER :: nr3s = 0 ! dimensions of the real space grid for wavefunctions ! presently NOT used in CP INTEGER :: nr1b = 0 INTEGER :: nr2b = 0 INTEGER :: nr3b = 0 ! dimensions of the "box" grid for Ultrasoft pseudopotentials CHARACTER(len=80) :: occupations = 'fixed' ! select the way electronic states are filled ! See card 'OCCUPATIONS' if ocupations='from_input' CHARACTER(len=80) :: smearing = 'gaussian' ! select the way electronic states are filled for metalic systems REAL(DP) :: degauss = 0.0_DP ! parameter for the smearing functions - NOT used in CP INTEGER :: nspin = 1 ! number of spinors ! "nspin = 1" for LDA simulations ! "nspin = 2" for LSD simulations ! "nspin = 4" for NON COLLINEAR simulations LOGICAL :: nosym = .true., noinv = .false. ! (do not) use symmetry, q => -q symmetry in k-point generation LOGICAL :: nosym_evc = .false. ! if .true. use symmetry only to symmetrize k points LOGICAL :: force_symmorphic = .false. ! if .true. disable fractionary translations (nonsymmorphic groups) LOGICAL :: use_all_frac = .false. ! if .true. enable usage of all fractionary translations, ! disabling check if they are commensurate with FFT grid REAL(DP) :: ecfixed = 0.0_DP, qcutz = 0.0_DP, q2sigma = 0.0_DP ! parameters for modified kinetic energy functional to be used ! in variable-cell constant cut-off simulations CHARACTER(len=80) :: input_dft = 'none' ! Variable used to overwrite dft definition contained in ! pseudopotential files; 'none' means DFT is read from pseudos. ! Only used in PW - allowed values: any legal DFT value REAL(DP) :: starting_magnetization( nsx ) = 0.0_DP ! ONLY PW LOGICAL :: lda_plus_u = .false. ! Use DFT+U method - following are the needed parameters INTEGER :: lda_plus_u_kind = 0 INTEGER, PARAMETER :: nspinx=2 REAL(DP) :: starting_ns_eigenvalue(lqmax,nspinx,nsx) = -1.0_DP REAL(DP) :: hubbard_u(nsx) = 0.0_DP REAL(DP) :: hubbard_j0(nsx) = 0.0_DP REAL(DP) :: hubbard_j(3,nsx) = 0.0_DP REAL(DP) :: hubbard_alpha(nsx) = 0.0_DP REAL(DP) :: hubbard_beta(nsx) = 0.0_DP CHARACTER(len=80) :: U_projection_type = 'atomic' LOGICAL :: la2F = .false. ! For electron-phonon calculations ! LOGICAL :: step_pen=.false. REAL(DP) :: A_pen(10,nspinx) = 0.0_DP REAL(DP) :: sigma_pen(10) = 0.01_DP REAL(DP) :: alpha_pen(10) = 0.0_DP ! next group of variables PWSCF ONLY ! ! REAL(DP) :: exx_fraction = -1.0_DP ! if negative, use defaults REAL(DP) :: screening_parameter = -1.0_DP INTEGER :: nqx1 = 0, nqx2 = 0, nqx3=0 ! use the same values as nk1, nk2, nk3 !gau-pbe in REAL(DP) :: gau_parameter = -1.0_DP !gau-pbe out ! CHARACTER(len=80) :: exxdiv_treatment = 'gygi-baldereschi' ! define how ro cure the Coulomb divergence in EXX ! Allowed values are: CHARACTER(len=80) :: exxdiv_treatment_allowed(6) DATA exxdiv_treatment_allowed / 'gygi-baldereschi', 'gygi-bald', 'g-b',& 'vcut_ws', 'vcut_spherical', 'none' / ! LOGICAL :: x_gamma_extrapolation = .true. REAL(DP) :: yukawa = 0.0_DP REAL(DP) :: ecutvcut = 0.0_DP ! auxiliary variables to define exxdiv treatment LOGICAL :: adaptive_thr = .FALSE. REAL(DP) :: conv_thr_init = 0.001_DP REAL(DP) :: conv_thr_multi = 0.1_DP REAL(DP) :: ecutfock = -1.d0 ! parameters for external electric field INTEGER :: edir = 0 REAL(DP) :: emaxpos = 0.0_DP REAL(DP) :: eopreg = 0.0_DP REAL(DP) :: eamp = 0.0_DP ! Various parameters for noncollinear calculations LOGICAL :: noncolin = .false. LOGICAL :: lspinorb = .false. LOGICAL :: starting_spin_angle=.FALSE. REAL(DP) :: lambda = 1.0_DP REAL(DP) :: fixed_magnetization(3) = 0.0_DP REAL(DP) :: angle1(nsx) = 0.0_DP REAL(DP) :: angle2(nsx) = 0.0_DP INTEGER :: report = 1 LOGICAL :: no_t_rev = .FALSE. CHARACTER(len=80) :: constrained_magnetization = 'none' REAL(DP) :: B_field(3) = 0.0_DP ! A fixed magnetic field defined by the vector B_field is added ! to the exchange and correlation magnetic field. CHARACTER(len=80) :: sic = 'none' ! CP only - SIC correction (D'avezac Mauri) ! Parameters for SIC calculation REAL(DP) :: sic_epsilon = 0.0_DP REAL(DP) :: sic_alpha = 0.0_DP LOGICAL :: force_pairing = .false. LOGICAL :: spline_ps = .false. ! use spline interpolation for pseudopotential LOGICAL :: one_atom_occupations=.false. CHARACTER(len=80) :: assume_isolated = 'none' ! possible corrections for isolated systems: ! 'none', 'makov-payne', 'martyna-tuckerman', 'esm' ! plus ENVIRON-specific: ! 'slabx', 'slaby', 'slabz', 'pcc' CHARACTER(len=80) :: vdw_corr = 'none' ! semi-empirical van der Waals corrections ! (not to be confused with nonlocal functionals, ! specified in input_dft!). Default is 'none', allowed values: ! 'dft-d' or 'grimme-d2' [S.Grimme, J.Comp.Chem. 27, 1787 (2006)] ! 'ts', 'ts-vdW', 'tkatchenko-scheffler' ! (Tkatchenko & Scheffler, Phys. Rev. Lett. 102, 073005 (2009)) ! 'xdm' (Otero de la Roza and Johnson, J. Chem. Phys. 136 (2012) 174109) LOGICAL :: london = .false. ! OBSOLESCENT: same as vdw_corr='grimme-d2' ! other DFT-D parameters ( see Modules/mm_dispersion.f90 ) ! london_s6 = default global scaling parameter for PBE REAL ( DP ) :: london_s6 = 0.75_DP , & london_rcut = 200.00_DP LOGICAL :: ts_vdw = .false. ! OBSOLESCENT: same as vdw_corr='Tkatchenko-Scheffler' LOGICAL :: ts_vdw_isolated = .FALSE. ! if .TRUE., TS-vdW correction for isolated system ! if .FALSE., TS-vdW correction for periodic system REAL(DP) :: ts_vdw_econv_thr = 1.0E-6_DP ! convergence criterion for TS-vdW energy for periodic system ! LOGICAL :: xdm = .FALSE. ! OBSOLESCENT: same as vdw_corr='xdm' REAL(DP) :: xdm_a1 = 0.6836_DP REAL(DP) :: xdm_a2 = 1.5045_DP ! xdm_a1 and xdm_a2 -- parameters for the BJ damping function ! The default values are for the b86bpbe functional. ! CHARACTER(LEN=3) :: esm_bc = 'pbc' ! 'pbc': ordinary calculation with periodic boundary conditions ! 'bc1': vacuum-slab-vacuum ! 'bc2': metal-slab-metal ! 'bc3': vacuum-slab-metal REAL(DP) :: esm_efield = 0.0_DP ! applied electronic field [Ryd/a.u.] (used only for esm_bc='bc2') REAL(DP) :: esm_w = 0.0_DP ! position of effective screening medium from z0=L_z/2 [a.u.] ! note: z1 is given by z1=z0+abs(esm_w) INTEGER :: esm_nfit = 4 ! number of z-grid points for polynomial fitting at cell edge LOGICAL :: esm_debug = .FALSE. ! used to enable debug mode (output v_hartree and v_local) INTEGER :: esm_debug_gpmax = 0 ! if esm_debug is .TRUE., calcualte v_hartree and v_local ! for abs(gp)<=esm_debug_gpmax (gp is integer and has tpiba unit) NAMELIST / system / ibrav, celldm, a, b, c, cosab, cosac, cosbc, nat, & ntyp, nbnd, ecutwfc, ecutrho, nr1, nr2, nr3, nr1s, nr2s, & nr3s, nr1b, nr2b, nr3b, nosym, nosym_evc, noinv, use_all_frac, & force_symmorphic, starting_magnetization, & occupations, degauss, nspin, ecfixed, & qcutz, q2sigma, lda_plus_U, lda_plus_u_kind, & Hubbard_U, Hubbard_J, Hubbard_alpha, & Hubbard_J0, Hubbard_beta, & edir, emaxpos, eopreg, eamp, smearing, starting_ns_eigenvalue, & U_projection_type, input_dft, la2F, assume_isolated, & nqx1, nqx2, nqx3, ecutfock, & exxdiv_treatment, x_gamma_extrapolation, yukawa, ecutvcut, & exx_fraction, screening_parameter, & noncolin, lspinorb, starting_spin_angle, lambda, angle1, angle2, & report, & constrained_magnetization, B_field, fixed_magnetization, & sic, sic_epsilon, force_pairing, sic_alpha, & tot_charge, tot_magnetization, spline_ps, one_atom_occupations, & vdw_corr, london, london_s6, london_rcut, & ts_vdw, ts_vdw_isolated, ts_vdw_econv_thr, & xdm, xdm_a1, xdm_a2, & step_pen, A_pen, sigma_pen, alpha_pen, no_t_rev, & esm_bc, esm_efield, esm_w, esm_nfit, esm_debug, esm_debug_gpmax !=----------------------------------------------------------------------------=! ! ELECTRONS Namelist Input Parameters !=----------------------------------------------------------------------------=! REAL(DP) :: emass = 0.0_DP ! effective electron mass in the CP Lagrangian, ! in atomic units ( 1 a.u. of mass = 1/1822.9 a.m.u. = 9.10939 * 10^-31 kg ) ! Typical values in CP simulation are between 100. and 1000. REAL(DP) :: emass_cutoff = 0.0_DP ! mass cut-off (in Rydbergs) for the Fourier acceleration ! effective mass is rescaled for "G" vector components with kinetic ! energy above "emass_cutoff" ! Use a value grether than "ecutwfc" to disable Fourier acceleration. CHARACTER(len=80) :: orthogonalization = 'ortho' ! orthogonalization = 'Gram-Schmidt' | 'ortho'* ! selects the orthonormalization method for electronic wave functions ! 'Gram-Schmidt' use Gram-Schmidt algorithm ! 'ortho' use iterative algorithm REAL(DP) :: ortho_eps = 1.E-8_DP ! meaningful only if orthogonalization = 'ortho' ! tolerance for iterative orthonormalization, ! a value of 1.d-8 is usually sufficent INTEGER :: ortho_max = 20 ! meaningful only if orthogonalization = 'ortho' ! maximum number of iterations for orthonormalization ! usually between 15 and 30. INTEGER :: electron_maxstep = 1000 ! maximum number of steps in electronic minimization ! This parameter apply only when using 'cg' electronic or ! ionic dynamics LOGICAL :: scf_must_converge = .true. ! stop or continue if SCF does not converge CHARACTER(len=80) :: electron_dynamics = 'none' ! set how electrons should be moved CHARACTER(len=80) :: electron_dynamics_allowed(6) DATA electron_dynamics_allowed & / 'default', 'sd', 'cg', 'damp', 'verlet', 'none' / REAL(DP) :: electron_damping = 0.0_DP ! meaningful only if " electron_dynamics = 'damp' " ! damping frequency times delta t, optimal values could be ! calculated with the formula ! sqrt(0.5*log((E1-E2)/(E2-E3))) ! where E1 E2 E3 are successive values of the DFT total energy ! in a steepest descent simulations CHARACTER(len=80) :: electron_velocities = 'default' ! electron_velocities = 'zero' | 'default'* ! 'zero' restart setting electronic velocities to zero ! 'default' restart using electronic velocities of the previous run CHARACTER(len=80) :: electron_temperature = 'not_controlled' ! electron_temperature = 'nose' | 'not_controlled'* | 'rescaling' ! 'nose' control electronic temperature using Nose thermostat ! see parameter "fnosee" and "ekincw" ! 'rescaling' control electronic temperature via velocities rescaling ! 'not_controlled' electronic temperature is not controlled REAL(DP) :: ekincw = 0.0_DP ! meaningful only with "electron_temperature /= 'not_controlled' " ! value of the average kinetic energy (in atomic units) forced ! by the temperature control REAL(DP) :: fnosee = 0.0_DP ! meaningful only with "electron_temperature = 'nose' " ! oscillation frequency of the nose thermostat (in terahertz) CHARACTER(len=80) :: startingwfc = 'random' ! startingwfc = 'atomic' | 'atomic+random' | 'random' | 'file' ! define how the code should initialize the wave function ! 'atomic' start from superposition of atomic wave functions ! 'atomic+random' as above, plus randomization ! 'random' start from random wave functions ! 'file' read wavefunctions from file REAL(DP) :: ampre = 0.0_DP ! meaningful only if "startingwfc = 'random'", amplitude of the ! randomization ( allowed values: 0.0 - 1.0 ) REAL(DP) :: grease = 0.0_DP ! a number <= 1, very close to 1: the damping in electronic ! damped dynamics is multiplied at each time step by "grease" ! (avoids overdamping close to convergence: Obsolete ?) ! grease = 1 : normal damped dynamics ! used only in CP INTEGER :: diis_size = 0 ! meaningful only with " electron_dynamics = 'diis' " ! size of the matrix used for the inversion in the iterative subspace ! default is 4, allowed value 1-5 INTEGER :: diis_nreset = 0 ! meaningful only with " electron_dynamics = 'diis' " ! number of steepest descendent step after a reset of the diis ! iteration, default value is 3 REAL(DP) :: diis_hcut = 0.0_DP ! meaningful only with " electron_dynamics = 'diis' " ! energy cutoff (a.u.), above which an approximate diagonal ! hamiltonian is used in finding the direction to the minimum ! default is "1.0" REAL(DP) :: diis_wthr = 1.E-4_DP ! meaningful only with " electron_dynamics = 'diis' " ! convergence threshold for wave function ! this criterion is satisfied when the maximum change ! in the wave functions component between two diis steps ! is less than this threshold ! default value is ekin_conv_thr REAL(DP) :: diis_delt = 1.0_DP ! meaningful only with " electron_dynamics = 'diis' " ! electronic time step used in the steepest descendent step ! default is "dt" INTEGER :: diis_maxstep = 100 ! meaningful only with " electron_dynamics = 'diis' " ! maximum number of iteration in the diis minimization ! default is electron_maxstep LOGICAL :: diis_rot = .false. ! meaningful only with " electron_dynamics = 'diis' " ! if "diis_rot = .TRUE." enable diis with charge mixing and rotations ! default is "diis_rot = .FALSE." REAL(DP) :: diis_fthr = 1.E-3_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! convergence threshold for ionic force ! this criterion is satisfied when the maximum change ! in the atomic force between two diis steps ! is less than this threshold ! default value is "0.0" REAL(DP) :: diis_temp = 0.0_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! electronic temperature, significant only if ??? REAL(DP) :: diis_achmix = 0.0_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! "A" parameter in the charge mixing formula ! chmix = A * G^2 / (G^2 + G0^2) , G represents reciprocal lattice vectors REAL(DP) :: diis_g0chmix = 0.0_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! "G0^2" parameter in the charge mixing formula INTEGER :: diis_nchmix = 0 ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! dimension of the charge mixing REAL(DP) :: diis_g1chmix = 0.0_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! "G1^2" parameter in the charge mixing formula ! metric = (G^2 + G1^2) / G^2 , G represents reciprocal lattice vectors INTEGER :: diis_nrot(3) = 0 ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! start upgrading the charge density every "diis_nrot(1)" steps, ! then every "diis_nrot(2)", and at the end every "diis_nrot(3)", ! depending on "diis_rothr" REAL(DP) :: diis_rothr(3) = 1.E-4_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! threshold on the charge difference between two diis step ! when max charge difference is less than "diis_rothr(1)", switch ! between the "diis_nrot(1)" upgrade frequency to "diis_nrot(2)", ! then when the max charge difference is less than "diis_rothr(2)", ! switch between "diis_nrot(2)" and "diis_nrot(3)", upgrade frequency, ! finally when the max charge difference is less than "diis_nrot(3)" ! convergence is achieved REAL(DP) :: diis_ethr = 1.E-4_DP ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! convergence threshold for energy ! this criterion is satisfied when the change ! in the energy between two diis steps ! is less than this threshold ! default value is etot_conv_thr LOGICAL :: diis_chguess = .false. ! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE." ! if "diis_chguess = .TRUE." enable charge density guess ! between two diis step, defaut value is "diis_chguess = .FALSE." CHARACTER(len=80) :: mixing_mode = 'default' ! type of mixing algorithm for charge self-consistency ! used only in PWscf REAL(DP) :: mixing_beta = 0.0_DP ! parameter for mixing algorithm ! used only in PWscf INTEGER :: mixing_ndim = 0 ! dimension of mixing subspace ! used only in PWscf CHARACTER(len=80) :: diagonalization = 'david' ! diagonalization = 'david' or 'cg' ! algorithm used by PWscf for iterative diagonalization REAL(DP) :: diago_thr_init = 0.0_DP ! convergence threshold for the first iterative diagonalization. ! used only in PWscf INTEGER :: diago_cg_maxiter = 100 ! max number of iterations for the first iterative diagonalization ! using conjugate-gradient algorithm - used only in PWscf INTEGER :: diago_david_ndim = 4 ! dimension of the subspace used in Davidson diagonalization ! used only in PWscf LOGICAL :: diago_full_acc = .false. REAL(DP) :: conv_thr = 1.E-6_DP ! convergence threshold in electronic ONLY minimizations ! used only in PWscf INTEGER :: mixing_fixed_ns = 0 ! For DFT+U calculations, PWscf only CHARACTER(len=80) :: startingpot = 'potfile' ! specify the file containing the DFT potential of the system ! used only in PWscf INTEGER :: n_inner = 2 ! number of inner loop per CG iteration. ! used only in CP INTEGER :: niter_cold_restart = 1 !frequency of full cold smearing inner cycle (in iterations) REAL(DP) :: lambda_cold !step for not complete cold smearing inner cycle LOGICAL :: tgrand = .false. ! whether to do grand-canonical calculations. REAL(DP) :: fermi_energy = 0.0_DP ! chemical potential of the grand-canonical ensemble. CHARACTER(len=80) :: rotation_dynamics = "line-minimization" ! evolution the rotational degrees of freedom. CHARACTER(len=80) :: occupation_dynamics = "line-minimization" ! evolution of the occupational degrees of freedom. REAL(DP) :: rotmass = 0 ! mass for the rotational degrees of freedom. REAL(DP) :: occmass = 0 ! mass for the occupational degrees of freedom. REAL(DP) :: occupation_damping = 0 ! damping for the rotational degrees of freedom. REAL(DP) :: rotation_damping = 0 ! damping for the occupational degrees of freedom. LOGICAL :: tcg = .true. ! if true perform in cpv conjugate gradient minimization of electron energy INTEGER :: maxiter = 100 ! max number of conjugate gradient iterations REAL(DP) :: etresh =1.0E-7_DP ! treshhold on energy REAL(DP) :: passop =0.3_DP ! small step for parabolic interpolation INTEGER :: niter_cg_restart !frequency of restart for the conjugate gradient algorithm in iterations INTEGER :: epol = 3 ! electric field direction REAL(DP) :: efield =0.0_DP ! electric field intensity in atomic units ! real_space routines for US pps LOGICAL :: real_space = .false. REAL(DP) :: efield_cart(3) ! electric field vector in cartesian system of reference INTEGER :: epol2 = 3 ! electric field direction REAL(DP) :: efield2 =0.0_DP ! electric field intensity in atomic units LOGICAL :: tqr = .false. ! US contributions are added in real space LOGICAL :: occupation_constraints = .false. ! If true perform CP dynamics with constrained occupations ! to be used together with penalty functional ... NAMELIST / electrons / emass, emass_cutoff, orthogonalization, & electron_maxstep, scf_must_converge, ortho_eps, ortho_max, electron_dynamics, & electron_damping, electron_velocities, electron_temperature, & ekincw, fnosee, ampre, grease, & diis_size, diis_nreset, diis_hcut, & diis_wthr, diis_delt, diis_maxstep, diis_rot, diis_fthr, & diis_temp, diis_achmix, diis_g0chmix, diis_g1chmix, & diis_nchmix, diis_nrot, diis_rothr, diis_ethr, diis_chguess, & mixing_mode, mixing_beta, mixing_ndim, mixing_fixed_ns, & tqr, diago_cg_maxiter, diago_david_ndim, diagonalization , & startingpot, startingwfc , conv_thr, & adaptive_thr, conv_thr_init, conv_thr_multi, & diago_thr_init, n_inner, fermi_energy, rotmass, occmass, & rotation_damping, occupation_damping, rotation_dynamics, & occupation_dynamics, tcg, maxiter, etresh, passop, epol, & efield, epol2, efield2, diago_full_acc, & occupation_constraints, niter_cg_restart, & niter_cold_restart, lambda_cold, efield_cart, real_space ! !=----------------------------------------------------------------------------=! ! IONS Namelist Input Parameters !=----------------------------------------------------------------------------=! ! CHARACTER(len=80) :: phase_space = 'full' ! phase_space = 'full' | 'coarse-grained' ! 'full' the full phase-space is used for the ionic ! dynamics ! 'coarse-grained' a coarse-grained phase-space, defined by a set ! of constraints, is used for the ionic dynamics ! CHARACTER(len=80) :: phase_space_allowed(2) ! DATA phase_space_allowed / 'full', 'coarse-grained' / CHARACTER(len=80) :: phase_space_allowed(1) DATA phase_space_allowed / 'full' / CHARACTER(len=80) :: ion_dynamics = 'none' ! set how ions should be moved CHARACTER(len=80) :: ion_dynamics_allowed(9) DATA ion_dynamics_allowed / 'none', 'sd', 'cg', 'langevin', & 'damp', 'verlet', 'bfgs', 'beeman',& 'langevin-smc' / REAL(DP) :: ion_radius(nsx) = 0.5_DP ! pseudo-atomic radius of the i-th atomic species ! (for Ewald summation), values between 0.5 and 2.0 are usually used. REAL(DP) :: ion_damping = 0.2_DP ! meaningful only if " ion_dynamics = 'damp' " ! damping frequency times delta t, optimal values could be ! calculated with the formula ! sqrt(0.5*log((E1-E2)/(E2-E3))) ! where E1 E2 E3 are successive values of the DFT total energy ! in a ionic steepest descent simulation CHARACTER(len=80) :: ion_positions = 'default' ! ion_positions = 'default'* | 'from_input' ! 'default' restart the simulation with atomic positions read ! from the restart file ! 'from_input' restart the simulation with atomic positions read ! from standard input ( see the card 'ATOMIC_POSITIONS' ) CHARACTER(len=80) :: ion_velocities = 'default' ! ion_velocities = 'zero' | 'default'* | 'random' | 'from_input' ! 'default' restart the simulation with atomic velocities read ! from the restart file ! 'random' start the simulation with random atomic velocities ! 'from_input' restart the simulation with atomic velocities read ! from standard input (see the card 'ATOMIC_VELOCITIES' ) ! 'zero' restart the simulation with atomic velocities set to zero CHARACTER(len=80) :: ion_temperature = 'not_controlled' ! ion_temperature = 'nose' | 'not_controlled'* | 'rescaling' | ! 'berendsen' | 'andersen' | 'rescale-v' | 'rescale-T' | 'reduce-T' ! ! 'nose' control ionic temperature using Nose thermostat ! see parameters "fnosep" and "tempw" ! 'rescaling' control ionic temperature via velocity rescaling ! see parameters "tempw" and "tolp" ! 'rescale-v' control ionic temperature via velocity rescaling ! see parameters "tempw" and "nraise" ! 'rescale-T' control ionic temperature via velocity rescaling ! see parameter "delta_t" ! 'reduce-T' reduce ionic temperature ! see parameters "nraise", delta_t" ! 'berendsen' control ionic temperature using "soft" velocity ! rescaling - see parameters "tempw" and "nraise" ! 'andersen' control ionic temperature using Andersen thermostat ! see parameters "tempw" and "nraise" ! 'not_controlled' ionic temperature is not controlled REAL(DP) :: tempw = 300.0_DP ! meaningful only with "ion_temperature /= 'not_controlled' " ! value of the ionic temperature (in Kelvin) forced ! by the temperature control INTEGER, PARAMETER :: nhclm = 4 REAL(DP) :: fnosep( nhclm ) = 50.0_DP ! meaningful only with "ion_temperature = 'nose' " ! oscillation frequency of the nose thermostat (in terahertz) ! nhclm is the max length for the chain; it can be easily increased ! since the restart file should be able to handle it ! perhaps better to align nhclm by 4 INTEGER :: nhpcl = 0 ! non-zero only with "ion_temperature = 'nose' " ! this defines the length of the Nose-Hoover chain INTEGER :: nhptyp = 0 ! this parameter set the nose hoover thermostat to more than one INTEGER :: nhgrp(nsx)=0 ! this is the array to assign thermostats to atomic types ! allows to use various thermostat setups INTEGER :: ndega = 0 ! this is the parameter to control active degrees of freedom ! used for temperature control and the Nose-Hoover chains REAL(DP) :: tolp = 50.0_DP ! meaningful only with "ion_temperature = 'rescaling' " ! tolerance (in Kelvin) of the rescaling. When ionic temperature ! differs from "tempw" more than "tolp" apply rescaling. REAL(DP) :: fnhscl(nsx)=-1.0_DP ! this is to scale the target energy, in case there are constraints ! the dimension is the same as nhgrp, meaning that atomic type ! i with a group nhgrp(i) is scaled by fnhscl(i) LOGICAL :: tranp(nsx) = .false. ! tranp(i) control the randomization of the i-th atomic specie ! .TRUE. randomize ionic positions ( see "amprp" ) ! .FALSE. do nothing REAL(DP) :: amprp(nsx) = 0.0_DP ! amprp(i) meaningful only if "tranp(i) = .TRUE.", amplitude of the ! randomization ( allowed values: 0.0 - 1.0 ) for the i-th atomic specie. ! Add to the positions a random displacements vector ( in bohr radius ) ! defined as: amprp( i ) * ( X, Y, Z ) ! where X, Y, Z are pseudo random number in the interval [ -0.5 , 0.5 ] REAL(DP) :: greasp = 0.0_DP ! same as "grease", for ionic damped dynamics ! NOT used in FPMD INTEGER :: ion_nstepe = 1 ! number of electronic steps for each ionic step INTEGER :: ion_maxstep = 1000 ! maximum number of step in ionic minimization REAL(DP) :: upscale = 100.0_DP ! Max reduction allowed in scf threshold during optimization CHARACTER(len=80) :: pot_extrapolation = 'default', & wfc_extrapolation = 'default' ! These variables are used only by PWSCF LOGICAL :: refold_pos LOGICAL :: remove_rigid_rot = .false. ! ! ... delta_T, nraise, tolp are used to change temperature in PWscf ! REAL(DP) :: delta_t = 1.0_DP INTEGER :: nraise = 1 ! ! ... variables added for new BFGS algorithm ! INTEGER :: bfgs_ndim = 1 REAL(DP) :: trust_radius_max = 0.8_DP REAL(DP) :: trust_radius_min = 1.E-3_DP REAL(DP) :: trust_radius_ini = 0.5_DP REAL(DP) :: w_1 = 0.5E-1_DP REAL(DP) :: w_2 = 0.5_DP REAL(DP) :: sic_rloc = 0.0_DP ! ! ... variable for meta-dynamics ! INTEGER, PARAMETER :: max_nconstr = 100 INTEGER :: fe_nstep = 100 INTEGER :: sw_nstep = 10 INTEGER :: eq_nstep = 0 REAL(DP) :: g_amplitude = 0.005_DP ! REAL(DP) :: fe_step( max_nconstr ) = 0.4_DP ! NAMELIST / ions / phase_space, ion_dynamics, ion_radius, ion_damping, & ion_positions, ion_velocities, ion_temperature, & tempw, fnosep, nhgrp, fnhscl, nhpcl, nhptyp, ndega, tranp, & amprp, greasp, tolp, ion_nstepe, ion_maxstep, & refold_pos, upscale, delta_t, pot_extrapolation, & wfc_extrapolation, nraise, remove_rigid_rot, & trust_radius_max, trust_radius_min, & trust_radius_ini, w_1, w_2, bfgs_ndim, sic_rloc, & fe_step, fe_nstep, sw_nstep, eq_nstep, g_amplitude !=----------------------------------------------------------------------------=! ! CELL Namelist Input Parameters !=----------------------------------------------------------------------------=! ! CHARACTER(len=80) :: cell_parameters = 'default' ! cell_parameters = 'default'* | 'from_input' ! 'default' restart the simulation with cell parameters read ! from the restart file or "celldm" if ! "restart = 'from_scratch'" ! 'from_input' restart the simulation with cell parameters ! from standard input ( see the card 'CELL_PARAMETERS' ) CHARACTER(len=80) :: cell_dynamics = 'none' ! set how the cell should be moved CHARACTER(len=80) :: cell_dynamics_allowed(7) DATA cell_dynamics_allowed / 'sd', 'pr', 'none', 'w', 'damp-pr', & 'damp-w', 'bfgs' / CHARACTER(len=80) :: cell_velocities = 'default' ! cell_velocities = 'zero' | 'default'* ! 'zero' restart setting cell velocitiy to zero ! 'default' restart using cell velocity of the previous run REAL(DP) :: press = 0.0_DP ! external pressure (in GPa, remember 1 kbar = 10^8 Pa) REAL(DP) :: wmass = 0.0_DP ! effective cell mass in the Parrinello-Rahman Lagrangian (in atomic units) ! of the order of magnitude of the total atomic mass ! (sum of the mass of the atoms) within the simulation cell. ! if you do not specify this parameters, the code will compute ! its value based on some physical consideration CHARACTER(len=80) :: cell_temperature = 'not_controlled' ! cell_temperature = 'nose' | 'not_controlled'* | 'rescaling' ! 'nose' control cell temperature using Nose thermostat ! see parameters "fnoseh" and "temph" ! 'rescaling' control cell temperature via velocities rescaling ! 'not_controlled' cell temperature is not controlled ! NOT used in FPMD REAL(DP) :: temph = 0.0_DP ! meaningful only with "cell_temperature /= 'not_controlled' " ! value of the cell temperature (in Kelvin) forced ! by the temperature control REAL(DP) :: fnoseh = 1.0_DP ! meaningful only with "cell_temperature = 'nose' " ! oscillation frequency of the nose thermostat (in terahertz) REAL(DP) :: greash = 0.0_DP ! same as "grease", for cell damped dynamics CHARACTER(len=80) :: cell_dofree = 'all' ! cell_dofree = 'all'* | 'volume' | 'x' | 'y' | 'z' | 'xy' | 'xz' | 'yz' | 'xyz' ! select which of the cell parameters should be moved ! 'all' all axis and angles are propagated (default) ! 'volume' the cell is simply rescaled, without changing the shape ! 'x' only the "x" axis is moved ! 'y' only the "y" axis is moved ! 'z' only the "z" axis is moved ! 'xy' only the "x" and "y" axis are moved, angles are unchanged ! 'xz' only the "x" and "z" axis are moved, angles are unchanged ! 'yz' only the "y" and "z" axis are moved, angles are unchanged ! 'xyz' "x", "y" and "z" axis are moved, angles are unchanged REAL(DP) :: cell_factor = 0.0_DP ! NOT used in FPMD INTEGER :: cell_nstepe = 1 ! number of electronic steps for each cell step REAL(DP) :: cell_damping = 0.0_DP ! meaningful only if " cell_dynamics = 'damp' " ! damping frequency times delta t, optimal values could be ! calculated with the formula ! sqrt(0.5*log((E1-E2)/(E2-E3))) ! where E1 E2 E3 are successive values of the DFT total energy ! in a ionic steepest descent simulation REAL(DP) :: press_conv_thr = 0.5_DP NAMELIST / cell / cell_parameters, cell_dynamics, cell_velocities, & press, wmass, cell_temperature, temph, fnoseh, & cell_dofree, greash, cell_factor, cell_nstepe, & cell_damping, press_conv_thr ! !=----------------------------------------------------------------------------=!! ! PRESS_AI Namelist Input Parameters !=----------------------------------------------------------------------------=! ! ! LOGICAL :: abivol = .false. LOGICAL :: abisur = .false. LOGICAL :: pvar = .false. LOGICAL :: fill_vac=.false. LOGICAL :: scale_at=.false. LOGICAL :: t_gauss =.false. LOGICAL :: jellium= .false. LOGICAL :: cntr(nsx)=.false. REAL(DP) :: P_ext = 0.0_DP REAL(DP) :: P_in = 0.0_DP REAL(DP) :: P_fin = 0.0_DP REAL(DP) :: rho_thr = 0.0_DP REAL(DP) :: step_rad(nsx) = 0.0_DP REAL(DP) :: Surf_t = 0.0_DP REAL(DP) :: dthr = 0.0_DP REAL(DP) :: R_j = 0.0_DP REAL(DP) :: h_j = 0.0_DP REAL(DP) :: delta_eps = 0.0_DP REAL(DP) :: delta_sigma=0.0_DP INTEGER :: n_cntr = 0 INTEGER :: axis = 0 NAMELIST / press_ai / abivol, P_ext, pvar, P_in, P_fin, rho_thr, & & step_rad, delta_eps, delta_sigma, n_cntr, & & fill_vac, scale_at, t_gauss, abisur, & & Surf_t, dthr, cntr, axis, jellium, R_j, h_j !=----------------------------------------------------------------------------=! ! WANNIER Namelist Input Parameters !=----------------------------------------------------------------------------=! LOGICAL :: wf_efield LOGICAL :: wf_switch ! INTEGER :: sw_len ! REAL(DP) :: efx0, efy0, efz0 REAL(DP) :: efx1, efy1, efz1 ! INTEGER :: wfsd ! REAL(DP) :: wfdt REAL(DP) :: maxwfdt REAL(DP) :: wf_q REAL(DP) :: wf_friction !======================================================================= !Lingzhu Kong INTEGER :: vnbsp INTEGER :: neigh REAL(DP) :: poisson_eps REAL(DP) :: dis_cutoff REAL(DP) :: exx_ps_rcut REAL(DP) :: exx_me_rcut !======================================================================= INTEGER :: nit INTEGER :: nsd INTEGER :: nsteps ! REAL(DP) :: tolw ! LOGICAL :: adapt ! INTEGER :: calwf INTEGER :: nwf INTEGER :: wffort ! LOGICAL :: writev !============================================================================== !Lingzhu Kong NAMELIST / wannier / wf_efield, wf_switch, sw_len, efx0, efy0, efz0,& efx1, efy1, efz1, wfsd, wfdt, neigh,poisson_eps,& dis_cutoff,exx_ps_rcut, exx_me_rcut, vnbsp, & maxwfdt, wf_q, wf_friction, nit, nsd, nsteps, & tolw, adapt, calwf, nwf, wffort, writev !=============================================================================== ! END manual ! ---------------------------------------------------------------------- !=----------------------------------------------------------------------------=! ! WANNIER_NEW Namelist Input Parameters !=----------------------------------------------------------------------------=! LOGICAL :: & plot_wannier = .false.,& ! if .TRUE. wannier number plot_wan_num is plotted use_energy_int = .false., & ! if .TRUE. energy interval is used to generate wannier print_wannier_coeff = .false. ! if .TRUE. INTEGER, PARAMETER :: nwanx = 50 ! max number of wannier functions INTEGER :: & nwan, &! number of wannier functions plot_wan_num = 0, &! number of wannier for plotting plot_wan_spin = 1 ! spin of wannier for plotting REAL(DP) :: & constrain_pot(nwanx,2) ! constrained potential for wannier NAMELIST / wannier_ac / plot_wannier, use_energy_int, nwan, & plot_wan_num, plot_wan_spin, constrain_pot, print_wannier_coeff ! END manual ! ---------------------------------------------------------------------- ! ---------------------------------------------------------------- ! BEGIN manual ! !=----------------------------------------------------------------------------=! ! CARDS parameters !=----------------------------------------------------------------------------=! ! ! Note: See file read_cards.f90 for card syntax and usage ! ! ATOMIC_SPECIES ! CHARACTER(len=3) :: atom_label(nsx) = 'XX' ! label of the atomic species being read CHARACTER(len=80) :: atom_pfile(nsx) = 'YY' ! pseudopotential file name REAL(DP) :: atom_mass(nsx) = 0.0_DP ! atomic mass of the i-th atomic species ! in atomic mass units: 1 a.m.u. = 1822.9 a.u. = 1.6605 * 10^-27 kg LOGICAL :: taspc = .false. LOGICAL :: tkpoints = .false. LOGICAL :: tforces = .false. LOGICAL :: tocc = .false. LOGICAL :: tcell = .false. LOGICAL :: tdipole = .false. LOGICAL :: tionvel = .false. LOGICAL :: tconstr = .false. LOGICAL :: tesr = .false. LOGICAL :: tksout = .false. LOGICAL :: ttemplate = .false. LOGICAL :: twannier = .false. ! ! ATOMIC_POSITIONS ! REAL(DP), ALLOCATABLE :: rd_pos(:,:) ! unsorted positions from input INTEGER, ALLOCATABLE :: sp_pos(:) INTEGER, ALLOCATABLE :: if_pos(:,:) INTEGER, ALLOCATABLE :: id_loc(:) INTEGER, ALLOCATABLE :: na_inp(:) LOGICAL :: tapos = .false. CHARACTER(len=80) :: atomic_positions = 'crystal' ! atomic_positions = 'bohr' | 'angstrong' | 'crystal' | 'alat' ! select the units for the atomic positions being read from stdin ! ! ION_VELOCITIES ! REAL(DP), ALLOCATABLE :: rd_vel(:,:) ! unsorted velocities from input INTEGER, ALLOCATABLE :: sp_vel(:) LOGICAL :: tavel = .false. ! ! ATOMIC_FORCES ! REAL(DP), ALLOCATABLE :: rd_for(:,:) ! external forces applied to single atoms ! ! KPOINTS ! ! ... k-points inputs LOGICAL :: tk_inp = .false. REAL(DP), ALLOCATABLE :: xk(:,:), wk(:) INTEGER :: nkstot = 0, nk1 = 0, nk2 = 0, nk3 = 0, k1 = 0, k2 = 0, k3 = 0 CHARACTER(len=80) :: k_points = 'gamma' ! k_points = 'automatic' | 'crystal' | 'tpiba' | 'gamma'* ! k_points = 'crystal_b' | 'tpiba_b' ! select the k points mesh ! 'automatic' k points mesh is generated automatically ! with Monkhorst-Pack algorithm ! 'crystal' k points mesh is given in stdin in scaled units ! 'tpiba' k points mesh is given in stdin in units of ( 2 PI / alat ) ! 'gamma' only gamma point is used ( default in CPMD simulation ) ! _b means that a band input is given. The weights is a integer ! number that gives the number of points between the present point ! and the next. The weight of the last point is not used. ! ! OCCUPATIONS ! REAL(DP), ALLOCATABLE :: f_inp(:,:) LOGICAL :: tf_inp = .false. ! ! DIPOLE ! LOGICAL :: tdipole_card = .false. ! ! ESR ! INTEGER :: iesr_inp = 1 ! ! CELL_PARAMETERS ! REAL(DP) :: rd_ht(3,3) = 0.0_DP CHARACTER(len=80) :: cell_units = 'none' LOGICAL :: trd_ht = .false. ! ! CONSTRAINTS ! INTEGER :: nc_fields = 4 ! max number of fields that is allowed to ! define a constraint INTEGER :: nconstr_inp = 0 REAL(DP) :: constr_tol_inp = 1.E-6_DP ! CHARACTER(len=20), ALLOCATABLE :: constr_type_inp(:) REAL(DP), ALLOCATABLE :: constr_inp(:,:) REAL(DP), ALLOCATABLE :: constr_target_inp(:) LOGICAL, ALLOCATABLE :: constr_target_set(:) ! ! KOHN_SHAM ! INTEGER, ALLOCATABLE :: iprnks( :, : ) INTEGER :: nprnks( nspinx ) = 0 ! logical mask used to specify which kohn sham orbital should be ! written to files 'KS.' ! ! PLOT_WANNIER ! INTEGER, PARAMETER :: nwf_max = 1000 ! INTEGER :: wannier_index( nwf_max ) ! ! WANNIER_NEW ! TYPE (wannier_data) :: wan_data(nwanx,2) ! END manual ! ---------------------------------------------------------------------- LOGICAL :: xmloutput = .false. ! if .true. PW produce an xml output CONTAINS ! !---------------------------------------------------------------------------- SUBROUTINE reset_input_checks() !----------------------------------------------------------------------------- ! ! ... This routine sets to .false. flags used to check whether some variables ! ... have been read. If called before reading, allows to read a different ! ... input file without triggering bogus error messages - useful for NEB ! IMPLICIT NONE ! tapos = .false. tkpoints = .false. taspc = .false. twannier = .false. tconstr = .false. tforces = .false. tocc = .false. tksout = .false. tionvel = .false. tesr = .false. tdipole = .false. tcell = .false. ! END SUBROUTINE reset_input_checks ! ! !----------------------------------------------------------------------------- SUBROUTINE allocate_input_ions( ntyp, nat ) !----------------------------------------------------------------------------- ! INTEGER, INTENT(in) :: ntyp, nat ! IF ( allocated( rd_pos ) ) DEALLOCATE( rd_pos ) IF ( allocated( sp_pos ) ) DEALLOCATE( sp_pos ) IF ( allocated( if_pos ) ) DEALLOCATE( if_pos ) IF ( allocated( id_loc ) ) DEALLOCATE( id_loc ) IF ( allocated( na_inp ) ) DEALLOCATE( na_inp ) IF ( allocated( rd_vel ) ) DEALLOCATE( rd_vel ) IF ( allocated( sp_vel ) ) DEALLOCATE( sp_vel ) IF ( allocated( rd_for ) ) DEALLOCATE( rd_for ) ! ALLOCATE( rd_pos( 3, nat ) ) ALLOCATE( sp_pos( nat) ) ALLOCATE( if_pos( 3, nat ) ) ALLOCATE( id_loc( nat) ) ALLOCATE( na_inp( ntyp) ) ALLOCATE( rd_vel( 3, nat ) ) ALLOCATE( sp_vel( nat) ) ALLOCATE( rd_for( 3, nat ) ) ! rd_pos = 0.0_DP sp_pos = 0 if_pos = 1 id_loc = 0 na_inp = 0 rd_vel = 0.0_DP sp_vel = 0 rd_for = 0.0_DP ! RETURN ! END SUBROUTINE allocate_input_ions !----------------------------------------------------------------------------- SUBROUTINE allocate_input_constr() !----------------------------------------------------------------------------- ! IF ( allocated( constr_type_inp ) ) DEALLOCATE( constr_type_inp ) IF ( allocated( constr_inp ) ) DEALLOCATE( constr_inp ) IF ( allocated( constr_target_inp ) ) DEALLOCATE( constr_target_inp ) IF ( allocated( constr_target_set ) ) DEALLOCATE( constr_target_set ) ! ALLOCATE( constr_type_inp( nconstr_inp ) ) ALLOCATE( constr_target_inp( nconstr_inp ) ) ALLOCATE( constr_target_set( nconstr_inp ) ) ! ALLOCATE( constr_inp( nc_fields, nconstr_inp ) ) ! constr_type_inp = ' ' constr_inp = 0.0_DP constr_target_inp = 0.0_DP constr_target_set = .false. ! RETURN ! END SUBROUTINE allocate_input_constr !----------------------------------------------------------------------------- SUBROUTINE allocate_input_iprnks( nksx, nspin ) !----------------------------------------------------------------------------- ! INTEGER, INTENT(in) :: nksx, nspin ! IF( allocated( iprnks ) ) DEALLOCATE( iprnks ) ! ALLOCATE( iprnks( max( 1, nksx), nspin ) ) ! iprnks = 0 ! RETURN ! END SUBROUTINE allocate_input_iprnks !----------------------------------------------------------------------------- SUBROUTINE deallocate_input_parameters() !----------------------------------------------------------------------------- ! IF ( allocated( xk ) ) DEALLOCATE( xk ) IF ( allocated( wk ) ) DEALLOCATE( wk ) IF ( allocated( rd_pos ) ) DEALLOCATE( rd_pos ) IF ( allocated( sp_pos ) ) DEALLOCATE( sp_pos ) IF ( allocated( if_pos ) ) DEALLOCATE( if_pos ) IF ( allocated( id_loc ) ) DEALLOCATE( id_loc ) IF ( allocated( na_inp ) ) DEALLOCATE( na_inp ) IF ( allocated( rd_vel ) ) DEALLOCATE( rd_vel ) IF ( allocated( sp_vel ) ) DEALLOCATE( sp_vel ) IF ( allocated( rd_for ) ) DEALLOCATE( rd_for ) ! ! IF ( allocated( constr_type_inp ) ) DEALLOCATE( constr_type_inp ) IF ( allocated( constr_inp ) ) DEALLOCATE( constr_inp ) IF ( allocated( constr_target_inp ) ) DEALLOCATE( constr_target_inp ) IF ( allocated( constr_target_set ) ) DEALLOCATE( constr_target_set ) ! IF ( allocated( iprnks ) ) DEALLOCATE( iprnks ) ! RETURN ! END SUBROUTINE deallocate_input_parameters ! !=----------------------------------------------------------------------------=! ! END MODULE input_parameters ! !=----------------------------------------------------------------------------=! espresso-5.1/Modules/kernel_table.f900000644000175000017500000002342212341373034015664 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! Copyright (C) 2009 Brian Kolb, Timo Thonhauser - Wake Forest University ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE kernel_table !! This module is used to read in the kernel table file !! "vdW_kernel_table" and store some of the important parameters. The !! top of the vdW_kernel_table file holds the number of q points, the !! number of radial points (r) used in the kernel generation, the maximum !! value of r used (r is the parameter in the kernel function d=q*r where !! q is defined in DION equation 11), and the values of the q points !! used. These parameters are stored as public parameters for use in !! various routines. This routine also reads the tabulated values of the !! Fourier transformed kernel function for each pair of q values (see !! SOLER equations 3 and 8). Since these kernel functions need to be !! interpolated using splines, the second derivatives of the Fourier !! transformed kernel functions (phi_alpha_beta) are also tabulated in !! the vdW_kernel_table and are read in here. !! This is done in a module because there are quite a few subroutines in !! xc_vdW_DF.f90 that require knowledge of the number (identity) of q !! points, the maximum value of the radius, and, of course, the tabulated !! kernel function and its second derivatives (for spline interpolation). !! Putting this routine in a module meas that those routines can just use !! kernel_table rather than passing variables around all over the place. USE kinds, ONLY : dp USE io_files, ONLY : pseudo_dir USE constants, ONLY : pi use wrappers, ONLY : md5_from_file implicit none private save !! Variables to be used by various routines in xc_vdW_DF.f90, declared !! public so they can be seen from outside ! -------------------------------------------------------------------------- public :: Nqs, Nr_points, r_max, q_mesh, q_cut, q_min, dk public :: kernel, d2phi_dk2 public :: initialize_kernel_table public :: vdw_table_name public :: vdw_kernel_md5_cksum integer :: Nqs, Nr_points !! The number of q points and radial points ! !! used in generating the kernel phi(q1*r, q2*r) ! !! (see DION 14-16 and SOLER 3) real(dp) :: r_max, q_cut, q_min, dk !! The maximum value of r, the maximum and minimum ! !! values of q and the k-space spacing of grid points. ! !! Note that, during a vdW run, values of q0 found ! !! larger than q_cut will be saturated (SOLER 5) to ! !! q_cut real(dp), allocatable :: q_mesh(:) !! The values of all the q points used real(dp), allocatable :: kernel(:,:,:) !! A matrix holding the Fourier transformed kernel function ! !! for each pair of q values. The ordering is ! !! kernel(k_point, q1_value, q2_value) real(dp), allocatable :: d2phi_dk2(:,:,:) !! A matrix holding the second derivatives of the above ! !! kernel matrix at each of the q points. Stored as ! !! d2phi_dk2(k_point, q1_value, q2_value) ! character(len=256) :: vdw_table_name !! If present from input use this name CHARACTER(LEN=30) :: double_format = "(1p4e23.14)" CHARACTER(len=32) :: vdw_kernel_md5_cksum = 'NOT SET' ! INTEGER, EXTERNAL :: find_free_unit ! -------------------------------------------------------------------------- CONTAINS !! ################################################################################### !! | | !! | INITIALIZE_KERNEL_TABLE | !! |___________________________| !! Subroutine that actually reads the kernel file and stores the parameters. This routine !! is called only once, at the start of a vdW run. subroutine initialize_kernel_table(inlc) integer, INTENT(IN) :: inlc integer :: q1_i, q2_i !! Indexing variables integer :: kernel_file !! The unit number for the kernel file logical :: file_exists !! A variable to say whether ! !! needed file exists character(len=1000) :: kernel_file_name !! The path to the kernel file. ! !! Although this name must be ! !! "vdW_kernel_table", this variable ! !! is used to hold the entire path ! !! since we check 3 places for it. !!write(*,*) "Reading kernel table ... " !! Get the unit number for the kernel file kernel_file = find_free_unit() !! !! if (TRIM(vdw_table_name)==' ') then if (inlc==3) then vdw_table_name='rVV10_kernel_table' else vdw_table_name='vdW_kernel_table' endif endif if (allocated(kernel)) then return end if !! First we check the current directory for the vdW_kernel_table file !! If it is not found there it is looked for in the pseudopotential !! directory. If it's not there the default kernel file installed !! in the PW directory of the PWSCF source is tried. If none of those !! exist the code crashes. kernel_file_name=vdw_table_name inquire(file=kernel_file_name, exist=file_exists) !! If the file is found in the current directory we use that one !! ------------------------------------------------------------------------------------------ if (.not. file_exists) then !! No "vdW_kernel_table" file in the current directory. Try the pseudopotential directory !! ----------------------------------------------------------------------------------------- kernel_file_name = trim(pseudo_dir)//'/'//vdw_table_name inquire(file=kernel_file_name, exist=file_exists) if (.not. file_exists) then !! Finally, try the default pw_dir/PW/vdW_kernel_table file !! -------------------------------------------------------------------------------------- kernel_file_name = 'DEFAULT_KERNEL_TABLE_FILE' inquire(file=kernel_file_name, exist=file_exists) if (.not. file_exists) then !! No "vdW_kernel_table" file could be found. Time to die. call errore('read_kernel_table', 'No \"vdW_kernel_table\" file could be found',1) end if end if end if !! Generates the md5 file CALL md5_from_file(kernel_file_name, vdw_kernel_md5_cksum) !! Open the file to read open(unit=kernel_file, file=kernel_file_name, status='old', form='formatted', action='read') !! Read in the number of q points used for this kernel file, the !! number of r points, and the maximum value of the r point read(kernel_file, '(2i5)') Nqs, Nr_points read(kernel_file, double_format) r_max allocate( q_mesh(Nqs) ) allocate( kernel(0:Nr_points,Nqs,Nqs), d2phi_dk2(0:Nr_points,Nqs,Nqs) ) !! Read in the values of the q points used to generate this kernel read(kernel_file, double_format) q_mesh !! For each pair of q values, read in the function phi_q1_q2(k). !! That is, the fourier transformed kernel function assuming q1 and q2 !! for all the values of r used. !! ---------------------------------------------------------------------------------------------- do q1_i = 1, Nqs do q2_i = 1, q1_i read(kernel_file, double_format) kernel(0:Nr_points, q1_i, q2_i) kernel(0:Nr_points, q2_i, q1_i) = kernel(0:Nr_points, q1_i, q2_i) end do end do !! ---------------------------------------------------------------------------------------------- !! Again, for each pair of q values (q1 and q2), read in the value !! of the second derivative of the above mentiond Fourier transformed !! kernel function phi_alpha_beta(k). These are used for spline !! interpolation of the Fourier transformed kernel. !! ----------------------------------------------------------------------------------------------- do q1_i = 1, Nqs do q2_i = 1, q1_i read(kernel_file, double_format) d2phi_dk2(0:Nr_points, q1_i, q2_i) d2phi_dk2(0:Nr_points, q2_i, q1_i) = d2phi_dk2(0:Nr_points, q1_i, q2_i) end do end do !! ----------------------------------------------------------------------------------------------- close(kernel_file) !! Define a few more vaiables useful to some of the subroutines in xc_vdW_DF.f90 !! ------------------------------------------------------------------------------------------------ q_cut = q_mesh(Nqs) q_min = q_mesh(1) dk = 2.0D0*pi/r_max !! ------------------------------------------------------------------------------------------------ end subroutine initialize_kernel_table !! ################################################################################################# end MODULE kernel_table espresso-5.1/Modules/mp.f900000644000175000017500000020105312341373034013647 0ustar mbamba! ! Copyright (C) 2002-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #if defined __HPM # include "/cineca/prod/hpm/include/f_hpm.h" #endif ! ! This module contains interfaces to most low-level MPI operations: ! initialization and stopping, broadcast, parallel sum, etc. ! !------------------------------------------------------------------------------! MODULE mp !------------------------------------------------------------------------------! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE parallel_include ! IMPLICIT NONE PRIVATE PUBLIC :: mp_start, mp_abort, mp_stop, mp_end, & mp_bcast, mp_sum, mp_max, mp_min, mp_rank, mp_size, & mp_gather, mp_alltoall, mp_get, mp_put, mp_barrier, mp_report, mp_group_free, & mp_root_sum, mp_comm_free, mp_comm_create, mp_comm_group, & mp_group_create, mp_comm_split, mp_set_displs, & mp_circular_shift_left, & mp_get_comm_null, mp_get_comm_self ! INTERFACE mp_bcast MODULE PROCEDURE mp_bcast_i1, mp_bcast_r1, mp_bcast_c1, & mp_bcast_z, mp_bcast_zv, & mp_bcast_iv, mp_bcast_rv, mp_bcast_cv, mp_bcast_l, mp_bcast_rm, & mp_bcast_cm, mp_bcast_im, mp_bcast_it, mp_bcast_rt, mp_bcast_lv, & mp_bcast_lm, mp_bcast_r4d, mp_bcast_r5d, mp_bcast_ct, mp_bcast_c4d,& mp_bcast_c5d END INTERFACE INTERFACE mp_sum MODULE PROCEDURE mp_sum_i1, mp_sum_iv, mp_sum_im, mp_sum_it, & mp_sum_r1, mp_sum_rv, mp_sum_rm, mp_sum_rt, mp_sum_r4d, & mp_sum_c1, mp_sum_cv, mp_sum_cm, mp_sum_ct, mp_sum_c4d, & mp_sum_c5d, mp_sum_c6d, mp_sum_rmm, mp_sum_cmm, mp_sum_r5d END INTERFACE INTERFACE mp_root_sum MODULE PROCEDURE mp_root_sum_rm, mp_root_sum_cm END INTERFACE INTERFACE mp_get MODULE PROCEDURE mp_get_r1, mp_get_rv, mp_get_cv, mp_get_i1, mp_get_iv, & mp_get_rm END INTERFACE INTERFACE mp_put MODULE PROCEDURE mp_put_rv, mp_put_cv, mp_put_i1, mp_put_iv, & mp_put_rm END INTERFACE INTERFACE mp_max MODULE PROCEDURE mp_max_i, mp_max_r, mp_max_rv, mp_max_iv END INTERFACE INTERFACE mp_min MODULE PROCEDURE mp_min_i, mp_min_r, mp_min_rv, mp_min_iv END INTERFACE INTERFACE mp_gather MODULE PROCEDURE mp_gather_i1, mp_gather_iv, mp_gatherv_rv, mp_gatherv_iv, & mp_gatherv_rm, mp_gatherv_im, mp_gatherv_cv END INTERFACE INTERFACE mp_alltoall MODULE PROCEDURE mp_alltoall_c3d, mp_alltoall_i3d END INTERFACE INTERFACE mp_circular_shift_left MODULE PROCEDURE mp_circular_shift_left_i0, & mp_circular_shift_left_i1, & mp_circular_shift_left_i2, & mp_circular_shift_left_r2d, & mp_circular_shift_left_c2d END INTERFACE !------------------------------------------------------------------------------! ! CONTAINS ! !------------------------------------------------------------------------------! ! !------------------------------------------------------------------------------! !..mp_gather_i1 SUBROUTINE mp_gather_i1(mydata, alldata, root, gid) IMPLICIT NONE INTEGER, INTENT(IN) :: mydata, root INTEGER, INTENT(IN) :: gid INTEGER :: group INTEGER, INTENT(OUT) :: alldata(:) INTEGER :: ierr #if defined (__MPI) group = gid CALL MPI_GATHER(mydata, 1, MPI_INTEGER, alldata, 1, MPI_INTEGER, root, group, IERR) IF (ierr/=0) CALL mp_stop( 8013 ) #else alldata(1) = mydata #endif RETURN END SUBROUTINE mp_gather_i1 !------------------------------------------------------------------------------! !..mp_gather_iv !..Carlo Cavazzoni SUBROUTINE mp_gather_iv(mydata, alldata, root, gid) IMPLICIT NONE INTEGER, INTENT(IN) :: mydata(:), root INTEGER, INTENT(IN) :: gid INTEGER :: group INTEGER, INTENT(OUT) :: alldata(:,:) INTEGER :: msglen, ierr #if defined (__MPI) msglen = SIZE(mydata) IF( msglen .NE. SIZE(alldata, 1) ) CALL mp_stop( 8014 ) group = gid CALL MPI_GATHER(mydata, msglen, MPI_INTEGER, alldata, msglen, MPI_INTEGER, root, group, IERR) IF (ierr/=0) CALL mp_stop( 8014 ) #else msglen = SIZE(mydata) IF( msglen .NE. SIZE(alldata, 1) ) CALL mp_stop( 8014 ) alldata(:,1) = mydata(:) #endif RETURN END SUBROUTINE mp_gather_iv ! !------------------------------------------------------------------------------! !..mp_start SUBROUTINE mp_start(numtask, taskid, group) ! ... IMPLICIT NONE INTEGER, INTENT (OUT) :: numtask, taskid INTEGER, INTENT (IN) :: group INTEGER :: ierr ! ... ierr = 0 numtask = 1 taskid = 0 # if defined(__MPI) IF (ierr/=0) CALL mp_stop( 8004 ) CALL mpi_comm_rank(group,taskid,ierr) IF (ierr/=0) CALL mp_stop( 8005 ) #if defined __HPM ! initialize the IBM Hardware performance monitor CALL f_hpminit( taskid, 'profiling' ) #endif CALL mpi_comm_size(group,numtask,ierr) IF (ierr/=0) CALL mp_stop( 8006 ) # endif #if defined(__CUDA) || defined(__PHIGEMM ) CALL InitCudaEnv() #endif RETURN END SUBROUTINE mp_start !------------------------------------------------------------------------------! !..mp_abort SUBROUTINE mp_abort(errorcode,gid) IMPLICIT NONE INTEGER :: ierr INTEGER, INTENT(IN):: errorcode, gid #ifdef __MPI CALL mpi_abort(gid, errorcode, ierr) #endif END SUBROUTINE mp_abort ! !------------------------------------------------------------------------------! !..mp_end SUBROUTINE mp_end(groupid) IMPLICIT NONE INTEGER, INTENT(IN) :: groupid INTEGER :: ierr, taskid ierr = 0 taskid = 0 #if defined(__CUDA) || defined(__PHIGEMM ) CALL CloseCudaEnv() #endif #if defined(__MPI) CALL mpi_comm_rank( groupid, taskid, ierr) #if defined __HPM ! terminate the IBM Hardware performance monitor CALL f_hpmterminate( taskid ) #endif #endif RETURN END SUBROUTINE mp_end !------------------------------------------------------------------------------! !..mp_group SUBROUTINE mp_comm_group( comm, group ) IMPLICIT NONE INTEGER, INTENT (IN) :: comm INTEGER, INTENT (OUT) :: group INTEGER :: ierr ierr = 0 #if defined(__MPI) CALL mpi_comm_group( comm, group, ierr ) IF (ierr/=0) CALL mp_stop( 8007 ) #else group = 0 #endif END SUBROUTINE mp_comm_group SUBROUTINE mp_comm_split( old_comm, color, key, new_comm ) IMPLICIT NONE INTEGER, INTENT (IN) :: old_comm INTEGER, INTENT (IN) :: color, key INTEGER, INTENT (OUT) :: new_comm INTEGER :: ierr ierr = 0 #if defined(__MPI) CALL MPI_COMM_SPLIT( old_comm, color, key, new_comm, ierr ) IF (ierr/=0) CALL mp_stop( 8008 ) #else new_comm = old_comm #endif END SUBROUTINE mp_comm_split SUBROUTINE mp_group_create( group_list, group_size, old_grp, new_grp ) IMPLICIT NONE INTEGER, INTENT (IN) :: group_list(:), group_size, old_grp INTEGER, INTENT (OUT) :: new_grp INTEGER :: ierr ierr = 0 new_grp = old_grp #if defined(__MPI) CALL mpi_group_incl( old_grp, group_size, group_list, new_grp, ierr ) IF (ierr/=0) CALL mp_stop( 8009 ) #endif END SUBROUTINE mp_group_create !------------------------------------------------------------------------------! SUBROUTINE mp_comm_create( old_comm, new_grp, new_comm ) IMPLICIT NONE INTEGER, INTENT (IN) :: old_comm INTEGER, INTENT (IN) :: new_grp INTEGER, INTENT (OUT) :: new_comm INTEGER :: ierr ierr = 0 new_comm = old_comm #if defined(__MPI) CALL mpi_comm_create( old_comm, new_grp, new_comm, ierr ) IF (ierr/=0) CALL mp_stop( 8010 ) #endif END SUBROUTINE mp_comm_create !------------------------------------------------------------------------------! !..mp_group_free SUBROUTINE mp_group_free( group ) IMPLICIT NONE INTEGER, INTENT (INOUT) :: group INTEGER :: ierr ierr = 0 #if defined(__MPI) CALL mpi_group_free( group, ierr ) IF (ierr/=0) CALL mp_stop( 8011 ) #endif END SUBROUTINE mp_group_free !------------------------------------------------------------------------------! SUBROUTINE mp_comm_free( comm ) IMPLICIT NONE INTEGER, INTENT (INOUT) :: comm INTEGER :: ierr ierr = 0 #if defined(__MPI) IF( comm /= MPI_COMM_NULL ) THEN CALL mpi_comm_free( comm, ierr ) IF (ierr/=0) CALL mp_stop( 8012 ) END IF #endif RETURN END SUBROUTINE mp_comm_free !------------------------------------------------------------------------------! !..mp_bcast SUBROUTINE mp_bcast_i1(msg,source,gid) IMPLICIT NONE INTEGER :: msg INTEGER :: source INTEGER, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen #if defined(__MPI) msglen = 1 group = gid CALL bcast_integer( msg, msglen, source, group ) #endif END SUBROUTINE mp_bcast_i1 ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_iv(msg,source,gid) IMPLICIT NONE INTEGER :: msg(:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_integer( msg, msglen, source, gid ) #endif END SUBROUTINE mp_bcast_iv ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_im( msg, source, gid ) IMPLICIT NONE INTEGER :: msg(:,:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_integer( msg, msglen, source, gid ) #endif END SUBROUTINE mp_bcast_im ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_bcast_it( msg, source, gid ) IMPLICIT NONE INTEGER :: msg(:,:,:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_integer( msg, msglen, source, gid ) #endif END SUBROUTINE mp_bcast_it ! !------------------------------------------------------------------------------! ! SUBROUTINE mp_bcast_r1( msg, source, gid ) IMPLICIT NONE REAL (DP) :: msg INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = 1 CALL bcast_real( msg, msglen, source, gid ) #endif END SUBROUTINE mp_bcast_r1 ! !------------------------------------------------------------------------------! ! SUBROUTINE mp_bcast_rv(msg,source,gid) IMPLICIT NONE REAL (DP) :: msg(:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_real( msg, msglen, source, gid ) #endif END SUBROUTINE mp_bcast_rv ! !------------------------------------------------------------------------------! ! SUBROUTINE mp_bcast_rm(msg,source,gid) IMPLICIT NONE REAL (DP) :: msg(:,:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_real( msg, msglen, source, gid ) #endif END SUBROUTINE mp_bcast_rm ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_bcast_rt(msg,source,gid) IMPLICIT NONE REAL (DP) :: msg(:,:,:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_real( msg, msglen, source, gid ) #endif END SUBROUTINE mp_bcast_rt ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_bcast_r4d(msg, source, gid) IMPLICIT NONE REAL (DP) :: msg(:,:,:,:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_real( msg, msglen, source, gid ) #endif END SUBROUTINE mp_bcast_r4d ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_bcast_r5d(msg, source, gid) IMPLICIT NONE REAL (DP) :: msg(:,:,:,:,:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_real( msg, msglen, source, gid ) #endif END SUBROUTINE mp_bcast_r5d !------------------------------------------------------------------------------! ! SUBROUTINE mp_bcast_c1(msg,source,gid) IMPLICIT NONE COMPLEX (DP) :: msg INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = 1 CALL bcast_real( msg, 2 * msglen, source, gid ) #endif END SUBROUTINE mp_bcast_c1 ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_cv(msg,source,gid) IMPLICIT NONE COMPLEX (DP) :: msg(:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_real( msg, 2 * msglen, source, gid ) #endif END SUBROUTINE mp_bcast_cv ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_cm(msg,source,gid) IMPLICIT NONE COMPLEX (DP) :: msg(:,:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_real( msg, 2 * msglen, source, gid ) #endif END SUBROUTINE mp_bcast_cm ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_ct(msg,source,gid) IMPLICIT NONE COMPLEX (DP) :: msg(:,:,:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_real( msg, 2 * msglen, source, gid ) #endif END SUBROUTINE mp_bcast_ct ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_c4d(msg,source,gid) IMPLICIT NONE COMPLEX (DP) :: msg(:,:,:,:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_real( msg, 2 * msglen, source, gid ) #endif END SUBROUTINE mp_bcast_c4d SUBROUTINE mp_bcast_c5d(msg,source,gid) IMPLICIT NONE COMPLEX (DP) :: msg(:,:,:,:,:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_real( msg, 2 * msglen, source, gid ) #endif END SUBROUTINE mp_bcast_c5d ! !------------------------------------------------------------------------------! SUBROUTINE mp_bcast_l(msg,source,gid) IMPLICIT NONE LOGICAL :: msg INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = 1 CALL bcast_logical( msg, msglen, source, gid ) #endif END SUBROUTINE mp_bcast_l ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_bcast_lv(msg,source,gid) IMPLICIT NONE LOGICAL :: msg(:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_logical( msg, msglen, source, gid ) #endif END SUBROUTINE mp_bcast_lv !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_bcast_lm(msg,source,gid) IMPLICIT NONE LOGICAL :: msg(:,:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL bcast_logical( msg, msglen, source, gid ) #endif END SUBROUTINE mp_bcast_lm ! !------------------------------------------------------------------------------! ! SUBROUTINE mp_bcast_z(msg,source,gid) IMPLICIT NONE CHARACTER (len=*) :: msg INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen, ierr, i INTEGER, ALLOCATABLE :: imsg(:) #if defined(__MPI) ierr = 0 msglen = len(msg) group = gid ALLOCATE (imsg(1:msglen), STAT=ierr) IF (ierr/=0) CALL mp_stop( 8015 ) DO i = 1, msglen imsg(i) = ichar(msg(i:i)) END DO CALL bcast_integer( imsg, msglen, source, group ) DO i = 1, msglen msg(i:i) = char(imsg(i)) END DO DEALLOCATE (imsg, STAT=ierr) IF (ierr/=0) CALL mp_stop( 8016 ) #endif END SUBROUTINE mp_bcast_z ! !------------------------------------------------------------------------------! ! !------------------------------------------------------------------------------! ! SUBROUTINE mp_bcast_zv(msg,source,gid) IMPLICIT NONE CHARACTER (len=*) :: msg(:) INTEGER, INTENT(IN) :: source INTEGER, INTENT(IN) :: gid INTEGER :: group INTEGER :: msglen, m1, m2, ierr, i, j INTEGER, ALLOCATABLE :: imsg(:,:) #if defined(__MPI) ierr = 0 m1 = LEN(msg) m2 = SIZE(msg) msglen = LEN(msg)*SIZE(msg) group = gid ALLOCATE (imsg(1:m1,1:m2), STAT=ierr) IF (ierr/=0) CALL mp_stop( 8017 ) DO j = 1, m2 DO i = 1, m1 imsg(i,j) = ichar(msg(j)(i:i)) END DO END DO CALL bcast_integer( imsg, msglen, source, group ) DO j = 1, m2 DO i = 1, m1 msg(j)(i:i) = char(imsg(i,j)) END DO END DO DEALLOCATE (imsg, STAT=ierr) IF (ierr/=0) CALL mp_stop( 8018 ) #endif END SUBROUTINE mp_bcast_zv ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_get_i1(msg_dest, msg_sour, mpime, dest, sour, ip, gid) INTEGER :: msg_dest, msg_sour INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen = 1 #if defined(__MPI) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(dest .NE. sour) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN msglen=1 CALL MPI_SEND( msg_sour, msglen, MPI_INTEGER, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8019 ) ELSE IF(mpime .EQ. dest) THEN msglen=1 CALL MPI_RECV( msg_dest, msglen, MPI_INTEGER, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8020 ) CALL MPI_GET_COUNT(istatus, MPI_INTEGER, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8021 ) END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest = msg_sour msglen = 1 END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8022 ) #endif RETURN END SUBROUTINE mp_get_i1 !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_get_iv(msg_dest, msg_sour, mpime, dest, sour, ip, gid) INTEGER :: msg_dest(:), msg_sour(:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN msglen = SIZE(msg_sour) CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_INTEGER, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8023 ) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_INTEGER, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8024 ) CALL MPI_GET_COUNT(istatus, MPI_INTEGER, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8025 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour)) = msg_sour(:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8026 ) #endif RETURN END SUBROUTINE mp_get_iv !------------------------------------------------------------------------------! SUBROUTINE mp_get_r1(msg_dest, msg_sour, mpime, dest, sour, ip, gid) REAL (DP) :: msg_dest, msg_sour INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN msglen = 1 CALL MPI_SEND( msg_sour, msglen, MPI_DOUBLE_PRECISION, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8027 ) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, msglen, MPI_DOUBLE_PRECISION, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8028 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_PRECISION, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8029 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest = msg_sour msglen = 1 END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8030 ) #endif RETURN END SUBROUTINE mp_get_r1 !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_get_rv(msg_dest, msg_sour, mpime, dest, sour, ip, gid) REAL (DP) :: msg_dest(:), msg_sour(:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN msglen = SIZE(msg_sour) CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_DOUBLE_PRECISION, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8027 ) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_DOUBLE_PRECISION, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8028 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_PRECISION, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8029 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour)) = msg_sour(:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8030 ) #endif RETURN END SUBROUTINE mp_get_rv !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_get_rm(msg_dest, msg_sour, mpime, dest, sour, ip, gid) REAL (DP) :: msg_dest(:,:), msg_sour(:,:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_DOUBLE_PRECISION, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8031 ) msglen = SIZE(msg_sour) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_DOUBLE_PRECISION, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8032 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_PRECISION, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8033 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour,1), 1:SIZE(msg_sour,2)) = msg_sour(:,:) msglen = SIZE( msg_sour ) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8034 ) #endif RETURN END SUBROUTINE mp_get_rm !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_get_cv(msg_dest, msg_sour, mpime, dest, sour, ip, gid) COMPLEX (DP) :: msg_dest(:), msg_sour(:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF( dest .NE. sour ) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_DOUBLE_COMPLEX, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8035 ) msglen = SIZE(msg_sour) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_DOUBLE_COMPLEX, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8036 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_COMPLEX, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8037 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour)) = msg_sour(:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8038 ) #endif RETURN END SUBROUTINE mp_get_cv !------------------------------------------------------------------------------! ! ! !------------------------------------------------------------------------------! SUBROUTINE mp_put_i1(msg_dest, msg_sour, mpime, sour, dest, ip, gid) INTEGER :: msg_dest, msg_sour INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(dest .NE. sour) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, 1, MPI_INTEGER, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8039 ) msglen = 1 ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, 1, MPI_INTEGER, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8040 ) CALL MPI_GET_COUNT(istatus, MPI_INTEGER, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8041 ) msglen = 1 END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest = msg_sour msglen = 1 END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8042 ) #endif RETURN END SUBROUTINE mp_put_i1 !------------------------------------------------------------------------------! ! ! SUBROUTINE mp_put_iv(msg_dest, msg_sour, mpime, sour, dest, ip, gid) INTEGER :: msg_dest(:), msg_sour(:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_INTEGER, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8043 ) msglen = SIZE(msg_sour) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_INTEGER, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8044 ) CALL MPI_GET_COUNT(istatus, MPI_INTEGER, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8045 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour)) = msg_sour(:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8046 ) #endif RETURN END SUBROUTINE mp_put_iv !------------------------------------------------------------------------------! ! ! SUBROUTINE mp_put_rv(msg_dest, msg_sour, mpime, sour, dest, ip, gid) REAL (DP) :: msg_dest(:), msg_sour(:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_DOUBLE_PRECISION, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8047 ) msglen = SIZE(msg_sour) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_DOUBLE_PRECISION, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8048 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_PRECISION, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8049 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour)) = msg_sour(:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8050 ) #endif RETURN END SUBROUTINE mp_put_rv !------------------------------------------------------------------------------! ! ! SUBROUTINE mp_put_rm(msg_dest, msg_sour, mpime, sour, dest, ip, gid) REAL (DP) :: msg_dest(:,:), msg_sour(:,:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF(sour .NE. dest) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_DOUBLE_PRECISION, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8051 ) msglen = SIZE(msg_sour) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_DOUBLE_PRECISION, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8052 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_PRECISION, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8053 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour,1),1:SIZE(msg_sour,2)) = msg_sour(:,:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8054 ) #endif RETURN END SUBROUTINE mp_put_rm !------------------------------------------------------------------------------! ! ! SUBROUTINE mp_put_cv(msg_dest, msg_sour, mpime, sour, dest, ip, gid) COMPLEX (DP) :: msg_dest(:), msg_sour(:) INTEGER, INTENT(IN) :: dest, sour, ip, mpime INTEGER, INTENT(IN) :: gid INTEGER :: group #if defined(__MPI) INTEGER :: istatus(MPI_STATUS_SIZE) #endif INTEGER :: ierr, nrcv INTEGER :: msglen #if defined(__MPI) group = gid #endif ! processors not taking part in the communication have 0 length message msglen = 0 IF( dest .NE. sour ) THEN #if defined(__MPI) IF(mpime .EQ. sour) THEN CALL MPI_SEND( msg_sour, SIZE(msg_sour), MPI_DOUBLE_COMPLEX, dest, ip, group, ierr) IF (ierr/=0) CALL mp_stop( 8055 ) msglen = SIZE(msg_sour) ELSE IF(mpime .EQ. dest) THEN CALL MPI_RECV( msg_dest, SIZE(msg_dest), MPI_DOUBLE_COMPLEX, sour, ip, group, istatus, IERR ) IF (ierr/=0) CALL mp_stop( 8056 ) CALL MPI_GET_COUNT(istatus, MPI_DOUBLE_COMPLEX, nrcv, ierr) IF (ierr/=0) CALL mp_stop( 8057 ) msglen = nrcv END IF #endif ELSEIF(mpime .EQ. sour)THEN msg_dest(1:SIZE(msg_sour)) = msg_sour(:) msglen = SIZE(msg_sour) END IF #if defined(__MPI) CALL MPI_BARRIER(group, IERR) IF (ierr/=0) CALL mp_stop( 8058 ) #endif RETURN END SUBROUTINE mp_put_cv ! !------------------------------------------------------------------------------! ! !..mp_stop ! SUBROUTINE mp_stop(code) IMPLICIT NONE INTEGER, INTENT (IN) :: code INTEGER :: ierr WRITE( stdout, fmt='( "*** error in Message Passing (mp) module ***")' ) WRITE( stdout, fmt='( "*** error code: ",I5)' ) code #if defined(__MPI) ! abort with extreme prejudice across the entire MPI set of tasks CALL mpi_abort(MPI_COMM_WORLD,code,ierr) #endif STOP END SUBROUTINE mp_stop !------------------------------------------------------------------------------! ! !..mp_sum SUBROUTINE mp_sum_i1(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = 1 CALL reduce_base_integer( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_i1 ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_iv(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg(:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_integer( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_iv ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_im(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg(:,:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_integer( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_im ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_it(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg(:,:,:) INTEGER, INTENT (IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_integer( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_it !------------------------------------------------------------------------------! SUBROUTINE mp_sum_r1(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg INTEGER, INTENT (IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = 1 CALL reduce_base_real( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_r1 ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_rv(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:) INTEGER, INTENT (IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_real( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_rv ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_rm(msg, gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:,:) INTEGER, INTENT (IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_real( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_rm SUBROUTINE mp_root_sum_rm( msg, res, root, gid ) IMPLICIT NONE REAL (DP), INTENT (IN) :: msg(:,:) REAL (DP), INTENT (OUT) :: res(:,:) INTEGER, INTENT (IN) :: root INTEGER, INTENT (IN) :: gid #if defined(__MPI) INTEGER :: msglen, ierr, taskid msglen = size(msg) CALL mpi_comm_rank( gid, taskid, ierr) IF( ierr /= 0 ) CALL mp_stop( 8059 ) ! IF( taskid == root ) THEN IF( msglen > size(res) ) CALL mp_stop( 8060 ) END IF CALL reduce_base_real_to( msglen, msg, res, gid, root ) #else res = msg #endif END SUBROUTINE mp_root_sum_rm SUBROUTINE mp_root_sum_cm( msg, res, root, gid ) IMPLICIT NONE COMPLEX (DP), INTENT (IN) :: msg(:,:) COMPLEX (DP), INTENT (OUT) :: res(:,:) INTEGER, INTENT (IN) :: root INTEGER, INTENT (IN) :: gid #if defined(__MPI) INTEGER :: msglen, ierr, taskid msglen = size(msg) CALL mpi_comm_rank( gid, taskid, ierr) IF( ierr /= 0 ) CALL mp_stop( 8061 ) IF( taskid == root ) THEN IF( msglen > size(res) ) CALL mp_stop( 8062 ) END IF CALL reduce_base_real_to( 2 * msglen, msg, res, gid, root ) #else res = msg #endif END SUBROUTINE mp_root_sum_cm ! !------------------------------------------------------------------------------! !------------------------------------------------------------------------------! ! SUBROUTINE mp_sum_rmm( msg, res, root, gid ) IMPLICIT NONE REAL (DP), INTENT (IN) :: msg(:,:) REAL (DP), INTENT (OUT) :: res(:,:) INTEGER, INTENT (IN) :: root INTEGER, INTENT (IN) :: gid INTEGER :: group INTEGER :: msglen INTEGER :: taskid, ierr msglen = size(msg) #if defined(__MPI) group = gid ! CALL mpi_comm_rank( group, taskid, ierr) IF( ierr /= 0 ) CALL mp_stop( 8063 ) IF( taskid == root ) THEN IF( msglen > size(res) ) CALL mp_stop( 8064 ) END IF ! CALL reduce_base_real_to( msglen, msg, res, group, root ) ! #else res = msg #endif END SUBROUTINE mp_sum_rmm ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_rt( msg, gid ) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:,:,:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_real( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_rt ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_sum_r4d(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:,:,:,:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_real( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_r4d !------------------------------------------------------------------------------! SUBROUTINE mp_sum_c1(msg,gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = 1 CALL reduce_base_real( 2 * msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_c1 ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_cv(msg,gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg(:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_real( 2 * msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_cv ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_cm(msg, gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg(:,:) INTEGER, INTENT (IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_real( 2 * msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_cm ! !------------------------------------------------------------------------------! SUBROUTINE mp_sum_cmm(msg, res, gid) IMPLICIT NONE COMPLEX (DP), INTENT (IN) :: msg(:,:) COMPLEX (DP), INTENT (OUT) :: res(:,:) INTEGER, INTENT (IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_real_to( 2 * msglen, msg, res, gid, -1 ) #else res = msg #endif END SUBROUTINE mp_sum_cmm ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_sum_ct(msg,gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg(:,:,:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = SIZE(msg) CALL reduce_base_real( 2 * msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_ct ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_sum_c4d(msg,gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg(:,:,:,:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_real( 2 * msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_c4d ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_sum_c5d(msg,gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg(:,:,:,:,:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_real( 2 * msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_c5d !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_sum_r5d(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:,:,:,:,:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_real( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_r5d ! !------------------------------------------------------------------------------! ! ! Carlo Cavazzoni ! SUBROUTINE mp_sum_c6d(msg,gid) IMPLICIT NONE COMPLEX (DP), INTENT (INOUT) :: msg(:,:,:,:,:,:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL reduce_base_real( 2 * msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_sum_c6d !------------------------------------------------------------------------------! SUBROUTINE mp_max_i(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = 1 CALL parallel_max_integer( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_max_i ! !------------------------------------------------------------------------------! ! !..mp_max_iv !..Carlo Cavazzoni ! SUBROUTINE mp_max_iv(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg(:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL parallel_max_integer( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_max_iv ! !---------------------------------------------------------------------- SUBROUTINE mp_max_r(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = 1 CALL parallel_max_real( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_max_r ! !------------------------------------------------------------------------------! SUBROUTINE mp_max_rv(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL parallel_max_real( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_max_rv !------------------------------------------------------------------------------! SUBROUTINE mp_min_i(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = 1 CALL parallel_min_integer( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_min_i !------------------------------------------------------------------------------! SUBROUTINE mp_min_iv(msg,gid) IMPLICIT NONE INTEGER, INTENT (INOUT) :: msg(:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = SIZE(msg) CALL parallel_min_integer( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_min_iv !------------------------------------------------------------------------------! SUBROUTINE mp_min_r(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = 1 CALL parallel_min_real( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_min_r ! !------------------------------------------------------------------------------! SUBROUTINE mp_min_rv(msg,gid) IMPLICIT NONE REAL (DP), INTENT (INOUT) :: msg(:) INTEGER, INTENT(IN) :: gid #if defined(__MPI) INTEGER :: msglen msglen = size(msg) CALL parallel_min_real( msglen, msg, gid, -1 ) #endif END SUBROUTINE mp_min_rv !------------------------------------------------------------------------------! SUBROUTINE mp_barrier(gid) IMPLICIT NONE INTEGER, INTENT(IN) :: gid INTEGER :: ierr #if defined(__MPI) CALL MPI_BARRIER(gid,IERR) IF (ierr/=0) CALL mp_stop( 8066 ) #endif END SUBROUTINE mp_barrier !------------------------------------------------------------------------------! !.. Carlo Cavazzoni !..mp_rank FUNCTION mp_rank( comm ) IMPLICIT NONE INTEGER :: mp_rank INTEGER, INTENT(IN) :: comm INTEGER :: ierr, taskid ierr = 0 taskid = 0 #if defined(__MPI) CALL mpi_comm_rank(comm,taskid,ierr) IF (ierr/=0) CALL mp_stop( 8067 ) #endif mp_rank = taskid END FUNCTION mp_rank !------------------------------------------------------------------------------! !.. Carlo Cavazzoni !..mp_size FUNCTION mp_size( comm ) IMPLICIT NONE INTEGER :: mp_size INTEGER, INTENT(IN) :: comm INTEGER :: ierr, numtask ierr = 0 numtask = 1 #if defined(__MPI) CALL mpi_comm_size(comm,numtask,ierr) IF (ierr/=0) CALL mp_stop( 8068 ) #endif mp_size = numtask END FUNCTION mp_size SUBROUTINE mp_report INTEGER :: i WRITE( stdout, *) #if defined(__MPI) # if defined (__MP_STAT) WRITE( stdout, 20 ) 20 FORMAT(3X,'please use an MPI profiler to analyze communications ') # endif #else WRITE( stdout, *) #endif RETURN END SUBROUTINE mp_report !------------------------------------------------------------------------------! !..mp_gatherv_rv !..Carlo Cavazzoni SUBROUTINE mp_gatherv_rv( mydata, alldata, recvcount, displs, root, gid) IMPLICIT NONE REAL(DP) :: mydata(:) REAL(DP) :: alldata(:) INTEGER, INTENT(IN) :: recvcount(:), displs(:), root INTEGER, INTENT(IN) :: gid INTEGER :: group INTEGER :: ierr, npe, myid #if defined (__MPI) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) CALL mpi_comm_rank( group, myid, ierr ) IF (ierr/=0) CALL mp_stop( 8070 ) ! IF ( SIZE( recvcount ) < npe .OR. SIZE( displs ) < npe ) CALL mp_stop( 8071 ) IF ( myid == root ) THEN IF ( SIZE( alldata ) < displs( npe ) + recvcount( npe ) ) CALL mp_stop( 8072 ) END IF IF ( SIZE( mydata ) < recvcount( myid + 1 ) ) CALL mp_stop( 8073 ) ! CALL MPI_GATHERV( mydata, recvcount( myid + 1 ), MPI_DOUBLE_PRECISION, & alldata, recvcount, displs, MPI_DOUBLE_PRECISION, root, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) #else IF ( SIZE( alldata ) < recvcount( 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( mydata ) < recvcount( 1 ) ) CALL mp_stop( 8076 ) ! alldata( 1:recvcount( 1 ) ) = mydata( 1:recvcount( 1 ) ) #endif RETURN END SUBROUTINE mp_gatherv_rv !------------------------------------------------------------------------------! !..mp_gatherv_cv !..Carlo Cavazzoni SUBROUTINE mp_gatherv_cv( mydata, alldata, recvcount, displs, root, gid) IMPLICIT NONE COMPLEX(DP) :: mydata(:) COMPLEX(DP) :: alldata(:) INTEGER, INTENT(IN) :: recvcount(:), displs(:), root INTEGER, INTENT(IN) :: gid INTEGER :: group INTEGER :: ierr, npe, myid #if defined (__MPI) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) CALL mpi_comm_rank( group, myid, ierr ) IF (ierr/=0) CALL mp_stop( 8070 ) ! IF ( SIZE( recvcount ) < npe .OR. SIZE( displs ) < npe ) CALL mp_stop( 8071 ) IF ( myid == root ) THEN IF ( SIZE( alldata ) < displs( npe ) + recvcount( npe ) ) CALL mp_stop( 8072 ) END IF IF ( SIZE( mydata ) < recvcount( myid + 1 ) ) CALL mp_stop( 8073 ) ! CALL MPI_GATHERV( mydata, recvcount( myid + 1 ), MPI_DOUBLE_COMPLEX, & alldata, recvcount, displs, MPI_DOUBLE_COMPLEX, root, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) #else IF ( SIZE( alldata ) < recvcount( 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( mydata ) < recvcount( 1 ) ) CALL mp_stop( 8076 ) ! alldata( 1:recvcount( 1 ) ) = mydata( 1:recvcount( 1 ) ) #endif RETURN END SUBROUTINE mp_gatherv_cv !------------------------------------------------------------------------------! !..mp_gatherv_rv !..Carlo Cavazzoni SUBROUTINE mp_gatherv_iv( mydata, alldata, recvcount, displs, root, gid) IMPLICIT NONE INTEGER :: mydata(:) INTEGER :: alldata(:) INTEGER, INTENT(IN) :: recvcount(:), displs(:), root INTEGER, INTENT(IN) :: gid INTEGER :: group INTEGER :: ierr, npe, myid #if defined (__MPI) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) CALL mpi_comm_rank( group, myid, ierr ) IF (ierr/=0) CALL mp_stop( 8070 ) ! IF ( SIZE( recvcount ) < npe .OR. SIZE( displs ) < npe ) CALL mp_stop( 8071 ) IF ( myid == root ) THEN IF ( SIZE( alldata ) < displs( npe ) + recvcount( npe ) ) CALL mp_stop( 8072 ) END IF IF ( SIZE( mydata ) < recvcount( myid + 1 ) ) CALL mp_stop( 8073 ) ! CALL MPI_GATHERV( mydata, recvcount( myid + 1 ), MPI_INTEGER, & alldata, recvcount, displs, MPI_INTEGER, root, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) #else IF ( SIZE( alldata ) < recvcount( 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( mydata ) < recvcount( 1 ) ) CALL mp_stop( 8076 ) ! alldata( 1:recvcount( 1 ) ) = mydata( 1:recvcount( 1 ) ) #endif RETURN END SUBROUTINE mp_gatherv_iv !------------------------------------------------------------------------------! !..mp_gatherv_rm !..Carlo Cavazzoni SUBROUTINE mp_gatherv_rm( mydata, alldata, recvcount, displs, root, gid) IMPLICIT NONE REAL(DP) :: mydata(:,:) ! Warning first dimension is supposed constant! REAL(DP) :: alldata(:,:) INTEGER, INTENT(IN) :: recvcount(:), displs(:), root INTEGER, INTENT(IN) :: gid INTEGER :: group INTEGER :: ierr, npe, myid, nsiz INTEGER, ALLOCATABLE :: nrecv(:), ndisp(:) #if defined (__MPI) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) CALL mpi_comm_rank( group, myid, ierr ) IF (ierr/=0) CALL mp_stop( 8070 ) ! IF ( SIZE( recvcount ) < npe .OR. SIZE( displs ) < npe ) CALL mp_stop( 8071 ) IF ( myid == root ) THEN IF ( SIZE( alldata, 2 ) < displs( npe ) + recvcount( npe ) ) CALL mp_stop( 8072 ) IF ( SIZE( alldata, 1 ) /= SIZE( mydata, 1 ) ) CALL mp_stop( 8072 ) END IF IF ( SIZE( mydata, 2 ) < recvcount( myid + 1 ) ) CALL mp_stop( 8073 ) ! ALLOCATE( nrecv( npe ), ndisp( npe ) ) ! nrecv( 1:npe ) = recvcount( 1:npe ) * SIZE( mydata, 1 ) ndisp( 1:npe ) = displs( 1:npe ) * SIZE( mydata, 1 ) ! CALL MPI_GATHERV( mydata, nrecv( myid + 1 ), MPI_DOUBLE_PRECISION, & alldata, nrecv, ndisp, MPI_DOUBLE_PRECISION, root, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) ! DEALLOCATE( nrecv, ndisp ) ! #else IF ( SIZE( alldata, 1 ) /= SIZE( mydata, 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( alldata, 2 ) < recvcount( 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( mydata, 2 ) < recvcount( 1 ) ) CALL mp_stop( 8076 ) ! alldata( :, 1:recvcount( 1 ) ) = mydata( :, 1:recvcount( 1 ) ) #endif RETURN END SUBROUTINE mp_gatherv_rm !------------------------------------------------------------------------------! !..mp_gatherv_im !..Carlo Cavazzoni SUBROUTINE mp_gatherv_im( mydata, alldata, recvcount, displs, root, gid) IMPLICIT NONE INTEGER :: mydata(:,:) ! Warning first dimension is supposed constant! INTEGER :: alldata(:,:) INTEGER, INTENT(IN) :: recvcount(:), displs(:), root INTEGER, INTENT(IN) :: gid INTEGER :: group INTEGER :: ierr, npe, myid, nsiz INTEGER, ALLOCATABLE :: nrecv(:), ndisp(:) #if defined (__MPI) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) CALL mpi_comm_rank( group, myid, ierr ) IF (ierr/=0) CALL mp_stop( 8070 ) ! IF ( SIZE( recvcount ) < npe .OR. SIZE( displs ) < npe ) CALL mp_stop( 8071 ) IF ( myid == root ) THEN IF ( SIZE( alldata, 2 ) < displs( npe ) + recvcount( npe ) ) CALL mp_stop( 8072 ) IF ( SIZE( alldata, 1 ) /= SIZE( mydata, 1 ) ) CALL mp_stop( 8072 ) END IF IF ( SIZE( mydata, 2 ) < recvcount( myid + 1 ) ) CALL mp_stop( 8073 ) ! ALLOCATE( nrecv( npe ), ndisp( npe ) ) ! nrecv( 1:npe ) = recvcount( 1:npe ) * SIZE( mydata, 1 ) ndisp( 1:npe ) = displs( 1:npe ) * SIZE( mydata, 1 ) ! CALL MPI_GATHERV( mydata, nrecv( myid + 1 ), MPI_INTEGER, & alldata, nrecv, ndisp, MPI_INTEGER, root, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) ! DEALLOCATE( nrecv, ndisp ) ! #else IF ( SIZE( alldata, 1 ) /= SIZE( mydata, 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( alldata, 2 ) < recvcount( 1 ) ) CALL mp_stop( 8075 ) IF ( SIZE( mydata, 2 ) < recvcount( 1 ) ) CALL mp_stop( 8076 ) ! alldata( :, 1:recvcount( 1 ) ) = mydata( :, 1:recvcount( 1 ) ) #endif RETURN END SUBROUTINE mp_gatherv_im !------------------------------------------------------------------------------! SUBROUTINE mp_set_displs( recvcount, displs, ntot, nproc ) ! Given the number of elements on each processor (recvcount), this subroutine ! sets the correct offsets (displs) to collect them on a single ! array with contiguous elemets IMPLICIT NONE INTEGER, INTENT(IN) :: recvcount(:) ! number of elements on each processor INTEGER, INTENT(OUT) :: displs(:) ! offsets/displacements INTEGER, INTENT(OUT) :: ntot INTEGER, INTENT(IN) :: nproc INTEGER :: i displs( 1 ) = 0 ! #if defined (__MPI) IF( nproc < 1 ) CALL mp_stop( 8090 ) DO i = 2, nproc displs( i ) = displs( i - 1 ) + recvcount( i - 1 ) END DO ntot = displs( nproc ) + recvcount( nproc ) #else ntot = recvcount( 1 ) #endif RETURN END SUBROUTINE mp_set_displs !------------------------------------------------------------------------------! SUBROUTINE mp_alltoall_c3d( sndbuf, rcvbuf, gid ) IMPLICIT NONE COMPLEX(DP) :: sndbuf( :, :, : ) COMPLEX(DP) :: rcvbuf( :, :, : ) INTEGER, INTENT(IN) :: gid INTEGER :: nsiz, group, ierr, npe #if defined (__MPI) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) IF ( SIZE( sndbuf, 3 ) < npe ) CALL mp_stop( 8069 ) IF ( SIZE( rcvbuf, 3 ) < npe ) CALL mp_stop( 8069 ) nsiz = SIZE( sndbuf, 1 ) * SIZE( sndbuf, 2 ) CALL MPI_ALLTOALL( sndbuf, nsiz, MPI_DOUBLE_COMPLEX, & rcvbuf, nsiz, MPI_DOUBLE_COMPLEX, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) #else rcvbuf = sndbuf #endif RETURN END SUBROUTINE mp_alltoall_c3d !------------------------------------------------------------------------------! SUBROUTINE mp_alltoall_i3d( sndbuf, rcvbuf, gid ) IMPLICIT NONE INTEGER :: sndbuf( :, :, : ) INTEGER :: rcvbuf( :, :, : ) INTEGER, INTENT(IN) :: gid INTEGER :: nsiz, group, ierr, npe #if defined (__MPI) group = gid CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8069 ) IF ( SIZE( sndbuf, 3 ) < npe ) CALL mp_stop( 8069 ) IF ( SIZE( rcvbuf, 3 ) < npe ) CALL mp_stop( 8069 ) nsiz = SIZE( sndbuf, 1 ) * SIZE( sndbuf, 2 ) CALL MPI_ALLTOALL( sndbuf, nsiz, MPI_INTEGER, & rcvbuf, nsiz, MPI_INTEGER, group, ierr ) IF (ierr/=0) CALL mp_stop( 8074 ) #else rcvbuf = sndbuf #endif RETURN END SUBROUTINE mp_alltoall_i3d SUBROUTINE mp_circular_shift_left_i0( buf, itag, gid ) IMPLICIT NONE INTEGER :: buf INTEGER, INTENT(IN) :: itag INTEGER, INTENT(IN) :: gid INTEGER :: nsiz, group, ierr, npe, sour, dest, mype #if defined (__MPI) INTEGER :: istatus( mpi_status_size ) ! group = gid ! CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8100 ) CALL mpi_comm_rank( group, mype, ierr ) IF (ierr/=0) CALL mp_stop( 8101 ) ! sour = mype + 1 IF( sour == npe ) sour = 0 dest = mype - 1 IF( dest == -1 ) dest = npe - 1 ! CALL MPI_Sendrecv_replace( buf, 1, MPI_INTEGER, & dest, itag, sour, itag, group, istatus, ierr) ! IF (ierr/=0) CALL mp_stop( 8102 ) ! #else ! do nothing #endif RETURN END SUBROUTINE mp_circular_shift_left_i0 SUBROUTINE mp_circular_shift_left_i1( buf, itag, gid ) IMPLICIT NONE INTEGER :: buf(:) INTEGER, INTENT(IN) :: itag INTEGER, INTENT(IN) :: gid INTEGER :: nsiz, group, ierr, npe, sour, dest, mype #if defined (__MPI) INTEGER :: istatus( mpi_status_size ) ! group = gid ! CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8100 ) CALL mpi_comm_rank( group, mype, ierr ) IF (ierr/=0) CALL mp_stop( 8101 ) ! sour = mype + 1 IF( sour == npe ) sour = 0 dest = mype - 1 IF( dest == -1 ) dest = npe - 1 ! CALL MPI_Sendrecv_replace( buf, SIZE(buf), MPI_INTEGER, & dest, itag, sour, itag, group, istatus, ierr) ! IF (ierr/=0) CALL mp_stop( 8102 ) ! #else ! do nothing #endif RETURN END SUBROUTINE mp_circular_shift_left_i1 SUBROUTINE mp_circular_shift_left_i2( buf, itag, gid ) IMPLICIT NONE INTEGER :: buf(:,:) INTEGER, INTENT(IN) :: itag INTEGER, INTENT(IN) :: gid INTEGER :: nsiz, group, ierr, npe, sour, dest, mype #if defined (__MPI) INTEGER :: istatus( mpi_status_size ) ! group = gid ! CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8100 ) CALL mpi_comm_rank( group, mype, ierr ) IF (ierr/=0) CALL mp_stop( 8101 ) ! sour = mype + 1 IF( sour == npe ) sour = 0 dest = mype - 1 IF( dest == -1 ) dest = npe - 1 ! CALL MPI_Sendrecv_replace( buf, SIZE(buf), MPI_INTEGER, & dest, itag, sour, itag, group, istatus, ierr) ! IF (ierr/=0) CALL mp_stop( 8102 ) ! #else ! do nothing #endif RETURN END SUBROUTINE mp_circular_shift_left_i2 SUBROUTINE mp_circular_shift_left_r2d( buf, itag, gid ) IMPLICIT NONE REAL(DP) :: buf( :, : ) INTEGER, INTENT(IN) :: itag INTEGER, INTENT(IN) :: gid INTEGER :: nsiz, group, ierr, npe, sour, dest, mype #if defined (__MPI) INTEGER :: istatus( mpi_status_size ) ! group = gid ! CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8100 ) CALL mpi_comm_rank( group, mype, ierr ) IF (ierr/=0) CALL mp_stop( 8101 ) ! sour = mype + 1 IF( sour == npe ) sour = 0 dest = mype - 1 IF( dest == -1 ) dest = npe - 1 ! CALL MPI_Sendrecv_replace( buf, SIZE(buf), MPI_DOUBLE_PRECISION, & dest, itag, sour, itag, group, istatus, ierr) ! IF (ierr/=0) CALL mp_stop( 8102 ) ! #else ! do nothing #endif RETURN END SUBROUTINE mp_circular_shift_left_r2d SUBROUTINE mp_circular_shift_left_c2d( buf, itag, gid ) IMPLICIT NONE COMPLEX(DP) :: buf( :, : ) INTEGER, INTENT(IN) :: itag INTEGER, INTENT(IN) :: gid INTEGER :: nsiz, group, ierr, npe, sour, dest, mype #if defined (__MPI) INTEGER :: istatus( mpi_status_size ) ! group = gid ! CALL mpi_comm_size( group, npe, ierr ) IF (ierr/=0) CALL mp_stop( 8100 ) CALL mpi_comm_rank( group, mype, ierr ) IF (ierr/=0) CALL mp_stop( 8101 ) ! sour = mype + 1 IF( sour == npe ) sour = 0 dest = mype - 1 IF( dest == -1 ) dest = npe - 1 ! CALL MPI_Sendrecv_replace( buf, SIZE(buf), MPI_DOUBLE_COMPLEX, & dest, itag, sour, itag, group, istatus, ierr) ! IF (ierr/=0) CALL mp_stop( 8102 ) ! #else ! do nothing #endif RETURN END SUBROUTINE mp_circular_shift_left_c2d FUNCTION mp_get_comm_null( ) IMPLICIT NONE INTEGER :: mp_get_comm_null mp_get_comm_null = MPI_COMM_NULL END FUNCTION mp_get_comm_null FUNCTION mp_get_comm_self( ) IMPLICIT NONE INTEGER :: mp_get_comm_self mp_get_comm_self = MPI_COMM_SELF END FUNCTION mp_get_comm_self !------------------------------------------------------------------------------! END MODULE mp !------------------------------------------------------------------------------! espresso-5.1/Modules/stick_set.f900000644000175000017500000005706212341373034015234 0ustar mbamba! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------= MODULE stick_set !=----------------------------------------------------------------------= ! ... Distribute G-vectors across processors as sticks and planes, ! ... initialize FFT descriptors for both dense and smooth grids ! ... Most important dependencies: next three modules USE stick_base ! USE kinds, ONLY: DP USE io_global, ONLY: ionode, stdout USE fft_types, ONLY: fft_dlay_descriptor, fft_dlay_allocate, & fft_dlay_set, fft_dlay_scalar IMPLICIT NONE PRIVATE SAVE PUBLIC :: pstickset, pstickset_custom !=----------------------------------------------------------------------= CONTAINS !=----------------------------------------------------------------------= SUBROUTINE pstickset( gamma_only, bg, gcut, gkcut, gcuts, & dfftp, dffts, ngw, ngm, ngs, mype, root, nproc, comm, nogrp_ ) LOGICAL, INTENT(in) :: gamma_only ! ... bg(:,1), bg(:,2), bg(:,3) reciprocal space base vectors. REAL(DP), INTENT(in) :: bg(3,3) REAL(DP), INTENT(in) :: gcut, gkcut, gcuts TYPE(fft_dlay_descriptor), INTENT(inout) :: dfftp, dffts INTEGER, INTENT(out) :: ngw, ngm, ngs INTEGER, INTENT(IN) :: mype, root, nproc, comm INTEGER, INTENT(IN) :: nogrp_ LOGICAL :: tk INTEGER :: ub(3), lb(3) ! ... ub(i), lb(i) upper and lower miller indexes ! ! ... Plane Waves ! INTEGER, ALLOCATABLE :: stw(:,:) ! ... stick map (wave functions), stw(i,j) = number of G-vector in the ! ... stick whose x and y miller index are i and j INTEGER, ALLOCATABLE :: nstpw(:) ! ... number of sticks (wave functions), nstpw(ip) = number of stick ! ... for processor ip INTEGER, ALLOCATABLE :: sstpw(:) ! ... number of G-vectors (wave functions), sstpw(ip) = sum of the ! ... sticks length for processor ip = number of G-vectors ! ... owned by the processor ip INTEGER :: nstw, nstpwx ! ... nstw local number of sticks (wave functions) ! ... nstpwx maximum among all processors of nstw ! ! ... Potentials ! INTEGER, ALLOCATABLE :: st(:,:) ! ... stick map (potentials), st(i,j) = number of G-vector in the ! ... stick whose x and y miller index are i and j INTEGER, ALLOCATABLE :: nstp(:) ! ... number of sticks (potentials), nstp(ip) = number of stick ! ... for processor ip INTEGER, ALLOCATABLE :: sstp(:) ! ... number of G-vectors (potentials), sstp(ip) = sum of the ! ... sticks length for processor ip = number of G-vectors ! ... owned by the processor ip INTEGER :: nst, nstpx ! ... nst local number of sticks (potentials) ! ... nstpx maximum among all processors of nst ! ! ... Smooth Mesh ! INTEGER, ALLOCATABLE :: sts(:,:) ! ... stick map (smooth mesh), sts(i,j) = number of G-vector in the ! ... stick whose x and y miller index are i and j INTEGER, ALLOCATABLE :: nstps(:) ! ... number of sticks (smooth mesh), nstp(ip) = number of stick ! ... for processor ip INTEGER, ALLOCATABLE :: sstps(:) ! ... number of G-vectors (smooth mesh), sstps(ip) = sum of the ! ... sticks length for processor ip = number of G-vectors ! ... owned by the processor ip INTEGER :: nsts ! ... nsts local number of sticks (smooth mesh) INTEGER, ALLOCATABLE :: ist(:,:) ! sticks indices ordered INTEGER :: ip, ngm_ , ngs_ INTEGER, ALLOCATABLE :: idx(:) tk = .not. gamma_only ub(1) = ( dfftp%nr1 - 1 ) / 2 ub(2) = ( dfftp%nr2 - 1 ) / 2 ub(3) = ( dfftp%nr3 - 1 ) / 2 lb = - ub ! ... Allocate maps ALLOCATE( stw ( lb(1):ub(1), lb(2):ub(2) ) ) ALLOCATE( st ( lb(1):ub(1), lb(2):ub(2) ) ) ALLOCATE( sts ( lb(1):ub(1), lb(2):ub(2) ) ) st = 0 stw = 0 sts = 0 ! ... Fill in the stick maps, for given g-space base and cut-off CALL sticks_maps( tk, ub, lb, bg(:,1), bg(:,2), bg(:,3), & gcut, gkcut, gcuts, st, stw, sts, mype, & nproc, comm ) ! ... Now count the number of stick nst and nstw nst = count( st > 0 ) nstw = count( stw > 0 ) nsts = count( sts > 0 ) ALLOCATE(ist(nst,5)) ALLOCATE(nstp(nproc)) ALLOCATE(sstp(nproc)) ALLOCATE(nstpw(nproc)) ALLOCATE(sstpw(nproc)) ALLOCATE(nstps(nproc)) ALLOCATE(sstps(nproc)) ! ... initialize the sticks indexes array ist CALL sticks_countg( tk, ub, lb, st, stw, sts, & ist(:,1), ist(:,2), ist(:,4), ist(:,3), ist(:,5) ) ! ... Sorts the sticks according to their length ALLOCATE( idx( nst ) ) CALL sticks_sort( ist(:,4), ist(:,3), ist(:,5), nst, idx, nproc ) ! ... Set as first stick the stick containing the G=0 ! ! DO iss = 1, nst ! IF( ist( idx( iss ), 1 ) == 0 .AND. ist( idx( iss ), 2 ) == 0 ) EXIT ! END DO ! itmp = idx( 1 ) ! idx( 1 ) = idx( iss ) ! idx( iss ) = itmp CALL sticks_dist( tk, ub, lb, idx, ist(:,1), ist(:,2), ist(:,4), ist(:,3), ist(:,5), & nst, nstp, nstpw, nstps, sstp, sstpw, sstps, st, stw, sts, nproc ) ngw = sstpw( mype + 1 ) ngm = sstp( mype + 1 ) ngs = sstps( mype + 1 ) CALL sticks_pairup( tk, ub, lb, idx, ist(:,1), ist(:,2), ist(:,4), ist(:,3), ist(:,5), & nst, nstp, nstpw, nstps, sstp, sstpw, sstps, st, stw, sts, nproc ) ! ... Allocate and Set fft data layout descriptors #if defined __MPI CALL fft_dlay_allocate( dfftp, mype, root, nproc, comm, nogrp_ , dfftp%nr1x, dfftp%nr2x ) CALL fft_dlay_allocate( dffts, mype, root, nproc, comm, nogrp_ , dffts%nr1x, dffts%nr2x ) CALL fft_dlay_set( dfftp, tk, nst, dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, & ub, lb, idx, ist(:,1), ist(:,2), nstp, nstpw, sstp, sstpw, st, stw ) CALL fft_dlay_set( dffts, tk, nsts, dffts%nr1, dffts%nr2, dffts%nr3, dffts%nr1x, dffts%nr2x, dffts%nr3x, & ub, lb, idx, ist(:,1), ist(:,2), nstps, nstpw, sstps, sstpw, sts, stw ) #else DEALLOCATE( stw ) ALLOCATE( stw( lb(2) : ub(2), lb(3) : ub(3) ) ) CALL sticks_maps_scalar( (.not.tk), ub, lb, bg(:,1),bg(:,2),bg(:,3),& gcut, gkcut, gcuts, stw, ngm_ , ngs_ ) IF( ngm_ /= ngm ) CALL errore( ' pstickset ', ' inconsistent ngm ', abs( ngm - ngm_ ) ) IF( ngs_ /= ngs ) CALL errore( ' pstickset ', ' inconsistent ngs ', abs( ngs - ngs_ ) ) CALL fft_dlay_allocate( dfftp, mype, root, nproc, comm, 1, max(dfftp%nr1x, dfftp%nr3x), dfftp%nr2x ) CALL fft_dlay_allocate( dffts, mype, root, nproc, comm, 1, max(dffts%nr1x, dffts%nr3x), dffts%nr2x ) CALL fft_dlay_scalar( dfftp, ub, lb, dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, stw ) CALL fft_dlay_scalar( dffts, ub, lb, dffts%nr1, dffts%nr2, dffts%nr3, dffts%nr1x, dffts%nr2x, dffts%nr3x, stw ) #endif ! ... Maximum number of sticks (potentials) nstpx = maxval( nstp ) ! ... Maximum number of sticks (wave func.) nstpwx = maxval( nstpw ) IF( dffts%have_task_groups ) THEN ! ! Initialize task groups. ! Note that this call modify dffts adding task group data. ! CALL task_groups_init( dffts ) ! END IF IF (ionode) THEN WRITE( stdout,*) IF ( nproc > 1 ) THEN WRITE( stdout, '(5X,"Parallelization info")') ELSE WRITE( stdout, '(5X,"G-vector sticks info")') ENDIF WRITE( stdout, '(5X,"--------------------")') WRITE( stdout, '(5X,"sticks: dense smooth PW", & & 5X,"G-vecs: dense smooth PW")') IF ( nproc > 1 ) THEN WRITE( stdout,'(5X,"Min",4X,2I8,I7,12X,2I9,I8)') & minval(nstp), minval(nstps), minval(nstpw), & minval(sstp), minval(sstps), minval(sstpw) WRITE( stdout,'(5X,"Max",4X,2I8,I7,12X,2I9,I8)') & maxval(nstp), maxval(nstps), maxval(nstpw), & maxval(sstp), maxval(sstps), maxval(sstpw) END IF WRITE( stdout,'(5X,"Sum",4X,2I8,I7,12X,2I9,I8)') & sum(nstp), sum(nstps), sum(nstpw), & sum(sstp), sum(sstps), sum(sstpw) ! in the case k=0, the lines above and below differ: ! above all sticks, below only those in the half sphere IF ( .NOT. tk ) & WRITE( stdout,'(5X,"Tot",4X,2I8,I7)') nst, nsts, nstw ENDIF DEALLOCATE( ist ) DEALLOCATE( idx ) DEALLOCATE( st, stw, sts ) DEALLOCATE( sstp ) DEALLOCATE( nstp ) DEALLOCATE( sstpw ) DEALLOCATE( nstpw ) DEALLOCATE( sstps ) DEALLOCATE( nstps ) IF(ionode) WRITE( stdout,*) RETURN END SUBROUTINE pstickset !---------------------------------------------------------------------- SUBROUTINE pstickset_custom( gamma_only, bg, gcut, gkcut, gcuts, & dfftp, dffts, ngw, ngm, ngs, mype, root, nproc, comm, nogrp_ ) LOGICAL, INTENT(in) :: gamma_only ! ... bg(:,1), bg(:,2), bg(:,3) reciprocal space base vectors. REAL(DP), INTENT(in) :: bg(3,3) REAL(DP), INTENT(in) :: gcut, gkcut, gcuts TYPE(fft_dlay_descriptor), INTENT(inout) :: dfftp, dffts INTEGER, INTENT(inout) :: ngw, ngm, ngs INTEGER, INTENT(IN) :: mype, root, nproc, comm INTEGER, INTENT(IN) :: nogrp_ LOGICAL :: tk INTEGER :: ub(3), lb(3) ! ... ub(i), lb(i) upper and lower miller indexes ! ! ... Plane Waves ! INTEGER, ALLOCATABLE :: stw(:,:) ! ... stick map (wave functions), stw(i,j) = number of G-vector in the ! ... stick whose x and y miller index are i and j INTEGER, ALLOCATABLE :: nstpw(:) ! ... number of sticks (wave functions), nstpw(ip) = number of stick ! ... for processor ip INTEGER, ALLOCATABLE :: sstpw(:) ! ... number of G-vectors (wave functions), sstpw(ip) = sum of the ! ... sticks length for processor ip = number of G-vectors ! ... owned by the processor ip INTEGER :: nstw, nstpwx ! ... nstw local number of sticks (wave functions) ! ... nstpwx maximum among all processors of nstw ! ! ... Potentials ! INTEGER, ALLOCATABLE :: st(:,:) ! ... stick map (potentials), st(i,j) = number of G-vector in the ! ... stick whose x and y miller index are i and j INTEGER, ALLOCATABLE :: nstp(:) ! ... number of sticks (potentials), nstp(ip) = number of stick ! ... for processor ip INTEGER, ALLOCATABLE :: sstp(:) ! ... number of G-vectors (potentials), sstp(ip) = sum of the ! ... sticks length for processor ip = number of G-vectors ! ... owned by the processor ip INTEGER :: nst, nstpx ! ... nst local number of sticks (potentials) ! ... nstpx maximum among all processors of nst ! ! ... Smooth Mesh ! INTEGER, ALLOCATABLE :: sts(:,:) ! ... stick map (smooth mesh), sts(i,j) = number of G-vector in the ! ... stick whose x and y miller index are i and j INTEGER, ALLOCATABLE :: nstps(:) ! ... number of sticks (smooth mesh), nstp(ip) = number of stick ! ... for processor ip INTEGER, ALLOCATABLE :: sstps(:) ! ... number of G-vectors (smooth mesh), sstps(ip) = sum of the ! ... sticks length for processor ip = number of G-vectors ! ... owned by the processor ip INTEGER :: nsts ! ... nsts local number of sticks (smooth mesh) INTEGER, ALLOCATABLE :: ist(:,:) ! sticks indices ordered INTEGER :: ip, ngm_ , ngs_ INTEGER, ALLOCATABLE :: idx(:) tk = .not. gamma_only ub(1) = ( dfftp%nr1 - 1 ) / 2 ub(2) = ( dfftp%nr2 - 1 ) / 2 ub(3) = ( dfftp%nr3 - 1 ) / 2 lb = - ub ! ... Allocate maps ALLOCATE( stw ( lb(1):ub(1), lb(2):ub(2) ) ) ALLOCATE( st ( lb(1):ub(1), lb(2):ub(2) ) ) ALLOCATE( sts ( lb(1):ub(1), lb(2):ub(2) ) ) st = 0 stw = 0 sts = 0 ! ... Fill in the stick maps, for given g-space base and cut-off CALL sticks_maps( tk, ub, lb, bg(:,1), bg(:,2), bg(:,3), & gcut, gkcut, gcuts, st, stw, sts, mype, & nproc, comm ) ! ... Now count the number of stick nst and nstw nst = count( st > 0 ) nstw = count( stw > 0 ) nsts = count( sts > 0 ) ALLOCATE(ist(nst,5)) ALLOCATE(nstp(nproc)) ALLOCATE(sstp(nproc)) ALLOCATE(nstpw(nproc)) ALLOCATE(sstpw(nproc)) ALLOCATE(nstps(nproc)) ALLOCATE(sstps(nproc)) ! ... initialize the sticks indexes array ist CALL sticks_countg( tk, ub, lb, st, stw, sts, & ist(:,1), ist(:,2), ist(:,4), ist(:,3), ist(:,5) ) ! ... Sorts the sticks according to their length ALLOCATE( idx( nst ) ) CALL sticks_sort( ist(:,4), ist(:,3), ist(:,5), nst, idx, nproc ) ! ... Distribute the sticks as in dfftp CALL sticks_ordered_dist( tk, ub, lb, idx, ist(:,1), ist(:,2), ist(:,4), ist(:,3), ist(:,5), & nst, nstp, nstpw, nstps, sstp, sstpw, sstps, st, stw, sts, nproc ) ngw = sstpw( mype + 1 ) ngm = sstp( mype + 1 ) ngs = sstps( mype + 1 ) CALL sticks_pairup( tk, ub, lb, idx, ist(:,1), ist(:,2), ist(:,4), ist(:,3), ist(:,5), & nst, nstp, nstpw, nstps, sstp, sstpw, sstps, st, stw, sts, nproc ) ! ... Allocate and Set fft data layout descriptors #if defined __MPI CALL fft_dlay_allocate( dffts, mype, root, nproc, comm, nogrp_ , dffts%nr1x, dffts%nr2x ) CALL fft_dlay_set( dffts, tk, nsts, dffts%nr1, dffts%nr2, dffts%nr3, dffts%nr1x, dffts%nr2x, dffts%nr3x, & ub, lb, idx, ist(:,1), ist(:,2), nstps, nstpw, sstps, sstpw, sts, stw ) #else DEALLOCATE( stw ) ALLOCATE( stw( lb(2) : ub(2), lb(3) : ub(3) ) ) CALL sticks_maps_scalar( (.not.tk), ub, lb, bg(:,1),bg(:,2),bg(:,3),& gcut, gkcut, gcuts, stw, ngm_ , ngs_ ) IF( ngs_ /= ngs ) CALL errore( ' pstickset_custom ', ' inconsistent ngs ', abs( ngs - ngs_ ) ) CALL fft_dlay_allocate( dffts, mype, root, nproc, comm, 1, max(dffts%nr1x, dffts%nr3x), dffts%nr2x ) CALL fft_dlay_scalar( dffts, ub, lb, dffts%nr1, dffts%nr2, dffts%nr3, dffts%nr1x, dffts%nr2x, dffts%nr3x, stw ) #endif ! ... Maximum number of sticks (potentials) nstpx = maxval( nstp ) ! ... Maximum number of sticks (wave func.) nstpwx = maxval( nstpw ) ! IF( dffts%have_task_groups ) THEN ! ! Initialize task groups. ! Note that this call modify dffts adding task group data. ! ! CALL task_groups_init( dffts ) ! ! END IF !!$ IF (ionode) THEN !!$ WRITE( stdout,*) !!$ IF ( nproc > 1 ) THEN !!$ WRITE( stdout, '(5X,"Parallelization info")') !!$ ELSE !!$ WRITE( stdout, '(5X,"G-vector sticks info")') !!$ ENDIF !!$ WRITE( stdout, '(5X,"--------------------")') !!$ WRITE( stdout, '(5X,"sticks: dense smooth PW", & !!$ & 5X,"G-vecs: dense smooth PW")') !!$ IF ( nproc > 1 ) THEN !!$ WRITE( stdout,'(5X,"Min",4X,2I8,I7,12X,2I9,I8)') & !!$ minval(nstp), minval(nstps), minval(nstpw), & !!$ minval(sstp), minval(sstps), minval(sstpw) !!$ WRITE( stdout,'(5X,"Max",4X,2I8,I7,12X,2I9,I8)') & !!$ maxval(nstp), maxval(nstps), maxval(nstpw), & !!$ maxval(sstp), maxval(sstps), maxval(sstpw) !!$ END IF !!$ WRITE( stdout,'(5X,"Sum",4X,2I8,I7,12X,2I9,I8)') & !!$ sum(nstp), sum(nstps), sum(nstpw), & !!$ sum(sstp), sum(sstps), sum(sstpw) !!$ ! in the case k=0, the lines above and below differ: !!$ ! above all sticks, below only those in the half sphere !!$ IF ( .NOT. tk ) & !!$ WRITE( stdout,'(5X,"Tot",4X,2I8,I7)') nst, nsts, nstw !!$ ENDIF DEALLOCATE( ist ) DEALLOCATE( idx ) DEALLOCATE( st, stw, sts ) DEALLOCATE( sstp ) DEALLOCATE( nstp ) DEALLOCATE( sstpw ) DEALLOCATE( nstpw ) DEALLOCATE( sstps ) DEALLOCATE( nstps ) IF(ionode) WRITE( stdout,*) RETURN END SUBROUTINE pstickset_custom !----------------------------------------- ! Task groups Contributed by C. Bekas, October 2005 ! Revised by C. Cavazzoni !-------------------------------------------- SUBROUTINE task_groups_init( dffts ) USE parallel_include ! USE io_global, ONLY : stdout USE fft_types, ONLY : fft_dlay_descriptor ! T.G. ! NPGRP: Number of processors per group ! NOGRP: Number of processors per orbital task group IMPLICIT NONE TYPE(fft_dlay_descriptor), INTENT(inout) :: dffts !---------------------------------- !Local Variables declaration !---------------------------------- INTEGER :: I INTEGER :: IERR INTEGER :: num_planes, num_sticks INTEGER :: nnrsx_vec ( dffts%nproc ) INTEGER :: pgroup( dffts%nproc ) INTEGER :: strd CALL task_groups_init_first( dffts ) ! #ifdef DEBUG IF ( dffts%nogrp > 1 ) WRITE( stdout, 100 ) dffts%nogrp, dffts%npgrp 100 FORMAT( /,3X,'Task Groups are in USE',/,3X,'groups and procs/group : ',I5,I5 ) #endif !Find maximum chunk of local data concerning coefficients of eigenfunctions in g-space #if defined __MPI CALL MPI_Allgather( dffts%nnr, 1, MPI_INTEGER, nnrsx_vec, 1, MPI_INTEGER, dffts%comm, IERR) strd = maxval( nnrsx_vec( 1:dffts%nproc ) ) #else strd = dffts%nnr #endif IF( strd /= dffts%tg_nnr ) CALL errore( ' task_groups_init ', ' inconsistent nnr ', 1 ) !------------------------------------------------------------------------------------- !C. Bekas...TASK GROUP RELATED. FFT DATA STRUCTURES ARE ALREADY DEFINED ABOVE !------------------------------------------------------------------------------------- !dfft%nsw(me) holds the number of z-sticks for the current processor per wave-function !We can either send these in the group with an mpi_allgather...or put the !in the PSIS vector (in special positions) and send them with them. !Otherwise we can do this once at the beginning, before the loop. !we choose to do the latter one. !------------------------------------------------------------------------------------- ! ! ALLOCATE( dffts%tg_nsw(dffts%nproc)) ALLOCATE( dffts%tg_npp(dffts%nproc)) num_sticks = 0 num_planes = 0 DO i = 1, dffts%nogrp num_sticks = num_sticks + dffts%nsw( dffts%nolist(i) + 1 ) num_planes = num_planes + dffts%npp( dffts%nolist(i) + 1 ) ENDDO #if defined __MPI CALL MPI_ALLGATHER(num_sticks, 1, MPI_INTEGER, dffts%tg_nsw(1), 1, MPI_INTEGER, dffts%comm, IERR) CALL MPI_ALLGATHER(num_planes, 1, MPI_INTEGER, dffts%tg_npp(1), 1, MPI_INTEGER, dffts%comm, IERR) #else dffts%tg_nsw(1) = num_sticks dffts%tg_npp(1) = num_planes #endif ALLOCATE( dffts%tg_snd( dffts%nogrp ) ) ALLOCATE( dffts%tg_rcv( dffts%nogrp ) ) ALLOCATE( dffts%tg_psdsp( dffts%nogrp ) ) ALLOCATE( dffts%tg_usdsp( dffts%nogrp ) ) ALLOCATE( dffts%tg_rdsp( dffts%nogrp ) ) dffts%tg_snd(1) = dffts%nr3x * dffts%nsw( dffts%mype + 1 ) IF( dffts%nr3x * dffts%nsw( dffts%mype + 1 ) > dffts%tg_nnr ) THEN CALL errore( ' task_groups_init ', ' inconsistent dffts%tg_nnr ', 1 ) ENDIF dffts%tg_psdsp(1) = 0 dffts%tg_usdsp(1) = 0 dffts%tg_rcv(1) = dffts%nr3x * dffts%nsw( dffts%nolist(1) + 1 ) dffts%tg_rdsp(1) = 0 DO i = 2, dffts%nogrp dffts%tg_snd(i) = dffts%nr3x * dffts%nsw( dffts%mype + 1 ) dffts%tg_psdsp(i) = dffts%tg_psdsp(i-1) + dffts%tg_nnr dffts%tg_usdsp(i) = dffts%tg_usdsp(i-1) + dffts%tg_snd(i-1) dffts%tg_rcv(i) = dffts%nr3x * dffts%nsw( dffts%nolist(i) + 1 ) dffts%tg_rdsp(i) = dffts%tg_rdsp(i-1) + dffts%tg_rcv(i-1) ENDDO RETURN END SUBROUTINE task_groups_init ! SUBROUTINE task_groups_init_first( dffts ) USE parallel_include ! USE fft_types, ONLY : fft_dlay_descriptor ! IMPLICIT NONE ! TYPE(fft_dlay_descriptor), INTENT(inout) :: dffts ! INTEGER :: i, n1, ipos, color, key, ierr, itsk, ntsk INTEGER :: pgroup( dffts%nproc ) ! !SUBDIVIDE THE PROCESSORS IN GROUPS ! DO i = 1, dffts%nproc pgroup( i ) = i - 1 ENDDO ! !LIST OF PROCESSORS IN MY ORBITAL GROUP ! ! processors in these group have contiguous indexes ! n1 = ( dffts%mype / dffts%nogrp ) * dffts%nogrp - 1 DO i = 1, dffts%nogrp dffts%nolist( i ) = pgroup( n1 + i + 1 ) IF( dffts%mype == dffts%nolist( i ) ) ipos = i - 1 ENDDO ! !LIST OF PROCESSORS IN MY PLANE WAVE GROUP ! DO I = 1, dffts%npgrp dffts%nplist( i ) = pgroup( ipos + ( i - 1 ) * dffts%nogrp + 1 ) ENDDO ! !SET UP THE GROUPS ! ! !CREATE ORBITAL GROUPS ! #if defined __MPI color = dffts%mype / dffts%nogrp key = MOD( dffts%mype , dffts%nogrp ) CALL MPI_COMM_SPLIT( dffts%comm, color, key, dffts%ogrp_comm, ierr ) if( ierr /= 0 ) & CALL errore( ' task_groups_init_first ', ' creating ogrp_comm ', ABS(ierr) ) CALL MPI_COMM_RANK( dffts%ogrp_comm, itsk, IERR ) CALL MPI_COMM_SIZE( dffts%ogrp_comm, ntsk, IERR ) IF( dffts%nogrp /= ntsk ) CALL errore( ' task_groups_init_first ', ' ogrp_comm size ', ntsk ) DO i = 1, dffts%nogrp IF( dffts%mype == dffts%nolist( i ) ) THEN IF( (i-1) /= itsk ) CALL errore( ' task_groups_init_first ', ' ogrp_comm rank ', itsk ) END IF END DO #endif ! !CREATE PLANEWAVE GROUPS ! #if defined __MPI color = MOD( dffts%mype , dffts%nogrp ) key = dffts%mype / dffts%nogrp CALL MPI_COMM_SPLIT( dffts%comm, color, key, dffts%pgrp_comm, ierr ) if( ierr /= 0 ) & CALL errore( ' task_groups_init_first ', ' creating pgrp_comm ', ABS(ierr) ) CALL MPI_COMM_RANK( dffts%pgrp_comm, itsk, IERR ) CALL MPI_COMM_SIZE( dffts%pgrp_comm, ntsk, IERR ) IF( dffts%npgrp /= ntsk ) CALL errore( ' task_groups_init_first ', ' pgrp_comm size ', ntsk ) DO i = 1, dffts%npgrp IF( dffts%mype == dffts%nplist( i ) ) THEN IF( (i-1) /= itsk ) CALL errore( ' task_groups_init_first ', ' pgrp_comm rank ', itsk ) END IF END DO dffts%me_pgrp = itsk #endif RETURN END SUBROUTINE task_groups_init_first ! !=----------------------------------------------------------------------= END MODULE stick_set !=----------------------------------------------------------------------= espresso-5.1/Modules/mp_wave.f900000644000175000017500000005276312341373034014705 0ustar mbamba! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! MODULE mp_wave IMPLICIT NONE SAVE CONTAINS SUBROUTINE mergewf ( pw, pwt, ngwl, ig_l2g, mpime, nproc, root, comm ) ! ... This subroutine merges the pieces of a wave functions (pw) splitted across ! ... processors into a total wave function (pwt) containing al the components ! ... in a pre-defined order (the same as if only one processor is used) USE kinds USE parallel_include IMPLICIT NONE COMPLEX(DP), intent(in) :: PW(:) COMPLEX(DP), intent(out) :: PWT(:) INTEGER, INTENT(IN) :: mpime ! index of the calling processor ( starting from 0 ) INTEGER, INTENT(IN) :: nproc ! number of processors INTEGER, INTENT(IN) :: root ! root processor ( the one that should receive the data ) INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: ig_l2g(:) INTEGER, INTENT(IN) :: ngwl INTEGER, ALLOCATABLE :: ig_ip(:) COMPLEX(DP), ALLOCATABLE :: pw_ip(:) INTEGER :: ierr, i, ip, ngw_ip, ngw_lmax, itmp, igwx, gid #if defined __MPI INTEGER :: istatus(MPI_STATUS_SIZE) #endif ! ! ... Subroutine Body ! igwx = MAXVAL( ig_l2g(1:ngwl) ) #if defined __MPI gid = comm ! ... Get local and global wavefunction dimensions CALL MPI_ALLREDUCE( ngwl, ngw_lmax, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE( igwx, itmp, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) igwx = itmp #endif IF( igwx > SIZE( pwt ) ) & CALL errore(' mergewf ',' wrong size for pwt ',SIZE(pwt) ) #if defined __MPI DO ip = 1, nproc IF( (ip-1) /= root ) THEN ! ... In turn each processors send to root the wave components and their indexes in the ! ... global array IF ( mpime == (ip-1) ) THEN CALL MPI_SEND( ig_l2g, ngwl, MPI_INTEGER, ROOT, IP, gid, IERR ) CALL MPI_SEND( pw(1), ngwl, MPI_DOUBLE_COMPLEX, ROOT, IP+NPROC, gid, IERR ) END IF IF ( mpime == root) THEN ALLOCATE(ig_ip(ngw_lmax)) ALLOCATE(pw_ip(ngw_lmax)) CALL MPI_RECV( ig_ip, ngw_lmax, MPI_INTEGER, (ip-1), IP, gid, istatus, IERR ) CALL MPI_RECV( pw_ip, ngw_lmax, MPI_DOUBLE_COMPLEX, (ip-1), IP+NPROC, gid, istatus, IERR ) CALL MPI_GET_COUNT( istatus, MPI_DOUBLE_COMPLEX, ngw_ip, ierr ) DO I = 1, ngw_ip PWT(ig_ip(i)) = pw_ip(i) END DO DEALLOCATE(ig_ip) DEALLOCATE(pw_ip) END IF ELSE IF(mpime == root) THEN DO I = 1, ngwl PWT(ig_l2g(i)) = pw(i) END DO END IF END IF CALL MPI_BARRIER( gid, IERR ) END DO #elif ! defined __MPI DO I = 1, ngwl ! WRITE( stdout,*) 'MW ', ig_l2g(i), i PWT( ig_l2g(i) ) = pw(i) END DO #else CALL errore(' MERGEWF ',' no communication protocol ',0) #endif RETURN END SUBROUTINE mergewf !=----------------------------------------------------------------------------=! SUBROUTINE splitwf ( pw, pwt, ngwl, ig_l2g, mpime, nproc, root, comm ) ! ... This subroutine splits a total wave function (pwt) containing al the components ! ... in a pre-defined order (the same as if only one processor is used), across ! ... processors (pw). USE kinds USE parallel_include IMPLICIT NONE COMPLEX(DP), INTENT(OUT) :: PW(:) COMPLEX(DP), INTENT(IN) :: PWT(:) INTEGER, INTENT(IN) :: mpime, nproc, root INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: ig_l2g(:) INTEGER, INTENT(IN) :: ngwl INTEGER, ALLOCATABLE :: ig_ip(:) COMPLEX(DP), ALLOCATABLE :: pw_ip(:) INTEGER ierr, i, ngw_ip, ip, ngw_lmax, gid, igwx, itmp #if defined __MPI integer istatus(MPI_STATUS_SIZE) #endif ! ! ... Subroutine Body ! igwx = MAXVAL( ig_l2g(1:ngwl) ) #if defined __MPI gid = comm ! ... Get local and global wavefunction dimensions CALL MPI_ALLREDUCE(ngwl, ngw_lmax, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE(igwx, itmp , 1, MPI_INTEGER, MPI_MAX, gid, IERR ) igwx = itmp #endif IF( igwx > SIZE( pwt ) ) & CALL errore(' splitwf ',' wrong size for pwt ',SIZE(pwt) ) #if defined __MPI DO ip = 1, nproc ! ... In turn each processor send to root the the indexes of its wavefunction conponents ! ... Root receive the indexes and send the componens of the wavefunction read from the disk (pwt) IF ( (ip-1) /= root ) THEN IF ( mpime == (ip-1) ) THEN CALL MPI_SEND( ig_l2g, ngwl, MPI_INTEGER, ROOT, IP, gid,IERR) CALL MPI_RECV( pw(1), ngwl, MPI_DOUBLE_COMPLEX, ROOT, IP+NPROC, gid, istatus, IERR ) END IF IF ( mpime == root ) THEN ALLOCATE(ig_ip(ngw_lmax)) ALLOCATE(pw_ip(ngw_lmax)) CALL MPI_RECV( ig_ip, ngw_lmax, MPI_INTEGER, (ip-1), IP, gid, istatus, IERR ) CALL MPI_GET_COUNT(istatus, MPI_INTEGER, ngw_ip, ierr) DO i = 1, ngw_ip pw_ip(i) = PWT(ig_ip(i)) END DO CALL MPI_SEND( pw_ip, ngw_ip, MPI_DOUBLE_COMPLEX, (ip-1), IP+NPROC, gid, IERR ) DEALLOCATE(ig_ip) DEALLOCATE(pw_ip) END IF ELSE IF ( mpime == root ) THEN DO i = 1, ngwl pw(i) = PWT(ig_l2g(i)) END DO END IF END IF CALL MPI_BARRIER(gid, IERR) END DO #elif ! defined __MPI DO I = 1, ngwl pw(i) = pwt( ig_l2g(i) ) END DO #else CALL errore(' SPLITWF ',' no communication protocol ',0) #endif RETURN END SUBROUTINE splitwf SUBROUTINE mergeig(igl, igtot, ngl, mpime, nproc, root, comm) ! ... This subroutine merges the pieces of a vector splitted across ! ... processors into a total vector (igtot) containing al the components ! ... in a pre-defined order (the same as if only one processor is used) USE kinds USE parallel_include IMPLICIT NONE INTEGER, intent(in) :: igl(:) INTEGER, intent(out) :: igtot(:) INTEGER, INTENT(IN) :: mpime ! index of the calling processor ( starting from 0 ) INTEGER, INTENT(IN) :: nproc ! number of processors INTEGER, INTENT(IN) :: root ! root processor ( the one that should receive the data ) INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: ngl INTEGER, ALLOCATABLE :: ig_ip(:) INTEGER :: ierr, i, ip, ng_ip, ng_lmax, ng_g, gid, igs #if defined __MPI INTEGER :: istatus(MPI_STATUS_SIZE) #endif #if defined __MPI gid = comm ! ... Get local and global wavefunction dimensions CALL MPI_ALLREDUCE( ngl, ng_lmax, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE( ngl, ng_g , 1, MPI_INTEGER, MPI_SUM, gid, IERR ) IF( ng_g > SIZE( igtot ) ) THEN CALL errore(' mergeig ',' wrong size for igtot ',SIZE(igtot) ) END IF igs = 1 DO ip = 1, nproc IF( (ip-1) /= root ) THEN ! ... In turn each processors send to root the wave components and their indexes in the ! ... global array IF ( mpime == (ip-1) ) THEN CALL MPI_SEND( igl(1), ngl, MPI_INTEGER, ROOT, IP, gid, IERR ) END IF IF ( mpime == root) THEN ALLOCATE( ig_ip(ng_lmax) ) CALL MPI_RECV( ig_ip, ng_lmax, MPI_INTEGER, (ip-1), IP, gid, istatus, IERR ) CALL MPI_GET_COUNT( istatus, MPI_INTEGER, ng_ip, ierr ) DO i = 1, ng_ip igtot( igs + i - 1 ) = ig_ip( i ) END DO DEALLOCATE(ig_ip) END IF ELSE IF(mpime == root) THEN ng_ip = ngl DO i = 1, ngl igtot( igs + i - 1 ) = igl( i ) END DO END IF END IF IF(mpime == root) THEN igs = igs + ng_ip END IF CALL MPI_BARRIER( gid, IERR ) END DO #elif ! defined __MPI igtot( 1:ngl ) = igl( 1:ngl ) #else CALL errore(' mergeig ',' no communication protocol ',0) #endif RETURN END SUBROUTINE mergeig !=----------------------------------------------------------------------------=! SUBROUTINE splitig(igl, igtot, ngl, mpime, nproc, root, comm) ! ... This subroutine splits a replicated vector (igtot) stored on the root proc ! ... across processors (igl). USE kinds USE parallel_include IMPLICIT NONE INTEGER, INTENT(OUT) :: igl(:) INTEGER, INTENT(IN) :: igtot(:) INTEGER, INTENT(IN) :: mpime, nproc, root INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: ngl INTEGER ierr, i, ng_ip, ip, ng_lmax, ng_g, gid, igs #if defined __MPI integer istatus(MPI_STATUS_SIZE) #endif INTEGER, ALLOCATABLE :: ig_ip(:) #if defined __MPI gid = comm ! ... Get local and global wavefunction dimensions CALL MPI_ALLREDUCE(ngl, ng_lmax, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE(ngl, ng_g , 1, MPI_INTEGER, MPI_SUM, gid, IERR ) IF( ng_g > SIZE( igtot ) ) THEN CALL errore(' splitig ',' wrong size for igtot ', SIZE(igtot) ) END IF igs = 1 DO ip = 1, nproc ! ... In turn each processor sends to root the indices of its wavefunction components ! ... Root receives the indices and sends the components of the wavefunction read from the disk (pwt) IF ( (ip-1) /= root ) THEN IF ( mpime == (ip-1) ) THEN CALL MPI_SEND( ngl, 1 , MPI_INTEGER, ROOT, IP, gid,IERR) CALL MPI_RECV( igl, ngl, MPI_INTEGER, ROOT, IP+NPROC, gid, istatus, IERR ) END IF IF ( mpime == root ) THEN ALLOCATE(ig_ip(ng_lmax)) CALL MPI_RECV( ng_ip, 1, MPI_INTEGER, (ip-1), IP, gid, istatus, IERR ) DO i = 1, ng_ip ig_ip(i) = igtot( igs + i - 1) END DO CALL MPI_SEND( ig_ip, ng_ip, MPI_INTEGER, (ip-1), IP+NPROC, gid, IERR ) DEALLOCATE(ig_ip) END IF ELSE IF ( mpime == root ) THEN ng_ip = ngl DO i = 1, ng_ip igl(i) = igtot( igs + i - 1) END DO END IF END IF IF( mpime == root ) igs = igs + ng_ip CALL MPI_BARRIER(gid, IERR) END DO #elif ! defined __MPI igl( 1:ngl ) = igtot( 1:ngl ) #else CALL errore(' splitig ',' no communication protocol ',0) #endif RETURN END SUBROUTINE splitig !=----------------------------------------------------------------------------=! SUBROUTINE pwscatter( c, ctmp, ngw, indi_l, sour_indi, dest_indi, & n_indi_rcv, n_indi_snd, icntix, mpime, nproc, group ) USE kinds USE parallel_include implicit none integer :: indi_l(:) ! list of G-vec index to be exchanged integer :: sour_indi(:) ! the list of source processors integer :: dest_indi(:) ! the list of destination processors integer :: n_indi_rcv ! number of G-vectors to be received integer :: n_indi_snd ! number of G-vectors to be sent integer :: icntix ! total number of G-vec to be exchanged INTEGER, INTENT(IN) :: nproc, mpime, group COMPLEX(DP) :: c(:) COMPLEX(DP) :: ctmp(:) integer :: ngw integer :: ig, icsize INTEGER :: me, idest, isour, ierr COMPLEX(DP), ALLOCATABLE :: my_buffer( : ) COMPLEX(DP), ALLOCATABLE :: mp_snd_buffer( : ) COMPLEX(DP), ALLOCATABLE :: mp_rcv_buffer( : ) INTEGER, ALLOCATABLE :: ibuf(:) ! ! ... SUBROUTINE BODY ! me = mpime + 1 if( icntix .lt. 1 ) then icsize = 1 else icsize = icntix endif ALLOCATE( mp_snd_buffer( icsize * nproc ) ) ALLOCATE( mp_rcv_buffer( icsize * nproc ) ) ALLOCATE( my_buffer( ngw ) ) ALLOCATE( ibuf( nproc ) ) ctmp = ( 0.0_DP, 0.0_DP ) ! WRITE( stdout,*) 'D: ', nproc, mpime, group ibuf = 0 DO IG = 1, n_indi_snd idest = dest_indi(ig) ibuf(idest) = ibuf(idest) + 1; if(idest .ne. me) then mp_snd_buffer( ibuf(idest) + (idest-1)*icsize ) = C( indi_l( ig ) ) else my_buffer(ibuf(idest)) = C(indi_l(ig)) end if end do #if defined __MPI call MPI_ALLTOALL( mp_snd_buffer(1), icsize, MPI_DOUBLE_COMPLEX, & mp_rcv_buffer(1), icsize, MPI_DOUBLE_COMPLEX, & group, ierr) #else CALL errore(' pwscatter ',' no communication protocol ',0) #endif ibuf = 0 DO IG = 1, n_indi_rcv isour = sour_indi(ig) if(isour.gt.0 .and. isour.ne.me) then ibuf(isour) = ibuf(isour) + 1 CTMP(ig) = mp_rcv_buffer(ibuf(isour) + (isour-1)*icsize) else if(isour.gt.0) then ibuf(isour) = ibuf(isour) + 1 CTMP(ig) = my_buffer(ibuf(isour)) else CTMP(ig) = (0.0_DP,0.0_DP) end if end do DEALLOCATE( mp_snd_buffer ) DEALLOCATE( mp_rcv_buffer ) DEALLOCATE( my_buffer ) DEALLOCATE( ibuf ) RETURN END SUBROUTINE pwscatter !=----------------------------------------------------------------------------=! SUBROUTINE redistwf( c_dist_pw, c_dist_st, npw_p, nst_p, comm, idir ) ! ! Redistribute wave function. ! c_dist_pw are the wave functions with plane waves distributed over processors ! c_dist_st are the wave functions with electronic states distributed over processors ! USE kinds USE parallel_include implicit none COMPLEX(DP) :: c_dist_pw(:,:) COMPLEX(DP) :: c_dist_st(:,:) INTEGER, INTENT(IN) :: npw_p(:) ! the number of plane wave on each processor INTEGER, INTENT(IN) :: nst_p(:) ! the number of states on each processor INTEGER, INTENT(IN) :: comm ! group communicator INTEGER, INTENT(IN) :: idir ! direction of the redistribution ! idir > 0 c_dist_pw --> c_dist_st ! idir < 0 c_dist_pw <-- c_dist_st INTEGER :: mpime, nproc, ierr, npw_t, nst_t, proc, i, j, ngpww, ii INTEGER, ALLOCATABLE :: rdispls(:), recvcount(:) INTEGER, ALLOCATABLE :: sendcount(:), sdispls(:) COMPLEX(DP), ALLOCATABLE :: ctmp( : ) #ifdef __MPI CALL mpi_comm_rank( comm, mpime, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_comm_rank ', ierr ) CALL mpi_comm_size( comm, nproc, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_comm_size ', ierr ) ALLOCATE( rdispls( nproc ), recvcount( nproc ), sendcount( nproc ), sdispls( nproc ) ) npw_t = 0 nst_t = 0 DO proc=1,nproc sendcount(proc) = npw_p(mpime+1) * nst_p(proc) recvcount(proc) = npw_p(proc) * nst_p(mpime+1) npw_t = npw_t + npw_p(proc) nst_t = nst_t + nst_p(proc) END DO sdispls(1)=0 rdispls(1)=0 DO proc=2,nproc sdispls(proc) = sdispls(proc-1) + sendcount(proc-1) rdispls(proc) = rdispls(proc-1) + recvcount(proc-1) END DO ALLOCATE( ctmp( npw_t * nst_p( mpime + 1 ) ) ) IF( idir > 0 ) THEN ! ! ... Step 1. Communicate to all Procs so that each proc has all ! ... G-vectors and some states instead of all states and some ! ... G-vectors. This information is stored in the 1-d array ctmp. ! CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_barrier ', ierr ) ! CALL MPI_ALLTOALLV( c_dist_pw, sendcount, sdispls, MPI_DOUBLE_COMPLEX, & & ctmp, recvcount, rdispls, MPI_DOUBLE_COMPLEX, comm, ierr) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_alltoallv ', ierr ) ! ! Step 2. Convert the 1-d array ctmp into a 2-d array consistent with the ! original notation c(ngw,nbsp). Psitot contains ntot = SUM_Procs(ngw) G-vecs ! and nstat states instead of all nbsp states ! ngpww = 0 DO proc = 1, nproc DO i = 1, nst_p(mpime+1) ii = (i-1) * npw_p(proc) DO j = 1, npw_p(proc) c_dist_st( j + ngpww, i ) = ctmp( rdispls(proc) + j + ii ) END DO END DO ngpww = ngpww + npw_p(proc) END DO ELSE ! ! Step 4. Convert the 2-d array c_dist_st into 1-d array ! ngpww = 0 DO proc = 1, nproc DO i = 1, nst_p(mpime+1) ii = (i-1) * npw_p(proc) DO j = 1, npw_p(proc) ctmp( rdispls(proc) + j + ii ) = c_dist_st( j + ngpww, i ) END DO END DO ngpww = ngpww + npw_p(proc) END DO ! ! Step 5. Redistribute among processors. The result is stored in 2-d ! array c_dist_pw consistent with the notation c(ngw,nbsp) ! CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_barrier ', ierr ) CALL MPI_ALLTOALLV( ctmp, recvcount, rdispls, MPI_DOUBLE_COMPLEX, & & c_dist_pw, sendcount , sdispls, MPI_DOUBLE_COMPLEX, comm, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_alltoallv ', ierr ) END IF DEALLOCATE( ctmp ) DEALLOCATE( rdispls, recvcount, sendcount, sdispls ) #endif RETURN END SUBROUTINE redistwf !=----------------------------------------------------------------------------=! SUBROUTINE redistwfr( c_dist_pw, c_dist_st, npw_p, nst_p, comm, idir ) ! ! Redistribute wave function. ! c_dist_pw are the wave functions with plane waves distributed over processors ! c_dist_st are the wave functions with electronic states distributed over processors ! USE kinds USE parallel_include implicit none REAL(DP) :: c_dist_pw(:,:) REAL(DP) :: c_dist_st(:,:) INTEGER, INTENT(IN) :: npw_p(:) ! the number of plane wave on each processor INTEGER, INTENT(IN) :: nst_p(:) ! the number of states on each processor INTEGER, INTENT(IN) :: comm ! group communicator INTEGER, INTENT(IN) :: idir ! direction of the redistribution ! idir > 0 c_dist_pw --> c_dist_st ! idir < 0 c_dist_pw <-- c_dist_st INTEGER :: mpime, nproc, ierr, npw_t, nst_t, proc, i, j, ngpww INTEGER, ALLOCATABLE :: rdispls(:), recvcount(:) INTEGER, ALLOCATABLE :: sendcount(:), sdispls(:) REAL(DP), ALLOCATABLE :: ctmp( : ) #ifdef __MPI CALL mpi_comm_rank( comm, mpime, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_comm_rank ', ierr ) CALL mpi_comm_size( comm, nproc, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_comm_size ', ierr ) ALLOCATE( rdispls( nproc ), recvcount( nproc ), sendcount( nproc ), sdispls( nproc ) ) npw_t = 0 nst_t = 0 DO proc=1,nproc sendcount(proc) = npw_p(mpime+1) * nst_p(proc) recvcount(proc) = npw_p(proc) * nst_p(mpime+1) npw_t = npw_t + npw_p(proc) nst_t = nst_t + nst_p(proc) END DO sdispls(1)=0 rdispls(1)=0 DO proc=2,nproc sdispls(proc) = sdispls(proc-1) + sendcount(proc-1) rdispls(proc) = rdispls(proc-1) + recvcount(proc-1) END DO ALLOCATE( ctmp( npw_t * nst_p( mpime + 1 ) ) ) IF( idir > 0 ) THEN ! ! ... Step 1. Communicate to all Procs so that each proc has all ! ... G-vectors and some states instead of all states and some ! ... G-vectors. This information is stored in the 1-d array ctmp. ! CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_barrier ', ierr ) ! CALL MPI_ALLTOALLV( c_dist_pw, sendcount, sdispls, MPI_DOUBLE_PRECISION, & & ctmp, recvcount, rdispls, MPI_DOUBLE_PRECISION, comm, ierr) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_alltoallv ', ierr ) ! ! Step 2. Convert the 1-d array ctmp into a 2-d array consistent with the ! original notation c(ngw,nbsp). Psitot contains ntot = SUM_Procs(ngw) G-vecs ! and nstat states instead of all nbsp states ! ngpww = 0 DO proc = 1, nproc DO i = 1, nst_p(mpime+1) DO j = 1, npw_p(proc) c_dist_st( j + ngpww, i ) = ctmp( rdispls(proc) + j + (i-1) * npw_p(proc) ) END DO END DO ngpww = ngpww + npw_p(proc) END DO ELSE ! ! Step 4. Convert the 2-d array c_dist_st into 1-d array ! ngpww = 0 DO proc = 1, nproc DO i = 1, nst_p(mpime+1) DO j = 1, npw_p(proc) ctmp( rdispls(proc) + j + (i-1) * npw_p(proc) ) = c_dist_st( j + ngpww, i ) END DO END DO ngpww = ngpww + npw_p(proc) END DO ! ! Step 5. Redistribute among processors. The result is stored in 2-d ! array c_dist_pw consistent with the notation c(ngw,nbsp) ! CALL MPI_BARRIER( comm, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_barrier ', ierr ) CALL MPI_ALLTOALLV( ctmp, recvcount, rdispls, MPI_DOUBLE_PRECISION, & & c_dist_pw, sendcount , sdispls, MPI_DOUBLE_PRECISION, comm, ierr ) IF( ierr /= 0 ) CALL errore( ' wf_redist ', ' mpi_alltoallv ', ierr ) END IF DEALLOCATE( ctmp ) DEALLOCATE( rdispls, recvcount, sendcount, sdispls ) #endif RETURN END SUBROUTINE redistwfr !=----------------------------------------------------------------------------=! END MODULE mp_wave espresso-5.1/Modules/read_upf_v1.f900000644000175000017500000006427612341373034015444 0ustar mbamba ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE read_upf_v1_module !=----------------------------------------------------------------------------=! ! this module handles the reading of pseudopotential data ! ... declare modules USE kinds, ONLY: DP USE radial_grids, ONLY: allocate_radial_grid IMPLICIT NONE SAVE PRIVATE PUBLIC :: read_upf_v1, scan_begin, scan_end CONTAINS ! !--------------------------------------------------------------------- subroutine read_upf_v1 (iunps, upf, grid, ierr, header_only) !--------------------------------------------------------------------- ! ! read pseudopotential "upf" in the Unified Pseudopotential Format ! from unit "iunps" - return error code in "ierr" (success: ierr=0) ! use pseudo_types use radial_grids, only : radial_grid_type ! implicit none ! INTEGER, INTENT(IN) :: iunps INTEGER, INTENT(OUT) :: ierr LOGICAL, INTENT(IN), OPTIONAL :: header_only TYPE (pseudo_upf), INTENT(INOUT) :: upf TYPE (radial_grid_type), TARGET, INTENT(INOUT) :: grid ! ! Local variables ! integer :: ios character (len=80) :: dummy logical, external :: matches ! ! Prepare the pointers ! CALL nullify_pseudo_upf( upf ) should be nullified when instantiated ! upf%grid => grid ! ! First check if this pseudo-potential has spin-orbit information ! ierr = 1 ios = 0 upf%q_with_l=.false. upf%has_so=.false. upf%has_gipaw = .false. addinfo_loop: do while (ios == 0) read (iunps, *, iostat = ios, err = 200) dummy if (matches ("", dummy) ) then upf%has_so=.true. endif if ( matches ( "", dummy ) ) then upf%has_gipaw = .true. endif if (matches ("", dummy) ) then upf%q_with_l=.true. endif enddo addinfo_loop !------->Search for Header ! This version doesn't use the new routine scan_begin ! because this search must set extra flags for ! compatibility with other pp format reading ierr = 1 ios = 0 rewind(iunps) header_loop: do while (ios == 0) read (iunps, *, iostat = ios, err = 200) dummy if (matches ("", dummy) ) then ierr = 0 call read_pseudo_header (upf, iunps) exit header_loop endif enddo header_loop ! ! this should be read from the PP_INFO section ! upf%generated='Generated by new atomic code, or converted to UPF format' IF ( PRESENT (header_only) ) THEN IF ( header_only ) RETURN END IF if (ierr .ne. 0) return call scan_end (iunps, "HEADER") ! WRITE( stdout, * ) "Reading pseudopotential file in UPF format" !-------->Search for mesh information call scan_begin (iunps, "MESH", .true.) call read_pseudo_mesh (upf, iunps) call scan_end (iunps, "MESH") !-------->If present, search for nlcc if ( upf%nlcc ) then call scan_begin (iunps, "NLCC", .true.) call read_pseudo_nlcc (upf, iunps) call scan_end (iunps, "NLCC") else ALLOCATE( upf%rho_atc( upf%mesh ) ) upf%rho_atc = 0.0_DP endif !-------->Fake 1/r potential: do not read PP if (.not. matches ("1/r", upf%typ) ) then !-------->Search for Local potential call scan_begin (iunps, "LOCAL", .true.) call read_pseudo_local (upf, iunps) call scan_end (iunps, "LOCAL") !-------->Search for Nonlocal potential call scan_begin (iunps, "NONLOCAL", .true.) call read_pseudo_nl (upf, iunps) call scan_end (iunps, "NONLOCAL") !-------- else call set_coulomb_nonlocal(upf) end if !-------->Search for atomic wavefunctions call scan_begin (iunps, "PSWFC", .true.) call read_pseudo_pswfc (upf, iunps) call scan_end (iunps, "PSWFC") !-------->Search for atomic charge call scan_begin (iunps, "RHOATOM", .true.) call read_pseudo_rhoatom (upf, iunps) call scan_end (iunps, "RHOATOM") !-------->Search for add_info if (upf%has_so) then call scan_begin (iunps, "ADDINFO", .true.) call read_pseudo_addinfo (upf, iunps) call scan_end (iunps, "ADDINFO") endif !-------->GIPAW data IF ( upf%has_gipaw ) then CALL scan_begin ( iunps, "GIPAW_RECONSTRUCTION_DATA", .false. ) CALL read_pseudo_gipaw ( upf, iunps ) CALL scan_end ( iunps, "GIPAW_RECONSTRUCTION_DATA" ) END IF !--- Try to get the core radius if not present. Needed by the ! atomic code for old pseudo files IF (upf%nbeta>0) THEN ! rcutus may be unallocated if nbeta=0 IF(upf%rcutus(1)<1.e-9_DP) THEN call scan_begin (iunps, "INFO", .true.) call read_pseudo_ppinfo (upf, iunps) call scan_end (iunps, "INFO") ENDIF ENDIF 200 return end subroutine read_upf_v1 !--------------------------------------------------------------------- subroutine scan_begin (iunps, string, rew) !--------------------------------------------------------------------- ! implicit none ! Unit of the input file integer :: iunps ! Label to be matched character (len=*) :: string ! String read from file character (len=75) :: rstring ! Flag if .true. rewind the file logical, external :: matches logical :: rew integer :: ios ios = 0 if (rew) rewind (iunps) do while (ios==0) read (iunps, *, iostat = ios, err = 300) rstring if (matches ("", rstring) ) return enddo return 300 call errore ('scan_begin', 'No '//string//' block', abs (ios) ) end subroutine scan_begin !--------------------------------------------------------------------- subroutine scan_end (iunps, string) !--------------------------------------------------------------------- implicit none ! Unit of the input file integer :: iunps ! Label to be matched character (len=*) :: string ! String read from file character (len=75) :: rstring logical, external :: matches read (iunps, '(a)', end = 300, err = 300) rstring if (matches ("", rstring) ) return return 300 call errore ('scan_end', & 'No '//string//' block end statement, possibly corrupted file', -1) end subroutine scan_end ! !--------------------------------------------------------------------- subroutine read_pseudo_header (upf, iunps) !--------------------------------------------------------------------- ! USE pseudo_types, ONLY: pseudo_upf USE kinds implicit none ! TYPE (pseudo_upf), INTENT(INOUT) :: upf integer :: iunps ! integer :: nw character (len=80) :: dummy logical, external :: matches ! Version number (presently ignored) read (iunps, *, err = 100, end = 100) upf%nv , dummy ! Element label read (iunps, *, err = 100, end = 100) upf%psd , dummy ! Type of pseudo (1/r cannot be read with default format!!!) read (iunps, '(a80)', err = 100, end = 100) dummy upf%typ=trim(adjustl(dummy)) ! if (matches ('US', upf%typ) ) then upf%tvanp = .true. upf%tpawp = .false. upf%tcoulombp = .false. else if (matches ('PAW', upf%typ) ) then ! Note: if tvanp is set to false the results are wrong! upf%tvanp = .true. upf%tpawp = .true. upf%tcoulombp = .false. else if (matches ('NC', upf%typ) ) then upf%tvanp = .false. upf%tpawp = .false. upf%tcoulombp = .false. else if (matches ('1/r', upf%typ) ) then upf%tvanp = .false. upf%tpawp = .false. upf%tcoulombp = .true. else call errore ('read_pseudo_header', 'unknown pseudo type', 1) endif read (iunps, *, err = 100, end = 100) upf%nlcc , dummy read (iunps, '(a20,t24,a)', err = 100, end = 100) upf%dft, dummy read (iunps, * ) upf%zp , dummy read (iunps, * ) upf%etotps, dummy read (iunps, * ) upf%ecutwfc, upf%ecutrho read (iunps, * ) upf%lmax , dummy read (iunps, *, err = 100, end = 100) upf%mesh , dummy upf%grid%mesh = upf%mesh call allocate_radial_grid(upf%grid,upf%grid%mesh) ! IF ( upf%grid%mesh > SIZE (upf%grid%r) ) & ! CALL errore('read_pseudo_header', 'too many grid points', 1) read (iunps, *, err = 100, end = 100) upf%nwfc, upf%nbeta , dummy read (iunps, '(a)', err = 100, end = 100) dummy ALLOCATE( upf%els( upf%nwfc ), upf%lchi( upf%nwfc ), upf%oc( upf%nwfc ) ) do nw = 1, upf%nwfc read (iunps, * ) upf%els (nw), upf%lchi (nw), upf%oc (nw) enddo return 100 call errore ('read_pseudo_header', 'Reading pseudo file', 1 ) end subroutine read_pseudo_header !--------------------------------------------------------------------- subroutine read_pseudo_mesh (upf, iunps) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY: pseudo_upf implicit none ! integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf ! integer :: ir IF(associated(upf%grid)) THEN upf%r => upf%grid%r upf%rab => upf%grid%rab ELSE ALLOCATE( upf%r( upf%mesh ), upf%rab( upf%mesh ) ) ENDIF upf%r = 0.0_DP upf%rab = 0.0_DP call scan_begin (iunps, "R", .false.) read (iunps, *, err = 100, end = 100) (upf%r(ir), ir=1,upf%mesh ) call scan_end (iunps, "R") call scan_begin (iunps, "RAB", .false.) read (iunps, *, err = 101, end = 101) (upf%rab(ir), ir=1,upf%mesh ) call scan_end (iunps, "RAB") ! upf%grid%r(1:upf%mesh) = upf%r(1:upf%mesh) ! upf%grid%rab(1:upf%mesh) = upf%rab(1:upf%mesh) return 100 call errore ('read_pseudo_mesh', 'Reading pseudo file (R) for '//upf%psd,1) 101 call errore ('read_pseudo_mesh', 'Reading pseudo file (RAB) for '//upf%psd,2) end subroutine read_pseudo_mesh !--------------------------------------------------------------------- subroutine read_pseudo_nlcc (upf, iunps) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY: pseudo_upf implicit none ! integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf ! integer :: ir ! ALLOCATE( upf%rho_atc( upf%mesh ) ) upf%rho_atc = 0.0_DP read (iunps, *, err = 100, end = 100) (upf%rho_atc(ir), ir=1,upf%mesh ) ! return 100 call errore ('read_pseudo_nlcc', 'Reading pseudo file', 1) return end subroutine read_pseudo_nlcc !--------------------------------------------------------------------- subroutine read_pseudo_local (upf, iunps) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY: pseudo_upf implicit none ! integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf ! integer :: ir ! ALLOCATE( upf%vloc( upf%mesh ) ) upf%vloc = 0.0_DP read (iunps, *, err=100, end=100) (upf%vloc(ir) , ir=1,upf%mesh ) return 100 call errore ('read_pseudo_local','Reading pseudo file', 1) return end subroutine read_pseudo_local !--------------------------------------------------------------------- subroutine read_pseudo_nl (upf, iunps) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY: pseudo_upf implicit none ! integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf ! integer :: nb, mb, ijv, n, ir, ios, idum, ldum, icon, lp, i, ikk, l, l1,l2, nd ! counters character (len=75) :: dummy ! ! Threshold for qfunc to be considered zero (inserted in version UPF v2) upf%qqq_eps = -1._dp ! if ( upf%nbeta == 0) then upf%nqf = 0 upf%nqlc= 0 upf%kkbeta = 0 ALLOCATE( upf%kbeta( 1 ) ) ALLOCATE( upf%lll( 1 ) ) ALLOCATE( upf%beta( upf%mesh, 1 ) ) ALLOCATE( upf%dion( 1, 1 ) ) ALLOCATE( upf%rinner( 1 ) ) ALLOCATE( upf%qqq ( 1, 1 ) ) ALLOCATE( upf%qfunc ( upf%mesh, 1 ) ) ALLOCATE( upf%qfcoef( 1, 1, 1, 1 ) ) ALLOCATE( upf%rcut( 1 ) ) ALLOCATE( upf%rcutus( 1 ) ) ALLOCATE( upf%els_beta( 1 ) ) return end if ALLOCATE( upf%kbeta( upf%nbeta ) ) ALLOCATE( upf%lll( upf%nbeta ) ) ALLOCATE( upf%beta( upf%mesh, upf%nbeta ) ) ALLOCATE( upf%dion( upf%nbeta, upf%nbeta ) ) ALLOCATE( upf%rcut( upf%nbeta ) ) ALLOCATE( upf%rcutus( upf%nbeta ) ) ALLOCATE( upf%els_beta( upf%nbeta ) ) upf%kkbeta = 0 upf%lll = 0 upf%beta = 0.0_DP upf%dion = 0.0_DP upf%rcut = 0.0_DP upf%rcutus = 0.0_DP upf%els_beta = ' ' do nb = 1, upf%nbeta call scan_begin (iunps, "BETA", .false.) read (iunps, *, err = 100, end = 100) idum, upf%lll(nb), dummy read (iunps, *, err = 100, end = 100) ikk upf%kbeta(nb) = ikk upf%kkbeta = MAX ( upf%kkbeta, upf%kbeta(nb) ) read (iunps, *, err = 100, end = 100) (upf%beta(ir,nb), ir=1,ikk) read (iunps, *, err=200,iostat=ios) upf%rcut(nb), upf%rcutus(nb) read (iunps, *, err=200,iostat=ios) upf%els_beta(nb) call scan_end (iunps, "BETA") 200 continue enddo call scan_begin (iunps, "DIJ", .false.) read (iunps, *, err = 101, end = 101) nd, dummy do icon = 1, nd read (iunps, *, err = 101, end = 101) nb, mb, upf%dion(nb,mb) upf%dion (mb,nb) = upf%dion (nb,mb) enddo call scan_end (iunps, "DIJ") if ( upf%tvanp .or. upf%tpawp) then call scan_begin (iunps, "QIJ", .false.) read (iunps, *, err = 102, end = 102) upf%nqf upf%nqlc = 2 * upf%lmax + 1 ALLOCATE( upf%rinner( upf%nqlc ) ) ALLOCATE( upf%qqq ( upf%nbeta, upf%nbeta ) ) IF (upf%q_with_l .or. upf%tpawp) then ALLOCATE( upf%qfuncl ( upf%mesh, upf%nbeta*(upf%nbeta+1)/2, 0:2*upf%lmax ) ) upf%qfuncl = 0.0_DP ELSE ALLOCATE( upf%qfunc ( upf%mesh, upf%nbeta*(upf%nbeta+1)/2 ) ) upf%qfunc = 0.0_DP ENDIF ALLOCATE( upf%qfcoef( MAX( upf%nqf,1 ), upf%nqlc, upf%nbeta, upf%nbeta ) ) upf%rinner = 0.0_DP upf%qqq = 0.0_DP upf%qfcoef = 0.0_DP if ( upf%nqf /= 0) then call scan_begin (iunps, "RINNER", .false.) read (iunps,*,err=103,end=103) ( idum, upf%rinner(i), i=1,upf%nqlc ) call scan_end (iunps, "RINNER") end if do nb = 1, upf%nbeta do mb = nb, upf%nbeta read (iunps,*,err=102,end=102) idum, idum, ldum, dummy !" i j (l)" if (ldum /= upf%lll(mb) ) then call errore ('read_pseudo_nl','inconsistent angular momentum for Q_ij', 1) end if read (iunps,*,err=104,end=104) upf%qqq(nb,mb), dummy ! "Q_int" upf%qqq(mb,nb) = upf%qqq(nb,mb) ! ijv is the combined (nb,mb) index ijv = mb * (mb-1) / 2 + nb IF (upf%q_with_l .or. upf%tpawp) THEN l1=upf%lll(nb) l2=upf%lll(mb) DO l=abs(l1-l2),l1+l2 read (iunps, *, err=105, end=105) (upf%qfuncl(n,ijv,l), & n=1,upf%mesh) END DO ELSE read (iunps, *, err=105, end=105) (upf%qfunc(n,ijv), n=1,upf%mesh) ENDIF if ( upf%nqf > 0 ) then call scan_begin (iunps, "QFCOEF", .false.) read (iunps,*,err=106,end=106) & ( ( upf%qfcoef(i,lp,nb,mb), i=1,upf%nqf ), lp=1,upf%nqlc ) do i = 1, upf%nqf do lp = 1, upf%nqlc upf%qfcoef(i,lp,mb,nb) = upf%qfcoef(i,lp,nb,mb) end do end do call scan_end (iunps, "QFCOEF") end if enddo enddo call scan_end (iunps, "QIJ") else upf%nqf = 1 upf%nqlc = 2 * upf%lmax + 1 ALLOCATE( upf%rinner( upf%nqlc ) ) ALLOCATE( upf%qqq ( upf%nbeta, upf%nbeta ) ) ALLOCATE( upf%qfunc ( upf%mesh, upf%nbeta*(upf%nbeta+1)/2 ) ) ALLOCATE( upf%qfcoef( upf%nqf, upf%nqlc, upf%nbeta, upf%nbeta ) ) upf%rinner = 0.0_DP upf%qqq = 0.0_DP upf%qfunc = 0.0_DP upf%qfcoef = 0.0_DP endif return 100 call errore ('read_pseudo_nl', 'Reading pseudo file (BETA)', 1 ) 101 call errore ('read_pseudo_nl', 'Reading pseudo file (DIJ)', 2 ) 102 call errore ('read_pseudo_nl', 'Reading pseudo file (QIJ)', 3 ) 103 call errore ('read_pseudo_nl', 'Reading pseudo file (RINNER)',4) 104 call errore ('read_pseudo_nl', 'Reading pseudo file (qqq)', 5 ) 105 call errore ('read_pseudo_nl', 'Reading pseudo file (qfunc)',6 ) 106 call errore ('read_pseudo_nl', 'Reading pseudo file (qfcoef)',7) end subroutine read_pseudo_nl !--------------------------------------------------------------------- subroutine read_pseudo_pswfc (upf, iunps) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY: pseudo_upf ! implicit none ! integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf ! character (len=75) :: dummy integer :: nb, ir ALLOCATE( upf%chi( upf%mesh, MAX( upf%nwfc, 1 ) ) ) upf%chi = 0.0_DP do nb = 1, upf%nwfc read (iunps, *, err=100, end=100) dummy !Wavefunction labels read (iunps, *, err=100, end=100) ( upf%chi(ir,nb), ir=1,upf%mesh ) enddo return 100 call errore ('read_pseudo_pswfc', 'Reading pseudo file', 1) end subroutine read_pseudo_pswfc !--------------------------------------------------------------------- subroutine read_pseudo_rhoatom (upf, iunps) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY: pseudo_upf ! implicit none ! integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf ! integer :: ir ! ALLOCATE( upf%rho_at( upf%mesh ) ) upf%rho_at = 0.0_DP read (iunps,*,err=100,end=100) ( upf%rho_at(ir), ir=1,upf%mesh ) ! return 100 call errore ('read_pseudo_rhoatom','Reading pseudo file', 1) end subroutine read_pseudo_rhoatom ! !--------------------------------------------------------------------- subroutine read_pseudo_addinfo (upf, iunps) !--------------------------------------------------------------------- ! ! This routine reads from the new UPF file, ! and the total angular momentum jjj of the beta and jchi of the ! wave-functions. ! USE pseudo_types, ONLY: pseudo_upf USE kinds implicit none integer :: iunps TYPE (pseudo_upf), INTENT(INOUT) :: upf integer :: nb ALLOCATE( upf%nn(upf%nwfc) ) ALLOCATE( upf%epseu(upf%nwfc), upf%jchi(upf%nwfc) ) ALLOCATE( upf%jjj(upf%nbeta) ) upf%nn=0 upf%epseu=0.0_DP upf%jchi=0.0_DP do nb = 1, upf%nwfc read (iunps, *,err=100,end=100) upf%els(nb), & upf%nn(nb), upf%lchi(nb), upf%jchi(nb), upf%oc(nb) if ( abs ( upf%jchi(nb)-upf%lchi(nb)-0.5_dp ) > 1.0d-7 .and. & abs ( upf%jchi(nb)-upf%lchi(nb)+0.5_dp ) > 1.0d-7 ) then call infomsg ( 'read_pseudo_upf', 'obsolete ADDINFO section ignored') upf%has_so = .false. return end if enddo upf%jjj=0.0_DP do nb = 1, upf%nbeta read (iunps, *, err=100,end=100) upf%lll(nb), upf%jjj(nb) if ( abs ( upf%lll(nb)-upf%jjj(nb)-0.5_dp) > 1.0d-7 .and. & abs ( upf%lll(nb)-upf%jjj(nb)+0.5_dp) > 1.0d-7 ) then call infomsg ( 'read_pseudo_upf', 'obsolete ADDINFO section ignored') upf%has_so = .false. return end if enddo read(iunps, *) upf%xmin, upf%rmax, upf%zmesh, upf%dx upf%grid%dx = upf%dx upf%grid%xmin = upf%xmin upf%grid%zmesh= upf%zmesh upf%grid%mesh = upf%mesh return 100 call errore ('read_pseudo_addinfo','Reading pseudo file', 1) end subroutine read_pseudo_addinfo ! !--------------------------------------------------------------------- SUBROUTINE read_pseudo_gipaw ( upf, iunps ) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY : pseudo_upf ! implicit none ! INTEGER :: iunps REAL (dp) :: version TYPE ( pseudo_upf ), INTENT ( INOUT ) :: upf ! CALL scan_begin ( iunps, "GIPAW_FORMAT_VERSION", .false. ) READ ( iunps, *, err=100, end=100 ) version upf%gipaw_data_format = INT(version) CALL scan_end ( iunps, "GIPAW_FORMAT_VERSION" ) IF ( upf%gipaw_data_format == 1 .or. upf%gipaw_data_format == 0 ) THEN CALL read_pseudo_gipaw_core_orbitals ( upf, iunps ) CALL read_pseudo_gipaw_local ( upf, iunps ) CALL read_pseudo_gipaw_orbitals ( upf, iunps ) ELSE CALL errore ( 'read_pseudo_gipaw', 'UPF/GIPAW in unknown format', 1 ) END IF RETURN 100 CALL errore ( 'read_pseudo_gipaw', 'Reading pseudo file', 1 ) END SUBROUTINE read_pseudo_gipaw !--------------------------------------------------------------------- SUBROUTINE read_pseudo_gipaw_core_orbitals ( upf, iunps ) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY : pseudo_upf ! IMPLICIT NONE ! INTEGER :: iunps TYPE ( pseudo_upf ), INTENT ( INOUT ) :: upf ! CHARACTER ( LEN = 75 ) :: dummy1, dummy2 INTEGER :: nb, ir CALL scan_begin ( iunps, "GIPAW_CORE_ORBITALS", .false. ) READ ( iunps, *, err=100, end=100 ) upf%gipaw_ncore_orbitals ALLOCATE ( upf%gipaw_core_orbital_n(upf%gipaw_ncore_orbitals) ) ALLOCATE ( upf%gipaw_core_orbital_l(upf%gipaw_ncore_orbitals) ) ALLOCATE ( upf%gipaw_core_orbital_el(upf%gipaw_ncore_orbitals) ) ALLOCATE ( upf%gipaw_core_orbital(upf%mesh,upf%gipaw_ncore_orbitals) ) upf%gipaw_core_orbital = 0.0_dp DO nb = 1, upf%gipaw_ncore_orbitals CALL scan_begin ( iunps, "GIPAW_CORE_ORBITAL", .false. ) READ (iunps, *, err=100, end=100) & upf%gipaw_core_orbital_n(nb), upf%gipaw_core_orbital_l(nb), & dummy1, dummy2, upf%gipaw_core_orbital_el(nb) READ ( iunps, *, err=100, end=100 ) & ( upf%gipaw_core_orbital(ir,nb), ir = 1, upf%mesh ) CALL scan_end ( iunps, "GIPAW_CORE_ORBITAL" ) END DO CALL scan_end ( iunps, "GIPAW_CORE_ORBITALS" ) RETURN 100 CALL errore ( 'read_pseudo_gipaw_core_orbitals', 'Reading pseudo file', 1 ) END SUBROUTINE read_pseudo_gipaw_core_orbitals !--------------------------------------------------------------------- SUBROUTINE read_pseudo_gipaw_local ( upf, iunps ) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY : pseudo_upf ! IMPLICIT NONE ! INTEGER :: iunps TYPE ( pseudo_upf ), INTENT ( INOUT ) :: upf ! INTEGER :: ir CALL scan_begin ( iunps, "GIPAW_LOCAL_DATA", .false. ) ALLOCATE ( upf%gipaw_vlocal_ae(upf%mesh) ) ALLOCATE ( upf%gipaw_vlocal_ps(upf%mesh) ) CALL scan_begin ( iunps, "GIPAW_VLOCAL_AE", .false. ) READ ( iunps, *, err=100, end=100 ) & ( upf%gipaw_vlocal_ae(ir), ir = 1, upf%mesh ) CALL scan_end ( iunps, "GIPAW_VLOCAL_AE" ) CALL scan_begin ( iunps, "GIPAW_VLOCAL_PS", .false. ) READ ( iunps, *, err=100, end=100 ) & ( upf%gipaw_vlocal_ps(ir), ir = 1, upf%mesh ) CALL scan_end ( iunps, "GIPAW_VLOCAL_PS" ) CALL scan_end ( iunps, "GIPAW_LOCAL_DATA" ) RETURN 100 CALL errore ( 'read_pseudo_gipaw_local', 'Reading pseudo file', 1 ) END SUBROUTINE read_pseudo_gipaw_local !--------------------------------------------------------------------- SUBROUTINE read_pseudo_gipaw_orbitals ( upf, iunps ) !--------------------------------------------------------------------- ! USE kinds USE pseudo_types, ONLY : pseudo_upf ! IMPLICIT NONE ! INTEGER :: iunps TYPE ( pseudo_upf ), INTENT ( INOUT ) :: upf ! CHARACTER ( LEN = 75 ) :: dummy INTEGER :: nb, ir CALL scan_begin ( iunps, "GIPAW_ORBITALS", .false. ) READ ( iunps, *, err=100, end=100 ) upf%gipaw_wfs_nchannels ALLOCATE ( upf%gipaw_wfs_el(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ll(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcut(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_rcutus(upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ae(upf%mesh,upf%gipaw_wfs_nchannels) ) ALLOCATE ( upf%gipaw_wfs_ps(upf%mesh,upf%gipaw_wfs_nchannels) ) inquire ( unit = iunps, name = dummy ) DO nb = 1, upf%gipaw_wfs_nchannels CALL scan_begin ( iunps, "GIPAW_AE_ORBITAL", .false. ) READ (iunps, *, err=100, end=100) & upf%gipaw_wfs_el(nb), upf%gipaw_wfs_ll(nb) READ ( iunps, *, err=100, end=100 ) & ( upf%gipaw_wfs_ae(ir,nb), ir = 1, upf%mesh ) CALL scan_end ( iunps, "GIPAW_AE_ORBITAL" ) CALL scan_begin ( iunps, "GIPAW_PS_ORBITAL", .false. ) READ (iunps, *, err=100, end=100) & upf%gipaw_wfs_rcut(nb), upf%gipaw_wfs_rcutus(nb) READ ( iunps, *, err=100, end=100 ) & ( upf%gipaw_wfs_ps(ir,nb), ir = 1, upf%mesh ) CALL scan_end ( iunps, "GIPAW_PS_ORBITAL" ) END DO CALL scan_end ( iunps, "GIPAW_ORBITALS" ) RETURN 100 CALL errore ( 'read_pseudo_gipaw_orbitals', 'Reading pseudo file', 1 ) END SUBROUTINE read_pseudo_gipaw_orbitals ! subroutine read_pseudo_ppinfo (upf, iunps) !--------------------------------------------------------------------- ! USE pseudo_types, ONLY: pseudo_upf USE kinds, ONLY : dp implicit none ! TYPE (pseudo_upf), INTENT(INOUT) :: upf integer :: iunps character (len=80) :: dummy logical, external :: matches real(dp) :: rdummy integer :: idummy, nb, ios ios=0 DO while (ios==0) READ (iunps, '(a)', err = 100, end = 100, iostat=ios) dummy IF (matches ("Rcut", dummy) ) THEN DO nb=1,upf%nbeta READ (iunps, '(a2,2i3,f6.2,3f19.11)',err=100, end=100,iostat=ios) & upf%els_beta(nb), idummy, & idummy, rdummy, upf%rcut(nb), upf%rcutus (nb), rdummy ENDDO ios=100 ENDIF ENDDO 100 RETURN END SUBROUTINE read_pseudo_ppinfo SUBROUTINE set_coulomb_nonlocal(upf) USE pseudo_types, ONLY : pseudo_upf IMPLICIT NONE TYPE(pseudo_upf) :: upf upf%nqf = 0 upf%nqlc= 0 upf%qqq_eps= -1._dp upf%kkbeta = 0 ALLOCATE( upf%kbeta(1), & upf%lll(1), & upf%beta(upf%mesh,1), & upf%dion(1,1), & upf%rinner(1), & upf%qqq(1,1), & upf%qfunc(upf%mesh,1),& upf%qfcoef(1,1,1,1), & upf%rcut(1), & upf%rcutus(1), & upf%els_beta(1) ) RETURN END SUBROUTINE set_coulomb_nonlocal !=----------------------------------------------------------------------------=! END MODULE read_upf_v1_module !=----------------------------------------------------------------------------=! espresso-5.1/Modules/wannier_new.f900000644000175000017500000000446612341373034015560 0ustar mbamba! Copyright (C) 2006-2008 Dmitry Korotin - dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE wannier_new ! ! ... Variables to construct and store wannier functions ! USE kinds, ONLY : DP ! SAVE ! INTEGER, PARAMETER :: ningx = 10 ! max number of trial wavefunction ingredients LOGICAL :: & use_wannier, &! if .TRUE. wannier functions are constructed rkmesh, &! if .TRUE. regular k-mesh without symmetry is used !now used in input_parameters_mod plot_wannier, &! if .TRUE. wannier number plot_wan_num is plotted use_energy_int, &! if .TRUE. uses energy interval for wannier generation, not band numbers print_wannier_coeff ! if .TRUE. computes and prints coefficients of wannier decomp. on atomic functions INTEGER :: & nwan, &! number of wannier functions plot_wan_num, &! number of wannier for plotting plot_wan_spin ! spin of wannier for plotting REAL(kind=DP), allocatable :: & wan_pot(:,:), &! constrained potential wannier_energy(:,:), &! energy of each wannier (of each spin) wannier_occ(:,:,:) ! occupation matrix of wannier functions(of each spin) COMPLEX(kind=DP), allocatable :: & pp(:,:), &! projections coef(:,:,:) ! coefficients of wannier decomp. on atomic functions TYPE ingredient INTEGER :: l = 0, & ! l value for atomic wfc m = 0, & ! m value for atomic wfc iatomwfc = 0 ! number of corresponding atomic orbital REAL :: c = 0.d0 ! coefficient END TYPE ingredient TYPE wannier_data INTEGER :: iatom = 0, & ning = 0 REAL :: bands_from = 0.d0, & bands_to = 0.d0 TYPE (ingredient) :: ing(ningx) END TYPE wannier_data TYPE (wannier_data), allocatable :: wan_in(:,:) END MODULE wannier_new espresso-5.1/Modules/mp_bands.f900000644000175000017500000001021312341373034015012 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE mp_bands !---------------------------------------------------------------------------- ! USE mp, ONLY : mp_barrier, mp_bcast, mp_size, mp_rank, mp_comm_split USE parallel_include ! IMPLICIT NONE SAVE ! ! ... Band groups (processors within a pool of bands) ! ... Subdivision of pool group, used for parallelization over bands ! INTEGER :: nbgrp = 1 ! number of band groups INTEGER :: nproc_bgrp = 1 ! number of processors within a band group INTEGER :: me_bgrp = 0 ! index of the processor within a band group INTEGER :: root_bgrp = 0 ! index of the root processor within a band group INTEGER :: my_bgrp_id = 0 ! index of my band group INTEGER :: inter_bgrp_comm = 0 ! inter band group communicator INTEGER :: intra_bgrp_comm = 0 ! intra band group communicator ! ! ... "task" groups (for band parallelization of FFT) ! INTEGER :: ntask_groups = 1 ! number of proc. in an orbital "task group" ! ! ... The following variables not set during initialization but later ! INTEGER :: ibnd_start = 0 ! starting band index INTEGER :: ibnd_end = 0 ! ending band index ! CONTAINS ! !---------------------------------------------------------------------------- SUBROUTINE mp_start_bands( nband_, ntg_, parent_comm ) !--------------------------------------------------------------------------- ! ! ... Divide processors (of the "parent_comm" group) into nband_ pools ! ... Requires: nband_, read from command line ! ... parent_comm, typically processors of a k-point pool ! ... (intra_pool_comm) ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nband_, parent_comm INTEGER, INTENT(IN), OPTIONAL :: ntg_ ! INTEGER :: parent_nproc = 1, parent_mype = 0 ! #if defined (__MPI) ! parent_nproc = mp_size( parent_comm ) parent_mype = mp_rank( parent_comm ) ! ! ... nband_ must have been previously read from command line argument ! ... by a call to routine get_command_line ! nbgrp = nband_ ! IF ( nbgrp < 1 .OR. nbgrp > parent_nproc ) CALL errore( 'mp_start_bands',& 'invalid number of band groups, out of range', 1 ) IF ( MOD( parent_nproc, nbgrp ) /= 0 ) CALL errore( 'mp_start_bands', & 'n. of band groups must be divisor of parent_nproc', 1 ) ! ! ... Set number of processors per band group ! nproc_bgrp = parent_nproc / nbgrp ! ! ... set index of band group for this processor ( 0 : nbgrp - 1 ) ! my_bgrp_id = parent_mype / nproc_bgrp ! ! ... set index of processor within the image ( 0 : nproc_image - 1 ) ! me_bgrp = MOD( parent_mype, nproc_bgrp ) ! CALL mp_barrier( parent_comm ) ! ! ... the intra_bgrp_comm communicator is created ! CALL mp_comm_split( parent_comm, my_bgrp_id, parent_mype, intra_bgrp_comm ) ! CALL mp_barrier( parent_comm ) ! ! ... the inter_bgrp_comm communicator is created ! CALL mp_comm_split( parent_comm, me_bgrp, parent_mype, inter_bgrp_comm ) ! IF ( PRESENT(ntg_) ) THEN ntask_groups = ntg_ END IF ! #endif RETURN ! END SUBROUTINE mp_start_bands ! SUBROUTINE init_index_over_band (comm,nbnd) ! IMPLICIT NONE INTEGER, INTENT(IN) :: comm, nbnd INTEGER :: npe, myrank, rest, k myrank = mp_rank(comm) npe = mp_size(comm) rest = mod(nbnd, npe) k = int(nbnd/npe) IF ( k >= 1) THEN IF (rest > myrank) THEN ibnd_start = (myrank)*k + (myrank+1) ibnd_end = (myrank+1)*k + (myrank+1) ELSE ibnd_start = (myrank)*k + rest + 1 ibnd_end = (myrank+1)*k + rest ENDIF ELSE ibnd_start = 1 ibnd_end = nbnd ENDIF END SUBROUTINE init_index_over_band ! END MODULE mp_bands espresso-5.1/Modules/xml_input.f900000644000175000017500000001552612341373034015262 0ustar mbamba! ! Copyright (C) 2002-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !=----------------------------------------------------------------------------=! ! MODULE xml_input USE xml_io_base, ONLY : attr USE iotk_module USE kinds IMPLICIT NONE PRIVATE PUBLIC :: xml_input_dump INTERFACE dump_keyword MODULE PROCEDURE dump_keyword_str, dump_keyword_i END INTERFACE CONTAINS SUBROUTINE xml_input_dump USE io_global, ONLY : ionode, stdout USE io_files, ONLY : iunpun USE global_version, ONLY : version_number USE input_parameters CHARACTER(LEN=256) :: filename INTEGER :: ierr return filename = 'qe_input.xml' IF ( ionode ) THEN ! ! ... Open XML descriptor ! WRITE( stdout, '(/,3X,"Dumping input parameters",/)' ) ! CALL iotk_open_write( iunpun, FILE = filename, BINARY = .FALSE., IERR = ierr ) ! END IF IF ( ionode ) THEN CALL iotk_write_attr( attr, "targetNamespace", "http://www.deisa.org/pwscf/3_2", FIRST = .TRUE. ) CALL iotk_write_attr( attr, "elementFormDefault", "qualified" ) CALL iotk_write_attr( attr, "xmlns", "http://www.w3.org/2001/XMLSchema" ) CALL iotk_write_attr( attr, "xmlns:tns", "http://www.deisa.org/pwscf/3_2" ) CALL iotk_write_begin( iunpun, "schema", attr ) CALL write_header( "Quantum ESPRESSO", TRIM(version_number) ) CALL iotk_write_attr( attr, "section_type", "namelist", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "CONTROLS", attr ) CALL dump_keyword( "title", title, "namelist", " " ) CALL dump_keyword( "calculation", calculation, "namelist", " ", calculation_allowed ) CALL dump_keyword( "verbosity", verbosity, "namelist", " ", verbosity_allowed ) CALL dump_keyword( "restart_mode", restart_mode, "namelist", " ", restart_mode_allowed ) CALL dump_keyword( "nstep", nstep, "namelist", " ", min_value = 1 ) CALL dump_keyword( "iprint", iprint, "namelist", " ", min_value = 1 ) CALL iotk_write_end( iunpun, "CONTROLS" ) CALL iotk_write_attr( attr, "section_type", "namelist", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "SYSTEM", attr ) CALL iotk_write_end( iunpun, "SYSTEM" ) CALL iotk_write_attr( attr, "section_type", "namelist", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "ELECTRONS", attr ) CALL iotk_write_end( iunpun, "ELECTRONS" ) CALL iotk_write_attr( attr, "section_type", "namelist", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "IONS", attr ) CALL iotk_write_end( iunpun, "IONS" ) CALL iotk_write_attr( attr, "section_type", "namelist", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "CELL", attr ) CALL iotk_write_end( iunpun, "CELL" ) CALL iotk_write_attr( attr, "section_type", "card", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "ATOMIC_SPECIES", attr ) CALL iotk_write_end( iunpun, "ATOMIC_SPECIES" ) CALL iotk_write_attr( attr, "section_type", "card", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "ATOMIC_POSITIONS", attr ) CALL iotk_write_end( iunpun, "ATOMIC_POSITIONS" ) CALL iotk_write_attr( attr, "section_type", "card", FIRST = .TRUE. ) CALL iotk_write_begin( iunpun, "K_POINTS", attr ) CALL iotk_write_end( iunpun, "K_POINTS" ) CALL iotk_write_end( iunpun, "schema" ) END IF IF ( ionode ) CALL iotk_close_write( iunpun ) RETURN END SUBROUTINE SUBROUTINE dump_keyword_str( kname, defval, usage, descr, allowed ) USE io_files, ONLY : iunpun CHARACTER(LEN=*) :: kname CHARACTER(LEN=*) :: defval CHARACTER(LEN=*) :: usage CHARACTER(LEN=*) :: descr CHARACTER(LEN=*), OPTIONAL :: allowed(:) CALL iotk_write_attr( attr, "required", "no", FIRST = .TRUE. ) CALL iotk_write_attr( attr, "repeat", "no") CALL iotk_write_begin( iunpun, "KEYWORD", ATTR = attr ) CALL iotk_write_attr( attr, "type", "default", FIRST = .TRUE. ) CALL iotk_write_dat( iunpun, "NAME", kname, ATTR = attr ) CALL iotk_write_attr( attr, "kind", "STRING", FIRST = .TRUE. ) ! type CALL iotk_write_begin( iunpun, "DATA_TYPE", ATTR = attr ) CALL iotk_write_dat( iunpun, "N_VAR", 1 ) CALL iotk_write_end( iunpun, "DATA_TYPE" ) IF( usage == "namelist" ) THEN CALL iotk_write_dat( iunpun, "USAGE", kname//" = value" ) ELSE CALL iotk_write_dat( iunpun, "USAGE", usage ) END IF IF( PRESENT( allowed ) ) THEN CALL iotk_write_dat( iunpun, "ALLOWED_VALUES", allowed ) END IF CALL iotk_write_dat( iunpun, "DESCRIPTION", descr ) CALL iotk_write_dat( iunpun, "DEFAULT_VALUE", defval ) CALL iotk_write_end( iunpun, "KEYWORD" ) RETURN END SUBROUTINE SUBROUTINE dump_keyword_i( kname, defval, usage, descr, min_value, max_value ) USE io_files, ONLY : iunpun CHARACTER(LEN=*) :: kname INTEGER :: defval ! type CHARACTER(LEN=*) :: usage CHARACTER(LEN=*) :: descr INTEGER, OPTIONAL :: min_value ! type INTEGER, OPTIONAL :: max_value ! type CALL iotk_write_attr( attr, "required", "no", FIRST = .TRUE. ) CALL iotk_write_attr( attr, "repeat", "no") CALL iotk_write_begin( iunpun, "KEYWORD", ATTR = attr ) CALL iotk_write_attr( attr, "type", "default", FIRST = .TRUE. ) CALL iotk_write_dat( iunpun, "NAME", kname, ATTR = attr ) CALL iotk_write_attr( attr, "kind", "INTEGER", FIRST = .TRUE. ) ! type CALL iotk_write_begin( iunpun, "DATA_TYPE", ATTR = attr ) CALL iotk_write_dat( iunpun, "N_VAR", 1 ) CALL iotk_write_end( iunpun, "DATA_TYPE" ) IF( usage == "namelist" ) THEN CALL iotk_write_dat( iunpun, "USAGE", kname//" = value" ) ELSE CALL iotk_write_dat( iunpun, "USAGE", usage ) END IF IF( PRESENT( min_value ) ) THEN CALL iotk_write_dat( iunpun, "MIN_VALUE", min_value ) END IF IF( PRESENT( max_value ) ) THEN CALL iotk_write_dat( iunpun, "MAX_VALUE", max_value ) END IF CALL iotk_write_dat( iunpun, "DESCRIPTION", descr ) CALL iotk_write_dat( iunpun, "DEFAULT_VALUE", defval ) CALL iotk_write_end( iunpun, "KEYWORD" ) RETURN END SUBROUTINE END MODULE espresso-5.1/Modules/pseudo_types.f900000644000175000017500000003377112341373034015770 0ustar mbamba! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE pseudo_types ! this module contains the definitions of several TYPE structures, ! together with their allocation/deallocation routines USE kinds, ONLY: DP use radial_grids, ONLY: radial_grid_type IMPLICIT NONE SAVE ! ! Additional data to make a PAW setup out of an US pseudo, ! they are all stored on a radial grid: TYPE paw_in_upf REAL(DP),POINTER :: ae_rho_atc(:) ! AE core charge (pseudo ccharge ! is already included in upf) REAL(DP),POINTER :: pfunc(:,:,:),&! Psi_i(r)*Psi_j(r) pfunc_rel(:,:,:), & ! Psi_i(r)*Psi_j(r) small component ptfunc(:,:,:), & ! as above, but for pseudo aewfc_rel(:,:) ! as above, but for pseudo REAL(DP),POINTER :: ae_vloc(:) ! AE local potential (pseudo vloc ! is already included in upf) REAL(DP),POINTER :: oc(:) ! starting occupation used to init becsum ! they differ from US ones because they ! are indexed on BETA functions, non on WFC REAL(DP),POINTER :: augmom(:,:,:) ! multipole AE-pseudo (i,j,l=0:2*lmax) REAL(DP) :: raug ! augfunction max radius INTEGER :: iraug ! index on rgrid closer to, and >, raug INTEGER :: lmax_aug ! max angmom of augmentation functions, it is == ! to 2* max{l of pseudized wavefunctions} ! note that nqlc of upf also includes the angmom of ! empty virtual channel used to generate local potential REAL(DP) :: core_energy ! constant to add in order to get all-electron energy CHARACTER(len=12):: augshape ! shape of augmentation charge END TYPE paw_in_upf TYPE pseudo_upf CHARACTER(LEN=80):: generated=' '! generator software CHARACTER(LEN=80):: author=' ' ! pseudopotential's author CHARACTER(LEN=80):: date=' ' ! generation date CHARACTER(LEN=80):: comment=' ' ! author's comment CHARACTER(LEN=2) :: psd=' ' ! Element label CHARACTER(LEN=20) :: typ=' ' ! Pseudo type ( NC or US or PAW) CHARACTER(len=6) :: rel=' ' ! relativistic: {no|scalar|full} LOGICAL :: tvanp ! .true. if Ultrasoft LOGICAL :: tcoulombp ! .true. if Coulomb 1/r potential LOGICAL :: nlcc ! Non linear core corrections CHARACTER(LEN=25) :: dft ! Exch-Corr type REAL(DP) :: zp ! z valence REAL(DP) :: etotps ! total energy REAL(DP) :: ecutwfc ! suggested cut-off for wfc REAL(DP) :: ecutrho ! suggested cut-off for rho ! CHARACTER(len=11) :: nv ! UPF file three-digit version i.e. 2.0.0 INTEGER :: lmax ! maximum l component in beta INTEGER :: lmax_rho ! max l component in charge (should be 2*lmax) REAL(DP), POINTER :: vnl(:,:,:) ! vnl(i,l,s) = V(r_i)_{ls} ! only for single-channel NC PP ! Wavefunctions and projectors INTEGER :: nwfc ! number of atomic wavefunctions INTEGER :: nbeta ! number of projectors INTEGER, POINTER :: kbeta(:) ! kbeta(nbeta) see below INTEGER :: kkbeta ! kkbeta=max(kbeta(:)) ! kbeta<=mesh is the number of grid points for each beta function ! beta(r,nb) = 0 for r > r(kbeta(nb)) ! kkbeta<=mesh is the largest of such number so that for all beta ! beta(r,nb) = 0 for r > r(kkbeta) ! INTEGER, POINTER :: lll(:) ! lll(nbeta) l of each projector REAL(DP), POINTER :: beta(:,:) ! beta(mesh,nbeta) projectors ! CHARACTER(LEN=2), POINTER :: els(:) ! els(nwfc) label of wfc CHARACTER(LEN=2), POINTER :: els_beta(:) ! els(nbeta) label of beta INTEGER, POINTER :: nchi(:) ! lchi(nwfc) value of pseudo-n for wavefcts INTEGER, POINTER :: lchi(:) ! lchi(nwfc) value of l for wavefcts REAL(DP), POINTER :: oc(:) ! oc(nwfc) occupancies for wavefcts REAL(DP), POINTER :: epseu(:) ! pseudo one-particle energy (nwfc) REAL(DP), POINTER :: rcut_chi(:)! rcut_chi(nwfc) cutoff inner radius REAL(DP), POINTER :: rcutus_chi(:)! rcutus_chi(nwfc) ultrasoft outer radius ! Chi and rho_at are only used for initial density and initial wfcs: REAL(DP), POINTER :: chi(:,:) ! chi(mesh,nwfc) atomic wavefcts REAL(DP), POINTER :: rho_at(:) ! rho_at(mesh) atomic charge ! Minimal radial grid: INTEGER :: mesh ! number of points in the radial mesh REAL(DP) :: xmin ! the minimum x of the linear mesh REAL(DP) :: rmax ! the maximum radius of the mesh REAL(DP) :: zmesh ! the nuclear charge used for mesh REAL(DP) :: dx ! the deltax of the linear mesh REAL(DP), POINTER :: r(:) ! r(mesh) radial grid REAL(DP), POINTER :: rab(:) ! rab(mesh) dr(x)/dx (x=linear grid) ! Pseudized core charge REAL(DP), POINTER :: rho_atc(:) ! rho_atc(mesh) atomic core charge ! Local potential INTEGER :: lloc ! L of channel used to generate local potential ! (if < 0 it was generated by smoothing AE potential) REAL(DP) :: rcloc ! vloc = v_ae for r > rcloc REAL(DP), POINTER :: vloc(:) ! vloc(mesh) local atomic potential ! REAL(DP), POINTER :: dion(:,:) ! dion(nbeta,nbeta) atomic D_{mu,nu} ! Augmentation LOGICAL :: q_with_l ! if .true. qfunc is pseudized in ! different ways for different l INTEGER :: nqf ! number of Q coefficients INTEGER :: nqlc ! number of angular momenta in Q REAL(DP):: qqq_eps ! qfunc is null if its norm is .lt. qqq_eps REAL(DP), POINTER :: rinner(:) ! rinner(0:2*lmax) r_L REAL(DP), POINTER :: qqq(:,:) ! qqq(nbeta,nbeta) q_{mu,nu} ! Augmentation without L dependecy REAL(DP), POINTER :: qfunc(:,:) ! qfunc(mesh,nbeta*(nbeta+1)/2) ! Q_{mu,nu}(|r|) function for |r|> r_L ! Augmentation depending on L (optional, compulsory for PAW) REAL(DP), POINTER :: qfuncl(:,:,:)! qfuncl(mesh,nbeta*(nbeta+1)/2,l) ! Q_{mu,nu}(|r|) function for |r|> r_L ! Analitycal coeffs cor small r expansion of qfunc (Vanderbilt's code) REAL(DP), POINTER :: qfcoef(:,:,:,:) ! qfcoef(nqf,0:2*lmax,nbeta,nbeta) ! coefficients for Q for |r| 0 ) THEN ! command-line argument -ndiag N or -northo N set to a value N ! use the command line value ensuring that it falls in the proper range nproc_ortho_try = MIN( ndiag_ , parent_nproc ) ELSE ! no command-line argument -ndiag N or -northo N is present ! insert here custom architecture specific default definitions #if defined __SCALAPACK nproc_ortho_try = MAX( parent_nproc/2, 1 ) #else nproc_ortho_try = 1 #endif END IF ! ! the ortho group for parallel linear algebra is a sub-group of the pool, ! then there are as many ortho groups as pools. ! CALL init_ortho_group( nproc_ortho_try, parent_comm ) ! RETURN ! END SUBROUTINE mp_start_diag ! ! SUBROUTINE init_ortho_group( nproc_try_in, comm_all ) ! IMPLICIT NONE INTEGER, INTENT(IN) :: nproc_try_in, comm_all LOGICAL, SAVE :: first = .true. INTEGER :: ierr, color, key, me_all, nproc_all, nproc_try #if defined __SCALAPACK INTEGER, ALLOCATABLE :: blacsmap(:,:) INTEGER, ALLOCATABLE :: ortho_cntx_pe(:,:,:) INTEGER :: nprow, npcol, myrow, mycol, i, j, k INTEGER, EXTERNAL :: BLACS_PNUM ! INTEGER :: nparent=1 INTEGER :: total_nproc=1 INTEGER :: total_mype=0 INTEGER :: nproc_parent=1 INTEGER :: my_parent_id=0 #endif #if defined __MPI me_all = mp_rank( comm_all ) ! nproc_all = mp_size( comm_all ) ! nproc_try = MIN( nproc_try_in, nproc_all ) nproc_try = MAX( nproc_try, 1 ) IF( .NOT. first ) CALL clean_ortho_group ( ) ! find the square closer (but lower) to nproc_try ! CALL grid2d_dims( 'S', nproc_try, np_ortho(1), np_ortho(2) ) ! ! now, and only now, it is possible to define the number of tasks ! in the ortho group for parallel linear algebra ! nproc_ortho = np_ortho(1) * np_ortho(2) ! IF( nproc_all >= 4*nproc_ortho ) THEN ! ! here we choose a processor every 4, in order not to stress memory BW ! on multi core procs, for which further performance enhancements are ! possible using OpenMP BLAS inside regter/cegter/rdiaghg/cdiaghg ! (to be implemented) ! color = 0 IF( me_all < 4*nproc_ortho .AND. MOD( me_all, 4 ) == 0 ) color = 1 ! leg_ortho = 4 ! ELSE IF( nproc_all >= 2*nproc_ortho ) THEN ! ! here we choose a processor every 2, in order not to stress memory BW ! color = 0 IF( me_all < 2*nproc_ortho .AND. MOD( me_all, 2 ) == 0 ) color = 1 ! leg_ortho = 2 ! ELSE ! ! here we choose the first processors ! color = 0 IF( me_all < nproc_ortho ) color = 1 ! leg_ortho = 1 ! END IF ! key = me_all ! ! initialize the communicator for the new group by splitting the input communicator ! CALL mp_comm_split ( comm_all, color, key, ortho_comm ) ! ! Computes coordinates of the processors, in row maior order ! me_ortho1 = mp_rank( ortho_comm ) ! IF( me_all == 0 .AND. me_ortho1 /= 0 ) & CALL errore( " init_ortho_group ", " wrong root task in ortho group ", ierr ) ! if( color == 1 ) then ortho_comm_id = 1 CALL GRID2D_COORDS( 'R', me_ortho1, np_ortho(1), np_ortho(2), me_ortho(1), me_ortho(2) ) CALL GRID2D_RANK( 'R', np_ortho(1), np_ortho(2), me_ortho(1), me_ortho(2), ierr ) IF( ierr /= me_ortho1 ) & CALL errore( " init_ortho_group ", " wrong task coordinates in ortho group ", ierr ) IF( me_ortho1*leg_ortho /= me_all ) & CALL errore( " init_ortho_group ", " wrong rank assignment in ortho group ", ierr ) CALL mp_comm_split( ortho_comm, me_ortho(2), me_ortho(1), ortho_col_comm) CALL mp_comm_split( ortho_comm, me_ortho(1), me_ortho(2), ortho_row_comm) else ortho_comm_id = 0 me_ortho(1) = me_ortho1 me_ortho(2) = me_ortho1 endif #if defined __SCALAPACK ! ! This part is used to eliminate the image dependency from ortho groups ! SCALAPACK is now independent of whatever level of parallelization ! is present on top of pool parallelization ! total_nproc = mp_size( world_comm ) total_mype = mp_rank( world_comm ) nparent = total_nproc/npool/nproc_pool nproc_parent = total_nproc/nparent my_parent_id = total_mype/nproc_parent ! ! ALLOCATE( ortho_cntx_pe( npool, nbgrp, nparent ) ) ALLOCATE( blacsmap( np_ortho(1), np_ortho(2) ) ) DO j = 1, nparent DO k = 1, nbgrp DO i = 1, npool CALL BLACS_GET(world_cntx, 10, ortho_cntx_pe( i, k, j)) ! retrieve communicator of world context blacsmap = 0 nprow = np_ortho(1) npcol = np_ortho(2) IF( ( j == ( my_parent_id + 1 ) ) .and. ( k == ( my_bgrp_id + 1 ) ) .and. & ( i == ( my_pool_id + 1 ) ) .and. ( ortho_comm_id > 0 ) ) THEN blacsmap( me_ortho(1) + 1, me_ortho(2) + 1 ) = BLACS_PNUM( world_cntx, 0, me_blacs ) END IF ! All MPI tasks defined in the global communicator take part in the definition of the BLACS grid CALL mp_sum( blacsmap, world_comm ) CALL BLACS_GRIDMAP( ortho_cntx_pe(i,k,j), blacsmap, nprow, nprow, npcol ) CALL BLACS_GRIDINFO( ortho_cntx_pe(i,k,j), nprow, npcol, myrow, mycol ) IF( ( j == ( my_parent_id + 1 ) ) .and. ( k == ( my_bgrp_id + 1 ) ) .and. & ( i == ( my_pool_id + 1 ) ) .and. ( ortho_comm_id > 0 ) ) THEN IF( np_ortho(1) /= nprow ) & CALL errore( ' init_ortho_group ', ' problem with SCALAPACK, wrong no. of task rows ', 1 ) IF( np_ortho(2) /= npcol ) & CALL errore( ' init_ortho_group ', ' problem with SCALAPACK, wrong no. of task columns ', 1 ) IF( me_ortho(1) /= myrow ) & CALL errore( ' init_ortho_group ', ' problem with SCALAPACK, wrong task row ID ', 1 ) IF( me_ortho(2) /= mycol ) & CALL errore( ' init_ortho_group ', ' problem with SCALAPACK, wrong task columns ID ', 1 ) ortho_cntx = ortho_cntx_pe(i,k,j) END IF END DO END DO END DO DEALLOCATE( blacsmap ) DEALLOCATE( ortho_cntx_pe ) #endif #else ortho_comm_id = 1 #endif first = .false. RETURN END SUBROUTINE init_ortho_group ! SUBROUTINE clean_ortho_group ( ) ! ! free resources associated to the communicator ! CALL mp_comm_free( ortho_comm ) IF( ortho_comm_id > 0 ) THEN CALL mp_comm_free( ortho_col_comm ) CALL mp_comm_free( ortho_row_comm ) ENDIF #if defined __SCALAPACK IF( ortho_cntx /= -1 ) CALL BLACS_GRIDEXIT( ortho_cntx ) ortho_cntx = -1 #endif ! END SUBROUTINE clean_ortho_group ! END MODULE mp_diag espresso-5.1/Modules/paw_variables.f900000644000175000017500000000653512341373034016062 0ustar mbambaMODULE paw_variables ! USE kinds, ONLY : DP ! IMPLICIT NONE PUBLIC SAVE !!!!!!!!!!!!!!!!!!!!!!!! !!!! Control flags: !!!! ! Set to true after initialization, to prevent double allocs: LOGICAL :: paw_is_init = .false. ! Analogous to okvan in "uspp_param" (Modules/uspp.f90) LOGICAL :: & okpaw = .FALSE. ! if .TRUE. at least one pseudo is PAW !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! Pseudopotential data: !!!! ! There is (almost) no pseudopotential data here, it is all stored in the upf type. ! See files pseudo_types.f90 and read_uspp.f90 ! Constant to be added to etot to get all-electron energy REAL(DP) :: total_core_energy = 0._dp ! true if all the pseudopotentials are PAW LOGICAL :: only_paw !!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! Initialization data: !!!! INTEGER,PARAMETER :: lm_fact = 3 ! To converge E_xc integrate up to LM = lm_fact * lm_max INTEGER,PARAMETER :: lm_fact_x = 3 ! As above, for gradient corrected functionals INTEGER,PARAMETER :: xlm = 2 ! Additional factor to add to have a good grad.corr. INTEGER,PARAMETER :: radial_grad_style = 0 ! = 0 or 1, algorithm to use for d/dr TYPE paw_radial_integrator ! the following variables are used to integrate radial sampling INTEGER :: lmax ! max l component that can be integrated correctly INTEGER :: ladd ! additional l max that have been added for grad.corr. INTEGER :: lm_max ! as above, but +1 and squared INTEGER :: nx ! number of integration directions REAL(DP),POINTER :: ww(:) ! integration weights (one per direction) REAL(DP),POINTER :: ylm(:,:) ! Y_lm(nx,lm_max) REAL(DP),POINTER :: wwylm(:,:) ! ww(nx) * Y_lm(nx,lm_max) ! additional variables for gradient correction REAL(DP),POINTER :: dylmt(:,:),&! |d(ylm)/dtheta|**2 dylmp(:,:) ! |d(ylm)/dphi|**2 REAL(DP),POINTER :: cos_phi(:) ! cos(phi) REAL(DP),POINTER :: sin_phi(:) ! sin(phi) REAL(DP),POINTER :: cos_th(:) ! cos(theta) (for divergence) REAL(DP),POINTER :: sin_th(:) ! sin(theta) (for divergence) REAL(DP),POINTER :: cotg_th(:) ! cos(theta)/sin(theta) (for divergence) END TYPE TYPE(paw_radial_integrator), ALLOCATABLE :: & rad(:) ! information to integrate different atomic species !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! self-consistent variables: !!!! ! This type contains some useful data that has to be passed to all ! functions, but cannot stay in global variables for parallel: TYPE paw_info INTEGER :: a ! atom index INTEGER :: t ! atom type index = itype(a) INTEGER :: m ! atom mesh = g(t)%mesh INTEGER :: b ! number of beta functions = upf(t)%nbeta INTEGER :: l ! max angular index l+1 -> (l+1)**2 is max ! lm index, it is used to allocate rho INTEGER :: ae ! tells if we are doing all-electron (1) or pseudo (2) END TYPE ! Analogous to deeq in "uspp_param" (Modules/uspp.f90) REAL(DP), ALLOCATABLE :: & ddd_paw(:,:,:) ! D: D^1_{ij} - \tilde{D}^1_{ij} (only Hxc part) REAL(DP), ALLOCATABLE :: vs_rad(:,:,:) END MODULE paw_variables espresso-5.1/Modules/upf_to_internal.f900000644000175000017500000000471412341373034016430 0ustar mbamba! ! Copyright (C) 2004-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! This module is USEd, for the time being, as an interface ! between the UPF pseudo type and the pseudo variables internal representation !=----------------------------------------------------------------------------=! MODULE upf_to_internal !=----------------------------------------------------------------------------=! IMPLICIT NONE PRIVATE PUBLIC :: set_pseudo_upf SAVE !=----------------------------------------------------------------------------=! CONTAINS !=----------------------------------------------------------------------------=! ! !--------------------------------------------------------------------- subroutine set_pseudo_upf (is, upf, grid) !--------------------------------------------------------------------- ! ! set "is"-th pseudopotential using the Unified Pseudopotential Format ! "upf" - convert and copy to internal variables ! If "grid" is present, reconstruct radial grid. ! Obsolescent - for old-style PP formats only. ! USE funct, ONLY: set_dft_from_name, set_dft_from_indices ! USE pseudo_types USE radial_grids, ONLY: radial_grid_type, allocate_radial_grid ! implicit none ! INTEGER :: is TYPE (pseudo_upf) :: upf TYPE (radial_grid_type), target, optional :: grid ! ! Local variables ! integer :: iexch,icorr,igcx,igcc ! ! old formats never contain "1/r" pseudopotentials ! upf%tcoulombp = .false. ! ! workaround for rrkj format - it contains the indices, not the name ! if ( upf%dft(1:6)=='INDEX:') then read( upf%dft(7:10), '(4i1)') iexch,icorr,igcx,igcc call set_dft_from_indices(iexch,icorr,igcx,igcc, 0) !Cannot read nonloc in this format else call set_dft_from_name( upf%dft ) end if ! if(present(grid)) then call allocate_radial_grid(grid,upf%mesh) grid%dx = upf%dx grid%xmin = upf%xmin grid%zmesh= upf%zmesh grid%mesh = upf%mesh ! grid%r (1:upf%mesh) = upf%r (1:upf%mesh) grid%rab(1:upf%mesh) = upf%rab(1:upf%mesh) upf%grid => grid endif ! end subroutine set_pseudo_upf !=----------------------------------------------------------------------------=! END MODULE upf_to_internal !=----------------------------------------------------------------------------=! espresso-5.1/Modules/mp_base.f900000644000175000017500000007202012341373034014641 0ustar mbamba! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! Wrapper for MPI implementations that have problems with large messages ! ! In some MPI implementation the communication subsystem ! crashes when message exceeds a given size, so we need ! to break down MPI communications in smaller pieces ! #define __MSGSIZ_MAX 100000 #define __BCAST_MSGSIZ_MAX 100000 ! Some implementation of MPI (OpenMPI) if it is not well tuned for the given ! network hardware (InfiniBand) tend to lose performance or get stuck inside ! collective routines if processors are not well synchronized ! A barrier fixes the problem ! #define __USE_BARRIER !=----------------------------------------------------------------------------=! ! SUBROUTINE mp_synchronize( gid ) USE parallel_include IMPLICIT NONE INTEGER, INTENT(IN) :: gid #if defined __MPI && defined __USE_BARRIER INTEGER :: ierr CALL mpi_barrier( gid, ierr ) IF( ierr /= 0 ) CALL errore( 'mp_synchronize ', ' error in mpi_barrier ', ierr ) #endif RETURN END SUBROUTINE mp_synchronize !=----------------------------------------------------------------------------=! ! SUBROUTINE bcast_real( array, n, root, gid ) USE kinds, ONLY: DP USE parallel_include IMPLICIT NONE INTEGER, INTENT(IN) :: n, root, gid REAL(DP) :: array( n ) #if defined __MPI INTEGER :: msgsiz_max = __BCAST_MSGSIZ_MAX INTEGER :: nblk, blksiz, iblk, istart, ierr #if defined __TRACE write(*,*) 'BCAST_REAL IN' #endif IF( n <= 0 ) GO TO 1 #if defined __USE_BARRIER CALL mp_synchronize( gid ) #endif IF( n <= msgsiz_max ) THEN CALL MPI_BCAST( array, n, MPI_DOUBLE_PRECISION, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_real ', ' error in mpi_bcast 1 ', ierr ) ELSE nblk = n / msgsiz_max blksiz = msgsiz_max DO iblk = 1, nblk istart = (iblk-1)*msgsiz_max + 1 CALL MPI_BCAST( array( istart ), blksiz, MPI_DOUBLE_PRECISION, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_real ', ' error in mpi_bcast 2 ', ierr ) END DO blksiz = MOD( n, msgsiz_max ) IF( blksiz > 0 ) THEN istart = nblk * msgsiz_max + 1 CALL MPI_BCAST( array( istart ), blksiz, MPI_DOUBLE_PRECISION, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_real ', ' error in mpi_bcast 3 ', ierr ) END IF END IF 1 CONTINUE #if defined __TRACE write(*,*) 'BCAST_REAL OUT' #endif #endif RETURN END SUBROUTINE bcast_real SUBROUTINE bcast_integer( array, n, root, gid ) USE parallel_include IMPLICIT NONE INTEGER, INTENT(IN) :: n, root, gid INTEGER :: array( n ) #if defined __MPI INTEGER :: msgsiz_max = __MSGSIZ_MAX INTEGER :: nblk, blksiz, iblk, istart, ierr #if defined __TRACE write(*,*) 'BCAST_INTEGER IN' #endif IF( n <= 0 ) GO TO 1 #if defined __USE_BARRIER CALL mp_synchronize( gid ) #endif IF( n <= msgsiz_max ) THEN CALL MPI_BCAST( array, n, MPI_INTEGER, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_integer ', ' error in mpi_bcast 1 ', ierr ) ELSE nblk = n / msgsiz_max blksiz = msgsiz_max DO iblk = 1, nblk istart = (iblk-1)*msgsiz_max + 1 CALL MPI_BCAST( array( istart ), blksiz, MPI_INTEGER, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_integer ', ' error in mpi_bcast 2 ', ierr ) END DO blksiz = MOD( n, msgsiz_max ) IF( blksiz > 0 ) THEN istart = nblk * msgsiz_max + 1 CALL MPI_BCAST( array( istart ), blksiz, MPI_INTEGER, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_integer ', ' error in mpi_bcast 3 ', ierr ) END IF END IF 1 CONTINUE #if defined __TRACE write(*,*) 'BCAST_INTEGER OUT' #endif #endif RETURN END SUBROUTINE bcast_integer SUBROUTINE bcast_logical( array, n, root, gid ) USE parallel_include IMPLICIT NONE INTEGER, INTENT(IN) :: n, root, gid LOGICAL :: array( n ) #if defined __MPI INTEGER :: msgsiz_max = __MSGSIZ_MAX INTEGER :: nblk, blksiz, iblk, istart, ierr #if defined __TRACE write(*,*) 'BCAST_LOGICAL IN' #endif IF( n <= 0 ) GO TO 1 #if defined __USE_BARRIER CALL mp_synchronize( gid ) #endif IF( n <= msgsiz_max ) THEN CALL MPI_BCAST( array, n, MPI_LOGICAL, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_logical ', ' error in mpi_bcast 1 ', ierr ) ELSE nblk = n / msgsiz_max blksiz = msgsiz_max DO iblk = 1, nblk istart = (iblk-1)*msgsiz_max + 1 CALL MPI_BCAST( array( istart ), blksiz, MPI_LOGICAL, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_logical ', ' error in mpi_bcast 2 ', ierr ) END DO blksiz = MOD( n, msgsiz_max ) IF( blksiz > 0 ) THEN istart = nblk * msgsiz_max + 1 CALL MPI_BCAST( array( istart ), blksiz, MPI_LOGICAL, root, gid, ierr ) IF( ierr /= 0 ) CALL errore( ' bcast_logical ', ' error in mpi_bcast 3 ', ierr ) END IF END IF 1 CONTINUE #if defined __TRACE write(*,*) 'BCAST_LOGICAL OUT' #endif #endif RETURN END SUBROUTINE bcast_logical ! ! ... "reduce"-like subroutines ! !---------------------------------------------------------------------------- SUBROUTINE reduce_base_real( dim, ps, comm, root ) !---------------------------------------------------------------------------- ! ! ... sums a distributed variable ps(dim) over the processors. ! ... This version uses a fixed-length buffer of appropriate (?) dim ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim ! size of the array REAL(DP) :: ps(dim) ! array whose elements have to be reduced INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! REAL(DP) :: buff(maxb) ! the use of the common here could help the transfer of data to the network device COMMON / mp_base_real / buff ! #if defined __TRACE write(*,*) 'reduce_base_real IN' #endif CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real', 'error in mpi_comm_rank', info ) ! IF ( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! go to the end of the subroutine ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_DOUBLE_PRECISION, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_DOUBLE_PRECISION, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real', 'error in mpi_allreduce 1', info ) END IF ! IF( root < 0 ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) ELSE IF( root == myid ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real', 'error in mpi_allreduce 2', info ) END IF ! IF( root < 0 ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) ELSE IF( root == myid ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'reduce_base_real OUT' #endif ! #endif ! RETURN ! END SUBROUTINE reduce_base_real ! ! ! !---------------------------------------------------------------------------- SUBROUTINE reduce_base_integer( dim, ps, comm, root ) !---------------------------------------------------------------------------- ! ! ... sums a distributed variable ps(dim) over the processors. ! ... This version uses a fixed-length buffer of appropriate (?) dim ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim INTEGER :: ps(dim) INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! INTEGER :: buff(maxb) COMMON / mp_base_integer / buff ! #if defined __TRACE write(*,*) 'reduce_base_integer IN' #endif ! CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer', 'error in mpi_comm_rank', info ) ! IF ( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! go to the end of the subroutine ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_INTEGER, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_INTEGER, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer', 'error in mpi_allreduce 1', info ) END IF ! IF( root < 0 ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) ELSE IF( root == myid ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_INTEGER, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_INTEGER, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer', 'error in mpi_allreduce 2', info ) END IF ! IF( root < 0 ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) ELSE IF( root == myid ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'reduce_base_integer OUT' #endif ! #endif ! RETURN ! END SUBROUTINE reduce_base_integer ! ! ... "reduce"-like subroutines ! !---------------------------------------------------------------------------- SUBROUTINE reduce_base_real_to( dim, ps, psout, comm, root ) !---------------------------------------------------------------------------- ! ! ... sums a distributed variable ps(dim) over the processors, ! ... and store the results in variable psout. ! ... This version uses a fixed-length buffer of appropriate (?) length ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim REAL(DP), INTENT(IN) :: ps(dim) REAL(DP) :: psout(dim) INTEGER, INTENT(IN) :: comm ! communecator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! #if defined __TRACE write(*,*) 'reduce_base_real_to IN' #endif CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real_to', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real_to', 'error in mpi_comm_rank', info ) ! IF ( dim > 0 .AND. nproc <= 1 ) THEN psout = ps END IF IF( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! go to the end of the subroutine ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), psout(1+(n-1)*maxb), maxb, MPI_DOUBLE_PRECISION, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real_to', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), psout(1+(n-1)*maxb), maxb, MPI_DOUBLE_PRECISION, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real_to', 'error in mpi_allreduce 1', info ) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), psout(1+nbuf*maxb), (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real_to', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), psout(1+nbuf*maxb), (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_real_to', 'error in mpi_allreduce 2', info ) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'reduce_base_real_to OUT' #endif ! #endif ! RETURN ! END SUBROUTINE reduce_base_real_to ! ! ! !---------------------------------------------------------------------------- SUBROUTINE reduce_base_integer_to( dim, ps, psout, comm, root ) !---------------------------------------------------------------------------- ! ! ... sums a distributed integer variable ps(dim) over the processors, and ! ... saves the result on the output variable psout. ! ... This version uses a fixed-length buffer of appropriate (?) length ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim INTEGER, INTENT(IN) :: ps(dim) INTEGER :: psout(dim) INTEGER, INTENT(IN) :: comm ! communecator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! #if defined __TRACE write(*,*) 'reduce_base_integer_to IN' #endif CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer_to', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer_to', 'error in mpi_comm_rank', info ) ! IF ( dim > 0 .AND. nproc <= 1 ) THEN psout = ps END IF IF( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! go to the end of the subroutine ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), psout( 1+(n-1)*maxb ), maxb, MPI_INTEGER, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer_to', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), psout( 1+(n-1)*maxb ), maxb, MPI_INTEGER, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer_to', 'error in mpi_allreduce 1', info ) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), psout(1+nbuf*maxb), (dim-nbuf*maxb), MPI_INTEGER, MPI_SUM, root, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer_to', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), psout(1+nbuf*maxb), (dim-nbuf*maxb), MPI_INTEGER, MPI_SUM, comm, info ) IF( info /= 0 ) CALL errore( 'reduce_base_integer_to', 'error in mpi_allreduce 2', info ) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'reduce_base_integer_to OUT' #endif ! #endif ! RETURN ! END SUBROUTINE reduce_base_integer_to ! ! ! Parallel MIN and MAX ! !---------------------------------------------------------------------------- SUBROUTINE parallel_min_integer( dim, ps, comm, root ) !---------------------------------------------------------------------------- ! ! ... compute the minimum of a distributed variable ps(dim) over the processors. ! ... This version uses a fixed-length buffer of appropriate (?) dim ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim INTEGER :: ps(dim) INTEGER, INTENT(IN) :: comm ! communecator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! INTEGER :: buff(maxb) COMMON / mp_base_integer / buff ! #if defined __TRACE write(*,*) 'parallel_min_integer IN' #endif ! CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'parallel_min_integer', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'parallel_min_integer', 'error in mpi_comm_rank', info ) ! IF ( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_INTEGER, MPI_MIN, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_integer', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_INTEGER, MPI_MIN, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_integer', 'error in mpi_allreduce 1', info ) END IF ! IF( root < 0 ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) ELSE IF( root == myid ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_INTEGER, MPI_MIN, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_integer', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_INTEGER, MPI_MIN, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_integer', 'error in mpi_allreduce 2', info ) END IF ! IF( root < 0 ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) ELSE IF( root == myid ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'parallel_min_integer OUT' #endif ! #endif ! RETURN ! END SUBROUTINE parallel_min_integer ! !---------------------------------------------------------------------------- SUBROUTINE parallel_max_integer( dim, ps, comm, root ) !---------------------------------------------------------------------------- ! ! ... compute the maximum of a distributed variable ps(dim) over the processors. ! ... This version uses a fixed-length buffer of appropriate (?) dim ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim INTEGER :: ps(dim) INTEGER, INTENT(IN) :: comm ! communecator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! INTEGER :: buff(maxb) COMMON / mp_base_integer / buff ! #if defined __TRACE write(*,*) 'parallel_max_integer IN' #endif CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'parallel_max_integer', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'parallel_max_integer', 'error in mpi_comm_rank', info ) ! IF ( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_INTEGER, MPI_MAX, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_integer', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_INTEGER, MPI_MAX, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_integer', 'error in mpi_allreduce 1', info ) END IF ! IF( root < 0 ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) ELSE IF( root == myid ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_INTEGER, MPI_MAX, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_integer', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_INTEGER, MPI_MAX, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_integer', 'error in mpi_allreduce 2', info ) END IF ! IF( root < 0 ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) ELSE IF( root == myid ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'parallel_max_integer OUT' #endif #endif ! RETURN ! END SUBROUTINE parallel_max_integer !---------------------------------------------------------------------------- SUBROUTINE parallel_min_real( dim, ps, comm, root ) !---------------------------------------------------------------------------- ! ! ... compute the minimum value of a distributed variable ps(dim) over the processors. ! ... This version uses a fixed-length buffer of appropriate (?) dim ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim REAL(DP) :: ps(dim) INTEGER, INTENT(IN) :: comm ! communecator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! REAL(DP) :: buff(maxb) COMMON / mp_base_real / buff ! #if defined __TRACE write(*,*) 'parallel_min_real IN' #endif CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'parallel_min_real', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'parallel_min_real', 'error in mpi_comm_rank', info ) ! IF ( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_DOUBLE_PRECISION, MPI_MIN, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_real', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_DOUBLE_PRECISION, MPI_MIN, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_real', 'error in mpi_allreduce 1', info ) END IF ! IF( root < 0 ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) ELSE IF( root == myid ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_MIN, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_real', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_MIN, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_min_real', 'error in mpi_allreduce 2', info ) END IF ! IF( root < 0 ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) ELSE IF( root == myid ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'parallel_min_real OUT' #endif #endif ! RETURN ! END SUBROUTINE parallel_min_real ! !---------------------------------------------------------------------------- SUBROUTINE parallel_max_real( dim, ps, comm, root ) !---------------------------------------------------------------------------- ! ! ... compute the maximum value of a distributed variable ps(dim) over the processors. ! ... This version uses a fixed-length buffer of appropriate (?) dim ! USE kinds, ONLY : DP USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: dim REAL(DP) :: ps(dim) INTEGER, INTENT(IN) :: comm ! communecator INTEGER, INTENT(IN) :: root ! if root < 0 perform a reduction to all procs ! if root >= 0 perform a reduce only to root proc. ! #if defined (__MPI) ! INTEGER :: info, n, nbuf, nproc, myid INTEGER, PARAMETER :: maxb = __MSGSIZ_MAX ! REAL(DP) :: buff(maxb) COMMON / mp_base_real / buff ! #if defined __TRACE write(*,*) 'parallel_max_real IN' #endif CALL mpi_comm_size( comm, nproc, info ) IF( info /= 0 ) CALL errore( 'parallel_max_real', 'error in mpi_comm_size', info ) CALL mpi_comm_rank( comm, myid, info ) IF( info /= 0 ) CALL errore( 'parallel_max_real', 'error in mpi_comm_rank', info ) ! IF ( dim <= 0 .OR. nproc <= 1 ) GO TO 1 ! ! ... synchronize processes ! #if defined __USE_BARRIER CALL mp_synchronize( comm ) #endif ! nbuf = dim / maxb ! DO n = 1, nbuf ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_DOUBLE_PRECISION, MPI_MAX, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_real', 'error in mpi_reduce 1', info ) ELSE CALL MPI_ALLREDUCE( ps(1+(n-1)*maxb), buff, maxb, MPI_DOUBLE_PRECISION, MPI_MAX, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_real', 'error in mpi_allreduce 1', info ) END IF ! IF( root < 0 ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) ELSE IF( root == myid ) THEN ps((1+(n-1)*maxb):(n*maxb)) = buff(1:maxb) END IF ! END DO ! ! ... possible remaining elements < maxb ! IF ( ( dim - nbuf * maxb ) > 0 ) THEN ! IF( root >= 0 ) THEN CALL MPI_REDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_MAX, root, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_real', 'error in mpi_reduce 2', info ) ELSE CALL MPI_ALLREDUCE( ps(1+nbuf*maxb), buff, (dim-nbuf*maxb), MPI_DOUBLE_PRECISION, MPI_MAX, comm, info ) IF( info /= 0 ) CALL errore( 'parallel_max_real', 'error in mpi_allreduce 2', info ) END IF ! IF( root < 0 ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) ELSE IF( root == myid ) THEN ps((1+nbuf*maxb):dim) = buff(1:(dim-nbuf*maxb)) END IF ! END IF ! 1 CONTINUE ! #if defined __TRACE write(*,*) 'parallel_max_real OUT' #endif ! #endif ! RETURN ! END SUBROUTINE parallel_max_real espresso-5.1/Modules/radial_grids.f900000644000175000017500000003752712341373034015674 0ustar mbamba! ! Copyright (C) 2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE radial_grids !============================================================================ ! ! Module containing type definitions and auxiliary routines to deal with ! data on logarithmic radial grids. ! Should contain low level routines and no reference to other modules ! (with the possible exception of kinds and parameters) so as to be ! call-able from any other module. ! ! content: ! ! - ndmx : parameter definition max grid dimension ! ! - radial_grid_type : derived type definition for radial grids ! ! - do_mesh : a routine to build the radial mesh ! ! - check_mesh : a routine to check if grid is consistently set ! ! - hartree : a routine that solve the Poisson's equation on radial grid ! ! - series : a simple routine returning the coefficient of the polynomial ! describing the leading behavior of a function f at small r. ! ! - write_grid_on_file, read_grid_from_file : I/O routines ! !============================================================================ ! USE kinds, ONLY: dp ! IMPLICIT NONE ! integer, parameter :: & ndmx=3500 ! the maximum mesh size TYPE radial_grid_type INTEGER :: & mesh ! the actual number of mesh points REAL(DP),POINTER :: & r(:), & ! the radial mesh r2(:), & ! the square of the radial mesh rab(:), & ! d r(x) / d x where x is the linear grid sqr(:), & ! the square root of the radial mesh rm1(:), & ! 1 / r rm2(:), & ! 1 / r**2 rm3(:) ! 1 / r**3 REAL(DP) :: & xmin, & ! the minimum x rmax, & ! the maximum radial point zmesh, & ! the ionic charge used for the mesh dx ! the deltax of the linear mesh END TYPE radial_grid_type PRIVATE PUBLIC :: ndmx, radial_grid_type, & do_mesh, check_mesh, hartree, series, & write_grid_on_file, read_grid_from_file, & allocate_radial_grid,& deallocate_radial_grid,& nullify_radial_grid,& radial_grid_COPY interface deallocate_radial_grid module procedure & deallocate_radial_grid_s,& ! only one deallocate_radial_grid_v ! an array end interface !============================================================================ ! CONTAINS ! ! Build the radial (logarithmic) grid ! ! r(i) = exp ( xmin + (i-1) dx ) / zmesh i=1,mesh ! r2(i) is r(i) square, sqr(i) is sqrt(r(i)) and ! rab(i) is the integration element = r(i)*dx ! ! more general grid definitions are possible but currently not implemented ! (example: Vanderbilt's grid, same as above but starting at r=0) ! r(i) = exp ( xmin ) * ( exp( (i-1)*dx ) - 1.0_dp ) / zmesh ! rab(i) = ( r(i) + exp(xmin)/zmesh ) * dx ! !--------------------------------------------------------------- subroutine radial_grid_COPY(X,Y) !--------------------------------------------------------------- type(radial_grid_type),intent(in) :: X type(radial_grid_type),intent(inout) :: Y ! call deallocate_radial_grid(Y) call allocate_radial_grid(Y, X%mesh) ! Y%r(1:X%mesh) = X%r(1:X%mesh) Y%r2(1:X%mesh) = X%r2(1:X%mesh) Y%rab(1:X%mesh) = X%rab(1:X%mesh) Y%sqr(1:X%mesh) = X%sqr(1:X%mesh) Y%rm1(1:X%mesh) = X%rm1(1:X%mesh) Y%rm2(1:X%mesh) = X%rm2(1:X%mesh) Y%rm3(1:X%mesh) = X%rm3(1:X%mesh) ! Y%xmin = X%xmin Y%rmax = X%rmax Y%zmesh = X%zmesh Y%dx = X%dx end subroutine radial_grid_COPY ! !--------------------------------------------------------------- subroutine allocate_radial_grid(grid,mesh) !--------------------------------------------------------------- type(radial_grid_type),intent(inout) :: grid integer,intent(in) :: mesh if(mesh>ndmx) & call errore('allocate_radial_grid', 'mesh>ndmx',1) allocate( & grid%r(mesh), & grid%r2(mesh), & ! the square of the radial mesh grid%rab(mesh), & ! d r(x) / d x where x is the linear grid grid%sqr(mesh), & ! the square root of the radial mesh grid%rm1(mesh), & ! 1 / r grid%rm2(mesh), & ! 1 / r**2 grid%rm3(mesh) ) ! 1 / r**3 grid%mesh = mesh end subroutine allocate_radial_grid ! !--------------------------------------------------------------- subroutine deallocate_radial_grid_s(grid) !--------------------------------------------------------------- type(radial_grid_type),intent(inout) :: grid if (associated(grid%r)) deallocate(grid%r) if (associated(grid%r2)) deallocate(grid%r2) if (associated(grid%rab)) deallocate(grid%rab) if (associated(grid%sqr)) deallocate(grid%sqr) if (associated(grid%rm1)) deallocate(grid%rm1) if (associated(grid%rm2)) deallocate(grid%rm2) if (associated(grid%rm3)) deallocate(grid%rm3) grid%mesh = 0 call nullify_radial_grid(grid) end subroutine deallocate_radial_grid_s !--------------------------------------------------------------- subroutine deallocate_radial_grid_v(grid) !--------------------------------------------------------------- type(radial_grid_type),intent(inout) :: grid(:) integer :: n do n = 1,size(grid) if (associated(grid(n)%r)) deallocate(grid(n)%r) if (associated(grid(n)%r2)) deallocate(grid(n)%r2) if (associated(grid(n)%rab)) deallocate(grid(n)%rab) if (associated(grid(n)%sqr)) deallocate(grid(n)%sqr) if (associated(grid(n)%rm1)) deallocate(grid(n)%rm1) if (associated(grid(n)%rm2)) deallocate(grid(n)%rm2) if (associated(grid(n)%rm3)) deallocate(grid(n)%rm3) grid(n)%mesh = 0 enddo !deallocate(grid) end subroutine deallocate_radial_grid_v !--------------------------------------------------------------- subroutine nullify_radial_grid(grid) !--------------------------------------------------------------- type(radial_grid_type),intent(inout) :: grid nullify( & grid%r, & grid%r2, & ! the square of the radial mesh grid%rab, & ! d r(x) / d x where x is the linear grid grid%sqr, & ! the square root of the radial mesh grid%rm1, & ! 1 / r grid%rm2, & ! 1 / r**2 grid%rm3 ) ! 1 / r**3 grid%mesh = -1 end subroutine nullify_radial_grid ! !--------------------------------------------------------------- subroutine do_mesh(rmax,zmesh,xmin,dx,ibound,grid) !--------------------------------------------------------------- ! use kinds, only : DP implicit none type(radial_grid_type),intent(out) :: grid integer, intent(in) :: ibound real(DP),intent(in) :: rmax, zmesh, dx real(DP),intent(inout):: xmin real(DP) :: xmax, x integer :: mesh, i ! xmax=log(rmax*zmesh) mesh=(xmax-xmin)/dx+1 ! ! mesh must be odd for simpson integration. ! mesh=2*(mesh/2)+1 if(mesh+1 > ndmx) call errore('do_mesh','ndmx is too small',1) if(ibound == 1) xmin=xmax-dx*(mesh-1) ! call deallocate_radial_grid(grid) call allocate_radial_grid(grid,mesh) ! do i=1,mesh x=xmin+DBLE(i-1)*dx grid%r(i) = exp(x)/zmesh grid%r2(i) = grid%r(i)*grid%r(i) grid%rab(i) = grid%r(i)*dx grid%sqr(i) = sqrt(grid%r(i)) grid%rm1(i) = 1._dp/grid%r(i) grid%rm2(i) = 1._dp/grid%r(i)**2 grid%rm3(i) = 1._dp/grid%r(i)**3 end do ! grid%mesh = mesh grid%dx = dx grid%xmin = xmin grid%rmax = rmax grid%zmesh = zmesh return end subroutine do_mesh ! ! check that logarithmic grid is consistently set !--------------------------------------------------------------- subroutine check_mesh(grid) !--------------------------------------------------------------- ! use kinds, only : DP use constants, only : eps8 implicit none type(radial_grid_type),intent(in) :: grid integer :: i if (grid%mesh < 0 ) call errore('check_mesh','grid%mesh < 0 ',1) do i=1,grid%mesh if (abs(grid%r2(i)/grid%r(i)**2-1.d0) > eps8 ) & call errore('check_mesh',' r2(i) is different ',i) if (abs(grid%sqr(i)/sqrt(grid%r(i))-1.d0) > eps8 ) & call errore('check_mesh',' sqr(i) is different ',i) if (abs(grid%rab(i)/(grid%r(i)*grid%dx)-1.d0) > eps8 ) & call errore('check_mesh',' rab(i) is different ',i) end do return end subroutine check_mesh ! ! Solution of the Poisson's equation on a radial (logarithmic) grid !--------------------------------------------------------------- subroutine hartree(k,nst,mesh,grid,f,vh) !--------------------------------------------------------------- ! use kinds, only : DP ! use radial_grids, only: radial_grid_type implicit none integer,intent(in):: & k, & ! input: the k of the equation nst, & ! input: at low r, f goes as r**nst mesh ! input: the dimension of the mesh type(radial_grid_type), intent(in) :: & grid ! input: the radial grid real(DP), intent(in):: & f(mesh) ! input: the 4\pi r2 \rho function real(DP), intent(out):: & vh(mesh) ! output: the required solution ! ! local variables ! integer :: & k21, & ! 2k+1 nk1, & ! nst-k-1 ierr, & ! integer variable for allocation control i ! counter real(DP):: & c0,c2,c3, & ! coefficients of the polynomial expansion close to r=0 ch, & ! dx squared / 12.0 xkh2, & ! ch * f ei, di, & ! auxiliary variables for the diagonal and ! off diagonal elements of the matrix f1, fn, & ! variables used for the boundary condition vhim1, vhi ! variables for the right hand side real(DP), allocatable:: & d(:), & ! the diagonal elements of ! the tridiagonal sys. e(:) ! the off diagonal elements ! of the trid. sys. ! ! Allocate space for the diagonal and off diagonal elements ! if (mesh.ne.grid%mesh) call errore('hartree',' grid dimension mismatch',1) allocate(d(mesh),stat=ierr) allocate(e(mesh),stat=ierr) if (ierr.ne.0) call errore('hartree',' error allocating d or e',1) ! ! Find the series expansion of the solution close to r=0 ! k21=2*k+1 nk1=nst-k-1 if(nk1.le.0) then write(6,100) k,nst 100 format(5x,'stop in "hartree": k=',i3,' nst=',i3) stop !else if(nk1.ge.4) then ! not sure whether the following is really correct, but the above wasn't else if(nk1.ge.3) then c2=0.0_dp c3=0.0_dp else e(1)=0.0_dp do i=1,4 d(i)=-k21*f(i)/grid%r(i)**nst end do call series(d,grid%r,grid%r2,e(nk1)) c2=e(1)/(4.0_dp*k+6.0_dp) c3=e(2)/(6.0_dp*k+12.0_dp) end if ! ! Set the main auxiliary parameters ! ch=grid%dx*grid%dx/12.0_dp xkh2=ch*(DBLE(k)+0.5_dp)**2 ei=1.0_dp-xkh2 di=-(2.0_dp+10.0_dp*xkh2) ! ! Set the diagonal and the off diagonal elements of the ! linear system, compute a part of the right hand side ! do i=2,mesh d(i)=-di e(i)=-ei vh(i)=k21*ch*grid%sqr(i)*f(i) end do ! ! Use the boundary condition to eliminate the value of the ! solution in the first point from the first equation. This ! part for the diagonal element ! f1=(grid%sqr(1)/grid%sqr(2))**k21 d(2)=d(2)-ei*f1 ! ! Use the boundary condition to eliminate the value of the ! solution in the last point from the last equation ! fn=(grid%sqr(mesh-1)/grid%sqr(mesh))**k21 d(mesh-1)=d(mesh-1)-ei*fn ! ! In the first point vh(1) has the same definition as in the other points ! vhim1=k21*ch*grid%sqr(1)*f(1) ! ! Compute the right hand side using the auxiliary quantity vh(i). ! do i=2,mesh-1 vhi=vh(i) vh(i)=vhim1+10.0_dp*vhi+vh(i+1) vhim1=vhi end do ! ! Use the boundary condition to eliminate the value of the solution in the ! first point from the first equation. This part for the right hand side. ! vh(2)=vh(2)-ei*grid%sqr(1)**k21*(c2*(grid%r2(2)-grid%r2(1)) & +c3*(grid%r(2)**3-grid%r(1)**3)) ! ! solve the linear system with lapack routine dptsv ! call dptsv(mesh-2,1,d(2),e(2),vh(2),mesh-2,ierr) if (ierr.ne.0) call errore('hartree', 'error in lapack', ierr) ! ! Set the value of the solution at the first and last point ! First, find c0 from the solution in the second point ! c0=vh(2)/grid%sqr(2)**k21-c2*grid%r2(2)-c3*grid%r(2)*grid%r2(2) ! ! and then use the series expansion at the first point ! vh(1)=grid%sqr(1)**k21*(c0+c2*grid%r2(1)+c3*grid%r(1)**3) ! ! the solution at the last point is given by the boundary ! condition ! vh(mesh)=vh(mesh-1)*fn ! ! The solution must be divided by r (from the equation) ! and multiplied by the square root of r (from the log ! mesh transformation) ! do i=1,mesh vh(i)= vh(i) / grid%sqr(i) end do deallocate(e) deallocate(d) return end subroutine hartree ! ! simple routine returning the coefficient of the polynomial ! describing the leading behavior of a function f at small r. !--------------------------------------------------------------- subroutine series(f,r,r2,b) !--------------------------------------------------------------- ! use kinds, only : DP implicit none real(DP):: dr21,dr31,dr32,dr41,dr42,dr43,df21,df32,df43, & ddf42,ddf31 real(DP):: f(4),r(4),r2(4),b(0:3) dr21=r(2)-r(1) dr31=r(3)-r(1) dr32=r(3)-r(2) dr41=r(4)-r(1) dr42=r(4)-r(2) dr43=r(4)-r(3) df21=(f(2)-f(1))/dr21 df32=(f(3)-f(2))/dr32 df43=(f(4)-f(3))/dr43 ddf42=(df43-df32)/dr42 ddf31=(df32-df21)/dr31 b(3)=(ddf42-ddf31)/dr41 b(2)=ddf31-b(3)*(r(1)+r(2)+r(3)) b(1)=df21-b(2)*(r(2)+r(1))-b(3)*(r2(1)+r2(2)+r(1)*r(2)) b(0)=f(1)-r(1)*(b(1)+r(1)*(b(2)+r(1)*b(3))) return end subroutine series !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! ! I/O routines ! !---------------------------------------------------------------------- subroutine write_grid_on_file(iunit,grid) ! use radial_grids, only: radial_grid_type implicit none type(radial_grid_type), intent(in) :: grid integer, intent(in) :: iunit integer :: n ! WRITE(iunit,'(i8)') grid%mesh WRITE(iunit,'(e20.10)') grid%dx WRITE(iunit,'(e20.10)') grid%xmin WRITE(iunit,'(e20.10)') grid%zmesh WRITE(iunit,'(e20.10)') (grid%r(n), n=1,grid%mesh) WRITE(iunit,'(e20.10)') (grid%r2(n), n=1,grid%mesh) WRITE(iunit,'(e20.10)') (grid%sqr(n), n=1,grid%mesh) ! WRITE(iunit,'(e20.10)') (grid%rab(n), n=1,grid%mesh) return end subroutine write_grid_on_file subroutine read_grid_from_file(iunit,grid) ! use radial_grids, only: radial_grid_type implicit none type(radial_grid_type), intent(out) :: grid integer, intent(in) :: iunit integer :: n ! READ(iunit,'(i8)') grid%mesh READ(iunit,'(e20.10)') grid%dx READ(iunit,'(e20.10)') grid%xmin READ(iunit,'(e20.10)') grid%zmesh READ(iunit,'(e20.10)') (grid%r(n), n=1,grid%mesh) READ(iunit,'(e20.10)') (grid%r2(n), n=1,grid%mesh) READ(iunit,'(e20.10)') (grid%sqr(n), n=1,grid%mesh) ! READ(iunit,'(e20.10)') (grid%rab(n), n=1,grid%mesh) grid%rab(1:grid%mesh) = grid%r(1:grid%mesh) * grid%dx grid%rm1(1:grid%mesh) = 1._dp/grid%r(1:grid%mesh) grid%rm2(1:grid%mesh) = 1._dp/grid%r2(1:grid%mesh) grid%rm3(1:grid%mesh) = 1._dp/grid%r(1:grid%mesh)**3 return end subroutine read_grid_from_file !---------------------------------------------------------------------- END MODULE radial_grids espresso-5.1/Modules/recvec_subs.f900000644000175000017500000003017112341373034015537 0ustar mbamba! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !=----------------------------------------------------------------------= MODULE recvec_subs !=----------------------------------------------------------------------= ! ... subroutines generating G-vectors and variables nl* needed to map ! ... G-vector components onto the FFT grid(s) in reciprocal space ! ... Most important dependencies: next three modules USE gvect, ONLY : ig_l2g, g, gg, ngm, ngm_g, gcutm, & mill, nl, gstart USE gvecs, ONLY : ngms, gcutms, ngms_g, nls USE fft_base, ONLY : dfftp, dffts ! USE kinds, ONLY : DP USE constants, ONLY : eps8 PRIVATE SAVE PUBLIC :: ggen !=----------------------------------------------------------------------= CONTAINS !=----------------------------------------------------------------------= ! !----------------------------------------------------------------------- SUBROUTINE ggen ( gamma_only, at, bg, comm, no_global_sort ) !---------------------------------------------------------------------- ! ! This routine generates all the reciprocal lattice vectors ! contained in the sphere of radius gcutm. Furthermore it ! computes the indices nl which give the correspondence ! between the fft mesh points and the array of g vectors. ! USE mp, ONLY: mp_rank, mp_size, mp_sum ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: gamma_only REAL(DP), INTENT(IN) :: at(3,3), bg(3,3) INTEGER, OPTIONAL, INTENT(IN) :: comm LOGICAL, OPTIONAL, INTENT(IN) :: no_global_sort ! if no_global_sort is present (and it is true) G vectors are sorted only ! locally and not globally. In this case no global array needs to be ! allocated and sorted: saves memory and a lot of time for large systems. ! ! here a few local variables ! REAL(DP) :: t (3), tt INTEGER :: ngm_save, ngms_save, n1, n2, n3, n1s, n2s, n3s, ngm_offset, ngm_max, ngms_max ! REAL(DP), ALLOCATABLE :: g2sort_g(:) ! array containing all g vectors, on all processors: replicated data ! when no_global_sort is present (and it is true) only g vectors for the current processor are stored INTEGER, ALLOCATABLE :: mill_g(:,:), mill_unsorted(:,:) ! array containing all g vectors generators, on all processors: replicated data ! when no_global_sort is present (and it is true) only g vectors for the current processor are stored INTEGER, ALLOCATABLE :: igsrt(:) ! INTEGER :: m1, m2, mc INTEGER :: ni, nj, nk, i, j, k, ipol, ng, igl, indsw INTEGER :: mype, npe LOGICAL :: global_sort INTEGER, ALLOCATABLE :: ngmpe(:) ! IF( PRESENT( no_global_sort ) .AND. .NOT. PRESENT( comm ) ) THEN CALL errore ('ggen', ' wrong subroutine arguments, communicator is missing ', 1) END IF IF( .NOT. PRESENT( no_global_sort ) .AND. PRESENT( comm ) ) THEN CALL errore ('ggen', ' wrong subroutine arguments, parameter no_global_sort is missing ', 1) END IF ! global_sort = .TRUE. ! IF( PRESENT( no_global_sort ) ) THEN global_sort = .NOT. no_global_sort END IF ! IF( .NOT. global_sort ) THEN mype = mp_rank( comm ) npe = mp_size( comm ) ALLOCATE( ngmpe( npe ) ) ngmpe = 0 ngm_max = ngm ngms_max = ngms ELSE ngm_max = ngm_g ngms_max = ngms_g END IF ! ! save current value of ngm and ngms ! ngm_save = ngm ngms_save = ngms ! ngm = 0 ngms = 0 ! ! counters ! ! set the total number of fft mesh points and and initial value of gg ! The choice of gcutm is due to the fact that we have to order the ! vectors after computing them. ! gg(:) = gcutm + 1.d0 ! ! and computes all the g vectors inside a sphere ! ALLOCATE( mill_g( 3, ngm_max ),mill_unsorted( 3, ngm_max ) ) ALLOCATE( igsrt( ngm_max ) ) ALLOCATE( g2sort_g( ngm_max ) ) ! g2sort_g(:) = 1.0d20 ! ! max miller indices (same convention as in module stick_set) ! ni = (dfftp%nr1-1)/2 nj = (dfftp%nr2-1)/2 nk = (dfftp%nr3-1)/2 ! iloop: DO i = -ni, ni ! ! gamma-only: exclude space with x < 0 ! IF ( gamma_only .and. i < 0) CYCLE iloop jloop: DO j = -nj, nj ! ! gamma-only: exclude plane with x = 0, y < 0 ! IF ( gamma_only .and. i == 0 .and. j < 0) CYCLE jloop IF( .NOT. global_sort ) THEN m1 = mod (i, dfftp%nr1) + 1 IF (m1 < 1) m1 = m1 + dfftp%nr1 m2 = mod (j, dfftp%nr2) + 1 IF (m2 < 1) m2 = m2 + dfftp%nr2 mc = m1 + (m2 - 1) * dfftp%nr1x IF ( dfftp%isind ( mc ) == 0) CYCLE jloop END IF kloop: DO k = -nk, nk ! ! gamma-only: exclude line with x = 0, y = 0, z < 0 ! IF ( gamma_only .and. i == 0 .and. j == 0 .and. k < 0) CYCLE kloop t(:) = i * bg (:,1) + j * bg (:,2) + k * bg (:,3) tt = sum(t(:)**2) IF (tt <= gcutm) THEN ngm = ngm + 1 IF (tt <= gcutms) ngms = ngms + 1 IF (ngm > ngm_max) CALL errore ('ggen', 'too many g-vectors', ngm) mill_unsorted( :, ngm ) = (/ i,j,k /) IF ( tt > eps8 ) THEN g2sort_g(ngm) = tt ELSE g2sort_g(ngm) = 0.d0 ENDIF ENDIF ENDDO kloop ENDDO jloop ENDDO iloop IF( .NOT. global_sort ) THEN ngmpe( mype + 1 ) = ngm CALL mp_sum( ngmpe, comm ) END IF IF (ngm /= ngm_max) & CALL errore ('ggen', 'g-vectors missing !', abs(ngm - ngm_max)) IF (ngms /= ngms_max) & CALL errore ('ggen', 'smooth g-vectors missing !', abs(ngms - ngms_max)) igsrt(1) = 0 IF( .NOT. global_sort ) THEN CALL hpsort_eps( ngm, g2sort_g, igsrt, eps8 ) ELSE CALL hpsort_eps( ngm_g, g2sort_g, igsrt, eps8 ) END IF mill_g(1,:) = mill_unsorted(1,igsrt(:)) mill_g(2,:) = mill_unsorted(2,igsrt(:)) mill_g(3,:) = mill_unsorted(3,igsrt(:)) DEALLOCATE( g2sort_g, igsrt, mill_unsorted ) IF( .NOT. global_sort ) THEN ! compute adeguate offsets in order to avoid overlap between ! g vectors once they are gathered on a single (global) array ! ngm_offset = 0 DO ng = 1, mype ngm_offset = ngm_offset + ngmpe( ng ) END DO END IF ngm = 0 ngms = 0 ! ngloop: DO ng = 1, ngm_max i = mill_g(1, ng) j = mill_g(2, ng) k = mill_g(3, ng) #if defined(__MPI) IF( global_sort ) THEN m1 = mod (i, dfftp%nr1) + 1 IF (m1 < 1) m1 = m1 + dfftp%nr1 m2 = mod (j, dfftp%nr2) + 1 IF (m2 < 1) m2 = m2 + dfftp%nr2 mc = m1 + (m2 - 1) * dfftp%nr1x IF ( dfftp%isind ( mc ) == 0) CYCLE ngloop END IF #endif ngm = ngm + 1 ! Here map local and global g index !!! ! N.B. the global G vectors arrangement depends on the number of processors ! IF( .NOT. global_sort ) THEN ig_l2g( ngm ) = ng + ngm_offset ELSE ig_l2g( ngm ) = ng END IF g (1:3, ngm) = i * bg (:, 1) + j * bg (:, 2) + k * bg (:, 3) gg (ngm) = sum(g (1:3, ngm)**2) IF (gg (ngm) <= gcutms) ngms = ngms + 1 IF (ngm > ngm_save) CALL errore ('ggen', 'too many g-vectors', ngm) ENDDO ngloop IF (ngm /= ngm_save) & CALL errore ('ggen', 'g-vectors (ngm) missing !', abs(ngm - ngm_save)) IF (ngms /= ngms_save) & CALL errore ('ggen', 'g-vectors (ngms) missing !', abs(ngm - ngms_save)) ! ! determine first nonzero g vector ! IF (gg(1).le.eps8) THEN gstart=2 ELSE gstart=1 ENDIF ! ! Now set nl and nls with the correct fft correspondence ! DO ng = 1, ngm n1 = nint (sum(g (:, ng) * at (:, 1))) + 1 mill (1,ng) = n1 - 1 n1s = n1 IF (n1<1) n1 = n1 + dfftp%nr1 IF (n1s<1) n1s = n1s + dffts%nr1 n2 = nint (sum(g (:, ng) * at (:, 2))) + 1 mill (2,ng) = n2 - 1 n2s = n2 IF (n2<1) n2 = n2 + dfftp%nr2 IF (n2s<1) n2s = n2s + dffts%nr2 n3 = nint (sum(g (:, ng) * at (:, 3))) + 1 mill (3,ng) = n3 - 1 n3s = n3 IF (n3<1) n3 = n3 + dfftp%nr3 IF (n3s<1) n3s = n3s + dffts%nr3 IF (n1>dfftp%nr1 .or. n2>dfftp%nr2 .or. n3>dfftp%nr3) & CALL errore('ggen','Mesh too small?',ng) #if defined (__MPI) && !defined (__USE_3D_FFT) nl (ng) = n3 + ( dfftp%isind (n1 + (n2 - 1) * dfftp%nr1x) - 1) * dfftp%nr3x IF (ng <= ngms) & nls (ng) = n3s + ( dffts%isind (n1s+(n2s-1)*dffts%nr1x) - 1 ) * dffts%nr3x #else nl (ng) = n1 + (n2 - 1) * dfftp%nr1x + (n3 - 1) * dfftp%nr1x * dfftp%nr2x IF (ng <= ngms) & nls (ng) = n1s + (n2s - 1) * dffts%nr1x + (n3s - 1) * dffts%nr1x * dffts%nr2x #endif ENDDO ! DEALLOCATE( mill_g ) IF ( gamma_only) CALL index_minusg() IF( ALLOCATED( ngmpe ) ) DEALLOCATE( ngmpe ) END SUBROUTINE ggen ! !----------------------------------------------------------------------- SUBROUTINE index_minusg() !---------------------------------------------------------------------- ! ! compute indices nlm and nlms giving the correspondence ! between the fft mesh points and -G (for gamma-only calculations) ! USE gvect, ONLY : ngm, nlm, mill USE gvecs, ONLY : nlsm, ngms USE fft_base, ONLY : dfftp, dffts ! IMPLICIT NONE ! INTEGER :: n1, n2, n3, n1s, n2s, n3s, ng ! DO ng = 1, ngm n1 = -mill (1,ng) + 1 n1s = n1 IF (n1 < 1) THEN n1 = n1 + dfftp%nr1 n1s = n1s + dffts%nr1 END IF n2 = -mill (2,ng) + 1 n2s = n2 IF (n2 < 1) THEN n2 = n2 + dfftp%nr2 n2s = n2s + dffts%nr2 END IF n3 = -mill (3,ng) + 1 n3s = n3 IF (n3 < 1) THEN n3 = n3 + dfftp%nr3 n3s = n3s + dffts%nr3 END IF IF (n1>dfftp%nr1 .or. n2>dfftp%nr2 .or. n3>dfftp%nr3) THEN CALL errore('index_minusg','Mesh too small?',ng) ENDIF #if defined (__MPI) && !defined (__USE_3D_FFT) nlm(ng) = n3 + (dfftp%isind (n1 + (n2 - 1) * dfftp%nr1x) - 1) * dfftp%nr3x IF (ng<=ngms) & nlsm(ng) = n3s + (dffts%isind (n1s+(n2s-1) * dffts%nr1x) - 1) * dffts%nr3x #else nlm(ng) = n1 + (n2 - 1) * dfftp%nr1x + (n3 - 1) * dfftp%nr1x * dfftp%nr2x IF (ng<=ngms) & nlsm(ng) = n1s + (n2s - 1) * dffts%nr1x + (n3s-1) * dffts%nr1x * dffts%nr2x #endif ENDDO END SUBROUTINE index_minusg ! !=----------------------------------------------------------------------= END MODULE recvec_subs !=----------------------------------------------------------------------= ! !----------------------------------------------------------------------- SUBROUTINE gshells ( vc ) !---------------------------------------------------------------------- ! ! calculate number of G shells: ngl, and the index ng = igtongl(ig) ! that gives the shell index ng for (lacal) G-vector of index ig ! USE kinds, ONLY : DP USE gvect, ONLY : gg, ngm, gl, ngl, igtongl USE constants, ONLY : eps8 ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: vc ! INTEGER :: ng, igl ! IF ( vc ) THEN ! ! in case of a variable cell run each G vector has its shell ! ngl = ngm gl => gg DO ng = 1, ngm igtongl (ng) = ng ENDDO ELSE ! ! G vectors are grouped in shells with the same norm ! ngl = 1 igtongl (1) = 1 DO ng = 2, ngm IF (gg (ng) > gg (ng - 1) + eps8) THEN ngl = ngl + 1 ENDIF igtongl (ng) = ngl ENDDO ALLOCATE (gl( ngl)) gl (1) = gg (1) igl = 1 DO ng = 2, ngm IF (gg (ng) > gg (ng - 1) + eps8) THEN igl = igl + 1 gl (igl) = gg (ng) ENDIF ENDDO IF (igl /= ngl) CALL errore ('gshells', 'igl <> ngl', ngl) ENDIF END SUBROUTINE gshells espresso-5.1/Modules/parallel_include.f900000644000175000017500000000144412341373034016534 0ustar mbamba! ! Copyright (C) 2003-2004 Carlo Cavazzoni ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! ! SISSA Code Interface -- Carlo Cavazzoni !------------------------------------------------------------------------------C MODULE parallel_include #if defined __MPI ! ! Include file for MPI ! INCLUDE 'mpif.h' #else ! dummy world and null communicator INTEGER, PARAMETER :: MPI_COMM_WORLD = 0 INTEGER, PARAMETER :: MPI_COMM_NULL = -1 INTEGER, PARAMETER :: MPI_COMM_SELF = -2 #endif END MODULE parallel_include espresso-5.1/Modules/wannier_gw.f900000644000175000017500000002614412341373034015401 0ustar mbamba! ! Copyright (C) 2004-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE wannier_gw ! ! ... The variables needed for gww-gwl code (head.x) ! USE kinds, ONLY: DP ! SAVE ! !From HEAD LOGICAL :: l_head=.false.!if true calculates the head of the symmetrized dielectric matrix -1 INTEGER :: n_gauss!number of frequency steps for head calculation REAL(kind=DP) :: omega_gauss!period for frequency calculation INTEGER :: grid_type!0 GL -T,T 2 GL 0 T 3 Equally spaced 0 Omega INTEGER :: nsteps_lanczos!number of lanczos steps !options for grid_freq=5 INTEGER :: second_grid_n!sub spacing for second grid INTEGER :: second_grid_i!max regular step using the second grid LOGICAL :: l_scissor!if true displaces occupied manifold of scissor REAL(kind=DP) :: scissor!see above !From pw4gww TYPE real_matrix_pointer REAL(kind=DP), DIMENSION(:,:), POINTER :: p END TYPE real_matrix_pointer TYPE complex_matrix_pointer COMPLEX(kind=DP), DIMENSION(:,:), POINTER :: p END TYPE complex_matrix_pointer TYPE optimal_options!options for obtaining optimal basis sets LOGICAL :: l_complete!if true just do a diagonalization INTEGER :: idiago !kind of optimization: 0=Gram-Schmidt like INTEGER :: ithres!kind of threshold: 0=on modulus square REAL(kind=DP) :: thres!value of threshold END TYPE optimal_options REAL(kind=DP), ALLOCATABLE :: wannier_centers(:,:,:)!wannier centers in a.u. REAL(kind=DP), ALLOCATABLE :: wannier_radii(:,:)!wannier centers in a.u. INTEGER, ALLOCATABLE :: w_centers(:,:,:)!wanier centers on the grid INTEGER, ALLOCATABLE :: w_radii(:,:)!wannier lengths in grid units COMPLEX(kind=DP), ALLOCATABLE :: u_trans(:,:,:)!unitarian transformation from bloch wfcs to wannier' INTEGER :: numw_prod!number of products w_i(r)*w_j(r) then of orthonormalized products INTEGER :: num_nbndv(2) !number of valence bands INTEGER :: num_nbnds !number of studied bands valence plus a part of conduction's REAL(kind=DP), ALLOCATABLE :: becp_gw(:,:,:)!to store projections of wfcs with us projectors REAL(kind=DP), ALLOCATABLE :: becp_gw_c(:,:,:)!to store projections of wfcs with us projectors for {c'} subspace COMPLEX(kind=DP), ALLOCATABLE :: expgsave(:,:,:,:) !to store exp_igx on us augmentation functions INTEGER :: nset!number of states to be read written from/to file simultaneously LOGICAL :: l_truncated_coulomb!if true the Coulomb potential is truncated REAL(kind=DP) :: truncation_radius!truncation radius for Coulomb potential INTEGER :: remainder!1-cutoff 2-distance 3-no remainder 4-postprocessing from W 5-postprocessing from dressed polarization P INTEGER :: restart_gww!for restarting the calculation of gww stuff, 0 begins from beginning LOGICAL :: l_gram!if true uses gram schmidt for orthonormalizing the products of wanniers !LOGICAL :: l_head!if true calculates the head of the symmetrized dielectric matrix -1 !INTEGER :: n_gauss!number of frequency steps for head calculation !REAL(kind=DP) :: omega_gauss!period for frequency calculation LOGICAL :: l_exchange!if true calculate the exchange terms with k-points sampling LOGICAL :: l_zero!if .true. calculate also the v e v^1/2 operators with G=0,G'=0 put to 0 LOGICAL :: l_wing!if .true. calculate also the wing terms, it requires the file .e_head !INTEGER :: grid_type!0 GL -T,T 2 GL 0 T 3 Equally spaced 0 Omega INTEGER :: nset_overlap!number of states to be read written from/to file simultaneously, when !calculating overlaps INTEGER :: nspace!space on grid for evalueation of exchange-type integrals REAL(kind=DP) :: ecutoff_global!cut off in Rydbergs for G sum on (dense charge grid) INTEGER :: maxiter2!max number of iteration for the genaralized maximally localized wannier !of the second conduction manifold REAL(kind=DP) :: diago_thr2!thresold for electronic states used in c_bands for upper !conduction manifold if any, if ==0 used same cutoff as for valence LOGICAL :: l_plot_mlwf!if true save the orthonormal wannier for plotting INTEGER :: max_ngm!max number of g vector for charge grid effctively stored !variables for parallelization on matrices LOGICAL :: l_pmatrix !if true parallelize on matrices INTEGER :: p_mpime!processor number INTEGER :: p_nproc!number of processors INTEGER :: npcol!number of processor columns INTEGER :: nprow!number of processor rows INTEGER :: icontxt!blacs descriptor INTEGER :: myrow!actual processor row INTEGER :: mycol!actual processor column LOGICAL :: l_coulomb_analysis!if true after polarization analysis consider eigenvalues of coulomb potential REAL(kind=DP) :: cutoff_coulomb_analysis!cutoff for coulomb analysis INTEGER :: n_pola_lanczos!number of orthonormal states for polarization lanczos-style INTEGER :: n_self_lanczos!number of orthonormal states for self-energy lanczos-style INTEGER :: nsteps_lanczos_pola!number of lanczos steps for the polarizability INTEGER :: nsteps_lanczos_self!number of lanczos steps for the self_energy REAL(kind=DP) :: s_pola_lanczos!cutoff for lanczos basis for polarization REAL(kind=DP) :: s_self_lanczos!cutoff for lanczos basis for self-energy INTEGER :: nump_lanczos!dimension of basis for lanczos calculation of the polarization INTEGER :: nums_lanczos!dimension of basis for lanczos calculation of the self-energy REAL(kind=DP) :: s_g_lanczos!cutoff for absolute value of trial green function LOGICAL :: l_pmat_diago!if true find the basis for the polarization diagonalizing the O matrix REAL(kind=DP) :: pmat_ethr!threshold for diagonalizing the O matrix REAL(kind=DP) :: pmat_cutoff!cutoff (in Ryd) for polarization diagonalization INTEGER :: pmat_type!type of approximation 1 usual, 2 with wanniers, 3 with optimal representation,5 just plane waves INTEGER :: n_fast_pmat!number of states for fast evaluation of conduction manifold if =0 disabled INTEGER :: n_pmat!number of orthonormal states for optimal representation O matrix REAL(kind=DP) :: s_pmat!cutoff for optimal basis for O matrix INTEGER :: lanczos_restart!restart point for lanczos INTEGER :: n_pola_lanczos_eff!effective number of pola states; if 0 equal to n_pola_lanczos INTEGER :: n_self_lanczos_eff!effective number of self states; if 0 equal to n_self_lanczos REAL(kind=DP) :: off_fast_pmat!offset in Ry for fast assessment of polarizability if =0 disabled LOGICAL :: l_fast_pola!if true fast assessment of polarizability for basis construction LOGICAL :: l_v_basis!if true valuate the polarizability basis vectors as eigenstates of v operator REAL(kind=DP) :: v_cutoff!cutoff in Ryd for v operator LOGICAL :: l_iter_algorithm!if true uses iterative algorithms REAL(kind=DP) :: dual_pb!dual value till 4.d0 for defing the grid on which the polarizability basis is created REAL(kind=DP), ALLOCATABLE :: vg_q(:) ! contains the elements V(G) of the Coulomb potential obtained upon integration over q LOGICAL :: l_t_wannier!if true builds t verctors starting from KS valence wannier functions REAL(kind=DP) :: dual_vt!dual value till 4.d0 for defing the grid on which the t vectors created REAL(kind=DP) :: dual_vs!dual value till 4.d0 for defing the grid on which the s vectors created LOGICAL :: lwannier!if true take advantage of localization of wannier functions REAL(kind=DP) :: wannier_thres!threshold for modulus of wannier function in a.u. INTEGER :: s_first_state!if different from 0, first KS state for calculatin s vectors (if last 1) INTEGER :: s_last_state!if different from 0, last KS state for calculatin s vectors (if last num_nbnds) LOGICAL :: l_selfconsistent!if true do selfconsistent GW calculation, requires file band.dat REAL(kind=DP), ALLOCATABLE :: ene_gw(:,:)!GW energies of previous iteration for selfconsistent calculation INTEGER :: n_gw_states!number of GW states for selfconsistent calculation REAL(kind=DP) :: delta_self!delta energy for selfconsistent calculation LOGICAL :: l_whole_s!if true calculates also the off-diagonal elemenets of V_xc for then !calculating the off-diagonal elements of sigma LOGICAL :: l_ts_eigen!if true the t and global vectors are calculated considering also the eigenvalues of the partial basis (recommanded) LOGICAL :: l_frac_occ! if true consider fractional occupancies INTEGER :: num_nbndv_min(2)!limits for fully occupied states LOGICAL :: l_cond_pol_base!if true uses conduction states till num_nbnds for the construction of the polarizability bases LOGICAL :: l_semicore!if true evaluate semicore terms INTEGER :: n_semicore!number of semicore states staring from the bottom of valence states LOGICAL :: l_semicore_read!if true reads semicore file for calculating products for Green's function LOGICAL :: l_verbose!if true a lot of ouput for debug LOGICAL :: l_contour! if true calculates the terms for contour integration LOGICAL :: l_real!if true calculate the polarizability basis, s and t vectors avoiding ffts it requires more memory LOGICAL :: l_big_system!if true uses startegy for large systems: just local s vectors are used REAL(kind=DP) ::extra_pw_cutoff!cutoff to add to the optimal polarizability basis plane-waves (sin and cos functions) !if 0 no plane waves is added !REAL(kind=DP) :: exchange_fast_dual!for defining the fast exchnage routines LOGICAL :: l_bse!if true computing quantities for bse calculation REAL(kind=DP) :: s_bse!threshold for wannier function overlap REAL(kind=DP) :: dual_bse!dual factor for bse calculations LOGICAL :: l_list !if true uses startegy for large systems from list of states included in s_first_state, s_last_state INTEGER :: n_list(2)!number of states in list for the 2 spin channels INTEGER, ALLOCATABLE :: i_list(:,:) !list of KS states to be computed !LOGICAL :: l_scissor! if true uses a scissor !REAL(kind=DP) :: scissor!value for scissor in eV LOGICAL :: l_full!if true prepare data for further post-processing for a full-relativistic calculation INTEGER :: n_full!numeber of proper relativistic states in G of GW INTERFACE free_memory MODULE PROCEDURE free_complex,free_real END INTERFACE CONTAINS subroutine free_complex( c) implicit none type(complex_matrix_pointer) :: c deallocate(c%p) return end subroutine subroutine free_real( r) implicit none type(real_matrix_pointer) :: r deallocate(r%p) return end subroutine subroutine max_ngm_set !set the value of max_ngm use io_global, only : stdout use gvect, only : ngm,gg use cell_base, only : tpiba2 implicit none integer :: ig max_ngm=0 do ig=1,ngm if(gg(ig)*tpiba2 >= ecutoff_global) exit max_ngm=max_ngm+1 enddo write(stdout,*) 'MAX_NGM:', max_ngm, ngm end subroutine max_ngm_set END MODULE wannier_gw espresso-5.1/Modules/noncol.f900000644000175000017500000000606012341373034014524 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- ! MODULE noncollin_module USE kinds, ONLY : DP USE parameters, ONLY : ntypx ! SAVE ! INTEGER :: & npol, & ! number of coordinates of wfc report, & ! print the local quantities (magnet. and rho) ! every #report iterations nspin_lsda = 1, & ! =1 when nspin=1,4 =2 when nspin=2 nspin_mag = 1, & ! =1 when nspin=1,4 (domag=.false.), =2 when ! nspin=2, =4 nspin=4 (domag=.true.) nspin_gga = 1, & ! =1 when nspin=1,4 (domag=.false.) ! =2 when nspin=2,4 (domag=.true.) (needed with gga) i_cons = 0 ! indicator for constrained local quantities ! INTEGER, ALLOCATABLE :: & ! ! when spherical (non-overlapping) integration pointlist(:) ! regions are defined around atoms this index ! say for each point in the fft grid to which ! atom it is assigned (0 if no atom is selected) ! LOGICAL :: & noncolin, & ! true if noncollinear magnetism is allowed lsign=.FALSE. ! if true use the sign feature to calculate ! rhoup and rhodw ! REAL (DP) :: & angle1(ntypx), &! Define the polar coordinates of the starting angle2(ntypx), &! magnetization's direction for each atom mcons(3,ntypx)=0.d0, &! constrained values for local variables magtot_nc(3), &! total magnetization bfield(3)=0.d0, &! magnetic field used in some cases vtcon, &! contribution of the constraining fields to ! the total energy r_m(ntypx) = 0.0d0, &! Radius for local integrations for each type lambda ! prefactor in the penalty functional ! for constraints ! REAL (DP), ALLOCATABLE :: & factlist(:), &! weight factors for local integrations r_loc(:), &! local integrated charge m_loc(:,:) ! local integrated magnetization REAL(DP) :: & ux(3) ! versor for deciding signs in gga ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE deallocate_noncol() !------------------------------------------------------------------------ ! IF ( ALLOCATED( pointlist) ) DEALLOCATE( pointlist ) IF ( ALLOCATED( factlist ) ) DEALLOCATE( factlist ) IF ( ALLOCATED( r_loc ) ) DEALLOCATE( r_loc ) IF ( ALLOCATED( m_loc ) ) DEALLOCATE( m_loc ) ! END SUBROUTINE deallocate_noncol ! END MODULE noncollin_module espresso-5.1/Modules/becmod.f900000644000175000017500000003571312341373034014474 0ustar mbamba! ! Copyright (C) 2001-2007 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- ! MODULE becmod ! ! ... *bec* contain - used in h_psi, s_psi, many other places ! ... calbec( npw, beta, psi, betapsi [, nbnd ] ) is an interface calculating ! ... betapsi(i,j) = (the sum is over npw components) ! ... or betapsi(i,s,j)= (s=polarization index) ! USE kinds, ONLY : DP USE control_flags, ONLY : gamma_only, smallmem USE gvect, ONLY : gstart USE noncollin_module, ONLY : noncolin, npol ! SAVE ! #ifdef __STD_F95 TYPE bec_type REAL(DP), POINTER :: r(:,:) ! appropriate for gammaonly COMPLEX(DP),POINTER :: k(:,:) ! appropriate for generic k COMPLEX(DP),POINTER :: nc(:,:,:) ! appropriate for noncolin INTEGER :: comm INTEGER :: nbnd INTEGER :: nproc INTEGER :: mype INTEGER :: nbnd_loc INTEGER :: ibnd_begin END TYPE bec_type #else TYPE bec_type REAL(DP), ALLOCATABLE :: r(:,:) ! appropriate for gammaonly COMPLEX(DP),ALLOCATABLE :: k(:,:) ! appropriate for generic k COMPLEX(DP),ALLOCATABLE :: nc(:,:,:) ! appropriate for noncolin INTEGER :: comm INTEGER :: nbnd INTEGER :: nproc INTEGER :: mype INTEGER :: nbnd_loc INTEGER :: ibnd_begin END TYPE bec_type #endif ! TYPE (bec_type) :: becp ! PRIVATE REAL(DP), ALLOCATABLE :: & becp_r(:,:) ! for real (at Gamma) wavefunctions COMPLEX(DP), ALLOCATABLE :: & becp_k (:,:), & ! as above for complex wavefunctions becp_nc(:,:,:) ! as above for spinors ! INTERFACE calbec ! MODULE PROCEDURE calbec_k, calbec_gamma, calbec_gamma_nocomm, calbec_nc, calbec_bec_type ! END INTERFACE INTERFACE becscal ! MODULE PROCEDURE becscal_nck, becscal_gamma ! END INTERFACE ! PUBLIC :: bec_type, becp, allocate_bec_type, deallocate_bec_type, calbec, & beccopy, becscal, is_allocated_bec_type ! CONTAINS !----------------------------------------------------------------------- SUBROUTINE calbec_bec_type ( npw, beta, psi, betapsi, nbnd ) !----------------------------------------------------------------------- !_ USE mp_bands, ONLY: intra_bgrp_comm USE mp, ONLY: mp_size, mp_rank, mp_get_comm_null ! IMPLICIT NONE COMPLEX (DP), INTENT (in) :: beta(:,:), psi(:,:) TYPE (bec_type), INTENT (inout) :: betapsi ! NB: must be INOUT otherwise ! the allocatd array is lost INTEGER, INTENT (in) :: npw INTEGER, OPTIONAL :: nbnd ! INTEGER :: local_nbnd INTEGER, EXTERNAL :: ldim_block, lind_block, gind_block INTEGER :: nproc, mype, m_loc, m_begin, m_max, ip INTEGER :: ibnd, ibnd_loc REAL(DP), ALLOCATABLE :: dtmp(:,:) ! IF ( present (nbnd) ) THEN local_nbnd = nbnd ELSE local_nbnd = size ( psi, 2) ENDIF IF ( gamma_only ) THEN ! IF( betapsi%comm == mp_get_comm_null() ) THEN ! CALL calbec_gamma ( npw, beta, psi, betapsi%r, local_nbnd, intra_bgrp_comm ) ! ELSE ! ALLOCATE( dtmp( SIZE( betapsi%r, 1 ), SIZE( betapsi%r, 2 ) ) ) ! DO ip = 0, betapsi%nproc - 1 m_loc = ldim_block( betapsi%nbnd , betapsi%nproc, ip ) m_begin = gind_block( 1, betapsi%nbnd, betapsi%nproc, ip ) IF( ( m_begin + m_loc - 1 ) > local_nbnd ) m_loc = local_nbnd - m_begin + 1 IF( m_loc > 0 ) THEN CALL calbec_gamma ( npw, beta, psi(:,m_begin:m_begin+m_loc-1), dtmp, m_loc, betapsi%comm ) IF( ip == betapsi%mype ) THEN betapsi%r(:,1:m_loc) = dtmp(:,1:m_loc) END IF END IF END DO DEALLOCATE( dtmp ) ! END IF ! ELSEIF ( noncolin) THEN ! CALL calbec_nc ( npw, beta, psi, betapsi%nc, local_nbnd ) ! ELSE ! CALL calbec_k ( npw, beta, psi, betapsi%k, local_nbnd ) ! ENDIF ! RETURN ! END SUBROUTINE calbec_bec_type !----------------------------------------------------------------------- SUBROUTINE calbec_gamma_nocomm ( npw, beta, psi, betapsi, nbnd ) !----------------------------------------------------------------------- USE mp_bands, ONLY: intra_bgrp_comm IMPLICIT NONE COMPLEX (DP), INTENT (in) :: beta(:,:), psi(:,:) REAL (DP), INTENT (out) :: betapsi(:,:) INTEGER, INTENT (in) :: npw INTEGER, OPTIONAL :: nbnd INTEGER :: m IF ( present (nbnd) ) THEN m = nbnd ELSE m = size ( psi, 2) ENDIF CALL calbec_gamma ( npw, beta, psi, betapsi, m, intra_bgrp_comm ) RETURN ! END SUBROUTINE calbec_gamma_nocomm !----------------------------------------------------------------------- SUBROUTINE calbec_gamma ( npw, beta, psi, betapsi, nbnd, comm ) !----------------------------------------------------------------------- ! ! ... matrix times matrix with summation index (k=1,npw) running on ! ... half of the G-vectors or PWs - assuming k=0 is the G=0 component: ! ... betapsi(i,j) = 2Re(\sum_k beta^*(i,k)psi(k,j)) + beta^*(i,0)psi(0,j) ! USE mp, ONLY : mp_sum IMPLICIT NONE COMPLEX (DP), INTENT (in) :: beta(:,:), psi(:,:) REAL (DP), INTENT (out) :: betapsi(:,:) INTEGER, INTENT (in) :: npw INTEGER, INTENT (in) :: nbnd INTEGER, INTENT (in) :: comm ! INTEGER :: nkb, npwx, m ! m = nbnd ! nkb = size (beta, 2) IF ( nkb == 0 ) RETURN ! CALL start_clock( 'calbec' ) IF ( npw == 0 ) betapsi(:,:)=0.0_DP npwx= size (beta, 1) IF ( npwx /= size (psi, 1) ) CALL errore ('calbec', 'size mismatch', 1) IF ( npwx < npw ) CALL errore ('calbec', 'size mismatch', 2) #ifdef DEBUG WRITE (*,*) 'calbec gamma' WRITE (*,*) nkb, size (betapsi,1) , m , size (betapsi, 2) #endif IF ( nkb /= size (betapsi,1) .or. m > size (betapsi, 2) ) & CALL errore ('calbec', 'size mismatch', 3) ! IF ( m == 1 ) THEN ! CALL DGEMV( 'C', 2*npw, nkb, 2.0_DP, beta, 2*npwx, psi, 1, 0.0_DP, & betapsi, 1 ) IF ( gstart == 2 ) betapsi(:,1) = betapsi(:,1) - beta(1,:)*psi(1,1) ! ELSE ! CALL DGEMM( 'C', 'N', nkb, m, 2*npw, 2.0_DP, beta, 2*npwx, psi, & 2*npwx, 0.0_DP, betapsi, nkb ) IF ( gstart == 2 ) & CALL DGER( nkb, m, -1.0_DP, beta, 2*npwx, psi, 2*npwx, betapsi, nkb ) ! ENDIF ! CALL mp_sum( betapsi( :, 1:m ), comm ) ! CALL stop_clock( 'calbec' ) ! RETURN ! END SUBROUTINE calbec_gamma ! !----------------------------------------------------------------------- SUBROUTINE calbec_k ( npw, beta, psi, betapsi, nbnd ) !----------------------------------------------------------------------- ! ! ... matrix times matrix with summation index (k=1,npw) running on ! ... G-vectors or PWs : betapsi(i,j) = \sum_k beta^*(i,k) psi(k,j) ! USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE COMPLEX (DP), INTENT (in) :: beta(:,:), psi(:,:) COMPLEX (DP), INTENT (out) :: betapsi(:,:) INTEGER, INTENT (in) :: npw INTEGER, OPTIONAL :: nbnd ! INTEGER :: nkb, npwx, m ! nkb = size (beta, 2) IF ( nkb == 0 ) RETURN ! CALL start_clock( 'calbec' ) IF ( npw == 0 ) betapsi(:,:)=(0.0_DP,0.0_DP) npwx= size (beta, 1) IF ( npwx /= size (psi, 1) ) CALL errore ('calbec', 'size mismatch', 1) IF ( npwx < npw ) CALL errore ('calbec', 'size mismatch', 2) IF ( present (nbnd) ) THEN m = nbnd ELSE m = size ( psi, 2) ENDIF #ifdef DEBUG WRITE (*,*) 'calbec k' WRITE (*,*) nkb, size (betapsi,1) , m , size (betapsi, 2) #endif IF ( nkb /= size (betapsi,1) .or. m > size (betapsi, 2) ) & CALL errore ('calbec', 'size mismatch', 3) ! IF ( m == 1 ) THEN ! CALL ZGEMV( 'C', npw, nkb, (1.0_DP,0.0_DP), beta, npwx, psi, 1, & (0.0_DP, 0.0_DP), betapsi, 1 ) ! ELSE ! CALL ZGEMM( 'C', 'N', nkb, m, npw, (1.0_DP,0.0_DP), & beta, npwx, psi, npwx, (0.0_DP,0.0_DP), betapsi, nkb ) ! ENDIF ! CALL mp_sum( betapsi( :, 1:m ), intra_bgrp_comm ) ! CALL stop_clock( 'calbec' ) ! RETURN ! END SUBROUTINE calbec_k ! !----------------------------------------------------------------------- SUBROUTINE calbec_nc ( npw, beta, psi, betapsi, nbnd ) !----------------------------------------------------------------------- ! ! ... matrix times matrix with summation index (k below) running on ! ... G-vectors or PWs corresponding to two different polarizations: ! ... betapsi(i,1,j) = \sum_k=1,npw beta^*(i,k) psi(k,j) ! ... betapsi(i,2,j) = \sum_k=1,npw beta^*(i,k) psi(k+npwx,j) ! USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE COMPLEX (DP), INTENT (in) :: beta(:,:), psi(:,:) COMPLEX (DP), INTENT (out) :: betapsi(:,:,:) INTEGER, INTENT (in) :: npw INTEGER, OPTIONAL :: nbnd ! INTEGER :: nkb, npwx, npol, m ! nkb = size (beta, 2) IF ( nkb == 0 ) RETURN ! CALL start_clock ('calbec') IF ( npw == 0 ) betapsi(:,:,:)=(0.0_DP,0.0_DP) npwx= size (beta, 1) IF ( 2*npwx /= size (psi, 1) ) CALL errore ('calbec', 'size mismatch', 1) IF ( npwx < npw ) CALL errore ('calbec', 'size mismatch', 2) IF ( present (nbnd) ) THEN m = nbnd ELSE m = size ( psi, 2) ENDIF npol= size (betapsi, 2) #ifdef DEBUG WRITE (*,*) 'calbec nc' WRITE (*,*) nkb, size (betapsi,1) , m , size (betapsi, 3) #endif IF ( nkb /= size (betapsi,1) .or. m > size (betapsi, 3) ) & CALL errore ('calbec', 'size mismatch', 3) ! CALL ZGEMM ('C', 'N', nkb, m*npol, npw, (1.0_DP, 0.0_DP), beta, & npwx, psi, npwx, (0.0_DP, 0.0_DP), betapsi, nkb) ! CALL mp_sum( betapsi( :, :, 1:m ), intra_bgrp_comm ) ! CALL stop_clock( 'calbec' ) ! RETURN ! END SUBROUTINE calbec_nc ! ! !----------------------------------------------------------------------- FUNCTION is_allocated_bec_type (bec) RESULT (isalloc) !----------------------------------------------------------------------- IMPLICIT NONE TYPE (bec_type) :: bec LOGICAL :: isalloc #ifdef __STD_F95 isalloc = (associated(bec%r) .or. associated(bec%nc) .or. associated(bec%k)) #else isalloc = (allocated(bec%r) .or. allocated(bec%nc) .or. allocated(bec%k)) #endif RETURN ! !----------------------------------------------------------------------- END FUNCTION is_allocated_bec_type !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- SUBROUTINE allocate_bec_type ( nkb, nbnd, bec, comm ) !----------------------------------------------------------------------- USE mp, ONLY: mp_size, mp_rank, mp_get_comm_null IMPLICIT NONE TYPE (bec_type) :: bec INTEGER, INTENT (in) :: nkb, nbnd INTEGER, INTENT (in), OPTIONAL :: comm INTEGER :: ierr, nbnd_siz INTEGER, EXTERNAL :: ldim_block, lind_block, gind_block ! #ifdef __STD_F95 NULLIFY(bec%r) NULLIFY(bec%nc) NULLIFY(bec%k) #endif ! nbnd_siz = nbnd bec%comm = mp_get_comm_null() bec%nbnd = nbnd bec%mype = 0 bec%nproc = 1 bec%nbnd_loc = nbnd bec%ibnd_begin = 1 ! IF( PRESENT( comm ) .AND. gamma_only .AND. smallmem ) THEN bec%comm = comm bec%nproc = mp_size( comm ) IF( bec%nproc > 1 ) THEN nbnd_siz = nbnd / bec%nproc IF( MOD( nbnd, bec%nproc ) /= 0 ) nbnd_siz = nbnd_siz + 1 bec%mype = mp_rank( bec%comm ) bec%nbnd_loc = ldim_block( becp%nbnd , bec%nproc, bec%mype ) bec%ibnd_begin = gind_block( 1, becp%nbnd, bec%nproc, bec%mype ) END IF END IF ! IF ( gamma_only ) THEN ! ALLOCATE( bec%r( nkb, nbnd_siz ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_bec_type ', ' cannot allocate bec%r ', ABS(ierr) ) ! bec%r(:,:)=0.0D0 ! ELSEIF ( noncolin) THEN ! ALLOCATE( bec%nc( nkb, npol, nbnd_siz ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_bec_type ', ' cannot allocate bec%nc ', ABS(ierr) ) ! bec%nc(:,:,:)=(0.0D0,0.0D0) ! ELSE ! ALLOCATE( bec%k( nkb, nbnd_siz ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_bec_type ', ' cannot allocate bec%k ', ABS(ierr) ) ! bec%k(:,:)=(0.0D0,0.0D0) ! ENDIF ! RETURN ! END SUBROUTINE allocate_bec_type ! !----------------------------------------------------------------------- SUBROUTINE deallocate_bec_type (bec) !----------------------------------------------------------------------- ! USE mp, ONLY: mp_get_comm_null IMPLICIT NONE TYPE (bec_type) :: bec ! bec%comm = mp_get_comm_null() bec%nbnd = 0 ! #ifdef __STD_F95 IF (associated(bec%r)) DEALLOCATE(bec%r) IF (associated(bec%nc)) DEALLOCATE(bec%nc) IF (associated(bec%k)) DEALLOCATE(bec%k) #else IF (allocated(bec%r)) DEALLOCATE(bec%r) IF (allocated(bec%nc)) DEALLOCATE(bec%nc) IF (allocated(bec%k)) DEALLOCATE(bec%k) #endif ! RETURN ! END SUBROUTINE deallocate_bec_type SUBROUTINE beccopy(bec, bec1, nkb, nbnd) IMPLICIT NONE TYPE(bec_type), INTENT(in) :: bec TYPE(bec_type) :: bec1 INTEGER, INTENT(in) :: nkb, nbnd IF (gamma_only) THEN CALL dcopy(nkb*nbnd, bec1%r, 1, bec%r, 1) ELSEIF (noncolin) THEN CALL zcopy(nkb*npol*nbnd, bec%nc, 1, bec1%nc, 1) ELSE CALL zcopy(nkb*nbnd, bec%k, 1, bec1%k, 1) ENDIF RETURN END SUBROUTINE beccopy SUBROUTINE becscal_nck(alpha, bec, nkb, nbnd) IMPLICIT NONE TYPE(bec_type), INTENT(INOUT) :: bec COMPLEX(DP), INTENT(IN) :: alpha INTEGER, INTENT(IN) :: nkb, nbnd IF (gamma_only) THEN CALL errore('becscal_nck','called in the wrong case',1) ELSEIF (noncolin) THEN CALL zscal(nkb*npol*nbnd, alpha, bec%nc, 1) ELSE CALL zscal(nkb*nbnd, alpha, bec%k, 1) ENDIF RETURN END SUBROUTINE becscal_nck SUBROUTINE becscal_gamma(alpha, bec, nkb, nbnd) IMPLICIT NONE TYPE(bec_type), INTENT(INOUT) :: bec REAL(DP), INTENT(IN) :: alpha INTEGER, INTENT(IN) :: nkb, nbnd IF (gamma_only) THEN CALL dscal(nkb*nbnd, alpha, bec%r, 1) ELSE CALL errore('becscal_gamma','called in the wrong case',1) ENDIF RETURN END SUBROUTINE becscal_gamma END MODULE becmod espresso-5.1/Modules/kind.f900000644000175000017500000000541112341373034014160 0ustar mbamba! ! Copyright (C) 2002-2004 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE kinds !------------------------------------------------------------------------------! IMPLICIT NONE SAVE ! ... kind definitions INTEGER, PARAMETER :: DP = selected_real_kind(14,200) INTEGER, PARAMETER :: sgl = selected_real_kind(6,30) INTEGER, PARAMETER :: i4b = selected_int_kind(9) PRIVATE PUBLIC :: i4b, sgl, DP, print_kind_info ! !------------------------------------------------------------------------------! ! CONTAINS ! !------------------------------------------------------------------------------! ! !! Print information about the used data types. ! SUBROUTINE print_kind_info (stdout) ! !------------------------------------------------------------------------------! ! IMPLICIT NONE INTEGER, INTENT(IN) :: stdout ! WRITE( stdout,'(/,T2,A)') 'DATA TYPE INFORMATION:' ! WRITE( stdout,'(/,T2,A,T78,A,2(/,T2,A,T75,I6),3(/,T2,A,T67,E14.8))') & 'REAL: Data type name:', 'DP', ' Kind value:', kind(0.0_DP), & ' Precision:', precision(0.0_DP), & ' Smallest nonnegligible quantity relative to 1:', & epsilon(0.0_DP), ' Smallest positive number:', tiny(0.0_DP), & ' Largest representable number:', huge(0.0_DP) WRITE( stdout,'(/,T2,A,T78,A,2(/,T2,A,T75,I6),3(/,T2,A,T67,E14.8))') & ' Data type name:', 'sgl', ' Kind value:', kind(0.0_sgl), & ' Precision:', precision(0.0_sgl), & ' Smallest nonnegligible quantity relative to 1:', & epsilon(0.0_sgl), ' Smallest positive number:', tiny(0.0_sgl), & ' Largest representable number:', huge(0.0_sgl) WRITE( stdout,'(/,T2,A,T72,A,4(/,T2,A,T61,I20))') & 'INTEGER: Data type name:', '(default)', ' Kind value:', & kind(0), ' Bit size:', bit_size(0), & ' Largest representable number:', huge(0) WRITE( stdout,'(/,T2,A,T72,A,/,T2,A,T75,I6,/)') 'LOGICAL: Data type name:', & '(default)', ' Kind value:', kind(.TRUE.) WRITE( stdout,'(/,T2,A,T72,A,/,T2,A,T75,I6,/)') & 'CHARACTER: Data type name:', '(default)', ' Kind value:', & kind('C') ! END SUBROUTINE print_kind_info ! !------------------------------------------------------------------------------! END MODULE kinds !------------------------------------------------------------------------------! espresso-5.1/Modules/fft_types.f900000644000175000017500000004721612341373034015247 0ustar mbamba! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE fft_types USE io_global, ONLY : stdout IMPLICIT NONE SAVE TYPE fft_dlay_descriptor INTEGER :: nst ! total number of sticks INTEGER, POINTER :: nsp(:) ! number of sticks per processor ( potential ) ! using proc index starting from 1 !! ! on proc mpime -> nsp( mpime + 1 ) INTEGER, POINTER :: nsw(:) ! number of sticks per processor ( wave func ) ! using proc index as above INTEGER :: nr1 = 0 ! INTEGER :: nr2 = 0 ! effective FFT dimensions of the 3D grid (global) INTEGER :: nr3 = 0 ! INTEGER :: nr1x = 0 ! FFT grids leading dimensions INTEGER :: nr2x = 0 ! dimensions of the arrays for the 3D grid (global) INTEGER :: nr3x = 0 ! may differ from nr1 ,nr2 ,nr3 in order to boost performances INTEGER :: npl = 0 ! number of "Z" planes for this processor = npp( mpime + 1 ) INTEGER :: nnp = 0 ! number of 0 and non 0 sticks in a plane ( ~nr1*nr2/nproc ) INTEGER :: nnr = 0 ! local number of FFT grid elements ( ~nr1*nr2*nr3/proc ) ! size of the arrays allocated for the FFT, local to each processor: ! in parallel execution may differ from nr1x*nr2x*nr3x ! Not to be confused either with nr1*nr2*nr3 INTEGER, POINTER :: ngl(:) ! per proc. no. of non zero charge density/potential components INTEGER, POINTER :: nwl(:) ! per proc. no. of non zero wave function plane components INTEGER, POINTER :: npp(:) ! number of "Z" planes per processor INTEGER, POINTER :: ipp(:) ! offset of the first "Z" plane on each proc ( 0 on the first proc!!!) INTEGER, POINTER :: iss(:) ! index of the first stick on each proc INTEGER, POINTER :: isind(:) ! for each position in the plane indicate the stick index INTEGER, POINTER :: ismap(:) ! for each stick in the plane indicate the position INTEGER, POINTER :: iplp(:) ! indicate which "Y" plane should be FFTed ( potential ) INTEGER, POINTER :: iplw(:) ! indicate which "Y" plane should be FFTed ( wave func ) ! ! descriptor id and pointer, for future use ! INTEGER :: id INTEGER :: tptr ! ! Sub (box) grid descriptor ! INTEGER, POINTER :: irb(:,:) ! the offset of the box corner INTEGER, POINTER :: imin3(:) ! the starting local plane INTEGER, POINTER :: imax3(:) ! the last local plane INTEGER, POINTER :: np3(:) ! number of local plane for the box fft ! ! fft parallelization ! INTEGER :: mype ! my processor id (starting from 0) in the fft group INTEGER :: comm ! communicator of the fft gruop INTEGER :: nproc ! number of processor in the fft group INTEGER :: root ! root processor ! ! task groups ! LOGICAL :: have_task_groups ! INTEGER :: me_pgrp ! task id for plane wave task group INTEGER :: nogrp ! number of proc. in an orbital "task group" INTEGER :: npgrp ! number of proc. in a plane-wave "task group" INTEGER :: ogrp_comm ! orbital group communicator INTEGER :: pgrp_comm ! plane-wave group communicator INTEGER, POINTER :: nolist(:) ! list of pes in orbital group INTEGER, POINTER :: nplist(:) ! list of pes in pw group ! INTEGER :: tg_nnr ! maximum among nnr INTEGER, POINTER :: tg_nsw(:) ! number of sticks per task group ( wave func ) INTEGER, POINTER :: tg_npp(:) ! number of "Z" planes per task group INTEGER, POINTER :: tg_snd(:) ! number of element to be sent in group redist INTEGER, POINTER :: tg_rcv(:) ! number of element to be received in group redist INTEGER, POINTER :: tg_psdsp(:)! send displacement for all to all (pack) INTEGER, POINTER :: tg_usdsp(:)! send displacement for all to all (unpack) INTEGER, POINTER :: tg_rdsp(:)! receive displacement for all to all ! END TYPE INTEGER, PRIVATE :: icount = 0 CONTAINS SUBROUTINE fft_dlay_allocate( desc, mype, root, nproc, comm, nogrp, nx, ny ) TYPE (fft_dlay_descriptor) :: desc INTEGER, INTENT(in) :: mype, root, nproc, comm, nx, ny ! mype starting from 0 INTEGER, INTENT(in) :: nogrp ! number of task groups ALLOCATE( desc%nsp( nproc ) ) ALLOCATE( desc%nsw( nproc ) ) ALLOCATE( desc%ngl( nproc ) ) ALLOCATE( desc%nwl( nproc ) ) ALLOCATE( desc%npp( nproc ) ) ALLOCATE( desc%ipp( nproc ) ) ALLOCATE( desc%iss( nproc ) ) ALLOCATE( desc%isind( nx * ny ) ) ALLOCATE( desc%ismap( nx * ny ) ) ALLOCATE( desc%iplp( nx ) ) ALLOCATE( desc%iplw( nx ) ) desc%nsp = 0 desc%nsw = 0 desc%ngl = 0 desc%nwl = 0 desc%npp = 0 desc%ipp = 0 desc%iss = 0 desc%isind = 0 desc%ismap = 0 desc%iplp = 0 desc%iplw = 0 desc%id = 0 desc%mype = mype desc%comm = comm desc%nproc = nproc desc%root = root desc%have_task_groups = .false. IF( nogrp > 1 ) & desc%have_task_groups = .true. desc%me_pgrp = 0 ! IF( MOD( nproc, MAX( 1, nogrp ) ) /= 0 ) & CALL errore( " fft_dlay_allocate ", "the number of task groups should be a divisor of nproc ", 1 ) desc%nogrp = MAX( 1, nogrp ) desc%npgrp = nproc / MAX( 1, nogrp ) desc%ogrp_comm = 0 desc%pgrp_comm = 0 ALLOCATE( desc%nolist( desc%nogrp ) ) ALLOCATE( desc%nplist( desc%npgrp ) ) desc%nolist = 0 desc%nplist = 0 NULLIFY( desc%tg_nsw ) NULLIFY( desc%tg_npp ) NULLIFY( desc%tg_snd ) NULLIFY( desc%tg_rcv ) NULLIFY( desc%tg_psdsp ) NULLIFY( desc%tg_usdsp ) NULLIFY( desc%tg_rdsp ) END SUBROUTINE fft_dlay_allocate SUBROUTINE fft_dlay_deallocate( desc ) TYPE (fft_dlay_descriptor) :: desc IF ( associated( desc%nsp ) ) DEALLOCATE( desc%nsp ) IF ( associated( desc%nsw ) ) DEALLOCATE( desc%nsw ) IF ( associated( desc%ngl ) ) DEALLOCATE( desc%ngl ) IF ( associated( desc%nwl ) ) DEALLOCATE( desc%nwl ) IF ( associated( desc%npp ) ) DEALLOCATE( desc%npp ) IF ( associated( desc%ipp ) ) DEALLOCATE( desc%ipp ) IF ( associated( desc%iss ) ) DEALLOCATE( desc%iss ) IF ( associated( desc%isind ) ) DEALLOCATE( desc%isind ) IF ( associated( desc%ismap ) ) DEALLOCATE( desc%ismap ) IF ( associated( desc%iplp ) ) DEALLOCATE( desc%iplp ) IF ( associated( desc%iplw ) ) DEALLOCATE( desc%iplw ) IF ( associated( desc%nolist ) ) DEALLOCATE( desc%nolist ) IF ( associated( desc%nplist ) ) DEALLOCATE( desc%nplist ) desc%id = 0 IF( desc%have_task_groups ) THEN IF ( associated( desc%tg_nsw ) ) DEALLOCATE( desc%tg_nsw ) IF ( associated( desc%tg_npp ) ) DEALLOCATE( desc%tg_npp ) IF ( associated( desc%tg_snd ) ) DEALLOCATE( desc%tg_snd ) IF ( associated( desc%tg_rcv ) ) DEALLOCATE( desc%tg_rcv ) IF ( associated( desc%tg_psdsp ) ) DEALLOCATE( desc%tg_psdsp ) IF ( associated( desc%tg_usdsp ) ) DEALLOCATE( desc%tg_usdsp ) IF ( associated( desc%tg_rdsp ) ) DEALLOCATE( desc%tg_rdsp ) ENDIF desc%have_task_groups = .false. END SUBROUTINE fft_dlay_deallocate !=----------------------------------------------------------------------------=! SUBROUTINE fft_box_allocate( desc, mype, root, nproc, comm, nat ) TYPE (fft_dlay_descriptor) :: desc INTEGER, INTENT(in) :: nat, nproc, mype, root, comm ! mype starting from 0 ALLOCATE( desc%irb( 3, nat ) ) ALLOCATE( desc%imin3( nat ) ) ALLOCATE( desc%imax3( nat ) ) ALLOCATE( desc%npp( nproc ) ) ALLOCATE( desc%ipp( nproc ) ) ALLOCATE( desc%np3( nat ) ) desc%irb = 0 desc%imin3 = 0 desc%imax3 = 0 desc%npp = 0 desc%ipp = 0 desc%np3 = 0 desc%mype = mype desc%nproc = nproc desc%comm = comm desc%root = root desc%have_task_groups = .false. END SUBROUTINE fft_box_allocate SUBROUTINE fft_box_deallocate( desc ) TYPE (fft_dlay_descriptor) :: desc IF( associated( desc%irb ) ) DEALLOCATE( desc%irb ) IF( associated( desc%imin3 ) ) DEALLOCATE( desc%imin3 ) IF( associated( desc%imax3 ) ) DEALLOCATE( desc%imax3 ) IF( associated( desc%npp ) ) DEALLOCATE( desc%npp ) IF( associated( desc%ipp ) ) DEALLOCATE( desc%ipp ) IF( associated( desc%np3 ) ) DEALLOCATE( desc%np3 ) desc%have_task_groups = .false. END SUBROUTINE fft_box_deallocate !=----------------------------------------------------------------------------=! SUBROUTINE fft_dlay_set( desc, tk, nst, nr1, nr2, nr3, nr1x, nr2x, nr3x, & ub, lb, idx, in1, in2, ncp, ncpw, ngp, ngpw, st, stw ) TYPE (fft_dlay_descriptor) :: desc LOGICAL, INTENT(in) :: tk INTEGER, INTENT(in) :: nst INTEGER, INTENT(in) :: nr1, nr2, nr3 ! size of real space grid INTEGER, INTENT(in) :: nr1x, nr2x, nr3x ! padded size of real space grid INTEGER, INTENT(in) :: ub(3), lb(3) ! upper and lower bound of real space indices INTEGER, INTENT(in) :: idx(:) INTEGER, INTENT(in) :: in1(:) INTEGER, INTENT(in) :: in2(:) INTEGER, INTENT(in) :: ncp(:) INTEGER, INTENT(in) :: ncpw(:) INTEGER, INTENT(in) :: ngp(:) INTEGER, INTENT(in) :: ngpw(:) INTEGER, INTENT(in) :: st( lb(1) : ub(1), lb(2) : ub(2) ) INTEGER, INTENT(in) :: stw( lb(1) : ub(1), lb(2) : ub(2) ) INTEGER :: npp( desc%nproc ), n3( desc%nproc ), nsp( desc%nproc ) INTEGER :: np, nq, i, is, iss, i1, i2, m1, m2, n1, n2, ip INTEGER :: ncpx, nppx ! Task-grouping C. Bekas ! INTEGER :: sm IF( ( size( desc%ngl ) < desc%nproc ) .or. ( size( desc%npp ) < desc%nproc ) .or. & ( size( desc%ipp ) < desc%nproc ) .or. ( size( desc%iss ) < desc%nproc ) ) & CALL errore( ' fft_dlay_set ', ' wrong descriptor dimensions ', 1 ) IF( ( nr1 > nr1x ) .or. ( nr2 > nr2x ) .or. ( nr3 > nr3x ) ) & CALL errore( ' fft_dlay_set ', ' wrong fft dimensions ', 2 ) IF( ( size( idx ) < nst ) .or. ( size( in1 ) < nst ) .or. ( size( in2 ) < nst ) ) & CALL errore( ' fft_dlay_set ', ' wrong number of stick dimensions ', 3 ) IF( ( size( ncp ) < desc%nproc ) .or. ( size( ngp ) < desc%nproc ) ) & CALL errore( ' fft_dlay_set ', ' wrong stick dimensions ', 4 ) ! Set the number of "xy" planes for each processor ! in other word do a slab partition along the z axis sm = 0 npp = 0 IF ( desc%nproc == 1 ) THEN npp(1) = nr3 ELSEIF( desc%nproc <= nr3 ) THEN np = nr3 / desc%nproc nq = nr3 - np * desc%nproc DO i = 1, desc%nproc npp(i) = np IF ( i <= nq ) npp(i) = np + 1 ENDDO ELSE DO ip = 1, nr3 ! some compiler complains for empty DO loops DO i = 1, desc%nproc, desc%nogrp npp(i) = npp(i) + 1 sm = sm + 1 IF ( sm == nr3 ) exit ENDDO IF ( sm == nr3 ) exit ENDDO ENDIF desc%npp( 1:desc%nproc ) = npp desc%npl = npp( desc%mype + 1 ) ! Find out the index of the starting plane on each proc n3 = 0 DO i = 2, desc%nproc n3(i) = n3(i-1) + npp(i-1) ENDDO desc%ipp( 1:desc%nproc ) = n3 ! Set the proper number of sticks IF( .not. tk ) THEN desc%nst = 2*nst - 1 ELSE desc%nst = nst ENDIF ! Set fft actual and leading dimensions desc%nr1 = nr1 desc%nr2 = nr2 desc%nr3 = nr3 desc%nr1x = nr1x desc%nr2x = nr2x desc%nr3x = nr3x desc%nnp = nr1x * nr2x ! see ncplane ! Set fft local workspace dimension nppx = 0 ncpx = 0 DO i = 1, desc%nproc nppx = MAX( nppx, npp( i ) ) ncpx = MAX( ncpx, ncp( i ) ) END DO IF ( desc%nproc == 1 ) THEN desc%nnr = nr1x * nr2x * nr3x desc%tg_nnr = desc%nnr ELSE desc%nnr = max( nr3x * ncpx, nr1x * nr2x * nppx ) desc%nnr = max( desc%nnr, ncpx * nppx * desc%nproc ) ! this is required to use ALLTOALL instead of ALLTOALLV desc%nnr = max( 1, desc%nnr ) ! ensure that desc%nrr > 0 ( for extreme parallelism ) desc%tg_nnr = desc%nnr desc%tg_nnr = max( desc%tg_nnr, nr3x * ncpx ) desc%tg_nnr = max( desc%tg_nnr, nr1x * nr2x * nppx ) desc%tg_nnr = max( 1, desc%tg_nnr ) ! ensure that desc%nrr > 0 ( for extreme parallelism ) ENDIF desc%ngl( 1:desc%nproc ) = ngp( 1:desc%nproc ) desc%nwl( 1:desc%nproc ) = ngpw( 1:desc%nproc ) IF( size( desc%isind ) < ( nr1x * nr2x ) ) & CALL errore( ' fft_dlay_set ', ' wrong descriptor dimensions, isind ', 5 ) IF( size( desc%iplp ) < ( nr1x ) .or. size( desc%iplw ) < ( nr1x ) ) & CALL errore( ' fft_dlay_set ', ' wrong descriptor dimensions, ipl ', 5 ) ! ! 1. Temporarily store in the array "desc%isind" the index of the processor ! that own the corresponding stick (index of proc starting from 1) ! 2. Set the array elements of "desc%iplw" and "desc%iplp" to one ! for that index corresponding to YZ planes containing at least one stick ! this are used in the FFT transform along Y ! desc%isind = 0 desc%iplp = 0 desc%iplw = 0 DO iss = 1, nst is = idx( iss ) i1 = in1( is ) i2 = in2( is ) IF( st( i1, i2 ) > 0 ) THEN m1 = i1 + 1; IF ( m1 < 1 ) m1 = m1 + nr1 m2 = i2 + 1; IF ( m2 < 1 ) m2 = m2 + nr2 IF( stw( i1, i2 ) > 0 ) THEN desc%isind( m1 + ( m2 - 1 ) * nr1x ) = st( i1, i2 ) desc%iplw( m1 ) = 1 ELSE desc%isind( m1 + ( m2 - 1 ) * nr1x ) = -st( i1, i2 ) ENDIF desc%iplp( m1 ) = 1 IF( .not. tk ) THEN n1 = -i1 + 1; IF ( n1 < 1 ) n1 = n1 + nr1 n2 = -i2 + 1; IF ( n2 < 1 ) n2 = n2 + nr2 IF( stw( -i1, -i2 ) > 0 ) THEN desc%isind( n1 + ( n2 - 1 ) * nr1x ) = st( -i1, -i2 ) desc%iplw( n1 ) = 1 ELSE desc%isind( n1 + ( n2 - 1 ) * nr1x ) = -st( -i1, -i2 ) ENDIF desc%iplp( n1 ) = 1 ENDIF ENDIF ENDDO ! ! Compute for each proc the global index ( starting from 0 ) of the first ! local stick ( desc%iss ) ! DO i = 1, desc%nproc IF( i == 1 ) THEN desc%iss( i ) = 0 ELSE desc%iss( i ) = desc%iss( i - 1 ) + ncp( i - 1 ) ENDIF ENDDO IF( size( desc%ismap ) < ( nst ) ) & CALL errore( ' fft_dlay_set ', ' wrong descriptor dimensions ', 6 ) ! ! 1. Set the array desc%ismap which maps stick indexes to ! position in the palne ( iss ) ! 2. Re-set the array "desc%isind", that maps position ! in the plane with stick indexes (it is the inverse of desc%ismap ) ! ! wave function sticks first desc%ismap = 0 nsp = 0 DO iss = 1, size( desc%isind ) ip = desc%isind( iss ) IF( ip > 0 ) THEN nsp( ip ) = nsp( ip ) + 1 desc%ismap( nsp( ip ) + desc%iss( ip ) ) = iss IF( ip == ( desc%mype + 1 ) ) THEN desc%isind( iss ) = nsp( ip ) ELSE desc%isind( iss ) = 0 ENDIF ENDIF ENDDO ! check number of stick against the input value IF( any( nsp( 1:desc%nproc ) /= ncpw( 1:desc%nproc ) ) ) THEN DO ip = 1, desc%nproc WRITE( stdout,*) ' * ', ip, ' * ', nsp( ip ), ' /= ', ncpw( ip ) ENDDO CALL errore( ' fft_dlay_set ', ' inconsistent number of sticks ', 7 ) ENDIF desc%nsw( 1:desc%nproc ) = nsp( 1:desc%nproc ) ! then add pseudopotential stick DO iss = 1, size( desc%isind ) ip = desc%isind( iss ) IF( ip < 0 ) THEN nsp( -ip ) = nsp( -ip ) + 1 desc%ismap( nsp( -ip ) + desc%iss( -ip ) ) = iss IF( -ip == ( desc%mype + 1 ) ) THEN desc%isind( iss ) = nsp( -ip ) ELSE desc%isind( iss ) = 0 ENDIF ENDIF ENDDO ! check number of stick against the input value IF( any( nsp( 1:desc%nproc ) /= ncp( 1:desc%nproc ) ) ) THEN DO ip = 1, desc%nproc WRITE( stdout,*) ' * ', ip, ' * ', nsp( ip ), ' /= ', ncp( ip ) ENDDO CALL errore( ' fft_dlay_set ', ' inconsistent number of sticks ', 8 ) ENDIF desc%nsp( 1:desc%nproc ) = nsp( 1:desc%nproc ) icount = icount + 1 desc%id = icount ! Initialize the pointer to the fft tables desc%tptr = icount RETURN END SUBROUTINE fft_dlay_set !=----------------------------------------------------------------------------=! SUBROUTINE fft_box_set( desc, nr1b, nr2b, nr3b, nr1bx, nr2bx, nr3bx, nat, & irb, npp, ipp ) IMPLICIT NONE TYPE (fft_dlay_descriptor) :: desc INTEGER, INTENT(in) :: nat INTEGER, INTENT(in) :: irb( :, : ) INTEGER, INTENT(in) :: npp( : ) INTEGER, INTENT(in) :: ipp( : ) INTEGER, INTENT(in) :: nr1b, nr2b, nr3b, nr1bx, nr2bx, nr3bx INTEGER :: ir3, ibig3, irb3, imin3, imax3, nr3, isa IF( nat > size( desc%irb, 2 ) ) THEN WRITE( stdout, fmt="( ///,'NAT, SIZE = ',2I10)" ) nat, size( desc%irb, 2 ) CALL errore(" fft_box_set ", " inconsistent dimensions ", 1 ) ENDIF IF( desc%nproc > size( desc%npp ) ) & CALL errore(" fft_box_set ", " inconsistent dimensions ", 2 ) desc%nr1 = nr1b desc%nr2 = nr2b desc%nr3 = nr3b desc%nr1x = nr1bx desc%nr2x = nr2bx desc%nr3x = nr3bx desc%irb( 1:3, 1:nat ) = irb( 1:3, 1:nat ) desc%npp( 1:desc%nproc ) = npp( 1:desc%nproc ) desc%ipp( 1:desc%nproc ) = ipp( 1:desc%nproc ) nr3 = sum( npp( 1:desc%nproc ) ) DO isa = 1, nat imin3 = nr3b imax3 = 1 irb3 = irb( 3, isa ) DO ir3 = 1, nr3b ibig3 = 1 + mod( irb3 + ir3 - 2, nr3 ) IF( ibig3 < 1 .or. ibig3 > nr3 ) & & CALL errore(' fft_box_set ',' ibig3 wrong ', ibig3 ) ibig3 = ibig3 - ipp( desc%mype + 1 ) IF ( ibig3 > 0 .and. ibig3 <= npp(desc%mype + 1) ) THEN imin3 = min( imin3, ir3 ) imax3 = max( imax3, ir3 ) ENDIF ENDDO desc%imin3( isa ) = imin3 desc%imax3( isa ) = imax3 desc%np3( isa ) = imax3 - imin3 + 1 ENDDO desc%have_task_groups = .false. END SUBROUTINE fft_box_set !=----------------------------------------------------------------------------=! SUBROUTINE fft_dlay_scalar( desc, ub, lb, nr1, nr2, nr3, nr1x, nr2x, nr3x, stw ) IMPLICIT NONE TYPE (fft_dlay_descriptor) :: desc INTEGER, INTENT(in) :: lb(:), ub(:) INTEGER, INTENT(in) :: stw( lb(2) : ub(2), lb(3) : ub(3) ) INTEGER :: nr1, nr2, nr3, nr1x, nr2x, nr3x INTEGER :: m1, m2, i2, i3 IF( size( desc%iplw ) < nr3x .or. size( desc%isind ) < nr2x * nr3x ) & CALL errore(' fft_dlay_scalar ', ' wrong dimensions ', 1 ) desc%isind = 0 desc%iplw = 0 desc%iplp = 1 desc%nr1 = nr1 desc%nr2 = nr2 desc%nr3 = nr3 desc%nr1x = nr1x desc%nr2x = nr2x desc%nr3x = nr3x ! here we are setting parameter as if we were ! in a serial code, sticks are along X dimension ! and not along Z DO i2 = lb( 2 ), ub( 2 ) DO i3 = lb( 3 ), ub( 3 ) m1 = i2 + 1; IF ( m1 < 1 ) m1 = m1 + nr2 m2 = i3 + 1; IF ( m2 < 1 ) m2 = m2 + nr3 IF( stw( i2, i3 ) > 0 ) THEN desc%isind( m1 + ( m2 - 1 ) * nr2x ) = 1 ! st( i1, i2 ) desc%iplw( m2 ) = 1 ENDIF ENDDO ENDDO desc%nnr = nr1x * nr2x * nr3x desc%npl = nr3 desc%nnp = nr1x * nr2x desc%npp = nr3 desc%ipp = 0 desc%tg_nnr = desc%nnr ! desc%have_task_groups = .false. RETURN END SUBROUTINE fft_dlay_scalar END MODULE fft_types espresso-5.1/Modules/version.f90.in0000644000175000017500000000100012341373034015313 0ustar mbamba! ! Copyright (C) 2003-2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE global_version ! IMPLICIT NONE ! SAVE ! CHARACTER (LEN=6) :: version_number = '5.1' CHARACTER (LEN=12) :: svn_revision = 'unknown' ! END MODULE global_version espresso-5.1/Modules/read_xml_fields.f900000644000175000017500000007020212341373034016354 0ustar mbamba! !----------------------------------------------------------------! ! This module handles the reading of fields in xml inputs ! ! ! ! written by Simone Ziraldo (08/2010) ! !----------------------------------------------------------------! MODULE read_xml_fields_module ! ! USE io_global, ONLY : xmlinputunit => qestdin USE kinds, ONLY : DP USE input_parameters ! ! IMPLICIT NONE ! SAVE ! PRIVATE ! PUBLIC :: read_xml_fields, clean_str ! ! ... temporary variable needed to rebuild the old input_dft variable CHARACTER (len = 5) :: exchange, exchange_grad_corr, correlation, & correlation_grad_corr, xc_specials ! CONTAINS ! ! ! !----------------------------------------------------------! ! This subroutine does a loop over all fields and ! ! sets the parameters that reads in these nodes ! ! note: the current implementation doesn't require ! ! the fields name or the number of fields ! !----------------------------------------------------------! SUBROUTINE read_xml_fields () ! ! USE iotk_module, ONLY : iotk_scan_begin, iotk_scan_end, iotk_scan_attr, iotk_attlenx USE iotk_unit_interf, ONLY : iotk_rewind ! ! IMPLICIT NONE ! ! INTEGER :: ierr, direction1, direction2 CHARACTER(len = iotk_attlenx) :: attr CHARACTER(len = 30) :: name CHARACTER(len = 30) :: field ! ! ! ... the scanning must start from the beginning of the root node ! CALL iotk_rewind( xmlinputunit ) ! ! ... default values for strings exchange = 'none' exchange_grad_corr = 'none' correlation = 'none' correlation_grad_corr = 'none' xc_specials = 'none' ! ! ... fields loop ! DO ! call iotk_scan_begin( xmlinputunit, 'field', attr, direction = direction1, ierr = ierr ) IF ( ierr /= 0 ) CALL errore ( 'read_xml_fields', 'error scanning begin of field & &node', ABS( ierr ) ) ! IF ( direction1 == -1 ) THEN ! ! ... the scanning changes direction -> no more fields call iotk_scan_end( xmlinputunit, 'field' ) ! EXIT ! END IF ! call iotk_scan_attr(attr, 'name', field, ierr = ierr ) IF ( ierr /= 0 ) CALL errore ( 'read_xml_fields', 'error getting the name of field', & ABS( ierr ) ) ! ! ... parameters loop ! DO ! CALL iotk_scan_begin(xmlinputunit, 'parameter', attr, direction = direction2, ierr = ierr ) IF ( ierr /= 0 ) CALL errore ( 'read_xml_fields', 'error scanning begin of parameter & &node inside '//trim(field)//' field', ABS( ierr ) ) ! IF ( direction2 == -1 ) THEN ! ! ... the scanning changes direction -> no more parameters CALL iotk_scan_end( xmlinputunit, 'parameter', ierr = ierr) ! EXIT END IF ! CALL iotk_scan_attr( attr, 'name', name, ierr = ierr ) IF ( ierr /= 0 ) CALL errore ( 'read_xml_fields', 'error scanning the name of a PARAMETER & &inside '//trim(field)//' field', ABS( ierr ) ) ! ! ! ... association string -> name of variable and reading of its value CALL read_parameter( name ) ! ! CALL iotk_scan_end( xmlinputunit, 'parameter', ierr = ierr ) IF ( ierr /= 0 ) CALL errore ( 'read_xml_fields', 'error scanning end of '//name//' PARAMETER & &inside '//trim(field)//' field', ABS( ierr ) ) ! END DO ! ! call iotk_scan_end( xmlinputunit, 'field', ierr = ierr ) IF (ierr /= 0) CALL errore( 'read_xml_fields', 'error scanning end of '//field//' field', 1) ! END DO ! ! ... reconstruction of input_dft variable ( parameter used in the old input format ) ! ! ... if one of the parameter is setted IF ( (trim(exchange) /= 'none') .or. (trim(exchange_grad_corr) /= 'none') & .or. (trim(correlation) /= 'none') .or. (trim(correlation_grad_corr) /= 'none') ) THEN ! ! ... all the parameter must be setted IF ( (trim(exchange) /= 'none') .and. (trim(exchange_grad_corr) /= 'none') & .and. (trim(correlation) /= 'none') .and. (trim(correlation_grad_corr) /= 'none') ) THEN input_dft = trim(exchange)//'-'//trim(exchange_grad_corr)//'-'& //trim(correlation)//'-'//trim(correlation_grad_corr) ELSE ! ... error: at least one parameter is not set CALL errore( 'read_xml_fields', 'all the parameters exchange, exchange_grad_corr, & &correlation and correlation_grad_corr must be set', 1 ) ! ENDIF ELSE IF (trim(xc_specials) /= 'none') input_dft = trim(xc_specials) END IF ! RETURN ! ! END SUBROUTINE read_xml_fields ! ! ! !--------------------------------------------------------------! ! This routine takes the parameter name as an input and ! ! with it reads the correspondig parameter ! !--------------------------------------------------------------! SUBROUTINE read_parameter ( name ) ! USE iotk_module,ONLY : iotk_scan_dat_inside ! IMPLICIT NONE ! ! CHARACTER ( len = * ), INTENT(IN) :: name ! INTEGER :: ierr ! ! ... temporary buffers needed for the reading of strings ! CHARACTER ( len = 256 ) :: tmpstr ! ierr = 0 ! ! ... list and reading of al the possible parameters ! SELECT CASE (name(1:len_trim(name))) ! ! CASE ( 'abivol' ) CALL iotk_scan_dat_inside( xmlinputunit, abivol, ierr = ierr ) ! CASE ( 'adapt' ) CALL iotk_scan_dat_inside( xmlinputunit, adapt, ierr = ierr ) ! CASE ( 'ampre' ) CALL iotk_scan_dat_inside( xmlinputunit, ampre, ierr = ierr ) ! CASE ( 'assume_isolated' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) assume_isolated = clean_str(tmpstr) ! CASE ( 'bfgs_ndim' ) CALL iotk_scan_dat_inside( xmlinputunit, bfgs_ndim, ierr = ierr ) ! CASE ( 'calwf' ) CALL iotk_scan_dat_inside( xmlinputunit, calwf, ierr = ierr ) ! CASE ( 'cell_damping' ) CALL iotk_scan_dat_inside( xmlinputunit, cell_damping, ierr = ierr ) ! CASE ( 'cell_dofree' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) cell_dofree = clean_str(tmpstr) ! CASE ( 'cell_dynamics' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) cell_dynamics = clean_str(tmpstr) ! CASE ( 'cell_factor' ) CALL iotk_scan_dat_inside( xmlinputunit, cell_factor, ierr = ierr ) ! CASE ( 'cell_parameters' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) cell_parameters = clean_str(tmpstr) ! CASE ( 'cell_temperature' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) cell_temperature = clean_str(tmpstr) ! CASE ( 'cell_velocities' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) cell_velocities = clean_str(tmpstr) ! CASE ( 'constrained_magnetization' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) constrained_magnetization = clean_str(tmpstr) ! CASE ( 'conv_thr' ) CALL iotk_scan_dat_inside( xmlinputunit, conv_thr, ierr = ierr ) ! CASE ( 'correlation' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) correlation = clean_str(tmpstr) ! CASE ( 'correlation_grad_corr' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) correlation_grad_corr = clean_str(tmpstr) ! CASE ( 'degauss' ) CALL iotk_scan_dat_inside( xmlinputunit, degauss, ierr = ierr ) ! CASE ( 'delta_t' ) CALL iotk_scan_dat_inside( xmlinputunit, delta_t, ierr = ierr ) ! CASE ( 'diago_cg_maxiter' ) CALL iotk_scan_dat_inside( xmlinputunit, diago_cg_maxiter, ierr = ierr ) ! CASE ( 'diago_david_ndim' ) CALL iotk_scan_dat_inside( xmlinputunit, diago_david_ndim, ierr = ierr ) ! CASE ( 'diago_full_acc' ) CALL iotk_scan_dat_inside( xmlinputunit, diago_full_acc, ierr = ierr ) ! CASE ( 'diago_thr_init' ) CALL iotk_scan_dat_inside( xmlinputunit, diago_thr_init, ierr = ierr ) ! CASE ( 'diagonalization' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) diagonalization = clean_str(tmpstr) ! CASE ( 'dipfield' ) CALL iotk_scan_dat_inside( xmlinputunit, dipfield, ierr = ierr ) ! CASE ( 'disk_io' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) disk_io = clean_str(tmpstr) ! CASE ( 'dthr' ) CALL iotk_scan_dat_inside( xmlinputunit, dthr, ierr = ierr ) ! CASE ( 'dt' ) CALL iotk_scan_dat_inside( xmlinputunit, dt, ierr = ierr ) ! CASE ( 'ecfixed' ) CALL iotk_scan_dat_inside( xmlinputunit, ecfixed, ierr = ierr ) ! CASE ( 'ecutrho' ) CALL iotk_scan_dat_inside( xmlinputunit, ecutrho, ierr = ierr ) ! CASE ( 'ecutwfc' ) CALL iotk_scan_dat_inside( xmlinputunit, ecutwfc, ierr = ierr ) ! CASE ( 'edir' ) CALL iotk_scan_dat_inside( xmlinputunit, edir, ierr = ierr ) ! CASE ( 'efield' ) CALL iotk_scan_dat_inside( xmlinputunit, efield, ierr = ierr ) ! CASE ( 'efield_cart' ) CALL iotk_scan_dat_inside( xmlinputunit, efield_cart, ierr = ierr ) ! CASE ( 'efx0' ) CALL iotk_scan_dat_inside( xmlinputunit, efx0, ierr = ierr ) ! CASE ( 'efx1' ) CALL iotk_scan_dat_inside( xmlinputunit, efx1, ierr = ierr ) ! CASE ( 'efy0' ) CALL iotk_scan_dat_inside( xmlinputunit, efy0, ierr = ierr ) ! CASE ( 'efy1' ) CALL iotk_scan_dat_inside( xmlinputunit, efy1, ierr = ierr ) ! CASE ( 'efz0' ) CALL iotk_scan_dat_inside( xmlinputunit, efz0, ierr = ierr ) ! CASE ( 'efz1' ) CALL iotk_scan_dat_inside( xmlinputunit, efz1, ierr = ierr ) ! CASE ( 'electron_damping' ) CALL iotk_scan_dat_inside( xmlinputunit, electron_damping, ierr = ierr ) ! CASE ( 'electron_dynamics' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) electron_dynamics = clean_str(tmpstr) ! CASE ( 'electron_temperature' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) electron_temperature = clean_str(tmpstr) ! CASE ( 'electron_velocities' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) electron_velocities = clean_str(tmpstr) ! CASE ( 'eamp' ) CALL iotk_scan_dat_inside( xmlinputunit, eamp, ierr = ierr ) ! CASE ( 'ekin_conv_thr' ) CALL iotk_scan_dat_inside( xmlinputunit, ekin_conv_thr, ierr = ierr ) ! CASE ( 'ekincw' ) CALL iotk_scan_dat_inside( xmlinputunit, ekincw, ierr = ierr ) ! CASE ( 'electron_maxstep' ) CALL iotk_scan_dat_inside( xmlinputunit, electron_maxstep, ierr = ierr ) ! CASE ( 'scf_must_converge' ) CALL iotk_scan_dat_inside( xmlinputunit, scf_must_converge, ierr = ierr ) ! CASE ( 'emass' ) CALL iotk_scan_dat_inside( xmlinputunit, emass, ierr = ierr ) ! CASE ( 'emass_cutoff' ) CALL iotk_scan_dat_inside( xmlinputunit, emass_cutoff, ierr = ierr ) ! CASE ( 'emaxpos' ) CALL iotk_scan_dat_inside( xmlinputunit, emaxpos, ierr = ierr ) ! CASE ( 'eopreg' ) CALL iotk_scan_dat_inside( xmlinputunit, eopreg, ierr = ierr ) ! CASE ( 'epol' ) CALL iotk_scan_dat_inside( xmlinputunit, epol, ierr = ierr ) ! CASE ( 'etot_conv_thr' ) CALL iotk_scan_dat_inside( xmlinputunit, etot_conv_thr, ierr = ierr ) ! CASE ( 'exchange' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) exchange = clean_str(tmpstr) ! CASE ( 'exchange_grad_corr' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) exchange_grad_corr = clean_str(tmpstr) ! CASE ( 'fixed_magnetization' ) CALL iotk_scan_dat_inside( xmlinputunit, fixed_magnetization, ierr = ierr ) ! CASE ( 'fnosee' ) CALL iotk_scan_dat_inside( xmlinputunit, fnosee, ierr = ierr ) ! CASE ( 'fnoseh' ) CALL iotk_scan_dat_inside( xmlinputunit, fnoseh, ierr = ierr ) ! CASE ( 'fnosep' ) CALL iotk_scan_dat_inside( xmlinputunit, fnosep, ierr = ierr ) ! CASE ( 'forc_conv_thr' ) CALL iotk_scan_dat_inside( xmlinputunit, forc_conv_thr, ierr = ierr ) ! CASE ( 'force_symmorphic' ) CALL iotk_scan_dat_inside( xmlinputunit, force_symmorphic, ierr = ierr ) ! CASE ( 'gdir' ) CALL iotk_scan_dat_inside( xmlinputunit, gdir, ierr = ierr ) ! CASE ( 'grease' ) CALL iotk_scan_dat_inside( xmlinputunit, grease, ierr = ierr ) ! CASE ( 'greash' ) CALL iotk_scan_dat_inside( xmlinputunit, greash, ierr = ierr ) ! CASE ( 'greasp' ) CALL iotk_scan_dat_inside( xmlinputunit, greasp, ierr = ierr ) ! CASE ( 'iprint' ) CALL iotk_scan_dat_inside( xmlinputunit, iprint, ierr = ierr ) ! CASE ( 'ion_damping' ) CALL iotk_scan_dat_inside( xmlinputunit, ion_damping, ierr = ierr ) ! CASE ( 'ion_dynamics' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) ion_dynamics = clean_str(tmpstr) ! CASE ( 'ion_nstepe' ) CALL iotk_scan_dat_inside( xmlinputunit, ion_nstepe, ierr = ierr ) ! CASE ( 'ion_positions' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) ion_positions = clean_str(tmpstr) ! CASE ( 'ion_temperature' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) ion_temperature = clean_str(tmpstr) ! CASE ( 'ion_velocities' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) ion_velocities = clean_str(tmpstr) ! CASE ( 'isave' ) CALL iotk_scan_dat_inside( xmlinputunit, isave, ierr = ierr ) ! CASE ( 'la2F' ) CALL iotk_scan_dat_inside( xmlinputunit, la2F, ierr = ierr ) ! CASE ( 'lambda' ) CALL iotk_scan_dat_inside( xmlinputunit, lambda, ierr = ierr ) ! CASE ( 'lambda_cold' ) CALL iotk_scan_dat_inside( xmlinputunit, lambda_cold, ierr = ierr ) ! CASE ( 'lberry' ) CALL iotk_scan_dat_inside( xmlinputunit, lberry, ierr = ierr ) ! CASE ( 'lcalc_z2' ) CALL iotk_scan_dat_inside( xmlinputunit, lcalc_z2, ierr = ierr ) ! CASE ( 'z2_m_threshold' ) CALL iotk_scan_dat_inside( xmlinputunit, z2_m_threshold, ierr = ierr ) ! CASE ( 'z2_z_threshold' ) CALL iotk_scan_dat_inside( xmlinputunit, z2_z_threshold, ierr = ierr ) ! CASE ( 'lda_plus_u' ) CALL iotk_scan_dat_inside( xmlinputunit, lda_plus_u, ierr = ierr ) ! CASE ( 'lda_plus_u_kind' ) CALL iotk_scan_dat_inside( xmlinputunit, lda_plus_u_kind, ierr = ierr ) ! CASE ( 'lelfield' ) CALL iotk_scan_dat_inside( xmlinputunit, lelfield, ierr = ierr ) ! CASE ( 'lorbm' ) CALL iotk_scan_dat_inside( xmlinputunit, lorbm, ierr = ierr ) ! CASE ( 'lkpoint_dir' ) CALL iotk_scan_dat_inside( xmlinputunit, lkpoint_dir, ierr = ierr ) ! CASE ( 'london' ) CALL iotk_scan_dat_inside( xmlinputunit, london, ierr = ierr ) ! CASE ( 'london_rcut' ) CALL iotk_scan_dat_inside( xmlinputunit, london_rcut, ierr = ierr ) ! CASE ( 'london_s6' ) CALL iotk_scan_dat_inside( xmlinputunit, london_s6, ierr = ierr ) ! CASE ( 'lspinorb' ) CALL iotk_scan_dat_inside( xmlinputunit, lspinorb, ierr = ierr ) ! CASE ( 'max_seconds' ) CALL iotk_scan_dat_inside( xmlinputunit, max_seconds, ierr = ierr ) ! CASE ( 'maxiter' ) CALL iotk_scan_dat_inside( xmlinputunit, maxiter, ierr = ierr ) ! CASE ( 'maxwfdt' ) CALL iotk_scan_dat_inside( xmlinputunit, maxwfdt, ierr = ierr ) ! CASE ( 'mixing_beta' ) CALL iotk_scan_dat_inside( xmlinputunit, mixing_beta, ierr = ierr ) ! CASE ( 'mixing_fixed_ns' ) CALL iotk_scan_dat_inside( xmlinputunit, mixing_fixed_ns, ierr = ierr ) ! CASE ( 'mixing_mode' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) mixing_mode = clean_str(tmpstr) ! CASE ( 'mixing_ndim' ) CALL iotk_scan_dat_inside( xmlinputunit, mixing_ndim, ierr = ierr ) ! CASE ( 'n_inner' ) CALL iotk_scan_dat_inside( xmlinputunit, n_inner, ierr = ierr ) ! CASE ( 'nberrycyc' ) CALL iotk_scan_dat_inside( xmlinputunit, nberrycyc, ierr = ierr ) ! CASE ( 'nbnd' ) CALL iotk_scan_dat_inside( xmlinputunit, nbnd, ierr = ierr ) ! CASE ( 'ndega' ) CALL iotk_scan_dat_inside( xmlinputunit, ndega, ierr = ierr ) ! CASE ( 'ndr' ) CALL iotk_scan_dat_inside( xmlinputunit, ndr, ierr = ierr ) ! CASE ( 'ndw' ) CALL iotk_scan_dat_inside( xmlinputunit, ndw, ierr = ierr ) ! CASE ( 'nhpcl' ) CALL iotk_scan_dat_inside( xmlinputunit, nhpcl, ierr = ierr ) ! CASE ( 'nhptyp' ) CALL iotk_scan_dat_inside( xmlinputunit, nhptyp, ierr = ierr ) ! CASE ( 'niter_cold_restart' ) CALL iotk_scan_dat_inside( xmlinputunit, niter_cold_restart, ierr = ierr ) ! CASE ( 'nit' ) CALL iotk_scan_dat_inside( xmlinputunit, nit, ierr = ierr ) ! CASE ( 'niter_cg_restart' ) CALL iotk_scan_dat_inside( xmlinputunit, niter_cg_restart, ierr = ierr ) ! CASE ( 'noinv' ) CALL iotk_scan_dat_inside( xmlinputunit, noinv, ierr = ierr ) ! CASE ( 'noncolin' ) CALL iotk_scan_dat_inside( xmlinputunit, noncolin, ierr = ierr ) ! CASE ( 'nosym_evc' ) CALL iotk_scan_dat_inside( xmlinputunit, nosym_evc, ierr = ierr ) ! CASE ( 'nosym' ) CALL iotk_scan_dat_inside( xmlinputunit, nosym, ierr = ierr ) ! CASE ( 'nppstr' ) CALL iotk_scan_dat_inside( xmlinputunit, nppstr, ierr = ierr ) ! CASE ( 'nr1' ) CALL iotk_scan_dat_inside( xmlinputunit, nr1, ierr = ierr ) ! CASE ( 'nr1b' ) CALL iotk_scan_dat_inside( xmlinputunit, nr1b, ierr = ierr ) ! CASE ( 'nr1s' ) CALL iotk_scan_dat_inside( xmlinputunit, nr1s, ierr = ierr ) ! CASE ( 'nr2' ) CALL iotk_scan_dat_inside( xmlinputunit, nr2, ierr = ierr ) ! CASE ( 'nr2b' ) CALL iotk_scan_dat_inside( xmlinputunit, nr2b, ierr = ierr ) ! CASE ( 'nr2s' ) CALL iotk_scan_dat_inside( xmlinputunit, nr2s, ierr = ierr ) ! CASE ( 'nr3' ) CALL iotk_scan_dat_inside( xmlinputunit, nr3, ierr = ierr ) ! CASE ( 'nr3b' ) CALL iotk_scan_dat_inside( xmlinputunit, nr3b, ierr = ierr ) ! CASE ( 'nr3s' ) CALL iotk_scan_dat_inside( xmlinputunit, nr3s, ierr = ierr ) ! CASE ( 'nraise' ) CALL iotk_scan_dat_inside( xmlinputunit, nraise, ierr = ierr ) ! CASE ( 'nsd' ) CALL iotk_scan_dat_inside( xmlinputunit, nsd, ierr = ierr ) ! CASE ( 'nspin' ) CALL iotk_scan_dat_inside( xmlinputunit, nspin, ierr = ierr ) ! CASE ( 'nstep' ) CALL iotk_scan_dat_inside( xmlinputunit, nstep, ierr = ierr ) ! CASE ( 'nsteps' ) CALL iotk_scan_dat_inside( xmlinputunit, nsteps, ierr = ierr ) ! CASE ( 'nwf' ) CALL iotk_scan_dat_inside( xmlinputunit, nwf, ierr = ierr ) ! CASE ( 'occupations' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) occupations = clean_str(tmpstr) ! CASE ( 'ortho_eps' ) CALL iotk_scan_dat_inside( xmlinputunit, ortho_eps, ierr = ierr ) ! CASE ( 'ortho_max' ) CALL iotk_scan_dat_inside( xmlinputunit, ortho_max, ierr = ierr ) ! CASE ( 'orthogonalization' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) orthogonalization = clean_str(tmpstr) ! CASE ( 'outdir' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) outdir = clean_str(tmpstr) ! CASE ( 'P_ext' ) CALL iotk_scan_dat_inside( xmlinputunit, P_ext, ierr = ierr ) ! CASE ( 'P_fin' ) CALL iotk_scan_dat_inside( xmlinputunit, P_fin, ierr = ierr ) ! CASE ( 'P_in' ) CALL iotk_scan_dat_inside( xmlinputunit, P_in, ierr = ierr ) ! CASE ( 'passop' ) CALL iotk_scan_dat_inside( xmlinputunit, passop, ierr = ierr ) ! CASE ( 'pot_extrapolation' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) pot_extrapolation = clean_str(tmpstr) ! CASE ( 'press' ) CALL iotk_scan_dat_inside( xmlinputunit, press, ierr = ierr ) ! CASE ( 'press_conv_thr' ) CALL iotk_scan_dat_inside( xmlinputunit, press_conv_thr, ierr = ierr ) ! CASE ( 'pseudo_dir' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) pseudo_dir = clean_str(tmpstr) ! CASE ( 'pvar' ) CALL iotk_scan_dat_inside( xmlinputunit, pvar, ierr = ierr ) ! CASE ( 'q2sigma' ) CALL iotk_scan_dat_inside( xmlinputunit, q2sigma, ierr = ierr ) ! CASE ( 'qcutz' ) CALL iotk_scan_dat_inside( xmlinputunit, qcutz, ierr = ierr ) ! CASE ( 'refold_pos' ) CALL iotk_scan_dat_inside( xmlinputunit, refold_pos, ierr = ierr ) ! CASE ( 'report' ) CALL iotk_scan_dat_inside( xmlinputunit, report, ierr = ierr ) ! CASE ( 'remove_rigid_rot' ) CALL iotk_scan_dat_inside( xmlinputunit, remove_rigid_rot, ierr = ierr ) ! CASE ( 'restart_mode' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) restart_mode = clean_str(tmpstr) ! CASE ( 'rho_thr' ) CALL iotk_scan_dat_inside( xmlinputunit, rho_thr, ierr = ierr ) ! CASE ( 'saverho' ) CALL iotk_scan_dat_inside( xmlinputunit, saverho, ierr = ierr ) ! CASE ( 'smearing' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) smearing = clean_str(tmpstr) ! CASE ( 'startingpot' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) startingpot = clean_str(tmpstr) ! CASE ( 'startingwfc' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) startingwfc = clean_str(tmpstr) ! CASE ( 'Surf_t' ) CALL iotk_scan_dat_inside( xmlinputunit, Surf_t, ierr = ierr ) ! CASE ( 'sw_len' ) CALL iotk_scan_dat_inside( xmlinputunit, sw_len, ierr = ierr ) ! CASE ( 'tabps' ) CALL iotk_scan_dat_inside( xmlinputunit, tabps, ierr = ierr ) ! CASE ( 'tcg' ) CALL iotk_scan_dat_inside( xmlinputunit, tcg, ierr = ierr ) ! CASE ( 'tefield' ) CALL iotk_scan_dat_inside( xmlinputunit, tefield, ierr = ierr ) ! CASE ( 'temph' ) CALL iotk_scan_dat_inside( xmlinputunit, temph, ierr = ierr ) ! CASE ( 'tempw' ) CALL iotk_scan_dat_inside( xmlinputunit, tempw, ierr = ierr ) ! CASE ( 'tolp' ) CALL iotk_scan_dat_inside( xmlinputunit, tolp, ierr = ierr ) ! CASE ( 'tot_charge' ) CALL iotk_scan_dat_inside( xmlinputunit, tot_charge, ierr = ierr ) ! CASE ( 'tot_magnetization' ) CALL iotk_scan_dat_inside( xmlinputunit, tot_magnetization, ierr = ierr ) ! CASE ( 'tolw' ) CALL iotk_scan_dat_inside( xmlinputunit, tolw, ierr = ierr ) ! CASE ( 'tprnfor' ) CALL iotk_scan_dat_inside( xmlinputunit, tprnfor, ierr = ierr ) ! CASE ( 'tqr' ) CALL iotk_scan_dat_inside( xmlinputunit, tqr, ierr = ierr ) ! CASE ( 'trust_radius_ini' ) CALL iotk_scan_dat_inside( xmlinputunit, trust_radius_ini, ierr = ierr ) ! CASE ( 'trust_radius_max' ) CALL iotk_scan_dat_inside( xmlinputunit, trust_radius_max, ierr = ierr ) ! CASE ( 'trust_radius_min' ) CALL iotk_scan_dat_inside( xmlinputunit, trust_radius_min, ierr = ierr ) ! CASE ( 'tstress' ) CALL iotk_scan_dat_inside( xmlinputunit, tstress, ierr = ierr ) ! CASE ( 'U_projection_type' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) U_projection_type = clean_str(tmpstr) ! CASE ( 'upscale' ) CALL iotk_scan_dat_inside( xmlinputunit, upscale, ierr = ierr ) ! CASE ( 'verbosity' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) verbosity = clean_str(tmpstr) ! CASE ( 'w_1' ) CALL iotk_scan_dat_inside( xmlinputunit, w_1, ierr = ierr ) ! CASE ( 'w_2' ) CALL iotk_scan_dat_inside( xmlinputunit, w_2, ierr = ierr ) ! CASE ( 'wf_collect' ) CALL iotk_scan_dat_inside( xmlinputunit, wf_collect, ierr = ierr ) ! CASE ( 'wf_efield' ) CALL iotk_scan_dat_inside( xmlinputunit, wf_efield, ierr = ierr ) ! CASE ( 'wf_friction' ) CALL iotk_scan_dat_inside( xmlinputunit, wf_friction, ierr = ierr ) ! CASE ( 'wf_q' ) CALL iotk_scan_dat_inside( xmlinputunit, wf_q, ierr = ierr ) ! CASE ( 'wf_switch' ) CALL iotk_scan_dat_inside( xmlinputunit, wf_switch, ierr = ierr ) ! CASE ( 'wfc_extrapolation' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) wfc_extrapolation = clean_str(tmpstr) ! CASE ( 'wfcdir' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) wfcdir = clean_str(tmpstr) ! CASE ( 'wfdt' ) CALL iotk_scan_dat_inside( xmlinputunit, wfdt, ierr = ierr ) ! CASE ( 'wffort' ) CALL iotk_scan_dat_inside( xmlinputunit, wffort, ierr = ierr ) ! CASE ( 'wfsd' ) CALL iotk_scan_dat_inside( xmlinputunit, wfsd, ierr = ierr ) ! CASE ( 'wmass' ) CALL iotk_scan_dat_inside( xmlinputunit, wmass, ierr = ierr ) ! CASE ( 'writev' ) CALL iotk_scan_dat_inside( xmlinputunit, writev, ierr = ierr ) ! CASE ( 'xc_specials' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) xc_specials = clean_str(tmpstr) ! ... up to here ! CASE ( 'xmloutput' ) CALL iotk_scan_dat_inside( xmlinputunit, xmloutput, ierr = ierr ) ! case ( 'vdw_table_name' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) vdw_table_name = clean_str(tmpstr) ! case ( 'input_dft' ) CALL iotk_scan_dat_inside( xmlinputunit, tmpstr, ierr = ierr ) input_dft = clean_str(tmpstr) CASE default ! CALL errore( 'read_parameter', 'no parameter with name '//trim( name ), 1 ) ! ! END SELECT ! IF (ierr/=0) THEN CALL errore( 'read_parameter', 'problem reading parameter '//trim( name ), 1 ) END IF ! ! RETURN ! ! END SUBROUTINE read_parameter ! ! !---------------------------------------------------------! ! Function that eliminate the tab characters and adjust ! ! to the left side the string ! !---------------------------------------------------------! FUNCTION clean_str( string ) ! ! IMPLICIT NONE ! ! CHARACTER (len = *) :: string CHARACTER (len = len( string ) ) :: clean_str INTEGER :: i ! do i = 1, len( string ) ! if ( ichar( string(i:i) ) == 9 ) then clean_str(i:i)=' ' else clean_str(i:i)=string(i:i) end if ! end do ! clean_str = adjustl( clean_str ) ! ! END FUNCTION clean_str ! ! ! END MODULE read_xml_fields_module espresso-5.1/Modules/bz_form.f900000644000175000017500000020712312341373034014675 0ustar mbamba! ! Copyright (C) 2013 A. Dal Corso ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE bz_form ! USE kinds, ONLY : DP IMPLICIT NONE PUBLIC SAVE TYPE bz INTEGER :: ind ! number of the bz INTEGER :: nfaces ! The number of faces INTEGER :: nvertices ! The number of vertices REAL(DP), ALLOCATABLE :: normal(:,:) ! The G vector normal to each face ! in unit 2 pi / celldm(1) REAL(DP), ALLOCATABLE :: vertex_coord(:,:) ! coordinates of each vertex !(carthesian units 2 pi / celldm(1)) INTEGER, ALLOCATABLE :: ivertex(:,:) ! for each vertex which faces define it INTEGER, ALLOCATABLE :: indsur(:,:) ! for each surface the vertex that ! define it INTEGER :: xaxis, yaxis, zaxis ! the indices of the surfaces that ! intersect the x, y, and z axis REAL(DP) :: xi(3), yi(3), zi(3) ! the actual coordinates of intersection INTEGER :: nlett ! number of letters for which the position ! in the BZ is known CHARACTER(LEN=3), ALLOCATABLE :: letter_list(:) ! list of each letter REAL(DP), ALLOCATABLE :: letter_coord(:,:) ! coordinates of each letter CHARACTER(LEN=20) :: letter_type ! currently supported convention ! for the name of the points ! Setyawan-Curtarolo (SC) (default) arXiv:1004.2974 ! Bilbao (BI) Bilbao crystallographic server ! see www.cryst.ehu.es/cryst/get_kvec.html ! Bradley-Cracknell (BC) The mathematical theory of symmetry in solids ! is a subset of BI, so use the former INTEGER :: ibrav ! the bravais lattice index REAL(DP) :: celldm(6) ! the new celldm parameter. In the orthorombic ! case switches the axis so that a < b < c REAL(DP) :: omega ! volume of the unit cell REAL(DP) :: at(3,3), bg(3,3) ! the direct and reciprocal lattices ! used in this module. They are switched ! in the orthorombic cases LOGICAL :: switch_a_b = .FALSE., & ! If true the axis are rotated switch_b_c = .FALSE., & ! and the coordinates are switched rotate_a_b_c = .FALSE. END TYPE CONTAINS SUBROUTINE allocate_bz(ibrav, ibz, bz_struc, celldm, at, bg ) IMPLICIT NONE INTEGER, INTENT(IN) :: ibz, ibrav TYPE(bz), INTENT(INOUT) :: bz_struc REAL(DP) :: celldm(6), at(3,3), bg(3,3) bz_struc%ind=ibz bz_struc%ibrav=ibrav bz_struc%celldm=celldm bz_struc%at=at bz_struc%bg=bg IF ( ibz ==1) THEN ! ! simple cubic bz ! bz_struc%nfaces=6 bz_struc%nvertices=8 bz_struc%nlett=4 IF (bz_struc%letter_type=='BI') bz_struc%nlett=5 ELSEIF (ibz==2) THEN ! ! fcc bz ! bz_struc%nfaces=14 bz_struc%nvertices=24 bz_struc%nlett=6 IF (bz_struc%letter_type=='BI') bz_struc%nlett=13 ELSEIF (ibz==3) THEN ! ! bcc bz ! bz_struc%nfaces=12 bz_struc%nvertices=14 bz_struc%nlett=4 IF (bz_struc%letter_type=='BI') bz_struc%nlett=5 ELSEIF (ibz==4) THEN ! ! simple tetragonal bz ! bz_struc%nfaces=6 bz_struc%nvertices=8 bz_struc%nlett=6 ELSEIF (ibz==5) THEN ! ! centered tetragonal (ca) bz ! bz_struc%nfaces=14 bz_struc%nvertices=24 bz_struc%nlett=9 IF (bz_struc%letter_type=='BI') bz_struc%nlett=15 ELSEIF (ibz==7) THEN ! ! simple orthorombic bz ! bz_struc%nfaces=6 bz_struc%nvertices=8 bz_struc%nlett=8 ELSEIF (ibz==8) THEN ! ! face centered orthorombic (1/a^2 > 1/b^2 + 1/c^2) bz case 1 ! bz_struc%nfaces=12 bz_struc%nvertices=18 bz_struc%nlett=9 CALL check_orthorombic(bz_struc) ELSEIF (ibz==9) THEN ! ! face centered orthorombic (1/a^2 < 1/b^2 + 1/c^2) bz case 2 ! bz_struc%nfaces=14 bz_struc%nvertices=24 bz_struc%nlett=11 CALL check_orthorombic(bz_struc) ELSEIF (ibz==10) THEN ! ! face centered orthorombic (1/a^2 = 1/b^2 + 1/c^2) bz case 3 ! bz_struc%nfaces=12 bz_struc%nvertices=14 bz_struc%nlett=8 CALL check_orthorombic(bz_struc) ELSEIF (ibz==11) THEN ! ! body centered orthorombic bz ! bz_struc%nfaces=14 bz_struc%nvertices=24 bz_struc%nlett=13 CALL check_orthorombic(bz_struc) ELSEIF (ibz==12) THEN ! ! one face centered orthorombic bz ! bz_struc%nfaces=8 bz_struc%nvertices=12 bz_struc%nlett=10 CALL check_one_face_centerer_orthorombic(bz_struc) ELSEIF (ibz==13) THEN ! ! hexagonal ! bz_struc%nfaces=8 bz_struc%nvertices=12 bz_struc%nlett=6 ELSEIF (ibz==14) THEN ! ! trigonal alpha < 90 bz ! bz_struc%nfaces=14 bz_struc%nvertices=24 bz_struc%nlett=12 ELSEIF (ibz==15) THEN ! ! trigonal alpha > 90 bz ! bz_struc%nfaces=12 bz_struc%nvertices=14 bz_struc%nlett=8 ELSE CALL errore('allocate_bz','Brillouin zone type not available',1) ENDIF ALLOCATE(bz_struc%normal(3,bz_struc%nfaces)) ALLOCATE(bz_struc%ivertex(3,bz_struc%nvertices)) ALLOCATE(bz_struc%vertex_coord(3,bz_struc%nvertices)) ALLOCATE(bz_struc%indsur(9,bz_struc%nfaces)) ALLOCATE(bz_struc%letter_list(bz_struc%nlett)) ALLOCATE(bz_struc%letter_coord(3,bz_struc%nlett)) RETURN END SUBROUTINE allocate_bz SUBROUTINE deallocate_bz(bz_struc) IMPLICIT NONE TYPE(bz), INTENT(INOUT) :: bz_struc DEALLOCATE(bz_struc%normal) DEALLOCATE(bz_struc%ivertex) DEALLOCATE(bz_struc%vertex_coord) DEALLOCATE(bz_struc%indsur) DEALLOCATE(bz_struc%letter_list) DEALLOCATE(bz_struc%letter_coord) RETURN END SUBROUTINE deallocate_bz SUBROUTINE set_label_type(bz_struc, label) IMPLICIT NONE TYPE(bz) :: bz_struc CHARACTER(LEN=*) :: label IF (TRIM(label)/='SC'.AND.TRIM(label)/='BI'.AND.TRIM(label)/='BC') THEN WRITE(6,'("Label type not recognized, using default SC")') bz_struc%letter_type='SC' RETURN ENDIF bz_struc%letter_type=TRIM(label) RETURN END SUBROUTINE SUBROUTINE init_bz(bz_struc) IMPLICIT NONE TYPE(bz), INTENT(INOUT) :: bz_struc INTEGER :: ibz bz_struc%letter_list(1)='gG ' bz_struc%letter_coord(:,1)=0.0_DP ibz=bz_struc%ind IF ( ibz ==1) THEN ! ! simple cubic bz ! ! ! G vector normal to each surface ! bz_struc%normal(:,1)=bz_struc%bg(:,1) bz_struc%normal(:,2)=bz_struc%bg(:,2) bz_struc%normal(:,3)=-bz_struc%bg(:,1) bz_struc%normal(:,4)=-bz_struc%bg(:,2) bz_struc%normal(:,5)=bz_struc%bg(:,3) bz_struc%normal(:,6)=-bz_struc%bg(:,3) ! ! The number of vertice of each surface and its number ! bz_struc%indsur(:,1) = (/ 4, 1, 5, 8, 4 /) bz_struc%indsur(:,2) = (/ 4, 1, 5, 6, 2 /) bz_struc%indsur(:,3) = (/ 4, 2, 6, 7, 3 /) bz_struc%indsur(:,4) = (/ 4, 3, 7, 8, 4 /) bz_struc%indsur(:,5) = (/ 4, 1, 2, 3, 4 /) bz_struc%indsur(:,6) = (/ 4, 5, 6, 7, 8 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)=' M ' bz_struc%letter_list(3)=' X ' bz_struc%letter_list(4)=' R ' bz_struc%letter_coord(:,2)=0.5_DP*( bz_struc%bg(:,1) + bz_struc%bg(:,2) ) bz_struc%letter_coord(:,3)=0.5_DP*( bz_struc%bg(:,2) ) bz_struc%letter_coord(:,4)=0.5_DP*( bz_struc%bg(:,1) + bz_struc%bg(:,2) & + bz_struc%bg(:,3) ) IF (bz_struc%letter_type=='BI') THEN bz_struc%letter_list(5)=' X1' bz_struc%letter_coord(:,5)=0.5_DP*( bz_struc%bg(:,1) ) ENDIF CALL find_axis_coordinates(bz_struc) ELSEIF (ibz==2) THEN ! ! fcc bz ! ! standard bg (-1,1,1) (1,-1,1) (1,1,-1) ! ! bz_struc%normal(:,1)=bg(:,2) + bg(:,3) ! bz_struc%normal(:,2)=bg(:,1) + bg(:,3) ! bz_struc%normal(:,3)=-(bg(:,2)+bg(:,3)) ! bz_struc%normal(:,4)=-(bg(:,1) + bg(:,3)) ! bz_struc%normal(:,5)=bg(:,1) + bg(:,2) ! bz_struc%normal(:,6)=-(bg(:,1)+bg(:,2)) ! bz_struc%normal(:,7)=bg(:,1) + bg(:,2) + bg(:,3) ! bz_struc%normal(:,8)=bg(:,1) ! bz_struc%normal(:,9)=- bg(:,3) ! bz_struc%normal(:,10)=bg(:,2) ! bz_struc%normal(:,11)=bg(:,3) ! bz_struc%normal(:,12)=-bg(:,2) ! bz_struc%normal(:,13)=-(bg(:,1) + bg(:,2) + bg(:,3)) ! bz_struc%normal(:,14)=-bg(:,1) ! ! bg of pwscf (-1,-1,1) (1,1,1) (-1,1,-1) ! bz_struc%normal(:,1) =-(bz_struc%bg(:,1) + bz_struc%bg(:,3)) bz_struc%normal(:,2) = bz_struc%bg(:,2) + bz_struc%bg(:,3) bz_struc%normal(:,3) = bz_struc%bg(:,1) + bz_struc%bg(:,3) bz_struc%normal(:,4) =-(bz_struc%bg(:,2) + bz_struc%bg(:,3)) bz_struc%normal(:,5) = bz_struc%bg(:,1) + bz_struc%bg(:,2) bz_struc%normal(:,6) =-(bz_struc%bg(:,1) + bz_struc%bg(:,2)) bz_struc%normal(:,7) = bz_struc%bg(:,2) bz_struc%normal(:,8) = bz_struc%bg(:,1) + bz_struc%bg(:,2) & + bz_struc%bg(:,3) bz_struc%normal(:,9) = bz_struc%bg(:,1) bz_struc%normal(:,10)=- bz_struc%bg(:,3) bz_struc%normal(:,11)=- bz_struc%bg(:,1) bz_struc%normal(:,12)= bz_struc%bg(:,3) bz_struc%normal(:,13)=- bz_struc%bg(:,2) bz_struc%normal(:,14)=-(bz_struc%bg(:,1) + bz_struc%bg(:,2) + & bz_struc%bg(:,3)) bz_struc%indsur(:,1) = (/ 4, 1, 2, 3, 4 /) bz_struc%indsur(:,2) = (/ 4, 5, 6, 7, 8 /) bz_struc%indsur(:,3) = (/ 4, 9, 10, 11, 12 /) bz_struc%indsur(:,4) = (/ 4, 13, 14, 15, 16 /) bz_struc%indsur(:,5) = (/ 4, 17, 18, 19, 20 /) bz_struc%indsur(:,6) = (/ 4, 21, 22, 23, 24 /) bz_struc%indsur(:,7) = (/ 6, 1, 2, 8, 5, 18, 17 /) bz_struc%indsur(:,8) = (/ 6, 5, 6, 12, 9, 19, 18 /) bz_struc%indsur(:,9) = (/ 6, 9, 10, 16, 13, 20, 19 /) bz_struc%indsur(:,10) = (/ 6, 1, 17, 20, 13, 14, 4 /) bz_struc%indsur(:,11) = (/ 6, 3, 2, 8, 7, 22, 21 /) bz_struc%indsur(:,12) = (/ 6, 22, 7, 6, 12, 11, 23 /) bz_struc%indsur(:,13) = (/ 6, 11, 10, 16, 15, 24, 23 /) bz_struc%indsur(:,14) = (/ 6, 3, 4, 14, 15, 24, 21 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)=' K ' bz_struc%letter_coord(:,2) = 0.5_DP*(bz_struc%vertex_coord(:,2) & +bz_struc%vertex_coord(:,8)) bz_struc%letter_list(3)=' W ' bz_struc%letter_coord(:,3) = bz_struc%vertex_coord(:,8) bz_struc%letter_list(4)=' U ' bz_struc%letter_coord(:,4) = 0.5_DP*(bz_struc%vertex_coord(:,5)+ & bz_struc%vertex_coord(:,8)) ! ! conventional bg ! ! bz_struc%letter_coord(:,5) = 0.5_DP*(bg(:,2) + bg(:,3)) ! bz_struc%letter_coord(:,6) = 0.5_DP*(bg(:,1) + bg(:,2) + bg(:,3)) bz_struc%letter_list(5)=' X ' bz_struc%letter_coord(:,5) = 0.5_DP*(bz_struc%bg(:,2) + bz_struc%bg(:,3)) bz_struc%letter_list(6)=' L ' bz_struc%letter_coord(:,6) = 0.5_DP * bz_struc%bg(:,2) IF (bz_struc%letter_type=='BI') THEN bz_struc%letter_list(7) =' X1' bz_struc%letter_coord(:,7) =-0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,3)) bz_struc%letter_list(8) =' W1' bz_struc%letter_coord(:,8) =bz_struc%vertex_coord(:,2) bz_struc%letter_list(9) =' U1' bz_struc%letter_coord(:,9) =0.5_DP*(bz_struc%vertex_coord(:,1)+& bz_struc%vertex_coord(:,2)) bz_struc%letter_list(10) =' X3' bz_struc%letter_coord(:,10) =0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,2)) bz_struc%letter_list(11) =' W3' bz_struc%letter_coord(:,11) =bz_struc%vertex_coord(:,17) bz_struc%letter_list(12) =' L1' bz_struc%letter_coord(:,12) =-0.5_DP*(bz_struc%bg(:,1)) bz_struc%letter_list(13) =' M ' bz_struc%letter_coord(:,13) =0.5_DP*(bz_struc%bg(:,2) - bz_struc%bg(:,1)) ENDIF CALL find_axis_coordinates(bz_struc) ELSEIF (ibz==3) THEN ! ! bcc bz ! ! standard vectors (0,1,1) (1,0,1) (1,1,0) ! ! bz_struc%normal(:,1)=bg(:,3) ! bz_struc%normal(:,2)=bg(:,1) - bg(:,2) ! bz_struc%normal(:,3)=-bg(:,3) ! bz_struc%normal(:,4)=-(bg(:,1) - bg(:,2)) ! bz_struc%normal(:,5)=bg(:,2) ! bz_struc%normal(:,6)=bg(:,1) ! bz_struc%normal(:,7)=bg(:,1) - bg(:,3) ! bz_struc%normal(:,8)=bg(:,2) - bg(:,3) ! bz_struc%normal(:,9)=-(bg(:,1) - bg(:,3)) ! bz_struc%normal(:,10)=-(bg(:,2) - bg(:,3)) ! bz_struc%normal(:,11)=-bg(:,2) ! bz_struc%normal(:,12)=-bg(:,1) ! ! QE vectors (1,0,1) (-1,1,0) (0,-1,1) ! bz_struc%normal(:,1) = bz_struc%bg(:,1) - bz_struc%bg(:,3) bz_struc%normal(:,2) = bz_struc%bg(:,2) bz_struc%normal(:,3) =-(bz_struc%bg(:,1) - bz_struc%bg(:,3)) bz_struc%normal(:,4) =-bz_struc%bg(:,2) bz_struc%normal(:,5) = bz_struc%bg(:,1) bz_struc%normal(:,6) = bz_struc%bg(:,1) + bz_struc%bg(:,2) bz_struc%normal(:,7) = bz_struc%bg(:,2) + bz_struc%bg(:,3) bz_struc%normal(:,8) = bz_struc%bg(:,3) bz_struc%normal(:,9) =-(bz_struc%bg(:,2) + bz_struc%bg(:,3)) bz_struc%normal(:,10)=-bz_struc%bg(:,3) bz_struc%normal(:,11)=-bz_struc%bg(:,1) bz_struc%normal(:,12)=-(bz_struc%bg(:,1) + bz_struc%bg(:,2)) bz_struc%indsur(:,1) = (/ 4, 1, 2, 3, 10 /) bz_struc%indsur(:,2) = (/ 4, 3, 4, 5, 11 /) bz_struc%indsur(:,3) = (/ 4, 5, 6, 7, 12 /) bz_struc%indsur(:,4) = (/ 4, 1, 8, 7, 13 /) bz_struc%indsur(:,5) = (/ 4, 2, 9, 8, 1 /) bz_struc%indsur(:,6) = (/ 4, 2, 9, 4, 3 /) bz_struc%indsur(:,7) = (/ 4, 4, 5, 6, 9 /) bz_struc%indsur(:,8) = (/ 4, 6, 7, 8, 9 /) bz_struc%indsur(:,9) = (/ 4, 1, 10, 14, 13 /) bz_struc%indsur(:,10) = (/ 4, 3, 10, 14, 11 /) bz_struc%indsur(:,11) = (/ 4, 5, 12, 14, 11 /) bz_struc%indsur(:,12) = (/ 4, 12, 7, 13, 14 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)=' N ' bz_struc%letter_list(3)=' P ' bz_struc%letter_list(4)=' H ' ! ! standard bg ! ! bz_struc%letter_coord(:,2) = 0.5_DP*bg(:,3) bz_struc%letter_coord(:,2) = 0.5_DP*(bz_struc%bg(:,1) - bz_struc%bg(:,3)) bz_struc%letter_coord(:,3) = bz_struc%vertex_coord(:,2) bz_struc%letter_coord(:,4) = bz_struc%vertex_coord(:,3) IF (bz_struc%letter_type=='BI') THEN bz_struc%letter_list(5)=' H1' bz_struc%letter_coord(:,5) = bz_struc%vertex_coord(:,1) ENDIF CALL find_axis_coordinates(bz_struc) ELSEIF (ibz==4) THEN ! ! simple tetragonal bz ! bz_struc%normal(:,1)=bz_struc%bg(:,1) bz_struc%normal(:,2)=bz_struc%bg(:,2) bz_struc%normal(:,3)=-bz_struc%bg(:,1) bz_struc%normal(:,4)=-bz_struc%bg(:,2) bz_struc%normal(:,5)=bz_struc%bg(:,3) bz_struc%normal(:,6)=-bz_struc%bg(:,3) bz_struc%indsur(:,1) = (/ 4, 1, 5, 8, 4 /) bz_struc%indsur(:,2) = (/ 4, 1, 5, 6, 2 /) bz_struc%indsur(:,3) = (/ 4, 2, 6, 7, 3 /) bz_struc%indsur(:,4) = (/ 4, 3, 7, 8, 4 /) bz_struc%indsur(:,5) = (/ 4, 1, 2, 3, 4 /) bz_struc%indsur(:,6) = (/ 4, 5, 6, 7, 8 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)=' M ' bz_struc%letter_list(3)=' X ' bz_struc%letter_list(4)=' Z ' bz_struc%letter_list(5)=' A ' bz_struc%letter_list(6)=' R ' bz_struc%letter_coord(:,2) = 0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,2)) bz_struc%letter_coord(:,3) = 0.5_DP*bz_struc%bg(:,2) bz_struc%letter_coord(:,4) = 0.5_DP*bz_struc%bg(:,3) bz_struc%letter_coord(:,5) = 0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,2) & + bz_struc%bg(:,3)) bz_struc%letter_coord(:,6) = 0.5_DP*(bz_struc%bg(:,2) + bz_struc%bg(:,3)) CALL find_axis_coordinates(bz_struc) ELSEIF (ibz==5) THEN ! ! centered tetragonal (ca) bz ! bz_struc%normal(:,1)=bz_struc%bg(:,2) - bz_struc%bg(:,3) bz_struc%normal(:,2)=-bz_struc%bg(:,1) bz_struc%normal(:,3)=-(bz_struc%bg(:,2) - bz_struc%bg(:,3)) bz_struc%normal(:,4)=bz_struc%bg(:,1) bz_struc%normal(:,5)=bz_struc%bg(:,1) + bz_struc%bg(:,2) bz_struc%normal(:,6)=bz_struc%bg(:,2) bz_struc%normal(:,7)=bz_struc%bg(:,3) bz_struc%normal(:,8)=bz_struc%bg(:,1) + bz_struc%bg(:,3) bz_struc%normal(:,9)=-bz_struc%bg(:,3) bz_struc%normal(:,10)=-(bz_struc%bg(:,1) + bz_struc%bg(:,3)) bz_struc%normal(:,11)=-(bz_struc%bg(:,1) + bz_struc%bg(:,2)) bz_struc%normal(:,12)=-bz_struc%bg(:,2) bz_struc%normal(:,13)=bz_struc%bg(:,1) + bz_struc%bg(:,2) + bz_struc%bg(:,3) bz_struc%normal(:,14)=-( bz_struc%bg(:,1) + bz_struc%bg(:,2) + & bz_struc%bg(:,3) ) bz_struc%indsur(:,1) = (/ 4, 1, 2, 3, 4 /) bz_struc%indsur(:,2) = (/ 4, 5, 6, 7, 8 /) bz_struc%indsur(:,3) = (/ 4, 9, 10, 11, 12 /) bz_struc%indsur(:,4) = (/ 4, 13, 14, 15, 16 /) bz_struc%indsur(:,5) = (/ 6, 1, 2, 17, 20, 14, 15 /) bz_struc%indsur(:,6) = (/ 6, 2, 3, 5, 6, 18, 17 /) bz_struc%indsur(:,7) = (/ 6, 6, 7, 9, 10, 19, 18 /) bz_struc%indsur(:,8) = (/ 6, 10, 11, 13, 14, 20, 19 /) bz_struc%indsur(:,9) = (/ 6, 1, 4, 21, 24, 16, 15 /) bz_struc%indsur(:,10) = (/ 6, 3, 4, 21, 22, 8, 5 /) bz_struc%indsur(:,11) = (/ 6, 7, 8, 22, 23, 12, 9 /) bz_struc%indsur(:,12) = (/ 6, 11, 12, 23, 24, 16, 13 /) bz_struc%indsur(:,13) = (/ 4, 17, 18, 19, 20 /) bz_struc%indsur(:,14) = (/ 4, 21, 22, 23, 24 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)='gS ' bz_struc%letter_list(3)=' N ' bz_struc%letter_list(4)='gS1' bz_struc%letter_list(5)=' Z ' bz_struc%letter_list(6)=' Y1' bz_struc%letter_list(7)=' P ' bz_struc%letter_list(8)=' X ' bz_struc%letter_list(9)=' Y ' IF (bz_struc%letter_type=='BI') THEN bz_struc%letter_list(2)=' S0' bz_struc%letter_list(4)=' S ' bz_struc%letter_list(5)=' M ' bz_struc%letter_list(6)=' G ' bz_struc%letter_list(9)=' R ' ENDIF bz_struc%letter_coord(:,2) = 0.5_DP*( bz_struc%vertex_coord(:,1) & + bz_struc%vertex_coord(:,15)) bz_struc%letter_coord(:,3) = 0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,2)) bz_struc%letter_coord(:,4) = 0.5_DP*( bz_struc%vertex_coord(:,20) & + bz_struc%vertex_coord(:,17)) bz_struc%letter_coord(:,5) = 0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,2) & + bz_struc%bg(:,3)) bz_struc%letter_coord(:,6) = bz_struc%vertex_coord(:,17) bz_struc%letter_coord(:,7) = bz_struc%vertex_coord(:,2) bz_struc%letter_coord(:,8) = 0.5_DP*(bz_struc%bg(:,2)-bz_struc%bg(:,3)) bz_struc%letter_coord(:,9) = bz_struc%vertex_coord(:,1) IF (bz_struc%letter_type=='BI') THEN bz_struc%letter_list(10)=' N0' bz_struc%letter_coord(:,10)= -0.5_DP*bz_struc%bg(:,3) bz_struc%letter_list(11)=' M2' bz_struc%letter_coord(:,11) =-0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,2) & + bz_struc%bg(:,3)) bz_struc%letter_list(12)=' S2' bz_struc%letter_coord(:,12) = 0.5_DP*( bz_struc%vertex_coord(:,24) & + bz_struc%vertex_coord(:,21)) bz_struc%letter_list(13)=' G0' bz_struc%letter_coord(:,13) = bz_struc%vertex_coord(:,21) bz_struc%letter_list(14)=' T ' bz_struc%letter_coord(:,14)=0.0_DP bz_struc%letter_coord(3,14)=0.5_DP*(bz_struc%bg(3,1) + bz_struc%bg(3,2)) bz_struc%letter_list(15)=' T4' bz_struc%letter_coord(:,15)=0.0_DP bz_struc%letter_coord(3,15)=-0.5_DP*(bz_struc%bg(3,1) + bz_struc%bg(3,2)) ENDIF CALL find_axis_coordinates(bz_struc) ELSEIF (ibz==7) THEN ! ! simple orthorombic bz ! bz_struc%normal(:,1)=bz_struc%bg(:,1) bz_struc%normal(:,2)=bz_struc%bg(:,2) bz_struc%normal(:,3)=-bz_struc%bg(:,1) bz_struc%normal(:,4)=-bz_struc%bg(:,2) bz_struc%normal(:,5)=bz_struc%bg(:,3) bz_struc%normal(:,6)=-bz_struc%bg(:,3) bz_struc%indsur(:,1) = (/ 4, 1, 5, 8, 4 /) bz_struc%indsur(:,2) = (/ 4, 1, 5, 6, 2 /) bz_struc%indsur(:,3) = (/ 4, 2, 6, 7, 3 /) bz_struc%indsur(:,4) = (/ 4, 3, 7, 8, 4 /) bz_struc%indsur(:,5) = (/ 4, 1, 2, 3, 4 /) bz_struc%indsur(:,6) = (/ 4, 5, 6, 7, 8 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)=' X ' bz_struc%letter_list(3)=' S ' bz_struc%letter_list(4)=' Y ' bz_struc%letter_list(5)=' U ' bz_struc%letter_list(6)=' R ' bz_struc%letter_list(7)=' T ' bz_struc%letter_list(8)=' Z ' bz_struc%letter_coord(:,2) = 0.5_DP*bz_struc%bg(:,1) bz_struc%letter_coord(:,3) = 0.5_DP*(bz_struc%bg(:,1)+bz_struc%bg(:,2)) bz_struc%letter_coord(:,4) = 0.5_DP*bz_struc%bg(:,2) bz_struc%letter_coord(:,5) = 0.5_DP*(bz_struc%bg(:,1)+bz_struc%bg(:,3)) bz_struc%letter_coord(:,6) = 0.5_DP*(bz_struc%bg(:,1)+bz_struc%bg(:,3)+ & bz_struc%bg(:,2)) bz_struc%letter_coord(:,7) = 0.5_DP*(bz_struc%bg(:,2)+bz_struc%bg(:,3)) bz_struc%letter_coord(:,8) = 0.5_DP*bz_struc%bg(:,3) CALL find_axis_coordinates(bz_struc) ELSEIF (ibz==8) THEN ! ! face centered orthorombic (1/a^2 > 1/b^2 + 1/c^2) bz ! bz_struc%normal(:,1) = bz_struc%bg(:,1) + bz_struc%bg(:,2) + bz_struc%bg(:,3) bz_struc%normal(:,2) = bz_struc%bg(:,2) + bz_struc%bg(:,3) bz_struc%normal(:,3) = bz_struc%bg(:,3) bz_struc%normal(:,4) = - bz_struc%bg(:,2) bz_struc%normal(:,5) = - ( bz_struc%bg(:,2) + bz_struc%bg(:,3) ) bz_struc%normal(:,6) = bz_struc%bg(:,1) bz_struc%normal(:,7) = bz_struc%bg(:,1) + bz_struc%bg(:,3) bz_struc%normal(:,8) = bz_struc%bg(:,2) bz_struc%normal(:,9) = - bz_struc%bg(:,1) bz_struc%normal(:,10)= - ( bz_struc%bg(:,1) + bz_struc%bg(:,2) & + bz_struc%bg(:,3)) bz_struc%normal(:,11)= - bz_struc%bg(:,3) bz_struc%normal(:,12)=-( bz_struc%bg(:,1) + bz_struc%bg(:,3) ) bz_struc%indsur(:,1) = (/ 4, 1, 2, 3, 4 /) bz_struc%indsur(:,2) = (/ 6, 3, 4, 13, 15, 6, 5 /) bz_struc%indsur(:,3) = (/ 4, 5, 6, 7, 8 /) bz_struc%indsur(:,4) = (/ 4, 7, 8, 10, 9 /) bz_struc%indsur(:,5) = (/ 6, 9, 10, 11, 12, 18, 17 /) bz_struc%indsur(:,6) = (/ 4, 1, 2, 11, 12 /) bz_struc%indsur(:,7) = (/ 6, 2, 3, 5, 8, 10, 11 /) bz_struc%indsur(:,8) = (/ 4, 1, 4, 13, 14 /) bz_struc%indsur(:,9) = (/ 4, 6, 7, 16, 15 /) bz_struc%indsur(:,10) = (/ 4, 7, 9, 17, 16 /) bz_struc%indsur(:,11) = (/ 4, 14, 18, 12, 1 /) bz_struc%indsur(:,12) = (/ 6, 14, 13, 15, 16, 17, 18 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)=' A ' bz_struc%letter_list(3)=' X ' bz_struc%letter_list(4)=' Z ' bz_struc%letter_list(5)=' L ' bz_struc%letter_list(6)=' X1' bz_struc%letter_list(7)=' A1' bz_struc%letter_list(8)=' T ' bz_struc%letter_list(9)=' Y ' IF (bz_struc%switch_b_c) THEN bz_struc%letter_list(2)=' A1' bz_struc%letter_list(4)=' Y ' bz_struc%letter_list(7)=' A ' bz_struc%letter_list(9)=' Z ' ENDIF IF ( bz_struc%switch_a_b ) THEN IF (bz_struc%switch_b_c) THEN bz_struc%letter_list(2)=' T ' bz_struc%letter_list(3)=' Z ' bz_struc%letter_list(4)=' Y ' bz_struc%letter_list(7)=' A ' bz_struc%letter_list(8)=' A1' bz_struc%letter_list(9)=' X ' ELSE bz_struc%letter_list(2)=' T ' bz_struc%letter_list(3)=' Y ' bz_struc%letter_list(8)=' A ' bz_struc%letter_list(9)=' X ' END IF ELSEIF (bz_struc%rotate_a_b_c) THEN IF (bz_struc%switch_b_c) THEN bz_struc%letter_list(2)=' A ' bz_struc%letter_list(3)=' Z ' bz_struc%letter_list(4)=' X ' bz_struc%letter_list(7)=' T ' bz_struc%letter_list(8)=' A1' bz_struc%letter_list(9)=' Y ' ELSE bz_struc%letter_list(2)=' A1 ' bz_struc%letter_list(3)=' Y ' bz_struc%letter_list(4)=' X ' bz_struc%letter_list(7)=' T ' bz_struc%letter_list(8)=' A ' bz_struc%letter_list(9)=' Z ' END IF ENDIF bz_struc%letter_coord(:,2) = bz_struc%vertex_coord(:,2) bz_struc%letter_coord(:,3) = bz_struc%vertex_coord(:,1) bz_struc%letter_coord(:,4) = 0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,3)) bz_struc%letter_coord(:,5) = 0.5_DP*(bz_struc%vertex_coord(:,1) & + bz_struc%vertex_coord(:,3)) bz_struc%letter_coord(:,6) = bz_struc%vertex_coord(:,3) bz_struc%letter_coord(:,7) = bz_struc%vertex_coord(:,4) bz_struc%letter_coord(:,8) = 0.5_DP*(bz_struc%vertex_coord(:,3) & + bz_struc%vertex_coord(:,5)) bz_struc%letter_coord(:,9) = 0.5_DP*(bz_struc%vertex_coord(:,4) & + bz_struc%vertex_coord(:,6)) CALL find_axis_coordinates(bz_struc) CALL adjust_orthorombic(bz_struc) ELSEIF (ibz==9) THEN ! ! face centered orthorombic (1/a^2 < 1/b^2 + 1/c^2) bz case 2 ! bz_struc%normal(:,1)=bz_struc%bg(:,1) + bz_struc%bg(:,2) bz_struc%normal(:,2)=bz_struc%bg(:,2) + bz_struc%bg(:,3) bz_struc%normal(:,3)=-(bz_struc%bg(:,1)+bz_struc%bg(:,2)) bz_struc%normal(:,4)=-(bz_struc%bg(:,2) + bz_struc%bg(:,3)) bz_struc%normal(:,5)=bz_struc%bg(:,1) + bz_struc%bg(:,3) bz_struc%normal(:,6)=-(bz_struc%bg(:,1)+bz_struc%bg(:,3)) bz_struc%normal(:,7)=bz_struc%bg(:,1) + bz_struc%bg(:,2) + bz_struc%bg(:,3) bz_struc%normal(:,8)=bz_struc%bg(:,3) bz_struc%normal(:,9)=- bz_struc%bg(:,2) bz_struc%normal(:,10)=bz_struc%bg(:,1) bz_struc%normal(:,11)=bz_struc%bg(:,2) bz_struc%normal(:,12)=-bz_struc%bg(:,1) bz_struc%normal(:,13)=-(bz_struc%bg(:,1) + bz_struc%bg(:,2) + & bz_struc%bg(:,3)) bz_struc%normal(:,14)=-bz_struc%bg(:,3) bz_struc%indsur(:,1) = (/ 4, 1, 2, 3, 4 /) bz_struc%indsur(:,2) = (/ 4, 5, 6, 7, 8 /) bz_struc%indsur(:,3) = (/ 4, 9, 10, 11, 12 /) bz_struc%indsur(:,4) = (/ 4, 13, 14, 15, 16 /) bz_struc%indsur(:,5) = (/ 4, 17, 18, 19, 20 /) bz_struc%indsur(:,6) = (/ 4, 21, 22, 23, 24 /) bz_struc%indsur(:,7) = (/ 6, 1, 2, 8, 5, 18, 17 /) bz_struc%indsur(:,8) = (/ 6, 5, 6, 12, 9, 19, 18 /) bz_struc%indsur(:,9) = (/ 6, 9, 10, 16, 13, 20, 19 /) bz_struc%indsur(:,10) = (/ 6, 1, 17, 20, 13, 14, 4 /) bz_struc%indsur(:,11) = (/ 6, 3, 2, 8, 7, 22, 21 /) bz_struc%indsur(:,12) = (/ 6, 22, 7, 6, 12, 11, 23 /) bz_struc%indsur(:,13) = (/ 6, 11, 10, 16, 15, 24, 23 /) bz_struc%indsur(:,14) = (/ 6, 3, 4, 14, 15, 24, 21 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)=' X ' bz_struc%letter_list(3)=' D ' bz_struc%letter_list(4)=' C ' bz_struc%letter_list(5)=' Y ' bz_struc%letter_list(6)=' H1' bz_struc%letter_list(7)=' L ' bz_struc%letter_list(8)=' H ' bz_struc%letter_list(9)=' C1' bz_struc%letter_list(10)=' D1' bz_struc%letter_list(11)=' Z ' IF (bz_struc%switch_b_c) THEN bz_struc%letter_list(3)=' H1' bz_struc%letter_list(4)=' C1' bz_struc%letter_list(5)=' Z ' bz_struc%letter_list(6)=' D ' bz_struc%letter_list(8)=' D1' bz_struc%letter_list(9)=' C ' bz_struc%letter_list(10)=' H ' bz_struc%letter_list(11)=' Y ' ENDIF IF (bz_struc%switch_a_b) THEN IF (bz_struc%switch_b_c) THEN bz_struc%letter_list(2)=' Z ' bz_struc%letter_list(3)=' C1' bz_struc%letter_list(4)=' H1' bz_struc%letter_list(5)=' X ' bz_struc%letter_list(6)=' D1' bz_struc%letter_list(8)=' D ' bz_struc%letter_list(9)=' H ' bz_struc%letter_list(10)=' C ' bz_struc%letter_list(11)=' Y ' ELSE bz_struc%letter_list(2)=' Y ' bz_struc%letter_list(3)=' C ' bz_struc%letter_list(4)=' D ' bz_struc%letter_list(5)=' X ' bz_struc%letter_list(6)=' H ' bz_struc%letter_list(8)=' H1' bz_struc%letter_list(9)=' D1' bz_struc%letter_list(10)=' C1' ENDIF ELSEIF (bz_struc%rotate_a_b_c) THEN IF (bz_struc%switch_b_c) THEN bz_struc%letter_list(2)=' Z ' bz_struc%letter_list(3)=' D1' bz_struc%letter_list(4)=' H ' bz_struc%letter_list(5)=' Y ' bz_struc%letter_list(6)=' C1' bz_struc%letter_list(8)=' C ' bz_struc%letter_list(9)=' H1' bz_struc%letter_list(10)=' D ' bz_struc%letter_list(11)=' X ' ELSE bz_struc%letter_list(2)=' Y ' bz_struc%letter_list(3)=' H ' bz_struc%letter_list(4)=' D1' bz_struc%letter_list(6)=' C ' bz_struc%letter_list(5)=' Z ' bz_struc%letter_list(8)=' C1' bz_struc%letter_list(9)=' D ' bz_struc%letter_list(10)=' H1' bz_struc%letter_list(11)=' X ' ENDIF ENDIF bz_struc%letter_coord(:,2) = 0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,2)) bz_struc%letter_coord(:,3) = bz_struc%vertex_coord(:,2) bz_struc%letter_coord(:,4) = bz_struc%vertex_coord(:,8) bz_struc%letter_coord(:,5) = 0.5_DP*(bz_struc%bg(:,2) + bz_struc%bg(:,3)) bz_struc%letter_coord(:,6) = bz_struc%vertex_coord(:,1) bz_struc%letter_coord(:,7) = 0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,2) & + bz_struc%bg(:,3)) bz_struc%letter_coord(:,8) = bz_struc%vertex_coord(:,5) bz_struc%letter_coord(:,9) = bz_struc%vertex_coord(:,17) bz_struc%letter_coord(:,10) = bz_struc%vertex_coord(:,18) bz_struc%letter_coord(:,11) = 0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,3)) CALL find_axis_coordinates(bz_struc) CALL adjust_orthorombic(bz_struc) ELSEIF (ibz==10) THEN ! ! face centered orthorombic (1/a^2 = 1/b^2 + 1/c^2) bz ! bz_struc%normal(:,1)=bz_struc%bg(:,1) + bz_struc%bg(:,2) + bz_struc%bg(:,3) bz_struc%normal(:,2)=bz_struc%bg(:,2) + bz_struc%bg(:,3) bz_struc%normal(:,3)=bz_struc%bg(:,3) bz_struc%normal(:,4)=-bz_struc%bg(:,2) bz_struc%normal(:,5)=-(bz_struc%bg(:,2) + bz_struc%bg(:,3)) bz_struc%normal(:,6)=bz_struc%bg(:,1) bz_struc%normal(:,7)=bz_struc%bg(:,1) + bz_struc%bg(:,3) bz_struc%normal(:,8)=bz_struc%bg(:,2) bz_struc%normal(:,9)=- bz_struc%bg(:,1) bz_struc%normal(:,10)= -( bz_struc%bg(:,1) + bz_struc%bg(:,2) & + bz_struc%bg(:,3) ) bz_struc%normal(:,11)=-bz_struc%bg(:,3) bz_struc%normal(:,12)=-(bz_struc%bg(:,1) + bz_struc%bg(:,3)) bz_struc%indsur(:,1) = (/ 4, 1, 2, 3, 4 /) bz_struc%indsur(:,2) = (/ 4, 2, 3, 5, 11 /) bz_struc%indsur(:,3) = (/ 4, 3, 5, 6, 7 /) bz_struc%indsur(:,4) = (/ 4, 6, 7, 9, 8 /) bz_struc%indsur(:,5) = (/ 4, 8, 9, 10, 12 /) bz_struc%indsur(:,6) = (/ 4, 1, 4, 9, 10 /) bz_struc%indsur(:,7) = (/ 4, 3, 4, 9, 7 /) bz_struc%indsur(:,8) = (/ 4, 1, 2, 11, 13 /) bz_struc%indsur(:,9) = (/ 4, 11, 5, 6, 14 /) bz_struc%indsur(:,10) = (/ 4, 6, 14, 12, 8 /) bz_struc%indsur(:,11) = (/ 4, 1, 10, 12, 13 /) bz_struc%indsur(:,12) = (/ 4, 11, 14, 12, 13 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)=' X ' bz_struc%letter_list(3)=' A ' bz_struc%letter_list(4)=' L ' bz_struc%letter_list(5)=' Z ' bz_struc%letter_list(6)=' T ' bz_struc%letter_list(7)=' A1' bz_struc%letter_list(8)=' Y ' IF (bz_struc%switch_b_c) THEN bz_struc%letter_list(3)=' A1 ' bz_struc%letter_list(5)=' Y ' bz_struc%letter_list(7)=' A ' bz_struc%letter_list(8)=' Z ' ENDIF IF (bz_struc%switch_a_b) THEN IF (bz_struc%switch_b_c) THEN bz_struc%letter_list(2)=' Z ' bz_struc%letter_list(3)=' T ' bz_struc%letter_list(5)=' Y ' bz_struc%letter_list(6)=' A1' bz_struc%letter_list(7)=' A ' bz_struc%letter_list(8)=' X ' ELSE bz_struc%letter_list(3)=' T ' bz_struc%letter_list(6)=' A ' bz_struc%letter_list(8)=' X ' bz_struc%letter_list(2)=' Y ' ENDIF ELSEIF (bz_struc%rotate_a_b_c) THEN IF (bz_struc%switch_b_c) THEN bz_struc%letter_list(2)=' Z ' bz_struc%letter_list(3)=' A ' bz_struc%letter_list(5)=' X ' bz_struc%letter_list(6)=' A1' bz_struc%letter_list(7)=' T' bz_struc%letter_list(8)=' Y ' ELSE bz_struc%letter_list(2)=' Y ' bz_struc%letter_list(3)=' A1' bz_struc%letter_list(5)=' X ' bz_struc%letter_list(6)=' A ' bz_struc%letter_list(7)=' T ' bz_struc%letter_list(8)=' Z ' ENDIF ENDIF bz_struc%letter_coord(:,2) = bz_struc%vertex_coord(:,1) bz_struc%letter_coord(:,3) = bz_struc%vertex_coord(:,4) bz_struc%letter_coord(:,4) = 0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,2) & + bz_struc%bg(:,3)) bz_struc%letter_coord(:,5) = 0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,3)) bz_struc%letter_coord(:,6) = bz_struc%vertex_coord(:,3) bz_struc%letter_coord(:,7) = bz_struc%vertex_coord(:,2) bz_struc%letter_coord(:,8) = 0.5_DP*(bz_struc%bg(:,2) + bz_struc%bg(:,3)) CALL find_axis_coordinates(bz_struc) CALL adjust_orthorombic(bz_struc) ELSEIF (ibz==11) THEN ! ! body centered orthorombic bz ! ! this is ok with the standard definition of vectors for bcc (see the ! corresponding bz) ! ! bz_struc%normal(:,1)=bg(:,2) - bg(:,3) ! bz_struc%normal(:,2)=-bg(:,1) ! bz_struc%normal(:,3)=-(bg(:,2) - bg(:,3)) ! bz_struc%normal(:,4)=bg(:,1) ! bz_struc%normal(:,5)=bg(:,1) + bg(:,2) ! bz_struc%normal(:,6)=bg(:,2) ! bz_struc%normal(:,7)=bg(:,3) ! bz_struc%normal(:,8)=bg(:,1) + bg(:,3) ! bz_struc%normal(:,9)=-bg(:,3) ! bz_struc%normal(:,10)=-(bg(:,1) + bg(:,3)) ! bz_struc%normal(:,11)=-(bg(:,1) + bg(:,2)) ! bz_struc%normal(:,12)=-bg(:,2) ! bz_struc%normal(:,13)=bg(:,1) + bg(:,2) + bg(:,3) ! bz_struc%normal(:,14)=-( bg(:,1) + bg(:,2) + bg(:,3) ) bz_struc%normal(:,1) = bz_struc%bg(:,1) - bz_struc%bg(:,3) bz_struc%normal(:,2) = bz_struc%bg(:,2) bz_struc%normal(:,3) =-(bz_struc%bg(:,1) - bz_struc%bg(:,3)) bz_struc%normal(:,4) =-bz_struc%bg(:,2) bz_struc%normal(:,5) = bz_struc%bg(:,1) bz_struc%normal(:,6) = bz_struc%bg(:,1) + bz_struc%bg(:,2) bz_struc%normal(:,7) = bz_struc%bg(:,2) + bz_struc%bg(:,3) bz_struc%normal(:,8) = bz_struc%bg(:,3) bz_struc%normal(:,9) =-(bz_struc%bg(:,2) + bz_struc%bg(:,3)) bz_struc%normal(:,10)=-bz_struc%bg(:,3) bz_struc%normal(:,11)=-bz_struc%bg(:,1) bz_struc%normal(:,12)=-(bz_struc%bg(:,1) + bz_struc%bg(:,2)) bz_struc%normal(:,13)= bz_struc%bg(:,1) + bz_struc%bg(:,2) + & bz_struc%bg(:,3) bz_struc%normal(:,14)=-(bz_struc%bg(:,1) + bz_struc%bg(:,2) + & bz_struc%bg(:,3)) bz_struc%indsur(:,1) = (/ 4, 1, 2, 3, 4 /) bz_struc%indsur(:,2) = (/ 4, 5, 6, 7, 8 /) bz_struc%indsur(:,3) = (/ 4, 9, 10, 11, 12 /) bz_struc%indsur(:,4) = (/ 4, 13, 14, 15, 16 /) bz_struc%indsur(:,5) = (/ 6, 1, 2, 17, 20, 14, 15 /) bz_struc%indsur(:,6) = (/ 6, 2, 3, 5, 6, 18, 17 /) bz_struc%indsur(:,7) = (/ 6, 6, 7, 9, 10, 19, 18 /) bz_struc%indsur(:,8) = (/ 6, 10, 11, 13, 14, 20, 19 /) bz_struc%indsur(:,9) = (/ 6, 1, 4, 21, 24, 16, 15 /) bz_struc%indsur(:,10) = (/ 6, 3, 4, 21, 22, 8, 5 /) bz_struc%indsur(:,11) = (/ 6, 7, 8, 22, 23, 12, 9 /) bz_struc%indsur(:,12) = (/ 6, 11, 12, 23, 24, 16, 13 /) bz_struc%indsur(:,13) = (/ 4, 17, 18, 19, 20 /) bz_struc%indsur(:,14) = (/ 4, 21, 22, 23, 24 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)=' X ' bz_struc%letter_list(3)=' L ' bz_struc%letter_list(4)=' T ' bz_struc%letter_list(5)=' L1' bz_struc%letter_list(6)=' Y ' bz_struc%letter_list(7)=' R ' bz_struc%letter_list(8)=' W ' bz_struc%letter_list(9)=' S ' bz_struc%letter_list(10)=' X1' bz_struc%letter_list(11)=' L2' bz_struc%letter_list(12)=' Y1' bz_struc%letter_list(13)=' Z ' IF (bz_struc%letter_type=='BI') THEN bz_struc%letter_list(2)='gS0' bz_struc%letter_list(4)=' R ' bz_struc%letter_list(6)='gL0' bz_struc%letter_list(7)=' T ' bz_struc%letter_list(10)=' F0' bz_struc%letter_list(12)=' G0' bz_struc%letter_list(13)=' G ' ENDIF IF (bz_struc%switch_b_c) THEN bz_struc%letter_list(3)=' L ' bz_struc%letter_list(4)=' R ' bz_struc%letter_list(5)=' L2' bz_struc%letter_list(7)=' T ' bz_struc%letter_list(8)=' W ' bz_struc%letter_list(9)=' S ' bz_struc%letter_list(10)=' X1' bz_struc%letter_list(11)=' L1' bz_struc%letter_list(12)=' Z1' bz_struc%letter_list(6)=' Z ' bz_struc%letter_list(13)=' Y ' IF (bz_struc%letter_type=='BI') THEN bz_struc%letter_list(6)='gL0' bz_struc%letter_list(13)=' G ' ENDIF ENDIF IF (bz_struc%switch_a_b) THEN IF (bz_struc%switch_b_c) THEN bz_struc%letter_list(3)=' L2 ' bz_struc%letter_list(4)=' R ' bz_struc%letter_list(5)=' L' bz_struc%letter_list(7)=' S ' bz_struc%letter_list(9)=' T ' bz_struc%letter_list(10)=' Z1' bz_struc%letter_list(12)=' X1' bz_struc%letter_list(2)=' Z ' bz_struc%letter_list(6)=' X ' bz_struc%letter_list(11)=' L1' bz_struc%letter_list(13)=' Y ' IF (bz_struc%letter_type=='BI') THEN bz_struc%letter_list(2)='gL0' bz_struc%letter_list(6)='gS0' bz_struc%letter_list(13)=' G ' ENDIF ELSE bz_struc%letter_list(2)=' Y ' bz_struc%letter_list(3)=' L1' bz_struc%letter_list(5)=' L ' bz_struc%letter_list(6)=' X ' bz_struc%letter_list(13)=' Z ' bz_struc%letter_list(7)=' S ' bz_struc%letter_list(9)=' R ' bz_struc%letter_list(10)=' Y1' bz_struc%letter_list(11)=' L2' bz_struc%letter_list(12)=' X1' IF (bz_struc%letter_type=='BI') THEN bz_struc%letter_list(2)=' G ' bz_struc%letter_list(6)='gS0' bz_struc%letter_list(13)='gL0' ENDIF END IF ELSEIF (bz_struc%rotate_a_b_c) THEN IF (bz_struc%switch_b_c) THEN bz_struc%letter_list(3)=' L2' bz_struc%letter_list(4)=' S ' bz_struc%letter_list(5)=' L1' bz_struc%letter_list(7)=' R ' bz_struc%letter_list(8)=' W ' bz_struc%letter_list(9)=' T ' bz_struc%letter_list(10)=' Z1' bz_struc%letter_list(11)=' L ' bz_struc%letter_list(12)=' Y1' bz_struc%letter_list(2)=' Z ' bz_struc%letter_list(6)=' Y ' bz_struc%letter_list(13)=' X ' IF (bz_struc%letter_type=='BI') THEN bz_struc%letter_list(2)='gL0' bz_struc%letter_list(6)=' G ' bz_struc%letter_list(13)='gS0' ENDIF ELSE bz_struc%letter_list(2)=' Y ' bz_struc%letter_list(3)=' L1 ' bz_struc%letter_list(4)=' S ' bz_struc%letter_list(5)=' L2' bz_struc%letter_list(6)=' Z ' bz_struc%letter_list(7)=' T ' bz_struc%letter_list(9)=' R ' bz_struc%letter_list(10)=' Y1' bz_struc%letter_list(11)=' L ' bz_struc%letter_list(12)=' Z1' bz_struc%letter_list(13)=' X ' IF (bz_struc%letter_type=='BI') THEN bz_struc%letter_list(2)=' G ' bz_struc%letter_list(6)='gL0' bz_struc%letter_list(13)='gS0' ENDIF ENDIF END IF bz_struc%letter_coord(:,2) = 0.5_DP*(bz_struc%vertex_coord(:,1)+ & bz_struc%vertex_coord(:,15)) bz_struc%letter_coord(:,3) = bz_struc%vertex_coord(:,1) bz_struc%letter_coord(:,4) = 0.5_DP*(bz_struc%bg(:,1)-bz_struc%bg(:,3)) bz_struc%letter_coord(:,5) = bz_struc%vertex_coord(:,3) bz_struc%letter_coord(:,6) = 0.5_DP*(bz_struc%vertex_coord(:,3)+ & bz_struc%vertex_coord(:,5)) bz_struc%letter_coord(:,7) = 0.5_DP*bz_struc%bg(:,1) bz_struc%letter_coord(:,8) = bz_struc%vertex_coord(:,2) bz_struc%letter_coord(:,9) = 0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,2)) bz_struc%letter_coord(:,10) = 0.5_DP*(bz_struc%vertex_coord(:,17)+ & bz_struc%vertex_coord(:,20)) bz_struc%letter_coord(:,11) = bz_struc%vertex_coord(:,17) bz_struc%letter_coord(:,12) = 0.5_DP*(bz_struc%vertex_coord(:,17)+ & bz_struc%vertex_coord(:,18)) bz_struc%letter_coord(:,13) = 0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,2) & + bz_struc%bg(:,3)) CALL find_axis_coordinates(bz_struc) CALL adjust_orthorombic(bz_struc) ELSEIF (ibz==12) THEN ! ! one face centered orthorombic bz ! bz_struc%normal(:,1) = bz_struc%bg(:,1) bz_struc%normal(:,2) = bz_struc%bg(:,1) + bz_struc%bg(:,2) bz_struc%normal(:,3) = bz_struc%bg(:,2) bz_struc%normal(:,4) = -bz_struc%bg(:,1) bz_struc%normal(:,5) = -( bz_struc%bg(:,1) + bz_struc%bg(:,2) ) bz_struc%normal(:,6) = -bz_struc%bg(:,2) bz_struc%normal(:,7) = bz_struc%bg(:,3) bz_struc%normal(:,8) = -bz_struc%bg(:,3) bz_struc%indsur(:,1) = (/ 4, 1, 2, 8, 7 /) bz_struc%indsur(:,2) = (/ 4, 2, 3, 9, 8 /) bz_struc%indsur(:,3) = (/ 4, 3, 4, 10, 9 /) bz_struc%indsur(:,4) = (/ 4, 4, 5, 11, 10 /) bz_struc%indsur(:,5) = (/ 4, 5, 6, 12, 11 /) bz_struc%indsur(:,6) = (/ 4, 6, 1, 7, 12 /) bz_struc%indsur(:,7) = (/ 6, 1, 2, 3, 4, 5, 6 /) bz_struc%indsur(:,8) = (/ 6, 7, 8, 9, 10, 11, 12 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)=' X ' bz_struc%letter_list(3)=' S ' bz_struc%letter_list(4)=' X1' bz_struc%letter_list(5)=' Y ' bz_struc%letter_list(6)=' T ' bz_struc%letter_list(7)=' A1' bz_struc%letter_list(8)=' R ' bz_struc%letter_list(9)=' A ' bz_struc%letter_list(10)=' Z ' IF (bz_struc%switch_a_b) THEN bz_struc%letter_list(2)=' Y ' bz_struc%letter_list(3)=' S ' bz_struc%letter_list(4)=' Y1' bz_struc%letter_list(5)=' X ' bz_struc%letter_list(6)=' A ' bz_struc%letter_list(7)=' A1' bz_struc%letter_list(8)=' R ' bz_struc%letter_list(9)=' T ' bz_struc%letter_list(10)=' Z ' ENDIF IF (bz_struc%letter_type=='BI') THEN bz_struc%letter_list(2)='gD0' bz_struc%letter_list(9)=' B0' ENDIF bz_struc%letter_coord(:,2) = 0.5_DP*(bz_struc%vertex_coord(:,1)+ & bz_struc%vertex_coord(:,7)) bz_struc%letter_coord(:,3) = 0.5_DP*bz_struc%bg(:,1) bz_struc%letter_coord(:,4) = 0.5_DP*(bz_struc%vertex_coord(:,2)+ & bz_struc%vertex_coord(:,8)) bz_struc%letter_coord(:,5) = 0.5_DP*(bz_struc%vertex_coord(:,2)+ & bz_struc%vertex_coord(:,9)) bz_struc%letter_coord(:,6) = 0.5_DP*(bz_struc%vertex_coord(:,2) + & bz_struc%vertex_coord(:,9) + bz_struc%bg(:,3)) bz_struc%letter_coord(:,7) = bz_struc%vertex_coord(:,2) bz_struc%letter_coord(:,8) = 0.5_DP*(bz_struc%bg(:,1) + bz_struc%bg(:,3)) bz_struc%letter_coord(:,9) = 0.5_DP*(bz_struc%vertex_coord(:,1) + & bz_struc%vertex_coord(:,7) + & bz_struc%bg(:,3)) bz_struc%letter_coord(:,10) = 0.5_DP*bz_struc%bg(:,3) CALL find_axis_coordinates(bz_struc) CALL adjust_one_face_centered_orthorombic(bz_struc) ELSEIF (ibz==13) THEN ! ! hexagonal ! bz_struc%normal(:,1) = bz_struc%bg(:,1) bz_struc%normal(:,2) = bz_struc%bg(:,2) bz_struc%normal(:,3) = bz_struc%bg(:,2) - bz_struc%bg(:,1) bz_struc%normal(:,4) = -bz_struc%bg(:,1) bz_struc%normal(:,5) = -bz_struc%bg(:,2) bz_struc%normal(:,6) = -(bz_struc%bg(:,2) - bz_struc%bg(:,1)) bz_struc%normal(:,7) = bz_struc%bg(:,3) bz_struc%normal(:,8) = -bz_struc%bg(:,3) bz_struc%indsur(:,1) = (/ 4, 1, 2, 8, 7 /) bz_struc%indsur(:,2) = (/ 4, 2, 3, 9, 8 /) bz_struc%indsur(:,3) = (/ 4, 3, 4, 10, 9 /) bz_struc%indsur(:,4) = (/ 4, 4, 5, 11, 10 /) bz_struc%indsur(:,5) = (/ 4, 5, 6, 12, 11 /) bz_struc%indsur(:,6) = (/ 4, 6, 1, 7, 12 /) bz_struc%indsur(:,7) = (/ 6, 1, 2, 3, 4, 5, 6 /) bz_struc%indsur(:,8) = (/ 6, 7, 8, 9, 10, 11, 12 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)=' K ' bz_struc%letter_list(3)=' M ' bz_struc%letter_list(4)=' A ' bz_struc%letter_list(5)=' L ' bz_struc%letter_list(6)=' H ' bz_struc%letter_coord(:,2) = 0.5_DP*(bz_struc%vertex_coord(:,1) + & bz_struc%vertex_coord(:,7)) bz_struc%letter_coord(:,3) = 0.5_DP*bz_struc%bg(:,1) bz_struc%letter_coord(:,4) = 0.5_DP*bz_struc%bg(:,3) bz_struc%letter_coord(:,5) = 0.5_DP*(bz_struc%bg(:,1)+bz_struc%bg(:,3)) bz_struc%letter_coord(:,6) = bz_struc%vertex_coord(:,1) CALL find_axis_coordinates(bz_struc) ! ELSEIF (ibz==14) THEN ! ! trigonal alpha < 90 bz ! bz_struc%normal(:,1)=bz_struc%bg(:,1) + bz_struc%bg(:,2) bz_struc%normal(:,2)=bz_struc%bg(:,2) bz_struc%normal(:,3)=bz_struc%bg(:,2) + bz_struc%bg(:,3) bz_struc%normal(:,4)=bz_struc%bg(:,3) bz_struc%normal(:,5)=bz_struc%bg(:,1) + bz_struc%bg(:,3) bz_struc%normal(:,6)=bz_struc%bg(:,1) bz_struc%normal(:,7)=bz_struc%bg(:,1) + bz_struc%bg(:,2) + bz_struc%bg(:,3) bz_struc%normal(:,8)= -( bz_struc%bg(:,1) + bz_struc%bg(:,3) ) bz_struc%normal(:,9)= -bz_struc%bg(:,1) bz_struc%normal(:,10)=-(bz_struc%bg(:,1) + bz_struc%bg(:,2) ) bz_struc%normal(:,11)=-bz_struc%bg(:,2) bz_struc%normal(:,12)=-( bz_struc%bg(:,2) + bz_struc%bg(:,3) ) bz_struc%normal(:,13)=-bz_struc%bg(:,3) bz_struc%normal(:,14)=-( bz_struc%bg(:,1) + bz_struc%bg(:,2) + & bz_struc%bg(:,3) ) bz_struc%indsur(:,1) = (/ 4, 1, 6, 13, 14 /) bz_struc%indsur(:,2) = (/ 6, 1, 2, 15, 20, 19, 14 /) bz_struc%indsur(:,3) = (/ 4, 2, 3, 16, 15 /) bz_struc%indsur(:,4) = (/ 6, 3, 4, 17, 22, 21, 16 /) bz_struc%indsur(:,5) = (/ 4, 4, 5, 18, 17 /) bz_struc%indsur(:,6) = (/ 6, 5, 6, 13, 24, 23, 18 /) bz_struc%indsur(:,7) = (/ 6, 1, 2, 3, 4, 5, 6 /) bz_struc%indsur(:,8) = (/ 4, 7, 8, 20, 19/) bz_struc%indsur(:,9) = (/ 6, 8, 9, 21, 16, 15, 20 /) bz_struc%indsur(:,10) = (/ 4, 9, 10, 22, 21 /) bz_struc%indsur(:,11) = (/ 6, 17, 18, 23, 11, 10, 22 /) bz_struc%indsur(:,12) = (/ 4, 11, 12, 24, 23 /) bz_struc%indsur(:,13) = (/ 6, 12, 24, 13, 14, 19, 7 /) bz_struc%indsur(:,14) = (/ 6, 7, 8, 9, 10, 11, 12 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)=' L1' bz_struc%letter_list(3)=' L ' bz_struc%letter_list(4)=' X ' bz_struc%letter_list(5)=' Q ' bz_struc%letter_list(6)=' F ' bz_struc%letter_list(7)=' P ' bz_struc%letter_list(8)=' B ' bz_struc%letter_list(9)=' P1' bz_struc%letter_list(10)=' Z ' bz_struc%letter_list(11)=' B1' bz_struc%letter_list(12)=' P2' bz_struc%letter_coord(:,2) = -0.5_DP*bz_struc%bg(:,3) bz_struc%letter_coord(:,3) = 0.5_DP*bz_struc%bg(:,1) bz_struc%letter_coord(:,4) = 0.5_DP*(bz_struc%vertex_coord(:,13)+ & bz_struc%vertex_coord(:,24)) bz_struc%letter_coord(:,5) = 0.5_DP*(bz_struc%vertex_coord(:,13)+ & bz_struc%vertex_coord(:,6)) bz_struc%letter_coord(:,6) = 0.5_DP*( bz_struc%bg(:,1) + bz_struc%bg(:,2) ) bz_struc%letter_coord(:,7) = 0.5_DP*(bz_struc%vertex_coord(:,5)+ & bz_struc%vertex_coord(:,6)) bz_struc%letter_coord(:,8) = bz_struc%vertex_coord(:,6) bz_struc%letter_coord(:,9) = 0.5_DP*(bz_struc%vertex_coord(:,6)+ & bz_struc%vertex_coord(:,1)) bz_struc%letter_coord(:,10) = 0.5_DP*( bz_struc%bg(:,1) + bz_struc%bg(:,2) & + bz_struc%bg(:,3)) bz_struc%letter_coord(:,11) = bz_struc%vertex_coord(:,13) bz_struc%letter_coord(:,12) = 0.5_DP*(bz_struc%vertex_coord(:,13)+ & bz_struc%vertex_coord(:,14)) CALL find_axis_coordinates(bz_struc) ELSEIF (ibz==15) THEN ! ! trigonal alpha > 90 bz ! bz_struc%normal(:,1)=bz_struc%bg(:,1) - bz_struc%bg(:,3) bz_struc%normal(:,2)=-(bz_struc%bg(:,3) - bz_struc%bg(:,2)) bz_struc%normal(:,3)=-(bz_struc%bg(:,1) - bz_struc%bg(:,2)) bz_struc%normal(:,4)=-(bz_struc%bg(:,1) - bz_struc%bg(:,3)) bz_struc%normal(:,5)=bz_struc%bg(:,3) - bz_struc%bg(:,2) bz_struc%normal(:,6)=bz_struc%bg(:,1) - bz_struc%bg(:,2) bz_struc%normal(:,7)=bz_struc%bg(:,1) bz_struc%normal(:,8)=bz_struc%bg(:,2) bz_struc%normal(:,9)=bz_struc%bg(:,3) bz_struc%normal(:,10)=-bz_struc%bg(:,3) bz_struc%normal(:,11)=-bz_struc%bg(:,1) bz_struc%normal(:,12)=-bz_struc%bg(:,2) bz_struc%indsur(:,1) = (/ 4, 1, 2, 9, 8 /) bz_struc%indsur(:,2) = (/ 4, 2, 3, 10, 9 /) bz_struc%indsur(:,3) = (/ 4, 3, 4, 11, 10 /) bz_struc%indsur(:,4) = (/ 4, 4, 5, 12, 11 /) bz_struc%indsur(:,5) = (/ 4, 5, 6, 13, 12 /) bz_struc%indsur(:,6) = (/ 4, 6, 1, 8, 13 /) bz_struc%indsur(:,7) = (/ 4, 1, 2, 7, 6 /) bz_struc%indsur(:,8) = (/ 4, 2, 3, 4, 7 /) bz_struc%indsur(:,9) = (/ 4, 4, 5, 6, 7 /) bz_struc%indsur(:,10) = (/ 4, 8, 9, 10, 14 /) bz_struc%indsur(:,11) = (/ 4, 10, 11, 12, 14 /) bz_struc%indsur(:,12) = (/ 4, 12, 13, 8, 14 /) CALL find_vertices(bz_struc) CALL compute_vertices(bz_struc) bz_struc%letter_list(2)=' P1' bz_struc%letter_list(3)=' Q1' bz_struc%letter_list(4)=' P ' bz_struc%letter_list(5)=' Z ' bz_struc%letter_list(6)=' F ' bz_struc%letter_list(7)=' L ' bz_struc%letter_list(8)=' Q ' IF (bz_struc%letter_type=='BI') THEN bz_struc%letter_list(3)=' R0' bz_struc%letter_list(5)=' T ' bz_struc%letter_list(6)=' FA' bz_struc%letter_list(8)=' P2' ENDIF bz_struc%letter_coord(:,2) = 0.5_DP*(bz_struc%vertex_coord(:,10)+ & bz_struc%vertex_coord(:,3)) bz_struc%letter_coord(:,3) = bz_struc%vertex_coord(:,3) bz_struc%letter_coord(:,4) = 0.5_DP*(bz_struc%vertex_coord(:,2)+ & bz_struc%vertex_coord(:,9)) bz_struc%letter_coord(:,5) = bz_struc%vertex_coord(:,2) bz_struc%letter_coord(:,6) = 0.5_DP * ( bz_struc%vertex_coord(:,2)+ & bz_struc%vertex_coord(:,10)) bz_struc%letter_coord(:,7) = 0.5_DP * bz_struc%bg(:,2) bz_struc%letter_coord(:,8) = bz_struc%vertex_coord(:,7) CALL find_axis_coordinates(bz_struc) ! ELSE CALL errore('init_bz','Brillouin zone type not available init_bz') ENDIF RETURN END SUBROUTINE init_bz SUBROUTINE compute_vertices(bz_struc) ! ! This routine finds the coordinates of the vertex of the BZ, given ! the index of the three planes that define each vertex. ! IMPLICIT NONE TYPE(bz), INTENT(INOUT) :: bz_struc REAL(DP) :: xk(3) INTEGER :: i DO i = 1, bz_struc%nvertices CALL find_intersection( bz_struc%ivertex(:,i), bz_struc%normal, & bz_struc%nfaces, xk) bz_struc%vertex_coord(:,i)=xk(:) ENDDO RETURN END SUBROUTINE compute_vertices SUBROUTINE find_letter_coordinate(bz_struc, letter, xk_let) ! ! This routine checks if among the labels of special points defined ! for each BZ there is the label letter and in that case it ! returns the coordinates of the point with that label. It stops ! if the letter is not recognized. ! IMPLICIT NONE TYPE(bz), INTENT(IN) :: bz_struc REAL(DP), INTENT(OUT) :: xk_let(3) CHARACTER(LEN=3), INTENT(IN) :: letter INTEGER :: i DO i=1, bz_struc%nlett IF ((letter(1:2) == bz_struc%letter_list(i)(2:3) .AND. & bz_struc%letter_list(i)(1:1)/='g') .OR. & (letter(1:3) == bz_struc%letter_list(i)(1:3) )) THEN xk_let(:) = bz_struc%letter_coord(:,i) RETURN ENDIF ENDDO CALL errore('find_letter_coordinate','Letter not recognized '//TRIM(letter),1) RETURN END SUBROUTINE find_letter_coordinate SUBROUTINE find_intersection( ivertex, normal, nfaces, outputk) ! ! This routine receives as input the number of the three faces that define ! a vertex of the BZ, the reciprocal vectors perpendicular to all the ! faces and gives as output the intersection point. ! ! IMPLICIT NONE INTEGER, INTENT(IN) :: nfaces, ivertex(3) REAL(DP), INTENT(IN) :: normal(3,nfaces) REAL(DP), INTENT(OUT) :: outputk(3) REAL(DP) :: a(3,3) REAL(DP) :: b(3) INTEGER :: ipol, jpol, ipiv(3), info DO ipol=1,3 DO jpol=1,3 a(ipol,jpol) = normal(jpol,ivertex(ipol)) ENDDO b(ipol)=0.5_DP * ( normal(1,ivertex(ipol))**2 & + normal(2,ivertex(ipol))**2 & + normal(3,ivertex(ipol))**2 ) ENDDO CALL DGESV(3,1,a,3,ipiv,b,3,info) IF (ABS(info) > 0) CALL errore('find_intersection', & 'problem in linear system',ABS(info)) outputk=b RETURN END SUBROUTINE find_intersection SUBROUTINE find_bz_type(ibrav, celldm, ibz) ! ! This routine identifies the bz type that corresponds to the given ! bravais lattice and structural parameters. In the orthorombic ! case it exchanges b/a and c/a so that a < b < c and sets the ! three variables change_a_b, change_a_c, change_b_c. It sets ! celldm_bz ! IMPLICIT NONE INTEGER, INTENT(IN) :: ibrav REAL(DP), INTENT(IN) :: celldm(6) INTEGER, INTENT(OUT) :: ibz REAL(DP) :: value, celldm_c(6) LOGICAL :: ldummy IF (ibrav==1) THEN ibz=1 ELSEIF (ibrav==2) THEN ibz=2 ELSEIF (ibrav==3) THEN ibz=3 ELSEIF (ibrav==4) THEN ibz = 13 ELSEIF (ibrav==5) THEN IF (celldm(4) > 0.0_DP) THEN ibz=14 ELSE ibz=15 ENDIF ELSEIF (ibrav==6) THEN ibz=4 ELSEIF (ibrav==7) THEN IF (celldm(3) > 1.0_DP) THEN ibz=6 ELSE ibz=5 ENDIF ELSEIF (ibrav==8) THEN ibz=7 ELSEIF (ibrav==9) THEN ibz=12 ELSEIF (ibrav==10) THEN celldm_c=celldm IF ((celldm(2)< 1.0_DP) .OR. (celldm(3) < 1.0_DP) .OR. & (celldm(2) > celldm(3))) THEN CALL canonical_celldm(celldm, celldm_c, ldummy, ldummy, ldummy) ENDIF value=1.0_DP/celldm_c(2)**2 + 1.0_DP/celldm_c(3)**2 IF (value < 1.0_DP-1.D-8) THEN ibz=8 ELSEIF (value > 1.0_DP+1.D-8) THEN ibz=9 ELSE ibz=10 ENDIF ELSEIF (ibrav==11) THEN ibz=11 ELSEIF (ibrav==12.OR.ibrav==13.OR.ibrav==14) THEN CALL errore('find_bz_type','This ibrav is not supported',1) ELSE CALL errore('find_bz_type','Wrong ibrav',1) ENDIF RETURN END SUBROUTINE find_bz_type SUBROUTINE find_vertices(bz_struc) ! ! This routine uses the definition of the vertices of each face to ! identify, for each vertex, the three faces that define it. ! At least three faces must contain the vertex ! IMPLICIT NONE TYPE(bz), INTENT(INOUT) :: bz_struc INTEGER :: ivert, iface, i, iv DO ivert = 1, bz_struc%nvertices iv=1 DO iface=1, bz_struc%nfaces DO i=2, bz_struc%indsur(1,iface)+1 IF (bz_struc%indsur(i,iface) == ivert) THEN bz_struc%ivertex(iv,ivert)= iface iv=iv+1 IF (iv > 3) GOTO 100 EXIT ENDIF ENDDO ENDDO CALL errore('find_vertices','face not found',ivert) 100 CONTINUE ENDDO RETURN END SUBROUTINE find_vertices SUBROUTINE check_one_face_centerer_orthorombic(bz_struc) ! ! This subroutine changes the order of a and b axis in one face centered ! orthorhombic lattice so that a < b. The bg corresponding to ! such a rotated orthorombic lattice are used to generate the BZ. ! IMPLICIT NONE TYPE(bz), INTENT(INOUT) :: bz_struc REAL(DP) :: buffer IF (bz_struc%celldm(2) < 1.0_DP) THEN bz_struc%switch_a_b=.TRUE. buffer=bz_struc%celldm(1) bz_struc%celldm(1)=bz_struc%celldm(1)*bz_struc%celldm(2) bz_struc%celldm(3)=bz_struc%celldm(3)/bz_struc%celldm(2) bz_struc%celldm(2)=1.0_DP / bz_struc%celldm(2) ENDIF CALL direct_and_reciprocal_lattice(bz_struc) RETURN END SUBROUTINE check_one_face_centerer_orthorombic SUBROUTINE check_orthorombic(bz_struc) ! ! This subroutine changes the order of a, b, and c axis in an ! orthorhombic lattice so that a < b < c. The bg corresponding to ! such a rotated orthorombic are used to generate the BZ. ! IMPLICIT NONE TYPE(bz), INTENT(INOUT) :: bz_struc ! ! first exchange the axis if a, b, and c are not ordered in the ! sequence a < b < c ! CALL canonical_celldm(bz_struc%celldm, bz_struc%celldm, bz_struc%switch_a_b, & bz_struc%switch_b_c, bz_struc%rotate_a_b_c) CALL direct_and_reciprocal_lattice(bz_struc) RETURN END SUBROUTINE check_orthorombic SUBROUTINE direct_and_reciprocal_lattice(bz_struc) IMPLICIT NONE TYPE(bz), INTENT(INOUT) :: bz_struc ! ! generate direct lattice vectors ! CALL latgen(bz_struc%ibrav,bz_struc%celldm,bz_struc%at(:,1), & bz_struc%at(:,2),bz_struc%at(:,3),bz_struc%omega) ! ! generate reciprocal lattice vectors ! CALL recips( bz_struc%at(:,1), bz_struc%at(:,2), bz_struc%at(:,3), & bz_struc%bg(:,1), bz_struc%bg(:,2), bz_struc%bg(:,3) ) RETURN END SUBROUTINE direct_and_reciprocal_lattice SUBROUTINE adjust_orthorombic(bz_struc) ! ! This routine rotates the coordinates of the x,y,z points of bz_struc ! so that they correspond to the original orthorombic lattice ! IMPLICIT NONE TYPE(bz), INTENT(INOUT) :: bz_struc REAL(DP) :: buffer, buffer3(3) INTEGER :: ivert, ilett IF (bz_struc%switch_a_b) THEN DO ivert = 1, bz_struc%nvertices buffer = bz_struc%vertex_coord(1,ivert) bz_struc%vertex_coord(1,ivert)=bz_struc%vertex_coord(2,ivert) bz_struc%vertex_coord(2,ivert)=buffer ENDDO DO ilett = 1, bz_struc%nlett buffer = bz_struc%letter_coord(1,ilett) bz_struc%letter_coord(1,ilett)=bz_struc%letter_coord(2,ilett) bz_struc%letter_coord(2,ilett)=buffer ENDDO bz_struc%vertex_coord=bz_struc%vertex_coord*bz_struc%celldm(2) bz_struc%letter_coord=bz_struc%letter_coord*bz_struc%celldm(2) buffer3=bz_struc%xi bz_struc%xi=0.0_DP bz_struc%xi(1) = bz_struc%yi(2) * bz_struc%celldm(2) bz_struc%yi=0.0_DP bz_struc%yi(2) = buffer3(1) * bz_struc%celldm(2) bz_struc%zi = bz_struc%zi * bz_struc%celldm(2) ELSEIF (bz_struc%rotate_a_b_c) THEN DO ivert = 1, bz_struc%nvertices buffer = bz_struc%vertex_coord(1,ivert) bz_struc%vertex_coord(1,ivert)=bz_struc%vertex_coord(3,ivert) bz_struc%vertex_coord(3,ivert)=bz_struc%vertex_coord(2,ivert) bz_struc%vertex_coord(2,ivert)=buffer ENDDO DO ilett = 1, bz_struc%nlett buffer = bz_struc%letter_coord(1,ilett) bz_struc%letter_coord(1,ilett)=bz_struc%letter_coord(3,ilett) bz_struc%letter_coord(3,ilett)=bz_struc%letter_coord(2,ilett) bz_struc%letter_coord(2,ilett)=buffer ENDDO bz_struc%vertex_coord=bz_struc%vertex_coord*bz_struc%celldm(2) bz_struc%letter_coord=bz_struc%letter_coord*bz_struc%celldm(2) buffer3 = bz_struc%xi bz_struc%xi=0.0_DP bz_struc%xi(1) = bz_struc%zi(3) * bz_struc%celldm(2) bz_struc%zi=0.0_DP bz_struc%zi(3) = bz_struc%yi(2) * bz_struc%celldm(2) bz_struc%yi=0.0_DP bz_struc%yi(2) = buffer3(1) * bz_struc%celldm(2) ENDIF IF (bz_struc%switch_b_c) THEN ! ! first adjust the coordinates of the vertices ! DO ivert = 1, bz_struc%nvertices buffer = bz_struc%vertex_coord(2,ivert) bz_struc%vertex_coord(2,ivert)=bz_struc%vertex_coord(3,ivert) bz_struc%vertex_coord(3,ivert)=buffer ENDDO ! ! then adjust the coordinates of the letters ! DO ilett = 1, bz_struc%nlett buffer = bz_struc%letter_coord(2,ilett) bz_struc%letter_coord(2,ilett)=bz_struc%letter_coord(3,ilett) bz_struc%letter_coord(3,ilett)=buffer ENDDO ! ! then adjust the crossing of the coordinate axis with the surfaces ! buffer3=bz_struc%yi bz_struc%yi=0.0_DP bz_struc%yi(2)=bz_struc%zi(3) bz_struc%zi=0.0_DP bz_struc%zi(3)=buffer3(2) ENDIF RETURN END SUBROUTINE adjust_orthorombic SUBROUTINE adjust_orthorombic_vect(bz_struc,vect) ! ! This routine rotates the coordinates of a vector of bz_struc ! so that they correspond to the original orthorombic lattice ! IMPLICIT NONE TYPE(bz), INTENT(IN) :: bz_struc REAL(DP), INTENT(INOUT) :: vect(3) REAL(DP) :: buffer IF (bz_struc%switch_b_c) THEN buffer = vect(2) vect(2)=vect(3) vect(3)=buffer ENDIF IF (bz_struc%switch_a_b) THEN buffer = vect(1) vect(1)=vect(2) vect(2)=buffer ELSEIF (bz_struc%rotate_a_b_c) THEN buffer = vect(3) vect(3)=vect(1) vect(1)=vect(2) vect(2)=buffer ENDIF RETURN END SUBROUTINE adjust_orthorombic_vect SUBROUTINE adjust_one_face_centered_orthorombic(bz_struc) ! ! This routine rotates the coordinates of the x, y, z points of bz_struc ! so that they correspond to the original one face centered orthorombic ! lattice ! IMPLICIT NONE TYPE(bz), INTENT(INOUT) :: bz_struc REAL(DP) :: buffer, buffer3(3) INTEGER :: ivert, ilett IF (bz_struc%switch_a_b) THEN DO ivert = 1, bz_struc%nvertices buffer = bz_struc%vertex_coord(1,ivert) bz_struc%vertex_coord(1,ivert)=bz_struc%vertex_coord(2,ivert) bz_struc%vertex_coord(2,ivert)=buffer ENDDO DO ilett = 1, bz_struc%nlett buffer = bz_struc%letter_coord(1,ilett) bz_struc%letter_coord(1,ilett)=bz_struc%letter_coord(2,ilett) bz_struc%letter_coord(2,ilett)=buffer ENDDO bz_struc%vertex_coord=bz_struc%vertex_coord*bz_struc%celldm(2) bz_struc%letter_coord=bz_struc%letter_coord*bz_struc%celldm(2) buffer3=bz_struc%xi bz_struc%xi=0.0_DP bz_struc%xi(1) = bz_struc%yi(2) * bz_struc%celldm(2) bz_struc%yi=0.0_DP bz_struc%yi(2) = buffer3(1) * bz_struc%celldm(2) bz_struc%zi = bz_struc%zi * bz_struc%celldm(2) ENDIF RETURN END SUBROUTINE adjust_one_face_centered_orthorombic SUBROUTINE canonical_celldm(celldm, celldm_c, switch_a_b, switch_b_c, & rotate_a_b_c) ! ! This subroutine changes the order of a, b, and c axis in an ! orthorhombic lattice so that a < b < c. The bg corresponding to ! such a rotated orthorombic are used to generate the BZ and then ! the coordinates are rotated so as to recover the original order. ! IMPLICIT NONE REAL(DP), INTENT(IN) :: celldm(6) REAL(DP), INTENT(OUT) :: celldm_c(6) LOGICAL :: switch_a_b, switch_b_c, rotate_a_b_c REAL(DP) :: buffer celldm_c = celldm switch_a_b = .FALSE. switch_b_c = .FALSE. rotate_a_b_c = .FALSE. ! ! If b > c switch them ! IF ( celldm_c(2) > celldm_c(3) ) THEN switch_b_c=.TRUE. buffer=celldm_c(2) celldm_c(2)=celldm_c(3) celldm_c(3)=buffer ENDIF IF ( celldm_c(2) < 1.0_DP .AND. celldm_c(3) > 1.0_DP ) THEN ! ! In this case a > b but a < c, just switch a and b ! switch_a_b=.TRUE. celldm_c(1) = celldm_c(2) * celldm_c(1) celldm_c(3) = celldm_c(3) / celldm_c(2) celldm_c(2) = 1.0_DP / celldm_c(2) ELSEIF ( celldm_c(2) < 1.0_DP ) THEN ! ! In this case b < c < a, we rotate a, b, and c ! rotate_a_b_c=.TRUE. buffer=celldm_c(3) celldm_c(1) = celldm_c(2) * celldm_c(1) celldm_c(3) = 1.0_DP / celldm_c(2) celldm_c(2) = buffer / celldm_c(2) ENDIF RETURN END SUBROUTINE canonical_celldm SUBROUTINE find_axis_coordinates(bz_struc) IMPLICIT NONE TYPE(bz), INTENT(INOUT) :: bz_struc REAL(DP) :: x0(3), vect(3), xi(3), xmin INTEGER :: ifaces x0 = 0.0_DP vect=0.0_DP vect(1)=1.0_DP xmin=1.D20 DO ifaces=1, bz_struc%nfaces IF (ABS(bz_struc%normal(1,ifaces)) > 1.d-9) THEN CALL inter_plane_line(x0, vect, bz_struc%normal(:,ifaces), xi) IF (xi(1) > 0.0_DP .AND. xi(1) < xmin) THEN bz_struc%xi=xi bz_struc%xaxis=ifaces xmin=xi(1) ENDIF ENDIF ENDDO x0 = 0.0_DP vect=0.0_DP vect(2)=1.0_DP xmin=1.D20 DO ifaces=1, bz_struc%nfaces IF (ABS(bz_struc%normal(2,ifaces)) > 1.d-9) THEN CALL inter_plane_line(x0, vect, bz_struc%normal(:,ifaces), xi) IF (xi(2) > 0.0_DP .AND. xi(2) < xmin) THEN bz_struc%yi=xi bz_struc%yaxis=ifaces xmin=xi(2) ENDIF ENDIF ENDDO x0 = 0.0_DP vect=0.0_DP vect(3)=1.0_DP xmin=1.D20 DO ifaces=1, bz_struc%nfaces IF (ABS(bz_struc%normal(3,ifaces)) > 1.d-9) THEN CALL inter_plane_line(x0, vect, bz_struc%normal(:,ifaces), xi) IF (xi(3) > 0.0_DP .AND. xi(3) < xmin) THEN bz_struc%zi=xi bz_struc%zaxis=ifaces xmin=xi(3) ENDIF ENDIF ENDDO RETURN END SUBROUTINE SUBROUTINE inter_plane_line(x0, vect, bplane, xk) ! ! This routine finds the intersection between the line passing through ! x0 and parallel to vect, and the plane passing through bplane/2 and ! perpendicular to bplane ! IMPLICIT NONE REAL(DP), INTENT(IN) :: x0(3), vect(3), bplane(3) REAL(DP), INTENT(OUT) :: xk(3) REAL(DP) :: lambda REAL(DP) :: x0b, vb, b2 vb=vect(1)*bplane(1)+vect(2)*bplane(2)+vect(3)*bplane(3) IF (ABS(vb) < 1.d-9) & CALL errore('inter_plane_line','The line and the plane are parallel',1) x0b=x0(1)*bplane(1)+x0(2)*bplane(2)+x0(3)*bplane(3) b2=bplane(1)*bplane(1)+bplane(2)*bplane(2)+bplane(3)*bplane(3) lambda=(b2-2.0_DP*x0b)/(2.0_DP * vb) xk(:)=x0(:)+lambda*vect(:) RETURN END SUBROUTINE inter_plane_line SUBROUTINE transform_label_coord(ibrav, celldm, xk, letter, label_list, & npk_label, nks, k_points, point_label_type ) ! ! This routine transforms the labels in the array letter into k points ! coordinates that are put in the array xk in the position indicated ! by label_list. If k_point='crystal' the coordinates are tranformed ! in the basis of the crystal. point_label_type selects the type of ! labels. npk_label is the size of the array letter and label_list, ! while nks is the size of the array xk. ! IMPLICIT NONE INTEGER, INTENT(IN) :: npk_label INTEGER, INTENT(IN) :: nks INTEGER, INTENT(IN) :: ibrav INTEGER, INTENT(IN) :: label_list(npk_label) REAL(DP), INTENT(IN) :: celldm(6) REAL(DP), INTENT(INOUT) :: xk(3, nks) CHARACTER(LEN=3), INTENT(IN) :: letter(npk_label) CHARACTER(LEN=*), INTENT(IN) :: k_points, point_label_type INTEGER :: bzt, i REAL(DP) :: omega, at(3,3), bg(3,3), xk_buffer(3) TYPE(bz) :: bz_struc ! ! Find the brillouin zone type ! CALL find_bz_type(ibrav, celldm, bzt) ! ! generate direct lattice vectors ! CALL latgen(ibrav,celldm,at(:,1),at(:,2),at(:,3),omega) ! ! we use at in units of celldm(1) ! at=at/celldm(1) ! ! generate reciprocal lattice vectors ! CALL recips( at(:,1), at(:,2), at(:,3), bg(:,1), bg(:,2), bg(:,3) ) ! ! load the information on the Brillouin zone ! CALL set_label_type(bz_struc, point_label_type) CALL allocate_bz(ibrav, bzt, bz_struc, celldm, at, bg ) CALL init_bz(bz_struc) ! ! find for each label the corresponding coordinates and save them ! on the k point list ! DO i=1, npk_label CALL find_letter_coordinate(bz_struc, letter(i), xk_buffer) ! ! The output of this routine is in cartesian coordinates. If the other ! k points are in crystal coordinates we transform xk_buffer to the bg ! base. ! IF (TRIM(k_points)=='crystal') & CALL cryst_to_cart( 1, xk_buffer, at, -1 ) xk(:,label_list(i))=xk_buffer(:) ENDDO CALL deallocate_bz(bz_struc) RETURN END SUBROUTINE transform_label_coord END MODULE bz_form espresso-5.1/Modules/mp_world.f900000644000175000017500000000531112341373034015055 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE mp_world !---------------------------------------------------------------------------- ! USE mp, ONLY : mp_barrier, mp_start, mp_end, mp_stop USE io_global, ONLY : meta_ionode_id, meta_ionode ! IMPLICIT NONE SAVE ! ! ... World group - all QE routines using mp_world_start to start MPI ! ... will work in the communicator passed as input to mp_world_start ! INTEGER :: nproc = 1 ! number of processors INTEGER :: mpime = 0 ! processor index (starts from 0 to nproc-1) INTEGER :: root = 0 ! index of the root processor INTEGER :: world_comm = 0 ! communicator ! ! ... library_mode =.true. if QE is called as a library by an external code ! ... if true, MPI_Init() is not called when starting MPI, ! ... MPI_Finalize() is not called when stopping MPI ! LOGICAL :: library_mode = .FALSE. ! PRIVATE PUBLIC ::nproc, mpime, root, world_comm, mp_world_start, mp_world_end ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE mp_world_start ( my_world_comm ) !----------------------------------------------------------------------- ! IMPLICIT NONE INTEGER, INTENT(IN) :: my_world_comm INTEGER :: ierr ! world_comm = my_world_comm ! ! ... check if mpi is already initialized (library mode) or not ! #if defined(__MPI) CALL mpi_initialized ( library_mode, ierr) IF (ierr/=0) CALL mp_stop( 8000 ) IF (.NOT. library_mode ) THEN CALL mpi_init(ierr) IF (ierr/=0) CALL mp_stop( 8001 ) END IF #endif ! CALL mp_start( nproc, mpime, world_comm ) ! ! ... meta_ionode is true if this processor is the root processor ! ... of the world group - "ionode_world" would be a better name ! ... meta_ionode_id is the index of such processor ! meta_ionode = ( mpime == root ) meta_ionode_id = root ! RETURN ! END SUBROUTINE mp_world_start ! !----------------------------------------------------------------------- SUBROUTINE mp_world_end ( ) !----------------------------------------------------------------------- INTEGER :: ierr ! CALL mp_barrier( world_comm ) CALL mp_end ( world_comm ) #if defined(__MPI) IF (.NOT. library_mode ) THEN CALL mpi_finalize(ierr) IF (ierr/=0) CALL mp_stop( 8002 ) END IF #endif ! END SUBROUTINE mp_world_end ! END MODULE mp_world espresso-5.1/Modules/clocks.f900000644000175000017500000003264312341373034014520 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ... Time-printing utilities - Contains the following subroutines: ! init_clocks( go ) initialization - must be called first ! go = .TRUE. : up to "maxclock" clocks can be started ! go = .FALSE.: only clock #1 can be started ! start_clock( label ) starts clock "label" (max 12 characters) ! if "label" has never been started, initializes it ! issues warning if "label" already started ! stop_clock( label ) stops clock "label" ! issues warning if "label" is either not running ! or has never been started ! print_clock( label ) print cpu and wall time measured by clock "label" ! clock "label" may be running or stopped ! and remains in the same state ! issues warning if "label" has never been started ! ... and the following function (real(kind=dp): ! get_clock( label ) return wall time measured by clock "label" ! returns -1 if "label" has never been started ! ... All output and warnings are written to stdout ! ... Clocks should be started, read, stopped either on all processors, or ! ... only on one, but not half and half! For parallel debugging, uncomment: !#define __TRACE ! ... See also comments in subroutine print_this_clock about parallel case ! !---------------------------------------------------------------------------- MODULE mytime !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! IMPLICIT NONE ! SAVE ! INTEGER, PARAMETER :: maxclock = 100 REAL(DP), PARAMETER :: notrunning = - 1.0_DP ! REAL(DP) :: cputime(maxclock), t0cpu(maxclock) REAL(DP) :: walltime(maxclock), t0wall(maxclock) CHARACTER(len=12) :: clock_label(maxclock) INTEGER :: called(maxclock) ! INTEGER :: nclock = 0 LOGICAL :: no INTEGER :: trace_depth = 0 ! END MODULE mytime ! !---------------------------------------------------------------------------- SUBROUTINE init_clocks( go ) !---------------------------------------------------------------------------- ! ! ... go = .TRUE. : clocks will run ! ... go = .FALSE. : only clock #1 will run ! USE kinds, ONLY : DP USE mytime, ONLY : called, t0cpu, cputime, no, notrunning, maxclock, & clock_label, walltime, t0wall, nclock ! IMPLICIT NONE ! LOGICAL :: go INTEGER :: n ! no = .not. go nclock = 0 ! DO n = 1, maxclock ! called(n) = 0 cputime(n) = 0.0_DP t0cpu(n) = notrunning walltime(n) = 0.0_DP t0wall(n) = notrunning clock_label(n) = ' ' ! ENDDO ! RETURN ! END SUBROUTINE init_clocks ! !---------------------------------------------------------------------------- SUBROUTINE start_clock( label ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout #if defined (__TRACE) USE mp_world, ONLY : mpime #endif USE mytime, ONLY : nclock, clock_label, notrunning, no, maxclock, & t0cpu, t0wall, trace_depth ! IMPLICIT NONE ! CHARACTER(len=*) :: label ! CHARACTER(len=12) :: label_ INTEGER :: n REAL(DP), EXTERNAL :: scnds, cclock ! #if defined (__TRACE) WRITE( stdout, '("mpime = ",I2,", TRACE (depth=",I2,") Start: ",A12)') mpime, trace_depth, label trace_depth = trace_depth + 1 #endif ! IF ( no .and. ( nclock == 1 ) ) RETURN ! ! ... prevent trouble if label is longer than 12 characters ! label_ = trim ( label ) ! DO n = 1, nclock ! IF ( clock_label(n) == label_ ) THEN ! ! ... found previously defined clock: check if not already started, ! ... store in t0cpu the starting time ! IF ( t0cpu(n) /= notrunning ) THEN ! WRITE( stdout, '("start_clock: clock # ",I2," for ",A12, & ! & " already started")' ) n, label_ ELSE t0cpu(n) = scnds() t0wall(n) = cclock() ENDIF ! RETURN ! ENDIF ! ENDDO ! ! ... clock not found : add new clock for given label ! IF ( nclock == maxclock ) THEN ! WRITE( stdout, '("start_clock: Too many clocks! call ignored")' ) ! ELSE ! nclock = nclock + 1 clock_label(nclock) = label_ t0cpu(nclock) = scnds() t0wall(nclock) = cclock() ! ENDIF ! RETURN ! END SUBROUTINE start_clock ! !---------------------------------------------------------------------------- SUBROUTINE stop_clock( label ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout #if defined (__TRACE) USE mp_world, ONLY : mpime #endif USE mytime, ONLY : no, nclock, clock_label, cputime, walltime, & notrunning, called, t0cpu, t0wall, trace_depth ! IMPLICIT NONE ! CHARACTER(len=*) :: label ! CHARACTER(len=12) :: label_ INTEGER :: n REAL(DP), EXTERNAL :: scnds, cclock ! #if defined (__TRACE) trace_depth = trace_depth - 1 WRITE( *, '("mpime = ",I2,", TRACE (depth=",I2,") End: ",A12)') mpime, trace_depth, label #endif ! IF ( no ) RETURN ! ! ... prevent trouble if label is longer than 12 characters ! label_ = trim ( label ) ! DO n = 1, nclock ! IF ( clock_label(n) == label_ ) THEN ! ! ... found previously defined clock : check if properly initialised, ! ... add elapsed time, increase the counter of calls ! IF ( t0cpu(n) == notrunning ) THEN ! WRITE( stdout, '("stop_clock: clock # ",I2," for ",A12, & & " not running")' ) n, label ! ELSE ! cputime(n) = cputime(n) + scnds() - t0cpu(n) walltime(n) = walltime(n) + cclock() - t0wall(n) t0cpu(n) = notrunning t0wall(n) = notrunning called(n) = called(n) + 1 ! ENDIF ! RETURN ! ENDIF ! ENDDO ! ! ... clock not found ! WRITE( stdout, '("stop_clock: no clock for ",A12," found !")' ) label ! RETURN ! END SUBROUTINE stop_clock ! !---------------------------------------------------------------------------- SUBROUTINE print_clock( label ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mytime, ONLY : nclock, clock_label ! IMPLICIT NONE ! CHARACTER(len=*) :: label ! CHARACTER(len=12) :: label_ INTEGER :: n ! IF ( label == ' ' ) THEN ! WRITE( stdout, * ) ! DO n = 1, nclock ! CALL print_this_clock( n ) ! ENDDO ! ELSE ! ! ... prevent trouble if label is longer than 12 characters ! label_ = trim ( label ) ! DO n = 1, nclock ! IF ( clock_label(n) == label_ ) THEN ! CALL print_this_clock( n ) ! exit ! ENDIF ! ENDDO ! ENDIF ! RETURN ! END SUBROUTINE print_clock ! !---------------------------------------------------------------------------- SUBROUTINE print_this_clock( n ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mytime, ONLY : no, nclock, clock_label, cputime, walltime, & notrunning, called, t0cpu, t0wall ! ! ... See comments below about parallel case ! ! USE mp, ONLY : mp_max ! USE mp_images, ONLY : intra_image_comm, my_image_id ! IMPLICIT NONE ! INTEGER :: n REAL(DP) :: elapsed_cpu_time, elapsed_wall_time, nsec, msec INTEGER :: nday, nhour, nmin, nmax, mday, mhour, mmin ! REAL(DP), EXTERNAL :: scnds, cclock ! ! IF ( t0cpu(n) == notrunning ) THEN ! ! ... clock stopped, print the stored value for the cpu time ! elapsed_cpu_time = cputime(n) elapsed_wall_time= walltime(n) ! ELSE ! ! ... clock not stopped, print the current value of the cpu time ! elapsed_cpu_time = cputime(n) + scnds() - t0cpu(n) elapsed_wall_time = walltime(n) + cclock() - t0wall(n) called(n) = called(n) + 1 ! ENDIF ! nmax = called(n) ! ! ... In the parallel case there are several possible approaches ! ... The safest one is to leave each clock independent from the others ! ... Another possibility is to print the maximum across all processors ! ... This is done by uncommenting the following lines ! ! CALL mp_max( elapsed_cpu_time, intra_image_comm ) ! CALL mp_max( elapsed_wall_time, intra_image_comm ) ! CALL mp_max( nmax, intra_image_comm ) ! ! ... In the last line we assume that the maximum cpu time ! ... is associated to the maximum number of calls ! ... NOTA BENE: by uncommenting the above lines you may run into ! ... serious trouble if clocks are not started on all nodes ! IF ( n == 1 ) THEN ! ! ... The first clock is written as days/hour/min/sec ! #if defined(__CLOCK_SECONDS) ! WRITE( stdout, & '(5X,A12," : ",F9.2,"s CPU ",F9.2,"s WALL"/)' ) & clock_label(n), elapsed_cpu_time, elapsed_wall_time ! #else ! nday = elapsed_cpu_time / 86400 nsec = elapsed_cpu_time - 86400 * nday nhour = nsec / 3600 nsec = nsec - 3600 * nhour nmin = nsec / 60 nsec = nsec - 60 * nmin ! ! ... The first clock writes elapsed (wall) time as well ! mday = elapsed_wall_time / 86400 msec = elapsed_wall_time - 86400 * mday mhour = msec / 3600 msec = msec - 3600 * mhour mmin = msec / 60 msec = msec - 60 * mmin ! IF ( nday > 0 .or. mday > 0 ) THEN ! WRITE( stdout, & '(5X,A12," : ",3X,I2,"d",3X,I2,"h",I2, "m CPU ", & & " ",3X,I2,"d",3X,I2,"h",I2, "m WALL"/)' ) & clock_label(n), nday, nhour, nmin, mday, mhour, mmin ! ELSEIF ( nhour > 0 .or. mhour > 0 ) THEN ! WRITE( stdout, & '(5X,A12," : ",3X,I2,"h",I2,"m CPU ", & & " ",3X,I2,"h",I2,"m WALL"/)' ) & clock_label(n), nhour, nmin, mhour, mmin ! ELSEIF ( nmin > 0 .or. mmin > 0 ) THEN ! WRITE( stdout, & '(5X,A12," : ",I2,"m",F5.2,"s CPU ", & & " ",I2,"m",F5.2,"s WALL"/)' ) & clock_label(n), nmin, nsec, mmin, msec ! ELSE ! WRITE( stdout, & '(5X,A12," : ",3X,F5.2,"s CPU ",7X,F5.2,"s WALL"/)' )& clock_label(n), nsec, msec ! ENDIF #endif ! ELSEIF ( nmax == 1 .or. t0cpu(n) /= notrunning ) THEN ! ! ... for clocks that have been called only once ! WRITE( stdout, & '(5X,A12," : ",F9.2,"s CPU ",F9.2,"s WALL (",I8," calls)")' ) & clock_label(n), elapsed_cpu_time, elapsed_wall_time, nmax ! ELSEIF ( nmax == 0 ) THEN ! ! ... for clocks that have never been called ! WRITE( stdout, & '("print_this: clock # ",I2," for ",A12," never called !"/)' ) & n, clock_label(n) ! ELSE ! ! ... for all other clocks ! WRITE( stdout, & '(5X,A12," : ",F9.2,"s CPU ",F9.2,"s WALL (",I8," calls)")' ) & clock_label(n), elapsed_cpu_time, elapsed_wall_time, nmax ! ENDIF ! RETURN ! END SUBROUTINE print_this_clock ! !---------------------------------------------------------------------------- FUNCTION get_clock( label ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mytime, ONLY : no, nclock, clock_label, walltime, & notrunning, called, t0wall, t0cpu ! ! ... See comments in subroutine print_this_clock about parallel case ! ! USE mp, ONLY : mp_max ! USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! REAL(DP) :: get_clock CHARACTER(len=*) :: label INTEGER :: n ! REAL(DP), EXTERNAL :: cclock ! ! IF ( no ) THEN ! IF ( label == clock_label(1) ) THEN ! get_clock = cclock() ! ELSE ! get_clock = notrunning ! ENDIF ! RETURN ! ENDIF ! DO n = 1, nclock ! IF ( label == clock_label(n) ) THEN ! IF ( t0cpu(n) == notrunning ) THEN ! get_clock = walltime(n) ! ELSE ! get_clock = walltime(n) + cclock() - t0wall(n) ! ENDIF ! ! ... See comments in subroutine print_this_clock about parallel case ! ! CALL mp_max( get_clock, intra_image_comm ) ! RETURN ! ENDIF ! ENDDO ! ! ... clock not found ! get_clock = notrunning ! RETURN ! END FUNCTION get_clock espresso-5.1/Modules/mp_images.f900000644000175000017500000000752612341373034015205 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE mp_images !---------------------------------------------------------------------------- ! USE mp, ONLY : mp_barrier, mp_bcast, mp_size, mp_rank, mp_comm_split USE io_global, ONLY : ionode, ionode_id USE parallel_include ! IMPLICIT NONE SAVE ! ! ... Image groups (processors within an image). Images are used for ! ... coarse-grid parallelization of semi-independent calculations, ! ... e.g. points along the reaction path (NEB) or phonon irreps ! INTEGER :: nimage = 1 ! number of images INTEGER :: nproc_image=1 ! number of processors within an image INTEGER :: me_image = 0 ! index of the processor within an image INTEGER :: root_image= 0 ! index of the root processor within an image INTEGER :: my_image_id=0 ! index of my image INTEGER :: inter_image_comm = 0 ! inter image communicator INTEGER :: intra_image_comm = 0 ! intra image communicator CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE mp_start_images ( nimage_, parent_comm ) !----------------------------------------------------------------------- ! ! ... Divide processors (of the "parent_comm" group) into "images". ! ... Requires: nimage_, read from command line ! ... parent_comm, typically world_comm = group of all processors ! IMPLICIT NONE INTEGER, INTENT(IN) :: nimage_, parent_comm ! INTEGER :: parent_nproc, parent_mype ! ! ... nothing needed to be done in serial calculation ! #if defined (__MPI) ! parent_nproc = mp_size( parent_comm ) parent_mype = mp_rank( parent_comm ) ! ! ... nimage_ must have been previously read from command line argument ! ... by a call to routine get_command_line ! nimage = nimage_ ! IF ( nimage < 1 .OR. nimage > parent_nproc ) & CALL errore( 'mp_start_images', 'invalid number of images, out of range', 1 ) IF ( MOD( parent_nproc, nimage ) /= 0 ) & CALL errore( 'mp_start_images', 'n. of images must be divisor of nproc', 1 ) ! ! ... set number of cpus per image ! nproc_image = parent_nproc / nimage ! ! ... set index of image for this processor ( 0 : nimage - 1 ) ! my_image_id = parent_mype / nproc_image ! ! ... set index of processor within the image ( 0 : nproc_image - 1 ) ! me_image = MOD( parent_mype, nproc_image ) ! CALL mp_barrier( parent_comm ) ! ! ... the intra_image_comm communicator is created ! CALL mp_comm_split ( parent_comm, my_image_id, parent_mype, & intra_image_comm ) ! CALL mp_barrier( parent_comm ) ! ! ... the inter_image_comm communicator is created ! CALL mp_comm_split ( parent_comm, me_image, parent_mype, & inter_image_comm ) ! ! ... set processor that performs I/O ! ionode = ( me_image == root_image ) ionode_id = root_image ! #endif RETURN ! END SUBROUTINE mp_start_images ! SUBROUTINE mp_init_image ( parent_comm ) ! ! ... There is just one image: set it to the same as parent_comm (world) ! IMPLICIT NONE INTEGER, INTENT(IN) :: parent_comm ! intra_image_comm = parent_comm nproc_image = mp_size( parent_comm ) me_image = mp_rank( parent_comm ) ! ! ... no need to set inter_image_comm, my_image_id, root_image ! ... set processor that performs I/O ! ionode = ( me_image == root_image ) ionode_id = root_image ! END SUBROUTINE mp_init_image ! END MODULE mp_images espresso-5.1/Modules/bspline.f900000644000175000017500000020725312341373034014677 0ustar mbamba! ! Copyright (C) 2004-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Modified by Davide Ceresoli: ! - use dp from module kinds ! - write to string instead of stdout ! - return error codes ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ! ! VERSION 2.2 ! ! f90 VERSION ! ! This library contains routines for B-spline interpolation in ! one, two, and three dimensions. Part of the routines are based ! on the book by Carl de Boor: A practical guide to Splines (Springer, ! New-York 1978) and have the same calling sequence and names as ! the corresponding routines from the IMSL library. For documen- ! tation see the additional files. NOTE: The results in the demo ! routines may vary slightly on different architectures. ! ! by W. Schadow 12/04/99 ! last changed by W. Schadow 07/28/2000 ! ! ! Wolfgang Schadow ! TRIUMF ! 4004 Wesbrook Mall ! Vancouver, B.C. V6T 2A3 ! Canada ! ! email: schadow@triumf.ca or schadow@physik.uni-bonn.de ! ! www : http://www.triumf.ca/people/schadow ! ! ! ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ! ! ! Copyright (C) 2000 Wolfgang Schadow ! ! This library is free software; you can redistribute it and/or ! modify it under the terms of the GNU Library General Public ! License as published by the Free Software Foundation; either ! version 2 of the License, or (at your option) any later version. ! ! This library is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ! Library General Public License for more details. ! ! You should have received a copy of the GNU Library General Public ! License along with this library; if not, write to the ! Free Software Foundation, Inc., 59 Temple Place - Suite 330, ! Boston, MA 02111-1307, USA. ! ! ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MODULE bspline USE kinds, only : dp IMPLICIT NONE PRIVATE character(80) :: routine character(256) :: errmsg public dbsnak public dbsint, dbsval, dbsder, dbs1gd public dbs2in, dbs2dr, dbs2vl, dbs2gd public dbs3in, dbs3vl, dbs3dr, dbs3gd public get_error_routine public get_error_message CONTAINS !================================================================== subroutine dbsnak(nx,xvec,kxord,xknot, ierr) !================================================================== ! ! Compute the `not-a-knot' spline knot sequence. ! (see de Boor p. 167) ! ! nx - number of data points. (input) ! xvec - array of length ndata containing the location of the ! data points. (input) ! kxord - order of the spline. (input) ! xknot - array of length ndata+korder containing the knot ! sequence. (output) ! implicit none integer, intent(in) :: nx, kxord real(dp), dimension(nx), intent(in) :: xvec real(dp), dimension(nx+kxord), intent(out) :: xknot integer, intent(out) :: ierr real(dp) :: eps integer :: ix logical :: first = .true. save first,eps routine = 'dbsnak' ierr = 0 if (first) then first=.false. eps = epsilon(1.0_dp) !!write(6,*) "subroutine dbsnak: " !!write(6,*) "eps = ",eps endif if((kxord .lt. 0) .or. (kxord .gt. nx)) then write(errmsg,*) "0 <= kxord <= nx is required: kxord,nx=", kxord, nx ierr = 1 return endif do ix = 1, kxord xknot(ix) = xvec(1) end do if(mod(kxord,2) .eq. 0) then do ix = kxord+1, nx xknot(ix) = xvec(ix-kxord/2) end do else do ix = kxord+1, nx xknot(ix) = 0.5_dp * (xvec(ix-kxord/2) + xvec(ix-kxord/2-1)) end do endif do ix = nx+1, nx+kxord xknot(ix) = xvec(nx) * (1.0_dp + eps) end do end subroutine dbsnak !================================================================== subroutine dbsint(nx,xvec,xdata,kx,xknot,bcoef, ierr) !================================================================== ! ! Computes the spline interpolant, returning the B-spline coefficients. ! (see de Boor p. 204) ! ! nx - number of data points. (input) ! xvec - array of length nx containing the data point ! abscissas. (input) ! xdata - array of length ndata containing the data point ! ordinates. (input) ! kx - order of the spline. (input) ! korder must be less than or equal to ndata. ! xknot - array of length nx+kx containing the knot ! sequence. (input) ! xknot must be nondecreasing. ! bscoef - array of length ndata containing the B-spline ! coefficients. (output) ! implicit none integer, intent(in) :: nx, kx real(dp), dimension(nx), intent(in) :: xdata, xvec real(dp), dimension(nx+kx), intent(in) :: xknot real(dp), dimension(nx), intent(out) :: bcoef integer, intent(out) :: ierr integer :: nxp1, kxm1, kpkm2, leftx, lenq integer :: ix, ik,ilp1mx, jj, iflag real(dp) :: xveci real(dp), dimension((2*kx-1)*nx) :: work routine = 'dbsint' ierr = 0 nxp1 = nx + 1 kxm1 = kx - 1 kpkm2 = 2 * kxm1 leftx = kx lenq = nx * (kx + kxm1) do ix = 1, lenq work(ix) = 0.0_dp end do do ix = 1, nx xveci = xvec(ix) ilp1mx = min0(ix+kx,nxp1) leftx = max0(leftx,ix) if (xveci .lt. xknot(leftx)) goto 998 30 if (xveci .lt. xknot(leftx+1)) go to 40 leftx = leftx + 1 if (leftx .lt. ilp1mx) go to 30 leftx = leftx - 1 if (xveci .gt. xknot(leftx+1)) goto 998 40 call bsplvb (xknot,nx+kx,kx,1,xveci,leftx,bcoef) jj = ix - leftx + 1 + (leftx - kx) * (kx + kxm1) do ik = 1, kx jj = jj + kpkm2 work(jj) = bcoef(ik) end do end do call banfac(work,kx+kxm1,nx,kxm1,kxm1,iflag) if (iflag .ne. 1) then write(errmsg,*) 'no solution of linear equation system' ierr = 1 return end if do ix = 1, nx bcoef(ix) = xdata(ix) end do call banslv(work,kx+kxm1,nx,kxm1,kxm1,bcoef) return 998 write(errmsg,*) "xknot(ix) <= xknot(ix+1) required: ix,xknot(ix),xknot(ix+1)=", & ix,xknot(ix),xknot(ix+1) ierr = 2 return end subroutine dbsint !================================================================== function dbsval(x,kx,xknot,nx,bcoef, ierr) !================================================================== ! ! Evaluates a spline, given its B-spline representation. ! ! x - point at which the spline is to be evaluated. (input) ! kx - order of the spline. (input) ! xknot - array of length nx+kx containing the knot ! sequence. (input) ! xknot must be nondecreasing. ! nx - number of B-spline coefficients. (input) ! bcoef - array of length nx containing the B-spline ! coefficients. (input) ! dbsval - value of the spline at x. (output) ! implicit none integer, intent(in) :: nx, kx real(dp) :: dbsval real(dp) :: x real(dp), dimension(nx+kx), intent(in) :: xknot real(dp), dimension(nx), intent(in) :: bcoef integer, intent(out) :: ierr integer :: il, ik, ix, leftx real(dp) :: save1, save2 real(dp), dimension(kx) :: work, dl, dr ierr = 0 routine = 'dbsval' dbsval = 0.0_dp ! ! check if xknot(i) <= xknot(i+1) and calculation of i so that ! xknot(i) <= x < xknot(i+1) ! leftx = 0 do ix = 1,nx+kx-1 if (xknot(ix) .gt. xknot(ix+1)) then write(errmsg,*) "xknot(ix) <= xknot(ix+1) required: ix,xknot(ix),xknot(ix+1)=", & ix,xknot(ix),xknot(ix+1) ierr = 1 return endif if((xknot(ix) .le. x) .and. (x .lt. xknot(ix+1))) leftx = ix end do if(leftx .eq. 0) then write(errmsg,*) "ix with xknot(ix) <= x < xknot(ix+1) required: x=", x ierr = 2 return endif do ik = 1, kx-1 work(ik) = bcoef(leftx+ik-kx) dl(ik) = x - xknot(leftx+ik-kx) dr(ik) = xknot(leftx+ik) - x end do work(kx) = bcoef(leftx) dl(kx) = x - xknot(leftx) do ik = 1, kx-1 save2 = work(ik) do il = ik+1, kx save1 = work(il) work(il) = (dl(il) * work(il) + dr(il-ik) * save2) & & / (dl(il) + dr(il - ik)) save2 = save1 end do end do dbsval = work(kx) end function dbsval !================================================================== function dbsder(iderx,x,kx,xknot,nx,bcoef, ierr) !================================================================== ! ! Evaluates the derivative of a spline, given its B-spline representation. ! ! ! iderx - order of the derivative to be evaluated. (input) ! in particular, iderx = 0 returns the value of the ! spline. ! x - point at which the spline is to be evaluated. (input) ! kx - order of the spline. (input) ! xknot - array of length nx+kx containing the knot ! sequence. (input) ! xknot must be nondecreasing. ! nx - number of B-spline coefficients. (input) ! bcoef - array of length nx containing the B-spline ! coefficients. (input) ! dbsder - value of the iderx-th derivative of the spline at x. ! (output) ! implicit none integer, intent(in) :: iderx, kx, nx real(dp) :: dbsder real(dp), intent(in) :: x real(dp), dimension(nx+kx), intent(in) :: xknot real(dp), dimension(nx), intent(in) :: bcoef integer, intent(out) :: ierr integer :: ix, ik, il, leftx real(dp) :: save, save1, save2, y, sum, dik real(dp), dimension(kx) :: work, dl, dr,bsp ierr = 0 routine = 'dbsder' dbsder = 0.0_dp ! ! check if xknot(i) <= xknot(i+1) and calculation of i so that ! xknot(i) <= x < xknot(i+1) ! leftx = 0 do ix = 1,nx+kx-1 if (xknot(ix) .gt. xknot(ix+1)) then write(errmsg,*) "xknot(ix) <= xknot(ix+1) required: ix,xknot(ix),xknot(ix+1)=", & ix,xknot(ix),xknot(ix+1) ierr = 1 return endif if ((xknot(ix) .le. x) .and. (x .lt. xknot(ix+1))) leftx = ix end do if (leftx .eq. 0) then write(errmsg,*) "ix with xknot(ix) <= x < xknot(ix+1) required: x=", x ierr = 2 return endif if (iderx .eq. 0) then do ik = 1,kx-1 work(ik) = bcoef(leftx+ik-kx) dl(ik) = x - xknot(leftx+ik-kx) dr(ik) = xknot(leftx+ik) - x end do work(kx) = bcoef(leftx) dl(kx) = x - xknot(leftx) do ik = 1,kx-1 save2 = work(ik) do il = ik+1,kx save1 = work(il) work(il) = (dl(il) * work(il) + dr(il-ik) * save2) & & / (dl(il) + dr(il - ik)) save2 = save1 end do end do dbsder = work(kx) elseif ((iderx .ge. 1) .and. (iderx .lt. kx)) then bsp(1) = 1.0_dp do ik = 1,kx-iderx-1 dr(ik) = xknot(leftx+ik) - x dl(ik) = x - xknot(leftx+1-ik) save = bsp(1) bsp(1) = 0.0_dp do il = 1, ik y = save / (dr(il) + dl(ik+1-il)) bsp(il) = bsp(il) + dr(il) * y save = bsp(il+1) bsp(il+1) = dl(ik+1-il) * y end do end do do ik = 1, kx work(ik) = bcoef(leftx+ik-kx) dr(ik) = xknot(leftx+ik) - x dl(ik) = x - xknot(leftx+ik-kx) end do do ik = 1, iderx dik = dble(kx - ik) save2 = work(ik) do il = ik+1, kx save1 = work(il) work(il) = dik * (work(il) - save2) /(dl(il) + dr(il-ik)) save2 = save1 end do end do sum = 0.0_dp do ix = 1, kx-iderx sum = sum + bsp(ix) * work(iderx+ix) end do dbsder = sum else dbsder = 0.0_dp endif end function dbsder !================================================================== subroutine dbs1gd(iderx,nxvec,xvec,kx,xknot,nx,bcoef,val, ierr) !================================================================== ! ! Evaluates the derivative of a spline on a grid, given its B-spline ! representation. ! ! iderx - order of the derivative to be evaluated. (input) ! in particular, iderx = 0 returns the value of the ! spline. ! nxvec - length of vector xvec. (input) ! xvec - array of length nxvec containing the points at which the ! spline is to be evaluated. (input) ! xvec should be strictly increasing. ! kx - order of the spline. (input) ! xknot - array of length nx+kx containing the knot ! sequence. (input) ! xknot must be nondecreasing. ! nx - number of B-spline coefficients. (input) ! bcoef - array of length nx containing the B-spline ! coefficients. (input) ! val - array of length nxvec containing the values of the ! iderx-th derivative of the spline at the points in ! xvec. (output) ! implicit none integer, intent(in) :: iderx, nxvec, kx, nx real(dp), dimension(nxvec), intent(in) :: xvec real(dp), dimension(nx), intent(in) :: bcoef real(dp), dimension(nx+kx), intent(in) :: xknot real(dp), dimension(nxvec), intent(out) :: val integer, intent(out) :: ierr integer :: i, il, ik, ix integer, dimension(nxvec) :: leftx real(dp) :: dik real(dp), dimension(nxvec,kx) :: dl, dr, biatx, work real(dp), dimension(nxvec) :: save1, save2, term logical :: same, next routine = 'dbs1gd' ierr = 0 leftx(1) = 0 call huntn(xknot,nx+kx,kx,xvec(1),leftx(1)) do ix = 2, nxvec leftx(ix) = leftx(ix-1) same = (xknot(leftx(ix)) .le. xvec(ix)) & & .and. (xvec(ix) .le. xknot(leftx(ix)+1)) if(.not. same ) then leftx(ix) = leftx(ix) + 1 next = (xknot(leftx(ix)) .le. xvec(ix)) & & .and. (xvec(ix) .le. xknot(leftx(ix)+1)) if (.not. next) & & call huntn(xknot,nx+kx,kx,xvec(ix),leftx(ix)) endif end do do ix = 1, nx+kx-1 if (xknot(ix) .gt. xknot(ix+1)) then write(errmsg,*) "xknot(ix) <= xknot(ix+1) required: ix,xknot(ix),xknot(ix+1)=", & ix,xknot(ix),xknot(ix+1) ierr = 1 return endif end do do ix = 1, nxvec if ((xvec(ix).lt.xknot(1)).or.(xvec(ix).gt.xknot(nx+kx))) then write(errmsg,*) "ix with xknot(ix) <= x < xknot(ix+1) required: x=", xvec(ix) ierr = 2 return endif end do if (iderx .eq. 0) then do ix = 1,nxvec biatx(ix,1) = 1._dp val(ix) = 0._dp end do do ik = 1, kx-1 do ix = 1, nxvec dr(ix,ik) = xknot(leftx(ix)+ik) - xvec(ix) dl(ix,ik) = xvec(ix) - xknot(leftx(ix)+1-ik) save1(ix) = 0._dp end do do il = 1, ik do ix = 1,nxvec term(ix) = biatx(ix,il) & & / (dr(ix,il) + dl(ix,ik+1-il)) biatx(ix,il) = save1(ix) + dr(ix,il) * term(ix) save1(ix) = dl(ix,ik+1-il) * term(ix) end do end do do ix = 1, nxvec biatx(ix,ik+1) = save1(ix) end do end do do ik = 1, kx do ix = 1, nxvec val(ix) = val(ix) + biatx(ix,ik) * bcoef(leftx(ix)-kx+ik) end do end do elseif ((iderx .ge. 1) .and. (iderx .lt. kx)) then do ix = 1, nxvec biatx(ix,1) = 1._dp val(ix) = 0._dp end do do ik = 1, kx-iderx-1 do ix = 1, nxvec dr(ix,ik) = xknot(leftx(ix)+ik) - xvec(ix) dl(ix,ik) = xvec(ix) - xknot(leftx(ix)+1-ik) save1(ix) = biatx(ix,1) biatx(ix,1) = 0.0_dp do il = 1, ik term(ix) = save1(ix) & & / (dr(ix,il) + dl(ix,ik+1-il)) biatx(ix,il) = biatx(ix,il) + dr(ix,il) * term(ix) save1(ix) = biatx(ix,il+1) biatx(ix,il+1) = dl(ix,ik+1-il) * term(ix) end do end do end do do ik = 1, kx do ix = 1, nxvec work(ix,ik) = bcoef(leftx(ix)+ik-kx) dr(ix,ik) = xknot(leftx(ix)+ik) - xvec(ix) dl(ix,ik) = xvec(ix) - xknot(leftx(ix)+ik-kx) end do end do do ik = 1, iderx dik = dble(kx - ik) do ix = 1, nxvec save2(ix) = work(ix,ik) do il = ik+1, kx save1(ix) = work(ix,il) work(ix,il) = dik * (work(ix,il) - save2(ix)) & & /(dl(ix,il) + dr(ix,il-ik)) save2(ix) = save1(ix) end do end do end do do i = 1, kx-iderx do ix = 1, nxvec val(ix) = val(ix) + biatx(ix,i) * work(ix,iderx+i) end do end do else do ix = 1, nxvec val(ix) = 0.0_dp end do endif end subroutine dbs1gd !================================================================== function dbsdca(iderx,x,kx,xknot,nx,bcoef,leftx) !================================================================== ! ! This routine is equivalent to the routine dbsder, but it does not ! check the parameters!!! ! ! Evaluates the derivative of a spline, given its B-spline representation. ! ! ! iderx - order of the derivative to be evaluated. (input) ! in particular, iderx = 0 returns the value of the ! spline. ! x - point at which the spline is to be evaluated. (input) ! kx - order of the spline. (input) ! xknot - array of length nx+kx containing the knot ! sequence. (input) ! xknot must be nondecreasing. ! nx - number of B-spline coefficients. (input) ! bcoef - array of length nx containing the B-spline ! coefficients. (input) ! leftx - number of the intervall of xknot that includes x ! dbsdca - value of the ideriv-th derivative of the spline at x. ! (output) ! implicit none integer, intent(in) :: iderx, kx, nx real(dp) :: dbsdca real(dp), intent(in) :: x real(dp), dimension(nx+kx), intent(in) :: xknot real(dp), dimension(nx), intent(in) :: bcoef integer :: i, ik, il, leftx real(dp) :: save, save1, save2, y, sum, dik real(dp), dimension(kx) :: work, dl, dr,bsp if (iderx .eq. 0) then do ik = 1, kx-1 work(ik) = bcoef(leftx+ik-kx) dl(ik) = x - xknot(leftx+ik-kx) dr(ik) = xknot(leftx+ik) - x end do work(kx) = bcoef(leftx) dl(kx) = x - xknot(leftx) do ik = 1, kx-1 save2 = work(ik) do il = ik+1, kx save1 = work(il) work(il) = (dl(il) * work(il) + dr(il-ik) * save2) & & / (dl(il) + dr(il - ik)) save2 = save1 end do end do dbsdca = work(kx) elseif ((iderx .ge. 1) .and. (iderx .lt. kx)) then bsp(1) = 1.0_dp do ik = 1,kx-iderx-1 dr(ik) = xknot(leftx+ik) - x dl(ik) = x - xknot(leftx+1-ik) save = bsp(1) bsp(1) = 0.0_dp do il = 1, ik y = save / (dr(il) + dl(ik+1-il)) bsp(il) = bsp(il) + dr(il) * y save = bsp(il+1) bsp(il+1) = dl(ik+1-il) * y end do end do do ik = 1, kx work(ik) = bcoef(leftx+ik-kx) dr(ik) = xknot(leftx+ik) - x dl(ik) = x - xknot(leftx+ik-kx) end do do ik = 1, iderx dik = dble(kx - ik) save2 = work(ik) do il = ik+1, kx save1 = work(il) work(il) = dik * (work(il) - save2) /(dl(il) + dr(il-ik)) save2 = save1 end do end do sum = 0.0_dp do i = 1, kx-iderx sum = sum + bsp(i) * work(iderx+i) end do dbsdca = sum else dbsdca = 0.0_dp endif end function dbsdca !================================================================== subroutine dbs2in(nx,xvec,ny,yvec,xydata,ldf,kx,ky,xknot,yknot,bcoef, ierr) !================================================================== ! ! Computes a two-dimensional tensor-product spline interpolant, ! returning the tensor-product B-spline coefficients. ! ! nx - number of data points in the x-direction. (input) ! xvec - array of length nx containing the data points in ! the x-direction. (input) ! xdata must be strictly increasing. ! ny - number of data points in the y-direction. (input) ! yvec - array of length ny containing the data points in ! the y-direction. (input) ! ydata must be strictly increasing. ! xydata - array of size nx by nydata containing the values to ! be interpolated. (input) ! fdata(i,j) is the value at (xdata(i),ydata(j)). ! ldf - the leading dimension of fdata exactly as specified in ! the dimension statement of the calling program. ! (input) ! kx - order of the spline in the x-direction. (input) ! kxord must be less than or equal to nxdata. ! ky - order of the spline in the y-direction. (input) ! kyord must be less than or equal to nydata. ! xknot - array of length nx+kx containing the knot ! sequence in the x-direction. (input) ! xknot must be nondecreasing. ! yknot - array of length ny+ky containing the knot ! sequence in the y-direction. (input) ! yknot must be nondecreasing. ! bcoef - array of length nx*ny containing the ! tensor-product B-spline coefficients. (output) ! bscoef is treated internally as a matrix of size nxdata ! by nydata. ! implicit none integer, intent(in) :: nx, ny, kx, ky, ldf real(dp), dimension(nx), intent(in) :: xvec real(dp), dimension(ny), intent(in) :: yvec real(dp), dimension(nx+kx), intent(in) :: xknot real(dp), dimension(ny+ky), intent(in) :: yknot real(dp), dimension(ldf,*), intent(in) :: xydata real(dp), dimension(nx,ny), intent(out) :: bcoef integer, intent(out) :: ierr real(dp), dimension(max(nx,ny),max(nx,ny)) :: work1 real(dp), dimension(max(nx,ny)) :: work2 real(dp), dimension(max((2*kx-1)*nx,(2*ky-1)*ny)) :: work3 call spli2d(xvec,ldf,xydata,xknot,nx,kx,ny,work2,work3,work1, ierr) if (ierr /= 0) return call spli2d(yvec,ny, work1, yknot,ny,ky,nx,work2,work3,bcoef, ierr) end subroutine dbs2in !================================================================== subroutine spli2d(xyvec,ld,xydata,xyknot,n,k,m,work2,work3,bcoef, ierr) !================================================================== implicit none integer, intent(in) :: ld, n, k, m real(dp), dimension(n), intent(in) :: xyvec real(dp), dimension(n+k), intent(in) :: xyknot real(dp), dimension(ld,m), intent(in) :: xydata real(dp), dimension(m,n), intent(out) :: bcoef real(dp), dimension(n), intent(out) :: work2 real(dp), dimension((2*k-1)*n), intent(out) :: work3 integer, intent(out) :: ierr integer :: np1, km1, kpkm2, left, lenq, i, iflag, ilp1mx, j, jj real(dp) :: xyveci routine = 'spli2d' ierr = 0 np1 = n + 1 km1 = k - 1 kpkm2 = 2 * km1 left = k lenq = n * (k + km1) do i = 1,lenq work3(i) = 0.0_dp end do do i = 1, n xyveci = xyvec(i) ilp1mx = min0(i+k,np1) left = max0(left,i) if (xyveci .lt. xyknot(left)) go to 998 30 if (xyveci .lt. xyknot(left+1)) go to 40 left = left + 1 if (left .lt. ilp1mx) go to 30 left = left - 1 if (xyveci .gt. xyknot(left+1)) go to 998 40 call bsplvb(xyknot,n+k,k,1,xyveci,left,work2) jj = i - left + 1 + (left - k) * (k + km1) do j = 1, k jj = jj + kpkm2 work3(jj) = work2(j) end do end do call banfac(work3,k+km1,n,km1,km1,iflag ) if (iflag .ne. 1) then write(errmsg,*) "no solution of linear equation system" ierr = 1 return end if do j = 1, m do i = 1, n work2(i) = xydata(i,j) end do call banslv(work3,k+km1,n,km1,km1,work2) do i = 1, n bcoef(j,i) = work2(i) end do end do return 998 write(errmsg,*) "i with knot(i) <= x/y < knot(i+1) required: knot(1),knot(n+k)=", & xyknot(1), xyknot(n+k) ierr = 2 return end subroutine spli2d !================================================================== function dbs2vl(x,y,kx,ky,xknot,yknot,nx,ny,bcoef, ierr) !================================================================== ! ! evaluates a two-dimensional tensor-product spline, given its ! tensor-product B-spline representation. ! ! x - x-coordinate of the point at which the spline is to be ! evaluated. (input) ! y - y-coordinate of the point at which the spline is to be ! evaluated. (input) ! kx - order of the spline in the x-direction. (input) ! ky - order of the spline in the y-direction. (input) ! xknot - array of length nx+kx containing the knot ! sequence in the x-direction. (input) ! xknot must be nondecreasing. ! yknot - array of length ny+ky containing the knot ! sequence in the y-direction. (input) ! yknot must be nondecreasing. ! nx - number of B-spline coefficients in the x-direction. ! (input) ! ny - number of B-spline coefficients in the y-direction. ! (input) ! bcoef - array of length nx*ny containing the ! tensor-product B-spline coefficients. (input) ! bscoef is treated internally as a matrix of size nx ! by ny. ! dbs2vl - value of the spline at (x,y). (output) ! implicit none integer, intent(in) :: nx, ny, kx, ky real(dp), intent(in) :: x, y real(dp), dimension(nx+kx), intent(in) :: xknot real(dp), dimension(ny+ky), intent(in) :: yknot real(dp), dimension(nx,ny), intent(in) :: bcoef real(dp) :: dbs2vl integer, intent(out) :: ierr integer :: ix, iy, iky, leftx, lefty real(dp), dimension(ky) :: work routine = 'dbs2vl' ierr = 0 dbs2vl = 0.0_dp ! ! check if knot(i) <= knot(i+1) and calculation of i so that ! knot(i) <= x < knot(i+1) ! leftx = 0 do ix = 1, nx+kx-1 if (xknot(ix) .gt. xknot(ix+1)) then write(errmsg,*) "xknot(ix) <= xknot(ix+1) required: ix,xknot(ix),xknot(ix+1)=", & ix, xknot(ix), xknot(ix+1) ierr = 1 return endif if((xknot(ix) .le. x) .and. (x .lt. xknot(ix+1))) leftx = ix end do if(leftx .eq. 0) then write(errmsg,*) "ix with xknot(ix) <= x < xknot(ix+1) required: x=", x ierr = 2 return endif lefty = 0 do iy = 1, ny+ky-1 if (yknot(iy) .gt. yknot(iy+1)) then write(errmsg,*) "yknot(iy) <= yknot(iy+1) required: iy,yknot(iy),yknot(iy+1)=", & iy,yknot(iy),yknot(iy+1) ierr = 3 return endif if((yknot(iy) .le. y) .and. (y .lt. yknot(iy+1))) lefty = iy end do if(lefty .eq. 0) then write(errmsg,*) "iy with yknot(iy) <= y < yknot(iy+1) required: y=", y ierr = 4 return endif do iky = 1, ky work(iky) = dbsdca(0,x,kx,xknot,nx,bcoef(1,lefty-ky+iky),leftx) end do dbs2vl = dbsval(y,ky,yknot(lefty-ky+1),ky,work, ierr) end function dbs2vl !================================================================== function dbs2dr(iderx,idery,x,y,kx,ky,xknot,yknot,nx,ny,bcoef, ierr) !================================================================== ! ! Evaluates the derivative of a two-dimensional tensor-product spline, ! given its tensor-product B-spline representation. ! ! iderx - order of the derivative in the x-direction. (input) ! idery - order of the derivative in the y-direction. (input) ! x - x-coordinate of the point at which the spline is to be ! evaluated. (input) ! y - y-coordinate of the point at which the spline is to be ! evaluated. (input) ! kx - order of the spline in the x-direction. (input) ! ky - order of the spline in the y-direction. (input) ! xknot - array of length nx+kx containing the knot ! sequence in the x-direction. (input) ! xknot must be nondecreasing. ! yknot - array of length ny+ky containing the knot ! sequence in the y-direction. (input) ! yknot must be nondecreasing. ! nx - number of B-spline coefficients in the x-direction. ! (input) ! ny - number of B-spline coefficients in the y-direction. ! (input) ! bcoef - array of length nx*ny containing the ! tensor-product B-spline coefficients. (input) ! bscoef is treated internally as a matrix of size nx ! by ny. ! dbs2dr - value of the (iderx,idery) derivative of the spline at ! (x,y). (output) ! implicit none integer, intent(in) :: iderx, idery integer, intent(in) :: kx, nx, ky, ny real(dp) :: dbs2dr real(dp), intent(in) :: x, y real(dp), dimension(nx+kx), intent(in) :: xknot real(dp), dimension(ny+ky), intent(in) :: yknot real(dp), dimension(nx,ny), intent(in) :: bcoef integer, intent(out) :: ierr integer :: ix, iy, iky, nintx, ninty real(dp), dimension(ky) :: work routine = 'dbs2dr' ierr = 0 dbs2dr = 0.0_dp ! ! check if knot(i) <= knot(i+1) and calculation of i so that ! knot(i) <= x < knot(i+1) ! nintx = 0 do ix = 1, nx+kx-1 if (xknot(ix) .gt. xknot(ix+1)) then write(errmsg,*) "xknot(ix) <= xknot(ix+1) required: ix,xknot(ix),xknot(ix+1)=", & ix, xknot(ix), xknot(ix+1) ierr = 1 return endif if((xknot(ix) .le. x) .and. (x .lt. xknot(ix+1))) nintx = ix end do if(nintx .eq. 0) then write(errmsg,*) "ix with xknot(ix) <= x < xknot(ix+1) required: x=", x ierr = 2 return endif ninty = 0 do iy = 1, ny+ky-1 if (yknot(iy) .gt. yknot(iy+1)) then write(errmsg,*) "yknot(iy) <= yknot(iy+1) required: iy,yknot(iy),yknot(iy+1)=", & iy,yknot(iy),yknot(iy+1) ierr = 3 return endif if ((yknot(iy) .le. y) .and. (y .lt. yknot(iy+1))) ninty = iy end do if(ninty .eq. 0) then write(errmsg,*) "iy with yknot(iy) <= y < yknot(iy+1) required: y=", y ierr = 4 return endif do iky = 1, ky work(iky) = dbsdca(iderx,x,kx,xknot,nx,bcoef(1,ninty-ky+iky),nintx) end do dbs2dr = dbsder(idery,y,ky,yknot(ninty-ky+1),ky,work, ierr) end function dbs2dr !================================================================== subroutine dbs2gd(iderx,idery,nxvec,xvec,nyvec,yvec,kx,ky,xknot,yknot,& & nx,ny,bcoef,val,ldf, ierr) !================================================================== ! ! Evaluates the derivative of a two-dimensional tensor-product spline, ! given its tensor-product B-spline representation on a grid. ! ! iderx - order of the derivative in the x-direction. (input) ! idery - order of the derivative in the y-direction. (input) ! nxvec - number of grid points in the x-direction. (input) ! xvec - array of length nx containing the x-coordinates at ! which the spline is to be evaluated. (input) ! the points in xvec should be strictly increasing. ! nyvec - number of grid points in the y-direction. (input) ! yvec - array of length ny containing the y-coordinates at ! which the spline is to be evaluated. (input) ! the points in yvec should be strictly increasing. ! kx - order of the spline in the x-direction. (input) ! ky - order of the spline in the y-direction. (input) ! xknot - array of length nx+kx containing the knot ! sequence in the x-direction. (input) ! xknot must be nondecreasing. ! yknot - array of length ny+ky containing the knot ! sequence in the y-direction. (input) ! yknot must be nondecreasing. ! nx - number of B-spline coefficients in the x-direction. ! (input) ! ny - number of B-spline coefficients in the y-direction. ! (input) ! bcoef - array of length nx*ny containing the ! tensor-product B-spline coefficients. (input) ! bscoef is treated internally as a matrix of size nx ! by ny. ! val - value of the (iderx,idery) derivative of the spline on ! the nx by ny grid. (output) ! value(i,j) contains the derivative of the spline at the ! point (xvec(i),yvec(j)). ! ldf - leading dimension of value exactly as specified in the ! dimension statement of the calling program. (input) ! implicit none integer, intent(in) :: iderx, idery integer, intent(in) :: nxvec, nyvec integer, intent(in) :: kx, nx, ky, ny integer, intent(in) :: ldf real(dp), dimension(nxvec), intent(in) :: xvec real(dp), dimension(nyvec), intent(in) :: yvec real(dp), dimension(nx+kx), intent(in) :: xknot real(dp), dimension(ny+ky), intent(in) :: yknot real(dp), dimension(nx,ny), intent(in) :: bcoef real(dp), dimension(ldf,*), intent(out) :: val integer, intent(out) :: ierr integer :: i, ik, il, ix, iy, ikx, iky integer, dimension(nxvec) :: leftx integer, dimension(nyvec) :: lefty real(dp), dimension(nxvec,kx) :: dl, dr real(dp), dimension(max(nxvec,nyvec)) :: save1 real(dp), dimension(nxvec,kx) :: biatx real(dp), dimension(nyvec,ky) :: biaty real(dp), dimension(max(nxvec,nyvec)) :: term real(dp), dimension(ky) :: work logical :: same,next routine = 'dbs2gd' ierr = 0 leftx(1) = 0 call huntn(xknot,nx+kx,kx,xvec(1),leftx(1)) do ix = 2, nxvec leftx(ix) = leftx(ix-1) same = (xknot(leftx(ix)) .le. xvec(ix)) & & .and. (xvec(ix) .le. xknot(leftx(ix)+1)) if(.not. same ) then leftx(ix) = leftx(ix) + 1 next = (xknot(leftx(ix)) .le. xvec(ix)) & & .and. (xvec(ix) .le. xknot(leftx(ix)+1)) if (.not. next) & & call huntn(xknot,nx+kx,kx,xvec(ix),leftx(ix)) endif end do do i = 1, nx+kx-1 if (xknot(i) .gt. xknot(i+1)) then write(errmsg,*) "xknot(i) <= xknot(i+1) required: i,xknot(i),xknot(i+1)=", & i, xknot(i), xknot(i+1) ierr = 1 return endif end do do i = 1, nxvec if ((xvec(i).lt.xknot(1)).or.(xvec(i).gt.xknot(nx+kx))) then write(errmsg,*) "ix with xknot(ix) <= x < xknot(ix+1) required: x=", xvec(i) ierr = 2 return endif end do lefty(1) = 0 call huntn(yknot,ny+ky,ky,yvec(1),lefty(1)) do iy = 2, nyvec lefty(iy) = lefty(iy-1) same = (yknot(lefty(iy)) .le. yvec(iy)) & & .and. (yvec(iy) .le. yknot(lefty(iy)+1)) if(.not. same ) then lefty(iy) = lefty(iy) + 1 next = (yknot(lefty(iy)) .le. yvec(iy)) & & .and. (yvec(iy) .le. yknot(lefty(iy)+1)) if (.not. next) call huntn(yknot,ny+ky,ky,yvec(iy),lefty(iy)) endif end do do i = 1, ny+ky-1 if (yknot(i) .gt. yknot(i+1)) then write(errmsg,*) "yknot(i) <= yknot(i+1) required: i,yknot(i),yknot(i+1)=", & i, yknot(i), yknot(i+1) ierr = 3 return endif end do do i = 1, nyvec if ((yvec(i).lt.yknot(1)).or.(yvec(i).gt.yknot(ny+ky))) then write(errmsg,*) "iy with yknot(iy) <= y < yknot(iy+1) required: y=", yvec(i) ierr = 4 return endif end do if ((iderx .eq. 0) .and. (idery .eq. 0)) then do ix = 1,nxvec biatx(ix,1) = 1._dp end do do ik = 1, kx-1 do ix = 1,nxvec dr(ix,ik) = xknot(leftx(ix)+ik) - xvec(ix) dl(ix,ik) = xvec(ix) - xknot(leftx(ix)+1-ik) save1(ix) = 0._dp end do do il = 1,ik do ix = 1,nxvec term(ix) = biatx(ix,il) & & / (dr(ix,il) + dl(ix,ik+1-il)) biatx(ix,il) = save1(ix) + dr(ix,il) * term(ix) save1(ix) = dl(ix,ik+1-il) * term(ix) end do end do do ix = 1, nxvec biatx(ix,ik+1) = save1(ix) end do end do do iy = 1, nyvec biaty(iy,1) = 1._dp end do do ik = 1, ky-1 do iy = 1, nyvec dr(iy,ik) = yknot(lefty(iy)+ik) - yvec(iy) dl(iy,ik) = yvec(iy) - yknot(lefty(iy)+1-ik) save1(iy) = 0._dp end do do il = 1, ik do iy = 1,nyvec term(iy) = biaty(iy,il) & & / (dr(iy,il) + dl(iy,ik+1-il)) biaty(iy,il) = save1(iy) + dr(iy,il) * term(iy) save1(iy) = dl(iy,ik+1-il) * term(iy) end do end do do iy = 1, nyvec biaty(iy,ik+1) = save1(iy) end do end do do iy = 1, nyvec do ix = 1, nxvec val(ix,iy) = 0.0_dp end do end do do iky = 1, ky do ikx = 1, kx do iy = 1, nyvec do ix = 1, nxvec val(ix,iy) = val(ix,iy) & & + biatx(ix,ikx) * biaty(iy,iky) & & * bcoef(leftx(ix)-kx+ikx,lefty(iy)-ky+iky) end do end do end do end do elseif (((iderx .ge. 1) .or. (idery .ge. 1)) & & .and. ( (iderx .lt. kx) .and. (idery .lt. ky))) then do iy = 1, nyvec do ix = 1, nxvec do iky = 1, ky work(iky) = dbsdca(iderx,xvec(ix),kx,xknot,nx, & & bcoef(1,lefty(iy)-ky+iky),leftx(ix)) end do val(ix,iy) = dbsder(idery,yvec(iy),ky, & & yknot(lefty(iy)-ky+1),ky,work, ierr) end do end do else do iy = 1, nyvec do ix = 1, nxvec val(ix,iy) = 0.0_dp end do end do endif end subroutine dbs2gd !================================================================== subroutine dbs3in(nx,xvec,ny,yvec,nz,zvec,xyzdata,ldf,mdf,kx,ky,kz, & & xknot,yknot,zknot,bcoef, ierr) !================================================================== ! ! Computes a three-dimensional tensor-product spline interpolant, ! returning the tensor-product B-spline coefficients. ! ! nx - number of data points in the x-direction. (input) ! xvec - array of length nxdata containing the data points in ! the x-direction. (input) ! xdata must be increasing. ! ny - number of data points in the y-direction. (input) ! yvec - array of length nydata containing the data points in ! the y-direction. (input) ! ydata must be increasing. ! nz - number of data points in the z-direction. (input) ! zvec - array of length nzdata containing the data points in ! the z-direction. (input) ! zdata must be increasing. ! xyzdata - array of size nx by ny by nz containing the ! values to be interpolated. (input) ! xyzdata(i,j,k) contains the value at ! (xvec(i),yvec(j),zvec(k)). ! ldf - leading dimension of fdata exactly as specified in the ! dimension statement of the calling program. (input) ! mdf - middle dimension of fdata exactly as specified in the ! dimension statement of the calling program. (input) ! kx - order of the spline in the x-direction. (input) ! kxord must be less than or equal to nxdata. ! ky - order of the spline in the y-direction. (input) ! kyord must be less than or equal to nydata. ! kz - order of the spline in the z-direction. (input) ! kzord must be less than or equal to nzdata. ! xknot - array of length nx+kx containing the knot ! sequence in the x-direction. (input) ! xknot must be nondecreasing. ! yknot - array of length ny+ky containing the knot ! sequence in the y-direction. (input) ! yknot must be nondecreasing. ! zknot - array of length nz+kz containing the knot ! sequence in the z-direction. (input) ! zknot must be nondecreasing. ! bcoef - array of length nx*ny*nz containing the ! tensor-product B-spline coefficients. (output) ! bscoef is treated internally as a matrix of size nx ! by ny by nz. ! implicit none integer, intent(in) :: nx, ny, nz, kx, ky, kz integer, intent(in) :: ldf, mdf real(dp), dimension(nx), intent(in) :: xvec real(dp), dimension(ny), intent(in) :: yvec real(dp), dimension(nz), intent(in) :: zvec real(dp), dimension(nx+kx), intent(in) :: xknot real(dp), dimension(ny+ky), intent(in) :: yknot real(dp), dimension(nz+kz), intent(in) :: zknot real(dp), dimension(ldf,mdf,nz), intent(in) :: xyzdata real(dp), dimension(nx,ny,nz), intent(out) :: bcoef integer :: iz real(dp), dimension(nx,ny,nz) :: work1 real(dp), dimension(nz) :: work2 real(dp), dimension((2*kz-1)*nz) :: work3 integer, intent(out) :: ierr call spli3d(zvec,ldf,mdf,xyzdata,zknot,nz,kz,nx,ny,work2,work3,work1, & & nx,ny,nz, ierr) if (ierr /= 0) return do iz = 1, nz call dbs2in(nx,xvec,ny,yvec,work1(1,1,iz),nx,kx,ky,xknot,yknot, & & bcoef(1,1,iz), ierr) if (ierr /= 0) return end do end subroutine dbs3in !================================================================== subroutine spli3d(xyzvec,ldf,mdf,xyzdata,xyzknot,n,k,m,l,work2,work3, & & bcoef,nx,ny,nz, ierr) !================================================================== implicit none integer, intent(in) :: ldf, mdf, n, k, m, l integer, intent(in) :: nx, ny, nz real(dp), dimension(n), intent(in) :: xyzvec real(dp), dimension(n+k), intent(in) :: xyzknot real(dp), dimension(ldf,mdf,*), intent(in) :: xyzdata real(dp), dimension(nx,ny,nz), intent(out) :: bcoef real(dp), dimension(n), intent(out) :: work2 real(dp), dimension((2*k-1)*n), intent(out) :: work3 integer, intent(out) :: ierr integer :: np1, km1, kpkm2, left, lenq, i, ilp1mx, j, jj, iflag, in real(dp) :: xyzveci routine = 'spli3d' ierr = 0 np1 = n + 1 km1 = k - 1 kpkm2 = 2 * km1 left = k lenq = n * (k + km1) do i = 1, lenq work3(i) = 0._dp end do do i = 1, n xyzveci = xyzvec(i) ilp1mx = min0(i+k,np1) left = max0(left,i) if (xyzveci .lt. xyzknot(left)) go to 998 30 if (xyzveci .lt. xyzknot(left+1)) go to 40 left = left + 1 if (left .lt. ilp1mx) go to 30 left = left - 1 if (xyzveci .gt. xyzknot(left+1)) go to 998 40 call bsplvb(xyzknot,n+k,k,1,xyzveci,left,work2) jj = i - left + 1 + (left - k) * (k + km1) do j = 1, k jj = jj + kpkm2 work3(jj) = work2(j) end do end do call banfac(work3,k+km1,n,km1,km1,iflag) if (iflag .ne. 1) then write(errmsg,*) "no solution of linear equation system" ierr = 1 return end if do j = 1, l do i = 1, m do in = 1, n work2(in) = xyzdata(i,j,in) end do call banslv(work3,k+km1,n,km1,km1,work2) do in = 1, n bcoef(i,j,in) = work2(in) end do end do end do return 998 write(errmsg,*) "i with knot(i) <= x/y/z < knot(i+1) required: xyzknot(1),xyzknot(n+k)=", & xyzknot(1), xyzknot(n+k) ierr = 2 return end subroutine spli3d !================================================================== function dbs3vl(x,y,z,kx,ky,kz,xknot,yknot,zknot,nx,ny,nz,bcoef, ierr) !================================================================== ! ! Evaluates a three-dimensional tensor-product spline, given its ! tensor-product B-spline representation. ! ! x - x-coordinate of the point at which the spline is to be ! evaluated. (input) ! y - y-coordinate of the point at which the spline is to be ! evaluated. (input) ! z - z-coordinate of the point at which the spline is to be ! evaluated. (input) ! kx - order of the spline in the x-direction. (input) ! ky - order of the spline in the y-direction. (input) ! kz - order of the spline in the z-direction. (input) ! xknot - array of length nx+kx containing the knot ! sequence in the x-direction. (input) ! xknot must be nondecreasing. ! yknot - array of length ny+ky containing the knot ! sequence in the y-direction. (input) ! yknot must be nondecreasing. ! zknot - array of length nz+kz containing the knot ! sequence in the z-direction. (input) ! zknot must be nondecreasing. ! nx - number of B-spline coefficients in the x-direction. ! (input) ! ny - number of B-spline coefficients in the y-direction. ! (input) ! nz - number of B-spline coefficients in the z-direction. ! (input) ! bcoef - array of length nx*ny*nz containing the ! tensor-product B-spline coefficients. (input) ! bscoef is treated internally as a matrix of size nx ! by ny by nz. ! dbs3vl - value of the spline at (x,y,z). (output) ! implicit none integer, intent(in) :: nx, ny, nz, kx, ky, kz real(dp), intent(in) :: x, y, z real(dp), dimension(nx+kx), intent(in) :: xknot real(dp), dimension(ny+ky), intent(in) :: yknot real(dp), dimension(nz+kz), intent(in) :: zknot real(dp), dimension(nx,ny,nz), intent(in) :: bcoef real(dp) :: dbs3vl integer, intent(out) :: ierr integer :: iz, nintz real(dp), dimension(kz) :: work routine = 'dbs3vl' ierr = 0 dbs3vl = 0.0_dp ! ! check if knot(i) <= knot(i+1) and calculation of i so that ! knot(i) <= x < knot(i+1) ! nintz = 0 do iz = 1, nz+kz-1 if (zknot(iz) .gt. zknot(iz + 1)) then write(errmsg,*) "zknot(iz) <= zknot(iz+1) required: iz,zknot(iz),zknot(iz+1)=", & iz, zknot(iz), zknot(iz+1) ierr = 1 return endif if((zknot(iz) .le. z) .and. (z .lt. zknot(iz + 1))) nintz = iz end do if(nintz .eq. 0) then write(errmsg,*) "iz with zknot(iz) <= z < zknot(iz+1) required: zknot(iz),z,zknot(iz+1)=", & zknot(iz), z, zknot(iz+1) ierr = 2 return endif do iz = 1, kz work(iz) = dbs2vl(x,y,kx,ky,xknot,yknot,nx,ny,bcoef(1,1,nintz-kz+iz), ierr) end do if (ierr /= 0) return dbs3vl = dbsval(z,kz,zknot(nintz-kz+1),kz,work, ierr) end function dbs3vl !================================================================== function dbs3dr(iderx,idery,iderz,x,y,z,kx,ky,kz,xknot,yknot,zknot, & & nx,ny,nz,bcoef, ierr) !================================================================== ! ! Evaluates the derivative of a three-dimensional tensor-product spline, ! given its tensor-product B-spline representation. ! ! iderx - order of the x-derivative. (input) ! idery - order of the y-derivative. (input) ! iderz - order of the z-derivative. (input) ! x - x-coordinate of the point at which the spline is to be ! evaluated. (input) ! y - y-coordinate of the point at which the spline is to be ! evaluated. (input) ! z - z-coordinate of the point at which the spline is to be ! evaluated. (input) ! kx - order of the spline in the x-direction. (input) ! ky - order of the spline in the y-direction. (input) ! kz - order of the spline in the z-direction. (input) ! xknot - array of length nx+kx containing the knot ! sequence in the x-direction. (input) ! xknot must be nondecreasing. ! yknot - array of length ny+ky containing the knot ! sequence in the y-direction. (input) ! yknot must be nondecreasing. ! zknot - array of length nz+kz containing the knot ! sequence in the z-direction. (input) ! zknot must be nondecreasing. ! nx - number of B-spline coefficients in the x-direction. ! (input) ! ny - number of B-spline coefficients in the y-direction. ! (input) ! nz - number of B-spline coefficients in the z-direction. ! (input) ! bcoef - array of length nx*ny*nz containing the ! tensor-product B-spline coefficients. (input) ! bscoef is treated internally as a matrix of size nx ! by ny by nz. ! dbs3dr - value of the (iderx,idery,iderz) derivative of the ! spline at (x,y,z). (output) ! implicit none integer, intent(in) :: iderx, idery, iderz integer, intent(in) :: nx, ny, nz, kx, ky, kz real(dp), intent(in) :: x, y, z real(dp), dimension(nx+kx), intent(in) :: xknot real(dp), dimension(ny+ky), intent(in) :: yknot real(dp), dimension(nz+kz), intent(in) :: zknot real(dp), dimension(nx,ny,nz), intent(in) :: bcoef real(dp) :: dbs3dr integer, intent(out) :: ierr integer :: iz, nintz real(dp), dimension(kz) :: work routine = 'dbs3dr' ierr = 0 dbs3dr = 0.0_dp ! ! check if knot(i) <= knot(i+1) and calculation of i so that ! knot(i) <= x < knot(i+1) ! nintz = 0 do iz = 1, nz+kz-1 if (zknot(iz) .gt. zknot(iz + 1)) then write(errmsg,*) "zknot(iz) <= zknot(iz+1) required: iz,zknot(iz),zknot(iz+1)=", & iz, zknot(iz), zknot(iz+1) ierr = 1 return endif if((zknot(iz) .le. z) .and. (z .lt. zknot(iz + 1))) nintz = iz end do if(nintz .eq. 0) then write(errmsg,*) "iz with zknot(iz) <= z < zknot(iz+1) required: zknot(iz),z,zknot(iz+1)=", & zknot(iz), z, zknot(iz+1) ierr = 2 return endif do iz = 1, kz work(iz) = dbs2dr(iderx,idery,x,y,kx,ky,xknot,yknot,nx,ny, & & bcoef(1,1,nintz-kz+iz),ierr) end do if (ierr /= 0) return dbs3dr = dbsder(iderz,z,kz,zknot(nintz-kz+1),kz,work,ierr) end function dbs3dr !================================================================== subroutine dbs3gd(iderx,idery,iderz,nxvec,xvec,nyvec,yvec,nzvec,zvec, & & kx,ky,kz,xknot,yknot,zknot,nx,ny,nz,bcoef,val,ldf,mdf, ierr) !================================================================== ! ! Evaluates the derivative of a three-dimensional tensor-product spline, ! given its tensor-product B-spline representation on a grid. ! ! iderx - order of the x-derivative. (input) ! idery - order of the y-derivative. (input) ! iderz - order of the z-derivative. (input) ! nx - number of grid points in the x-direction. (input) ! xvec - array of length nx containing the x-coordinates at ! which the spline is to be evaluated. (input) ! the points in xvec should be strictly increasing. ! ny - number of grid points in the y-direction. (input) ! yvec - array of length ny containing the y-coordinates at ! which the spline is to be evaluated. (input) ! the points in yvec should be strictly increasing. ! nz - number of grid points in the z-direction. (input) ! zvec - array of length nz containing the z-coordinates at ! which the spline is to be evaluated. (input) ! the points in yvec should be strictly increasing. ! kx - order of the spline in the x-direction. (input) ! ky - order of the spline in the y-direction. (input) ! kz - order of the spline in the z-direction. (input) ! xknot - array of length nx+kx containing the knot ! sequence in the x-direction. (input) ! xknot must be nondecreasing. ! yknot - array of length ny+ky containing the knot ! sequence in the y-direction. (input) ! yknot must be nondecreasing. ! zknot - array of length nz+kz containing the knot ! sequence in the z-direction. (input) ! zknot must be nondecreasing. ! nx - number of B-spline coefficients in the x-direction. ! (input) ! ny - number of B-spline coefficients in the y-direction. ! (input) ! nz - number of B-spline coefficients in the z-direction. ! (input) ! bcoef - array of length nx*ny*nz containing the ! tensor-product B-spline coefficients. (input) ! bscoef is treated internally as a matrix of size nx ! by ny by nz. ! val - array of size nx by ny by nz containing the values of ! the (iderx,idery,iderz) derivative of the spline on the ! nx by ny by nz grid. (output) ! value(i,j,k) contains the derivative of the spline at ! the point (xvec(i), yvec(j), zvec(k)). ! ldf - leading dimension of value exactly as specified in the ! dimension statement of the calling program. (input) ! mdf - middle dimension of value exactly as specified in the ! dimension statement of the calling program. (input) ! implicit none integer, intent(in) :: iderx, idery, iderz integer, intent(in) :: nxvec, nyvec, nzvec integer, intent(in) :: kx, nx, ky, ny, kz, nz integer, intent(in) :: ldf,mdf real(dp), dimension(nxvec), intent(in) :: xvec real(dp), dimension(nyvec), intent(in) :: yvec real(dp), dimension(nzvec), intent(in) :: zvec real(dp), dimension(nx+kx), intent(in) :: xknot real(dp), dimension(ny+ky), intent(in) :: yknot real(dp), dimension(nz+kz), intent(in) :: zknot real(dp), dimension(nx,ny,nz), intent(in) :: bcoef real(dp), dimension(ldf,mdf,*), intent(out) :: val integer, intent(out) :: ierr integer :: i, ik, il, ix, iy, iz integer :: ikx, iky, ikz integer, dimension(nxvec) :: leftx integer, dimension(nyvec) :: lefty integer, dimension(nzvec) :: leftz real(dp), dimension(nxvec,kx) :: biatx real(dp), dimension(nyvec,ky) :: biaty real(dp), dimension(nzvec,kz) :: biatz real(dp), dimension(max(nxvec,nyvec,nzvec)) :: term, save1 real(dp), dimension(max(nxvec,nyvec,nzvec), max(kx,ky,kz)) :: dl, dr logical :: same,next routine = 'dbs3gd' ierr = 0 do i = 1, nx+kx-1 if (xknot(i) .gt. xknot(i+1)) then write(errmsg,*) "xknot(i) <= xknot(i+1) required: i,xknot(i),xknot(i+1)=", & i, xknot(i), xknot(i+1) ierr = 1 return endif end do do i = 1, nxvec if ((xvec(i).lt.xknot(1)).or.(xvec(i).gt.xknot(nx+kx))) then write(errmsg,*) "ix with xknot(ix) <= x < xknot(ix+1) required: x=", xvec(i) ierr = 2 return endif end do leftx(1) = 0 call huntn(xknot,nx+kx,kx,xvec(1),leftx(1)) do ix = 2, nxvec leftx(ix) = leftx(ix-1) same = (xknot(leftx(ix)) .le. xvec(ix)) & & .and. (xvec(ix) .le. xknot(leftx(ix)+1)) if(.not. same ) then leftx(ix) = leftx(ix) + 1 next = (xknot(leftx(ix)) .le. xvec(ix)) & & .and. (xvec(ix) .le. xknot(leftx(ix)+1)) if (.not. next) call huntn(xknot,nx+kx,kx,xvec(ix),leftx(ix)) endif end do do i = 1, ny+ky-1 if (yknot(i) .gt. yknot(i+1)) then write(errmsg,*) "yknot(i) <= yknot(i+1) required: i,yknot(i),yknot(i+1)=", & i, yknot(i), yknot(i+1) ierr = 3 return endif end do do i = 1, nyvec if ((yvec(i).lt.yknot(1)).or.(yvec(i).gt.yknot(ny+ky))) then write(errmsg,*) "iy with yknot(iy) <= y < yknot(iy+1) required: y=", yvec(i) ierr = 4 return endif end do lefty(1) = 0 call huntn(yknot,ny+ky,ky,yvec(1),lefty(1)) do iy = 2, nyvec lefty(iy) = lefty(iy-1) same = (yknot(lefty(iy)) .le. yvec(iy)) & & .and. (yvec(iy) .le. yknot(lefty(iy)+1)) if(.not. same ) then lefty(iy) = lefty(iy) + 1 next = (yknot(lefty(iy)) .le. yvec(iy)) & & .and. (yvec(iy) .le. yknot(lefty(iy)+1)) if (.not. next) call huntn(yknot,ny+ky,ky,yvec(iy),lefty(iy)) endif end do do i = 1,nz+kz-1 if (zknot(i) .gt. zknot(i+1)) then write(errmsg,*) "zknot(i) <= zknot(i+1) required: i,zknot(i),zknot(i+1)=", & i, zknot(i), zknot(i+1) ierr = 5 return endif end do do i = 1, nzvec if ((zvec(i).lt.zknot(1)).or.(zvec(i).gt.zknot(nz+kz))) then write(errmsg,*) "iz with zknot(iz) <= z < zknot(iz+1) required: z=", zvec(i) ierr = 6 return endif end do leftz(1) = 0 call huntn(zknot,nz+kz,kz,zvec(1),leftz(1)) do iz = 2, nzvec leftz(iz) = leftz(iz-1) same = (zknot(leftz(iz)) .le. zvec(iz)) & & .and. (zvec(iz) .le. zknot(leftz(iz)+1)) if(.not. same ) then leftz(iz) = leftz(iz) + 1 next = (zknot(leftz(iz)) .le. zvec(iz)) & & .and. (zvec(iz) .le. zknot(leftz(iz)+1)) if (.not. next) call huntn(zknot,nz+kz,kz,zvec(iz),leftz(iz)) endif end do if ((iderx .eq. 0) .and. (idery .eq. 0) .and. (iderz .eq.0)) then do ix = 1, nxvec biatx(ix,1) = 1.0_dp end do do ik = 1, kx-1 do ix = 1, nxvec dr(ix,ik) = xknot(leftx(ix)+ik) - xvec(ix) dl(ix,ik) = xvec(ix) - xknot(leftx(ix)+1-ik) save1(ix) = 0._dp end do do il = 1, ik do ix = 1, nxvec term(ix) = biatx(ix,il) / (dr(ix,il) + dl(ix,ik+1-il)) biatx(ix,il) = save1(ix) + dr(ix,il) * term(ix) save1(ix) = dl(ix,ik+1-il) * term(ix) end do end do do ix = 1, nxvec biatx(ix,ik+1) = save1(ix) end do end do do iy = 1, nyvec biaty(iy,1) = 1.0_dp end do do ik = 1, ky-1 do iy = 1, nyvec dr(iy,ik) = yknot(lefty(iy)+ik) - yvec(iy) dl(iy,ik) = yvec(iy) - yknot(lefty(iy)+1-ik) save1(iy) = 0._dp end do do il = 1,ik do iy = 1,nyvec term(iy) = biaty(iy,il) / (dr(iy,il) + dl(iy,ik+1-il)) biaty(iy,il) = save1(iy) + dr(iy,il) * term(iy) save1(iy) = dl(iy,ik+1-il) * term(iy) end do end do do iy = 1,nyvec biaty(iy,ik+1) = save1(iy) end do end do do iz = 1,nzvec biatz(iz,1) = 1.0_dp end do do ik = 1, kz-1 do iz = 1, nzvec dr(iz,ik) = zknot(leftz(iz)+ik) - zvec(iz) dl(iz,ik) = zvec(iz) - zknot(leftz(iz)+1-ik) save1(iz) = 0._dp end do do il = 1, ik do iz = 1, nzvec term(iz) = biatz(iz,il) / (dr(iz,il) + dl(iz,ik+1-il)) biatz(iz,il) = save1(iz) + dr(iz,il) * term(iz) save1(iz) = dl(iz,ik+1-il) * term(iz) end do end do do iz = 1, nzvec biatz(iz,ik+1) = save1(iz) end do end do do iz = 1,nzvec do iy = 1,nyvec do ix = 1,nxvec val(ix,iy,iz) = 0.0_dp end do end do end do do ikz = 1, kz do iky = 1, ky do ikx = 1, kx do iz = 1, nzvec do iy = 1, nyvec do ix = 1, nxvec val(ix,iy,iz) = val(ix,iy,iz) & & + biatx(ix,ikx) * biaty(iy,iky) & & * biatz(iz,ikz) & & * bcoef(leftx(ix)-kx+ikx, & & lefty(iy)-ky+iky,leftz(iz)-kz+ikz) end do end do end do end do end do end do else do iz = 1, nzvec do iy = 1, nyvec do ix = 1, nxvec val(ix,iy,iz) = dbs3dr(iderx,idery,iderz,xvec(ix), & & yvec(iy),zvec(iz),kx,ky,kz,xknot,yknot, & & zknot,nx,ny,nz,bcoef, ierr) end do end do end do endif end subroutine dbs3gd !================================================================== ! Internal routines !================================================================== subroutine bsplvb(t,n,jhigh,idx,x,left,biatx) implicit none integer, intent(in) :: n, jhigh, idx, left real(dp), intent(in) :: x real(dp), dimension(n), intent(in) :: t real(dp), dimension(jhigh), intent(out) :: biatx integer :: j = 1 integer :: i, jp1 real(dp) :: saved, term real(dp), dimension(jhigh) :: dl, dr if (idx .eq. 1) then j = 1 biatx(1) = 1.0_dp if (j .ge. jhigh) return end if 20 jp1 = j + 1 dr(j) = t(left+j) - x dl(j) = x - t(left+1-j) saved = 0._dp do i = 1, j term = biatx(i) / (dr(i) + dl(jp1-i)) biatx(i) = saved + dr(i) * term saved = dl(jp1-i) * term end do biatx(jp1) = saved j = jp1 if (j .lt. jhigh) go to 20 end subroutine bsplvb subroutine banfac(w,nroww,nrow,nbandl,nbandu,iflag) implicit none integer, intent(in) :: nroww,nrow integer, intent(in) :: nbandl,nbandu integer, intent(out) :: iflag real(dp), dimension(nroww,nrow), intent(inout) :: w real(dp) :: pivot, factor integer :: middle, nrowm1, jmax, kmax, ipk, midmk, i, j, k iflag = 1 middle = nbandu + 1 nrowm1 = nrow - 1 if (nrowm1 .lt. 0) goto 999 if (nrowm1 .eq. 0) goto 900 if (nrowm1 .gt. 0) goto 10 10 if (nbandl .gt. 0) go to 30 do i = 1, nrowm1 if (w(middle,i) .eq. 0._dp) go to 999 end do go to 900 30 if (nbandu .gt. 0) go to 60 do i = 1, nrowm1 pivot = w(middle,i) if(pivot .eq. 0._dp) go to 999 jmax = min0(nbandl, nrow - i) do j = 1, jmax w(middle+j,i) = w(middle+j,i) / pivot end do end do return 60 do i = 1, nrowm1 pivot = w(middle,i) if (pivot .eq. 0._dp) go to 999 jmax = min0(nbandl,nrow - i) do j = 1,jmax w(middle+j,i) = w(middle+j,i) / pivot end do kmax = min0(nbandu,nrow - i) do k = 1, kmax ipk = i + k midmk = middle - k factor = w(midmk,ipk) do j = 1, jmax w(midmk+j,ipk) = w(midmk+j,ipk) - w(middle+j,i) & & * factor end do end do end do 900 if (w(middle,nrow) .ne. 0._dp) return 999 iflag = 2 end subroutine banfac subroutine banslv(w,nroww,nrow,nbandl,nbandu,b) implicit none integer, intent(in) :: nroww,nrow integer, intent(in) :: nbandl,nbandu real(dp), dimension(nroww,nrow), intent(in) :: w real(dp), dimension(nrow), intent(inout) :: b integer :: middle, nrowm1, jmax, i, j middle = nbandu + 1 if (nrow .eq. 1) goto 99 nrowm1 = nrow - 1 if (nbandl .eq. 0) goto 30 do i = 1, nrowm1 jmax = min0(nbandl, nrow - i) do j = 1, jmax b(i+j) = b(i+j) - b(i) * w(middle+j,i) end do end do 30 if (nbandu .gt. 0) goto 50 do i = 1, nrow b(i) = b(i) / w(1,i) end do return 50 do i = nrow, 2, -1 b(i) = b(i)/w(middle,i) jmax = min0(nbandu,i-1) do j = 1, jmax b(i-j) = b(i-j) - b(i) * w(middle-j,i) end do end do 99 b(1) = b(1) / w(middle,1) end subroutine banslv subroutine huntn(xx,n,kord,x,jlo) implicit none integer, intent(in) :: n, kord real(dp), intent(in) :: x real(dp), dimension(n), intent(in) :: xx integer, intent(out) :: jlo integer :: max, null, jhi, jm, inc max = n - kord null = kord if (jlo.le.null.or.jlo.gt.max) then jlo = null jhi = max+1 goto 30 endif inc = 1 if (x .ge. xx(jlo)) then 10 jhi = jlo + inc if (jhi .gt. max) then jhi = max + 1 else if (x .ge. xx(jhi)) then jlo = jhi inc = inc + inc goto 10 endif else jhi = jlo 20 jlo = jhi - inc if (jlo .le. null) then jlo = null else if (x .lt. xx(jlo)) then jhi = jlo inc = inc + inc goto 20 endif endif 30 if (jhi-jlo.eq.1) return jm = (jhi + jlo) / 2 if (x .gt. xx(jm)) then jlo = jm else jhi = jm endif goto 30 end subroutine huntn !================================================================== ! error reporting routines !================================================================== function get_error_routine() character(80) :: get_error_routine get_error_routine = routine end function get_error_routine function get_error_message() character(256) :: get_error_message get_error_message = errmsg end function get_error_message end module bspline espresso-5.1/Modules/mp_global.f900000644000175000017500000000675512341373034015203 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE mp_global !---------------------------------------------------------------------------- ! ! ... Wrapper module, for compatibility. Contains a few "leftover" variables ! ... used for checks (all the *_file variables, read from data file), ! ... plus the routine mp_startup initializing MPI, plus the ! ... routine mp_global_end stopping MPI. ! ... Do not use this module to reference variables (e.g. communicators) ! ... belonging to each of the various parallelization levels: ! ... use the specific modules instead ! USE mp_world, ONLY: mp_world_start, mp_world_end USE mp_images USE mp_pools USE mp_pots USE mp_bands USE mp_diag ! IMPLICIT NONE SAVE ! ! ... number of processors for the various groups: values read from file ! INTEGER :: nproc_file = 1 INTEGER :: nproc_image_file = 1 INTEGER :: nproc_pool_file = 1 INTEGER :: nproc_pot_file = 1 INTEGER :: nproc_ortho_file = 1 INTEGER :: nproc_bgrp_file = 1 INTEGER :: ntask_groups_file= 1 ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE mp_startup ( my_world_comm, start_images ) !----------------------------------------------------------------------- ! ... This wrapper subroutine initializes all parallelization levels. ! ... If option with_images=.true., processes are organized into images, ! ... each performing a quasi-indipendent calculation, such as a point ! .. in configuration space (NEB) or a phonon irrep (PHonon) ! ... Within each image processes are further subdivided into various ! ... groups and parallelization levels ! USE command_line_options, ONLY : get_command_line, & nimage_, npool_, npot_, ndiag_, nband_, ntg_ USE parallel_include ! IMPLICIT NONE INTEGER, INTENT(IN), OPTIONAL :: my_world_comm LOGICAL, INTENT(IN), OPTIONAL :: start_images LOGICAL :: do_images INTEGER :: my_comm ! my_comm = MPI_COMM_WORLD IF ( PRESENT(my_world_comm) ) my_comm = my_world_comm ! CALL mp_world_start( my_comm ) CALL get_command_line ( ) ! do_images = .FALSE. IF ( PRESENT(start_images) ) do_images = start_images IF ( do_images ) THEN CALL mp_start_images ( nimage_, world_comm ) ELSE CALL mp_init_image ( world_comm ) END IF ! CALL mp_start_pots ( npot_, intra_image_comm ) CALL mp_start_pools ( npool_, intra_image_comm ) CALL mp_start_bands ( nband_, ntg_, intra_pool_comm ) CALL mp_start_diag ( ndiag_, intra_bgrp_comm ) ! RETURN ! END SUBROUTINE mp_startup ! !----------------------------------------------------------------------- SUBROUTINE mp_global_end ( ) !----------------------------------------------------------------------- ! USE mp, ONLY : mp_comm_free ! CALL clean_ortho_group ( ) CALL mp_comm_free ( intra_pot_comm ) CALL mp_comm_free ( inter_pot_comm ) CALL mp_comm_free ( intra_bgrp_comm ) CALL mp_comm_free ( inter_bgrp_comm ) CALL mp_comm_free ( intra_pool_comm ) CALL mp_comm_free ( inter_pool_comm ) CALL mp_world_end( ) ! RETURN ! END SUBROUTINE mp_global_end ! END MODULE mp_global espresso-5.1/Modules/constraints_module.f900000644000175000017500000012510512341373034017152 0ustar mbamba! ! Copyright (C) 2002-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define __REMOVE_CONSTRAINT_FORCE !#define __DEBUG_CONSTRAINTS #define __USE_PBC ! !---------------------------------------------------------------------------- MODULE constraints_module !---------------------------------------------------------------------------- ! ! ... variables and methods for constraint Molecular Dynamics and ! ... constrained ionic relaxations (the SHAKE algorithm based on ! ... lagrange multipliers) are defined here. ! ! ... most of these variables and methods are also used for meta-dynamics ! ... and free-energy smd : indeed the collective variables are implemented ! ... as constraints. ! ! ... written by Carlo Sbraccia ( 24/02/2004 ) ! ! ... references : ! ! ... 1) M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids, ! ... Clarendon Press - Oxford (1986) ! USE kinds, ONLY : DP USE constants, ONLY : eps8, eps16, eps32, tpi, fpi USE io_global, ONLY : stdout ! USE basic_algebra_routines ! IMPLICIT NONE ! SAVE ! PRIVATE ! ! ... public methods ! PUBLIC :: init_constraint, & check_constraint, & remove_constr_force, & remove_constr_vec, & deallocate_constraint, & compute_dmax, & pbc, & constraint_grad ! ! ! ... public variables (assigned in the CONSTRAINTS input card) ! PUBLIC :: nconstr, & constr_tol, & constr_type, & constr, & lagrange, & constr_target, & dmax, & gp ! ! ... global variables ! INTEGER :: nconstr=0 REAL(DP) :: constr_tol INTEGER, ALLOCATABLE :: constr_type(:) REAL(DP), ALLOCATABLE :: constr(:,:) REAL(DP), ALLOCATABLE :: constr_target(:) REAL(DP), ALLOCATABLE :: lagrange(:) REAL(DP), ALLOCATABLE :: gp(:) REAL(DP) :: dmax ! CONTAINS ! ! ... public methods ! !----------------------------------------------------------------------- SUBROUTINE init_constraint( nat, tau, ityp, tau_units ) !----------------------------------------------------------------------- ! ! ... this routine is used to initialize constraints variables and ! ... collective variables (notice that collective variables are ! ... implemented as normal constraints but are read using specific ! ... input variables) ! USE input_parameters, ONLY : nconstr_inp, constr_tol_inp, & constr_type_inp, constr_inp, & constr_target_inp, & constr_target_set, nc_fields ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat REAL(DP), INTENT(in) :: tau(3,nat) INTEGER, INTENT(in) :: ityp(nat) REAL(DP), INTENT(in) :: tau_units ! INTEGER :: i, j INTEGER :: ia, ia0, ia1, ia2, ia3, n_type_coord1 REAL(DP) :: d0(3), d1(3), d2(3) REAL(DP) :: smoothing, r_c INTEGER :: type_coord1, type_coord2 REAL(DP) :: dtau(3), norm_dtau REAL(DP) :: k(3), phase, norm_k COMPLEX(DP) :: struc_fac CHARACTER(20),ALLOCATABLE :: tmp_type_inp(:) LOGICAL,ALLOCATABLE :: tmp_target_set(:) REAL(DP),ALLOCATABLE :: tmp_target_inp(:) ! CHARACTER(len=6), EXTERNAL :: int_to_char ! ! nconstr = nconstr_inp constr_tol = constr_tol_inp WRITE(stdout,'(5x,a,i4,a,f12.6)') & 'Setting up ',nconstr,' constraints; tolerance:', constr_tol ! ALLOCATE( lagrange( nconstr ) ) ALLOCATE( constr_target( nconstr ) ) ALLOCATE( constr_type( nconstr ) ) ! ALLOCATE( constr( nc_fields, nconstr ) ) ALLOCATE( gp( nconstr ) ) ALLOCATE( tmp_type_inp(nconstr),tmp_target_set(nconstr),tmp_target_inp(nconstr) ) ! ! ... setting constr to 0 to findout which elements have been ! ... set to an atomic index. This is required for CP. ! constr(:,:) = 0.0_DP ! constr(:,1:nconstr) = constr_inp(:,1:nconstr_inp) tmp_type_inp(1:nconstr) = constr_type_inp(1:nconstr_inp) tmp_target_set(1:nconstr) = constr_target_set(1:nconstr_inp) tmp_target_inp(1:nconstr) = constr_target_inp(1:nconstr_inp) ! ! ... set the largest possible distance among two atoms within ! ... the supercell ! IF ( any( tmp_type_inp(:) == 'distance' ) ) CALL compute_dmax() ! ! ... initializations of constr_target values for the constraints : ! DO ia = 1, nconstr ! SELECT CASE ( tmp_type_inp(ia) ) CASE( 'type_coord' ) ! ! ... constraint on global coordination-number, i.e. the average ! ... number of atoms of type B surrounding the atoms of type A ! constr_type(ia) = 1 IF ( tmp_target_set(ia) ) THEN constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_type_coord( ia ) ENDIF ! WRITE(stdout,'(7x,i3,a,i3,a,i2,a,2f12.6,a,f12.6)') & ia,') type #',int(constr_inp(1,ia)) ,' coordination wrt type:', int(constr(2,ia)), & ' cutoff distance and smoothing:', constr(3:4,ia), & '; target:', constr_target(ia) ! CASE( 'atom_coord' ) ! ! ... constraint on local coordination-number, i.e. the average ! ... number of atoms of type A surrounding a specific atom ! constr_type(ia) = 2 IF ( tmp_target_set(ia) ) THEN constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_atom_coord( ia ) ENDIF ! WRITE(stdout,'(7x,i3,a,i3,a,i2,a,2f12.6,a,f12.6)') & ia,') atom #',int(constr_inp(1,ia)) ,' coordination wrt type:', int(constr(2,ia)), & ' cutoff distance and smoothing:', constr(3:4,ia), & '; target:', constr_target(ia) ! CASE( 'distance' ) ! constr_type(ia) = 3 IF ( tmp_target_set(ia) ) THEN constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_distance( ia ) ENDIF ! IF ( constr_target(ia) > dmax ) THEN ! WRITE( stdout, '(/,5X,"target = ",F12.8,/, & & 5X,"dmax = ",F12.8)' ) & constr_target(ia), dmax CALL errore( 'init_constraint', 'the target for constraint ' //& & trim( int_to_char( ia ) ) // ' is larger than ' //& & 'the largest possible value', 1 ) ! ENDIF ! WRITE(stdout,'(7x,i3,a,2i3,a,f12.6)') & ia,') distance between atoms: ', int(constr(1:2,ia)), '; target:', constr_target(ia) ! CASE( 'planar_angle' ) ! ! ... constraint on planar angle (for the notation used here see ! ... Appendix C of the Allen-Tildesley book) ! constr_type(ia) = 4 IF ( tmp_target_set(ia) ) THEN ! ! ... the input value of target for the torsional angle (given ! ... in degrees) is converted to the cosine of the angle ! constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_planar_angle( ia ) ENDIF ! WRITE(stdout, '(7x,i3,a,3i3,a,f12.6)') & ia,') planar angle between atoms: ', int(constr(1:3,ia)), '; target:', constr_target(ia) ! CASE( 'torsional_angle' ) ! ! ... constraint on torsional angle (for the notation used here ! ... see Appendix C of the Allen-Tildesley book) ! constr_type(ia) = 5 IF ( tmp_target_set(ia) ) THEN ! ! ... the input value of target for the torsional angle (given ! ... in degrees) is converted to the cosine of the angle ! constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_torsional_angle( ia ) ENDIF ! WRITE(stdout, '(7x,i3,a,4i3,a,f12.6)') & ia,') torsional angle between atoms: ', int(constr(1:4,ia)), '; target:', constr_target(ia) ! CASE( 'struct_fac' ) ! ! ... constraint on structure factor at a given k-vector ! constr_type(ia) = 6 IF ( tmp_target_set(ia) ) THEN constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_structure_factor( ia ) ENDIF ! CASE( 'sph_struct_fac' ) ! ! ... constraint on spherical average of the structure factor for ! ... a given k-vector of norm k ! constr_type(ia) = 7 IF ( tmp_target_set(ia) ) THEN constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_sph_structure_factor( ia ) ENDIF ! CASE( 'bennett_proj' ) ! ! ... constraint on the projection onto a given direction of the ! ... vector defined by the position of one atom minus the center ! ... of mass of the others ! ... ( Ch.H. Bennett in Diffusion in Solids, Recent Developments, ! ... Ed. by A.S. Nowick and J.J. Burton, New York 1975 ) ! constr_type(ia) = 8 IF ( tmp_target_set(ia) ) THEN constr_target(ia) = tmp_target_inp(ia) ELSE CALL set_bennett_proj( ia ) ENDIF ! CASE DEFAULT ! CALL errore( 'init_constraint', & 'collective-variable or constrait type not implemented', 1 ) ! END SELECT ! ENDDO ! DEALLOCATE( tmp_type_inp,tmp_target_set,tmp_target_inp ) ! RETURN ! CONTAINS ! !------------------------------------------------------------------- SUBROUTINE set_type_coord( ia ) !------------------------------------------------------------------- ! INTEGER, INTENT(in) :: ia ! type_coord1 = anint( constr(1,ia) ) type_coord2 = anint( constr(2,ia) ) ! r_c = constr(3,ia) ! smoothing = 1.0_DP / constr(4,ia) ! constr_target(ia) = 0.0_DP ! n_type_coord1 = 0 ! DO ia1 = 1, nat ! IF ( ityp(ia1) /= type_coord1 ) CYCLE ! DO ia2 = 1, nat ! IF ( ia2 == ia1 ) CYCLE ! IF ( ityp(ia2) /= type_coord2 ) CYCLE ! dtau(:) = pbc( ( tau(:,ia1) - tau(:,ia2) )*tau_units ) ! norm_dtau = norm( dtau(:) ) ! constr_target(ia) = constr_target(ia) + 1.0_DP / & ( exp( smoothing*( norm_dtau - r_c ) ) + 1.0_DP ) ! ENDDO ! n_type_coord1 = n_type_coord1 + 1 ! ENDDO ! constr_target(ia) = constr_target(ia) / dble( n_type_coord1 ) ! END SUBROUTINE set_type_coord ! !------------------------------------------------------------------- SUBROUTINE set_atom_coord( ia ) !------------------------------------------------------------------- ! INTEGER, INTENT(in) :: ia ! ia1 = anint( constr(1,ia) ) type_coord1 = anint( constr(2,ia) ) ! r_c = constr(3,ia) ! smoothing = 1.0_DP / constr(4,ia) ! constr_target(ia) = 0.0_DP ! DO ia2 = 1, nat ! IF ( ia2 == ia1 ) CYCLE ! IF ( ityp(ia2) /= type_coord1 ) CYCLE ! dtau(:) = pbc( ( tau(:,ia1) - tau(:,ia2) )*tau_units ) ! norm_dtau = norm( dtau(:) ) ! constr_target(ia) = constr_target(ia) + 1.0_DP / & ( exp( smoothing*( norm_dtau - r_c ) ) + 1.0_DP ) ! ENDDO ! END SUBROUTINE set_atom_coord ! !------------------------------------------------------------------- SUBROUTINE set_distance( ia ) !------------------------------------------------------------------- ! INTEGER, INTENT(in) :: ia ! ia1 = anint( constr(1,ia) ) ia2 = anint( constr(2,ia) ) ! dtau(:) = pbc( ( tau(:,ia1) - tau(:,ia2) )*tau_units ) ! constr_target(ia) = norm( dtau(:) ) ! END SUBROUTINE set_distance ! !------------------------------------------------------------------- SUBROUTINE set_planar_angle( ia ) !------------------------------------------------------------------- ! INTEGER, INTENT(in) :: ia ! ia0 = anint( constr(1,ia) ) ia1 = anint( constr(2,ia) ) ia2 = anint( constr(3,ia) ) ! d0(:) = pbc( ( tau(:,ia0) - tau(:,ia1) )*tau_units ) d1(:) = pbc( ( tau(:,ia1) - tau(:,ia2) )*tau_units ) ! d0(:) = d0(:) / norm( d0(:) ) d1(:) = d1(:) / norm( d1(:) ) ! constr_target(ia) = acos(- d0(:) .dot. d1(:))*360.0_DP/tpi ! END SUBROUTINE set_planar_angle ! !------------------------------------------------------------------- SUBROUTINE set_torsional_angle( ia ) !------------------------------------------------------------------- ! INTEGER, INTENT(in) :: ia REAL(DP) :: x01(3),x12(3),phi ! ia0 = anint( constr(1,ia) ) ia1 = anint( constr(2,ia) ) ia2 = anint( constr(3,ia) ) ia3 = anint( constr(4,ia) ) ! d0(:) = pbc( ( tau(:,ia0) - tau(:,ia1) )*tau_units ) d1(:) = pbc( ( tau(:,ia1) - tau(:,ia2) )*tau_units ) d2(:) = pbc( ( tau(:,ia2) - tau(:,ia3) )*tau_units ) ! x01(:) = cross(d0,d1) x12(:) = cross(d1,d2) ! IF((x01.dot.x01) ! ! ... in normal cases the constraint equation should be satisfied at ! ... the very first iteration. ! USE ions_base, ONLY : amass ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat REAL(DP), INTENT(inout) :: taup(3,nat) REAL(DP), INTENT(in) :: tau0(3,nat) INTEGER, INTENT(in) :: if_pos(3,nat) REAL(DP), INTENT(inout) :: force(3,nat) INTEGER, INTENT(in) :: ityp(nat) REAL(DP), INTENT(in) :: tau_units REAL(DP), INTENT(in) :: dt REAL(DP), INTENT(in) :: massconv ! INTEGER :: na, i, idx, dim REAL(DP), ALLOCATABLE :: dgp(:,:), dg0(:,:,:) REAL(DP) :: g0 REAL(DP) :: lambda, fac, invdtsq LOGICAL, ALLOCATABLE :: ltest(:) LOGICAL :: global_test INTEGER, PARAMETER :: maxiter = 100 ! REAL(DP), EXTERNAL :: ddot ! ! ALLOCATE( dgp( 3, nat ) ) ALLOCATE( dg0( 3, nat, nconstr ) ) ! ALLOCATE( ltest( nconstr ) ) ! invdtsq = 1.0_DP / dt**2 ! dim = 3*nat ! DO idx = 1, nconstr ! CALL constraint_grad( idx, nat, tau0, & if_pos, ityp, tau_units, g0, dg0(:,:,idx) ) ! ENDDO ! outer_loop: DO i = 1, maxiter ! inner_loop: DO idx = 1, nconstr ! ltest(idx) = .false. ! CALL constraint_grad( idx, nat, taup, & if_pos, ityp, tau_units, gp(idx), dgp ) ! ! ... check if gp = 0 ! #if defined (__DEBUG_CONSTRAINTS) WRITE( stdout, '(2(2X,I3),F12.8)' ) i, idx, abs( gp(idx) ) #endif ! IF ( abs( gp(idx) ) < constr_tol ) THEN ! ltest(idx) = .true. ! CYCLE inner_loop ! ENDIF ! ! ... if gp <> 0 find new taup and check again ! ... ( gp is in bohr and taup in tau_units ) ! DO na = 1, nat ! dgp(:,na) = dgp(:,na) / ( amass(ityp(na))*massconv ) ! ENDDO ! lambda = gp(idx) / ddot( dim, dgp, 1, dg0(:,:,idx), 1 ) ! DO na = 1, nat ! fac = amass(ityp(na))*massconv*tau_units ! taup(:,na) = taup(:,na) - lambda*dg0(:,na,idx)/fac ! ENDDO ! lagrange(idx) = lagrange(idx) + lambda*invdtsq ! force(:,:) = force(:,:) - lambda*dg0(:,:,idx)*invdtsq ! ENDDO inner_loop ! global_test = all( ltest(:) ) ! ! ... all constraints are satisfied ! IF ( global_test ) exit outer_loop ! ENDDO outer_loop ! IF ( .not. global_test ) THEN ! ! ... error messages ! WRITE( stdout, '(/,5X,"Number of step(s): ",I3)') min( i, maxiter ) WRITE( stdout, '(/,5X,"constr_target convergence: ")' ) ! DO i = 1, nconstr ! WRITE( stdout, '(5X,"constr # ",I3,2X,L1,3(2X,F16.10))' ) & i, ltest(i), abs( gp(i) ), constr_tol, constr_target(i) ! ENDDO ! CALL errore( 'check_constraint', & 'on some constraint g = 0 is not satisfied', 1 ) ! ENDIF ! DEALLOCATE( dgp ) DEALLOCATE( dg0 ) DEALLOCATE( ltest ) ! RETURN ! END SUBROUTINE check_constraint ! !----------------------------------------------------------------------- SUBROUTINE remove_constr_force( nat, tau, & if_pos, ityp, tau_units, force ) !----------------------------------------------------------------------- ! ! ... the component of the force that is orthogonal to the ! ... ipersurface defined by the constraint equations is removed ! ... and the corresponding value of the lagrange multiplier computed ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat REAL(DP), INTENT(in) :: tau(:,:) INTEGER, INTENT(in) :: if_pos(:,:) INTEGER, INTENT(in) :: ityp(:) REAL(DP), INTENT(in) :: tau_units REAL(DP), INTENT(inout) :: force(:,:) ! INTEGER :: i, j, dim REAL(DP) :: g, ndg, dgidgj REAL(DP) :: norm_before, norm_after REAL(DP), ALLOCATABLE :: dg(:,:,:) REAL(DP), ALLOCATABLE :: dg_matrix(:,:) INTEGER, ALLOCATABLE :: iwork(:) ! REAL(DP), EXTERNAL :: ddot, dnrm2 ! ! dim = 3*nat ! lagrange(:) = 0.0_DP ! #if defined (__REMOVE_CONSTRAINT_FORCE) ! norm_before = dnrm2( 3*nat, force, 1 ) ! ALLOCATE( dg( 3, nat, nconstr ) ) ! IF ( nconstr == 1 ) THEN ! CALL constraint_grad( 1, nat, tau, & if_pos, ityp, tau_units, g, dg(:,:,1) ) ! lagrange(1) = ddot( dim, force, 1, dg(:,:,1), 1 ) ! ndg = ddot( dim, dg(:,:,1), 1, dg(:,:,1), 1 ) ! force(:,:) = force(:,:) - lagrange(1)*dg(:,:,1)/ndg ! ELSE ! ALLOCATE( dg_matrix( nconstr, nconstr ) ) ALLOCATE( iwork( nconstr ) ) ! DO i = 1, nconstr ! CALL constraint_grad( i, nat, tau, & if_pos, ityp, tau_units, g, dg(:,:,i) ) ! ENDDO ! DO i = 1, nconstr ! dg_matrix(i,i) = ddot( dim, dg(:,:,i), 1, dg(:,:,i), 1 ) ! lagrange(i) = ddot( dim, force, 1, dg(:,:,i), 1 ) ! DO j = i + 1, nconstr ! dgidgj = ddot( dim, dg(:,:,i), 1, dg(:,:,j), 1 ) ! dg_matrix(i,j) = dgidgj dg_matrix(j,i) = dgidgj ! ENDDO ! ENDDO ! CALL DGESV( nconstr, 1, dg_matrix, & nconstr, iwork, lagrange, nconstr, i ) ! IF ( i /= 0 ) & CALL errore( 'remove_constr_force', & 'error in the solution of the linear system', i ) ! DO i = 1, nconstr ! force(:,:) = force(:,:) - lagrange(i)*dg(:,:,i) ! ENDDO ! DEALLOCATE( dg_matrix ) DEALLOCATE( iwork ) ! ENDIF ! #if defined (__DEBUG_CONSTRAINTS) ! WRITE( stdout, '(/,5X,"Intermediate forces (Ry/au):",/)') ! DO i = 1, nat ! WRITE( stdout, '(5X,"atom ",I3," type ",I2,3X,"force = ",3F14.8)' ) & i, ityp(i), force(:,i) ! ENDDO ! #endif ! norm_after = dnrm2( dim, force, 1 ) ! IF ( norm_before < norm_after ) THEN ! WRITE( stdout, '(/,5X,"norm before = ",F16.10)' ) norm_before WRITE( stdout, '( 5X,"norm after = ",F16.10)' ) norm_after ! CALL errore( 'remove_constr_force', & 'norm(F) before < norm(F) after', 1 ) ! ENDIF ! DEALLOCATE( dg ) ! #endif ! END SUBROUTINE remove_constr_force ! !----------------------------------------------------------------------- SUBROUTINE remove_constr_vec( nat, tau, & if_pos, ityp, tau_units, vec ) !----------------------------------------------------------------------- ! ! ... the component of a displacement vector that is orthogonal to the ! ... ipersurface defined by the constraint equations is removed ! ... and the corresponding value of the lagrange multiplier computed ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat REAL(DP), INTENT(in) :: tau(:,:) INTEGER, INTENT(in) :: if_pos(:,:) INTEGER, INTENT(in) :: ityp(:) REAL(DP), INTENT(in) :: tau_units REAL(DP), INTENT(inout) :: vec(:,:) ! INTEGER :: i, j, dim REAL(DP) :: g, ndg, dgidgj REAL(DP), ALLOCATABLE :: dg(:,:,:), dg_matrix(:,:), lambda(:) INTEGER, ALLOCATABLE :: iwork(:) ! REAL(DP), EXTERNAL :: ddot, dnrm2 ! ! dim = 3*nat ! ALLOCATE( lambda( nconstr ) ) ALLOCATE( dg( 3, nat, nconstr ) ) ! IF ( nconstr == 1 ) THEN ! CALL constraint_grad( 1, nat, tau, & if_pos, ityp, tau_units, g, dg(:,:,1) ) ! lambda(1) = ddot( dim, vec, 1, dg(:,:,1), 1 ) ! ndg = ddot( dim, dg(:,:,1), 1, dg(:,:,1), 1 ) ! vec(:,:) = vec(:,:) - lambda(1)*dg(:,:,1)/ndg ! ELSE ! ALLOCATE( dg_matrix( nconstr, nconstr ) ) ALLOCATE( iwork( nconstr ) ) ! DO i = 1, nconstr ! CALL constraint_grad( i, nat, tau, & if_pos, ityp, tau_units, g, dg(:,:,i) ) ! ENDDO ! DO i = 1, nconstr ! dg_matrix(i,i) = ddot( dim, dg(:,:,i), 1, dg(:,:,i), 1 ) ! lambda(i) = ddot( dim, vec, 1, dg(:,:,i), 1 ) ! DO j = i + 1, nconstr ! dgidgj = ddot( dim, dg(:,:,i), 1, dg(:,:,j), 1 ) ! dg_matrix(i,j) = dgidgj dg_matrix(j,i) = dgidgj ! ENDDO ! ENDDO ! CALL DGESV( nconstr, 1, dg_matrix, & nconstr, iwork, lambda, nconstr, i ) ! IF ( i /= 0 ) & CALL errore( 'remove_constr_vec', & 'error in the solution of the linear system', i ) ! DO i = 1, nconstr ! vec(:,:) = vec(:,:) - lambda(i)*dg(:,:,i) ! ENDDO ! DEALLOCATE( dg_matrix ) DEALLOCATE( iwork ) ! ENDIF ! DEALLOCATE( lambda, dg ) ! END SUBROUTINE remove_constr_vec ! !----------------------------------------------------------------------- SUBROUTINE deallocate_constraint() !----------------------------------------------------------------------- ! IMPLICIT NONE ! ! IF ( allocated( lagrange ) ) DEALLOCATE( lagrange ) IF ( allocated( constr ) ) DEALLOCATE( constr ) IF ( allocated( constr_type ) ) DEALLOCATE( constr_type ) IF ( allocated( constr_target ) ) DEALLOCATE( constr_target ) IF ( allocated( gp ) ) DEALLOCATE( gp ) ! RETURN ! END SUBROUTINE deallocate_constraint ! !----------------------------------------------------------------------- FUNCTION cross(A,B) !----------------------------------------------------------------------- ! ! ... cross product ! IMPLICIT NONE ! REAL(DP),INTENT(in) :: A(3),B(3) REAL(DP) cross(3) ! cross(1) = A(2)*B(3)-A(3)*B(2) cross(2) = A(3)*B(1)-A(1)*B(3) cross(3) = A(1)*B(2)-A(2)*B(1) ! END FUNCTION ! !----------------------------------------------------------------------- FUNCTION pbc( vect ) !----------------------------------------------------------------------- ! ! ... periodic boundary conditions ( vect is assumed to be given ! ... in cartesian coordinates and in atomic units ) ! USE cell_base, ONLY : at, bg, alat ! IMPLICIT NONE ! REAL(DP), INTENT(in) :: vect(3) REAL(DP) :: pbc(3) ! ! #if defined (__USE_PBC) ! pbc(:) = matmul( vect(:), bg(:,:) )/alat ! pbc(:) = pbc(:) - anint( pbc(:) ) ! pbc(:) = matmul( at(:,:), pbc(:) )*alat ! #else ! pbc(:) = vect(:) ! #endif RETURN ! END FUNCTION pbc ! !----------------------------------------------------------------------- SUBROUTINE compute_dmax() !----------------------------------------------------------------------- ! ! ... dmax corresponds to one half the longest diagonal of the cell ! USE cell_base, ONLY : at, alat ! IMPLICIT NONE ! INTEGER :: x,y,z REAL(DP) :: diago(3) ! dmax = 0._dp !norm(at(:,1)+at(:,2)+at(:,3)) ! DO z = -1,1,2 DO y = -1,1,2 DO x = -1,1,2 diago = x*at(:,1) + y*at(:,2) + z*at(:,3) dmax = max(dmax, norm(diago)) ENDDO ENDDO ENDDO ! dmax= dmax*alat*.5_dp ! RETURN ! END SUBROUTINE compute_dmax ! END MODULE constraints_module espresso-5.1/Modules/bfgs_module.f900000644000175000017500000010214612341373034015524 0ustar mbamba! ! Copyright (C) 2003-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE bfgs_module !---------------------------------------------------------------------------- ! ! ... Ionic relaxation through the Newton-Raphson optimization scheme ! ... based on the Broyden-Fletcher-Goldfarb-Shanno algorithm for the ! ... estimate of the inverse Hessian matrix. ! ... The ionic relaxation is performed converting cartesian (and cell) ! ... positions into internal coordinates. ! ... The algorithm uses a "trust radius" line search based on Wolfe ! ... conditions. Steps are rejected until the first Wolfe condition ! ... (sufficient energy decrease) is satisfied. Updated step length ! ... is estimated from quadratic interpolation. ! ... When the step is accepted inverse hessian is updated according to ! ... BFGS scheme and a new search direction is obtained from NR or GDIIS ! ... method. The corresponding step length is limited by trust_radius_max ! ... and can't be larger than the previous step multiplied by a certain ! ... factor determined by Wolfe and other convergence conditions. ! ! ... Originally written ( 5/12/2003 ) and maintained ( 2003-2007 ) by ! ... Carlo Sbraccia ! ... Modified for variable-cell-shape relaxation ( 2007-2008 ) by ! ... Javier Antonio Montoya, Lorenzo Paulatto and Stefano de Gironcoli ! ... Re-analyzed by Stefano de Gironcoli ( 2010 ) ! ! ... references : ! ! ... 1) Roger Fletcher, Practical Methods of Optimization, John Wiley and ! ... Sons, Chichester, 2nd edn, 1987. ! ... 2) Salomon R. Billeter, Alexander J. Turner, Walter Thiel, ! ... Phys. Chem. Chem. Phys. 2, 2177 (2000). ! ... 3) Salomon R. Billeter, Alessandro Curioni, Wanda Andreoni, ! ... Comput. Mat. Science 27, 437, (2003). ! ... 4) Ren Weiqing, PhD Thesis: Numerical Methods for the Study of Energy ! ... Landscapes and Rare Events. ! ! USE kinds, ONLY : DP USE io_files, ONLY : iunbfgs, prefix USE constants, ONLY : eps16 USE cell_base, ONLY : iforceh ! USE basic_algebra_routines ! IMPLICIT NONE ! PRIVATE ! ! ... public methods ! PUBLIC :: bfgs, terminate_bfgs ! ! ... public variables ! PUBLIC :: bfgs_ndim, & trust_radius_ini, trust_radius_min, trust_radius_max, & w_1, w_2 ! ! ... global module variables ! SAVE ! CHARACTER (len=8) :: fname="energy" ! name of the function to be minimized ! REAL(DP), ALLOCATABLE :: & pos(:), &! positions + cell grad(:), &! gradients + cell_force pos_p(:), &! positions at the previous accepted iteration grad_p(:), &! gradients at the previous accepted iteration inv_hess(:,:), &! inverse hessian matrix (updated using BFGS formula) metric(:,:), & h_block(:,:), & hinv_block(:,:), & step(:), &! the (new) search direction (normalized NR step) step_old(:), &! the previous search direction (normalized NR step) pos_old(:,:), &! list of m old positions - used only by gdiis grad_old(:,:), &! list of m old gradients - used only by gdiis pos_best(:) ! best extrapolated positions - used only by gdiis REAL(DP) :: & nr_step_length, &! length of (new) Newton-Raphson step nr_step_length_old,&! length of previous Newton-Raphson step trust_radius, &! new displacement along the search direction trust_radius_old, &! old displacement along the search direction energy_p ! energy at previous accepted iteration INTEGER :: & scf_iter, &! number of scf iterations bfgs_iter, &! number of bfgs iterations gdiis_iter, &! number of gdiis iterations tr_min_hit = 0 ! set to 1 if the trust_radius has already been ! set to the minimum value at the previous step ! set to 2 if trust_radius is reset again: exit LOGICAL :: & conv_bfgs ! .TRUE. when bfgs convergence has been achieved ! ! ... default values for the following variables are set in ! ... Modules/read_namelist.f90 (SUBROUTINE ions_defaults) ! ! ... Note that trust_radius_max, trust_radius_min, trust_radius_ini, ! ... w_1, w_2, bfgs_ndim have a default value, but can also be assigned ! ... in the input. ! INTEGER :: & bfgs_ndim ! dimension of the subspace for GDIIS ! fixed to 1 for standard BFGS algorithm REAL(DP) :: & trust_radius_ini, &! suggested initial displacement trust_radius_min, &! minimum allowed displacement trust_radius_max ! maximum allowed displacement REAL(DP) :: &! parameters for Wolfe conditions w_1, &! 1st Wolfe condition: sufficient energy decrease w_2 ! 2nd Wolfe condition: sufficient gradient decrease ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE bfgs( pos_in, h, energy, grad_in, fcell, fixion, scratch, stdout,& energy_thr, grad_thr, cell_thr, energy_error, grad_error, & cell_error, istep, nstep, step_accepted, stop_bfgs, lmovecell ) !------------------------------------------------------------------------ ! ! ... list of input/output arguments : ! ! pos : vector containing 3N coordinates of the system ( x ) ! energy : energy of the system ( V(x) ) ! grad : vector containing 3N components of grad( V(x) ) ! fixion : vector used to freeze a deg. of freedom ! scratch : scratch directory ! stdout : unit for standard output ! energy_thr : treshold on energy difference for BFGS convergence ! grad_thr : treshold on grad difference for BFGS convergence ! the largest component of grad( V(x) ) is considered ! energy_error : energy difference | V(x_i) - V(x_i-1) | ! grad_error : the largest component of ! | grad(V(x_i)) - grad(V(x_i-1)) | ! cell_error : the largest component of: omega*(stress-press*I) ! nstep : the maximun nuber of scf-steps ! step_accepted : .TRUE. if a new BFGS step is done ! stop_bfgs : .TRUE. if BFGS convergence has been achieved ! IMPLICIT NONE ! REAL(DP), INTENT(INOUT) :: pos_in(:) REAL(DP), INTENT(INOUT) :: h(3,3) REAL(DP), INTENT(INOUT) :: energy REAL(DP), INTENT(INOUT) :: grad_in(:) REAL(DP), INTENT(INOUT) :: fcell(3,3) INTEGER, INTENT(IN) :: fixion(:) CHARACTER(LEN=*), INTENT(IN) :: scratch INTEGER, INTENT(IN) :: stdout REAL(DP), INTENT(IN) :: energy_thr, grad_thr, cell_thr INTEGER, INTENT(OUT) :: istep INTEGER, INTENT(IN) :: nstep REAL(DP), INTENT(OUT) :: energy_error, grad_error, cell_error LOGICAL, INTENT(OUT) :: step_accepted, stop_bfgs LOGICAL, INTENT(IN) :: lmovecell ! INTEGER :: n, i, j, k, nat LOGICAL :: lwolfe REAL(DP) :: dE0s, den ! ... for scaled coordinates REAL(DP) :: hinv(3,3),g(3,3),ginv(3,3),garbage, omega ! ! lwolfe=.false. n = SIZE( pos_in ) + 9 nat = size (pos_in) / 3 if (nat*3 /= size (pos_in)) call errore('bfgs',' strange dimension',1) ! ! ... work-space allocation ! ALLOCATE( pos( n ) ) ALLOCATE( grad( n ) ) ! ALLOCATE( grad_old( n, bfgs_ndim ) ) ALLOCATE( pos_old( n, bfgs_ndim ) ) ! ALLOCATE( inv_hess( n, n ) ) ! ALLOCATE( pos_p( n ) ) ALLOCATE( grad_p( n ) ) ALLOCATE( step( n ) ) ALLOCATE( step_old( n ) ) ALLOCATE( pos_best( n ) ) ! ... scaled coordinates work-space ALLOCATE( hinv_block( n-9, n-9 ) ) ! ... cell related work-space ALLOCATE( metric( n , n ) ) ! ! ... the BFGS file read (pos & grad) in scaled coordinates ! call invmat(3, h, hinv, omega) ! volume is defined to be positve even for left-handed vector triplet omega = abs(omega) ! hinv_block = 0.d0 FORALL ( k=0:nat-1, i=1:3, j=1:3 ) hinv_block(i+3*k,j+3*k) = hinv(i,j) ! ! ... generate metric to work with scaled ionic coordinates g = MATMUL(TRANSPOSE(h),h) call invmat(3,g,ginv,garbage) metric = 0.d0 FORALL ( k=0:nat-1, i=1:3, j=1:3 ) metric(i+3*k,j+3*k) = g(i,j) FORALL ( k=nat:nat+2, i=1:3, j=1:3 ) metric(i+3*k,j+3*k) = 0.04 * omega * ginv(i,j) ! ! ... generate bfgs vectors for the degrees of freedom and their gradients pos = 0.0 pos(1:n-9) = pos_in if (lmovecell) FORALL( i=1:3, j=1:3) pos( n-9 + j+3*(i-1) ) = h(i,j) grad = 0.0 grad(1:n-9) = grad_in if (lmovecell) FORALL( i=1:3, j=1:3) grad( n-9 + j+3*(i-1) ) = fcell(i,j)*iforceh(i,j) ! ! if the cell moves the quantity to be minimized is the enthalpy IF ( lmovecell ) fname="enthalpy" ! CALL read_bfgs_file( pos, grad, fixion, energy, scratch, n, stdout ) ! scf_iter = scf_iter + 1 istep = scf_iter ! ! ... convergence is checked here ! energy_error = ABS( energy_p - energy ) grad_error = MAXVAL( ABS( MATMUL( TRANSPOSE(hinv_block), grad(1:n-9)) ) ) conv_bfgs = energy_error < energy_thr conv_bfgs = conv_bfgs .AND. ( grad_error < grad_thr ) ! IF( lmovecell) THEN cell_error = MAXVAL( ABS( MATMUL ( TRANSPOSE ( RESHAPE( grad(n-8:n), (/ 3, 3 /) ) ),& TRANSPOSE(h) ) ) ) / omega conv_bfgs = conv_bfgs .AND. ( cell_error < cell_thr ) #undef DEBUG #ifdef DEBUG write (*,'(3f15.10)') TRANSPOSE ( RESHAPE( grad(n-8:n), (/ 3, 3 /) ) ) write (*,*) write (*,'(3f15.10)') TRANSPOSE(h) write (*,*) write (*,'(3f15.10)') MATMUL (TRANSPOSE( RESHAPE( grad(n-8:n), (/ 3, 3 /) ) ),& TRANSPOSE(h) ) / omega write (*,*) write (*,*) cell_error/cell_thr*0.5d0 #endif END IF ! ! ... converged (or useless to go on): quick return ! conv_bfgs = conv_bfgs .OR. ( tr_min_hit > 1 ) IF ( conv_bfgs ) GOTO 1000 ! ! ... some output is written ! WRITE( UNIT = stdout, & & FMT = '(/,5X,"number of scf cycles",T30,"= ",I3)' ) scf_iter WRITE( UNIT = stdout, & & FMT = '(5X,"number of bfgs steps",T30,"= ",I3,/)' ) bfgs_iter IF ( scf_iter > 1 ) WRITE( UNIT = stdout, & & FMT = '(5X,A," old",T30,"= ",F18.10," Ry")' ) fname,energy_p WRITE( UNIT = stdout, & & FMT = '(5X,A," new",T30,"= ",F18.10," Ry",/)' ) fname,energy ! ! ... the bfgs algorithm starts here ! IF ( .NOT. energy_wolfe_condition( energy ) .AND. (scf_iter > 1) ) THEN ! ! ... the previous step is rejected, line search goes on ! step_accepted = .FALSE. ! WRITE( UNIT = stdout, & & FMT = '(5X,"CASE: ",A,"_new > ",A,"_old",/)' ) fname,fname ! ! ... the new trust radius is obtained by quadratic interpolation ! ! ... E(s) = a*s*s + b*s + c ( we use E(0), dE(0), E(s') ) ! ! ... s_min = - 0.5*( dE(0)*s'*s' ) / ( E(s') - E(0) - dE(0)*s' ) ! if (abs(scnorm(step_old(:))-1._DP) > 1.d-10) call errore('bfgs', & ' step_old is NOT normalized ',1) ! (normalized) search direction is the same as in previous step step(:) = step_old(:) ! dE0s = ( grad_p(:) .dot. step(:) ) * trust_radius_old IF (dE0s > 0._DP ) CALL errore( 'bfgs', & 'dE0s is positive which should never happen', 1 ) den = energy - energy_p - dE0s ! ! estimate new trust radius by interpolation trust_radius = - 0.5_DP*dE0s*trust_radius_old / den ! WRITE( UNIT = stdout, & & FMT = '(5X,"new trust radius",T30,"= ",F18.10," bohr")' ) & trust_radius ! ! ... values from the last succeseful bfgs step are restored ! pos(:) = pos_p(:) energy = energy_p grad(:) = grad_p(:) ! IF ( trust_radius < trust_radius_min ) THEN ! ! ... the history is reset ( the history can be reset at most two ! ... consecutive times ) ! WRITE( UNIT = stdout, & FMT = '(/,5X,"trust_radius < trust_radius_min")' ) WRITE( UNIT = stdout, FMT = '(/,5X,"resetting bfgs history",/)' ) ! ! ... if tr_min_hit=1 the history has already been reset at the ! ... previous step : something is going wrong ! IF ( tr_min_hit == 1 ) THEN CALL infomsg( 'bfgs', & 'history already reset at previous step: stopping' ) tr_min_hit = 2 ELSE tr_min_hit = 1 END IF ! CALL reset_bfgs( n ) ! step(:) = - ( inv_hess(:,:) .times. grad(:) ) ! normalize step but remember its length nr_step_length = scnorm(step) step(:) = step(:) / nr_step_length ! trust_radius = min(trust_radius_ini, nr_step_length) ! ELSE ! tr_min_hit = 0 ! END IF ! ELSE ! ! ... a new bfgs step is done ! bfgs_iter = bfgs_iter + 1 ! IF ( bfgs_iter == 1 ) THEN ! ! ... first iteration ! step_accepted = .FALSE. ! ELSE ! step_accepted = .TRUE. ! nr_step_length_old = nr_step_length ! WRITE( UNIT = stdout, & & FMT = '(5X,"CASE: ",A,"_new < ",A,"_old",/)' ) fname,fname ! CALL check_wolfe_conditions( lwolfe, energy, grad ) ! CALL update_inverse_hessian( pos, grad, n, stdout ) ! END IF ! compute new search direction and store NR step length IF ( bfgs_ndim > 1 ) THEN ! ! ... GDIIS extrapolation ! CALL gdiis_step() ! ELSE ! ! ... standard Newton-Raphson step ! step(:) = - ( inv_hess(:,:) .times. grad(:) ) ! END IF IF ( ( grad(:) .dot. step(:) ) > 0.0_DP ) THEN ! WRITE( UNIT = stdout, & FMT = '(5X,"uphill step: resetting bfgs history",/)' ) ! CALL reset_bfgs( n ) step(:) = - ( inv_hess(:,:) .times. grad(:) ) ! END IF ! ! normalize the step and save the step length nr_step_length = scnorm(step) step(:) = step(:) / nr_step_length ! ! ... the new trust radius is computed ! IF ( bfgs_iter == 1 ) THEN ! trust_radius = min(trust_radius_ini, nr_step_length) tr_min_hit = 0 ! ELSE ! CALL compute_trust_radius( lwolfe, energy, grad, n, stdout ) ! END IF ! WRITE( UNIT = stdout, & & FMT = '(5X,"new trust radius",T30,"= ",F18.10," bohr")' ) & trust_radius ! END IF ! ! ... step along the bfgs direction ! IF ( nr_step_length < eps16 ) & CALL errore( 'bfgs', 'NR step-length unreasonably short', 1 ) ! ! ... information required by next iteration is saved here ( this must ! ... be done before positions are updated ) ! CALL write_bfgs_file( pos, energy, grad, scratch ) ! ! ... positions and cell are updated ! pos(:) = pos(:) + trust_radius * step(:) ! 1000 stop_bfgs = conv_bfgs .OR. ( scf_iter >= nstep ) ! ... input ions+cell variables IF ( lmovecell ) FORALL( i=1:3, j=1:3) h(i,j) = pos( n-9 + j+3*(i-1) ) pos_in = pos(1:n-9) ! ... update forces grad_in = grad(1:n-9) ! ! ... work-space deallocation ! DEALLOCATE( pos ) DEALLOCATE( grad ) DEALLOCATE( pos_p ) DEALLOCATE( grad_p ) DEALLOCATE( pos_old ) DEALLOCATE( grad_old ) DEALLOCATE( inv_hess ) DEALLOCATE( step ) DEALLOCATE( step_old ) DEALLOCATE( pos_best ) DEALLOCATE( hinv_block ) DEALLOCATE( metric ) ! RETURN ! CONTAINS ! !-------------------------------------------------------------------- SUBROUTINE gdiis_step() !-------------------------------------------------------------------- USE basic_algebra_routines IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: res(:,:), overlap(:,:), work(:) INTEGER, ALLOCATABLE :: iwork(:) INTEGER :: k, k_m, info REAL(DP) :: gamma0 ! ! gdiis_iter = gdiis_iter + 1 ! k = MIN( gdiis_iter, bfgs_ndim ) k_m = k + 1 ! ALLOCATE( res( n, k ) ) ALLOCATE( overlap( k_m, k_m ) ) ALLOCATE( work( k_m ), iwork( k_m ) ) ! work(:) = 0.0_DP iwork(:) = 0 ! ! ... the new direction is added to the workspace ! DO i = bfgs_ndim, 2, -1 ! pos_old(:,i) = pos_old(:,i-1) grad_old(:,i) = grad_old(:,i-1) ! END DO ! pos_old(:,1) = pos(:) grad_old(:,1) = grad(:) ! ! ... |res_i> = H^-1 \times |g_i> ! CALL DGEMM( 'N', 'N', n, k, n, 1.0_DP, & inv_hess, n, grad_old, n, 0.0_DP, res, n ) ! ! ... overlap_ij = ! CALL DGEMM( 'T', 'N', k, k, n, 1.0_DP, & res, n, res, n, 0.0_DP, overlap, k_m ) ! overlap( :, k_m) = 1.0_DP overlap(k_m, : ) = 1.0_DP overlap(k_m,k_m) = 0.0_DP ! ! ... overlap is inverted via Bunch-Kaufman diagonal pivoting method ! CALL DSYTRF( 'U', k_m, overlap, k_m, iwork, work, k_m, info ) CALL DSYTRI( 'U', k_m, overlap, k_m, iwork, work, info ) CALL errore( 'gdiis_step', 'error in Bunch-Kaufman inversion', info ) ! ! ... overlap is symmetrised ! FORALL( i = 1:k_m, j = 1:k_m, j > i ) overlap(j,i) = overlap(i,j) ! pos_best(:) = 0.0_DP step(:) = 0.0_DP ! DO i = 1, k ! gamma0 = overlap(k_m,i) ! pos_best(:) = pos_best(:) + gamma0*pos_old(:,i) ! step(:) = step(:) - gamma0*res(:,i) ! END DO ! ! ... the step must be consistent with the last positions ! step(:) = step(:) + ( pos_best(:) - pos(:) ) ! IF ( ( grad(:) .dot. step(:) ) > 0.0_DP ) THEN ! ! ... if the extrapolated direction is uphill use only the ! ... last gradient and reset gdiis history ! step(:) = - ( inv_hess(:,:) .times. grad(:) ) ! gdiis_iter = 0 ! END IF ! DEALLOCATE( res, overlap, work, iwork ) ! END SUBROUTINE gdiis_step ! END SUBROUTINE bfgs ! !------------------------------------------------------------------------ SUBROUTINE reset_bfgs( n ) !------------------------------------------------------------------------ ! ... inv_hess in re-initalized to the initial guess ! ... defined as the inverse metric ! INTEGER, INTENT(IN) :: n ! REAL(DP) :: garbage ! call invmat(n, metric, inv_hess, garbage) ! gdiis_iter = 0 ! END SUBROUTINE reset_bfgs ! !------------------------------------------------------------------------ SUBROUTINE read_bfgs_file( pos, grad, fixion, energy, scratch, n, stdout ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL(DP), INTENT(INOUT) :: pos(:) REAL(DP), INTENT(INOUT) :: grad(:) INTEGER, INTENT(IN) :: fixion(:) CHARACTER(LEN=*), INTENT(IN) :: scratch INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: stdout REAL(DP), INTENT(INOUT) :: energy ! CHARACTER(LEN=256) :: bfgs_file LOGICAL :: file_exists REAL(DP) :: garbage ! ! bfgs_file = TRIM( scratch ) // TRIM( prefix ) // '.bfgs' ! INQUIRE( FILE = TRIM( bfgs_file ) , EXIST = file_exists ) ! IF ( file_exists ) THEN ! ! ... bfgs is restarted from file ! OPEN( UNIT = iunbfgs, FILE = TRIM( bfgs_file ), & STATUS = 'UNKNOWN', ACTION = 'READ' ) ! READ( iunbfgs, * ) pos_p READ( iunbfgs, * ) grad_p READ( iunbfgs, * ) scf_iter READ( iunbfgs, * ) bfgs_iter READ( iunbfgs, * ) gdiis_iter READ( iunbfgs, * ) energy_p READ( iunbfgs, * ) pos_old READ( iunbfgs, * ) grad_old READ( iunbfgs, * ) inv_hess READ( iunbfgs, * ) tr_min_hit READ( iunbfgs, * ) nr_step_length ! CLOSE( UNIT = iunbfgs ) ! step_old = ( pos(:) - pos_p(:) ) trust_radius_old = scnorm( step_old ) step_old = step_old / trust_radius_old ! ELSE ! ! ... bfgs initialization ! WRITE( UNIT = stdout, FMT = '(/,5X,"BFGS Geometry Optimization")' ) ! ! initialize the inv_hess to the inverse of the metric call invmat(n, metric, inv_hess, garbage) ! pos_p = 0.0_DP grad_p = 0.0_DP scf_iter = 0 bfgs_iter = 0 gdiis_iter = 0 energy_p = energy step_old = 0.0_DP nr_step_length = 0.0_DP ! trust_radius_old = trust_radius_ini ! pos_old(:,:) = 0.0_DP grad_old(:,:) = 0.0_DP ! tr_min_hit = 0 ! END IF ! END SUBROUTINE read_bfgs_file ! !------------------------------------------------------------------------ SUBROUTINE write_bfgs_file( pos, energy, grad, scratch ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: pos(:) REAL(DP), INTENT(IN) :: energy REAL(DP), INTENT(IN) :: grad(:) CHARACTER(LEN=*), INTENT(IN) :: scratch ! ! OPEN( UNIT = iunbfgs, FILE = TRIM( scratch )//TRIM( prefix )//'.bfgs', & STATUS = 'UNKNOWN', ACTION = 'WRITE' ) ! WRITE( iunbfgs, * ) pos WRITE( iunbfgs, * ) grad WRITE( iunbfgs, * ) scf_iter WRITE( iunbfgs, * ) bfgs_iter WRITE( iunbfgs, * ) gdiis_iter WRITE( iunbfgs, * ) energy WRITE( iunbfgs, * ) pos_old WRITE( iunbfgs, * ) grad_old WRITE( iunbfgs, * ) inv_hess WRITE( iunbfgs, * ) tr_min_hit WRITE( iunbfgs, * ) nr_step_length ! CLOSE( UNIT = iunbfgs ) ! END SUBROUTINE write_bfgs_file ! !------------------------------------------------------------------------ SUBROUTINE update_inverse_hessian( pos, grad, n, stdout ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: pos(:) REAL(DP), INTENT(IN) :: grad(:) INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: stdout INTEGER :: info ! REAL(DP), ALLOCATABLE :: y(:), s(:) REAL(DP), ALLOCATABLE :: Hy(:), yH(:) REAL(DP) :: sdoty, sBs, Theta REAL(DP), ALLOCATABLE :: B(:,:) ! ALLOCATE( y( n ), s( n ), Hy( n ), yH( n ) ) ! s(:) = pos(:) - pos_p(:) y(:) = grad(:) - grad_p(:) ! sdoty = ( s(:) .dot. y(:) ) ! IF ( ABS( sdoty ) < eps16 ) THEN ! ! ... the history is reset ! WRITE( stdout, '(/,5X,"WARNING: unexpected ", & & "behaviour in update_inverse_hessian")' ) WRITE( stdout, '( 5X," resetting bfgs history",/)' ) ! CALL reset_bfgs( n ) ! RETURN ! ELSE ! Conventional Curvature Trap here ! See section 18.2 (p538-539 ) of Nocedal and Wright "Numerical ! Optimization"for instance ! LDM Addition, April 2011 ! ! While with the Wolfe conditions the Hessian in most cases ! remains positive definite, if one is far from the minimum ! and/or "bonds" are being made/broken the curvature condition ! Hy = s ; or s = By ! cannot be satisfied if s.y < 0. In addition, if s.y is small ! compared to s.B.s too greedy a step is taken. ! ! The trap below is conventional and "OK", and has been around ! for ~ 30 years but, unfortunately, is rarely mentioned in ! introductory texts and hence often neglected. ! ! First, solve for inv_hess*t = s ; i.e. t = B*s ! Use yH as workspace here ALLOCATE (B(n,n) ) B = inv_hess yH= s call DPOSV('U',n,1,B,n, yH, n, info) ! Info .ne. 0 should be trapped ... if(info .ne. 0)write( stdout, '(/,5X,"WARNING: info=",i3," for Hessian")' )info DEALLOCATE ( B ) ! ! Calculate s.B.s sBs = ( s(:) .dot. yH(:) ) ! ! Now the trap itself if ( sdoty < 0.20D0*sBs ) then ! Conventional damping Theta = 0.8D0*sBs/(sBs-sdoty) WRITE( stdout, '(/,5X,"WARNING: bfgs curvature condition ", & & "failed, Theta=",F6.3)' )theta y = Theta*y + (1.D0 - Theta)*yH endif END IF ! Hy(:) = ( inv_hess .times. y(:) ) yH(:) = ( y(:) .times. inv_hess ) ! ! ... BFGS update ! inv_hess = inv_hess + 1.0_DP / sdoty * & ( ( 1.0_DP + ( y .dot. Hy ) / sdoty ) * matrix( s, s ) - & ( matrix( s, yH ) + matrix( Hy, s ) ) ) ! DEALLOCATE( y, s, Hy, yH ) ! RETURN ! END SUBROUTINE update_inverse_hessian ! !------------------------------------------------------------------------ SUBROUTINE check_wolfe_conditions( lwolfe, energy, grad ) !------------------------------------------------------------------------ IMPLICIT NONE REAL(DP), INTENT(IN) :: energy REAL(DP), INTENT(IN) :: grad(:) LOGICAL, INTENT(OUT) :: lwolfe ! lwolfe = energy_wolfe_condition ( energy ) .AND. & gradient_wolfe_condition ( grad ) ! END SUBROUTINE check_wolfe_conditions ! !------------------------------------------------------------------------ LOGICAL FUNCTION energy_wolfe_condition ( energy ) !------------------------------------------------------------------------ IMPLICIT NONE REAL(DP), INTENT(IN) :: energy ! energy_wolfe_condition = & ( energy-energy_p ) < w_1 * ( grad_p.dot.step_old ) * trust_radius_old ! END FUNCTION energy_wolfe_condition ! !------------------------------------------------------------------------ LOGICAL FUNCTION gradient_wolfe_condition ( grad ) !------------------------------------------------------------------------ IMPLICIT NONE REAL(DP), INTENT(IN) :: grad(:) ! gradient_wolfe_condition = & ABS( grad .dot. step_old ) < - w_2 * ( grad_p .dot. step_old ) ! END FUNCTION gradient_wolfe_condition ! !------------------------------------------------------------------------ SUBROUTINE compute_trust_radius( lwolfe, energy, grad, n, stdout ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: lwolfe REAL(DP), INTENT(IN) :: energy REAL(DP), INTENT(IN) :: grad(:) INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: stdout ! REAL(DP) :: a LOGICAL :: ltest ! ltest = ( energy - energy_p ) < w_1 * ( grad_p .dot. step_old ) * trust_radius_old ltest = ltest .AND. ( nr_step_length_old > trust_radius_old ) ! IF ( ltest ) THEN a = 1.5_DP ELSE a = 1.1_DP END IF IF ( lwolfe ) a = 2._DP * a ! trust_radius = MIN( trust_radius_max, a*trust_radius_old, nr_step_length ) ! IF ( trust_radius < trust_radius_min ) THEN ! ! ... the history is reset ! ! ... if tr_min_hit the history has already been reset at the ! ... previous step : something is going wrong ! IF ( tr_min_hit == 1 ) THEN CALL infomsg( 'bfgs', & 'history already reset at previous step: stopping' ) tr_min_hit = 2 ELSE tr_min_hit = 1 END IF ! WRITE( UNIT = stdout, & FMT = '(5X,"small trust_radius: resetting bfgs history",/)' ) ! CALL reset_bfgs( n ) step(:) = - ( inv_hess(:,:) .times. grad(:) ) ! nr_step_length = scnorm(step) step(:) = step(:) / nr_step_length ! trust_radius = min(trust_radius_min, nr_step_length ) ! ELSE ! tr_min_hit = 0 ! END IF ! END SUBROUTINE compute_trust_radius ! !----------------------------------------------------------------------- REAL(DP) FUNCTION scnorm1( vect ) !----------------------------------------------------------------------- IMPLICIT NONE REAL(DP), INTENT(IN) :: vect(:) ! scnorm1 = SQRT( DOT_PRODUCT( vect , MATMUL( metric, vect ) ) ) ! END FUNCTION scnorm1 ! !----------------------------------------------------------------------- REAL(DP) FUNCTION scnorm( vect ) !----------------------------------------------------------------------- IMPLICIT NONE REAL(DP), INTENT(IN) :: vect(:) REAL(DP) :: ss INTEGER :: i,k,l,n ! scnorm = 0._DP n = SIZE (vect) / 3 do i=1,n ss = 0._DP do k=1,3 do l=1,3 ss = ss + & vect(k+(i-1)*3)*metric(k+(i-1)*3,l+(i-1)*3)*vect(l+(i-1)*3) end do end do scnorm = MAX (scnorm, SQRT (ss) ) end do ! END FUNCTION scnorm ! !------------------------------------------------------------------------ SUBROUTINE terminate_bfgs( energy, energy_thr, grad_thr, cell_thr, & lmovecell, stdout, scratch ) !------------------------------------------------------------------------ ! USE io_files, ONLY : prefix, delete_if_present ! IMPLICIT NONE REAL(DP), INTENT(IN) :: energy, energy_thr, grad_thr, cell_thr LOGICAL, INTENT(IN) :: lmovecell INTEGER, INTENT(IN) :: stdout CHARACTER(LEN=*), INTENT(IN) :: scratch ! IF ( conv_bfgs ) THEN ! WRITE( UNIT = stdout, & & FMT = '(/,5X,"bfgs converged in ",I3," scf cycles and ", & & I3," bfgs steps")' ) scf_iter, bfgs_iter IF ( lmovecell ) THEN WRITE( UNIT = stdout, & & FMT = '(5X,"(criteria: energy < ",ES8.1,", force < ",ES8.1, & & ", cell < ",ES8.1,")")') energy_thr, grad_thr, cell_thr ELSE WRITE( UNIT = stdout, & & FMT = '(5X,"(criteria: energy < ",ES8.1,", force < ",ES8.1, & & ")")') energy_thr, grad_thr END IF WRITE( UNIT = stdout, & & FMT = '(/,5X,"End of BFGS Geometry Optimization")' ) WRITE( UNIT = stdout, & & FMT = '(/,5X,"Final ",A," = ",F18.10," Ry")' ) fname, energy ! CALL delete_if_present( TRIM( scratch ) // TRIM( prefix ) // '.bfgs' ) ! ELSE ! WRITE( UNIT = stdout, & FMT = '(/,5X,"The maximum number of steps has been reached.")' ) WRITE( UNIT = stdout, & FMT = '(/,5X,"End of BFGS Geometry Optimization")' ) ! END IF ! END SUBROUTINE terminate_bfgs ! END MODULE bfgs_module espresso-5.1/Modules/generate_function.f900000644000175000017500000004723012341373034016737 0ustar mbamba! ! Copyright (C) 2006-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- ! Module to generate functions on the real space dense grid ! Written by Oliviero Andreussi !---------------------------------------------------------------------- ! !=----------------------------------------------------------------------=! MODULE generate_function !=----------------------------------------------------------------------=! USE kinds, ONLY: DP IMPLICIT NONE CONTAINS !---------------------------------------------------------------------- SUBROUTINE planar_average( nnr, naxis, axis, shift, reverse, f, f1d ) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE fft_base, ONLY : dfftp USE mp, ONLY : mp_sum USE mp_bands, ONLY : me_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! ! ... Declares variables ! INTEGER, INTENT(IN) :: nnr, naxis, axis, shift LOGICAL, INTENT(IN) :: reverse REAL( DP ), INTENT(INOUT) :: f( nnr ) REAL( DP ), INTENT(INOUT) :: f1d( naxis ) ! ! ... Local variables ! INTEGER :: i, j, k, ir, ir_end INTEGER :: index, index0, narea ! REAL( DP ) :: inv_nr1, inv_nr2, inv_nr3 ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! index0 = 0 ir_end = nnr ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #endif ! narea = dfftp%nr1*dfftp%nr2*dfftp%nr3 / naxis ! IF ( reverse ) THEN f = 0.D0 ELSE f1d = 0.D0 END IF ! DO ir = 1, ir_end ! ! ... find the index along the selected axis ! i = index0 + ir - 1 index = i / (dfftp%nr1x*dfftp%nr2x) IF ( axis .LT. 3 ) THEN i = i - (dfftp%nr1x*dfftp%nr2x)*index index = i / dfftp%nr1x END IF IF ( axis .EQ. 1 ) index = i - dfftp%nr1x*index ! index = index + 1 + shift ! IF ( index .GT. naxis ) THEN index = index - naxis ELSE IF (index .LE. 0 ) THEN index = index + naxis ENDIF ! IF ( reverse ) THEN f(ir) = f1d(index) ELSE f1d(index) = f1d(index) + f(ir) END IF ! END DO ! IF ( .NOT. reverse ) THEN CALL mp_sum( f1d(:), intra_bgrp_comm ) f1d = f1d / DBLE(narea) END IF ! RETURN ! !---------------------------------------------------------------------- END SUBROUTINE planar_average !---------------------------------------------------------------------- !---------------------------------------------------------------------- SUBROUTINE generate_gaussian( nnr, dim, axis, charge, spread, pos, rho ) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : sqrtpi USE io_global, ONLY : stdout USE cell_base, ONLY : at, bg, alat, omega USE fft_base, ONLY : dfftp USE mp, ONLY : mp_sum USE mp_bands, ONLY : me_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! ! ... Declares variables ! INTEGER, INTENT(IN) :: nnr, dim, axis REAL( DP ), INTENT(IN) :: charge, spread REAL( DP ), INTENT(IN) :: pos( 3 ) REAL( DP ), INTENT(INOUT) :: rho( nnr ) ! ! ... Local variables ! INTEGER :: i, j, k, ir, ir_end, ip INTEGER :: index0 ! REAL( DP ) :: inv_nr1, inv_nr2, inv_nr3 REAL( DP ) :: scale, spr2, dist, length REAL( DP ) :: r( 3 ), s( 3 ) REAL( DP ), ALLOCATABLE :: rholocal ( : ) ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! IF (axis.LT.1.OR.axis.GT.3) & WRITE(stdout,*)'WARNING: wrong axis in generate_gaussian' IF ( dim .EQ. 0 ) THEN scale = charge / ( sqrtpi * spread )**3 ELSE IF ( dim .EQ. 1 ) THEN length = at(axis,axis) * alat scale = charge / length / ( sqrtpi * spread )**2 ELSE IF ( dim .EQ. 2 ) THEN length = at(axis,axis) * alat scale = charge * length / omega / ( sqrtpi * spread ) ELSE WRITE(stdout,*)'WARNING: wrong dim in generate_gaussian' ENDIF spr2 = ( spread / alat )**2 ALLOCATE( rholocal( nnr ) ) rholocal = 0.D0 ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! i = index0 + ir - 1 k = i / (dfftp%nr1x*dfftp%nr2x) i = i - (dfftp%nr1x*dfftp%nr2x)*k j = i / dfftp%nr1x i = i - dfftp%nr1x*j ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = pos(:) - r(:) ! ! ... possibly 2D or 1D gaussians ! IF ( dim .EQ. 1) THEN r(axis) = 0.D0 ELSE IF ( dim .EQ. 2 ) THEN DO i = 1, 3 IF ( i .NE. axis ) r(i) = 0.D0 ENDDO END IF ! ! ... minimum image convention ! s(:) = MATMUL( r(:), bg(:,:) ) s(:) = s(:) - ANINT(s(:)) r(:) = MATMUL( at(:,:), s(:) ) ! dist = SUM( r * r ) ! rholocal( ir ) = scale * EXP(-dist/spr2) ! END DO ! rho = rho + rholocal DEALLOCATE( rholocal ) ! RETURN ! !---------------------------------------------------------------------- END SUBROUTINE generate_gaussian !---------------------------------------------------------------------- !---------------------------------------------------------------------- SUBROUTINE generate_gradgaussian( nnr, dim, axis, charge, spread, pos, gradrho ) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : sqrtpi USE io_global, ONLY : stdout USE cell_base, ONLY : at, bg, alat, omega USE fft_base, ONLY : dfftp USE mp_bands, ONLY : me_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! ! ... Declares variables ! INTEGER, INTENT(IN) :: nnr, dim, axis REAL( DP ), INTENT(IN) :: charge, spread REAL( DP ), INTENT(IN) :: pos( 3 ) REAL( DP ), INTENT(INOUT) :: gradrho( 3, nnr ) ! ! ... Local variables ! INTEGER :: i, j, k, ir, ir_end, ip INTEGER :: index0 ! REAL( DP ) :: inv_nr1, inv_nr2, inv_nr3 REAL( DP ) :: scale, spr2, dist, length REAL( DP ) :: r( 3 ), s( 3 ) REAL( DP ), ALLOCATABLE :: gradrholocal ( :, : ) ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! IF (axis.LT.1.OR.axis.GT.3) & WRITE(stdout,*)'WARNING: wrong axis in generate_gaussian' IF ( dim .EQ. 0 ) THEN scale = charge / ( sqrtpi * spread )**3 ELSE IF ( dim .EQ. 1 ) THEN length = at(axis,axis) * alat scale = charge / length / ( sqrtpi * spread )**2 ELSE IF ( dim .EQ. 2 ) THEN length = at(axis,axis) * alat scale = charge * length / omega / ( sqrtpi * spread ) ELSE WRITE(stdout,*)'WARNING: wrong dim in generate_gaussian' ENDIF spr2 = ( spread / alat )**2 ALLOCATE( gradrholocal( 3, nnr ) ) gradrholocal = 0.D0 ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! i = index0 + ir - 1 k = i / (dfftp%nr1x*dfftp%nr2x) i = i - (dfftp%nr1x*dfftp%nr2x)*k j = i / dfftp%nr1x i = i - dfftp%nr1x*j ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = pos(:) - r(:) ! ! ... possibly 2D or 1D gaussians ! IF ( dim .EQ. 1) THEN r(axis) = 0.D0 ELSE IF ( dim .EQ. 2 ) THEN DO i = 1, 3 IF ( i .NE. axis ) r(i) = 0.D0 ENDDO END IF ! ! ... minimum image convention ! s(:) = MATMUL( r(:), bg(:,:) ) s(:) = s(:) - ANINT(s(:)) r(:) = MATMUL( at(:,:), s(:) ) ! dist = SUM( r * r ) ! gradrholocal( :, ir ) = scale * EXP(-dist/spr2) * r(:) * alat ! END DO ! gradrho = gradrho + gradrholocal DEALLOCATE( gradrholocal ) ! RETURN ! !---------------------------------------------------------------------- END SUBROUTINE generate_gradgaussian !---------------------------------------------------------------------- !---------------------------------------------------------------------- SUBROUTINE generate_exponential( nnr, spread, pos, rho ) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE mp_bands, ONLY : me_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! ! ... Declares variables ! INTEGER, INTENT(IN) :: nnr REAL( DP ), INTENT(IN) :: spread REAL( DP ), INTENT(IN) :: pos( 3 ) REAL( DP ), INTENT(INOUT) :: rho( nnr ) ! ! ... Local variables ! INTEGER :: i, j, k, ir, ir_end, ip INTEGER :: index0 ! REAL( DP ) :: inv_nr1, inv_nr2, inv_nr3 REAL( DP ) :: dist, arg REAL( DP ) :: r( 3 ), s( 3 ) REAL( DP ), ALLOCATABLE :: rholocal ( : ) REAL( DP ), PARAMETER :: exp_arg_limit = 25.D0 ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! ALLOCATE( rholocal( nnr ) ) rholocal = 0.D0 ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! i = index0 + ir - 1 k = i / (dfftp%nr1x*dfftp%nr2x) i = i - (dfftp%nr1x*dfftp%nr2x)*k j = i / dfftp%nr1x i = i - dfftp%nr1x*j r = 0.D0 ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = pos(:) - r(:) ! ! ... minimum image convention ! s(:) = MATMUL( r(:), bg(:,:) ) s(:) = s(:) - ANINT(s(:)) r(:) = MATMUL( at(:,:), s(:) ) ! dist = SQRT(SUM( r * r )) * alat arg = dist - spread ! IF( ABS( arg ) .LT. exp_arg_limit ) THEN rholocal( ir ) = EXP( - arg ) ELSE rholocal( ir ) = 0.D0 END IF ! END DO ! rho = rho + rholocal DEALLOCATE( rholocal ) ! RETURN ! !---------------------------------------------------------------------- END SUBROUTINE generate_exponential !---------------------------------------------------------------------- !---------------------------------------------------------------------- SUBROUTINE generate_gradexponential( nnr, spread, pos, gradrho ) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE mp_bands, ONLY : me_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! ! ... Declares variables ! INTEGER, INTENT(IN) :: nnr REAL( DP ), INTENT(IN) :: spread REAL( DP ), INTENT(IN) :: pos( 3 ) REAL( DP ), INTENT(INOUT) :: gradrho( 3, nnr ) ! ! ... Local variables ! INTEGER :: i, j, k, ir, ir_end, ip INTEGER :: index0 ! REAL( DP ) :: inv_nr1, inv_nr2, inv_nr3 REAL( DP ) :: dist, arg REAL( DP ) :: r( 3 ), s( 3 ) REAL( DP ), ALLOCATABLE :: gradrholocal ( :, : ) REAL( DP ), PARAMETER :: exp_arg_limit = 25.D0 ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! ALLOCATE( gradrholocal( 3, nnr ) ) gradrholocal = 0.D0 ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! i = index0 + ir - 1 k = i / (dfftp%nr1x*dfftp%nr2x) i = i - (dfftp%nr1x*dfftp%nr2x)*k j = i / dfftp%nr1x i = i - dfftp%nr1x*j ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = pos(:) - r(:) ! ! ... minimum image convention ! s(:) = MATMUL( r(:), bg(:,:) ) s(:) = s(:) - ANINT(s(:)) r(:) = MATMUL( at(:,:), s(:) ) ! dist = SQRT(SUM( r * r )) * alat arg = dist - spread IF ( dist .GT. 1.D-6 .AND. ABS( arg ) .LT. exp_arg_limit ) THEN gradrholocal( :, ir ) = r(:) * alat / dist * EXP( - arg ) ELSE gradrholocal( :, ir ) = 0.D0 ENDIF ! END DO ! gradrho = gradrho + gradrholocal DEALLOCATE( gradrholocal ) ! RETURN ! !---------------------------------------------------------------------- END SUBROUTINE generate_gradexponential !---------------------------------------------------------------------- !---------------------------------------------------------------------- SUBROUTINE generate_axis( nnr, icor, pos, axis ) !---------------------------------------------------------------------- USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE mp_bands, ONLY : me_bgrp, intra_bgrp_comm ! INTEGER, INTENT(IN) :: nnr INTEGER, INTENT(IN) :: icor REAL(DP), INTENT(IN) :: pos(3) REAL(DP), INTENT(OUT) :: axis( dfftp%nnr ) ! INTEGER :: i, j, k, ir, ir_end, ip, index0 REAL(DP) :: inv_nr1, inv_nr2, inv_nr3 REAL(DP) :: r(3), s(3) ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! i = index0 + ir - 1 k = i / (dfftp%nr1x*dfftp%nr2x) i = i - (dfftp%nr1x*dfftp%nr2x)*k j = i / dfftp%nr1x i = i - dfftp%nr1x*j ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = r(:) - pos(:) ! ! ... minimum image convention ! CALL cryst_to_cart( 1, r, bg, -1 ) ! r(:) = r(:) - ANINT( r(:) ) ! CALL cryst_to_cart( 1, r, at, 1 ) ! axis(ir) = r(icor) ! END DO ! axis = axis * alat ! RETURN ! !---------------------------------------------------------------------- END SUBROUTINE generate_axis !---------------------------------------------------------------------- !---------------------------------------------------------------------- SUBROUTINE generate_distance( nnr, pos, distance ) !---------------------------------------------------------------------- USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE mp_bands, ONLY : me_bgrp, intra_bgrp_comm ! INTEGER, INTENT(IN) :: nnr REAL(DP), INTENT(IN) :: pos(3) REAL(DP), INTENT(OUT) :: distance( 3, dfftp%nnr ) ! INTEGER :: i, j, k, ir, ir_end, ip, index0 REAL(DP) :: inv_nr1, inv_nr2, inv_nr3 REAL(DP) :: r(3), s(3) ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! index0 = 0 ! #if defined (__MPI) DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO #endif ! #if defined (__MPI) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else ir_end = nnr #endif ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! i = index0 + ir - 1 k = i / (dfftp%nr1x*dfftp%nr2x) i = i - (dfftp%nr1x*dfftp%nr2x)*k j = i / dfftp%nr1x i = i - dfftp%nr1x*j ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = r(:) - pos(:) ! ! ... minimum image convention ! CALL cryst_to_cart( 1, r, bg, -1 ) ! r(:) = r(:) - ANINT( r(:) ) ! CALL cryst_to_cart( 1, r, at, 1 ) ! distance(:,ir) = r(:) ! END DO ! distance = distance * alat ! RETURN ! !---------------------------------------------------------------------- END SUBROUTINE generate_distance !---------------------------------------------------------------------- !=----------------------------------------------------------------------=! END MODULE generate_function !=----------------------------------------------------------------------=! espresso-5.1/Modules/funct.f900000644000175000017500000031574512341373034014370 0ustar mbamba! ! Copyright (C) 2004-2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------- module funct !------------------------------------------------------------------- ! This module contains data defining the DFT functional in use ! and a number of functions and subroutines to manage them. ! Data are PRIVATE and are accessed and set only by function calls. ! Basic drivers to compute XC quantities are also included. ! ! setting routines: set_dft_from_name (previously which_dft) ! set_dft_from_indices ! enforce_input_dft ! start_exx ! stop_exx ! set_finite_size_volume ! retrieve functions: get_dft_name ! get_iexch ! get_icorr ! get_igcx ! get_igcc ! get_exx_fraction ! dft_name ! write_dft_name ! logical functions: dft_is_gradient ! dft_is_meta ! dft_is_hybrid ! dft_is_nonlocc ! exx_is_active ! dft_has_finite_size_correction ! ! XC computation drivers: xc, xc_spin, gcxc, gcx_spin, gcc_spin, gcc_spin_more ! derivatives of XC computation drivers: dmxc, dmxc_spin, dmxc_nc, dgcxc, ! dgcxc_spin ! USE io_global, ONLY: stdout USE kinds, ONLY: DP IMPLICIT NONE PRIVATE SAVE ! subroutines/functions managing dft name and indices PUBLIC :: set_dft_from_indices, set_dft_from_name PUBLIC :: enforce_input_dft, write_dft_name, dft_name PUBLIC :: init_dft_exxrpa, enforce_dft_exxrpa PUBLIC :: get_dft_name, get_iexch, get_icorr, get_igcx, get_igcc, get_inlc PUBLIC :: dft_is_gradient, dft_is_meta, dft_is_hybrid, dft_is_nonlocc ! additional subroutines/functions for hybrid functionals PUBLIC :: start_exx, stop_exx, get_exx_fraction, exx_is_active PUBLIC :: set_exx_fraction PUBLIC :: set_screening_parameter, get_screening_parameter PUBLIC :: set_gau_parameter, get_gau_parameter ! additional subroutines/functions for finite size corrections PUBLIC :: dft_has_finite_size_correction, set_finite_size_volume ! driver subroutines computing XC PUBLIC :: xc, xc_spin, gcxc, gcx_spin, gcc_spin, gcc_spin_more PUBLIC :: tau_xc , tau_xc_spin, dmxc, dmxc_spin, dmxc_nc PUBLIC :: dgcxc, dgcxc_spin PUBLIC :: nlc ! general XC driver PUBLIC :: vxc_t, exc_t ! vector XC driver PUBLIC :: evxc_t_vec, gcx_spin_vec ! ! PRIVATE variables defining the DFT functional ! PRIVATE :: dft, dft_shortname, iexch, icorr, igcx, igcc, inlc PRIVATE :: discard_input_dft PRIVATE :: isgradient, ismeta, ishybrid PRIVATE :: exx_fraction, exx_started PRIVATE :: has_finite_size_correction, & finite_size_cell_volume, finite_size_cell_volume_set ! character (len=25) :: dft = 'not set' character (len=6) :: dft_shortname = ' ' ! ! "dft" is the exchange-correlation functional label, described either ! by short names listed below, or by a series of keywords (everything ! is case-insensitive). "dft_shortname" contains one of the short names ! listed below (deduced from from "dft" as read from input or PP files) ! ! short name complete name Short description ! "pz" = "sla+pz" = Perdew-Zunger LDA ! "bp" = "b88+p86" = Becke-Perdew grad.corr. ! "pw91" = "sla+pw+ggx+ggc" = PW91 (aka GGA) ! "blyp" = "sla+b88+lyp+blyp" = BLYP ! "pbe" = "sla+pw+pbx+pbc" = PBE ! "revpbe"= "sla+pw+rpb+pbc" = revPBE (Zhang-Yang) ! "pw86pbe" = "sla+pw+pw86+pbc" = PW86 exchange + PBE correlation ! "b86bpbe" = "sla+pw+b86b+pbc" = B86b exchange + PBE correlation ! "pbesol"= "sla+pw+psx+psc" = PBEsol ! "q2d" = "sla+pw+q2dx+q2dc" = PBEQ2D ! "hcth" = "nox+noc+hcth+hcth" = HCTH/120 ! "olyp" = "nox+lyp+optx+blyp" = OLYP ! "wc" = "sla+pw+wcx+pbc" = Wu-Cohen ! "sogga" = "sla+pw+sox+pbec" = SOGGA ! "optbk88"="sla+pw+obk8" = optB88 ! "ev93" = "sla+pw+evx+nogc" = Engel-Vosko ! "tpss" = "sla+pw+tpss+tpss" = TPSS Meta-GGA ! "m06l" = "nox+noc+m6lx+m6lc" = M06L Meta-GGA ! "pbe0" = "pb0x+pw+pb0x+pbc" = PBE0 ! "hse" = "sla+pw+hse+pbc" = Heyd-Scuseria-Ernzerhof ! (HSE 06, see note below) ! "b3lyp" = "b3lp+vwn+b3lp+b3lp"= B3LYP ! "gaup" = "sla+pw+gaup+pbc" = Gau-PBE ! "vdw-df"= "sla+pw+rpb+vdw1" = vdW-DF ! "vdw-df2"="sla+pw+rw86+vdw2" = vdW-DF2 ! "vdw-df-c09"="sla+pw+c09x+vdw1" = vdW-DF-C09 ! "vdw-df2-c09"="sla+pw+c09x+vdw2" = vdW-DF2-C09 ! "vdw-df3"="sla+pw+obk8+vdw1" = vdW-DF3 ! "vdw-df4"="sla+pw+ob86+vdw1" = vdW-DF4 ! "optb86b-vdw" = same as vdW-DF4 ! ! Any nonconflicting combination of the following keywords is acceptable: ! ! Exchange: "nox" none iexch=0 ! "sla" Slater (alpha=2/3) iexch=1 (default) ! "sl1" Slater (alpha=1.0) iexch=2 ! "rxc" Relativistic Slater iexch=3 ! "oep" Optimized Effective Potential iexch=4 ! "hf" Hartree-Fock iexch=5 ! "pb0x" PBE0 (Slater*0.75+HF*0.25) iexch=6 ! "b3lp" B3LYP(Slater*0.80+HF*0.20) iexch=7 ! "kzk" Finite-size corrections iexch=8 ! ! Correlation: "noc" none icorr=0 ! "pz" Perdew-Zunger icorr=1 (default) ! "vwn" Vosko-Wilk-Nusair icorr=2 ! "lyp" Lee-Yang-Parr icorr=3 ! "pw" Perdew-Wang icorr=4 ! "wig" Wigner icorr=5 ! "hl" Hedin-Lunqvist icorr=6 ! "obz" Ortiz-Ballone form for PZ icorr=7 ! "obw" Ortiz-Ballone form for PW icorr=8 ! "gl" Gunnarson-Lunqvist icorr=9 ! "kzk" Finite-size corrections icorr=10 ! ! Gradient Correction on Exchange: ! "nogx" none igcx =0 (default) ! "b88" Becke88 (beta=0.0042) igcx =1 ! "ggx" Perdew-Wang 91 igcx =2 ! "pbx" Perdew-Burke-Ernzenhof exch igcx =3 ! "rpb" revised PBE by Zhang-Yang igcx =4 ! "hcth" Cambridge exch, Handy et al igcx =5 ! "tpss" TPSS meta-gga igcx =7 ! "optx" Handy's exchange functional igcx =6 ! "pb0x" PBE0 (PBE exchange*0.75) igcx =8 ! "b3lp" B3LYP (Becke88*0.72) igcx =9 ! "psx" PBEsol exchange igcx =10 ! "wcx" Wu-Cohen igcx =11 ! "hse" HSE screened exchange igcx =12 ! "rw86" revised PW86 igcx =13 ! "pbe" same as PBX, back-comp. igcx =14 ! "meta" same as TPSS, back-comp. igcx =15 ! "c09x" Cooper 09 igcx =16 ! "sox" sogga igcx =17 ! "m6lx" M06L exchange Meta-GGA igcx =18 ! "q2dx" Q2D exchange grad corr igcx =19 ! "gaup" Gau-PBE hybrid exchange igcx =20 ! "pw86" Perdew-Wang (1986) exchange igcx =21 ! "b86b" Becke (1986) exchange igcx =22 ! "obk8" optB88 exchange igcx =23 ! "ob86" optB86b exchange igcx =24 ! "evx" Engel-Vosko exchange igcx =25 ! "b86r" revised Becke (b86b) igcx =26 ! ! Gradient Correction on Correlation: ! "nogc" none igcc =0 (default) ! "p86" Perdew86 igcc =1 ! "ggc" Perdew-Wang 91 corr. igcc =2 ! "blyp" Lee-Yang-Parr igcc =3 ! "pbc" Perdew-Burke-Ernzenhof corr igcc =4 ! "hcth" Cambridge corr, Handy et al igcc =5 ! "tpss" TPSS meta-gga igcc =6 ! "b3lp" B3LYP (Lee-Yang-Parr*0.81) igcc =7 ! "psc" PBEsol corr igcc =8 ! "pbe" same as PBX, back-comp. igcc =9 ! "meta" same as TPSS, back-comp. igcc =10 ! "m6lc" M06L corr Meta-GGA igcc =11 ! "q2dc" Q2D correlation grad corr igcc =12 ! ! Van der Waals functionals (nonlocal term only) ! "nonlc" none inlc =0 (default) ! "vdw1" vdW-DF1 inlc =1 ! "vdw2" vdW-DF2 inlc =2 ! "vv10" rVV10 inlc =3 ! ! Note: as a rule, all keywords should be unique, and should be different ! from the short name, but there are a few exceptions. ! ! References: ! pz J.P.Perdew and A.Zunger, PRB 23, 5048 (1981) ! vwn S.H.Vosko, L.Wilk, M.Nusair, Can.J.Phys. 58,1200(1980) ! wig E.P.Wigner, Trans. Faraday Soc. 34, 67 (1938) ! hl L.Hedin and B.I.Lundqvist, J. Phys. C4, 2064 (1971) ! gl O.Gunnarsson and B.I.Lundqvist, PRB 13, 4274 (1976) ! pw J.P.Perdew and Y.Wang, PRB 45, 13244 (1992) ! obpz G.Ortiz and P.Ballone, PRB 50, 1391 (1994) ! obpw as above ! b88 A.D.Becke, PRA 38, 3098 (1988) ! p86 J.P.Perdew, PRB 33, 8822 (1986) ! pw86 J.P.Perdew, PRB 33, 8800 (1986) ! b86b A.D.Becke, J.Chem.Phys. 85, 7184 (1986) ! ob86 Klimes, Bowler, Michaelides, PRB 83, 195131 (2011) ! b86r I. Hamada, Phys. Rev. B 89, 121103(R) (2014) ! pbe J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996) ! pw91 J.P.Perdew and Y. Wang, PRB 46, 6671 (1992) ! blyp C.Lee, W.Yang, R.G.Parr, PRB 37, 785 (1988) ! hcth Handy et al, JCP 109, 6264 (1998) ! olyp Handy et al, JCP 116, 5411 (2002) ! revPBE Zhang and Yang, PRL 80, 890 (1998) ! pbesol J.P. Perdew et al., PRL 100, 136406 (2008) ! q2d L. Chiodo et al., PRL 108, 126402 (2012) ! rw86 E. Amonn D. Murray et al, J. Chem. Theory comp. 5, 2754 (2009) ! wc Z. Wu and R. E. Cohen, PRB 73, 235116 (2006) ! kzk H.Kwee, S. Zhang, H. Krakauer, PRL 100, 126404 (2008) ! pbe0 J.P.Perdew, M. Ernzerhof, K.Burke, JCP 105, 9982 (1996) ! hse Heyd, Scuseria, Ernzerhof, J. Chem. Phys. 118, 8207 (2003) ! Heyd, Scuseria, Ernzerhof, J. Chem. Phys. 124, 219906 (2006). ! b3lyp P.J. Stephens,F.J. Devlin,C.F. Chabalowski,M.J. Frisch ! J.Phys.Chem 98, 11623 (1994) ! vdW-DF M. Dion et al., PRL 92, 246401 (2004) ! T. Thonhauser et al., PRB 76, 125112 (2007) ! vdw-DF2 Lee et al., Phys. Rev. B 82, 081101 (2010) ! rev-vdW-DF2 I. Hamada, Phys. Rev. B 89, 121103(R) (2014) ! vdw-DF3 Klimes et al, J. Phys. Cond. Matter, 22, 022201 (2010) ! vdw-DF4 Klimes et al, Phys. Rev. B, 83, 195131 (2011) ! c09x V. R. Cooper, Phys. Rev. B 81, 161104(R) (2010) ! tpss J.Tao, J.P.Perdew, V.N.Staroverov, G.E. Scuseria, ! PRL 91, 146401 (2003) ! sogga Y. Zhao and D. G. Truhlar, JCP 128, 184109 (2008) ! m06l Y. Zhao and D. G. Truhlar, JCP 125, 194101 (2006) ! gau-pbe J.-W. Song, K. Yamashita, K. Hirao JCP 135, 071103 (2011) ! rVV10 R. Sabatini et al. Phys. Rev. B 87, 041108(R) (2013) ! ev93 Engel-Vosko, Phys. Rev. B 47, 13164 (1993) ! ! NOTE ABOUT HSE: there are two slight deviations with respect to the HSE06 ! functional as it is in Gaussian code (that is considered as the reference ! in the chemistry community): ! - The range separation in Gaussian is precisely 0.11 bohr^-1, ! instead of 0.106 bohr^-1 in this implementation ! - The gradient scaling relation is a bit more complicated ! [ see: TM Henderson, AF Izmaylov, G Scalmani, and GE Scuseria, ! J. Chem. Phys. 131, 044108 (2009) ] ! These two modifications accounts only for a 1e-5 Ha difference for a ! single He atom. Info by Fabien Bruneval ! integer, parameter:: notset = -1 ! integer :: iexch = notset integer :: icorr = notset integer :: igcx = notset integer :: igcc = notset integer :: inlc = notset real(DP):: exx_fraction = 0.0_DP real(DP):: screening_parameter = 0.0_DP real(DP):: gau_parameter = 0.0_DP logical :: isgradient = .false. logical :: ismeta = .false. logical :: ishybrid = .false. logical :: exx_started = .false. logical :: has_finite_size_correction = .false. logical :: finite_size_cell_volume_set = .false. real(DP):: finite_size_cell_volume = notset logical :: isnonlocc = .false. logical :: discard_input_dft = .false. ! ! internal indices for exchange-correlation ! iexch: type of exchange ! icorr: type of correlation ! igcx: type of gradient correction on exchange ! igcc: type of gradient correction on correlation ! inlc: type of non local correction on correlation ! ! ismeta: .TRUE. if gradient correction is of meta-gga type ! ishybrid: .TRUE. if the xc functional is an HF+DFT hybrid like ! PBE0, B3LYP, HSE or HF itself ! ! see comments above and routine "set_dft_from_name" below ! ! data integer :: nxc, ncc, ngcx, ngcc, ncnl parameter (nxc = 8, ncc =10, ngcx =26, ngcc = 12, ncnl=3) character (len=4) :: exc, corr character (len=4) :: gradx, gradc, nonlocc dimension exc (0:nxc), corr (0:ncc), gradx (0:ngcx), gradc (0: ngcc), nonlocc (0: ncnl) data exc / 'NOX', 'SLA', 'SL1', 'RXC', 'OEP', 'HF', 'PB0X', 'B3LP', 'KZK' / data corr / 'NOC', 'PZ', 'VWN', 'LYP', 'PW', 'WIG', 'HL', 'OBZ', & 'OBW', 'GL' , 'KZK' / data gradx / 'NOGX', 'B88', 'GGX', 'PBX', 'RPB', 'HCTH', 'OPTX',& 'TPSS', 'PB0X', 'B3LP','PSX', 'WCX', 'HSE', 'RW86', 'PBE', & 'META', 'C09X', 'SOX', 'M6LX', 'Q2DX', 'GAUP', 'PW86', 'B86B', & 'OBK8', 'OB86', 'EVX', 'B86R' / data gradc / 'NOGC', 'P86', 'GGC', 'BLYP', 'PBC', 'HCTH', 'TPSS',& 'B3LP', 'PSC', 'PBE', 'META', 'M6LC', 'Q2DC' / data nonlocc / ' ', 'VDW1', 'VDW2', 'VV10' / CONTAINS !----------------------------------------------------------------------- subroutine set_dft_from_name( dft_ ) !----------------------------------------------------------------------- ! ! translates a string containing the exchange-correlation name ! into internal indices iexch, icorr, igcx, igcc ! implicit none ! input character(len=*) :: dft_ ! local integer :: len, l, i character (len=50):: dftout logical :: dft_defined = .false. logical, external :: matches character (len=1), external :: capital integer :: save_iexch, save_icorr, save_igcx, save_igcc, save_inlc ! ! ! Exit if discard_input_dft ! if ( discard_input_dft ) return ! ! save current status of XC indices ! save_iexch = iexch save_icorr = icorr save_igcx = igcx save_igcc = igcc save_inlc = inlc ! ! convert to uppercase ! len = len_trim(dft_) dftout = ' ' do l = 1, len dftout (l:l) = capital (dft_(l:l) ) enddo ! ! ---------------------------------------------- ! FIRST WE CHECK ALL THE SHORT NAMES ! Note: comparison is now done via exact matching ! not using function "matches" ! ---------------------------------------------- ! if ( 'REVPBE' .EQ. TRIM(dftout) ) then ! special case : revPBE call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx, 4) call set_dft_value (igcc, 4) call set_dft_value (inlc, 0) dft_defined = .true. elseif ('PW86PBE' .EQ. TRIM(dftout) ) then ! special case : PW86PBE call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx, 21) call set_dft_value (igcc, 4) call set_dft_value (inlc, 0) dft_defined = .true. elseif ('B86BPBE' .EQ. TRIM(dftout) ) then ! special case : B86BPBE call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx, 22) call set_dft_value (igcc, 4) call set_dft_value (inlc, 0) dft_defined = .true. else if ('RPBE' .EQ. TRIM(dftout)) then ! special case : RPBE call errore('set_dft_from_name', & & 'RPBE (Hammer-Hansen-Norskov) not implemented (revPBE is)',1) else if ('PBE0'.EQ. TRIM(dftout) ) then ! special case : PBE0 call set_dft_value (iexch,6) call set_dft_value (icorr,4) call set_dft_value (igcx, 8) call set_dft_value (igcc, 4) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('HSE' .EQ. TRIM( dftout) ) then ! special case : HSE call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx, 12) call set_dft_value (igcc, 4) call set_dft_value (inlc,0) !Default dft_defined = .true. else if (matches ('GAUP', dftout) ) then ! special case : GAUPBE call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx, 20) call set_dft_value (igcc, 4) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('PBESOL'.EQ. TRIM(dftout) ) then ! special case : PBEsol call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx,10) call set_dft_value (igcc, 8) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('RVV10' .EQ. TRIM(dftout) ) then ! Special case rVV10 call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 13) call set_dft_value (igcc, 4) call set_dft_value (inlc, 3) dft_defined = .true. else if ('PBEQ2D' .EQ. TRIM(dftout) .OR. 'Q2D'.EQ. TRIM(dftout) ) then ! special case : PBEQ2D call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx,19) call set_dft_value (igcc,12) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('REV-VDW-DF2' .EQ. TRIM(dftout) ) then ! Special case vdW-DF2 with B86R (rev-vdW-DF2) call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 26) call set_dft_value (igcc, 0) call set_dft_value (inlc, 2) dft_defined = .true. else if ('VDW-DF4' .EQ. TRIM(dftout) .OR. & 'OPTB86B-VDW' .EQ. TRIM(dftout) ) then ! Special case vdW-DF4, or optB86b+vdW call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 24) call set_dft_value (igcc, 0) call set_dft_value (inlc, 1) dft_defined = .true. else if ('VDW-DF3' .EQ. TRIM(dftout)) then ! Special case vdW-DF3, or optB88+vdW call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 23) call set_dft_value (igcc, 0) call set_dft_value (inlc, 1) dft_defined = .true. else if ('OPTBK88' .EQ. TRIM(dftout)) then ! Special case optB88 (without vdW) call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 23) call set_dft_value (igcc, 1) call set_dft_value (inlc, 0) dft_defined = .true. else if ('OPTB86B' .EQ. TRIM(dftout)) then ! Special case optB86b (without vdW) call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 24) call set_dft_value (igcc, 1) call set_dft_value (inlc, 0) dft_defined = .true. else if ('VDW-DF2-C09' .EQ. TRIM(dftout) ) then ! Special case vdW-DF2 with C09 exchange call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 16) call set_dft_value (igcc, 0) call set_dft_value (inlc, 2) dft_defined = .true. else if ('VDW-DF-C09' .EQ. TRIM(dftout) ) then ! Special case vdW-DF with C09 exchange call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 16) call set_dft_value (igcc, 0) call set_dft_value (inlc, 1) dft_defined = .true. else if ('VDW-DF2' .EQ. TRIM(dftout) ) then ! Special case vdW-DF2 call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 13) call set_dft_value (igcc, 0) call set_dft_value (inlc, 2) dft_defined = .true. else if ('VDW-DF' .EQ. TRIM(dftout)) then ! Special case vdW-DF call set_dft_value (iexch, 1) call set_dft_value (icorr, 4) call set_dft_value (igcx, 4) call set_dft_value (igcc, 0) call set_dft_value (inlc, 1) dft_defined = .true. else if ('PBE' .EQ. TRIM(dftout) ) then ! special case : PBE call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx, 3) call set_dft_value (igcc, 4) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('WC' .EQ. TRIM(dftout) ) then ! special case : Wu-Cohen call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx,11) call set_dft_value (igcc, 4) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('B3LYP'.EQ. TRIM(dftout) ) then ! special case : B3LYP hybrid call set_dft_value (iexch,7) call set_dft_value (icorr,2) call set_dft_value (igcx, 9) call set_dft_value (igcc, 7) call set_dft_value (inlc,0) !Default dft_defined = .true. else if ('PBC'.EQ. TRIM(dftout) ) then ! special case : PBC = PW + PBC call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx,0) !Default call set_dft_value (igcc, 4) call set_dft_value (inlc,0) !Default dft_defined = .true. ! special case : BP = B88 + P86 else if ('BP'.EQ. TRIM(dftout) ) then call set_dft_value (iexch,1) !Default call set_dft_value (icorr,1) !Default call set_dft_value (igcx, 1) call set_dft_value (igcc, 1) call set_dft_value (inlc,0) !Default dft_defined = .true. ! special case : PW91 = GGX + GGC else if ('PW91'.EQ. TRIM(dftout) ) then call set_dft_value (iexch,1) !Default call set_dft_value (icorr,4) call set_dft_value (igcx, 2) call set_dft_value (igcc, 2) call set_dft_value (inlc,0) !Default dft_defined = .true. ! special case : HCTH else if ('HCTH'.EQ. TRIM(dftout)) then call set_dft_value(iexch,0) ! contained in hcth call set_dft_value(icorr,0) ! contained in hcth call set_dft_value (igcx,5) call set_dft_value (igcc,5) call set_dft_value (inlc,0) !Default dft_defined = .true. ! special case : OLYP = OPTX + LYP else if ('OLYP'.EQ. TRIM(dftout)) then call set_dft_value(iexch,0) ! contained in optx call set_dft_value(icorr,3) call set_dft_value(igcx, 6) call set_dft_value(igcc, 3) call set_dft_value (inlc,0) !Default dft_defined = .true. ! special case : TPSS meta-GGA Exc else IF ('TPSS'.EQ. TRIM(dftout ) ) THEN CALL set_dft_value( iexch, 1 ) CALL set_dft_value( icorr, 4 ) CALL set_dft_value( igcx, 7 ) CALL set_dft_value( igcc, 6 ) call set_dft_value (inlc,0) !Default dft_defined = .true. ! special cases : OEP no GC part (nor LDA...) and no correlation by default else IF ('OEP' .EQ. TRIM(dftout) ) THEN call set_dft_value (iexch,4) call set_dft_value (icorr, 0) CALL set_dft_value( igcx, 0 ) call set_dft_value (igcc, 0) !Default call set_dft_value (inlc,0) !Default dft_defined = .true. ! special cases : HF no GC part (nor LDA...) and no correlation by default else IF ('HF' .EQ. TRIM(dftout) ) THEN call set_dft_value (iexch,5) call set_dft_value (icorr, 0) CALL set_dft_value( igcx, 0 ) call set_dft_value (igcc, 0) !Default call set_dft_value (inlc,0) !Default dft_defined = .true. ! special cases : BLYP (note, BLYP=>B88) else IF ('BLYP' .EQ. TRIM(dftout) ) THEN call set_dft_value (iexch,1) !Default call set_dft_value (icorr,3) CALL set_dft_value( igcx, 1 ) call set_dft_value (igcc, 3) call set_dft_value (inlc, 0) !Default dft_defined = .true. ! special cases : PZ (LDA is equivalent to PZ) else IF (('PZ' .EQ. TRIM(dftout) ).OR.('LDA' .EQ. TRIM(dftout) )) THEN call set_dft_value (iexch,1) call set_dft_value (icorr, 1) CALL set_dft_value( igcx, 0) call set_dft_value (igcc, 0) call set_dft_value (inlc,0) dft_defined = .true. ! special case : SOGGA = SOX + PBEc else if (matches ('SOGGA', dftout) ) then call set_dft_value (iexch, 1) call set_dft_value (icorr,4) call set_dft_value (igcx,17) call set_dft_value (igcc, 4) call set_dft_value (inlc,0) ! Default dft_defined = .true. ! special case : M06L Meta GGA else if ( matches( 'M06L', dftout ) ) THEN ! CALL set_dft_value( iexch, 0 ) ! contained in m6lx CALL set_dft_value( icorr, 0 ) ! contained in m6lc CALL set_dft_value( igcx, 18 ) CALL set_dft_value( igcc, 11) call set_dft_value (inlc,0) ! Default dft_defined = .true. ! special case : Engel-Vosko else if ( matches( 'EV93', dftout ) ) THEN ! CALL set_dft_value( iexch, 1 ) ! CALL set_dft_value( icorr, 4 ) ! CALL set_dft_value( igcx, 25 ) CALL set_dft_value( igcc, 0) call set_dft_value (inlc,0) ! Default dft_defined = .true. END IF ! ! ---------------------------------------------------------------- ! If the DFT was not yet defined, check every part of the string ! ---------------------------------------------------------------- ! if (.not. dft_defined) then ! write(*,"(A,A)") "Setting by parts: ", TRIM(dftout) ! exchange iexch = notset do i = 0, nxc if (matches (exc (i), dftout) ) call set_dft_value (iexch, i) enddo if (iexch .eq. notset) call set_dft_value (iexch,0) ! correlation icorr = notset do i = 0, ncc if (matches (corr (i), dftout) ) call set_dft_value (icorr, i) enddo if (icorr .eq. notset) call set_dft_value (icorr,0) ! gradient correction, exchange igcx = notset do i = 0, ngcx if (matches (gradx (i), dftout) ) call set_dft_value (igcx, i) enddo if (igcx .eq. notset) call set_dft_value (igcx,0) ! gradient correction, correlation igcc = notset do i = 0, ngcc if (matches (gradc (i), dftout) ) call set_dft_value (igcc, i) enddo if (igcc .eq. notset) call set_dft_value (igcc,0) ! non-local correlation ! THE LOOP IS REVERSED TO HANDLE THE VDW2 CASE BEFORE THE VDW inlc = notset do i = ncnl ,1, -1 if (matches (nonlocc (i), dftout) ) call set_dft_value (inlc, i) enddo if (inlc .eq. notset) call set_dft_value (inlc,0) endif ! ---------------------------------------------------------------- ! Last check ! No more defaults, the code exit if the dft is not defined ! ---------------------------------------------------------------- ! Back compatibility - TO BE REMOVED if (igcx == 13 .and. iexch /= 1) & call errore('set_dft_from_name','rPW86 no longer contains Slater exchange, add it explicitly',-igcx) if (igcx == 14) igcx = 3 ! PBE -> PBX if (igcc == 9) igcc = 4 ! PBE -> PBC if (igcx == 15) igcx = 7 ! TPSS -> META if (igcc == 10) igcc = 6 ! TPSS -> META if (igcx == 6) & call errore('set_dft_from_name','OPTX untested! please test',-igcx) if (iexch <=0 .and. & icorr <=0 .and. & igcx <= 0 .and. & igcc <= 0 .and. & inlc <= 0) & call errore('set_dft_from_name','No dft definition was found',0) ! ! Fill variables and exit ! dft = dftout dftout = exc (iexch) //'-'//corr (icorr) //'-'//gradx (igcx) //'-' & &//gradc (igcc) //'-'// nonlocc(inlc) call set_auxiliary_flags ! ! check dft has not been previously set differently ! if (save_iexch .ne. notset .and. save_iexch .ne. iexch) then write (stdout,*) iexch, save_iexch call errore('set_dft_from_name',' conflicting values for iexch',1) end if if (save_icorr .ne. notset .and. save_icorr .ne. icorr) then write (stdout,*) icorr, save_icorr call errore('set_dft_from_name',' conflicting values for icorr',1) end if if (save_igcx .ne. notset .and. save_igcx .ne. igcx) then write (stdout,*) igcx, save_igcx call errore('set_dft_from_name',' conflicting values for igcx',1) end if if (save_igcc .ne. notset .and. save_igcc .ne. igcc) then write (stdout,*) igcc, save_igcc call errore('set_dft_from_name',' conflicting values for igcc',1) end if if (save_inlc .ne. notset .and. save_inlc .ne. inlc) then write (stdout,*) inlc, save_inlc call errore('set_dft_from_name',' conflicting values for inlc',1) end if return end subroutine set_dft_from_name ! !----------------------------------------------------------------------- subroutine set_auxiliary_flags !----------------------------------------------------------------------- ! set logical flags describing the complexity of the xc functional ! define the fraction of exact exchange used by hybrid fuctionals ! logical, external :: matches !! Reversed as before VDW isgradient = ( (igcx > 0) .or. ( igcc > 0) ) isnonlocc = (inlc > 0) ismeta = (igcx == 7) .or. (igcx == 18) ! PBE0 IF ( iexch==6 .or. igcx ==8 ) exx_fraction = 0.25_DP ! HSE IF ( igcx ==12 ) THEN exx_fraction = 0.25_DP screening_parameter = 0.106_DP END IF ! gau-pbe IF ( igcx ==20 ) THEN exx_fraction = 0.24_DP gau_parameter = 0.150_DP END IF ! HF or OEP IF ( iexch==4 .or. iexch==5 ) exx_fraction = 1.0_DP !B3LYP IF ( matches( 'B3LP',dft ) .OR. matches( 'B3LYP',dft ) ) & exx_fraction = 0.2_DP ishybrid = ( exx_fraction /= 0.0_DP ) has_finite_size_correction = ( iexch==8 .or. icorr==10) return end subroutine set_auxiliary_flags ! !----------------------------------------------------------------------- subroutine set_dft_value (m, i) !----------------------------------------------------------------------- ! implicit none integer :: m, i ! local if ( m /= notset .and. m /= i) then write(*, '(A,2I4)') "parameters", m, i call errore ('set_dft_value', 'two conflicting matching values', 1) end if m = i return end subroutine set_dft_value !----------------------------------------------------------------------- subroutine enforce_input_dft (dft_, nomsg) ! ! translates a string containing the exchange-correlation name ! into internal indices and force any subsequent call to set_dft_from_name ! to return without changing them ! implicit none character(len=*), intent(in) :: dft_ logical, intent(in), optional :: nomsg call set_dft_from_name (dft_) if (dft == 'not set') call errore('enforce_input_dft','cannot fix unset dft',1) discard_input_dft = .true. if ( present (nomsg) ) return write (stdout,'(/,5x,a)') "IMPORTANT: XC functional enforced from input :" call write_dft_name write (stdout,'(5x,a)') "Any further DFT definition will be discarded" write (stdout,'(5x,a/)') "Please, verify this is what you really want" return end subroutine enforce_input_dft !----------------------------------------------------------------------- subroutine enforce_dft_exxrpa ( ) ! implicit none ! !character(len=*), intent(in) :: dft_ !logical, intent(in), optional :: nomsg iexch = 0; icorr = 0; igcx = 0; igcc = 0 exx_fraction = 1.0_DP ishybrid = ( exx_fraction /= 0.0_DP ) write (stdout,'(/,5x,a)') "XC functional enforced to be EXXRPA" call write_dft_name write (stdout,'(5x,a)') "!!! Any further DFT definition will be discarded" write (stdout,'(5x,a/)') "!!! Please, verify this is what you really want !" return end subroutine enforce_dft_exxrpa !----------------------------------------------------------------------- subroutine init_dft_exxrpa ( ) ! implicit none ! exx_fraction = 1.0_DP ishybrid = ( exx_fraction /= 0.0_DP ) write (stdout,'(/,5x,a)') "Only exx_fraction is set to 1.d0" write (stdout,'(5x,a)') "XC functional still not changed" call write_dft_name return end subroutine init_dft_exxrpa !----------------------------------------------------------------------- subroutine start_exx if (.not. ishybrid) & call errore('start_exx','dft is not hybrid, wrong call',1) exx_started = .true. end subroutine start_exx !----------------------------------------------------------------------- subroutine stop_exx if (.not. ishybrid) & call errore('stop_exx','dft is not hybrid, wrong call',1) exx_started = .false. end subroutine stop_exx !----------------------------------------------------------------------- function exx_is_active () logical exx_is_active exx_is_active = exx_started end function exx_is_active !----------------------------------------------------------------------- subroutine set_exx_fraction (exxf_) implicit none real(DP):: exxf_ exx_fraction = exxf_ write (stdout,'(5x,a,f6.2)') 'EXX fraction changed: ',exx_fraction end subroutine set_exx_fraction !--------------------------------------------------------------------- subroutine set_screening_parameter (scrparm_) implicit none real(DP):: scrparm_ screening_parameter = scrparm_ write (stdout,'(5x,a,f12.7)') 'EXX Screening parameter changed: ', & & screening_parameter end subroutine set_screening_parameter !---------------------------------------------------------------------- function get_screening_parameter () real(DP):: get_screening_parameter get_screening_parameter = screening_parameter return end function get_screening_parameter !----------------------------------------------------------------------- subroutine set_gau_parameter (gauparm_) implicit none real(DP):: gauparm_ gau_parameter = gauparm_ write (stdout,'(5x,a,f12.7)') 'EXX Gau parameter changed: ', & & gau_parameter end subroutine set_gau_parameter !---------------------------------------------------------------------- function get_gau_parameter () real(DP):: get_gau_parameter get_gau_parameter = gau_parameter return end function get_gau_parameter !----------------------------------------------------------------------- function get_iexch () integer get_iexch get_iexch = iexch return end function get_iexch !----------------------------------------------------------------------- function get_icorr () integer get_icorr get_icorr = icorr return end function get_icorr !----------------------------------------------------------------------- function get_igcx () integer get_igcx get_igcx = igcx return end function get_igcx !----------------------------------------------------------------------- function get_igcc () integer get_igcc get_igcc = igcc return end function get_igcc !----------------------------------------------------------------------- function get_inlc () integer get_inlc get_inlc = inlc return end function get_inlc !----------------------------------------------------------------------- function dft_is_nonlocc () logical :: dft_is_nonlocc dft_is_nonlocc = isnonlocc return end function dft_is_nonlocc !----------------------------------------------------------------------- function get_exx_fraction () real(DP):: get_exx_fraction get_exx_fraction = exx_fraction return end function get_exx_fraction !----------------------------------------------------------------------- function get_dft_name () character (len=25) :: get_dft_name get_dft_name = dft return end function get_dft_name !----------------------------------------------------------------------- function dft_is_gradient () logical :: dft_is_gradient dft_is_gradient = isgradient return end function dft_is_gradient !----------------------------------------------------------------------- function dft_is_meta () logical :: dft_is_meta dft_is_meta = ismeta return end function dft_is_meta !----------------------------------------------------------------------- function dft_is_hybrid () logical :: dft_is_hybrid dft_is_hybrid = ishybrid return end function dft_is_hybrid !----------------------------------------------------------------------- function dft_has_finite_size_correction () logical :: dft_has_finite_size_correction dft_has_finite_size_correction = has_finite_size_correction return end function dft_has_finite_size_correction !----------------------------------------------------------------------- subroutine set_finite_size_volume(volume) real, intent (IN) :: volume if (.not. has_finite_size_correction) & call errore('set_finite_size_volume', & 'dft w/o finite_size_correction, wrong call',1) if (volume <= 0.d0) & call errore('set_finite_size_volume', & 'volume is not positive, check omega and/or nk1,nk2,nk3',1) finite_size_cell_volume = volume finite_size_cell_volume_set = .TRUE. end subroutine set_finite_size_volume !----------------------------------------------------------------------- !----------------------------------------------------------------------- subroutine set_dft_from_indices(iexch_,icorr_,igcx_,igcc_, inlc_) integer :: iexch_, icorr_, igcx_, igcc_, inlc_ if ( discard_input_dft ) return if (iexch == notset) iexch = iexch_ if (iexch /= iexch_) then write (stdout,*) iexch, iexch_ call errore('set_dft',' conflicting values for iexch',1) end if if (icorr == notset) icorr = icorr_ if (icorr /= icorr_) then write (stdout,*) icorr, icorr_ call errore('set_dft',' conflicting values for icorr',1) end if if (igcx == notset) igcx = igcx_ if (igcx /= igcx_) then write (stdout,*) igcx, igcx_ call errore('set_dft',' conflicting values for igcx',1) end if if (igcc == notset) igcc = igcc_ if (igcc /= igcc_) then write (stdout,*) igcc, igcc_ call errore('set_dft',' conflicting values for igcc',1) end if if (inlc == notset) inlc = inlc_ if (inlc /= inlc_) then write (stdout,*) inlc, inlc_ call errore('set_dft',' conflicting values for inlc',1) end if dft = exc (iexch) //'-'//corr (icorr) //'-'//gradx (igcx) //'-' & &//gradc (igcc)//'-'//nonlocc (inlc) ! WRITE( stdout,'(a)') dft call set_auxiliary_flags return end subroutine set_dft_from_indices !--------------------------------------------------------------------- subroutine dft_name(iexch_, icorr_, igcx_, igcc_, inlc_, longname_, shortname_) !--------------------------------------------------------------------- ! convert the four indices iexch, icorr, igcx, igcc ! into user-readable strings ! implicit none integer iexch_, icorr_, igcx_, igcc_, inlc_ character (len=6) :: shortname_ character (len=25):: longname_ ! if (iexch_==1.and.igcx_==0.and.igcc_==0) then shortname_ = corr(icorr_) else if (iexch_==1.and.icorr_==3.and.igcx_==1.and.igcc_==3) then shortname_ = 'BLYP' else if (iexch_==1.and.icorr_==1.and.igcx_==1.and.igcc_==0) then shortname_ = 'B88' else if (iexch_==1.and.icorr_==1.and.igcx_==1.and.igcc_==1) then shortname_ = 'BP' else if (iexch_==1.and.icorr_==4.and.igcx_==2.and.igcc_==2) then shortname_ = 'PW91' else if (iexch_==1.and.icorr_==4.and.igcx_==3.and.igcc_==4) then shortname_ = 'PBE' else if (iexch_==6.and.icorr_==4.and.igcx_==8.and.igcc_==4) then shortname_ = 'PBE0' else if (iexch_==1.and.icorr_==4.and.igcx_==4.and.igcc_==4) then shortname_ = 'revPBE' else if (iexch_==1.and.icorr_==4.and.igcx_==10.and.igcc_==8) then shortname_ = 'PBESOL' else if (iexch_==1.and.icorr_==4.and.igcx_==19.and.igcc_==12) then shortname_ = 'Q2D' else if (iexch_==1.and.icorr_==4.and.igcx_==12.and.igcc_==4) then shortname_ = 'HSE' else if (iexch_==1.and.icorr_==4.and.igcx_==20.and.igcc_==4) then shortname_ = 'GAUPBE' else if (iexch_==1.and.icorr_==4.and.igcx_==11.and.igcc_==4) then shortname_ = 'WC' else if (iexch_==7.and.icorr_==2.and.igcx_==9.and. igcc_==7) then shortname_ = 'B3LYP' else if (iexch_==0.and.icorr_==3.and.igcx_==6.and.igcc_==3) then shortname_ = 'OLYP' else if (iexch_==1.and.icorr_==4.and.igcx_==4.and.igcc_==0.and.inlc_==1) then shortname_ = 'VDW-DF' else if (iexch_==1.and.icorr_==4.and.igcx_==13.and.igcc_==0.and.inlc_==2) then shortname_ = 'VDW-DF2' else if (iexch_==1.and.icorr_==4.and.igcx_==16.and.igcc_==0.and.inlc_==1) then shortname_ = 'VDW-DF-C09' else if (iexch_==1.and.icorr_==4.and.igcx_==16.and.igcc_==0.and.inlc_==2) then shortname_ = 'VDW-DF2-C09' else if (iexch_==1.and.icorr_==4.and.igcx_==13.and.igcc_==4.and.inlc_==3) then shortname_ = 'RVV10' else if (iexch_==1.and.icorr_==4.and.igcx_==24.and.igcc_==0.and.inlc_==1) then shortname_ = 'VDW-DF4' ! also possible: shortname_ = 'OPTB86B-VDW' else if (iexch_==1.and.icorr_==4.and.igcx_==23.and.igcc_==0.and.inlc_==1) then shortname_ = 'VDW-DF3' else if (iexch_==1.and.icorr_==4.and.igcx_==26.and.igcc_==0.and.inlc_==2) then shortname_ = 'REV-VDW-DF2' else if (iexch_==0.and.icorr_==0.and.igcx_==18.and.igcc_==11) then shortname_ = 'M06L' else if (iexch_==1.and.icorr_==4.and.igcx_==17.and.igcc_==4) then shortname_ = 'SOGGA' else if (iexch_==1.and.icorr_==4.and.igcx_==25.and.igcc_==0) then shortname_ = 'EV93' else shortname_ = ' ' end if write(longname_,'(5a5)') exc(iexch_),corr(icorr_),gradx(igcx_),gradc(igcc_),nonlocc(inlc_) return end subroutine dft_name subroutine write_dft_name !----------------------------------------------------------------------- WRITE( stdout, '(5X,"Exchange-correlation = ",A, & & " (",I2,3I3,I2,")")') TRIM( dft ), iexch, icorr, igcx, igcc, inlc IF ( get_exx_fraction() > 0.0_dp ) WRITE( stdout, & '(5X,"EXX-fraction =",F12.2)') get_exx_fraction() return end subroutine write_dft_name ! !----------------------------------------------------------------------- !------- LDA DRIVERS -------------------------------------------------- !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine xc (rho, ex, ec, vx, vc) !----------------------------------------------------------------------- ! lda exchange and correlation functionals - Hartree a.u. ! ! exchange : Slater, relativistic Slater ! correlation: Ceperley-Alder (Perdew-Zunger parameters) ! Vosko-Wilk-Nusair ! Lee-Yang-Parr ! Perdew-Wang ! Wigner ! Hedin-Lundqvist ! Ortiz-Ballone (Perdew-Zunger formula) ! Ortiz-Ballone (Perdew-Wang formula) ! Gunnarsson-Lundqvist ! ! input : rho=rho(r) ! definitions: E_x = \int E_x(rho) dr, E_x(rho) = rho\epsilon_c(rho) ! same for correlation ! output: ex = \epsilon_x(rho) ( NOT E_x(rho) ) ! vx = dE_x(rho)/drho ( NOT d\epsilon_x(rho)/drho ) ! ec, vc as above for correlation ! implicit none real(DP) :: rho, ec, vc, ex, vx ! real(DP), parameter :: small = 1.E-10_DP, third = 1.0_DP / 3.0_DP, & pi34 = 0.6203504908994_DP ! pi34=(3/4pi)^(1/3) real(DP) :: rs ! if (rho <= small) then ec = 0.0_DP vc = 0.0_DP ex = 0.0_DP vx = 0.0_DP return else rs = pi34 / rho**third ! rs as in the theory of metals: rs=(3/(4pi rho))^(1/3) endif !..exchange if (iexch == 1) THEN ! 'sla' call slater (rs, ex, vx) ELSEIF (iexch == 2) THEN ! 'sl1' call slater1(rs, ex, vx) ELSEIF (iexch == 3) THEN ! 'rxc' CALL slater_rxc(rs, ex, vx) ELSEIF ((iexch == 4).or.(iexch==5)) THEN ! 'oep','hf' IF (exx_started) then ex = 0.0_DP vx = 0.0_DP else call slater (rs, ex, vx) endif ELSEIF (iexch == 6) THEN ! 'pb0x' CALL slater(rs, ex, vx) if (exx_started) then ex = (1.0_DP - exx_fraction) * ex vx = (1.0_DP - exx_fraction) * vx end if ELSEIF (iexch == 7) THEN ! 'b3lyp' CALL slater(rs, ex, vx) if (exx_started) then ex = 0.8_DP * ex vx = 0.8_DP * vx end if ELSEIF (iexch == 8) THEN ! 'sla+kzk' if (.NOT. finite_size_cell_volume_set) call errore ('XC',& 'finite size corrected exchange used w/o initialization',1) call slaterKZK (rs, ex, vx, finite_size_cell_volume) else ex = 0.0_DP vx = 0.0_DP endif !..correlation if (icorr == 1) then call pz (rs, 1, ec, vc) elseif (icorr == 2) then call vwn (rs, ec, vc) elseif (icorr == 3) then call lyp (rs, ec, vc) elseif (icorr == 4) then call pw (rs, 1, ec, vc) elseif (icorr == 5) then call wigner (rs, ec, vc) elseif (icorr == 6) then call hl (rs, ec, vc) elseif (icorr == 7) then call pz (rs, 2, ec, vc) elseif (icorr == 8) then call pw (rs, 2, ec, vc) elseif (icorr == 9) then call gl (rs, ec, vc) elseif (icorr ==10) then if (.NOT. finite_size_cell_volume_set) call errore ('XC',& 'finite size corrected correlation used w/o initialization',1) call pzKZK (rs, ec, vc, finite_size_cell_volume) else ec = 0.0_DP vc = 0.0_DP endif ! return end subroutine xc !!!!!!!!!!!!!!SPIN !----------------------------------------------------------------------- subroutine xc_spin (rho, zeta, ex, ec, vxup, vxdw, vcup, vcdw) !----------------------------------------------------------------------- ! lsd exchange and correlation functionals - Hartree a.u. ! ! exchange : Slater (alpha=2/3) ! correlation: Ceperley & Alder (Perdew-Zunger parameters) ! Perdew & Wang ! ! input : rho = rhoup(r)+rhodw(r) ! zeta=(rhoup(r)-rhodw(r))/rho ! implicit none real(DP) :: rho, zeta, ex, ec, vxup, vxdw, vcup, vcdw ! real(DP), parameter :: small= 1.E-10_DP, third = 1.0_DP/3.0_DP, & pi34= 0.6203504908994_DP ! pi34=(3/4pi)^(1/3) real(DP) :: rs ! if (rho <= small) then ec = 0.0_DP vcup = 0.0_DP vcdw = 0.0_DP ex = 0.0_DP vxup = 0.0_DP vxdw = 0.0_DP return else rs = pi34 / rho**third endif !..exchange IF (iexch == 1) THEN ! 'sla' call slater_spin (rho, zeta, ex, vxup, vxdw) ELSEIF (iexch == 2) THEN ! 'sl1' call slater1_spin (rho, zeta, ex, vxup, vxdw) ELSEIF (iexch == 3) THEN ! 'rxc' call slater_rxc_spin ( rho, zeta, ex, vxup, vxdw ) ELSEIF ((iexch == 4).or.(iexch==5)) THEN ! 'oep','hf' IF (exx_started) then ex = 0.0_DP vxup = 0.0_DP vxdw = 0.0_DP else call slater_spin (rho, zeta, ex, vxup, vxdw) endif ELSEIF (iexch == 6) THEN ! 'pb0x' call slater_spin (rho, zeta, ex, vxup, vxdw) if (exx_started) then ex = (1.0_DP - exx_fraction) * ex vxup = (1.0_DP - exx_fraction) * vxup vxdw = (1.0_DP - exx_fraction) * vxdw end if ELSEIF (iexch == 7) THEN ! 'b3lyp' call slater_spin (rho, zeta, ex, vxup, vxdw) if (exx_started) then ex = 0.8_DP * ex vxup = 0.8_DP * vxup vxdw = 0.8_DP * vxdw end if ELSE ex = 0.0_DP vxup = 0.0_DP vxdw = 0.0_DP ENDIF !..correlation if (icorr == 0) then ec = 0.0_DP vcup = 0.0_DP vcdw = 0.0_DP elseif (icorr == 1) then call pz_spin (rs, zeta, ec, vcup, vcdw) elseif (icorr == 2) then call vwn_spin (rs, zeta, ec, vcup, vcdw) elseif (icorr == 3) then call lsd_lyp (rho, zeta, ec, vcup, vcdw) ! from CP/FPMD (more_functionals) elseif (icorr == 4) then call pw_spin (rs, zeta, ec, vcup, vcdw) else call errore ('lsda_functional (xc_spin)', 'not implemented', icorr) endif ! return end subroutine xc_spin ! !----------------------------------------------------------------------- subroutine xc_spin_vec (rho, zeta, length, evx, evc) !----------------------------------------------------------------------- ! lsd exchange and correlation functionals - Hartree a.u. ! ! exchange : Slater (alpha=2/3) ! correlation: Ceperley & Alder (Perdew-Zunger parameters) ! Perdew & Wang ! ! input : rho = rhoup(r)+rhodw(r) ! zeta=(rhoup(r)-rhodw(r))/rho ! implicit none integer, intent(in) :: length real(DP), intent(in) :: rho(length), zeta(length) real(DP), intent(out) :: evx(length,3), evc(length,3) ! real(DP), parameter :: small= 1.E-10_DP, third = 1.0_DP/3.0_DP, & pi34= 0.6203504908994_DP ! pi34=(3/4pi)^(1/3) ! integer :: i logical :: comp_energy_loc real(DP) :: rs(length) ! !..exchange select case (iexch) case(1) ! 'sla' call slater_spin_vec (rho, zeta, evx, length) case(2) ! 'sl1' do i=1,length call slater1_spin (rho(i), zeta(i), evx(i,3), evx(i,1), evx(i,2)) end do case(3) ! 'rxc' do i=1,length call slater_rxc_spin (rho(i), zeta(i), evx(i,3), evx(i,1), evx(i,2)) end do case(4,5) ! 'oep','hf' if (exx_started) then evx = 0.0_DP else call slater_spin_vec (rho, zeta, evx, length) endif case(6) ! 'pb0x' call slater_spin_vec (rho, zeta, evx, length) if (exx_started) then evx = (1.0_DP - exx_fraction) * evx end if case(7) ! 'b3lyp' call slater_spin_vec (rho, zeta, evx, length) if (exx_started) then evx = 0.8_DP * evx end if case default evx = 0.0_DP end select !..correlation where (rho.gt.small) rs = pi34 / rho**third elsewhere rs = 1.0_DP ! just a sane default, results are discarded anyway end where select case(icorr) case (0) evc = 0.0_DP case (1) do i=1,length call pz_spin (rs(i), zeta(i), evc(i,3), evc(i,1), evc(i,2)) end do case (2) do i=1,length call vwn_spin (rs(i), zeta(i), evc(i,3), evc(i,1), evc(i,2)) end do case(3) do i=1,length call lsd_lyp (rho(i), zeta(i), evc(i,3), evc(i,1), evc(i,2)) ! from CP/FPMD (more_functionals) end do case(4) call pw_spin_vec (rs, zeta, evc, length) case default call errore ('lsda_functional (xc_spin_vec)', 'not implemented', icorr) end select ! where (rho.le.small) evx(:,1) = 0.0_DP evc(:,1) = 0.0_DP evx(:,2) = 0.0_DP evc(:,2) = 0.0_DP evx(:,3) = 0.0_DP evc(:,3) = 0.0_DP end where ! end subroutine xc_spin_vec ! !----------------------------------------------------------------------- !------- GRADIENT CORRECTIONS DRIVERS ---------------------------------- !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine gcxc (rho, grho, sx, sc, v1x, v2x, v1c, v2c) !----------------------------------------------------------------------- ! gradient corrections for exchange and correlation - Hartree a.u. ! See comments at the beginning of module for implemented cases ! ! input: rho, grho=|\nabla rho|^2 ! definition: E_x = \int E_x(rho,grho) dr ! output: sx = E_x(rho,grho) ! v1x= D(E_x)/D(rho) ! v2x= D(E_x)/D( D rho/D r_alpha ) / |\nabla rho| ! sc, v1c, v2c as above for correlation ! implicit none real(DP) :: rho, grho, sx, sc, v1x, v2x, v1c, v2c real(DP) :: sxsr, v1xsr, v2xsr real(DP), parameter:: small = 1.E-10_DP ! exchange if (rho <= small) then sx = 0.0_DP v1x = 0.0_DP v2x = 0.0_DP elseif (igcx == 1) then call becke88 (rho, grho, sx, v1x, v2x) elseif (igcx == 2) then call ggax (rho, grho, sx, v1x, v2x) elseif (igcx == 3) then call pbex (rho, grho, 1, sx, v1x, v2x) elseif (igcx == 4) then call pbex (rho, grho, 2, sx, v1x, v2x) elseif (igcx == 5 .and. igcc == 5) then call hcth(rho, grho, sx, v1x, v2x) elseif (igcx == 6) then call optx (rho, grho, sx, v1x, v2x) ! case igcx == 7 (meta-GGA) must be treated in a separate call to another ! routine: needs kinetic energy density in addition to rho and grad rho elseif (igcx == 8) then ! 'pbe0' call pbex (rho, grho, 1, sx, v1x, v2x) if (exx_started) then sx = (1.0_DP - exx_fraction) * sx v1x = (1.0_DP - exx_fraction) * v1x v2x = (1.0_DP - exx_fraction) * v2x end if elseif (igcx == 9) then ! 'b3lyp' call becke88 (rho, grho, sx, v1x, v2x) if (exx_started) then sx = 0.72_DP * sx v1x = 0.72_DP * v1x v2x = 0.72_DP * v2x end if elseif (igcx ==10) then ! 'pbesol' call pbex (rho, grho, 3, sx, v1x, v2x) elseif (igcx ==11) then ! 'wc' call wcx (rho, grho, sx, v1x, v2x) elseif (igcx ==12) then ! 'pbexsr' call pbex (rho, grho, 1, sx, v1x, v2x) if(exx_started) then call pbexsr (rho, grho, sxsr, v1xsr, v2xsr, screening_parameter) sx = sx - exx_fraction * sxsr v1x = v1x - exx_fraction * v1xsr v2x = v2x - exx_fraction * v2xsr endif elseif (igcx ==13) then ! 'rPW86' call rPW86 (rho, grho, sx, v1x, v2x) elseif (igcx ==16) then ! 'C09x' call c09x (rho, grho, sx, v1x, v2x) elseif (igcx ==17) then ! 'sogga' call sogga(rho, grho, sx, v1x, v2x) elseif (igcx ==19) then ! 'pbeq2d' call pbex (rho, grho, 4, sx, v1x, v2x) elseif (igcx ==20) then ! 'gau-pbe' call pbex (rho, grho, 1, sx, v1x, v2x) if(exx_started) then call pbexgau (rho, grho, sxsr, v1xsr, v2xsr, gau_parameter) sx = sx - exx_fraction * sxsr v1x = v1x - exx_fraction * v1xsr v2x = v2x - exx_fraction * v2xsr endif elseif (igcx == 21) then ! 'pw86' call pw86 (rho, grho, sx, v1x, v2x) elseif (igcx == 22) then ! 'b86b' call becke86b (rho, grho, sx, v1x, v2x) ! call b86b (rho, grho, 1, sx, v1x, v2x) elseif (igcx == 23) then ! 'optB88' call pbex (rho, grho, 5, sx, v1x, v2x) elseif (igcx == 24) then ! 'optB86b' call pbex (rho, grho, 6, sx, v1x, v2x) ! call b86b (rho, grho, 2, sx, v1x, v2x) elseif (igcx == 25) then ! 'ev93' call pbex (rho, grho, 7, sx, v1x, v2x) elseif (igcx == 26) then ! 'b86r' call b86b (rho, grho, 3, sx, v1x, v2x) else sx = 0.0_DP v1x = 0.0_DP v2x = 0.0_DP endif ! correlation if (rho.le.small) then sc = 0.0_DP v1c = 0.0_DP v2c = 0.0_DP elseif (igcc == 1) then call perdew86 (rho, grho, sc, v1c, v2c) elseif (igcc == 2) then call ggac (rho, grho, sc, v1c, v2c) elseif (igcc == 3) then call glyp (rho, grho, sc, v1c, v2c) elseif (igcc == 4) then call pbec (rho, grho, 1, sc, v1c, v2c) ! igcc == 5 (HCTH) is calculated together with case igcx=5 ! igcc == 6 (meta-GGA) is treated in a different routine elseif (igcc == 7) then !'B3LYP' call glyp (rho, grho, sc, v1c, v2c) if (exx_started) then sc = 0.81_DP * sc v1c = 0.81_DP * v1c v2c = 0.81_DP * v2c end if elseif (igcc == 8) then ! 'PBEsol' call pbec (rho, grho, 2, sc, v1c, v2c) ! igcc == 9 set to 5, back-compatibility ! igcc ==10 set to 6, back-compatibility ! igcc ==11 M06L calculated in another routine else if (igcc == 12) then ! 'Q2D' call pbec (rho, grho, 3, sc, v1c, v2c) else sc = 0.0_DP v1c = 0.0_DP v2c = 0.0_DP endif ! return end subroutine gcxc ! !!!!!!!!!!!!!!SPIN !----------------------------------------------------------------------- subroutine gcx_spin (rhoup, rhodw, grhoup2, grhodw2, & sx, v1xup, v1xdw, v2xup, v2xdw) !----------------------------------------------------------------------- ! gradient corrections for exchange - Hartree a.u. ! implicit none ! ! dummy arguments ! real(DP) :: rhoup, rhodw, grhoup2, grhodw2, sx, v1xup, v1xdw, & v2xup, v2xdw ! up and down charge ! up and down gradient of the charge ! exchange and correlation energies ! derivatives of exchange wr. rho ! derivatives of exchange wr. grho ! real(DP) :: sxsr, v1xupsr, v2xupsr, v1xdwsr, v2xdwsr real(DP), parameter :: small = 1.E-10_DP real(DP) :: rho, sxup, sxdw integer :: iflag ! ! ! exchange rho = rhoup + rhodw if (rho <= small .or. igcx == 0) then sx = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP elseif (igcx == 1) then if (rhoup > small .and. sqrt (abs (grhoup2) ) > small) then call becke88_spin (rhoup, grhoup2, sxup, v1xup, v2xup) else sxup = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP endif if (rhodw > small .and. sqrt (abs (grhodw2) ) > small) then call becke88_spin (rhodw, grhodw2, sxdw, v1xdw, v2xdw) else sxdw = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP endif sx = sxup + sxdw elseif (igcx == 2) then if (rhoup > small .and. sqrt (abs (grhoup2) ) > small) then call ggax (2.0_DP * rhoup, 4.0_DP * grhoup2, sxup, v1xup, v2xup) else sxup = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP endif if (rhodw > small .and. sqrt (abs (grhodw2) ) > small) then call ggax (2.0_DP * rhodw, 4.0_DP * grhodw2, sxdw, v1xdw, v2xdw) else sxdw = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP endif sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw elseif (igcx == 3 .or. igcx == 4 .or. igcx == 8 .or. & igcx == 10 .or. igcx == 12 .or. igcx == 20 .or. igcx == 25) then ! igcx=3: PBE, igcx=4: revised PBE, igcx=8: PBE0, igcx=10: PBEsol ! igcx=12: HSE, igcx=20: gau-pbe, igcx=25: ev93 if (igcx == 4) then iflag = 2 elseif (igcx == 10) then iflag = 3 elseif (igcx == 25) then iflag = 7 else iflag = 1 endif if (rhoup > small .and. sqrt (abs (grhoup2) ) > small) then call pbex (2.0_DP * rhoup, 4.0_DP * grhoup2, iflag, sxup, v1xup, v2xup) else sxup = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP endif if (rhodw > small .and. sqrt (abs (grhodw2) ) > small) then call pbex (2.0_DP * rhodw, 4.0_DP * grhodw2, iflag, sxdw, v1xdw, v2xdw) else sxdw = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP endif sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw if (igcx == 8 .and. exx_started ) then sx = (1.0_DP - exx_fraction) * sx v1xup = (1.0_DP - exx_fraction) * v1xup v1xdw = (1.0_DP - exx_fraction) * v1xdw v2xup = (1.0_DP - exx_fraction) * v2xup v2xdw = (1.0_DP - exx_fraction) * v2xdw end if if (igcx == 12 .and. exx_started ) then call pbexsr_lsd (rhoup, rhodw, grhoup2, grhodw2, sxsr, & v1xupsr, v2xupsr, v1xdwsr, v2xdwsr, & screening_parameter) sx = sx - exx_fraction*sxsr v1xup = v1xup - exx_fraction*v1xupsr v2xup = v2xup - exx_fraction*v2xupsr v1xdw = v1xdw - exx_fraction*v1xdwsr v2xdw = v2xdw - exx_fraction*v2xdwsr end if if (igcx == 20 .and. exx_started ) then ! gau-pbe call pbexgau_lsd (rhoup, rhodw, grhoup2, grhodw2, sxsr, & v1xupsr, v2xupsr, v1xdwsr, v2xdwsr, & gau_parameter) sx = sx - exx_fraction*sxsr v1xup = v1xup - exx_fraction*v1xupsr v2xup = v2xup - exx_fraction*v2xupsr v1xdw = v1xdw - exx_fraction*v1xdwsr v2xdw = v2xdw - exx_fraction*v2xdwsr end if elseif (igcx == 9) then if (rhoup > small .and. sqrt (abs (grhoup2) ) > small) then call becke88_spin (rhoup, grhoup2, sxup, v1xup, v2xup) else sxup = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP endif if (rhodw > small .and. sqrt (abs (grhodw2) ) > small) then call becke88_spin (rhodw, grhodw2, sxdw, v1xdw, v2xdw) else sxdw = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP endif sx = sxup + sxdw if (exx_started ) then sx = 0.72_DP * sx v1xup = 0.72_DP * v1xup v1xdw = 0.72_DP * v1xdw v2xup = 0.72_DP * v2xup v2xdw = 0.72_DP * v2xdw end if elseif (igcx == 11) then ! 'Wu-Cohen' if (rhoup > small .and. sqrt (abs (grhoup2) ) > small) then call wcx (2.0_DP * rhoup, 4.0_DP * grhoup2, sxup, v1xup, v2xup) else sxup = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP endif if (rhodw > small .and. sqrt (abs (grhodw2) ) > small) then call wcx (2.0_DP * rhodw, 4.0_DP * grhodw2, sxdw, v1xdw, v2xdw) else sxdw = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP endif sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw elseif (igcx == 21) then ! 'PW86' if (rhoup > small .and. sqrt (abs (grhoup2) ) > small) then call pw86 (2.0_DP * rhoup, 4.0_DP * grhoup2, sxup, v1xup, v2xup) else sxup = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP endif if (rhodw > small .and. sqrt (abs (grhodw2) ) > small) then call pw86 (2.0_DP * rhodw, 4.0_DP * grhodw2, sxdw, v1xdw, v2xdw) else sxdw = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP endif sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw elseif (igcx == 22) then ! 'B86B' if (rhoup > small .and. sqrt (abs (grhoup2) ) > small) then call becke86b (2.0_DP * rhoup, 4.0_DP * grhoup2, sxup, v1xup, v2xup) else sxup = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP endif if (rhodw > small .and. sqrt (abs (grhodw2) ) > small) then call becke86b (2.0_DP * rhodw, 4.0_DP * grhodw2, sxdw, v1xdw, v2xdw) else sxdw = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP endif sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw ! case igcx == 5 (HCTH) and 6 (OPTX) not implemented ! case igcx == 7 (meta-GGA) must be treated in a separate call to another ! routine: needs kinetic energy density in addition to rho and grad rho else call errore ('gcx_spin', 'not implemented', igcx) endif ! return end subroutine gcx_spin ! !----------------------------------------------------------------------- subroutine gcx_spin_vec(rhoup, rhodw, grhoup2, grhodw2, & sx, v1xup, v1xdw, v2xup, v2xdw, length) !----------------------------------------------------------------------- ! gradient corrections for exchange - Hartree a.u. ! implicit none ! ! dummy arguments ! integer, intent(in) :: length real(DP),intent(in) :: rhoup(length), rhodw(length) real(DP),intent(in) :: grhoup2(length), grhodw2(length) real(DP),intent(out) :: sx(length) real(DP),intent(out) :: v1xup(length), v1xdw(length) real(DP),intent(out) :: v2xup(length), v2xdw(length) ! up and down charge ! up and down gradient of the charge ! exchange and correlation energies ! derivatives of exchange wr. rho ! derivatives of exchange wr. grho ! real(DP), parameter :: small = 1.E-10_DP real(DP) :: rho(length), sxup(length), sxdw(length) integer :: iflag integer :: i ! only used for HSE (igcx == 12): real(DP) :: sxsr, v1xupsr, v2xupsr, v1xdwsr, v2xdwsr ! ! ! exchange rho = rhoup + rhodw select case(igcx) case(0) sx = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP case(1) do i=1,length if (rhoup(i) > small .and. sqrt (abs (grhoup2(i)) ) > small) then call becke88_spin (rhoup(i), grhoup2(i), sxup(i), v1xup(i), v2xup(i)) else sxup(i) = 0.0_DP v1xup(i) = 0.0_DP v2xup(i) = 0.0_DP endif if (rhodw(i) > small .and. sqrt (abs (grhodw2(i)) ) > small) then call becke88_spin (rhodw(i), grhodw2(i), sxdw(i), v1xdw(i), v2xdw(i)) else sxdw(i) = 0.0_DP v1xdw(i) = 0.0_DP v2xdw(i) = 0.0_DP endif end do sx = sxup + sxdw case(2) do i=1,length if (rhoup(i) > small .and. sqrt (abs (grhoup2(i)) ) > small) then call ggax (2.0_DP * rhoup(i), 4.0_DP * grhoup2(i), sxup(i), v1xup(i), v2xup(i)) else sxup(i) = 0.0_DP v1xup(i) = 0.0_DP v2xup(i) = 0.0_DP endif if (rhodw(i) > small .and. sqrt (abs (grhodw2(i)) ) > small) then call ggax (2.0_DP * rhodw(i), 4.0_DP * grhodw2(i), sxdw(i), v1xdw(i), v2xdw(i)) else sxdw(i) = 0.0_DP v1xdw(i) = 0.0_DP v2xdw(i) = 0.0_DP endif end do sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw case(3,4,8,10,12,25) ! igcx=3: PBE, igcx=4: revised PBE, igcx=8 PBE0, igcx=10: PBEsol, ! igcx=25: EV93 if (igcx == 4) then iflag = 2 elseif (igcx == 10) then iflag = 3 elseif (igcx == 25) then iflag = 7 else iflag = 1 endif call pbex_vec (2.0_DP * rhoup, 4.0_DP * grhoup2, iflag, sxup, v1xup, v2xup, length, small) call pbex_vec (2.0_DP * rhodw, 4.0_DP * grhodw2, iflag, sxdw, v1xdw, v2xdw, length, small) sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw if (igcx == 8 .and. exx_started ) then sx = (1.0_DP - exx_fraction) * sx v1xup = (1.0_DP - exx_fraction) * v1xup v1xdw = (1.0_DP - exx_fraction) * v1xdw v2xup = (1.0_DP - exx_fraction) * v2xup v2xdw = (1.0_DP - exx_fraction) * v2xdw end if if (igcx == 12 .and. exx_started ) then ! in this case the subroutine is not really "vector" DO i = 1, length call pbexsr_lsd (rhoup(i), rhodw(i), grhoup2(i), grhodw2(i), sxsr, & v1xupsr, v2xupsr, v1xdwsr, v2xdwsr, & screening_parameter) sx(i) = sx(i) - exx_fraction*sxsr v1xup(i) = v1xup(i) - exx_fraction*v1xupsr v2xup(i) = v2xup(i) - exx_fraction*v2xupsr v1xdw(i) = v1xdw(i) - exx_fraction*v1xdwsr v2xdw(i) = v2xdw(i) - exx_fraction*v2xdwsr ENDDO end if case(9) do i=1,length if (rhoup(i) > small .and. sqrt(abs(grhoup2(i)) ) > small) then call becke88_spin (rhoup(i), grhoup2(i), sxup(i), v1xup(i), v2xup(i)) else sxup(i) = 0.0_DP v1xup(i) = 0.0_DP v2xup(i) = 0.0_DP endif if (rhodw(i) > small .and. sqrt(abs(grhodw2(i))) > small) then call becke88_spin (rhodw(i), grhodw2(i), sxdw(i), v1xdw(i), v2xdw(i)) else sxdw(i) = 0.0_DP v1xdw(i) = 0.0_DP v2xdw(i) = 0.0_DP endif end do sx = sxup + sxdw if (exx_started ) then sx = 0.72_DP * sx v1xup = 0.72_DP * v1xup v1xdw = 0.72_DP * v1xdw v2xup = 0.72_DP * v2xup v2xdw = 0.72_DP * v2xdw end if case(11) ! 'Wu-Cohen' do i=1,length if (rhoup(i) > small .and. sqrt(abs(grhoup2(i))) > small) then call wcx (2.0_DP * rhoup(i), 4.0_DP * grhoup2(i), sxup(i), v1xup(i), v2xup(i)) else sxup(i) = 0.0_DP v1xup(i) = 0.0_DP v2xup(i) = 0.0_DP endif if (rhodw(i) > small .and. sqrt(abs(grhodw2(i))) > small) then call wcx (2.0_DP * rhodw(i), 4.0_DP * grhodw2(i), sxdw(i), v1xdw(i), v2xdw(i)) else sxdw(i) = 0.0_DP v1xdw(i) = 0.0_DP v2xdw(i) = 0.0_DP endif end do sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw case(21) ! 'pw86' do i=1,length if (rhoup(i) > small .and. sqrt(abs(grhoup2(i))) > small) then call pw86 (2.0_DP * rhoup(i), 4.0_DP * grhoup2(i), sxup(i), v1xup(i), v2xup(i)) else sxup(i) = 0.0_DP v1xup(i) = 0.0_DP v2xup(i) = 0.0_DP endif if (rhodw(i) > small .and. sqrt(abs(grhodw2(i))) > small) then call pw86 (2.0_DP * rhodw(i), 4.0_DP * grhodw2(i), sxdw(i), v1xdw(i), v2xdw(i)) else sxdw(i) = 0.0_DP v1xdw(i) = 0.0_DP v2xdw(i) = 0.0_DP endif end do sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw case(22) ! 'b86b' do i=1,length if (rhoup(i) > small .and. sqrt(abs(grhoup2(i))) > small) then call becke86b (2.0_DP * rhoup(i), 4.0_DP * grhoup2(i), sxup(i), v1xup(i), v2xup(i)) else sxup(i) = 0.0_DP v1xup(i) = 0.0_DP v2xup(i) = 0.0_DP endif if (rhodw(i) > small .and. sqrt(abs(grhodw2(i))) > small) then call becke86b (2.0_DP * rhodw(i), 4.0_DP * grhodw2(i), sxdw(i), v1xdw(i), v2xdw(i)) else sxdw(i) = 0.0_DP v1xdw(i) = 0.0_DP v2xdw(i) = 0.0_DP endif end do sx = 0.5_DP * (sxup + sxdw) v2xup = 2.0_DP * v2xup v2xdw = 2.0_DP * v2xdw case default call errore ('gcx_spin_vec', 'not implemented', igcx) end select ! if (igcx.ne.0) then where (rho.le.small) sx = 0.0_DP v1xup = 0.0_DP v2xup = 0.0_DP v1xdw = 0.0_DP v2xdw = 0.0_DP end where end if ! end subroutine gcx_spin_vec ! !----------------------------------------------------------------------- subroutine gcc_spin (rho, zeta, grho, sc, v1cup, v1cdw, v2c) !----------------------------------------------------------------------- ! gradient corrections for correlations - Hartree a.u. ! Implemented: Perdew86, GGA (PW91), PBE ! implicit none ! ! dummy arguments ! real(DP) :: rho, zeta, grho, sc, v1cup, v1cdw, v2c ! the total charge ! the magnetization ! the gradient of the charge squared ! exchange and correlation energies ! derivatives of correlation wr. rho ! derivatives of correlation wr. grho real(DP), parameter :: small = 1.E-10_DP, epsr=1.E-6_DP ! if ( abs(zeta) > 1.0_DP ) then sc = 0.0_DP v1cup = 0.0_DP v1cdw = 0.0_DP v2c = 0.0_DP return else ! ! ... ( - 1.0 + epsr ) < zeta < ( 1.0 - epsr ) zeta = SIGN( MIN( ABS( zeta ), ( 1.0_DP - epsr ) ) , zeta ) endif if (igcc == 0 .or. rho <= small .or. sqrt(abs(grho)) <= small) then sc = 0.0_DP v1cup = 0.0_DP v1cdw = 0.0_DP v2c = 0.0_DP elseif (igcc == 1) then call perdew86_spin (rho, zeta, grho, sc, v1cup, v1cdw, v2c) elseif (igcc == 2) then call ggac_spin (rho, zeta, grho, sc, v1cup, v1cdw, v2c) elseif (igcc == 4) then call pbec_spin (rho, zeta, grho, 1, sc, v1cup, v1cdw, v2c) elseif (igcc == 8) then call pbec_spin (rho, zeta, grho, 2, sc, v1cup, v1cdw, v2c) else call errore ('lsda_functionals (gcc_spin)', 'not implemented', igcc) endif ! return end subroutine gcc_spin ! ! ================================================================== SUBROUTINE gcc_spin_more( RHOA, RHOB, GRHOAA, GRHOBB, GRHOAB, & SC, V1CA, V1CB, V2CA, V2CB, V2CAB ) ! ==--------------------------------------------------------------== ! == GRADIENT CORRECTIONS FOR EXCHANGE AND CORRELATION == ! == == ! == EXCHANGE : BECKE88 == ! == GGAX == ! == CORRELATION : PERDEW86 == ! == LEE, YANG & PARR == ! == GGAC == ! ==--------------------------------------------------------------== IMPLICIT NONE REAL(DP) :: RHOA,RHOB,GRHOAA,GRHOBB,GRHOAB REAL(DP) :: SC,V1CA,V2CA,V1CB,V2CB,V2CAB ! ... Gradient Correction for correlation REAL(DP) :: SMALL, RHO PARAMETER(SMALL=1.E-20_DP) SC=0.0_DP V1CA=0.0_DP V2CA=0.0_DP V1CB=0.0_DP V2CB=0.0_DP V2CAB=0.0_DP IF( igcc == 3 .or. igcc == 7) THEN RHO=RHOA+RHOB IF(RHO.GT.SMALL) then CALL LSD_GLYP(RHOA,RHOB,GRHOAA,GRHOAB,GRHOBB,SC,& V1CA,V2CA,V1CB,V2CB,V2CAB) if (igcc == 7 .and. exx_started) then SC = 0.81d0*SC V1CA = 0.81d0*V1CA V2CA = 0.81d0*V2CA V1CB = 0.81d0*V1CB V2CB = 0.81d0*V2CB V2CAB = 0.81d0*V2CAB endif endif ELSE CALL errore( " gcc_spin_more ", " gradiet correction not implemented ", 1 ) ENDIF ! ==--------------------------------------------------------------== RETURN END SUBROUTINE gcc_spin_more ! ! !----------------------------------------------------------------------- !------- NONLOCAL CORRECTIONS DRIVERS ---------------------------------- !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine nlc (rho_valence, rho_core, nspin, enl, vnl, v) !----------------------------------------------------------------------- ! non local correction for the correlation ! ! input: rho_valence, rho_core ! definition: E_nl = \int E_nl(rho',grho',rho'',grho'',|r'-r''|) dr ! output: enl = E_nl ! vnl= D(E_x)/D(rho) ! v = Correction to the potential ! USE vdW_DF, ONLY: xc_vdW_DF, vdw_type USE rVV10, ONLY: xc_rVV10 implicit none REAL(DP), INTENT(IN) :: rho_valence(:,:), rho_core(:) INTEGER, INTENT(IN) :: nspin REAL(DP), INTENT(INOUT) :: v(:,:) REAL(DP), INTENT(INOUT) :: enl, vnl if (inlc == 1 .or. inlc == 2) then vdw_type = inlc call xc_vdW_DF(rho_valence, rho_core, nspin, enl, vnl, v) elseif (inlc == 3) then call xc_rVV10(rho_valence, rho_core, nspin, enl, vnl, v) else enl = 0.0_DP vnl = 0.0_DP v = 0.0_DP endif ! return end subroutine nlc ! !----------------------------------------------------------------------- !------- META CORRECTIONS DRIVERS ---------------------------------- !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine tau_xc (rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c) !----------------------------------------------------------------------- ! gradient corrections for exchange and correlation - Hartree a.u. ! See comments at the beginning of module for implemented cases ! ! input: rho, grho=|\nabla rho|^2 ! ! definition: E_x = \int e_x(rho,grho) dr ! ! output: sx = e_x(rho,grho) = grad corr ! v1x= D(E_x)/D(rho) ! v2x= D(E_x)/D( D rho/D r_alpha ) / |\nabla rho| ! v3x= D(E_x)/D(tau) ! ! sc, v1c, v2c as above for correlation ! implicit none real(DP) :: rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c !_________________________________________________________________________ if (igcx == 7 .and. igcc == 6) then call tpsscxc (rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c) elseif (igcx == 18 .and. igcc == 11) then call m06lxc (rho, grho, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c) else call errore('v_xc_meta','wrong igcx and/or igcc',1) end if return end subroutine tau_xc ! ! !----------------------------------------------------------------------- subroutine tau_xc_spin (rhoup, rhodw, grhoup, grhodw, tauup, taudw, ex, ec, & & v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw, v1cup, v1cdw, & & v2cup, v2cdw, v2cup_vec, v2cdw_vec, v3cup, v3cdw) !----------------------------------------------------------------------- ! ! implicit none real(dp), intent(in) :: rhoup, rhodw, tauup, taudw real(dp), dimension (3), intent(in) :: grhoup, grhodw real(dp), intent(out) :: ex, ec, v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw, & & v1cup, v1cdw, v2cup, v2cdw, v3cup, v3cdw real(dp), dimension(3), intent(out) :: v2cup_vec, v2cdw_vec ! ! Local variables ! integer :: ipol real(dp) :: rh, zeta, atau, grhoup2, grhodw2 real(dp), parameter :: epsr=1.0d-08, zero=0._dp ! !_____________________________ grhoup2 = zero grhodw2 = zero v2cup = zero v2cdw = zero v2cup_vec (:) = zero v2cdw_vec (:) = zero do ipol=1,3 grhoup2 = grhoup2 + grhoup(ipol)**2 grhodw2 = grhodw2 + grhodw(ipol)**2 end do if (igcx == 7 .and. igcc == 6) then call tpsscx_spin(rhoup, rhodw, grhoup2, grhodw2, tauup, & & taudw, ex, v1xup,v1xdw,v2xup,v2xdw,v3xup,v3xdw) rh = rhoup + rhodw zeta = (rhoup - rhodw) / rh atau = tauup + taudw ! KE-density in Hartree call tpsscc_spin(rh,zeta,grhoup,grhodw, atau,ec, & & v1cup,v1cdw,v2cup_vec,v2cdw_vec,v3cup, v3cdw) elseif (igcx == 18 .and. igcc == 11) then call m06lxc_spin (rhoup, rhodw, grhoup2, grhodw2, tauup, taudw, & & ex, ec, v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw, & & v1cup, v1cdw, v2cup, v2cdw, v3cup, v3cdw) else call errore('v_xc_meta','wrong igcx and/or igcc',1) end if end subroutine tau_xc_spin !----------------------------------------------------------------------- !------- DRIVERS FOR DERIVATIVES OF XC POTENTIAL ----------------------- !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- function dmxc (rho) !----------------------------------------------------------------------- ! ! derivative of the xc potential with respect to the local density ! ! implicit none ! real(DP), intent(in) :: rho ! input: the charge density ( positive ) real(DP) :: dmxc ! output: the derivative of the xc potential ! ! local variables ! real(DP) :: dr, vxp, vcp, vxm, vcm, vx, ex, ec, rs real(DP), external :: dpz integer :: iflg ! real(DP), parameter :: small = 1.E-30_DP, e2 = 2.0_DP, & pi34 = 0.75_DP / 3.141592653589793_DP, third = 1.0_DP /3.0_DP ! dmxc = 0.0_DP if (rho < small) then return endif ! ! first case: analytical derivatives available ! if (get_iexch() == 1 .and. get_icorr() == 1) then rs = (pi34 / rho) **third !..exchange call slater (rs, ex, vx) dmxc = vx / (3.0_DP * rho) !..correlation iflg = 2 if (rs < 1.0_DP) iflg = 1 dmxc = dmxc + dpz (rs, iflg) else ! ! second case: numerical derivatives ! dr = min (1.E-6_DP, 1.E-4_DP * rho) call xc (rho + dr, ex, ec, vxp, vcp) call xc (rho - dr, ex, ec, vxm, vcm) dmxc = (vxp + vcp - vxm - vcm) / (2.0_DP * dr) endif ! ! bring to rydberg units ! dmxc = e2 * dmxc return ! end function dmxc ! !----------------------------------------------------------------------- subroutine dmxc_spin (rhoup, rhodw, dmuxc_uu, dmuxc_ud, dmuxc_du, & dmuxc_dd) !----------------------------------------------------------------------- ! derivative of the xc potential with respect to the local density ! spin-polarized case ! implicit none ! real(DP), intent(in) :: rhoup, rhodw ! input: spin-up and spin-down charge density real(DP), intent(out) :: dmuxc_uu, dmuxc_ud, dmuxc_du, dmuxc_dd ! output: up-up, up-down, down-up, down-down derivatives of the ! XC functional ! ! local variables ! real(DP) :: rhotot, rs, zeta, fz, fz1, fz2, ex, vx, ecu, ecp, vcu, & vcp, dmcu, dmcp, aa, bb, cc, dr, dz, ec, vxupm, vxdwm, vcupm, & vcdwm, rho, vxupp, vxdwp, vcupp, vcdwp, zeta_eff real(DP), external :: dpz, dpz_polarized integer :: iflg ! real(DP), parameter :: small = 1.E-30_DP, e2 = 2.0_DP, & pi34 = 0.75_DP / 3.141592653589793_DP, third = 1.0_DP/3.0_DP, & p43 = 4.0_DP / 3.0_DP, p49 = 4.0_DP / 9.0_DP, m23 = -2.0_DP / 3.0_DP ! dmuxc_uu = 0.0_DP dmuxc_du = 0.0_DP dmuxc_ud = 0.0_DP dmuxc_dd = 0.0_DP ! rhotot = rhoup + rhodw if (rhotot <= small) return zeta = (rhoup - rhodw) / rhotot if (abs (zeta) > 1.0_DP) return if (get_iexch() == 1 .and. get_icorr() == 1) then ! ! first case: analytical derivative available ! !..exchange rs = (pi34 / (2.0_DP * rhoup) ) **third call slater (rs, ex, vx) dmuxc_uu = vx / (3.0_DP * rhoup) rs = (pi34 / (2.0_DP * rhodw) ) **third call slater (rs, ex, vx) dmuxc_dd = vx / (3.0_DP * rhodw) !..correlation rs = (pi34 / rhotot) **third iflg = 2 if (rs < 1.0_DP) iflg = 1 dmcu = dpz (rs, iflg) dmcp = dpz_polarized (rs, iflg) call pz (rs, 1, ecu, vcu) call pz_polarized (rs, ecp, vcp) fz = ( (1.0_DP + zeta) **p43 + (1.0_DP - zeta) **p43 - 2.0_DP) & / (2.0_DP**p43 - 2.0_DP) fz1 = p43 * ( (1.0_DP + zeta) **third- (1.0_DP - zeta) **third) & / (2.0_DP**p43 - 2.0_DP) fz2 = p49 * ( (1.0_DP + zeta) **m23 + (1.0_DP - zeta) **m23) & / (2.0_DP**p43 - 2.0_DP) aa = dmcu + fz * (dmcp - dmcu) bb = 2.0_DP * fz1 * (vcp - vcu - (ecp - ecu) ) / rhotot cc = fz2 * (ecp - ecu) / rhotot dmuxc_uu = dmuxc_uu + aa + (1.0_DP - zeta) * bb + (1.0_DP - zeta)**2 * cc dmuxc_du = dmuxc_du + aa + ( - zeta) * bb + (zeta**2 - 1.0_DP) * cc dmuxc_ud = dmuxc_du dmuxc_dd = dmuxc_dd+aa - (1.0_DP + zeta) * bb + (1.0_DP + zeta)**2 * cc else rho = rhoup + rhodw dr = min (1.E-6_DP, 1.E-4_DP * rho) call xc_spin (rho - dr, zeta, ex, ec, vxupm, vxdwm, vcupm, vcdwm) call xc_spin (rho + dr, zeta, ex, ec, vxupp, vxdwp, vcupp, vcdwp) dmuxc_uu = (vxupp + vcupp - vxupm - vcupm) / (2.0_DP * dr) dmuxc_ud = dmuxc_uu dmuxc_dd = (vxdwp + vcdwp - vxdwm - vcdwm) / (2.0_DP * dr) dmuxc_du = dmuxc_dd ! dz = min (1.d-6, 1.d-4 * abs (zeta) ) dz = 1.E-6_DP ! ! If zeta is too close to +-1, the derivative is computed at a slightly ! smaller zeta ! zeta_eff = SIGN( MIN( ABS( zeta ), ( 1.0_DP - 2.0_DP*dz ) ) , zeta ) call xc_spin (rho, zeta_eff - dz, ex, ec, vxupm, vxdwm, vcupm, vcdwm) call xc_spin (rho, zeta_eff + dz, ex, ec, vxupp, vxdwp, vcupp, vcdwp) dmuxc_uu = dmuxc_uu + (vxupp + vcupp - vxupm - vcupm) * & (1.0_DP - zeta) / rho / (2.0_DP * dz) dmuxc_ud = dmuxc_ud- (vxupp + vcupp - vxupm - vcupm) * & (1.0_DP + zeta) / rho / (2.0_DP * dz) dmuxc_du = dmuxc_du + (vxdwp + vcdwp - vxdwm - vcdwm) * & (1.0_DP - zeta) / rho / (2.0_DP * dz) dmuxc_dd = dmuxc_dd- (vxdwp + vcdwp - vxdwm - vcdwm) * & (1.0_DP + zeta) / rho / (2.0_DP * dz) endif ! ! bring to rydberg units ! dmuxc_uu = e2 * dmuxc_uu dmuxc_du = e2 * dmuxc_du dmuxc_ud = e2 * dmuxc_ud dmuxc_dd = e2 * dmuxc_dd ! return end subroutine dmxc_spin !----------------------------------------------------------------------- subroutine dmxc_nc (rho, mx, my, mz, dmuxc) !----------------------------------------------------------------------- ! derivative of the xc potential with respect to the local density ! and magnetization ! non colinear case ! implicit none ! real(DP), intent(in) :: rho, mx, my, mz ! input: charge density and magnetization real(DP), intent(out) :: dmuxc(4,4) ! output: derivative of XC functional ! ! local variables ! REAL(DP) :: zeta, ex, ec, dr, dz, vxupm, vxdwm, vcupm, & vcdwm, vxupp, vxdwp, vcupp, vcdwp, vxup, vxdw, vcup, vcdw REAL(DP) :: amag, vs, dvxc_rho, dvxc_mx, dvxc_my, dvxc_mz, & dbx_rho, dbx_mx, dbx_my, dbx_mz, dby_rho, dby_mx, & dby_my, dby_mz, dbz_rho, dbz_mx, dbz_my, dbz_mz, zeta_eff REAL(DP), PARAMETER :: small = 1.E-30_DP, e2 = 2.0_DP ! ! dmuxc = 0.0_DP ! IF (rho <= small) RETURN amag = sqrt(mx**2+my**2+mz**2) zeta = amag / rho IF (abs (zeta) > 1.0_DP) RETURN CALL xc_spin (rho, zeta, ex, ec, vxup, vxdw, vcup, vcdw) vs=0.5_DP*(vxup+vcup-vxdw-vcdw) dr = min (1.E-6_DP, 1.E-4_DP * rho) CALL xc_spin (rho - dr, zeta, ex, ec, vxupm, vxdwm, vcupm, vcdwm) CALL xc_spin (rho + dr, zeta, ex, ec, vxupp, vxdwp, vcupp, vcdwp) dvxc_rho = ((vxupp + vcupp - vxupm - vcupm)+ & (vxdwp + vcdwp - vxdwm - vcdwm)) / (4.0_DP * dr) IF (amag > 1.E-10_DP) THEN dbx_rho = ((vxupp + vcupp - vxupm - vcupm)- & (vxdwp + vcdwp - vxdwm - vcdwm))* mx / (4.0_DP*dr*amag) dby_rho = ((vxupp + vcupp - vxupm - vcupm)- & (vxdwp + vcdwp - vxdwm - vcdwm))* my / (4.0_DP*dr*amag) dbz_rho = ((vxupp + vcupp - vxupm - vcupm)- & (vxdwp + vcdwp - vxdwm - vcdwm))* mz / (4.0_DP*dr*amag) ! dz = min (1.d-6, 1.d-4 * abs (zeta) ) dz = 1.0E-6_DP ! ! If zeta is too close to +-1, the derivative is computed at a slightly ! smaller zeta ! zeta_eff = SIGN( MIN( ABS( zeta ), ( 1.0_DP - 2.0_DP*dz ) ) , zeta ) CALL xc_spin (rho, zeta_eff - dz, ex, ec, vxupm, vxdwm, vcupm, vcdwm) CALL xc_spin (rho, zeta_eff + dz, ex, ec, vxupp, vxdwp, vcupp, vcdwp) ! The variables are rho and m, so zeta depends on rho ! dvxc_rho=dvxc_rho- ((vxupp + vcupp - vxupm - vcupm)+ & (vxdwp + vcdwp - vxdwm - vcdwm))*zeta/rho/(4.0_DP * dz) dbx_rho = dbx_rho-((vxupp + vcupp - vxupm - vcupm)- & (vxdwp + vcdwp - vxdwm - vcdwm))*mx*zeta/rho/(4.0_DP*dz*amag) dby_rho = dby_rho-((vxupp + vcupp - vxupm - vcupm)- & (vxdwp + vcdwp - vxdwm - vcdwm))*my*zeta/rho/(4.0_DP*dz*amag) dbz_rho = dbz_rho-((vxupp + vcupp - vxupm - vcupm)- & (vxdwp + vcdwp - vxdwm - vcdwm))*mz*zeta/rho/(4.0_DP*dz*amag) ! ! here the derivatives with respect to m ! dvxc_mx = ((vxupp + vcupp - vxupm - vcupm) + & (vxdwp + vcdwp - vxdwm - vcdwm))*mx/rho/(4.0_DP*dz*amag) dvxc_my = ((vxupp + vcupp - vxupm - vcupm) + & (vxdwp + vcdwp - vxdwm - vcdwm))*my/rho/(4.0_DP*dz*amag) dvxc_mz = ((vxupp + vcupp - vxupm - vcupm) + & (vxdwp + vcdwp - vxdwm - vcdwm))*mz/rho/(4.0_DP*dz*amag) dbx_mx = (((vxupp + vcupp - vxupm - vcupm) - & (vxdwp + vcdwp - vxdwm - vcdwm))*mx**2*amag/rho/ & (4.0_DP*dz) + vs*(my**2+mz**2))/amag**3 dbx_my = (((vxupp + vcupp - vxupm - vcupm) - & (vxdwp + vcdwp - vxdwm - vcdwm))*mx*my*amag/rho/ & (4.0_DP*dz) - vs*(mx*my))/amag**3 dbx_mz = (((vxupp + vcupp - vxupm - vcupm) - & (vxdwp + vcdwp - vxdwm - vcdwm))*mx*mz*amag/rho/ & (4.0_DP*dz) - vs*(mx*mz))/amag**3 dby_mx = dbx_my dby_my = (((vxupp + vcupp - vxupm - vcupm) - & (vxdwp + vcdwp - vxdwm - vcdwm))*my**2*amag/rho/ & (4.0_DP*dz) + vs*(mx**2+mz**2))/amag**3 dby_mz = (((vxupp + vcupp - vxupm - vcupm) - & (vxdwp + vcdwp - vxdwm - vcdwm))*my*mz*amag/rho/ & (4.0_DP*dz) - vs*(my*mz))/amag**3 dbz_mx = dbx_mz dbz_my = dby_mz dbz_mz = (((vxupp + vcupp - vxupm - vcupm) - & (vxdwp + vcdwp - vxdwm - vcdwm))*mz**2*amag/rho/ & (4.0_DP*dz) + vs*(mx**2+my**2))/amag**3 dmuxc(1,1)=dvxc_rho dmuxc(1,2)=dvxc_mx dmuxc(1,3)=dvxc_my dmuxc(1,4)=dvxc_mz dmuxc(2,1)=dbx_rho dmuxc(2,2)=dbx_mx dmuxc(2,3)=dbx_my dmuxc(2,4)=dbx_mz dmuxc(3,1)=dby_rho dmuxc(3,2)=dby_mx dmuxc(3,3)=dby_my dmuxc(3,4)=dby_mz dmuxc(4,1)=dbz_rho dmuxc(4,2)=dbz_mx dmuxc(4,3)=dbz_my dmuxc(4,4)=dbz_mz ELSE dmuxc(1,1)=dvxc_rho ENDIF ! ! bring to rydberg units ! dmuxc = e2 * dmuxc ! RETURN end subroutine dmxc_nc ! !----------------------------------------------------------------------- subroutine dgcxc (r, s2, vrrx, vsrx, vssx, vrrc, vsrc, vssc) !----------------------------------------------------------------------- USE kinds, only : DP implicit none real(DP) :: r, s2, vrrx, vsrx, vssx, vrrc, vsrc, vssc real(DP) :: dr, s, ds real(DP) :: sx, sc, v1xp, v2xp, v1cp, v2cp, v1xm, v2xm, v1cm, & v2cm s = sqrt (s2) dr = min (1.d-4, 1.d-2 * r) ds = min (1.d-4, 1.d-2 * s) call gcxc (r + dr, s2, sx, sc, v1xp, v2xp, v1cp, v2cp) call gcxc (r - dr, s2, sx, sc, v1xm, v2xm, v1cm, v2cm) vrrx = 0.5d0 * (v1xp - v1xm) / dr vrrc = 0.5d0 * (v1cp - v1cm) / dr vsrx = 0.25d0 * (v2xp - v2xm) / dr vsrc = 0.25d0 * (v2cp - v2cm) / dr call gcxc (r, (s + ds) **2, sx, sc, v1xp, v2xp, v1cp, v2cp) call gcxc (r, (s - ds) **2, sx, sc, v1xm, v2xm, v1cm, v2cm) vsrx = vsrx + 0.25d0 * (v1xp - v1xm) / ds / s vsrc = vsrc + 0.25d0 * (v1cp - v1cm) / ds / s vssx = 0.5d0 * (v2xp - v2xm) / ds / s vssc = 0.5d0 * (v2cp - v2cm) / ds / s return end subroutine dgcxc ! !----------------------------------------------------------------------- subroutine dgcxc_spin (rup, rdw, gup, gdw, vrrxup, vrrxdw, vrsxup, & vrsxdw, vssxup, vssxdw, vrrcup, vrrcdw, vrscup, vrscdw, vssc, & vrzcup, vrzcdw) !----------------------------------------------------------------------- ! ! This routine computes the derivative of the exchange and correlatio ! potentials with respect to the density, the gradient and zeta ! USE kinds, only : DP implicit none real(DP), intent(in) :: rup, rdw, gup (3), gdw (3) ! input: the charges and the gradient real(DP), intent(out):: vrrxup, vrrxdw, vrsxup, vrsxdw, vssxup, & vssxdw, vrrcup, vrrcdw, vrscup, vrscdw, vssc, vrzcup, vrzcdw ! output: derivatives of the exchange and of the correlation ! ! local variables ! real(DP) :: r, zeta, sup2, sdw2, s2, s, sup, sdw, dr, dzeta, ds, & drup, drdw, dsup, dsdw, sx, sc, v1xupp, v1xdwp, v2xupp, v2xdwp, & v1xupm, v1xdwm, v2xupm, v2xdwm, v1cupp, v1cdwp, v2cp, v1cupm, & v1cdwm, v2cm ! charge densities and square gradients ! delta charge densities and gra ! delta gradients ! energies ! exchange potentials ! exchange potentials ! coorelation potentials ! coorelation potentials real(DP), parameter :: eps = 1.d-6 ! r = rup + rdw if (r.gt.eps) then zeta = (rup - rdw) / r else zeta = 2.d0 endif sup2 = gup (1) **2 + gup (2) **2 + gup (3) **2 sdw2 = gdw (1) **2 + gdw (2) **2 + gdw (3) **2 s2 = (gup (1) + gdw (1) ) **2 + (gup (2) + gdw (2) ) **2 + & (gup (3) + gdw (3) ) **2 sup = sqrt (sup2) sdw = sqrt (sdw2) s = sqrt (s2) ! ! up part of exchange ! if (rup.gt.eps.and.sup.gt.eps) then drup = min (1.d-4, 1.d-2 * rup) dsup = min (1.d-4, 1.d-2 * sdw) ! ! derivatives of exchange: up part ! call gcx_spin (rup + drup, rdw, sup2, sdw2, sx, v1xupp, v1xdwp, & v2xupp, v2xdwp) call gcx_spin (rup - drup, rdw, sup2, sdw2, sx, v1xupm, v1xdwm, & v2xupm, v2xdwm) vrrxup = 0.5d0 * (v1xupp - v1xupm) / drup vrsxup = 0.25d0 * (v2xupp - v2xupm) / drup call gcx_spin (rup, rdw, (sup + dsup) **2, sdw2, sx, v1xupp, & v1xdwp, v2xupp, v2xdwp) call gcx_spin (rup, rdw, (sup - dsup) **2, sdw2, sx, v1xupm, & v1xdwm, v2xupm, v2xdwm) vrsxup = vrsxup + 0.25d0 * (v1xupp - v1xupm) / dsup / sup vssxup = 0.5d0 * (v2xupp - v2xupm) / dsup / sup else vrrxup = 0.d0 vrsxup = 0.d0 vssxup = 0.d0 endif if (rdw.gt.eps.and.sdw.gt.eps) then drdw = min (1.d-4, 1.d-2 * rdw) dsdw = min (1.d-4, 1.d-2 * sdw) ! ! derivatives of exchange: down part ! call gcx_spin (rup, rdw + drdw, sup2, sdw2, sx, v1xupp, v1xdwp, & v2xupp, v2xdwp) call gcx_spin (rup, rdw - drdw, sup2, sdw2, sx, v1xupm, v1xdwm, & v2xupm, v2xdwm) vrrxdw = 0.5d0 * (v1xdwp - v1xdwm) / drdw vrsxdw = 0.25d0 * (v2xdwp - v2xdwm) / drdw call gcx_spin (rup, rdw, sup2, (sdw + dsdw) **2, sx, v1xupp, & v1xdwp, v2xupp, v2xdwp) call gcx_spin (rup, rdw, sup2, (sdw - dsdw) **2, sx, v1xupm, & v1xdwm, v2xupm, v2xdwm) vrsxdw = vrsxdw + 0.25d0 * (v1xdwp - v1xdwm) / dsdw / sdw vssxdw = 0.5d0 * (v2xdwp - v2xdwm) / dsdw / sdw else vrrxdw = 0.d0 vrsxdw = 0.d0 vssxdw = 0.d0 endif ! ! derivatives of correlation ! if (r.gt.eps.and.abs (zeta) .le.1.d0.and.s.gt.eps) then dr = min (1.d-4, 1.d-2 * r) call gcc_spin (r + dr, zeta, s2, sc, v1cupp, v1cdwp, v2cp) call gcc_spin (r - dr, zeta, s2, sc, v1cupm, v1cdwm, v2cm) vrrcup = 0.5d0 * (v1cupp - v1cupm) / dr vrrcdw = 0.5d0 * (v1cdwp - v1cdwm) / dr ds = min (1.d-4, 1.d-2 * s) call gcc_spin (r, zeta, (s + ds) **2, sc, v1cupp, v1cdwp, v2cp) call gcc_spin (r, zeta, (s - ds) **2, sc, v1cupm, v1cdwm, v2cm) vrscup = 0.5d0 * (v1cupp - v1cupm) / ds / s vrscdw = 0.5d0 * (v1cdwp - v1cdwm) / ds / s vssc = 0.5d0 * (v2cp - v2cm) / ds / s ! dzeta = min (1.d-4, 1.d-2 * abs (zeta) ) dzeta = 1.d-6 ! ! If zeta is too close to +-1 the derivative is evaluated at a slightly ! smaller value ! zeta = SIGN( MIN( ABS( zeta ), ( 1.0_DP - 2.0_DP*dzeta ) ) , zeta ) call gcc_spin (r, zeta + dzeta, s2, sc, v1cupp, v1cdwp, v2cp) call gcc_spin (r, zeta - dzeta, s2, sc, v1cupm, v1cdwm, v2cm) vrzcup = 0.5d0 * (v1cupp - v1cupm) / dzeta vrzcdw = 0.5d0 * (v1cdwp - v1cdwm) / dzeta else vrrcup = 0.d0 vrrcdw = 0.d0 vrscup = 0.d0 vrscdw = 0.d0 vssc = 0.d0 vrzcup = 0.d0 vrzcdw = 0.d0 endif return end subroutine dgcxc_spin ! !----------------------------------------------------------------------- !------- VECTOR AND GENERAL XC DRIVERS ------------------------------- !----------------------------------------------------------------------- ! !--------------------------------------------------------------- subroutine vxc_t(rho,rhoc,lsd,vxc) !--------------------------------------------------------------- ! ! this function returns the XC potential in LDA or LSDA approximation ! use io_global, only : stdout use kinds, only : DP implicit none integer:: lsd real(DP):: vxc(2), rho(2),rhoc,arho,zeta real(DP):: vx(2), vc(2), ex, ec ! real(DP), parameter :: e2=2.0_dp, eps=1.e-30_dp vxc(1)=0.0_dp if (lsd.eq.1) vxc(2)=0.0_dp if (lsd.eq.0) then ! ! LDA case ! arho=abs(rho(1)+rhoc) if (arho.gt.eps) then call xc(arho,ex,ec,vx(1),vc(1)) vxc(1)=e2*(vx(1)+vc(1)) endif else ! ! LSDA case ! arho = abs(rho(1)+rho(2)+rhoc) if (arho.gt.eps) then zeta = (rho(1)-rho(2)) / arho ! zeta has to stay between -1 and 1, but can get a little ! out the bound during the first iterations. if (abs(zeta).gt.1.0_dp) zeta = sign(1._dp, zeta) call xc_spin(arho,zeta,ex,ec,vx(1),vx(2),vc(1),vc(2)) vxc(1) = e2*(vx(1)+vc(1)) vxc(2) = e2*(vx(2)+vc(2)) endif endif return end subroutine vxc_t !--------------------------------------------------------------- function exc_t(rho,rhoc,lsd) !--------------------------------------------------------------- ! use kinds, only : DP implicit none integer:: lsd real(DP) :: exc_t, rho(2),arho,rhot, zeta,rhoc real(DP) :: ex, ec, vx(2), vc(2) real(DP),parameter:: e2 =2.0_DP exc_t=0.0_DP if(lsd == 0) then ! ! LDA case ! rhot = rho(1) + rhoc arho = abs(rhot) if (arho.gt.1.e-30_DP) then call xc(arho,ex,ec,vx(1),vc(1)) exc_t=e2*(ex+ec) endif else ! ! LSDA case ! rhot = rho(1)+rho(2)+rhoc arho = abs(rhot) if (arho.gt.1.e-30_DP) then zeta = (rho(1)-rho(2)) / arho ! In atomic this cannot happen, but in PAW zeta can become ! a little larger than 1, or smaller than -1: if( abs(zeta) > 1._dp) zeta = sign(1._dp, zeta) call xc_spin(arho,zeta,ex,ec,vx(1),vx(2),vc(1),vc(2)) exc_t=e2*(ex+ec) endif endif return end function exc_t subroutine evxc_t_vec(rho,rhoc,lsd,length,vxc,exc) !--------------------------------------------------------------- ! ! this function returns the XC potential in LDA or LSDA approximation ! integer, intent(in) :: lsd, length real(DP), intent(in) :: rho(length,2), rhoc(length) real(DP), intent(out), optional :: vxc(length,2) real(DP), intent(out), optional :: exc(length) ! real(DP) :: arho real(DP) :: arhoV(length), zetaV(length) real(DP) :: evx(length,3), evc(length,3) real(DP) :: ex, ec, vx, vc ! integer :: i real(DP), parameter :: e2 = 2.0_dp, eps = 1.e-30_dp if (lsd.eq.0) then ! ! LDA case ! do i=1,length arho = abs(rho(i,1)+rhoc(i)) if (arho.gt.eps) then call xc(arho,ex,ec,vx,vc) else ex = 0.0_dp ec = 0.0_dp vx = 0.0_dp vc = 0.0_dp end if if (present(vxc)) vxc(i,1) = e2*(vx+vc) if (present(exc)) exc(i) = e2*(ex+ec) end do else ! ! LSDA case ! arhoV = abs(rho(:,1)+rho(:,2)+rhoc(:)) where (arhoV.gt.eps) zetaV = (rho(:,1)-rho(:,2)) / arhoV elsewhere zetaV = 0.0_DP ! just a sane default, results are discarded anyway end where ! zeta has to stay between -1 and 1, but can get a little ! out of bound during the first iterations. zetaV = min( 1.0_DP, zetaV) zetaV = max(-1.0_DP, zetaV) call xc_spin_vec(arhoV, zetaV, length, evx, evc) if (present(vxc)) then vxc(:,1) = e2*(evx(:,1) + evc(:,1)) vxc(:,2) = e2*(evx(:,2) + evc(:,2)) end if if (present(exc)) exc = e2*(evx(:,3)+evc(:,3)) end if end subroutine evxc_t_vec end module funct espresso-5.1/Modules/plugin_flags.f900000644000175000017500000000157712341373034015716 0ustar mbamba! ! Copyright (C) 2002-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE plugin_flags !=--------------------------------------------------------------------------=! ! ! ... this module contains all basic variables that controls ! ... the use or not of plugins. !---------------------------------------------- ! USE kinds USE parameters ! IMPLICIT NONE ! SAVE ! PRIVATE ! ! ! ... declare execution control variables ! CHARACTER(LEN=256), PUBLIC :: plugin_name LOGICAL, PUBLIC :: use_plumed LOGICAL, PUBLIC :: use_pw2casino LOGICAL, PUBLIC :: use_environ ! END MODULE plugin_flags espresso-5.1/Modules/recvec.f900000644000175000017500000001620712341373034014507 0ustar mbamba! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE gvect !=----------------------------------------------------------------------------=! ! ... variables describing the reciprocal lattice vectors ! ... G vectors with |G|^2 < ecutrho, cut-off for charge density ! ... With gamma tricks, G-vectors are divided into two half-spheres, ! ... G> and G<, containing G and -G (G=0 is in G>) ! ... This is referred to as the "dense" (or "hard", or "thick") grid USE kinds, ONLY: DP IMPLICIT NONE SAVE INTEGER :: ngm = 0 ! local number of G vectors (on this processor) ! with gamma tricks, only vectors in G> INTEGER :: ngm_g= 0 ! global number of G vectors (summed on all procs) ! in serial execution, ngm_g = ngm INTEGER :: ngl = 0 ! number of G-vector shells INTEGER :: ngmx = 0 ! local number of G vectors, maximum across all procs REAL(DP) :: ecutrho = 0.0_DP ! energy cut-off for charge density REAL(DP) :: gcutm = 0.0_DP ! ecutrho/(2 pi/a)^2, cut-off for |G|^2 ! nl = fft index for G-vectors (with gamma tricks, only for G>) ! nlm = as above, for G< (used only with gamma tricks) INTEGER, ALLOCATABLE :: nl(:), nlm(:) INTEGER :: gstart = 2 ! index of the first G vector whose module is > 0 ! Needed in parallel execution: gstart=2 for the ! proc that holds G=0, gstart=1 for all others ! G^2 in increasing order (in units of tpiba2=(2pi/a)^2) ! REAL(DP), ALLOCATABLE, TARGET :: gg(:) ! gl(i) = i-th shell of G^2 (in units of tpiba2) ! igtongl(n) = shell index for n-th G-vector ! REAL(DP), POINTER :: gl(:) INTEGER, ALLOCATABLE, TARGET :: igtongl(:) ! ! G-vectors cartesian components ( in units tpiba =(2pi/a) ) ! REAL(DP), ALLOCATABLE, TARGET :: g(:,:) ! mill = miller index of G vectors (local to each processor) ! G(:) = mill(1)*bg(:,1)+mill(2)*bg(:,2)+mill(3)*bg(:,3) ! where bg are the reciprocal lattice basis vectors ! INTEGER, ALLOCATABLE, TARGET :: mill(:,:) ! ig_l2g = converts a local G-vector index into the global index ! ("l2g" means local to global): ig_l2g(i) = index of i-th ! local G-vector in the global array of G-vectors ! INTEGER, ALLOCATABLE, TARGET :: ig_l2g(:) ! ! sortedig_l2g = array obtained by sorting ig_l2g ! INTEGER, ALLOCATABLE, TARGET :: sortedig_l2g(:) ! ! mill_g = miller index of all G vectors ! INTEGER, ALLOCATABLE, TARGET :: mill_g(:,:) ! ! the phases e^{-iG*tau_s} used to calculate structure factors ! COMPLEX(DP), ALLOCATABLE :: eigts1(:,:), eigts2(:,:), eigts3(:,:) ! CONTAINS SUBROUTINE gvect_init( ngm_ , comm ) ! ! Set local and global dimensions, allocate arrays ! USE mp, ONLY: mp_max, mp_sum IMPLICIT NONE INTEGER, INTENT(IN) :: ngm_ INTEGER, INTENT(IN) :: comm ! communicator of the group on which g-vecs are distributed ! ngm = ngm_ ! ! calculate maximum over all processors ! ngmx = ngm CALL mp_max( ngmx, comm ) ! ! calculate sum over all processors ! ngm_g = ngm CALL mp_sum( ngm_g, comm ) ! ! allocate arrays - only those that are always kept until the end ! ALLOCATE( gg(ngm) ) ALLOCATE( g(3, ngm) ) ALLOCATE( mill(3, ngm) ) ALLOCATE( nl (ngm) ) ALLOCATE( nlm(ngm) ) ALLOCATE( ig_l2g(ngm) ) ALLOCATE( igtongl(ngm) ) ! RETURN ! END SUBROUTINE gvect_init SUBROUTINE deallocate_gvect() ! IF( ASSOCIATED( gl ) ) DEALLOCATE( gl ) IF( ALLOCATED( gg ) ) DEALLOCATE( gg ) IF( ALLOCATED( g ) ) DEALLOCATE( g ) IF( ALLOCATED( mill_g ) ) DEALLOCATE( mill_g ) IF( ALLOCATED( mill ) ) DEALLOCATE( mill ) IF( ALLOCATED( igtongl ) ) DEALLOCATE( igtongl ) IF( ALLOCATED( ig_l2g ) ) DEALLOCATE( ig_l2g ) IF( ALLOCATED( sortedig_l2g ) ) DEALLOCATE( sortedig_l2g ) IF( ALLOCATED( eigts1 ) ) DEALLOCATE( eigts1 ) IF( ALLOCATED( eigts2 ) ) DEALLOCATE( eigts2 ) IF( ALLOCATED( eigts3 ) ) DEALLOCATE( eigts3 ) IF( ALLOCATED( nl ) ) DEALLOCATE( nl ) IF( ALLOCATED( nlm ) ) DEALLOCATE( nlm ) END SUBROUTINE deallocate_gvect !=----------------------------------------------------------------------------=! END MODULE gvect !=----------------------------------------------------------------------------=! !=----------------------------------------------------------------------------=! MODULE gvecs !=----------------------------------------------------------------------------=! USE kinds, ONLY: DP IMPLICIT NONE SAVE ! ... G vectors with |G|^2 < 4*ecutwfc, cut-off for wavefunctions ! ... ("smooth" grid). Gamma tricks and units as for the "dense" grid ! INTEGER :: ngms = 0 ! local number of smooth vectors (on this processor) INTEGER :: ngms_g=0 ! global number of smooth vectors (summed on procs) ! in serial execution this is equal to ngms INTEGER :: ngsx = 0 ! local number of smooth vectors, max across procs ! nl = fft index for smooth vectors (with gamma tricks, only for G>) ! nlm = as above, for G< (used only with gamma tricks) INTEGER, ALLOCATABLE :: nls(:), nlsm(:) REAL(DP) :: ecuts = 0.0_DP ! energy cut-off = 4*ecutwfc REAL(DP) :: gcutms= 0.0_DP ! ecuts/(2 pi/a)^2, cut-off for |G|^2 REAL(DP) :: dual = 0.0_DP ! ecutrho=dual*ecutwfc LOGICAL :: doublegrid = .FALSE. ! true if smooth and dense grid differ ! doublegrid = (dual > 4) CONTAINS SUBROUTINE gvecs_init( ngs_ , comm ) USE mp, ONLY: mp_max, mp_sum IMPLICIT NONE INTEGER, INTENT(IN) :: ngs_ INTEGER, INTENT(IN) :: comm ! communicator of the group on which g-vecs are distributed ! ngms = ngs_ ! ! calculate maximum over all processors ! ngsx = ngms CALL mp_max( ngsx, comm ) ! ! calculate sum over all processors ! ngms_g = ngms CALL mp_sum( ngms_g, comm ) ! ! allocate arrays ! ALLOCATE( nls (ngms) ) ALLOCATE( nlsm(ngms) ) ! RETURN ! END SUBROUTINE gvecs_init SUBROUTINE deallocate_gvecs() IF( ALLOCATED( nls ) ) DEALLOCATE( nls ) IF( ALLOCATED( nlsm ) ) DEALLOCATE( nlsm ) END SUBROUTINE deallocate_gvecs !=----------------------------------------------------------------------------=! END MODULE gvecs !=----------------------------------------------------------------------------=! espresso-5.1/Modules/descriptors.f900000644000175000017500000001642612341373034015604 0ustar mbamba! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE descriptors ! IMPLICIT NONE SAVE INTEGER ldim_block, ldim_cyclic, ldim_block_cyclic, ldim_block_sca INTEGER gind_block, gind_cyclic, gind_block_cyclic, gind_block_sca EXTERNAL ldim_block, ldim_cyclic, ldim_block_cyclic, ldim_block_sca EXTERNAL gind_block, gind_cyclic, gind_block_cyclic, gind_block_sca ! Descriptor for linear algebra data distribution (like in Cannon's algorithm) ! ! Remember here we use square matrixes block distributed on a square grid of processors ! TYPE la_descriptor INTEGER :: ir = 0 ! globla index of the first row in the local block of the distributed matrix INTEGER :: nr = 0 ! number of row in the local block of the distributed matrix INTEGER :: ic = 0 ! global index of the first column in the local block of the distributed matrix INTEGER :: nc = 0 ! number of column in the local block of the distributed matrix INTEGER :: nrcx = 0 ! leading dimension of the distribute matrix (greather than nr and nc) INTEGER :: active_node = 0 ! if > 0 the proc holds a block of the lambda matrix INTEGER :: n = 0 ! global dimension of the matrix INTEGER :: nx = 0 ! global leading dimension ( >= n ) INTEGER :: npr = 0 ! number of row processors INTEGER :: npc = 0 ! number of column processors INTEGER :: myr = 0 ! processor row index INTEGER :: myc = 0 ! processor column index INTEGER :: comm = 0 ! communicator INTEGER :: mype = 0 ! processor index ( from 0 to desc( la_npr_ ) * desc( la_npc_ ) - 1 ) INTEGER :: nrl = 0 ! number of local rows, when the matrix rows are cyclically distributed across proc INTEGER :: nrlx = 0 ! leading dimension, when the matrix is distributed by row END TYPE ! CONTAINS !------------------------------------------------------------------------ ! SUBROUTINE descla_local_dims( i2g, nl, n, nx, np, me ) IMPLICIT NONE INTEGER, INTENT(OUT) :: i2g ! global index of the first local element INTEGER, INTENT(OUT) :: nl ! local number of elements INTEGER, INTENT(IN) :: n ! number of actual element in the global array INTEGER, INTENT(IN) :: nx ! dimension of the global array (nx>=n) to be distributed INTEGER, INTENT(IN) :: np ! number of processors INTEGER, INTENT(IN) :: me ! taskid for which i2g and nl are computed ! ! note that we can distribute a global array larger than the ! number of actual elements. This could be required for performance ! reasons, and to have an equal partition of matrix having different size ! like matrixes of spin-up and spin-down ! #if __SCALAPACK nl = ldim_block_sca( nx, np, me ) i2g = gind_block_sca( 1, nx, np, me ) #else nl = ldim_block( nx, np, me ) i2g = gind_block( 1, nx, np, me ) #endif ! This is to try to keep a matrix N * N into the same ! distribution of a matrix NX * NX, useful to have ! the matrix of spin-up distributed in the same way ! of the matrix of spin-down ! IF( i2g + nl - 1 > n ) nl = n - i2g + 1 IF( nl < 0 ) nl = 0 RETURN ! END SUBROUTINE descla_local_dims ! ! SUBROUTINE descla_init( descla, n, nx, np, me, comm, includeme ) ! IMPLICIT NONE TYPE(la_descriptor), INTENT(OUT) :: descla INTEGER, INTENT(IN) :: n ! the size of this matrix INTEGER, INTENT(IN) :: nx ! the max among different matrixes sharing ! this descriptor or the same data distribution INTEGER, INTENT(IN) :: np(2), me(2), comm INTEGER, INTENT(IN) :: includeme INTEGER :: ir, nr, ic, nc, lnode, nrcx, nrl, nrlx INTEGER :: ip, npp IF( np(1) /= np(2) ) & CALL errore( ' descla_init ', ' only square grid of proc are allowed ', 2 ) IF( n < 0 ) & CALL errore( ' descla_init ', ' dummy argument n less than 1 ', 3 ) IF( nx < n ) & CALL errore( ' descla_init ', ' dummy argument nx less than n ', 4 ) IF( np(1) < 1 ) & CALL errore( ' descla_init ', ' dummy argument np less than 1 ', 5 ) ! find the block maximum dimensions #if __SCALAPACK nrcx = ldim_block_sca( nx, np(1), 0 ) #else nrcx = ldim_block( nx, np(1), 0 ) DO ip = 1, np(1) - 1 nrcx = MAX( nrcx, ldim_block( nx, np(1), ip ) ) END DO #endif ! ! find local dimensions, if appropriate ! IF( includeme == 1 ) THEN ! CALL descla_local_dims( ir, nr, n, nx, np(1), me(1) ) CALL descla_local_dims( ic, nc, n, nx, np(2), me(2) ) ! lnode = 1 ! ELSE ! nr = 0 nc = 0 ! ir = 0 ic = 0 ! lnode = -1 ! END IF descla%ir = ir ! globla index of the first row in the local block of lambda descla%nr = nr ! number of row in the local block of lambda ( the "2" accounts for spin) descla%ic = ic ! global index of the first column in the local block of lambda descla%nc = nc ! number of column in the local block of lambda descla%nrcx = nrcx ! leading dimension of the distribute lambda matrix descla%active_node = lnode ! if > 0 the proc holds a block of the lambda matrix descla%n = n ! global dimension of the matrix descla%nx = nx ! global leading dimension descla%npr = np(1) ! number of row processors descla%npc = np(2) ! number of column processors descla%myr = me(1) ! processor row index descla%myc = me(2) ! processor column index descla%comm = comm ! communicator descla%mype = descla%myc + descla%myr * descla%npr ! processor index ( from 0 to desc( la_npr_ ) * desc( la_npc_ ) - 1 ) npp = np(1) * np(2) ! Compute local dimension of the cyclically distributed matrix ! IF( includeme == 1 ) THEN nrl = ldim_cyclic( n, npp, descla%mype ) ELSE nrl = 0 END IF nrlx = n / npp + 1 descla%nrl = nrl ! number of local rows, when the matrix rows are cyclically distributed across procs descla%nrlx = nrlx ! leading dimension IF( nr < 0 .OR. nc < 0 ) & CALL errore( ' descla_init ', ' wrong valune for computed nr and nc ', 1 ) IF( nrcx < 1 ) & CALL errore( ' descla_init ', ' wrong value for computed nrcx ', 2 ) IF( nrcx < nr ) & CALL errore( ' descla_init ', ' nrcx < nr ', ( nr - nrcx ) ) IF( nrcx < nc ) & CALL errore( ' descla_init ', ' nrcx < nc ', ( nc - nrcx ) ) IF( nrlx < nrl ) & CALL errore( ' descla_init ', ' nrlx < nrl ', ( nrl - nrlx ) ) IF( nrl < 0 ) & CALL errore( ' descla_init ', ' nrl < 0 ', ABS( nrl ) ) RETURN END SUBROUTINE descla_init END MODULE descriptors espresso-5.1/Modules/compute_dipole.f900000644000175000017500000000636312341373034016252 0ustar mbamba! ! Copyright (C) 2007-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ... original code written by Giovanni Cantele and Paolo Cazzato ! ... adapted to work in the parallel case by Carlo Sbraccia ! ... originally part of the makov_payne.f90 file ! ... adapted to accept any kind of density by Oliviero Andreussi ! !-------------------------------------------------------------------- SUBROUTINE compute_dipole( nnr, nspin, rho, r0, dipole, quadrupole ) !-------------------------------------------------------------------- USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, alat, omega USE fft_base, ONLY : dfftp USE mp_bands, ONLY : me_bgrp, intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ... Define variables ! ! nnr is passed in input, but nnr should match dfftp%nnr ! for the calculation to be meaningful INTEGER, INTENT(IN) :: nnr, nspin REAL(DP), INTENT(IN) :: rho( nnr, nspin ) REAL(DP), INTENT(IN) :: r0(3) REAL(DP), INTENT(OUT) :: dipole(0:3), quadrupole(3) ! ! ... Local variables ! REAL(DP) :: r(3), rhoir INTEGER :: i, j, k, ip, ir, ir_end, index0 REAL(DP) :: inv_nr1, inv_nr2, inv_nr3 ! ! ... Initialization ! inv_nr1 = 1.D0 / DBLE( dfftp%nr1 ) inv_nr2 = 1.D0 / DBLE( dfftp%nr2 ) inv_nr3 = 1.D0 / DBLE( dfftp%nr3 ) ! dipole(:) = 0.D0 quadrupole(:) = 0.D0 ! #if defined (__MPI) index0 = dfftp%nr1x*dfftp%nr2x*SUM(dfftp%npp(1:me_bgrp)) ir_end = MIN(nnr,dfftp%nr1x*dfftp%nr2x*dfftp%npp(me_bgrp+1)) #else index0 = 0 ir_end = nnr #endif ! DO ir = 1, ir_end ! ! ... three dimensional indexes ! i = index0 + ir - 1 k = i / (dfftp%nr1x*dfftp%nr2x) i = i - (dfftp%nr1x*dfftp%nr2x)*k j = i / dfftp%nr1x i = i - dfftp%nr1x*j ! DO ip = 1, 3 r(ip) = DBLE( i )*inv_nr1*at(ip,1) + & DBLE( j )*inv_nr2*at(ip,2) + & DBLE( k )*inv_nr3*at(ip,3) END DO ! r(:) = r(:) - r0(:) ! ! ... minimum image convention ! CALL cryst_to_cart( 1, r, bg, -1 ) ! r(:) = r(:) - ANINT( r(:) ) ! CALL cryst_to_cart( 1, r, at, 1 ) ! rhoir = rho( ir, 1 ) ! IF ( nspin == 2 ) rhoir = rhoir + rho(ir,2) ! ! ... dipole(0) = charge density ! dipole(0) = dipole(0) + rhoir ! DO ip = 1, 3 ! dipole(ip) = dipole(ip) + rhoir*r(ip) quadrupole(ip) = quadrupole(ip) + rhoir*r(ip)**2 ! END DO ! END DO ! CALL mp_sum( dipole(0:3) , intra_bgrp_comm ) CALL mp_sum( quadrupole(1:3) , intra_bgrp_comm ) ! dipole(0) = dipole(0)*omega / DBLE( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! DO ip = 1, 3 dipole(ip) = dipole(ip)*omega / DBLE( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) * alat END DO ! quadrupole = quadrupole*omega / DBLE( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) * alat**2 ! RETURN ! !---------------------------------------------------------------------------- END SUBROUTINE compute_dipole !---------------------------------------------------------------------------- espresso-5.1/Modules/wrappers.f900000644000175000017500000002166712341373034015111 0ustar mbamba! ! Copyright (C) 2004-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! ! This module contains fortran wrappers to POSIX system calls. ! The wrappers are used to convert the Fortran CHARACTER array to ! null-terminated C *char. The conversion and the interface is done ! with the F95 intrinsic iso_c_binding module. ! ! Additionally, it provides interfaces to the C functions in clib/: ! eval_infix, md5_from_file, f_mkdir_safe ! ! NOTE: the mkdir function is NOT called directly as it returns error if ! directory already exists. We use instead a C wrapper c_mkdir_safe ! MODULE wrappers USE kinds, ONLY : DP USE io_global, ONLY : stdout USE ISO_C_BINDING IMPLICIT NONE ! ! C std library functions fortran wrappers: PUBLIC f_remove, rename, f_chdir, f_mkdir, f_rmdir, f_getcwd ! more stuff: PUBLIC f_copy, feval_infix, md5_from_file, f_mkdir_safe ! ! HELP: ! integer f_remove(pathname) ! integer f_rename(oldfile, newfile) ! integer f_chdir(newdir) ! integer f_chmod(mode) i.e. mode=777 (disable) ! integer f_mkdir(dirname, mode) mode is optional ! integer f_rmdir(dirname) ! subroutine f_getcwd(dirname) ! All "*name" are fortran characters of implicit length, ! "mode" are integers, all functions return 0 if successful, -1 otherwise ! ! real(dp) :: result = feval_infix(integer:: ierr, character(len=*) :: expression) ! subroutine md5_from_file(character(len=*) :: filename, character(len=32) ::md5) PRIVATE ! SAVE ! ! Interfaces to the C functions, these are kept private as Fortran ! characters have (?) to be converted explicitly to C character arrays. ! Use the f_* wrappers instead INTERFACE FUNCTION remove(pathname) BIND(C,name="remove") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: pathname(*) INTEGER(c_int) :: r END FUNCTION FUNCTION rename(input,output) BIND(C,name="rename") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: input(*) CHARACTER(kind=c_char),INTENT(in) :: output(*) INTEGER(c_int) :: r END FUNCTION FUNCTION chmod(filename,mode) BIND(C,name="chmod") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: filename(*) INTEGER(c_int),VALUE ,INTENT(in) :: mode INTEGER(c_int) :: r END FUNCTION FUNCTION chdir(filename) BIND(C,name="chdir") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: filename(*) INTEGER(c_int) :: r END FUNCTION FUNCTION mkdir(dirname,mode) BIND(C,name="mkdir") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: dirname(*) INTEGER(c_int),VALUE ,INTENT(in) :: mode INTEGER(c_int) :: r END FUNCTION FUNCTION rmdir(dirname) BIND(C,name="rmdir") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: dirname(*) INTEGER(c_int) :: r END FUNCTION FUNCTION getcwd(buffer,size) BIND(C,name="getcwd") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char) ,INTENT(out) :: buffer(*) INTEGER(c_size_t),VALUE,INTENT(in) :: size TYPE(c_ptr) :: r END FUNCTION END INTERFACE ! ! ==================================================================== CONTAINS ! ==================================================================== ! fortran wrappers functions that call the C functions after converting ! fortran characters to C character arrays FUNCTION f_remove(filename) RESULT(r) CHARACTER(*),INTENT(in) :: filename INTEGER(c_int) :: r r= remove(TRIM(filename)//C_NULL_CHAR) END FUNCTION FUNCTION f_rename(input,output) RESULT(k) CHARACTER(*),INTENT(in) :: input,output INTEGER :: k k= rename(TRIM(input)//C_NULL_CHAR,TRIM(output)//C_NULL_CHAR) END FUNCTION FUNCTION f_chdir(dirname) RESULT(r) CHARACTER(*),INTENT(in) :: dirname INTEGER(c_int) :: r r= chdir(TRIM(dirname)//C_NULL_CHAR) END FUNCTION ! ! f_mkdir, causes an ERROR if dirname already exists: use f_mkdir_safe instead FUNCTION f_mkdir(dirname, mode) RESULT(r) CHARACTER(*),INTENT(in) :: dirname INTEGER,INTENT(in) :: mode INTEGER(c_int) :: r INTEGER(c_int) :: c_mode c_mode = INT(mode, kind=c_int) r= mkdir(TRIM(dirname)//C_NULL_CHAR, c_mode) END FUNCTION ! Note: permissions are usually in octal, e.g.: ! mode = o'640' => rw-r----- FUNCTION f_chmod(filename, mode) RESULT(r) CHARACTER(*),INTENT(in) :: filename INTEGER,INTENT(in) :: mode INTEGER(c_int) :: r INTEGER(c_int) :: c_mode c_mode = INT(mode, kind=c_int) r= chmod(TRIM(filename)//C_NULL_CHAR, c_mode) END FUNCTION FUNCTION f_rmdir(dirname) RESULT(r) CHARACTER(*),INTENT(in) :: dirname INTEGER(c_int) :: r r= rmdir(TRIM(dirname)//C_NULL_CHAR) END FUNCTION SUBROUTINE f_getcwd(output) CHARACTER(kind=c_char,len=*),INTENT(out) :: output TYPE(c_ptr) :: buffer INTEGER(C_SIZE_T) :: length,i ! was kind=C_LONG, which fails on WIN32 length=LEN(output) buffer=getcwd(output,length) DO i=1,length IF(output(i:i) == C_NULL_CHAR) EXIT ENDDO output(i:)=' ' END SUBROUTINE ! ==================================================================== ! copy a file, uses clibs/copy.c which currently does a binary copy ! using an 8kb buffer ! ! returns: ! 0 : no error ! -1 : cannot open source ! -2 : cannot open dest ! -3 : error while writing ! -4 : disk full while writing FUNCTION f_copy(source, dest) RESULT(r) INTERFACE FUNCTION c_copy(source,dest) BIND(C,name="copy") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: source(*), dest(*) INTEGER(c_int) :: r END FUNCTION c_copy END INTERFACE CHARACTER(*),INTENT(in) :: source, dest INTEGER(c_int) :: r r= c_copy(TRIM(source)//C_NULL_CHAR, TRIM(dest)//C_NULL_CHAR) END FUNCTION ! ! safe mkdir from clib/c_mkdir.c that creates a directory, if necessary, ! and checks permissions. It can be called in parallel. ! Returns: 0 = all ok ! 1 = error ! -1 = the directory already existed and is properly writable FUNCTION f_mkdir_safe(dirname) RESULT(r) INTERFACE FUNCTION mkdir_safe(dirname) BIND(C,name="c_mkdir_safe") RESULT(r) USE iso_c_binding CHARACTER(kind=c_char),INTENT(in) :: dirname(*) INTEGER(c_int) :: r END FUNCTION mkdir_safe END INTERFACE CHARACTER(*),INTENT(in) :: dirname INTEGER(c_int) :: r r= mkdir_safe(TRIM(dirname)//C_NULL_CHAR) END FUNCTION ! ! Two more wrappers for eval_infix (simple algebric expression parser) ! and for get_md5 which computes the md5 sum of a file. ! FUNCTION feval_infix(fierr, fstr) USE ISO_C_BINDING IMPLICIT NONE REAL(DP) :: feval_infix INTEGER :: fierr CHARACTER(len=*) :: fstr INTEGER :: filen ! INTERFACE FUNCTION ceval_infix(cierr, cstr, cilen) BIND(C, name="eval_infix") !REAL(kind=c_double) FUNCTION ceval_infix(cierr, cstr, cilen) BIND(C, name="eval_infix") ! double eval_infix( int *ierr, const char *strExpression, int len ) USE ISO_C_BINDING REAL(kind=c_double) :: ceval_infix INTEGER(kind=c_int) :: cierr CHARACTER(kind=c_char) :: cstr(*) INTEGER(kind=c_int),VALUE :: cilen END FUNCTION ceval_infix END INTERFACE ! INTEGER(kind=c_int) :: cierr INTEGER(kind=c_int) :: cilen CHARACTER(len=len_trim(fstr)+1,kind=c_char) :: cstr ! INTEGER :: i ! filen = len_trim(fstr) cilen = INT(filen, kind=c_int) DO i = 1,filen cstr(i:i) = fstr(i:i) ENDDO cstr(filen+1:filen+1)=C_NULL_CHAR ! feval_infix = REAL( ceval_infix(cierr, cstr, cilen), kind=DP) fierr = INT(cierr) RETURN END FUNCTION feval_infix ! ! SUBROUTINE md5_from_file (ffile, fmd5) IMPLICIT NONE CHARACTER(LEN=*), INTENT (IN) :: ffile CHARACTER(len=32), INTENT (OUT) :: fmd5 ! INTERFACE SUBROUTINE cget_md5(cfile, cmd5, cierr) BIND(C, name="get_md5") ! void get_md5(const char *file, char *md5, int err) USE ISO_C_BINDING CHARACTER(kind=c_char) :: cfile(*) CHARACTER(kind=c_char) :: cmd5(*) INTEGER(kind=c_int) :: cierr END SUBROUTINE cget_md5 END INTERFACE ! INTEGER,PARAMETER :: md5_length = 32 INTEGER :: i ! CHARACTER(len=len_trim(ffile)+1,kind=c_char) :: cfile!(*) CHARACTER(len=(md5_length+1),kind=c_char) :: cmd5!(*) INTEGER(kind=c_int) :: cierr ! cfile = TRIM(ffile)//C_NULL_CHAR ! CALL cget_md5(cfile, cmd5, cierr) ! DO i = 1,md5_length fmd5(i:i) = cmd5(i:i) ENDDO ! END SUBROUTINE END MODULE ! ==================================================================== espresso-5.1/Modules/electrons_base.f900000644000175000017500000004060512341373034016227 0ustar mbamba! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE electrons_base !------------------------------------------------------------------------------! USE kinds, ONLY: DP ! IMPLICIT NONE SAVE INTEGER :: nbnd = 0 ! number electronic bands, each band contains ! two spin states INTEGER :: nbndx = 0 ! array dimension nbndx >= nbnd INTEGER :: nspin = 0 ! nspin = number of spins (1=no spin, 2=LSDA) INTEGER :: nel(2) = 0 ! number of electrons (up, down) INTEGER :: nelt = 0 ! total number of electrons ( up + down ) INTEGER :: nupdwn(2) = 0 ! number of states with spin up (1) and down (2) INTEGER :: iupdwn(2) = 0 ! first state with spin (1) and down (2) INTEGER :: nudx = 0 ! max (nupdw(1),nupdw(2)) INTEGER :: nbsp = 0 ! total number of electronic states ! (nupdwn(1)+nupdwn(2)) INTEGER :: nbspx = 0 ! array dimension nbspx >= nbsp ! INTEGER :: nupdwn_bgrp(2) = 0 ! number of states with spin up (1) and down (2) in this band group INTEGER :: iupdwn_bgrp(2) = 0 ! first state with spin (1) and down (2) in this band group INTEGER :: nudx_bgrp = 0 ! max (nupdw_bgrp(1),nupdw_bgrp(2)) in this band group INTEGER :: nbsp_bgrp = 0 ! total number of electronic states ! (nupdwn_bgrp(1)+nupdwn_bgrp(2)) in this band group INTEGER :: nbspx_bgrp = 0 ! array dimension nbspx_bgrp >= nbsp_bgrp local to the band group INTEGER :: i2gupdwn_bgrp(2)= 0 ! global index of the first local band LOGICAL :: telectrons_base_initval = .FALSE. LOGICAL :: keep_occ = .FALSE. ! if .true. when reading restart file keep ! the occupations calculated in initval REAL(DP), ALLOCATABLE :: f(:) ! occupation numbers ( at gamma ) REAL(DP) :: qbac = 0.0_DP ! background neutralizing charge INTEGER, ALLOCATABLE :: ispin(:) ! spin of each state REAL(DP), ALLOCATABLE :: f_bgrp(:) ! occupation numbers ( at gamma ) INTEGER, ALLOCATABLE :: ispin_bgrp(:) ! spin of each state INTEGER, ALLOCATABLE :: ibgrp_g2l(:) ! local index of the i-th global band index ! !------------------------------------------------------------------------------! CONTAINS !------------------------------------------------------------------------------! SUBROUTINE electrons_base_initval( zv_ , na_ , nsp_ , nbnd_ , nspin_ , & occupations_ , f_inp, tot_charge_, tot_magnetization_ ) USE constants, ONLY : eps8 USE io_global, ONLY : stdout REAL(DP), INTENT(IN) :: zv_ (:), tot_charge_ REAL(DP), INTENT(IN) :: f_inp(:,:) REAL(DP), INTENT(IN) :: tot_magnetization_ INTEGER, INTENT(IN) :: na_ (:) , nsp_ INTEGER, INTENT(IN) :: nbnd_ , nspin_ CHARACTER(LEN=*), INTENT(IN) :: occupations_ REAL(DP) :: nelec, nelup, neldw, ocp, fsum INTEGER :: iss, i, in nspin = nspin_ ! ! ... set nelec ! nelec = 0.0_DP DO i = 1, nsp_ nelec = nelec + na_ ( i ) * zv_ ( i ) END DO nelec = nelec - tot_charge_ ! ! ... set nelup/neldw ! nelup = 0._dp neldw = 0._dp call set_nelup_neldw (tot_magnetization_, nelec, nelup, neldw ) IF( ABS( nelec - ( nelup + neldw ) ) > eps8 ) THEN CALL errore(' electrons_base_initval ',' inconsistent n. of electrons ', 2 ) END IF ! ! Compute the number of bands ! IF( nbnd_ /= 0 ) THEN nbnd = nbnd_ ! nbnd is given from input ELSE nbnd = NINT( MAX( nelup, neldw ) ) ! take the maximum between up and down states END IF IF( nelec < 1 ) THEN CALL errore(' electrons_base_initval ',' nelec less than 1 ', 1 ) END IF ! IF( ABS( NINT( nelec ) - nelec ) > eps8 ) THEN CALL errore(' electrons_base_initval ',' nelec must be integer', 2 ) END IF ! IF( nbnd < 1 ) & CALL errore(' electrons_base_initval ',' nbnd out of range ', 1 ) ! IF ( nspin /= 1 .AND. nspin /= 2 ) THEN WRITE( stdout, * ) 'nspin = ', nspin CALL errore( ' electrons_base_initval ', ' nspin out of range ', 1 ) END IF IF( MOD( nbnd, 2 ) == 0 ) THEN nbspx = nbnd * nspin ELSE nbspx = ( nbnd + 1 ) * nspin END IF ALLOCATE( f ( nbspx ) ) ALLOCATE( ispin ( nbspx ) ) f = 0.0_DP ispin = 0 iupdwn ( 1 ) = 1 nel = 0 SELECT CASE ( TRIM(occupations_) ) CASE ('bogus') ! ! bogus to ensure \sum_i f_i = Nelec (nelec is integer) ! f ( : ) = nelec / nbspx nel (1) = nint( nelec ) nupdwn (1) = nbspx if ( nspin == 2 ) then ! ! bogus to ensure Nelec = Nup + Ndw ! nel (1) = ( nint(nelec) + 1 ) / 2 nel (2) = nint(nelec) / 2 nupdwn (1)=nbnd nupdwn (2)=nbnd iupdwn (2)=nbnd+1 end if ! keep_occ = .true. ! CASE ('from_input') ! ! occupancies have been read from input ! ! count electrons ! IF( nspin == 1 ) THEN nelec = SUM( f_inp( :, 1 ) ) nelup = nelec / 2.0_DP neldw = nelec / 2.0_DP ELSE nelup = SUM ( f_inp ( :, 1 ) ) neldw = SUM ( f_inp ( :, 2 ) ) nelec = nelup + neldw END IF ! ! consistency check ! IF( nspin == 1 ) THEN IF( f_inp( 1, 1 ) <= 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) ELSE IF( f_inp( 1, 1 ) < 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) IF( f_inp( 1, 2 ) < 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) IF( ( f_inp( 1, 1 ) + f_inp( 1, 2 ) ) == 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) END IF DO i = 2, nbnd IF( nspin == 1 ) THEN IF( f_inp( i, 1 ) > 0.0_DP .AND. f_inp( i-1, 1 ) <= 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) ELSE IF( f_inp( i, 1 ) > 0.0_DP .AND. f_inp( i-1, 1 ) <= 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) IF( f_inp( i, 2 ) > 0.0_DP .AND. f_inp( i-1, 2 ) <= 0.0_DP ) & CALL errore(' electrons_base_initval ',' Zero or negative occupation are not allowed ', 1 ) END IF END DO ! ! count bands ! nupdwn (1) = 0 nupdwn (2) = 0 DO i = 1, nbnd IF( nspin == 1 ) THEN IF( f_inp( i, 1 ) > 0.0_DP ) nupdwn (1) = nupdwn (1) + 1 ELSE IF( f_inp( i, 1 ) > 0.0_DP ) nupdwn (1) = nupdwn (1) + 1 IF( f_inp( i, 2 ) > 0.0_DP ) nupdwn (2) = nupdwn (2) + 1 END IF END DO ! if( nspin == 1 ) then nel (1) = nint( nelec ) iupdwn (1) = 1 else nel (1) = nint(nelup) nel (2) = nint(neldw) iupdwn (1) = 1 iupdwn (2) = nupdwn (1) + 1 end if ! DO iss = 1, nspin DO in = iupdwn ( iss ), iupdwn ( iss ) - 1 + nupdwn ( iss ) f( in ) = f_inp( in - iupdwn ( iss ) + 1, iss ) END DO END DO ! CASE ('fixed') if( nspin == 1 ) then nel(1) = nint(nelec) nupdwn(1) = nbnd iupdwn(1) = 1 else IF ( nelup + neldw /= nelec ) THEN CALL errore(' electrons_base_initval ',' wrong # of up and down spin', 1 ) END IF nel(1) = nint(nelup) nel(2) = nint(neldw) nupdwn(1) = nint(nelup) nupdwn(2) = nint(neldw) iupdwn(1) = 1 iupdwn(2) = nupdwn(1) + 1 end if ! if( (nspin == 1) .and. MOD( nint(nelec), 2 ) /= 0 ) & ! CALL errore(' electrons_base_initval ', & ! ' must use nspin=2 for odd number of electrons', 1 ) ! ocp = 2 for spinless systems, ocp = 1 for spin-polarized systems ocp = 2.0_DP / nspin ! ! default filling: attribute ocp electrons to each states ! until the good number of electrons is reached do iss = 1, nspin fsum = 0.0_DP do in = iupdwn ( iss ), iupdwn ( iss ) - 1 + nupdwn ( iss ) if ( fsum + ocp < nel ( iss ) + 0.0001_DP ) then f (in) = ocp else f (in) = max( nel ( iss ) - fsum, 0.0_DP ) end if fsum = fsum + f(in) end do end do ! CASE ('ensemble','ensemble-dft','edft') if ( nspin == 1 ) then ! f ( : ) = nelec / nbnd nel (1) = nint(nelec) nupdwn (1) = nbnd ! else ! if (nelup.ne.0) then if ((nelup+neldw).ne.nelec) then CALL errore(' electrons_base_initval ',' nelup+neldw .ne. nelec', 1 ) end if nel (1) = nelup nel (2) = neldw else nel (1) = ( nint(nelec) + 1 ) / 2 nel (2) = nint(nelec) / 2 end if ! nupdwn (1) = nbnd nupdwn (2) = nbnd iupdwn (2) = nbnd+1 ! do iss = 1, nspin do i = iupdwn ( iss ), iupdwn ( iss ) - 1 + nupdwn ( iss ) f (i) = nel (iss) / DBLE (nupdwn (iss)) end do end do ! end if CASE DEFAULT CALL errore(' electrons_base_initval ',' occupation method not implemented', 1 ) END SELECT do iss = 1, nspin do in = iupdwn(iss), iupdwn(iss) - 1 + nupdwn(iss) ispin(in) = iss end do end do nbndx = nupdwn (1) nudx = nupdwn (1) nbsp = nupdwn (1) + nupdwn (2) IF ( nspin == 1 ) THEN nelt = nel(1) ELSE nelt = nel(1) + nel(2) END IF IF( nupdwn(1) < nupdwn(2) ) & CALL errore(' electrons_base_initval ',' nupdwn(1) should be greater or equal nupdwn(2) ', 1 ) IF( nbnd < nupdwn(1) ) & CALL errore(' electrons_base_initval ',' inconsistent nbnd, should be .GE. than nupdwn(1) ', 1 ) IF( nbspx < ( nupdwn(1) * nspin ) ) & CALL errore(' electrons_base_initval ',' inconsistent nbspx, should be .GE. than nspin * nupdwn(1) ', 1 ) IF( ( 2 * nbnd ) < nelt ) & CALL errore(' electrons_base_initval ',' too few states ', 1 ) IF( nbsp < INT( nelec * nspin / 2.0_DP ) ) & CALL errore(' electrons_base_initval ',' too many electrons ', 1 ) telectrons_base_initval = .TRUE. RETURN END SUBROUTINE electrons_base_initval !---------------------------------------------------------------------------- ! subroutine set_nelup_neldw ( tot_magnetization_, nelec_, nelup_, neldw_ ) ! USE kinds, ONLY : DP USE constants, ONLY : eps8 ! REAL (KIND=DP), intent(IN) :: tot_magnetization_ REAL (KIND=DP), intent(IN) :: nelec_ REAL (KIND=DP), intent(OUT) :: nelup_, neldw_ LOGICAL :: integer_charge, integer_magnetization ! integer_charge = ( ABS (nelec_ - NINT(nelec_)) < eps8 ) ! IF ( tot_magnetization_ < 0 ) THEN ! default when tot_magnetization is unspecified IF ( integer_charge) THEN nelup_ = INT( nelec_ + 1 ) / 2 neldw_ = nelec_ - nelup_ ELSE nelup_ = nelec_ / 2 neldw_ = nelup_ END IF ELSE ! tot_magnetization specified in input ! if ( (tot_magnetization_ > 0) .and. (nspin==1) ) & CALL errore(' set_nelup_neldw ', & 'tot_magnetization is inconsistent with nspin=1 ', 2 ) integer_magnetization = ( ABS( tot_magnetization_ - & NINT(tot_magnetization_) ) < eps8 ) IF ( integer_charge .AND. integer_magnetization) THEN ! ! odd tot_magnetization requires an odd number of electrons ! even tot_magnetization requires an even number of electrons ! if ( ((MOD(NINT(tot_magnetization_),2) == 0) .and. & (MOD(NINT(nelec_),2)==1)) .or. & ((MOD(NINT(tot_magnetization_),2) == 1) .and. & (MOD(NINT(nelec_),2)==0)) ) & CALL infomsg(' set_nelup_neldw ', & 'BEWARE: non-integer number of up and down electrons!' ) ! ! ... setting nelup/neldw ! nelup_ = ( INT(nelec_) + tot_magnetization_ ) / 2 neldw_ = ( INT(nelec_) - tot_magnetization_ ) / 2 ELSE ! nelup_ = ( nelec_ + tot_magnetization_ ) / 2 neldw_ = ( nelec_ - tot_magnetization_ ) / 2 END IF END IF return end subroutine set_nelup_neldw !---------------------------------------------------------------------------- SUBROUTINE deallocate_elct() IF( ALLOCATED( f ) ) DEALLOCATE( f ) IF( ALLOCATED( ispin ) ) DEALLOCATE( ispin ) IF( ALLOCATED( f_bgrp ) ) DEALLOCATE( f_bgrp ) IF( ALLOCATED( ispin_bgrp ) ) DEALLOCATE( ispin_bgrp ) IF( ALLOCATED( ibgrp_g2l ) ) DEALLOCATE( ibgrp_g2l ) telectrons_base_initval = .FALSE. RETURN END SUBROUTINE deallocate_elct !---------------------------------------------------------------------------- SUBROUTINE distribute_bands( nbgrp, my_bgrp_id ) INTEGER, INTENT(IN) :: nbgrp, my_bgrp_id INTEGER, EXTERNAL :: ldim_block, gind_block INTEGER :: iss, n1, n2, m1, m2, ilocal, iglobal ! IF( .NOT. telectrons_base_initval ) & CALL errore( ' distribute_bands ', ' electrons_base_initval not yet called ', 1 ) nupdwn_bgrp = nupdwn iupdwn_bgrp = iupdwn nudx_bgrp = nudx nbsp_bgrp = nbsp nbspx_bgrp = nbspx i2gupdwn_bgrp= 1 DO iss = 1, nspin nupdwn_bgrp( iss ) = ldim_block( nupdwn( iss ), nbgrp, my_bgrp_id ) i2gupdwn_bgrp( iss ) = gind_block( 1, nupdwn( iss ), nbgrp, my_bgrp_id ) END DO ! iupdwn_bgrp(1) = 1 IF( nspin > 1 ) THEN iupdwn_bgrp(2) = iupdwn_bgrp(1) + nupdwn_bgrp( 1 ) END IF nudx_bgrp = nupdwn_bgrp( 1 ) nbsp_bgrp = nupdwn_bgrp( 1 ) + nupdwn_bgrp ( 2 ) nbspx_bgrp = nbsp_bgrp IF( MOD( nbspx_bgrp, 2 ) /= 0 ) nbspx_bgrp = nbspx_bgrp + 1 ALLOCATE( f_bgrp ( nbspx_bgrp ) ) ALLOCATE( ispin_bgrp ( nbspx_bgrp ) ) ALLOCATE( ibgrp_g2l ( nbspx ) ) f_bgrp = 0.0 ispin_bgrp = 0 ibgrp_g2l = 0 ! DO iss = 1, nspin n1 = iupdwn_bgrp(iss) n2 = n1 + nupdwn_bgrp(iss) - 1 m1 = iupdwn(iss)+i2gupdwn_bgrp(iss) - 1 m2 = m1 + nupdwn_bgrp(iss) - 1 f_bgrp(n1:n2) = f(m1:m2) ispin_bgrp(n1:n2) = ispin(m1:m2) ilocal = n1 DO iglobal = m1, m2 ibgrp_g2l( iglobal ) = ilocal ilocal = ilocal + 1 END DO END DO RETURN END SUBROUTINE distribute_bands !------------------------------------------------------------------------------! END MODULE electrons_base !------------------------------------------------------------------------------! espresso-5.1/Modules/upf.f900000644000175000017500000000522712341373034014032 0ustar mbamba! Copyright (C) 2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE upf_module !=----------------------------------------------------------------------------=! ! this module handles reading of unified pseudopotential format (UPF) ! in either v1 or v2 format ! ! A macro to trim both from left and right #define TRIM(a) trim(adjustl(a)) ! USE kinds, ONLY: DP USE pseudo_types, ONLY: pseudo_upf, deallocate_pseudo_upf USE iotk_module ! USE read_upf_v1_module USE read_upf_v2_module ! IMPLICIT NONE PUBLIC !PRIVATE !PUBLIC :: read_upf, pseudo_upf, deallocate_pseudo_upf ! CONTAINS !------------------------------------------------+ SUBROUTINE read_upf(upf, grid, ierr, unit, filename) ! !---------------------------------------------+ ! Read pseudopotential in UPF format (either v.1 or v.2) ! ierr = -1 : read UPF v.1 ! ierr = 0 : read UPF v.2 ! ierr = 1 : not an UPF file, or error while reading ! USE radial_grids, ONLY: radial_grid_type, deallocate_radial_grid USE read_upf_v1_module,ONLY: read_upf_v1 IMPLICIT NONE INTEGER,INTENT(IN),OPTIONAL :: unit ! i/o unit CHARACTER(len=*),INTENT(IN),OPTIONAL :: filename ! i/o filename TYPE(pseudo_upf),INTENT(INOUT) :: upf ! the pseudo data TYPE(radial_grid_type),OPTIONAL,INTENT(INOUT),TARGET :: grid INTEGER,INTENT(OUT) :: ierr ! INTEGER :: u ! i/o unit ierr = 0 IF(.not. present(unit)) THEN IF (.not. present(filename)) & CALL errore('read_upf',& 'You have to specify at least one between filename and unit',1) CALL iotk_free_unit(u) ELSE u = unit ENDIF ! IF(present(filename)) & open (unit = u, file = filename, status = 'old', form = & 'formatted', iostat = ierr) IF(ierr>0) CALL errore('read_upf', 'Cannot open file: '//TRIM(filename),1) ! CALL read_upf_v2( u, upf, grid, ierr ) ! IF(ierr>0) THEN REWIND(u) CALL deallocate_pseudo_upf( upf ) CALL deallocate_radial_grid( grid ) CALL read_upf_v1( u, upf, grid, ierr ) IF(ierr==0) ierr=-1 ENDIF RETURN END SUBROUTINE read_upf !=----------------------------------------------------------------------------=! END MODULE upf_module !=----------------------------------------------------------------------------=! #undef TRIM espresso-5.1/Modules/environment.f900000644000175000017500000001624312341373034015604 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !==-----------------------------------------------------------------------==! MODULE environment !==-----------------------------------------------------------------------==! USE kinds, ONLY: DP USE io_files, ONLY: crash_file, nd_nmbr USE io_global, ONLY: stdout, meta_ionode USE mp_world, ONLY: nproc USE mp_images, ONLY: me_image, my_image_id, root_image, nimage, & nproc_image USE mp_pools, ONLY: npool USE mp_bands, ONLY: ntask_groups, nproc_bgrp, nbgrp USE global_version, ONLY: version_number, svn_revision IMPLICIT NONE ! ... title of the simulation CHARACTER(LEN=75) :: title SAVE PRIVATE PUBLIC :: environment_start PUBLIC :: environment_end !==-----------------------------------------------------------------------==! CONTAINS !==-----------------------------------------------------------------------==! SUBROUTINE environment_start( code ) CHARACTER(LEN=*), INTENT(IN) :: code LOGICAL :: exst, debug = .false. CHARACTER(LEN=80) :: code_version, uname CHARACTER(LEN=6), EXTERNAL :: int_to_char INTEGER :: ios, crashunit INTEGER, EXTERNAL :: find_free_unit ! ... Intel compilers v .ge.8 allocate a lot of stack space ! ... Stack limit is often small, thus causing SIGSEGV and crash CALL remove_stack_limit ( ) ! ... use ".FALSE." to disable all clocks except the total cpu time clock ! ... use ".TRUE." to enable clocks CALL init_clocks( .TRUE. ) CALL start_clock( TRIM(code) ) code_version = TRIM (code) // " v." // TRIM (version_number) IF ( TRIM (svn_revision) /= "unknown" ) code_version = & TRIM (code_version) // " (svn rev. " // TRIM (svn_revision) // ")" ! ... for compatibility with PWSCF #ifdef __MPI nd_nmbr = TRIM ( int_to_char( me_image+1 )) #else nd_nmbr = ' ' #endif IF( meta_ionode ) THEN ! ... search for file CRASH and delete it INQUIRE( FILE=TRIM(crash_file), EXIST=exst ) IF( exst ) THEN crashunit = find_free_unit() OPEN( UNIT=crashunit, FILE=TRIM(crash_file), STATUS='OLD',IOSTAT=ios ) IF (ios==0) THEN CLOSE( UNIT=crashunit, STATUS='DELETE', IOSTAT=ios ) ELSE WRITE(stdout,'(5x,"Remark: CRASH file could not be deleted")') END IF END IF ELSE ! ... one processor per image (other than meta_ionode) ! ... or, for debugging purposes, all processors, ! ... open their own standard output file #if defined(DEBUG) debug = .true. #endif IF (me_image == root_image .OR. debug ) THEN uname = 'out.' // trim(int_to_char( my_image_id )) // '_' // & trim(int_to_char( me_image)) OPEN ( unit = stdout, file = TRIM(uname),status='unknown') ELSE #if defined(_WIN32) OPEN ( unit = stdout, file='NUL:', status='unknown' ) #else OPEN ( unit = stdout, file='/dev/null', status='unknown' ) #endif END IF END IF ! CALL opening_message( code_version ) #ifdef __MPI CALL parallel_info ( ) #else CALL serial_info() #endif END SUBROUTINE environment_start !==-----------------------------------------------------------------------==! SUBROUTINE environment_end( code ) CHARACTER(LEN=*), INTENT(IN) :: code IF ( meta_ionode ) WRITE( stdout, * ) CALL stop_clock( TRIM(code) ) CALL print_clock( TRIM(code) ) CALL closing_message( ) IF( meta_ionode ) THEN WRITE( stdout,'(A)') ' JOB DONE.' WRITE( stdout,3335) END IF 3335 FORMAT('=',78('-'),'=') CALL flush_unit(stdout) RETURN END SUBROUTINE environment_end !==-----------------------------------------------------------------------==! SUBROUTINE opening_message( code_version ) CHARACTER(LEN=*), INTENT(IN) :: code_version CHARACTER(LEN=9) :: cdate, ctime CALL date_and_tim( cdate, ctime ) ! WRITE( stdout, '(/5X,"Program ",A," starts on ",A9," at ",A9)' ) & TRIM(code_version), cdate, ctime ! WRITE( stdout, '(/5X,"This program is part of the open-source Quantum ",& & "ESPRESSO suite", & &/5X,"for quantum simulation of materials; please cite", & &/9X,"""P. Giannozzi et al., J. Phys.:Condens. Matter 21 ",& & "395502 (2009);", & &/9X," URL http://www.quantum-espresso.org"", ", & &/5X,"in publications or presentations arising from this work. More details at",& &/5x,"http://www.quantum-espresso.org/quote")' ) RETURN END SUBROUTINE opening_message !==-----------------------------------------------------------------------==! SUBROUTINE closing_message( ) CHARACTER(LEN=9) :: cdate, ctime CHARACTER(LEN=80) :: time_str CALL date_and_tim( cdate, ctime ) time_str = 'This run was terminated on: ' // ctime // ' ' // cdate IF( meta_ionode ) THEN WRITE( stdout,*) WRITE( stdout,3334) time_str WRITE( stdout,3335) END IF 3334 FORMAT(3X,A60,/) 3335 FORMAT('=',78('-'),'=') RETURN END SUBROUTINE closing_message !==-----------------------------------------------------------------------==! SUBROUTINE parallel_info ( ) ! #if defined(__OPENMP) INTEGER, EXTERNAL :: omp_get_max_threads #endif ! #if defined(__OPENMP) WRITE( stdout, '(/5X,"Parallel version (MPI & OpenMP), running on ",& &I7," processor cores")' ) nproc * omp_get_max_threads() ! WRITE( stdout, '(5X,"Number of MPI processes: ",I7)' ) nproc ! WRITE( stdout, '(5X,"Threads/MPI process: ",I7)' ) & omp_get_max_threads() #else WRITE( stdout, '(/5X,"Parallel version (MPI), running on ",& &I5," processors")' ) nproc #endif ! IF ( nimage > 1 ) WRITE( stdout, & '(5X,"path-images division: nimage = ",I7)' ) nimage IF ( npool > 1 ) WRITE( stdout, & '(5X,"K-points division: npool = ",I7)' ) npool IF ( nbgrp > 1 ) WRITE( stdout, & '(5X,"band groups division: nbgrp = ",I7)' ) nbgrp IF ( nproc_bgrp > 1 ) WRITE( stdout, & '(5X,"R & G space division: proc/nbgrp/npool/nimage = ",I7)' ) nproc_bgrp IF ( ntask_groups > 1 ) WRITE( stdout, & '(5X,"wavefunctions fft division: fft and procs/group = ",2I7)' ) & ntask_groups, nproc_bgrp / ntask_groups ! END SUBROUTINE parallel_info !==-----------------------------------------------------------------------==! SUBROUTINE serial_info ( ) ! #if defined(__OPENMP) INTEGER, EXTERNAL :: omp_get_max_threads #endif ! #if defined(__OPENMP) WRITE( stdout, '(/5X,"Serial multi-threaded version, running on ",& &I4," processor cores")' ) omp_get_max_threads() ! #else WRITE( stdout, '(/5X,"Serial version")' ) #endif ! END SUBROUTINE serial_info !==-----------------------------------------------------------------------==! END MODULE environment !==-----------------------------------------------------------------------==! espresso-5.1/Modules/fft_scalar.f900000644000175000017500000017441412341373034015351 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------------! ! FFT scalar drivers Module - contains machine-dependent routines for: ! ! FFTW, FFTW3, ESSL, LINUX_ESSL, SCSL, SUNPERF, NEC ASL libraries ! ! (both 3d for serial execution and 1d+2d FFTs for parallel execution, ! ! excepted NEC ASL, 3d only, no parallel execution) ! ! Written by Carlo Cavazzoni, modified by P. Giannozzi, contributions ! ! by Martin Hilgemans, Guido Roma, Pascal Thibaudeau, Stephane Lefranc, ! ! Nicolas Lacorne, Filippo Spiga - Last update Aug 2012 ! !--------------------------------------------------------------------------! #include "fft_defs.h" !=----------------------------------------------------------------------=! MODULE fft_scalar !=----------------------------------------------------------------------=! USE kinds IMPLICIT NONE SAVE PRIVATE PUBLIC :: cft_1z, cft_2xy, cft_b, cfft3d, cfft3ds PUBLIC :: good_fft_dimension, allowed, good_fft_order PUBLIC :: cft_b_omp_init, cft_b_omp ! ... Local Parameter ! ndims Number of different FFT tables that the module ! could keep into memory without reinitialization ! nfftx Max allowed fft dimension INTEGER, PARAMETER :: ndims = 3, nfftx = 2049 ! Workspace that is statically allocated is defined here ! in order to avoid multiple copies of the same workspace ! lwork: Dimension of the work space array (if any) #if ( defined __ESSL || defined __LINUX_ESSL ) && ! ( defined __FFTW || defined __FFTW3 ) ! ESSL IBM library: see the ESSL manual for DCFT INTEGER, PARAMETER :: lwork = 20000 + ( 2*nfftx + 256 ) * 64 + 3*nfftx REAL (DP) :: work( lwork ) #elif defined __SCSL || defined __SUNPERF ! SGI scientific library scsl and SUN sunperf INTEGER, PARAMETER :: lwork = 2 * nfftx COMPLEX (DP) :: work(lwork) #elif defined __FFTW3 ! Only FFTW_ESTIMATE is actually used #define FFTW_MEASURE 0 #define FFTW_ESTIMATE 64 #endif #if defined __FFTW INTEGER :: cft_b_dims( 4 ) C_POINTER :: cft_b_bw_planz = 0 C_POINTER :: cft_b_bw_planx = 0 C_POINTER :: cft_b_bw_plany = 0 #endif !=----------------------------------------------------------------------=! CONTAINS !=----------------------------------------------------------------------=! ! !=----------------------------------------------------------------------=! ! ! ! ! FFT along "z" ! ! ! !=----------------------------------------------------------------------=! ! SUBROUTINE cft_1z(c, nsl, nz, ldz, isign, cout) ! driver routine for nsl 1d complex fft's of length nz ! ldz >= nz is the distance between sequences to be transformed ! (ldz>nz is used on some architectures to reduce memory conflicts) ! input : c(ldz*nsl) (complex) ! output : cout(ldz*nsl) (complex - NOTA BENE: transform is not in-place!) ! isign > 0 : forward (f(G)=>f(R)), isign <0 backward (f(R) => f(G)) ! Up to "ndims" initializations (for different combinations of input ! parameters nz, nsl, ldz) are stored and re-used if available INTEGER, INTENT(IN) :: isign INTEGER, INTENT(IN) :: nsl, nz, ldz COMPLEX (DP) :: c(:), cout(:) REAL (DP) :: tscale INTEGER :: i, err, idir, ip INTEGER, SAVE :: zdims( 3, ndims ) = -1 INTEGER, SAVE :: icurrent = 1 LOGICAL :: done #if defined __HPM INTEGER :: OMP_GET_THREAD_NUM #endif INTEGER :: tid ! ... Machine-Dependent parameters, work arrays and tables of factors ! ltabl Dimension of the tables of factors calculated at the ! initialization stage #if defined __OPENMP INTEGER :: offset, ldz_t INTEGER :: omp_get_max_threads EXTERNAL :: omp_get_max_threads #endif #if defined __FFTW || defined __FFTW3 ! Pointers to the "C" structures containing FFT factors ( PLAN ) ! C_POINTER is defined in include/fft_defs.h ! for 32bit executables, C_POINTER is integer(4) ! for 64bit executables, C_POINTER is integer(8) C_POINTER, SAVE :: fw_planz( ndims ) = 0 C_POINTER, SAVE :: bw_planz( ndims ) = 0 #elif defined __ESSL || defined __LINUX_ESSL ! ESSL IBM library: see the ESSL manual for DCFT INTEGER, PARAMETER :: ltabl = 20000 + 3 * nfftx REAL (DP), SAVE :: fw_tablez( ltabl, ndims ) REAL (DP), SAVE :: bw_tablez( ltabl, ndims ) #elif defined __SCSL ! SGI scientific library scsl INTEGER, PARAMETER :: ltabl = 2 * nfftx + 256 REAL (DP), SAVE :: tablez (ltabl, ndims) REAL (DP) :: DUMMY INTEGER, SAVE :: isys(0:1) = (/ 1, 1 /) #elif defined __SX6 ! NEC MathKeisan INTEGER, PARAMETER :: ltabl = 2 * nfftx + 64 REAL (DP), SAVE :: tablez (ltabl, ndims) REAL (DP) :: work(4*nz*nsl) COMPLEX (DP) :: DUMMY INTEGER, SAVE :: isys = 1 #elif defined __SUNPERF ! SUN sunperf library INTEGER, PARAMETER :: ltabl = 4 * nfftx + 15 REAL (DP), SAVE :: tablez (ltabl, ndims) #endif IF( nsl < 0 ) THEN CALL errore(" fft_scalar: cft_1z ", " nsl out of range ", nsl) END IF ! ! Here initialize table only if necessary ! DO ip = 1, ndims ! first check if there is already a table initialized ! for this combination of parameters done = ( nz == zdims(1,ip) ) #if defined __ESSL || defined __LINUX_ESSL || defined __FFTW3 ! The initialization in ESSL and FFTW v.3 depends on all three parameters done = done .AND. ( nsl == zdims(2,ip) ) .AND. ( ldz == zdims(3,ip) ) #endif IF (done) EXIT END DO IF( .NOT. done ) THEN ! no table exist for these parameters ! initialize a new one ! WRITE( stdout, fmt="('DEBUG cft_1z, reinitializing tables ', I3)" ) icurrent #if defined __FFTW IF( fw_planz( icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_planz( icurrent) ) IF( bw_planz( icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_planz( icurrent) ) idir = -1; CALL CREATE_PLAN_1D( fw_planz( icurrent), nz, idir) idir = 1; CALL CREATE_PLAN_1D( bw_planz( icurrent), nz, idir) #elif defined __FFTW3 IF( fw_planz( icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_planz( icurrent) ) IF( bw_planz( icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_planz( icurrent) ) idir = -1 CALL dfftw_plan_many_dft( fw_planz( icurrent), 1, nz, nsl, c, & (/SIZE(c)/), 1, ldz, cout, (/SIZE(cout)/), 1, ldz, idir, FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_planz( icurrent), 1, nz, nsl, c, & (/SIZE(c)/), 1, ldz, cout, (/SIZE(cout)/), 1, ldz, idir, FFTW_ESTIMATE) #elif defined __ESSL || defined __LINUX_ESSL tscale = 1.0_DP / nz CALL DCFT ( 1, c(1), 1, ldz, cout(1), 1, ldz, nz, nsl, 1, & tscale, fw_tablez(1, icurrent), ltabl, work(1), lwork) CALL DCFT ( 1, c(1), 1, ldz, cout(1), 1, ldz, nz, nsl, -1, & 1.0_DP, bw_tablez(1, icurrent), ltabl, work(1), lwork) #elif defined __SCSL CALL ZZFFTM (0, nz, 0, 0.0_DP, DUMMY, 1, DUMMY, 1, & tablez (1, icurrent), DUMMY, isys) #elif defined __SX6 CALL ZZFFTM (0, nz, 1, 1.0_DP, DUMMY, ldz, DUMMY, ldz, & tablez (1, icurrent), work, isys) #elif defined __SUNPERF CALL zffti (nz, tablez (1, icurrent) ) #else CALL errore(' cft_1z ',' no scalar fft driver specified ', 1) #endif zdims(1,icurrent) = nz; zdims(2,icurrent) = nsl; zdims(3,icurrent) = ldz; ip = icurrent icurrent = MOD( icurrent, ndims ) + 1 END IF ! ! Now perform the FFTs using machine specific drivers ! #if defined __FFT_CLOCKS CALL start_clock( 'cft_1z' ) #endif #if defined __FFTW #if defined __OPENMP ldz_t = ldz ! IF (isign < 0) THEN !$omp parallel default(none) private(tid,offset,i,tscale) shared(c,isign,nsl,fw_planz,ip,nz,cout,ldz) & !$omp & firstprivate(ldz_t) !$omp do DO i=1, nsl offset = 1 + ((i-1)*ldz_t) CALL FFT_Z_STICK_SINGLE(fw_planz( ip), c(offset), ldz_t) END DO !$omp end do tscale = 1.0_DP / nz !$omp workshare cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) * tscale !$omp end workshare !$omp end parallel ELSE IF (isign > 0) THEN !$omp parallel default(none) private(tid,offset,i) shared(c,isign,nsl,bw_planz,ip,cout,ldz) & !$omp & firstprivate(ldz_t) !$omp do DO i=1, nsl offset = 1 + ((i-1)* ldz_t) CALL FFT_Z_STICK_SINGLE(bw_planz( ip), c(offset), ldz_t) END DO !$omp end do !$omp workshare cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) !$omp end workshare !$omp end parallel END IF #else IF (isign < 0) THEN CALL FFT_Z_STICK(fw_planz( ip), c(1), ldz, nsl) tscale = 1.0_DP / nz cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) * tscale ELSE IF (isign > 0) THEN CALL FFT_Z_STICK(bw_planz( ip), c(1), ldz, nsl) cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) END IF #endif #elif defined __FFTW3 IF (isign < 0) THEN CALL dfftw_execute_dft( fw_planz( ip), c, cout) tscale = 1.0_DP / nz cout( 1 : ldz * nsl ) = cout( 1 : ldz * nsl ) * tscale ELSE IF (isign > 0) THEN CALL dfftw_execute_dft( bw_planz( ip), c, cout) END IF #elif defined __SCSL IF ( isign < 0 ) THEN idir = -1 tscale = 1.0_DP / nz ELSE IF ( isign > 0 ) THEN idir = 1 tscale = 1.0_DP END IF IF (isign /= 0) CALL ZZFFTM (idir, nz, nsl, tscale, c(1), ldz, & cout(1), ldz, tablez (1, ip), work, isys) #elif defined __SX6 IF ( isign < 0 ) THEN idir = -1 tscale = 1.0_DP / nz ELSE IF ( isign > 0 ) THEN idir = 1 tscale = 1.0_DP END IF IF (isign /= 0) CALL ZZFFTM (idir, nz, nsl, tscale, c(1), ldz, & cout(1), ldz, tablez (1, ip), work, isys) #elif defined __ESSL || defined __LINUX_ESSL ! essl uses a different convention for forward/backward transforms ! wrt most other implementations: notice the sign of "idir" IF( isign < 0 ) THEN idir =+1 tscale = 1.0_DP / nz CALL DCFT (0, c(1), 1, ldz, cout(1), 1, ldz, nz, nsl, idir, & tscale, fw_tablez(1, ip), ltabl, work, lwork) ELSE IF( isign > 0 ) THEN idir =-1 tscale = 1.0_DP CALL DCFT (0, c(1), 1, ldz, cout(1), 1, ldz, nz, nsl, idir, & tscale, bw_tablez(1, ip), ltabl, work, lwork) END IF #elif defined __SUNPERF IF ( isign < 0) THEN DO i = 1, nsl CALL zfftf ( nz, c(1+(i-1)*ldz), tablez ( 1, ip) ) END DO cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) / nz ELSE IF( isign > 0 ) THEN DO i = 1, nsl CALL zfftb ( nz, c(1+(i-1)*ldz), tablez ( 1, ip) ) enddo cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) END IF #else CALL errore(' cft_1z ',' no scalar fft driver specified ', 1) #endif #if defined __FFT_CLOCKS CALL stop_clock( 'cft_1z' ) #endif RETURN END SUBROUTINE cft_1z ! ! !=----------------------------------------------------------------------=! ! ! ! ! FFT along "x" and "y" direction ! ! ! !=----------------------------------------------------------------------=! ! ! SUBROUTINE cft_2xy(r, nzl, nx, ny, ldx, ldy, isign, pl2ix) ! driver routine for nzl 2d complex fft's of lengths nx and ny ! input : r(ldx*ldy) complex, transform is in-place ! ldx >= nx, ldy >= ny are the physical dimensions of the equivalent ! 2d array: r2d(ldx, ldy) (x first dimension, y second dimension) ! (ldx>nx, ldy>ny used on some architectures to reduce memory conflicts) ! pl2ix(nx) (optional) is 1 for columns along y to be transformed ! isign > 0 : forward (f(G)=>f(R)), isign <0 backward (f(R) => f(G)) ! Up to "ndims" initializations (for different combinations of input ! parameters nx,ny,nzl,ldx) are stored and re-used if available IMPLICIT NONE INTEGER, INTENT(IN) :: isign, ldx, ldy, nx, ny, nzl INTEGER, OPTIONAL, INTENT(IN) :: pl2ix(:) COMPLEX (DP) :: r( : ) INTEGER :: i, k, j, err, idir, ip, kk REAL(DP) :: tscale INTEGER, SAVE :: icurrent = 1 INTEGER, SAVE :: dims( 4, ndims) = -1 LOGICAL :: dofft( nfftx ), done INTEGER, PARAMETER :: stdout = 6 #if defined __HPM INTEGER :: OMP_GET_THREAD_NUM #endif #if defined __OPENMP INTEGER :: offset INTEGER :: nx_t, ny_t, nzl_t, ldx_t, ldy_t INTEGER :: itid, mytid, ntids INTEGER :: omp_get_thread_num, omp_get_num_threads EXTERNAL :: omp_get_thread_num, omp_get_num_threads #endif #if defined __FFTW || defined __FFTW3 C_POINTER, SAVE :: fw_plan( 2, ndims ) = 0 C_POINTER, SAVE :: bw_plan( 2, ndims ) = 0 #elif defined __ESSL || defined __LINUX_ESSL INTEGER, PARAMETER :: ltabl = 20000 + 3 * nfftx REAL (DP), SAVE :: fw_tablex( ltabl, ndims ), fw_tabley( ltabl, ndims ) REAL (DP), SAVE :: bw_tablex( ltabl, ndims ), bw_tabley( ltabl, ndims ) #elif defined __SCSL INTEGER, PARAMETER :: ltabl = 2 * nfftx + 256 REAL (DP), SAVE :: tablex (ltabl, ndims), tabley(ltabl, ndims) COMPLEX (DP) :: XY(nx+nx*ny) REAL (DP) :: DUMMY INTEGER, SAVE :: isys(0:1) = (/ 1, 1 /) #elif defined __SX6 INTEGER, PARAMETER :: ltabl = 2*nfftx + 64 REAL (DP), SAVE :: tablex(ltabl, ndims), tabley(ltabl, ndims) REAL (DP) :: work(4*nx*ny) COMPLEX (DP) :: XY(ldx*ny) COMPLEX (DP) :: DUMMY INTEGER, SAVE :: isys = 1 #elif defined __SUNPERF INTEGER, PARAMETER :: ltabl = 4 * nfftx + 15 REAL (DP), SAVE :: tablex (ltabl, ndims) REAL (DP), SAVE :: tabley (ltabl, ndims) #endif #if defined __SCSL isys(0) = 1 #endif dofft( 1 : nx ) = .TRUE. IF( PRESENT( pl2ix ) ) THEN IF( SIZE( pl2ix ) < nx ) & CALL errore( ' cft_2xy ', ' wrong dimension for arg no. 8 ', 1 ) DO i = 1, nx IF( pl2ix(i) < 1 ) dofft( i ) = .FALSE. END DO END IF ! WRITE( stdout,*) 'DEBUG: ', COUNT( dofft ) ! ! Here initialize table only if necessary ! DO ip = 1, ndims ! first check if there is already a table initialized ! for this combination of parameters done = ( ny == dims(1,ip) ) .AND. ( nx == dims(3,ip) ) #if defined __ESSL || defined __LINUX_ESSL || defined __FFTW3 ! The initialization in ESSL and FFTW v.3 depends on all four parameters done = done .AND. ( ldx == dims(2,ip) ) .AND. ( nzl == dims(4,ip) ) #endif IF (done) EXIT END DO IF( .NOT. done ) THEN ! no table exist for these parameters ! initialize a new one ! WRITE( stdout, fmt="('DEBUG cft_2xy, reinitializing tables ', I3)" ) icurrent #if defined __FFTW IF( fw_plan( 2,icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 2,icurrent) ) IF( bw_plan( 2,icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 2,icurrent) ) idir = -1; CALL CREATE_PLAN_1D( fw_plan( 2,icurrent), ny, idir) idir = 1; CALL CREATE_PLAN_1D( bw_plan( 2,icurrent), ny, idir) IF( fw_plan( 1,icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 1,icurrent) ) IF( bw_plan( 1,icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 1,icurrent) ) idir = -1; CALL CREATE_PLAN_1D( fw_plan( 1,icurrent), nx, idir) idir = 1; CALL CREATE_PLAN_1D( bw_plan( 1,icurrent), nx, idir) #elif defined __FFTW3 IF ( ldx /= nx .OR. ldy /= ny ) THEN IF( fw_plan(2,icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_plan(2,icurrent) ) IF( bw_plan(2,icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_plan(2,icurrent) ) idir = -1 CALL dfftw_plan_many_dft( fw_plan(2,icurrent), 1, ny, 1, r(1:), & (/ldx*ldy/), ldx, 1, r(1:), (/ldx*ldy/), ldx, 1, idir, & FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_plan(2,icurrent), 1, ny, 1, r(1:), & (/ldx*ldy/), ldx, 1, r(1:), (/ldx*ldy/), ldx, 1, idir, & FFTW_ESTIMATE) IF( fw_plan(1,icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_plan(1,icurrent) ) IF( bw_plan(1,icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_plan(1,icurrent) ) idir = -1 CALL dfftw_plan_many_dft( fw_plan(1,icurrent), 1, nx, ny, r(1:), & (/ldx*ldy/), 1, ldx, r(1:), (/ldx*ldy/), 1, ldx, idir, & FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_plan(1,icurrent), 1, nx, ny, r(1:), & (/ldx*ldy/), 1, ldx, r(1:), (/ldx*ldy/), 1, ldx, idir, & FFTW_ESTIMATE) ELSE IF( fw_plan( 1, icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_plan( 1, icurrent) ) IF( bw_plan( 1, icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_plan( 1, icurrent) ) idir = -1 CALL dfftw_plan_many_dft( fw_plan( 1, icurrent), 2, (/nx, ny/), nzl,& r(1:), (/nx, ny/), 1, nx*ny, r(1:), (/nx, ny/), 1, nx*ny, idir,& FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_plan( 1, icurrent), 2, (/nx, ny/), nzl,& r(1:), (/nx, ny/), 1, nx*ny, r(1:), (/nx, ny/), 1, nx*ny, idir,& FFTW_ESTIMATE) END IF #elif defined __ESSL || defined __LINUX_ESSL #if defined __OPENMP tscale = 1.0_DP / ( nx * ny ) CALL DCFT ( 1, r(1), ldx, 1, r(1), ldx, 1, ny, nx, 1, 1.0_DP, & fw_tabley( 1, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, r(1), ldx, 1, r(1), ldx, 1, ny, nx, -1, 1.0_DP, & bw_tabley(1, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, r(1), 1, ldx, r(1), 1, ldx, nx, ny, 1, & tscale, fw_tablex( 1, icurrent), ltabl, work(1), lwork) CALL DCFT ( 1, r(1), 1, ldx, r(1), 1, ldx, nx, ny, -1, & 1.0_DP, bw_tablex(1, icurrent), ltabl, work(1), lwork) #else tscale = 1.0_DP / ( nx * ny ) CALL DCFT ( 1, r(1), ldx, 1, r(1), ldx, 1, ny, 1, 1, 1.0_DP, & fw_tabley( 1, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, r(1), ldx, 1, r(1), ldx, 1, ny, 1, -1, 1.0_DP, & bw_tabley(1, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, r(1), 1, ldx, r(1), 1, ldx, nx, ny, 1, & tscale, fw_tablex( 1, icurrent), ltabl, work(1), lwork) CALL DCFT ( 1, r(1), 1, ldx, r(1), 1, ldx, nx, ny, -1, & 1.0_DP, bw_tablex(1, icurrent), ltabl, work(1), lwork) #endif #elif defined __SCSL CALL ZZFFTMR (0, ny, 0, 0.0_DP, DUMMY, 1, DUMMY, 1, & tabley (1, icurrent), DUMMY, isys) CALL ZZFFTM (0, nx, 0, 0.0_DP, DUMMY, 1, DUMMY, 1, & tablex (1, icurrent), DUMMY, isys) #elif defined __SX6 CALL ZZFFT(0, ny, 1.0_DP, DUMMY, DUMMY, & tabley (1, icurrent), work, isys) CALL ZZFFTM (0, nx, 1, 1.0_DP, DUMMY, ldx, DUMMY, ldx, & tablex(1, icurrent), work, isys) #elif defined __SUNPERF CALL zffti (ny, tabley (1, icurrent) ) CALL zffti (nx, tablex (1, icurrent) ) #else CALL errore(' cft_2xy ',' no scalar fft driver specified ', 1) #endif dims(1,icurrent) = ny; dims(2,icurrent) = ldx; dims(3,icurrent) = nx; dims(4,icurrent) = nzl; ip = icurrent icurrent = MOD( icurrent, ndims ) + 1 END IF ! ! Now perform the FFTs using machine specific drivers ! #if defined __FFT_CLOCKS CALL start_clock( 'cft_2xy' ) #endif #if defined __FFTW #if defined __OPENMP nx_t = nx ny_t = ny nzl_t = nzl ldx_t = ldx ldy_t = ldy ! IF( isign < 0 ) THEN ! tscale = 1.0_DP / ( nx * ny ) ! !$omp parallel default(none) private(offset,itid,mytid,ntids,k,j,i) shared(r,dofft,ip,fw_plan,nzl,nx,ny,ldx,ldy,tscale) & !$omp & firstprivate(nx_t, ny_t, nzl_t, ldx_t, ldy_t) !$omp do DO i=1,nzl offset = 1+ ((i-1)*(ldx_t*ldy_t)) CALL FFT_X_STICK_SINGLE( fw_plan(1,ip), r(offset), nx_t, ny_t, nzl_t, ldx_t, ldy_t ) END DO !$omp end do mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads itid = 0 do i = 1, nx do k = 1, nzl IF( dofft( i ) ) THEN IF( itid == mytid ) THEN j = i + ldx_t*ldy_t * ( k - 1 ) call FFT_Y_STICK(fw_plan(2,ip), r(j), ny_t, ldx_t) END IF itid = MOD( itid + 1, ntids ) END IF end do end do !$omp barrier !$omp workshare r = r * tscale !$omp end workshare !$omp end parallel ! CALL ZDSCAL( ldx * ldy * nzl, tscale, r(1), 1) ! ELSE IF( isign > 0 ) THEN ! !$omp parallel default(none) private(offset,itid,mytid,ntids,k,j,i) shared(r,nx,nzl,dofft,ip,bw_plan) & !$omp & firstprivate(nx_t, ny_t, nzl_t, ldx_t, ldy_t) mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads itid = 0 do i = 1, nx do k = 1, nzl IF( dofft( i ) ) THEN IF( itid == mytid ) THEN j = i + ldx_t*ldy_t * ( k - 1 ) call FFT_Y_STICK( bw_plan(2,ip), r(j), ny_t, ldx_t) END IF itid = MOD( itid + 1, ntids ) END IF end do end do !$omp barrier !$omp do DO i=1,nzl offset = 1+ ((i-1)*(ldx_t*ldy_t)) CALL FFT_X_STICK_SINGLE( bw_plan(1,ip), r(offset), nx_t, ny_t, nzl_t, ldx_t, ldy_t ) END DO !$omp end do !$omp end parallel ! END IF #else IF( isign < 0 ) THEN CALL FFT_X_STICK( fw_plan(1,ip), r(1), nx, ny, nzl, ldx, ldy ) do i = 1, nx do k = 1, nzl IF( dofft( i ) ) THEN j = i + ldx*ldy * ( k - 1 ) call FFT_Y_STICK(fw_plan(2,ip), r(j), ny, ldx) END IF end do end do tscale = 1.0_DP / ( nx * ny ) CALL ZDSCAL( ldx * ldy * nzl, tscale, r(1), 1) ELSE IF( isign > 0 ) THEN do i = 1, nx do k = 1, nzl IF( dofft( i ) ) THEN j = i + ldx*ldy * ( k - 1 ) call FFT_Y_STICK( bw_plan(2,ip), r(j), ny, ldx) END IF end do end do CALL FFT_X_STICK( bw_plan(1,ip), r(1), nx, ny, nzl, ldx, ldy ) END IF #endif #elif defined __FFTW3 IF ( ldx /= nx .OR. ldy /= ny ) THEN IF( isign < 0 ) THEN do j = 0, nzl-1 CALL dfftw_execute_dft( fw_plan (1, ip), & r(1+j*ldx*ldy:), r(1+j*ldx*ldy:)) end do do i = 1, nx do k = 1, nzl IF( dofft( i ) ) THEN j = i + ldx*ldy * ( k - 1 ) call dfftw_execute_dft( fw_plan ( 2, ip), r(j:), r(j:)) END IF end do end do tscale = 1.0_DP / ( nx * ny ) CALL ZDSCAL( ldx * ldy * nzl, tscale, r(1), 1) ELSE IF( isign > 0 ) THEN do i = 1, nx do k = 1, nzl IF( dofft( i ) ) THEN j = i + ldx*ldy * ( k - 1 ) call dfftw_execute_dft( bw_plan ( 2, ip), r(j:), r(j:)) END IF end do end do do j = 0, nzl-1 CALL dfftw_execute_dft( bw_plan( 1, ip), & r(1+j*ldx*ldy:), r(1+j*ldx*ldy:)) end do END IF ELSE IF( isign < 0 ) THEN call dfftw_execute_dft( fw_plan( 1, ip), r(1:), r(1:)) tscale = 1.0_DP / ( nx * ny ) CALL ZDSCAL( ldx * ldy * nzl, tscale, r(1), 1) ELSE IF( isign > 0 ) THEN call dfftw_execute_dft( bw_plan( 1, ip), r(1:), r(1:)) END IF END IF #elif defined __ESSL || defined __LINUX_ESSL #if defined __OPENMP IF( isign < 0 ) THEN tscale = 1.0_DP / ( nx * ny ) do k = 1, nzl kk = 1 + ( k - 1 ) * ldx * ldy CALL DCFT ( 0, r( kk ), 1, ldx, r( kk ), 1, ldx, nx, ny, & 1, tscale, fw_tablex( 1, ip ), ltabl, work( 1 ), lwork) CALL DCFT ( 0, r( kk ), ldx, 1, r( kk ), ldx, 1, ny, nx, & 1, 1.0_DP, fw_tabley(1, ip), ltabl, work( 1 ), lwork) end do ELSE IF( isign > 0 ) THEN DO k = 1, nzl kk = 1 + ( k - 1 ) * ldx * ldy CALL DCFT ( 0, r( kk ), ldx, 1, r( kk ), ldx, 1, ny, nx, & -1, 1.0_DP, bw_tabley(1, ip), ltabl, work( 1 ), lwork) CALL DCFT ( 0, r( kk ), 1, ldx, r( kk ), 1, ldx, nx, ny, & -1, 1.0_DP, bw_tablex(1, ip), ltabl, work( 1 ), lwork) END DO END IF #else IF( isign < 0 ) THEN idir = 1 tscale = 1.0_DP / ( nx * ny ) do k = 1, nzl kk = 1 + ( k - 1 ) * ldx * ldy CALL DCFT ( 0, r(kk), 1, ldx, r(kk), 1, ldx, nx, ny, idir, & tscale, fw_tablex( 1, ip ), ltabl, work( 1 ), lwork) do i = 1, nx IF( dofft( i ) ) THEN kk = i + ( k - 1 ) * ldx * ldy call DCFT ( 0, r( kk ), ldx, 1, r( kk ), ldx, 1, ny, 1, & idir, 1.0_DP, fw_tabley(1, ip), ltabl, work( 1 ), lwork) END IF end do end do ELSE IF( isign > 0 ) THEN idir = -1 DO k = 1, nzl do i = 1, nx IF( dofft( i ) ) THEN kk = i + ( k - 1 ) * ldx * ldy call DCFT ( 0, r( kk ), ldx, 1, r( kk ), ldx, 1, ny, 1, & idir, 1.0_DP, bw_tabley(1, ip), ltabl, work( 1 ), lwork) END IF end do kk = 1 + ( k - 1 ) * ldx * ldy CALL DCFT ( 0, r( kk ), 1, ldx, r( kk ), 1, ldx, nx, ny, idir, & 1.0_DP, bw_tablex(1, ip), ltabl, work( 1 ), lwork) END DO END IF #endif #elif defined __SX6 IF( isign < 0 ) THEN idir = -1 tscale = 1.0_DP / (nx * ny) DO k = 0, nzl-1 kk = k * ldx * ldy ! FORWARD: ny FFTs in the X direction CALL ZZFFTM ( idir, nx, ny, tscale, r(kk+1), ldx, r(kk+1), ldx, & tablex (1, ip), work(1), isys ) ! FORWARD: nx FFTs in the Y direction DO i = 1, nx IF ( dofft(i) ) THEN DO j = 0, ny-1 XY(j+1) = r(i + (j) * ldx + kk) END DO CALL ZZFFT(idir, ny, 1.0_DP, XY, XY, tabley (1, ip), & work(1), isys) DO j = 0, ny-1 r(i + (j) * ldx + kk) = XY(j+1) END DO END IF END DO END DO ELSE IF ( isign > 0 ) THEN idir = 1 tscale = 1.0_DP DO k = 0, nzl-1 ! BACKWARD: nx FFTs in the Y direction kk = (k) * ldx * ldy DO i = 1, nx IF ( dofft(i) ) THEN DO j = 0, ny-1 XY(j+1) = r(i + (j) * ldx + kk) END DO CALL ZZFFT(idir, ny, 1.0_DP, XY, XY, tabley (1, ip), & work(1), isys) DO j = 0, ny-1 r(i + (j) * ldx + kk) = XY(j+1) END DO END IF END DO ! BACKWARD: ny FFTs in the X direction CALL ZZFFTM ( idir, nx, ny, tscale, r(kk+1), ldx, r(kk+1), ldx, & tablex (1, ip), work(1), isys ) END DO END IF #elif defined __SCSL IF( isign < 0 ) THEN idir = -1 tscale = 1.0_DP / (nx * ny) DO k = 0, nzl-1 kk = k * ldx * ldy ! FORWARD: ny FFTs in the X direction CALL ZZFFTM ( idir, nx, ny, tscale, r(kk+1), ldx, r(kk+1), ldx, & tablex (1, ip), work(1), isys ) ! FORWARD: nx FFTs in the Y direction DO i = 1, nx IF ( dofft(i) ) THEN !DIR$IVDEP !DIR$LOOP COUNT (50) DO j = 0, ny-1 XY(j+1) = r(i + (j) * ldx + kk) END DO CALL ZZFFT(idir, ny, 1.0_DP, XY, XY, tabley (1, ip), & work(1), isys) !DIR$IVDEP !DIR$LOOP COUNT (50) DO j = 0, ny-1 r(i + (j) * ldx + kk) = XY(j+1) END DO END IF END DO END DO ELSE IF ( isign > 0 ) THEN idir = 1 tscale = 1.0_DP DO k = 0, nzl-1 ! BACKWARD: nx FFTs in the Y direction kk = (k) * ldx * ldy DO i = 1, nx IF ( dofft(i) ) THEN !DIR$IVDEP !DIR$LOOP COUNT (50) DO j = 0, ny-1 XY(j+1) = r(i + (j) * ldx + kk) END DO CALL ZZFFT(idir, ny, 1.0_DP, XY, XY, tabley (1, ip), & work(1), isys) !DIR$IVDEP !DIR$LOOP COUNT (50) DO j = 0, ny-1 r(i + (j) * ldx + kk) = XY(j+1) END DO END IF END DO ! BACKWARD: ny FFTs in the X direction CALL ZZFFTM ( idir, nx, ny, tscale, r(kk+1), ldx, r(kk+1), ldx, & tablex (1, ip), work(1), isys ) END DO END IF #elif defined __SUNPERF IF ( isign < 0 ) THEN DO k = 1, ny * nzl kk = 1 + ( k - 1 ) * ldx CALL zfftf ( nx, r (kk), tablex (1, ip) ) END DO DO i = 1, nx IF ( dofft(i) ) THEN DO j = 1, nzl kk = (j - 1) * ldx * ny + i CALL ZCOPY (ny, r (kk), ldx, work, 1) CALL zfftf (ny, work, tabley (1, ip) ) CALL ZCOPY (ny, work, 1, r (kk), ldx) END DO END IF END DO CALL ZDSCAL ( ldx * ny * nzl, 1.0_DP/(nx * ny), r, 1) ELSE IF (isign > 0) THEN DO i = 1, nx IF ( dofft(i) ) THEN DO j = 1, nzl kk = (j - 1) * ldx * ny + i CALL ZCOPY (ny, r (kk), ldx, work, 1) CALL zfftb (ny, work, tabley (1, ip) ) CALL ZCOPY (ny, work, 1, r (kk), ldx) END DO END IF END DO DO k = 1, ny * nzl kk = 1 + ( k - 1 ) * ldx CALL zfftb ( nx, r (kk), tablex (1, ip) ) END DO END IF #else CALL errore(' cft_2xy ',' no scalar fft driver specified ', 1) #endif #if defined __FFT_CLOCKS CALL stop_clock( 'cft_2xy' ) #endif RETURN END SUBROUTINE cft_2xy ! !=----------------------------------------------------------------------=! ! ! ! ! 3D scalar FFTs ! ! ! !=----------------------------------------------------------------------=! ! SUBROUTINE cfft3d( f, nx, ny, nz, ldx, ldy, ldz, isign ) ! driver routine for 3d complex fft of lengths nx, ny, nz ! input : f(ldx*ldy*ldz) complex, transform is in-place ! ldx >= nx, ldy >= ny, ldz >= nz are the physical dimensions ! of the equivalent 3d array: f3d(ldx,ldy,ldz) ! (ldx>nx, ldy>ny, ldz>nz may be used on some architectures ! to reduce memory conflicts - not implemented for FFTW) ! isign > 0 : f(G) => f(R) ; isign < 0 : f(R) => f(G) ! ! Up to "ndims" initializations (for different combinations of input ! parameters nx,ny,nz) are stored and re-used if available IMPLICIT NONE INTEGER, INTENT(IN) :: nx, ny, nz, ldx, ldy, ldz, isign COMPLEX (DP) :: f(:) INTEGER :: i, k, j, err, idir, ip REAL(DP) :: tscale INTEGER, SAVE :: icurrent = 1 INTEGER, SAVE :: dims(3,ndims) = -1 #if defined __FFTW || defined __FFTW3 C_POINTER, save :: fw_plan(ndims) = 0 C_POINTER, save :: bw_plan(ndims) = 0 #elif defined __SCSL INTEGER, PARAMETER :: ltabl = (2 * nfftx + 256)*3 REAL (DP), SAVE :: table (ltabl, ndims) REAL (DP) :: DUMMY INTEGER, SAVE :: isys(0:1) = (/ 1, 1 /) #elif defined __SUNPERF INTEGER, PARAMETER :: ltabl = (4 * nfftx + 15)*3 REAL (DP), SAVE :: table (ltabl, ndims) #elif defined __SX6 INTEGER, PARAMETER :: ltabl = 60 INTEGER, PARAMETER :: lwork = 195+6*nfftx INTEGER, SAVE :: iw0(ltabl, ndims) INTEGER :: k_off, kj_offset REAL (DP), SAVE :: auxp (lwork, ndims) ! not sure whether auxp is work space or not COMPLEX(DP), DIMENSION(:), ALLOCATABLE :: cw2 COMPLEX (DP) :: f_out(size(f)) # if defined ASL && defined MICRO INTEGER :: nbtasks COMMON/NEC_ASL_PARA/nbtasks # endif #endif IF ( nx < 1 ) & call errore('cfft3d',' nx is less than 1 ', 1) IF ( ny < 1 ) & call errore('cfft3d',' ny is less than 1 ', 1) IF ( nz < 1 ) & call errore('cfft3',' nz is less than 1 ', 1) #if defined __SX6 # if defined ASL ALLOCATE (cw2(ldx*ldy*ldz)) CALL zfc3cl (f(1), nx, ny, nz, ldx, ldy, ldz, err) # else ALLOCATE (cw2(6*ldx*ldy*ldz)) # endif #endif ! ! Here initialize table only if necessary ! ip = -1 DO i = 1, ndims ! first check if there is already a table initialized ! for this combination of parameters IF ( ( nx == dims(1,i) ) .and. & ( ny == dims(2,i) ) .and. & ( nz == dims(3,i) ) ) THEN ip = i EXIT END IF END DO IF( ip == -1 ) THEN ! no table exist for these parameters ! initialize a new one #if defined __FFTW IF ( nx /= ldx .or. ny /= ldy .or. nz /= ldz ) & call errore('cfft3','not implemented',1) IF( fw_plan(icurrent) /= 0 ) CALL DESTROY_PLAN_3D( fw_plan(icurrent) ) IF( bw_plan(icurrent) /= 0 ) CALL DESTROY_PLAN_3D( bw_plan(icurrent) ) idir = -1; CALL CREATE_PLAN_3D( fw_plan(icurrent), nx, ny, nz, idir) idir = 1; CALL CREATE_PLAN_3D( bw_plan(icurrent), nx, ny, nz, idir) #elif defined __FFTW3 IF ( nx /= ldx .or. ny /= ldy .or. nz /= ldz ) & call errore('cfft3','not implemented',3) IF( fw_plan(icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_plan(icurrent) ) IF( bw_plan(icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_plan(icurrent) ) idir = -1 CALL dfftw_plan_dft_3d ( fw_plan(icurrent), nx, ny, nz, f(1:), & f(1:), idir, FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_dft_3d ( bw_plan(icurrent), nx, ny, nz, f(1:), & f(1:), idir, FFTW_ESTIMATE) #elif defined __ESSL || defined __LINUX_ESSL ! no initialization for 3d FFT's from ESSL #elif defined __SCSL CALL zzfft3d (0, nx, ny, nz, 0.0_DP, DUMMY, 1, 1, DUMMY, 1, 1, & table(1,icurrent), work(1), isys) #elif defined __SUNPERF CALL zfft3i ( nx, ny, nz, table (1,icurrent) ) #elif defined __SX6 # if defined ASL # if defined MICRO CALL hfc3fb (nx,ny,nz, f(1) , ldx, ldy, ldz, 0, & iw0(1,icurrent), auxp(1,icurrent), cw2(1), nbtasks, err) # else CALL zfc3fb (nx,ny,nz, f(1), ldx, ldy, ldz, 0, & iw0(1,icurrent), auxp(1,icurrent), cw2(1), err) # endif # else ! for some reason the error variable is not set by this driver on NEC SX machines err = 0 CALL ZZFFT3D (0, nx,ny,nz, 1.0_DP, f(1), ldx, ldy, & & f(1), ldx, ldy, auxp(1,icurrent), cw2(1), err) # endif IF (err /= 0) CALL errore('cfft3d','FFT init returned an error ', err) #else CALL errore(' cfft3d ',' no scalar fft driver specified ', 1) #endif dims(1,icurrent) = nx; dims(2,icurrent) = ny; dims(3,icurrent) = nz ip = icurrent icurrent = MOD( icurrent, ndims ) + 1 END IF ! ! Now perform the 3D FFT using the machine specific driver ! #if defined __FFTW IF( isign < 0 ) THEN call FFTW_INPLACE_DRV_3D( fw_plan(ip), 1, f(1), 1, 1 ) tscale = 1.0_DP / DBLE( nx * ny * nz ) call ZDSCAL( nx * ny * nz, tscale, f(1), 1) ELSE IF( isign > 0 ) THEN call FFTW_INPLACE_DRV_3D( bw_plan(ip), 1, f(1), 1, 1 ) END IF #elif defined __FFTW3 IF( isign < 0 ) THEN call dfftw_execute_dft( fw_plan(ip), f(1:), f(1:)) tscale = 1.0_DP / DBLE( nx * ny * nz ) call ZDSCAL( nx * ny * nz, tscale, f(1), 1) ELSE IF( isign > 0 ) THEN call dfftw_execute_dft( bw_plan(ip), f(1:), f(1:)) END IF #elif defined __ESSL || defined __LINUX_ESSL IF ( isign < 0 ) THEN tscale = 1.0_DP / ( nx * ny * nz ) idir = +1 ELSE IF( isign > 0 ) THEN tscale = 1.0_DP idir = -1 END IF IF( isign /= 0 ) CALL dcft3( f(1), ldx,ldx*ldy, f(1), ldx,ldx*ldy, & nx,ny,nz, idir, tscale, work(1), lwork) #elif defined __SCSL IF ( isign /= 0 ) THEN IF ( isign < 0 ) THEN idir = -1 tscale = 1.0_DP / DBLE( nx * ny * nz ) ELSE IF ( isign > 0 ) THEN idir = 1 tscale = 1.0_DP END IF CALL ZZFFT3D ( idir, nx, ny, nz, tscale, f(1), ldx, ldy, & f(1), ldx, ldy, table(1,ip), work(1), isys ) END IF #elif defined __SUNPERF IF( isign < 0 ) THEN CALL zfft3f ( nx, ny, nz, f(1), ldx, ldy, table(1,ip), ltabl ) tscale = 1.0_DP / DBLE( nx * ny * nz ) CALL ZDSCAL ( ldx*ldy*ldz, tscale, f(1), 1 ) ELSE IF( isign > 0 ) THEN CALL zfft3b ( nx, ny, nz, f(1), ldx, ldy, table(1,ip), ltabl ) ENDIF #elif defined __SX6 # if defined ASL # if defined MICRO CALL hfc3bf (nx,ny,nz, f(1), ldx,ldy, ldz, & -isign, iw0(1,ip), auxp(1,ip), cw2(1), nbtasks, err) # else CALL zfc3bf (nx,ny,nz, f(1), ldx,ldy, ldz, & -isign, iw0(1,ip), auxp(1,ip), cw2(1), err) # endif IF ( isign < 0) THEN tscale = 1.0_DP / DBLE( nx * ny * nz ) call ZDSCAL( ldx * ldy * ldz, tscale, f(1), 1) END IF # else ! for some reason the error variable is not set by this driver on NEC SX machines err = 0 tscale = 1.0_DP IF ( isign < 0) THEN tscale = tscale / DBLE( nx * ny * nz ) END IF CALL ZZFFT3D (isign, nx,ny,nz, tscale, f(1), ldx,ldy, & f_out(1), ldx,ldy, auxp(1,ip), cw2(1), err) !$omp parallel do private(j,i,k_off,kj_offset) do k=1,nz k_off = (k-1)*ldx*ldy do j=1,ny kj_offset = (j-1)*ldx + k_off do i=1,nx f(i+kj_offset) = f_out(i+kj_offset) end do end do end do !$omp end parallel do # endif IF (err /= 0) CALL errore('cfft3d','FFT returned an error ', err) DEALLOCATE(cw2) #endif RETURN END SUBROUTINE cfft3d ! !=----------------------------------------------------------------------=! ! ! ! ! 3D scalar FFTs, but using sticks! ! ! ! !=----------------------------------------------------------------------=! ! SUBROUTINE cfft3ds (f, nx, ny, nz, ldx, ldy, ldz, isign, & do_fft_x, do_fft_y) ! ! driver routine for 3d complex "reduced" fft - see cfft3d ! The 3D fft are computed only on lines and planes which have ! non zero elements. These lines and planes are defined by ! the two integer vectors do_fft_x(ldy*nz) and do_fft_y(nz) ! (1 = perform fft, 0 = do not perform fft) ! This routine is implemented only for fftw, essl, acml ! If not implemented, cfft3d is called instead ! !---------------------------------------------------------------------- ! implicit none integer :: nx, ny, nz, ldx, ldy, ldz, isign ! ! logical dimensions of the fft ! physical dimensions of the f array ! sign of the transformation complex(DP) :: f ( ldx * ldy * ldz ) integer :: do_fft_x(:), do_fft_y(:) ! integer :: m, incx1, incx2 INTEGER :: i, k, j, err, idir, ip, ii, jj REAL(DP) :: tscale INTEGER, SAVE :: icurrent = 1 INTEGER, SAVE :: dims(3,ndims) = -1 #if defined __FFTW || __FFTW3 C_POINTER, SAVE :: fw_plan ( 3, ndims ) = 0 C_POINTER, SAVE :: bw_plan ( 3, ndims ) = 0 #elif defined __ESSL || defined __LINUX_ESSL INTEGER, PARAMETER :: ltabl = 20000 + 3 * nfftx REAL (DP), SAVE :: fw_table( ltabl, 3, ndims ) REAL (DP), SAVE :: bw_table( ltabl, 3, ndims ) #else CALL cfft3d (f, nx, ny, nz, ldx, ldy, ldz, isign) RETURN #endif tscale = 1.0_DP ! WRITE( stdout, fmt="('DEBUG cfft3ds :',6I6)") nx, ny, nz, ldx, ldy, ldz ! WRITE( stdout, fmt="('DEBUG cfft3ds :',24I2)") do_fft_x ! WRITE( stdout, fmt="('DEBUG cfft3ds :',24I2)") do_fft_y IF( ny /= ldy ) & CALL errore(' cfft3ds ', ' wrong dimensions: ny /= ldy ', 1 ) ip = -1 DO i = 1, ndims ! first check if there is already a table initialized ! for this combination of parameters IF( ( nx == dims(1,i) ) .and. ( ny == dims(2,i) ) .and. & ( nz == dims(3,i) ) ) THEN ip = i EXIT END IF END DO IF( ip == -1 ) THEN ! no table exist for these parameters ! initialize a new one #if defined __FFTW IF( fw_plan( 1, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 1, icurrent) ) IF( bw_plan( 1, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 1, icurrent) ) IF( fw_plan( 2, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 2, icurrent) ) IF( bw_plan( 2, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 2, icurrent) ) IF( fw_plan( 3, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 3, icurrent) ) IF( bw_plan( 3, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 3, icurrent) ) idir = -1; CALL CREATE_PLAN_1D( fw_plan( 1, icurrent), nx, idir) idir = 1; CALL CREATE_PLAN_1D( bw_plan( 1, icurrent), nx, idir) idir = -1; CALL CREATE_PLAN_1D( fw_plan( 2, icurrent), ny, idir) idir = 1; CALL CREATE_PLAN_1D( bw_plan( 2, icurrent), ny, idir) idir = -1; CALL CREATE_PLAN_1D( fw_plan( 3, icurrent), nz, idir) idir = 1; CALL CREATE_PLAN_1D( bw_plan( 3, icurrent), nz, idir) #elif defined __FFTW3 IF( fw_plan( 1, icurrent) /= 0 ) & CALL dfftw_destroy_plan( fw_plan( 1, icurrent) ) IF( bw_plan( 1, icurrent) /= 0 ) & CALL dfftw_destroy_plan( bw_plan( 1, icurrent) ) IF( fw_plan( 2, icurrent) /= 0 ) & CALL dfftw_destroy_plan( fw_plan( 2, icurrent) ) IF( bw_plan( 2, icurrent) /= 0 ) & CALL dfftw_destroy_plan( bw_plan( 2, icurrent) ) IF( fw_plan( 3, icurrent) /= 0 ) & CALL dfftw_destroy_plan( fw_plan( 3, icurrent) ) IF( bw_plan( 3, icurrent) /= 0 ) & CALL dfftw_destroy_plan( bw_plan( 3, icurrent) ) idir = -1 CALL dfftw_plan_many_dft( fw_plan( 1, icurrent), & 1, nx, 1, f(1:), (/ldx, ldy, ldz/), 1, ldx, & f(1:), (/ldx, ldy, ldz/), 1, ldx, idir, FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_plan( 1, icurrent), & 1, nx, 1, f(1:), (/ldx, ldy, ldz/), 1, ldx, & f(1:), (/ldx, ldy, ldz/), 1, ldx, idir, FFTW_ESTIMATE) idir = -1 CALL dfftw_plan_many_dft( fw_plan( 2, icurrent), & 1, ny, nx, f(1:), (/ldx, ldy, ldz/), ldx, 1, & f(1:), (/ldx, ldy, ldz/), ldx, 1, idir, FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_plan( 2, icurrent), & 1, ny, nx, f(1:), (/ldx, ldy, ldz/), ldx, 1, & f(1:), (/ldx, ldy, ldz/), ldx, 1, idir, FFTW_ESTIMATE) idir = -1 CALL dfftw_plan_many_dft( fw_plan( 3, icurrent), & 1, nz, nx*ny, f(1:), (/ldx, ldy, ldz/), ldx*ldy, 1, & f(1:), (/ldx, ldy, ldz/), ldx*ldy, 1, idir, FFTW_ESTIMATE) idir = 1 CALL dfftw_plan_many_dft( bw_plan( 3, icurrent), & 1, nz, nx*ny, f(1:), (/ldx, ldy, ldz/), ldx*ldy, 1, & f(1:), (/ldx, ldy, ldz/), ldx*ldy, 1, idir, FFTW_ESTIMATE) #elif defined __ESSL || defined __LINUX_ESSL ! ! ESSL sign convention for fft's is the opposite of the "usual" one ! tscale = 1.0_DP ! x - direction incx1 = 1; incx2 = ldx; m = 1 CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, nx, m, 1, 1.0_DP, & fw_table( 1, 1, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, nx, m, -1, 1.0_DP, & bw_table(1, 1, icurrent), ltabl, work(1), lwork ) ! y - direction incx1 = ldx; incx2 = 1; m = nx; CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, ny, m, 1, 1.0_DP, & fw_table( 1, 2, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, ny, m, -1, 1.0_DP, & bw_table(1, 2, icurrent), ltabl, work(1), lwork ) ! z - direction incx1 = ldx * ldy; incx2 = 1; m = ldx * ny CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, nz, m, 1, 1.0_DP, & fw_table(1, 3, icurrent), ltabl, work(1), lwork ) CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, nz, m, -1, 1.0_DP, & bw_table(1, 3, icurrent), ltabl, work(1), lwork ) #else CALL errore(' cfft3ds ',' no scalar fft driver specified ', 1) #endif dims(1,icurrent) = nx; dims(2,icurrent) = ny; dims(3,icurrent) = nz ip = icurrent icurrent = MOD( icurrent, ndims ) + 1 END IF IF ( isign > 0 ) THEN ! ! i - direction ... ! incx1 = 1; incx2 = ldx; m = 1 do k = 1, nz do j = 1, ny jj = j + ( k - 1 ) * ldy ii = 1 + ldx * ( jj - 1 ) if ( do_fft_x( jj ) == 1 ) THEN #if defined __FFTW call FFTW_INPLACE_DRV_1D( bw_plan( 1, ip), m, f( ii ), incx1, incx2 ) #elif defined __FFTW3 call dfftw_execute_dft( bw_plan( 1, ip), f( ii: ), f( ii: ) ) #elif defined __ESSL || defined __LINUX_ESSL call dcft (0, f (ii), incx1,incx2, f (ii), incx1,incx2, nx, m, & -isign, 1.0_DP, bw_table ( 1, 1, ip ), ltabl, work( 1 ), lwork) #else call errore(' cfft3ds ',' no scalar fft driver specified ', 2) #endif endif enddo enddo ! ! ... j-direction ... ! incx1 = ldx; incx2 = 1; m = nx do k = 1, nz ii = 1 + ldx * ldy * ( k - 1 ) if ( do_fft_y( k ) == 1 ) then #if defined __FFTW call FFTW_INPLACE_DRV_1D( bw_plan( 2, ip), m, f( ii ), incx1, incx2 ) #elif defined __FFTW3 call dfftw_execute_dft( bw_plan( 2, ip), f( ii: ), f( ii: ) ) #elif defined __ESSL || defined __LINUX_ESSL call dcft (0, f (ii), incx1, incx2, f (ii), incx1, incx2, nx, m, & -isign, 1.0_DP, bw_table ( 1, 2, ip ), ltabl, work( 1 ), lwork) #else call errore(' cfft3ds ',' no scalar fft driver specified ', 3) #endif endif enddo ! ! ... k-direction ! incx1 = ldx * ldy; incx2 = 1; m = ldx * ny #if defined __FFTW call FFTW_INPLACE_DRV_1D( bw_plan( 3, ip), m, f( 1 ), incx1, incx2 ) #elif defined __FFTW3 call dfftw_execute_dft( bw_plan( 3, ip), f(1:), f(1:) ) #elif defined __ESSL || defined __LINUX_ESSL call dcft (0, f( 1 ), incx1, incx2, f( 1 ), incx1, incx2, nz, m, & -isign, 1.0_DP, bw_table ( 1, 3, ip ), ltabl, work( 1 ), lwork) #endif ELSE ! ! ... k-direction ! incx1 = ldx * ny; incx2 = 1; m = ldx * ny #if defined __FFTW call FFTW_INPLACE_DRV_1D( fw_plan( 3, ip), m, f( 1 ), incx1, incx2 ) #elif defined __FFTW3 call dfftw_execute_dft( fw_plan( 3, ip), f(1:), f(1:) ) #elif defined __ESSL || defined __LINUX_ESSL call dcft (0, f( 1 ), incx1, incx2, f( 1 ), incx1, incx2, nz, m, & -isign, 1.0_DP, fw_table ( 1, 3, ip ), ltabl, work( 1 ), lwork) #endif ! ! ... j-direction ... ! incx1 = ldx; incx2 = 1; m = nx do k = 1, nz ii = 1 + ldx * ldy * ( k - 1 ) if ( do_fft_y ( k ) == 1 ) then #if defined __FFTW call FFTW_INPLACE_DRV_1D( fw_plan( 2, ip), m, f( ii ), incx1, incx2 ) #elif defined __FFTW3 call dfftw_execute_dft( fw_plan( 2, ip), f( ii: ), f( ii: ) ) #elif defined __ESSL || defined __LINUX_ESSL call dcft (0, f (ii), incx1, incx2, f (ii), incx1, incx2, ny, m, & -isign, 1.0_DP, fw_table ( 1, 2, ip ), ltabl, work( 1 ), lwork) #else call errore(' cfft3ds ',' no scalar fft driver specified ', 4) #endif endif enddo ! ! i - direction ... ! incx1 = 1; incx2 = ldx; m = 1 do k = 1, nz do j = 1, ny jj = j + ( k - 1 ) * ldy ii = 1 + ldx * ( jj - 1 ) if ( do_fft_x( jj ) == 1 ) then #if defined __FFTW call FFTW_INPLACE_DRV_1D( fw_plan( 1, ip), m, f( ii ), incx1, incx2 ) #elif defined __FFTW3 call dfftw_execute_dft( fw_plan( 1, ip), f( ii: ), f( ii: ) ) #elif defined __ESSL || defined __LINUX_ESSL call dcft (0, f (ii), incx1,incx2, f (ii), incx1,incx2, nx, m, & -isign, 1.0_DP, fw_table ( 1, 1, ip ), ltabl, work( 1 ), lwork) #else call errore(' cfft3ds ',' no scalar fft driver specified ', 5) #endif endif enddo enddo call DSCAL (2 * ldx * ldy * nz, 1.0_DP/(nx * ny * nz), f(1), 1) END IF RETURN END SUBROUTINE cfft3ds ! !=----------------------------------------------------------------------=! ! ! ! ! 3D parallel FFT on sub-grids ! ! ! !=----------------------------------------------------------------------=! ! SUBROUTINE cft_b ( f, nx, ny, nz, ldx, ldy, ldz, imin3, imax3, sgn ) ! driver routine for 3d complex fft's on box grid, parallel case ! fft along xy is done only on planes that correspond to dense grid ! planes on the current processor, i.e. planes with imin3 <= nz <= imax3 ! implemented for essl, fftw, scsl, complib, only for sgn=1 (f(R) => f(G)) ! (beware: here the "essl" convention for the sign of the fft is used!) ! implicit none integer nx,ny,nz,ldx,ldy,ldz,imin3,imax3,sgn complex(dp) :: f(:) integer isign, naux, ibid, nplanes, nstart, k real(DP) :: tscale integer :: ip, i integer, save :: icurrent = 1 integer, save :: dims( 4, ndims ) = -1 #if defined __FFTW || __FFTW3 C_POINTER, save :: bw_planz( ndims ) = 0 C_POINTER, save :: bw_planx( ndims ) = 0 C_POINTER, save :: bw_plany( ndims ) = 0 C_POINTER, save :: bw_planxy( ndims ) = 0 #elif defined __ESSL || defined __LINUX_ESSL INTEGER, PARAMETER :: ltabl = 20000 + 3 * nfftx real(dp), save :: aux3( ltabl, ndims ) real(dp), save :: aux2( ltabl, ndims ) real(dp), save :: aux1( ltabl, ndims ) #elif defined __SCSL INTEGER, PARAMETER :: ltabl = 2 * nfftx + 256 real(dp), save :: bw_coeffz( ltabl, ndims ) real(dp), save :: bw_coeffy( ltabl, ndims ) real(dp), save :: bw_coeffx( ltabl, ndims ) REAL(DP) :: DUMMY INTEGER, SAVE :: isys(0:1) = (/ 1, 1 /) #endif isign = -sgn tscale = 1.0_DP if ( isign > 0 ) then call errore('cft_b','not implemented',isign) end if ! ! 2d fft on xy planes - only needed planes are transformed ! note that all others are left in an unusable state ! nplanes = imax3 - imin3 + 1 nstart = ( imin3 - 1 ) * ldx * ldy + 1 ! ! Here initialize table only if necessary ! ip = -1 DO i = 1, ndims ! first check if there is already a table initialized ! for this combination of parameters IF ( ( nx == dims(1,i) ) .and. ( ny == dims(2,i) ) .and. & ( nz == dims(3,i) ) .and. ( nplanes == dims(4,i) ) ) THEN ip = i EXIT END IF END DO IF( ip == -1 ) THEN ! no table exist for these parameters ! initialize a new one #if defined __FFTW if ( bw_planz(icurrent) /= 0 ) & call DESTROY_PLAN_1D( bw_planz(icurrent) ) call CREATE_PLAN_1D( bw_planz(icurrent), nz, 1 ) if ( bw_planx(icurrent) /= 0 ) & call DESTROY_PLAN_1D( bw_planx(icurrent) ) call CREATE_PLAN_1D( bw_planx(icurrent), nx, 1 ) if ( bw_plany(icurrent) /= 0 ) & call DESTROY_PLAN_1D( bw_plany(icurrent) ) call CREATE_PLAN_1D( bw_plany(icurrent), ny, 1 ) if ( bw_planxy(icurrent) /= 0 ) & call DESTROY_PLAN_2D( bw_planxy(icurrent) ) call CREATE_PLAN_2D( bw_planxy(icurrent), nx, ny, 1 ) ! #elif defined __FFTW3 if ( bw_planz(icurrent) /= 0 ) & call dfftw_destroy_plan(bw_planz(icurrent)) call dfftw_plan_many_dft( bw_planz(icurrent), 1, nz, ldx*ldy, & f(1:), (/SIZE(f)/), ldx*ldy, 1, f(1:), (/SIZE(f)/), ldx*ldy, 1, & 1, FFTW_ESTIMATE ) if ( bw_planxy(icurrent) /= 0 ) & call dfftw_destroy_plan(bw_planxy(icurrent)) call dfftw_plan_many_dft( bw_planxy(icurrent), 2, (/nx, ny/), nplanes,& f(nstart:), (/ldx, ldy/), 1, ldx*ldy, f(nstart:), (/ldx, ldy/), & 1, ldx*ldy, 1, FFTW_ESTIMATE ) #elif defined __ESSL || defined __LINUX_ESSL if( nz /= dims(3,icurrent) ) then call dcft( 1, f(1), ldx*ldy, 1, f(1), ldx*ldy, 1, nz, ldx*ldy, & isign, tscale, aux3(1,icurrent), ltabl, work(1), lwork) end if call dcft( 1, f(1), 1, ldx, f(1), 1, ldx, nx, ldy*nplanes, isign, & tscale, aux1(1,icurrent), ltabl, work(1), lwork) if( ny /= dims(2,icurrent) ) then call dcft( 1, f(1), ldx, 1, f(1), ldx, 1, ny, ldx, isign, & tscale, aux2(1,icurrent), ltabl, work(1), lwork) end if #elif defined __SCSL CALL ZZFFT (0, nz, 0.0_DP, DUMMY, 1, bw_coeffz(1, icurrent), & work(1), isys) CALL ZZFFT (0, ny, 0.0_DP, DUMMY, 1, bw_coeffy(1, icurrent), & work(1), isys) CALL ZZFFT (0, nx, 0.0_DP, DUMMY, 1, bw_coeffx(1, icurrent), & work(1), isys) #else CALL errore(' cft_b ',' no scalar fft driver specified ', 1) #endif dims(1,icurrent) = nx; dims(2,icurrent) = ny dims(3,icurrent) = nz; dims(4,icurrent) = nplanes ip = icurrent icurrent = MOD( icurrent, ndims ) + 1 END IF #if defined __FFTW ! ! fft along Z ! call FFTW_INPLACE_DRV_1D( bw_planz(ip), ldx*ldy, f(1), ldx*ldy, 1 ) ! ! fft along Y ! fft along X ! do k = imin3, imax3 call FFTW_INPLACE_DRV_1D( bw_plany(ip), nx, f((k-1)*ldx*ldy + 1), ldx, 1 ) call FFTW_INPLACE_DRV_1D( bw_planx(ip), ny, f((k-1)*ldx*ldy + 1), 1, ldx ) end do #elif defined __FFTW3 call dfftw_execute_dft(bw_planz(ip), f(1:), f(1:)) call dfftw_execute_dft(bw_planxy(ip), f(nstart:), f(nstart:)) #elif defined __ESSL || defined __LINUX_ESSL ! fft in the z-direction... call dcft( 0, f(1), ldx*ldy, 1, f(1), ldx*ldy, 1, nz, ldx*ldy, isign, & tscale, aux3(1,ip), ltabl, work(1), lwork) ! x-direction call dcft( 0, f(nstart), 1, ldx, f(nstart), 1, ldx, nx, ldy*nplanes, & isign, tscale, aux1(1,ip), ltabl, work(1), lwork) ! y-direction DO K = imin3, imax3 nstart = ( k - 1 ) * ldx * ldy + 1 call dcft( 0, f(nstart), ldx, 1, f(nstart), ldx, 1, ny, ldx, isign, & tscale, aux2(1,ip), ltabl, work(1), lwork) END DO #elif defined __SCSL CALL ZZFFTMR (1, nz, ldx*ldy, tscale, f(1), ldx*ldy, f(1), & ldx*ldy, bw_coeffz(1, ip), work(1), isys) CALL ZZFFTM (1, nx, ldy*nplanes, tscale, f(nstart), ldx, & f(nstart), ldx, bw_coeffx(1, ip), work(1), isys) DO k = imin3, imax3 nstart = ( k - 1 ) * ldx * ldy + 1 CALL ZZFFTMR (1, ny, ldx, tscale, f(nstart), ldx, f(nstart), & ldx, bw_coeffy(1, ip), work(1), isys) END DO #endif RETURN END SUBROUTINE cft_b ! !=----------------------------------------------------------------------=! ! ! ! ! 3D parallel FFT on sub-grids, to be called inside OpenMP region ! ! ! !=----------------------------------------------------------------------=! ! SUBROUTINE cft_b_omp_init ( nx, ny, nz ) ! driver routine for 3d complex fft's on box grid, init subroutine ! implicit none integer, INTENT(IN) :: nx,ny,nz ! ! Here initialize table ! #if defined __FFTW !$omp single IF( cft_b_bw_planz == 0 ) THEN CALL CREATE_PLAN_1D( cft_b_bw_planz, nz, 1 ) cft_b_dims(3) = nz END IF IF( cft_b_bw_planx == 0 ) THEN CALL CREATE_PLAN_1D( cft_b_bw_planx, nx, 1 ) cft_b_dims(1) = nx END IF IF( cft_b_bw_plany == 0 ) THEN CALL CREATE_PLAN_1D( cft_b_bw_plany, ny, 1 ) cft_b_dims(2) = ny END IF !$omp end single #else CALL errore(' cft_b_omp_init ',' no scalar fft driver specified ', 1) #endif RETURN END SUBROUTINE cft_b_omp_init SUBROUTINE cft_b_omp ( f, nx, ny, nz, ldx, ldy, ldz, imin3, imax3, sgn ) ! driver routine for 3d complex fft's on box grid, parallel (MPI+OpenMP) case ! fft along xy is done only on planes that correspond to dense grid ! planes on the current processor, i.e. planes with imin3 <= nz <= imax3 ! implemented ONLY for internal fftw, and only for sgn=1 (f(R) => f(G)) ! (beware: here the "essl" convention for the sign of the fft is used!) ! ! This driver is meant for calls inside parallel OpenMP sections ! implicit none integer, INTENT(IN) :: nx,ny,nz,ldx,ldy,ldz,imin3,imax3,sgn complex(dp) :: f(:) INTEGER, SAVE :: k !$omp threadprivate (k) if ( -sgn > 0 ) then CALL errore('cft_b_omp','forward transform not implemented',1) end if #if defined __FFTW IF ( ( cft_b_bw_planz == 0 ) .or. ( cft_b_bw_planx == 0 ) .or. ( cft_b_bw_plany == 0 ) ) THEN CALL errore('cft_b_omp','plan not initialized',1) END IF ! consistency check IF ( ( nx /= cft_b_dims(1) ) .or. ( ny /= cft_b_dims(2) ) .or. ( nz /= cft_b_dims(3) ) ) THEN CALL errore('cft_b_omp', 'dimensions are inconsistent with the existing plan',1) END IF ! fft along Z ! call FFTW_INPLACE_DRV_1D( cft_b_bw_planz, ldx*ldy, f(1), ldx*ldy, 1 ) ! ! fft along Y ! fft along X ! do k = imin3, imax3 call FFTW_INPLACE_DRV_1D( cft_b_bw_plany, nx, f((k-1)*ldx*ldy + 1), ldx, 1 ) call FFTW_INPLACE_DRV_1D( cft_b_bw_planx, ny, f((k-1)*ldx*ldy + 1), 1, ldx ) end do #else CALL errore(' cft_b_omp ',' no scalar fft driver specified ', 1) #endif RETURN END SUBROUTINE cft_b_omp ! !=----------------------------------------------------------------------=! ! ! ! ! FFT support Functions/Subroutines ! ! ! !=----------------------------------------------------------------------=! ! ! integer function good_fft_dimension (n) ! ! Determines the optimal maximum dimensions of fft arrays ! Useful on some machines to avoid memory conflicts ! USE kinds, only : DP IMPLICIT NONE INTEGER :: n, nx REAL(DP) :: log2n ! ! this is the default: max dimension = fft dimension nx = n ! #if defined(__ESSL) || defined(__LINUX_ESSL) log2n = LOG ( dble (n) ) / LOG ( 2.0_DP ) ! log2n is the logarithm of n in base 2 IF ( ABS (NINT(log2n) - log2n) < 1.0d-8 ) nx = n + 1 ! if n is a power of 2 (log2n is integer) increase dimension by 1 #elif defined(__SX6) ! if (mod (n, 2) ==0) nx = n + 1 ! for nec vector machines: if n is even increase dimension by 1 #endif ! good_fft_dimension = nx return end function good_fft_dimension !=----------------------------------------------------------------------=! function allowed (nr) ! find if the fft dimension is a good one ! a "bad one" is either not implemented (as on IBM with ESSL) ! or implemented but with awful performances (most other cases) USE kinds implicit none integer :: nr logical :: allowed integer :: pwr (5) integer :: mr, i, fac, p, maxpwr integer :: factors( 5 ) = (/ 2, 3, 5, 7, 11 /) ! find the factors of the fft dimension mr = nr pwr = 0 factors_loop: do i = 1, 5 fac = factors (i) maxpwr = NINT ( LOG( DBLE (mr) ) / LOG( DBLE (fac) ) ) + 1 do p = 1, maxpwr if ( mr == 1 ) EXIT factors_loop if ( MOD (mr, fac) == 0 ) then mr = mr / fac pwr (i) = pwr (i) + 1 endif enddo end do factors_loop IF ( nr /= ( mr * 2**pwr (1) * 3**pwr (2) * 5**pwr (3) * 7**pwr (4) * 11**pwr (5) ) ) & CALL errore (' allowed ', ' what ?!? ', 1 ) if ( mr /= 1 ) then ! fft dimension contains factors > 11 : no good in any case allowed = .false. else #if defined __ESSL || defined __LINUX_ESSL ! IBM machines with essl libraries allowed = ( pwr(1) >= 1 ) .and. ( pwr(2) <= 2 ) .and. ( pwr(3) <= 1 ) .and. & ( pwr(4) <= 1 ) .and. ( pwr(5) <= 1 ) .and. & ( ( (pwr(2) == 0 ) .and. ( pwr(3) + pwr(4) + pwr(5) ) <= 2 ) .or. & ( (pwr(2) /= 0 ) .and. ( pwr(3) + pwr(4) + pwr(5) ) <= 1 ) ) #else ! fftw and all other cases: no factors 7 and 11 allowed = ( ( pwr(4) == 0 ) .and. ( pwr(5) == 0 ) ) #endif endif return end function allowed !=----------------------------------------------------------------------=! INTEGER FUNCTION good_fft_order( nr, np ) ! ! This function find a "good" fft order value greater or equal to "nr" ! ! nr (input) tentative order n of a fft ! ! np (optional input) if present restrict the search of the order ! in the ensamble of multiples of np ! ! Output: the same if n is a good number ! the closest higher number that is good ! an fft order is not good if not implemented (as on IBM with ESSL) ! or implemented but with awful performances (most other cases) ! IMPLICIT NONE INTEGER, INTENT(IN) :: nr INTEGER, OPTIONAL, INTENT(IN) :: np INTEGER :: new new = nr IF( PRESENT( np ) ) THEN DO WHILE( ( ( .NOT. allowed( new ) ) .OR. ( MOD( new, np ) /= 0 ) ) .AND. ( new <= nfftx ) ) new = new + 1 END DO ELSE DO WHILE( ( .NOT. allowed( new ) ) .AND. ( new <= nfftx ) ) new = new + 1 END DO END IF IF( new > nfftx ) & CALL errore( ' good_fft_order ', ' fft order too large ', new ) good_fft_order = new RETURN END FUNCTION good_fft_order !=----------------------------------------------------------------------=! END MODULE fft_scalar !=----------------------------------------------------------------------=! espresso-5.1/Modules/basic_algebra_routines.f900000644000175000017500000001414512341373034017725 0ustar mbamba! ! Copyright (C) 2003-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- MODULE basic_algebra_routines !---------------------------------------------------------------------------- ! ! ... Written by Carlo Sbraccia ( 16/12/2003 ) ! ! ... This module contains a limited number of functions and operators ! ... for vectorial algebra. Wherever possible the appropriate BLAS routine ! ... ( always the double precision version ) is used. ! ! ... List of public methods : ! ! x .dot. y dot product between vectors ( ) ! x .ext. y external (vector) product between vectors ( ) ! norm( x ) norm of a vector ( SQRT() ) ! A .times. x matrix-vector multiplication ( A|x> ) ! x .times. A vector-matrix multiplication ( qexml_version USE io_global, ONLY : ionode, ionode_id, stdout USE mp, ONLY : mp_bcast USE parser, ONLY : version_compare ! IMPLICIT NONE PRIVATE ! CHARACTER(5), PARAMETER :: fmt_name = "QEXML" CHARACTER(5), PARAMETER :: fmt_version = "1.4.0" ! LOGICAL, PARAMETER :: rho_binary = .TRUE. ! CHARACTER(iotk_attlenx) :: attr ! ! PUBLIC :: fmt_name, fmt_version PUBLIC :: current_fmt_version ! PUBLIC :: rho_binary PUBLIC :: attr ! ! PUBLIC :: read_wfc, write_wfc, read_rho_xml, write_rho_xml, & save_print_counter, read_print_counter PUBLIC :: create_directory, change_directory, & check_file_exst, pp_check_file, restart_dir ! PUBLIC :: write_header ! needed by ph_restart.f90 ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE create_directory( dirname ) !------------------------------------------------------------------------ ! USE wrappers, ONLY : f_mkdir_safe USE mp, ONLY : mp_barrier USE mp_images, ONLY : me_image, intra_image_comm USE io_files, ONLY : check_writable ! CHARACTER(LEN=*), INTENT(IN) :: dirname ! INTEGER :: ierr ! CHARACTER(LEN=6), EXTERNAL :: int_to_char ! IF ( ionode ) ierr = f_mkdir_safe( TRIM( dirname ) ) CALL mp_bcast ( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'create_directory', & 'unable to create directory ' // TRIM( dirname ), ierr ) ! ! ... syncronize all jobs (not sure it is really useful) ! CALL mp_barrier( intra_image_comm ) ! ! ... check whether the scratch directory is writable ! IF ( ionode ) ierr = check_writable ( dirname, me_image ) CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'create_directory:', & TRIM( dirname ) // ' non existent or non writable', ierr ) ! RETURN ! END SUBROUTINE create_directory ! !------------------------------------------------------------------------ SUBROUTINE change_directory( dirname ) !------------------------------------------------------------------------ ! USE wrappers, ONLY : f_chdir USE mp, ONLY : mp_barrier USE mp_images, ONLY : me_image, intra_image_comm ! CHARACTER(LEN=*), INTENT(IN) :: dirname ! INTEGER :: ierr CHARACTER(LEN=6), EXTERNAL :: int_to_char ! ierr = f_chdir( TRIM( dirname ) ) CALL mp_bcast ( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'change_directory', & 'unable to change to directory ' // TRIM( dirname ), ierr ) ! ! ... syncronize all jobs (not sure it is really useful) ! CALL mp_barrier( intra_image_comm ) ! ! RETURN ! END SUBROUTINE change_directory ! !------------------------------------------------------------------------ FUNCTION restart_dir( outdir, runit ) !------------------------------------------------------------------------ ! ! KNK_nimage ! USE mp_images, ONLY: my_image_id CHARACTER(LEN=256) :: restart_dir CHARACTER(LEN=*), INTENT(IN) :: outdir INTEGER, INTENT(IN) :: runit ! CHARACTER(LEN=256) :: dirname INTEGER :: strlen CHARACTER(LEN=6), EXTERNAL :: int_to_char ! ! ... main restart directory ! ! ... keep the line below ( this is the old style RESTARTXX ) !!! ! ! dirname = 'RESTART' // int_to_char( runit ) ! the next line is to have separate RESTART for each image ! KNK_nimage ! if (my_image_id > 0) dirname = trim(dirname) // '_' // trim(int_to_char( my_image_id )) ! dirname = TRIM( prefix ) // '_' // TRIM( int_to_char( runit ) )// '.save' ! IF ( LEN( outdir ) > 1 ) THEN ! strlen = INDEX( outdir, ' ' ) - 1 ! dirname = outdir(1:strlen) // '/' // dirname ! END IF ! restart_dir = TRIM( dirname ) ! RETURN ! END FUNCTION restart_dir ! !------------------------------------------------------------------------ FUNCTION check_restartfile( outdir, ndr ) !------------------------------------------------------------------------ ! USE io_global, ONLY : ionode, ionode_id USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! LOGICAL :: check_restartfile INTEGER, INTENT(IN) :: ndr CHARACTER(LEN=*), INTENT(IN) :: outdir CHARACTER(LEN=256) :: filename LOGICAL :: lval ! ! filename = restart_dir( outdir, ndr ) ! IF ( ionode ) THEN ! filename = TRIM( filename ) // '/' // TRIM( xmlpun ) ! INQUIRE( FILE = TRIM( filename ), EXIST = lval ) ! END IF ! CALL mp_bcast( lval, ionode_id, intra_image_comm ) ! check_restartfile = lval ! RETURN ! END FUNCTION check_restartfile ! !------------------------------------------------------------------------ FUNCTION check_file_exst( filename ) !------------------------------------------------------------------------ ! USE io_global, ONLY : ionode, ionode_id USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! LOGICAL :: check_file_exst CHARACTER(LEN=*) :: filename ! LOGICAL :: lexists ! IF ( ionode ) THEN ! INQUIRE( FILE = TRIM( filename ), EXIST = lexists ) ! ENDIF ! CALL mp_bcast ( lexists, ionode_id, intra_image_comm ) ! check_file_exst = lexists RETURN ! END FUNCTION check_file_exst ! !------------------------------------------------------------------------ FUNCTION pp_check_file() !------------------------------------------------------------------------ ! USE io_global, ONLY : ionode, ionode_id USE mp_images, ONLY : intra_image_comm USE control_flags, ONLY : lkpoint_dir, tqr ! IMPLICIT NONE ! LOGICAL :: pp_check_file CHARACTER(LEN=256) :: dirname, filename INTEGER :: ierr LOGICAL :: lval, found, back_compat ! ! dirname = TRIM( tmp_dir ) // TRIM( prefix ) // '.save' filename = TRIM( dirname ) // '/' // TRIM( xmlpun ) ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = filename, IERR = ierr ) ! CALL mp_bcast ( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'pp_check_file', 'file ' // & & TRIM( dirname ) // ' not found', ierr ) ! ! set a flag for back compatibility (before fmt v1.4.0) ! back_compat = .FALSE. ! IF ( TRIM( version_compare( current_fmt_version, "1.4.0" )) == "older") & back_compat = .TRUE. ! IF ( ionode ) THEN ! IF ( .NOT. back_compat ) THEN ! CALL iotk_scan_begin( iunpun, "CONTROL" ) ! ENDIF ! CALL iotk_scan_dat( iunpun, "PP_CHECK_FLAG", lval, FOUND = found) ! IF ( .NOT. found ) lval = .FALSE. ! CALL iotk_scan_dat( iunpun, "LKPOINT_DIR", lkpoint_dir, FOUND = found) ! IF ( .NOT. found ) lkpoint_dir = .TRUE. ! CALL iotk_scan_dat( iunpun, "Q_REAL_SPACE", tqr, FOUND = found) ! IF ( .NOT. found ) tqr = .FALSE. ! ! IF ( .NOT. back_compat ) THEN ! CALL iotk_scan_end( iunpun, "CONTROL" ) ! ENDIF ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( lval, ionode_id, intra_image_comm ) ! CALL mp_bcast( lkpoint_dir, ionode_id, intra_image_comm ) ! CALL mp_bcast( tqr, ionode_id, intra_image_comm ) ! pp_check_file = lval ! RETURN ! END FUNCTION pp_check_file ! ! !------------------------------------------------------------------------ SUBROUTINE save_print_counter( iter, outdir, wunit ) !------------------------------------------------------------------------ ! ! ... a counter indicating the last successful printout iteration is saved ! USE io_global, ONLY : ionode, ionode_id USE mp_images, ONLY : intra_image_comm USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iter CHARACTER(LEN=*), INTENT(IN) :: outdir INTEGER, INTENT(IN) :: wunit ! INTEGER :: ierr CHARACTER(LEN=256) :: filename, dirname ! ! dirname = restart_dir( outdir, wunit ) ! CALL create_directory( TRIM( dirname ) ) ! IF ( ionode ) THEN ! filename = TRIM( dirname ) // '/print_counter.xml' ! CALL iotk_open_write( iunpun, FILE = filename, & & ROOT = "PRINT_COUNTER", IERR = ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'save_print_counter', & 'cannot open restart file for writing', ierr ) ! IF ( ionode ) THEN ! CALL iotk_write_begin( iunpun, "LAST_SUCCESSFUL_PRINTOUT" ) CALL iotk_write_dat( iunpun, "STEP", iter ) CALL iotk_write_end( iunpun, "LAST_SUCCESSFUL_PRINTOUT" ) ! CALL iotk_close_write( iunpun ) ! END IF ! RETURN ! END SUBROUTINE save_print_counter ! !------------------------------------------------------------------------ SUBROUTINE read_print_counter( nprint_nfi, outdir, runit ) !------------------------------------------------------------------------ ! ! ... the counter indicating the last successful printout iteration ! ... is read here ! USE io_global, ONLY : ionode, ionode_id USE mp_images, ONLY : intra_image_comm USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! INTEGER, INTENT(OUT) :: nprint_nfi CHARACTER(LEN=*), INTENT(IN) :: outdir INTEGER, INTENT(IN) :: runit ! INTEGER :: ierr CHARACTER(LEN=256) :: filename, dirname ! ! dirname = restart_dir( outdir, runit ) ! IF ( ionode ) THEN ! filename = TRIM( dirname ) // '/print_counter.xml' ! CALL iotk_open_read( iunpun, FILE = filename, IERR = ierr ) ! IF ( ierr > 0 ) THEN ! nprint_nfi = -1 ! ELSE ! CALL iotk_scan_begin( iunpun, "LAST_SUCCESSFUL_PRINTOUT" ) CALL iotk_scan_dat( iunpun, "STEP", nprint_nfi ) CALL iotk_scan_end( iunpun, "LAST_SUCCESSFUL_PRINTOUT" ) ! CALL iotk_close_read( iunpun ) ! END IF ! END IF ! CALL mp_bcast( nprint_nfi, ionode_id, intra_image_comm ) ! RETURN ! END SUBROUTINE read_print_counter ! !------------------------------------------------------------------------ SUBROUTINE set_kpoints_vars( ik, nk, kunit, ngwl, igl, & ngroup, ikt, iks, ike, igwx, ipmask, ipsour, & ionode, root_in_group, intra_group_comm, inter_group_comm, parent_group_comm ) !------------------------------------------------------------------------ ! ! ... set working variables for k-point index (ikt) and ! ... k-points number (nkt) ! USE mp, ONLY : mp_sum, mp_get, mp_max, mp_rank, mp_size ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: ik, nk, kunit INTEGER, INTENT(IN) :: ngwl, igl(:) INTEGER, INTENT(OUT) :: ngroup INTEGER, INTENT(OUT) :: ikt, iks, ike, igwx INTEGER, INTENT(OUT) :: ipmask(:), ipsour LOGICAL, INTENT(IN) :: ionode INTEGER, INTENT(IN) :: root_in_group, intra_group_comm, inter_group_comm, parent_group_comm ! INTEGER :: ierr, i INTEGER :: nkl, nkr, nkbl, nkt INTEGER :: nproc_parent, nproc_group, my_group_id, me_in_group, me_in_parent, io_in_parent ! nproc_parent = mp_size( parent_group_comm ) nproc_group = mp_size( intra_group_comm ) my_group_id = mp_rank( inter_group_comm ) me_in_group = mp_rank( intra_group_comm ) me_in_parent = mp_rank( parent_group_comm ) ! ! find the ID (io_in_parent) of the io PE ( where ionode == .true. ) ! io_in_parent = 0 IF( ionode ) io_in_parent = me_in_parent CALL mp_sum( io_in_parent, parent_group_comm ) ! ikt = ik nkt = nk ! ! ... find out the number of pools ! ngroup = nproc_parent / nproc_group ! ! ... find out number of k points blocks ! nkbl = nkt / kunit ! ! ... k points per pool ! nkl = kunit * ( nkbl / ngroup ) ! ! ... find out the reminder ! nkr = ( nkt - nkl * ngroup ) / kunit ! ! ... Assign the reminder to the first nkr pools ! IF ( my_group_id < nkr ) nkl = nkl + kunit ! ! ... find out the index of the first k point in this pool ! iks = nkl * my_group_id + 1 ! IF ( my_group_id >= nkr ) iks = iks + nkr * kunit ! ! ... find out the index of the last k point in this pool ! ike = iks + nkl - 1 ! ipmask = 0 ipsour = io_in_parent ! ! ... find out the index of the processor which collect the data ! ... in the pool of ik ! IF ( ngroup > 1 ) THEN ! IF ( ( ikt >= iks ) .AND. ( ikt <= ike ) ) THEN ! IF ( me_in_group == root_in_group ) ipmask( me_in_parent + 1 ) = 1 ! END IF ! ! ... Collect the mask for all proc in the image ! CALL mp_sum( ipmask, parent_group_comm ) ! DO i = 1, nproc_parent ! IF( ipmask(i) == 1 ) ipsour = ( i - 1 ) ! END DO ! END IF ! igwx = 0 ierr = 0 ! IF ( ( ikt >= iks ) .AND. ( ikt <= ike ) ) THEN ! IF ( ngwl > SIZE( igl ) ) THEN ! ierr = 1 ! ELSE ! igwx = MAXVAL( igl(1:ngwl) ) ! END IF ! END IF ! ! ... get the maximum index within the pool ! CALL mp_max( igwx, intra_group_comm ) ! ! ... now notify all procs if an error has been found ! CALL mp_max( ierr, parent_group_comm ) ! CALL errore( 'set_kpoint_vars ', 'wrong size ngl', ierr ) ! IF ( ipsour /= io_in_parent ) & CALL mp_get( igwx, igwx, me_in_parent, io_in_parent, ipsour, 1, parent_group_comm ) ! RETURN ! END SUBROUTINE set_kpoints_vars ! ! ! ... writing subroutines ! ! !------------------------------------------------------------------------ SUBROUTINE write_header( creator_name, creator_version ) !------------------------------------------------------------------------ ! IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN) :: creator_name, creator_version CALL iotk_write_begin( iunpun, "HEADER" ) ! CALL iotk_write_attr(attr, "NAME",TRIM(fmt_name), FIRST=.TRUE.) CALL iotk_write_attr(attr, "VERSION",TRIM(fmt_version) ) CALL iotk_write_empty( iunpun, "FORMAT", ATTR=attr ) ! CALL iotk_write_attr(attr, "NAME",TRIM(creator_name), FIRST=.TRUE.) CALL iotk_write_attr(attr, "VERSION",TRIM(creator_version) ) CALL iotk_write_empty( iunpun, "CREATOR", ATTR=attr ) ! CALL iotk_write_end( iunpun, "HEADER" ) ! END SUBROUTINE write_header ! !------------------------------------------------------------------------ SUBROUTINE write_rho_xml( rho_file_base, rho, & nr1, nr2, nr3, nr1x, nr2x, ipp, npp, & ionode, intra_group_comm, inter_group_comm ) !------------------------------------------------------------------------ ! ! ... Writes charge density rho, one plane at a time. ! ... If ipp and npp are specified, planes are collected one by one from ! ... all processors, avoiding an overall collect of the charge density ! ... on a single proc. ! USE mp, ONLY : mp_get, mp_sum, mp_rank, mp_size ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: rho_file_base REAL(DP), INTENT(IN) :: rho(:) INTEGER, INTENT(IN) :: nr1, nr2, nr3 INTEGER, INTENT(IN) :: nr1x, nr2x INTEGER, INTENT(IN) :: ipp(:) INTEGER, INTENT(IN) :: npp(:) LOGICAL, INTENT(IN) :: ionode INTEGER, INTENT(IN) :: intra_group_comm, inter_group_comm ! INTEGER :: rhounit, ierr, i, j, k, kk, ldr, ip CHARACTER(LEN=256) :: rho_file CHARACTER(LEN=10) :: rho_extension REAL(DP), ALLOCATABLE :: rho_plane(:) INTEGER, ALLOCATABLE :: kowner(:) INTEGER :: my_group_id, me_group, nproc_group, io_group_id, io_group INTEGER, EXTERNAL :: find_free_unit ! me_group = mp_rank( intra_group_comm ) nproc_group = mp_size( intra_group_comm ) my_group_id = mp_rank( inter_group_comm ) ! rho_extension = '.dat' IF ( .NOT. rho_binary ) rho_extension = '.xml' ! rho_file = TRIM( rho_file_base ) // TRIM( rho_extension ) rhounit = find_free_unit () ! IF ( ionode ) THEN CALL iotk_open_write( rhounit, FILE = rho_file, BINARY = rho_binary, IERR = ierr ) CALL errore( 'write_rho_xml', 'cannot open ' // TRIM( rho_file ) // ' file for writing', ierr ) END IF ! IF ( ionode ) THEN ! CALL iotk_write_begin( rhounit, "CHARGE-DENSITY" ) ! CALL iotk_write_attr( attr, "nr1", nr1, FIRST = .TRUE. ) CALL iotk_write_attr( attr, "nr2", nr2 ) CALL iotk_write_attr( attr, "nr3", nr3 ) ! CALL iotk_write_empty( rhounit, "INFO", attr ) ! END IF ! ALLOCATE( rho_plane( nr1*nr2 ) ) ALLOCATE( kowner( nr3 ) ) ! ! ... find the index of the group (pool) that will write rho ! io_group_id = 0 ! IF ( ionode ) io_group_id = my_group_id ! CALL mp_sum( io_group_id, intra_group_comm ) CALL mp_sum( io_group_id, inter_group_comm ) ! ! ... find the index of the ionode within its own group (pool) ! io_group = 0 ! IF ( ionode ) io_group = me_group ! CALL mp_sum( io_group, intra_group_comm ) ! ! ... find out the owner of each "z" plane ! DO ip = 1, nproc_group ! kowner( (ipp(ip)+1):(ipp(ip)+npp(ip)) ) = ip - 1 ! END DO ! ldr = nr1x*nr2x ! DO k = 1, nr3 ! ! Only one subgroup write the charge density ! IF( ( kowner(k) == me_group ) .AND. ( my_group_id == io_group_id ) ) THEN ! kk = k - ipp( me_group + 1 ) ! DO j = 1, nr2 ! DO i = 1, nr1 ! rho_plane(i+(j-1)*nr1) = rho(i+(j-1)*nr1x+(kk-1)*ldr) ! END DO ! END DO ! END IF ! IF ( kowner(k) /= io_group .AND. my_group_id == io_group_id ) & CALL mp_get( rho_plane, rho_plane, me_group, io_group, kowner(k), k, intra_group_comm ) ! IF ( ionode ) & CALL iotk_write_dat( rhounit, "z" // iotk_index( k ), rho_plane ) ! END DO ! DEALLOCATE( rho_plane ) DEALLOCATE( kowner ) ! IF ( ionode ) THEN ! CALL iotk_write_end( rhounit, "CHARGE-DENSITY" ) ! CALL iotk_close_write( rhounit ) ! END IF ! RETURN ! END SUBROUTINE write_rho_xml ! !------------------------------------------------------------------------ SUBROUTINE read_rho_xml( rho_file_base, nr1, nr2, nr3, nr1x, nr2x, & ipp, npp, rho ) !------------------------------------------------------------------------ ! ! ... Reads charge density rho, one plane at a time, to avoid ! ... collecting the entire charge density on a single processor ! USE io_global, ONLY : ionode, ionode_id USE mp_bands, ONLY : intra_bgrp_comm USE mp_images, ONLY : intra_image_comm USE mp, ONLY : mp_put, mp_sum, mp_rank, mp_size ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: rho_file_base INTEGER, INTENT(IN) :: nr1, nr2, nr3 INTEGER, INTENT(IN) :: nr1x, nr2x REAL(DP), INTENT(OUT) :: rho(:) INTEGER, INTENT(IN) :: ipp(:) INTEGER, INTENT(IN) :: npp(:) ! INTEGER :: rhounit, ierr, i, j, k, kk, ldr, ip INTEGER :: nr( 3 ) INTEGER :: me_group, nproc_group CHARACTER(LEN=256) :: rho_file REAL(DP), ALLOCATABLE :: rho_plane(:) INTEGER, ALLOCATABLE :: kowner(:) LOGICAL :: exst INTEGER, EXTERNAL :: find_free_unit ! me_group = mp_rank ( intra_bgrp_comm ) nproc_group = mp_size ( intra_bgrp_comm ) ! rhounit = find_free_unit ( ) rho_file = TRIM( rho_file_base ) // ".dat" exst = check_file_exst( TRIM(rho_file) ) ! IF ( .NOT. exst ) THEN ! rho_file = TRIM( rho_file_base ) // ".xml" exst = check_file_exst( TRIM(rho_file) ) ! ENDIF ! IF ( .NOT. exst ) CALL errore('read_rho_xml', 'searching for '//TRIM(rho_file), 10) ! IF ( ionode ) THEN CALL iotk_open_read( rhounit, FILE = rho_file, IERR = ierr ) CALL errore( 'read_rho_xml', 'cannot open ' // TRIM( rho_file ) // ' file for reading', ierr ) END IF ! IF ( ionode ) THEN ! CALL iotk_scan_begin( rhounit, "CHARGE-DENSITY" ) ! CALL iotk_scan_empty( rhounit, "INFO", attr ) ! CALL iotk_scan_attr( attr, "nr1", nr(1) ) CALL iotk_scan_attr( attr, "nr2", nr(2) ) CALL iotk_scan_attr( attr, "nr3", nr(3) ) ! IF ( nr1 /= nr(1) .OR. nr2 /= nr(2) .OR. nr3 /= nr(3) ) & CALL errore( 'read_rho_xml', 'dimensions do not match', 1 ) ! END IF ! ALLOCATE( rho_plane( nr1*nr2 ) ) ALLOCATE( kowner( nr3 ) ) ! DO ip = 1, nproc_group ! kowner((ipp(ip)+1):(ipp(ip)+npp(ip))) = ip - 1 ! END DO ! ldr = nr1x*nr2x ! ! ... explicit initialization to zero is needed because the physical ! ... dimensions rho may exceed the true size of the FFT grid ! rho(:) = 0.0_DP ! DO k = 1, nr3 ! ! ... only ionode reads the charge planes ! IF ( ionode ) & CALL iotk_scan_dat( rhounit, "z" // iotk_index( k ), rho_plane ) ! ! ... planes are sent to the destination processor ! CALL mp_bcast( rho_plane, ionode_id, intra_image_comm ) ! IF( kowner(k) == me_group ) THEN ! kk = k - ipp( me_group + 1 ) DO j = 1, nr2 DO i = 1, nr1 rho(i+(j-1)*nr1x+(kk-1)*ldr) = rho_plane(i+(j-1)*nr1) END DO END DO ! END IF ! END DO ! DEALLOCATE( rho_plane ) DEALLOCATE( kowner ) ! IF ( ionode ) THEN ! CALL iotk_scan_end( rhounit, "CHARGE-DENSITY" ) ! CALL iotk_close_read( rhounit ) ! END IF ! RETURN ! END SUBROUTINE read_rho_xml ! !------------------------------------------------------------------------ ! ... methods to write and read wavefunctions ! !------------------------------------------------------------------------ SUBROUTINE write_wfc( iuni, ik, nk, kunit, ispin, nspin, wf0, ngw, & gamma_only, nbnd, igl, ngwl, filename, scalef, & ionode, root_in_group, intra_group_comm, & inter_group_comm, parent_group_comm ) !------------------------------------------------------------------------ ! USE mp_wave, ONLY : mergewf USE mp, ONLY : mp_get, mp_size, mp_rank, mp_sum USE control_flags, ONLY : lwfnscf, lwfpbe0nscf ! Lingzhu Kong ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iuni INTEGER, INTENT(IN) :: ik, nk, kunit, ispin, nspin COMPLEX(DP), INTENT(IN) :: wf0(:,:) INTEGER, INTENT(IN) :: ngw LOGICAL, INTENT(IN) :: gamma_only INTEGER, INTENT(IN) :: nbnd INTEGER, INTENT(IN) :: ngwl INTEGER, INTENT(IN) :: igl(:) CHARACTER(LEN=256), INTENT(IN) :: filename REAL(DP), INTENT(IN) :: scalef ! scale factor, usually 1.0 for pw and 1/SQRT( omega ) for CP LOGICAL, INTENT(IN) :: ionode INTEGER, INTENT(IN) :: root_in_group, intra_group_comm, inter_group_comm, parent_group_comm ! INTEGER :: j INTEGER :: iks, ike, ikt, igwx INTEGER :: ngroup, ipsour INTEGER, ALLOCATABLE :: ipmask(:) INTEGER :: me_in_group, nproc_in_group, io_in_parent, nproc_in_parent, me_in_parent, my_group, io_group COMPLEX(DP), ALLOCATABLE :: wtmp(:) ! ngroup = mp_size( inter_group_comm ) my_group = mp_rank( inter_group_comm ) me_in_group = mp_rank( intra_group_comm ) nproc_in_group = mp_size( intra_group_comm ) me_in_parent = mp_rank( parent_group_comm ) nproc_in_parent = mp_size( parent_group_comm ) ! ALLOCATE( ipmask( nproc_in_parent ) ) ! ! find out the group containing the ionode ! io_group = 0 IF( ionode ) io_group = my_group CALL mp_sum( io_group, parent_group_comm ) ! io_in_parent = 0 IF( ionode ) io_in_parent = me_in_parent CALL mp_sum( io_in_parent, parent_group_comm ) ! CALL set_kpoints_vars( ik, nk, kunit, ngwl, igl, & ngroup, ikt, iks, ike, igwx, ipmask, ipsour, & ionode, root_in_group, intra_group_comm, inter_group_comm, parent_group_comm ) ! IF ( ionode ) THEN ! CALL iotk_open_write( iuni, FILE = TRIM( filename ), ROOT="WFC", BINARY = .TRUE. ) ! CALL iotk_write_attr( attr, "ngw", ngw, FIRST = .TRUE. ) CALL iotk_write_attr( attr, "igwx", igwx ) CALL iotk_write_attr( attr, "gamma_only", gamma_only ) CALL iotk_write_attr( attr, "nbnd", nbnd ) CALL iotk_write_attr( attr, "ik", ik ) CALL iotk_write_attr( attr, "nk", nk ) CALL iotk_write_attr( attr, "ispin", ispin ) CALL iotk_write_attr( attr, "nspin", nspin ) CALL iotk_write_attr( attr, "scale_factor", scalef ) ! CALL iotk_write_empty( iuni, "INFO", attr ) ! END IF ! ALLOCATE( wtmp( MAX( igwx, 1 ) ) ) ! wtmp = 0.0_DP ! Next 3 lines: Lingzhu Kong IF ( ( index(filename,'evc0') > 0 ) .and. (lwfnscf .or. lwfpbe0nscf) )THEN IF ( ionode ) OPEN(60,file='cp_wf.dat',status='unknown',form='unformatted') ENDIF DO j = 1, nbnd ! IF ( ngroup > 1 ) THEN ! IF( nk > 1 ) THEN IF ( ikt >= iks .AND. ikt <= ike ) & CALL mergewf( wf0(:,j), wtmp, ngwl, igl, me_in_group, & nproc_in_group, root_in_group, intra_group_comm ) ! IF ( ipsour /= io_in_parent ) & CALL mp_get( wtmp, wtmp, me_in_parent, & io_in_parent, ipsour, j, parent_group_comm ) ! ELSE IF( my_group == io_group ) THEN ! CALL mergewf( wf0(:,j), wtmp, ngwl, igl, & me_in_group, nproc_in_group, root_in_group, intra_group_comm ) END IF ! ELSE ! CALL mergewf( wf0(:,j), wtmp, ngwl, igl, & me_in_parent, nproc_in_parent, io_in_parent, parent_group_comm ) ! END IF ! IF ( ionode ) & CALL iotk_write_dat( iuni, "evc" // iotk_index( j ), wtmp(1:igwx) ) ! Next 3 lines : Lingzhu Kong IF ( ( index(filename,'evc0') > 0 ) .and. (lwfnscf .or. lwfpbe0nscf) ) THEN IF ( ionode ) write(60)wtmp(1:igwx) ENDIF ! END DO ! Next 4 lines : Lingzhu Kong IF ( ( index(filename,'evc0') > 0 ) .and. (lwfnscf .or. lwfpbe0nscf) )THEN IF ( ionode ) close(60) !Lingzhu Kong write(*,*)'done writing evc0' ENDIF IF ( ionode ) CALL iotk_close_write( iuni ) ! DEALLOCATE( wtmp ) DEALLOCATE( ipmask ) ! RETURN ! END SUBROUTINE write_wfc ! !------------------------------------------------------------------------ SUBROUTINE read_wfc( iuni, ik, nk, kunit, ispin, & nspin, wf, ngw, nbnd, igl, ngwl, filename, scalef, & ionode, root_in_group, intra_group_comm, inter_group_comm, parent_group_comm, & flink ) !------------------------------------------------------------------------ ! USE mp_wave, ONLY : splitwf USE mp, ONLY : mp_put, mp_size, mp_rank, mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iuni COMPLEX(DP), INTENT(OUT) :: wf(:,:) INTEGER, INTENT(IN) :: ik, nk INTEGER, INTENT(IN) :: kunit INTEGER, INTENT(INOUT) :: ngw, nbnd, ispin, nspin INTEGER, INTENT(IN) :: ngwl INTEGER, INTENT(IN) :: igl(:) CHARACTER(LEN=256), INTENT(IN) :: filename REAL(DP), INTENT(OUT) :: scalef LOGICAL, INTENT(IN) :: ionode INTEGER, INTENT(IN) :: root_in_group, intra_group_comm, inter_group_comm, parent_group_comm LOGICAL, OPTIONAL, INTENT(IN) :: flink ! INTEGER :: j COMPLEX(DP), ALLOCATABLE :: wtmp(:) INTEGER :: ierr INTEGER :: iks, ike, ikt INTEGER :: igwx, igwx_, ik_, nk_ INTEGER :: ngroup, ipdest INTEGER, ALLOCATABLE :: ipmask(:) LOGICAL :: flink_ INTEGER :: me_in_group, nproc_in_group, io_in_parent, nproc_in_parent, me_in_parent, my_group, io_group ! flink_ = .FALSE. IF( PRESENT( flink ) ) flink_ = flink ! ngroup = mp_size( inter_group_comm ) my_group = mp_rank( inter_group_comm ) me_in_group = mp_rank( intra_group_comm ) nproc_in_group = mp_size( intra_group_comm ) me_in_parent = mp_rank( parent_group_comm ) nproc_in_parent = mp_size( parent_group_comm ) ! ALLOCATE( ipmask( nproc_in_parent ) ) ! ! find out the group containing the ionode ! io_group = 0 IF( ionode ) io_group = my_group CALL mp_sum( io_group, parent_group_comm ) ! ! find out the io task id in the parent group ! io_in_parent = 0 IF( ionode ) io_in_parent = me_in_parent CALL mp_sum( io_in_parent, parent_group_comm ) ! CALL set_kpoints_vars( ik, nk, kunit, ngwl, igl, & ngroup, ikt, iks, ike, igwx, ipmask, ipdest, & ionode, root_in_group, intra_group_comm, inter_group_comm, parent_group_comm ) ! ! if flink = .true. we are following a link and the file is ! already opened for read ! ierr = 0 ! IF ( ionode .AND. .NOT. flink_ ) & CALL iotk_open_read( iuni, FILE = filename, & BINARY = .TRUE., IERR = ierr ) ! CALL mp_bcast( ierr, io_in_parent, parent_group_comm ) ! CALL errore( 'read_wfc ', & 'cannot open restart file for reading', ierr ) ! IF ( ionode ) THEN ! CALL iotk_scan_empty( iuni, "INFO", attr ) ! CALL iotk_scan_attr( attr, "ngw", ngw ) CALL iotk_scan_attr( attr, "nbnd", nbnd ) CALL iotk_scan_attr( attr, "ik", ik_ ) CALL iotk_scan_attr( attr, "nk", nk_ ) CALL iotk_scan_attr( attr, "ispin", ispin ) CALL iotk_scan_attr( attr, "nspin", nspin ) CALL iotk_scan_attr( attr, "igwx", igwx_ ) CALL iotk_scan_attr( attr, "scale_factor", scalef ) ! END IF ! CALL mp_bcast( ngw, io_in_parent, parent_group_comm ) CALL mp_bcast( nbnd, io_in_parent, parent_group_comm ) CALL mp_bcast( ik_, io_in_parent, parent_group_comm ) CALL mp_bcast( nk_, io_in_parent, parent_group_comm ) CALL mp_bcast( ispin, io_in_parent, parent_group_comm ) CALL mp_bcast( nspin, io_in_parent, parent_group_comm ) CALL mp_bcast( igwx_, io_in_parent, parent_group_comm ) CALL mp_bcast( scalef, io_in_parent, parent_group_comm ) ! ALLOCATE( wtmp( MAX( igwx_, igwx ) ) ) ! DO j = 1, nbnd ! IF ( j <= SIZE( wf, 2 ) ) THEN ! IF ( ionode ) THEN ! CALL iotk_scan_dat( iuni, & "evc" // iotk_index( j ), wtmp(1:igwx_) ) ! IF ( igwx > igwx_ ) wtmp((igwx_+1):igwx) = 0.0_DP ! =========================================================== ! Lingzhu Kong !IF ( j .eq. 1)write(*,'(10f12.5)')(wtmp(i),i=1,igwx_) ! =========================================================== ! END IF ! IF ( ngroup > 1 ) THEN ! IF( nk_ > 1 ) THEN ! IF ( ipdest /= io_in_parent ) & CALL mp_put( wtmp, wtmp, me_in_parent, & io_in_parent, ipdest, j, parent_group_comm ) ! IF ( ( ikt >= iks ) .AND. ( ikt <= ike ) ) & CALL splitwf( wf(:,j), wtmp, ngwl, igl, me_in_group, & nproc_in_group, root_in_group, intra_group_comm ) ! ELSE IF( my_group == io_group ) THEN CALL splitwf( wf(:,j), wtmp, ngwl, igl, & me_in_group, nproc_in_group, root_in_group, intra_group_comm ) END IF ! ELSE ! CALL splitwf( wf(:,j), wtmp, ngwl, igl, & me_in_parent, nproc_in_parent, io_in_parent, parent_group_comm ) ! END IF ! END IF ! END DO ! IF ( ionode .AND. .NOT. flink_ ) CALL iotk_close_read( iuni ) ! DEALLOCATE( wtmp ) DEALLOCATE( ipmask ) ! RETURN ! END SUBROUTINE read_wfc ! END MODULE xml_io_base espresso-5.1/Modules/timestep.f900000644000175000017500000000350612341373034015070 0ustar mbamba! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! AB INITIO COSTANT PRESSURE MOLECULAR DYNAMICS ! ---------------------------------------------- ! Car-Parrinello Parallel Program ! Carlo Cavazzoni - Gerardo Ballabio ! SISSA, Trieste, Italy - 1997-99 ! Last modified: Sat Feb 12 11:43:48 MET 2000 ! ---------------------------------------------- ! BEGIN manual MODULE time_step ! (describe briefly what this module does...) ! ---------------------------------------------- ! routines in this module: ! SUBROUTINE set_time_step(dt) ! ---------------------------------------------- ! END manual ! ---------------------------------------------- USE kinds IMPLICIT NONE SAVE PRIVATE ! ... declare module-scope variables REAL(DP) :: delthal, twodelt, fordt2, dt2, dt2by2, delt REAL(DP) :: tps ! elapsed simulated time in picoseconds PUBLIC :: set_time_step, tps, delt, twodelt, dt2, dt2by2 ! end of module-scope declarations ! ---------------------------------------------- CONTAINS ! subroutines ! ---------------------------------------------- ! ---------------------------------------------- SUBROUTINE set_time_step(dt) REAL(DP), INTENT(IN) :: dt delt = dt dt2 = dt ** 2 fordt2 = 4.0_DP * dt2 delthal = 0.5_DP * delt twodelt = 2.0_DP * delt dt2by2 = 0.5_DP * dt2 tps = 0.0_DP RETURN END SUBROUTINE set_time_step ! ---------------------------------------------- ! ---------------------------------------------- END MODULE time_step espresso-5.1/Modules/mm_dispersion.f900000644000175000017500000005173512341373034016115 0ustar mbamba! ! Copyright (C) 2009 D. Forrer and M. Pavone ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Z=55-86 contributed by Martin Andersson (2011) !------------------------------------------------------------------------------ ! MODULE london_module ! ! Module for Dispersion Correction ! [ V. Barone et al. J. Comp. Chem., 30, 934 (2009) ] ! [ S. Grimme, J. Comp. Chem., 27, 1787 (2006) ]. ! USE kinds , ONLY : DP ! IMPLICIT NONE ! SAVE ! ! REAL ( DP ) , ALLOCATABLE , PRIVATE :: C6_i ( : ) , & R_vdw ( : ) , & C6_ij ( : , : ) , & R_sum ( : , : ) , & r ( : , : ) , & dist2 ( : ) ! ! C6_i ( ntyp ) : atomic C6 coefficient of each atom type ! R_vdw ( ntyp ) : Van der Waals Radii of each atom type ! C6_ij ( ntyp , ntyp ) : C6 coefficients of each atom type pair: sqrt ( C6i * C6j ) ! R_sum ( ntyp , ntyp ) : sum of VdW radii ! r ( 3 , mxr ) : ordered distance vectors ! dist2 ( mxr ) : ordered distances ! REAL ( DP ) , PUBLIC :: scal6 , lon_rcut ! ! scal6 : global scaling factor ! lon_rcut : public cut-off radius ! INTEGER , PRIVATE :: mxr ! ! max number of r ( see rgen) ! REAL ( DP ) , PRIVATE :: r_cut , beta = 20.0_DP ! ! beta : damping function parameter ! r_cut : cut-off radius in alat units ! CONTAINS ! !--------------------------------------------------------------------------- ! Initialize parameters !--------------------------------------------------------------------------- ! SUBROUTINE init_london ( ) ! ! extract parameters from database and compute C6_ij and R_sum(i,j) ! USE ions_base , ONLY : ntyp => nsp, & atom_label => atm ! USE cell_base , ONLY : alat, omega ! USE io_global, ONLY : ionode, ionode_id, stdout ! #if defined __MPI USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm #endif ! IMPLICIT NONE ! INTEGER, PARAMETER :: maxZ = 86 REAL (DP) :: vdw_coeffs(2,maxZ) ! ! vdw C6 and radii for the first 86 atoms for the DFTD2 method ! Data from the DFT-D2 section of the dftd3.f file found on S.Grimme's home page: ! http://www.thch.uni-bonn.de/tc/index.php?section=downloads&subsection=DFT-D3 ! See also S. Grimme, J. Comp. Chem., 27, 1787 (2006) ! First column: C6, converted to Ry*Bohr^6 units ! (in the paper: J*nm^6/mol, conversion factor: 1 J*nm^6/mol = 34.69 Ry*Bohr^6) ! Second column: radii, in Bohr (in the paper they are in A) ! DATA vdw_coeffs / & 4.857, 1.892,& 2.775, 1.912,& 55.853, 1.559,& 55.853, 2.661,& 108.584, 2.806,& 60.710, 2.744,& 42.670, 2.640,& 24.284, 2.536,& 26.018, 2.432,& 21.855, 2.349,& 198.087, 2.162,& 198.087, 2.578,& 374.319, 3.097,& 320.200, 3.243,& 271.980, 3.222,& 193.230, 3.180,& 175.885, 3.097,& 159.927, 3.014,& 374.666, 2.806,& 374.666, 2.785,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 374.666, 2.952,& 589.405, 3.118,& 593.221, 3.264,& 567.896, 3.326,& 438.498, 3.347,& 432.600, 3.305,& 416.642, 3.264,& 855.833, 3.076,& 855.833, 3.035,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 855.833, 3.097,& 1294.678, 3.160,& 1342.899, 3.409,& 1333.532, 3.555,& 1101.101, 3.575,& 1092.775, 3.575,& 1040.391, 3.555,& 10937.246, 3.405,& 7874.678, 3.330,& 6114.381, 3.251,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 4880.348, 3.313,& 3646.454, 3.378,& 2818.308, 3.349,& 2818.308, 3.349,& 2818.308, 3.349,& 2818.308, 3.349,& 2818.308, 3.349,& 2818.308, 3.349,& 2818.308, 3.349,& 1990.022, 3.322,& 1986.206, 3.752,& 2191.161, 3.673,& 2204.274, 3.586,& 1917.830, 3.789,& 1983.327, 3.762,& 1964.906, 3.636/ ! INTEGER :: ilab , ata , atb , i ! local : counter of atom type ! ata , atb : counters of C6_ij matrix ! counter INTEGER, EXTERNAL :: atomic_number !! REAL ( DP ) :: R_0, C_0, e_cut , sls ! local : buffers ! ! here we allocate parameters ! ALLOCATE ( C6_ij ( ntyp , ntyp ) , & R_sum ( ntyp , ntyp ) ) ! IF ( ionode ) THEN ! ! and some buffers on ionode ! ALLOCATE ( C6_i ( ntyp ) , & R_vdw ( ntyp ) ) ! ! here we initialize parameters to unphysical values ! C6_i ( : ) = -1.d0 R_vdw ( : ) = -1.d0 C6_ij ( : , : ) = -1.d0 R_sum ( : , : ) = -1.d0 ! DO ilab = 1 , ntyp ! i = atomic_number ( atom_label ( ilab ) ) IF ( i > 0 .AND. i < 87 ) THEN C6_i ( ilab ) = vdw_coeffs(1,i) R_vdw ( ilab ) = vdw_coeffs(2,i) ELSE CALL errore ( ' init_london ' ,& 'atom ' // atom_label(ilab) //' not found ' , ilab ) END IF ! END DO ! ! are there all the parameters we need? ! DO ilab = 1 , ntyp ! IF ( ( C6_i ( ilab ) < 0.d0 ) .or. & ( R_vdw ( ilab ) < 0.d0 ) ) THEN ! CALL errore ( ' init_london ' ,& ' one or more parameters not found ' , 4 ) ! END IF ! END DO ! ! ...here we store C6_ij parameters of each pair of atom types ! into a square matrix C6_ij = sqrt ( C6_i * C6_j ) ! DO atb = 1 , ntyp ! DO ata = 1 , ntyp ! C6_ij ( ata , atb ) = sqrt ( C6_i ( ata ) * C6_i ( atb ) ) ! R_sum ( ata , atb ) = R_vdw ( ata ) + R_vdw ( atb ) ! END DO ! END DO ! WRITE ( stdout ,'( /, 5X, "-------------------------------------" , & & /, 5X, "Parameters for Dispersion Correction:" , & & /, 5X, "-------------------------------------" , & & /, 5X, " atom VdW radius C_6 " , / )' ) DO ata = 1 , ntyp ! WRITE (stdout , '( 8X, A3 , 6X , F7.3 , 6X , F9.3 )' ) & atom_label ( ata ) , R_vdw ( ata ) , C6_i ( ata ) ! END DO ! ! ... atomic parameters are deallocated ! DEALLOCATE ( C6_i , R_vdw ) ! ! ... cutoff radius in alat units ! r_cut = lon_rcut / alat ! ! ... define a gross maximum bound of the mxr size ! mxr = 1 + INT ( ( 2 * ( lon_rcut + alat ) ) ** 3 / omega ) ! END IF ! #if defined __MPI ! broadcast data to all processors ! CALL mp_bcast ( C6_ij, ionode_id, intra_image_comm ) CALL mp_bcast ( R_sum, ionode_id, intra_image_comm ) CALL mp_bcast ( r_cut, ionode_id, intra_image_comm ) CALL mp_bcast ( mxr , ionode_id, intra_image_comm ) ! #endif ! ALLOCATE ( r ( 3 , mxr ) , dist2 ( mxr ) ) ! RETURN ! END SUBROUTINE init_london ! !--------------------------------------------------------------------------- ! Compute dispersion energy !--------------------------------------------------------------------------- ! FUNCTION energy_london ( alat , nat , ityp , at , bg , tau ) ! ! here we compute the dispersion contribution to the total energy ! ! E = - ( C_6^ij / R_ij ** 6 ) * f_damp ( R_ij ) * scal6 ! ! where f_damp is the damping function: ! ! f_damp ( R_ij ) = [ 1 + exp ( -beta ( R_ij / (R_i^0+R_j^0) - 1 )) ] ** (-1) ! ! and scal6 is a global scaling factor ! #if defined __MPI USE mp_images, ONLY : me_image , nproc_image, intra_image_comm USE mp, ONLY : mp_sum #endif ! IMPLICIT NONE ! INTEGER :: ata , atb , nrm , nr ! locals : ! ata , atb : atom counters ! nrm : actual number of vectors computed by rgen ! nr : counter ! INTEGER :: first , last , resto , divid ! locals : parallelization stuff ! INTEGER , INTENT ( IN ) :: nat , ityp ( nat ) ! input: ! nat : number of atoms ! itype : type of each atom ! REAL ( DP ) :: dist , f_damp , energy_london , dtau ( 3 ) , dist6 ! locals: ! dist : distance R_ij between the current pair of atoms ! f_damp : damping function ! energy_london : the dispersion energy ! dtau : output of rgen ( not used ) ! dist6 : distance**6 ! REAL ( DP ) , INTENT ( IN ) :: alat , tau (3, nat) , & at ( 3 , 3 ) , bg ( 3 , 3 ) ! input : ! alat : the cell parameter ! tau : atomic positions in alat units ! at : direct lattice vectors ! bg : reciprocal lattice vectors ! energy_london = 0.d0 ! #if defined __MPI ! ! parallelization: divide atoms across processors of this image ! (different images have different atomic positions) ! resto = MOD ( nat , nproc_image ) divid = nat / nproc_image ! IF ( me_image + 1 <= resto ) THEN ! first = ( divid + 1 ) * me_image + 1 last = ( divid + 1 ) * ( me_image + 1 ) ! ELSE ! first = ( ( divid + 1 ) * resto ) + ( divid ) * ( me_image-resto ) + 1 last = ( divid + 1 ) * resto + ( divid ) * ( me_image - resto + 1 ) ! END IF ! #else ! first = 1 last = nat #endif ! ! ... the dispersion energy ! DO ata = first , last ! DO atb = 1 , nat ! dtau ( : ) = tau ( : , ata ) - tau ( : , atb ) ! CALL rgen ( dtau, r_cut, mxr, at, bg, r, dist2, nrm ) ! !$omp parallel do private(nr,dist,dist6,f_damp) default(shared), reduction(-:energy_london) DO nr = 1 , nrm ! dist = alat * sqrt ( dist2 ( nr ) ) dist6 = dist ** 6 ! f_damp = 1.d0 / ( 1.d0 + & exp ( -beta * ( dist / ( R_sum ( ityp (atb) , ityp (ata) ) ) - 1 ))) ! energy_london = energy_london - & ( C6_ij ( ityp ( atb ) , ityp ( ata ) ) / dist6 ) * & f_damp ! END DO !$omp end parallel do ! END DO ! END DO ! energy_london = scal6 * 0.5d0 * energy_london ! #if defined (__MPI) CALL mp_sum ( energy_london , intra_image_comm ) #endif ! RETURN ! END FUNCTION energy_london ! !--------------------------------------------------------------------------- ! Compute dispersion forces acting on atoms !--------------------------------------------------------------------------- ! FUNCTION force_london ( alat , nat , ityp , at , bg , tau ) ! ! #if defined __MPI USE mp_images, ONLY : me_image , nproc_image , intra_image_comm USE mp, ONLY : mp_sum #endif ! IMPLICIT NONE ! INTEGER :: ata , atb , nrm , nr , ipol ! locals : ! ata , atb : atom counters ! nrm : actual number of vectors computed by rgen ! nr : counter on neighbours shells ! ipol : counter on coords ! INTEGER :: first , last , resto, divid ! locals : ! first : lower bound on processor ! last : upper ! INTEGER , INTENT ( IN ) :: nat , ityp ( nat ) ! input: ! nat : number of atoms ! ityp : type of each atom ! REAL ( DP ) :: dist , f_damp , dtau ( 3 ) , force_london ( 3 , nat ) , & dist6 , dist7 , exparg , expval , par , fac , add ! locals : ! dist : distance R_ij between the current pair of atoms ! f_damp : damping function ! dtau : \vec R_ij ! force_london : dispersion forces ! dist6 : dist**6 ! dist7 : dist**7 ! ... and some buffers ! REAL ( DP ) , INTENT ( IN ) :: alat , tau (3, nat) , & at ( 3 , 3 ) , bg ( 3 , 3 ) ! input: ! alat : the cell parameter ! tau : atomic positions in alat units ! at : direct lattice vectors ! bg : reciprocal lattice vectors ! ! force_london ( : , : ) = 0.d0 ! #if defined __MPI ! ! parallelization: divide atoms across processors of this image ! (different images have different atomic positions) ! resto = MOD ( nat , nproc_image ) divid = nat / nproc_image ! IF ( me_image + 1 <= resto ) THEN ! first = ( divid + 1 ) * me_image + 1 last = ( divid + 1 ) * ( me_image + 1 ) ! ELSE ! first = ( ( divid + 1 ) * resto ) + ( divid ) * ( me_image-resto ) + 1 last = ( divid + 1 ) * resto + ( divid ) * ( me_image - resto + 1 ) ! END IF ! #else ! first = 1 last = nat #endif ! ! ... the dispersion forces ! DO ata = first , last ! DO atb = 1 , nat ! IF ( ata /= atb ) THEN ! dtau ( : ) = tau ( : , ata ) - tau ( : , atb ) ! ! generate neighbours shells ! CALL rgen ( dtau, r_cut, mxr, at, bg, r, dist2, nrm ) ! ! compute forces ! par = beta / ( R_sum ( ityp ( atb ) , ityp ( ata ) ) ) ! !$omp parallel do private(nr,dist,dist6,dist7,exparg,expval,fac,add,ipol) default(shared), reduction(+:force_london) DO nr = 1 , nrm ! dist = alat * sqrt ( dist2 ( nr ) ) dist6 = dist ** 6 dist7 = dist6 * dist ! exparg = - beta * ( dist / ( R_sum ( ityp(atb) , ityp(ata) ) ) - 1 ) expval = exp ( exparg ) ! fac = C6_ij ( ityp ( atb ) , ityp ( ata ) ) / dist6 add = 6.d0 / dist ! DO ipol = 1 , 3 ! force_london ( ipol , ata ) = force_london ( ipol , ata ) + & ( scal6 / ( 1 + expval ) * fac * & ( - par * expval / ( 1.d0 + expval ) + add ) * & r ( ipol , nr ) * alat / dist ) ! END DO ! END DO !$omp end parallel do ! END IF ! END DO ! END DO ! #if defined (__MPI) CALL mp_sum ( force_london , intra_image_comm ) #endif ! RETURN ! END FUNCTION force_london ! ! !--------------------------------------------------------------------------- ! Compute dispersion contribution to the stress tensor !--------------------------------------------------------------------------- ! FUNCTION stres_london ( alat , nat , ityp , at , bg , tau , omega ) ! ! #if defined __MPI USE mp_images, ONLY : me_image , nproc_image , intra_image_comm USE mp, ONLY : mp_sum #endif ! IMPLICIT NONE ! INTEGER :: ata , atb , nrm , nr , ipol , lpol , spol ! locals : ! ata , atb : atom counters ! nrm : actual number of vectors computed by rgen ! nr : counter on neighbours shells ! xpol : coords counters ipol lpol spol ! INTEGER :: first , last , resto, divid ! locals : parallelization ! INTEGER , INTENT ( IN ) :: nat , ityp ( nat ) ! input: ! nat : number of atoms ! ityp : type of each atom ! REAL ( DP ) :: dist , f_damp , dtau ( 3 ) , stres_london ( 3 , 3 ) , & dist6 , dist7 , exparg , expval , par , fac , add ! locals: ! dist : distance R_ij of current pair of atoms ! f_damp : damping function ! dtau : \vec R_ij ! stres_london : dispersion contribution to stress tensor ! dist6 : dist**6 ! dist7 : dist**7 ! and some buffers ! REAL ( DP ) , INTENT ( IN ) :: alat , tau (3, nat) , omega , & at ( 3 , 3 ) , bg ( 3 , 3 ) ! input : ! alat : the cell parameter ! tau : atomic positions in alat units ! omega : unit cell volume ! at : direct lattice vectors ! bg : reciprocal lattice vectors ! ! ! stres_london ( : , : ) = 0.d0 ! first=0 last=0 ! #if defined __MPI ! ! parallelization: divide atoms across processors of this image ! (different images have different atomic positions) ! resto = MOD ( nat , nproc_image ) divid = nat / nproc_image ! IF ( me_image + 1 <= resto ) THEN ! first = ( divid + 1 ) * me_image + 1 last = ( divid + 1 ) * ( me_image + 1 ) ! ELSE ! first = ( ( divid + 1 ) * resto ) + ( divid ) * ( me_image-resto ) + 1 last = ( divid + 1 ) * resto + ( divid ) * ( me_image - resto + 1 ) ! END IF ! #else ! first = 1 last = nat #endif ! ! ... the dispersion stress tensor ! DO ata = first , last ! DO atb = 1 , nat ! dtau ( : ) = tau ( : , ata ) - tau ( : , atb ) ! ! generate neighbours shells ! CALL rgen ( dtau, r_cut, mxr, at, bg, r, dist2, nrm ) ! ! compute stress ! par = beta / ( R_sum ( ityp ( atb ) , ityp ( ata ) ) ) ! DO nr = 1 , nrm ! dist = alat * sqrt ( dist2 ( nr ) ) dist6 = dist ** 6 dist7 = dist6 * dist ! exparg = - beta * ( dist / ( R_sum ( ityp ( atb ) , ityp ( ata ) ) ) - 1 ) ! expval = exp ( exparg ) ! fac = C6_ij ( ityp ( atb ) , ityp ( ata ) ) / dist6 ! add = 6.d0 / dist ! DO ipol = 1 , 3 ! DO lpol = 1 , ipol ! stres_london ( lpol , ipol ) = stres_london ( lpol , ipol ) + & ( scal6 / ( 1 + expval ) * fac * & ( - par * expval / ( 1.d0 + expval ) + add ) * & r ( ipol , nr ) * alat / dist ) * & r ( lpol , nr ) * alat ! END DO ! END DO ! END DO ! END DO ! END DO ! DO ipol = 1 , 3 ! DO lpol = ipol + 1 , 3 ! stres_london ( lpol , ipol ) = stres_london ( ipol , lpol ) ! END DO ! END DO ! stres_london ( : , : ) = - stres_london ( : , : ) / ( 2.d0 * omega ) ! #if defined (__MPI) CALL mp_sum ( stres_london , intra_image_comm ) #endif ! RETURN ! END FUNCTION stres_london ! !--------------------------------------------------------------------------- ! clean memory !--------------------------------------------------------------------------- ! SUBROUTINE dealloca_london ! IMPLICIT NONE ! IF ( ALLOCATED ( C6_i ) ) DEALLOCATE ( C6_i ) IF ( ALLOCATED ( R_vdw ) ) DEALLOCATE ( R_vdw ) IF ( ALLOCATED ( C6_ij ) ) DEALLOCATE ( C6_ij ) IF ( ALLOCATED ( R_sum ) ) DEALLOCATE ( R_sum ) IF ( ALLOCATED ( r ) ) DEALLOCATE ( r ) IF ( ALLOCATED ( dist2 ) ) DEALLOCATE ( dist2 ) ! RETURN ! END SUBROUTINE dealloca_london ! END MODULE london_module espresso-5.1/Modules/mp_pots.f900000644000175000017500000000601012341373034014710 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE mp_pots !---------------------------------------------------------------------------- ! USE mp, ONLY : mp_barrier, mp_size, mp_rank, mp_comm_split USE parallel_include ! IMPLICIT NONE SAVE ! ! ... Pot groups (processors within a cooking-pot) ! ... Used only in a specialized calculation under development ! INTEGER :: npot = 1 ! number of pots INTEGER :: nproc_pot = 1 ! number of processors within a pot INTEGER :: me_pot = 0 ! index of the processor within a pot INTEGER :: root_pot = 0 ! index of the root processor within a pot INTEGER :: my_pot_id = 0 ! index of my pot INTEGER :: inter_pot_comm = 0 ! inter pot communicator INTEGER :: intra_pot_comm = 0 ! intra pot communicator ! CONTAINS ! !---------------------------------------------------------------------------- SUBROUTINE mp_start_pots ( npot_, parent_comm ) !--------------------------------------------------------------------------- ! ! ... Divide processors (of the "parent_comm" group) into "pots" ! ... Requires: npot_, read from command line ! ... parent_comm, typically processors of an "image" ! ... (intra_image_comm) ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: npot_, parent_comm ! INTEGER :: parent_nproc = 1, parent_mype = 0 ! #if defined (__MPI) ! parent_nproc = mp_size( parent_comm ) parent_mype = mp_rank( parent_comm ) ! ! ... npot_ must have been previously read from command line argument ! ... by a call to routine get_command_line ! npot = npot_ ! IF ( npot < 1 .OR. npot > parent_nproc ) CALL errore( 'mp_start_pots',& 'invalid number of pot groups, out of range', 1 ) IF ( MOD( parent_nproc, npot ) /= 0 ) CALL errore( 'mp_start_pots', & 'invalid number of pots, parent_nproc /= nproc_pot * npot', 1 ) ! ! ... number of cpus per pot (they are created inside each parent group) ! nproc_pot = parent_nproc / npot ! ! ! ... my_pot_id = pot index for this processor ( 0 : npot - 1 ) ! ... me_pot = processor index within the pot ( 0 : nproc_pot - 1 ) ! my_pot_id = parent_mype / nproc_pot me_pot = MOD( parent_mype, nproc_pot ) ! CALL mp_barrier( parent_comm ) ! ! ... the intra_pot_comm communicator is created ! CALL mp_comm_split( parent_comm, my_pot_id, parent_mype, intra_pot_comm ) ! CALL mp_barrier( parent_comm ) ! ! ... the inter_pot_comm communicator is created ! CALL mp_comm_split( parent_comm, me_pot, parent_mype, inter_pot_comm ) ! #endif ! RETURN END SUBROUTINE mp_start_pots ! END MODULE mp_pots espresso-5.1/Modules/fft_custom.f900000644000175000017500000004344612341373034015416 0ustar mbamba! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------- ! Module containing routines for fft with a custom energy cutoff !-------------------------------------------------------------------- ! MODULE fft_custom USE kinds, ONLY: DP USE parallel_include USE fft_types, ONLY: fft_dlay_descriptor IMPLICIT NONE TYPE fft_cus ! ... data structure containing all information ! ... about fft data distribution for a given ! ... potential grid, and its wave functions sub-grid. TYPE ( fft_dlay_descriptor ) :: dfftt ! descriptor for the custom grid REAL(kind=DP) :: ecutt ! Custom cutoff (rydberg) REAL(kind=DP) :: dual_t ! Dual factor REAL(kind=DP) :: gcutmt INTEGER :: nr1t,nr2t,nr3t INTEGER :: nrx1t,nrx2t,nrx3t INTEGER :: nrxxt INTEGER :: ngmt,ngmt_l,ngmt_g INTEGER, DIMENSION(:), POINTER :: nlt,nltm REAL(kind=DP), DIMENSION(:), POINTER :: ggt REAL(kind=DP), DIMENSION(:,:),POINTER :: gt INTEGER, DIMENSION(:), POINTER :: ig_l2gt INTEGER :: gstart_t INTEGER, DIMENSION(:), POINTER :: ig1t,ig2t,ig3t INTEGER :: nlgt INTEGER :: npwt,npwxt LOGICAL :: initalized = .FALSE. END TYPE fft_cus !-------------------------------------------------------------------- CONTAINS !=----------------------------------------------------------------------------=! SUBROUTINE gvec_init( fc, ngm_, comm ) ! ! Set local and global dimensions, allocate arrays ! USE mp, ONLY: mp_max, mp_sum IMPLICIT NONE INTEGER, INTENT(IN) :: ngm_ INTEGER, INTENT(IN) :: comm ! communicator of the group on which g-vecs are distributed TYPE(fft_cus), INTENT(INOUT) :: fc ! fc%ngmt = ngm_ ! ! calculate maximum over all processors ! fc%ngmt_l = ngm_ CALL mp_max( fc%ngmt_l, comm ) ! ! calculate sum over all processors ! fc%ngmt_g = ngm_ CALL mp_sum( fc%ngmt_g, comm ) ! ! allocate arrays - only those that are always kept until the end ! ALLOCATE( fc%ggt(fc%ngmt) ) ALLOCATE( fc%gt (3, fc%ngmt) ) ! ALLOCATE( mill(3, fc%ngmt) ) ALLOCATE( fc%nlt (fc%ngmt) ) ALLOCATE( fc%nltm(fc%ngmt) ) ALLOCATE( fc%ig_l2gt(fc%ngmt) ) ! ALLOCATE( igtongl(fc%ngmt) ) ! RETURN ! END SUBROUTINE gvec_init ! !-------------------------------------------------------------------- SUBROUTINE set_custom_grid(fc) !----------------------------------------------------------------------- ! This routine computes the dimensions of the minimum FFT grid ! compatible with the input cut-off ! ! NB: The values of nr1, nr2, nr3 are computed only if they are not ! given as input parameters. Input values are kept otherwise. ! USE cell_base, ONLY : at, tpiba2 USE fft_scalar, ONLY : allowed IMPLICIT NONE TYPE(fft_cus) :: fc INTEGER, PARAMETER :: nmax = 5000 ! an unreasonably big number for a FFT grid ! ! the values of nr1, nr2, nr3 are computed only if they are not given ! as input parameters ! fc%nr1t=0 fc%nr2t=0 fc%nr3t=0 IF (fc%nr1t == 0) THEN ! ! estimate nr1 and check if it is an allowed value for FFT ! fc%nr1t = INT(2 * SQRT(fc%gcutmt) * SQRT(at(1, 1)**2 + & &at(2, 1)**2 + at(3, 1)**2) ) + 1 10 CONTINUE IF (fc%nr1t > nmax) & CALL errore ('set_custom_grid', 'nr1 is unreasonably large', fc%nr1t) IF (allowed (fc%nr1t) ) GOTO 15 fc%nr1t = fc%nr1t + 1 GOTO 10 ELSE IF (.NOT.allowed (fc%nr1t) ) CALL errore ('set_custom_grid', & 'input nr1t value not allowed', 1) ENDIF 15 CONTINUE ! IF (fc%nr2t == 0) THEN ! ! estimate nr1 and check if it is an allowed value for FFT ! fc%nr2t = INT(2 * SQRT(fc%gcutmt) * SQRT(at(1, 2)**2 + & &at(2, 2)**2 + at(3, 2)**2) ) + 1 20 CONTINUE IF (fc%nr2t > nmax) & CALL errore ('set_custom_grid', 'nr2t is unreasonably large', fc%nr2t) IF (allowed (fc%nr2t) ) GOTO 25 fc%nr2t = fc%nr2t + 1 GOTO 20 ELSE IF (.NOT.allowed (fc%nr2t) ) CALL errore ('set_fft_dim', & 'input nr2t value not allowed', 2) ENDIF 25 CONTINUE ! IF (fc%nr3t == 0) THEN ! ! estimate nr3 and check if it is an allowed value for FFT ! fc%nr3t = INT(2 * SQRT(fc%gcutmt) * SQRT(at(1, 3) **2 + & &at(2, 3)**2 + at(3, 3) **2) ) + 1 30 CONTINUE IF (fc%nr3t > nmax) & CALL errore ('set_custom_grid', 'nr3 is unreasonably large', fc%nr3t) IF (allowed (fc%nr3t) ) GOTO 35 fc%nr3t = fc%nr3t + 1 GOTO 30 ELSE IF (.NOT.allowed (fc%nr3t) ) CALL errore ('set_custom_grid', & 'input nr3t value not allowed', 3) ENDIF 35 CONTINUE ! ! here we compute nr3s if it is not in input ! RETURN END SUBROUTINE set_custom_grid ! !-------------------------------------------------------------------- SUBROUTINE ggent(fc) !-------------------------------------------------------------------- ! USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, tpiba2 USE control_flags, ONLY : gamma_only USE constants, ONLY : eps8 IMPLICIT NONE TYPE(fft_cus) :: fc ! REAL(DP) :: t (3), tt, swap ! INTEGER :: ngmx, n1, n2, n3, n1s, n2s, n3s ! REAL(DP), ALLOCATABLE :: g2sort_g(:) ! array containing all g vectors, on all processors: replicated data INTEGER, ALLOCATABLE :: mill_g(:,:), mill_unsorted(:,:) ! array containing all g vectors generators, on all processors: ! replicated data INTEGER, ALLOCATABLE :: igsrt(:) ! #ifdef __MPI INTEGER :: m1, m2, mc ! #endif INTEGER :: i, j, k, ipol, ng, igl, iswap, indsw, ni, nj, nk ! ALLOCATE( fc%gt(3,fc%ngmt), fc%ggt(fc%ngmt) ) ! ALLOCATE( fc%ig_l2gt( fc%ngmt_l ) ) ALLOCATE( mill_g( 3, fc%ngmt_g ), mill_unsorted( 3, fc%ngmt_g ) ) ALLOCATE( igsrt( fc%ngmt_g ) ) ALLOCATE( g2sort_g( fc%ngmt_g ) ) ALLOCATE( fc%ig1t(fc%ngmt), fc%ig2t(fc%ngmt), fc%ig3t(fc%ngmt) ) g2sort_g(:) = 1.0d20 ! ! save present value of ngm in ngmx variable ! ngmx = fc%ngmt ! fc%ngmt = 0 ! ! max miller indices (same convention as in module stick_set) ! ni = (fc%dfftt%nr1-1)/2 nj = (fc%dfftt%nr2-1)/2 nk = (fc%dfftt%nr3-1)/2 ! iloop: DO i = -ni, ni ! ! gamma-only: exclude space with x < 0 ! IF ( gamma_only .AND. i < 0) CYCLE iloop jloop: DO j = -nj, nj ! ! gamma-only: exclude plane with x = 0, y < 0 ! IF ( gamma_only .AND. i == 0 .AND. j < 0) CYCLE jloop kloop: DO k = -nk, nk ! ! gamma-only: exclude line with x = 0, y = 0, z < 0 ! IF ( gamma_only .AND. i == 0 .AND. j == 0 .AND. k < 0) CYCLE kloop t(:) = i * bg (:,1) + j * bg (:,2) + k * bg (:,3) tt = SUM(t(:)**2) IF (tt <= fc%gcutmt) THEN fc%ngmt = fc%ngmt + 1 IF (fc%ngmt > fc%ngmt_g) CALL errore ('ggent', 'too many g-vectors', fc%ngmt) mill_unsorted( :, fc%ngmt ) = (/ i,j,k /) IF ( tt > eps8 ) THEN g2sort_g(fc%ngmt) = tt ELSE g2sort_g(fc%ngmt) = 0.d0 ENDIF ENDIF ENDDO kloop ENDDO jloop ENDDO iloop IF (fc%ngmt /= fc%ngmt_g ) & CALL errore ('ggent', 'g-vectors missing !', ABS(fc%ngmt - fc%ngmt_g)) igsrt(1) = 0 CALL hpsort_eps( fc%ngmt_g, g2sort_g, igsrt, eps8 ) mill_g(1,:) = mill_unsorted(1,igsrt(:)) mill_g(2,:) = mill_unsorted(2,igsrt(:)) mill_g(3,:) = mill_unsorted(3,igsrt(:)) DEALLOCATE( g2sort_g, igsrt, mill_unsorted ) fc%ngmt = 0 ngloop: DO ng = 1, fc%ngmt_g i = mill_g(1, ng) j = mill_g(2, ng) k = mill_g(3, ng) #ifdef __MPI m1 = MOD (i, fc%dfftt%nr1) + 1 IF (m1 < 1) m1 = m1 + fc%dfftt%nr1 m2 = MOD (j, fc%dfftt%nr2) + 1 IF (m2 < 1) m2 = m2 + fc%dfftt%nr2 mc = m1 + (m2 - 1) * fc%dfftt%nr1x IF ( fc%dfftt%isind ( mc ) == 0) CYCLE ngloop #endif fc%ngmt = fc%ngmt + 1 ! Here map local and global g index !!! ! N.B. the global G vectors arrangement depends on the number of processors ! fc%ig_l2gt( fc%ngmt ) = ng fc%gt (1:3, fc%ngmt) = i * bg (:, 1) + j * bg (:, 2) + k * bg (:, 3) fc%ggt (fc%ngmt) = SUM(fc%gt (1:3, fc%ngmt)**2) IF (fc%ngmt > ngmx) CALL errore ('ggent', 'too many g-vectors', fc%ngmt) ENDDO ngloop IF (fc%ngmt /= ngmx) & CALL errore ('ggent', 'g-vectors missing !', ABS(fc%ngmt - ngmx)) ! ! determine first nonzero g vector ! IF (fc%ggt(1).LE.eps8) THEN fc%gstart_t=2 ELSE fc%gstart_t=1 ENDIF ! ! Now set nl and nls with the correct fft correspondence ! DO ng = 1, fc%ngmt n1 = NINT (SUM(fc%gt (:, ng) * at (:, 1))) + 1 fc%ig1t (ng) = n1 - 1 IF (n1<1) n1 = n1 + fc%dfftt%nr1 n2 = NINT (SUM(fc%gt (:, ng) * at (:, 2))) + 1 fc%ig2t (ng) = n2 - 1 IF (n2<1) n2 = n2 + fc%dfftt%nr2 n3 = NINT (SUM(fc%gt (:, ng) * at (:, 3))) + 1 fc%ig3t (ng) = n3 - 1 IF (n3<1) n3 = n3 + fc%dfftt%nr3 IF (n1>fc%dfftt%nr1 .OR. n2>fc%dfftt%nr2 .OR. n3>fc%dfftt%nr3) & CALL errore('ggent','Mesh too small?',ng) #if defined (__MPI) && !defined (__USE_3D_FFT) fc%nlt (ng) = n3 + ( fc%dfftt%isind (n1 + (n2 - 1) * fc%dfftt%nr1x)& & - 1) * fc%dfftt%nr3x #else fc%nlt (ng) = n1 + (n2 - 1) * fc%dfftt%nr1x + (n3 - 1) * & & fc%dfftt%nr1x * fc%dfftt%nr2x #endif ENDDO ! DEALLOCATE( mill_g ) ! ! calculate number of G shells: ngl IF ( gamma_only) CALL index_minusg_custom(fc) !set npwt,npwxt !This should eventually be calcualted somewhere else with !n_plane_waves() but it is good enough for gamma_only IF(gamma_only) THEN fc%npwt=0 fc%npwxt=0 DO ng = 1, fc%ngmt tt = (fc%gt (1, ng) ) **2 + (fc%gt (2, ng) ) **2 + (fc%gt& & (3, ng) ) **2 IF (tt <= fc%ecutt / tpiba2) THEN ! ! here if |k+G|^2 <= Ecut increase the number of G ! inside the sphere ! fc%npwt = fc%npwt + 1 ENDIF ENDDO fc%npwxt=fc%npwt ENDIF ! IF( ALLOCATED( ngmpe ) ) DEALLOCATE( ngmpe ) RETURN ! END SUBROUTINE ggent !----------------------------------------------------------------------- SUBROUTINE index_minusg_custom(fc) !---------------------------------------------------------------------- ! ! compute indices nlm and nlms giving the correspondence ! between the fft mesh points and -G (for gamma-only calculations) ! ! IMPLICIT NONE ! TYPE(fft_cus), INTENT(INOUT) :: fc ! INTEGER :: n1, n2, n3, n1s, n2s, n3s, ng ! DO ng = 1, fc%ngmt n1 = -fc%ig1t (ng) + 1 IF (n1 < 1) n1 = n1 + fc%dfftt%nr1 n2 = -fc%ig2t (ng) + 1 IF (n2 < 1) n2 = n2 + fc%dfftt%nr2 n3 = -fc%ig3t (ng) + 1 IF (n3 < 1) n3 = n3 + fc%dfftt%nr3 IF (n1>fc%dfftt%nr1 .OR. n2>fc%dfftt%nr2 .OR. n3>fc%dfftt%nr3) THEN CALL errore('index_minusg_custom','Mesh too small?',ng) ENDIF #if defined (__MPI) && !defined (__USE_3D_FFT) fc%nltm(ng) = n3 + (fc%dfftt%isind (n1 + (n2 - 1) * fc& &%dfftt%nr1x) - 1) * fc%dfftt%nr3x #else fc%nltm(ng) = n1 + (n2 - 1) * fc%dfftt%nr1x + (n3 - 1) * fc& &%dfftt%nr1x * fc%dfftt%nr1x #endif ENDDO END SUBROUTINE index_minusg_custom SUBROUTINE deallocate_fft_custom(fc) !this subroutine deallocates all the fft custom stuff USE fft_types, ONLY : fft_dlay_deallocate IMPLICIT NONE TYPE(fft_cus) :: fc IF(.NOT. fc%initalized) RETURN DEALLOCATE(fc%nlt,fc%nltm) CALL fft_dlay_deallocate(fc%dfftt) DEALLOCATE(fc%ig_l2gt,fc%ggt,fc%gt) DEALLOCATE(fc%ig1t,fc%ig2t,fc%ig3t) fc%initalized=.FALSE. RETURN END SUBROUTINE deallocate_fft_custom ! !---------------------------------------------------------------------------- SUBROUTINE reorderwfp_col ( nbands, npw1, npw2, pw1, pw2, ngwl1, ngwl2,& & ig_l2g1, ig_l2g2, n_g, mpime, nproc, comm ) !-------------------------------------------------------------------------- ! ! A routine using collective mpi calls that reorders the ! wavefunction in pw1 on a grid specified by ig_l2g1 and puts it ! in pw2 in the order required by ig_l2g2. ! ! Can transform multiple bands at once, as specifed by the nbands ! option. ! ! This operation could previously be performed by calls to ! mergewf and splitwf however that scales very badly with number ! of procs. ! ! Written by P. Umari, documentationa added by S. Binnie ! USE kinds USE parallel_include USE io_global, ONLY : stdout IMPLICIT NONE INTEGER, INTENT(in) :: npw1, npw2 INTEGER, INTENT(IN) :: nbands ! Number of bands to be transformed COMPLEX(DP), INTENT(IN) :: pw1(npw1,nbands) ! Input wavefunction COMPLEX(DP), INTENT(INOUT) :: pw2(npw2,nbands) ! Output INTEGER, INTENT(IN) :: mpime ! index of calling proc (starts at 0) INTEGER, INTENT(IN) :: nproc ! number of procs in the communicator INTEGER, INTENT(IN) :: comm ! communicator INTEGER, INTENT(IN) :: ig_l2g1(ngwl1),ig_l2g2(ngwl2) INTEGER, INTENT(IN) :: ngwl1,ngwl2 ! Global maximum number of G vectors for both grids INTEGER, INTENT(in) :: n_g ! Local variables INTEGER :: ngwl1_max, ngwl2_max, npw1_max, npw2_max, ngwl_min INTEGER :: gid,ierr INTEGER, ALLOCATABLE :: npw1_loc(:),npw2_loc(:) INTEGER, ALLOCATABLE :: ig_l2g1_tot(:,:),ig_l2g2_tot(:,:), itmp(:) INTEGER :: ii,ip,ilast,iband COMPLEX(kind=DP), ALLOCATABLE :: pw1_tot(:,:),pw2_tot(:,:) COMPLEX(kind=DP), ALLOCATABLE :: pw1_tmp(:),pw2_tmp(:), pw_global(:) #ifdef __MPI gid=comm ALLOCATE(npw1_loc(nproc),npw2_loc(nproc)) ! ! Calculate the size of the global correspondance arrays ! CALL MPI_ALLREDUCE( ngwl1, ngwl1_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE( ngwl2, ngwl2_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE( npw1, npw1_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLREDUCE( npw2, npw2_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR ) CALL MPI_ALLGATHER( npw1, 1, MPI_INTEGER, npw1_loc, 1,& & MPI_INTEGER, gid, IERR ) CALL MPI_ALLGATHER( npw2, 1, MPI_INTEGER, npw2_loc, 1,& & MPI_INTEGER, gid, IERR ) ! ALLOCATE(ig_l2g1_tot(ngwl1_max,nproc),ig_l2g2_tot(ngwl2_max& &,nproc)) ! ! All procs gather correspondance arrays ! ALLOCATE(itmp(ngwl1_max)) itmp(1:ngwl1)=ig_l2g1(1:ngwl1) CALL MPI_ALLGATHER( itmp, ngwl1_max, MPI_INTEGER, ig_l2g1_tot,& & ngwl1_max, MPI_INTEGER, gid, IERR ) DEALLOCATE(itmp) ! ALLOCATE(itmp(ngwl2_max)) itmp(1:ngwl2)=ig_l2g2(1:ngwl2) CALL MPI_ALLGATHER( itmp, ngwl2_max, MPI_INTEGER, ig_l2g2_tot,& & ngwl2_max, MPI_INTEGER, gid, IERR) DEALLOCATE(itmp) ! ! ALLOCATE( pw1_tot(npw1_max,nproc), pw2_tot(npw2_max,nproc) ) ALLOCATE( pw1_tmp(npw1_max), pw2_tmp(npw2_max) ) ALLOCATE( pw_global(n_g) ) ! DO ii=1, nbands, nproc ! ilast=MIN(nbands,ii+nproc-1) ! ! Gather the input wavefunction. ! DO iband=ii, ilast ! ip = MOD(iband,nproc) ! ip starts from 1 to nproc-1 pw1_tmp(1:npw1)=pw1(1:npw1,iband) CALL MPI_GATHER( pw1_tmp, npw1_max, MPI_DOUBLE_COMPLEX,& & pw1_tot, npw1_max, MPI_DOUBLE_COMPLEX, ip, gid, ierr ) ! ENDDO ! pw_global = ( 0.d0, 0.d0 ) ! ! Put the gathered wavefunction into the standard order. ! DO ip=1,nproc ! pw_global( ig_l2g1_tot(1:npw1_loc(ip), ip) ) = & & pw1_tot( 1:npw1_loc(ip), ip ) ! ENDDO ! ! Now put this into the correct order for output. ! DO ip=1,nproc ! pw2_tot( 1:npw2_loc(ip), ip ) = & & pw_global ( ig_l2g2_tot(1:npw2_loc(ip),ip) ) ! ENDDO ! ! Scatter the output wavefunction across the processors. ! DO iband=ii,ilast ! ip=MOD(iband,nproc) CALL MPI_SCATTER( pw2_tot, npw2_max, MPI_DOUBLE_COMPLEX,& & pw2_tmp, npw2_max, MPI_DOUBLE_COMPLEX, ip, gid, ierr ) pw2(1:npw2,iband)=pw2_tmp(1:npw2) ! ENDDO ! ENDDO ! DEALLOCATE(npw1_loc,npw2_loc) DEALLOCATE(ig_l2g1_tot,ig_l2g2_tot) DEALLOCATE(pw1_tot,pw2_tot) DEALLOCATE(pw1_tmp,pw2_tmp) DEALLOCATE(pw_global) ! #else ! ngwl_min = MIN( ngwl1, ngwl2 ) ! pw2(:, 1:nbands) = ( 0.0d0, 0.0d0 ) pw2( ig_l2g2(1:ngwl_min), 1:nbands ) = pw1( ig_l2g1(1:ngwl_min), 1:nbands ) ! #endif ! RETURN ! END SUBROUTINE reorderwfp_col !---------------------------------------------------------------------------- END MODULE fft_custom espresso-5.1/Modules/write_upf_v2.f900000644000175000017500000006510712341373034015656 0ustar mbamba! ! Copyright (C) 2008-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE write_upf_v2_module !=----------------------------------------------------------------------------=! ! this module handles the writing of pseudopotential data ! ... declare modules USE kinds, ONLY: DP USE pseudo_types, ONLY: pseudo_upf USE radial_grids, ONLY: radial_grid_type USE iotk_module ! IMPLICIT NONE ! PRIVATE PUBLIC :: write_upf_v2, pseudo_config, deallocate_pseudo_config TYPE pseudo_config INTEGER :: nwfs CHARACTER(len=32) :: pseud CHARACTER(len=2),POINTER :: els(:) !=> null() ! label INTEGER,POINTER :: nns(:) !=> null() ! n INTEGER,POINTER :: lls(:) !=> null() ! l REAL(DP),POINTER :: ocs(:) !=> null() ! occupation REAL(DP),POINTER :: rcut(:) !=> null() ! NC cutoff radius REAL(DP),POINTER :: rcutus(:) !=> null() ! US cutoff radius REAL(DP),POINTER :: enls(:) !=> null() ! energy END TYPE pseudo_config CONTAINS !-------------------------------+ SUBROUTINE write_upf_v2(u, upf, conf, u_input) !----------------------------+ ! Write pseudopotential in UPF format version 2, uses iotk ! IMPLICIT NONE INTEGER,INTENT(IN) :: u ! unit for writing TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data ! optional: configuration used to generate the pseudopotential TYPE(pseudo_config),OPTIONAL,INTENT(IN) :: conf ! optional: unit pointing to input file containing generation data INTEGER, OPTIONAL, INTENT(IN) :: u_input ! CHARACTER(len=iotk_attlenx) :: attr ! ! Initialize the file CALL iotk_write_attr(attr, 'version', TRIM(upf%nv), first=.true.) CALL iotk_open_write(u, attr=attr, root='UPF', skip_head=.true.) ! ! Write human-readable header CALL write_info(u, upf, conf, u_input) ! Write machine-readable header CALL write_header(u, upf) ! Write radial grid mesh CALL write_mesh(u, upf) ! Write non-linear core correction charge IF(upf%nlcc) CALL iotk_write_dat(u, 'PP_NLCC', upf%rho_atc, columns=4) ! Write local potential IF(.not. upf%tcoulombp) THEN CALL iotk_write_dat(u, 'PP_LOCAL', upf%vloc, columns=4) ELSE CALL iotk_write_attr(attr, 'type', '1/r', first=.true.) CALL iotk_write_attr(attr, 'comment', 'Coulomb 1/r potential') CALL iotk_write_empty(u, 'PP_NLCC', attr=attr) ENDIF ! Write potentials in semilocal form (if existing) IF ( upf%typ == "SL" ) CALL write_semilocal(u, upf) ! Write nonlocal components: projectors, augmentation, hamiltonian elements CALL write_nonlocal(u, upf) ! Write initial pseudo wavefunctions ! (usually only wfcs with occupancy > 0) CALL write_pswfc(u, upf) ! If included, write all-electron and pseudo wavefunctions CALL write_full_wfc(u, upf) ! Write valence atomic density (used for initial density) CALL iotk_write_dat(u, 'PP_RHOATOM', upf%rho_at, columns=4) ! Write additional info for full-relativistic calculation CALL write_spin_orb(u, upf) ! Write additional data for PAW (All-electron charge, wavefunctions, vloc..) CALL write_paw(u, upf) ! Write additional data for GIPAW reconstruction CALL write_gipaw(u, upf) ! ! Close the file (not the unit!) CALL iotk_close_write(u) CONTAINS ! SUBROUTINE write_info(u, upf, conf, u_input) ! Write human-readable header ! The header is written directly, not via iotk IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit: write to unit u TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data ! optional: configuration used to generate the pseudopotential TYPE(pseudo_config),OPTIONAL,INTENT(IN) :: conf INTEGER, OPTIONAL, INTENT(IN) :: u_input ! read input data from u_input ! INTEGER :: nb ! aux counter INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=256) :: line LOGICAL :: opnd ! CALL iotk_write_begin(u,'PP_INFO') ! WRITE(u, '(4x,a)', err=100) TRIM(CHECK(upf%generated)) WRITE(u, '(4x,a)', err=100) & 'Author: '//TRIM(CHECK(upf%author)) WRITE(u, '(4x,a)', err=100) & 'Generation date: '//TRIM(CHECK(upf%date)) WRITE(u, '(4x,a)', err=100) & 'Pseudopotential type: '//TRIM(CHECK(upf%typ)) WRITE(u, '(4x,a)', err=100) & 'Element: '//TRIM(CHECK(upf%psd)) WRITE(u, '(4x,a)', err=100) & 'Functional: '//TRIM(CHECK(upf%dft)) WRITE(u,'()') ! ! Cutoff Information WRITE(u, '(4x,a,f5.0,a)') & 'Suggested minimum cutoff for wavefunctions:',upf%ecutwfc,' Ry' WRITE(u, '(4x,a,f5.0,a)') & 'Suggested minimum cutoff for charge density:',& upf%ecutrho,' Ry' ! ! Write relativistic information IF (TRIM(upf%rel)=='full') THEN WRITE(u, '(4x,a)', err=100) & "The Pseudo was generated with a Fully-Relativistic Calculation" ELSE IF (TRIM(upf%rel)=='scalar') THEN WRITE(u, '(4x,a)', err=100) & "The Pseudo was generated with a Scalar-Relativistic Calculation" ELSE WRITE(u, '(4x,a)', err=100) & "The Pseudo was generated with a Non-Relativistic Calculation" ENDIF ! ! Write local potential information IF (upf%lloc >= 0 ) THEN WRITE(u, '(4x,a,i3,f9.4)', err=100) & "L component and cutoff radius for Local Potential:", upf%lloc, upf%rcloc ELSE IF (upf%lloc == -1 ) THEN WRITE(u, '(4x,a,f9.4)', err=100) & "Local Potential by smoothing AE potential with Bessel fncs, cutoff radius:", upf%rcloc ELSE IF (upf%lloc == -2 ) THEN WRITE(u, '(4x,a,f9.4)', err=100) & "Local Potential according to Troullier-Martins recipe, cutoff radius:", upf%rcloc ELSE WRITE(u, '(4x,a,i3,f9.4)', err=100) & "Local Potential: unknown format, L component and cutoff radius:",upf%lloc, upf%rcloc ENDIF ! IF (upf%has_so) & WRITE(u, '(4x,a,i3,f9.4)', err=100) & "Pseudopotential contains additional information for spin-orbit calculations." IF (upf%has_gipaw) & WRITE(u, '(4x,a,i3,f9.4)', err=100) & "Pseudopotential contains additional information for GIPAW reconstruction." ! ! Write valence orbitals information WRITE(u, '(/,4x,a)') 'Valence configuration: ' WRITE(u, '(4x,a2,2a3,a6,2a11,1a13)', err=100) & "nl"," pn", "l", "occ", "Rcut", "Rcut US", "E pseu" DO nb = 1, upf%nwfc IF(upf%oc(nb) >= 0._dp) THEN WRITE(u, '(4x,a2,2i3,f6.2,2f11.3,1f13.6)') & CHECK(upf%els(nb)), upf%nchi(nb), & upf%lchi(nb), upf%oc(nb), upf%rcut_chi(nb), & upf%rcutus_chi(nb), upf%epseu(nb) ENDIF END DO IF( present(conf) ) THEN WRITE(u, '(4x,a)') 'Generation configuration:' DO nb = 1,conf%nwfs WRITE(u, '(4x,a2,2i3,f6.2,2f11.3,1f13.6)') & CHECK(conf%els(nb)), conf%nns(nb), & conf%lls(nb), conf%ocs(nb), conf%rcut(nb), & conf%rcutus(nb), conf%enls(nb) ENDDO WRITE(u,'(/,4x,2a)') 'Pseudization used: ',TRIM(CHECK(conf%pseud)) ELSE WRITE(u, '(/,4x,a)') 'Generation configuration: not available.' ENDIF IF(TRIM(upf%comment) /= ' ') THEN WRITE(u, '(4x,"Comment:",/,4x,a)', err=100) TRIM(CHECK(upf%comment)) END IF ! IF ( PRESENT(u_input) ) THEN ! ! copy content of input file used in pseudopotential generation ! INQUIRE (unit=u_input, opened=opnd) IF (opnd) THEN WRITE (u,'("")') REWIND (unit=u_input) 10 READ (u_input, '(A)',end=20,err=25) line WRITE (u, '(A)') TRIM(CHECK(line)) GO TO 10 25 CALL infomsg('write_upf_v2::write_inputfile', 'problem writing input data') 20 WRITE (u,'("")') ELSE CALL infomsg('write_upf_v2::write_inputfile', 'input file not open') END IF ! END IF ! CALL iotk_write_end(u,'PP_INFO') CALL iotk_write_comment(u,' ') CALL iotk_write_comment(u,' END OF HUMAN READABLE SECTION ') CALL iotk_write_comment(u,' ') ! RETURN 100 CALL errore('write_upf_v2::write_info', 'Writing pseudo file', 1) ! END SUBROUTINE write_info ! ! SUBROUTINE write_header(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nw ! ! Write HEADER section with some initialization data !CALL iotk_write_attr(attr, 'version', upf%nv, first=.true., newline=.true.) CALL iotk_write_attr(attr, 'generated', TRIM(upf%generated),first=.true.) CALL iotk_write_attr(attr, 'author', TRIM(upf%author), newline=.true.) CALL iotk_write_attr(attr, 'date', TRIM(upf%date), newline=.true.) CALL iotk_write_attr(attr, 'comment', TRIM(upf%comment), newline=.true.) ! CALL iotk_write_attr(attr, 'element', upf%psd, newline=.true.) CALL iotk_write_attr(attr, 'pseudo_type', TRIM(upf%typ), newline=.true.) CALL iotk_write_attr(attr, 'relativistic', TRIM(upf%rel), newline=.true.) ! CALL iotk_write_attr(attr, 'is_ultrasoft', upf%tvanp, newline=.true.) CALL iotk_write_attr(attr, 'is_paw', upf%tpawp, newline=.true.) CALL iotk_write_attr(attr, 'is_coulomb', upf%tcoulombp, newline=.true.) ! CALL iotk_write_attr(attr, 'has_so', upf%has_so, newline=.true.) CALL iotk_write_attr(attr, 'has_wfc', upf%has_wfc, newline=.true.) !EMINE CALL iotk_write_attr(attr, 'has_gipaw', upf%has_gipaw, newline=.true.) CALL iotk_write_attr(attr, 'paw_as_gipaw', upf%paw_as_gipaw, newline=.true.) ! CALL iotk_write_attr(attr, 'core_correction',upf%nlcc, newline=.true.) CALL iotk_write_attr(attr, 'functional', TRIM(upf%dft), newline=.true.) CALL iotk_write_attr(attr, 'z_valence', upf%zp, newline=.true.) CALL iotk_write_attr(attr, 'total_psenergy', upf%etotps, newline=.true.) CALL iotk_write_attr(attr, 'wfc_cutoff', upf%ecutwfc, newline=.true.) CALL iotk_write_attr(attr, 'rho_cutoff', upf%ecutrho, newline=.true.) CALL iotk_write_attr(attr, 'l_max', upf%lmax, newline=.true.) CALL iotk_write_attr(attr, 'l_max_rho', upf%lmax_rho, newline=.true.) CALL iotk_write_attr(attr, 'l_local', upf%lloc, newline=.true.) CALL iotk_write_attr(attr, 'mesh_size', upf%mesh, newline=.true.) CALL iotk_write_attr(attr, 'number_of_wfc', upf%nwfc, newline=.true.) CALL iotk_write_attr(attr, 'number_of_proj', upf%nbeta, newline=.true.) CALL iotk_write_empty(u, 'PP_HEADER', attr=attr) ! !CALL iotk_write_end(u, 'PP_HEADER') ! RETURN END SUBROUTINE write_header ! SUBROUTINE write_mesh(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! CALL iotk_write_attr(attr, 'dx', upf%dx, first=.true.) CALL iotk_write_attr(attr, 'mesh', upf%mesh) CALL iotk_write_attr(attr, 'xmin', upf%xmin) CALL iotk_write_attr(attr, 'rmax', upf%rmax) CALL iotk_write_attr(attr, 'zmesh',upf%zmesh) CALL iotk_write_begin(u, 'PP_MESH', attr=attr) ! CALL iotk_write_dat(u, 'PP_R', upf%r, columns=4) CALL iotk_write_dat(u, 'PP_RAB', upf%rab, columns=4) ! CALL iotk_write_end(u, 'PP_MESH') ! RETURN END SUBROUTINE write_mesh ! SUBROUTINE write_semilocal(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr INTEGER :: nb, l, ind ! CALL iotk_write_begin(u, 'PP_SEMILOCAL') ! ! Write V_l(r) DO nb = 1,upf%nbeta l = upf%lll(nb) ind = 1 CALL iotk_write_attr(attr, 'L',l, first=.true.) IF ( upf%has_so ) THEN CALL iotk_write_attr(attr, 'J', upf%jjj(nb)) IF ( l > 0 .AND. ABS (upf%jjj(nb)-l-0.5_dp) < 0.001_dp) ind = 2 ENDIF CALL iotk_write_dat(u, 'PP_VNL'//iotk_index(l), & upf%vnl(:,l,ind), attr=attr, columns=4) END DO ! CALL iotk_write_end(u, 'PP_SEMILOCAL') ! END SUBROUTINE write_semilocal ! SUBROUTINE write_nonlocal(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb,mb,ln,lm,l,nmb LOGICAL :: isnull ! IF (upf%tcoulombp) RETURN ! CALL iotk_write_begin(u, 'PP_NONLOCAL') ! ! Write the projectors: DO nb = 1,upf%nbeta CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'label', upf%els_beta(nb)) CALL iotk_write_attr(attr, 'angular_momentum', upf%lll(nb)) CALL iotk_write_attr(attr, 'cutoff_radius_index', upf%kbeta(nb)) CALL iotk_write_attr(attr, 'cutoff_radius', upf%rcut(nb)) CALL iotk_write_attr(attr, 'ultrasoft_cutoff_radius',upf%rcutus(nb)) CALL iotk_write_dat(u, 'PP_BETA'//iotk_index( nb ), & upf%beta(:,nb), attr=attr, columns=4) ENDDO ! ! Write the hamiltonian terms D_ij CALL iotk_write_dat(u, 'PP_DIJ', upf%dion, columns=4) ! ! Write the augmentation charge section augmentation : & IF(upf%tvanp .or. upf%tpawp) THEN CALL iotk_write_attr(attr, 'q_with_l', upf%q_with_l, first=.true.) CALL iotk_write_attr(attr, 'nqf', upf%nqf) CALL iotk_write_attr(attr, 'nqlc', upf%nqlc) IF (upf%tpawp) THEN CALL iotk_write_attr(attr,'shape', TRIM(upf%paw%augshape)) CALL iotk_write_attr(attr,'cutoff_r', upf%paw%raug) CALL iotk_write_attr(attr,'cutoff_r_index', upf%paw%iraug) CALL iotk_write_attr(attr,'augmentation_epsilon',upf%qqq_eps) CALL iotk_write_attr(attr,'l_max_aug', upf%paw%lmax_aug) ENDIF ! CALL iotk_write_begin(u, 'PP_AUGMENTATION', attr=attr) ! ! Write the integrals of the Q functions CALL iotk_write_dat(u, 'PP_Q',upf%qqq, columns=4) ! ! Write charge multipoles (only if PAW) IF ( upf%tpawp ) THEN CALL iotk_write_comment(u, ' augmentation charge multipoles (only for PAW) ') CALL iotk_write_dat(u, 'PP_MULTIPOLES', upf%paw%augmom, columns=4) ENDIF ! ! Write polinomial coefficients for Q_ij expansion at small radius IF ( upf%nqf > 0) THEN CALL iotk_write_comment(u, ' polinomial expansion of Q_ij at small radius ') CALL iotk_write_dat(u, 'PP_QFCOEF',upf%qfcoef, attr=attr, columns=4) CALL iotk_write_dat(u, 'PP_RINNER',upf%rinner, attr=attr, columns=4) ENDIF ! ! Write augmentation charge Q_ij DO nb = 1,upf%nbeta ln = upf%lll(nb) DO mb = nb,upf%nbeta lm = upf%lll(mb) nmb = mb * (mb-1) /2 + nb IF( upf%q_with_l ) THEN DO l = abs(ln-lm),ln+lm,2 ! only even terms CALL iotk_write_attr(attr, 'first_index', nb, first=.true.) CALL iotk_write_attr(attr, 'second_index', mb) CALL iotk_write_attr(attr, 'composite_index', nmb) CALL iotk_write_attr(attr, 'angular_momentum', l) ! isnull = .false. ! omit functions that are multiplied by zero IF( upf%tpawp ) isnull = (abs(upf%paw%augmom(nb,mb,l)) < upf%qqq_eps) ! IF ( isnull ) THEN CALL iotk_write_attr(attr, 'is_null', isnull) CALL iotk_write_empty(u, 'PP_QIJL'//iotk_index((/nb,mb,l/)),& attr=attr) ELSE CALL iotk_write_dat(u, 'PP_QIJL'//iotk_index((/nb,mb,l/)),& upf%qfuncl(:,nmb,l),attr=attr, columns=4) ENDIF ENDDO ELSE CALL iotk_write_attr(attr, 'first_index', nb, first=.true.) CALL iotk_write_attr(attr, 'second_index', mb) CALL iotk_write_attr(attr, 'composite_index', nmb) ! isnull = .false. ! omit functions that are multiplied by zero IF( upf%tpawp ) isnull = ( abs(upf%qqq(nb,mb)) < upf%qqq_eps ) IF ( isnull ) THEN CALL iotk_write_attr(attr, 'is_null', isnull) CALL iotk_write_empty(u, 'PP_QIJ'//iotk_index((/nb,mb/)),& attr=attr) ELSE CALL iotk_write_dat(u, 'PP_QIJ'//iotk_index((/nb,mb/)),& upf%qfunc(:,nmb),attr=attr, columns=4) ENDIF ENDIF ENDDO ENDDO ! CALL iotk_write_end(u, 'PP_AUGMENTATION') ! ENDIF augmentation ! CALL iotk_write_end(u, 'PP_NONLOCAL') ! RETURN END SUBROUTINE write_nonlocal ! SUBROUTINE write_pswfc(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nw ! CALL iotk_write_begin(u, 'PP_PSWFC') ! DO nw = 1,upf%nwfc CALL iotk_write_attr(attr, 'index', nw, first=.true.) CALL iotk_write_attr(attr, 'label', upf%els(nw)) CALL iotk_write_attr(attr, 'l', upf%lchi(nw)) CALL iotk_write_attr(attr, 'occupation', upf%oc(nw)) CALL iotk_write_attr(attr, 'n', upf%nchi(nw)) CALL iotk_write_attr(attr, 'pseudo_energy', upf%epseu(nw)) CALL iotk_write_attr(attr, 'cutoff_radius', upf%rcut_chi(nw)) CALL iotk_write_attr(attr, 'ultrasoft_cutoff_radius', upf%rcutus_chi(nw)) CALL iotk_write_dat(u, 'PP_CHI'//iotk_index(nw), & upf%chi(:,nw), columns=4, attr=attr) ENDDO ! CALL iotk_write_end(u, 'PP_PSWFC') ! RETURN END SUBROUTINE write_pswfc ! SUBROUTINE write_spin_orb(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nw, nb ! IF (.not. upf%has_so) RETURN ! CALL iotk_write_begin(u, 'PP_SPIN_ORB') ! DO nw = 1,upf%nwfc CALL iotk_write_attr(attr, 'index', nw, first=.true.) CALL iotk_write_attr(attr, 'els', upf%els(nw)) CALL iotk_write_attr(attr, 'nn', upf%nn(nw)) CALL iotk_write_attr(attr, 'lchi', upf%lchi(nw)) CALL iotk_write_attr(attr, 'jchi', upf%jchi(nw)) CALL iotk_write_attr(attr, 'oc', upf%oc(nw)) CALL iotk_write_empty(u, 'PP_RELWFC'//iotk_index(nw),& attr=attr) ENDDO ! DO nb = 1,upf%nbeta CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'lll', upf%lll(nb)) CALL iotk_write_attr(attr, 'jjj', upf%jjj(nb)) CALL iotk_write_empty(u, 'PP_RELBETA'//iotk_index(nb),& attr=attr) ENDDO ! CALL iotk_write_end(u, 'PP_SPIN_ORB') ! RETURN END SUBROUTINE write_spin_orb ! SUBROUTINE write_full_wfc(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong ! CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb IF(.not. upf%has_wfc) RETURN CALL iotk_write_attr(attr, 'number_of_wfc', upf%nbeta, first=.true.) CALL iotk_write_begin(u, 'PP_FULL_WFC', attr=attr) ! All-electron wavefunctions corresponding to beta functions DO nb = 1,upf%nbeta CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'label', upf%els_beta(nb)) CALL iotk_write_attr(attr, 'l', upf%lll(nb)) CALL iotk_write_dat(u, 'PP_AEWFC'//iotk_index(nb), & upf%aewfc(:,nb), columns=4, attr=attr) ENDDO IF (upf%has_so.and.upf%tpawp) THEN DO nb = 1,upf%nbeta CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'label', upf%els_beta(nb)) CALL iotk_write_attr(attr, 'l', upf%lll(nb)) CALL iotk_write_attr(attr, 'j', upf%jjj(nb)) CALL iotk_write_dat(u, 'PP_AEWFC_REL'//iotk_index(nb), & upf%paw%aewfc_rel(:,nb), columns=4, attr=attr) ENDDO ENDIF ! Pseudo wavefunctions DO nb = 1,upf%nbeta CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'label', upf%els_beta(nb)) CALL iotk_write_attr(attr, 'l', upf%lll(nb)) CALL iotk_write_dat(u, 'PP_PSWFC'//iotk_index(nb), & upf%pswfc(:,nb), columns=4, attr=attr) ENDDO ! Finalize CALL iotk_write_end(u, 'PP_FULL_WFC') END SUBROUTINE write_full_wfc SUBROUTINE write_paw(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong ! CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb IF (.not. upf%tpawp ) RETURN CALL iotk_write_attr(attr, 'paw_data_format', upf%paw_data_format, first=.true.) CALL iotk_write_attr(attr, 'core_energy', upf%paw%core_energy) CALL iotk_write_begin(u, 'PP_PAW', attr=attr) ! Full occupation (not only > 0 ones) CALL iotk_write_dat(u, 'PP_OCCUPATIONS',upf%paw%oc, columns=4) ! All-electron core charge CALL iotk_write_dat(u, 'PP_AE_NLCC', upf%paw%ae_rho_atc, columns=4) ! All-electron local potential CALL iotk_write_dat(u, 'PP_AE_VLOC', upf%paw%ae_vloc,columns=4) ! CALL iotk_write_end(u, 'PP_PAW') ! RETURN END SUBROUTINE write_paw ! SUBROUTINE write_gipaw(u, upf) IMPLICIT NONE INTEGER,INTENT(IN) :: u ! i/o unit TYPE(pseudo_upf),INTENT(IN) :: upf ! the pseudo data INTEGER :: ierr ! /= 0 if something went wrong ! CHARACTER(len=iotk_attlenx) :: attr ! INTEGER :: nb IF (.not. upf%has_gipaw) RETURN CALL iotk_write_attr(attr, 'gipaw_data_format', upf%gipaw_data_format, first=.true.) CALL iotk_write_begin(u, 'PP_GIPAW', attr=attr) CALL iotk_write_attr(attr, 'number_of_core_orbitals', upf%gipaw_ncore_orbitals, first=.true.) CALL iotk_write_begin(u, 'PP_GIPAW_CORE_ORBITALS', attr=attr) DO nb = 1,upf%gipaw_ncore_orbitals CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'label', upf%gipaw_core_orbital_el(nb)) CALL iotk_write_attr(attr, 'n', upf%gipaw_core_orbital_n(nb)) CALL iotk_write_attr(attr, 'l', upf%gipaw_core_orbital_l(nb)) CALL iotk_write_dat(u, 'PP_GIPAW_CORE_ORBITAL'//iotk_index(nb), & upf%gipaw_core_orbital(:,nb), columns=4, attr=attr) ENDDO CALL iotk_write_end(u, 'PP_GIPAW_CORE_ORBITALS') ! ! Only write core orbitals in the PAW as GIPAW case IF (upf%paw_as_gipaw) THEN CALL iotk_write_end(u, 'PP_GIPAW') RETURN ENDIF ! ! Write valence all-electron and pseudo orbitals CALL iotk_write_attr(attr, 'number_of_valence_orbitals', upf%gipaw_wfs_nchannels, first=.true.) CALL iotk_write_begin(u, 'PP_GIPAW_ORBITALS', attr=attr) ! DO nb = 1,upf%gipaw_wfs_nchannels CALL iotk_write_attr(attr, 'index', nb, first=.true.) CALL iotk_write_attr(attr, 'label', upf%gipaw_wfs_el(nb)) CALL iotk_write_attr(attr, 'l', upf%gipaw_wfs_ll(nb)) CALL iotk_write_attr(attr, 'cutoff_radius', upf%gipaw_wfs_rcut(nb)) CALL iotk_write_attr(attr, 'ultrasoft_cutoff_radius', upf%gipaw_wfs_rcutus(nb)) CALL iotk_write_begin(u, 'PP_GIPAW_ORBITAL'//iotk_index(nb), attr=attr) ! CALL iotk_write_dat(u, 'PP_GIPAW_WFS_AE', upf%gipaw_wfs_ae(:,nb), columns=4) CALL iotk_write_dat(u, 'PP_GIPAW_WFS_PS', upf%gipaw_wfs_ps(:,nb), columns=4) ! CALL iotk_write_end(u, 'PP_GIPAW_ORBITAL'//iotk_index(nb)) ENDDO CALL iotk_write_end(u, 'PP_GIPAW_ORBITALS') ! ! Write all-electron and pseudo local potentials CALL iotk_write_begin(u, 'PP_GIPAW_VLOCAL') CALL iotk_write_dat(u, 'PP_GIPAW_VLOCAL_AE', & upf%gipaw_vlocal_ae(:), columns=4) CALL iotk_write_dat(u, 'PP_GIPAW_VLOCAL_PS', & upf%gipaw_vlocal_ps(:), columns=4) CALL iotk_write_end(u, 'PP_GIPAW_VLOCAL') ! CALL iotk_write_end(u, 'PP_GIPAW') RETURN END SUBROUTINE write_gipaw ! ! Remove '<' and '>' from string, replacing them with '/', necessary ! or iotk will complain while read-skipping PP_INFO section. FUNCTION CHECK(in) RESULT (out) CHARACTER(len=*) :: in #if defined(__PGI) INTEGER, PARAMETER :: length = 255 CHARACTER(len=length) :: out #else CHARACTER(len=len(in)) :: out #endif INTEGER :: i DO i = 1,len(in) IF ( in(i:i) == '<' .or. in(i:i) == '>' ) THEN out(i:i) = '/' ELSE out(i:i) = in(i:i) ENDIF ENDDO END FUNCTION CHECK END SUBROUTINE write_upf_v2 SUBROUTINE deallocate_pseudo_config(conf) TYPE(pseudo_config),INTENT(INOUT) :: conf if (associated(conf%els) ) deallocate(conf%els) if (associated(conf%nns) ) deallocate(conf%nns) if (associated(conf%lls) ) deallocate(conf%lls) if (associated(conf%ocs) ) deallocate(conf%ocs) if (associated(conf%rcut) ) deallocate(conf%rcut) if (associated(conf%rcutus)) deallocate(conf%rcutus) if (associated(conf%enls) ) deallocate(conf%enls) END SUBROUTINE deallocate_pseudo_config END MODULE write_upf_v2_module espresso-5.1/Modules/tsvdw.f900000644000175000017500000027471212341373034014416 0ustar mbambaMODULE tsvdw_module ! !---------------------------------------------------------------------------------------------------------------- ! TS-vdW Code Version 14.0 (RAD/BS, Princeton University, February 2013) !---------------------------------------------------------------------------------------------------------------- ! All quantities necessary for the evaluation of the TS-vdW energy and forces are computed on the real-space ! mesh using linear interpolation of the atomic pseudo-densities and their first derivatives which have been ! mapped onto linear equispaced atomic grids from their original form computed on radial atomic grids via the ! ATOMIC code. !---------------------------------------------------------------------------------------------------------------- ! SYNOPSIS: radial form of rhoA & drhoA mapped onto linear grid; ! atrho & rhosad on real-space mesh via linear interpolation; ! integration on spherical atomic domains (subsets of real-space mesh); ! quadratic veff derivatives computed linearly using sparse domain intersection algorithm. !---------------------------------------------------------------------------------------------------------------- ! USE cell_base, ONLY: h !h matrix for converting between r and s coordinates via r = h s USE cell_base, ONLY: ainv !h^-1 matrix for converting between r and s coordinates via s = h^-1 r) USE cell_base, ONLY: omega !cell volume (in au^3) USE constants, ONLY: pi !pi in double-precision USE control_flags, ONLY: lwfpbe0 !if .TRUE. then PBE0 calculation using Wannier orbitals is turned on ... BS USE fft_base, ONLY: dffts !FFT derived data type USE fft_base, ONLY: dfftp !FFT derived data type USE funct, ONLY: get_iexch !retrieves type of exchange utilized in functional USE funct, ONLY: get_icorr !retrieves type of correlation utilized in functional USE funct, ONLY: get_igcx !retrieves type of gradient correction to exchange utilized in functional USE funct, ONLY: get_igcc !retrieves type of gradient correction to correlation utilized in functional USE io_global, ONLY: stdout !print/write argument for standard output (to output file) USE ions_base, ONLY: nat !number of total atoms (all atomic species) USE ions_base, ONLY: nsp !number of unique atomic species USE ions_base, ONLY: na !number of atoms within each atomic species USE ions_base, ONLY: ityp !ityp(i):=type/species of ith atom USE ions_base, ONLY: atm !atm(j):=name of jth atomic species (3 characters) USE kinds, ONLY: DP !double-precision kind (selected_real_kind(14,200)) ! the charge density is parallelized over the "band group" or processors USE mp_bands, ONLY: nproc_bgrp !number of processors USE mp_bands, ONLY: me_bgrp !processor number (0,1,...,nproc_bgrp-1) USE mp_bands, ONLY: intra_bgrp_comm !standard MPI communicator ! atoms are parallelized over the "image group" USE mp_images, ONLY: nproc_image !number of processors USE mp_images, ONLY: me_image !processor number (0,1,...,nproc_image-1) USE mp_images, ONLY: intra_image_comm !standard MPI communicator USE mp, ONLY: mp_sum !MPI collection with sum USE parallel_include !MPI header USE uspp_param, ONLY: upf !atomic pseudo-potential data ! IMPLICIT NONE ! SAVE ! ! PUBLIC variables ! LOGICAL, PUBLIC :: vdw_isolated ! isolated system control REAL(DP), PUBLIC:: vdw_econv_thr ! energy convergence threshold for periodic systems REAL(DP), PUBLIC :: EtsvdW !the TS-vdW energy REAL(DP), DIMENSION(:), ALLOCATABLE, PUBLIC :: UtsvdW !the TS-vdW wavefunction forces (dispersion potential) REAL(DP), DIMENSION(:,:), ALLOCATABLE, PUBLIC :: FtsvdW !the TS-vdW ionic forces (-dE/dR) REAL(DP), DIMENSION(:,:), ALLOCATABLE, PUBLIC :: HtsvdW !the TS-vdW cell forces (dE/dh) ! ! PRIVATE variables ! INTEGER, PARAMETER, PRIVATE :: NgpA=1000 !number of grid points for linear equispaced atomic grids (current value=1000pts) INTEGER, PARAMETER, PRIVATE :: bsint=BIT_SIZE(NgpA) !integer bit size (for use in bit array manipulation) INTEGER, PRIVATE :: me !processor number (1,2,...,nproc_image) INTEGER, PRIVATE :: iproc !processor dummy index INTEGER, PRIVATE :: nr1,nr2,nr3 !real space grid dimensions (global first, second, and third dimensions of the 3D grid) INTEGER, PRIVATE :: nr1r,nr2r,nr3r !reduced real space grid dimensions (global first, second, and third dimensions of the 3D grid) REAL(DP), PRIVATE :: ddamp !damping function parameter #1 REAL(DP), PRIVATE :: sR !damping function parameter #2 REAL(DP), PRIVATE :: spcutAmax !maximum radial cutoff for all atomic species INTEGER, DIMENSION(:), ALLOCATABLE, PRIVATE :: nstates !number of atoms per processor INTEGER, DIMENSION(:), ALLOCATABLE, PRIVATE :: sdispls !send displacement (offset) array INTEGER, DIMENSION(:), ALLOCATABLE, PRIVATE :: rdispls !receive displacement (offset) array INTEGER, DIMENSION(:), ALLOCATABLE, PRIVATE :: sendcount !send count array INTEGER, DIMENSION(:), ALLOCATABLE, PRIVATE :: recvcount !receive count array INTEGER, DIMENSION(:), ALLOCATABLE, PRIVATE :: istatus !MPI status array INTEGER, DIMENSION(:), ALLOCATABLE, PRIVATE :: NsomegaA !number of points in the spherical atomic integration domain INTEGER, DIMENSION(:), ALLOCATABLE, PRIVATE :: NsomegaAr !number of points in the reduced spherical atomic integration domain INTEGER, DIMENSION(:), ALLOCATABLE, PRIVATE :: npair !number of unique atom pairs INTEGER, DIMENSION(:,:), ALLOCATABLE, PRIVATE :: pair !unique atom pair overlap matrix INTEGER, DIMENSION(:,:), ALLOCATABLE, PRIVATE :: gomegar !precursor to spherical atomic integration domain (intersection bit array) INTEGER, DIMENSION(:,:,:), ALLOCATABLE, PRIVATE :: somegaA !spherical atomic integration domain INTEGER, DIMENSION(:,:,:), ALLOCATABLE, PRIVATE :: somegaAr !reduced spherical atomic integration domain INTEGER, DIMENSION(:,:,:), ALLOCATABLE, PRIVATE :: gomegaAr !reduced spherical atomic integration domain (intersection bit array) REAL(DP), DIMENSION(:), ALLOCATABLE, PRIVATE:: predveffAdn !atomic dispersion potential prefactor REAL(DP), DIMENSION(:), ALLOCATABLE, PRIVATE :: vfree !free atomic volumes for each atomic species REAL(DP), DIMENSION(:), ALLOCATABLE, PRIVATE :: dpfree !free atomic static dipole polarizability for each atomic species REAL(DP), DIMENSION(:), ALLOCATABLE, PRIVATE :: R0free !free atomic vdW radius for each atomic species REAL(DP), DIMENSION(:), ALLOCATABLE, PRIVATE :: C6AAfree !free atomic homonuclear C6 coefficient for each atomic species REAL(DP), DIMENSION(:), ALLOCATABLE, PRIVATE :: veff !effective atomic volumes for each atom in the simulation cell REAL(DP), DIMENSION(:), ALLOCATABLE, PRIVATE :: dpeff !effective atomic static dipole polarizability for each atom in the simulation cell REAL(DP), DIMENSION(:), ALLOCATABLE, PRIVATE :: R0eff !effective atomic vdW radius for each atom in the simulation cell REAL(DP), DIMENSION(:), ALLOCATABLE, PRIVATE :: C6AAeff !effective atomic homonuclear C6 coefficient for each atom in the simulation cell REAL(DP), DIMENSION(:), ALLOCATABLE, PRIVATE :: rhosad !molecular pro-density (superposition of atomic densities) on real-space mesh REAL(DP), DIMENSION(:), ALLOCATABLE, PRIVATE :: rhotot !molecular charge density on real-space mesh REAL(DP), DIMENSION(:,:), ALLOCATABLE, PRIVATE:: dveffAdn !the local copy of the TS-vdW wavefunction forces (dispersion potential) REAL(DP), DIMENSION(:,:), ALLOCATABLE, PRIVATE :: spgrd !linear equispaced grid for each atomic species REAL(DP), DIMENSION(:,:), ALLOCATABLE, PRIVATE :: sprho !atomic pseudo-density for each atomic species REAL(DP), DIMENSION(:,:), ALLOCATABLE, PRIVATE :: spdrho !first derivative of atomic pseudo-density for each atomic species REAL(DP), DIMENSION(:,:), ALLOCATABLE, PRIVATE :: spdata !linear grid cutoff (is,1) and linear grid spacing (is,2) for each atomic species REAL(DP), DIMENSION(:,:), ALLOCATABLE, PRIVATE :: LIA !A coefficient for linear interpolation of rhoA REAL(DP), DIMENSION(:,:), ALLOCATABLE, PRIVATE :: LIB !B coefficient for linear interpolation of rhoA REAL(DP), DIMENSION(:,:), ALLOCATABLE, PRIVATE :: dLIA !A coefficient for linear interpolation of drhoA REAL(DP), DIMENSION(:,:), ALLOCATABLE, PRIVATE :: dLIB !B coefficient for linear interpolation of drhoA REAL(DP), DIMENSION(:,:), ALLOCATABLE, PRIVATE :: atxyz !Cartesian coordinates of ions adjusted according to PBC REAL(DP), DIMENSION(:,:), ALLOCATABLE, PRIVATE :: C6ABfree !free atomic heteronuclear C6 coefficient for each atom pair REAL(DP), DIMENSION(:,:), ALLOCATABLE, PRIVATE :: C6ABeff !effective atomic heteronuclear C6 coefficient for each atom pair REAL(DP), DIMENSION(:,:,:), ALLOCATABLE, PRIVATE :: dveffdR !first derivative of effective volume wrt nuclear displacement REAL(DP), DIMENSION(:,:,:), ALLOCATABLE, PRIVATE :: dveffdh !first derivative of effective volume wrt cell displacement ! ! PUBLIC subroutines ! PUBLIC :: tsvdw_initialize PUBLIC :: tsvdw_calculate PUBLIC :: tsvdw_finalize ! ! PRIVATE subroutines ! PRIVATE :: tsvdw_para_init PRIVATE :: tsvdw_pbc PRIVATE :: tsvdw_unique_pair PRIVATE :: tsvdw_rhotot PRIVATE :: tsvdw_screen PRIVATE :: tsvdw_veff PRIVATE :: tsvdw_dveff PRIVATE :: tsvdw_effqnts PRIVATE :: tsvdw_energy PRIVATE :: tsvdw_wfforce PRIVATE :: tsvdw_cleanup PRIVATE :: Num1stDer PRIVATE :: CubSplCoeff PRIVATE :: GetVdWParam ! ! CONTAINS ! ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_initialize() !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! Local Variables ! LOGICAL :: uniform_grid=.FALSE. INTEGER :: ip,iq,ir,is,it,NrgpA,NrgpintA,icutrA,Ndim REAL(DP) :: dxA,gfctrA,vref,eref,verr,d,dk1,dk2,dk3,num,den,drab,f1,f2,f3,L1,L2,L3 REAL(DP), DIMENSION(:), ALLOCATABLE :: atgrdr,atgrdrab,atrhor,datrhor,d2atrhor,CSA,CSB,CSC,CSD ! ! Start of calculation banner... ! WRITE(stdout,*) WRITE(stdout,'(3X,"TS-vdW initialization")') WRITE(stdout,'(3X,"---------------------")') WRITE(stdout,*) ! ! Error messages for inconsistencies with current version of code... ! !RAD: Have we missed any inconsistencies? ! ! Setup variables for use in TS-vdW module... ! nr1=dfftp%nr1; nr2=dfftp%nr2; nr3=dfftp%nr3 nr1r=nr1/2; nr2r=nr2/2; nr3r=nr3/2 IF(MOD(nr1,2).EQ.1) nr1r=(nr1+1)/2 IF(MOD(nr2,2).EQ.1) nr2r=(nr2+1)/2 IF(MOD(nr3,2).EQ.1) nr3r=(nr3+1)/2 ! ! Initialize the TS-vdW ionic forces, cell forces, and dispersion potential (wavefunction forces)... ! ALLOCATE(FtsvdW(3,nat)); FtsvdW=0.0_DP ALLOCATE(HtsvdW(3,3)); HtsvdW=0.0_DP ! Ndim=MAX(nr1*nr2,dffts%npp(me_bgrp+1)*nr1*nr2) ALLOCATE(UtsvdW(Ndim)); UtsvdW=0.0_DP ! ! Set ddamp damping function parameter (set to 20 and functional independent)... ! WRITE(stdout,'(3X,"Determining TS-vdW damping function parameters...")') ddamp=20.0_DP WRITE(stdout,'(5X,"ddamp = ",F9.6)') ddamp ! ! Set sR damping function parameter (functional dependent and currently only available for PBE & PBE0)... ! IF (get_iexch().EQ.1.AND.get_icorr().EQ.4.AND.get_igcx().EQ.3.AND.get_igcc().EQ.4) THEN ! sR=0.94_DP !PBE=sla+pw+pbx+pbc ! ELSE IF (get_iexch().EQ.6.AND.get_icorr().EQ.4.AND.get_igcx().EQ.8.AND.get_igcc().EQ.4) THEN ! sR=0.96_DP !PBE0=pb0x+pw+pb0x+pbc !RAD/BS: This line will not work in CP unless PBE0 code update funct.f90... ! ELSE ! CALL errore('tsvdw','TS-vdW sR parameter only available for PBE and PBE0 functionals...',1) ! END IF ! IF(lwfpbe0) sR=0.96_DP !RAD/BS: Temporary fix for PBE0 (see RAD/BS flag directly above)... ! WRITE(stdout,'(5X,"sR = ",F9.6)') sR ! ! Allocate and initialize species-specific quantities... ! ALLOCATE(vfree(nsp)); vfree=0.0_DP ALLOCATE(dpfree(nsp)); dpfree=0.0_DP ALLOCATE(R0free(nsp)); R0free=0.0_DP ALLOCATE(C6AAfree(nsp)); C6AAfree=0.0_DP ALLOCATE(C6ABfree(nsp,nsp)); C6ABfree=0.0_DP ALLOCATE(spdata(nsp,2)); spdata=0.0_DP ALLOCATE(spgrd(nsp,0:NgpA)); spgrd=0.0_DP ALLOCATE(sprho(nsp,0:NgpA)); sprho=0.0_DP ALLOCATE(spdrho(nsp,0:NgpA)); spdrho=0.0_DP ALLOCATE(LIA(nsp,0:NgpA)); LIA=0.0_DP ALLOCATE(LIB(nsp,0:NgpA)); LIB=0.0_DP ALLOCATE(dLIA(nsp,0:NgpA)); dLIA=0.0_DP ALLOCATE(dLIB(nsp,0:NgpA)); dLIB=0.0_DP ! spcutAmax=0.0_DP ! ! Loop over atomic species and extract species-dependent quantities to modular arrays... ! DO is=1,nsp ! ! Obtain the radial grid and radial atomic pseudo-density from pseudo-potential file (via upf module) for ! the given atomic species. Convert the radial atomic pseudo-density to the real atomic pseudo-density using ! rho_real(r) = rho_radial(r) / (4*pi*r^2)... ! WRITE(stdout,'(3X,"Initializing species # ",I3," with atomic symbol ",A3)') is,atm(is) ! ! Read in the number of grid points in radial mesh from upf... ! NrgpA=upf(is)%mesh ! ! Transfer radial atomic grid (in upf) to local atgrdr array... ! ALLOCATE(atgrdr(NrgpA)); atgrdr=0.0_DP ! DO ir=1,NrgpA ! atgrdr(ir)=upf(is)%r(ir) ! END DO ! ! Transfer radial atomic grid spacing (in upf) to local atgrdrab array... ! ALLOCATE(atgrdrab(NrgpA)); atgrdrab=0.0_DP ! DO ir=1,NrgpA ! atgrdrab(ir)=upf(is)%rab(ir) ! END DO ! ! Determine whether radial grid is logarithmic/exponential or equispaced/uniform... ! drab=atgrdrab(NrgpA)-atgrdrab(1) IF (DABS(drab).LT.(1.0E-6_DP)) uniform_grid=.TRUE. IF (uniform_grid) WRITE(stdout,'(5X,"Equispaced/Uniform radial atomic grid detected...")') ! ! ---------------------------------------------------------------- ! Logarithmic/Exponential grid (3 parameters: zmesh, xmin, dxA) ! ---------------------------------------------------------------- ! ! For i = 1,2,...,NrgpA: ! r(i) = exp[xmin+(i-1)*dxA]/zmesh ! = exp[xmin]/zmesh * exp[(i-1)*dxA] ! = gfctrA * exp[(i-1)*dxA] ! rab(i) = r(i) * dxA ! ! Assumptions: grid does NOT start from zero (use simpson_cp90()). ! ! --------------------------------------------- ! Equispaced/Uniform grid (1 parameter: dxA) ! --------------------------------------------- ! ! For i = 1,2,...,NrgpA: ! r(i) = (i-1) * dxA ! rab(i) = dxA ! ! Assumptions: grid starts from zero (use simpson() for integration). ! ! Determine atomic radial grid parameters... ! IF (uniform_grid.EQV..TRUE.) THEN ! gfctrA=1.0_DP dxA=atgrdrab(1) ! ELSE ! gfctrA=upf(is)%r(1) dxA=DLOG(upf(is)%r(2)/upf(is)%r(1)) ! END IF ! WRITE(stdout,'(5X,"Radial grid parameter: NrgpA is ",I5,".")') NrgpA WRITE(stdout,'(5X,"Radial grid parameter: gfctrA is ",F9.6,".")') gfctrA WRITE(stdout,'(5X,"Radial grid parameter: dxA is ",F9.6,".")') dxA ! ! Transfer radial atomic pseudo-density to atrhor array... ! Convert radial atomic pseudo-density to real atomic pseudo-density [n(r) = nrad(r)/(4*pi*r^2)]... ! ALLOCATE(atrhor(NrgpA)); atrhor=0.0_DP ! IF (uniform_grid.EQV..TRUE.) THEN ! DO ir=2,NrgpA ! atrhor(ir)=(upf(is)%rho_at(ir))/(4.0_DP*pi*atgrdr(ir)**(2.0_DP)) ! skip point at r=0... ! END DO ! ! Quadratic extrapolation of the atomic density to r=0... ! L1=((0.0_DP-atgrdr(3))*(0.0_DP-atgrdr(4)))/((atgrdr(2)-atgrdr(3))*(atgrdr(2)-atgrdr(4))) L2=((0.0_DP-atgrdr(2))*(0.0_DP-atgrdr(4)))/((atgrdr(3)-atgrdr(2))*(atgrdr(3)-atgrdr(4))) L3=((0.0_DP-atgrdr(2))*(0.0_DP-atgrdr(3)))/((atgrdr(4)-atgrdr(2))*(atgrdr(4)-atgrdr(3))) atrhor(1)=L1*atrhor(2)+L2*atrhor(3)+L3*atrhor(4) ! ELSE ! DO ir=1,NrgpA ! atrhor(ir)=(upf(is)%rho_at(ir))/(4.0_DP*pi*atgrdr(ir)**(2.0_DP)) ! END DO ! END IF ! ! Set NrgpintA as the number of grid points (which must be odd) used during numerical integration using Simpson's rule... ! IF (IAND(NrgpA,1).EQ.1) THEN ! NrgpintA=NrgpA ! ELSE ! NrgpintA=NrgpA-1 ! END IF ! ! Compute the number of electrons (eref) for each atomic species via numerical integration ! of the atomic pseudo-density on the radial atomic grid using Simpson's rule... ! eref=0.0_DP ! DO ir=1,NrgpintA-2,2 ! f1=atrhor(ir )*atgrdrab(ir )*atgrdr(ir )**(2.0_DP) ! integrated quantity is rho f2=atrhor(ir+1)*atgrdrab(ir+1)*atgrdr(ir+1)**(2.0_DP) f3=atrhor(ir+2)*atgrdrab(ir+2)*atgrdr(ir+2)**(2.0_DP) ! eref=eref+(f1+4.0_DP*f2+f3) ! END DO ! eref=(4.0_DP*pi/3.0_DP)*eref WRITE(stdout,'(5X,"The number of valence electrons, eref, is ",F25.15,".")') eref ! ! Compute the reference free atom volume (vref) for each atomic species via numerical integration ! of the atomic pseudo-density on the radial atomic grid using Simpson's rule... ! vref=0.0_DP ! DO ir=1,NrgpintA-2,2 ! f1=atrhor(ir )*atgrdrab(ir )*atgrdr(ir )**(5.0_DP) ! integrated quantity is rho * r^3 f2=atrhor(ir+1)*atgrdrab(ir+1)*atgrdr(ir+1)**(5.0_DP) f3=atrhor(ir+2)*atgrdrab(ir+2)*atgrdr(ir+2)**(5.0_DP) ! vref=vref+(f1+4.0_DP*f2+f3) ! END DO ! vref=(4.0_DP*pi/3.0_DP)*vref WRITE(stdout,'(5X,"The reference free atom volume, vref, is ",F25.15," bohr^3.")') vref ! ! Using the reference free atom volume, determine an acceptable radial grid cutoff value such that the ! free atom volume obtained using this cutoff does not deviate from the reference value by more than 1.0%. ! WRITE(stdout,'(5X,"Determining intial radial grid cutoff...")') ! DO iq=5,NrgpintA,2 ! vfree(is)=0.0_DP verr=0.0_DP ! DO ir=1,iq-2,2 ! f1=atrhor(ir )*atgrdrab(ir )*atgrdr(ir )**(5.0_DP) ! integrated quantity is rho * r^3 f2=atrhor(ir+1)*atgrdrab(ir+1)*atgrdr(ir+1)**(5.0_DP) f3=atrhor(ir+2)*atgrdrab(ir+2)*atgrdr(ir+2)**(5.0_DP) ! vfree(is)=vfree(is)+(f1+4.0_DP*f2+f3) ! END DO ! vfree(is)=(4.0_DP*pi/3.0_DP)*vfree(is) verr=(vref-vfree(is))/vref*100.0_DP ! IF (verr.LE.1.0_DP) THEN ! icutrA=iq ! WRITE(stdout,'(5X,"An acceptable radial grid cutoff was determined by retaining ",I4," of ",I4," radial grid points.")') & icutrA,NrgpA ! EXIT ! END IF ! END DO ! WRITE(stdout,'(5X,"The magnitude of the atomic pseudo-density at the radial grid cutoff is ",ES13.6,".")') atrhor(icutrA) WRITE(stdout,'(5X,"Using this radial grid cutoff value of ",F25.15," au:")') atgrdr(icutrA) WRITE(stdout,'(5X,"The free atom volume computed with this cutoff is ",F25.15," bohr^3 with an error of ",F6.3,"%.")') & vfree(is),verr ! ! Form 1st derivative of atrhor for input into cubic spline coefficient subroutine... ! ALLOCATE(datrhor(NrgpA)); datrhor=0.0_DP CALL Num1stDer(atgrdr,atrhor,NrgpA,dxA,datrhor) ! ! For logarithmic/exponential grid, transform linear derivative back to radial grid... ! IF (.NOT.uniform_grid) THEN ! DO ir=1,NrgpA ! datrhor(ir)=datrhor(ir)/atgrdr(ir) ! END DO ! END IF ! ! Form the coefficients of the cubic spline interpolant (2nd derivatives) for the real atomic pseudo-density ! for use during cubic spline interpolation of the pseudo-density onto the linear equispaced atomic grid... ! ALLOCATE(d2atrhor(NrgpA)); d2atrhor=0.0_DP CALL CubSplCoeff(atgrdr,atrhor,NrgpA,datrhor,d2atrhor) ! ! Precompute cubic spline interpolation vectors (utilizing Taylor series form) via: ! ! y(x) = CSA + CSB*(x-x(k)) + CSC*(x-x(k))**2 + CSD*(x-x(k))**3 ! ALLOCATE(CSA(NrgpA)); CSA=0.0_DP ALLOCATE(CSB(NrgpA)); CSB=0.0_DP ALLOCATE(CSC(NrgpA)); CSC=0.0_DP ALLOCATE(CSD(NrgpA)); CSD=0.0_DP ! DO ir=1,NrgpA-1 ! ! CSA(k) := y(k) ! CSA(ir)=atrhor(ir) ! ! CSB(k) := delta(y)/delta(x) - 1/3*delta(x)*y''(k) - 1/6*delta(x)*y''(k+1) ! CSB(ir)=(atrhor(ir+1)-atrhor(ir))/(atgrdr(ir+1)-atgrdr(ir)) CSB(ir)=CSB(ir)-((1.0_DP/3.0_DP)*(atgrdr(ir+1)-atgrdr(ir))*d2atrhor(ir)) CSB(ir)=CSB(ir)-((1.0_DP/6.0_DP)*(atgrdr(ir+1)-atgrdr(ir))*d2atrhor(ir+1)) ! ! CSC(k) := 1/2*y''(k) ! CSC(ir)=(1.0_DP/2.0_DP)*d2atrhor(ir) ! ! CSD(k) := 1/6*delta(y'')/delta(x) ! CSD(ir)=((1.0_DP/6.0_DP)*(d2atrhor(ir+1)-d2atrhor(ir))/(atgrdr(ir+1)-atgrdr(ir))) ! END DO ! ! Pack species-specific radial cutoff into (is,1) of spdata array... ! spdata(is,1)=atgrdr(icutrA) IF (spdata(is,1).GT.spcutAmax) spcutAmax=spdata(is,1) ! ! Compute and pack grid spacing of species-specific linear equispaced grid into (is,2) of spdata array... ! spdata(is,2)=(atgrdr(icutrA)+1.0_DP)/DBLE(NgpA) !include additional buffer of 1 bohr... WRITE(stdout,'(5X,"Linear grid spacing was computed as: ",F25.15," bohr.")') spdata(is,2) ! ! Form linear equispaced atomic grid (NOT including point at r=0) and pack into argument (is,:) of spgrd array... ! DO ip=1,NgpA ! spgrd(is,ip)=DBLE(ip)*spdata(is,2) ! END DO ! ! Map atomic pseudo-density (currently on the radial atomic grid) onto linear equispaced atomic grid using ! cubic spline interpolation...Form first derivative of the atomic pseudo-density on the linear equispaced ! atomic grid via differentiation of the cubic spline interpolant... ! DO ip=1,NgpA ! d=spgrd(is,ip) ! IF (uniform_grid.EQV..TRUE.) THEN ! ir=INT(d/dxA)+1 !since the equispaced/uniform grid first point is at r=0... ! ELSE ! ir=FLOOR(DLOG(d*EXP(dxA)/gfctrA)/dxA) ! END IF ! dk1=d-atgrdr(ir); dk2=dk1*dk1; dk3=dk2*dk1 sprho(is,ip)=CSA(ir)+CSB(ir)*dk1+CSC(ir)*dk2+CSD(ir)*dk3 !Pack density into argument (is,:) of sprho array spdrho(is,ip)=CSB(ir)+2.0_DP*CSC(ir)*dk1+3.0_DP*CSD(ir)*dk2 !Pack density derivative into argument (is,:) of spdrho array ! END DO ! ! For computational efficiency during the remainder of the calculation, extrapolate sprho and spdrho to ! include the point at r=0 (this eliminates an if statement in crucial inner loops)... ! Use quadratic extrapolation to obtain these points...Hence the 0:NgpA dimension above... ! spgrd(is,0)=0.0_DP !Extend linear grid to include point at r=0... ! L1=((0.0_DP-spgrd(is,2))*(0.0_DP-spgrd(is,3)))/((spgrd(is,1)-spgrd(is,2))*(spgrd(is,1)-spgrd(is,3))) L2=((0.0_DP-spgrd(is,1))*(0.0_DP-spgrd(is,3)))/((spgrd(is,2)-spgrd(is,1))*(spgrd(is,2)-spgrd(is,3))) L3=((0.0_DP-spgrd(is,1))*(0.0_DP-spgrd(is,2)))/((spgrd(is,3)-spgrd(is,1))*(spgrd(is,3)-spgrd(is,2))) sprho(is,0)=L1*sprho(is,1)+L2*sprho(is,2)+L3*sprho(is,3) !Extend atomic pseudo-density to include point at r=0... spdrho(is,0)=L1*spdrho(is,1)+L2*spdrho(is,2)+L3*spdrho(is,3) !Extend atomic pseudo-density derivative to include point at r=0... ! ! Throughout the remainder of the code, to map the atomic quantities onto the real-space mesh, we will be ! utilizing the Taylor series form of linear interpolation, given by: ! ! y(x) = LIA + LIB*(x-x(k)) y'(x) = dLIA + dLIB*(x-x(k)) ! ! for x(k) <= x <= x(k+1)... ! DO ip=0,NgpA-1 ! ! LIA(k) := y(k) ! LIA(is,ip)=sprho(is,ip) dLIA(is,ip)=spdrho(is,ip) ! ! LIB(k) := delta(y)/delta(x) ! LIB(is,ip)=(sprho(is,ip+1)-sprho(is,ip))/(spgrd(is,ip+1)-spgrd(is,ip)) dLIB(is,ip)=(spdrho(is,ip+1)-spdrho(is,ip))/(spgrd(is,ip+1)-spgrd(is,ip)) ! END DO ! ! Populate reference free atom quantities... ! CALL GetVdWParam(atm(is),C6AAfree(is),dpfree(is),R0free(is)) ! WRITE(stdout,'(5X,"The free atom static dipole polarizability is ",F13.6," bohr^3.")') dpfree(is) WRITE(stdout,'(5X,"The free atom homonuclear C6 coefficient is ",F13.6," Hartree bohr^6.")') C6AAfree(is) WRITE(stdout,'(5X,"The free atom vdW radius is ",F13.6," bohr.")') R0free(is) ! ! Clean-up all species-specific temporary arrays ! IF (ALLOCATED(atgrdr)) DEALLOCATE(atgrdr) IF (ALLOCATED(atgrdrab)) DEALLOCATE(atgrdrab) IF (ALLOCATED(atrhor)) DEALLOCATE(atrhor) IF (ALLOCATED(datrhor)) DEALLOCATE(datrhor) IF (ALLOCATED(d2atrhor)) DEALLOCATE(d2atrhor) IF (ALLOCATED(CSA)) DEALLOCATE(CSA) IF (ALLOCATED(CSB)) DEALLOCATE(CSB) IF (ALLOCATED(CSC)) DEALLOCATE(CSC) IF (ALLOCATED(CSD)) DEALLOCATE(CSD) ! END DO !is ! ! Compute free heteronuclear C6 coefficient matrix... ! C6ABfree(A,B)=[2*C6AAfree(A)*C6AAfree(B)]/[(dpfree(B)/dpfree(A))*C6AAfree(A)+(dpfree(A)/dpfree(B))*C6AAfree(B)] ! DO is=1,nsp ! DO it=1,nsp ! num=2.0_DP*C6AAfree(is)*C6AAfree(it) den=(dpfree(it)/dpfree(is))*C6AAfree(is)+(dpfree(is)/dpfree(it))*C6AAfree(it) C6ABfree(is,it)=num/den ! END DO ! END DO ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_initialize !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_calculate(tauin, rhor) !-------------------------------------------------------------------------------------------------------------- ! TS-vdW Management Code: Manages entire calculation of TS-vdW energy, wavefunction forces, and ion forces via ! calls to PRIVATE subroutines below (called in each MD step). The calls to tsvdw_initialize and tsvdw_finalize ! are done once at the beginning (init_run) and the end (terminate_run). !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! I/O variables ! REAL(DP), INTENT(IN) :: rhor(:,:) REAL(DP) :: tauin(3,nat) ! ! Parallel initialization... ! CALL tsvdw_para_init() ! ! Move all atoms into simulation cell by adjusting Cartesian coordinates according to PBCs... ! CALL tsvdw_pbc(tauin) ! ! Compute unique atom pair list... ! CALL tsvdw_unique_pair() ! ! Obtain molecular charge density given on the real-space mesh... ! CALL tsvdw_rhotot( rhor ) ! ! Determine spherical atomic integration domains and atom overlap (bit array)... ! Compute molecular pro-density (superposition of atomic densities) on the real-space mesh... ! Compute functional derivative of vdW energy wrt charge density (numerator only)... ! CALL tsvdw_screen() ! ! Compute effective volume for each atom in the simulation cell... ! Complete functional derivative of vdW energy wrt charge density... ! CALL tsvdw_veff() ! ! Calculate first derivative of veff wrt nuclear and cell displacements... ! CALL tsvdw_dveff() ! ! Calculate effective quantities for each atom in the simulation cell... ! CALL tsvdw_effqnts() ! ! Calculate total TS-vdW energy, dispersion potential prefactor, ionic forces, and cell forces... ! CALL tsvdw_energy() ! ! Calculate total TS-vdW wavefunction forces (dispersion potential)... ! CALL tsvdw_wfforce() ! ! Deallocate all arrays specific to tsvdw_calculate... ! CALL tsvdw_cleanup() ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_calculate !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_para_init() !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER :: i,j,k ! me=me_image+1 ! ALLOCATE(nstates(nproc_image)); nstates=0 ALLOCATE(sdispls(nproc_image)); sdispls=0 ALLOCATE(sendcount(nproc_image)); sendcount=0 ALLOCATE(rdispls(nproc_image)); rdispls=0 ALLOCATE(recvcount(nproc_image)); recvcount=0 ALLOCATE(istatus(nproc_image)); istatus=0 ! ! Assign workload of atoms over nproc_image processors ! IF (nat.LE.nproc_image) THEN ! DO i=1,nat ! nstates(i)=1 ! END DO ! ELSE ! k=0 ! 10 DO j=1,nproc_image ! nstates(j)=nstates(j)+1 ! k=k+1 ! IF (k.GE.nat) GO TO 20 ! END DO ! IF (k.LT.nat) GO TO 10 ! END IF ! 20 CONTINUE ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_para_init !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_pbc(tauin) !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! I/O variables ! REAL(DP) :: tauin(3,nat) ! ! Local variables ! INTEGER :: ia REAL(DP), DIMENSION(:,:), ALLOCATABLE :: atxyzs ! ! Initialization of PBC-adjusted Cartesian coordinates... ! ALLOCATE(atxyz(3,nat)); atxyz=0.0_DP ALLOCATE(atxyzs(3,nat)); atxyzs=0.0_DP ! ! Adjust Cartesian coordinates of ions according to periodic boundary conditions... ! N.B.: PBC are imposed here in the range [0,1)... ! DO ia = 1, nat ! atxyzs(1,ia)=ainv(1,1)*tauin(1,ia)+ainv(1,2)*tauin(2,ia)+ainv(1,3)*tauin(3,ia) ! s = h^-1 r atxyzs(2,ia)=ainv(2,1)*tauin(1,ia)+ainv(2,2)*tauin(2,ia)+ainv(2,3)*tauin(3,ia) ! s = h^-1 r atxyzs(3,ia)=ainv(3,1)*tauin(1,ia)+ainv(3,2)*tauin(2,ia)+ainv(3,3)*tauin(3,ia) ! s = h^-1 r ! atxyzs(1,ia)=atxyzs(1,ia)-FLOOR(atxyzs(1,ia)) ! impose PBC on s in range: [0,1) atxyzs(2,ia)=atxyzs(2,ia)-FLOOR(atxyzs(2,ia)) ! impose PBC on s in range: [0,1) atxyzs(3,ia)=atxyzs(3,ia)-FLOOR(atxyzs(3,ia)) ! impose PBC on s in range: [0,1) ! atxyz(1,ia)=h(1,1)*atxyzs(1,ia)+h(1,2)*atxyzs(2,ia)+h(1,3)*atxyzs(3,ia) ! r = h s atxyz(2,ia)=h(2,1)*atxyzs(1,ia)+h(2,2)*atxyzs(2,ia)+h(2,3)*atxyzs(3,ia) ! r = h s atxyz(3,ia)=h(3,1)*atxyzs(1,ia)+h(3,2)*atxyzs(2,ia)+h(3,3)*atxyzs(3,ia) ! r = h s ! END DO ! IF (ALLOCATED(atxyzs)) DEALLOCATE(atxyzs) ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_pbc !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_unique_pair() !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! Local variables ! INTEGER :: ia,ib,ias,ibs,ip,ir,i,j,k,jj,nj_max,nbmax,num,num1,jj_neib_of_i REAL(DP) :: spcutA,spcutB,dAB(3),dAB2(3) INTEGER, DIMENSION(:), ALLOCATABLE :: nj,overlap2 INTEGER, DIMENSION(:,:), ALLOCATABLE :: overlap REAL(DP), DIMENSION(:), ALLOCATABLE :: dABmic ! CALL start_clock('tsvdw_pair') ! ! Allocate and initialize temporary arrays... ! ALLOCATE(dABmic(nat)); dABmic=0.0_DP ALLOCATE(overlap(nat,nat)); overlap=0 ALLOCATE(overlap2(nat)); overlap2=0 ALLOCATE(nj(nat)); nj=0 ! ! Outer loop over atoms A to form non-unique atom pair overlap matrix... ! DO ia=1,nat ! nj(ia)=0; dABmic=0.0_DP ! ! Connect atom type with species-dependent quantities... ! ias=ityp(ia) ! ! Transfer species-specific cutoff to spcutA... ! spcutA=spdata(ias,1) ! ! Inner loop over atoms B... ! DO ib=1,nat ! IF(ib.NE.ia) THEN ! ! Connect atom type with species-dependent quantities... ! ibs=ityp(ib) ! ! Transfer species-specific cutoff to spcutB... ! spcutB=spdata(ibs,1) ! ! Compute distance between atom A and atom B (according to the minimum image convention)... ! dAB(1)=atxyz(1,ia)-atxyz(1,ib) ! r_AB = r_A - r_B dAB(2)=atxyz(2,ia)-atxyz(2,ib) ! r_AB = r_A - r_B dAB(3)=atxyz(3,ia)-atxyz(3,ib) ! r_AB = r_A - r_B ! dAB2(1)=ainv(1,1)*dAB(1)+ainv(1,2)*dAB(2)+ainv(1,3)*dAB(3) ! s_AB = h^-1 r_AB dAB2(2)=ainv(2,1)*dAB(1)+ainv(2,2)*dAB(2)+ainv(2,3)*dAB(3) ! s_AB = h^-1 r_AB dAB2(3)=ainv(3,1)*dAB(1)+ainv(3,2)*dAB(2)+ainv(3,3)*dAB(3) ! s_AB = h^-1 r_AB ! dAB2(1)=dAB2(1)-IDNINT(dAB2(1)) ! impose MIC on s_AB in range: [-0.5,+0.5] dAB2(2)=dAB2(2)-IDNINT(dAB2(2)) ! impose MIC on s_AB in range: [-0.5,+0.5] dAB2(3)=dAB2(3)-IDNINT(dAB2(3)) ! impose MIC on s_AB in range: [-0.5,+0.5] ! dAB(1)=h(1,1)*dAB2(1)+h(1,2)*dAB2(2)+h(1,3)*dAB2(3) ! r_AB = h s_AB (MIC) dAB(2)=h(2,1)*dAB2(1)+h(2,2)*dAB2(2)+h(2,3)*dAB2(3) ! r_AB = h s_AB (MIC) dAB(3)=h(3,1)*dAB2(1)+h(3,2)*dAB2(2)+h(3,3)*dAB2(3) ! r_AB = h s_AB (MIC) ! dABmic(ib)=DSQRT(dAB(1)*dAB(1)+dAB(2)*dAB(2)+dAB(3)*dAB(3)) ! |r_A - r_B| (MIC) ! IF(dABmic(ib).LT.(spcutA+spcutB)) THEN ! nj(ia)=nj(ia)+1 overlap(nj(ia),ia)=ib ! IF(nj(ia).EQ.1) THEN ! overlap(nj(ia),ia)=ib ! ELSE IF(dABmic(overlap(nj(ia)-1,ia)).LE.dABmic(ib)) THEN ! overlap(nj(ia),ia)=ib ! ELSE ! overlap2(:)=0 ! DO ir=1,nj(ia)-1 ! IF(dABmic(overlap(ir,ia)).LT.dABmic(ib)) THEN ! overlap2(ir)=overlap(ir,ia) ! ELSE ! overlap2(ir)=ib ! DO ip=ir+1,nj(ia) ! overlap2(ip)=overlap(ip-1,ia) ! END DO ! GO TO 30 ! END IF ! END DO !ir ! 30 CONTINUE ! DO ir=1,nj(ia) ! overlap(ir,ia)=overlap2(ir) ! END DO ! END IF !nj(ia) ! END IF !dABmic(j) ! END IF !ia/=ib ! END DO !ib ! END DO !ia ! IF (ALLOCATED(dABmic)) DEALLOCATE(dABmic) IF (ALLOCATED(overlap2)) DEALLOCATE(overlap2) ! ! Now form unique atom pair overlap matrix... ! nbmax=nat ! ALLOCATE(pair(nbmax,nat)); pair=0 ALLOCATE(npair(nat)); npair=0 ! num=0; num1=0 ! DO j=1,nbmax ! DO ia=1,nat ! DO jj=1,nj(ia) ! jj_neib_of_i=overlap(jj,ia) ! IF(jj_neib_of_i.GT.0) THEN ! pair(j,ia)=jj_neib_of_i overlap(jj,ia)=0 num=num+1 ! DO k=1,nj(jj_neib_of_i) ! IF(overlap(k,jj_neib_of_i).EQ.ia) THEN ! overlap(k,jj_neib_of_i)=0 num1=num1+1 ! GO TO 40 ! END IF ! END DO !k ! END IF ! END DO !jj ! 40 CONTINUE ! END DO !ia ! END DO !j ! IF(num.NE.num1) THEN ! CALL errore('tsvdw','ERROR: num .NE. num1...',1) ! END IF ! ! Count number of unique atom pairs for each atom... ! DO ia=1,nat ! num=0 ! DO j=1,nbmax ! IF(pair(j,ia).NE.0) num=num+1 ! END DO ! npair(ia)=num ! END DO ! IF (ALLOCATED(overlap)) DEALLOCATE(overlap) IF (ALLOCATED(nj)) DEALLOCATE(nj) ! CALL stop_clock('tsvdw_pair') ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_unique_pair !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_rhotot( rhor ) !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: rhor(:,:) ! ! Local variables ! INTEGER :: ir,ierr,nspin REAL(DP), DIMENSION(:), ALLOCATABLE :: rhor_tmp1,rhor_tmp2 ! CALL start_clock('tsvdw_rhotot') ! ! Initialization of rhotot array (local copy of the real-space charge density)... ! ALLOCATE(rhotot(nr1*nr2*nr3)); rhotot=0.0_DP nspin = SIZE(rhor,2) IF ( nspin < 1 .OR. nspin > 2 ) CALL errore ('tsvdw','invalid nspin',1) #ifdef __MPI ! ! Initialization of rhor_tmp temporary buffers... ! ALLOCATE(rhor_tmp1(nr1*nr2*nr3)); rhor_tmp1=0.0_DP ! IF (nspin.EQ.2) THEN ! ALLOCATE(rhor_tmp2(nr1*nr2*nr3)); rhor_tmp2=0.0_DP ! END IF ! ! Collect distributed rhor and broadcast to all processors... ! DO iproc=1,nproc_bgrp ! recvcount(iproc)=dffts%npp(iproc)*nr1*nr2 ! END DO ! rdispls(1) = 0 ! DO iproc=2,nproc_bgrp ! rdispls(iproc)=rdispls(iproc-1)+recvcount(iproc-1) ! END DO ! CALL MPI_ALLGATHERV(rhor(1,1),dffts%npp(me_bgrp+1)*nr1*nr2,& MPI_DOUBLE_PRECISION,rhor_tmp1(1),recvcount,rdispls,& MPI_DOUBLE_PRECISION,intra_bgrp_comm,ierr) ! IF (nspin.EQ.2) THEN ! CALL MPI_ALLGATHERV(rhor(1,2),dffts%npp(me_bgrp+1)*nr1*nr2,& MPI_DOUBLE_PRECISION,rhor_tmp2(1),recvcount,rdispls,& MPI_DOUBLE_PRECISION,intra_bgrp_comm,ierr) ! END IF ! ! Transfer rhor temporary arrays to rhotot array... ! rhotot=rhor_tmp1 ! IF (nspin.EQ.2) THEN ! rhotot=rhotot+rhor_tmp2 ! END IF ! ! Clean-up temporary arrays... ! IF (ALLOCATED(rhor_tmp1)) DEALLOCATE(rhor_tmp1) IF (ALLOCATED(rhor_tmp2)) DEALLOCATE(rhor_tmp2) ! #else rhotot(:) = rhor(:,1) IF (nspin == 2) rhotot(:) = rhotot(:) + rhor(:,2) #endif CALL stop_clock('tsvdw_rhotot') ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_rhotot !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_screen() !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! Local variables ! INTEGER :: ia,ias,Ntmp,Ntmpr,Npts,Nptsr,ir1,ir2,ir3,Ndim,Nints,off1,off1r,ioff,boff,iq,ir REAL(DP) :: spcutA,spdA,dq(3),dqA(3),dqAs(3),dk1,rhoA REAL(DP), ALLOCATABLE :: dqAmic(:,:,:),dveffAdntmp(:,:,:) ! CALL start_clock('tsvdw_screen') ! ! Allocate and initialize gomegar array which contains (in a bit array) which atoms contribute to a given point ! on the reduced real-space grid for all atoms... ! Nints=nat/bsint+1 ALLOCATE(gomegar(nr1r*nr2r*nr3r,Nints)); gomegar=0 ! ! Allocate and initialize NsomegaA and NsomegaAr arrays which contains the number of points in the ! full and reduced spherical atomic integration domains for all atoms... ! ALLOCATE(NsomegaA(nat)); NsomegaA=0 ALLOCATE(NsomegaAr(nat)); NsomegaAr=0 ! ! Allocate and initialize somegaA and somegaAr arrays which contains the grid indices (along nr1,nr2,nr3) for each point in the ! full and reduced spherical atomic integration domains for each atom assigned to a given processor... ! Ntmp=INT(1.10_DP*((4.0_DP/3.0_DP)*pi*spcutAmax**(3.0_DP)/omega)*(nr1*nr2*nr3)) ! Number of points in the full sphere + 10% buffer (to be safe) Ntmpr=INT(1.10_DP*((4.0_DP/3.0_DP)*pi*spcutAmax**(3.0_DP)/omega)*(nr1r*nr2r*nr3r)) ! Number of points in the reduced sphere + 10% buffer (to be safe) Ndim=MAX(1,nstates(me)) ALLOCATE(somegaA(Ntmp,3,Ndim)); somegaA=0 ALLOCATE(somegaAr(Ntmpr,3,Ndim)); somegaAr=0 ! ! Allocate and initialize gomegaAr array which contains in a bit array all of the atoms that intersect with each point in the ! reduced spherical atomic integration domain for each atom assigned to a given processor... ! ALLOCATE(gomegaAr(Ntmpr,Nints,Ndim)); gomegaAr=0 ! ! Initialization of rhosad(r)... ! ALLOCATE(rhosad(nr1*nr2*nr3)); rhosad=0.0_DP ! ! Initialization of dVA/dn(r)... ! ALLOCATE(dveffAdn(Ntmp,Ndim)); dveffAdn=0.0_DP ! DO iproc=1,nstates(me) ! ! Connect processor number with atom... ! ia=me+nproc_image*(iproc-1) ! ! Connect atom type with species-dependent quantities... ! ias=ityp(ia) ! ! Transfer species-specific cutoff to spcutA... ! spcutA=spdata(ias,1) ! ! Precompute inverse of species-specific linear grid spacing (replaces / with * inside inner loop)... ! spdA=1.0_DP/spdata(ias,2) ! ! Loop over grid points and determine if they belong to spherical atomic integration domain (if r < RcutA)... ! Npts=0; Nptsr=0 ! ALLOCATE(dqAmic(nr1,nr2,nr3)); dqAmic=0.0_DP ALLOCATE(dveffAdntmp(nr1,nr2,nr3)); dveffAdntmp=0.0_DP ! !$omp parallel do private(dq,dqA,dqAs,ir,dk1,rhoA,off1,ioff,boff,off1r) DO ir1=1,nr1 ! dq(1)=DBLE(ir1-1)/DBLE(nr1) ! s_i(1) ! DO ir2=1,nr2 ! dq(2)=DBLE(ir2-1)/DBLE(nr2) ! s_i(2) ! DO ir3=1,nr3 ! dq(3)=DBLE(ir3-1)/DBLE(nr3) ! s_i(3) ! ! Compute distance between grid point and atom according to minimum image convention (MIC)... ! dqA(1)=h(1,1)*dq(1)+h(1,2)*dq(2)+h(1,3)*dq(3) ! r_i = h s_i dqA(2)=h(2,1)*dq(1)+h(2,2)*dq(2)+h(2,3)*dq(3) ! r_i = h s_i dqA(3)=h(3,1)*dq(1)+h(3,2)*dq(2)+h(3,3)*dq(3) ! r_i = h s_i ! dqA(1)=dqA(1)-atxyz(1,ia) ! r_iA = r_i - r_A dqA(2)=dqA(2)-atxyz(2,ia) ! r_iA = r_i - r_A dqA(3)=dqA(3)-atxyz(3,ia) ! r_iA = r_i - r_A ! dqAs(1)=ainv(1,1)*dqA(1)+ainv(1,2)*dqA(2)+ainv(1,3)*dqA(3) ! s_iA = h^-1 r_iA dqAs(2)=ainv(2,1)*dqA(1)+ainv(2,2)*dqA(2)+ainv(2,3)*dqA(3) ! s_iA = h^-1 r_iA dqAs(3)=ainv(3,1)*dqA(1)+ainv(3,2)*dqA(2)+ainv(3,3)*dqA(3) ! s_iA = h^-1 r_iA ! dqAs(1)=dqAs(1)-IDNINT(dqAs(1)) ! impose MIC on s_iA in range: [-0.5,+0.5] dqAs(2)=dqAs(2)-IDNINT(dqAs(2)) ! impose MIC on s_iA in range: [-0.5,+0.5] dqAs(3)=dqAs(3)-IDNINT(dqAs(3)) ! impose MIC on s_iA in range: [-0.5,+0.5] ! dqA(1)=h(1,1)*dqAs(1)+h(1,2)*dqAs(2)+h(1,3)*dqAs(3) ! r_iA = h s_iA (MIC) dqA(2)=h(2,1)*dqAs(1)+h(2,2)*dqAs(2)+h(2,3)*dqAs(3) ! r_iA = h s_iA (MIC) dqA(3)=h(3,1)*dqAs(1)+h(3,2)*dqAs(2)+h(3,3)*dqAs(3) ! r_iA = h s_iA (MIC) ! dqAmic(ir1,ir2,ir3)=DSQRT(dqA(1)*dqA(1)+dqA(2)*dqA(2)+dqA(3)*dqA(3)) ! |r_i - r_A| (MIC) ! ! Screen grid point according to atomic radial cutoff... ! IF (dqAmic(ir1,ir2,ir3).LE.spcutA) THEN ! ! Form rhosad(r) on the real-space mesh... ! N.B. This algorithm only works when the images of a given atom are greater than the radial grid cutoff values for ALL atomic species... ! ! Determine the index in the atomic linear equispaced grid such that grd(ir) <= dqA <= grd(ir+1) and distance between dqA and grd(ir)... ! ir=INT(dqAmic(ir1,ir2,ir3)*spdA) dk1=dqAmic(ir1,ir2,ir3)-spgrd(ias,ir) ! ! Perform linear interpolation to obtain the value of the atomic pseudo-density at the given grid point... ! rhoA=LIA(ias,ir)+LIB(ias,ir)*dk1 ! ! Increment contribution to rhosad(r)... ! off1=ir1+(ir2-1)*nr1+(ir3-1)*nr1*nr2 !global offset [nr1,nr2,nr3] rhosad(off1)=rhosad(off1)+rhoA ! ! Form numerator of dVA/dn(r) only... ! dveffAdntmp(ir1,ir2,ir3)=dqAmic(ir1,ir2,ir3)**(3.0_DP)*rhoA ! ! On reduced grid only, form screened somegaAr and gomegar... ! IF ((MOD(ir1,2).EQ.1).AND.(MOD(ir2,2).EQ.1).AND.(MOD(ir3,2).EQ.1)) THEN ! ioff=((ia-1)/bsint)+1 ! integer offset for gomegar bit array boff=(ia-((ioff-1)*bsint))-1 ! bit offset for gomegar bit array off1r=(ir1+1)/2+((ir2-1)/2)*nr1r+((ir3-1)/2)*nr1r*nr2r ! reduced global offset [nr1r,nr2r,nr3r] ! gomegar(off1r,ioff)=IBSET(gomegar(off1r,ioff),boff) ! END IF ! END IF ! END DO !ir3 ! END DO !ir2 ! END DO !ir1 !$omp end parallel do ! DO ir1=1,nr1 ! DO ir2=1,nr2 ! DO ir3=1,nr3 ! ! Screen grid point according to atomic radial cutoff... ! IF (dqAmic(ir1,ir2,ir3).LE.spcutA) THEN ! Npts=Npts+1 ! ! Form screened somegaA... ! somegaA(Npts,1,iproc)=ir1 somegaA(Npts,2,iproc)=ir2 somegaA(Npts,3,iproc)=ir3 ! dveffAdn(Npts,iproc)=dveffAdntmp(ir1,ir2,ir3) ! ! On reduced grid only, form screened somegaAr ... ! IF ((MOD(ir1,2).EQ.1).AND.(MOD(ir2,2).EQ.1).AND.(MOD(ir3,2).EQ.1)) THEN ! Nptsr=Nptsr+1 ! ! Form reduced screened somegaAr... ! somegaAr(Nptsr,1,iproc)=ir1 somegaAr(Nptsr,2,iproc)=ir2 somegaAr(Nptsr,3,iproc)=ir3 ! END IF ! END IF END DO !ir3 ! END DO !ir2 ! END DO !ir1 ! NsomegaA(ia)=Npts NsomegaAr(ia)=Nptsr ! IF (ALLOCATED(dqAmic)) DEALLOCATE(dqAmic) IF (ALLOCATED(dveffAdntmp)) DEALLOCATE(dveffAdntmp) ! END DO ! iproc ! ! Collect NsomegaA, NsomegaAr, gomegar, and rhosad over all processors and broadcast... ! CALL mp_sum(NsomegaA,intra_image_comm) CALL mp_sum(NsomegaAr,intra_image_comm) CALL mp_sum(gomegar,intra_image_comm) CALL mp_sum(rhosad,intra_image_comm) ! ! Decompose gomegar to gomegaAr to save on memory storage... ! DO iproc=1,nstates(me) ! ! Connect processor number with atom... ! ia=me+nproc_image*(iproc-1) ! ! Loop over points in the (pre-screened) reduced spherical atomic integration domain... ! !$omp parallel do private(off1r,ir) DO iq=1,NsomegaAr(ia) ! DO ir=1,Nints ! off1r=(somegaAr(iq,1,iproc)+1)/2+((somegaAr(iq,2,iproc)-1)/2)*nr1r+((somegaAr(iq,3,iproc)-1)/2)*nr1r*nr2r ! reduced global offset [nr1r,nr2r,nr3r] gomegaAr(iq,ir,iproc)=gomegar(off1r,ir) ! END DO ! END DO !iq !$omp end parallel do ! END DO ! iproc ! ! Clean-up temporary arrays... ! IF (ALLOCATED(gomegar)) DEALLOCATE(gomegar) ! CALL stop_clock('tsvdw_screen') ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_screen !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_veff() !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! Local variables ! INTEGER :: ia,iq,off1 REAL(DP) :: normr ! CALL start_clock('tsvdw_veff') ! ! Initialization of effective volume... ! ALLOCATE(veff(nat)); veff=0.0_DP ! ! Normalization factor for veff integral... ! normr=omega/DBLE(nr1r*nr2r*nr3r) ! ! Loop over atoms in the simulation cell... ! DO iproc=1,nstates(me) ! ! Connect processor number with atom... ! ia=me+nproc_image*(iproc-1) ! ! Loop over points in the (pre-screened) spherical atomic integration domain... ! !$omp parallel do private(off1),reduction(+:veff) DO iq=1,NsomegaA(ia) ! ! Compute veff integrand and complete dispersion potential (functional derivative of veff(A) wrt charge density)... ! ! veff(A) = INT [|r-rA|^3*rhoA(|r-rA|)*rhotot(r)/rhosad(r)] ! ! dveff(A)/dn(r) = |r-rA|^3*rhoA(|r-rA|)/rhosad(r) ! off1=somegaA(iq,1,iproc)+(somegaA(iq,2,iproc)-1)*nr1+(somegaA(iq,3,iproc)-1)*nr1*nr2 !global offset [nr1,nr2,nr3] dveffAdn(iq,iproc)=dveffAdn(iq,iproc)/rhosad(off1) ! ! Increment veff... ! IF ((MOD(somegaA(iq,1,iproc),2).EQ.1).AND.(MOD(somegaA(iq,2,iproc),2).EQ.1).AND.(MOD(somegaA(iq,3,iproc),2).EQ.1)) THEN ! veff(ia)=veff(ia)+(dveffAdn(iq,iproc)*rhotot(off1)) ! END IF ! END DO !iq !$omp end parallel do ! ! Apply final normalization to veff integral... ! veff(ia)=normr*veff(ia) ! END DO !iproc ! ! Collect veff over all processors and broadcast... ! CALL mp_sum(veff,intra_image_comm) ! CALL stop_clock('tsvdw_veff') ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_veff !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_dveff() !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! Local variables ! INTEGER :: ia,ib,ias,ibs,iq,ir,i,j,ipair,off1,ioff,boff REAL(DP) :: spcutA,spcutB,spdA,spdB,dq(3),dqA(3),dqAs(3),dqB(3),dqBs(3),dqAmic,dqBmic,dABmic,normr REAL(DP) :: dk1,dptmp1,dptmp2,dptmp3,dptmp4,dptmp5,rhoA,rhoB,drhoA,drhoB,dVAdRA(3),dVAdRB(3),dVBdRA(3) REAL(DP), DIMENSION(:), ALLOCATABLE :: predVAdRB REAL(DP), DIMENSION(:,:), ALLOCATABLE :: dqxyzr,dqAxyzs,predVBdRA ! CALL start_clock('tsvdw_dveff') ! ! Initialization of the dveff/dR and dveff/dh arrays... ! ALLOCATE(dveffdR(nat,nat,3)); dveffdR=0.0_DP ALLOCATE(dveffdh(nat,3,3)); dveffdh=0.0_DP ! ! Normalization factor for dveff integrals... ! normr=omega/DBLE(nr1r*nr2r*nr3r) ! ! Loop over atoms A in the simulation cell and compute dveffdR and dveffdh... ! DO iproc=1,nstates(me) ! ! Connect processor number with atom... ! ia=me+nproc_image*(iproc-1) ! ! Connect atom type with species-dependent quantities... ! ias=ityp(ia) ! ! Transfer species-specific cutoff to spcutA... ! spcutA=spdata(ias,1) ! ! Precompute inverse of species-specific linear grid spacing (replaces / with * during interpolation)... ! spdA=1.0_DP/spdata(ias,2) ! ! Allocate and initialize atom-specific arrays... ! ALLOCATE(dqxyzr(NsomegaAr(ia),3)); dqxyzr=0.0_DP ALLOCATE(dqAxyzs(NsomegaAr(ia),3)); dqAxyzs=0.0_DP ALLOCATE(predVAdRB(NsomegaAr(ia))); predVAdRB=0.0_DP ALLOCATE(predVBdRA(NsomegaAr(ia),3)); predVBdRA=0.0_DP ! ! Initial loop over points in the (pre-screened) reduced spherical atomic integration domain for atom A to compute ! self-derivative (dV(A)/dR(A)), quantities necessary for dV(A)/dR(B) and dV(B)/dR(A), and self-contribution to dV(A)/dh... ! !$omp parallel do private(dq,dqA,dqAs,dqAmic,ir,dk1,rhoA,drhoA, & !$omp off1,dptmp1,dptmp2,dptmp3,dptmp4,dVAdRA,dptmp5,i,j), & !$omp reduction(-:dveffdh),reduction(+:dveffdR) DO iq=1,NsomegaAr(ia) ! ! Compute global/cell reference frame Cartesian coordinates of given real-space grid point... ! dq(1)=DBLE(somegaAr(iq,1,iproc)-1)/DBLE(nr1) ! s_i(1) dq(2)=DBLE(somegaAr(iq,2,iproc)-1)/DBLE(nr2) ! s_i(2) dq(3)=DBLE(somegaAr(iq,3,iproc)-1)/DBLE(nr3) ! s_i(3) ! dqA(1)=h(1,1)*dq(1)+h(1,2)*dq(2)+h(1,3)*dq(3) ! r_i = h s_i dqA(2)=h(2,1)*dq(1)+h(2,2)*dq(2)+h(2,3)*dq(3) ! r_i = h s_i dqA(3)=h(3,1)*dq(1)+h(3,2)*dq(2)+h(3,3)*dq(3) ! r_i = h s_i ! ! Accumulate the Cartesian coordinates of the real-space grid point in the dqxyzr array: ! ! dqxyzr(:,1) := x-coordinate of grid point (global/cell reference frame) ! dqxyzr(:,2) := y-coordinate of grid point (global/cell reference frame) ! dqxyzr(:,3) := z-coordinate of grid point (global/cell reference frame) ! dqxyzr(iq,1)=dqA(1) dqxyzr(iq,2)=dqA(2) dqxyzr(iq,3)=dqA(3) ! ! Compute distance between grid point and atom in scaled coordinates (s_iA) according to minimum image convention (MIC)... ! dqA(1)=dqA(1)-atxyz(1,ia) ! r_iA = r_i - r_A dqA(2)=dqA(2)-atxyz(2,ia) ! r_iA = r_i - r_A dqA(3)=dqA(3)-atxyz(3,ia) ! r_iA = r_i - r_A ! dqAs(1)=ainv(1,1)*dqA(1)+ainv(1,2)*dqA(2)+ainv(1,3)*dqA(3) ! s_iA = h^-1 r_iA dqAs(2)=ainv(2,1)*dqA(1)+ainv(2,2)*dqA(2)+ainv(2,3)*dqA(3) ! s_iA = h^-1 r_iA dqAs(3)=ainv(3,1)*dqA(1)+ainv(3,2)*dqA(2)+ainv(3,3)*dqA(3) ! s_iA = h^-1 r_iA ! dqAs(1)=dqAs(1)-IDNINT(dqAs(1)) ! impose MIC on s_iA in range: [-0.5,+0.5] dqAs(2)=dqAs(2)-IDNINT(dqAs(2)) ! impose MIC on s_iA in range: [-0.5,+0.5] dqAs(3)=dqAs(3)-IDNINT(dqAs(3)) ! impose MIC on s_iA in range: [-0.5,+0.5] ! ! Accumulate the components of the s_i - s_A vector in the dqAxyzs array: ! ! dqAxyzs(:,1) := 1-coordinate of s_i - s_A vector (local/atom reference frame) ! dqAxyzs(:,2) := 2-coordinate of s_i - s_A vector (local/atom reference frame) ! dqAxyzs(:,3) := 3-coordinate of s_i - s_A vector (local/atom reference frame) ! dqAxyzs(iq,1)=dqAs(1) dqAxyzs(iq,2)=dqAs(2) dqAxyzs(iq,3)=dqAs(3) ! ! Convert MIC distance components from scaled coordinates to Cartesian coordinates (s_iA -> r_iA)... ! dqA(1)=h(1,1)*dqAs(1)+h(1,2)*dqAs(2)+h(1,3)*dqAs(3) ! r_iA = h s_iA (MIC) dqA(2)=h(2,1)*dqAs(1)+h(2,2)*dqAs(2)+h(2,3)*dqAs(3) ! r_iA = h s_iA (MIC) dqA(3)=h(3,1)*dqAs(1)+h(3,2)*dqAs(2)+h(3,3)*dqAs(3) ! r_iA = h s_iA (MIC) ! dqAmic=DSQRT(dqA(1)*dqA(1)+dqA(2)*dqA(2)+dqA(3)*dqA(3)) ! |r_i - r_A| (MIC) ! ! Determine the index in the atomic linear equispaced grid such that grd(ir) <= dqA <= grd(ir+1) and distance between dqA and grd(ir)... ! ir=INT(dqAmic*spdA) dk1=dqAmic-spgrd(ias,ir) ! ! Perform linear interpolation to obtain the value of the atomic pseudo-density and its derivative at the given grid point... ! rhoA=LIA(ias,ir)+LIB(ias,ir)*dk1 !rhoA at grid point via linear interpolation drhoA=dLIA(ias,ir)+dLIB(ias,ir)*dk1 !drhoA at grid point via linear interpolation ! ! Compute global offset for rhosad(r) and rhotot(r), both computed on the real-space mesh... ! off1=somegaAr(iq,1,iproc)+(somegaAr(iq,2,iproc)-1)*nr1+(somegaAr(iq,3,iproc)-1)*nr1*nr2 !global offset [nr1,nr2,nr3] ! ! Compute self-derivative dVA/dpA integrand for p={x,y,z}... ! ! dVA/dpA = INT {(p-pA)*|r-rA|*rhotot(r)/rhosad(r)*[|r-rA|*rho(|r-rA|)*drho(|r-rA|)/rhosad(r)-|r-rA|*drho(|r-rA|)-3*rho(|r-rA|)]} ! dptmp1=1.0_DP/rhosad(off1) dptmp2=dqAmic*drhoA dptmp3=dqAmic*rhotot(off1)*dptmp1 dptmp4=((rhoA*dptmp1-1.0_DP)*dptmp2-3.0_DP*rhoA)*dptmp3 ! dVAdRA=dqA*dptmp4 !dVA/dpA integrand/contribution for the given grid point... ! ! Increment self-derivative dVA/dpA for p={x,y,z}... ! DO i=1,3 ! dveffdR(ia,ia,i)=dveffdR(ia,ia,i)+dVAdRA(i) ! END DO !i ! ! Increment self-contribution to dVA/dhpq for p,q={x,y,z}... ! ! dVA/dhpq <-- INT {-(p-pA)*(qs-qsA)*|r-rA|*rhotot(r)/rhosad(r)*[|r-rA|*rho(|r-rA|)*drho(|r-rA|)/rhosad(r)-|r-rA|*drho(|r-rA|)-3*rho(|r-rA|)]} ! DO i=1,3 ! DO j=1,3 ! dveffdh(ia,i,j)=dveffdh(ia,i,j)-dVAdRA(i)*dqAxyzs(iq,j) ! END DO !j ! END DO !i ! ! Precompute quantities necessary for dV(A)/dR(B) and dV(B)/dR(A)... ! predVAdRB(iq)=dptmp1*rhoA*dqAmic*dqAmic*dptmp3 ! dptmp5=dptmp1*dptmp1*drhoA*rhotot(off1) ! IF (dqAmic.LT.(1.0E-12_DP)) THEN ! predVBdRA(iq,:)=dptmp5 ! ELSE ! predVBdRA(iq,:)=dptmp5*dqA(:)/dqAmic ! END IF ! END DO !iq !$omp end parallel do ! ! Inner loop over unique atom pairs B in the simulation cell to compute pair contributions to dveffdR and dveffdh... ! !$omp parallel do private(dqB,dqBs,dqBmic,ir,dk1,rhoB,drhoB,dVAdRB,dVBdRA, & !$omp i,j,ib,ibs,spcutB,spdB,ioff,boff), & !$omp reduction(+:dveffdR),reduction(-:dveffdh) DO ipair=1,npair(ia) ! ! Connect pair number with atom... ! ib=pair(ipair,ia) ! ! Connect atom type with species-dependent quantities... ! ibs=ityp(ib) ! ! Transfer species-specific cutoff to spcutB... ! spcutB=spdata(ibs,1) ! ! Precompute inverse of species-specific linear grid spacing (replaces / with * during interpolation)... ! spdB=1.0_DP/spdata(ibs,2) ! ! Determine atom B offsets for using gomegaAr bit array screening below... ! ioff=((ib-1)/bsint)+1 ! integer offset for gomegaAr bit array boff=(ib-((ioff-1)*bsint))-1 ! bit offset for gomegaAr bit array ! ! Inner loop over points in the (pre-screened) reduced spherical atomic integration domain for atom A to compute ! non-self-derivatives (dV(A)/dR(B) and dV(B)/dR(A)) and non-self-contributions to dV(A)/dh and dV(B)/dh in the overlapping integration domain... ! DO iq=1,NsomegaAr(ia) ! ! Determine if atom B contributes to the given point on the reduced spherical atomic integration domain on atom A (using gomegaAr bit array)... ! IF (BTEST(gomegaAr(iq,ioff,iproc),boff)) THEN ! ! Compute distance between grid point and atom B according to minimum image convention (MIC)... ! dqB(1)=dqxyzr(iq,1)-atxyz(1,ib) ! r_iB = r_i - r_B dqB(2)=dqxyzr(iq,2)-atxyz(2,ib) ! r_iB = r_i - r_B dqB(3)=dqxyzr(iq,3)-atxyz(3,ib) ! r_iB = r_i - r_B ! dqBs(1)=ainv(1,1)*dqB(1)+ainv(1,2)*dqB(2)+ainv(1,3)*dqB(3) ! s_iB = h^-1 r_iB dqBs(2)=ainv(2,1)*dqB(1)+ainv(2,2)*dqB(2)+ainv(2,3)*dqB(3) ! s_iB = h^-1 r_iB dqBs(3)=ainv(3,1)*dqB(1)+ainv(3,2)*dqB(2)+ainv(3,3)*dqB(3) ! s_iB = h^-1 r_iB ! dqBs(1)=dqBs(1)-IDNINT(dqBs(1)) ! impose MIC on s_iB in range: [-0.5,+0.5] dqBs(2)=dqBs(2)-IDNINT(dqBs(2)) ! impose MIC on s_iB in range: [-0.5,+0.5] dqBs(3)=dqBs(3)-IDNINT(dqBs(3)) ! impose MIC on s_iB in range: [-0.5,+0.5] ! dqB(1)=h(1,1)*dqBs(1)+h(1,2)*dqBs(2)+h(1,3)*dqBs(3) ! r_iB = h s_iB (MIC) dqB(2)=h(2,1)*dqBs(1)+h(2,2)*dqBs(2)+h(2,3)*dqBs(3) ! r_iB = h s_iB (MIC) dqB(3)=h(3,1)*dqBs(1)+h(3,2)*dqBs(2)+h(3,3)*dqBs(3) ! r_iB = h s_iB (MIC) ! dqBmic=DSQRT(dqB(1)*dqB(1)+dqB(2)*dqB(2)+dqB(3)*dqB(3)) ! |r_i - r_B| (MIC) ! ! Final screening based on the (pre-screened) spherical atomic integration domain on atom B... ! IF (dqBmic.LE.spcutB) THEN ! ! Determine the index in the atomic linear equispaced grid such that grd(ir) <= dqB <= grd(ir+1) and distance between dqB and grd(ir)... ! ir=INT(dqBmic*spdB) dk1=dqBmic-spgrd(ibs,ir) ! ! Perform linear interpolation to obtain the value of the atomic pseudo-density and its derivative at the given grid point... ! rhoB=LIA(ibs,ir)+LIB(ibs,ir)*dk1 !rhoB at grid point via linear interpolation drhoB=dLIA(ibs,ir)+dLIB(ibs,ir)*dk1 !drhoB at grid point via linear interpolation ! ! Compute dVA/dpB integrand for p={x,y,z}... ! ! dVA/dpB = INT {(p-pB)/|r-rB|*[drho(|r-rB|)*|r-rA|^3*rho(|r-rA|)*rhotot(r)/rhosad(r)^2]} ! IF (dqBmic.LT.(1.0E-12_DP)) THEN ! dVAdRB(:)=predVAdRB(iq)*drhoB ! ELSE ! dVAdRB(:)=predVAdRB(iq)*drhoB*dqB(:)/dqBmic ! END IF ! ! Increment non-self-derivative dVA/dpB for p={x,y,z}... ! DO i=1,3 ! dveffdR(ia,ib,i)=dveffdR(ia,ib,i)+dVAdRB(i) ! END DO !i ! ! Increment non-self-contribution to dVA/dhpq for p,q={x,y,z} from atom B... ! ! dVA/dhpq <-- INT {-(p-pB)*(qs-qsB)/|r-rB|*[drho(|r-rB|)*|r-rA|^3*rho(|r-rA|)*rhotot(r)/rhosad(r)^2]} ! DO i=1,3 ! DO j=1,3 ! dveffdh(ia,i,j)=dveffdh(ia,i,j)-dVAdRB(i)*dqBs(j) ! END DO !j ! END DO !i ! ! Compute dVB/dpA integrand for p={x,y,z}... ! ! dVB/dpA = INT {(p-pA)/|r-rA|*[drho(|r-rA|)*|r-rB|^3*rho(|r-rB|)*rhotot(r)/rhosad(r)^2]} ! dVBdRA(:)=predVBdRA(iq,:)*rhoB*dqBmic*dqBmic*dqBmic ! ! Increment non-self-derivative dVB/dpA for p={x,y,z} from atom A... ! DO i=1,3 ! dveffdR(ib,ia,i)=dveffdR(ib,ia,i)+dVBdRA(i) ! END DO !i ! ! Increment non-self-contribution to dVB/dhpq for p,q={x,y,z} from atom A... ! ! dVB/dhpq <-- INT {-(p-pA)*(qs-qsA)/|r-rA|*[drho(|r-rA|)*|r-rB|^3*rho(|r-rB|)*rhotot(r)/rhosad(r)^2]} ! DO i=1,3 ! DO j=1,3 ! dveffdh(ib,i,j)=dveffdh(ib,i,j)-dVBdRA(i)*dqAxyzs(iq,j) ! END DO !j ! END DO !i ! END IF ! END IF !BTEST ! END DO !iq ! END DO !ipair !$omp end parallel do ! ! Deallocate temporary arrays... ! IF (ALLOCATED(dqxyzr)) DEALLOCATE(dqxyzr) IF (ALLOCATED(dqAxyzs)) DEALLOCATE(dqAxyzs) IF (ALLOCATED(predVAdRB)) DEALLOCATE(predVAdRB) IF (ALLOCATED(predVBdRA)) DEALLOCATE(predVBdRA) ! END DO !iproc ! ! Apply final normalization of dVA/dR integrals... ! dveffdR=normr*dveffdR ! ! Apply final normalization of dVA/dhab integrals... ! dveffdh=normr*dveffdh ! ! Collect dveffdR and dveffdh over all processors and broadcast... ! CALL mp_sum(dveffdR,intra_image_comm) CALL mp_sum(dveffdh,intra_image_comm) ! CALL stop_clock('tsvdw_dveff') ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_dveff !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_effqnts() !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! Local variables ! INTEGER :: ia,ib,ias,ibs REAL(DP) :: vA,vB,num,den ! ! Initialization of base effective atomic quantities... ! ALLOCATE(dpeff(nat)); dpeff=0.0_DP ALLOCATE(R0eff(nat)); R0eff=0.0_DP ALLOCATE(C6AAeff(nat)); C6AAeff=0.0_DP ALLOCATE(C6ABeff(nat,nat)); C6ABeff=0.0_DP ! ! Population of base effective atomic quantities... ! DO ia=1,nat ! ! Connect atom type with species-dependent quantities... ! ias=ityp(ia) ! ! Precompute veff(A)/vfree(A) ratio... ! vA=(veff(ia)/vfree(ias)) ! ! Effective atomic static dipole polarizability array... ! dpeff(A)=[veff(A)/vfree(A)]*dpfree(A) ! dpeff(ia)=vA*dpfree(ias) ! ! Effective atomic vdW radius array... ! R0eff(A)=[veff(A)/vfree(A)]^1/3*R0free(A) ! R0eff(ia)=(vA**(1.0_DP/3.0_DP))*R0free(ias) ! ! Effective homonuclear C6 coefficient array... ! C6AAeff(A)=[veff(A)/vfree(A)]^2*C6AAfree(A) ! C6AAeff(ia)=(vA**(2.0_DP))*C6AAfree(ias) ! DO ib=1,nat ! ! Connect atom type with species-dependent quantities... ! ibs=ityp(ib) ! ! Precompute veff(B)/vfree(B) ratio... ! vB=(veff(ib)/vfree(ibs)) ! ! Effective heteronuclear C6 coefficient matrix... ! C6ABeff(A,B)=(veff(A)/vfree(A))*(veff(B)/vfree(B))*C6ABfree(A,B) ! C6ABeff(ia,ib)=(vA*vB)*C6ABfree(ias,ibs) ! END DO !ib ! END DO !ia ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_effqnts !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_energy() !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! Local variables ! LOGICAL :: periodic_converged INTEGER :: ia,ib,ic,ias,ibs,n_period,n1,n2,n3,i,j REAL(DP) :: dAB(3),dAB2(3),dsAB(3),dABimg,dABimg2,dABimgn1,dABimgn2,dABimgn5,dABimgn6 REAL(DP) :: FDV0,FDR0,FCV0,FRR0,FDV1,FCVA1,FCVB1,FDVA2,FDVB2,FDR2,FRR2,FCVA2,FCVB2,FDVi,FDRi(3),FDRii(3,3),FCVi,FRRi(3),FRRii(3,3) REAL(DP) :: EtsvdW_period,RAB0,edamp,fdamp,fdamp2,D1A,D1B,D2A,D2B,D12A,D12B,dptmp1,dptmp2,vtmp1(3),vtmp2(3) REAL(DP), DIMENSION(:), ALLOCATABLE :: predveffAdn_period REAL(DP), DIMENSION(:,:), ALLOCATABLE :: FtsvdW_period,HtsvdW_period ! CALL start_clock('tsvdw_energy') ! ! Initialize total TS-vdW energy, ion force, and cell force ... ! EtsvdW=0.0_DP; FtsvdW=0.0_DP; HtsvdW=0.0_DP ! ! Allocate and initialize TS-vdW dispersion potential prefactor... ! ALLOCATE(predveffAdn(nat)); predveffAdn=0.0_DP ! ! Allocate and initialize periodic contributions to TS-vdW ionic forces, cell forces, and dispersion potential prefactor... ! ALLOCATE(FtsvdW_period(3,nat)); FtsvdW_period=0.0_DP ALLOCATE(HtsvdW_period(3,3)); HtsvdW_period=0.0_DP ALLOCATE(predveffAdn_period(nat)); predveffAdn_period=0.0_DP ! ! Precompute quantities outside all loops... ! FDR0=ddamp/(2.0_DP*sR) FDV0=-FDR0/3.0_DP FCV0=0.5_DP FRR0=-3.0_DP ! ! For periodic systems, converge the energy with respect to neighboring images... ! n_period=0 periodic_converged=.FALSE. ! DO WHILE (.NOT.periodic_converged) ! EtsvdW_period=0.0_DP FtsvdW_period=0.0_DP HtsvdW_period=0.0_DP predveffAdn_period=0.0_DP ! ! Outer loop over atoms A... ! DO iproc=1,nstates(me) ! ! Connect processor number with atom... ! ia=me+nproc_image*(iproc-1) ! ! Connect atom type with species-dependent quantities... ! ias=ityp(ia) ! ! Precompute quantities outside loop over B... ! FDV1=R0free(ias)/(vfree(ias)**(1.0_DP/3.0_DP)*veff(ia)**(2.0_DP/3.0_DP)) FCVA1=1.0_DP/vfree(ias) FCVB1=veff(ia)*FCVA1 ! ! Inner loop over atoms B... ! !$omp parallel private(ibs,RAB0,FRR2,FDR2,FDVA2,FDVB2,FCVB2,FCVA2, & !$omp dAB,dAB2,FDVi,FDRi,FDRii,FCVi,FRRi,FRRii,n1,n2,n3,dsAB,dABimg2, & !$omp dABimg,dABimgn1,dABimgn2,dABimgn5,dABimgn6,edamp,fdamp,fdamp2,dptmp1, & !$omp dptmp2,i,j,vtmp1,vtmp2,D1A,D2A,D1B,D2B,D12A,D12B,ic), & !$omp reduction(-:EtsvdW_period),reduction(+:FtsvdW_period), & !$omp reduction(+:HtsvdW_period),reduction(-:predveffAdn_period) !$omp do DO ib=1,nat ! ! Connect atom type with species-dependent quantities... ! ibs=ityp(ib) ! ! Compute RAB0 as the sum of the effective vdW radii of atoms A and B... ! RAB0=R0eff(ia)+R0eff(ib) ! ! Precompute quantities outside loop over image cells... ! FRR2=C6ABeff(ia,ib) FDR2=FRR2/RAB0 FDVA2=FDR2/RAB0 FDVB2=FDVA2*R0free(ibs)/(vfree(ibs)**(1.0_DP/3.0_DP)*veff(ib)**(2.0_DP/3.0_DP)) FCVB2=C6ABfree(ias,ibs)/vfree(ibs) FCVA2=FCVB2*veff(ib) ! ! Compute distance between atom A and atom B (according to the minimum image convention)... ! dAB(1)=atxyz(1,ia)-atxyz(1,ib) ! r_AB = r_A - r_B dAB(2)=atxyz(2,ia)-atxyz(2,ib) ! r_AB = r_A - r_B dAB(3)=atxyz(3,ia)-atxyz(3,ib) ! r_AB = r_A - r_B ! dAB2(1)=ainv(1,1)*dAB(1)+ainv(1,2)*dAB(2)+ainv(1,3)*dAB(3) ! s_AB = h^-1 r_AB dAB2(2)=ainv(2,1)*dAB(1)+ainv(2,2)*dAB(2)+ainv(2,3)*dAB(3) ! s_AB = h^-1 r_AB dAB2(3)=ainv(3,1)*dAB(1)+ainv(3,2)*dAB(2)+ainv(3,3)*dAB(3) ! s_AB = h^-1 r_AB ! dAB2(1)=dAB2(1)-IDNINT(dAB2(1)) ! impose MIC on s_AB in range: [-0.5,+0.5] dAB2(2)=dAB2(2)-IDNINT(dAB2(2)) ! impose MIC on s_AB in range: [-0.5,+0.5] dAB2(3)=dAB2(3)-IDNINT(dAB2(3)) ! impose MIC on s_AB in range: [-0.5,+0.5] ! ! Initialize image-summed matrix elements... ! FDVi=0.0_DP; FDRi=0.0_DP; FDRii=0.0_DP; FCVi=0.0_DP; FRRi=0.0_DP; FRRii=0.0_DP ! ! Loop over image cells... ! DO n1=-n_period,n_period ! DO n2=-n_period,n_period ! DO n3=-n_period,n_period ! IF ((ABS(n1).EQ.n_period).OR.(ABS(n2).EQ.n_period).OR.(ABS(n3).EQ.n_period)) THEN ! ! Recover MIC distance between atom A and atom B in crystal coordinates... ! dsAB(1)=dAB2(1) ! s_AB (MIC) dsAB(2)=dAB2(2) ! s_AB (MIC) dsAB(3)=dAB2(3) ! s_AB (MIC) ! ! Increment MIC distance in crystal coordinates... ! dsAB(1)=dsAB(1)+DBLE(n1) ! s_AB (incremented, MIC only if n_period == 0) dsAB(2)=dsAB(2)+DBLE(n2) ! s_AB (incremented, MIC only if n_period == 0) dsAB(3)=dsAB(3)+DBLE(n3) ! s_AB (incremented, MIC only if n_period == 0) ! ! Convert incremented distance back into cartesian coordinates... ! dAB(1)=h(1,1)*dsAB(1)+h(1,2)*dsAB(2)+h(1,3)*dsAB(3) ! r_AB = h s_AB (MIC only if n_period == 0) dAB(2)=h(2,1)*dsAB(1)+h(2,2)*dsAB(2)+h(2,3)*dsAB(3) ! r_AB = h s_AB (MIC only if n_period == 0) dAB(3)=h(3,1)*dsAB(1)+h(3,2)*dsAB(2)+h(3,3)*dsAB(3) ! r_AB = h s_AB (MIC only if n_period == 0) ! ! Compute incremented distance between atom A and atom B... ! dABimg2=dAB(1)*dAB(1)+dAB(2)*dAB(2)+dAB(3)*dAB(3) dABimg=DSQRT(dABimg2) ! ! Precompute inverse powers of incremented distance between atom A and atom B... ! IF ( dABimg > 0.0_dp ) THEN dABimgn1=1.0_DP/dABimg dABimgn2=dABimgn1*dABimgn1 dABimgn5=dABimgn2*dABimgn2*dABimgn1 dABimgn6=dABimgn5*dABimgn1 ELSE dABimgn1=0.0_DP dABimgn2=0.0_DP dABimgn5=0.0_DP dABimgn6=0.0_DP END IF ! ! Precompute damping function (fdamp) and damping function exponential (edamp)... ! edamp=EXP(-ddamp*(dABimg/(sR*RAB0)-1.0_DP)) fdamp=1.0_DP/(1.0_DP+edamp) fdamp2=fdamp*fdamp ! ! Apply delta[ia;ib] x delta[n1,n2,n3;0,0,0] conditional... ! IF (n_period.EQ.0.AND.ia.EQ.ib) THEN ! ! Do not include self-interaction in the simulation cell... ! FDVi=FDVi+0.0_DP FDRi=FDRi+0.0_DP FDRii=FDRii+0.0_DP FCVi=FCVi+0.0_DP FRRi=FRRi+0.0_DP FRRii=FRRii+0.0_DP ! ELSE ! ! Increment image-summed matrix elements... ! dptmp1=edamp*fdamp2*dABimgn5 FDVi=FDVi+dptmp1 ! dptmp2=fdamp*dABimgn6 FCVi=FCVi+dptmp2 ! dptmp1=dptmp1*dABimgn2 dptmp2=dptmp2*dABimgn2 ! DO i=1,3 ! vtmp1(i)=dptmp1*dAB(i) FDRi(i)=FDRi(i)+vtmp1(i) ! vtmp2(i)=dptmp2*dAB(i) FRRi(i)=FRRi(i)+vtmp2(i) ! DO j=1,3 ! FDRii(i,j)=FDRii(i,j)+vtmp1(i)*dsAB(j) FRRii(i,j)=FRRii(i,j)+vtmp2(i)*dsAB(j) ! END DO ! END DO ! END IF ! END IF !n_period conditional ! END DO !n3 ! END DO !n2 ! END DO !n1 ! ! Increment period energy via EtsvdWAB = - 1/2 * C6ABeff * FAB... ! EtsvdW_period=EtsvdW_period-(FCV0*FRR2*FCVi) ! ! Increment dispersion potential (predveffAdn) prefactor... ! ! predveffAdn(A) = (d * R0freeA * C6ABeff * edamp * fdamp^2) / (6 * sR * vfreeA^1/3 * veffA^2/3 * RAB0^2 * RAB^5) ! - (C6ABfree * veffB * fdamp) / (2 * vfreeA * vfreeB * RAB^6) ! ! predveffAdn(B) = (d * R0freeB * C6ABeff * edamp * fdamp^2) / (6 * sR * vfreeB^1/3 * veffB^2/3 * RAB0^2 * RAB^5) ! - (C6ABfree * veffA * fdamp) / (2 * vfreeA * vfreeB * RAB^6) ! predveffAdn_period(ia)=predveffAdn_period(ia)-(FDV0*FDV1*FDVA2*FDVi+FCV0*FCVA1*FCVA2*FCVi) predveffAdn_period(ib)=predveffAdn_period(ib)-(FDV0*FDVB2*FDVi+FCV0*FCVB1*FCVB2*FCVi) ! ! Increment effective volume derivative contributions to ionic and cell forces... ! ! (dfdamp/dVA) --> D1A = - (d * R0freeA * C6ABeff * edamp * fdamp^2) / (6 * sR * vfreeA^1/3 * veffA^2/3 * RAB0^2 * RAB^5) ! ! (dfdamp/dVB) --> D1B = - (d * R0freeB * C6ABeff * edamp * fdamp^2) / (6 * sR * vfreeB^1/3 * veffB^2/3 * RAB0^2 * RAB^5) ! ! (dC6AB/dVA) --> D2A = (C6ABfree * veffB * fdamp) / (2 * vfreeA * vfreeB * RAB^6) ! ! (dC6AB/dVB) --> D2B = (C6ABfree * veffA * fdamp) / (2 * vfreeA * vfreeB * RAB^6) ! D1A=FDV0*FDV1*FDVA2*FDVi ! (dfdamp/dVA) D2A=FCV0*FCVA1*FCVA2*FCVi ! (dC6AB/dVA) ! D1B=FDV0*FDVB2*FDVi ! (dfdamp/dVB) D2B=FCV0*FCVB1*FCVB2*FCVi ! (dC6AB/dVB) ! D12A=D1A+D2A; D12B=D1B+D2B ! DO i=1,3 ! DO ic=1,nat ! FtsvdW_period(i,ic)=FtsvdW_period(i,ic)+(dveffdR(ia,ic,i)*D12A+dveffdR(ib,ic,i)*D12B) ! END DO ! DO j=1,3 ! HtsvdW_period(i,j)=HtsvdW_period(i,j)+(dveffdh(ia,i,j)*D12A+dveffdh(ib,i,j)*D12B) ! END DO ! END DO ! ! Increment RAB derivative contributions to ionic and cell forces... ! ! (dfdamp/dRA) --> D1A = (d * C6ABeff * edamp * fdamp^2) / (2 * sR * RAB0 * RAB^7) ! ! (dfdamp/dRB) --> D1B = - D1A ! ! (dRAB^-6/dRA) --> D2A = - (3 * C6ABeff * fdamp) / (RAB^8) ! ! (dRAB^-6/dRB) --> D2B = - D2A ! D1A=FDR0*FDR2 ! (dfdamp/dRA) D2A=FRR0*FRR2 ! (dRAB^-6/dRA) ! ! N.B.: Manually zero out the force contribution from an atom in the simulation cell and ! any of its images (this applies to distance derivatives NOT volume derivatives)... ! IF (ia.NE.ib) THEN ! DO i=1,3 ! FtsvdW_period(i,ia)=FtsvdW_period(i,ia)+(D1A*FDRi(i)+D2A*FRRi(i)) FtsvdW_period(i,ib)=FtsvdW_period(i,ib)-(D1A*FDRi(i)+D2A*FRRi(i)) ! DO j=1,3 ! HtsvdW_period(i,j)=HtsvdW_period(i,j)+(D1A*FDRii(i,j)+D2A*FRRii(i,j)) ! END DO ! END DO ! END IF ! END DO !ib !$omp end do !$omp end parallel ! END DO !iproc ! ! Synchronize n_period contribution from all processors... ! CALL mp_sum(EtsvdW_period,intra_image_comm) CALL mp_sum(FtsvdW_period,intra_image_comm) CALL mp_sum(HtsvdW_period,intra_image_comm) CALL mp_sum(predveffAdn_period,intra_image_comm) ! ! Increment total quantities... ! EtsvdW=EtsvdW+EtsvdW_period !EvdW FtsvdW=FtsvdW+FtsvdW_period !(-dE/dR) HtsvdW=HtsvdW-HtsvdW_period !(dE/dh) predveffAdn=predveffAdn+predveffAdn_period !(dE/dVA) & (dE/dVB) ! ! DEBUGGING !WRITE(stdout,'(I10,2F25.12)') n_period,EtsvdW_period,EtsvdW ! DEBUGGING ! ! Periodic convergence loop conditionals... ! IF ( vdw_isolated .OR. (ABS(EtsvdW_period) <= vdw_econv_thr) ) periodic_converged=.TRUE. ! n_period=n_period+1 ! END DO !convergence loop ! ! Deallocate temporary arrays... ! IF (ALLOCATED(FtsvdW_period)) DEALLOCATE(FtsvdW_period) IF (ALLOCATED(HtsvdW_period)) DEALLOCATE(HtsvdW_period) IF (ALLOCATED(predveffAdn_period)) DEALLOCATE(predveffAdn_period) ! CALL stop_clock('tsvdw_energy') ! !! DEBUGGING !WRITE(stdout,'(3X,"")') !DO ia=1,nat ! WRITE(stdout,'(5X,I5,F25.12)') ia,veff(ia) !END DO !WRITE(stdout,'(3X,"")') !! !WRITE(stdout,'(3X,"")') !DO ia=1,nat ! WRITE(stdout,'(5X,I5,3F25.12)') ia,FtsvdW(:,ia) !END DO !WRITE(stdout,'(3X,"")') !! !WRITE(stdout,'(3X,"")') !DO i=1,3 ! WRITE(stdout,'(5X,3F25.12)') HtsvdW(i,:) !END DO !WRITE(stdout,'(3X,"")') !! DEBUGGING ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_energy !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_wfforce() !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! Local variables ! INTEGER :: ia,ip,iq,off1 REAL(DP), DIMENSION(:), ALLOCATABLE :: UtsvdWA ! CALL start_clock('tsvdw_wfforce') ! ! Initialization of UtsvdwA array... ! ALLOCATE(UtsvdWA(nr1*nr2*nr3)); UtsvdWA=0.0_DP ! ! Loop over atoms and populate UtsvdWA from predveffAdn and dveffAdn... ! DO iproc=1,nstates(me) ! ! Connect processor number with atom... ! ia=me+nproc_image*(iproc-1) ! ! Loop over points in the (pre-screened) spherical atomic integration domain... ! !$omp parallel do private(off1) DO iq=1,NsomegaA(ia) ! off1=somegaA(iq,1,iproc)+(somegaA(iq,2,iproc)-1)*nr1+(somegaA(iq,3,iproc)-1)*nr1*nr2 !global offset [nr1,nr2,nr3] UtsvdWA(off1)=UtsvdWA(off1)+predveffAdn(ia)*dveffAdn(iq,iproc) ! END DO !iq !$omp end parallel do ! END DO !iproc ! ! Collect UtsvdWA over all processors and broadcast... ! CALL mp_sum(UtsvdWA,intra_image_comm) ! ! Partition out dispersion potential consistent with slabs of the charge density... ! IF (dffts%npp(me_bgrp+1).NE.0) THEN ! !$omp parallel do DO ip=1,dffts%npp(me_bgrp+1)*nr1*nr2 ! UtsvdW(ip)=UtsvdWA(ip+rdispls(me_bgrp+1)) ! END DO !$omp end parallel do ! END IF ! ! Deallocate temporary arrays... ! IF (ALLOCATED(UtsvdWA)) DEALLOCATE(UtsvdWA) ! CALL stop_clock('tsvdw_wfforce') ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_wfforce !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_cleanup() !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! Deallocate tsvdw_calculate specific arrays... ! IF (ALLOCATED(atxyz)) DEALLOCATE(atxyz) IF (ALLOCATED(rhosad)) DEALLOCATE(rhosad) IF (ALLOCATED(rhotot)) DEALLOCATE(rhotot) IF (ALLOCATED(veff)) DEALLOCATE(veff) IF (ALLOCATED(dpeff)) DEALLOCATE(dpeff) IF (ALLOCATED(R0eff)) DEALLOCATE(R0eff) IF (ALLOCATED(C6AAeff)) DEALLOCATE(C6AAeff) IF (ALLOCATED(C6ABeff)) DEALLOCATE(C6ABeff) IF (ALLOCATED(dveffdR)) DEALLOCATE(dveffdR) IF (ALLOCATED(dveffdh)) DEALLOCATE(dveffdh) IF (ALLOCATED(somegaA)) DEALLOCATE(somegaA) IF (ALLOCATED(somegaAr)) DEALLOCATE(somegaAr) IF (ALLOCATED(gomegaAr)) DEALLOCATE(gomegaAr) IF (ALLOCATED(NsomegaA)) DEALLOCATE(NsomegaA) IF (ALLOCATED(NsomegaAr)) DEALLOCATE(NsomegaAr) IF (ALLOCATED(nstates)) DEALLOCATE(nstates) IF (ALLOCATED(sdispls)) DEALLOCATE(sdispls) IF (ALLOCATED(sendcount)) DEALLOCATE(sendcount) IF (ALLOCATED(rdispls)) DEALLOCATE(rdispls) IF (ALLOCATED(recvcount)) DEALLOCATE(recvcount) IF (ALLOCATED(istatus)) DEALLOCATE(istatus) IF (ALLOCATED(npair)) DEALLOCATE(npair) IF (ALLOCATED(pair)) DEALLOCATE(pair) IF (ALLOCATED(dveffAdn)) DEALLOCATE(dveffAdn) IF (ALLOCATED(predveffAdn)) DEALLOCATE(predveffAdn) ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_cleanup !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE tsvdw_finalize() !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! Deallocate module-specific arrays... ! IF (ALLOCATED(UtsvdW)) DEALLOCATE(UtsvdW) IF (ALLOCATED(FtsvdW)) DEALLOCATE(FtsvdW) IF (ALLOCATED(HtsvdW)) DEALLOCATE(HtsvdW) IF (ALLOCATED(vfree)) DEALLOCATE(vfree) IF (ALLOCATED(dpfree)) DEALLOCATE(dpfree) IF (ALLOCATED(R0free)) DEALLOCATE(R0free) IF (ALLOCATED(C6AAfree)) DEALLOCATE(C6AAfree) IF (ALLOCATED(C6ABfree)) DEALLOCATE(C6ABfree) IF (ALLOCATED(spgrd)) DEALLOCATE(spgrd) IF (ALLOCATED(sprho)) DEALLOCATE(sprho) IF (ALLOCATED(spdrho)) DEALLOCATE(spdrho) IF (ALLOCATED(spdata)) DEALLOCATE(spdata) IF (ALLOCATED(LIA)) DEALLOCATE(LIA) IF (ALLOCATED(LIB)) DEALLOCATE(LIB) IF (ALLOCATED(dLIA)) DEALLOCATE(dLIA) IF (ALLOCATED(dLIB)) DEALLOCATE(dLIB) ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE tsvdw_finalize !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE Num1stDer(r,f,N,h,df) !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! I/O variables ! INTEGER :: N REAL(DP) :: h,r(N),f(N),df(N) ! ! Local variables ! INTEGER, PARAMETER :: Ndp=7 !using 7-point formulae... INTEGER :: ip,ir INTEGER :: A1(Ndp),A2(Ndp),A3(Ndp),A4(Ndp),A5(Ndp),A6(Ndp),A7(Ndp) REAL(DP) :: dsum ! ! Populate Bickley coefficient vectors (Math. Gaz.,v25,p19-27,1941) according to cases... ! DATA A1/ -1764_DP, 4320_DP, -5400_DP, 4800_DP, -2700_DP, 864_DP, -120_DP / DATA A2/ -120_DP, -924_DP, 1800_DP, -1200_DP, 600_DP, -180_DP, 24_DP / DATA A3/ 24_DP, -288_DP, -420_DP, 960_DP, -360_DP, 96_DP, -12_DP / DATA A4/ -12_DP, 108_DP, -540_DP, 0_DP, 540_DP, -108_DP, 12_DP / DATA A5/ 12_DP, -96_DP, 360_DP, -960_DP, 420_DP, 288_DP, -24_DP / DATA A6/ -24_DP, 180_DP, -600_DP, 1200_DP, -1800_DP, 924_DP, 120_DP / DATA A7/ 120_DP, -864_DP, 2700_DP, -4800_DP, 5400_DP, -4320_DP, 1764_DP / ! ! Compute first derivative on linear mesh and then transform back to radial/exponential grid... ! DO ir=1,N ! dsum=0.0_DP ! ! Deal with different cases one-by-one... ! IF (ir.EQ.1) THEN DO ip=1,Ndp dsum=dsum+A1(ip)*f(ir-1+ip) END DO ELSE IF (ir.EQ.2) THEN DO ip=1,Ndp dsum=dsum+A2(ip)*f(ir-2+ip) END DO ELSE IF (ir.EQ.3) THEN DO ip=1,Ndp dsum=dsum+A3(ip)*f(ir-3+ip) END DO ELSE IF (ir.GE.4.AND.ir.LE.N-3) THEN DO ip=1,Ndp dsum=dsum+A4(ip)*f(ir-4+ip) END DO ELSE IF (ir.EQ.N-2) THEN DO ip=1,Ndp dsum=dsum+A5(ip)*f(ir-5+ip) END DO ELSE IF (ir.EQ.N-1) THEN DO ip=1,Ndp dsum=dsum+A6(ip)*f(ir-6+ip) END DO ELSE IF (ir.EQ.N) THEN DO ip=1,Ndp dsum=dsum+A7(ip)*f(ir-7+ip) END DO ELSE WRITE(stdout,'("Error in Num1stDer subroutine...")') END IF ! ! Final Normalization... ! df(ir)=dsum/(720.0_DP*h) ! END DO !ir ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE Num1stDer !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE CubSplCoeff(r,f,N,df,d2f) !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! I/O variables ! INTEGER :: N REAL(DP) :: r(N),f(N),df(N),d2f(N) ! ! Local variables ! INTEGER :: i,j REAL(DP) :: dy1,dyn,p,q,un,qn REAL(DP), DIMENSION(:), ALLOCATABLE :: work ! ! ---------------------------------------------------------------------------------------------------------------------------------- ! SYNOPSIS: Compute second derivatives at each of the atomic radial grid points using the cubic spline methodology (i.e., smooth & ! continuous piecewise first and second derivatives). These second derivatives will be utilized during cubic spline interpolation ! as a higher accuracy alternative to linear interpolation during the construction of the linear atomic grids. The two-parameter ! boundary conditions that will be utilized below are known as a clamped cubic spline in that the first derivative at both the ! first and last grid point were computed numerically and provided as input... ! ---------------------------------------------------------------------------------------------------------------------------------- ! ALLOCATE(work(N)); work=0.0_DP ! d2f=0.0_DP ! ! Enforce 'clamped' boundary condition at the first radial grid point... ! dy1=df(1) d2f(1)=-0.5_DP work(1)=(3.0_DP/(r(2)-r(1)))*((f(2)-f(1))/(r(2)-r(1))-dy1) ! ! Decomposition loop of the tridiagonal algorithm for the second derivatives... ! DO i=2,N-1 p=(r(i)-r(i-1))/(r(i+1)-r(i-1)) q=p*d2f(i-1)+2.0_DP d2f(i)=(p-1.0_DP)/q work(i)=(f(i+1)-f(i))/(r(i+1)-r(i))-(f(i)-f(i-1))/(r(i)-r(i-1)) work(i)=(6.0_DP*work(i)/(r(i+1)-r(i-1))-p*work(i-1))/q END DO ! ! Enforce 'clamped' boundary condition at the last radial grid point... ! dyn=df(N) qn=0.5_DP un=(3.0_DP/(r(N)-r(N-1)))*(dyn-(f(N)-f(N-1))/(r(N)-r(N-1))) d2f(N)=(un-qn*work(N-1))/(qn*d2f(N-1)+1.0_DP) ! ! Back substitution loop of the tridiagonal algorithm for the second derivatives... ! DO j=N-1,1,-1 d2f(j)=d2f(j)*d2f(j+1)+work(j) END DO ! ! Clean-up and return home... ! DEALLOCATE(work) ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE CubSplCoeff !-------------------------------------------------------------------------------------------------------------- ! !-------------------------------------------------------------------------------------------------------------- SUBROUTINE GetVdWParam(atom,C6,alpha,R0) !-------------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! ! I/O variables ! CHARACTER(LEN=3) :: atom REAL(DP) :: C6,alpha,R0 ! SELECT CASE (atom) ! CASE ('H') alpha=4.500000_DP C6=6.500000_DP R0=3.100000_DP ! CASE ('He') alpha=1.380000_DP C6=1.460000_DP R0=2.650000_DP ! CASE ('Li') alpha=164.200000_DP C6=1387.000000_DP R0=4.160000_DP ! CASE ('Be') alpha=38.000000_DP C6=214.000000_DP R0=4.170000_DP ! CASE ('B') alpha=21.000000_DP C6=99.500000_DP R0=3.890000_DP ! CASE ('C') alpha=12.000000_DP C6=46.600000_DP R0=3.590000_DP ! CASE ('N') alpha=7.400000_DP C6=24.200000_DP R0=3.340000_DP ! CASE ('O') alpha=5.400000_DP C6=15.600000_DP R0=3.190000_DP ! CASE ('F') alpha=3.800000_DP C6=9.520000_DP R0=3.040000_DP ! CASE ('Ne') alpha=2.670000_DP C6=6.380000_DP R0=2.910000_DP ! CASE ('Na') alpha=162.700000_DP C6=1556.000000_DP R0=3.730000_DP ! CASE ('Mg') alpha=71.000000_DP C6=627.000000_DP R0=4.270000_DP ! CASE ('Al') alpha=60.000000_DP C6=528.000000_DP R0=4.330000_DP ! CASE ('Si') alpha=37.000000_DP C6=305.000000_DP R0=4.200000_DP ! CASE ('P') alpha=25.000000_DP C6=185.000000_DP R0=4.010000_DP ! CASE ('S') alpha=19.600000_DP C6=134.000000_DP R0=3.860000_DP ! CASE ('Cl') alpha=15.000000_DP C6=94.600000_DP R0=3.710000_DP ! CASE ('Ar') alpha=11.100000_DP C6=64.300000_DP R0=3.550000_DP ! CASE ('K') alpha=292.900000_DP C6=3897.000000_DP R0=3.710000_DP ! CASE ('Ca') alpha=160.000000_DP C6=2221.000000_DP R0=4.650000_DP ! CASE ('Sc') alpha=120.000000_DP C6=1383.000000_DP R0=4.590000_DP ! CASE ('Ti') alpha=98.000000_DP C6=1044.000000_DP R0=4.510000_DP ! CASE ('V') alpha=84.000000_DP C6=832.000000_DP R0=4.440000_DP ! CASE ('Cr') alpha=78.000000_DP C6=602.000000_DP R0=3.990000_DP ! CASE ('Mn') alpha=63.000000_DP C6=552.000000_DP R0=3.970000_DP ! CASE ('Fe') alpha=56.000000_DP C6=482.000000_DP R0=4.230000_DP ! CASE ('Co') alpha=50.000000_DP C6=408.000000_DP R0=4.180000_DP ! CASE ('Ni') alpha=48.000000_DP C6=373.000000_DP R0=3.820000_DP ! CASE ('Cu') alpha=42.000000_DP C6=253.000000_DP R0=3.760000_DP ! CASE ('Zn') alpha=40.000000_DP C6=284.000000_DP R0=4.020000_DP ! CASE ('Ga') alpha=60.000000_DP C6=498.000000_DP R0=4.190000_DP ! CASE ('Ge') alpha=41.000000_DP C6=354.000000_DP R0=4.200000_DP ! CASE ('As') alpha=29.000000_DP C6=246.000000_DP R0=4.110000_DP ! CASE ('Se') alpha=25.000000_DP C6=210.000000_DP R0=4.040000_DP ! CASE ('Br') alpha=20.000000_DP C6=162.000000_DP R0=3.930000_DP ! CASE ('Kr') alpha=16.800000_DP C6=129.600000_DP R0=3.820000_DP ! CASE ('Rb') alpha=319.200000_DP C6=4691.000000_DP R0=3.720000_DP ! CASE ('Sr') alpha=199.000000_DP C6=3170.000000_DP R0=4.540000_DP ! CASE ('Rh') alpha=56.1_DP C6=469.0_DP R0=3.95_DP ! CASE ('Pd') alpha=23.680000_DP C6=157.500000_DP R0=3.66000_DP ! CASE ('Ag') alpha=50.600000_DP C6=339.000000_DP R0=3.820000_DP ! CASE ('Cd') alpha=39.7_DP C6=452.0_DP R0=3.99_DP ! CASE ('Te') alpha=37.65_DP C6=396.0_DP R0=4.22_DP ! CASE ('I') alpha=35.000000_DP C6=385.000000_DP R0=4.170000_DP ! CASE ('Xe') alpha=27.300000_DP C6=285.900000_DP R0=4.080000_DP ! CASE ('Ba') alpha=275.0_DP C6=5727.0_DP R0=4.77_DP ! CASE ('Ir') alpha=42.51_DP C6=359.1_DP R0=4.00_DP ! CASE ('Pt') alpha=39.68_DP C6=347.1_DP R0=3.92_DP ! CASE ('Au') alpha=36.5_DP C6=298.0_DP R0=3.86_DP ! CASE ('Hg') alpha=33.9_DP C6=392.0_DP R0=3.98_DP ! CASE ('Pb') alpha=61.8_DP C6=697.0_DP R0=4.31_DP ! CASE ('Bi') alpha=49.02_DP C6=571.0_DP R0=4.32_DP ! CASE DEFAULT ! CALL errore('tsvdw','Reference free atom parameters not available for requested atom type...',1) ! END SELECT ! RETURN ! !-------------------------------------------------------------------------------------------------------------- END SUBROUTINE GetVdWParam !-------------------------------------------------------------------------------------------------------------- ! ! END MODULE tsvdw_module espresso-5.1/Modules/xc_vdW_DF.f900000644000175000017500000032360612341373034015047 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! Copyright (C) 2009 Brian Kolb, Timo Thonhauser - Wake Forest University ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- #define FFTGRADIENT !#undef FFTGRADIENT MODULE vdW_DF !! This module calculates the non-local correlation contribution to the energy !! and potential. This method is based on the method of Guillermo Roman-Perez !! and Jose M. Soler described in: !! !! G. Roman-Perez and J. M. Soler, PRL 103, 096102 (2009) !! !! henceforth referred to as SOLER. That method is a new implementation !! of the method found in: !! !! M. Dion, H. Rydberg, E. Schroeder, D. C. Langreth, and !! B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). !! !! henceforth referred to as DION. Further information about the !! functional and its corresponding potential can be found in: !! !! T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, !! and D.C. Langreth, Phys. Rev. B 76, 125112 (2007). !! !! A review article that shows many of the applications vdW-DF has been !! applied to so far can be found at: !! !! D. C. Langreth et al., J. Phys.: Condens. Matter 21, 084203 (2009). !! !! There are a number of subroutines in this file. All are used only !! by other subroutines here except for the xc_vdW_DF subroutine !! which is the driver routine for the vdW-DF calculations and is called !! from v_of_rho. This routine handles setting up the parallel run (if !! any) and carries out the calls necessary to calculate the non-local !! correlation contributions to the energy and potential. USE kinds, ONLY : dp USE constants, ONLY : pi, e2 USE kernel_table, ONLY : q_mesh, Nr_points, Nqs, r_max USE mp, ONLY : mp_bcast, mp_sum, mp_barrier USE mp_pools, ONLY : me_pool, nproc_pool, intra_pool_comm, root_pool USE io_global, ONLY : ionode, stdout USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft, invfft USE control_flags, ONLY : iverbosity, gamma_only IMPLICIT NONE REAL(DP), PARAMETER :: epsr =1.d-12 ! a small number to cut off points with negative or undefined densities integer :: vdw_type = 1 private public :: xc_vdW_DF, stress_vdW_DF, interpolate_kernel, vdw_type, numerical_gradient, initialize_spline_interpolation CONTAINS !! ################################################################################################# !! | | !! | XC_VDW_DF | !! |_____________| SUBROUTINE xc_vdW_DF(rho_valence, rho_core, nspin, etxc, vtxc, v) !! Modules to include !! ------------------------------------------------------------------------- use gvect, ONLY : ngm, nl, g, nlm USE fft_base, ONLY : dfftp USE cell_base, ONLY : omega, tpiba !! ------------------------------------------------------------------------- !! Local variables !! ---------------------------------------------------------------------------------- ! _ real(dp), intent(IN) :: rho_valence(:,:) ! real(dp), intent(IN) :: rho_core(:) ! PWSCF input variables INTEGER, INTENT(IN) :: nspin ! real(dp), intent(inout) :: etxc, vtxc, v(:,:) !_ integer :: i_grid, theta_i, i_proc, I !! Indexing variables over grid points, ! !! theta functions, and processors, and a ! !! generic index. real(dp) :: grid_cell_volume !! The volume of the unit cell per G-grid point real(dp), allocatable :: q0(:) !! The saturated value of q (equations 11 and 12 of DION) ! !! This saturation is that of equation 5 in ! !! SOLER real(dp), allocatable :: gradient_rho(:,:) !! The gradient of the charge density. The ! !! format is as follows: ! !! gradient_rho(grid_point, cartesian_component) real(dp), allocatable :: potential(:) !! The vdW contribution to the potential real(dp), allocatable :: dq0_drho(:) !! The derivative of the saturated q0 ! !! (equation 5 of SOLER) with respect ! !! to the charge density (sort of. see ! !! get_q0_on_grid subroutine below.) real(dp), allocatable :: dq0_dgradrho(:) !! The derivative of the saturated q0 ! !! (equation 5 of SOLER) with respect ! !! to the gradient of the charge density ! !! (again, see get_q0_on_grid subroutine) complex(dp), allocatable :: thetas(:,:) !! These are the functions of equation 8 of ! !! SOLER. They will be forward Fourier transformed ! !! in place to get theta(k) and worked on in ! !! place to get the u_alpha(r) of equation 11 ! !! in SOLER. They are formatted as follows: ! !1 thetas(grid_point, theta_i) real(dp) :: Ec_nl !! The non-local vdW contribution to the energy real(dp), allocatable :: total_rho(:) !! This is the sum of the valence and core ! !! charge. This just holds the piece assigned ! !! to this processor. #ifndef FFTGRADIENT integer, parameter :: Nneighbors = 4 !! How many neighbors on each side ! !! to include in numerical derivatives. ! !! Can be from 1 to 6 real(dp), allocatable :: full_rho(:) !! This is the whole charge density. It ! !! is the sum of valence and core density ! !! over the entire simulation cell. Each ! !! processor has a copy of this to do the ! !! numerical gradients. integer, ave :: msy_start_z, my_end_z !! Starting and ending z-slabs for this processor integer, allocatable, save :: procs_Npoints(:) !! The number of grid points assigned to each proc integer, allocatable, save :: procs_start(:) !! The first assigned index into the charge-density array for each proc integer, allocatable, save :: procs_end(:) !! The last assigned index into the charge density array for each proc #endif logical, save :: first_iteration = .true. !! Whether this is the first time this ! !! routine has been called. !! --------------------------------------------------------------------------------------------- !! Begin calculations !! Check to make sure we aren't trying to do a spin-polarized run. !! Gamma point calculations can be done using the special {gamma} features !! stress tensor calcultion and cell relaxation runs are also possible. !! -------------------------------------------------------------------------------------------------------- call errore('xc_vdW_DF','vdW functional not implemented for spin polarized runs', size(rho_valence,2)-1) if (nspin>2) call errore('xc_vdW_DF','vdW functional not implemented for nspin > 2', nspin) !! -------------------------------------------------------------------------------------------------------- if (first_iteration) then #ifndef FFTGRADIENT !! Here we set up the calculations on the first iteration. If this is a parallel run, each !! processor figures out which element in the charge-density array it should start and stop on. !! PWSCF splits the cell up into slabs in the z-direction to distribute over processors. !! Thus, each processor figures out what z-planes its region corresponds to. That is important !! for the get_3d_indices and get_potential subroutines below. !! -------------------------------------------------------------------------------------------------- allocate( procs_Npoints(0:nproc_pool-1), procs_start(0:nproc_pool-1), procs_end(0:nproc_pool-1) ) procs_Npoints(me_pool) = dfftp%nnr procs_start(0) = 1 ! All processors communicate how many points they have been assigned. Each processor ! then calculates for itself what the starting and ending indices should be for every ! other processor. !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do i_proc = 0, nproc_pool-1 call mp_bcast(procs_Npoints(i_proc), i_proc, intra_pool_comm) call mp_barrier(intra_pool_comm) procs_end(i_proc) = procs_start(i_proc) + procs_Npoints(i_proc) - 1 if (i_proc .ne. nproc_pool-1) then procs_start(i_proc+1) = procs_end(i_proc)+1 end if end do !++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Each processor finds the starting and ending z-planes assined to them. Since ! PWSCF splits the cell into slabs in the z-direction, the beginning (ending) ! z slabs can be found by dividing the starting (ending) index into the charge density ! array by the number of points in a slab of thickness 1. We add 1 to the starting ! z plane because of the integer division and the fact that arrays in Fortran start at 1. ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ my_start_z = procs_start(me_pool)/(dfftp%nr1x*dfftp%nr2x)+1 my_end_z = procs_end(me_pool)/(dfftp%nr1x*dfftp%nr2x) !write(*,'(A,3I5)') "Parall en [proc, my_start_z, my_end_z]", me_pool, my_start_z, my_end_z ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #endif first_iteration = .false. !! Here we output some of the parameters being used in the run. This is important because !! these parameters are read from the vdW_kernel_table file. The user should ensure that !! these are the parameters they were intending to use on each run. !! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ if (ionode ) then WRITE( stdout, '(//,5x,"************************************************************************")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* You are using vdW-DF for exchange-correlation in this calculation.")') WRITE( stdout, '(5x,"* Please cite the following three references that made this development")') WRITE( stdout, '(5x,"* possible:")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and")') WRITE( stdout, '(5x,"* B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and")') WRITE( stdout, '(5x,"* D. C. Langreth, Phys. Rev. B 76, 125112 (2007).")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* If you are using vdW-DF2, please also cite:")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and")') WRITE( stdout, '(5x,"* D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010).")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* If you are calculating the stress with vdW-DF, please also cite:")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"* R. Sabatini, E. Kucukbenli, B. Kolb, T. Thonhauser, and")') WRITE( stdout, '(5x,"* S. de Gironcoli, J. Phys.: Condens. Matter 24, 424209 (2012).")') WRITE( stdout, '(5x,"*")') WRITE( stdout, '(5x,"************************************************************************",/)') WRITE( stdout, '(5x,"Carrying out vdW-DF run using the following parameters:",/)') WRITE( stdout, '(5X,A,I6,A,I6,A,F8.3)' ) "Nqs = ", Nqs, " Nr_points = ", Nr_points, " r_max = ", r_max WRITE( stdout, '(5X,"q_mesh =")') WRITE( stdout, '(10X,4F15.8)' ) (q_mesh(I), I=1, Nqs) #ifdef FFTGRADIENT WRITE( stdout, '(/,5x,"Gradients computed in reciprocal space",/)') #else WRITE( stdout, '(/,5x,"Gradients computed in real space",/)') #endif WRITE( stdout, '(5x,"************************************************************************",//)') end if !! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ end if !! -------------------------------------------------------------------------------------------------- !! Allocate arrays. nnr is a PWSCF variable that holds the number of points assigned to !! a given processor. !! --------------------------------------------------------------------------------------- allocate( q0(dfftp%nnr) ) allocate( gradient_rho(dfftp%nnr, 3) ) allocate( dq0_drho(dfftp%nnr), dq0_dgradrho(dfftp%nnr) ) allocate( total_rho(dfftp%nnr) ) !! --------------------------------------------------------------------------------------- !! Add together the valence and core charge densities to get the total charge density total_rho = rho_valence(:,1) + rho_core(:) if (nspin == 2) then total_rho = rho_valence(:,1) + rho_valence(:,2) + rho_core(:) else total_rho = rho_valence(:,1) + rho_core(:) endif #ifdef FFTGRADIENT !! ------------------------------------------------------------------------- !! Here we calculate the gradient in reciprocal space using FFT !! ------------------------------------------------------------------------- call numerical_gradient(total_rho,gradient_rho) #else !! ------------------------------------------------------------------------- !! Here we calculate the gradient numerically in real space !! The neighbors variable is set above and gives the number of points in !! each direction to consider when taking the numerical derivatives. !! ------------------------------------------------------------------------- !! If there is only 1 processor the needed information is held by the !! total_rho array, otherwise we need to allocate the full_rho array that !! will be deallocated the call since it is no longer needed. !! !! The full_rho array holds the charge density at every point in the !! simulation cell. Each processor needs this because the numerical !! gradients require knowledge of the charge density on points outside the !! slab one has been given. We don't allocate this in the case of using a single !! processor since total_rho would already hold this information. !! nr1x, nr2x, and nr3x are PWSCF variables that hold the TOTAL number of !! divisions along each lattice vector. Thus, their product is the total !! number of points in the cell (not just those assigned to a particular !! processor). !! ------------------------------------------------------------------------ if (nproc_pool > 1) then allocate( full_rho(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) ) full_rho(procs_start(me_pool):procs_end(me_pool)) = total_rho ! All the processors broadcast their piece of the charge density to fill in the full_rho ! arrays of all processors ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do i_proc = 0, nproc_pool - 1 call mp_barrier(intra_pool_comm) call mp_bcast(full_rho(procs_start(i_proc):procs_end(i_proc)), i_proc, intra_pool_comm) end do ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Here we calculate the gradient numerically in real space call numerical_gradient(full_rho, Nneighbors, gradient_rho, my_start_z, my_end_z) deallocate(full_rho) else ! Here we calculate the gradient numerically in real space call numerical_gradient(total_rho, Nneighbors, gradient_rho, my_start_z, my_end_z) end if #endif !! ------------------------------------------------------------------------------------------------------------- !! Find the value of q0 for all assigned grid points. q is defined in equations !! 11 and 12 of DION and q0 is the saturated version of q defined in equation !! 5 of SOLER. This routine also returns the derivatives of the q0s with respect !! to the charge-density and the gradient of the charge-density. These are needed !! for the potential calculated below. !! --------------------------------------------------------------------------------- CALL get_q0_on_grid(total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho) !! --------------------------------------------------------------------------------- !! Here we allocate and calculate the theta functions of SOLER equation 8. These are defined as !! rho * P_i(q0(rho, gradient_rho)) where P_i is a polynomial that interpolates a Kroneker delta !! function at the point q_i (taken from the q_mesh) and q0 is the saturated version of q. q is !! defined in equations 11 and 12 of DION and the saturation proceedure is defined in equation 5 !! of SOLER. This is the biggest memory consumer in the method since the thetas array is !! (total # of FFT points)*Nqs complex numbers. In a parallel run, each processor will hold the !! values of all the theta functions on just the points assigned to it. !! -------------------------------------------------------------------------------------------------- !! thetas are stored in reciprocal space as theta_i(k) because this is the way they are used later !! for the convolution (equation 8 of SOLER). The ffts used here are timed. !! -------------------------------------------------------------------------------------------------- allocate( thetas(dfftp%nnr, Nqs) ) CALL get_thetas_on_grid(total_rho, q0, thetas) !! --------------------------------------------------------------------------------------------- !! Carry out the integration in equation 8 of SOLER. This also turns the thetas array into the !! precursor to the u_i(k) array which is inverse fourier transformed to get the u_i(r) functions !! of SOLER equation 11. Add the energy we find to the output variable etxc. This process is timed. !! -------------------------------------------------------------------------------------------------- call start_clock( 'vdW_energy') call vdW_energy(thetas, Ec_nl) etxc = etxc + Ec_nl call stop_clock( 'vdW_energy') !! -------------------------------------------------------------------------------------------------- !! If verbosity is set to high we output the total non-local correlation energy found !! --------------------------------------------------------------------------------------- if (iverbosity > 0) then call mp_sum(Ec_nl,intra_pool_comm) if (ionode) write(*,'(/ / A /)') " ----------------------------------------------------------------" if (ionode) write(*,'(A, F22.15 /)') " Non-local correlation energy = ", Ec_nl if (ionode) write(*,'(A /)') " ----------------------------------------------------------------" end if !! ---------------------------------------------------------------------------------------- !! Inverse Fourier transform the u_i(k) to get the u_i(r) of SOLER equation 11. These FFTs !! are also timed and added to the timing of the forward FFTs done earlier. !!--------------------------------------------------------------------------------------- call start_clock( 'vdW_ffts') do theta_i = 1, Nqs !call cft3(thetas(:,theta_i), dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, 1) CALL invfft('Dense', thetas(:,theta_i), dfftp) end do call stop_clock( 'vdW_ffts') !! ------------------------------------------------------------------------- !! Here we allocate the array to hold the potential. This is calculated via !! equation 10 of SOLER, using the u_i(r) calculated from quations 11 and !! 12 of SOLER. Each processor allocates the array to be the size of the !! full grid because, as can be seen in SOLER equation 10, processors need !! to access grid points outside their allocated regions. !! This process is timed. The timer is stopped below after the v output !! variable has been updated with the non-local corelation potential. !! That is, the timer includes the communication time necessary in a !! parallel run. !! ------------------------------------------------------------------------- #ifdef FFTGRADIENT call start_clock( 'vdW_v' ) allocate( potential(dfftp%nnr) ) call get_potential(q0, dq0_drho, dq0_dgradrho, gradient_rho, thetas, potential) !! ------------------------------------------------------------------------- v(:,1) = v(:,1) + e2*potential(:) if (nspin == 2) v(:,2) = v(:,2) + e2*potential(:) call stop_clock( 'vdW_v' ) !! ----------------------------------------------------------------------- !! The integral of rho(r)*potential(r) for the vtxc output variable !! -------------------------------------------------------------------- grid_cell_volume = omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3) do i_grid = 1, dfftp%nnr vtxc = vtxc + e2*grid_cell_volume*rho_valence(i_grid,1)*potential(i_grid) end do if (nspin==2) then do i_grid = 1, dfftp%nnr vtxc = vtxc + e2*grid_cell_volume*rho_valence(i_grid,2)*potential(i_grid) end do endif deallocate(potential) #else call start_clock( 'vdW_v' ) allocate( potential(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) ) call get_potential(q0, dq0_drho, dq0_dgradrho, Nneighbors, gradient_rho, thetas, potential, my_start_z, my_end_z) !! ------------------------------------------------------------------------- !! Reduction process to sum all the potentials of all the processors. !! ---------------------------------------------------------------------- ! call mp_barrier( intra_pool_comm ) call mp_sum(potential, intra_pool_comm) !! ---------------------------------------------------------------------- !! Here, the potential is rebroadcast. Since each processor has part of the output v array it is easier if !! each processor adds only its assigned points to the v array. After this step, however, all !! processors hold the vdW potential over the entire grid. !! ------------------------------------------------------------------------------------------------------ ! call mp_barrier( intra_pool_comm ) call mp_bcast(potential, root_pool, intra_pool_comm) !! ------------------------------------------------------------------------------------------------------ !! Each processor adds its piece of the potential to the output v array. !! Stop the timer for the potential. !! ----------------------------------------------------------------------- v(:,1) = v(:,1) + e2*potential(procs_start(me_pool):procs_end(me_pool)) call stop_clock( 'vdW_v' ) !! ----------------------------------------------------------------------- !! The integral of rho(r)*potential(r) for the vtxc output variable !! -------------------------------------------------------------------- grid_cell_volume = omega/(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) do i_grid = 1, dfftp%nnr vtxc = vtxc + e2*grid_cell_volume * rho_valence(i_grid,1)*potential(procs_start(me_pool)+i_grid-1) end do if (nspin==2) then do i_grid = 1, dfftp%nnr vtxc = vtxc + e2*grid_cell_volume * rho_valence(i_grid,2)*potential(procs_start(me_pool)+i_grid-1) end do endif deallocate(potential) #endif !! ---------------------------------------------------------------------- !! Deallocate all arrays. deallocate(q0, gradient_rho, dq0_drho, dq0_dgradrho, total_rho, thetas) END SUBROUTINE xc_vdW_DF !! ################################################################################################# !! | | !! | STRESS_VDW_DF | !! |_________________| SUBROUTINE stress_vdW_DF(rho_valence, rho_core, nspin, sigma) USE fft_base, ONLY : dfftp use gvect, ONLY : ngm, nl, g, nlm USE cell_base, ONLY : tpiba implicit none real(dp), intent(IN) :: rho_valence(:,:) ! real(dp), intent(IN) :: rho_core(:) ! Input variables INTEGER, INTENT(IN) :: nspin ! real(dp), intent(inout) :: sigma(3,3) ! real(dp), allocatable :: gradient_rho(:,:) ! real(dp), allocatable :: total_rho(:) ! Rho values real(dp), allocatable :: q0(:) ! real(dp), allocatable :: dq0_drho(:) ! Q-values real(dp), allocatable :: dq0_dgradrho(:) ! complex(dp), allocatable :: thetas(:,:) ! Thetas #ifndef FFTGRADIENT real(dp), allocatable :: full_rho(:) ! additional Rho values on the full grid integer, save :: my_start_z, my_end_z ! integer, allocatable, save :: procs_Npoints(:) ! integer, allocatable, save :: procs_start(:) ! integer, allocatable, save :: procs_end(:) ! logical, save :: first_stress_iteration = .true. ! integer :: Nneighbors = 4 #endif integer :: i_proc, theta_i, l, m real(dp) :: sigma_grad(3,3) real(dp) :: sigma_ker(3,3) !! --------------------------------------------------------------------------------------------- !! Tests !! -------------------------------------------------------------------------------------------------------- !call errore('xc_vdW_DF','vdW functional not implemented for spin polarized runs', size(rho_valence,2)-1) if (nspin>2) call errore('xc_vdW_DF','vdW functional not implemented for nspin > 2', nspin) !IF ( gamma_only) CALL errore ('xc_vdW_DF', & ! & 'vdW functional not implemented for gamma point calculations. & ! & Use kpoints automatic and specify the gamma point explicitly', 2) sigma(:,:) = 0.0_DP sigma_grad(:,:) = 0.0_DP sigma_ker(:,:) = 0.0_DP #ifndef FFTGRADIENT !! --------------------------------------------------------------------------------------------- !! Parallel setup !! --------------------------------------------------------------------------- if (first_stress_iteration) then allocate( procs_Npoints(0:nproc_pool-1), procs_start(0:nproc_pool-1), procs_end(0:nproc_pool-1) ) procs_Npoints(me_pool) = dfftp%nnr procs_start(0) = 1 do i_proc = 0, nproc_pool-1 call mp_bcast(procs_Npoints(i_proc), i_proc, intra_pool_comm) call mp_barrier(intra_pool_comm) procs_end(i_proc) = procs_start(i_proc) + procs_Npoints(i_proc) - 1 if (i_proc .ne. nproc_pool-1) then procs_start(i_proc+1) = procs_end(i_proc)+1 end if end do my_start_z = procs_start(me_pool)/(dfftp%nr1x*dfftp%nr2x)+1 my_end_z = procs_end(me_pool)/(dfftp%nr1x*dfftp%nr2x) !write(*,'(A,3I5)') "Parall stress [proc, my_start_z, my_end_z]", me_pool, my_start_z, my_end_z first_stress_iteration = .false. end if #endif !! --------------------------------------------------------------------------------------- !! Allocations !! --------------------------------------------------------------------------------------- allocate( gradient_rho(dfftp%nnr, 3) ) allocate( total_rho(dfftp%nnr) ) allocate( q0(dfftp%nnr) ) allocate( dq0_drho(dfftp%nnr), dq0_dgradrho(dfftp%nnr) ) allocate( thetas(dfftp%nnr, Nqs) ) !! --------------------------------------------------------------------------------------- !! Charge !! --------------------------------------------------------------------------------------- if (nspin == 2) then total_rho = rho_valence(:,1) + rho_valence(:,2) + rho_core(:) else total_rho = rho_valence(:,1) + rho_core(:) endif #ifdef FFTGRADIENT !! ------------------------------------------------------------------------- !! Here we calculate the gradient in reciprocal space using FFT !! ------------------------------------------------------------------------- call numerical_gradient(total_rho,gradient_rho) #else !! --------------------------------------------------------------------------------------- !! Here we calculate the gradient in Real space !! --------------------------------------------------------------------------------------- if (nproc_pool > 1) then allocate( full_rho(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) ) full_rho(procs_start(me_pool):procs_end(me_pool)) = total_rho do i_proc = 0, nproc_pool - 1 call mp_barrier(intra_pool_comm) call mp_bcast(full_rho(procs_start(i_proc):procs_end(i_proc)), i_proc, intra_pool_comm) end do call numerical_gradient(full_rho, Nneighbors, gradient_rho, my_start_z, my_end_z) deallocate(full_rho) else call numerical_gradient(total_rho, Nneighbors, gradient_rho, my_start_z, my_end_z) end if #endif !! ------------------------------------------------------------------------------------------------------------- !! Get q0. !! --------------------------------------------------------------------------------- CALL get_q0_on_grid(total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho) !! --------------------------------------------------------------------------------- !! Get thetas in reciprocal space. !! --------------------------------------------------------------------------------- CALL get_thetas_on_grid(total_rho, q0, thetas) !! --------------------------------------------------------------------------------------- !! Stress !! --------------------------------------------------------------------------------------- CALL stress_vdW_DF_gradient(total_rho, gradient_rho, q0, dq0_drho, & dq0_dgradrho, thetas, sigma_grad) CALL stress_vdW_DF_kernel(total_rho, q0, thetas, sigma_ker) sigma = - (sigma_grad + sigma_ker) do l = 1, 3 do m = 1, l - 1 sigma (m, l) = sigma (l, m) enddo enddo deallocate( gradient_rho, total_rho, q0, dq0_drho, dq0_dgradrho, thetas ) END SUBROUTINE stress_vdW_DF !! ############################################################################################################### !! | | !! | STRESS_VDW_DF_GRADIENT | !! | | SUBROUTINE stress_vdW_DF_gradient (total_rho, gradient_rho, q0, dq0_drho, & dq0_dgradrho, thetas, sigma) !!----------------------------------------------------------------------------------- !! Modules to include !! ---------------------------------------------------------------------------------- use gvect, ONLY : ngm, nl, g, nlm, nl, gg, igtongl, & gl, ngl, gstart USE fft_base, ONLY : dfftp USE cell_base, ONLY : omega, tpiba, alat, at, tpiba2 !! ---------------------------------------------------------------------------------- implicit none real(dp), intent(IN) :: total_rho(:) ! real(dp), intent(IN) :: gradient_rho(:, :) ! Input variables real(dp), intent(inout) :: sigma(:,:) ! real(dp), intent(IN) :: q0(:) ! real(dp), intent(IN) :: dq0_drho(:) ! real(dp), intent(IN) :: dq0_dgradrho(:) ! complex(dp), intent(IN) :: thetas(:,:) ! complex(dp), allocatable :: u_vdW(:,:) ! real(dp), allocatable :: d2y_dx2(:,:) ! real(dp) :: y(Nqs), dP_dq0, P, a, b, c, d, e, f ! Interpolation real(dp) :: dq ! integer :: q_low, q_hi, q, q1_i, q2_i , g_i ! Loop and q-points integer :: l, m real(dp) :: prefactor ! Final summation of sigma integer :: i_proc, theta_i, i_grid, q_i, & ! ix, iy, iz ! Iterators character(LEN=1) :: intvar !real(dp) :: at_inverse(3,3) allocate( d2y_dx2(Nqs, Nqs) ) allocate( u_vdW(dfftp%nnr, Nqs) ) sigma(:,:) = 0.0_DP prefactor = 0.0_DP !! -------------------------------------------------------------------------------------------------- !! Get u in k-space. !! --------------------------------------------------------------------------------------------------- call thetas_to_uk(thetas, u_vdW) !! -------------------------------------------------------------------------------------------------- !! Get u in real space. !! --------------------------------------------------------------------------------------------------- call start_clock( 'vdW_ffts') do theta_i = 1, Nqs CALL invfft('Dense', u_vdW(:,theta_i), dfftp) end do call stop_clock( 'vdW_ffts') !! -------------------------------------------------------------------------------------------------- !! Get the second derivatives for interpolating the P_i !! --------------------------------------------------------------------------------------------------- call initialize_spline_interpolation(q_mesh, d2y_dx2(:,:)) !! --------------------------------------------------------------------------------------------- i_grid = 0 !! ---------------------------------------------------------------------------------------------------- !! Do the real space integration to obtain the stress component !! ---------------------------------------------------------------------------------------------------- do i_grid = 1, dfftp%nnr q_low = 1 q_hi = Nqs ! ! Figure out which bin our value of q0 is in the q_mesh ! do while ( (q_hi - q_low) > 1) q = int((q_hi + q_low)/2) if (q_mesh(q) > q0(i_grid)) then q_hi = q else q_low = q end if end do if (q_hi == q_low) call errore('stress_vdW_gradient','qhi == qlow',1) ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ dq = q_mesh(q_hi) - q_mesh(q_low) a = (q_mesh(q_hi) - q0(i_grid))/dq b = (q0(i_grid) - q_mesh(q_low))/dq c = (a**3 - a)*dq**2/6.0D0 d = (b**3 - b)*dq**2/6.0D0 e = (3.0D0*a**2 - 1.0D0)*dq/6.0D0 f = (3.0D0*b**2 - 1.0D0)*dq/6.0D0 do q_i = 1, Nqs y(:) = 0.0D0 y(q_i) = 1.0D0 dP_dq0 = (y(q_hi) - y(q_low))/dq - e*d2y_dx2(q_i,q_low) + f*d2y_dx2(q_i,q_hi) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ prefactor = u_vdW(i_grid,q_i) * dP_dq0 * dq0_dgradrho(i_grid) do l = 1, 3 do m = 1, l sigma (l, m) = sigma (l, m) - e2 * prefactor * & (gradient_rho(i_grid,l) * gradient_rho(i_grid,m)) enddo enddo !! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ end do end do #ifdef __MPI call mp_sum( sigma, intra_pool_comm ) #endif call dscal (9, 1.d0 / (dfftp%nr1 * dfftp%nr2 * dfftp%nr3), sigma, 1) deallocate( d2y_dx2, u_vdW ) END SUBROUTINE stress_vdW_DF_gradient !! ############################################################################################################### !! | | !! | STRESS_VDW_DF_KERNEL | !! | | SUBROUTINE stress_vdW_DF_kernel (total_rho, q0, thetas, sigma) !! Modules to include !! ---------------------------------------------------------------------------------- use gvect, ONLY : ngm, nl, g, nl, gg, igtongl, gl, ngl, gstart USE fft_base, ONLY : dfftp USE cell_base, ONLY : omega, tpiba, tpiba2 USE constants, ONLY: pi implicit none real(dp), intent(IN) :: q0(:) real(dp), intent(IN) :: total_rho(:) real(dp), intent(inout) :: sigma(3,3) ! complex(dp), intent(IN) :: thetas(:,:) real(dp), allocatable :: dkernel_of_dk(:,:) ! integer :: l, m, q1_i, q2_i , g_i ! real(dp) :: g2, ngmod2, g_kernel, G_multiplier ! integer :: last_g, theta_i allocate( dkernel_of_dk(Nqs, Nqs) ) sigma(:,:) = 0.0_DP !! -------------------------------------------------------------------------------------------------- !! Integration in g-space !! --------------------------------------------------------------------------------------------------- last_g = -1 G_multiplier = 1.0D0 if (gamma_only) G_multiplier = 2.0D0 do g_i = gstart, ngm g2 = gg (g_i) * tpiba2 g_kernel = sqrt(g2) if ( igtongl(g_i) .ne. last_g) then call interpolate_Dkernel_Dk(g_kernel, dkernel_of_dk) ! Gets the derivatives last_g = igtongl(g_i) end if do q2_i = 1, Nqs do q1_i = 1, Nqs do l = 1, 3 do m = 1, l sigma (l, m) = sigma (l, m) - G_multiplier * 0.5 * e2 *& thetas(nl(g_i),q1_i)*dkernel_of_dk(q1_i,q2_i)*conjg(thetas(nl(g_i),q2_i))* & (g (l, g_i) * g (m, g_i) * tpiba2) / g_kernel end do end do enddo end do if (g_i < gstart ) sigma(:,:) = sigma(:,:) / G_multiplier enddo #ifdef __MPI call mp_sum( sigma, intra_pool_comm ) #endif deallocate( dkernel_of_dk ) END SUBROUTINE stress_vdW_DF_kernel !! ############################################################################################################### !! | | !! | GET_Q0_ON_GRID | !! |__________________| !! This routine first calculates the q value defined in (DION equations 11 and 12), then !! saturates it according to (SOLER equation 5). SUBROUTINE get_q0_on_grid (total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho) !! !! more specifically it calculates the following !! !! q0(ir) = q0 as defined above !! dq0_drho(ir) = total_rho * d q0 /d rho !! dq0_dgradrho = total_rho / |gradient_rho| * d q0 / d |gradient_rho| !! USE fft_base, ONLY : dfftp USE kernel_table, ONLY : q_cut, q_min real(dp), intent(IN) :: total_rho(:), gradient_rho(:,:) !! Input variables needed real(dp), intent(OUT) :: q0(:), dq0_drho(:), dq0_dgradrho(:) !! Output variables that have been allocated ! !! outside this routine but will be set here. ! _ real(dp), parameter :: LDA_A = 0.031091D0, LDA_a1 = 0.2137D0 ! real(dp), parameter :: LDA_b1 = 7.5957D0 , LDA_b2 = 3.5876D0 ! see J.P. Perdew and Yue Wang, Phys. Rev. B 45, 13244 (1992). real(dp), parameter :: LDA_b3 = 1.6382D0 , LDA_b4 = 0.49294D0 !_ real(dp) :: Z_ab = -0.8491D0 !! see DION integer, parameter :: m_cut = 12 !! How many terms to include in the sum ! !! of SOLER equation 5 real(dp) :: kF, r_s, sqrt_r_s, gradient_correction !! Intermediate variables needed to get q and q0 real(dp) :: LDA_1, LDA_2, q, exponent !! real(dp) :: dq0_dq !! The derivative of the saturated q0 with respect to q. ! !! Needed by dq0_drho and dq0_dgradrho by the chain rule. integer :: i_grid, idx, count=0 !! Indexing variables if (vdw_type==1) Z_ab = -0.8491D0 if (vdw_type==2) Z_ab = -1.887D0 ! initialize q0-related arrays ... q0(:) = q_cut dq0_drho(:) = 0.0_DP dq0_dgradrho(:) = 0.0_DP do i_grid = 1, dfftp%nnr !! This prevents numerical problems. If the charge density is negative (an !! unphysical situation), we simply treat it as very small. In that case, !! q0 will be very large and will be saturated. For a saturated q0 the derivative !! dq0_dq will be 0 so we set q0 = q_cut and dq0_drho = dq0_dgradrho = 0 and go on !! to the next point. !! ------------------------------------------------------------------------------------ if (total_rho(i_grid) < epsr) cycle !! ------------------------------------------------------------------------------------ !! Calculate some intermediate values needed to find q !! ------------------------------------------------------------------------------------ kF = (3.0D0*pi*pi*total_rho(i_grid))**(1.0D0/3.0D0) r_s = (3.0D0/(4.0D0*pi*total_rho(i_grid)))**(1.0D0/3.0D0) sqrt_r_s = sqrt(r_s) gradient_correction = -Z_ab/(36.0D0*kF*total_rho(i_grid)**2) & * (gradient_rho(i_grid,1)**2+gradient_rho(i_grid,2)**2+gradient_rho(i_grid,3)**2) LDA_1 = 8.0D0*pi/3.0D0*(LDA_A*(1.0D0+LDA_a1*r_s)) LDA_2 = 2.0D0*LDA_A * (LDA_b1*sqrt_r_s + LDA_b2*r_s + LDA_b3*r_s*sqrt_r_s + LDA_b4*r_s*r_s) !! ------------------------------------------------------------------------------------ !! This is the q value defined in equations 11 and 12 of DION !! --------------------------------------------------------------- q = kF + LDA_1 * log(1.0D0+1.0D0/LDA_2) + gradient_correction !! --------------------------------------------------------------- !! Here, we calculate q0 by saturating q according to equation 5 of SOLER. Also, we find !! the derivative dq0_dq needed for the derivatives dq0_drho and dq0_dgradrh0 discussed below. !! --------------------------------------------------------------------------------------- exponent = 0.0D0 dq0_dq = 0.0D0 do idx = 1, m_cut exponent = exponent + ( (q/q_cut)**idx)/idx dq0_dq = dq0_dq + ( (q/q_cut)**(idx-1)) end do q0(i_grid) = q_cut*(1.0D0 - exp(-exponent)) dq0_dq = dq0_dq * exp(-exponent) !! --------------------------------------------------------------------------------------- !! This is to handle a case with q0 too small. We simply set it to the smallest q value in !! out q_mesh. Hopefully this doesn't get used often (ever) !! --------------------------------------------------------------------------------------- if (q0(i_grid) < q_min) then q0(i_grid) = q_min end if !! --------------------------------------------------------------------------------------- !! Here we find derivatives. These are actually the density times the derivative of q0 with respect !! to rho and gradient_rho. The density factor comes in since we are really differentiating !! theta = (rho)*P(q0) with respect to density (or its gradient) which will be !! dtheta_drho = P(q0) + dP_dq0 * [rho * dq0_dq * dq_drho] and !! dtheta_dgradient_rho = dP_dq0 * [rho * dq0_dq * dq_dgradient_rho] !! The parts in square brackets are what is calculated here. The dP_dq0 term will be interpolated !! later. There should actually be a factor of the magnitude of the gradient in the gradient_rho derivative !! but that cancels out when we differentiate the magnitude of the gradient with respect to a particular !! component. !! ------------------------------------------------------------------------------------------------------------------------- dq0_drho(i_grid) = dq0_dq * (kF/3.0D0 - 7.0D0/3.0D0*gradient_correction & - 8.0D0*pi/9.0D0 * LDA_A*LDA_a1*r_s*log(1.0D0+1.0D0/LDA_2) & + LDA_1/(LDA_2*(1.0D0 + LDA_2)) & * (2.0D0*LDA_A*(LDA_b1/6.0D0*sqrt_r_s + LDA_b2/3.0D0*r_s + LDA_b3/2.0D0*r_s*sqrt_r_s + 2.0D0*LDA_b4/3.0D0*r_s**2))) dq0_dgradrho(i_grid) = total_rho(i_grid) * dq0_dq * 2.0D0 * (-Z_ab)/(36.0D0*kF*total_rho(i_grid)**2) !! -------------------------------------------------------------------------------------------------------------------------- end do end SUBROUTINE get_q0_on_grid !! ############################################################################################################### !! ############################################################################################################### !! | | !! | GET_THETAS_ON_GRID | !! |______________________| SUBROUTINE get_thetas_on_grid (total_rho, q0_on_grid, thetas) real(dp), intent(in) :: total_rho(:), q0_on_grid(:) !! Input arrays complex(dp), intent(inout):: thetas(:,:) !! value of thetas for the grid points ! !! assigned to this processor. The format ! !! is thetas(grid_point, theta_i) ! NB: thetas are returned in reciprocal space integer :: i_grid, Ngrid_points !! An index for the point on the grid and the total ! !! number of grid points integer :: theta_i !! an index Ngrid_points = size(q0_on_grid) !! Interpolate the P_i polynomials defined in equation 3 in SOLER for the particular !! q0 values we have. CALL spline_interpolation(q_mesh, q0_on_grid, thetas) !! Form the thetas where theta is defined as rho*p_i(q0) !! ------------------------------------------------------------------------------------ do i_grid = 1, Ngrid_points thetas(i_grid,:) = thetas(i_grid,:) * total_rho(i_grid) end do !! ------------------------------------------------------------------------------------ !! Get thetas in reciprocal space. call start_clock( 'vdW_ffts') do theta_i = 1, Nqs CALL fwfft ('Dense', thetas(:,theta_i), dfftp) end do call stop_clock( 'vdW_ffts') END SUBROUTINE get_thetas_on_grid !! ############################################################################################################### !! ############################################################################################################### !! | | !! | SPLINE_INTERPOLATION | !! |________________________| !! This routine is modeled after an algorithm from "Numerical Recipes in C" by Cambridge University !! press, page 97. It was adapted for Fortran, of course and for the problem at hand, in that it finds !! the bin a particular x value is in and then loops over all the P_i functions so we only have to find !! the bin once. SUBROUTINE spline_interpolation (x, evaluation_points, values) real(dp), intent(in) :: x(:), evaluation_points(:) !! Input variables. The x values used to form the interpolation ! !! (q_mesh in this case) and the values of q0 for which we are ! !! interpolating the function complex(dp), intent(inout) :: values(:,:) !! An output array (allocated outside this routine) that stores the ! !! interpolated values of the P_i (SOLER equation 3) polynomials. The ! !! format is values(grid_point, P_i) integer :: Ngrid_points, Nx !! Total number of grid points to evaluate and input x points real(dp), allocatable, save :: d2y_dx2(:,:) !! The second derivatives required to do the interpolation integer :: i_grid, lower_bound, upper_bound, idx, P_i !! Some indexing variables real(dp), allocatable :: y(:) !! Temporary variables needed for the interpolation real(dp) :: a, b, c, d, dx !! Nx = size(x) Ngrid_points = size(evaluation_points) !! Allocate the temporary array allocate( y(Nx) ) !! If this is the first time this routine has been called we need to get the second !! derivatives (d2y_dx2) required to perform the interpolations. So we allocate the !! array and call initialize_spline_interpolation to get d2y_dx2. !! ------------------------------------------------------------------------------------ if (.not. allocated(d2y_dx2) ) then allocate( d2y_dx2(Nx,Nx) ) call initialize_spline_interpolation(x, d2y_dx2) end if !! ------------------------------------------------------------------------------------ do i_grid=1, Ngrid_points lower_bound = 1 upper_bound = Nx do while ( (upper_bound - lower_bound) > 1 ) idx = (upper_bound+lower_bound)/2 if ( evaluation_points(i_grid) > x(idx) ) then lower_bound = idx else upper_bound = idx end if end do dx = x(upper_bound)-x(lower_bound) a = (x(upper_bound) - evaluation_points(i_grid))/dx b = (evaluation_points(i_grid) - x(lower_bound))/dx c = ((a**3-a)*dx**2)/6.0D0 d = ((b**3-b)*dx**2)/6.0D0 do P_i = 1, Nx y = 0 y(P_i) = 1 values(i_grid, P_i) = a*y(lower_bound) + b*y(upper_bound) & + (c*d2y_dx2(P_i,lower_bound) + d*d2y_dx2(P_i, upper_bound)) end do end do deallocate( y ) END SUBROUTINE spline_interpolation !! ############################################################################################################### !! ############################################################################################################### !! | | !! | INITIALIZE_SPLINE_INTERPOLATION | !! |___________________________________| !! This routine is modeled after an algorithm from "Numerical Recipes in C" by Cambridge !! University Press, pages 96-97. It was adapted for Fortran and for the problem at hand. SUBROUTINE initialize_spline_interpolation (x, d2y_dx2) real(dp), intent(in) :: x(:) !! The input abscissa values real(dp), intent(inout) :: d2y_dx2(:,:) !! The output array (allocated outside this routine) ! !! that holds the second derivatives required for ! !! interpolating the function integer :: Nx, P_i, idx !! The total number of x points and some indexing ! !! variables real(dp), allocatable :: temp_array(:), y(:) !! Some temporary arrays required. y is the array ! !! that holds the funcion values (all either 0 or 1 here). real(dp) :: temp1, temp2 !! Some temporary variables required Nx = size(x) allocate( temp_array(Nx), y(Nx) ) do P_i=1, Nx !! In the Soler method, the polynomicals that are interpolated are Kroneker delta funcions !! at a particular q point. So, we set all y values to 0 except the one corresponding to !! the particular function P_i. !! ---------------------------------------------------------------------------------------- y = 0.0D0 y(P_i) = 1.0D0 !! ---------------------------------------------------------------------------------------- d2y_dx2(P_i,1) = 0.0D0 temp_array(1) = 0.0D0 do idx = 2, Nx-1 temp1 = (x(idx)-x(idx-1))/(x(idx+1)-x(idx-1)) temp2 = temp1 * d2y_dx2(P_i,idx-1) + 2.0D0 d2y_dx2(P_i,idx) = (temp1-1.0D0)/temp2 temp_array(idx) = (y(idx+1)-y(idx))/(x(idx+1)-x(idx)) & - (y(idx)-y(idx-1))/(x(idx)-x(idx-1)) temp_array(idx) = (6.0D0*temp_array(idx)/(x(idx+1)-x(idx-1)) & - temp1*temp_array(idx-1))/temp2 end do d2y_dx2(P_i,Nx) = 0.0D0 do idx=Nx-1, 1, -1 d2y_dx2(P_i,idx) = d2y_dx2(P_i,idx) * d2y_dx2(P_i,idx+1) + temp_array(idx) end do end do deallocate( temp_array, y) end SUBROUTINE initialize_spline_interpolation !! ############################################################################################################### !! ############################################################################################################### !! | | !! | INTERPOLATE_KERNEL | !! |____________________| !! This routine is modeled after an algorithm from "Numerical Recipes in C" by Cambridge !! University Press, page 97. Adapted for Fortran and the problem at hand. This function is used to !! find the Phi_alpha_beta needed for equations 8 and 11 of SOLER. subroutine interpolate_kernel(k, kernel_of_k) USE kernel_table, ONLY : r_max, Nr_points, kernel, d2phi_dk2, dk real(dp), intent(in) :: k !! Input value, the magnitude of the g-vector for the ! !! current point. real(dp), intent(inout) :: kernel_of_k(:,:) !! An output array (allocated outside this routine) ! !! that holds the interpolated value of the kernel ! !! for each pair of q points (i.e. the phi_alpha_beta ! !! of the Soler method. integer :: q1_i, q2_i, k_i !! Indexing variables real(dp) :: A, B, C, D !! Intermediate values for the interpolation !! Check to make sure that the kernel table we have is capable of dealing with this !! value of k. If k is larger than Nr_points*2*pi/r_max then we can't perform the !! interpolation. In that case, a kernel file should be generated with a larger number !! of radial points. !! ------------------------------------------------------------------------------------- if ( k >= Nr_points*dk ) then write(*,'(A,F10.5,A,F10.5)') "k = ", k, " k_max = ",Nr_points*dk call errore('interpolate kernel', 'k value requested is out of range',1) end if !! ------------------------------------------------------------------------------------- kernel_of_k = 0.0D0 !! This integer division figures out which bin k is in since the kernel !! is set on a uniform grid. k_i = int(k/dk) !! Test to see if we are trying to interpolate a k that is one of the actual !! function points we have. The value is just the value of the function in that !! case. !! ---------------------------------------------------------------------------------------- if (mod(k,dk) == 0) then do q1_i = 1, Nqs do q2_i = 1, q1_i kernel_of_k(q1_i, q2_i) = kernel(k_i,q1_i, q2_i) kernel_of_k(q2_i, q1_i) = kernel(k_i,q2_i, q1_i) end do end do return end if !! ---------------------------------------------------------------------------------------- !! If we are not on a function point then we carry out the interpolation !! ---------------------------------------------------------------------------------------- A = (dk*(k_i+1.0D0) - k)/dk B = (k - dk*k_i)/dk C = (A**3-A)*dk**2/6.0D0 D = (B**3-B)*dk**2/6.0D0 do q1_i = 1, Nqs do q2_i = 1, q1_i kernel_of_k(q1_i, q2_i) = A*kernel(k_i, q1_i, q2_i) + B*kernel(k_i+1, q1_i, q2_i) & +(C*d2phi_dk2(k_i, q1_i, q2_i) + D*d2phi_dk2(k_i+1, q1_i, q2_i)) kernel_of_k(q2_i, q1_i) = kernel_of_k(q1_i, q2_i) end do end do !! ---------------------------------------------------------------------------------------- end subroutine interpolate_kernel !! ############################################################################################################### !! ############################################################################################################### !! | | !! | INTERPOLATE_DKERNEL_DK | !! |________________________| subroutine interpolate_Dkernel_Dk(k, dkernel_of_dk) USE kernel_table, ONLY : r_max, Nr_points, kernel, d2phi_dk2, dk implicit none real(dp), intent(in) :: k !! Input value, the magnitude of the g-vector for the ! !! current point. real(dp), intent(inout) :: dkernel_of_dk(Nqs,Nqs) !! An output array (allocated outside this routine) ! !! that holds the interpolated value of the kernel ! !! for each pair of q points (i.e. the phi_alpha_beta ! !! of the Soler method. integer :: q1_i, q2_i, k_i !! Indexing variables real(dp) :: A, B, dAdk, dBdk, dCdk, dDdk !! Intermediate values for the interpolation !! ------------------------------------------------------------------------------------- if ( k >= Nr_points*dk ) then write(*,'(A,F10.5,A,F10.5)') "k = ", k, " k_max = ",Nr_points*dk call errore('interpolate kernel', 'k value requested is out of range',1) end if !! ------------------------------------------------------------------------------------- dkernel_of_dk = 0.0D0 k_i = int(k/dk) !! ---------------------------------------------------------------------------------------- A = (dk*(k_i+1.0D0) - k)/dk B = (k - dk*k_i)/dk dAdk = -1.0D0/dk dBdk = 1.0D0/dk dCdk = -((3*A**2 -1.0D0)/6.0D0)*dk dDdk = ((3*B**2 -1.0D0)/6.0D0)*dk do q1_i = 1, Nqs do q2_i = 1, q1_i dkernel_of_dk(q1_i, q2_i) = dAdk*kernel(k_i, q1_i, q2_i) + dBdk*kernel(k_i+1, q1_i, q2_i) & + dCdk*d2phi_dk2(k_i, q1_i, q2_i) + dDdk*d2phi_dk2(k_i+1, q1_i, q2_i) dkernel_of_dk(q2_i, q1_i) = dkernel_of_dk(q1_i, q2_i) end do end do !! ---------------------------------------------------------------------------------------- end subroutine interpolate_Dkernel_Dk !! ############################################################################################################### !! | | !! | NUMERICAL_GRADIENT | !! |_______________________| #ifdef FFTGRADIENT !! Calculates the gradient of the charge density numerically on the grid. We use !! the PWSCF gradient style. subroutine numerical_gradient(total_rho, gradient_rho) use gvect, ONLY : ngm, nl, g, nlm USE cell_base, ONLY : tpiba USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft, invfft ! ! I/O variables ! real(dp), intent(in) :: total_rho(:) !! Input array holding total charge density. real(dp), intent(out) :: gradient_rho(:,:) !! Output array that will holds the gradient ! !! of the charge density. ! local variables ! integer :: icar !! counter on cartesian components complex(dp), allocatable :: c_rho(:) !! auxiliary complex array for rho complex(dp), allocatable :: c_grho(:) !! auxiliary complex array for grad rho ! rho in G space allocate ( c_rho(dfftp%nnr), c_grho(dfftp%nnr) ) c_rho(1:dfftp%nnr) = CMPLX(total_rho(1:dfftp%nnr),0.0_DP) CALL fwfft ('Dense', c_rho, dfftp) do icar=1,3 ! compute gradient in G space c_grho(:) =CMPLX(0.0_DP,0.0_DP) c_grho(nl(:)) = CMPLX (0.0_DP,1.0_DP) * tpiba * g(icar,:) * c_rho(nl(:)) if (gamma_only) c_grho( nlm(:) ) = CONJG( c_grho( nl(:) ) ) ! back in real space CALL invfft ('Dense', c_grho, dfftp) gradient_rho(:,icar) = REAL( c_grho(:) ) end do deallocate ( c_rho, c_grho ) return end subroutine numerical_gradient #else !! Calculates the gradient of the charge density numerically on the grid. We could simply !! use the PWSCF gradient routine but we need the derivative of the gradient at point j !! with respect to the density at point i for the potential (SOLER equation 10). This is !! difficult to do with the standard means of calculating the density gradient but trivial !! in the case of the numerical formula because the derivative of the gradient at point j !! with respect to the density at point i is just whatever the coefficient is in the numerical !! derivative formula. subroutine numerical_gradient(full_rho, Nneighbors, gradient_rho, my_start_z, my_end_z) USE fft_base, ONLY : dfftp USE cell_base, ONLY : alat, at real(dp), intent(in) :: full_rho(:) !! Input array holding the value of the total charge density ! !! on all grid points of the simulation cell integer, intent(in) :: Nneighbors, my_start_z, my_end_z !! Input variables giving the order of the numerical derivative, ! !! and the starting and ending z-slabs for the given processor. real(dp), intent(inout) :: gradient_rho(:,:) !! Output array (allocated outside the routine) that holds the ! !! gradient of the charge density only in the region assigned to ! !! the given processor in the format: ! !! gradient_rho(grid_point, cartesian_component) real(dp), pointer, save :: coefficients(:) !! A pointer to an array of coefficients used for the numerical ! !! differentiation. See gradient_coefficients function for more ! !! detail. integer, pointer, save :: indices3d(:,:,:) !! A pointer to a rank 3 array that gives the relation between the ! !! x, y, and z indices of a point and its index in the charge density ! !! array. Used to easily find neighbors in the x, y, and z directions. integer :: i_grid, ix1, ix2, ix3, nx !! Indexing variables real(dp) :: temp(3) !! A temporary array for the gradient at a point real(dp), save :: at_inverse(3,3) !! The inverse of the matrix of unit cell basis vectors logical, save :: have_at_inverse = .false. !! Flag to determine if we have found the inverse matrix yet gradient_rho = 0.0D0 !! Get pointers to the gradient coefficients and the 3d index array needed to find !! the gradient if we don't have them already. !! ---------------------------------------------------------------------------------- if (.not. associated(indices3d) ) then indices3d => get_3d_indices(Nneighbors) coefficients => gradient_coefficients(Nneighbors) end if !! ---------------------------------------------------------------------------------- !! Here we need to get the transformation matrix that takes our calculated "gradient" !! , gradient_rho()!! to the real thing. It is just the (normalized) inverse of the matrix of unit cell !! basis vectors. If the unit cell has orthogonal basis vectors then this will be a !! diagonal matrix with the diagonal elements bein 1/(basis vector length). In the !! general case this will not be diagonal (e.g. for hexagonal unit cells). !! ---------------------------------------------------------------------------------- if (.not. have_at_inverse) then at_inverse = alat*at call invert_3x3_matrix(at_inverse) ! Normalize by the number of grid points in each direction ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ at_inverse(1,:) = at_inverse(1,:) * dble(dfftp%nr1x) at_inverse(2,:) = at_inverse(2,:) * dble(dfftp%nr2x) at_inverse(3,:) = at_inverse(3,:) * dble(dfftp%nr3x) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Take the transpose because of the way Fortran does matmul() (used below) at_inverse = transpose(at_inverse) ! Mark that we have gotten the transformation matrix so we don't have to find it again have_at_inverse = .true. end if !! ---------------------------------------------------------------------------------- i_grid = 0 !! Here we loop over all of the points assigned to a given processor. For each point we loop !! over all relavant neighbors (determined by the variable Nneighbors) and multiply the value !! of the density of each by the corresponding coefficient. We then tranform the vector by !! multiplying it by the inverse of the unit cell matrix found above. This takes care of cases !! where the basis vectors are not the same length or are not even orthogonal. !! ----------------------------------------------------------------------------------------------- do ix3 = my_start_z, my_end_z do ix2 = 1, dfftp%nr2x do ix1 = 1, dfftp%nr1x i_grid = i_grid + 1 temp = 0.0D0 do nx = -Nneighbors, Nneighbors temp(1) = temp(1) + coefficients(nx) * full_rho(indices3d(ix1+nx,ix2,ix3)) temp(2) = temp(2) + coefficients(nx) * full_rho(indices3d(ix1,ix2+nx,ix3)) temp(3) = temp(3) + coefficients(nx) * full_rho(indices3d(ix1,ix2,ix3+nx)) end do gradient_rho(i_grid,:) = matmul(at_inverse,temp) end do end do end do !! ----------------------------------------------------------------------------------------------- !! FAKE PATCH !! !gradient_rho = 0.0D0 end subroutine numerical_gradient #endif !! ################################################################################################# !! | | !! | thetas_to_uk | !! |______________| subroutine thetas_to_uk(thetas, u_vdW) USE gvect, ONLY : nl, nlm, gg, ngm, igtongl, gl, ngl, gstart USE fft_base, ONLY : dfftp USE cell_base, ONLY : tpiba, omega complex(dp), intent(in) :: thetas(:,:) !! On input this variable holds the theta functions (equation 8, SOLER) ! !! in the format thetas(grid_point, theta_i). complex(dp), intent(out) :: u_vdW(:,:) ! !! On output this array holds u_alpha(k) = Sum_j[theta_beta(k)phi_alpha_beta(k)] real(dp), allocatable :: kernel_of_k(:,:) !! This array will hold the interpolated kernel values for each pair of q values ! !! in the q_mesh. real(dp) :: g integer :: last_g, g_i, q1_i, q2_i, count, i_grid !! Index variables complex(dp) :: theta(Nqs) !! Temporary storage vector used since we are overwriting the thetas array here. !! ------------------------------------------------------------------------------------------------- allocate( kernel_of_k(Nqs, Nqs) ) u_vdW(:,:) = CMPLX(0.0_DP,0.0_DP) last_g = -1 do g_i = 1, ngm if ( igtongl(g_i) .ne. last_g) then g = sqrt(gl(igtongl(g_i))) * tpiba call interpolate_kernel(g, kernel_of_k) last_g = igtongl(g_i) end if theta = thetas(nl(g_i),:) do q2_i = 1, Nqs do q1_i = 1, Nqs u_vdW(nl(g_i),q2_i) = u_vdW(nl(g_i),q2_i) + kernel_of_k(q2_i,q1_i)*theta(q1_i) end do end do end do if (gamma_only) u_vdW(nlm(:),:) = CONJG(u_vdW(nl(:),:)) deallocate( kernel_of_k ) !! ----------------------------------------------------------------------------------------------- end subroutine thetas_to_uk !! ################################################################################################# !! | | !! | VDW_ENERGY | !! |_____________| !! This routine carries out the integration of equation 8 of SOLER. It returns the non-local !! exchange-correlation energy and the u_alpha(k) arrays used to find the u_alpha(r) arrays via !! equations 11 and 12 in SOLER. subroutine vdW_energy(thetas, vdW_xc_energy) USE gvect, ONLY : nl, nlm, gg, ngm, igtongl, gl, ngl, gstart USE fft_base, ONLY : dfftp USE cell_base, ONLY : tpiba, omega complex(dp), intent(inout) :: thetas(:,:) !! On input this variable holds the theta functions ! !! (equation 8, SOLER) in the format thetas(grid_point, theta_i). ! !! On output this array holds ! !! u_alpha(k) = Sum_j[theta_beta(k)phi_alpha_beta(k)] real(dp), intent(out) :: vdW_xc_energy !! The non-local correlation energy. An output variable. real(dp), allocatable :: kernel_of_k(:,:) !! This array will hold the interpolated kernel values ! !! for each pair of q values in the q_mesh. real(dp) :: g !! The magnitude of the current g vector integer :: last_g !! The shell number of the last g vector ! integer :: g_i, q1_i, q2_i, count, i_grid !! Index variables complex(dp) :: theta(Nqs), thetam(Nqs), theta_g(Nqs) !! Temporary storage vector used since we are overwriting the thetas array here. real(dp) :: G0_term, G_multiplier complex(dp), allocatable :: u_vdw(:,:) !! temporary array holding u_alpha(k) vdW_xc_energy = 0.0D0 allocate (u_vdW(dfftp%nnr,Nqs)) u_vdW(:,:) = CMPLX(0.0_DP,0.0_DP) allocate( kernel_of_k(Nqs, Nqs) ) !! Loop over PWSCF's array of magnitude-sorted g-vector shells. For each shell, interpolate !! the kernel at this magnitude of g, then find all points on the shell and carry out the !! integration over those points. The PWSCF variables used here are !! ngm = number of g-vectors on this processor, nl = an array that gives the indices into the !! FFT grid for a particular g vector, igtongl = an array that gives the index of which shell a !! particular g vector is in, gl = an array that gives the magnitude of the g vectors for each shell. !! In essence, we are forming the reciprocal-space u(k) functions of SOLER equation 11. These are !! kept in thetas array. !! ------------------------------------------------------------------------------------------------- !! !! Here we should use gstart,ngm but all the cases are handled by conditionals inside the loop !! G_multiplier = 1.0D0 if (gamma_only) G_multiplier = 2.0D0 last_g = -1 do g_i = 1, ngm if ( igtongl(g_i) .ne. last_g) then g = sqrt(gl(igtongl(g_i))) * tpiba call interpolate_kernel(g, kernel_of_k) last_g = igtongl(g_i) end if theta = thetas(nl(g_i),:) do q2_i = 1, Nqs do q1_i = 1, Nqs u_vdW(nl(g_i),q2_i) = u_vdW(nl(g_i),q2_i) + kernel_of_k(q2_i,q1_i)*theta(q1_i) end do vdW_xc_energy = vdW_xc_energy + G_multiplier * (u_vdW(nl(g_i),q2_i)*conjg(theta(q2_i))) end do if (g_i < gstart ) vdW_xc_energy = vdW_xc_energy / G_multiplier end do if (gamma_only) u_vdW(nlm(:),:) = CONJG(u_vdW(nl(:),:)) !! --------------------------------------------------------------------------------------------------- !! Apply scaling factors. The e2 comes from PWSCF's choice of units. This should be !! 0.5 * e2 * vdW_xc_energy * (2pi)^3/omega * (omega)^2, with the (2pi)^3/omega being !! the volume element for the integral (the volume of the reciprocal unit cell) and the !! 2 factors of omega being used to cancel the factor of 1/omega PWSCF puts on forward !! FFTs of the 2 theta factors. 1 omega cancels and the (2pi)^3 cancels because there should !! be a factor of 1/(2pi)^3 on the radial Fourier transform of phi that was left out to cancel !! with this factor. !! --------------------------------------------------------------------------------------------------- vdW_xc_energy = 0.5D0 * e2 * omega * vdW_xc_energy deallocate( kernel_of_k ) thetas(:,:) = u_vdW(:,:) deallocate (u_vdW) !! --------------------------------------------------------------------------------------------------- end subroutine vdW_energy !! ############################################################################################################### !! ############################################################################################################### !! | | !! | dv_drho_vdw | !! |_________________| #ifdef FFTGRADIENT subroutine dv_drho_vdw(rho_valence, rho_core, drho, nspin, dv_drho) USE gvect, ONLY : nl, g, nlm, ngm USE fft_base, ONLY : dfftp USE cell_base, ONLY : alat, tpiba, omega integer :: nspin real(dp), intent(IN) :: rho_valence(:,:) ! real(dp), intent(IN) :: rho_core(:) complex(DP), intent(IN) :: drho (dfftp%nnr, nspin) complex(DP), intent(INOUT) :: dv_drho(dfftp%nnr, nspin) !! ------------------------------------------------------------------------- !! For the potential !! ------------------------------------------------------------------------- integer :: i_grid, theta_i, i_proc, I real(dp) :: grid_cell_volume real(dp), allocatable :: q0(:) real(dp), allocatable :: gradient_rho(:,:) real(dp), allocatable :: potential(:) real(dp), allocatable :: dq0_drho(:) real(dp), allocatable :: dq0_dgradrho(:) complex(dp), allocatable :: thetas(:,:) real(dp), allocatable :: total_rho(:) complex(dp), allocatable :: u_vdW(:,:) !! ------------------------------------------------------------------------- !! For the derivative !! ------------------------------------------------------------------------- real(dp), allocatable :: potential_plus(:), potential_minus(:) real(dp) :: lambda real(DP), allocatable :: drho_real(:) allocate( q0(dfftp%nnr) ) allocate( gradient_rho(dfftp%nnr, 3) ) allocate( dq0_drho(dfftp%nnr), dq0_dgradrho(dfftp%nnr) ) allocate( total_rho(dfftp%nnr) ) allocate( drho_real(dfftp%nnr) ) allocate( thetas(dfftp%nnr, Nqs) ) allocate( u_vdW(dfftp%nnr, Nqs) ) allocate( potential_plus(dfftp%nnr), potential_minus(dfftp%nnr) ) !! Derivative parameter lambda = 0.01D0 !! Delta rho in real space CALL invfft ('Dense', drho(:,1), dfftp) drho_real(:) = REAL( drho(:,1) ) !! ------------------------------------------------------------------------- !! Potential plus !! ------------------------------------------------------------------------- total_rho = rho_valence(:,1) + rho_core(:) + lambda*drho_real(:) call numerical_gradient(total_rho,gradient_rho) CALL get_q0_on_grid(total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho) CALL get_thetas_on_grid(total_rho, q0, thetas) !!call vdW_energy(thetas, Ec_nl) call thetas_to_uk(thetas, u_vdW) call start_clock( 'vdW_ffts') do theta_i = 1, Nqs CALL invfft('Dense', u_vdW(:,theta_i), dfftp) end do call stop_clock( 'vdW_ffts') !!call get_potential(q0, dq0_drho, dq0_dgradrho, gradient_rho, thetas, potential) call get_potential(q0, dq0_drho, dq0_dgradrho, gradient_rho, u_vdW, potential_plus) !! ------------------------------------------------------------------------- !! Potential minus !! ------------------------------------------------------------------------- total_rho = rho_valence(:,1) + rho_core(:) - lambda*drho_real(:) call numerical_gradient(total_rho,gradient_rho) CALL get_q0_on_grid(total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho) CALL get_thetas_on_grid(total_rho, q0, thetas) !!call vdW_energy(thetas, Ec_nl) call thetas_to_uk(thetas, u_vdW) call start_clock( 'vdW_ffts') do theta_i = 1, Nqs CALL invfft('Dense', u_vdW(:,theta_i), dfftp) end do call stop_clock( 'vdW_ffts') !!call get_potential(q0, dq0_drho, dq0_dgradrho, gradient_rho, thetas, potential) call get_potential(q0, dq0_drho, dq0_dgradrho, gradient_rho, u_vdW, potential_minus) !! ------------------------------------------------------------------------- !! Derivative !! ------------------------------------------------------------------------- dv_drho(:,1) = (potential_plus(:) - potential_minus(:))/(2*lambda) !! ------------------------------------------------------------------------- !! Deallocate !! ------------------------------------------------------------------------- CALL fwfft ('Dense', drho(:,1), dfftp) deallocate( q0, gradient_rho, dq0_drho, dq0_dgradrho, total_rho) deallocate( drho_real,thetas, u_vdW) deallocate( potential_plus, potential_minus ) end subroutine dv_drho_vdw #endif !! ############################################################################################################### !! | | !! | GET_POTENTIAL | !! |_________________| !! This routine finds the non-local correlation contribution to the potential (i.e. the derivative of the non-local !! piece of the energy with respect to density) given in SOLER equation 10. The u_alpha(k) functions were found !! while calculating the energy. They are passed in as the matrix u_vdW. Most of the required derivatives were !! calculated in the "get_q0_on_grid" routine, but the derivative of the interpolation polynomials, P_alpha(q), !! (SOLER equation 3) with respect to q is interpolated here, along with the polynomials themselves. #ifdef FFTGRADIENT subroutine get_potential(q0, dq0_drho, dq0_dgradrho, gradient_rho, u_vdW, potential) use gvect, ONLY : nl, g, nlm USE fft_base, ONLY : dfftp USE cell_base, ONLY : alat, tpiba real(dp), intent(in) :: q0(:), gradient_rho(:,:) !! Input arrays holding the value of q0 for all points assigned ! !! to this processor and the gradient of the charge density for ! !! points assigned to this processor. real(dp), intent(in) :: dq0_drho(:), dq0_dgradrho(:)!! The derivative of q0 with respect to the charge density and ! !! gradient of the charge density (almost). See comments in ! !! the get_q0_on_grid subroutine above. complex(dp), intent(in) :: u_vdW(:,:) !! The functions u_alpha(r) obtained by inverse transforming the ! !! functions u_alph(k). See equations 11 and 12 in SOLER real(dp), intent(inout) :: potential(:) !! The non-local correlation potential for points on the grid over ! !! the whole cell (not just those assigned to this processor). real(dp), allocatable, save :: d2y_dx2(:,:) !! Second derivatives of P_alpha polynomials for interpolation integer :: i_grid, P_i,icar !! Index variables integer :: q_low, q_hi, q !! Variables to find the bin in the q_mesh that a particular q0 ! !! belongs to (for interpolation). real(dp) :: dq, a, b, c, d, e, f !! Intermediate variables used in the interpolation of the polynomials real(dp) :: y(Nqs), dP_dq0, P !! The y values for a given polynomial (all 0 exept for element i of P_i) ! !! The derivative of P at a given q0 and the value of P at a given q0. Both ! !! of these are interpolated below real(dp), allocatable ::h_prefactor(:) complex(dp), allocatable ::h(:) allocate (h_prefactor(dfftp%nnr),h(dfftp%nnr)) potential = 0.0D0 h_prefactor = 0.0D0 !! ------------------------------------------------------------------------------------------- !! Get the second derivatives of the P_i functions for interpolation. We have already calculated !! this once but it is very fast and it's just as easy to calculate it again. !! --------------------------------------------------------------------------------------------- if (.not. allocated( d2y_dx2) ) then allocate( d2y_dx2(Nqs, Nqs) ) call initialize_spline_interpolation(q_mesh, d2y_dx2(:,:)) end if !! --------------------------------------------------------------------------------------------- do i_grid = 1,dfftp%nnr q_low = 1 q_hi = Nqs ! Figure out which bin our value of q0 is in in the q_mesh ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do while ( (q_hi - q_low) > 1) q = int((q_hi + q_low)/2) if (q_mesh(q) > q0(i_grid)) then q_hi = q else q_low = q end if end do if (q_hi == q_low) call errore('get_potential','qhi == qlow',1) ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ dq = q_mesh(q_hi) - q_mesh(q_low) a = (q_mesh(q_hi) - q0(i_grid))/dq b = (q0(i_grid) - q_mesh(q_low))/dq c = (a**3 - a)*dq**2/6.0D0 d = (b**3 - b)*dq**2/6.0D0 e = (3.0D0*a**2 - 1.0D0)*dq/6.0D0 f = (3.0D0*b**2 - 1.0D0)*dq/6.0D0 do P_i = 1, Nqs y = 0.0D0 y(P_i) = 1.0D0 dP_dq0 = (y(q_hi) - y(q_low))/dq - e*d2y_dx2(P_i,q_low) + f*d2y_dx2(P_i,q_hi) P = a*y(q_low) + b*y(q_hi) + c*d2y_dx2(P_i,q_low) + d*d2y_dx2(P_i,q_hi) !! The first term in equation 10 of SOLER potential(i_grid) = potential(i_grid) + u_vdW(i_grid,P_i)* (P + dP_dq0 * dq0_drho(i_grid)) if (q0(i_grid) .ne. q_mesh(Nqs)) then h_prefactor(i_grid) = h_prefactor(i_grid) + u_vdW(i_grid,P_i)* dP_dq0 * dq0_dgradrho(i_grid) end if end do end do do icar = 1,3 h(:) = CMPLX(h_prefactor(:) * gradient_rho(:,icar),0.0_DP) CALL fwfft ('Dense', h, dfftp) h(nl(:)) = CMPLX(0.0_DP,1.0_DP) * tpiba * g(icar,:) * h(nl(:)) if (gamma_only) h(nlm(:)) = CONJG(h(nl(:))) CALL invfft ('Dense', h, dfftp) potential(:) = potential(:) - REAL(h(:)) end do !! ------------------------------------------------------------------------------------------------------------------------ deallocate (h_prefactor,h) end subroutine get_potential #else subroutine get_potential(q0, dq0_drho, dq0_dgradrho, N, gradient_rho, u_vdW, potential, my_start_z, my_end_z) USE fft_base, ONLY : dfftp USE cell_base, ONLY : alat, at real(dp), intent(in) :: q0(:), gradient_rho(:,:) !! Input arrays holding the value of q0 for all points assigned ! !! to this processor and the gradient of the charge density for ! !! points assigned to this processor. real(dp), intent(in) :: dq0_drho(:), dq0_dgradrho(:) !! The derivative of q0 with respect to the charge density and ! !! gradient of the charge density (almost). See comments in ! !! the get_q0_on_grid subroutine above. real(dp), intent(inout) :: potential(:) !! The non-local correlation potential for points on the grid over ! !! the whole cell (not just those assigned to this processor). integer, intent(in) :: N, my_start_z, my_end_z !! The number of neighbors used in the numerical gradient formula ! !! and the starting and ending z planes for this processor complex(dp), intent(in) :: u_vdW(:,:) !! The functions u_alpha(r) obtained by inverse transforming the ! !! functions u_alph(k). See equations 11 and 12 in SOLER real(dp), allocatable, save :: d2y_dx2(:,:) !! Second derivatives of P_alpha polynomials for interpolation integer :: i_grid, ix1, ix2, ix3, P_i, nx !! Index variables integer :: q_low, q_hi, q !! Variables to find the bin in the q_mesh that a particular q0 ! !! belongs to (for interpolation). real(dp) :: prefactor !! Intermediate variable used to minimize calculations real(dp), pointer, save :: coefficients(:) !! Pointer to the gradient coefficients. Used to find the derivative ! !! of the magnitude of the gradient of the charge density with ! !! respect to the charge density at another point. Equation 10 in SOLER integer, pointer, save :: indices3d(:,:,:) !! A pointer to a rank 3 array that gives the relation between the ! !! x, y, and z indices of a point and its index in the charge density ! !! array. Used to easily find neighbors in the x, y, and z directions. real(dp) :: dq, a, b, c, d, e, f !! Inermediate variables used in the interpolation of the polynomials real(dp) :: y(Nqs), dP_dq0, P !! The y values for a given polynomial (all 0 exept for element i of P_i) ! !! The derivative of P at a given q0 and the value of P at a given q0. Both ! !! of these are interpolated below real(dp), save :: at_inverse(3,3) logical, save :: have_at_inverse = .false. if (.not. have_at_inverse) then at_inverse = alat * at call invert_3x3_matrix(at_inverse) at_inverse(1,:) = at_inverse(1,:) * dble(dfftp%nr1x) at_inverse(2,:) = at_inverse(2,:) * dble(dfftp%nr2x) at_inverse(3,:) = at_inverse(3,:) * dble(dfftp%nr3x) at_inverse = transpose(at_inverse) have_at_inverse = .true. end if potential = 0.0D0 !! Find the gradient coefficients and the 3d index mapping array if we don't already have it. !! ------------------------------------------------------------------------------------------- if (.not. associated(indices3d) ) then indices3d => get_3d_indices() coefficients => gradient_coefficients() end if !! ------------------------------------------------------------------------------------------- !! Get the second derivatives of the P_i functions for interpolation. We have already calculated !! this once but it is very fast and it's just as easy to calculate it again. !! --------------------------------------------------------------------------------------------- if (.not. allocated( d2y_dx2) ) then allocate( d2y_dx2(Nqs, Nqs) ) call initialize_spline_interpolation(q_mesh, d2y_dx2(:,:)) end if !! --------------------------------------------------------------------------------------------- i_grid = 0 !! Loop over all the points assigned to this processor. For each point and each q value in the q_mesh, !! interpolate P_i and dP_dq0. !! -------------------------------------------------------------------------------------------------------------------- do ix3 = my_start_z, my_end_z do ix2 = 1, dfftp%nr2x do ix1 = 1, dfftp%nr1x i_grid = i_grid + 1 q_low = 1 q_hi = Nqs ! Figure out which bin our value of q0 is in in the q_mesh ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do while ( (q_hi - q_low) > 1) q = int((q_hi + q_low)/2) if (q_mesh(q) > q0(i_grid)) then q_hi = q else q_low = q end if end do if (q_hi == q_low) call errore('get_potential','qhi == qlow',1) ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ dq = q_mesh(q_hi) - q_mesh(q_low) a = (q_mesh(q_hi) - q0(i_grid))/dq b = (q0(i_grid) - q_mesh(q_low))/dq c = (a**3 - a)*dq**2/6.0D0 d = (b**3 - b)*dq**2/6.0D0 e = (3.0D0*a**2 - 1.0D0)*dq/6.0D0 f = (3.0D0*b**2 - 1.0D0)*dq/6.0D0 do P_i = 1, Nqs y = 0.0D0 y(P_i) = 1.0D0 dP_dq0 = (y(q_hi) - y(q_low))/dq - e*d2y_dx2(P_i,q_low) + f*d2y_dx2(P_i,q_hi) P = a*y(q_low) + b*y(q_hi) + c*d2y_dx2(P_i,q_low) + d*d2y_dx2(P_i,q_hi) !! The first term in equation 10 of SOLER potential(indices3d(ix1,ix2,ix3)) = potential(indices3d(ix1,ix2,ix3)) + & u_vdW(i_grid,P_i)* (P + dP_dq0 * dq0_drho(i_grid)) ! Now, loop over all relevant neighbors and calculate the second term in equation 10 of SOLER. Note, ! that we are using our value of u_vdW and gradients and adding the piece of the potential point i_grid ! contributes to the neighbor's potential. If the value of q0 at point i_grid is equal to q_cut, the ! derivative dq0_dq will be 0 so both of dq0_drho and dq0_dgradrho will be 0. Thus, we can safely ! skip these points. ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ if (q0(i_grid) .ne. q_mesh(Nqs)) then prefactor = u_vdW(i_grid,P_i) * dP_dq0 * dq0_dgradrho(i_grid) do nx = -N,N potential(indices3d(ix1+nx,ix2,ix3)) = potential(indices3d(ix1+nx,ix2,ix3)) & + prefactor * coefficients(nx) & * (gradient_rho(i_grid,1)*at_inverse(1,1) + gradient_rho(i_grid,2)*at_inverse(2,1) & + gradient_rho(i_grid,3)*at_inverse(3,1)) potential(indices3d(ix1,ix2+nx,ix3)) = potential(indices3d(ix1,ix2+nx,ix3)) & + prefactor * coefficients(nx) & * (gradient_rho(i_grid,1)*at_inverse(1,2) + gradient_rho(i_grid,2)*at_inverse(2,2) & + gradient_rho(i_grid,3)*at_inverse(3,2)) potential(indices3d(ix1,ix2,ix3+nx)) = potential(indices3d(ix1,ix2,ix3+nx)) & + prefactor * coefficients(nx) & * (gradient_rho(i_grid,1)*at_inverse(1,3) + gradient_rho(i_grid,2)*at_inverse(2,3) & + gradient_rho(i_grid,3)*at_inverse(3,3)) end do end if !! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ end do end do end do end do !! ------------------------------------------------------------------------------------------------------------------------ end subroutine get_potential #endif !! ############################################################################################################### !! ############################################################################################################### !! | | !! | GRADIENT_COEFFICIENTS | !! |_________________________| !! This routine returns a pointer to an array holding the coefficients for a derivative expansion to some order. !! The derivative is found by multiplying the value of the function at a point + or - n away from the sample point by !! the coefficient gradient_coefficients(+ or - n) and dividing by the appropriate dx for that direction. function gradient_coefficients(N) real(dp), allocatable, target, save:: coefficients(:) !! The local array that will hold the coefficients. A pointer to this ! !! array will be returned by the function integer, intent(in), optional :: N !! The number of neighbors to use on each side for the gradient ! !! calculation. Can be between 1 (i.e. 3 point derivative formula) ! !! and 6 (i.e. 13 point derivative formula). real(dp), pointer :: gradient_coefficients(:) !! Pointer to the coefficients array that will be returned if (.not. allocated(coefficients) ) then if (.not. present(N) ) call errore('gradient_coefficients', 'Number of neighbors for gradient must be specified',2) allocate( coefficients(-N:N) ) select case (N) case (1) coefficients(-1:1) = (/-0.5D0, 0.0D0, 0.5D0/) case (2) coefficients(-2:2) = (/0.0833333333333333D0, -0.6666666666666666D0, 0.0D0, & 0.6666666666666666D0, -0.0833333333333333D0/) case (3) coefficients(-3:3) = (/-0.0166666666666666D0, 0.15D0, -0.75D0, 0.0D0, 0.75D0, & -0.15D0, 0.016666666666666666D0/) case (4) coefficients(-4:4) = (/0.00357142857143D0, -0.03809523809524D0, 0.2D0, -0.8D0, 0.0D0, & 0.8D0, -0.2D0, 0.03809523809524D0, -0.00357142857143D0/) case (5) coefficients(-5:5) = (/-0.00079365079365D0, 0.00992063492063D0, -0.05952380952381D0, & 0.23809523809524D0, -0.8333333333333333D0, 0.0D0, 0.8333333333333333D0, & -0.23809523809524D0, 0.05952380952381D0, -0.00992063492063D0, 0.00079365079365D0/) case (6) coefficients(-6:6) = (/0.00018037518038D0, -0.00259740259740D0, 0.01785714285714D0, & -0.07936507936508D0, 0.26785714285714D0, -0.85714285714286D0, 0.0D0, & 0.85714285714286D0, -0.26785714285714D0, 0.07936507936508D0, & -0.01785714285714D0, 0.00259740259740D0, -0.00018037518038D0/) case default call errore('xc_vdW_DF', 'Order of numerical gradient not implemented', 2) end select end if gradient_coefficients => coefficients end function gradient_coefficients !! ############################################################################################################### !! ############################################################################################################### !! | | !! | GET_3D_INDICES | !! |__________________| !! This routine builds a rank 3 array that holds the indices into the FFT grid for a point with a given !! set of x, y, and z indices. The array holds an extra 2N points in each dimension (N to the left and N !! to the right) so the code can find the neighbors of edge points easily. This is done by just copying the !! first N points in each dimension to the end of that dimension and the end N points to the beginning. function get_3d_indices(N) USE fft_base, ONLY : dfftp integer, intent(in), optional :: N !! The number of neighbors in each direction that will ! !! be used for the gradient formula. If not supplied, ! !! the code just returns the pointer to the already ! !! allocated rho_3d array. real(dp) :: dx, dy, dz !! integer :: ix1, ix2, ix3, i_grid !! Index variables integer, allocatable, target, save :: rho_3d(:,:,:) !! The local array that will store the indices. Only a pointer ! !! to this array will be returned. integer, pointer :: get_3d_indices(:,:,:) !! The returned pointer to the rho_3d array of indices. !! If the routine has not already been run we set up the rho_3d array by looping over it !! and assigning indices to its elements. If this routine has already been run we simply !! return a pointer to the existing array. !! -------------------------------------------------------------------------------- if (.not. allocated(rho_3d)) then ! Check to make sure we have been given the number of neighbors since the routine has ! not been run yet. ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ if (.not. present(N)) then call errore('get_3d_rho','Number of neighbors for numerical derivatives & & must be specified',2) end if ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ allocate( rho_3d(-N+1:dfftp%nr1x+N, -N+1:dfftp%nr2x+N, -N+1:dfftp%nr3x+N) ) i_grid = 0 do ix3 = 1, dfftp%nr3x do ix2 = 1, dfftp%nr2x do ix1 = 1, dfftp%nr1x i_grid = i_grid + 1 rho_3d(ix1, ix2, ix3) = i_grid end do end do end do ! Apply periodic boundary conditions to extend the array by N places in each ! direction ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ rho_3d(-N+1:0,:,:) = rho_3d(dfftp%nr1x-N+1:dfftp%nr1x, :, :) rho_3d(:,-N+1:0,:) = rho_3d(:, dfftp%nr2x-N+1:dfftp%nr2x, :) rho_3d(:,:,-N+1:0) = rho_3d(:, :, dfftp%nr3x-N+1:dfftp%nr3x) rho_3d(dfftp%nr1x+1:dfftp%nr1x+N, :, :) = rho_3d(1:N, :, :) rho_3d(:, dfftp%nr2x+1:dfftp%nr2x+N, :) = rho_3d(:, 1:N, :) rho_3d(:, :, dfftp%nr3x+1:dfftp%nr3x+N) = rho_3d(:, :, 1:N) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ end if !! ------------------------------------------------------------------------------------------ !! Return the point to rho_3d get_3d_indices => rho_3d end function get_3d_indices !! ############################################################################################################### !! ############################################################################################################### !! | | !! | INVERT_3X3_MATRIX | !! |_____________________| !! This routine is just a hard-wired subroutine to invert a 3x3 matrix. It is used to invert the matrix of !! unit cell basis vectors to find the gradient and the derivative of the gradient with respect to the !! density. subroutine invert_3x3_matrix(M) real(dp), intent(inout) :: M(3,3) !! On input, the 3x3 matrix to be inverted ! !! On output, the inverse of the 3x3 matrix given real(dp) :: temp(3,3) !! Temporary storage real(dp) :: determinant_M !! The determinant of the input 3x3 matrix temp = 0.0D0 temp(1,1) = M(2,2)*M(3,3) - M(2,3)*M(3,2) temp(1,2) = M(1,3)*M(3,2) - M(1,2)*M(3,3) temp(1,3) = M(1,2)*M(2,3) - M(1,3)*M(2,2) temp(2,1) = M(2,3)*M(3,1) - M(2,1)*M(3,3) temp(2,2) = M(1,1)*M(3,3) - M(1,3)*M(3,1) temp(2,3) = M(1,3)*M(2,1) - M(1,1)*M(2,3) temp(3,1) = M(2,1)*M(3,2) - M(2,2)*M(3,1) temp(3,2) = M(1,2)*M(3,1) - M(1,1)*M(3,2) temp(3,3) = M(1,1)*M(2,2) - M(1,2)*M(2,1) determinant_M = M(1,1) * (M(2,2)*M(3,3) - M(2,3)*M(3,2)) & - M(1,2) * (M(2,1)*M(3,3) - M(2,3)*M(3,1)) & + M(1,3) * (M(2,1)*M(3,2) - M(2,2)*M(3,1)) if (abs(determinant_M) > 1e-6) then M = 1.0D0/determinant_M*temp else call errore('invert_3x3_matrix','Matrix is close to singular',1) end if end subroutine invert_3x3_matrix SUBROUTINE print_sigma(sigma, title) real(dp), intent(in) :: sigma(:,:) character(len=*), intent(in) :: title integer :: l WRITE( stdout, '(10x,A)') TRIM(title)//" stress" WRITE( stdout, '(10x,3F13.8)') sigma(1,1), sigma(1,2), sigma(1,3) WRITE( stdout, '(10x,3F13.8)') sigma(2,1), sigma(2,2), sigma(2,3) WRITE( stdout, '(10x,3F13.8)') sigma(3,1), sigma(3,2), sigma(3,3) WRITE( stdout, '(10x)') END SUBROUTINE print_sigma !! ############################################################################################################### END MODULE vdW_DF espresso-5.1/Modules/read_namelists.f900000644000175000017500000021536412341373034016237 0ustar mbamba! ! Copyright (C) 2002-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE read_namelists_module !---------------------------------------------------------------------------- ! ! ... this module handles the reading of input namelists ! ... written by Carlo Cavazzoni, with many additions ! -------------------------------------------------- ! USE kinds, ONLY : DP USE input_parameters ! IMPLICIT NONE ! SAVE ! PRIVATE ! REAL(DP), PARAMETER :: sm_not_set = -20.0_DP ! PUBLIC :: read_namelists, sm_not_set ! ! ... modules needed by read_xml.f90 ! PUBLIC :: control_defaults, system_defaults, & electrons_defaults, wannier_ac_defaults, ions_defaults, & cell_defaults, press_ai_defaults, wannier_defaults, control_bcast, & system_bcast, electrons_bcast, ions_bcast, cell_bcast, & press_ai_bcast, wannier_bcast, wannier_ac_bcast, control_checkin, & system_checkin, electrons_checkin, ions_checkin, cell_checkin, & wannier_checkin, wannier_ac_checkin, fixval ! ! ... end of module-scope declarations ! ! ---------------------------------------------- ! CONTAINS ! !=-----------------------------------------------------------------------=! ! ! Variables initialization for Namelist CONTROL ! !=-----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE control_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! IF ( prog == 'PW' ) THEN title = ' ' calculation = 'scf' ELSE title = 'MD Simulation' calculation = 'cp' END IF verbosity = 'default' IF( prog == 'PW' ) restart_mode = 'from_scratch' IF( prog == 'CP' ) restart_mode = 'restart' nstep = 50 IF( prog == 'PW' ) iprint = 100000 IF( prog == 'CP' ) iprint = 10 IF( prog == 'PW' ) isave = 0 IF( prog == 'CP' ) isave = 100 ! tstress = .FALSE. tprnfor = .FALSE. tabps = .FALSE. ! IF( prog == 'PW' ) dt = 20.0_DP IF( prog == 'CP' ) dt = 1.0_DP ! ndr = 50 ndw = 50 ! ! ... use the path specified as outdir and the filename prefix ! ... to store output data ! CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( TRIM( outdir ) == ' ' ) outdir = './' IF( prog == 'PW' ) prefix = 'pwscf' IF( prog == 'CP' ) prefix = 'cp' ! ! ... directory containing the pseudopotentials ! CALL get_env( 'ESPRESSO_PSEUDO', pseudo_dir ) IF ( TRIM( pseudo_dir ) == ' ') THEN CALL get_env( 'HOME', pseudo_dir ) pseudo_dir = TRIM( pseudo_dir ) // '/espresso/pseudo/' END IF ! refg = 0.05_DP max_seconds = 1.E+7_DP ekin_conv_thr = 1.E-6_DP etot_conv_thr = 1.E-4_DP forc_conv_thr = 1.E-3_DP disk_io = 'default' dipfield = .FALSE. lberry = .FALSE. lcalc_z2 = .FALSE. z2_m_threshold = 0.8d0 z2_z_threshold = 0.05d0 gdir = 0 nppstr = 0 wf_collect = .FALSE. IF( prog == 'CP' ) wf_collect = .TRUE. ! default for CP is true printwfc = -1 lelfield = .FALSE. lorbm = .FALSE. nberrycyc = 1 lkpoint_dir = .TRUE. lecrpa = .FALSE. tqmmm = .FALSE. ! saverho = .TRUE. memory = 'default' ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist SYSTEM ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE system_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! ibrav = -1 celldm = (/ 0.0_DP, 0.0_DP, 0.0_DP, 0.0_DP, 0.0_DP, 0.0_DP /) a = 0.0_DP b = 0.0_DP c = 0.0_DP cosab = 0.0_DP cosac = 0.0_DP cosbc = 0.0_DP nat = 0 ntyp = 0 nbnd = 0 tot_charge = 0.0_DP tot_magnetization = -1 ecutwfc = 0.0_DP ecutrho = 0.0_DP nr1 = 0 nr2 = 0 nr3 = 0 nr1s = 0 nr2s = 0 nr3s = 0 nr1b = 0 nr2b = 0 nr3b = 0 occupations = 'fixed' smearing = 'gaussian' degauss = 0.0_DP nspin = 1 nosym = .FALSE. nosym_evc = .FALSE. force_symmorphic = .FALSE. use_all_frac = .FALSE. noinv = .FALSE. ecfixed = 0.0_DP qcutz = 0.0_DP q2sigma = 0.01_DP input_dft = 'none' ecutfock = -1.0_DP ! ! ... set starting_magnetization to an invalid value: ! ... in PW starting_magnetization MUST be set for at least one atomic type ! ... (unless the magnetization is set in other ways) ! ... in CP starting_magnetization MUST REMAIN UNSET ! starting_magnetization = sm_not_set IF ( prog == 'PW' ) THEN ! starting_ns_eigenvalue = -1.0_DP U_projection_type = 'atomic' ! END IF lda_plus_U = .FALSE. lda_plus_u_kind = 0 Hubbard_U = 0.0_DP Hubbard_J0 = 0.0_DP Hubbard_J = 0.0_DP Hubbard_alpha = 0.0_DP Hubbard_beta = 0.0_DP step_pen=.false. A_pen=0.0_DP sigma_pen=0.01_DP alpha_pen=0.0_DP edir = 1 emaxpos = 0.5_DP eopreg = 0.1_DP eamp = 0.0_DP ! ! ... postprocessing of DOS & phonons & el-ph la2F = .FALSE. ! ! ... non collinear program variables ! lspinorb = .FALSE. starting_spin_angle=.FALSE. noncolin = .FALSE. lambda = 1.0_DP constrained_magnetization= 'none' fixed_magnetization = 0.0_DP B_field = 0.0_DP angle1 = 0.0_DP angle2 = 0.0_DP report = 1 ! no_t_rev = .FALSE. ! assume_isolated = 'none' ! one_atom_occupations=.FALSE. ! spline_ps = .false. ! real_space = .false. ! ! ... DFT-D, Tkatchenko-Scheffler, XDM ! vdw_corr = 'none' london = .false. london_s6 = 0.75_DP london_rcut = 200.00_DP ts_vdw = .FALSE. ts_vdw_isolated = .FALSE. ts_vdw_econv_thr = 1.E-6_DP xdm = .FALSE. xdm_a1 = 0.6836_DP xdm_a2 = 1.5045_DP ! ! ... ESM ! esm_bc='pbc' esm_efield=0.0_DP esm_w=0.0_DP esm_nfit=4 esm_debug=.FALSE. esm_debug_gpmax=0 ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist ELECTRONS ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE electrons_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! emass = 400.0_DP emass_cutoff = 2.5_DP orthogonalization = 'ortho' ortho_eps = 1.E-8_DP ortho_max = 20 electron_maxstep = 100 scf_must_converge = .true. ! ! ... ( 'sd' | 'cg' | 'damp' | 'verlet' | 'none' | 'diis' ) ! electron_dynamics = 'none' electron_damping = 0.1_DP ! ! ... ( 'zero' | 'default' ) ! electron_velocities = 'default' ! ! ... ( 'nose' | 'not_controlled' | 'rescaling') ! electron_temperature = 'not_controlled' ekincw = 0.001_DP fnosee = 1.0_DP ampre = 0.0_DP grease = 1.0_DP conv_thr = 1.E-6_DP diis_size = 4 diis_nreset = 3 diis_hcut = 1.0_DP diis_wthr = 0.0_DP diis_delt = 0.0_DP diis_maxstep = 100 diis_rot = .FALSE. diis_fthr = 0.0_DP diis_temp = 0.0_DP diis_achmix = 0.0_DP diis_g0chmix = 0.0_DP diis_g1chmix = 0.0_DP diis_nchmix = 3 diis_nrot = 3 diis_rothr = 0.0_DP diis_ethr = 0.0_DP diis_chguess = .FALSE. mixing_mode = 'plain' mixing_fixed_ns = 0 mixing_beta = 0.7_DP mixing_ndim = 8 diagonalization = 'david' diago_thr_init = 0.0_DP diago_cg_maxiter = 20 diago_david_ndim = 4 diago_full_acc = .FALSE. ! sic = 'none' sic_epsilon = 0.0_DP sic_alpha = 0.0_DP force_pairing = .false. ! fermi_energy = 0.0_DP n_inner = 2 niter_cold_restart=1 lambda_cold=0.03_DP rotation_dynamics = "line-minimization" occupation_dynamics = "line-minimization" rotmass = 0.0_DP occmass = 0.0_DP rotation_damping = 0.0_DP occupation_damping = 0.0_DP ! tcg = .FALSE. maxiter = 100 passop = 0.3_DP niter_cg_restart = 20 etresh = 1.E-6_DP ! epol = 3 efield = 0.0_DP epol2 = 3 efield2 = 0.0_DP efield_cart(1)=0.d0 efield_cart(2)=0.d0 efield_cart(3)=0.d0 ! occupation_constraints = .false. ! adaptive_thr = .false. conv_thr_init = 0.1E-2_DP conv_thr_multi = 0.1_DP ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist WANNIER_AC ! !---------------------------------------------------------------------- SUBROUTINE wannier_ac_defaults( prog ) !---------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! plot_wannier = .FALSE. use_energy_int = .FALSE. print_wannier_coeff = .FALSE. nwan = 0 constrain_pot = 0.d0 plot_wan_num = 0 plot_wan_spin = 1 ! RETURN ! END SUBROUTINE !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist IONS ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE ions_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! ! ... ( 'full' | 'coarse-grained' ) ! phase_space = 'full' ! ! ... ( 'sd' | 'cg' | 'damp' | 'verlet' | 'none' | 'bfgs' | 'beeman' ) ! ion_dynamics = 'none' ion_radius = 0.5_DP ion_damping = 0.1_DP ! ! ... ( 'default' | 'from_input' ) ! ion_positions = 'default' ! ! ... ( 'zero' | 'default' | 'from_input' ) ! ion_velocities = 'default' ! ! ... ( 'nose' | 'not_controlled' | 'rescaling' | 'berendsen' | ! 'andersen' | 'langevin' ) ! ion_temperature = 'not_controlled' ! tempw = 300.0_DP fnosep = -1.0_DP fnosep(1) = 1.0_DP nhpcl = 0 nhptyp = 0 ndega = 0 tranp = .FALSE. amprp = 0.0_DP greasp = 1.0_DP tolp = 100.0_DP ion_nstepe = 1 ion_maxstep = 100 delta_t = 1.0_DP nraise = 1 ! refold_pos = .FALSE. remove_rigid_rot = .FALSE. ! upscale = 100.0_DP pot_extrapolation = 'atomic' wfc_extrapolation = 'none' ! ! ... BFGS defaults ! bfgs_ndim = 1 trust_radius_max = 0.8_DP ! bohr trust_radius_min = 1.E-4_DP ! bohr trust_radius_ini = 0.5_DP ! bohr w_1 = 0.01_DP w_2 = 0.50_DP ! sic_rloc = 0.0_DP ! ! ... meta-dynamics defaults ! fe_step = 0.4_DP fe_nstep = 100 sw_nstep = 10 eq_nstep = 0 g_amplitude = 0.005_DP ! RETURN ! END SUBROUTINE ! ! !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist CELL ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE cell_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! cell_parameters = 'default' ! ! ... ( 'sd' | 'pr' | 'none' | 'w' | 'damp-pr' | 'damp-w' | 'bfgs' ) ! cell_dynamics = 'none' ! ! ... ( 'zero' | 'default' ) ! cell_velocities = 'default' press = 0.0_DP wmass = 0.0_DP ! ! ... ( 'nose' | 'not_controlled' | 'rescaling' ) ! cell_temperature = 'not_controlled' temph = 0.0_DP fnoseh = 1.0_DP greash = 1.0_DP ! ! ... ('all'* | 'volume' | 'x' | 'y' | 'z' | 'xy' | 'xz' | 'yz' | 'xyz' ) ! cell_dofree = 'all' cell_factor = 0.0_DP cell_nstepe = 1 cell_damping = 0.0_DP press_conv_thr = 0.5_DP ! RETURN ! END SUBROUTINE ! ! !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist PRESS_AI ! !=----------------------------------------------------------------------=! ! !---------------------------------------------------------------------- SUBROUTINE press_ai_defaults( prog ) ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! abivol = .false. abisur = .false. pvar = .false. fill_vac = .false. cntr = .false. scale_at = .false. t_gauss = .false. jellium = .false. P_ext = 0.0_DP P_in = 0.0_DP P_fin = 0.0_DP Surf_t = 0.0_DP rho_thr = 0.0_DP dthr = 0.0_DP step_rad = 0.0_DP delta_eps = 0.0_DP delta_sigma = 0.0_DP R_j = 0.0_DP h_j = 0.0_DP n_cntr = 0 axis = 3 ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Variables initialization for Namelist WANNIER ! !----------------------------------------------------------------------- SUBROUTINE wannier_defaults( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! ! wf_efield = .FALSE. wf_switch = .FALSE. ! sw_len = 1 ! efx0 = 0.0_DP efy0 = 0.0_DP efz0 = 0.0_DP efx1 = 0.0_DP efy1 = 0.0_DP efz1 = 0.0_DP ! wfsd = 1 ! wfdt = 5.0_DP maxwfdt = 0.30_DP wf_q = 1500.0_DP wf_friction = 0.3_DP !======================================================================= !Lingzhu Kong neigh = 48 vnbsp = 0 poisson_eps = 1.D-6 dis_cutoff = 7.0_DP exx_ps_rcut = 5.0 exx_me_rcut = 10.0 !======================================================================= ! nit = 10 nsd = 10 nsteps = 20 ! tolw = 1.E-8_DP ! adapt = .TRUE. ! calwf = 3 nwf = 0 wffort = 40 ! writev = .FALSE. ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist CONTROL ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE control_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY : ionode_id USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! CALL mp_bcast( title, ionode_id, intra_image_comm ) CALL mp_bcast( calculation, ionode_id, intra_image_comm ) CALL mp_bcast( verbosity, ionode_id, intra_image_comm ) CALL mp_bcast( restart_mode, ionode_id, intra_image_comm ) CALL mp_bcast( nstep, ionode_id, intra_image_comm ) CALL mp_bcast( iprint, ionode_id, intra_image_comm ) CALL mp_bcast( isave, ionode_id, intra_image_comm ) CALL mp_bcast( tstress, ionode_id, intra_image_comm ) CALL mp_bcast( tprnfor, ionode_id, intra_image_comm ) CALL mp_bcast( tabps, ionode_id, intra_image_comm ) CALL mp_bcast( dt, ionode_id, intra_image_comm ) CALL mp_bcast( ndr, ionode_id, intra_image_comm ) CALL mp_bcast( ndw, ionode_id, intra_image_comm ) CALL mp_bcast( outdir, ionode_id, intra_image_comm ) CALL mp_bcast( wfcdir, ionode_id, intra_image_comm ) CALL mp_bcast( prefix, ionode_id, intra_image_comm ) CALL mp_bcast( max_seconds, ionode_id, intra_image_comm ) CALL mp_bcast( ekin_conv_thr, ionode_id, intra_image_comm ) CALL mp_bcast( etot_conv_thr, ionode_id, intra_image_comm ) CALL mp_bcast( forc_conv_thr, ionode_id, intra_image_comm ) CALL mp_bcast( pseudo_dir, ionode_id, intra_image_comm ) CALL mp_bcast( refg, ionode_id, intra_image_comm ) CALL mp_bcast( disk_io, ionode_id, intra_image_comm ) CALL mp_bcast( tefield, ionode_id, intra_image_comm ) CALL mp_bcast( tefield2, ionode_id, intra_image_comm ) CALL mp_bcast( dipfield, ionode_id, intra_image_comm ) CALL mp_bcast( lberry, ionode_id, intra_image_comm ) CALL mp_bcast( lcalc_z2, ionode_id, intra_image_comm ) CALL mp_bcast( z2_m_threshold,ionode_id, intra_image_comm ) CALL mp_bcast( z2_z_threshold,ionode_id, intra_image_comm ) CALL mp_bcast( gdir, ionode_id, intra_image_comm ) CALL mp_bcast( nppstr, ionode_id, intra_image_comm ) CALL mp_bcast( point_label_type, ionode_id, intra_image_comm ) CALL mp_bcast( lkpoint_dir, ionode_id, intra_image_comm ) CALL mp_bcast( wf_collect, ionode_id, intra_image_comm ) CALL mp_bcast( printwfc, ionode_id, intra_image_comm ) CALL mp_bcast( lelfield, ionode_id, intra_image_comm ) CALL mp_bcast( lorbm, ionode_id, intra_image_comm ) CALL mp_bcast( nberrycyc, ionode_id, intra_image_comm ) CALL mp_bcast( saverho, ionode_id, intra_image_comm ) CALL mp_bcast( lecrpa, ionode_id, intra_image_comm ) CALL mp_bcast( tqmmm, ionode_id, intra_image_comm ) CALL mp_bcast( vdw_table_name,ionode_id, intra_image_comm ) CALL mp_bcast( memory, ionode_id, intra_image_comm ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist SYSTEM ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE system_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY : ionode_id USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! CALL mp_bcast( ibrav, ionode_id, intra_image_comm ) CALL mp_bcast( celldm, ionode_id, intra_image_comm ) CALL mp_bcast( a, ionode_id, intra_image_comm ) CALL mp_bcast( b, ionode_id, intra_image_comm ) CALL mp_bcast( c, ionode_id, intra_image_comm ) CALL mp_bcast( cosab, ionode_id, intra_image_comm ) CALL mp_bcast( cosac, ionode_id, intra_image_comm ) CALL mp_bcast( cosbc, ionode_id, intra_image_comm ) CALL mp_bcast( nat, ionode_id, intra_image_comm ) CALL mp_bcast( ntyp, ionode_id, intra_image_comm ) CALL mp_bcast( nbnd, ionode_id, intra_image_comm ) CALL mp_bcast( tot_charge, ionode_id, intra_image_comm ) CALL mp_bcast( tot_magnetization, ionode_id, intra_image_comm ) CALL mp_bcast( ecutwfc, ionode_id, intra_image_comm ) CALL mp_bcast( ecutrho, ionode_id, intra_image_comm ) CALL mp_bcast( nr1, ionode_id, intra_image_comm ) CALL mp_bcast( nr2, ionode_id, intra_image_comm ) CALL mp_bcast( nr3, ionode_id, intra_image_comm ) CALL mp_bcast( nr1s, ionode_id, intra_image_comm ) CALL mp_bcast( nr2s, ionode_id, intra_image_comm ) CALL mp_bcast( nr3s, ionode_id, intra_image_comm ) CALL mp_bcast( nr1b, ionode_id, intra_image_comm ) CALL mp_bcast( nr2b, ionode_id, intra_image_comm ) CALL mp_bcast( nr3b, ionode_id, intra_image_comm ) CALL mp_bcast( occupations, ionode_id, intra_image_comm ) CALL mp_bcast( smearing, ionode_id, intra_image_comm ) CALL mp_bcast( degauss, ionode_id, intra_image_comm ) CALL mp_bcast( nspin, ionode_id, intra_image_comm ) CALL mp_bcast( nosym, ionode_id, intra_image_comm ) CALL mp_bcast( nosym_evc, ionode_id, intra_image_comm ) CALL mp_bcast( noinv, ionode_id, intra_image_comm ) CALL mp_bcast( force_symmorphic, ionode_id, intra_image_comm ) CALL mp_bcast( use_all_frac, ionode_id, intra_image_comm ) CALL mp_bcast( ecfixed, ionode_id, intra_image_comm ) CALL mp_bcast( qcutz, ionode_id, intra_image_comm ) CALL mp_bcast( q2sigma, ionode_id, intra_image_comm ) CALL mp_bcast( input_dft, ionode_id, intra_image_comm ) CALL mp_bcast( nqx1, ionode_id, intra_image_comm ) CALL mp_bcast( nqx2, ionode_id, intra_image_comm ) CALL mp_bcast( nqx3, ionode_id, intra_image_comm ) CALL mp_bcast( exx_fraction, ionode_id, intra_image_comm ) CALL mp_bcast( screening_parameter, ionode_id, intra_image_comm ) !gau-pbe in CALL mp_bcast( gau_parameter, ionode_id, intra_image_comm ) !gau-pbe out CALL mp_bcast( exxdiv_treatment, ionode_id, intra_image_comm ) CALL mp_bcast( x_gamma_extrapolation, ionode_id, intra_image_comm ) CALL mp_bcast( yukawa, ionode_id, intra_image_comm ) CALL mp_bcast( ecutvcut, ionode_id, intra_image_comm ) CALL mp_bcast( ecutfock, ionode_id, intra_image_comm ) CALL mp_bcast( starting_magnetization, ionode_id, intra_image_comm ) CALL mp_bcast( starting_ns_eigenvalue, ionode_id, intra_image_comm ) CALL mp_bcast( U_projection_type, ionode_id, intra_image_comm ) CALL mp_bcast( lda_plus_U, ionode_id, intra_image_comm ) CALL mp_bcast( lda_plus_u_kind, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_U, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_J0, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_J, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_alpha, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_beta, ionode_id, intra_image_comm ) CALL mp_bcast( step_pen, ionode_id, intra_image_comm ) CALL mp_bcast( A_pen, ionode_id, intra_image_comm ) CALL mp_bcast( sigma_pen, ionode_id, intra_image_comm ) CALL mp_bcast( alpha_pen, ionode_id, intra_image_comm ) CALL mp_bcast( edir, ionode_id, intra_image_comm ) CALL mp_bcast( emaxpos, ionode_id, intra_image_comm ) CALL mp_bcast( eopreg, ionode_id, intra_image_comm ) CALL mp_bcast( eamp, ionode_id, intra_image_comm ) CALL mp_bcast( la2F, ionode_id, intra_image_comm ) ! ! ... non collinear broadcast ! CALL mp_bcast( lspinorb, ionode_id, intra_image_comm ) CALL mp_bcast( starting_spin_angle, ionode_id, intra_image_comm ) CALL mp_bcast( noncolin, ionode_id, intra_image_comm ) CALL mp_bcast( angle1, ionode_id, intra_image_comm ) CALL mp_bcast( angle2, ionode_id, intra_image_comm ) CALL mp_bcast( report, ionode_id, intra_image_comm ) CALL mp_bcast( constrained_magnetization, ionode_id, intra_image_comm ) CALL mp_bcast( B_field, ionode_id, intra_image_comm ) CALL mp_bcast( fixed_magnetization, ionode_id, intra_image_comm ) CALL mp_bcast( lambda, ionode_id, intra_image_comm ) ! CALL mp_bcast( assume_isolated, ionode_id, intra_image_comm ) CALL mp_bcast( one_atom_occupations, ionode_id, intra_image_comm ) CALL mp_bcast( spline_ps, ionode_id, intra_image_comm ) ! CALL mp_bcast( vdw_corr, ionode_id, intra_image_comm ) CALL mp_bcast( ts_vdw, ionode_id, intra_image_comm ) CALL mp_bcast( ts_vdw_isolated, ionode_id, intra_image_comm ) CALL mp_bcast( ts_vdw_econv_thr, ionode_id, intra_image_comm ) CALL mp_bcast( london, ionode_id, intra_image_comm ) CALL mp_bcast( london_s6, ionode_id, intra_image_comm ) CALL mp_bcast( london_rcut, ionode_id, intra_image_comm ) CALL mp_bcast( xdm, ionode_id, intra_image_comm ) CALL mp_bcast( xdm_a1, ionode_id, intra_image_comm ) CALL mp_bcast( xdm_a2, ionode_id, intra_image_comm ) ! CALL mp_bcast( no_t_rev, ionode_id, intra_image_comm ) ! ! ... ESM method broadcast ! CALL mp_bcast( esm_bc, ionode_id, intra_image_comm ) CALL mp_bcast( esm_efield, ionode_id, intra_image_comm ) CALL mp_bcast( esm_w, ionode_id, intra_image_comm ) CALL mp_bcast( esm_nfit, ionode_id, intra_image_comm ) CALL mp_bcast( esm_debug, ionode_id, intra_image_comm ) CALL mp_bcast( esm_debug_gpmax, ionode_id, intra_image_comm ) RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist ELECTRONS ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE electrons_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY : ionode_id USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! CALL mp_bcast( emass, ionode_id, intra_image_comm ) CALL mp_bcast( emass_cutoff, ionode_id, intra_image_comm ) CALL mp_bcast( orthogonalization, ionode_id, intra_image_comm ) CALL mp_bcast( electron_maxstep, ionode_id, intra_image_comm ) CALL mp_bcast( scf_must_converge, ionode_id, intra_image_comm ) CALL mp_bcast( ortho_eps, ionode_id, intra_image_comm ) CALL mp_bcast( ortho_max, ionode_id, intra_image_comm ) CALL mp_bcast( electron_dynamics, ionode_id, intra_image_comm ) CALL mp_bcast( electron_damping, ionode_id, intra_image_comm ) CALL mp_bcast( electron_velocities, ionode_id, intra_image_comm ) CALL mp_bcast( electron_temperature, ionode_id, intra_image_comm ) CALL mp_bcast( conv_thr, ionode_id, intra_image_comm ) CALL mp_bcast( ekincw, ionode_id, intra_image_comm ) CALL mp_bcast( fnosee, ionode_id, intra_image_comm ) CALL mp_bcast( startingwfc, ionode_id, intra_image_comm ) CALL mp_bcast( ampre, ionode_id, intra_image_comm ) CALL mp_bcast( grease, ionode_id, intra_image_comm ) CALL mp_bcast( startingpot, ionode_id, intra_image_comm ) CALL mp_bcast( diis_size, ionode_id, intra_image_comm ) CALL mp_bcast( diis_nreset, ionode_id, intra_image_comm ) CALL mp_bcast( diis_hcut, ionode_id, intra_image_comm ) CALL mp_bcast( diis_wthr, ionode_id, intra_image_comm ) CALL mp_bcast( diis_delt, ionode_id, intra_image_comm ) CALL mp_bcast( diis_maxstep, ionode_id, intra_image_comm ) CALL mp_bcast( diis_rot, ionode_id, intra_image_comm ) CALL mp_bcast( diis_fthr, ionode_id, intra_image_comm ) CALL mp_bcast( diis_temp, ionode_id, intra_image_comm ) CALL mp_bcast( diis_achmix, ionode_id, intra_image_comm ) CALL mp_bcast( diis_g0chmix, ionode_id, intra_image_comm ) CALL mp_bcast( diis_g1chmix, ionode_id, intra_image_comm ) CALL mp_bcast( diis_nchmix, ionode_id, intra_image_comm ) CALL mp_bcast( diis_nrot, ionode_id, intra_image_comm ) CALL mp_bcast( diis_rothr, ionode_id, intra_image_comm ) CALL mp_bcast( diis_ethr, ionode_id, intra_image_comm ) CALL mp_bcast( diis_chguess, ionode_id, intra_image_comm ) CALL mp_bcast( mixing_fixed_ns, ionode_id, intra_image_comm ) CALL mp_bcast( mixing_mode, ionode_id, intra_image_comm ) CALL mp_bcast( mixing_beta, ionode_id, intra_image_comm ) CALL mp_bcast( mixing_ndim, ionode_id, intra_image_comm ) CALL mp_bcast( tqr, ionode_id, intra_image_comm ) CALL mp_bcast( diagonalization, ionode_id, intra_image_comm ) CALL mp_bcast( diago_thr_init, ionode_id, intra_image_comm ) CALL mp_bcast( diago_cg_maxiter, ionode_id, intra_image_comm ) CALL mp_bcast( diago_david_ndim, ionode_id, intra_image_comm ) CALL mp_bcast( diago_full_acc, ionode_id, intra_image_comm ) CALL mp_bcast( sic, ionode_id, intra_image_comm ) CALL mp_bcast( sic_epsilon , ionode_id, intra_image_comm ) CALL mp_bcast( sic_alpha , ionode_id, intra_image_comm ) CALL mp_bcast( force_pairing , ionode_id, intra_image_comm ) ! ! ... ensemble-DFT ! CALL mp_bcast( fermi_energy, ionode_id, intra_image_comm ) CALL mp_bcast( n_inner, ionode_id, intra_image_comm ) CALL mp_bcast( niter_cold_restart, ionode_id, intra_image_comm ) CALL mp_bcast( lambda_cold, ionode_id, intra_image_comm ) CALL mp_bcast( rotation_dynamics, ionode_id, intra_image_comm ) CALL mp_bcast( occupation_dynamics,ionode_id, intra_image_comm ) CALL mp_bcast( rotmass, ionode_id, intra_image_comm ) CALL mp_bcast( occmass, ionode_id, intra_image_comm ) CALL mp_bcast( rotation_damping, ionode_id, intra_image_comm ) CALL mp_bcast( occupation_damping, ionode_id, intra_image_comm ) ! ! ... conjugate gradient ! CALL mp_bcast( tcg, ionode_id, intra_image_comm ) CALL mp_bcast( maxiter, ionode_id, intra_image_comm ) CALL mp_bcast( etresh, ionode_id, intra_image_comm ) CALL mp_bcast( passop, ionode_id, intra_image_comm ) CALL mp_bcast( niter_cg_restart, ionode_id, intra_image_comm ) ! ! ... electric field ! CALL mp_bcast( epol, ionode_id, intra_image_comm ) CALL mp_bcast( efield, ionode_id, intra_image_comm ) ! CALL mp_bcast( epol2, ionode_id, intra_image_comm ) CALL mp_bcast( efield2, ionode_id, intra_image_comm ) CALL mp_bcast( efield_cart, ionode_id, intra_image_comm ) ! ! ... occupation constraints ... ! CALL mp_bcast( occupation_constraints, ionode_id, intra_image_comm ) ! ! ... real space ... CALL mp_bcast( real_space, ionode_id, intra_image_comm ) CALL mp_bcast( adaptive_thr, ionode_id, intra_image_comm ) CALL mp_bcast( conv_thr_init, ionode_id, intra_image_comm ) CALL mp_bcast( conv_thr_multi, ionode_id, intra_image_comm ) RETURN ! END SUBROUTINE ! ! !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist IONS ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE ions_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY: ionode_id USE mp, ONLY: mp_bcast USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! CALL mp_bcast( phase_space, ionode_id, intra_image_comm ) CALL mp_bcast( ion_dynamics, ionode_id, intra_image_comm ) CALL mp_bcast( ion_radius, ionode_id, intra_image_comm ) CALL mp_bcast( ion_damping, ionode_id, intra_image_comm ) CALL mp_bcast( ion_positions, ionode_id, intra_image_comm ) CALL mp_bcast( ion_velocities, ionode_id, intra_image_comm ) CALL mp_bcast( ion_temperature, ionode_id, intra_image_comm ) CALL mp_bcast( tempw, ionode_id, intra_image_comm ) CALL mp_bcast( fnosep, ionode_id, intra_image_comm ) CALL mp_bcast( nhgrp, ionode_id, intra_image_comm ) CALL mp_bcast( fnhscl, ionode_id, intra_image_comm ) CALL mp_bcast( nhpcl, ionode_id, intra_image_comm ) CALL mp_bcast( nhptyp, ionode_id, intra_image_comm ) CALL mp_bcast( ndega, ionode_id, intra_image_comm ) CALL mp_bcast( tranp, ionode_id, intra_image_comm ) CALL mp_bcast( amprp, ionode_id, intra_image_comm ) CALL mp_bcast( greasp, ionode_id, intra_image_comm ) CALL mp_bcast( tolp, ionode_id, intra_image_comm ) CALL mp_bcast( ion_nstepe, ionode_id, intra_image_comm ) CALL mp_bcast( ion_maxstep, ionode_id, intra_image_comm ) CALL mp_bcast( delta_t, ionode_id, intra_image_comm ) CALL mp_bcast( nraise, ionode_id, intra_image_comm ) CALL mp_bcast( refold_pos, ionode_id, intra_image_comm ) CALL mp_bcast( remove_rigid_rot, ionode_id, intra_image_comm ) CALL mp_bcast( upscale, ionode_id, intra_image_comm ) CALL mp_bcast( pot_extrapolation, ionode_id, intra_image_comm ) CALL mp_bcast( wfc_extrapolation, ionode_id, intra_image_comm ) ! ! ... BFGS ! CALL mp_bcast( bfgs_ndim, ionode_id, intra_image_comm ) CALL mp_bcast( trust_radius_max, ionode_id, intra_image_comm ) CALL mp_bcast( trust_radius_min, ionode_id, intra_image_comm ) CALL mp_bcast( trust_radius_ini, ionode_id, intra_image_comm ) CALL mp_bcast( w_1, ionode_id, intra_image_comm ) CALL mp_bcast( w_2, ionode_id, intra_image_comm ) ! CALL mp_bcast( sic_rloc, ionode_id, intra_image_comm ) ! CALL mp_bcast( fe_step, ionode_id, intra_image_comm ) CALL mp_bcast( fe_nstep, ionode_id, intra_image_comm ) CALL mp_bcast( sw_nstep, ionode_id, intra_image_comm ) CALL mp_bcast( eq_nstep, ionode_id, intra_image_comm ) CALL mp_bcast( g_amplitude, ionode_id, intra_image_comm ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist CELL ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE cell_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY: ionode_id USE mp, ONLY: mp_bcast USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! CALL mp_bcast( cell_parameters, ionode_id, intra_image_comm ) CALL mp_bcast( cell_dynamics, ionode_id, intra_image_comm ) CALL mp_bcast( cell_velocities, ionode_id, intra_image_comm ) CALL mp_bcast( cell_dofree, ionode_id, intra_image_comm ) CALL mp_bcast( press, ionode_id, intra_image_comm ) CALL mp_bcast( wmass, ionode_id, intra_image_comm ) CALL mp_bcast( cell_temperature, ionode_id, intra_image_comm ) CALL mp_bcast( temph, ionode_id, intra_image_comm ) CALL mp_bcast( fnoseh, ionode_id, intra_image_comm ) CALL mp_bcast( greash, ionode_id, intra_image_comm ) CALL mp_bcast( cell_factor, ionode_id, intra_image_comm ) CALL mp_bcast( cell_nstepe, ionode_id, intra_image_comm ) CALL mp_bcast( cell_damping, ionode_id, intra_image_comm ) CALL mp_bcast( press_conv_thr, ionode_id, intra_image_comm ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist PRESS_AI ! !=----------------------------------------------------------------------=! ! !---------------------------------------------------------------------- SUBROUTINE press_ai_bcast() !---------------------------------------------------------------------- ! USE io_global, ONLY: ionode_id USE mp, ONLY: mp_bcast USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! ! CALL mp_bcast( abivol, ionode_id, intra_image_comm ) CALL mp_bcast( abisur, ionode_id, intra_image_comm ) CALL mp_bcast( t_gauss, ionode_id, intra_image_comm ) CALL mp_bcast( cntr, ionode_id, intra_image_comm ) CALL mp_bcast( P_ext, ionode_id, intra_image_comm ) CALL mp_bcast( Surf_t, ionode_id, intra_image_comm ) CALL mp_bcast( pvar, ionode_id, intra_image_comm ) CALL mp_bcast( P_in, ionode_id, intra_image_comm ) CALL mp_bcast( P_fin, ionode_id, intra_image_comm ) CALL mp_bcast( delta_eps, ionode_id, intra_image_comm ) CALL mp_bcast( delta_sigma, ionode_id, intra_image_comm ) CALL mp_bcast( fill_vac, ionode_id, intra_image_comm ) CALL mp_bcast( scale_at, ionode_id, intra_image_comm ) CALL mp_bcast( n_cntr, ionode_id, intra_image_comm ) CALL mp_bcast( axis, ionode_id, intra_image_comm ) CALL mp_bcast( rho_thr, ionode_id, intra_image_comm ) CALL mp_bcast( dthr, ionode_id, intra_image_comm ) CALL mp_bcast( step_rad, ionode_id, intra_image_comm ) CALL mp_bcast( jellium, ionode_id, intra_image_comm ) CALL mp_bcast( R_j, ionode_id, intra_image_comm ) CALL mp_bcast( h_j, ionode_id, intra_image_comm ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist WANNIER ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE wannier_bcast() !----------------------------------------------------------------------- ! USE io_global, ONLY: ionode_id USE mp, ONLY: mp_bcast USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! CALL mp_bcast( wf_efield, ionode_id, intra_image_comm ) CALL mp_bcast( wf_switch, ionode_id, intra_image_comm ) CALL mp_bcast( sw_len, ionode_id, intra_image_comm ) CALL mp_bcast( efx0, ionode_id, intra_image_comm ) CALL mp_bcast( efy0, ionode_id, intra_image_comm ) CALL mp_bcast( efz0, ionode_id, intra_image_comm ) CALL mp_bcast( efx1, ionode_id, intra_image_comm ) CALL mp_bcast( efy1, ionode_id, intra_image_comm ) CALL mp_bcast( efz1, ionode_id, intra_image_comm ) CALL mp_bcast( wfsd, ionode_id, intra_image_comm ) CALL mp_bcast( wfdt, ionode_id, intra_image_comm ) CALL mp_bcast( maxwfdt, ionode_id, intra_image_comm ) CALL mp_bcast( wf_q, ionode_id, intra_image_comm ) CALL mp_bcast( wf_friction, ionode_id, intra_image_comm ) CALL mp_bcast( nit, ionode_id, intra_image_comm ) CALL mp_bcast( nsd, ionode_id, intra_image_comm ) CALL mp_bcast( nsteps, ionode_id, intra_image_comm ) CALL mp_bcast( tolw, ionode_id, intra_image_comm ) CALL mp_bcast( adapt, ionode_id, intra_image_comm ) CALL mp_bcast( calwf, ionode_id, intra_image_comm ) CALL mp_bcast( nwf, ionode_id, intra_image_comm ) CALL mp_bcast( wffort, ionode_id, intra_image_comm ) CALL mp_bcast( writev, ionode_id, intra_image_comm ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------------=! ! ! Broadcast variables values for Namelist WANNIER_NEW ! !=----------------------------------------------------------------------------=! ! !---------------------------------------------------------------------- SUBROUTINE wannier_ac_bcast() !---------------------------------------------------------------------- ! USE io_global, ONLY: ionode_id USE mp, ONLY: mp_bcast USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! ! CALL mp_bcast( plot_wannier,ionode_id, intra_image_comm ) CALL mp_bcast( use_energy_int,ionode_id, intra_image_comm ) CALL mp_bcast( print_wannier_coeff,ionode_id, intra_image_comm ) CALL mp_bcast( nwan, ionode_id, intra_image_comm ) CALL mp_bcast( plot_wan_num,ionode_id, intra_image_comm ) CALL mp_bcast( plot_wan_spin,ionode_id, intra_image_comm ) ! CALL mp_bcast( wan_data,ionode_id, intra_image_comm ) CALL mp_bcast( constrain_pot, ionode_id, intra_image_comm ) RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist CONTROL ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE control_checkin( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = ' control_checkin ' INTEGER :: i LOGICAL :: allowed = .FALSE. ! ! DO i = 1, SIZE( calculation_allowed ) IF( TRIM(calculation) == calculation_allowed(i) ) allowed = .TRUE. END DO IF( .NOT. allowed ) & CALL errore( sub_name, ' calculation '''// & & TRIM(calculation)//''' not allowed ',1) IF( ndr < 50 ) & CALL errore( sub_name,' ndr out of range ', 1 ) IF( ndw > 0 .AND. ndw < 50 ) & CALL errore( sub_name,' ndw out of range ', 1 ) IF( nstep < 0 ) & CALL errore( sub_name,' nstep out of range ', 1 ) IF( iprint < 1 ) & CALL errore( sub_name,' iprint out of range ', 1 ) IF( prog == 'PW' ) THEN IF( isave > 0 ) & CALL infomsg( sub_name,' isave not used in PW ' ) ELSE IF( isave < 1 ) & CALL errore( sub_name,' isave out of range ', 1 ) END IF IF( dt < 0.0_DP ) & CALL errore( sub_name,' dt out of range ', 1 ) IF( max_seconds < 0.0_DP ) & CALL errore( sub_name,' max_seconds out of range ', 1 ) IF( ekin_conv_thr < 0.0_DP ) THEN IF( prog == 'PW' ) THEN CALL infomsg( sub_name,' ekin_conv_thr not used in PW ') ELSE CALL errore( sub_name,' ekin_conv_thr out of range ', 1 ) END IF END IF IF( etot_conv_thr < 0.0_DP ) & CALL errore( sub_name,' etot_conv_thr out of range ', 1 ) IF( forc_conv_thr < 0.0_DP ) & CALL errore( sub_name,' forc_conv_thr out of range ', 1 ) IF( prog == 'CP' ) THEN IF( dipfield ) & CALL infomsg( sub_name,' dipfield not yet implemented ') IF( lberry ) & CALL infomsg( sub_name,' lberry not implemented yet ') IF( lcalc_z2 ) & CALL infomsg( sub_name,' lcalc_z2 incompatible with CP ') IF( gdir /= 0 ) & CALL infomsg( sub_name,' gdir not used ') IF( nppstr /= 0 ) & CALL infomsg( sub_name,' nppstr not used ') END IF ! IF( prog == 'PW' .AND. TRIM( restart_mode ) == 'reset_counters' ) THEN CALL infomsg ( sub_name, ' restart_mode == reset_counters' // & & ' not implemented in PW ' ) END IF ! IF( refg < 0 ) & CALL errore( sub_name, ' wrong table interval refg ', 1 ) ! IF( ( prog == 'CP' ) .AND. ( TRIM(memory) == 'small' ) .AND. wf_collect ) & CALL errore( sub_name, ' wf_collect = .true. is not allowed with memory = small ', 1 ) allowed = .FALSE. DO i = 1, SIZE( memory_allowed ) IF( TRIM(memory) == memory_allowed(i) ) allowed = .TRUE. END DO IF( .NOT. allowed ) & CALL errore( sub_name, ' memory '''// & & TRIM(memory)//''' not allowed ',1) RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist SYSTEM ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE system_checkin( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = ' system_checkin ' INTEGER :: i LOGICAL :: allowed ! ! IF( ( ibrav /= 0 ) .AND. (celldm(1) == 0.0_DP) .AND. ( a == 0.0_DP ) ) & CALL errore( ' iosys ', & & ' invalid lattice parameters ( celldm or a )', 1 ) ! IF( nat < 0 ) & CALL errore( sub_name ,' nat less than zero ', MAX( nat, 1) ) ! IF( ntyp < 0 ) & CALL errore( sub_name ,' ntyp less than zero ', MAX( ntyp, 1) ) IF( ntyp < 0 .OR. ntyp > nsx ) & CALL errore( sub_name , & & ' ntyp too large, increase NSX ', MAX( ntyp, 1) ) ! IF( nspin < 1 .OR. nspin > 4 .OR. nspin == 3 ) & CALL errore( sub_name ,' nspin out of range ', MAX(nspin, 1 ) ) ! IF( ecutwfc <= 0.0_DP ) & CALL errore( sub_name ,' ecutwfc out of range ',1) IF( ecutrho < 0.0_DP ) & CALL errore( sub_name ,' ecutrho out of range ',1) ! IF( prog == 'CP' ) THEN IF( degauss /= 0.0_DP ) & CALL infomsg( sub_name ,' degauss is not used in CP ') END IF ! IF( ecfixed < 0.0_DP ) & CALL errore( sub_name ,' ecfixed out of range ',1) IF( qcutz < 0.0_DP ) & CALL errore( sub_name ,' qcutz out of range ',1) IF( q2sigma < 0.0_DP ) & CALL errore( sub_name ,' q2sigma out of range ',1) IF( prog == 'CP' ) THEN IF( ANY(starting_magnetization /= SM_NOT_SET ) ) & CALL infomsg( sub_name ,& & ' starting_magnetization is not used in CP ') IF( la2F ) & CALL infomsg( sub_name ,' la2F is not used in CP ') IF( ANY(Hubbard_alpha /= 0.0_DP) ) & CALL infomsg( sub_name ,' Hubbard_alpha is not used in CP ') IF( nosym ) & CALL infomsg( sub_name ,' nosym not implemented in CP ') IF( nosym_evc ) & CALL infomsg( sub_name ,' nosym_evc not implemented in CP ') IF( noinv ) & CALL infomsg( sub_name ,' noinv not implemented in CP ') END IF ! ! ... control on SIC variables ! IF ( sic /= 'none' ) THEN ! IF (sic_epsilon > 1.0_DP ) & CALL errore( sub_name, & & ' invalid sic_epsilon, greater than 1.',1 ) IF (sic_epsilon < 0.0_DP ) & CALL errore( sub_name, & & ' invalid sic_epsilon, less than 0 ',1 ) IF (sic_alpha > 1.0_DP ) & CALL errore( sub_name, & & ' invalid sic_alpha, greater than 1.',1 ) IF (sic_alpha < 0.0_DP ) & CALL errore( sub_name, & & ' invalid sic_alpha, less than 0 ',1 ) ! IF ( .NOT. force_pairing ) & CALL errore( sub_name, & & ' invalid force_pairing with sic activated', 1 ) IF ( nspin /= 2 ) & CALL errore( sub_name, & & ' invalid nspin with sic activated', 1 ) IF ( tot_magnetization /= 1._DP ) & CALL errore( sub_name, & & ' invalid tot_magnetization_ with sic activated', 1 ) ! ENDIF ! ! ... control on EXX variables ! DO i = 1, SIZE( exxdiv_treatment_allowed ) IF( TRIM(exxdiv_treatment) == exxdiv_treatment_allowed(i) ) allowed = .TRUE. END DO IF( .NOT. allowed ) CALL errore(sub_name, & ' invalid exxdiv_treatment: '//TRIM(exxdiv_treatment), 1 ) ! IF ( TRIM(exxdiv_treatment) == "yukawa" .AND. yukawa <= 0.0 ) & CALL errore(sub_name, ' invalid value for yukawa', 1 ) ! IF ( TRIM(exxdiv_treatment) == "vcut_ws" .AND. ecutvcut <= 0.0 ) & CALL errore(sub_name, ' invalid value for ecutvcut', 1 ) ! IF ( x_gamma_extrapolation .AND. ( TRIM(exxdiv_treatment) == "vcut_ws" .OR. & TRIM(exxdiv_treatment) == "vcut_spherical" ) ) & CALL errore(sub_name, ' x_gamma_extrapolation cannot be used with vcut', 1 ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist ELECTRONS ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE electrons_checkin( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = ' electrons_checkin ' INTEGER :: i LOGICAL :: allowed = .FALSE. ! ! DO i = 1, SIZE(electron_dynamics_allowed) IF( TRIM(electron_dynamics) == & electron_dynamics_allowed(i) ) allowed = .TRUE. END DO IF( .NOT. allowed ) & CALL errore( sub_name, ' electron_dynamics '''//& & TRIM(electron_dynamics)//''' not allowed ',1) IF( emass <= 0.0_DP ) & CALL errore( sub_name, ' emass less or equal 0 ',1) IF( emass_cutoff <= 0.0_DP ) & CALL errore( sub_name, ' emass_cutoff less or equal 0 ',1) IF( ortho_eps <= 0.0_DP ) & CALL errore( sub_name, ' ortho_eps less or equal 0 ',1) IF( ortho_max < 1 ) & CALL errore( sub_name, ' ortho_max less than 1 ',1) IF( fnosee <= 0.0_DP ) & CALL errore( sub_name, ' fnosee less or equal 0 ',1) IF( ekincw <= 0.0_DP ) & CALL errore( sub_name, ' ekincw less or equal 0 ',1) IF( occupation_constraints ) & CALL errore( sub_name, ' occupation_constraints not yet implemented ',1) ! RETURN END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist IONS ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE ions_checkin( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = ' ions_checkin ' INTEGER :: i LOGICAL :: allowed = .FALSE. ! ! DO i = 1, SIZE( phase_space_allowed ) IF( TRIM( phase_space ) == phase_space_allowed(i) ) allowed = .TRUE. END DO IF ( .NOT. allowed ) & CALL errore( sub_name, ' phase_space '''// & & TRIM( phase_space )// ''' not allowed ', 1 ) ! allowed = .FALSE. DO i = 1, SIZE(ion_dynamics_allowed) IF( TRIM(ion_dynamics) == ion_dynamics_allowed(i) ) allowed = .TRUE. END DO IF( .NOT. allowed ) & CALL errore( sub_name, ' ion_dynamics '''// & & TRIM(ion_dynamics)//''' not allowed ',1) IF( tempw <= 0.0_DP ) & CALL errore( sub_name,' tempw out of range ',1) IF( fnosep( 1 ) <= 0.0_DP ) & CALL errore( sub_name,' fnosep out of range ',1) IF( nhpcl > nhclm ) & CALL infomsg ( sub_name,' nhpcl should be less than nhclm') IF( nhpcl < 0 ) & CALL infomsg ( sub_name,' nhpcl out of range ') IF( ion_nstepe <= 0 ) & CALL errore( sub_name,' ion_nstepe out of range ',1) IF( ion_maxstep < 0 ) & CALL errore( sub_name,' ion_maxstep out of range ',1) ! IF (sic /= 'none' .and. sic_rloc == 0.0_DP) & CALL errore( sub_name, ' invalid sic_rloc with sic activated ', 1 ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist CELL ! !=----------------------------------------------------------------------=! ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE cell_checkin( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = ' cell_checkin ' INTEGER :: i LOGICAL :: allowed = .FALSE. ! ! DO i = 1, SIZE(cell_dynamics_allowed) IF( TRIM(cell_dynamics) == & cell_dynamics_allowed(i) ) allowed = .TRUE. END DO IF( .NOT. allowed ) & CALL errore( sub_name, ' cell_dynamics '''// & TRIM(cell_dynamics)//''' not allowed ',1) IF( wmass < 0.0_DP ) & CALL errore( sub_name,' wmass out of range ',1) IF( prog == 'CP' ) THEN IF( cell_factor /= 0.0_DP ) & CALL infomsg( sub_name,' cell_factor not used in CP ') END IF IF( cell_nstepe <= 0 ) & CALL errore( sub_name,' cell_nstepe out of range ',1) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist WANNIER ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE wannier_checkin( prog ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = 'wannier_checkin' ! IF ( calwf < 1 .OR. calwf > 5 ) & CALL errore( sub_name, ' calwf out of range ', 1 ) ! IF ( wfsd < 1 .OR. wfsd > 3 ) & CALL errore( sub_name, ' wfsd out of range ', 1 ) ! ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Check input values for Namelist WANNIER_NEW ! !=----------------------------------------------------------------------=! ! !---------------------------------------------------------------------- SUBROUTINE wannier_ac_checkin( prog ) !-------------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = 'wannier_new_checkin' ! ! IF ( nwan > nwanx ) & CALL errore( sub_name, ' nwan out of range ', 1 ) IF ( plot_wan_num < 0 .OR. plot_wan_num > nwan ) & CALL errore( sub_name, ' plot_wan_num out of range ', 1 ) IF ( plot_wan_spin < 0 .OR. plot_wan_spin > 2 ) & CALL errore( sub_name, ' plot_wan_spin out of range ', 1 ) ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Set values according to the "calculation" variable ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE fixval( prog ) !----------------------------------------------------------------------- ! USE constants, ONLY : e2 ! IMPLICIT NONE ! CHARACTER(LEN=2) :: prog ! ... specify the calling program CHARACTER(LEN=20) :: sub_name = ' fixval ' ! ! SELECT CASE( TRIM( calculation ) ) CASE ('scf') IF( prog == 'CP' ) THEN electron_dynamics = 'damp' ion_dynamics = 'none' cell_dynamics = 'none' END IF CASE ('nscf', 'bands') IF( prog == 'CP' ) occupations = 'bogus' IF( prog == 'CP' ) electron_dynamics = 'damp' CASE ( 'cp-wf' ) IF( prog == 'CP' ) THEN electron_dynamics = 'damp' ion_dynamics = 'damp' END IF IF ( prog == 'PW' ) & CALL errore( sub_name, ' calculation ' // & & TRIM( calculation ) // ' not implemented ', 1 ) !========================================================================= !Lingzhu Kong CASE ( 'cp-wf-nscf','cp-wf-pbe0','pbe0-nscf' ) IF( prog == 'CP' ) THEN occupations = 'fixed' electron_dynamics = 'damp' ion_dynamics = 'damp' END IF IF ( prog == 'PW' ) & CALL errore( sub_name, ' calculation ' // & & TRIM( calculation ) // ' not implemented ', 1 ) !========================================================================= CASE ('relax') IF( prog == 'CP' ) THEN electron_dynamics = 'damp' ion_dynamics = 'damp' ELSE IF( prog == 'PW' ) THEN ion_dynamics = 'bfgs' END IF CASE ( 'md', 'cp' ) IF( prog == 'CP' ) THEN electron_dynamics = 'verlet' ion_dynamics = 'verlet' ELSE IF( prog == 'PW' ) THEN ion_dynamics = 'verlet' END IF CASE ('vc-relax') IF( prog == 'CP' ) THEN electron_dynamics = 'damp' ion_dynamics = 'damp' cell_dynamics = 'damp-pr' ELSE IF( prog == 'PW' ) THEN ion_dynamics = 'bfgs' cell_dynamics= 'bfgs' END IF CASE ( 'vc-md', 'vc-cp' ) IF( prog == 'CP' ) THEN electron_dynamics = 'verlet' ion_dynamics = 'verlet' cell_dynamics = 'pr' ELSE IF( prog == 'PW' ) THEN ion_dynamics = 'beeman' END IF ! CASE DEFAULT ! CALL errore( sub_name,' calculation '// & & TRIM(calculation)//' not implemented ', 1 ) ! END SELECT ! IF ( prog == 'PW' ) THEN ! IF ( calculation == 'nscf' .OR. calculation == 'bands' ) THEN ! startingpot = 'file' startingwfc = 'atomic+random' ! ELSE IF ( restart_mode == "from_scratch" ) THEN ! startingwfc = 'atomic+random' startingpot = 'atomic' ! ELSE ! startingwfc = 'file' startingpot = 'file' ! END IF ! ELSE IF ( prog == 'CP' ) THEN ! startingwfc = 'random' startingpot = ' ' ! END IF ! IF ( TRIM( sic ) /= 'none' ) THEN force_pairing = ( nspin == 2 .AND. ( tot_magnetization==0._dp .OR. & tot_magnetization==1._dp ) ) END IF ! RETURN ! END SUBROUTINE ! !=----------------------------------------------------------------------=! ! ! Namelist parsing main routine ! !=----------------------------------------------------------------------=! ! !----------------------------------------------------------------------- SUBROUTINE read_namelists( prog, unit ) !----------------------------------------------------------------------- ! ! this routine reads data from standard input and puts them into ! module-scope variables (accessible from other routines by including ! this module, or the one that contains them) ! ---------------------------------------------- ! ! ... declare modules ! USE io_global, ONLY : ionode, ionode_id USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! ! ... declare variables ! CHARACTER(LEN=2) :: prog ! ... specify the calling program ! prog = 'PW' pwscf ! prog = 'CP' cpr ! ! INTEGER, INTENT(IN), optional :: unit ! ! ... declare other variables ! INTEGER :: ios ! INTEGER :: unit_loc=5 ! ! ... end of declarations ! ! ---------------------------------------------- ! IF(PRESENT(unit)) unit_loc = unit ! IF( prog /= 'PW' .AND. prog /= 'CP' ) & CALL errore( ' read_namelists ', ' unknown calling program ', 1 ) ! ! ... default settings for all namelists ! IF( prog == 'PW' .OR. prog == 'CP') THEN CALL control_defaults( prog ) CALL system_defaults( prog ) CALL electrons_defaults( prog ) CALL ions_defaults( prog ) CALL cell_defaults( prog ) ENDIF ! ! ... Here start reading standard input file ! ! ... CONTROL namelist ! IF(prog == 'PW' .OR. prog == 'CP' ) THEN ios = 0 IF( ionode ) THEN READ( unit_loc, control, iostat = ios ) END IF CALL mp_bcast( ios, ionode_id, intra_image_comm ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist control ', ABS(ios) ) END IF ! CALL control_bcast( ) CALL control_checkin( prog ) ! ! ... fixval changes some default values according to the value ! ... of "calculation" read in CONTROL namelist ! CALL fixval( prog ) ! ! ... SYSTEM namelist ! ios = 0 IF( ionode ) THEN READ( unit_loc, system, iostat = ios ) END IF CALL mp_bcast( ios, ionode_id, intra_image_comm ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist system ', ABS(ios) ) END IF ! CALL system_bcast( ) ! CALL system_checkin( prog ) ! ! ... ELECTRONS namelist ! ios = 0 IF( ionode ) THEN READ( unit_loc, electrons, iostat = ios ) END IF CALL mp_bcast( ios, ionode_id, intra_image_comm ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist electrons ', ABS(ios) ) END IF ! CALL electrons_bcast( ) CALL electrons_checkin( prog ) ! ! ... IONS namelist ! ios = 0 IF ( ionode ) THEN ! IF ( TRIM( calculation ) == 'relax' .OR. & TRIM( calculation ) == 'md' .OR. & TRIM( calculation ) == 'vc-relax' .OR. & TRIM( calculation ) == 'vc-md' .OR. & TRIM( calculation ) == 'cp' .OR. & TRIM( calculation ) == 'vc-cp' .OR. & TRIM( calculation ) == 'smd' .OR. & TRIM( calculation ) == 'cp-wf-nscf' .OR. & !Lingzhu Kong TRIM( calculation ) == 'cp-wf-pbe0' .OR. & !Lingzhu Kong TRIM( calculation ) == 'pbe0-nscf' .OR. & !Lingzhu Kong TRIM( calculation ) == 'cp-wf' ) READ( unit_loc, ions, iostat = ios ) END IF CALL mp_bcast( ios, ionode_id, intra_image_comm ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist ions ', ABS(ios) ) END IF ! CALL ions_bcast( ) CALL ions_checkin( prog ) ! ! ... CELL namelist ! ios = 0 IF( ionode ) THEN IF( TRIM( calculation ) == 'vc-relax' .OR. & TRIM( calculation ) == 'vc-cp' .OR. & TRIM( calculation ) == 'vc-md' .OR. & TRIM( calculation ) == 'vc-md' ) THEN READ( unit_loc, cell, iostat = ios ) END IF END IF CALL mp_bcast( ios, ionode_id, intra_image_comm ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist cell ', ABS(ios) ) END IF ! CALL cell_bcast() CALL cell_checkin( prog ) ! ios = 0 IF( ionode ) THEN if (tabps) then READ( unit_loc, press_ai, iostat = ios ) end if END IF CALL mp_bcast( ios, ionode_id, intra_image_comm ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist press_ai ', ABS(ios) ) END IF ! CALL press_ai_bcast() ! ! ... WANNIER NAMELIST ! CALL wannier_defaults( prog ) ios = 0 IF( ionode ) THEN IF( TRIM( calculation ) == 'cp-wf' .OR. & ! Lingzhu Kong TRIM( calculation ) == 'cp-wf-nscf' .OR. & ! Lingzhu Kong TRIM( calculation ) == 'cp-wf-pbe0' .OR. & ! Lingzhu Kong TRIM( calculation ) == 'pbe0-nscf' ) THEN ! Lingzhu Kong READ( unit_loc, wannier, iostat = ios ) END IF END IF CALL mp_bcast( ios, ionode_id, intra_image_comm ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist wannier ', ABS(ios) ) END IF ! CALL wannier_bcast() CALL wannier_checkin( prog ) ! ! ... WANNIER_NEW NAMELIST ! CALL wannier_ac_defaults( prog ) ios = 0 IF( ionode ) THEN IF( use_wannier ) THEN READ( unit_loc, wannier_ac, iostat = ios ) END IF END IF CALL mp_bcast( ios, ionode_id, intra_image_comm ) IF( ios /= 0 ) THEN CALL errore( ' read_namelists ', & & ' reading namelist wannier_new ', ABS(ios) ) END IF ! CALL wannier_ac_bcast() CALL wannier_ac_checkin( prog ) ! ENDIF ! RETURN ! END SUBROUTINE read_namelists ! ! END MODULE read_namelists_module espresso-5.1/Modules/version.f900000644000175000017500000000077612341373041014727 0ustar mbamba! ! Copyright (C) 2003-2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE global_version ! IMPLICIT NONE ! SAVE ! CHARACTER (LEN=6) :: version_number = '5.1' CHARACTER (LEN=12) :: svn_revision = '11011' ! END MODULE global_version espresso-5.1/Modules/Makefile0000644000175000017500000000507712341373034014363 0ustar mbamba# Makefile for Modules include ../make.sys # location of needed modules MODFLAGS= $(MOD_FLAG)../iotk/src $(MOD_FLAG)../ELPA/src $(MOD_FLAG). MODULES = \ atom.o \ autopilot.o \ basic_algebra_routines.o \ becmod.o \ bfgs_module.o \ bspline.o \ bz_form.o \ cell_base.o \ check_stop.o \ clocks.o \ command_line_options.o \ compute_dipole.o \ constants.o \ constraints_module.o \ control_flags.o \ coulomb_vcut.o \ descriptors.o \ dspev_drv.o \ electrons_base.o \ environment.o \ error_handler.o \ fd_gradient.o \ fft_base.o \ fft_custom.o \ fft_interfaces.o \ fft_parallel.o \ fft_scalar.o \ fft_types.o \ funct.o \ generate_function.o \ griddim.o \ input_parameters.o \ io_files.o \ io_global.o \ ions_base.o \ kernel_table.o \ kind.o \ mm_dispersion.o \ mp.o \ mp_bands.o \ mp_base.o \ mp_diag.o \ mp_global.o \ mp_images.o \ mp_pots.o \ mp_pools.o \ mp_wave.o \ mp_world.o \ noncol.o \ open_close_input_file.o \ parallel_include.o \ parameters.o \ parser.o \ paw_variables.o \ plugin_flags.o \ plugin_arguments.o \ plugin_variables.o \ pseudo_types.o \ ptoolkit.o \ qexml.o \ qmmm.o \ radial_grids.o \ random_numbers.o \ read_cards.o \ read_input.o \ read_namelists.o \ read_ncpp.o \ read_pseudo.o \ read_upf_v1.o \ read_upf_v2.o \ read_uspp.o \ read_xml.o \ read_xml_cards.o \ read_xml_fields.o \ recvec.o \ recvec_subs.o \ run_info.o \ set_signal.o \ sic.o \ splinelib.o \ stick_base.o \ stick_set.o \ timestep.o\ tsvdw.o\ upf.o \ upf_to_internal.o \ uspp.o \ version.o \ wannier_gw.o\ wannier_new.o \ wave_base.o \ wavefunctions.o \ wrappers.o\ write_upf_v2.o \ ws_base.o \ xc_vdW_DF.o \ xc_rVV10.o \ xml_input.o \ xml_io_base.o \ zdotc_wrapper.o \ zhpev_drv.o all : version version.o libqemod.a ## If no update_version is found, or it is not executable, ## just copy version.f90.in (that contains 'version=unknown'). ## We use cat and not cp so that version.f90 has a new timestamp, ## forcing recompilation of version.f90. ## We use the inner if to avoid recompilation at each make. version: - ( if test -x ../install/update_version ; then \ ../install/update_version; \ else if test ! -f version.f90 ; then \ cat version.f90.in > version.f90 ; fi ; fi ) version.f90: version libqemod.a: $(MODULES) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ clean : - /bin/rm -f *.o *.a *.d *.i *~ *.F90 *.mod *.L version.f90 # In this way, the script for generating version.f90 always runs # (possibly updating the version if you execute "svn update"). # the update_version script should take care of not changing the file # if the svn version did not change .PHONY: version all clean include make.depend espresso-5.1/Modules/ions_base.f900000644000175000017500000006353612341373034015211 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE ions_base !------------------------------------------------------------------------------! USE kinds, ONLY : DP USE parameters, ONLY : ntypx ! IMPLICIT NONE SAVE ! nsp = number of species ! na(is) = number of atoms of species is ! nax = max number of atoms of a given species ! nat = total number of atoms of all species INTEGER :: nsp = 0 INTEGER :: na(ntypx) = 0 INTEGER :: nax = 0 INTEGER :: nat = 0 ! zv(is) = (pseudo-)atomic charge ! amass(is) = mass of ions, in atomic mass units ! rcmax(is) = Ewald radius (for ion-ion interactions) REAL(DP) :: zv(ntypx) = 0.0_DP REAL(DP) :: amass(ntypx) = 0.0_DP REAL(DP) :: rcmax(ntypx) = 0.0_DP ! ityp( i ) = the type of i-th atom in stdin ! atm( j ) = name of the type of the j-th atomic specie ! tau( 1:3, i ) = position of the i-th atom INTEGER, ALLOCATABLE :: ityp(:) REAL(DP), ALLOCATABLE :: tau(:,:) ! initial positions read from stdin (in bohr) REAL(DP), ALLOCATABLE :: vel(:,:) ! initial velocities read from stdin (in bohr) REAL(DP), ALLOCATABLE :: tau_srt(:,:) ! tau sorted by specie in bohr REAL(DP), ALLOCATABLE :: vel_srt(:,:) ! vel sorted by specie in bohr INTEGER, ALLOCATABLE :: ind_srt(:) ! index of tau sorted by specie INTEGER, ALLOCATABLE :: ind_bck(:) ! reverse of ind_srt CHARACTER(LEN=3) :: atm( ntypx ) CHARACTER(LEN=3), ALLOCATABLE :: label_srt( : ) CHARACTER(LEN=80) :: tau_format ! format of input atomic positions: ! 'alat','crystal','bohr','angstrom' ! if_pos( x, i ) = 0 : x coordinate of i-th atom will be kept fixed INTEGER, ALLOCATABLE :: if_pos(:,:) ! allowed values: 0 or 1 only INTEGER, ALLOCATABLE :: iforce(:,:) ! if_pos sorted by specie INTEGER :: fixatom = 0 ! number of frozen atoms INTEGER :: ndofp =-1 ! ionic degree of freedom INTEGER :: ndfrz = 0 ! frozen degrees of freedom REAL(DP) :: fricp ! friction parameter for damped dynamics REAL(DP) :: greasp ! friction parameter for damped dynamics ! ... taui = real ionic positions in the center of mass reference ! ... system at istep = 0 ! ... this array is used to compute mean square displacements, ! ... it is initialized when NBEG = -1, NBEG = 0 and TAURDR = .TRUE. ! ... first index: x,y,z, second index: atom sorted by specie with respect input ! ... this array is saved in the restart file REAL(DP), ALLOCATABLE :: taui(:,:) ! ... cdmi = center of mass reference system (related to the taui) ! ... this vector is computed when NBEG = -1, NBEG = 0 and TAURDR = .TRUE. ! ... this array is saved in the restart file REAL(DP) :: cdmi(3), cdm(3) ! ... cdms = center of mass computed for scaled positions (taus) REAL(DP) :: cdms(3) ! REAL(DP), ALLOCATABLE :: extfor(:,:) ! external forces on atoms LOGICAL :: tions_base_init = .FALSE. LOGICAL, PRIVATE :: tdebug = .FALSE. INTERFACE ions_vel MODULE PROCEDURE ions_vel3, ions_vel2 END INTERFACE !------------------------------------------------------------------------------! CONTAINS !------------------------------------------------------------------------------! SUBROUTINE sort_tau( tausrt, isrt, tau, isp, nat, nsp ) IMPLICIT NONE REAL(DP), INTENT(OUT) :: tausrt( :, : ) INTEGER, INTENT(OUT) :: isrt( : ) REAL(DP), INTENT(IN) :: tau( :, : ) INTEGER, INTENT(IN) :: nat, nsp, isp( : ) INTEGER :: ina( nsp ), na( nsp ) INTEGER :: is, ia ! ... count the atoms for each specie na = 0 DO ia = 1, nat is = isp( ia ) IF( is < 1 .OR. is > nsp ) & CALL errore(' sorttau ', ' wrong species index for positions ', ia ) na( is ) = na( is ) + 1 END DO IF ( ANY ( na(1:nsp) == 0 ) ) & CALL errore ('sort_atoms', 'some atomic species have no atoms',1) ! ... compute the index of the first atom in each specie ina( 1 ) = 0 DO is = 2, nsp ina( is ) = ina( is - 1 ) + na( is - 1 ) END DO ! ... sort the position according to atomic specie na = 0 DO ia = 1, nat is = isp( ia ) na( is ) = na( is ) + 1 tausrt( :, na(is) + ina(is) ) = tau(:, ia ) isrt ( na(is) + ina(is) ) = ia END DO RETURN END SUBROUTINE sort_tau !------------------------------------------------------------------------------! SUBROUTINE unsort_tau( tau, tausrt, isrt, nat ) IMPLICIT NONE REAL(DP), INTENT(IN) :: tausrt( :, : ) INTEGER, INTENT(IN) :: isrt( : ) REAL(DP), INTENT(OUT) :: tau( :, : ) INTEGER, INTENT(IN) :: nat INTEGER :: isa, ia DO isa = 1, nat ia = isrt( isa ) tau( :, ia ) = tausrt( :, isa ) END DO RETURN END SUBROUTINE unsort_tau !------------------------------------------------------------------------- SUBROUTINE ions_base_init( nsp_, nat_, na_, ityp_, tau_, vel_, amass_,& atm_, if_pos_, tau_format_, alat_, at_, & rcmax_ , extfor_ ) !------------------------------------------------------------------------- ! USE constants, ONLY: amu_au, bohr_radius_angs USE io_global, ONLY: stdout ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nsp_, nat_, na_(:), ityp_(:) REAL(DP), INTENT(IN) :: tau_(:,:) REAL(DP), INTENT(IN) :: vel_(:,:) REAL(DP), INTENT(IN) :: amass_(:) CHARACTER(LEN=*), INTENT(IN) :: atm_(:) CHARACTER(LEN=*), INTENT(IN) :: tau_format_ INTEGER, INTENT(IN) :: if_pos_(:,:) REAL(DP), INTENT(IN) :: alat_, at_(3,3) REAL(DP), INTENT(IN) :: rcmax_(:) REAL(DP), INTENT(IN) :: extfor_(:,:) ! INTEGER :: i, ia, is ! ! nsp = nsp_ nat = nat_ ! IF ( nat < 1 ) & CALL errore( 'ions_base_init ', 'nax out of range', 1 ) IF ( nsp < 1 ) & CALL errore( 'ions_base_init ', 'nsp out of range', 1 ) IF ( nsp > SIZE( na ) ) & CALL errore( 'ions_base_init ', & & 'nsp too large, increase ntypx parameter ', 1 ) ! na(1:nsp) = na_(1:nsp) nax = MAXVAL( na(1:nsp) ) ! atm(1:nsp) = atm_(1:nsp) tau_format = TRIM( tau_format_ ) ! IF ( nat /= SUM( na(1:nsp) ) ) & CALL errore( 'ions_base_init ','inconsistent nat and na ', 1 ) ! CALL deallocate_ions_base() ! ALLOCATE( ityp( nat ) ) ALLOCATE( tau( 3, nat ) ) ALLOCATE( vel( 3, nat ) ) ALLOCATE( tau_srt( 3, nat ) ) ALLOCATE( vel_srt( 3, nat ) ) ALLOCATE( ind_srt( nat ) ) ALLOCATE( ind_bck( nat ) ) ALLOCATE( if_pos( 3, nat ) ) ALLOCATE( iforce( 3, nat ) ) ALLOCATE( taui( 3, nat ) ) ALLOCATE( label_srt( nat ) ) ALLOCATE( extfor( 3, nat ) ) ! ityp(1:nat) = ityp_(1:nat) vel(:,1:nat) = vel_(:,1:nat) if_pos(:,1:nat) = if_pos_(:,1:nat) ! ! ... radii, masses ! DO is = 1, nsp_ ! rcmax(is) = rcmax_(is) ! IF( rcmax(is) <= 0.0_DP ) & CALL errore( 'ions_base_init ', 'invalid rcmax', is ) ! END DO ! SELECT CASE ( TRIM( tau_format ) ) ! ! ... convert input atomic positions to internally used format: ! ... tau in atomic units ! CASE( 'alat' ) ! ! ... input atomic positions are divided by a0 ! tau(:,1:nat) = tau_(:,1:nat) * alat_ vel(:,1:nat) = vel_(:,1:nat) * alat_ ! CASE( 'bohr' ) ! ! ... input atomic positions are in a.u.: do nothing ! tau(:,1:nat) = tau_(:,1:nat) vel(:,1:nat) = vel_(:,1:nat) ! CASE( 'crystal' ) ! ! ... input atomic positions are in crystal axis ("scaled") ! DO ia = 1, nat ! DO i = 1, 3 ! tau(i,ia) = at_(i,1)*alat_ * tau_(1,ia) + & at_(i,2)*alat_ * tau_(2,ia) + & at_(i,3)*alat_ * tau_(3,ia) ! vel(i,ia) = at_(i,1)*alat_ * vel_(1,ia) + & at_(i,2)*alat_ * vel_(2,ia) + & at_(i,3)*alat_ * vel_(3,ia) END DO ! END DO ! CASE( 'angstrom' ) ! ! ... atomic positions in A ! tau(:,1:nat) = tau_(:,1:nat) / bohr_radius_angs vel(:,1:nat) = vel_(:,1:nat) / bohr_radius_angs ! CASE DEFAULT ! CALL errore( 'ions_base_init',' tau_format = ' // & & TRIM( tau_format ) // ' not implemented ', 1 ) ! END SELECT ! ! ... tau_srt : atomic species are ordered according to ! ... the ATOMIC_SPECIES input card. Within each specie atoms are ordered ! ... according to the ATOMIC_POSITIONS input card. ! ... ind_srt : can be used to restore the original position ! CALL sort_tau( tau_srt, ind_srt, tau, ityp, nat, nsp ) ! vel_srt(:,:) = vel(:,ind_srt(:)) ! DO ia = 1, nat ! label_srt( ia ) = atm( ityp( ind_srt( ia ) ) ) ! END DO ! ! ... generate ind_bck from ind_srt (reverse sort list) ! DO ia = 1, nat ! ind_bck(ind_srt(ia)) = ia ! END DO ! DO ia = 1, nat ! extfor( :, ia ) = extfor_( :, ind_srt( ia ) ) ! END DO ! IF( tdebug ) THEN WRITE( stdout, * ) 'ions_base_init: unsorted position and velocities' DO ia = 1, nat WRITE( stdout, fmt="(A3,3D12.4,3X,3D12.4)") & atm( ityp( ia ) ), tau(1:3, ia), vel(1:3,ia) END DO WRITE( stdout, * ) 'ions_base_init: sorted position and velocities' DO ia = 1, nat WRITE( stdout, fmt="(A3,3D12.4,3X,3D12.4)") & atm( ityp( ind_srt( ia ) ) ), tau_srt(1:3, ia), vel_srt(1:3,ia) END DO END IF ! ! ... The constrain on fixed coordinates is implemented using the array ! ... if_pos whose value is 0 when the coordinate is to be kept fixed, 1 ! ... otherwise. ! if_pos = 1 if_pos(:,:) = if_pos_(:,1:nat) ! iforce = 0 iforce(:,:) = if_pos(:,ind_srt(:)) ! fixatom=COUNT( if_pos(1,:)==0 .AND. if_pos(2,:)==0 .AND. if_pos(3,:)==0 ) ndofp = COUNT( iforce == 1 ) ndfrz = 3*nat - ndofp ! amass(1:nsp) = amass_(1:nsp) ! IF ( ANY( amass(1:nsp) <= 0.0_DP ) ) & CALL errore( 'ions_base_init ', 'invalid mass', 1 ) ! CALL ions_cofmass( tau_srt, amass, na, nsp, cdmi ) ! DO ia = 1, nat ! taui(1:3,ia) = tau_srt(1:3,ia) - cdmi(1:3) ! END DO ! tions_base_init = .TRUE. ! RETURN ! END SUBROUTINE ions_base_init ! !------------------------------------------------------------------------- SUBROUTINE deallocate_ions_base() !------------------------------------------------------------------------- ! IMPLICIT NONE ! IF ( ALLOCATED( ityp ) ) DEALLOCATE( ityp ) IF ( ALLOCATED( tau ) ) DEALLOCATE( tau ) IF ( ALLOCATED( vel ) ) DEALLOCATE( vel ) IF ( ALLOCATED( tau_srt ) ) DEALLOCATE( tau_srt ) IF ( ALLOCATED( vel_srt ) ) DEALLOCATE( vel_srt ) IF ( ALLOCATED( ind_srt ) ) DEALLOCATE( ind_srt ) IF ( ALLOCATED( ind_bck ) ) DEALLOCATE( ind_bck ) IF ( ALLOCATED( if_pos ) ) DEALLOCATE( if_pos ) IF ( ALLOCATED( iforce ) ) DEALLOCATE( iforce ) IF ( ALLOCATED( taui ) ) DEALLOCATE( taui ) IF ( ALLOCATED( label_srt ) ) DEALLOCATE( label_srt ) IF ( ALLOCATED( extfor ) ) DEALLOCATE( extfor ) ! tions_base_init = .FALSE. ! RETURN ! END SUBROUTINE deallocate_ions_base ! !------------------------------------------------------------------------- SUBROUTINE ions_vel3( vel, taup, taum, na, nsp, dt ) !------------------------------------------------------------------------- USE constants, ONLY : eps8 IMPLICIT NONE REAL(DP) :: vel(:,:), taup(:,:), taum(:,:) INTEGER :: na(:), nsp REAL(DP) :: dt INTEGER :: ia, is, i, isa REAL(DP) :: fac IF( dt < eps8 ) & CALL errore( ' ions_vel3 ', ' dt <= 0 ', 1 ) fac = 1.0_DP / ( dt * 2.0_DP ) isa = 0 DO is = 1, nsp DO ia = 1, na(is) isa = isa + 1 DO i = 1, 3 vel(i,isa) = ( taup(i,isa) - taum(i,isa) ) * fac END DO END DO END DO RETURN END SUBROUTINE ions_vel3 !------------------------------------------------------------------------------! SUBROUTINE ions_vel2( vel, taup, taum, nat, dt ) USE constants, ONLY : eps8 IMPLICIT NONE REAL(DP) :: vel(:,:), taup(:,:), taum(:,:) INTEGER :: nat REAL(DP) :: dt INTEGER :: ia, i REAL(DP) :: fac IF( dt < eps8 ) & CALL errore( ' ions_vel3 ', ' dt <= 0 ', 1 ) fac = 1.0_DP / ( dt * 2.0_DP ) DO ia = 1, nat DO i = 1, 3 vel(i,ia) = ( taup(i,ia) - taum(i,ia) ) * fac END DO END DO RETURN END SUBROUTINE ions_vel2 !------------------------------------------------------------------------------! SUBROUTINE ions_cofmass( tau, pmass, na, nsp, cdm ) USE constants, ONLY : eps8 IMPLICIT NONE REAL(DP), INTENT(IN) :: tau(:,:), pmass(:) REAL(DP), INTENT(OUT) :: cdm(3) INTEGER, INTENT(IN) :: na(:), nsp REAL(DP) :: tmas INTEGER :: is, i, ia, isa ! tmas=0.0_DP do is=1,nsp tmas=tmas+na(is)*pmass(is) end do if( tmas < eps8 ) & call errore(' ions_cofmass ', ' total mass <= 0 ', 1 ) ! do i=1,3 cdm(i)=0.0_DP isa = 0 do is=1,nsp do ia=1,na(is) isa = isa + 1 cdm(i)=cdm(i)+tau(i,isa)*pmass(is) end do end do cdm(i)=cdm(i)/tmas end do ! RETURN END SUBROUTINE ions_cofmass !------------------------------------------------------------------------------! SUBROUTINE randpos(tau, na, nsp, tranp, amprp, hinv, ifor ) USE cell_base, ONLY: r_to_s USE io_global, ONLY: stdout USE random_numbers, ONLY: randy IMPLICIT NONE REAL(DP) :: hinv(3,3) REAL(DP) :: tau(:,:) INTEGER, INTENT(IN) :: ifor(:,:), na(:), nsp LOGICAL, INTENT(IN) :: tranp(:) REAL(DP), INTENT(IN) :: amprp(:) REAL(DP) :: oldp(3), rand_disp(3), rdisp(3) INTEGER :: k, is, isa, isa_s, isa_e, isat WRITE( stdout, 600 ) isat = 0 DO is = 1, nsp isa_s = isat + 1 isa_e = isat + na(is) IF( tranp(is) ) THEN WRITE( stdout,610) is, na(is) WRITE( stdout,615) DO isa = isa_s, isa_e oldp = tau(:,isa) rand_disp(1) = randy () rand_disp(2) = randy () rand_disp(3) = randy () rand_disp = amprp(is) * ( rand_disp - 0.5_DP ) rdisp = rand_disp CALL r_to_s( rdisp(:), rand_disp(:), hinv ) DO k = 1, 3 tau(k,isa) = tau(k,isa) + rand_disp(k) * ifor(k,isa) END DO WRITE( stdout,620) (oldp(k),k=1,3), (tau(k,isa),k=1,3) END DO END IF isat = isat + na(is) END DO 600 FORMAT(//,3X,'Randomization of SCALED ionic coordinates') 610 FORMAT( 3X,'Species ',I3,' atoms = ',I4) 615 FORMAT( 3X,' Old Positions New Positions') 620 FORMAT( 3X,3F10.6,2X,3F10.6) RETURN END SUBROUTINE randpos !------------------------------------------------------------------------------! SUBROUTINE ions_kinene( ekinp, vels, na, nsp, h, pmass ) IMPLICIT NONE REAL(DP), intent(out) :: ekinp ! ionic kinetic energy REAL(DP), intent(in) :: vels(:,:) ! scaled ionic velocities REAL(DP), intent(in) :: pmass(:) ! ionic masses REAL(DP), intent(in) :: h(:,:) ! simulation cell integer, intent(in) :: na(:), nsp integer :: i, j, is, ia, ii, isa ekinp = 0.0_DP isa = 0 do is=1,nsp do ia=1,na(is) isa = isa + 1 do j=1,3 do i=1,3 do ii=1,3 ekinp=ekinp+pmass(is)* h(j,i)*vels(i,isa)* h(j,ii)*vels(ii,isa) end do end do end do end do end do ekinp=0.5_DP*ekinp return END SUBROUTINE ions_kinene !------------------------------------------------------------------------------! subroutine ions_temp( tempp, temps, ekinpr, vels, na, nsp, h, pmass, ndega, nhpdim, atm2nhp, ekin2nhp ) ! use constants, only: k_boltzmann_au ! implicit none ! REAL(DP), intent(out) :: ekinpr, tempp REAL(DP), intent(out) :: temps(:) REAL(DP), intent(out) :: ekin2nhp(:) REAL(DP), intent(in) :: vels(:,:) REAL(DP), intent(in) :: pmass(:) REAL(DP), intent(in) :: h(:,:) integer, intent(in) :: na(:), nsp, ndega, nhpdim, atm2nhp(:) ! integer :: nat, i, j, is, ia, ii, isa REAL(DP) :: cdmvel(3), eks, eks1 ! call ions_cofmass( vels, pmass, na, nsp, cdmvel ) ! nat = SUM( na(1:nsp) ) ! ekinpr = 0.0_DP temps( 1:nsp ) = 0.0_DP ekin2nhp(1:nhpdim) = 0.0_DP ! do i=1,3 do j=1,3 do ii=1,3 isa = 0 do is=1,nsp eks = 0.0_DP do ia=1,na(is) isa = isa + 1 eks1 = pmass(is)*h(j,i)*(vels(i,isa)-cdmvel(i))*h(j,ii)*(vels(ii,isa)-cdmvel(ii)) eks=eks+eks1 ekin2nhp(atm2nhp(isa)) = ekin2nhp(atm2nhp(isa)) + eks1 end do ekinpr = ekinpr + eks temps(is) = temps(is) + eks end do end do end do end do ! do is = 1, nhpdim ekin2nhp(is) = ekin2nhp(is) * 0.5_DP enddo ! ! do is = 1, nsp if( na(is) < 1 ) call errore(' ions_temp ', ' 0 number of atoms ', 1 ) temps( is ) = temps( is ) * 0.5_DP temps( is ) = temps( is ) / k_boltzmann_au / ( 1.5_DP * na(is) ) end do ! ekinpr = 0.5_DP * ekinpr ! IF( ndega < 1 ) THEN tempp = 0.0_DP ELSE tempp = ekinpr / k_boltzmann_au * 2.0_DP / DBLE( ndega ) END IF ! return end subroutine ions_temp !------------------------------------------------------------------------------! subroutine ions_thermal_stress( stress, pmass, omega, h, vels, nsp, na ) USE constants, ONLY : eps8 REAL(DP), intent(inout) :: stress(3,3) REAL(DP), intent(in) :: pmass(:), omega, h(3,3), vels(:,:) integer, intent(in) :: nsp, na(:) integer :: i, j, is, ia, isa isa = 0 if( omega < eps8 ) call errore(' ions_thermal_stress ', ' omega <= 0 ', 1 ) do is = 1, nsp do ia = 1, na(is) isa = isa + 1 do i = 1, 3 do j = 1, 3 stress(i,j) = stress(i,j) + pmass(is) / omega * & & ( (h(i,1)*vels(1,isa)+h(i,2)*vels(2,isa)+h(i,3)*vels(3,isa)) * & (h(j,1)*vels(1,isa)+h(j,2)*vels(2,isa)+h(j,3)*vels(3,isa)) ) enddo enddo enddo enddo return end subroutine ions_thermal_stress !------------------------------------------------------------------------------! subroutine ions_vrescal( tcap, tempw, tempp, taup, tau0, taum, na, nsp, fion, iforce, & pmass, delt ) use constants, only: pi, k_boltzmann_au, eps8 USE random_numbers, ONLY : randy implicit none logical, intent(in) :: tcap REAL(DP), intent(inout) :: taup(:,:) REAL(DP), intent(in) :: tau0(:,:), taum(:,:), fion(:,:) REAL(DP), intent(in) :: delt, pmass(:), tempw, tempp integer, intent(in) :: na(:), nsp integer, intent(in) :: iforce(:,:) REAL(DP) :: alfap, qr(3), alfar, gausp REAL(DP) :: dt2by2 integer :: i, ia, is, nat, isa dt2by2 = 0.5_DP * delt * delt gausp = delt * sqrt( tempw * k_boltzmann_au ) nat = SUM( na( 1:nsp ) ) if(.not.tcap) then if( tempp < eps8 ) call errore(' ions_vrescal ', ' tempp <= 0 ', 1 ) alfap = 0.5_DP * sqrt(tempw/tempp) isa = 0 do is=1,nsp do ia=1,na(is) isa = isa + 1 do i=1,3 taup(i,isa) = tau0(i,isa) + & & alfap*(taup(i,isa)-taum(i,isa)) + & & dt2by2/pmass(is)*fion(i,isa)*iforce(i,isa) end do end do end do else do i=1,3 qr(i)=0.0_DP isa = 0 do is=1,nsp do ia=1,na(is) isa = isa + 1 alfar=gausp/sqrt(pmass(is))*cos(2.0_DP*pi*randy())*sqrt(-2.0_DP*log(randy())) taup(i,isa)=alfar qr(i)=qr(i)+alfar end do end do qr(i)=qr(i)/nat end do isa = 0 do is=1,nsp do ia=1,na(is) isa = isa + 1 do i=1,3 alfar=taup(i,isa)-qr(i) taup(i,isa)=tau0(i,isa)+iforce(i,isa)* & & (alfar+dt2by2/pmass(is)*fion(i,isa)) end do end do end do end if return end subroutine ions_vrescal !------------------------------------------------------------------------------! subroutine ions_shiftvar( varp, var0, varm ) implicit none REAL(DP), intent(in) :: varp(:,:) REAL(DP), intent(out) :: varm(:,:), var0(:,:) varm = var0 var0 = varp return end subroutine ions_shiftvar !------------------------------------------------------------------------------! SUBROUTINE ions_reference_positions( tau ) ! Calculate the real position of atoms relative to the center of mass (cdm) ! and store them in taui ! cdmi: initial position of the center of mass (cdm) in cartesian coor. IMPLICIT NONE REAL(DP) :: tau( :, : ) INTEGER :: isa CALL ions_cofmass( tau, amass, na, nsp, cdmi ) DO isa = 1, nat taui(:,isa) = tau(:,isa) - cdmi(:) END DO RETURN END SUBROUTINE ions_reference_positions !------------------------------------------------------------------------------! SUBROUTINE ions_displacement( dis, tau ) ! Calculate the sum of the quadratic displacements of the atoms in the ref. ! of cdm respect to the initial positions. ! taui: initial positions in real units in the ref. of cdm ! ---------------------------------------------- ! att! tau_ref: starting position in center-of-mass ref. in real units ! ---------------------------------------------- IMPLICIT NONE REAL (DP), INTENT(OUT) :: dis(:) REAL (DP), INTENT(IN) :: tau(:,:) REAL(DP) :: rdist(3), r2, cdm(3) INTEGER :: is, ia, isa ! ... Compute the current value of cdm "Center of Mass" ! CALL ions_cofmass(tau, amass, na, nsp, cdm ) ! IF( SIZE( dis ) < nsp ) & CALL errore(' displacement ',' size of dis too small ', 1) isa = 0 DO is = 1, nsp dis(is) = 0.0_DP r2 = 0.0_DP DO ia = 1, na(is) isa = isa + 1 rdist = tau(:,isa) - cdm r2 = r2 + SUM( ( rdist(:) - taui(:,isa) )**2 ) END DO dis(is) = dis(is) + r2 / DBLE(na(is)) END DO RETURN END SUBROUTINE ions_displacement !-------------------------------------------------------------------------- SUBROUTINE ions_cofmsub( tausp, iforce, nat, cdm, cdm0 ) !-------------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), INTENT(INOUT) :: tausp(:,:) INTEGER, INTENT(IN) :: iforce(:,:) INTEGER, INTENT(IN) :: nat REAL(DP), INTENT(IN) :: cdm(:), cdm0(:) ! INTEGER :: i, ia ! DO ia = 1, nat ! DO i = 1, 3 ! tausp(i,ia) = tausp(i,ia) + DBLE( iforce(i,ia) ) * ( cdm0(i) - cdm(i) ) ! END DO ! END DO ! RETURN ! END SUBROUTINE ions_cofmsub REAL(DP) FUNCTION compute_eextfor( tau0 ) IMPLICIT NONE REAL(DP), OPTIONAL, INTENT(IN) :: tau0(:,:) INTEGER :: i REAL(DP) :: e compute_eextfor = 0.0d0 e = 0.0d0 IF( PRESENT( tau0 ) ) THEN DO i = 1, SIZE( extfor,2 ) e = e + extfor( 3, i ) * tau0( 3, i ) & + extfor( 2, i ) * tau0( 2, i ) & + extfor( 1, i ) * tau0( 1, i ) END DO ELSE DO i = 1, SIZE( extfor,2 ) e = e + extfor( 3, i ) * tau( 3, i ) & + extfor( 2, i ) * tau( 2, i ) & + extfor( 1, i ) * tau( 1, i ) END DO END IF compute_eextfor = - e RETURN END FUNCTION compute_eextfor !------------------------------------------------------------------------------! END MODULE ions_base !------------------------------------------------------------------------------! espresso-5.1/Modules/open_close_input_file.f900000644000175000017500000001271012341373034017577 0ustar mbamba! ! Copyright (C) 2011-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE open_close_input_file ! USE io_global, ONLY : stdin, stdout, qestdin USE iotk_module, ONLY : iotk_open_read, iotk_close_read,iotk_attlenx ! LOGICAL, SAVE :: lxmlinput_loc = .false. CHARACTER(LEN=256), SAVE :: input_file = ' ' PRIVATE PUBLIC :: open_input_file, close_input_file ! CONTAINS !---------------------------------------------------------------------------- INTEGER FUNCTION open_input_file ( input_file_, lxmlinput, attr ) !----------------------------------------------------------------------------- ! ! ... Open file "input_file_" for input read, connecting it to unit qestdin. ! ... If "input_file_" is empty, the standard input is dumped to temporary ! ... file "input_tmp.in" and this is opened for read ! ... If optional variable lxmlinput is present, test if the file is a ! ... valid xml file. In this case, optional variable attr must be ! ... present and is used to open the file. ! ... In parallel execution, should be called by a single processor ! ... if reading from standard input; may be called on all processors ! ... otherwise, but ensure first that all processors can read and write! ! ... On exit: ! ... Returns -1 if standard input is dumped to file ! ... Returns 0 if input file is successfully opened ! ... Returns 1 if called with wrong arguments ! ... Returns 2 if there was an error opening file ! ... lxmlinput=.true. if the file has extension '.xml' or '.XML' ! ... or if either or is found as first token ! ... input_file is set to the file name actually read ! ... --------------------------------------------------------------- ! IMPLICIT NONE ! CHARACTER (len=*), intent(in) :: input_file_ LOGICAL, intent(out), optional :: lxmlinput CHARACTER (len=*), intent(inout), optional :: attr ! LOGICAL :: lxmlinput_loc,lcheckxml INTEGER :: ierr, len INTEGER :: stdtmp CHARACTER(LEN=512) :: dummy LOGICAL, EXTERNAL :: test_input_xml INTEGER, EXTERNAL :: find_free_unit ! ! lcheckxml = PRESENT(lxmlinput) IF ( lcheckxml .AND. .NOT.PRESENT(attr) ) THEN open_input_file = 1 RETURN ENDIF ! stdtmp = find_free_unit() ! IF ( TRIM(input_file_) /= ' ' ) THEn ! ! copy file to be opened into input_file ! input_file = input_file_ ! ELSE ! ! if no file specified then copy from standard input ! input_file="input_tmp.in" OPEN(UNIT = stdtmp, FILE=trim(input_file), FORM='formatted', & STATUS='unknown', IOSTAT = ierr ) IF ( ierr > 0 ) GO TO 30 ! dummy=' ' WRITE(stdout, '(5x,a)') "Waiting for input..." DO WHILE ( TRIM(dummy) .NE. "MAGICALME" ) READ (stdin,fmt='(A512)',END=20) dummy WRITE (stdtmp,'(A)') trim(dummy) END DO ! 20 CLOSE ( UNIT=stdtmp, STATUS='keep' ) ENDIF ! lxmlinput_loc = .false. IF (lcheckxml) THEN ! len = LEN_TRIM(input_file) IF ( len > 4) THEN lxmlinput_loc = ( input_file(len-3:len) == '.xml' .OR. & input_file(len-3:len) == '.XML' ) END IF IF ( .NOT. lxmlinput_loc ) THEN OPEN ( UNIT = stdtmp, FILE = TRIM(input_file) , FORM = 'FORMATTED', & STATUS = 'OLD', IOSTAT = ierr ) IF ( ierr > 0 ) GO TO 30 lxmlinput_loc = test_input_xml (stdtmp ) CLOSE ( UNIT=stdtmp, status='keep') END IF ! lxmlinput = lxmlinput_loc ! ENDIF ! IF (lxmlinput_loc) then IF ( input_file .NE. "input_tmp.in") THEN WRITE(stdout, '(5x,a)') "Reading xml input from "//TRIM(input_file) ELSE WRITE(stdout, '(5x,a)') "Reading xml input from standard input" END IF CALL iotk_open_read( qestdin, TRIM(input_file), attr = attr, & qe_syntax = .true., ierr = ierr) ELSE IF ( input_file .NE. "input_tmp.in") THEN WRITE(stdout, '(5x,a)') "Reading input from "//TRIM(input_file) ELSE WRITE(stdout, '(5x,a)') "Reading input from standard input" END IF OPEN ( UNIT = qestdin, FILE = TRIM(input_file), FORM = 'FORMATTED', & STATUS = 'OLD', IOSTAT = ierr ) ENDIF IF ( ierr > 0 ) GO TO 30 ! open_input_file = 0 RETURN 30 open_input_file = 2 WRITE(stdout, "('Open_input_file: error opening ',A)") TRIM(input_file) RETURN ! END FUNCTION open_input_file INTEGER FUNCTION close_input_file ( ) ! ! ... this subroutine closes the input file opened by open_input_file ! ... removes temporary file if data was read from stdin (text file) ! ... returns -1 if unit is not opened, 0 if no problem, > 0 if problems ! ... --------------------------------------------------------------- ! IMPLICIT NONE ! LOGICAL :: opnd INTEGER :: ierr ! INQUIRE ( qestdin, opened = opnd ) IF (opnd) THEN ! IF (lxmlinput_loc) THEN CALL iotk_close_read(unit=qestdin, ierr = ierr) ELSE IF ( TRIM(input_file) == "input_tmp.in") THEN CLOSE (UNIT=qestdin, STATUS='delete', IOSTAT=ierr ) ELSE CLOSE (UNIT=qestdin, STATUS='keep', IOSTAT=ierr ) ENDIF ENDIF ! ELSE ierr = -1 ENDIF ! close_input_file = ierr ! END FUNCTION close_input_file ! ENDMODULE open_close_input_file espresso-5.1/Modules/read_uspp.f900000644000175000017500000007152312341373034015224 0ustar mbamba! ! Copyright (C) 2006-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------- MODULE read_uspp_module !--------------------------------------------------------------------- ! ! routines reading ultrasoft pseudopotentials in older formats: ! Vanderbilt's code and Andrea's RRKJ3 format ! USE kinds, ONLY: DP USE parameters, ONLY: lmaxx, lqmax USE io_global, ONLY: stdout USE funct, ONLY: set_dft_from_name, dft_is_hybrid, dft_is_meta, & set_dft_from_indices ! ! Variables above are not modified, variables below are ! USE uspp_param, ONLY: oldvan ! IMPLICIT NONE SAVE PRIVATE PUBLIC :: readvan, readrrkj ! CONTAINS !--------------------------------------------------------------------- subroutine readvan( iunps, is, upf ) !--------------------------------------------------------------------- ! ! Read Vanderbilt pseudopotential from unit "iunps" ! for species "is" into the structure "upf" ! info on DFT level in module "funct" ! ! ------------------------------------------------------ ! Important: ! ------------------------------------------------------ ! The order of all l-dependent objects is always s,p,d ! ------------------------------------------------------ ! potentials, e.g. vloc_at, are really r*v(r) ! wave funcs, e.g. chi, are really proportional to r*psi(r) ! and are normalized so int (chi**2) dr = 1 ! thus psi(r-vec)=(1/r)*chi(r)*y_lm(theta,phi) ! conventions carry over to beta, etc ! charge dens, e.g. rho_atc, really 4*pi*r**2*rho ! ! ------------------------------------------------------ ! Notes on qfunc and qfcoef: ! ------------------------------------------------------ ! Since Q_ij(r) is the product of two orbitals like ! psi_{l1,m1}^star * psi_{l2,m2}, it can be decomposed by ! total angular momentum L, where L runs over | l1-l2 | , ! | l1-l2 | +2 , ... , l1+l2. (L=0 is the only component ! needed by the atomic program, which assumes spherical ! charge symmetry.) ! ! Recall qfunc(r) = y1(r) * y2(r) where y1 and y2 are the ! radial parts of the wave functions defined according to ! ! psi(r-vec) = (1/r) * y(r) * Y_lm(r-hat) . ! ! For each total angular momentum L, we pseudize qfunc(r) ! inside rc as: ! ! qfunc(r) = r**(L+2) * [ a_1 + a_2*r**2 + a_3*r**4 ] ! ! in such a way as to match qfunc and its 1'st derivative at ! rc, and to preserve ! ! integral dr r**L * qfunc(r) , ! ! i.e., to preserve the L'th moment of the charge. The array ! qfunc has been set inside rc to correspond to this pseudized ! version using the minimal L, namely L = | l1-l2 | (e.g., L=0 ! for diagonal elements). The coefficients a_i (i=1,2,3) ! are stored in the array qfcoef(i,L+1,j,k) for each L so that ! the correctly pseudized versions of qfunc can be reconstructed ! for each L. (Note that for given l1 and l2, only the values ! L = | l1-l2 | , | l1-l2 | +2 , ... , l1+l2 are ever used.) ! ------------------------------------------------------ ! USE constants, ONLY : fpi USE pseudo_types ! implicit none ! ! First the arguments passed to the subroutine ! TYPE (pseudo_upf) :: upf integer & & is, &! The number of the pseudopotential & iunps ! The unit of the pseudo file ! ! Local variables real(DP) & & exfact, &! index of the exchange and correlation used & etotpseu, &! total pseudopotential energy & eloc, &! energy of the local potential & dummy, &! dummy real variable & rinner1, &! rinner if only one is present & rcloc ! the cut-off radius of the local potential real(DP), allocatable:: & & ee(:), &! the energy of the valence states & rc(:), &! the cut-off radii of the pseudopotential & eee(:), &! energies of the beta function & ddd(:,:) ! the screened D_{\mu,\nu} parameters integer, allocatable :: & & nnlz(:), &! The nlm values of the valence states & iptype(:) ! more recent parameters integer & & iver(3), &! contains the version of generating code & idmy(3), &! contains the date of creation of the pseudo & ifpcor, &! for core correction, 0 otherwise & ios, &! integer variable for I/O control & i, &! dummy counter & keyps, &! the type of pseudopotential. Only US allowed & irel, &! says if the pseudopotential is relativistic & ifqopt, &! level of Q optimization & npf, &! as above & nang, &! number of angular momenta in pseudopotentials & lloc, &! angular momentum of the local part of PPs & lp, &! counter on Q angular momenta & l, &! counter on angular momenta & iv, jv, ijv, &! beta function counter & ir ! mesh points counter ! character(len=20) :: title character(len=60) fmt ! ! We first check the input variables ! if (is <= 0) & call errore('readvan','routine called with wrong 1st argument', 1) if (iunps <= 0 .or. iunps >= 100000) & call errore('readvan','routine called with wrong 2nd argument', 1) ! read(iunps, *, err=100, iostat=ios ) & (iver(i),i=1,3), (idmy(i),i=1,3) write(upf%generated, & "('Generated by Vanderbilt code, v. ',i1,'.',i1,'.',i1)") iver ! if ( iver(1) > 7 .or. iver(1) < 1 .or. & iver(2) > 9 .or. iver(2) < 0 .or. & iver(3) > 9 .or. iver(3) < 0 ) & call errore('readvan','wrong file version read',1) ! read( iunps, '(a20,3f15.9)', err=100, iostat=ios ) & title, upf%zmesh, upf%zp, exfact ! upf%psd = title(1:2) ! if ( upf%zmesh < 1 .or. upf%zmesh > 100.0_DP) & call errore( 'readvan','wrong zmesh read', is ) if ( upf%zp <= 0.0_DP .or. upf%zp > 100.0_DP) & call errore('readvan','wrong atomic charge read', is ) if ( exfact < -6 .or. exfact > 6) & & call errore('readvan','Wrong xc in pseudopotential',1) ! convert from "our" conventions to Vanderbilt conventions call dftname_cp (nint(exfact), upf%dft) call set_dft_from_name( upf%dft ) IF ( dft_is_meta() ) & CALL errore( 'readvan ', 'META-GGA not implemented', 1 ) ! read( iunps, '(2i5,1pe19.11)', err=100, iostat=ios ) & upf%nwfc, upf%mesh, etotpseu if ( upf%nwfc < 0 ) & call errore( 'readvan', 'wrong nchi read', upf%nwfc ) if ( upf%mesh < 0 ) & call errore( 'readvan','wrong mesh', is ) ! ! info on pseudo eigenstates - energies are not used ! ALLOCATE ( upf%oc(upf%nwfc), upf%lchi(upf%nwfc) ) ALLOCATE ( nnlz(upf%nwfc), ee(upf%nwfc) ) read( iunps, '(i5,2f15.9)', err=100, iostat=ios ) & ( nnlz(iv), upf%oc(iv), ee(iv), iv=1,upf%nwfc ) do iv = 1, upf%nwfc i = nnlz(iv) / 100 upf%lchi(iv) = nnlz(iv)/10 - i * 10 enddo read( iunps, '(2i5,f15.9)', err=100, iostat=ios ) & keyps, ifpcor, rinner1 upf%nlcc = (ifpcor == 1) ! ! keyps= 0 --> standard hsc pseudopotential with exponent 4.0 ! 1 --> standard hsc pseudopotential with exponent 3.5 ! 2 --> vanderbilt modifications using defaults ! 3 --> new generalized eigenvalue pseudopotentials ! 4 --> frozen core all-electron case if ( keyps < 0 .or. keyps > 4 ) then call errore('readvan','wrong keyps',keyps) else if (keyps == 4) then call errore('readvan','keyps not implemented',keyps) end if upf%tvanp = (keyps == 3) upf%tpawp = .false. ! ! Read information on the angular momenta, and on Q pseudization ! (version > 3.0) ! if (iver(1) >= 3) then read( iunps, '(2i5,f9.5,2i5,f9.5)', err=100, iostat=ios ) & nang, lloc, eloc, ifqopt, upf%nqf, dummy !!! PWSCF: lmax(is)=nang, lloc(is)=lloc ! ! NB: In the Vanderbilt atomic code the angular momentum goes ! from 1 to nang ! if ( nang < 0 ) & call errore(' readvan', 'Wrong nang read', nang) if ( lloc == -1 ) lloc = nang+1 if ( lloc > nang+1 .or. lloc < 0 ) & call errore( 'readvan', 'wrong lloc read', is ) if ( upf%nqf < 0 ) & call errore(' readvan', 'Wrong nqf read', upf%nqf) if ( ifqopt < 0 ) & call errore( 'readvan', 'wrong ifqopt read', is ) else ! old format: no distinction between nang and nchi nang = upf%nwfc end if ! ! Read and test the values of rinner (version > 5.1) ! rinner = radius at which to cut off partial core or q_ij ! ALLOCATE ( upf%rinner(2*nang-1) ) if (10*iver(1)+iver(2) >= 51) then ! read( iunps, *, err=100, iostat=ios ) & (upf%rinner(lp), lp=1,2*nang-1 ) ! do lp = 1, 2*nang-1 if (upf%rinner(lp) < 0.0_DP) & call errore('readvan','Wrong rinner read', is ) enddo else if (iver(1) > 3) then do lp = 2, 2*nang-1 upf%rinner(lp)=rinner1 end do end if ! if (iver(1) >= 4) & read( iunps, '(i5)',err=100, iostat=ios ) irel ! ! set the number of angular momentum terms in q_ij to read in ! if (iver(1) == 1) then oldvan(is) = .TRUE. ! old format: no optimization of q_ij => 3-term taylor series upf%nqf=3 upf%nqlc=5 else if (iver(1) == 2) then upf%nqf=3 upf%nqlc = 2*nang - 1 else upf%nqlc = 2*nang - 1 end if ! if ( upf%nqlc > lqmax .or. upf%nqlc < 0 ) & call errore(' readvan', 'Wrong nqlc read', upf%nqlc ) ! ALLOCATE ( rc(nang) ) read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ( rc(l), l=1,nang ) ! ! reads the number of beta functions ! read( iunps, '(2i5)', err=100, iostat=ios ) & upf%nbeta, upf%kkbeta ! ALLOCATE ( upf%kbeta(upf%nbeta) ) upf%kbeta(:) = upf%kkbeta ! if( upf%nbeta < 0 ) & call errore( 'readvan','nbeta wrong', is ) if( upf%kkbeta > upf%mesh .or. upf%kkbeta < 0 ) & call errore( 'readvan','kkbeta wrong or too large', is ) ! ! Now reads the main Vanderbilt parameters ! ALLOCATE ( upf%lll(upf%nbeta) ) ALLOCATE ( upf%beta(upf%mesh,upf%nbeta) ) ALLOCATE ( upf%dion(upf%nbeta,upf%nbeta), upf%qqq(upf%nbeta,upf%nbeta) ) ALLOCATE ( upf%qfunc(upf%mesh,upf%nbeta*(upf%nbeta+1)/2) ) ALLOCATE ( upf%qfcoef(upf%nqf, upf%nqlc, upf%nbeta, upf%nbeta) ) ALLOCATE ( eee(upf%nbeta), ddd(upf%nbeta,upf%nbeta) ) do iv=1,upf%nbeta read( iunps, '(i5)',err=100, iostat=ios ) upf%lll(iv) read( iunps, '(1p4e19.11)',err=100, iostat=ios ) & eee(iv), ( upf%beta(ir,iv), ir=1,upf%kkbeta ) do ir=upf%kkbeta+1,upf%mesh upf%beta(ir,iv)=0.0_DP enddo if ( upf%lll(iv) > lmaxx .or. upf%lll(iv) < 0 ) & call errore( 'readvan', 'lll wrong or too large ', is ) do jv=iv,upf%nbeta ! ! the symmetric matric Q_{nb,mb} is stored in packed form ! Q(iv,jv) => qfunc(ijv) as defined below (for jv >= iv) ! ijv = jv * (jv-1) / 2 + iv read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & upf%dion(iv,jv), ddd(iv,jv), upf%qqq(iv,jv), & (upf%qfunc(ir,ijv),ir=1,upf%kkbeta), & ((upf%qfcoef(i,lp,iv,jv),i=1,upf%nqf),lp=1,upf%nqlc) do ir=upf%kkbeta+1,upf%mesh upf%qfunc(ir,ijv)=0.0_DP enddo ! ! Use the symmetry of the coefficients ! if ( iv /= jv ) then upf%dion(jv,iv)=upf%dion(iv,jv) upf%qqq(jv,iv) =upf%qqq(iv,jv) upf%qfcoef(:,:,jv,iv)=upf%qfcoef(:,:,iv,jv) end if enddo enddo ! ! Set additional, not present, variables to dummy values ALLOCATE(upf%els(upf%nwfc)) upf%els(:) = 'nX' ALLOCATE(upf%els_beta(upf%nbeta)) upf%els_beta(:) = 'nX' ALLOCATE(upf%rcut(upf%nbeta), upf%rcutus(upf%nbeta)) upf%rcut(:) = 0._dp upf%rcutus(:) = 0._dp DEALLOCATE (ddd) ! ! for versions later than 7.2 ! if (10*iver(1)+iver(2) >= 72) then ALLOCATE (iptype(upf%nbeta)) read( iunps, '(6i5)',err=100, iostat=ios ) & (iptype(iv), iv=1,upf%nbeta) read( iunps, '(i5,f15.9)',err=100, iostat=ios ) & npf, dummy DEALLOCATE (iptype) end if ! ! read the local potential ! ALLOCATE ( upf%vloc(upf%mesh) ) read( iunps, '(1p4e19.11)',err=100, iostat=ios ) & rcloc, ( upf%vloc(ir), ir=1,upf%mesh ) ! ! If present reads the core charge rho_atc(r)=4*pi*r**2*rho_core(r) ! if ( upf%nlcc ) then ALLOCATE ( upf%rho_atc(upf%mesh) ) if (iver(1) >= 7) & read( iunps, '(1p4e19.11)', err=100, iostat=ios ) dummy read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ( upf%rho_atc(ir), ir=1,upf%mesh ) endif ! ! Read the screened local potential (not used) ! ALLOCATE ( upf%rho_at(upf%mesh) ) read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & (upf%rho_at(ir), ir=1,upf%mesh) ! ! Read the valence atomic charge ! read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & (upf%rho_at(ir), ir=1,upf%mesh) ! ! Read the logarithmic mesh (if version > 1) ! ALLOCATE ( upf%r(upf%mesh), upf%rab(upf%mesh) ) if (iver(1) >1) then read( iunps, '(1p4e19.11)',err=100, iostat=ios ) & (upf%r(ir),ir=1,upf%mesh) read( iunps, '(1p4e19.11)',err=100, iostat=ios ) & (upf%rab(ir),ir=1,upf%mesh) else ! ! generate herman-skillman mesh (if version = 1) ! call herman_skillman_grid & ( upf%mesh, upf%zmesh, upf%r, upf%rab ) end if ! ! convert vloc to the conventions used in the rest of the code ! (as read from Vanderbilt's format it is r*v_loc(r)) ! do ir = 2, upf%mesh upf%vloc (ir) = upf%vloc (ir) / upf%r(ir) enddo upf%vloc (1) = upf%vloc (2) ! ! set rho_atc(r)=rho_core(r) (without 4*pi*r^2 factor, ! for compatibility with rho_atc in the non-US case) ! if (upf%nlcc) then upf%rho_atc(1) = 0.0_DP do ir=2,upf%mesh upf%rho_atc(ir) = upf%rho_atc(ir)/fpi/upf%r(ir)**2 enddo end if ! ! Read the wavefunctions of the atom ! if (iver(1) >= 7) then read( iunps, *, err=100, iostat=ios ) i if (i /= upf%nwfc) & call errore('readvan','unexpected or unimplemented case',1) end if ! ALLOCATE ( upf%chi(upf%mesh, upf%nwfc) ) if (iver(1) >= 6) & read( iunps, *, err=100, iostat=ios ) & ( (upf%chi(ir,iv), ir=1,upf%mesh), iv=1,upf%nwfc ) ! if (iver(1) == 1) then ! ! old version: read the q_l(r) and fit them with the Vanderbilt's form ! call fit_qrl ( ) ! end if ! ! Here we write on output information on the pseudopotential ! WRITE( stdout,200) is 200 format (/4x,60('=')/4x,'| pseudopotential report', & & ' for atomic species:',i3,11x,'|') WRITE( stdout,300) 'pseudo potential version', & iver(1), iver(2), iver(3) 300 format (4x,'| ',1a30,3i4,13x,' |' /4x,60('-')) WRITE( stdout,400) title, upf%dft 400 format (4x,'| ',2a20,' exchange-corr |') WRITE( stdout,500) upf%zmesh, is, upf%zp, exfact 500 format (4x,'| z =',f5.0,4x,'zv(',i2,') =',f5.0,4x,'exfact =', & & f10.5, 9x,'|') WRITE( stdout,600) ifpcor, etotpseu 600 format (4x,'| ifpcor = ',i2,10x,' atomic energy =',f10.5, & & ' Ry',6x,'|') WRITE( stdout,700) 700 format(4x,'| index orbital occupation energy',14x,'|') WRITE( stdout,800) ( iv, nnlz(iv), upf%oc(iv), ee(iv), iv=1,upf%nwfc ) DEALLOCATE (ee, nnlz) 800 format(4x,'|',i5,i11,5x,f10.2,f12.2,15x,'|') if (iver(1) >= 3 .and. nang > 0) then IF (nang < 4) THEN write(fmt,900) 2*nang-1, 40-8*(2*nang-2) ELSE write(fmt,900) 2*nang-1, 1 ENDIF 900 format('(4x,"| rinner =",',i1,'f8.4,',i2,'x,"|")') WRITE( stdout,fmt) (upf%rinner(lp),lp=1,2*nang-1) end if WRITE( stdout,1000) 1000 format(4x,'| new generation scheme:',32x,'|') WRITE( stdout,1100) upf%nbeta, upf%kkbeta, rcloc 1100 format(4x,'| nbeta = ',i2,5x,'kkbeta =',i5,5x,'rcloc =',f10.4,4x,& & '|'/4x,'| ibeta l epsilon rcut',25x,'|') do iv = 1, upf%nbeta lp=upf%lll(iv)+1 WRITE( stdout,1200) iv,upf%lll(iv),eee(iv),rc(lp) 1200 format(4x,'|',5x,i2,6x,i2,4x,2f7.2,25x,'|') enddo WRITE( stdout,1300) 1300 format (4x,60('=')) ! DEALLOCATE (eee, rc) return 100 call errore('readvan','error reading pseudo file', abs(ios) ) ! CONTAINS !----------------------------------------------------------------------- subroutine fit_qrl ( ) !----------------------------------------------------------------------- ! ! find coefficients qfcoef that fit the pseudized qrl in US PP ! these coefficients are written to file in newer versions of the ! Vanderbilt PP generation code but not in some ancient versions ! implicit none ! real (kind=DP), allocatable :: qrl(:,:), a(:,:), ainv(:,:), b(:), x(:) real (kind=DP) :: deta integer :: iv, jv, ijv, lmin, lmax, l, ir, irinner, i,j ! ! allocate ( a(upf%nqf,upf%nqf), ainv(upf%nqf,upf%nqf) ) allocate ( b(upf%nqf), x(upf%nqf) ) ALLOCATE ( qrl(upf%kkbeta, upf%nqlc) ) ! do iv=1,upf%nbeta do jv=iv,upf%nbeta ! ! original version, assuming lll(jv) >= lll(iv) ! lmin=lll(jv,is)-lll(iv,is)+1 ! lmax=lmin+2*lll(iv,is) ! note that indices run from 1 to Lmax+1, not from 0 to Lmax ! lmin = ABS( upf%lll(jv) - upf%lll(iv) ) + 1 lmax = upf%lll(jv) + upf%lll(iv) + 1 IF ( lmin < 1 .OR. lmax > SIZE(qrl,2)) & CALL errore ('fit_qrl', 'bad 2rd dimension for array qrl', 1) ! ! read q_l(r) for all l ! read(iunps,*, err=100) & ( (qrl(ir,l),ir=1,upf%kkbeta), l=lmin,lmax) ! ijv = jv * (jv-1) / 2 + iv ! do l=lmin,lmax ! ! reconstruct rinner ! do ir=upf%kkbeta,1,-1 if ( abs(qrl(ir,l)-upf%qfunc(ir,ijv)) > 1.0d-6) go to 10 end do 10 irinner = ir+1 upf%rinner(l) = upf%r(irinner) ! ! least square minimization: find ! qrl = sum_i c_i r^{l+1}r^{2i-2} for r < rinner ! a(:,:) = 0.0_DP b(:) = 0.0_DP do i = 1, upf%nqf do ir=1,irinner b(i) = b(i) + upf%r(ir)**(2*i-2+l+1) * qrl(ir,l) end do do j = i, upf%nqf do ir=1,irinner a(i,j) = a(i,j) + upf%r(ir)**(2*i-2+l+1) * & upf%r(ir)**(2*j-2+l+1) end do if (j > i) a(j,i) = a(i,j) end do end do ! call invmat (upf%nqf, a, ainv, deta) ! do i = 1, upf%nqf upf%qfcoef(i,l,iv,jv) = dot_product(ainv(i,:),b(:)) if (iv /= jv) upf%qfcoef(i,l,jv,iv) = upf%qfcoef(i,l,iv,jv) end do end do end do end do ! deallocate ( qrl, x, b , ainv, a ) return ! 100 call errore('readvan','error reading Q_L(r)', 1 ) end subroutine fit_qrl ! end subroutine readvan !----------------------------------------------------------------------- SUBROUTINE herman_skillman_grid (mesh,z,r,rab) !----------------------------------------------------------------------- ! ! generate Herman-Skillman radial grid (obsolescent) ! c - 0.88534138/z**(1/3) ! IMPLICIT NONE ! INTEGER mesh REAL(DP) :: z, r(mesh), rab(mesh) ! REAL(DP) :: deltax,pi INTEGER :: nblock,i,j,k ! pi=4.0_DP*ATAN(1.0_DP) nblock = mesh/40 i=1 r(i)=0.0_DP deltax=0.0025_DP*0.5_DP*(3.0_DP*pi/4.0_DP)**(2.0_DP/3.0_DP)/z**(1.0_DP/3.0_DP) DO j=1,nblock DO k=1,40 i=i+1 r(i)=r(i-1)+deltax rab(i)=deltax END DO deltax=deltax+deltax END DO ! RETURN END SUBROUTINE herman_skillman_grid ! !--------------------------------------------------------------------- subroutine readrrkj( iunps, is, upf ) !--------------------------------------------------------------------- ! ! This routine reads Vanderbilt pseudopotentials produced by the ! code of Andrea Dal Corso. Hard PPs are first generated ! according to the Rabe Rappe Kaxiras Johannopoulos recipe. ! Ultrasoft PP's are subsequently generated from the hard PP's. ! ! Output parameters in module "uspp_param" ! info on DFT level in module "dft" ! USE constants, ONLY : fpi USE pseudo_types ! implicit none ! ! First the arguments passed to the subroutine ! TYPE (pseudo_upf) :: upf integer :: & is, &! The index of the pseudopotential iunps ! the unit from with pseudopotential is read ! ! Local variables ! integer:: iexch, icorr, igcx, igcc integer:: & nb,mb, ijv,&! counters on beta functions n, &! counter on mesh points ir, &! counters on mesh points pseudotype,&! the type of pseudopotential ios, &! I/O control ndum, &! dummy integer variable l ! counter on angular momentum real(DP):: & x, &! auxiliary variable etotps, &! total energy of the pseudoatom rdum ! dummy real variable ! logical :: & rel ! if true the atomic calculation is relativistic ! character(len=75) :: & titleps ! the title of the pseudo ! integer :: & lmax ! max angular momentum character(len=2) :: & adum ! dummy character variable ! ! We first check the input variables ! if (is <= 0) & call errore('readrrkj','routine called with wrong 1st argument', 1) if (iunps <= 0 .or. iunps >= 100000) & call errore('readrrkj','routine called with wrong 2nd argument', 1) ! read( iunps, '(a75)', err=100, iostat=ios ) & titleps upf%psd = titleps(7:8) ! read( iunps, '(i5)',err=100, iostat=ios ) & pseudotype upf%tvanp = (pseudotype == 3) upf%tpawp = .false. if ( upf%tvanp ) then upf%generated = & "RRKJ3 Ultrasoft PP, generated by Andrea Dal Corso code" else upf%generated = & "RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code" endif read( iunps, '(2l5)',err=100, iostat=ios ) & rel, upf%nlcc read( iunps, '(4i5)',err=100, iostat=ios ) & iexch, icorr, igcx, igcc ! ! workaround to keep track of which dft was read ! See also upf2internals ! write( upf%dft, "('INDEX:',4i1)") iexch,icorr,igcx,igcc call set_dft_from_indices(iexch,icorr,igcx,igcc, 0) ! Cannot read nonlocal in this format read( iunps, '(2e17.11,i5)') & upf%zp, etotps, lmax if ( upf%zp < 1 .or. upf%zp > 100 ) & call errore('readrrkj','wrong potential read',is) ! read( iunps, '(4e17.11,i5)',err=100, iostat=ios ) & upf%xmin, rdum, upf%zmesh, upf%dx, upf%mesh ! if ( upf%mesh < 0) & call errore('readrrkj', 'wrong mesh',is) ! read( iunps, '(2i5)', err=100, iostat=ios ) & upf%nwfc, upf%nbeta ! if ( upf%nbeta < 0) & call errore('readrrkj', 'wrong nbeta', is) if ( upf%nwfc < 0 ) & call errore('readrrkj', 'wrong nchi', is) ! read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ( rdum, nb=1,upf%nwfc ) read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ( rdum, nb=1,upf%nwfc ) ! ALLOCATE ( upf%oc(upf%nwfc), upf%lchi(upf%nwfc), upf%lll(upf%nwfc) ) ! do nb=1,upf%nwfc read(iunps,'(a2,2i3,f6.2)',err=100,iostat=ios) & adum, ndum, upf%lchi(nb), upf%oc(nb) upf%lll(nb)=upf%lchi(nb) ! ! oc < 0 distinguishes between bound states from unbound states ! if ( upf%oc(nb) <= 0.0_DP) upf%oc(nb) = -1.0_DP enddo ! ALLOCATE ( upf%kbeta(upf%nbeta) ) ALLOCATE ( upf%dion(upf%nbeta,upf%nbeta), upf%qqq(upf%nbeta,upf%nbeta) ) ALLOCATE ( upf%beta(upf%mesh,upf%nbeta) ) ALLOCATE ( upf%qfunc(upf%mesh,upf%nbeta*(upf%nbeta+1)/2) ) upf%kkbeta = 0 do nb=1,upf%nbeta read ( iunps, '(i6)',err=100, iostat=ios ) upf%kbeta(nb) upf%kkbeta = MAX ( upf%kkbeta, upf%kbeta(nb) ) read ( iunps, '(1p4e19.11)',err=100, iostat=ios ) & ( upf%beta(ir,nb), ir=1,upf%kbeta(nb)) do ir=upf%kbeta(nb)+1,upf%mesh upf%beta(ir,nb)=0.0_DP enddo do mb=1,nb ! ! the symmetric matric Q_{nb,mb} is stored in packed form ! Q(nb,mb) => qfunc(ijv) as defined below (for mb <= nb) ! ijv = nb * (nb - 1) / 2 + mb read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & upf%dion(nb,mb) if (pseudotype == 3) then read(iunps,'(1p4e19.11)',err=100,iostat=ios) & upf%qqq(nb,mb) read(iunps,'(1p4e19.11)',err=100,iostat=ios) & (upf%qfunc(n,ijv),n=1,upf%mesh) else upf%qqq(nb,mb)=0.0_DP upf%qfunc(:,ijv)=0.0_DP endif if ( mb /= nb ) then upf%dion(mb,nb)=upf%dion(nb,mb) upf%qqq(mb,nb)=upf%qqq(nb,mb) end if enddo enddo ! ! reads the local potential ! ALLOCATE ( upf%vloc(upf%mesh) ) read( iunps, '(1p4e19.11)',err=100, iostat=ios ) & rdum, ( upf%vloc(ir), ir=1,upf%mesh ) ! ! reads the atomic charge ! ALLOCATE ( upf%rho_at(upf%mesh) ) read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ( upf%rho_at(ir), ir=1,upf%mesh ) ! ! if present reads the core charge ! if ( upf%nlcc ) then ALLOCATE ( upf%rho_atc(upf%mesh) ) read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ( upf%rho_atc(ir), ir=1,upf%mesh ) endif ! ! read the pseudo wavefunctions of the atom ! ALLOCATE ( upf%chi(upf%mesh, upf%nwfc) ) read( iunps, '(1p4e19.11)', err=100, iostat=ios ) & ((upf%chi(ir,nb),ir=1,upf%mesh),nb=1,upf%nwfc) ! ! set several variables for compatibility with the rest of the code ! upf%nqf=0 upf%nqlc=2*lmax+1 if ( upf%nqlc > lqmax .or. upf%nqlc < 0 ) & call errore(' readrrkj', 'Wrong nqlc', upf%nqlc ) ALLOCATE ( upf%rinner(upf%nqlc) ) do l=1,upf%nqlc upf%rinner(l)=0.0_DP enddo ! ! compute the radial mesh ! ALLOCATE ( upf%r(upf%mesh), upf%rab(upf%mesh) ) do ir = 1, upf%mesh x = upf%xmin + DBLE(ir-1) * upf%dx upf%r(ir) = EXP(x) / upf%zmesh upf%rab(ir) = upf%dx * upf%r(ir) end do ! ! set rho_atc(r)=rho_core(r) (without 4*pi*r^2 factor) ! if ( upf%nlcc ) then do ir=1,upf%mesh upf%rho_atc(ir) = upf%rho_atc(ir)/fpi/upf%r(ir)**2 enddo end if ! ! Set additional, not present, variables to dummy values allocate(upf%els(upf%nwfc)) upf%els(:) = 'nX' allocate(upf%els_beta(upf%nbeta)) upf%els_beta(:) = 'nX' allocate(upf%rcut(upf%nbeta), upf%rcutus(upf%nbeta)) upf%rcut(:) = 0._dp upf%rcutus(:) = 0._dp ! return 100 call errore('readrrkj','Reading pseudo file',abs(ios)) end subroutine readrrkj ! end module read_uspp_module espresso-5.1/Modules/uspp.f900000644000175000017500000002624212341373034014227 0ustar mbamba! ! Copyright (C) 2004-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE uspp_param ! ! ... Ultrasoft and Norm-Conserving pseudopotential parameters ! USE kinds, ONLY : DP USE parameters, ONLY : npsx USE pseudo_types, ONLY : pseudo_upf ! SAVE PUBLIC :: n_atom_wfc ! TYPE (pseudo_upf), ALLOCATABLE, TARGET :: upf(:) INTEGER :: & nh(npsx), &! number of beta functions per atomic type nhm, &! max number of different beta functions per atom nbetam, &! max number of beta functions iver(3,npsx) ! version of the atomic code INTEGER :: & lmaxkb, &! max angular momentum lmaxq ! max angular momentum + 1 for Q functions LOGICAL :: & newpseudo(npsx), &! if .TRUE. multiple projectors are allowed oldvan(npsx) ! old version of Vanderbilt PPs, using ! Herman-Skillman grid - obsolescent INTEGER :: & nvb, &! number of species with Vanderbilt PPs (CPV) ish(npsx) ! for each specie the index of the first beta ! function: ish(1)=1, ish(i)=1+SUM(nh(1:i-1)) CONTAINS ! !---------------------------------------------------------------------------- FUNCTION n_atom_wfc( nat, ityp, noncolin ) !---------------------------------------------------------------------------- ! ! ... Find number of starting atomic orbitals ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nat, ityp(nat) LOGICAL, INTENT(IN), OPTIONAL :: noncolin INTEGER :: n_atom_wfc ! INTEGER :: na, nt, n LOGICAL :: non_col ! ! non_col = .FALSE. IF ( PRESENT (noncolin) ) non_col=noncolin n_atom_wfc = 0 ! DO na = 1, nat ! nt = ityp(na) ! DO n = 1, upf(nt)%nwfc ! IF ( upf(nt)%oc(n) >= 0.D0 ) THEN ! IF ( non_col ) THEN ! IF ( upf(nt)%has_so ) THEN ! n_atom_wfc = n_atom_wfc + 2 * upf(nt)%lchi(n) ! IF ( ABS( upf(nt)%jchi(n)-upf(nt)%lchi(n) - 0.5D0 ) < 1.D-6 ) & n_atom_wfc = n_atom_wfc + 2 ! ELSE ! n_atom_wfc = n_atom_wfc + 2 * ( 2 * upf(nt)%lchi(n) + 1 ) ! END IF ! ELSE ! n_atom_wfc = n_atom_wfc + 2 * upf(nt)%lchi(n) + 1 ! END IF END IF END DO END DO ! RETURN ! END FUNCTION n_atom_wfc END MODULE uspp_param ! <<<<<<<<<<<<<<<~~~~<<<<<<<<<<<<<<<<----------------- MODULE uspp ! ! Ultrasoft PPs: ! - Clebsch-Gordan coefficients "ap", auxiliary variables "lpx", "lpl" ! - beta and q functions of the solid ! USE kinds, ONLY: DP USE parameters, ONLY: lmaxx, lqmax IMPLICIT NONE PRIVATE SAVE PUBLIC :: nlx, lpx, lpl, ap, aainit, indv, nhtol, nhtolm, indv_ijkb0, & nkb, nkbus, vkb, dvan, deeq, qq, nhtoj, ijtoh, beta, & becsum, deallocate_uspp PUBLIC :: okvan, nlcc_any PUBLIC :: qq_so, dvan_so, deeq_nc PUBLIC :: dbeta INTEGER, PARAMETER :: & nlx = (lmaxx+1)**2, &! maximum number of combined angular momentum mx = 2*lqmax-1 ! maximum magnetic angular momentum of Q INTEGER :: &! for each pair of combined momenta lm(1),lm(2): lpx(nlx,nlx), &! maximum combined angular momentum LM lpl(nlx,nlx,mx) ! list of combined angular momenta LM REAL(DP) :: & ap(lqmax*lqmax,nlx,nlx) ! Clebsch-Gordan coefficients for spherical harmonics ! INTEGER :: nkb, &! total number of beta functions, with struct.fact. nkbus ! as above, for US-PP only ! INTEGER, ALLOCATABLE ::& indv(:,:), &! indes linking atomic beta's to beta's in the solid nhtol(:,:), &! correspondence n <-> angular momentum l nhtolm(:,:), &! correspondence n <-> combined lm index for (l,m) ijtoh(:,:,:), &! correspondence beta indexes ih,jh -> composite index ijh indv_ijkb0(:) ! first beta (index in the solid) for each atom ! LOGICAL :: & okvan = .FALSE.,& ! if .TRUE. at least one pseudo is Vanderbilt nlcc_any=.FALSE. ! if .TRUE. at least one pseudo has core corrections ! COMPLEX(DP), ALLOCATABLE, TARGET :: & vkb(:,:) ! all beta functions in reciprocal space REAL(DP), ALLOCATABLE :: & becsum(:,:,:) ! \sum_i f(i) REAL(DP), ALLOCATABLE :: & dvan(:,:,:), &! the D functions of the solid deeq(:,:,:,:), &! the integral of V_eff and Q_{nm} qq(:,:,:), &! the q functions in the solid nhtoj(:,:) ! correspondence n <-> total angular momentum ! COMPLEX(DP), ALLOCATABLE :: & ! variables for spin-orbit/noncolinear case: qq_so(:,:,:,:), &! Q_{nm} dvan_so(:,:,:,:), &! D_{nm} deeq_nc(:,:,:,:) ! \int V_{eff}(r) Q_{nm}(r) dr ! ! spin-orbit coupling: qq and dvan are complex, qq has additional spin index ! noncolinear magnetism: deeq is complex (even in absence of spin-orbit) ! REAL(DP), ALLOCATABLE :: & beta(:,:,:) ! beta functions for CP (without struct.factor) REAL(DP), ALLOCATABLE :: & dbeta(:,:,:,:,:) ! derivative of beta functions w.r.t. cell for CP (without struct.factor) ! CONTAINS ! !----------------------------------------------------------------------- subroutine aainit(lli) !----------------------------------------------------------------------- ! ! this routine computes the coefficients of the expansion of the product ! of two real spherical harmonics into real spherical harmonics. ! ! Y_limi(r) * Y_ljmj(r) = \sum_LM ap(LM,limi,ljmj) Y_LM(r) ! ! On output: ! ap the expansion coefficients ! lpx for each input limi,ljmj is the number of LM in the sum ! lpl for each input limi,ljmj points to the allowed LM ! ! The indices limi,ljmj and LM assume the order for real spherical ! harmonics given in routine ylmr2 ! implicit none ! ! input: the maximum li considered ! integer :: lli ! ! local variables ! integer :: llx, l, li, lj real(DP) , allocatable :: r(:,:), rr(:), ylm(:,:), mly(:,:) ! an array of random vectors: r(3,llx) ! the norm of r: rr(llx) ! the real spherical harmonics for array r: ylm(llx,llx) ! the inverse of ylm considered as a matrix: mly(llx,llx) real(DP) :: dum ! if (lli < 0) call errore('aainit','lli not allowed',lli) if (lli*lli > nlx) call errore('aainit','nlx is too small ',lli*lli) llx = (2*lli-1)**2 if (2*lli-1 > lqmax) & call errore('aainit','ap leading dimension is too small',llx) allocate (r( 3, llx )) allocate (rr( llx )) allocate (ylm( llx, llx )) allocate (mly( llx, llx )) r(:,:) = 0.0_DP ylm(:,:) = 0.0_DP mly(:,:) = 0.0_DP ap(:,:,:)= 0.0_DP ! - generate an array of random vectors (uniform deviate on unitary sphere) call gen_rndm_r(llx,r,rr) ! - generate the real spherical harmonics for the array: ylm(ir,lm) call ylmr2(llx,llx,r,rr,ylm) !- store the inverse of ylm(ir,lm) in mly(lm,ir) call invmat(llx, ylm, mly, dum) !- for each li,lj compute ap(l,li,lj) and the indices, lpx and lpl do li = 1, lli*lli do lj = 1, lli*lli lpx(li,lj)=0 do l = 1, llx ap(l,li,lj) = compute_ap(l,li,lj,llx,ylm,mly) if (abs(ap(l,li,lj)) > 1.d-3) then lpx(li,lj) = lpx(li,lj) + 1 if (lpx(li,lj) > mx) & call errore('aainit','mx dimension too small', lpx(li,lj)) lpl(li,lj,lpx(li,lj)) = l end if end do end do end do deallocate(mly) deallocate(ylm) deallocate(rr) deallocate(r) return end subroutine aainit ! !----------------------------------------------------------------------- subroutine gen_rndm_r(llx,r,rr) !----------------------------------------------------------------------- ! - generate an array of random vectors (uniform deviate on unitary sphere) ! USE constants, ONLY: tpi USE random_numbers, ONLY: randy implicit none ! ! first the I/O variables ! integer :: llx ! input: the dimension of r and rr real(DP) :: & r(3,llx), &! output: an array of random vectors rr(llx) ! output: the norm of r ! ! here the local variables ! integer :: ir real(DP) :: costheta, sintheta, phi do ir = 1, llx costheta = 2.0_DP * randy() - 1.0_DP sintheta = SQRT ( 1.0_DP - costheta*costheta) phi = tpi * randy() r (1,ir) = sintheta * cos(phi) r (2,ir) = sintheta * sin(phi) r (3,ir) = costheta rr(ir) = 1.0_DP end do return end subroutine gen_rndm_r ! !----------------------------------------------------------------------- function compute_ap(l,li,lj,llx,ylm,mly) !----------------------------------------------------------------------- !- given an l and a li,lj pair compute ap(l,li,lj) implicit none ! ! first the I/O variables ! integer :: & llx, &! the dimension of ylm and mly l,li,lj ! the arguments of the array ap real(DP) :: & compute_ap, &! this function ylm(llx,llx),&! the real spherical harmonics for array r mly(llx,llx) ! the inverse of ylm considered as a matrix ! ! here the local variables ! integer :: ir compute_ap = 0.0_DP do ir = 1,llx compute_ap = compute_ap + mly(l,ir)*ylm(ir,li)*ylm(ir,lj) end do return end function compute_ap ! !----------------------------------------------------------------------- SUBROUTINE deallocate_uspp() !----------------------------------------------------------------------- ! IF( ALLOCATED( nhtol ) ) DEALLOCATE( nhtol ) IF( ALLOCATED( indv ) ) DEALLOCATE( indv ) IF( ALLOCATED( nhtolm ) ) DEALLOCATE( nhtolm ) IF( ALLOCATED( nhtoj ) ) DEALLOCATE( nhtoj ) IF( ALLOCATED( indv_ijkb0 ) ) DEALLOCATE( indv_ijkb0 ) IF( ALLOCATED( ijtoh ) ) DEALLOCATE( ijtoh ) IF( ALLOCATED( vkb ) ) DEALLOCATE( vkb ) IF( ALLOCATED( becsum ) ) DEALLOCATE( becsum ) IF( ALLOCATED( qq ) ) DEALLOCATE( qq ) IF( ALLOCATED( dvan ) ) DEALLOCATE( dvan ) IF( ALLOCATED( deeq ) ) DEALLOCATE( deeq ) IF( ALLOCATED( qq_so ) ) DEALLOCATE( qq_so ) IF( ALLOCATED( dvan_so ) ) DEALLOCATE( dvan_so ) IF( ALLOCATED( deeq_nc ) ) DEALLOCATE( deeq_nc ) IF( ALLOCATED( beta ) ) DEALLOCATE( beta ) IF( ALLOCATED( dbeta ) ) DEALLOCATE( dbeta ) ! END SUBROUTINE deallocate_uspp ! END MODULE uspp espresso-5.1/Modules/control_flags.f900000644000175000017500000003456312341373034016101 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE control_flags !=--------------------------------------------------------------------------=! ! ! ... this module contains all basic variables that controls the ! ... execution flow !---------------------------------------------- ! USE kinds USE parameters ! IMPLICIT NONE ! SAVE ! PRIVATE ! TYPE convergence_criteria ! LOGICAL :: active INTEGER :: nstep REAL(DP) :: ekin REAL(DP) :: derho REAL(DP) :: force ! END TYPE convergence_criteria ! PUBLIC :: tbeg, nomore, nbeg, isave, iprint, tv0rd, tzeroc, tzerop, & tfor, tpre, tzeroe, tsde, tsdp, tsdc, taurdr, & ndr, ndw, tortho, ortho_eps, ortho_max, tstress, tprnfor, & timing, memchk, tprnsfac, & trane,dt_old,ampre, tranp, amprp, tdipole, t_diis, t_diis_simple,& t_diis_rot, tnosee, tnosep, tnoseh, tcp, tcap, tdamp, tdampions, & tconvthrs, tolp, convergence_criteria, tionstep, nstepe, & tsteepdesc, tatomicwfc, tscreen, gamma_only, force_pairing, & lecrpa, tddfpt, smallmem ! PUBLIC :: fix_dependencies, check_flags PUBLIC :: tksw, trhor, thdyn, trhow PUBLIC :: twfcollect, printwfc PUBLIC :: lkpoint_dir PUBLIC :: program_name ! ! ... declare execution control variables ! CHARACTER(LEN=4) :: program_name = ' ' ! used to control execution flow ! inside module: 'PW' or 'CP' ! LOGICAL :: trhor = .FALSE. ! read rho from unit 47 (only cp, seldom used) LOGICAL :: trhow = .FALSE. ! CP code, write rho to restart dir LOGICAL :: tksw = .FALSE. ! CP: write Kohn-Sham states to restart dir ! LOGICAL :: tsde = .FALSE. ! electronic steepest descent LOGICAL :: tzeroe = .FALSE. ! set to zero the electronic velocities LOGICAL :: tfor = .FALSE. ! move the ions ( calculate forces ) LOGICAL :: tsdp = .FALSE. ! ionic steepest descent LOGICAL :: tzerop = .FALSE. ! set to zero the ionic velocities LOGICAL :: tprnfor = .FALSE. ! print forces to standard output LOGICAL :: taurdr = .FALSE. ! read ionic position from standard input LOGICAL :: tv0rd = .FALSE. ! read ionic velocities from standard input LOGICAL :: tpre = .FALSE. ! calculate stress, and (in fpmd) variable cell dynamic LOGICAL :: thdyn = .FALSE. ! variable-cell dynamics (only cp) LOGICAL :: tsdc = .FALSE. ! cell geometry steepest descent LOGICAL :: tzeroc = .FALSE. ! set to zero the cell geometry velocities LOGICAL :: tstress = .FALSE. ! print stress to standard output LOGICAL :: tortho = .FALSE. ! use iterative orthogonalization LOGICAL :: timing = .FALSE. ! print out timing information LOGICAL :: memchk = .FALSE. ! check for memory leakage LOGICAL :: tprnsfac = .FALSE. ! print out structure factor LOGICAL :: tdamp = .FALSE. ! Use damped dynamics for electrons LOGICAL :: tdampions = .FALSE. ! Use damped dynamics for ions LOGICAL :: tatomicwfc = .FALSE. ! Use atomic wavefunctions as starting guess for ch. density LOGICAL :: tscreen = .FALSE. ! Use screened coulomb potentials for cluster calculations LOGICAL :: twfcollect = .FALSE. ! Collect wave function in the restart file at the end of run. LOGICAL :: lkpoint_dir = .TRUE. ! save each k point in a different directory INTEGER :: printwfc = -1 ! Print wave functions, temporarely used only by ensemble-dft LOGICAL :: force_pairing = .FALSE. ! Force pairing LOGICAL :: lecrpa = .FALSE. ! RPA correlation energy request LOGICAL :: tddfpt = .FALSE. ! use tddfpt specific tweaks to ph.x routines LOGICAL :: smallmem = .FALSE. ! the memory per task is small ! TYPE (convergence_criteria) :: tconvthrs ! thresholds used to check GS convergence ! ! ... Ionic vs Electronic step frequency ! ... When "ion_nstep > 1" and "electron_dynamics = 'md' | 'sd' ", ions are ! ... propagated every "ion_nstep" electronic step only if the electronic ! ... "ekin" is lower than "ekin_conv_thr" ! LOGICAL :: tionstep = .FALSE. INTEGER :: nstepe = 1 ! parameters to control how many electronic steps ! between ions move LOGICAL :: tsteepdesc = .FALSE. ! parameters for electronic steepest desceent INTEGER :: nbeg = 0 ! internal code for initialization ( -1, 0, 1, 2, .. ) INTEGER :: ndw = 0 ! INTEGER :: ndr = 0 ! INTEGER :: nomore = 0 ! INTEGER :: iprint =10 ! print output every iprint step INTEGER :: isave = 0 ! write restart to ndr unit every isave step ! ! ... .TRUE. if only gamma point is used ! LOGICAL :: gamma_only = .TRUE. ! ! This variable is used whenever a timestep change is requested ! REAL(DP) :: dt_old = -1.0_DP ! ! ... Wave function randomization ! LOGICAL :: trane = .FALSE. REAL(DP) :: ampre = 0.0_DP ! ! ... Ionic position randomization ! LOGICAL :: tranp(nsx) = .FALSE. REAL(DP) :: amprp(nsx) = 0.0_DP ! ! ... Read the cell from standard input ! LOGICAL :: tbeg = .FALSE. ! ! ... This flags control the calculation of the Dipole Moments ! LOGICAL :: tdipole = .FALSE. ! ! ... Flags that controls DIIS electronic minimization ! LOGICAL :: t_diis = .FALSE. LOGICAL :: t_diis_simple = .FALSE. LOGICAL :: t_diis_rot = .FALSE. ! ! ... Flag controlling the Nose thermostat for electrons ! LOGICAL :: tnosee = .FALSE. ! ! ... Flag controlling the Nose thermostat for the cell ! LOGICAL :: tnoseh = .FALSE. ! ! ... Flag controlling the Nose thermostat for ions ! LOGICAL :: tnosep = .FALSE. LOGICAL :: tcap = .FALSE. LOGICAL :: tcp = .FALSE. REAL(DP) :: tolp = 0.0_DP ! tolerance for temperature variation ! REAL(DP), PUBLIC :: & ekin_conv_thr = 0.0_DP, &! conv. threshold for fictitious e. kinetic energy etot_conv_thr = 0.0_DP, &! conv. threshold for DFT energy forc_conv_thr = 0.0_DP ! conv. threshold for atomic forces INTEGER, PUBLIC :: & ekin_maxiter = 100, &! max number of iter. for ekin convergence etot_maxiter = 100, &! max number of iter. for etot convergence forc_maxiter = 100 ! max number of iter. for atomic forces conv. ! ! ... Several variables controlling the run ( used mainly in PW calculations ) ! ! ... logical flags controlling the execution ! LOGICAL, PUBLIC :: & lscf =.FALSE., &! if .TRUE. the calc. is selfconsistent lbfgs =.FALSE., &! if .TRUE. the calc. is a relaxation based on BFGS lmd =.FALSE., &! if .TRUE. the calc. is a dynamics llang =.FALSE., &! if .TRUE. the calc. is Langevin dynamics use_SMC =.FALSE., &! if .TRUE. use the Smart Monte Carlo method lwf =.FALSE., &! if .TRUE. the calc. is with wannier functions !================================================================= ! Lingzhu Kong lwfnscf =.FALSE., & lwfpbe0 =.FALSE., &! if .TRUE. the calc. is with wannier functions and with PBE0 functional lwfpbe0nscf=.FALSE.,& !================================================================= lbands =.FALSE., &! if .TRUE. the calc. is band structure lconstrain=.FALSE.,&! if .TRUE. the calc. is constraint ldamped =.FALSE., &! if .TRUE. the calc. is a damped dynamics llondon =.FALSE., & ! if .TRUE. compute Grimme D2 dispersion corrections ts_vdw =.FALSE., & ! as above for Tkatchenko-Scheffler disp.corrections lxdm =.FALSE., & ! if .TRUE. compute XDM dispersion corrections restart =.FALSE. ! if .TRUE. restart from results of a preceding run ! ! ... pw self-consistency ! INTEGER, PUBLIC :: & ngm0, &! used in mix_rho niter, &! the maximum number of iteration nmix, &! the number of iteration kept in the history imix ! the type of mixing (0=plain,1=TF,2=local-TF) REAL(DP), PUBLIC :: & mixing_beta, &! the mixing parameter tr2 ! the convergence threshold for potential LOGICAL, PUBLIC :: & conv_elec ! if .TRUE. electron convergence has been reached ! next 3 variables used for EXX calculations LOGICAL, PUBLIC :: & adapt_thr ! if .TRUE. an adaptive convergence threshold is used ! for the scf cycle in an EXX calculation. REAL(DP), PUBLIC :: & tr2_init, &! initial value of tr2 for adaptive thresholds tr2_multi ! the dexx multiplier for adaptive thresholds ! tr2 = tr2_multi * dexx after each V_exx update LOGICAL, PUBLIC :: scf_must_converge ! ! ... pw diagonalization ! REAL(DP), PUBLIC :: & ethr ! the convergence threshold for eigenvalues INTEGER, PUBLIC :: & david, &! max dimension of subspace in Davidson diagonalization isolve, &! Davidson or CG or DIIS diagonalization max_cg_iter, &! maximum number of iterations in a CG di diis_buff, &! dimension of the buffer in diis diis_ndim ! dimension of reduced basis in DIIS LOGICAL, PUBLIC :: & diago_full_acc = .FALSE. ! if true, empty eigenvalues have the same ! accuracy of the occupied ones ! ! ... wfc and rho extrapolation ! REAL(DP), PUBLIC :: & alpha0, &! the mixing parameters for the extrapolation beta0 ! of the starting potential INTEGER, PUBLIC :: & history, &! number of old steps available for potential updating pot_order = 0, &! type of potential updating ( see update_pot ) wfc_order = 0 ! type of wavefunctions updating ( see update_pot ) ! ! ... ionic dynamics ! INTEGER, PUBLIC :: & nstep = 1, &! number of ionic steps istep = 0 ! current ionic step LOGICAL, PUBLIC :: & conv_ions ! if .TRUE. ionic convergence has been reached REAL(DP), PUBLIC :: & upscale ! maximum reduction of convergence threshold ! ! ... system's symmetries ! LOGICAL, PUBLIC :: & noinv = .FALSE. ! if .TRUE. q=>-q symmetry not used in k-point generation ! ! ... phonon calculation ! INTEGER, PUBLIC :: & modenum ! for single mode phonon calculation ! ! ... printout control ! INTEGER, PUBLIC :: & io_level = 1 ! variable controlling the amount of I/O to file INTEGER, PUBLIC :: & ! variable controlling the amount of I/O to output iverbosity = 0 ! -1 minimal, 0 low, 1 medium, 2 high, 3 debug ! ! ... miscellany ! LOGICAL, PUBLIC :: & use_para_diag = .FALSE. ! if .TRUE. a fully distributed memory iteration ! algorithm and parallel Householder algorithm are used ! LOGICAL, PUBLIC :: & remove_rigid_rot = .FALSE. ! if .TRUE. the total torque acting on the atoms ! is removed LOGICAL, PUBLIC :: & do_makov_payne = .FALSE. ! if .TRUE. makov-payne correction for isolated ! system is used ! INTEGER :: ortho_max = 0 ! maximum number of iterations in routine ortho REAL(DP) :: ortho_eps = 0.0_DP ! threshold for convergence in routine ortho ! ! ... Number of neighbouring cell to consider in ewald sum ! INTEGER, PUBLIC :: iesr = 1 ! ! ... Real-sapce algorithms ! LOGICAL, PUBLIC :: tqr=.FALSE. ! if true the Q are in real space !LOGICAL, PUBLIC :: real_space=.false. ! beta functions in real space ! ! ... External Forces on Ions ! LOGICAL, PUBLIC :: textfor = .FALSE. ! ! ... end of module-scope declarations ! !=--------------------------------------------------------------------------=! CONTAINS !=--------------------------------------------------------------------------=! ! !------------------------------------------------------------------------ SUBROUTINE fix_dependencies() !------------------------------------------------------------------------ ! IMPLICIT NONE ! ! ... if thdyn = .FALSE. set TSDC and TZEROC to .FALSE. too. ! IF ( .NOT. thdyn ) THEN ! tsdc = .FALSE. tzeroc = .FALSE. ! END IF ! IF ( .NOT. tfor ) THEN ! tzerop = .FALSE. tv0rd = .FALSE. tsdp = .FALSE. tcp = .FALSE. tcap = .FALSE. tnosep = .FALSE. ! ELSE ! IF ( tsdp ) THEN ! tcp = .FALSE. tcap = .FALSE. tnosep = .FALSE. tv0rd = .FALSE. ! END IF ! IF ( tv0rd ) tzerop = .TRUE. ! END IF ! IF ( tsde ) tnosee = .FALSE. ! CALL check_flags() ! RETURN ! END SUBROUTINE fix_dependencies ! !------------------------------------------------------------------------ SUBROUTINE check_flags() !------------------------------------------------------------------------ ! ! ... do some checks for consistency ! IF ( tnosee .AND. t_diis ) & CALL errore( ' control_flags ', 'DIIS + ELECT. NOSE ? ', 0 ) ! !IF ( tortho .AND. t_diis ) & ! CALL errore(' control_flags ','DIIS, ORTHO NOT PERMITTED',0) ! IF ( tnosep .AND. tcp ) & CALL errore( ' control_flags ', ' TCP AND TNOSEP BOTH TRUE', 0 ) ! IF ( tnosep .AND. tcap ) & CALL errore( ' control_flags ', ' TCAP AND TNOSEP BOTH TRUE', 0 ) ! IF ( tcp .AND. tcap ) & CALL errore( ' control_flags ', ' TCP AND TCAP BOTH TRUE', 0 ) ! IF ( tdipole .AND. thdyn ) & CALL errore( ' control_flags ', ' DIPOLE WITH CELL DYNAMICS ', 0 ) ! IF ( tv0rd .AND. tsdp ) & CALL errore( ' control_flags ', & & ' READING IONS VELOCITY WITH STEEPEST D.', 0 ) ! RETURN ! END SUBROUTINE check_flags ! END MODULE control_flags espresso-5.1/Modules/io_global.f900000644000175000017500000000267012341373034015166 0ustar mbamba! ! Copyright (C) 2002-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE io_global !---------------------------------------------------------------------------- ! IMPLICIT NONE ! PRIVATE SAVE ! PUBLIC :: stdin, stdout, qestdin PUBLIC :: ionode, ionode_id, meta_ionode, meta_ionode_id ! INTEGER, PARAMETER :: stdin = 5 ! unit connected to standard input INTEGER :: qestdin= 9 ! unit connected to input file (xml or text) INTEGER :: stdout = 6 ! unit connected to standard output ! ! For parallel execution: I/O within an image ! These are set at startup by calling mp_world_start ! INTEGER :: ionode_id = 0 ! index of the i/o node for this image LOGICAL :: ionode = .TRUE. ! true if this processor is a i/o node ! for this image ! For parallel execution: global I/O node (for NEB, PHonon, etc) ! These are set at startup by calling mp_image_start ! INTEGER :: meta_ionode_id = 0 ! index of the global i/o node LOGICAL :: meta_ionode = .TRUE. ! true if this processor is global i/o node ! INTEGER :: xmloutputunit = 51 ! unit connected to the xml output ! END MODULE io_global espresso-5.1/Modules/read_pseudo.f900000644000175000017500000003114012341373034015523 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE read_pseudo_mod !=----------------------------------------------------------------------------=! ! ! read pseudopotential files. Note that each processor reads! ! Main input module: USE io_files, ONLY: pseudo_dir, pseudo_dir_cur, psfile USE ions_base, ONLY: ntyp => nsp ! Main output modules: USE atom, ONLY: msh, rgrid USE ions_base, ONLY: zv USE uspp_param, ONLY: upf, newpseudo, oldvan, nvb USE uspp, ONLY: okvan, nlcc_any IMPLICIT NONE SAVE PRIVATE ! PUBLIC :: readpp, check_order ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE readpp ( input_dft, printout ) !----------------------------------------------------------------------- ! ! read PP files and put the result into the "upf" structure ! set DFT to input_dft if present, to the value read in PP files otherwise ! USE kinds, ONLY: DP USE mp, ONLY: mp_bcast, mp_sum USE mp_images, ONLY: intra_image_comm USE io_global, ONLY: stdout, ionode USE pseudo_types, ONLY: pseudo_upf, nullify_pseudo_upf, deallocate_pseudo_upf USE funct, ONLY: enforce_input_dft, & get_iexch, get_icorr, get_igcx, get_igcc, get_inlc use radial_grids, ONLY: deallocate_radial_grid, nullify_radial_grid USE wrappers, ONLY: md5_from_file USE upf_module, ONLY: read_upf USE upf_to_internal, ONLY: set_pseudo_upf USE read_uspp_module, ONLY: readvan, readrrkj ! IMPLICIT NONE ! CHARACTER(len=*), INTENT(INOUT) :: input_dft LOGICAL, OPTIONAL, INTENT(IN) :: printout ! REAL(DP), parameter :: rcut = 10.d0 CHARACTER(len=256) :: file_pseudo ! file name complete with path LOGICAL :: printout_ = .FALSE. INTEGER :: iunps, isupf, nt, nb, ir, ios INTEGER :: iexch_, icorr_, igcx_, igcc_, inlc_ ! ! ... initialization: allocate radial grids etc ! iunps = 4 IF( ALLOCATED( rgrid ) ) THEN DO nt = 1, SIZE( rgrid ) CALL deallocate_radial_grid( rgrid( nt ) ) CALL nullify_radial_grid( rgrid( nt ) ) END DO DEALLOCATE( rgrid ) if(allocated(msh)) DEALLOCATE( msh ) END IF ALLOCATE( rgrid( ntyp ), msh( ntyp ) ) DO nt = 1, ntyp CALL nullify_radial_grid( rgrid( nt ) ) END DO IF( ALLOCATED( upf ) ) THEN DO nt = 1, SIZE( upf ) CALL deallocate_pseudo_upf( upf( nt ) ) CALL nullify_pseudo_upf( upf( nt ) ) END DO DEALLOCATE( upf ) END IF ! ALLOCATE ( upf( ntyp ) ) ! ! nullify upf objects as soon as they are instantiated ! do nt = 1, ntyp CALL nullify_pseudo_upf( upf( nt ) ) end do ! IF (input_dft /='none') CALL enforce_input_dft (input_dft) ! IF ( PRESENT(printout) ) THEN printout_ = printout END IF IF ( ionode .AND. printout_) THEN WRITE( stdout,"(//,3X,'Atomic Pseudopotentials Parameters',/, & & 3X,'----------------------------------' )" ) END IF ! nvb = 0 do nt = 1, ntyp ! ! variables not necessary for USPP, but necessary for PAW; ! will be read from file if it is a PAW dataset. ! rgrid(nt)%xmin = 0.d0 rgrid(nt)%dx = 0.d0 ! ! try first pseudo_dir_cur if set: in case of restart from file, ! this is where PP files should be located ! ios = 1 IF ( pseudo_dir_cur /= ' ' ) THEN file_pseudo = TRIM (pseudo_dir_cur) // TRIM (psfile(nt)) OPEN (unit = iunps, file = file_pseudo, status = 'old', & form = 'formatted', action='read', iostat = ios) CALL mp_sum (ios,intra_image_comm) IF ( ios /= 0 ) CALL infomsg & ('readpp', 'file '//TRIM(file_pseudo)//' not found') ! ! file not found? no panic (yet): if the restart file is not visible ! to all processors, this may happen. Try the original location END IF ! ! try the original location pseudo_dir, as set in input ! (it should already contain a slash at the end) ! IF ( ios /= 0 ) THEN file_pseudo = TRIM (pseudo_dir) // TRIM (psfile(nt)) OPEN (unit = iunps, file = file_pseudo, status = 'old', & form = 'formatted', action='read', iostat = ios) CALL mp_sum (ios,intra_image_comm) CALL errore('readpp', 'file '//TRIM(file_pseudo)//' not found',ABS(ios)) END IF ! upf(nt)%grid => rgrid(nt) ! ! start reading - UPF first: the UPF format is detected via the ! presence of the keyword '' at the beginning of the file ! IF( ionode .AND. printout_ ) THEN WRITE( stdout, "(/,3X,'Reading pseudopotential for specie # ',I2, & & ' from file :',/,3X,A)") nt, TRIM(file_pseudo) END IF ! call read_upf(upf(nt), rgrid(nt), isupf, unit=iunps) ! if (isupf ==-1 .OR. isupf== 0) then ! IF( ionode .AND. printout_ ) & WRITE( stdout, "(3X,'file type is UPF v.',i1)") isupf+2 call set_pseudo_upf (nt, upf(nt)) ! ! UPF is assumed to be multi-projector ! newpseudo (nt) = .true. ! else ! rewind (unit = iunps) ! ! The type of the pseudopotential is determined by the file name: ! *.vdb or *.van Vanderbilt US pseudopotential code pseudo_type=1 ! *.RRKJ3 Andrea's US new code pseudo_type=2 ! none of the above: PWSCF norm-conserving format pseudo_type=0 ! if ( pseudo_type (psfile (nt) ) == 1 .or. & pseudo_type (psfile (nt) ) == 2 ) then ! ! PPs produced by Andrea Dal Corso's atomic code are assumed to ! be multiprojector; NCPP produced by Vanderbilt's core are not ! newpseudo (nt) = ( pseudo_type (psfile (nt) ) == 2 ) ! IF ( newpseudo (nt) ) THEN IF( ionode .AND. printout_ ) & WRITE( stdout, "(3X,'file type is RRKJ3')") call readrrkj (iunps, nt, upf(nt)) ELSE IF( ionode .AND. printout_ ) & WRITE( stdout, "(3X,'file type is Vanderbilt US PP')") CALL readvan (iunps, nt, upf(nt)) ENDIF CALL set_pseudo_upf (nt, upf(nt), rgrid(nt)) ! else newpseudo (nt) = .false. IF( ionode .AND. printout_ ) & WRITE( stdout, "(3X,'file type is old PWscf NC format')") ! call read_ncpp (iunps, nt, upf(nt)) ! CALL set_pseudo_upf (nt, upf(nt), rgrid(nt)) ! endif ! endif ! ! end of reading ! close (iunps) ! ! Calculate MD5 checksum for this pseudopotential ! CALL md5_from_file(file_pseudo, upf(nt)%md5_cksum) ! ! ... Zv = valence charge of the (pseudo-)atom, read from PP files, ! ... is set equal to Zp = pseudo-charge of the pseudopotential ! zv(nt) = upf(nt)%zp ! ! ... count US species ! IF (upf(nt)%tvanp) nvb=nvb+1 ! ! ... Check for DFT consistency - ignored if dft enforced from input ! IF (nt == 1) THEN iexch_ = get_iexch() icorr_ = get_icorr() igcx_ = get_igcx() igcc_ = get_igcc() inlc_ = get_inlc() ELSE IF ( iexch_ /= get_iexch() .OR. icorr_ /= get_icorr() .OR. & igcx_ /= get_igcx() .OR. igcc_ /= get_igcc() .OR. & inlc_ /= get_inlc() ) THEN CALL errore( 'readpp','inconsistent DFT read from PP files', nt) END IF END IF ! ! the radial grid is defined up to r(mesh) but we introduce ! an auxiliary variable msh to limit the grid up to rcut=10 a.u. ! This is used to cut off the numerical noise arising from the ! large-r tail in cases like the integration of V_loc-Z/r ! do ir = 1, rgrid(nt)%mesh if (rgrid(nt)%r(ir) > rcut) then msh (nt) = ir goto 5 endif enddo msh (nt) = rgrid(nt)%mesh 5 msh (nt) = 2 * ( (msh (nt) + 1) / 2) - 1 ! ! msh is forced to be odd for simpson integration (maybe obsolete?) ! ! check for zero atomic wfc, ! check that (occupied) atomic wfc are properly normalized ! call check_atwfc_norm(nt) ! enddo ! ! more initializations ! okvan = ( nvb > 0 ) nlcc_any = ANY ( upf(1:ntyp)%nlcc ) ! return end subroutine readpp !----------------------------------------------------------------------- integer function pseudo_type (psfile) !----------------------------------------------------------------------- implicit none character (len=*) :: psfile integer :: l ! l = len_trim (psfile) pseudo_type = 0 if (psfile (l - 3:l) .eq.'.vdb'.or.psfile (l - 3:l) .eq.'.van') & pseudo_type = 1 if (l > 5) then if (psfile (l - 5:l) .eq.'.RRKJ3') pseudo_type = 2 end if ! return end function pseudo_type !--------------------------------------------------------------- SUBROUTINE check_atwfc_norm(nt) !--------------------------------------------------------------- ! check for the presence of zero wavefunctions first ! check the normalization of the atomic wfc (only those with non-negative ! occupations) and renormalize them if the calculated norm is incorrect ! by more than eps6 (10^{-6}) ! USE kinds, ONLY : dp USE constants, ONLY : eps6, eps8 USE io_global, ONLY : stdout implicit none integer,intent(in) :: nt ! index of the pseudopotential to be checked ! integer :: & mesh, kkbeta, & ! auxiliary indices of integration limits l, & ! orbital angular momentum iwfc, ir, & ! counter on atomic wfcs and on radial mesh ibeta, ibeta1, ibeta2 ! counters on betas logical :: & match ! a logical variable real(DP) :: & norm, & ! the norm j ! total (spin+orbital) angular momentum real(DP), allocatable :: & work(:), gi(:) ! auxiliary variable for becp character (len=80) :: renorm ! allocate (work(upf(nt)%nbeta), gi(upf(nt)%grid%mesh) ) ! define indices for integration limits mesh = upf(nt)%grid%mesh kkbeta = upf(nt)%kkbeta ! renorm = ' ' DO iwfc = 1, upf(nt)%nwfc l = upf(nt)%lchi(iwfc) if ( upf(nt)%has_so ) j = upf(nt)%jchi(iwfc) ! ! the smooth part first .. gi(1:mesh) = upf(nt)%chi(1:mesh,iwfc) * upf(nt)%chi(1:mesh,iwfc) call simpson (mesh, gi, upf(nt)%grid%rab, norm) ! IF ( norm < eps8 ) then WRITE( stdout,'(5X,"WARNING: atomic wfc # ",i2, & & " for atom type",i2," has zero norm")') iwfc, nt ! ! set occupancy to a small negative number so that this wfc ! is not going to be used for starting wavefunctions ! upf(nt)%oc (iwfc) = -eps8 END IF ! IF ( upf(nt)%oc(iwfc) < 0.d0) CYCLE ! only occupied states are normalized ! if ( upf(nt)%tvanp ) then ! ! the US part if needed do ibeta = 1, upf(nt)%nbeta match = l.eq.upf(nt)%lll(ibeta) if (upf(nt)%has_so) match=match.and.abs(j-upf(nt)%jjj(ibeta)) < eps6 if (match) then gi(1:kkbeta)= upf(nt)%beta(1:kkbeta,ibeta) * & upf(nt)%chi (1:kkbeta,iwfc) call simpson (kkbeta, gi, upf(nt)%grid%rab, work(ibeta)) else work(ibeta)=0.0_dp endif enddo do ibeta1=1,upf(nt)%nbeta do ibeta2=1,upf(nt)%nbeta norm=norm+upf(nt)%qqq(ibeta1,ibeta2)*work(ibeta1)*work(ibeta2) enddo enddo end if norm=sqrt(norm) if (abs(norm-1.0_dp) > eps6 ) then renorm = TRIM(renorm) // ' ' // upf(nt)%els(iwfc) upf(nt)%chi(1:mesh,iwfc)=upf(nt)%chi(1:mesh,iwfc)/norm end if end do deallocate (work, gi ) IF ( LEN_TRIM(renorm) > 0 ) WRITE( stdout, & '(15x,"file ",a,": wavefunction(s) ",a," renormalized")') & TRIM(psfile(nt)),TRIM(renorm) RETURN ! END SUBROUTINE check_atwfc_norm SUBROUTINE check_order ! CP-specific check INTEGER :: nt DO nt =2, ntyp IF ( (.NOT. upf(nt-1)%tvanp) .AND. upf(nt)%tvanp ) THEN CALL errore ('readpp', 'ultrasoft PPs must precede norm-conserving',nt) ENDIF END DO END SUBROUTINE check_order END MODULE read_pseudo_mod espresso-5.1/Modules/plugin_variables.f900000644000175000017500000000134712341373034016565 0ustar mbamba! ! Copyright (C) 2002-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE plugin_variables !=--------------------------------------------------------------------------=! ! ! ... this module contains all basic variables possibly ! ... used by plug ins !---------------------------------------------- ! USE kinds USE parameters ! IMPLICIT NONE ! SAVE ! PRIVATE ! PUBLIC :: plugin_etot ! REAL(DP) :: plugin_etot ! END MODULE plugin_variables espresso-5.1/Modules/griddim.f900000644000175000017500000002315712341373034014661 0ustar mbamba! ! Copyright (C) 2002-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE grid_subroutines !=----------------------------------------------------------------------------=! ! This module contains subroutines that are related to grids ! parameters USE kinds, ONLY: DP USE fft_types, ONLY: fft_dlay_descriptor IMPLICIT NONE SAVE PRIVATE PUBLIC :: realspace_grids_init, realspace_grid_init_custom, realspace_grids_info CONTAINS SUBROUTINE realspace_grids_init( dfftp, dffts, at, bg, gcutm, gcuts ) ! USE fft_scalar, only: good_fft_dimension, good_fft_order USE io_global, only: stdout ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: at(3,3), bg(3,3) REAL(DP), INTENT(IN) :: gcutm, gcuts TYPE(fft_dlay_descriptor), INTENT(INOUT) :: dfftp, dffts ! IF( dfftp%nr1 == 0 .OR. dfftp%nr2 == 0 .OR. dfftp%nr3 == 0 ) THEN ! ! ... calculate the size of the real-space dense grid for FFT ! ... first, an estimate of nr1,nr2,nr3, based on the max values ! ... of n_i indices in: G = i*b_1 + j*b_2 + k*b_3 ! ... We use G*a_i = n_i => n_i .le. |Gmax||a_i| ! dfftp%nr1 = int ( sqrt (gcutm) * & sqrt (at(1, 1)**2 + at(2, 1)**2 + at(3, 1)**2) ) + 1 dfftp%nr2 = int ( sqrt (gcutm) * & sqrt (at(1, 2)**2 + at(2, 2)**2 + at(3, 2)**2) ) + 1 dfftp%nr3 = int ( sqrt (gcutm) * & sqrt (at(1, 3)**2 + at(2, 3)**2 + at(3, 3)**2) ) + 1 ! CALL grid_set( bg, gcutm, dfftp%nr1, dfftp%nr2, dfftp%nr3 ) ! ELSE WRITE( stdout, '( /, 3X,"Info: using nr1, nr2, nr3 values from input" )' ) END IF dfftp%nr1 = good_fft_order( dfftp%nr1 ) dfftp%nr2 = good_fft_order( dfftp%nr2 ) dfftp%nr3 = good_fft_order( dfftp%nr3 ) dfftp%nr1x = good_fft_dimension( dfftp%nr1 ) dfftp%nr2x = dfftp%nr2 dfftp%nr3x = good_fft_dimension( dfftp%nr3 ) ! ... As above, for the smooth grid IF( dffts%nr1 == 0 .OR. dffts%nr2 == 0 .OR. dffts%nr3 == 0 ) THEN ! IF ( gcuts == gcutm ) THEN ! ... No double grid, the two grids are the same dffts%nr1 = dfftp%nr1 ; dffts%nr2 = dfftp%nr2 ; dffts%nr3 = dfftp%nr3 dffts%nr1x= dfftp%nr1x; dffts%nr2x= dfftp%nr2x; dffts%nr3x= dfftp%nr3x RETURN END IF ! dffts%nr1= int (2 * sqrt (gcuts) * & sqrt (at(1, 1)**2 + at(2, 1)**2 + at(3, 1)**2) ) + 1 dffts%nr2= int (2 * sqrt (gcuts) * & sqrt (at(1, 2)**2 + at(2, 2)**2 + at(3, 2)**2) ) + 1 dffts%nr3= int (2 * sqrt (gcuts) * & sqrt (at(1, 3)**2 + at(2, 3)**2 + at(3, 3)**2) ) + 1 ! CALL grid_set( bg, gcuts, dffts%nr1, dffts%nr2, dffts%nr3 ) ! ELSE WRITE( stdout, '( /, 3X,"Info: using nr1s, nr2s, nr3s values from input" )' ) END IF dffts%nr1 = good_fft_order( dffts%nr1 ) dffts%nr2 = good_fft_order( dffts%nr2 ) dffts%nr3 = good_fft_order( dffts%nr3 ) dffts%nr1x = good_fft_dimension(dffts%nr1) dffts%nr2x = dffts%nr2 dffts%nr3x = good_fft_dimension(dffts%nr3) IF ( dffts%nr1 > dfftp%nr1 .or. dffts%nr2 > dfftp%nr2 .or. dffts%nr3 > dfftp%nr3 ) THEN CALL errore(' realspace_grids_init ', ' smooth grid larger than dense grid?',1) END IF RETURN END SUBROUTINE realspace_grids_init !=----------------------------------------------------------------------------=! SUBROUTINE realspace_grid_init_custom( dfftp, at, bg, gcutm ) ! USE fft_scalar, only: good_fft_dimension, good_fft_order USE io_global, only: stdout ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: at(3,3), bg(3,3) REAL(DP), INTENT(IN) :: gcutm TYPE(fft_dlay_descriptor), INTENT(INOUT) :: dfftp ! IF( dfftp%nr1 == 0 .OR. dfftp%nr2 == 0 .OR. dfftp%nr3 == 0 ) THEN ! ! ... calculate the size of the real-space dense grid for FFT ! ... first, an estimate of nr1,nr2,nr3, based on the max values ! ... of n_i indices in: G = i*b_1 + j*b_2 + k*b_3 ! ... We use G*a_i = n_i => n_i .le. |Gmax||a_i| ! dfftp%nr1 = int ( sqrt (gcutm) * & sqrt (at(1, 1)**2 + at(2, 1)**2 + at(3, 1)**2) ) + 1 dfftp%nr2 = int ( sqrt (gcutm) * & sqrt (at(1, 2)**2 + at(2, 2)**2 + at(3, 2)**2) ) + 1 dfftp%nr3 = int ( sqrt (gcutm) * & sqrt (at(1, 3)**2 + at(2, 3)**2 + at(3, 3)**2) ) + 1 ! CALL grid_set( bg, gcutm, dfftp%nr1, dfftp%nr2, dfftp%nr3 ) ! ELSE WRITE( stdout, '( /, 3X,"Info: using nr1, nr2, nr3 values from input" )' ) END IF dfftp%nr1 = good_fft_order( dfftp%nr1 ) dfftp%nr2 = good_fft_order( dfftp%nr2 ) dfftp%nr3 = good_fft_order( dfftp%nr3 ) dfftp%nr1x = good_fft_dimension( dfftp%nr1 ) dfftp%nr2x = dfftp%nr2 dfftp%nr3x = good_fft_dimension( dfftp%nr3 ) RETURN END SUBROUTINE realspace_grid_init_custom !=----------------------------------------------------------------------------=! SUBROUTINE realspace_grids_info ( dfftp, dffts, nproc_ ) ! Print info on local and global dimensions for real space grids USE io_global, ONLY: ionode, stdout USE fft_types, ONLY: fft_dlay_descriptor IMPLICIT NONE TYPE(fft_dlay_descriptor), INTENT(IN) :: dfftp, dffts INTEGER, INTENT(IN) :: nproc_ INTEGER :: i IF(ionode) THEN WRITE( stdout,*) WRITE( stdout,*) ' Real Mesh' WRITE( stdout,*) ' ---------' WRITE( stdout,1000) dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1, dfftp%nr2, dfftp%npl, 1, 1, nproc_ WRITE( stdout,1010) dfftp%nr1x, dfftp%nr2x, dfftp%nr3x WRITE( stdout,1020) dfftp%nnr WRITE( stdout,*) ' Number of x-y planes for each processors: ' WRITE( stdout, fmt = '( 3X, "nr3l = ", 10I5 )' ) & ( dfftp%npp( i ), i = 1, nproc_ ) WRITE( stdout,*) WRITE( stdout,*) ' Smooth Real Mesh' WRITE( stdout,*) ' ----------------' WRITE( stdout,1000) dffts%nr1, dffts%nr2, dffts%nr3, dffts%nr1, dffts%nr2, dffts%npl,1,1, nproc_ WRITE( stdout,1010) dffts%nr1x, dffts%nr2x, dffts%nr3x WRITE( stdout,1020) dffts%nnr WRITE( stdout,*) ' Number of x-y planes for each processors: ' WRITE( stdout, fmt = '( 3X, "nr3sl = ", 10I5 )' ) & ( dffts%npp( i ), i = 1, nproc_ ) END IF 1000 FORMAT(3X, & 'Global Dimensions Local Dimensions Processor Grid',/,3X, & '.X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z.',/, & 3(1X,I5),2X,3(1X,I5),2X,3(1X,I5) ) 1010 FORMAT(3X, 'Array leading dimensions ( nr1x, nr2x, nr3x ) = ', 3(1X,I5) ) 1020 FORMAT(3X, 'Local number of cell to store the grid ( nrxx ) = ', 1X, I9 ) RETURN END SUBROUTINE realspace_grids_info SUBROUTINE grid_set( bg, gcut, nr1, nr2, nr3 ) ! this routine returns in nr1, nr2, nr3 the minimal 3D real-space FFT ! grid required to fit the G-vector sphere with G^2 <= gcut ! On input, nr1,nr2,nr3 must be set to values that match or exceed ! the largest i,j,k (Miller) indices in G(i,j,k) = i*b1 + j*b2 + k*b3 ! ---------------------------------------------- ! ... declare modules USE kinds, ONLY: DP USE mp, ONLY: mp_max, mp_min, mp_sum USE mp_images, ONLY: me_image, nproc_image, intra_image_comm IMPLICIT NONE ! ... declare arguments INTEGER, INTENT(INOUT) :: nr1, nr2, nr3 REAL(DP), INTENT(IN) :: bg(3,3), gcut ! ... declare other variables INTEGER :: i, j, k, nr, nb(3) REAL(DP) :: gsq, g(3) ! ---------------------------------------------- nb = 0 ! ... calculate moduli of G vectors and the range of indices where ! ... |G|^2 < gcut (in parallel whenever possible) DO k = -nr3, nr3 ! ! ... me_image = processor number, starting from 0 ! IF( MOD( k + nr3, nproc_image ) == me_image ) THEN DO j = -nr2, nr2 DO i = -nr1, nr1 g( 1 ) = DBLE(i)*bg(1,1) + DBLE(j)*bg(1,2) + DBLE(k)*bg(1,3) g( 2 ) = DBLE(i)*bg(2,1) + DBLE(j)*bg(2,2) + DBLE(k)*bg(2,3) g( 3 ) = DBLE(i)*bg(3,1) + DBLE(j)*bg(3,2) + DBLE(k)*bg(3,3) ! ... calculate modulus gsq = g( 1 )**2 + g( 2 )**2 + g( 3 )**2 IF( gsq < gcut ) THEN ! ... calculate maximum index nb(1) = MAX( nb(1), ABS( i ) ) nb(2) = MAX( nb(2), ABS( j ) ) nb(3) = MAX( nb(3), ABS( k ) ) END IF END DO END DO END IF END DO CALL mp_max( nb, intra_image_comm ) ! ... the size of the required (3-dimensional) matrix depends on the ! ... maximum indices. Note that the following choice is slightly ! ... "small": 2*nb+2 would be needed in order to guarantee that the ! ... sphere in G-space never overlaps its periodic image nr1 = 2 * nb(1) + 1 nr2 = 2 * nb(2) + 1 nr3 = 2 * nb(3) + 1 RETURN END SUBROUTINE grid_set !=----------------------------------------------------------------------------=! END MODULE grid_subroutines !=----------------------------------------------------------------------------=! espresso-5.1/Modules/cell_base.f900000644000175000017500000007745012341373034015160 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE cell_base !------------------------------------------------------------------------------! USE kinds, ONLY : DP USE constants, ONLY : pi, bohr_radius_angs USE io_global, ONLY : stdout ! IMPLICIT NONE SAVE ! ! ibrav: index of the bravais lattice (see latgen.f90) INTEGER :: ibrav ! celldm: old-style parameters of the simulation cell (se latgen.f90) REAL(DP) :: celldm(6) = (/ 0.0_DP,0.0_DP,0.0_DP,0.0_DP,0.0_DP,0.0_DP /) ! traditional crystallographic cell parameters (alpha=cosbc and so on) REAL(DP) :: a, b, c, cosab, cosac, cosbc ! format of input cell parameters: ! 'alat','bohr','angstrom' CHARACTER(len=80) :: cell_units ! alat: lattice parameter - often used to scale quantities, or ! in combination to other parameters/constants to define new units REAL(DP) :: alat = 0.0_DP ! omega: volume of the simulation cell REAl(DP) :: omega = 0.0_DP ! tpiba: 2 PI/alat, tpiba2=tpiba^2 REAL(DP) :: tpiba = 0.0_DP, tpiba2 = 0.0_DP ! direct and reciprocal lattice primitive vectors ! at(:,i) are the lattice vectors of the simulation cell, a_i, ! in alat units: a_i(:) = at(:,i)/alat ! bg(:,i) are the reciprocal lattice vectors, b_i, ! in tpiba=2pi/alat units: b_i(:) = bg(:,i)/tpiba REAL(DP) :: at(3,3) = RESHAPE( (/ 0.0_DP /), (/ 3, 3 /), (/ 0.0_DP /) ) REAL(DP) :: bg(3,3) = RESHAPE( (/ 0.0_DP /), (/ 3, 3 /), (/ 0.0_DP /) ) ! ! ------------------------------------------------------------------------- ! ... periodicity box ! ... In the matrix "a" every row is the vector of each side of ! ... the cell in the real space TYPE boxdimensions REAL(DP) :: a(3,3) ! direct lattice generators REAL(DP) :: m1(3,3) ! reciprocal lattice generators REAL(DP) :: omega ! cell volume = determinant of a REAL(DP) :: g(3,3) ! metric tensor REAL(DP) :: gvel(3,3) ! metric velocity REAL(DP) :: pail(3,3) ! stress tensor ( scaled coor. ) REAL(DP) :: paiu(3,3) ! stress tensor ( cartesian coor. ) REAL(DP) :: hmat(3,3) ! cell parameters ( transpose of "a" ) REAL(DP) :: hvel(3,3) ! cell velocity REAL(DP) :: hinv(3,3) REAL(DP) :: deth INTEGER :: perd(3) END TYPE boxdimensions ! The following relations should always be kept valid: ! h = at*alat; ainv = h^(-1); ht=transpose(h) REAL(DP) :: h(3,3) = 0.0_DP ! simulation cell at time t REAL(DP) :: ainv(3,3) = 0.0_DP REAL(DP) :: hold(3,3) = 0.0_DP ! simulation cell at time t-delt REAL(DP) :: hnew(3,3) = 0.0_DP ! simulation cell at time t+delt REAL(DP) :: velh(3,3) = 0.0_DP ! simulation cell velocity REAL(DP) :: deth = 0.0_DP ! determinant of h ( cell volume ) INTEGER :: iforceh(3,3) = 1 ! if iforceh( i, j ) = 0 then h( i, j ) ! is not allowed to move LOGICAL :: fix_volume = .FALSE.! True if cell volume is kept fixed LOGICAL :: fix_area = .FALSE. ! True if area in xy plane is kept constant REAL(DP) :: wmass = 0.0_DP ! cell fictitious mass REAL(DP) :: press = 0.0_DP ! external pressure REAL(DP) :: frich = 0.0_DP ! friction parameter for cell damped dynamics REAL(DP) :: greash = 1.0_DP ! greas parameter for damped dynamics LOGICAL :: tcell_base_init = .FALSE. INTERFACE cell_init MODULE PROCEDURE cell_init_ht, cell_init_a END INTERFACE INTERFACE pbcs MODULE PROCEDURE pbcs_components, pbcs_vectors END INTERFACE INTERFACE s_to_r MODULE PROCEDURE s_to_r1, s_to_r1b, s_to_r3 END INTERFACE INTERFACE r_to_s MODULE PROCEDURE r_to_s1, r_to_s1b, r_to_s3 END INTERFACE !------------------------------------------------------------------------------! CONTAINS !------------------------------------------------------------------------------! ! SUBROUTINE cell_base_init( ibrav_, celldm_, a_, b_, c_, cosab_, cosac_, & cosbc_, trd_ht, rd_ht, cell_units_ ) ! ! ... initialize cell_base module variables, set up crystal lattice ! IMPLICIT NONE INTEGER, INTENT(IN) :: ibrav_ REAL(DP), INTENT(IN) :: celldm_ (6) LOGICAL, INTENT(IN) :: trd_ht REAL(DP), INTENT(IN) :: rd_ht (3,3) CHARACTER(LEN=*), INTENT(IN) :: cell_units_ REAL(DP), INTENT(IN) :: a_ , b_ , c_ , cosab_, cosac_, cosbc_ REAL(DP) :: units ! IF ( ibrav_ == 0 .and. .not. trd_ht ) THEN CALL errore('cell_base_init', 'ibrav=0: must read cell parameters', 1) ELSE IF ( ibrav_ /= 0 .and. trd_ht ) THEN CALL errore('cell_base_init', 'redundant data for cell parameters', 2) END IF ! ibrav = ibrav_ celldm = celldm_ a = a_ ; b = b_ ; c = c_ ; cosab = cosab_ ; cosac = cosac_ ; cosbc = cosbc_ cell_units = cell_units_ units = 0.0_DP ! IF ( trd_ht ) THEN ! ! ... crystal lattice vectors read from input: find units ! SELECT CASE ( TRIM( cell_units ) ) CASE ( 'bohr' ) IF( celldm( 1 ) /= 0.0_DP .OR. a /= 0.0_dp ) CALL errore & ('cell_base_init','lattice parameter specified twice',1) units = 1.0_DP CASE ( 'angstrom' ) IF( celldm( 1 ) /= 0.0_DP .OR. a /= 0.0_dp ) CALL errore & ('cell_base_init','lattice parameter specified twice',2) units = 1.0_DP / bohr_radius_angs CASE ( 'alat' ) IF( celldm( 1 ) /= 0.0_DP ) THEN units = celldm( 1 ) ELSE IF ( a /= 0.0_dp ) THEN units = a / bohr_radius_angs ELSE CALL errore ('cell_base_init', & 'lattice parameter not specified',1) END IF ! following case is deprecated and should be removed CASE ( 'none' ) ! cell_units is 'none' if nothing was specified IF( celldm( 1 ) /= 0.0_DP ) THEN units = celldm( 1 ) cell_units = 'alat' ELSE IF ( a /= 0.0_dp ) THEN units = a / bohr_radius_angs cell_units = 'alat' ELSE units = 1.0_DP cell_units = 'bohr' END IF ! CASE DEFAULT CALL errore ('cell_base_init', & 'unexpected cell_units '//TRIM(cell_units),1) END SELECT ! ! ... Beware the transpose operation between matrices ht and at! ! at = TRANSPOSE( rd_ht ) * units ! ! ... at is in atomic units: find alat, bring at to alat units, find omega ! IF( celldm( 1 ) /= 0.0_DP ) THEN alat = celldm( 1 ) ELSE IF ( a /= 0.0_dp ) THEN alat = a / bohr_radius_angs ELSE alat = SQRT ( at(1,1)**2+at(2,1)**2+at(3,1)**2 ) END IF ! for compatibility: celldm still used in phonon etc celldm(1) = alat ! at(:,:) = at(:,:) / alat CALL volume( alat, at(1,1), at(1,2), at(1,3), omega ) ! ELSE ! ... crystal lattice via celldm or crystallographica parameters ! IF ( celldm(1) == 0.D0 .and. a /= 0.D0 ) THEN ! celldm(1) = a / bohr_radius_angs celldm(2) = b / a celldm(3) = c / a IF ( (ABS(cosab) > 1.0_dp) .OR. (ABS(cosac) > 1.0_dp) .OR. & (ABS(cosbc) > 1.0_dp) ) CALL errore ('cell_base_init',& 'incorrect values for cosab, cosac, cosbc',1) ! IF ( ibrav == 14 ) THEN ! ! ... triclinic lattice ! celldm(4) = cosbc celldm(5) = cosac celldm(6) = cosab ! ELSE IF ( ibrav ==-12 ) THEN ! ! ... monoclinic P lattice, unique axis b ! celldm(5) = cosac ! ELSE ! ! ... trigonal and monoclinic lattices, unique axis c ! celldm(4) = cosab ! ENDIF ! ELSE IF ( celldm(1) /= 0.D0 .and. a /= 0.D0 ) THEN ! CALL errore( 'input', 'do not specify both celldm and a,b,c!', 1 ) ! END IF ! ! ... generate at (in atomic units) from ibrav and celldm ! CALL latgen( ibrav, celldm, at(1,1), at(1,2), at(1,3), omega ) ! ! ... define lattice constants alat, divide at by alat ! alat = celldm(1) at(:,:) = at(:,:) / alat ! END IF ! ! ... Generate the reciprocal lattice vectors ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) ! tpiba = 2.0_DP * pi / alat tpiba2 = tpiba * tpiba RETURN ! END SUBROUTINE cell_base_init !------------------------------------------------------------------------------! ! ... set box ! ... box%m1(i,1) == b1(i) COLUMN are B vectors ! ... box%a(1,i) == a1(i) ROW are A vector ! ... box%omega == volume ! ... box%g(i,j) == metric tensor G !------------------------------------------------------------------------------! SUBROUTINE cell_init_ht( what, box, hval ) TYPE (boxdimensions) :: box REAL(DP), INTENT(IN) :: hval(3,3) CHARACTER, INTENT(IN) :: what IF( what == 't' .OR. what == 'T' ) THEN ! hval == ht box%a = hval box%hmat = TRANSPOSE( hval ) ELSE ! hval == hmat box%hmat = hval box%a = TRANSPOSE( hval ) END IF CALL gethinv( box ) box%g = MATMUL( box%a(:,:), box%hmat(:,:) ) box%gvel = 0.0_DP box%hvel = 0.0_DP box%pail = 0.0_DP box%paiu = 0.0_DP RETURN END SUBROUTINE cell_init_ht !------------------------------------------------------------------------------! SUBROUTINE cell_init_a( alat, at, box ) TYPE (boxdimensions) :: box REAL(DP), INTENT(IN) :: alat, at(3,3) INTEGER :: i DO i=1,3 ! this is HT: the rows are the lattice vectors box%a(1,i) = at(i,1)*alat box%a(2,i) = at(i,2)*alat box%a(3,i) = at(i,3)*alat ! this is H : the column are the lattice vectors box%hmat(i,1) = at(i,1)*alat box%hmat(i,2) = at(i,2)*alat box%hmat(i,3) = at(i,3)*alat END DO box%pail = 0.0_DP box%paiu = 0.0_DP box%hvel = 0.0_DP CALL gethinv(box) box%g = MATMUL( box%a(:,:), box%hmat(:,:) ) box%gvel = 0.0_DP RETURN END SUBROUTINE cell_init_a !------------------------------------------------------------------------------! SUBROUTINE r_to_s1 (r,s,box) REAL(DP), intent(out) :: S(3) REAL(DP), intent(in) :: R(3) type (boxdimensions), intent(in) :: box integer i,j DO I=1,3 S(I) = 0.0_DP DO J=1,3 S(I) = S(I) + R(J)*box%m1(J,I) END DO END DO RETURN END SUBROUTINE r_to_s1 !------------------------------------------------------------------------------! SUBROUTINE r_to_s3 ( r, s, na, nsp, hinv ) REAL(DP), intent(out) :: S(:,:) INTEGER, intent(in) :: na(:), nsp REAL(DP), intent(in) :: R(:,:) REAL(DP), intent(in) :: hinv(:,:) ! hinv = TRANSPOSE( box%m1 ) integer :: i, j, ia, is, isa isa = 0 DO is = 1, nsp DO ia = 1, na(is) isa = isa + 1 DO I=1,3 S(I,isa) = 0.0_DP DO J=1,3 S(I,isa) = S(I,isa) + R(J,isa)*hinv(i,j) END DO END DO END DO END DO RETURN END SUBROUTINE r_to_s3 !------------------------------------------------------------------------------! SUBROUTINE r_to_s1b ( r, s, hinv ) REAL(DP), intent(out) :: S(:) REAL(DP), intent(in) :: R(:) REAL(DP), intent(in) :: hinv(:,:) ! hinv = TRANSPOSE( box%m1 ) integer :: i, j DO I=1,3 S(I) = 0.0_DP DO J=1,3 S(I) = S(I) + R(J)*hinv(i,j) END DO END DO RETURN END SUBROUTINE r_to_s1b !------------------------------------------------------------------------------! SUBROUTINE s_to_r1 (S,R,box) REAL(DP), intent(in) :: S(3) REAL(DP), intent(out) :: R(3) type (boxdimensions), intent(in) :: box integer i,j DO I=1,3 R(I) = 0.0_DP DO J=1,3 R(I) = R(I) + S(J)*box%a(J,I) END DO END DO RETURN END SUBROUTINE s_to_r1 !------------------------------------------------------------------------------! SUBROUTINE s_to_r1b (S,R,h) REAL(DP), intent(in) :: S(3) REAL(DP), intent(out) :: R(3) REAL(DP), intent(in) :: h(:,:) ! h = TRANSPOSE( box%a ) integer i,j DO I=1,3 R(I) = 0.0_DP DO J=1,3 R(I) = R(I) + S(J)*h(I,j) END DO END DO RETURN END SUBROUTINE s_to_r1b !------------------------------------------------------------------------------! SUBROUTINE s_to_r3 ( S, R, na, nsp, h ) REAL(DP), intent(in) :: S(:,:) INTEGER, intent(in) :: na(:), nsp REAL(DP), intent(out) :: R(:,:) REAL(DP), intent(in) :: h(:,:) ! h = TRANSPOSE( box%a ) integer :: i, j, ia, is, isa isa = 0 DO is = 1, nsp DO ia = 1, na(is) isa = isa + 1 DO I = 1, 3 R(I,isa) = 0.0_DP DO J = 1, 3 R(I,isa) = R(I,isa) + S(J,isa) * h(I,j) END DO END DO END DO END DO RETURN END SUBROUTINE s_to_r3 ! !------------------------------------------------------------------------------! ! SUBROUTINE gethinv(box) IMPLICIT NONE TYPE (boxdimensions), INTENT (INOUT) :: box ! CALL invmat( 3, box%a, box%m1, box%omega ) box%deth = box%omega box%hinv = TRANSPOSE( box%m1 ) ! RETURN END SUBROUTINE gethinv FUNCTION get_volume( hmat ) IMPLICIT NONE REAL(DP) :: get_volume REAL(DP) :: hmat( 3, 3 ) get_volume = hmat(1,1)*(hmat(2,2)*hmat(3,3)-hmat(2,3)*hmat(3,2)) + & hmat(1,2)*(hmat(2,3)*hmat(3,1)-hmat(2,1)*hmat(3,3)) + & hmat(1,3)*(hmat(2,1)*hmat(3,2)-hmat(2,2)*hmat(3,1)) RETURN END FUNCTION get_volume ! !------------------------------------------------------------------------------! ! FUNCTION pbc(rin,box,nl) RESULT (rout) IMPLICIT NONE TYPE (boxdimensions) :: box REAL (DP) :: rin(3) REAL (DP) :: rout(3), s(3) INTEGER, OPTIONAL :: nl(3) s = matmul(box%hinv(:,:),rin) s = s - box%perd*nint(s) rout = matmul(box%hmat(:,:),s) IF (present(nl)) THEN s = REAL( nl, DP ) rout = rout + matmul(box%hmat(:,:),s) END IF END FUNCTION pbc ! !------------------------------------------------------------------------------! ! FUNCTION saw(emaxpos,eopreg,x) RESULT (sawout) IMPLICIT NONE REAL(DP) :: emaxpos,eopreg,x REAL(DP) :: y, sawout, z z = x - emaxpos y = z - floor(z) if (y.le.eopreg) then sawout = (0.5_DP - y/eopreg) * (1._DP-eopreg) else ! ! I would use: sawout = y - 0.5_DP * ( 1.0_DP + eopreg ) ! sawout = (-0.5_DP + (y-eopreg)/(1._DP-eopreg)) * (1._DP-eopreg) end if END FUNCTION saw ! !------------------------------------------------------------------------------! ! SUBROUTINE get_cell_param(box,cell,ang) IMPLICIT NONE TYPE(boxdimensions), INTENT(in) :: box REAL(DP), INTENT(out), DIMENSION(3) :: cell REAL(DP), INTENT(out), DIMENSION(3), OPTIONAL :: ang ! This code gets the cell parameters given the h-matrix: ! a cell(1)=sqrt(box%hmat(1,1)*box%hmat(1,1)+box%hmat(2,1)*box%hmat(2,1) & +box%hmat(3,1)*box%hmat(3,1)) ! b cell(2)=sqrt(box%hmat(1,2)*box%hmat(1,2)+box%hmat(2,2)*box%hmat(2,2) & +box%hmat(3,2)*box%hmat(3,2)) ! c cell(3)=sqrt(box%hmat(1,3)*box%hmat(1,3)+box%hmat(2,3)*box%hmat(2,3) & +box%hmat(3,3)*box%hmat(3,3)) IF (PRESENT(ang)) THEN ! gamma ang(1)=acos((box%hmat(1,1)*box%hmat(1,2)+ & box%hmat(2,1)*box%hmat(2,2) & +box%hmat(3,1)*box%hmat(3,2))/(cell(1)*cell(2))) ! beta ang(2)=acos((box%hmat(1,1)*box%hmat(1,3)+ & box%hmat(2,1)*box%hmat(2,3) & +box%hmat(3,1)*box%hmat(3,3))/(cell(1)*cell(3))) ! alpha ang(3)=acos((box%hmat(1,2)*box%hmat(1,3)+ & box%hmat(2,2)*box%hmat(2,3) & +box%hmat(3,2)*box%hmat(3,3))/(cell(2)*cell(3))) ! ang=ang*180.0_DP/pi ENDIF END SUBROUTINE get_cell_param !------------------------------------------------------------------------------! SUBROUTINE pbcs_components(x1, y1, z1, x2, y2, z2, m) ! ... This subroutine compute the periodic boundary conditions in the scaled ! ... variables system USE kinds INTEGER, INTENT(IN) :: M REAL(DP), INTENT(IN) :: X1,Y1,Z1 REAL(DP), INTENT(OUT) :: X2,Y2,Z2 REAL(DP) MIC MIC = REAL( M, DP ) X2 = X1 - DNINT(X1/MIC)*MIC Y2 = Y1 - DNINT(Y1/MIC)*MIC Z2 = Z1 - DNINT(Z1/MIC)*MIC RETURN END SUBROUTINE pbcs_components !------------------------------------------------------------------------------! SUBROUTINE pbcs_vectors(v, w, m) ! ... This subroutine compute the periodic boundary conditions in the scaled ! ... variables system USE kinds INTEGER, INTENT(IN) :: m REAL(DP), INTENT(IN) :: v(3) REAL(DP), INTENT(OUT) :: w(3) REAL(DP) :: MIC MIC = REAL( M, DP ) w(1) = v(1) - DNINT(v(1)/MIC)*MIC w(2) = v(2) - DNINT(v(2)/MIC)*MIC w(3) = v(3) - DNINT(v(3)/MIC)*MIC RETURN END SUBROUTINE pbcs_vectors !------------------------------------------------------------------------------! SUBROUTINE set_h_ainv() ! ! CP-PW compatibility: align CP arrays H and ainv to at and bg ! IMPLICIT NONE ! !write(stdout,*) 'alat=',alat !write(stdout,*) 'at=',at !write(stdout,*) 'bg=',bg ! h(:,:) = at(:,:)*alat ! ainv(1,:) = bg(:,1)/alat ainv(2,:) = bg(:,2)/alat ainv(3,:) = bg(:,3)/alat ! END SUBROUTINE set_h_ainv !------------------------------------------------------------------------------! SUBROUTINE cell_dyn_init( trd_ht, rd_ht, wc_ , total_ions_mass , press_ , & frich_ , greash_ , cell_dofree ) USE constants, ONLY: au_gpa, amu_au USE io_global, ONLY: stdout IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN) :: cell_dofree LOGICAL, INTENT(IN) :: trd_ht REAL(DP), INTENT(IN) :: rd_ht (3,3) REAL(DP), INTENT(IN) :: wc_ , frich_ , greash_ , total_ions_mass REAL(DP), INTENT(IN) :: press_ ! external pressure from input ! ( in KBar = 0.1 GPa ) INTEGER :: i,j ! press = press_ / 10.0_DP ! convert press in KBar to GPa press = press / au_gpa ! convert to AU ! frich = frich_ ! for the time being this is set elsewhere greash = greash_ WRITE( stdout, 105 ) WRITE( stdout, 110 ) press_ 105 format(/,3X,'Simulation Cell Parameters (from input)') 110 format( 3X,'external pressure = ',f15.2,' [KBar]') wmass = wc_ IF( wmass == 0.0_DP ) THEN wmass = 3.0_DP / (4.0_DP * pi**2 ) * total_ions_mass wmass = wmass * AMU_AU WRITE( stdout,130) wmass ELSE WRITE( stdout,120) wmass END IF 120 format(3X,'wmass (read from input) = ',f15.2,' [AU]') 130 format(3X,'wmass (calculated) = ',f15.2,' [AU]') IF( wmass <= 0.0_DP ) & CALL errore(' cell_dyn_init',' wmass out of range ',0) IF ( trd_ht ) THEN ! WRITE( stdout, 210 ) WRITE( stdout, 220 ) ( rd_ht( 1, j ), j = 1, 3 ) WRITE( stdout, 220 ) ( rd_ht( 2, j ), j = 1, 3 ) WRITE( stdout, 220 ) ( rd_ht( 3, j ), j = 1, 3 ) ! 210 format(3X,'initial cell from CELL_PARAMETERS card') 220 format(3X,3F14.8) ! END IF ! ainv(1,:) = bg(:,1)/alat ainv(2,:) = bg(:,2)/alat ainv(3,:) = bg(:,3)/alat ! CALL init_dofree ( cell_dofree ) ! tcell_base_init = .TRUE. WRITE( stdout, 300 ) ibrav WRITE( stdout, 305 ) alat WRITE( stdout, 310 ) at(:,1)*alat WRITE( stdout, 320 ) at(:,2)*alat WRITE( stdout, 330 ) at(:,3)*alat WRITE( stdout, * ) WRITE( stdout, 350 ) bg(:,1)/alat WRITE( stdout, 360 ) bg(:,2)/alat WRITE( stdout, 370 ) bg(:,3)/alat WRITE( stdout, 340 ) omega 300 FORMAT( 3X, 'ibrav = ',I4) 305 FORMAT( 3X, 'alat = ',F14.8) 310 FORMAT( 3X, 'a1 = ',3F14.8) 320 FORMAT( 3X, 'a2 = ',3F14.8) 330 FORMAT( 3X, 'a3 = ',3F14.8) 350 FORMAT( 3X, 'b1 = ',3F14.8) 360 FORMAT( 3X, 'b2 = ',3F14.8) 370 FORMAT( 3X, 'b3 = ',3F14.8) 340 FORMAT( 3X, 'omega = ',F16.8) RETURN END SUBROUTINE cell_dyn_init !------------------------------------------------------------------------------! SUBROUTINE init_dofree ( cell_dofree ) ! set constraints on cell dynamics/optimization CHARACTER(LEN=*), INTENT(IN) :: cell_dofree SELECT CASE ( TRIM( cell_dofree ) ) CASE ( 'all', 'default' ) iforceh = 1 CASE ( 'shape' ) iforceh = 1 fix_volume = .true. ! 2DSHAPE: CASE FOR SHAPE CHANGE IN xy PLANE WITH CONST AREA ! contribution from Richard Charles Andrew ! Physics Department, University of Pretoria ! South Africa, august 2012. CASE ( '2Dshape' ) iforceh = 1 iforceh(3,3) = 0 iforceh(1,3) = 0 iforceh(3,1) = 0 iforceh(2,3) = 0 iforceh(3,2) = 0 fix_area = .true. ! 2DSHAPE CASE ( 'volume' ) CALL errore(' init_dofree ', & ' cell_dofree = '//TRIM(cell_dofree)//' not yet implemented ', 1 ) CASE ('x') iforceh = 0 iforceh(1,1) = 1 CASE ('y') iforceh = 0 iforceh(2,2) = 1 CASE ('z') iforceh = 0 iforceh(3,3) = 1 CASE ('xy') iforceh = 0 iforceh(1,1) = 1 iforceh(2,2) = 1 ! ... if you want the entire xy plane to be free, uncomment: ! iforceh(1,2) = 1 ! iforceh(2,1) = 1 ! 2DSHAPE THE ENTIRE xy PLANE IS FREE CASE ('2Dxy') iforceh = 0 iforceh(1,1) = 1 iforceh(2,2) = 1 iforceh(1,2) = 1 iforceh(2,1) = 1 ! 2DSHAPE CASE ('xz') iforceh = 0 iforceh(1,1) = 1 iforceh(3,3) = 1 CASE ('yz') iforceh = 0 iforceh(2,2) = 1 iforceh(3,3) = 1 CASE ('xyz') iforceh = 0 iforceh(1,1) = 1 iforceh(2,2) = 1 iforceh(3,3) = 1 CASE DEFAULT CALL errore(' init_dofree ',' unknown cell_dofree '//TRIM(cell_dofree), 1 ) END SELECT END SUBROUTINE init_dofree !------------------------------------------------------------------------------! SUBROUTINE cell_base_reinit( ht ) USE control_flags, ONLY: iverbosity IMPLICIT NONE REAL(DP), INTENT(IN) :: ht (3,3) INTEGER :: j alat = sqrt( ht(1,1)*ht(1,1) + ht(1,2)*ht(1,2) + ht(1,3)*ht(1,3) ) tpiba = 2.0_DP * pi / alat tpiba2 = tpiba * tpiba ! IF( iverbosity > 2 ) THEN WRITE( stdout, 210 ) WRITE( stdout, 220 ) ( ht( 1, j ), j = 1, 3 ) WRITE( stdout, 220 ) ( ht( 2, j ), j = 1, 3 ) WRITE( stdout, 220 ) ( ht( 3, j ), j = 1, 3 ) END IF 210 format(3X,'Simulation cell parameters with the new cell:') 220 format(3X,3F14.8) ! matrix "ht" used in CP is the transpose of matrix "at" ! times the lattice parameter "alat"; matrix "ainv" is "bg" divided alat ! at = TRANSPOSE( ht ) / alat ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) CALL volume( alat, at(1,1), at(1,2), at(1,3), deth ) omega = deth ! ainv(1,:) = bg(:,1)/alat ainv(2,:) = bg(:,2)/alat ainv(3,:) = bg(:,3)/alat ! IF( iverbosity > 2 ) THEN WRITE( stdout, 305 ) alat WRITE( stdout, 310 ) at(:,1)*alat WRITE( stdout, 320 ) at(:,2)*alat WRITE( stdout, 330 ) at(:,3)*alat WRITE( stdout, * ) WRITE( stdout, 350 ) bg(:,1)/alat WRITE( stdout, 360 ) bg(:,2)/alat WRITE( stdout, 370 ) bg(:,3)/alat WRITE( stdout, 340 ) omega END IF 305 FORMAT( 3X, 'alat = ',F14.8) 310 FORMAT( 3X, 'a1 = ',3F14.8) 320 FORMAT( 3X, 'a2 = ',3F14.8) 330 FORMAT( 3X, 'a3 = ',3F14.8) 350 FORMAT( 3X, 'b1 = ',3F14.8) 360 FORMAT( 3X, 'b2 = ',3F14.8) 370 FORMAT( 3X, 'b3 = ',3F14.8) 340 FORMAT( 3X, 'omega = ',F14.8) RETURN END SUBROUTINE cell_base_reinit !------------------------------------------------------------------------------! SUBROUTINE cell_steepest( hnew, h, delt, iforceh, fcell ) REAL(DP), INTENT(OUT) :: hnew(3,3) REAL(DP), INTENT(IN) :: h(3,3), fcell(3,3) INTEGER, INTENT(IN) :: iforceh(3,3) REAL(DP), INTENT(IN) :: delt INTEGER :: i, j REAL(DP) :: dt2 dt2 = delt * delt DO j=1,3 DO i=1,3 hnew(i,j) = h(i,j) + dt2 * fcell(i,j) * REAL( iforceh(i,j), DP ) ENDDO ENDDO RETURN END SUBROUTINE cell_steepest !------------------------------------------------------------------------------! SUBROUTINE cell_verlet( hnew, h, hold, delt, iforceh, fcell, frich, tnoseh, hnos ) REAL(DP), INTENT(OUT) :: hnew(3,3) REAL(DP), INTENT(IN) :: h(3,3), hold(3,3), hnos(3,3), fcell(3,3) INTEGER, INTENT(IN) :: iforceh(3,3) REAL(DP), INTENT(IN) :: frich, delt LOGICAL, INTENT(IN) :: tnoseh REAL(DP) :: htmp(3,3) REAL(DP) :: verl1, verl2, verl3, dt2, ftmp, v1, v2, v3 INTEGER :: i, j dt2 = delt * delt IF( tnoseh ) THEN ftmp = 0.0_DP htmp = hnos ELSE ftmp = frich htmp = 0.0_DP END IF verl1 = 2.0_DP / ( 1.0_DP + ftmp ) verl2 = 1.0_DP - verl1 verl3 = dt2 / ( 1.0_DP + ftmp ) verl1 = verl1 - 1.0_DP DO j=1,3 DO i=1,3 v1 = verl1 * h(i,j) v2 = verl2 * hold(i,j) v3 = verl3 * ( fcell(i,j) - htmp(i,j) ) hnew(i,j) = h(i,j) + ( v1 + v2 + v3 ) * REAL( iforceh(i,j), DP ) ENDDO ENDDO RETURN END SUBROUTINE cell_verlet !------------------------------------------------------------------------------! subroutine cell_hmove( h, hold, delt, iforceh, fcell ) REAL(DP), intent(out) :: h(3,3) REAL(DP), intent(in) :: hold(3,3), fcell(3,3) REAL(DP), intent(in) :: delt integer, intent(in) :: iforceh(3,3) REAL(DP) :: dt2by2, fac integer :: i, j dt2by2 = 0.5_DP * delt * delt fac = dt2by2 do i=1,3 do j=1,3 h(i,j) = hold(i,j) + fac * iforceh(i,j) * fcell(i,j) end do end do return end subroutine cell_hmove !------------------------------------------------------------------------------! subroutine cell_force( fcell, ainv, stress, omega, press, wmassIN ) USE constants, ONLY : eps8 REAL(DP), intent(out) :: fcell(3,3) REAL(DP), intent(in) :: stress(3,3), ainv(3,3) REAL(DP), intent(in) :: omega, press REAL(DP), intent(in), optional :: wmassIN integer :: i, j REAL(DP) :: wmass IF (.not. present(wmassIN)) THEN wmass = 1.0 ELSE wmass = wmassIN END IF do j=1,3 do i=1,3 fcell(i,j) = ainv(j,1)*stress(i,1) + ainv(j,2)*stress(i,2) + ainv(j,3)*stress(i,3) end do end do do j=1,3 do i=1,3 fcell(i,j) = fcell(i,j) - ainv(j,i) * press end do end do IF( wmass < eps8 ) & CALL errore( ' movecell ',' cell mass is less than 0 ! ', 1 ) fcell = omega * fcell / wmass return end subroutine cell_force !------------------------------------------------------------------------------! subroutine cell_move( hnew, h, hold, delt, iforceh, fcell, frich, tnoseh, vnhh, velh, tsdc ) REAL(DP), intent(out) :: hnew(3,3) REAL(DP), intent(in) :: h(3,3), hold(3,3), fcell(3,3) REAL(DP), intent(in) :: vnhh(3,3), velh(3,3) integer, intent(in) :: iforceh(3,3) REAL(DP), intent(in) :: frich, delt logical, intent(in) :: tnoseh, tsdc REAL(DP) :: hnos(3,3) hnew = 0.0 if( tnoseh ) then hnos = vnhh * velh else hnos = 0.0_DP end if ! IF( tsdc ) THEN call cell_steepest( hnew, h, delt, iforceh, fcell ) ELSE call cell_verlet( hnew, h, hold, delt, iforceh, fcell, frich, tnoseh, hnos ) END IF return end subroutine cell_move !------------------------------------------------------------------------------! SUBROUTINE cell_gamma( hgamma, ainv, h, velh ) ! ! Compute hgamma = g^-1 * dg/dt ! that enters in the ions equation of motion ! IMPLICIT NONE REAL(DP), INTENT(OUT) :: hgamma(3,3) REAL(DP), INTENT(IN) :: ainv(3,3), h(3,3), velh(3,3) REAL(DP) :: gm1(3,3), gdot(3,3) ! ! g^-1 inverse of metric tensor = (ht*h)^-1 = ht^-1 * h^-1 ! gm1 = MATMUL( ainv, TRANSPOSE( ainv ) ) ! ! dg/dt = d(ht*h)/dt = dht/dt*h + ht*dh/dt ! derivative of metrix tensor ! gdot = MATMUL( TRANSPOSE( velh ), h ) + MATMUL( TRANSPOSE( h ), velh ) ! hgamma = MATMUL( gm1, gdot ) ! RETURN END SUBROUTINE cell_gamma !------------------------------------------------------------------------------! SUBROUTINE cell_update_vel( htp, ht0, htm, delt, velh ) ! IMPLICIT NONE TYPE (boxdimensions) :: htp, ht0, htm REAL(DP), INTENT(IN) :: delt REAL(DP), INTENT(OUT) :: velh( 3, 3 ) velh(:,:) = ( htp%hmat(:,:) - htm%hmat(:,:) ) / ( 2.0d0 * delt ) htp%gvel = ( htp%g(:,:) - htm%g(:,:) ) / ( 2.0d0 * delt ) ht0%hvel = velh RETURN END SUBROUTINE cell_update_vel !------------------------------------------------------------------------------! subroutine cell_kinene( ekinh, temphh, velh ) use constants, only: k_boltzmann_au implicit none REAL(DP), intent(out) :: ekinh, temphh(3,3) REAL(DP), intent(in) :: velh(3,3) integer :: i,j ekinh = 0.0_DP do j=1,3 do i=1,3 ekinh = ekinh + 0.5_DP*wmass*velh(i,j)*velh(i,j) temphh(i,j) = wmass*velh(i,j)*velh(i,j)/k_boltzmann_au end do end do return end subroutine cell_kinene !------------------------------------------------------------------------------! function cell_alat( ) real(DP) :: cell_alat if( .NOT. tcell_base_init ) & call errore( ' cell_alat ', ' alat has not been set ', 1 ) cell_alat = alat return end function cell_alat ! !------------------------------------------------------------------------------! END MODULE cell_base !------------------------------------------------------------------------------! espresso-5.1/Modules/make.depend0000644000175000017500000002511512341373034015014 0ustar mbambaatom.o : radial_grids.o autopilot.o : input_parameters.o autopilot.o : io_global.o autopilot.o : kind.o autopilot.o : mp.o autopilot.o : mp_world.o autopilot.o : parser.o basic_algebra_routines.o : kind.o becmod.o : control_flags.o becmod.o : kind.o becmod.o : mp.o becmod.o : mp_bands.o becmod.o : noncol.o becmod.o : recvec.o bfgs_module.o : basic_algebra_routines.o bfgs_module.o : cell_base.o bfgs_module.o : constants.o bfgs_module.o : io_files.o bfgs_module.o : kind.o bspline.o : kind.o bz_form.o : kind.o cell_base.o : constants.o cell_base.o : control_flags.o cell_base.o : io_global.o cell_base.o : kind.o check_stop.o : input_parameters.o check_stop.o : io_files.o check_stop.o : io_global.o check_stop.o : kind.o check_stop.o : mp.o check_stop.o : mp_images.o check_stop.o : set_signal.o clocks.o : io_global.o clocks.o : kind.o clocks.o : mp_world.o command_line_options.o : io_global.o command_line_options.o : mp.o command_line_options.o : mp_world.o compute_dipole.o : cell_base.o compute_dipole.o : fft_base.o compute_dipole.o : kind.o compute_dipole.o : mp.o compute_dipole.o : mp_bands.o constants.o : kind.o constraints_module.o : basic_algebra_routines.o constraints_module.o : cell_base.o constraints_module.o : constants.o constraints_module.o : input_parameters.o constraints_module.o : io_global.o constraints_module.o : ions_base.o constraints_module.o : kind.o control_flags.o : kind.o control_flags.o : parameters.o dspev_drv.o : kind.o dspev_drv.o : mp.o dspev_drv.o : mp_bands.o dspev_drv.o : mp_diag.o electrons_base.o : constants.o electrons_base.o : io_global.o electrons_base.o : kind.o environment.o : io_files.o environment.o : io_global.o environment.o : kind.o environment.o : mp_bands.o environment.o : mp_images.o environment.o : mp_pools.o environment.o : mp_world.o environment.o : version.o error_handler.o : io_files.o error_handler.o : io_global.o error_handler.o : mp.o error_handler.o : mp_world.o fd_gradient.o : cell_base.o fd_gradient.o : fft_base.o fd_gradient.o : kind.o fd_gradient.o : mp.o fd_gradient.o : mp_bands.o fft_base.o : fft_types.o fft_base.o : kind.o fft_base.o : mp.o fft_base.o : parallel_include.o fft_custom.o : cell_base.o fft_custom.o : constants.o fft_custom.o : control_flags.o fft_custom.o : fft_scalar.o fft_custom.o : fft_types.o fft_custom.o : io_global.o fft_custom.o : kind.o fft_custom.o : mp.o fft_custom.o : parallel_include.o fft_interfaces.o : fft_base.o fft_interfaces.o : fft_parallel.o fft_interfaces.o : fft_scalar.o fft_interfaces.o : fft_types.o fft_interfaces.o : kind.o fft_parallel.o : fft_base.o fft_parallel.o : fft_scalar.o fft_parallel.o : fft_types.o fft_parallel.o : kind.o fft_parallel.o : parallel_include.o fft_scalar.o : kind.o fft_types.o : io_global.o funct.o : io_global.o funct.o : kind.o funct.o : xc_rVV10.o funct.o : xc_vdW_DF.o generate_function.o : cell_base.o generate_function.o : constants.o generate_function.o : fft_base.o generate_function.o : io_global.o generate_function.o : kind.o generate_function.o : mp.o generate_function.o : mp_bands.o griddim.o : fft_scalar.o griddim.o : fft_types.o griddim.o : io_global.o griddim.o : kind.o griddim.o : mp.o griddim.o : mp_images.o input_parameters.o : kind.o input_parameters.o : parameters.o input_parameters.o : wannier_new.o io_files.o : io_global.o io_files.o : kind.o io_files.o : parameters.o ions_base.o : cell_base.o ions_base.o : constants.o ions_base.o : io_global.o ions_base.o : kind.o ions_base.o : parameters.o ions_base.o : random_numbers.o kernel_table.o : constants.o kernel_table.o : io_files.o kernel_table.o : kind.o kernel_table.o : wrappers.o mm_dispersion.o : cell_base.o mm_dispersion.o : io_global.o mm_dispersion.o : ions_base.o mm_dispersion.o : kind.o mm_dispersion.o : mp.o mm_dispersion.o : mp_images.o mp.o : io_global.o mp.o : kind.o mp.o : parallel_include.o mp_bands.o : mp.o mp_bands.o : parallel_include.o mp_base.o : kind.o mp_base.o : parallel_include.o mp_diag.o : mp.o mp_diag.o : mp_bands.o mp_diag.o : mp_pools.o mp_diag.o : mp_world.o mp_diag.o : parallel_include.o mp_global.o : command_line_options.o mp_global.o : mp.o mp_global.o : mp_bands.o mp_global.o : mp_diag.o mp_global.o : mp_images.o mp_global.o : mp_pools.o mp_global.o : mp_pots.o mp_global.o : mp_world.o mp_global.o : parallel_include.o mp_images.o : io_global.o mp_images.o : mp.o mp_images.o : parallel_include.o mp_pools.o : mp.o mp_pools.o : parallel_include.o mp_pots.o : mp.o mp_pots.o : parallel_include.o mp_wave.o : kind.o mp_wave.o : parallel_include.o mp_world.o : io_global.o mp_world.o : mp.o noncol.o : kind.o noncol.o : parameters.o open_close_input_file.o : ../iotk/src/iotk_module.o open_close_input_file.o : io_global.o parser.o : io_global.o parser.o : kind.o parser.o : mp.o parser.o : mp_images.o paw_variables.o : kind.o plugin_arguments.o : io_global.o plugin_arguments.o : kind.o plugin_arguments.o : mp.o plugin_arguments.o : plugin_flags.o plugin_flags.o : kind.o plugin_flags.o : parameters.o plugin_variables.o : kind.o plugin_variables.o : parameters.o pseudo_types.o : kind.o pseudo_types.o : radial_grids.o ptoolkit.o : descriptors.o ptoolkit.o : dspev_drv.o ptoolkit.o : kind.o ptoolkit.o : parallel_include.o ptoolkit.o : zhpev_drv.o qexml.o : ../iotk/src/iotk_module.o qexml.o : io_files.o qexml.o : kind.o qexml.o : wrappers.o qmmm.o : cell_base.o qmmm.o : constants.o qmmm.o : input_parameters.o qmmm.o : io_global.o qmmm.o : ions_base.o qmmm.o : kind.o qmmm.o : mp.o qmmm.o : mp_world.o qmmm.o : parallel_include.o radial_grids.o : constants.o radial_grids.o : kind.o random_numbers.o : kind.o read_cards.o : autopilot.o read_cards.o : bz_form.o read_cards.o : constants.o read_cards.o : input_parameters.o read_cards.o : io_global.o read_cards.o : kind.o read_cards.o : parser.o read_cards.o : wannier_new.o read_cards.o : wrappers.o read_input.o : ../iotk/src/iotk_module.o read_input.o : input_parameters.o read_input.o : io_global.o read_input.o : kind.o read_input.o : mp.o read_input.o : mp_images.o read_input.o : open_close_input_file.o read_input.o : read_cards.o read_input.o : read_namelists.o read_input.o : read_xml.o read_input.o : xml_input.o read_namelists.o : constants.o read_namelists.o : input_parameters.o read_namelists.o : io_global.o read_namelists.o : kind.o read_namelists.o : mp.o read_namelists.o : mp_images.o read_ncpp.o : funct.o read_ncpp.o : kind.o read_ncpp.o : parameters.o read_ncpp.o : pseudo_types.o read_pseudo.o : atom.o read_pseudo.o : constants.o read_pseudo.o : funct.o read_pseudo.o : io_files.o read_pseudo.o : io_global.o read_pseudo.o : ions_base.o read_pseudo.o : kind.o read_pseudo.o : mp.o read_pseudo.o : mp_images.o read_pseudo.o : pseudo_types.o read_pseudo.o : radial_grids.o read_pseudo.o : read_uspp.o read_pseudo.o : upf.o read_pseudo.o : upf_to_internal.o read_pseudo.o : uspp.o read_pseudo.o : wrappers.o read_upf_v1.o : kind.o read_upf_v1.o : pseudo_types.o read_upf_v1.o : radial_grids.o read_upf_v2.o : ../iotk/src/iotk_module.o read_upf_v2.o : kind.o read_upf_v2.o : parser.o read_upf_v2.o : pseudo_types.o read_upf_v2.o : radial_grids.o read_uspp.o : constants.o read_uspp.o : funct.o read_uspp.o : io_global.o read_uspp.o : kind.o read_uspp.o : parameters.o read_uspp.o : pseudo_types.o read_uspp.o : uspp.o read_xml.o : ../iotk/src/iotk_module.o read_xml.o : ../iotk/src/iotk_unit_interf.o read_xml.o : input_parameters.o read_xml.o : io_global.o read_xml.o : mp.o read_xml.o : mp_images.o read_xml.o : read_namelists.o read_xml.o : read_xml_cards.o read_xml.o : read_xml_fields.o read_xml_cards.o : ../iotk/src/iotk_module.o read_xml_cards.o : autopilot.o read_xml_cards.o : input_parameters.o read_xml_cards.o : io_global.o read_xml_cards.o : kind.o read_xml_cards.o : mp.o read_xml_cards.o : mp_images.o read_xml_cards.o : read_namelists.o read_xml_cards.o : read_xml_fields.o read_xml_fields.o : ../iotk/src/iotk_module.o read_xml_fields.o : ../iotk/src/iotk_unit_interf.o read_xml_fields.o : input_parameters.o read_xml_fields.o : io_global.o read_xml_fields.o : kind.o recvec.o : kind.o recvec.o : mp.o recvec_subs.o : constants.o recvec_subs.o : fft_base.o recvec_subs.o : kind.o recvec_subs.o : mp.o recvec_subs.o : recvec.o set_signal.o : io_global.o set_signal.o : mp.o set_signal.o : mp_world.o sic.o : io_global.o sic.o : kind.o splinelib.o : kind.o stick_base.o : io_global.o stick_base.o : kind.o stick_base.o : mp.o stick_set.o : fft_types.o stick_set.o : io_global.o stick_set.o : kind.o stick_set.o : parallel_include.o stick_set.o : stick_base.o timestep.o : kind.o tsvdw.o : cell_base.o tsvdw.o : constants.o tsvdw.o : control_flags.o tsvdw.o : fft_base.o tsvdw.o : funct.o tsvdw.o : io_global.o tsvdw.o : ions_base.o tsvdw.o : kind.o tsvdw.o : mp.o tsvdw.o : mp_bands.o tsvdw.o : mp_images.o tsvdw.o : parallel_include.o tsvdw.o : uspp.o upf.o : ../iotk/src/iotk_module.o upf.o : kind.o upf.o : pseudo_types.o upf.o : radial_grids.o upf.o : read_upf_v1.o upf.o : read_upf_v2.o upf_to_internal.o : funct.o upf_to_internal.o : pseudo_types.o upf_to_internal.o : radial_grids.o uspp.o : constants.o uspp.o : kind.o uspp.o : parameters.o uspp.o : pseudo_types.o uspp.o : random_numbers.o wannier_gw.o : cell_base.o wannier_gw.o : io_global.o wannier_gw.o : kind.o wannier_gw.o : recvec.o wannier_new.o : kind.o wave_base.o : kind.o wave_base.o : mp.o wave_base.o : random_numbers.o wavefunctions.o : kind.o wrappers.o : io_global.o wrappers.o : kind.o write_upf_v2.o : ../iotk/src/iotk_module.o write_upf_v2.o : kind.o write_upf_v2.o : pseudo_types.o write_upf_v2.o : radial_grids.o ws_base.o : kind.o xc_rVV10.o : cell_base.o xc_rVV10.o : constants.o xc_rVV10.o : control_flags.o xc_rVV10.o : fft_base.o xc_rVV10.o : fft_interfaces.o xc_rVV10.o : fft_scalar.o xc_rVV10.o : io_global.o xc_rVV10.o : kernel_table.o xc_rVV10.o : kind.o xc_rVV10.o : mp.o xc_rVV10.o : mp_global.o xc_rVV10.o : recvec.o xc_vdW_DF.o : cell_base.o xc_vdW_DF.o : constants.o xc_vdW_DF.o : control_flags.o xc_vdW_DF.o : fft_base.o xc_vdW_DF.o : fft_interfaces.o xc_vdW_DF.o : io_global.o xc_vdW_DF.o : kernel_table.o xc_vdW_DF.o : kind.o xc_vdW_DF.o : mp.o xc_vdW_DF.o : mp_pools.o xc_vdW_DF.o : recvec.o xml_input.o : ../iotk/src/iotk_module.o xml_input.o : input_parameters.o xml_input.o : io_files.o xml_input.o : io_global.o xml_input.o : kind.o xml_input.o : version.o xml_input.o : xml_io_base.o xml_io_base.o : ../iotk/src/iotk_module.o xml_io_base.o : control_flags.o xml_io_base.o : io_files.o xml_io_base.o : io_global.o xml_io_base.o : kind.o xml_io_base.o : mp.o xml_io_base.o : mp_bands.o xml_io_base.o : mp_images.o xml_io_base.o : mp_wave.o xml_io_base.o : parser.o xml_io_base.o : wrappers.o zdotc_wrapper.o : kind.o zhpev_drv.o : io_global.o zhpev_drv.o : kind.o zhpev_drv.o : mp.o zhpev_drv.o : mp_diag.o fft_scalar.o : ../include/fft_defs.h espresso-5.1/Modules/xc_rVV10.f900000755000175000017500000015531112341373034014613 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE rVV10 USE kinds, ONLY : dp USE constants, ONLY : pi, e2 USE kernel_table, ONLY : q_mesh, Nr_points, Nqs, r_max USE mp, ONLY : mp_bcast, mp_sum, mp_barrier USE mp_global, ONLY : me_pool, nproc_pool, intra_pool_comm, root_pool USE io_global, ONLY : ionode USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft, invfft USE control_flags, ONLY : gamma_only, iverbosity USE io_global, ONLY : stdout IMPLICIT NONE real(dp), parameter :: epsr = 1.d-12, epsg = 1.D-10 real(dp) :: b_value = 6.3_DP real(dp) :: C_value = 0.0093 private public :: xc_rVV10, & interpolate_kernel, & initialize_spline_interpolation, & numerical_gradient, & stress_rVV10, b_value CONTAINS !! ################################################################################################# !! | | !! | xc_rVV10 | !! |_____________| SUBROUTINE xc_rVV10(rho_valence, rho_core, nspin, etxc, vtxc, v) !! Modules to include !! ------------------------------------------------------------------------- use gvect, ONLY : ngm, nl, g, nlm USE fft_base, ONLY : dfftp USE cell_base, ONLY : omega, tpiba USE fft_scalar, ONLY : cfft3d !! ------------------------------------------------------------------------- !! Local variables !! ---------------------------------------------------------------------------------- ! _ real(dp), intent(IN) :: rho_valence(:,:) ! real(dp), intent(IN) :: rho_core(:) ! PWSCF input variables INTEGER, INTENT(IN) :: nspin ! real(dp), intent(inout) :: etxc, vtxc, v(:,:) !_ integer :: i_grid, theta_i, i_proc, I real(dp) :: grid_cell_volume real(dp), allocatable :: total_rho(:) real(dp), allocatable :: gradient_rho(:,:) real(dp), allocatable :: q0(:) real(dp), allocatable :: dq0_drho(:) real(dp), allocatable :: dq0_dgradrho(:) complex(dp), allocatable :: thetas(:,:) real(dp) :: Ec_nl real(dp), allocatable :: potential(:) logical, save :: first_iteration = .true. real(dp) :: beta !! --------------------------------------------------------------------------------------------- !! Begin calculations !call errore('xc_rVV10','rVV10 functional not implemented for spin polarized runs', size(rho_valence,2)-1) if (nspin>2) call errore('xc_vdW_DF','vdW functional not implemented for nspin > 2', nspin) !! -------------------------------------------------------------------------------------------------------- call start_clock( 'rVV10' ) beta = 0.0625d0 * (3.0d0 / (b_value**2.0D0) )**(0.75d0) !! Write parameters during the first iteratio !! if (first_iteration) then first_iteration = .false. if (ionode .and. iverbosity > -1 ) then write(*,'(/ /A )') "---------------------------------------------------------------------------------" write(*,'(A /)') "Carrying out rVV10 run using the following parameters:" write(*,'(A,I6,A,I6,A,F8.3)') "Nqs = ",Nqs, " Nr_points = ", Nr_points," r_max = ",r_max write(*, '(A, F8.5)') "b_value = ", b_value write(*, '(A, F8.5)') "beta = ", beta write(*,'(A)',advance='no') "q_mesh = " write(*,'(F15.8)') (q_mesh(I), I=1, Nqs) write(*,'(/ A )') "Gradients computed in Reciprocal space" write(*,'(/ A / /)') "---------------------------------------------------------------------------------" end if end if !! -------------------------------------------------------------------------------------------------- !! Allocate arrays. !! --------------------------------------------------------------------------------------- allocate( q0(dfftp%nnr) ) allocate( gradient_rho(dfftp%nnr, 3) ) allocate( dq0_drho(dfftp%nnr), dq0_dgradrho(dfftp%nnr) ) allocate( total_rho(dfftp%nnr) ) !! --------------------------------------------------------------------------------------- !! Add together the valence and core charge densities to get the total charge density !total_rho = rho_valence(:,1) + rho_core(:) if (nspin == 2) then total_rho = rho_valence(:,1) + rho_valence(:,2) + rho_core(:) else total_rho = rho_valence(:,1) + rho_core(:) endif !! ------------------------------------------------------------------------- !! Here we calculate the gradient in reciprocal space using FFT !! ------------------------------------------------------------------------- call numerical_gradient(total_rho,gradient_rho) !! ------------------------------------------------------------------------- !! Get Q and all the derivatives !! ------------------------------------------------------------------------- CALL get_q0_on_grid(total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho) !! --------------------------------------------------------------------------------- allocate( thetas(dfftp%nnr, Nqs) ) CALL get_thetas_on_grid(total_rho, q0, thetas) call start_clock( 'rVV10_energy') call vdW_energy(thetas, Ec_nl) Ec_nl = Ec_nl + beta * SUM(total_rho) * (omega/(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x)) etxc = etxc + Ec_nl call stop_clock( 'rVV10_energy') !! Print stuff if verbose run !! if (iverbosity > 1) then call mp_sum(Ec_nl,intra_pool_comm) if (ionode) write(*,'(/ / A /)') " ----------------------------------------------------------------" if (ionode) write(*,'(A, F22.15 /)') " Non-local correlation energy = ", Ec_nl if (ionode) write(*,'(A /)') " ----------------------------------------------------------------" end if !! ---------------------------------------------------------------------------------------- !! Inverse Fourier transform the u_i(k) to get the u_i(r) !!--------------------------------------------------------------------------------------- call start_clock( 'rVV10_ffts') do theta_i = 1, Nqs CALL invfft('Dense', thetas(:,theta_i), dfftp) end do call stop_clock( 'rVV10_ffts') !! ------------------------------------------------------------------------- call start_clock( 'rVV10_v' ) allocate( potential(dfftp%nnr) ) call get_potential(q0, dq0_drho, dq0_dgradrho, total_rho, gradient_rho, thetas, potential) !! ------------------------------------------------------------------------- !! Add beta !! ------------------------------------------------------------------------- potential = potential + beta v(:,1) = v(:,1) + potential(:) if (nspin==2) v(:,2) = v(:,2) + potential(:) call stop_clock( 'rVV10_v' ) !! ----------------------------------------------------------------------- !! The integral of rho(r)*potential(r) for the vtxc output variable !! -------------------------------------------------------------------- grid_cell_volume = omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3) do i_grid = 1, dfftp%nnr vtxc = vtxc + grid_cell_volume*rho_valence(i_grid,1)*potential(i_grid) end do if (nspin==2) then do i_grid = 1, dfftp%nnr vtxc = vtxc + grid_cell_volume*rho_valence(i_grid,2)*potential(i_grid) end do endif deallocate(potential) !! ---------------------------------------------------------------------- !! Deallocate all arrays. deallocate(q0, gradient_rho, dq0_drho, dq0_dgradrho, total_rho, thetas) call stop_clock('rVV10') END SUBROUTINE xc_rVV10 !! ################################################################################################# !! | | !! | STRESS_rVV10 | !! |_________________| SUBROUTINE stress_rVV10(rho_valence, rho_core, nspin, sigma) USE fft_base, ONLY : dfftp use gvect, ONLY : ngm, nl, g, nlm USE cell_base, ONLY : tpiba implicit none real(dp), intent(IN) :: rho_valence(:,:) ! real(dp), intent(IN) :: rho_core(:) ! Input variables INTEGER, INTENT(IN) :: nspin real(dp), intent(inout) :: sigma(3,3) ! real(dp), allocatable :: gradient_rho(:,:) ! real(dp), allocatable :: total_rho(:) ! Rho values real(dp), allocatable :: q0(:) ! real(dp), allocatable :: dq0_drho(:) ! Q-values real(dp), allocatable :: dq0_dgradrho(:) ! complex(dp), allocatable :: thetas(:,:) ! Thetas integer :: i_proc, theta_i, l, m real(dp) :: sigma_grad(3,3) real(dp) :: sigma_ker(3,3) !! --------------------------------------------------------------------------------------------- !! Tests !! -------------------------------------------------------------------------------------------------------- !call errore('stress_rVV10','vdW functional not implemented for spin polarized runs', size(rho_valence,2)-1) if (nspin>2) call errore('xc_vdW_DF','vdW functional not implemented for nspin > 2', nspin) sigma(:,:) = 0.0_DP sigma_grad(:,:) = 0.0_DP sigma_ker(:,:) = 0.0_DP !! --------------------------------------------------------------------------------------- !! Allocations !! --------------------------------------------------------------------------------------- allocate( gradient_rho(dfftp%nnr, 3) ) allocate( total_rho(dfftp%nnr) ) allocate( q0(dfftp%nnr) ) allocate( dq0_drho(dfftp%nnr), dq0_dgradrho(dfftp%nnr) ) allocate( thetas(dfftp%nnr, Nqs) ) !! --------------------------------------------------------------------------------------- !! Charge !! --------------------------------------------------------------------------------------- !total_rho = rho_valence(:,1) + rho_core(:) if (nspin == 2) then total_rho = rho_valence(:,1) + rho_valence(:,2) + rho_core(:) else total_rho = rho_valence(:,1) + rho_core(:) endif !! ------------------------------------------------------------------------- !! Here we calculate the gradient in reciprocal space using FFT !! ------------------------------------------------------------------------- call numerical_gradient(total_rho,gradient_rho) !! ------------------------------------------------------------------------------------------------------------- !! Get q0. !! --------------------------------------------------------------------------------- CALL get_q0_on_grid(total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho) !! --------------------------------------------------------------------------------- !! Get thetas in reciprocal space. !! --------------------------------------------------------------------------------- CALL get_thetas_on_grid(total_rho, q0, thetas) !! --------------------------------------------------------------------------------------- !! Stress !! --------------------------------------------------------------------------------------- CALL stress_rVV10_gradient(total_rho, gradient_rho, q0, dq0_drho, & dq0_dgradrho, thetas, sigma_grad) CALL stress_rVV10_kernel(total_rho, q0, thetas, sigma_ker) sigma = - (sigma_grad + sigma_ker) do l = 1, 3 do m = 1, l - 1 sigma (m, l) = sigma (l, m) enddo enddo deallocate( gradient_rho, total_rho, q0, dq0_drho, dq0_dgradrho, thetas ) END SUBROUTINE stress_rVV10 !! ############################################################################################################### !! | | !! | stress_rVV10_gradient | SUBROUTINE stress_rVV10_gradient (total_rho, gradient_rho, q0, dq0_drho, & dq0_dgradrho, thetas, sigma) !!----------------------------------------------------------------------------------- !! Modules to include !! ---------------------------------------------------------------------------------- use gvect, ONLY : ngm, nl, g, nlm, nl, gg, igtongl, & gl, ngl, gstart USE fft_base, ONLY : dfftp USE cell_base, ONLY : omega, tpiba, alat, at, tpiba2 USE fft_scalar, ONLY : cfft3d !! ---------------------------------------------------------------------------------- implicit none real(dp), intent(IN) :: total_rho(:) ! real(dp), intent(IN) :: gradient_rho(:, :) ! Input variables real(dp), intent(inout) :: sigma(:,:) ! real(dp), intent(IN) :: q0(:) ! real(dp), intent(IN) :: dq0_drho(:) ! real(dp), intent(IN) :: dq0_dgradrho(:) ! complex(dp), intent(IN) :: thetas(:,:) ! complex(dp), allocatable :: u_vdW(:,:) ! real(dp), allocatable :: d2y_dx2(:,:) ! real(dp) :: y(Nqs), dP_dq0, P, a, b, c, d, e, f ! Interpolation real(dp) :: dq ! integer :: q_low, q_hi, q, q1_i, q2_i , g_i ! Loop and q-points integer :: l, m real(dp) :: prefactor ! Final summation of sigma integer :: i_proc, theta_i, i_grid, q_i, & ! ix, iy, iz ! Iterators character(LEN=1) :: intvar real(dp) :: const !real(dp) :: at_inverse(3,3) allocate( d2y_dx2(Nqs, Nqs) ) allocate( u_vdW(dfftp%nnr, Nqs) ) const = 1.0D0 / (3.0D0 * b_value**(3.0D0/2.0D0) * pi**(5.0D0/4.0D0) ) sigma(:,:) = 0.0_DP prefactor = 0.0_DP !! -------------------------------------------------------------------------------------------------- !! Get u in k-space. !! --------------------------------------------------------------------------------------------------- call thetas_to_uk(thetas, u_vdW) !! -------------------------------------------------------------------------------------------------- !! Get u in real space. !! --------------------------------------------------------------------------------------------------- call start_clock( 'rVV10_ffts') do theta_i = 1, Nqs CALL invfft('Dense', u_vdW(:,theta_i), dfftp) end do call stop_clock( 'rVV10_ffts') !! -------------------------------------------------------------------------------------------------- !! Get the second derivatives for interpolating the P_i !! --------------------------------------------------------------------------------------------------- call initialize_spline_interpolation(q_mesh, d2y_dx2(:,:)) !! --------------------------------------------------------------------------------------------- i_grid = 0 !! ---------------------------------------------------------------------------------------------------- !! Do the real space integration to obtain the stress component !! ---------------------------------------------------------------------------------------------------- do i_grid = 1, dfftp%nnr q_low = 1 q_hi = Nqs ! ! Figure out which bin our value of q0 is in in the q_mesh ! do while ( (q_hi - q_low) > 1) q = int((q_hi + q_low)/2) if (q_mesh(q) > q0(i_grid)) then q_hi = q else q_low = q end if end do if (q_hi == q_low) call errore('stress_vdW_gradient','qhi == qlow',1) ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ dq = q_mesh(q_hi) - q_mesh(q_low) a = (q_mesh(q_hi) - q0(i_grid))/dq b = (q0(i_grid) - q_mesh(q_low))/dq c = (a**3 - a)*dq**2/6.0D0 d = (b**3 - b)*dq**2/6.0D0 e = (3.0D0*a**2 - 1.0D0)*dq/6.0D0 f = (3.0D0*b**2 - 1.0D0)*dq/6.0D0 do q_i = 1, Nqs y(:) = 0.0D0 y(q_i) = 1.0D0 dP_dq0 = (y(q_hi) - y(q_low))/dq - e*d2y_dx2(q_i,q_low) + f*d2y_dx2(q_i,q_hi) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ if (total_rho(i_grid) > epsr) then prefactor = u_vdW(i_grid,q_i) * const * total_rho(i_grid)**(3.0D0/4.0D0) * dP_dq0 * dq0_dgradrho(i_grid) do l = 1, 3 do m = 1, l sigma (l, m) = sigma (l, m) - prefactor * & (gradient_rho(i_grid,l) * gradient_rho(i_grid,m)) enddo enddo endif !! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ end do end do #ifdef __PARA call mp_sum( sigma, intra_pool_comm ) #endif call dscal (9, 1.d0 / (dfftp%nr1 * dfftp%nr2 * dfftp%nr3), sigma, 1) deallocate( d2y_dx2, u_vdW ) END SUBROUTINE stress_rVV10_gradient !! ############################################################################################################### !! | | !! | stress_rVV10_kernel | !! | | SUBROUTINE stress_rVV10_kernel (total_rho, q0, thetas, sigma) !! Modules to include !! ---------------------------------------------------------------------------------- use gvect, ONLY : ngm, nl, g, nl, gg, igtongl, gl, ngl, gstart USE fft_base, ONLY : dfftp USE cell_base, ONLY : omega, tpiba, tpiba2 USE constants, ONLY: pi implicit none real(dp), intent(IN) :: q0(:) real(dp), intent(IN) :: total_rho(:) real(dp), intent(inout) :: sigma(3,3) ! complex(dp), intent(IN) :: thetas(:,:) real(dp), allocatable :: dkernel_of_dk(:,:) ! integer :: l, m, q1_i, q2_i , g_i ! real(dp) :: g2, ngmod2, g_kernel, G_multiplier ! integer :: last_g, theta_i allocate( dkernel_of_dk(Nqs, Nqs) ) sigma(:,:) = 0.0_DP !! -------------------------------------------------------------------------------------------------- !! Integration in g-space !! --------------------------------------------------------------------------------------------------- last_g = -1 G_multiplier = 1.0D0 if (gamma_only) G_multiplier = 2.0D0 do g_i = gstart, ngm g2 = gg (g_i) * tpiba2 g_kernel = sqrt(g2) if ( igtongl(g_i) .ne. last_g) then call interpolate_Dkernel_Dk(g_kernel, dkernel_of_dk) ! Gets the derivatives last_g = igtongl(g_i) end if do q2_i = 1, Nqs do q1_i = 1, Nqs do l = 1, 3 do m = 1, l sigma (l, m) = sigma (l, m) - G_multiplier * 0.5 * & thetas(nl(g_i),q1_i)*dkernel_of_dk(q1_i,q2_i)*conjg(thetas(nl(g_i),q2_i))* & (g (l, g_i) * g (m, g_i) * tpiba2) / g_kernel end do end do enddo end do if (g_i < gstart ) sigma(:,:) = sigma(:,:) / G_multiplier enddo #ifdef __PARA call mp_sum( sigma, intra_pool_comm ) #endif deallocate( dkernel_of_dk ) END SUBROUTINE stress_rVV10_kernel !! ############################################################################################################### !! | | !! | GET_Q0_ON_GRID | !! |__________________| SUBROUTINE get_q0_on_grid (total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho) USE fft_base, ONLY : dfftp USE kernel_table, ONLY : q_cut, q_min real(dp), intent(IN) :: total_rho(:), gradient_rho(:,:) real(dp), intent(OUT) :: q0(:), dq0_drho(:), dq0_dgradrho(:) integer, parameter :: m_cut = 12 real(dp) :: dw0_dn, dk_dn, gmod2 real(dp) :: mod_grad, wp2, wg2, w0, k real(dp) :: q, exponent, dq0_dq integer :: i_grid, index, count=0 ! initialize q0-related arrays ... q0(:) = q_cut dq0_drho(:) = 0.0_DP dq0_dgradrho(:) = 0.0_DP do i_grid = 1, dfftp%nnr gmod2 = gradient_rho(i_grid,1)**2+gradient_rho(i_grid,2)**2+gradient_rho(i_grid,3)**2 !if (total_rho(i_grid) > epsr .and. gmod2 > epsr) cycle if (total_rho(i_grid) > epsr) then !! Calculate some intermediate values needed to find q !! ------------------------------------------------------------------------------------ mod_grad = sqrt(gmod2) wp2= 16.0*pi*total_rho(i_grid) wg2 = 4*C_value * (mod_grad/total_rho(i_grid))**4 k = b_value*3.0* pi* ((total_rho(i_grid)/(9.0*pi))**(1.0/6.0)) w0 = sqrt( wg2 + wp2/3.0 ) q = w0 / k !! Here, we calculate q0 by saturating q according !! --------------------------------------------------------------------------------------- exponent = 0.0D0 dq0_dq = 0.0D0 do index = 1, m_cut exponent = exponent + ( (q/q_cut)**index)/index dq0_dq = dq0_dq + ( (q/q_cut)**(index-1)) end do q0(i_grid) = q_cut*(1.0D0 - exp(-exponent)) dq0_dq = dq0_dq * exp(-exponent) !! --------------------------------------------------------------------------------------- if (q0(i_grid) < q_min) then q0(i_grid) = q_min end if !!---------------------------------Final values--------------------------------- dw0_dn = 1.0 / (2.0 * w0 ) * ( 16.0/3.0 * pi - 4.0 * wg2 / total_rho(i_grid) ) dk_dn = k / ( 6.0 * total_rho(i_grid) ) dq0_drho(i_grid) = dq0_dq * 1.0 / (k**2.0) * (dw0_dn * k - dk_dn * w0 ) dq0_dgradrho(i_grid) = dq0_dq * 1.0 / ( 2.0 * k * w0 ) * 4.0 * wg2 / (mod_grad**2) endif end do end SUBROUTINE get_q0_on_grid !! ############################################################################################################### !! | | !! | GET_THETAS_ON_GRID | SUBROUTINE get_thetas_on_grid (total_rho, q0_on_grid, thetas) real(dp), intent(in) :: total_rho(:), q0_on_grid(:) complex(dp), intent(inout):: thetas(:,:) integer :: i_grid, Ngrid_points integer :: theta_i Ngrid_points = size(q0_on_grid) !! Interpolate the P_i polynomials CALL spline_interpolation(q_mesh, q0_on_grid, thetas) !! Form the thetas where theta is defined as rho*p_i(q0) !! ------------------------------------------------------------------------------------ do i_grid = 1, Ngrid_points if (total_rho(i_grid) > epsr ) then thetas(i_grid,:) = thetas(i_grid,:) * (1.0 / (3.0 * sqrt(pi) & * ( b_value**(3.0/2.0) ) ) ) * (total_rho(i_grid) / pi)**(3.0/4.0) else thetas(i_grid,:) = 0.0d0 endif end do !! ------------------------------------------------------------------------------------ call start_clock( 'rVV10_ffts') do theta_i = 1, Nqs CALL fwfft ('Dense', thetas(:,theta_i), dfftp) end do call stop_clock( 'rVV10_ffts') END SUBROUTINE get_thetas_on_grid !! ############################################################################################################### !! | | !! | SPLINE_INTERPOLATION | !! |________________________| SUBROUTINE spline_interpolation (x, evaluation_points, values) real(dp), intent(in) :: x(:), evaluation_points(:) !! Input variables. The x values used to form the interpolation ! !! (q_mesh in this case) and the values of q0 for which we are ! !! interpolating the function complex(dp), intent(inout) :: values(:,:) !! An output array (allocated outside this routine) that stores the ! !! interpolated values of the P_i (SOLER equation 3) polynomials. The ! !! format is values(grid_point, P_i) integer :: Ngrid_points, Nx !! Total number of grid points to evaluate and input x points real(dp), allocatable, save :: d2y_dx2(:,:) !! The second derivatives required to do the interpolation integer :: i_grid, lower_bound, upper_bound, index, P_i !! Some indexing variables real(dp), allocatable :: y(:) !! Temporary variables needed for the interpolation real(dp) :: a, b, c, d, dx !! Nx = size(x) Ngrid_points = size(evaluation_points) !! Allocate the temporary array allocate( y(Nx) ) !! If this is the first time this routine has been called we need to get the second !! derivatives (d2y_dx2) required to perform the interpolations. So we allocate the !! array and call initialize_spline_interpolation to get d2y_dx2. !! ------------------------------------------------------------------------------------ if (.not. allocated(d2y_dx2) ) then allocate( d2y_dx2(Nx,Nx) ) call initialize_spline_interpolation(x, d2y_dx2) end if !! ------------------------------------------------------------------------------------ do i_grid=1, Ngrid_points lower_bound = 1 upper_bound = Nx do while ( (upper_bound - lower_bound) > 1 ) index = (upper_bound+lower_bound)/2 if ( evaluation_points(i_grid) > x(index) ) then lower_bound = index else upper_bound = index end if end do dx = x(upper_bound)-x(lower_bound) a = (x(upper_bound) - evaluation_points(i_grid))/dx b = (evaluation_points(i_grid) - x(lower_bound))/dx c = ((a**3-a)*dx**2)/6.0D0 d = ((b**3-b)*dx**2)/6.0D0 do P_i = 1, Nx y = 0 y(P_i) = 1 values(i_grid, P_i) = a*y(lower_bound) + b*y(upper_bound) & + (c*d2y_dx2(P_i,lower_bound) + d*d2y_dx2(P_i, upper_bound)) end do end do deallocate( y ) END SUBROUTINE spline_interpolation !! ############################################################################################################### !! | | !! | INITIALIZE_SPLINE_INTERPOLATION | !! |___________________________________| !! This routine is modeled after an algorithm from "Numerical Recipes in C" by Cambridge !! University Press, pages 96-97. It was adapted for Fortran and for the problem at hand. SUBROUTINE initialize_spline_interpolation (x, d2y_dx2) real(dp), intent(in) :: x(:) !! The input abscissa values real(dp), intent(inout) :: d2y_dx2(:,:) !! The output array (allocated outside this routine) ! !! that holds the second derivatives required for ! !! interpolating the function integer :: Nx, P_i, index !! The total number of x points and some indexing ! !! variables real(dp), allocatable :: temp_array(:), y(:) !! Some temporary arrays required. y is the array ! !! that holds the funcion values (all either 0 or 1 here). real(dp) :: temp1, temp2 !! Some temporary variables required Nx = size(x) allocate( temp_array(Nx), y(Nx) ) do P_i=1, Nx !! In the Soler method, the polynomicals that are interpolated are Kroneker delta funcions !! at a particular q point. So, we set all y values to 0 except the one corresponding to !! the particular function P_i. !! ---------------------------------------------------------------------------------------- y = 0.0D0 y(P_i) = 1.0D0 !! ---------------------------------------------------------------------------------------- d2y_dx2(P_i,1) = 0.0D0 temp_array(1) = 0.0D0 do index = 2, Nx-1 temp1 = (x(index)-x(index-1))/(x(index+1)-x(index-1)) temp2 = temp1 * d2y_dx2(P_i,index-1) + 2.0D0 d2y_dx2(P_i,index) = (temp1-1.0D0)/temp2 temp_array(index) = (y(index+1)-y(index))/(x(index+1)-x(index)) & - (y(index)-y(index-1))/(x(index)-x(index-1)) temp_array(index) = (6.0D0*temp_array(index)/(x(index+1)-x(index-1)) & - temp1*temp_array(index-1))/temp2 end do d2y_dx2(P_i,Nx) = 0.0D0 do index=Nx-1, 1, -1 d2y_dx2(P_i,index) = d2y_dx2(P_i,index) * d2y_dx2(P_i,index+1) + temp_array(index) end do end do deallocate( temp_array, y) end SUBROUTINE initialize_spline_interpolation !! ############################################################################################################### !! | | !! | INTERPOLATE_KERNEL | !! |____________________| !! This routine is modeled after an algorithm from "Numerical Recipes in C" by Cambridge !! University Press, page 97. Adapted for Fortran and the problem at hand. This function is used to !! find the Phi_alpha_beta needed for equations 11 and 14 of SOLER. subroutine interpolate_kernel(k, kernel_of_k) USE kernel_table, ONLY : r_max, Nr_points, kernel, d2phi_dk2, dk real(dp), intent(in) :: k !! Input value, the magnitude of the g-vector for the ! !! current point. real(dp), intent(inout) :: kernel_of_k(:,:) !! An output array (allocated outside this routine) ! !! that holds the interpolated value of the kernel ! !! for each pair of q points (i.e. the phi_alpha_beta ! !! of the Soler method. integer :: q1_i, q2_i, k_i !! Indexing variables real(dp) :: A, B, C, D !! Intermediate values for the interpolation !! Check to make sure that the kernel table we have is capable of dealing with this !! value of k. If k is larger than Nr_points*2*pi/r_max then we can't perform the !! interpolation. In that case, a kernel file should be generated with a larger number !! of radial points. !! ------------------------------------------------------------------------------------- if ( k >= Nr_points*dk ) then write(*,'(A,F10.5,A,F10.5)') "k = ", k, " k_max = ",Nr_points*dk call errore('interpolate kernel', 'k value requested is out of range',1) end if !! ------------------------------------------------------------------------------------- kernel_of_k = 0.0D0 !! This integer division figures out which bin k is in since the kernel !! is set on a uniform grid. k_i = int(k/dk) !! Test to see if we are trying to interpolate a k that is one of the actual !! function points we have. The value is just the value of the function in that !! case. !! ---------------------------------------------------------------------------------------- if (mod(k,dk) == 0) then do q1_i = 1, Nqs do q2_i = 1, q1_i kernel_of_k(q1_i, q2_i) = kernel(k_i,q1_i, q2_i) kernel_of_k(q2_i, q1_i) = kernel(k_i,q2_i, q1_i) end do end do return end if !! ---------------------------------------------------------------------------------------- !! If we are not on a function point then we carry out the interpolation !! ---------------------------------------------------------------------------------------- A = (dk*(k_i+1.0D0) - k)/dk B = (k - dk*k_i)/dk C = (A**3-A)*dk**2/6.0D0 D = (B**3-B)*dk**2/6.0D0 do q1_i = 1, Nqs do q2_i = 1, q1_i kernel_of_k(q1_i, q2_i) = A*kernel(k_i, q1_i, q2_i) + B*kernel(k_i+1, q1_i, q2_i) & +(C*d2phi_dk2(k_i, q1_i, q2_i) + D*d2phi_dk2(k_i+1, q1_i, q2_i)) kernel_of_k(q2_i, q1_i) = kernel_of_k(q1_i, q2_i) end do end do !! ---------------------------------------------------------------------------------------- end subroutine interpolate_kernel !! ############################################################################################################### !! | | !! | INTERPOLATE_DKERNEL_DK | !! |________________________| subroutine interpolate_Dkernel_Dk(k, dkernel_of_dk) USE kernel_table, ONLY : r_max, Nr_points, kernel, d2phi_dk2, dk implicit none real(dp), intent(in) :: k real(dp), intent(inout) :: dkernel_of_dk(Nqs,Nqs) integer :: q1_i, q2_i, k_i real(dp) :: A, B, dAdk, dBdk, dCdk, dDdk !! ------------------------------------------------------------------------------------- if ( k >= Nr_points*dk ) then write(*,'(A,F10.5,A,F10.5)') "k = ", k, " k_max = ",Nr_points*dk call errore('interpolate kernel', 'k value requested is out of range',1) end if !! ------------------------------------------------------------------------------------- dkernel_of_dk = 0.0D0 k_i = int(k/dk) !! ---------------------------------------------------------------------------------------- A = (dk*(k_i+1.0D0) - k)/dk B = (k - dk*k_i)/dk dAdk = -1.0D0/dk dBdk = 1.0D0/dk dCdk = -((3*A**2 -1.0D0)/6.0D0)*dk dDdk = ((3*B**2 -1.0D0)/6.0D0)*dk do q1_i = 1, Nqs do q2_i = 1, q1_i dkernel_of_dk(q1_i, q2_i) = dAdk*kernel(k_i, q1_i, q2_i) + dBdk*kernel(k_i+1, q1_i, q2_i) & + dCdk*d2phi_dk2(k_i, q1_i, q2_i) + dDdk*d2phi_dk2(k_i+1, q1_i, q2_i) dkernel_of_dk(q2_i, q1_i) = dkernel_of_dk(q1_i, q2_i) end do end do !! ---------------------------------------------------------------------------------------- end subroutine interpolate_Dkernel_Dk !! ############################################################################################################### !! | | !! | NUMERICAL_GRADIENT | !! |_______________________| !! Calculates the gradient of the charge density numerically on the grid. We use !! the PWSCF gradient style. subroutine numerical_gradient(total_rho, gradient_rho) use gvect, ONLY : ngm, nl, g, nlm USE cell_base, ONLY : tpiba USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft, invfft ! ! I/O variables ! real(dp), intent(in) :: total_rho(:) !! Input array holding total charge density. real(dp), intent(out) :: gradient_rho(:,:) !! Output array that will holds the gradient ! !! of the charge density. ! local variables ! integer :: icar !! counter on cartesian components complex(dp), allocatable :: c_rho(:) !! auxiliary complex array for rho complex(dp), allocatable :: c_grho(:) !! auxiliary complex array for grad rho ! rho in G space allocate ( c_rho(dfftp%nnr), c_grho(dfftp%nnr) ) c_rho(1:dfftp%nnr) = CMPLX(total_rho(1:dfftp%nnr),0.0_DP) CALL fwfft ('Dense', c_rho, dfftp) do icar=1,3 ! compute gradient in G space c_grho(:) =CMPLX(0.0_DP,0.0_DP) c_grho(nl(:)) = CMPLX (0.0_DP,1.0_DP) * tpiba * g(icar,:) * c_rho(nl(:)) if (gamma_only) c_grho( nlm(:) ) = CONJG( c_grho( nl(:) ) ) ! back in real space CALL invfft ('Dense', c_grho, dfftp) gradient_rho(:,icar) = REAL( c_grho(:) ) end do deallocate ( c_rho, c_grho ) !gradient_rho = 0.0D0 return end subroutine numerical_gradient !! ################################################################################################# !! | | !! | thetas_to_uk | !! |______________| subroutine thetas_to_uk(thetas, u_vdW) USE gvect, ONLY : nl, nlm, gg, ngm, igtongl, gl, ngl, gstart USE fft_base, ONLY : dfftp USE cell_base, ONLY : tpiba, omega complex(dp), intent(in) :: thetas(:,:) complex(dp), intent(out) :: u_vdW(:,:) real(dp), allocatable :: kernel_of_k(:,:) real(dp) :: g integer :: last_g, g_i, q1_i, q2_i, count, i_grid complex(dp) :: theta(Nqs) !! ------------------------------------------------------------------------------------------------- allocate( kernel_of_k(Nqs, Nqs) ) u_vdW(:,:) = CMPLX(0.0_DP,0.0_DP) last_g = -1 do g_i = 1, ngm if ( igtongl(g_i) .ne. last_g) then g = sqrt(gl(igtongl(g_i))) * tpiba call interpolate_kernel(g, kernel_of_k) last_g = igtongl(g_i) end if theta = thetas(nl(g_i),:) do q2_i = 1, Nqs do q1_i = 1, Nqs u_vdW(nl(g_i),q2_i) = u_vdW(nl(g_i),q2_i) + kernel_of_k(q2_i,q1_i)*theta(q1_i) end do end do end do if (gamma_only) u_vdW(nlm(:),:) = CONJG(u_vdW(nl(:),:)) deallocate( kernel_of_k ) !! ----------------------------------------------------------------------------------------------- end subroutine thetas_to_uk !! ################################################################################################# !! | | !! | VDW_ENERGY | !! |_____________| subroutine vdW_energy(thetas, vdW_xc_energy) USE gvect, ONLY : nl, nlm, gg, ngm, igtongl, gl, ngl, gstart USE fft_base, ONLY : dfftp USE cell_base, ONLY : tpiba, omega complex(dp), intent(inout) :: thetas(:,:) real(dp), intent(out) :: vdW_xc_energy real(dp), allocatable :: kernel_of_k(:,:) real(dp) :: g integer :: last_g integer :: g_i, q1_i, q2_i, count, i_grid complex(dp) :: theta(Nqs), thetam(Nqs), theta_g(Nqs) real(dp) :: G0_term, G_multiplier complex(dp), allocatable :: u_vdw(:,:) vdW_xc_energy = 0.0D0 allocate (u_vdW(dfftp%nnr,Nqs)) u_vdW(:,:) = CMPLX(0.0_DP,0.0_DP) allocate( kernel_of_k(Nqs, Nqs) ) !! !! Here we should use gstart,ngm but all the cases are handeld by conditionals inside the loop !! G_multiplier = 1.0D0 if (gamma_only) G_multiplier = 2.0D0 last_g = -1 do g_i = 1, ngm if ( igtongl(g_i) .ne. last_g) then g = sqrt(gl(igtongl(g_i))) * tpiba call interpolate_kernel(g, kernel_of_k) last_g = igtongl(g_i) end if theta = thetas(nl(g_i),:) do q2_i = 1, Nqs do q1_i = 1, Nqs u_vdW(nl(g_i),q2_i) = u_vdW(nl(g_i),q2_i) + kernel_of_k(q2_i,q1_i)*theta(q1_i) end do vdW_xc_energy = vdW_xc_energy + G_multiplier * (u_vdW(nl(g_i),q2_i)*conjg(theta(q2_i))) end do if (g_i < gstart ) vdW_xc_energy = vdW_xc_energy / G_multiplier end do if (gamma_only) u_vdW(nlm(:),:) = CONJG(u_vdW(nl(:),:)) !! Final value vdW_xc_energy = 0.5D0 * omega * vdW_xc_energy deallocate( kernel_of_k ) thetas(:,:) = u_vdW(:,:) deallocate (u_vdW) !! --------------------------------------------------------------------------------------------------- end subroutine vdW_energy !! ############################################################################################################### !! | | !! | GET_POTENTIAL | !! |_________________| subroutine get_potential(q0, dq0_drho, dq0_dgradrho, total_rho, gradient_rho, u_vdW, potential) use gvect, ONLY : nl, g, nlm USE fft_base, ONLY : dfftp USE cell_base, ONLY : alat, tpiba real(dp), intent(in) :: q0(:), gradient_rho(:,:) real(dp), intent(in) :: dq0_drho(:), dq0_dgradrho(:) real(dp), intent(in) :: total_rho(:) complex(dp), intent(in) :: u_vdW(:,:) real(dp), intent(inout) :: potential(:) real(dp), allocatable, save :: d2y_dx2(:,:) integer :: i_grid, P_i,icar integer :: q_low, q_hi, q real(dp) :: dq, a, b, c, d, e, f real(dp) :: y(Nqs), dP_dq0, P ! real(dp), allocatable ::h_prefactor(:) complex(dp), allocatable ::h(:) real(dp) :: dtheta_dn, dtheta_dgradn real(dp) :: const allocate (h_prefactor(dfftp%nnr),h(dfftp%nnr)) const = 1.0D0 / (3.0D0 * b_value**(3.0D0/2.0D0) * pi**(5.0D0/4.0D0) ) potential = 0.0D0 h_prefactor = 0.0D0 !! ------------------------------------------------------------------------------------------- !! Get the second derivatives of the P_i functions for interpolation !! --------------------------------------------------------------------------------------------- if (.not. allocated( d2y_dx2) ) then allocate( d2y_dx2(Nqs, Nqs) ) call initialize_spline_interpolation(q_mesh, d2y_dx2(:,:)) end if !! --------------------------------------------------------------------------------------------- do i_grid = 1,dfftp%nnr q_low = 1 q_hi = Nqs ! Figure out which bin our value of q0 is in in the q_mesh ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do while ( (q_hi - q_low) > 1) q = int((q_hi + q_low)/2) if (q_mesh(q) > q0(i_grid)) then q_hi = q else q_low = q end if end do if (q_hi == q_low) call errore('get_potential','qhi == qlow',1) ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ dq = q_mesh(q_hi) - q_mesh(q_low) a = (q_mesh(q_hi) - q0(i_grid))/dq b = (q0(i_grid) - q_mesh(q_low))/dq c = (a**3 - a)*dq**2/6.0D0 d = (b**3 - b)*dq**2/6.0D0 e = (3.0D0*a**2 - 1.0D0)*dq/6.0D0 f = (3.0D0*b**2 - 1.0D0)*dq/6.0D0 do P_i = 1, Nqs y = 0.0D0 y(P_i) = 1.0D0 dP_dq0 = (y(q_hi) - y(q_low))/dq - e*d2y_dx2(P_i,q_low) + f*d2y_dx2(P_i,q_hi) P = a*y(q_low) + b*y(q_hi) + c*d2y_dx2(P_i,q_low) + d*d2y_dx2(P_i,q_hi) !! IF THE CHARGE DENSITY IS NEGATIVE WE PUT POTENTIAL = 0, OUTSIDE THE SUBROUTINE WE ADD BETA. if (total_rho(i_grid) > epsr) then dtheta_dn = const * (3.0D0/4.0D0) / (total_rho(i_grid)**(1.0D0/4.0D0)) * P + & const * total_rho(i_grid)**(3.0D0/4.0D0) * dP_dq0 * dq0_drho(i_grid) dtheta_dgradn = const * total_rho(i_grid)**(3.0D0/4.0D0) * dP_dq0 * dq0_dgradrho(i_grid) potential(i_grid) = potential(i_grid) + u_vdW(i_grid,P_i)* dtheta_dn if (q0(i_grid) .ne. q_mesh(Nqs)) then h_prefactor(i_grid) = h_prefactor(i_grid) + u_vdW(i_grid,P_i)* dtheta_dgradn end if end if end do end do do icar = 1,3 h(:) = CMPLX(h_prefactor(:) * gradient_rho(:,icar),0.0_DP) CALL fwfft ('Dense', h, dfftp) h(nl(:)) = CMPLX(0.0_DP,1.0_DP) * tpiba * g(icar,:) * h(nl(:)) if (gamma_only) h(nlm(:)) = CONJG(h(nl(:))) CALL invfft ('Dense', h, dfftp) potential(:) = potential(:) - REAL(h(:)) end do !! ------------------------------------------------------------------------------------------------------------------------ deallocate (h_prefactor,h) end subroutine get_potential !! ############################################################################################################### !! | | !! | GRADIENT_COEFFICIENTS | !! |_________________________| !! This routine returns a pointer to an array holding the coefficients for a derivative expansion to some order. !! The derivative is found by multiplying the value of the function at a point + or - n away from the sample point by !! the coefficient gradient_coefficients(+ or - n) and dividing by the appropriate dx for that direction. function gradient_coefficients(N) real(dp), allocatable, target, save:: coefficients(:) !! The local array that will hold the coefficients. A pointer to this ! !! array will be returned by the function integer, intent(in), optional :: N !! The number of neighbors to use on each side for the gradient ! !! calculation. Can be between 1 (i.e. 3 point derivative formula) ! !! and 6 (i.e. 13 point derivative formula). real(dp), pointer :: gradient_coefficients(:) !! Pointer to the coefficients array that will be returned if (.not. allocated(coefficients) ) then if (.not. present(N) ) call errore('gradient_coefficients', 'Number of neighbors for gradient must be specified',2) allocate( coefficients(-N:N) ) select case (N) case (1) coefficients(-1:1) = (/-0.5D0, 0.0D0, 0.5D0/) case (2) coefficients(-2:2) = (/0.0833333333333333D0, -0.6666666666666666D0, 0.0D0, & 0.6666666666666666D0, -0.0833333333333333D0/) case (3) coefficients(-3:3) = (/-0.0166666666666666D0, 0.15D0, -0.75D0, 0.0D0, 0.75D0, & -0.15D0, 0.016666666666666666D0/) case (4) coefficients(-4:4) = (/0.00357142857143D0, -0.03809523809524D0, 0.2D0, -0.8D0, 0.0D0, & 0.8D0, -0.2D0, 0.03809523809524D0, -0.00357142857143D0/) case (5) coefficients(-5:5) = (/-0.00079365079365D0, 0.00992063492063D0, -0.05952380952381D0, & 0.23809523809524D0, -0.8333333333333333D0, 0.0D0, 0.8333333333333333D0, & -0.23809523809524D0, 0.05952380952381D0, -0.00992063492063D0, 0.00079365079365D0/) case (6) coefficients(-6:6) = (/0.00018037518038D0, -0.00259740259740D0, 0.01785714285714D0, & -0.07936507936508D0, 0.26785714285714D0, -0.85714285714286D0, 0.0D0, & 0.85714285714286D0, -0.26785714285714D0, 0.07936507936508D0, & -0.01785714285714D0, 0.00259740259740D0, -0.00018037518038D0/) case default call errore('xc_vdW_DF', 'Order of numerical gradient not implemented', 2) end select end if gradient_coefficients => coefficients end function gradient_coefficients !! ############################################################################################################### !! ############################################################################################################### !! | | !! | GET_3D_INDICES | !! |__________________| !! This routine builds a rank 3 array that holds the indices into the FFT grid for a point with a given !! set of x, y, and z indices. The array holds an extra 2N points in each dimension (N to the left and N !! to the right) so the code can find the neighbors of edge points easily. This is done by just copying the !! first N points in each dimension to the end of that dimension and the end N points to the beginning. function get_3d_indices(N) USE fft_base, ONLY : dfftp integer, intent(in), optional :: N !! The number of neighbors in each direction that will ! !! be used for the gradient formula. If not supplied, ! !! the code just returns the pointer to the already ! !! allocated rho_3d array. real(dp) :: dx, dy, dz !! integer :: ix1, ix2, ix3, i_grid !! Index variables integer, allocatable, target, save :: rho_3d(:,:,:) !! The local array that will store the indices. Only a pointer ! !! to this array will be returned. integer, pointer :: get_3d_indices(:,:,:) !! The returned pointer to the rho_3d array of indices. !! If the routine has not already been run we set up the rho_3d array by looping over it !! and assigning indices to its elements. If this routine has already been run we simply !! return a pointer to the existing array. !! -------------------------------------------------------------------------------- if (.not. allocated(rho_3d)) then ! Check to make sure we have been given the number of neighbors since the routine has ! not been run yet. ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ if (.not. present(N)) then call errore('get_3d_rho','Number of neighbors for numerical derivatives & & must be specified',2) end if ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ allocate( rho_3d(-N+1:dfftp%nr1x+N, -N+1:dfftp%nr2x+N, -N+1:dfftp%nr3x+N) ) i_grid = 0 do ix3 = 1, dfftp%nr3x do ix2 = 1, dfftp%nr2x do ix1 = 1, dfftp%nr1x i_grid = i_grid + 1 rho_3d(ix1, ix2, ix3) = i_grid end do end do end do ! Apply periodic boundary conditions to extend the array by N places in each ! direction ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ rho_3d(-N+1:0,:,:) = rho_3d(dfftp%nr1x-N+1:dfftp%nr1x, :, :) rho_3d(:,-N+1:0,:) = rho_3d(:, dfftp%nr2x-N+1:dfftp%nr2x, :) rho_3d(:,:,-N+1:0) = rho_3d(:, :, dfftp%nr3x-N+1:dfftp%nr3x) rho_3d(dfftp%nr1x+1:dfftp%nr1x+N, :, :) = rho_3d(1:N, :, :) rho_3d(:, dfftp%nr2x+1:dfftp%nr2x+N, :) = rho_3d(:, 1:N, :) rho_3d(:, :, dfftp%nr3x+1:dfftp%nr3x+N) = rho_3d(:, :, 1:N) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ end if !! ------------------------------------------------------------------------------------------ !! Return the point to rho_3d get_3d_indices => rho_3d end function get_3d_indices !! ############################################################################################################### !! | | !! | INVERT_3X3_MATRIX | !! |_____________________| !! This routine is just a hard-wired subroutine to invert a 3x3 matrix. It is used to invert the matrix of !! unit cell basis vectors to find the gradient and the derivative of the gradient with respect to the !! density. subroutine invert_3x3_matrix(M) real(dp), intent(inout) :: M(3,3) !! On input, the 3x3 matrix to be inverted ! !! On output, the inverse of the 3x3 matrix given real(dp) :: temp(3,3) !! Temporary storage real(dp) :: determinant_M !! The determinant of the input 3x3 matrix temp = 0.0D0 temp(1,1) = M(2,2)*M(3,3) - M(2,3)*M(3,2) temp(1,2) = M(1,3)*M(3,2) - M(1,2)*M(3,3) temp(1,3) = M(1,2)*M(2,3) - M(1,3)*M(2,2) temp(2,1) = M(2,3)*M(3,1) - M(2,1)*M(3,3) temp(2,2) = M(1,1)*M(3,3) - M(1,3)*M(3,1) temp(2,3) = M(1,3)*M(2,1) - M(1,1)*M(2,3) temp(3,1) = M(2,1)*M(3,2) - M(2,2)*M(3,1) temp(3,2) = M(1,2)*M(3,1) - M(1,1)*M(3,2) temp(3,3) = M(1,1)*M(2,2) - M(1,2)*M(2,1) determinant_M = M(1,1) * (M(2,2)*M(3,3) - M(2,3)*M(3,2)) & - M(1,2) * (M(2,1)*M(3,3) - M(2,3)*M(3,1)) & + M(1,3) * (M(2,1)*M(3,2) - M(2,2)*M(3,1)) if (abs(determinant_M) > 1e-6) then M = 1.0D0/determinant_M*temp else call errore('invert_3x3_matrix','Matrix is close to singular',1) end if end subroutine invert_3x3_matrix END MODULE rVV10 espresso-5.1/README0000644000175000017500000000242412341373036012166 0ustar mbambaThis is the distribution of the Quantum ESPRESSO suite of codes (ESPRESSO: opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization), promoted by the IOM-DEMOCRITOS National Simulation Center of the Italian CNR (http://www.democritos.it). Quick installation instructions for the impatient: ./configure [options] make all ("make" alone prints a list of acceptable targets). Binaries go in bin/. For more information, see the general documentation in directory Doc/, package-specific documentation in */Doc/, and the web site http://www.quantum-espresso.org/ All the material included in this distribution is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. These programs are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. espresso-5.1/include/0000755000175000017500000000000012341373043012725 5ustar mbambaespresso-5.1/include/clean.sh0000755000175000017500000000006512341373013014344 0ustar mbamba#!/bin/bash \rm -f c_defs.h fft_defs.h >& /dev/null espresso-5.1/include/opt_param.h0000644000175000017500000000050412341373013015054 0ustar mbamba! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #if defined __AIX # define __BSIZ_VALUE 55 #else # define __BSIZ_VALUE 35 #endif espresso-5.1/include/defs.h.README0000644000175000017500000001014412341373013014750 0ustar mbamba ---------------------------------------------------------------------------- CONFIGURATION FILES You shouldn't need to edit the following files. The two first are automatically generated by "configure". * include/fft_defs.h ================== automatically generated by configure using include/fft_defs.h.in as template - included in Modules/fft_scalar.f90 contains the type for C pointers called by fortran: C_POINTER is integer*8 for 64-bit machines, integer*4 on most other machines DO NOT add C-style comments! some fortran compilers do not like them * include/c_defs.h ================ automatically generated by configure using include/c_defs.h.in as template - included in C files in clib/ . Contains: 1) #define HAVE_MALLINFO if the mallinfo structure is present (Linux, AIX) 2) Macros redefining C symbols so that Fortran finds them F77_FUNC, F77_FUNC_ C routine 'name' in *.c files are defined as F77_FUNC('name','NAME') if 'name' does not contain an underscore; if it does, as F77_FUNC_('name','NAME') Absoft: convert to capital, no added underscores #define F77_FUNC(name,NAME) NAME #define F77_FUNC_(name,NAME) NAME XLF, HP-UX: convert to lowercase, no added underscores #define F77_FUNC(name,NAME) name #define F77_FUNC_(name,NAME) name G95, EKOPath, Alpha Linux: convert to lowercase, add one underscore if the name does not contain underscores, add two if it does #define F77_FUNC(name,NAME) name ## _ #define F77_FUNC_(name,NAME) name ## __ Most other cases: convert to lowercase, add one underscore #define F77_FUNC(name,NAME) name ## _ #define F77_FUNC_(name,NAME) name ## _ * include/f_defs.h ================ OBSOLETE - DO NOT USE ANY LONGER * iotk/include/iotk_config.h ========================= contains definitions for iotk . Defines on output: __IOTK_REAL1 kind for single-precision reals __IOTK_REAL2 kind for double-precision reals __IOTK_WORKAROUND* various workarounds for miscellaneous compiler bugs ---------------------------------------------------------------------------- PREPROCESSING OPTIONS USED IN *.h FILES AND IN THE SOURCES Additional Features: __SOLVENT For solvent model, under development __MS2 For QM-MM, under development Hardware/Compiler: __STD_F95 Standard F95: no allocatable in arrays __AIX Ibm rs/6000 machines __XLF xlf compiler (ibm or macintosh with powerpc processor) __SX6 Nec sx-6 vector machines (Nec compiler) __PGI Portland Group compiler (workarounds for compiler bugs) __GFORTRAN gnu gfortran (workarounds for compiler bugs) __INTEL Intel ifc and ifort compilers (workaround for compiler bugs and for insufficient stack size) OS: Parallel execution: __PARA Parallel execution - should be replaced by: __MPI Use MPI library __OPENMP OpenMP parallelization Libraries: __FFTW FFT routines from internal FFTW library __FFTW3 FFT routines from external FFTW v.3 library __SCSL FFT routines from SGI SCSL scientific library __SUNPERF FFT routines from SUN sunperf scientific library __ESSL use blas/lapack/fft routines from IBM ESSL library __LINUX_ESSL use blas/lapack/fft routines from IBM ESSL library (linux version) __SCALAPACK use Scalapack routines instead of internal ones for parallel subspace diagonalization __MASS use mathematical routines from IBM MASS library ASL, MICRO SX-6 specific libraries Timing: __HPM Hardware Performance Monitor (IBM SP) __QK_USER__ for better timing of fftw in cray xt3 (?) Signals: __PTRACE Enable traceback __TRAP_SIGUSR1 Enable signal trapping (experimental): code will stop and save data if executable is signaled with USR1 All other preprocessing flags are for debugging purposes and should not be used unless you know what you are doing espresso-5.1/include/f_defs.h0000644000175000017500000000354312341373013014326 0ustar mbamba! ! Copyright (C) 2002-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! # define DREAL @@_use_DBLE_instead@@ # define DIMAG @@_use_AIMAG_instead@@ # define DCMPLX @@_use_CMPLX_instead@@ # define DFLOAT @@_use_DBLE_instead@@ # define CMPLX(a,b) cmplx(a,b,kind=DP) #if defined(ADD_BLAS_TWO_UNDERSCORES) # define C_NAME(name) name ## __ #elif defined(ADD_BLAS_ONE_UNDERSCORE) # define C_NAME(name) name ## _ #else # define C_NAME(name) name #endif #define DAXPY C_NAME(daxpy) #define DCOPY C_NAME(dcopy) #define DDOT C_NAME(ddot) #define DGETRF C_NAME(dgetrf) #define DGETRI C_NAME(dgetri) #define DGEMV C_NAME(dgemv) #define DGEMM C_NAME(dgemm) #define DGER C_NAME(dger) #define DNRM2 C_NAME(dnrm2) #define DPOTRF C_NAME(dpotrf) #define DPOTRS C_NAME(dpotrs) #define DSCAL C_NAME(dscal) #define DSPEV C_NAME(dspev) #define DSYTRF C_NAME(dsytrf) #define DSYTRI C_NAME(dsytri) #define DSYEV C_NAME(dsyev) #define DSYGV C_NAME(dsygv) #define DSYGVX C_NAME(dsygvx) #define DSWAP C_NAME(dswap) #define ILAENV C_NAME(ilaenv) #define IDAMAX C_NAME(idamax) #define IZAMAX C_NAME(izamax) #define ZAXPY C_NAME(zaxpy) #define ZCOPY C_NAME(zcopy) #define ZDOTC C_NAME(zdotc) #define ZDOTU C_NAME(zdotu) #define ZGEMM C_NAME(zgemm) #define ZGEMV C_NAME(zgemv) #define ZGESV C_NAME(zgesv) #define ZGESVD C_NAME(zgesvd) #define ZGGEV C_NAME(zggev) #define ZHEEV C_NAME(zheev) #define ZHEEVX C_NAME(zheevx) #define ZHEGV C_NAME(zhegv) #define ZHEGVX C_NAME(zhegvx) #define ZHPEV C_NAME(zhpev) #define ZSCAL C_NAME(zscal) #define ZSWAP C_NAME(zswap) #define ZDSCAL C_NAME(zdscal) espresso-5.1/include/c_defs.h.in0000644000175000017500000000157712341373013014735 0ustar mbamba/* Copyright (C) 2006 Quantum-ESPRESSO group This file is distributed under the terms of the GNU General Public License. See the file `License' in the root directory of the present distribution, or http://www.gnu.org/copyleft/gpl.txt . */ /* File c_defs.h.in is used by configure to generate c_defs.h Variables that configure defines should be #undef-ined in include/c_defs.h.in !!! */ /* fortran-to-C naming convention, for functions with and without underscores in the name (some compilers treat them differently) */ #if defined(__CRAY) /* AC_F77_WRAPPERS seems bugged if CRAY compilers are used. Since --disable-wrappers is necessary, here a workaround... */ #define F77_FUNC(name,NAME) name ## _ #define F77_FUNC_(name,NAME) name ## _ #else #undef F77_FUNC #undef F77_FUNC_ #endif /* do we have the mallinfo structure (see clib/memstat.c) ? */ #undef HAVE_MALLINFO espresso-5.1/include/fft_defs.h.in0000644000175000017500000000005212341373013015255 0ustar mbamba #define C_POINTER integer*@SIZEOF_INT_P@ espresso-5.1/PW/0000755000175000017500000000000012341373041011626 5ustar mbambaespresso-5.1/PW/tools/0000755000175000017500000000000012341373041012766 5ustar mbambaespresso-5.1/PW/tools/qeout2axsf.sh0000755000175000017500000000640612341373023015434 0ustar mbamba#!/bin/bash --noprofile ################################################################################ ## Copyright (C) 2006 Carlo Sbraccia. ## ## This file is distributed under the terms ## ## of the GNU General Public License. ## ## See http://www.gnu.org/copyleft/gpl.txt . ## ## ## ## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, ## ## EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ## ## MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ## ## NONINFRINGEMENT. IN NO EVENT SHALL CARLO SBRACCIA BE LIABLE FOR ANY ## ## CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, ## ## TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE ## ## SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ## ################################################################################ # if [ "$1" == "" ]; then echo "input file missing"; exit fi # filename=$1 # alat=$( grep 'alat\|a_0' ${filename} | \ head -n 1 | awk -F = '{print $2}' | awk '{print $1}' ) # if grep "PWSCF" ${filename} &> /dev/null ; then code="PW"; fi if grep "CP:" ${filename} &> /dev/null ; then code="CP"; fi # string=$( cat ${filename} | awk -v code=${code} -v alat=${alat} ' \ BEGIN{ \ iter = 0 ; \ done = 0 ; \ b2a = 0.529177 ; \ if ( code == "PW" ) { runt = b2a*alat } \ if ( code == "CP" ) { runt = b2a } \ } \ { \ if ( $1 == "ATOMIC_POSITIONS" ){ \ if ( match( toupper( $0 ), "ANGSTROM" ) ){ runt = 1.0 } ; \ if ( match( toupper( $0 ), "BOHR" ) ){ runt = b2a } ; \ iter++ ; \ if ( done == 0 ){ \ nat = 0 ; \ getline ; \ while ( NF == 4 || NF == 7 ){ ++nat ; getline } \ done = 1 ; \ } \ } \ } \ END{ printf "%d %d %10.8f", nat, iter, runt } ' ) # nat=$( echo ${string} | awk '{print $1}' ) niter=$( echo ${string} | awk '{print $2}' ) runt=$( echo ${string} | awk '{print $3}' ) # cat ${filename} | awk -v runt=${runt} -v nat=${nat} \ -v alat=${alat} -v niter=${niter} ' \ BEGIN{ \ iter = 0 ; \ b2a = 0.529177 ; \ printf "ANIMSTEPS %5d\n", niter ; \ printf "CRYSTAL\n" ; \ printf "PRIMVEC\n" ; \ printf "%14.10f %14.10f %14.10f\n", alat*b2a, 0.0, 0.0 ; \ printf "%14.10f %14.10f %14.10f\n", 0.0, alat*b2a, 0.0 ; \ printf "%14.10f %14.10f %14.10f\n", 0.0, 0.0, alat*b2a ; \ } \ { \ if ( $1 == "ATOMIC_POSITIONS" ){ \ printf "PRIMCOORD %5d\n", ++iter ; \ printf "%5d 1\n", nat ; \ for ( i = 1; i <= nat; ++i ){ \ getline ; \ printf "%3s %14.9f%14.9f%14.9f\n", $1, $2*runt, $3*runt, $4*runt ; \ } \ } \ } ' > ${filename}.axsf # printf "\nalat = %12.8f Bohr\n" ${alat} printf "\npositions in alat coordinates :\n\n" # tail -n ${nat} ${filename}.axsf | awk -v alat=${alat} ' \ BEGIN{ \ angstrom2alat = 1.0 / 0.529177 / alat ; \ } \ { \ printf "%3s %14.9f%14.9f%14.9f\n", $1, $2*angstrom2alat, \ $3*angstrom2alat, \ $4*angstrom2alat ; \ } ' espresso-5.1/PW/tools/xsf2pwi.sh0000644000175000017500000000167012341373023014730 0ustar mbamba#!/bin/sh # Usage: xsf2pwi.sh [-c] XSF-file # # Purpose: convert XSF file to PW.X input syntax # if XSF-file is not specified read from stdin coor_only=0 if test x$1 = x"-c"; then # coor only option specified coor_only=1 shift fi if test $# -lt 1; then input=- else input=$1 fi cat $input | awk -v coor_only=$coor_only ' BEGIN { f=1.0; bohr=0.529177; } /PRIMVEC/ { if ( $2 != "bohr" ) { f = 1.0 / bohr; } if (!coor_only) { print "CELL_PARAMETERS cubic"; getline; printf " %12.6f %12.6f %12.6f\n", $1*f, $2*f, $3*f; getline; printf " %12.6f %12.6f %12.6f\n", $1*f, $2*f, $3*f; getline; printf " %12.6f %12.6f %12.6f\n", $1*f, $2*f, $3*f; print ""; } } /PRIMCOORD/ { if ( NF < 2 ) { unit="angstrom"; } else { unit=$2; } print "ATOMIC_POSITIONS ", unit; getline; nat=$1; for (i=0; i=1 && NR-nr<=nline) print $2*alat,$3*alat,$4*alat if (NR-nr==nline) {print " ";nline=0;label=""} } espresso-5.1/PW/tools/kvecs_FS.f0000644000175000017500000000335212341373023014643 0ustar mbamba! ! Copyright (C) 2005 Eyvaz Isaev ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Used for k-points generation for the Fermi Surface construction ! Eyvaz Isaev, 2005 ! eyvaz_isaev@yahoo.com, e.isaev@misis.ru ! Theoretical Physics Department ! Moscow State Institute of Steel and Alloys !----------------------------------------------------------------------- PROGRAM kvecs_FS !----------------------------------------------------------------------- implicit real*8(a-h,o-z) dimension x(3),y(3),z(3), rijk(100,100,100,3) character*80 sysname ! read(5,*) x(1),x(2),x(3) read(5,*) y(1),y(2),y(3) read(5,*) z(1),z(2),z(3) read(5,*) na,nb,nc read(5,*) sysname ! fna=dble(na) fnb=dble(nb) fnc=dble(nc) jj=0 DO I=0,na I1=i+1 DO J=0,nb j1=j+1 DO K=0,nc K1=k+1 Rijk(I1,j1,k1,1)=I*X(1)/fna + J*Y(1)/fnb + K*Z(1)/fnc Rijk(I1,j1,k1,2)=I*X(2)/fna + J*Y(2)/fnb + K*Z(2)/fnc Rijk(I1,j1,k1,3)=I*X(3)/fna + J*Y(3)/fnb + K*Z(3)/fnc ! jj=jj+1 END DO END DO END DO ! ! 3 format('i1,j1,k1=',3i4,' Rijk=',3f9.3) ! print *,'jj=',jj ! wk=1.0 open(9,file='kvecs_'//sysname) write(9,'(i6)') jj ! DO I=1,na+1 DO J=1,nb+1 DO K=1,nc+1 write(9,'(3f12.6,f6.2)') rijk(i,j,k,1),rijk(i,j,k,2), & rijk(i,j,k,3), wk END DO END DO END DO close (9) stop end espresso-5.1/PW/tools/bands_FS.f900000644000175000017500000002505112341373023014770 0ustar mbamba! ! Copyright (C) 2005 Eyvaz Isaev ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Program is designed to map the Fermi Surface using XCrySDen ! See www.xcrysden.org ! ! Eyvaz Isaev, 2004-2009 ! eyvaz_isaev@yahoo.com, isaev@ifm.liu.se ! ! Theoretical Physics Department, ! Moscow State Institute of Steel and Alloys, Russia ! ! Department of Physics, Chemistry, and Biology (IFM), Linkoping University, Sweden, ! ! Division of Materials Theory, Institute of Physics and Materials Sciene, ! Uppsala University, Sweden ! ! Description: ! The program reads output files for band structure calculations produced by PWscf. ! Input_FS file contains reciprocal basis vectors, the Fermi level, grids numbers, and ! System name extracted from self-consistent output file (See Input_FS). ! The output file(s) Bands_FS.bxsf (non spin-polarized) or Bands_FS_up.bxsf and Bands_FS_down.bxsf ! (spin-polarized) is (are) written so that it can be used directly ! in conjunction with XCrySDen to visualize the Fermi Surface. ! ! Spin-polarized calculations are allowed ! !----------------------------------------------------------------------- PROGRAM bands_FS !----------------------------------------------------------------------- ! implicit real*8(a-h,o-z) parameter (max_kpoints=100000, max_bands=500) real, allocatable :: e_up(:,:),e_down(:,:) real :: x(3),y(3),z(3) real, allocatable :: valence(:) integer :: n_kpoints, nbands integer :: KS_number character*100 line character*24 nkpt character*33 n_bands character*38 Band_structure character*13 kpoint character*80 sysname character*22 Magnetic character*9 blank character*16 KS_states logical lsda ! nkpt=' number of k points=' n_bands='nbnd' Band_structure=' End of band structure calculation' kpoint=' k =' blank=' ' KS_states='Kohn-Sham states' ! Magnetic=' Starting magnetic' lsda=.false. ! ! Read input information ! open(12,file='input_FS') read(12,*) n_start, n_last read(12,*) E_fermi read(12,*) sysname read(12,*) na,nb, nc read(12,*) x(1),x(2),x(3) read(12,*) y(1),y(2),y(3) read(12,*) z(1),z(2),z(3) print*,'E_Fermi=', E_Fermi x0=0. y0=0. z0=0. close(12) do while( .true. ) read(5,'(a)',end=110) line if(line(16:31).eq.KS_states) then goto 110 endif enddo 110 continue Backspace(5) read(5,'(36x,I9)') KS_number print*, 'KS_number==', KS_number if(n_last.gt.KS_number) then write(6,'("n_last > number of Kohn-Sham states")') write(6,'("Wrong input: you have specifed more bands than number of Kohn-Sham states")') stop endif print*, 'LSDA====', lsda rewind(5) do while( .true. ) read(5,'(a)',end=111) line if(line(1:22).eq.Magnetic) then lsda=.true. goto 111 endif enddo 111 continue print*, 'LSDA====', lsda rewind(5) do while( .true. ) read(5,'(a)') line if(line(1:24).eq.nkpt) then backspace(5) read(line,'(24x,i6)') n_kpoints goto 101 endif enddo 101 if(n_kpoints.gt.max_kpoints) then stop 'Toooooooo many k-points' endif ! End of band structure calculation do while( .true. ) read(5,'(a)',end=102) line if(line(1:38).eq.Band_Structure) then goto 102 endif enddo 102 continue print*, ' lsda==', lsda ! Find bands number, nbands ! read(5,*) read(5,*) read(5,*) if(lsda.eqv..true.) then read(5,*) read(5,*) read(5,*) endif nlines=0 3 read(5,'(a)',end=4) line if(line(1:11).ne.blank) then nlines=nlines+1 goto 3 else goto 4 endif 4 continue print*,'nlines==', nlines do k=1,nlines+1 backspace(5) enddo nbands=0 do k=1,nlines read(5,'(a)') line do j=1,8 ! ! 9 is due to output format for e(n,k): 2X, 8f9.4 ! if(line((3+9*(j-1)):(3+9*j)).ne.blank) then nbands=nbands+1 endif enddo enddo print*, 'nbands==', nbands if(lsda.eqv..true.) then ! begin for lsda calculations n_kpoints=n_kpoints/2 print*, 'kpoints=', n_kpoints allocate (e_up(n_kpoints,nbands)) allocate (e_down(n_kpoints,nbands)) ! back nlines+1 positions (number of eigenvalues lines plus one blank line) ! do k=1,nlines+1 backspace(5) enddo ! ! back 3 positions for k-points ! backspace(5) backspace(5) backspace(5) ! Now ready to start ! read(5,*) ! ! Reading spin-up energies ! do k1=1,n_kpoints read(5,*) read(5,*) read(5,*) read(5,*,end=99) (e_up(k1,j),j=1,nbands) enddo 99 continue read(5,*) read(5,*) read(5,*) ! Reading Spin-down bands do k1=1,n_kpoints read(5,*) read(5,*) read(5,*) read(5,*,end=96) (e_down(k1,j),j=1,nbands) enddo 96 continue open(11,file='Bands_FS_up.bxsf',form='formatted') ! Write header file here write(11, '(" BEGIN_INFO")') write(11, '(" #")') write(11, '(" # this is a Band-XCRYSDEN-Structure-File")') write(11, '(" # aimed at Visualization of Fermi Surface")') write(11, '(" #")') write(11, '(" # Case: ",A)') Sysname write(11, '(" #")') write(11, '(" Fermi Energy: ", f12.4)') E_Fermi write(11, '(" END_INFO")') write(11, '(" BEGIN_BLOCK_BANDGRID_3D")') write(11, '(" band_energies")') write(11, '(" BANDGRID_3D_BANDS")') write(11, '(I5)') n_last-n_start+1 write(11, '(3I5)') na+1, nb+1, nc+1 write(11, '(3f10.6)') x0, y0, z0 write(11, '(3f10.6)') x(1), x(2), x(3) write(11, '(3f10.6)') y(1), y(2), y(3) write(11, '(3f10.6)') z(1), z(2), z(3) do i=n_start, n_last write(11, '("BAND:", i4)') i write(11, '(6f10.4)') (e_up(j,i),j=1,n_kpoints) enddo ! Write 2 last lines write(11, '(" END_BANDGRID_3D")') write(11, '(" END_BLOCK_BANDGRID_3D")') close(11) open(11,file='Bands_FS_down.bxsf',form='formatted') ! Write header file here write(11, '(" BEGIN_INFO")') write(11, '(" #")') write(11, '(" # this is a Band-XCRYSDEN-Structure-File")') write(11, '(" # aimed at Visualization of Fermi Surface")') write(11, '(" #")') write(11, '(" # Case: ",A)') Sysname write(11, '(" #")') write(11, '(" Fermi Energy: ", f12.4)') E_Fermi write(11, '(" END_INFO")') write(11, '(" BEGIN_BLOCK_BANDGRID_3D")') write(11, '(" band_energies")') write(11, '(" BANDGRID_3D_BANDS")') write(11, '(I5)') n_last-n_start+1 write(11, '(3I5)') na+1, nb+1, nc+1 write(11, '(3f10.6)') x0, y0, z0 write(11, '(3f10.6)') x(1), x(2), x(3) write(11, '(3f10.6)') y(1), y(2), y(3) write(11, '(3f10.6)') z(1), z(2), z(3) do i=n_start, n_last write(11, '("BAND:", i4)') i write(11, '(6f10.4)') (e_down(j,i),j=1,n_kpoints) enddo ! Write 2 last lines write(11, '(" END_BANDGRID_3D")') write(11, '(" END_BLOCK_BANDGRID_3D")') close(11) deallocate (e_up) deallocate (e_down) print*,'SPIN-POLARIZED CASE: FINISHED!!!!' !!! end for LSDA calculations else ! end of lsda section ! allocate (e_up(n_kpoints,nbands)) ! back nlines+1 positions (number of eigenvalues lines plus one blank line) ! print*, 'nlines==', nlines do k=1,nlines+1 backspace(5) enddo ! ! back 3 positions for k-points ! backspace(5) backspace(5) backspace(5) print*, 'n_kpoints===', n_kpoints do k1=1,n_kpoints read(5,*) read(5,*) read(5,*) read(5,*,end=98) (e_up(k1,j),j=1,nbands) ! read(5,'(2x,8f9.4)',end=98) (e_up(k1,j),j=1,nbands) enddo 98 continue open(11,file='Bands_FS.bxsf',form='formatted') ! Write header file here write(11, '(" BEGIN_INFO")') write(11, '(" #")') write(11, '(" # this is a Band-XCRYSDEN-Structure-File")') write(11, '(" # aimed at Visualization of Fermi Surface")') write(11, '(" #")') write(11, '(" # Case: ",A)') Sysname write(11, '(" #")') write(11, '(" Fermi Energy: ", f12.4)') E_Fermi write(11, '(" END_INFO")') write(11, '(" BEGIN_BLOCK_BANDGRID_3D")') write(11, '(" band_energies")') write(11, '(" BANDGRID_3D_BANDS")') write(11, '(I5)') n_last-n_start+1 write(11, '(3I5)') na+1, nb+1, nc+1 write(11, '(3f10.6)') x0, y0, z0 write(11, '(3f10.6)') x(1), x(2), x(3) write(11, '(3f10.6)') y(1), y(2), y(3) write(11, '(3f10.6)') z(1), z(2), z(3) do i=n_start, n_last write(11, '("BAND:", i4)') i write(11, '(6f10.4)') (e_up(j,i),j=1,n_kpoints) enddo ! Write 2 last lines write(11, '(" END_BANDGRID_3D")') write(11, '(" END_BLOCK_BANDGRID_3D")') close(11) deallocate (e_up) print*,'NON-SPIN-POLARIZED CASE: FINISHED!!!!' endif stop END PROGRAM bands_FS espresso-5.1/PW/tools/cif2qe.sh0000755000175000017500000003762312341373023014511 0ustar mbamba#!/bin/bash # # CIF to Quantum Espresso format converter # Version 1.0 Date: 15-Mar-2014 First Full conversion # Version 0.5 Date: 02-Oct-2013 # Version 0.4 Date: 12 Jun 2013 # Version 0.3 Date: 15 Nov 2012 # # Copyright (C) 2012-2014 Carlo Nervi # This file is distributed under the terms of the # GNU General Public License. See the file `License' # in the root directory of the present distribution, # or http://www.gnu.org/copyleft/gpl.txt . # # Tested with GNU awk v.4 - doesn't work with earlier gawk versions # Use dos2unix to strip carriage returns at the end of the .cif files!!!! # # symmetry x,-y+1/2,z+y without '' # version="1.0" USAGE="cif2qe.sh Version ${version}\nUsage: cif2qe.sh [-i] File\n ( -i uses the ibrav of QE. Do not add .cif extension!) - Requires File.cif\n" if [ $# == 0 -o $# -gt 2 ]; then printf "$USAGE" exit fi do_ibrav=0 if [ $# == 2 ]; then if [ $1 == "-i" ]; then do_ibrav=1 shift else printf "$USAGE" exit fi fi if [ ! -f $1.cif ]; then echo "Error. Cannot find file $1.cif" exit fi awk -v FILE="$1" -v VERSION="$version" -v do_IBRAV=$do_ibrav ' BEGIN { bohr = 0.52917721092 nfield=split("H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr " \ "Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb " \ "Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf " \ "Db Sg Bh Hs Mt", AtomSymb, " ") split("1.0079 4.0026 6.941 9.0122 10.811 12.0107 14.0067 15.9994 18.9984 20.1797 22.9897 24.305 26.9815 28.0855 30.9738 32.065 35.453 " \ "39.948 39.0983 40.078 44.9559 47.867 50.9415 51.9961 54.938 55.845 58.9332 58.6934 63.546 65.39 69.723 72.64 74.9216 78.96 79.904 " \ "83.8 85.4678 87.62 88.9059 91.224 92.9064 95.94 98 101.07 102.906 106.42 107.868 112.411 114.818 118.71 121.76 127.6 126.904 131.293 " \ "132.905 137.327 138.905 140.116 140.908 144.24 145 150.36 151.964 157.25 158.925 162.5 164.93 167.259 168.934 173.04 174.967 178.49 " \ "180.948 183.84 186.207 190.23 192.217 195.078 196.966 200.59 204.383 207.2 208.98 209 210 222 223 226 227 232.038 231.036 238.029 " \ "237 244 243 247 247 251 252 257 258 259 262 261 262 266 264 277 268", AtomMass, " ") for (i=1; i<=nfield; i++) Atoms[AtomSymb[i]] = AtomMass[i] # # nKey = number of recognized Keywords # KeyW[0][1..nKey] = recognized Keywords # KeyW[1][1..nKey] = first synonym # ... .... # nsynon=2 nKey=13 KeyW[0][1] ="_cell_length_a"; KeyW[1][1]="" KeyW[0][2] ="_cell_length_b"; KeyW[1][2]="" KeyW[0][3] ="_cell_length_c"; KeyW[1][3]="" KeyW[0][4] ="_cell_angle_alpha"; KeyW[1][4]="" KeyW[0][5] ="_cell_angle_beta"; KeyW[1][5]="" KeyW[0][6] ="_cell_angle_gamma"; KeyW[1][6]="" KeyW[0][7] ="_atom_site_type_symbol"; KeyW[1][7]="" KeyW[0][8] ="_atom_site_fract_x"; KeyW[1][8]="" KeyW[0][9] ="_atom_site_fract_y"; KeyW[1][9]="" KeyW[0][10]="_atom_site_fract_z"; KeyW[1][10]="" KeyW[0][11]="_symmetry_equiv_pos_as_xyz"; KeyW[1][11]="_space_group_symop_operation_xyz" KeyW[0][12]="_symmetry_cell_setting"; KeyW[1][12]="_space_group_crystal_system" KeyW[0][13]="_symmetry_Int_Tables_number"; KeyW[1][13]="_space_group_IT_number" # #Tolerance for recognize identical atoms generate by symmetry # tol=0.0001 # # Separation (in A) to generate K Points # separation=0.07 totatom=0 # # International Tables # # 1-2 Triclinic, 3-15 Monoclinic, 16-74 Orthorhombic, 75-142 Tetragonal, 143-167 Trigonal, 168-194 Hexagonal, 195-230 Cubic split("P1 P-1 " \ "P2 P2(1) C2 Pm Pc Cm Cc P2/m P2(1)/m C2/m P2/c P2(1)/c C2/c " \ "P222 P222(1) P2(1)2(1)2 P2(1)2(1)2(1) C222(1) C222 F222 I222 I2(1)2(1)2(1) Pmm2 Pmc2(1) Pcc2 Pma2 Pca2(1) Pnc2 Pmn2(1) Pba2 Pna2(1) Pnn2 " \ "Cmm2 Cmc2(1) Ccc2 Amm2 Abm2 Ama2 Aba2 Fmm2 Fdd2 Imm2 Iba2 Ima2 Pmmm Pnnn Pccm Pban Pmma Pnna Pmna Pcca Pbam Pccn Pbcm Pnnm Pmmn Pbcn Pbca " \ "Pnma Cmcm Cmca Cmmm Cccm Cmma Ccca Fmmm Fddd Immm Ibam Ibca Imma " \ "P4 P4(1) P4(2) P4(3) I4 I4(1) P-4 I-4 P4/m P4(2)/m P4/n P4(2)/n I4/m I4(1)/a P422 P42(1)2 P4(1)22 P4(1)2(1)2 P4(2)22 P4(2)2(1)2 P4(3)22 " \ "P4(3)2(1)2 I422 I4(1)22 P4mm P4bm P4(2)cm P4(2)nm P4cc P4nc P4(2)mc P4(2)bc I4mm I4cm I4(1)md I4(1)cd P-42m P-42c P-42(1)m P-42(1)c " \ "P-4m2 P-4c2 P-4b2 P-4n2 I-4m2 I-4c2 I-42m I-42d P4/mmm P4/mcc P4/nbm P4/nnc P4/mbm P4/mnc P4/nmm P4/ncc P4(2)/mmc P4(2)/mcm P4(2)/nbc " \ "P4(2)/nnm P4(2)/mbc P4(2)/mnm P4(2)/nmc P4(2)/ncm I4/mmm I4/mcm I4(1)/amd I4(1)/acd " \ "P3 P3(1) P3(2) R3 P-3 R-3 P312 P321 P3(1)12 P3(1)21 P3(2)12 P3(2)21 R32 P3m1 P31m P3c1 P31c R3m R3c P-31m P-31c P-3m1 P-3c1 R-3m R-3c " \ "P6 P6(1) P6(5) P6(2) P6(4) P6(3) P-6 P6/m P6(3)/m P622 P6(1)22 P6(5)22 P6(2)22 P6(4)22 P6(3)22 P6mm P6cc P6(3)cm P6(3)mc P-6m2 P-6c2 P-62m " \ "P-62c P6/mmm P6/mcc P6(3)/mcm P6(3)/mmc " \ "P23 F23 I23 P2(1)3 I2(1)3 Pm-3 Pn-3 Fm-3 Fd-3 Im-3 Pa-3 Ia-3 P432 P4(2)32 F432 F4(1)32 I432 P4(3)32 P4(1)32 I4(1)32 P-43m F4-3m I-43m P-43n " \ "F-43c I-43d Pm-3m Pn-3n Pm-3n Pn-3m Fm-3m Fm-3c Fd-3m Fd-3c Im-3m Ia-3d", Int_Tables, " ") } function parseX(str, field) { # # Consideriamo il testo fra due apostrofi singoli come una stringa # ritorna il campo field-esimo della stringa str # c=0 str=str " " while (str) { match(str,/ *\47[^\47]*\47 * |[^ ]* /) f=substr(str,RSTART,RLENGTH) # save what matched in f gsub(/^ *\47?|\47? * $/,"",f) # remove extra stuff if ( ++c == field) { if (f!="") return f else return $field } str=substr(str,RLENGTH+1) # "consume" what matched } return "" } function search_K(str) { i0=0 for (i1=1; i1<=nKey; i1++) { for (i2=0; i2= 1.) val-=1. return val } function abs(numero) { if (numero < 0) numero=-numero; return numero } function Find_Lattice(a,b,c,alpha,beta,gamma) { # # find the bravais lattice name from lattice parameters # thr = 1.e-4 reticolo="" if ( (abs(alpha-90.0) 0) Var[ivar++]=KeyW[0][tmp]; else Var[ivar++]=$1 Num_Var=ivar } else { ivar=0 loop_switch=0 if (tmp > 0) Var2[KeyW[0][tmp]]=$2 } } $1 ~ /^[^_]/ { ivar=0 if (loop_switch==1 || loop_switch==2) { loop_switch=2 for (i=0; i 0 ) tmpspacegroup=Int_Tables[tmptablenumber] ibrav=Find_ibrav(tmpspacegroup, reticolo) KP_x = int(1./(a*separation)+0.5) KP_y = int(1./(b*separation)+0.5) KP_z = int(1./(c*separation)+0.5) ntyp=0 for (i=0; inat conversion, and the corresponding data are writen to file nuclei.charges. The -r flag deletes this file. " exit 1 fi r=0 if [ "$1" = "-r" ]; then r=1 shift fi # # check if we have OLD or NEW PW.X input format # new_format1=`grep 'ATOMIC_POSITIONS' $1` new_format2=`grep -i '&system' $1` if [ "$new_format1" != "" -a "$new_format2" != "" ]; then # we have NEW PW.X input format # cat $1 | awk 'BEGIN {RS=",";} {print $0}' | awk ' BEGIN { calculation=""; num_of_images=""; nml_end=0; nml_end_string=""; } toupper($0) ~ /&SYSTEM/ { print; } /=/ { if ( toupper($1) ~ /^IBRAV($|=)|^CELLDM\([1-6]\)($|=)|^NAT($|=)|^A($|=)|^B($|=)|^C($|=)|^COSAB($|=)|^COSAC($|=)|^COSBC($|=)/ ) { print; } if ( toupper($1) ~ /^CALCULATION($|=)/ ) { calculation=toupper($0); } if ( toupper($1) ~ /^NUM_OF_IMAGES($|=)/ ) { num_of_images=toupper($0); } } /ATOMIC_POSITIONS|CELL_PARAMETERS/ { if ( !nml_end) { # first finish the namelist nml_end=1; if (calculation != "") print calculation; if (num_of_images != "") print num_of_images; print nml_end_string; } # now print the current record print_line=1; print toupper($0); next; } toupper($0) ~ /&END|^\/|^ \// { nml_end_string=$0; } /a*/ { if ( print_line == 1 ) { print toupper($0); } }'> pw.$$ else # we have OLD PW.X input format echo " ------------------------------------------------------------------------ ERROR: This is NOT a PW-input or an input for an older PW version ------------------------------------------------------------------------ " exit 1 fi # # execute $PWI2XSF fortran program and print the XSF file # if test -f $XCRYSDEN_TOPDIR/bin/$PWI2XSF ; then $XCRYSDEN_TOPDIR/bin/pwi2xsf < pw.$$ | tee pwi2xsf.xsf_out else pwi2xsf.x < pw.$$ | tee pwi2xsf.xsf_out fi rm -f pw.$$ if [ "$r" -eq 1 ]; then if [ -f nuclei.charges ]; then rm nuclei.charges; fi fi exit 0 espresso-5.1/PW/tools/ev.f900000644000175000017500000003613312341373023013726 0ustar mbamba! ! Copyright (C) 2003-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Contributions by Eyvaz Isaev ! Dept of Physics, Chemistry and Biology (IFM), Linkoping University, Sweden ! ! a) Input: Add lattice parameters units: au or Ang ! b) Output: More info printed out ! c) Output: Additional output file with E+PV ! PROGRAM ev ! ! fit of E(v) to an equation of state (EOS) ! ! Interactive input: ! au or Ang ! structure ! equation of state ! input data file ! output data file ! ! Input data file format for cubic systems: ! a0(1) Etot(1) ! ... ! a0(n) Etot(n) ! where a0 is the lattice parameter (a.u. or Ang) ! Input data file format for noncubic (e.g. hexagonal) systems: ! V0(1) Etot(1) ! ... ! V0(n) Etot(n) ! where V0 is the unit-cell volume (a.u.^3 or Ang^3) ! e.g. for an hexagonal cell, ! V0(i) = sqrt(3)/2 * a^2 * c unit-cell volume ! Etot(i)= min Etot(c) for the given volume V0(i) ! Etot in atomic (Rydberg) units ! ! Output data file format for cubic systems: ! # a0=... a.u., K0=... kbar, dk0=..., d2k0=... kbar^-1, Emin=... Ry ! # a0=... Ang, K0=... GPa , V0=... (a.u.)^3, V0 = Ang^3 ! a0(1) Etot(1) Efit(1) Etot(1)-Efit(1) Pfit(1) Enth(1) ! ... ! a0(n) Etot(n) Efit(n) Etot(n)-Efit(n) Pfit(n) Enth(n) ! Output data file format for noncubic systems: ! # V0=...(a.u.)^3, K0=... kbar, dk0=..., d2k0=... kbar^-1, Emin=... Ry ! # V0=...Ang^3, K0=... GPa ! V0(1) Etot(1) Efit(1) Etot(1)-Efit(1) Pfit(1) Enth(1) ! ... ! V0(n) Etot(n) Efit(n) Etot(n)-Efit(n) Pfit(n) Enth(n) ! where ! a0(i), V0(i), Etot(i) as in input ! Efit(i) is the fitted value from the EOS ! Pfit(i) is the corresponding pressure from the EOS (GPa) ! Enth(i)=Efit(i)+Pfit(i)*V0(i) is the enthalpy (Ry) !! USE kinds, ONLY: DP USE constants, ONLY: bohr_radius_angs, ry_kbar USE ev_xml, ONLY : write_evdata_xml USE mp_global, ONLY : mp_startup, mp_global_end USE mp_world, ONLY : world_comm USE mp, ONLY : mp_bcast USE io_global, ONLY : ionode, ionode_id IMPLICIT NONE INTEGER, PARAMETER:: nmaxpar=4, nmaxpt=100, nseek=10000, nmin=4 INTEGER :: npar,npt,istat, ierr CHARACTER :: bravais*3, au_unit*3, filin*256 REAL(DP) :: par(nmaxpar), deltapar(nmaxpar), parmin(nmaxpar), & parmax(nmaxpar), v0(nmaxpt), etot(nmaxpt), efit(nmaxpt), & fac, emin, chisq, a REAL(DP), PARAMETER :: gpa_kbar = 10.0_dp LOGICAL :: in_angstrom CHARACTER(LEN=256) :: fileout ! CALL mp_startup ( ) ! IF ( ionode ) THEN PRINT '(5x,"Lattice parameter or Volume are in (au, Ang) > ",$)' READ '(a)', au_unit in_angstrom = au_unit=='Ang' .or. au_unit=='ANG' .or. & au_unit=='ang' IF (in_angstrom) PRINT '(5x,"Assuming Angstrom")' PRINT '(5x,"Enter type of bravais lattice (fcc, bcc, sc, noncubic) > ",$)' READ '(a)',bravais ! IF(bravais=='fcc'.or.bravais=='FCC') THEN fac = 0.25d0 ELSEIF(bravais=='bcc'.or.bravais=='BCC') THEN fac = 0.50d0 ELSEIF(bravais=='sc'.or.bravais=='SC') THEN fac = 1.0d0 ELSEIF(bravais=='noncubic'.or.bravais=='NONCUBIC' .or. & bravais=='hex'.or.bravais=='HEX' ) THEN ! fac = sqrt(3d0)/2d0 ! not used fac = 0.0_DP ! not used ELSE PRINT '(5x,"ev: unexpected lattice ",a3)', bravais STOP ENDIF ! PRINT '(5x,"Enter type of equation of state :"/& &5x,"1=birch1, 2=birch2, 3=keane, 4=murnaghan > ",$)' READ *,istat IF(istat==1 .or. istat==4) THEN npar=3 ELSEIF(istat==2 .or. istat==3) THEN npar=4 ELSE PRINT '(5x,"Unexpected eq. of state ",i2)', istat STOP ENDIF PRINT '(5x,"Input file > ",$)' READ '(a)',filin OPEN(unit=2,file=filin,status='old',form='formatted',iostat=ierr) IF (ierr/=0) THEN ierr= 1 GO TO 99 END IF 10 CONTINUE emin=1d10 DO npt=1,nmaxpt IF (bravais=='noncubic'.or.bravais=='NONCUBIC' .or. & bravais=='hex'.or.bravais=='HEX' ) THEN READ(2,*,err=10,END=20) v0(npt), etot(npt) IF (in_angstrom) v0(npt)=v0(npt)/bohr_radius_angs**3 ELSE READ(2,*,err=10,END=20) a, etot(npt) IF (in_angstrom) a = a/bohr_radius_angs v0 (npt) = fac*a**3 ENDIF IF(etot(npt) ",$)' READ '(a)',filout IF(filout/=' ') THEN iun=8 INQUIRE(file=filout,exist=exst) IF (exst) PRINT '(5x,"Beware: file ",A," will be overwritten")',& trim(filout) OPEN(unit=iun,file=filout,form='formatted',status='unknown', & iostat=ierr) IF (ierr/=0) THEN ierr= 2 GO TO 99 END IF ELSE iun=6 ENDIF IF(istat==1) THEN WRITE(iun,'("# equation of state: birch 1st order. chisq = ", & & d10.4)') chisq ELSEIF(istat==2) THEN WRITE(iun,'("# equation of state: birch 3rd order. chisq = ", & & d10.4)') chisq ELSEIF(istat==3) THEN WRITE(iun,'("# equation of state: keane. chisq = ", & & d10.4)') chisq ELSEIF(istat==4) THEN WRITE(iun,'("# equation of state: murnaghan. chisq = ", & & d10.4)') chisq ENDIF IF(istat==1 .or. istat==4) par(4) = 0.0d0 IF(istat==1 .or. istat==2) THEN DO i=1,npt p(i)=birch(v0(i)/par(1),par(2),par(3),par(4)) ENDDO ELSE DO i=1,npt p(i)=keane(v0(i)/par(1),par(2),par(3),par(4)) ENDDO ENDIF DO i=1,npt epv(i) = etot(i) + p(i)*v0(i) / ry_kbar ENDDO IF ( fac /= 0.0_dp ) THEN ! cubic case WRITE(iun,'("# a0 =",f8.4," a.u., k0 =",i5," kbar, dk0 =", & &f6.2," d2k0 =",f7.3," emin =",f11.5)') & (par(1)/fac)**(1d0/3d0), int(par(2)), par(3), par(4), emin WRITE(iun,'("# a0 =",f9.5," Ang, k0 =", f6.1," GPa, V0 = ", & & f7.3," (a.u.)^3, V0 =", f7.3," A^3 ",/)') & & (par(1)/fac)**(1d0/3d0)*bohr_radius_angs, par(2)/gpa_kbar, & par(1), par(1)*bohr_radius_angs**3 WRITE(iun,'(73("#"))') WRITE(iun,'("# Lat.Par", 7x, "E_calc", 8x, "E_fit", 7x, & & "E_diff", 4x, "Pressure", 6x, "Enthalpy")') IF (in_angstrom) THEN WRITE(iun,'("# Ang", 13x, "Ry", 11x, "Ry", 12x, & & "Ry", 8x, "GPa", 11x, "Ry")') WRITE(iun,'(73("#"))') WRITE(iun,'(f9.5,2x,f12.5, 2x,f12.5, f12.5, 3x, f8.2, 3x,f12.5)') & & ( (v0(i)/fac)**(1d0/3d0)*bohr_radius_angs, etot(i), efit(i), & & etot(i)-efit(i), p(i)/gpa_kbar, epv(i), i=1,npt ) ELSE WRITE(iun,'("# a.u.",12x, "Ry", 11x, "Ry", 12x, & & "Ry", 8x, "GPa", 11x, "Ry")') WRITE(iun,'(73("#"))') WRITE(iun,'(f9.5,2x,f12.5, 2x,f12.5, f12.5, 3x, f8.2, 3x,f12.5)') & & ( (v0(i)/fac)**(1d0/3d0), etot(i), efit(i), & & etot(i)-efit(i), p(i)/gpa_kbar, epv(i), i=1,npt ) ENDIF ELSE ! noncubic case WRITE(iun,'("# V0 =",f8.2," a.u.^3, k0 =",i5," kbar, dk0 =", & & f6.2," d2k0 =",f7.3," emin =",f11.5)') & & par(1), int(par(2)), par(3), par(4), emin WRITE(iun,'("# V0 =",f8.2," Ang^3, k0 =",f6.1," GPa"/)') & & par(1)*bohr_radius_angs**3, par(2)/gpa_kbar WRITE(iun,'(74("#"))') WRITE(iun,'("# Vol.", 8x, "E_calc", 8x, "E_fit", 7x, & & "E_diff", 4x, "Pressure", 6x, "Enthalpy")') IF (in_angstrom) THEN WRITE(iun,'("# Ang^3", 9x, "Ry", 11x, "Ry", 12x, & & "Ry", 8x, "GPa", 11x, "Ry")') WRITE(iun,'(74("#"))') WRITE(iun,'(f8.2,2x,f12.5, 2x,f12.5, f12.5, 3x, f8.2, 3x,f12.5)') & ( v0(i)*bohr_radius_angs**3, etot(i), efit(i), & etot(i)-efit(i), p(i)/gpa_kbar, epv(i), i=1,npt ) else WRITE(iun,'("# a.u.^3",8x, "Ry", 11x, "Ry", 12x, & & "Ry", 8x, "GPa", 11x, "Ry")') WRITE(iun,'(74("#"))') WRITE(iun,'(f8.2,2x,f12.5, 2x,f12.5, f12.5, 3x, f8.2, 3x,f12.5)') & ( v0(i), etot(i), efit(i), & etot(i)-efit(i), p(i)/gpa_kbar, epv(i), i=1,npt ) end if ENDIF IF(filout/=' ') CLOSE(unit=iun) 99 RETURN END SUBROUTINE write_results ! !----------------------------------------------------------------------- SUBROUTINE find_minimum & (npar,par,deltapar,parmin,parmax,nseek,nmin,chisq) !----------------------------------------------------------------------- ! ! Very Stupid Minimization ! USE random_numbers, ONLY : randy IMPLICIT NONE INTEGER maxpar, nseek, npar, nmin, n,j,i PARAMETER (maxpar=4) REAL(DP) par(npar), deltapar(npar), parmin(npar), parmax(npar), & parnew(maxpar), chisq, chinew, bidon ! ! various initializations ! chisq = 1.0d30 chinew= 1.0d30 CALL eqstate(npar,par,chisq) DO j = 1,nmin DO i = 1,nseek DO n = 1,npar 10 parnew(n) = par(n) + (0.5d0 - randy())*deltapar(n) IF(parnew(n)>parmax(n) .or. parnew(n) pwo2xsfUsage.$$ <2) printf "%d.%d%d\n", vv[0],vv[1],vv[2]; else printf "%d.%d\n", vv[0], vv[1]; }' } pwoCheckPWSCFVersion() { # # Usage: $0 option file # # Purpose: if PWSCF version < 1.3 execute the old pwo2xsf_old.sh # script and exit version=`pwoGetVersion $input` result=`echo "$version < 1.3"|bc -l` if test $result -eq 1 ; then if test -f $scriptdir/pwo2xsf_old.sh ; then # execute pwo2xsf_old.sh $scriptdir/pwo2xsf_old.sh $1 $2 pwoExit $? else echo "ERROR: PWscf output generated by version < 1.3 !!!" pwoExit 1 fi fi } # ------------------------------------------------------------------------ # Function: pwoOptCoor # Extract: OPTIMIZED or LATEST coordinates # Perform: read PW-output file and print the XSF file according to # specified flags # ------------------------------------------------------------------------ pwoOptCoor() { #set -x pwoUsage "$# -lt 1" \ "$0 --latestcoor|-lc [pw-output-file] or $0 --optcoor|-oc [pw-output-file]" option=$1 case $1 in --latestcoor|-lc) type=LATEST; shift;; --optcoor|-oc) type=OPTIMIZED; shift;; esac if test $# -eq 0 ; then input=pw.$$ cat - >> $input else input=$1 fi pwoCheckPWSCFVersion $option $input if test $type = "OPTIMIZED" ; then # Check for the presence of CELL_PARAMETERS record # and/or: # Check also for the PWSCF-v.1.3.0 which uses the # "Final estimate of positions" record if test \( "`grep CELL_PARAMETERS $input`" = "" \) -a \( "`grep 'Final estimate of positions' $input`" = "" \) ; then echo "ERROR: OPTIMIZED coordinates does not exists" pwoExit 1 fi fi cat "$input" | awk -v t=$type ' function CheckAtoms() { if (nat < 1) { print "ERROR: no atoms found"; error_status=1; exit 1; } } function CrysToCartCoor(i,v,a,b,c) { # Crystal --> Cartesian (ANGSTROM units) conversion x[i] = v[0,0]*a + v[1,0]*b + v[2,0]*c; y[i] = v[0,1]*a + v[1,1]*b + v[2,1]*c; z[i] = v[0,2]*a + v[1,2]*b + v[2,2]*c; } function make_error(message,status) { printf "ERROR: %s\n", message; error_status=status; exit status; } BEGIN { nat=0; opt_coor_found=0; error_status=0; bohr=0.529177 } /celldm\(1\)=/ { a0=$2*bohr; scale=a0; l_scale=a0; } /number of atoms/ { nat=$NF; } /crystal axes:/ { # read the lattice-vectors for (i=0; i<3; i++) { getline; for (j=4; j<7; j++) v[i,j-4] = $j * a0; } } $1 == "CELL_PARAMETERS" { # read the lattice-vectors (type=OPTIMIZED) opt_coor_found=1; ff=l_scale; if ( $2 ~ /alat/ ) ff=a0; else if ( $2 ~ /angstrom/ ) ff=1.0; else if ( $2 ~ /bohr/ ) ff=bohr; CheckAtoms(); for (i=0; i<3; i++) { getline; if (NF != 3) make_error("error reading CELL_PARAMETERS records",1); for (j=1; j<4; j++) { v[i,j-1] = ff * $j; } } } $1 == "ATOMIC_POSITIONS" { crystal_coor=0; if ( $2 ~ /alat/ ) scale=a0; else if ( $2 ~ /angstrom/ ) scale=1.0; else if ( $2 ~ /bohr/ ) scale=bohr; else if ( $2 ~ /crystal/ ) { scale=1.0; crystal_coor=1; } CheckAtoms(); for(i=0; i> $input else input=$1 fi pwoCheckPWSCFVersion $option $input ncoor=`egrep "ATOMIC_POSITIONS" $input | wc | awk '{print $1}'` ncoor=`expr $ncoor + 1`; # add another step for initial coordinates nvec=`egrep "CELL_PARAMETERS" $input | wc | awk '{print $1}'` cat "$input" | awk \ -v ncoor=$ncoor \ -v nvec=$nvec \ -v onlyinit=$only_init ' function PrintPrimVec(is_vc,ith,vec) { if (!is_vc) printf "PRIMVEC\n"; else printf "PRIMVEC %d\n",ith; printf " %15.10f %15.10f %15.10f\n", v[0,0], v[0,1], v[0,2]; printf " %15.10f %15.10f %15.10f\n", v[1,0], v[1,1], v[1,2]; printf " %15.10f %15.10f %15.10f\n", v[2,0], v[2,1], v[2,2]; } function PrintPrimCoor(onlyinit,istep, nat, atom, x, y, z, fx, fy, fz) { if (onlyinit) { print " PRIMCOORD"; } else { print " PRIMCOORD", istep; } print nat, 1; for(i=0; i Cartesian (ANGSTROM units) conversion x[i] = v[0,0]*a + v[1,0]*b + v[2,0]*c; y[i] = v[0,1]*a + v[1,1]*b + v[2,1]*c; z[i] = v[0,2]*a + v[1,2]*b + v[2,2]*c; } function make_error(message,status) { printf "ERROR: %s\n", message; error_status=status; exit status; } BEGIN { bohr=0.529177; istep=1; error_status=0; if (nvec>1 || (nvec==1 && ncoor==2)) { is_vc=1; # variable-cell } else { is_vc=0; } } /celldm\(1\)=/ { a0=$2*bohr; scale=a0; l_scale=a0; } /number of atoms/ { nat=$NF; } /crystal axes:/ { # read the lattice-vectors for (i=0; i<3; i++) { getline; for (j=4; j<7; j++) v[i,j-4] = $j * a0; } if (istep==1) { printf "CRYSTAL\n"; PrintPrimVec(is_vc,istep,v); } } /Cartesian axes/ { # read INITIAL coordinates getline; getline; getline; if (istep == 1) GetInitCoor(nat, a0, atom, x, y, z); } $1 == "CELL_PARAMETERS" { # read the lattice-vectors (type=LATEST and OPTIMIZED) ff=l_scale; if ( $2 ~ /alat/ ) ff=a0; else if ( $2 ~ /angstrom/ ) ff=1.0; else if ( $2 ~ /bohr/ ) ff=bohr; for (i=0; i<3; i++) { getline; if (NF != 3) make_error("error reading CELL_PARAMETERS records",1); for (j=1; j<4; j++) { v[i,j-1] = ff * $j; } } if (is_vc) PrintPrimVec(is_vc,istep,v); } $1 == "ATOMIC_POSITIONS" { # read atomic positions crystal_coor=0; if ( $2 ~ /alat/ ) scale=a0; else if ( $2 ~ /angstrom/ ) scale=1.0; else if ( $2 ~ /bohr/ ) scale=bohr; else if ( $2 ~ /crystal/ ) { scale=1.0; crystal_coor=1; } for(i=0; i xsf.$$ if test $only_init -eq 0 ; then # Assign the number of ANIMSTEPS here. The reason is that the # output file (queue runs) is the result of several job runs, then # some of them might be terminated on the "wrong" place, and the # initial ANIMSTEPS might be wrong. The most secure way is to extract the # sequential digit from the last "PRIMCOORD id" record. #set -x nsteps=`grep PRIMCOORD xsf.$$ | wc | awk '{print $1}'` echo "ANIMSTEPS $nsteps" fi cat xsf.$$ } ####################################################################### #### MAIN ### ####################################################################### scriptdir=$XCRYSDEN_TOPDIR/scripts; # take advantage of XCRYSDEN if it exists AWK=`type awk` if test "$AWK" = ""; then echo "ERROR: awk program not found" pwoExit 1 fi if [ $# -eq 0 ]; then cat pwo2xsfUsage.$$ pwoExit 1 fi case $1 in --inicoor|-ic) pwoAnimCoor $@;; --latestcoor|-lc) pwoOptCoor $@;; --optcoor|-oc) pwoOptCoor $@;; --animcoor|-ac|--animxsf|-a) pwoAnimCoor $@;; *) cat pwo2xsfUsage.$$; pwoExit 1;; esac pwoExit 0 espresso-5.1/PW/tools/pwi2xsf.f900000644000175000017500000004316312341373023014717 0ustar mbamba! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Tone: File adapted from pwi2xsf.f file of XCRYSDEN distribution !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! ------------------------------------------------------------------------ program pwi2xsf ! Reads pre-procesed (with pwi2xsf.sh) PW-input file ! and converts to XSF format file ! ! This program reads the NEWLY formated preprocessed-PW.X input ! ! Usage: pwi2xsf.sh < PW-preprocessed file ! ------------------------------------------------------------------------ ! implicit none ! ! maxtyp : maximum number of types of atoms ! maxatom: maximum number of atoms ! maximage: maximum number of images ! integer & & maxtyp, & & maxatom, & & maximage, & & ALAT_UNIT, & & BOHR_UNIT, & & ANGSTROM_UNIT, & & CRYSTAL_UNIT ! real*8 & & bohr ! parameter ( & & maxtyp = 100, & & maxatom = 10000, & & maximage = 50, & & bohr = 0.5291772108d0, & & ALAT_UNIT = 1, & & BOHR_UNIT = 2, & & ANGSTROM_UNIT = 3, & & CRYSTAL_UNIT = 4 ) ! integer & & ibrav, &! label for Bravais lattice & nat, &! number of atoms & ntyp, &! number of pseudopotentials & num_of_images, &! number of NEB images & inp_num_of_images, &! number of NEB images in the input & atomic_posunit ! length-unit of atomic positions ! real*8 & & celldm(6), &! cell parameters & omega, &! cell volume (not used) & alat, &! lattice parameter & a, b, c, cosab, cosac, cosbc ! lattice parameters ! character & & calculation*80, &! type of calculation & line*120 ! line of input character*3 & & atm(maxatom,maximage) ! atomic symbols ! integer & & ityp, &! type of PP & ounit, &! output unit & i, j, ipol, &! dummies & inat, iim, iim_old, &! counters & len, string_length ! length of string ! real*8 & & x,y,z, &! Cartesian coordinates & weights & w1,w2, &! linear interpolation weights & dx, dy, dz, &! auxiliary & tau(3,maxatom,maximage),&! atomic coordinates & pv( 3,3 ), &! lattice vectors (PRIMITIVE) & cv( 3,3 ), &! lattice vectors (CONVENTIONAL) & old_total_dist, old_dist(maximage),&! old(=input) inter-image distances & new_total_dist, new_dist ! new(=output) inter-image distances ! logical & & ltaucry, matches, last_image ! namelist/system/ & & ibrav, nat, celldm, a, b, c, cosab, cosac, cosbc, & & calculation, num_of_images ! ounit=6 ! ! set default values calculation = 'scf' num_of_images = 1 nat = 0 ibrav = 0 celldm(1) = 0.0d0 a = 0.0D0 b = 0.0D0 c = 0.0D0 cosab = 0.0D0 cosac = 0.0D0 cosbc = 0.0D0 ! ! read namelist system ! read (5,system) if ( nat.eq.0 ) then print *,'ERROR: while reading INPUT !!!' STOP endif ! ! was lattice specified in terms of A,B,C,... if ( celldm(1) .eq. 0.0D0 .AND. a .ne. 0.0D0 ) THEN if ( ibrav .eq. 0 ) ibrav = 14 celldm(1) = a / bohr celldm(2) = b / a celldm(3) = c / a celldm(4) = cosab celldm(5) = cosac celldm(6) = cosbc else if ( celldm(1) .ne. 0.0D0 .AND. a .ne. 0.0D0 ) THEN print *, 'ERROR: do not specify both celldm and a,b,c !!!' endif ! ! read the rest of the input ! 990 continue read(5,'(a120)',end=999) line len = string_length(line) ! ! ! CELL_PARAMETERS ! if ( line(1:15) .eq. 'CELL_PARAMETERS' ) then read (5,*) ((pv(i,j),i=1,3),j=1,3) do j=1,3 do i=1,3 cv(i,j) = pv(i,j) end do end do ! ! ATOMIC_POSITIONS ! elseif ( line(1:16) .eq. 'ATOMIC_POSITIONS' ) then ! find out the length-unit line = line(17:len) len = string_length(line) atomic_posunit = ALAT_UNIT if (len.gt.0 ) then if ( matches('ALAT',line) ) then atomic_posunit = ALAT_UNIT elseif ( matches('BOHR',line) ) then atomic_posunit = BOHR_UNIT elseif ( matches('CRYSTAL',line) ) then atomic_posunit = CRYSTAL_UNIT elseif ( matches('ANGSTROM',line) ) then atomic_posunit = ANGSTROM_UNIT endif endif ! ! ! read atoms ! if ( (calculation(1:3) .ne. 'NEB') .and. & & (calculation(1:3) .ne. 'SMD') ) then iim = 1 call read_atoms(nat,atm(1,1),tau(1,1,1)) else ! ! path calculation (NEB or SMD): read atoms ! iim = 0 last_image = .false. do while(.not.last_image) iim = iim + 1 read (5,'(a120)') line ! line: first_image if ( matches('LAST_IMAGE',line) ) last_image = .true. call read_atoms(nat,atm(1,iim),tau(1,1,iim)) enddo endif endif inp_num_of_images = iim goto 990 ! 999 continue ! if ( celldm(1).eq.0.0d0 ) then print *,'ERROR while reading INPUT: celldm(1)==0.0d0 !!!' STOP endif ! ! if ( ibrav.ne.0 ) then call latgen( ibrav, celldm, & & pv(1,1), pv(1,2), pv(1,3), & & cv(1,1), cv(1,2), cv(1,3), omega ) do j=1,3 do i=1,3 pv(i,j) = pv(i,j)/celldm(1) end do end do call latgen_conventional(ibrav, celldm, & & pv(1,1), pv(1,2), pv(1,3), & & cv(1,1), cv(1,2), cv(1,3)) endif ! alat = bohr*celldm(1) call write_XSF_header (num_of_images,alat, pv, cv, nat, ounit) ! ! coordinates to ANGSTROMs ! do iim=1,inp_num_of_images do inat=1,nat if ( atomic_posunit .eq. BOHR_UNIT ) then tau(1,inat,iim) = bohr * tau(1,inat,iim) tau(2,inat,iim) = bohr * tau(2,inat,iim) tau(3,inat,iim) = bohr * tau(3,inat,iim) ! elseif ( atomic_posunit .eq. ALAT_UNIT ) then tau(1,inat,iim) = alat * tau(1,inat,iim) tau(2,inat,iim) = alat * tau(2,inat,iim) tau(3,inat,iim) = alat * tau(3,inat,iim) ! elseif ( atomic_posunit .eq. CRYSTAL_UNIT ) then call cryst_to_cart(1, tau(1,inat,iim), pv, 1) endif enddo enddo ! IF ( num_of_images .lt. 2 ) then ! write atoms for non-PATH calculation do inat=1,nat write(ounit,'(a3,2x,3f15.10)') atm(inat,1), & & tau(1,inat,1), tau(2,inat,1), tau(3,inat,1) enddo ! ELSE ! ! calculate intermediate images for PATH calculation ! old_total_dist = 0.0d0 old_dist(1) = 0.0d0 do iim = 2, inp_num_of_images old_dist(iim) = 0.0 do inat=1,nat dx = tau(1,inat,iim) - tau(1,inat,iim-1) dy = tau(2,inat,iim) - tau(2,inat,iim-1) dz = tau(3,inat,iim) - tau(3,inat,iim-1) old_dist(iim) = old_dist(iim) + dx*dx + dy*dy + dz*dz enddo old_dist(iim) = sqrt( old_dist(iim) ) ! old_total_dist = old_total_dist + old_dist(iim) old_dist(iim) = old_total_dist enddo ! new_dist = old_total_dist / dble(num_of_images-1) ! ! -------------------------------------------------- ! perform INTERPOLATION ! -------------------------------------------------- ! new_total_dist = 0.0 do iim=1,num_of_images-1 do iim_old=1,inp_num_of_images-1 if ( new_total_dist .ge. old_dist(iim_old) & & .and. & & new_total_dist .lt. old_dist(iim_old+1) + 1d-10 ) & & then ! w1 = ( old_dist(iim_old+1) - new_total_dist ) & & / & & ( old_dist(iim_old+1) - old_dist(iim_old) ) w2 = 1.0d0 - w1 ! write(ounit,'('' PRIMCOORD '',i5)') iim write(ounit,*) nat, 1 ! do inat=1,nat x = w1*tau(1,inat,iim_old)+w2*tau(1,inat,iim_old+1) y = w1*tau(2,inat,iim_old)+w2*tau(2,inat,iim_old+1) z = w1*tau(3,inat,iim_old)+w2*tau(3,inat,iim_old+1) write(ounit,'(a3,2x,3f15.10)') & & atm(inat,iim_old), x, y, z enddo goto 11 endif enddo 11 continue new_total_dist = new_total_dist + new_dist enddo ! ! print last image write(ounit,'('' PRIMCOORD '',i5)') iim write(ounit,*) nat, 1 do inat=1,nat x = tau(1,inat,inp_num_of_images) y = tau(2,inat,inp_num_of_images) z = tau(3,inat,inp_num_of_images) write(ounit,'(a3,2x,3f15.10)') & & atm(inat,inp_num_of_images), x, y, z enddo endif END ! ! ! !--------------------------------------------------------------------- subroutine latgen_conventional & & ( ibrav, celldm, p1, p2, p3, c1, c2, c3 ) ! Generate convetional lattice !--------------------------------------------------------------------- ! ! Conventional crystallographic vectors c1, c2, and c3. ! See "latgen" for the meaning of variables ! implicit none ! ! First the input variables ! real*8 & & celldm( 6 ), &! input : the dimensions of the lattice & p1( 3 ), &! input : first lattice vector (PRIMITIVE) & p2( 3 ), &! input : second lattice vector & p3( 3 ), &! input : third lattice vector & c1( 3 ), &! output: first lattice vector(CONVENTIONAL) & c2( 3 ), &! output: second lattice vector & c3( 3 ) ! output: third lattice vector integer & & ibrav ! input: the index of the Bravais lattice ! integer i ! ! do i = 1, 3 c1(i) =0.d0 c2(i) =0.d0 c3(i) =0.d0 end do ! if ( ibrav .eq. 2 .or. ibrav .eq.3 ) then ! ! fcc and bcc lattice ! c1( 1 ) = 1.0d0 c2( 2 ) = 1.0d0 c3( 3 ) = 1.0d0 ! else if ( ibrav .eq. 7 ) then ! ! body centered tetragonal lattice ! if ( celldm( 1 ) .le. 0.d0 .or. celldm( 3 ) .le. 0.d0 ) & & call errore( 'latgen', 'wrong celldm', 7 ) c1(1) = 1.0d0 c2(2) = 1.0d0 c3(3) = celldm(3) ! else if ( ibrav .eq. 10 ) then ! ! All face centered orthorombic lattice ! if ( celldm( 1 ) .le. 0.d0 .or. celldm( 2 ) .le. 0.d0 & & .or. celldm( 3 ) .le. 0.d0 ) & & call errore( 'latgen', 'wrong celldm', 10 ) c1(1) = 1.0d0 c2(2) = celldm(2) c3(3) = celldm(3) ! elseif ( ibrav .eq. 11 ) then ! ! Body centered orthorombic lattice ! if ( celldm( 1 ) .le. 0.d0 .or. celldm( 2 ) .le. 0.d0 & & .or. celldm( 3 ) .le. 0.d0 ) & & call errore( 'latgen', 'wrong celldm', 11 ) c1(1) = 1.0d0 c2(2) = celldm(2) c3(3) = celldm(3) else ! ********** ! all other cases : just copy p vectors to c vectors !!! ! ********** do i = 1, 3 c1( i ) = p1( i ) c2( i ) = p2( i ) c3( i ) = p3( i ) enddo end if ! return end ! ! ! ------------------------------------------------------------------------ subroutine read_atoms(nat,atm,coor) ! read atomic coordinates ! ------------------------------------------------------------------------ implicit none integer & & nat, &! number of atoms & ipol,inat,len, &! counters & string_length ! integer-function character & & line*120 ! line of input character*3 & & atm(*) ! atomic symbols real*8 & & coor(3,*) ! do inat=1,nat 10 continue read (5,'(a120)') line len = string_length(line) ! if (len.eq.0) then ! an empty line, read again goto 10 endif ! read (line,*) atm(inat),(coor(ipol,inat),ipol=1,3) enddo return end ! ! ! ------------------------------------------------------------------------ subroutine write_XSF_header (num_of_images,alat, p, c, nat, ounit) ! writes the header for XSF structure file ! ------------------------------------------------------------------------ real*8 & & alat, &! lattice parameter & p(3,3), c(3,3), &! lattive vectors (PRIMITIVE & CONVETIONAL) & p1(3,3), c1(3,3) ! lattive vectors in ANGSTROMS unit integer & & nat, &! number of atoms & num_of_images, &! number of NEB images & ounit ! output unit integer & & i, j ! dummies ! do i=1,3 do j=1,3 p1(i,j) = alat*p(i,j) c1(i,j) = alat*c(i,j) enddo enddo ! if (num_of_images .gt. 1) & & write(ounit,'('' ANIMSTEPS '',i5)') num_of_images ! write(ounit,'('' CRYSTAL'')') write(ounit,'(/,'' PRIMVEC'')') write(ounit,'(3(f15.10,2x,f15.10,2x,f15.10,/))') & & ((p1(i,j),i=1,3),j=1,3) write(ounit,'('' CONVVEC'')') write(ounit,'(3(f15.10,2x,f15.10,2x,f15.10,/))') & & ((c1(i,j),i=1,3),j=1,3) if (num_of_images .eq. 1) then write(ounit,'('' PRIMCOORD'')') write(ounit,*) nat, 1 endif return end ! ! ---------------------------------------------------------------- INTEGER function string_length(word) ! trims the string from both sides and returns its trimmed length ! ---------------------------------------------------------------- CHARACTER word*(*) word = adjustl(word) string_length = len_trim(word) RETURN END ! ! ! ----------------------------------------------------------------------- logical function matches (str1, str2) ! .true. if str1 is contained in str2, .false. otherwise ! This function is taken from PWscf package (www.pwscf.org). ! ----------------------------------------------------------------------- implicit none character str1*(*), str2*(*) integer len1, len2, l ! len1 = len(str1) len2 = len(str2) do l = 1, len2 - len1 + 1 if ( str1(1:len1) .eq. str2(l:l + len1 - 1) ) then matches = .true. return endif enddo matches = .false. return end espresso-5.1/PW/tools/castep2qe.sh0000755000175000017500000000665212341373023015225 0ustar mbamba! ! Copyright (C) 2012 Carlo Nervi ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #!/bin/bash if [ $# != 1 ]; then printf "Usage: castep2qe.sh File (.cell extension not required!)\n Requires File.cell\n" exit fi if [ ! -f $1.cell ]; then echo "Error. Cannot find file $1.cell" exit fi # # 1 Bohr = 0.529177249 Angstrom # awk -v FILE="$1" ' BEGIN {bohr = 0.52917720859;} /%BLOCK LATTICE_CART/ { for (i=0; i<3; i++) { getline; cell_px[i] = $1; cell_py[i] = $2; cell_pz[i] = $3; } } /%BLOCK POSITIONS_FRAC/ { natom=0; getline; do { frac[natom++] = $0; getline; } while ($0 !~ /%ENDBLOCK POSITIONS_FRAC/) } /%BLOCK KPOINTS_LIST/ { nks=0; getline; do { kpout[nks++] = sprintf (" %19.15f %19.15f %19.15f %19.15f", $1, $2, $3, $4); getline; } while ($0 !~ /%ENDBLOCK KPOINTS_LIST/) } /%BLOCK SPECIES_MASS/ { nspec=0; getline; do { species_symb[nspec] = $1; species_mass[nspec] = $2; nspec++; getline; } while ($0 !~ /%ENDBLOCK SPECIES_MASS/) } /%BLOCK SPECIES_POT/ { npot=0; getline; do { pot_symb[npot] = $1; pot_ps[npot] = $2; npot++; getline; } while ($0 !~ /%ENDBLOCK SPECIES_POT/) } END { print "&CONTROL" print " title = \x027" FILE "\x027" print " calculation = \x027" "relax\x027" print " restart_mode = \x027" "from_scratch\x027" print " outdir = \x27" "./1\x027" print " pseudo_dir = \x027" "../PP/atompaw\x027" print " prefix = \x027" FILE "\x027" print " disk_io = \x027" "none\x027" print " verbosity = \x027" "default\x027" print " etot_conv_thr = 0.00001" print " forc_conv_thr = 0.0001" print " nstep = 680" print " tstress = .true." print " tprnfor = .true." print " /" print " &SYSTEM" print " ibrav = 0" print " nat = " natom print " ntyp = " nspec print " ecutwfc = 60" print " ecutrho = 600" print "! london = .true." print " /" print " &ELECTRONS" print " electron_maxstep = 200" print " conv_thr = 1.0D-7" print " diago_thr_init = 1e-4" print " startingpot = \x027" "atomic\x027" print " startingwfc = \x027" "atomic\x027" print " mixing_mode = \x027" "plain\x027" print " mixing_beta = 0.5" print " mixing_ndim = 8" print " diagonalization = \x027" "david\x027" print " /" print "&IONS" print " ion_dynamics = \x027" "bfgs\x027" print " /" print "\n" print "ATOMIC_SPECIES" if (npot != nspec) { print "Error; npot [" npot "] != nspec [" nspec "]" exit; } for (i=0; i< npot; i++) printf " %3s %14.10f %s\n", species_symb[i], species_mass[i], pot_ps[i]; print "\nATOMIC_POSITIONS crystal" for (i=0; i< natom; i++) print frac[i]; print "\nK_POINTS crystal" print nks; for (i=0; i> ' read(*,*) ibrav ! write(*,'(5x,a,$)') 'filout [mesh_k] >> ' read(*,'(a)') filout if (filout.eq.' ') filout='mesh_k' open(unit=1,file=filout,status='unknown') open(unit=2,file='info',status='unknown') ! if(ibrav.eq.4 .or. ibrav.gt.5) then write(*,'(5x,a,$)') 'enter celldm(3) >> ' read(*,*) celldm(3) end if if(ibrav.ge.8) then write(*,'(5x,a,$)') 'enter celldm(2) >> ' read(*,*) celldm(2) end if if(ibrav.eq.5 .or. ibrav.ge.12) then write(*,'(5x,a,$)') 'enter celldm(4) >> ' read(*,*) celldm(4) end if if(ibrav.eq.14) then write(*,'(5x,a)') 'enter celldm(5) >> cos(ac)' write(*,'(5x,a,$)') 'enter celldm(5) >> ' read(*,*) celldm(5) write(*,'(5x,a)') 'enter celldm(6) >> cos(ab)' write(*,'(5x,a,$)') 'enter celldm(6) >> ' read(*,*) celldm(6) end if ! write(*,'(5x,a,$)') 'mesh: n1 n2 n3 >> ' read(*,*) nmax nptot=nmax(1)*nmax(2)*nmax(3) if(nptot.gt.nptx) then write(*,'(5x,i6)') nptx call errore('kpoints','nptx too small for this mesh',1) endif write(*,'(5x,a,$)') 'mesh: k1 k2 k3 (0 no shift, 1 shifted) >> ' read(*,*) nshift(1), nshift(2), nshift(3) ! write(*,'(5x,a,$)') 'write all k? [f] >> ' read(*,'(a1)') answer aflag= answer.eq.'t'.or.answer.eq.'T' .or. & answer.eq.'y'.or.answer.eq.'Y' .or. & answer.eq.'1' ! call latgen(ibrav,celldm,at(1,1),at(1,2),at(1,3),omega) ! ! normalize at to celldm(1) ( a0 for cubic lattices ) ! do i = 1, 3 at( i, 1 ) = at( i, 1 ) / celldm( 1 ) at( i, 2 ) = at( i, 2 ) / celldm( 1 ) at( i, 3 ) = at( i, 3 ) / celldm( 1 ) enddo ! call recips(at(1,1),at(1,2),at(1,3),bg(1,1),bg(1,2),bg(1,3)) ! write(2,'(2x,''crystal axis: ''/3(2x,''('',3f7.4,'') ''/) )') & ((at(i,j), i=1,3), j=1,3) write(2,'(2x,''reciprocal axis: ''/3(2x,''('',3f7.4,'') ''/) )') & ((bg(i,j), i=1,3), j=1,3) write(2,*)' Omega (in a^3 units) = ',omega ! !....................................................................... ! call set_sym_bl ( ) ! write(2,'(//,1x,i3,2x,a19)') nrot,'symmetry operations' do n6=0,(nrot-1)/6 nf=min(nrot-6*n6,6) write(2,'(1x)') do i=1,3 write(2,'(6(3i3,2x))') ((s(i,j,n6*6+n), j=1,3), n=1,nf) end do end do ! sflag=.false. do i=1,3 ! shifted grid if(nshift(i).eq.1) then nshift(i)=2 nmax(i)=nshift(i)*nmax(i) nstart(i)=1 sflag=.true. else ! unshifted grid nstart(i)=0 nshift(i)=1 end if enddo ! n=0 do n3=nstart(3),nmax(3)-1,nshift(3) do n2=nstart(2),nmax(2)-1,nshift(2) do n1=nstart(1),nmax(1)-1,nshift(1) n=n+1 k(1,n)=n1 k(2,n)=n2 k(3,n)=n3 kw(n)=1 ieq(n)=0 call check(n,k,kw,ieq,s,nrot,nmax) enddo enddo enddo ! nk=0 write(2,'(/)') do j=1,n if(kw(j).gt.0.or.aflag) then nk=nk+1 xkw(nk)=kw(j) do l=1,3 xk(l,nk)=0.d0 do i=1,3 xk(l,nk)=xk(l,nk)+k(i,j)*bg(l,i)/nmax(i) enddo end do write(2,2) j,k(1,j),k(2,j),k(3,j),kw(j),ieq(j) 2 format(' k(',i3,')=( ',i2,' ',i2,' ',i2,' ) --- weight=', & i3,' |folds in point #',i3) endif enddo ! write(*,'(/5x,a,$)') '# of k-points == ' write(*,'(i5,a5,i5)') nk,' of ',n write(*,'(2x)') ! write(1,'(i5)') nk do j=1,nk if(aflag.and.kw(j).eq.0) then write(1,'(i5,1x,3f11.7,f7.2,i4)') j,(xk(l,j),l=1,3),xkw(j),ieq(j) else write(1,'(i5,1x,3f11.7,f7.2)') j,(xk(l,j),l=1,3),xkw(j) end if end do ! if(.not.sflag.and.kw(1).ne.1) then write(*,'(5x,a)') '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' write(*,'(5x,a)') '!the considered mesh has not the correct symmetry!!' write(*,'(5x,a/)') '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!' endif ! close(unit=1) close(unit=2) ! end program special_points ! !----------------------------------------------------------------------- subroutine check(n,k,kw,ieq,s,nrot,nmax) !----------------------------------------------------------------------- ! integer k(3,n),kw(n), s(3,3,nrot),kr(3),ieq(n),nmax(3) logical flag ! irot=1 flag=.true. do while(irot.le.nrot.and.flag) kr(1)=0 kr(2)=0 kr(3)=0 call ruotaijk ( s(1,1,irot),k(1,n),k(2,n),k(3,n),kr(1),kr(2),kr(3) ) do j=1,3 do while(kr(j).ge.nmax(j)) kr(j)=kr(j)-nmax(j) enddo do while(kr(j).le.-1) kr(j)=kr(j)+nmax(j) enddo enddo np=1 do while(flag.and.np.le.n-1) if( kr(1).eq.k(1,np) .and. & kr(2).eq.k(2,np) .and. & kr(3).eq.k(3,np) ) then kw(n)=0 naux =np do while(kw(naux).eq.0) naux=ieq(naux) enddo ieq(n)=naux kw(naux)=kw(naux)+1 flag=.false. endif np=np+1 enddo irot=irot+1 enddo ! return end subroutine check ! !----------------------------------------------------------------------- subroutine ruotaijk(s,i,j,k,ri,rj,rk) !----------------------------------------------------------------------- ! implicit real*8 (a-h, o-z) integer s(3,3),i,j,k,ri,rj,rk ! ri=s(1,1)*i+s(1,2)*j+s(1,3)*k rj=s(2,1)*i+s(2,2)*j+s(2,3)*k rk=s(3,1)*i+s(3,2)*j+s(3,3)*k ! return end subroutine ruotaijk espresso-5.1/PW/tools/md_analyzer.sh0000755000175000017500000000527312341373023015641 0ustar mbamba#!/bin/bash --noprofile ################################################################################ ## Copyright (C) 2004 Guido Fratesi. ## ## This file is distributed under the terms ## ## of the GNU General Public License. ## ## See http://www.gnu.org/copyleft/gpl.txt . ## ## ## ## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, ## ## EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ## ## MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ## ## NONINFRINGEMENT. IN NO EVENT SHALL GUIDO FRATESI BE LIABLE FOR ANY ## ## CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, ## ## TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE ## ## SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ## ################################################################################ # # script modified by Carlo Sbraccia # if [ -z $1 ] || [ ! -e $1 ]; then # echo "which file? usage:"; echo "md_analyzer [step_low step_high]"; exit; # fi # user=$( whoami ) # file=$1 fileout=/tmp/$file.dat # if [ -n $3 ]; then lra=$2; hra=$3; else lra="1"; hra="*"; fi # # while [ 1 -le 2 ]; do # awk 'BEGIN{ start = 1 } \ ( $1 == "!" ) { if ( start == 1 ) { epot0 = $5 } \ epot = $5 - epot0 } \ /kinetic energy/ { if ( start == 1 ) { ekin0 = $5 } \ ekin = $5 - ekin0; getline ; \ temp = $3; getline ; \ if ( start == 1 ) { etot0 = $6 } \ etot = $6 - etot0 ; \ if ( start == 1 ) { start = 0 } \ printf "%3i %16.10f %16.10f %16.10f %8.3f\n", \ ++it, etot, ekin, epot, temp }' $file > $fileout # kill $( ps -u $user | grep gnuplot_x11 | awk '{print $1}' ) &> /dev/null # #for term in X11 post; do # cat << EOF | gnuplot -persist #set term $term #set out '/tmp/$file.ps' set da s l set xra [$lra:$hra] set lmargin 10 set origin 0,0; set size 1,1 set multiplot set origin 0,0; set size 1,0.3 plot '$fileout' u 1:2 t "Etot" unset xlabel set origin 0,0.3; set size 1,0.4 plot '$fileout' u 1:2 t "Etot", '$fileout' u 1:3 t "Ekin", \ '$fileout' u 1:4 t "Epot" set origin 0,0.7; set size 1,0.3 set title 'MD - $file' plot '$fileout' u 1:5 t "T" set nomultiplot #reread EOF # #done # # sleep 5 # # done espresso-5.1/PW/tools/bs.awk0000644000175000017500000000375712341373023014112 0ustar mbambaBEGIN {nr=0; nrs=0; nat=0; nstep=0; print "* XBS file created by pawk.bs "; print ""; print "" print "* the following are AUXILIARY lines defining the bonds as " print "* bonds spec1 spec2 dmin dmax bondthickness grayscale (white==1.0)" print "* " print "* bonds S H 0.1 0.6 0.0500 1.0" print "" } { if ($3=="atoms/cell" && nr==0) {nat=$5}; if ($1=="lattice" && $2=="parameter" && nr==0 ) {alat= $5*0.529177} if ($1=="a(1)" && nr==0) \ {print"* it might be useful to duplicate as follows" ; print "* dup ",$4*alat,$5*alat,$6*alat} if ($1=="a(2)" && nr==0) {print "* dup ",$4*alat,$5*alat,$6*alat} if ($1=="a(3)" && nr==0) {print "* dup ",$4*alat,$5*alat,$6*alat; print " "} if ($1=="atomic" && $2=="species" && nrs==0 ) \ {nrs=NR+nat+1 print "* the following are MANDATORY lines defining the atomic species as" print "* spec name radius grayscale (white==1.0) " print "* "} if (NR<=nrs) {if (NF==0) {print ""; nrs=-1} if (NF>0 && $1!="atomic") \ printf ( "spec %2s %6.2f %4.2f \n", \ $1, 0.4, 1.0/$2 ) } if ($1=="site" && nr==0 ) \ {nr=NR print "* the following are MANDATORY lines defining the atomic positions" print "* atom name x y z dummyinteger" print "* "} if (NR-nr>0 && NR-nr<=nat && nr>0) \ printf ( "atom %2s %10.7f %10.7f %10.7f %3d \n", \ $2, $(NF-3)*alat, $(NF-2)*alat, $(NF-1)*alat, $1) } END{ print "" #print "* the following are AUXILIARY lines defining the bonds as " #print "* bonds spec1 spec2 dmin dmax bondthickness grayscale (white==1.0)" #print "* " #print "* bonds S H 0.1 0.6 0.0500 1.0" print "" print "tmat 0.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000" print "" print "dist 50.000" print "inc 1.000" print "scale 50.000" print "rfac 1.00" print "bfac 1.00" print "pos -10.000 -100.00" print "switches 1 0 1 0 0 1 1 0 0" } espresso-5.1/PW/tools/Makefile0000644000175000017500000000322512341373023014430 0ustar mbamba# Makefile for tools include ../../make.sys # location of needed modules MODFLAGS= $(MOD_FLAG)../../iotk/src $(MOD_FLAG)../../Modules \ $(MOD_FLAG)../src $(MOD_FLAG). PWOBJS = ../src/libpw.a QEMODS = ../../Modules/libqemod.a TLDEPS= bindir mods libs pw LIBOBJS = ../../flib/ptools.a ../../flib/flib.a ../../clib/clib.a ../../iotk/src/libiotk.a all : tldeps band_plot.x dist.x ev.x kpoints.x \ pwi2xsf.x bands_FS.x kvecs_FS.x band_plot.x : band_plot.o $(LD) $(LDFLAGS) -o $@ band_plot.o - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) dist.x : dist.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ dist.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) ev.x : ev.o ev_xml.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ ev.o ev_xml.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) kpoints.x : kpoints.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ kpoints.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) pwi2xsf.x : pwi2xsf.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o $@ \ pwi2xsf.o $(PWOBJS) $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) # Isaev bands_FS.x : bands_FS.o $(LD) $(LDFLAGS) -o $@ bands_FS.o $(LIBS) - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) kvecs_FS.x : kvecs_FS.o $(LD) $(LDFLAGS) -o $@ kvecs_FS.o $(LIBS) - ( cd ../../bin ; ln -fs ../PW/tools/$@ . ) tldeps: if test -n "$(TLDEPS)" ; then \ ( cd ../.. ; $(MAKE) $(TLDEPS) || exit 1 ) ; fi clean : - /bin/rm -f pwi2xsf pwi2xsf_old *.x *.o *~ *.F90 *.mod *.d *.i *.L include make.depend espresso-5.1/PW/tools/ev_xml.f900000644000175000017500000000717112341373023014606 0ustar mbamba! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE ev_xml ! ! This module contains routines to write the information obtained by the ! ev.x program in an xml file. ! USE iotk_module ! USE kinds, ONLY : DP IMPLICIT NONE ! SAVE ! PRIVATE ! PUBLIC :: write_evdata_xml INTEGER :: iunout ! CONTAINS !----------------------------------------------------------------------- SUBROUTINE write_evdata_xml & (npt,fac,v0,etot,efit,istat,par,npar,emin,chisq,filout, ierr) !----------------------------------------------------------------------- ! USE constants, ONLY : ry_kbar, bohr_radius_angs IMPLICIT NONE INTEGER, INTENT(in) :: npt, istat, npar REAL(DP), INTENT(in):: v0(npt), etot(npt), efit(npt), emin, chisq, fac REAL(DP), INTENT(in):: par(npar) CHARACTER(len=256), INTENT(IN) :: filout INTEGER, INTENT(out) :: ierr ! REAL(DP) :: p(npt), volume(2), a0(2), alldata(6,npt) INTEGER :: i CHARACTER(len=256) :: filename REAL(DP), EXTERNAL :: birch, keane IF (filout/=' ') THEN filename = TRIM(filout) // '.xml' ELSE filename = 'ev.xml' ENDIF ierr=0 CALL iotk_free_unit( iunout, ierr ) IF ( ierr /= 0 ) THEN ierr = 11 RETURN END IF ! ! ... open XML descriptor ! CALL iotk_open_write( iunout, FILE = TRIM( filename ), & BINARY = .FALSE., IERR = ierr ) IF ( ierr /= 0 ) THEN ierr = 12 RETURN END IF CALL iotk_write_begin(iunout, "EQUATIONS_OF_STATE" ) IF (istat==1) THEN CALL iotk_write_dat(iunout, "EQUATION_TYPE", "Birch 1st order") ELSEIF (istat==2) THEN CALL iotk_write_dat(iunout, "EQUATION_TYPE", "Birch 2nd order") ELSEIF (istat==3) THEN CALL iotk_write_dat(iunout, "EQUATION_TYPE", "Keane") ELSEIF (istat==4) THEN CALL iotk_write_dat(iunout, "EQUATION_TYPE", "Murnaghan") ENDIF CALL iotk_write_dat(iunout, "CHI_SQUARE", chisq) CALL iotk_write_end(iunout, "EQUATIONS_OF_STATE" ) IF (istat==1 .or. istat==2) THEN DO i=1,npt p(i)=birch(v0(i)/par(1),par(2),par(3),par(4)) ENDDO ELSE DO i=1,npt p(i)=keane(v0(i)/par(1),par(2),par(3),par(4)) ENDDO ENDIF DO i=1,npt alldata (1,i) = v0(i) alldata (2,i) = etot(i) alldata (3,i) = efit(i) alldata (4,i) = etot(i) - efit(i) alldata (5,i) = p(i) alldata (6,i) = etot(i) + p(i) * v0(i) / ry_kbar ENDDO CALL iotk_write_begin(iunout, "EQUATIONS_PARAMETERS" ) volume(1)=par(1) volume(2)=par(1)*bohr_radius_angs**3 CALL iotk_write_dat(iunout, "EQUILIBRIUM_VOLUME_AU_A", volume(:), COLUMNS=2 ) CALL iotk_write_dat(iunout, "BULK_MODULUS_KBAR", par(2)) CALL iotk_write_dat(iunout, "DERIVATIVE_BULK_MODULUS", par(3)) CALL iotk_write_dat(iunout, "SECOND_DERIVATIVE_BULK_MODULUS", par(4)) CALL iotk_write_dat(iunout, "MINIMUM_ENERGY_RY", emin) CALL iotk_write_dat(iunout, "CELL_FACTOR", fac) IF (fac /= 0.0_DP) THEN a0(1) = (par(1)/fac)**(1d0/3d0) a0(2) = (par(1)/fac)**(1d0/3d0) * bohr_radius_angs CALL iotk_write_dat(iunout, "CELL_PARAMETER_AU_A", a0, COLUMNS=2 ) ENDIF CALL iotk_write_end(iunout, "EQUATIONS_PARAMETERS" ) CALL iotk_write_begin(iunout, "FIT_CHECK" ) CALL iotk_write_dat(iunout, "NUMBER_OF_DATA", npt ) CALL iotk_write_dat(iunout, "VOL_ENE_EFIT_DELTA_P_GIBBS", & alldata(:,:), COLUMNS=6 ) CALL iotk_write_end(iunout, "FIT_CHECK" ) CALL iotk_close_write( iunout ) RETURN END SUBROUTINE write_evdata_xml ! END MODULE ev_xml espresso-5.1/PW/tools/dist.f900000755000175000017500000001602512341373023014260 0ustar mbamba! ! Copyright (C) 2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- PROGRAM dist !---------------------------------------------------------------------- ! ! find distances, nearest neighbors, angles ! taking into account periodicity ! ! Same input file as in pw.x or cp.x ! USE environment, ONLY : environment_start USE mp_global, ONLY : mp_startup USE mp_world, ONLY : nproc USE read_input, ONLY : read_input_file USE command_line_options, ONLY: input_file_ ! IMPLICIT NONE INTEGER :: exit_status = 0 ! CALL mp_startup ( ) CALL environment_start ( 'DIST' ) IF ( nproc > 1 ) CALL errore ('dist','run on a single process!',1) ! CALL read_input_file ('PW', input_file_ ) ! ... convert to internal variables CALL iosys() ! CALL run_dist ( ) ! ! CALL stop_run( exit_status ) CALL do_stop( exit_status ) ! STOP ! END PROGRAM dist !---------------------------------------------------------------------- SUBROUTINE run_dist ( ) !---------------------------------------------------------------------- ! USE kinds, ONLY : dp USE constants, ONLY : pi, bohr_radius_angs USE cell_base, ONLY : at, bg, alat USE ions_base, ONLY : atm, nat, ityp, tau, nsp USE io_global, ONLY : stdout ! IMPLICIT NONE ! integer, parameter:: ounit=4, ndistx=1000, nn=4 real(dp), parameter:: dmin=0.01_dp, dmax=3.0_dp integer :: nsp1, nsp2, na, nb, n, nd, nn1, nn2, nn3, i integer :: atom1(ndistx), atom2(ndistx), idx(ndistx), ndist character(len=3 ) :: atm1, atm2 character(len=80) :: filename, line character(len=1) :: other_cell(ndistx) real(dp) :: d(ndistx) real(dp) :: dr(3), dd, dn1, dn2, dn3, scalef, arg real(dp) :: angolo(nn*(nn-1)/2), drv(3), drn(3,nn), temp, rtemp(3) ! write(stdout,'(/,5x,"Output written to file dist.out")') ! scalef=bohr_radius_angs*alat ! ndist=0 do na=1,nat do nb=na+1,nat dr(:) = (tau(1,na)-tau(1,nb))*bg(1,:) + & (tau(2,na)-tau(2,nb))*bg(2,:) + & (tau(3,na)-tau(3,nb))*bg(3,:) do nn1=-1,1 dn1=dr(1)-nn1 do nn2=-1,1 dn2=dr(2)-nn2 do nn3=-1,1 dn3=dr(3)-nn3 dd = scalef * sqrt( & ( dn1*at(1,1)+dn2*at(1,2)+dn3*at(1,3) )**2 + & ( dn1*at(2,1)+dn2*at(2,2)+dn3*at(2,3) )**2 + & ( dn1*at(3,1)+dn2*at(3,2)+dn3*at(3,3) )**2 ) if (dd < dmin) then if (nn1==0 .and. nn2==0 .and. nn3==0) then write(stdout,60) na,nb else write(stdout,61) na,nb end if return else if (dd < dmax) then ndist=ndist+1 if (ndist > ndistx) then write(stdout,62) ndistx, dmax go to 20 end if atom1(ndist)=na atom2(ndist)=nb d(ndist)= dd if (nn1==0 .and. nn2==0 .and. nn3==0) then other_cell(ndist)=' ' else other_cell(ndist)='*' end if end if end do end do end do end do end do 20 continue ! idx(1)=0.0 if (ndist.gt.0) call hpsort(ndist,d,idx) ! open(unit=ounit,file='dist.out',status='unknown',form='formatted') write(ounit,50) dmax ! do nd=1,ndist na=atom1(idx(nd)) nb=atom2(idx(nd)) atm1=trim(atm(ityp(na))) atm2=trim(atm(ityp(nb))) write(ounit,200) na,nb,adjustr(atm1),atm2,d(nd), other_cell(idx(nd)) end do ! write(ounit,70) nn ! ! look for nearest neighbors ! do na=1,nat ! ! ndist keeps tracks of how many neighbors have been found ! ndist=0 do nd=1,nn d(nd)=100000.0 drn(:,nd)=0.0 end do do nb=1,nat dr(:)=(tau(1,na)-tau(1,nb))*bg(1,:) + & (tau(2,na)-tau(2,nb))*bg(2,:) + & (tau(3,na)-tau(3,nb))*bg(3,:) do nn1=-1,1 dn1=dr(1)-nn1 do nn2=-1,1 dn2=dr(2)-nn2 do nn3=-1,1 dn3=dr(3)-nn3 dd = scalef* sqrt( & ( dn1*at(1,1)+dn2*at(1,2)+dn3*at(1,3) )**2 + & ( dn1*at(2,1)+dn2*at(2,2)+dn3*at(2,3) )**2 + & ( dn1*at(3,1)+dn2*at(3,2)+dn3*at(3,3) )**2 ) drv(:) = tau(:,na)-tau(:,nb) - & (nn1*at(:,1)+nn2*at(:,2)+nn3*at(:,3)) ! ! the "first" neighbor is the atom itself ! if (dd.gt.0.01) then ! straight insertion: look for first nn neighbors do nd=1,nn if (dd.lt.d(nd)) then ! swap d(nd) with dd temp = d(nd) d(nd)= dd dd = temp ! do the same for delta r rtemp(:) = drn(:,nd) drn(:,nd) = drv(:) drv(:) = rtemp(:) ! ndist=min(ndist+1,nn) end if end do end if end do end do end do end do ! if (ndist.ne.nn) call errore ('dist','internal error',1) ! ! calculate angles with nearest neighbors ! nd=0 do nn1=1,nn do nn2=nn1+1,nn nd=nd+1 arg = scalef**2 * ( drn(1,nn1)*drn(1,nn2) + & drn(2,nn1)*drn(2,nn2) + & drn(3,nn1)*drn(3,nn2) ) / d(nn1) / d(nn2) if(abs(arg)>1.d0) arg = sign(1.d0, arg) angolo(nd) = 360/(2*pi) * acos ( arg ) end do end do if (nd.ne.nn*(nn-1)/2) call errore('dist','internal err.',2) ! ! dd is the distance from the origin ! dd = sqrt(tau(1,na)**2 + tau(2,na)**2 + tau(3,na)**2)*scalef write(ounit,250) na, atm(ityp(na)), (d(nn1),nn1=1,nn) write(ounit,300) dd, (angolo(nn1),nn1=1,nn*(nn-1)/2) end do ! return ! 50 format('Distances between atoms, up to dmax=',f6.2,' A (* = with lattice translation)',/,' #1 #2 bond d') 60 format(/,80('*'),/,' Fatal error: atom',i4,' and',i4,' overlap',/,80('*')) 61 format(/,80('*'),/,' Fatal error: atom',i4,' and',i4,' overlap (with lattice translation)',/,80('*')) 62 format(/,80('*'),/,' Serious warning: more than',i4,' distances smaller than',f6.2,' A found',/,80('*')) 70 format(/,'Nearest neighbors for each atom (up to ',i1,')',/) 200 format(2i4,a4,'-',a3,f10.5,' A ',a1) 250 format(' atom ',i3,' species ',a3,': neighbors at ',4f8.3,' A') 300 format(9x,'d(center):',f6.3,' A angles :',6f8.1) ! end subroutine run_dist espresso-5.1/PW/tools/make.depend0000644000175000017500000000145612341373023015072 0ustar mbambadist.o : ../../Modules/cell_base.o dist.o : ../../Modules/command_line_options.o dist.o : ../../Modules/constants.o dist.o : ../../Modules/environment.o dist.o : ../../Modules/io_global.o dist.o : ../../Modules/ions_base.o dist.o : ../../Modules/kind.o dist.o : ../../Modules/mp_global.o dist.o : ../../Modules/mp_world.o dist.o : ../../Modules/read_input.o ev.o : ../../Modules/constants.o ev.o : ../../Modules/io_global.o ev.o : ../../Modules/kind.o ev.o : ../../Modules/mp.o ev.o : ../../Modules/mp_global.o ev.o : ../../Modules/mp_world.o ev.o : ../../Modules/random_numbers.o ev.o : ev_xml.o ev_xml.o : ../../Modules/constants.o ev_xml.o : ../../Modules/kind.o ev_xml.o : ../../iotk/src/iotk_module.o kpoints.o : ../../Modules/cell_base.o kpoints.o : ../../Modules/kind.o kpoints.o : ../../PW/src/symm_base.o espresso-5.1/PW/tests/0000755000175000017500000000000012341373041012770 5ustar mbambaespresso-5.1/PW/tests/lattice-ibrav2.ref0000644000175000017500000001721112341373024016301 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav2.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 85 4279 4279 531 Tot 175 175 43 bravais-lattice index = 2 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 250.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 2140 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.00 Mb ( 266, 1) NL pseudopotentials 0.00 Mb ( 266, 0) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.02 Mb ( 2140) G-vector shells 0.00 Mb ( 86) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.01 Mb ( 266, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 9.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -2.31891495 Ry Harris-Foulkes estimate = -2.35513160 Ry estimated scf accuracy < 0.07406758 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.70E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -2.32783365 Ry Harris-Foulkes estimate = -2.32773350 Ry estimated scf accuracy < 0.00022630 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-05, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -2.32784761 Ry Harris-Foulkes estimate = -2.32783697 Ry estimated scf accuracy < 0.00002370 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 266 PWs) bands (ev): -11.0137 ! total energy = -2.32784807 Ry Harris-Foulkes estimate = -2.32784810 Ry estimated scf accuracy < 0.00000007 Ry The total energy is the sum of the following terms: one-electron contribution = -1.59974768 Ry hartree contribution = 0.78967829 Ry xc contribution = -1.22459939 Ry ewald contribution = -0.29317930 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.02s CPU 0.02s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.00s CPU 0.00s WALL ( 4 calls) sum_band : 0.00s CPU 0.00s WALL ( 4 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 5 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: regterg : 0.00s CPU 0.00s WALL ( 4 calls) Called by *egterg: h_psi : 0.00s CPU 0.00s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.00s CPU 0.00s WALL ( 19 calls) fftw : 0.00s CPU 0.00s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.08s CPU 0.08s WALL This run was terminated on: 10:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav1.ref0000644000175000017500000001761312341373024016306 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:20 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav1.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 793 793 193 16879 16879 2103 Tot 397 397 97 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 8440 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1052, 1) NL pseudopotentials 0.00 Mb ( 1052, 0) Each V/rho on FFT grid 0.50 Mb ( 32768) Each G-vector array 0.06 Mb ( 8440) G-vector shells 0.00 Mb ( 213) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 1052, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 4.00 Mb ( 32768, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000288 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.288E-03 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.579E-04 0.000E+00 total cpu time spent up to now is 0.0 secs total energy = -2.22236352 Ry Harris-Foulkes estimate = -2.29105276 Ry estimated scf accuracy < 0.13075141 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.54E-03, avg # of iterations = 1.0 negative rho (up, down): 0.443E-05 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23377840 Ry Harris-Foulkes estimate = -2.23412533 Ry estimated scf accuracy < 0.00079816 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.99E-05, avg # of iterations = 2.0 negative rho (up, down): 0.148E-07 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23423490 Ry Harris-Foulkes estimate = -2.23423709 Ry estimated scf accuracy < 0.00002120 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -10.2460 ! total energy = -2.23423691 Ry Harris-Foulkes estimate = -2.23423618 Ry estimated scf accuracy < 0.00000074 Ry The total energy is the sum of the following terms: one-electron contribution = -2.82372282 Ry hartree contribution = 1.51096136 Ry xc contribution = -1.30601197 Ry ewald contribution = 0.38453652 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.01s WALL ( 1 calls) electrons : 0.04s CPU 0.05s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 4 calls) sum_band : 0.00s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.02s CPU 0.02s WALL ( 5 calls) mix_rho : 0.00s CPU 0.01s WALL ( 4 calls) Called by c_bands: regterg : 0.01s CPU 0.01s WALL ( 4 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.01s CPU 0.01s WALL ( 19 calls) fftw : 0.01s CPU 0.01s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.10s CPU 0.11s WALL This run was terminated on: 10:22:20 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/uspp-mixing_ndim.ref0000644000175000017500000002530712341373024016765 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:46 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp-mixing_ndim.in file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 151 55 3695 1243 283 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 4 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1875000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.7500000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.3750000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0937500 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1875000 Dense grid: 3695 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3695) G-vector shells 0.00 Mb ( 79) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 169, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 0.84 Mb ( 13824, 4) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.4 secs per-process dynamical memory: 10.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.9 total cpu time spent up to now is 0.5 secs total energy = -87.71295693 Ry Harris-Foulkes estimate = -87.89694855 Ry estimated scf accuracy < 0.24974181 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -87.79914610 Ry Harris-Foulkes estimate = -87.89634579 Ry estimated scf accuracy < 0.19465293 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -87.83029076 Ry Harris-Foulkes estimate = -87.83088945 Ry estimated scf accuracy < 0.00113514 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-05, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -87.83069561 Ry Harris-Foulkes estimate = -87.83070040 Ry estimated scf accuracy < 0.00002849 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.59E-07, avg # of iterations = 1.5 total cpu time spent up to now is 0.7 secs total energy = -87.83069538 Ry Harris-Foulkes estimate = -87.83069727 Ry estimated scf accuracy < 0.00000453 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.12E-08, avg # of iterations = 1.1 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9887 11.1862 11.1862 11.1862 12.0758 12.0758 38.8576 41.0127 41.0127 41.0128 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1533 10.9393 11.3566 11.3566 12.1676 12.1676 27.5237 38.3701 38.3701 38.4663 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1021 11.1529 11.1529 12.6897 12.6897 13.4641 18.6326 37.0229 37.6066 37.6066 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7921 10.4207 11.6202 11.9038 11.9038 12.3705 32.3367 32.3367 33.7588 34.5392 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7564 10.3175 11.2516 11.8800 12.7333 15.5218 21.5952 27.6708 31.2988 35.1293 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6203 10.6639 10.8823 11.7290 12.0762 14.1925 24.5909 26.0217 35.8950 37.3860 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2493 9.6945 12.6709 12.8436 12.8436 16.0622 22.1019 28.1778 28.1778 32.9158 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0184 10.6646 10.6646 12.0433 12.8442 20.9460 20.9460 23.1293 24.0490 44.6510 the Fermi energy is 15.2769 ev ! total energy = -87.83069604 Ry Harris-Foulkes estimate = -87.83069607 Ry estimated scf accuracy < 0.00000008 Ry The total energy is the sum of the following terms: one-electron contribution = -10.22171427 Ry hartree contribution = 18.87793500 Ry xc contribution = -14.05404896 Ry ewald contribution = -82.43214134 Ry smearing contrib. (-TS) = -0.00072647 Ry convergence has been achieved in 6 iterations Writing output data file pwscf.save init_run : 0.36s CPU 0.36s WALL ( 1 calls) electrons : 0.33s CPU 0.34s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.18s CPU 0.18s WALL ( 6 calls) sum_band : 0.08s CPU 0.08s WALL ( 6 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 7 calls) newd : 0.05s CPU 0.05s WALL ( 7 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.01s WALL ( 104 calls) cegterg : 0.16s CPU 0.17s WALL ( 48 calls) Called by *egterg: h_psi : 0.08s CPU 0.11s WALL ( 164 calls) s_psi : 0.00s CPU 0.00s WALL ( 164 calls) g_psi : 0.00s CPU 0.00s WALL ( 108 calls) cdiaghg : 0.06s CPU 0.04s WALL ( 156 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.00s WALL ( 164 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 212 calls) fft : 0.00s CPU 0.01s WALL ( 58 calls) ffts : 0.00s CPU 0.00s WALL ( 13 calls) fftw : 0.06s CPU 0.09s WALL ( 2972 calls) interpolate : 0.00s CPU 0.00s WALL ( 13 calls) davcio : 0.00s CPU 0.00s WALL ( 152 calls) PWSCF : 0.78s CPU 0.80s WALL This run was terminated on: 11:28:47 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/uspp.ref0000644000175000017500000002746212341373024014471 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:43 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp.in file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 151 55 3695 1243 283 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1875000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.7500000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.3750000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0937500 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1875000 Dense grid: 3695 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3695) G-vector shells 0.00 Mb ( 79) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 169, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.4 secs per-process dynamical memory: 10.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.9 total cpu time spent up to now is 0.5 secs total energy = -87.71295693 Ry Harris-Foulkes estimate = -87.89694855 Ry estimated scf accuracy < 0.24974181 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -87.79914610 Ry Harris-Foulkes estimate = -87.89634579 Ry estimated scf accuracy < 0.19465293 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -87.83029076 Ry Harris-Foulkes estimate = -87.83088945 Ry estimated scf accuracy < 0.00113514 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-05, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -87.83069561 Ry Harris-Foulkes estimate = -87.83070040 Ry estimated scf accuracy < 0.00002849 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.59E-07, avg # of iterations = 1.5 total cpu time spent up to now is 0.7 secs total energy = -87.83069538 Ry Harris-Foulkes estimate = -87.83069727 Ry estimated scf accuracy < 0.00000453 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.12E-08, avg # of iterations = 1.1 total cpu time spent up to now is 0.7 secs total energy = -87.83069606 Ry Harris-Foulkes estimate = -87.83069607 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.32E-10, avg # of iterations = 1.5 total cpu time spent up to now is 0.8 secs total energy = -87.83069607 Ry Harris-Foulkes estimate = -87.83069607 Ry estimated scf accuracy < 1.8E-09 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-11, avg # of iterations = 1.1 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9886 11.1850 11.1850 11.1850 12.0746 12.0746 38.8575 41.0126 41.0126 41.0126 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1531 10.9382 11.3554 11.3554 12.1663 12.1663 27.5234 38.3699 38.3699 38.4662 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1013 11.1517 11.1517 12.6884 12.6884 13.4640 18.6319 37.0229 37.6064 37.6064 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7919 10.4196 11.6191 11.9025 11.9025 12.3692 32.3364 32.3364 33.7585 34.5388 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7555 10.3165 11.2505 11.8788 12.7320 15.5212 21.5948 27.6704 31.2986 35.1290 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6198 10.6628 10.8812 11.7278 12.0749 14.1915 24.5904 26.0214 35.8947 37.3859 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2484 9.6935 12.6696 12.8423 12.8423 16.0621 22.1014 28.1776 28.1776 32.9153 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0175 10.6636 10.6636 12.0420 12.8429 20.9456 20.9456 23.1289 24.0486 44.6507 the Fermi energy is 15.2762 ev ! total energy = -87.83069607 Ry Harris-Foulkes estimate = -87.83069607 Ry estimated scf accuracy < 4.2E-12 Ry The total energy is the sum of the following terms: one-electron contribution = -10.22276681 Ry hartree contribution = 18.87925648 Ry xc contribution = -14.05431792 Ry ewald contribution = -82.43214134 Ry smearing contrib. (-TS) = -0.00072648 Ry convergence has been achieved in 8 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.60 0.00000408 0.00000000 0.00000000 0.60 0.00 0.00 0.00000000 0.00000408 0.00000000 0.00 0.60 0.00 0.00000000 0.00000000 0.00000408 0.00 0.00 0.60 Writing output data file pwscf.save init_run : 0.36s CPU 0.37s WALL ( 1 calls) electrons : 0.42s CPU 0.43s WALL ( 1 calls) stress : 0.08s CPU 0.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.23s CPU 0.23s WALL ( 8 calls) sum_band : 0.11s CPU 0.11s WALL ( 8 calls) v_of_rho : 0.02s CPU 0.02s WALL ( 9 calls) newd : 0.06s CPU 0.06s WALL ( 9 calls) mix_rho : 0.00s CPU 0.01s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.01s WALL ( 144 calls) cegterg : 0.22s CPU 0.21s WALL ( 64 calls) Called by *egterg: h_psi : 0.15s CPU 0.14s WALL ( 201 calls) s_psi : 0.00s CPU 0.00s WALL ( 201 calls) g_psi : 0.00s CPU 0.01s WALL ( 129 calls) cdiaghg : 0.05s CPU 0.05s WALL ( 193 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 201 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 273 calls) fft : 0.00s CPU 0.02s WALL ( 79 calls) ffts : 0.00s CPU 0.00s WALL ( 17 calls) fftw : 0.12s CPU 0.11s WALL ( 3790 calls) interpolate : 0.00s CPU 0.01s WALL ( 17 calls) davcio : 0.00s CPU 0.00s WALL ( 208 calls) PWSCF : 0.95s CPU 0.98s WALL This run was terminated on: 11:28:44 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/dft5.ref0000644000175000017500000002165412341373024014341 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10839) starts on 3Apr2014 at 8:38:29 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/b86bpbe.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = B86BPBE ( 1 4 22 4 0) Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 27 728 728 141 Max 82 82 28 731 731 142 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = B86BPBE ( 1 4 22 4 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 93, 4) NL pseudopotentials 0.01 Mb ( 93, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 93, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.69E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.82686182 Ry Harris-Foulkes estimate = -15.84342899 Ry estimated scf accuracy < 0.06968680 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.71E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.82953144 Ry Harris-Foulkes estimate = -15.82953635 Ry estimated scf accuracy < 0.00305618 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.82E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.82982142 Ry Harris-Foulkes estimate = -15.82982194 Ry estimated scf accuracy < 0.00005924 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.40E-07, avg # of iterations = 3.5 total cpu time spent up to now is 0.0 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8361 2.4060 5.5181 5.5181 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9056 -0.0471 2.7389 4.0441 highest occupied level (ev): 5.5181 ! total energy = -15.82985473 Ry Harris-Foulkes estimate = -15.82985460 Ry estimated scf accuracy < 0.00000075 Ry The total energy is the sum of the following terms: one-electron contribution = 4.81039881 Ry hartree contribution = 1.12732966 Ry xc contribution = -4.86782463 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.02s CPU 0.02s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.00s CPU 0.01s WALL ( 5 calls) sum_band : 0.00s CPU 0.00s WALL ( 5 calls) v_of_rho : 0.02s CPU 0.01s WALL ( 5 calls) mix_rho : 0.00s CPU 0.00s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 22 calls) cegterg : 0.00s CPU 0.01s WALL ( 10 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 31 calls) g_psi : 0.00s CPU 0.00s WALL ( 19 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 27 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 31 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 31 calls) fft : 0.01s CPU 0.00s WALL ( 56 calls) fftw : 0.00s CPU 0.01s WALL ( 274 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.00s CPU 0.00s WALL ( 330 calls) PWSCF : 0.09s CPU 0.10s WALL This run was terminated on: 8:38:29 3Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/uspp2.in0000755000175000017500000000056612341373024014404 0ustar mbamba &control calculation='scf' tstress=.true. / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons conv_thr=1.0e-8 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {alat} Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.1/PW/tests/vc-relax4.ref0000644000175000017500000022676212341373024015313 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:30:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/vc-relax4.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 121 4159 4159 833 bravais-lattice index = 0 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 0.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.580130 0.000000 0.814524 ) a(2) = ( -0.290065 0.502407 0.814524 ) a(3) = ( -0.290065 -0.502407 0.814524 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.149169 0.000000 0.409237 ) b(2) = ( -0.574584 0.995209 0.409237 ) b(3) = ( -0.574584 -0.995209 0.409237 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.7086605 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.7086605 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.1534638), wk = 0.0625000 k( 2) = ( -0.1436461 -0.2488023 0.2557731), wk = 0.1875000 k( 3) = ( 0.2872922 0.4976046 -0.0511547), wk = 0.1875000 k( 4) = ( 0.1436461 0.2488023 0.0511546), wk = 0.1875000 k( 5) = ( -0.2872922 0.0000000 0.3580823), wk = 0.1875000 k( 6) = ( 0.1436461 0.7464070 0.0511546), wk = 0.3750000 k( 7) = ( 0.0000000 0.4976046 0.1534638), wk = 0.3750000 k( 8) = ( 0.5745844 0.0000000 -0.2557731), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4603915), wk = 0.0625000 k( 10) = ( 0.4309383 0.7464070 0.1534638), wk = 0.1875000 Dense grid: 4159 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 2.8 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 0.4 secs total energy = -25.43995304 Ry Harris-Foulkes estimate = -25.44370905 Ry estimated scf accuracy < 0.01555592 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -25.44007840 Ry Harris-Foulkes estimate = -25.44026102 Ry estimated scf accuracy < 0.00088841 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.88E-06, avg # of iterations = 2.3 total cpu time spent up to now is 0.6 secs total energy = -25.44011434 Ry Harris-Foulkes estimate = -25.44011580 Ry estimated scf accuracy < 0.00000523 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.23E-08, avg # of iterations = 3.1 total cpu time spent up to now is 0.7 secs total energy = -25.44012214 Ry Harris-Foulkes estimate = -25.44012246 Ry estimated scf accuracy < 0.00000069 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.94E-09, avg # of iterations = 1.4 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.1535 ( 531 PWs) bands (ev): -6.9960 4.5196 5.9667 5.9667 8.4360 11.0403 11.7601 11.7601 16.5645 k =-0.1436-0.2488 0.2558 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.2873 0.4976-0.0512 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7262 k = 0.1436 0.2488 0.0512 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k =-0.2873 0.0000 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1264 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1436 0.7464 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.0000 0.4976 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.5746 0.0000-0.2558 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.0000 0.0000 0.4604 ( 522 PWs) bands (ev): -5.8586 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1191 17.3944 k = 0.4309 0.7464 0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 the Fermi energy is 10.0033 ev ! total energy = -25.44012222 Ry Harris-Foulkes estimate = -25.44012223 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = 7.72810355 Ry hartree contribution = 1.22165969 Ry xc contribution = -6.50440122 Ry ewald contribution = -27.88552965 Ry smearing contrib. (-TS) = 0.00004540 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.12659777 atom 2 type 1 force = 0.00000000 0.00000000 0.12659777 Total force = 0.179036 Total SCF correction = 0.000024 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.52 0.00172374 0.00000000 0.00000000 253.57 0.00 0.00 0.00000000 0.00172374 0.00000000 0.00 253.57 0.00 0.00000000 0.00000000 0.00098853 0.00 0.00 145.42 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -24.6061248137 Ry new trust radius = 0.1887860850 bohr new conv_thr = 0.0000001000 Ry new unit-cell volume = 211.67521 a.u.^3 ( 31.36703 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.555833834 0.000000000 0.765441019 -0.277916743 0.481366175 0.765441024 -0.277916743 -0.481366175 0.765441024 ATOMIC_POSITIONS (crystal) As 0.282619706 0.282619701 0.282619701 As -0.282619706 -0.282619701 -0.282619701 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1633045), wk = 0.0625000 k( 2) = ( -0.1499249 -0.2596776 0.2721743), wk = 0.1875000 k( 3) = ( 0.2998499 0.5193551 -0.0544349), wk = 0.1875000 k( 4) = ( 0.1499249 0.2596776 0.0544348), wk = 0.1875000 k( 5) = ( -0.2998499 0.0000000 0.3810440), wk = 0.1875000 k( 6) = ( 0.1499249 0.7790327 0.0544348), wk = 0.3750000 k( 7) = ( 0.0000000 0.5193551 0.1633045), wk = 0.3750000 k( 8) = ( 0.5996997 0.0000000 -0.2721743), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4899136), wk = 0.0625000 k( 10) = ( 0.4497748 0.7790327 0.1633045), wk = 0.1875000 extrapolated charge 8.40823, renormalised to 10.00000 total cpu time spent up to now is 1.1 secs per-process dynamical memory: 11.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.1 total cpu time spent up to now is 1.3 secs total energy = -25.38370667 Ry Harris-Foulkes estimate = -24.32076633 Ry estimated scf accuracy < 0.02064018 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-04, avg # of iterations = 2.6 total cpu time spent up to now is 1.4 secs total energy = -25.40138519 Ry Harris-Foulkes estimate = -25.40441072 Ry estimated scf accuracy < 0.00628332 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.28E-05, avg # of iterations = 1.1 total cpu time spent up to now is 1.5 secs total energy = -25.40159307 Ry Harris-Foulkes estimate = -25.40189699 Ry estimated scf accuracy < 0.00065384 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.54E-06, avg # of iterations = 2.0 total cpu time spent up to now is 1.6 secs total energy = -25.40163612 Ry Harris-Foulkes estimate = -25.40166440 Ry estimated scf accuracy < 0.00005044 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.04E-07, avg # of iterations = 2.8 total cpu time spent up to now is 1.7 secs total energy = -25.40166079 Ry Harris-Foulkes estimate = -25.40166153 Ry estimated scf accuracy < 0.00000331 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.31E-08, avg # of iterations = 1.3 total cpu time spent up to now is 1.8 secs total energy = -25.40165994 Ry Harris-Foulkes estimate = -25.40166086 Ry estimated scf accuracy < 0.00000165 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1633 ( 531 PWs) bands (ev): -5.9367 7.0817 8.2032 8.2032 11.2582 13.8350 14.3550 14.3550 18.4339 k =-0.1499-0.2597 0.2722 ( 522 PWs) bands (ev): -4.6714 2.2296 7.2109 8.1029 11.9028 13.1331 13.4310 16.5292 18.1830 k = 0.2998 0.5194-0.0544 ( 520 PWs) bands (ev): -2.8547 -0.9760 6.9923 7.9650 10.0196 13.7451 14.3129 16.3159 20.8095 k = 0.1499 0.2597 0.0544 ( 525 PWs) bands (ev): -5.2654 3.5949 7.0489 9.3439 10.6444 13.7211 15.1491 16.5920 18.0163 k =-0.2998 0.0000 0.3810 ( 519 PWs) bands (ev): -4.1322 3.3399 5.1342 6.0876 9.0188 12.9443 16.5259 17.0166 19.1509 k = 0.1499 0.7790 0.0544 ( 510 PWs) bands (ev): -2.0535 -0.0681 3.6590 5.6372 10.0896 14.2403 15.7481 18.9065 20.2716 k = 0.0000 0.5194 0.1633 ( 521 PWs) bands (ev): -3.3504 0.4109 4.7586 8.2224 10.1013 14.6107 15.9234 16.2643 18.6227 k = 0.5997 0.0000-0.2722 ( 510 PWs) bands (ev): -2.4288 0.5228 4.8732 5.4349 7.5396 12.5225 18.7270 20.6442 21.7479 k = 0.0000 0.0000 0.4899 ( 522 PWs) bands (ev): -4.3331 1.9783 8.1315 8.1315 10.5523 11.9553 11.9553 14.3778 20.4089 k = 0.4498 0.7790 0.1633 ( 520 PWs) bands (ev): -3.0367 1.3418 3.7838 6.7673 9.3545 14.2226 14.7924 17.7408 20.1087 the Fermi energy is 11.9332 ev ! total energy = -25.40166017 Ry Harris-Foulkes estimate = -25.40166018 Ry estimated scf accuracy < 3.5E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 9.92264769 Ry hartree contribution = 0.89911181 Ry xc contribution = -6.68612417 Ry ewald contribution = -29.53716795 Ry smearing contrib. (-TS) = -0.00012755 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.13944956 atom 2 type 1 force = 0.00000000 0.00000000 0.13944956 Total force = 0.197211 Total SCF correction = 0.000043 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 444.96 0.00333265 0.00000000 0.00000000 490.25 0.00 0.00 0.00000000 0.00333265 0.00000000 0.00 490.25 0.00 0.00000000 0.00000000 0.00240899 0.00 0.00 354.37 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -24.6061248137 Ry enthalpy new = -24.6821906498 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.3019728046 bohr new conv_thr = 0.0000001000 Ry new unit-cell volume = 183.03324 a.u.^3 ( 27.12273 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.539853984 0.000000000 0.701631417 -0.269926854 0.467527219 0.701631444 -0.269926854 -0.467527219 0.701631444 ATOMIC_POSITIONS (crystal) As 0.263861305 0.263861288 0.263861288 As -0.263861305 -0.263861288 -0.263861288 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1781562), wk = 0.0625000 k( 2) = ( -0.1543627 -0.2673641 0.2969270), wk = 0.1875000 k( 3) = ( 0.3087255 0.5347282 -0.0593854), wk = 0.1875000 k( 4) = ( 0.1543628 0.2673641 0.0593854), wk = 0.1875000 k( 5) = ( -0.3087255 0.0000000 0.4156979), wk = 0.1875000 k( 6) = ( 0.1543628 0.8020923 0.0593854), wk = 0.3750000 k( 7) = ( 0.0000000 0.5347282 0.1781562), wk = 0.3750000 k( 8) = ( 0.6174510 0.0000000 -0.2969271), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5344686), wk = 0.0625000 k( 10) = ( 0.4630883 0.8020923 0.1781562), wk = 0.1875000 extrapolated charge 8.43521, renormalised to 10.00000 total cpu time spent up to now is 2.2 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.1 total cpu time spent up to now is 2.4 secs total energy = -25.34462710 Ry Harris-Foulkes estimate = -24.15521729 Ry estimated scf accuracy < 0.01769026 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-04, avg # of iterations = 2.1 total cpu time spent up to now is 2.5 secs total energy = -25.35392007 Ry Harris-Foulkes estimate = -25.35521166 Ry estimated scf accuracy < 0.00290892 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.91E-05, avg # of iterations = 1.1 total cpu time spent up to now is 2.6 secs total energy = -25.35400719 Ry Harris-Foulkes estimate = -25.35412857 Ry estimated scf accuracy < 0.00027641 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.76E-06, avg # of iterations = 2.1 total cpu time spent up to now is 2.7 secs total energy = -25.35404740 Ry Harris-Foulkes estimate = -25.35405429 Ry estimated scf accuracy < 0.00001379 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-07, avg # of iterations = 1.7 total cpu time spent up to now is 2.8 secs total energy = -25.35404840 Ry Harris-Foulkes estimate = -25.35404882 Ry estimated scf accuracy < 0.00000073 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-09, avg # of iterations = 2.5 total cpu time spent up to now is 2.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1782 ( 531 PWs) bands (ev): -4.6205 9.9126 10.7890 10.7890 14.3254 17.6816 17.6816 17.9911 19.7716 k =-0.1544-0.2674 0.2969 ( 522 PWs) bands (ev): -3.1157 4.1034 9.8092 11.8603 14.1839 14.3307 16.3499 19.7370 21.1375 k = 0.3087 0.5347-0.0594 ( 520 PWs) bands (ev): -1.0934 0.6900 9.9550 10.4615 11.9453 15.7402 17.5257 19.6590 24.8247 k = 0.1544 0.2674 0.0594 ( 525 PWs) bands (ev): -3.9458 6.2430 9.4929 11.3902 13.3914 17.6838 18.5316 19.3202 20.5552 k =-0.3087 0.0000 0.4157 ( 519 PWs) bands (ev): -2.3094 5.6935 7.7049 8.0169 9.9729 16.1618 19.4720 20.3831 20.8735 k = 0.1544 0.8021 0.0594 ( 510 PWs) bands (ev): 0.3805 1.7730 5.1132 7.3127 12.5986 16.6469 18.2783 23.1595 23.6093 k = 0.0000 0.5347 0.1782 ( 521 PWs) bands (ev): -1.7598 2.5260 7.2643 9.5065 13.4608 16.6331 19.1892 19.8717 21.3138 k = 0.6175 0.0000-0.2969 ( 510 PWs) bands (ev): -0.4673 3.6384 5.4660 7.3446 9.0994 15.9645 21.7300 22.8442 25.5616 k = 0.0000 0.0000 0.5345 ( 522 PWs) bands (ev): -2.1711 3.2605 10.8670 10.8670 13.5264 13.5264 13.8805 15.9384 24.4486 k = 0.4631 0.8021 0.1782 ( 520 PWs) bands (ev): -0.1117 2.1284 5.6222 9.0777 10.9316 16.1662 18.1827 21.5569 22.8826 the Fermi energy is 14.1988 ev ! total energy = -25.35404859 Ry Harris-Foulkes estimate = -25.35404860 Ry estimated scf accuracy < 6.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 12.37614057 Ry hartree contribution = 0.55960979 Ry xc contribution = -6.86700410 Ry ewald contribution = -31.42270908 Ry smearing contrib. (-TS) = -0.00008578 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.06408392 atom 2 type 1 force = 0.00000000 0.00000000 0.06408392 Total force = 0.090628 Total SCF correction = 0.000068 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 681.16 0.00460007 0.00000000 0.00000000 676.69 0.00 0.00 0.00000000 0.00460007 0.00000000 0.00 676.69 0.00 0.00000000 0.00000000 0.00469112 0.00 0.00 690.09 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -24.6821906498 Ry enthalpy new = -24.7319311401 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0715331011 bohr new conv_thr = 0.0000000641 Ry new unit-cell volume = 190.16871 a.u.^3 ( 28.18010 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.546565452 0.000000000 0.711191207 -0.273282598 0.473339520 0.711191243 -0.273282598 -0.473339520 0.711191243 ATOMIC_POSITIONS (crystal) As 0.259013583 0.259013562 0.259013562 As -0.259013583 -0.259013562 -0.259013562 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1757614), wk = 0.0625000 k( 2) = ( -0.1524673 -0.2640811 0.2929358), wk = 0.1875000 k( 3) = ( 0.3049346 0.5281621 -0.0585872), wk = 0.1875000 k( 4) = ( 0.1524673 0.2640811 0.0585871), wk = 0.1875000 k( 5) = ( -0.3049345 0.0000000 0.4101101), wk = 0.1875000 k( 6) = ( 0.1524673 0.7922432 0.0585871), wk = 0.3750000 k( 7) = ( 0.0000000 0.5281621 0.1757614), wk = 0.3750000 k( 8) = ( 0.6098691 0.0000000 -0.2929358), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5272843), wk = 0.0625000 k( 10) = ( 0.4574018 0.7922432 0.1757614), wk = 0.1875000 extrapolated charge 10.37520, renormalised to 10.00000 total cpu time spent up to now is 3.2 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.6 total cpu time spent up to now is 3.4 secs total energy = -25.38978062 Ry Harris-Foulkes estimate = -25.68123756 Ry estimated scf accuracy < 0.00086564 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.66E-06, avg # of iterations = 2.0 total cpu time spent up to now is 3.5 secs total energy = -25.39023431 Ry Harris-Foulkes estimate = -25.39031697 Ry estimated scf accuracy < 0.00017477 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.75E-06, avg # of iterations = 1.1 total cpu time spent up to now is 3.6 secs total energy = -25.39024960 Ry Harris-Foulkes estimate = -25.39025656 Ry estimated scf accuracy < 0.00001723 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.72E-07, avg # of iterations = 1.2 total cpu time spent up to now is 3.7 secs total energy = -25.39025124 Ry Harris-Foulkes estimate = -25.39025158 Ry estimated scf accuracy < 0.00000076 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.63E-09, avg # of iterations = 3.0 total cpu time spent up to now is 3.8 secs total energy = -25.39025163 Ry Harris-Foulkes estimate = -25.39025166 Ry estimated scf accuracy < 0.00000008 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.92E-10, avg # of iterations = 1.0 total cpu time spent up to now is 3.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1758 ( 531 PWs) bands (ev): -4.8198 9.0293 10.2830 10.2830 13.3627 17.0775 17.0775 17.4618 18.9632 k =-0.1525-0.2641 0.2929 ( 522 PWs) bands (ev): -3.3507 3.6000 9.2268 11.6229 13.1494 13.5911 15.4243 19.1739 20.0847 k = 0.3049 0.5282-0.0586 ( 520 PWs) bands (ev): -1.3712 0.3037 9.5724 9.9078 11.2118 14.8603 16.7332 18.6006 23.9921 k = 0.1525 0.2641 0.0586 ( 525 PWs) bands (ev): -4.1630 5.6772 9.0495 10.6816 12.7384 16.7394 17.9220 18.4116 19.3749 k =-0.3049 0.0000 0.4101 ( 519 PWs) bands (ev): -2.5650 4.9815 7.4063 7.6119 9.1986 15.7760 18.6847 19.3937 19.7776 k = 0.1525 0.7922 0.0586 ( 510 PWs) bands (ev): 0.0485 1.3379 4.7638 6.7971 11.8955 15.8351 17.7093 22.2404 22.5660 k = 0.0000 0.5282 0.1758 ( 521 PWs) bands (ev): -2.0359 2.0865 6.9289 8.8408 12.8263 15.6358 18.5853 18.9898 20.3177 k = 0.6099 0.0000-0.2929 ( 510 PWs) bands (ev): -0.8097 3.4110 4.7274 6.9658 8.4735 15.5451 20.7289 21.5690 24.3833 k = 0.0000 0.0000 0.5273 ( 522 PWs) bands (ev): -2.4035 2.6568 10.4489 10.4489 12.8312 12.8312 13.2317 14.9817 23.5667 k = 0.4574 0.7922 0.1758 ( 520 PWs) bands (ev): -0.3055 1.4323 5.3212 8.6726 10.2600 15.3862 17.3843 20.6460 22.2409 the Fermi energy is 13.1969 ev ! total energy = -25.39025163 Ry Harris-Foulkes estimate = -25.39025163 Ry estimated scf accuracy < 8.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.89669985 Ry hartree contribution = 0.57917961 Ry xc contribution = -6.79963525 Ry ewald contribution = -31.06647876 Ry smearing contrib. (-TS) = -0.00001707 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.04260571 atom 2 type 1 force = 0.00000000 0.00000000 0.04260571 Total force = 0.060254 Total SCF correction = 0.000016 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 525.83 0.00339000 0.00000000 0.00000000 498.69 0.00 0.00 0.00000000 0.00339000 0.00000000 0.00 498.69 0.00 0.00000000 0.00000000 0.00394347 0.00 0.00 580.10 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -24.7319311401 Ry enthalpy new = -24.7438811985 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.1595170423 bohr new conv_thr = 0.0000000426 Ry new unit-cell volume = 191.30781 a.u.^3 ( 28.34889 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.545422573 0.000000000 0.718452599 -0.272711183 0.472349757 0.718452650 -0.272711183 -0.472349757 0.718452650 ATOMIC_POSITIONS (crystal) As 0.248348594 0.248348567 0.248348567 As -0.248348594 -0.248348567 -0.248348567 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1739850), wk = 0.0625000 k( 2) = ( -0.1527867 -0.2646344 0.2899751), wk = 0.1875000 k( 3) = ( 0.3055735 0.5292688 -0.0579950), wk = 0.1875000 k( 4) = ( 0.1527868 0.2646344 0.0579950), wk = 0.1875000 k( 5) = ( -0.3055735 0.0000000 0.4059651), wk = 0.1875000 k( 6) = ( 0.1527868 0.7939032 0.0579950), wk = 0.3750000 k( 7) = ( 0.0000000 0.5292688 0.1739850), wk = 0.3750000 k( 8) = ( 0.6111470 0.0000000 -0.2899751), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5219551), wk = 0.0625000 k( 10) = ( 0.4583603 0.7939032 0.1739850), wk = 0.1875000 extrapolated charge 10.05954, renormalised to 10.00000 total cpu time spent up to now is 4.2 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.2 total cpu time spent up to now is 4.4 secs total energy = -25.40060177 Ry Harris-Foulkes estimate = -25.44671222 Ry estimated scf accuracy < 0.00124011 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-05, avg # of iterations = 1.0 total cpu time spent up to now is 4.5 secs total energy = -25.40060421 Ry Harris-Foulkes estimate = -25.40061787 Ry estimated scf accuracy < 0.00009339 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.34E-07, avg # of iterations = 1.0 total cpu time spent up to now is 4.6 secs total energy = -25.40060605 Ry Harris-Foulkes estimate = -25.40060604 Ry estimated scf accuracy < 0.00000005 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.70E-10, avg # of iterations = 4.0 total cpu time spent up to now is 4.7 secs total energy = -25.40060672 Ry Harris-Foulkes estimate = -25.40060673 Ry estimated scf accuracy < 0.00000005 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.70E-10, avg # of iterations = 1.0 total cpu time spent up to now is 4.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.1740 ( 531 PWs) bands (ev): -4.8323 8.7450 10.3299 10.3299 13.2295 17.0744 17.0744 17.7063 18.7930 k =-0.1528-0.2646 0.2900 ( 522 PWs) bands (ev): -3.3645 3.5628 9.0023 12.1614 12.4602 13.5133 15.3424 19.3063 19.7034 k = 0.3056 0.5293-0.0580 ( 520 PWs) bands (ev): -1.3483 0.2511 9.6430 9.7335 11.0817 14.5825 16.6495 18.1914 23.6342 k = 0.1528 0.2646 0.0580 ( 525 PWs) bands (ev): -4.1680 5.6533 9.0896 10.4995 12.5979 16.5035 18.1060 18.1527 18.7736 k =-0.3056 0.0000 0.4060 ( 519 PWs) bands (ev): -2.5861 4.7703 7.5474 7.6656 8.8881 15.8381 18.6425 19.3133 19.6537 k = 0.1528 0.7939 0.0580 ( 510 PWs) bands (ev): 0.0518 1.3039 4.7332 6.6123 11.7686 15.7585 17.7044 22.0343 22.5982 k = 0.0000 0.5293 0.1740 ( 521 PWs) bands (ev): -2.0359 2.0711 6.9582 8.6040 12.7322 15.2386 18.4923 18.9894 20.1208 k = 0.6111 0.0000-0.2900 ( 510 PWs) bands (ev): -0.8224 3.6601 4.2749 7.0146 8.3186 15.4954 20.5134 21.2593 24.2156 k = 0.0000 0.0000 0.5220 ( 522 PWs) bands (ev): -2.4222 2.3798 10.5756 10.5756 12.7333 12.7333 13.4269 14.8283 23.4466 k = 0.4584 0.7939 0.1740 ( 520 PWs) bands (ev): -0.1908 1.0657 5.3558 8.7323 10.2023 15.3102 17.4874 20.5948 22.2516 the Fermi energy is 12.7897 ev ! total energy = -25.40060672 Ry Harris-Foulkes estimate = -25.40060672 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 11.84274296 Ry hartree contribution = 0.57430078 Ry xc contribution = -6.78686844 Ry ewald contribution = -31.03085500 Ry smearing contrib. (-TS) = 0.00007299 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00724301 atom 2 type 1 force = 0.00000000 0.00000000 -0.00724301 Total force = 0.010243 Total SCF correction = 0.000021 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 494.44 0.00317558 0.00000000 0.00000000 467.14 0.00 0.00 0.00000000 0.00317558 0.00000000 0.00 467.14 0.00 0.00000000 0.00000000 0.00373220 0.00 0.00 549.02 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -24.7438811985 Ry enthalpy new = -24.7503645951 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0303454225 bohr new conv_thr = 0.0000000072 Ry new unit-cell volume = 192.20705 a.u.^3 ( 28.48215 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.543728797 0.000000000 0.726333847 -0.271864296 0.470882903 0.726333898 -0.271864296 -0.470882903 0.726333898 ATOMIC_POSITIONS (crystal) As 0.249489770 0.249489744 0.249489744 As -0.249489770 -0.249489744 -0.249489744 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1720972), wk = 0.0625000 k( 2) = ( -0.1532627 -0.2654588 0.2868286), wk = 0.1875000 k( 3) = ( 0.3065254 0.5309176 -0.0573657), wk = 0.1875000 k( 4) = ( 0.1532627 0.2654588 0.0573657), wk = 0.1875000 k( 5) = ( -0.3065254 0.0000000 0.4015601), wk = 0.1875000 k( 6) = ( 0.1532627 0.7963763 0.0573657), wk = 0.3750000 k( 7) = ( 0.0000000 0.5309176 0.1720972), wk = 0.3750000 k( 8) = ( 0.6130508 0.0000000 -0.2868287), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5162915), wk = 0.0625000 k( 10) = ( 0.4597881 0.7963763 0.1720971), wk = 0.1875000 extrapolated charge 10.04678, renormalised to 10.00000 total cpu time spent up to now is 5.1 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 5.3 secs total energy = -25.40470684 Ry Harris-Foulkes estimate = -25.44069097 Ry estimated scf accuracy < 0.00001906 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-07, avg # of iterations = 2.0 total cpu time spent up to now is 5.4 secs total energy = -25.40471158 Ry Harris-Foulkes estimate = -25.40471221 Ry estimated scf accuracy < 0.00000236 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 1.1 total cpu time spent up to now is 5.5 secs total energy = -25.40471165 Ry Harris-Foulkes estimate = -25.40471166 Ry estimated scf accuracy < 0.00000009 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.40E-10, avg # of iterations = 2.2 total cpu time spent up to now is 5.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.1721 ( 531 PWs) bands (ev): -4.8684 8.5218 10.3471 10.3471 13.1538 16.9881 16.9881 17.6923 18.7833 k =-0.1533-0.2655 0.2868 ( 522 PWs) bands (ev): -3.4069 3.5408 8.7825 12.2042 12.3208 13.4821 15.2822 19.3381 19.4614 k = 0.3065 0.5309-0.0574 ( 520 PWs) bands (ev): -1.3612 0.2051 9.5378 9.6195 11.0434 14.4602 16.5245 17.8732 23.2228 k = 0.1533 0.2655 0.0574 ( 525 PWs) bands (ev): -4.1937 5.6149 9.0944 10.3726 12.4652 16.3434 17.8815 17.9764 18.6180 k =-0.3065 0.0000 0.4016 ( 519 PWs) bands (ev): -2.6456 4.6118 7.5214 7.7041 8.8034 15.7623 18.6183 19.3228 19.6757 k = 0.1533 0.7964 0.0574 ( 510 PWs) bands (ev): -0.0156 1.2829 4.7084 6.4701 11.6582 15.7371 17.6956 21.8549 22.5381 k = 0.0000 0.5309 0.1721 ( 521 PWs) bands (ev): -2.0589 2.0442 6.8979 8.4938 12.5607 15.0159 18.3718 18.9588 20.0346 k = 0.6131 0.0000-0.2868 ( 510 PWs) bands (ev): -0.8624 3.5819 4.1804 7.0437 8.2275 15.3333 20.3662 21.1607 24.0839 k = 0.0000 0.0000 0.5163 ( 522 PWs) bands (ev): -2.5081 2.1955 10.6186 10.6186 12.7373 12.7373 13.5006 14.8818 23.2834 k = 0.4598 0.7964 0.1721 ( 520 PWs) bands (ev): -0.2908 0.9360 5.3488 8.7523 10.2179 15.3101 17.5576 20.5942 22.0236 the Fermi energy is 12.7946 ev ! total energy = -25.40471166 Ry Harris-Foulkes estimate = -25.40471166 Ry estimated scf accuracy < 2.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.77377374 Ry hartree contribution = 0.58046190 Ry xc contribution = -6.77983684 Ry ewald contribution = -30.97912861 Ry smearing contrib. (-TS) = 0.00001815 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00217846 atom 2 type 1 force = 0.00000000 0.00000000 -0.00217846 Total force = 0.003081 Total SCF correction = 0.000004 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 480.35 0.00311301 0.00000000 0.00000000 457.94 0.00 0.00 0.00000000 0.00311301 0.00000000 0.00 457.94 0.00 0.00000000 0.00000000 0.00356997 0.00 0.00 525.16 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -24.7503645951 Ry enthalpy new = -24.7514130786 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0451299230 bohr new conv_thr = 0.0000000022 Ry new unit-cell volume = 192.30794 a.u.^3 ( 28.49710 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.539498736 0.000000000 0.738155717 -0.269749272 0.467219562 0.738155770 -0.269749272 -0.467219562 0.738155770 ATOMIC_POSITIONS (crystal) As 0.250230244 0.250230218 0.250230218 As -0.250230244 -0.250230218 -0.250230218 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1693410), wk = 0.0625000 k( 2) = ( -0.1544644 -0.2675402 0.2822349), wk = 0.1875000 k( 3) = ( 0.3089288 0.5350803 -0.0564470), wk = 0.1875000 k( 4) = ( 0.1544644 0.2675402 0.0564470), wk = 0.1875000 k( 5) = ( -0.3089288 0.0000000 0.3951289), wk = 0.1875000 k( 6) = ( 0.1544644 0.8026205 0.0564470), wk = 0.3750000 k( 7) = ( 0.0000000 0.5350803 0.1693410), wk = 0.3750000 k( 8) = ( 0.6178575 0.0000000 -0.2822350), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5080229), wk = 0.0625000 k( 10) = ( 0.4633932 0.8026205 0.1693409), wk = 0.1875000 extrapolated charge 10.00525, renormalised to 10.00000 total cpu time spent up to now is 5.9 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 6.0 secs total energy = -25.40615028 Ry Harris-Foulkes estimate = -25.41017949 Ry estimated scf accuracy < 0.00001076 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-07, avg # of iterations = 1.0 total cpu time spent up to now is 6.1 secs total energy = -25.40615049 Ry Harris-Foulkes estimate = -25.40615045 Ry estimated scf accuracy < 0.00000091 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.06E-09, avg # of iterations = 1.0 total cpu time spent up to now is 6.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.1693 ( 531 PWs) bands (ev): -4.8845 8.2744 10.4947 10.4947 13.2148 16.9902 16.9902 17.8216 18.9005 k =-0.1545-0.2675 0.2822 ( 522 PWs) bands (ev): -3.4250 3.6024 8.5226 12.2806 12.3366 13.5717 15.3496 19.2306 19.5376 k = 0.3089 0.5351-0.0564 ( 520 PWs) bands (ev): -1.3175 0.2074 9.3179 9.6824 11.1041 14.4010 16.4804 17.5058 22.6964 k = 0.1545 0.2675 0.0564 ( 525 PWs) bands (ev): -4.1881 5.6729 9.2086 10.2617 12.3700 16.2290 17.5992 17.8446 18.5714 k =-0.3089 0.0000 0.3951 ( 519 PWs) bands (ev): -2.6869 4.4588 7.5629 7.8634 8.7963 15.7402 18.7361 19.5191 19.9072 k = 0.1545 0.8026 0.0564 ( 510 PWs) bands (ev): -0.0481 1.3360 4.7393 6.3245 11.5988 15.8452 17.8154 21.7161 22.6164 k = 0.0000 0.5351 0.1693 ( 521 PWs) bands (ev): -2.0351 2.0940 6.8807 8.4199 12.3839 14.7946 18.3278 19.0670 20.0763 k = 0.6179 0.0000-0.2822 ( 510 PWs) bands (ev): -0.8532 3.5335 4.1230 7.1823 8.1787 15.1753 20.2845 21.1800 24.0390 k = 0.0000 0.0000 0.5080 ( 522 PWs) bands (ev): -2.5952 1.9839 10.8005 10.8005 12.8741 12.8741 13.7766 15.1431 23.1789 k = 0.4634 0.8026 0.1693 ( 520 PWs) bands (ev): -0.3963 0.8217 5.4146 8.8845 10.3686 15.4528 17.8460 20.7223 21.8295 the Fermi energy is 12.9314 ev ! total energy = -25.40615051 Ry Harris-Foulkes estimate = -25.40615051 Ry estimated scf accuracy < 8.2E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 11.75888329 Ry hartree contribution = 0.58344315 Ry xc contribution = -6.77985140 Ry ewald contribution = -30.96864367 Ry smearing contrib. (-TS) = 0.00001812 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00093854 atom 2 type 1 force = 0.00000000 0.00000000 0.00093854 Total force = 0.001327 Total SCF correction = 0.000002 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 478.07 0.00316738 0.00000000 0.00000000 465.94 0.00 0.00 0.00000000 0.00316738 0.00000000 0.00 465.94 0.00 0.00000000 0.00000000 0.00341472 0.00 0.00 502.32 number of scf cycles = 7 number of bfgs steps = 6 enthalpy old = -24.7514130786 Ry enthalpy new = -24.7525090096 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0451322680 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 191.31213 a.u.^3 ( 28.34953 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.533774669 0.000000000 0.750167473 -0.266887248 0.462262374 0.750167529 -0.266887248 -0.462262374 0.750167529 ATOMIC_POSITIONS (crystal) As 0.250427008 0.250426982 0.250426982 As -0.250427008 -0.250426982 -0.250426982 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1666295), wk = 0.0625000 k( 2) = ( -0.1561208 -0.2704092 0.2777158), wk = 0.1875000 k( 3) = ( 0.3122416 0.5408184 -0.0555432), wk = 0.1875000 k( 4) = ( 0.1561208 0.2704092 0.0555431), wk = 0.1875000 k( 5) = ( -0.3122416 0.0000000 0.3888021), wk = 0.1875000 k( 6) = ( 0.1561208 0.8112276 0.0555431), wk = 0.3750000 k( 7) = ( 0.0000000 0.5408184 0.1666295), wk = 0.3750000 k( 8) = ( 0.6244833 0.0000000 -0.2777158), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4998884), wk = 0.0625000 k( 10) = ( 0.4683625 0.8112276 0.1666294), wk = 0.1875000 extrapolated charge 9.94795, renormalised to 10.00000 total cpu time spent up to now is 6.5 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.52E-08, avg # of iterations = 1.0 total cpu time spent up to now is 6.7 secs total energy = -25.40319975 Ry Harris-Foulkes estimate = -25.36315409 Ry estimated scf accuracy < 0.00000653 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.53E-08, avg # of iterations = 2.3 total cpu time spent up to now is 6.9 secs total energy = -25.40320497 Ry Harris-Foulkes estimate = -25.40320548 Ry estimated scf accuracy < 0.00000197 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-08, avg # of iterations = 1.5 total cpu time spent up to now is 6.9 secs total energy = -25.40320497 Ry Harris-Foulkes estimate = -25.40320503 Ry estimated scf accuracy < 0.00000028 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.75E-09, avg # of iterations = 1.8 total cpu time spent up to now is 7.0 secs total energy = -25.40320499 Ry Harris-Foulkes estimate = -25.40320500 Ry estimated scf accuracy < 7.1E-09 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.05E-11, avg # of iterations = 2.5 total cpu time spent up to now is 7.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.1666 ( 531 PWs) bands (ev): -4.8648 8.0791 10.7614 10.7614 13.4382 17.1183 17.1183 18.1032 18.8110 k =-0.1561-0.2704 0.2777 ( 522 PWs) bands (ev): -3.3999 3.7480 8.3246 12.4254 12.5044 13.7855 15.5462 19.1058 19.8990 k = 0.3122 0.5408-0.0555 ( 520 PWs) bands (ev): -1.2129 0.2756 9.1631 9.8428 11.2660 14.4495 16.5654 17.2214 22.2448 k = 0.1561 0.2704 0.0555 ( 525 PWs) bands (ev): -4.1408 5.8389 9.4270 10.2041 12.3694 16.1906 17.3900 17.8302 18.6646 k =-0.3122 0.0000 0.3888 ( 519 PWs) bands (ev): -2.6828 4.3672 7.6884 8.1219 8.8992 15.8104 18.9944 19.8753 20.3088 k = 0.1561 0.8112 0.0555 ( 510 PWs) bands (ev): -0.0151 1.4671 4.8345 6.2378 11.6279 16.0704 18.0698 21.6664 22.6764 k = 0.0000 0.5408 0.1666 ( 521 PWs) bands (ev): -1.9558 2.2290 6.9341 8.4242 12.2676 14.6625 18.4131 19.3123 20.2687 k = 0.6245 0.0000-0.2777 ( 510 PWs) bands (ev): -0.7781 3.5648 4.1202 7.4133 8.2051 15.1057 20.3147 21.3265 24.0848 k = 0.0000 0.0000 0.4999 ( 522 PWs) bands (ev): -2.6427 1.8223 11.0990 11.0990 13.1312 13.1312 14.2173 15.5656 23.1898 k = 0.4684 0.8112 0.1666 ( 520 PWs) bands (ev): -0.4525 0.7648 5.5583 9.1166 10.6356 15.7228 18.3036 20.8722 21.8699 the Fermi energy is 13.1885 ev ! total energy = -25.40320499 Ry Harris-Foulkes estimate = -25.40320499 Ry estimated scf accuracy < 9.4E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 11.82566107 Ry hartree contribution = 0.57945328 Ry xc contribution = -6.78865716 Ry ewald contribution = -31.01968031 Ry smearing contrib. (-TS) = 0.00001812 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00184042 atom 2 type 1 force = 0.00000000 0.00000000 0.00184042 Total force = 0.002603 Total SCF correction = 0.000002 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 491.79 0.00336290 0.00000000 0.00000000 494.70 0.00 0.00 0.00000000 0.00336290 0.00000000 0.00 494.70 0.00 0.00000000 0.00000000 0.00330352 0.00 0.00 485.96 number of scf cycles = 8 number of bfgs steps = 7 enthalpy old = -24.7525090096 Ry enthalpy new = -24.7529481677 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0098897104 bohr new conv_thr = 0.0000000018 Ry new unit-cell volume = 190.99432 a.u.^3 ( 28.30244 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534287031 0.000000000 0.747485585 -0.267143429 0.462706093 0.747485642 -0.267143429 -0.462706093 0.747485642 ATOMIC_POSITIONS (crystal) As 0.250142892 0.250142866 0.250142866 As -0.250142892 -0.250142866 -0.250142866 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1672273), wk = 0.0625000 k( 2) = ( -0.1559711 -0.2701499 0.2787122), wk = 0.1875000 k( 3) = ( 0.3119422 0.5402998 -0.0557425), wk = 0.1875000 k( 4) = ( 0.1559711 0.2701499 0.0557424), wk = 0.1875000 k( 5) = ( -0.3119422 0.0000000 0.3901970), wk = 0.1875000 k( 6) = ( 0.1559711 0.8104497 0.0557424), wk = 0.3750000 k( 7) = ( 0.0000000 0.5402998 0.1672273), wk = 0.3750000 k( 8) = ( 0.6238844 0.0000000 -0.2787122), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5016819), wk = 0.0625000 k( 10) = ( 0.4679133 0.8104497 0.1672273), wk = 0.1875000 extrapolated charge 9.98336, renormalised to 10.00000 total cpu time spent up to now is 7.4 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-08, avg # of iterations = 1.4 total cpu time spent up to now is 7.6 secs total energy = -25.40217353 Ry Harris-Foulkes estimate = -25.38935431 Ry estimated scf accuracy < 0.00000165 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-08, avg # of iterations = 2.0 total cpu time spent up to now is 7.8 secs total energy = -25.40217418 Ry Harris-Foulkes estimate = -25.40217424 Ry estimated scf accuracy < 0.00000022 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-09, avg # of iterations = 1.0 total cpu time spent up to now is 7.8 secs total energy = -25.40217418 Ry Harris-Foulkes estimate = -25.40217418 Ry estimated scf accuracy < 0.00000002 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.60E-10, avg # of iterations = 1.4 total cpu time spent up to now is 7.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1672 ( 531 PWs) bands (ev): -4.8525 8.1616 10.7561 10.7561 13.4668 17.1473 17.1473 18.1149 18.8774 k =-0.1560-0.2701 0.2787 ( 522 PWs) bands (ev): -3.3857 3.7597 8.3907 12.4669 12.4934 13.7962 15.5767 19.1863 19.8837 k = 0.3119 0.5403-0.0557 ( 520 PWs) bands (ev): -1.2075 0.2904 9.2246 9.8511 11.2821 14.4864 16.6081 17.3273 22.3742 k = 0.1560 0.2701 0.0557 ( 525 PWs) bands (ev): -4.1319 5.8526 9.4254 10.2578 12.4110 16.2650 17.4679 17.8849 18.7063 k =-0.3119 0.0000 0.3902 ( 519 PWs) bands (ev): -2.6633 4.4236 7.6998 8.1100 8.9186 15.8332 19.0068 19.8771 20.3132 k = 0.1560 0.8104 0.0557 ( 510 PWs) bands (ev): 0.0074 1.4761 4.8424 6.2799 11.6691 16.0869 18.0660 21.7441 22.7623 k = 0.0000 0.5403 0.1672 ( 521 PWs) bands (ev): -1.9477 2.2387 6.9547 8.4567 12.3356 14.7332 18.4479 19.3294 20.2978 k = 0.6239 0.0000-0.2787 ( 510 PWs) bands (ev): -0.7644 3.5991 4.1419 7.4043 8.2385 15.1500 20.3719 21.3713 24.1598 k = 0.0000 0.0000 0.5017 ( 522 PWs) bands (ev): -2.6146 1.8796 11.0874 11.0874 13.1292 13.1292 14.1982 15.5487 23.2516 k = 0.4679 0.8104 0.1672 ( 520 PWs) bands (ev): -0.4174 0.8038 5.5593 9.1109 10.6328 15.7275 18.2904 20.9121 21.9142 the Fermi energy is 13.4095 ev ! total energy = -25.40217418 Ry Harris-Foulkes estimate = -25.40217418 Ry estimated scf accuracy < 2.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 11.84843316 Ry hartree contribution = 0.57791914 Ry xc contribution = -6.79138614 Ry ewald contribution = -31.03714940 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00062490 atom 2 type 1 force = 0.00000000 0.00000000 0.00062490 Total force = 0.000884 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 496.88 0.00337773 0.00000000 0.00000000 496.88 0.00 0.00 0.00000000 0.00337773 0.00000000 0.00 496.88 0.00 0.00000000 0.00000000 0.00337777 0.00 0.00 496.89 number of scf cycles = 9 number of bfgs steps = 8 enthalpy old = -24.7529481677 Ry enthalpy new = -24.7529975804 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0021564219 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 190.79974 a.u.^3 ( 28.27360 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534112779 0.000000000 0.747211384 -0.267056304 0.462555186 0.747211442 -0.267056304 -0.462555186 0.747211442 ATOMIC_POSITIONS (crystal) As 0.250005719 0.250005692 0.250005692 As -0.250005719 -0.250005692 -0.250005692 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1672887), wk = 0.0625000 k( 2) = ( -0.1560220 -0.2702380 0.2788145), wk = 0.1875000 k( 3) = ( 0.3120440 0.5404761 -0.0557629), wk = 0.1875000 k( 4) = ( 0.1560220 0.2702380 0.0557629), wk = 0.1875000 k( 5) = ( -0.3120440 0.0000000 0.3903402), wk = 0.1875000 k( 6) = ( 0.1560220 0.8107141 0.0557629), wk = 0.3750000 k( 7) = ( 0.0000000 0.5404761 0.1672887), wk = 0.3750000 k( 8) = ( 0.6240880 0.0000000 -0.2788145), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5018660), wk = 0.0625000 k( 10) = ( 0.4680660 0.8107141 0.1672886), wk = 0.1875000 extrapolated charge 9.98980, renormalised to 10.00000 total cpu time spent up to now is 8.2 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.74E-09, avg # of iterations = 2.3 total cpu time spent up to now is 8.4 secs total energy = -25.40151612 Ry Harris-Foulkes estimate = -25.39365474 Ry estimated scf accuracy < 0.00000036 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.55E-09, avg # of iterations = 2.0 total cpu time spent up to now is 8.5 secs total energy = -25.40151634 Ry Harris-Foulkes estimate = -25.40151636 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.87E-10, avg # of iterations = 1.0 total cpu time spent up to now is 8.6 secs total energy = -25.40151634 Ry Harris-Foulkes estimate = -25.40151634 Ry estimated scf accuracy < 7.7E-09 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.70E-11, avg # of iterations = 1.8 total cpu time spent up to now is 8.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8461 8.1811 10.7721 10.7721 13.4935 17.1679 17.1679 18.1382 18.8949 k =-0.1560-0.2702 0.2788 ( 522 PWs) bands (ev): -3.3782 3.7741 8.4047 12.4946 12.4996 13.8151 15.6016 19.2104 19.9027 k = 0.3120 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1982 0.3011 9.2393 9.8655 11.2994 14.5050 16.6312 17.3510 22.3967 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1250 5.8694 9.4397 10.2749 12.4280 16.2907 17.4857 17.9064 18.7298 k =-0.3120 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6550 4.4400 7.7129 8.1227 8.9342 15.8475 19.0291 19.9017 20.3414 k = 0.1560 0.8107 0.0558 ( 510 PWs) bands (ev): 0.0189 1.4886 4.8522 6.2915 11.6875 16.1082 18.0823 21.7709 22.7868 k = 0.0000 0.5405 0.1673 ( 521 PWs) bands (ev): -1.9389 2.2518 6.9667 8.4705 12.3546 14.7531 18.4681 19.3526 20.3226 k = 0.6241 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7537 3.6147 4.1510 7.4163 8.2538 15.1640 20.3966 21.3985 24.1908 k = 0.0000 0.0000 0.5019 ( 522 PWs) bands (ev): -2.6064 1.8921 11.1029 11.1029 13.1460 13.1460 14.2202 15.5704 23.2768 k = 0.4681 0.8107 0.1673 ( 520 PWs) bands (ev): -0.4069 0.8159 5.5696 9.1243 10.6498 15.7474 18.3154 20.9338 21.9393 the Fermi energy is 13.4363 ev ! total energy = -25.40151634 Ry Harris-Foulkes estimate = -25.40151634 Ry estimated scf accuracy < 1.3E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 11.86226070 Ry hartree contribution = 0.57698784 Ry xc contribution = -6.79306467 Ry ewald contribution = -31.04770927 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00002533 atom 2 type 1 force = 0.00000000 0.00000000 0.00002533 Total force = 0.000036 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.90 0.00339784 0.00000000 0.00000000 499.84 0.00 0.00 0.00000000 0.00339784 0.00000000 0.00 499.84 0.00 0.00000000 0.00000000 0.00339904 0.00 0.00 500.02 bfgs converged in 10 scf cycles and 9 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02, cell < 0.50E+00) End of BFGS Geometry Optimization Final enthalpy = -24.7530010969 Ry Begin final coordinates new unit-cell volume = 190.79974 a.u.^3 ( 28.27360 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534112779 0.000000000 0.747211384 -0.267056304 0.462555186 0.747211442 -0.267056304 -0.462555186 0.747211442 ATOMIC_POSITIONS (crystal) As 0.250005719 0.250005692 0.250005692 As -0.250005719 -0.250005692 -0.250005692 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated for the final unit cell Results may differ from those at the preceding step. G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 287 287 93 3221 3221 633 bravais-lattice index = 0 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 190.7997 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 0.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.534113 0.000000 0.747211 ) a(2) = ( -0.267056 0.462555 0.747211 ) a(3) = ( -0.267056 -0.462555 0.747211 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.248176 0.000000 0.446103 ) b(2) = ( -0.624088 1.080952 0.446103 ) b(3) = ( -0.624088 -1.080952 0.446103 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.5604213 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.5604213 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.1672887), wk = 0.0625000 k( 2) = ( -0.1560220 -0.2702380 0.2788145), wk = 0.1875000 k( 3) = ( 0.3120440 0.5404761 -0.0557629), wk = 0.1875000 k( 4) = ( 0.1560220 0.2702380 0.0557629), wk = 0.1875000 k( 5) = ( -0.3120440 0.0000000 0.3903402), wk = 0.1875000 k( 6) = ( 0.1560220 0.8107141 0.0557629), wk = 0.3750000 k( 7) = ( 0.0000000 0.5404761 0.1672887), wk = 0.3750000 k( 8) = ( 0.6240880 0.0000000 -0.2788145), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5018660), wk = 0.0625000 k( 10) = ( 0.4680660 0.8107141 0.1672886), wk = 0.1875000 Dense grid: 3221 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.06 Mb ( 410, 9) NL pseudopotentials 0.05 Mb ( 410, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.02 Mb ( 3221) G-vector shells 0.01 Mb ( 841) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.23 Mb ( 410, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs Writing output data file pwscf.save total cpu time spent up to now is 8.9 secs per-process dynamical memory: 11.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 10.9 total cpu time spent up to now is 9.2 secs total energy = -25.39786349 Ry Harris-Foulkes estimate = -25.40003088 Ry estimated scf accuracy < 0.01490712 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-04, avg # of iterations = 1.0 total cpu time spent up to now is 9.3 secs total energy = -25.39784199 Ry Harris-Foulkes estimate = -25.39797660 Ry estimated scf accuracy < 0.00110532 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-05, avg # of iterations = 1.0 total cpu time spent up to now is 9.4 secs total energy = -25.39785212 Ry Harris-Foulkes estimate = -25.39785260 Ry estimated scf accuracy < 0.00000171 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.71E-08, avg # of iterations = 3.0 total cpu time spent up to now is 9.5 secs total energy = -25.39785383 Ry Harris-Foulkes estimate = -25.39785388 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.18E-09, avg # of iterations = 1.5 total cpu time spent up to now is 9.6 secs total energy = -25.39785384 Ry Harris-Foulkes estimate = -25.39785384 Ry estimated scf accuracy < 5.7E-09 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-11, avg # of iterations = 2.0 total cpu time spent up to now is 9.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 396 PWs) bands (ev): -4.8415 8.1940 10.7721 10.7721 13.5173 17.1701 17.1701 18.1436 18.8986 k =-0.1560-0.2702 0.2788 ( 397 PWs) bands (ev): -3.3731 3.7836 8.4063 12.4956 12.5008 13.8201 15.6150 19.2148 19.9070 k = 0.3120 0.5405-0.0558 ( 401 PWs) bands (ev): -1.1925 0.3079 9.2414 9.8659 11.3046 14.5063 16.6392 17.3575 22.4006 k = 0.1560 0.2702 0.0558 ( 396 PWs) bands (ev): -4.1203 5.8812 9.4403 10.2794 12.4305 16.3064 17.4908 17.9082 18.7352 k =-0.3120 0.0000 0.3903 ( 407 PWs) bands (ev): -2.6500 4.4492 7.7150 8.1229 8.9379 15.8499 19.0313 19.9060 20.3503 k = 0.1560 0.8107 0.0558 ( 402 PWs) bands (ev): 0.0252 1.4955 4.8533 6.2926 11.6907 16.1116 18.0851 21.7742 22.7876 k = 0.0000 0.5405 0.1673 ( 405 PWs) bands (ev): -1.9336 2.2602 6.9681 8.4725 12.3583 14.7563 18.4723 19.3595 20.3261 k = 0.6241 0.0000-0.2788 ( 410 PWs) bands (ev): -0.7483 3.6230 4.1519 7.4165 8.2564 15.1665 20.3980 21.4016 24.1952 k = 0.0000 0.0000 0.5019 ( 407 PWs) bands (ev): -2.6011 1.8994 11.1036 11.1036 13.1472 13.1472 14.2308 15.5784 23.2830 k = 0.4681 0.8107 0.1673 ( 403 PWs) bands (ev): -0.4008 0.8235 5.5709 9.1248 10.6549 15.7489 18.3234 20.9368 21.9430 the Fermi energy is 13.4600 ev ! total energy = -25.39785384 Ry Harris-Foulkes estimate = -25.39785384 Ry estimated scf accuracy < 4.1E-11 Ry The total energy is the sum of the following terms: one-electron contribution = 11.86640263 Ry hartree contribution = 0.57607634 Ry xc contribution = -6.79263256 Ry ewald contribution = -31.04770931 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00002481 atom 2 type 1 force = 0.00000000 0.00000000 0.00002481 Total force = 0.000035 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 501.85 0.00341036 0.00000000 0.00000000 501.68 0.00 0.00 0.00000000 0.00341036 0.00000000 0.00 501.68 0.00 0.00000000 0.00000000 0.00341382 0.00 0.00 502.19 Writing output data file pwscf.save init_run : 0.22s CPU 0.23s WALL ( 2 calls) electrons : 6.53s CPU 6.68s WALL ( 11 calls) update_pot : 1.06s CPU 1.06s WALL ( 9 calls) forces : 0.51s CPU 0.51s WALL ( 11 calls) stress : 0.77s CPU 0.78s WALL ( 11 calls) Called by init_run: wfcinit : 0.05s CPU 0.06s WALL ( 2 calls) potinit : 0.06s CPU 0.06s WALL ( 2 calls) Called by electrons: c_bands : 5.46s CPU 5.55s WALL ( 59 calls) sum_band : 0.86s CPU 0.89s WALL ( 59 calls) v_of_rho : 0.14s CPU 0.12s WALL ( 66 calls) mix_rho : 0.04s CPU 0.04s WALL ( 59 calls) Called by c_bands: init_us_2 : 0.20s CPU 0.17s WALL ( 1420 calls) cegterg : 5.31s CPU 5.39s WALL ( 590 calls) Called by *egterg: h_psi : 3.92s CPU 3.97s WALL ( 2052 calls) g_psi : 0.23s CPU 0.20s WALL ( 1442 calls) cdiaghg : 0.45s CPU 0.45s WALL ( 1902 calls) Called by h_psi: add_vuspsi : 0.06s CPU 0.08s WALL ( 2052 calls) General routines calbec : 0.10s CPU 0.12s WALL ( 2272 calls) fft : 0.08s CPU 0.06s WALL ( 325 calls) fftw : 3.70s CPU 3.73s WALL ( 34672 calls) davcio : 0.00s CPU 0.05s WALL ( 2010 calls) PWSCF : 9.48s CPU 9.73s WALL This run was terminated on: 11:30:27 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/noncolin-constrain_angle.ref0000644000175000017500000005672012341373024020464 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:59 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin-constrain_angle.in file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 22 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0270270 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0540541 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0540541 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0540541 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0540541 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0540541 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0540541 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0810811 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0270270 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0540541 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0540541 k( 12) = ( 0.1875000 0.0625000 0.0625000), wk = 0.0270270 k( 13) = ( 0.3125000 0.0625000 0.0625000), wk = 0.0270270 k( 14) = ( 0.4375000 0.0625000 0.0625000), wk = 0.0270270 k( 15) = ( 0.5625000 0.0625000 0.0625000), wk = 0.0270270 k( 16) = ( 0.6875000 0.0625000 0.0625000), wk = 0.0270270 k( 17) = ( 0.8125000 0.0625000 0.0625000), wk = 0.0270270 k( 18) = ( 0.1875000 0.1875000 0.0625000), wk = 0.0540541 k( 19) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0540541 k( 20) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0540541 k( 21) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0540541 k( 22) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0540541 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.332318 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.332318 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.573198 magnetization : 3.219577 0.000000 0.000000 magnetization/charge: 0.489804 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.219577 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 1.1 secs total energy = -55.69282469 Ry Harris-Foulkes estimate = -55.74047916 Ry estimated scf accuracy < 0.20220538 Ry total magnetization = 2.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.96 Bohr mag/cell lambda = 1.00 Ry iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.53E-03, avg # of iterations = 1.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.450784 magnetization : 3.068257 0.000000 0.000000 magnetization/charge: 0.475641 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.068257 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 1.4 secs total energy = -55.68005815 Ry Harris-Foulkes estimate = -55.70228344 Ry estimated scf accuracy < 0.06290855 Ry total magnetization = 3.05 0.00 0.00 Bohr mag/cell absolute magnetization = 3.05 Bohr mag/cell lambda = 1.00 Ry iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.86E-04, avg # of iterations = 2.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.431606 magnetization : 3.032620 0.000000 0.000000 magnetization/charge: 0.471518 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.032620 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 1.8 secs total energy = -55.69823091 Ry Harris-Foulkes estimate = -55.69347498 Ry estimated scf accuracy < 0.00283656 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell lambda = 1.00 Ry iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.55E-05, avg # of iterations = 3.7 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.404670 magnetization : 2.995707 0.000000 0.000000 magnetization/charge: 0.467738 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.995707 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 2.2 secs total energy = -55.69938139 Ry Harris-Foulkes estimate = -55.69891335 Ry estimated scf accuracy < 0.00071561 Ry total magnetization = 3.12 0.00 0.00 Bohr mag/cell absolute magnetization = 3.12 Bohr mag/cell lambda = 1.00 Ry iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 8.95E-06, avg # of iterations = 2.3 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.413943 magnetization : 3.018602 0.000000 0.000000 magnetization/charge: 0.470631 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.018602 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 2.6 secs total energy = -55.69965000 Ry Harris-Foulkes estimate = -55.69965759 Ry estimated scf accuracy < 0.00004735 Ry total magnetization = 3.13 0.00 0.00 Bohr mag/cell absolute magnetization = 3.13 Bohr mag/cell lambda = 1.00 Ry iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.92E-07, avg # of iterations = 3.1 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415233 magnetization : 3.027304 0.000000 0.000000 magnetization/charge: 0.471893 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.027304 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 3.0 secs total energy = -55.69967480 Ry Harris-Foulkes estimate = -55.69967447 Ry estimated scf accuracy < 0.00001979 Ry total magnetization = 3.14 0.00 0.00 Bohr mag/cell absolute magnetization = 3.14 Bohr mag/cell lambda = 1.00 Ry iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.47E-07, avg # of iterations = 1.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412032 magnetization : 3.056082 0.000000 0.000000 magnetization/charge: 0.476617 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.056082 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 3.3 secs total energy = -55.69966537 Ry Harris-Foulkes estimate = -55.69967666 Ry estimated scf accuracy < 0.00001131 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell lambda = 1.00 Ry iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.41E-07, avg # of iterations = 2.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412006 magnetization : 3.064265 0.000000 0.000000 magnetization/charge: 0.477895 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.064265 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 3.6 secs total energy = -55.69968182 Ry Harris-Foulkes estimate = -55.69968209 Ry estimated scf accuracy < 0.00000151 Ry total magnetization = 3.17 0.00 0.00 Bohr mag/cell absolute magnetization = 3.17 Bohr mag/cell lambda = 1.00 Ry iteration # 9 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.89E-08, avg # of iterations = 2.5 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412949 magnetization : 3.064514 0.000000 0.000000 magnetization/charge: 0.477863 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.064514 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 3.9 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.6980 6.4704 11.6738 11.6739 11.9006 13.4640 13.4641 14.6616 14.6616 14.9231 16.5261 16.5262 38.7461 38.7462 39.4530 39.4531 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.3628 7.1442 11.5774 11.6554 12.1991 13.1688 13.6030 14.5276 14.5998 15.2496 16.1608 16.6985 36.2587 37.2017 37.8446 38.7802 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.5617 8.3872 11.6130 11.6453 12.6174 12.6601 13.8619 14.4941 14.5168 15.5594 15.7109 16.9717 33.8658 35.0487 35.4789 36.6418 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 8.9392 9.9414 11.4539 11.8328 12.3066 13.1125 14.0812 14.4049 14.7031 15.2255 16.2704 17.3549 31.7397 32.7143 33.1531 34.0007 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 9.8478 10.8034 11.2890 12.1900 12.5718 13.2431 13.6087 15.0854 15.5244 15.8139 16.8385 18.2376 29.6272 30.1006 31.1476 31.4620 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 9.9276 10.1034 11.8324 12.4081 12.7191 13.1703 14.0624 15.6731 16.1985 17.3584 18.3349 20.1521 27.4626 27.7460 28.9128 29.0784 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.5629 9.5705 11.6847 11.7764 13.4267 13.8827 14.3718 16.5047 17.0620 17.7229 21.5113 22.9158 25.5703 25.8418 26.8438 27.0450 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.2725 9.2726 11.4403 11.4404 14.0707 14.4112 14.4113 17.3196 17.7636 17.7637 24.4156 24.4156 24.8001 25.4994 25.4994 25.8530 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 6.9747 7.7794 11.3147 11.5638 12.6741 13.2499 13.5261 14.2157 14.4027 15.7678 16.2882 16.6085 33.9643 35.1490 36.7275 37.6005 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.0238 8.9271 11.1711 11.5466 13.0241 13.2334 13.7462 14.0169 14.1892 16.0432 16.3811 16.8470 31.1765 32.5555 34.9136 35.9052 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.1033 10.3054 11.1842 11.5399 12.8485 13.6944 13.7918 14.1412 14.4615 15.8343 16.9197 17.3616 28.6257 30.1608 32.6048 33.8021 k = 0.1875 0.0625 0.0625 ( 148 PWs) bands (ev): 6.3628 7.1442 11.5774 11.6554 12.1992 13.1688 13.6029 14.5276 14.5997 15.2496 16.1608 16.6985 36.2587 37.2017 37.8446 38.7803 k = 0.3125 0.0625 0.0625 ( 152 PWs) bands (ev): 7.5617 8.3872 11.6130 11.6453 12.6174 12.6602 13.8618 14.4941 14.5168 15.5594 15.7110 16.9716 33.8658 35.0487 35.4789 36.6418 k = 0.4375 0.0625 0.0625 ( 156 PWs) bands (ev): 8.9392 9.9414 11.4539 11.8328 12.3066 13.1126 14.0813 14.4048 14.7031 15.2255 16.2705 17.3548 31.7397 32.7142 33.1531 34.0006 k = 0.5625 0.0625 0.0625 ( 148 PWs) bands (ev): 9.8478 10.8035 11.2890 12.1900 12.5718 13.2431 13.6087 15.0854 15.5244 15.8138 16.8386 18.2375 29.6272 30.1006 31.1477 31.4620 k = 0.6875 0.0625 0.0625 ( 146 PWs) bands (ev): 9.9275 10.1034 11.8324 12.4082 12.7191 13.1702 14.0624 15.6731 16.1985 17.3584 18.3348 20.1521 27.4626 27.7460 28.9128 29.0784 k = 0.8125 0.0625 0.0625 ( 144 PWs) bands (ev): 9.5630 9.5705 11.6847 11.7764 13.4267 13.8826 14.3719 16.5047 17.0619 17.7229 21.5113 22.9158 25.5703 25.8418 26.8438 27.0450 k = 0.1875 0.1875 0.0625 ( 151 PWs) bands (ev): 6.9747 7.7794 11.3147 11.5638 12.6741 13.2499 13.5260 14.2157 14.4026 15.7679 16.2883 16.6085 33.9643 35.1490 36.7274 37.6005 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.0238 8.9271 11.1711 11.5465 13.0241 13.2334 13.7462 14.0169 14.1891 16.0432 16.3811 16.8470 31.1765 32.5555 34.9137 35.9052 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.0238 8.9271 11.1711 11.5465 13.0242 13.2334 13.7461 14.0169 14.1892 16.0433 16.3811 16.8469 31.1765 32.5555 34.9136 35.9052 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.1033 10.3054 11.1842 11.5398 12.8485 13.6945 13.7918 14.1412 14.4615 15.8343 16.9197 17.3616 28.6257 30.1608 32.6048 33.8021 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.1033 10.3054 11.1842 11.5399 12.8485 13.6945 13.7918 14.1412 14.4614 15.8343 16.9197 17.3616 28.6257 30.1608 32.6048 33.8021 the Fermi energy is 14.6594 ev ! total energy = -55.69968407 Ry Harris-Foulkes estimate = -55.69968286 Ry estimated scf accuracy < 0.00000054 Ry The total energy is the sum of the following terms: one-electron contribution = 8.92839923 Ry hartree contribution = 6.13558485 Ry xc contribution = -26.12293982 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00388373 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell lambda = 1.00 Ry convergence has been achieved in 9 iterations Writing output data file pwscf.save init_run : 0.58s CPU 0.59s WALL ( 1 calls) electrons : 3.22s CPU 3.30s WALL ( 1 calls) Called by init_run: wfcinit : 0.08s CPU 0.08s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 2.32s CPU 2.36s WALL ( 9 calls) sum_band : 0.65s CPU 0.66s WALL ( 9 calls) v_of_rho : 0.06s CPU 0.05s WALL ( 10 calls) newd : 0.13s CPU 0.13s WALL ( 10 calls) mix_rho : 0.02s CPU 0.02s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.03s WALL ( 418 calls) cegterg : 2.20s CPU 2.24s WALL ( 198 calls) Called by *egterg: h_psi : 1.49s CPU 1.43s WALL ( 705 calls) s_psi : 0.04s CPU 0.06s WALL ( 705 calls) g_psi : 0.06s CPU 0.06s WALL ( 485 calls) cdiaghg : 0.39s CPU 0.46s WALL ( 683 calls) Called by h_psi: add_vuspsi : 0.07s CPU 0.07s WALL ( 705 calls) General routines calbec : 0.09s CPU 0.06s WALL ( 903 calls) fft : 0.06s CPU 0.06s WALL ( 308 calls) ffts : 0.00s CPU 0.00s WALL ( 76 calls) fftw : 1.18s CPU 1.09s WALL ( 38112 calls) interpolate : 0.02s CPU 0.02s WALL ( 76 calls) davcio : 0.00s CPU 0.02s WALL ( 616 calls) PWSCF : 3.92s CPU 4.04s WALL This run was terminated on: 10:25: 3 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav2-kauto.in0000644000175000017500000000043612341373024017255 0ustar mbamba &control calculation='scf', / &system ibrav = 2, celldm(1) =10.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/lattice-ibrav5-kauto.in0000644000175000017500000000046312341373024017260 0ustar mbamba &control calculation='scf', / &system ibrav = 5, celldm(1) =10.0, celldm(4) = 0.5, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/lsda-mixing_TF.in0000755000175000017500000000062312341373024016132 0ustar mbamba &control calculation='scf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons mixing_mode = 'TF' / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {alat} Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.1/PW/tests/uspp1.ref0000644000175000017500000003272012341373024014543 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:34 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp1.in ============================================================ | pseudopotential report for atomic species: 1 | | pseudo potential version 7 3 2 | ------------------------------------------------------------ | oxygen PBE exchange-corr | | z = 8. zv( 1) = 6. exfact = 5.00000 | | ifpcor = 0 atomic energy = -31.58351 Ry | | index orbital occupation energy | | 1 200 2.00 -1.76 | | 2 210 4.00 -0.66 | | rinner = 0.7000 0.7000 0.7000 | | new generation scheme: | | nbeta = 4 kkbeta = 519 rcloc = 1.0000 | | ibeta l epsilon rcut | | 1 0 -1.76 1.20 | | 2 0 -0.66 1.20 | | 3 1 -1.76 1.20 | | 4 1 -0.66 1.20 | ============================================================ ============================================================ | pseudopotential report for atomic species: 2 | | pseudo potential version 7 3 2 | ------------------------------------------------------------ | hydrogen PBE exchange-corr | | z = 1. zv( 2) = 1. exfact = 5.00000 | | ifpcor = 0 atomic energy = -0.91772 Ry | | index orbital occupation energy | | 1 100 1.00 -0.48 | | rinner = 0.5000 | | new generation scheme: | | nbeta = 1 kkbeta = 271 rcloc = 0.6000 | | ibeta l epsilon rcut | | 1 0 -0.48 0.80 | ============================================================ gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3181 3181 793 135043 135043 16879 Tot 1591 1591 397 bravais-lattice index = 1 lattice parameter (alat) = 20.0000 a.u. unit-cell volume = 8000.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for ox read from file: /home/giannozz/trunk/espresso/pseudo/O_US.van MD5 check sum: 7e325307d184e51bd80757047dcf04f9 Pseudo is Ultrasoft, Zval = 6.0 Generated by Vanderbilt code, v. 7.3.2 Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.700 0.700 0.700 PseudoPot. # 2 for hy read from file: /home/giannozz/trunk/espresso/pseudo/H_US.van MD5 check sum: a9a9bfe98ff56cf4de197d71fc46bb44 Pseudo is Ultrasoft, Zval = 1.0 Generated by Vanderbilt code, v. 7.3.2 Using radial grid of 399 points, 1 beta functions with: l(1) = 0 Q(r) pseudized with 8 coefficients, rinner = 0.500 atomic species valence mass pseudopotential O 6.00 16.00000 ox( 1.00) H 1.00 2.00000 hy( 1.00) 4 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 H tau( 2) = ( 0.5866250 0.4837850 0.5000000 ) 3 H tau( 3) = ( 0.4837850 0.5866250 0.5000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 67522 G-vectors FFT dimensions: ( 64, 64, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.52 Mb ( 8440, 4) NL pseudopotentials 1.29 Mb ( 8440, 10) Each V/rho on FFT grid 4.00 Mb ( 262144) Each G-vector array 0.52 Mb ( 67522) G-vector shells 0.01 Mb ( 847) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.03 Mb ( 8440, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 10, 4) Arrays for rho mixing 32.00 Mb ( 262144, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.058528 starting charge 7.99998, renormalised to 8.00000 negative rho (up, down): 0.585E-01 0.000E+00 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 49.6 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.651E-01 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -34.18235473 Ry Harris-Foulkes estimate = -34.55121209 Ry estimated scf accuracy < 0.50436560 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.30E-03, avg # of iterations = 3.0 negative rho (up, down): 0.586E-01 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -34.28123507 Ry Harris-Foulkes estimate = -34.53370488 Ry estimated scf accuracy < 0.53041398 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.30E-03, avg # of iterations = 2.0 negative rho (up, down): 0.677E-01 0.000E+00 total cpu time spent up to now is 2.6 secs total energy = -34.39197022 Ry Harris-Foulkes estimate = -34.39516113 Ry estimated scf accuracy < 0.00666611 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.33E-05, avg # of iterations = 2.0 negative rho (up, down): 0.661E-01 0.000E+00 total cpu time spent up to now is 3.2 secs total energy = -34.39412487 Ry Harris-Foulkes estimate = -34.39449671 Ry estimated scf accuracy < 0.00103523 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-05, avg # of iterations = 1.0 negative rho (up, down): 0.661E-01 0.000E+00 total cpu time spent up to now is 3.7 secs total energy = -34.39412559 Ry Harris-Foulkes estimate = -34.39417508 Ry estimated scf accuracy < 0.00013719 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.71E-06, avg # of iterations = 2.0 negative rho (up, down): 0.663E-01 0.000E+00 total cpu time spent up to now is 4.3 secs total energy = -34.39414359 Ry Harris-Foulkes estimate = -34.39414410 Ry estimated scf accuracy < 0.00000321 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.01E-08, avg # of iterations = 2.0 negative rho (up, down): 0.663E-01 0.000E+00 total cpu time spent up to now is 4.8 secs total energy = -34.39414355 Ry Harris-Foulkes estimate = -34.39414426 Ry estimated scf accuracy < 0.00000179 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.23E-08, avg # of iterations = 1.0 negative rho (up, down): 0.663E-01 0.000E+00 total cpu time spent up to now is 5.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 8440 PWs) bands (ev): -25.5020 -13.6158 -8.8896 -7.2055 ! total energy = -34.39414368 Ry Harris-Foulkes estimate = -34.39414367 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = -65.21451547 Ry hartree contribution = 34.05199259 Ry xc contribution = -8.48027029 Ry ewald contribution = 5.24864950 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.10329479 -0.10329479 0.00000000 atom 2 type 2 force = 0.11198097 -0.00868618 0.00000000 atom 3 type 2 force = -0.00868618 0.11198097 0.00000000 Total force = 0.215801 Total SCF correction = 0.000148 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.84 0.00001429 -0.00000699 0.00000000 2.10 -1.03 0.00 -0.00000699 0.00001429 0.00000000 -1.03 2.10 0.00 0.00000000 0.00000000 -0.00001139 0.00 0.00 -1.68 Writing output data file pwscf.save init_run : 0.80s CPU 0.83s WALL ( 1 calls) electrons : 4.34s CPU 4.45s WALL ( 1 calls) forces : 0.20s CPU 0.20s WALL ( 1 calls) stress : 0.73s CPU 0.76s WALL ( 1 calls) Called by init_run: wfcinit : 0.04s CPU 0.04s WALL ( 1 calls) potinit : 0.28s CPU 0.30s WALL ( 1 calls) Called by electrons: c_bands : 0.64s CPU 0.64s WALL ( 8 calls) sum_band : 0.79s CPU 0.80s WALL ( 8 calls) v_of_rho : 2.19s CPU 2.24s WALL ( 9 calls) newd : 0.62s CPU 0.64s WALL ( 9 calls) mix_rho : 0.22s CPU 0.24s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.06s CPU 0.06s WALL ( 17 calls) regterg : 0.58s CPU 0.59s WALL ( 8 calls) Called by *egterg: h_psi : 0.52s CPU 0.52s WALL ( 24 calls) s_psi : 0.02s CPU 0.01s WALL ( 24 calls) g_psi : 0.02s CPU 0.02s WALL ( 15 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 23 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 24 calls) General routines calbec : 0.02s CPU 0.03s WALL ( 37 calls) fft : 0.67s CPU 0.70s WALL ( 124 calls) fftw : 0.39s CPU 0.39s WALL ( 112 calls) davcio : 0.00s CPU 0.00s WALL ( 8 calls) PWSCF : 6.15s CPU 6.35s WALL This run was terminated on: 11:28:40 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/dft11.in0000755000175000017500000000054012341373024014242 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 input_dft='optbk88' / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/lattice-ibrav4-kauto.ref0000644000175000017500000001772612341373024017437 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav4-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 685 685 199 29199 29199 4443 bravais-lattice index = 4 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1732.0508 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 24 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.4330127 0.1250000), wk = 1.0000000 k( 2) = ( 0.2500000 -0.1443376 0.1250000), wk = 1.0000000 Dense grid: 29199 G-vectors FFT dimensions: ( 32, 32, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.06 Mb ( 3660, 1) NL pseudopotentials 0.00 Mb ( 3660, 0) Each V/rho on FFT grid 1.00 Mb ( 65536) Each G-vector array 0.22 Mb ( 29199) G-vector shells 0.00 Mb ( 476) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.22 Mb ( 3660, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 8.00 Mb ( 65536, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.002293 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.229E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 12.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.667E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22000537 Ry Harris-Foulkes estimate = -2.29018226 Ry estimated scf accuracy < 0.13320880 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.143E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23101867 Ry Harris-Foulkes estimate = -2.23146768 Ry estimated scf accuracy < 0.00100569 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.03E-05, avg # of iterations = 2.0 negative rho (up, down): 0.174E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23132358 Ry Harris-Foulkes estimate = -2.23132543 Ry estimated scf accuracy < 0.00001232 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.16E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.2500 0.4330 0.1250 ( 3660 PWs) bands (ev): -10.2032 k = 0.2500-0.1443 0.1250 ( 3654 PWs) bands (ev): -10.2148 ! total energy = -2.23132479 Ry Harris-Foulkes estimate = -2.23132478 Ry estimated scf accuracy < 0.00000042 Ry The total energy is the sum of the following terms: one-electron contribution = -3.62531908 Ry hartree contribution = 1.92084077 Ry xc contribution = -1.31431564 Ry ewald contribution = 0.78746916 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.04s CPU 0.05s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.01s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 0.04s CPU 0.04s WALL ( 4 calls) sum_band : 0.03s CPU 0.03s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.05s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: cegterg : 0.04s CPU 0.04s WALL ( 8 calls) Called by *egterg: h_psi : 0.04s CPU 0.04s WALL ( 22 calls) g_psi : 0.00s CPU 0.00s WALL ( 12 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 20 calls) Called by h_psi: General routines fft : 0.01s CPU 0.01s WALL ( 19 calls) fftw : 0.04s CPU 0.04s WALL ( 56 calls) davcio : 0.00s CPU 0.00s WALL ( 26 calls) PWSCF : 0.24s CPU 0.26s WALL This run was terminated on: 10:22:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/xdm.in0000644000175000017500000000107212341373024014111 0ustar mbamba&control calculation='scf' tprnfor=.true. tstress=.true. / &system ibrav=4 celldm(1)=4.66 celldm(3)=2.60 nat=4 ecutwfc=18. ecutrho=200. ntyp=1 occupations='smearing' degauss=0.02 smearing='marzari-vanderbilt' vdw_corr='xdm', xdm_a1=0.3275, xdm_a2=2.7673, / &electrons mixing_beta=0.5 mixing_ndim=20 / ATOMIC_SPECIES C 12. C.pbe-n-kjpaw_psl.0.1.UPF K_POINTS {gamma} ATOMIC_POSITIONS {crystal} C 0.00000 1.00000 0.75000 C 0.66667 0.33333 0.75000 C 0.00000 1.00000 0.25000 C 0.33333 0.66667 0.25000 espresso-5.1/PW/tests/dipole.ref0000644000175000017500000005075412341373024014756 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:19:45 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/dipole.in Presently no symmetry can be used with electric field file C.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 303 303 75 29755 29755 3661 Tot 152 152 38 bravais-lattice index = 0 lattice parameter (alat) = 4.7037 a.u. unit-cell volume = 1339.2634 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 3 number of electrons = 40.00 number of Kohn-Sham states= 24 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 4.703667 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.414214 0.000000 ) a(3) = ( 0.000000 0.000000 9.100000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 0.707107 0.000000 ) b(3) = ( 0.000000 0.000000 0.109890 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pz-rrkjus.UPF MD5 check sum: a648be5dbf3fafdfb4e35f5396849845 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1425 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential C 4.00 1.00000 C ( 1.00) O 6.00 1.00000 O ( 1.00) Ni 10.00 1.00000 Ni( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( -0.0036404 0.0211954 1.5467374 ) 2 O tau( 2) = ( -0.0063486 0.0419243 2.0202197 ) 3 Ni tau( 3) = ( 0.4852738 0.0019733 0.9771355 ) 4 Ni tau( 4) = ( -0.0004955 0.7023668 0.4541784 ) 5 Ni tau( 5) = ( 0.5000000 0.0000000 0.0000000 ) number of k points= 1 Marzari-Vanderbilt smearing, width (Ry)= 0.0300 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 14878 G-vectors FFT dimensions: ( 18, 24, 150) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.67 Mb ( 1831, 24) NL pseudopotentials 1.96 Mb ( 1831, 70) Each V/rho on FFT grid 0.99 Mb ( 64800) Each G-vector array 0.11 Mb ( 14878) G-vector shells 0.03 Mb ( 4364) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.34 Mb ( 1831, 96) Each subspace H/S matrix 0.07 Mb ( 96, 96) Each matrix 0.01 Mb ( 70, 24) Arrays for rho mixing 7.91 Mb ( 64800, 8) Check: negative/imaginary core charge= -0.000145 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.212815 starting charge 39.99895, renormalised to 40.00000 negative rho (up, down): 0.213E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0015 Ry au, -0.0037 Debye Dipole field 0.0000 Ry au Potential amp. 0.0011 Ry Total length 40.2352 bohr Starting wfc are 26 randomized atomic wfcs total cpu time spent up to now is 2.1 secs per-process dynamical memory: 32.4 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.198E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -1.7289 Ry au, -4.3944 Debye Dipole field -0.0162 Ry au Potential amp. 1.3054 Ry Total length 40.2352 bohr total cpu time spent up to now is 2.5 secs total energy = -299.25862285 Ry Harris-Foulkes estimate = -300.99008409 Ry estimated scf accuracy < 3.73479315 Ry iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.34E-03, avg # of iterations = 7.0 negative rho (up, down): 0.169E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.8022 Ry au, 2.0390 Debye Dipole field 0.0075 Ry au Potential amp. -0.6057 Ry Total length 40.2352 bohr total cpu time spent up to now is 3.0 secs total energy = -295.45492742 Ry Harris-Foulkes estimate = -305.85915721 Ry estimated scf accuracy < 178.10420579 Ry iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.34E-03, avg # of iterations = 6.0 negative rho (up, down): 0.178E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.5722 Ry au, 1.4544 Debye Dipole field 0.0054 Ry au Potential amp. -0.4321 Ry Total length 40.2352 bohr total cpu time spent up to now is 3.6 secs total energy = -300.45852395 Ry Harris-Foulkes estimate = -300.89952102 Ry estimated scf accuracy < 1.77341491 Ry iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.43E-03, avg # of iterations = 2.0 negative rho (up, down): 0.184E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.4646 Ry au, 1.1808 Debye Dipole field 0.0044 Ry au Potential amp. -0.3508 Ry Total length 40.2352 bohr total cpu time spent up to now is 4.0 secs total energy = -300.51620038 Ry Harris-Foulkes estimate = -300.81079443 Ry estimated scf accuracy < 3.12798837 Ry iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.43E-03, avg # of iterations = 1.0 negative rho (up, down): 0.183E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.4508 Ry au, 1.1458 Debye Dipole field 0.0042 Ry au Potential amp. -0.3404 Ry Total length 40.2352 bohr total cpu time spent up to now is 4.4 secs total energy = -300.62307032 Ry Harris-Foulkes estimate = -300.76129288 Ry estimated scf accuracy < 2.99869337 Ry iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.43E-03, avg # of iterations = 1.0 negative rho (up, down): 0.189E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.3550 Ry au, 0.9023 Debye Dipole field 0.0033 Ry au Potential amp. -0.2680 Ry Total length 40.2352 bohr total cpu time spent up to now is 4.9 secs total energy = -300.63775470 Ry Harris-Foulkes estimate = -300.68855275 Ry estimated scf accuracy < 0.48288490 Ry iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.21E-03, avg # of iterations = 7.0 negative rho (up, down): 0.192E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.3141 Ry au, 0.7984 Debye Dipole field 0.0029 Ry au Potential amp. -0.2372 Ry Total length 40.2352 bohr total cpu time spent up to now is 5.3 secs total energy = -300.64363739 Ry Harris-Foulkes estimate = -300.65986195 Ry estimated scf accuracy < 0.32887791 Ry iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.22E-04, avg # of iterations = 1.0 negative rho (up, down): 0.197E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.2424 Ry au, 0.6162 Debye Dipole field 0.0023 Ry au Potential amp. -0.1830 Ry Total length 40.2352 bohr total cpu time spent up to now is 5.8 secs total energy = -300.64465411 Ry Harris-Foulkes estimate = -300.65366739 Ry estimated scf accuracy < 0.15937790 Ry iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.98E-04, avg # of iterations = 1.0 negative rho (up, down): 0.201E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.1538 Ry au, 0.3910 Debye Dipole field 0.0014 Ry au Potential amp. -0.1162 Ry Total length 40.2352 bohr total cpu time spent up to now is 6.2 secs total energy = -300.64329559 Ry Harris-Foulkes estimate = -300.64795255 Ry estimated scf accuracy < 0.03775145 Ry iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.44E-05, avg # of iterations = 4.0 negative rho (up, down): 0.203E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole 0.1209 Ry au, 0.3073 Debye Dipole field 0.0011 Ry au Potential amp. -0.0913 Ry Total length 40.2352 bohr total cpu time spent up to now is 6.6 secs total energy = -300.64320186 Ry Harris-Foulkes estimate = -300.64486838 Ry estimated scf accuracy < 0.01617893 Ry iteration # 11 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.04E-05, avg # of iterations = 1.0 negative rho (up, down): 0.211E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0394 Ry au, -0.1001 Debye Dipole field -0.0004 Ry au Potential amp. 0.0297 Ry Total length 40.2352 bohr total cpu time spent up to now is 7.1 secs total energy = -300.64135735 Ry Harris-Foulkes estimate = -300.64426724 Ry estimated scf accuracy < 0.01957063 Ry iteration # 12 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.04E-05, avg # of iterations = 8.0 negative rho (up, down): 0.211E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0295 Ry au, -0.0750 Debye Dipole field -0.0003 Ry au Potential amp. 0.0223 Ry Total length 40.2352 bohr total cpu time spent up to now is 7.5 secs total energy = -300.64229058 Ry Harris-Foulkes estimate = -300.64243049 Ry estimated scf accuracy < 0.00482626 Ry iteration # 13 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.21E-05, avg # of iterations = 1.0 negative rho (up, down): 0.213E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0646 Ry au, -0.1642 Debye Dipole field -0.0006 Ry au Potential amp. 0.0488 Ry Total length 40.2352 bohr total cpu time spent up to now is 8.0 secs total energy = -300.64212292 Ry Harris-Foulkes estimate = -300.64234801 Ry estimated scf accuracy < 0.00780328 Ry iteration # 14 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.21E-05, avg # of iterations = 4.0 negative rho (up, down): 0.213E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0717 Ry au, -0.1822 Debye Dipole field -0.0007 Ry au Potential amp. 0.0541 Ry Total length 40.2352 bohr total cpu time spent up to now is 8.4 secs total energy = -300.64220198 Ry Harris-Foulkes estimate = -300.64221326 Ry estimated scf accuracy < 0.00009295 Ry iteration # 15 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.32E-07, avg # of iterations = 4.0 negative rho (up, down): 0.213E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0719 Ry au, -0.1827 Debye Dipole field -0.0007 Ry au Potential amp. 0.0543 Ry Total length 40.2352 bohr total cpu time spent up to now is 8.9 secs total energy = -300.64220766 Ry Harris-Foulkes estimate = -300.64221222 Ry estimated scf accuracy < 0.00005671 Ry iteration # 16 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.42E-07, avg # of iterations = 1.0 negative rho (up, down): 0.213E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0734 Ry au, -0.1865 Debye Dipole field -0.0007 Ry au Potential amp. 0.0554 Ry Total length 40.2352 bohr total cpu time spent up to now is 9.3 secs total energy = -300.64220887 Ry Harris-Foulkes estimate = -300.64220858 Ry estimated scf accuracy < 0.00001126 Ry iteration # 17 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.81E-08, avg # of iterations = 1.0 negative rho (up, down): 0.213E+00 0.000E+00 Adding external electric field Computed dipole along edir(3) : Dipole -0.0728 Ry au, -0.1851 Debye Dipole field -0.0007 Ry au Potential amp. 0.0550 Ry Total length 40.2352 bohr total cpu time spent up to now is 9.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1831 PWs) bands (ev): -24.9034 -12.5086 -9.4026 -8.1080 -8.0491 -5.9132 -5.5687 -5.1286 -4.7134 -4.5137 -4.0974 -3.9103 -3.6301 -3.4118 -3.3229 -2.8828 -2.7637 -2.6940 -2.6224 -2.3161 -2.0378 -1.4666 0.1276 1.5532 the Fermi energy is -2.2147 ev ! total energy = -300.64220926 Ry Harris-Foulkes estimate = -300.64221034 Ry estimated scf accuracy < 0.00000048 Ry The total energy is the sum of the following terms: one-electron contribution = -2536.10250541 Ry hartree contribution = 1295.01806453 Ry xc contribution = -98.69297497 Ry ewald contribution = 1039.11537436 Ry electric field correction = 0.00004974 Ry smearing contrib. (-TS) = 0.01978249 Ry convergence has been achieved in 17 iterations Writing output data file pwscf.save init_run : 1.97s CPU 1.98s WALL ( 1 calls) electrons : 7.48s CPU 7.65s WALL ( 1 calls) Called by init_run: wfcinit : 0.04s CPU 0.04s WALL ( 1 calls) potinit : 0.38s CPU 0.38s WALL ( 1 calls) Called by electrons: c_bands : 1.79s CPU 1.86s WALL ( 17 calls) sum_band : 2.83s CPU 2.88s WALL ( 17 calls) v_of_rho : 0.29s CPU 0.30s WALL ( 18 calls) newd : 2.27s CPU 2.31s WALL ( 18 calls) mix_rho : 0.26s CPU 0.26s WALL ( 17 calls) Called by c_bands: init_us_2 : 0.11s CPU 0.07s WALL ( 35 calls) regterg : 1.59s CPU 1.66s WALL ( 17 calls) Called by *egterg: h_psi : 1.21s CPU 1.23s WALL ( 71 calls) s_psi : 0.06s CPU 0.06s WALL ( 71 calls) g_psi : 0.04s CPU 0.04s WALL ( 53 calls) rdiaghg : 0.10s CPU 0.08s WALL ( 70 calls) Called by h_psi: add_vuspsi : 0.05s CPU 0.06s WALL ( 71 calls) General routines calbec : 0.09s CPU 0.11s WALL ( 88 calls) fft : 0.14s CPU 0.15s WALL ( 107 calls) fftw : 1.18s CPU 1.14s WALL ( 1210 calls) davcio : 0.00s CPU 0.01s WALL ( 17 calls) PWSCF : 9.59s CPU 9.83s WALL This run was terminated on: 10:19:55 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lsda.in0000755000175000017500000000064412341373024014253 0ustar mbamba &control calculation='scf' tstress=.true. / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons conv_thr=1.0e-10 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {alat} Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.1/PW/tests/spinorbit.in10000755000175000017500000000057212341373024015422 0ustar mbamba &control calculation = 'nscf' / &system ibrav= 2, celldm(1) =7.42, nat= 1, ntyp= 1, lspinorb=.true., noncolin=.true., occupations='tetrahedra', ecutwfc =30.0, ecutrho =250.0, nbnd = 16 / &electrons / ATOMIC_SPECIES Pt 79.90 Pt.rel-pz-n-rrkjus.UPF ATOMIC_POSITIONS ALAT Pt 0.0000000 0.00000000 0.0 K_POINTS AUTOMATIC 4 4 4 0 0 0 espresso-5.1/PW/tests/dft2.ref0000644000175000017500000002165112341373024014333 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10839) starts on 3Apr2014 at 8:38:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/revpbe.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = REVPBE ( 1 4 4 4 0) Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 27 728 728 141 Max 82 82 28 731 731 142 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = REVPBE ( 1 4 4 4 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 93, 4) NL pseudopotentials 0.01 Mb ( 93, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 93, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.57E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.81845590 Ry Harris-Foulkes estimate = -15.83426868 Ry estimated scf accuracy < 0.06876001 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.60E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.82088395 Ry Harris-Foulkes estimate = -15.82082178 Ry estimated scf accuracy < 0.00308848 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.86E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.82116518 Ry Harris-Foulkes estimate = -15.82115111 Ry estimated scf accuracy < 0.00004656 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.82E-07, avg # of iterations = 3.5 total cpu time spent up to now is 0.0 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8093 2.4323 5.5409 5.5409 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.8817 -0.0219 2.7676 4.0653 highest occupied level (ev): 5.5409 ! total energy = -15.82119896 Ry Harris-Foulkes estimate = -15.82119801 Ry estimated scf accuracy < 0.00000027 Ry The total energy is the sum of the following terms: one-electron contribution = 4.80993075 Ry hartree contribution = 1.12910517 Ry xc contribution = -4.86047630 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.02s CPU 0.02s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.01s WALL ( 5 calls) sum_band : 0.00s CPU 0.00s WALL ( 5 calls) v_of_rho : 0.00s CPU 0.01s WALL ( 5 calls) mix_rho : 0.00s CPU 0.00s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 22 calls) cegterg : 0.02s CPU 0.01s WALL ( 10 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 31 calls) g_psi : 0.00s CPU 0.00s WALL ( 19 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 27 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 31 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 31 calls) fft : 0.00s CPU 0.00s WALL ( 56 calls) fftw : 0.01s CPU 0.01s WALL ( 276 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.00s CPU 0.00s WALL ( 332 calls) PWSCF : 0.07s CPU 0.09s WALL This run was terminated on: 8:38:30 3Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/relax-damped.ref0000644000175000017500000013122412341373024016035 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:27:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/relax-damped.in file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file C.pz-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used Message from routine setup: Dynamics, you should have no symmetries G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1649 1101 277 50541 27609 3407 Tot 825 551 139 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 5 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 144.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pz-rrkjus.UPF MD5 check sum: a648be5dbf3fafdfb4e35f5396849845 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1425 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O ( 1.00) C 4.00 1.00000 C ( 1.00) 8 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.1880000 0.0000000 0.0000000 ) 2 O tau( 2) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 25271 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 13805 G-vectors FFT dimensions: ( 40, 40, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.13 Mb ( 1704, 5) NL pseudopotentials 0.42 Mb ( 1704, 16) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.19 Mb ( 25271) G-vector shells 0.00 Mb ( 440) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.26 Mb ( 1704, 20) Each subspace H/S matrix 0.00 Mb ( 20, 20) Each matrix 0.00 Mb ( 16, 5) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003742 starting charge 9.99996, renormalised to 10.00000 negative rho (up, down): 0.374E-02 0.000E+00 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 1.0 secs per-process dynamical memory: 30.4 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.548E-02 0.000E+00 total cpu time spent up to now is 1.1 secs total energy = -43.00560028 Ry Harris-Foulkes estimate = -43.13946473 Ry estimated scf accuracy < 0.20142084 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-03, avg # of iterations = 4.0 negative rho (up, down): 0.113E-01 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -42.97192905 Ry Harris-Foulkes estimate = -43.22189611 Ry estimated scf accuracy < 0.69794621 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-03, avg # of iterations = 3.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -43.09499395 Ry Harris-Foulkes estimate = -43.09749186 Ry estimated scf accuracy < 0.00768862 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.69E-05, avg # of iterations = 2.0 negative rho (up, down): 0.458E-02 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -43.09571104 Ry Harris-Foulkes estimate = -43.09617585 Ry estimated scf accuracy < 0.00118904 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-05, avg # of iterations = 3.0 negative rho (up, down): 0.461E-02 0.000E+00 total cpu time spent up to now is 1.7 secs total energy = -43.09622618 Ry Harris-Foulkes estimate = -43.09637952 Ry estimated scf accuracy < 0.00054718 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.47E-06, avg # of iterations = 1.0 negative rho (up, down): 0.462E-02 0.000E+00 total cpu time spent up to now is 1.8 secs total energy = -43.09619459 Ry Harris-Foulkes estimate = -43.09625737 Ry estimated scf accuracy < 0.00019300 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-06, avg # of iterations = 3.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 1.9 secs total energy = -43.09625490 Ry Harris-Foulkes estimate = -43.09626006 Ry estimated scf accuracy < 0.00001788 Ry iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-07, avg # of iterations = 2.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 2.1 secs total energy = -43.09625733 Ry Harris-Foulkes estimate = -43.09625777 Ry estimated scf accuracy < 0.00000256 Ry iteration # 9 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.56E-08, avg # of iterations = 3.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 2.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -27.8990 -13.4027 -10.8557 -10.8557 -8.5036 ! total energy = -43.09625738 Ry Harris-Foulkes estimate = -43.09625770 Ry estimated scf accuracy < 0.00000039 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.21576369 0.00000000 0.00000000 atom 2 type 1 force = 0.21576369 0.00000000 0.00000000 Total force = 0.215764 Total SCF correction = 0.000570 Damped Dynamics Calculation Entering Dynamics: iteration = 1 ATOMIC_POSITIONS (bohr) C 2.161309101 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003742 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003769 negative rho (up, down): 0.464E-02 0.000E+00 total cpu time spent up to now is 2.5 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.484E-02 0.000E+00 total cpu time spent up to now is 2.6 secs total energy = -43.10825672 Ry Harris-Foulkes estimate = -43.11074971 Ry estimated scf accuracy < 0.00435174 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.35E-05, avg # of iterations = 2.0 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 2.8 secs total energy = -43.10912901 Ry Harris-Foulkes estimate = -43.10942463 Ry estimated scf accuracy < 0.00053892 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.39E-06, avg # of iterations = 2.0 negative rho (up, down): 0.471E-02 0.000E+00 total cpu time spent up to now is 2.9 secs total energy = -43.10924328 Ry Harris-Foulkes estimate = -43.10925158 Ry estimated scf accuracy < 0.00002323 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-07, avg # of iterations = 4.0 negative rho (up, down): 0.470E-02 0.000E+00 total cpu time spent up to now is 3.1 secs total energy = -43.10925024 Ry Harris-Foulkes estimate = -43.10928148 Ry estimated scf accuracy < 0.00012258 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-07, avg # of iterations = 3.0 negative rho (up, down): 0.470E-02 0.000E+00 total cpu time spent up to now is 3.2 secs total energy = -43.10925169 Ry Harris-Foulkes estimate = -43.10925836 Ry estimated scf accuracy < 0.00001614 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-07, avg # of iterations = 3.0 negative rho (up, down): 0.470E-02 0.000E+00 total cpu time spent up to now is 3.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.6470 -13.3852 -11.2890 -11.2890 -8.4016 ! total energy = -43.10925498 Ry Harris-Foulkes estimate = -43.10925531 Ry estimated scf accuracy < 0.00000042 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.04702064 0.00000000 0.00000000 atom 2 type 1 force = 0.04702064 0.00000000 0.00000000 Total force = 0.047021 Total SCF correction = 0.000602 Entering Dynamics: iteration = 2 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.055038410 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003769 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003800 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 3.6 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.500E-02 0.000E+00 total cpu time spent up to now is 3.8 secs total energy = -43.09901792 Ry Harris-Foulkes estimate = -43.10284311 Ry estimated scf accuracy < 0.00652404 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.52E-05, avg # of iterations = 2.0 negative rho (up, down): 0.488E-02 0.000E+00 total cpu time spent up to now is 3.9 secs total energy = -43.10034879 Ry Harris-Foulkes estimate = -43.10058877 Ry estimated scf accuracy < 0.00048248 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.82E-06, avg # of iterations = 2.0 negative rho (up, down): 0.485E-02 0.000E+00 total cpu time spent up to now is 4.0 secs total energy = -43.10043294 Ry Harris-Foulkes estimate = -43.10046987 Ry estimated scf accuracy < 0.00006432 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.43E-07, avg # of iterations = 3.0 negative rho (up, down): 0.482E-02 0.000E+00 total cpu time spent up to now is 4.2 secs total energy = -43.10044299 Ry Harris-Foulkes estimate = -43.10046877 Ry estimated scf accuracy < 0.00006082 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.08E-07, avg # of iterations = 2.0 negative rho (up, down): 0.483E-02 0.000E+00 total cpu time spent up to now is 4.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -29.5199 -13.3829 -11.8190 -11.8190 -8.2731 ! total energy = -43.10045352 Ry Harris-Foulkes estimate = -43.10045363 Ry estimated scf accuracy < 0.00000029 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.22972886 0.00000000 0.00000000 atom 2 type 1 force = -0.22972886 0.00000000 0.00000000 Total force = 0.229729 Total SCF correction = 0.000224 Entering Dynamics: iteration = 3 = -1.00000000 ATOMIC_POSITIONS (bohr) C 2.111613831 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003800 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003782 negative rho (up, down): 0.483E-02 0.000E+00 total cpu time spent up to now is 4.6 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.465E-02 0.000E+00 total cpu time spent up to now is 4.7 secs total energy = -43.10834553 Ry Harris-Foulkes estimate = -43.10952579 Ry estimated scf accuracy < 0.00199952 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-05, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 4.8 secs total energy = -43.10876348 Ry Harris-Foulkes estimate = -43.10883933 Ry estimated scf accuracy < 0.00015055 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-06, avg # of iterations = 2.0 negative rho (up, down): 0.474E-02 0.000E+00 total cpu time spent up to now is 5.0 secs total energy = -43.10879034 Ry Harris-Foulkes estimate = -43.10880265 Ry estimated scf accuracy < 0.00002306 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.31E-07, avg # of iterations = 3.0 negative rho (up, down): 0.476E-02 0.000E+00 total cpu time spent up to now is 5.1 secs total energy = -43.10879483 Ry Harris-Foulkes estimate = -43.10880208 Ry estimated scf accuracy < 0.00001729 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-07, avg # of iterations = 2.0 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 5.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -29.0510 -13.3798 -11.5296 -11.5296 -8.3451 ! total energy = -43.10879794 Ry Harris-Foulkes estimate = -43.10879796 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.06931723 0.00000000 0.00000000 atom 2 type 1 force = -0.06931723 0.00000000 0.00000000 Total force = 0.069317 Total SCF correction = 0.000020 Entering Dynamics: iteration = 4 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.178918345 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003782 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003764 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 5.5 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.458E-02 0.000E+00 total cpu time spent up to now is 5.7 secs total energy = -43.10753695 Ry Harris-Foulkes estimate = -43.10895232 Ry estimated scf accuracy < 0.00243803 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-05, avg # of iterations = 2.0 negative rho (up, down): 0.465E-02 0.000E+00 total cpu time spent up to now is 5.8 secs total energy = -43.10804643 Ry Harris-Foulkes estimate = -43.10816059 Ry estimated scf accuracy < 0.00022290 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.23E-06, avg # of iterations = 2.0 negative rho (up, down): 0.468E-02 0.000E+00 total cpu time spent up to now is 6.0 secs total energy = -43.10808784 Ry Harris-Foulkes estimate = -43.10809655 Ry estimated scf accuracy < 0.00001679 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-07, avg # of iterations = 4.0 negative rho (up, down): 0.469E-02 0.000E+00 total cpu time spent up to now is 6.1 secs total energy = -43.10808706 Ry Harris-Foulkes estimate = -43.10810564 Ry estimated scf accuracy < 0.00005311 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-07, avg # of iterations = 3.0 negative rho (up, down): 0.469E-02 0.000E+00 total cpu time spent up to now is 6.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.5063 -13.3873 -11.2059 -11.2059 -8.4220 ! total energy = -43.10809419 Ry Harris-Foulkes estimate = -43.10809441 Ry estimated scf accuracy < 0.00000036 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.08322947 0.00000000 0.00000000 atom 2 type 1 force = 0.08322947 0.00000000 0.00000000 Total force = 0.083229 Total SCF correction = 0.000632 Entering Dynamics: iteration = 5 = -1.00000000 ATOMIC_POSITIONS (bohr) C 2.166035881 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003764 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003768 negative rho (up, down): 0.469E-02 0.000E+00 total cpu time spent up to now is 6.5 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 6.6 secs total energy = -43.10898535 Ry Harris-Foulkes estimate = -43.10903872 Ry estimated scf accuracy < 0.00009066 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.07E-07, avg # of iterations = 2.0 negative rho (up, down): 0.471E-02 0.000E+00 total cpu time spent up to now is 6.8 secs total energy = -43.10900360 Ry Harris-Foulkes estimate = -43.10901149 Ry estimated scf accuracy < 0.00001401 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.40E-07, avg # of iterations = 2.0 negative rho (up, down): 0.470E-02 0.000E+00 total cpu time spent up to now is 6.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.6088 -13.3830 -11.2650 -11.2650 -8.4098 ! total energy = -43.10900685 Ry Harris-Foulkes estimate = -43.10900690 Ry estimated scf accuracy < 0.00000032 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.05716575 0.00000000 0.00000000 atom 2 type 1 force = 0.05716575 0.00000000 0.00000000 Total force = 0.057166 Total SCF correction = 0.000174 Entering Dynamics: iteration = 6 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.140753228 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003768 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003774 negative rho (up, down): 0.470E-02 0.000E+00 total cpu time spent up to now is 7.2 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.476E-02 0.000E+00 total cpu time spent up to now is 7.3 secs total energy = -43.10969039 Ry Harris-Foulkes estimate = -43.10988487 Ry estimated scf accuracy < 0.00033653 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.37E-06, avg # of iterations = 2.0 negative rho (up, down): 0.473E-02 0.000E+00 total cpu time spent up to now is 7.5 secs total energy = -43.10975976 Ry Harris-Foulkes estimate = -43.10977820 Ry estimated scf accuracy < 0.00003482 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.48E-07, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 7.6 secs total energy = -43.10976646 Ry Harris-Foulkes estimate = -43.10976749 Ry estimated scf accuracy < 0.00000217 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-08, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 7.7 secs total energy = -43.10976648 Ry Harris-Foulkes estimate = -43.10976919 Ry estimated scf accuracy < 0.00000837 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-08, avg # of iterations = 4.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 7.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8126 -13.3815 -11.3867 -11.3867 -8.3802 ! total energy = -43.10976719 Ry Harris-Foulkes estimate = -43.10976742 Ry estimated scf accuracy < 0.00000027 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.00179638 0.00000000 0.00000000 atom 2 type 1 force = 0.00179638 0.00000000 0.00000000 Total force = 0.001796 Total SCF correction = 0.000589 SCF correction compared to forces is large: reduce conv_thr to get better values Entering Dynamics: iteration = 7 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.115110591 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003774 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003781 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 8.2 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.479E-02 0.000E+00 total cpu time spent up to now is 8.3 secs total energy = -43.10894342 Ry Harris-Foulkes estimate = -43.10915529 Ry estimated scf accuracy < 0.00036499 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.65E-06, avg # of iterations = 2.0 negative rho (up, down): 0.476E-02 0.000E+00 total cpu time spent up to now is 8.4 secs total energy = -43.10901923 Ry Harris-Foulkes estimate = -43.10903300 Ry estimated scf accuracy < 0.00002773 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.77E-07, avg # of iterations = 2.0 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 8.6 secs total energy = -43.10902396 Ry Harris-Foulkes estimate = -43.10902655 Ry estimated scf accuracy < 0.00000442 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.42E-08, avg # of iterations = 4.0 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 8.7 secs total energy = -43.10902470 Ry Harris-Foulkes estimate = -43.10902628 Ry estimated scf accuracy < 0.00000382 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.82E-08, avg # of iterations = 2.0 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 8.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -29.0227 -13.3812 -11.5131 -11.5131 -8.3482 ! total energy = -43.10902539 Ry Harris-Foulkes estimate = -43.10902540 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.06023025 0.00000000 0.00000000 atom 2 type 1 force = -0.06023025 0.00000000 0.00000000 Total force = 0.060230 Total SCF correction = 0.000056 Entering Dynamics: iteration = 8 = -1.00000000 ATOMIC_POSITIONS (bohr) C 2.127180324 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003781 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003778 negative rho (up, down): 0.475E-02 0.000E+00 total cpu time spent up to now is 9.1 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.471E-02 0.000E+00 total cpu time spent up to now is 9.3 secs total energy = -43.10955328 Ry Harris-Foulkes estimate = -43.10960346 Ry estimated scf accuracy < 0.00008548 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.55E-07, avg # of iterations = 2.0 negative rho (up, down): 0.473E-02 0.000E+00 total cpu time spent up to now is 9.4 secs total energy = -43.10957201 Ry Harris-Foulkes estimate = -43.10957598 Ry estimated scf accuracy < 0.00000768 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.68E-08, avg # of iterations = 2.0 negative rho (up, down): 0.474E-02 0.000E+00 total cpu time spent up to now is 9.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.9220 -13.3805 -11.4526 -11.4526 -8.3634 ! total energy = -43.10957346 Ry Harris-Foulkes estimate = -43.10957364 Ry estimated scf accuracy < 0.00000042 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.03018207 0.00000000 0.00000000 atom 2 type 1 force = -0.03018207 0.00000000 0.00000000 Total force = 0.030182 Total SCF correction = 0.000531 Entering Dynamics: iteration = 9 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.144570629 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003778 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003773 negative rho (up, down): 0.473E-02 0.000E+00 total cpu time spent up to now is 9.8 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.469E-02 0.000E+00 total cpu time spent up to now is 10.0 secs total energy = -43.10970375 Ry Harris-Foulkes estimate = -43.10980381 Ry estimated scf accuracy < 0.00017021 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.70E-06, avg # of iterations = 2.0 negative rho (up, down): 0.471E-02 0.000E+00 total cpu time spent up to now is 10.1 secs total energy = -43.10973953 Ry Harris-Foulkes estimate = -43.10975061 Ry estimated scf accuracy < 0.00002032 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-07, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 10.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.7792 -13.3817 -11.3676 -11.3676 -8.3830 ! total energy = -43.10974361 Ry Harris-Foulkes estimate = -43.10974402 Ry estimated scf accuracy < 0.00000096 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.01076174 0.00000000 0.00000000 atom 2 type 1 force = 0.01076174 0.00000000 0.00000000 Total force = 0.010762 Total SCF correction = 0.000813 Entering Dynamics: iteration = 10 = -1.00000000 ATOMIC_POSITIONS (bohr) C 2.142564627 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003773 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003774 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 10.5 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.72E-08, avg # of iterations = 2.0 negative rho (up, down): 0.473E-02 0.000E+00 total cpu time spent up to now is 10.7 secs total energy = -43.10975884 Ry Harris-Foulkes estimate = -43.10976234 Ry estimated scf accuracy < 0.00000512 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.12E-08, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 10.8 secs total energy = -43.10975993 Ry Harris-Foulkes estimate = -43.10976118 Ry estimated scf accuracy < 0.00000218 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.18E-08, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 11.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.7994 -13.3835 -11.3791 -11.3791 -8.3809 ! total energy = -43.10976047 Ry Harris-Foulkes estimate = -43.10976049 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.00582469 0.00000000 0.00000000 atom 2 type 1 force = 0.00582469 0.00000000 0.00000000 Total force = 0.005825 Total SCF correction = 0.000114 Entering Dynamics: iteration = 11 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.139519983 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003774 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003775 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 11.2 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.55E-08, avg # of iterations = 1.0 negative rho (up, down): 0.473E-02 0.000E+00 total cpu time spent up to now is 11.4 secs total energy = -43.10976664 Ry Harris-Foulkes estimate = -43.10976925 Ry estimated scf accuracy < 0.00000459 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.59E-08, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 11.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8213 -13.3817 -11.3917 -11.3917 -8.3738 ! total energy = -43.10976752 Ry Harris-Foulkes estimate = -43.10976788 Ry estimated scf accuracy < 0.00000054 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.00132450 0.00000000 0.00000000 atom 2 type 1 force = -0.00132450 0.00000000 0.00000000 Total force = 0.001325 Total SCF correction = 0.000172 SCF correction compared to forces is large: reduce conv_thr to get better values Entering Dynamics: iteration = 12 = -1.00000000 ATOMIC_POSITIONS (bohr) C 2.139767533 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003775 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003775 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 11.9 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.75E-09, avg # of iterations = 1.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 12.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8231 -13.3830 -11.3935 -11.3935 -8.3810 ! total energy = -43.10976774 Ry Harris-Foulkes estimate = -43.10976805 Ry estimated scf accuracy < 0.00000039 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.00059445 0.00000000 0.00000000 atom 2 type 1 force = -0.00059445 0.00000000 0.00000000 Total force = 0.000594 Total SCF correction = 0.000409 SCF correction compared to forces is large: reduce conv_thr to get better values Damped Dynamics: convergence achieved in 13 steps End of damped dynamics calculation Final energy = -43.1097677388 Ry Begin final coordinates new unit-cell volume = 1728.00000 a.u.^3 ( 256.06318 Ang^3 ) CELL_PARAMETERS (alat= 12.00000000) 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 ATOMIC_POSITIONS (bohr) C 2.139767533 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 End final coordinates Entering Dynamics: iteration = 13 = 1.00000000 ATOMIC_POSITIONS (bohr) C 2.140103544 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save init_run : 0.91s CPU 0.93s WALL ( 1 calls) electrons : 7.27s CPU 7.59s WALL ( 13 calls) update_pot : 0.91s CPU 0.95s WALL ( 12 calls) forces : 1.06s CPU 1.09s WALL ( 13 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.04s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 1.17s CPU 1.20s WALL ( 58 calls) sum_band : 2.72s CPU 2.80s WALL ( 58 calls) v_of_rho : 0.85s CPU 0.90s WALL ( 68 calls) newd : 2.14s CPU 2.24s WALL ( 68 calls) mix_rho : 0.32s CPU 0.33s WALL ( 58 calls) Called by c_bands: init_us_2 : 0.09s CPU 0.10s WALL ( 117 calls) regterg : 1.07s CPU 1.09s WALL ( 58 calls) Called by *egterg: h_psi : 0.88s CPU 0.86s WALL ( 213 calls) s_psi : 0.01s CPU 0.02s WALL ( 213 calls) g_psi : 0.04s CPU 0.04s WALL ( 154 calls) rdiaghg : 0.03s CPU 0.02s WALL ( 197 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 213 calls) General routines calbec : 0.06s CPU 0.05s WALL ( 323 calls) fft : 0.96s CPU 0.93s WALL ( 610 calls) ffts : 0.15s CPU 0.13s WALL ( 126 calls) fftw : 0.75s CPU 0.71s WALL ( 1276 calls) interpolate : 0.46s CPU 0.49s WALL ( 126 calls) davcio : 0.00s CPU 0.01s WALL ( 55 calls) PWSCF : 11.43s CPU 12.21s WALL This run was terminated on: 11:27:42 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/atom-pbe.in0000755000175000017500000000067412341373024015037 0ustar mbamba &control calculation='scf', tstress=.true. / &system ibrav=1, celldm(1)=10.0, nat=1, ntyp=1, nbnd=6, ecutwfc=25.0, ecutrho=200.0, occupations='from_input', / &electrons mixing_beta=0.25, conv_thr=1.0e-8 / ATOMIC_SPECIES O 15.99994 O.pbe-rrkjus.UPF ATOMIC_POSITIONS alat O 0.000000000 0.000000000 0.000000000 K_POINTS {gamma} OCCUPATIONS 2.0 1.3333333333 1.3333333333 1.3333333333 0.0 0.0 espresso-5.1/PW/tests/uspp1.in0000755000175000017500000000055512341373024014401 0ustar mbamba&CONTROL calculation = 'scf' tstress=.true. tprnfor=.true. / &SYSTEM ibrav = 1, celldm(1) = 20.0, nat = 3, ntyp = 2, ecutwfc = 25.D0 / &ELECTRONS / ATOMIC_SPECIES O 16.D0 O_US.van H 2.D0 H_US.van ATOMIC_POSITIONS (bohr) O 10.0000 10.0000 10.000 H 11.7325 9.6757 10.000 H 9.6757 11.7325 10.000 espresso-5.1/PW/tests/b3lyp-h2o.ref0000644000175000017500000010141712341373024015212 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 9656) starts on 18Nov2013 at 9:40:13 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso-5.0.3/PW/tests/b3lyp-h2o.in IMPORTANT: XC functional enforced from input : Exchange-correlation = B3LYP ( 7 2 9 7 0) EXX-fraction = 0.20 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used EXX: grid of k+q point setup nkqs = 1 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = B3LYP ( 7 2 9 7 0) EXX-fraction = 0.20 nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso-5.0.3/pseudo/O.blyp-mt.UPF MD5 check sum: c45e57fb60a4aba32d51192b46cad255 Pseudo is Norm-conserving, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 285 points, 1 beta functions with: l(1) = 0 PseudoPot. # 2 for H read from file: /home/giannozz/trunk/espresso-5.0.3/pseudo/H.blyp-vbc.UPF MD5 check sum: 64d25ad537c4b939b17faee1147b797b Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 243 points, 0 beta functions with: atomic species valence mass pseudopotential O 6.00 16.00000 O ( 1.00) H 1.00 1.00000 H ( 1.00) 2 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0008250 0.0008250 0.0000000 ) 2 H tau( 2) = ( 0.1527083 -0.0186917 -0.0000083 ) 3 H tau( 3) = ( -0.0186917 0.1527083 0.0000167 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 0.16 Mb ( 10408, 1) Each V/rho on FFT grid 5.70 Mb ( 373248) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 1, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.004488 starting charge 7.99998, renormalised to 8.00000 negative rho (up, down): 0.449E-02 0.000E+00 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 1.2 secs per-process dynamical memory: 46.6 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.119E-02 0.000E+00 total cpu time spent up to now is 1.9 secs total energy = -34.45107749 Ry Harris-Foulkes estimate = -34.85510239 Ry estimated scf accuracy < 0.53532290 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.69E-03, avg # of iterations = 3.0 negative rho (up, down): 0.546E-03 0.000E+00 total cpu time spent up to now is 2.6 secs total energy = -34.56066884 Ry Harris-Foulkes estimate = -34.83945893 Ry estimated scf accuracy < 0.59552218 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.69E-03, avg # of iterations = 2.0 negative rho (up, down): 0.821E-04 0.000E+00 total cpu time spent up to now is 3.2 secs total energy = -34.68468125 Ry Harris-Foulkes estimate = -34.68607770 Ry estimated scf accuracy < 0.00576632 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.21E-05, avg # of iterations = 2.0 negative rho (up, down): 0.318E-07 0.000E+00 total cpu time spent up to now is 3.8 secs total energy = -34.68608260 Ry Harris-Foulkes estimate = -34.68628079 Ry estimated scf accuracy < 0.00073269 Ry iteration # 5 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.16E-06, avg # of iterations = 2.0 negative rho (up, down): 0.149E-06 0.000E+00 total cpu time spent up to now is 4.5 secs total energy = -34.68612620 Ry Harris-Foulkes estimate = -34.68615228 Ry estimated scf accuracy < 0.00005378 Ry iteration # 6 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.72E-07, avg # of iterations = 2.0 total cpu time spent up to now is 5.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -24.9944 -12.9638 -9.1848 -7.1591 EXX: now go back to refine exchange calculation -3.1324439667876134 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.72E-07, avg # of iterations = 4.0 total cpu time spent up to now is 8.9 secs total energy = -34.63982898 Ry Harris-Foulkes estimate = -34.63994338 Ry estimated scf accuracy < 0.00020055 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.51E-06, avg # of iterations = 2.0 total cpu time spent up to now is 11.0 secs total energy = -34.63983542 Ry Harris-Foulkes estimate = -34.63985994 Ry estimated scf accuracy < 0.00003593 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.49E-07, avg # of iterations = 2.0 total cpu time spent up to now is 13.3 secs total energy = -34.63984294 Ry Harris-Foulkes estimate = -34.63985084 Ry estimated scf accuracy < 0.00001286 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-07, avg # of iterations = 2.0 total cpu time spent up to now is 15.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.5249 -14.3714 -10.6334 -8.5901 -3.1324439667876134 -3.1351174330243619 -3.1379062257617685 est. exchange err (dexx) = 0.00005766 Ry ! total energy = -34.63990290 Ry Harris-Foulkes estimate = -34.63990316 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = -55.79558284 Ry hartree contribution = 27.99078724 Ry xc contribution = -7.13863323 Ry ewald contribution = -1.26263839 Ry - averaged Fock potential = 3.13511743 Ry + Fock energy = -1.56895311 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-07, avg # of iterations = 2.0 total cpu time spent up to now is 18.1 secs total energy = -34.63990578 Ry Harris-Foulkes estimate = -34.63990758 Ry estimated scf accuracy < 0.00000156 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.94E-08, avg # of iterations = 2.0 total cpu time spent up to now is 20.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.5183 -14.3627 -10.6276 -8.5834 -3.1379062257617685 -3.1380175693592203 -3.1381294879079751 est. exchange err (dexx) = 0.00000029 Ry ! total energy = -34.63990594 Ry Harris-Foulkes estimate = -34.63990669 Ry estimated scf accuracy < 0.00000070 Ry The total energy is the sum of the following terms: one-electron contribution = -55.79990364 Ry hartree contribution = 27.99238568 Ry xc contribution = -7.13870241 Ry ewald contribution = -1.26263839 Ry - averaged Fock potential = 3.13801757 Ry + Fock energy = -1.56906474 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02253981 0.02253981 0.00000000 atom 2 type 2 force = -0.02621508 0.00367527 0.00000286 atom 3 type 2 force = 0.00367527 -0.02621508 -0.00000286 Total force = 0.049169 Total SCF correction = 0.000571 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -34.6399059444 Ry new trust radius = 0.0318761033 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (bohr) O 0.032439809 0.032439809 0.000000000 H 1.806284923 -0.220624732 -0.000097142 H -0.220624732 1.806284923 0.000197142 Writing output data file pwscf.save Check: negative starting charge= -0.004488 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004490 negative rho (up, down): 0.260E-02 0.000E+00 total cpu time spent up to now is 21.4 secs per-process dynamical memory: 92.4 Mb negative rho (up, down): 0.260E-02 0.000E+00 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.409E-03 0.000E+00 total cpu time spent up to now is 25.0 secs total energy = -34.63687793 Ry Harris-Foulkes estimate = -34.63559139 Ry estimated scf accuracy < 0.00116621 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-05, avg # of iterations = 2.0 negative rho (up, down): 0.188E-03 0.000E+00 total cpu time spent up to now is 27.3 secs total energy = -34.63753515 Ry Harris-Foulkes estimate = -34.63768395 Ry estimated scf accuracy < 0.00086838 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-05, avg # of iterations = 2.0 negative rho (up, down): 0.301E-05 0.000E+00 total cpu time spent up to now is 29.5 secs total energy = -34.63788451 Ry Harris-Foulkes estimate = -34.63771600 Ry estimated scf accuracy < 0.00000271 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.39E-08, avg # of iterations = 3.0 total cpu time spent up to now is 32.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.7831 -14.7070 -10.6246 -8.6527 -3.1381294879079751 -3.1456035355074481 -3.1575264710011846 est. exchange err (dexx) = 0.00222444 Ry ! total energy = -34.64011408 Ry Harris-Foulkes estimate = -34.64011292 Ry estimated scf accuracy < 0.00000022 Ry The total energy is the sum of the following terms: one-electron contribution = -56.35247234 Ry hartree contribution = 28.24380481 Ry xc contribution = -7.17372265 Ry ewald contribution = -0.92456420 Ry - averaged Fock potential = 3.14560354 Ry + Fock energy = -1.57876324 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 34.9 secs total energy = -34.64020710 Ry Harris-Foulkes estimate = -34.64027301 Ry estimated scf accuracy < 0.00008767 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-06, avg # of iterations = 2.0 total cpu time spent up to now is 37.1 secs total energy = -34.64022541 Ry Harris-Foulkes estimate = -34.64023041 Ry estimated scf accuracy < 0.00000765 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.56E-08, avg # of iterations = 2.0 total cpu time spent up to now is 39.4 secs total energy = -34.64022762 Ry Harris-Foulkes estimate = -34.64022881 Ry estimated scf accuracy < 0.00000210 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.62E-08, avg # of iterations = 2.0 total cpu time spent up to now is 41.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.7792 -14.7043 -10.6124 -8.6353 -3.1575264710011846 -3.1582512599272370 -3.1589897442101043 est. exchange err (dexx) = 0.00000685 Ry ! total energy = -34.64023492 Ry Harris-Foulkes estimate = -34.64023491 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = -56.38124009 Ry hartree contribution = 28.26334103 Ry xc contribution = -7.17652805 Ry ewald contribution = -0.92456420 Ry - averaged Fock potential = 3.15825126 Ry + Fock energy = -1.57949487 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.16E-09, avg # of iterations = 2.0 total cpu time spent up to now is 45.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.7827 -14.7072 -10.6131 -8.6357 -3.1589897442101043 -3.1591166901976893 -3.1592437871599586 est. exchange err (dexx) = 0.00000008 Ry ! total energy = -34.64023530 Ry Harris-Foulkes estimate = -34.64023568 Ry estimated scf accuracy < 0.00000039 Ry The total energy is the sum of the following terms: one-electron contribution = -56.38494870 Ry hartree contribution = 28.26681847 Ry xc contribution = -7.17703567 Ry ewald contribution = -0.92456420 Ry - averaged Fock potential = 3.15911669 Ry + Fock energy = -1.57962189 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01903535 -0.01903535 0.00000000 atom 2 type 2 force = 0.01950913 -0.00047378 -0.00000112 atom 3 type 2 force = -0.00047378 0.01950913 0.00000112 Total force = 0.038553 Total SCF correction = 0.002428 number of scf cycles = 2 number of bfgs steps = 1 energy old = -34.6399059444 Ry energy new = -34.6402353013 Ry CASE: energy _new < energy _old new trust radius = 0.0150553597 bohr new conv_thr = 0.0000000329 Ry ATOMIC_POSITIONS (bohr) O 0.021794062 0.021794062 0.000000000 H 1.817188542 -0.220882604 -0.000097763 H -0.220882604 1.817188542 0.000197763 Writing output data file pwscf.save Check: negative starting charge= -0.004490 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004487 negative rho (up, down): 0.722E-03 0.000E+00 total cpu time spent up to now is 46.1 secs per-process dynamical memory: 92.4 Mb negative rho (up, down): 0.722E-03 0.000E+00 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.105E-03 0.000E+00 total cpu time spent up to now is 49.5 secs total energy = -34.63995900 Ry Harris-Foulkes estimate = -34.63930743 Ry estimated scf accuracy < 0.00021054 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.63E-06, avg # of iterations = 3.0 negative rho (up, down): 0.477E-04 0.000E+00 total cpu time spent up to now is 52.1 secs total energy = -34.64006502 Ry Harris-Foulkes estimate = -34.64009645 Ry estimated scf accuracy < 0.00014044 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.76E-06, avg # of iterations = 2.0 negative rho (up, down): 0.193E-05 0.000E+00 total cpu time spent up to now is 54.5 secs total energy = -34.64011406 Ry Harris-Foulkes estimate = -34.64009725 Ry estimated scf accuracy < 0.00000098 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.22E-08, avg # of iterations = 2.0 total cpu time spent up to now is 56.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.6660 -14.5446 -10.6185 -8.6037 -3.1592437871599586 -3.1544581279865729 -3.1506449156186487 est. exchange err (dexx) = 0.00048622 Ry ! total energy = -34.64060363 Ry Harris-Foulkes estimate = -34.64060110 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = -56.14051670 Ry hartree contribution = 28.15537433 Ry xc contribution = -7.16143107 Ry ewald contribution = -1.07316586 Ry - averaged Fock potential = 3.15445813 Ry + Fock energy = -1.57532246 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 59.5 secs total energy = -34.64062448 Ry Harris-Foulkes estimate = -34.64063709 Ry estimated scf accuracy < 0.00001736 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-07, avg # of iterations = 2.0 total cpu time spent up to now is 61.8 secs total energy = -34.64062798 Ry Harris-Foulkes estimate = -34.64062841 Ry estimated scf accuracy < 0.00000052 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.44E-09, avg # of iterations = 2.0 total cpu time spent up to now is 64.1 secs total energy = -34.64062813 Ry Harris-Foulkes estimate = -34.64062824 Ry estimated scf accuracy < 0.00000022 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.74E-09, avg # of iterations = 2.0 total cpu time spent up to now is 66.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.6677 -14.5472 -10.6267 -8.6120 -3.1506449156186487 -3.1503669107372074 -3.1500917620989659 est. exchange err (dexx) = 0.00000143 Ry ! total energy = -34.64062958 Ry Harris-Foulkes estimate = -34.64062961 Ry estimated scf accuracy < 2.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -56.13045849 Ry hartree contribution = 28.14806836 Ry xc contribution = -7.16039462 Ry ewald contribution = -1.07316586 Ry - averaged Fock potential = 3.15036691 Ry + Fock energy = -1.57504588 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.92E-10, avg # of iterations = 2.0 total cpu time spent up to now is 69.8 secs total energy = -34.64062966 Ry Harris-Foulkes estimate = -34.64062972 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.94E-10, avg # of iterations = 2.0 total cpu time spent up to now is 72.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.6681 -14.5475 -10.6274 -8.6131 -3.1500917620989659 -3.1500841175055125 -3.1500764889552721 est. exchange err (dexx) = 0.00000001 Ry ! total energy = -34.64062967 Ry Harris-Foulkes estimate = -34.64062969 Ry estimated scf accuracy < 5.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -56.12997378 Ry hartree contribution = 28.14783145 Ry xc contribution = -7.16036736 Ry ewald contribution = -1.07316586 Ry - averaged Fock potential = 3.15008412 Ry + Fock energy = -1.57503824 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00035734 0.00035734 0.00000000 atom 2 type 2 force = -0.00143436 0.00107701 -0.00000097 atom 3 type 2 force = 0.00107701 -0.00143436 0.00000097 Total force = 0.002587 Total SCF correction = 0.000058 number of scf cycles = 3 number of bfgs steps = 2 energy old = -34.6402353013 Ry energy new = -34.6406296720 Ry CASE: energy _new < energy _old new trust radius = 0.0013899161 bohr new conv_thr = 0.0000000143 Ry ATOMIC_POSITIONS (bohr) O 0.021712682 0.021712682 0.000000000 H 1.816247255 -0.219859938 -0.000098714 H -0.219859938 1.816247255 0.000198714 Writing output data file pwscf.save Check: negative starting charge= -0.004487 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004487 negative rho (up, down): 0.567E-05 0.000E+00 total cpu time spent up to now is 73.1 secs per-process dynamical memory: 92.4 Mb negative rho (up, down): 0.567E-05 0.000E+00 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.25E-09, avg # of iterations = 3.0 negative rho (up, down): 0.522E-06 0.000E+00 total cpu time spent up to now is 77.2 secs total energy = -34.64063141 Ry Harris-Foulkes estimate = -34.64062431 Ry estimated scf accuracy < 0.00000032 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.00E-09, avg # of iterations = 3.0 negative rho (up, down): 0.155E-06 0.000E+00 total cpu time spent up to now is 79.6 secs total energy = -34.64063218 Ry Harris-Foulkes estimate = -34.64063162 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.80E-09, avg # of iterations = 2.0 total cpu time spent up to now is 82.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.6757 -14.5501 -10.6320 -8.6153 -3.1500764889552721 -3.1502887872622845 -3.1505015297103838 est. exchange err (dexx) = 0.00000022 Ry ! total energy = -34.64063294 Ry Harris-Foulkes estimate = -34.64063245 Ry estimated scf accuracy < 6.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -56.14250634 Ry hartree contribution = 28.15330338 Ry xc contribution = -7.16113910 Ry ewald contribution = -1.06532889 Ry - averaged Fock potential = 3.15028879 Ry + Fock energy = -1.57525076 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.47E-11, avg # of iterations = 3.0 total cpu time spent up to now is 85.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.6754 -14.5499 -10.6316 -8.6146 -3.1505015297103838 -3.1505070909137523 -3.1505126562148740 est. exchange err (dexx) = 0.00000000 Ry ! total energy = -34.64063299 Ry Harris-Foulkes estimate = -34.64063296 Ry estimated scf accuracy < 4.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -56.14290361 Ry hartree contribution = 28.15350427 Ry xc contribution = -7.16115553 Ry ewald contribution = -1.06532889 Ry - averaged Fock potential = 3.15050709 Ry + Fock energy = -1.57525633 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00041340 -0.00041340 0.00000000 atom 2 type 2 force = -0.00027582 0.00068922 0.00000045 atom 3 type 2 force = 0.00068922 -0.00027582 -0.00000045 Total force = 0.001202 Total SCF correction = 0.000081 bfgs converged in 4 scf cycles and 3 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -34.6406329926 Ry Begin final coordinates ATOMIC_POSITIONS (bohr) O 0.021712682 0.021712682 0.000000000 H 1.816247255 -0.219859938 -0.000098714 H -0.219859938 1.816247255 0.000198714 End final coordinates Writing output data file pwscf.save init_run : 0.67s CPU 0.75s WALL ( 1 calls) electrons : 81.00s CPU 82.94s WALL ( 4 calls) update_pot : 1.54s CPU 1.58s WALL ( 3 calls) forces : 0.42s CPU 0.44s WALL ( 4 calls) Called by init_run: wfcinit : 0.08s CPU 0.12s WALL ( 1 calls) potinit : 0.48s CPU 0.49s WALL ( 1 calls) Called by electrons: c_bands : 51.35s CPU 52.37s WALL ( 39 calls) sum_band : 2.31s CPU 2.35s WALL ( 39 calls) v_of_rho : 15.71s CPU 16.18s WALL ( 43 calls) mix_rho : 0.66s CPU 0.73s WALL ( 39 calls) Called by c_bands: init_us_2 : 0.05s CPU 0.06s WALL ( 79 calls) regterg : 51.31s CPU 52.33s WALL ( 39 calls) Called by *egterg: h_psi : 51.16s CPU 52.12s WALL ( 129 calls) g_psi : 0.03s CPU 0.04s WALL ( 89 calls) rdiaghg : 0.00s CPU 0.03s WALL ( 114 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.01s WALL ( 129 calls) General routines calbec : 0.00s CPU 0.05s WALL ( 145 calls) fft : 6.88s CPU 6.86s WALL ( 469 calls) fftw : 5.24s CPU 5.28s WALL ( 568 calls) davcio : 0.01s CPU 0.04s WALL ( 35 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.61s CPU 0.64s WALL ( 11 calls) vexx : 45.78s CPU 46.66s WALL ( 109 calls) exxen2 : 11.35s CPU 11.50s WALL ( 40 calls) PWSCF : 1m23.95s CPU 1m26.47s WALL This run was terminated on: 9:41:39 18Nov2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/eval_infix.in0000644000175000017500000000054512341373024015451 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 1-1 0/2 (1+1)*0 Si 1/4 2*(1/8) 1/(2/(1/2)) K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/scf-kcrys.ref0000644000175000017500000002201312341373024015371 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-kcrys.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 331 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.7500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79103206 Ry Harris-Foulkes estimate = -15.81239448 Ry estimated scf accuracy < 0.06375573 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409374 Ry Harris-Foulkes estimate = -15.79442009 Ry estimated scf accuracy < 0.00230336 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447792 Ry Harris-Foulkes estimate = -15.79450037 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449677 Ry estimated scf accuracy < 0.00000446 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.57E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.7500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378666 Ry hartree contribution = 1.08429043 Ry xc contribution = -4.81281444 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020597 0.00000000 0.00000000 -30.30 0.00 0.00 0.00000000 -0.00020597 0.00000000 0.00 -30.30 0.00 0.00000000 0.00000000 -0.00020597 0.00 0.00 -30.30 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.02s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.01s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 40 calls) PWSCF : 0.12s CPU 0.12s WALL This run was terminated on: 11:28:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/md-wfc_extrap2.in0000755000175000017500000000063012341373024016145 0ustar mbamba &control calculation='md' dt=20, nstep=50 / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / &ions wfc_extrapolation='second_order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS {alat} Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS {automatic} 1 1 1 0 0 0 espresso-5.1/PW/tests/eval_infix.ref20000644000175000017500000002161712341373024015704 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:13 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/eval_infix.in2 file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1597 793 193 47833 16879 2103 Tot 799 397 97 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23917 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 8440 G-vectors FFT dimensions: ( 32, 32, 32) Occupations read from input 2.0000 1.3333 1.3333 1.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 1052, 6) NL pseudopotentials 0.13 Mb ( 1052, 8) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.18 Mb ( 23917) G-vector shells 0.00 Mb ( 424) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 1052, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.104E-04 0.000E+00 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.7 secs per-process dynamical memory: 20.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.63E-06, avg # of iterations = 8.0 negative rho (up, down): 0.861E-05 0.000E+00 total cpu time spent up to now is 0.9 secs total energy = -31.29442832 Ry Harris-Foulkes estimate = -31.29443512 Ry estimated scf accuracy < 0.00028054 Ry iteration # 2 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.68E-06, avg # of iterations = 1.0 negative rho (up, down): 0.119E-03 0.000E+00 total cpu time spent up to now is 1.0 secs total energy = -31.29444080 Ry Harris-Foulkes estimate = -31.29443336 Ry estimated scf accuracy < 0.00012407 Ry iteration # 3 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.07E-06, avg # of iterations = 2.0 negative rho (up, down): 0.208E-03 0.000E+00 total cpu time spent up to now is 1.1 secs total energy = -31.29445412 Ry Harris-Foulkes estimate = -31.29445131 Ry estimated scf accuracy < 0.00001255 Ry iteration # 4 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.09E-07, avg # of iterations = 2.0 negative rho (up, down): 0.708E-05 0.000E+00 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -23.0773 -8.4543 -8.4543 -8.4542 -0.4304 4.4889 highest occupied, lowest unoccupied level (ev): -8.4542 -0.4304 ! total energy = -31.29446109 Ry Harris-Foulkes estimate = -31.29445540 Ry estimated scf accuracy < 0.00000027 Ry The total energy is the sum of the following terms: one-electron contribution = -31.95314397 Ry hartree contribution = 17.14603573 Ry xc contribution = -6.27308185 Ry ewald contribution = -10.21427100 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.49s CPU 0.49s WALL ( 1 calls) electrons : 0.41s CPU 0.51s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.06s CPU 0.06s WALL ( 5 calls) sum_band : 0.15s CPU 0.16s WALL ( 5 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) newd : 0.10s CPU 0.11s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 11 calls) regterg : 0.06s CPU 0.06s WALL ( 5 calls) Called by *egterg: h_psi : 0.04s CPU 0.05s WALL ( 26 calls) s_psi : 0.00s CPU 0.00s WALL ( 26 calls) g_psi : 0.01s CPU 0.00s WALL ( 20 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 24 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 26 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 31 calls) fft : 0.04s CPU 0.07s WALL ( 44 calls) ffts : 0.01s CPU 0.00s WALL ( 10 calls) fftw : 0.04s CPU 0.04s WALL ( 111 calls) interpolate : 0.02s CPU 0.03s WALL ( 10 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 1.00s CPU 1.24s WALL This run was terminated on: 10:22:14 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/uspp-mixing_localTF.ref0000644000175000017500000002470312341373024017361 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:45 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp-mixing_localTF.in file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 151 55 3695 1243 283 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 local-TF mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1875000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.7500000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.3750000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0937500 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1875000 Dense grid: 3695 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3695) G-vector shells 0.00 Mb ( 79) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 169, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.4 secs per-process dynamical memory: 10.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.9 total cpu time spent up to now is 0.5 secs total energy = -87.77688089 Ry Harris-Foulkes estimate = -87.89694855 Ry estimated scf accuracy < 0.24974181 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-03, avg # of iterations = 1.1 total cpu time spent up to now is 0.5 secs total energy = -87.83041702 Ry Harris-Foulkes estimate = -87.83060830 Ry estimated scf accuracy < 0.00117031 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-05, avg # of iterations = 3.5 negative rho (up, down): 0.244E-05 0.000E+00 total cpu time spent up to now is 0.6 secs total energy = -87.83069579 Ry Harris-Foulkes estimate = -87.83068595 Ry estimated scf accuracy < 0.00008942 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.13E-07, avg # of iterations = 1.0 negative rho (up, down): 0.194E-06 0.000E+00 total cpu time spent up to now is 0.7 secs total energy = -87.83069498 Ry Harris-Foulkes estimate = -87.83069700 Ry estimated scf accuracy < 0.00000378 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.44E-08, avg # of iterations = 1.1 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9884 11.1835 11.1835 11.1835 12.0729 12.0729 38.8573 41.0124 41.0124 41.0124 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1529 10.9368 11.3539 11.3539 12.1646 12.1646 27.5229 38.3695 38.3695 38.4662 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1003 11.1502 11.1502 12.6866 12.6866 13.4638 18.6310 37.0229 37.6061 37.6061 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7917 10.4182 11.6176 11.9010 11.9010 12.3675 32.3361 32.3361 33.7582 34.5383 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7544 10.3153 11.2492 11.8772 12.7303 15.5203 21.5943 27.6700 31.2983 35.1287 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6191 10.6614 10.8798 11.7262 12.0733 14.1903 24.5899 26.0210 35.8943 37.3856 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2473 9.6922 12.6679 12.8406 12.8406 16.0618 22.1007 28.1774 28.1774 32.9146 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0163 10.6622 10.6622 12.0404 12.8412 20.9450 20.9450 23.1284 24.0482 44.6504 the Fermi energy is 15.2754 ev ! total energy = -87.83069602 Ry Harris-Foulkes estimate = -87.83069561 Ry estimated scf accuracy < 0.00000019 Ry The total energy is the sum of the following terms: one-electron contribution = -10.22411345 Ry hartree contribution = 18.88095269 Ry xc contribution = -14.05466744 Ry ewald contribution = -82.43214134 Ry smearing contrib. (-TS) = -0.00072648 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.35s CPU 0.36s WALL ( 1 calls) electrons : 0.28s CPU 0.29s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.14s CPU 0.15s WALL ( 5 calls) sum_band : 0.07s CPU 0.07s WALL ( 5 calls) v_of_rho : 0.00s CPU 0.01s WALL ( 6 calls) newd : 0.04s CPU 0.04s WALL ( 6 calls) mix_rho : 0.01s CPU 0.01s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 88 calls) cegterg : 0.14s CPU 0.14s WALL ( 40 calls) Called by *egterg: h_psi : 0.10s CPU 0.09s WALL ( 141 calls) s_psi : 0.00s CPU 0.00s WALL ( 141 calls) g_psi : 0.00s CPU 0.00s WALL ( 93 calls) cdiaghg : 0.02s CPU 0.04s WALL ( 133 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 141 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 181 calls) fft : 0.02s CPU 0.01s WALL ( 49 calls) ffts : 0.00s CPU 0.00s WALL ( 79 calls) fftw : 0.08s CPU 0.07s WALL ( 2512 calls) interpolate : 0.01s CPU 0.00s WALL ( 11 calls) davcio : 0.00s CPU 0.00s WALL ( 128 calls) PWSCF : 0.72s CPU 0.76s WALL This run was terminated on: 11:28:46 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/gau-pbe-si111.in0000755000175000017500000000146312341373024015504 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='gaup', nqx1=1, nqx2=1, nqx3=1, exxdiv_treatment='none' x_gamma_extrapolation = .false. / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/scf-wf_collect.ref0000644000175000017500000002116712341373024016370 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:20 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-wf_collect.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102865 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441848 Ry estimated scf accuracy < 0.00230223 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450063 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000449 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378641 Ry hartree contribution = 1.08429090 Ry xc contribution = -4.81281466 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.02s WALL ( 6 calls) sum_band : 0.01s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) fftw : 0.02s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 40 calls) PWSCF : 0.10s CPU 0.12s WALL This run was terminated on: 11:28:20 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/gau-pbe-si222.in0000755000175000017500000000146312341373024015507 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='gaup', nqx1=2, nqx2=2, nqx3=2, exxdiv_treatment='none' x_gamma_extrapolation = .false. / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/dft11.ref0000644000175000017500000002243212341373024014411 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10839) starts on 3Apr2014 at 8:46:50 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/optb88.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = OPTBK88 ( 1 4 23 1 0) Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 27 728 728 141 Max 82 82 28 731 731 142 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = OPTBK88 ( 1 4 23 1 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 93, 4) NL pseudopotentials 0.01 Mb ( 93, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 93, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.51E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.81833145 Ry Harris-Foulkes estimate = -15.83700990 Ry estimated scf accuracy < 0.06828111 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.54E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.82130020 Ry Harris-Foulkes estimate = -15.82142228 Ry estimated scf accuracy < 0.00277930 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.82162634 Ry Harris-Foulkes estimate = -15.82164133 Ry estimated scf accuracy < 0.00006950 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.69E-07, avg # of iterations = 3.0 total cpu time spent up to now is 0.0 secs total energy = -15.82165567 Ry Harris-Foulkes estimate = -15.82165686 Ry estimated scf accuracy < 0.00000344 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.30E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8508 2.3938 5.5208 5.5208 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9116 -0.0559 2.7142 4.0380 highest occupied level (ev): 5.5208 ! total energy = -15.82165623 Ry Harris-Foulkes estimate = -15.82165625 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.81838411 Ry hartree contribution = 1.11204186 Ry xc contribution = -4.85232362 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.02s CPU 0.02s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.00s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.02s CPU 0.01s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.00s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 36 calls) g_psi : 0.00s CPU 0.00s WALL ( 22 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 32 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 36 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 36 calls) fft : 0.00s CPU 0.00s WALL ( 67 calls) fftw : 0.00s CPU 0.01s WALL ( 328 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.00s CPU 0.00s WALL ( 395 calls) PWSCF : 0.09s CPU 0.10s WALL This run was terminated on: 8:46:50 3Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lsda-mixing_localTF.in0000755000175000017500000000063112341373024017144 0ustar mbamba &control calculation='scf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons mixing_mode = 'local-TF' / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {alat} Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.1/PW/tests/noncolin-constrain_total.ref0000644000175000017500000015111512341373024020513 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:25:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin-constrain_total.in file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 32 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0312500 k( 2) = ( 0.0000000 -0.2500000 0.5000000), wk = 0.0312500 k( 3) = ( -0.2500000 0.2500000 0.2500000), wk = 0.0312500 k( 4) = ( -0.2500000 0.7500000 -0.2500000), wk = 0.0312500 k( 5) = ( 0.5000000 -0.5000000 0.2500000), wk = 0.0312500 k( 6) = ( 0.0000000 0.0000000 0.7500000), wk = 0.0312500 k( 7) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0312500 k( 8) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0312500 k( 9) = ( 0.0000000 -0.2500000 -0.5000000), wk = 0.0312500 k( 10) = ( -0.2500000 0.0000000 -0.5000000), wk = 0.0312500 k( 11) = ( 0.2500000 0.0000000 -0.5000000), wk = 0.0312500 k( 12) = ( 0.5000000 0.2500000 0.0000000), wk = 0.0312500 k( 13) = ( -0.5000000 0.2500000 0.0000000), wk = 0.0312500 k( 14) = ( 0.0000000 0.5000000 -0.2500000), wk = 0.0312500 k( 15) = ( 0.0000000 0.5000000 0.2500000), wk = 0.0312500 k( 16) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0312500 k( 17) = ( 0.2500000 0.5000000 0.0000000), wk = 0.0312500 k( 18) = ( 0.5000000 0.0000000 -0.2500000), wk = 0.0312500 k( 19) = ( 0.5000000 0.0000000 0.2500000), wk = 0.0312500 k( 20) = ( 0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 21) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.0312500 k( 22) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 23) = ( 0.2500000 0.7500000 0.2500000), wk = 0.0312500 k( 24) = ( -0.2500000 -0.7500000 0.2500000), wk = 0.0312500 k( 25) = ( 0.7500000 -0.2500000 0.2500000), wk = 0.0312500 k( 26) = ( -0.5000000 -0.5000000 -0.2500000), wk = 0.0312500 k( 27) = ( 0.2500000 0.5000000 0.5000000), wk = 0.0312500 k( 28) = ( -0.2500000 0.5000000 -0.5000000), wk = 0.0312500 k( 29) = ( -0.5000000 0.2500000 -0.5000000), wk = 0.0312500 k( 30) = ( -0.5000000 -0.2500000 0.5000000), wk = 0.0312500 k( 31) = ( 0.7500000 0.0000000 0.0000000), wk = 0.0312500 k( 32) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0312500 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 318, 16) NL pseudopotentials 0.04 Mb ( 159, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.31 Mb ( 318, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 External magnetic field: -1.40219 -1.85888 -2.32843 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 1.418059 1.881828 2.356304 magnetization/charge: 0.212774 0.282360 0.353553 polar coord.: r, theta, phi [deg] : 3.332318 45.000000 53.000000 ============================================================================== Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.7 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 13.8 External magnetic field: 0.13056 0.17370 0.21696 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.446359 magnetization : 0.234110 0.311683 0.390180 magnetization/charge: 0.036317 0.048350 0.060527 polar coord.: r, theta, phi [deg] : 0.551538 44.972956 53.089266 ============================================================================== total cpu time spent up to now is 2.2 secs total energy = -49.81719842 Ry Harris-Foulkes estimate = -91.11127859 Ry estimated scf accuracy < 2.17499733 Ry total magnetization = -3.41 -4.52 -5.66 Bohr mag/cell absolute magnetization = 8.00 Bohr mag/cell Magnetic field = 0.1305631 0.1736956 0.2169555 Ry lambda = 0.50 Ry iteration # 2 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.4 External magnetic field: -0.20589 -0.27371 -0.34184 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.429165 magnetization : 0.514219 0.684341 0.855520 magnetization/charge: 0.079982 0.106443 0.133069 polar coord.: r, theta, phi [deg] : 1.210230 45.016233 53.078564 ============================================================================== total cpu time spent up to now is 3.2 secs total energy = -54.06914925 Ry Harris-Foulkes estimate = -56.28645457 Ry estimated scf accuracy < 0.19951793 Ry total magnetization = 1.60 2.13 2.66 Bohr mag/cell absolute magnetization = 3.77 Bohr mag/cell Magnetic field = -0.2058912 -0.2737109 -0.3418413 Ry lambda = 0.50 Ry iteration # 3 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.49E-03, avg # of iterations = 4.6 External magnetic field: 0.07343 0.09771 0.12206 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.407114 magnetization : 0.264599 0.352501 0.440964 magnetization/charge: 0.041298 0.055017 0.068824 polar coord.: r, theta, phi [deg] : 0.623473 44.986775 53.106828 ============================================================================== total cpu time spent up to now is 3.8 secs total energy = -53.83961407 Ry Harris-Foulkes estimate = -57.46785425 Ry estimated scf accuracy < 0.65781043 Ry total magnetization = -1.99 -2.64 -3.30 Bohr mag/cell absolute magnetization = 4.67 Bohr mag/cell Magnetic field = 0.0734254 0.0977135 0.1220605 Ry lambda = 0.50 Ry iteration # 4 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.49E-03, avg # of iterations = 1.1 External magnetic field: -0.00170 -0.00227 -0.00286 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412627 magnetization : 0.330583 0.440363 0.550686 magnetization/charge: 0.051552 0.068671 0.085875 polar coord.: r, theta, phi [deg] : 0.778756 44.997596 53.104226 ============================================================================== total cpu time spent up to now is 4.2 secs total energy = -55.41631842 Ry Harris-Foulkes estimate = -55.87270614 Ry estimated scf accuracy < 0.14273868 Ry total magnetization = 1.36 1.81 2.26 Bohr mag/cell absolute magnetization = 3.19 Bohr mag/cell Magnetic field = -0.0017029 -0.0022734 -0.0028561 Ry lambda = 0.50 Ry iteration # 5 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.78E-03, avg # of iterations = 1.0 External magnetic field: 0.00018 0.00025 0.00030 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.411859 magnetization : 0.328654 0.437792 0.547462 magnetization/charge: 0.051257 0.068278 0.085383 polar coord.: r, theta, phi [deg] : 0.774203 44.998111 53.104084 ============================================================================== total cpu time spent up to now is 4.6 secs total energy = -55.54600526 Ry Harris-Foulkes estimate = -55.54495957 Ry estimated scf accuracy < 0.00269714 Ry total magnetization = 0.41 0.54 0.68 Bohr mag/cell absolute magnetization = 0.99 Bohr mag/cell Magnetic field = 0.0001828 0.0002494 0.0003005 Ry lambda = 0.50 Ry iteration # 6 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 4.4 External magnetic field: -0.03679 -0.04793 -0.05955 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.417589 magnetization : 0.353383 0.469731 0.587068 magnetization/charge: 0.055065 0.073194 0.091478 polar coord.: r, theta, phi [deg] : 0.830768 45.036438 53.045463 ============================================================================== total cpu time spent up to now is 5.2 secs total energy = -55.52131512 Ry Harris-Foulkes estimate = -55.54670384 Ry estimated scf accuracy < 0.00468207 Ry total magnetization = 0.47 0.62 0.77 Bohr mag/cell absolute magnetization = 1.12 Bohr mag/cell Magnetic field = -0.0367887 -0.0479304 -0.0595532 Ry lambda = 0.50 Ry iteration # 7 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.6 External magnetic field: -0.03764 -0.04948 -0.06163 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.417726 magnetization : 0.352726 0.469270 0.586622 magnetization/charge: 0.054961 0.073121 0.091407 polar coord.: r, theta, phi [deg] : 0.829913 45.020994 53.069705 ============================================================================== total cpu time spent up to now is 5.6 secs total energy = -55.65322494 Ry Harris-Foulkes estimate = -55.64638115 Ry estimated scf accuracy < 0.15316408 Ry total magnetization = -0.72 -0.93 -1.16 Bohr mag/cell absolute magnetization = 1.65 Bohr mag/cell Magnetic field = -0.0376400 -0.0494799 -0.0616256 Ry lambda = 0.50 Ry iteration # 8 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.5 External magnetic field: -0.03952 -0.04999 -0.06161 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.417781 magnetization : 0.353514 0.468445 0.584973 magnetization/charge: 0.055084 0.072992 0.091149 polar coord.: r, theta, phi [deg] : 0.828617 45.092595 52.959759 ============================================================================== total cpu time spent up to now is 6.1 secs total energy = -55.65613461 Ry Harris-Foulkes estimate = -55.65329192 Ry estimated scf accuracy < 0.15844683 Ry total magnetization = -0.73 -0.96 -1.19 Bohr mag/cell absolute magnetization = 1.70 Bohr mag/cell Magnetic field = -0.0395191 -0.0499928 -0.0616137 Ry lambda = 0.50 Ry iteration # 9 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 2.0 External magnetic field: -0.07154 -0.09400 -0.11704 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.424346 magnetization : 0.332309 0.441753 0.552006 magnetization/charge: 0.051727 0.068762 0.085924 polar coord.: r, theta, phi [deg] : 0.781208 45.040569 53.047634 ============================================================================== total cpu time spent up to now is 6.5 secs total energy = -55.86918236 Ry Harris-Foulkes estimate = -55.65618287 Ry estimated scf accuracy < 0.16055203 Ry total magnetization = -0.78 -0.96 -1.18 Bohr mag/cell absolute magnetization = 1.71 Bohr mag/cell Magnetic field = -0.0715409 -0.0940001 -0.1170410 Ry lambda = 0.50 Ry iteration # 10 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.7 External magnetic field: -0.00267 -0.00356 -0.00447 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.416069 magnetization : 0.309664 0.412615 0.516018 magnetization/charge: 0.048264 0.064310 0.080426 polar coord.: r, theta, phi [deg] : 0.729669 44.992898 53.112121 ============================================================================== total cpu time spent up to now is 7.0 secs total energy = -55.27821083 Ry Harris-Foulkes estimate = -55.92610570 Ry estimated scf accuracy < 0.34895372 Ry total magnetization = -1.39 -1.82 -2.26 Bohr mag/cell absolute magnetization = 3.22 Bohr mag/cell Magnetic field = -0.0026686 -0.0035649 -0.0044662 Ry lambda = 0.50 Ry iteration # 11 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.2 External magnetic field: 0.02313 0.03101 0.03870 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.420424 magnetization : 0.234181 0.312007 0.390228 magnetization/charge: 0.036474 0.048596 0.060779 polar coord.: r, theta, phi [deg] : 0.551785 44.991664 53.109498 ============================================================================== total cpu time spent up to now is 7.4 secs total energy = -55.55076130 Ry Harris-Foulkes estimate = -55.54455977 Ry estimated scf accuracy < 0.00238257 Ry total magnetization = 0.34 0.45 0.57 Bohr mag/cell absolute magnetization = 0.83 Bohr mag/cell Magnetic field = 0.0231300 0.0310070 0.0387022 Ry lambda = 0.50 Ry iteration # 12 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.4 External magnetic field: 0.02685 0.03558 0.04472 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.421618 magnetization : 0.238092 0.317519 0.396847 magnetization/charge: 0.037077 0.049445 0.061799 polar coord.: r, theta, phi [deg] : 0.561244 45.001701 53.135540 ============================================================================== total cpu time spent up to now is 7.8 secs total energy = -55.59907054 Ry Harris-Foulkes estimate = -55.58730250 Ry estimated scf accuracy < 0.05335092 Ry total magnetization = 0.82 1.09 1.36 Bohr mag/cell absolute magnetization = 1.93 Bohr mag/cell Magnetic field = 0.0268471 0.0355772 0.0447198 Ry lambda = 0.50 Ry iteration # 13 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.0 External magnetic field: -0.00483 -0.01315 -0.00769 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.398695 magnetization : 0.299340 0.405421 0.498606 magnetization/charge: 0.046781 0.063360 0.077923 polar coord.: r, theta, phi [deg] : 0.708928 45.305654 53.559900 ============================================================================== total cpu time spent up to now is 8.2 secs total energy = -55.50151529 Ry Harris-Foulkes estimate = -55.59960381 Ry estimated scf accuracy < 0.06121387 Ry total magnetization = 0.87 1.16 1.45 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell Magnetic field = -0.0048329 -0.0131535 -0.0076873 Ry lambda = 0.50 Ry iteration # 14 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 4.5 External magnetic field: -0.01355 -0.00193 -0.02473 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.388987 magnetization : 0.327511 0.421316 0.548139 magnetization/charge: 0.051262 0.065944 0.085794 polar coord.: r, theta, phi [deg] : 0.765001 44.232096 52.140194 ============================================================================== total cpu time spent up to now is 8.8 secs total energy = -55.54402043 Ry Harris-Foulkes estimate = -55.54629552 Ry estimated scf accuracy < 0.00348363 Ry total magnetization = 0.28 0.12 0.48 Bohr mag/cell absolute magnetization = 0.62 Bohr mag/cell Magnetic field = -0.0135494 -0.0019303 -0.0247306 Ry lambda = 0.50 Ry iteration # 15 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 3.5 External magnetic field: -0.00845 -0.01089 -0.01381 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.402992 magnetization : 0.308075 0.410611 0.513295 magnetization/charge: 0.048114 0.064128 0.080165 polar coord.: r, theta, phi [deg] : 0.725936 45.002168 53.119679 ============================================================================== total cpu time spent up to now is 9.3 secs total energy = -55.54203370 Ry Harris-Foulkes estimate = -55.55253382 Ry estimated scf accuracy < 0.02036982 Ry total magnetization = 0.01 0.62 -0.06 Bohr mag/cell absolute magnetization = 0.71 Bohr mag/cell Magnetic field = -0.0084465 -0.0108949 -0.0138114 Ry lambda = 0.50 Ry iteration # 16 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 3.9 External magnetic field: 0.00089 0.00115 0.00147 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.407166 magnetization : 0.295224 0.393805 0.492154 magnetization/charge: 0.046077 0.061463 0.076813 polar coord.: r, theta, phi [deg] : 0.696028 45.001448 53.142112 ============================================================================== total cpu time spent up to now is 9.9 secs total energy = -55.53935290 Ry Harris-Foulkes estimate = -55.54667222 Ry estimated scf accuracy < 0.00334769 Ry total magnetization = 0.15 0.22 0.26 Bohr mag/cell absolute magnetization = 0.44 Bohr mag/cell Magnetic field = 0.0008882 0.0011455 0.0014738 Ry lambda = 0.50 Ry iteration # 17 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.0 External magnetic field: 0.00110 -0.00206 -0.00389 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.405905 magnetization : 0.297714 0.400363 0.501688 magnetization/charge: 0.046475 0.062499 0.078316 polar coord.: r, theta, phi [deg] : 0.707541 44.841705 53.365115 ============================================================================== total cpu time spent up to now is 10.3 secs total energy = -55.54493682 Ry Harris-Foulkes estimate = -55.54664923 Ry estimated scf accuracy < 0.00457252 Ry total magnetization = 0.46 0.61 0.76 Bohr mag/cell absolute magnetization = 1.09 Bohr mag/cell Magnetic field = 0.0011014 -0.0020618 -0.0038892 Ry lambda = 0.50 Ry iteration # 18 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.0 External magnetic field: 0.00570 0.00759 0.00958 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409891 magnetization : 0.292113 0.389339 0.486566 magnetization/charge: 0.045572 0.060740 0.075909 polar coord.: r, theta, phi [deg] : 0.688231 45.010207 53.119864 ============================================================================== total cpu time spent up to now is 10.7 secs total energy = -55.54826924 Ry Harris-Foulkes estimate = -55.54547865 Ry estimated scf accuracy < 0.00206171 Ry total magnetization = 0.48 0.51 0.60 Bohr mag/cell absolute magnetization = 0.94 Bohr mag/cell Magnetic field = 0.0057043 0.0075889 0.0095829 Ry lambda = 0.50 Ry iteration # 19 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 1.0 External magnetic field: 0.00585 0.00740 0.00993 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.411505 magnetization : 0.290734 0.387889 0.484245 magnetization/charge: 0.045346 0.060499 0.075528 polar coord.: r, theta, phi [deg] : 0.685184 45.029952 53.147355 ============================================================================== total cpu time spent up to now is 11.1 secs total energy = -55.55235504 Ry Harris-Foulkes estimate = -55.55229023 Ry estimated scf accuracy < 0.01362109 Ry total magnetization = 0.58 0.78 0.97 Bohr mag/cell absolute magnetization = 1.38 Bohr mag/cell Magnetic field = 0.0058531 0.0074025 0.0099343 Ry lambda = 0.50 Ry iteration # 20 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 1.0 External magnetic field: -0.00401 -0.00518 -0.00647 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409328 magnetization : 0.311225 0.414604 0.518126 magnetization/charge: 0.048558 0.064688 0.080839 polar coord.: r, theta, phi [deg] : 0.732947 45.016166 53.106108 ============================================================================== total cpu time spent up to now is 11.5 secs total energy = -55.53887523 Ry Harris-Foulkes estimate = -55.55236304 Ry estimated scf accuracy < 0.01370998 Ry total magnetization = 0.59 0.77 0.98 Bohr mag/cell absolute magnetization = 1.38 Bohr mag/cell Magnetic field = -0.0040067 -0.0051787 -0.0064726 Ry lambda = 0.50 Ry iteration # 21 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 1.0 External magnetic field: -0.00296 -0.00379 -0.00470 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409510 magnetization : 0.308289 0.410727 0.513276 magnetization/charge: 0.048099 0.064081 0.080080 polar coord.: r, theta, phi [deg] : 0.726079 45.015606 53.108379 ============================================================================== total cpu time spent up to now is 11.9 secs total energy = -55.54492349 Ry Harris-Foulkes estimate = -55.54483083 Ry estimated scf accuracy < 0.00019683 Ry total magnetization = 0.32 0.43 0.54 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell Magnetic field = -0.0029587 -0.0037888 -0.0047043 Ry lambda = 0.50 Ry iteration # 22 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-06, avg # of iterations = 1.0 External magnetic field: -0.00294 -0.00371 -0.00471 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409630 magnetization : 0.309376 0.412152 0.515141 magnetization/charge: 0.048267 0.064302 0.080370 polar coord.: r, theta, phi [deg] : 0.728665 45.011468 53.106848 ============================================================================== total cpu time spent up to now is 12.4 secs total energy = -55.54500340 Ry Harris-Foulkes estimate = -55.54500759 Ry estimated scf accuracy < 0.00058487 Ry total magnetization = 0.35 0.48 0.60 Bohr mag/cell absolute magnetization = 0.87 Bohr mag/cell Magnetic field = -0.0029352 -0.0037132 -0.0047091 Ry lambda = 0.50 Ry iteration # 23 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-06, avg # of iterations = 1.0 External magnetic field: -0.00563 -0.00754 -0.00921 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.411391 magnetization : 0.314560 0.419367 0.523848 magnetization/charge: 0.049063 0.065410 0.081706 polar coord.: r, theta, phi [deg] : 0.741102 45.020869 53.127069 ============================================================================== total cpu time spent up to now is 12.8 secs total energy = -55.54429458 Ry Harris-Foulkes estimate = -55.54500560 Ry estimated scf accuracy < 0.00052277 Ry total magnetization = 0.36 0.48 0.60 Bohr mag/cell absolute magnetization = 0.88 Bohr mag/cell Magnetic field = -0.0056322 -0.0075406 -0.0092105 Ry lambda = 0.50 Ry iteration # 24 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-06, avg # of iterations = 1.0 External magnetic field: -0.00647 -0.00849 -0.01071 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412476 magnetization : 0.316404 0.421747 0.527123 magnetization/charge: 0.049342 0.065770 0.082203 polar coord.: r, theta, phi [deg] : 0.745547 45.006307 53.121967 ============================================================================== total cpu time spent up to now is 13.2 secs total energy = -55.54506390 Ry Harris-Foulkes estimate = -55.54489766 Ry estimated scf accuracy < 0.00019776 Ry total magnetization = 0.27 0.36 0.46 Bohr mag/cell absolute magnetization = 0.69 Bohr mag/cell Magnetic field = -0.0064743 -0.0084935 -0.0107059 Ry lambda = 0.50 Ry iteration # 25 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-06, avg # of iterations = 1.0 External magnetic field: -0.00476 -0.00674 -0.00779 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412104 magnetization : 0.312697 0.417285 0.520908 magnetization/charge: 0.048767 0.065078 0.081238 polar coord.: r, theta, phi [deg] : 0.737056 45.029580 53.153581 ============================================================================== total cpu time spent up to now is 13.6 secs total energy = -55.54458908 Ry Harris-Foulkes estimate = -55.54511966 Ry estimated scf accuracy < 0.00061776 Ry total magnetization = 0.24 0.33 0.41 Bohr mag/cell absolute magnetization = 0.64 Bohr mag/cell Magnetic field = -0.0047559 -0.0067353 -0.0077851 Ry lambda = 0.50 Ry iteration # 26 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-06, avg # of iterations = 1.0 External magnetic field: -0.00429 -0.00596 -0.00748 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412274 magnetization : 0.312259 0.416564 0.520688 magnetization/charge: 0.048697 0.064964 0.081202 polar coord.: r, theta, phi [deg] : 0.736307 44.995513 53.144531 ============================================================================== total cpu time spent up to now is 14.0 secs total energy = -55.54476880 Ry Harris-Foulkes estimate = -55.54479893 Ry estimated scf accuracy < 0.00001927 Ry total magnetization = 0.30 0.38 0.50 Bohr mag/cell absolute magnetization = 0.74 Bohr mag/cell Magnetic field = -0.0042936 -0.0059587 -0.0074832 Ry lambda = 0.50 Ry iteration # 27 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.41E-07, avg # of iterations = 1.0 External magnetic field: -0.00456 -0.00603 -0.00746 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412275 magnetization : 0.312520 0.416640 0.520679 magnetization/charge: 0.048738 0.064975 0.081200 polar coord.: r, theta, phi [deg] : 0.736454 45.007986 53.126539 ============================================================================== total cpu time spent up to now is 14.4 secs total energy = -55.54478193 Ry Harris-Foulkes estimate = -55.54478304 Ry estimated scf accuracy < 0.00000348 Ry total magnetization = 0.31 0.41 0.51 Bohr mag/cell absolute magnetization = 0.77 Bohr mag/cell Magnetic field = -0.0045593 -0.0060283 -0.0074640 Ry lambda = 0.50 Ry iteration # 28 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.35E-08, avg # of iterations = 1.0 External magnetic field: -0.00504 -0.00673 -0.00840 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412420 magnetization : 0.313448 0.417965 0.522410 magnetization/charge: 0.048881 0.065180 0.081468 polar coord.: r, theta, phi [deg] : 0.738821 45.001679 53.132356 ============================================================================== total cpu time spent up to now is 14.8 secs total energy = -55.54479361 Ry Harris-Foulkes estimate = -55.54478323 Ry estimated scf accuracy < 0.00000099 Ry total magnetization = 0.30 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0050356 -0.0067330 -0.0083974 Ry lambda = 0.50 Ry iteration # 29 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.24E-08, avg # of iterations = 1.1 External magnetic field: -0.00449 -0.00600 -0.00749 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412180 magnetization : 0.312240 0.416333 0.520410 magnetization/charge: 0.048695 0.064928 0.081160 polar coord.: r, theta, phi [deg] : 0.735971 45.000025 53.130945 ============================================================================== total cpu time spent up to now is 15.2 secs total energy = -55.54475930 Ry Harris-Foulkes estimate = -55.54481702 Ry estimated scf accuracy < 0.00004211 Ry total magnetization = 0.29 0.38 0.48 Bohr mag/cell absolute magnetization = 0.73 Bohr mag/cell Magnetic field = -0.0044944 -0.0059979 -0.0074944 Ry lambda = 0.50 Ry iteration # 30 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.24E-08, avg # of iterations = 1.3 External magnetic field: -0.00454 -0.00606 -0.00757 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412158 magnetization : 0.312303 0.416412 0.520505 magnetization/charge: 0.048705 0.064941 0.081175 polar coord.: r, theta, phi [deg] : 0.736110 45.000349 53.130640 ============================================================================== total cpu time spent up to now is 15.6 secs total energy = -55.54478369 Ry Harris-Foulkes estimate = -55.54478294 Ry estimated scf accuracy < 0.00000049 Ry total magnetization = 0.31 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0045400 -0.0060579 -0.0075668 Ry lambda = 0.50 Ry iteration # 31 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.09E-09, avg # of iterations = 1.0 External magnetic field: -0.00455 -0.00607 -0.00758 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412138 magnetization : 0.312330 0.416443 0.520547 magnetization/charge: 0.048709 0.064946 0.081181 polar coord.: r, theta, phi [deg] : 0.736168 45.000312 53.130310 ============================================================================== total cpu time spent up to now is 16.0 secs total energy = -55.54478405 Ry Harris-Foulkes estimate = -55.54478385 Ry estimated scf accuracy < 0.00000001 Ry total magnetization = 0.30 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0045496 -0.0060679 -0.0075812 Ry lambda = 0.50 Ry iteration # 32 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.44E-10, avg # of iterations = 3.8 External magnetic field: -0.00454 -0.00599 -0.00761 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412140 magnetization : 0.312318 0.416369 0.520578 magnetization/charge: 0.048707 0.064935 0.081186 polar coord.: r, theta, phi [deg] : 0.736144 44.994950 53.126457 ============================================================================== total cpu time spent up to now is 16.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.2500 ( 148 PWs) bands (ev): 7.0426 7.2420 12.7594 12.7594 13.0874 13.0874 13.1316 13.4839 13.7020 14.2562 14.6496 15.2721 36.1708 36.3037 38.5018 38.5021 k = 0.0000-0.2500 0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k =-0.2500 0.2500 0.2500 ( 159 PWs) bands (ev): 9.2500 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9863 14.9863 15.4336 15.7935 31.7725 31.7725 31.8291 31.8291 k =-0.2500 0.7500-0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8006 14.8006 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k = 0.5000-0.5000 0.2500 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3660 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5319 29.5952 k = 0.0000 0.0000 0.7500 ( 144 PWs) bands (ev): 10.4085 10.5101 10.6722 10.8527 14.5280 14.5280 14.8952 14.8952 15.1234 15.5460 20.2841 20.3238 27.6811 27.6811 27.7979 27.7979 k = 0.2500 0.0000 0.0000 ( 148 PWs) bands (ev): 7.0426 7.2420 12.7594 12.7594 13.0874 13.0874 13.1316 13.4839 13.7020 14.2562 14.6496 15.2721 36.1708 36.3037 38.5017 38.5017 k = 0.0000 0.2500 0.0000 ( 148 PWs) bands (ev): 7.0426 7.2420 12.7594 12.7594 13.0874 13.0874 13.1316 13.4839 13.7020 14.2562 14.6496 15.2721 36.1708 36.3037 38.5016 38.5017 k = 0.0000-0.2500-0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k =-0.2500 0.0000-0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9090 34.1124 k = 0.2500 0.0000-0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.5000 0.2500 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k =-0.5000 0.2500 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.0000 0.5000-0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.0000 0.5000 0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k =-0.2500 0.5000 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.2500 0.5000 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.5000 0.0000-0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.5000 0.0000 0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4514 12.7149 14.0060 14.4647 15.2626 15.6866 15.9320 16.3129 26.5052 26.5553 33.9091 34.1124 k = 0.2500 0.2500-0.2500 ( 159 PWs) bands (ev): 9.2500 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9863 14.9863 15.4336 15.7935 31.7725 31.7725 31.8291 31.8291 k =-0.2500-0.2500-0.2500 ( 159 PWs) bands (ev): 9.2500 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9863 14.9863 15.4336 15.7935 31.7725 31.7725 31.8291 31.8291 k =-0.2500 0.2500-0.2500 ( 159 PWs) bands (ev): 9.2500 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9863 14.9863 15.4336 15.7935 31.7725 31.7725 31.8291 31.8291 k = 0.2500 0.7500 0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8006 14.8006 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k =-0.2500-0.7500 0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8006 14.8006 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k = 0.7500-0.2500 0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8006 14.8006 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k =-0.5000-0.5000-0.2500 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3660 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5952 k = 0.2500 0.5000 0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3660 11.6097 12.9468 13.0622 14.5329 14.6519 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5319 29.5952 k =-0.2500 0.5000-0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3660 11.6097 12.9468 13.0622 14.5329 14.6519 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5319 29.5952 k =-0.5000 0.2500-0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3660 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5952 k =-0.5000-0.2500 0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3660 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5319 29.5952 k = 0.7500 0.0000 0.0000 ( 144 PWs) bands (ev): 10.4085 10.5101 10.6722 10.8527 14.5280 14.5280 14.8952 14.8952 15.1234 15.5460 20.2842 20.3238 27.6811 27.6811 27.7979 27.7979 k = 0.0000 0.7500 0.0000 ( 144 PWs) bands (ev): 10.4085 10.5101 10.6722 10.8527 14.5280 14.5280 14.8952 14.8952 15.1234 15.5460 20.2841 20.3238 27.6811 27.6811 27.7979 27.7979 the Fermi energy is 14.8545 ev ! total energy = -55.54478377 Ry Harris-Foulkes estimate = -55.54478406 Ry estimated scf accuracy < 5.8E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 8.97517778 Ry hartree contribution = 6.02997182 Ry xc contribution = -25.89292023 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = -0.01240107 Ry total magnetization = 0.30 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0045369 -0.0059902 -0.0076122 Ry lambda = 0.50 Ry convergence has been achieved in 32 iterations Writing output data file pwscf.save init_run : 0.59s CPU 0.60s WALL ( 1 calls) electrons : 15.64s CPU 15.95s WALL ( 1 calls) Called by init_run: wfcinit : 0.11s CPU 0.12s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 11.64s CPU 11.82s WALL ( 32 calls) sum_band : 3.07s CPU 3.10s WALL ( 32 calls) v_of_rho : 0.18s CPU 0.17s WALL ( 33 calls) newd : 0.42s CPU 0.44s WALL ( 33 calls) mix_rho : 0.11s CPU 0.10s WALL ( 32 calls) Called by c_bands: init_us_2 : 0.16s CPU 0.15s WALL ( 2080 calls) cegterg : 11.09s CPU 11.19s WALL ( 1024 calls) Called by *egterg: h_psi : 6.80s CPU 6.94s WALL ( 3383 calls) s_psi : 0.26s CPU 0.29s WALL ( 3383 calls) g_psi : 0.22s CPU 0.27s WALL ( 2327 calls) cdiaghg : 2.22s CPU 2.21s WALL ( 3351 calls) Called by h_psi: add_vuspsi : 0.30s CPU 0.32s WALL ( 3383 calls) General routines calbec : 0.34s CPU 0.31s WALL ( 4407 calls) fft : 0.20s CPU 0.21s WALL ( 1067 calls) ffts : 0.02s CPU 0.02s WALL ( 260 calls) fftw : 5.20s CPU 5.36s WALL ( 186856 calls) interpolate : 0.07s CPU 0.08s WALL ( 260 calls) davcio : 0.00s CPU 0.09s WALL ( 3104 calls) PWSCF : 16.38s CPU 16.73s WALL This run was terminated on: 10:25:34 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lda+U_force.ref0000644000175000017500000010535612341373024015617 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10170) starts on 21Apr2013 at 12:45:22 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Reading input from /home/giannozz/espresso/PW/tests/lda+U_force.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1061 539 163 17255 6111 1081 Generating pointlists ... new r_m : 0.1879 (alat units) 1.5389 (a.u.) for type 1 new r_m : 0.1879 (alat units) 1.5389 (a.u.) for type 2 new r_m : 0.1879 (alat units) 1.5389 (a.u.) for type 3 bravais-lattice index = 0 lattice parameter (alat) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file: /home/giannozz/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file: /home/giannozz/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file: /home/giannozz/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 Simplified LDA+U calculation (l_max = 2) with parameters (eV): atomic species L U alpha J0 beta Fe1 2 4.3000 0.0000 0.0000 0.0000 Fe2 2 4.3000 0.0000 0.0000 0.0000 6 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0500000 0.0500000 0.0500000 ) 4 Fe2 tau( 4) = ( 0.9500000 0.9500000 0.9500000 ) number of k points= 8 gaussian smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 Dense grid: 17255 G-vectors FFT dimensions: ( 50, 50, 50) Smooth grid: 6111 G-vectors FFT dimensions: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000004 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Number of +U iterations with fixed ns = 0 Starting occupations: --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 5.00000 1.00000 6.00000 spin 1 eigenvalues: 1.000 1.000 1.000 1.000 1.000 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 spin 2 eigenvalues: 0.200 0.200 0.200 0.200 0.200 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atomic mag. moment = 4.000000 atom 4 Tr[ns(na)] (up, down, total) = 1.00000 5.00000 6.00000 spin 1 eigenvalues: 0.200 0.200 0.200 0.200 0.200 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 spin 2 eigenvalues: 1.000 1.000 1.000 1.000 1.000 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atomic mag. moment = -4.000000 N of occupied +U levels = 12.0000000 --- exit write_ns --- Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 randomized atomic wfcs total cpu time spent up to now is 4.2 secs per-process dynamical memory: 40.6 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.8 --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 4.95724 1.20131 6.15855 spin 1 eigenvalues: 0.986 0.986 0.992 0.992 1.000 eigenvectors: 0.131 0.089 0.001 0.779 0.000 0.014 0.506 0.105 0.042 0.333 0.456 0.064 0.115 0.032 0.333 0.089 0.131 0.779 0.001 0.000 0.310 0.210 0.000 0.146 0.333 occupations: 0.991 0.001 0.001 0.000 0.002 0.001 0.992 0.004 0.002 -0.004 0.001 0.004 0.992 -0.002 -0.004 0.000 0.002 -0.002 0.991 0.000 0.002 -0.004 -0.004 0.000 0.992 spin 2 eigenvalues: 0.164 0.164 0.212 0.330 0.330 eigenvectors: 0.244 0.746 0.000 0.002 0.009 0.002 0.005 0.333 0.648 0.011 0.007 0.000 0.333 0.245 0.414 0.746 0.244 0.000 0.009 0.002 0.002 0.005 0.333 0.096 0.563 occupations: 0.166 0.007 0.007 0.000 0.014 0.007 0.290 -0.039 0.012 0.039 0.007 -0.039 0.290 -0.012 0.039 0.000 0.012 -0.012 0.166 0.000 0.014 0.039 0.039 0.000 0.290 atomic mag. moment = 3.755924 atom 4 Tr[ns(na)] (up, down, total) = 1.20125 4.95726 6.15851 spin 1 eigenvalues: 0.164 0.164 0.212 0.330 0.330 eigenvectors: 0.273 0.716 0.000 0.002 0.009 0.002 0.006 0.333 0.653 0.006 0.007 0.000 0.333 0.223 0.436 0.716 0.273 0.000 0.009 0.002 0.002 0.005 0.333 0.113 0.547 occupations: 0.166 0.007 0.007 0.000 0.014 0.007 0.290 -0.039 0.012 0.039 0.007 -0.039 0.290 -0.012 0.039 0.000 0.012 -0.012 0.166 0.000 0.014 0.039 0.039 0.000 0.290 spin 2 eigenvalues: 0.986 0.986 0.992 0.992 1.000 eigenvectors: 0.100 0.117 0.009 0.773 0.000 0.046 0.476 0.121 0.024 0.333 0.496 0.026 0.094 0.051 0.333 0.117 0.100 0.773 0.009 0.000 0.241 0.281 0.002 0.143 0.333 occupations: 0.991 0.001 0.001 0.000 0.002 0.001 0.992 0.004 0.002 -0.004 0.001 0.004 0.992 -0.002 -0.004 0.000 0.002 -0.002 0.991 0.000 0.002 -0.004 -0.004 0.000 0.992 atomic mag. moment = -3.756016 N of occupied +U levels = 12.3170634 --- exit write_ns --- Modify starting ns matrices according to input values --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 4.95724 1.98965 6.94689 spin 1 eigenvalues: 0.986 0.986 0.992 0.992 1.000 eigenvectors: 0.159 0.061 0.017 0.763 0.000 0.001 0.520 0.090 0.057 0.333 0.404 0.116 0.127 0.020 0.333 0.061 0.159 0.763 0.017 0.000 0.376 0.144 0.003 0.143 0.333 occupations: 0.991 0.001 0.001 0.000 0.002 0.001 0.992 0.004 0.002 -0.004 0.001 0.004 0.992 -0.002 -0.004 0.000 0.002 -0.002 0.991 0.000 0.002 -0.004 -0.004 0.000 0.992 spin 2 eigenvalues: 0.164 0.164 0.330 0.330 1.000 eigenvectors: 0.327 0.663 0.002 0.009 0.000 0.001 0.006 0.657 0.003 0.333 0.007 0.000 0.204 0.455 0.333 0.663 0.327 0.009 0.002 0.000 0.002 0.005 0.129 0.531 0.333 occupations: 0.166 0.007 0.007 0.000 0.014 0.007 0.552 0.224 0.012 -0.224 0.007 0.224 0.552 -0.012 -0.224 0.000 0.012 -0.012 0.166 0.000 0.014 -0.224 -0.224 0.000 0.552 atomic mag. moment = 2.967585 atom 4 Tr[ns(na)] (up, down, total) = 1.98961 4.95726 6.94687 spin 1 eigenvalues: 0.164 0.164 0.330 0.330 1.000 eigenvectors: 0.382 0.607 0.000 0.011 0.000 0.001 0.006 0.584 0.076 0.333 0.007 0.000 0.384 0.275 0.333 0.607 0.382 0.011 0.000 0.000 0.003 0.005 0.021 0.639 0.333 occupations: 0.166 0.007 0.007 0.000 0.014 0.007 0.552 0.224 0.012 -0.224 0.007 0.224 0.552 -0.012 -0.224 0.000 0.012 -0.012 0.166 0.000 0.014 -0.224 -0.224 0.000 0.552 spin 2 eigenvalues: 0.986 0.986 0.992 0.992 1.000 eigenvectors: 0.078 0.140 0.095 0.688 0.000 0.082 0.440 0.141 0.004 0.333 0.515 0.007 0.059 0.086 0.333 0.140 0.078 0.688 0.095 0.000 0.186 0.336 0.018 0.127 0.333 occupations: 0.991 0.001 0.001 0.000 0.002 0.001 0.992 0.004 0.002 -0.004 0.001 0.004 0.992 -0.002 -0.004 0.000 0.002 -0.002 0.991 0.000 0.002 -0.004 -0.004 0.000 0.992 atomic mag. moment = -2.967658 N of occupied +U levels = 13.8937606 --- exit write_ns --- Magnetic moment per site: atom: 1 charge: 5.1836 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.4252 magn: 0.0001 constr: 0.0000 atom: 3 charge: 5.4643 magn: 2.8917 constr: 0.0000 atom: 4 charge: 5.4642 magn: -2.8918 constr: 0.0000 total cpu time spent up to now is 5.4 secs total energy = -174.18604535 Ry Harris-Foulkes estimate = -174.79123784 Ry estimated scf accuracy < 2.56513173 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 8.24 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 9.16E-03, avg # of iterations = 1.5 Magnetic moment per site: atom: 1 charge: 5.2404 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.4949 magn: 0.0002 constr: 0.0000 atom: 3 charge: 5.4128 magn: 2.9327 constr: 0.0000 atom: 4 charge: 5.4130 magn: -2.9327 constr: 0.0000 total cpu time spent up to now is 6.4 secs total energy = -174.30056999 Ry Harris-Foulkes estimate = -174.33044072 Ry estimated scf accuracy < 0.27058696 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.06 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 9.66E-04, avg # of iterations = 2.8 Magnetic moment per site: atom: 1 charge: 5.2096 magn: 0.0001 constr: 0.0000 atom: 2 charge: 5.5314 magn: 0.0003 constr: 0.0000 atom: 3 charge: 5.4180 magn: 2.9648 constr: 0.0000 atom: 4 charge: 5.4177 magn: -2.9649 constr: 0.0000 total cpu time spent up to now is 7.5 secs total energy = -174.33844310 Ry Harris-Foulkes estimate = -174.33504497 Ry estimated scf accuracy < 0.11449333 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.86 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.09E-04, avg # of iterations = 1.2 Magnetic moment per site: atom: 1 charge: 5.2284 magn: 0.0002 constr: 0.0000 atom: 2 charge: 5.5616 magn: 0.0003 constr: 0.0000 atom: 3 charge: 5.4052 magn: 3.0017 constr: 0.0000 atom: 4 charge: 5.4051 magn: -3.0017 constr: 0.0000 total cpu time spent up to now is 8.6 secs total energy = -174.34928424 Ry Harris-Foulkes estimate = -174.34636263 Ry estimated scf accuracy < 0.05868962 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.95 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.10E-04, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.2547 magn: 0.0001 constr: 0.0000 atom: 2 charge: 5.5794 magn: 0.0002 constr: 0.0000 atom: 3 charge: 5.3949 magn: 3.0320 constr: 0.0000 atom: 4 charge: 5.3950 magn: -3.0319 constr: 0.0000 total cpu time spent up to now is 9.6 secs total energy = -174.35359647 Ry Harris-Foulkes estimate = -174.35156451 Ry estimated scf accuracy < 0.01541826 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.90 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.51E-05, avg # of iterations = 1.8 Magnetic moment per site: atom: 1 charge: 5.2426 magn: 0.0002 constr: 0.0000 atom: 2 charge: 5.5793 magn: 0.0001 constr: 0.0000 atom: 3 charge: 5.4015 magn: 3.0271 constr: 0.0000 atom: 4 charge: 5.4015 magn: -3.0271 constr: 0.0000 total cpu time spent up to now is 10.6 secs total energy = -174.35621602 Ry Harris-Foulkes estimate = -174.35650315 Ry estimated scf accuracy < 0.00308054 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.83 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 2.4 Magnetic moment per site: atom: 1 charge: 5.2462 magn: 0.0001 constr: 0.0000 atom: 2 charge: 5.5753 magn: 0.0001 constr: 0.0000 atom: 3 charge: 5.4026 magn: 3.0227 constr: 0.0000 atom: 4 charge: 5.4026 magn: -3.0227 constr: 0.0000 total cpu time spent up to now is 11.8 secs total energy = -174.35684609 Ry Harris-Foulkes estimate = -174.35703636 Ry estimated scf accuracy < 0.00138500 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.86 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.95E-06, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 5.2465 magn: 0.0001 constr: 0.0000 atom: 2 charge: 5.5761 magn: 0.0001 constr: 0.0000 atom: 3 charge: 5.4026 magn: 3.0224 constr: 0.0000 atom: 4 charge: 5.4026 magn: -3.0225 constr: 0.0000 total cpu time spent up to now is 12.8 secs total energy = -174.35704157 Ry Harris-Foulkes estimate = -174.35701713 Ry estimated scf accuracy < 0.00009676 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.85 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.46E-07, avg # of iterations = 4.0 Magnetic moment per site: atom: 1 charge: 5.2457 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.5756 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4030 magn: 3.0204 constr: 0.0000 atom: 4 charge: 5.4030 magn: -3.0205 constr: 0.0000 total cpu time spent up to now is 14.1 secs total energy = -174.35709784 Ry Harris-Foulkes estimate = -174.35708862 Ry estimated scf accuracy < 0.00002283 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.84 Bohr mag/cell iteration # 10 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 8.15E-08, avg # of iterations = 2.2 Magnetic moment per site: atom: 1 charge: 5.2454 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.5752 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4034 magn: 3.0191 constr: 0.0000 atom: 4 charge: 5.4033 magn: -3.0192 constr: 0.0000 total cpu time spent up to now is 15.2 secs total energy = -174.35710342 Ry Harris-Foulkes estimate = -174.35710021 Ry estimated scf accuracy < 0.00001290 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.84 Bohr mag/cell iteration # 11 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.61E-08, avg # of iterations = 1.1 Magnetic moment per site: atom: 1 charge: 5.2454 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.5751 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4035 magn: 3.0184 constr: 0.0000 atom: 4 charge: 5.4035 magn: -3.0184 constr: 0.0000 total cpu time spent up to now is 16.2 secs total energy = -174.35710646 Ry Harris-Foulkes estimate = -174.35710423 Ry estimated scf accuracy < 0.00000204 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.84 Bohr mag/cell iteration # 12 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.28E-09, avg # of iterations = 2.6 Magnetic moment per site: atom: 1 charge: 5.2453 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.5752 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4035 magn: 3.0180 constr: 0.0000 atom: 4 charge: 5.4035 magn: -3.0180 constr: 0.0000 total cpu time spent up to now is 17.4 secs total energy = -174.35710831 Ry Harris-Foulkes estimate = -174.35710685 Ry estimated scf accuracy < 0.00000031 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.84 Bohr mag/cell iteration # 13 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.09E-09, avg # of iterations = 3.1 Magnetic moment per site: atom: 1 charge: 5.2453 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.5752 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4035 magn: 3.0179 constr: 0.0000 atom: 4 charge: 5.4035 magn: -3.0179 constr: 0.0000 total cpu time spent up to now is 18.6 secs total energy = -174.35710932 Ry Harris-Foulkes estimate = -174.35710839 Ry estimated scf accuracy < 0.00000005 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.84 Bohr mag/cell iteration # 14 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.96E-10, avg # of iterations = 2.5 Magnetic moment per site: atom: 1 charge: 5.2453 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.5752 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4036 magn: 3.0175 constr: 0.0000 atom: 4 charge: 5.4036 magn: -3.0175 constr: 0.0000 total cpu time spent up to now is 19.7 secs total energy = -174.35710993 Ry Harris-Foulkes estimate = -174.35710933 Ry estimated scf accuracy < 0.00000004 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.84 Bohr mag/cell iteration # 15 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.26E-10, avg # of iterations = 1.6 Magnetic moment per site: atom: 1 charge: 5.2453 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.5751 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4036 magn: 3.0175 constr: 0.0000 atom: 4 charge: 5.4036 magn: -3.0175 constr: 0.0000 total cpu time spent up to now is 20.7 secs total energy = -174.35711031 Ry Harris-Foulkes estimate = -174.35710993 Ry estimated scf accuracy < 1.9E-09 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.84 Bohr mag/cell iteration # 16 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 6.73E-12, avg # of iterations = 4.0 Magnetic moment per site: atom: 1 charge: 5.2453 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.5752 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4036 magn: 3.0174 constr: 0.0000 atom: 4 charge: 5.4036 magn: -3.0174 constr: 0.0000 total cpu time spent up to now is 22.2 secs End of self-consistent calculation --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 4.95171 1.94192 6.89363 spin 1 eigenvalues: 0.987 0.987 0.990 0.994 0.994 eigenvectors: 0.262 0.438 0.000 0.051 0.249 0.029 0.171 0.333 0.462 0.005 0.196 0.004 0.333 0.159 0.308 0.438 0.262 0.000 0.249 0.051 0.075 0.125 0.333 0.079 0.388 occupations: 0.989 0.001 0.001 0.000 0.002 0.001 0.991 -0.001 0.002 0.001 0.001 -0.001 0.991 -0.002 0.001 0.000 0.002 -0.002 0.989 0.000 0.002 0.001 0.001 0.000 0.991 spin 2 eigenvalues: 0.130 0.130 0.345 0.345 0.992 eigenvectors: 0.028 0.018 0.040 0.913 0.000 0.015 0.621 0.017 0.014 0.333 0.553 0.083 0.028 0.003 0.333 0.018 0.028 0.913 0.040 0.000 0.385 0.250 0.001 0.030 0.333 occupations: 0.335 0.018 0.018 0.000 0.037 0.018 0.424 0.284 0.032 -0.284 0.018 0.284 0.424 -0.032 -0.284 0.000 0.032 -0.032 0.335 0.000 0.037 -0.284 -0.284 0.000 0.424 atomic mag. moment = 3.009787 atom 4 Tr[ns(na)] (up, down, total) = 1.94192 4.95171 6.89363 spin 1 eigenvalues: 0.130 0.130 0.345 0.345 0.992 eigenvectors: 0.027 0.020 0.060 0.894 0.000 0.022 0.614 0.016 0.015 0.333 0.567 0.069 0.029 0.002 0.333 0.020 0.027 0.894 0.060 0.000 0.365 0.271 0.002 0.029 0.333 occupations: 0.335 0.018 0.018 0.000 0.037 0.018 0.424 0.284 0.032 -0.284 0.018 0.284 0.424 -0.032 -0.284 0.000 0.032 -0.032 0.335 0.000 0.037 -0.284 -0.284 0.000 0.424 spin 2 eigenvalues: 0.987 0.987 0.990 0.994 0.994 eigenvectors: 0.270 0.430 0.000 0.058 0.242 0.027 0.173 0.333 0.464 0.002 0.196 0.004 0.333 0.146 0.321 0.430 0.270 0.000 0.242 0.058 0.077 0.123 0.333 0.090 0.377 occupations: 0.989 0.001 0.001 0.000 0.002 0.001 0.991 -0.001 0.002 0.001 0.001 -0.001 0.991 -0.002 0.001 0.000 0.002 -0.002 0.989 0.000 0.002 0.001 0.001 0.000 0.991 atomic mag. moment = -3.009787 N of occupied +U levels = 13.7872644 --- exit write_ns --- ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -11.1248 -6.1210 0.3144 1.4045 1.4045 4.6819 4.6819 7.1317 7.2022 7.2022 7.8852 9.3139 9.7408 9.7408 10.8372 11.8145 11.8145 12.8076 12.8076 15.9708 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -10.7534 -5.6560 0.4964 1.9148 2.7428 4.7384 4.9826 5.1443 5.8428 6.7548 7.0426 8.4920 9.1241 9.5992 11.6066 11.7491 12.3100 12.8910 17.0318 17.2642 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -10.7395 -5.6254 0.2854 1.9206 2.7931 4.8778 4.9808 5.1444 5.7796 6.8321 7.2543 8.5125 9.3543 9.3601 11.6445 11.8631 12.5792 12.9855 15.5103 16.6922 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -11.1643 -6.2050 1.1182 1.4278 1.4278 4.6921 4.6921 6.0449 6.9851 6.9851 7.3866 9.1313 10.0954 10.0954 11.7970 11.7970 12.5813 12.5813 13.1209 14.7930 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -11.1248 -6.1210 0.3144 1.4045 1.4045 4.6819 4.6819 7.1317 7.2022 7.2022 7.8852 9.3139 9.7408 9.7408 10.8372 11.8145 11.8145 12.8076 12.8076 15.9708 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -10.7534 -5.6560 0.4964 1.9148 2.7428 4.7384 4.9826 5.1443 5.8428 6.7548 7.0426 8.4920 9.1241 9.5992 11.6066 11.7491 12.3100 12.8910 17.0318 17.2642 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -10.7395 -5.6254 0.2854 1.9206 2.7931 4.8778 4.9808 5.1444 5.7796 6.8321 7.2543 8.5125 9.3543 9.3601 11.6445 11.8631 12.5792 12.9855 15.5103 16.6922 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -11.1643 -6.2049 1.1182 1.4278 1.4278 4.6921 4.6921 6.0449 6.9851 6.9851 7.3866 9.1313 10.0954 10.0954 11.7970 11.7970 12.5813 12.5813 13.1209 14.7930 the Fermi energy is 10.4744 ev ! total energy = -174.35711099 Ry Harris-Foulkes estimate = -174.35711031 Ry estimated scf accuracy < 7.1E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -11.12517498 Ry hartree contribution = 33.36687165 Ry xc contribution = -65.91454662 Ry ewald contribution = -130.91621185 Ry Hubbard energy = 0.23195199 Ry smearing contrib. (-TS) = -0.00000118 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.84 Bohr mag/cell convergence has been achieved in 16 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000040 0.00000040 0.00000040 atom 2 type 1 force = -0.00000101 -0.00000101 -0.00000101 atom 3 type 2 force = -0.14189797 -0.14189797 -0.14189797 atom 4 type 3 force = 0.14189858 0.14189858 0.14189858 Total force = 0.347578 Total SCF correction = 0.000021 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 44.52 0.00030264 -0.00079819 -0.00079819 44.52 -117.42 -117.42 -0.00079819 0.00030264 -0.00079819 -117.42 44.52 -117.42 -0.00079819 -0.00079819 0.00030264 -117.42 -117.42 44.52 Writing output data file pwscf.save init_run : 4.10s CPU 4.11s WALL ( 1 calls) electrons : 17.84s CPU 17.99s WALL ( 1 calls) forces : 0.56s CPU 0.56s WALL ( 1 calls) stress : 3.00s CPU 3.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.24s CPU 0.24s WALL ( 1 calls) potinit : 0.10s CPU 0.10s WALL ( 1 calls) Called by electrons: c_bands : 9.04s CPU 9.06s WALL ( 16 calls) sum_band : 5.34s CPU 5.39s WALL ( 16 calls) v_of_rho : 0.73s CPU 0.72s WALL ( 17 calls) newd : 2.33s CPU 2.38s WALL ( 17 calls) mix_rho : 0.29s CPU 0.30s WALL ( 16 calls) Called by c_bands: init_us_2 : 0.40s CPU 0.40s WALL ( 368 calls) cegterg : 8.50s CPU 8.51s WALL ( 128 calls) Called by *egterg: h_psi : 6.94s CPU 7.00s WALL ( 429 calls) s_psi : 0.28s CPU 0.30s WALL ( 517 calls) g_psi : 0.13s CPU 0.11s WALL ( 293 calls) cdiaghg : 0.46s CPU 0.44s WALL ( 421 calls) Called by h_psi: add_vuspsi : 0.25s CPU 0.28s WALL ( 429 calls) vhpsi : 0.18s CPU 0.19s WALL ( 429 calls) General routines calbec : 0.78s CPU 0.75s WALL ( 1658 calls) fft : 0.62s CPU 0.62s WALL ( 289 calls) ffts : 0.02s CPU 0.05s WALL ( 66 calls) fftw : 5.50s CPU 5.60s WALL ( 14640 calls) interpolate : 0.26s CPU 0.28s WALL ( 66 calls) davcio : 0.00s CPU 0.00s WALL ( 24 calls) Hubbard U routines new_ns : 0.06s CPU 0.07s WALL ( 16 calls) vhpsi : 0.18s CPU 0.19s WALL ( 429 calls) force_hub : 0.10s CPU 0.10s WALL ( 1 calls) stres_hub : 1.10s CPU 1.10s WALL ( 1 calls) PWSCF : 25.64s CPU 25.82s WALL This run was terminated on: 12:45:47 21Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/vdw-ts.in0000644000175000017500000000074012341373024014546 0ustar mbamba&control calculation='scf' tprnfor=.true. tstress=.true. / &system ibrav=4 celldm(1)=4.66 celldm(3)=2.60 nat=4 ecutwfc=45. ntyp=1 nspin=2, tot_magnetization=0.0 vdw_corr='TS' / &electrons mixing_beta=0.5 mixing_ndim=20 / ATOMIC_SPECIES C 12. C.pbe-mt_gipaw.UPF 1 K_POINTS {gamma} ATOMIC_POSITIONS {crystal} C 0.00000 1.00000 0.75000 C 0.66667 0.33333 0.75000 C 0.00000 1.00000 0.25000 C 0.33333 0.66667 0.25000 espresso-5.1/PW/tests/md-wfc_extrap2.ref0000644000175000017500000040046312341373024016320 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:48 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/md-wfc_extrap2.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 31 869 869 113 bravais-lattice index = 2 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.43210225 Ry Harris-Foulkes estimate = -14.55434296 Ry estimated scf accuracy < 0.32483609 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44687979 Ry Harris-Foulkes estimate = -14.44915621 Ry estimated scf accuracy < 0.01104147 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44790249 Ry Harris-Foulkes estimate = -14.44786986 Ry estimated scf accuracy < 0.00019990 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793341 Ry Harris-Foulkes estimate = -14.44793322 Ry estimated scf accuracy < 0.00000435 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.43E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793716 Ry Harris-Foulkes estimate = -14.44793752 Ry estimated scf accuracy < 0.00000145 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793726 Ry Harris-Foulkes estimate = -14.44793727 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793736 Ry estimated scf accuracy < 0.00000013 Ry iteration # 8 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793733 Ry estimated scf accuracy < 0.00000002 Ry iteration # 9 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793737 Ry estimated scf accuracy < 0.00000017 Ry iteration # 10 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1610 7.5134 7.5134 ! total energy = -14.44793733 Ry Harris-Foulkes estimate = -14.44793734 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02329815 -0.02329818 -0.02329844 atom 2 type 1 force = 0.02329815 0.02329818 0.02329844 Total force = 0.057069 Total SCF correction = 0.000004 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123017881 -0.123017881 -0.123017881 Si 0.123017881 0.123017881 0.123017881 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -14.44793733 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1631 7.5123 7.5123 ! total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796266 Ry estimated scf accuracy < 6.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02308264 -0.02308255 -0.02308267 atom 2 type 1 force = 0.02308264 0.02308255 0.02308267 Total force = 0.056541 Total SCF correction = 0.000005 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123071192 -0.123071192 -0.123071192 Si 0.123071192 0.123071192 0.123071192 kinetic energy (Ekin) = 0.00002521 Ry temperature = 2.65359889 K Ekin + Etot (const) = -14.44793745 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.17E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44803678 Ry Harris-Foulkes estimate = -14.44803678 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1694 7.5091 7.5091 ! total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 6.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02244079 -0.02244031 -0.02244020 atom 2 type 1 force = 0.02244079 0.02244031 0.02244020 Total force = 0.054968 Total SCF correction = 0.000018 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123158948 -0.123158947 -0.123158948 Si 0.123158948 0.123158947 0.123158948 kinetic energy (Ekin) = 0.00009899 Ry temperature = 10.41898756 K Ekin + Etot (const) = -14.44793781 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.59E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815427 Ry Harris-Foulkes estimate = -14.44815426 Ry estimated scf accuracy < 0.00000021 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.63E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815428 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.09E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1795 7.5039 7.5039 ! total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815429 Ry estimated scf accuracy < 4.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02139499 -0.02139630 -0.02139624 atom 2 type 1 force = 0.02139499 0.02139630 0.02139624 Total force = 0.052409 Total SCF correction = 0.000004 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123279545 -0.123279545 -0.123279546 Si 0.123279545 0.123279545 0.123279546 kinetic energy (Ekin) = 0.00021593 Ry temperature = 22.72868605 K Ekin + Etot (const) = -14.44793836 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.85E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830657 Ry Harris-Foulkes estimate = -14.44830655 Ry estimated scf accuracy < 0.00000040 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.96E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830660 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.86E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.1936 7.4967 7.4967 ! total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830661 Ry estimated scf accuracy < 6.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01995791 -0.01995791 -0.01995792 atom 2 type 1 force = 0.01995791 0.01995791 0.01995792 Total force = 0.048887 Total SCF correction = 0.000007 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123430776 -0.123430777 -0.123430778 Si 0.123430776 0.123430777 0.123430778 kinetic energy (Ekin) = 0.00036754 Ry temperature = 38.68698010 K Ekin + Etot (const) = -14.44793907 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.63E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848264 Ry Harris-Foulkes estimate = -14.44848261 Ry estimated scf accuracy < 0.00000062 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.79E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848268 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.05E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2112 7.4877 7.4877 ! total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848270 Ry estimated scf accuracy < 9.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01816304 -0.01816307 -0.01816306 atom 2 type 1 force = 0.01816304 0.01816307 0.01816306 Total force = 0.044490 Total SCF correction = 0.000009 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123609886 -0.123609889 -0.123609890 Si 0.123609886 0.123609889 0.123609890 kinetic energy (Ekin) = 0.00054281 Ry temperature = 57.13498562 K Ekin + Etot (const) = -14.44793990 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.07E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866979 Ry Harris-Foulkes estimate = -14.44866974 Ry estimated scf accuracy < 0.00000088 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866984 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.47E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.2321 7.4770 7.4770 ! total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866987 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01604755 -0.01604755 -0.01604753 atom 2 type 1 force = 0.01604755 0.01604755 0.01604753 Total force = 0.039308 Total SCF correction = 0.000011 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123813628 -0.123813632 -0.123813633 Si 0.123813628 0.123813632 0.123813633 kinetic energy (Ekin) = 0.00072909 Ry temperature = 76.74306239 K Ekin + Etot (const) = -14.44794078 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.44E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885461 Ry Harris-Foulkes estimate = -14.44885457 Ry estimated scf accuracy < 0.00000115 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885469 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.14E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.2559 7.4649 7.4649 ! total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885473 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01365477 -0.01365473 -0.01365472 atom 2 type 1 force = 0.01365477 0.01365473 0.01365472 Total force = 0.033447 Total SCF correction = 0.000011 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124038330 -0.124038335 -0.124038336 Si 0.124038330 0.124038335 0.124038336 kinetic energy (Ekin) = 0.00091308 Ry temperature = 96.10888253 K Ekin + Etot (const) = -14.44794166 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.75E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902404 Ry Harris-Foulkes estimate = -14.44902400 Ry estimated scf accuracy < 0.00000140 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.75E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902419 Ry Harris-Foulkes estimate = -14.44902414 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.2821 7.4516 7.4516 ! total energy = -14.44902420 Ry Harris-Foulkes estimate = -14.44902419 Ry estimated scf accuracy < 3.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01103177 -0.01103172 -0.01103170 atom 2 type 1 force = 0.01103177 0.01103172 0.01103170 Total force = 0.027022 Total SCF correction = 0.000013 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124279964 -0.124279970 -0.124279972 Si 0.124279964 0.124279970 0.124279972 kinetic energy (Ekin) = 0.00108173 Ry temperature = 113.86065119 K Ekin + Etot (const) = -14.44794247 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.03E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44916621 Ry Harris-Foulkes estimate = -14.44916618 Ry estimated scf accuracy < 0.00000163 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44916639 Ry Harris-Foulkes estimate = -14.44916633 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.60E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3104 7.4373 7.4373 ! total energy = -14.44916640 Ry Harris-Foulkes estimate = -14.44916640 Ry estimated scf accuracy < 3.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00822980 -0.00822974 -0.00822973 atom 2 type 1 force = 0.00822980 0.00822974 0.00822973 Total force = 0.020159 Total SCF correction = 0.000014 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124534231 -0.124534238 -0.124534239 Si 0.124534231 0.124534238 0.124534239 kinetic energy (Ekin) = 0.00122324 Ry temperature = 128.75558076 K Ekin + Etot (const) = -14.44794316 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.25E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927134 Ry Harris-Foulkes estimate = -14.44927131 Ry estimated scf accuracy < 0.00000180 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.26E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927154 Ry Harris-Foulkes estimate = -14.44927147 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.76E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3402 7.4223 7.4223 ! total energy = -14.44927154 Ry Harris-Foulkes estimate = -14.44927154 Ry estimated scf accuracy < 3.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00530197 -0.00530189 -0.00530188 atom 2 type 1 force = 0.00530197 0.00530189 0.00530188 Total force = 0.012987 Total SCF correction = 0.000015 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124796636 -0.124796644 -0.124796645 Si 0.124796636 0.124796644 0.124796645 kinetic energy (Ekin) = 0.00132785 Ry temperature = 139.76701949 K Ekin + Etot (const) = -14.44794369 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.40E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44933234 Ry Harris-Foulkes estimate = -14.44933231 Ry estimated scf accuracy < 0.00000193 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.41E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44933255 Ry Harris-Foulkes estimate = -14.44933248 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.87E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3711 7.4068 7.4068 ! total energy = -14.44933256 Ry Harris-Foulkes estimate = -14.44933255 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00230225 -0.00230217 -0.00230215 atom 2 type 1 force = 0.00230225 0.00230217 0.00230215 Total force = 0.005639 Total SCF correction = 0.000015 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125062575 -0.125062584 -0.125062585 Si 0.125062575 0.125062584 0.125062585 kinetic energy (Ekin) = 0.00138852 Ry temperature = 146.15313673 K Ekin + Etot (const) = -14.44794404 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.48E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934529 Ry Harris-Foulkes estimate = -14.44934527 Ry estimated scf accuracy < 0.00000199 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934552 Ry Harris-Foulkes estimate = -14.44934544 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3911 7.3911 7.4023 ! total energy = -14.44934552 Ry Harris-Foulkes estimate = -14.44934552 Ry estimated scf accuracy < 4.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00071558 0.00071572 0.00071574 atom 2 type 1 force = -0.00071558 -0.00071572 -0.00071574 Total force = 0.001753 Total SCF correction = 0.000016 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125327416 -0.125327425 -0.125327426 Si 0.125327416 0.125327425 0.125327426 kinetic energy (Ekin) = 0.00140135 Ry temperature = 147.50351673 K Ekin + Etot (const) = -14.44794417 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.46E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930967 Ry Harris-Foulkes estimate = -14.44930965 Ry estimated scf accuracy < 0.00000197 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.47E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930989 Ry Harris-Foulkes estimate = -14.44930982 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3756 7.3756 7.4335 ! total energy = -14.44930990 Ry Harris-Foulkes estimate = -14.44930989 Ry estimated scf accuracy < 4.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00369895 0.00369906 0.00369907 atom 2 type 1 force = -0.00369895 -0.00369906 -0.00369907 Total force = 0.009061 Total SCF correction = 0.000016 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125586579 -0.125586588 -0.125586589 Si 0.125586579 0.125586588 0.125586589 kinetic energy (Ekin) = 0.00136580 Ry temperature = 143.76128843 K Ekin + Etot (const) = -14.44794410 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922826 Ry Harris-Foulkes estimate = -14.44922825 Ry estimated scf accuracy < 0.00000189 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.37E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922848 Ry Harris-Foulkes estimate = -14.44922841 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3604 7.3604 7.4641 ! total energy = -14.44922848 Ry Harris-Foulkes estimate = -14.44922848 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00659746 0.00659757 0.00659758 atom 2 type 1 force = -0.00659746 -0.00659757 -0.00659758 Total force = 0.016161 Total SCF correction = 0.000016 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125835615 -0.125835624 -0.125835625 Si 0.125835615 0.125835624 0.125835625 kinetic energy (Ekin) = 0.00128465 Ry temperature = 135.22001850 K Ekin + Etot (const) = -14.44794383 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.19E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910696 Ry Harris-Foulkes estimate = -14.44910696 Ry estimated scf accuracy < 0.00000175 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.19E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910716 Ry Harris-Foulkes estimate = -14.44910710 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3458 7.3458 7.4936 ! total energy = -14.44910716 Ry Harris-Foulkes estimate = -14.44910716 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00936347 0.00936358 0.00936359 atom 2 type 1 force = -0.00936347 -0.00936358 -0.00936359 Total force = 0.022936 Total SCF correction = 0.000015 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126070279 -0.126070288 -0.126070289 Si 0.126070279 0.126070288 0.126070289 kinetic energy (Ekin) = 0.00116377 Ry temperature = 122.49685815 K Ekin + Etot (const) = -14.44794339 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.95E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895429 Ry Harris-Foulkes estimate = -14.44895429 Ry estimated scf accuracy < 0.00000156 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.95E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895447 Ry Harris-Foulkes estimate = -14.44895441 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.3321 7.3321 7.5213 ! total energy = -14.44895447 Ry Harris-Foulkes estimate = -14.44895447 Ry estimated scf accuracy < 3.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01195282 0.01195293 0.01195294 atom 2 type 1 force = -0.01195282 -0.01195293 -0.01195294 Total force = 0.029278 Total SCF correction = 0.000014 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126286595 -0.126286605 -0.126286606 Si 0.126286595 0.126286605 0.126286606 kinetic energy (Ekin) = 0.00101165 Ry temperature = 106.48495479 K Ekin + Etot (const) = -14.44794281 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.66E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878077 Ry Harris-Foulkes estimate = -14.44878078 Ry estimated scf accuracy < 0.00000133 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878093 Ry Harris-Foulkes estimate = -14.44878088 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3195 7.3195 7.5470 ! total energy = -14.44878093 Ry Harris-Foulkes estimate = -14.44878093 Ry estimated scf accuracy < 3.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01432524 0.01432534 0.01432535 atom 2 type 1 force = -0.01432524 -0.01432534 -0.01432535 Total force = 0.035090 Total SCF correction = 0.000013 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126480924 -0.126480933 -0.126480934 Si 0.126480924 0.126480933 0.126480934 kinetic energy (Ekin) = 0.00083878 Ry temperature = 88.28881635 K Ekin + Etot (const) = -14.44794215 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.34E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859824 Ry Harris-Foulkes estimate = -14.44859825 Ry estimated scf accuracy < 0.00000107 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859837 Ry Harris-Foulkes estimate = -14.44859833 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.3082 7.3082 7.5700 ! total energy = -14.44859837 Ry Harris-Foulkes estimate = -14.44859837 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01644470 0.01644480 0.01644481 atom 2 type 1 force = -0.01644470 -0.01644480 -0.01644481 Total force = 0.040281 Total SCF correction = 0.000012 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126650011 -0.126650019 -0.126650020 Si 0.126650011 0.126650019 0.126650020 kinetic energy (Ekin) = 0.00065693 Ry temperature = 69.14766530 K Ekin + Etot (const) = -14.44794144 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.02E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44841900 Ry Harris-Foulkes estimate = -14.44841901 Ry estimated scf accuracy < 0.00000082 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44841910 Ry Harris-Foulkes estimate = -14.44841907 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.63E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2984 7.2984 7.5901 ! total energy = -14.44841910 Ry Harris-Foulkes estimate = -14.44841910 Ry estimated scf accuracy < 2.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01827991 0.01828001 0.01828001 atom 2 type 1 force = -0.01827991 -0.01828001 -0.01828001 Total force = 0.044777 Total SCF correction = 0.000011 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126791039 -0.126791047 -0.126791047 Si 0.126791039 0.126791047 0.126791047 kinetic energy (Ekin) = 0.00047837 Ry temperature = 50.35189056 K Ekin + Etot (const) = -14.44794073 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825504 Ry Harris-Foulkes estimate = -14.44825504 Ry estimated scf accuracy < 0.00000056 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.98E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825510 Ry Harris-Foulkes estimate = -14.44825508 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.08E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.2902 7.2902 7.6069 ! total energy = -14.44825510 Ry Harris-Foulkes estimate = -14.44825510 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01980430 0.01980439 0.01980439 atom 2 type 1 force = -0.01980430 -0.01980439 -0.01980439 Total force = 0.048511 Total SCF correction = 0.000009 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126901669 -0.126901676 -0.126901676 Si 0.126901669 0.126901676 0.126901676 kinetic energy (Ekin) = 0.00031502 Ry temperature = 33.15813850 K Ekin + Etot (const) = -14.44794009 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.21E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811724 Ry Harris-Foulkes estimate = -14.44811724 Ry estimated scf accuracy < 0.00000034 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.30E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811728 Ry Harris-Foulkes estimate = -14.44811726 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.12E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2838 7.2838 7.6200 ! total energy = -14.44811728 Ry Harris-Foulkes estimate = -14.44811728 Ry estimated scf accuracy < 6.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02099579 0.02099588 0.02099588 atom 2 type 1 force = -0.02099579 -0.02099588 -0.02099588 Total force = 0.051429 Total SCF correction = 0.000007 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126980071 -0.126980077 -0.126980077 Si 0.126980071 0.126980077 0.126980077 kinetic energy (Ekin) = 0.00017774 Ry temperature = 18.70845754 K Ekin + Etot (const) = -14.44793954 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.11E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801471 Ry Harris-Foulkes estimate = -14.44801471 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801473 Ry Harris-Foulkes estimate = -14.44801472 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.57E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2793 7.2793 7.6293 ! total energy = -14.44801473 Ry Harris-Foulkes estimate = -14.44801473 Ry estimated scf accuracy < 3.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02183782 0.02183789 0.02183789 atom 2 type 1 force = -0.02183782 -0.02183789 -0.02183789 Total force = 0.053492 Total SCF correction = 0.000005 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127024953 -0.127024959 -0.127024958 Si 0.127024953 0.127024959 0.127024958 kinetic energy (Ekin) = 0.00007560 Ry temperature = 7.95761082 K Ekin + Etot (const) = -14.44793913 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.92E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.8 secs total energy = -14.44795420 Ry Harris-Foulkes estimate = -14.44795420 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.08E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2767 7.2767 7.6347 ! total energy = -14.44795421 Ry Harris-Foulkes estimate = -14.44795421 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02232178 0.02232185 0.02232184 atom 2 type 1 force = -0.02232178 -0.02232185 -0.02232184 Total force = 0.054677 Total SCF correction = 0.000008 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127035573 -0.127035577 -0.127035577 Si 0.127035573 0.127035577 0.127035577 kinetic energy (Ekin) = 0.00001532 Ry temperature = 1.61277100 K Ekin + Etot (const) = -14.44793889 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.66E-11, avg # of iterations = 1.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2761 7.2761 7.6358 ! total energy = -14.44793970 Ry Harris-Foulkes estimate = -14.44793970 Ry estimated scf accuracy < 3.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02243226 0.02243231 0.02243230 atom 2 type 1 force = -0.02243226 -0.02243231 -0.02243230 Total force = 0.054948 Total SCF correction = 0.000016 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127011761 -0.127011764 -0.127011763 Si 0.127011761 0.127011764 0.127011763 kinetic energy (Ekin) = 0.00000087 Ry temperature = 0.09114515 K Ekin + Etot (const) = -14.44793883 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.22E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.8 secs total energy = -14.44797213 Ry Harris-Foulkes estimate = -14.44797214 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2775 7.2775 7.6331 ! total energy = -14.44797214 Ry Harris-Foulkes estimate = -14.44797214 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02217351 0.02217355 0.02217354 atom 2 type 1 force = -0.02217351 -0.02217355 -0.02217354 Total force = 0.054314 Total SCF correction = 0.000004 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126953914 -0.126953915 -0.126953914 Si 0.126953914 0.126953915 0.126953914 kinetic energy (Ekin) = 0.00003317 Ry temperature = 3.49146425 K Ekin + Etot (const) = -14.44793897 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.15E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44804938 Ry Harris-Foulkes estimate = -14.44804938 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.18E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.2808 7.2808 7.6261 ! total energy = -14.44804939 Ry Harris-Foulkes estimate = -14.44804939 Ry estimated scf accuracy < 7.0E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02154878 0.02154880 0.02154879 atom 2 type 1 force = -0.02154878 -0.02154880 -0.02154879 Total force = 0.052784 Total SCF correction = 0.000012 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126862990 -0.126862990 -0.126862989 Si 0.126862990 0.126862990 0.126862989 kinetic energy (Ekin) = 0.00011009 Ry temperature = 11.58830087 K Ekin + Etot (const) = -14.44793930 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816636 Ry Harris-Foulkes estimate = -14.44816636 Ry estimated scf accuracy < 0.00000023 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.90E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816639 Ry Harris-Foulkes estimate = -14.44816638 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.11E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2861 7.2861 7.6153 ! total energy = -14.44816639 Ry Harris-Foulkes estimate = -14.44816639 Ry estimated scf accuracy < 4.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02057376 0.02057376 0.02057375 atom 2 type 1 force = -0.02057376 -0.02057376 -0.02057375 Total force = 0.050395 Total SCF correction = 0.000006 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126740487 -0.126740486 -0.126740485 Si 0.126740487 0.126740486 0.126740485 kinetic energy (Ekin) = 0.00022658 Ry temperature = 23.84940630 K Ekin + Etot (const) = -14.44793981 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.17E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831536 Ry Harris-Foulkes estimate = -14.44831536 Ry estimated scf accuracy < 0.00000042 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.28E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831540 Ry Harris-Foulkes estimate = -14.44831539 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.83E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2932 7.2932 7.6007 ! total energy = -14.44831541 Ry Harris-Foulkes estimate = -14.44831541 Ry estimated scf accuracy < 8.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01925101 0.01925100 0.01925099 atom 2 type 1 force = -0.01925101 -0.01925100 -0.01925099 Total force = 0.047155 Total SCF correction = 0.000008 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126588435 -0.126588432 -0.126588431 Si 0.126588435 0.126588432 0.126588431 kinetic energy (Ekin) = 0.00037496 Ry temperature = 39.46740121 K Ekin + Etot (const) = -14.44794045 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.95E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848652 Ry Harris-Foulkes estimate = -14.44848652 Ry estimated scf accuracy < 0.00000065 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.12E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848659 Ry Harris-Foulkes estimate = -14.44848656 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.91E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.3020 7.3020 7.5827 ! total energy = -14.44848659 Ry Harris-Foulkes estimate = -14.44848659 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01760361 0.01760358 0.01760357 atom 2 type 1 force = -0.01760361 -0.01760358 -0.01760357 Total force = 0.043120 Total SCF correction = 0.000010 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126409362 -0.126409358 -0.126409357 Si 0.126409362 0.126409358 0.126409357 kinetic energy (Ekin) = 0.00054539 Ry temperature = 57.40658979 K Ekin + Etot (const) = -14.44794120 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.14E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866843 Ry Harris-Foulkes estimate = -14.44866844 Ry estimated scf accuracy < 0.00000092 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.14E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866853 Ry Harris-Foulkes estimate = -14.44866850 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.57E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3124 7.3124 7.5614 ! total energy = -14.44866854 Ry Harris-Foulkes estimate = -14.44866853 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01565539 0.01565535 0.01565533 atom 2 type 1 force = -0.01565539 -0.01565535 -0.01565533 Total force = 0.038348 Total SCF correction = 0.000011 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126206259 -0.126206254 -0.126206253 Si 0.126206259 0.126206254 0.126206253 kinetic energy (Ekin) = 0.00072652 Ry temperature = 76.47209727 K Ekin + Etot (const) = -14.44794202 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.47E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884891 Ry Harris-Foulkes estimate = -14.44884892 Ry estimated scf accuracy < 0.00000118 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884904 Ry Harris-Foulkes estimate = -14.44884900 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7621 7.3243 7.3243 7.5373 ! total energy = -14.44884905 Ry Harris-Foulkes estimate = -14.44884905 Ry estimated scf accuracy < 2.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01343452 0.01343446 0.01343445 atom 2 type 1 force = -0.01343452 -0.01343446 -0.01343445 Total force = 0.032908 Total SCF correction = 0.000013 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125982534 -0.125982529 -0.125982528 Si 0.125982534 0.125982529 0.125982528 kinetic energy (Ekin) = 0.00090620 Ry temperature = 95.38499590 K Ekin + Etot (const) = -14.44794285 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.78E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901575 Ry Harris-Foulkes estimate = -14.44901576 Ry estimated scf accuracy < 0.00000142 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901591 Ry Harris-Foulkes estimate = -14.44901586 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.3373 7.3373 7.5108 ! total energy = -14.44901592 Ry Harris-Foulkes estimate = -14.44901591 Ry estimated scf accuracy < 3.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01097432 0.01097425 0.01097424 atom 2 type 1 force = -0.01097432 -0.01097425 -0.01097424 Total force = 0.026881 Total SCF correction = 0.000014 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125741965 -0.125741959 -0.125741957 Si 0.125741965 0.125741959 0.125741957 kinetic energy (Ekin) = 0.00107227 Ry temperature = 112.86527401 K Ekin + Etot (const) = -14.44794364 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.05E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915753 Ry Harris-Foulkes estimate = -14.44915754 Ry estimated scf accuracy < 0.00000164 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915772 Ry Harris-Foulkes estimate = -14.44915766 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3514 7.3514 7.4823 ! total energy = -14.44915773 Ry Harris-Foulkes estimate = -14.44915772 Ry estimated scf accuracy < 3.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00831260 0.00831252 0.00831251 atom 2 type 1 force = -0.00831260 -0.00831252 -0.00831251 Total force = 0.020361 Total SCF correction = 0.000015 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125488637 -0.125488629 -0.125488628 Si 0.125488637 0.125488629 0.125488628 kinetic energy (Ekin) = 0.00121337 Ry temperature = 127.71706222 K Ekin + Etot (const) = -14.44794436 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.27E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926443 Ry Harris-Foulkes estimate = -14.44926443 Ry estimated scf accuracy < 0.00000181 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926464 Ry Harris-Foulkes estimate = -14.44926457 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3662 7.3662 7.4524 ! total energy = -14.44926464 Ry Harris-Foulkes estimate = -14.44926464 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00549112 0.00549103 0.00549102 atom 2 type 1 force = -0.00549112 -0.00549103 -0.00549102 Total force = 0.013450 Total SCF correction = 0.000015 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125226880 -0.125226872 -0.125226870 Si 0.125226880 0.125226872 0.125226870 kinetic energy (Ekin) = 0.00131971 Ry temperature = 138.90995549 K Ekin + Etot (const) = -14.44794494 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.41E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44932888 Ry Harris-Foulkes estimate = -14.44932887 Ry estimated scf accuracy < 0.00000193 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.42E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932903 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3816 7.3816 7.4215 ! total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932910 Ry estimated scf accuracy < 4.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00255543 0.00255534 0.00255532 atom 2 type 1 force = -0.00255543 -0.00255534 -0.00255532 Total force = 0.006259 Total SCF correction = 0.000016 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124961200 -0.124961192 -0.124961190 Si 0.124961200 0.124961192 0.124961190 kinetic energy (Ekin) = 0.00138375 Ry temperature = 145.65141171 K Ekin + Etot (const) = -14.44794535 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934613 Ry Harris-Foulkes estimate = -14.44934611 Ry estimated scf accuracy < 0.00000199 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934635 Ry Harris-Foulkes estimate = -14.44934628 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3903 7.3972 7.3972 ! total energy = -14.44934636 Ry Harris-Foulkes estimate = -14.44934636 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00044573 -0.00044589 -0.00044591 atom 2 type 1 force = 0.00044573 0.00044589 0.00044591 Total force = 0.001092 Total SCF correction = 0.000016 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124696205 -0.124696196 -0.124696195 Si 0.124696205 0.124696196 0.124696195 kinetic energy (Ekin) = 0.00140080 Ry temperature = 147.44523663 K Ekin + Etot (const) = -14.44794556 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.46E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931465 Ry Harris-Foulkes estimate = -14.44931463 Ry estimated scf accuracy < 0.00000197 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931487 Ry Harris-Foulkes estimate = -14.44931480 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3591 7.4128 7.4128 ! total energy = -14.44931488 Ry Harris-Foulkes estimate = -14.44931488 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00346099 -0.00346110 -0.00346111 atom 2 type 1 force = 0.00346099 0.00346110 0.00346111 Total force = 0.008478 Total SCF correction = 0.000016 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124436522 -0.124436513 -0.124436512 Si 0.124436522 0.124436513 0.124436512 kinetic energy (Ekin) = 0.00136932 Ry temperature = 144.13166244 K Ekin + Etot (const) = -14.44794556 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923630 Ry Harris-Foulkes estimate = -14.44923627 Ry estimated scf accuracy < 0.00000189 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923651 Ry Harris-Foulkes estimate = -14.44923644 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.84E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3286 7.4281 7.4281 ! total energy = -14.44923651 Ry Harris-Foulkes estimate = -14.44923651 Ry estimated scf accuracy < 4.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00643733 -0.00643743 -0.00643744 atom 2 type 1 force = 0.00643733 0.00643743 0.00643744 Total force = 0.015768 Total SCF correction = 0.000015 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124186720 -0.124186711 -0.124186710 Si 0.124186720 0.124186711 0.124186710 kinetic energy (Ekin) = 0.00129116 Ry temperature = 135.90502754 K Ekin + Etot (const) = -14.44794535 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.17E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44911622 Ry Harris-Foulkes estimate = -14.44911618 Ry estimated scf accuracy < 0.00000174 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.18E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44911641 Ry Harris-Foulkes estimate = -14.44911635 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.71E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.2994 7.4429 7.4429 ! total energy = -14.44911641 Ry Harris-Foulkes estimate = -14.44911641 Ry estimated scf accuracy < 3.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00932079 -0.00932090 -0.00932091 atom 2 type 1 force = 0.00932079 0.00932090 0.00932091 Total force = 0.022831 Total SCF correction = 0.000014 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123951225 -0.123951216 -0.123951215 Si 0.123951225 0.123951216 0.123951215 kinetic energy (Ekin) = 0.00117147 Ry temperature = 123.30703569 K Ekin + Etot (const) = -14.44794494 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.93E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896259 Ry Harris-Foulkes estimate = -14.44896256 Ry estimated scf accuracy < 0.00000154 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896276 Ry Harris-Foulkes estimate = -14.44896271 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.2718 7.4569 7.4569 ! total energy = -14.44896277 Ry Harris-Foulkes estimate = -14.44896277 Ry estimated scf accuracy < 3.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01205766 -0.01205776 -0.01205777 atom 2 type 1 force = 0.01205766 0.01205776 0.01205777 Total force = 0.029535 Total SCF correction = 0.000013 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123734238 -0.123734229 -0.123734228 Si 0.123734238 0.123734229 0.123734228 kinetic energy (Ekin) = 0.00101840 Ry temperature = 107.19521140 K Ekin + Etot (const) = -14.44794437 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.63E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878609 Ry Harris-Foulkes estimate = -14.44878605 Ry estimated scf accuracy < 0.00000131 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.63E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878623 Ry Harris-Foulkes estimate = -14.44878618 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2465 7.4697 7.4697 ! total energy = -14.44878623 Ry Harris-Foulkes estimate = -14.44878623 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01459557 -0.01459567 -0.01459568 atom 2 type 1 force = 0.01459557 0.01459567 0.01459568 Total force = 0.035752 Total SCF correction = 0.000012 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123539654 -0.123539645 -0.123539645 Si 0.123539654 0.123539645 0.123539645 kinetic energy (Ekin) = 0.00084257 Ry temperature = 88.68730196 K Ekin + Etot (const) = -14.44794366 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.31E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859911 Ry Harris-Foulkes estimate = -14.44859908 Ry estimated scf accuracy < 0.00000105 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.31E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859923 Ry Harris-Foulkes estimate = -14.44859919 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.2238 7.4813 7.4813 ! total energy = -14.44859923 Ry Harris-Foulkes estimate = -14.44859923 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01688474 -0.01688484 -0.01688484 atom 2 type 1 force = 0.01688474 0.01688484 0.01688484 Total force = 0.041359 Total SCF correction = 0.000011 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123370987 -0.123370979 -0.123370979 Si 0.123370987 0.123370979 0.123370979 kinetic energy (Ekin) = 0.00065634 Ry temperature = 69.08500421 K Ekin + Etot (const) = -14.44794289 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841497 Ry Harris-Foulkes estimate = -14.44841495 Ry estimated scf accuracy < 0.00000079 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.83E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841506 Ry Harris-Foulkes estimate = -14.44841503 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.87E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2041 7.4913 7.4913 ! total energy = -14.44841506 Ry Harris-Foulkes estimate = -14.44841506 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01887921 -0.01887929 -0.01887930 atom 2 type 1 force = 0.01887921 0.01887929 0.01887930 Total force = 0.046245 Total SCF correction = 0.000009 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123231299 -0.123231292 -0.123231292 Si 0.123231299 0.123231292 0.123231292 kinetic energy (Ekin) = 0.00047295 Ry temperature = 49.78198515 K Ekin + Etot (const) = -14.44794211 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.50E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824689 Ry Harris-Foulkes estimate = -14.44824686 Ry estimated scf accuracy < 0.00000053 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.64E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824694 Ry Harris-Foulkes estimate = -14.44824692 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1879 7.4996 7.4996 ! total energy = -14.44824694 Ry Harris-Foulkes estimate = -14.44824694 Ry estimated scf accuracy < 8.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02053853 -0.02053861 -0.02053861 atom 2 type 1 force = 0.02053853 0.02053861 0.02053861 Total force = 0.050309 Total SCF correction = 0.000009 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123123136 -0.123123130 -0.123123130 Si 0.123123136 0.123123130 0.123123130 kinetic energy (Ekin) = 0.00030556 Ry temperature = 32.16254593 K Ekin + Etot (const) = -14.44794138 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.89E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810698 Ry Harris-Foulkes estimate = -14.44810697 Ry estimated scf accuracy < 0.00000032 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810701 Ry Harris-Foulkes estimate = -14.44810700 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.10E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1753 7.5061 7.5061 ! total energy = -14.44810701 Ry Harris-Foulkes estimate = -14.44810701 Ry estimated scf accuracy < 4.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02182751 -0.02182758 -0.02182758 atom 2 type 1 force = 0.02182751 0.02182758 0.02182758 Total force = 0.053466 Total SCF correction = 0.000007 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123048477 -0.123048472 -0.123048472 Si 0.123048477 0.123048472 0.123048472 kinetic energy (Ekin) = 0.00016625 Ry temperature = 17.49934446 K Ekin + Etot (const) = -14.44794076 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.85E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs total energy = -14.44800544 Ry Harris-Foulkes estimate = -14.44800543 Ry estimated scf accuracy < 0.00000015 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44800546 Ry Harris-Foulkes estimate = -14.44800545 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1666 7.5105 7.5105 ! total energy = -14.44800546 Ry Harris-Foulkes estimate = -14.44800546 Ry estimated scf accuracy < 2.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02271931 -0.02271937 -0.02271936 atom 2 type 1 force = 0.02271931 0.02271937 0.02271936 Total force = 0.055651 Total SCF correction = 0.000005 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123008691 -0.123008687 -0.123008687 Si 0.123008691 0.123008687 0.123008687 kinetic energy (Ekin) = 0.00006515 Ry temperature = 6.85731602 K Ekin + Etot (const) = -14.44794031 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.26E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs total energy = -14.44794967 Ry Harris-Foulkes estimate = -14.44794967 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.36E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1620 7.5129 7.5129 ! total energy = -14.44794967 Ry Harris-Foulkes estimate = -14.44794967 Ry estimated scf accuracy < 3.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02319758 -0.02319762 -0.02319762 atom 2 type 1 force = 0.02319758 0.02319762 0.02319762 Total force = 0.056822 Total SCF correction = 0.000007 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123004512 -0.123004509 -0.123004509 Si 0.123004512 0.123004509 0.123004509 kinetic energy (Ekin) = 0.00000961 Ry temperature = 1.01194500 K Ekin + Etot (const) = -14.44794006 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.38E-12, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1616 7.5131 7.5131 ! total energy = -14.44794375 Ry Harris-Foulkes estimate = -14.44794375 Ry estimated scf accuracy < 4.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02324470 -0.02324474 -0.02324473 atom 2 type 1 force = 0.02324470 0.02324474 0.02324473 Total force = 0.056938 Total SCF correction = 0.000004 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123036012 -0.123036010 -0.123036011 Si 0.123036012 0.123036010 0.123036011 kinetic energy (Ekin) = 0.00000371 Ry temperature = 0.39086322 K Ekin + Etot (const) = -14.44794003 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.40E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44798810 Ry Harris-Foulkes estimate = -14.44798810 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1653 7.5112 7.5112 ! total energy = -14.44798811 Ry Harris-Foulkes estimate = -14.44798811 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02286340 -0.02286343 -0.02286342 atom 2 type 1 force = 0.02286340 0.02286343 0.02286342 Total force = 0.056004 Total SCF correction = 0.000008 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123102607 -0.123102606 -0.123102607 Si 0.123102607 0.123102606 0.123102607 kinetic energy (Ekin) = 0.00004787 Ry temperature = 5.03822194 K Ekin + Etot (const) = -14.44794024 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 second order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.47E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs total energy = -14.44807949 Ry Harris-Foulkes estimate = -14.44807948 Ry estimated scf accuracy < 0.00000012 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1730 7.5072 7.5072 ! total energy = -14.44807950 Ry Harris-Foulkes estimate = -14.44807949 Ry estimated scf accuracy < 9.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02206378 -0.02206378 -0.02206377 atom 2 type 1 force = 0.02206378 0.02206378 0.02206377 Total force = 0.054045 Total SCF correction = 0.000012 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000000 cm^2/s atom 2 D = 0.00000000 cm^2/s < D > = 0.00000000 cm^2/s Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123203068 -0.123203068 -0.123203069 Si 0.123203068 0.123203068 0.123203069 kinetic energy (Ekin) = 0.00013882 Ry temperature = 14.61172861 K Ekin + Etot (const) = -14.44794068 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save init_run : 0.03s CPU 0.03s WALL ( 1 calls) electrons : 0.37s CPU 0.43s WALL ( 51 calls) update_pot : 0.10s CPU 0.12s WALL ( 50 calls) forces : 0.02s CPU 0.03s WALL ( 51 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.16s CPU 0.18s WALL ( 199 calls) sum_band : 0.06s CPU 0.06s WALL ( 199 calls) v_of_rho : 0.10s CPU 0.09s WALL ( 200 calls) mix_rho : 0.01s CPU 0.02s WALL ( 199 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.01s WALL ( 399 calls) cegterg : 0.14s CPU 0.16s WALL ( 199 calls) Called by *egterg: h_psi : 0.13s CPU 0.12s WALL ( 495 calls) g_psi : 0.00s CPU 0.00s WALL ( 295 calls) cdiaghg : 0.01s CPU 0.02s WALL ( 394 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 495 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 595 calls) fft : 0.06s CPU 0.06s WALL ( 1001 calls) fftw : 0.11s CPU 0.11s WALL ( 4298 calls) davcio : 0.00s CPU 0.00s WALL ( 444 calls) PWSCF : 1.35s CPU 1.57s WALL This run was terminated on: 10:24:50 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/pbe0-si444.ref0000644000175000017500000004626712341373024015201 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 9400) starts on 29Nov2012 at 22:11:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/pbe0-si444.in IMPORTANT: XC functional enforced from input : Exchange-correlation = PBE0 ( 6 4 8 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want EXX: grid of k+q point setup nkqs = 256 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 ( 6 4 8 4 0) EXX-fraction = 0.25 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.82340308 Ry Harris-Foulkes estimate = -15.83974490 Ry estimated scf accuracy < 0.06415499 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.82634536 Ry Harris-Foulkes estimate = -15.82635445 Ry estimated scf accuracy < 0.00228139 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.2 secs total energy = -15.82644717 Ry Harris-Foulkes estimate = -15.82643482 Ry estimated scf accuracy < 0.00004970 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.5 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4476 4.7282 5.9961 5.9961 8.9449 9.3568 9.3568 11.1864 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1160 4.9391 5.0502 8.5385 10.1246 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8637 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7127 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7928 3.5449 7.2968 8.3741 14.7162 14.7745 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4109 1.6834 3.9583 5.4867 9.1322 10.0722 10.2721 12.7293 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3206 9.2854 9.9751 11.4585 12.3758 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6946 -0.3359 2.2539 4.3555 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9476 0.3457 5.1681 5.1681 8.1196 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6289 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2968 EXX: now go back to refine exchange calculation -2.13706186654975 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 3.9 total cpu time spent up to now is 30.1 secs total energy = -15.83783415 Ry Harris-Foulkes estimate = -15.83784292 Ry estimated scf accuracy < 0.00005805 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.26E-07, avg # of iterations = 1.0 total cpu time spent up to now is 44.7 secs total energy = -15.83783507 Ry Harris-Foulkes estimate = -15.83783520 Ry estimated scf accuracy < 0.00000399 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.99E-08, avg # of iterations = 1.0 total cpu time spent up to now is 59.4 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5466 3.9718 5.2848 5.2848 9.6924 10.0962 10.0962 12.0990 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9573 2.0985 4.1222 4.3189 9.1946 10.9643 11.7309 12.0639 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7688 0.1320 2.6425 3.0671 8.3384 10.0323 13.4421 13.7658 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.0816 -2.0123 1.7389 2.5141 7.8631 8.9863 15.9310 15.9957 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.3841 0.4460 3.0932 4.7153 9.8831 10.8924 11.0514 13.7204 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2948 -0.9227 1.9072 3.4733 9.9872 10.7310 12.3754 13.3863 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8799 -2.1220 1.0143 2.2916 9.4408 11.5231 12.6777 15.0164 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4670 -1.8369 1.1078 3.4331 8.9205 12.8161 12.9089 14.5026 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8599 -1.0847 4.3308 4.3308 8.8148 10.6746 10.6746 15.2367 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0425 -1.9909 3.1274 3.8150 9.3278 10.7054 11.3602 14.8971 highest occupied, lowest unoccupied level (ev): 5.2848 7.8631 -2.13706186654975 -2.14016879213658 -2.14369394256821 est. exchange err (dexx) = 0.00020911 Ry ! total energy = -15.83804432 Ry Harris-Foulkes estimate = -15.83804431 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 2.67237324 Ry hartree contribution = 1.10276674 Ry xc contribution = -3.78174753 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.14016879 Ry + Fock energy = -1.07184697 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.99E-08, avg # of iterations = 3.0 total cpu time spent up to now is 82.7 secs total energy = -15.83807813 Ry Harris-Foulkes estimate = -15.83808015 Ry estimated scf accuracy < 0.00000477 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.96E-08, avg # of iterations = 1.0 total cpu time spent up to now is 97.4 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5405 3.9591 5.2630 5.2630 9.7115 10.1130 10.1130 12.1165 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9512 2.0944 4.1085 4.3056 9.2093 10.9794 11.7392 12.0699 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7639 0.1335 2.6355 3.0573 8.3552 10.0433 13.4478 13.7694 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.0777 -2.0089 1.7345 2.5049 7.8804 8.9979 15.9336 15.9991 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.3786 0.4481 3.0854 4.6960 9.9012 10.9064 11.0568 13.7280 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2897 -0.9195 1.9050 3.4611 9.9980 10.7409 12.3832 13.3897 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8756 -2.1187 1.0159 2.2845 9.4519 11.5264 12.6863 15.0204 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4628 -1.8328 1.1099 3.4210 8.9365 12.8182 12.9159 14.5072 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8555 -1.0799 4.3149 4.3149 8.8386 10.6857 10.6857 15.2440 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0377 -1.9859 3.1192 3.8005 9.3441 10.7152 11.3690 14.9012 highest occupied, lowest unoccupied level (ev): 5.2630 7.8804 -2.14369394256821 -2.14446575651824 -2.14525049872051 est. exchange err (dexx) = 0.00000646 Ry ! total energy = -15.83808485 Ry Harris-Foulkes estimate = -15.83808489 Ry estimated scf accuracy < 0.00000014 Ry The total energy is the sum of the following terms: one-electron contribution = 2.66699323 Ry hartree contribution = 1.10546490 Ry xc contribution = -3.78262492 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.14446576 Ry + Fock energy = -1.07262525 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.96E-08, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.91E-09, avg # of iterations = 1.1 total cpu time spent up to now is 128.9 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5399 3.9554 5.2589 5.2589 9.7136 10.1159 10.1159 12.1187 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9507 2.0929 4.1060 4.3021 9.2114 10.9816 11.7408 12.0709 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7637 0.1328 2.6336 3.0558 8.3579 10.0454 13.4482 13.7696 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.0777 -2.0092 1.7332 2.5035 7.8831 9.0002 15.9339 15.9990 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.3782 0.4480 3.0832 4.6922 9.9037 10.9093 11.0573 13.7290 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2894 -0.9196 1.9043 3.4581 10.0000 10.7427 12.3844 13.3897 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8756 -2.1188 1.0161 2.2827 9.4540 11.5269 12.6874 15.0209 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4628 -1.8326 1.1101 3.4189 8.9388 12.8180 12.9171 14.5077 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8554 -1.0796 4.3122 4.3122 8.8415 10.6874 10.6874 15.2453 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0374 -1.9855 3.1168 3.7977 9.3462 10.7168 11.3709 14.9018 highest occupied, lowest unoccupied level (ev): 5.2589 7.8831 -2.14525049872051 -2.14543032693703 -2.14561070081517 est. exchange err (dexx) = 0.00000027 Ry ! total energy = -15.83808622 Ry Harris-Foulkes estimate = -15.83808634 Ry estimated scf accuracy < 0.00000023 Ry The total energy is the sum of the following terms: one-electron contribution = 2.66560746 Ry hartree contribution = 1.10634083 Ry xc contribution = -3.78290091 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.14543033 Ry + Fock energy = -1.07280535 Ry convergence has been achieved in 1 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -62.97 -0.00042809 0.00000000 0.00000000 -62.97 0.00 0.00 0.00000000 -0.00042809 0.00000000 0.00 -62.97 0.00 0.00000000 0.00000000 -0.00042809 0.00 0.00 -62.97 Writing output data file pwscf.save init_run : 0.04s CPU 0.04s WALL ( 1 calls) electrons : 126.64s CPU 132.47s WALL ( 1 calls) stress : 3.85s CPU 4.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 92.25s CPU 96.45s WALL ( 12 calls) sum_band : 0.04s CPU 0.05s WALL ( 12 calls) v_of_rho : 0.04s CPU 0.03s WALL ( 12 calls) mix_rho : 0.00s CPU 0.00s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.01s WALL ( 260 calls) cegterg : 92.24s CPU 96.43s WALL ( 120 calls) Called by *egterg: h_psi : 92.07s CPU 96.30s WALL ( 362 calls) g_psi : 0.01s CPU 0.01s WALL ( 232 calls) cdiaghg : 0.09s CPU 0.07s WALL ( 302 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.01s WALL ( 362 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 372 calls) fft : 0.02s CPU 0.01s WALL ( 135 calls) ffts : 59.66s CPU 61.83s WALL ( 933376 calls) fftw : 0.21s CPU 0.35s WALL ( 9788 calls) davcio : 0.02s CPU 0.01s WALL ( 530 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.44s CPU 0.51s WALL ( 4 calls) vexx : 91.95s CPU 96.08s WALL ( 200 calls) exxen2 : 33.85s CPU 35.41s WALL ( 10 calls) PWSCF : 2m10.61s CPU 2m16.61s WALL This run was terminated on: 22:13:47 29Nov2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/noncolin-constrain_angle.in0000755000175000017500000000175012341373024020312 0ustar mbamba &control calculation='scf' restart_mode='from_scratch', / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 constrained_magnetization='atomic direction' lambda = 1 / &electrons mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS (alat) Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 espresso-5.1/PW/tests/lattice-ibrav4.in0000644000175000017500000000045512341373024016137 0ustar mbamba#!/bin/sh &control calculation='scf', / &system ibrav = 4, celldm(1) =10.0, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/scf-kauto.ref0000644000175000017500000002116212341373024015365 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-kauto.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 -0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79103087 Ry Harris-Foulkes estimate = -15.81239584 Ry estimated scf accuracy < 0.06376279 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409443 Ry Harris-Foulkes estimate = -15.79442040 Ry estimated scf accuracy < 0.00230236 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447811 Ry Harris-Foulkes estimate = -15.79450046 Ry estimated scf accuracy < 0.00006290 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.86E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449511 Ry Harris-Foulkes estimate = -15.79449675 Ry estimated scf accuracy < 0.00000442 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.52E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k =-0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500-0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378649 Ry hartree contribution = 1.08429069 Ry xc contribution = -4.81281453 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.02s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) fftw : 0.01s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 38 calls) PWSCF : 0.11s CPU 0.11s WALL This run was terminated on: 11:28:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/noncolin-constrain_total.in0000755000175000017500000000117012341373024020343 0ustar mbamba &control calculation='scf' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 45.0 angle2(1) = 53.0 constrained_magnetization='total' fixed_magnetization(1)=0.3, fixed_magnetization(2)=0.4, fixed_magnetization(3)=0.5, lambda = 0.5 / &electrons conv_thr = 1.0e-9 mixing_beta = 0.3 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS (alat) Fe 0.0 0.0 0.0 K_POINTS AUTOMATIC 4 4 4 1 1 1 espresso-5.1/PW/tests/lsda-nelup+neldw.ref0000644000175000017500000003477712341373024016662 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:38 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda-nelup+neldw.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 (up: 6.00, down: 4.00) number of Kohn-Sham states= 10 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.000 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 10) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 144, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 18, 10) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.4 total cpu time spent up to now is 1.1 secs total energy = -85.36100764 Ry Harris-Foulkes estimate = -85.65775224 Ry estimated scf accuracy < 0.56238269 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.62E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -85.50364204 Ry Harris-Foulkes estimate = -85.68883154 Ry estimated scf accuracy < 0.34556341 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.46E-03, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -85.57763781 Ry Harris-Foulkes estimate = -85.57534556 Ry estimated scf accuracy < 0.00434602 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.35E-05, avg # of iterations = 1.9 total cpu time spent up to now is 1.5 secs total energy = -85.57808381 Ry Harris-Foulkes estimate = -85.57822591 Ry estimated scf accuracy < 0.00031552 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.16E-06, avg # of iterations = 1.5 total cpu time spent up to now is 1.6 secs total energy = -85.57814925 Ry Harris-Foulkes estimate = -85.57814691 Ry estimated scf accuracy < 0.00000214 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.14E-08, avg # of iterations = 2.6 total cpu time spent up to now is 1.7 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.0167 11.1480 11.4082 11.4082 12.3588 12.3588 36.7679 40.7678 42.9798 42.9798 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 8.7014 10.9123 11.3766 11.6633 12.3143 13.3895 28.3060 34.1286 41.4433 43.2812 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 9.3338 11.0224 11.4988 12.0071 13.1797 15.8523 21.2957 35.2284 37.7277 38.9300 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.5591 10.7423 11.5734 11.7226 12.2779 12.6680 32.6773 37.9601 38.3906 41.8248 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 9.2819 10.1243 11.7369 12.3061 13.0617 13.7471 29.4136 32.8973 33.8298 37.8183 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 9.9132 10.2367 11.3079 12.4470 13.1949 19.7157 23.2541 27.1404 29.6279 41.8520 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 9.8077 10.6890 11.0124 12.0476 12.8589 15.5033 25.1284 31.0941 34.4152 42.4200 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 9.2993 9.6872 12.6181 12.8734 13.2744 17.3590 26.0074 27.5864 31.4714 37.0212 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 8.8766 11.3378 11.3378 12.5461 12.9435 12.9435 23.9740 38.5918 41.1692 41.1692 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 10.0081 10.5813 11.2531 12.0227 12.9080 18.3031 22.0905 28.4560 35.9344 38.3825 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.7870 12.8645 13.1573 13.1573 14.1691 14.1691 37.6532 41.4991 43.8297 43.8298 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.6215 12.4876 13.0790 13.4199 14.1200 15.1588 29.3155 35.0366 42.2020 44.1830 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.7274 12.6811 13.2371 13.5202 15.0534 17.0351 22.5062 36.0965 38.6012 39.7587 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.3577 12.4089 13.3177 13.4851 14.0383 14.5007 33.6268 38.8505 39.2201 42.6862 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.4104 11.7315 13.3283 14.1042 14.9240 15.2873 30.3673 33.8485 34.6841 38.7838 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.4108 11.7877 12.9054 14.2367 15.0707 20.8231 24.2887 28.1675 30.5412 42.7301 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.1075 12.2166 12.6428 13.8038 14.6944 16.9324 26.1722 32.0289 35.3272 43.2425 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.7292 11.2641 14.3126 14.7129 15.1569 18.3991 27.1089 28.4883 32.2782 38.0436 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 10.0791 13.0694 13.0694 13.6443 14.7976 14.7976 25.0805 39.2907 42.0414 42.0414 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.5005 12.0984 12.8329 13.7914 14.7630 19.4795 23.2102 29.4363 36.8134 39.2537 the spin up/dw Fermi energies are 19.9663 14.2955 ev ! total energy = -85.57815014 Ry Harris-Foulkes estimate = -85.57815074 Ry estimated scf accuracy < 0.00000072 Ry The total energy is the sum of the following terms: one-electron contribution = 0.88807288 Ry hartree contribution = 13.78337126 Ry xc contribution = -29.49556562 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00001569 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file pwscf.save init_run : 0.79s CPU 0.80s WALL ( 1 calls) electrons : 0.83s CPU 0.86s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.45s CPU 0.46s WALL ( 6 calls) sum_band : 0.21s CPU 0.22s WALL ( 6 calls) v_of_rho : 0.03s CPU 0.04s WALL ( 7 calls) newd : 0.12s CPU 0.13s WALL ( 7 calls) mix_rho : 0.01s CPU 0.01s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.02s WALL ( 260 calls) cegterg : 0.43s CPU 0.42s WALL ( 120 calls) Called by *egterg: h_psi : 0.30s CPU 0.27s WALL ( 409 calls) s_psi : 0.01s CPU 0.01s WALL ( 409 calls) g_psi : 0.00s CPU 0.01s WALL ( 269 calls) cdiaghg : 0.10s CPU 0.10s WALL ( 389 calls) Called by h_psi: add_vuspsi : 0.03s CPU 0.01s WALL ( 409 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 529 calls) fft : 0.04s CPU 0.03s WALL ( 109 calls) ffts : 0.00s CPU 0.00s WALL ( 26 calls) fftw : 0.23s CPU 0.21s WALL ( 7440 calls) interpolate : 0.01s CPU 0.01s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 380 calls) PWSCF : 1.76s CPU 1.82s WALL This run was terminated on: 10:24:40 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-mixing_ndim.in0000644000175000017500000000053212341373024016374 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons mixing_ndim=4 / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/electric2.in0000755000175000017500000000542612341373024015207 0ustar mbamba &control calculation='scf' gdir=3, nppstr=7, lelfield=.true., nberrycyc=3 tprnfor=.true. tstress=.true. / &system ibrav= 1, celldm(1)=10.18, nat= 8, ntyp= 1, ecutwfc = 20.0, nosym=.true. / &electrons conv_thr = 1.0d-8, mixing_beta = 0.5, startingwfc='file', startingpot='file', efield=0.001 / ATOMIC_SPECIES Si 28.086 Si.pbe-rrkj.UPF ATOMIC_POSITIONS (alat) Si -0.123 -0.123 -0.123 Si 0.377 0.377 -0.123 Si 0.377 -0.123 0.377 Si -0.123 0.377 0.377 Si 0.123 0.123 0.123 Si 0.623 0.623 0.123 Si 0.623 0.123 0.623 Si 0.123 0.623 0.623 K_POINTS 63 0. 0. 0. 1 0. 0. 0.142857143 1 0. 0. 0.285714286 1 0. 0. 0.428571429 1 0. 0. 0.571428571 1 0. 0. 0.714285714 1 0. 0. 0.857142857 1 0. 0.333333333 0. 1 0. 0.333333333 0.142857143 1 0. 0.333333333 0.285714286 1 0. 0.333333333 0.428571429 1 0. 0.333333333 0.571428571 1 0. 0.333333333 0.714285714 1 0. 0.333333333 0.857142857 1 0. 0.666666667 0. 1 0. 0.666666667 0.142857143 1 0. 0.666666667 0.285714286 1 0. 0.666666667 0.428571429 1 0. 0.666666667 0.571428571 1 0. 0.666666667 0.714285714 1 0. 0.666666667 0.857142857 1 0.333333333 0. 0. 1 0.333333333 0. 0.142857143 1 0.333333333 0. 0.285714286 1 0.333333333 0. 0.428571429 1 0.333333333 0. 0.571428571 1 0.333333333 0. 0.714285714 1 0.333333333 0. 0.857142857 1 0.333333333 0.333333333 0. 1 0.333333333 0.333333333 0.142857143 1 0.333333333 0.333333333 0.285714286 1 0.333333333 0.333333333 0.428571429 1 0.333333333 0.333333333 0.571428571 1 0.333333333 0.333333333 0.714285714 1 0.333333333 0.333333333 0.857142857 1 0.333333333 0.666666667 0. 1 0.333333333 0.666666667 0.142857143 1 0.333333333 0.666666667 0.285714286 1 0.333333333 0.666666667 0.428571429 1 0.333333333 0.666666667 0.571428571 1 0.333333333 0.666666667 0.714285714 1 0.333333333 0.666666667 0.857142857 1 0.666666667 0. 0. 1 0.666666667 0. 0.142857143 1 0.666666667 0. 0.285714286 1 0.666666667 0. 0.428571429 1 0.666666667 0. 0.571428571 1 0.666666667 0. 0.714285714 1 0.666666667 0. 0.857142857 1 0.666666667 0.333333333 0. 1 0.666666667 0.333333333 0.142857143 1 0.666666667 0.333333333 0.285714286 1 0.666666667 0.333333333 0.428571429 1 0.666666667 0.333333333 0.571428571 1 0.666666667 0.333333333 0.714285714 1 0.666666667 0.333333333 0.857142857 1 0.666666667 0.666666667 0. 1 0.666666667 0.666666667 0.142857143 1 0.666666667 0.666666667 0.285714286 1 0.666666667 0.666666667 0.428571429 1 0.666666667 0.666666667 0.571428571 1 0.666666667 0.666666667 0.714285714 1 0.666666667 0.666666667 0.857142857 1 espresso-5.1/PW/tests/lattice-ibrav0-cell_parameters+celldm.ref0000644000175000017500000001764212341373024022703 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:15 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav0-cell_parameters+celldm.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1135 1135 281 47345 47345 5905 Tot 568 568 141 bravais-lattice index = 0 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2801.4279 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.450000 1.430909 0.000000 ) a(3) = ( 0.400000 0.083863 1.957796 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.314485 -0.190840 ) b(2) = ( 0.000000 0.698856 -0.029936 ) b(3) = ( 0.000000 0.000000 0.510778 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23673 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 2953, 1) NL pseudopotentials 0.00 Mb ( 2953, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.18 Mb ( 23673) G-vector shells 0.18 Mb ( 22997) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 2953, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003955 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.395E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.114E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22055170 Ry Harris-Foulkes estimate = -2.29035895 Ry estimated scf accuracy < 0.13253986 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 1.0 negative rho (up, down): 0.245E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23168705 Ry Harris-Foulkes estimate = -2.23211025 Ry estimated scf accuracy < 0.00094325 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-05, avg # of iterations = 2.0 negative rho (up, down): 0.403E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23203744 Ry Harris-Foulkes estimate = -2.23203917 Ry estimated scf accuracy < 0.00001485 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.43E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2953 PWs) bands (ev): -10.3154 ! total energy = -2.23203908 Ry Harris-Foulkes estimate = -2.23203880 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -3.65125627 Ry hartree contribution = 1.92424365 Ry xc contribution = -1.31190429 Ry ewald contribution = 0.80687783 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.13s CPU 0.14s WALL ( 1 calls) electrons : 0.16s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.10s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.03s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.03s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.03s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.32s CPU 0.34s WALL This run was terminated on: 10:22:16 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/dft9.ref0000644000175000017500000002241412341373024014340 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10839) starts on 3Apr2014 at 8:38:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/wc.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = WC ( 1 4 11 4 0) Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 27 728 728 141 Max 82 82 28 731 731 142 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = WC ( 1 4 11 4 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 93, 4) NL pseudopotentials 0.01 Mb ( 93, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 93, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.06E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.79294127 Ry Harris-Foulkes estimate = -15.81295212 Ry estimated scf accuracy < 0.06475733 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.09E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.79580845 Ry Harris-Foulkes estimate = -15.79605831 Ry estimated scf accuracy < 0.00246604 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.08E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.79615996 Ry Harris-Foulkes estimate = -15.79617751 Ry estimated scf accuracy < 0.00006121 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.65E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.79617653 Ry Harris-Foulkes estimate = -15.79617797 Ry estimated scf accuracy < 0.00000434 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.42E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.0 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8616 2.3862 5.5320 5.5320 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9121 -0.0595 2.6910 4.0374 highest occupied level (ev): 5.5320 ! total energy = -15.79617731 Ry Harris-Foulkes estimate = -15.79617733 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.82918393 Ry hartree contribution = 1.09303161 Ry xc contribution = -4.81863427 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.02s CPU 0.02s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 67 calls) fftw : 0.01s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.01s CPU 0.00s WALL ( 399 calls) PWSCF : 0.09s CPU 0.10s WALL This run was terminated on: 8:38:31 3Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-allfrac.ref0000644000175000017500000002165012341373024015650 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 12:35:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-allfrac.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym. Ops., with inversion, found (24 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102868 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376295 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441847 Ry estimated scf accuracy < 0.00230222 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450062 Ry estimated scf accuracy < 0.00006304 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000448 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.60E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378670 Ry hartree contribution = 1.08429043 Ry xc contribution = -4.81281448 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020597 0.00000000 0.00000000 -30.30 0.00 0.00 0.00000000 -0.00020597 0.00000000 0.00 -30.30 0.00 0.00000000 0.00000000 -0.00020597 0.00 0.00 -30.30 Writing output data file pwscf.save init_run : 0.03s CPU 0.04s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 6 calls) sum_band : 0.00s CPU 0.01s WALL ( 6 calls) v_of_rho : 0.01s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.02s CPU 0.02s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.00s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 40 calls) PWSCF : 0.15s CPU 0.16s WALL This run was terminated on: 12:35:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/paw-atom_lda.in0000644000175000017500000000057012341373024015670 0ustar mbamba &control calculation = 'scf' / &system ibrav= 2, celldm(1) =25.0, nat= 1, ntyp= 1, ecutwfc=30 occupations = 'from_input' nbnd = 6 / &electrons conv_thr = 1.0d-6 / ATOMIC_SPECIES O 1.000 O.pz-kjpaw.UPF ATOMIC_POSITIONS {alat} O 0.0 0.0 0.0 K_POINTS {gamma} OCCUPATIONS 2. 1.333333333333 1.333333333333 1.333333333333 0. 0. espresso-5.1/PW/tests/spinorbit.in0000755000175000017500000000070212341373024015334 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav= 2, celldm(1) =7.42, nat= 1, ntyp= 1, lspinorb=.true., noncolin=.true., starting_magnetization=0.0, occupations='smearing', degauss=0.02, smearing='mp', ecutwfc =30.0, ecutrho =250.0, / &electrons / ATOMIC_SPECIES Pt 79.90 Pt.rel-pz-n-rrkjus.UPF ATOMIC_POSITIONS {alat} Pt 0.0000000 0.00000000 0.0 K_POINTS AUTOMATIC 4 4 4 1 1 1 espresso-5.1/PW/tests/uspp-mixing_localTF.in0000755000175000017500000000055112341373024017211 0ustar mbamba &control calculation='scf' / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, ecutrho=200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons mixing_mode = 'local-TF' / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS {alat} Cu 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 0 0 0 espresso-5.1/PW/tests/scf-gamma.in0000644000175000017500000000042012341373024015150 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS {alat} Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS {Gamma} espresso-5.1/PW/tests/uspp-mixing_ndim.in0000755000175000017500000000054012341373024016612 0ustar mbamba &control calculation='scf' / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, ecutrho=200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons mixing_ndim = 4 / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS {alat} Cu 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 0 0 0 espresso-5.1/PW/tests/paw-atom_spin.in0000644000175000017500000000062212341373024016077 0ustar mbamba &control calculation = 'scf' / &system ibrav= 2, celldm(1) =25.0, nat= 1, ntyp= 1, ecutwfc=30 occupations = 'from_input' nspin = 2 nbnd = 7 nosym = .true. / &electrons conv_thr = 1.0d-6 / ATOMIC_SPECIES O 1.000 O.pbe-kjpaw.UPF ATOMIC_POSITIONS {alat} O 0.0 0.0 0.0 K_POINTS {gamma} OCCUPATIONS 1. 1. 1. 1. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. espresso-5.1/PW/tests/lattice-ibrav6.ref0000644000175000017500000001761312341373024016313 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:22 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav6.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 793 793 193 33775 33775 4207 Tot 397 397 97 bravais-lattice index = 6 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 16888 G-vectors FFT dimensions: ( 32, 32, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 2104, 1) NL pseudopotentials 0.00 Mb ( 2104, 0) Each V/rho on FFT grid 1.00 Mb ( 65536) Each G-vector array 0.13 Mb ( 16888) G-vector shells 0.00 Mb ( 467) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.06 Mb ( 2104, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 8.00 Mb ( 65536, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.002648 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.265E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 16.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.758E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22126888 Ry Harris-Foulkes estimate = -2.29060282 Ry estimated scf accuracy < 0.13177841 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.59E-03, avg # of iterations = 1.0 negative rho (up, down): 0.161E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23251391 Ry Harris-Foulkes estimate = -2.23290380 Ry estimated scf accuracy < 0.00088439 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.42E-05, avg # of iterations = 2.0 negative rho (up, down): 0.321E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23290671 Ry Harris-Foulkes estimate = -2.23290820 Ry estimated scf accuracy < 0.00001751 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.76E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2104 PWs) bands (ev): -10.3006 ! total energy = -2.23290854 Ry Harris-Foulkes estimate = -2.23290804 Ry estimated scf accuracy < 0.00000048 Ry The total energy is the sum of the following terms: one-electron contribution = -3.61242018 Ry hartree contribution = 1.90403705 Ry xc contribution = -1.30942826 Ry ewald contribution = 0.78490285 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.03s WALL ( 1 calls) electrons : 0.10s CPU 0.11s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 4 calls) sum_band : 0.02s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.05s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: regterg : 0.02s CPU 0.02s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.01s WALL ( 19 calls) fftw : 0.02s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.16s CPU 0.18s WALL This run was terminated on: 10:22:23 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav-12-kauto.ref0000644000175000017500000001773012341373024017566 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav-12-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1185 1185 325 50377 50377 7161 bravais-lattice index = -12 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2984.9623 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.100000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.500000 0.000000 ) a(3) = ( 0.200000 0.000000 1.989975 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 -0.100504 ) b(2) = ( 0.000000 0.666667 0.000000 ) b(3) = ( 0.000000 0.000000 0.502519 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.1666667 0.1005038), wk = 1.0000000 k( 2) = ( 0.2500000 0.1666667 -0.1507557), wk = 1.0000000 Dense grid: 50377 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 6316, 1) NL pseudopotentials 0.00 Mb ( 6316, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.38 Mb ( 50377) G-vector shells 0.04 Mb ( 4655) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.39 Mb ( 6316, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.004315 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.431E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.126E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22009512 Ry Harris-Foulkes estimate = -2.29032340 Ry estimated scf accuracy < 0.13322371 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.269E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23108287 Ry Harris-Foulkes estimate = -2.23153742 Ry estimated scf accuracy < 0.00100787 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.04E-05, avg # of iterations = 2.0 negative rho (up, down): 0.350E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23138628 Ry Harris-Foulkes estimate = -2.23138778 Ry estimated scf accuracy < 0.00001214 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.07E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.2500 0.1667 0.1005 ( 6294 PWs) bands (ev): -10.2876 k = 0.2500 0.1667-0.1508 ( 6316 PWs) bands (ev): -10.2890 ! total energy = -2.23138749 Ry Harris-Foulkes estimate = -2.23138744 Ry estimated scf accuracy < 0.00000041 Ry The total energy is the sum of the following terms: one-electron contribution = -3.69392621 Ry hartree contribution = 1.94936322 Ry xc contribution = -1.31441103 Ry ewald contribution = 0.82758653 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.08s CPU 0.09s WALL ( 1 calls) electrons : 0.24s CPU 0.26s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.01s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.06s CPU 0.06s WALL ( 4 calls) sum_band : 0.05s CPU 0.05s WALL ( 4 calls) v_of_rho : 0.08s CPU 0.07s WALL ( 5 calls) mix_rho : 0.03s CPU 0.04s WALL ( 4 calls) Called by c_bands: cegterg : 0.06s CPU 0.06s WALL ( 8 calls) Called by *egterg: h_psi : 0.06s CPU 0.06s WALL ( 22 calls) g_psi : 0.00s CPU 0.00s WALL ( 12 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 20 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.05s CPU 0.05s WALL ( 56 calls) davcio : 0.00s CPU 0.00s WALL ( 26 calls) PWSCF : 0.36s CPU 0.38s WALL This run was terminated on: 10:22:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/vc-relax4.in0000755000175000017500000000153112341373024015131 0ustar mbamba &CONTROL calculation = "vc-relax" / &SYSTEM ibrav = 0 , A = 3.70971016 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 / &ELECTRONS conv_thr = 1.0d-7 / &IONS ion_dynamics = 'bfgs' , / &CELL cell_dynamics = 'bfgs' , press = 500.00 / CELL_PARAMETERS alat 0.58012956 0.00000000 0.81452422 -0.29006459 0.50240689 0.81452422 -0.29006459 -0.50240689 0.81452422 ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 espresso-5.1/PW/tests/md-pot_extrap1.ref0000644000175000017500000033302112341373024016335 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:44 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/md-pot_extrap1.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 31 869 869 113 bravais-lattice index = 2 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.43210225 Ry Harris-Foulkes estimate = -14.55434296 Ry estimated scf accuracy < 0.32483609 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -14.44687979 Ry Harris-Foulkes estimate = -14.44915621 Ry estimated scf accuracy < 0.01104147 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.44790249 Ry Harris-Foulkes estimate = -14.44786986 Ry estimated scf accuracy < 0.00019990 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793341 Ry Harris-Foulkes estimate = -14.44793322 Ry estimated scf accuracy < 0.00000435 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.43E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793716 Ry Harris-Foulkes estimate = -14.44793752 Ry estimated scf accuracy < 0.00000145 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793726 Ry Harris-Foulkes estimate = -14.44793727 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793736 Ry estimated scf accuracy < 0.00000013 Ry iteration # 8 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793733 Ry estimated scf accuracy < 0.00000002 Ry iteration # 9 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793737 Ry estimated scf accuracy < 0.00000017 Ry iteration # 10 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1610 7.5134 7.5134 ! total energy = -14.44793733 Ry Harris-Foulkes estimate = -14.44793734 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02329815 -0.02329818 -0.02329844 atom 2 type 1 force = 0.02329815 0.02329818 0.02329844 Total force = 0.057069 Total SCF correction = 0.000004 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123017881 -0.123017881 -0.123017881 Si 0.123017881 0.123017881 0.123017881 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -14.44793733 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1631 7.5123 7.5123 ! total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796266 Ry estimated scf accuracy < 6.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02308264 -0.02308255 -0.02308267 atom 2 type 1 force = 0.02308264 0.02308255 0.02308267 Total force = 0.056541 Total SCF correction = 0.000005 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123071192 -0.123071192 -0.123071192 Si 0.123071192 0.123071192 0.123071192 kinetic energy (Ekin) = 0.00002521 Ry temperature = 2.65359889 K Ekin + Etot (const) = -14.44793745 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.91E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1694 7.5091 7.5091 ! total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02244208 -0.02244171 -0.02244166 atom 2 type 1 force = 0.02244208 0.02244171 0.02244166 Total force = 0.054971 Total SCF correction = 0.000013 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123158950 -0.123158950 -0.123158950 Si 0.123158950 0.123158950 0.123158950 kinetic energy (Ekin) = 0.00009899 Ry temperature = 10.41930179 K Ekin + Etot (const) = -14.44793780 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.03E-09, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815429 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.23E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1796 7.5039 7.5039 ! total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815429 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02139343 -0.02139346 -0.02139325 atom 2 type 1 force = 0.02139343 0.02139346 0.02139325 Total force = 0.052403 Total SCF correction = 0.000009 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123279547 -0.123279545 -0.123279546 Si 0.123279547 0.123279545 0.123279546 kinetic energy (Ekin) = 0.00021593 Ry temperature = 22.72878920 K Ekin + Etot (const) = -14.44793836 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.48E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830661 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.76E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.1936 7.4967 7.4967 ! total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830661 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01995760 -0.01995763 -0.01995734 atom 2 type 1 force = 0.01995760 0.01995763 0.01995734 Total force = 0.048886 Total SCF correction = 0.000009 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123430777 -0.123430775 -0.123430775 Si 0.123430777 0.123430775 0.123430775 kinetic energy (Ekin) = 0.00036753 Ry temperature = 38.68586710 K Ekin + Etot (const) = -14.44793908 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.31E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848270 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.29E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2112 7.4877 7.4877 ! total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848270 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01816352 -0.01816356 -0.01816351 atom 2 type 1 force = 0.01816352 0.01816356 0.01816351 Total force = 0.044491 Total SCF correction = 0.000008 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123609887 -0.123609884 -0.123609884 Si 0.123609887 0.123609884 0.123609884 kinetic energy (Ekin) = 0.00054280 Ry temperature = 57.13367687 K Ekin + Etot (const) = -14.44793991 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.62E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866987 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.70E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.2321 7.4771 7.4771 ! total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866987 Ry estimated scf accuracy < 1.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01604904 -0.01604908 -0.01604906 atom 2 type 1 force = 0.01604904 0.01604908 0.01604906 Total force = 0.039312 Total SCF correction = 0.000007 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123813631 -0.123813628 -0.123813627 Si 0.123813631 0.123813628 0.123813627 kinetic energy (Ekin) = 0.00072909 Ry temperature = 76.74277112 K Ekin + Etot (const) = -14.44794078 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.63E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885473 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.2558 7.4650 7.4650 ! total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885473 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01365683 -0.01365687 -0.01365687 atom 2 type 1 force = 0.01365683 0.01365687 0.01365687 Total force = 0.033452 Total SCF correction = 0.000007 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124038338 -0.124038334 -0.124038333 Si 0.124038338 0.124038334 0.124038333 kinetic energy (Ekin) = 0.00091310 Ry temperature = 96.11106140 K Ekin + Etot (const) = -14.44794163 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.22E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902419 Ry Harris-Foulkes estimate = -14.44902419 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.60E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.2821 7.4516 7.4516 ! total energy = -14.44902420 Ry Harris-Foulkes estimate = -14.44902420 Ry estimated scf accuracy < 9.8E-10 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01103470 -0.01103474 -0.01103474 atom 2 type 1 force = 0.01103470 0.01103474 0.01103474 Total force = 0.027029 Total SCF correction = 0.000007 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124279982 -0.124279978 -0.124279976 Si 0.124279982 0.124279978 0.124279976 kinetic energy (Ekin) = 0.00108179 Ry temperature = 113.86685842 K Ekin + Etot (const) = -14.44794241 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3102 7.4374 7.4374 ! total energy = -14.44916640 Ry Harris-Foulkes estimate = -14.44916640 Ry estimated scf accuracy < 8.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00823362 -0.00823366 -0.00823368 atom 2 type 1 force = 0.00823362 0.00823366 0.00823368 Total force = 0.020168 Total SCF correction = 0.000033 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124534265 -0.124534260 -0.124534258 Si 0.124534265 0.124534260 0.124534258 kinetic energy (Ekin) = 0.00122335 Ry temperature = 128.76767476 K Ekin + Etot (const) = -14.44794305 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.33E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3402 7.4223 7.4223 ! total energy = -14.44927155 Ry Harris-Foulkes estimate = -14.44927155 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00530260 -0.00530265 -0.00530267 atom 2 type 1 force = 0.00530260 0.00530265 0.00530267 Total force = 0.012989 Total SCF correction = 0.000016 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124796686 -0.124796682 -0.124796679 Si 0.124796686 0.124796682 0.124796679 kinetic energy (Ekin) = 0.00132801 Ry temperature = 139.78346035 K Ekin + Etot (const) = -14.44794355 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.80E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3708 7.4069 7.4069 ! total energy = -14.44933256 Ry Harris-Foulkes estimate = -14.44933256 Ry estimated scf accuracy < 5.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00230966 -0.00230971 -0.00230970 atom 2 type 1 force = 0.00230966 0.00230971 0.00230970 Total force = 0.005658 Total SCF correction = 0.000042 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125062653 -0.125062649 -0.125062645 Si 0.125062653 0.125062649 0.125062645 kinetic energy (Ekin) = 0.00138875 Ry temperature = 146.17693808 K Ekin + Etot (const) = -14.44794382 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.93E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3911 7.3911 7.4024 ! total energy = -14.44934552 Ry Harris-Foulkes estimate = -14.44934552 Ry estimated scf accuracy < 5.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00071286 0.00071276 0.00071286 atom 2 type 1 force = -0.00071286 -0.00071276 -0.00071286 Total force = 0.001746 Total SCF correction = 0.000034 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125327526 -0.125327522 -0.125327518 Si 0.125327526 0.125327522 0.125327518 kinetic energy (Ekin) = 0.00140166 Ry temperature = 147.53625838 K Ekin + Etot (const) = -14.44794386 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.01E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930986 Ry Harris-Foulkes estimate = -14.44930989 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.77E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930987 Ry Harris-Foulkes estimate = -14.44930988 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.74E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3756 7.3756 7.4335 ! total energy = -14.44930987 Ry Harris-Foulkes estimate = -14.44930987 Ry estimated scf accuracy < 5.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00369334 0.00369242 0.00369334 atom 2 type 1 force = -0.00369334 -0.00369242 -0.00369334 Total force = 0.009046 Total SCF correction = 0.000008 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125586730 -0.125586727 -0.125586721 Si 0.125586730 0.125586727 0.125586721 kinetic energy (Ekin) = 0.00136617 Ry temperature = 143.80106149 K Ekin + Etot (const) = -14.44794370 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.53E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922842 Ry Harris-Foulkes estimate = -14.44922843 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3604 7.3604 7.4641 ! total energy = -14.44922842 Ry Harris-Foulkes estimate = -14.44922842 Ry estimated scf accuracy < 3.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00659189 0.00659154 0.00659141 atom 2 type 1 force = -0.00659189 -0.00659154 -0.00659141 Total force = 0.016146 Total SCF correction = 0.000023 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125835815 -0.125835814 -0.125835806 Si 0.125835815 0.125835814 0.125835806 kinetic energy (Ekin) = 0.00128511 Ry temperature = 135.26832589 K Ekin + Etot (const) = -14.44794331 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.43E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910705 Ry Harris-Foulkes estimate = -14.44910706 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.15E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910705 Ry Harris-Foulkes estimate = -14.44910706 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3458 7.3459 7.4935 ! total energy = -14.44910706 Ry Harris-Foulkes estimate = -14.44910706 Ry estimated scf accuracy < 3.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00935857 0.00935832 0.00935839 atom 2 type 1 force = -0.00935857 -0.00935832 -0.00935839 Total force = 0.022923 Total SCF correction = 0.000006 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126070536 -0.126070537 -0.126070527 Si 0.126070536 0.126070537 0.126070527 kinetic energy (Ekin) = 0.00116429 Ry temperature = 122.55142302 K Ekin + Etot (const) = -14.44794276 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.72E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44895429 Ry Harris-Foulkes estimate = -14.44895429 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.71E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.3321 7.3321 7.5213 ! total energy = -14.44895429 Ry Harris-Foulkes estimate = -14.44895429 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01194845 0.01194844 0.01194810 atom 2 type 1 force = -0.01194845 -0.01194844 -0.01194810 Total force = 0.029267 Total SCF correction = 0.000023 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126286916 -0.126286920 -0.126286908 Si 0.126286916 0.126286920 0.126286908 kinetic energy (Ekin) = 0.00101220 Ry temperature = 106.54285108 K Ekin + Etot (const) = -14.44794208 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.39E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878065 Ry Harris-Foulkes estimate = -14.44878066 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.30E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3195 7.3195 7.5469 ! total energy = -14.44878066 Ry Harris-Foulkes estimate = -14.44878066 Ry estimated scf accuracy < 3.0E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01432127 0.01432128 0.01432107 atom 2 type 1 force = -0.01432127 -0.01432128 -0.01432107 Total force = 0.035080 Total SCF correction = 0.000023 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126481314 -0.126481320 -0.126481308 Si 0.126481314 0.126481320 0.126481308 kinetic energy (Ekin) = 0.00083934 Ry temperature = 88.34725917 K Ekin + Etot (const) = -14.44794132 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.16E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859798 Ry Harris-Foulkes estimate = -14.44859799 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.3082 7.3082 7.5700 ! total energy = -14.44859799 Ry Harris-Foulkes estimate = -14.44859799 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01644116 0.01644144 0.01644149 atom 2 type 1 force = -0.01644116 -0.01644144 -0.01644149 Total force = 0.040273 Total SCF correction = 0.000016 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126650476 -0.126650484 -0.126650470 Si 0.126650476 0.126650484 0.126650470 kinetic energy (Ekin) = 0.00065747 Ry temperature = 69.20377849 K Ekin + Etot (const) = -14.44794052 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.56E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44841858 Ry Harris-Foulkes estimate = -14.44841858 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.55E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2984 7.2984 7.5901 ! total energy = -14.44841859 Ry Harris-Foulkes estimate = -14.44841859 Ry estimated scf accuracy < 1.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01827774 0.01827774 0.01827760 atom 2 type 1 force = -0.01827774 -0.01827774 -0.01827760 Total force = 0.044771 Total SCF correction = 0.000010 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126791583 -0.126791593 -0.126791578 Si 0.126791583 0.126791593 0.126791578 kinetic energy (Ekin) = 0.00047885 Ry temperature = 50.40261567 K Ekin + Etot (const) = -14.44793974 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.53E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825445 Ry Harris-Foulkes estimate = -14.44825445 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.2902 7.2902 7.6068 ! total energy = -14.44825445 Ry Harris-Foulkes estimate = -14.44825445 Ry estimated scf accuracy < 1.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01980305 0.01980319 0.01980296 atom 2 type 1 force = -0.01980305 -0.01980319 -0.01980296 Total force = 0.048507 Total SCF correction = 0.000009 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126902293 -0.126902304 -0.126902289 Si 0.126902293 0.126902304 0.126902289 kinetic energy (Ekin) = 0.00031542 Ry temperature = 33.20075314 K Ekin + Etot (const) = -14.44793903 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.89E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811648 Ry Harris-Foulkes estimate = -14.44811648 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2838 7.2838 7.6200 ! total energy = -14.44811648 Ry Harris-Foulkes estimate = -14.44811648 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02099604 0.02099619 0.02099598 atom 2 type 1 force = -0.02099604 -0.02099619 -0.02099598 Total force = 0.051430 Total SCF correction = 0.000010 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126980775 -0.126980788 -0.126980772 Si 0.126980775 0.126980788 0.126980772 kinetic energy (Ekin) = 0.00017805 Ry temperature = 18.74079681 K Ekin + Etot (const) = -14.44793843 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.73E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801379 Ry Harris-Foulkes estimate = -14.44801379 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.75E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2793 7.2793 7.6293 ! total energy = -14.44801379 Ry Harris-Foulkes estimate = -14.44801379 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02183968 0.02183984 0.02183965 atom 2 type 1 force = -0.02183968 -0.02183984 -0.02183965 Total force = 0.053496 Total SCF correction = 0.000009 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127025735 -0.127025749 -0.127025733 Si 0.127025735 0.127025749 0.127025733 kinetic energy (Ekin) = 0.00007580 Ry temperature = 7.97829515 K Ekin + Etot (const) = -14.44793799 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.37E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs total energy = -14.44795314 Ry Harris-Foulkes estimate = -14.44795314 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.04E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2767 7.2767 7.6347 ! total energy = -14.44795314 Ry Harris-Foulkes estimate = -14.44795314 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02232211 0.02232228 0.02232209 atom 2 type 1 force = -0.02232211 -0.02232228 -0.02232209 Total force = 0.054678 Total SCF correction = 0.000009 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127036431 -0.127036446 -0.127036431 Si 0.127036431 0.127036446 0.127036431 kinetic energy (Ekin) = 0.00001541 Ry temperature = 1.62189447 K Ekin + Etot (const) = -14.44793773 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.81E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs total energy = -14.44793851 Ry Harris-Foulkes estimate = -14.44793851 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.18E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2760 7.2760 7.6360 ! total energy = -14.44793852 Ry Harris-Foulkes estimate = -14.44793852 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02243667 0.02243684 0.02243666 atom 2 type 1 force = -0.02243667 -0.02243684 -0.02243666 Total force = 0.054959 Total SCF correction = 0.000008 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127012689 -0.127012704 -0.127012689 Si 0.127012689 0.127012704 0.127012689 kinetic energy (Ekin) = 0.00000085 Ry temperature = 0.08909212 K Ekin + Etot (const) = -14.44793767 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.87E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs total energy = -14.44797087 Ry Harris-Foulkes estimate = -14.44797087 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.31E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2774 7.2774 7.6331 ! total energy = -14.44797087 Ry Harris-Foulkes estimate = -14.44797087 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02218198 0.02218217 0.02218199 atom 2 type 1 force = -0.02218198 -0.02218217 -0.02218199 Total force = 0.054335 Total SCF correction = 0.000011 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126954898 -0.126954914 -0.126954900 Si 0.126954898 0.126954914 0.126954900 kinetic energy (Ekin) = 0.00003307 Ry temperature = 3.48039355 K Ekin + Etot (const) = -14.44793781 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.75E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs total energy = -14.44804809 Ry Harris-Foulkes estimate = -14.44804809 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.19E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.2808 7.2808 7.6263 ! total energy = -14.44804809 Ry Harris-Foulkes estimate = -14.44804809 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02156129 0.02156148 0.02156131 atom 2 type 1 force = -0.02156129 -0.02156148 -0.02156131 Total force = 0.052814 Total SCF correction = 0.000009 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126864012 -0.126864028 -0.126864015 Si 0.126864012 0.126864028 0.126864015 kinetic energy (Ekin) = 0.00010995 Ry temperature = 11.57316222 K Ekin + Etot (const) = -14.44793814 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.97E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816509 Ry Harris-Foulkes estimate = -14.44816509 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.84E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2860 7.2860 7.6154 ! total energy = -14.44816509 Ry Harris-Foulkes estimate = -14.44816509 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02058337 0.02058356 0.02058341 atom 2 type 1 force = -0.02058337 -0.02058356 -0.02058341 Total force = 0.050419 Total SCF correction = 0.000008 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126741532 -0.126741548 -0.126741536 Si 0.126741532 0.126741548 0.126741536 kinetic energy (Ekin) = 0.00022645 Ry temperature = 23.83531989 K Ekin + Etot (const) = -14.44793865 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.18E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831416 Ry Harris-Foulkes estimate = -14.44831416 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2931 7.2931 7.6009 ! total energy = -14.44831417 Ry Harris-Foulkes estimate = -14.44831417 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01926214 0.01926233 0.01926219 atom 2 type 1 force = -0.01926214 -0.01926233 -0.01926219 Total force = 0.047183 Total SCF correction = 0.000008 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126589485 -0.126589501 -0.126589491 Si 0.126589485 0.126589501 0.126589491 kinetic energy (Ekin) = 0.00037487 Ry temperature = 39.45850563 K Ekin + Etot (const) = -14.44793929 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.68E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848545 Ry Harris-Foulkes estimate = -14.44848545 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.12E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.3019 7.3019 7.5828 ! total energy = -14.44848545 Ry Harris-Foulkes estimate = -14.44848545 Ry estimated scf accuracy < 1.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01761586 0.01761605 0.01761593 atom 2 type 1 force = -0.01761586 -0.01761605 -0.01761593 Total force = 0.043150 Total SCF correction = 0.000008 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126410399 -0.126410414 -0.126410406 Si 0.126410399 0.126410414 0.126410406 kinetic energy (Ekin) = 0.00054541 Ry temperature = 57.40840792 K Ekin + Etot (const) = -14.44794004 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.90E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866753 Ry Harris-Foulkes estimate = -14.44866753 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.57E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3124 7.3124 7.5615 ! total energy = -14.44866753 Ry Harris-Foulkes estimate = -14.44866753 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01566837 0.01566854 0.01566844 atom 2 type 1 force = -0.01566837 -0.01566854 -0.01566844 Total force = 0.038380 Total SCF correction = 0.000007 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126207264 -0.126207278 -0.126207271 Si 0.126207264 0.126207278 0.126207271 kinetic energy (Ekin) = 0.00072669 Ry temperature = 76.48983239 K Ekin + Etot (const) = -14.44794085 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.23E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884821 Ry Harris-Foulkes estimate = -14.44884821 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.3242 7.3242 7.5375 ! total energy = -14.44884821 Ry Harris-Foulkes estimate = -14.44884821 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01344804 0.01344820 0.01344813 atom 2 type 1 force = -0.01344804 -0.01344820 -0.01344813 Total force = 0.032941 Total SCF correction = 0.000008 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125983486 -0.125983498 -0.125983494 Si 0.125983486 0.125983498 0.125983494 kinetic energy (Ekin) = 0.00090656 Ry temperature = 95.42315334 K Ekin + Etot (const) = -14.44794165 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.82E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901527 Ry Harris-Foulkes estimate = -14.44901527 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.3372 7.3372 7.5110 ! total energy = -14.44901527 Ry Harris-Foulkes estimate = -14.44901527 Ry estimated scf accuracy < 9.6E-10 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01098838 0.01098852 0.01098847 atom 2 type 1 force = -0.01098838 -0.01098852 -0.01098847 Total force = 0.026916 Total SCF correction = 0.000006 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125742841 -0.125742852 -0.125742850 Si 0.125742841 0.125742852 0.125742850 kinetic energy (Ekin) = 0.00107286 Ry temperature = 112.92755961 K Ekin + Etot (const) = -14.44794241 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.34E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3512 7.3512 7.4826 ! total energy = -14.44915727 Ry Harris-Foulkes estimate = -14.44915727 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00832645 0.00832657 0.00832654 atom 2 type 1 force = -0.00832645 -0.00832657 -0.00832654 Total force = 0.020396 Total SCF correction = 0.000027 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125489416 -0.125489426 -0.125489425 Si 0.125489416 0.125489426 0.125489425 kinetic energy (Ekin) = 0.00121421 Ry temperature = 127.80568513 K Ekin + Etot (const) = -14.44794306 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.26E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3662 7.3662 7.4525 ! total energy = -14.44926438 Ry Harris-Foulkes estimate = -14.44926438 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00550096 0.00550107 0.00550107 atom 2 type 1 force = -0.00550096 -0.00550107 -0.00550107 Total force = 0.013475 Total SCF correction = 0.000018 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125227547 -0.125227555 -0.125227557 Si 0.125227547 0.125227555 0.125227557 kinetic energy (Ekin) = 0.00132077 Ry temperature = 139.02221766 K Ekin + Etot (const) = -14.44794361 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.25E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3814 7.3814 7.4218 ! total energy = -14.44932900 Ry Harris-Foulkes estimate = -14.44932900 Ry estimated scf accuracy < 3.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00257022 0.00257030 0.00257033 atom 2 type 1 force = -0.00257022 -0.00257030 -0.00257033 Total force = 0.006296 Total SCF correction = 0.000033 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124961734 -0.124961739 -0.124961743 Si 0.124961734 0.124961739 0.124961743 kinetic energy (Ekin) = 0.00138505 Ry temperature = 145.78748254 K Ekin + Etot (const) = -14.44794395 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.24E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3902 7.3972 7.3972 ! total energy = -14.44934637 Ry Harris-Foulkes estimate = -14.44934637 Ry estimated scf accuracy < 3.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00043715 -0.00043711 -0.00043705 atom 2 type 1 force = 0.00043715 0.00043711 0.00043705 Total force = 0.001071 Total SCF correction = 0.000034 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124696591 -0.124696594 -0.124696600 Si 0.124696591 0.124696594 0.124696600 kinetic energy (Ekin) = 0.00140229 Ry temperature = 147.60233550 K Ekin + Etot (const) = -14.44794409 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.36E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3594 7.4126 7.4126 ! total energy = -14.44931496 Ry Harris-Foulkes estimate = -14.44931497 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00344621 -0.00344630 -0.00344612 atom 2 type 1 force = 0.00344621 0.00344630 0.00344612 Total force = 0.008441 Total SCF correction = 0.000037 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124436738 -0.124436739 -0.124436747 Si 0.124436738 0.124436739 0.124436747 kinetic energy (Ekin) = 0.00137098 Ry temperature = 144.30689643 K Ekin + Etot (const) = -14.44794398 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.81E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923660 Ry Harris-Foulkes estimate = -14.44923660 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.40E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3287 7.4281 7.4281 ! total energy = -14.44923660 Ry Harris-Foulkes estimate = -14.44923660 Ry estimated scf accuracy < 2.3E-10 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00642795 -0.00642803 -0.00642783 atom 2 type 1 force = 0.00642795 0.00642803 0.00642783 Total force = 0.015745 Total SCF correction = 0.000005 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124186751 -0.124186751 -0.124186760 Si 0.124186751 0.124186751 0.124186760 kinetic energy (Ekin) = 0.00129296 Ry temperature = 136.09511712 K Ekin + Etot (const) = -14.44794364 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.27E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.2994 7.4429 7.4429 ! total energy = -14.44911644 Ry Harris-Foulkes estimate = -14.44911644 Ry estimated scf accuracy < 4.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00931197 -0.00931160 -0.00931192 atom 2 type 1 force = 0.00931197 0.00931160 0.00931192 Total force = 0.022809 Total SCF correction = 0.000012 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123951058 -0.123951056 -0.123951066 Si 0.123951058 0.123951056 0.123951066 kinetic energy (Ekin) = 0.00117333 Ry temperature = 123.50254650 K Ekin + Etot (const) = -14.44794311 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.07E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896265 Ry Harris-Foulkes estimate = -14.44896265 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.33E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.2719 7.4568 7.4568 ! total energy = -14.44896265 Ry Harris-Foulkes estimate = -14.44896265 Ry estimated scf accuracy < 9.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01205127 -0.01205251 -0.01205115 atom 2 type 1 force = 0.01205127 0.01205251 0.01205115 Total force = 0.029520 Total SCF correction = 0.000020 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123733863 -0.123733860 -0.123733870 Si 0.123733863 0.123733860 0.123733870 kinetic energy (Ekin) = 0.00102024 Ry temperature = 107.38851961 K Ekin + Etot (const) = -14.44794241 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.26E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878586 Ry Harris-Foulkes estimate = -14.44878593 Ry estimated scf accuracy < 0.00000012 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878588 Ry Harris-Foulkes estimate = -14.44878594 Ry estimated scf accuracy < 0.00000016 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2465 7.4697 7.4697 ! total energy = -14.44878590 Ry Harris-Foulkes estimate = -14.44878590 Ry estimated scf accuracy < 1.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01459489 -0.01459390 -0.01459441 atom 2 type 1 force = 0.01459489 0.01459390 0.01459441 Total force = 0.035749 Total SCF correction = 0.000008 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123539070 -0.123539065 -0.123539076 Si 0.123539070 0.123539065 0.123539076 kinetic energy (Ekin) = 0.00084429 Ry temperature = 88.86799340 K Ekin + Etot (const) = -14.44794162 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.18E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859862 Ry Harris-Foulkes estimate = -14.44859864 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.02E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859863 Ry Harris-Foulkes estimate = -14.44859864 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.2238 7.4813 7.4813 ! total energy = -14.44859863 Ry Harris-Foulkes estimate = -14.44859863 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01688519 -0.01688511 -0.01688556 atom 2 type 1 force = 0.01688519 0.01688511 0.01688556 Total force = 0.041360 Total SCF correction = 0.000009 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123370194 -0.123370188 -0.123370200 Si 0.123370194 0.123370188 0.123370200 kinetic energy (Ekin) = 0.00065786 Ry temperature = 69.24493576 K Ekin + Etot (const) = -14.44794078 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.66E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841415 Ry Harris-Foulkes estimate = -14.44841415 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.28E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2041 7.4913 7.4913 ! total energy = -14.44841415 Ry Harris-Foulkes estimate = -14.44841415 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01888239 -0.01888251 -0.01888178 atom 2 type 1 force = 0.01888239 0.01888251 0.01888178 Total force = 0.046252 Total SCF correction = 0.000016 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123230303 -0.123230294 -0.123230306 Si 0.123230303 0.123230294 0.123230306 kinetic energy (Ekin) = 0.00047422 Ry temperature = 49.91605224 K Ekin + Etot (const) = -14.44793993 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.66E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824569 Ry Harris-Foulkes estimate = -14.44824569 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.34E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1878 7.4996 7.4996 ! total energy = -14.44824569 Ry Harris-Foulkes estimate = -14.44824569 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02054396 -0.02054375 -0.02054417 atom 2 type 1 force = 0.02054396 0.02054375 0.02054417 Total force = 0.050322 Total SCF correction = 0.000010 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123121945 -0.123121934 -0.123121947 Si 0.123121945 0.123121934 0.123121947 kinetic energy (Ekin) = 0.00030655 Ry temperature = 32.26699714 K Ekin + Etot (const) = -14.44793914 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.83E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810542 Ry Harris-Foulkes estimate = -14.44810542 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.63E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1752 7.5061 7.5061 ! total energy = -14.44810543 Ry Harris-Foulkes estimate = -14.44810543 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02183578 -0.02183574 -0.02183570 atom 2 type 1 force = 0.02183578 0.02183574 0.02183570 Total force = 0.053486 Total SCF correction = 0.000009 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123047104 -0.123047091 -0.123047104 Si 0.123047104 0.123047091 0.123047104 kinetic energy (Ekin) = 0.00016695 Ry temperature = 17.57241922 K Ekin + Etot (const) = -14.44793848 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.67E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44800355 Ry Harris-Foulkes estimate = -14.44800354 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.91E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1665 7.5106 7.5106 ! total energy = -14.44800355 Ry Harris-Foulkes estimate = -14.44800355 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02273040 -0.02273057 -0.02273039 atom 2 type 1 force = 0.02273040 0.02273057 0.02273039 Total force = 0.055678 Total SCF correction = 0.000009 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123007152 -0.123007137 -0.123007151 Si 0.123007152 0.123007137 0.123007151 kinetic energy (Ekin) = 0.00006555 Ry temperature = 6.89952822 K Ekin + Etot (const) = -14.44793800 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.84E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs total energy = -14.44794748 Ry Harris-Foulkes estimate = -14.44794748 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1619 7.5129 7.5129 ! total energy = -14.44794749 Ry Harris-Foulkes estimate = -14.44794749 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02320878 -0.02320893 -0.02320879 atom 2 type 1 force = 0.02320878 0.02320893 0.02320879 Total force = 0.056850 Total SCF correction = 0.000009 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123002825 -0.123002808 -0.123002822 Si 0.123002825 0.123002808 0.123002822 kinetic energy (Ekin) = 0.00000975 Ry temperature = 1.02661054 K Ekin + Etot (const) = -14.44793773 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.18E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs total energy = -14.44794134 Ry Harris-Foulkes estimate = -14.44794134 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1614 7.5132 7.5132 ! total energy = -14.44794134 Ry Harris-Foulkes estimate = -14.44794134 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02326128 -0.02326146 -0.02326131 atom 2 type 1 force = 0.02326128 0.02326146 0.02326131 Total force = 0.056978 Total SCF correction = 0.000005 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123034203 -0.123034184 -0.123034198 Si 0.123034203 0.123034184 0.123034198 kinetic energy (Ekin) = 0.00000364 Ry temperature = 0.38304414 K Ekin + Etot (const) = -14.44793770 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.43E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44798557 Ry Harris-Foulkes estimate = -14.44798556 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.29E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1651 7.5113 7.5113 ! total energy = -14.44798557 Ry Harris-Foulkes estimate = -14.44798557 Ry estimated scf accuracy < 2.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02288478 -0.02288498 -0.02288483 atom 2 type 1 force = 0.02288478 0.02288498 0.02288483 Total force = 0.056056 Total SCF correction = 0.000010 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123100707 -0.123100687 -0.123100701 Si 0.123100707 0.123100687 0.123100701 kinetic energy (Ekin) = 0.00004765 Ry temperature = 5.01603511 K Ekin + Etot (const) = -14.44793791 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 first order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.13E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs total energy = -14.44807692 Ry Harris-Foulkes estimate = -14.44807692 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1728 7.5074 7.5074 ! total energy = -14.44807693 Ry Harris-Foulkes estimate = -14.44807692 Ry estimated scf accuracy < 2.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02208876 -0.02208897 -0.02208882 atom 2 type 1 force = 0.02208876 0.02208897 0.02208882 Total force = 0.054106 Total SCF correction = 0.000009 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000000 cm^2/s atom 2 D = 0.00000000 cm^2/s < D > = 0.00000000 cm^2/s Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123201116 -0.123201096 -0.123201109 Si 0.123201116 0.123201096 0.123201109 kinetic energy (Ekin) = 0.00013858 Ry temperature = 14.58640515 K Ekin + Etot (const) = -14.44793835 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.34s CPU 0.36s WALL ( 51 calls) update_pot : 0.15s CPU 0.19s WALL ( 50 calls) forces : 0.02s CPU 0.03s WALL ( 51 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.18s CPU 0.19s WALL ( 155 calls) sum_band : 0.04s CPU 0.05s WALL ( 155 calls) v_of_rho : 0.08s CPU 0.07s WALL ( 156 calls) mix_rho : 0.00s CPU 0.01s WALL ( 155 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 311 calls) cegterg : 0.18s CPU 0.18s WALL ( 155 calls) Called by *egterg: h_psi : 0.11s CPU 0.12s WALL ( 513 calls) g_psi : 0.01s CPU 0.01s WALL ( 357 calls) cdiaghg : 0.02s CPU 0.03s WALL ( 412 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.00s WALL ( 513 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 564 calls) fft : 0.05s CPU 0.05s WALL ( 825 calls) fftw : 0.10s CPU 0.11s WALL ( 4156 calls) davcio : 0.00s CPU 0.00s WALL ( 105 calls) PWSCF : 1.36s CPU 1.57s WALL This run was terminated on: 10:24:45 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/uspp.ref20000644000175000017500000003035112341373024014542 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:44 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp.in2 file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 151 61 3695 1243 307 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 29 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0039062 k( 2) = ( -0.1250000 0.1250000 -0.1250000), wk = 0.0312500 k( 3) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 4) = ( -0.3750000 0.3750000 -0.3750000), wk = 0.0312500 k( 5) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0156250 k( 6) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0234375 k( 7) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0937500 k( 8) = ( -0.2500000 0.5000000 -0.2500000), wk = 0.0937500 k( 9) = ( 0.6250000 -0.3750000 0.6250000), wk = 0.0937500 k( 10) = ( 0.5000000 -0.2500000 0.5000000), wk = 0.0937500 k( 11) = ( 0.3750000 -0.1250000 0.3750000), wk = 0.0937500 k( 12) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0468750 k( 13) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0234375 k( 14) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0937500 k( 15) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.6250000), wk = 0.0937500 k( 17) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0468750 k( 18) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0234375 k( 19) = ( 0.8750000 -0.1250000 0.8750000), wk = 0.0937500 k( 20) = ( 0.7500000 0.0000000 0.7500000), wk = 0.0468750 k( 21) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0117188 k( 22) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0937500 k( 23) = ( 0.6250000 -0.3750000 0.8750000), wk = 0.1875000 k( 24) = ( 0.5000000 -0.2500000 0.7500000), wk = 0.0937500 k( 25) = ( 0.7500000 -0.2500000 1.0000000), wk = 0.0937500 k( 26) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 27) = ( 0.5000000 0.0000000 0.7500000), wk = 0.0937500 k( 28) = ( -0.2500000 -1.0000000 0.0000000), wk = 0.0468750 k( 29) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0234375 Dense grid: 3695 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 169, 8) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3695) G-vector shells 0.00 Mb ( 79) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 169, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 13, 8) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.5 secs per-process dynamical memory: 10.5 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 9.09E-09, avg # of iterations = 12.1 total cpu time spent up to now is 0.8 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 4.9886 11.1850 11.1850 11.1850 12.0746 12.0746 38.8575 41.0126 k =-0.1250 0.1250-0.1250 band energies (ev): 5.5693 11.0706 11.2866 11.2866 12.0442 12.0442 34.2679 39.2709 k =-0.2500 0.2500-0.2500 band energies (ev): 7.1531 10.9382 11.3554 11.3554 12.1663 12.1663 27.5234 38.3699 k =-0.3750 0.3750-0.3750 band energies (ev): 8.7504 11.2263 11.2263 11.7646 12.5139 12.5139 21.7980 37.4550 k = 0.5000-0.5000 0.5000 band energies (ev): 9.1013 11.1517 11.1517 12.6883 12.6883 13.4640 18.6319 37.0229 k = 0.0000 0.2500 0.0000 band energies (ev): 5.7604 10.9566 11.3780 11.3780 11.8743 12.1603 36.7427 36.7427 k =-0.1250 0.3750-0.1250 band energies (ev): 7.0124 10.7339 11.4161 11.5363 11.9575 12.2921 30.0742 34.8324 k =-0.2500 0.5000-0.2500 band energies (ev): 8.7233 10.8149 11.1658 11.4733 12.5765 12.7915 23.9376 34.0826 k = 0.6250-0.3750 0.6250 band energies (ev): 9.3719 10.9497 11.3547 11.6077 12.7004 14.6320 19.3129 32.8107 k = 0.5000-0.2500 0.5000 band energies (ev): 9.3016 11.0225 11.3539 11.4712 12.4675 14.0433 20.5765 31.5856 k = 0.3750-0.1250 0.3750 band energies (ev): 8.2102 10.7930 11.2409 11.4916 12.0150 12.8063 25.8816 31.4915 k = 0.2500 0.0000 0.2500 band energies (ev): 6.4937 10.8827 11.3758 11.4570 11.8542 12.2626 32.0366 32.7802 k = 0.0000 0.5000 0.0000 band energies (ev): 7.7919 10.4196 11.6191 11.9025 11.9025 12.3692 32.3364 32.3364 k =-0.1250 0.6250-0.1250 band energies (ev): 9.0173 10.2197 11.4365 12.0029 12.6051 12.9720 26.9741 30.3497 k = 0.7500-0.2500 0.7500 band energies (ev): 9.7555 10.3165 11.2505 11.8788 12.7320 15.5211 21.5948 27.6704 k = 0.6250-0.1250 0.6250 band energies (ev): 10.0056 10.5150 11.0543 11.7745 12.4892 16.7670 20.0856 26.0376 k = 0.5000 0.0000 0.5000 band energies (ev): 9.6198 10.6628 10.8812 11.7278 12.0749 14.1915 24.5904 26.0214 k = 0.0000 0.7500 0.0000 band energies (ev): 9.1975 9.9020 12.5360 12.5360 12.5811 13.2803 26.4657 29.2972 k = 0.8750-0.1250 0.8750 band energies (ev): 9.4400 9.8571 12.1865 12.4536 12.7769 15.9068 23.7162 25.2480 k = 0.7500 0.0000 0.7500 band energies (ev): 9.8488 10.0961 11.4931 12.2222 12.6313 19.0000 20.5093 22.9069 k = 0.0000-1.0000 0.0000 band energies (ev): 9.2484 9.6935 12.6696 12.8423 12.8423 16.0621 22.1014 28.1776 k =-0.2500 0.5000 0.0000 band energies (ev): 8.3808 10.5096 11.1875 11.9116 11.9668 12.8444 28.3732 29.1646 k = 0.6250-0.3750 0.8750 band energies (ev): 9.6434 10.5924 10.9107 11.7838 12.4420 14.3669 22.9096 28.5877 k = 0.5000-0.2500 0.7500 band energies (ev): 9.8772 10.5758 11.1458 11.6717 12.6295 16.6841 19.1333 29.3116 k = 0.7500-0.2500 1.0000 band energies (ev): 9.6052 10.1002 11.4024 12.3765 12.5321 14.7792 25.8655 26.6479 k = 0.6250-0.1250 0.8750 band energies (ev): 9.9816 10.2514 11.1098 12.1085 12.7150 18.0104 21.2197 24.7890 k = 0.5000 0.0000 0.7500 band energies (ev): 10.2619 10.4420 10.6868 11.9876 12.5361 17.1178 21.9589 24.2023 k =-0.2500-1.0000 0.0000 band energies (ev): 9.5826 9.9307 11.8688 12.4065 12.8425 17.7180 22.3844 24.9247 k =-0.5000-1.0000 0.0000 band energies (ev): 10.0175 10.6636 10.6636 12.0420 12.8429 20.9456 20.9456 23.1289 the Fermi energy is 14.4886 ev Writing output data file pwscf.save init_run : 0.36s CPU 0.36s WALL ( 1 calls) electrons : 0.34s CPU 0.34s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.34s CPU 0.34s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) newd : 0.01s CPU 0.01s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 29 calls) cegterg : 0.31s CPU 0.31s WALL ( 31 calls) Called by *egterg: h_psi : 0.18s CPU 0.17s WALL ( 411 calls) s_psi : 0.01s CPU 0.01s WALL ( 411 calls) g_psi : 0.01s CPU 0.01s WALL ( 351 calls) cdiaghg : 0.10s CPU 0.10s WALL ( 380 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.01s WALL ( 411 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 411 calls) fft : 0.00s CPU 0.00s WALL ( 5 calls) ffts : 0.00s CPU 0.00s WALL ( 1 calls) fftw : 0.11s CPU 0.11s WALL ( 3786 calls) interpolate : 0.00s CPU 0.00s WALL ( 1 calls) davcio : 0.00s CPU 0.00s WALL ( 29 calls) PWSCF : 0.88s CPU 0.91s WALL This run was terminated on: 11:28:45 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav2.in0000644000175000017500000000041412341373024016130 0ustar mbamba &control calculation='scf', / &system ibrav = 2, celldm(1) =10.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/metal.in0000755000175000017500000000134512341373024014431 0ustar mbamba &control calculation='scf' tstress=.true. / &system ibrav=2, celldm(1) =7.50, nat=1, ntyp=1, ecutwfc =15.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 / &electrons / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS (alat) Al 0.00 0.00 0.00 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/lattice-ibrav11-kauto.in0000644000175000017500000000051012341373024017326 0ustar mbamba &control calculation='scf', / &system ibrav = 11, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/lsda-mixing_TF.ref0000644000175000017500000003545212341373024016305 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:36 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda-mixing_TF.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 TF mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 144, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.8 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.5 total cpu time spent up to now is 1.0 secs total energy = -85.40636136 Ry Harris-Foulkes estimate = -85.36640314 Ry estimated scf accuracy < 0.92028035 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-03, avg # of iterations = 1.2 total cpu time spent up to now is 1.1 secs total energy = -85.67131568 Ry Harris-Foulkes estimate = -85.65088092 Ry estimated scf accuracy < 0.23159807 Ry total magnetization = 1.00 Bohr mag/cell absolute magnetization = 1.10 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-03, avg # of iterations = 1.0 negative rho (up, down): 0.000E+00 0.455E-04 total cpu time spent up to now is 1.2 secs total energy = -85.71627481 Ry Harris-Foulkes estimate = -85.69366610 Ry estimated scf accuracy < 0.04090630 Ry total magnetization = 0.74 Bohr mag/cell absolute magnetization = 0.91 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.09E-04, avg # of iterations = 1.2 total cpu time spent up to now is 1.4 secs total energy = -85.72177120 Ry Harris-Foulkes estimate = -85.72136969 Ry estimated scf accuracy < 0.00621845 Ry total magnetization = 0.71 Bohr mag/cell absolute magnetization = 0.77 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.22E-05, avg # of iterations = 1.6 total cpu time spent up to now is 1.5 secs total energy = -85.72334260 Ry Harris-Foulkes estimate = -85.72338055 Ry estimated scf accuracy < 0.00029869 Ry total magnetization = 0.72 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.99E-06, avg # of iterations = 1.8 total cpu time spent up to now is 1.6 secs total energy = -85.72339852 Ry Harris-Foulkes estimate = -85.72339641 Ry estimated scf accuracy < 0.00001501 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.79 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-07, avg # of iterations = 1.4 total cpu time spent up to now is 1.7 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.3755 12.4386 12.7336 12.7336 13.8412 13.8412 37.2314 41.0676 43.4121 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.2062 12.0615 12.6984 13.0409 13.7437 14.7860 28.9051 34.6228 41.7714 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.3044 12.3182 12.8655 13.0996 14.6718 16.6326 22.1073 35.6784 38.1896 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.9455 11.9823 12.9299 13.0732 13.6690 14.1628 33.2118 38.4347 38.7929 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.0145 11.3053 12.9395 13.7133 14.5676 14.8893 29.9542 33.4472 34.2675 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.0415 11.3672 12.4816 13.9012 14.6535 20.4145 23.8808 27.7796 30.1435 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 10.6949 11.8172 12.2443 13.4393 14.3037 16.5389 25.7648 31.6202 34.9281 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.3611 10.8367 13.8897 14.3657 14.7584 17.9876 26.7285 28.0817 31.8612 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.6591 12.6916 12.6916 13.2191 14.4214 14.4214 24.6757 38.8456 41.6270 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.0768 11.7378 12.4062 13.4416 14.3592 19.0773 22.8054 29.0413 36.4048 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.4359 13.2133 13.5333 13.5333 14.5933 14.5933 37.3662 41.0779 43.5292 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.3437 12.7290 13.4211 13.8005 14.5398 15.5733 29.1566 34.7854 41.8189 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.8033 12.9473 13.6026 13.6537 15.5270 17.0826 22.5353 35.7963 38.3363 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.0199 12.7164 13.6878 13.8706 14.4288 14.9425 33.4084 38.5931 38.8730 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.2530 11.9909 13.5754 14.5167 15.3887 15.5752 30.1593 33.6290 34.4022 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.5604 11.9940 13.1376 14.6404 15.5456 20.7584 24.1574 28.0301 30.3199 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.0654 12.4053 12.9309 14.1833 15.1366 17.1422 26.0489 31.8049 35.0925 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.8302 11.4970 14.5955 15.1583 15.6376 18.3042 27.0264 28.2533 31.9592 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.9864 13.4301 13.4301 13.5647 15.2558 15.2558 25.0155 38.8310 41.7801 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.6426 12.2619 13.0607 14.1799 15.2219 19.4780 23.1590 29.2608 36.5522 the Fermi energy is 15.3109 ev ! total energy = -85.72339888 Ry Harris-Foulkes estimate = -85.72339901 Ry estimated scf accuracy < 0.00000021 Ry The total energy is the sum of the following terms: one-electron contribution = 0.30379569 Ry hartree contribution = 14.33449543 Ry xc contribution = -29.60768155 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00003590 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell convergence has been achieved in 7 iterations Writing output data file pwscf.save init_run : 0.78s CPU 0.78s WALL ( 1 calls) electrons : 0.87s CPU 0.89s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.42s CPU 0.42s WALL ( 7 calls) sum_band : 0.24s CPU 0.25s WALL ( 7 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 8 calls) newd : 0.15s CPU 0.15s WALL ( 8 calls) mix_rho : 0.02s CPU 0.01s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.02s WALL ( 300 calls) cegterg : 0.39s CPU 0.38s WALL ( 140 calls) Called by *egterg: h_psi : 0.32s CPU 0.26s WALL ( 413 calls) s_psi : 0.00s CPU 0.01s WALL ( 413 calls) g_psi : 0.01s CPU 0.01s WALL ( 253 calls) cdiaghg : 0.06s CPU 0.08s WALL ( 393 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.01s WALL ( 413 calls) General routines calbec : 0.00s CPU 0.02s WALL ( 553 calls) fft : 0.03s CPU 0.03s WALL ( 126 calls) ffts : 0.00s CPU 0.00s WALL ( 30 calls) fftw : 0.25s CPU 0.21s WALL ( 7230 calls) interpolate : 0.02s CPU 0.01s WALL ( 30 calls) davcio : 0.00s CPU 0.00s WALL ( 440 calls) PWSCF : 1.79s CPU 1.83s WALL This run was terminated on: 10:24:38 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav10-kauto.ref0000644000175000017500000002502512341373024017503 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:16 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav10-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized warning: symmetry operation # 2 not compatible with FFT grid. 0 -1 1 0 -1 0 1 -1 0 warning: symmetry operation # 3 not compatible with FFT grid. -1 0 0 -1 0 1 -1 1 0 warning: symmetry operation # 4 not compatible with FFT grid. 0 1 -1 1 0 -1 0 0 -1 warning: symmetry operation # 6 not compatible with FFT grid. 0 1 -1 0 1 0 -1 1 0 warning: symmetry operation # 7 not compatible with FFT grid. 1 0 0 1 0 -1 1 -1 0 warning: symmetry operation # 8 not compatible with FFT grid. 0 -1 1 -1 0 1 0 0 1 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 777 777 229 12719 12719 2069 bravais-lattice index = 10 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 750.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.000000 1.000000 ) a(2) = ( 0.500000 0.750000 0.000000 ) a(3) = ( 0.000000 0.750000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.666667 0.500000 ) b(2) = ( 1.000000 0.666667 -0.500000 ) b(3) = ( -1.000000 0.666667 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 16 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.1666667 0.1250000), wk = 0.1250000 k( 2) = ( 0.7500000 -0.1666667 -0.1250000), wk = 0.1250000 k( 3) = ( -0.2500000 -0.1666667 0.3750000), wk = 0.1250000 k( 4) = ( 0.2500000 -0.5000000 0.1250000), wk = 0.1250000 k( 5) = ( -0.2500000 0.1666667 -0.1250000), wk = 0.1250000 k( 6) = ( 0.2500000 -0.1666667 -0.1250000), wk = 0.1250000 k( 7) = ( -0.2500000 -0.1666667 0.1250000), wk = 0.1250000 k( 8) = ( -0.7500000 -0.1666667 0.1250000), wk = 0.1250000 k( 9) = ( 0.7500000 0.1666667 0.1250000), wk = 0.1250000 k( 10) = ( -0.7500000 0.1666667 -0.1250000), wk = 0.1250000 k( 11) = ( 0.2500000 -0.1666667 -0.3750000), wk = 0.1250000 k( 12) = ( -0.2500000 0.1666667 -0.3750000), wk = 0.1250000 k( 13) = ( 0.2500000 0.1666667 0.3750000), wk = 0.1250000 k( 14) = ( -0.2500000 -0.5000000 -0.1250000), wk = 0.1250000 k( 15) = ( 0.2500000 0.5000000 -0.1250000), wk = 0.1250000 k( 16) = ( -0.2500000 0.5000000 0.1250000), wk = 0.1250000 Dense grid: 12719 G-vectors FFT dimensions: ( 36, 30, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1591, 1) NL pseudopotentials 0.00 Mb ( 1591, 0) Each V/rho on FFT grid 0.66 Mb ( 43200) Each G-vector array 0.10 Mb ( 12719) G-vector shells 0.01 Mb ( 816) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 1591, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 5.27 Mb ( 43200, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.411E-05 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 6.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.365E-06 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22019179 Ry Harris-Foulkes estimate = -2.29023437 Ry estimated scf accuracy < 0.13315042 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -2.23121628 Ry Harris-Foulkes estimate = -2.23165840 Ry estimated scf accuracy < 0.00100341 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.02E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -2.23152203 Ry Harris-Foulkes estimate = -2.23152359 Ry estimated scf accuracy < 0.00001243 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 1.5 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.2500 0.1667 0.1250 ( 1570 PWs) bands (ev): -10.0578 k = 0.7500-0.1667-0.1250 ( 1589 PWs) bands (ev): -10.0227 k =-0.2500-0.1667 0.3750 ( 1591 PWs) bands (ev): -10.0548 k = 0.2500-0.5000 0.1250 ( 1590 PWs) bands (ev): -10.0281 k =-0.2500 0.1667-0.1250 ( 1570 PWs) bands (ev): -10.0578 k = 0.2500-0.1667-0.1250 ( 1570 PWs) bands (ev): -10.0578 k =-0.2500-0.1667 0.1250 ( 1570 PWs) bands (ev): -10.0578 k =-0.7500-0.1667 0.1250 ( 1589 PWs) bands (ev): -10.0227 k = 0.7500 0.1667 0.1250 ( 1589 PWs) bands (ev): -10.0227 k =-0.7500 0.1667-0.1250 ( 1589 PWs) bands (ev): -10.0227 k = 0.2500-0.1667-0.3750 ( 1591 PWs) bands (ev): -10.0548 k =-0.2500 0.1667-0.3750 ( 1591 PWs) bands (ev): -10.0548 k = 0.2500 0.1667 0.3750 ( 1591 PWs) bands (ev): -10.0548 k =-0.2500-0.5000-0.1250 ( 1590 PWs) bands (ev): -10.0281 k = 0.2500 0.5000-0.1250 ( 1590 PWs) bands (ev): -10.0281 k =-0.2500 0.5000 0.1250 ( 1590 PWs) bands (ev): -10.0281 ! total energy = -2.23152327 Ry Harris-Foulkes estimate = -2.23152330 Ry estimated scf accuracy < 0.00000045 Ry The total energy is the sum of the following terms: one-electron contribution = -2.60528088 Ry hartree contribution = 1.42313570 Ry xc contribution = -1.31427122 Ry ewald contribution = 0.26489313 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.06s CPU 0.06s WALL ( 1 calls) electrons : 0.25s CPU 0.26s WALL ( 1 calls) Called by init_run: wfcinit : 0.03s CPU 0.03s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.16s CPU 0.16s WALL ( 4 calls) sum_band : 0.05s CPU 0.04s WALL ( 4 calls) v_of_rho : 0.02s CPU 0.03s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: cegterg : 0.16s CPU 0.16s WALL ( 64 calls) Called by *egterg: h_psi : 0.17s CPU 0.17s WALL ( 184 calls) g_psi : 0.01s CPU 0.01s WALL ( 104 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 168 calls) Called by h_psi: General routines fft : 0.00s CPU 0.01s WALL ( 19 calls) fftw : 0.17s CPU 0.16s WALL ( 464 calls) davcio : 0.00s CPU 0.00s WALL ( 208 calls) PWSCF : 0.35s CPU 0.37s WALL This run was terminated on: 10:22:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lsda-cg.ref0000644000175000017500000003676712341373024015024 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:25 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda-cg.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 9, 9) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.8 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 4.3 total cpu time spent up to now is 1.0 secs total energy = -85.31475200 Ry Harris-Foulkes estimate = -85.36277020 Ry estimated scf accuracy < 0.90659880 Ry total magnetization = 1.99 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 9.07E-03, avg # of iterations = 3.3 total cpu time spent up to now is 1.1 secs total energy = -85.53307360 Ry Harris-Foulkes estimate = -85.84527890 Ry estimated scf accuracy < 0.95698796 Ry total magnetization = 0.69 Bohr mag/cell absolute magnetization = 0.77 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 9.07E-03, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -85.70726735 Ry Harris-Foulkes estimate = -85.67604098 Ry estimated scf accuracy < 0.04526506 Ry total magnetization = 1.01 Bohr mag/cell absolute magnetization = 1.11 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 4.53E-04, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -85.72319948 Ry Harris-Foulkes estimate = -85.72295677 Ry estimated scf accuracy < 0.00045139 Ry total magnetization = 0.71 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 4.51E-06, avg # of iterations = 3.9 total cpu time spent up to now is 1.5 secs total energy = -85.72335534 Ry Harris-Foulkes estimate = -85.72327120 Ry estimated scf accuracy < 0.00006395 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 6.40E-07, avg # of iterations = 3.3 total cpu time spent up to now is 1.7 secs total energy = -85.72339292 Ry Harris-Foulkes estimate = -85.72337741 Ry estimated scf accuracy < 0.00008277 Ry total magnetization = 0.72 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 6.40E-07, avg # of iterations = 3.1 total cpu time spent up to now is 1.8 secs total energy = -85.72339913 Ry Harris-Foulkes estimate = -85.72339226 Ry estimated scf accuracy < 0.00001807 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.79 Bohr mag/cell iteration # 8 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 1.81E-07, avg # of iterations = 3.0 total cpu time spent up to now is 1.9 secs total energy = -85.72339935 Ry Harris-Foulkes estimate = -85.72339662 Ry estimated scf accuracy < 0.00000547 Ry total magnetization = 0.72 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 9 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 5.47E-08, avg # of iterations = 3.0 total cpu time spent up to now is 2.1 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.3750 12.4373 12.7323 12.7323 13.8399 13.8399 37.2307 41.0671 43.4115 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.2056 12.0604 12.6971 13.0396 13.7423 14.7847 28.9044 34.6221 41.7709 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.3034 12.3170 12.8642 13.0985 14.6703 16.6317 22.1064 35.6778 38.1892 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.9449 11.9811 12.9286 13.0719 13.6676 14.1614 33.2111 38.4341 38.7924 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.0138 11.3041 12.9384 13.7119 14.5662 14.8881 29.9536 33.4465 34.2670 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.0404 11.3661 12.4804 13.8999 14.6520 20.4137 23.8800 27.7788 30.1429 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 10.6940 11.8161 12.2430 13.4380 14.3023 16.5378 25.7640 31.6196 34.9275 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.3601 10.8355 13.8885 14.3643 14.7570 17.9868 26.7277 28.0811 31.8606 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.6583 12.6903 12.6903 13.2183 14.4200 14.4200 24.6748 38.8452 41.6264 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.0757 11.7367 12.4051 13.4403 14.3578 19.0764 22.8045 29.0405 36.4042 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.4364 13.2114 13.5313 13.5313 14.5911 14.5911 37.3665 41.0787 43.5294 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.3440 12.7275 13.4192 13.7984 14.5376 15.5710 29.1563 34.7855 41.8195 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.8024 12.9457 13.6006 13.6525 15.5246 17.0815 22.5344 35.7966 38.3365 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.0203 12.7147 13.6857 13.8685 14.4267 14.9402 33.4084 38.5932 38.8734 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.2528 11.9893 13.5738 14.5145 15.3863 15.5734 30.1592 33.6289 34.4024 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.5592 11.9926 13.1362 14.6382 15.5432 20.7579 24.1571 28.0298 30.3200 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.0650 12.4039 12.9291 14.1813 15.1343 17.1407 26.0486 31.8049 35.0926 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.8292 11.4955 14.5939 15.1560 15.6351 18.3037 27.0259 28.2535 31.9595 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.9861 13.4281 13.4281 13.5642 15.2534 15.2534 25.0150 38.8318 41.7803 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.6415 12.2606 13.0592 14.1777 15.2196 19.4772 23.1584 29.2606 36.5524 the Fermi energy is 15.3085 ev ! total energy = -85.72339901 Ry Harris-Foulkes estimate = -85.72339901 Ry estimated scf accuracy < 3.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 0.30207416 Ry hartree contribution = 14.33697666 Ry xc contribution = -29.60844760 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00004213 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell convergence has been achieved in 9 iterations Writing output data file pwscf.save init_run : 0.77s CPU 0.77s WALL ( 1 calls) electrons : 1.22s CPU 1.25s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.65s CPU 0.65s WALL ( 9 calls) sum_band : 0.30s CPU 0.32s WALL ( 9 calls) v_of_rho : 0.05s CPU 0.05s WALL ( 10 calls) newd : 0.18s CPU 0.19s WALL ( 10 calls) mix_rho : 0.02s CPU 0.01s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 380 calls) ccgdiagg : 0.49s CPU 0.49s WALL ( 180 calls) wfcrot : 0.16s CPU 0.17s WALL ( 180 calls) Called by *cgdiagg: h_psi : 0.54s CPU 0.52s WALL ( 4110 calls) s_psi : 0.03s CPU 0.04s WALL ( 8040 calls) cdiaghg : 0.01s CPU 0.01s WALL ( 180 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.03s WALL ( 4110 calls) General routines calbec : 0.04s CPU 0.04s WALL ( 8220 calls) fft : 0.04s CPU 0.04s WALL ( 160 calls) ffts : 0.00s CPU 0.00s WALL ( 38 calls) fftw : 0.44s CPU 0.38s WALL ( 12720 calls) interpolate : 0.03s CPU 0.01s WALL ( 38 calls) davcio : 0.00s CPU 0.01s WALL ( 560 calls) PWSCF : 2.11s CPU 2.18s WALL This run was terminated on: 10:24:27 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-gamma.ref0000644000175000017500000002271312341373024015327 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-gamma.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 37 1459 1459 169 Tot 82 82 19 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 730 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 85, 4) NL pseudopotentials 0.01 Mb ( 85, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 730) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.01 Mb ( 85, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 8.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.50047361 Ry Harris-Foulkes estimate = -14.62968981 Ry estimated scf accuracy < 0.33414221 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.18E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -14.51762131 Ry Harris-Foulkes estimate = -14.51962673 Ry estimated scf accuracy < 0.01049993 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.31E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.51874543 Ry Harris-Foulkes estimate = -14.51870856 Ry estimated scf accuracy < 0.00024378 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.05E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.51875743 Ry Harris-Foulkes estimate = -14.51875748 Ry estimated scf accuracy < 0.00000160 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.51876006 Ry Harris-Foulkes estimate = -14.51876030 Ry estimated scf accuracy < 0.00000258 Ry iteration # 6 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.51875956 Ry Harris-Foulkes estimate = -14.51876008 Ry estimated scf accuracy < 0.00000184 Ry iteration # 7 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-08, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 85 PWs) bands (ev): -4.9982 7.2913 7.2913 7.2914 ! total energy = -14.51875980 Ry Harris-Foulkes estimate = -14.51875982 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = 5.79467920 Ry hartree contribution = 1.63735660 Ry xc contribution = -5.05103702 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 7 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 415.09 0.00282169 0.00000000 0.00000000 415.09 0.00 0.00 0.00000000 0.00282169 0.00000000 0.00 415.09 0.00 0.00000000 0.00000000 0.00282169 0.00 0.00 415.09 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.01s CPU 0.02s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.00s CPU 0.00s WALL ( 7 calls) sum_band : 0.00s CPU 0.00s WALL ( 7 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 8 calls) mix_rho : 0.00s CPU 0.00s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 15 calls) regterg : 0.00s CPU 0.00s WALL ( 7 calls) Called by *egterg: h_psi : 0.00s CPU 0.00s WALL ( 22 calls) g_psi : 0.00s CPU 0.00s WALL ( 14 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 21 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 22 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 23 calls) fft : 0.00s CPU 0.00s WALL ( 34 calls) fftw : 0.00s CPU 0.00s WALL ( 100 calls) davcio : 0.00s CPU 0.00s WALL ( 7 calls) PWSCF : 0.08s CPU 0.10s WALL This run was terminated on: 11:28:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav-5-kauto.in0000644000175000017500000000046312341373024017335 0ustar mbamba &control calculation='scf', / &system ibrav =-5, celldm(1) =10.0, celldm(4) = 0.5, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/vdw5.in0000755000175000017500000000103312341373024014206 0ustar mbamba&control calculation='scf' tprnfor=.true. tstress=.true. / &system ibrav=4 celldm(1)=4.66 celldm(3)=2.60 nat=4 ecutwfc=18. ecutrho=200. ntyp=1 occupations='smearing' degauss=0.02 smearing='marzari-vanderbilt' input_dft='vdw-DF-c09' / &electrons mixing_beta=0.5 mixing_ndim=20 / ATOMIC_SPECIES C 12. C.pbe-van_bm.UPF 1 K_POINTS {gamma} ATOMIC_POSITIONS {crystal} C 0.00000 1.00000 0.75000 C 0.66667 0.33333 0.75000 C 0.00000 1.00000 0.25000 C 0.33333 0.66667 0.25000 espresso-5.1/PW/tests/pbe0-si444.in0000755000175000017500000000147612341373024015027 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='pbe0', nqx1=4, nqx2=4, nqx3=4, exxdiv_treatment='gygi-baldereschi' x_gamma_extrapolation = .true. / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/dft3.ref0000644000175000017500000002243312341373024014333 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10839) starts on 3Apr2014 at 8:38:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/pw86pbe.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = PW86PBE ( 1 4 21 4 0) Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 27 728 728 141 Max 82 82 28 731 731 142 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PW86PBE ( 1 4 21 4 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 93, 4) NL pseudopotentials 0.01 Mb ( 93, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 93, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.27E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.82243809 Ry Harris-Foulkes estimate = -15.84167653 Ry estimated scf accuracy < 0.07417919 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.27E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.82489431 Ry Harris-Foulkes estimate = -15.82520547 Ry estimated scf accuracy < 0.00311454 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.89E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.82524601 Ry Harris-Foulkes estimate = -15.82526721 Ry estimated scf accuracy < 0.00008463 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-06, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -15.82527855 Ry Harris-Foulkes estimate = -15.82528287 Ry estimated scf accuracy < 0.00000902 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.7707 2.4719 5.5775 5.5775 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.8512 0.0119 2.8215 4.1106 highest occupied level (ev): 5.5775 ! total energy = -15.82527978 Ry Harris-Foulkes estimate = -15.82528004 Ry estimated scf accuracy < 0.00000060 Ry The total energy is the sum of the following terms: one-electron contribution = 4.80228449 Ry hartree contribution = 1.14341476 Ry xc contribution = -4.87122046 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.00s CPU 0.01s WALL ( 6 calls) sum_band : 0.01s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.00s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 36 calls) g_psi : 0.00s CPU 0.00s WALL ( 22 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 32 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 36 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 36 calls) fft : 0.00s CPU 0.00s WALL ( 67 calls) fftw : 0.00s CPU 0.01s WALL ( 330 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.00s CPU 0.00s WALL ( 397 calls) PWSCF : 0.10s CPU 0.10s WALL This run was terminated on: 8:38:30 3Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-disk_io.ref0000644000175000017500000002106012341373024015660 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-disk_io.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102865 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441848 Ry estimated scf accuracy < 0.00230223 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450063 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000449 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378641 Ry hartree contribution = 1.08429090 Ry xc contribution = -4.81281466 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) fftw : 0.00s CPU 0.01s WALL ( 332 calls) PWSCF : 0.10s CPU 0.11s WALL This run was terminated on: 11:28:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/noncolin.in10000755000175000017500000000054412341373024015227 0ustar mbamba &control calculation='nscf' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='tetrahedra', noncolin = .true., nbnd=16 / &electrons mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {alat} Fe 0.0 0.0 0.0 K_POINTS {automatic} 6 6 6 1 1 1 espresso-5.1/PW/tests/dipole.in0000644000175000017500000000151112341373024014573 0ustar mbamba &control calculation='scf', tefield=.true., dipfield=.true., / &system nat=5, ntyp=3, ibrav=0, celldm(1)=4.70366666, ecutwfc = 30.0 occupations='smearing', smearing='m-v', degauss=0.03 edir=3, emaxpos=0.55, eopreg=0.06, eamp=0, / &electrons mixing_beta = 0.3 conv_thr = 1.0d-6 / ATOMIC_SPECIES C 1.0 C.pz-rrkjus.UPF O 1.0 O.pz-rrkjus.UPF Ni 1.0 Ni.pz-nd-rrkjus.UPF CELL_PARAMETERS 1.00000000 0.00000000 0.00000000 0.00000000 1.41421356 0.00000000 0.00000000 0.00000000 9.10000001 ATOMIC_POSITIONS (alat) C -0.00364039 0.02119538 1.54673745 O -0.00634860 0.04192428 2.02021975 Ni 0.48527378 0.00197332 0.97713547 Ni -0.00049546 0.70236680 0.45417840 Ni 0.50000000 0.00000000 0.00000000 K_POINTS {gamma} espresso-5.1/PW/tests/lda+U_force.in0000755000175000017500000000164312341373024015446 0ustar mbamba &control calculation = 'scf' tprnfor=.true. tstress=.true. / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true. Hubbard_U(2)=4.3, Hubbard_U(3)=4.3, starting_ns_eigenvalue(3,2,2) = 1.d0 starting_ns_eigenvalue(3,1,3) = 1.d0 / &electrons mixing_mode = 'plain' mixing_beta = 0.2 conv_thr = 1.0d-9 mixing_fixed_ns = 0 / CELL_PARAMETERS {alat} 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.025 0.025 0.025 Fe2 0.475 0.475 0.475 K_POINTS {automatic} 2 2 2 0 0 0 espresso-5.1/PW/tests/vdw-ts.ref0000644000175000017500000002652512341373024014725 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10636) starts on 12Dec2013 at 21:37:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso-para/PW/tests/vdw-ts.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 132 132 30 4632 4632 562 Max 133 133 31 4635 4635 579 Sum 265 265 61 9267 9267 1141 Tot 133 133 31 bravais-lattice index = 4 lattice parameter (alat) = 4.6600 a.u. unit-cell volume = 227.8567 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 45.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 20 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) celldm(1)= 4.660000 celldm(2)= 0.000000 celldm(3)= 2.600000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.600000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.384615 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso-para/pseudo/C.pbe-mt_gipaw.UPF MD5 check sum: 5ac2f21f2c440b14befe521540822c15 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1073 points, 1 beta functions with: l(1) = 0 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 8 Sym. Ops., with inversion, found ( 4 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( -0.5000000 0.8660254 1.9500000 ) 2 C tau( 2) = ( 0.5000050 0.2886722 1.9500000 ) 3 C tau( 3) = ( -0.5000000 0.8660254 0.6500000 ) 4 C tau( 4) = ( -0.0000050 0.5773532 0.6500000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 4634 G-vectors FFT dimensions: ( 20, 20, 54) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.04 Mb ( 290, 8) NL pseudopotentials 0.02 Mb ( 290, 4) Each V/rho on FFT grid 0.16 Mb ( 10800) Each G-vector array 0.02 Mb ( 2318) G-vector shells 0.00 Mb ( 506) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.07 Mb ( 290, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 4, 8) Arrays for rho mixing 3.30 Mb ( 10800, 20) TS-vdW initialization --------------------- Determining TS-vdW damping function parameters... ddamp = 20.000000 sR = 0.940000 Initializing species # 1 with atomic symbol C Radial grid parameter: NrgpA is 1073. Radial grid parameter: gfctrA is 0.000152. Radial grid parameter: dxA is 0.012500. The number of valence electrons, eref, is 3.499999999998509. The reference free atom volume, vref, is 24.844374096763794 bohr^3. Determining intial radial grid cutoff... An acceptable radial grid cutoff was determined by retaining 853 of 1073 radial grid points. The magnitude of the atomic pseudo-density at the radial grid cutoff is 1.954562E-06. Using this radial grid cutoff value of 6.412444341510000 au: The free atom volume computed with this cutoff is 24.632690833739360 bohr^3 with an error of 0.852%. Linear grid spacing was computed as: 0.007412444341510 bohr. The free atom static dipole polarizability is 12.000000 bohr^3. The free atom homonuclear C6 coefficient is 46.600000 Hartree bohr^6. The free atom vdW radius is 3.590000 bohr. Initial potential from superposition of free atoms starting charge 13.99999, renormalised to 16.00000 Starting wfc are 32 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 9.6 Mb Self-consistent Calculation iteration # 1 ecut= 45.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -44.61335135 Ry Harris-Foulkes estimate = -44.69231091 Ry estimated scf accuracy < 0.34106359 Ry iteration # 2 ecut= 45.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.13E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -44.61298054 Ry Harris-Foulkes estimate = -44.62164553 Ry estimated scf accuracy < 0.06391412 Ry iteration # 3 ecut= 45.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.99E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -44.61792021 Ry Harris-Foulkes estimate = -44.61961436 Ry estimated scf accuracy < 0.00228618 Ry iteration # 4 ecut= 45.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.43E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -44.61796538 Ry Harris-Foulkes estimate = -44.61796832 Ry estimated scf accuracy < 0.00079180 Ry iteration # 5 ecut= 45.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.95E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -44.61805947 Ry Harris-Foulkes estimate = -44.61802305 Ry estimated scf accuracy < 0.00000272 Ry iteration # 6 ecut= 45.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.70E-08, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 571 PWs) bands (ev): -11.6562 -11.1788 -1.0803 1.6104 5.2586 5.2589 5.2928 5.2931 highest occupied level (ev): 5.2931 ! total energy = -44.61806086 Ry Harris-Foulkes estimate = -44.61807946 Ry estimated scf accuracy < 0.00000080 Ry The total energy is the sum of the following terms: one-electron contribution = -7.24652950 Ry hartree contribution = 12.89389569 Ry xc contribution = -14.35193688 Ry ewald contribution = -35.87244955 Ry Dispersion T-S Correction = -0.04104061 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00132428 0.00076458 0.00000000 atom 2 type 1 force = 0.00126945 -0.00073292 0.00000000 atom 3 type 1 force = 0.00132428 -0.00076458 0.00000000 atom 4 type 1 force = -0.00126945 0.00073292 0.00000000 Total force = 0.002996 Total SCF correction = 0.000096 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 186.83 0.00128405 -0.00000083 0.00000000 188.89 -0.12 0.00 -0.00000083 0.00128309 0.00000000 -0.12 188.75 0.00 0.00000000 0.00000000 0.00124303 0.00 0.00 182.86 Writing output data file pwscf.save init_run : 0.19s CPU 0.19s WALL ( 1 calls) electrons : 0.48s CPU 0.51s WALL ( 1 calls) forces : 0.02s CPU 0.02s WALL ( 1 calls) stress : 0.02s CPU 0.06s WALL ( 1 calls) Called by init_run: wfcinit : 0.03s CPU 0.03s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 0.04s CPU 0.04s WALL ( 6 calls) sum_band : 0.01s CPU 0.01s WALL ( 6 calls) v_of_rho : 0.48s CPU 0.49s WALL ( 7 calls) mix_rho : 0.02s CPU 0.01s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 13 calls) regterg : 0.04s CPU 0.04s WALL ( 6 calls) Called by *egterg: h_psi : 0.07s CPU 0.06s WALL ( 19 calls) g_psi : 0.00s CPU 0.00s WALL ( 12 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 18 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 19 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 24 calls) fft : 0.04s CPU 0.04s WALL ( 84 calls) fftw : 0.07s CPU 0.06s WALL ( 184 calls) davcio : 0.00s CPU 0.00s WALL ( 1 calls) Parallel routines fft_scatter : 0.03s CPU 0.04s WALL ( 268 calls) PWSCF : 0.76s CPU 0.83s WALL This run was terminated on: 21:37:19 12Dec2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav3-kauto.ref0000644000175000017500000001755412341373024017435 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav3-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 557 557 173 8391 8391 1433 bravais-lattice index = 3 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 500.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 3 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.5000000), wk = 0.5000000 k( 2) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.5000000 k( 3) = ( 0.0000000 0.5000000 0.0000000), wk = 1.0000000 Dense grid: 8391 G-vectors FFT dimensions: ( 27, 27, 27) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1088, 1) NL pseudopotentials 0.00 Mb ( 1088, 0) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.06 Mb ( 8391) G-vector shells 0.00 Mb ( 117) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.07 Mb ( 1088, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.8 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.22055380 Ry Harris-Foulkes estimate = -2.28993407 Ry estimated scf accuracy < 0.13257321 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23158176 Ry Harris-Foulkes estimate = -2.23200446 Ry estimated scf accuracy < 0.00099476 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.97E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23190130 Ry Harris-Foulkes estimate = -2.23190372 Ry estimated scf accuracy < 0.00001376 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.88E-07, avg # of iterations = 1.7 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.5000 ( 1052 PWs) bands (ev): -9.8997 k = 0.5000-0.5000 0.5000 ( 1088 PWs) bands (ev): -9.8847 k = 0.0000 0.5000 0.0000 ( 1052 PWs) bands (ev): -9.9044 ! total energy = -2.23190293 Ry Harris-Foulkes estimate = -2.23190301 Ry estimated scf accuracy < 0.00000056 Ry The total energy is the sum of the following terms: one-electron contribution = -2.23903308 Ry hartree contribution = 1.25020995 Ry xc contribution = -1.31379629 Ry ewald contribution = 0.07071649 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.05s CPU 0.05s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 5 calls) mix_rho : 0.00s CPU 0.01s WALL ( 4 calls) Called by c_bands: cegterg : 0.02s CPU 0.02s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 20 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 32 calls) Called by h_psi: General routines fft : 0.00s CPU 0.01s WALL ( 19 calls) fftw : 0.02s CPU 0.02s WALL ( 88 calls) davcio : 0.00s CPU 0.00s WALL ( 39 calls) PWSCF : 0.12s CPU 0.13s WALL This run was terminated on: 10:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/vdw4.in0000644000175000017500000000161712341373024014212 0ustar mbamba&control calculation = 'vc-relax' tstress = .true. tprnfor = .true. forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6411700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF4' / &electrons conv_thr = 1.0d-8 / &ions / &cell press_conv_thr = 0.5D0 press = 0.D0 cell_dynamics = 'bfgs' cell_dofree = 'z' / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 espresso-5.1/PW/tests/electric2.ref0000644000175000017500000007357312341373024015362 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10250) starts on 14May2013 at 14: 3:51 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/electric2.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Found symmetry operation: I + ( -0.5000 -0.5000 0.0000) This is a supercell, fractional translations are disabled Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 332 332 111 6446 6446 1276 Max 333 333 114 6447 6447 1277 Sum 665 665 225 12893 12893 2553 bravais-lattice index = 1 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 1054.9778 (a.u.)^3 number of atoms/cell = 8 number of atomic types = 1 number of electrons = 32.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Using Berry phase electric field Direction : 3 Intensity (Ry a.u.) : 0.0010000000 Strings composed by: 7 k-points Number of iterative cycles: 3 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pbe-rrkj.UPF MD5 check sum: cf7ab5690cd9a85b22c4813f7e365554 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 883 points, 3 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.3770000 0.3770000 -0.1230000 ) 3 Si tau( 3) = ( 0.3770000 -0.1230000 0.3770000 ) 4 Si tau( 4) = ( -0.1230000 0.3770000 0.3770000 ) 5 Si tau( 5) = ( 0.1230000 0.1230000 0.1230000 ) 6 Si tau( 6) = ( 0.6230000 0.6230000 0.1230000 ) 7 Si tau( 7) = ( 0.6230000 0.1230000 0.6230000 ) 8 Si tau( 8) = ( 0.1230000 0.6230000 0.6230000 ) number of k points= 63 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0317460 k( 2) = ( 0.0000000 0.0000000 0.1428571), wk = 0.0317460 k( 3) = ( 0.0000000 0.0000000 0.2857143), wk = 0.0317460 k( 4) = ( 0.0000000 0.0000000 0.4285714), wk = 0.0317460 k( 5) = ( 0.0000000 0.0000000 0.5714286), wk = 0.0317460 k( 6) = ( 0.0000000 0.0000000 0.7142857), wk = 0.0317460 k( 7) = ( 0.0000000 0.0000000 0.8571429), wk = 0.0317460 k( 8) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0317460 k( 9) = ( 0.0000000 0.3333333 0.1428571), wk = 0.0317460 k( 10) = ( 0.0000000 0.3333333 0.2857143), wk = 0.0317460 k( 11) = ( 0.0000000 0.3333333 0.4285714), wk = 0.0317460 k( 12) = ( 0.0000000 0.3333333 0.5714286), wk = 0.0317460 k( 13) = ( 0.0000000 0.3333333 0.7142857), wk = 0.0317460 k( 14) = ( 0.0000000 0.3333333 0.8571429), wk = 0.0317460 k( 15) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0317460 k( 16) = ( 0.0000000 0.6666667 0.1428571), wk = 0.0317460 k( 17) = ( 0.0000000 0.6666667 0.2857143), wk = 0.0317460 k( 18) = ( 0.0000000 0.6666667 0.4285714), wk = 0.0317460 k( 19) = ( 0.0000000 0.6666667 0.5714286), wk = 0.0317460 k( 20) = ( 0.0000000 0.6666667 0.7142857), wk = 0.0317460 k( 21) = ( 0.0000000 0.6666667 0.8571429), wk = 0.0317460 k( 22) = ( 0.3333333 0.0000000 0.0000000), wk = 0.0317460 k( 23) = ( 0.3333333 0.0000000 0.1428571), wk = 0.0317460 k( 24) = ( 0.3333333 0.0000000 0.2857143), wk = 0.0317460 k( 25) = ( 0.3333333 0.0000000 0.4285714), wk = 0.0317460 k( 26) = ( 0.3333333 0.0000000 0.5714286), wk = 0.0317460 k( 27) = ( 0.3333333 0.0000000 0.7142857), wk = 0.0317460 k( 28) = ( 0.3333333 0.0000000 0.8571429), wk = 0.0317460 k( 29) = ( 0.3333333 0.3333333 0.0000000), wk = 0.0317460 k( 30) = ( 0.3333333 0.3333333 0.1428571), wk = 0.0317460 k( 31) = ( 0.3333333 0.3333333 0.2857143), wk = 0.0317460 k( 32) = ( 0.3333333 0.3333333 0.4285714), wk = 0.0317460 k( 33) = ( 0.3333333 0.3333333 0.5714286), wk = 0.0317460 k( 34) = ( 0.3333333 0.3333333 0.7142857), wk = 0.0317460 k( 35) = ( 0.3333333 0.3333333 0.8571429), wk = 0.0317460 k( 36) = ( 0.3333333 0.6666667 0.0000000), wk = 0.0317460 k( 37) = ( 0.3333333 0.6666667 0.1428571), wk = 0.0317460 k( 38) = ( 0.3333333 0.6666667 0.2857143), wk = 0.0317460 k( 39) = ( 0.3333333 0.6666667 0.4285714), wk = 0.0317460 k( 40) = ( 0.3333333 0.6666667 0.5714286), wk = 0.0317460 k( 41) = ( 0.3333333 0.6666667 0.7142857), wk = 0.0317460 k( 42) = ( 0.3333333 0.6666667 0.8571429), wk = 0.0317460 k( 43) = ( 0.6666667 0.0000000 0.0000000), wk = 0.0317460 k( 44) = ( 0.6666667 0.0000000 0.1428571), wk = 0.0317460 k( 45) = ( 0.6666667 0.0000000 0.2857143), wk = 0.0317460 k( 46) = ( 0.6666667 0.0000000 0.4285714), wk = 0.0317460 k( 47) = ( 0.6666667 0.0000000 0.5714286), wk = 0.0317460 k( 48) = ( 0.6666667 0.0000000 0.7142857), wk = 0.0317460 k( 49) = ( 0.6666667 0.0000000 0.8571429), wk = 0.0317460 k( 50) = ( 0.6666667 0.3333333 0.0000000), wk = 0.0317460 k( 51) = ( 0.6666667 0.3333333 0.1428571), wk = 0.0317460 k( 52) = ( 0.6666667 0.3333333 0.2857143), wk = 0.0317460 k( 53) = ( 0.6666667 0.3333333 0.4285714), wk = 0.0317460 k( 54) = ( 0.6666667 0.3333333 0.5714286), wk = 0.0317460 k( 55) = ( 0.6666667 0.3333333 0.7142857), wk = 0.0317460 k( 56) = ( 0.6666667 0.3333333 0.8571429), wk = 0.0317460 k( 57) = ( 0.6666667 0.6666667 0.0000000), wk = 0.0317460 k( 58) = ( 0.6666667 0.6666667 0.1428571), wk = 0.0317460 k( 59) = ( 0.6666667 0.6666667 0.2857143), wk = 0.0317460 k( 60) = ( 0.6666667 0.6666667 0.4285714), wk = 0.0317460 k( 61) = ( 0.6666667 0.6666667 0.5714286), wk = 0.0317460 k( 62) = ( 0.6666667 0.6666667 0.7142857), wk = 0.0317460 k( 63) = ( 0.6666667 0.6666667 0.8571429), wk = 0.0317460 Dense grid: 12893 G-vectors FFT dimensions: ( 30, 30, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 808, 16) NL pseudopotentials 0.49 Mb ( 808, 40) Each V/rho on FFT grid 0.21 Mb ( 13500) Each G-vector array 0.05 Mb ( 6446) G-vector shells 0.00 Mb ( 178) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.79 Mb ( 808, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 40, 16) Arrays for rho mixing 1.65 Mb ( 13500, 8) The initial density is read from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc from file total cpu time spent up to now is 0.2 secs per-process dynamical memory: 7.9 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-05, avg # of iterations = 2.5 Davidson diagonalization with overlap ethr = 1.00E-05, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 1.00E-05, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.82E-07, avg # of iterations = 1.3 Davidson diagonalization with overlap ethr = 2.82E-07, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 2.82E-07, avg # of iterations = 1.0 Expectation value of exp(iGx): (0.328219958517876,7.002978810269138E-002) 1.00000000000000 Electronic Dipole per cell (Ry a.u.) 0.963312102805169 Ionic Dipole per cell (Ry a.u.) 115.173552519665 total cpu time spent up to now is 25.0 secs total energy = -63.06608493 Ry Harris-Foulkes estimate = -62.94997677 Ry estimated scf accuracy < 0.00009390 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.93E-07, avg # of iterations = 1.4 Davidson diagonalization with overlap ethr = 2.93E-07, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 2.93E-07, avg # of iterations = 1.0 Expectation value of exp(iGx): (0.328454861548526,6.860320942639737E-002) 1.00000000000000 Electronic Dipole per cell (Ry a.u.) 0.943588279677657 Ionic Dipole per cell (Ry a.u.) 115.173552519665 total cpu time spent up to now is 37.4 secs total energy = -63.06608309 Ry Harris-Foulkes estimate = -62.94996754 Ry estimated scf accuracy < 0.00001164 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.64E-08, avg # of iterations = 1.3 Davidson diagonalization with overlap ethr = 3.64E-08, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 3.64E-08, avg # of iterations = 1.0 Expectation value of exp(iGx): (0.328604545501173,6.779005367507539E-002) 1.00000000000000 Electronic Dipole per cell (Ry a.u.) 0.932298754610294 Ionic Dipole per cell (Ry a.u.) 115.173552519665 total cpu time spent up to now is 49.8 secs total energy = -63.06608446 Ry Harris-Foulkes estimate = -62.94997866 Ry estimated scf accuracy < 0.00000086 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.67E-09, avg # of iterations = 1.4 Davidson diagonalization with overlap ethr = 2.67E-09, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 2.67E-09, avg # of iterations = 1.0 Expectation value of exp(iGx): (0.328610900471466,6.771454486418582E-002) 1.00000000000000 Electronic Dipole per cell (Ry a.u.) 0.931271154986153 Ionic Dipole per cell (Ry a.u.) 115.173552519665 total cpu time spent up to now is 62.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1575 PWs) bands (ev): -5.5832 -1.4245 -1.4245 -1.4243 -1.2845 -1.2843 -1.2843 3.5437 3.5449 3.5449 3.6149 3.6162 3.6162 6.2777 6.5951 6.5964 k = 0.0000 0.0000 0.1429 ( 1599 PWs) bands (ev): -5.4921 -2.4258 -1.3947 -1.3947 -1.2526 -1.2526 -0.1758 3.2968 3.2968 3.3719 3.3719 3.6252 3.6975 5.8820 6.1645 6.2328 k = 0.0000 0.0000 0.2857 ( 1582 PWs) bands (ev): -5.2199 -3.3616 -1.3239 -1.3239 -1.1765 -1.1765 1.0748 2.8448 2.8448 2.9264 2.9264 3.8680 3.9436 4.8824 5.4538 5.5536 k = 0.0000 0.0000 0.4286 ( 1602 PWs) bands (ev): -4.7698 -4.1475 -1.2625 -1.2624 -1.1100 -1.1100 2.3642 2.5393 2.5393 2.6259 2.6259 3.6525 4.2647 4.3463 4.8030 4.8937 k = 0.0000 0.0000 0.5714 ( 1602 PWs) bands (ev): -4.7698 -4.1475 -1.2625 -1.2624 -1.1100 -1.1100 2.3642 2.5393 2.5393 2.6259 2.6259 3.6525 4.2647 4.3463 4.8030 4.8937 k = 0.0000 0.0000 0.7143 ( 1582 PWs) bands (ev): -5.2199 -3.3616 -1.3239 -1.3239 -1.1765 -1.1765 1.0748 2.8448 2.8448 2.9264 2.9264 3.8680 3.9436 4.8824 5.4538 5.5536 k = 0.0000 0.0000 0.8571 ( 1599 PWs) bands (ev): -5.4921 -2.4258 -1.3947 -1.3947 -1.2526 -1.2526 -0.1758 3.2968 3.2968 3.3719 3.3719 3.6252 3.6975 5.8820 6.1645 6.2328 k = 0.0000 0.3333 0.0000 ( 1594 PWs) bands (ev): -5.0895 -3.6410 -1.2993 -1.2992 -1.1501 -1.1500 1.5022 2.7155 2.7155 2.7990 2.7991 3.9845 4.0619 4.4849 5.2279 5.3258 k = 0.0000 0.3333 0.1429 ( 1586 PWs) bands (ev): -4.9993 -3.5719 -2.1653 -1.5716 -0.9134 -0.2529 1.4072 2.1669 2.6305 3.1382 3.5667 3.6693 3.8453 3.9988 4.9375 5.7809 k = 0.0000 0.3333 0.2857 ( 1602 PWs) bands (ev): -4.7348 -3.3591 -3.0025 -2.0374 -0.5114 0.6340 1.0673 1.9512 2.7440 2.9925 3.0387 3.8153 4.0449 4.2476 4.2668 6.0567 k = 0.0000 0.3333 0.4286 ( 1598 PWs) bands (ev): -4.3008 -3.7292 -3.0202 -2.5294 -0.0520 0.5884 1.4694 2.0732 2.1485 2.4625 3.0725 3.6152 4.2218 4.4705 4.6887 5.6618 k = 0.0000 0.3333 0.5714 ( 1598 PWs) bands (ev): -4.3156 -3.7069 -2.9804 -2.5899 0.0868 0.4529 1.3321 2.0839 2.2948 2.4700 3.0961 3.5834 4.3277 4.3730 4.8110 5.5148 k = 0.0000 0.3333 0.7143 ( 1602 PWs) bands (ev): -4.7438 -3.3351 -2.9697 -2.1230 -0.3733 0.5130 0.9474 1.9855 2.7557 3.0583 3.1448 3.9106 4.1454 4.1597 4.2293 5.8910 k = 0.0000 0.3333 0.8571 ( 1586 PWs) bands (ev): -5.0036 -3.5606 -2.1174 -1.6816 -0.7786 -0.3489 1.3317 2.2250 2.6248 3.2009 3.4845 3.6960 3.9966 4.0583 4.8947 5.6310 k = 0.0000 0.6667 0.0000 ( 1594 PWs) bands (ev): -5.0895 -3.6410 -1.2993 -1.2992 -1.1501 -1.1500 1.5022 2.7155 2.7155 2.7990 2.7991 3.9845 4.0619 4.4849 5.2279 5.3258 k = 0.0000 0.6667 0.1429 ( 1586 PWs) bands (ev): -5.0036 -3.5606 -2.1174 -1.6816 -0.7786 -0.3489 1.3317 2.2250 2.6248 3.2009 3.4845 3.6960 3.9966 4.0583 4.8947 5.6310 k = 0.0000 0.6667 0.2857 ( 1602 PWs) bands (ev): -4.7438 -3.3351 -2.9697 -2.1230 -0.3733 0.5130 0.9474 1.9855 2.7557 3.0583 3.1448 3.9106 4.1454 4.1597 4.2293 5.8910 k = 0.0000 0.6667 0.4286 ( 1598 PWs) bands (ev): -4.3156 -3.7069 -2.9804 -2.5899 0.0868 0.4529 1.3321 2.0839 2.2948 2.4700 3.0961 3.5834 4.3277 4.3730 4.8110 5.5148 k = 0.0000 0.6667 0.5714 ( 1598 PWs) bands (ev): -4.3008 -3.7292 -3.0202 -2.5294 -0.0520 0.5884 1.4694 2.0732 2.1485 2.4625 3.0725 3.6152 4.2218 4.4705 4.6887 5.6618 k = 0.0000 0.6667 0.7143 ( 1602 PWs) bands (ev): -4.7348 -3.3591 -3.0025 -2.0374 -0.5114 0.6340 1.0673 1.9512 2.7440 2.9925 3.0387 3.8153 4.0449 4.2476 4.2668 6.0567 k = 0.0000 0.6667 0.8571 ( 1586 PWs) bands (ev): -4.9993 -3.5719 -2.1653 -1.5716 -0.9134 -0.2529 1.4072 2.1669 2.6305 3.1382 3.5667 3.6693 3.8453 3.9988 4.9375 5.7809 k = 0.3333 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0895 -3.6410 -1.2993 -1.2992 -1.1501 -1.1500 1.5022 2.7155 2.7155 2.7990 2.7991 3.9845 4.0619 4.4849 5.2279 5.3258 k = 0.3333 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9993 -3.5719 -2.1653 -1.5716 -0.9134 -0.2529 1.4072 2.1669 2.6305 3.1382 3.5667 3.6693 3.8453 3.9988 4.9375 5.7809 k = 0.3333 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7348 -3.3591 -3.0025 -2.0374 -0.5114 0.6340 1.0673 1.9512 2.7440 2.9925 3.0387 3.8153 4.0449 4.2476 4.2668 6.0567 k = 0.3333 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3008 -3.7292 -3.0202 -2.5294 -0.0520 0.5884 1.4694 2.0732 2.1485 2.4625 3.0725 3.6152 4.2218 4.4705 4.6887 5.6618 k = 0.3333 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3156 -3.7069 -2.9804 -2.5899 0.0868 0.4529 1.3321 2.0839 2.2948 2.4700 3.0961 3.5834 4.3277 4.3730 4.8110 5.5148 k = 0.3333 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7438 -3.3351 -2.9697 -2.1230 -0.3733 0.5130 0.9474 1.9855 2.7557 3.0583 3.1448 3.9106 4.1454 4.1597 4.2293 5.8910 k = 0.3333 0.0000 0.8571 ( 1586 PWs) bands (ev): -5.0036 -3.5606 -2.1174 -1.6816 -0.7786 -0.3489 1.3317 2.2250 2.6248 3.2009 3.4845 3.6960 3.9966 4.0583 4.8947 5.6310 k = 0.3333 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6086 -3.2588 -3.2588 -2.2018 -0.3647 0.9165 0.9165 1.9568 2.7082 2.8312 2.8312 4.0393 4.0933 4.0933 4.3806 6.0009 k = 0.3333 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5205 -3.2124 -3.2124 -2.4138 -0.3132 0.6021 0.6021 2.1007 2.3094 3.0594 3.0594 4.2861 4.2861 4.4533 4.6761 5.8906 k = 0.3333 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2705 -3.0947 -3.0947 -2.8716 -0.2001 0.0450 0.0450 1.2651 3.2205 3.4647 3.4647 4.6456 4.6456 4.6529 5.4185 5.6264 k = 0.3333 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8709 -3.4156 -2.9831 -2.9830 -0.3328 -0.3327 0.1381 0.5269 3.7371 3.7372 4.2883 4.8511 4.8511 4.9583 5.2746 5.3385 k = 0.3333 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.9129 -3.3509 -2.9818 -2.9817 -0.3406 -0.3406 -0.0488 0.6867 3.7975 3.7976 4.4500 4.7977 4.7977 4.9192 5.1656 5.3260 k = 0.3333 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2956 -3.0923 -3.0922 -2.7820 -0.4136 0.0230 0.0230 1.4042 3.3693 3.6144 3.6144 4.5134 4.5134 4.6275 5.2581 5.6807 k = 0.3333 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5322 -3.2108 -3.2108 -2.3304 -0.4978 0.5731 0.5731 2.2163 2.4226 3.1950 3.1950 4.1748 4.1748 4.4409 4.5530 5.9277 k = 0.3333 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6194 -3.2300 -3.2300 -2.2786 -0.2265 0.7893 0.7894 1.9829 2.8473 2.8473 2.8583 4.0036 4.1980 4.1981 4.2902 5.8396 k = 0.3333 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5378 -3.1966 -3.1645 -2.4397 -0.2846 0.4158 0.5355 2.2564 2.4021 3.0999 3.1816 4.3162 4.3176 4.3551 4.6359 5.7562 k = 0.3333 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2968 -3.0894 -3.0217 -2.8722 -0.2142 -0.1565 0.0187 1.4103 3.3424 3.5698 3.6199 4.5441 4.5683 4.6217 5.3516 5.5683 k = 0.3333 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.9105 -3.4113 -2.9857 -2.8863 -0.5465 -0.3370 0.1201 0.6772 3.8724 3.8901 4.4187 4.6899 4.8270 4.8435 5.1307 5.3772 k = 0.3333 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.9105 -3.4113 -2.9857 -2.8863 -0.5465 -0.3370 0.1201 0.6772 3.8724 3.8901 4.4187 4.6899 4.8270 4.8435 5.1307 5.3772 k = 0.3333 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2968 -3.0894 -3.0217 -2.8722 -0.2142 -0.1565 0.0187 1.4103 3.3424 3.5698 3.6199 4.5441 4.5683 4.6217 5.3516 5.5683 k = 0.3333 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5378 -3.1966 -3.1645 -2.4397 -0.2846 0.4158 0.5355 2.2564 2.4021 3.0999 3.1816 4.3162 4.3176 4.3551 4.6359 5.7562 k = 0.6667 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0895 -3.6410 -1.2993 -1.2992 -1.1501 -1.1500 1.5022 2.7155 2.7155 2.7990 2.7991 3.9845 4.0619 4.4849 5.2279 5.3258 k = 0.6667 0.0000 0.1429 ( 1586 PWs) bands (ev): -5.0036 -3.5606 -2.1174 -1.6816 -0.7786 -0.3489 1.3317 2.2250 2.6248 3.2009 3.4845 3.6960 3.9966 4.0583 4.8947 5.6310 k = 0.6667 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7438 -3.3351 -2.9697 -2.1230 -0.3733 0.5130 0.9474 1.9855 2.7557 3.0583 3.1448 3.9106 4.1454 4.1597 4.2293 5.8910 k = 0.6667 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3156 -3.7069 -2.9804 -2.5899 0.0868 0.4529 1.3321 2.0839 2.2948 2.4700 3.0961 3.5834 4.3277 4.3730 4.8110 5.5148 k = 0.6667 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3008 -3.7292 -3.0202 -2.5294 -0.0520 0.5884 1.4694 2.0732 2.1485 2.4625 3.0725 3.6152 4.2218 4.4705 4.6887 5.6618 k = 0.6667 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7348 -3.3591 -3.0025 -2.0374 -0.5114 0.6340 1.0673 1.9512 2.7440 2.9925 3.0387 3.8153 4.0449 4.2476 4.2668 6.0567 k = 0.6667 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9993 -3.5719 -2.1653 -1.5716 -0.9134 -0.2529 1.4072 2.1669 2.6305 3.1382 3.5667 3.6693 3.8453 3.9988 4.9375 5.7809 k = 0.6667 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6194 -3.2300 -3.2300 -2.2786 -0.2265 0.7893 0.7894 1.9829 2.8473 2.8473 2.8583 4.0036 4.1980 4.1981 4.2902 5.8396 k = 0.6667 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5378 -3.1966 -3.1645 -2.4397 -0.2846 0.4158 0.5355 2.2564 2.4021 3.0999 3.1816 4.3162 4.3176 4.3551 4.6359 5.7562 k = 0.6667 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2968 -3.0894 -3.0217 -2.8722 -0.2142 -0.1565 0.0187 1.4103 3.3424 3.5698 3.6199 4.5441 4.5683 4.6217 5.3516 5.5683 k = 0.6667 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.9105 -3.4113 -2.9857 -2.8863 -0.5465 -0.3370 0.1201 0.6772 3.8724 3.8901 4.4187 4.6899 4.8270 4.8435 5.1307 5.3772 k = 0.6667 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.9105 -3.4113 -2.9857 -2.8863 -0.5465 -0.3370 0.1201 0.6772 3.8724 3.8901 4.4187 4.6899 4.8270 4.8435 5.1307 5.3772 k = 0.6667 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2968 -3.0894 -3.0217 -2.8722 -0.2142 -0.1565 0.0187 1.4103 3.3424 3.5698 3.6199 4.5441 4.5683 4.6217 5.3516 5.5683 k = 0.6667 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5378 -3.1966 -3.1645 -2.4397 -0.2846 0.4158 0.5355 2.2564 2.4021 3.0999 3.1816 4.3162 4.3176 4.3551 4.6359 5.7562 k = 0.6667 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6086 -3.2588 -3.2588 -2.2018 -0.3647 0.9165 0.9165 1.9568 2.7082 2.8312 2.8312 4.0393 4.0933 4.0933 4.3806 6.0009 k = 0.6667 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5322 -3.2108 -3.2108 -2.3304 -0.4978 0.5731 0.5731 2.2163 2.4226 3.1950 3.1950 4.1748 4.1748 4.4409 4.5530 5.9277 k = 0.6667 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2956 -3.0923 -3.0922 -2.7820 -0.4136 0.0230 0.0230 1.4042 3.3693 3.6144 3.6144 4.5134 4.5134 4.6275 5.2581 5.6807 k = 0.6667 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.9129 -3.3509 -2.9818 -2.9817 -0.3406 -0.3406 -0.0488 0.6867 3.7975 3.7976 4.4500 4.7977 4.7977 4.9192 5.1656 5.3260 k = 0.6667 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8709 -3.4156 -2.9831 -2.9830 -0.3328 -0.3327 0.1381 0.5269 3.7371 3.7372 4.2883 4.8511 4.8511 4.9583 5.2746 5.3385 k = 0.6667 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2705 -3.0947 -3.0947 -2.8716 -0.2001 0.0450 0.0450 1.2651 3.2205 3.4647 3.4647 4.6456 4.6456 4.6529 5.4185 5.6264 k = 0.6667 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5205 -3.2124 -3.2124 -2.4138 -0.3132 0.6021 0.6021 2.1007 2.3094 3.0594 3.0594 4.2861 4.2861 4.4533 4.6761 5.8906 highest occupied level (ev): 6.5964 ! total energy = -63.06608607 Ry Harris-Foulkes estimate = -62.94998125 Ry estimated scf accuracy < 4.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 19.82915910 Ry hartree contribution = 4.30388996 Ry xc contribution = -19.35649342 Ry ewald contribution = -67.72653689 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01260677 -0.01260768 -0.01251753 atom 2 type 1 force = -0.01260639 -0.01260530 -0.01251766 atom 3 type 1 force = -0.01260622 -0.01260796 -0.01251786 atom 4 type 1 force = -0.01260701 -0.01260546 -0.01251788 atom 5 type 1 force = 0.01260764 0.01260744 0.01251899 atom 6 type 1 force = 0.01260551 0.01260583 0.01251913 atom 7 type 1 force = 0.01260552 0.01260744 0.01251637 atom 8 type 1 force = 0.01260773 0.01260568 0.01251644 Total force = 0.061615 Total SCF correction = 0.000048 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 46.70 0.00032299 0.00006771 0.00006799 47.51 9.96 10.00 0.00006771 0.00032299 0.00006799 9.96 47.51 10.00 0.00006799 0.00006799 0.00030635 10.00 10.00 45.07 Writing output data file pwscf.save init_run : 0.15s CPU 0.16s WALL ( 1 calls) electrons : 58.78s CPU 61.97s WALL ( 1 calls) forces : 0.21s CPU 0.22s WALL ( 1 calls) stress : 0.62s CPU 0.65s WALL ( 1 calls) Called by init_run: wfcinit : 0.05s CPU 0.06s WALL ( 1 calls) potinit : 0.04s CPU 0.04s WALL ( 1 calls) Called by electrons: c_bands : 43.24s CPU 45.32s WALL ( 15 calls) sum_band : 2.16s CPU 2.26s WALL ( 5 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.75s CPU 0.69s WALL ( 1386 calls) cegterg : 40.99s CPU 43.08s WALL ( 945 calls) Called by *egterg: h_psi : 35.33s CPU 36.85s WALL ( 2077 calls) g_psi : 0.48s CPU 0.55s WALL ( 1132 calls) cdiaghg : 1.04s CPU 1.08s WALL ( 1699 calls) Called by h_psi: add_vuspsi : 1.55s CPU 1.49s WALL ( 2077 calls) General routines calbec : 1.75s CPU 1.76s WALL ( 2203 calls) fft : 0.05s CPU 0.04s WALL ( 63 calls) fftw : 24.31s CPU 25.40s WALL ( 66460 calls) davcio : 0.00s CPU 0.02s WALL ( 126 calls) Parallel routines fft_scatter : 4.22s CPU 4.26s WALL ( 66523 calls) PWSCF : 0m59.89s CPU 1m 3.16s WALL This run was terminated on: 14: 4:54 14May2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-allfrac.in0000644000175000017500000000056112341373024015500 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 use_all_frac=.true. / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS alat Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/noncolin.ref10000644000175000017500000002470012341373024015372 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:25:39 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin.in1 file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 14 (tetrahedron method) cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.1666667), wk = 0.0277778 k( 2) = ( 0.0000000 -0.1666667 0.3333333), wk = 0.1111111 k( 3) = ( 0.0000000 -0.3333333 0.5000000), wk = 0.1111111 k( 4) = ( -0.1666667 0.1666667 0.1666667), wk = 0.0370370 k( 5) = ( -0.1666667 -0.1666667 0.5000000), wk = 0.1111111 k( 6) = ( -0.1666667 0.6666667 -0.3333333), wk = 0.1111111 k( 7) = ( -0.3333333 0.3333333 0.1666667), wk = 0.1111111 k( 8) = ( 0.5000000 -0.5000000 0.1666667), wk = 0.0555556 k( 9) = ( 0.5000000 -0.6666667 0.3333333), wk = 0.1111111 k( 10) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0277778 k( 11) = ( 0.0000000 -0.1666667 0.6666667), wk = 0.1111111 k( 12) = ( -0.1666667 0.8333333 -0.1666667), wk = 0.0370370 k( 13) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0092593 k( 14) = ( 0.0000000 0.0000000 0.8333333), wk = 0.0277778 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Check: negative/imaginary core charge= -0.000013 0.000000 The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 13.9 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 15.7 total cpu time spent up to now is 1.6 secs End of band structure calculation k = 0.0000 0.0000 0.1667 band energies (ev): 6.0457 6.8219 11.7338 11.7338 11.9057 13.2007 13.6189 14.7118 14.7118 14.9315 16.1886 16.7144 37.3534 38.1243 39.2166 39.2166 k = 0.0000-0.1667 0.3333 band energies (ev): 8.0596 8.9643 11.2683 11.6432 12.8902 13.0762 13.8441 14.1393 14.2679 15.8741 16.2341 16.9394 31.2369 32.6216 35.7738 36.5906 k = 0.0000-0.3333 0.5000 band energies (ev): 9.1488 10.7823 10.9967 12.4584 13.2931 13.5545 14.3812 14.5189 15.2101 16.3458 17.5700 17.8981 24.0802 25.9915 33.4202 34.1613 k =-0.1667 0.1667 0.1667 band energies (ev): 7.1579 7.9665 11.3212 11.3212 12.9407 13.4066 13.4066 14.1787 14.1787 16.0339 16.4702 16.4702 34.7073 34.7073 35.8036 35.8036 k =-0.1667-0.1667 0.5000 band energies (ev): 9.7109 10.8528 11.1835 11.5367 12.9078 13.3065 13.8856 14.1537 15.6525 15.9338 17.0689 18.3430 27.9458 28.7616 29.5508 30.1080 k =-0.1667 0.6667-0.3333 band energies (ev): 9.9371 10.9342 11.3543 12.0842 13.2769 13.4303 13.5784 14.1756 16.3458 17.3843 19.2158 21.1692 22.6606 24.6363 27.1612 28.5666 k =-0.3333 0.3333 0.1667 band energies (ev): 9.2305 10.5624 10.7147 11.4718 13.4050 13.4384 13.6463 13.7267 15.0013 16.5155 16.7770 18.0180 27.5107 29.0808 31.9483 33.0642 k = 0.5000-0.5000 0.1667 band energies (ev): 9.3521 10.4640 11.3980 12.8941 13.1391 13.5283 13.7392 14.7332 16.6628 16.8989 17.3446 19.6643 22.4934 24.6105 30.8465 31.9171 k = 0.5000-0.6667 0.3333 band energies (ev): 10.1172 10.6778 11.3083 12.3541 13.0356 13.4526 13.5852 13.7680 16.7322 16.9301 18.7833 21.0985 24.7460 25.9552 26.4675 27.4037 k = 0.0000 0.0000 0.5000 band energies (ev): 9.4491 10.5968 11.2674 12.2381 12.2381 13.0672 13.8033 14.9150 15.1545 15.1545 16.2430 17.6649 32.4507 32.4507 32.7002 33.8749 k = 0.0000-0.1667 0.6667 band energies (ev): 9.9232 10.4676 11.9055 12.2093 12.6597 12.8780 14.3590 15.1258 15.8127 17.7102 18.1918 20.0794 25.2051 26.8352 29.4434 30.7570 k =-0.1667 0.8333-0.1667 band energies (ev): 9.9257 9.9257 12.0969 12.0969 12.2839 14.0811 14.0812 15.1109 17.3070 17.3070 22.9816 22.9816 24.5480 24.5480 24.6954 26.1135 k = 0.5000-0.5000 0.5000 band energies (ev): 10.7357 10.7357 10.7357 13.0633 13.0633 13.0633 13.7713 13.7714 16.9400 16.9400 23.5806 23.5806 23.5806 25.3545 25.3545 25.3545 k = 0.0000 0.0000 0.8333 band energies (ev): 9.4277 9.4287 11.5483 11.6342 13.9816 13.9816 14.2879 17.1870 17.1870 17.6398 21.8296 23.1234 25.9461 25.9461 27.0511 27.0511 the Fermi energy is 14.8214 ev Writing output data file pwscf.save init_run : 0.48s CPU 0.48s WALL ( 1 calls) electrons : 0.98s CPU 0.99s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.02s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.96s CPU 0.96s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.01s WALL ( 1 calls) newd : 0.01s CPU 0.01s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 14 calls) cegterg : 0.90s CPU 0.90s WALL ( 15 calls) Called by *egterg: h_psi : 0.50s CPU 0.45s WALL ( 249 calls) s_psi : 0.01s CPU 0.02s WALL ( 249 calls) g_psi : 0.03s CPU 0.03s WALL ( 220 calls) cdiaghg : 0.25s CPU 0.29s WALL ( 234 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 249 calls) General routines calbec : 0.03s CPU 0.01s WALL ( 249 calls) fft : 0.00s CPU 0.00s WALL ( 15 calls) ffts : 0.00s CPU 0.00s WALL ( 4 calls) fftw : 0.31s CPU 0.29s WALL ( 9904 calls) interpolate : 0.00s CPU 0.00s WALL ( 4 calls) davcio : 0.00s CPU 0.00s WALL ( 14 calls) PWSCF : 1.84s CPU 1.89s WALL This run was terminated on: 10:25:41 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-disk_io.in10000644000175000017500000000061112341373024015572 0ustar mbamba &control calculation = 'bands' disk_io='none' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 nbnd=8 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS alat Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS tpiba_b 5 0.00 0.00 0.00 5 1.00 0.00 0.00 5 1.00 0.25 0.25 5 0.50 0.50 0.50 5 0.00 0.00 0.00 1 espresso-5.1/PW/tests/relax2-bfgs_ndim3.in0000755000175000017500000000140612341373024016533 0ustar mbamba&CONTROL calculation = "relax", / &SYSTEM ibrav = 6, celldm(1) = 5.3033D0, celldm(3) = 8.D0, nat = 7, ntyp = 1, ecutwfc = 12.D0, occupations = "smearing", smearing = "methfessel-paxton", degauss = 0.05D0, / &ELECTRONS mixing_beta = 0.3D0 / &IONS bfgs_ndim=3 / ATOMIC_SPECIES Al 1.0 Al.pz-vbc.UPF ATOMIC_POSITIONS (alat) Al 0.5000000 0.5000000 -2.121320 Al 0.0000000 0.0000000 -1.414213 Al 0.5000000 0.5000000 -0.707107 Al 0.0000000 0.0000000 0.000000 Al 0.5000000 0.5000000 0.707107 Al 0.0000000 0.0000000 1.414213 Al 0.5000000 0.5000000 2.121320 K_POINTS 3 0.125 0.125 0.0 1.0 0.125 0.375 0.0 2.0 0.375 0.375 0.0 1.0 espresso-5.1/PW/tests/scf.ref20000644000175000017500000001770512341373024014336 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf.in2 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.1 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 13.0 total cpu time spent up to now is 0.3 secs End of band structure calculation k = 0.1250 0.1250 0.1250 band energies (ev): -5.4706 4.7382 6.0279 6.0279 8.8974 9.3395 9.3395 11.1523 k = 0.1250 0.1250 0.3750 band energies (ev): -4.9390 3.1208 4.9509 5.0618 8.4665 10.1046 10.8682 11.1190 k = 0.1250 0.1250 0.6250 band energies (ev): -3.8735 1.4228 3.5622 4.0290 7.6390 9.1995 12.3955 12.7019 k = 0.1250 0.1250 0.8750 band energies (ev): -2.3492 -0.4822 2.7535 3.5416 7.1512 8.2502 14.7060 14.7522 k = 0.1250 0.3750 0.3750 band energies (ev): -4.4237 1.6761 3.9439 5.5190 9.0810 10.0402 10.2089 12.6374 k = 0.1250 0.3750 0.6250 band energies (ev): -3.4357 0.4677 2.9038 4.3187 9.2003 9.9002 11.3756 12.3445 k = 0.1250 0.3750 0.8750 band energies (ev): -2.1560 -0.5888 2.1105 3.2455 8.6854 10.6099 11.6524 13.8332 k = 0.1250 0.6250 0.6250 band energies (ev): -2.6862 -0.3462 2.2032 4.3656 8.1405 11.8301 11.8827 13.3481 k = 0.3750 0.3750 0.3750 band energies (ev): -3.9543 0.3153 5.1954 5.1954 8.0460 9.8187 9.8187 14.0525 k = 0.3750 0.3750 0.6250 band energies (ev): -3.1964 -0.5070 3.9935 4.6986 8.5444 9.8721 10.4853 13.7251 highest occupied, lowest unoccupied level (ev): 6.0279 7.1512 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.13s CPU 0.13s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.13s CPU 0.13s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 10 calls) cegterg : 0.12s CPU 0.12s WALL ( 10 calls) Called by *egterg: h_psi : 0.06s CPU 0.06s WALL ( 150 calls) g_psi : 0.00s CPU 0.01s WALL ( 130 calls) cdiaghg : 0.04s CPU 0.04s WALL ( 140 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 150 calls) General routines calbec : 0.01s CPU 0.00s WALL ( 150 calls) fft : 0.00s CPU 0.00s WALL ( 3 calls) fftw : 0.05s CPU 0.05s WALL ( 1618 calls) PWSCF : 0.32s CPU 0.33s WALL This run was terminated on: 11:28:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/paw-bfgs.ref0000644000175000017500000003233512341373024015203 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:21: 0 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/paw-bfgs.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2161 2161 547 65955 65955 8291 Tot 1081 1081 274 bravais-lattice index = 2 lattice parameter (alat) = 25.0000 a.u. unit-cell volume = 3906.2500 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 25.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pbe-kjpaw.UPF MD5 check sum: 90f4868982d1b5f8aada8373f3a0510a Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pbe-kjpaw.UPF MD5 check sum: b6732a8c2b51919c45a22ac3ed50cb01 Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 16.00000 O( 1.00) H 1.00 1.00000 H( 1.00) Starting magnetic structure atomic species magnetization O 0.100 H -0.100 4 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0446536 -0.0583088 0.0000000 ) 2 H tau( 2) = ( 0.0446536 0.0583088 0.0000000 ) 3 O tau( 3) = ( -0.0005072 0.0000000 0.0000000 ) number of k points= 2 gaussian smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 32978 G-vectors FFT dimensions: ( 60, 60, 60) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.51 Mb ( 4146, 8) NL pseudopotentials 0.76 Mb ( 4146, 12) Each V/rho on FFT grid 6.59 Mb ( 216000, 2) Each G-vector array 0.25 Mb ( 32978) G-vector shells 0.00 Mb ( 530) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.01 Mb ( 4146, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 26.37 Mb ( 216000, 8) Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.007358 Check: negative starting charge=(component2): -0.006806 starting charge 7.99999, renormalised to 8.00000 negative rho (up, down): 0.736E-02 0.681E-02 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 1.8 secs per-process dynamical memory: 52.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.120E-01 0.116E-01 total cpu time spent up to now is 2.8 secs total energy = -43.79412762 Ry Harris-Foulkes estimate = -44.11329505 Ry estimated scf accuracy < 0.44982362 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.12 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.62E-03, avg # of iterations = 2.0 negative rho (up, down): 0.115E-01 0.112E-01 total cpu time spent up to now is 3.7 secs total energy = -43.87263242 Ry Harris-Foulkes estimate = -44.10508875 Ry estimated scf accuracy < 0.48922010 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.09 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.62E-03, avg # of iterations = 2.0 negative rho (up, down): 0.134E-01 0.133E-01 total cpu time spent up to now is 4.7 secs total energy = -43.97646787 Ry Harris-Foulkes estimate = -43.97927672 Ry estimated scf accuracy < 0.00727435 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.06 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.09E-05, avg # of iterations = 5.0 negative rho (up, down): 0.131E-01 0.131E-01 total cpu time spent up to now is 5.7 secs total energy = -43.97825940 Ry Harris-Foulkes estimate = -43.97850199 Ry estimated scf accuracy < 0.00065616 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.01 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap WARNING: 1 eigenvalues not converged in regterg c_bands: 1 eigenvalues not converged WARNING: 1 eigenvalues not converged in regterg c_bands: 1 eigenvalues not converged ethr = 8.20E-06, avg # of iterations = 20.0 negative rho (up, down): 0.130E-01 0.130E-01 total cpu time spent up to now is 6.9 secs total energy = -43.97828148 Ry Harris-Foulkes estimate = -43.97829755 Ry estimated scf accuracy < 0.00007798 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.01 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.75E-07, avg # of iterations = 15.5 negative rho (up, down): 0.130E-01 0.130E-01 total cpu time spent up to now is 8.1 secs total energy = -43.97829542 Ry Harris-Foulkes estimate = -43.97829297 Ry estimated scf accuracy < 0.00000161 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-08, avg # of iterations = 2.0 negative rho (up, down): 0.130E-01 0.130E-01 total cpu time spent up to now is 9.0 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 4146 PWs) bands (ev): -25.0564 -12.8494 -9.0710 -7.0272 -1.3048 0.6344 0.9065 1.4937 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 4146 PWs) bands (ev): -25.0557 -12.8494 -9.0707 -7.0271 -1.3048 0.6342 0.9064 1.4941 the Fermi energy is -5.0755 ev ! total energy = -43.97829666 Ry Harris-Foulkes estimate = -43.97829708 Ry estimated scf accuracy < 0.00000090 Ry total all-electron energy = -152.739043 Ry The total energy is the sum of the following terms: one-electron contribution = -58.59533286 Ry hartree contribution = 30.92282828 Ry xc contribution = -8.39923742 Ry ewald contribution = 2.01807976 Ry one-center paw contrib. = -9.92463442 Ry smearing contrib. (-TS) = 0.00000000 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.130E-01 0.130E-01 atom 1 type 2 force = 0.00004132 0.00016234 0.00000000 atom 2 type 2 force = 0.00004132 -0.00016234 0.00000000 atom 3 type 1 force = -0.00008265 0.00000000 0.00000000 Total force = 0.000251 Total SCF correction = 0.001211 SCF correction compared to forces is large: reduce conv_thr to get better values BFGS Geometry Optimization bfgs converged in 1 scf cycles and 0 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -43.9782966568 Ry Begin final coordinates ATOMIC_POSITIONS (bohr) H 1.116339788 -1.457719099 0.000000000 H 1.116339788 1.457719099 0.000000000 O -0.012679577 0.000000000 0.000000000 End final coordinates Writing output data file pwscf.save init_run : 1.44s CPU 1.49s WALL ( 1 calls) electrons : 7.03s CPU 7.22s WALL ( 1 calls) forces : 0.49s CPU 0.50s WALL ( 1 calls) Called by init_run: wfcinit : 0.06s CPU 0.06s WALL ( 1 calls) potinit : 0.57s CPU 0.59s WALL ( 1 calls) Called by electrons: c_bands : 1.97s CPU 1.98s WALL ( 7 calls) sum_band : 0.73s CPU 0.75s WALL ( 7 calls) v_of_rho : 2.80s CPU 2.90s WALL ( 8 calls) newd : 0.32s CPU 0.33s WALL ( 8 calls) mix_rho : 0.28s CPU 0.29s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.05s CPU 0.06s WALL ( 32 calls) regterg : 1.92s CPU 1.93s WALL ( 14 calls) Called by *egterg: h_psi : 1.62s CPU 1.60s WALL ( 121 calls) s_psi : 0.02s CPU 0.02s WALL ( 121 calls) g_psi : 0.04s CPU 0.05s WALL ( 105 calls) rdiaghg : 0.03s CPU 0.03s WALL ( 119 calls) Called by h_psi: add_vuspsi : 0.04s CPU 0.02s WALL ( 121 calls) General routines calbec : 0.06s CPU 0.06s WALL ( 143 calls) fft : 0.80s CPU 0.82s WALL ( 215 calls) fftw : 1.13s CPU 1.17s WALL ( 540 calls) davcio : 0.00s CPU 0.01s WALL ( 46 calls) PAW routines PAW_pot : 1.21s CPU 1.21s WALL ( 8 calls) PAW_ddot : 0.08s CPU 0.08s WALL ( 57 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 15 calls) PWSCF : 9.31s CPU 9.59s WALL This run was terminated on: 11:21:10 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/dft7.in0000755000175000017500000000053512341373024014173 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 input_dft='olyp' / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/scf.in20000644000175000017500000000125312341373024014157 0ustar mbamba &control calculation = 'nscf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 nbnd=8 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/lattice-ibrav13-kauto.ref0000644000175000017500000002015712341373024017507 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav13-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1329 1329 383 25161 25161 3853 bravais-lattice index = 13 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1492.4812 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.100000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.000000 -1.000000 ) a(2) = ( 0.150000 1.492481 0.000000 ) a(3) = ( 0.500000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.100504 -0.500000 ) b(2) = ( 0.000000 0.670025 0.000000 ) b(3) = ( 1.000000 -0.100504 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 3 cart. coord. in units 2pi/alat k( 1) = ( 0.5000000 0.1172544 0.0000000), wk = 0.5000000 k( 2) = ( 0.0000000 0.1675063 -0.2500000), wk = 1.0000000 k( 3) = ( 0.5000000 -0.2177582 0.0000000), wk = 0.5000000 Dense grid: 25161 G-vectors FFT dimensions: ( 36, 48, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 3175, 1) NL pseudopotentials 0.00 Mb ( 3175, 0) Each V/rho on FFT grid 0.95 Mb ( 62208) Each G-vector array 0.19 Mb ( 25161) G-vector shells 0.04 Mb ( 5219) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 3175, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 7.59 Mb ( 62208, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001481 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.148E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 11.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.418E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22002442 Ry Harris-Foulkes estimate = -2.29020326 Ry estimated scf accuracy < 0.13318357 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.798E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23101315 Ry Harris-Foulkes estimate = -2.23146508 Ry estimated scf accuracy < 0.00100904 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.05E-05, avg # of iterations = 2.0 negative rho (up, down): 0.618E-05 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23131862 Ry Harris-Foulkes estimate = -2.23131865 Ry estimated scf accuracy < 0.00001226 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.13E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.5000 0.1173 0.0000 ( 3175 PWs) bands (ev): -10.2190 k = 0.0000 0.1675-0.2500 ( 3139 PWs) bands (ev): -10.2286 k = 0.5000-0.2178 0.0000 ( 3141 PWs) bands (ev): -10.2176 ! total energy = -2.23131983 Ry Harris-Foulkes estimate = -2.23131977 Ry estimated scf accuracy < 0.00000041 Ry The total energy is the sum of the following terms: one-electron contribution = -3.20429437 Ry hartree contribution = 1.70926122 Ry xc contribution = -1.31436511 Ry ewald contribution = 0.57807843 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.06s CPU 0.06s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.06s CPU 0.05s WALL ( 4 calls) sum_band : 0.03s CPU 0.03s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.05s WALL ( 5 calls) mix_rho : 0.01s CPU 0.02s WALL ( 4 calls) Called by c_bands: cegterg : 0.05s CPU 0.05s WALL ( 12 calls) Called by *egterg: h_psi : 0.06s CPU 0.05s WALL ( 33 calls) g_psi : 0.00s CPU 0.00s WALL ( 18 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 30 calls) Called by h_psi: General routines fft : 0.03s CPU 0.02s WALL ( 19 calls) fftw : 0.05s CPU 0.05s WALL ( 84 calls) davcio : 0.00s CPU 0.00s WALL ( 39 calls) PWSCF : 0.24s CPU 0.26s WALL This run was terminated on: 10:22:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/dft10.in0000755000175000017500000000053512341373024014245 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 input_dft='ev93' / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/lattice-ibrav3.ref0000644000175000017500000001721112341373024016302 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav3.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 557 557 137 8391 8391 1055 Tot 279 279 69 bravais-lattice index = 3 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 500.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 4196 G-vectors FFT dimensions: ( 27, 27, 27) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 528, 1) NL pseudopotentials 0.00 Mb ( 528, 0) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.03 Mb ( 4196) G-vector shells 0.00 Mb ( 117) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 528, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 10.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -2.23761250 Ry Harris-Foulkes estimate = -2.29963774 Ry estimated scf accuracy < 0.11961166 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.98E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -2.25008503 Ry Harris-Foulkes estimate = -2.25010412 Ry estimated scf accuracy < 0.00020326 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.25011797 Ry Harris-Foulkes estimate = -2.25011297 Ry estimated scf accuracy < 0.00000702 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.51E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 528 PWs) bands (ev): -10.3795 ! total energy = -2.25011823 Ry Harris-Foulkes estimate = -2.25011827 Ry estimated scf accuracy < 0.00000007 Ry The total energy is the sum of the following terms: one-electron contribution = -2.22590540 Ry hartree contribution = 1.18719738 Ry xc contribution = -1.28212670 Ry ewald contribution = 0.07071649 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 4 calls) sum_band : 0.00s CPU 0.00s WALL ( 4 calls) v_of_rho : 0.02s CPU 0.01s WALL ( 5 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: regterg : 0.01s CPU 0.01s WALL ( 4 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 12 calls) g_psi : 0.00s CPU 0.00s WALL ( 7 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 11 calls) Called by h_psi: General routines fft : 0.00s CPU 0.01s WALL ( 19 calls) fftw : 0.01s CPU 0.01s WALL ( 28 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.09s CPU 0.09s WALL This run was terminated on: 10:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-cg.in0000644000175000017500000000054112341373024014463 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons diagonalization='cg' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/lattice-ibrav-12.ref0000644000175000017500000001761512341373024016447 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav-12.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1185 1185 293 50377 50377 6275 Tot 593 593 147 bravais-lattice index = -12 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2984.9623 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.100000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.500000 0.000000 ) a(3) = ( 0.200000 0.000000 1.989975 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 -0.100504 ) b(2) = ( 0.000000 0.666667 0.000000 ) b(3) = ( 0.000000 0.000000 0.502519 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 25189 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 3138, 1) NL pseudopotentials 0.00 Mb ( 3138, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.19 Mb ( 25189) G-vector shells 0.04 Mb ( 4655) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 3138, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.004315 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.431E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.125E-02 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22038279 Ry Harris-Foulkes estimate = -2.29015186 Ry estimated scf accuracy < 0.13247844 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.62E-03, avg # of iterations = 1.0 negative rho (up, down): 0.269E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23151436 Ry Harris-Foulkes estimate = -2.23193603 Ry estimated scf accuracy < 0.00094574 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.73E-05, avg # of iterations = 2.0 negative rho (up, down): 0.452E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23186191 Ry Harris-Foulkes estimate = -2.23186359 Ry estimated scf accuracy < 0.00001484 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.42E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 3138 PWs) bands (ev): -10.3207 ! total energy = -2.23186353 Ry Harris-Foulkes estimate = -2.23186327 Ry estimated scf accuracy < 0.00000042 Ry The total energy is the sum of the following terms: one-electron contribution = -3.69157146 Ry hartree contribution = 1.94398907 Ry xc contribution = -1.31186766 Ry ewald contribution = 0.82758653 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.06s CPU 0.06s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.04s CPU 0.04s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.03s WALL ( 4 calls) sum_band : 0.03s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.02s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.02s CPU 0.03s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.24s CPU 0.27s WALL This run was terminated on: 10:22:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/dft3.in0000755000175000017500000000054012341373024014163 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 input_dft='pw86pbe' / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/electric0.ref0000644000175000017500000006716712341373024015362 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 12:13:40 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/electric0.in Found symmetry operation: I + ( -0.5000 -0.5000 0.0000) This is a supercell, fractional translations are disabled G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 665 665 225 12893 12893 2553 bravais-lattice index = 1 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 1054.9778 (a.u.)^3 number of atoms/cell = 8 number of atomic types = 1 number of electrons = 32.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pbe-rrkj.UPF MD5 check sum: cf7ab5690cd9a85b22c4813f7e365554 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 883 points, 3 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.3770000 0.3770000 -0.1230000 ) 3 Si tau( 3) = ( 0.3770000 -0.1230000 0.3770000 ) 4 Si tau( 4) = ( -0.1230000 0.3770000 0.3770000 ) 5 Si tau( 5) = ( 0.1230000 0.1230000 0.1230000 ) 6 Si tau( 6) = ( 0.6230000 0.6230000 0.1230000 ) 7 Si tau( 7) = ( 0.6230000 0.1230000 0.6230000 ) 8 Si tau( 8) = ( 0.1230000 0.6230000 0.6230000 ) number of k points= 63 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0317460 k( 2) = ( 0.0000000 0.0000000 0.1428571), wk = 0.0317460 k( 3) = ( 0.0000000 0.0000000 0.2857143), wk = 0.0317460 k( 4) = ( 0.0000000 0.0000000 0.4285714), wk = 0.0317460 k( 5) = ( 0.0000000 0.0000000 0.5714286), wk = 0.0317460 k( 6) = ( 0.0000000 0.0000000 0.7142857), wk = 0.0317460 k( 7) = ( 0.0000000 0.0000000 0.8571429), wk = 0.0317460 k( 8) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0317460 k( 9) = ( 0.0000000 0.3333333 0.1428571), wk = 0.0317460 k( 10) = ( 0.0000000 0.3333333 0.2857143), wk = 0.0317460 k( 11) = ( 0.0000000 0.3333333 0.4285714), wk = 0.0317460 k( 12) = ( 0.0000000 0.3333333 0.5714286), wk = 0.0317460 k( 13) = ( 0.0000000 0.3333333 0.7142857), wk = 0.0317460 k( 14) = ( 0.0000000 0.3333333 0.8571429), wk = 0.0317460 k( 15) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0317460 k( 16) = ( 0.0000000 0.6666667 0.1428571), wk = 0.0317460 k( 17) = ( 0.0000000 0.6666667 0.2857143), wk = 0.0317460 k( 18) = ( 0.0000000 0.6666667 0.4285714), wk = 0.0317460 k( 19) = ( 0.0000000 0.6666667 0.5714286), wk = 0.0317460 k( 20) = ( 0.0000000 0.6666667 0.7142857), wk = 0.0317460 k( 21) = ( 0.0000000 0.6666667 0.8571429), wk = 0.0317460 k( 22) = ( 0.3333333 0.0000000 0.0000000), wk = 0.0317460 k( 23) = ( 0.3333333 0.0000000 0.1428571), wk = 0.0317460 k( 24) = ( 0.3333333 0.0000000 0.2857143), wk = 0.0317460 k( 25) = ( 0.3333333 0.0000000 0.4285714), wk = 0.0317460 k( 26) = ( 0.3333333 0.0000000 0.5714286), wk = 0.0317460 k( 27) = ( 0.3333333 0.0000000 0.7142857), wk = 0.0317460 k( 28) = ( 0.3333333 0.0000000 0.8571429), wk = 0.0317460 k( 29) = ( 0.3333333 0.3333333 0.0000000), wk = 0.0317460 k( 30) = ( 0.3333333 0.3333333 0.1428571), wk = 0.0317460 k( 31) = ( 0.3333333 0.3333333 0.2857143), wk = 0.0317460 k( 32) = ( 0.3333333 0.3333333 0.4285714), wk = 0.0317460 k( 33) = ( 0.3333333 0.3333333 0.5714286), wk = 0.0317460 k( 34) = ( 0.3333333 0.3333333 0.7142857), wk = 0.0317460 k( 35) = ( 0.3333333 0.3333333 0.8571429), wk = 0.0317460 k( 36) = ( 0.3333333 0.6666667 0.0000000), wk = 0.0317460 k( 37) = ( 0.3333333 0.6666667 0.1428571), wk = 0.0317460 k( 38) = ( 0.3333333 0.6666667 0.2857143), wk = 0.0317460 k( 39) = ( 0.3333333 0.6666667 0.4285714), wk = 0.0317460 k( 40) = ( 0.3333333 0.6666667 0.5714286), wk = 0.0317460 k( 41) = ( 0.3333333 0.6666667 0.7142857), wk = 0.0317460 k( 42) = ( 0.3333333 0.6666667 0.8571429), wk = 0.0317460 k( 43) = ( 0.6666667 0.0000000 0.0000000), wk = 0.0317460 k( 44) = ( 0.6666667 0.0000000 0.1428571), wk = 0.0317460 k( 45) = ( 0.6666667 0.0000000 0.2857143), wk = 0.0317460 k( 46) = ( 0.6666667 0.0000000 0.4285714), wk = 0.0317460 k( 47) = ( 0.6666667 0.0000000 0.5714286), wk = 0.0317460 k( 48) = ( 0.6666667 0.0000000 0.7142857), wk = 0.0317460 k( 49) = ( 0.6666667 0.0000000 0.8571429), wk = 0.0317460 k( 50) = ( 0.6666667 0.3333333 0.0000000), wk = 0.0317460 k( 51) = ( 0.6666667 0.3333333 0.1428571), wk = 0.0317460 k( 52) = ( 0.6666667 0.3333333 0.2857143), wk = 0.0317460 k( 53) = ( 0.6666667 0.3333333 0.4285714), wk = 0.0317460 k( 54) = ( 0.6666667 0.3333333 0.5714286), wk = 0.0317460 k( 55) = ( 0.6666667 0.3333333 0.7142857), wk = 0.0317460 k( 56) = ( 0.6666667 0.3333333 0.8571429), wk = 0.0317460 k( 57) = ( 0.6666667 0.6666667 0.0000000), wk = 0.0317460 k( 58) = ( 0.6666667 0.6666667 0.1428571), wk = 0.0317460 k( 59) = ( 0.6666667 0.6666667 0.2857143), wk = 0.0317460 k( 60) = ( 0.6666667 0.6666667 0.4285714), wk = 0.0317460 k( 61) = ( 0.6666667 0.6666667 0.5714286), wk = 0.0317460 k( 62) = ( 0.6666667 0.6666667 0.7142857), wk = 0.0317460 k( 63) = ( 0.6666667 0.6666667 0.8571429), wk = 0.0317460 Dense grid: 12893 G-vectors FFT dimensions: ( 30, 30, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.39 Mb ( 1602, 16) NL pseudopotentials 0.98 Mb ( 1602, 40) Each V/rho on FFT grid 0.41 Mb ( 27000) Each G-vector array 0.10 Mb ( 12893) G-vector shells 0.00 Mb ( 178) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.56 Mb ( 1602, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 40, 16) Arrays for rho mixing 3.30 Mb ( 27000, 8) Initial potential from superposition of free atoms starting charge 31.99557, renormalised to 32.00000 Starting wfc are random total cpu time spent up to now is 1.1 secs per-process dynamical memory: 8.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.6 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.64E-04, avg # of iterations = 1.6 total cpu time spent up to now is 12.6 secs total energy = -62.94681397 Ry Harris-Foulkes estimate = -62.99688781 Ry estimated scf accuracy < 0.24611989 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.69E-04, avg # of iterations = 1.0 total cpu time spent up to now is 15.6 secs total energy = -62.94551395 Ry Harris-Foulkes estimate = -62.95297288 Ry estimated scf accuracy < 0.04560140 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.43E-04, avg # of iterations = 2.0 total cpu time spent up to now is 18.5 secs total energy = -62.94963409 Ry Harris-Foulkes estimate = -62.94982715 Ry estimated scf accuracy < 0.00085261 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.66E-06, avg # of iterations = 4.0 total cpu time spent up to now is 23.7 secs total energy = -62.95043192 Ry Harris-Foulkes estimate = -62.95047428 Ry estimated scf accuracy < 0.00010665 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.33E-07, avg # of iterations = 2.1 total cpu time spent up to now is 27.1 secs total energy = -62.95044691 Ry Harris-Foulkes estimate = -62.95044676 Ry estimated scf accuracy < 0.00000158 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.94E-09, avg # of iterations = 3.6 total cpu time spent up to now is 31.8 secs total energy = -62.95044806 Ry Harris-Foulkes estimate = -62.95044799 Ry estimated scf accuracy < 0.00000012 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.82E-10, avg # of iterations = 2.2 total cpu time spent up to now is 34.9 secs total energy = -62.95044808 Ry Harris-Foulkes estimate = -62.95044808 Ry estimated scf accuracy < 0.00000003 Ry iteration # 8 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.48E-11, avg # of iterations = 1.8 total cpu time spent up to now is 37.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1575 PWs) bands (ev): -5.5829 -1.4242 -1.4242 -1.4240 -1.2842 -1.2840 -1.2840 3.5438 3.5438 3.5440 3.6152 3.6152 3.6152 6.2762 6.5936 6.5936 k = 0.0000 0.0000 0.1429 ( 1599 PWs) bands (ev): -5.4919 -2.4255 -1.3944 -1.3944 -1.2523 -1.2523 -0.1755 3.2964 3.2964 3.3715 3.3715 3.6255 3.6978 5.8817 6.1639 6.2319 k = 0.0000 0.0000 0.2857 ( 1582 PWs) bands (ev): -5.2196 -3.3613 -1.3236 -1.3235 -1.1762 -1.1762 1.0751 2.8449 2.8449 2.9265 2.9265 3.8682 3.9438 4.8826 5.4540 5.5538 k = 0.0000 0.0000 0.4286 ( 1602 PWs) bands (ev): -4.7695 -4.1472 -1.2621 -1.2621 -1.1097 -1.1097 2.3645 2.5395 2.5395 2.6261 2.6261 3.6528 4.2649 4.3465 4.8033 4.8939 k = 0.0000 0.0000 0.5714 ( 1602 PWs) bands (ev): -4.7695 -4.1472 -1.2621 -1.2621 -1.1097 -1.1097 2.3645 2.5395 2.5395 2.6261 2.6261 3.6528 4.2649 4.3465 4.8033 4.8939 k = 0.0000 0.0000 0.7143 ( 1582 PWs) bands (ev): -5.2196 -3.3613 -1.3236 -1.3235 -1.1762 -1.1762 1.0751 2.8449 2.8449 2.9265 2.9265 3.8682 3.9438 4.8826 5.4540 5.5538 k = 0.0000 0.0000 0.8571 ( 1599 PWs) bands (ev): -5.4919 -2.4255 -1.3944 -1.3944 -1.2523 -1.2523 -0.1755 3.2964 3.2964 3.3715 3.3715 3.6255 3.6978 5.8817 6.1639 6.2319 k = 0.0000 0.3333 0.0000 ( 1594 PWs) bands (ev): -5.0892 -3.6407 -1.2989 -1.2989 -1.1498 -1.1497 1.5025 2.7156 2.7157 2.7992 2.7992 3.9835 4.0609 4.4852 5.2270 5.3248 k = 0.0000 0.3333 0.1429 ( 1586 PWs) bands (ev): -4.9991 -3.5716 -2.1650 -1.5712 -0.9130 -0.2526 1.4075 2.1671 2.6307 3.1384 3.5665 3.6688 3.8456 3.9986 4.9369 5.7806 k = 0.0000 0.3333 0.2857 ( 1602 PWs) bands (ev): -4.7345 -3.3588 -3.0022 -2.0370 -0.5111 0.6343 1.0676 1.9513 2.7442 2.9928 3.0388 3.8155 4.0450 4.2468 4.2669 6.0557 k = 0.0000 0.3333 0.4286 ( 1598 PWs) bands (ev): -4.3005 -3.7289 -3.0199 -2.5291 -0.0517 0.5888 1.4697 2.0734 2.1488 2.4627 3.0727 3.6154 4.2218 4.4699 4.6887 5.6612 k = 0.0000 0.3333 0.5714 ( 1598 PWs) bands (ev): -4.3153 -3.7066 -2.9801 -2.5896 0.0871 0.4532 1.3324 2.0841 2.2951 2.4702 3.0963 3.5836 4.3277 4.3724 4.8110 5.5143 k = 0.0000 0.3333 0.7143 ( 1602 PWs) bands (ev): -4.7436 -3.3348 -2.9695 -2.1227 -0.3730 0.5133 0.9478 1.9857 2.7559 3.0584 3.1451 3.9107 4.1454 4.1589 4.2294 5.8901 k = 0.0000 0.3333 0.8571 ( 1586 PWs) bands (ev): -5.0034 -3.5603 -2.1171 -1.6813 -0.7783 -0.3486 1.3320 2.2252 2.6250 3.2011 3.4843 3.6954 3.9969 4.0581 4.8941 5.6306 k = 0.0000 0.6667 0.0000 ( 1594 PWs) bands (ev): -5.0892 -3.6407 -1.2989 -1.2989 -1.1498 -1.1497 1.5025 2.7156 2.7157 2.7992 2.7992 3.9835 4.0609 4.4852 5.2270 5.3248 k = 0.0000 0.6667 0.1429 ( 1586 PWs) bands (ev): -5.0034 -3.5603 -2.1171 -1.6813 -0.7783 -0.3486 1.3320 2.2252 2.6250 3.2011 3.4843 3.6954 3.9969 4.0581 4.8941 5.6306 k = 0.0000 0.6667 0.2857 ( 1602 PWs) bands (ev): -4.7436 -3.3348 -2.9695 -2.1227 -0.3730 0.5133 0.9478 1.9857 2.7559 3.0584 3.1451 3.9107 4.1454 4.1589 4.2294 5.8901 k = 0.0000 0.6667 0.4286 ( 1598 PWs) bands (ev): -4.3153 -3.7066 -2.9801 -2.5896 0.0871 0.4532 1.3324 2.0841 2.2951 2.4702 3.0963 3.5836 4.3277 4.3724 4.8110 5.5143 k = 0.0000 0.6667 0.5714 ( 1598 PWs) bands (ev): -4.3005 -3.7289 -3.0199 -2.5291 -0.0517 0.5888 1.4697 2.0734 2.1488 2.4627 3.0727 3.6154 4.2218 4.4699 4.6887 5.6612 k = 0.0000 0.6667 0.7143 ( 1602 PWs) bands (ev): -4.7345 -3.3588 -3.0022 -2.0370 -0.5111 0.6343 1.0676 1.9513 2.7442 2.9928 3.0388 3.8155 4.0450 4.2468 4.2669 6.0557 k = 0.0000 0.6667 0.8571 ( 1586 PWs) bands (ev): -4.9991 -3.5716 -2.1650 -1.5712 -0.9130 -0.2526 1.4075 2.1671 2.6307 3.1384 3.5665 3.6688 3.8456 3.9986 4.9369 5.7806 k = 0.3333 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0892 -3.6407 -1.2989 -1.2989 -1.1498 -1.1497 1.5025 2.7156 2.7157 2.7992 2.7992 3.9835 4.0609 4.4852 5.2270 5.3248 k = 0.3333 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9991 -3.5716 -2.1650 -1.5712 -0.9130 -0.2526 1.4075 2.1671 2.6307 3.1384 3.5665 3.6688 3.8456 3.9986 4.9369 5.7806 k = 0.3333 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7345 -3.3588 -3.0022 -2.0371 -0.5111 0.6343 1.0676 1.9513 2.7442 2.9928 3.0388 3.8155 4.0450 4.2468 4.2669 6.0557 k = 0.3333 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3005 -3.7289 -3.0199 -2.5291 -0.0517 0.5888 1.4697 2.0734 2.1488 2.4627 3.0727 3.6154 4.2218 4.4699 4.6887 5.6612 k = 0.3333 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3153 -3.7066 -2.9801 -2.5896 0.0871 0.4532 1.3324 2.0841 2.2951 2.4702 3.0963 3.5836 4.3277 4.3724 4.8110 5.5143 k = 0.3333 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7436 -3.3348 -2.9695 -2.1227 -0.3730 0.5133 0.9478 1.9857 2.7559 3.0584 3.1451 3.9107 4.1454 4.1589 4.2294 5.8901 k = 0.3333 0.0000 0.8571 ( 1586 PWs) bands (ev): -5.0034 -3.5603 -2.1171 -1.6813 -0.7783 -0.3486 1.3320 2.2252 2.6250 3.2011 3.4843 3.6954 3.9969 4.0581 4.8941 5.6306 k = 0.3333 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6083 -3.2585 -3.2585 -2.2015 -0.3644 0.9168 0.9168 1.9569 2.7084 2.8313 2.8313 4.0395 4.0934 4.0934 4.3809 6.0007 k = 0.3333 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5202 -3.2121 -3.2121 -2.4135 -0.3129 0.6024 0.6024 2.1010 2.3096 3.0596 3.0596 4.2859 4.2859 4.4535 4.6760 5.8905 k = 0.3333 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2702 -3.0944 -3.0944 -2.8713 -0.1998 0.0452 0.0452 1.2654 3.2207 3.4649 3.4649 4.6449 4.6449 4.6532 5.4170 5.6264 k = 0.3333 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8706 -3.4153 -2.9828 -2.9828 -0.3325 -0.3325 0.1383 0.5272 3.7374 3.7374 4.2883 4.8504 4.8504 4.9586 5.2747 5.3371 k = 0.3333 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.9126 -3.3506 -2.9814 -2.9814 -0.3403 -0.3403 -0.0485 0.6869 3.7977 3.7978 4.4499 4.7970 4.7970 4.9194 5.1644 5.3261 k = 0.3333 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2953 -3.0920 -3.0920 -2.7817 -0.4134 0.0233 0.0233 1.4045 3.3694 3.6146 3.6146 4.5127 4.5127 4.6277 5.2567 5.6807 k = 0.3333 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5319 -3.2105 -3.2105 -2.3301 -0.4976 0.5734 0.5734 2.2165 2.4228 3.1952 3.1952 4.1747 4.1747 4.4412 4.5529 5.9275 k = 0.3333 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6191 -3.2297 -3.2297 -2.2783 -0.2262 0.7897 0.7897 1.9830 2.8474 2.8474 2.8586 4.0038 4.1981 4.1981 4.2904 5.8395 k = 0.3333 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5375 -3.1963 -3.1642 -2.4394 -0.2843 0.4161 0.5358 2.2567 2.4023 3.1001 3.1818 4.3160 4.3174 4.3554 4.6358 5.7561 k = 0.3333 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2966 -3.0891 -3.0214 -2.8719 -0.2139 -0.1562 0.0190 1.4105 3.3426 3.5700 3.6202 4.5443 4.5677 4.6210 5.3505 5.5678 k = 0.3333 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.9103 -3.4110 -2.9854 -2.8860 -0.5462 -0.3367 0.1204 0.6774 3.8726 3.8903 4.4187 4.6893 4.8263 4.8437 5.1306 5.3760 k = 0.3333 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.9103 -3.4110 -2.9854 -2.8860 -0.5462 -0.3367 0.1204 0.6774 3.8726 3.8903 4.4187 4.6893 4.8263 4.8437 5.1306 5.3760 k = 0.3333 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2966 -3.0891 -3.0214 -2.8719 -0.2139 -0.1562 0.0190 1.4105 3.3426 3.5700 3.6202 4.5443 4.5677 4.6210 5.3505 5.5678 k = 0.3333 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5375 -3.1963 -3.1642 -2.4394 -0.2843 0.4161 0.5358 2.2567 2.4023 3.1001 3.1818 4.3160 4.3174 4.3554 4.6358 5.7561 k = 0.6667 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0892 -3.6407 -1.2989 -1.2989 -1.1498 -1.1497 1.5025 2.7156 2.7157 2.7992 2.7992 3.9835 4.0609 4.4852 5.2270 5.3248 k = 0.6667 0.0000 0.1429 ( 1586 PWs) bands (ev): -5.0034 -3.5603 -2.1171 -1.6813 -0.7783 -0.3486 1.3320 2.2252 2.6250 3.2011 3.4843 3.6954 3.9969 4.0581 4.8941 5.6306 k = 0.6667 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7436 -3.3348 -2.9695 -2.1227 -0.3730 0.5133 0.9478 1.9857 2.7559 3.0584 3.1451 3.9107 4.1454 4.1589 4.2294 5.8901 k = 0.6667 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3153 -3.7066 -2.9801 -2.5896 0.0871 0.4532 1.3324 2.0841 2.2951 2.4702 3.0963 3.5836 4.3277 4.3724 4.8110 5.5143 k = 0.6667 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3005 -3.7289 -3.0199 -2.5291 -0.0517 0.5888 1.4697 2.0734 2.1488 2.4627 3.0727 3.6154 4.2218 4.4699 4.6887 5.6612 k = 0.6667 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7345 -3.3588 -3.0022 -2.0371 -0.5111 0.6343 1.0676 1.9513 2.7442 2.9928 3.0388 3.8155 4.0450 4.2468 4.2669 6.0557 k = 0.6667 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9991 -3.5716 -2.1650 -1.5712 -0.9130 -0.2526 1.4075 2.1671 2.6307 3.1384 3.5665 3.6688 3.8456 3.9986 4.9369 5.7806 k = 0.6667 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6191 -3.2297 -3.2297 -2.2783 -0.2262 0.7897 0.7897 1.9830 2.8474 2.8474 2.8586 4.0038 4.1981 4.1981 4.2904 5.8395 k = 0.6667 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5375 -3.1963 -3.1642 -2.4394 -0.2843 0.4161 0.5358 2.2567 2.4023 3.1001 3.1818 4.3160 4.3174 4.3554 4.6358 5.7561 k = 0.6667 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2966 -3.0891 -3.0214 -2.8719 -0.2139 -0.1562 0.0190 1.4105 3.3426 3.5700 3.6202 4.5443 4.5677 4.6210 5.3505 5.5678 k = 0.6667 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.9103 -3.4110 -2.9854 -2.8860 -0.5462 -0.3367 0.1204 0.6774 3.8726 3.8903 4.4187 4.6893 4.8263 4.8437 5.1306 5.3760 k = 0.6667 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.9103 -3.4110 -2.9854 -2.8860 -0.5462 -0.3367 0.1204 0.6774 3.8726 3.8903 4.4187 4.6893 4.8263 4.8437 5.1306 5.3760 k = 0.6667 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2966 -3.0891 -3.0214 -2.8719 -0.2139 -0.1562 0.0190 1.4105 3.3426 3.5700 3.6202 4.5443 4.5677 4.6210 5.3505 5.5678 k = 0.6667 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5375 -3.1963 -3.1642 -2.4394 -0.2843 0.4161 0.5358 2.2567 2.4023 3.1001 3.1818 4.3160 4.3174 4.3554 4.6358 5.7561 k = 0.6667 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6083 -3.2585 -3.2585 -2.2015 -0.3644 0.9168 0.9168 1.9569 2.7084 2.8313 2.8313 4.0395 4.0934 4.0934 4.3809 6.0007 k = 0.6667 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5319 -3.2105 -3.2105 -2.3301 -0.4976 0.5734 0.5734 2.2165 2.4228 3.1952 3.1952 4.1747 4.1747 4.4412 4.5529 5.9275 k = 0.6667 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2953 -3.0920 -3.0920 -2.7817 -0.4134 0.0233 0.0233 1.4045 3.3694 3.6146 3.6146 4.5127 4.5127 4.6277 5.2567 5.6807 k = 0.6667 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.9126 -3.3506 -2.9814 -2.9814 -0.3403 -0.3403 -0.0485 0.6869 3.7977 3.7978 4.4499 4.7970 4.7970 4.9194 5.1644 5.3261 k = 0.6667 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8706 -3.4153 -2.9828 -2.9828 -0.3325 -0.3325 0.1383 0.5272 3.7374 3.7374 4.2883 4.8504 4.8504 4.9586 5.2747 5.3371 k = 0.6667 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2702 -3.0944 -3.0944 -2.8713 -0.1998 0.0452 0.0452 1.2654 3.2207 3.4649 3.4649 4.6449 4.6449 4.6532 5.4170 5.6264 k = 0.6667 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5202 -3.2121 -3.2121 -2.4135 -0.3129 0.6024 0.6024 2.1010 2.3096 3.0596 3.0596 4.2859 4.2859 4.4535 4.6760 5.8905 ! total energy = -62.95044808 Ry Harris-Foulkes estimate = -62.95044808 Ry estimated scf accuracy < 5.3E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 19.82842516 Ry hartree contribution = 4.30437144 Ry xc contribution = -19.35670779 Ry ewald contribution = -67.72653689 Ry convergence has been achieved in 8 iterations Writing output data file pwscf.save init_run : 1.07s CPU 1.11s WALL ( 1 calls) electrons : 34.65s CPU 36.51s WALL ( 1 calls) Called by init_run: wfcinit : 0.94s CPU 0.97s WALL ( 1 calls) potinit : 0.02s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 31.38s CPU 32.70s WALL ( 9 calls) sum_band : 3.06s CPU 3.14s WALL ( 9 calls) v_of_rho : 0.18s CPU 0.18s WALL ( 9 calls) mix_rho : 0.03s CPU 0.03s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.84s CPU 0.86s WALL ( 1197 calls) cegterg : 30.08s CPU 30.94s WALL ( 567 calls) Called by *egterg: h_psi : 20.61s CPU 20.67s WALL ( 2267 calls) g_psi : 1.17s CPU 1.23s WALL ( 1637 calls) cdiaghg : 2.14s CPU 2.01s WALL ( 2141 calls) Called by h_psi: add_vuspsi : 2.23s CPU 2.25s WALL ( 2267 calls) General routines calbec : 2.11s CPU 2.15s WALL ( 2267 calls) fft : 0.03s CPU 0.04s WALL ( 100 calls) fftw : 15.51s CPU 15.50s WALL ( 66038 calls) davcio : 0.02s CPU 0.55s WALL ( 1764 calls) PWSCF : 35.85s CPU 37.78s WALL This run was terminated on: 12:14:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav13-kauto.in0000644000175000017500000000053512341373024017337 0ustar mbamba &control calculation='scf', / &system ibrav = 13, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(4) = 0.1, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/paw-atom_lda.ref0000644000175000017500000002124112341373024016034 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:21:54 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/paw-atom_lda.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2587 2587 649 86907 86907 10849 Tot 1294 1294 325 bravais-lattice index = 2 lattice parameter (alat) = 25.0000 a.u. unit-cell volume = 3906.2500 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 25.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-kjpaw.UPF MD5 check sum: bb913733245261b4623cea235e432065 Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 43454 G-vectors FFT dimensions: ( 64, 64, 64) Occupations read from input 2.0000 1.3333 1.3333 1.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.50 Mb ( 5425, 6) NL pseudopotentials 0.66 Mb ( 5425, 8) Each V/rho on FFT grid 4.00 Mb ( 262144) Each G-vector array 0.33 Mb ( 43454) G-vector shells 0.00 Mb ( 636) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.99 Mb ( 5425, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 32.00 Mb ( 262144, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.015596 starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.156E-01 0.000E+00 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 1.1 secs per-process dynamical memory: 35.7 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.56E-07, avg # of iterations = 19.0 negative rho (up, down): 0.156E-01 0.000E+00 total cpu time spent up to now is 2.2 secs total energy = -40.13459252 Ry Harris-Foulkes estimate = -40.13458585 Ry estimated scf accuracy < 0.00000993 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-07, avg # of iterations = 2.0 negative rho (up, down): 0.156E-01 0.000E+00 total cpu time spent up to now is 2.6 secs total energy = -40.13459647 Ry Harris-Foulkes estimate = -40.13459691 Ry estimated scf accuracy < 0.00000279 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.65E-08, avg # of iterations = 2.0 negative rho (up, down): 0.157E-01 0.000E+00 total cpu time spent up to now is 2.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5425 PWs) bands (ev): -23.5476 -9.0387 -9.0387 -9.0387 -0.7522 1.7757 highest occupied, lowest unoccupied level (ev): -9.0387 -0.7522 ! total energy = -40.13459742 Ry Harris-Foulkes estimate = -40.13459701 Ry estimated scf accuracy < 0.00000001 Ry total all-electron energy = -148.934751 Ry The total energy is the sum of the following terms: one-electron contribution = -38.76818298 Ry hartree contribution = 20.83222753 Ry xc contribution = -6.33200302 Ry ewald contribution = -6.60220143 Ry one-center paw contrib. = -9.26443752 Ry convergence has been achieved in 3 iterations Writing output data file pwscf.save init_run : 0.90s CPU 0.92s WALL ( 1 calls) electrons : 1.75s CPU 1.78s WALL ( 1 calls) Called by init_run: wfcinit : 0.06s CPU 0.06s WALL ( 1 calls) potinit : 0.08s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 0.98s CPU 0.98s WALL ( 4 calls) sum_band : 0.40s CPU 0.40s WALL ( 4 calls) v_of_rho : 0.15s CPU 0.16s WALL ( 4 calls) newd : 0.18s CPU 0.18s WALL ( 4 calls) mix_rho : 0.04s CPU 0.05s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.02s WALL ( 9 calls) regterg : 0.96s CPU 0.96s WALL ( 4 calls) Called by *egterg: h_psi : 0.92s CPU 0.93s WALL ( 33 calls) s_psi : 0.00s CPU 0.00s WALL ( 33 calls) g_psi : 0.01s CPU 0.01s WALL ( 28 calls) rdiaghg : 0.02s CPU 0.01s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 33 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 37 calls) fft : 0.21s CPU 0.20s WALL ( 26 calls) fftw : 0.82s CPU 0.82s WALL ( 118 calls) davcio : 0.00s CPU 0.00s WALL ( 3 calls) PAW routines PAW_pot : 0.03s CPU 0.03s WALL ( 4 calls) PAW_ddot : 0.01s CPU 0.01s WALL ( 6 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 8 calls) PWSCF : 2.94s CPU 3.03s WALL This run was terminated on: 11:21:57 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/uspp2.ref0000644000175000017500000002775412341373024014557 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:40 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp2.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.1875000 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.1875000 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.1875000 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.3750000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.3750000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.1875000 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.1875000 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.24 Mb ( 15625) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 144, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 12.5 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.5 total cpu time spent up to now is 1.0 secs total energy = -85.54724632 Ry Harris-Foulkes estimate = -85.80469052 Ry estimated scf accuracy < 0.33391620 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.34E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -85.61343414 Ry Harris-Foulkes estimate = -85.86500330 Ry estimated scf accuracy < 0.56551284 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.34E-03, avg # of iterations = 1.5 total cpu time spent up to now is 1.1 secs total energy = -85.71786786 Ry Harris-Foulkes estimate = -85.71785192 Ry estimated scf accuracy < 0.00004857 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.86E-07, avg # of iterations = 3.8 total cpu time spent up to now is 1.2 secs total energy = -85.71843218 Ry Harris-Foulkes estimate = -85.71843759 Ry estimated scf accuracy < 0.00002380 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.38E-07, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -85.71843183 Ry Harris-Foulkes estimate = -85.71843353 Ry estimated scf accuracy < 0.00000409 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.09E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs total energy = -85.71843215 Ry Harris-Foulkes estimate = -85.71843215 Ry estimated scf accuracy < 0.00000003 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.11E-10, avg # of iterations = 2.9 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.4061 12.8548 13.1633 13.1633 14.2549 14.2549 37.3013 41.0705 43.4737 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.2813 12.4200 13.0907 13.4548 14.1750 15.2123 29.0372 34.7079 41.7940 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.5753 12.6694 13.2674 13.3994 15.1348 16.8652 22.3331 35.7400 38.2667 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.9841 12.3769 13.3418 13.5032 14.0813 14.5899 33.3149 38.5178 38.8334 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.1484 11.6739 13.2872 14.1490 15.0146 15.2530 30.0618 33.5439 34.3376 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.3294 11.7046 12.8368 14.3079 15.1329 20.5943 24.0261 27.9135 30.2369 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 10.9020 12.1341 12.6171 13.8463 14.7533 16.8586 25.9141 31.7175 35.0154 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.6211 11.1917 14.2753 14.8006 15.2316 18.1491 26.8887 28.1719 31.9117 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.8400 13.0936 13.0936 13.3992 14.8738 14.8738 24.8544 38.8343 41.7071 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.3844 12.0286 12.7588 13.8465 14.8238 19.2878 22.9910 29.1580 36.4825 the Fermi energy is 15.1618 ev ! total energy = -85.71843217 Ry Harris-Foulkes estimate = -85.71843217 Ry estimated scf accuracy < 5.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 0.27707634 Ry hartree contribution = 14.36237069 Ry xc contribution = -29.60314924 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = -0.00068561 Ry convergence has been achieved in 7 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.68 -0.00020856 0.00000000 0.00000000 -30.68 0.00 0.00 0.00000000 -0.00020856 0.00000000 0.00 -30.68 0.00 0.00000000 0.00000000 -0.00020856 0.00 0.00 -30.68 Writing output data file pwscf.save init_run : 0.80s CPU 0.81s WALL ( 1 calls) electrons : 0.60s CPU 0.60s WALL ( 1 calls) stress : 0.18s CPU 0.19s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.24s CPU 0.26s WALL ( 7 calls) sum_band : 0.19s CPU 0.19s WALL ( 7 calls) v_of_rho : 0.03s CPU 0.02s WALL ( 8 calls) newd : 0.14s CPU 0.14s WALL ( 8 calls) mix_rho : 0.00s CPU 0.01s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.01s WALL ( 160 calls) cegterg : 0.22s CPU 0.23s WALL ( 70 calls) Called by *egterg: h_psi : 0.12s CPU 0.15s WALL ( 247 calls) s_psi : 0.00s CPU 0.01s WALL ( 247 calls) g_psi : 0.01s CPU 0.01s WALL ( 167 calls) cdiaghg : 0.06s CPU 0.06s WALL ( 237 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.01s WALL ( 247 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 327 calls) fft : 0.01s CPU 0.02s WALL ( 72 calls) ffts : 0.00s CPU 0.00s WALL ( 15 calls) fftw : 0.10s CPU 0.12s WALL ( 4070 calls) interpolate : 0.00s CPU 0.01s WALL ( 15 calls) davcio : 0.00s CPU 0.00s WALL ( 230 calls) PWSCF : 1.70s CPU 1.74s WALL This run was terminated on: 11:28:42 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lsda.ref20000644000175000017500000005500312341373024014477 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda.in2 file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 283 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 120 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 Number of k-points >= 100: set verbosity='high' to print them. Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 8) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.07 Mb ( 144, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 18, 8) Check: negative/imaginary core charge= -0.000015 0.000000 The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 13.3 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 12.5 total cpu time spent up to now is 2.3 secs End of band structure calculation ------ SPIN UP ------------ k =-0.0625 0.0625 0.0625 band energies (ev): 5.8965 12.5533 12.6360 12.6360 13.8713 13.8713 39.4607 42.3944 k =-0.1875 0.1875-0.0625 band energies (ev): 6.7376 12.3354 12.8050 12.8096 13.7099 13.9471 36.2505 39.0852 k =-0.3125 0.3125-0.1875 band energies (ev): 8.5377 12.1960 12.8140 12.8908 13.8528 14.2870 29.6361 37.9306 k =-0.4375 0.4375-0.3125 band energies (ev): 9.8812 12.6127 12.7170 13.2300 14.3756 15.0098 23.9281 37.4678 k = 0.4375-0.4375 0.5625 band energies (ev): 10.0577 12.5255 12.6639 13.8760 14.6586 15.7651 21.6265 37.6735 k = 0.3125-0.3125 0.4375 band energies (ev): 9.6053 12.6505 12.6948 12.7916 14.4697 14.4868 25.6530 38.4579 k = 0.1875-0.1875 0.3125 band energies (ev): 7.8826 12.1635 12.8658 12.9079 13.7910 14.0783 31.7959 39.5696 k = 0.0625-0.0625 0.1875 band energies (ev): 6.3236 12.4082 12.7482 12.7531 13.7315 13.9374 38.2733 40.7964 k =-0.0625 0.3125 0.0625 band energies (ev): 7.1425 12.1273 12.9638 12.9811 13.5205 14.0601 36.5785 39.2885 k =-0.1875 0.4375-0.0625 band energies (ev): 8.5967 11.8164 12.8289 13.2731 13.7196 14.3776 32.3884 35.2058 k =-0.3125 0.5625-0.1875 band energies (ev): 10.1676 11.9579 12.4683 13.1771 14.4228 15.4738 26.2038 34.5939 k = 0.5625-0.3125 0.6875 band energies (ev): 10.5582 12.1104 12.8392 13.0343 14.6104 17.6749 21.8395 33.9935 k = 0.4375-0.1875 0.5625 band energies (ev): 10.4450 12.2511 12.4430 13.0850 14.2832 16.3209 24.4379 33.0535 k = 0.3125-0.0625 0.4375 band energies (ev): 9.2229 11.8848 12.6522 13.2600 13.6442 14.8304 30.2443 33.1912 k = 0.1875 0.0625 0.3125 band energies (ev): 7.5289 12.1221 12.8897 12.9922 13.5940 14.1164 34.2317 37.0908 k =-0.0625 0.5625 0.0625 band energies (ev): 9.3932 11.3940 13.1199 13.6955 14.0197 14.3975 33.0294 34.7787 k =-0.1875 0.6875-0.0625 band energies (ev): 10.3310 11.1801 12.9917 14.0049 14.4818 15.7044 29.3922 31.5314 k = 0.6875-0.1875 0.8125 band energies (ev): 10.9010 11.3501 12.6603 13.7762 14.6520 18.9319 23.9784 29.1405 k = 0.5625-0.0625 0.6875 band energies (ev): 11.2934 11.6122 12.1999 13.6094 14.2994 19.2541 23.8131 27.7222 k = 0.4375 0.0625 0.5625 band energies (ev): 10.7102 11.8984 12.1776 13.4114 13.9364 16.4144 26.7785 29.9852 k = 0.3125 0.1875 0.4375 band energies (ev): 9.3699 12.1451 12.6666 12.9714 14.0548 14.6990 27.7750 36.1929 k =-0.0625 0.8125 0.0625 band energies (ev): 10.2037 10.8073 14.2461 14.4356 14.6996 16.3339 28.0136 30.5232 k = 0.8125-0.0625 0.9375 band energies (ev): 10.3930 10.8284 13.8224 14.4445 14.7721 18.9558 25.7398 27.9363 k = 0.6875 0.0625 0.8125 band energies (ev): 10.9066 11.2207 12.8342 13.9978 14.6018 21.0394 23.3333 26.4626 k = 0.5625 0.1875 0.6875 band energies (ev): 10.9528 11.8005 12.5002 13.3278 14.4907 18.9491 22.1199 30.6854 k = 0.4375 0.3125 0.5625 band energies (ev): 10.1957 12.4184 12.8072 13.1698 14.5617 16.0904 22.6218 36.1510 k =-0.0625-0.9375 0.0625 band energies (ev): 10.1733 10.6740 14.5416 14.6185 14.7886 17.9157 25.6241 29.9100 k =-0.1875-0.8125-0.0625 band energies (ev): 10.4387 10.9504 13.4833 14.3184 14.6620 17.2962 28.0565 28.6579 k =-0.3125-0.6875-0.1875 band energies (ev): 10.7010 11.6355 12.4728 13.4688 14.6203 16.9279 24.9292 32.4590 k =-0.0625-0.6875 0.0625 band energies (ev): 10.0699 11.0579 13.6510 14.0984 14.5639 14.8399 31.1724 31.8154 k =-0.1875-0.5625-0.0625 band energies (ev): 9.6869 11.4842 12.7363 13.6225 14.1356 14.7843 30.7617 33.4707 k =-0.0625-0.4375 0.0625 band energies (ev): 8.2540 11.7693 13.0636 13.3054 13.5543 14.2213 34.7713 36.8992 k =-0.1875 0.1875 0.1875 band energies (ev): 7.1329 12.3024 12.8269 12.8269 13.8510 13.8510 33.9228 40.6095 k =-0.3125 0.3125 0.0625 band energies (ev): 8.2588 12.0513 12.8194 13.0809 13.5409 14.3901 32.1066 35.0169 k =-0.4375 0.4375-0.0625 band energies (ev): 9.9959 11.9258 12.4834 13.2516 13.6786 15.4735 28.3750 31.4296 k = 0.4375-0.4375 0.8125 band energies (ev): 10.6957 12.1009 12.5919 13.1180 14.3367 17.4753 23.0390 31.7099 k = 0.3125-0.3125 0.6875 band energies (ev): 10.6143 11.9370 12.6333 13.1766 14.6883 17.3089 22.9983 33.1744 k = 0.1875-0.1875 0.5625 band energies (ev): 9.8796 11.6362 12.6246 13.3318 14.5498 14.8426 28.3268 35.5378 k =-0.1875 0.4375 0.1875 band energies (ev): 8.8793 11.9257 12.7624 13.0759 14.0759 14.3292 29.9300 37.8703 k =-0.3125 0.5625 0.0625 band energies (ev): 10.1882 11.6611 12.4002 13.5439 13.9877 15.5156 28.6466 31.6357 k = 0.5625-0.3125 0.9375 band energies (ev): 11.1883 11.7207 11.9726 13.6667 14.2687 17.8745 25.4676 28.8798 k = 0.4375-0.1875 0.8125 band energies (ev): 11.2046 11.5237 12.2965 13.6053 14.5704 19.9236 22.4856 29.9441 k = 0.3125-0.0625 0.6875 band energies (ev): 10.7686 11.4248 12.3802 13.8731 14.3334 16.7224 27.3344 30.3578 k =-0.1875 0.6875 0.1875 band energies (ev): 10.4867 11.3350 12.7776 13.6512 14.6947 16.1393 27.0043 31.9922 k = 0.6875-0.1875 1.0625 band energies (ev): 10.8346 11.2327 12.6901 14.0885 14.5947 18.5261 26.3561 28.7107 k = 0.5625-0.0625 0.9375 band energies (ev): 11.0819 11.5854 12.2102 13.8532 14.7632 22.0760 23.9186 26.6382 k = 0.4375 0.0625 0.8125 band energies (ev): 11.2249 11.5946 12.0574 13.8213 14.5693 19.8809 24.4929 28.0795 k =-0.1875-1.0625 0.1875 band energies (ev): 10.5824 10.9665 13.4513 14.2514 14.6772 19.7750 25.2256 26.2507 k =-0.3125-0.9375 0.0625 band energies (ev): 10.7569 11.1351 12.9700 14.1352 14.7651 20.4268 25.6142 26.3483 k =-0.1875-0.8125 0.1875 band energies (ev): 10.6164 11.0913 13.1708 13.9858 14.7334 17.9475 26.0046 28.6119 k =-0.3125 0.3125 0.3125 band energies (ev): 9.0273 12.4729 12.7800 12.7800 14.1882 14.1882 27.4760 39.4214 k =-0.4375 0.4375 0.1875 band energies (ev): 9.9319 12.3788 12.5461 12.9398 14.0499 15.3240 25.9462 34.4916 k = 0.4375-0.4375 1.0625 band energies (ev): 11.0723 11.9459 12.1020 13.4184 14.0581 17.6092 25.1616 28.6712 k = 0.3125-0.3125 0.9375 band energies (ev): 11.1136 11.4170 12.5536 13.7805 14.4185 20.8962 22.4722 26.9309 k =-0.3125 0.5625 0.3125 band energies (ev): 10.1544 12.3419 12.6947 12.9295 14.6471 15.5817 24.1576 36.4887 k = 0.5625-0.3125 1.1875 band energies (ev): 10.8739 11.8548 12.3859 13.3410 14.4960 17.9043 23.2542 31.8880 k = 0.4375-0.1875 1.0625 band energies (ev): 11.2667 11.4816 12.2225 13.7793 14.5705 21.3220 22.8499 27.1041 k =-0.3125-1.1875 0.3125 band energies (ev): 10.9484 11.5948 12.5798 13.4912 14.5914 19.3822 22.2555 29.7510 k =-0.4375 0.4375 0.4375 band energies (ev): 9.9122 12.6207 12.6207 14.3303 14.5917 14.5917 22.4500 38.4563 k = 0.4375-0.4375 1.3125 band energies (ev): 10.3266 12.3302 12.8397 13.2132 14.5653 16.9161 21.7300 35.0316 ------ SPIN DOWN ---------- k =-0.0625 0.0625 0.0625 band energies (ev): 5.9573 13.3435 13.4330 13.4330 14.6236 14.6236 39.4894 42.4610 k =-0.1875 0.1875-0.0625 band energies (ev): 6.8002 13.1003 13.6021 13.6089 14.4529 14.7077 36.4093 39.1848 k =-0.3125 0.3125-0.1875 band energies (ev): 8.6464 12.8663 13.5684 13.6581 14.6394 15.0830 29.8793 38.0422 k =-0.4375 0.4375-0.3125 band energies (ev): 10.2650 13.3288 13.4510 13.6222 15.2120 15.7436 24.2885 37.5434 k = 0.4375-0.4375 0.5625 band energies (ev): 10.5526 13.2321 13.3930 14.3298 15.5118 16.2183 22.1029 37.7004 k = 0.3125-0.3125 0.4375 band energies (ev): 9.8797 13.1541 13.4048 13.5379 15.2566 15.3014 25.9648 38.4821 k = 0.1875-0.1875 0.3125 band energies (ev): 7.9621 12.8811 13.6365 13.6909 14.5583 14.8607 32.0108 39.6134 k = 0.0625-0.0625 0.1875 band energies (ev): 6.3846 13.1864 13.5480 13.5528 14.4749 14.6934 38.3812 40.8511 k =-0.0625 0.3125 0.0625 band energies (ev): 7.2067 12.8845 13.7620 13.7867 14.2511 14.8230 36.7389 39.4383 k =-0.1875 0.4375-0.0625 band energies (ev): 8.6878 12.5380 13.5584 14.0749 14.4749 15.1678 32.5946 35.3652 k =-0.3125 0.5625-0.1875 band energies (ev): 10.4641 12.5386 13.1730 13.9316 15.2386 16.1600 26.4878 34.7476 k = 0.5625-0.3125 0.6875 band energies (ev): 11.0864 12.6948 13.4449 13.7697 15.4663 18.0704 22.2727 34.1467 k = 0.4375-0.1875 0.5625 band energies (ev): 10.8535 12.8046 13.1044 13.8202 15.1172 16.9308 24.7658 33.2254 k = 0.3125-0.0625 0.4375 band energies (ev): 9.3435 12.5860 13.3686 14.0325 14.4226 15.6147 30.4792 33.3687 k = 0.1875 0.0625 0.3125 band energies (ev): 7.5977 12.8671 13.6632 13.7981 14.3348 14.8918 34.4204 37.2278 k =-0.0625 0.5625 0.0625 band energies (ev): 9.5441 12.1008 13.7527 14.5221 14.7977 15.1843 33.2034 34.9207 k =-0.1875 0.6875-0.0625 band energies (ev): 10.6571 11.8584 13.6207 14.8004 15.2915 16.3260 29.5961 31.7301 k = 0.6875-0.1875 0.8125 band energies (ev): 11.4308 11.9343 13.3133 14.5327 15.5222 19.3323 24.2608 29.3715 k = 0.5625-0.0625 0.6875 band energies (ev): 11.8485 12.1488 12.8604 14.3379 15.1722 19.6690 24.1246 27.9584 k = 0.4375 0.0625 0.5625 band energies (ev): 11.0162 12.5398 12.8448 14.1373 14.7775 17.0604 27.0567 30.1886 k = 0.3125 0.1875 0.4375 band energies (ev): 9.5448 12.7656 13.3941 13.7283 14.8494 15.4860 28.0428 36.3328 k =-0.0625 0.8125 0.0625 band energies (ev): 10.6342 11.4778 14.9831 15.2542 15.5515 16.6754 28.2871 30.6570 k = 0.8125-0.0625 0.9375 band energies (ev): 10.8761 11.4875 14.5407 15.2146 15.6754 19.2149 26.0720 28.1076 k = 0.6875 0.0625 0.8125 band energies (ev): 11.4451 11.8283 13.5001 14.7436 15.4932 21.3485 23.6077 26.7434 k = 0.5625 0.1875 0.6875 band energies (ev): 11.5139 12.3370 13.1468 14.0667 15.3511 19.3233 22.5146 30.8848 k = 0.4375 0.3125 0.5625 band energies (ev): 10.6661 13.0789 13.5377 13.6779 15.4066 16.6241 23.0274 36.2594 k =-0.0625-0.9375 0.0625 band energies (ev): 10.6455 11.3368 15.3625 15.4057 15.6897 18.0742 25.9703 30.0274 k =-0.1875-0.8125-0.0625 band energies (ev): 10.8831 11.6159 14.1497 15.1016 15.5291 17.7093 28.3002 28.8625 k =-0.3125-0.6875-0.1875 band energies (ev): 11.1452 12.2085 13.1373 14.2254 15.4687 17.4582 25.2176 32.6432 k =-0.0625-0.6875 0.0625 band energies (ev): 10.3803 11.7435 14.2365 14.9323 15.3728 15.4861 31.3707 31.9884 k =-0.1875-0.5625-0.0625 band energies (ev): 9.8531 12.1820 13.4141 14.4205 14.8976 15.5552 30.9724 33.6360 k =-0.0625-0.4375 0.0625 band energies (ev): 8.3348 12.5013 13.7861 14.1205 14.3291 14.9942 34.9486 37.0540 k =-0.1875 0.1875 0.1875 band energies (ev): 7.1996 13.0471 13.6201 13.6201 14.6110 14.6110 34.1113 40.6156 k =-0.3125 0.3125 0.0625 band energies (ev): 8.3418 12.7756 13.5669 13.8808 14.2893 15.1802 32.3214 35.1771 k =-0.4375 0.4375-0.0625 band energies (ev): 10.1844 12.6005 13.1677 13.9887 14.5013 16.2175 28.6355 31.6223 k = 0.4375-0.4375 0.8125 band energies (ev): 11.1951 12.6810 13.1980 13.8533 15.1859 17.9636 23.4077 31.8961 k = 0.3125-0.3125 0.6875 band energies (ev): 11.1206 12.4765 13.2876 13.9250 15.5450 17.7720 23.3562 33.3455 k = 0.1875-0.1875 0.5625 band energies (ev): 10.0869 12.2944 13.3136 14.1101 15.3759 15.5456 28.5701 35.6808 k =-0.1875 0.4375 0.1875 band energies (ev): 8.9943 12.6139 13.4926 13.8540 14.8398 15.1341 30.1644 38.0290 k =-0.3125 0.5625 0.0625 band energies (ev): 10.3981 12.3383 13.0890 14.2999 14.7889 16.2370 28.8924 31.8216 k = 0.5625-0.3125 0.9375 band energies (ev): 11.6151 12.3386 12.6397 14.3935 15.1325 18.3779 25.7515 29.0908 k = 0.4375-0.1875 0.8125 band energies (ev): 11.7809 12.0606 12.9571 14.3428 15.4447 20.2779 22.8350 30.1583 k = 0.3125-0.0625 0.6875 band energies (ev): 11.1310 12.0846 13.0303 14.6233 15.1752 17.2963 27.5800 30.5468 k =-0.1875 0.6875 0.1875 band energies (ev): 10.8545 11.9745 13.4169 14.4323 15.5407 16.7121 27.2444 32.1903 k = 0.6875-0.1875 1.0625 band energies (ev): 11.3052 11.8883 13.3356 14.8357 15.4790 18.9402 26.5939 28.9531 k = 0.5625-0.0625 0.9375 band energies (ev): 11.5965 12.2371 12.8680 14.5802 15.6682 22.3712 24.1899 26.9105 k = 0.4375 0.0625 0.8125 band energies (ev): 11.7213 12.2383 12.7026 14.5507 15.4585 20.2611 24.7716 28.3023 k =-0.1875-1.0625 0.1875 band energies (ev): 11.0865 11.6070 14.1369 15.0177 15.5697 20.0688 25.4817 26.5221 k =-0.3125-0.9375 0.0625 band energies (ev): 11.2581 11.7888 13.6430 14.8815 15.6698 20.7227 25.8779 26.6141 k =-0.1875-0.8125 0.1875 band energies (ev): 11.0910 11.7289 13.8203 14.7667 15.5995 18.3649 26.2347 28.8577 k =-0.3125 0.3125 0.3125 band energies (ev): 9.1975 13.0378 13.5328 13.5328 14.9998 14.9998 27.7537 39.4167 k =-0.4375 0.4375 0.1875 band energies (ev): 10.2131 12.9237 13.2550 13.6807 14.8727 16.0595 26.2469 34.6498 k = 0.4375-0.4375 1.0625 band energies (ev): 11.5136 12.5196 12.7664 14.1435 14.9167 18.1432 25.4635 28.8911 k = 0.3125-0.3125 0.9375 band energies (ev): 11.7261 11.9302 13.2149 14.5196 15.2983 21.2252 22.7951 27.1925 k =-0.3125 0.5625 0.3125 band energies (ev): 10.5534 12.9018 13.3343 13.6750 15.4939 16.1935 24.4977 36.5885 k = 0.5625-0.3125 1.1875 band energies (ev): 11.3870 12.4028 13.0414 14.0795 15.3503 18.3650 23.5990 32.0710 k = 0.4375-0.1875 1.0625 band energies (ev): 11.7986 12.0888 12.8839 14.5088 15.4612 21.6469 23.1574 27.3557 k =-0.3125-1.1875 0.3125 band energies (ev): 11.5282 12.1146 13.2402 14.2412 15.4557 19.7427 22.6193 29.9670 k =-0.4375 0.4375 0.4375 band energies (ev): 10.3671 13.3502 13.3502 14.4615 15.4395 15.4395 22.8778 38.4366 k = 0.4375-0.4375 1.3125 band energies (ev): 10.8376 12.9772 13.5721 13.7457 15.4176 17.3374 22.1859 35.1668 the Fermi energy is 15.3379 ev Writing output data file pwscf.save init_run : 0.75s CPU 0.75s WALL ( 1 calls) electrons : 1.40s CPU 1.41s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 1.40s CPU 1.41s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.01s WALL ( 1 calls) newd : 0.02s CPU 0.02s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 120 calls) cegterg : 1.24s CPU 1.26s WALL ( 124 calls) Called by *egterg: h_psi : 0.74s CPU 0.73s WALL ( 1745 calls) s_psi : 0.03s CPU 0.03s WALL ( 1745 calls) g_psi : 0.05s CPU 0.04s WALL ( 1501 calls) cdiaghg : 0.39s CPU 0.39s WALL ( 1621 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.03s WALL ( 1745 calls) General routines calbec : 0.03s CPU 0.03s WALL ( 1745 calls) fft : 0.00s CPU 0.00s WALL ( 9 calls) ffts : 0.00s CPU 0.00s WALL ( 2 calls) fftw : 0.49s CPU 0.48s WALL ( 16694 calls) interpolate : 0.00s CPU 0.00s WALL ( 2 calls) davcio : 0.00s CPU 0.00s WALL ( 120 calls) PWSCF : 2.46s CPU 2.52s WALL This run was terminated on: 10:24:32 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-k0.in0000644000175000017500000000044412341373024014406 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS {alat} Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS {tpiba} 1 0.0 0.0 0.0 1.0 espresso-5.1/PW/tests/dft4.ref0000644000175000017500000002243012341373024014331 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10839) starts on 3Apr2014 at 8:38:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/pbesol.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = PBESOL ( 1 4 10 8 0) Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 27 728 728 141 Max 82 82 28 731 731 142 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBESOL ( 1 4 10 8 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 93, 4) NL pseudopotentials 0.01 Mb ( 93, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 93, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.88E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.77962175 Ry Harris-Foulkes estimate = -15.79996095 Ry estimated scf accuracy < 0.06328515 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.91E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.78224815 Ry Harris-Foulkes estimate = -15.78256753 Ry estimated scf accuracy < 0.00235291 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.94E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.78260496 Ry Harris-Foulkes estimate = -15.78261891 Ry estimated scf accuracy < 0.00005118 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.40E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.78262016 Ry Harris-Foulkes estimate = -15.78262098 Ry estimated scf accuracy < 0.00000317 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.96E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.0 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8425 2.4060 5.5576 5.5576 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.8921 -0.0396 2.7091 4.0573 highest occupied level (ev): 5.5576 ! total energy = -15.78262083 Ry Harris-Foulkes estimate = -15.78262085 Ry estimated scf accuracy < 0.00000006 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83181448 Ry hartree contribution = 1.08829397 Ry xc contribution = -4.80297070 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.02s CPU 0.02s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.00s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.02s CPU 0.01s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.00s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.01s CPU 0.00s WALL ( 67 calls) fftw : 0.00s CPU 0.01s WALL ( 330 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.00s CPU 0.00s WALL ( 397 calls) PWSCF : 0.09s CPU 0.10s WALL This run was terminated on: 8:38:30 3Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-mixing_beta.in0000644000175000017500000000053412341373024016362 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons mixing_beta=0.5 / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/uspp-singlegrid.ref0000644000175000017500000003016012341373024016603 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:48 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp-singlegrid.in file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 151 151 55 1243 1243 283 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1875000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.7500000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.3750000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0937500 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1875000 Dense grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1243) G-vector shells 0.00 Mb ( 39) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 169, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.005369 starting charge 10.99968, renormalised to 11.00000 negative rho (up, down): 0.537E-02 0.000E+00 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.3 secs per-process dynamical memory: 9.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.9 negative rho (up, down): 0.504E-02 0.000E+00 total cpu time spent up to now is 0.4 secs total energy = -87.73003204 Ry Harris-Foulkes estimate = -87.90531065 Ry estimated scf accuracy < 0.23870458 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-03, avg # of iterations = 2.0 negative rho (up, down): 0.530E-02 0.000E+00 total cpu time spent up to now is 0.4 secs total energy = -87.81134828 Ry Harris-Foulkes estimate = -87.90261407 Ry estimated scf accuracy < 0.18261468 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.534E-02 0.000E+00 total cpu time spent up to now is 0.5 secs total energy = -87.84089473 Ry Harris-Foulkes estimate = -87.84140835 Ry estimated scf accuracy < 0.00093197 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.47E-06, avg # of iterations = 3.0 negative rho (up, down): 0.535E-02 0.000E+00 total cpu time spent up to now is 0.5 secs total energy = -87.84124411 Ry Harris-Foulkes estimate = -87.84125231 Ry estimated scf accuracy < 0.00002927 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.66E-07, avg # of iterations = 1.5 negative rho (up, down): 0.535E-02 0.000E+00 total cpu time spent up to now is 0.5 secs total energy = -87.84124415 Ry Harris-Foulkes estimate = -87.84124597 Ry estimated scf accuracy < 0.00000406 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.69E-08, avg # of iterations = 1.1 negative rho (up, down): 0.535E-02 0.000E+00 total cpu time spent up to now is 0.6 secs total energy = -87.84124473 Ry Harris-Foulkes estimate = -87.84124476 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.25E-10, avg # of iterations = 1.5 negative rho (up, down): 0.535E-02 0.000E+00 total cpu time spent up to now is 0.6 secs total energy = -87.84124474 Ry Harris-Foulkes estimate = -87.84124474 Ry estimated scf accuracy < 1.3E-09 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-11, avg # of iterations = 1.4 negative rho (up, down): 0.535E-02 0.000E+00 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 5.0030 11.1909 11.1909 11.1909 12.0776 12.0776 38.8742 41.0269 41.0269 41.0269 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1674 10.9454 11.3607 11.3607 12.1696 12.1696 27.5336 38.3814 38.3814 38.4800 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1119 11.1570 11.1570 12.6911 12.6911 13.4785 18.6388 37.0368 37.6202 37.6202 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.8059 10.4270 11.6242 11.9074 11.9074 12.3717 32.3488 32.3488 33.7681 34.5476 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7647 10.3244 11.2576 11.8828 12.7347 15.5293 21.6049 27.6803 31.3115 35.1390 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6318 10.6704 10.8872 11.7317 12.0794 14.1967 24.6002 26.0320 35.9062 37.3977 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2570 9.7021 12.6715 12.8453 12.8453 16.0772 22.1077 28.1922 28.1922 32.9215 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0250 10.6713 10.6713 12.0454 12.8459 20.9565 20.9565 23.1356 24.0608 44.6629 the Fermi energy is 15.2844 ev ! total energy = -87.84124474 Ry Harris-Foulkes estimate = -87.84124474 Ry estimated scf accuracy < 4.6E-12 Ry The total energy is the sum of the following terms: one-electron contribution = -10.24324886 Ry hartree contribution = 18.89755948 Ry xc contribution = -14.06268744 Ry ewald contribution = -82.43214143 Ry smearing contrib. (-TS) = -0.00072649 Ry convergence has been achieved in 8 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 93.36 0.00063468 0.00000000 0.00000000 93.36 0.00 0.00 0.00000000 0.00063468 0.00000000 0.00 93.36 0.00 0.00000000 0.00000000 0.00063468 0.00 0.00 93.36 Writing output data file pwscf.save init_run : 0.29s CPU 0.29s WALL ( 1 calls) electrons : 0.28s CPU 0.30s WALL ( 1 calls) stress : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.20s CPU 0.21s WALL ( 8 calls) sum_band : 0.06s CPU 0.06s WALL ( 8 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 9 calls) newd : 0.02s CPU 0.02s WALL ( 9 calls) mix_rho : 0.00s CPU 0.00s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 144 calls) cegterg : 0.18s CPU 0.19s WALL ( 64 calls) Called by *egterg: h_psi : 0.11s CPU 0.12s WALL ( 203 calls) s_psi : 0.00s CPU 0.00s WALL ( 203 calls) g_psi : 0.02s CPU 0.01s WALL ( 131 calls) cdiaghg : 0.04s CPU 0.05s WALL ( 195 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.00s WALL ( 203 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 275 calls) fft : 0.01s CPU 0.00s WALL ( 55 calls) fftw : 0.10s CPU 0.11s WALL ( 3796 calls) davcio : 0.00s CPU 0.00s WALL ( 208 calls) PWSCF : 0.70s CPU 0.72s WALL This run was terminated on: 11:28:48 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/relax.in0000755000175000017500000000051312341373024014436 0ustar mbamba&CONTROL calculation = "relax" / &SYSTEM ibrav = 1, celldm(1) =12.0, nat = 2, ntyp = 2, ecutwfc = 24.D0, ecutrho = 144.D0, / &ELECTRONS / &IONS / ATOMIC_SPECIES O 1.00 O.pz-rrkjus.UPF C 1.00 C.pz-rrkjus.UPF ATOMIC_POSITIONS {bohr} C 2.256 0.0 0.0 O 0.000 0.0 0.0 0 0 0 K_POINTS {Gamma} espresso-5.1/PW/tests/paw-atom_tqr.in0000644000175000017500000000057212341373024015740 0ustar mbamba &control calculation = 'scf' / &system ibrav= 2, celldm(1) =26.0, nat= 1, ntyp= 1, ecutwfc=25 nbnd=9 occupations='from_input' / &electrons conv_thr = 1.0d-6 tqr=.true. / ATOMIC_SPECIES Cu 1.000 Cu.pbe-kjpaw.UPF ATOMIC_POSITIONS {alat} Cu 0.0 0.0 0.0 K_POINTS {gamma} OCCUPATIONS 2.0 2.0 2.0 2.0 2.0 1.0 0.0 0.0 0.0 espresso-5.1/PW/tests/lattice-ibrav4.ref0000644000175000017500000001761312341373024016311 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav4.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 685 685 163 29199 29199 3589 Tot 343 343 82 bravais-lattice index = 4 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1732.0508 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 24 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 14600 G-vectors FFT dimensions: ( 32, 32, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 1795, 1) NL pseudopotentials 0.00 Mb ( 1795, 0) Each V/rho on FFT grid 1.00 Mb ( 65536) Each G-vector array 0.11 Mb ( 14600) G-vector shells 0.00 Mb ( 476) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 1795, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 8.00 Mb ( 65536, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.002293 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.229E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 15.6 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.659E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22120172 Ry Harris-Foulkes estimate = -2.28993507 Ry estimated scf accuracy < 0.13080440 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.54E-03, avg # of iterations = 1.0 negative rho (up, down): 0.144E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23251756 Ry Harris-Foulkes estimate = -2.23287911 Ry estimated scf accuracy < 0.00082964 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.15E-05, avg # of iterations = 2.0 negative rho (up, down): 0.334E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23294182 Ry Harris-Foulkes estimate = -2.23294235 Ry estimated scf accuracy < 0.00002035 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1795 PWs) bands (ev): -10.3005 ! total energy = -2.23294383 Ry Harris-Foulkes estimate = -2.23294305 Ry estimated scf accuracy < 0.00000071 Ry The total energy is the sum of the following terms: one-electron contribution = -3.61887167 Ry hartree contribution = 1.90532680 Ry xc contribution = -1.30686812 Ry ewald contribution = 0.78746916 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.03s WALL ( 1 calls) electrons : 0.08s CPU 0.11s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.02s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: regterg : 0.01s CPU 0.02s WALL ( 4 calls) Called by *egterg: h_psi : 0.01s CPU 0.02s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.00s CPU 0.02s WALL ( 19 calls) fftw : 0.01s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.16s CPU 0.18s WALL This run was terminated on: 10:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav9-kauto.in0000644000175000017500000000051112341373024017256 0ustar mbamba &control calculation='scf', / &system ibrav = 9, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/metal.ref0000644000175000017500000002346012341373024014576 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:52 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metal.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 37 869 869 169 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 107, 6) NL pseudopotentials 0.01 Mb ( 107, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.04 Mb ( 107, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.9 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18547331 Ry Harris-Foulkes estimate = -4.18624121 Ry estimated scf accuracy < 0.00592574 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18546703 Ry Harris-Foulkes estimate = -4.18549534 Ry estimated scf accuracy < 0.00046554 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-05, avg # of iterations = 1.4 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7428 16.7431 20.1796 20.1796 23.2683 24.1724 k = 0.1250 0.1250 0.3750 ( 105 PWs) bands (ev): -1.5642 13.6751 17.3099 18.8472 20.1257 22.7030 k = 0.1250 0.1250 0.6250 ( 102 PWs) bands (ev): 0.7488 11.5557 13.9822 15.3803 16.8437 20.9947 k = 0.1250 0.1250 0.8750 ( 104 PWs) bands (ev): 4.0828 8.6646 10.5472 14.4194 15.7420 20.0604 k = 0.1250 0.3750 0.3750 ( 100 PWs) bands (ev): -0.4004 10.5636 15.0575 20.2794 22.2924 22.3024 k = 0.1250 0.3750 0.6250 ( 103 PWs) bands (ev): 1.8826 8.4273 12.9757 15.1047 21.3122 23.4591 k = 0.1250 0.3750 0.8750 ( 104 PWs) bands (ev): 5.1681 7.3418 9.7864 12.0728 20.3593 24.5664 k = 0.1250 0.6250 0.6250 ( 101 PWs) bands (ev): 4.1109 6.2842 10.9033 16.3672 18.2373 26.3754 k = 0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7475 7.4153 19.3070 19.3070 21.3017 21.3018 k = 0.3750 0.3750 0.6250 ( 103 PWs) bands (ev): 3.0033 5.2361 16.0323 17.3399 19.1721 23.3126 the Fermi energy is 8.3513 ev ! total energy = -4.18546970 Ry Harris-Foulkes estimate = -4.18546962 Ry estimated scf accuracy < 0.00000026 Ry The total energy is the sum of the following terms: one-electron contribution = 2.94161248 Ry hartree contribution = 0.01022685 Ry xc contribution = -1.63496633 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.00050817 Ry convergence has been achieved in 3 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.54 -0.00009884 0.00000000 0.00000000 -14.54 0.00 0.00 0.00000000 -0.00009884 0.00000000 0.00 -14.54 0.00 0.00000000 0.00000000 -0.00009884 0.00 0.00 -14.54 Writing output data file pwscf.save init_run : 0.01s CPU 0.02s WALL ( 1 calls) electrons : 0.08s CPU 0.08s WALL ( 1 calls) stress : 0.00s CPU 0.01s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.06s CPU 0.06s WALL ( 4 calls) sum_band : 0.02s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 100 calls) cegterg : 0.06s CPU 0.06s WALL ( 40 calls) Called by *egterg: h_psi : 0.05s CPU 0.05s WALL ( 126 calls) g_psi : 0.00s CPU 0.00s WALL ( 76 calls) cdiaghg : 0.01s CPU 0.01s WALL ( 106 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 126 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 136 calls) fft : 0.00s CPU 0.00s WALL ( 20 calls) fftw : 0.04s CPU 0.04s WALL ( 1576 calls) davcio : 0.00s CPU 0.00s WALL ( 140 calls) PWSCF : 0.17s CPU 0.18s WALL This run was terminated on: 10:24:52 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav0-cell_parameters+a.ref0000644000175000017500000001763512341373024021665 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:15 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav0-cell_parameters+a.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1135 1135 281 47345 47345 5905 Tot 568 568 141 bravais-lattice index = 0 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2801.4246 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 0.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.450000 1.430909 0.000000 ) a(3) = ( 0.400000 0.083863 1.957796 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.314485 -0.190840 ) b(2) = ( 0.000000 0.698856 -0.029936 ) b(3) = ( 0.000000 0.000000 0.510778 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23673 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 2953, 1) NL pseudopotentials 0.00 Mb ( 2953, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.18 Mb ( 23673) G-vector shells 0.18 Mb ( 22997) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 2953, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003955 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.395E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.114E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22055176 Ry Harris-Foulkes estimate = -2.29035902 Ry estimated scf accuracy < 0.13253988 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 1.0 negative rho (up, down): 0.245E-03 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23168711 Ry Harris-Foulkes estimate = -2.23211031 Ry estimated scf accuracy < 0.00094325 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-05, avg # of iterations = 2.0 negative rho (up, down): 0.403E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23203750 Ry Harris-Foulkes estimate = -2.23203922 Ry estimated scf accuracy < 0.00001485 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.43E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2953 PWs) bands (ev): -10.3154 ! total energy = -2.23203913 Ry Harris-Foulkes estimate = -2.23203886 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -3.65125580 Ry hartree contribution = 1.92424341 Ry xc contribution = -1.31190430 Ry ewald contribution = 0.80687755 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.12s CPU 0.15s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.08s CPU 0.08s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.03s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.03s WALL ( 19 calls) fftw : 0.02s CPU 0.03s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.31s CPU 0.37s WALL This run was terminated on: 10:22:15 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/paw-atom_spin_lda.ref0000644000175000017500000002760012341373024017072 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:22: 7 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/paw-atom_spin_lda.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2587 2587 649 86907 86907 10849 Tot 1294 1294 325 bravais-lattice index = 2 lattice parameter (alat) = 25.0000 a.u. unit-cell volume = 3906.2500 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 7 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 25.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-kjpaw.UPF MD5 check sum: bb913733245261b4623cea235e432065 Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) Starting magnetic structure atomic species magnetization O 0.000 No symmetry found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 43454 G-vectors FFT dimensions: ( 64, 64, 64) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 Spin-down 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.58 Mb ( 5425, 7) NL pseudopotentials 0.66 Mb ( 5425, 8) Each V/rho on FFT grid 8.00 Mb ( 262144, 2) Each G-vector array 0.33 Mb ( 43454) G-vector shells 0.00 Mb ( 636) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.16 Mb ( 5425, 28) Each subspace H/S matrix 0.01 Mb ( 28, 28) Each matrix 0.00 Mb ( 8, 7) Arrays for rho mixing 32.00 Mb ( 262144, 8) Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.007798 Check: negative starting charge=(component2): -0.007798 starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.780E-02 0.780E-02 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 1.3 secs per-process dynamical memory: 46.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.5 negative rho (up, down): 0.122E-01 0.699E-02 total cpu time spent up to now is 2.3 secs total energy = -40.22330107 Ry Harris-Foulkes estimate = -40.13405336 Ry estimated scf accuracy < 0.13985138 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.33E-03, avg # of iterations = 1.0 negative rho (up, down): 0.131E-01 0.454E-02 total cpu time spent up to now is 3.0 secs total energy = -40.23102143 Ry Harris-Foulkes estimate = -40.23172131 Ry estimated scf accuracy < 0.15436360 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.04 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.33E-03, avg # of iterations = 1.0 negative rho (up, down): 0.150E-01 0.515E-02 total cpu time spent up to now is 4.0 secs total energy = -40.24139872 Ry Harris-Foulkes estimate = -40.23503410 Ry estimated scf accuracy < 0.04036026 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.04 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.73E-04, avg # of iterations = 1.0 negative rho (up, down): 0.151E-01 0.553E-02 total cpu time spent up to now is 4.8 secs total energy = -40.24253135 Ry Harris-Foulkes estimate = -40.24214211 Ry estimated scf accuracy < 0.01790046 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-04, avg # of iterations = 2.5 negative rho (up, down): 0.152E-01 0.629E-02 total cpu time spent up to now is 5.6 secs total energy = -40.24323882 Ry Harris-Foulkes estimate = -40.24264311 Ry estimated scf accuracy < 0.01106397 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.06 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.84E-04, avg # of iterations = 2.5 negative rho (up, down): 0.153E-01 0.740E-02 total cpu time spent up to now is 6.5 secs total energy = -40.24381253 Ry Harris-Foulkes estimate = -40.24332835 Ry estimated scf accuracy < 0.00473871 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.06 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.90E-05, avg # of iterations = 1.0 negative rho (up, down): 0.153E-01 0.842E-02 total cpu time spent up to now is 7.3 secs total energy = -40.24402483 Ry Harris-Foulkes estimate = -40.24392178 Ry estimated scf accuracy < 0.00090112 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.06 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-05, avg # of iterations = 5.0 negative rho (up, down): 0.152E-01 0.843E-02 total cpu time spent up to now is 8.1 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 5425 PWs) bands (ev): -24.7097 -10.7423 -10.7416 -8.9572 -0.7764 1.7329 1.7527 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 5425 PWs) bands (ev): -21.5493 -7.3107 -7.0688 -7.0684 -0.7276 1.8591 1.8777 highest occupied, lowest unoccupied level (ev): -7.3107 -7.0688 ! total energy = -40.24409105 Ry Harris-Foulkes estimate = -40.24409121 Ry estimated scf accuracy < 0.00000048 Ry total all-electron energy = -149.044245 Ry The total energy is the sum of the following terms: one-electron contribution = -38.82076126 Ry hartree contribution = 20.94857887 Ry xc contribution = -6.51406707 Ry ewald contribution = -6.60220143 Ry one-center paw contrib. = -9.25564016 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.06 Bohr mag/cell convergence has been achieved in 8 iterations Writing output data file pwscf.save init_run : 1.09s CPU 1.10s WALL ( 1 calls) electrons : 6.53s CPU 6.84s WALL ( 1 calls) Called by init_run: wfcinit : 0.14s CPU 0.14s WALL ( 1 calls) potinit : 0.18s CPU 0.18s WALL ( 1 calls) Called by electrons: c_bands : 2.77s CPU 2.80s WALL ( 8 calls) sum_band : 1.46s CPU 1.47s WALL ( 8 calls) v_of_rho : 0.81s CPU 0.81s WALL ( 9 calls) newd : 0.54s CPU 0.55s WALL ( 9 calls) mix_rho : 0.52s CPU 0.53s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.06s CPU 0.06s WALL ( 34 calls) regterg : 2.72s CPU 2.73s WALL ( 16 calls) Called by *egterg: h_psi : 2.62s CPU 2.62s WALL ( 57 calls) s_psi : 0.01s CPU 0.01s WALL ( 57 calls) g_psi : 0.04s CPU 0.04s WALL ( 39 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 55 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.01s WALL ( 57 calls) General routines calbec : 0.05s CPU 0.04s WALL ( 73 calls) fft : 0.72s CPU 0.72s WALL ( 95 calls) fftw : 2.49s CPU 2.47s WALL ( 398 calls) davcio : 0.00s CPU 0.02s WALL ( 50 calls) PAW routines PAW_pot : 0.19s CPU 0.20s WALL ( 9 calls) PAW_ddot : 0.13s CPU 0.13s WALL ( 85 calls) PWSCF : 7.85s CPU 8.21s WALL This run was terminated on: 11:22:15 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/vdw5.ref0000644000175000017500000003122212341373024014354 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10839) starts on 3Apr2014 at 8:44:36 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/vdw5.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = VDW-DF-C09 ( 1 4 16 0 1) Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 150 54 15 5457 1166 143 Max 151 55 16 5458 1183 144 Sum 301 109 31 10915 2349 287 Tot 151 55 16 bravais-lattice index = 4 lattice parameter (alat) = 4.6600 a.u. unit-cell volume = 227.8567 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 12 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 20 plain mixing Exchange-correlation = VDW-DF-C09 ( 1 4 16 0 1) celldm(1)= 4.660000 celldm(2)= 0.000000 celldm(3)= 2.600000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.600000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.384615 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pbe-van_bm.UPF MD5 check sum: 1a69bf6b8db32088f5b2163dbdb77a27 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 721 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 vdW kernel table read from file vdW_kernel_table MD5 check sum: f53da8562cfe6bfda6a1b4f380354fea atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 8 Sym. Ops., with inversion, found ( 4 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( -0.5000000 0.8660254 1.9500000 ) 2 C tau( 2) = ( 0.5000050 0.2886722 1.9500000 ) 3 C tau( 3) = ( -0.5000000 0.8660254 0.6500000 ) 4 C tau( 4) = ( -0.0000050 0.5773532 0.6500000 ) number of k points= 1 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5458 G-vectors FFT dimensions: ( 24, 24, 60) Smooth grid: 1175 G-vectors FFT dimensions: ( 15, 15, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 72, 12) NL pseudopotentials 0.04 Mb ( 72, 32) Each V/rho on FFT grid 0.26 Mb ( 17280) Each G-vector array 0.02 Mb ( 2729) G-vector shells 0.00 Mb ( 616) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 72, 48) Each subspace H/S matrix 0.02 Mb ( 48, 48) Each matrix 0.00 Mb ( 32, 12) Arrays for rho mixing 5.27 Mb ( 17280, 20) Initial potential from superposition of free atoms starting charge 15.99984, renormalised to 16.00000 ************************************************************************ * * You are using vdW-DF for exchange-correlation in this calculation. * Please cite the following three references that made this development * possible: * * M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and * B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). * * T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and * D. C. Langreth, Phys. Rev. B 76, 125112 (2007). * * G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009). * * * If you are using vdW-DF2, please also cite: * * K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and * D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010). * * * If you are calculating the stress with vdW-DF, please also cite: * * R. Sabatini, E. Kucukbenli, B. Kolb, T. Thonhauser, and * S. de Gironcoli, J. Phys.: Condens. Matter 24, 424209 (2012). * ************************************************************************ Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in reciprocal space ************************************************************************ Starting wfc are 16 randomized atomic wfcs total cpu time spent up to now is 0.3 secs per-process dynamical memory: 22.5 Mb Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs total energy = -44.12985777 Ry Harris-Foulkes estimate = -44.39091641 Ry estimated scf accuracy < 0.66496346 Ry iteration # 2 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.16E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -44.13058751 Ry Harris-Foulkes estimate = -44.16365618 Ry estimated scf accuracy < 0.09370729 Ry iteration # 3 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.86E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -44.13918122 Ry Harris-Foulkes estimate = -44.13912305 Ry estimated scf accuracy < 0.00315424 Ry iteration # 4 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.97E-05, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -44.13933450 Ry Harris-Foulkes estimate = -44.13931559 Ry estimated scf accuracy < 0.00002092 Ry iteration # 5 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.31E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 144 PWs) bands (ev): -11.7753 -11.3009 -1.0057 1.6346 5.6543 5.6547 5.8108 5.8112 11.8729 16.7189 16.7195 16.7502 the Fermi energy is 9.8909 ev ! total energy = -44.13934991 Ry Harris-Foulkes estimate = -44.13933998 Ry estimated scf accuracy < 0.00000078 Ry The total energy is the sum of the following terms: one-electron contribution = -6.67059759 Ry hartree contribution = 12.64116009 Ry xc contribution = -14.23746259 Ry ewald contribution = -35.87244982 Ry smearing contrib. (-TS) = 0.00000000 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00008199 -0.00004734 0.00000000 atom 2 type 1 force = -0.00007066 0.00004079 0.00000000 atom 3 type 1 force = -0.00008199 0.00004734 0.00000000 atom 4 type 1 force = 0.00007066 -0.00004079 0.00000000 Total force = 0.000177 Total SCF correction = 0.000285 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -380.13 -0.00281298 -0.00000045 0.00000000 -413.80 -0.07 0.00 -0.00000045 -0.00281350 0.00000000 -0.07 -413.88 0.00 0.00000000 0.00000000 -0.00212572 0.00 0.00 -312.70 Writing output data file pwscf.save init_run : 0.14s CPU 0.14s WALL ( 1 calls) electrons : 0.46s CPU 0.46s WALL ( 1 calls) forces : 0.02s CPU 0.02s WALL ( 1 calls) stress : 0.14s CPU 0.14s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.08s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 5 calls) sum_band : 0.04s CPU 0.04s WALL ( 5 calls) v_of_rho : 0.44s CPU 0.44s WALL ( 6 calls) newd : 0.03s CPU 0.03s WALL ( 6 calls) mix_rho : 0.01s CPU 0.01s WALL ( 5 calls) vdW_energy : 0.08s CPU 0.09s WALL ( 6 calls) vdW_ffts : 0.16s CPU 0.16s WALL ( 14 calls) vdW_v : 0.07s CPU 0.07s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 11 calls) regterg : 0.02s CPU 0.02s WALL ( 5 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 16 calls) s_psi : 0.00s CPU 0.00s WALL ( 16 calls) g_psi : 0.00s CPU 0.00s WALL ( 10 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 15 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 16 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 26 calls) fft : 0.28s CPU 0.25s WALL ( 444 calls) ffts : 0.00s CPU 0.00s WALL ( 11 calls) fftw : 0.01s CPU 0.01s WALL ( 192 calls) interpolate : 0.01s CPU 0.01s WALL ( 11 calls) davcio : 0.00s CPU 0.00s WALL ( 1 calls) Parallel routines fft_scatter : 0.04s CPU 0.06s WALL ( 647 calls) PWSCF : 1.16s CPU 1.36s WALL This run was terminated on: 8:44:38 3Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/md-pot_extrap2.ref0000644000175000017500000034512312341373024016344 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:45 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/md-pot_extrap2.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 31 869 869 113 bravais-lattice index = 2 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.43210225 Ry Harris-Foulkes estimate = -14.55434296 Ry estimated scf accuracy < 0.32483609 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -14.44687979 Ry Harris-Foulkes estimate = -14.44915621 Ry estimated scf accuracy < 0.01104147 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.44790249 Ry Harris-Foulkes estimate = -14.44786986 Ry estimated scf accuracy < 0.00019990 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793341 Ry Harris-Foulkes estimate = -14.44793322 Ry estimated scf accuracy < 0.00000435 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.43E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793716 Ry Harris-Foulkes estimate = -14.44793752 Ry estimated scf accuracy < 0.00000145 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793726 Ry Harris-Foulkes estimate = -14.44793727 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793736 Ry estimated scf accuracy < 0.00000013 Ry iteration # 8 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793733 Ry estimated scf accuracy < 0.00000002 Ry iteration # 9 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793737 Ry estimated scf accuracy < 0.00000017 Ry iteration # 10 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1610 7.5134 7.5134 ! total energy = -14.44793733 Ry Harris-Foulkes estimate = -14.44793734 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02329815 -0.02329818 -0.02329844 atom 2 type 1 force = 0.02329815 0.02329818 0.02329844 Total force = 0.057069 Total SCF correction = 0.000004 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123017881 -0.123017881 -0.123017881 Si 0.123017881 0.123017881 0.123017881 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -14.44793733 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1631 7.5123 7.5123 ! total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796266 Ry estimated scf accuracy < 6.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02308264 -0.02308255 -0.02308267 atom 2 type 1 force = 0.02308264 0.02308255 0.02308267 Total force = 0.056541 Total SCF correction = 0.000005 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123071192 -0.123071192 -0.123071192 Si 0.123071192 0.123071192 0.123071192 kinetic energy (Ekin) = 0.00002521 Ry temperature = 2.65359889 K Ekin + Etot (const) = -14.44793745 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order charge density extrapolation total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.91E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1694 7.5091 7.5091 ! total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02244208 -0.02244171 -0.02244166 atom 2 type 1 force = 0.02244208 0.02244171 0.02244166 Total force = 0.054971 Total SCF correction = 0.000013 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123158950 -0.123158950 -0.123158950 Si 0.123158950 0.123158950 0.123158950 kinetic energy (Ekin) = 0.00009899 Ry temperature = 10.41930179 K Ekin + Etot (const) = -14.44793780 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.22E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1795 7.5039 7.5039 ! total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815430 Ry estimated scf accuracy < 1.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02139726 -0.02139745 -0.02139871 atom 2 type 1 force = 0.02139726 0.02139745 0.02139871 Total force = 0.052414 Total SCF correction = 0.000014 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123279552 -0.123279551 -0.123279554 Si 0.123279552 0.123279551 0.123279554 kinetic energy (Ekin) = 0.00021595 Ry temperature = 22.73027210 K Ekin + Etot (const) = -14.44793835 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.04E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830662 Ry Harris-Foulkes estimate = -14.44830662 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.1935 7.4967 7.4967 ! total energy = -14.44830662 Ry Harris-Foulkes estimate = -14.44830662 Ry estimated scf accuracy < 3.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01996140 -0.01996124 -0.01996098 atom 2 type 1 force = 0.01996140 0.01996124 0.01996098 Total force = 0.048895 Total SCF correction = 0.000024 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123430794 -0.123430792 -0.123430797 Si 0.123430794 0.123430792 0.123430797 kinetic energy (Ekin) = 0.00036759 Ry temperature = 38.69134545 K Ekin + Etot (const) = -14.44793904 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.28E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848272 Ry Harris-Foulkes estimate = -14.44848273 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.86E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848272 Ry Harris-Foulkes estimate = -14.44848273 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2111 7.4877 7.4877 ! total energy = -14.44848272 Ry Harris-Foulkes estimate = -14.44848272 Ry estimated scf accuracy < 1.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01816699 -0.01816661 -0.01816687 atom 2 type 1 force = 0.01816699 0.01816661 0.01816687 Total force = 0.044499 Total SCF correction = 0.000001 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123609921 -0.123609918 -0.123609925 Si 0.123609921 0.123609918 0.123609925 kinetic energy (Ekin) = 0.00054289 Ry temperature = 57.14403911 K Ekin + Etot (const) = -14.44793983 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.24E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.2320 7.4771 7.4771 ! total energy = -14.44866990 Ry Harris-Foulkes estimate = -14.44866991 Ry estimated scf accuracy < 8.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01605175 -0.01605150 -0.01605295 atom 2 type 1 force = 0.01605175 0.01605150 0.01605295 Total force = 0.039319 Total SCF correction = 0.000040 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123813687 -0.123813682 -0.123813694 Si 0.123813687 0.123813682 0.123813694 kinetic energy (Ekin) = 0.00072924 Ry temperature = 76.75865756 K Ekin + Etot (const) = -14.44794066 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.21E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885477 Ry Harris-Foulkes estimate = -14.44885480 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.46E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885478 Ry Harris-Foulkes estimate = -14.44885478 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.2558 7.4650 7.4650 ! total energy = -14.44885478 Ry Harris-Foulkes estimate = -14.44885478 Ry estimated scf accuracy < 8.7E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01365898 -0.01365923 -0.01365916 atom 2 type 1 force = 0.01365898 0.01365923 0.01365916 Total force = 0.033458 Total SCF correction = 0.000002 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124038418 -0.124038412 -0.124038428 Si 0.124038418 0.124038412 0.124038428 kinetic energy (Ekin) = 0.00091330 Ry temperature = 96.13246823 K Ekin + Etot (const) = -14.44794148 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.09E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902425 Ry Harris-Foulkes estimate = -14.44902426 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.2821 7.4516 7.4516 ! total energy = -14.44902425 Ry Harris-Foulkes estimate = -14.44902425 Ry estimated scf accuracy < 3.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01103647 -0.01103669 -0.01103646 atom 2 type 1 force = 0.01103647 0.01103669 0.01103646 Total force = 0.027034 Total SCF correction = 0.000028 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124280090 -0.124280083 -0.124280103 Si 0.124280090 0.124280083 0.124280103 kinetic energy (Ekin) = 0.00108204 Ry temperature = 113.89321637 K Ekin + Etot (const) = -14.44794222 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.92E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.3 secs total energy = -14.44916645 Ry Harris-Foulkes estimate = -14.44916647 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.04E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3104 7.4373 7.4373 ! total energy = -14.44916646 Ry Harris-Foulkes estimate = -14.44916646 Ry estimated scf accuracy < 7.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00823470 -0.00823490 -0.00823475 atom 2 type 1 force = 0.00823470 0.00823490 0.00823475 Total force = 0.020171 Total SCF correction = 0.000040 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124534401 -0.124534394 -0.124534417 Si 0.124534401 0.124534394 0.124534417 kinetic energy (Ekin) = 0.00122364 Ry temperature = 128.79805444 K Ekin + Etot (const) = -14.44794282 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.41E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927159 Ry Harris-Foulkes estimate = -14.44927160 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3402 7.4223 7.4223 ! total energy = -14.44927160 Ry Harris-Foulkes estimate = -14.44927160 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00530670 -0.00530673 -0.00530652 atom 2 type 1 force = 0.00530670 0.00530673 0.00530652 Total force = 0.012999 Total SCF correction = 0.000034 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124796858 -0.124796850 -0.124796877 Si 0.124796858 0.124796850 0.124796877 kinetic energy (Ekin) = 0.00132835 Ry temperature = 139.81938494 K Ekin + Etot (const) = -14.44794325 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3710 7.4068 7.4068 ! total energy = -14.44933259 Ry Harris-Foulkes estimate = -14.44933259 Ry estimated scf accuracy < 6.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00230722 -0.00230722 -0.00230716 atom 2 type 1 force = 0.00230722 0.00230722 0.00230716 Total force = 0.005651 Total SCF correction = 0.000034 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125062856 -0.125062848 -0.125062878 Si 0.125062856 0.125062848 0.125062878 kinetic energy (Ekin) = 0.00138911 Ry temperature = 146.21496494 K Ekin + Etot (const) = -14.44794348 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.87E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934549 Ry Harris-Foulkes estimate = -14.44934553 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.85E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934550 Ry Harris-Foulkes estimate = -14.44934552 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.38E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3912 7.3912 7.4023 ! total energy = -14.44934551 Ry Harris-Foulkes estimate = -14.44934551 Ry estimated scf accuracy < 4.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00071223 0.00071200 0.00071233 atom 2 type 1 force = -0.00071223 -0.00071200 -0.00071233 Total force = 0.001744 Total SCF correction = 0.000008 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125327761 -0.125327753 -0.125327786 Si 0.125327761 0.125327753 0.125327786 kinetic energy (Ekin) = 0.00140201 Ry temperature = 147.57288257 K Ekin + Etot (const) = -14.44794350 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.45E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930981 Ry Harris-Foulkes estimate = -14.44930982 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3756 7.3756 7.4335 ! total energy = -14.44930981 Ry Harris-Foulkes estimate = -14.44930982 Ry estimated scf accuracy < 8.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00369628 0.00369556 0.00369635 atom 2 type 1 force = -0.00369628 -0.00369556 -0.00369635 Total force = 0.009053 Total SCF correction = 0.000033 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125586993 -0.125586985 -0.125587020 Si 0.125586993 0.125586985 0.125587020 kinetic energy (Ekin) = 0.00136650 Ry temperature = 143.83520752 K Ekin + Etot (const) = -14.44794332 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.09E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922829 Ry Harris-Foulkes estimate = -14.44922833 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.91E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922831 Ry Harris-Foulkes estimate = -14.44922833 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.13E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3604 7.3604 7.4641 ! total energy = -14.44922831 Ry Harris-Foulkes estimate = -14.44922831 Ry estimated scf accuracy < 3.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00659626 0.00659570 0.00659615 atom 2 type 1 force = -0.00659626 -0.00659570 -0.00659615 Total force = 0.016157 Total SCF correction = 0.000003 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125836100 -0.125836094 -0.125836130 Si 0.125836100 0.125836094 0.125836130 kinetic energy (Ekin) = 0.00128537 Ry temperature = 135.29535232 K Ekin + Etot (const) = -14.44794295 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.19E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910688 Ry Harris-Foulkes estimate = -14.44910689 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3458 7.3458 7.4935 ! total energy = -14.44910688 Ry Harris-Foulkes estimate = -14.44910689 Ry estimated scf accuracy < 5.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00936207 0.00936220 0.00936259 atom 2 type 1 force = -0.00936207 -0.00936220 -0.00936259 Total force = 0.022933 Total SCF correction = 0.000032 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126070836 -0.126070832 -0.126070868 Si 0.126070836 0.126070832 0.126070868 kinetic energy (Ekin) = 0.00116448 Ry temperature = 122.57070685 K Ekin + Etot (const) = -14.44794241 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.47E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895404 Ry Harris-Foulkes estimate = -14.44895408 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.15E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895405 Ry Harris-Foulkes estimate = -14.44895407 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.09E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.3321 7.3321 7.5213 ! total energy = -14.44895406 Ry Harris-Foulkes estimate = -14.44895406 Ry estimated scf accuracy < 5.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01195320 0.01195315 0.01195358 atom 2 type 1 force = -0.01195320 -0.01195315 -0.01195358 Total force = 0.029280 Total SCF correction = 0.000002 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126287225 -0.126287222 -0.126287258 Si 0.126287225 0.126287222 0.126287258 kinetic energy (Ekin) = 0.00101231 Ry temperature = 106.55442374 K Ekin + Etot (const) = -14.44794175 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878037 Ry Harris-Foulkes estimate = -14.44878038 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3195 7.3195 7.5470 ! total energy = -14.44878038 Ry Harris-Foulkes estimate = -14.44878038 Ry estimated scf accuracy < 3.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01432616 0.01432621 0.01432662 atom 2 type 1 force = -0.01432616 -0.01432621 -0.01432662 Total force = 0.035092 Total SCF correction = 0.000028 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126481624 -0.126481623 -0.126481658 Si 0.126481624 0.126481623 0.126481658 kinetic energy (Ekin) = 0.00083938 Ry temperature = 88.35112531 K Ekin + Etot (const) = -14.44794100 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.01E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859766 Ry Harris-Foulkes estimate = -14.44859767 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859766 Ry Harris-Foulkes estimate = -14.44859767 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.3082 7.3082 7.5700 ! total energy = -14.44859766 Ry Harris-Foulkes estimate = -14.44859766 Ry estimated scf accuracy < 5.5E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01644702 0.01644710 0.01644750 atom 2 type 1 force = -0.01644702 -0.01644710 -0.01644750 Total force = 0.040287 Total SCF correction = 0.000003 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126650778 -0.126650778 -0.126650812 Si 0.126650778 0.126650778 0.126650812 kinetic energy (Ekin) = 0.00065744 Ry temperature = 69.20079045 K Ekin + Etot (const) = -14.44794023 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2984 7.2984 7.5901 ! total energy = -14.44841824 Ry Harris-Foulkes estimate = -14.44841824 Ry estimated scf accuracy < 5.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01828246 0.01828250 0.01828288 atom 2 type 1 force = -0.01828246 -0.01828250 -0.01828288 Total force = 0.044783 Total SCF correction = 0.000035 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126791869 -0.126791871 -0.126791903 Si 0.126791869 0.126791871 0.126791903 kinetic energy (Ekin) = 0.00047877 Ry temperature = 50.39469706 K Ekin + Etot (const) = -14.44793946 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.14E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825408 Ry Harris-Foulkes estimate = -14.44825410 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.91E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825409 Ry Harris-Foulkes estimate = -14.44825410 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.2902 7.2902 7.6069 ! total energy = -14.44825409 Ry Harris-Foulkes estimate = -14.44825409 Ry estimated scf accuracy < 3.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01980919 0.01980928 0.01980963 atom 2 type 1 force = -0.01980919 -0.01980928 -0.01980963 Total force = 0.048523 Total SCF correction = 0.000002 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126902555 -0.126902558 -0.126902586 Si 0.126902555 0.126902558 0.126902586 kinetic energy (Ekin) = 0.00031532 Ry temperature = 33.18978531 K Ekin + Etot (const) = -14.44793877 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811613 Ry Harris-Foulkes estimate = -14.44811614 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2838 7.2838 7.6201 ! total energy = -14.44811613 Ry Harris-Foulkes estimate = -14.44811613 Ry estimated scf accuracy < 7.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02100181 0.02100187 0.02100220 atom 2 type 1 force = -0.02100181 -0.02100187 -0.02100220 Total force = 0.051444 Total SCF correction = 0.000032 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126981003 -0.126981008 -0.126981033 Si 0.126981003 0.126981008 0.126981033 kinetic energy (Ekin) = 0.00017793 Ry temperature = 18.72885015 K Ekin + Etot (const) = -14.44793820 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.57E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.8 secs total energy = -14.44801345 Ry Harris-Foulkes estimate = -14.44801349 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.21E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs total energy = -14.44801346 Ry Harris-Foulkes estimate = -14.44801349 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2792 7.2792 7.6294 ! total energy = -14.44801347 Ry Harris-Foulkes estimate = -14.44801347 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02184566 0.02184569 0.02184600 atom 2 type 1 force = -0.02184566 -0.02184569 -0.02184600 Total force = 0.053511 Total SCF correction = 0.000005 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127025920 -0.127025926 -0.127025948 Si 0.127025920 0.127025926 0.127025948 kinetic energy (Ekin) = 0.00007570 Ry temperature = 7.96813048 K Ekin + Etot (const) = -14.44793777 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-11, avg # of iterations = 5.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2766 7.2766 7.6348 ! total energy = -14.44795288 Ry Harris-Foulkes estimate = -14.44795288 Ry estimated scf accuracy < 6.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02232642 0.02232654 0.02232679 atom 2 type 1 force = -0.02232642 -0.02232654 -0.02232679 Total force = 0.054689 Total SCF correction = 0.000011 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127036567 -0.127036574 -0.127036592 Si 0.127036567 0.127036574 0.127036592 kinetic energy (Ekin) = 0.00001536 Ry temperature = 1.61637694 K Ekin + Etot (const) = -14.44793752 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.36E-11, avg # of iterations = 4.0 total cpu time spent up to now is 0.8 secs total energy = -14.44793831 Ry Harris-Foulkes estimate = -14.44793833 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.96E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.8 secs total energy = -14.44793831 Ry Harris-Foulkes estimate = -14.44793834 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.96E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2760 7.2760 7.6360 ! total energy = -14.44793832 Ry Harris-Foulkes estimate = -14.44793832 Ry estimated scf accuracy < 4.8E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02244189 0.02244196 0.02244217 atom 2 type 1 force = -0.02244189 -0.02244196 -0.02244217 Total force = 0.054971 Total SCF correction = 0.000002 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127012767 -0.127012775 -0.127012788 Si 0.127012767 0.127012775 0.127012788 kinetic energy (Ekin) = 0.00000086 Ry temperature = 0.09059622 K Ekin + Etot (const) = -14.44793746 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.77E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.9 secs total energy = -14.44797072 Ry Harris-Foulkes estimate = -14.44797079 Ry estimated scf accuracy < 0.00000011 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.35E-09, avg # of iterations = 4.0 total cpu time spent up to now is 0.9 secs total energy = -14.44797074 Ry Harris-Foulkes estimate = -14.44797080 Ry estimated scf accuracy < 0.00000019 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.35E-09, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2774 7.2774 7.6332 ! total energy = -14.44797076 Ry Harris-Foulkes estimate = -14.44797076 Ry estimated scf accuracy < 1.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02218650 0.02218656 0.02218672 atom 2 type 1 force = -0.02218650 -0.02218656 -0.02218672 Total force = 0.054346 Total SCF correction = 0.000003 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126954913 -0.126954921 -0.126954930 Si 0.126954913 0.126954921 0.126954930 kinetic energy (Ekin) = 0.00003317 Ry temperature = 3.49105172 K Ekin + Etot (const) = -14.44793760 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.22E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.2807 7.2807 7.6263 ! total energy = -14.44804807 Ry Harris-Foulkes estimate = -14.44804807 Ry estimated scf accuracy < 7.5E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02156573 0.02156581 0.02156592 atom 2 type 1 force = -0.02156573 -0.02156581 -0.02156592 Total force = 0.052825 Total SCF correction = 0.000002 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126863956 -0.126863964 -0.126863968 Si 0.126863956 0.126863964 0.126863968 kinetic energy (Ekin) = 0.00011016 Ry temperature = 11.59474463 K Ekin + Etot (const) = -14.44793791 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.82E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2860 7.2860 7.6155 ! total energy = -14.44816516 Ry Harris-Foulkes estimate = -14.44816516 Ry estimated scf accuracy < 3.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02058677 0.02058691 0.02058696 atom 2 type 1 force = -0.02058677 -0.02058691 -0.02058696 Total force = 0.050427 Total SCF correction = 0.000007 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126741399 -0.126741408 -0.126741407 Si 0.126741399 0.126741408 0.126741407 kinetic energy (Ekin) = 0.00022677 Ry temperature = 23.86899537 K Ekin + Etot (const) = -14.44793840 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.29E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2931 7.2931 7.6009 ! total energy = -14.44831432 Ry Harris-Foulkes estimate = -14.44831433 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01926534 0.01926557 0.01926552 atom 2 type 1 force = -0.01926534 -0.01926557 -0.01926552 Total force = 0.047191 Total SCF correction = 0.000022 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126589271 -0.126589280 -0.126589275 Si 0.126589271 0.126589280 0.126589275 kinetic energy (Ekin) = 0.00037531 Ry temperature = 39.50478269 K Ekin + Etot (const) = -14.44793901 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.93E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -14.44848567 Ry Harris-Foulkes estimate = -14.44848569 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.3019 7.3019 7.5828 ! total energy = -14.44848568 Ry Harris-Foulkes estimate = -14.44848568 Ry estimated scf accuracy < 9.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01761709 0.01761752 0.01761744 atom 2 type 1 force = -0.01761709 -0.01761752 -0.01761744 Total force = 0.043154 Total SCF correction = 0.000042 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126410102 -0.126410111 -0.126410101 Si 0.126410102 0.126410111 0.126410101 kinetic energy (Ekin) = 0.00054596 Ry temperature = 57.46670519 K Ekin + Etot (const) = -14.44793972 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.42E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866779 Ry Harris-Foulkes estimate = -14.44866784 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866781 Ry Harris-Foulkes estimate = -14.44866784 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.54E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3124 7.3124 7.5615 ! total energy = -14.44866782 Ry Harris-Foulkes estimate = -14.44866782 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01566780 0.01566802 0.01566787 atom 2 type 1 force = -0.01566780 -0.01566802 -0.01566787 Total force = 0.038378 Total SCF correction = 0.000003 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126206884 -0.126206892 -0.126206877 Si 0.126206884 0.126206892 0.126206877 kinetic energy (Ekin) = 0.00072733 Ry temperature = 76.55764250 K Ekin + Etot (const) = -14.44794049 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.07E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884853 Ry Harris-Foulkes estimate = -14.44884854 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.3242 7.3242 7.5375 ! total energy = -14.44884853 Ry Harris-Foulkes estimate = -14.44884853 Ry estimated scf accuracy < 9.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01344761 0.01344779 0.01344746 atom 2 type 1 force = -0.01344761 -0.01344779 -0.01344746 Total force = 0.032940 Total SCF correction = 0.000034 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125983025 -0.125983031 -0.125983013 Si 0.125983025 0.125983031 0.125983013 kinetic energy (Ekin) = 0.00090728 Ry temperature = 95.49816272 K Ekin + Etot (const) = -14.44794125 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.18E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.1 secs total energy = -14.44901556 Ry Harris-Foulkes estimate = -14.44901560 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.66E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs total energy = -14.44901558 Ry Harris-Foulkes estimate = -14.44901560 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.00E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.3372 7.3372 7.5109 ! total energy = -14.44901558 Ry Harris-Foulkes estimate = -14.44901558 Ry estimated scf accuracy < 3.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01098650 0.01098612 0.01098552 atom 2 type 1 force = -0.01098650 -0.01098612 -0.01098552 Total force = 0.026910 Total SCF correction = 0.000005 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125742302 -0.125742307 -0.125742286 Si 0.125742302 0.125742307 0.125742286 kinetic energy (Ekin) = 0.00107362 Ry temperature = 113.00698143 K Ekin + Etot (const) = -14.44794197 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.01E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915755 Ry Harris-Foulkes estimate = -14.44915756 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3513 7.3513 7.4825 ! total energy = -14.44915755 Ry Harris-Foulkes estimate = -14.44915756 Ry estimated scf accuracy < 9.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00832316 0.00832299 0.00832263 atom 2 type 1 force = -0.00832316 -0.00832299 -0.00832263 Total force = 0.020387 Total SCF correction = 0.000022 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125488803 -0.125488808 -0.125488784 Si 0.125488803 0.125488808 0.125488784 kinetic energy (Ekin) = 0.00121497 Ry temperature = 127.88540686 K Ekin + Etot (const) = -14.44794258 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.54E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926453 Ry Harris-Foulkes estimate = -14.44926463 Ry estimated scf accuracy < 0.00000016 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926456 Ry Harris-Foulkes estimate = -14.44926463 Ry estimated scf accuracy < 0.00000022 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3661 7.3662 7.4525 ! total energy = -14.44926458 Ry Harris-Foulkes estimate = -14.44926459 Ry estimated scf accuracy < 2.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00549933 0.00549907 0.00549864 atom 2 type 1 force = -0.00549933 -0.00549907 -0.00549864 Total force = 0.013470 Total SCF correction = 0.000009 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125226863 -0.125226868 -0.125226843 Si 0.125226863 0.125226868 0.125226843 kinetic energy (Ekin) = 0.00132152 Ry temperature = 139.10071400 K Ekin + Etot (const) = -14.44794307 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.94E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs total energy = -14.44932909 Ry Harris-Foulkes estimate = -14.44932912 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.81E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932911 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.22E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3815 7.3815 7.4216 ! total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932911 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00256275 0.00256241 0.00256209 atom 2 type 1 force = -0.00256275 -0.00256241 -0.00256209 Total force = 0.006277 Total SCF correction = 0.000009 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124960990 -0.124960995 -0.124960968 Si 0.124960990 0.124960995 0.124960968 kinetic energy (Ekin) = 0.00138573 Ry temperature = 145.85947949 K Ekin + Etot (const) = -14.44794337 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.52E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934634 Ry Harris-Foulkes estimate = -14.44934636 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.90E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934635 Ry Harris-Foulkes estimate = -14.44934636 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.69E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3903 7.3972 7.3972 ! total energy = -14.44934635 Ry Harris-Foulkes estimate = -14.44934635 Ry estimated scf accuracy < 7.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00044147 -0.00044145 -0.00044167 atom 2 type 1 force = 0.00044147 0.00044145 0.00044167 Total force = 0.001082 Total SCF correction = 0.000006 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124695794 -0.124695800 -0.124695772 Si 0.124695794 0.124695800 0.124695772 kinetic energy (Ekin) = 0.00140288 Ry temperature = 147.66428722 K Ekin + Etot (const) = -14.44794348 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.94E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931479 Ry Harris-Foulkes estimate = -14.44931480 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.80E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931479 Ry Harris-Foulkes estimate = -14.44931480 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3591 7.4128 7.4128 ! total energy = -14.44931479 Ry Harris-Foulkes estimate = -14.44931479 Ry estimated scf accuracy < 1.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00345890 -0.00345859 -0.00345922 atom 2 type 1 force = 0.00345890 0.00345859 0.00345922 Total force = 0.008473 Total SCF correction = 0.000003 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124435907 -0.124435913 -0.124435885 Si 0.124435907 0.124435913 0.124435885 kinetic energy (Ekin) = 0.00137142 Ry temperature = 144.35370545 K Ekin + Etot (const) = -14.44794337 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.32E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3286 7.4281 7.4281 ! total energy = -14.44923627 Ry Harris-Foulkes estimate = -14.44923627 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00643828 -0.00643841 -0.00643792 atom 2 type 1 force = 0.00643828 0.00643841 0.00643792 Total force = 0.015770 Total SCF correction = 0.000025 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124185903 -0.124185909 -0.124185881 Si 0.124185903 0.124185909 0.124185881 kinetic energy (Ekin) = 0.00129322 Ry temperature = 136.12175879 K Ekin + Etot (const) = -14.44794305 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.92E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -14.44911594 Ry Harris-Foulkes estimate = -14.44911596 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.83E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs total energy = -14.44911595 Ry Harris-Foulkes estimate = -14.44911596 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.49E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.2993 7.4429 7.4429 ! total energy = -14.44911595 Ry Harris-Foulkes estimate = -14.44911595 Ry estimated scf accuracy < 2.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00932403 -0.00932415 -0.00932414 atom 2 type 1 force = 0.00932403 0.00932415 0.00932414 Total force = 0.022839 Total SCF correction = 0.000003 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123950210 -0.123950217 -0.123950188 Si 0.123950210 0.123950217 0.123950188 kinetic energy (Ekin) = 0.00117340 Ry temperature = 123.51032521 K Ekin + Etot (const) = -14.44794255 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.26E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.2717 7.4569 7.4569 ! total energy = -14.44896202 Ry Harris-Foulkes estimate = -14.44896202 Ry estimated scf accuracy < 5.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01206398 -0.01206383 -0.01206439 atom 2 type 1 force = 0.01206398 0.01206383 0.01206439 Total force = 0.029551 Total SCF correction = 0.000033 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123733035 -0.123733043 -0.123733013 Si 0.123733035 0.123733043 0.123733013 kinetic energy (Ekin) = 0.00102014 Ry temperature = 107.37779010 K Ekin + Etot (const) = -14.44794188 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.06E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44878515 Ry Harris-Foulkes estimate = -14.44878517 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.25E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44878516 Ry Harris-Foulkes estimate = -14.44878517 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2464 7.4698 7.4698 ! total energy = -14.44878516 Ry Harris-Foulkes estimate = -14.44878516 Ry estimated scf accuracy < 2.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01460426 -0.01460427 -0.01460448 atom 2 type 1 force = 0.01460426 0.01460427 0.01460448 Total force = 0.035773 Total SCF correction = 0.000002 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123538277 -0.123538285 -0.123538256 Si 0.123538277 0.123538285 0.123538256 kinetic energy (Ekin) = 0.00084405 Ry temperature = 88.84342796 K Ekin + Etot (const) = -14.44794111 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.91E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.2236 7.4813 7.4813 ! total energy = -14.44859781 Ry Harris-Foulkes estimate = -14.44859781 Ry estimated scf accuracy < 5.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01689604 -0.01689629 -0.01689609 atom 2 type 1 force = 0.01689604 0.01689629 0.01689609 Total force = 0.041387 Total SCF correction = 0.000036 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123369453 -0.123369461 -0.123369433 Si 0.123369453 0.123369461 0.123369433 kinetic energy (Ekin) = 0.00065754 Ry temperature = 69.21110068 K Ekin + Etot (const) = -14.44794027 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.31E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841328 Ry Harris-Foulkes estimate = -14.44841330 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.82E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841329 Ry Harris-Foulkes estimate = -14.44841330 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2040 7.4914 7.4914 ! total energy = -14.44841329 Ry Harris-Foulkes estimate = -14.44841329 Ry estimated scf accuracy < 1.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01889345 -0.01889338 -0.01889347 atom 2 type 1 force = 0.01889345 0.01889338 0.01889347 Total force = 0.046279 Total SCF correction = 0.000003 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123229630 -0.123229639 -0.123229610 Si 0.123229630 0.123229639 0.123229610 kinetic energy (Ekin) = 0.00047385 Ry temperature = 49.87637924 K Ekin + Etot (const) = -14.44793944 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.05E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1877 7.4997 7.4997 ! total energy = -14.44824484 Ry Harris-Foulkes estimate = -14.44824485 Ry estimated scf accuracy < 8.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02055408 -0.02055396 -0.02055427 atom 2 type 1 force = 0.02055408 0.02055396 0.02055427 Total force = 0.050347 Total SCF correction = 0.000040 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123121356 -0.123121365 -0.123121337 Si 0.123121356 0.123121365 0.123121337 kinetic energy (Ekin) = 0.00030617 Ry temperature = 32.22658670 K Ekin + Etot (const) = -14.44793868 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs total energy = -14.44810462 Ry Harris-Foulkes estimate = -14.44810466 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.05E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs total energy = -14.44810464 Ry Harris-Foulkes estimate = -14.44810465 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.04E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1751 7.5061 7.5061 ! total energy = -14.44810464 Ry Harris-Foulkes estimate = -14.44810464 Ry estimated scf accuracy < 1.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02184599 -0.02184589 -0.02184613 atom 2 type 1 force = 0.02184599 0.02184589 0.02184613 Total force = 0.053512 Total SCF correction = 0.000001 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123046614 -0.123046623 -0.123046597 Si 0.123046614 0.123046623 0.123046597 kinetic energy (Ekin) = 0.00016661 Ry temperature = 17.53659766 K Ekin + Etot (const) = -14.44793804 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.95E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1664 7.5106 7.5106 ! total energy = -14.44800287 Ry Harris-Foulkes estimate = -14.44800287 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02273988 -0.02273977 -0.02274008 atom 2 type 1 force = 0.02273988 0.02273977 0.02274008 Total force = 0.055701 Total SCF correction = 0.000032 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123006777 -0.123006786 -0.123006761 Si 0.123006777 0.123006786 0.123006761 kinetic energy (Ekin) = 0.00006530 Ry temperature = 6.87345701 K Ekin + Etot (const) = -14.44793757 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.46E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs total energy = -14.44794695 Ry Harris-Foulkes estimate = -14.44794697 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1618 7.5130 7.5130 ! total energy = -14.44794696 Ry Harris-Foulkes estimate = -14.44794696 Ry estimated scf accuracy < 9.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02321678 -0.02321668 -0.02321694 atom 2 type 1 force = 0.02321678 0.02321668 0.02321694 Total force = 0.056869 Total SCF correction = 0.000038 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123002576 -0.123002585 -0.123002562 Si 0.123002576 0.123002585 0.123002562 kinetic energy (Ekin) = 0.00000965 Ry temperature = 1.01533556 K Ekin + Etot (const) = -14.44793731 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.54E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs total energy = -14.44794099 Ry Harris-Foulkes estimate = -14.44794100 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs total energy = -14.44794099 Ry Harris-Foulkes estimate = -14.44794100 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.76E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1613 7.5132 7.5132 ! total energy = -14.44794100 Ry Harris-Foulkes estimate = -14.44794100 Ry estimated scf accuracy < 3.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02326705 -0.02326697 -0.02326725 atom 2 type 1 force = 0.02326705 0.02326697 0.02326725 Total force = 0.056992 Total SCF correction = 0.000001 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123034089 -0.123034097 -0.123034077 Si 0.123034089 0.123034097 0.123034077 kinetic energy (Ekin) = 0.00000371 Ry temperature = 0.39058282 K Ekin + Etot (const) = -14.44793729 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order charge density extrapolation total cpu time spent up to now is 1.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.17E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs total energy = -14.44798513 Ry Harris-Foulkes estimate = -14.44798567 Ry estimated scf accuracy < 0.00000089 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.12E-08, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs total energy = -14.44798534 Ry Harris-Foulkes estimate = -14.44798554 Ry estimated scf accuracy < 0.00000046 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.80E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1650 7.5113 7.5113 ! total energy = -14.44798542 Ry Harris-Foulkes estimate = -14.44798542 Ry estimated scf accuracy < 8.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02288857 -0.02288851 -0.02288867 atom 2 type 1 force = 0.02288857 0.02288851 0.02288867 Total force = 0.056065 Total SCF correction = 0.000003 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123100734 -0.123100742 -0.123100724 Si 0.123100734 0.123100742 0.123100724 kinetic energy (Ekin) = 0.00004793 Ry temperature = 5.04471181 K Ekin + Etot (const) = -14.44793749 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 second order charge density extrapolation total cpu time spent up to now is 1.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.59E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1727 7.5074 7.5074 ! total energy = -14.44807697 Ry Harris-Foulkes estimate = -14.44807697 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02209269 -0.02209254 -0.02209276 atom 2 type 1 force = 0.02209269 0.02209254 0.02209276 Total force = 0.054116 Total SCF correction = 0.000003 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000000 cm^2/s atom 2 D = 0.00000000 cm^2/s < D > = 0.00000000 cm^2/s Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123201291 -0.123201298 -0.123201283 Si 0.123201291 0.123201298 0.123201283 kinetic energy (Ekin) = 0.00013906 Ry temperature = 14.63730321 K Ekin + Etot (const) = -14.44793791 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.38s CPU 0.41s WALL ( 51 calls) update_pot : 0.19s CPU 0.23s WALL ( 50 calls) forces : 0.02s CPU 0.03s WALL ( 51 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.20s CPU 0.22s WALL ( 169 calls) sum_band : 0.07s CPU 0.05s WALL ( 169 calls) v_of_rho : 0.08s CPU 0.08s WALL ( 170 calls) mix_rho : 0.01s CPU 0.01s WALL ( 169 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 339 calls) cegterg : 0.19s CPU 0.21s WALL ( 169 calls) Called by *egterg: h_psi : 0.14s CPU 0.14s WALL ( 597 calls) g_psi : 0.00s CPU 0.01s WALL ( 427 calls) cdiaghg : 0.04s CPU 0.03s WALL ( 496 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 597 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 648 calls) fft : 0.06s CPU 0.05s WALL ( 881 calls) fftw : 0.15s CPU 0.13s WALL ( 4860 calls) davcio : 0.00s CPU 0.00s WALL ( 119 calls) PWSCF : 1.42s CPU 1.65s WALL This run was terminated on: 10:24:47 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-mixing_ndim.ref0000644000175000017500000002117012341373024016543 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-mixing_ndim.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 4 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.21 Mb ( 3375, 4) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102865 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441848 Ry estimated scf accuracy < 0.00230223 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450063 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000449 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378641 Ry hartree contribution = 1.08429090 Ry xc contribution = -4.81281466 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.02s WALL ( 6 calls) sum_band : 0.01s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) fftw : 0.02s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 38 calls) PWSCF : 0.10s CPU 0.11s WALL This run was terminated on: 11:28:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf.ref0000644000175000017500000002170112341373024014243 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102865 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441848 Ry estimated scf accuracy < 0.00230223 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450063 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000449 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378641 Ry hartree contribution = 1.08429090 Ry xc contribution = -4.81281466 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020597 0.00000000 0.00000000 -30.30 0.00 0.00 0.00000000 -0.00020597 0.00000000 0.00 -30.30 0.00 0.00000000 0.00000000 -0.00020597 0.00 0.00 -30.30 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) stress : 0.01s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 6 calls) sum_band : 0.01s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.02s CPU 0.01s WALL ( 332 calls) PWSCF : 0.10s CPU 0.12s WALL This run was terminated on: 11:28:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/gau-pbe-si222.ref0000644000175000017500000005362212341373024015656 0ustar mbamba Program PWSCF v.5.1rc1 (svn rev. 10901) starts on 25Apr2014 at 8:25: 7 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/gau-pbe222.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = GAUP ( 1 4 20 4 0) EXX-fraction = 0.24 Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used EXX: setup a grid of 80 q-points centered on each k-point (k+q)-points: 0.1250000 0.1250000 0.1250000 1 1 -0.3750000 0.6250000 -0.3750000 10 11 -0.3750000 -0.3750000 -0.3750000 9 -1 0.1250000 -0.8750000 0.1250000 4 -11 -0.3750000 -0.3750000 0.6250000 10 2 -0.8750000 0.1250000 0.1250000 4 -8 0.1250000 0.1250000 -0.8750000 4 -2 0.6250000 -0.3750000 -0.3750000 10 8 0.1250000 0.1250000 0.3750000 2 1 -0.3750000 0.6250000 -0.1250000 6 11 -0.3750000 -0.3750000 -0.1250000 5 -9 0.1250000 -0.8750000 0.3750000 7 -23 0.6250000 0.6250000 -0.1250000 8 -10 -0.8750000 0.1250000 0.3750000 7 -8 0.1250000 0.1250000 -0.6250000 3 -2 0.6250000 -0.3750000 -0.1250000 6 19 0.1250000 0.1250000 0.6250000 3 1 -0.3750000 0.6250000 0.1250000 6 -12 -0.3750000 -0.3750000 0.1250000 5 10 -0.8750000 0.1250000 -0.3750000 7 7 0.6250000 0.6250000 0.1250000 8 9 0.1250000 -0.8750000 -0.3750000 7 21 0.1250000 0.1250000 -0.3750000 2 -2 0.6250000 -0.3750000 0.1250000 6 -17 0.1250000 0.1250000 0.8750000 4 1 -0.3750000 0.6250000 0.3750000 10 -12 -0.3750000 -0.3750000 0.3750000 9 2 -0.8750000 0.1250000 -0.1250000 4 7 -0.3750000 -0.3750000 -0.6250000 10 -1 0.1250000 -0.8750000 -0.1250000 4 12 0.1250000 0.1250000 -0.1250000 1 -2 0.6250000 -0.3750000 0.3750000 10 -7 0.1250000 0.3750000 0.3750000 5 1 -0.3750000 0.8750000 -0.1250000 7 11 -0.3750000 -0.1250000 -0.1250000 2 -5 0.1250000 -0.6250000 0.3750000 6 -23 -0.3750000 -0.1250000 0.8750000 7 13 0.1250000 -0.6250000 -0.6250000 8 4 0.1250000 0.3750000 -0.6250000 6 -2 0.6250000 -0.1250000 -0.1250000 3 8 0.1250000 0.3750000 0.6250000 6 1 -0.3750000 0.8750000 0.1250000 7 -12 -0.3750000 -0.1250000 0.1250000 2 6 0.1250000 -0.6250000 0.6250000 8 -3 -0.3750000 -0.1250000 -0.8750000 7 -14 0.1250000 -0.6250000 -0.3750000 6 21 0.1250000 0.3750000 -0.3750000 5 -2 0.6250000 -0.1250000 0.1250000 3 -7 0.1250000 0.3750000 0.8750000 7 1 0.6250000 -0.1250000 -0.6250000 8 8 -0.3750000 -0.1250000 0.3750000 5 6 -0.8750000 0.3750000 -0.1250000 7 17 -0.3750000 -0.1250000 -0.6250000 6 -14 0.1250000 -0.6250000 -0.1250000 3 12 0.1250000 0.3750000 -0.1250000 2 -10 0.6250000 -0.1250000 0.3750000 6 -7 0.1250000 0.6250000 0.6250000 8 1 -0.3750000 -0.8750000 0.1250000 7 10 -0.3750000 0.1250000 0.1250000 2 -8 0.1250000 -0.3750000 0.6250000 6 -3 -0.3750000 0.1250000 -0.8750000 7 16 0.1250000 -0.3750000 -0.3750000 5 4 0.1250000 0.6250000 -0.3750000 6 -24 0.6250000 0.1250000 0.1250000 3 5 0.3750000 0.3750000 0.3750000 9 1 -0.1250000 0.8750000 -0.1250000 4 11 -0.1250000 -0.1250000 -0.1250000 1 -1 0.3750000 -0.6250000 0.3750000 10 -11 -0.1250000 -0.1250000 0.8750000 4 2 -0.6250000 0.3750000 0.3750000 10 -8 0.3750000 0.3750000 -0.6250000 10 -2 0.8750000 -0.1250000 -0.1250000 4 8 0.3750000 0.3750000 0.6250000 10 1 -0.1250000 0.8750000 0.1250000 4 -12 -0.1250000 -0.1250000 0.1250000 1 2 -0.6250000 0.3750000 -0.3750000 10 7 -0.1250000 -0.1250000 -0.8750000 4 -1 0.3750000 -0.6250000 -0.3750000 10 12 0.3750000 0.3750000 -0.3750000 9 -2 0.8750000 -0.1250000 0.1250000 4 -7 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 30 728 728 153 Max 82 82 31 731 731 154 Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = GAUP ( 1 4 20 4 0) EXX-fraction = 0.24 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 99, 8) NL pseudopotentials 0.01 Mb ( 99, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 99, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.1 secs iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4476 4.7282 5.9961 5.9961 8.9449 9.3568 9.3569 11.1864 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1160 4.9391 5.0502 8.5385 10.1246 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8637 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7127 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7928 3.5449 7.2968 8.3741 14.7162 14.7745 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4109 1.6834 3.9583 5.4867 9.1322 10.0722 10.2721 12.7293 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3206 9.2854 9.9751 11.4585 12.3758 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6946 -0.3359 2.2539 4.3555 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9476 0.3457 5.1681 5.1681 8.1196 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6289 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2968 convergence has been achieved in 4 iterations EXX: now go back to refine exchange calculation total cpu time spent up to now is 0.4 secs per-process dynamical memory: 21.7 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 3.7 total cpu time spent up to now is 1.8 secs iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-06, avg # of iterations = 1.0 total cpu time spent up to now is 2.5 secs iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.28E-08, avg # of iterations = 1.4 total cpu time spent up to now is 3.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.7182 3.9640 5.2661 5.2661 9.4099 9.7126 9.7126 11.9269 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -7.1425 2.3134 4.1527 4.3424 8.8664 10.6181 11.3174 11.7131 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -6.0032 0.5077 2.8198 3.1958 8.0493 9.7252 12.9623 13.2115 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.2064 -1.7904 1.9654 2.6753 7.5997 8.7185 15.3332 15.4617 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.5923 0.7975 3.1710 4.7716 9.6070 10.4175 10.7155 13.3177 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.4463 -0.6603 2.1421 3.5573 9.6526 10.3993 11.9066 12.9117 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.9272 -2.0378 1.3974 2.4503 9.1471 11.1033 12.1817 14.4703 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5352 -1.6731 1.4740 3.5486 8.6255 12.3807 12.4315 13.9822 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -6.0994 -0.6251 4.4076 4.4076 8.5748 10.2720 10.2720 15.0380 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.1265 -1.7255 3.2154 3.8615 9.0177 10.4198 10.9679 14.3847 highest occupied, lowest unoccupied level (ev): 5.2661 7.5997 convergence has been achieved in 3 iterations total energy = -15.85960115 Ry Harris-Foulkes estimate = -15.85961051 Ry est. exchange err (dexx) = 0.00016166 Ry - averaged Fock potential = 1.77265606 Ry + Fock energy = -0.88875263 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 3.7 secs per-process dynamical memory: 21.9 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.28E-08, avg # of iterations = 3.0 total cpu time spent up to now is 4.7 secs iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-08, avg # of iterations = 1.0 total cpu time spent up to now is 5.4 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.7110 3.9538 5.2381 5.2381 9.4317 9.7303 9.7303 11.9387 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -7.1360 2.3109 4.1362 4.3291 8.8832 10.6310 11.3242 11.7232 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.9987 0.5054 2.8142 3.1834 8.0679 9.7384 12.9671 13.2136 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.2081 -1.7957 1.9654 2.6637 7.6225 8.7308 15.3374 15.4671 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.5861 0.7958 3.1634 4.7501 9.6268 10.4298 10.7243 13.3286 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.4427 -0.6621 2.1424 3.5462 9.6644 10.4087 11.9144 12.9137 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.9275 -2.0407 1.4019 2.4454 9.1584 11.1080 12.1888 14.4778 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5366 -1.6748 1.4790 3.5341 8.6467 12.3879 12.4349 13.9912 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -6.0965 -0.6241 4.3839 4.3839 8.5961 10.2917 10.2917 15.0547 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.1275 -1.7238 3.2097 3.8437 9.0370 10.4287 10.9773 14.3920 highest occupied, lowest unoccupied level (ev): 5.2381 7.6225 convergence has been achieved in 2 iterations total energy = -15.85963912 Ry Harris-Foulkes estimate = -15.85963814 Ry est. exchange err (dexx) = 0.00000314 Ry - averaged Fock potential = 1.77815744 Ry + Fock energy = -0.88940795 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 5.8 secs per-process dynamical memory: 21.9 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-08, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-09, avg # of iterations = 1.8 total cpu time spent up to now is 7.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.7104 3.9530 5.2350 5.2350 9.4332 9.7328 9.7328 11.9392 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -7.1355 2.3105 4.1346 4.3275 8.8848 10.6323 11.3251 11.7245 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.9979 0.5039 2.8136 3.1821 8.0698 9.7400 12.9678 13.2143 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.2079 -1.7973 1.9654 2.6626 7.6249 8.7322 15.3391 15.4681 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.5853 0.7949 3.1627 4.7476 9.6285 10.4319 10.7249 13.3301 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.4422 -0.6630 2.1424 3.5448 9.6658 10.4099 11.9157 12.9140 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.9276 -2.0413 1.4021 2.4448 9.1595 11.1086 12.1900 14.4793 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5371 -1.6752 1.4794 3.5326 8.6488 12.3893 12.4350 13.9928 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -6.0957 -0.6249 4.3812 4.3812 8.5975 10.2945 10.2945 15.0565 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.1278 -1.7241 3.2093 3.8420 9.0389 10.4294 10.9789 14.3937 highest occupied, lowest unoccupied level (ev): 5.2350 7.6249 convergence has been achieved in 1 iterations ! total energy = -15.85964289 Ry Harris-Foulkes estimate = -15.85963965 Ry est. exchange err (dexx) = 0.00000009 Ry - averaged Fock potential = 1.77891845 Ry + Fock energy = -0.88951058 Ry EXX self-consistency reached entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -76.90 -0.00052273 0.00000000 0.00000000 -76.90 0.00 0.00 0.00000000 -0.00052273 0.00000000 0.00 -76.90 0.00 0.00000000 0.00000000 -0.00052273 0.00 0.00 -76.90 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 6.10s CPU 6.22s WALL ( 4 calls) stress : 0.22s CPU 0.22s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 6.05s CPU 6.16s WALL ( 12 calls) sum_band : 0.03s CPU 0.04s WALL ( 12 calls) v_of_rho : 0.02s CPU 0.02s WALL ( 12 calls) mix_rho : 0.00s CPU 0.00s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.01s WALL ( 330 calls) cegterg : 6.04s CPU 6.15s WALL ( 120 calls) Called by *egterg: h_psi : 5.95s CPU 6.07s WALL ( 366 calls) g_psi : 0.01s CPU 0.00s WALL ( 236 calls) cdiaghg : 0.04s CPU 0.05s WALL ( 306 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 366 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 446 calls) fft : 0.01s CPU 0.01s WALL ( 135 calls) ffts : 4.79s CPU 4.88s WALL ( 109312 calls) fftw : 0.26s CPU 0.28s WALL ( 9562 calls) davcio : 0.00s CPU 0.00s WALL ( 10 calls) Parallel routines fft_scatter : 1.33s CPU 1.42s WALL ( 119009 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.14s CPU 0.15s WALL ( 4 calls) vexx : 5.82s CPU 5.90s WALL ( 207 calls) exxen2 : 1.30s CPU 1.33s WALL ( 7 calls) PWSCF : 7.86s CPU 8.02s WALL This run was terminated on: 8:25:15 25Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/dft1.in0000755000175000017500000000053512341373024014165 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 input_dft='pw91' / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/uspp.in20000755000175000017500000000053012341373024014373 0ustar mbamba &control calculation='nscf' / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, ecutrho=200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 nbnd=8 / &electrons / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS {alat} Cu 0.0 0.0 0.0 K_POINTS {automatic} 8 8 8 0 0 0 espresso-5.1/PW/tests/vdw2.ref0000644000175000017500000003211412341373024014352 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10582M) starts on 6Nov2013 at 18:56:58 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Serial version Reading input from /home/giannozz/trunk/espresso/PW/tests/vdw2.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = VDW-DF2 ( 1 4 13 0 2) Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 301 109 31 10915 2349 287 Tot 151 55 16 bravais-lattice index = 4 lattice parameter (alat) = 4.6600 a.u. unit-cell volume = 227.8567 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 12 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 20 plain mixing Exchange-correlation = VDW-DF2 ( 1 4 13 0 2) celldm(1)= 4.660000 celldm(2)= 0.000000 celldm(3)= 2.600000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.600000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.384615 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pbe-van_bm.UPF MD5 check sum: 1a69bf6b8db32088f5b2163dbdb77a27 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 721 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 vdW kernel table read from file vdW_kernel_table MD5 check sum: f53da8562cfe6bfda6a1b4f380354fea atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 8 Sym. Ops., with inversion, found ( 4 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( -0.5000000 0.8660254 1.9500000 ) 2 C tau( 2) = ( 0.5000050 0.2886722 1.9500000 ) 3 C tau( 3) = ( -0.5000000 0.8660254 0.6500000 ) 4 C tau( 4) = ( -0.0000050 0.5773532 0.6500000 ) number of k points= 1 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5458 G-vectors FFT dimensions: ( 24, 24, 60) Smooth grid: 1175 G-vectors FFT dimensions: ( 15, 15, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 144, 12) NL pseudopotentials 0.07 Mb ( 144, 32) Each V/rho on FFT grid 0.53 Mb ( 34560) Each G-vector array 0.04 Mb ( 5458) G-vector shells 0.00 Mb ( 616) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 144, 48) Each subspace H/S matrix 0.02 Mb ( 48, 48) Each matrix 0.00 Mb ( 32, 12) Arrays for rho mixing 10.55 Mb ( 34560, 20) Initial potential from superposition of free atoms starting charge 15.99984, renormalised to 16.00000 ************************************************************************ * * You are using vdW-DF for exchange-correlation in this calculation. * Please cite the following three references that made this development * possible: * * M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and * B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). * * T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and * D. C. Langreth, Phys. Rev. B 76, 125112 (2007). * * G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009). * * * If you are using vdW-DF2, please also cite: * * K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and * D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010). * * * If you are calculating the stress with vdW-DF, please also cite: * * R. Sabatini, E. Kucukbenli, B. Kolb, T. Thonhauser, and * S. de Gironcoli, J. Phys.: Condens. Matter 24, 424209 (2012). * ************************************************************************ Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in reciprocal space ************************************************************************ Starting wfc are 16 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 25.9 Mb Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -44.57815825 Ry Harris-Foulkes estimate = -44.81906768 Ry estimated scf accuracy < 0.73722186 Ry iteration # 2 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.61E-03, avg # of iterations = 3.0 total cpu time spent up to now is 1.7 secs total energy = -44.58822942 Ry Harris-Foulkes estimate = -44.61746424 Ry estimated scf accuracy < 0.10635187 Ry iteration # 3 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.65E-04, avg # of iterations = 2.0 total cpu time spent up to now is 1.9 secs total energy = -44.60177149 Ry Harris-Foulkes estimate = -44.60059498 Ry estimated scf accuracy < 0.00442309 Ry iteration # 4 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.76E-05, avg # of iterations = 2.0 total cpu time spent up to now is 2.2 secs total energy = -44.60211079 Ry Harris-Foulkes estimate = -44.60214719 Ry estimated scf accuracy < 0.00015345 Ry iteration # 5 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.59E-07, avg # of iterations = 3.0 total cpu time spent up to now is 2.4 secs total energy = -44.60216536 Ry Harris-Foulkes estimate = -44.60216362 Ry estimated scf accuracy < 0.00002551 Ry iteration # 6 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.59E-07, avg # of iterations = 2.0 total cpu time spent up to now is 2.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 144 PWs) bands (ev): -11.7295 -11.2751 -0.7629 1.8352 5.3165 5.3169 5.4753 5.4758 12.1611 16.8697 16.8703 16.9101 the Fermi energy is 10.0223 ev ! total energy = -44.60217212 Ry Harris-Foulkes estimate = -44.60216771 Ry estimated scf accuracy < 0.00000062 Ry The total energy is the sum of the following terms: one-electron contribution = -6.82137688 Ry hartree contribution = 12.86144187 Ry xc contribution = -14.76978730 Ry ewald contribution = -35.87244982 Ry smearing contrib. (-TS) = 0.00000000 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00003490 -0.00002015 0.00000000 atom 2 type 1 force = -0.00006972 0.00004025 0.00000000 atom 3 type 1 force = -0.00003490 0.00002015 0.00000000 atom 4 type 1 force = 0.00006972 -0.00004025 0.00000000 Total force = 0.000127 Total SCF correction = 0.000075 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... VDW GRADIENT stress 0.00003533 0.00000000 0.00000000 0.00000000 0.00003533 0.00000000 0.00000000 0.00000000 0.00003803 VDW KERNEL stress -0.00008598 0.00000000 0.00000000 0.00000000 -0.00008598 0.00000000 0.00000000 0.00000000 -0.00048037 VDW ALL stress 0.00005064 0.00000000 0.00000000 0.00000000 0.00005064 0.00000000 0.00000000 0.00000000 0.00044235 total stress (Ry/bohr**3) (kbar) P= -378.94 -0.00299097 -0.00000019 0.00000000 -439.99 -0.03 0.00 -0.00000019 -0.00299119 0.00000000 -0.03 -440.02 0.00 0.00000000 0.00000000 -0.00174578 0.00 0.00 -256.81 Writing output data file pwscf.save init_run : 0.34s CPU 0.45s WALL ( 1 calls) electrons : 1.34s CPU 2.07s WALL ( 1 calls) forces : 0.03s CPU 0.03s WALL ( 1 calls) stress : 0.38s CPU 0.42s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.19s CPU 0.26s WALL ( 1 calls) Called by electrons: c_bands : 0.04s CPU 0.05s WALL ( 6 calls) sum_band : 0.10s CPU 0.11s WALL ( 6 calls) v_of_rho : 1.27s CPU 1.50s WALL ( 7 calls) newd : 0.08s CPU 0.08s WALL ( 7 calls) mix_rho : 0.02s CPU 0.02s WALL ( 6 calls) vdW_energy : 0.23s CPU 0.31s WALL ( 7 calls) vdW_ffts : 0.39s CPU 0.45s WALL ( 16 calls) vdW_v : 0.24s CPU 0.23s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 13 calls) regterg : 0.04s CPU 0.05s WALL ( 6 calls) Called by *egterg: h_psi : 0.03s CPU 0.04s WALL ( 21 calls) s_psi : 0.00s CPU 0.00s WALL ( 21 calls) g_psi : 0.00s CPU 0.00s WALL ( 14 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 20 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 21 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 32 calls) fft : 0.60s CPU 0.69s WALL ( 510 calls) ffts : 0.00s CPU 0.00s WALL ( 13 calls) fftw : 0.02s CPU 0.03s WALL ( 230 calls) interpolate : 0.01s CPU 0.02s WALL ( 13 calls) davcio : 0.00s CPU 0.00s WALL ( 1 calls) PWSCF : 2.26s CPU 3.28s WALL This run was terminated on: 18:57: 2 6Nov2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav-12-kauto.in0000644000175000017500000000053512341373024017413 0ustar mbamba &control calculation='scf', / &system ibrav =-12, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(5) = 0.1, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/lattice-ibrav1-kauto.in0000644000175000017500000000043512341373024017253 0ustar mbamba &control calculation='scf', / &system ibrav = 1, celldm(1) =10.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/lattice-ibrav3.in0000644000175000017500000000041412341373024016131 0ustar mbamba &control calculation='scf', / &system ibrav = 3, celldm(1) =10.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/eval_infix.ref0000644000175000017500000002201412341373024015612 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:13 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/eval_infix.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102865 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441848 Ry estimated scf accuracy < 0.00230223 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450063 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000449 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378641 Ry hartree contribution = 1.08429090 Ry xc contribution = -4.81281466 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020597 0.00000000 0.00000000 -30.30 0.00 0.00 0.00000000 -0.00020597 0.00000000 0.00 -30.30 0.00 0.00000000 0.00000000 -0.00020597 0.00 0.00 -30.30 Writing output data file pwscf.save init_run : 0.03s CPU 0.04s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.02s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.00s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 40 calls) PWSCF : 0.14s CPU 0.18s WALL This run was terminated on: 10:22:13 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/metal.in20000755000175000017500000000051512341373024014511 0ustar mbamba &control calculation='nscf' / &system ibrav=2, celldm(1) =7.50, nat=1, ntyp=1, ecutwfc =15.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 nbnd=4 / &electrons / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS {alat} Al 0.00 0.00 0.00 K_POINTS {automatic} 6 6 6 1 1 1 espresso-5.1/PW/tests/scf-mixing_TF.in0000644000175000017500000000053712341373024015763 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons mixing_mode = 'TF' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/berry.ref0000644000175000017500000003465212341373024014624 0ustar mbamba Program PWSCF v.4.99 starts on 5Jan2012 at 22:44:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/berry.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 869 437 121 19213 6763 1021 bravais-lattice index = 1 lattice parameter (alat) = 7.3699 a.u. unit-cell volume = 400.2993 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 3 number of electrons = 44.00 number of Kohn-Sham states= 25 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-12 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.369900 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Pb read from file: /home/giannozz/trunk/espresso/pseudo/Pb.pz-d-van.UPF MD5 check sum: 4e1e5920686a026ae26139ac417581ff Pseudo is Ultrasoft, Zval = 14.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 2 for Ti read from file: /home/giannozz/trunk/espresso/pseudo/Ti.pz-sp-van_ak.UPF MD5 check sum: 545d0e6e05332b8871a8093f427cb0ca Pseudo is Ultrasoft, Zval = 12.0 Generated by new atomic code, or converted to UPF format Using radial grid of 851 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 3 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-van_ak.UPF MD5 check sum: d814fcb982dd9af4fc6452aae6bb9318 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 atomic species valence mass pseudopotential Pb 14.00 207.20000 Pb( 1.00) Ti 12.00 47.86700 Ti( 1.00) O 6.00 15.99940 O ( 1.00) 8 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 Pb tau( 1) = ( 0.0000000 0.0000000 0.0100000 ) 2 Ti tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) 3 O tau( 3) = ( 0.0000000 0.5000000 0.5000000 ) 4 O tau( 4) = ( 0.5000000 0.5000000 0.0000000 ) 5 O tau( 5) = ( 0.5000000 0.0000000 0.5000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 2.0000000 Dense grid: 19213 G-vectors FFT dimensions: ( 36, 36, 36) Smooth grid: 6763 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.32 Mb ( 847, 25) NL pseudopotentials 0.78 Mb ( 847, 60) Each V/rho on FFT grid 0.71 Mb ( 46656) Each G-vector array 0.15 Mb ( 19213) G-vector shells 0.00 Mb ( 232) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.29 Mb ( 847, 100) Each subspace H/S matrix 0.15 Mb ( 100, 100) Each matrix 0.02 Mb ( 60, 25) Arrays for rho mixing 5.70 Mb ( 46656, 8) Initial potential from superposition of free atoms starting charge 42.99817, renormalised to 44.00000 Starting wfc are 31 randomized atomic wfcs total cpu time spent up to now is 1.7 secs per-process dynamical memory: 38.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 1.8 secs total energy = -333.60165923 Ry Harris-Foulkes estimate = -334.03100336 Ry estimated scf accuracy < 0.95019300 Ry iteration # 2 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.16E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.9 secs total energy = -333.69030452 Ry Harris-Foulkes estimate = -333.76295780 Ry estimated scf accuracy < 0.17840650 Ry iteration # 3 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.05E-04, avg # of iterations = 4.0 total cpu time spent up to now is 2.0 secs total energy = -333.70247721 Ry Harris-Foulkes estimate = -333.71880879 Ry estimated scf accuracy < 0.03656802 Ry iteration # 4 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.31E-05, avg # of iterations = 3.0 total cpu time spent up to now is 2.1 secs total energy = -333.70371991 Ry Harris-Foulkes estimate = -333.70695468 Ry estimated scf accuracy < 0.00678026 Ry iteration # 5 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.54E-05, avg # of iterations = 4.0 total cpu time spent up to now is 2.2 secs total energy = -333.70455724 Ry Harris-Foulkes estimate = -333.70511971 Ry estimated scf accuracy < 0.00186009 Ry iteration # 6 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.23E-06, avg # of iterations = 4.0 total cpu time spent up to now is 2.3 secs total energy = -333.70468509 Ry Harris-Foulkes estimate = -333.70473733 Ry estimated scf accuracy < 0.00017395 Ry iteration # 7 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.95E-07, avg # of iterations = 3.0 total cpu time spent up to now is 2.4 secs total energy = -333.70472414 Ry Harris-Foulkes estimate = -333.70472624 Ry estimated scf accuracy < 0.00001770 Ry iteration # 8 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.02E-08, avg # of iterations = 2.0 total cpu time spent up to now is 2.4 secs total energy = -333.70472163 Ry Harris-Foulkes estimate = -333.70472422 Ry estimated scf accuracy < 0.00001196 Ry iteration # 9 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.72E-08, avg # of iterations = 2.0 total cpu time spent up to now is 2.5 secs total energy = -333.70472004 Ry Harris-Foulkes estimate = -333.70472160 Ry estimated scf accuracy < 0.00000432 Ry iteration # 10 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.82E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.6 secs total energy = -333.70472050 Ry Harris-Foulkes estimate = -333.70472043 Ry estimated scf accuracy < 0.00000007 Ry iteration # 11 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.66E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.7 secs total energy = -333.70472029 Ry Harris-Foulkes estimate = -333.70472024 Ry estimated scf accuracy < 6.3E-09 Ry iteration # 12 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.43E-11, avg # of iterations = 3.0 total cpu time spent up to now is 2.8 secs total energy = -333.70472011 Ry Harris-Foulkes estimate = -333.70472009 Ry estimated scf accuracy < 3.3E-09 Ry iteration # 13 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.61E-12, avg # of iterations = 3.0 total cpu time spent up to now is 2.9 secs total energy = -333.70471998 Ry Harris-Foulkes estimate = -333.70471997 Ry estimated scf accuracy < 7.4E-11 Ry iteration # 14 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.68E-13, avg # of iterations = 3.0 total cpu time spent up to now is 3.0 secs total energy = -333.70471989 Ry Harris-Foulkes estimate = -333.70471988 Ry estimated scf accuracy < 2.1E-11 Ry iteration # 15 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.75E-14, avg # of iterations = 3.0 total cpu time spent up to now is 3.1 secs total energy = -333.70471982 Ry Harris-Foulkes estimate = -333.70471982 Ry estimated scf accuracy < 8.9E-12 Ry iteration # 16 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-14, avg # of iterations = 3.0 total cpu time spent up to now is 3.2 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 847 PWs) bands (ev): -44.7169 -21.3445 -21.3438 -21.3433 -5.9779 -5.3822 -5.3756 -4.4764 -4.4702 -4.3687 -4.2002 -4.1896 3.6050 6.7163 6.7183 7.5247 7.7689 7.7697 9.7733 9.9290 9.9324 10.1485 13.9190 14.4126 14.4137 highest occupied, lowest unoccupied level (ev): 10.1485 13.9190 ! total energy = -333.70471978 Ry Harris-Foulkes estimate = -333.70471977 Ry estimated scf accuracy < 9.4E-13 Ry The total energy is the sum of the following terms: one-electron contribution = -80.21382706 Ry hartree contribution = 67.70832093 Ry xc contribution = -49.65657063 Ry ewald contribution = -271.54264303 Ry convergence has been achieved in 16 iterations Writing output data file pwscf.save init_run : 1.63s CPU 1.65s WALL ( 1 calls) electrons : 1.40s CPU 1.43s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.02s CPU 0.02s WALL ( 1 calls) realus : 0.28s CPU 0.28s WALL ( 1 calls) Called by electrons: c_bands : 0.81s CPU 0.83s WALL ( 16 calls) sum_band : 0.26s CPU 0.26s WALL ( 16 calls) v_of_rho : 0.12s CPU 0.11s WALL ( 17 calls) newd : 0.05s CPU 0.06s WALL ( 17 calls) mix_rho : 0.06s CPU 0.07s WALL ( 16 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.03s WALL ( 33 calls) cegterg : 0.74s CPU 0.76s WALL ( 16 calls) Called by *egterg: h_psi : 0.43s CPU 0.42s WALL ( 64 calls) s_psi : 0.04s CPU 0.05s WALL ( 64 calls) g_psi : 0.00s CPU 0.02s WALL ( 47 calls) cdiaghg : 0.10s CPU 0.11s WALL ( 63 calls) Called by h_psi: add_vuspsi : 0.07s CPU 0.06s WALL ( 64 calls) General routines calbec : 0.08s CPU 0.08s WALL ( 80 calls) fft : 0.06s CPU 0.08s WALL ( 115 calls) ffts : 0.01s CPU 0.01s WALL ( 33 calls) fftw : 0.26s CPU 0.26s WALL ( 2382 calls) interpolate : 0.04s CPU 0.04s WALL ( 33 calls) davcio : 0.00s CPU 0.00s WALL ( 16 calls) PWSCF : 3.18s CPU 3.27s WALL This run was terminated on: 22:44:20 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lda+U.in0000755000175000017500000000144112341373024014264 0ustar mbamba &control calculation = 'scf' / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true. Hubbard_U(2)=4.3, Hubbard_U(3)=4.3, / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS {alat} 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 espresso-5.1/PW/tests/scf-disk_io.in0000644000175000017500000000053312341373024015514 0ustar mbamba &control calculation = 'scf' disk_io='medium' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS alat Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/vdw-d.ref0000644000175000017500000002443012341373024014513 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:30:32 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/vdw.in ------------------------------------- Parameters for Dispersion Correction: ------------------------------------- atom VdW radius C_6 C 2.744 60.710 gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 301 109 31 10915 2349 287 Tot 151 55 16 bravais-lattice index = 4 lattice parameter (alat) = 4.6600 a.u. unit-cell volume = 227.8567 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 12 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 20 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 4.660000 celldm(2)= 0.000000 celldm(3)= 2.600000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.600000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.384615 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pbe-van_bm.UPF MD5 check sum: 1a69bf6b8db32088f5b2163dbdb77a27 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 721 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 8 Sym. Ops., with inversion, found ( 4 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( -0.5000000 0.8660254 1.9500000 ) 2 C tau( 2) = ( 0.5000050 0.2886722 1.9500000 ) 3 C tau( 3) = ( -0.5000000 0.8660254 0.6500000 ) 4 C tau( 4) = ( -0.0000050 0.5773532 0.6500000 ) number of k points= 1 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5458 G-vectors FFT dimensions: ( 24, 24, 60) Smooth grid: 1175 G-vectors FFT dimensions: ( 15, 15, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 144, 12) NL pseudopotentials 0.07 Mb ( 144, 32) Each V/rho on FFT grid 0.53 Mb ( 34560) Each G-vector array 0.04 Mb ( 5458) G-vector shells 0.00 Mb ( 616) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 144, 48) Each subspace H/S matrix 0.02 Mb ( 48, 48) Each matrix 0.00 Mb ( 32, 12) Arrays for rho mixing 10.55 Mb ( 34560, 20) Initial potential from superposition of free atoms starting charge 15.99984, renormalised to 16.00000 Starting wfc are 16 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 24.5 Mb Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 total cpu time spent up to now is 0.5 secs total energy = -44.19114704 Ry Harris-Foulkes estimate = -44.45936134 Ry estimated scf accuracy < 0.67592667 Ry iteration # 2 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.22E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -44.18909044 Ry Harris-Foulkes estimate = -44.22325934 Ry estimated scf accuracy < 0.09638600 Ry iteration # 3 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.02E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -44.19767142 Ry Harris-Foulkes estimate = -44.19757279 Ry estimated scf accuracy < 0.00295108 Ry iteration # 4 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.84E-05, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -44.19780375 Ry Harris-Foulkes estimate = -44.19778832 Ry estimated scf accuracy < 0.00001563 Ry iteration # 5 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.77E-08, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 144 PWs) bands (ev): -11.7021 -11.2390 -0.8842 1.6711 5.7087 5.7092 5.8640 5.8644 12.1734 16.7937 16.7942 16.8275 the Fermi energy is 9.9672 ev ! total energy = -44.19781649 Ry Harris-Foulkes estimate = -44.19780837 Ry estimated scf accuracy < 0.00000051 Ry The total energy is the sum of the following terms: one-electron contribution = -6.74572088 Ry hartree contribution = 12.73926407 Ry xc contribution = -14.27893611 Ry ewald contribution = -35.87244982 Ry Dispersion Correction = -0.03997375 Ry smearing contrib. (-TS) = 0.00000000 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00011222 -0.00006479 0.00000000 atom 2 type 1 force = -0.00010251 0.00005918 0.00000000 atom 3 type 1 force = -0.00011222 0.00006479 0.00000000 atom 4 type 1 force = 0.00010251 -0.00005918 0.00000000 Total force = 0.000248 Total SCF correction = 0.000113 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -382.73 -0.00277805 -0.00000055 0.00000000 -408.66 -0.08 0.00 -0.00000055 -0.00277868 0.00000000 -0.08 -408.76 0.00 0.00000000 0.00000000 -0.00224860 0.00 0.00 -330.78 Writing output data file pwscf.save init_run : 0.19s CPU 0.19s WALL ( 1 calls) electrons : 0.52s CPU 0.53s WALL ( 1 calls) forces : 0.22s CPU 0.22s WALL ( 1 calls) stress : 0.38s CPU 0.38s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.04s CPU 0.04s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 5 calls) sum_band : 0.08s CPU 0.07s WALL ( 5 calls) v_of_rho : 0.16s CPU 0.16s WALL ( 6 calls) newd : 0.06s CPU 0.06s WALL ( 6 calls) mix_rho : 0.00s CPU 0.01s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 11 calls) regterg : 0.02s CPU 0.02s WALL ( 5 calls) Called by *egterg: h_psi : 0.01s CPU 0.02s WALL ( 17 calls) s_psi : 0.00s CPU 0.00s WALL ( 17 calls) g_psi : 0.00s CPU 0.00s WALL ( 11 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 16 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 17 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 27 calls) fft : 0.04s CPU 0.05s WALL ( 100 calls) ffts : 0.00s CPU 0.00s WALL ( 11 calls) fftw : 0.02s CPU 0.01s WALL ( 196 calls) interpolate : 0.01s CPU 0.01s WALL ( 11 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PWSCF : 1.36s CPU 1.65s WALL This run was terminated on: 11:30:34 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/dft8.in0000755000175000017500000000053612341373024014175 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 input_dft='sogga' / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/metal-gaussian.in0000755000175000017500000000132112341373024016233 0ustar mbamba &control calculation='scf' / &system ibrav=2, celldm(1) =7.50, nat=1, ntyp=1, ecutwfc =15.0, occupations='smearing', smearing='methfessel-paxton', degauss=0.05 / &electrons / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS (alat) Al 0.00 0.00 0.00 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/lattice-ibrav0-cell_parameters.in0000644000175000017500000000055412341373024021273 0ustar mbamba &control calculation='scf', / &system ibrav = 0 nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 CELL_PARAMETERS bohr 10.00000 0.00000 0.00000 4.50000 14.30909 0.00000 4.00000 0.83863 19.57796 K_POINTS {gamma} espresso-5.1/PW/tests/pbeq2d.ref0000644000175000017500000011223012341373024014643 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 9400) starts on 13Sep2012 at 12:40:59 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/pbeq2d.in IMPORTANT: XC functional enforced from input : Exchange-correlation = SLA+PW+Q2DX+Q2DC ( 1 41912 0) EXX-fraction = 0.00 Any further DFT definition will be discarded Please, verify this is what you really want file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 451 211 85 6423 2085 459 bravais-lattice index = 2 lattice parameter (alat) = 6.6730 a.u. unit-cell volume = 74.2843 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 50 kinetic-energy cutoff = 35.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA+PW+Q2DX+Q2DC ( 1 41912 0) EXX-fraction = 0.00 celldm(1)= 6.672968 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 103.10000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 47 Methfessel-Paxton smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0020000 k( 2) = ( -0.1000000 0.1000000 -0.1000000), wk = 0.0160000 k( 3) = ( -0.2000000 0.2000000 -0.2000000), wk = 0.0160000 k( 4) = ( -0.3000000 0.3000000 -0.3000000), wk = 0.0160000 k( 5) = ( -0.4000000 0.4000000 -0.4000000), wk = 0.0160000 k( 6) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0080000 k( 7) = ( 0.0000000 0.2000000 0.0000000), wk = 0.0120000 k( 8) = ( -0.1000000 0.3000000 -0.1000000), wk = 0.0480000 k( 9) = ( -0.2000000 0.4000000 -0.2000000), wk = 0.0480000 k( 10) = ( -0.3000000 0.5000000 -0.3000000), wk = 0.0480000 k( 11) = ( 0.6000000 -0.4000000 0.6000000), wk = 0.0480000 k( 12) = ( 0.5000000 -0.3000000 0.5000000), wk = 0.0480000 k( 13) = ( 0.4000000 -0.2000000 0.4000000), wk = 0.0480000 k( 14) = ( 0.3000000 -0.1000000 0.3000000), wk = 0.0480000 k( 15) = ( 0.2000000 0.0000000 0.2000000), wk = 0.0240000 k( 16) = ( 0.0000000 0.4000000 0.0000000), wk = 0.0120000 k( 17) = ( -0.1000000 0.5000000 -0.1000000), wk = 0.0480000 k( 18) = ( -0.2000000 0.6000000 -0.2000000), wk = 0.0480000 k( 19) = ( 0.7000000 -0.3000000 0.7000000), wk = 0.0480000 k( 20) = ( 0.6000000 -0.2000000 0.6000000), wk = 0.0480000 k( 21) = ( 0.5000000 -0.1000000 0.5000000), wk = 0.0480000 k( 22) = ( 0.4000000 0.0000000 0.4000000), wk = 0.0240000 k( 23) = ( 0.0000000 0.6000000 0.0000000), wk = 0.0120000 k( 24) = ( -0.1000000 0.7000000 -0.1000000), wk = 0.0480000 k( 25) = ( 0.8000000 -0.2000000 0.8000000), wk = 0.0480000 k( 26) = ( 0.7000000 -0.1000000 0.7000000), wk = 0.0480000 k( 27) = ( 0.6000000 0.0000000 0.6000000), wk = 0.0240000 k( 28) = ( 0.0000000 0.8000000 0.0000000), wk = 0.0120000 k( 29) = ( 0.9000000 -0.1000000 0.9000000), wk = 0.0480000 k( 30) = ( 0.8000000 0.0000000 0.8000000), wk = 0.0240000 k( 31) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0060000 k( 32) = ( -0.2000000 0.4000000 0.0000000), wk = 0.0480000 k( 33) = ( -0.3000000 0.5000000 -0.1000000), wk = 0.0960000 k( 34) = ( 0.6000000 -0.4000000 0.8000000), wk = 0.0960000 k( 35) = ( 0.5000000 -0.3000000 0.7000000), wk = 0.0480000 k( 36) = ( -0.2000000 0.6000000 0.0000000), wk = 0.0480000 k( 37) = ( 0.7000000 -0.3000000 0.9000000), wk = 0.0960000 k( 38) = ( 0.6000000 -0.2000000 0.8000000), wk = 0.0960000 k( 39) = ( 0.5000000 -0.1000000 0.7000000), wk = 0.0960000 k( 40) = ( 0.4000000 0.0000000 0.6000000), wk = 0.0480000 k( 41) = ( 0.8000000 -0.2000000 1.0000000), wk = 0.0480000 k( 42) = ( 0.7000000 -0.1000000 0.9000000), wk = 0.0960000 k( 43) = ( 0.6000000 0.0000000 0.8000000), wk = 0.0480000 k( 44) = ( -0.2000000 -1.0000000 0.0000000), wk = 0.0240000 k( 45) = ( 0.6000000 -0.2000000 1.0000000), wk = 0.0480000 k( 46) = ( 0.5000000 -0.1000000 0.9000000), wk = 0.0480000 k( 47) = ( -0.4000000 -1.0000000 0.0000000), wk = 0.0240000 Dense grid: 6423 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 2085 G-vectors FFT dimensions: ( 18, 18, 18) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.21 Mb ( 274, 50) NL pseudopotentials 0.05 Mb ( 274, 13) Each V/rho on FFT grid 0.24 Mb ( 15625) Each G-vector array 0.05 Mb ( 6423) G-vector shells 0.00 Mb ( 115) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.84 Mb ( 274, 200) Each subspace H/S matrix 0.61 Mb ( 200, 200) Each matrix 0.01 Mb ( 13, 50) Arrays for rho mixing 1.91 Mb ( 15625, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 1.1 secs per-process dynamical memory: 12.1 Mb Self-consistent Calculation iteration # 1 ecut= 35.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 total cpu time spent up to now is 6.8 secs total energy = -87.78064296 Ry Harris-Foulkes estimate = -87.87225711 Ry estimated scf accuracy < 0.22558050 Ry iteration # 2 ecut= 35.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.05E-03, avg # of iterations = 1.0 total cpu time spent up to now is 8.7 secs total energy = -87.80837971 Ry Harris-Foulkes estimate = -87.81078694 Ry estimated scf accuracy < 0.00581768 Ry iteration # 3 ecut= 35.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.29E-05, avg # of iterations = 1.1 total cpu time spent up to now is 10.6 secs total energy = -87.80925898 Ry Harris-Foulkes estimate = -87.80929439 Ry estimated scf accuracy < 0.00020429 Ry iteration # 4 ecut= 35.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.86E-06, avg # of iterations = 2.7 total cpu time spent up to now is 13.2 secs total energy = -87.80925828 Ry Harris-Foulkes estimate = -87.80926252 Ry estimated scf accuracy < 0.00000783 Ry iteration # 5 ecut= 35.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.12E-08, avg # of iterations = 1.2 total cpu time spent up to now is 15.1 secs total energy = -87.80926019 Ry Harris-Foulkes estimate = -87.80926039 Ry estimated scf accuracy < 0.00000044 Ry iteration # 6 ecut= 35.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.00E-09, avg # of iterations = 1.0 total cpu time spent up to now is 17.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 259 PWs) bands (ev): 5.3441 11.6770 11.6770 11.6770 12.5956 12.5956 39.5699 42.0828 42.0828 42.0828 45.0263 45.0263 45.0263 47.6866 54.2319 54.2319 54.2319 58.2378 58.2378 67.6443 99.6241 99.6241 99.6241 104.1500 104.1500 105.8783 105.8783 105.8783 109.8416 109.8416 109.8416 111.5600 135.0824 135.0824 135.2365 135.2365 135.2365 135.5240 135.5240 135.5240 136.3917 136.3917 136.3917 137.0142 137.0142 137.0142 137.5439 143.5362 143.5362 143.5362 k =-0.1000 0.1000-0.1000 ( 271 PWs) bands (ev): 5.7249 11.5962 11.7491 11.7491 12.5704 12.5704 36.5313 40.1905 41.0866 41.0866 46.5713 46.6092 46.6092 51.3208 51.4008 51.4008 54.6695 61.8398 61.8398 69.3026 94.3369 94.3369 98.2095 99.9855 104.2234 104.2234 107.1460 107.1460 110.6832 114.8595 114.8595 118.6600 125.2543 125.2543 128.9152 129.1819 130.8185 130.8185 132.4421 135.1180 135.1180 138.2277 140.5292 140.5292 141.3438 142.8921 142.8921 143.4327 145.6572 146.8112 k =-0.2000 0.2000-0.2000 ( 271 PWs) bands (ev): 6.8098 11.4375 11.8564 11.8564 12.5951 12.5951 30.9419 39.5911 39.8611 39.8611 46.5355 47.1886 47.1886 50.4667 50.4667 55.4695 59.2275 67.4660 67.4660 73.6503 86.6126 86.6126 89.5404 101.0701 105.9115 105.9115 107.5761 107.5761 110.6182 115.4121 115.4121 117.6802 122.7779 123.5919 123.5919 125.6904 126.5300 126.5300 129.3813 132.9039 132.9039 137.4008 141.7226 142.0581 142.0581 144.3105 147.0445 147.0445 151.6605 151.6605 k =-0.3000 0.3000-0.3000 ( 262 PWs) bands (ev): 8.3101 11.5237 11.8064 11.8064 12.8279 12.8279 25.8363 38.7212 39.0894 39.0894 44.5167 44.5167 46.8328 54.3058 54.3058 57.7841 67.4572 73.3552 73.3552 77.7653 79.6080 79.6080 83.9767 102.8772 105.6172 105.6172 106.4164 108.2369 108.2369 109.6531 109.6531 110.5241 117.3570 121.9990 123.0841 123.0841 126.2677 126.2677 128.6928 135.7241 136.3409 136.3409 142.4047 143.3715 143.3715 146.0103 146.0103 146.3511 156.4495 156.4495 k =-0.4000 0.4000-0.4000 ( 257 PWs) bands (ev): 9.3261 11.6903 11.6903 12.6300 13.1090 13.1090 21.5612 37.9609 38.7731 38.7731 42.5841 42.5841 47.1982 58.9488 58.9488 61.1283 71.6794 71.6794 73.2333 76.3124 81.2312 81.2312 89.1941 95.7560 97.9312 97.9312 105.4044 108.8758 108.8758 110.2187 112.6609 112.9792 112.9792 115.9937 120.6671 120.6671 122.9055 122.9055 123.3597 134.6001 140.3294 140.3294 144.2573 144.2573 146.0228 150.6992 150.6992 155.2229 160.9670 160.9670 k = 0.5000-0.5000 0.5000 ( 266 PWs) bands (ev): 9.5285 11.6388 11.6388 13.2277 13.2277 13.9086 19.3569 37.6699 38.7295 38.7295 41.8579 41.8579 47.3437 62.5760 62.5760 63.9366 67.5228 67.5228 69.4323 85.4902 85.8686 85.8686 85.9354 92.6851 92.6851 93.7640 108.4027 108.8999 108.9364 109.1060 109.1060 112.2794 116.5337 116.5337 118.5025 118.5025 120.6415 120.6415 122.0299 134.1884 139.0968 139.0968 147.1980 147.1980 147.9179 158.0036 158.0036 159.1375 161.9257 161.9257 k = 0.0000 0.2000 0.0000 ( 267 PWs) bands (ev): 5.8508 11.5214 11.8053 11.8053 12.4569 12.6531 38.0465 38.7417 38.7417 40.2269 46.7211 47.6717 48.7466 48.7466 51.4914 55.2697 55.2697 58.4942 63.4166 70.5737 93.3666 96.0998 96.0998 96.8510 103.3361 103.3361 107.3009 109.7994 111.4100 116.4908 116.4908 118.5745 122.0157 125.0647 125.0647 130.8166 131.7702 131.7702 135.2690 135.7246 136.1450 136.1450 137.0112 137.9832 140.4671 141.3593 141.5594 141.5594 148.0030 148.0030 k =-0.1000 0.3000-0.1000 ( 267 PWs) bands (ev): 6.6998 11.3452 11.9210 11.9439 12.3912 12.7220 33.0283 37.0324 37.9965 41.5011 43.5587 47.5993 50.5518 50.6318 54.0144 56.3242 56.9416 62.6796 66.9175 75.0006 86.5851 88.1302 95.7152 96.3113 98.0721 104.1970 108.5637 113.2565 113.4948 115.1961 117.9666 118.7893 120.3832 121.7274 123.7525 124.7993 127.8361 128.5300 131.0762 134.4259 135.7715 137.3100 137.5542 138.5036 141.6218 143.2495 143.9976 148.4515 149.0380 151.9535 k =-0.2000 0.4000-0.2000 ( 269 PWs) bands (ev): 8.0895 11.2424 11.8039 11.9648 12.7279 12.9134 27.7217 36.0250 37.1742 39.7170 45.0908 47.0334 48.7178 51.3262 56.5438 58.8773 64.5131 68.4768 72.5612 78.0896 79.3261 83.3591 88.8063 96.8703 99.3865 104.1057 106.1248 109.2360 111.8687 112.1108 113.0493 115.9320 117.6249 118.5194 123.1867 124.9789 126.6866 129.0726 132.4543 134.0480 134.9750 136.7455 139.4620 141.7795 142.6749 143.3561 147.6287 148.3211 151.1176 155.2671 k =-0.3000 0.5000-0.3000 ( 265 PWs) bands (ev): 9.3369 11.5496 11.7036 11.8633 13.1527 13.5035 23.0932 35.7798 36.1266 37.9122 45.3944 46.4317 48.5948 53.1436 60.7654 62.3311 70.3290 71.8432 72.8453 77.2489 79.5406 82.2121 88.6067 95.7062 98.1499 100.6547 103.2991 104.0967 108.5797 109.7492 110.1693 112.1469 118.0211 118.5513 120.7372 121.5236 121.8743 129.6912 130.8920 135.0637 135.5045 137.6581 140.4127 144.4865 145.7006 149.5956 151.7987 155.1907 156.4079 158.4946 k = 0.6000-0.4000 0.6000 ( 259 PWs) bands (ev): 9.7109 11.5006 11.7747 12.3218 13.2359 14.8877 19.7769 34.7408 36.3677 37.5661 44.7486 45.1182 49.6057 57.3501 62.7958 63.6808 67.8728 69.2193 74.6749 81.4825 83.3137 85.4491 88.4078 90.9226 95.2465 97.8817 101.1551 105.3989 106.3271 108.4549 110.0918 111.3189 113.4079 115.8108 119.5648 121.3709 124.8311 126.6178 127.1119 134.0933 135.6064 136.4702 146.1281 149.4328 151.3091 152.6986 158.7072 158.7292 158.9554 160.8676 k = 0.5000-0.3000 0.5000 ( 258 PWs) bands (ev): 9.6626 11.5438 11.7753 12.2286 13.0781 14.4876 20.6295 33.7971 37.8267 38.1268 43.7397 45.0778 50.1489 57.9289 59.3878 62.6265 69.2941 72.9788 73.6947 77.8036 82.2389 85.6924 90.5207 92.9306 93.3978 98.8131 100.1005 105.7388 107.1746 109.3338 110.1018 111.6956 113.1904 117.1424 119.6711 121.6946 123.3700 126.6771 129.6574 133.1289 136.2048 136.2584 146.8542 148.0663 149.4725 151.7739 152.5044 158.7907 161.0997 161.5529 k = 0.4000-0.2000 0.4000 ( 259 PWs) bands (ev): 9.0214 11.4817 11.6921 11.8740 12.7411 13.4514 24.5503 33.5459 39.4193 40.1238 43.3865 44.8707 50.8228 52.8948 55.6708 63.1151 68.4144 71.1972 73.3610 78.4105 80.8470 81.4917 86.2836 98.0499 99.8102 100.6130 101.9327 108.1429 108.3395 109.4027 110.2359 114.0415 118.7091 119.0055 121.4765 121.7097 123.7215 130.2228 131.3686 134.1644 137.2197 137.6171 138.1161 142.2316 144.3910 148.1132 150.6635 153.5753 156.4032 156.4857 k = 0.3000-0.1000 0.3000 ( 266 PWs) bands (ev): 7.5943 11.2963 11.8425 11.9809 12.4212 12.9457 29.4323 33.9853 41.2594 43.0329 43.7645 44.0673 48.5255 51.4918 53.7458 59.6047 61.4159 66.1683 73.0040 75.5805 81.1349 87.0313 89.4398 96.4710 99.0163 105.1705 108.7088 109.0797 110.8241 113.4828 115.8863 118.3024 118.9146 120.1740 123.2931 123.5052 126.1112 127.9987 131.1610 132.7746 135.7426 137.6800 140.1293 140.2928 141.7238 146.4436 147.4192 150.2620 150.3879 151.0147 k = 0.2000 0.0000 0.2000 ( 271 PWs) bands (ev): 6.3420 11.4563 11.8506 11.8611 12.4335 12.6783 34.5765 35.4168 41.8021 43.5061 44.4256 45.6536 47.0887 51.5054 52.2757 54.9551 56.6866 61.6444 67.0808 72.1755 86.9846 93.8223 96.0881 97.6862 97.8770 103.3996 108.1736 114.4938 114.5605 115.6679 117.0670 118.2713 121.2794 122.4047 123.6939 127.4895 127.5189 128.9791 129.4229 130.2099 137.7083 137.9522 139.3708 140.9961 143.7052 144.0922 146.7644 147.2727 147.4660 148.3046 k = 0.0000 0.4000 0.0000 ( 274 PWs) bands (ev): 7.2723 11.1215 12.1660 12.1688 12.1688 12.8047 34.9052 34.9052 36.0561 37.0364 40.3874 52.9498 53.2763 53.2763 56.0965 58.8190 58.8190 59.2683 66.5360 79.7483 86.3708 88.3547 88.3547 89.0385 104.7752 104.7752 107.7393 107.9792 111.5279 112.5087 112.5087 121.3936 124.1503 127.3059 127.3059 127.4397 128.4174 128.4174 130.2554 130.4989 131.0927 131.0927 136.6920 138.8389 143.2656 144.7661 146.7387 147.7814 147.7814 151.2647 k =-0.1000 0.5000-0.1000 ( 267 PWs) bands (ev): 8.3862 10.9150 11.8926 12.3100 12.7170 12.9607 30.1366 33.5470 34.7521 36.7583 40.7015 52.1474 53.3054 55.3612 59.4110 61.3893 61.9785 64.5792 70.0769 79.6627 80.1363 86.3299 88.5419 89.7103 98.6900 101.2650 106.3762 107.7403 108.5532 109.8578 117.0874 118.0973 118.8985 121.3097 124.3155 125.6118 128.3273 129.0237 131.8689 132.1418 134.9242 136.7964 139.6168 141.4094 143.5645 143.7415 144.7054 147.8069 148.9946 154.5102 k =-0.2000 0.6000-0.2000 ( 260 PWs) bands (ev): 9.5702 10.8857 11.6583 12.2552 13.1871 13.8313 25.2750 32.3726 33.0404 36.4228 44.5716 50.8102 51.1316 55.6767 63.2258 64.9467 68.4524 69.3553 71.2964 75.0074 79.0384 89.2791 90.0545 90.2671 93.2971 95.7214 103.2701 104.4172 108.8515 109.4245 110.3000 111.0195 117.4377 120.3455 122.7923 124.3430 127.6557 129.0092 132.6343 134.0103 136.4222 138.9253 142.5558 142.6892 144.9542 147.1622 148.2361 152.0982 152.6574 155.1250 k = 0.7000-0.3000 0.7000 ( 259 PWs) bands (ev): 10.1056 11.0452 11.6814 12.1470 13.2582 15.8112 21.1957 30.4184 33.4584 36.4563 48.7332 49.2559 50.4997 55.9226 63.4258 64.2595 68.8356 70.6526 77.5600 79.5750 82.4567 83.8481 87.3965 91.4937 94.9180 96.6192 98.9061 99.9612 102.9490 106.2885 110.8105 113.1178 114.0148 116.1484 119.0383 121.3057 128.3566 132.3415 133.1845 133.6476 136.7665 140.6246 142.3621 146.4336 148.3493 150.6637 154.7928 154.8980 160.3671 161.3684 k = 0.6000-0.2000 0.6000 ( 259 PWs) bands (ev): 10.2107 11.1509 11.7025 12.0865 13.0802 16.6033 20.2021 29.1169 34.8054 37.0216 48.0124 48.3892 55.4849 56.4443 57.7429 59.4377 73.5200 74.4432 77.3744 77.9166 85.7037 86.0945 86.6933 91.0581 95.3724 95.5373 96.0087 99.0121 100.8403 106.4602 110.9632 113.6320 114.4526 115.9783 117.5701 120.4002 128.2261 130.6377 134.5022 135.2640 136.9946 137.2188 145.4706 150.1804 150.7829 152.6841 155.1722 155.8260 158.4358 160.7827 k = 0.5000-0.1000 0.5000 ( 259 PWs) bands (ev): 9.9714 11.2838 11.3797 12.1161 12.7159 14.7404 23.8197 28.5594 36.9996 38.2191 47.1125 47.4513 52.3557 54.6654 58.1329 62.1670 67.0852 72.4177 77.1565 80.6980 83.0825 85.4455 90.6491 91.6644 93.1472 95.8802 96.6946 102.8657 103.4689 110.3412 110.7650 110.7816 117.5209 119.4902 120.8337 122.8274 127.1823 131.3503 131.6666 135.6462 136.7517 138.5580 139.9392 143.3444 146.9897 151.3867 154.1564 156.7616 157.5263 160.0727 k = 0.4000 0.0000 0.4000 ( 265 PWs) bands (ev): 8.8712 11.1319 11.6582 12.2179 12.3241 13.5959 28.1034 29.1264 39.9075 40.0374 45.1041 47.5094 47.6567 52.7763 58.1396 61.7752 66.7951 68.1114 70.7138 79.0925 85.3291 86.3619 89.3095 90.9179 92.4525 102.4256 104.2147 106.7576 108.6950 109.1114 110.1227 117.5100 120.8989 121.6855 122.5147 127.0545 127.1355 127.4390 128.2917 131.4951 135.9797 137.1669 141.3303 143.6375 144.5196 145.4902 148.9978 152.3123 155.2485 155.2719 k = 0.0000 0.6000 0.0000 ( 258 PWs) bands (ev): 9.0179 10.6420 12.3816 12.6861 12.6861 12.9940 31.5150 31.8144 31.8144 34.6750 37.6801 57.3650 57.3650 59.5932 60.4992 60.7858 64.8452 64.8452 70.2901 80.5305 80.7036 80.7036 82.2947 91.5322 96.8920 102.2111 102.2111 108.1514 108.1514 109.1577 111.0723 114.7405 125.0274 125.4258 125.8442 125.8442 125.9763 126.1233 126.1233 131.8969 137.1317 137.1317 141.8598 141.9731 145.2415 145.2415 146.1627 147.2412 153.9768 155.0058 k =-0.1000 0.7000-0.1000 ( 259 PWs) bands (ev): 9.6476 10.4914 12.3187 12.7507 13.1930 13.9535 27.9218 28.8827 30.9659 35.3311 39.2067 56.3369 56.4972 61.7928 64.1752 66.1445 68.2096 68.4999 71.4598 74.5422 77.8831 82.1496 83.3197 90.1976 95.3244 97.6638 99.1220 102.9560 109.9902 110.5042 111.1370 114.7589 117.0968 119.0454 121.2036 123.6716 127.8667 131.4477 132.8107 133.3491 135.0872 137.1450 139.9624 145.2012 145.9947 148.0318 149.2259 151.6434 151.9105 158.8065 k = 0.8000-0.2000 0.8000 ( 256 PWs) bands (ev): 10.0944 10.5314 12.0371 12.6446 13.2894 16.2939 23.6302 26.7025 31.1120 35.5690 43.5365 54.2884 54.7431 62.5972 64.3941 65.1418 69.9076 72.8701 74.4077 76.7579 79.9383 84.3067 85.2530 87.1205 92.1801 94.0654 95.3842 102.5816 106.8589 109.0903 109.7556 112.1396 113.9236 116.8030 121.2555 121.5872 128.1177 129.8978 132.9917 136.3276 139.5186 140.6645 141.2999 145.6484 146.4722 148.2704 152.6581 158.2522 160.0498 163.2793 k = 0.7000-0.1000 0.7000 ( 261 PWs) bands (ev): 10.4416 10.6941 11.6984 12.5175 13.1316 18.9699 20.3256 25.2792 32.2553 36.0096 48.9115 52.7337 52.9703 58.5520 59.7728 63.6099 72.5999 75.7693 78.3531 81.3001 82.1182 85.8631 87.3095 89.5825 90.2215 91.5127 91.9989 97.8447 102.1795 107.3302 110.7498 113.1981 116.1009 117.3346 117.8052 118.2252 124.2732 130.4220 133.4671 141.2418 144.2314 144.8428 144.8944 148.3869 149.0710 150.3131 152.4761 155.1409 157.3725 158.6034 k = 0.6000 0.0000 0.6000 ( 258 PWs) bands (ev): 10.5883 10.9697 11.3098 12.3675 12.8548 16.7848 22.8156 25.1286 34.2756 36.8909 50.3505 51.3078 53.5811 54.7340 56.8318 64.5371 65.5093 79.9463 80.6859 83.1251 83.4882 84.3765 88.3501 90.2570 90.3819 91.7358 93.4132 98.9852 100.4198 108.3969 110.5136 112.0260 114.3068 116.0595 120.4305 124.8356 124.8410 126.6849 135.7787 139.3092 141.2496 143.4363 144.4612 146.5616 149.3472 151.7428 152.5003 156.1248 157.0060 160.3816 k = 0.0000 0.8000 0.0000 ( 254 PWs) bands (ev): 9.6437 10.2656 13.1487 13.1771 13.1771 14.5038 25.9310 29.7496 29.7496 33.9027 36.8256 61.8674 61.8674 61.9068 64.0144 67.3707 71.3669 71.3669 73.9758 74.4197 74.4197 76.2951 80.5319 86.1367 92.8159 92.8159 98.5041 108.4145 111.4994 111.7449 112.5247 112.5247 120.1001 121.9034 122.2800 122.2800 123.5791 124.5844 124.5844 135.1834 135.5178 135.5178 139.8288 148.6267 148.6317 151.6318 151.6318 151.7175 162.1800 163.2031 k = 0.9000-0.1000 0.9000 ( 256 PWs) bands (ev): 9.7768 10.2347 12.9198 13.0706 13.3330 16.5224 23.9017 26.8109 29.5602 34.7754 38.5751 59.4529 60.4274 65.5767 66.2498 69.1434 69.4710 71.3810 75.9089 76.1406 76.8225 78.4992 80.4115 83.9779 89.1620 89.7620 96.9909 105.6738 109.7032 111.8998 113.6107 115.1948 116.2333 117.9150 120.4183 122.4861 125.8347 127.6366 129.6554 130.1717 132.3258 132.4961 144.9869 150.5989 151.1321 152.8672 158.6885 159.4739 160.7896 164.4192 k = 0.8000 0.0000 0.8000 ( 252 PWs) bands (ev): 10.0796 10.4062 12.3042 12.8851 13.2466 18.7207 22.6270 23.6662 30.4389 35.3294 43.2001 56.8133 57.3680 61.2310 61.8493 70.5465 71.5509 74.4311 77.0951 77.2440 80.7897 81.3612 83.7490 84.1342 87.9064 93.2686 95.9316 100.4244 101.6250 108.7258 113.1516 114.4510 118.0925 118.2354 119.2443 119.5887 124.6112 126.9482 130.0233 135.1844 139.0283 139.4890 151.1002 151.3746 152.3583 152.9969 154.1719 154.6378 156.6792 159.1927 k = 0.0000-1.0000 0.0000 ( 254 PWs) bands (ev): 9.6470 10.1245 13.2081 13.3869 13.3869 16.6059 22.8353 29.0103 29.0103 33.6571 36.6063 62.6389 65.3969 66.7698 66.7698 67.5397 67.5397 73.3240 74.6092 75.4635 77.0460 77.6407 77.6407 84.9220 86.9626 86.9626 93.3536 112.1758 112.1812 116.5360 116.5360 116.7308 117.1155 118.8933 118.8933 120.5088 123.0966 124.0993 124.0993 125.4505 133.0834 133.0834 141.9418 151.6080 154.0508 159.9688 161.3513 162.5153 162.5153 165.0218 k =-0.2000 0.4000 0.0000 ( 266 PWs) bands (ev): 7.7101 11.1462 11.8527 12.1807 12.3727 12.9655 31.3943 32.1334 38.6214 40.3353 42.5642 47.9116 49.7155 54.4226 55.7422 59.4614 61.2857 63.8750 70.5986 77.9046 82.0324 87.7241 88.7972 97.0531 98.2444 98.4512 106.3021 111.1189 114.3998 115.3748 115.8534 116.7499 119.0154 120.4949 123.4146 124.1244 127.2597 127.4269 132.1576 134.1484 134.4172 137.1383 139.5429 141.5548 142.0338 144.6016 145.4065 147.1430 149.5018 150.3740 k =-0.3000 0.5000-0.1000 ( 261 PWs) bands (ev): 9.0719 11.0678 11.6095 12.1860 12.6948 13.5693 26.6014 31.1611 35.9447 40.4098 44.4837 46.8924 50.5678 55.2577 57.2136 64.7227 65.4242 70.1594 70.3690 78.3297 80.5741 87.6246 88.2297 91.6787 98.2779 99.4046 99.9078 105.9508 107.2141 111.5887 113.5823 116.1188 117.6240 118.8099 124.1249 125.1452 127.2090 127.6692 131.3310 132.4566 136.0399 138.3103 142.8490 143.7321 144.2096 145.0735 147.3293 149.5161 152.8786 158.0552 k = 0.6000-0.4000 0.8000 ( 257 PWs) bands (ev): 9.9300 11.2752 11.5518 12.0700 13.0602 14.8658 22.2179 31.2070 33.7394 39.8317 44.3599 49.5806 51.3335 54.8065 60.8808 62.6308 70.0390 71.7897 74.4433 79.2027 82.4735 85.1443 88.3620 92.2479 95.8195 97.0286 100.8165 101.1194 103.9390 106.3384 110.0862 111.0582 116.3752 119.5383 120.3626 124.3595 126.5796 127.6348 131.5285 132.7415 139.4409 140.7440 141.1276 144.4045 147.7027 150.5528 153.4640 155.1112 158.6310 160.7992 k = 0.5000-0.3000 0.7000 ( 254 PWs) bands (ev): 10.0765 11.2251 11.8465 12.0005 13.1808 16.3924 19.6500 31.7357 32.4741 39.5922 44.0720 50.1116 53.4531 56.3200 57.4280 64.4235 68.3903 75.5315 76.6215 80.3500 80.9077 86.6669 89.6365 90.5199 93.5585 95.4921 99.1923 102.3399 105.7184 106.4465 107.3164 108.4608 110.7353 121.1251 122.0139 123.4341 124.5724 126.0082 131.7293 133.3377 138.8028 139.5954 146.3751 148.0466 148.9991 152.2640 155.1268 159.2161 160.8585 161.9725 k =-0.2000 0.6000 0.0000 ( 259 PWs) bands (ev): 9.3605 10.7350 11.7647 12.6847 12.7565 13.6098 28.8670 29.5709 32.1325 38.4048 40.5865 50.8927 55.7973 59.7511 59.7800 63.1655 67.8559 67.8628 69.7861 77.0947 81.0831 81.5396 90.5401 91.6573 95.0112 99.2876 99.9352 102.7518 106.1460 112.7771 114.3780 117.1299 117.1877 119.1911 120.8598 124.5663 127.9012 131.1279 132.3121 134.7552 137.0533 139.1114 139.6593 141.8818 143.0495 144.5020 149.8950 150.7543 151.7199 155.5025 k = 0.7000-0.3000 0.9000 ( 258 PWs) bands (ev): 10.1223 10.7391 11.5704 12.5660 13.1016 15.2175 24.5508 29.0012 29.8232 39.0040 43.9557 49.0895 56.1906 59.7949 63.1688 63.7610 67.5867 72.8533 73.7885 76.6165 82.5191 83.3209 87.4658 91.7367 93.1407 94.3715 100.3309 101.7893 103.2865 106.6476 109.2470 113.0217 114.8165 118.4957 121.4731 125.1784 129.6918 129.8459 133.0792 134.7184 138.5516 140.4361 141.1392 144.8712 147.3725 147.8661 150.7370 152.5787 155.1376 161.9468 k = 0.6000-0.2000 0.8000 ( 260 PWs) bands (ev): 10.4626 10.8101 11.5151 12.4012 13.1943 17.7081 20.7535 27.8189 29.8639 39.3766 46.6326 50.0327 55.3842 57.0118 60.0283 65.8813 69.1787 75.8198 78.1812 78.3784 83.5444 84.7314 87.1950 90.9753 91.4135 93.9696 96.2655 99.1184 101.1034 106.4946 109.9596 110.8145 113.1399 114.0064 118.8668 125.0298 127.2296 132.0296 135.8953 136.8532 138.4413 141.8754 144.4454 146.9054 149.9853 151.0739 154.2952 155.9664 157.0916 161.2235 k = 0.5000-0.1000 0.7000 ( 257 PWs) bands (ev): 10.5666 10.9185 11.3215 12.3644 13.0273 16.9841 21.8174 26.7874 31.2521 40.3152 45.8272 51.3165 54.4660 55.9477 60.4068 61.6444 69.5770 75.5173 79.2402 82.0816 82.9549 85.0581 87.9863 90.7252 91.6224 92.9862 95.6879 99.4264 101.7170 106.8612 107.6121 109.9194 113.8141 118.0452 119.2368 123.9227 127.4332 131.7082 133.0717 138.3197 140.2830 141.6386 143.2037 147.9777 150.5484 151.7209 152.7076 155.1249 157.6107 161.1527 k = 0.4000 0.0000 0.6000 ( 260 PWs) bands (ev): 10.1326 10.9917 11.2827 12.4287 12.7095 14.8554 25.5286 26.9448 33.3238 41.8165 44.0919 47.9638 53.0712 57.4163 61.5072 62.2706 64.0114 73.5734 75.4824 81.7048 82.1763 84.4016 91.3533 92.3861 92.6282 93.3409 99.7814 100.8552 101.5695 107.4533 110.9174 114.1365 116.7071 117.7175 123.5309 125.7186 127.6100 128.2549 132.3011 134.5735 139.9572 140.3614 140.9149 144.1353 145.0294 149.6170 152.5151 154.9873 155.3114 158.1975 k = 0.8000-0.2000 1.0000 ( 256 PWs) bands (ev): 9.9044 10.4055 12.3036 13.0211 13.1750 15.6139 26.2295 27.1497 28.0698 37.2494 39.6237 54.1302 61.7250 63.0298 64.6403 65.7958 69.0605 72.7113 73.6809 75.5125 77.0688 81.2731 84.8969 85.2962 90.7785 94.6155 101.4642 103.9438 104.8561 108.5254 110.6842 112.1586 115.1286 120.6992 121.8730 123.7953 128.2127 129.2381 130.6069 133.3772 136.2458 137.2748 140.7060 146.8250 147.8527 150.0800 152.1843 157.3186 158.9166 163.4920 k = 0.7000-0.1000 0.9000 ( 257 PWs) bands (ev): 10.1843 10.5223 11.9740 12.7929 13.2973 18.1827 23.3097 24.6155 28.1171 38.3317 43.4881 52.0204 58.2658 60.6940 66.2323 67.4152 70.3579 73.3887 76.7370 78.1469 79.1468 81.4127 84.8795 87.6535 91.7414 92.3303 96.7939 100.8705 103.8354 105.0073 107.7050 111.7837 114.1823 118.2786 120.1143 125.7422 127.8403 129.7665 131.7394 134.9631 137.8901 142.3886 143.7191 147.4185 150.1398 153.2720 155.0731 155.7012 159.5738 162.5055 k = 0.6000 0.0000 0.8000 ( 260 PWs) bands (ev): 10.5291 10.7236 11.5177 12.5770 13.1781 19.8016 20.9095 24.1277 29.3373 39.1746 48.8688 49.5134 53.8646 58.3366 62.9187 67.8113 68.5060 75.6932 77.3289 80.9432 83.7656 84.9364 88.1478 88.6032 90.6989 91.8139 92.7725 98.2264 102.9122 104.2387 108.8902 108.9161 112.9916 117.2174 120.1082 124.4945 127.2910 127.3177 135.6644 141.9153 142.7060 144.7328 145.3056 147.8573 148.1228 152.9629 153.0814 153.8479 155.9615 158.5254 k =-0.2000-1.0000 0.0000 ( 260 PWs) bands (ev): 9.8774 10.2810 12.6534 13.0277 13.3871 17.7825 23.0025 26.5236 27.4273 36.8733 39.3459 56.6240 61.0629 64.4874 66.7701 68.1823 72.7789 73.5414 74.8502 75.2008 77.2964 80.0040 81.9043 83.0008 88.0063 92.6950 94.8315 106.6972 107.4518 107.7991 108.3113 114.2383 116.1170 121.3058 124.2492 125.0856 125.2854 126.7168 127.8436 128.6786 131.7685 136.6446 145.5110 152.9082 153.2902 153.8829 157.9164 158.4799 162.6782 163.2073 k = 0.6000-0.2000 1.0000 ( 256 PWs) bands (ev): 10.4610 10.8288 11.3313 12.6426 13.1712 17.4628 23.7913 25.5627 27.5311 42.8564 43.8151 47.9805 56.6452 60.2283 63.9948 66.1128 66.9189 74.9108 76.9768 79.7645 81.1367 83.7597 85.9374 90.6100 94.4416 94.9246 95.2331 97.8518 102.7130 104.2022 109.4471 109.9120 110.9414 113.0427 124.2311 126.1664 131.5478 132.9239 133.5998 137.7352 137.9545 138.0701 141.9956 148.6430 151.1593 151.9699 152.3393 155.6917 156.4745 160.3737 k = 0.5000-0.1000 0.9000 ( 260 PWs) bands (ev): 10.5389 10.9676 11.2092 12.5393 13.2865 20.1044 20.9515 25.5491 26.3130 43.3142 45.3400 49.0260 52.2602 61.4021 64.9268 68.7724 69.7181 71.8509 76.6031 78.0459 81.9419 86.8602 89.7262 89.7413 90.7391 95.0530 96.0196 98.0279 98.5072 103.2067 106.2746 109.4891 110.6681 116.8153 117.4672 129.2982 130.4055 135.1612 135.2764 135.6684 138.9229 143.5565 145.6743 146.7506 148.0252 151.1041 152.3219 156.5672 159.2265 161.4107 k =-0.4000-1.0000 0.0000 ( 258 PWs) bands (ev): 10.3408 10.7607 11.5749 12.6436 13.3876 20.1798 23.1550 23.5290 25.3882 42.4361 44.5963 49.0768 53.4843 65.9839 66.7713 68.2761 71.2617 72.9735 74.5279 74.8216 78.1168 85.6091 89.4878 90.0758 90.4981 95.8902 96.7297 99.4275 100.2037 102.4125 102.6895 107.8667 111.9157 118.9740 123.5091 124.2347 128.1464 134.8612 136.0547 136.4479 138.4025 144.4821 144.9591 145.2527 146.2116 150.9223 152.1787 158.6713 162.4434 162.4725 the Fermi energy is 14.9252 ev ! total energy = -87.80926026 Ry Harris-Foulkes estimate = -87.80926027 Ry estimated scf accuracy < 1.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -9.19222349 Ry hartree contribution = 18.56632682 Ry xc contribution = -14.04658885 Ry ewald contribution = -83.13666761 Ry smearing contrib. (-TS) = -0.00010713 Ry convergence has been achieved in 6 iterations Writing output data file pwscf.save init_run : 0.99s CPU 0.99s WALL ( 1 calls) electrons : 15.75s CPU 16.10s WALL ( 1 calls) Called by init_run: wfcinit : 0.54s CPU 0.55s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 14.19s CPU 14.50s WALL ( 6 calls) sum_band : 1.32s CPU 1.34s WALL ( 6 calls) v_of_rho : 0.19s CPU 0.19s WALL ( 7 calls) newd : 0.08s CPU 0.08s WALL ( 7 calls) mix_rho : 0.00s CPU 0.01s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.06s CPU 0.06s WALL ( 611 calls) cegterg : 14.10s CPU 14.10s WALL ( 282 calls) Called by *egterg: h_psi : 5.29s CPU 5.35s WALL ( 846 calls) s_psi : 0.12s CPU 0.13s WALL ( 846 calls) g_psi : 0.16s CPU 0.21s WALL ( 517 calls) cdiaghg : 5.76s CPU 5.76s WALL ( 799 calls) Called by h_psi: add_vuspsi : 0.10s CPU 0.13s WALL ( 846 calls) General routines calbec : 0.24s CPU 0.21s WALL ( 1128 calls) fft : 0.02s CPU 0.03s WALL ( 107 calls) ffts : 0.00s CPU 0.00s WALL ( 13 calls) fftw : 4.83s CPU 4.85s WALL ( 85170 calls) interpolate : 0.00s CPU 0.01s WALL ( 13 calls) davcio : 0.01s CPU 0.32s WALL ( 893 calls) PWSCF : 16.91s CPU 17.30s WALL This run was terminated on: 12:41:16 13Sep2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/noncolin.in0000755000175000017500000000165612341373024015153 0ustar mbamba &control calculation='scf' tstress=.true. / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons mixing_beta = 0.2 conv_thr=1.0e-8 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS (alat) Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 espresso-5.1/PW/tests/berry.ref20000644000175000017500000004651112341373024014703 0ustar mbamba Program PWSCF v.4.99 starts on 5Jan2012 at 22:44:26 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/berry.in2 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 869 437 137 19213 6763 1213 bravais-lattice index = 1 lattice parameter (alat) = 7.3699 a.u. unit-cell volume = 400.2993 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 3 number of electrons = 44.00 number of Kohn-Sham states= 24 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.369900 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Pb read from file: /home/giannozz/trunk/espresso/pseudo/Pb.pz-d-van.UPF MD5 check sum: 4e1e5920686a026ae26139ac417581ff Pseudo is Ultrasoft, Zval = 14.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 2 for Ti read from file: /home/giannozz/trunk/espresso/pseudo/Ti.pz-sp-van_ak.UPF MD5 check sum: 545d0e6e05332b8871a8093f427cb0ca Pseudo is Ultrasoft, Zval = 12.0 Generated by new atomic code, or converted to UPF format Using radial grid of 851 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 3 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-van_ak.UPF MD5 check sum: d814fcb982dd9af4fc6452aae6bb9318 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 atomic species valence mass pseudopotential Pb 14.00 207.20000 Pb( 1.00) Ti 12.00 47.86700 Ti( 1.00) O 6.00 15.99940 O ( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Pb tau( 1) = ( 0.0000000 0.0000000 0.0100000 ) 2 Ti tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) 3 O tau( 3) = ( 0.0000000 0.5000000 0.5000000 ) 4 O tau( 4) = ( 0.5000000 0.5000000 0.0000000 ) 5 O tau( 5) = ( 0.5000000 0.0000000 0.5000000 ) number of k points= 21 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 -0.5000000), wk = 0.0714286 k( 2) = ( 0.1250000 0.1250000 -0.3333333), wk = 0.0714286 k( 3) = ( 0.1250000 0.1250000 -0.1666667), wk = 0.0714286 k( 4) = ( 0.1250000 0.1250000 0.0000000), wk = 0.0714286 k( 5) = ( 0.1250000 0.1250000 0.1666667), wk = 0.0714286 k( 6) = ( 0.1250000 0.1250000 0.3333333), wk = 0.0714286 k( 7) = ( 0.1250000 0.1250000 0.5000000), wk = 0.0714286 k( 8) = ( 0.1250000 0.3750000 -0.5000000), wk = 0.1428571 k( 9) = ( 0.1250000 0.3750000 -0.3333333), wk = 0.1428571 k( 10) = ( 0.1250000 0.3750000 -0.1666667), wk = 0.1428571 k( 11) = ( 0.1250000 0.3750000 0.0000000), wk = 0.1428571 k( 12) = ( 0.1250000 0.3750000 0.1666667), wk = 0.1428571 k( 13) = ( 0.1250000 0.3750000 0.3333333), wk = 0.1428571 k( 14) = ( 0.1250000 0.3750000 0.5000000), wk = 0.1428571 k( 15) = ( 0.3750000 0.3750000 -0.5000000), wk = 0.0714286 k( 16) = ( 0.3750000 0.3750000 -0.3333333), wk = 0.0714286 k( 17) = ( 0.3750000 0.3750000 -0.1666667), wk = 0.0714286 k( 18) = ( 0.3750000 0.3750000 0.0000000), wk = 0.0714286 k( 19) = ( 0.3750000 0.3750000 0.1666667), wk = 0.0714286 k( 20) = ( 0.3750000 0.3750000 0.3333333), wk = 0.0714286 k( 21) = ( 0.3750000 0.3750000 0.5000000), wk = 0.0714286 Dense grid: 19213 G-vectors FFT dimensions: ( 36, 36, 36) Smooth grid: 6763 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.31 Mb ( 858, 24) NL pseudopotentials 0.79 Mb ( 858, 60) Each V/rho on FFT grid 0.71 Mb ( 46656) Each G-vector array 0.15 Mb ( 19213) G-vector shells 0.00 Mb ( 232) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.26 Mb ( 858, 96) Each subspace H/S matrix 0.14 Mb ( 96, 96) Each matrix 0.02 Mb ( 60, 24) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 31 randomized atomic wfcs total cpu time spent up to now is 1.8 secs per-process dynamical memory: 22.5 Mb Band Structure Calculation Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 2.27E-09, avg # of iterations = 29.3 total cpu time spent up to now is 8.4 secs End of band structure calculation k = 0.1250 0.1250-0.5000 band energies (ev): -44.7030 -21.3840 -21.3143 -21.3142 -6.0482 -5.3493 -5.3048 -4.5245 -4.4479 -4.4253 -4.3761 -4.2223 3.4839 6.4509 7.2038 7.8124 8.2026 8.4259 9.2312 9.7817 9.9819 10.7887 13.3764 14.6451 k = 0.1250 0.1250-0.3333 band energies (ev): -44.7035 -21.3644 -21.3152 -21.3150 -6.1905 -5.4009 -5.3678 -4.5048 -4.4531 -4.4365 -4.3318 -4.2199 3.6761 6.8998 7.1929 7.6374 8.3669 8.6540 9.2519 9.7983 9.9394 10.4605 13.4729 14.4721 k = 0.1250 0.1250-0.1667 band energies (ev): -44.7041 -21.3247 -21.3169 -21.3165 -6.4698 -5.4917 -5.4817 -4.4631 -4.4569 -4.4415 -4.2582 -4.2377 4.1639 7.1337 7.1547 7.8934 8.8542 8.8873 9.6954 9.7689 9.8530 9.9290 13.5291 13.7025 k = 0.1250 0.1250 0.0000 band energies (ev): -44.7046 -21.3178 -21.3172 -21.3047 -6.6056 -5.5354 -5.5325 -4.4531 -4.4413 -4.4402 -4.2554 -4.2273 4.4674 7.1283 7.2347 7.6339 9.1136 9.3302 9.5923 9.7708 10.0123 10.0578 13.2686 13.3128 k = 0.1250 0.1250 0.1667 band energies (ev): -44.7041 -21.3247 -21.3169 -21.3165 -6.4698 -5.4917 -5.4817 -4.4631 -4.4569 -4.4415 -4.2582 -4.2377 4.1639 7.1337 7.1547 7.8934 8.8542 8.8873 9.6954 9.7689 9.8530 9.9290 13.5291 13.7025 k = 0.1250 0.1250 0.3333 band energies (ev): -44.7035 -21.3644 -21.3152 -21.3150 -6.1905 -5.4009 -5.3678 -4.5048 -4.4531 -4.4365 -4.3318 -4.2199 3.6761 6.8998 7.1929 7.6374 8.3669 8.6540 9.2519 9.7983 9.9394 10.4605 13.4729 14.4721 k = 0.1250 0.1250 0.5000 band energies (ev): -44.7030 -21.3840 -21.3143 -21.3142 -6.0482 -5.3493 -5.3048 -4.5245 -4.4479 -4.4253 -4.3761 -4.2223 3.4839 6.4509 7.2038 7.8124 8.2026 8.4259 9.2312 9.7817 9.9819 10.7887 13.3764 14.6451 k = 0.1250 0.3750-0.5000 band energies (ev): -44.7017 -21.3810 -21.3697 -21.3119 -5.9357 -5.2092 -5.1602 -4.4862 -4.4269 -4.3671 -4.3011 -4.0855 3.1845 6.4407 6.7600 6.9541 7.2882 8.5795 9.0929 9.4148 9.4972 10.6953 14.4668 14.7310 k = 0.1250 0.3750-0.3333 band energies (ev): -44.7023 -21.3708 -21.3616 -21.3127 -5.9551 -5.3018 -5.2238 -4.4905 -4.4519 -4.3846 -4.2731 -4.1504 3.3098 6.7090 6.8615 7.0270 7.5013 8.4782 9.2427 9.4225 9.9187 10.4759 14.2604 14.5296 k = 0.1250 0.3750-0.1667 band energies (ev): -44.7032 -21.3727 -21.3223 -21.3144 -6.0878 -5.3810 -5.3277 -4.5084 -4.4533 -4.4227 -4.3163 -4.2249 3.5461 6.7247 7.0941 7.5669 8.2099 8.6318 9.0719 9.8771 9.9249 10.5099 13.5668 14.5951 k = 0.1250 0.3750 0.0000 band energies (ev): -44.7036 -21.3737 -21.3152 -21.3025 -6.1942 -5.3809 -5.3567 -4.5076 -4.4747 -4.4380 -4.3885 -4.2156 3.6491 6.7215 7.5633 7.6678 8.2608 8.5651 9.5673 9.6887 9.9519 10.7306 13.2946 14.5544 k = 0.1250 0.3750 0.1667 band energies (ev): -44.7032 -21.3727 -21.3223 -21.3144 -6.0878 -5.3810 -5.3277 -4.5084 -4.4533 -4.4227 -4.3163 -4.2249 3.5461 6.7247 7.0941 7.5669 8.2099 8.6318 9.0719 9.8771 9.9249 10.5099 13.5668 14.5951 k = 0.1250 0.3750 0.3333 band energies (ev): -44.7023 -21.3708 -21.3616 -21.3127 -5.9551 -5.3018 -5.2238 -4.4905 -4.4519 -4.3846 -4.2731 -4.1504 3.3098 6.7090 6.8615 7.0270 7.5013 8.4782 9.2427 9.4225 9.9187 10.4759 14.2604 14.5296 k = 0.1250 0.3750 0.5000 band energies (ev): -44.7017 -21.3810 -21.3697 -21.3119 -5.9357 -5.2092 -5.1602 -4.4862 -4.4269 -4.3671 -4.3011 -4.0855 3.1845 6.4407 6.7600 6.9541 7.2882 8.5795 9.0929 9.4148 9.4972 10.6953 14.4668 14.7310 k = 0.3750 0.3750-0.5000 band energies (ev): -44.7010 -21.3785 -21.3674 -21.3672 -5.5581 -5.4573 -5.3867 -4.4063 -4.3881 -3.9987 -3.9888 -3.9453 4.0117 5.6335 5.7716 6.3480 6.8313 6.9482 7.1788 10.5511 10.6154 10.6924 14.7790 14.8705 k = 0.3750 0.3750-0.3333 band energies (ev): -44.7011 -21.3683 -21.3680 -21.3591 -5.6142 -5.4180 -5.3964 -4.4182 -4.4115 -4.1181 -4.0375 -4.0199 3.7644 5.8960 5.9504 6.6163 6.9610 7.1215 8.0005 10.4394 10.4468 10.5774 14.4353 14.8150 k = 0.3750 0.3750-0.1667 band energies (ev): -44.7020 -21.3701 -21.3698 -21.3200 -5.8810 -5.3028 -5.2442 -4.4765 -4.4328 -4.3223 -4.2400 -4.1108 3.3321 6.6426 6.6543 6.7627 7.1586 8.2814 9.2510 9.6215 9.7580 10.5659 14.3190 14.5638 k = 0.3750 0.3750 0.0000 band energies (ev): -44.7022 -21.3710 -21.3706 -21.3001 -6.0230 -5.2107 -5.1379 -4.4867 -4.4756 -4.4665 -4.3379 -4.1452 3.1509 6.6820 6.8041 7.9517 8.0865 8.1061 8.5101 9.2796 10.0820 10.5693 14.5481 14.5908 k = 0.3750 0.3750 0.1667 band energies (ev): -44.7020 -21.3701 -21.3698 -21.3200 -5.8810 -5.3028 -5.2442 -4.4765 -4.4328 -4.3223 -4.2400 -4.1108 3.3321 6.6426 6.6543 6.7627 7.1586 8.2814 9.2510 9.6215 9.7580 10.5659 14.3190 14.5638 k = 0.3750 0.3750 0.3333 band energies (ev): -44.7011 -21.3683 -21.3680 -21.3591 -5.6142 -5.4180 -5.3964 -4.4182 -4.4115 -4.1181 -4.0375 -4.0199 3.7644 5.8960 5.9504 6.6163 6.9610 7.1215 8.0005 10.4394 10.4468 10.5774 14.4353 14.8150 k = 0.3750 0.3750 0.5000 band energies (ev): -44.7010 -21.3785 -21.3674 -21.3672 -5.5581 -5.4573 -5.3867 -4.4063 -4.3881 -3.9987 -3.9888 -3.9453 4.0117 5.6335 5.7716 6.3480 6.8313 6.9482 7.1788 10.5511 10.6154 10.6924 14.7790 14.8705 highest occupied, lowest unoccupied level (ev): 10.7887 13.2686 ================================================== POLARIZATION CALCULATION !!! NOT THOROUGHLY TESTED !!! -------------------------------------------------- K-POINTS STRINGS USED IN CALCULATIONS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ G-vector along string (2 pi/a): 0.00000 0.00000 1.00000 Modulus of the vector (1/bohr): 0.85255 Number of k-points per string: 7 Number of different strings : 3 IONIC POLARIZATION ~~~~~~~~~~~~~~~~~~ Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2,+1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1) ============================================================================ Ion Species Charge Position Phase ---------------------------------------------------------------------------- 1 Pb 14.000 0.0000 0.0000 0.0100 0.14000 (mod 2) 2 Ti 12.000 0.5000 0.5000 0.5000 0.00000 (mod 2) 3 O 6.000 0.0000 0.5000 0.5000 -1.00000 (mod 2) 4 O 6.000 0.5000 0.5000 0.0000 0.00000 (mod 2) 5 O 6.000 0.5000 0.0000 0.5000 -1.00000 (mod 2) ---------------------------------------------------------------------------- IONIC PHASE: 0.14000 (mod 2) ============================================================================ ELECTRONIC POLARIZATION ~~~~~~~~~~~~~~~~~~~~~~~ Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2,+1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1) ============================================================================ Spin String Weight First k-point in string Phase ---------------------------------------------------------------------------- up 1 0.250000 0.1250 0.1250 -0.5000 -0.05389 (mod 1) up 2 0.500000 0.1250 0.3750 -0.5000 -0.04819 (mod 1) up 3 0.250000 0.3750 0.3750 -0.5000 -0.05008 (mod 1) ---------------------------------------------------------------------------- down 1 0.250000 0.1250 0.1250 -0.5000 -0.05389 (mod 1) down 2 0.500000 0.1250 0.3750 -0.5000 -0.04819 (mod 1) down 3 0.250000 0.3750 0.3750 -0.5000 -0.05008 (mod 1) ---------------------------------------------------------------------------- Average phase (up): -0.05009 (mod 1) Average phase (down): -0.05009 (mod 1) ELECTRONIC PHASE: -0.10017 (mod 2) ============================================================================ SUMMARY OF PHASES ~~~~~~~~~~~~~~~~~ Ionic Phase: 0.14000 (mod 2) Electronic Phase: -0.10017 (mod 2) TOTAL PHASE: 0.03983 (mod 2) VALUES OF POLARIZATION ~~~~~~~~~~~~~~~~~~~~~~ The calculation of phases done along the direction of vector 3 of the reciprocal lattice gives the following contribution to the polarization vector (in different units, and being Omega the volume of the unit cell): P = 0.2935155 (mod 14.7398000) (e/Omega).bohr P = 0.0007332 (mod 0.0368220) e/bohr^2 P = 0.0419206 (mod 2.1051744) C/m^2 The polarization direction is: ( 0.00000 , 0.00000 , 1.00000 ) ================================================== Writing output data file pwscf.save init_run : 1.50s CPU 1.50s WALL ( 1 calls) electrons : 7.28s CPU 7.29s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 6.61s CPU 6.63s WALL ( 1 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 1 calls) newd : 0.13s CPU 0.13s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.05s WALL ( 57 calls) cegterg : 6.12s CPU 6.13s WALL ( 42 calls) Called by *egterg: h_psi : 2.71s CPU 2.70s WALL ( 679 calls) s_psi : 0.33s CPU 0.32s WALL ( 679 calls) g_psi : 0.16s CPU 0.17s WALL ( 616 calls) cdiaghg : 1.68s CPU 1.65s WALL ( 637 calls) Called by h_psi: add_vuspsi : 0.40s CPU 0.37s WALL ( 679 calls) General routines calbec : 0.43s CPU 0.41s WALL ( 715 calls) fft : 0.01s CPU 0.00s WALL ( 5 calls) ffts : 0.00s CPU 0.00s WALL ( 1 calls) fftw : 1.38s CPU 1.41s WALL ( 12824 calls) interpolate : 0.00s CPU 0.00s WALL ( 1 calls) davcio : 0.00s CPU 0.01s WALL ( 57 calls) PWSCF : 8.96s CPU 9.19s WALL This run was terminated on: 22:44:36 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-occ.in0000644000175000017500000000064512341373024014643 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 nbnd=8, occupations='from_input' / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 OCCUPATIONS 2. 2. 2. 2. 0. 0. 0. 0. espresso-5.1/PW/tests/atom-pbe.ref0000644000175000017500000002501712341373024015200 0ustar mbamba Program PWSCF v.4.99 starts on 5Jan2012 at 22:44:10 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/atom-pbe.in file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1597 793 193 47833 16879 2103 Tot 799 397 97 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23917 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 8440 G-vectors FFT dimensions: ( 32, 32, 32) Occupations read from input 2.0000 1.3333 1.3333 1.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 1052, 6) NL pseudopotentials 0.13 Mb ( 1052, 8) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.18 Mb ( 23917) G-vector shells 0.00 Mb ( 424) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 1052, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.758E-05 0.000E+00 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 18.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.67E-06, avg # of iterations = 8.0 negative rho (up, down): 0.610E-05 0.000E+00 total cpu time spent up to now is 0.8 secs total energy = -31.37474557 Ry Harris-Foulkes estimate = -31.37473796 Ry estimated scf accuracy < 0.00028243 Ry iteration # 2 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.71E-06, avg # of iterations = 1.0 negative rho (up, down): 0.124E-03 0.000E+00 total cpu time spent up to now is 0.9 secs total energy = -31.37478810 Ry Harris-Foulkes estimate = -31.37475011 Ry estimated scf accuracy < 0.00012973 Ry iteration # 3 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.16E-06, avg # of iterations = 2.0 negative rho (up, down): 0.208E-03 0.000E+00 total cpu time spent up to now is 1.1 secs total energy = -31.37480812 Ry Harris-Foulkes estimate = -31.37479818 Ry estimated scf accuracy < 0.00001220 Ry iteration # 4 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.03E-07, avg # of iterations = 2.0 negative rho (up, down): 0.117E-03 0.000E+00 total cpu time spent up to now is 1.2 secs total energy = -31.37480596 Ry Harris-Foulkes estimate = -31.37480894 Ry estimated scf accuracy < 0.00000001 Ry iteration # 5 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.32E-10, avg # of iterations = 3.0 negative rho (up, down): 0.687E-04 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -31.37480488 Ry Harris-Foulkes estimate = -31.37480601 Ry estimated scf accuracy < 0.00000001 Ry iteration # 6 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.78E-10, avg # of iterations = 2.0 negative rho (up, down): 0.448E-04 0.000E+00 total cpu time spent up to now is 1.6 secs total energy = -31.37480484 Ry Harris-Foulkes estimate = -31.37480488 Ry estimated scf accuracy < 0.00000002 Ry iteration # 7 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.78E-10, avg # of iterations = 2.0 negative rho (up, down): 0.482E-05 0.000E+00 total cpu time spent up to now is 1.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -23.2953 -8.2857 -8.2857 -8.2857 -0.5478 4.3552 highest occupied, lowest unoccupied level (ev): -8.2857 -0.5478 ! total energy = -31.37480299 Ry Harris-Foulkes estimate = -31.37480484 Ry estimated scf accuracy < 2.9E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -31.90040182 Ry hartree contribution = 17.20543716 Ry xc contribution = -6.46556732 Ry ewald contribution = -10.21427100 Ry convergence has been achieved in 7 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.46 -0.00009827 0.00000000 0.00000000 -14.46 0.00 0.00 0.00000000 -0.00009827 0.00000000 0.00 -14.46 0.00 0.00000000 0.00000000 -0.00009827 0.00 0.00 -14.46 Writing output data file pwscf.save init_run : 0.52s CPU 0.53s WALL ( 1 calls) electrons : 1.04s CPU 1.10s WALL ( 1 calls) stress : 0.22s CPU 0.22s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 0.08s CPU 0.09s WALL ( 8 calls) sum_band : 0.24s CPU 0.24s WALL ( 8 calls) v_of_rho : 0.54s CPU 0.58s WALL ( 8 calls) newd : 0.15s CPU 0.16s WALL ( 8 calls) mix_rho : 0.04s CPU 0.04s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 17 calls) regterg : 0.08s CPU 0.08s WALL ( 8 calls) Called by *egterg: h_psi : 0.06s CPU 0.07s WALL ( 36 calls) s_psi : 0.00s CPU 0.00s WALL ( 36 calls) g_psi : 0.00s CPU 0.00s WALL ( 27 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 34 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 36 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 45 calls) fft : 0.17s CPU 0.21s WALL ( 133 calls) ffts : 0.00s CPU 0.01s WALL ( 16 calls) fftw : 0.04s CPU 0.05s WALL ( 172 calls) interpolate : 0.04s CPU 0.04s WALL ( 16 calls) davcio : 0.00s CPU 0.00s WALL ( 7 calls) PWSCF : 1.88s CPU 1.98s WALL This run was terminated on: 22:44:12 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav5.in0000644000175000017500000000044212341373024016134 0ustar mbamba &control calculation='scf', / &system ibrav = 5, celldm(1) =10.0, celldm(4) = 0.5, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/relax2-bfgs_ndim3.ref0000644000175000017500000020117312341373024016701 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:27:10 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/relax2-bfgs_ndim3.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 109 109 37 6689 6689 1411 bravais-lattice index = 6 lattice parameter (alat) = 5.3033 a.u. unit-cell volume = 1193.2421 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 5.303300 celldm(2)= 0.000000 celldm(3)= 8.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 8.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.125000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 1.00000 Al( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.5000000 0.5000000 -2.1213200 ) 2 Al tau( 2) = ( 0.0000000 0.0000000 -1.4142130 ) 3 Al tau( 3) = ( 0.5000000 0.5000000 -0.7071070 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.5000000 0.5000000 0.7071070 ) 6 Al tau( 6) = ( 0.0000000 0.0000000 1.4142130 ) 7 Al tau( 7) = ( 0.5000000 0.5000000 2.1213200 ) number of k points= 3 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.0000000), wk = 0.5000000 k( 2) = ( 0.1250000 0.3750000 0.0000000), wk = 1.0000000 k( 3) = ( 0.3750000 0.3750000 0.0000000), wk = 0.5000000 Dense grid: 6689 G-vectors FFT dimensions: ( 12, 12, 96) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 860, 15) NL pseudopotentials 0.37 Mb ( 860, 28) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.05 Mb ( 6689) G-vector shells 0.00 Mb ( 351) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.79 Mb ( 860, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 28, 15) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000275 starting charge 20.98560, renormalised to 21.00000 negative rho (up, down): 0.276E-03 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.187E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -28.85221141 Ry Harris-Foulkes estimate = -29.29340698 Ry estimated scf accuracy < 0.92873941 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.42E-03, avg # of iterations = 4.0 total cpu time spent up to now is 0.4 secs total energy = -27.68024365 Ry Harris-Foulkes estimate = -30.53400996 Ry estimated scf accuracy < 39.10561646 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.42E-03, avg # of iterations = 4.7 total cpu time spent up to now is 0.5 secs total energy = -29.21379581 Ry Harris-Foulkes estimate = -29.23657710 Ry estimated scf accuracy < 0.23755208 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 1.3 total cpu time spent up to now is 0.6 secs total energy = -29.21561639 Ry Harris-Foulkes estimate = -29.22399168 Ry estimated scf accuracy < 0.04594646 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.19E-04, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -29.21943300 Ry Harris-Foulkes estimate = -29.22031634 Ry estimated scf accuracy < 0.00650836 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.10E-05, avg # of iterations = 2.3 total cpu time spent up to now is 0.8 secs total energy = -29.21991273 Ry Harris-Foulkes estimate = -29.21994391 Ry estimated scf accuracy < 0.00082029 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.91E-06, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs total energy = -29.21995477 Ry Harris-Foulkes estimate = -29.21996819 Ry estimated scf accuracy < 0.00009068 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.32E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.9 secs total energy = -29.21995746 Ry Harris-Foulkes estimate = -29.21996109 Ry estimated scf accuracy < 0.00002386 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.14E-07, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -29.21995993 Ry Harris-Foulkes estimate = -29.21996102 Ry estimated scf accuracy < 0.00000885 Ry iteration # 10 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.21E-08, avg # of iterations = 1.3 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0790 -6.5552 -5.7174 -4.5663 -3.1472 -1.4538 0.5130 1.7884 4.3697 5.5244 5.9953 6.2181 6.7546 7.2250 7.4961 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7555 -4.2392 -3.4161 -2.2857 -0.8947 -0.2551 0.2238 0.8005 1.0422 2.1352 2.7201 3.5256 3.8934 5.1677 6.5172 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4879 -1.9832 -1.1752 -0.0657 1.2961 1.3317 1.7993 2.5504 2.7201 2.8086 3.4481 3.5987 4.1260 4.9120 4.9357 the Fermi energy is 3.4732 ev ! total energy = -29.21996046 Ry Harris-Foulkes estimate = -29.21996045 Ry estimated scf accuracy < 0.00000006 Ry The total energy is the sum of the following terms: one-electron contribution = -182.01447362 Ry hartree contribution = 97.75031136 Ry xc contribution = -11.20681610 Ry ewald contribution = 66.25386160 Ry smearing contrib. (-TS) = -0.00284369 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.01016766 atom 2 type 1 force = 0.00000000 0.00000000 -0.00112981 atom 3 type 1 force = 0.00000000 0.00000000 0.00255994 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00255994 atom 6 type 1 force = 0.00000000 0.00000000 0.00112981 atom 7 type 1 force = 0.00000000 0.00000000 -0.01016766 Total force = 0.014914 Total SCF correction = 0.000168 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -29.2199604576 Ry new trust radius = 0.0101676599 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.119402767 Al 0.000000000 0.000000000 -1.414426039 Al 0.500000000 0.500000000 -0.706624293 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.706624293 Al 0.000000000 0.000000000 1.414426039 Al 0.500000000 0.500000000 2.119402767 Writing output data file pwscf.save Check: negative starting charge= -0.000275 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000280 negative rho (up, down): 0.180E-05 0.000E+00 total cpu time spent up to now is 1.1 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.91E-08, avg # of iterations = 1.7 negative rho (up, down): 0.294E-06 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -29.22016915 Ry Harris-Foulkes estimate = -29.22017685 Ry estimated scf accuracy < 0.00001795 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.55E-08, avg # of iterations = 3.0 negative rho (up, down): 0.234E-06 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -29.22015873 Ry Harris-Foulkes estimate = -29.22018648 Ry estimated scf accuracy < 0.00032230 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.55E-08, avg # of iterations = 2.7 negative rho (up, down): 0.175E-07 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -29.22017348 Ry Harris-Foulkes estimate = -29.22017434 Ry estimated scf accuracy < 0.00000820 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.90E-08, avg # of iterations = 1.7 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0832 -6.5613 -5.7280 -4.5713 -3.1447 -1.4506 0.5179 1.7934 4.3762 5.5200 5.9886 6.2250 6.7423 7.2250 7.5044 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7597 -4.2453 -3.4267 -2.2908 -0.8925 -0.2593 0.2175 0.8035 1.0315 2.1297 2.7248 3.5278 3.8975 5.1712 6.5234 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4921 -1.9894 -1.1859 -0.0711 1.2980 1.3273 1.7928 2.5386 2.7158 2.8082 3.4451 3.5925 4.1166 4.9148 4.9401 the Fermi energy is 3.4729 ev ! total energy = -29.22017348 Ry Harris-Foulkes estimate = -29.22017405 Ry estimated scf accuracy < 0.00000088 Ry The total energy is the sum of the following terms: one-electron contribution = -182.38014433 Ry hartree contribution = 97.93262331 Ry xc contribution = -11.20947569 Ry ewald contribution = 66.43971617 Ry smearing contrib. (-TS) = -0.00289294 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00950897 atom 2 type 1 force = 0.00000000 0.00000000 -0.00037957 atom 3 type 1 force = 0.00000000 0.00000000 0.00216631 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00216631 atom 6 type 1 force = 0.00000000 0.00000000 0.00037957 atom 7 type 1 force = 0.00000000 0.00000000 -0.00950897 Total force = 0.013803 Total SCF correction = 0.001183 number of scf cycles = 2 number of bfgs steps = 1 energy old = -29.2199604576 Ry energy new = -29.2201734801 Ry CASE: energy _new < energy _old WARNING: bfgs curvature condition failed, Theta= 0.867 new trust radius = 0.0152514898 bohr new conv_thr = 0.0000000213 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.116526918 Al 0.000000000 0.000000000 -1.414548585 Al 0.500000000 0.500000000 -0.705966515 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.705966515 Al 0.000000000 0.000000000 1.414548585 Al 0.500000000 0.500000000 2.116526918 Writing output data file pwscf.save Check: negative starting charge= -0.000280 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000285 negative rho (up, down): 0.602E-05 0.000E+00 total cpu time spent up to now is 1.6 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.186E-05 0.000E+00 total cpu time spent up to now is 1.7 secs total energy = -29.22045714 Ry Harris-Foulkes estimate = -29.22046758 Ry estimated scf accuracy < 0.00002601 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.24E-07, avg # of iterations = 2.3 negative rho (up, down): 0.819E-06 0.000E+00 total cpu time spent up to now is 1.8 secs total energy = -29.22045959 Ry Harris-Foulkes estimate = -29.22046448 Ry estimated scf accuracy < 0.00001768 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.42E-08, avg # of iterations = 2.0 negative rho (up, down): 0.427E-06 0.000E+00 total cpu time spent up to now is 1.9 secs total energy = -29.22045887 Ry Harris-Foulkes estimate = -29.22046547 Ry estimated scf accuracy < 0.00006475 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.42E-08, avg # of iterations = 2.0 negative rho (up, down): 0.418E-07 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -29.22046239 Ry Harris-Foulkes estimate = -29.22046345 Ry estimated scf accuracy < 0.00001155 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.50E-08, avg # of iterations = 1.0 total cpu time spent up to now is 2.1 secs total energy = -29.22046300 Ry Harris-Foulkes estimate = -29.22046292 Ry estimated scf accuracy < 0.00000025 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.21E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.2 secs total energy = -29.22046304 Ry Harris-Foulkes estimate = -29.22046307 Ry estimated scf accuracy < 0.00000022 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.04E-09, avg # of iterations = 2.0 total cpu time spent up to now is 2.2 secs total energy = -29.22046306 Ry Harris-Foulkes estimate = -29.22046309 Ry estimated scf accuracy < 0.00000022 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.04E-09, avg # of iterations = 1.3 total cpu time spent up to now is 2.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0917 -6.5716 -5.7448 -4.5801 -3.1440 -1.4483 0.5229 1.7986 4.3839 5.5112 5.9775 6.2328 6.7230 7.2205 7.5053 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7682 -4.2556 -3.4436 -2.2998 -0.8922 -0.2679 0.2072 0.8054 1.0143 2.1201 2.7294 3.5280 3.9014 5.1740 6.5307 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5007 -1.9998 -1.2031 -0.0804 1.2978 1.3187 1.7820 2.5199 2.7071 2.8055 3.4395 3.5817 4.1014 4.9157 4.9443 the Fermi energy is 3.4704 ev ! total energy = -29.22046307 Ry Harris-Foulkes estimate = -29.22046307 Ry estimated scf accuracy < 6.3E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -182.94359375 Ry hartree contribution = 98.20987152 Ry xc contribution = -11.21340341 Ry ewald contribution = 66.72962259 Ry smearing contrib. (-TS) = -0.00296002 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00854263 atom 2 type 1 force = 0.00000000 0.00000000 0.00060838 atom 3 type 1 force = 0.00000000 0.00000000 0.00181471 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00181471 atom 6 type 1 force = 0.00000000 0.00000000 -0.00060838 atom 7 type 1 force = 0.00000000 0.00000000 -0.00854263 Total force = 0.012381 Total SCF correction = 0.000035 number of scf cycles = 3 number of bfgs steps = 2 energy old = -29.2201734801 Ry energy new = -29.2204630734 Ry CASE: energy _new < energy _old new trust radius = 0.0228772348 bohr new conv_thr = 0.0000000290 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.112213145 Al 0.000000000 0.000000000 -1.414067743 Al 0.500000000 0.500000000 -0.705067256 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.705067256 Al 0.000000000 0.000000000 1.414067743 Al 0.500000000 0.500000000 2.112213145 Writing output data file pwscf.save Check: negative starting charge= -0.000285 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000290 negative rho (up, down): 0.150E-04 0.000E+00 total cpu time spent up to now is 2.4 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.7 negative rho (up, down): 0.631E-05 0.000E+00 total cpu time spent up to now is 2.5 secs total energy = -29.22083418 Ry Harris-Foulkes estimate = -29.22085537 Ry estimated scf accuracy < 0.00005317 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.53E-07, avg # of iterations = 2.3 negative rho (up, down): 0.473E-05 0.000E+00 total cpu time spent up to now is 2.6 secs total energy = -29.22082984 Ry Harris-Foulkes estimate = -29.22085355 Ry estimated scf accuracy < 0.00012503 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.53E-07, avg # of iterations = 2.0 negative rho (up, down): 0.301E-05 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -29.22083432 Ry Harris-Foulkes estimate = -29.22085672 Ry estimated scf accuracy < 0.00026611 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.53E-07, avg # of iterations = 2.0 negative rho (up, down): 0.404E-06 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -29.22084588 Ry Harris-Foulkes estimate = -29.22084654 Ry estimated scf accuracy < 0.00000522 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 1.7 total cpu time spent up to now is 2.8 secs total energy = -29.22084644 Ry Harris-Foulkes estimate = -29.22084626 Ry estimated scf accuracy < 0.00000048 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.30E-09, avg # of iterations = 2.0 total cpu time spent up to now is 2.9 secs total energy = -29.22084651 Ry Harris-Foulkes estimate = -29.22084650 Ry estimated scf accuracy < 0.00000009 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.29E-10, avg # of iterations = 2.3 total cpu time spent up to now is 3.0 secs total energy = -29.22084652 Ry Harris-Foulkes estimate = -29.22084654 Ry estimated scf accuracy < 0.00000009 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.08E-10, avg # of iterations = 1.7 total cpu time spent up to now is 3.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1048 -6.5877 -5.7661 -4.5911 -3.1431 -1.4438 0.5317 1.8076 4.3972 5.4975 5.9598 6.2453 6.6984 7.2136 7.5101 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7813 -4.2717 -3.4650 -2.3112 -0.8919 -0.2811 0.1907 0.8095 0.9925 2.1080 2.7374 3.5284 3.9088 5.1790 6.5434 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5138 -2.0161 -1.2249 -0.0923 1.2974 1.3052 1.7649 2.4961 2.6938 2.8014 3.4313 3.5681 4.0821 4.9163 4.9520 the Fermi energy is 3.4673 ev ! total energy = -29.22084653 Ry Harris-Foulkes estimate = -29.22084654 Ry estimated scf accuracy < 4.6E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -183.87785839 Ry hartree contribution = 98.67346182 Ry xc contribution = -11.21940214 Ry ewald contribution = 67.20598207 Ry smearing contrib. (-TS) = -0.00302990 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00727192 atom 2 type 1 force = 0.00000000 0.00000000 0.00175513 atom 3 type 1 force = 0.00000000 0.00000000 0.00140493 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00140493 atom 6 type 1 force = 0.00000000 0.00000000 -0.00175513 atom 7 type 1 force = 0.00000000 0.00000000 -0.00727192 Total force = 0.010764 Total SCF correction = 0.000101 number of scf cycles = 4 number of bfgs steps = 3 energy old = -29.2204630734 Ry energy new = -29.2208465313 Ry CASE: energy _new < energy _old new trust radius = 0.0343158522 bohr new conv_thr = 0.0000000383 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.105742485 Al 0.000000000 0.000000000 -1.409634469 Al 0.500000000 0.500000000 -0.704163986 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.704163986 Al 0.000000000 0.000000000 1.409634469 Al 0.500000000 0.500000000 2.105742485 Writing output data file pwscf.save Check: negative starting charge= -0.000290 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000294 negative rho (up, down): 0.334E-04 0.000E+00 total cpu time spent up to now is 3.1 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.7 negative rho (up, down): 0.159E-04 0.000E+00 total cpu time spent up to now is 3.3 secs total energy = -29.22128394 Ry Harris-Foulkes estimate = -29.22142669 Ry estimated scf accuracy < 0.00030871 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.47E-06, avg # of iterations = 3.3 negative rho (up, down): 0.143E-04 0.000E+00 total cpu time spent up to now is 3.4 secs total energy = -29.22107352 Ry Harris-Foulkes estimate = -29.22168201 Ry estimated scf accuracy < 0.00679771 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.47E-06, avg # of iterations = 3.0 negative rho (up, down): 0.999E-05 0.000E+00 total cpu time spent up to now is 3.5 secs total energy = -29.22138516 Ry Harris-Foulkes estimate = -29.22142132 Ry estimated scf accuracy < 0.00030465 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.45E-06, avg # of iterations = 1.0 negative rho (up, down): 0.136E-06 0.000E+00 total cpu time spent up to now is 3.6 secs total energy = -29.22140260 Ry Harris-Foulkes estimate = -29.22140196 Ry estimated scf accuracy < 0.00000518 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-08, avg # of iterations = 3.0 negative rho (up, down): 0.324E-07 0.000E+00 total cpu time spent up to now is 3.6 secs total energy = -29.22140379 Ry Harris-Foulkes estimate = -29.22140408 Ry estimated scf accuracy < 0.00000609 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-08, avg # of iterations = 1.0 total cpu time spent up to now is 3.7 secs total energy = -29.22140387 Ry Harris-Foulkes estimate = -29.22140392 Ry estimated scf accuracy < 0.00000108 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.15E-09, avg # of iterations = 2.3 total cpu time spent up to now is 3.8 secs total energy = -29.22140396 Ry Harris-Foulkes estimate = -29.22140404 Ry estimated scf accuracy < 0.00000052 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.46E-09, avg # of iterations = 2.0 total cpu time spent up to now is 3.9 secs total energy = -29.22140402 Ry Harris-Foulkes estimate = -29.22140403 Ry estimated scf accuracy < 0.00000016 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.77E-10, avg # of iterations = 1.3 total cpu time spent up to now is 4.0 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1311 -6.6160 -5.7817 -4.6015 -3.1495 -1.4381 0.5443 1.8205 4.4212 5.4698 5.9289 6.2638 6.6808 7.1963 7.5209 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8076 -4.3001 -3.4810 -2.3222 -0.8993 -0.3076 0.1617 0.8147 0.9765 2.0963 2.7480 3.5220 3.9204 5.1840 6.5660 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5403 -2.0449 -1.2413 -0.1039 1.2781 1.2887 1.7348 2.4788 2.6669 2.7915 3.4174 3.5552 4.0671 4.9055 4.9633 the Fermi energy is 3.4612 ev ! total energy = -29.22140399 Ry Harris-Foulkes estimate = -29.22140402 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = -185.73990940 Ry hartree contribution = 99.59867781 Ry xc contribution = -11.22843118 Ry ewald contribution = 68.15119651 Ry smearing contrib. (-TS) = -0.00293772 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00639011 atom 2 type 1 force = 0.00000000 0.00000000 0.00132232 atom 3 type 1 force = 0.00000000 0.00000000 0.00188853 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00188853 atom 6 type 1 force = 0.00000000 0.00000000 -0.00132232 atom 7 type 1 force = 0.00000000 0.00000000 -0.00639011 Total force = 0.009607 Total SCF correction = 0.000308 number of scf cycles = 5 number of bfgs steps = 4 energy old = -29.2208465313 Ry energy new = -29.2214039917 Ry CASE: energy _new < energy _old WARNING: bfgs curvature condition failed, Theta= 0.887 new trust radius = 0.0514737782 bohr new conv_thr = 0.0000000557 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.096036494 Al 0.000000000 0.000000000 -1.403756700 Al 0.500000000 0.500000000 -0.702540296 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.702540296 Al 0.000000000 0.000000000 1.403756700 Al 0.500000000 0.500000000 2.096036494 Writing output data file pwscf.save Check: negative starting charge= -0.000294 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000291 negative rho (up, down): 0.678E-04 0.000E+00 total cpu time spent up to now is 4.0 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.7 negative rho (up, down): 0.362E-04 0.000E+00 total cpu time spent up to now is 4.2 secs total energy = -29.22179909 Ry Harris-Foulkes estimate = -29.22214027 Ry estimated scf accuracy < 0.00072890 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.47E-06, avg # of iterations = 3.3 negative rho (up, down): 0.331E-04 0.000E+00 total cpu time spent up to now is 4.3 secs total energy = -29.22120380 Ry Harris-Foulkes estimate = -29.22290287 Ry estimated scf accuracy < 0.02021443 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.47E-06, avg # of iterations = 3.0 negative rho (up, down): 0.241E-04 0.000E+00 total cpu time spent up to now is 4.4 secs total energy = -29.22206713 Ry Harris-Foulkes estimate = -29.22211530 Ry estimated scf accuracy < 0.00034258 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.63E-06, avg # of iterations = 1.0 negative rho (up, down): 0.180E-05 0.000E+00 total cpu time spent up to now is 4.4 secs total energy = -29.22209108 Ry Harris-Foulkes estimate = -29.22208990 Ry estimated scf accuracy < 0.00000991 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.72E-08, avg # of iterations = 2.7 negative rho (up, down): 0.266E-07 0.000E+00 total cpu time spent up to now is 4.5 secs total energy = -29.22209284 Ry Harris-Foulkes estimate = -29.22209302 Ry estimated scf accuracy < 0.00000624 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.97E-08, avg # of iterations = 1.0 total cpu time spent up to now is 4.6 secs total energy = -29.22209307 Ry Harris-Foulkes estimate = -29.22209304 Ry estimated scf accuracy < 0.00000079 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.78E-09, avg # of iterations = 2.7 total cpu time spent up to now is 4.7 secs total energy = -29.22209314 Ry Harris-Foulkes estimate = -29.22209325 Ry estimated scf accuracy < 0.00000078 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.72E-09, avg # of iterations = 1.7 total cpu time spent up to now is 4.8 secs total energy = -29.22209321 Ry Harris-Foulkes estimate = -29.22209323 Ry estimated scf accuracy < 0.00000015 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.28E-10, avg # of iterations = 1.3 total cpu time spent up to now is 4.9 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1704 -6.6578 -5.8093 -4.6188 -3.1573 -1.4297 0.5631 1.8402 4.4560 5.4285 5.8834 6.2901 6.6495 7.1698 7.5374 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8468 -4.3419 -3.5090 -2.3403 -0.9087 -0.3471 0.1189 0.8223 0.9482 2.0769 2.7641 3.5140 3.9378 5.1917 6.5988 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5797 -2.0874 -1.2700 -0.1231 1.2377 1.2775 1.6906 2.4481 2.6268 2.7751 3.3988 3.5337 4.0411 4.8920 4.9802 the Fermi energy is 3.4525 ev ! total energy = -29.22209320 Ry Harris-Foulkes estimate = -29.22209322 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = -188.46713595 Ry hartree contribution = 100.95468925 Ry xc contribution = -11.24206052 Ry ewald contribution = 69.53533358 Ry smearing contrib. (-TS) = -0.00291957 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00477449 atom 2 type 1 force = 0.00000000 0.00000000 0.00114967 atom 3 type 1 force = 0.00000000 0.00000000 0.00234413 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00234413 atom 6 type 1 force = 0.00000000 0.00000000 -0.00114967 atom 7 type 1 force = 0.00000000 0.00000000 -0.00477449 Total force = 0.007696 Total SCF correction = 0.000234 number of scf cycles = 6 number of bfgs steps = 5 energy old = -29.2214039917 Ry energy new = -29.2220932029 Ry CASE: energy _new < energy _old new trust radius = 0.0772106673 bohr new conv_thr = 0.0000000477 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.081477509 Al 0.000000000 0.000000000 -1.394810291 Al 0.500000000 0.500000000 -0.699791402 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.699791402 Al 0.000000000 0.000000000 1.394810291 Al 0.500000000 0.500000000 2.081477509 Writing output data file pwscf.save Check: negative starting charge= -0.000291 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000294 negative rho (up, down): 0.143E-03 0.000E+00 total cpu time spent up to now is 4.9 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.7 negative rho (up, down): 0.817E-04 0.000E+00 total cpu time spent up to now is 5.1 secs total energy = -29.22219844 Ry Harris-Foulkes estimate = -29.22290827 Ry estimated scf accuracy < 0.00152268 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.25E-06, avg # of iterations = 3.3 negative rho (up, down): 0.754E-04 0.000E+00 total cpu time spent up to now is 5.2 secs total energy = -29.22097478 Ry Harris-Foulkes estimate = -29.22449581 Ry estimated scf accuracy < 0.04169825 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.25E-06, avg # of iterations = 3.0 negative rho (up, down): 0.569E-04 0.000E+00 total cpu time spent up to now is 5.3 secs total energy = -29.22276050 Ry Harris-Foulkes estimate = -29.22285174 Ry estimated scf accuracy < 0.00062223 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.96E-06, avg # of iterations = 1.3 negative rho (up, down): 0.555E-05 0.000E+00 total cpu time spent up to now is 5.4 secs total energy = -29.22280670 Ry Harris-Foulkes estimate = -29.22280434 Ry estimated scf accuracy < 0.00002084 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.92E-08, avg # of iterations = 3.0 negative rho (up, down): 0.696E-06 0.000E+00 total cpu time spent up to now is 5.5 secs total energy = -29.22280973 Ry Harris-Foulkes estimate = -29.22280983 Ry estimated scf accuracy < 0.00000757 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.60E-08, avg # of iterations = 1.3 total cpu time spent up to now is 5.5 secs total energy = -29.22281035 Ry Harris-Foulkes estimate = -29.22281013 Ry estimated scf accuracy < 0.00000044 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.08E-09, avg # of iterations = 2.7 total cpu time spent up to now is 5.6 secs total energy = -29.22281038 Ry Harris-Foulkes estimate = -29.22281049 Ry estimated scf accuracy < 0.00000074 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.08E-09, avg # of iterations = 2.3 total cpu time spent up to now is 5.7 secs total energy = -29.22281046 Ry Harris-Foulkes estimate = -29.22281048 Ry estimated scf accuracy < 0.00000021 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.79E-10, avg # of iterations = 1.0 total cpu time spent up to now is 5.8 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2314 -6.7208 -5.8516 -4.6453 -3.1687 -1.4176 0.5911 1.8701 4.5079 5.3642 5.8147 6.3260 6.6016 7.1273 7.5636 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9077 -4.4051 -3.5519 -2.3681 -0.9227 -0.4084 0.0543 0.8332 0.9051 2.0474 2.7878 3.5026 3.9642 5.2025 6.6473 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6411 -2.1514 -1.3140 -0.1524 1.1748 1.2605 1.6238 2.4011 2.5645 2.7459 3.3745 3.5007 4.0011 4.8718 5.0054 the Fermi energy is 3.4397 ev ! total energy = -29.22281046 Ry Harris-Foulkes estimate = -29.22281047 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = -192.62867499 Ry hartree contribution = 103.02331595 Ry xc contribution = -11.26269572 Ry ewald contribution = 71.64829695 Ry smearing contrib. (-TS) = -0.00305265 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00226637 atom 2 type 1 force = 0.00000000 0.00000000 0.00081897 atom 3 type 1 force = 0.00000000 0.00000000 0.00297998 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00297998 atom 6 type 1 force = 0.00000000 0.00000000 -0.00081897 atom 7 type 1 force = 0.00000000 0.00000000 -0.00226637 Total force = 0.005420 Total SCF correction = 0.000224 number of scf cycles = 7 number of bfgs steps = 6 energy old = -29.2220932029 Ry energy new = -29.2228104552 Ry CASE: energy _new < energy _old new trust radius = 0.0790055952 bohr new conv_thr = 0.0000000298 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.066580069 Al 0.000000000 0.000000000 -1.385111561 Al 0.500000000 0.500000000 -0.694678237 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.694678237 Al 0.000000000 0.000000000 1.385111561 Al 0.500000000 0.500000000 2.066580069 Writing output data file pwscf.save Check: negative starting charge= -0.000294 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000297 negative rho (up, down): 0.155E-03 0.000E+00 total cpu time spent up to now is 5.8 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.7 negative rho (up, down): 0.884E-04 0.000E+00 total cpu time spent up to now is 6.0 secs total energy = -29.22241869 Ry Harris-Foulkes estimate = -29.22328742 Ry estimated scf accuracy < 0.00184345 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.78E-06, avg # of iterations = 3.3 negative rho (up, down): 0.824E-04 0.000E+00 total cpu time spent up to now is 6.1 secs total energy = -29.22067753 Ry Harris-Foulkes estimate = -29.22567420 Ry estimated scf accuracy < 0.06173557 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.78E-06, avg # of iterations = 3.0 negative rho (up, down): 0.599E-04 0.000E+00 total cpu time spent up to now is 6.2 secs total energy = -29.22317112 Ry Harris-Foulkes estimate = -29.22320547 Ry estimated scf accuracy < 0.00019663 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.36E-07, avg # of iterations = 1.7 negative rho (up, down): 0.864E-05 0.000E+00 total cpu time spent up to now is 6.3 secs total energy = -29.22319221 Ry Harris-Foulkes estimate = -29.22319023 Ry estimated scf accuracy < 0.00002428 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.16E-07, avg # of iterations = 2.3 negative rho (up, down): 0.242E-06 0.000E+00 total cpu time spent up to now is 6.4 secs total energy = -29.22319480 Ry Harris-Foulkes estimate = -29.22319410 Ry estimated scf accuracy < 0.00000258 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.23E-08, avg # of iterations = 2.3 total cpu time spent up to now is 6.5 secs total energy = -29.22319528 Ry Harris-Foulkes estimate = -29.22319509 Ry estimated scf accuracy < 0.00000037 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.74E-09, avg # of iterations = 2.3 total cpu time spent up to now is 6.6 secs total energy = -29.22319534 Ry Harris-Foulkes estimate = -29.22319534 Ry estimated scf accuracy < 0.00000015 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.15E-10, avg # of iterations = 2.0 total cpu time spent up to now is 6.7 secs total energy = -29.22319535 Ry Harris-Foulkes estimate = -29.22319536 Ry estimated scf accuracy < 0.00000006 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.73E-10, avg # of iterations = 1.3 total cpu time spent up to now is 6.7 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3006 -6.7791 -5.8995 -4.6743 -3.1774 -1.4077 0.6188 1.9007 4.5618 5.2912 5.7516 6.3595 6.5469 7.0764 7.5936 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9767 -4.4636 -3.6005 -2.3985 -0.9350 -0.4775 -0.0055 0.8420 0.8562 2.0155 2.8116 3.4937 3.9904 5.2105 6.6976 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7107 -2.2106 -1.3638 -0.1844 1.1035 1.2453 1.5623 2.3477 2.4943 2.7133 3.3562 3.4647 3.9561 4.8557 5.0311 the Fermi energy is 3.4278 ev ! total energy = -29.22319535 Ry Harris-Foulkes estimate = -29.22319535 Ry estimated scf accuracy < 8.1E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -197.15652078 Ry hartree contribution = 105.27454844 Ry xc contribution = -11.28401892 Ry ewald contribution = 73.94626615 Ry smearing contrib. (-TS) = -0.00347024 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00026096 atom 2 type 1 force = 0.00000000 0.00000000 0.00068763 atom 3 type 1 force = 0.00000000 0.00000000 0.00242796 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00242796 atom 6 type 1 force = 0.00000000 0.00000000 -0.00068763 atom 7 type 1 force = 0.00000000 0.00000000 0.00026096 Total force = 0.003588 Total SCF correction = 0.000030 number of scf cycles = 8 number of bfgs steps = 7 energy old = -29.2228104552 Ry energy new = -29.2231953519 Ry CASE: energy _new < energy _old new trust radius = 0.0251679362 bohr new conv_thr = 0.0000000243 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.061834356 Al 0.000000000 0.000000000 -1.380978163 Al 0.500000000 0.500000000 -0.691543794 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.691543794 Al 0.000000000 0.000000000 1.380978163 Al 0.500000000 0.500000000 2.061834356 Writing output data file pwscf.save Check: negative starting charge= -0.000297 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000296 negative rho (up, down): 0.231E-04 0.000E+00 total cpu time spent up to now is 6.8 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.116E-04 0.000E+00 total cpu time spent up to now is 6.9 secs total energy = -29.22309126 Ry Harris-Foulkes estimate = -29.22327430 Ry estimated scf accuracy < 0.00037952 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.81E-06, avg # of iterations = 3.7 negative rho (up, down): 0.107E-04 0.000E+00 total cpu time spent up to now is 7.0 secs total energy = -29.22270159 Ry Harris-Foulkes estimate = -29.22383383 Ry estimated scf accuracy < 0.01419639 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.81E-06, avg # of iterations = 3.0 negative rho (up, down): 0.114E-06 0.000E+00 total cpu time spent up to now is 7.1 secs total energy = -29.22325863 Ry Harris-Foulkes estimate = -29.22325853 Ry estimated scf accuracy < 0.00000565 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.69E-08, avg # of iterations = 2.7 total cpu time spent up to now is 7.2 secs total energy = -29.22325947 Ry Harris-Foulkes estimate = -29.22325938 Ry estimated scf accuracy < 0.00000053 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.52E-09, avg # of iterations = 2.0 total cpu time spent up to now is 7.3 secs total energy = -29.22325960 Ry Harris-Foulkes estimate = -29.22325955 Ry estimated scf accuracy < 0.00000018 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.34E-10, avg # of iterations = 1.3 total cpu time spent up to now is 7.4 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3283 -6.7934 -5.9148 -4.6835 -3.1795 -1.4062 0.6268 1.9100 4.5804 5.2620 5.7364 6.3706 6.5296 7.0546 7.6063 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0044 -4.4781 -3.6159 -2.4082 -0.9389 -0.5047 -0.0202 0.8407 0.8431 2.0055 2.8187 3.4914 3.9981 5.2108 6.7149 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7386 -2.2252 -1.3796 -0.1947 1.0750 1.2406 1.5473 2.3307 2.4666 2.7033 3.3523 3.4533 3.9417 4.8518 5.0389 the Fermi energy is 3.4245 ev ! total energy = -29.22325963 Ry Harris-Foulkes estimate = -29.22325962 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = -198.85097666 Ry hartree contribution = 106.11747779 Ry xc contribution = -11.29086058 Ry ewald contribution = 74.80476696 Ry smearing contrib. (-TS) = -0.00366715 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00074375 atom 2 type 1 force = 0.00000000 0.00000000 0.00036241 atom 3 type 1 force = 0.00000000 0.00000000 0.00153072 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00153072 atom 6 type 1 force = 0.00000000 0.00000000 -0.00036241 atom 7 type 1 force = 0.00000000 0.00000000 0.00074375 Total force = 0.002461 Total SCF correction = 0.000099 number of scf cycles = 9 number of bfgs steps = 8 energy old = -29.2231953519 Ry energy new = -29.2232596304 Ry CASE: energy _new < energy _old new trust radius = 0.0140357708 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.062757890 Al 0.000000000 0.000000000 -1.379770643 Al 0.500000000 0.500000000 -0.688897183 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.688897183 Al 0.000000000 0.000000000 1.379770643 Al 0.500000000 0.500000000 2.062757890 Writing output data file pwscf.save Check: negative starting charge= -0.000296 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000293 negative rho (up, down): 0.774E-06 0.000E+00 total cpu time spent up to now is 7.4 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.3 negative rho (up, down): 0.165E-06 0.000E+00 total cpu time spent up to now is 7.5 secs total energy = -29.22320993 Ry Harris-Foulkes estimate = -29.22330371 Ry estimated scf accuracy < 0.00019368 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.22E-07, avg # of iterations = 3.3 negative rho (up, down): 0.124E-06 0.000E+00 total cpu time spent up to now is 7.6 secs total energy = -29.22308093 Ry Harris-Foulkes estimate = -29.22346759 Ry estimated scf accuracy < 0.00418957 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.22E-07, avg # of iterations = 3.0 negative rho (up, down): 0.348E-07 0.000E+00 total cpu time spent up to now is 7.7 secs total energy = -29.22327924 Ry Harris-Foulkes estimate = -29.22329761 Ry estimated scf accuracy < 0.00014433 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.87E-07, avg # of iterations = 1.3 total cpu time spent up to now is 7.8 secs total energy = -29.22328772 Ry Harris-Foulkes estimate = -29.22328773 Ry estimated scf accuracy < 0.00000120 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.70E-09, avg # of iterations = 3.3 total cpu time spent up to now is 7.9 secs total energy = -29.22328817 Ry Harris-Foulkes estimate = -29.22328827 Ry estimated scf accuracy < 0.00000219 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.70E-09, avg # of iterations = 1.0 total cpu time spent up to now is 8.0 secs total energy = -29.22328808 Ry Harris-Foulkes estimate = -29.22328820 Ry estimated scf accuracy < 0.00000086 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.07E-09, avg # of iterations = 2.0 total cpu time spent up to now is 8.1 secs total energy = -29.22328815 Ry Harris-Foulkes estimate = -29.22328816 Ry estimated scf accuracy < 0.00000004 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.06E-10, avg # of iterations = 2.0 total cpu time spent up to now is 8.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3342 -6.7803 -5.9119 -4.6818 -3.1769 -1.4101 0.6237 1.9070 4.5803 5.2557 5.7511 6.3710 6.5330 7.0468 7.6093 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0103 -4.4650 -3.6131 -2.4063 -0.9370 -0.5098 -0.0070 0.8395 0.8437 2.0079 2.8167 3.4936 3.9950 5.2061 6.7151 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7446 -2.2120 -1.3766 -0.1928 1.0688 1.2429 1.5614 2.3340 2.4614 2.7086 3.3559 3.4557 3.9444 4.8563 5.0370 the Fermi energy is 3.4263 ev ! total energy = -29.22328815 Ry Harris-Foulkes estimate = -29.22328816 Ry estimated scf accuracy < 5.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -199.01101925 Ry hartree contribution = 106.19744580 Ry xc contribution = -11.28952355 Ry ewald contribution = 74.88350515 Ry smearing contrib. (-TS) = -0.00369631 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00003344 atom 2 type 1 force = 0.00000000 0.00000000 0.00000737 atom 3 type 1 force = 0.00000000 0.00000000 0.00007547 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00007547 atom 6 type 1 force = 0.00000000 0.00000000 -0.00000737 atom 7 type 1 force = 0.00000000 0.00000000 -0.00003344 Total force = 0.000117 Total SCF correction = 0.000122 SCF correction compared to forces is large: reduce conv_thr to get better values bfgs converged in 10 scf cycles and 9 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -29.2232881513 Ry Begin final coordinates ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.062757890 Al 0.000000000 0.000000000 -1.379770643 Al 0.500000000 0.500000000 -0.688897183 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.688897183 Al 0.000000000 0.000000000 1.379770643 Al 0.500000000 0.500000000 2.062757890 End final coordinates Writing output data file pwscf.save init_run : 0.08s CPU 0.09s WALL ( 1 calls) electrons : 7.36s CPU 7.51s WALL ( 10 calls) update_pot : 0.09s CPU 0.10s WALL ( 9 calls) forces : 0.12s CPU 0.12s WALL ( 10 calls) Called by init_run: wfcinit : 0.06s CPU 0.06s WALL ( 1 calls) potinit : 0.00s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 5.87s CPU 5.92s WALL ( 81 calls) sum_band : 0.94s CPU 0.96s WALL ( 81 calls) v_of_rho : 0.14s CPU 0.18s WALL ( 90 calls) mix_rho : 0.16s CPU 0.14s WALL ( 81 calls) Called by c_bands: init_us_2 : 0.10s CPU 0.16s WALL ( 519 calls) cegterg : 5.70s CPU 5.68s WALL ( 243 calls) Called by *egterg: h_psi : 3.94s CPU 3.98s WALL ( 845 calls) g_psi : 0.21s CPU 0.19s WALL ( 599 calls) cdiaghg : 0.56s CPU 0.52s WALL ( 812 calls) Called by h_psi: add_vuspsi : 0.23s CPU 0.22s WALL ( 845 calls) General routines calbec : 0.26s CPU 0.26s WALL ( 875 calls) fft : 0.11s CPU 0.11s WALL ( 381 calls) fftw : 3.63s CPU 3.68s WALL ( 21831 calls) davcio : 0.00s CPU 0.07s WALL ( 762 calls) PWSCF : 8.00s CPU 8.19s WALL This run was terminated on: 11:27:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav0-cell_parameters.ref0000644000175000017500000001763312341373024021447 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:16 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav0-cell_parameters.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1135 1135 281 47345 47345 5905 Tot 568 568 141 bravais-lattice index = 0 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2801.4279 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 0.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.450000 1.430909 0.000000 ) a(3) = ( 0.400000 0.083863 1.957796 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.314485 -0.190840 ) b(2) = ( 0.000000 0.698856 -0.029936 ) b(3) = ( 0.000000 0.000000 0.510778 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23673 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 2953, 1) NL pseudopotentials 0.00 Mb ( 2953, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.18 Mb ( 23673) G-vector shells 0.18 Mb ( 22997) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 2953, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003955 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.395E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.114E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22055170 Ry Harris-Foulkes estimate = -2.29035895 Ry estimated scf accuracy < 0.13253986 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 1.0 negative rho (up, down): 0.245E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23168705 Ry Harris-Foulkes estimate = -2.23211025 Ry estimated scf accuracy < 0.00094325 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-05, avg # of iterations = 2.0 negative rho (up, down): 0.403E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23203744 Ry Harris-Foulkes estimate = -2.23203917 Ry estimated scf accuracy < 0.00001485 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.43E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2953 PWs) bands (ev): -10.3154 ! total energy = -2.23203908 Ry Harris-Foulkes estimate = -2.23203880 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -3.65125627 Ry hartree contribution = 1.92424365 Ry xc contribution = -1.31190429 Ry ewald contribution = 0.80687783 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.12s CPU 0.13s WALL ( 1 calls) electrons : 0.14s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.07s CPU 0.08s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.03s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.03s CPU 0.02s WALL ( 19 calls) fftw : 0.02s CPU 0.03s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.30s CPU 0.33s WALL This run was terminated on: 10:22:16 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav10.ref0000644000175000017500000002135112341373024016360 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:16 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav10.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used warning: symmetry operation # 2 not compatible with FFT grid. 0 -1 1 0 -1 0 1 -1 0 warning: symmetry operation # 3 not compatible with FFT grid. -1 0 0 -1 0 1 -1 1 0 warning: symmetry operation # 4 not compatible with FFT grid. 0 1 -1 1 0 -1 0 0 -1 warning: symmetry operation # 6 not compatible with FFT grid. 0 1 -1 0 1 0 -1 1 0 warning: symmetry operation # 7 not compatible with FFT grid. 1 0 0 1 0 -1 1 -1 0 warning: symmetry operation # 8 not compatible with FFT grid. 0 -1 1 -1 0 1 0 0 1 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 777 777 191 12719 12719 1575 Tot 389 389 96 bravais-lattice index = 10 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 750.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.000000 1.000000 ) a(2) = ( 0.500000 0.750000 0.000000 ) a(3) = ( 0.000000 0.750000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.666667 0.500000 ) b(2) = ( 1.000000 0.666667 -0.500000 ) b(3) = ( -1.000000 0.666667 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 6360 G-vectors FFT dimensions: ( 36, 30, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 788, 1) NL pseudopotentials 0.00 Mb ( 788, 0) Each V/rho on FFT grid 0.66 Mb ( 43200) Each G-vector array 0.05 Mb ( 6360) G-vector shells 0.01 Mb ( 816) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 788, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 5.27 Mb ( 43200, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.411E-05 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 12.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.144E-07 0.000E+00 total cpu time spent up to now is 0.0 secs total energy = -2.22577718 Ry Harris-Foulkes estimate = -2.29299353 Ry estimated scf accuracy < 0.12836257 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.42E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23746014 Ry Harris-Foulkes estimate = -2.23772885 Ry estimated scf accuracy < 0.00065057 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.25E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23798757 Ry Harris-Foulkes estimate = -2.23798666 Ry estimated scf accuracy < 0.00003211 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23799015 Ry Harris-Foulkes estimate = -2.23798872 Ry estimated scf accuracy < 0.00000270 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.35E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 788 PWs) bands (ev): -10.2560 ! total energy = -2.23799053 Ry Harris-Foulkes estimate = -2.23799071 Ry estimated scf accuracy < 0.00000030 Ry The total energy is the sum of the following terms: one-electron contribution = -2.59656377 Ry hartree contribution = 1.39337782 Ry xc contribution = -1.29969771 Ry ewald contribution = 0.26489313 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.07s CPU 0.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.01s WALL ( 5 calls) sum_band : 0.01s CPU 0.01s WALL ( 5 calls) v_of_rho : 0.03s CPU 0.03s WALL ( 6 calls) mix_rho : 0.01s CPU 0.01s WALL ( 5 calls) Called by c_bands: regterg : 0.02s CPU 0.01s WALL ( 5 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 14 calls) g_psi : 0.00s CPU 0.00s WALL ( 8 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 13 calls) Called by h_psi: General routines fft : 0.02s CPU 0.01s WALL ( 23 calls) fftw : 0.02s CPU 0.01s WALL ( 33 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PWSCF : 0.11s CPU 0.13s WALL This run was terminated on: 10:22:16 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/paw-atom.in0000644000175000017500000000062212341373024015046 0ustar mbamba &control calculation = 'scf' / &system ibrav= 2, celldm(1) =25.0, nat= 1, ntyp= 1, ecutwfc=30 occupations = 'from_input' nbnd = 6 / &electrons conv_thr = 1.0d-6 startingwfc='atomic' / ATOMIC_SPECIES O 1.000 O.pbe-kjpaw.UPF ATOMIC_POSITIONS {alat} O 0.0 0.0 0.0 K_POINTS {gamma} OCCUPATIONS 2. 1.333333333333 1.333333333333 1.333333333333 0. 0. espresso-5.1/PW/tests/paw-atom_spin_lda.in0000644000175000017500000000062112341373024016716 0ustar mbamba &control calculation = 'scf' / &system ibrav= 2, celldm(1) =25.0, nat= 1, ntyp= 1, ecutwfc=30 occupations = 'from_input' nspin = 2 nbnd = 7 nosym = .true. / &electrons conv_thr = 1.0d-6 / ATOMIC_SPECIES O 1.000 O.pz-kjpaw.UPF ATOMIC_POSITIONS {alat} O 0.0 0.0 0.0 K_POINTS {gamma} OCCUPATIONS 1. 1. 1. 1. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. espresso-5.1/PW/tests/metal-tetrahedra.ref0000644000175000017500000002263012341373024016715 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:52 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metal-tetrahedra.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 43 869 869 181 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 gaussian smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.1875000 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.1875000 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.1875000 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.3750000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.3750000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.1875000 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 107, 6) NL pseudopotentials 0.01 Mb ( 107, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.04 Mb ( 107, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.9 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18482321 Ry Harris-Foulkes estimate = -4.18558103 Ry estimated scf accuracy < 0.00593336 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18481649 Ry Harris-Foulkes estimate = -4.18484450 Ry estimated scf accuracy < 0.00046799 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-05, avg # of iterations = 1.4 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k =-0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7426 16.7436 20.1800 20.1800 23.2688 24.1730 k =-0.3750 0.3750-0.1250 ( 100 PWs) bands (ev): -0.4002 10.5640 15.0578 20.2798 22.2925 22.3029 k = 0.3750-0.3750 0.6250 ( 103 PWs) bands (ev): 3.0036 5.2364 16.0326 17.3403 19.1725 23.3131 k = 0.1250-0.1250 0.3750 ( 105 PWs) bands (ev): -1.5640 13.6755 17.3103 18.8475 20.1261 22.7033 k =-0.1250 0.6250 0.1250 ( 102 PWs) bands (ev): 0.7490 11.5561 13.9825 15.3806 16.8442 20.9950 k = 0.6250-0.1250 0.8750 ( 104 PWs) bands (ev): 5.1684 7.3421 9.7866 12.0732 20.3597 24.5670 k = 0.3750 0.1250 0.6250 ( 103 PWs) bands (ev): 1.8829 8.4277 12.9760 15.1051 21.3127 23.4596 k =-0.1250-0.8750 0.1250 ( 104 PWs) bands (ev): 4.0831 8.6647 10.5476 14.4198 15.7425 20.0607 k =-0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7478 7.4156 19.3074 19.3074 21.3021 21.3022 k = 0.3750-0.3750 1.1250 ( 101 PWs) bands (ev): 4.1112 6.2846 10.9035 16.3676 18.2377 26.3758 the Fermi energy is 8.4061 ev ! total energy = -4.18481911 Ry Harris-Foulkes estimate = -4.18481903 Ry estimated scf accuracy < 0.00000025 Ry The total energy is the sum of the following terms: one-electron contribution = 2.94427291 Ry hartree contribution = 0.01031882 Ry xc contribution = -1.63504532 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.00253098 Ry convergence has been achieved in 3 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.08s CPU 0.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.07s CPU 0.07s WALL ( 4 calls) sum_band : 0.02s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 90 calls) cegterg : 0.06s CPU 0.07s WALL ( 40 calls) Called by *egterg: h_psi : 0.05s CPU 0.05s WALL ( 127 calls) g_psi : 0.00s CPU 0.00s WALL ( 77 calls) cdiaghg : 0.01s CPU 0.01s WALL ( 107 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 127 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 127 calls) fft : 0.00s CPU 0.00s WALL ( 17 calls) fftw : 0.04s CPU 0.05s WALL ( 1582 calls) davcio : 0.00s CPU 0.00s WALL ( 130 calls) PWSCF : 0.18s CPU 0.19s WALL This run was terminated on: 10:24:52 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav9.in0000644000175000017500000000046712341373024016147 0ustar mbamba &control calculation='scf', / &system ibrav = 9, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/lattice-ibrav12.ref0000644000175000017500000001761412341373024016371 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav12.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1177 1177 287 50347 50347 6249 Tot 589 589 144 bravais-lattice index = 12 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2984.9623 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.100000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.150000 1.492481 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.100504 0.000000 ) b(2) = ( 0.000000 0.670025 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 25174 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 3125, 1) NL pseudopotentials 0.00 Mb ( 3125, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.19 Mb ( 25174) G-vector shells 0.07 Mb ( 9783) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 3125, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.004355 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.435E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.126E-02 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22008153 Ry Harris-Foulkes estimate = -2.28977160 Ry estimated scf accuracy < 0.13234381 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.62E-03, avg # of iterations = 1.0 negative rho (up, down): 0.272E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23119026 Ry Harris-Foulkes estimate = -2.23161151 Ry estimated scf accuracy < 0.00094621 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.73E-05, avg # of iterations = 2.0 negative rho (up, down): 0.462E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23153690 Ry Harris-Foulkes estimate = -2.23153849 Ry estimated scf accuracy < 0.00001475 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.38E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 3125 PWs) bands (ev): -10.3196 ! total energy = -2.23153850 Ry Harris-Foulkes estimate = -2.23153824 Ry estimated scf accuracy < 0.00000042 Ry The total energy is the sum of the following terms: one-electron contribution = -3.69410922 Ry hartree contribution = 1.94525784 Ry xc contribution = -1.31174629 Ry ewald contribution = 0.82905917 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.08s CPU 0.09s WALL ( 1 calls) electrons : 0.15s CPU 0.17s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.05s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.02s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.02s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.25s CPU 0.29s WALL This run was terminated on: 10:22:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/relax-el.in0000644000175000017500000000075612341373024015042 0ustar mbamba &control calculation='relax' tefield = .true., / &system ibrav= 1, celldm(1) =10.0, nat=2, ntyp= 2, edir=3 eamp=0.001 emaxpos=0.5 eopreg=0.1 ecutwfc =25, ecutrho =300, / &electrons mixing_beta = 0.5, conv_thr = 1.0d-8 / &ions / ATOMIC_SPECIES O 0.0 O.pz-rrkjus.UPF C 0.0 C.pz-rrkjus.UPF ATOMIC_POSITIONS BOHR O 0.000000000 0.000000000 -1.1 C 0.000000000 0.000000000 1.1 K_POINTS 1 0.0 0.0 0.0 1.0 espresso-5.1/PW/tests/lda+U-noU.in0000755000175000017500000000144312341373024015025 0ustar mbamba &control calculation = 'scf' / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true. Hubbard_U(2)=1.d-8, Hubbard_U(3)=1.d-8, / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS alat 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 espresso-5.1/PW/tests/gau-pbe-si444.in0000755000175000017500000000146312341373024015515 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='gaup', nqx1=4, nqx2=4, nqx3=4, exxdiv_treatment='none' x_gamma_extrapolation = .false. / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/dft6.ref0000644000175000017500000002212412341373024014333 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10839) starts on 3Apr2014 at 8:38:29 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/hcth.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = HCTH ( 0 0 5 5 0) Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 27 728 728 141 Max 82 82 28 731 731 142 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HCTH ( 0 0 5 5 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 93, 4) NL pseudopotentials 0.01 Mb ( 93, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 93, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.84349353 Ry Harris-Foulkes estimate = -15.86656217 Ry estimated scf accuracy < 0.08241367 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.84761304 Ry Harris-Foulkes estimate = -15.84779039 Ry estimated scf accuracy < 0.00333357 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.17E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.84795730 Ry Harris-Foulkes estimate = -15.84796521 Ry estimated scf accuracy < 0.00009100 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.14E-06, avg # of iterations = 3.0 total cpu time spent up to now is 0.0 secs total energy = -15.84799532 Ry Harris-Foulkes estimate = -15.84799696 Ry estimated scf accuracy < 0.00000419 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.24E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8226 2.4144 5.4925 5.4925 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9189 -0.0517 2.7872 4.0422 highest occupied level (ev): 5.4925 ! total energy = -15.84799597 Ry Harris-Foulkes estimate = -15.84799593 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 4.78805152 Ry hartree contribution = 1.17212424 Ry xc contribution = -4.90841315 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.02s CPU 0.02s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.00s CPU 0.01s WALL ( 5 calls) sum_band : 0.00s CPU 0.00s WALL ( 5 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 22 calls) cegterg : 0.00s CPU 0.01s WALL ( 10 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 32 calls) g_psi : 0.00s CPU 0.00s WALL ( 20 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 30 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 32 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 32 calls) fft : 0.00s CPU 0.00s WALL ( 65 calls) fftw : 0.00s CPU 0.01s WALL ( 284 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.00s CPU 0.00s WALL ( 349 calls) PWSCF : 0.08s CPU 0.09s WALL This run was terminated on: 8:38:30 3Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/relax2.ref0000644000175000017500000026721212341373024014676 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:27:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/relax2.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 109 109 37 6689 6689 1411 bravais-lattice index = 6 lattice parameter (alat) = 5.3033 a.u. unit-cell volume = 1193.2421 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 5.303300 celldm(2)= 0.000000 celldm(3)= 8.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 8.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.125000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 1.00000 Al( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.5000000 0.5000000 -2.1213200 ) 2 Al tau( 2) = ( 0.0000000 0.0000000 -1.4142130 ) 3 Al tau( 3) = ( 0.5000000 0.5000000 -0.7071070 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.5000000 0.5000000 0.7071070 ) 6 Al tau( 6) = ( 0.0000000 0.0000000 1.4142130 ) 7 Al tau( 7) = ( 0.5000000 0.5000000 2.1213200 ) number of k points= 3 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.0000000), wk = 0.5000000 k( 2) = ( 0.1250000 0.3750000 0.0000000), wk = 1.0000000 k( 3) = ( 0.3750000 0.3750000 0.0000000), wk = 0.5000000 Dense grid: 6689 G-vectors FFT dimensions: ( 12, 12, 96) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 860, 15) NL pseudopotentials 0.37 Mb ( 860, 28) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.05 Mb ( 6689) G-vector shells 0.00 Mb ( 351) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.79 Mb ( 860, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 28, 15) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000275 starting charge 20.98560, renormalised to 21.00000 negative rho (up, down): 0.276E-03 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.187E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -28.85221141 Ry Harris-Foulkes estimate = -29.29340698 Ry estimated scf accuracy < 0.92873941 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.42E-03, avg # of iterations = 4.0 total cpu time spent up to now is 0.4 secs total energy = -27.68024365 Ry Harris-Foulkes estimate = -30.53400996 Ry estimated scf accuracy < 39.10561646 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.42E-03, avg # of iterations = 4.7 total cpu time spent up to now is 0.5 secs total energy = -29.21379581 Ry Harris-Foulkes estimate = -29.23657710 Ry estimated scf accuracy < 0.23755208 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 1.3 total cpu time spent up to now is 0.6 secs total energy = -29.21561639 Ry Harris-Foulkes estimate = -29.22399168 Ry estimated scf accuracy < 0.04594646 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.19E-04, avg # of iterations = 3.0 total cpu time spent up to now is 0.7 secs total energy = -29.21943300 Ry Harris-Foulkes estimate = -29.22031634 Ry estimated scf accuracy < 0.00650836 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.10E-05, avg # of iterations = 2.3 total cpu time spent up to now is 0.7 secs total energy = -29.21991273 Ry Harris-Foulkes estimate = -29.21994391 Ry estimated scf accuracy < 0.00082029 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.91E-06, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs total energy = -29.21995477 Ry Harris-Foulkes estimate = -29.21996819 Ry estimated scf accuracy < 0.00009068 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.32E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.9 secs total energy = -29.21995746 Ry Harris-Foulkes estimate = -29.21996109 Ry estimated scf accuracy < 0.00002386 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.14E-07, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs total energy = -29.21995993 Ry Harris-Foulkes estimate = -29.21996102 Ry estimated scf accuracy < 0.00000885 Ry iteration # 10 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.21E-08, avg # of iterations = 1.3 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0790 -6.5552 -5.7174 -4.5663 -3.1472 -1.4538 0.5130 1.7884 4.3697 5.5244 5.9953 6.2181 6.7546 7.2250 7.4961 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7555 -4.2392 -3.4161 -2.2857 -0.8947 -0.2551 0.2238 0.8005 1.0422 2.1352 2.7201 3.5256 3.8934 5.1677 6.5172 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4879 -1.9832 -1.1752 -0.0657 1.2961 1.3317 1.7993 2.5504 2.7201 2.8086 3.4481 3.5987 4.1260 4.9120 4.9357 the Fermi energy is 3.4732 ev ! total energy = -29.21996046 Ry Harris-Foulkes estimate = -29.21996045 Ry estimated scf accuracy < 0.00000006 Ry The total energy is the sum of the following terms: one-electron contribution = -182.01447362 Ry hartree contribution = 97.75031136 Ry xc contribution = -11.20681610 Ry ewald contribution = 66.25386160 Ry smearing contrib. (-TS) = -0.00284369 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.01016766 atom 2 type 1 force = 0.00000000 0.00000000 -0.00112981 atom 3 type 1 force = 0.00000000 0.00000000 0.00255994 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00255994 atom 6 type 1 force = 0.00000000 0.00000000 0.00112981 atom 7 type 1 force = 0.00000000 0.00000000 -0.01016766 Total force = 0.014914 Total SCF correction = 0.000168 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -29.2199604576 Ry new trust radius = 0.0101676599 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.119402767 Al 0.000000000 0.000000000 -1.414426039 Al 0.500000000 0.500000000 -0.706624293 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.706624293 Al 0.000000000 0.000000000 1.414426039 Al 0.500000000 0.500000000 2.119402767 Writing output data file pwscf.save Check: negative starting charge= -0.000275 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000280 negative rho (up, down): 0.180E-05 0.000E+00 total cpu time spent up to now is 1.1 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.91E-08, avg # of iterations = 1.7 negative rho (up, down): 0.294E-06 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -29.22016915 Ry Harris-Foulkes estimate = -29.22017685 Ry estimated scf accuracy < 0.00001795 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.55E-08, avg # of iterations = 3.0 negative rho (up, down): 0.234E-06 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -29.22015873 Ry Harris-Foulkes estimate = -29.22018648 Ry estimated scf accuracy < 0.00032230 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.55E-08, avg # of iterations = 2.7 negative rho (up, down): 0.175E-07 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -29.22017348 Ry Harris-Foulkes estimate = -29.22017434 Ry estimated scf accuracy < 0.00000820 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.90E-08, avg # of iterations = 1.7 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0832 -6.5613 -5.7280 -4.5713 -3.1447 -1.4506 0.5179 1.7934 4.3762 5.5200 5.9886 6.2250 6.7423 7.2250 7.5044 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7597 -4.2453 -3.4267 -2.2908 -0.8925 -0.2593 0.2175 0.8035 1.0315 2.1297 2.7248 3.5278 3.8975 5.1712 6.5234 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4921 -1.9894 -1.1859 -0.0711 1.2980 1.3273 1.7928 2.5386 2.7158 2.8082 3.4451 3.5925 4.1166 4.9148 4.9401 the Fermi energy is 3.4729 ev ! total energy = -29.22017348 Ry Harris-Foulkes estimate = -29.22017405 Ry estimated scf accuracy < 0.00000088 Ry The total energy is the sum of the following terms: one-electron contribution = -182.38014433 Ry hartree contribution = 97.93262331 Ry xc contribution = -11.20947569 Ry ewald contribution = 66.43971617 Ry smearing contrib. (-TS) = -0.00289294 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00950897 atom 2 type 1 force = 0.00000000 0.00000000 -0.00037957 atom 3 type 1 force = 0.00000000 0.00000000 0.00216631 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00216631 atom 6 type 1 force = 0.00000000 0.00000000 0.00037957 atom 7 type 1 force = 0.00000000 0.00000000 -0.00950897 Total force = 0.013803 Total SCF correction = 0.001183 number of scf cycles = 2 number of bfgs steps = 1 energy old = -29.2199604576 Ry energy new = -29.2201734801 Ry CASE: energy _new < energy _old WARNING: bfgs curvature condition failed, Theta= 0.867 new trust radius = 0.0152514898 bohr new conv_thr = 0.0000000213 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.116526918 Al 0.000000000 0.000000000 -1.414600770 Al 0.500000000 0.500000000 -0.705948958 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.705948958 Al 0.000000000 0.000000000 1.414600770 Al 0.500000000 0.500000000 2.116526918 Writing output data file pwscf.save Check: negative starting charge= -0.000280 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000285 negative rho (up, down): 0.606E-05 0.000E+00 total cpu time spent up to now is 1.6 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.189E-05 0.000E+00 total cpu time spent up to now is 1.7 secs total energy = -29.22045670 Ry Harris-Foulkes estimate = -29.22046792 Ry estimated scf accuracy < 0.00002776 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.32E-07, avg # of iterations = 2.3 negative rho (up, down): 0.915E-06 0.000E+00 total cpu time spent up to now is 1.8 secs total energy = -29.22045843 Ry Harris-Foulkes estimate = -29.22046482 Ry estimated scf accuracy < 0.00002434 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.16E-07, avg # of iterations = 2.0 negative rho (up, down): 0.472E-06 0.000E+00 total cpu time spent up to now is 1.9 secs total energy = -29.22045743 Ry Harris-Foulkes estimate = -29.22046684 Ry estimated scf accuracy < 0.00010150 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.16E-07, avg # of iterations = 2.0 negative rho (up, down): 0.488E-07 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -29.22046250 Ry Harris-Foulkes estimate = -29.22046332 Ry estimated scf accuracy < 0.00000810 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.86E-08, avg # of iterations = 1.0 total cpu time spent up to now is 2.0 secs total energy = -29.22046300 Ry Harris-Foulkes estimate = -29.22046292 Ry estimated scf accuracy < 0.00000025 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.21E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.1 secs total energy = -29.22046303 Ry Harris-Foulkes estimate = -29.22046306 Ry estimated scf accuracy < 0.00000018 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.44E-10, avg # of iterations = 2.3 total cpu time spent up to now is 2.2 secs total energy = -29.22046305 Ry Harris-Foulkes estimate = -29.22046308 Ry estimated scf accuracy < 0.00000020 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.44E-10, avg # of iterations = 1.3 total cpu time spent up to now is 2.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0916 -6.5715 -5.7450 -4.5802 -3.1439 -1.4483 0.5229 1.7986 4.3838 5.5113 5.9775 6.2328 6.7226 7.2206 7.5053 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7681 -4.2555 -3.4439 -2.2999 -0.8921 -0.2678 0.2072 0.8054 1.0140 2.1200 2.7294 3.5281 3.9014 5.1740 6.5307 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5006 -1.9997 -1.2034 -0.0805 1.2979 1.3187 1.7820 2.5196 2.7072 2.8055 3.4395 3.5816 4.1012 4.9159 4.9443 the Fermi energy is 3.4704 ev ! total energy = -29.22046306 Ry Harris-Foulkes estimate = -29.22046307 Ry estimated scf accuracy < 3.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -182.93758449 Ry hartree contribution = 98.20669237 Ry xc contribution = -11.21340415 Ry ewald contribution = 66.72679687 Ry smearing contrib. (-TS) = -0.00296366 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00852934 atom 2 type 1 force = 0.00000000 0.00000000 0.00063989 atom 3 type 1 force = 0.00000000 0.00000000 0.00178979 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00178979 atom 6 type 1 force = 0.00000000 0.00000000 -0.00063989 atom 7 type 1 force = 0.00000000 0.00000000 -0.00852934 Total force = 0.012358 Total SCF correction = 0.000104 number of scf cycles = 3 number of bfgs steps = 2 energy old = -29.2201734801 Ry energy new = -29.2204630616 Ry CASE: energy _new < energy _old new trust radius = 0.0228772348 bohr new conv_thr = 0.0000000290 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.112213145 Al 0.000000000 0.000000000 -1.414579742 Al 0.500000000 0.500000000 -0.704978479 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.704978479 Al 0.000000000 0.000000000 1.414579742 Al 0.500000000 0.500000000 2.112213145 Writing output data file pwscf.save Check: negative starting charge= -0.000285 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000289 negative rho (up, down): 0.153E-04 0.000E+00 total cpu time spent up to now is 2.4 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.7 negative rho (up, down): 0.651E-05 0.000E+00 total cpu time spent up to now is 2.5 secs total energy = -29.22082607 Ry Harris-Foulkes estimate = -29.22084888 Ry estimated scf accuracy < 0.00005792 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.76E-07, avg # of iterations = 2.0 negative rho (up, down): 0.420E-05 0.000E+00 total cpu time spent up to now is 2.6 secs total energy = -29.22082659 Ry Harris-Foulkes estimate = -29.22084098 Ry estimated scf accuracy < 0.00005612 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.67E-07, avg # of iterations = 2.0 negative rho (up, down): 0.273E-05 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -29.22082398 Ry Harris-Foulkes estimate = -29.22084816 Ry estimated scf accuracy < 0.00028355 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.67E-07, avg # of iterations = 2.0 negative rho (up, down): 0.539E-06 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -29.22083647 Ry Harris-Foulkes estimate = -29.22083779 Ry estimated scf accuracy < 0.00000999 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.76E-08, avg # of iterations = 1.3 total cpu time spent up to now is 2.8 secs total energy = -29.22083730 Ry Harris-Foulkes estimate = -29.22083714 Ry estimated scf accuracy < 0.00000056 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.66E-09, avg # of iterations = 2.7 total cpu time spent up to now is 2.9 secs total energy = -29.22083740 Ry Harris-Foulkes estimate = -29.22083739 Ry estimated scf accuracy < 0.00000013 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.30E-10, avg # of iterations = 2.3 total cpu time spent up to now is 3.0 secs total energy = -29.22083741 Ry Harris-Foulkes estimate = -29.22083744 Ry estimated scf accuracy < 0.00000015 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.30E-10, avg # of iterations = 1.7 total cpu time spent up to now is 3.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1040 -6.5871 -5.7684 -4.5920 -3.1420 -1.4437 0.5318 1.8077 4.3966 5.4984 5.9604 6.2452 6.6956 7.2144 7.5097 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7804 -4.2711 -3.4674 -2.3121 -0.8908 -0.2802 0.1913 0.8096 0.9901 2.1070 2.7375 3.5294 3.9087 5.1792 6.5428 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5129 -2.0155 -1.2273 -0.0932 1.2985 1.3061 1.7654 2.4934 2.6947 2.8018 3.4316 3.5670 4.0801 4.9180 4.9520 the Fermi energy is 3.4675 ev ! total energy = -29.22083742 Ry Harris-Foulkes estimate = -29.22083743 Ry estimated scf accuracy < 6.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -183.81707704 Ry hartree contribution = 98.64320412 Ry xc contribution = -11.21941111 Ry ewald contribution = 67.17550863 Ry smearing contrib. (-TS) = -0.00306202 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00712605 atom 2 type 1 force = 0.00000000 0.00000000 0.00205750 atom 3 type 1 force = 0.00000000 0.00000000 0.00123996 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00123996 atom 6 type 1 force = 0.00000000 0.00000000 -0.00205750 atom 7 type 1 force = 0.00000000 0.00000000 -0.00712605 Total force = 0.010635 Total SCF correction = 0.000130 number of scf cycles = 4 number of bfgs steps = 3 energy old = -29.2204630616 Ry energy new = -29.2208374219 Ry CASE: energy _new < energy _old new trust radius = 0.0343158522 bohr new conv_thr = 0.0000000374 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.105742485 Al 0.000000000 0.000000000 -1.414105119 Al 0.500000000 0.500000000 -0.703594750 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.703594750 Al 0.000000000 0.000000000 1.414105119 Al 0.500000000 0.500000000 2.105742485 Writing output data file pwscf.save Check: negative starting charge= -0.000289 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000290 negative rho (up, down): 0.348E-04 0.000E+00 total cpu time spent up to now is 3.1 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.3 negative rho (up, down): 0.169E-04 0.000E+00 total cpu time spent up to now is 3.3 secs total energy = -29.22125876 Ry Harris-Foulkes estimate = -29.22130852 Ry estimated scf accuracy < 0.00012480 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.94E-07, avg # of iterations = 2.0 negative rho (up, down): 0.108E-04 0.000E+00 total cpu time spent up to now is 3.4 secs total energy = -29.22127390 Ry Harris-Foulkes estimate = -29.22129274 Ry estimated scf accuracy < 0.00006699 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.19E-07, avg # of iterations = 1.7 negative rho (up, down): 0.382E-05 0.000E+00 total cpu time spent up to now is 3.4 secs total energy = -29.22128315 Ry Harris-Foulkes estimate = -29.22128535 Ry estimated scf accuracy < 0.00001134 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.40E-08, avg # of iterations = 2.0 negative rho (up, down): 0.283E-05 0.000E+00 total cpu time spent up to now is 3.5 secs total energy = -29.22128214 Ry Harris-Foulkes estimate = -29.22128615 Ry estimated scf accuracy < 0.00004361 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.40E-08, avg # of iterations = 2.0 total cpu time spent up to now is 3.6 secs total energy = -29.22128471 Ry Harris-Foulkes estimate = -29.22128464 Ry estimated scf accuracy < 0.00000368 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.75E-08, avg # of iterations = 1.3 total cpu time spent up to now is 3.7 secs total energy = -29.22128500 Ry Harris-Foulkes estimate = -29.22128491 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.74E-10, avg # of iterations = 3.3 total cpu time spent up to now is 3.8 secs total energy = -29.22128501 Ry Harris-Foulkes estimate = -29.22128502 Ry estimated scf accuracy < 0.00000006 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.03E-10, avg # of iterations = 1.0 total cpu time spent up to now is 3.8 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1234 -6.6117 -5.8017 -4.6088 -3.1401 -1.4368 0.5449 1.8214 4.4162 5.4779 5.9331 6.2629 6.6569 7.2036 7.5168 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7998 -4.2958 -3.5009 -2.3295 -0.8899 -0.2998 0.1661 0.8158 0.9560 2.0885 2.7496 3.5305 3.9198 5.1868 6.5614 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5325 -2.0405 -1.2614 -0.1113 1.2861 1.2982 1.7390 2.4561 2.6748 2.7949 3.4196 3.5462 4.0499 4.9197 4.9637 the Fermi energy is 3.4628 ev ! total energy = -29.22128501 Ry Harris-Foulkes estimate = -29.22128501 Ry estimated scf accuracy < 1.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -185.19231287 Ry hartree contribution = 99.32526027 Ry xc contribution = -11.22851501 Ry ewald contribution = 67.87748772 Ry smearing contrib. (-TS) = -0.00320512 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00507011 atom 2 type 1 force = 0.00000000 0.00000000 0.00399105 atom 3 type 1 force = 0.00000000 0.00000000 0.00054032 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00054032 atom 6 type 1 force = 0.00000000 0.00000000 -0.00399105 atom 7 type 1 force = 0.00000000 0.00000000 -0.00507011 Total force = 0.009157 Total SCF correction = 0.000029 number of scf cycles = 5 number of bfgs steps = 4 energy old = -29.2208374219 Ry energy new = -29.2212850137 Ry CASE: energy _new < energy _old new trust radius = 0.0514737782 bohr new conv_thr = 0.0000000448 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.096036494 Al 0.000000000 0.000000000 -1.412614261 Al 0.500000000 0.500000000 -0.701616371 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.701616371 Al 0.000000000 0.000000000 1.412614261 Al 0.500000000 0.500000000 2.096036494 Writing output data file pwscf.save Check: negative starting charge= -0.000290 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000285 negative rho (up, down): 0.710E-04 0.000E+00 total cpu time spent up to now is 3.9 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.376E-04 0.000E+00 total cpu time spent up to now is 4.1 secs total energy = -29.22167684 Ry Harris-Foulkes estimate = -29.22178610 Ry estimated scf accuracy < 0.00027081 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.29E-06, avg # of iterations = 3.0 negative rho (up, down): 0.311E-04 0.000E+00 total cpu time spent up to now is 4.2 secs total energy = -29.22164155 Ry Harris-Foulkes estimate = -29.22178535 Ry estimated scf accuracy < 0.00084090 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.29E-06, avg # of iterations = 2.7 negative rho (up, down): 0.232E-04 0.000E+00 total cpu time spent up to now is 4.2 secs total energy = -29.22168306 Ry Harris-Foulkes estimate = -29.22178870 Ry estimated scf accuracy < 0.00123013 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.29E-06, avg # of iterations = 2.7 negative rho (up, down): 0.880E-05 0.000E+00 total cpu time spent up to now is 4.3 secs total energy = -29.22173696 Ry Harris-Foulkes estimate = -29.22173984 Ry estimated scf accuracy < 0.00002159 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.03E-07, avg # of iterations = 1.7 negative rho (up, down): 0.317E-07 0.000E+00 total cpu time spent up to now is 4.4 secs total energy = -29.22173914 Ry Harris-Foulkes estimate = -29.22173858 Ry estimated scf accuracy < 0.00000227 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.08E-08, avg # of iterations = 2.0 total cpu time spent up to now is 4.5 secs total energy = -29.22173952 Ry Harris-Foulkes estimate = -29.22173940 Ry estimated scf accuracy < 0.00000035 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.65E-09, avg # of iterations = 2.3 total cpu time spent up to now is 4.6 secs total energy = -29.22173956 Ry Harris-Foulkes estimate = -29.22173961 Ry estimated scf accuracy < 0.00000029 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.36E-09, avg # of iterations = 1.7 total cpu time spent up to now is 4.7 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1542 -6.6502 -5.8482 -4.6323 -3.1388 -1.4269 0.5648 1.8425 4.4464 5.4453 5.8902 6.2880 6.6027 7.1847 7.5281 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8306 -4.3343 -3.5477 -2.3538 -0.8901 -0.3310 0.1266 0.8248 0.9084 2.0624 2.7676 3.5307 3.9371 5.1977 6.5899 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5635 -2.0795 -1.3092 -0.1368 1.2541 1.2961 1.6976 2.4038 2.6432 2.7820 3.4027 3.5170 4.0077 4.9200 4.9815 the Fermi energy is 3.4556 ev ! total energy = -29.22173959 Ry Harris-Foulkes estimate = -29.22173959 Ry estimated scf accuracy < 4.9E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -187.36082749 Ry hartree contribution = 100.40116570 Ry xc contribution = -11.24230082 Ry ewald contribution = 68.98365014 Ry smearing contrib. (-TS) = -0.00342711 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00204563 atom 2 type 1 force = 0.00000000 0.00000000 0.00657039 atom 3 type 1 force = 0.00000000 0.00000000 -0.00026269 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00026269 atom 6 type 1 force = 0.00000000 0.00000000 -0.00657039 atom 7 type 1 force = 0.00000000 0.00000000 -0.00204563 Total force = 0.009739 Total SCF correction = 0.000091 number of scf cycles = 6 number of bfgs steps = 5 energy old = -29.2212850137 Ry energy new = -29.2217395873 Ry CASE: energy _new < energy _old new trust radius = 0.0628552402 bohr new conv_thr = 0.0000000455 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.084184395 Al 0.000000000 0.000000000 -1.409293614 Al 0.500000000 0.500000000 -0.699313344 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.699313344 Al 0.000000000 0.000000000 1.409293614 Al 0.500000000 0.500000000 2.084184395 Writing output data file pwscf.save Check: negative starting charge= -0.000285 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000286 negative rho (up, down): 0.102E-03 0.000E+00 total cpu time spent up to now is 4.7 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.7 negative rho (up, down): 0.553E-04 0.000E+00 total cpu time spent up to now is 4.9 secs total energy = -29.22191059 Ry Harris-Foulkes estimate = -29.22210482 Ry estimated scf accuracy < 0.00046037 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.19E-06, avg # of iterations = 3.7 negative rho (up, down): 0.491E-04 0.000E+00 total cpu time spent up to now is 5.0 secs total energy = -29.22175399 Ry Harris-Foulkes estimate = -29.22222809 Ry estimated scf accuracy < 0.00409655 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.19E-06, avg # of iterations = 3.0 negative rho (up, down): 0.362E-04 0.000E+00 total cpu time spent up to now is 5.1 secs total energy = -29.22198547 Ry Harris-Foulkes estimate = -29.22209511 Ry estimated scf accuracy < 0.00114565 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.19E-06, avg # of iterations = 2.7 negative rho (up, down): 0.138E-04 0.000E+00 total cpu time spent up to now is 5.2 secs total energy = -29.22204087 Ry Harris-Foulkes estimate = -29.22204232 Ry estimated scf accuracy < 0.00001791 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.53E-08, avg # of iterations = 1.7 negative rho (up, down): 0.420E-06 0.000E+00 total cpu time spent up to now is 5.2 secs total energy = -29.22204298 Ry Harris-Foulkes estimate = -29.22204215 Ry estimated scf accuracy < 0.00000317 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.51E-08, avg # of iterations = 2.0 total cpu time spent up to now is 5.3 secs total energy = -29.22204343 Ry Harris-Foulkes estimate = -29.22204335 Ry estimated scf accuracy < 0.00000042 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.99E-09, avg # of iterations = 2.3 total cpu time spent up to now is 5.4 secs total energy = -29.22204347 Ry Harris-Foulkes estimate = -29.22204359 Ry estimated scf accuracy < 0.00000047 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.99E-09, avg # of iterations = 1.7 total cpu time spent up to now is 5.5 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1953 -6.6993 -5.8987 -4.6587 -3.1404 -1.4154 0.5889 1.8683 4.4848 5.4017 5.8353 6.3162 6.5438 7.1574 7.5432 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8717 -4.3836 -3.5987 -2.3812 -0.8938 -0.3726 0.0759 0.8352 0.8567 2.0332 2.7892 3.5282 3.9589 5.2096 6.6258 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6048 -2.1295 -1.3614 -0.1654 1.2115 1.2901 1.6446 2.3468 2.6011 2.7616 3.3837 3.4842 3.9615 4.9154 5.0034 the Fermi energy is 3.4461 ev ! total energy = -29.22204353 Ry Harris-Foulkes estimate = -29.22204355 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = -190.21572533 Ry hartree contribution = 101.81821902 Ry xc contribution = -11.25927594 Ry ewald contribution = 70.43844453 Ry smearing contrib. (-TS) = -0.00370581 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00140426 atom 2 type 1 force = 0.00000000 0.00000000 0.00899680 atom 3 type 1 force = 0.00000000 0.00000000 -0.00082819 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00082819 atom 6 type 1 force = 0.00000000 0.00000000 -0.00899680 atom 7 type 1 force = 0.00000000 0.00000000 0.00140426 Total force = 0.012931 Total SCF correction = 0.000224 number of scf cycles = 7 number of bfgs steps = 6 energy old = -29.2217395873 Ry energy new = -29.2220435309 Ry CASE: energy _new < energy _old new trust radius = 0.0288623787 bohr new conv_thr = 0.0000000304 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.078742052 Al 0.000000000 0.000000000 -1.405989835 Al 0.500000000 0.500000000 -0.698313945 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.698313945 Al 0.000000000 0.000000000 1.405989835 Al 0.500000000 0.500000000 2.078742052 Writing output data file pwscf.save Check: negative starting charge= -0.000286 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000289 negative rho (up, down): 0.281E-04 0.000E+00 total cpu time spent up to now is 5.6 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.139E-04 0.000E+00 total cpu time spent up to now is 5.7 secs total energy = -29.22216628 Ry Harris-Foulkes estimate = -29.22225718 Ry estimated scf accuracy < 0.00019778 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.42E-07, avg # of iterations = 3.3 negative rho (up, down): 0.125E-04 0.000E+00 total cpu time spent up to now is 5.8 secs total energy = -29.22203792 Ry Harris-Foulkes estimate = -29.22241223 Ry estimated scf accuracy < 0.00410069 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.42E-07, avg # of iterations = 3.0 negative rho (up, down): 0.911E-05 0.000E+00 total cpu time spent up to now is 5.9 secs total energy = -29.22223022 Ry Harris-Foulkes estimate = -29.22225200 Ry estimated scf accuracy < 0.00018252 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.69E-07, avg # of iterations = 1.0 negative rho (up, down): 0.653E-06 0.000E+00 total cpu time spent up to now is 6.0 secs total energy = -29.22224060 Ry Harris-Foulkes estimate = -29.22224042 Ry estimated scf accuracy < 0.00000365 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.74E-08, avg # of iterations = 3.0 negative rho (up, down): 0.100E-07 0.000E+00 total cpu time spent up to now is 6.1 secs total energy = -29.22224142 Ry Harris-Foulkes estimate = -29.22224145 Ry estimated scf accuracy < 0.00000291 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.38E-08, avg # of iterations = 1.0 total cpu time spent up to now is 6.1 secs total energy = -29.22224149 Ry Harris-Foulkes estimate = -29.22224149 Ry estimated scf accuracy < 0.00000045 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.16E-09, avg # of iterations = 2.7 total cpu time spent up to now is 6.2 secs total energy = -29.22224154 Ry Harris-Foulkes estimate = -29.22224157 Ry estimated scf accuracy < 0.00000030 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.45E-09, avg # of iterations = 1.7 total cpu time spent up to now is 6.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2178 -6.7231 -5.9147 -4.6686 -3.1449 -1.4110 0.5995 1.8796 4.5043 5.3780 5.8094 6.3288 6.5255 7.1414 7.5524 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8942 -4.4074 -3.6149 -2.3916 -0.8993 -0.3953 0.0515 0.8392 0.8405 2.0221 2.7982 3.5237 3.9688 5.2137 6.6439 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6275 -2.1536 -1.3780 -0.1764 1.1883 1.2835 1.6194 2.3290 2.5780 2.7498 3.3753 3.4717 3.9465 4.9076 5.0130 the Fermi energy is 3.4410 ev ! total energy = -29.22224155 Ry Harris-Foulkes estimate = -29.22224156 Ry estimated scf accuracy < 8.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -191.76531694 Ry hartree contribution = 102.58827284 Ry xc contribution = -11.26702458 Ry ewald contribution = 71.22560887 Ry smearing contrib. (-TS) = -0.00378174 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00243596 atom 2 type 1 force = 0.00000000 0.00000000 0.00904643 atom 3 type 1 force = 0.00000000 0.00000000 -0.00065760 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00065760 atom 6 type 1 force = 0.00000000 0.00000000 -0.00904643 atom 7 type 1 force = 0.00000000 0.00000000 0.00243596 Total force = 0.013282 Total SCF correction = 0.000163 number of scf cycles = 8 number of bfgs steps = 7 energy old = -29.2220435309 Ry energy new = -29.2222415544 Ry CASE: energy _new < energy _old new trust radius = 0.0317486166 bohr new conv_thr = 0.0000000198 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.072755474 Al 0.000000000 0.000000000 -1.400585583 Al 0.500000000 0.500000000 -0.697192863 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.697192863 Al 0.000000000 0.000000000 1.400585583 Al 0.500000000 0.500000000 2.072755474 Writing output data file pwscf.save Check: negative starting charge= -0.000289 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000296 negative rho (up, down): 0.354E-04 0.000E+00 total cpu time spent up to now is 6.4 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.3 negative rho (up, down): 0.188E-04 0.000E+00 total cpu time spent up to now is 6.5 secs total energy = -29.22234309 Ry Harris-Foulkes estimate = -29.22258607 Ry estimated scf accuracy < 0.00050972 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.43E-06, avg # of iterations = 3.3 negative rho (up, down): 0.173E-04 0.000E+00 total cpu time spent up to now is 6.6 secs total energy = -29.22190470 Ry Harris-Foulkes estimate = -29.22316420 Ry estimated scf accuracy < 0.01512362 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.43E-06, avg # of iterations = 3.0 negative rho (up, down): 0.128E-04 0.000E+00 total cpu time spent up to now is 6.7 secs total energy = -29.22254117 Ry Harris-Foulkes estimate = -29.22256380 Ry estimated scf accuracy < 0.00014612 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.96E-07, avg # of iterations = 1.3 negative rho (up, down): 0.161E-05 0.000E+00 total cpu time spent up to now is 6.8 secs total energy = -29.22255268 Ry Harris-Foulkes estimate = -29.22255219 Ry estimated scf accuracy < 0.00000470 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.24E-08, avg # of iterations = 2.7 total cpu time spent up to now is 6.9 secs total energy = -29.22255343 Ry Harris-Foulkes estimate = -29.22255339 Ry estimated scf accuracy < 0.00000186 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.88E-09, avg # of iterations = 2.0 total cpu time spent up to now is 7.0 secs total energy = -29.22255370 Ry Harris-Foulkes estimate = -29.22255382 Ry estimated scf accuracy < 0.00000147 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.00E-09, avg # of iterations = 1.0 total cpu time spent up to now is 7.0 secs total energy = -29.22255366 Ry Harris-Foulkes estimate = -29.22255373 Ry estimated scf accuracy < 0.00000042 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.00E-09, avg # of iterations = 2.3 total cpu time spent up to now is 7.1 secs total energy = -29.22255372 Ry Harris-Foulkes estimate = -29.22255373 Ry estimated scf accuracy < 0.00000014 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.89E-10, avg # of iterations = 1.0 total cpu time spent up to now is 7.2 secs total energy = -29.22255372 Ry Harris-Foulkes estimate = -29.22255372 Ry estimated scf accuracy < 0.00000002 Ry iteration # 10 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.18E-10, avg # of iterations = 1.7 total cpu time spent up to now is 7.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2465 -6.7498 -5.9251 -4.6775 -3.1532 -1.4068 0.6107 1.8916 4.5274 5.3479 5.7809 6.3426 6.5143 7.1203 7.5650 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9228 -4.4342 -3.6256 -2.4010 -0.9088 -0.4241 0.0242 0.8299 0.8429 2.0121 2.8073 3.5158 3.9798 5.2166 6.6656 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6563 -2.1808 -1.3890 -0.1865 1.1589 1.2727 1.5915 2.3176 2.5487 2.7349 3.3664 3.4605 3.9361 4.8939 5.0232 the Fermi energy is 3.4352 ev ! total energy = -29.22255372 Ry Harris-Foulkes estimate = -29.22255372 Ry estimated scf accuracy < 1.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -193.71540726 Ry hartree contribution = 103.55896778 Ry xc contribution = -11.27547042 Ry ewald contribution = 72.21316893 Ry smearing contrib. (-TS) = -0.00381274 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00298342 atom 2 type 1 force = 0.00000000 0.00000000 0.00797276 atom 3 type 1 force = 0.00000000 0.00000000 -0.00003111 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00003111 atom 6 type 1 force = 0.00000000 0.00000000 -0.00797276 atom 7 type 1 force = 0.00000000 0.00000000 0.00298342 Total force = 0.012039 Total SCF correction = 0.000016 number of scf cycles = 9 number of bfgs steps = 8 energy old = -29.2222415544 Ry energy new = -29.2225537207 Ry CASE: energy _new < energy _old new trust radius = 0.0476229248 bohr new conv_thr = 0.0000000312 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.065482962 Al 0.000000000 0.000000000 -1.391605717 Al 0.500000000 0.500000000 -0.695637577 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.695637577 Al 0.000000000 0.000000000 1.391605717 Al 0.500000000 0.500000000 2.065482962 Writing output data file pwscf.save Check: negative starting charge= -0.000296 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000301 negative rho (up, down): 0.521E-04 0.000E+00 total cpu time spent up to now is 7.3 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.283E-04 0.000E+00 total cpu time spent up to now is 7.5 secs total energy = -29.22246024 Ry Harris-Foulkes estimate = -29.22304128 Ry estimated scf accuracy < 0.00121338 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.78E-06, avg # of iterations = 3.3 negative rho (up, down): 0.263E-04 0.000E+00 total cpu time spent up to now is 7.6 secs total energy = -29.22139306 Ry Harris-Foulkes estimate = -29.22446721 Ry estimated scf accuracy < 0.03732675 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.78E-06, avg # of iterations = 3.0 negative rho (up, down): 0.192E-04 0.000E+00 total cpu time spent up to now is 7.7 secs total energy = -29.22293863 Ry Harris-Foulkes estimate = -29.22297563 Ry estimated scf accuracy < 0.00021009 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.7 negative rho (up, down): 0.714E-05 0.000E+00 total cpu time spent up to now is 7.8 secs total energy = -29.22295916 Ry Harris-Foulkes estimate = -29.22295869 Ry estimated scf accuracy < 0.00000989 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.71E-08, avg # of iterations = 2.0 negative rho (up, down): 0.153E-07 0.000E+00 total cpu time spent up to now is 7.9 secs total energy = -29.22296089 Ry Harris-Foulkes estimate = -29.22296010 Ry estimated scf accuracy < 0.00000251 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.20E-08, avg # of iterations = 1.7 total cpu time spent up to now is 8.0 secs total energy = -29.22296105 Ry Harris-Foulkes estimate = -29.22296115 Ry estimated scf accuracy < 0.00000043 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.05E-09, avg # of iterations = 2.0 total cpu time spent up to now is 8.0 secs total energy = -29.22296114 Ry Harris-Foulkes estimate = -29.22296113 Ry estimated scf accuracy < 0.00000007 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.54E-10, avg # of iterations = 2.0 total cpu time spent up to now is 8.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2873 -6.7834 -5.9287 -4.6853 -3.1672 -1.4029 0.6234 1.9054 4.5578 5.3051 5.7456 6.3592 6.5117 7.0896 7.5846 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9635 -4.4679 -3.6295 -2.4095 -0.9245 -0.4648 -0.0100 0.8264 0.8464 2.0033 2.8168 3.5027 3.9930 5.2181 6.6938 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6973 -2.2149 -1.3933 -0.1957 1.1171 1.2554 1.5569 2.3143 2.5072 2.7142 3.3560 3.4507 3.9311 4.8709 5.0348 the Fermi energy is 3.4278 ev ! total energy = -29.22296116 Ry Harris-Foulkes estimate = -29.22296115 Ry estimated scf accuracy < 3.3E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -196.43227568 Ry hartree contribution = 104.91145807 Ry xc contribution = -11.28571684 Ry ewald contribution = 73.58736193 Ry smearing contrib. (-TS) = -0.00378863 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00284379 atom 2 type 1 force = 0.00000000 0.00000000 0.00504524 atom 3 type 1 force = 0.00000000 0.00000000 0.00130754 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00130754 atom 6 type 1 force = 0.00000000 0.00000000 -0.00504524 atom 7 type 1 force = 0.00000000 0.00000000 0.00284379 Total force = 0.008397 Total SCF correction = 0.000042 number of scf cycles = 10 number of bfgs steps = 9 energy old = -29.2225537207 Ry energy new = -29.2229611560 Ry CASE: energy _new < energy _old new trust radius = 0.0539035537 bohr new conv_thr = 0.0000000407 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.060159624 Al 0.000000000 0.000000000 -1.381441563 Al 0.500000000 0.500000000 -0.693878543 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.693878543 Al 0.000000000 0.000000000 1.381441563 Al 0.500000000 0.500000000 2.060159624 Writing output data file pwscf.save Check: negative starting charge= -0.000301 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000298 negative rho (up, down): 0.355E-04 0.000E+00 total cpu time spent up to now is 8.2 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.3 negative rho (up, down): 0.185E-04 0.000E+00 total cpu time spent up to now is 8.3 secs total energy = -29.22254850 Ry Harris-Foulkes estimate = -29.22328892 Ry estimated scf accuracy < 0.00153909 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.33E-06, avg # of iterations = 3.3 negative rho (up, down): 0.171E-04 0.000E+00 total cpu time spent up to now is 8.4 secs total energy = -29.22115944 Ry Harris-Foulkes estimate = -29.22515493 Ry estimated scf accuracy < 0.04885379 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.33E-06, avg # of iterations = 3.0 negative rho (up, down): 0.112E-04 0.000E+00 total cpu time spent up to now is 8.5 secs total energy = -29.22316372 Ry Harris-Foulkes estimate = -29.22318759 Ry estimated scf accuracy < 0.00012463 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.93E-07, avg # of iterations = 1.7 negative rho (up, down): 0.449E-05 0.000E+00 total cpu time spent up to now is 8.6 secs total energy = -29.22317817 Ry Harris-Foulkes estimate = -29.22318012 Ry estimated scf accuracy < 0.00001630 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.76E-08, avg # of iterations = 1.7 negative rho (up, down): 0.131E-06 0.000E+00 total cpu time spent up to now is 8.7 secs total energy = -29.22318063 Ry Harris-Foulkes estimate = -29.22317972 Ry estimated scf accuracy < 0.00000275 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.31E-08, avg # of iterations = 1.7 total cpu time spent up to now is 8.8 secs total energy = -29.22318086 Ry Harris-Foulkes estimate = -29.22318082 Ry estimated scf accuracy < 0.00000032 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.53E-09, avg # of iterations = 2.0 total cpu time spent up to now is 8.9 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3270 -6.8094 -5.9187 -4.6863 -3.1827 -1.4019 0.6312 1.9146 4.5833 5.2633 5.7185 6.3714 6.5252 7.0585 7.6046 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0031 -4.4941 -3.6199 -2.4111 -0.9416 -0.5041 -0.0365 0.8367 0.8472 2.0020 2.8218 3.4886 4.0027 5.2158 6.7172 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7373 -2.2414 -1.3837 -0.1978 1.0762 1.2373 1.5301 2.3263 2.4670 2.6960 3.3482 3.4496 3.9379 4.8461 5.0422 the Fermi energy is 3.4223 ev ! total energy = -29.22318091 Ry Harris-Foulkes estimate = -29.22318092 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = -198.95941635 Ry hartree contribution = 106.17061275 Ry xc contribution = -11.29331534 Ry ewald contribution = 74.86259316 Ry smearing contrib. (-TS) = -0.00365512 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00156047 atom 2 type 1 force = 0.00000000 0.00000000 0.00055154 atom 3 type 1 force = 0.00000000 0.00000000 0.00298455 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00298455 atom 6 type 1 force = 0.00000000 0.00000000 -0.00055154 atom 7 type 1 force = 0.00000000 0.00000000 0.00156047 Total force = 0.004826 Total SCF correction = 0.000215 number of scf cycles = 11 number of bfgs steps = 10 energy old = -29.2229611560 Ry energy new = -29.2231809057 Ry CASE: energy _new < energy _old new trust radius = 0.0081527617 bohr new conv_thr = 0.0000000220 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.061696924 Al 0.000000000 0.000000000 -1.381179555 Al 0.500000000 0.500000000 -0.693520008 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.693520008 Al 0.000000000 0.000000000 1.381179555 Al 0.500000000 0.500000000 2.061696924 Writing output data file pwscf.save Check: negative starting charge= -0.000298 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000297 negative rho (up, down): 0.108E-05 0.000E+00 total cpu time spent up to now is 8.9 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.3 negative rho (up, down): 0.266E-06 0.000E+00 total cpu time spent up to now is 9.0 secs total energy = -29.22320293 Ry Harris-Foulkes estimate = -29.22321547 Ry estimated scf accuracy < 0.00002708 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.29E-07, avg # of iterations = 3.0 negative rho (up, down): 0.212E-06 0.000E+00 total cpu time spent up to now is 9.1 secs total energy = -29.22319024 Ry Harris-Foulkes estimate = -29.22322888 Ry estimated scf accuracy < 0.00037518 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.29E-07, avg # of iterations = 2.7 negative rho (up, down): 0.775E-07 0.000E+00 total cpu time spent up to now is 9.2 secs total energy = -29.22321038 Ry Harris-Foulkes estimate = -29.22321442 Ry estimated scf accuracy < 0.00003791 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.29E-07, avg # of iterations = 1.7 total cpu time spent up to now is 9.3 secs total energy = -29.22321241 Ry Harris-Foulkes estimate = -29.22321244 Ry estimated scf accuracy < 0.00000039 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.86E-09, avg # of iterations = 3.0 total cpu time spent up to now is 9.4 secs total energy = -29.22321249 Ry Harris-Foulkes estimate = -29.22321247 Ry estimated scf accuracy < 0.00000008 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.81E-10, avg # of iterations = 2.3 total cpu time spent up to now is 9.4 secs total energy = -29.22321250 Ry Harris-Foulkes estimate = -29.22321250 Ry estimated scf accuracy < 0.00000003 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.27E-10, avg # of iterations = 1.7 total cpu time spent up to now is 9.5 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3243 -6.8010 -5.9109 -4.6823 -3.1824 -1.4042 0.6277 1.9109 4.5795 5.2662 5.7279 6.3692 6.5342 7.0592 7.6036 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0004 -4.4856 -3.6121 -2.4069 -0.9413 -0.5012 -0.0279 0.8446 0.8451 2.0067 2.8189 3.4889 3.9995 5.2131 6.7138 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7346 -2.2329 -1.3758 -0.1934 1.0791 1.2381 1.5392 2.3350 2.4701 2.7002 3.3502 3.4548 3.9449 4.8468 5.0392 the Fermi energy is 3.4237 ev ! total energy = -29.22321250 Ry Harris-Foulkes estimate = -29.22321250 Ry estimated scf accuracy < 1.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -198.71790571 Ry hartree contribution = 106.05094321 Ry xc contribution = -11.29106850 Ry ewald contribution = 74.73839917 Ry smearing contrib. (-TS) = -0.00358067 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00086784 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001341 atom 3 type 1 force = 0.00000000 0.00000000 0.00280930 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00280930 atom 6 type 1 force = 0.00000000 0.00000000 0.00001341 atom 7 type 1 force = 0.00000000 0.00000000 0.00086784 Total force = 0.004158 Total SCF correction = 0.000017 number of scf cycles = 12 number of bfgs steps = 11 energy old = -29.2231809057 Ry energy new = -29.2232125039 Ry CASE: energy _new < energy _old new trust radius = 0.0089680379 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.063387953 Al 0.000000000 0.000000000 -1.381077305 Al 0.500000000 0.500000000 -0.692682374 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.692682374 Al 0.000000000 0.000000000 1.381077305 Al 0.500000000 0.500000000 2.063387953 Writing output data file pwscf.save Check: negative starting charge= -0.000297 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000296 negative rho (up, down): 0.153E-05 0.000E+00 total cpu time spent up to now is 9.6 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.3 negative rho (up, down): 0.333E-06 0.000E+00 total cpu time spent up to now is 9.7 secs total energy = -29.22323168 Ry Harris-Foulkes estimate = -29.22324796 Ry estimated scf accuracy < 0.00003497 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.67E-07, avg # of iterations = 3.0 negative rho (up, down): 0.262E-06 0.000E+00 total cpu time spent up to now is 9.8 secs total energy = -29.22321877 Ry Harris-Foulkes estimate = -29.22326124 Ry estimated scf accuracy < 0.00036743 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.67E-07, avg # of iterations = 2.7 negative rho (up, down): 0.143E-06 0.000E+00 total cpu time spent up to now is 9.9 secs total energy = -29.22324013 Ry Harris-Foulkes estimate = -29.22324819 Ry estimated scf accuracy < 0.00008318 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.67E-07, avg # of iterations = 2.0 total cpu time spent up to now is 9.9 secs total energy = -29.22324412 Ry Harris-Foulkes estimate = -29.22324409 Ry estimated scf accuracy < 0.00000033 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.59E-09, avg # of iterations = 3.0 total cpu time spent up to now is 10.0 secs total energy = -29.22324420 Ry Harris-Foulkes estimate = -29.22324418 Ry estimated scf accuracy < 0.00000009 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.10E-10, avg # of iterations = 2.3 total cpu time spent up to now is 10.1 secs total energy = -29.22324421 Ry Harris-Foulkes estimate = -29.22324421 Ry estimated scf accuracy < 0.00000002 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.11E-10, avg # of iterations = 1.7 total cpu time spent up to now is 10.2 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3218 -6.7901 -5.9043 -4.6785 -3.1811 -1.4071 0.6238 1.9067 4.5754 5.2688 5.7399 6.3670 6.5419 7.0595 7.6032 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9979 -4.4747 -3.6055 -2.4030 -0.9400 -0.4983 -0.0168 0.8424 0.8514 2.0110 2.8158 3.4901 3.9957 5.2099 6.7102 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7320 -2.2218 -1.3689 -0.1892 1.0817 1.2398 1.5508 2.3425 2.4730 2.7054 3.3530 3.4596 3.9510 4.8494 5.0360 the Fermi energy is 3.4254 ev ! total energy = -29.22324421 Ry Harris-Foulkes estimate = -29.22324421 Ry estimated scf accuracy < 2.5E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -198.45715172 Ry hartree contribution = 105.92176056 Ry xc contribution = -11.28861682 Ry ewald contribution = 74.60429646 Ry smearing contrib. (-TS) = -0.00353270 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00017597 atom 2 type 1 force = 0.00000000 0.00000000 -0.00038434 atom 3 type 1 force = 0.00000000 0.00000000 0.00225803 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00225803 atom 6 type 1 force = 0.00000000 0.00000000 0.00038434 atom 7 type 1 force = 0.00000000 0.00000000 0.00017597 Total force = 0.003249 Total SCF correction = 0.000073 number of scf cycles = 13 number of bfgs steps = 12 energy old = -29.2232125039 Ry energy new = -29.2232442070 Ry CASE: energy _new < energy _old new trust radius = 0.0098538613 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.064769928 Al 0.000000000 0.000000000 -1.380621066 Al 0.500000000 0.500000000 -0.690824312 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.690824312 Al 0.000000000 0.000000000 1.380621066 Al 0.500000000 0.500000000 2.064769928 Writing output data file pwscf.save Check: negative starting charge= -0.000296 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000294 negative rho (up, down): 0.116E-05 0.000E+00 total cpu time spent up to now is 10.2 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.254E-06 0.000E+00 total cpu time spent up to now is 10.4 secs total energy = -29.22323133 Ry Harris-Foulkes estimate = -29.22328239 Ry estimated scf accuracy < 0.00010629 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.06E-07, avg # of iterations = 3.3 negative rho (up, down): 0.201E-06 0.000E+00 total cpu time spent up to now is 10.5 secs total energy = -29.22317159 Ry Harris-Foulkes estimate = -29.22335423 Ry estimated scf accuracy < 0.00185899 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.06E-07, avg # of iterations = 3.0 negative rho (up, down): 0.868E-07 0.000E+00 total cpu time spent up to now is 10.5 secs total energy = -29.22326563 Ry Harris-Foulkes estimate = -29.22328020 Ry estimated scf accuracy < 0.00012805 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.06E-07, avg # of iterations = 1.3 total cpu time spent up to now is 10.6 secs total energy = -29.22327252 Ry Harris-Foulkes estimate = -29.22327248 Ry estimated scf accuracy < 0.00000064 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.06E-09, avg # of iterations = 3.7 total cpu time spent up to now is 10.7 secs total energy = -29.22327277 Ry Harris-Foulkes estimate = -29.22327281 Ry estimated scf accuracy < 0.00000105 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.06E-09, avg # of iterations = 1.0 total cpu time spent up to now is 10.8 secs total energy = -29.22327273 Ry Harris-Foulkes estimate = -29.22327278 Ry estimated scf accuracy < 0.00000040 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 2.0 total cpu time spent up to now is 10.9 secs total energy = -29.22327276 Ry Harris-Foulkes estimate = -29.22327277 Ry estimated scf accuracy < 0.00000004 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.76E-10, avg # of iterations = 2.0 total cpu time spent up to now is 11.0 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3231 -6.7773 -5.9004 -4.6760 -3.1787 -1.4106 0.6202 1.9029 4.5730 5.2674 5.7542 6.3659 6.5464 7.0559 7.6047 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9992 -4.4619 -3.6015 -2.4003 -0.9379 -0.4991 -0.0038 0.8391 0.8554 2.0141 2.8132 3.4922 3.9921 5.2057 6.7083 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7334 -2.2089 -1.3648 -0.1865 1.0803 1.2423 1.5645 2.3469 2.4724 2.7110 3.3566 3.4629 3.9547 4.8537 5.0334 the Fermi energy is 3.4272 ev ! total energy = -29.22327276 Ry Harris-Foulkes estimate = -29.22327276 Ry estimated scf accuracy < 3.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -198.37361479 Ry hartree contribution = 105.88086776 Ry xc contribution = -11.28662373 Ry ewald contribution = 74.55963538 Ry smearing contrib. (-TS) = -0.00353738 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00050775 atom 2 type 1 force = 0.00000000 0.00000000 -0.00060016 atom 3 type 1 force = 0.00000000 0.00000000 0.00112374 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00112374 atom 6 type 1 force = 0.00000000 0.00000000 0.00060016 atom 7 type 1 force = 0.00000000 0.00000000 -0.00050775 Total force = 0.001939 Total SCF correction = 0.000095 number of scf cycles = 14 number of bfgs steps = 13 energy old = -29.2232442070 Ry energy new = -29.2232727619 Ry CASE: energy _new < energy _old new trust radius = 0.0063331060 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.064260097 Al 0.000000000 0.000000000 -1.380127634 Al 0.500000000 0.500000000 -0.689630129 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.689630129 Al 0.000000000 0.000000000 1.380127634 Al 0.500000000 0.500000000 2.064260097 Writing output data file pwscf.save Check: negative starting charge= -0.000294 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000293 negative rho (up, down): 0.258E-07 0.000E+00 total cpu time spent up to now is 11.0 secs per-process dynamical memory: 25.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.3 negative rho (up, down): 0.123E-07 0.000E+00 total cpu time spent up to now is 11.1 secs total energy = -29.22327137 Ry Harris-Foulkes estimate = -29.22328467 Ry estimated scf accuracy < 0.00002756 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.31E-07, avg # of iterations = 3.0 negative rho (up, down): 0.109E-07 0.000E+00 total cpu time spent up to now is 11.2 secs total energy = -29.22324934 Ry Harris-Foulkes estimate = -29.22331326 Ry estimated scf accuracy < 0.00073288 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.31E-07, avg # of iterations = 2.7 total cpu time spent up to now is 11.3 secs total energy = -29.22328214 Ry Harris-Foulkes estimate = -29.22328338 Ry estimated scf accuracy < 0.00000918 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.37E-08, avg # of iterations = 1.3 total cpu time spent up to now is 11.4 secs total energy = -29.22328272 Ry Harris-Foulkes estimate = -29.22328274 Ry estimated scf accuracy < 0.00000034 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.63E-09, avg # of iterations = 2.7 total cpu time spent up to now is 11.5 secs total energy = -29.22328276 Ry Harris-Foulkes estimate = -29.22328276 Ry estimated scf accuracy < 0.00000009 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.47E-10, avg # of iterations = 1.3 total cpu time spent up to now is 11.5 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3282 -6.7758 -5.9040 -4.6777 -3.1776 -1.4113 0.6208 1.9037 4.5754 5.2620 5.7560 6.3677 6.5422 7.0512 7.6071 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0042 -4.4605 -3.6051 -2.4022 -0.9372 -0.5039 -0.0024 0.8384 0.8517 2.0123 2.8140 3.4930 3.9924 5.2049 6.7106 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7385 -2.2075 -1.3685 -0.1884 1.0751 1.2429 1.5661 2.3429 2.4675 2.7111 3.3570 3.4608 3.9515 4.8555 5.0342 the Fermi energy is 3.4272 ev ! total energy = -29.22328277 Ry Harris-Foulkes estimate = -29.22328277 Ry estimated scf accuracy < 4.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -198.62083356 Ry hartree contribution = 106.00420258 Ry xc contribution = -11.28736754 Ry ewald contribution = 74.68431537 Ry smearing contrib. (-TS) = -0.00359962 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00047889 atom 2 type 1 force = 0.00000000 0.00000000 -0.00042944 atom 3 type 1 force = 0.00000000 0.00000000 0.00045192 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00045192 atom 6 type 1 force = 0.00000000 0.00000000 0.00042944 atom 7 type 1 force = 0.00000000 0.00000000 -0.00047889 Total force = 0.001112 Total SCF correction = 0.000055 bfgs converged in 15 scf cycles and 14 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -29.2232827668 Ry Begin final coordinates ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.064260097 Al 0.000000000 0.000000000 -1.380127634 Al 0.500000000 0.500000000 -0.689630129 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.689630129 Al 0.000000000 0.000000000 1.380127634 Al 0.500000000 0.500000000 2.064260097 End final coordinates Writing output data file pwscf.save init_run : 0.09s CPU 0.09s WALL ( 1 calls) electrons : 10.36s CPU 10.62s WALL ( 15 calls) update_pot : 0.15s CPU 0.16s WALL ( 14 calls) forces : 0.18s CPU 0.19s WALL ( 15 calls) Called by init_run: wfcinit : 0.06s CPU 0.06s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 8.24s CPU 8.33s WALL ( 116 calls) sum_band : 1.38s CPU 1.40s WALL ( 116 calls) v_of_rho : 0.24s CPU 0.26s WALL ( 130 calls) mix_rho : 0.18s CPU 0.19s WALL ( 116 calls) Called by c_bands: init_us_2 : 0.28s CPU 0.22s WALL ( 744 calls) cegterg : 7.95s CPU 7.99s WALL ( 348 calls) Called by *egterg: h_psi : 5.70s CPU 5.60s WALL ( 1202 calls) g_psi : 0.24s CPU 0.27s WALL ( 851 calls) cdiaghg : 0.76s CPU 0.73s WALL ( 1154 calls) Called by h_psi: add_vuspsi : 0.29s CPU 0.31s WALL ( 1202 calls) General routines calbec : 0.32s CPU 0.37s WALL ( 1247 calls) fft : 0.12s CPU 0.15s WALL ( 551 calls) fftw : 5.31s CPU 5.19s WALL ( 30952 calls) davcio : 0.00s CPU 0.09s WALL ( 1092 calls) PWSCF : 11.24s CPU 11.57s WALL This run was terminated on: 11:27:30 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/gau-pbe-si111.ref0000644000175000017500000004453212341373024015653 0ustar mbamba Program PWSCF v.5.1rc1 (svn rev. 10901) starts on 25Apr2014 at 8:27:15 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/gau-pbe.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = GAUP ( 1 4 20 4 0) EXX-fraction = 0.24 Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used EXX: setup a grid of 10 q-points centered on each k-point (k+q)-points: 0.1250000 0.1250000 0.1250000 1 1 0.1250000 0.1250000 0.3750000 2 1 0.1250000 0.1250000 0.6250000 3 1 0.1250000 0.1250000 0.8750000 4 1 0.1250000 0.3750000 0.3750000 5 1 0.1250000 0.3750000 0.6250000 6 1 0.1250000 0.3750000 0.8750000 7 1 0.1250000 0.6250000 0.6250000 8 1 0.3750000 0.3750000 0.3750000 9 1 0.3750000 0.3750000 0.6250000 10 1 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 30 728 728 153 Max 82 82 31 731 731 154 Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = GAUP ( 1 4 20 4 0) EXX-fraction = 0.24 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 99, 8) NL pseudopotentials 0.01 Mb ( 99, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 99, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.1 secs iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4476 4.7282 5.9961 5.9961 8.9449 9.3568 9.3569 11.1864 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1160 4.9391 5.0502 8.5385 10.1246 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8637 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7127 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7928 3.5449 7.2968 8.3741 14.7162 14.7745 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4109 1.6834 3.9583 5.4867 9.1322 10.0722 10.2721 12.7293 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3206 9.2854 9.9751 11.4585 12.3758 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6946 -0.3359 2.2539 4.3555 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9476 0.3457 5.1681 5.1681 8.1196 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6289 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2968 convergence has been achieved in 4 iterations EXX: now go back to refine exchange calculation total cpu time spent up to now is 0.2 secs per-process dynamical memory: 6.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 3.9 total cpu time spent up to now is 0.4 secs iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.46E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.58E-08, avg # of iterations = 1.4 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.3815 3.0496 4.3528 4.3528 9.9216 10.2831 10.2832 12.3862 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.8159 1.3978 3.3245 3.3586 9.4060 11.1218 11.8394 12.0827 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7251 -0.3741 1.9178 2.3902 8.5716 10.1060 13.4419 13.6494 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1877 -2.3139 1.1502 1.8919 8.0857 9.1340 15.6256 15.8161 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.2837 -0.0443 2.3229 3.7875 10.1081 10.9298 11.1959 13.6920 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2678 -1.2758 1.2889 2.6579 10.1220 10.8453 12.2738 13.3448 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.9761 -2.3763 0.5356 1.6393 9.5823 11.4808 12.5596 14.7363 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5284 -2.1010 0.6014 2.6958 9.0930 12.7432 12.8808 14.2376 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8336 -1.4056 3.5174 3.5174 9.0874 10.7319 10.7319 15.2572 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0624 -2.2144 2.3302 3.0300 9.5298 10.8710 11.3829 14.6680 highest occupied, lowest unoccupied level (ev): 4.3528 8.0857 convergence has been achieved in 3 iterations total energy = -16.01134855 Ry Harris-Foulkes estimate = -16.01135485 Ry est. exchange err (dexx) = 0.00008526 Ry - averaged Fock potential = 2.07427317 Ry + Fock energy = -1.03746084 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 0.7 secs per-process dynamical memory: 6.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.58E-08, avg # of iterations = 3.1 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.3831 3.0434 4.3388 4.3389 9.9312 10.2884 10.2885 12.3901 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.8150 1.3957 3.3158 3.3534 9.4112 11.1238 11.8418 12.0861 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7235 -0.3731 1.9153 2.3852 8.5759 10.1075 13.4430 13.6500 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1860 -2.3120 1.1486 1.8884 8.0897 9.1349 15.6252 15.8175 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.2824 -0.0448 2.3188 3.7809 10.1138 10.9318 11.2005 13.6928 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2656 -1.2737 1.2872 2.6557 10.1242 10.8474 12.2735 13.3460 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.9729 -2.3729 0.5346 1.6381 9.5835 11.4807 12.5598 14.7362 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5261 -2.0989 0.6003 2.6920 9.0978 12.7429 12.8829 14.2374 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8330 -1.4092 3.5089 3.5089 9.0953 10.7381 10.7381 15.2622 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0608 -2.2142 2.3282 3.0244 9.5354 10.8734 11.3847 14.6678 highest occupied, lowest unoccupied level (ev): 4.3389 8.0897 convergence has been achieved in 1 iterations total energy = -16.01135442 Ry Harris-Foulkes estimate = -16.01136199 Ry est. exchange err (dexx) = 0.00000205 Ry - averaged Fock potential = 2.07496333 Ry + Fock energy = -1.03750454 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 1.0 secs per-process dynamical memory: 6.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.58E-08, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.06E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.3849 3.0410 4.3344 4.3344 9.9314 10.2879 10.2879 12.3882 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.8164 1.3937 3.3125 3.3510 9.4107 11.1226 11.8407 12.0857 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7248 -0.3748 1.9137 2.3829 8.5753 10.1069 13.4416 13.6486 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1874 -2.3136 1.1472 1.8866 8.0892 9.1341 15.6238 15.8160 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.2837 -0.0465 2.3167 3.7784 10.1129 10.9308 11.2000 13.6916 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2669 -1.2750 1.2856 2.6540 10.1233 10.8464 12.2723 13.3447 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.9742 -2.3741 0.5334 1.6367 9.5826 11.4796 12.5585 14.7348 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5276 -2.1001 0.5990 2.6900 9.0973 12.7417 12.8817 14.2361 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8346 -1.4114 3.5060 3.5060 9.0946 10.7379 10.7379 15.2625 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0623 -2.2155 2.3265 3.0220 9.5348 10.8724 11.3838 14.6667 highest occupied, lowest unoccupied level (ev): 4.3344 8.0892 convergence has been achieved in 1 iterations ! total energy = -16.01135564 Ry Harris-Foulkes estimate = -16.01135503 Ry est. exchange err (dexx) = 0.00000013 Ry - averaged Fock potential = 2.07503424 Ry + Fock energy = -1.03752982 Ry EXX self-consistency reached entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -132.95 -0.00090381 0.00000000 0.00000000 -132.95 0.00 0.00 0.00000000 -0.00090381 0.00000000 0.00 -132.95 0.00 0.00000000 0.00000000 -0.00090381 0.00 0.00 -132.95 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 1.02s CPU 1.04s WALL ( 4 calls) stress : 0.04s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.97s CPU 0.99s WALL ( 11 calls) sum_band : 0.03s CPU 0.03s WALL ( 11 calls) v_of_rho : 0.02s CPU 0.02s WALL ( 11 calls) mix_rho : 0.00s CPU 0.00s WALL ( 11 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 310 calls) cegterg : 0.96s CPU 0.98s WALL ( 110 calls) Called by *egterg: h_psi : 0.87s CPU 0.91s WALL ( 353 calls) g_psi : 0.00s CPU 0.00s WALL ( 233 calls) cdiaghg : 0.06s CPU 0.05s WALL ( 293 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 353 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 433 calls) fft : 0.00s CPU 0.01s WALL ( 124 calls) ffts : 0.55s CPU 0.57s WALL ( 12624 calls) fftw : 0.25s CPU 0.26s WALL ( 8962 calls) davcio : 0.00s CPU 0.00s WALL ( 10 calls) Parallel routines fft_scatter : 0.24s CPU 0.22s WALL ( 21710 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.03s CPU 0.03s WALL ( 4 calls) vexx : 0.74s CPU 0.75s WALL ( 194 calls) exxen2 : 0.17s CPU 0.18s WALL ( 7 calls) PWSCF : 1.36s CPU 1.38s WALL This run was terminated on: 8:27:17 25Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/paw-atom.ref0000644000175000017500000002124212341373024015215 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 17:58:34 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/paw-atom.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2587 2587 649 86907 86907 10849 Tot 1294 1294 325 bravais-lattice index = 2 lattice parameter (alat) = 25.0000 a.u. unit-cell volume = 3906.2500 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 25.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pbe-kjpaw.UPF MD5 check sum: 90f4868982d1b5f8aada8373f3a0510a Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 43454 G-vectors FFT dimensions: ( 64, 64, 64) Occupations read from input 2.0000 1.3333 1.3333 1.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.50 Mb ( 5425, 6) NL pseudopotentials 0.66 Mb ( 5425, 8) Each V/rho on FFT grid 4.00 Mb ( 262144) Each G-vector array 0.33 Mb ( 43454) G-vector shells 0.00 Mb ( 636) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.99 Mb ( 5425, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 32.00 Mb ( 262144, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001740 starting charge 6.00001, renormalised to 6.00000 negative rho (up, down): 0.174E-02 0.000E+00 Starting wfc are 4 atomic + 2 random wfc total cpu time spent up to now is 1.3 secs per-process dynamical memory: 43.4 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.12E-07, avg # of iterations = 19.0 negative rho (up, down): 0.167E-02 0.000E+00 total cpu time spent up to now is 2.2 secs total energy = -41.12628421 Ry Harris-Foulkes estimate = -41.12628356 Ry estimated scf accuracy < 0.00001951 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.25E-07, avg # of iterations = 2.0 negative rho (up, down): 0.166E-02 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -41.12628892 Ry Harris-Foulkes estimate = -41.12629004 Ry estimated scf accuracy < 0.00000401 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.68E-08, avg # of iterations = 2.0 negative rho (up, down): 0.165E-02 0.000E+00 total cpu time spent up to now is 3.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5425 PWs) bands (ev): -23.7516 -8.8679 -8.8679 -8.8679 -0.5478 1.9246 highest occupied, lowest unoccupied level (ev): -8.8679 -0.5478 ! total energy = -41.12628989 Ry Harris-Foulkes estimate = -41.12628978 Ry estimated scf accuracy < 0.00000021 Ry total all-electron energy = -149.887036 Ry The total energy is the sum of the following terms: one-electron contribution = -38.80296655 Ry hartree contribution = 20.73967149 Ry xc contribution = -6.48343875 Ry ewald contribution = -6.60220143 Ry one-center paw contrib. = -9.97735465 Ry convergence has been achieved in 3 iterations Writing output data file pwscf.save init_run : 1.06s CPU 1.09s WALL ( 1 calls) electrons : 1.90s CPU 1.95s WALL ( 1 calls) Called by init_run: wfcinit : 0.04s CPU 0.04s WALL ( 1 calls) potinit : 0.27s CPU 0.29s WALL ( 1 calls) Called by electrons: c_bands : 0.62s CPU 0.62s WALL ( 4 calls) sum_band : 0.32s CPU 0.31s WALL ( 4 calls) v_of_rho : 0.75s CPU 0.80s WALL ( 4 calls) newd : 0.16s CPU 0.16s WALL ( 4 calls) mix_rho : 0.04s CPU 0.04s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 9 calls) regterg : 0.60s CPU 0.60s WALL ( 4 calls) Called by *egterg: h_psi : 0.55s CPU 0.55s WALL ( 34 calls) s_psi : 0.00s CPU 0.00s WALL ( 34 calls) g_psi : 0.02s CPU 0.01s WALL ( 29 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 32 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 34 calls) General routines calbec : 0.02s CPU 0.01s WALL ( 38 calls) fft : 0.32s CPU 0.31s WALL ( 54 calls) fftw : 0.42s CPU 0.42s WALL ( 120 calls) davcio : 0.00s CPU 0.00s WALL ( 3 calls) PAW routines PAW_pot : 0.23s CPU 0.23s WALL ( 4 calls) PAW_ddot : 0.01s CPU 0.01s WALL ( 6 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 8 calls) PWSCF : 3.21s CPU 3.32s WALL This run was terminated on: 17:58:37 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/vdw3.ref0000644000175000017500000021572012341373024014361 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10583M) starts on 6Nov2013 at 19: 7:59 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Serial version Reading input from /home/giannozz/trunk/espresso/PW/tests/vdw3.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = VDW-DF3 ( 1 4 23 0 1) Any further DFT definition will be discarded Please, verify this is what you really want file C.pbe-rrkjus.UPF: wavefunction(s) 2S 2P renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 265 187 61 9583 5211 1107 bravais-lattice index = 4 lattice parameter (alat) = 4.6412 a.u. unit-cell volume = 236.0493 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF3 ( 1 4 23 0 1) nstep = 50 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.726400 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.366784 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: f53da8562cfe6bfda6a1b4f380354fea atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym. Ops., with inversion, found (12 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.3632000 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.3632000 ) number of k points= 12 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.2165064 0.0458480), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1375440), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0458480), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1375440), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0458480), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1375440), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0458480), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1375440), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0458480), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1375440), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0458480), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1375440), wk = 0.1250000 Dense grid: 9583 G-vectors FFT dimensions: ( 20, 20, 60) Smooth grid: 5211 G-vectors FFT dimensions: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 662, 8) NL pseudopotentials 0.32 Mb ( 662, 32) Each V/rho on FFT grid 0.37 Mb ( 24000) Each G-vector array 0.07 Mb ( 9583) G-vector shells 0.07 Mb ( 9583) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.32 Mb ( 662, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 2.93 Mb ( 24000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 ************************************************************************ * * You are using vdW-DF for exchange-correlation in this calculation. * Please cite the following three references that made this development * possible: * * M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and * B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). * * T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and * D. C. Langreth, Phys. Rev. B 76, 125112 (2007). * * G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009). * * * If you are using vdW-DF2, please also cite: * * K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and * D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010). * * * If you are calculating the stress with vdW-DF, please also cite: * * R. Sabatini, E. Kucukbenli, B. Kolb, T. Thonhauser, and * S. de Gironcoli, J. Phys.: Condens. Matter 24, 424209 (2012). * ************************************************************************ Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in reciprocal space ************************************************************************ Starting wfc are 16 randomized atomic wfcs total cpu time spent up to now is 0.8 secs per-process dynamical memory: 35.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -45.72328379 Ry Harris-Foulkes estimate = -45.96655419 Ry estimated scf accuracy < 0.41999741 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.62E-03, avg # of iterations = 2.0 total cpu time spent up to now is 2.1 secs total energy = -45.78954732 Ry Harris-Foulkes estimate = -45.78910883 Ry estimated scf accuracy < 0.00578463 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.62E-05, avg # of iterations = 2.2 total cpu time spent up to now is 2.6 secs total energy = -45.79027764 Ry Harris-Foulkes estimate = -45.79015016 Ry estimated scf accuracy < 0.00041605 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.60E-06, avg # of iterations = 2.0 total cpu time spent up to now is 3.1 secs total energy = -45.79032202 Ry Harris-Foulkes estimate = -45.79032124 Ry estimated scf accuracy < 0.00000258 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-08, avg # of iterations = 3.7 total cpu time spent up to now is 3.7 secs total energy = -45.79032490 Ry Harris-Foulkes estimate = -45.79032484 Ry estimated scf accuracy < 0.00000014 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.79E-10, avg # of iterations = 2.5 total cpu time spent up to now is 4.2 secs total energy = -45.79032491 Ry Harris-Foulkes estimate = -45.79032492 Ry estimated scf accuracy < 0.00000002 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-10, avg # of iterations = 2.5 total cpu time spent up to now is 4.7 secs End of self-consistent calculation k = 0.1250 0.2165 0.0458 ( 646 PWs) bands (ev): -11.6013 -11.3352 -0.1981 0.6600 0.7003 1.5855 1.7274 1.7557 k = 0.1250 0.2165 0.1375 ( 654 PWs) bands (ev): -11.5265 -11.4164 0.2623 0.6716 0.6893 0.9915 1.7350 1.7467 k = 0.1250 0.5052 0.0458 ( 662 PWs) bands (ev): -8.0583 -7.8595 -5.1469 -4.9975 -0.5672 -0.4925 3.8422 4.9893 k = 0.1250 0.5052 0.1375 ( 662 PWs) bands (ev): -8.0017 -7.9194 -5.1045 -5.0426 -0.5457 -0.5147 4.1716 4.6499 k = 0.1250-0.3608 0.0458 ( 661 PWs) bands (ev): -10.1457 -9.9050 -2.1374 -2.0347 0.2037 0.2660 1.5416 3.1705 k = 0.1250-0.3608 0.1375 ( 657 PWs) bands (ev): -10.0777 -9.9781 -2.1077 -2.0652 0.2215 0.2473 1.9677 2.6345 k = 0.1250-0.0722 0.0458 ( 639 PWs) bands (ev): -12.3408 -12.0617 -1.0973 0.7481 2.4414 2.4855 3.1101 3.1421 k = 0.1250-0.0722 0.1375 ( 635 PWs) bands (ev): -12.2625 -12.1471 -0.6223 0.1304 2.4543 2.4726 3.1195 3.1328 k = 0.3750 0.6495 0.0458 ( 647 PWs) bands (ev): -6.4336 -6.3373 -5.5262 -5.4850 -2.8648 -2.7696 5.5789 6.2031 k = 0.3750 0.6495 0.1375 ( 662 PWs) bands (ev): -6.4019 -6.3616 -5.5199 -5.5024 -2.8384 -2.7989 5.8202 6.0934 k = 0.3750-0.2165 0.0458 ( 658 PWs) bands (ev): -9.4312 -9.2033 -3.8393 -3.6994 0.7997 0.8492 2.3456 3.8397 k = 0.3750-0.2165 0.1375 ( 656 PWs) bands (ev): -9.3667 -9.2724 -3.7993 -3.7414 0.8141 0.8346 2.7439 3.3579 highest occupied level (ev): 6.2031 ! total energy = -45.79032492 Ry Harris-Foulkes estimate = -45.79032492 Ry estimated scf accuracy < 1.6E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.08672467 Ry hartree contribution = 13.50982090 Ry xc contribution = -14.30428719 Ry ewald contribution = -33.90913395 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001710 0.00000000 0.00000000 0.00000000 0.00001710 0.00000000 0.00000000 0.00000000 0.00001760 VDW KERNEL stress -0.00006534 0.00000000 0.00000000 0.00000000 -0.00006534 0.00000000 0.00000000 0.00000000 -0.00054089 VDW ALL stress 0.00004824 0.00000000 0.00000000 0.00000000 0.00004824 0.00000000 0.00000000 0.00000000 0.00052329 total stress (Ry/bohr**3) (kbar) P= 16.80 0.00018912 0.00000000 0.00000000 27.82 0.00 0.00 0.00000000 0.00018912 0.00000000 0.00 27.82 0.00 0.00000000 0.00000000 -0.00003554 0.00 0.00 -5.23 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -45.7903249175 Ry new trust radius = 0.0027301443 bohr new conv_thr = 0.0000000100 Ry new unit-cell volume = 235.83953 a.u.^3 ( 34.94781 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.723977611 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.361988806 C 0.500000000 0.288675135 1.361988806 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential extrapolated charge 15.98577, renormalised to 16.00000 total cpu time spent up to now is 6.2 secs per-process dynamical memory: 38.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.10E-08, avg # of iterations = 1.0 total cpu time spent up to now is 7.2 secs total energy = -45.79032386 Ry Harris-Foulkes estimate = -45.79783174 Ry estimated scf accuracy < 0.00000339 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.12E-08, avg # of iterations = 3.3 total cpu time spent up to now is 7.8 secs total energy = -45.79033261 Ry Harris-Foulkes estimate = -45.79033454 Ry estimated scf accuracy < 0.00000502 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.12E-08, avg # of iterations = 2.0 total cpu time spent up to now is 8.2 secs total energy = -45.79033187 Ry Harris-Foulkes estimate = -45.79033281 Ry estimated scf accuracy < 0.00000137 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.59E-09, avg # of iterations = 2.0 total cpu time spent up to now is 8.8 secs total energy = -45.79033216 Ry Harris-Foulkes estimate = -45.79033219 Ry estimated scf accuracy < 0.00000004 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.72E-10, avg # of iterations = 2.5 total cpu time spent up to now is 9.3 secs End of self-consistent calculation k = 0.1250 0.2165 0.0459 ( 646 PWs) bands (ev): -11.5920 -11.3241 -0.1914 0.6701 0.7107 1.6000 1.7376 1.7662 k = 0.1250 0.2165 0.1377 ( 654 PWs) bands (ev): -11.5168 -11.4059 0.2709 0.6818 0.6997 1.0032 1.7452 1.7571 k = 0.1250 0.5052 0.0459 ( 662 PWs) bands (ev): -8.0488 -7.8486 -5.1373 -4.9867 -0.5573 -0.4819 3.8496 5.0018 k = 0.1250 0.5052 0.1377 ( 662 PWs) bands (ev): -7.9918 -7.9089 -5.0945 -5.0322 -0.5356 -0.5043 4.1805 4.6610 k = 0.1250-0.3608 0.0459 ( 661 PWs) bands (ev): -10.1363 -9.8940 -2.1276 -2.0241 0.2137 0.2766 1.5485 3.1846 k = 0.1250-0.3608 0.1377 ( 657 PWs) bands (ev): -10.0679 -9.9676 -2.0976 -2.0548 0.2317 0.2577 1.9764 2.6461 k = 0.1250-0.0722 0.0459 ( 639 PWs) bands (ev): -12.3316 -12.0506 -1.0907 0.7628 2.4515 2.4960 3.1203 3.1526 k = 0.1250-0.0722 0.1377 ( 635 PWs) bands (ev): -12.2528 -12.1366 -0.6137 0.1423 2.4645 2.4829 3.1298 3.1431 k = 0.3750 0.6495 0.0459 ( 647 PWs) bands (ev): -6.4238 -6.3268 -5.5160 -5.4745 -2.8549 -2.7590 5.5867 6.2137 k = 0.3750 0.6495 0.1377 ( 662 PWs) bands (ev): -6.3919 -6.3513 -5.5097 -5.4922 -2.8283 -2.7885 5.8294 6.1040 k = 0.3750-0.2165 0.0459 ( 658 PWs) bands (ev): -9.4218 -9.1923 -3.8296 -3.6887 0.8098 0.8597 2.3526 3.8534 k = 0.3750-0.2165 0.1377 ( 656 PWs) bands (ev): -9.3569 -9.2619 -3.7893 -3.7309 0.8243 0.8450 2.7526 3.3694 highest occupied level (ev): 6.2137 ! total energy = -45.79033217 Ry Harris-Foulkes estimate = -45.79033217 Ry estimated scf accuracy < 1.9E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -11.01773722 Ry hartree contribution = 13.48144086 Ry xc contribution = -14.30449156 Ry ewald contribution = -33.94954425 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001709 0.00000000 0.00000000 0.00000000 0.00001709 0.00000000 0.00000000 0.00000000 0.00001759 VDW KERNEL stress -0.00006539 0.00000000 0.00000000 0.00000000 -0.00006539 0.00000000 0.00000000 0.00000000 -0.00054078 VDW ALL stress 0.00004830 0.00000000 0.00000000 0.00000000 0.00004830 0.00000000 0.00000000 0.00000000 0.00052320 total stress (Ry/bohr**3) (kbar) P= 16.93 0.00018922 0.00000000 0.00000000 27.83 0.00 0.00 0.00000000 0.00018922 0.00000000 0.00 27.83 0.00 0.00000000 0.00000000 -0.00003319 0.00 0.00 -4.88 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -45.7903249175 Ry enthalpy new = -45.7903321668 Ry CASE: enthalpy_new < enthalpy_old WARNING: bfgs curvature condition failed, Theta= 0.857 new trust radius = 0.0030044937 bohr new conv_thr = 1.0E-10 Ry new unit-cell volume = 235.60883 a.u.^3 ( 34.91363 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.721312983 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.360656492 C 0.500000000 0.288675135 1.360656492 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential extrapolated charge 15.98433, renormalised to 16.00000 total cpu time spent up to now is 10.8 secs per-process dynamical memory: 38.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.55E-08, avg # of iterations = 1.0 total cpu time spent up to now is 11.6 secs total energy = -45.79032947 Ry Harris-Foulkes estimate = -45.79853559 Ry estimated scf accuracy < 0.00000411 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.57E-08, avg # of iterations = 3.3 total cpu time spent up to now is 12.3 secs total energy = -45.79034006 Ry Harris-Foulkes estimate = -45.79034239 Ry estimated scf accuracy < 0.00000606 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.57E-08, avg # of iterations = 2.0 total cpu time spent up to now is 12.9 secs total energy = -45.79033916 Ry Harris-Foulkes estimate = -45.79034030 Ry estimated scf accuracy < 0.00000166 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-08, avg # of iterations = 2.0 total cpu time spent up to now is 13.5 secs total energy = -45.79033951 Ry Harris-Foulkes estimate = -45.79033954 Ry estimated scf accuracy < 0.00000006 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.51E-10, avg # of iterations = 2.5 total cpu time spent up to now is 14.1 secs total energy = -45.79033952 Ry Harris-Foulkes estimate = -45.79033952 Ry estimated scf accuracy < 2.6E-10 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.60E-12, avg # of iterations = 2.2 total cpu time spent up to now is 14.6 secs total energy = -45.79033952 Ry Harris-Foulkes estimate = -45.79033952 Ry estimated scf accuracy < 1.4E-10 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.62E-13, avg # of iterations = 2.8 total cpu time spent up to now is 15.2 secs End of self-consistent calculation k = 0.1250 0.2165 0.0459 ( 646 PWs) bands (ev): -11.5818 -11.3119 -0.1840 0.6812 0.7222 1.6160 1.7488 1.7776 k = 0.1250 0.2165 0.1378 ( 654 PWs) bands (ev): -11.5060 -11.3943 0.2804 0.6930 0.7111 1.0162 1.7565 1.7685 k = 0.1250 0.5052 0.0459 ( 662 PWs) bands (ev): -8.0383 -7.8366 -5.1266 -4.9749 -0.5463 -0.4703 3.8577 5.0156 k = 0.1250 0.5052 0.1378 ( 662 PWs) bands (ev): -7.9809 -7.8974 -5.0835 -5.0207 -0.5244 -0.4929 4.1903 4.6733 k = 0.1250-0.3608 0.0459 ( 661 PWs) bands (ev): -10.1260 -9.8818 -2.1167 -2.0123 0.2247 0.2882 1.5561 3.2001 k = 0.1250-0.3608 0.1378 ( 657 PWs) bands (ev): -10.0571 -9.9560 -2.0865 -2.0433 0.2429 0.2691 1.9860 2.6589 k = 0.1250-0.0722 0.0459 ( 639 PWs) bands (ev): -12.3214 -12.0383 -1.0833 0.7790 2.4627 2.5075 3.1315 3.1641 k = 0.1250-0.0722 0.1378 ( 635 PWs) bands (ev): -12.2421 -12.1250 -0.6042 0.1553 2.4758 2.4944 3.1410 3.1545 k = 0.3750 0.6495 0.0459 ( 647 PWs) bands (ev): -6.4130 -6.3152 -5.5048 -5.4630 -2.8440 -2.7473 5.5953 6.2254 k = 0.3750 0.6495 0.1378 ( 662 PWs) bands (ev): -6.3808 -6.3399 -5.4986 -5.4808 -2.8172 -2.7771 5.8395 6.1156 k = 0.3750-0.2165 0.0459 ( 658 PWs) bands (ev): -9.4115 -9.1802 -3.8189 -3.6768 0.8209 0.8712 2.3604 3.8685 k = 0.3750-0.2165 0.1378 ( 656 PWs) bands (ev): -9.3461 -9.2503 -3.7782 -3.7194 0.8356 0.8564 2.7623 3.3820 highest occupied level (ev): 6.2254 ! total energy = -45.79033952 Ry Harris-Foulkes estimate = -45.79033952 Ry estimated scf accuracy < 4.7E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -10.94188640 Ry hartree contribution = 13.45026186 Ry xc contribution = -14.30471922 Ry ewald contribution = -33.99399576 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001709 0.00000000 0.00000000 0.00000000 0.00001709 0.00000000 0.00000000 0.00000000 0.00001757 VDW KERNEL stress -0.00006546 0.00000000 0.00000000 0.00000000 -0.00006546 0.00000000 0.00000000 0.00000000 -0.00054066 VDW ALL stress 0.00004837 0.00000000 0.00000000 0.00000000 0.00004837 0.00000000 0.00000000 0.00000000 0.00052309 total stress (Ry/bohr**3) (kbar) P= 17.07 0.00018921 0.00000000 0.00000000 27.83 0.00 0.00 0.00000000 0.00018921 0.00000000 0.00 27.83 0.00 0.00000000 0.00000000 -0.00003040 0.00 0.00 -4.47 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -45.7903321668 Ry enthalpy new = -45.7903395204 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0045089465 bohr new conv_thr = 1.0E-10 Ry new unit-cell volume = 235.26277 a.u.^3 ( 34.86235 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.717316042 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.358658021 C 0.500000000 0.288675135 1.358658021 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential extrapolated charge 15.97647, renormalised to 16.00000 total cpu time spent up to now is 16.7 secs per-process dynamical memory: 38.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.73E-08, avg # of iterations = 1.0 total cpu time spent up to now is 17.7 secs total energy = -45.79032674 Ry Harris-Foulkes estimate = -45.80252161 Ry estimated scf accuracy < 0.00000924 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.78E-08, avg # of iterations = 3.3 total cpu time spent up to now is 18.3 secs total energy = -45.79035053 Ry Harris-Foulkes estimate = -45.79035576 Ry estimated scf accuracy < 0.00001361 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.78E-08, avg # of iterations = 2.0 total cpu time spent up to now is 18.8 secs total energy = -45.79034851 Ry Harris-Foulkes estimate = -45.79035107 Ry estimated scf accuracy < 0.00000372 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-08, avg # of iterations = 2.0 total cpu time spent up to now is 19.3 secs total energy = -45.79034929 Ry Harris-Foulkes estimate = -45.79034937 Ry estimated scf accuracy < 0.00000013 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.16E-10, avg # of iterations = 2.5 total cpu time spent up to now is 19.9 secs total energy = -45.79034932 Ry Harris-Foulkes estimate = -45.79034932 Ry estimated scf accuracy < 7.7E-10 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.79E-12, avg # of iterations = 2.2 total cpu time spent up to now is 20.4 secs total energy = -45.79034932 Ry Harris-Foulkes estimate = -45.79034932 Ry estimated scf accuracy < 4.6E-10 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.87E-12, avg # of iterations = 2.7 total cpu time spent up to now is 21.0 secs total energy = -45.79034932 Ry Harris-Foulkes estimate = -45.79034932 Ry estimated scf accuracy < 1.1E-10 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.05E-13, avg # of iterations = 1.3 total cpu time spent up to now is 21.4 secs End of self-consistent calculation k = 0.1250 0.2165 0.0460 ( 646 PWs) bands (ev): -11.5665 -11.2935 -0.1729 0.6979 0.7395 1.6401 1.7656 1.7949 k = 0.1250 0.2165 0.1380 ( 654 PWs) bands (ev): -11.4899 -11.3769 0.2947 0.7099 0.7282 1.0357 1.7734 1.7856 k = 0.1250 0.5052 0.0460 ( 662 PWs) bands (ev): -8.0226 -7.8185 -5.1106 -4.9570 -0.5298 -0.4528 3.8699 5.0364 k = 0.1250 0.5052 0.1380 ( 662 PWs) bands (ev): -7.9645 -7.8800 -5.0670 -5.0034 -0.5076 -0.4757 4.2051 4.6917 k = 0.1250-0.3608 0.0460 ( 661 PWs) bands (ev): -10.1105 -9.8635 -2.1004 -1.9947 0.2413 0.3056 1.5675 3.2235 k = 0.1250-0.3608 0.1380 ( 657 PWs) bands (ev): -10.0409 -9.9386 -2.0699 -2.0261 0.2597 0.2863 2.0004 2.6782 k = 0.1250-0.0722 0.0460 ( 639 PWs) bands (ev): -12.3061 -12.0199 -1.0723 0.8033 2.4794 2.5249 3.1483 3.1814 k = 0.1250-0.0722 0.1380 ( 635 PWs) bands (ev): -12.2259 -12.1075 -0.5899 0.1749 2.4927 2.5115 3.1580 3.1717 k = 0.3750 0.6495 0.0460 ( 647 PWs) bands (ev): -6.3969 -6.2979 -5.4880 -5.4457 -2.8276 -2.7297 5.6081 6.2429 k = 0.3750 0.6495 0.1380 ( 662 PWs) bands (ev): -6.3642 -6.3228 -5.4817 -5.4638 -2.8005 -2.7599 5.8547 6.1330 k = 0.3750-0.2165 0.0460 ( 658 PWs) bands (ev): -9.3959 -9.1620 -3.8028 -3.6590 0.8375 0.8886 2.3720 3.8912 k = 0.3750-0.2165 0.1380 ( 656 PWs) bands (ev): -9.3298 -9.2329 -3.7617 -3.7021 0.8524 0.8736 2.7768 3.4010 highest occupied level (ev): 6.2429 ! total energy = -45.79034932 Ry Harris-Foulkes estimate = -45.79034932 Ry estimated scf accuracy < 3.9E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -10.82815406 Ry hartree contribution = 13.40354237 Ry xc contribution = -14.30506423 Ry ewald contribution = -34.06067340 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001708 0.00000000 0.00000000 0.00000000 0.00001708 0.00000000 0.00000000 0.00000000 0.00001755 VDW KERNEL stress -0.00006555 0.00000000 0.00000000 0.00000000 -0.00006555 0.00000000 0.00000000 0.00000000 -0.00054047 VDW ALL stress 0.00004847 0.00000000 0.00000000 0.00000000 0.00004847 0.00000000 0.00000000 0.00000000 0.00052292 total stress (Ry/bohr**3) (kbar) P= 17.28 0.00018925 0.00000000 0.00000000 27.84 0.00 0.00 0.00000000 0.00018925 0.00000000 0.00 27.84 0.00 0.00000000 0.00000000 -0.00002618 0.00 0.00 -3.85 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -45.7903395204 Ry enthalpy new = -45.7903493198 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0067683921 bohr new conv_thr = 1.0E-10 Ry new unit-cell volume = 234.74370 a.u.^3 ( 34.78543 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.711320629 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.355660315 C 0.500000000 0.288675135 1.355660315 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential extrapolated charge 15.96462, renormalised to 16.00000 total cpu time spent up to now is 23.0 secs per-process dynamical memory: 38.4 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 23.5 secs total energy = -45.79031090 Ry Harris-Foulkes estimate = -45.80834496 Ry estimated scf accuracy < 0.00002060 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-07, avg # of iterations = 3.3 total cpu time spent up to now is 24.2 secs total energy = -45.79036389 Ry Harris-Foulkes estimate = -45.79037554 Ry estimated scf accuracy < 0.00003027 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-07, avg # of iterations = 2.0 total cpu time spent up to now is 24.7 secs total energy = -45.79035938 Ry Harris-Foulkes estimate = -45.79036510 Ry estimated scf accuracy < 0.00000827 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.17E-08, avg # of iterations = 2.0 total cpu time spent up to now is 25.5 secs total energy = -45.79036113 Ry Harris-Foulkes estimate = -45.79036136 Ry estimated scf accuracy < 0.00000034 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.14E-09, avg # of iterations = 2.4 total cpu time spent up to now is 26.1 secs total energy = -45.79036121 Ry Harris-Foulkes estimate = -45.79036121 Ry estimated scf accuracy < 1.5E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.29E-12, avg # of iterations = 2.7 total cpu time spent up to now is 26.6 secs total energy = -45.79036121 Ry Harris-Foulkes estimate = -45.79036121 Ry estimated scf accuracy < 1.0E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.45E-12, avg # of iterations = 2.6 total cpu time spent up to now is 27.4 secs total energy = -45.79036121 Ry Harris-Foulkes estimate = -45.79036121 Ry estimated scf accuracy < 1.9E-10 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.18E-12, avg # of iterations = 1.4 total cpu time spent up to now is 27.9 secs total energy = -45.79036121 Ry Harris-Foulkes estimate = -45.79036121 Ry estimated scf accuracy < 1.1E-10 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.75E-13, avg # of iterations = 2.5 total cpu time spent up to now is 28.7 secs End of self-consistent calculation k = 0.1250 0.2165 0.0461 ( 646 PWs) bands (ev): -11.5434 -11.2658 -0.1563 0.7231 0.7655 1.6764 1.7910 1.8208 k = 0.1250 0.2165 0.1383 ( 654 PWs) bands (ev): -11.4655 -11.3507 0.3162 0.7353 0.7540 1.0652 1.7989 1.8113 k = 0.1250 0.5052 0.0461 ( 662 PWs) bands (ev): -7.9990 -7.7913 -5.0865 -4.9301 -0.5050 -0.4264 3.8883 5.0677 k = 0.1250 0.5052 0.1383 ( 662 PWs) bands (ev): -7.9399 -7.8539 -5.0422 -4.9774 -0.4824 -0.4498 4.2274 4.7194 k = 0.1250-0.3608 0.0461 ( 661 PWs) bands (ev): -10.0873 -9.8360 -2.0759 -1.9682 0.2663 0.3319 1.5845 3.2588 k = 0.1250-0.3608 0.1383 ( 657 PWs) bands (ev): -10.0164 -9.9125 -2.0448 -2.0001 0.2850 0.3122 2.0220 2.7072 k = 0.1250-0.0722 0.0461 ( 639 PWs) bands (ev): -12.2832 -11.9921 -1.0558 0.8401 2.5045 2.5510 3.1736 3.2074 k = 0.1250-0.0722 0.1383 ( 635 PWs) bands (ev): -12.2017 -12.0813 -0.5684 0.2045 2.5181 2.5374 3.1835 3.1975 k = 0.3750 0.6495 0.0461 ( 647 PWs) bands (ev): -6.3725 -6.2717 -5.4627 -5.4197 -2.8030 -2.7033 5.6275 6.2693 k = 0.3750 0.6495 0.1383 ( 662 PWs) bands (ev): -6.3392 -6.2970 -5.4564 -5.4382 -2.7754 -2.7341 5.8776 6.1593 k = 0.3750-0.2165 0.0461 ( 658 PWs) bands (ev): -9.3726 -9.1345 -3.7787 -3.6322 0.8626 0.9148 2.3894 3.9254 k = 0.3750-0.2165 0.1383 ( 656 PWs) bands (ev): -9.3053 -9.2068 -3.7368 -3.6761 0.8778 0.8995 2.7986 3.4297 highest occupied level (ev): 6.2693 ! total energy = -45.79036121 Ry Harris-Foulkes estimate = -45.79036121 Ry estimated scf accuracy < 2.7E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -10.65766831 Ry hartree contribution = 13.33359037 Ry xc contribution = -14.30559257 Ry ewald contribution = -34.16069070 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001708 0.00000000 0.00000000 0.00000000 0.00001708 0.00000000 0.00000000 0.00000000 0.00001752 VDW KERNEL stress -0.00006570 0.00000000 0.00000000 0.00000000 -0.00006570 0.00000000 0.00000000 0.00000000 -0.00054019 VDW ALL stress 0.00004862 0.00000000 0.00000000 0.00000000 0.00004862 0.00000000 0.00000000 0.00000000 0.00052266 total stress (Ry/bohr**3) (kbar) P= 17.61 0.00018930 0.00000000 0.00000000 27.85 0.00 0.00 0.00000000 0.00018930 0.00000000 0.00 27.85 0.00 0.00000000 0.00000000 -0.00001956 0.00 0.00 -2.88 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -45.7903493198 Ry enthalpy new = -45.7903612117 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0101638069 bohr new conv_thr = 1.0E-10 Ry new unit-cell volume = 233.96508 a.u.^3 ( 34.67005 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.702327511 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.351163755 C 0.500000000 0.288675135 1.351163755 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential extrapolated charge 15.94675, renormalised to 16.00000 total cpu time spent up to now is 30.1 secs per-process dynamical memory: 38.6 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 30.7 secs total energy = -45.79025979 Ry Harris-Foulkes estimate = -45.81672861 Ry estimated scf accuracy < 0.00004623 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.89E-07, avg # of iterations = 3.3 total cpu time spent up to now is 31.3 secs total energy = -45.79037859 Ry Harris-Foulkes estimate = -45.79040465 Ry estimated scf accuracy < 0.00006775 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.89E-07, avg # of iterations = 2.0 total cpu time spent up to now is 31.8 secs total energy = -45.79036849 Ry Harris-Foulkes estimate = -45.79038129 Ry estimated scf accuracy < 0.00001851 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.16E-07, avg # of iterations = 2.0 total cpu time spent up to now is 32.3 secs total energy = -45.79037243 Ry Harris-Foulkes estimate = -45.79037293 Ry estimated scf accuracy < 0.00000077 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.84E-09, avg # of iterations = 2.4 total cpu time spent up to now is 32.9 secs total energy = -45.79037260 Ry Harris-Foulkes estimate = -45.79037260 Ry estimated scf accuracy < 3.8E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.37E-11, avg # of iterations = 2.8 total cpu time spent up to now is 33.4 secs total energy = -45.79037260 Ry Harris-Foulkes estimate = -45.79037260 Ry estimated scf accuracy < 3.2E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.02E-11, avg # of iterations = 2.5 total cpu time spent up to now is 34.0 secs total energy = -45.79037260 Ry Harris-Foulkes estimate = -45.79037260 Ry estimated scf accuracy < 1.7E-10 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.07E-12, avg # of iterations = 2.1 total cpu time spent up to now is 34.5 secs End of self-consistent calculation k = 0.1250 0.2165 0.0463 ( 646 PWs) bands (ev): -11.5087 -11.2239 -0.1312 0.7610 0.8048 1.7314 1.8292 1.8600 k = 0.1250 0.2165 0.1388 ( 654 PWs) bands (ev): -11.4289 -11.3111 0.3486 0.7736 0.7929 1.1096 1.8374 1.8502 k = 0.1250 0.5052 0.0463 ( 662 PWs) bands (ev): -7.9634 -7.7502 -5.0502 -4.8895 -0.4675 -0.3866 3.9159 5.1149 k = 0.1250 0.5052 0.1388 ( 662 PWs) bands (ev): -7.9028 -7.8145 -5.0047 -4.9381 -0.4442 -0.4107 4.2609 4.7613 k = 0.1250-0.3608 0.0463 ( 661 PWs) bands (ev): -10.0522 -9.7944 -2.0389 -1.9281 0.3039 0.3715 1.6102 3.3122 k = 0.1250-0.3608 0.1388 ( 657 PWs) bands (ev): -9.9796 -9.8729 -2.0069 -1.9610 0.3232 0.3512 2.0546 2.7510 k = 0.1250-0.0722 0.0463 ( 639 PWs) bands (ev): -12.2486 -11.9501 -1.0309 0.8956 2.5425 2.5904 3.2118 3.2467 k = 0.1250-0.0722 0.1388 ( 635 PWs) bands (ev): -12.1651 -12.0417 -0.5360 0.2492 2.5565 2.5764 3.2220 3.2365 k = 0.3750 0.6495 0.0463 ( 647 PWs) bands (ev): -6.3358 -6.2323 -5.4244 -5.3804 -2.7659 -2.6633 5.6565 6.3090 k = 0.3750 0.6495 0.1388 ( 662 PWs) bands (ev): -6.3015 -6.2581 -5.4183 -5.3995 -2.7376 -2.6950 5.9121 6.1990 k = 0.3750-0.2165 0.0463 ( 658 PWs) bands (ev): -9.3373 -9.0931 -3.7422 -3.5916 0.9005 0.9544 2.4157 3.9772 k = 0.3750-0.2165 0.1388 ( 656 PWs) bands (ev): -9.2684 -9.1673 -3.6992 -3.6368 0.9162 0.9385 2.8314 3.4730 highest occupied level (ev): 6.3090 ! total energy = -45.79037260 Ry Harris-Foulkes estimate = -45.79037260 Ry estimated scf accuracy < 7.0E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -10.40214363 Ry hartree contribution = 13.22888394 Ry xc contribution = -14.30639429 Ry ewald contribution = -34.31071861 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001706 0.00000000 0.00000000 0.00000000 0.00001706 0.00000000 0.00000000 0.00000000 0.00001747 VDW KERNEL stress -0.00006591 0.00000000 0.00000000 0.00000000 -0.00006591 0.00000000 0.00000000 0.00000000 -0.00053974 VDW ALL stress 0.00004885 0.00000000 0.00000000 0.00000000 0.00004885 0.00000000 0.00000000 0.00000000 0.00052226 total stress (Ry/bohr**3) (kbar) P= 18.10 0.00018931 0.00000000 0.00000000 27.85 0.00 0.00 0.00000000 0.00018931 0.00000000 0.00 27.85 0.00 0.00000000 0.00000000 -0.00000959 0.00 0.00 -1.41 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -45.7903612117 Ry enthalpy new = -45.7903725984 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0098059024 bohr new conv_thr = 1.0E-10 Ry new unit-cell volume = 233.21513 a.u.^3 ( 34.55892 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.693665474 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.346832737 C 0.500000000 0.288675135 1.346832737 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential extrapolated charge 15.94855, renormalised to 16.00000 total cpu time spent up to now is 36.4 secs per-process dynamical memory: 38.6 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 36.9 secs total energy = -45.79027168 Ry Harris-Foulkes estimate = -45.81519488 Ry estimated scf accuracy < 0.00004270 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.67E-07, avg # of iterations = 3.3 total cpu time spent up to now is 37.5 secs total energy = -45.79038160 Ry Harris-Foulkes estimate = -45.79040567 Ry estimated scf accuracy < 0.00006262 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.67E-07, avg # of iterations = 2.0 total cpu time spent up to now is 38.0 secs total energy = -45.79037225 Ry Harris-Foulkes estimate = -45.79038409 Ry estimated scf accuracy < 0.00001713 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.07E-07, avg # of iterations = 2.0 total cpu time spent up to now is 38.6 secs total energy = -45.79037589 Ry Harris-Foulkes estimate = -45.79037636 Ry estimated scf accuracy < 0.00000072 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.51E-09, avg # of iterations = 2.4 total cpu time spent up to now is 39.1 secs total energy = -45.79037605 Ry Harris-Foulkes estimate = -45.79037605 Ry estimated scf accuracy < 3.3E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-11, avg # of iterations = 2.8 total cpu time spent up to now is 39.6 secs total energy = -45.79037605 Ry Harris-Foulkes estimate = -45.79037605 Ry estimated scf accuracy < 2.8E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-11, avg # of iterations = 2.5 total cpu time spent up to now is 40.2 secs total energy = -45.79037605 Ry Harris-Foulkes estimate = -45.79037605 Ry estimated scf accuracy < 1.6E-10 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-12, avg # of iterations = 2.0 total cpu time spent up to now is 40.7 secs End of self-consistent calculation k = 0.1250 0.2165 0.0464 ( 646 PWs) bands (ev): -11.4751 -11.1833 -0.1069 0.7978 0.8428 1.7848 1.8663 1.8980 k = 0.1250 0.2165 0.1392 ( 654 PWs) bands (ev): -11.3934 -11.2727 0.3800 0.8107 0.8306 1.1528 1.8747 1.8879 k = 0.1250 0.5052 0.0464 ( 662 PWs) bands (ev): -7.9290 -7.7102 -5.0150 -4.8501 -0.4313 -0.3480 3.9426 5.1607 k = 0.1250 0.5052 0.1392 ( 662 PWs) bands (ev): -7.8668 -7.7763 -4.9684 -4.9001 -0.4073 -0.3728 4.2934 4.8020 k = 0.1250-0.3608 0.0464 ( 661 PWs) bands (ev): -10.0183 -9.7540 -2.0031 -1.8892 0.3404 0.4099 1.6350 3.3641 k = 0.1250-0.3608 0.1392 ( 657 PWs) bands (ev): -9.9439 -9.8346 -1.9702 -1.9230 0.3602 0.3891 2.0862 2.7935 k = 0.1250-0.0722 0.0464 ( 639 PWs) bands (ev): -12.2152 -11.9094 -1.0069 0.9497 2.5793 2.6287 3.2488 3.2848 k = 0.1250-0.0722 0.1392 ( 635 PWs) bands (ev): -12.1297 -12.0033 -0.5046 0.2926 2.5937 2.6142 3.2593 3.2743 k = 0.3750 0.6495 0.0464 ( 647 PWs) bands (ev): -6.3003 -6.1940 -5.3874 -5.3423 -2.7299 -2.6246 5.6846 6.3475 k = 0.3750 0.6495 0.1392 ( 662 PWs) bands (ev): -6.2649 -6.2204 -5.3813 -5.3620 -2.7009 -2.6572 5.9455 6.2375 k = 0.3750-0.2165 0.0464 ( 658 PWs) bands (ev): -9.3033 -9.0528 -3.7070 -3.5523 0.9371 0.9927 2.4410 4.0275 k = 0.3750-0.2165 0.1392 ( 656 PWs) bands (ev): -9.2326 -9.1290 -3.6628 -3.5988 0.9534 0.9764 2.8633 3.5150 highest occupied level (ev): 6.3475 ! total energy = -45.79037605 Ry Harris-Foulkes estimate = -45.79037605 Ry estimated scf accuracy < 6.3E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -10.15628774 Ry hartree contribution = 13.12832321 Ry xc contribution = -14.30718600 Ry ewald contribution = -34.45522552 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001705 0.00000000 0.00000000 0.00000000 0.00001705 0.00000000 0.00000000 0.00000000 0.00001743 VDW KERNEL stress -0.00006612 0.00000000 0.00000000 0.00000000 -0.00006612 0.00000000 0.00000000 0.00000000 -0.00053929 VDW ALL stress 0.00004907 0.00000000 0.00000000 0.00000000 0.00004907 0.00000000 0.00000000 0.00000000 0.00052186 total stress (Ry/bohr**3) (kbar) P= 18.58 0.00018930 0.00000000 0.00000000 27.85 0.00 0.00 0.00000000 0.00018930 0.00000000 0.00 27.85 0.00 0.00000000 0.00000000 0.00000039 0.00 0.00 0.06 bfgs converged in 7 scf cycles and 6 bfgs steps (criteria: energy < 1.0E-04, force < 1.0E-03, cell < 5.0E-01) End of BFGS Geometry Optimization Final enthalpy = -45.7903760495 Ry Begin final coordinates new unit-cell volume = 233.21513 a.u.^3 ( 34.55892 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.693665474 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.346832737 C 0.500000000 0.288675135 1.346832737 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated for the final unit cell Results may differ from those at the preceding step. G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 265 187 61 9521 5149 1093 bravais-lattice index = 4 lattice parameter (alat) = 4.6412 a.u. unit-cell volume = 233.2151 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-10 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF3 ( 1 4 23 0 1) celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.693665 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.371241 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: f53da8562cfe6bfda6a1b4f380354fea atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym. Ops., with inversion, found (12 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.3468327 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.3468327 ) number of k points= 12 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.2165064 0.0464052), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1392155), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0464052), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1392155), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0464052), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1392155), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0464052), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1392155), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0464052), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1392155), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0464052), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1392155), wk = 0.1250000 Dense grid: 9521 G-vectors FFT dimensions: ( 20, 20, 54) Smooth grid: 5149 G-vectors FFT dimensions: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 655, 8) NL pseudopotentials 0.32 Mb ( 655, 32) Each V/rho on FFT grid 0.33 Mb ( 21600) Each G-vector array 0.07 Mb ( 9521) G-vector shells 0.00 Mb ( 547) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.32 Mb ( 655, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 2.64 Mb ( 21600, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 Starting wfc are 16 randomized atomic wfcs Writing output data file graphite.save total cpu time spent up to now is 42.1 secs per-process dynamical memory: 38.6 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.1 total cpu time spent up to now is 42.9 secs total energy = -45.72476061 Ry Harris-Foulkes estimate = -45.96685222 Ry estimated scf accuracy < 0.42046564 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.63E-03, avg # of iterations = 2.0 total cpu time spent up to now is 43.4 secs total energy = -45.78945437 Ry Harris-Foulkes estimate = -45.78902830 Ry estimated scf accuracy < 0.00558636 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.49E-05, avg # of iterations = 2.2 total cpu time spent up to now is 43.9 secs total energy = -45.79027596 Ry Harris-Foulkes estimate = -45.79015738 Ry estimated scf accuracy < 0.00036267 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-06, avg # of iterations = 2.1 total cpu time spent up to now is 44.4 secs total energy = -45.79032080 Ry Harris-Foulkes estimate = -45.79031913 Ry estimated scf accuracy < 0.00000250 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-08, avg # of iterations = 3.2 total cpu time spent up to now is 44.9 secs total energy = -45.79032285 Ry Harris-Foulkes estimate = -45.79032293 Ry estimated scf accuracy < 0.00000021 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-09, avg # of iterations = 2.9 total cpu time spent up to now is 45.5 secs total energy = -45.79032291 Ry Harris-Foulkes estimate = -45.79032294 Ry estimated scf accuracy < 0.00000010 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.03E-10, avg # of iterations = 2.2 total cpu time spent up to now is 45.9 secs total energy = -45.79032292 Ry Harris-Foulkes estimate = -45.79032292 Ry estimated scf accuracy < 5.2E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-11, avg # of iterations = 3.3 total cpu time spent up to now is 46.5 secs total energy = -45.79032292 Ry Harris-Foulkes estimate = -45.79032292 Ry estimated scf accuracy < 5.3E-10 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.33E-12, avg # of iterations = 3.0 total cpu time spent up to now is 47.0 secs total energy = -45.79032292 Ry Harris-Foulkes estimate = -45.79032292 Ry estimated scf accuracy < 1.5E-10 Ry iteration # 10 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.68E-13, avg # of iterations = 2.5 total cpu time spent up to now is 47.5 secs End of self-consistent calculation k = 0.1250 0.2165 0.0464 ( 639 PWs) bands (ev): -11.4752 -11.1834 -0.1068 0.7977 0.8427 1.7849 1.8662 1.8980 k = 0.1250 0.2165 0.1392 ( 640 PWs) bands (ev): -11.3935 -11.2728 0.3801 0.8107 0.8306 1.1529 1.8746 1.8878 k = 0.1250 0.5052 0.0464 ( 651 PWs) bands (ev): -7.9291 -7.7104 -5.0151 -4.8502 -0.4314 -0.3481 3.9429 5.1609 k = 0.1250 0.5052 0.1392 ( 654 PWs) bands (ev): -7.8669 -7.7764 -4.9685 -4.9002 -0.4074 -0.3729 4.2936 4.8021 k = 0.1250-0.3608 0.0464 ( 649 PWs) bands (ev): -10.0184 -9.7541 -2.0032 -1.8893 0.3403 0.4098 1.6353 3.3642 k = 0.1250-0.3608 0.1392 ( 651 PWs) bands (ev): -9.9441 -9.8347 -1.9703 -1.9232 0.3601 0.3889 2.0863 2.7936 k = 0.1250-0.0722 0.0464 ( 633 PWs) bands (ev): -12.2153 -11.9095 -1.0068 0.9497 2.5792 2.6286 3.2487 3.2847 k = 0.1250-0.0722 0.1392 ( 629 PWs) bands (ev): -12.1298 -12.0034 -0.5045 0.2927 2.5936 2.6141 3.2592 3.2741 k = 0.3750 0.6495 0.0464 ( 643 PWs) bands (ev): -6.3004 -6.1941 -5.3875 -5.3424 -2.7300 -2.6247 5.6848 6.3477 k = 0.3750 0.6495 0.1392 ( 655 PWs) bands (ev): -6.2650 -6.2205 -5.3814 -5.3622 -2.7010 -2.6573 5.9456 6.2376 k = 0.3750-0.2165 0.0464 ( 654 PWs) bands (ev): -9.3034 -9.0529 -3.7071 -3.5524 0.9370 0.9926 2.4412 4.0276 k = 0.3750-0.2165 0.1392 ( 648 PWs) bands (ev): -9.2327 -9.1291 -3.6629 -3.5989 0.9532 0.9763 2.8634 3.5151 highest occupied level (ev): 6.3477 ! total energy = -45.79032292 Ry Harris-Foulkes estimate = -45.79032292 Ry estimated scf accuracy < 8.6E-14 Ry The total energy is the sum of the following terms: one-electron contribution = -10.15618314 Ry hartree contribution = 13.12822184 Ry xc contribution = -14.30713611 Ry ewald contribution = -34.45522552 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001701 0.00000000 0.00000000 0.00000000 0.00001701 0.00000000 0.00000000 0.00000000 0.00001748 VDW KERNEL stress -0.00006614 0.00000000 0.00000000 0.00000000 -0.00006614 0.00000000 0.00000000 0.00000000 -0.00053932 VDW ALL stress 0.00004913 0.00000000 0.00000000 0.00000000 0.00004913 0.00000000 0.00000000 0.00000000 0.00052184 total stress (Ry/bohr**3) (kbar) P= 18.29 0.00018837 0.00000000 0.00000000 27.71 0.00 0.00 0.00000000 0.00018837 0.00000000 0.00 27.71 0.00 0.00000000 0.00000000 -0.00000381 0.00 0.00 -0.56 Writing output data file graphite.save init_run : 1.04s CPU 1.07s WALL ( 2 calls) electrons : 33.30s CPU 35.76s WALL ( 8 calls) update_pot : 2.81s CPU 3.23s WALL ( 6 calls) forces : 1.20s CPU 1.20s WALL ( 8 calls) stress : 5.57s CPU 5.75s WALL ( 8 calls) Called by init_run: wfcinit : 0.34s CPU 0.35s WALL ( 2 calls) potinit : 0.42s CPU 0.43s WALL ( 2 calls) Called by electrons: c_bands : 17.72s CPU 18.83s WALL ( 65 calls) sum_band : 4.22s CPU 4.39s WALL ( 65 calls) v_of_rho : 11.14s CPU 11.76s WALL ( 70 calls) newd : 1.24s CPU 1.28s WALL ( 70 calls) mix_rho : 0.23s CPU 0.23s WALL ( 65 calls) vdW_energy : 4.54s CPU 4.89s WALL ( 70 calls) vdW_ffts : 2.38s CPU 2.48s WALL ( 156 calls) vdW_v : 1.50s CPU 1.55s WALL ( 70 calls) Called by c_bands: init_us_2 : 0.57s CPU 0.57s WALL ( 1776 calls) cegterg : 16.73s CPU 17.40s WALL ( 780 calls) Called by *egterg: h_psi : 13.87s CPU 14.50s WALL ( 2668 calls) s_psi : 0.44s CPU 0.49s WALL ( 2668 calls) g_psi : 0.36s CPU 0.32s WALL ( 1864 calls) cdiaghg : 0.57s CPU 0.67s WALL ( 2536 calls) Called by h_psi: add_vuspsi : 0.50s CPU 0.61s WALL ( 2668 calls) General routines calbec : 1.00s CPU 1.10s WALL ( 3640 calls) fft : 3.72s CPU 3.80s WALL ( 5022 calls) ffts : 0.08s CPU 0.06s WALL ( 135 calls) fftw : 12.47s CPU 13.18s WALL ( 42028 calls) interpolate : 0.20s CPU 0.20s WALL ( 135 calls) davcio : 0.00s CPU 0.00s WALL ( 24 calls) PWSCF : 44.54s CPU 48.21s WALL This run was terminated on: 19: 8:47 6Nov2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf.in0000644000175000017500000000053312341373024014075 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/lsda-mixing_ndim.ref0000644000175000017500000003633012341373024016717 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:34 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda-mixing_ndim.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 4 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 144, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 0.95 Mb ( 15625, 4) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.5 total cpu time spent up to now is 1.0 secs total energy = -85.30555924 Ry Harris-Foulkes estimate = -85.36640314 Ry estimated scf accuracy < 0.92028035 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-03, avg # of iterations = 1.9 total cpu time spent up to now is 1.2 secs total energy = -85.52433182 Ry Harris-Foulkes estimate = -85.85735982 Ry estimated scf accuracy < 1.00824645 Ry total magnetization = 0.70 Bohr mag/cell absolute magnetization = 0.77 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-03, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -85.70688770 Ry Harris-Foulkes estimate = -85.67488439 Ry estimated scf accuracy < 0.04598695 Ry total magnetization = 1.01 Bohr mag/cell absolute magnetization = 1.11 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.60E-04, avg # of iterations = 1.1 total cpu time spent up to now is 1.4 secs total energy = -85.72318398 Ry Harris-Foulkes estimate = -85.72298378 Ry estimated scf accuracy < 0.00053474 Ry total magnetization = 0.71 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.35E-06, avg # of iterations = 2.8 total cpu time spent up to now is 1.5 secs total energy = -85.72334924 Ry Harris-Foulkes estimate = -85.72327578 Ry estimated scf accuracy < 0.00008053 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.05E-07, avg # of iterations = 1.5 total cpu time spent up to now is 1.7 secs total energy = -85.72339524 Ry Harris-Foulkes estimate = -85.72337220 Ry estimated scf accuracy < 0.00008976 Ry total magnetization = 0.72 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.05E-07, avg # of iterations = 1.3 total cpu time spent up to now is 1.8 secs total energy = -85.72340016 Ry Harris-Foulkes estimate = -85.72339263 Ry estimated scf accuracy < 0.00001533 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.79 Bohr mag/cell iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.53E-07, avg # of iterations = 1.0 total cpu time spent up to now is 1.9 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.3757 12.4372 12.7322 12.7322 13.8398 13.8398 37.2313 41.0678 43.4121 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.2062 12.0604 12.6971 13.0395 13.7422 14.7846 28.9049 34.6227 41.7716 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.3036 12.3170 12.8642 13.0987 14.6702 16.6320 22.1066 35.6784 38.1896 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.9456 11.9810 12.9285 13.0718 13.6676 14.1613 33.2116 38.4346 38.7930 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.0143 11.3041 12.9384 13.7118 14.5661 14.8881 29.9541 33.4470 34.2675 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.0405 11.3661 12.4804 13.8999 14.6518 20.4141 23.8804 27.7793 30.1434 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 10.6943 11.8162 12.2431 13.4379 14.3022 16.5379 25.7645 31.6201 34.9280 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.3603 10.8355 13.8884 14.3642 14.7568 17.9872 26.7281 28.0816 31.8612 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.6587 12.6902 12.6902 13.2187 14.4199 14.4199 24.6752 38.8460 41.6269 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.0758 11.7368 12.4051 13.4402 14.3576 19.0767 22.8049 29.0410 36.4047 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.4358 13.2127 13.5326 13.5326 14.5925 14.5925 37.3660 41.0779 43.5290 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.3436 12.7285 13.4204 13.7997 14.5390 15.5725 29.1562 34.7852 41.8188 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.8029 12.9466 13.6018 13.6532 15.5262 17.0821 22.5348 35.7961 38.3362 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.0197 12.7158 13.6870 13.8699 14.4280 14.9416 33.4082 38.5929 38.8728 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.2527 11.9903 13.5748 14.5159 15.3878 15.5745 30.1590 33.6287 34.4020 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.5598 11.9935 13.1371 14.6396 15.5448 20.7580 24.1570 28.0297 30.3197 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.0651 12.4047 12.9302 14.1826 15.1358 17.1416 26.0486 31.8047 35.0923 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.8297 11.4964 14.5949 15.1575 15.6367 18.3039 27.0260 28.2531 31.9590 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.9861 13.4294 13.4294 13.5644 15.2549 15.2549 25.0151 38.8309 41.7799 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.6421 12.2613 13.0601 14.1790 15.2211 19.4775 23.1586 29.2605 36.5520 the Fermi energy is 15.3102 ev ! total energy = -85.72339899 Ry Harris-Foulkes estimate = -85.72339894 Ry estimated scf accuracy < 0.00000012 Ry The total energy is the sum of the following terms: one-electron contribution = 0.30275565 Ry hartree contribution = 14.33600006 Ry xc contribution = -29.60814224 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00003190 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell convergence has been achieved in 8 iterations Writing output data file pwscf.save init_run : 0.78s CPU 0.78s WALL ( 1 calls) electrons : 0.98s CPU 1.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.47s CPU 0.50s WALL ( 8 calls) sum_band : 0.28s CPU 0.28s WALL ( 8 calls) v_of_rho : 0.04s CPU 0.05s WALL ( 9 calls) newd : 0.17s CPU 0.17s WALL ( 9 calls) mix_rho : 0.02s CPU 0.01s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 340 calls) cegterg : 0.44s CPU 0.45s WALL ( 160 calls) Called by *egterg: h_psi : 0.28s CPU 0.30s WALL ( 481 calls) s_psi : 0.02s CPU 0.01s WALL ( 481 calls) g_psi : 0.00s CPU 0.01s WALL ( 301 calls) cdiaghg : 0.11s CPU 0.09s WALL ( 461 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 481 calls) General routines calbec : 0.01s CPU 0.02s WALL ( 641 calls) fft : 0.05s CPU 0.04s WALL ( 143 calls) ffts : 0.00s CPU 0.00s WALL ( 34 calls) fftw : 0.25s CPU 0.24s WALL ( 8370 calls) interpolate : 0.00s CPU 0.01s WALL ( 34 calls) davcio : 0.00s CPU 0.01s WALL ( 500 calls) PWSCF : 1.90s CPU 1.98s WALL This run was terminated on: 10:24:36 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/vc-relax2.in0000755000175000017500000000155212341373024015132 0ustar mbamba &CONTROL calculation = "vc-relax" , dt = 150 / &SYSTEM ibrav = 0 , A = 3.70971016 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 / &ELECTRONS conv_thr = 1.0d-7 / &IONS / &CELL cell_dynamics = 'damp-w' , press = 500.00 , wmass = 0.00700000 / CELL_PARAMETERS alat 0.58012956 0.00000000 0.81452422 -0.29006459 0.50240689 0.81452422 -0.29006459 -0.50240689 0.81452422 ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 espresso-5.1/PW/tests/paw-vcbfgs.in0000644000175000017500000000126712341373024015366 0ustar mbamba &control calculation = 'vc-relax' / &system ibrav= 0, celldm(1) = 1.889725989 !Ang to a.u. conv. nat= 2, ntyp= 1, ecutwfc=20 occupations = 'smearing' smearing='mp' degauss=0.01 nspin = 1 starting_magnetization(1) = +.5 / &electrons conv_thr = 1.0d-6 / &ions ion_dynamics='bfgs' / &cell cell_dynamics='bfgs' / CELL_PARAMETERS {alat} 0.000000000 2.893335939 2.893335939 2.893335939 0.000000000 2.893335939 2.893335939 2.893335939 0.000000000 ATOMIC_SPECIES Ge 72.610 Ge.pbe-kjpaw.UPF ATOMIC_POSITIONS {crystal} Ge 0.00 0.00 0.00 Ge 0.25 0.25 0.25 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.1/PW/tests/atom.ref0000644000175000017500000002161012341373024014427 0ustar mbamba Program PWSCF v.4.99 starts on 5Jan2012 at 22:44: 8 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/atom.in file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1597 793 193 47833 16879 2103 Tot 799 397 97 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23917 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 8440 G-vectors FFT dimensions: ( 32, 32, 32) Occupations read from input 2.0000 1.3333 1.3333 1.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 1052, 6) NL pseudopotentials 0.13 Mb ( 1052, 8) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.18 Mb ( 23917) G-vector shells 0.00 Mb ( 424) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 1052, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.104E-04 0.000E+00 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 20.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.63E-06, avg # of iterations = 8.0 negative rho (up, down): 0.861E-05 0.000E+00 total cpu time spent up to now is 0.7 secs total energy = -31.29442832 Ry Harris-Foulkes estimate = -31.29443512 Ry estimated scf accuracy < 0.00028054 Ry iteration # 2 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.68E-06, avg # of iterations = 1.0 negative rho (up, down): 0.119E-03 0.000E+00 total cpu time spent up to now is 0.8 secs total energy = -31.29444080 Ry Harris-Foulkes estimate = -31.29443336 Ry estimated scf accuracy < 0.00012407 Ry iteration # 3 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.07E-06, avg # of iterations = 2.0 negative rho (up, down): 0.208E-03 0.000E+00 total cpu time spent up to now is 0.9 secs total energy = -31.29445412 Ry Harris-Foulkes estimate = -31.29445131 Ry estimated scf accuracy < 0.00001255 Ry iteration # 4 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.09E-07, avg # of iterations = 2.0 negative rho (up, down): 0.708E-05 0.000E+00 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -23.0773 -8.4543 -8.4543 -8.4542 -0.4304 4.4889 highest occupied, lowest unoccupied level (ev): -8.4542 -0.4304 ! total energy = -31.29446109 Ry Harris-Foulkes estimate = -31.29445540 Ry estimated scf accuracy < 0.00000027 Ry The total energy is the sum of the following terms: one-electron contribution = -31.95314397 Ry hartree contribution = 17.14603573 Ry xc contribution = -6.27308185 Ry ewald contribution = -10.21427100 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.48s CPU 0.49s WALL ( 1 calls) electrons : 0.38s CPU 0.40s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.05s CPU 0.06s WALL ( 5 calls) sum_band : 0.15s CPU 0.15s WALL ( 5 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) newd : 0.09s CPU 0.10s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 11 calls) regterg : 0.04s CPU 0.05s WALL ( 5 calls) Called by *egterg: h_psi : 0.03s CPU 0.04s WALL ( 26 calls) s_psi : 0.00s CPU 0.00s WALL ( 26 calls) g_psi : 0.00s CPU 0.00s WALL ( 20 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 24 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 26 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 31 calls) fft : 0.06s CPU 0.07s WALL ( 44 calls) ffts : 0.01s CPU 0.00s WALL ( 10 calls) fftw : 0.04s CPU 0.03s WALL ( 111 calls) interpolate : 0.03s CPU 0.03s WALL ( 10 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.98s CPU 1.03s WALL This run was terminated on: 22:44: 9 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-k0.ref0000644000175000017500000002200612341373024014552 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-k0.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 37 1459 1459 169 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 169, 4) NL pseudopotentials 0.02 Mb ( 169, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.04 Mb ( 169, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.50030879 Ry Harris-Foulkes estimate = -14.62966254 Ry estimated scf accuracy < 0.33442921 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.18E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.51760980 Ry Harris-Foulkes estimate = -14.51959697 Ry estimated scf accuracy < 0.01046166 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.31E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.51874191 Ry Harris-Foulkes estimate = -14.51870195 Ry estimated scf accuracy < 0.00024021 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.00E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.51875443 Ry Harris-Foulkes estimate = -14.51875443 Ry estimated scf accuracy < 0.00000149 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-08, avg # of iterations = 5.0 total cpu time spent up to now is 0.1 secs total energy = -14.51875979 Ry Harris-Foulkes estimate = -14.51875998 Ry estimated scf accuracy < 0.00000117 Ry iteration # 6 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): -4.9980 7.2916 7.2916 7.2916 ! total energy = -14.51875953 Ry Harris-Foulkes estimate = -14.51875981 Ry estimated scf accuracy < 0.00000055 Ry The total energy is the sum of the following terms: one-electron contribution = 5.79469692 Ry hartree contribution = 1.63732832 Ry xc contribution = -5.05102619 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 6 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 415.07 0.00282158 0.00000000 0.00000000 415.07 0.00 0.00 0.00000000 0.00282158 0.00000000 0.00 415.07 0.00 0.00000000 0.00000000 0.00282158 0.00 0.00 415.07 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.02s CPU 0.02s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.00s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 7 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 13 calls) cegterg : 0.00s CPU 0.01s WALL ( 6 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 19 calls) g_psi : 0.00s CPU 0.00s WALL ( 12 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 18 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 19 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 20 calls) fft : 0.00s CPU 0.00s WALL ( 30 calls) fftw : 0.00s CPU 0.00s WALL ( 170 calls) davcio : 0.00s CPU 0.00s WALL ( 6 calls) PWSCF : 0.10s CPU 0.11s WALL This run was terminated on: 11:28:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav12-kauto.in0000644000175000017500000000053512341373024017336 0ustar mbamba &control calculation='scf', / &system ibrav = 12, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(4) = 0.1, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/lattice-ibrav-12.in0000644000175000017500000000051412341373024016267 0ustar mbamba &control calculation='scf', / &system ibrav =-12, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(5) = 0.1, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/lattice-ibrav11.in0000644000175000017500000000046712341373024016220 0ustar mbamba &control calculation='scf', / &system ibrav = 11, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/paw-vcbfgs.ref0000644000175000017500000006540312341373024015536 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 17:55:14 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/paw-vcbfgs.in file Ge.pbe-kjpaw.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 313 109 3839 3839 749 bravais-lattice index = 0 lattice parameter (alat) = 1.8897 a.u. unit-cell volume = 326.9061 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 1.889726 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.000000 2.893336 2.893336 ) a(2) = ( 2.893336 0.000000 2.893336 ) a(3) = ( 2.893336 2.893336 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.172811 0.172811 0.172811 ) b(2) = ( 0.172811 -0.172811 0.172811 ) b(3) = ( 0.172811 0.172811 -0.172811 ) PseudoPot. # 1 for Ge read from file: /home/giannozz/trunk/espresso/pseudo/Ge.pbe-kjpaw.UPF MD5 check sum: 1b4ce88ea9c19894198ac08649d0ed76 Pseudo is Projector augmented-wave + core cor, Zval = 4.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1207 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ge 4.00 72.61000 Ge( 1.00) 48 Sym. Ops., with inversion, found (24 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 Ge tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Ge tau( 2) = ( 1.4466680 1.4466680 1.4466680 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0216014 0.0216014 0.0216014), wk = 0.0625000 k( 2) = ( 0.0648041 0.0648041 -0.0216014), wk = 0.1875000 k( 3) = ( -0.0648041 -0.0648041 0.1080068), wk = 0.1875000 k( 4) = ( -0.0216014 -0.0216014 0.0648041), wk = 0.1875000 k( 5) = ( 0.1080068 0.0216014 0.0216014), wk = 0.1875000 k( 6) = ( -0.0216014 -0.1080068 0.1512095), wk = 0.3750000 k( 7) = ( 0.0216014 -0.0648041 0.1080068), wk = 0.3750000 k( 8) = ( -0.1512095 0.0216014 0.0216014), wk = 0.1875000 k( 9) = ( 0.0648041 0.0648041 0.0648041), wk = 0.0625000 k( 10) = ( -0.0648041 -0.0648041 0.1944123), wk = 0.1875000 Dense grid: 3839 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.06 Mb ( 513, 8) NL pseudopotentials 0.13 Mb ( 513, 16) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3839) G-vector shells 0.03 Mb ( 3839) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.25 Mb ( 513, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000010 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.021245 starting charge 7.99847, renormalised to 8.00000 negative rho (up, down): 0.212E-01 0.000E+00 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 11.9 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.81E-04, avg # of iterations = 1.8 negative rho (up, down): 0.395E-01 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -328.23132086 Ry Harris-Foulkes estimate = -328.23718998 Ry estimated scf accuracy < 0.02973300 Ry iteration # 2 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.72E-04, avg # of iterations = 1.0 negative rho (up, down): 0.462E-01 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -328.23183503 Ry Harris-Foulkes estimate = -328.23201008 Ry estimated scf accuracy < 0.00174057 Ry iteration # 3 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.18E-05, avg # of iterations = 2.0 negative rho (up, down): 0.458E-01 0.000E+00 total cpu time spent up to now is 1.8 secs total energy = -328.23190203 Ry Harris-Foulkes estimate = -328.23189868 Ry estimated scf accuracy < 0.00001198 Ry iteration # 4 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-07, avg # of iterations = 3.0 negative rho (up, down): 0.452E-01 0.000E+00 total cpu time spent up to now is 2.1 secs End of self-consistent calculation k = 0.0216 0.0216 0.0216 ( 513 PWs) bands (ev): -6.8762 2.7542 4.9215 4.9215 6.0125 8.2132 8.2132 8.5859 k = 0.0648 0.0648-0.0216 ( 501 PWs) bands (ev): -5.9805 -0.2092 2.8444 4.3685 6.6694 8.9758 9.1526 10.7856 k =-0.0648-0.0648 0.1080 ( 492 PWs) bands (ev): -5.0472 -2.0032 2.7175 3.6023 6.4777 8.7824 9.6777 12.3241 k =-0.0216-0.0216 0.0648 ( 498 PWs) bands (ev): -6.4115 1.0178 3.8036 3.9041 7.0577 7.6964 9.7152 10.0130 k = 0.1080 0.0216 0.0216 ( 490 PWs) bands (ev): -5.5029 -0.7997 2.5791 3.0188 6.5570 7.8588 10.8642 11.5350 k =-0.0216-0.1080 0.1512 ( 494 PWs) bands (ev): -4.1071 -2.6352 1.3967 2.3769 7.5093 9.3290 10.2822 12.0931 k = 0.0216-0.0648 0.1080 ( 494 PWs) bands (ev): -5.1637 -1.4673 1.9259 3.2883 7.5389 8.6175 10.1160 11.2503 k =-0.1512 0.0216 0.0216 ( 486 PWs) bands (ev): -4.2034 -2.5746 1.9318 2.5450 6.2053 7.2026 12.8217 13.2751 k = 0.0648 0.0648 0.0648 ( 492 PWs) bands (ev): -5.6244 -1.2493 4.0527 4.0527 5.3610 9.0089 9.0089 12.4684 k =-0.0648-0.0648 0.1944 ( 495 PWs) bands (ev): -4.6005 -2.1914 1.3709 3.3003 6.8247 10.0929 10.8039 11.8078 the Fermi energy is 5.0366 ev ! total energy = -328.23190976 Ry Harris-Foulkes estimate = -328.23190988 Ry estimated scf accuracy < 0.00000035 Ry total all-electron energy = -8395.996669 Ry The total energy is the sum of the following terms: one-electron contribution = 4.98590198 Ry hartree contribution = 1.21038795 Ry xc contribution = -32.27008063 Ry ewald contribution = -15.76351191 Ry one-center paw contrib. = -286.39464751 Ry smearing contrib. (-TS) = 0.00004036 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.452E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... negative rho (up, down): 0.452E-01 0.000E+00 total stress (Ry/bohr**3) (kbar) P= -0.76 -0.00000520 0.00000000 0.00000000 -0.76 0.00 0.00 0.00000000 -0.00000520 0.00000000 0.00 -0.76 0.00 0.00000000 0.00000000 -0.00000520 0.00 0.00 -0.76 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -328.2319097611 Ry new trust radius = 0.0004697838 bohr new conv_thr = 0.0000010000 Ry new unit-cell volume = 326.77876 a.u.^3 ( 48.42361 Ang^3 ) CELL_PARAMETERS (alat= 1.88972599) 0.000000000 2.892960054 2.892960054 2.892960054 0.000000000 2.892960054 2.892960054 2.892960054 0.000000000 ATOMIC_POSITIONS (crystal) Ge 0.000000000 0.000000000 0.000000000 Ge 0.250000000 0.250000000 0.250000000 Writing output data file pwscf.save Check: negative starting charge= -0.021245 NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0216042 0.0216042 0.0216042), wk = 0.0625000 k( 2) = ( 0.0648125 0.0648125 -0.0216042), wk = 0.1875000 k( 3) = ( -0.0648125 -0.0648125 0.1080208), wk = 0.1875000 k( 4) = ( -0.0216042 -0.0216042 0.0648125), wk = 0.1875000 k( 5) = ( 0.1080208 0.0216042 0.0216042), wk = 0.1875000 k( 6) = ( -0.0216042 -0.1080208 0.1512292), wk = 0.3750000 k( 7) = ( 0.0216042 -0.0648125 0.1080208), wk = 0.3750000 k( 8) = ( -0.1512292 0.0216042 0.0216042), wk = 0.1875000 k( 9) = ( 0.0648125 0.0648125 0.0648125), wk = 0.0625000 k( 10) = ( -0.0648125 -0.0648125 0.1944375), wk = 0.1875000 Check: negative/imaginary core charge= -0.000010 0.000000 Check: negative starting charge= -0.021243 negative rho (up, down): 0.452E-01 0.000E+00 extrapolated charge 7.99688, renormalised to 8.00000 total cpu time spent up to now is 3.6 secs per-process dynamical memory: 20.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.86E-11, avg # of iterations = 2.3 negative rho (up, down): 0.452E-01 0.000E+00 total cpu time spent up to now is 3.9 secs End of self-consistent calculation k = 0.0216 0.0216 0.0216 ( 513 PWs) bands (ev): -6.8737 2.7601 4.9263 4.9263 6.0195 8.2188 8.2188 8.5925 k = 0.0648 0.0648-0.0216 ( 501 PWs) bands (ev): -5.9777 -0.2045 2.8487 4.3731 6.6762 8.9816 9.1590 10.7931 k =-0.0648-0.0648 0.1080 ( 492 PWs) bands (ev): -5.0440 -1.9993 2.7219 3.6066 6.4843 8.7884 9.6837 12.3319 k =-0.0216-0.0216 0.0648 ( 498 PWs) bands (ev): -6.4088 1.0231 3.8082 3.9085 7.0642 7.7028 9.7214 10.0198 k = 0.1080 0.0216 0.0216 ( 490 PWs) bands (ev): -5.5000 -0.7950 2.5832 3.0229 6.5629 7.8653 10.8713 11.5419 k =-0.0216-0.1080 0.1512 ( 494 PWs) bands (ev): -4.1036 -2.6312 1.4003 2.3808 7.5156 9.3358 10.2891 12.1006 k = 0.0216-0.0648 0.1080 ( 494 PWs) bands (ev): -5.1606 -1.4630 1.9299 3.2925 7.5455 8.6238 10.1227 11.2573 k =-0.1512 0.0216 0.0216 ( 486 PWs) bands (ev): -4.2000 -2.5705 1.9356 2.5489 6.2111 7.2087 12.8298 13.2828 k = 0.0648 0.0648 0.0648 ( 492 PWs) bands (ev): -5.6215 -1.2452 4.0571 4.0571 5.3678 9.0146 9.0146 12.4765 k =-0.0648-0.0648 0.1944 ( 495 PWs) bands (ev): -4.5971 -2.1873 1.3746 3.3045 6.8309 10.1001 10.8103 11.8155 the Fermi energy is 5.0414 ev ! total energy = -328.23191046 Ry Harris-Foulkes estimate = -328.23002316 Ry estimated scf accuracy < 1.9E-09 Ry total all-electron energy = -8395.996669 Ry The total energy is the sum of the following terms: one-electron contribution = 4.98873779 Ry hartree contribution = 1.21013413 Ry xc contribution = -32.27049751 Ry ewald contribution = -15.76556008 Ry one-center paw contrib. = -286.39476491 Ry smearing contrib. (-TS) = 0.00004012 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.452E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... negative rho (up, down): 0.452E-01 0.000E+00 total stress (Ry/bohr**3) (kbar) P= -0.49 -0.00000334 0.00000000 0.00000000 -0.49 0.00 0.00 0.00000000 -0.00000334 0.00000000 0.00 -0.49 0.00 0.00000000 0.00000000 -0.00000334 0.00 0.00 -0.49 bfgs converged in 2 scf cycles and 1 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02, cell < 0.50E+00) End of BFGS Geometry Optimization Final enthalpy = -328.2319104611 Ry Begin final coordinates new unit-cell volume = 326.77876 a.u.^3 ( 48.42361 Ang^3 ) CELL_PARAMETERS (alat= 1.88972599) 0.000000000 2.892960054 2.892960054 2.892960054 0.000000000 2.892960054 2.892960054 2.892960054 0.000000000 ATOMIC_POSITIONS (crystal) Ge 0.000000000 0.000000000 0.000000000 Ge 0.250000000 0.250000000 0.250000000 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated for the final unit cell Results may differ from those at the preceding step. G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 313 109 3839 3839 749 bravais-lattice index = 0 lattice parameter (alat) = 1.8897 a.u. unit-cell volume = 326.7788 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 1.889726 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.000000 2.892960 2.892960 ) a(2) = ( 2.892960 0.000000 2.892960 ) a(3) = ( 2.892960 2.892960 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.172833 0.172833 0.172833 ) b(2) = ( 0.172833 -0.172833 0.172833 ) b(3) = ( 0.172833 0.172833 -0.172833 ) PseudoPot. # 1 for Ge read from file: /home/giannozz/trunk/espresso/pseudo/Ge.pbe-kjpaw.UPF MD5 check sum: 1b4ce88ea9c19894198ac08649d0ed76 Pseudo is Projector augmented-wave + core cor, Zval = 4.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1207 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ge 4.00 72.61000 Ge( 1.00) 48 Sym. Ops., with inversion, found (24 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 Ge tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Ge tau( 2) = ( 1.4464800 1.4464800 1.4464800 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0216042 0.0216042 0.0216042), wk = 0.0625000 k( 2) = ( 0.0648125 0.0648125 -0.0216042), wk = 0.1875000 k( 3) = ( -0.0648125 -0.0648125 0.1080208), wk = 0.1875000 k( 4) = ( -0.0216042 -0.0216042 0.0648125), wk = 0.1875000 k( 5) = ( 0.1080208 0.0216042 0.0216042), wk = 0.1875000 k( 6) = ( -0.0216042 -0.1080208 0.1512292), wk = 0.3750000 k( 7) = ( 0.0216042 -0.0648125 0.1080208), wk = 0.3750000 k( 8) = ( -0.1512292 0.0216042 0.0216042), wk = 0.1875000 k( 9) = ( 0.0648125 0.0648125 0.0648125), wk = 0.0625000 k( 10) = ( -0.0648125 -0.0648125 0.1944375), wk = 0.1875000 Dense grid: 3839 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.06 Mb ( 513, 8) NL pseudopotentials 0.13 Mb ( 513, 16) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3839) G-vector shells 0.00 Mb ( 82) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.25 Mb ( 513, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000010 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.021243 starting charge 7.99847, renormalised to 8.00000 negative rho (up, down): 0.212E-01 0.000E+00 Starting wfc are 8 randomized atomic wfcs Writing output data file pwscf.save total cpu time spent up to now is 5.1 secs per-process dynamical memory: 22.4 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.9 negative rho (up, down): 0.393E-01 0.000E+00 total cpu time spent up to now is 5.5 secs total energy = -328.23131368 Ry Harris-Foulkes estimate = -328.23770269 Ry estimated scf accuracy < 0.03069976 Ry iteration # 2 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.84E-04, avg # of iterations = 1.0 negative rho (up, down): 0.460E-01 0.000E+00 total cpu time spent up to now is 5.8 secs total energy = -328.23184533 Ry Harris-Foulkes estimate = -328.23203742 Ry estimated scf accuracy < 0.00167529 Ry iteration # 3 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.09E-05, avg # of iterations = 1.0 negative rho (up, down): 0.458E-01 0.000E+00 total cpu time spent up to now is 6.0 secs total energy = -328.23190413 Ry Harris-Foulkes estimate = -328.23189910 Ry estimated scf accuracy < 0.00001395 Ry iteration # 4 ecut= 20.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-07, avg # of iterations = 2.3 negative rho (up, down): 0.452E-01 0.000E+00 total cpu time spent up to now is 6.3 secs End of self-consistent calculation k = 0.0216 0.0216 0.0216 ( 513 PWs) bands (ev): -6.8748 2.7592 4.9255 4.9255 6.0183 8.2177 8.2177 8.5910 k = 0.0648 0.0648-0.0216 ( 501 PWs) bands (ev): -5.9787 -0.2055 2.8475 4.3722 6.6749 8.9804 9.1573 10.7912 k =-0.0648-0.0648 0.1080 ( 492 PWs) bands (ev): -5.0449 -2.0004 2.7207 3.6057 6.4828 8.7867 9.6823 12.3296 k =-0.0216-0.0216 0.0648 ( 498 PWs) bands (ev): -6.4098 1.0222 3.8072 3.9076 7.0627 7.7015 9.7203 10.0182 k = 0.1080 0.0216 0.0216 ( 490 PWs) bands (ev): -5.5009 -0.7959 2.5820 3.0219 6.5608 7.8636 10.8696 11.5407 k =-0.0216-0.1080 0.1512 ( 494 PWs) bands (ev): -4.1045 -2.6320 1.3989 2.3796 7.5137 9.3343 10.2870 12.0991 k = 0.0216-0.0648 0.1080 ( 494 PWs) bands (ev): -5.1615 -1.4639 1.9285 3.2915 7.5441 8.6221 10.1207 11.2559 k =-0.1512 0.0216 0.0216 ( 486 PWs) bands (ev): -4.2009 -2.5714 1.9343 2.5479 6.2089 7.2067 12.8283 13.2816 k = 0.0648 0.0648 0.0648 ( 492 PWs) bands (ev): -5.6224 -1.2463 4.0563 4.0563 5.3662 9.0133 9.0133 12.4736 k =-0.0648-0.0648 0.1944 ( 495 PWs) bands (ev): -4.5980 -2.1883 1.3732 3.3035 6.8291 10.0984 10.8091 11.8139 the Fermi energy is 5.0406 ev ! total energy = -328.23191044 Ry Harris-Foulkes estimate = -328.23191051 Ry estimated scf accuracy < 0.00000029 Ry total all-electron energy = -8395.996669 Ry The total energy is the sum of the following terms: one-electron contribution = 4.98881513 Ry hartree contribution = 1.21000489 Ry xc contribution = -32.27043923 Ry ewald contribution = -15.76556008 Ry one-center paw contrib. = -286.39477136 Ry smearing contrib. (-TS) = 0.00004021 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.452E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... negative rho (up, down): 0.452E-01 0.000E+00 total stress (Ry/bohr**3) (kbar) P= -0.52 -0.00000353 0.00000000 0.00000000 -0.52 0.00 0.00 0.00000000 -0.00000353 0.00000000 0.00 -0.52 0.00 0.00000000 0.00000000 -0.00000353 0.00 0.00 -0.52 Writing output data file pwscf.save init_run : 1.08s CPU 1.09s WALL ( 2 calls) electrons : 2.65s CPU 2.70s WALL ( 3 calls) update_pot : 0.56s CPU 0.58s WALL ( 1 calls) forces : 0.55s CPU 0.55s WALL ( 3 calls) stress : 0.93s CPU 0.93s WALL ( 3 calls) Called by init_run: wfcinit : 0.06s CPU 0.06s WALL ( 2 calls) potinit : 0.40s CPU 0.41s WALL ( 2 calls) Called by electrons: c_bands : 0.99s CPU 1.01s WALL ( 11 calls) sum_band : 0.22s CPU 0.22s WALL ( 11 calls) v_of_rho : 0.11s CPU 0.12s WALL ( 12 calls) newd : 0.05s CPU 0.05s WALL ( 12 calls) mix_rho : 0.06s CPU 0.05s WALL ( 11 calls) Called by c_bands: init_us_2 : 0.06s CPU 0.05s WALL ( 310 calls) cegterg : 0.94s CPU 0.95s WALL ( 110 calls) Called by *egterg: h_psi : 0.74s CPU 0.74s WALL ( 413 calls) s_psi : 0.02s CPU 0.02s WALL ( 413 calls) g_psi : 0.01s CPU 0.03s WALL ( 283 calls) cdiaghg : 0.08s CPU 0.07s WALL ( 363 calls) Called by h_psi: add_vuspsi : 0.03s CPU 0.03s WALL ( 413 calls) General routines calbec : 0.04s CPU 0.04s WALL ( 593 calls) fft : 0.05s CPU 0.05s WALL ( 235 calls) fftw : 0.60s CPU 0.67s WALL ( 6126 calls) davcio : 0.00s CPU 0.01s WALL ( 420 calls) PAW routines PAW_pot : 1.80s CPU 1.84s WALL ( 13 calls) PAW_ddot : 0.06s CPU 0.05s WALL ( 25 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 24 calls) PWSCF : 6.32s CPU 6.51s WALL This run was terminated on: 17:55:20 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/spinorbit.ref20000644000175000017500000002117012341373024015563 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:44:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/spinorbit.in2 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 475 223 85 6855 2229 459 bravais-lattice index = 2 lattice parameter (alat) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file: /home/giannozz/trunk/espresso/pseudo/Pt.rel-pz-n-rrkjus.UPF MD5 check sum: 4baafe8ec1942611396c7a5466f52249 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 79.90000 Pt( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Methfessel-Paxton smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0156250 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.1250000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0937500 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.3750000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.1875000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0468750 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0937500 Dense grid: 6855 G-vectors FFT dimensions: ( 27, 27, 27) Smooth grid: 2229 G-vectors FFT dimensions: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.14 Mb ( 580, 16) NL pseudopotentials 0.12 Mb ( 290, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.57 Mb ( 580, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 26, 2, 16) Check: negative/imaginary core charge= -0.000004 0.000000 The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 1.4 secs per-process dynamical memory: 17.3 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 14.5 total cpu time spent up to now is 2.1 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 7.2728 7.2728 13.2972 13.2972 13.2972 13.2972 14.2908 14.2908 16.1185 16.1185 16.1185 16.1185 34.8404 34.8404 38.3611 38.3611 k =-0.2500 0.2500-0.2500 band energies (ev): 9.3081 9.3081 13.2365 13.2365 13.4824 13.4824 14.6832 14.6832 15.9663 15.9663 16.5594 16.5594 31.1289 31.1289 35.9733 35.9733 k = 0.5000-0.5000 0.5000 band energies (ev): 10.1739 10.1739 13.1418 13.1418 14.1581 14.1581 16.9034 16.9034 17.2990 17.2990 17.9629 17.9629 23.3574 23.3574 33.8780 33.8780 k = 0.0000 0.5000 0.0000 band energies (ev): 10.0109 10.0109 12.0836 12.0836 14.0946 14.0946 15.5834 15.5834 15.6557 15.6557 16.9101 16.9101 33.7855 33.7855 35.8288 35.8288 k = 0.7500-0.2500 0.7500 band energies (ev): 11.2318 11.2318 12.3531 12.3531 13.8685 13.8685 15.4952 15.4952 17.7576 17.7576 20.5934 20.5934 24.9747 24.9747 31.5983 31.5983 k = 0.5000 0.0000 0.5000 band energies (ev): 11.6296 11.6296 12.7413 12.7413 13.2274 13.2274 15.0123 15.0123 16.0285 16.0285 19.4786 19.4786 28.3128 28.3128 30.4317 30.4317 k = 0.0000-1.0000 0.0000 band energies (ev): 10.4414 10.4414 10.8730 10.8730 17.3736 17.3736 17.6769 17.6769 18.6587 18.6587 19.1028 19.1028 26.2686 26.2686 28.7375 28.7375 k =-0.5000-1.0000 0.0000 band energies (ev): 11.8136 11.8136 12.7585 12.7585 13.0246 13.0246 15.7118 15.7118 18.0854 18.0854 24.7132 24.7132 25.1084 25.1084 26.4868 26.4868 the Fermi energy is 17.8368 ev Writing output data file pwscf.save init_run : 1.06s CPU 1.06s WALL ( 1 calls) electrons : 0.78s CPU 0.78s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.78s CPU 0.78s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) newd : 0.05s CPU 0.05s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 8 calls) cegterg : 0.70s CPU 0.70s WALL ( 8 calls) Called by *egterg: h_psi : 0.42s CPU 0.45s WALL ( 132 calls) s_psi : 0.02s CPU 0.03s WALL ( 132 calls) g_psi : 0.04s CPU 0.02s WALL ( 116 calls) cdiaghg : 0.17s CPU 0.12s WALL ( 124 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.02s WALL ( 132 calls) General routines calbec : 0.01s CPU 0.02s WALL ( 132 calls) fft : 0.00s CPU 0.00s WALL ( 12 calls) ffts : 0.00s CPU 0.00s WALL ( 4 calls) fftw : 0.29s CPU 0.29s WALL ( 4556 calls) interpolate : 0.00s CPU 0.00s WALL ( 4 calls) davcio : 0.00s CPU 0.00s WALL ( 8 calls) PWSCF : 2.19s CPU 2.23s WALL This run was terminated on: 11:44:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/uspp-cg.ref0000644000175000017500000002431312341373024015050 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:42 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp-cg.in file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 151 55 3695 1243 283 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1875000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.7500000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.3750000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0937500 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1875000 Dense grid: 3695 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3695) G-vector shells 0.00 Mb ( 79) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 10, 10) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 10.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 5.0 total cpu time spent up to now is 0.6 secs total energy = -87.73383525 Ry Harris-Foulkes estimate = -87.88894098 Ry estimated scf accuracy < 0.21043854 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.91E-03, avg # of iterations = 3.5 total cpu time spent up to now is 0.7 secs total energy = -87.80512523 Ry Harris-Foulkes estimate = -87.87701722 Ry estimated scf accuracy < 0.14002542 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.27E-03, avg # of iterations = 3.1 total cpu time spent up to now is 0.8 secs total energy = -87.83048558 Ry Harris-Foulkes estimate = -87.83054982 Ry estimated scf accuracy < 0.00013913 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.26E-06, avg # of iterations = 5.7 total cpu time spent up to now is 0.8 secs total energy = -87.83068764 Ry Harris-Foulkes estimate = -87.83070438 Ry estimated scf accuracy < 0.00003556 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 3.23E-07, avg # of iterations = 3.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9885 11.1832 11.1832 11.1832 12.0727 12.0727 38.8576 41.0125 41.0126 41.0127 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1529 10.9366 11.3536 11.3536 12.1644 12.1644 27.5230 38.3696 38.3696 38.4664 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1001 11.1500 11.1500 12.6864 12.6864 13.4640 18.6309 37.0231 37.6062 37.6062 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7918 10.4179 11.6175 11.9007 11.9007 12.3673 32.3362 32.3362 33.7584 34.5384 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7543 10.3151 11.2490 11.8770 12.7300 15.5203 21.5943 27.6700 31.2983 35.1288 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6191 10.6612 10.8796 11.7261 12.0730 14.1901 24.5899 26.0210 35.8944 37.3857 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2472 9.6920 12.6677 12.8403 12.8403 16.0620 22.1007 28.1775 28.1775 32.9147 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0161 10.6620 10.6620 12.0402 12.8409 20.9451 20.9451 23.1284 24.0481 44.6517 the Fermi energy is 15.2754 ev ! total energy = -87.83069594 Ry Harris-Foulkes estimate = -87.83069595 Ry estimated scf accuracy < 0.00000013 Ry The total energy is the sum of the following terms: one-electron contribution = -10.22416214 Ry hartree contribution = 18.88100792 Ry xc contribution = -14.05467389 Ry ewald contribution = -82.43214134 Ry smearing contrib. (-TS) = -0.00072648 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.38s CPU 0.40s WALL ( 1 calls) electrons : 0.32s CPU 0.32s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.01s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.20s CPU 0.20s WALL ( 5 calls) sum_band : 0.06s CPU 0.07s WALL ( 5 calls) v_of_rho : 0.02s CPU 0.01s WALL ( 6 calls) newd : 0.04s CPU 0.04s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 88 calls) ccgdiagg : 0.18s CPU 0.16s WALL ( 40 calls) wfcrot : 0.02s CPU 0.04s WALL ( 40 calls) Called by *cgdiagg: h_psi : 0.17s CPU 0.16s WALL ( 1338 calls) s_psi : 0.00s CPU 0.01s WALL ( 2636 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 40 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 1338 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 2676 calls) fft : 0.00s CPU 0.01s WALL ( 49 calls) ffts : 0.00s CPU 0.00s WALL ( 11 calls) fftw : 0.13s CPU 0.12s WALL ( 3796 calls) interpolate : 0.00s CPU 0.00s WALL ( 11 calls) davcio : 0.00s CPU 0.00s WALL ( 128 calls) PWSCF : 0.83s CPU 0.96s WALL This run was terminated on: 11:28:43 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-mixing_localTF.in0000644000175000017500000000054512341373024016775 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons mixing_mode = 'local-TF' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/lattice-ibrav2-kauto.ref0000644000175000017500000001755412341373024017434 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav2-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 109 4279 4279 725 bravais-lattice index = 2 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 250.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 3 cart. coord. in units 2pi/alat k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.5000000 k( 3) = ( -0.2500000 0.7500000 0.2500000), wk = 1.0000000 Dense grid: 4279 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 531, 1) NL pseudopotentials 0.00 Mb ( 531, 0) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4279) G-vector shells 0.00 Mb ( 86) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 531, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 2.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -2.22346439 Ry Harris-Foulkes estimate = -2.28845452 Ry estimated scf accuracy < 0.12764875 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.38E-03, avg # of iterations = 1.3 total cpu time spent up to now is 0.0 secs total energy = -2.23380627 Ry Harris-Foulkes estimate = -2.23422020 Ry estimated scf accuracy < 0.00097936 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.90E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23402511 Ry Harris-Foulkes estimate = -2.23402540 Ry estimated scf accuracy < 0.00000987 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.94E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k =-0.2500 0.2500 0.2500 ( 531 PWs) bands (ev): -9.7931 k = 0.2500-0.2500 0.7500 ( 529 PWs) bands (ev): -9.3072 k =-0.2500 0.7500 0.2500 ( 529 PWs) bands (ev): -9.3389 ! total energy = -2.23402649 Ry Harris-Foulkes estimate = -2.23402701 Ry estimated scf accuracy < 0.00000099 Ry The total energy is the sum of the following terms: one-electron contribution = -1.58239695 Ry hartree contribution = 0.95563352 Ry xc contribution = -1.31408377 Ry ewald contribution = -0.29317930 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.00s CPU 0.01s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 5 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 37 calls) g_psi : 0.00s CPU 0.00s WALL ( 22 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 34 calls) Called by h_psi: General routines fft : 0.00s CPU 0.00s WALL ( 19 calls) fftw : 0.00s CPU 0.01s WALL ( 92 calls) davcio : 0.00s CPU 0.00s WALL ( 39 calls) PWSCF : 0.09s CPU 0.10s WALL This run was terminated on: 10:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/cluster4.ref0000644000175000017500000003013612341373024015237 0ustar mbamba Program PWSCF v.4.99 starts on 5Jan2012 at 22:56:27 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/cluster4.in Warning: card &IONS ignored Warning: card / ignored file N.pbe-kjpaw.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1369 1369 349 38401 38401 4801 Tot 685 685 175 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file: /home/giannozz/trunk/espresso/pseudo/N.pbe-kjpaw.UPF MD5 check sum: 784def1e20c8513c628b118ec611e520 Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pbe-kjpaw.UPF MD5 check sum: b6732a8c2b51919c45a22ac3ed50cb01 Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) H 1.00 1.00000 H( 1.00) 24 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0833333 0.0833333 0.0833333 ) 3 H tau( 3) = ( -0.0833333 -0.0833333 0.0833333 ) 4 H tau( 4) = ( -0.0833333 0.0833333 -0.0833333 ) 5 H tau( 5) = ( 0.0833333 -0.0833333 -0.0833333 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 19201 G-vectors FFT dimensions: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.29 Mb ( 2401, 8) NL pseudopotentials 0.59 Mb ( 2401, 16) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.59 Mb ( 2401, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 11.12 Mb ( 91125, 8) Check: negative/imaginary core charge= -0.000005 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000542 starting charge 8.99996, renormalised to 8.00000 negative rho (up, down): 0.482E-03 0.000E+00 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 24.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.312E-02 0.000E+00 total cpu time spent up to now is 1.2 secs total energy = -31.86813420 Ry Harris-Foulkes estimate = -33.54242447 Ry estimated scf accuracy < 2.25184510 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.570E-02 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -32.47093387 Ry Harris-Foulkes estimate = -32.84533000 Ry estimated scf accuracy < 0.68443685 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.56E-03, avg # of iterations = 2.0 negative rho (up, down): 0.120E-01 0.000E+00 total cpu time spent up to now is 1.6 secs total energy = -32.60333820 Ry Harris-Foulkes estimate = -32.60998174 Ry estimated scf accuracy < 0.01218066 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-04, avg # of iterations = 4.0 negative rho (up, down): 0.102E-01 0.000E+00 total cpu time spent up to now is 1.9 secs total energy = -32.60523471 Ry Harris-Foulkes estimate = -32.60592292 Ry estimated scf accuracy < 0.00130095 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.63E-05, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 2.1 secs total energy = -32.60537769 Ry Harris-Foulkes estimate = -32.60539848 Ry estimated scf accuracy < 0.00004197 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.25E-07, avg # of iterations = 4.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 2.4 secs total energy = -32.60538246 Ry Harris-Foulkes estimate = -32.60538349 Ry estimated scf accuracy < 0.00000294 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.68E-08, avg # of iterations = 1.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 2.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -27.0637 -15.8168 -15.8168 -15.8168 -1.2004 2.3349 2.3349 2.3349 highest occupied, lowest unoccupied level (ev): -15.8168 -1.2004 ! total energy = -32.60538255 Ry Harris-Foulkes estimate = -32.60538256 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -113.904184 Ry The total energy is the sum of the following terms: one-electron contribution = -48.67523560 Ry hartree contribution = 24.14782425 Ry xc contribution = -8.20120604 Ry ewald contribution = 8.44118561 Ry one-center paw contrib. = -8.31795077 Ry charge density inside the Wigner-Seitz cell: 8.00000000 reference position (x0): 0.00000000 0.00000000 0.00000000 bohr Dipole moments (with respect to x0): Elect 0.0000 0.0000 0.0000 au (Ha), 0.0000 0.0000 0.0000 Debye Ionic 0.0000 0.0000 0.0000 au (Ha), 0.0000 0.0000 0.0000 Debye Total 0.0000 0.0000 0.0000 au (Ha), 0.0000 0.0000 0.0000 Debye Electrons quadrupole moment -21.94545268 a.u. (Ha) Ions quadrupole moment 12.00000000 a.u. (Ha) Total quadrupole moment -9.94545268 a.u. (Ha) ********* MAKOV-PAYNE CORRECTION ********* Makov-Payne correction with Madelung constant = 2.8373 Makov-Payne correction 0.23644167 Ry = 3.217 eV (1st order, 1/a0) 0.02410846 Ry = 0.328 eV (2nd order, 1/a0^3) 0.26055012 Ry = 3.545 eV (total) ! Total+Makov-Payne energy = -32.34483243 Ry Corrected vacuum level = 5.58709016 eV convergence has been achieved in 7 iterations Writing output data file pwscf.save init_run : 0.66s CPU 0.67s WALL ( 1 calls) electrons : 1.64s CPU 1.71s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.15s CPU 0.16s WALL ( 1 calls) Called by electrons: c_bands : 0.23s CPU 0.25s WALL ( 7 calls) sum_band : 0.21s CPU 0.21s WALL ( 7 calls) v_of_rho : 0.55s CPU 0.59s WALL ( 8 calls) newd : 0.14s CPU 0.14s WALL ( 8 calls) mix_rho : 0.10s CPU 0.11s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.02s WALL ( 15 calls) regterg : 0.23s CPU 0.23s WALL ( 7 calls) Called by *egterg: h_psi : 0.18s CPU 0.19s WALL ( 25 calls) s_psi : 0.01s CPU 0.00s WALL ( 25 calls) g_psi : 0.01s CPU 0.01s WALL ( 17 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 24 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 25 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 32 calls) fft : 0.17s CPU 0.16s WALL ( 103 calls) fftw : 0.17s CPU 0.16s WALL ( 200 calls) davcio : 0.00s CPU 0.00s WALL ( 7 calls) PAW routines PAW_pot : 0.49s CPU 0.49s WALL ( 8 calls) PAW_ddot : 0.07s CPU 0.07s WALL ( 57 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 15 calls) PWSCF : 2.60s CPU 2.72s WALL This run was terminated on: 22:56:30 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/paw-atom_l=2.ref0000644000175000017500000002324212341373024015711 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:21:46 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/paw-atom_l=2.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2335 2335 583 74249 74249 9377 Tot 1168 1168 292 bravais-lattice index = 2 lattice parameter (alat) = 26.0000 a.u. unit-cell volume = 4394.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 26.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pbe-kjpaw.UPF MD5 check sum: 92cd914fcb04cfd737edc2091ad11b5d Pseudo is Projector augmented-wave + core cor, Zval = 11.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1199 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 0 l(4) = 0 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 1.00000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 37125 G-vectors FFT dimensions: ( 60, 60, 60) Occupations read from input 2.0000 2.0000 2.0000 2.0000 2.0000 1.0000 0.0000 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 4689, 9) NL pseudopotentials 1.29 Mb ( 4689, 18) Each V/rho on FFT grid 3.30 Mb ( 216000) Each G-vector array 0.28 Mb ( 37125) G-vector shells 0.00 Mb ( 574) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.29 Mb ( 4689, 36) Each subspace H/S matrix 0.01 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 26.37 Mb ( 216000, 8) Check: negative/imaginary core charge= -0.000001 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.011950 starting charge 10.99972, renormalised to 11.00000 negative rho (up, down): 0.120E-01 0.000E+00 Starting wfc are 9 randomized atomic wfcs total cpu time spent up to now is 2.6 secs per-process dynamical memory: 45.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.19E-06, avg # of iterations = 4.0 negative rho (up, down): 0.105E-01 0.000E+00 total cpu time spent up to now is 3.9 secs total energy = -212.94062363 Ry Harris-Foulkes estimate = -212.94268197 Ry estimated scf accuracy < 0.00247537 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.25E-05, avg # of iterations = 3.0 negative rho (up, down): 0.102E-01 0.000E+00 total cpu time spent up to now is 4.8 secs total energy = -212.94096603 Ry Harris-Foulkes estimate = -212.94294036 Ry estimated scf accuracy < 0.00415467 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.25E-05, avg # of iterations = 2.0 negative rho (up, down): 0.987E-02 0.000E+00 total cpu time spent up to now is 5.7 secs total energy = -212.94180928 Ry Harris-Foulkes estimate = -212.94180760 Ry estimated scf accuracy < 0.00000430 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.91E-08, avg # of iterations = 4.0 negative rho (up, down): 0.980E-02 0.000E+00 total cpu time spent up to now is 6.7 secs total energy = -212.94184070 Ry Harris-Foulkes estimate = -212.94184533 Ry estimated scf accuracy < 0.00000976 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.91E-08, avg # of iterations = 2.0 negative rho (up, down): 0.983E-02 0.000E+00 total cpu time spent up to now is 7.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 4689 PWs) bands (ev): -4.6484 -4.6484 -4.6484 -4.6483 -4.6483 -4.2670 -0.2024 -0.2020 -0.2020 highest occupied, lowest unoccupied level (ev): -4.2670 -0.2024 ! total energy = -212.94184141 Ry Harris-Foulkes estimate = -212.94184169 Ry estimated scf accuracy < 0.00000042 Ry total all-electron energy = -3309.698859 Ry The total energy is the sum of the following terms: one-electron contribution = -135.99349050 Ry hartree contribution = 59.89356955 Ry xc contribution = -19.40053602 Ry ewald contribution = -21.33724282 Ry one-center paw contrib. = -96.10414162 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 2.13s CPU 2.16s WALL ( 1 calls) electrons : 4.92s CPU 5.02s WALL ( 1 calls) Called by init_run: wfcinit : 0.04s CPU 0.04s WALL ( 1 calls) potinit : 0.48s CPU 0.48s WALL ( 1 calls) Called by electrons: c_bands : 0.85s CPU 0.87s WALL ( 6 calls) sum_band : 1.03s CPU 1.04s WALL ( 6 calls) v_of_rho : 1.09s CPU 1.14s WALL ( 6 calls) newd : 0.75s CPU 0.77s WALL ( 6 calls) mix_rho : 0.11s CPU 0.12s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.03s CPU 0.03s WALL ( 13 calls) regterg : 0.80s CPU 0.81s WALL ( 6 calls) Called by *egterg: h_psi : 0.71s CPU 0.71s WALL ( 24 calls) s_psi : 0.02s CPU 0.01s WALL ( 24 calls) g_psi : 0.01s CPU 0.02s WALL ( 17 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 22 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.01s WALL ( 24 calls) General routines calbec : 0.04s CPU 0.03s WALL ( 30 calls) fft : 0.30s CPU 0.30s WALL ( 80 calls) fftw : 0.52s CPU 0.54s WALL ( 230 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PAW routines PAW_pot : 1.54s CPU 1.55s WALL ( 6 calls) PAW_ddot : 0.06s CPU 0.06s WALL ( 22 calls) PAW_symme : 0.00s CPU 0.01s WALL ( 12 calls) PWSCF : 7.53s CPU 7.72s WALL This run was terminated on: 11:21:54 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav7.in0000644000175000017500000000044212341373024016136 0ustar mbamba &control calculation='scf', / &system ibrav = 7, celldm(1) =10.0, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/noncolin-cg.ref0000644000175000017500000006136212341373024015705 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:53 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin-cg.in file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 22 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0270270 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0540541 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0540541 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0540541 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0540541 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0540541 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0540541 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0810811 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0270270 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0540541 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0540541 k( 12) = ( 0.1875000 0.0625000 0.0625000), wk = 0.0270270 k( 13) = ( 0.3125000 0.0625000 0.0625000), wk = 0.0270270 k( 14) = ( 0.4375000 0.0625000 0.0625000), wk = 0.0270270 k( 15) = ( 0.5625000 0.0625000 0.0625000), wk = 0.0270270 k( 16) = ( 0.6875000 0.0625000 0.0625000), wk = 0.0270270 k( 17) = ( 0.8125000 0.0625000 0.0625000), wk = 0.0270270 k( 18) = ( 0.1875000 0.1875000 0.0625000), wk = 0.0540541 k( 19) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0540541 k( 20) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0540541 k( 21) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0540541 k( 22) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0540541 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.332318 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.332318 90.000000 0.000000 ============================================================================== Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.7 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 4.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.571256 magnetization : 3.220299 0.000000 0.000000 magnetization/charge: 0.490058 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.220299 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 1.2 secs total energy = -55.68101049 Ry Harris-Foulkes estimate = -55.73563902 Ry estimated scf accuracy < 0.22538471 Ry total magnetization = 2.95 0.00 0.00 Bohr mag/cell absolute magnetization = 2.95 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 2.82E-03, avg # of iterations = 3.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.476288 magnetization : 3.097420 0.000000 0.000000 magnetization/charge: 0.478271 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.097420 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 1.6 secs total energy = -55.68593489 Ry Harris-Foulkes estimate = -55.69968318 Ry estimated scf accuracy < 0.05128399 Ry total magnetization = 3.06 0.00 0.00 Bohr mag/cell absolute magnetization = 3.06 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 6.41E-04, avg # of iterations = 3.4 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.398048 magnetization : 2.988652 0.000000 0.000000 magnetization/charge: 0.467119 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.988652 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 2.0 secs total energy = -55.69768615 Ry Harris-Foulkes estimate = -55.69253312 Ry estimated scf accuracy < 0.00416205 Ry total magnetization = 3.13 0.00 0.00 Bohr mag/cell absolute magnetization = 3.13 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 5.20E-05, avg # of iterations = 4.4 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415729 magnetization : 3.004454 0.000000 0.000000 magnetization/charge: 0.468295 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.004454 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 2.6 secs total energy = -55.69801655 Ry Harris-Foulkes estimate = -55.70004879 Ry estimated scf accuracy < 0.00456696 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 5.20E-05, avg # of iterations = 3.6 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412843 magnetization : 3.003461 0.000000 0.000000 magnetization/charge: 0.468351 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.003461 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.0 secs total energy = -55.69955475 Ry Harris-Foulkes estimate = -55.69964716 Ry estimated scf accuracy < 0.00050071 Ry total magnetization = 3.12 0.00 0.00 Bohr mag/cell absolute magnetization = 3.12 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 6.26E-06, avg # of iterations = 3.9 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415999 magnetization : 3.015082 0.000000 0.000000 magnetization/charge: 0.469932 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.015082 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.5 secs total energy = -55.69966549 Ry Harris-Foulkes estimate = -55.69968499 Ry estimated scf accuracy < 0.00016647 Ry total magnetization = 3.12 0.00 0.00 Bohr mag/cell absolute magnetization = 3.12 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 2.08E-06, avg # of iterations = 3.8 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.416732 magnetization : 3.027234 0.000000 0.000000 magnetization/charge: 0.471772 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.027234 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.9 secs total energy = -55.69967276 Ry Harris-Foulkes estimate = -55.69969592 Ry estimated scf accuracy < 0.00011350 Ry total magnetization = 3.13 0.00 0.00 Bohr mag/cell absolute magnetization = 3.13 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 1.42E-06, avg # of iterations = 3.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415509 magnetization : 3.028128 0.000000 0.000000 magnetization/charge: 0.472001 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.028128 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 4.3 secs total energy = -55.69968029 Ry Harris-Foulkes estimate = -55.69968319 Ry estimated scf accuracy < 0.00004243 Ry total magnetization = 3.14 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 9 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 5.30E-07, avg # of iterations = 3.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.413849 magnetization : 3.054723 0.000000 0.000000 magnetization/charge: 0.476270 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.054723 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 4.7 secs total energy = -55.69966422 Ry Harris-Foulkes estimate = -55.69968217 Ry estimated scf accuracy < 0.00003425 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 10 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 4.28E-07, avg # of iterations = 3.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.413427 magnetization : 3.052431 0.000000 0.000000 magnetization/charge: 0.475944 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.052431 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 5.1 secs total energy = -55.69968199 Ry Harris-Foulkes estimate = -55.69968103 Ry estimated scf accuracy < 0.00000348 Ry total magnetization = 3.17 0.00 0.00 Bohr mag/cell absolute magnetization = 3.17 Bohr mag/cell iteration # 11 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 4.35E-08, avg # of iterations = 3.9 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412600 magnetization : 3.063243 0.000000 0.000000 magnetization/charge: 0.477691 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063243 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 5.6 secs total energy = -55.69967936 Ry Harris-Foulkes estimate = -55.69968447 Ry estimated scf accuracy < 0.00000693 Ry total magnetization = 3.17 0.00 0.00 Bohr mag/cell absolute magnetization = 3.17 Bohr mag/cell iteration # 12 ecut= 25.00 Ry beta=0.20 CG style diagonalization ethr = 4.35E-08, avg # of iterations = 3.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412721 magnetization : 3.063284 0.000000 0.000000 magnetization/charge: 0.477689 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063284 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 6.0 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.6976 6.4710 11.6772 11.6773 11.9040 13.4680 13.4680 14.6640 14.6640 14.9255 16.5279 16.5279 38.7458 38.7460 39.4535 39.4545 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5807 11.6588 12.2026 13.1726 13.6070 14.5299 14.6021 15.2521 16.1625 16.7003 36.2587 37.2023 37.8446 38.7810 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6162 11.6486 12.6210 12.6637 13.8659 14.4962 14.5191 15.5611 15.7134 16.9734 33.8663 35.0496 35.4792 36.6429 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 8.9394 9.9420 11.4570 11.8360 12.3100 13.1162 14.0828 14.4085 14.7053 15.2276 16.2730 17.3566 31.7404 32.7147 33.1542 34.0017 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 9.8490 10.8063 11.2897 12.1933 12.5752 13.2444 13.6125 15.0877 15.5267 15.8163 16.8412 18.2392 29.6281 30.1012 31.1488 31.4631 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 9.9296 10.1060 11.8334 12.4093 12.7225 13.1738 14.0663 15.6754 16.2009 17.3611 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.5654 9.5728 11.6858 11.7775 13.4303 13.8865 14.3759 16.5071 17.0645 17.7256 21.5119 22.9168 25.5707 25.8420 26.8447 27.0459 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.2749 9.2749 11.4414 11.4415 14.0746 14.4153 14.4153 17.3223 17.7664 17.7664 24.4157 24.4157 24.8001 25.5002 25.5002 25.8538 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3179 11.5670 12.6777 13.2537 13.5300 14.2180 14.4048 15.7704 16.2901 16.6103 33.9647 35.1499 36.7273 37.6012 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1743 11.5494 13.0279 13.2371 13.7501 14.0191 14.1911 16.0452 16.3837 16.8488 31.1771 32.5566 34.9138 35.9059 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.1040 10.3061 11.1873 11.5425 12.8521 13.6983 13.7934 14.1434 14.4648 15.8364 16.9221 17.3635 28.6266 30.1620 32.6053 33.8030 k = 0.1875 0.0625 0.0625 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5807 11.6588 12.2027 13.1726 13.6069 14.5299 14.6021 15.2521 16.1625 16.7003 36.2588 37.2024 37.8446 38.7814 k = 0.3125 0.0625 0.0625 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6162 11.6486 12.6210 12.6638 13.8658 14.4962 14.5191 15.5612 15.7134 16.9734 33.8662 35.0497 35.4791 36.6428 k = 0.4375 0.0625 0.0625 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4570 11.8360 12.3100 13.1163 14.0829 14.4084 14.7053 15.2276 16.2730 17.3566 31.7406 32.7148 33.1542 34.0016 k = 0.5625 0.0625 0.0625 ( 148 PWs) bands (ev): 9.8490 10.8063 11.2897 12.1933 12.5752 13.2444 13.6125 15.0877 15.5268 15.8162 16.8412 18.2391 29.6281 30.1011 31.1488 31.4631 k = 0.6875 0.0625 0.0625 ( 146 PWs) bands (ev): 9.9296 10.1060 11.8333 12.4094 12.7225 13.1738 14.0664 15.6754 16.2009 17.3611 18.3362 20.1533 27.4633 27.7466 28.9140 29.0794 k = 0.8125 0.0625 0.0625 ( 144 PWs) bands (ev): 9.5654 9.5728 11.6858 11.7776 13.4303 13.8864 14.3759 16.5071 17.0645 17.7256 21.5120 22.9168 25.5707 25.8421 26.8447 27.0461 k = 0.1875 0.1875 0.0625 ( 151 PWs) bands (ev): 6.9745 7.7800 11.3180 11.5669 12.6777 13.2538 13.5300 14.2180 14.4048 15.7704 16.2901 16.6103 33.9647 35.1500 36.7275 37.6014 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1743 11.5494 13.0279 13.2371 13.7501 14.0191 14.1911 16.0452 16.3837 16.8488 31.1771 32.5566 34.9137 35.9058 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1743 11.5494 13.0279 13.2371 13.7501 14.0191 14.1911 16.0452 16.3837 16.8488 31.1773 32.5567 34.9137 35.9060 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.1040 10.3061 11.1873 11.5425 12.8521 13.6983 13.7934 14.1434 14.4648 15.8364 16.9221 17.3635 28.6265 30.1620 32.6051 33.8032 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.1040 10.3061 11.1873 11.5425 12.8521 13.6984 13.7934 14.1434 14.4648 15.8364 16.9221 17.3635 28.6265 30.1620 32.6051 33.8030 the Fermi energy is 14.6621 ev ! total energy = -55.69968393 Ry Harris-Foulkes estimate = -55.69968337 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 8.92896465 Ry hartree contribution = 6.13431464 Ry xc contribution = -26.12224022 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00388906 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell convergence has been achieved in 12 iterations Writing output data file pwscf.save init_run : 0.56s CPU 0.56s WALL ( 1 calls) electrons : 5.13s CPU 5.27s WALL ( 1 calls) Called by init_run: wfcinit : 0.08s CPU 0.08s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 3.94s CPU 4.01s WALL ( 12 calls) sum_band : 0.85s CPU 0.88s WALL ( 12 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 13 calls) newd : 0.17s CPU 0.17s WALL ( 13 calls) mix_rho : 0.04s CPU 0.03s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.04s WALL ( 550 calls) ccgdiagg : 3.08s CPU 3.14s WALL ( 264 calls) wfcrot : 0.91s CPU 0.91s WALL ( 264 calls) Called by *cgdiagg: h_psi : 2.98s CPU 3.05s WALL ( 11466 calls) s_psi : 0.38s CPU 0.37s WALL ( 22668 calls) cdiaghg : 0.04s CPU 0.03s WALL ( 264 calls) Called by h_psi: add_vuspsi : 0.23s CPU 0.21s WALL ( 11466 calls) General routines calbec : 0.32s CPU 0.37s WALL ( 22932 calls) fft : 0.07s CPU 0.08s WALL ( 407 calls) ffts : 0.00s CPU 0.01s WALL ( 100 calls) fftw : 2.09s CPU 2.08s WALL ( 70152 calls) interpolate : 0.02s CPU 0.03s WALL ( 100 calls) davcio : 0.00s CPU 0.02s WALL ( 814 calls) PWSCF : 5.90s CPU 6.07s WALL This run was terminated on: 10:24:59 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/spinorbit.in20000755000175000017500000000063412341373024015422 0ustar mbamba &control calculation = 'nscf' / &system ibrav= 2, celldm(1) =7.42, nat= 1, ntyp= 1, lspinorb=.true., noncolin=.true., occupations='smearing', degauss=0.02, smearing='mp', ecutwfc =30.0, ecutrho =250.0, nbnd = 16 / &electrons / ATOMIC_SPECIES Pt 79.90 Pt.rel-pz-n-rrkjus.UPF ATOMIC_POSITIONS ALAT Pt 0.0000000 0.00000000 0.0 K_POINTS AUTOMATIC 4 4 4 0 0 0 espresso-5.1/PW/tests/dft4.in0000755000175000017500000000053712341373024014172 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 input_dft='pbesol' / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/lsda.in20000755000175000017500000000061012341373024014326 0ustar mbamba &control calculation='nscf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 nbnd=8 / &electrons / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {alat} Ni 0.0 0.0 0.0 K_POINTS {automatic} 8 8 8 1 1 1 espresso-5.1/PW/tests/lattice-ibrav0-cell_parameters-ang.in0000644000175000017500000000055712341373024022041 0ustar mbamba &control calculation='scf', / &system ibrav = 0 nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 CELL_PARAMETERS angstrom 5.291772 0.00000 0.00000 2.381297 7.572044 0.00000 2.116709 0.443784 10.360210 K_POINTS {gamma} espresso-5.1/PW/tests/md-wfc_extrap1.ref0000644000175000017500000040116212341373024016314 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:47 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/md-wfc_extrap1.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 31 869 869 113 bravais-lattice index = 2 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.43210225 Ry Harris-Foulkes estimate = -14.55434296 Ry estimated scf accuracy < 0.32483609 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -14.44687979 Ry Harris-Foulkes estimate = -14.44915621 Ry estimated scf accuracy < 0.01104147 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.44790249 Ry Harris-Foulkes estimate = -14.44786986 Ry estimated scf accuracy < 0.00019990 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793341 Ry Harris-Foulkes estimate = -14.44793322 Ry estimated scf accuracy < 0.00000435 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.43E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793716 Ry Harris-Foulkes estimate = -14.44793752 Ry estimated scf accuracy < 0.00000145 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -14.44793726 Ry Harris-Foulkes estimate = -14.44793727 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793736 Ry estimated scf accuracy < 0.00000013 Ry iteration # 8 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793733 Ry estimated scf accuracy < 0.00000002 Ry iteration # 9 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793737 Ry estimated scf accuracy < 0.00000017 Ry iteration # 10 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1610 7.5134 7.5134 ! total energy = -14.44793733 Ry Harris-Foulkes estimate = -14.44793734 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02329815 -0.02329818 -0.02329844 atom 2 type 1 force = 0.02329815 0.02329818 0.02329844 Total force = 0.057069 Total SCF correction = 0.000004 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123017881 -0.123017881 -0.123017881 Si 0.123017881 0.123017881 0.123017881 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -14.44793733 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1631 7.5123 7.5123 ! total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796266 Ry estimated scf accuracy < 6.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02308264 -0.02308255 -0.02308267 atom 2 type 1 force = 0.02308264 0.02308255 0.02308267 Total force = 0.056541 Total SCF correction = 0.000005 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123071192 -0.123071192 -0.123071192 Si 0.123071192 0.123071192 0.123071192 kinetic energy (Ekin) = 0.00002521 Ry temperature = 2.65359889 K Ekin + Etot (const) = -14.44793745 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.17E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44803678 Ry Harris-Foulkes estimate = -14.44803678 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1694 7.5091 7.5091 ! total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 6.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02244079 -0.02244031 -0.02244020 atom 2 type 1 force = 0.02244079 0.02244031 0.02244020 Total force = 0.054968 Total SCF correction = 0.000018 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123158948 -0.123158947 -0.123158948 Si 0.123158948 0.123158947 0.123158948 kinetic energy (Ekin) = 0.00009899 Ry temperature = 10.41898756 K Ekin + Etot (const) = -14.44793781 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.89E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815426 Ry Harris-Foulkes estimate = -14.44815426 Ry estimated scf accuracy < 0.00000022 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815428 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.19E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1795 7.5039 7.5039 ! total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815429 Ry estimated scf accuracy < 5.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02139472 -0.02139498 -0.02139494 atom 2 type 1 force = 0.02139472 0.02139498 0.02139494 Total force = 0.052407 Total SCF correction = 0.000005 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123279545 -0.123279543 -0.123279544 Si 0.123279545 0.123279543 0.123279544 kinetic energy (Ekin) = 0.00021593 Ry temperature = 22.72836371 K Ekin + Etot (const) = -14.44793836 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.29E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830656 Ry Harris-Foulkes estimate = -14.44830655 Ry estimated scf accuracy < 0.00000041 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830659 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.1936 7.4967 7.4967 ! total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830661 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01995813 -0.01995814 -0.01995814 atom 2 type 1 force = 0.01995813 0.01995814 0.01995814 Total force = 0.048887 Total SCF correction = 0.000007 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123430775 -0.123430774 -0.123430775 Si 0.123430775 0.123430774 0.123430775 kinetic energy (Ekin) = 0.00036754 Ry temperature = 38.68623641 K Ekin + Etot (const) = -14.44793907 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.18E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848262 Ry Harris-Foulkes estimate = -14.44848261 Ry estimated scf accuracy < 0.00000064 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.06E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848268 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.53E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2112 7.4877 7.4877 ! total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848270 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01816327 -0.01816331 -0.01816330 atom 2 type 1 force = 0.01816327 0.01816331 0.01816330 Total force = 0.044491 Total SCF correction = 0.000008 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123609886 -0.123609884 -0.123609885 Si 0.123609886 0.123609884 0.123609885 kinetic energy (Ekin) = 0.00054280 Ry temperature = 57.13432480 K Ekin + Etot (const) = -14.44793990 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.14E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866976 Ry Harris-Foulkes estimate = -14.44866974 Ry estimated scf accuracy < 0.00000090 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866983 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.08E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.2321 7.4770 7.4770 ! total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866987 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01604785 -0.01604789 -0.01604788 atom 2 type 1 force = 0.01604785 0.01604789 0.01604788 Total force = 0.039309 Total SCF correction = 0.000010 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123813629 -0.123813626 -0.123813628 Si 0.123813629 0.123813626 0.123813628 kinetic energy (Ekin) = 0.00072909 Ry temperature = 76.74264341 K Ekin + Etot (const) = -14.44794078 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.47E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885459 Ry Harris-Foulkes estimate = -14.44885457 Ry estimated scf accuracy < 0.00000116 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885469 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.16E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.2559 7.4649 7.4649 ! total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885473 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01365483 -0.01365486 -0.01365485 atom 2 type 1 force = 0.01365483 0.01365486 0.01365485 Total force = 0.033447 Total SCF correction = 0.000011 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124038331 -0.124038328 -0.124038330 Si 0.124038331 0.124038328 0.124038330 kinetic energy (Ekin) = 0.00091308 Ry temperature = 96.10871660 K Ekin + Etot (const) = -14.44794166 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.76E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902403 Ry Harris-Foulkes estimate = -14.44902400 Ry estimated scf accuracy < 0.00000141 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902419 Ry Harris-Foulkes estimate = -14.44902414 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.40E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.2821 7.4516 7.4516 ! total energy = -14.44902419 Ry Harris-Foulkes estimate = -14.44902419 Ry estimated scf accuracy < 3.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01103171 -0.01103174 -0.01103172 atom 2 type 1 force = 0.01103171 0.01103174 0.01103172 Total force = 0.027022 Total SCF correction = 0.000012 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124279966 -0.124279963 -0.124279965 Si 0.124279966 0.124279963 0.124279965 kinetic energy (Ekin) = 0.00108173 Ry temperature = 113.86054715 K Ekin + Etot (const) = -14.44794247 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.03E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44916621 Ry Harris-Foulkes estimate = -14.44916618 Ry estimated scf accuracy < 0.00000163 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.04E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44916639 Ry Harris-Foulkes estimate = -14.44916633 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3104 7.4373 7.4373 ! total energy = -14.44916640 Ry Harris-Foulkes estimate = -14.44916639 Ry estimated scf accuracy < 3.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00822975 -0.00822978 -0.00822976 atom 2 type 1 force = 0.00822975 0.00822978 0.00822976 Total force = 0.020159 Total SCF correction = 0.000014 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124534234 -0.124534231 -0.124534232 Si 0.124534234 0.124534231 0.124534232 kinetic energy (Ekin) = 0.00122323 Ry temperature = 128.75546909 K Ekin + Etot (const) = -14.44794316 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.25E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927133 Ry Harris-Foulkes estimate = -14.44927130 Ry estimated scf accuracy < 0.00000181 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.26E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927154 Ry Harris-Foulkes estimate = -14.44927147 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3402 7.4223 7.4223 ! total energy = -14.44927154 Ry Harris-Foulkes estimate = -14.44927154 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00530192 -0.00530195 -0.00530194 atom 2 type 1 force = 0.00530192 0.00530195 0.00530194 Total force = 0.012987 Total SCF correction = 0.000015 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124796640 -0.124796636 -0.124796638 Si 0.124796640 0.124796636 0.124796638 kinetic energy (Ekin) = 0.00132785 Ry temperature = 139.76692906 K Ekin + Etot (const) = -14.44794369 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.40E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44933233 Ry Harris-Foulkes estimate = -14.44933231 Ry estimated scf accuracy < 0.00000193 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.41E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44933255 Ry Harris-Foulkes estimate = -14.44933248 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3711 7.4068 7.4068 ! total energy = -14.44933256 Ry Harris-Foulkes estimate = -14.44933255 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00230223 -0.00230226 -0.00230225 atom 2 type 1 force = 0.00230223 0.00230226 0.00230225 Total force = 0.005639 Total SCF correction = 0.000015 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125062579 -0.125062576 -0.125062577 Si 0.125062579 0.125062576 0.125062577 kinetic energy (Ekin) = 0.00138852 Ry temperature = 146.15311028 K Ekin + Etot (const) = -14.44794404 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.48E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934529 Ry Harris-Foulkes estimate = -14.44934527 Ry estimated scf accuracy < 0.00000199 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934552 Ry Harris-Foulkes estimate = -14.44934544 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3911 7.3911 7.4023 ! total energy = -14.44934552 Ry Harris-Foulkes estimate = -14.44934552 Ry estimated scf accuracy < 4.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00071563 0.00071555 0.00071559 atom 2 type 1 force = -0.00071563 -0.00071555 -0.00071559 Total force = 0.001753 Total SCF correction = 0.000016 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125327420 -0.125327417 -0.125327418 Si 0.125327420 0.125327417 0.125327418 kinetic energy (Ekin) = 0.00140135 Ry temperature = 147.50361182 K Ekin + Etot (const) = -14.44794417 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.46E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930967 Ry Harris-Foulkes estimate = -14.44930965 Ry estimated scf accuracy < 0.00000197 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.47E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930989 Ry Harris-Foulkes estimate = -14.44930982 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3756 7.3756 7.4335 ! total energy = -14.44930990 Ry Harris-Foulkes estimate = -14.44930989 Ry estimated scf accuracy < 4.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00369901 0.00369897 0.00369899 atom 2 type 1 force = -0.00369901 -0.00369897 -0.00369899 Total force = 0.009061 Total SCF correction = 0.000016 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125586583 -0.125586580 -0.125586582 Si 0.125586583 0.125586580 0.125586582 kinetic energy (Ekin) = 0.00136580 Ry temperature = 143.76148863 K Ekin + Etot (const) = -14.44794410 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922826 Ry Harris-Foulkes estimate = -14.44922825 Ry estimated scf accuracy < 0.00000189 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922848 Ry Harris-Foulkes estimate = -14.44922841 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3604 7.3604 7.4641 ! total energy = -14.44922848 Ry Harris-Foulkes estimate = -14.44922848 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00659752 0.00659748 0.00659750 atom 2 type 1 force = -0.00659752 -0.00659748 -0.00659750 Total force = 0.016161 Total SCF correction = 0.000016 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125835620 -0.125835617 -0.125835618 Si 0.125835620 0.125835617 0.125835618 kinetic energy (Ekin) = 0.00128465 Ry temperature = 135.22027259 K Ekin + Etot (const) = -14.44794383 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.18E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910697 Ry Harris-Foulkes estimate = -14.44910696 Ry estimated scf accuracy < 0.00000175 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.19E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910716 Ry Harris-Foulkes estimate = -14.44910710 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3458 7.3458 7.4936 ! total energy = -14.44910717 Ry Harris-Foulkes estimate = -14.44910716 Ry estimated scf accuracy < 4.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00936350 0.00936347 0.00936348 atom 2 type 1 force = -0.00936350 -0.00936347 -0.00936348 Total force = 0.022936 Total SCF correction = 0.000015 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126070284 -0.126070281 -0.126070282 Si 0.126070284 0.126070281 0.126070282 kinetic energy (Ekin) = 0.00116378 Ry temperature = 122.49717879 K Ekin + Etot (const) = -14.44794339 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.93E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895429 Ry Harris-Foulkes estimate = -14.44895429 Ry estimated scf accuracy < 0.00000155 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.94E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895447 Ry Harris-Foulkes estimate = -14.44895441 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.3321 7.3321 7.5213 ! total energy = -14.44895447 Ry Harris-Foulkes estimate = -14.44895447 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01195281 0.01195277 0.01195279 atom 2 type 1 force = -0.01195281 -0.01195277 -0.01195279 Total force = 0.029278 Total SCF correction = 0.000014 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126286601 -0.126286598 -0.126286599 Si 0.126286601 0.126286598 0.126286599 kinetic energy (Ekin) = 0.00101166 Ry temperature = 106.48537808 K Ekin + Etot (const) = -14.44794281 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878078 Ry Harris-Foulkes estimate = -14.44878078 Ry estimated scf accuracy < 0.00000132 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878093 Ry Harris-Foulkes estimate = -14.44878088 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3195 7.3195 7.5470 ! total energy = -14.44878093 Ry Harris-Foulkes estimate = -14.44878093 Ry estimated scf accuracy < 3.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01432516 0.01432513 0.01432514 atom 2 type 1 force = -0.01432516 -0.01432513 -0.01432514 Total force = 0.035089 Total SCF correction = 0.000013 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126480930 -0.126480927 -0.126480928 Si 0.126480930 0.126480927 0.126480928 kinetic energy (Ekin) = 0.00083879 Ry temperature = 88.28938199 K Ekin + Etot (const) = -14.44794215 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.30E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859825 Ry Harris-Foulkes estimate = -14.44859825 Ry estimated scf accuracy < 0.00000107 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859837 Ry Harris-Foulkes estimate = -14.44859833 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.3082 7.3082 7.5700 ! total energy = -14.44859837 Ry Harris-Foulkes estimate = -14.44859837 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01644452 0.01644450 0.01644450 atom 2 type 1 force = -0.01644452 -0.01644450 -0.01644450 Total force = 0.040281 Total SCF correction = 0.000012 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126650017 -0.126650015 -0.126650016 Si 0.126650017 0.126650015 0.126650016 kinetic energy (Ekin) = 0.00065694 Ry temperature = 69.14841871 K Ekin + Etot (const) = -14.44794143 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44841901 Ry Harris-Foulkes estimate = -14.44841901 Ry estimated scf accuracy < 0.00000081 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44841910 Ry Harris-Foulkes estimate = -14.44841907 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.55E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2984 7.2984 7.5901 ! total energy = -14.44841910 Ry Harris-Foulkes estimate = -14.44841910 Ry estimated scf accuracy < 1.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01827963 0.01827961 0.01827962 atom 2 type 1 force = -0.01827963 -0.01827961 -0.01827962 Total force = 0.044776 Total SCF correction = 0.000011 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126791046 -0.126791045 -0.126791045 Si 0.126791046 0.126791045 0.126791045 kinetic energy (Ekin) = 0.00047837 Ry temperature = 50.35284405 K Ekin + Etot (const) = -14.44794073 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.82E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825504 Ry Harris-Foulkes estimate = -14.44825504 Ry estimated scf accuracy < 0.00000056 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.02E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825510 Ry Harris-Foulkes estimate = -14.44825508 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.24E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.2902 7.2902 7.6068 ! total energy = -14.44825510 Ry Harris-Foulkes estimate = -14.44825510 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01980380 0.01980379 0.01980379 atom 2 type 1 force = -0.01980380 -0.01980379 -0.01980379 Total force = 0.048509 Total SCF correction = 0.000009 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126901678 -0.126901677 -0.126901677 Si 0.126901678 0.126901677 0.126901677 kinetic energy (Ekin) = 0.00031503 Ry temperature = 33.15928679 K Ekin + Etot (const) = -14.44794007 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.17E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811723 Ry Harris-Foulkes estimate = -14.44811723 Ry estimated scf accuracy < 0.00000035 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.31E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811727 Ry Harris-Foulkes estimate = -14.44811726 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2838 7.2838 7.6200 ! total energy = -14.44811727 Ry Harris-Foulkes estimate = -14.44811727 Ry estimated scf accuracy < 7.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02099529 0.02099528 0.02099528 atom 2 type 1 force = -0.02099529 -0.02099528 -0.02099528 Total force = 0.051428 Total SCF correction = 0.000007 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126980083 -0.126980082 -0.126980082 Si 0.126980083 0.126980082 0.126980082 kinetic energy (Ekin) = 0.00017775 Ry temperature = 18.70966438 K Ekin + Etot (const) = -14.44793952 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801470 Ry Harris-Foulkes estimate = -14.44801470 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801472 Ry Harris-Foulkes estimate = -14.44801471 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.64E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2793 7.2793 7.6293 ! total energy = -14.44801472 Ry Harris-Foulkes estimate = -14.44801472 Ry estimated scf accuracy < 4.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02183737 0.02183737 0.02183737 atom 2 type 1 force = -0.02183737 -0.02183737 -0.02183737 Total force = 0.053490 Total SCF correction = 0.000005 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127024969 -0.127024968 -0.127024968 Si 0.127024969 0.127024968 0.127024968 kinetic energy (Ekin) = 0.00007561 Ry temperature = 7.95860890 K Ekin + Etot (const) = -14.44793911 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.92E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs total energy = -14.44795419 Ry Harris-Foulkes estimate = -14.44795419 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.29E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2767 7.2767 7.6347 ! total energy = -14.44795419 Ry Harris-Foulkes estimate = -14.44795419 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02232267 0.02232267 0.02232267 atom 2 type 1 force = -0.02232267 -0.02232267 -0.02232267 Total force = 0.054679 Total SCF correction = 0.000012 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127035590 -0.127035591 -0.127035590 Si 0.127035590 0.127035591 0.127035590 kinetic energy (Ekin) = 0.00001533 Ry temperature = 1.61318956 K Ekin + Etot (const) = -14.44793887 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.20E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2761 7.2761 7.6358 ! total energy = -14.44793968 Ry Harris-Foulkes estimate = -14.44793968 Ry estimated scf accuracy < 3.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02243314 0.02243314 0.02243314 atom 2 type 1 force = -0.02243314 -0.02243314 -0.02243314 Total force = 0.054950 Total SCF correction = 0.000018 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127011779 -0.127011779 -0.127011779 Si 0.127011779 0.127011779 0.127011779 kinetic energy (Ekin) = 0.00000087 Ry temperature = 0.09108164 K Ekin + Etot (const) = -14.44793881 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.27E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs total energy = -14.44797211 Ry Harris-Foulkes estimate = -14.44797211 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2775 7.2775 7.6331 ! total energy = -14.44797211 Ry Harris-Foulkes estimate = -14.44797211 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02217391 0.02217392 0.02217391 atom 2 type 1 force = -0.02217391 -0.02217392 -0.02217391 Total force = 0.054315 Total SCF correction = 0.000005 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126953931 -0.126953932 -0.126953932 Si 0.126953931 0.126953932 0.126953932 kinetic energy (Ekin) = 0.00003317 Ry temperature = 3.49123315 K Ekin + Etot (const) = -14.44793895 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44804936 Ry Harris-Foulkes estimate = -14.44804936 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.23E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.2808 7.2808 7.6261 ! total energy = -14.44804937 Ry Harris-Foulkes estimate = -14.44804937 Ry estimated scf accuracy < 7.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02154844 0.02154845 0.02154844 atom 2 type 1 force = -0.02154844 -0.02154845 -0.02154844 Total force = 0.052783 Total SCF correction = 0.000018 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126863008 -0.126863010 -0.126863009 Si 0.126863008 0.126863010 0.126863009 kinetic energy (Ekin) = 0.00011009 Ry temperature = 11.58788895 K Ekin + Etot (const) = -14.44793928 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.15E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816633 Ry Harris-Foulkes estimate = -14.44816634 Ry estimated scf accuracy < 0.00000024 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.05E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816636 Ry Harris-Foulkes estimate = -14.44816635 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2861 7.2861 7.6153 ! total energy = -14.44816636 Ry Harris-Foulkes estimate = -14.44816636 Ry estimated scf accuracy < 7.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02057383 0.02057385 0.02057384 atom 2 type 1 force = -0.02057383 -0.02057385 -0.02057384 Total force = 0.050395 Total SCF correction = 0.000006 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126740505 -0.126740507 -0.126740506 Si 0.126740505 0.126740507 0.126740506 kinetic energy (Ekin) = 0.00022657 Ry temperature = 23.84872658 K Ekin + Etot (const) = -14.44793979 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.58E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831532 Ry Harris-Foulkes estimate = -14.44831534 Ry estimated scf accuracy < 0.00000044 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831538 Ry Harris-Foulkes estimate = -14.44831537 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.03E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2932 7.2932 7.6008 ! total energy = -14.44831538 Ry Harris-Foulkes estimate = -14.44831538 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01925115 0.01925117 0.01925116 atom 2 type 1 force = -0.01925115 -0.01925117 -0.01925116 Total force = 0.047156 Total SCF correction = 0.000008 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126588453 -0.126588455 -0.126588454 Si 0.126588453 0.126588455 0.126588454 kinetic energy (Ekin) = 0.00037495 Ry temperature = 39.46663377 K Ekin + Etot (const) = -14.44794043 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.47E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848648 Ry Harris-Foulkes estimate = -14.44848650 Ry estimated scf accuracy < 0.00000067 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.39E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848656 Ry Harris-Foulkes estimate = -14.44848654 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.3020 7.3020 7.5827 ! total energy = -14.44848656 Ry Harris-Foulkes estimate = -14.44848656 Ry estimated scf accuracy < 1.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01760379 0.01760382 0.01760380 atom 2 type 1 force = -0.01760379 -0.01760382 -0.01760380 Total force = 0.043120 Total SCF correction = 0.000010 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126409380 -0.126409383 -0.126409381 Si 0.126409380 0.126409383 0.126409381 kinetic energy (Ekin) = 0.00054538 Ry temperature = 57.40586203 K Ekin + Etot (const) = -14.44794118 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.17E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866840 Ry Harris-Foulkes estimate = -14.44866842 Ry estimated scf accuracy < 0.00000093 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.16E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866851 Ry Harris-Foulkes estimate = -14.44866848 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.62E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3124 7.3124 7.5614 ! total energy = -14.44866851 Ry Harris-Foulkes estimate = -14.44866851 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01565545 0.01565548 0.01565547 atom 2 type 1 force = -0.01565545 -0.01565548 -0.01565547 Total force = 0.038348 Total SCF correction = 0.000011 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126206277 -0.126206280 -0.126206278 Si 0.126206277 0.126206280 0.126206278 kinetic energy (Ekin) = 0.00072651 Ry temperature = 76.47145830 K Ekin + Etot (const) = -14.44794200 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.50E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884888 Ry Harris-Foulkes estimate = -14.44884890 Ry estimated scf accuracy < 0.00000119 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884903 Ry Harris-Foulkes estimate = -14.44884898 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.3243 7.3243 7.5373 ! total energy = -14.44884903 Ry Harris-Foulkes estimate = -14.44884903 Ry estimated scf accuracy < 3.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01343464 0.01343468 0.01343466 atom 2 type 1 force = -0.01343464 -0.01343468 -0.01343466 Total force = 0.032908 Total SCF correction = 0.000013 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125982552 -0.125982555 -0.125982554 Si 0.125982552 0.125982555 0.125982554 kinetic energy (Ekin) = 0.00090620 Ry temperature = 95.38448559 K Ekin + Etot (const) = -14.44794283 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.79E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901572 Ry Harris-Foulkes estimate = -14.44901574 Ry estimated scf accuracy < 0.00000143 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901590 Ry Harris-Foulkes estimate = -14.44901584 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.3373 7.3373 7.5108 ! total energy = -14.44901590 Ry Harris-Foulkes estimate = -14.44901590 Ry estimated scf accuracy < 3.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01097444 0.01097447 0.01097445 atom 2 type 1 force = -0.01097444 -0.01097447 -0.01097445 Total force = 0.026882 Total SCF correction = 0.000014 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125741983 -0.125741986 -0.125741984 Si 0.125741983 0.125741986 0.125741984 kinetic energy (Ekin) = 0.00107227 Ry temperature = 112.86499562 K Ekin + Etot (const) = -14.44794363 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.05E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915751 Ry Harris-Foulkes estimate = -14.44915753 Ry estimated scf accuracy < 0.00000165 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915771 Ry Harris-Foulkes estimate = -14.44915765 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.57E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3514 7.3514 7.4823 ! total energy = -14.44915771 Ry Harris-Foulkes estimate = -14.44915771 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00831275 0.00831279 0.00831277 atom 2 type 1 force = -0.00831275 -0.00831279 -0.00831277 Total force = 0.020362 Total SCF correction = 0.000015 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125488653 -0.125488656 -0.125488655 Si 0.125488653 0.125488656 0.125488655 kinetic energy (Ekin) = 0.00121337 Ry temperature = 127.71709544 K Ekin + Etot (const) = -14.44794434 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.26E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926442 Ry Harris-Foulkes estimate = -14.44926442 Ry estimated scf accuracy < 0.00000182 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.28E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926463 Ry Harris-Foulkes estimate = -14.44926456 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3662 7.3662 7.4524 ! total energy = -14.44926464 Ry Harris-Foulkes estimate = -14.44926463 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00549128 0.00549132 0.00549130 atom 2 type 1 force = -0.00549128 -0.00549132 -0.00549130 Total force = 0.013451 Total SCF correction = 0.000015 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125226895 -0.125226898 -0.125226897 Si 0.125226895 0.125226898 0.125226897 kinetic energy (Ekin) = 0.00131971 Ry temperature = 138.91037986 K Ekin + Etot (const) = -14.44794493 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.41E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44932887 Ry Harris-Foulkes estimate = -14.44932887 Ry estimated scf accuracy < 0.00000194 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.42E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44932909 Ry Harris-Foulkes estimate = -14.44932902 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3816 7.3816 7.4215 ! total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932910 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00255561 0.00255564 0.00255563 atom 2 type 1 force = -0.00255561 -0.00255564 -0.00255563 Total force = 0.006260 Total SCF correction = 0.000016 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124961214 -0.124961217 -0.124961216 Si 0.124961214 0.124961217 0.124961216 kinetic energy (Ekin) = 0.00138376 Ry temperature = 145.65227577 K Ekin + Etot (const) = -14.44794534 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934613 Ry Harris-Foulkes estimate = -14.44934611 Ry estimated scf accuracy < 0.00000199 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934635 Ry Harris-Foulkes estimate = -14.44934628 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3903 7.3972 7.3972 ! total energy = -14.44934636 Ry Harris-Foulkes estimate = -14.44934636 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00044559 -0.00044549 -0.00044553 atom 2 type 1 force = 0.00044559 0.00044549 0.00044553 Total force = 0.001091 Total SCF correction = 0.000016 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124696217 -0.124696220 -0.124696219 Si 0.124696217 0.124696220 0.124696219 kinetic energy (Ekin) = 0.00140081 Ry temperature = 147.44659556 K Ekin + Etot (const) = -14.44794555 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.46E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931466 Ry Harris-Foulkes estimate = -14.44931464 Ry estimated scf accuracy < 0.00000197 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931488 Ry Harris-Foulkes estimate = -14.44931481 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3591 7.4128 7.4128 ! total energy = -14.44931488 Ry Harris-Foulkes estimate = -14.44931488 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00346086 -0.00346082 -0.00346084 atom 2 type 1 force = 0.00346086 0.00346082 0.00346084 Total force = 0.008477 Total SCF correction = 0.000016 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124436533 -0.124436535 -0.124436534 Si 0.124436533 0.124436535 0.124436534 kinetic energy (Ekin) = 0.00136933 Ry temperature = 144.13345940 K Ekin + Etot (const) = -14.44794555 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.35E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923631 Ry Harris-Foulkes estimate = -14.44923627 Ry estimated scf accuracy < 0.00000188 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.35E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923651 Ry Harris-Foulkes estimate = -14.44923644 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3286 7.4281 7.4281 ! total energy = -14.44923652 Ry Harris-Foulkes estimate = -14.44923652 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00643721 -0.00643718 -0.00643719 atom 2 type 1 force = 0.00643721 0.00643718 0.00643719 Total force = 0.015768 Total SCF correction = 0.000015 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124186729 -0.124186731 -0.124186730 Si 0.124186729 0.124186731 0.124186730 kinetic energy (Ekin) = 0.00129118 Ry temperature = 135.90713136 K Ekin + Etot (const) = -14.44794534 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.16E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44911623 Ry Harris-Foulkes estimate = -14.44911619 Ry estimated scf accuracy < 0.00000173 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44911642 Ry Harris-Foulkes estimate = -14.44911636 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.70E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.2994 7.4429 7.4429 ! total energy = -14.44911642 Ry Harris-Foulkes estimate = -14.44911642 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00932066 -0.00932063 -0.00932064 atom 2 type 1 force = 0.00932066 0.00932063 0.00932064 Total force = 0.022831 Total SCF correction = 0.000014 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123951231 -0.123951234 -0.123951233 Si 0.123951231 0.123951234 0.123951233 kinetic energy (Ekin) = 0.00117149 Ry temperature = 123.30937605 K Ekin + Etot (const) = -14.44794493 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.91E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896261 Ry Harris-Foulkes estimate = -14.44896257 Ry estimated scf accuracy < 0.00000154 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896277 Ry Harris-Foulkes estimate = -14.44896272 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.2718 7.4569 7.4569 ! total energy = -14.44896278 Ry Harris-Foulkes estimate = -14.44896278 Ry estimated scf accuracy < 3.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01205750 -0.01205748 -0.01205749 atom 2 type 1 force = 0.01205750 0.01205748 0.01205749 Total force = 0.029535 Total SCF correction = 0.000013 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123734242 -0.123734244 -0.123734243 Si 0.123734242 0.123734244 0.123734243 kinetic energy (Ekin) = 0.00101843 Ry temperature = 107.19773106 K Ekin + Etot (const) = -14.44794435 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878610 Ry Harris-Foulkes estimate = -14.44878606 Ry estimated scf accuracy < 0.00000130 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.62E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878624 Ry Harris-Foulkes estimate = -14.44878619 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2465 7.4697 7.4697 ! total energy = -14.44878624 Ry Harris-Foulkes estimate = -14.44878624 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01459537 -0.01459535 -0.01459536 atom 2 type 1 force = 0.01459537 0.01459535 0.01459536 Total force = 0.035751 Total SCF correction = 0.000012 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123539655 -0.123539657 -0.123539656 Si 0.123539655 0.123539657 0.123539656 kinetic energy (Ekin) = 0.00084259 Ry temperature = 88.68993864 K Ekin + Etot (const) = -14.44794365 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.27E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859913 Ry Harris-Foulkes estimate = -14.44859909 Ry estimated scf accuracy < 0.00000104 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859924 Ry Harris-Foulkes estimate = -14.44859920 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.2238 7.4813 7.4813 ! total energy = -14.44859924 Ry Harris-Foulkes estimate = -14.44859924 Ry estimated scf accuracy < 2.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01688441 -0.01688440 -0.01688440 atom 2 type 1 force = 0.01688441 0.01688440 0.01688440 Total force = 0.041358 Total SCF correction = 0.000011 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123370985 -0.123370986 -0.123370986 Si 0.123370985 0.123370986 0.123370986 kinetic energy (Ekin) = 0.00065636 Ry temperature = 69.08772921 K Ekin + Etot (const) = -14.44794287 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.44E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841498 Ry Harris-Foulkes estimate = -14.44841495 Ry estimated scf accuracy < 0.00000078 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.75E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841506 Ry Harris-Foulkes estimate = -14.44841503 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.78E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2041 7.4913 7.4913 ! total energy = -14.44841506 Ry Harris-Foulkes estimate = -14.44841506 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01887887 -0.01887886 -0.01887886 atom 2 type 1 force = 0.01887887 0.01887886 0.01887886 Total force = 0.046244 Total SCF correction = 0.000010 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123231293 -0.123231294 -0.123231294 Si 0.123231293 0.123231294 0.123231294 kinetic energy (Ekin) = 0.00047298 Ry temperature = 49.78469720 K Ekin + Etot (const) = -14.44794209 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.42E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824688 Ry Harris-Foulkes estimate = -14.44824686 Ry estimated scf accuracy < 0.00000053 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824694 Ry Harris-Foulkes estimate = -14.44824692 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.34E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1879 7.4996 7.4996 ! total energy = -14.44824694 Ry Harris-Foulkes estimate = -14.44824694 Ry estimated scf accuracy < 9.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02053788 -0.02053787 -0.02053787 atom 2 type 1 force = 0.02053788 0.02053787 0.02053787 Total force = 0.050307 Total SCF correction = 0.000008 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123123126 -0.123123126 -0.123123126 Si 0.123123126 0.123123126 0.123123126 kinetic energy (Ekin) = 0.00030558 Ry temperature = 32.16516980 K Ekin + Etot (const) = -14.44794135 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.81E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810697 Ry Harris-Foulkes estimate = -14.44810696 Ry estimated scf accuracy < 0.00000032 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.98E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810701 Ry Harris-Foulkes estimate = -14.44810699 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.21E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1753 7.5061 7.5061 ! total energy = -14.44810701 Ry Harris-Foulkes estimate = -14.44810701 Ry estimated scf accuracy < 5.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02182698 -0.02182698 -0.02182698 atom 2 type 1 force = 0.02182698 0.02182698 0.02182698 Total force = 0.053465 Total SCF correction = 0.000006 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123048461 -0.123048461 -0.123048461 Si 0.123048461 0.123048461 0.123048461 kinetic energy (Ekin) = 0.00016627 Ry temperature = 17.50165771 K Ekin + Etot (const) = -14.44794073 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.68E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44800542 Ry Harris-Foulkes estimate = -14.44800542 Ry estimated scf accuracy < 0.00000015 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44800544 Ry Harris-Foulkes estimate = -14.44800543 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1666 7.5105 7.5105 ! total energy = -14.44800544 Ry Harris-Foulkes estimate = -14.44800544 Ry estimated scf accuracy < 2.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02271889 -0.02271890 -0.02271889 atom 2 type 1 force = 0.02271889 0.02271890 0.02271889 Total force = 0.055650 Total SCF correction = 0.000004 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123008669 -0.123008668 -0.123008669 Si 0.123008669 0.123008668 0.123008669 kinetic energy (Ekin) = 0.00006516 Ry temperature = 6.85895277 K Ekin + Etot (const) = -14.44794028 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.59E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs total energy = -14.44794964 Ry Harris-Foulkes estimate = -14.44794964 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.50E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1620 7.5129 7.5129 ! total energy = -14.44794964 Ry Harris-Foulkes estimate = -14.44794964 Ry estimated scf accuracy < 3.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02319839 -0.02319840 -0.02319840 atom 2 type 1 force = 0.02319839 0.02319840 0.02319840 Total force = 0.056824 Total SCF correction = 0.000010 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123004485 -0.123004484 -0.123004485 Si 0.123004485 0.123004484 0.123004485 kinetic energy (Ekin) = 0.00000962 Ry temperature = 1.01254993 K Ekin + Etot (const) = -14.44794002 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.72E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1616 7.5131 7.5131 ! total energy = -14.44794371 Ry Harris-Foulkes estimate = -14.44794371 Ry estimated scf accuracy < 4.7E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02324560 -0.02324561 -0.02324560 atom 2 type 1 force = 0.02324560 0.02324561 0.02324560 Total force = 0.056940 Total SCF correction = 0.000006 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123035982 -0.123035980 -0.123035981 Si 0.123035982 0.123035980 0.123035981 kinetic energy (Ekin) = 0.00000371 Ry temperature = 0.39056068 K Ekin + Etot (const) = -14.44794000 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.90E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44798806 Ry Harris-Foulkes estimate = -14.44798806 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.54E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1653 7.5112 7.5112 ! total energy = -14.44798806 Ry Harris-Foulkes estimate = -14.44798806 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02286399 -0.02286400 -0.02286399 atom 2 type 1 force = 0.02286399 0.02286400 0.02286399 Total force = 0.056005 Total SCF correction = 0.000008 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123102573 -0.123102571 -0.123102572 Si 0.123102573 0.123102571 0.123102572 kinetic energy (Ekin) = 0.00004786 Ry temperature = 5.03736538 K Ekin + Etot (const) = -14.44794021 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 first order wave-functions extrapolation NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.73E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44807944 Ry Harris-Foulkes estimate = -14.44807943 Ry estimated scf accuracy < 0.00000013 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44807945 Ry Harris-Foulkes estimate = -14.44807945 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1730 7.5073 7.5073 ! total energy = -14.44807945 Ry Harris-Foulkes estimate = -14.44807945 Ry estimated scf accuracy < 3.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02206858 -0.02206861 -0.02206859 atom 2 type 1 force = 0.02206858 0.02206861 0.02206859 Total force = 0.054057 Total SCF correction = 0.000004 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000000 cm^2/s atom 2 D = 0.00000000 cm^2/s < D > = 0.00000000 cm^2/s Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123203039 -0.123203037 -0.123203038 Si 0.123203039 0.123203037 0.123203038 kinetic energy (Ekin) = 0.00013882 Ry temperature = 14.61171835 K Ekin + Etot (const) = -14.44794064 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.37s CPU 0.42s WALL ( 51 calls) update_pot : 0.10s CPU 0.14s WALL ( 50 calls) forces : 0.01s CPU 0.03s WALL ( 51 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.15s CPU 0.18s WALL ( 200 calls) sum_band : 0.07s CPU 0.06s WALL ( 200 calls) v_of_rho : 0.09s CPU 0.09s WALL ( 201 calls) mix_rho : 0.01s CPU 0.02s WALL ( 200 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.01s WALL ( 401 calls) cegterg : 0.14s CPU 0.16s WALL ( 200 calls) Called by *egterg: h_psi : 0.10s CPU 0.12s WALL ( 514 calls) g_psi : 0.00s CPU 0.00s WALL ( 313 calls) cdiaghg : 0.02s CPU 0.02s WALL ( 413 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.00s WALL ( 514 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 614 calls) fft : 0.06s CPU 0.06s WALL ( 1005 calls) fftw : 0.08s CPU 0.11s WALL ( 4390 calls) davcio : 0.00s CPU 0.00s WALL ( 348 calls) PWSCF : 1.31s CPU 1.57s WALL This run was terminated on: 10:24:48 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/noncolin-constrain_atomic.in0000755000175000017500000000167512341373024020506 0ustar mbamba &control calculation='scf' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 85.0 angle2(1) = 0.0 constrained_magnetization='atomic' lambda = 1 / &electrons mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS (alat) Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 espresso-5.1/PW/tests/dft7.ref0000644000175000017500000002320112341373024014331 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10839) starts on 3Apr2014 at 8:38:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/olyp.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = OLYP ( 0 3 6 3 0) Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 27 728 728 141 Max 82 82 28 731 731 142 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = OLYP ( 0 3 6 3 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 93, 4) NL pseudopotentials 0.01 Mb ( 93, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 93, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.81E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.73015094 Ry Harris-Foulkes estimate = -15.74358401 Ry estimated scf accuracy < 0.07062629 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.83E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.73260104 Ry Harris-Foulkes estimate = -15.73204116 Ry estimated scf accuracy < 0.00356599 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.46E-05, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.73294428 Ry Harris-Foulkes estimate = -15.73285405 Ry estimated scf accuracy < 0.00003992 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.99E-07, avg # of iterations = 3.0 total cpu time spent up to now is 0.0 secs total energy = -15.73300169 Ry Harris-Foulkes estimate = -15.73299854 Ry estimated scf accuracy < 0.00000561 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.01E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.73300384 Ry Harris-Foulkes estimate = -15.73300382 Ry estimated scf accuracy < 0.00000155 Ry iteration # 6 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.94E-08, avg # of iterations = 1.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.6755 2.5590 5.6406 5.6406 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.7671 0.0979 2.9201 4.1746 highest occupied level (ev): 5.6406 ! total energy = -15.73300405 Ry Harris-Foulkes estimate = -15.73300396 Ry estimated scf accuracy < 0.00000006 Ry The total energy is the sum of the following terms: one-electron contribution = 4.79695577 Ry hartree contribution = 1.15566522 Ry xc contribution = -4.78586646 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 6 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.00s CPU 0.01s WALL ( 7 calls) sum_band : 0.00s CPU 0.00s WALL ( 7 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 7 calls) mix_rho : 0.01s CPU 0.00s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 30 calls) cegterg : 0.00s CPU 0.01s WALL ( 14 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 39 calls) g_psi : 0.00s CPU 0.00s WALL ( 23 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 35 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 39 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 39 calls) fft : 0.01s CPU 0.00s WALL ( 78 calls) fftw : 0.01s CPU 0.01s WALL ( 372 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.00s CPU 0.00s WALL ( 450 calls) PWSCF : 0.10s CPU 0.10s WALL This run was terminated on: 8:38:30 3Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/berry.in0000644000175000017500000000106212341373024014443 0ustar mbamba &control calculation = 'scf' / &system ibrav=1 celldm(1)=7.3699, nat=5 ntyp=3 nbnd=25 ecutwfc=25.0 ecutrho=200. / &electrons conv_thr = 1e-12, mixing_beta=0.3 tqr=.true. / ATOMIC_SPECIES Pb 207.2 Pb.pz-d-van.UPF Ti 47.867 Ti.pz-sp-van_ak.UPF O 15.9994 O.pz-van_ak.UPF ATOMIC_POSITIONS (alat) Pb 0.000 0.000 0.010 Ti 0.500 0.500 0.500 O 0.000 0.500 0.500 O 0.500 0.500 0.000 O 0.500 0.000 0.500 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/scf-disk_io.ref20000644000175000017500000002002112341373024015736 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 12:24:57 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-disk_io.in2 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.0 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 13.0 total cpu time spent up to now is 0.3 secs End of band structure calculation k = 0.1250 0.1250 0.1250 band energies (ev): -5.4706 4.7382 6.0279 6.0279 8.8974 9.3395 9.3395 11.1523 k = 0.1250 0.1250 0.3750 band energies (ev): -4.9390 3.1208 4.9509 5.0618 8.4665 10.1046 10.8682 11.1190 k = 0.1250 0.1250 0.6250 band energies (ev): -3.8735 1.4228 3.5622 4.0290 7.6390 9.1995 12.3955 12.7019 k = 0.1250 0.1250 0.8750 band energies (ev): -2.3492 -0.4822 2.7535 3.5416 7.1512 8.2502 14.7060 14.7522 k = 0.1250 0.3750 0.3750 band energies (ev): -4.4237 1.6761 3.9439 5.5190 9.0810 10.0402 10.2089 12.6374 k = 0.1250 0.3750 0.6250 band energies (ev): -3.4357 0.4677 2.9038 4.3187 9.2003 9.9002 11.3756 12.3445 k = 0.1250 0.3750 0.8750 band energies (ev): -2.1560 -0.5888 2.1105 3.2455 8.6854 10.6099 11.6524 13.8332 k = 0.1250 0.6250 0.6250 band energies (ev): -2.6862 -0.3462 2.2032 4.3656 8.1405 11.8301 11.8827 13.3481 k = 0.3750 0.3750 0.3750 band energies (ev): -3.9543 0.3153 5.1954 5.1954 8.0460 9.8187 9.8187 14.0525 k = 0.3750 0.3750 0.6250 band energies (ev): -3.1964 -0.5070 3.9935 4.6986 8.5444 9.8721 10.4853 13.7251 highest occupied, lowest unoccupied level (ev): 6.0279 7.1512 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.13s CPU 0.13s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.13s CPU 0.13s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 10 calls) cegterg : 0.12s CPU 0.12s WALL ( 10 calls) Called by *egterg: h_psi : 0.05s CPU 0.06s WALL ( 150 calls) g_psi : 0.01s CPU 0.01s WALL ( 130 calls) cdiaghg : 0.04s CPU 0.04s WALL ( 140 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 150 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 150 calls) fft : 0.00s CPU 0.00s WALL ( 3 calls) fftw : 0.04s CPU 0.05s WALL ( 1618 calls) davcio : 0.00s CPU 0.00s WALL ( 10 calls) PWSCF : 0.34s CPU 0.35s WALL This run was terminated on: 12:24:58 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-nofrac.in0000644000175000017500000000056712341373024015352 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 force_symmorphic=.true. / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/dft10.ref0000644000175000017500000002134512341373024014412 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10839) starts on 3Apr2014 at 8:41:57 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/ev93.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = EV93 ( 1 4 25 0 0) Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 27 728 728 141 Max 82 82 28 731 731 142 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = EV93 ( 1 4 25 0 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 93, 4) NL pseudopotentials 0.01 Mb ( 93, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 93, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.98293225 Ry Harris-Foulkes estimate = -15.97884550 Ry estimated scf accuracy < 0.09180822 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.98974680 Ry Harris-Foulkes estimate = -15.98644521 Ry estimated scf accuracy < 0.00687951 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.60E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.99048407 Ry Harris-Foulkes estimate = -15.99034728 Ry estimated scf accuracy < 0.00009652 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.21E-06, avg # of iterations = 3.0 total cpu time spent up to now is 0.0 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.6875 2.5253 5.4925 5.4925 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.8451 0.0346 2.9937 4.1097 highest occupied level (ev): 5.4925 ! total energy = -15.99053189 Ry Harris-Foulkes estimate = -15.99052982 Ry estimated scf accuracy < 0.00000063 Ry The total energy is the sum of the following terms: one-electron contribution = 4.74738270 Ry hartree contribution = 1.28404726 Ry xc contribution = -5.12220328 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.02s CPU 0.02s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.01s WALL ( 4 calls) sum_band : 0.00s CPU 0.00s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 5 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 18 calls) cegterg : 0.02s CPU 0.01s WALL ( 8 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 26 calls) g_psi : 0.00s CPU 0.00s WALL ( 16 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 24 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 26 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 26 calls) fft : 0.00s CPU 0.00s WALL ( 54 calls) fftw : 0.01s CPU 0.01s WALL ( 232 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.00s CPU 0.00s WALL ( 286 calls) PWSCF : 0.10s CPU 0.10s WALL This run was terminated on: 8:41:57 3Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/cluster3.ref0000644000175000017500000012013712341373024015237 0ustar mbamba Program PWSCF v.4.99 starts on 5Jan2012 at 22:56:12 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/cluster3.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1369 1369 349 38401 38401 4801 Tot 685 685 175 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pbe-kjpaw.UPF MD5 check sum: 90f4868982d1b5f8aada8373f3a0510a Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pbe-kjpaw.UPF MD5 check sum: b6732a8c2b51919c45a22ac3ed50cb01 Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) H 1.00 1.00000 H( 1.00) 4 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0833333 0.0833333 0.0833333 ) 3 H tau( 3) = ( -0.0833333 -0.0833333 0.0833333 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 19201 G-vectors FFT dimensions: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.29 Mb ( 2401, 8) NL pseudopotentials 0.44 Mb ( 2401, 12) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.59 Mb ( 2401, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 11.12 Mb ( 91125, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000894 starting charge 7.99999, renormalised to 8.00000 negative rho (up, down): 0.894E-03 0.000E+00 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 1.0 secs per-process dynamical memory: 24.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 8.0 negative rho (up, down): 0.333E-02 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -43.77713393 Ry Harris-Foulkes estimate = -44.16053204 Ry estimated scf accuracy < 0.51450938 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.43E-03, avg # of iterations = 2.0 negative rho (up, down): 0.408E-02 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -43.88828070 Ry Harris-Foulkes estimate = -44.11204889 Ry estimated scf accuracy < 0.45125200 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.64E-03, avg # of iterations = 2.0 negative rho (up, down): 0.585E-02 0.000E+00 total cpu time spent up to now is 1.7 secs total energy = -43.98511006 Ry Harris-Foulkes estimate = -43.98700539 Ry estimated scf accuracy < 0.00473738 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.92E-05, avg # of iterations = 14.0 negative rho (up, down): 0.567E-02 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -43.98709949 Ry Harris-Foulkes estimate = -43.98719509 Ry estimated scf accuracy < 0.00032106 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.01E-06, avg # of iterations = 3.0 negative rho (up, down): 0.574E-02 0.000E+00 total cpu time spent up to now is 2.3 secs total energy = -43.98710307 Ry Harris-Foulkes estimate = -43.98711856 Ry estimated scf accuracy < 0.00005642 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.05E-07, avg # of iterations = 2.0 negative rho (up, down): 0.576E-02 0.000E+00 total cpu time spent up to now is 2.5 secs total energy = -43.98710725 Ry Harris-Foulkes estimate = -43.98710787 Ry estimated scf accuracy < 0.00000356 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.46E-08, avg # of iterations = 2.0 negative rho (up, down): 0.577E-02 0.000E+00 total cpu time spent up to now is 2.8 secs total energy = -43.98710791 Ry Harris-Foulkes estimate = -43.98710793 Ry estimated scf accuracy < 0.00000011 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-09, avg # of iterations = 2.0 negative rho (up, down): 0.577E-02 0.000E+00 total cpu time spent up to now is 3.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.7691 -13.8224 -9.0557 -7.2713 -1.3179 1.9474 2.1708 2.6722 highest occupied, lowest unoccupied level (ev): -7.2713 -1.3179 ! total energy = -43.98710795 Ry Harris-Foulkes estimate = -43.98710795 Ry estimated scf accuracy < 2.9E-09 Ry total all-electron energy = -152.747854 Ry The total energy is the sum of the following terms: one-electron contribution = -83.31927219 Ry hartree contribution = 43.20230450 Ry xc contribution = -8.51965934 Ry ewald contribution = 14.56351319 Ry one-center paw contrib. = -9.91399411 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.577E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.15864462 atom 2 type 2 force = 0.07172818 0.07172818 0.07932231 atom 3 type 2 force = -0.07172818 -0.07172818 0.07932231 Total force = 0.182109 Total SCF correction = 0.000020 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.9871079452 Ry new trust radius = 0.1287707028 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.071728184 1.071728184 1.079322312 H -1.071728184 -1.071728184 1.079322312 Writing output data file pwscf.save Check: negative starting charge= -0.000894 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000868 negative rho (up, down): 0.462E-02 0.000E+00 total cpu time spent up to now is 3.5 secs per-process dynamical memory: 46.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 10.0 negative rho (up, down): 0.457E-02 0.000E+00 total cpu time spent up to now is 3.8 secs total energy = -43.99751144 Ry Harris-Foulkes estimate = -43.93877091 Ry estimated scf accuracy < 0.00870795 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-04, avg # of iterations = 2.0 negative rho (up, down): 0.467E-02 0.000E+00 total cpu time spent up to now is 4.0 secs total energy = -43.99791481 Ry Harris-Foulkes estimate = -44.00042245 Ry estimated scf accuracy < 0.00435529 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.44E-05, avg # of iterations = 2.0 negative rho (up, down): 0.481E-02 0.000E+00 total cpu time spent up to now is 4.3 secs total energy = -43.99904835 Ry Harris-Foulkes estimate = -43.99927719 Ry estimated scf accuracy < 0.00053161 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.65E-06, avg # of iterations = 2.0 negative rho (up, down): 0.482E-02 0.000E+00 total cpu time spent up to now is 4.5 secs total energy = -43.99912650 Ry Harris-Foulkes estimate = -43.99912777 Ry estimated scf accuracy < 0.00000387 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.84E-08, avg # of iterations = 3.0 negative rho (up, down): 0.482E-02 0.000E+00 total cpu time spent up to now is 4.7 secs total energy = -43.99913002 Ry Harris-Foulkes estimate = -43.99913061 Ry estimated scf accuracy < 0.00000124 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-08, avg # of iterations = 2.0 negative rho (up, down): 0.482E-02 0.000E+00 total cpu time spent up to now is 5.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -24.9804 -13.1244 -8.9618 -7.1077 -1.4482 1.6726 1.9893 2.6090 highest occupied, lowest unoccupied level (ev): -7.1077 -1.4482 ! total energy = -43.99913029 Ry Harris-Foulkes estimate = -43.99913029 Ry estimated scf accuracy < 0.00000001 Ry total all-electron energy = -152.759877 Ry The total energy is the sum of the following terms: one-electron contribution = -81.68212826 Ry hartree contribution = 42.43735096 Ry xc contribution = -8.39131947 Ry ewald contribution = 13.55827488 Ry one-center paw contrib. = -9.92130839 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.482E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00526201 atom 2 type 2 force = -0.01916462 -0.01916462 -0.00263100 atom 3 type 2 force = 0.01916462 0.01916462 -0.00263100 Total force = 0.038509 Total SCF correction = 0.000032 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.9871079452 Ry energy new = -43.9991302934 Ry CASE: energy _new < energy _old new trust radius = 0.0221086609 bohr new conv_thr = 0.0000000192 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.056130835 1.056130835 1.077826210 H -1.056130835 -1.056130835 1.077826210 Writing output data file pwscf.save Check: negative starting charge= -0.000868 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000866 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 5.5 secs per-process dynamical memory: 46.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 5.7 secs total energy = -43.99861742 Ry Harris-Foulkes estimate = -43.94595568 Ry estimated scf accuracy < 0.00644568 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.06E-05, avg # of iterations = 2.0 negative rho (up, down): 0.498E-02 0.000E+00 total cpu time spent up to now is 6.0 secs total energy = -43.99901561 Ry Harris-Foulkes estimate = -44.00116394 Ry estimated scf accuracy < 0.00403917 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.05E-05, avg # of iterations = 2.0 negative rho (up, down): 0.496E-02 0.000E+00 total cpu time spent up to now is 6.2 secs total energy = -43.99990940 Ry Harris-Foulkes estimate = -44.00005462 Ry estimated scf accuracy < 0.00026165 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.27E-06, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 6.4 secs total energy = -43.99995052 Ry Harris-Foulkes estimate = -43.99995166 Ry estimated scf accuracy < 0.00000273 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-08, avg # of iterations = 3.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 6.7 secs total energy = -43.99995321 Ry Harris-Foulkes estimate = -43.99995328 Ry estimated scf accuracy < 0.00000023 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.81E-09, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 6.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1028 -13.1875 -9.0128 -7.1352 -1.4274 1.7194 2.0181 2.6216 highest occupied, lowest unoccupied level (ev): -7.1352 -1.4274 ! total energy = -43.99995329 Ry Harris-Foulkes estimate = -43.99995327 Ry estimated scf accuracy < 5.0E-09 Ry total all-electron energy = -152.760700 Ry The total energy is the sum of the following terms: one-electron contribution = -81.91560932 Ry hartree contribution = 42.54600215 Ry xc contribution = -8.40938892 Ry ewald contribution = 13.69966731 Ry one-center paw contrib. = -9.92062450 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.497E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01140113 atom 2 type 2 force = -0.00725022 -0.00725022 0.00570056 atom 3 type 2 force = 0.00725022 0.00725022 0.00570056 Total force = 0.016591 Total SCF correction = 0.000038 number of scf cycles = 3 number of bfgs steps = 2 energy old = -43.9991302934 Ry energy new = -43.9999532884 Ry CASE: energy _new < energy _old new trust radius = 0.0202271411 bohr new conv_thr = 0.0000000073 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.043593567 1.043593567 1.087561252 H -1.043593567 -1.043593567 1.087561252 Writing output data file pwscf.save Check: negative starting charge= -0.000866 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000860 negative rho (up, down): 0.505E-02 0.000E+00 total cpu time spent up to now is 7.4 secs per-process dynamical memory: 46.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.506E-02 0.000E+00 total cpu time spent up to now is 7.7 secs total energy = -43.99943799 Ry Harris-Foulkes estimate = -43.93833915 Ry estimated scf accuracy < 0.00463009 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.79E-05, avg # of iterations = 2.0 negative rho (up, down): 0.504E-02 0.000E+00 total cpu time spent up to now is 7.9 secs total energy = -43.99965332 Ry Harris-Foulkes estimate = -44.00108380 Ry estimated scf accuracy < 0.00263486 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.29E-05, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 8.1 secs total energy = -44.00024315 Ry Harris-Foulkes estimate = -44.00036326 Ry estimated scf accuracy < 0.00021893 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.74E-06, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 8.4 secs total energy = -44.00027652 Ry Harris-Foulkes estimate = -44.00027741 Ry estimated scf accuracy < 0.00000203 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.53E-08, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 8.6 secs total energy = -44.00027835 Ry Harris-Foulkes estimate = -44.00027847 Ry estimated scf accuracy < 0.00000028 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.55E-09, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 8.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1747 -13.1790 -9.0752 -7.1513 -1.4182 1.7414 2.0264 2.6348 highest occupied, lowest unoccupied level (ev): -7.1513 -1.4182 ! total energy = -44.00027842 Ry Harris-Foulkes estimate = -44.00027841 Ry estimated scf accuracy < 6.3E-10 Ry total all-electron energy = -152.761025 Ry The total energy is the sum of the following terms: one-electron contribution = -82.02683813 Ry hartree contribution = 42.59641351 Ry xc contribution = -8.41787316 Ry ewald contribution = 13.76876360 Ry one-center paw contrib. = -9.92074425 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.502E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01704668 atom 2 type 2 force = -0.00016733 -0.00016733 0.00852334 atom 3 type 2 force = 0.00016733 0.00016733 0.00852334 Total force = 0.012058 Total SCF correction = 0.000006 number of scf cycles = 4 number of bfgs steps = 3 energy old = -43.9999532884 Ry energy new = -44.0002784226 Ry CASE: energy _new < energy _old new trust radius = 0.0223935898 bohr new conv_thr = 0.0000000033 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.033909439 1.033909439 1.105278707 H -1.033909439 -1.033909439 1.105278707 Writing output data file pwscf.save Check: negative starting charge= -0.000860 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000854 negative rho (up, down): 0.504E-02 0.000E+00 total cpu time spent up to now is 9.3 secs per-process dynamical memory: 46.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 9.6 secs total energy = -43.99992008 Ry Harris-Foulkes estimate = -43.95299126 Ry estimated scf accuracy < 0.00443049 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.54E-05, avg # of iterations = 2.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 9.8 secs total energy = -43.99999618 Ry Harris-Foulkes estimate = -44.00111492 Ry estimated scf accuracy < 0.00196962 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-05, avg # of iterations = 2.0 negative rho (up, down): 0.500E-02 0.000E+00 total cpu time spent up to now is 10.1 secs total energy = -44.00044771 Ry Harris-Foulkes estimate = -44.00060577 Ry estimated scf accuracy < 0.00030571 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.82E-06, avg # of iterations = 2.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 10.3 secs total energy = -44.00050028 Ry Harris-Foulkes estimate = -44.00050064 Ry estimated scf accuracy < 0.00000106 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.32E-08, avg # of iterations = 3.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 10.6 secs total energy = -44.00050188 Ry Harris-Foulkes estimate = -44.00050191 Ry estimated scf accuracy < 0.00000015 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-09, avg # of iterations = 2.0 negative rho (up, down): 0.500E-02 0.000E+00 total cpu time spent up to now is 10.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.2034 -13.1161 -9.1439 -7.1589 -1.4184 1.7437 2.0194 2.6459 highest occupied, lowest unoccupied level (ev): -7.1589 -1.4184 ! total energy = -44.00050192 Ry Harris-Foulkes estimate = -44.00050190 Ry estimated scf accuracy < 1.0E-10 Ry total all-electron energy = -152.761248 Ry The total energy is the sum of the following terms: one-electron contribution = -82.03829179 Ry hartree contribution = 42.60000765 Ry xc contribution = -8.41858888 Ry ewald contribution = 13.77781031 Ry one-center paw contrib. = -9.92143921 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.500E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01311142 atom 2 type 2 force = 0.00251585 0.00251585 0.00655571 atom 3 type 2 force = -0.00251585 -0.00251585 0.00655571 Total force = 0.010549 Total SCF correction = 0.000014 number of scf cycles = 5 number of bfgs steps = 4 energy old = -44.0002784226 Ry energy new = -44.0005019224 Ry CASE: energy _new < energy _old new trust radius = 0.0205527051 bohr new conv_thr = 0.0000000022 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.028296563 1.028296563 1.124236685 H -1.028296563 -1.028296563 1.124236685 Writing output data file pwscf.save Check: negative starting charge= -0.000854 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000850 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 11.3 secs per-process dynamical memory: 46.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 11.5 secs total energy = -44.00015528 Ry Harris-Foulkes estimate = -43.93961023 Ry estimated scf accuracy < 0.00486021 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.08E-05, avg # of iterations = 2.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 11.8 secs total energy = -44.00012905 Ry Harris-Foulkes estimate = -44.00116967 Ry estimated scf accuracy < 0.00178898 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-05, avg # of iterations = 2.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 12.0 secs total energy = -44.00053613 Ry Harris-Foulkes estimate = -44.00075552 Ry estimated scf accuracy < 0.00044902 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-06, avg # of iterations = 2.0 negative rho (up, down): 0.496E-02 0.000E+00 total cpu time spent up to now is 12.2 secs total energy = -44.00061178 Ry Harris-Foulkes estimate = -44.00061210 Ry estimated scf accuracy < 0.00000081 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-08, avg # of iterations = 4.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 12.5 secs total energy = -44.00061315 Ry Harris-Foulkes estimate = -44.00061334 Ry estimated scf accuracy < 0.00000055 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.85E-09, avg # of iterations = 1.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 12.7 secs total energy = -44.00061318 Ry Harris-Foulkes estimate = -44.00061320 Ry estimated scf accuracy < 0.00000007 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.89E-10, avg # of iterations = 2.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 13.0 secs total energy = -44.00061318 Ry Harris-Foulkes estimate = -44.00061319 Ry estimated scf accuracy < 0.00000001 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-10, avg # of iterations = 3.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 13.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1967 -13.0323 -9.2013 -7.1594 -1.4249 1.7315 2.0040 2.6539 highest occupied, lowest unoccupied level (ev): -7.1594 -1.4249 ! total energy = -44.00061318 Ry Harris-Foulkes estimate = -44.00061319 Ry estimated scf accuracy < 1.5E-10 Ry total all-electron energy = -152.761359 Ry The total energy is the sum of the following terms: one-electron contribution = -81.98019189 Ry hartree contribution = 42.57142169 Ry xc contribution = -8.41393245 Ry ewald contribution = 13.74444702 Ry one-center paw contrib. = -9.92235755 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.495E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00334397 atom 2 type 2 force = 0.00165860 0.00165860 0.00167199 atom 3 type 2 force = -0.00165860 -0.00165860 0.00167199 Total force = 0.004074 Total SCF correction = 0.000003 number of scf cycles = 6 number of bfgs steps = 5 energy old = -44.0005019224 Ry energy new = -44.0006131847 Ry CASE: energy _new < energy _old new trust radius = 0.0026539448 bohr new conv_thr = 0.0000000011 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.029107768 1.029107768 1.126629866 H -1.029107768 -1.029107768 1.126629866 Writing output data file pwscf.save Check: negative starting charge= -0.000850 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000850 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 13.7 secs per-process dynamical memory: 46.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 14.0 secs total energy = -43.99995798 Ry Harris-Foulkes estimate = -43.94429579 Ry estimated scf accuracy < 0.00509579 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.37E-05, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 14.2 secs total energy = -44.00002390 Ry Harris-Foulkes estimate = -44.00135397 Ry estimated scf accuracy < 0.00234743 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.93E-05, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 14.4 secs total energy = -44.00056018 Ry Harris-Foulkes estimate = -44.00074496 Ry estimated scf accuracy < 0.00035513 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.44E-06, avg # of iterations = 2.0 negative rho (up, down): 0.494E-02 0.000E+00 total cpu time spent up to now is 14.7 secs total energy = -44.00061955 Ry Harris-Foulkes estimate = -44.00062007 Ry estimated scf accuracy < 0.00000134 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-08, avg # of iterations = 3.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 14.9 secs total energy = -44.00062119 Ry Harris-Foulkes estimate = -44.00062123 Ry estimated scf accuracy < 0.00000015 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.82E-09, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 15.2 secs total energy = -44.00062123 Ry Harris-Foulkes estimate = -44.00062122 Ry estimated scf accuracy < 1.3E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-11, avg # of iterations = 3.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 15.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1839 -13.0171 -9.2030 -7.1570 -1.4276 1.7255 2.0000 2.6532 highest occupied, lowest unoccupied level (ev): -7.1570 -1.4276 ! total energy = -44.00062123 Ry Harris-Foulkes estimate = -44.00062123 Ry estimated scf accuracy < 2.0E-10 Ry total all-electron energy = -152.761367 Ry The total energy is the sum of the following terms: one-electron contribution = -81.95131883 Ry hartree contribution = 42.55782764 Ry xc contribution = -8.41168464 Ry ewald contribution = 13.72707950 Ry one-center paw contrib. = -9.92252491 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.493E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00046242 atom 2 type 2 force = 0.00039485 0.00039485 0.00023121 atom 3 type 2 force = -0.00039485 -0.00039485 0.00023121 Total force = 0.000855 Total SCF correction = 0.000005 bfgs converged in 7 scf cycles and 6 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -44.0006212345 Ry Begin final coordinates ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.029107768 1.029107768 1.126629866 H -1.029107768 -1.029107768 1.126629866 End final coordinates Writing output data file pwscf.save init_run : 0.70s CPU 0.71s WALL ( 1 calls) electrons : 11.19s CPU 11.42s WALL ( 7 calls) update_pot : 1.16s CPU 1.16s WALL ( 6 calls) forces : 0.95s CPU 0.95s WALL ( 7 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.15s CPU 0.16s WALL ( 1 calls) Called by electrons: c_bands : 1.66s CPU 1.66s WALL ( 47 calls) sum_band : 1.30s CPU 1.30s WALL ( 47 calls) v_of_rho : 3.90s CPU 4.00s WALL ( 54 calls) newd : 0.92s CPU 0.90s WALL ( 54 calls) mix_rho : 0.69s CPU 0.69s WALL ( 47 calls) Called by c_bands: init_us_2 : 0.10s CPU 0.09s WALL ( 95 calls) regterg : 1.58s CPU 1.57s WALL ( 47 calls) Called by *egterg: h_psi : 1.17s CPU 1.20s WALL ( 187 calls) s_psi : 0.02s CPU 0.02s WALL ( 187 calls) g_psi : 0.04s CPU 0.07s WALL ( 139 calls) rdiaghg : 0.04s CPU 0.04s WALL ( 180 calls) Called by h_psi: add_vuspsi : 0.03s CPU 0.02s WALL ( 187 calls) General routines calbec : 0.03s CPU 0.05s WALL ( 262 calls) fft : 1.26s CPU 1.22s WALL ( 785 calls) fftw : 0.97s CPU 1.04s WALL ( 1314 calls) davcio : 0.00s CPU 0.01s WALL ( 47 calls) PAW routines PAW_pot : 3.60s CPU 3.61s WALL ( 60 calls) PAW_ddot : 0.44s CPU 0.42s WALL ( 371 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 107 calls) PWSCF : 15.14s CPU 15.62s WALL This run was terminated on: 22:56:27 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/check-pw.x.j0000755000175000017500000002370412341373024015124 0ustar mbamba#!/bin/sh # Automated checks for pw.x - PG 2007-2012 # . ../../environment_variables # # You shouldn't need to modify anything below this line. # # Some specific quantities are checked against a reference output # Checks are implemented for the following calculations: # 'scf', 'relax', 'md', 'vc-relax', 'nscf' # (see below for the latter) # # Input data: *.in, reference results: *.res, output: *.out # ./check-pw.x.j checks all *.in files # ./check-pw.x.j "some file(s)" checks the specified files # Example: # ./check-pw.x.j atom*.in lsda* # If you want to save a copy in file "logfile": # ./check-pw.x.j atom*.in lsda* | tee logfile # # For 'nscf' case, the data is in file $name.in2, where $name.in is the # data for the scf calculation that must be executed before the nscf one. # Output is written to $name.out2 and checked vs reference data $name.res2 # The quantities that are compared with reference ones are: # the Fermi energy, or # the HOMO and LUMO # the total polarization (for the Berry's phase calculation) # # For all other cases, the quantites that are verified are: # the converged total energy # the number of scf iterations # the module of the force ( sqrt(\sum_i f_i^2)) if calculated; # the pressure P if calculated # taken from examples - not sure it is really needed if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi ESPRESSO_ROOT=`cd ../../ ; pwd` ESPRESSO_TMPDIR=$ESPRESSO_ROOT/tempdir/ ESPRESSO_PSEUDO=$ESPRESSO_ROOT/pseudo/ # no need to specify outdir and pseudo_dir in all *.in files export ESPRESSO_TMPDIR ESPRESSO_PSEUDO if test ! -d $ESPRESSO_TMPDIR then mkdir $ESPRESSO_TMPDIR fi # this is the current directory, where the test is executed TESTDIR=`pwd` # With no arguments, checks all *.in files # With an argument, checks files (ending with .in) matching the argument if test $# = 0 then files=`/bin/ls *.in` else files=`/bin/ls $*| grep "\.in$"` fi ######################################################################## # function generating kernel table for nonlocal functionals if missing ######################################################################## get_kernel () { if test "$1" = "vdw1" || test "$1" = "vdw2" ; then if ! test -f $ESPRESSO_PSEUDO/vdW_kernel_table ; then $ECHO "Generating kernel table - May take several minutes...\c" $PARA_PREFIX $ESPRESSO_ROOT/PW/src/generate_vdW_kernel_table.x $PARA_POSTFIX mv vdW_kernel_table $ESPRESSO_PSEUDO/ $ECHO "kernel table generated in $ESPRESSO_PSEUDO/vdW_kernel_table" fi fi } ######################################################################## # function to get pseudopotentials from the web if missing ######################################################################## get_pp () { ppfiles=`grep UPF $1.in | awk '{print $3}'` for ppfile in $ppfiles do if ! test -f $ESPRESSO_PSEUDO/$ppfile ; then $ECHO "Downloading $ppfile to $ESPRESSO_PSEUDO...\c" $WGET $ESPRESSO_PSEUDO/$ppfile $NETWORK_PSEUDO/$ppfile 2> /dev/null if test $? != 0; then $ECHO "failed!" $ECHO "test $1 will not be executed" # status=1 else $ECHO "success" # status=0 fi fi done } ######################################################################## # function to test scf calculations - usage: check_scf "file prefix" ######################################################################## check_scf () { # get reference total energy (cut to 6 significant digits) e0=`grep ! $1.ref | tail -1 | awk '{printf "%12.6f\n", $5}'` # get reference number of scf iterations n0=`grep 'convergence has' $1.ref | tail -1 | awk '{print $6}'` # get reference initial force (cut to 4 significant digits) f0=`grep "Total force" $1.ref | head -1 | awk '{printf "%8.4f\n", $4}'` # get reference pressure p0=`grep "P= " $1.ref | tail -1 | awk '{print $6}'` # # note that only the final energy, pressure, number of iterations, # and only the initial force are tested - hopefully this should # cover the various MD and optimization cases as well as simple scf # e1=`grep ! $1.out | tail -1 | awk '{printf "%12.6f\n", $5}'` n1=`grep 'convergence has' $1.out | tail -1 | awk '{print $6}'` f1=`grep "Total force" $1.out | head -1 | awk '{printf "%8.4f\n", $4}'` p1=`grep "P= " $1.out | tail -1 | awk '{print $6}'` # if test "$e1" = "$e0" then if test "$n1" = "$n0" then if test "$f1" = "$f0" then if test "$p1" = "$p0" then $ECHO "passed" fi fi fi fi if test "$e1" != "$e0" then $ECHO "discrepancy in total energy detected" $ECHO "Reference: $e0, You got: $e1" fi if test "$n1" != "$n0" then $ECHO "discrepancy in number of scf iterations detected" $ECHO "Reference: $n0, You got: $n1" fi if test "$f1" != "$f0" then $ECHO "discrepancy in force detected" $ECHO "Reference: $f0, You got: $f1" fi if test "$p1" != "$p0" then $ECHO "discrepancy in pressure detected" $ECHO "Reference: $p0, You got: $p1" fi } ######################################################################## # function to test nscf calculations - usage: check_nscf "file prefix" "number" ######################################################################## check_nscf () { # get reference Fermi energy ef0=`grep Fermi $1.ref$2 | awk '{print $5}'` # get reference HOMO and LUMO eh0=`grep "highest occupied" $1.ref$2 | awk '{print $7}'` el0=`grep "highest occupied" $1.ref$2 | awk '{print $8}'` # get total polarization (for Berry's phase calculation) tf0=`grep " P = " $1.ref$2 | head -1 | awk '{printf "%7.5f", $3}'` # ef1=`grep Fermi $name.out$n | awk '{print $5}'` eh1=`grep "highest occupied" $1.out$2 | awk '{print $7}'` el1=`grep "highest occupied" $1.out$2 | awk '{print $8}'` tf1=`grep " P = " $1.out$2 | head -1 | awk '{printf "%7.5f", $3}'` # if test "$ef1" = "$ef0" then if test "$eh1" = "$eh0" then if test "$el1" = "$el0" then if test "$tf1" = "$tf0" then $ECHO "passed" fi fi fi fi if test "$ef1" != "$ef0" then $ECHO "discrepancy in Fermi energy detected" $ECHO "Reference: $ef0, You got: $ef1" fi if test "$eh1" != "$eh0" then $ECHO "discrepancy in HOMO detected" $ECHO "Reference: $eh0, You got: $eh1" fi if test "$el1" != "$el0" then $ECHO "discrepancy in LUMO detected" $ECHO "Reference: $el0, You got: $el1" fi if test "$tf1" != "$tf0" then $ECHO "discrepancy in polarization detected" $ECHO "Reference: $tf0, You got: $tf1" fi } ######################################################################## # function to get wall times - usage: get_times "file prefix" ######################################################################## get_times () { # convert from "1h23m45.6s" to seconds # the following line prevents cases such as "2m 7.5s" grep 'WALL$' $1.ref | sed 's/m /m0/' > $1.tmp # in order to get cpu instead of wall time, replace $3 to $5 tref=`awk '{ str = $5; h = m = s = 0; if (split(str, x, "h") == 2) { h = x[1]; str = x[2]; } if (split(str, x, "m") == 2) { m = x[1]; str = x[2]; } if (split(str, x, "s") == 2) { s = x[1]; str = x[2]; } t += h * 3600 + m * 60 + s; } END { printf("%.2f\n", t); }' \ $1.tmp` # as above for file *.out grep 'WALL$' $1.out | sed 's/m /m0/' > $1.tmp tout=`awk '{ str = $5; h = m = s = 0; if (split(str, x, "h") == 2) { h = x[1]; str = x[2]; } if (split(str, x, "m") == 2) { m = x[1]; str = x[2]; } if (split(str, x, "s") == 2) { s = x[1]; str = x[2]; } t += h * 3600 + m * 60 + s; } END { printf("%.2f\n", t); }' \ $1.tmp` /bin/rm $1.tmp # accumulate data totref=`echo $totref $tref | awk '{print $1+$2}'` totout=`echo $totout $tout | awk '{print $1+$2}'` } ######################################################################## # Perform here required checks ######################################################################## for file in $files do name=`basename $file .in` get_pp $name get_kernel $name $ECHO "Checking $name...\c" ### # run the code in the scratch directory # cd $ESPRESSO_TMPDIR $PARA_PREFIX $ESPRESSO_ROOT/PW/src/pw.x $PARA_POSTFIX \ -i $TESTDIR/$name.in > $TESTDIR/$name.out if test $? != 0; then $ECHO "FAILED with error condition!" $ECHO "Input: $name.in, Output: $name.out, Reference: $name.ref" $ECHO "Aborting" exit 1 fi # cd $TESTDIR ### if test -f $name.ref ; then # reference file exists # Test for scf/relax/md/vc-relax # check_scf $name # # extract wall time statistics # get_times $name # else $ECHO "not checked, reference file not available " fi # # now check subsequent non-scf step if required # look for $name.in2 for n in 1 2; do if test -f $name.in$n; then $ECHO "Checking $name, step $n ...\c" ### # run the code in the scratch directory # cd $ESPRESSO_TMPDIR $PARA_PREFIX $ESPRESSO_ROOT/PW/src/pw.x $PARA_POSTFIX \ -i $TESTDIR/$name.in$n > $TESTDIR/$name.out$n if test $? != 0; then $ECHO "FAILED with error condition!" $ECHO "Input: $name.in$n, Output: $name.out$n, Reference: $name.ref$n" $ECHO "Aborting" exit 1 fi # cd $TESTDIR ### if test -f $name.ref$n ; then # reference file exists if test $n = 1; then # this should actually be "check_bands", but it has to be written! check_nscf $name $n else check_nscf $name $n fi # extract wall time statistics get_times $name else $ECHO "not checked, reference file not available " fi fi done done $ECHO "Total wall time (s) spent in this run: " $totout $ECHO "Reference : " $totref espresso-5.1/PW/tests/vdw4.ref0000644000175000017500000022663512341373024014371 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10583M) starts on 6Nov2013 at 19: 8:47 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Serial version Reading input from /home/giannozz/trunk/espresso/PW/tests/vdw4.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = VDW-DF4 ( 1 4 24 0 1) Any further DFT definition will be discarded Please, verify this is what you really want file C.pbe-rrkjus.UPF: wavefunction(s) 2S 2P renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 265 187 61 9583 5211 1107 bravais-lattice index = 4 lattice parameter (alat) = 4.6412 a.u. unit-cell volume = 236.0493 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF4 ( 1 4 24 0 1) nstep = 50 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.726400 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.366784 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: f53da8562cfe6bfda6a1b4f380354fea atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym. Ops., with inversion, found (12 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.3632000 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.3632000 ) number of k points= 12 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.2165064 0.0458480), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1375440), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0458480), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1375440), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0458480), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1375440), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0458480), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1375440), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0458480), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1375440), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0458480), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1375440), wk = 0.1250000 Dense grid: 9583 G-vectors FFT dimensions: ( 20, 20, 60) Smooth grid: 5211 G-vectors FFT dimensions: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 662, 8) NL pseudopotentials 0.32 Mb ( 662, 32) Each V/rho on FFT grid 0.37 Mb ( 24000) Each G-vector array 0.07 Mb ( 9583) G-vector shells 0.07 Mb ( 9583) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.32 Mb ( 662, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 2.93 Mb ( 24000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 ************************************************************************ * * You are using vdW-DF for exchange-correlation in this calculation. * Please cite the following three references that made this development * possible: * * M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and * B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). * * T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and * D. C. Langreth, Phys. Rev. B 76, 125112 (2007). * * G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009). * * * If you are using vdW-DF2, please also cite: * * K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and * D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010). * * * If you are calculating the stress with vdW-DF, please also cite: * * R. Sabatini, E. Kucukbenli, B. Kolb, T. Thonhauser, and * S. de Gironcoli, J. Phys.: Condens. Matter 24, 424209 (2012). * ************************************************************************ Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in reciprocal space ************************************************************************ Starting wfc are 16 randomized atomic wfcs total cpu time spent up to now is 1.2 secs per-process dynamical memory: 35.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 1.8 secs total energy = -45.57581308 Ry Harris-Foulkes estimate = -45.80874435 Ry estimated scf accuracy < 0.39964663 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-03, avg # of iterations = 2.0 total cpu time spent up to now is 2.3 secs total energy = -45.63712114 Ry Harris-Foulkes estimate = -45.63701447 Ry estimated scf accuracy < 0.00521553 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.26E-05, avg # of iterations = 2.2 total cpu time spent up to now is 2.8 secs total energy = -45.63779696 Ry Harris-Foulkes estimate = -45.63771423 Ry estimated scf accuracy < 0.00034624 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-06, avg # of iterations = 1.9 total cpu time spent up to now is 3.3 secs total energy = -45.63783844 Ry Harris-Foulkes estimate = -45.63783726 Ry estimated scf accuracy < 0.00000157 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.82E-09, avg # of iterations = 3.4 total cpu time spent up to now is 3.9 secs total energy = -45.63784079 Ry Harris-Foulkes estimate = -45.63784081 Ry estimated scf accuracy < 0.00000012 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.42E-10, avg # of iterations = 3.4 total cpu time spent up to now is 4.5 secs total energy = -45.63784082 Ry Harris-Foulkes estimate = -45.63784087 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.42E-10, avg # of iterations = 2.5 total cpu time spent up to now is 5.1 secs End of self-consistent calculation k = 0.1250 0.2165 0.0458 ( 646 PWs) bands (ev): -11.5460 -11.2788 -0.1688 0.7705 0.8112 1.6125 1.8346 1.8633 k = 0.1250 0.2165 0.1375 ( 654 PWs) bands (ev): -11.4710 -11.3604 0.2914 0.7820 0.8001 1.0198 1.8423 1.8542 k = 0.1250 0.5052 0.0458 ( 662 PWs) bands (ev): -7.9880 -7.7876 -5.0738 -4.9226 -0.4749 -0.3991 3.8766 5.0235 k = 0.1250 0.5052 0.1375 ( 662 PWs) bands (ev): -7.9309 -7.8480 -5.0309 -4.9682 -0.4531 -0.4217 4.2061 4.6844 k = 0.1250-0.3608 0.0458 ( 661 PWs) bands (ev): -10.0853 -9.8434 -2.0452 -1.9411 0.2991 0.3625 1.5727 3.2000 k = 0.1250-0.3608 0.1375 ( 657 PWs) bands (ev): -10.0170 -9.9169 -2.0151 -1.9720 0.3172 0.3435 1.9987 2.6649 k = 0.1250-0.0722 0.0458 ( 639 PWs) bands (ev): -12.2879 -12.0077 -1.0688 0.7739 2.5620 2.6067 3.2352 3.2677 k = 0.1250-0.0722 0.1375 ( 635 PWs) bands (ev): -12.2093 -12.0934 -0.5941 0.1576 2.5750 2.5936 3.2447 3.2582 k = 0.3750 0.6495 0.0458 ( 647 PWs) bands (ev): -6.3491 -6.2522 -5.4530 -5.4104 -2.7981 -2.7009 5.6161 6.2395 k = 0.3750 0.6495 0.1375 ( 662 PWs) bands (ev): -6.3171 -6.2766 -5.4465 -5.4285 -2.7711 -2.7308 5.8574 6.1302 k = 0.3750-0.2165 0.0458 ( 658 PWs) bands (ev): -9.3680 -9.1387 -3.7595 -3.6182 0.9062 0.9563 2.3778 3.8710 k = 0.3750-0.2165 0.1375 ( 656 PWs) bands (ev): -9.3031 -9.2082 -3.7190 -3.6606 0.9208 0.9415 2.7760 3.3897 highest occupied level (ev): 6.2395 ! total energy = -45.63784084 Ry Harris-Foulkes estimate = -45.63784084 Ry estimated scf accuracy < 2.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.04462522 Ry hartree contribution = 13.44911268 Ry xc contribution = -14.13319434 Ry ewald contribution = -33.90913395 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001685 0.00000000 0.00000000 0.00000000 0.00001685 0.00000000 0.00000000 0.00000000 0.00001708 VDW KERNEL stress -0.00006455 0.00000000 0.00000000 0.00000000 -0.00006455 0.00000000 0.00000000 0.00000000 -0.00054117 VDW ALL stress 0.00004770 0.00000000 0.00000000 0.00000000 0.00004770 0.00000000 0.00000000 0.00000000 0.00052409 total stress (Ry/bohr**3) (kbar) P= 17.60 0.00021142 0.00000000 0.00000000 31.10 0.00 0.00 0.00000000 0.00021142 0.00000000 0.00 31.10 0.00 0.00000000 0.00000000 -0.00006389 0.00 0.00 -9.40 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -45.6378408376 Ry new trust radius = 0.0049076305 bohr new conv_thr = 0.0000000100 Ry new unit-cell volume = 235.67225 a.u.^3 ( 34.92302 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.722045582 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.361022791 C 0.500000000 0.288675135 1.361022791 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential extrapolated charge 15.97441, renormalised to 16.00000 total cpu time spent up to now is 6.8 secs per-process dynamical memory: 38.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.74E-08, avg # of iterations = 1.0 total cpu time spent up to now is 7.6 secs total energy = -45.63783769 Ry Harris-Foulkes estimate = -45.65134589 Ry estimated scf accuracy < 0.00001086 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.79E-08, avg # of iterations = 3.3 total cpu time spent up to now is 8.2 secs total energy = -45.63786556 Ry Harris-Foulkes estimate = -45.63787154 Ry estimated scf accuracy < 0.00001588 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.79E-08, avg # of iterations = 1.8 total cpu time spent up to now is 8.7 secs total energy = -45.63786326 Ry Harris-Foulkes estimate = -45.63786618 Ry estimated scf accuracy < 0.00000438 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.73E-08, avg # of iterations = 2.0 total cpu time spent up to now is 9.2 secs total energy = -45.63786413 Ry Harris-Foulkes estimate = -45.63786419 Ry estimated scf accuracy < 0.00000010 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.26E-10, avg # of iterations = 2.5 total cpu time spent up to now is 9.8 secs End of self-consistent calculation k = 0.1250 0.2165 0.0459 ( 646 PWs) bands (ev): -11.5293 -11.2587 -0.1569 0.7887 0.8301 1.6386 1.8530 1.8821 k = 0.1250 0.2165 0.1378 ( 654 PWs) bands (ev): -11.4533 -11.3414 0.3068 0.8004 0.8188 1.0410 1.8607 1.8729 k = 0.1250 0.5052 0.0459 ( 662 PWs) bands (ev): -7.9709 -7.7679 -5.0563 -4.9031 -0.4569 -0.3800 3.8898 5.0461 k = 0.1250 0.5052 0.1378 ( 662 PWs) bands (ev): -7.9131 -7.8291 -5.0128 -4.9494 -0.4348 -0.4029 4.2221 4.7044 k = 0.1250-0.3608 0.0459 ( 661 PWs) bands (ev): -10.0685 -9.8235 -2.0274 -1.9219 0.3172 0.3816 1.5849 3.2255 k = 0.1250-0.3608 0.1378 ( 657 PWs) bands (ev): -9.9993 -9.8979 -1.9969 -1.9532 0.3356 0.3623 2.0142 2.6858 k = 0.1250-0.0722 0.0459 ( 639 PWs) bands (ev): -12.2712 -11.9876 -1.0569 0.8004 2.5802 2.6257 3.2536 3.2866 k = 0.1250-0.0722 0.1378 ( 635 PWs) bands (ev): -12.1918 -12.0744 -0.5787 0.1788 2.5935 2.6123 3.2632 3.2769 k = 0.3750 0.6495 0.0459 ( 647 PWs) bands (ev): -6.3315 -6.2333 -5.4347 -5.3915 -2.7803 -2.6817 5.6301 6.2586 k = 0.3750 0.6495 0.1378 ( 662 PWs) bands (ev): -6.2990 -6.2579 -5.4282 -5.4099 -2.7530 -2.7121 5.8739 6.1492 k = 0.3750-0.2165 0.0459 ( 658 PWs) bands (ev): -9.3510 -9.1188 -3.7420 -3.5987 0.9244 0.9752 2.3903 3.8956 k = 0.3750-0.2165 0.1378 ( 656 PWs) bands (ev): -9.2854 -9.1893 -3.7010 -3.6417 0.9392 0.9603 2.7917 3.4103 highest occupied level (ev): 6.2586 ! total energy = -45.63786416 Ry Harris-Foulkes estimate = -45.63786416 Ry estimated scf accuracy < 4.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -10.92051261 Ry hartree contribution = 13.39795047 Ry xc contribution = -14.13352754 Ry ewald contribution = -33.98177448 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001684 0.00000000 0.00000000 0.00000000 0.00001684 0.00000000 0.00000000 0.00000000 0.00001706 VDW KERNEL stress -0.00006465 0.00000000 0.00000000 0.00000000 -0.00006465 0.00000000 0.00000000 0.00000000 -0.00054096 VDW ALL stress 0.00004781 0.00000000 0.00000000 0.00000000 0.00004781 0.00000000 0.00000000 0.00000000 0.00052390 total stress (Ry/bohr**3) (kbar) P= 17.77 0.00021158 0.00000000 0.00000000 31.12 0.00 0.00 0.00000000 0.00021158 0.00000000 0.00 31.12 0.00 0.00000000 0.00000000 -0.00006078 0.00 0.00 -8.94 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -45.6378408376 Ry enthalpy new = -45.6378641558 Ry CASE: enthalpy_new < enthalpy_old WARNING: bfgs curvature condition failed, Theta= 0.841 new trust radius = 0.0054027097 bohr new conv_thr = 1.0E-10 Ry new unit-cell volume = 235.25755 a.u.^3 ( 34.86157 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.717255722 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.358627861 C 0.500000000 0.288675135 1.358627861 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential extrapolated charge 15.97180, renormalised to 16.00000 total cpu time spent up to now is 11.8 secs per-process dynamical memory: 38.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.21E-08, avg # of iterations = 1.0 total cpu time spent up to now is 12.6 secs total energy = -45.63785596 Ry Harris-Foulkes estimate = -45.65254474 Ry estimated scf accuracy < 0.00001325 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.28E-08, avg # of iterations = 3.2 total cpu time spent up to now is 13.2 secs total energy = -45.63788973 Ry Harris-Foulkes estimate = -45.63789696 Ry estimated scf accuracy < 0.00001917 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.28E-08, avg # of iterations = 1.7 total cpu time spent up to now is 13.7 secs total energy = -45.63788696 Ry Harris-Foulkes estimate = -45.63789047 Ry estimated scf accuracy < 0.00000527 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.29E-08, avg # of iterations = 2.0 total cpu time spent up to now is 14.2 secs total energy = -45.63788801 Ry Harris-Foulkes estimate = -45.63788808 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.43E-10, avg # of iterations = 2.5 total cpu time spent up to now is 14.8 secs total energy = -45.63788804 Ry Harris-Foulkes estimate = -45.63788804 Ry estimated scf accuracy < 1.2E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.49E-12, avg # of iterations = 2.1 total cpu time spent up to now is 15.3 secs total energy = -45.63788804 Ry Harris-Foulkes estimate = -45.63788804 Ry estimated scf accuracy < 1.3E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.49E-12, avg # of iterations = 2.3 total cpu time spent up to now is 15.9 secs End of self-consistent calculation k = 0.1250 0.2165 0.0460 ( 646 PWs) bands (ev): -11.5112 -11.2370 -0.1439 0.8084 0.8505 1.6673 1.8728 1.9025 k = 0.1250 0.2165 0.1380 ( 654 PWs) bands (ev): -11.4342 -11.3208 0.3237 0.8203 0.8390 1.0642 1.8807 1.8930 k = 0.1250 0.5052 0.0460 ( 662 PWs) bands (ev): -7.9523 -7.7465 -5.0374 -4.8820 -0.4374 -0.3593 3.9042 5.0708 k = 0.1250 0.5052 0.1380 ( 662 PWs) bands (ev): -7.8937 -7.8085 -4.9933 -4.9290 -0.4150 -0.3826 4.2396 4.7263 k = 0.1250-0.3608 0.0460 ( 661 PWs) bands (ev): -10.0502 -9.8018 -2.0082 -1.9011 0.3368 0.4021 1.5983 3.2533 k = 0.1250-0.3608 0.1380 ( 657 PWs) bands (ev): -9.9802 -9.8774 -1.9773 -1.9329 0.3554 0.3825 2.0312 2.7086 k = 0.1250-0.0722 0.0460 ( 639 PWs) bands (ev): -12.2532 -11.9657 -1.0441 0.8294 2.5999 2.6461 3.2734 3.3070 k = 0.1250-0.0722 0.1380 ( 635 PWs) bands (ev): -12.1727 -12.0538 -0.5619 0.2021 2.6134 2.6326 3.2832 3.2971 k = 0.3750 0.6495 0.0460 ( 647 PWs) bands (ev): -6.3124 -6.2127 -5.4148 -5.3711 -2.7610 -2.6609 5.6453 6.2793 k = 0.3750 0.6495 0.1380 ( 662 PWs) bands (ev): -6.2794 -6.2377 -5.4084 -5.3898 -2.7333 -2.6918 5.8919 6.1699 k = 0.3750-0.2165 0.0460 ( 658 PWs) bands (ev): -9.3327 -9.0973 -3.7230 -3.5777 0.9441 0.9958 2.4039 3.9227 k = 0.3750-0.2165 0.1380 ( 656 PWs) bands (ev): -9.2661 -9.1687 -3.6814 -3.6213 0.9592 0.9805 2.8088 3.4329 highest occupied level (ev): 6.2793 ! total energy = -45.63788804 Ry Harris-Foulkes estimate = -45.63788804 Ry estimated scf accuracy < 7.8E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -10.78421884 Ry hartree contribution = 13.34195261 Ry xc contribution = -14.13394214 Ry ewald contribution = -34.06167966 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001683 0.00000000 0.00000000 0.00000000 0.00001683 0.00000000 0.00000000 0.00000000 0.00001704 VDW KERNEL stress -0.00006476 0.00000000 0.00000000 0.00000000 -0.00006476 0.00000000 0.00000000 0.00000000 -0.00054072 VDW ALL stress 0.00004793 0.00000000 0.00000000 0.00000000 0.00004793 0.00000000 0.00000000 0.00000000 0.00052368 total stress (Ry/bohr**3) (kbar) P= 18.05 0.00021172 0.00000000 0.00000000 31.15 0.00 0.00 0.00000000 0.00021172 0.00000000 0.00 31.15 0.00 0.00000000 0.00000000 -0.00005536 0.00 0.00 -8.14 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -45.6378641558 Ry enthalpy new = -45.6378880376 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0081112041 bohr new conv_thr = 1.0E-10 Ry new unit-cell volume = 234.63550 a.u.^3 ( 34.76939 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.710070932 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.355035466 C 0.500000000 0.288675135 1.355035466 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential extrapolated charge 15.95758, renormalised to 16.00000 total cpu time spent up to now is 17.7 secs per-process dynamical memory: 38.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 18.2 secs total energy = -45.63784908 Ry Harris-Foulkes estimate = -45.65951069 Ry estimated scf accuracy < 0.00002921 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.83E-07, avg # of iterations = 3.3 total cpu time spent up to now is 18.8 secs total energy = -45.63792413 Ry Harris-Foulkes estimate = -45.63794017 Ry estimated scf accuracy < 0.00004263 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.83E-07, avg # of iterations = 1.7 total cpu time spent up to now is 19.3 secs total energy = -45.63791785 Ry Harris-Foulkes estimate = -45.63792576 Ry estimated scf accuracy < 0.00001179 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.37E-08, avg # of iterations = 2.0 total cpu time spent up to now is 19.8 secs total energy = -45.63792023 Ry Harris-Foulkes estimate = -45.63792046 Ry estimated scf accuracy < 0.00000035 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.19E-09, avg # of iterations = 2.6 total cpu time spent up to now is 20.4 secs total energy = -45.63792032 Ry Harris-Foulkes estimate = -45.63792032 Ry estimated scf accuracy < 5.9E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.70E-11, avg # of iterations = 1.6 total cpu time spent up to now is 20.9 secs total energy = -45.63792032 Ry Harris-Foulkes estimate = -45.63792032 Ry estimated scf accuracy < 4.9E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.09E-11, avg # of iterations = 2.2 total cpu time spent up to now is 21.4 secs total energy = -45.63792032 Ry Harris-Foulkes estimate = -45.63792032 Ry estimated scf accuracy < 1.7E-10 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-12, avg # of iterations = 3.4 total cpu time spent up to now is 22.1 secs total energy = -45.63792032 Ry Harris-Foulkes estimate = -45.63792032 Ry estimated scf accuracy < 3.4E-10 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-12, avg # of iterations = 2.5 total cpu time spent up to now is 22.6 secs total energy = -45.63792032 Ry Harris-Foulkes estimate = -45.63792032 Ry estimated scf accuracy < 1.0E-09 Ry iteration # 10 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-12, avg # of iterations = 3.4 total cpu time spent up to now is 23.3 secs End of self-consistent calculation k = 0.1250 0.2165 0.0461 ( 646 PWs) bands (ev): -11.4838 -11.2039 -0.1243 0.8384 0.8815 1.7108 1.9030 1.9334 k = 0.1250 0.2165 0.1384 ( 654 PWs) bands (ev): -11.4053 -11.2895 0.3491 0.8506 0.8697 1.0993 1.9111 1.9237 k = 0.1250 0.5052 0.0461 ( 662 PWs) bands (ev): -7.9242 -7.7140 -5.0088 -4.8499 -0.4079 -0.3279 3.9259 5.1083 k = 0.1250 0.5052 0.1384 ( 662 PWs) bands (ev): -7.8644 -7.7774 -4.9637 -4.8979 -0.3849 -0.3517 4.2661 4.7594 k = 0.1250-0.3608 0.0461 ( 661 PWs) bands (ev): -10.0225 -9.7689 -1.9790 -1.8694 0.3665 0.4335 1.6184 3.2956 k = 0.1250-0.3608 0.1384 ( 657 PWs) bands (ev): -9.9510 -9.8461 -1.9473 -1.9019 0.3856 0.4134 2.0569 2.7432 k = 0.1250-0.0722 0.0461 ( 639 PWs) bands (ev): -12.2259 -11.9325 -1.0246 0.8733 2.6299 2.6773 3.3036 3.3380 k = 0.1250-0.0722 0.1384 ( 635 PWs) bands (ev): -12.1438 -12.0225 -0.5364 0.2374 2.6437 2.6634 3.3136 3.3279 k = 0.3750 0.6495 0.0461 ( 647 PWs) bands (ev): -6.2834 -6.1815 -5.3846 -5.3400 -2.7317 -2.6294 5.6682 6.3108 k = 0.3750 0.6495 0.1384 ( 662 PWs) bands (ev): -6.2495 -6.2069 -5.3782 -5.3592 -2.7034 -2.6609 5.9191 6.2013 k = 0.3750-0.2165 0.0461 ( 658 PWs) bands (ev): -9.3048 -9.0645 -3.6942 -3.5456 0.9740 1.0270 2.4245 3.9637 k = 0.3750-0.2165 0.1384 ( 656 PWs) bands (ev): -9.2369 -9.1375 -3.6517 -3.5902 0.9894 1.0114 2.8347 3.4671 highest occupied level (ev): 6.3108 ! total energy = -45.63792032 Ry Harris-Foulkes estimate = -45.63792032 Ry estimated scf accuracy < 2.5E-12 Ry The total energy is the sum of the following terms: one-electron contribution = -10.57980572 Ry hartree contribution = 13.25796542 Ry xc contribution = -14.13454135 Ry ewald contribution = -34.18153866 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001682 0.00000000 0.00000000 0.00000000 0.00001682 0.00000000 0.00000000 0.00000000 0.00001700 VDW KERNEL stress -0.00006493 0.00000000 0.00000000 0.00000000 -0.00006493 0.00000000 0.00000000 0.00000000 -0.00054036 VDW ALL stress 0.00004811 0.00000000 0.00000000 0.00000000 0.00004811 0.00000000 0.00000000 0.00000000 0.00052335 total stress (Ry/bohr**3) (kbar) P= 18.41 0.00021191 0.00000000 0.00000000 31.17 0.00 0.00 0.00000000 0.00021191 0.00000000 0.00 31.17 0.00 0.00000000 0.00000000 -0.00004844 0.00 0.00 -7.13 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -45.6378880376 Ry enthalpy new = -45.6379203181 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0121829235 bohr new conv_thr = 1.0E-10 Ry new unit-cell volume = 233.70242 a.u.^3 ( 34.63113 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.699293748 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.349646874 C 0.500000000 0.288675135 1.349646874 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential extrapolated charge 15.93612, renormalised to 16.00000 total cpu time spent up to now is 24.9 secs per-process dynamical memory: 38.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 25.4 secs total energy = -45.63780092 Ry Harris-Foulkes estimate = -45.66945481 Ry estimated scf accuracy < 0.00006536 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.08E-07, avg # of iterations = 3.3 total cpu time spent up to now is 26.0 secs total energy = -45.63796908 Ry Harris-Foulkes estimate = -45.63800484 Ry estimated scf accuracy < 0.00009506 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.08E-07, avg # of iterations = 1.6 total cpu time spent up to now is 26.5 secs total energy = -45.63795508 Ry Harris-Foulkes estimate = -45.63797269 Ry estimated scf accuracy < 0.00002630 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.64E-07, avg # of iterations = 2.0 total cpu time spent up to now is 27.1 secs total energy = -45.63796037 Ry Harris-Foulkes estimate = -45.63796087 Ry estimated scf accuracy < 0.00000076 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-09, avg # of iterations = 2.6 total cpu time spent up to now is 27.6 secs total energy = -45.63796057 Ry Harris-Foulkes estimate = -45.63796057 Ry estimated scf accuracy < 0.00000001 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.59E-11, avg # of iterations = 1.5 total cpu time spent up to now is 28.0 secs total energy = -45.63796056 Ry Harris-Foulkes estimate = -45.63796057 Ry estimated scf accuracy < 0.00000001 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.74E-11, avg # of iterations = 2.2 total cpu time spent up to now is 28.5 secs total energy = -45.63796056 Ry Harris-Foulkes estimate = -45.63796056 Ry estimated scf accuracy < 2.5E-10 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-12, avg # of iterations = 3.5 total cpu time spent up to now is 29.2 secs total energy = -45.63796056 Ry Harris-Foulkes estimate = -45.63796056 Ry estimated scf accuracy < 6.8E-10 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-12, avg # of iterations = 3.7 total cpu time spent up to now is 29.8 secs total energy = -45.63796056 Ry Harris-Foulkes estimate = -45.63796056 Ry estimated scf accuracy < 1.3E-09 Ry iteration # 10 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-12, avg # of iterations = 3.4 total cpu time spent up to now is 30.4 secs End of self-consistent calculation k = 0.1250 0.2165 0.0463 ( 646 PWs) bands (ev): -11.4424 -11.1538 -0.0948 0.8837 0.9283 1.7767 1.9487 1.9802 k = 0.1250 0.2165 0.1389 ( 654 PWs) bands (ev): -11.3615 -11.2422 0.3876 0.8963 0.9162 1.1524 1.9570 1.9701 k = 0.1250 0.5052 0.0463 ( 662 PWs) bands (ev): -7.8818 -7.6648 -4.9655 -4.8013 -0.3632 -0.2804 3.9587 5.1648 k = 0.1250 0.5052 0.1389 ( 662 PWs) bands (ev): -7.8201 -7.7303 -4.9190 -4.8510 -0.3394 -0.3050 4.3060 4.8095 k = 0.1250-0.3608 0.0463 ( 661 PWs) bands (ev): -9.9807 -9.7192 -1.9349 -1.8215 0.4114 0.4808 1.6487 3.3596 k = 0.1250-0.3608 0.1389 ( 657 PWs) bands (ev): -9.9071 -9.7989 -1.9022 -1.8552 0.4312 0.4600 2.0956 2.7956 k = 0.1250-0.0722 0.0463 ( 639 PWs) bands (ev): -12.1847 -11.8823 -0.9954 0.9399 2.6752 2.7243 3.3491 3.3849 k = 0.1250-0.0722 0.1389 ( 635 PWs) bands (ev): -12.1002 -11.9751 -0.4980 0.2908 2.6896 2.7099 3.3596 3.3744 k = 0.3750 0.6495 0.0463 ( 647 PWs) bands (ev): -6.2396 -6.1344 -5.3390 -5.2931 -2.6875 -2.5816 5.7027 6.3583 k = 0.3750 0.6495 0.1389 ( 662 PWs) bands (ev): -6.2045 -6.1605 -5.3326 -5.3130 -2.6582 -2.6143 5.9602 6.2487 k = 0.3750-0.2165 0.0463 ( 658 PWs) bands (ev): -9.2629 -9.0149 -3.6508 -3.4972 1.0191 1.0742 2.4555 4.0257 k = 0.3750-0.2165 0.1389 ( 656 PWs) bands (ev): -9.1929 -9.0903 -3.6069 -3.5433 1.0352 1.0580 2.8737 3.5188 highest occupied level (ev): 6.3583 ! total energy = -45.63796056 Ry Harris-Foulkes estimate = -45.63796056 Ry estimated scf accuracy < 1.7E-12 Ry The total energy is the sum of the following terms: one-electron contribution = -10.27350700 Ry hartree contribution = 13.13233841 Ry xc contribution = -14.13546200 Ry ewald contribution = -34.36132997 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001681 0.00000000 0.00000000 0.00000000 0.00001681 0.00000000 0.00000000 0.00000000 0.00001695 VDW KERNEL stress -0.00006519 0.00000000 0.00000000 0.00000000 -0.00006519 0.00000000 0.00000000 0.00000000 -0.00053978 VDW ALL stress 0.00004838 0.00000000 0.00000000 0.00000000 0.00004838 0.00000000 0.00000000 0.00000000 0.00052283 total stress (Ry/bohr**3) (kbar) P= 18.95 0.00021214 0.00000000 0.00000000 31.21 0.00 0.00 0.00000000 0.00021214 0.00000000 0.00 31.21 0.00 0.00000000 0.00000000 -0.00003775 0.00 0.00 -5.55 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -45.6379203181 Ry enthalpy new = -45.6379605639 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0183108300 bohr new conv_thr = 1.0E-10 Ry new unit-cell volume = 232.30280 a.u.^3 ( 34.42372 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.683127971 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.341563985 C 0.500000000 0.288675135 1.341563985 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential extrapolated charge 15.90360, renormalised to 16.00000 total cpu time spent up to now is 32.1 secs per-process dynamical memory: 38.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 32.7 secs total energy = -45.63764358 Ry Harris-Foulkes estimate = -45.68322823 Ry estimated scf accuracy < 0.00014723 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-07, avg # of iterations = 3.3 total cpu time spent up to now is 33.3 secs total energy = -45.63802082 Ry Harris-Foulkes estimate = -45.63810089 Ry estimated scf accuracy < 0.00021279 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-07, avg # of iterations = 1.6 total cpu time spent up to now is 33.7 secs total energy = -45.63798952 Ry Harris-Foulkes estimate = -45.63802890 Ry estimated scf accuracy < 0.00005879 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.67E-07, avg # of iterations = 2.0 total cpu time spent up to now is 34.3 secs total energy = -45.63800135 Ry Harris-Foulkes estimate = -45.63800250 Ry estimated scf accuracy < 0.00000176 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-08, avg # of iterations = 2.5 total cpu time spent up to now is 34.9 secs total energy = -45.63800180 Ry Harris-Foulkes estimate = -45.63800180 Ry estimated scf accuracy < 0.00000003 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.64E-10, avg # of iterations = 1.7 total cpu time spent up to now is 35.3 secs total energy = -45.63800179 Ry Harris-Foulkes estimate = -45.63800180 Ry estimated scf accuracy < 0.00000003 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 1.0 total cpu time spent up to now is 35.8 secs total energy = -45.63800178 Ry Harris-Foulkes estimate = -45.63800179 Ry estimated scf accuracy < 0.00000001 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.52E-11, avg # of iterations = 2.0 total cpu time spent up to now is 36.3 secs total energy = -45.63800179 Ry Harris-Foulkes estimate = -45.63800178 Ry estimated scf accuracy < 0.00000002 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.52E-11, avg # of iterations = 1.0 total cpu time spent up to now is 36.7 secs total energy = -45.63800179 Ry Harris-Foulkes estimate = -45.63800179 Ry estimated scf accuracy < 0.00000001 Ry iteration # 10 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.79E-11, avg # of iterations = 1.0 total cpu time spent up to now is 37.2 secs total energy = -45.63800179 Ry Harris-Foulkes estimate = -45.63800179 Ry estimated scf accuracy < 0.00000001 Ry iteration # 11 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.69E-11, avg # of iterations = 1.0 total cpu time spent up to now is 37.7 secs total energy = -45.63800179 Ry Harris-Foulkes estimate = -45.63800179 Ry estimated scf accuracy < 0.00000001 Ry iteration # 12 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.64E-11, avg # of iterations = 1.0 total cpu time spent up to now is 38.1 secs total energy = -45.63800178 Ry Harris-Foulkes estimate = -45.63800179 Ry estimated scf accuracy < 9.4E-09 Ry iteration # 13 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.86E-11, avg # of iterations = 1.0 total cpu time spent up to now is 38.6 secs total energy = -45.63800179 Ry Harris-Foulkes estimate = -45.63800178 Ry estimated scf accuracy < 0.00000002 Ry iteration # 14 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.86E-11, avg # of iterations = 2.2 total cpu time spent up to now is 39.1 secs total energy = -45.63800179 Ry Harris-Foulkes estimate = -45.63800179 Ry estimated scf accuracy < 4.4E-10 Ry iteration # 15 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.73E-12, avg # of iterations = 2.8 total cpu time spent up to now is 39.7 secs total energy = -45.63800179 Ry Harris-Foulkes estimate = -45.63800179 Ry estimated scf accuracy < 2.8E-10 Ry iteration # 16 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-12, avg # of iterations = 1.7 total cpu time spent up to now is 40.1 secs total energy = -45.63800179 Ry Harris-Foulkes estimate = -45.63800179 Ry estimated scf accuracy < 1.0E-10 Ry iteration # 17 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.47E-13, avg # of iterations = 1.2 total cpu time spent up to now is 40.6 secs total energy = -45.63800179 Ry Harris-Foulkes estimate = -45.63800179 Ry estimated scf accuracy < 1.3E-10 Ry iteration # 18 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.47E-13, avg # of iterations = 2.0 total cpu time spent up to now is 41.1 secs End of self-consistent calculation k = 0.1250 0.2165 0.0466 ( 646 PWs) bands (ev): -11.3799 -11.0778 -0.0503 0.9522 0.9993 1.8770 2.0178 2.0511 k = 0.1250 0.2165 0.1398 ( 654 PWs) bands (ev): -11.2954 -11.1705 0.4457 0.9656 0.9866 1.2330 2.0266 2.0404 k = 0.1250 0.5052 0.0466 ( 662 PWs) bands (ev): -7.8177 -7.5901 -4.9000 -4.7277 -0.2957 -0.2083 4.0079 5.2507 k = 0.1250 0.5052 0.1398 ( 662 PWs) bands (ev): -7.7531 -7.6589 -4.8513 -4.7799 -0.2706 -0.2343 4.3663 4.8855 k = 0.1250-0.3608 0.0466 ( 661 PWs) bands (ev): -9.9176 -9.6437 -1.8682 -1.7489 0.4793 0.5526 1.6943 3.4570 k = 0.1250-0.3608 0.1398 ( 657 PWs) bands (ev): -9.8406 -9.7273 -1.8338 -1.7843 0.5002 0.5306 2.1542 2.8751 k = 0.1250-0.0722 0.0466 ( 639 PWs) bands (ev): -12.1225 -11.8061 -0.9513 1.0414 2.7437 2.7957 3.4180 3.4560 k = 0.1250-0.0722 0.1398 ( 635 PWs) bands (ev): -12.0342 -11.9034 -0.4399 0.3718 2.7589 2.7805 3.4291 3.4449 k = 0.3750 0.6495 0.0466 ( 647 PWs) bands (ev): -6.1734 -6.0630 -5.2699 -5.2219 -2.6205 -2.5092 5.7546 6.4300 k = 0.3750 0.6495 0.1398 ( 662 PWs) bands (ev): -6.1364 -6.0901 -5.2636 -5.2431 -2.5898 -2.5437 6.0223 6.3205 k = 0.3750-0.2165 0.0466 ( 658 PWs) bands (ev): -9.1994 -8.9396 -3.5851 -3.4237 1.0874 1.1458 2.5021 4.1201 k = 0.3750-0.2165 0.1398 ( 656 PWs) bands (ev): -9.1262 -9.0187 -3.5391 -3.4722 1.1044 1.1286 2.9328 3.5974 highest occupied level (ev): 6.4300 ! total energy = -45.63800179 Ry Harris-Foulkes estimate = -45.63800179 Ry estimated scf accuracy < 4.3E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -9.81478788 Ry hartree contribution = 12.94470301 Ry xc contribution = -14.13689338 Ry ewald contribution = -34.63102353 Ry convergence has been achieved in 18 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001678 0.00000000 0.00000000 0.00000000 0.00001678 0.00000000 0.00000000 0.00000000 0.00001688 VDW KERNEL stress -0.00006558 0.00000000 0.00000000 0.00000000 -0.00006558 0.00000000 0.00000000 0.00000000 -0.00053886 VDW ALL stress 0.00004880 0.00000000 0.00000000 0.00000000 0.00004880 0.00000000 0.00000000 0.00000000 0.00052199 total stress (Ry/bohr**3) (kbar) P= 19.80 0.00021239 0.00000000 0.00000000 31.24 0.00 0.00 0.00000000 0.00021239 0.00000000 0.00 31.24 0.00 0.00000000 0.00000000 -0.00002090 0.00 0.00 -3.07 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -45.6379605639 Ry enthalpy new = -45.6380017884 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0227888710 bohr new conv_thr = 1.0E-10 Ry new unit-cell volume = 230.56612 a.u.^3 ( 34.16637 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.663069077 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.331534538 C 0.500000000 0.288675135 1.331534538 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential extrapolated charge 15.87949, renormalised to 16.00000 total cpu time spent up to now is 42.8 secs per-process dynamical memory: 38.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 43.4 secs total energy = -45.63747259 Ry Harris-Foulkes estimate = -45.69103279 Ry estimated scf accuracy < 0.00022489 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.41E-06, avg # of iterations = 3.3 total cpu time spent up to now is 44.0 secs total energy = -45.63804807 Ry Harris-Foulkes estimate = -45.63816982 Ry estimated scf accuracy < 0.00032392 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.41E-06, avg # of iterations = 1.3 total cpu time spent up to now is 44.5 secs total energy = -45.63800036 Ry Harris-Foulkes estimate = -45.63806036 Ry estimated scf accuracy < 0.00008965 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.60E-07, avg # of iterations = 2.0 total cpu time spent up to now is 45.0 secs total energy = -45.63801847 Ry Harris-Foulkes estimate = -45.63802026 Ry estimated scf accuracy < 0.00000277 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-08, avg # of iterations = 2.5 total cpu time spent up to now is 45.6 secs total energy = -45.63801913 Ry Harris-Foulkes estimate = -45.63801913 Ry estimated scf accuracy < 0.00000003 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.57E-10, avg # of iterations = 2.1 total cpu time spent up to now is 46.1 secs total energy = -45.63801913 Ry Harris-Foulkes estimate = -45.63801914 Ry estimated scf accuracy < 0.00000003 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.57E-10, avg # of iterations = 2.8 total cpu time spent up to now is 46.7 secs total energy = -45.63801913 Ry Harris-Foulkes estimate = -45.63801913 Ry estimated scf accuracy < 9.5E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.95E-11, avg # of iterations = 2.3 total cpu time spent up to now is 47.5 secs total energy = -45.63801913 Ry Harris-Foulkes estimate = -45.63801913 Ry estimated scf accuracy < 7.1E-10 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.47E-12, avg # of iterations = 3.3 total cpu time spent up to now is 48.1 secs total energy = -45.63801913 Ry Harris-Foulkes estimate = -45.63801913 Ry estimated scf accuracy < 1.1E-09 Ry iteration # 10 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.47E-12, avg # of iterations = 2.4 total cpu time spent up to now is 48.6 secs End of self-consistent calculation k = 0.1250 0.2165 0.0469 ( 646 PWs) bands (ev): -11.3016 -10.9819 0.0052 1.0383 1.0888 2.0040 2.1047 2.1404 k = 0.1250 0.2165 0.1408 ( 654 PWs) bands (ev): -11.2124 -11.0802 0.5188 1.0526 1.0751 1.3349 2.1140 2.1289 k = 0.1250 0.5052 0.0469 ( 662 PWs) bands (ev): -7.7373 -7.4960 -4.8180 -4.6348 -0.2109 -0.1174 4.0695 5.3589 k = 0.1250 0.5052 0.1408 ( 662 PWs) bands (ev): -7.6689 -7.5690 -4.7663 -4.6904 -0.1840 -0.1453 4.4421 4.9813 k = 0.1250-0.3608 0.0469 ( 661 PWs) bands (ev): -9.8385 -9.5484 -1.7845 -1.6573 0.5646 0.6430 1.7512 3.5802 k = 0.1250-0.3608 0.1408 ( 657 PWs) bands (ev): -9.7572 -9.6371 -1.7478 -1.6952 0.5870 0.6194 2.2277 2.9754 k = 0.1250-0.0722 0.0469 ( 639 PWs) bands (ev): -12.0446 -11.7099 -0.8963 1.1698 2.8299 2.8856 3.5047 3.5456 k = 0.1250-0.0722 0.1408 ( 635 PWs) bands (ev): -11.9514 -11.8131 -0.3669 0.4742 2.8462 2.8692 3.5167 3.5336 k = 0.3750 0.6495 0.0469 ( 647 PWs) bands (ev): -6.0904 -5.9732 -5.1829 -5.1322 -2.5365 -2.4180 5.8193 6.5198 k = 0.3750 0.6495 0.1408 ( 662 PWs) bands (ev): -6.0508 -6.0016 -5.1769 -5.1551 -2.5039 -2.4548 6.1002 6.4109 k = 0.3750-0.2165 0.0469 ( 658 PWs) bands (ev): -9.1200 -8.8447 -3.5027 -3.3310 1.1733 1.2359 2.5604 4.2394 k = 0.3750-0.2165 0.1408 ( 656 PWs) bands (ev): -9.0426 -8.9287 -3.4538 -3.3827 1.1915 1.2175 3.0069 3.6964 highest occupied level (ev): 6.5198 ! total energy = -45.63801913 Ry Harris-Foulkes estimate = -45.63801913 Ry estimated scf accuracy < 6.5E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -9.24681168 Ry hartree contribution = 12.71322148 Ry xc contribution = -14.13875135 Ry ewald contribution = -34.96567758 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001675 0.00000000 0.00000000 0.00000000 0.00001675 0.00000000 0.00000000 0.00000000 0.00001678 VDW KERNEL stress -0.00006607 0.00000000 0.00000000 0.00000000 -0.00006607 0.00000000 0.00000000 0.00000000 -0.00053763 VDW ALL stress 0.00004932 0.00000000 0.00000000 0.00000000 0.00004932 0.00000000 0.00000000 0.00000000 0.00052085 total stress (Ry/bohr**3) (kbar) P= 20.90 0.00021250 0.00000000 0.00000000 31.26 0.00 0.00 0.00000000 0.00021250 0.00000000 0.00 31.26 0.00 0.00000000 0.00000000 0.00000128 0.00 0.00 0.19 bfgs converged in 7 scf cycles and 6 bfgs steps (criteria: energy < 1.0E-04, force < 1.0E-03, cell < 5.0E-01) End of BFGS Geometry Optimization Final enthalpy = -45.6380191293 Ry Begin final coordinates new unit-cell volume = 230.56612 a.u.^3 ( 34.16637 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.663069077 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.331534538 C 0.500000000 0.288675135 1.331534538 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated for the final unit cell Results may differ from those at the preceding step. G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 265 187 61 9389 5089 1069 bravais-lattice index = 4 lattice parameter (alat) = 4.6412 a.u. unit-cell volume = 230.5661 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-10 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF4 ( 1 4 24 0 1) celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.663069 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.375507 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: f53da8562cfe6bfda6a1b4f380354fea atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym. Ops., with inversion, found (12 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.3315345 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.3315345 ) number of k points= 12 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.2165064 0.0469383), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1408150), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0469383), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1408150), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0469383), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1408150), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0469383), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1408150), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0469383), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1408150), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0469383), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1408150), wk = 0.1250000 Dense grid: 9389 G-vectors FFT dimensions: ( 20, 20, 54) Smooth grid: 5089 G-vectors FFT dimensions: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 649, 8) NL pseudopotentials 0.32 Mb ( 649, 32) Each V/rho on FFT grid 0.33 Mb ( 21600) Each G-vector array 0.07 Mb ( 9389) G-vector shells 0.00 Mb ( 540) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.32 Mb ( 649, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 2.64 Mb ( 21600, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 Starting wfc are 16 randomized atomic wfcs Writing output data file pwscf.save total cpu time spent up to now is 50.0 secs per-process dynamical memory: 38.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.2 total cpu time spent up to now is 50.8 secs total energy = -45.57761049 Ry Harris-Foulkes estimate = -45.80832117 Ry estimated scf accuracy < 0.39847714 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.49E-03, avg # of iterations = 2.0 total cpu time spent up to now is 51.3 secs total energy = -45.63713815 Ry Harris-Foulkes estimate = -45.63701227 Ry estimated scf accuracy < 0.00496424 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.10E-05, avg # of iterations = 2.3 total cpu time spent up to now is 51.8 secs total energy = -45.63791017 Ry Harris-Foulkes estimate = -45.63783234 Ry estimated scf accuracy < 0.00030730 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-06, avg # of iterations = 2.2 total cpu time spent up to now is 52.2 secs total energy = -45.63794449 Ry Harris-Foulkes estimate = -45.63794408 Ry estimated scf accuracy < 0.00000324 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.02E-08, avg # of iterations = 3.1 total cpu time spent up to now is 52.9 secs total energy = -45.63794630 Ry Harris-Foulkes estimate = -45.63794619 Ry estimated scf accuracy < 0.00000010 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.00E-10, avg # of iterations = 2.5 total cpu time spent up to now is 53.4 secs total energy = -45.63794633 Ry Harris-Foulkes estimate = -45.63794633 Ry estimated scf accuracy < 6.4E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.01E-11, avg # of iterations = 2.2 total cpu time spent up to now is 53.9 secs total energy = -45.63794633 Ry Harris-Foulkes estimate = -45.63794633 Ry estimated scf accuracy < 2.9E-10 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.82E-12, avg # of iterations = 2.5 total cpu time spent up to now is 54.4 secs End of self-consistent calculation k = 0.1250 0.2165 0.0469 ( 636 PWs) bands (ev): -11.3017 -10.9821 0.0054 1.0381 1.0886 2.0042 2.1045 2.1403 k = 0.1250 0.2165 0.1408 ( 636 PWs) bands (ev): -11.2125 -11.0804 0.5189 1.0525 1.0750 1.3350 2.1139 2.1287 k = 0.1250 0.5052 0.0469 ( 644 PWs) bands (ev): -7.7374 -7.4961 -4.8181 -4.6350 -0.2110 -0.1175 4.0697 5.3592 k = 0.1250 0.5052 0.1408 ( 649 PWs) bands (ev): -7.6690 -7.5692 -4.7664 -4.6906 -0.1841 -0.1455 4.4423 4.9815 k = 0.1250-0.3608 0.0469 ( 642 PWs) bands (ev): -9.8387 -9.5485 -1.7846 -1.6575 0.5645 0.6429 1.7514 3.5804 k = 0.1250-0.3608 0.1408 ( 644 PWs) bands (ev): -9.7573 -9.6373 -1.7480 -1.6953 0.5868 0.6193 2.2279 2.9755 k = 0.1250-0.0722 0.0469 ( 626 PWs) bands (ev): -12.0447 -11.7100 -0.8962 1.1700 2.8297 2.8854 3.5046 3.5454 k = 0.1250-0.0722 0.1408 ( 620 PWs) bands (ev): -11.9516 -11.8132 -0.3667 0.4743 2.8461 2.8691 3.5165 3.5334 k = 0.3750 0.6495 0.0469 ( 639 PWs) bands (ev): -6.0905 -5.9733 -5.1831 -5.1323 -2.5366 -2.4181 5.8195 6.5201 k = 0.3750 0.6495 0.1408 ( 646 PWs) bands (ev): -6.0509 -6.0017 -5.1770 -5.1552 -2.5041 -2.4549 6.1005 6.4112 k = 0.3750-0.2165 0.0469 ( 644 PWs) bands (ev): -9.1201 -8.8448 -3.5029 -3.3312 1.1731 1.2358 2.5606 4.2396 k = 0.3750-0.2165 0.1408 ( 638 PWs) bands (ev): -9.0427 -8.9288 -3.4540 -3.3829 1.1914 1.2174 3.0070 3.6966 highest occupied level (ev): 6.5201 ! total energy = -45.63794633 Ry Harris-Foulkes estimate = -45.63794633 Ry estimated scf accuracy < 1.8E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -9.24661530 Ry hartree contribution = 12.71302907 Ry xc contribution = -14.13868252 Ry ewald contribution = -34.96567759 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001671 0.00000000 0.00000000 0.00000000 0.00001671 0.00000000 0.00000000 0.00000000 0.00001683 VDW KERNEL stress -0.00006608 0.00000000 0.00000000 0.00000000 -0.00006608 0.00000000 0.00000000 0.00000000 -0.00053766 VDW ALL stress 0.00004937 0.00000000 0.00000000 0.00000000 0.00004937 0.00000000 0.00000000 0.00000000 0.00052082 total stress (Ry/bohr**3) (kbar) P= 20.44 0.00021119 0.00000000 0.00000000 31.07 0.00 0.00 0.00000000 0.00021119 0.00000000 0.00 31.07 0.00 0.00000000 0.00000000 -0.00000550 0.00 0.00 -0.81 Writing output data file pwscf.save init_run : 1.01s CPU 1.45s WALL ( 2 calls) electrons : 40.26s CPU 41.52s WALL ( 8 calls) update_pot : 3.92s CPU 3.98s WALL ( 6 calls) forces : 1.19s CPU 1.22s WALL ( 8 calls) stress : 5.58s CPU 5.72s WALL ( 8 calls) Called by init_run: wfcinit : 0.33s CPU 0.34s WALL ( 2 calls) potinit : 0.41s CPU 0.43s WALL ( 2 calls) Called by electrons: c_bands : 21.13s CPU 21.71s WALL ( 77 calls) sum_band : 5.02s CPU 5.10s WALL ( 77 calls) v_of_rho : 13.51s CPU 13.64s WALL ( 83 calls) newd : 1.49s CPU 1.51s WALL ( 83 calls) mix_rho : 0.32s CPU 0.32s WALL ( 77 calls) vdW_energy : 5.68s CPU 5.73s WALL ( 83 calls) vdW_ffts : 2.74s CPU 2.81s WALL ( 182 calls) vdW_v : 1.82s CPU 1.82s WALL ( 83 calls) Called by c_bands: init_us_2 : 0.60s CPU 0.66s WALL ( 2064 calls) cegterg : 19.90s CPU 20.21s WALL ( 924 calls) Called by *egterg: h_psi : 16.57s CPU 16.80s WALL ( 3077 calls) s_psi : 0.51s CPU 0.57s WALL ( 3077 calls) g_psi : 0.37s CPU 0.37s WALL ( 2129 calls) cdiaghg : 0.86s CPU 0.76s WALL ( 2957 calls) Called by h_psi: add_vuspsi : 0.80s CPU 0.72s WALL ( 3077 calls) General routines calbec : 1.22s CPU 1.24s WALL ( 4193 calls) fft : 4.30s CPU 4.35s WALL ( 5876 calls) ffts : 0.06s CPU 0.07s WALL ( 160 calls) fftw : 15.03s CPU 15.24s WALL ( 49244 calls) interpolate : 0.24s CPU 0.23s WALL ( 160 calls) davcio : 0.00s CPU 0.01s WALL ( 24 calls) PWSCF : 52.58s CPU 55.11s WALL This run was terminated on: 19: 9:42 6Nov2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/metal-gaussian.ref0000644000175000017500000002263712341373024016413 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:51 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metal-gaussian.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 37 869 869 169 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 107, 6) NL pseudopotentials 0.01 Mb ( 107, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.04 Mb ( 107, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.9 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18500816 Ry Harris-Foulkes estimate = -4.18577249 Ry estimated scf accuracy < 0.00592434 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.18500187 Ry Harris-Foulkes estimate = -4.18503004 Ry estimated scf accuracy < 0.00046596 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-05, avg # of iterations = 1.4 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7428 16.7433 20.1797 20.1797 23.2684 24.1726 k = 0.1250 0.1250 0.3750 ( 105 PWs) bands (ev): -1.5642 13.6752 17.3100 18.8473 20.1258 22.7031 k = 0.1250 0.1250 0.6250 ( 102 PWs) bands (ev): 0.7488 11.5558 13.9823 15.3804 16.8439 20.9948 k = 0.1250 0.1250 0.8750 ( 104 PWs) bands (ev): 4.0829 8.6646 10.5473 14.4195 15.7422 20.0605 k = 0.1250 0.3750 0.3750 ( 100 PWs) bands (ev): -0.4004 10.5638 15.0576 20.2795 22.2925 22.3025 k = 0.1250 0.3750 0.6250 ( 103 PWs) bands (ev): 1.8827 8.4274 12.9758 15.1048 21.3124 23.4593 k = 0.1250 0.3750 0.8750 ( 104 PWs) bands (ev): 5.1682 7.3419 9.7864 12.0729 20.3594 24.5666 k = 0.1250 0.6250 0.6250 ( 101 PWs) bands (ev): 4.1110 6.2843 10.9034 16.3673 18.2374 26.3756 k = 0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7476 7.4154 19.3071 19.3071 21.3018 21.3019 k = 0.3750 0.3750 0.6250 ( 103 PWs) bands (ev): 3.0034 5.2362 16.0324 17.3400 19.1722 23.3128 the Fermi energy is 8.3445 ev ! total energy = -4.18500453 Ry Harris-Foulkes estimate = -4.18500445 Ry estimated scf accuracy < 0.00000026 Ry The total energy is the sum of the following terms: one-electron contribution = 2.94325124 Ry hartree contribution = 0.01025286 Ry xc contribution = -1.63498935 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.00168476 Ry convergence has been achieved in 3 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.07s CPU 0.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.05s CPU 0.06s WALL ( 4 calls) sum_band : 0.02s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 90 calls) cegterg : 0.05s CPU 0.06s WALL ( 40 calls) Called by *egterg: h_psi : 0.02s CPU 0.04s WALL ( 126 calls) g_psi : 0.00s CPU 0.00s WALL ( 76 calls) cdiaghg : 0.02s CPU 0.01s WALL ( 106 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 126 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 126 calls) fft : 0.00s CPU 0.00s WALL ( 17 calls) fftw : 0.04s CPU 0.04s WALL ( 1576 calls) davcio : 0.00s CPU 0.00s WALL ( 130 calls) PWSCF : 0.16s CPU 0.18s WALL This run was terminated on: 10:24:52 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/hse-si222.in0000755000175000017500000000147512341373024014751 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='hse', nqx1=2, nqx2=2, nqx3=2, exxdiv_treatment='gygi-baldereschi' x_gamma_extrapolation = .true. / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/metaGGA.ref0000644000175000017500000002772512341373024014751 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:50 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metaGGA.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 609 609 145 11363 11363 1365 Tot 305 305 73 bravais-lattice index = 1 lattice parameter (alat) = 8.0000 a.u. unit-cell volume = 512.0000 (a.u.)^3 number of atoms/cell = 10 number of atomic types = 2 number of electrons = 22.00 number of Kohn-Sham states= 11 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW TPSS TPSS ( 1 4 7 6 0) EXX-fraction = 0.00 celldm(1)= 8.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.tpss-mt.UPF MD5 check sum: 126d4c867e8dfb95b317e81eb842cc09 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1263 points, 0 beta functions with: PseudoPot. # 2 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.tpss-mt.UPF MD5 check sum: afa8afd3b77fc14b1decc40375b211d1 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1983 points, 1 beta functions with: l(1) = 0 atomic species valence mass pseudopotential H 1.00 1.00783 H ( 1.00) C 4.00 12.00000 C ( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( -0.3396188 -0.3072775 0.2952175 ) 2 H tau( 2) = ( -0.3641150 0.3114112 0.1191170 ) 3 H tau( 3) = ( 0.2545363 -0.3380175 -0.1311087 ) 4 H tau( 4) = ( 0.3886387 -0.2037337 0.2366638 ) 5 H tau( 5) = ( 0.3060188 0.3298075 0.0415838 ) 6 H tau( 6) = ( 0.1176044 0.2002337 -0.3229712 ) 7 C tau( 7) = ( -0.1518812 -0.1636275 0.1645763 ) 8 C tau( 8) = ( -0.1701575 0.1457675 0.1031486 ) 9 C tau( 9) = ( 0.1935900 -0.1791975 0.0638284 ) 10 C tau( 10) = ( 0.1368550 0.1713513 -0.0621193 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5682 G-vectors FFT dimensions: ( 27, 27, 27) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.11 Mb ( 683, 11) NL pseudopotentials 0.04 Mb ( 683, 4) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.04 Mb ( 5682) G-vector shells 0.00 Mb ( 164) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.23 Mb ( 683, 44) Each subspace H/S matrix 0.01 Mb ( 44, 44) Each matrix 0.00 Mb ( 4, 11) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 21.99977, renormalised to 22.00000 Starting wfc are 22 randomized atomic wfcs total cpu time spent up to now is 0.3 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.4 secs total energy = -51.78327659 Ry Harris-Foulkes estimate = -51.88536746 Ry estimated scf accuracy < 3.09846245 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.5 secs total energy = -51.91530703 Ry Harris-Foulkes estimate = -51.93140024 Ry estimated scf accuracy < 0.30608019 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-03, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.5 secs total energy = -51.94414571 Ry Harris-Foulkes estimate = -51.95247299 Ry estimated scf accuracy < 0.03653116 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-04, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.6 secs total energy = -51.94910297 Ry Harris-Foulkes estimate = -51.94925459 Ry estimated scf accuracy < 0.00073391 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.34E-06, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.7 secs total energy = -51.94928488 Ry Harris-Foulkes estimate = -51.94930201 Ry estimated scf accuracy < 0.00013769 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.26E-07, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.8 secs total energy = -51.94929520 Ry Harris-Foulkes estimate = -51.94932341 Ry estimated scf accuracy < 0.00011404 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.18E-07, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.9 secs total energy = -51.94930468 Ry Harris-Foulkes estimate = -51.94930543 Ry estimated scf accuracy < 0.00000409 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-08, avg # of iterations = 3.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 683 PWs) bands (ev): -16.0440 -10.0087 -9.5472 -7.9882 -4.9922 -4.1293 -3.5490 -2.6539 -1.4002 -1.1570 0.4467 ! total energy = -51.94930567 Ry Harris-Foulkes estimate = -51.94930575 Ry estimated scf accuracy < 0.00000040 Ry The total energy is the sum of the following terms: one-electron contribution = -33.02828828 Ry hartree contribution = 24.10127838 Ry xc contribution = -18.36756624 Ry ewald contribution = -24.65472953 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.09773215 0.00997201 -0.03192900 atom 2 type 1 force = 0.00979559 -0.00720359 0.00183585 atom 3 type 1 force = -0.01837612 0.01530761 -0.01865903 atom 4 type 1 force = -0.06650508 0.02283810 0.00474818 atom 5 type 1 force = -0.00012369 0.00810160 0.00195039 atom 6 type 1 force = -0.00261900 -0.01223500 -0.01484035 atom 7 type 2 force = -0.04220541 -0.08868419 0.11745589 atom 8 type 2 force = -0.01092821 0.09328774 0.00994636 atom 9 type 2 force = 0.02733031 -0.02730928 -0.06138952 atom 10 type 2 force = 0.00589945 -0.01407501 -0.00911875 Total force = 0.234725 Total SCF correction = 0.000606 entering subroutine stress ... Message from routine stress: Meta-GGA and stress not implemented Writing output data file pwscf.save Warning: cannot save meta-gga kinetic terms: not implemented. init_run : 0.23s CPU 0.23s WALL ( 1 calls) electrons : 0.68s CPU 0.70s WALL ( 1 calls) forces : 0.02s CPU 0.02s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.06s CPU 0.06s WALL ( 1 calls) Called by electrons: c_bands : 0.25s CPU 0.24s WALL ( 8 calls) sum_band : 0.06s CPU 0.06s WALL ( 8 calls) v_of_rho : 0.37s CPU 0.39s WALL ( 9 calls) mix_rho : 0.02s CPU 0.02s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.00s WALL ( 17 calls) regterg : 0.25s CPU 0.24s WALL ( 8 calls) Called by *egterg: h_psi : 0.26s CPU 0.24s WALL ( 28 calls) g_psi : 0.00s CPU 0.00s WALL ( 19 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 27 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 28 calls) h_psi_meta : 0.18s CPU 0.18s WALL ( 28 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 32 calls) fft : 0.04s CPU 0.04s WALL ( 124 calls) fftw : 0.26s CPU 0.23s WALL ( 1312 calls) interpolate : 0.00s CPU 0.00s WALL ( 9 calls) davcio : 0.00s CPU 0.00s WALL ( 8 calls) PWSCF : 1.00s CPU 1.06s WALL This run was terminated on: 10:24:51 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-disk_io.in20000644000175000017500000000127412341373024015601 0ustar mbamba &control calculation = 'nscf' disk_io='none' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 nbnd=8 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS alat Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/lattice-ibrav7.ref0000644000175000017500000001752712341373024016320 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:23 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav7.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 885 885 215 16959 16959 2103 Tot 443 443 108 bravais-lattice index = 7 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 -0.500000 1.000000 ) a(2) = ( 0.500000 0.500000 1.000000 ) a(3) = ( -0.500000 -0.500000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -1.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.500000 ) b(3) = ( -1.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 8480 G-vectors FFT dimensions: ( 40, 40, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1052, 1) NL pseudopotentials 0.00 Mb ( 1052, 0) Each V/rho on FFT grid 0.98 Mb ( 64000) Each G-vector array 0.06 Mb ( 8480) G-vector shells 0.00 Mb ( 340) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 1052, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 7.81 Mb ( 64000, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000116 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.116E-03 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 14.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.170E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22182261 Ry Harris-Foulkes estimate = -2.29099633 Ry estimated scf accuracy < 0.13158447 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.58E-03, avg # of iterations = 1.0 negative rho (up, down): 0.229E-06 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23321538 Ry Harris-Foulkes estimate = -2.23358275 Ry estimated scf accuracy < 0.00084278 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23368004 Ry Harris-Foulkes estimate = -2.23368237 Ry estimated scf accuracy < 0.00002200 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -10.2166 ! total energy = -2.23368207 Ry Harris-Foulkes estimate = -2.23368138 Ry estimated scf accuracy < 0.00000066 Ry The total energy is the sum of the following terms: one-electron contribution = -2.79782855 Ry hartree contribution = 1.50137653 Ry xc contribution = -1.30761948 Ry ewald contribution = 0.37038944 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.09s CPU 0.10s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: regterg : 0.02s CPU 0.02s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.01s CPU 0.02s WALL ( 19 calls) fftw : 0.02s CPU 0.01s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.15s CPU 0.16s WALL This run was terminated on: 10:22:23 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-kcrys.in0000644000175000017500000000047512341373024015233 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS {alat} Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS {crystal} 2 0.00 0.25 0.00 1.0 0.25 0.75 0.25 3.0 espresso-5.1/PW/tests/uspp-mixing_TF.in0000755000175000017500000000054312341373024016177 0ustar mbamba &control calculation='scf' / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, ecutrho=200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons mixing_mode = 'TF' / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS {alat} Cu 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 0 0 0 espresso-5.1/PW/tests/lda+U-user_ns.in0000755000175000017500000000156312341373024015745 0ustar mbamba &control calculation = 'scf' / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true., Hubbard_U(2)=4.3, Hubbard_U(3)=4.3, starting_ns_eigenvalue(3,2,2) = 1.d0 starting_ns_eigenvalue(3,1,3) = 1.d0 / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-8 mixing_fixed_ns = 0 / CELL_PARAMETERS (alat) 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 espresso-5.1/PW/tests/lattice-ibrav14.in0000644000175000017500000000056612341373024016223 0ustar mbamba &control calculation='scf', / &system ibrav = 14, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(4) = 0.1, celldm(5) = 0.2, celldm(6) = 0.3, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/lattice-ibrav4-kauto.in0000644000175000017500000000047612341373024017263 0ustar mbamba#!/bin/sh &control calculation='scf', / &system ibrav = 4, celldm(1) =10.0, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/hse-si222.ref0000644000175000017500000004036312341373024015113 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 9400) starts on 29Nov2012 at 22:26:12 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/hse-si222.in IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want EXX: grid of k+q point setup nkqs = 80 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.82340308 Ry Harris-Foulkes estimate = -15.83974490 Ry estimated scf accuracy < 0.06415499 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.82634536 Ry Harris-Foulkes estimate = -15.82635445 Ry estimated scf accuracy < 0.00228139 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.2 secs total energy = -15.82644717 Ry Harris-Foulkes estimate = -15.82643482 Ry estimated scf accuracy < 0.00004970 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.5 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4476 4.7282 5.9961 5.9961 8.9449 9.3568 9.3568 11.1864 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1160 4.9391 5.0502 8.5385 10.1246 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8637 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7127 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7928 3.5449 7.2968 8.3741 14.7162 14.7745 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4109 1.6834 3.9583 5.4867 9.1322 10.0722 10.2721 12.7293 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3206 9.2854 9.9751 11.4585 12.3758 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6946 -0.3359 2.2539 4.3555 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9476 0.3457 5.1681 5.1681 8.1196 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6289 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2968 EXX: now go back to refine exchange calculation -1.69270221977577 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 3.6 total cpu time spent up to now is 4.2 secs total energy = -15.84129192 Ry Harris-Foulkes estimate = -15.84129260 Ry estimated scf accuracy < 0.00004042 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.05E-07, avg # of iterations = 1.0 total cpu time spent up to now is 6.2 secs total energy = -15.84129286 Ry Harris-Foulkes estimate = -15.84129251 Ry estimated scf accuracy < 0.00000308 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.85E-08, avg # of iterations = 1.0 total cpu time spent up to now is 8.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1114 4.0907 5.3801 5.3801 9.4938 9.8350 9.8350 11.8917 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5507 2.4561 4.2808 4.4674 8.9768 10.6991 11.4138 11.7563 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4408 0.6887 2.9431 3.3355 8.1509 9.7850 13.0200 13.2900 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.7413 -1.4933 2.0966 2.8233 7.6818 8.7872 15.3817 15.4720 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0151 0.9605 3.2992 4.8996 9.6816 10.5418 10.7839 13.3236 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.9256 -0.4150 2.2662 3.6892 9.7367 10.4717 11.9682 12.9671 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4784 -1.6908 1.5073 2.5867 9.2245 11.1677 12.2490 14.5091 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0547 -1.3614 1.5898 3.6925 8.7042 12.4523 12.4669 14.0168 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5328 -0.4506 4.5313 4.5313 8.6359 10.3733 10.3733 14.9253 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6334 -1.4629 3.3461 4.0020 9.0929 10.4704 11.0542 14.4057 highest occupied, lowest unoccupied level (ev): 5.3801 7.6818 -1.69270221977577 -1.69404258984651 -1.69553061224261 est. exchange err (dexx) = 0.00007383 Ry ! total energy = -15.84136676 Ry Harris-Foulkes estimate = -15.84136675 Ry estimated scf accuracy < 8.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 3.12123857 Ry hartree contribution = 1.09684313 Ry xc contribution = -4.00596717 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.69404259 Ry + Fock energy = -0.84776531 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.85E-08, avg # of iterations = 3.0 total cpu time spent up to now is 11.2 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1096 4.0853 5.3612 5.3612 9.5083 9.8441 9.8441 11.8979 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5482 2.4564 4.2704 4.4614 8.9855 10.7066 11.4163 11.7592 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4391 0.6899 2.9413 3.3273 8.1595 9.7888 13.0219 13.2886 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.7430 -1.4957 2.0955 2.8142 7.6921 8.7905 15.3808 15.4736 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0126 0.9611 3.2952 4.8870 9.6941 10.5467 10.7879 13.3273 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.9233 -0.4155 2.2659 3.6839 9.7408 10.4748 11.9693 12.9672 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4772 -1.6912 1.5082 2.5836 9.2277 11.1673 12.2504 14.5112 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0539 -1.3622 1.5912 3.6830 8.7148 12.4531 12.4680 14.0195 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5330 -0.4498 4.5154 4.5154 8.6494 10.3831 10.3831 14.9324 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6339 -1.4645 3.3433 3.9895 9.1028 10.4739 11.0569 14.4068 highest occupied, lowest unoccupied level (ev): 5.3612 7.6921 -1.69553061224261 -1.69578918310395 -1.69604971014375 est. exchange err (dexx) = 0.00000098 Ry ! total energy = -15.84137495 Ry Harris-Foulkes estimate = -15.84137522 Ry estimated scf accuracy < 0.00000074 Ry The total energy is the sum of the following terms: one-electron contribution = 3.11912713 Ry hartree contribution = 1.09774854 Ry xc contribution = -4.00625638 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.69578918 Ry + Fock energy = -0.84802486 Ry convergence has been achieved in 1 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -21.32 -0.00014490 0.00000000 0.00000000 -21.32 0.00 0.00 0.00000000 -0.00014490 0.00000000 0.00 -21.32 0.00 0.00000000 0.00000000 -0.00014490 0.00 0.00 -21.32 Writing output data file pwscf.save init_run : 0.03s CPU 0.04s WALL ( 1 calls) electrons : 11.06s CPU 11.60s WALL ( 1 calls) stress : 0.47s CPU 0.56s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 7.73s CPU 8.11s WALL ( 9 calls) sum_band : 0.05s CPU 0.04s WALL ( 9 calls) v_of_rho : 0.04s CPU 0.05s WALL ( 10 calls) mix_rho : 0.00s CPU 0.00s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.01s WALL ( 200 calls) cegterg : 7.72s CPU 8.10s WALL ( 90 calls) Called by *egterg: h_psi : 7.64s CPU 8.00s WALL ( 288 calls) g_psi : 0.00s CPU 0.01s WALL ( 188 calls) cdiaghg : 0.05s CPU 0.05s WALL ( 248 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.00s WALL ( 288 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 298 calls) fft : 0.01s CPU 0.01s WALL ( 112 calls) ffts : 4.62s CPU 5.08s WALL ( 75840 calls) fftw : 0.27s CPU 0.24s WALL ( 7156 calls) davcio : 0.02s CPU 0.01s WALL ( 400 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.12s CPU 0.14s WALL ( 3 calls) vexx : 7.48s CPU 7.83s WALL ( 126 calls) exxen2 : 3.11s CPU 3.25s WALL ( 7 calls) PWSCF : 11.64s CPU 12.28s WALL This run was terminated on: 22:26:25 29Nov2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-disk_io.ref10000644000175000017500000002434212341373024015747 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 12:24:57 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-disk_io.in1 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 331 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 21 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 k( 2) = ( 0.2000000 0.0000000 0.0000000), wk = 2.0000000 k( 3) = ( 0.4000000 0.0000000 0.0000000), wk = 2.0000000 k( 4) = ( 0.6000000 0.0000000 0.0000000), wk = 2.0000000 k( 5) = ( 0.8000000 0.0000000 0.0000000), wk = 2.0000000 k( 6) = ( 1.0000000 0.0000000 0.0000000), wk = 2.0000000 k( 7) = ( 1.0000000 0.0500000 0.0500000), wk = 2.0000000 k( 8) = ( 1.0000000 0.1000000 0.1000000), wk = 2.0000000 k( 9) = ( 1.0000000 0.1500000 0.1500000), wk = 2.0000000 k( 10) = ( 1.0000000 0.2000000 0.2000000), wk = 2.0000000 k( 11) = ( 1.0000000 0.2500000 0.2500000), wk = 2.0000000 k( 12) = ( 0.9000000 0.3000000 0.3000000), wk = 2.0000000 k( 13) = ( 0.8000000 0.3500000 0.3500000), wk = 2.0000000 k( 14) = ( 0.7000000 0.4000000 0.4000000), wk = 2.0000000 k( 15) = ( 0.6000000 0.4500000 0.4500000), wk = 2.0000000 k( 16) = ( 0.5000000 0.5000000 0.5000000), wk = 2.0000000 k( 17) = ( 0.4000000 0.4000000 0.4000000), wk = 2.0000000 k( 18) = ( 0.3000000 0.3000000 0.3000000), wk = 2.0000000 k( 19) = ( 0.2000000 0.2000000 0.2000000), wk = 2.0000000 k( 20) = ( 0.1000000 0.1000000 0.1000000), wk = 2.0000000 k( 21) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 194, 8) NL pseudopotentials 0.02 Mb ( 194, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 194, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.0 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 12.2 total cpu time spent up to now is 0.4 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -5.6687 6.3360 6.3360 6.3360 8.8977 8.8977 8.8977 9.8994 k = 0.2000 0.0000 0.0000 band energies (ev): -5.5035 5.4454 5.7234 5.7234 8.5043 9.7229 9.7229 10.6608 k = 0.4000 0.0000 0.0000 band energies (ev): -4.9866 3.7828 4.7737 4.7737 7.7521 10.2158 11.2953 11.2953 k = 0.6000 0.0000 0.0000 band energies (ev): -4.1136 1.9721 4.0067 4.0067 7.1390 8.7032 13.0662 13.0662 k = 0.8000 0.0000 0.0000 band energies (ev): -2.9485 0.1736 3.5278 3.5278 6.8246 7.5723 14.9321 14.9321 k = 1.0000 0.0000 0.0000 band energies (ev): -1.4850 -1.4850 3.3662 3.3662 6.9634 6.9634 16.4944 16.4944 k = 1.0000 0.0500 0.0500 band energies (ev): -1.4923 -1.4612 3.2169 3.3843 6.9843 7.1849 16.2778 16.3621 k = 1.0000 0.1000 0.1000 band energies (ev): -1.5207 -1.3958 2.8622 3.4386 7.0440 7.7574 15.7717 16.0203 k = 1.0000 0.1500 0.1500 band energies (ev): -1.5798 -1.2602 2.4549 3.5283 7.1511 8.5465 15.1579 15.5735 k = 1.0000 0.2000 0.2000 band energies (ev): -1.6804 -1.1105 2.0973 3.6521 7.2847 9.4656 14.5296 15.0768 k = 1.0000 0.2500 0.2500 band energies (ev): -1.8691 -0.8929 1.8512 3.8081 7.4704 10.4622 13.8961 14.4265 k = 0.9000 0.3000 0.3000 band energies (ev): -2.2719 -0.5830 1.9303 4.0284 7.7398 11.5404 12.8398 12.9952 k = 0.8000 0.3500 0.3500 band energies (ev): -2.6934 -0.5107 2.5730 4.3285 8.1281 11.4263 11.6625 12.8909 k = 0.7000 0.4000 0.4000 band energies (ev): -3.0177 -0.6089 3.5481 4.6665 8.5204 10.1860 10.6575 14.0689 k = 0.6000 0.4500 0.4500 band energies (ev): -3.2069 -0.7161 4.5528 4.9555 8.3606 9.6341 9.9523 14.1718 k = 0.5000 0.5000 0.5000 band energies (ev): -3.2602 -0.7570 5.0794 5.0794 7.9254 9.6978 9.6978 13.8859 k = 0.4000 0.4000 0.4000 band energies (ev): -3.7594 -0.0186 5.1539 5.1539 8.0020 9.7831 9.7831 14.0013 k = 0.3000 0.3000 0.3000 band energies (ev): -4.5385 1.4884 5.3733 5.3733 8.2161 9.9000 9.9000 13.9086 k = 0.2000 0.2000 0.2000 band energies (ev): -5.1604 3.3112 5.7239 5.7239 8.5984 9.7278 9.7278 12.4378 k = 0.1000 0.1000 0.1000 band energies (ev): -5.5450 5.1930 6.1230 6.1230 8.9569 9.2022 9.2022 10.7501 k = 0.0000 0.0000 0.0000 band energies (ev): -5.6687 6.3360 6.3360 6.3360 8.8977 8.8977 8.8977 9.8994 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.24s CPU 0.25s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.24s CPU 0.25s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 21 calls) cegterg : 0.21s CPU 0.23s WALL ( 21 calls) Called by *egterg: h_psi : 0.11s CPU 0.12s WALL ( 299 calls) g_psi : 0.02s CPU 0.01s WALL ( 257 calls) cdiaghg : 0.08s CPU 0.07s WALL ( 278 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 299 calls) General routines calbec : 0.01s CPU 0.00s WALL ( 299 calls) fft : 0.00s CPU 0.00s WALL ( 3 calls) fftw : 0.06s CPU 0.10s WALL ( 3250 calls) davcio : 0.00s CPU 0.00s WALL ( 21 calls) PWSCF : 0.40s CPU 0.43s WALL This run was terminated on: 12:24:57 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav6.in0000644000175000017500000000044212341373024016135 0ustar mbamba &control calculation='scf', / &system ibrav = 6, celldm(1) =10.0, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/lattice-ibrav10-kauto.in0000644000175000017500000000051012341373024017325 0ustar mbamba &control calculation='scf', / &system ibrav = 10, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/dft5.in0000755000175000017500000000054012341373024014165 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 input_dft='b86bpbe' / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/electric1.in0000755000175000017500000000536012341373024015203 0ustar mbamba &control calculation='scf' gdir=3, nppstr=7, lelfield=.true., nberrycyc=1 / &system ibrav= 1, celldm(1)=10.18, nat= 8, ntyp= 1, ecutwfc = 20.0, nosym=.true. / &electrons conv_thr = 1.0d-8, mixing_beta = 0.5, startingwfc='file', startingpot='file', efield=0. / ATOMIC_SPECIES Si 28.086 Si.pbe-rrkj.UPF ATOMIC_POSITIONS (alat) Si -0.123 -0.123 -0.123 Si 0.377 0.377 -0.123 Si 0.377 -0.123 0.377 Si -0.123 0.377 0.377 Si 0.123 0.123 0.123 Si 0.623 0.623 0.123 Si 0.623 0.123 0.623 Si 0.123 0.623 0.623 K_POINTS 63 0. 0. 0. 1 0. 0. 0.142857143 1 0. 0. 0.285714286 1 0. 0. 0.428571429 1 0. 0. 0.571428571 1 0. 0. 0.714285714 1 0. 0. 0.857142857 1 0. 0.333333333 0. 1 0. 0.333333333 0.142857143 1 0. 0.333333333 0.285714286 1 0. 0.333333333 0.428571429 1 0. 0.333333333 0.571428571 1 0. 0.333333333 0.714285714 1 0. 0.333333333 0.857142857 1 0. 0.666666667 0. 1 0. 0.666666667 0.142857143 1 0. 0.666666667 0.285714286 1 0. 0.666666667 0.428571429 1 0. 0.666666667 0.571428571 1 0. 0.666666667 0.714285714 1 0. 0.666666667 0.857142857 1 0.333333333 0. 0. 1 0.333333333 0. 0.142857143 1 0.333333333 0. 0.285714286 1 0.333333333 0. 0.428571429 1 0.333333333 0. 0.571428571 1 0.333333333 0. 0.714285714 1 0.333333333 0. 0.857142857 1 0.333333333 0.333333333 0. 1 0.333333333 0.333333333 0.142857143 1 0.333333333 0.333333333 0.285714286 1 0.333333333 0.333333333 0.428571429 1 0.333333333 0.333333333 0.571428571 1 0.333333333 0.333333333 0.714285714 1 0.333333333 0.333333333 0.857142857 1 0.333333333 0.666666667 0. 1 0.333333333 0.666666667 0.142857143 1 0.333333333 0.666666667 0.285714286 1 0.333333333 0.666666667 0.428571429 1 0.333333333 0.666666667 0.571428571 1 0.333333333 0.666666667 0.714285714 1 0.333333333 0.666666667 0.857142857 1 0.666666667 0. 0. 1 0.666666667 0. 0.142857143 1 0.666666667 0. 0.285714286 1 0.666666667 0. 0.428571429 1 0.666666667 0. 0.571428571 1 0.666666667 0. 0.714285714 1 0.666666667 0. 0.857142857 1 0.666666667 0.333333333 0. 1 0.666666667 0.333333333 0.142857143 1 0.666666667 0.333333333 0.285714286 1 0.666666667 0.333333333 0.428571429 1 0.666666667 0.333333333 0.571428571 1 0.666666667 0.333333333 0.714285714 1 0.666666667 0.333333333 0.857142857 1 0.666666667 0.666666667 0. 1 0.666666667 0.666666667 0.142857143 1 0.666666667 0.666666667 0.285714286 1 0.666666667 0.666666667 0.428571429 1 0.666666667 0.666666667 0.571428571 1 0.666666667 0.666666667 0.714285714 1 0.666666667 0.666666667 0.857142857 1 espresso-5.1/PW/tests/noncolin-constrain_atomic.ref0000644000175000017500000012101112341373024020634 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:25: 3 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin-constrain_atomic.in file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 70 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0135135 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0135135 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0135135 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0135135 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0135135 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0135135 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0135135 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0405405 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0135135 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0135135 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0135135 k( 12) = ( 0.0625000 0.0625000 -0.0625000), wk = 0.0135135 k( 13) = ( 0.0625000 0.0625000 -0.1875000), wk = 0.0135135 k( 14) = ( 0.1875000 -0.0625000 0.0625000), wk = 0.0135135 k( 15) = ( 0.1875000 0.0625000 -0.0625000), wk = 0.0135135 k( 16) = ( -0.0625000 0.1875000 0.0625000), wk = 0.0135135 k( 17) = ( -0.0625000 -0.1875000 -0.0625000), wk = 0.0135135 k( 18) = ( 0.0625000 0.0625000 -0.3125000), wk = 0.0135135 k( 19) = ( 0.3125000 -0.0625000 0.0625000), wk = 0.0135135 k( 20) = ( 0.3125000 0.0625000 -0.0625000), wk = 0.0135135 k( 21) = ( -0.0625000 0.3125000 0.0625000), wk = 0.0135135 k( 22) = ( -0.0625000 -0.3125000 -0.0625000), wk = 0.0135135 k( 23) = ( 0.0625000 0.0625000 -0.4375000), wk = 0.0135135 k( 24) = ( 0.4375000 -0.0625000 0.0625000), wk = 0.0135135 k( 25) = ( 0.4375000 0.0625000 -0.0625000), wk = 0.0135135 k( 26) = ( -0.0625000 0.4375000 0.0625000), wk = 0.0135135 k( 27) = ( -0.0625000 -0.4375000 -0.0625000), wk = 0.0135135 k( 28) = ( 0.0625000 0.0625000 -0.5625000), wk = 0.0135135 k( 29) = ( 0.5625000 -0.0625000 0.0625000), wk = 0.0135135 k( 30) = ( 0.5625000 0.0625000 -0.0625000), wk = 0.0135135 k( 31) = ( -0.0625000 0.5625000 0.0625000), wk = 0.0135135 k( 32) = ( -0.0625000 -0.5625000 -0.0625000), wk = 0.0135135 k( 33) = ( 0.0625000 0.0625000 -0.6875000), wk = 0.0135135 k( 34) = ( 0.6875000 -0.0625000 0.0625000), wk = 0.0135135 k( 35) = ( 0.6875000 0.0625000 -0.0625000), wk = 0.0135135 k( 36) = ( -0.0625000 0.6875000 0.0625000), wk = 0.0135135 k( 37) = ( -0.0625000 -0.6875000 -0.0625000), wk = 0.0135135 k( 38) = ( 0.0625000 0.0625000 -0.8125000), wk = 0.0135135 k( 39) = ( 0.8125000 -0.0625000 0.0625000), wk = 0.0135135 k( 40) = ( 0.8125000 0.0625000 -0.0625000), wk = 0.0135135 k( 41) = ( -0.0625000 0.8125000 0.0625000), wk = 0.0135135 k( 42) = ( -0.0625000 -0.8125000 -0.0625000), wk = 0.0135135 k( 43) = ( 0.0625000 0.0625000 -0.9375000), wk = 0.0405405 k( 44) = ( 0.1875000 0.0625000 -0.1875000), wk = 0.0135135 k( 45) = ( -0.1875000 -0.0625000 -0.1875000), wk = 0.0135135 k( 46) = ( 0.1875000 -0.1875000 0.0625000), wk = 0.0135135 k( 47) = ( 0.1875000 0.1875000 -0.0625000), wk = 0.0135135 k( 48) = ( -0.0625000 0.1875000 0.1875000), wk = 0.0135135 k( 49) = ( 0.1875000 0.0625000 -0.3125000), wk = 0.0135135 k( 50) = ( -0.1875000 -0.0625000 -0.3125000), wk = 0.0135135 k( 51) = ( 0.3125000 -0.1875000 0.0625000), wk = 0.0135135 k( 52) = ( 0.3125000 0.1875000 -0.0625000), wk = 0.0135135 k( 53) = ( -0.0625000 0.3125000 0.1875000), wk = 0.0135135 k( 54) = ( -0.0625000 -0.3125000 -0.1875000), wk = 0.0135135 k( 55) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0135135 k( 56) = ( 0.1875000 -0.3125000 -0.0625000), wk = 0.0135135 k( 57) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0135135 k( 58) = ( 0.3125000 -0.0625000 -0.1875000), wk = 0.0135135 k( 59) = ( -0.0625000 -0.1875000 0.3125000), wk = 0.0135135 k( 60) = ( 0.1875000 0.0625000 -0.4375000), wk = 0.0135135 k( 61) = ( -0.1875000 -0.0625000 -0.4375000), wk = 0.0135135 k( 62) = ( 0.4375000 -0.1875000 0.0625000), wk = 0.0135135 k( 63) = ( 0.4375000 0.1875000 -0.0625000), wk = 0.0135135 k( 64) = ( -0.0625000 0.4375000 0.1875000), wk = 0.0135135 k( 65) = ( -0.0625000 -0.4375000 -0.1875000), wk = 0.0135135 k( 66) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0135135 k( 67) = ( 0.1875000 -0.4375000 -0.0625000), wk = 0.0135135 k( 68) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0135135 k( 69) = ( 0.4375000 -0.0625000 -0.1875000), wk = 0.0135135 k( 70) = ( -0.0625000 -0.1875000 0.4375000), wk = 0.0135135 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 constraint energy (Ryd) = 8.02202247 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.319637 0.000000 0.290431 magnetization/charge: 0.498097 0.000000 0.043578 polar coord.: r, theta, phi [deg] : 3.332318 85.000000 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.8 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.4 constraint energy (Ryd) = 6.78548616 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.568754 magnetization : 3.093081 0.000000 0.270612 magnetization/charge: 0.470878 0.000000 0.041197 polar coord.: r, theta, phi [deg] : 3.104897 84.999951 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 2.4 secs total energy = -55.70589717 Ry Harris-Foulkes estimate = -55.76528052 Ry estimated scf accuracy < 0.24768119 Ry total magnetization = 2.35 0.00 0.21 Bohr mag/cell absolute magnetization = 2.36 Bohr mag/cell lambda = 1.00 Ry iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.10E-03, avg # of iterations = 1.0 constraint energy (Ryd) = 4.85666317 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.433700 magnetization : 2.693495 0.000000 0.235650 magnetization/charge: 0.418654 0.000000 0.036627 polar coord.: r, theta, phi [deg] : 2.703784 85.000014 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 3.2 secs total energy = -55.68123633 Ry Harris-Foulkes estimate = -55.71643791 Ry estimated scf accuracy < 0.08260566 Ry total magnetization = 2.36 0.00 0.21 Bohr mag/cell absolute magnetization = 2.37 Bohr mag/cell lambda = 1.00 Ry iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.03E-03, avg # of iterations = 2.1 constraint energy (Ryd) = 3.67711779 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.423122 magnetization : 2.408381 0.000000 0.210711 magnetization/charge: 0.374955 0.000000 0.032805 polar coord.: r, theta, phi [deg] : 2.417581 84.999892 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 4.1 secs total energy = -55.69771277 Ry Harris-Foulkes estimate = -55.69837985 Ry estimated scf accuracy < 0.00391033 Ry total magnetization = 2.32 0.00 0.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell lambda = 1.00 Ry iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.89E-05, avg # of iterations = 3.3 constraint energy (Ryd) = 2.12026596 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.374334 magnetization : 1.948669 0.000000 0.170498 magnetization/charge: 0.305705 0.000000 0.026748 polar coord.: r, theta, phi [deg] : 1.956113 84.999652 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 5.4 secs total energy = -55.69208638 Ry Harris-Foulkes estimate = -55.69901161 Ry estimated scf accuracy < 0.00267815 Ry total magnetization = 2.14 0.00 0.19 Bohr mag/cell absolute magnetization = 2.15 Bohr mag/cell lambda = 1.00 Ry iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.35E-05, avg # of iterations = 2.2 constraint energy (Ryd) = 1.60507184 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.404330 magnetization : 1.760190 0.000000 0.154009 magnetization/charge: 0.274844 0.000000 0.024048 polar coord.: r, theta, phi [deg] : 1.766914 84.999595 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 6.4 secs total energy = -55.69104534 Ry Harris-Foulkes estimate = -55.69395753 Ry estimated scf accuracy < 0.00164749 Ry total magnetization = 1.93 0.00 0.17 Bohr mag/cell absolute magnetization = 1.94 Bohr mag/cell lambda = 1.00 Ry iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.06E-05, avg # of iterations = 2.0 constraint energy (Ryd) = 1.33846190 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.405728 magnetization : 1.650613 0.000000 0.144422 magnetization/charge: 0.257678 0.000000 0.022546 polar coord.: r, theta, phi [deg] : 1.656919 84.999572 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 7.4 secs total energy = -55.69055241 Ry Harris-Foulkes estimate = -55.69189654 Ry estimated scf accuracy < 0.00021596 Ry total magnetization = 1.77 0.00 0.15 Bohr mag/cell absolute magnetization = 1.78 Bohr mag/cell lambda = 1.00 Ry iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.70E-06, avg # of iterations = 3.0 constraint energy (Ryd) = 1.30472548 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.405565 magnetization : 1.635995 0.000000 0.143144 magnetization/charge: 0.255402 0.000000 0.022347 polar coord.: r, theta, phi [deg] : 1.642246 84.999559 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 8.5 secs total energy = -55.69060113 Ry Harris-Foulkes estimate = -55.69076532 Ry estimated scf accuracy < 0.00007448 Ry total magnetization = 1.69 0.00 0.15 Bohr mag/cell absolute magnetization = 1.70 Bohr mag/cell lambda = 1.00 Ry iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 9.31E-07, avg # of iterations = 1.0 constraint energy (Ryd) = 1.80164424 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403151 magnetization : 1.835242 0.000000 0.160571 magnetization/charge: 0.286616 0.000000 0.025077 polar coord.: r, theta, phi [deg] : 1.842253 84.999734 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 9.3 secs total energy = -55.69247279 Ry Harris-Foulkes estimate = -55.69060457 Ry estimated scf accuracy < 0.00006081 Ry total magnetization = 1.68 0.00 0.15 Bohr mag/cell absolute magnetization = 1.69 Bohr mag/cell lambda = 1.00 Ry iteration # 9 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 2.3 constraint energy (Ryd) = 1.20745658 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403688 magnetization : 1.592759 0.000000 0.139356 magnetization/charge: 0.248725 0.000000 0.021762 polar coord.: r, theta, phi [deg] : 1.598843 84.999732 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 10.4 secs total energy = -55.68942023 Ry Harris-Foulkes estimate = -55.69290431 Ry estimated scf accuracy < 0.00023638 Ry total magnetization = 1.82 0.00 0.16 Bohr mag/cell absolute magnetization = 1.83 Bohr mag/cell lambda = 1.00 Ry iteration # 10 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 2.5 constraint energy (Ryd) = 1.25334470 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403376 magnetization : 1.613365 0.000000 0.141159 magnetization/charge: 0.251955 0.000000 0.022044 polar coord.: r, theta, phi [deg] : 1.619529 84.999734 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 11.6 secs total energy = -55.69035001 Ry Harris-Foulkes estimate = -55.69011365 Ry estimated scf accuracy < 0.00000417 Ry total magnetization = 1.64 0.00 0.14 Bohr mag/cell absolute magnetization = 1.65 Bohr mag/cell lambda = 1.00 Ry iteration # 11 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.21E-08, avg # of iterations = 2.1 constraint energy (Ryd) = 1.23918045 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403171 magnetization : 1.607045 0.000000 0.140608 magnetization/charge: 0.250976 0.000000 0.021959 polar coord.: r, theta, phi [deg] : 1.613185 84.999662 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 12.5 secs total energy = -55.69028379 Ry Harris-Foulkes estimate = -55.69035527 Ry estimated scf accuracy < 0.00000124 Ry total magnetization = 1.66 0.00 0.15 Bohr mag/cell absolute magnetization = 1.67 Bohr mag/cell lambda = 1.00 Ry iteration # 12 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.55E-08, avg # of iterations = 2.0 constraint energy (Ryd) = 1.23839212 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403178 magnetization : 1.606692 0.000000 0.140581 magnetization/charge: 0.250921 0.000000 0.021955 polar coord.: r, theta, phi [deg] : 1.612831 84.999500 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 13.4 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.9518 6.1966 12.2402 12.2402 12.4702 13.4388 13.4388 13.6842 13.8552 13.8552 15.3247 15.3248 38.9728 38.9729 39.2151 39.2151 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.6182 6.8678 12.1393 12.2134 12.7704 13.3224 13.3992 13.5604 13.9969 13.9981 14.9896 15.4814 36.4905 36.8581 38.1015 38.4408 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.8225 8.0972 12.1689 12.1738 13.0684 13.1911 13.3330 13.3466 14.2572 14.4215 14.4398 15.7436 34.1134 34.5963 35.7767 36.1995 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 9.2175 9.5961 11.8731 12.3816 12.8108 13.0611 13.5350 13.6886 14.0517 14.7921 14.9709 16.1757 32.0179 32.5944 33.0373 33.4989 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 10.1572 10.7913 11.1695 12.3161 12.7373 13.1198 13.9110 14.1890 14.3264 15.5077 16.1726 17.2466 29.9419 30.4402 30.5376 30.9204 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 10.2578 10.4543 11.1456 11.5412 13.2753 13.7319 14.4742 14.6497 14.9657 15.9973 18.6642 19.4151 27.7951 28.0898 28.3336 28.5472 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.9063 9.9086 10.9025 10.9488 13.9962 14.4598 14.9641 15.2496 15.7592 16.3360 21.8273 22.3659 25.8990 26.1780 26.3459 26.5732 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.6124 9.6124 10.6321 10.6322 14.6551 15.0038 15.0038 15.9831 16.3765 16.3766 24.7326 24.7326 25.0935 25.0936 25.1266 25.4518 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 7.2348 7.4954 11.8712 12.0987 13.0336 13.2472 13.2538 13.6576 13.9204 14.4963 15.0907 15.3974 34.2319 34.6939 36.9595 37.2914 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0610 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k = 0.0625 0.0625-0.0625 ( 141 PWs) bands (ev): 5.9518 6.1966 12.2401 12.2402 12.4703 13.4387 13.4388 13.6842 13.8552 13.8552 15.3247 15.3248 38.9729 38.9729 39.2151 39.2151 k = 0.0625 0.0625-0.1875 ( 148 PWs) bands (ev): 6.6182 6.8678 12.1393 12.2134 12.7704 13.3224 13.3992 13.5604 13.9969 13.9981 14.9896 15.4814 36.4905 36.8581 38.1015 38.4408 k = 0.1875-0.0625 0.0625 ( 148 PWs) bands (ev): 6.6182 6.8678 12.1393 12.2134 12.7704 13.3224 13.3992 13.5604 13.9969 13.9981 14.9896 15.4814 36.4905 36.8581 38.1015 38.4408 k = 0.1875 0.0625-0.0625 ( 148 PWs) bands (ev): 6.6182 6.8678 12.1393 12.2134 12.7704 13.3224 13.3992 13.5604 13.9969 13.9981 14.9896 15.4814 36.4905 36.8581 38.1015 38.4408 k =-0.0625 0.1875 0.0625 ( 148 PWs) bands (ev): 6.6182 6.8678 12.1393 12.2134 12.7704 13.3224 13.3992 13.5604 13.9969 13.9981 14.9896 15.4813 36.4905 36.8581 38.1015 38.4408 k =-0.0625-0.1875-0.0625 ( 148 PWs) bands (ev): 6.6182 6.8678 12.1393 12.2134 12.7704 13.3224 13.3992 13.5604 13.9969 13.9981 14.9896 15.4813 36.4905 36.8581 38.1015 38.4408 k = 0.0625 0.0625-0.3125 ( 152 PWs) bands (ev): 7.8225 8.0972 12.1689 12.1738 13.0684 13.1912 13.3330 13.3466 14.2572 14.4215 14.4398 15.7436 34.1134 34.5963 35.7767 36.1995 k = 0.3125-0.0625 0.0625 ( 152 PWs) bands (ev): 7.8225 8.0972 12.1689 12.1738 13.0684 13.1911 13.3330 13.3466 14.2572 14.4215 14.4398 15.7437 34.1134 34.5963 35.7767 36.1995 k = 0.3125 0.0625-0.0625 ( 152 PWs) bands (ev): 7.8225 8.0972 12.1689 12.1738 13.0684 13.1912 13.3330 13.3466 14.2572 14.4215 14.4398 15.7437 34.1134 34.5963 35.7767 36.1995 k =-0.0625 0.3125 0.0625 ( 152 PWs) bands (ev): 7.8225 8.0972 12.1689 12.1738 13.0684 13.1912 13.3330 13.3466 14.2572 14.4216 14.4398 15.7436 34.1134 34.5963 35.7767 36.1995 k =-0.0625-0.3125-0.0625 ( 152 PWs) bands (ev): 7.8225 8.0972 12.1689 12.1738 13.0684 13.1912 13.3330 13.3466 14.2572 14.4216 14.4398 15.7436 34.1134 34.5963 35.7767 36.1995 k = 0.0625 0.0625-0.4375 ( 156 PWs) bands (ev): 9.2175 9.5961 11.8731 12.3816 12.8108 13.0611 13.5350 13.6886 14.0517 14.7921 14.9709 16.1757 32.0179 32.5944 33.0372 33.4989 k = 0.4375-0.0625 0.0625 ( 156 PWs) bands (ev): 9.2175 9.5961 11.8731 12.3816 12.8108 13.0611 13.5350 13.6886 14.0517 14.7921 14.9709 16.1757 32.0179 32.5944 33.0373 33.4989 k = 0.4375 0.0625-0.0625 ( 156 PWs) bands (ev): 9.2175 9.5961 11.8731 12.3816 12.8108 13.0611 13.5350 13.6886 14.0517 14.7921 14.9709 16.1757 32.0179 32.5944 33.0373 33.4989 k =-0.0625 0.4375 0.0625 ( 156 PWs) bands (ev): 9.2175 9.5961 11.8731 12.3816 12.8108 13.0612 13.5350 13.6886 14.0517 14.7921 14.9710 16.1756 32.0179 32.5944 33.0373 33.4989 k =-0.0625-0.4375-0.0625 ( 156 PWs) bands (ev): 9.2175 9.5961 11.8731 12.3816 12.8108 13.0612 13.5350 13.6886 14.0517 14.7921 14.9710 16.1756 32.0179 32.5944 33.0372 33.4989 k = 0.0625 0.0625-0.5625 ( 148 PWs) bands (ev): 10.1572 10.7913 11.1695 12.3162 12.7373 13.1198 13.9110 14.1890 14.3263 15.5077 16.1726 17.2466 29.9419 30.4402 30.5377 30.9204 k = 0.5625-0.0625 0.0625 ( 148 PWs) bands (ev): 10.1572 10.7913 11.1695 12.3161 12.7373 13.1198 13.9110 14.1890 14.3264 15.5077 16.1726 17.2466 29.9419 30.4402 30.5376 30.9204 k = 0.5625 0.0625-0.0625 ( 148 PWs) bands (ev): 10.1572 10.7913 11.1695 12.3161 12.7373 13.1198 13.9110 14.1890 14.3264 15.5077 16.1726 17.2467 29.9419 30.4402 30.5376 30.9204 k =-0.0625 0.5625 0.0625 ( 148 PWs) bands (ev): 10.1572 10.7913 11.1695 12.3162 12.7373 13.1198 13.9110 14.1890 14.3263 15.5078 16.1725 17.2466 29.9419 30.4402 30.5377 30.9204 k =-0.0625-0.5625-0.0625 ( 148 PWs) bands (ev): 10.1572 10.7913 11.1695 12.3162 12.7373 13.1198 13.9110 14.1890 14.3263 15.5078 16.1725 17.2466 29.9419 30.4402 30.5377 30.9204 k = 0.0625 0.0625-0.6875 ( 146 PWs) bands (ev): 10.2578 10.4543 11.1456 11.5412 13.2753 13.7319 14.4742 14.6497 14.9657 15.9973 18.6642 19.4151 27.7951 28.0898 28.3336 28.5472 k = 0.6875-0.0625 0.0625 ( 146 PWs) bands (ev): 10.2578 10.4543 11.1456 11.5412 13.2753 13.7319 14.4742 14.6497 14.9657 15.9973 18.6642 19.4151 27.7951 28.0898 28.3336 28.5472 k = 0.6875 0.0625-0.0625 ( 146 PWs) bands (ev): 10.2578 10.4543 11.1456 11.5412 13.2753 13.7319 14.4742 14.6497 14.9657 15.9973 18.6642 19.4151 27.7951 28.0898 28.3336 28.5472 k =-0.0625 0.6875 0.0625 ( 146 PWs) bands (ev): 10.2578 10.4543 11.1456 11.5413 13.2753 13.7318 14.4742 14.6498 14.9656 15.9973 18.6642 19.4151 27.7951 28.0898 28.3336 28.5472 k =-0.0625-0.6875-0.0625 ( 146 PWs) bands (ev): 10.2578 10.4543 11.1456 11.5413 13.2753 13.7319 14.4742 14.6497 14.9656 15.9973 18.6642 19.4151 27.7951 28.0898 28.3336 28.5472 k = 0.0625 0.0625-0.8125 ( 144 PWs) bands (ev): 9.9063 9.9086 10.9025 10.9488 13.9962 14.4598 14.9641 15.2495 15.7592 16.3360 21.8273 22.3659 25.8990 26.1780 26.3459 26.5732 k = 0.8125-0.0625 0.0625 ( 144 PWs) bands (ev): 9.9063 9.9086 10.9026 10.9488 13.9963 14.4598 14.9641 15.2496 15.7593 16.3360 21.8273 22.3660 25.8990 26.1780 26.3459 26.5732 k = 0.8125 0.0625-0.0625 ( 144 PWs) bands (ev): 9.9063 9.9086 10.9026 10.9488 13.9962 14.4598 14.9641 15.2495 15.7593 16.3360 21.8273 22.3660 25.8990 26.1780 26.3459 26.5732 k =-0.0625 0.8125 0.0625 ( 144 PWs) bands (ev): 9.9063 9.9086 10.9025 10.9489 13.9962 14.4598 14.9641 15.2495 15.7592 16.3360 21.8273 22.3659 25.8990 26.1780 26.3459 26.5732 k =-0.0625-0.8125-0.0625 ( 144 PWs) bands (ev): 9.9063 9.9086 10.9025 10.9489 13.9962 14.4598 14.9641 15.2495 15.7592 16.3360 21.8273 22.3659 25.8990 26.1780 26.3459 26.5732 k = 0.0625 0.0625-0.9375 ( 143 PWs) bands (ev): 9.6124 9.6124 10.6321 10.6322 14.6551 15.0038 15.0038 15.9831 16.3765 16.3766 24.7326 24.7327 25.0935 25.0935 25.1266 25.4518 k = 0.1875 0.0625-0.1875 ( 151 PWs) bands (ev): 7.2348 7.4954 11.8712 12.0988 13.0336 13.2472 13.2538 13.6576 13.9205 14.4963 15.0906 15.3974 34.2319 34.6939 36.9595 37.2915 k =-0.1875-0.0625-0.1875 ( 151 PWs) bands (ev): 7.2348 7.4954 11.8712 12.0987 13.0336 13.2472 13.2538 13.6576 13.9205 14.4963 15.0907 15.3974 34.2319 34.6939 36.9595 37.2915 k = 0.1875-0.1875 0.0625 ( 151 PWs) bands (ev): 7.2348 7.4954 11.8712 12.0987 13.0336 13.2472 13.2538 13.6576 13.9204 14.4963 15.0907 15.3974 34.2319 34.6939 36.9596 37.2915 k = 0.1875 0.1875-0.0625 ( 151 PWs) bands (ev): 7.2348 7.4954 11.8712 12.0987 13.0336 13.2472 13.2538 13.6576 13.9204 14.4963 15.0907 15.3974 34.2319 34.6939 36.9595 37.2914 k =-0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 7.2348 7.4954 11.8712 12.0987 13.0336 13.2472 13.2537 13.6576 13.9204 14.4963 15.0907 15.3974 34.2319 34.6939 36.9595 37.2915 k = 0.1875 0.0625-0.3125 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k =-0.1875-0.0625-0.3125 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k = 0.3125-0.1875 0.0625 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k = 0.3125 0.1875-0.0625 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k =-0.0625 0.3125 0.1875 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6226 31.4689 32.0103 35.1683 35.5451 k =-0.0625-0.3125-0.1875 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4589 13.8059 14.1438 14.8463 15.0847 15.6226 31.4689 32.0103 35.1683 35.5452 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4589 13.8059 14.1438 14.8463 15.0847 15.6226 31.4689 32.0103 35.1683 35.5451 k = 0.1875-0.3125-0.0625 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6226 31.4689 32.0103 35.1683 35.5452 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k = 0.3125-0.0625-0.1875 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k =-0.0625-0.1875 0.3125 ( 152 PWs) bands (ev): 8.3009 8.6120 11.7200 12.0339 12.8622 13.1295 13.4588 13.8059 14.1438 14.8463 15.0847 15.6227 31.4689 32.0103 35.1683 35.5452 k = 0.1875 0.0625-0.4375 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0611 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k =-0.1875-0.0625-0.4375 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0611 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k = 0.4375-0.1875 0.0625 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0610 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k = 0.4375 0.1875-0.0625 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0610 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k =-0.0625 0.4375 0.1875 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0611 13.3309 14.2448 14.6387 14.8716 15.5991 16.1866 28.9407 29.5430 32.8946 33.3449 k =-0.0625-0.4375-0.1875 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0611 13.3309 14.2448 14.6387 14.8716 15.5991 16.1866 28.9407 29.5430 32.8946 33.3449 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7930 13.0611 13.3309 14.2448 14.6387 14.8716 15.5991 16.1866 28.9407 29.5430 32.8946 33.3449 k = 0.1875-0.4375-0.0625 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0611 13.3309 14.2448 14.6387 14.8716 15.5991 16.1866 28.9407 29.5430 32.8946 33.3449 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0610 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k = 0.4375-0.0625-0.1875 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7929 13.0611 13.3308 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 k =-0.0625-0.1875 0.4375 ( 153 PWs) bands (ev): 9.4222 9.8933 11.6824 11.9886 12.7930 13.0610 13.3309 14.2448 14.6387 14.8716 15.5991 16.1867 28.9407 29.5430 32.8946 33.3449 the Fermi energy is 14.3641 ev ! total energy = -55.69028379 Ry Harris-Foulkes estimate = -55.69028429 Ry estimated scf accuracy < 0.00000054 Ry The total energy is the sum of the following terms: one-electron contribution = 8.87078424 Ry hartree contribution = 6.00817142 Ry xc contribution = -25.92721507 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00258769 Ry total magnetization = 1.66 0.00 0.14 Bohr mag/cell absolute magnetization = 1.66 Bohr mag/cell lambda = 1.00 Ry convergence has been achieved in 12 iterations Writing output data file pwscf.save init_run : 0.73s CPU 0.73s WALL ( 1 calls) electrons : 12.33s CPU 12.65s WALL ( 1 calls) Called by init_run: wfcinit : 0.25s CPU 0.25s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 9.78s CPU 10.02s WALL ( 12 calls) sum_band : 2.21s CPU 2.25s WALL ( 12 calls) v_of_rho : 0.08s CPU 0.07s WALL ( 13 calls) newd : 0.16s CPU 0.17s WALL ( 13 calls) mix_rho : 0.03s CPU 0.03s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.15s CPU 0.13s WALL ( 1750 calls) cegterg : 9.30s CPU 9.37s WALL ( 840 calls) Called by *egterg: h_psi : 5.91s CPU 6.03s WALL ( 2869 calls) s_psi : 0.30s CPU 0.25s WALL ( 2869 calls) g_psi : 0.19s CPU 0.24s WALL ( 1959 calls) cdiaghg : 1.79s CPU 1.80s WALL ( 2799 calls) Called by h_psi: add_vuspsi : 0.26s CPU 0.27s WALL ( 2869 calls) General routines calbec : 0.24s CPU 0.26s WALL ( 3709 calls) fft : 0.08s CPU 0.08s WALL ( 407 calls) ffts : 0.00s CPU 0.01s WALL ( 100 calls) fftw : 4.44s CPU 4.61s WALL ( 159540 calls) interpolate : 0.02s CPU 0.03s WALL ( 100 calls) davcio : 0.01s CPU 0.21s WALL ( 2590 calls) PWSCF : 13.25s CPU 13.59s WALL This run was terminated on: 10:25:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/pbe0-si222.in0000755000175000017500000000147612341373024015021 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='pbe0', nqx1=2, nqx2=2, nqx3=2, exxdiv_treatment='gygi-baldereschi' x_gamma_extrapolation = .true. / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/md-wfc_extrap1.in0000755000175000017500000000062712341373024016152 0ustar mbamba &control calculation='md' dt=20, nstep=50 / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / &ions wfc_extrapolation='first_order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS {alat} Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS {automatic} 1 1 1 0 0 0 espresso-5.1/PW/tests/vdw3.in0000644000175000017500000000164512341373024014212 0ustar mbamba&control calculation = 'vc-relax' prefix='graphite', tstress = .true. tprnfor = .true. forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6411700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF3' / &electrons conv_thr = 1.0d-8 / &ions / &cell press_conv_thr = 0.5D0 press = 0.D0 cell_dynamics = 'bfgs' cell_dofree = 'z' / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 espresso-5.1/PW/tests/vc-relax1.in0000755000175000017500000000151612341373024015131 0ustar mbamba &CONTROL calculation = "vc-relax" , dt = 150 / &SYSTEM ibrav = 14, A = 3.70971016 , B = 3.70971016 , C = 3.70971016 , cosAB = 0.49517470 , cosAC = 0.49517470 , cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 / &ELECTRONS conv_thr = 1.0d-7 / &IONS / &CELL cell_dynamics = 'damp-w' , press = 0.00 , wmass = 0.00700000 / ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 espresso-5.1/PW/tests/lattice-ibrav14-kauto.in0000644000175000017500000000060712341373024017340 0ustar mbamba &control calculation='scf', / &system ibrav = 14, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(4) = 0.1, celldm(5) = 0.2, celldm(6) = 0.3, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/lattice-ibrav-5.in0000644000175000017500000000044212341373024016211 0ustar mbamba &control calculation='scf', / &system ibrav =-5, celldm(1) =10.0, celldm(4) = 0.5, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/pbe0-si111.ref0000644000175000017500000004627012341373024015162 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 9400) starts on 29Nov2012 at 22:11:12 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/pbe0-si111.in IMPORTANT: XC functional enforced from input : Exchange-correlation = PBE0 ( 6 4 8 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want EXX: grid of k+q point setup nkqs = 10 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 ( 6 4 8 4 0) EXX-fraction = 0.25 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.82340308 Ry Harris-Foulkes estimate = -15.83974490 Ry estimated scf accuracy < 0.06415499 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -15.82634536 Ry Harris-Foulkes estimate = -15.82635445 Ry estimated scf accuracy < 0.00228139 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.3 secs total energy = -15.82644717 Ry Harris-Foulkes estimate = -15.82643482 Ry estimated scf accuracy < 0.00004970 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.5 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4476 4.7282 5.9961 5.9961 8.9449 9.3568 9.3568 11.1864 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1160 4.9391 5.0502 8.5385 10.1246 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8637 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7127 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7928 3.5449 7.2968 8.3741 14.7162 14.7745 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4109 1.6834 3.9583 5.4867 9.1322 10.0722 10.2721 12.7293 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3206 9.2854 9.9751 11.4585 12.3758 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6946 -0.3359 2.2539 4.3555 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9476 0.3457 5.1681 5.1681 8.1196 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6289 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2968 EXX: now go back to refine exchange calculation -2.27181581500083 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 3.8 total cpu time spent up to now is 0.9 secs total energy = -15.90454093 Ry Harris-Foulkes estimate = -15.90457569 Ry estimated scf accuracy < 0.00010599 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.32E-06, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -15.90455009 Ry Harris-Foulkes estimate = -15.90454921 Ry estimated scf accuracy < 0.00000237 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-08, avg # of iterations = 1.8 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1426 3.2157 4.4563 4.4563 10.2063 10.5784 10.5784 12.5693 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5702 1.5990 3.4558 3.5083 9.6862 11.3667 12.1129 12.3494 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4781 -0.1371 2.0726 2.5337 8.8555 10.3763 13.6720 13.9134 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.9389 -2.0646 1.3044 2.0416 8.3714 9.4038 15.8894 16.0500 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0428 0.1617 2.4815 3.9194 10.3809 11.2266 11.4611 13.9210 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.0213 -1.0497 1.4559 2.8213 10.4002 11.1151 12.5430 13.5989 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.7208 -2.1279 0.6945 1.8030 9.8619 11.7530 12.8384 15.0141 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.2773 -1.8746 0.7678 2.8485 9.3890 13.0291 13.1100 14.5092 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5910 -1.2167 3.6447 3.6447 9.3671 11.0389 11.0389 15.4337 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.8114 -2.0174 2.5050 3.1736 9.8134 11.1224 11.6750 14.9184 highest occupied, lowest unoccupied level (ev): 4.4563 8.3714 -2.27181581500083 -2.27112466508722 -2.27065393435706 est. exchange err (dexx) = 0.00011021 Ry ! total energy = -15.90466057 Ry Harris-Foulkes estimate = -15.90466051 Ry estimated scf accuracy < 0.00000012 Ry The total energy is the sum of the following terms: one-electron contribution = 2.55094837 Ry hartree contribution = 1.08386099 Ry xc contribution = -3.77550906 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.27112467 Ry + Fock energy = -1.13532697 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-08, avg # of iterations = 3.0 total cpu time spent up to now is 1.9 secs total energy = -15.90467744 Ry Harris-Foulkes estimate = -15.90467819 Ry estimated scf accuracy < 0.00000195 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 1.0 total cpu time spent up to now is 2.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1487 3.2099 4.4366 4.4366 10.2137 10.5801 10.5801 12.5692 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5732 1.5974 3.4455 3.4994 9.6893 11.3666 12.1104 12.3503 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4792 -0.1367 2.0684 2.5268 8.8582 10.3754 13.6705 13.9098 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.9390 -2.0639 1.3022 2.0360 8.3733 9.4023 15.8850 16.0495 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0451 0.1624 2.4776 3.9064 10.3852 11.2260 11.4625 13.9201 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.0214 -1.0474 1.4540 2.8164 10.4003 11.1145 12.5403 13.5977 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.7186 -2.1245 0.6934 1.8009 9.8606 11.7503 12.8364 15.0117 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.2773 -1.8722 0.7667 2.8415 9.3918 13.0251 13.1107 14.5070 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5944 -1.2192 3.6324 3.6324 9.3743 11.0418 11.0418 15.4359 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.8129 -2.0172 2.5019 3.1649 9.8174 11.1225 11.6734 14.9159 highest occupied, lowest unoccupied level (ev): 4.4366 8.3733 -2.27065393435706 -2.27054607327945 -2.27044489047881 est. exchange err (dexx) = 0.00000334 Ry ! total energy = -15.90468096 Ry Harris-Foulkes estimate = -15.90468095 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 2.55296892 Ry hartree contribution = 1.08151636 Ry xc contribution = -3.77473129 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.27054607 Ry + Fock energy = -1.13522245 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.67E-10, avg # of iterations = 1.2 total cpu time spent up to now is 2.7 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1500 3.2097 4.4326 4.4326 10.2149 10.5803 10.5803 12.5688 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5738 1.5974 3.4434 3.4979 9.6897 11.3666 12.1097 12.3506 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4794 -0.1364 2.0678 2.5257 8.8583 10.3751 13.6702 13.9092 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.9389 -2.0637 1.3020 2.0353 8.3733 9.4018 15.8843 16.0494 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0454 0.1628 2.4771 3.9046 10.3856 11.2257 11.4627 13.9198 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.0213 -1.0468 1.4538 2.8158 10.4002 11.1142 12.5398 13.5975 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.7181 -2.1237 0.6934 1.8007 9.8602 11.7498 12.8359 15.0112 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.2773 -1.8715 0.7667 2.8406 9.3918 13.0244 13.1108 14.5065 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5951 -1.2195 3.6306 3.6306 9.3750 11.0421 11.0421 15.4359 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.8132 -2.0169 2.5016 3.1637 9.8177 11.1224 11.6730 14.9155 highest occupied, lowest unoccupied level (ev): 4.4326 8.3733 -2.27044489047881 -2.27042135474195 -2.27039827037724 est. exchange err (dexx) = 0.00000023 Ry ! total energy = -15.90468197 Ry Harris-Foulkes estimate = -15.90468199 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 2.55336650 Ry hartree contribution = 1.08107790 Ry xc contribution = -3.77459001 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.27042135 Ry + Fock energy = -1.13519914 Ry convergence has been achieved in 1 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -127.09 -0.00086391 0.00000000 0.00000000 -127.09 0.00 0.00 0.00000000 -0.00086391 0.00000000 0.00 -127.09 0.00 0.00000000 0.00000000 -0.00086391 0.00 0.00 -127.09 Writing output data file pwscf.save init_run : 0.03s CPU 0.14s WALL ( 1 calls) electrons : 2.47s CPU 2.61s WALL ( 1 calls) stress : 0.08s CPU 0.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.11s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 1.82s CPU 1.92s WALL ( 12 calls) sum_band : 0.05s CPU 0.05s WALL ( 12 calls) v_of_rho : 0.04s CPU 0.03s WALL ( 12 calls) mix_rho : 0.00s CPU 0.01s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.01s WALL ( 260 calls) cegterg : 1.79s CPU 1.91s WALL ( 120 calls) Called by *egterg: h_psi : 1.68s CPU 1.81s WALL ( 370 calls) g_psi : 0.02s CPU 0.01s WALL ( 240 calls) cdiaghg : 0.05s CPU 0.14s WALL ( 310 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 370 calls) General routines calbec : 0.00s CPU 0.03s WALL ( 380 calls) fft : 0.01s CPU 0.01s WALL ( 135 calls) ffts : 0.90s CPU 0.95s WALL ( 14720 calls) fftw : 0.28s CPU 0.33s WALL ( 9856 calls) davcio : 0.01s CPU 0.01s WALL ( 530 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.02s CPU 0.03s WALL ( 4 calls) vexx : 1.48s CPU 1.57s WALL ( 208 calls) exxen2 : 0.54s CPU 0.56s WALL ( 10 calls) PWSCF : 2.63s CPU 2.91s WALL This run was terminated on: 22:11:15 29Nov2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/README0000644000175000017500000001116712341373024013657 0ustar mbambaAutomatic tests for pw.x - edit and run "check-pw.x.j" Tests are intended to verify that a specified feature works. They are NOT intended to be realistic calculations! Do not use tests as samples for realistic calculations Use the examples in the examples/ subdirectory instead. name system what is tested atom O occupancies from input, also with spin polarization PBE and spin-polarized PBE PBE and s-PBE stress berry PbTiO3 scf: Q function in real space (tqr=.true.) nscf: Berry phase calculation (with and without empty bands) b3lyp-O O B3LYP hybrid functional (spin polarized), Gamma b3lyp-h2o H2O structural optimization with B3LYP, unpolarized, Gamma cluster N,NH4,H2O Martyna-Tuckermann method for isolated systems NH4 Makov-Payne correction for isolated systems dft* Si Various flavours of XC (GGA, no hybrid-meta-nonlocal XC) dipole CO on Ni dipole field correction electric Si finite electric field using Berry's phase approach eval_infix Si parser gau-pbe Si GAU-PBE functional hse-si111 Si HSE hybrid functional, nq=1 hse-si222 Si HSE hybrid functional, nq=2 hse-si444 Si HSE hybrid functional, nq=4 lattice H_2 all bravais lattices, CELL_PARAMETERS, a b c parameters Gamma and automatic k-points lda+U FeO LDA+U with standard and user-defined occupancies forces and stresses, gamma-only case lsda Ni fcc LSDA with starting magnetization and free occupancies core corrections davidson and cg diagonalizations simple, TF, local-TF mixing, ndim=4,8 constrained occupancies: tot_magnetization, nelup+neldw LSDA stress non-scf calculation md Si verlet algorithm potential extrapolation wavefunction extrapolation metaGGA C4H6 meta-GGA metal Al fcc occupancies: all smearing schemes, tetrahedra stress in metals non-scf calculation with smearing and tetrahedra noncolin Fe bcc noncollinear magnetization davidson and cg diagonalizations constraints: atomic, atomic direction, total magnetization noncollinear stress non-scf calculation, tetrahedra paw-atom O, Cu PAW paw-bfgs H2O PAW with bfgs paw-vcbfgs H2O PAW with variable-cell bfgs pbeq2d Cu Modified PBE functional PBEQ2D pbe0-si111 Si PBE0 hybrid functional, nq=1 pbe0-si222 Si PBE0 hybrid functional, nq=2 pbe0-si444 Si PBE0 hybrid functional, nq=4 relax CO forces bfgs and damped dynamics energies, forces, bfgs with saw-like electric field relax2 Al forces in metals bfgs_ndim=3 scf Si fcc davidson and cg diagonalizations simple, TF, local-TF mixing, ndim=4,8 Gamma, automatic, list of k-points (tpiba, crystal, tpiba_b) wf_collect, disk_io, force_symmorphic, use_all_frac options stress with k-points and at Gamma non-scf calculation old "ncpp" format for pseudopotentials spinorbit Pt fcc spin-orbit + noncollinear magnetization spin-orbit stress non-scf calculation, tetrahedra uspp Cu fcc US PP, both single and double grid davidson and cg diagonalizations simple, TF, local-TF mixing, ndim=4,8 stress with single and double grid non-scf calculation uspp1 H2O old Vanderbilt format for pseudopotentials Fake coulombian (1/r) pseudopotential uspp2 Ni fcc core corrections stress with core corrections non-scf calculation vc-relax As Variable-cell optimization (both damped dynamics and bfgs) at zero pressure and under an external pressure vc-md As Variable-cell dynamics (Wentzcovitch dynamics) at zero pressure and under an external pressure vdw-d C Dispersion (van der Waals) interactions with DFT-D (Grimme) vdw[1-4] C As above, with vdW-DF[1-4] (nonlocal) functionals vdw5 C As above, with vdW-DF-C09 (nonlocal) functionals vdw-ts C As above, Tkatchenko-Scheffler xdm C XDM dispersion correction. Tests are still missing for: forces with core corrections pw91 'bands' espresso-5.1/PW/tests/lsda-cg.in0000755000175000017500000000062512341373024014641 0ustar mbamba &control calculation='scf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons diagonalization='cg' / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {alat} Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.1/PW/tests/cluster2.ref0000644000175000017500000007701212341373024015241 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 17:57:27 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/cluster2.in file N.pbe-kjpaw.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1369 1369 349 38401 38401 4801 Tot 685 685 175 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file: /home/giannozz/trunk/espresso/pseudo/N.pbe-kjpaw.UPF MD5 check sum: 784def1e20c8513c628b118ec611e520 Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pbe-kjpaw.UPF MD5 check sum: b6732a8c2b51919c45a22ac3ed50cb01 Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) H 1.00 1.00000 H( 1.00) 24 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0833333 0.0833333 0.0833333 ) 3 H tau( 3) = ( -0.0833333 -0.0833333 0.0833333 ) 4 H tau( 4) = ( -0.0833333 0.0833333 -0.0833333 ) 5 H tau( 5) = ( 0.0833333 -0.0833333 -0.0833333 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 19201 G-vectors FFT dimensions: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.29 Mb ( 2401, 8) NL pseudopotentials 0.59 Mb ( 2401, 16) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.59 Mb ( 2401, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 11.12 Mb ( 91125, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000005 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000542 starting charge 8.99996, renormalised to 8.00000 negative rho (up, down): 0.482E-03 0.000E+00 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 1.0 secs per-process dynamical memory: 24.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.311E-02 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -31.57693410 Ry Harris-Foulkes estimate = -33.30281331 Ry estimated scf accuracy < 2.31136652 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.579E-02 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -32.20616276 Ry Harris-Foulkes estimate = -32.59487617 Ry estimated scf accuracy < 0.71035648 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.88E-03, avg # of iterations = 2.0 negative rho (up, down): 0.126E-01 0.000E+00 total cpu time spent up to now is 1.7 secs total energy = -32.33996074 Ry Harris-Foulkes estimate = -32.34672159 Ry estimated scf accuracy < 0.01293117 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.62E-04, avg # of iterations = 5.0 negative rho (up, down): 0.104E-01 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -32.34425816 Ry Harris-Foulkes estimate = -32.34500253 Ry estimated scf accuracy < 0.00160554 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-05, avg # of iterations = 3.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 2.3 secs total energy = -32.34433061 Ry Harris-Foulkes estimate = -32.34434344 Ry estimated scf accuracy < 0.00002980 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.72E-07, avg # of iterations = 4.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 2.5 secs total energy = -32.34434206 Ry Harris-Foulkes estimate = -32.34435763 Ry estimated scf accuracy < 0.00003577 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.72E-07, avg # of iterations = 1.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 2.8 secs total energy = -32.34434542 Ry Harris-Foulkes estimate = -32.34434552 Ry estimated scf accuracy < 0.00000040 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.05E-09, avg # of iterations = 3.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 3.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -33.6496 -22.3919 -22.3919 -22.3919 -7.0410 -3.7177 -3.7177 -3.7177 highest occupied, lowest unoccupied level (ev): -22.3919 -7.0410 ! total energy = -32.34434570 Ry Harris-Foulkes estimate = -32.34434572 Ry estimated scf accuracy < 0.00000004 Ry total all-electron energy = -113.643147 Ry The total energy is the sum of the following terms: one-electron contribution = -82.06699876 Ry hartree contribution = 38.91720460 Ry xc contribution = -8.21268147 Ry ewald contribution = 27.33665144 Ry one-center paw contrib. = -8.31852152 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.109E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.15456838 0.15456838 0.15456838 atom 3 type 2 force = -0.15456838 -0.15456838 0.15456838 atom 4 type 2 force = -0.15456838 0.15456838 -0.15456838 atom 5 type 2 force = 0.15456838 -0.15456838 -0.15456838 Total force = 0.535441 Total SCF correction = 0.000113 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -32.3443457021 Ry new trust radius = 0.2677202850 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.154568379 1.154568379 1.154568379 H -1.154568379 -1.154568379 1.154568379 H -1.154568379 1.154568379 -1.154568379 H 1.154568379 -1.154568379 -1.154568379 Writing output data file pwscf.save Check: negative starting charge= -0.000542 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000592 negative rho (up, down): 0.447E-02 0.000E+00 total cpu time spent up to now is 3.5 secs per-process dynamical memory: 46.2 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 13.0 negative rho (up, down): 0.560E-02 0.000E+00 total cpu time spent up to now is 3.9 secs total energy = -32.40854253 Ry Harris-Foulkes estimate = -32.47320436 Ry estimated scf accuracy < 0.09907666 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-03, avg # of iterations = 2.0 negative rho (up, down): 0.601E-02 0.000E+00 total cpu time spent up to now is 4.1 secs total energy = -32.43444361 Ry Harris-Foulkes estimate = -32.46768213 Ry estimated scf accuracy < 0.06565467 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.21E-04, avg # of iterations = 1.0 negative rho (up, down): 0.721E-02 0.000E+00 total cpu time spent up to now is 4.4 secs total energy = -32.44747339 Ry Harris-Foulkes estimate = -32.44738955 Ry estimated scf accuracy < 0.00030814 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.85E-06, avg # of iterations = 3.0 negative rho (up, down): 0.721E-02 0.000E+00 total cpu time spent up to now is 4.6 secs total energy = -32.44775463 Ry Harris-Foulkes estimate = -32.44776397 Ry estimated scf accuracy < 0.00005311 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.64E-07, avg # of iterations = 1.0 negative rho (up, down): 0.722E-02 0.000E+00 total cpu time spent up to now is 4.9 secs total energy = -32.44774777 Ry Harris-Foulkes estimate = -32.44775718 Ry estimated scf accuracy < 0.00002164 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.70E-07, avg # of iterations = 2.0 negative rho (up, down): 0.721E-02 0.000E+00 total cpu time spent up to now is 5.1 secs total energy = -32.44775285 Ry Harris-Foulkes estimate = -32.44775460 Ry estimated scf accuracy < 0.00000397 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.96E-08, avg # of iterations = 1.0 negative rho (up, down): 0.720E-02 0.000E+00 total cpu time spent up to now is 5.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.2282 -20.5661 -20.5661 -20.5661 -7.5141 -4.7343 -4.7343 -4.7343 highest occupied, lowest unoccupied level (ev): -20.5661 -7.5141 ! total energy = -32.44775335 Ry Harris-Foulkes estimate = -32.44775341 Ry estimated scf accuracy < 0.00000009 Ry total all-electron energy = -113.746555 Ry The total energy is the sum of the following terms: one-electron contribution = -76.46242278 Ry hartree contribution = 36.38797051 Ry xc contribution = -7.74795013 Ry ewald contribution = 23.67694452 Ry one-center paw contrib. = -8.30229546 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.720E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.01940375 -0.01940375 -0.01940375 atom 3 type 2 force = 0.01940375 0.01940375 -0.01940375 atom 4 type 2 force = 0.01940375 -0.01940375 0.01940375 atom 5 type 2 force = -0.01940375 0.01940375 0.01940375 Total force = 0.067217 Total SCF correction = 0.000133 number of scf cycles = 2 number of bfgs steps = 1 energy old = -32.3443457021 Ry energy new = -32.4477533491 Ry CASE: energy _new < energy _old new trust radius = 0.0298598240 bohr new conv_thr = 0.0000000194 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.137328801 1.137328801 1.137328801 H -1.137328801 -1.137328801 1.137328801 H -1.137328801 1.137328801 -1.137328801 H 1.137328801 -1.137328801 -1.137328801 Writing output data file pwscf.save Check: negative starting charge= -0.000592 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000600 negative rho (up, down): 0.812E-02 0.000E+00 total cpu time spent up to now is 5.9 secs per-process dynamical memory: 46.2 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.776E-02 0.000E+00 total cpu time spent up to now is 6.1 secs total energy = -32.45015870 Ry Harris-Foulkes estimate = -32.45059353 Ry estimated scf accuracy < 0.00073145 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.14E-06, avg # of iterations = 2.0 negative rho (up, down): 0.771E-02 0.000E+00 total cpu time spent up to now is 6.4 secs total energy = -32.45034041 Ry Harris-Foulkes estimate = -32.45055735 Ry estimated scf accuracy < 0.00042317 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.29E-06, avg # of iterations = 2.0 negative rho (up, down): 0.764E-02 0.000E+00 total cpu time spent up to now is 6.6 secs total energy = -32.45042926 Ry Harris-Foulkes estimate = -32.45042825 Ry estimated scf accuracy < 0.00000373 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.66E-08, avg # of iterations = 2.0 negative rho (up, down): 0.764E-02 0.000E+00 total cpu time spent up to now is 6.9 secs total energy = -32.45043007 Ry Harris-Foulkes estimate = -32.45043009 Ry estimated scf accuracy < 0.00000008 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.44E-10, avg # of iterations = 2.0 negative rho (up, down): 0.764E-02 0.000E+00 total cpu time spent up to now is 7.1 secs total energy = -32.45043011 Ry Harris-Foulkes estimate = -32.45043011 Ry estimated scf accuracy < 0.00000003 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.28E-10, avg # of iterations = 1.0 negative rho (up, down): 0.764E-02 0.000E+00 total cpu time spent up to now is 7.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.4764 -20.7556 -20.7556 -20.7556 -7.4429 -4.6058 -4.6058 -4.6058 highest occupied, lowest unoccupied level (ev): -20.7556 -7.4429 ! total energy = -32.45043011 Ry Harris-Foulkes estimate = -32.45043011 Ry estimated scf accuracy < 2.8E-09 Ry total all-electron energy = -113.749231 Ry The total energy is the sum of the following terms: one-electron contribution = -77.03063287 Ry hartree contribution = 36.64205444 Ry xc contribution = -7.79415221 Ry ewald contribution = 24.03583855 Ry one-center paw contrib. = -8.30353801 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.764E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.00629846 -0.00629846 -0.00629846 atom 3 type 2 force = 0.00629846 0.00629846 -0.00629846 atom 4 type 2 force = 0.00629846 -0.00629846 0.00629846 atom 5 type 2 force = -0.00629846 0.00629846 0.00629846 Total force = 0.021819 Total SCF correction = 0.000027 number of scf cycles = 3 number of bfgs steps = 2 energy old = -32.4477533491 Ry energy new = -32.4504301087 Ry CASE: energy _new < energy _old new trust radius = 0.0143507752 bohr new conv_thr = 0.0000000063 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129043377 1.129043377 1.129043377 H -1.129043377 -1.129043377 1.129043377 H -1.129043377 1.129043377 -1.129043377 H 1.129043377 -1.129043377 -1.129043377 Writing output data file pwscf.save Check: negative starting charge= -0.000600 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000602 negative rho (up, down): 0.809E-02 0.000E+00 total cpu time spent up to now is 7.8 secs per-process dynamical memory: 46.2 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.794E-02 0.000E+00 total cpu time spent up to now is 8.1 secs total energy = -32.45065676 Ry Harris-Foulkes estimate = -32.45076521 Ry estimated scf accuracy < 0.00018211 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.28E-06, avg # of iterations = 2.0 negative rho (up, down): 0.792E-02 0.000E+00 total cpu time spent up to now is 8.3 secs total energy = -32.45070258 Ry Harris-Foulkes estimate = -32.45075402 Ry estimated scf accuracy < 0.00009944 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-06, avg # of iterations = 2.0 negative rho (up, down): 0.788E-02 0.000E+00 total cpu time spent up to now is 8.6 secs total energy = -32.45072367 Ry Harris-Foulkes estimate = -32.45072343 Ry estimated scf accuracy < 0.00000088 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-08, avg # of iterations = 2.0 negative rho (up, down): 0.788E-02 0.000E+00 total cpu time spent up to now is 8.8 secs total energy = -32.45072388 Ry Harris-Foulkes estimate = -32.45072388 Ry estimated scf accuracy < 0.00000001 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.71E-10, avg # of iterations = 3.0 negative rho (up, down): 0.788E-02 0.000E+00 total cpu time spent up to now is 9.1 secs total energy = -32.45072389 Ry Harris-Foulkes estimate = -32.45072389 Ry estimated scf accuracy < 6.4E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.94E-11, avg # of iterations = 1.0 negative rho (up, down): 0.788E-02 0.000E+00 total cpu time spent up to now is 9.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.5978 -20.8481 -20.8481 -20.8481 -7.4123 -4.5449 -4.5449 -4.5449 highest occupied, lowest unoccupied level (ev): -20.8481 -7.4123 ! total energy = -32.45072389 Ry Harris-Foulkes estimate = -32.45072390 Ry estimated scf accuracy < 1.8E-09 Ry total all-electron energy = -113.749525 Ry The total energy is the sum of the following terms: one-electron contribution = -77.30859533 Ry hartree contribution = 36.76669030 Ry xc contribution = -7.81685994 Ry ewald contribution = 24.21222425 Ry one-center paw contrib. = -8.30418317 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.788E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00043746 0.00043746 0.00043746 atom 3 type 2 force = -0.00043746 -0.00043746 0.00043746 atom 4 type 2 force = -0.00043746 0.00043746 -0.00043746 atom 5 type 2 force = 0.00043746 -0.00043746 -0.00043746 Total force = 0.001515 Total SCF correction = 0.000004 number of scf cycles = 4 number of bfgs steps = 3 energy old = -32.4504301087 Ry energy new = -32.4507238938 Ry CASE: energy _new < energy _old new trust radius = 0.0009320037 bohr new conv_thr = 0.0000000010 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129581470 1.129581470 1.129581470 H -1.129581470 -1.129581470 1.129581470 H -1.129581470 1.129581470 -1.129581470 H 1.129581470 -1.129581470 -1.129581470 Writing output data file pwscf.save Check: negative starting charge= -0.000602 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000602 negative rho (up, down): 0.785E-02 0.000E+00 total cpu time spent up to now is 9.8 secs per-process dynamical memory: 46.2 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.11E-09, avg # of iterations = 1.0 negative rho (up, down): 0.786E-02 0.000E+00 total cpu time spent up to now is 10.1 secs total energy = -32.45072497 Ry Harris-Foulkes estimate = -32.45072563 Ry estimated scf accuracy < 0.00000078 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.70E-09, avg # of iterations = 2.0 negative rho (up, down): 0.786E-02 0.000E+00 total cpu time spent up to now is 10.3 secs total energy = -32.45072517 Ry Harris-Foulkes estimate = -32.45072538 Ry estimated scf accuracy < 0.00000041 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-09, avg # of iterations = 2.0 negative rho (up, down): 0.787E-02 0.000E+00 total cpu time spent up to now is 10.6 secs total energy = -32.45072526 Ry Harris-Foulkes estimate = -32.45072525 Ry estimated scf accuracy < 4.0E-09 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.02E-11, avg # of iterations = 2.0 negative rho (up, down): 0.787E-02 0.000E+00 total cpu time spent up to now is 10.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.5897 -20.8419 -20.8419 -20.8419 -7.4142 -4.5488 -4.5488 -4.5488 highest occupied, lowest unoccupied level (ev): -20.8419 -7.4142 ! total energy = -32.45072526 Ry Harris-Foulkes estimate = -32.45072526 Ry estimated scf accuracy < 5.7E-11 Ry total all-electron energy = -113.749527 Ry The total energy is the sum of the following terms: one-electron contribution = -77.29042132 Ry hartree contribution = 36.75851303 Ry xc contribution = -7.81536708 Ry ewald contribution = 24.20069041 Ry one-center paw contrib. = -8.30414030 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.787E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.00000933 -0.00000933 -0.00000933 atom 3 type 2 force = 0.00000933 0.00000933 -0.00000933 atom 4 type 2 force = 0.00000933 -0.00000933 0.00000933 atom 5 type 2 force = -0.00000933 0.00000933 0.00000933 Total force = 0.000032 Total SCF correction = 0.000002 bfgs converged in 5 scf cycles and 4 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -32.4507252560 Ry Begin final coordinates ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129581470 1.129581470 1.129581470 H -1.129581470 -1.129581470 1.129581470 H -1.129581470 1.129581470 -1.129581470 H 1.129581470 -1.129581470 -1.129581470 End final coordinates Writing output data file pwscf.save init_run : 0.69s CPU 0.70s WALL ( 1 calls) electrons : 7.55s CPU 7.75s WALL ( 5 calls) update_pot : 0.77s CPU 0.78s WALL ( 4 calls) forces : 0.69s CPU 0.69s WALL ( 5 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.16s CPU 0.16s WALL ( 1 calls) Called by electrons: c_bands : 1.16s CPU 1.17s WALL ( 32 calls) sum_band : 0.93s CPU 0.94s WALL ( 32 calls) v_of_rho : 2.62s CPU 2.67s WALL ( 36 calls) newd : 0.62s CPU 0.63s WALL ( 36 calls) mix_rho : 0.45s CPU 0.45s WALL ( 32 calls) Called by c_bands: init_us_2 : 0.07s CPU 0.07s WALL ( 69 calls) regterg : 1.09s CPU 1.11s WALL ( 32 calls) Called by *egterg: h_psi : 0.84s CPU 0.85s WALL ( 114 calls) s_psi : 0.02s CPU 0.02s WALL ( 114 calls) g_psi : 0.04s CPU 0.05s WALL ( 81 calls) rdiaghg : 0.02s CPU 0.02s WALL ( 108 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 114 calls) General routines calbec : 0.05s CPU 0.05s WALL ( 170 calls) fft : 0.82s CPU 0.82s WALL ( 530 calls) fftw : 0.74s CPU 0.73s WALL ( 910 calls) davcio : 0.00s CPU 0.01s WALL ( 31 calls) PAW routines PAW_pot : 2.43s CPU 2.44s WALL ( 40 calls) PAW_ddot : 0.28s CPU 0.27s WALL ( 226 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 72 calls) PWSCF : 10.62s CPU 11.03s WALL This run was terminated on: 17:57:38 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/cluster4.in0000644000175000017500000000075212341373024015072 0ustar mbamba&CONTROL calculation = 'scf' / &SYSTEM ibrav = 1, celldm(1) = 12.0 nat = 5, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, assume_isolated = 'makov-payne' tot_charge = +1.0 nbnd = 8 / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / ATOMIC_SPECIES N 1.00 N.pbe-kjpaw.UPF H 1.00 H.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} N 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 H -1.0 1.0 -1.0 H 1.0 -1.0 -1.0 K_POINTS Gamma espresso-5.1/PW/tests/vc-relax3.in0000755000175000017500000000146312341373024015134 0ustar mbamba &CONTROL calculation = "vc-relax" / &SYSTEM ibrav = 14, A = 3.70971016 , B = 3.70971016 , C = 3.70971016 , cosAB = 0.49517470 , cosAC = 0.49517470 , cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 / &ELECTRONS conv_thr = 1.0d-7 / &IONS ion_dynamics='bfgs' / &CELL cell_dynamics='bfgs' press = 0.0 / ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 espresso-5.1/PW/tests/gau-pbe-si444.ref0000644000175000017500000007450212341373024015664 0ustar mbamba Program PWSCF v.5.1rc1 (svn rev. 10901) starts on 25Apr2014 at 8:25:16 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/gau-pbe444.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = GAUP ( 1 4 20 4 0) EXX-fraction = 0.24 Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used EXX: setup a grid of 256 q-points centered on each k-point (k+q)-points: 0.1250000 0.1250000 0.1250000 1 1 -0.1250000 0.3750000 -0.1250000 2 11 -0.3750000 0.6250000 -0.3750000 10 11 0.3750000 -0.1250000 0.3750000 5 -7 0.3750000 0.3750000 0.3750000 9 1 0.1250000 0.6250000 0.1250000 3 9 -0.1250000 0.8750000 -0.1250000 4 11 0.6250000 0.1250000 0.6250000 8 5 -0.3750000 -0.3750000 -0.3750000 9 -1 -0.6250000 -0.1250000 -0.6250000 8 -5 0.1250000 -0.8750000 0.1250000 4 -11 -0.1250000 -0.6250000 -0.1250000 3 -9 -0.1250000 -0.1250000 -0.1250000 1 -1 -0.3750000 0.1250000 -0.3750000 5 7 0.3750000 -0.6250000 0.3750000 10 -11 0.1250000 -0.3750000 0.1250000 2 -11 -0.1250000 -0.1250000 0.3750000 2 2 -0.3750000 0.1250000 0.1250000 2 -8 -0.6250000 0.3750000 -0.1250000 6 17 0.1250000 -0.3750000 0.6250000 6 -3 0.1250000 0.1250000 0.6250000 3 1 -0.1250000 0.3750000 0.3750000 5 -4 -0.3750000 0.6250000 0.1250000 6 -12 0.3750000 -0.1250000 0.8750000 7 -16 -0.6250000 -0.6250000 -0.1250000 8 -9 0.1250000 0.6250000 0.6250000 8 1 -0.1250000 0.8750000 0.3750000 7 -21 -0.3750000 -0.8750000 0.1250000 7 10 -0.3750000 -0.3750000 0.1250000 5 10 -0.6250000 -0.1250000 -0.1250000 3 -5 -0.8750000 0.1250000 -0.3750000 7 7 -0.1250000 -0.6250000 0.3750000 6 24 -0.3750000 -0.3750000 0.6250000 10 2 -0.6250000 -0.1250000 0.3750000 6 6 -0.8750000 0.1250000 0.1250000 4 -8 0.8750000 0.3750000 -0.1250000 7 -20 -0.1250000 -0.1250000 0.8750000 4 2 -0.3750000 0.1250000 0.6250000 6 -15 -0.6250000 0.3750000 0.3750000 10 -8 0.1250000 -0.3750000 -0.8750000 7 4 0.1250000 0.1250000 -0.8750000 4 -2 -0.1250000 0.3750000 0.8750000 7 -4 0.6250000 -0.3750000 -0.3750000 10 8 0.3750000 -0.1250000 -0.6250000 6 15 0.3750000 0.3750000 -0.6250000 10 -2 -0.8750000 -0.3750000 0.1250000 7 20 0.8750000 -0.1250000 -0.1250000 4 8 0.6250000 0.1250000 -0.3750000 6 -6 0.3750000 0.3750000 -0.1250000 5 -10 0.1250000 0.6250000 -0.3750000 6 -24 0.8750000 -0.1250000 0.3750000 7 -7 0.6250000 0.1250000 0.1250000 3 5 0.6250000 0.6250000 0.1250000 8 9 0.3750000 0.8750000 -0.1250000 7 -10 0.1250000 -0.8750000 -0.3750000 7 21 -0.1250000 -0.6250000 -0.6250000 8 -1 -0.1250000 -0.1250000 -0.6250000 3 -1 -0.3750000 0.1250000 -0.8750000 7 16 0.3750000 -0.6250000 -0.1250000 6 12 0.1250000 -0.3750000 -0.3750000 5 4 0.1250000 0.1250000 -0.3750000 2 -2 -0.1250000 0.3750000 -0.6250000 6 3 0.6250000 -0.3750000 0.1250000 6 -17 0.3750000 -0.1250000 -0.1250000 2 8 0.1250000 0.1250000 0.3750000 2 1 -0.1250000 0.3750000 0.1250000 2 -12 -0.3750000 0.6250000 -0.1250000 6 11 0.3750000 -0.1250000 0.6250000 6 -16 0.3750000 0.3750000 0.6250000 10 1 0.1250000 0.6250000 0.3750000 6 22 -0.1250000 0.8750000 0.1250000 4 -12 -0.3750000 -0.8750000 -0.1250000 7 -9 -0.3750000 -0.3750000 -0.1250000 5 -9 -0.6250000 -0.1250000 -0.3750000 6 -5 0.1250000 -0.8750000 0.3750000 7 -23 -0.1250000 -0.6250000 0.1250000 3 10 -0.1250000 -0.1250000 0.1250000 1 2 -0.3750000 0.1250000 -0.1250000 2 7 -0.6250000 0.3750000 -0.3750000 10 7 0.1250000 -0.3750000 0.3750000 5 -3 -0.1250000 -0.1250000 0.6250000 3 2 -0.3750000 0.1250000 0.3750000 5 -8 -0.6250000 0.3750000 0.1250000 6 -19 0.1250000 -0.3750000 0.8750000 7 -3 0.1250000 0.1250000 0.8750000 4 1 -0.1250000 0.3750000 0.6250000 6 -4 -0.3750000 0.6250000 0.3750000 10 -12 0.3750000 -0.1250000 -0.8750000 7 15 -0.6250000 -0.6250000 0.1250000 8 10 -0.8750000 -0.3750000 -0.1250000 7 -18 0.8750000 -0.1250000 -0.3750000 7 8 0.6250000 0.1250000 -0.6250000 8 -6 -0.3750000 -0.3750000 0.3750000 9 2 -0.6250000 -0.1250000 0.1250000 3 6 -0.8750000 0.1250000 -0.1250000 4 7 -0.1250000 -0.6250000 0.6250000 8 2 0.6250000 0.6250000 -0.1250000 8 -10 -0.6250000 -0.1250000 0.6250000 8 6 -0.8750000 0.1250000 0.3750000 7 -8 0.8750000 0.3750000 0.1250000 7 18 -0.1250000 -0.1250000 -0.8750000 4 -1 -0.3750000 0.1250000 0.8750000 7 -15 0.3750000 -0.6250000 -0.3750000 10 12 0.1250000 -0.3750000 -0.6250000 6 4 0.1250000 0.1250000 -0.6250000 3 -2 -0.1250000 0.3750000 -0.8750000 7 3 0.6250000 -0.3750000 -0.1250000 6 19 0.3750000 -0.1250000 -0.3750000 5 8 0.3750000 0.3750000 -0.3750000 9 -2 0.1250000 0.6250000 -0.6250000 8 -2 0.8750000 -0.1250000 0.1250000 4 -7 0.6250000 0.1250000 -0.1250000 3 -6 0.3750000 0.3750000 0.1250000 5 9 0.1250000 0.6250000 -0.1250000 3 -10 -0.1250000 0.8750000 -0.3750000 7 23 0.6250000 0.1250000 0.3750000 6 5 -0.3750000 -0.3750000 -0.6250000 10 -1 0.3750000 0.8750000 0.1250000 7 9 0.1250000 -0.8750000 -0.1250000 4 12 -0.1250000 -0.6250000 -0.3750000 6 -22 -0.1250000 -0.1250000 -0.3750000 2 -1 -0.3750000 0.1250000 -0.6250000 6 16 0.3750000 -0.6250000 0.1250000 6 -11 0.1250000 -0.3750000 -0.1250000 2 12 0.1250000 0.1250000 -0.1250000 1 -2 -0.1250000 0.3750000 -0.3750000 5 3 0.6250000 -0.3750000 0.3750000 10 -7 0.3750000 -0.1250000 0.1250000 2 -7 0.1250000 0.3750000 0.3750000 5 1 -0.1250000 0.6250000 0.1250000 3 -12 -0.3750000 0.8750000 -0.1250000 7 11 0.3750000 0.1250000 0.6250000 6 14 -0.6250000 -0.3750000 -0.3750000 10 -5 0.1250000 0.8750000 0.3750000 7 22 -0.1250000 -0.8750000 0.1250000 4 10 -0.3750000 -0.6250000 -0.1250000 6 -9 -0.3750000 -0.1250000 -0.1250000 2 -5 -0.6250000 0.1250000 -0.3750000 6 7 0.1250000 -0.6250000 0.3750000 6 -23 -0.1250000 -0.3750000 0.1250000 2 10 -0.1250000 0.1250000 0.1250000 1 -4 -0.3750000 0.3750000 -0.1250000 5 11 0.3750000 -0.3750000 0.6250000 10 -3 0.1250000 -0.1250000 0.3750000 2 -3 -0.1250000 0.1250000 0.6250000 3 -4 -0.3750000 0.3750000 0.3750000 9 -4 -0.6250000 0.6250000 0.1250000 8 -12 0.1250000 -0.1250000 0.8750000 4 -3 0.1250000 0.3750000 0.8750000 7 1 -0.1250000 0.6250000 0.6250000 8 -4 0.6250000 -0.1250000 -0.6250000 8 8 0.3750000 0.1250000 -0.8750000 7 -13 -0.6250000 -0.3750000 0.1250000 6 20 -0.8750000 -0.1250000 -0.1250000 4 -5 0.8750000 0.1250000 -0.3750000 7 -6 -0.3750000 -0.6250000 0.3750000 10 10 -0.3750000 -0.1250000 0.3750000 5 6 -0.6250000 0.1250000 0.1250000 3 -8 -0.8750000 0.3750000 -0.1250000 7 17 -0.1250000 -0.3750000 0.6250000 6 2 -0.3750000 -0.1250000 0.8750000 7 13 -0.6250000 0.1250000 0.6250000 8 -8 0.1250000 -0.6250000 -0.6250000 8 4 -0.1250000 -0.3750000 -0.8750000 7 -1 -0.1250000 0.1250000 -0.8750000 4 3 0.6250000 -0.6250000 -0.1250000 8 12 0.3750000 -0.3750000 -0.3750000 9 4 0.1250000 -0.1250000 -0.6250000 3 4 0.1250000 0.3750000 -0.6250000 6 -2 0.8750000 -0.3750000 0.1250000 7 -17 0.6250000 -0.1250000 -0.1250000 3 8 0.3750000 0.1250000 -0.3750000 5 -6 0.3750000 0.6250000 -0.3750000 10 -10 -0.8750000 -0.1250000 0.3750000 7 6 0.8750000 0.1250000 0.1250000 4 5 0.6250000 0.3750000 -0.1250000 6 -20 0.3750000 0.6250000 0.1250000 6 9 0.1250000 0.8750000 -0.1250000 4 -10 -0.1250000 -0.8750000 -0.3750000 7 -22 0.6250000 0.3750000 0.3750000 10 5 -0.3750000 -0.1250000 -0.6250000 6 -14 0.3750000 -0.8750000 0.1250000 7 -11 0.1250000 -0.6250000 -0.1250000 3 12 -0.1250000 -0.3750000 -0.3750000 5 -1 -0.1250000 0.1250000 -0.3750000 2 3 -0.3750000 0.3750000 -0.6250000 10 3 0.3750000 -0.3750000 0.1250000 5 -11 0.1250000 -0.1250000 -0.1250000 1 4 0.1250000 0.3750000 -0.1250000 2 -10 -0.1250000 0.6250000 -0.3750000 6 23 0.6250000 -0.1250000 0.3750000 6 -7 0.3750000 0.1250000 0.1250000 2 5 0.1250000 0.3750000 0.6250000 6 1 -0.1250000 0.6250000 0.3750000 6 -21 -0.3750000 0.8750000 0.1250000 7 -12 0.3750000 0.1250000 0.8750000 7 14 -0.6250000 -0.3750000 -0.1250000 6 -18 -0.8750000 -0.1250000 -0.3750000 7 -5 -0.1250000 -0.8750000 0.3750000 7 24 -0.3750000 -0.6250000 0.1250000 6 10 -0.3750000 -0.1250000 0.1250000 2 6 -0.6250000 0.1250000 -0.1250000 3 7 0.1250000 -0.6250000 0.6250000 8 -3 -0.1250000 -0.3750000 0.3750000 5 2 -0.1250000 0.1250000 0.3750000 2 -4 -0.3750000 0.3750000 0.1250000 5 -12 -0.6250000 0.6250000 -0.1250000 8 11 0.1250000 -0.1250000 0.6250000 3 -3 -0.1250000 0.1250000 0.8750000 4 -4 -0.3750000 0.3750000 0.6250000 10 -4 0.3750000 -0.3750000 -0.6250000 10 4 0.1250000 -0.1250000 -0.8750000 4 4 0.1250000 0.3750000 -0.8750000 7 -2 0.8750000 -0.3750000 -0.1250000 7 19 0.6250000 -0.1250000 -0.3750000 6 8 0.3750000 0.1250000 -0.6250000 6 -13 -0.6250000 -0.3750000 0.3750000 10 6 -0.8750000 -0.1250000 0.1250000 4 6 0.8750000 0.1250000 -0.1250000 4 -6 0.6250000 0.3750000 -0.3750000 10 -6 -0.3750000 -0.1250000 0.6250000 6 13 -0.6250000 0.1250000 0.3750000 6 -8 -0.8750000 0.3750000 0.1250000 7 -19 -0.1250000 -0.3750000 0.8750000 7 2 -0.3750000 -0.1250000 -0.8750000 7 -14 0.3750000 -0.8750000 -0.1250000 7 12 0.1250000 -0.6250000 -0.3750000 6 21 -0.1250000 -0.3750000 -0.6250000 6 -1 -0.1250000 0.1250000 -0.6250000 3 3 0.6250000 -0.6250000 0.1250000 8 -11 0.3750000 -0.3750000 -0.1250000 5 12 0.1250000 -0.1250000 -0.3750000 2 4 0.1250000 0.3750000 -0.3750000 5 -2 -0.1250000 0.6250000 -0.6250000 8 3 0.6250000 -0.1250000 0.1250000 3 -7 0.3750000 0.1250000 -0.1250000 2 -6 0.3750000 0.6250000 -0.1250000 6 -10 0.1250000 0.8750000 -0.3750000 7 -24 0.8750000 0.1250000 0.3750000 7 5 0.6250000 0.3750000 0.1250000 6 18 0.3750000 0.6250000 0.3750000 10 9 0.1250000 0.8750000 0.1250000 4 9 -0.1250000 -0.8750000 -0.1250000 4 -9 -0.3750000 -0.6250000 -0.3750000 10 -9 -0.3750000 -0.1250000 -0.3750000 5 -5 -0.6250000 0.1250000 -0.6250000 8 7 0.1250000 -0.6250000 0.1250000 3 -11 -0.1250000 -0.3750000 -0.1250000 2 -9 -0.1250000 0.1250000 -0.1250000 1 3 -0.3750000 0.3750000 -0.3750000 9 3 0.3750000 -0.3750000 0.3750000 9 -3 0.1250000 -0.1250000 0.1250000 1 -3 0.1250000 0.3750000 0.1250000 2 9 -0.1250000 0.6250000 -0.1250000 3 11 0.6250000 -0.1250000 0.6250000 8 -7 0.3750000 0.1250000 0.3750000 5 5 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 30 728 728 153 Max 82 82 31 731 731 154 Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = GAUP ( 1 4 20 4 0) EXX-fraction = 0.24 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 99, 8) NL pseudopotentials 0.01 Mb ( 99, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 99, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.1 secs iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4476 4.7282 5.9961 5.9961 8.9449 9.3568 9.3569 11.1864 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1160 4.9391 5.0502 8.5385 10.1246 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8637 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7127 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7928 3.5449 7.2968 8.3741 14.7162 14.7745 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4109 1.6834 3.9583 5.4867 9.1322 10.0722 10.2721 12.7293 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3206 9.2854 9.9751 11.4585 12.3758 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6946 -0.3359 2.2539 4.3555 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9476 0.3457 5.1681 5.1681 8.1196 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6289 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2968 convergence has been achieved in 4 iterations EXX: now go back to refine exchange calculation total cpu time spent up to now is 1.8 secs per-process dynamical memory: 61.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 3.5 total cpu time spent up to now is 12.5 secs iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.05E-06, avg # of iterations = 1.0 total cpu time spent up to now is 18.1 secs iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-07, avg # of iterations = 1.5 total cpu time spent up to now is 23.8 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.8241 4.1752 5.4873 5.4873 9.2769 9.6494 9.6495 11.7540 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -7.1842 2.3192 4.3380 4.5263 8.7701 10.5442 11.2813 11.6675 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.9042 0.3351 2.8775 3.2989 7.9231 9.6303 13.0123 13.3129 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1037 -1.8995 1.9922 2.7464 7.4530 8.5725 15.5000 15.5895 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.5669 0.6799 3.3197 4.9185 9.4725 10.4376 10.6263 13.3453 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.4011 -0.7385 2.1595 3.6889 9.5662 10.3144 11.9570 12.9466 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8954 -2.0231 1.3038 2.5282 9.0262 11.0920 12.2464 14.5961 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5191 -1.6823 1.3939 3.6565 8.5072 12.4029 12.4548 14.0790 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -6.0093 -0.8418 4.5503 4.5503 8.4154 10.2214 10.2214 14.9660 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.1436 -1.7953 3.3510 4.0290 8.9117 10.2906 10.9144 14.5019 highest occupied, lowest unoccupied level (ev): 5.4873 7.4530 convergence has been achieved in 3 iterations total energy = -15.85213837 Ry Harris-Foulkes estimate = -15.85214960 Ry est. exchange err (dexx) = 0.00024491 Ry - averaged Fock potential = 1.75807022 Ry + Fock energy = -0.88222598 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 27.1 secs per-process dynamical memory: 61.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-07, avg # of iterations = 3.0 total cpu time spent up to now is 35.0 secs iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-07, avg # of iterations = 1.0 total cpu time spent up to now is 40.5 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.8128 4.1582 5.4605 5.4605 9.2965 9.6670 9.6670 11.7749 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -7.1744 2.3096 4.3205 4.5082 8.7874 10.5614 11.2909 11.6794 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.8982 0.3281 2.8688 3.2862 7.9451 9.6489 13.0202 13.3197 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1017 -1.9029 1.9875 2.7353 7.4775 8.5907 15.5079 15.5965 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.5592 0.6761 3.3092 4.8943 9.4928 10.4561 10.6337 13.3595 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.3964 -0.7409 2.1560 3.6740 9.5814 10.3282 11.9708 12.9522 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8954 -2.0255 1.3058 2.5208 9.0430 11.1000 12.2604 14.6061 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5189 -1.6823 1.3951 3.6411 8.5297 12.4066 12.4675 14.0901 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -6.0042 -0.8407 4.5292 4.5292 8.4405 10.2374 10.2374 14.9850 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.1409 -1.7911 3.3392 4.0107 8.9315 10.3035 10.9279 14.5129 highest occupied, lowest unoccupied level (ev): 5.4605 7.4775 convergence has been achieved in 2 iterations total energy = -15.85219752 Ry Harris-Foulkes estimate = -15.85219627 Ry est. exchange err (dexx) = 0.00000533 Ry - averaged Fock potential = 1.76540575 Ry + Fock energy = -0.88318510 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 43.6 secs per-process dynamical memory: 61.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-07, avg # of iterations = 1.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.81E-09, avg # of iterations = 2.0 total cpu time spent up to now is 55.6 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.8114 4.1551 5.4567 5.4567 9.2985 9.6698 9.6698 11.7773 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -7.1732 2.3079 4.3181 4.5049 8.7897 10.5638 11.2926 11.6813 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.8976 0.3267 2.8673 3.2847 7.9482 9.6517 13.0209 13.3207 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1016 -1.9038 1.9867 2.7340 7.4808 8.5936 15.5091 15.5972 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.5583 0.6753 3.3074 4.8909 9.4954 10.4593 10.6345 13.3613 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.3959 -0.7415 2.1555 3.6714 9.5838 10.3304 11.9728 12.9527 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8957 -2.0262 1.3062 2.5196 9.0457 11.1011 12.2622 14.6076 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5192 -1.6825 1.3953 3.6391 8.5327 12.4066 12.4695 14.0916 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -6.0038 -0.8407 4.5265 4.5265 8.4431 10.2399 10.2399 14.9876 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.1407 -1.7906 3.3370 4.0082 8.9340 10.3054 10.9304 14.5145 highest occupied, lowest unoccupied level (ev): 5.4567 7.4808 convergence has been achieved in 1 iterations ! total energy = -15.85220259 Ry Harris-Foulkes estimate = -15.85219837 Ry est. exchange err (dexx) = 0.00000013 Ry - averaged Fock potential = 1.76652218 Ry + Fock energy = -0.88333721 Ry EXX self-consistency reached entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -75.21 -0.00051129 0.00000000 0.00000000 -75.21 0.00 0.00 0.00000000 -0.00051129 0.00000000 0.00 -75.21 0.00 0.00000000 0.00000000 -0.00051129 0.00 0.00 -75.21 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 46.25s CPU 47.52s WALL ( 4 calls) stress : 1.69s CPU 1.71s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 46.19s CPU 47.46s WALL ( 12 calls) sum_band : 0.03s CPU 0.04s WALL ( 12 calls) v_of_rho : 0.02s CPU 0.02s WALL ( 12 calls) mix_rho : 0.00s CPU 0.00s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 330 calls) cegterg : 46.19s CPU 47.45s WALL ( 120 calls) Called by *egterg: h_psi : 46.11s CPU 47.36s WALL ( 366 calls) g_psi : 0.00s CPU 0.00s WALL ( 236 calls) cdiaghg : 0.06s CPU 0.06s WALL ( 306 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 366 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 446 calls) fft : 0.00s CPU 0.01s WALL ( 135 calls) ffts : 38.34s CPU 39.51s WALL ( 868864 calls) fftw : 0.28s CPU 0.29s WALL ( 9518 calls) davcio : 0.00s CPU 0.00s WALL ( 10 calls) Parallel routines fft_scatter : 10.49s CPU 11.01s WALL ( 878517 calls) EXX routines exx_grid : 0.01s CPU 0.01s WALL ( 1 calls) exxinit : 0.41s CPU 0.44s WALL ( 4 calls) vexx : 45.94s CPU 47.20s WALL ( 207 calls) exxen2 : 10.49s CPU 10.72s WALL ( 7 calls) PWSCF : 0m58.94s CPU 1m 0.50s WALL This run was terminated on: 8:26:16 25Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-wf_collect.in0000644000175000017500000000053612341373024016217 0ustar mbamba &control calculation = 'scf' wf_collect=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/lattice-ibrav5-kauto.ref0000644000175000017500000001756012341373024017434 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:22 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav5-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 685 685 199 11935 11935 1837 bravais-lattice index = 5 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 707.1068 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.500000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 -0.288675 0.816497 ) a(2) = ( 0.000000 0.577350 0.816497 ) a(3) = ( -0.500000 -0.288675 0.816497 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.577350 0.408248 ) b(2) = ( 0.000000 1.154701 0.408248 ) b(3) = ( -1.000000 -0.577350 0.408248 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.3061862), wk = 0.5000000 k( 2) = ( 0.5000000 0.2886751 0.1020621), wk = 1.5000000 Dense grid: 11935 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1491, 1) NL pseudopotentials 0.00 Mb ( 1491, 0) Each V/rho on FFT grid 0.50 Mb ( 32768) Each G-vector array 0.09 Mb ( 11935) G-vector shells 0.00 Mb ( 170) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 1491, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 4.00 Mb ( 32768, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.556E-05 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 5.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.137E-05 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22012080 Ry Harris-Foulkes estimate = -2.29008077 Ry estimated scf accuracy < 0.13302889 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.65E-03, avg # of iterations = 1.0 negative rho (up, down): 0.400E-07 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23111893 Ry Harris-Foulkes estimate = -2.23156082 Ry estimated scf accuracy < 0.00100938 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.05E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23142741 Ry Harris-Foulkes estimate = -2.23142768 Ry estimated scf accuracy < 0.00001272 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.36E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.3062 ( 1477 PWs) bands (ev): -10.0497 k = 0.5000 0.2887 0.1021 ( 1491 PWs) bands (ev): -10.0294 ! total energy = -2.23142674 Ry Harris-Foulkes estimate = -2.23142878 Ry estimated scf accuracy < 0.00000050 Ry The total energy is the sum of the following terms: one-electron contribution = -2.52741149 Ry hartree contribution = 1.38469394 Ry xc contribution = -1.31426474 Ry ewald contribution = 0.22555555 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.06s CPU 0.07s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.02s CPU 0.02s WALL ( 5 calls) mix_rho : 0.00s CPU 0.01s WALL ( 4 calls) Called by c_bands: cegterg : 0.02s CPU 0.02s WALL ( 8 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 24 calls) g_psi : 0.00s CPU 0.00s WALL ( 14 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 22 calls) Called by h_psi: General routines fft : 0.01s CPU 0.01s WALL ( 19 calls) fftw : 0.01s CPU 0.02s WALL ( 60 calls) davcio : 0.00s CPU 0.00s WALL ( 26 calls) PWSCF : 0.12s CPU 0.14s WALL This run was terminated on: 10:22:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/atom-lsda.ref0000644000175000017500000002622612341373024015360 0ustar mbamba Program PWSCF v.4.99 starts on 5Jan2012 at 22:44: 9 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/atom-lsda.in file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1597 793 193 47833 16879 2103 Tot 799 397 97 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) Starting magnetic structure atomic species magnetization O 0.000 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 23917 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 8440 G-vectors FFT dimensions: ( 32, 32, 32) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 Spin-down 1.0000 0.3333 0.3333 0.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 1052, 6) NL pseudopotentials 0.13 Mb ( 1052, 8) Each V/rho on FFT grid 2.78 Mb ( 91125, 2) Each G-vector array 0.18 Mb ( 23917) G-vector shells 0.00 Mb ( 424) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 1052, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.521E-05 0.521E-05 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 24.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.5 negative rho (up, down): 0.510E-05 0.358E-05 total cpu time spent up to now is 0.7 secs total energy = -31.33922025 Ry Harris-Foulkes estimate = -31.29443486 Ry estimated scf accuracy < 0.07324477 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.22E-03, avg # of iterations = 1.0 negative rho (up, down): 0.537E-02 0.822E-02 total cpu time spent up to now is 0.9 secs total energy = -31.39998947 Ry Harris-Foulkes estimate = -31.33960662 Ry estimated scf accuracy < 0.04369024 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 7.28E-04, avg # of iterations = 1.5 negative rho (up, down): 0.407E-02 0.585E-02 total cpu time spent up to now is 1.0 secs total energy = -31.40417466 Ry Harris-Foulkes estimate = -31.40393928 Ry estimated scf accuracy < 0.00032025 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 5.34E-06, avg # of iterations = 7.0 negative rho (up, down): 0.313E-02 0.386E-02 total cpu time spent up to now is 1.2 secs total energy = -31.40453862 Ry Harris-Foulkes estimate = -31.40429094 Ry estimated scf accuracy < 0.00005384 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 8.97E-07, avg # of iterations = 1.5 negative rho (up, down): 0.227E-02 0.250E-02 total cpu time spent up to now is 1.3 secs total energy = -31.40462010 Ry Harris-Foulkes estimate = -31.40455441 Ry estimated scf accuracy < 0.00001083 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.81E-07, avg # of iterations = 2.0 negative rho (up, down): 0.152E-02 0.170E-02 total cpu time spent up to now is 1.5 secs total energy = -31.40464505 Ry Harris-Foulkes estimate = -31.40462256 Ry estimated scf accuracy < 0.00000267 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.45E-08, avg # of iterations = 2.0 negative rho (up, down): 0.147E-04 0.231E-06 total cpu time spent up to now is 1.6 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -24.3321 -9.6433 -9.6432 -9.6432 -0.4597 4.4805 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -21.1127 -6.6334 -6.6334 -6.6334 -0.3151 4.5500 highest occupied, lowest unoccupied level (ev): -6.6334 -0.4597 ! total energy = -31.40468356 Ry Harris-Foulkes estimate = -31.40464559 Ry estimated scf accuracy < 4.6E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -32.01483433 Ry hartree contribution = 17.23601599 Ry xc contribution = -6.41159421 Ry ewald contribution = -10.21427100 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 7 iterations Writing output data file pwscf.save init_run : 0.50s CPU 0.51s WALL ( 1 calls) electrons : 1.01s CPU 1.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.06s CPU 0.06s WALL ( 1 calls) Called by electrons: c_bands : 0.16s CPU 0.15s WALL ( 7 calls) sum_band : 0.29s CPU 0.30s WALL ( 7 calls) v_of_rho : 0.23s CPU 0.24s WALL ( 8 calls) newd : 0.17s CPU 0.19s WALL ( 8 calls) mix_rho : 0.08s CPU 0.08s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.01s WALL ( 30 calls) regterg : 0.14s CPU 0.14s WALL ( 14 calls) Called by *egterg: h_psi : 0.10s CPU 0.11s WALL ( 59 calls) s_psi : 0.00s CPU 0.00s WALL ( 59 calls) g_psi : 0.01s CPU 0.01s WALL ( 43 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 57 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 59 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 73 calls) fft : 0.18s CPU 0.19s WALL ( 125 calls) ffts : 0.00s CPU 0.01s WALL ( 30 calls) fftw : 0.10s CPU 0.09s WALL ( 300 calls) interpolate : 0.07s CPU 0.08s WALL ( 30 calls) davcio : 0.00s CPU 0.00s WALL ( 44 calls) PWSCF : 1.62s CPU 1.71s WALL This run was terminated on: 22:44:10 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-nofrac.ref0000644000175000017500000002160412341373024015513 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 12:36: 3 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-nofrac.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79102865 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79409215 Ry Harris-Foulkes estimate = -15.79441848 Ry estimated scf accuracy < 0.00230223 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79447814 Ry Harris-Foulkes estimate = -15.79450063 Ry estimated scf accuracy < 0.00006305 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449510 Ry Harris-Foulkes estimate = -15.79449679 Ry estimated scf accuracy < 0.00000449 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8701 2.3792 5.5371 5.5371 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9165 -0.0653 2.6795 4.0355 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449595 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83378641 Ry hartree contribution = 1.08429090 Ry xc contribution = -4.81281466 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.30 -0.00020597 0.00000000 0.00000000 -30.30 0.00 0.00 0.00000000 -0.00020597 0.00000000 0.00 -30.30 0.00 0.00000000 0.00000000 -0.00020597 0.00 0.00 -30.30 Writing output data file pwscf.save init_run : 0.02s CPU 0.03s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.02s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.01s CPU 0.01s WALL ( 332 calls) davcio : 0.00s CPU 0.00s WALL ( 40 calls) PWSCF : 0.12s CPU 0.13s WALL This run was terminated on: 12:36: 3 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav8.in0000644000175000017500000000046712341373024016146 0ustar mbamba &control calculation='scf', / &system ibrav = 8, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/lsda-mixing_ndim.in0000755000175000017500000000062012341373024016545 0ustar mbamba &control calculation='scf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons mixing_ndim = 4 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {alat} Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.1/PW/tests/b3lyp-O.ref0000644000175000017500000002666012341373024014726 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 9400) starts on 7Dec2012 at 11:44: 6 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/b3lyp-O.in IMPORTANT: XC functional enforced from input : Exchange-correlation = B3LYP ( 7 2 9 7 0) EXX-fraction = 0.20 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used EXX: grid of k+q point setup nkqs = 1 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Generating pointlists ... new r_m : 0.4125 (alat units) 4.9500 (a.u.) for type 1 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 (up: 4.00, down: 2.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = B3LYP ( 7 2 9 7 0) EXX-fraction = 0.20 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.blyp-mt.UPF MD5 check sum: c45e57fb60a4aba32d51192b46cad255 Pseudo is Norm-conserving, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 285 points, 1 beta functions with: l(1) = 0 atomic species valence mass pseudopotential O 6.00 16.00000 O ( 1.00) Starting magnetic structure atomic species magnetization O 0.200 No symmetry found (note: 47 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 0.16 Mb ( 10408, 1) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 1, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.005131 Check: negative starting charge=(component2): -0.003420 starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.513E-02 0.342E-02 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 1.7 secs per-process dynamical memory: 77.9 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.930E-03 0.735E-03 Magnetic moment per site: atom: 1 charge: 5.9976 magn: 1.7592 constr: 0.0000 total cpu time spent up to now is 3.0 secs total energy = -31.89071947 Ry Harris-Foulkes estimate = -31.84879849 Ry estimated scf accuracy < 0.08250803 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-03, avg # of iterations = 1.0 negative rho (up, down): 0.441E-05 0.618E-05 Magnetic moment per site: atom: 1 charge: 5.9981 magn: 1.9917 constr: 0.0000 total cpu time spent up to now is 4.3 secs total energy = -31.90774300 Ry Harris-Foulkes estimate = -31.89618923 Ry estimated scf accuracy < 0.00756681 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-04, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 5.9981 magn: 1.9998 constr: 0.0000 total cpu time spent up to now is 5.5 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -25.0337 -10.9122 -10.9115 -8.8251 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -21.1507 -7.5535 -6.0101 -6.0087 EXX: now go back to refine exchange calculation -2.54207599667221 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.90E-06, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.9984 magn: 1.9999 constr: 0.0000 total cpu time spent up to now is 13.1 secs total energy = -31.87536822 Ry Harris-Foulkes estimate = -31.87580288 Ry estimated scf accuracy < 0.00060507 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-05, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 5.9984 magn: 1.9999 constr: 0.0000 total cpu time spent up to now is 17.2 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -28.0239 -12.7200 -12.7195 -10.5120 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -23.0867 -9.0669 -4.4575 -4.4555 -2.54207599667221 -2.54659641694855 -2.55123300025326 est. exchange err (dexx) = 0.00005808 Ry ! total energy = -31.87557539 Ry Harris-Foulkes estimate = -31.87564929 Ry estimated scf accuracy < 0.00009380 Ry The total energy is the sum of the following terms: one-electron contribution = -38.07455894 Ry hartree contribution = 19.12357790 Ry xc contribution = -5.68368183 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 2.54659642 Ry + Fock energy = -1.27561650 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000127 Writing output data file pwscf.save init_run : 1.39s CPU 1.73s WALL ( 1 calls) electrons : 14.82s CPU 16.03s WALL ( 1 calls) forces : 0.06s CPU 0.06s WALL ( 1 calls) Called by init_run: wfcinit : 0.09s CPU 0.10s WALL ( 1 calls) potinit : 0.78s CPU 0.85s WALL ( 1 calls) Called by electrons: c_bands : 7.16s CPU 7.70s WALL ( 6 calls) sum_band : 0.71s CPU 0.74s WALL ( 6 calls) v_of_rho : 4.96s CPU 5.41s WALL ( 7 calls) mix_rho : 0.24s CPU 0.29s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 28 calls) regterg : 7.15s CPU 7.68s WALL ( 12 calls) Called by *egterg: h_psi : 7.10s CPU 7.64s WALL ( 32 calls) g_psi : 0.02s CPU 0.03s WALL ( 18 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 26 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 32 calls) General routines calbec : 0.03s CPU 0.01s WALL ( 40 calls) fft : 1.70s CPU 1.83s WALL ( 142 calls) fftw : 1.13s CPU 1.22s WALL ( 150 calls) davcio : 0.00s CPU 0.02s WALL ( 52 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.24s CPU 0.27s WALL ( 2 calls) vexx : 5.82s CPU 6.28s WALL ( 16 calls) exxen2 : 1.90s CPU 2.02s WALL ( 4 calls) PWSCF : 16.35s CPU 17.96s WALL This run was terminated on: 11:44:24 7Dec2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/vdw1.in0000644000175000017500000000102712341373024014202 0ustar mbamba&control calculation='scf' tprnfor=.true. tstress=.true. / &system ibrav=4 celldm(1)=4.66 celldm(3)=2.60 nat=4 ecutwfc=18. ecutrho=200. ntyp=1 occupations='smearing' degauss=0.02 smearing='marzari-vanderbilt' input_dft='vdw-DF' / &electrons mixing_beta=0.5 mixing_ndim=20 / ATOMIC_SPECIES C 12. C.pbe-van_bm.UPF 1 K_POINTS {gamma} ATOMIC_POSITIONS {crystal} C 0.00000 1.00000 0.75000 C 0.66667 0.33333 0.75000 C 0.00000 1.00000 0.25000 C 0.33333 0.66667 0.25000 espresso-5.1/PW/tests/dft9.in0000755000175000017500000000053312341373024014173 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 input_dft='wc' / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/uspp-singlegrid.in0000755000175000017500000000054312341373024016442 0ustar mbamba &control calculation='scf' tstress=.true. / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons conv_thr=1.0e-9 / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS {alat} Cu 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 0 0 0 espresso-5.1/PW/tests/vdw1.ref0000644000175000017500000003211212341373024014347 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10582M) starts on 6Nov2013 at 18:56:54 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Serial version Reading input from /home/giannozz/trunk/espresso/PW/tests/vdw1.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = VDW-DF ( 1 4 4 0 1) Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 301 109 31 10915 2349 287 Tot 151 55 16 bravais-lattice index = 4 lattice parameter (alat) = 4.6600 a.u. unit-cell volume = 227.8567 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 12 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 20 plain mixing Exchange-correlation = VDW-DF ( 1 4 4 0 1) celldm(1)= 4.660000 celldm(2)= 0.000000 celldm(3)= 2.600000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.600000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.384615 ) PseudoPot. # 1 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pbe-van_bm.UPF MD5 check sum: 1a69bf6b8db32088f5b2163dbdb77a27 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 721 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 vdW kernel table read from file vdW_kernel_table MD5 check sum: f53da8562cfe6bfda6a1b4f380354fea atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 8 Sym. Ops., with inversion, found ( 4 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( -0.5000000 0.8660254 1.9500000 ) 2 C tau( 2) = ( 0.5000050 0.2886722 1.9500000 ) 3 C tau( 3) = ( -0.5000000 0.8660254 0.6500000 ) 4 C tau( 4) = ( -0.0000050 0.5773532 0.6500000 ) number of k points= 1 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5458 G-vectors FFT dimensions: ( 24, 24, 60) Smooth grid: 1175 G-vectors FFT dimensions: ( 15, 15, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 144, 12) NL pseudopotentials 0.07 Mb ( 144, 32) Each V/rho on FFT grid 0.53 Mb ( 34560) Each G-vector array 0.04 Mb ( 5458) G-vector shells 0.00 Mb ( 616) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 144, 48) Each subspace H/S matrix 0.02 Mb ( 48, 48) Each matrix 0.00 Mb ( 32, 12) Arrays for rho mixing 10.55 Mb ( 34560, 20) Initial potential from superposition of free atoms starting charge 15.99984, renormalised to 16.00000 ************************************************************************ * * You are using vdW-DF for exchange-correlation in this calculation. * Please cite the following three references that made this development * possible: * * M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and * B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). * * T. Thonhauser, V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and * D. C. Langreth, Phys. Rev. B 76, 125112 (2007). * * G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009). * * * If you are using vdW-DF2, please also cite: * * K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and * D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010). * * * If you are calculating the stress with vdW-DF, please also cite: * * R. Sabatini, E. Kucukbenli, B. Kolb, T. Thonhauser, and * S. de Gironcoli, J. Phys.: Condens. Matter 24, 424209 (2012). * ************************************************************************ Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in reciprocal space ************************************************************************ Starting wfc are 16 randomized atomic wfcs total cpu time spent up to now is 1.6 secs per-process dynamical memory: 25.9 Mb Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 total cpu time spent up to now is 1.9 secs total energy = -44.45696809 Ry Harris-Foulkes estimate = -44.69576610 Ry estimated scf accuracy < 0.71123638 Ry iteration # 2 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.45E-03, avg # of iterations = 2.0 total cpu time spent up to now is 2.2 secs total energy = -44.46599905 Ry Harris-Foulkes estimate = -44.49235092 Ry estimated scf accuracy < 0.10305667 Ry iteration # 3 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.44E-04, avg # of iterations = 2.0 total cpu time spent up to now is 2.5 secs total energy = -44.47719945 Ry Harris-Foulkes estimate = -44.47620498 Ry estimated scf accuracy < 0.00382417 Ry iteration # 4 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.39E-05, avg # of iterations = 1.0 total cpu time spent up to now is 2.7 secs total energy = -44.47742467 Ry Harris-Foulkes estimate = -44.47739004 Ry estimated scf accuracy < 0.00004220 Ry iteration # 5 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.64E-07, avg # of iterations = 2.0 total cpu time spent up to now is 3.0 secs total energy = -44.47744794 Ry Harris-Foulkes estimate = -44.47743314 Ry estimated scf accuracy < 0.00000138 Ry iteration # 6 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.63E-09, avg # of iterations = 3.0 total cpu time spent up to now is 3.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 144 PWs) bands (ev): -11.7188 -11.2671 -0.7862 1.7467 5.4241 5.4246 5.5816 5.5820 12.3744 16.8406 16.8411 16.8790 the Fermi energy is 10.0017 ev ! total energy = -44.47745305 Ry Harris-Foulkes estimate = -44.47744839 Ry estimated scf accuracy < 0.00000011 Ry The total energy is the sum of the following terms: one-electron contribution = -6.80578691 Ry hartree contribution = 12.83432259 Ry xc contribution = -14.63353891 Ry ewald contribution = -35.87244982 Ry smearing contrib. (-TS) = 0.00000000 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00005330 -0.00003077 0.00000000 atom 2 type 1 force = -0.00005407 0.00003122 0.00000000 atom 3 type 1 force = -0.00005330 0.00003077 0.00000000 atom 4 type 1 force = 0.00005407 -0.00003122 0.00000000 Total force = 0.000124 Total SCF correction = 0.000051 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... VDW GRADIENT stress 0.00001858 0.00000000 0.00000000 0.00000000 0.00001858 0.00000000 0.00000000 0.00000000 0.00001899 VDW KERNEL stress -0.00008857 0.00000000 0.00000000 0.00000000 -0.00008857 0.00000000 0.00000000 0.00000000 -0.00051183 VDW ALL stress 0.00006998 0.00000000 0.00000000 0.00000000 0.00006998 0.00000000 0.00000000 0.00000000 0.00049284 total stress (Ry/bohr**3) (kbar) P= -376.81 -0.00293411 -0.00000019 0.00000000 -431.62 -0.03 0.00 -0.00000019 -0.00293433 0.00000000 -0.03 -431.65 0.00 0.00000000 0.00000000 -0.00181608 0.00 0.00 -267.15 Writing output data file pwscf.save init_run : 0.36s CPU 0.75s WALL ( 1 calls) electrons : 1.33s CPU 1.62s WALL ( 1 calls) forces : 0.04s CPU 0.05s WALL ( 1 calls) stress : 0.38s CPU 0.47s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.16s WALL ( 1 calls) potinit : 0.20s CPU 0.28s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.07s WALL ( 6 calls) sum_band : 0.10s CPU 0.10s WALL ( 6 calls) v_of_rho : 1.29s CPU 1.51s WALL ( 7 calls) newd : 0.08s CPU 0.08s WALL ( 7 calls) mix_rho : 0.01s CPU 0.02s WALL ( 6 calls) vdW_energy : 0.24s CPU 0.30s WALL ( 7 calls) vdW_ffts : 0.41s CPU 0.46s WALL ( 16 calls) vdW_v : 0.23s CPU 0.24s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 13 calls) regterg : 0.03s CPU 0.07s WALL ( 6 calls) Called by *egterg: h_psi : 0.01s CPU 0.06s WALL ( 21 calls) s_psi : 0.00s CPU 0.00s WALL ( 21 calls) g_psi : 0.00s CPU 0.00s WALL ( 14 calls) rdiaghg : 0.01s CPU 0.13s WALL ( 20 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 21 calls) General routines calbec : 0.00s CPU 0.03s WALL ( 32 calls) fft : 0.62s CPU 0.68s WALL ( 510 calls) ffts : 0.00s CPU 0.00s WALL ( 13 calls) fftw : 0.01s CPU 0.03s WALL ( 230 calls) interpolate : 0.02s CPU 0.02s WALL ( 13 calls) davcio : 0.00s CPU 0.01s WALL ( 1 calls) PWSCF : 2.28s CPU 3.94s WALL This run was terminated on: 18:56:58 6Nov2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav11-kauto.ref0000644000175000017500000002040712341373024017503 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav11-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 993 993 289 25319 25319 4025 bravais-lattice index = 11 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1500.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.750000 1.000000 ) a(2) = ( -0.500000 0.750000 1.000000 ) a(3) = ( -0.500000 -0.750000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.500000 ) b(2) = ( -1.000000 0.666667 0.000000 ) b(3) = ( 0.000000 -0.666667 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 8 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 4 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.2500000), wk = 0.5000000 k( 2) = ( 0.0000000 0.3333333 0.0000000), wk = 0.5000000 k( 3) = ( 0.5000000 -0.3333333 0.2500000), wk = 0.5000000 k( 4) = ( 0.5000000 0.0000000 0.0000000), wk = 0.5000000 Dense grid: 25319 G-vectors FFT dimensions: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 3196, 1) NL pseudopotentials 0.00 Mb ( 3196, 0) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.19 Mb ( 25319) G-vector shells 0.01 Mb ( 1383) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.20 Mb ( 3196, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001236 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.124E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 13.6 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.337E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.21992045 Ry Harris-Foulkes estimate = -2.29010360 Ry estimated scf accuracy < 0.13316714 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.536E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23090410 Ry Harris-Foulkes estimate = -2.23135519 Ry estimated scf accuracy < 0.00100648 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.03E-05, avg # of iterations = 2.0 negative rho (up, down): 0.170E-05 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23120974 Ry Harris-Foulkes estimate = -2.23120866 Ry estimated scf accuracy < 0.00001198 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.99E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.2500 ( 3140 PWs) bands (ev): -10.2167 k = 0.0000 0.3333 0.0000 ( 3140 PWs) bands (ev): -10.2177 k = 0.5000-0.3333 0.2500 ( 3196 PWs) bands (ev): -10.2108 k = 0.5000 0.0000 0.0000 ( 3172 PWs) bands (ev): -10.2063 ! total energy = -2.23121089 Ry Harris-Foulkes estimate = -2.23121079 Ry estimated scf accuracy < 0.00000039 Ry The total energy is the sum of the following terms: one-electron contribution = -3.11195081 Ry hartree contribution = 1.66384329 Ry xc contribution = -1.31435332 Ry ewald contribution = 0.53124995 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.07s CPU 0.07s WALL ( 1 calls) electrons : 0.25s CPU 0.25s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.10s CPU 0.10s WALL ( 4 calls) sum_band : 0.05s CPU 0.05s WALL ( 4 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: cegterg : 0.10s CPU 0.10s WALL ( 16 calls) Called by *egterg: h_psi : 0.11s CPU 0.10s WALL ( 44 calls) g_psi : 0.00s CPU 0.00s WALL ( 24 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 40 calls) Called by h_psi: General routines fft : 0.04s CPU 0.03s WALL ( 19 calls) fftw : 0.10s CPU 0.10s WALL ( 112 calls) davcio : 0.00s CPU 0.00s WALL ( 52 calls) PWSCF : 0.35s CPU 0.37s WALL This run was terminated on: 10:22:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/md.ref0000644000175000017500000037454712341373024014113 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:42 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/md.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 31 869 869 113 bravais-lattice index = 2 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -14.43210225 Ry Harris-Foulkes estimate = -14.55434296 Ry estimated scf accuracy < 0.32483609 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44687979 Ry Harris-Foulkes estimate = -14.44915621 Ry estimated scf accuracy < 0.01104147 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44790249 Ry Harris-Foulkes estimate = -14.44786986 Ry estimated scf accuracy < 0.00019990 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793341 Ry Harris-Foulkes estimate = -14.44793322 Ry estimated scf accuracy < 0.00000435 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.43E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793716 Ry Harris-Foulkes estimate = -14.44793752 Ry estimated scf accuracy < 0.00000145 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793726 Ry Harris-Foulkes estimate = -14.44793727 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-09, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793736 Ry estimated scf accuracy < 0.00000013 Ry iteration # 8 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793733 Ry estimated scf accuracy < 0.00000002 Ry iteration # 9 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44793732 Ry Harris-Foulkes estimate = -14.44793737 Ry estimated scf accuracy < 0.00000017 Ry iteration # 10 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1610 7.5134 7.5134 ! total energy = -14.44793733 Ry Harris-Foulkes estimate = -14.44793734 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02329815 -0.02329818 -0.02329844 atom 2 type 1 force = 0.02329815 0.02329818 0.02329844 Total force = 0.057069 Total SCF correction = 0.000004 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123017881 -0.123017881 -0.123017881 Si 0.123017881 0.123017881 0.123017881 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -14.44793733 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796267 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1631 7.5123 7.5123 ! total energy = -14.44796266 Ry Harris-Foulkes estimate = -14.44796266 Ry estimated scf accuracy < 6.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02308264 -0.02308255 -0.02308267 atom 2 type 1 force = 0.02308264 0.02308255 0.02308267 Total force = 0.056541 Total SCF correction = 0.000005 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123071192 -0.123071192 -0.123071192 Si 0.123071192 0.123071192 0.123071192 kinetic energy (Ekin) = 0.00002521 Ry temperature = 2.65359889 K Ekin + Etot (const) = -14.44793745 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.30E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -14.44803678 Ry Harris-Foulkes estimate = -14.44803678 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.84E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1694 7.5091 7.5091 ! total energy = -14.44803679 Ry Harris-Foulkes estimate = -14.44803679 Ry estimated scf accuracy < 6.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02244051 -0.02244048 -0.02244055 atom 2 type 1 force = 0.02244051 0.02244048 0.02244055 Total force = 0.054968 Total SCF correction = 0.000014 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123158948 -0.123158948 -0.123158949 Si 0.123158948 0.123158948 0.123158949 kinetic energy (Ekin) = 0.00009899 Ry temperature = 10.41900607 K Ekin + Etot (const) = -14.44793781 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.52E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815427 Ry Harris-Foulkes estimate = -14.44815426 Ry estimated scf accuracy < 0.00000021 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.65E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815428 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.19E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1795 7.5039 7.5039 ! total energy = -14.44815429 Ry Harris-Foulkes estimate = -14.44815429 Ry estimated scf accuracy < 4.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02139523 -0.02139524 -0.02139522 atom 2 type 1 force = 0.02139523 0.02139524 0.02139522 Total force = 0.052407 Total SCF correction = 0.000005 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123279545 -0.123279544 -0.123279546 Si 0.123279545 0.123279544 0.123279546 kinetic energy (Ekin) = 0.00021593 Ry temperature = 22.72853561 K Ekin + Etot (const) = -14.44793836 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.75E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830656 Ry Harris-Foulkes estimate = -14.44830655 Ry estimated scf accuracy < 0.00000041 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.07E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830660 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.23E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.1936 7.4967 7.4967 ! total energy = -14.44830661 Ry Harris-Foulkes estimate = -14.44830661 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01995830 -0.01995831 -0.01995829 atom 2 type 1 force = 0.01995830 0.01995831 0.01995829 Total force = 0.048888 Total SCF correction = 0.000006 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123430776 -0.123430775 -0.123430777 Si 0.123430776 0.123430775 0.123430777 kinetic energy (Ekin) = 0.00036754 Ry temperature = 38.68668352 K Ekin + Etot (const) = -14.44793907 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.05E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848262 Ry Harris-Foulkes estimate = -14.44848261 Ry estimated scf accuracy < 0.00000064 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.98E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848268 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.64E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2112 7.4877 7.4877 ! total energy = -14.44848270 Ry Harris-Foulkes estimate = -14.44848270 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01816349 -0.01816350 -0.01816348 atom 2 type 1 force = 0.01816349 0.01816350 0.01816348 Total force = 0.044491 Total SCF correction = 0.000008 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123609887 -0.123609887 -0.123609889 Si 0.123609887 0.123609887 0.123609889 kinetic energy (Ekin) = 0.00054281 Ry temperature = 57.13505928 K Ekin + Etot (const) = -14.44793989 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.27E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866976 Ry Harris-Foulkes estimate = -14.44866974 Ry estimated scf accuracy < 0.00000090 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.12E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866984 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.29E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.2321 7.4770 7.4770 ! total energy = -14.44866987 Ry Harris-Foulkes estimate = -14.44866987 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01604808 -0.01604809 -0.01604806 atom 2 type 1 force = 0.01604808 0.01604809 0.01604806 Total force = 0.039310 Total SCF correction = 0.000010 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123813632 -0.123813631 -0.123813633 Si 0.123813632 0.123813631 0.123813633 kinetic energy (Ekin) = 0.00072910 Ry temperature = 76.74374411 K Ekin + Etot (const) = -14.44794077 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885459 Ry Harris-Foulkes estimate = -14.44885457 Ry estimated scf accuracy < 0.00000116 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.45E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885469 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.20E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.2559 7.4649 7.4649 ! total energy = -14.44885473 Ry Harris-Foulkes estimate = -14.44885473 Ry estimated scf accuracy < 3.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01365506 -0.01365506 -0.01365503 atom 2 type 1 force = 0.01365506 0.01365506 0.01365503 Total force = 0.033448 Total SCF correction = 0.000011 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124038336 -0.124038335 -0.124038338 Si 0.124038336 0.124038335 0.124038338 kinetic energy (Ekin) = 0.00091309 Ry temperature = 96.11022966 K Ekin + Etot (const) = -14.44794164 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.82E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902401 Ry Harris-Foulkes estimate = -14.44902400 Ry estimated scf accuracy < 0.00000142 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44902419 Ry Harris-Foulkes estimate = -14.44902414 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.2821 7.4516 7.4516 ! total energy = -14.44902420 Ry Harris-Foulkes estimate = -14.44902419 Ry estimated scf accuracy < 3.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01103242 -0.01103243 -0.01103239 atom 2 type 1 force = 0.01103242 0.01103243 0.01103239 Total force = 0.027024 Total SCF correction = 0.000012 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124279974 -0.124279973 -0.124279976 Si 0.124279974 0.124279973 0.124279976 kinetic energy (Ekin) = 0.00108175 Ry temperature = 113.86286550 K Ekin + Etot (const) = -14.44794245 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.11E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs total energy = -14.44916618 Ry Harris-Foulkes estimate = -14.44916618 Ry estimated scf accuracy < 0.00000165 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.3 secs total energy = -14.44916640 Ry Harris-Foulkes estimate = -14.44916633 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3104 7.4373 7.4373 ! total energy = -14.44916640 Ry Harris-Foulkes estimate = -14.44916640 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00823045 -0.00823046 -0.00823042 atom 2 type 1 force = 0.00823045 0.00823046 0.00823042 Total force = 0.020160 Total SCF correction = 0.000013 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124534245 -0.124534244 -0.124534247 Si 0.124534245 0.124534244 0.124534247 kinetic energy (Ekin) = 0.00122327 Ry temperature = 128.75902696 K Ekin + Etot (const) = -14.44794313 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.34E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927131 Ry Harris-Foulkes estimate = -14.44927130 Ry estimated scf accuracy < 0.00000183 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.29E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44927154 Ry Harris-Foulkes estimate = -14.44927147 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3402 7.4223 7.4223 ! total energy = -14.44927155 Ry Harris-Foulkes estimate = -14.44927154 Ry estimated scf accuracy < 4.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00530258 -0.00530259 -0.00530255 atom 2 type 1 force = 0.00530258 0.00530259 0.00530255 Total force = 0.012989 Total SCF correction = 0.000014 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124796655 -0.124796654 -0.124796658 Si 0.124796655 0.124796654 0.124796658 kinetic energy (Ekin) = 0.00132789 Ry temperature = 139.77173091 K Ekin + Etot (const) = -14.44794365 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44933230 Ry Harris-Foulkes estimate = -14.44933231 Ry estimated scf accuracy < 0.00000196 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44933255 Ry Harris-Foulkes estimate = -14.44933248 Ry estimated scf accuracy < 0.00000016 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3710 7.4068 7.4068 ! total energy = -14.44933256 Ry Harris-Foulkes estimate = -14.44933256 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00230281 -0.00230282 -0.00230278 atom 2 type 1 force = 0.00230281 0.00230282 0.00230278 Total force = 0.005641 Total SCF correction = 0.000015 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125062601 -0.125062600 -0.125062603 Si 0.125062601 0.125062600 0.125062603 kinetic energy (Ekin) = 0.00138858 Ry temperature = 146.15904026 K Ekin + Etot (const) = -14.44794398 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.56E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934526 Ry Harris-Foulkes estimate = -14.44934527 Ry estimated scf accuracy < 0.00000201 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.52E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.4 secs total energy = -14.44934551 Ry Harris-Foulkes estimate = -14.44934544 Ry estimated scf accuracy < 0.00000016 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3911 7.3911 7.4023 ! total energy = -14.44934552 Ry Harris-Foulkes estimate = -14.44934552 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00071509 0.00071508 0.00071512 atom 2 type 1 force = -0.00071509 -0.00071508 -0.00071512 Total force = 0.001752 Total SCF correction = 0.000015 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125327448 -0.125327447 -0.125327451 Si 0.125327448 0.125327447 0.125327451 kinetic energy (Ekin) = 0.00140142 Ry temperature = 147.51046507 K Ekin + Etot (const) = -14.44794411 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.55E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930963 Ry Harris-Foulkes estimate = -14.44930964 Ry estimated scf accuracy < 0.00000200 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44930988 Ry Harris-Foulkes estimate = -14.44930981 Ry estimated scf accuracy < 0.00000016 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3756 7.3756 7.4335 ! total energy = -14.44930989 Ry Harris-Foulkes estimate = -14.44930989 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00369858 0.00369857 0.00369861 atom 2 type 1 force = -0.00369858 -0.00369857 -0.00369861 Total force = 0.009060 Total SCF correction = 0.000015 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125586619 -0.125586618 -0.125586621 Si 0.125586619 0.125586618 0.125586621 kinetic energy (Ekin) = 0.00136587 Ry temperature = 143.76900289 K Ekin + Etot (const) = -14.44794402 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922821 Ry Harris-Foulkes estimate = -14.44922823 Ry estimated scf accuracy < 0.00000192 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.40E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44922846 Ry Harris-Foulkes estimate = -14.44922839 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3604 7.3604 7.4641 ! total energy = -14.44922847 Ry Harris-Foulkes estimate = -14.44922846 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00659721 0.00659720 0.00659724 atom 2 type 1 force = -0.00659721 -0.00659720 -0.00659724 Total force = 0.016160 Total SCF correction = 0.000015 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125835663 -0.125835662 -0.125835665 Si 0.125835663 0.125835662 0.125835665 kinetic energy (Ekin) = 0.00128473 Ry temperature = 135.22811469 K Ekin + Etot (const) = -14.44794374 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.26E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910691 Ry Harris-Foulkes estimate = -14.44910693 Ry estimated scf accuracy < 0.00000178 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.22E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.5 secs total energy = -14.44910714 Ry Harris-Foulkes estimate = -14.44910707 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3458 7.3458 7.4936 ! total energy = -14.44910714 Ry Harris-Foulkes estimate = -14.44910714 Ry estimated scf accuracy < 4.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00936336 0.00936335 0.00936339 atom 2 type 1 force = -0.00936336 -0.00936335 -0.00936339 Total force = 0.022935 Total SCF correction = 0.000015 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126070335 -0.126070334 -0.126070337 Si 0.126070335 0.126070334 0.126070337 kinetic energy (Ekin) = 0.00116385 Ry temperature = 122.50495140 K Ekin + Etot (const) = -14.44794329 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.01E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895422 Ry Harris-Foulkes estimate = -14.44895425 Ry estimated scf accuracy < 0.00000158 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44895443 Ry Harris-Foulkes estimate = -14.44895437 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.3321 7.3321 7.5213 ! total energy = -14.44895443 Ry Harris-Foulkes estimate = -14.44895443 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01195285 0.01195284 0.01195288 atom 2 type 1 force = -0.01195285 -0.01195284 -0.01195288 Total force = 0.029278 Total SCF correction = 0.000014 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126286660 -0.126286659 -0.126286662 Si 0.126286660 0.126286659 0.126286662 kinetic energy (Ekin) = 0.00101173 Ry temperature = 106.49266031 K Ekin + Etot (const) = -14.44794271 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.71E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878070 Ry Harris-Foulkes estimate = -14.44878073 Ry estimated scf accuracy < 0.00000135 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44878088 Ry Harris-Foulkes estimate = -14.44878083 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3195 7.3195 7.5470 ! total energy = -14.44878088 Ry Harris-Foulkes estimate = -14.44878088 Ry estimated scf accuracy < 3.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01432542 0.01432541 0.01432544 atom 2 type 1 force = -0.01432542 -0.01432541 -0.01432544 Total force = 0.035090 Total SCF correction = 0.000013 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126480996 -0.126480995 -0.126480998 Si 0.126480996 0.126480995 0.126480998 kinetic energy (Ekin) = 0.00083885 Ry temperature = 88.29578400 K Ekin + Etot (const) = -14.44794203 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.52E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859817 Ry Harris-Foulkes estimate = -14.44859818 Ry estimated scf accuracy < 0.00000108 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44859830 Ry Harris-Foulkes estimate = -14.44859826 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-09, avg # of iterations = 1.0 total cpu time spent up to now is 0.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.3082 7.3082 7.5700 ! total energy = -14.44859831 Ry Harris-Foulkes estimate = -14.44859830 Ry estimated scf accuracy < 3.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01644543 0.01644542 0.01644545 atom 2 type 1 force = -0.01644543 -0.01644542 -0.01644545 Total force = 0.040283 Total SCF correction = 0.000012 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126650089 -0.126650088 -0.126650091 Si 0.126650089 0.126650088 0.126650091 kinetic energy (Ekin) = 0.00065699 Ry temperature = 69.15337878 K Ekin + Etot (const) = -14.44794132 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.6 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.15E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.6 secs total energy = -14.44841891 Ry Harris-Foulkes estimate = -14.44841893 Ry estimated scf accuracy < 0.00000082 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44841902 Ry Harris-Foulkes estimate = -14.44841899 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.84E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2984 7.2984 7.5901 ! total energy = -14.44841902 Ry Harris-Foulkes estimate = -14.44841902 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01828073 0.01828072 0.01828075 atom 2 type 1 force = -0.01828073 -0.01828072 -0.01828075 Total force = 0.044778 Total SCF correction = 0.000010 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126791123 -0.126791122 -0.126791124 Si 0.126791123 0.126791122 0.126791124 kinetic energy (Ekin) = 0.00047841 Ry temperature = 50.35605953 K Ekin + Etot (const) = -14.44794061 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.00E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825493 Ry Harris-Foulkes estimate = -14.44825495 Ry estimated scf accuracy < 0.00000057 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.15E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44825501 Ry Harris-Foulkes estimate = -14.44825499 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.44E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.2902 7.2902 7.6069 ! total energy = -14.44825501 Ry Harris-Foulkes estimate = -14.44825501 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01980505 0.01980504 0.01980506 atom 2 type 1 force = -0.01980505 -0.01980504 -0.01980506 Total force = 0.048512 Total SCF correction = 0.000009 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126901757 -0.126901756 -0.126901758 Si 0.126901757 0.126901756 0.126901758 kinetic energy (Ekin) = 0.00031504 Ry temperature = 33.16093782 K Ekin + Etot (const) = -14.44793996 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.94E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811712 Ry Harris-Foulkes estimate = -14.44811713 Ry estimated scf accuracy < 0.00000035 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.43E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44811717 Ry Harris-Foulkes estimate = -14.44811716 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.39E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2838 7.2838 7.6200 ! total energy = -14.44811717 Ry Harris-Foulkes estimate = -14.44811717 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02099671 0.02099671 0.02099673 atom 2 type 1 force = -0.02099671 -0.02099671 -0.02099673 Total force = 0.051431 Total SCF correction = 0.000007 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126980162 -0.126980162 -0.126980163 Si 0.126980162 0.126980162 0.126980163 kinetic energy (Ekin) = 0.00017775 Ry temperature = 18.71008724 K Ekin + Etot (const) = -14.44793942 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.7 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.82E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801459 Ry Harris-Foulkes estimate = -14.44801459 Ry estimated scf accuracy < 0.00000018 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.19E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -14.44801461 Ry Harris-Foulkes estimate = -14.44801461 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2793 7.2793 7.6293 ! total energy = -14.44801461 Ry Harris-Foulkes estimate = -14.44801461 Ry estimated scf accuracy < 4.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02183879 0.02183878 0.02183880 atom 2 type 1 force = -0.02183879 -0.02183878 -0.02183880 Total force = 0.053494 Total SCF correction = 0.000005 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127025046 -0.127025046 -0.127025046 Si 0.127025046 0.127025046 0.127025046 kinetic energy (Ekin) = 0.00007561 Ry temperature = 7.95831966 K Ekin + Etot (const) = -14.44793900 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.23E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs total energy = -14.44795408 Ry Harris-Foulkes estimate = -14.44795408 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.18E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2767 7.2767 7.6347 ! total energy = -14.44795409 Ry Harris-Foulkes estimate = -14.44795408 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02232278 0.02232277 0.02232278 atom 2 type 1 force = -0.02232278 -0.02232277 -0.02232278 Total force = 0.054679 Total SCF correction = 0.000011 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127035666 -0.127035666 -0.127035666 Si 0.127035666 0.127035666 0.127035666 kinetic energy (Ekin) = 0.00001532 Ry temperature = 1.61292322 K Ekin + Etot (const) = -14.44793876 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.03E-11, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2761 7.2761 7.6358 ! total energy = -14.44793957 Ry Harris-Foulkes estimate = -14.44793957 Ry estimated scf accuracy < 3.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02243314 0.02243313 0.02243314 atom 2 type 1 force = -0.02243314 -0.02243313 -0.02243314 Total force = 0.054950 Total SCF correction = 0.000017 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127011852 -0.127011852 -0.127011852 Si 0.127011852 0.127011852 0.127011852 kinetic energy (Ekin) = 0.00000087 Ry temperature = 0.09114712 K Ekin + Etot (const) = -14.44793871 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.90E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs total energy = -14.44797201 Ry Harris-Foulkes estimate = -14.44797202 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.33E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2775 7.2775 7.6331 ! total energy = -14.44797202 Ry Harris-Foulkes estimate = -14.44797202 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02217461 0.02217461 0.02217461 atom 2 type 1 force = -0.02217461 -0.02217461 -0.02217461 Total force = 0.054316 Total SCF correction = 0.000005 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126954001 -0.126954001 -0.126954001 Si 0.126954001 0.126954001 0.126954001 kinetic energy (Ekin) = 0.00003317 Ry temperature = 3.49172918 K Ekin + Etot (const) = -14.44793884 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.8 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.53E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44804927 Ry Harris-Foulkes estimate = -14.44804927 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.2808 7.2808 7.6261 ! total energy = -14.44804928 Ry Harris-Foulkes estimate = -14.44804928 Ry estimated scf accuracy < 7.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02154993 0.02154993 0.02154993 atom 2 type 1 force = -0.02154993 -0.02154993 -0.02154993 Total force = 0.052786 Total SCF correction = 0.000014 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126863073 -0.126863073 -0.126863072 Si 0.126863073 0.126863073 0.126863072 kinetic energy (Ekin) = 0.00011010 Ry temperature = 11.58931351 K Ekin + Etot (const) = -14.44793918 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.78E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816625 Ry Harris-Foulkes estimate = -14.44816626 Ry estimated scf accuracy < 0.00000024 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.95E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44816628 Ry Harris-Foulkes estimate = -14.44816627 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.23E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2861 7.2861 7.6153 ! total energy = -14.44816628 Ry Harris-Foulkes estimate = -14.44816628 Ry estimated scf accuracy < 5.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02057466 0.02057466 0.02057465 atom 2 type 1 force = -0.02057466 -0.02057466 -0.02057465 Total force = 0.050397 Total SCF correction = 0.000006 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126740563 -0.126740564 -0.126740562 Si 0.126740563 0.126740564 0.126740562 kinetic energy (Ekin) = 0.00022660 Ry temperature = 23.85155907 K Ekin + Etot (const) = -14.44793968 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.06E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831526 Ry Harris-Foulkes estimate = -14.44831527 Ry estimated scf accuracy < 0.00000044 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.44E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44831531 Ry Harris-Foulkes estimate = -14.44831530 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.16E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2932 7.2932 7.6008 ! total energy = -14.44831532 Ry Harris-Foulkes estimate = -14.44831531 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01925189 0.01925190 0.01925188 atom 2 type 1 force = -0.01925189 -0.01925190 -0.01925188 Total force = 0.047157 Total SCF correction = 0.000008 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126588503 -0.126588504 -0.126588502 Si 0.126588503 0.126588504 0.126588502 kinetic energy (Ekin) = 0.00037499 Ry temperature = 39.47096106 K Ekin + Etot (const) = -14.44794032 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.9 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.32E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848643 Ry Harris-Foulkes estimate = -14.44848644 Ry estimated scf accuracy < 0.00000067 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.33E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.9 secs total energy = -14.44848651 Ry Harris-Foulkes estimate = -14.44848649 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.32E-10, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.3020 7.3020 7.5827 ! total energy = -14.44848651 Ry Harris-Foulkes estimate = -14.44848651 Ry estimated scf accuracy < 1.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01760453 0.01760453 0.01760451 atom 2 type 1 force = -0.01760453 -0.01760453 -0.01760451 Total force = 0.043122 Total SCF correction = 0.000009 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126409421 -0.126409422 -0.126409419 Si 0.126409421 0.126409422 0.126409419 kinetic energy (Ekin) = 0.00054544 Ry temperature = 57.41185484 K Ekin + Etot (const) = -14.44794107 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.29E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866836 Ry Harris-Foulkes estimate = -14.44866838 Ry estimated scf accuracy < 0.00000092 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44866847 Ry Harris-Foulkes estimate = -14.44866844 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.80E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3124 7.3124 7.5614 ! total energy = -14.44866848 Ry Harris-Foulkes estimate = -14.44866847 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01565606 0.01565607 0.01565604 atom 2 type 1 force = -0.01565606 -0.01565607 -0.01565604 Total force = 0.038349 Total SCF correction = 0.000011 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126206308 -0.126206309 -0.126206306 Si 0.126206308 0.126206309 0.126206306 kinetic energy (Ekin) = 0.00072659 Ry temperature = 76.47917902 K Ekin + Etot (const) = -14.44794189 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.66E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884885 Ry Harris-Foulkes estimate = -14.44884887 Ry estimated scf accuracy < 0.00000118 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44884900 Ry Harris-Foulkes estimate = -14.44884896 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.14E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.3243 7.3243 7.5373 ! total energy = -14.44884900 Ry Harris-Foulkes estimate = -14.44884900 Ry estimated scf accuracy < 3.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01343510 0.01343511 0.01343508 atom 2 type 1 force = -0.01343510 -0.01343511 -0.01343508 Total force = 0.032909 Total SCF correction = 0.000012 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125982573 -0.125982574 -0.125982571 Si 0.125982573 0.125982574 0.125982571 kinetic energy (Ekin) = 0.00090628 Ry temperature = 95.39381211 K Ekin + Etot (const) = -14.44794272 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.0 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.83E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901570 Ry Harris-Foulkes estimate = -14.44901572 Ry estimated scf accuracy < 0.00000144 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.80E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.0 secs total energy = -14.44901588 Ry Harris-Foulkes estimate = -14.44901583 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.3373 7.3373 7.5108 ! total energy = -14.44901589 Ry Harris-Foulkes estimate = -14.44901588 Ry estimated scf accuracy < 4.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01097528 0.01097529 0.01097525 atom 2 type 1 force = -0.01097528 -0.01097529 -0.01097525 Total force = 0.026884 Total SCF correction = 0.000013 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125741991 -0.125741992 -0.125741989 Si 0.125741991 0.125741992 0.125741989 kinetic energy (Ekin) = 0.00107237 Ry temperature = 112.87607759 K Ekin + Etot (const) = -14.44794351 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.11E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915749 Ry Harris-Foulkes estimate = -14.44915752 Ry estimated scf accuracy < 0.00000166 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.08E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44915771 Ry Harris-Foulkes estimate = -14.44915765 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.62E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3514 7.3514 7.4823 ! total energy = -14.44915771 Ry Harris-Foulkes estimate = -14.44915771 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00831348 0.00831349 0.00831345 atom 2 type 1 force = -0.00831348 -0.00831349 -0.00831345 Total force = 0.020364 Total SCF correction = 0.000014 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125488649 -0.125488650 -0.125488646 Si 0.125488649 0.125488650 0.125488646 kinetic energy (Ekin) = 0.00121349 Ry temperature = 127.73009028 K Ekin + Etot (const) = -14.44794422 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.34E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926440 Ry Harris-Foulkes estimate = -14.44926442 Ry estimated scf accuracy < 0.00000184 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.30E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44926463 Ry Harris-Foulkes estimate = -14.44926457 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.80E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3662 7.3662 7.4524 ! total energy = -14.44926464 Ry Harris-Foulkes estimate = -14.44926464 Ry estimated scf accuracy < 5.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00549190 0.00549191 0.00549187 atom 2 type 1 force = -0.00549190 -0.00549191 -0.00549187 Total force = 0.013452 Total SCF correction = 0.000015 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125226877 -0.125226878 -0.125226874 Si 0.125226877 0.125226878 0.125226874 kinetic energy (Ekin) = 0.00131985 Ry temperature = 138.92500635 K Ekin + Etot (const) = -14.44794479 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -14.44932884 Ry Harris-Foulkes estimate = -14.44932886 Ry estimated scf accuracy < 0.00000196 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.45E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.1 secs total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932902 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3816 7.3816 7.4215 ! total energy = -14.44932910 Ry Harris-Foulkes estimate = -14.44932910 Ry estimated scf accuracy < 5.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00255608 0.00255610 0.00255606 atom 2 type 1 force = -0.00255608 -0.00255610 -0.00255606 Total force = 0.006261 Total SCF correction = 0.000015 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124961181 -0.124961182 -0.124961179 Si 0.124961181 0.124961182 0.124961179 kinetic energy (Ekin) = 0.00138391 Ry temperature = 145.66814242 K Ekin + Etot (const) = -14.44794519 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.1 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.56E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934609 Ry Harris-Foulkes estimate = -14.44934611 Ry estimated scf accuracy < 0.00000201 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.52E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44934635 Ry Harris-Foulkes estimate = -14.44934628 Ry estimated scf accuracy < 0.00000016 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3903 7.3972 7.3972 ! total energy = -14.44934636 Ry Harris-Foulkes estimate = -14.44934636 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00044521 -0.00044519 -0.00044523 atom 2 type 1 force = 0.00044521 0.00044519 0.00044523 Total force = 0.001091 Total SCF correction = 0.000015 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124696169 -0.124696170 -0.124696166 Si 0.124696169 0.124696170 0.124696166 kinetic energy (Ekin) = 0.00140097 Ry temperature = 147.46322299 K Ekin + Etot (const) = -14.44794539 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.55E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931461 Ry Harris-Foulkes estimate = -14.44931462 Ry estimated scf accuracy < 0.00000200 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44931487 Ry Harris-Foulkes estimate = -14.44931479 Ry estimated scf accuracy < 0.00000016 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3591 7.4128 7.4128 ! total energy = -14.44931487 Ry Harris-Foulkes estimate = -14.44931487 Ry estimated scf accuracy < 5.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00346066 -0.00346064 -0.00346069 atom 2 type 1 force = 0.00346066 0.00346064 0.00346069 Total force = 0.008477 Total SCF correction = 0.000015 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124436469 -0.124436470 -0.124436466 Si 0.124436469 0.124436470 0.124436466 kinetic energy (Ekin) = 0.00136949 Ry temperature = 144.15032124 K Ekin + Etot (const) = -14.44794538 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923624 Ry Harris-Foulkes estimate = -14.44923624 Ry estimated scf accuracy < 0.00000191 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.39E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44923649 Ry Harris-Foulkes estimate = -14.44923642 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3286 7.4281 7.4281 ! total energy = -14.44923649 Ry Harris-Foulkes estimate = -14.44923649 Ry estimated scf accuracy < 5.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00643719 -0.00643717 -0.00643721 atom 2 type 1 force = 0.00643719 0.00643717 0.00643721 Total force = 0.015768 Total SCF correction = 0.000015 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124186649 -0.124186650 -0.124186647 Si 0.124186649 0.124186650 0.124186647 kinetic energy (Ekin) = 0.00129134 Ry temperature = 135.92364935 K Ekin + Etot (const) = -14.44794516 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.2 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.25E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -14.44911615 Ry Harris-Foulkes estimate = -14.44911614 Ry estimated scf accuracy < 0.00000177 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.21E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -14.44911637 Ry Harris-Foulkes estimate = -14.44911631 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.2994 7.4429 7.4429 ! total energy = -14.44911638 Ry Harris-Foulkes estimate = -14.44911638 Ry estimated scf accuracy < 4.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00932087 -0.00932085 -0.00932089 atom 2 type 1 force = 0.00932087 0.00932085 0.00932089 Total force = 0.022831 Total SCF correction = 0.000014 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123951136 -0.123951138 -0.123951134 Si 0.123951136 0.123951138 0.123951134 kinetic energy (Ekin) = 0.00117164 Ry temperature = 123.32493168 K Ekin + Etot (const) = -14.44794474 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.00E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896250 Ry Harris-Foulkes estimate = -14.44896249 Ry estimated scf accuracy < 0.00000157 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.96E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44896270 Ry Harris-Foulkes estimate = -14.44896265 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.60E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.2718 7.4569 7.4569 ! total energy = -14.44896271 Ry Harris-Foulkes estimate = -14.44896270 Ry estimated scf accuracy < 4.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01205797 -0.01205796 -0.01205800 atom 2 type 1 force = 0.01205797 0.01205796 0.01205800 Total force = 0.029536 Total SCF correction = 0.000013 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123734132 -0.123734133 -0.123734130 Si 0.123734132 0.123734133 0.123734130 kinetic energy (Ekin) = 0.00101856 Ry temperature = 107.21171690 K Ekin + Etot (const) = -14.44794415 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.70E-08, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878597 Ry Harris-Foulkes estimate = -14.44878596 Ry estimated scf accuracy < 0.00000133 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44878614 Ry Harris-Foulkes estimate = -14.44878609 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2465 7.4697 7.4697 ! total energy = -14.44878614 Ry Harris-Foulkes estimate = -14.44878614 Ry estimated scf accuracy < 3.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01459613 -0.01459612 -0.01459615 atom 2 type 1 force = 0.01459613 0.01459612 0.01459615 Total force = 0.035753 Total SCF correction = 0.000012 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123539532 -0.123539533 -0.123539530 Si 0.123539532 0.123539533 0.123539530 kinetic energy (Ekin) = 0.00084271 Ry temperature = 88.70183041 K Ekin + Etot (const) = -14.44794344 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.3 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.50E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859898 Ry Harris-Foulkes estimate = -14.44859896 Ry estimated scf accuracy < 0.00000106 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.3 secs total energy = -14.44859911 Ry Harris-Foulkes estimate = -14.44859907 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-09, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.2238 7.4813 7.4813 ! total energy = -14.44859911 Ry Harris-Foulkes estimate = -14.44859911 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01688587 -0.01688586 -0.01688589 atom 2 type 1 force = 0.01688587 0.01688586 0.01688589 Total force = 0.041362 Total SCF correction = 0.000011 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123370851 -0.123370852 -0.123370849 Si 0.123370851 0.123370852 0.123370849 kinetic energy (Ekin) = 0.00065645 Ry temperature = 69.09691857 K Ekin + Etot (const) = -14.44794266 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.13E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841481 Ry Harris-Foulkes estimate = -14.44841479 Ry estimated scf accuracy < 0.00000079 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.93E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44841491 Ry Harris-Foulkes estimate = -14.44841488 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.25E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2041 7.4913 7.4913 ! total energy = -14.44841491 Ry Harris-Foulkes estimate = -14.44841491 Ry estimated scf accuracy < 2.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01888058 -0.01888057 -0.01888060 atom 2 type 1 force = 0.01888058 0.01888057 0.01888060 Total force = 0.046248 Total SCF correction = 0.000009 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123231150 -0.123231151 -0.123231149 Si 0.123231150 0.123231151 0.123231149 kinetic energy (Ekin) = 0.00047304 Ry temperature = 49.79091724 K Ekin + Etot (const) = -14.44794187 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.71E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824669 Ry Harris-Foulkes estimate = -14.44824668 Ry estimated scf accuracy < 0.00000054 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.80E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44824676 Ry Harris-Foulkes estimate = -14.44824674 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1879 7.4996 7.4996 ! total energy = -14.44824676 Ry Harris-Foulkes estimate = -14.44824676 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02053982 -0.02053981 -0.02053983 atom 2 type 1 force = 0.02053982 0.02053981 0.02053983 Total force = 0.050312 Total SCF correction = 0.000008 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123122977 -0.123122978 -0.123122976 Si 0.123122977 0.123122978 0.123122976 kinetic energy (Ekin) = 0.00030562 Ry temperature = 32.16870845 K Ekin + Etot (const) = -14.44794114 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.4 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.62E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810677 Ry Harris-Foulkes estimate = -14.44810676 Ry estimated scf accuracy < 0.00000033 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.09E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.4 secs total energy = -14.44810681 Ry Harris-Foulkes estimate = -14.44810680 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.46E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1753 7.5061 7.5061 ! total energy = -14.44810681 Ry Harris-Foulkes estimate = -14.44810681 Ry estimated scf accuracy < 8.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02182911 -0.02182910 -0.02182912 atom 2 type 1 force = 0.02182911 0.02182910 0.02182912 Total force = 0.053470 Total SCF correction = 0.000006 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123048310 -0.123048311 -0.123048310 Si 0.123048310 0.123048311 0.123048310 kinetic energy (Ekin) = 0.00016629 Ry temperature = 17.50307071 K Ekin + Etot (const) = -14.44794052 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.55E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44800521 Ry Harris-Foulkes estimate = -14.44800521 Ry estimated scf accuracy < 0.00000015 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44800523 Ry Harris-Foulkes estimate = -14.44800522 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1666 7.5105 7.5105 ! total energy = -14.44800523 Ry Harris-Foulkes estimate = -14.44800523 Ry estimated scf accuracy < 3.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02272115 -0.02272115 -0.02272116 atom 2 type 1 force = 0.02272115 0.02272115 0.02272116 Total force = 0.055655 Total SCF correction = 0.000004 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123008519 -0.123008520 -0.123008519 Si 0.123008519 0.123008520 0.123008519 kinetic energy (Ekin) = 0.00006516 Ry temperature = 6.85903027 K Ekin + Etot (const) = -14.44794007 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.25E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44794943 Ry Harris-Foulkes estimate = -14.44794943 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.45E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1620 7.5129 7.5129 ! total energy = -14.44794943 Ry Harris-Foulkes estimate = -14.44794943 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02319985 -0.02319985 -0.02319985 atom 2 type 1 force = 0.02319985 0.02319985 0.02319985 Total force = 0.056828 Total SCF correction = 0.000011 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123004339 -0.123004339 -0.123004339 Si 0.123004339 0.123004339 0.123004339 kinetic energy (Ekin) = 0.00000962 Ry temperature = 1.01231748 K Ekin + Etot (const) = -14.44793981 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.65E-12, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1616 7.5131 7.5131 ! total energy = -14.44794350 Ry Harris-Foulkes estimate = -14.44794350 Ry estimated scf accuracy < 4.6E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02324661 -0.02324661 -0.02324661 atom 2 type 1 force = 0.02324661 0.02324661 0.02324661 Total force = 0.056942 Total SCF correction = 0.000006 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123035840 -0.123035840 -0.123035841 Si 0.123035840 0.123035840 0.123035841 kinetic energy (Ekin) = 0.00000371 Ry temperature = 0.39081302 K Ekin + Etot (const) = -14.44793979 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.68E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44798786 Ry Harris-Foulkes estimate = -14.44798786 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.54E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1652 7.5112 7.5112 ! total energy = -14.44798787 Ry Harris-Foulkes estimate = -14.44798787 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02286566 -0.02286566 -0.02286566 atom 2 type 1 force = 0.02286566 0.02286566 0.02286566 Total force = 0.056009 Total SCF correction = 0.000008 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123102439 -0.123102439 -0.123102440 Si 0.123102439 0.123102439 0.123102440 kinetic energy (Ekin) = 0.00004787 Ry temperature = 5.03869306 K Ekin + Etot (const) = -14.44794000 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 1.5 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.03E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44807926 Ry Harris-Foulkes estimate = -14.44807926 Ry estimated scf accuracy < 0.00000012 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.53E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.5 secs total energy = -14.44807927 Ry Harris-Foulkes estimate = -14.44807927 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-10, avg # of iterations = 1.0 total cpu time spent up to now is 1.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1730 7.5073 7.5073 ! total energy = -14.44807927 Ry Harris-Foulkes estimate = -14.44807927 Ry estimated scf accuracy < 2.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02207048 -0.02207048 -0.02207048 atom 2 type 1 force = 0.02207048 0.02207048 0.02207048 Total force = 0.054061 Total SCF correction = 0.000004 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000000 cm^2/s atom 2 D = 0.00000000 cm^2/s < D > = 0.00000000 cm^2/s Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123202915 -0.123202915 -0.123202916 Si 0.123202915 0.123202915 0.123202916 kinetic energy (Ekin) = 0.00013885 Ry temperature = 14.61493356 K Ekin + Etot (const) = -14.44794043 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.39s CPU 0.43s WALL ( 51 calls) update_pot : 0.10s CPU 0.11s WALL ( 50 calls) forces : 0.04s CPU 0.03s WALL ( 51 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.18s CPU 0.19s WALL ( 200 calls) sum_band : 0.06s CPU 0.06s WALL ( 200 calls) v_of_rho : 0.10s CPU 0.09s WALL ( 201 calls) mix_rho : 0.01s CPU 0.02s WALL ( 200 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.01s WALL ( 401 calls) cegterg : 0.17s CPU 0.18s WALL ( 200 calls) Called by *egterg: h_psi : 0.12s CPU 0.13s WALL ( 533 calls) g_psi : 0.01s CPU 0.01s WALL ( 332 calls) cdiaghg : 0.03s CPU 0.02s WALL ( 432 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 533 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 584 calls) fft : 0.05s CPU 0.06s WALL ( 1005 calls) fftw : 0.12s CPU 0.12s WALL ( 4572 calls) davcio : 0.00s CPU 0.00s WALL ( 150 calls) PWSCF : 1.34s CPU 1.57s WALL This run was terminated on: 10:24:43 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/vc-md1.ref0000644000175000017500000036315312341373024014571 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 9400) starts on 2Oct2012 at 14:16:38 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/vc-md.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 121 4159 4159 833 bravais-lattice index = 14 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 10 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.495175 celldm(6)= 0.495175 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.495175 0.868793 0.000000 ) a(3) = ( 0.495175 0.287729 0.819765 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.569957 -0.403996 ) b(2) = ( 0.000000 1.151022 -0.403996 ) b(3) = ( 0.000000 0.000000 1.219862 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) cell mass = 0.00700 AMU/(a.u.)^2 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.5772212 0.3354030 0.2377400 ) 2 As tau( 2) = ( -0.5772212 -0.3354030 -0.2377400 ) number of k points= 32 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.0726331 0.0514837), wk = 0.0625000 k( 2) = ( 0.1250000 0.0726331 0.3564493), wk = 0.0625000 k( 3) = ( 0.1250000 0.0726331 -0.5584473), wk = 0.0625000 k( 4) = ( 0.1250000 0.0726331 -0.2534818), wk = 0.0625000 k( 5) = ( 0.1250000 0.3603885 -0.0495153), wk = 0.0625000 k( 6) = ( 0.1250000 0.3603885 0.2554502), wk = 0.0625000 k( 7) = ( 0.1250000 0.3603885 -0.6594464), wk = 0.0625000 k( 8) = ( 0.1250000 0.3603885 -0.3544809), wk = 0.0625000 k( 9) = ( 0.1250000 -0.5028777 0.2534818), wk = 0.0625000 k( 10) = ( 0.1250000 -0.5028777 0.5584473), wk = 0.0625000 k( 11) = ( 0.1250000 -0.5028777 -0.3564493), wk = 0.0625000 k( 12) = ( 0.1250000 -0.5028777 -0.0514837), wk = 0.0625000 k( 13) = ( 0.1250000 -0.2151223 0.1524828), wk = 0.0625000 k( 14) = ( 0.1250000 -0.2151223 0.4574483), wk = 0.0625000 k( 15) = ( 0.1250000 -0.2151223 -0.4574483), wk = 0.0625000 k( 16) = ( 0.1250000 -0.2151223 -0.1524828), wk = 0.0625000 k( 17) = ( 0.3750000 -0.0698561 -0.0495153), wk = 0.0625000 k( 18) = ( 0.3750000 -0.0698561 0.2554502), wk = 0.0625000 k( 19) = ( 0.3750000 -0.0698561 -0.6594464), wk = 0.0625000 k( 20) = ( 0.3750000 -0.0698561 -0.3544809), wk = 0.0625000 k( 21) = ( 0.3750000 0.2178993 -0.1505144), wk = 0.0625000 k( 22) = ( 0.3750000 0.2178993 0.1544512), wk = 0.0625000 k( 23) = ( 0.3750000 0.2178993 -0.7604454), wk = 0.0625000 k( 24) = ( 0.3750000 0.2178993 -0.4554799), wk = 0.0625000 k( 25) = ( 0.3750000 -0.6453669 0.1524828), wk = 0.0625000 k( 26) = ( 0.3750000 -0.6453669 0.4574483), wk = 0.0625000 k( 27) = ( 0.3750000 -0.6453669 -0.4574483), wk = 0.0625000 k( 28) = ( 0.3750000 -0.6453669 -0.1524828), wk = 0.0625000 k( 29) = ( 0.3750000 -0.3576115 0.0514837), wk = 0.0625000 k( 30) = ( 0.3750000 -0.3576115 0.3564493), wk = 0.0625000 k( 31) = ( 0.3750000 -0.3576115 -0.5584473), wk = 0.0625000 k( 32) = ( 0.3750000 -0.3576115 -0.2534818), wk = 0.0625000 Dense grid: 4159 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.3 secs per-process dynamical memory: 2.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.0 secs total energy = -25.43995377 Ry Harris-Foulkes estimate = -25.44370976 Ry estimated scf accuracy < 0.01555766 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -25.44008188 Ry Harris-Foulkes estimate = -25.44026393 Ry estimated scf accuracy < 0.00088611 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.86E-06, avg # of iterations = 1.8 total cpu time spent up to now is 1.5 secs total energy = -25.44011454 Ry Harris-Foulkes estimate = -25.44011592 Ry estimated scf accuracy < 0.00000522 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.22E-08, avg # of iterations = 3.1 total cpu time spent up to now is 1.9 secs total energy = -25.44012210 Ry Harris-Foulkes estimate = -25.44012241 Ry estimated scf accuracy < 0.00000067 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.69E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.2 secs End of self-consistent calculation k = 0.1250 0.0726 0.0515 ( 531 PWs) bands (ev): -6.9960 4.5196 5.9667 5.9667 8.4360 11.0403 11.7601 11.7602 16.5645 k = 0.1250 0.0726 0.3564 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7170 k = 0.1250 0.0726-0.5584 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250 0.0726-0.2535 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250 0.3604-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1250 0.3604 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1250 0.3604-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250 0.3604-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.5029 0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250-0.5029 0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250-0.5029-0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.1250-0.5029-0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151 0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250-0.2151 0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.3750-0.0699-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.3750-0.0699 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1264 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750-0.0699-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.0699-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750 0.2179-0.1505 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750 0.2179 0.1545 ( 522 PWs) bands (ev): -5.8586 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1191 17.3944 k = 0.3750 0.2179-0.7604 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750 0.2179-0.4555 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.6454 0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.6454 0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.3750-0.6454-0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750-0.6454-0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576 0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750-0.3576 0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.3576-0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576-0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7262 the Fermi energy is 10.0033 ev ! total energy = -25.44012218 Ry Harris-Foulkes estimate = -25.44012218 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.10311786 -0.05991789 -0.04247081 atom 2 type 1 force = 0.10311786 0.05991789 0.04247081 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.52 0.00123597 -0.00028343 -0.00020091 181.82 -41.69 -29.55 -0.00028343 0.00155904 -0.00011672 -41.69 229.34 -17.17 -0.00020091 -0.00011672 0.00164099 -29.55 -17.17 241.40 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 1 time = 0.00000 pico-seconds new lattice vectors (alat unit) : 1.011842653 -0.002715711 -0.001925011 0.498679490 0.880426878 -0.001924849 0.498679438 0.289765194 0.831379247 new unit-cell volume = 255.9441 (a.u.)^3 new positions in cryst coord As 0.288386144 0.288386159 0.288386166 As -0.288386144 -0.288386159 -0.288386166 new positions in cart coord (alat unit) As 0.579425915 0.336684025 0.238648027 As -0.579425915 -0.336684025 -0.238648027 Ekin = 0.00000000 Ry T = 0.0 K Etot = -25.44012218 new unit-cell volume = 255.94411 a.u.^3 ( 37.92700 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.011842653 -0.002715711 -0.001925011 0.498679490 0.880426878 -0.001924849 0.498679438 0.289765194 0.831379247 ATOMIC_POSITIONS (crystal) As 0.288386144 0.288386159 0.288386166 As -0.288386144 -0.288386159 -0.288386166 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1238271 0.0719516 0.0510007), wk = 0.0625000 k( 2) = ( 0.1243992 0.0722840 0.3512468), wk = 0.0625000 k( 3) = ( 0.1226829 0.0712868 -0.5494916), wk = 0.0625000 k( 4) = ( 0.1232550 0.0716192 -0.2492455), wk = 0.0625000 k( 5) = ( 0.1243992 0.3553640 -0.0481218), wk = 0.0625000 k( 6) = ( 0.1249713 0.3556964 0.2521243), wk = 0.0625000 k( 7) = ( 0.1232550 0.3546993 -0.6486140), wk = 0.0625000 k( 8) = ( 0.1238271 0.3550316 -0.3483679), wk = 0.0625000 k( 9) = ( 0.1226830 -0.4948733 0.2492455), wk = 0.0625000 k( 10) = ( 0.1232551 -0.4945409 0.5494917), wk = 0.0625000 k( 11) = ( 0.1215388 -0.4955380 -0.3512467), wk = 0.0625000 k( 12) = ( 0.1221109 -0.4952056 -0.0510006), wk = 0.0625000 k( 13) = ( 0.1232551 -0.2114608 0.1501231), wk = 0.0625000 k( 14) = ( 0.1238272 -0.2111285 0.4503692), wk = 0.0625000 k( 15) = ( 0.1221108 -0.2121256 -0.4503691), wk = 0.0625000 k( 16) = ( 0.1226830 -0.2117932 -0.1501230), wk = 0.0625000 k( 17) = ( 0.3703372 -0.0678900 -0.0481217), wk = 0.0625000 k( 18) = ( 0.3709093 -0.0675577 0.2521244), wk = 0.0625000 k( 19) = ( 0.3691930 -0.0685548 -0.6486139), wk = 0.0625000 k( 20) = ( 0.3697651 -0.0682224 -0.3483678), wk = 0.0625000 k( 21) = ( 0.3709093 0.2155224 -0.1472442), wk = 0.0625000 k( 22) = ( 0.3714814 0.2158548 0.1530020), wk = 0.0625000 k( 23) = ( 0.3697651 0.2148577 -0.7477364), wk = 0.0625000 k( 24) = ( 0.3703372 0.2151900 -0.4474903), wk = 0.0625000 k( 25) = ( 0.3691931 -0.6347149 0.1501232), wk = 0.0625000 k( 26) = ( 0.3697652 -0.6343825 0.4503693), wk = 0.0625000 k( 27) = ( 0.3680489 -0.6353796 -0.4503691), wk = 0.0625000 k( 28) = ( 0.3686210 -0.6350473 -0.1501229), wk = 0.0625000 k( 29) = ( 0.3697651 -0.3513025 0.0510007), wk = 0.0625000 k( 30) = ( 0.3703372 -0.3509701 0.3512469), wk = 0.0625000 k( 31) = ( 0.3686209 -0.3519672 -0.5494915), wk = 0.0625000 k( 32) = ( 0.3691930 -0.3516348 -0.2492454), wk = 0.0625000 extrapolated charge 10.41311, renormalised to 10.00000 total cpu time spent up to now is 2.6 secs per-process dynamical memory: 3.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 3.2 secs total energy = -25.45860856 Ry Harris-Foulkes estimate = -25.70449924 Ry estimated scf accuracy < 0.00082346 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.23E-06, avg # of iterations = 3.1 total cpu time spent up to now is 3.6 secs total energy = -25.46012355 Ry Harris-Foulkes estimate = -25.46039810 Ry estimated scf accuracy < 0.00067885 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.79E-06, avg # of iterations = 1.0 total cpu time spent up to now is 3.9 secs total energy = -25.46010233 Ry Harris-Foulkes estimate = -25.46015331 Ry estimated scf accuracy < 0.00014945 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.2 secs total energy = -25.46008422 Ry Harris-Foulkes estimate = -25.46010844 Ry estimated scf accuracy < 0.00004698 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.70E-07, avg # of iterations = 2.4 total cpu time spent up to now is 4.5 secs total energy = -25.46009200 Ry Harris-Foulkes estimate = -25.46009259 Ry estimated scf accuracy < 0.00000113 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-08, avg # of iterations = 2.2 total cpu time spent up to now is 4.8 secs total energy = -25.46009237 Ry Harris-Foulkes estimate = -25.46009245 Ry estimated scf accuracy < 0.00000020 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.02E-09, avg # of iterations = 1.0 total cpu time spent up to now is 5.1 secs End of self-consistent calculation k = 0.1238 0.0720 0.0510 ( 531 PWs) bands (ev): -7.1390 3.6957 5.5400 5.5400 7.8026 10.3999 11.1877 11.1877 15.8506 k = 0.1244 0.0723 0.3512 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0275 k = 0.1227 0.0713-0.5495 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7104 7.2602 10.1665 11.8237 13.0622 17.0367 k = 0.1233 0.0716-0.2492 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7696 k = 0.1244 0.3554-0.0481 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0274 k = 0.1250 0.3557 0.2521 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.1233 0.3547-0.6486 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.1238 0.3550-0.3484 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1568 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1227-0.4949 0.2492 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7104 7.2602 10.1665 11.8237 13.0622 17.0367 k = 0.1233-0.4945 0.5495 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.1215-0.4955-0.3512 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.1221-0.4952-0.0510 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1568 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1233-0.2115 0.1501 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7696 k = 0.1238-0.2111 0.4504 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1221-0.2121-0.4504 ( 521 PWs) bands (ev): -4.9485 -1.8629 2.7436 6.1568 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1227-0.2118-0.1501 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7696 k = 0.3703-0.0679-0.0481 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0274 k = 0.3709-0.0676 0.2521 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.3692-0.0686-0.6486 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3698-0.0682-0.3484 ( 521 PWs) bands (ev): -4.9485 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.3709 0.2155-0.1472 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.3715 0.2159 0.1530 ( 522 PWs) bands (ev): -6.0213 0.3365 5.4803 5.4803 6.7061 9.4594 9.4594 11.2681 16.7047 k = 0.3698 0.2149-0.7477 ( 520 PWs) bands (ev): -5.0512 -0.5731 2.1761 4.4290 6.9025 10.9015 11.3374 13.7575 16.9831 k = 0.3703 0.2152-0.4475 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.3692-0.6347 0.1501 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3698-0.6344 0.4504 ( 520 PWs) bands (ev): -5.0512 -0.5731 2.1761 4.4290 6.9025 10.9015 11.3374 13.7575 16.9831 k = 0.3680-0.6354-0.4504 ( 520 PWs) bands (ev): -5.0512 -0.5731 2.1761 4.4290 6.9025 10.9015 11.3374 13.7575 16.9831 k = 0.3686-0.6350-0.1501 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3698-0.3513 0.0510 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.3703-0.3510 0.3512 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.3686-0.3520-0.5495 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3692-0.3516-0.2492 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7104 7.2602 10.1665 11.8237 13.0622 17.0367 the Fermi energy is 8.9906 ev ! total energy = -25.46009238 Ry Harris-Foulkes estimate = -25.46009238 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.08520934 -0.04951205 -0.03509532 atom 2 type 1 force = 0.08520934 0.04951205 0.03509532 Total force = 0.147944 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 143.05 0.00086728 -0.00012280 -0.00008704 127.58 -18.06 -12.80 -0.00012280 0.00100726 -0.00005058 -18.06 148.17 -7.44 -0.00008704 -0.00005058 0.00104277 -12.80 -7.44 153.40 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 2 time = 0.00726 pico-seconds new lattice vectors (alat unit) : 1.035662444 -0.006572611 -0.004658880 0.507123599 0.903031061 -0.004658620 0.507123526 0.294671805 0.853613256 new unit-cell volume = 277.0123 (a.u.)^3 new positions in cryst coord As 0.284850332 0.284850368 0.284850362 As -0.284850332 -0.284850368 -0.284850362 new positions in cart coord (alat unit) As 0.583917455 0.339293890 0.240497952 As -0.583917455 -0.339293890 -0.240497952 Ekin = 0.02014338 Ry T = 706.8 K Etot = -25.43994899 new unit-cell volume = 277.01233 a.u.^3 ( 41.04899 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.035662444 -0.006572611 -0.004658880 0.507123599 0.903031061 -0.004658620 0.507123526 0.294671805 0.853613256 ATOMIC_POSITIONS (crystal) As 0.284850332 0.284850368 0.284850362 As -0.284850332 -0.284850368 -0.284850362 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1213681 0.0705228 0.0499879), wk = 0.0625000 k( 2) = ( 0.1226857 0.0712883 0.3418135), wk = 0.0625000 k( 3) = ( 0.1187329 0.0689917 -0.5336634), wk = 0.0625000 k( 4) = ( 0.1200505 0.0697572 -0.2418378), wk = 0.0625000 k( 5) = ( 0.1226857 0.3461334 -0.0459371), wk = 0.0625000 k( 6) = ( 0.1240033 0.3468989 0.2458885), wk = 0.0625000 k( 7) = ( 0.1200505 0.3446023 -0.6295884), wk = 0.0625000 k( 8) = ( 0.1213681 0.3453678 -0.3377628), wk = 0.0625000 k( 9) = ( 0.1187329 -0.4806985 0.2418379), wk = 0.0625000 k( 10) = ( 0.1200506 -0.4799329 0.5336635), wk = 0.0625000 k( 11) = ( 0.1160977 -0.4822295 -0.3418134), wk = 0.0625000 k( 12) = ( 0.1174153 -0.4814640 -0.0499877), wk = 0.0625000 k( 13) = ( 0.1200505 -0.2050879 0.1459129), wk = 0.0625000 k( 14) = ( 0.1213682 -0.2043223 0.4377385), wk = 0.0625000 k( 15) = ( 0.1174153 -0.2066189 -0.4377384), wk = 0.0625000 k( 16) = ( 0.1187329 -0.2058534 -0.1459128), wk = 0.0625000 k( 17) = ( 0.3614692 -0.0648079 -0.0459370), wk = 0.0625000 k( 18) = ( 0.3627868 -0.0640424 0.2458886), wk = 0.0625000 k( 19) = ( 0.3588339 -0.0663390 -0.6295883), wk = 0.0625000 k( 20) = ( 0.3601515 -0.0655734 -0.3377626), wk = 0.0625000 k( 21) = ( 0.3627867 0.2108027 -0.1418620), wk = 0.0625000 k( 22) = ( 0.3641044 0.2115683 0.1499636), wk = 0.0625000 k( 23) = ( 0.3601515 0.2092716 -0.7255133), wk = 0.0625000 k( 24) = ( 0.3614691 0.2100372 -0.4336877), wk = 0.0625000 k( 25) = ( 0.3588340 -0.6160291 0.1459130), wk = 0.0625000 k( 26) = ( 0.3601516 -0.6152636 0.4377386), wk = 0.0625000 k( 27) = ( 0.3561987 -0.6175602 -0.4377383), wk = 0.0625000 k( 28) = ( 0.3575164 -0.6167947 -0.1459126), wk = 0.0625000 k( 29) = ( 0.3601516 -0.3404185 0.0499880), wk = 0.0625000 k( 30) = ( 0.3614692 -0.3396530 0.3418136), wk = 0.0625000 k( 31) = ( 0.3575163 -0.3419496 -0.5336633), wk = 0.0625000 k( 32) = ( 0.3588339 -0.3411840 -0.2418376), wk = 0.0625000 extrapolated charge 10.76052, renormalised to 10.00000 total cpu time spent up to now is 5.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.8 total cpu time spent up to now is 6.1 secs total energy = -25.47744718 Ry Harris-Foulkes estimate = -25.91217889 Ry estimated scf accuracy < 0.00269230 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-05, avg # of iterations = 3.1 total cpu time spent up to now is 6.6 secs total energy = -25.48275706 Ry Harris-Foulkes estimate = -25.48371130 Ry estimated scf accuracy < 0.00243509 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-05, avg # of iterations = 1.0 total cpu time spent up to now is 6.8 secs total energy = -25.48267040 Ry Harris-Foulkes estimate = -25.48285639 Ry estimated scf accuracy < 0.00056797 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.1 secs total energy = -25.48259700 Ry Harris-Foulkes estimate = -25.48269156 Ry estimated scf accuracy < 0.00018863 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-06, avg # of iterations = 2.1 total cpu time spent up to now is 7.4 secs total energy = -25.48262218 Ry Harris-Foulkes estimate = -25.48262563 Ry estimated scf accuracy < 0.00000652 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.52E-08, avg # of iterations = 2.5 total cpu time spent up to now is 7.7 secs total energy = -25.48262557 Ry Harris-Foulkes estimate = -25.48262569 Ry estimated scf accuracy < 0.00000043 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-09, avg # of iterations = 1.8 total cpu time spent up to now is 8.0 secs End of self-consistent calculation k = 0.1214 0.0705 0.0500 ( 531 PWs) bands (ev): -7.3958 2.1406 4.8134 4.8134 6.7360 9.2815 10.1558 10.1558 14.5877 k = 0.1227 0.0713 0.3418 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.1187 0.0690-0.5337 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1714 8.9979 10.4173 11.5749 15.8398 k = 0.1201 0.0698-0.2418 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k = 0.1227 0.3461-0.0459 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.1240 0.3469 0.2459 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0443 11.4135 11.7447 14.3729 k = 0.1201 0.3446-0.6296 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.1214 0.3454-0.3378 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1187-0.4807 0.2418 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1714 8.9979 10.4173 11.5749 15.8398 k = 0.1201-0.4799 0.5337 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.1161-0.4822-0.3418 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8293 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.1174-0.4815-0.0500 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1201-0.2051 0.1459 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k = 0.1214-0.2043 0.4377 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1174-0.2066-0.4377 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1187-0.2059-0.1459 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k = 0.3615-0.0648-0.0459 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.3628-0.0640 0.2459 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0443 11.4135 11.7447 14.3729 k = 0.3588-0.0663-0.6296 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3602-0.0656-0.3378 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.3628 0.2108-0.1419 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0443 11.4135 11.7447 14.3729 k = 0.3641 0.2116 0.1500 ( 522 PWs) bands (ev): -6.3150 -0.6759 4.8048 4.8048 5.6084 8.3786 8.3786 9.7421 15.4921 k = 0.3602 0.2093-0.7255 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5555 10.0389 12.4680 15.5952 k = 0.3615 0.2100-0.4337 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8293 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.3588-0.6160 0.1459 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3602-0.6153 0.4377 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5555 10.0389 12.4680 15.5952 k = 0.3562-0.6176-0.4377 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5555 10.0389 12.4680 15.5952 k = 0.3575-0.6168-0.1459 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3602-0.3404 0.0500 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.3615-0.3397 0.3418 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8293 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.3575-0.3419-0.5337 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3588-0.3412-0.2418 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1714 8.9979 10.4173 11.5749 15.8398 the Fermi energy is 7.8950 ev ! total energy = -25.48262559 Ry Harris-Foulkes estimate = -25.48262562 Ry estimated scf accuracy < 0.00000009 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.05293479 -0.03075850 -0.02180227 atom 2 type 1 force = 0.05293479 0.03075850 0.02180227 Total force = 0.091908 Total SCF correction = 0.000170 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 33.16 0.00030132 0.00008863 0.00006282 44.33 13.04 9.24 0.00008863 0.00020029 0.00003650 13.04 29.46 5.37 0.00006282 0.00003650 0.00017467 9.24 5.37 25.69 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 3 time = 0.01452 pico-seconds new lattice vectors (alat unit) : 1.063153113 -0.008294001 -0.005879047 0.519240750 0.927767029 -0.005878734 0.519240667 0.301712655 0.877357446 new unit-cell volume = 300.7638 (a.u.)^3 new positions in cryst coord As 0.280296953 0.280297011 0.280296991 As -0.280296953 -0.280297011 -0.280296991 new positions in cart coord (alat unit) As 0.589081805 0.342294691 0.242624981 As -0.589081805 -0.342294691 -0.242624981 Ekin = 0.04390948 Ry T = 1123.7 K Etot = -25.43871611 new unit-cell volume = 300.76378 a.u.^3 ( 44.56859 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.063153113 -0.008294001 -0.005879047 0.519240750 0.927767029 -0.005878734 0.519240667 0.301712655 0.877357446 ATOMIC_POSITIONS (crystal) As 0.280296953 0.280297011 0.280296991 As -0.280296953 -0.280297011 -0.280296991 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1183810 0.0687871 0.0487576), wk = 0.0625000 k( 2) = ( 0.1199570 0.0697027 0.3324566), wk = 0.0625000 k( 3) = ( 0.1152291 0.0669558 -0.5186405), wk = 0.0625000 k( 4) = ( 0.1168051 0.0678714 -0.2349414), wk = 0.0625000 k( 5) = ( 0.1199569 0.3367794 -0.0443344), wk = 0.0625000 k( 6) = ( 0.1215329 0.3376950 0.2393646), wk = 0.0625000 k( 7) = ( 0.1168051 0.3349481 -0.6117325), wk = 0.0625000 k( 8) = ( 0.1183810 0.3358638 -0.3280334), wk = 0.0625000 k( 9) = ( 0.1152292 -0.4671976 0.2349416), wk = 0.0625000 k( 10) = ( 0.1168052 -0.4662820 0.5186406), wk = 0.0625000 k( 11) = ( 0.1120773 -0.4690289 -0.3324565), wk = 0.0625000 k( 12) = ( 0.1136533 -0.4681132 -0.0487574), wk = 0.0625000 k( 13) = ( 0.1168051 -0.1992053 0.1418496), wk = 0.0625000 k( 14) = ( 0.1183811 -0.1982896 0.4255486), wk = 0.0625000 k( 15) = ( 0.1136532 -0.2010365 -0.4255485), wk = 0.0625000 k( 16) = ( 0.1152292 -0.2001209 -0.1418494), wk = 0.0625000 k( 17) = ( 0.3519913 -0.0625468 -0.0443343), wk = 0.0625000 k( 18) = ( 0.3535672 -0.0616311 0.2393647), wk = 0.0625000 k( 19) = ( 0.3488394 -0.0643780 -0.6117323), wk = 0.0625000 k( 20) = ( 0.3504153 -0.0634624 -0.3280333), wk = 0.0625000 k( 21) = ( 0.3535672 0.2054456 -0.1374263), wk = 0.0625000 k( 22) = ( 0.3551431 0.2063612 0.1462727), wk = 0.0625000 k( 23) = ( 0.3504153 0.2036143 -0.7048243), wk = 0.0625000 k( 24) = ( 0.3519912 0.2045299 -0.4211253), wk = 0.0625000 k( 25) = ( 0.3488394 -0.5985315 0.1418497), wk = 0.0625000 k( 26) = ( 0.3504154 -0.5976158 0.4255487), wk = 0.0625000 k( 27) = ( 0.3456875 -0.6003627 -0.4255483), wk = 0.0625000 k( 28) = ( 0.3472635 -0.5994471 -0.1418493), wk = 0.0625000 k( 29) = ( 0.3504153 -0.3305391 0.0487577), wk = 0.0625000 k( 30) = ( 0.3519913 -0.3296235 0.3324567), wk = 0.0625000 k( 31) = ( 0.3472634 -0.3323704 -0.5186403), wk = 0.0625000 k( 32) = ( 0.3488394 -0.3314547 -0.2349413), wk = 0.0625000 extrapolated charge 10.78967, renormalised to 10.00000 total cpu time spent up to now is 8.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.1 total cpu time spent up to now is 9.0 secs total energy = -25.48188640 Ry Harris-Foulkes estimate = -25.91007832 Ry estimated scf accuracy < 0.00306057 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.06E-05, avg # of iterations = 3.1 total cpu time spent up to now is 9.5 secs total energy = -25.48786395 Ry Harris-Foulkes estimate = -25.48891407 Ry estimated scf accuracy < 0.00270838 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-05, avg # of iterations = 1.0 total cpu time spent up to now is 9.8 secs total energy = -25.48777278 Ry Harris-Foulkes estimate = -25.48800085 Ry estimated scf accuracy < 0.00062876 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.29E-06, avg # of iterations = 1.0 total cpu time spent up to now is 10.0 secs total energy = -25.48771991 Ry Harris-Foulkes estimate = -25.48780134 Ry estimated scf accuracy < 0.00016334 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.63E-06, avg # of iterations = 2.5 total cpu time spent up to now is 10.3 secs total energy = -25.48774684 Ry Harris-Foulkes estimate = -25.48774883 Ry estimated scf accuracy < 0.00000426 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.26E-08, avg # of iterations = 2.2 total cpu time spent up to now is 10.7 secs total energy = -25.48774862 Ry Harris-Foulkes estimate = -25.48774862 Ry estimated scf accuracy < 0.00000033 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.29E-09, avg # of iterations = 1.6 total cpu time spent up to now is 10.9 secs total energy = -25.48774856 Ry Harris-Foulkes estimate = -25.48774866 Ry estimated scf accuracy < 0.00000016 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.64E-09, avg # of iterations = 2.0 total cpu time spent up to now is 11.2 secs End of self-consistent calculation k = 0.1184 0.0688 0.0488 ( 531 PWs) bands (ev): -7.6470 0.5732 4.1562 4.1562 5.7027 8.2560 9.1278 9.1278 13.3796 k = 0.1200 0.0697 0.3325 ( 522 PWs) bands (ev): -6.7428 -1.9330 3.4572 4.1671 6.3951 7.1277 8.2413 10.4563 12.6594 k = 0.1152 0.0670-0.5186 ( 520 PWs) bands (ev): -5.4707 -4.0302 3.4258 4.0581 5.1375 7.8566 8.9781 9.9838 14.7420 k = 0.1168 0.0679-0.2349 ( 525 PWs) bands (ev): -7.1426 -1.1833 3.4229 4.5640 5.8979 8.3798 8.7052 10.3895 12.6042 k = 0.1200 0.3368-0.0443 ( 522 PWs) bands (ev): -6.7428 -1.9330 3.4572 4.1671 6.3951 7.1277 8.2413 10.4563 12.6594 k = 0.1215 0.3377 0.2394 ( 519 PWs) bands (ev): -6.4159 -1.6013 2.1268 2.7927 4.7878 8.2672 10.0809 10.4626 12.7668 k = 0.1168 0.3349-0.6117 ( 510 PWs) bands (ev): -5.0751 -3.5792 1.1713 2.3977 5.3374 8.3498 10.8096 12.0521 13.0617 k = 0.1184 0.3359-0.3280 ( 521 PWs) bands (ev): -5.7905 -3.2930 1.8894 4.2018 5.3209 8.7335 9.5301 10.6562 12.6442 k = 0.1152-0.4672 0.2349 ( 520 PWs) bands (ev): -5.4707 -4.0302 3.4258 4.0581 5.1375 7.8566 8.9781 9.9838 14.7420 k = 0.1168-0.4663 0.5186 ( 510 PWs) bands (ev): -5.0751 -3.5792 1.1713 2.3977 5.3374 8.3498 10.8096 12.0521 13.0617 k = 0.1121-0.4690-0.3325 ( 510 PWs) bands (ev): -5.3380 -3.0691 1.5316 2.3356 3.6865 8.3376 11.7329 13.1714 13.5085 k = 0.1137-0.4681-0.0488 ( 521 PWs) bands (ev): -5.7905 -3.2930 1.8894 4.2018 5.3209 8.7335 9.5301 10.6562 12.6442 k = 0.1168-0.1992 0.1418 ( 525 PWs) bands (ev): -7.1426 -1.1833 3.4229 4.5640 5.8979 8.3798 8.7052 10.3895 12.6042 k = 0.1184-0.1983 0.4255 ( 521 PWs) bands (ev): -5.7905 -3.2930 1.8894 4.2018 5.3209 8.7335 9.5301 10.6562 12.6442 k = 0.1137-0.2010-0.4255 ( 521 PWs) bands (ev): -5.7905 -3.2930 1.8894 4.2018 5.3209 8.7335 9.5301 10.6562 12.6442 k = 0.1152-0.2001-0.1418 ( 525 PWs) bands (ev): -7.1426 -1.1833 3.4229 4.5640 5.8979 8.3798 8.7052 10.3895 12.6042 k = 0.3520-0.0625-0.0443 ( 522 PWs) bands (ev): -6.7428 -1.9330 3.4572 4.1671 6.3951 7.1277 8.2413 10.4563 12.6594 k = 0.3536-0.0616 0.2394 ( 519 PWs) bands (ev): -6.4159 -1.6013 2.1268 2.7927 4.7878 8.2672 10.0809 10.4626 12.7668 k = 0.3488-0.0644-0.6117 ( 510 PWs) bands (ev): -5.0751 -3.5792 1.1713 2.3977 5.3374 8.3498 10.8096 12.0521 13.0618 k = 0.3504-0.0635-0.3280 ( 521 PWs) bands (ev): -5.7905 -3.2930 1.8894 4.2018 5.3209 8.7335 9.5301 10.6562 12.6442 k = 0.3536 0.2054-0.1374 ( 519 PWs) bands (ev): -6.4159 -1.6013 2.1268 2.7927 4.7878 8.2672 10.0809 10.4626 12.7668 k = 0.3551 0.2064 0.1463 ( 522 PWs) bands (ev): -6.5995 -1.8156 4.2152 4.2152 4.7494 7.3144 7.3144 8.2446 14.3362 k = 0.3504 0.2036-0.7048 ( 520 PWs) bands (ev): -5.7658 -2.5994 1.3089 3.3037 4.8333 8.3249 8.7665 11.1988 14.2686 k = 0.3520 0.2045-0.4211 ( 510 PWs) bands (ev): -5.3380 -3.0691 1.5316 2.3355 3.6865 8.3376 11.7329 13.1714 13.5085 k = 0.3488-0.5985 0.1418 ( 510 PWs) bands (ev): -5.0751 -3.5792 1.1713 2.3977 5.3374 8.3498 10.8096 12.0521 13.0618 k = 0.3504-0.5976 0.4255 ( 520 PWs) bands (ev): -5.7658 -2.5994 1.3089 3.3037 4.8333 8.3249 8.7665 11.1988 14.2686 k = 0.3457-0.6004-0.4255 ( 520 PWs) bands (ev): -5.7658 -2.5994 1.3089 3.3037 4.8333 8.3249 8.7665 11.1988 14.2686 k = 0.3473-0.5994-0.1418 ( 510 PWs) bands (ev): -5.0751 -3.5792 1.1713 2.3977 5.3374 8.3498 10.8096 12.0521 13.0617 k = 0.3504-0.3305 0.0488 ( 521 PWs) bands (ev): -5.7905 -3.2930 1.8894 4.2018 5.3209 8.7335 9.5301 10.6562 12.6442 k = 0.3520-0.3296 0.3325 ( 510 PWs) bands (ev): -5.3380 -3.0691 1.5316 2.3355 3.6865 8.3376 11.7329 13.1714 13.5085 k = 0.3473-0.3324-0.5186 ( 510 PWs) bands (ev): -5.0751 -3.5792 1.1713 2.3977 5.3374 8.3498 10.8096 12.0521 13.0617 k = 0.3488-0.3315-0.2349 ( 520 PWs) bands (ev): -5.4707 -4.0302 3.4258 4.0581 5.1375 7.8566 8.9781 9.9838 14.7420 the Fermi energy is 6.7342 ev ! total energy = -25.48774859 Ry Harris-Foulkes estimate = -25.48774859 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02031288 -0.01180314 -0.00836628 atom 2 type 1 force = 0.02031288 0.01180314 0.00836628 Total force = 0.035268 Total SCF correction = 0.000018 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -49.52 -0.00016609 0.00019913 0.00014115 -24.43 29.29 20.76 0.00019913 -0.00039308 0.00008201 29.29 -57.82 12.06 0.00014115 0.00008201 -0.00045065 20.76 12.06 -66.29 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 4 time = 0.02178 pico-seconds new lattice vectors (alat unit) : 1.088382550 -0.006759002 -0.004791011 0.533067326 0.948926004 -0.004790676 0.533067242 0.309746779 0.896962065 new unit-cell volume = 321.3953 (a.u.)^3 new positions in cryst coord As 0.275535203 0.275535277 0.275535244 As -0.275535203 -0.275535277 -0.275535244 new positions in cart coord (alat unit) As 0.593645373 0.344946401 0.244504569 As -0.593645373 -0.344946401 -0.244504569 Ekin = 0.04836447 Ry T = 1314.8 K Etot = -25.43938411 new unit-cell volume = 321.39530 a.u.^3 ( 47.62587 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.088382550 -0.006759002 -0.004791011 0.533067326 0.948926004 -0.004790676 0.533067242 0.309746779 0.896962065 ATOMIC_POSITIONS (crystal) As 0.275535203 0.275535277 0.275535244 As -0.275535203 -0.275535277 -0.275535244 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1154754 0.0670987 0.0475608), wk = 0.0625000 k( 2) = ( 0.1167024 0.0678116 0.3253040), wk = 0.0625000 k( 3) = ( 0.1130213 0.0656729 -0.5079255), wk = 0.0625000 k( 4) = ( 0.1142483 0.0663858 -0.2301823), wk = 0.0625000 k( 5) = ( 0.1167024 0.3294042 -0.0437500), wk = 0.0625000 k( 6) = ( 0.1179294 0.3301171 0.2339932), wk = 0.0625000 k( 7) = ( 0.1142483 0.3279784 -0.5992364), wk = 0.0625000 k( 8) = ( 0.1154753 0.3286913 -0.3214932), wk = 0.0625000 k( 9) = ( 0.1130214 -0.4575122 0.2301825), wk = 0.0625000 k( 10) = ( 0.1142484 -0.4567994 0.5079257), wk = 0.0625000 k( 11) = ( 0.1105673 -0.4589380 -0.3253039), wk = 0.0625000 k( 12) = ( 0.1117943 -0.4582251 -0.0475607), wk = 0.0625000 k( 13) = ( 0.1142484 -0.1952068 0.1388717), wk = 0.0625000 k( 14) = ( 0.1154754 -0.1944939 0.4166148), wk = 0.0625000 k( 15) = ( 0.1117943 -0.1966326 -0.4166147), wk = 0.0625000 k( 16) = ( 0.1130213 -0.1959197 -0.1388715), wk = 0.0625000 k( 17) = ( 0.3439721 -0.0617223 -0.0437499), wk = 0.0625000 k( 18) = ( 0.3451991 -0.0610094 0.2339933), wk = 0.0625000 k( 19) = ( 0.3415180 -0.0631481 -0.5992362), wk = 0.0625000 k( 20) = ( 0.3427450 -0.0624352 -0.3214930), wk = 0.0625000 k( 21) = ( 0.3451991 0.2005832 -0.1350607), wk = 0.0625000 k( 22) = ( 0.3464261 0.2012961 0.1426825), wk = 0.0625000 k( 23) = ( 0.3427450 0.1991574 -0.6905470), wk = 0.0625000 k( 24) = ( 0.3439720 0.1998703 -0.4128039), wk = 0.0625000 k( 25) = ( 0.3415181 -0.5863332 0.1388718), wk = 0.0625000 k( 26) = ( 0.3427451 -0.5856203 0.4166150), wk = 0.0625000 k( 27) = ( 0.3390640 -0.5877590 -0.4166146), wk = 0.0625000 k( 28) = ( 0.3402910 -0.5870461 -0.1388714), wk = 0.0625000 k( 29) = ( 0.3427451 -0.3240277 0.0475610), wk = 0.0625000 k( 30) = ( 0.3439721 -0.3233149 0.3253041), wk = 0.0625000 k( 31) = ( 0.3402910 -0.3254535 -0.5079254), wk = 0.0625000 k( 32) = ( 0.3415180 -0.3247406 -0.2301822), wk = 0.0625000 extrapolated charge 10.64191, renormalised to 10.00000 total cpu time spent up to now is 11.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.6 total cpu time spent up to now is 12.3 secs total energy = -25.47501463 Ry Harris-Foulkes estimate = -25.80685879 Ry estimated scf accuracy < 0.00227025 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-05, avg # of iterations = 3.0 total cpu time spent up to now is 12.7 secs total energy = -25.47910017 Ry Harris-Foulkes estimate = -25.47979138 Ry estimated scf accuracy < 0.00176856 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-05, avg # of iterations = 1.0 total cpu time spent up to now is 13.0 secs total energy = -25.47901889 Ry Harris-Foulkes estimate = -25.47917462 Ry estimated scf accuracy < 0.00038838 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.88E-06, avg # of iterations = 1.0 total cpu time spent up to now is 13.2 secs total energy = -25.47900471 Ry Harris-Foulkes estimate = -25.47904119 Ry estimated scf accuracy < 0.00007167 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.17E-07, avg # of iterations = 3.0 total cpu time spent up to now is 13.6 secs total energy = -25.47902158 Ry Harris-Foulkes estimate = -25.47902180 Ry estimated scf accuracy < 0.00000075 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.49E-09, avg # of iterations = 1.9 total cpu time spent up to now is 13.9 secs total energy = -25.47902168 Ry Harris-Foulkes estimate = -25.47902170 Ry estimated scf accuracy < 0.00000018 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-09, avg # of iterations = 1.0 total cpu time spent up to now is 14.1 secs End of self-consistent calculation k = 0.1155 0.0671 0.0476 ( 531 PWs) bands (ev): -7.8384 -0.6356 3.7038 3.7038 4.8660 7.5598 8.3195 8.3195 12.4880 k = 0.1167 0.0678 0.3253 ( 522 PWs) bands (ev): -6.9839 -2.6955 2.8820 3.8392 5.6531 6.1327 7.1504 9.4697 11.8683 k = 0.1130 0.0657-0.5079 ( 520 PWs) bands (ev): -5.7908 -4.5431 3.1112 3.3981 4.3687 6.9985 7.8169 8.6752 13.9055 k = 0.1142 0.0664-0.2302 ( 525 PWs) bands (ev): -7.3703 -1.9884 3.0353 3.8442 5.0966 7.3038 7.9973 9.2690 11.6967 k = 0.1167 0.3294-0.0438 ( 522 PWs) bands (ev): -6.9839 -2.6955 2.8820 3.8392 5.6531 6.1327 7.1504 9.4697 11.8683 k = 0.1179 0.3301 0.2340 ( 519 PWs) bands (ev): -6.6747 -2.4894 1.7609 2.4259 3.9185 7.7625 9.1056 9.4727 11.5202 k = 0.1142 0.3280-0.5992 ( 510 PWs) bands (ev): -5.4407 -4.1460 0.8415 1.8511 4.5339 7.4402 10.0711 10.9091 11.8379 k = 0.1155 0.3287-0.3215 ( 521 PWs) bands (ev): -6.1118 -3.8579 1.6058 3.4315 4.5880 7.5928 8.5226 9.7141 11.7449 k = 0.1130-0.4575 0.2302 ( 520 PWs) bands (ev): -5.7908 -4.5431 3.1112 3.3981 4.3687 6.9985 7.8169 8.6752 13.9055 k = 0.1142-0.4568 0.5079 ( 510 PWs) bands (ev): -5.4407 -4.1460 0.8415 1.8511 4.5339 7.4402 10.0711 10.9091 11.8379 k = 0.1106-0.4589-0.3253 ( 510 PWs) bands (ev): -5.7216 -3.5980 0.9099 2.0028 2.9658 7.9227 10.4593 11.8022 12.0237 k = 0.1118-0.4582-0.0476 ( 521 PWs) bands (ev): -6.1118 -3.8579 1.6058 3.4315 4.5880 7.5929 8.5226 9.7141 11.7449 k = 0.1142-0.1952 0.1389 ( 525 PWs) bands (ev): -7.3703 -1.9884 3.0353 3.8442 5.0966 7.3038 7.9973 9.2690 11.6967 k = 0.1155-0.1945 0.4166 ( 521 PWs) bands (ev): -6.1118 -3.8579 1.6058 3.4315 4.5880 7.5928 8.5226 9.7141 11.7449 k = 0.1118-0.1966-0.4166 ( 521 PWs) bands (ev): -6.1118 -3.8579 1.6058 3.4315 4.5880 7.5929 8.5226 9.7141 11.7449 k = 0.1130-0.1959-0.1389 ( 525 PWs) bands (ev): -7.3703 -1.9884 3.0353 3.8442 5.0966 7.3038 7.9973 9.2690 11.6967 k = 0.3440-0.0617-0.0437 ( 522 PWs) bands (ev): -6.9839 -2.6955 2.8820 3.8392 5.6531 6.1327 7.1504 9.4697 11.8683 k = 0.3452-0.0610 0.2340 ( 519 PWs) bands (ev): -6.6747 -2.4894 1.7609 2.4259 3.9185 7.7625 9.1056 9.4727 11.5202 k = 0.3415-0.0631-0.5992 ( 510 PWs) bands (ev): -5.4407 -4.1460 0.8415 1.8511 4.5339 7.4402 10.0711 10.9091 11.8379 k = 0.3427-0.0624-0.3215 ( 521 PWs) bands (ev): -6.1118 -3.8579 1.6058 3.4315 4.5880 7.5929 8.5226 9.7141 11.7449 k = 0.3452 0.2006-0.1351 ( 519 PWs) bands (ev): -6.6747 -2.4894 1.7609 2.4259 3.9185 7.7625 9.1056 9.4727 11.5202 k = 0.3464 0.2013 0.1427 ( 522 PWs) bands (ev): -6.8076 -2.7919 3.8356 3.8356 4.2495 6.4891 6.4891 7.0956 13.4765 k = 0.3427 0.1992-0.6905 ( 520 PWs) bands (ev): -6.0171 -3.4663 1.0151 2.9540 4.0734 7.4671 7.7857 10.2272 13.2767 k = 0.3440 0.1999-0.4128 ( 510 PWs) bands (ev): -5.7216 -3.5980 0.9099 2.0028 2.9658 7.9227 10.4593 11.8022 12.0237 k = 0.3415-0.5863 0.1389 ( 510 PWs) bands (ev): -5.4407 -4.1460 0.8415 1.8511 4.5339 7.4402 10.0711 10.9091 11.8379 k = 0.3427-0.5856 0.4166 ( 520 PWs) bands (ev): -6.0171 -3.4663 1.0151 2.9540 4.0734 7.4671 7.7857 10.2272 13.2767 k = 0.3391-0.5878-0.4166 ( 520 PWs) bands (ev): -6.0171 -3.4663 1.0151 2.9540 4.0734 7.4671 7.7857 10.2272 13.2767 k = 0.3403-0.5870-0.1389 ( 510 PWs) bands (ev): -5.4407 -4.1460 0.8415 1.8511 4.5339 7.4402 10.0711 10.9091 11.8379 k = 0.3427-0.3240 0.0476 ( 521 PWs) bands (ev): -6.1118 -3.8579 1.6058 3.4315 4.5880 7.5928 8.5226 9.7141 11.7449 k = 0.3440-0.3233 0.3253 ( 510 PWs) bands (ev): -5.7216 -3.5980 0.9099 2.0028 2.9658 7.9227 10.4593 11.8022 12.0237 k = 0.3403-0.3255-0.5079 ( 510 PWs) bands (ev): -5.4407 -4.1460 0.8415 1.8511 4.5339 7.4402 10.0711 10.9091 11.8379 k = 0.3415-0.3247-0.2302 ( 520 PWs) bands (ev): -5.7908 -4.5431 3.1112 3.3981 4.3687 6.9985 7.8169 8.6752 13.9055 the Fermi energy is 5.7104 ev ! total energy = -25.47902168 Ry Harris-Foulkes estimate = -25.47902169 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00619274 0.00359844 0.00255060 atom 2 type 1 force = -0.00619274 -0.00359844 -0.00255060 Total force = 0.010752 Total SCF correction = 0.000029 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -98.23 -0.00048477 0.00021366 0.00015145 -71.31 31.43 22.28 0.00021366 -0.00072832 0.00008800 31.43 -107.14 12.95 0.00015145 0.00008800 -0.00079010 22.28 12.95 -116.23 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 5 time = 0.02904 pico-seconds new lattice vectors (alat unit) : 1.108024073 -0.002199323 -0.001559020 0.546754731 0.963732519 -0.001558673 0.546754650 0.317700038 0.909862667 new unit-cell volume = 335.4890 (a.u.)^3 new positions in cryst coord As 0.271130550 0.271130641 0.271130593 As -0.271130550 -0.271130641 -0.271130593 new positions in cart coord (alat unit) As 0.596903049 0.346839312 0.245846302 As -0.596903049 -0.346839312 -0.245846302 Ekin = 0.03863559 Ry T = 1325.0 K Etot = -25.44038608 new unit-cell volume = 335.48901 a.u.^3 ( 49.71434 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.108024073 -0.002199323 -0.001559020 0.546754731 0.963732519 -0.001558673 0.546754650 0.317700038 0.909862667 ATOMIC_POSITIONS (crystal) As 0.271130550 0.271130641 0.271130593 As -0.271130550 -0.271130641 -0.271130593 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1130093 0.0656657 0.0465451), wk = 0.0625000 k( 2) = ( 0.1133959 0.0658903 0.3210011), wk = 0.0625000 k( 3) = ( 0.1122360 0.0652166 -0.5023669), wk = 0.0625000 k( 4) = ( 0.1126227 0.0654412 -0.2279109), wk = 0.0625000 k( 5) = ( 0.1133958 0.3247078 -0.0441379), wk = 0.0625000 k( 6) = ( 0.1137825 0.3249324 0.2303181), wk = 0.0625000 k( 7) = ( 0.1126226 0.3242587 -0.5930499), wk = 0.0625000 k( 8) = ( 0.1130092 0.3244833 -0.3185939), wk = 0.0625000 k( 9) = ( 0.1122361 -0.4524185 0.2279110), wk = 0.0625000 k( 10) = ( 0.1126227 -0.4521939 0.5023671), wk = 0.0625000 k( 11) = ( 0.1114629 -0.4528676 -0.3210010), wk = 0.0625000 k( 12) = ( 0.1118495 -0.4526430 -0.0465450), wk = 0.0625000 k( 13) = ( 0.1126227 -0.1933764 0.1372281), wk = 0.0625000 k( 14) = ( 0.1130093 -0.1931518 0.4116841), wk = 0.0625000 k( 15) = ( 0.1118495 -0.1938255 -0.4116839), wk = 0.0625000 k( 16) = ( 0.1122361 -0.1936009 -0.1372279), wk = 0.0625000 k( 17) = ( 0.3382546 -0.0622695 -0.0441377), wk = 0.0625000 k( 18) = ( 0.3386412 -0.0620449 0.2303183), wk = 0.0625000 k( 19) = ( 0.3374814 -0.0627186 -0.5930497), wk = 0.0625000 k( 20) = ( 0.3378680 -0.0624940 -0.3185937), wk = 0.0625000 k( 21) = ( 0.3386412 0.1967726 -0.1348207), wk = 0.0625000 k( 22) = ( 0.3390278 0.1969972 0.1396353), wk = 0.0625000 k( 23) = ( 0.3378680 0.1963235 -0.6837327), wk = 0.0625000 k( 24) = ( 0.3382546 0.1965481 -0.4092767), wk = 0.0625000 k( 25) = ( 0.3374814 -0.5803536 0.1372282), wk = 0.0625000 k( 26) = ( 0.3378681 -0.5801291 0.4116842), wk = 0.0625000 k( 27) = ( 0.3367082 -0.5808027 -0.4116838), wk = 0.0625000 k( 28) = ( 0.3370948 -0.5805782 -0.1372278), wk = 0.0625000 k( 29) = ( 0.3378680 -0.3213115 0.0465452), wk = 0.0625000 k( 30) = ( 0.3382546 -0.3210870 0.3210013), wk = 0.0625000 k( 31) = ( 0.3370948 -0.3217606 -0.5023668), wk = 0.0625000 k( 32) = ( 0.3374814 -0.3215361 -0.2279108), wk = 0.0625000 extrapolated charge 10.42008, renormalised to 10.00000 total cpu time spent up to now is 14.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.2 total cpu time spent up to now is 15.1 secs total energy = -25.46461561 Ry Harris-Foulkes estimate = -25.67490073 Ry estimated scf accuracy < 0.00115151 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-05, avg # of iterations = 3.0 total cpu time spent up to now is 15.6 secs total energy = -25.46639632 Ry Harris-Foulkes estimate = -25.46667663 Ry estimated scf accuracy < 0.00070505 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.05E-06, avg # of iterations = 1.0 total cpu time spent up to now is 15.9 secs total energy = -25.46636701 Ry Harris-Foulkes estimate = -25.46642750 Ry estimated scf accuracy < 0.00014131 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.41E-06, avg # of iterations = 1.0 total cpu time spent up to now is 16.1 secs total energy = -25.46636728 Ry Harris-Foulkes estimate = -25.46637698 Ry estimated scf accuracy < 0.00001786 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-07, avg # of iterations = 3.0 total cpu time spent up to now is 16.5 secs total energy = -25.46637373 Ry Harris-Foulkes estimate = -25.46637373 Ry estimated scf accuracy < 0.00000032 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.21E-09, avg # of iterations = 1.1 total cpu time spent up to now is 16.8 secs total energy = -25.46637361 Ry Harris-Foulkes estimate = -25.46637374 Ry estimated scf accuracy < 0.00000028 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.78E-09, avg # of iterations = 1.0 total cpu time spent up to now is 17.0 secs End of self-consistent calculation k = 0.1130 0.0657 0.0465 ( 531 PWs) bands (ev): -7.9501 -1.4019 3.4749 3.4749 4.2808 7.2193 7.8022 7.8022 11.9590 k = 0.1134 0.0659 0.3210 ( 522 PWs) bands (ev): -7.1247 -3.1964 2.5191 3.7207 5.2330 5.5151 6.4056 8.7969 11.4501 k = 0.1122 0.0652-0.5024 ( 520 PWs) bands (ev): -5.9722 -4.8789 2.9658 2.9793 3.8958 6.4825 7.0275 7.7725 13.2792 k = 0.1126 0.0654-0.2279 ( 525 PWs) bands (ev): -7.5043 -2.5037 2.8438 3.3934 4.6024 6.5362 7.6443 8.5266 11.0652 k = 0.1134 0.3247-0.0441 ( 522 PWs) bands (ev): -7.1247 -3.1964 2.5191 3.7207 5.2330 5.5151 6.4056 8.7969 11.4501 k = 0.1138 0.3249 0.2303 ( 519 PWs) bands (ev): -6.8255 -3.0759 1.5759 2.2479 3.3186 7.5529 8.5176 8.8497 10.7018 k = 0.1126 0.3243-0.5930 ( 510 PWs) bands (ev): -5.6543 -4.5149 0.6412 1.5080 4.0336 6.8779 9.5851 10.2015 11.1123 k = 0.1130 0.3245-0.3186 ( 521 PWs) bands (ev): -6.3038 -4.2115 1.4624 2.9232 4.1351 6.8003 7.8946 9.1052 11.2370 k = 0.1122-0.4524 0.2279 ( 520 PWs) bands (ev): -5.9722 -4.8789 2.9658 2.9793 3.8958 6.4825 7.0275 7.7725 13.2792 k = 0.1126-0.4522 0.5024 ( 510 PWs) bands (ev): -5.6543 -4.5149 0.6412 1.5080 4.0336 6.8779 9.5851 10.2015 11.1123 k = 0.1115-0.4529-0.3210 ( 510 PWs) bands (ev): -5.9538 -3.9398 0.5230 1.8438 2.4797 7.7502 9.6331 10.9187 11.0331 k = 0.1118-0.4526-0.0465 ( 521 PWs) bands (ev): -6.3038 -4.2115 1.4624 2.9232 4.1351 6.8003 7.8946 9.1052 11.2370 k = 0.1126-0.1934 0.1372 ( 525 PWs) bands (ev): -7.5043 -2.5037 2.8438 3.3934 4.6024 6.5362 7.6443 8.5266 11.0652 k = 0.1130-0.1932 0.4117 ( 521 PWs) bands (ev): -6.3038 -4.2115 1.4624 2.9232 4.1351 6.8003 7.8946 9.1052 11.2370 k = 0.1118-0.1938-0.4117 ( 521 PWs) bands (ev): -6.3038 -4.2115 1.4624 2.9232 4.1351 6.8003 7.8946 9.1052 11.2370 k = 0.1122-0.1936-0.1372 ( 525 PWs) bands (ev): -7.5043 -2.5037 2.8438 3.3934 4.6024 6.5362 7.6443 8.5266 11.0652 k = 0.3383-0.0623-0.0441 ( 522 PWs) bands (ev): -7.1247 -3.1964 2.5191 3.7207 5.2330 5.5151 6.4056 8.7969 11.4501 k = 0.3386-0.0620 0.2303 ( 519 PWs) bands (ev): -6.8255 -3.0759 1.5759 2.2479 3.3186 7.5529 8.5176 8.8497 10.7018 k = 0.3375-0.0627-0.5930 ( 510 PWs) bands (ev): -5.6543 -4.5149 0.6412 1.5080 4.0336 6.8779 9.5851 10.2015 11.1123 k = 0.3379-0.0625-0.3186 ( 521 PWs) bands (ev): -6.3038 -4.2115 1.4624 2.9232 4.1351 6.8003 7.8946 9.1052 11.2370 k = 0.3386 0.1968-0.1348 ( 519 PWs) bands (ev): -6.8255 -3.0759 1.5759 2.2479 3.3186 7.5529 8.5176 8.8497 10.7018 k = 0.3390 0.1970 0.1396 ( 522 PWs) bands (ev): -6.9164 -3.4799 3.6764 3.6764 4.0518 5.9637 5.9637 6.3749 12.9544 k = 0.3379 0.1963-0.6837 ( 520 PWs) bands (ev): -6.1393 -4.0751 0.8613 2.7942 3.5979 7.0065 7.1637 9.6375 12.6547 k = 0.3383 0.1965-0.4093 ( 510 PWs) bands (ev): -5.9538 -3.9398 0.5230 1.8438 2.4797 7.7502 9.6331 10.9187 11.0331 k = 0.3375-0.5804 0.1372 ( 510 PWs) bands (ev): -5.6543 -4.5149 0.6412 1.5080 4.0336 6.8779 9.5851 10.2015 11.1123 k = 0.3379-0.5801 0.4117 ( 520 PWs) bands (ev): -6.1393 -4.0751 0.8613 2.7942 3.5979 7.0065 7.1637 9.6375 12.6547 k = 0.3367-0.5808-0.4117 ( 520 PWs) bands (ev): -6.1393 -4.0751 0.8613 2.7942 3.5979 7.0065 7.1637 9.6375 12.6547 k = 0.3371-0.5806-0.1372 ( 510 PWs) bands (ev): -5.6543 -4.5149 0.6412 1.5080 4.0336 6.8779 9.5851 10.2015 11.1122 k = 0.3379-0.3213 0.0465 ( 521 PWs) bands (ev): -6.3038 -4.2115 1.4624 2.9232 4.1351 6.8003 7.8946 9.1052 11.2370 k = 0.3383-0.3211 0.3210 ( 510 PWs) bands (ev): -5.9538 -3.9398 0.5230 1.8438 2.4797 7.7502 9.6331 10.9187 11.0331 k = 0.3371-0.3218-0.5024 ( 510 PWs) bands (ev): -5.6543 -4.5149 0.6412 1.5080 4.0336 6.8779 9.5851 10.2015 11.1122 k = 0.3375-0.3215-0.2279 ( 520 PWs) bands (ev): -5.9722 -4.8789 2.9658 2.9793 3.8958 6.4825 7.0275 7.7725 13.2792 the Fermi energy is 5.2903 ev ! total energy = -25.46637362 Ry Harris-Foulkes estimate = -25.46637363 Ry estimated scf accuracy < 7.3E-09 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02461004 0.01430001 0.01013612 atom 2 type 1 force = -0.02461004 -0.01430001 -0.01013612 Total force = 0.042729 Total SCF correction = 0.000042 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -123.08 -0.00068494 0.00017724 0.00012563 -100.76 26.07 18.48 0.00017724 -0.00088697 0.00007300 26.07 -130.48 10.74 0.00012563 0.00007300 -0.00093821 18.48 10.74 -138.02 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 6 time = 0.03630 pico-seconds new lattice vectors (alat unit) : 1.120308346 0.004725885 0.003349705 0.558854167 0.970975782 0.003350051 0.558854091 0.324730581 0.915071522 new unit-cell volume = 341.2733 (a.u.)^3 new positions in cryst coord As 0.267410508 0.267410615 0.267410553 As -0.267410508 -0.267410615 -0.267410553 new positions in cart coord (alat unit) As 0.598469241 0.347749366 0.246491367 As -0.598469241 -0.347749366 -0.246491367 Ekin = 0.02540549 Ry T = 1238.2 K Etot = -25.44096813 new unit-cell volume = 341.27328 a.u.^3 ( 50.57148 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.120308346 0.004725885 0.003349705 0.558854167 0.970975782 0.003350051 0.558854091 0.324730581 0.915071522 ATOMIC_POSITIONS (crystal) As 0.267410508 0.267410615 0.267410553 As -0.267410508 -0.267410615 -0.267410553 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1111670 0.0645953 0.0457863), wk = 0.0625000 k( 2) = ( 0.1103502 0.0641205 0.3196564), wk = 0.0625000 k( 3) = ( 0.1128008 0.0655448 -0.5019537), wk = 0.0625000 k( 4) = ( 0.1119839 0.0650700 -0.2280837), wk = 0.0625000 k( 5) = ( 0.1103501 0.3228529 -0.0453624), wk = 0.0625000 k( 6) = ( 0.1095333 0.3223781 0.2285076), wk = 0.0625000 k( 7) = ( 0.1119839 0.3238024 -0.5931025), wk = 0.0625000 k( 8) = ( 0.1111670 0.3233276 -0.3192324), wk = 0.0625000 k( 9) = ( 0.1128008 -0.4519199 0.2280838), wk = 0.0625000 k( 10) = ( 0.1119840 -0.4523947 0.5019539), wk = 0.0625000 k( 11) = ( 0.1144346 -0.4509704 -0.3196562), wk = 0.0625000 k( 12) = ( 0.1136177 -0.4514452 -0.0457862), wk = 0.0625000 k( 13) = ( 0.1119839 -0.1936623 0.1369351), wk = 0.0625000 k( 14) = ( 0.1111671 -0.1941371 0.4108051), wk = 0.0625000 k( 15) = ( 0.1136177 -0.1927128 -0.4108050), wk = 0.0625000 k( 16) = ( 0.1128008 -0.1931876 -0.1369350), wk = 0.0625000 k( 17) = ( 0.3351349 -0.0639970 -0.0453623), wk = 0.0625000 k( 18) = ( 0.3343180 -0.0644718 0.2285078), wk = 0.0625000 k( 19) = ( 0.3367686 -0.0630475 -0.5931023), wk = 0.0625000 k( 20) = ( 0.3359517 -0.0635223 -0.3192323), wk = 0.0625000 k( 21) = ( 0.3343180 0.1942606 -0.1365110), wk = 0.0625000 k( 22) = ( 0.3335011 0.1937858 0.1373590), wk = 0.0625000 k( 23) = ( 0.3359517 0.1952101 -0.6842511), wk = 0.0625000 k( 24) = ( 0.3351348 0.1947353 -0.4103810), wk = 0.0625000 k( 25) = ( 0.3367687 -0.5805122 0.1369352), wk = 0.0625000 k( 26) = ( 0.3359518 -0.5809870 0.4108053), wk = 0.0625000 k( 27) = ( 0.3384024 -0.5795627 -0.4108049), wk = 0.0625000 k( 28) = ( 0.3375855 -0.5800375 -0.1369348), wk = 0.0625000 k( 29) = ( 0.3359518 -0.3222546 0.0457865), wk = 0.0625000 k( 30) = ( 0.3351349 -0.3227294 0.3196565), wk = 0.0625000 k( 31) = ( 0.3375855 -0.3213051 -0.5019536), wk = 0.0625000 k( 32) = ( 0.3367686 -0.3217799 -0.2280836), wk = 0.0625000 extrapolated charge 10.16948, renormalised to 10.00000 total cpu time spent up to now is 17.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.8 total cpu time spent up to now is 18.0 secs total energy = -25.45719622 Ry Harris-Foulkes estimate = -25.54104660 Ry estimated scf accuracy < 0.00026360 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.64E-06, avg # of iterations = 3.0 total cpu time spent up to now is 18.5 secs total energy = -25.45749383 Ry Harris-Foulkes estimate = -25.45753259 Ry estimated scf accuracy < 0.00009962 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.96E-07, avg # of iterations = 1.0 total cpu time spent up to now is 18.7 secs total energy = -25.45748927 Ry Harris-Foulkes estimate = -25.45749781 Ry estimated scf accuracy < 0.00001783 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-07, avg # of iterations = 2.0 total cpu time spent up to now is 19.0 secs End of self-consistent calculation k = 0.1112 0.0646 0.0458 ( 531 PWs) bands (ev): -7.9721 -1.7361 3.4670 3.4670 3.9650 7.2120 7.6003 7.6003 11.7724 k = 0.1104 0.0641 0.3197 ( 522 PWs) bands (ev): -7.1535 -3.4062 2.3595 3.8033 5.1011 5.2795 6.0168 8.4766 11.3620 k = 0.1128 0.0655-0.5020 ( 520 PWs) bands (ev): -6.0017 -5.0109 2.7606 3.0235 3.7076 6.3050 6.6201 7.2795 12.8901 k = 0.1120 0.0651-0.2281 ( 525 PWs) bands (ev): -7.5329 -2.6985 2.8464 3.1826 4.4144 6.1318 7.5891 8.1738 10.7295 k = 0.1104 0.3229-0.0454 ( 522 PWs) bands (ev): -7.1535 -3.4062 2.3595 3.8033 5.1011 5.2795 6.0168 8.4766 11.3620 k = 0.1095 0.3224 0.2285 ( 519 PWs) bands (ev): -6.8562 -3.3419 1.5613 2.2554 2.9965 7.6295 8.3111 8.6066 10.2903 k = 0.1120 0.3238-0.5931 ( 510 PWs) bands (ev): -5.7008 -4.6587 0.5767 1.3561 3.8279 6.6562 9.3879 9.9416 10.8298 k = 0.1112 0.3233-0.3192 ( 521 PWs) bands (ev): -6.3515 -4.3310 1.4579 2.6748 3.9534 6.3671 7.6345 8.8798 11.0652 k = 0.1128-0.4519 0.2281 ( 520 PWs) bands (ev): -6.0017 -5.0109 2.7606 3.0235 3.7076 6.3050 6.6201 7.2795 12.8901 k = 0.1120-0.4524 0.5020 ( 510 PWs) bands (ev): -5.7008 -4.6587 0.5767 1.3561 3.8279 6.6562 9.3879 9.9416 10.8298 k = 0.1144-0.4510-0.3197 ( 510 PWs) bands (ev): -6.0196 -4.0546 0.3415 1.8553 2.2283 7.8128 9.2527 10.4349 10.5918 k = 0.1136-0.4514-0.0458 ( 521 PWs) bands (ev): -6.3515 -4.3310 1.4579 2.6748 3.9534 6.3671 7.6345 8.8798 11.0652 k = 0.1120-0.1937 0.1369 ( 525 PWs) bands (ev): -7.5329 -2.6985 2.8464 3.1826 4.4144 6.1318 7.5891 8.1738 10.7295 k = 0.1112-0.1941 0.4108 ( 521 PWs) bands (ev): -6.3515 -4.3310 1.4579 2.6748 3.9534 6.3671 7.6345 8.8798 11.0652 k = 0.1136-0.1927-0.4108 ( 521 PWs) bands (ev): -6.3515 -4.3310 1.4579 2.6748 3.9534 6.3671 7.6345 8.8798 11.0652 k = 0.1128-0.1932-0.1369 ( 525 PWs) bands (ev): -7.5329 -2.6985 2.8464 3.1826 4.4144 6.1318 7.5891 8.1738 10.7295 k = 0.3351-0.0640-0.0454 ( 522 PWs) bands (ev): -7.1535 -3.4062 2.3595 3.8033 5.1011 5.2795 6.0168 8.4766 11.3620 k = 0.3343-0.0645 0.2285 ( 519 PWs) bands (ev): -6.8562 -3.3419 1.5613 2.2554 2.9965 7.6295 8.3111 8.6066 10.2903 k = 0.3368-0.0630-0.5931 ( 510 PWs) bands (ev): -5.7008 -4.6587 0.5767 1.3561 3.8279 6.6562 9.3879 9.9416 10.8297 k = 0.3360-0.0635-0.3192 ( 521 PWs) bands (ev): -6.3515 -4.3310 1.4579 2.6748 3.9534 6.3671 7.6345 8.8798 11.0652 k = 0.3343 0.1943-0.1365 ( 519 PWs) bands (ev): -6.8562 -3.3419 1.5613 2.2554 2.9965 7.6295 8.3111 8.6066 10.2903 k = 0.3335 0.1938 0.1374 ( 522 PWs) bands (ev): -6.9183 -3.8531 3.7286 3.7286 4.1090 5.7493 5.7493 6.0880 12.7562 k = 0.3360 0.1952-0.6843 ( 520 PWs) bands (ev): -6.1234 -4.4036 0.8450 2.8186 3.4060 6.9063 6.9178 9.4509 12.3690 k = 0.3351 0.1947-0.4104 ( 510 PWs) bands (ev): -6.0196 -4.0546 0.3415 1.8552 2.2283 7.8128 9.2527 10.4349 10.5918 k = 0.3368-0.5805 0.1369 ( 510 PWs) bands (ev): -5.7008 -4.6587 0.5767 1.3561 3.8279 6.6562 9.3879 9.9416 10.8297 k = 0.3360-0.5810 0.4108 ( 520 PWs) bands (ev): -6.1234 -4.4036 0.8450 2.8186 3.4060 6.9063 6.9178 9.4509 12.3690 k = 0.3384-0.5796-0.4108 ( 520 PWs) bands (ev): -6.1234 -4.4036 0.8450 2.8186 3.4060 6.9063 6.9178 9.4509 12.3690 k = 0.3376-0.5800-0.1369 ( 510 PWs) bands (ev): -5.7008 -4.6587 0.5767 1.3561 3.8279 6.6562 9.3879 9.9416 10.8297 k = 0.3360-0.3223 0.0458 ( 521 PWs) bands (ev): -6.3515 -4.3310 1.4579 2.6748 3.9534 6.3671 7.6345 8.8798 11.0652 k = 0.3351-0.3227 0.3197 ( 510 PWs) bands (ev): -6.0196 -4.0546 0.3415 1.8552 2.2283 7.8128 9.2527 10.4349 10.5918 k = 0.3376-0.3213-0.5020 ( 510 PWs) bands (ev): -5.7008 -4.6587 0.5767 1.3561 3.8279 6.6562 9.3879 9.9416 10.8297 k = 0.3368-0.3218-0.2281 ( 520 PWs) bands (ev): -6.0017 -5.0109 2.7606 3.0235 3.7076 6.3050 6.6201 7.2795 12.8901 the Fermi energy is 5.1662 ev ! total energy = -25.45749186 Ry Harris-Foulkes estimate = -25.45749188 Ry estimated scf accuracy < 0.00000009 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.03526932 0.02049373 0.01452633 atom 2 type 1 force = -0.03526932 -0.02049373 -0.01452633 Total force = 0.061236 Total SCF correction = 0.000176 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -132.19 -0.00078925 0.00012774 0.00009055 -116.10 18.79 13.32 0.00012774 -0.00093486 0.00005261 18.79 -137.52 7.74 0.00009055 0.00005261 -0.00097179 13.32 7.74 -142.96 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 7 time = 0.04356 pico-seconds new lattice vectors (alat unit) : 1.124363165 0.013420927 0.009512931 0.568416206 0.970193007 0.009513258 0.568416143 0.330286732 0.912291791 new unit-cell volume = 338.0766 (a.u.)^3 new positions in cryst coord As 0.264521495 0.264521616 0.264521538 As -0.264521495 -0.264521616 -0.264521538 new positions in cart coord (alat unit) As 0.598134912 0.347555101 0.246353665 As -0.598134912 -0.347555101 -0.246353665 Ekin = 0.01624929 Ry T = 1126.9 K Etot = -25.44124257 new unit-cell volume = 338.07664 a.u.^3 ( 50.09779 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.124363165 0.013420927 0.009512931 0.568416206 0.970193007 0.009513258 0.568416143 0.330286732 0.912291791 ATOMIC_POSITIONS (crystal) As 0.264521495 0.264521616 0.264521538 As -0.264521495 -0.264521616 -0.264521538 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1100275 0.0639331 0.0453170), wk = 0.0625000 k( 2) = ( 0.1077087 0.0625857 0.3212847), wk = 0.0625000 k( 3) = ( 0.1146651 0.0666281 -0.5066185), wk = 0.0625000 k( 4) = ( 0.1123463 0.0652806 -0.2306507), wk = 0.0625000 k( 5) = ( 0.1077087 0.3238810 -0.0473499), wk = 0.0625000 k( 6) = ( 0.1053899 0.3225336 0.2286178), wk = 0.0625000 k( 7) = ( 0.1123463 0.3265760 -0.5992854), wk = 0.0625000 k( 8) = ( 0.1100275 0.3252285 -0.3233177), wk = 0.0625000 k( 9) = ( 0.1146652 -0.4559626 0.2306509), wk = 0.0625000 k( 10) = ( 0.1123464 -0.4573101 0.5066186), wk = 0.0625000 k( 11) = ( 0.1193028 -0.4532677 -0.3212846), wk = 0.0625000 k( 12) = ( 0.1169840 -0.4546152 -0.0453169), wk = 0.0625000 k( 13) = ( 0.1123463 -0.1960148 0.1379839), wk = 0.0625000 k( 14) = ( 0.1100275 -0.1973622 0.4139517), wk = 0.0625000 k( 15) = ( 0.1169839 -0.1933198 -0.4139515), wk = 0.0625000 k( 16) = ( 0.1146651 -0.1946673 -0.1379838), wk = 0.0625000 k( 17) = ( 0.3347201 -0.0668010 -0.0473498), wk = 0.0625000 k( 18) = ( 0.3324013 -0.0681485 0.2286179), wk = 0.0625000 k( 19) = ( 0.3393577 -0.0641061 -0.5992853), wk = 0.0625000 k( 20) = ( 0.3370389 -0.0654536 -0.3233175), wk = 0.0625000 k( 21) = ( 0.3324013 0.1931469 -0.1400167), wk = 0.0625000 k( 22) = ( 0.3300825 0.1917994 0.1359510), wk = 0.0625000 k( 23) = ( 0.3370389 0.1958418 -0.6919522), wk = 0.0625000 k( 24) = ( 0.3347201 0.1944943 -0.4159845), wk = 0.0625000 k( 25) = ( 0.3393578 -0.5866968 0.1379841), wk = 0.0625000 k( 26) = ( 0.3370390 -0.5880443 0.4139518), wk = 0.0625000 k( 27) = ( 0.3439954 -0.5840019 -0.4139514), wk = 0.0625000 k( 28) = ( 0.3416766 -0.5853493 -0.1379837), wk = 0.0625000 k( 29) = ( 0.3370389 -0.3267489 0.0453171), wk = 0.0625000 k( 30) = ( 0.3347201 -0.3280964 0.3212849), wk = 0.0625000 k( 31) = ( 0.3416766 -0.3240540 -0.5066183), wk = 0.0625000 k( 32) = ( 0.3393577 -0.3254014 -0.2306506), wk = 0.0625000 extrapolated charge 9.90545, renormalised to 10.00000 total cpu time spent up to now is 19.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.7 total cpu time spent up to now is 20.0 secs total energy = -25.45625674 Ry Harris-Foulkes estimate = -25.40897341 Ry estimated scf accuracy < 0.00006804 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.80E-07, avg # of iterations = 3.0 total cpu time spent up to now is 20.4 secs total energy = -25.45634079 Ry Harris-Foulkes estimate = -25.45635556 Ry estimated scf accuracy < 0.00003714 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.71E-07, avg # of iterations = 1.0 total cpu time spent up to now is 20.7 secs total energy = -25.45634117 Ry Harris-Foulkes estimate = -25.45634330 Ry estimated scf accuracy < 0.00000621 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-08, avg # of iterations = 1.0 total cpu time spent up to now is 20.9 secs total energy = -25.45634104 Ry Harris-Foulkes estimate = -25.45634157 Ry estimated scf accuracy < 0.00000108 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-08, avg # of iterations = 3.0 total cpu time spent up to now is 21.3 secs End of self-consistent calculation k = 0.1100 0.0639 0.0453 ( 531 PWs) bands (ev): -7.8971 -1.6617 3.6882 3.6882 3.9225 7.5308 7.7294 7.7294 11.9080 k = 0.1077 0.0626 0.3213 ( 522 PWs) bands (ev): -7.0619 -3.3171 2.3897 4.0881 5.2518 5.4139 5.9809 8.5215 11.5815 k = 0.1147 0.0666-0.5066 ( 520 PWs) bands (ev): -5.8685 -4.9265 2.7686 3.2483 3.7963 6.4608 6.5834 7.1691 12.7885 k = 0.1123 0.0653-0.2307 ( 525 PWs) bands (ev): -7.4477 -2.5611 3.0506 3.1945 4.5105 6.0841 7.8377 8.2040 10.6888 k = 0.1077 0.3239-0.0473 ( 522 PWs) bands (ev): -7.0618 -3.3171 2.3897 4.0881 5.2518 5.4139 5.9809 8.5215 11.5815 k = 0.1054 0.3225 0.2286 ( 519 PWs) bands (ev): -6.7582 -3.2912 1.7117 2.4545 2.9469 8.0032 8.4852 8.7486 10.2585 k = 0.1123 0.3266-0.5993 ( 510 PWs) bands (ev): -5.5699 -4.5627 0.6537 1.3803 3.8995 6.7755 9.5301 10.1224 10.9204 k = 0.1100 0.3252-0.3233 ( 521 PWs) bands (ev): -6.2438 -4.2036 1.5964 2.6738 4.0234 6.2841 7.7393 9.0511 11.1993 k = 0.1147-0.4560 0.2307 ( 520 PWs) bands (ev): -5.8685 -4.9265 2.7686 3.2483 3.7963 6.4608 6.5834 7.1691 12.7885 k = 0.1123-0.4573 0.5066 ( 510 PWs) bands (ev): -5.5699 -4.5627 0.6537 1.3803 3.8995 6.7755 9.5301 10.1224 10.9204 k = 0.1193-0.4533-0.3213 ( 510 PWs) bands (ev): -5.9088 -3.9188 0.3367 2.0434 2.2008 8.1021 9.3021 10.3376 10.6745 k = 0.1170-0.4546-0.0453 ( 521 PWs) bands (ev): -6.2438 -4.2036 1.5964 2.6738 4.0234 6.2841 7.7393 9.0511 11.1993 k = 0.1123-0.1960 0.1380 ( 525 PWs) bands (ev): -7.4477 -2.5611 3.0505 3.1945 4.5105 6.0841 7.8377 8.2040 10.6888 k = 0.1100-0.1974 0.4140 ( 521 PWs) bands (ev): -6.2438 -4.2036 1.5964 2.6738 4.0234 6.2841 7.7393 9.0511 11.1993 k = 0.1170-0.1933-0.4140 ( 521 PWs) bands (ev): -6.2439 -4.2036 1.5964 2.6738 4.0234 6.2841 7.7393 9.0511 11.1993 k = 0.1147-0.1947-0.1380 ( 525 PWs) bands (ev): -7.4477 -2.5611 3.0506 3.1945 4.5105 6.0841 7.8377 8.2040 10.6888 k = 0.3347-0.0668-0.0473 ( 522 PWs) bands (ev): -7.0619 -3.3171 2.3897 4.0881 5.2519 5.4139 5.9809 8.5215 11.5815 k = 0.3324-0.0681 0.2286 ( 519 PWs) bands (ev): -6.7582 -3.2912 1.7117 2.4545 2.9469 8.0032 8.4852 8.7486 10.2585 k = 0.3394-0.0641-0.5993 ( 510 PWs) bands (ev): -5.5699 -4.5627 0.6537 1.3803 3.8995 6.7755 9.5301 10.1224 10.9204 k = 0.3370-0.0655-0.3233 ( 521 PWs) bands (ev): -6.2439 -4.2036 1.5964 2.6738 4.0234 6.2841 7.7393 9.0511 11.1993 k = 0.3324 0.1931-0.1400 ( 519 PWs) bands (ev): -6.7582 -3.2912 1.7117 2.4545 2.9469 8.0032 8.4852 8.7486 10.2585 k = 0.3301 0.1918 0.1360 ( 522 PWs) bands (ev): -6.8086 -3.9246 3.9975 3.9975 4.4229 5.8510 5.8510 6.2274 12.8720 k = 0.3370 0.1958-0.6920 ( 520 PWs) bands (ev): -5.9650 -4.4538 0.9691 3.0332 3.4979 7.0111 7.1947 9.6803 12.3915 k = 0.3347 0.1945-0.4160 ( 510 PWs) bands (ev): -5.9088 -3.9188 0.3367 2.0434 2.2008 8.1021 9.3021 10.3376 10.6745 k = 0.3394-0.5867 0.1380 ( 510 PWs) bands (ev): -5.5699 -4.5627 0.6537 1.3803 3.8995 6.7755 9.5301 10.1224 10.9204 k = 0.3370-0.5880 0.4140 ( 520 PWs) bands (ev): -5.9650 -4.4538 0.9691 3.0332 3.4979 7.0111 7.1947 9.6803 12.3915 k = 0.3440-0.5840-0.4140 ( 520 PWs) bands (ev): -5.9650 -4.4538 0.9691 3.0332 3.4979 7.0111 7.1947 9.6803 12.3915 k = 0.3417-0.5853-0.1380 ( 510 PWs) bands (ev): -5.5699 -4.5627 0.6537 1.3803 3.8995 6.7755 9.5301 10.1224 10.9204 k = 0.3370-0.3267 0.0453 ( 521 PWs) bands (ev): -6.2438 -4.2036 1.5964 2.6738 4.0234 6.2841 7.7393 9.0511 11.1993 k = 0.3347-0.3281 0.3213 ( 510 PWs) bands (ev): -5.9088 -3.9188 0.3367 2.0434 2.2008 8.1021 9.3021 10.3376 10.6745 k = 0.3417-0.3241-0.5066 ( 510 PWs) bands (ev): -5.5699 -4.5627 0.6537 1.3803 3.8995 6.7755 9.5301 10.1224 10.9204 k = 0.3394-0.3254-0.2307 ( 520 PWs) bands (ev): -5.8685 -4.9265 2.7686 3.2483 3.7963 6.4608 6.5834 7.1691 12.7885 the Fermi energy is 5.3329 ev ! total energy = -25.45634140 Ry Harris-Foulkes estimate = -25.45634145 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.04061480 0.02359985 0.01672803 atom 2 type 1 force = -0.04061480 -0.02359985 -0.01672803 Total force = 0.070517 Total SCF correction = 0.000118 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -130.94 -0.00082514 0.00007591 0.00005381 -121.38 11.17 7.92 0.00007591 -0.00091166 0.00003126 11.17 -134.11 4.60 0.00005381 0.00003126 -0.00093361 7.92 4.60 -137.34 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 8 time = 0.05082 pico-seconds new lattice vectors (alat unit) : 1.119746649 0.023432901 0.016609630 0.574828562 0.961224559 0.016609919 0.574828517 0.334012708 0.901479169 new unit-cell volume = 325.9752 (a.u.)^3 new positions in cryst coord As 0.262511654 0.262511792 0.262511698 As -0.262511654 -0.262511792 -0.262511698 new positions in cart coord (alat unit) As 0.595745031 0.346166435 0.245369348 As -0.595745031 -0.346166435 -0.245369348 Ekin = 0.01496580 Ry T = 1040.9 K Etot = -25.44137560 new unit-cell volume = 325.97519 a.u.^3 ( 48.30454 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.119746649 0.023432901 0.016609630 0.574828562 0.961224559 0.016609919 0.574828517 0.334012708 0.901479169 ATOMIC_POSITIONS (crystal) As 0.262511654 0.262511792 0.262511698 As -0.262511654 -0.262511792 -0.262511698 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1096295 0.0637019 0.0451531), wk = 0.0625000 k( 2) = ( 0.1055139 0.0613103 0.3259855), wk = 0.0625000 k( 3) = ( 0.1178608 0.0684850 -0.5165118), wk = 0.0625000 k( 4) = ( 0.1137452 0.0660934 -0.2356793), wk = 0.0625000 k( 5) = ( 0.1055139 0.3278942 -0.0501101), wk = 0.0625000 k( 6) = ( 0.1013982 0.3255026 0.2307224), wk = 0.0625000 k( 7) = ( 0.1137452 0.3326773 -0.6117750), wk = 0.0625000 k( 8) = ( 0.1096295 0.3302857 -0.3309425), wk = 0.0625000 k( 9) = ( 0.1178609 -0.4646827 0.2356795), wk = 0.0625000 k( 10) = ( 0.1137452 -0.4670742 0.5165119), wk = 0.0625000 k( 11) = ( 0.1260922 -0.4598996 -0.3259854), wk = 0.0625000 k( 12) = ( 0.1219765 -0.4622911 -0.0451530), wk = 0.0625000 k( 13) = ( 0.1137452 -0.2004904 0.1404163), wk = 0.0625000 k( 14) = ( 0.1096296 -0.2028819 0.4212487), wk = 0.0625000 k( 15) = ( 0.1219765 -0.1957073 -0.4212486), wk = 0.0625000 k( 16) = ( 0.1178608 -0.1980989 -0.1404162), wk = 0.0625000 k( 17) = ( 0.3371199 -0.0706951 -0.0501100), wk = 0.0625000 k( 18) = ( 0.3330043 -0.0730866 0.2307225), wk = 0.0625000 k( 19) = ( 0.3453512 -0.0659120 -0.6117749), wk = 0.0625000 k( 20) = ( 0.3412356 -0.0683035 -0.3309424), wk = 0.0625000 k( 21) = ( 0.3330042 0.1934972 -0.1453732), wk = 0.0625000 k( 22) = ( 0.3288886 0.1911057 0.1354593), wk = 0.0625000 k( 23) = ( 0.3412355 0.1982803 -0.7070380), wk = 0.0625000 k( 24) = ( 0.3371199 0.1958888 -0.4262056), wk = 0.0625000 k( 25) = ( 0.3453513 -0.5990796 0.1404164), wk = 0.0625000 k( 26) = ( 0.3412356 -0.6014712 0.4212489), wk = 0.0625000 k( 27) = ( 0.3535825 -0.5942966 -0.4212485), wk = 0.0625000 k( 28) = ( 0.3494669 -0.5966881 -0.1404160), wk = 0.0625000 k( 29) = ( 0.3412356 -0.3348874 0.0451532), wk = 0.0625000 k( 30) = ( 0.3371199 -0.3372789 0.3259857), wk = 0.0625000 k( 31) = ( 0.3494669 -0.3301043 -0.5165117), wk = 0.0625000 k( 32) = ( 0.3453512 -0.3324958 -0.2356792), wk = 0.0625000 extrapolated charge 9.62878, renormalised to 10.00000 total cpu time spent up to now is 21.7 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 22.3 secs total energy = -25.46200448 Ry Harris-Foulkes estimate = -25.26993179 Ry estimated scf accuracy < 0.00085059 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.51E-06, avg # of iterations = 3.0 total cpu time spent up to now is 22.7 secs total energy = -25.46319672 Ry Harris-Foulkes estimate = -25.46340746 Ry estimated scf accuracy < 0.00050422 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.04E-06, avg # of iterations = 1.0 total cpu time spent up to now is 23.0 secs total energy = -25.46321261 Ry Harris-Foulkes estimate = -25.46323453 Ry estimated scf accuracy < 0.00007861 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.86E-07, avg # of iterations = 1.0 total cpu time spent up to now is 23.3 secs total energy = -25.46319750 Ry Harris-Foulkes estimate = -25.46321530 Ry estimated scf accuracy < 0.00003231 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.23E-07, avg # of iterations = 2.0 total cpu time spent up to now is 23.6 secs total energy = -25.46320458 Ry Harris-Foulkes estimate = -25.46320472 Ry estimated scf accuracy < 0.00000073 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.26E-09, avg # of iterations = 1.7 total cpu time spent up to now is 23.9 secs total energy = -25.46320442 Ry Harris-Foulkes estimate = -25.46320464 Ry estimated scf accuracy < 0.00000040 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.98E-09, avg # of iterations = 2.0 total cpu time spent up to now is 24.2 secs total energy = -25.46320446 Ry Harris-Foulkes estimate = -25.46320452 Ry estimated scf accuracy < 0.00000012 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-09, avg # of iterations = 1.0 total cpu time spent up to now is 24.5 secs End of self-consistent calculation k = 0.1096 0.0637 0.0452 ( 531 PWs) bands (ev): -7.7162 -1.1873 4.1679 4.1686 4.1686 8.2009 8.2180 8.2180 12.3691 k = 0.1055 0.0613 0.3260 ( 522 PWs) bands (ev): -6.8391 -2.9193 2.6088 4.6004 5.7322 5.9045 6.3059 8.9473 12.1274 k = 0.1179 0.0685-0.5165 ( 520 PWs) bands (ev): -5.5563 -4.6145 2.9856 3.6801 4.1731 6.9144 6.9679 7.4235 12.9942 k = 0.1137 0.0661-0.2357 ( 525 PWs) bands (ev): -7.2387 -2.0716 3.4303 3.4832 4.8805 6.3979 8.4219 8.6242 10.9483 k = 0.1055 0.3279-0.0501 ( 522 PWs) bands (ev): -6.8391 -2.9193 2.6088 4.6004 5.7322 5.9044 6.3059 8.9473 12.1274 k = 0.1014 0.3255 0.2307 ( 519 PWs) bands (ev): -6.5200 -2.9248 2.0407 2.8698 3.1724 8.7177 9.0462 9.3002 10.6179 k = 0.1137 0.3327-0.6118 ( 510 PWs) bands (ev): -5.2448 -4.2106 0.8847 1.5775 4.2478 7.2574 10.0604 10.7587 11.3612 k = 0.1096 0.3303-0.3309 ( 521 PWs) bands (ev): -5.9669 -3.8111 1.8959 2.9158 4.3407 6.5490 8.2279 9.6435 11.6485 k = 0.1179-0.4647 0.2357 ( 520 PWs) bands (ev): -5.5563 -4.6145 2.9856 3.6801 4.1731 6.9144 6.9678 7.4235 12.9942 k = 0.1137-0.4671 0.5165 ( 510 PWs) bands (ev): -5.2448 -4.2106 0.8847 1.5775 4.2478 7.2574 10.0604 10.7587 11.3612 k = 0.1261-0.4599-0.3260 ( 510 PWs) bands (ev): -5.6055 -3.5087 0.4960 2.3947 2.4317 8.6129 9.7846 10.6952 11.2358 k = 0.1220-0.4623-0.0452 ( 521 PWs) bands (ev): -5.9669 -3.8111 1.8959 2.9158 4.3407 6.5490 8.2279 9.6435 11.6485 k = 0.1137-0.2005 0.1404 ( 525 PWs) bands (ev): -7.2387 -2.0716 3.4303 3.4832 4.8805 6.3979 8.4219 8.6242 10.9483 k = 0.1096-0.2029 0.4212 ( 521 PWs) bands (ev): -5.9669 -3.8111 1.8959 2.9158 4.3407 6.5490 8.2279 9.6435 11.6485 k = 0.1220-0.1957-0.4212 ( 521 PWs) bands (ev): -5.9669 -3.8111 1.8959 2.9158 4.3407 6.5490 8.2279 9.6435 11.6485 k = 0.1179-0.1981-0.1404 ( 525 PWs) bands (ev): -7.2387 -2.0716 3.4303 3.4832 4.8805 6.3979 8.4219 8.6242 10.9483 k = 0.3371-0.0707-0.0501 ( 522 PWs) bands (ev): -6.8391 -2.9193 2.6088 4.6004 5.7322 5.9045 6.3059 8.9473 12.1274 k = 0.3330-0.0731 0.2307 ( 519 PWs) bands (ev): -6.5200 -2.9248 2.0407 2.8698 3.1724 8.7177 9.0462 9.3002 10.6180 k = 0.3454-0.0659-0.6118 ( 510 PWs) bands (ev): -5.2448 -4.2106 0.8847 1.5775 4.2478 7.2574 10.0604 10.7587 11.3612 k = 0.3412-0.0683-0.3309 ( 521 PWs) bands (ev): -5.9669 -3.8111 1.8959 2.9158 4.3407 6.5490 8.2279 9.6435 11.6485 k = 0.3330 0.1935-0.1454 ( 519 PWs) bands (ev): -6.5200 -2.9248 2.0407 2.8698 3.1724 8.7177 9.0462 9.3002 10.6180 k = 0.3289 0.1911 0.1355 ( 522 PWs) bands (ev): -6.5771 -3.7167 4.5135 4.5135 5.0512 6.2871 6.2871 6.7997 13.3146 k = 0.3412 0.1983-0.7070 ( 520 PWs) bands (ev): -5.6534 -4.2324 1.2513 3.4644 3.8898 7.4926 7.8707 10.3582 12.7243 k = 0.3371 0.1959-0.4262 ( 510 PWs) bands (ev): -5.6055 -3.5087 0.4960 2.3947 2.4317 8.6129 9.7846 10.6952 11.2358 k = 0.3454-0.5991 0.1404 ( 510 PWs) bands (ev): -5.2448 -4.2106 0.8847 1.5775 4.2478 7.2574 10.0604 10.7587 11.3612 k = 0.3412-0.6015 0.4212 ( 520 PWs) bands (ev): -5.6534 -4.2324 1.2513 3.4644 3.8898 7.4926 7.8707 10.3582 12.7243 k = 0.3536-0.5943-0.4212 ( 520 PWs) bands (ev): -5.6534 -4.2324 1.2513 3.4644 3.8898 7.4926 7.8707 10.3581 12.7243 k = 0.3495-0.5967-0.1404 ( 510 PWs) bands (ev): -5.2448 -4.2106 0.8847 1.5775 4.2478 7.2574 10.0604 10.7587 11.3612 k = 0.3412-0.3349 0.0452 ( 521 PWs) bands (ev): -5.9669 -3.8111 1.8959 2.9158 4.3407 6.5490 8.2279 9.6435 11.6485 k = 0.3371-0.3373 0.3260 ( 510 PWs) bands (ev): -5.6055 -3.5087 0.4960 2.3947 2.4317 8.6129 9.7846 10.6952 11.2358 k = 0.3495-0.3301-0.5165 ( 510 PWs) bands (ev): -5.2448 -4.2106 0.8847 1.5775 4.2478 7.2574 10.0604 10.7587 11.3612 k = 0.3454-0.3325-0.2357 ( 520 PWs) bands (ev): -5.5563 -4.6145 2.9856 3.6801 4.1731 6.9144 6.9679 7.4235 12.9942 the Fermi energy is 5.8017 ev ! total energy = -25.46320447 Ry Harris-Foulkes estimate = -25.46320447 Ry estimated scf accuracy < 3.7E-09 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.04376168 0.02542838 0.01802411 atom 2 type 1 force = -0.04376168 -0.02542838 -0.01802411 Total force = 0.075981 Total SCF correction = 0.000033 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -119.32 -0.00080187 0.00001081 0.00000767 -117.96 1.59 1.13 0.00001081 -0.00081419 0.00000445 1.59 -119.77 0.65 0.00000767 0.00000445 -0.00081732 1.13 0.65 -120.23 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 9 time = 0.05808 pico-seconds new lattice vectors (alat unit) : 1.106299802 0.034271617 0.024292349 0.577586628 0.944175029 0.024292567 0.577586609 0.335615292 0.882847412 new unit-cell volume = 305.8032 (a.u.)^3 new positions in cryst coord As 0.261408867 0.261409025 0.261408912 As -0.261408867 -0.261409025 -0.261408912 new positions in cart coord (alat unit) As 0.591169222 0.343507606 0.243484713 As -0.591169222 -0.343507606 -0.243484713 Ekin = 0.02179534 Ry T = 1006.4 K Etot = -25.44140913 new unit-cell volume = 305.80322 a.u.^3 ( 45.31536 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.106299802 0.034271617 0.024292349 0.577586628 0.944175029 0.024292567 0.577586609 0.335615292 0.882847412 ATOMIC_POSITIONS (crystal) As 0.261408867 0.261409025 0.261408912 As -0.261408867 -0.261409025 -0.261408912 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1100140 0.0639253 0.0453114), wk = 0.0625000 k( 2) = ( 0.1037884 0.0603078 0.3339343), wk = 0.0625000 k( 3) = ( 0.1224651 0.0711603 -0.5319342), wk = 0.0625000 k( 4) = ( 0.1162396 0.0675428 -0.2433114), wk = 0.0625000 k( 5) = ( 0.1037884 0.3350623 -0.0536886), wk = 0.0625000 k( 6) = ( 0.0975628 0.3314447 0.2349342), wk = 0.0625000 k( 7) = ( 0.1162395 0.3422973 -0.6309342), wk = 0.0625000 k( 8) = ( 0.1100140 0.3386798 -0.3423114), wk = 0.0625000 k( 9) = ( 0.1224652 -0.4783487 0.2433115), wk = 0.0625000 k( 10) = ( 0.1162396 -0.4819662 0.5319343), wk = 0.0625000 k( 11) = ( 0.1349163 -0.4711136 -0.3339342), wk = 0.0625000 k( 12) = ( 0.1286907 -0.4747312 -0.0453113), wk = 0.0625000 k( 13) = ( 0.1162396 -0.2072117 0.1443115), wk = 0.0625000 k( 14) = ( 0.1100140 -0.2108292 0.4329343), wk = 0.0625000 k( 15) = ( 0.1286907 -0.1999766 -0.4329342), wk = 0.0625000 k( 16) = ( 0.1224651 -0.2035942 -0.1443114), wk = 0.0625000 k( 17) = ( 0.3424931 -0.0757436 -0.0536885), wk = 0.0625000 k( 18) = ( 0.3362676 -0.0793611 0.2349343), wk = 0.0625000 k( 19) = ( 0.3549443 -0.0685085 -0.6309341), wk = 0.0625000 k( 20) = ( 0.3487187 -0.0721261 -0.3423113), wk = 0.0625000 k( 21) = ( 0.3362675 0.1953934 -0.1526885), wk = 0.0625000 k( 22) = ( 0.3300420 0.1917759 0.1359343), wk = 0.0625000 k( 23) = ( 0.3487187 0.2026285 -0.7299341), wk = 0.0625000 k( 24) = ( 0.3424931 0.1990109 -0.4413113), wk = 0.0625000 k( 25) = ( 0.3549443 -0.6180176 0.1443116), wk = 0.0625000 k( 26) = ( 0.3487187 -0.6216351 0.4329344), wk = 0.0625000 k( 27) = ( 0.3673954 -0.6107825 -0.4329341), wk = 0.0625000 k( 28) = ( 0.3611699 -0.6144001 -0.1443113), wk = 0.0625000 k( 29) = ( 0.3487187 -0.3468806 0.0453115), wk = 0.0625000 k( 30) = ( 0.3424931 -0.3504981 0.3339344), wk = 0.0625000 k( 31) = ( 0.3611698 -0.3396455 -0.5319341), wk = 0.0625000 k( 32) = ( 0.3549443 -0.3432631 -0.2433113), wk = 0.0625000 extrapolated charge 9.34039, renormalised to 10.00000 total cpu time spent up to now is 24.9 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 25.5 secs total energy = -25.47151549 Ry Harris-Foulkes estimate = -25.11121572 Ry estimated scf accuracy < 0.00271542 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.72E-05, avg # of iterations = 3.0 total cpu time spent up to now is 25.9 secs total energy = -25.47492013 Ry Harris-Foulkes estimate = -25.47555623 Ry estimated scf accuracy < 0.00147074 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-05, avg # of iterations = 1.0 total cpu time spent up to now is 26.2 secs total energy = -25.47498741 Ry Harris-Foulkes estimate = -25.47504467 Ry estimated scf accuracy < 0.00018521 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-06, avg # of iterations = 1.0 total cpu time spent up to now is 26.4 secs total energy = -25.47495948 Ry Harris-Foulkes estimate = -25.47499506 Ry estimated scf accuracy < 0.00006435 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.43E-07, avg # of iterations = 2.1 total cpu time spent up to now is 26.7 secs total energy = -25.47497529 Ry Harris-Foulkes estimate = -25.47497578 Ry estimated scf accuracy < 0.00000220 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.20E-08, avg # of iterations = 1.2 total cpu time spent up to now is 27.0 secs total energy = -25.47497474 Ry Harris-Foulkes estimate = -25.47497539 Ry estimated scf accuracy < 0.00000110 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-08, avg # of iterations = 2.0 total cpu time spent up to now is 27.3 secs total energy = -25.47497492 Ry Harris-Foulkes estimate = -25.47497501 Ry estimated scf accuracy < 0.00000018 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-09, avg # of iterations = 1.0 total cpu time spent up to now is 27.6 secs End of self-consistent calculation k = 0.1100 0.0639 0.0453 ( 531 PWs) bands (ev): -7.4188 -0.3021 4.7576 4.9584 4.9584 9.1141 9.1141 9.2634 13.1892 k = 0.1038 0.0603 0.3339 ( 522 PWs) bands (ev): -6.4727 -2.1880 3.0329 5.3773 6.6085 6.7857 7.0341 9.7885 13.0565 k = 0.1225 0.0712-0.5319 ( 520 PWs) bands (ev): -5.0445 -4.0563 3.4288 4.3587 4.8795 7.6418 7.8725 8.0534 13.5314 k = 0.1162 0.0675-0.2433 ( 525 PWs) bands (ev): -6.8928 -1.1907 3.9128 4.1878 5.5425 7.1044 9.3812 9.4693 11.5489 k = 0.1038 0.3351-0.0537 ( 522 PWs) bands (ev): -6.4727 -2.1880 3.0329 5.3773 6.6085 6.7857 7.0341 9.7885 13.0565 k = 0.0976 0.3314 0.2349 ( 519 PWs) bands (ev): -6.1287 -2.2279 2.5773 3.5428 3.7134 9.7466 10.0725 10.3146 11.4705 k = 0.1162 0.3423-0.6309 ( 510 PWs) bands (ev): -4.7045 -3.5735 1.2948 1.9638 4.9017 8.1504 11.0284 11.8719 12.2044 k = 0.1100 0.3387-0.3423 ( 521 PWs) bands (ev): -5.5023 -3.1236 2.3834 3.4258 4.9236 7.1851 9.1425 10.7090 12.4580 k = 0.1225-0.4783 0.2433 ( 520 PWs) bands (ev): -5.0445 -4.0563 3.4288 4.3587 4.8795 7.6418 7.8725 8.0534 13.5314 k = 0.1162-0.4820 0.5319 ( 510 PWs) bands (ev): -4.7045 -3.5735 1.2948 1.9638 4.9017 8.1504 11.0284 11.8719 12.2044 k = 0.1349-0.4711-0.3339 ( 510 PWs) bands (ev): -5.0865 -2.7950 0.8337 2.8344 3.0589 9.3280 10.7361 11.6002 12.2990 k = 0.1287-0.4747-0.0453 ( 521 PWs) bands (ev): -5.5023 -3.1236 2.3834 3.4258 4.9236 7.1851 9.1425 10.7090 12.4580 k = 0.1162-0.2072 0.1443 ( 525 PWs) bands (ev): -6.8928 -1.1907 3.9128 4.1878 5.5425 7.1044 9.3812 9.4693 11.5489 k = 0.1100-0.2108 0.4329 ( 521 PWs) bands (ev): -5.5023 -3.1236 2.3834 3.4258 4.9236 7.1851 9.1425 10.7090 12.4580 k = 0.1287-0.2000-0.4329 ( 521 PWs) bands (ev): -5.5023 -3.1236 2.3834 3.4258 4.9236 7.1851 9.1425 10.7090 12.4580 k = 0.1225-0.2036-0.1443 ( 525 PWs) bands (ev): -6.8928 -1.1907 3.9128 4.1878 5.5425 7.1044 9.3812 9.4693 11.5489 k = 0.3425-0.0757-0.0537 ( 522 PWs) bands (ev): -6.4727 -2.1880 3.0329 5.3774 6.6085 6.7857 7.0341 9.7885 13.0565 k = 0.3363-0.0794 0.2349 ( 519 PWs) bands (ev): -6.1287 -2.2279 2.5773 3.5428 3.7134 9.7466 10.0725 10.3147 11.4705 k = 0.3549-0.0685-0.6309 ( 510 PWs) bands (ev): -4.7045 -3.5735 1.2948 1.9638 4.9017 8.1504 11.0284 11.8719 12.2044 k = 0.3487-0.0721-0.3423 ( 521 PWs) bands (ev): -5.5023 -3.1236 2.3835 3.4258 4.9236 7.1851 9.1425 10.7090 12.4580 k = 0.3363 0.1954-0.1527 ( 519 PWs) bands (ev): -6.1287 -2.2279 2.5773 3.5428 3.7134 9.7466 10.0725 10.3146 11.4705 k = 0.3300 0.1918 0.1359 ( 522 PWs) bands (ev): -6.2152 -3.2366 5.3260 5.3260 6.0914 7.1017 7.1017 7.8600 14.1199 k = 0.3487 0.2026-0.7299 ( 520 PWs) bands (ev): -5.1819 -3.7267 1.7244 4.1545 4.6311 8.3965 9.0155 11.5460 13.4039 k = 0.3425 0.1990-0.4413 ( 510 PWs) bands (ev): -5.0865 -2.7950 0.8337 2.8344 3.0589 9.3280 10.7361 11.6002 12.2990 k = 0.3549-0.6180 0.1443 ( 510 PWs) bands (ev): -4.7045 -3.5735 1.2948 1.9638 4.9017 8.1504 11.0284 11.8719 12.2044 k = 0.3487-0.6216 0.4329 ( 520 PWs) bands (ev): -5.1819 -3.7266 1.7244 4.1545 4.6311 8.3965 9.0155 11.5460 13.4039 k = 0.3674-0.6108-0.4329 ( 520 PWs) bands (ev): -5.1819 -3.7267 1.7244 4.1545 4.6311 8.3965 9.0155 11.5460 13.4039 k = 0.3612-0.6144-0.1443 ( 510 PWs) bands (ev): -4.7045 -3.5735 1.2948 1.9638 4.9017 8.1504 11.0284 11.8719 12.2044 k = 0.3487-0.3469 0.0453 ( 521 PWs) bands (ev): -5.5023 -3.1236 2.3835 3.4258 4.9236 7.1851 9.1425 10.7090 12.4580 k = 0.3425-0.3505 0.3339 ( 510 PWs) bands (ev): -5.0865 -2.7949 0.8337 2.8344 3.0589 9.3280 10.7361 11.6002 12.2990 k = 0.3612-0.3396-0.5319 ( 510 PWs) bands (ev): -4.7045 -3.5735 1.2948 1.9638 4.9017 8.1504 11.0284 11.8719 12.2044 k = 0.3549-0.3433-0.2433 ( 520 PWs) bands (ev): -5.0445 -4.0563 3.4288 4.3587 4.8795 7.6418 7.8725 8.0534 13.5314 the Fermi energy is 6.7199 ev ! total energy = -25.47497493 Ry Harris-Foulkes estimate = -25.47497493 Ry estimated scf accuracy < 9.2E-09 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.04526508 0.02630194 0.01864330 atom 2 type 1 force = -0.04526508 -0.02630194 -0.01864330 Total force = 0.078591 Total SCF correction = 0.000080 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -90.65 -0.00067385 -0.00006727 -0.00004768 -99.13 -9.90 -7.01 -0.00006727 -0.00059716 -0.00002771 -9.90 -87.85 -4.08 -0.00004768 -0.00002771 -0.00057772 -7.01 -4.08 -84.99 NEW FEATURE: constraints with variable cell ------------------------------------------- Variable-cell Dynamics: 10 iterations completed, stopping Entering Dynamics; it = 10 time = 0.06534 pico-seconds new lattice vectors (alat unit) : 1.084761303 0.045338521 0.032136805 0.576536162 0.919982576 0.032136947 0.576536163 0.335004878 0.857422241 new unit-cell volume = 279.6086 (a.u.)^3 new positions in cryst coord As 0.261238123 0.261238301 0.261238167 As -0.261238123 -0.261238301 -0.261238167 new positions in cart coord (alat unit) As 0.584607584 0.339694895 0.240782175 As -0.584607584 -0.339694895 -0.240782175 Ekin = 0.03357371 Ry T = 1025.5 K Etot = -25.44140122 new unit-cell volume = 279.60860 a.u.^3 ( 41.43372 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.084761303 0.045338521 0.032136805 0.576536162 0.919982576 0.032136947 0.576536163 0.335004878 0.857422241 ATOMIC_POSITIONS (crystal) As 0.261238123 0.261238301 0.261238167 As -0.261238123 -0.261238301 -0.261238167 Writing output data file pwscf.save init_run : 0.22s CPU 0.23s WALL ( 1 calls) electrons : 23.17s CPU 24.02s WALL ( 10 calls) update_pot : 1.02s CPU 1.04s WALL ( 9 calls) forces : 0.58s CPU 0.59s WALL ( 10 calls) stress : 1.24s CPU 1.27s WALL ( 10 calls) Called by init_run: wfcinit : 0.09s CPU 0.10s WALL ( 1 calls) potinit : 0.05s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 19.88s CPU 20.49s WALL ( 67 calls) sum_band : 3.04s CPU 3.17s WALL ( 67 calls) v_of_rho : 0.16s CPU 0.14s WALL ( 76 calls) mix_rho : 0.03s CPU 0.06s WALL ( 67 calls) Called by c_bands: init_us_2 : 0.66s CPU 0.62s WALL ( 4960 calls) cegterg : 19.33s CPU 19.85s WALL ( 2144 calls) Called by *egterg: h_psi : 14.25s CPU 14.50s WALL ( 6962 calls) g_psi : 0.84s CPU 0.74s WALL ( 4786 calls) cdiaghg : 1.49s CPU 1.55s WALL ( 6610 calls) Called by h_psi: add_vuspsi : 0.23s CPU 0.29s WALL ( 6962 calls) General routines calbec : 0.44s CPU 0.44s WALL ( 7602 calls) fft : 0.06s CPU 0.07s WALL ( 355 calls) fftw : 13.37s CPU 13.60s WALL ( 125632 calls) davcio : 0.01s CPU 0.23s WALL ( 7104 calls) PWSCF : 26.85s CPU 27.85s WALL This run was terminated on: 14:17: 6 2Oct2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav14-kauto.ref0000644000175000017500000002040712341373024017506 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:20 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav14-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1135 1135 315 47345 47345 6849 bravais-lattice index = 14 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2801.4282 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.100000 celldm(5)= 0.200000 celldm(6)= 0.300000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.450000 1.430909 0.000000 ) a(3) = ( 0.400000 0.083863 1.957796 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.314485 -0.190840 ) b(2) = ( 0.000000 0.698857 -0.029936 ) b(3) = ( 0.000000 0.000000 0.510778 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 4 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.0960928 0.0725006), wk = 0.5000000 k( 2) = ( 0.2500000 0.0960928 -0.1828886), wk = 0.5000000 k( 3) = ( 0.2500000 -0.2533355 0.0874684), wk = 0.5000000 k( 4) = ( 0.2500000 -0.2533355 -0.1679207), wk = 0.5000000 Dense grid: 47345 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.09 Mb ( 5923, 1) NL pseudopotentials 0.00 Mb ( 5923, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.36 Mb ( 47345) G-vector shells 0.10 Mb ( 13384) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.36 Mb ( 5923, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003955 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.395E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.115E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22010884 Ry Harris-Foulkes estimate = -2.29036862 Ry estimated scf accuracy < 0.13328676 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.245E-03 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23111748 Ry Harris-Foulkes estimate = -2.23157298 Ry estimated scf accuracy < 0.00100715 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.04E-05, avg # of iterations = 2.0 negative rho (up, down): 0.310E-04 0.000E+00 total cpu time spent up to now is 0.4 secs total energy = -2.23142234 Ry Harris-Foulkes estimate = -2.23142397 Ry estimated scf accuracy < 0.00001234 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.17E-07, avg # of iterations = 1.2 total cpu time spent up to now is 0.5 secs End of self-consistent calculation k = 0.2500 0.0961 0.0725 ( 5923 PWs) bands (ev): -10.2827 k = 0.2500 0.0961-0.1829 ( 5918 PWs) bands (ev): -10.2822 k = 0.2500-0.2533 0.0875 ( 5918 PWs) bands (ev): -10.2823 k = 0.2500-0.2533-0.1679 ( 5922 PWs) bands (ev): -10.2825 ! total energy = -2.23142358 Ry Harris-Foulkes estimate = -2.23142354 Ry estimated scf accuracy < 0.00000044 Ry The total energy is the sum of the following terms: one-electron contribution = -3.65347203 Ry hartree contribution = 1.92961073 Ry xc contribution = -1.31444021 Ry ewald contribution = 0.80687794 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.12s CPU 0.13s WALL ( 1 calls) electrons : 0.31s CPU 0.32s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.03s WALL ( 1 calls) potinit : 0.06s CPU 0.06s WALL ( 1 calls) Called by electrons: c_bands : 0.12s CPU 0.12s WALL ( 4 calls) sum_band : 0.06s CPU 0.06s WALL ( 4 calls) v_of_rho : 0.08s CPU 0.07s WALL ( 5 calls) mix_rho : 0.04s CPU 0.04s WALL ( 4 calls) Called by c_bands: cegterg : 0.11s CPU 0.12s WALL ( 16 calls) Called by *egterg: h_psi : 0.10s CPU 0.12s WALL ( 45 calls) g_psi : 0.02s CPU 0.01s WALL ( 25 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 41 calls) Called by h_psi: General routines fft : 0.01s CPU 0.02s WALL ( 19 calls) fftw : 0.10s CPU 0.11s WALL ( 114 calls) davcio : 0.00s CPU 0.00s WALL ( 52 calls) PWSCF : 0.47s CPU 0.49s WALL This run was terminated on: 10:22:20 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/cluster3.in0000755000175000017500000000067212341373024015075 0ustar mbamba&CONTROL calculation = 'relax' / &SYSTEM ibrav = 1, celldm(1) = 12.0 nat = 3, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, nbnd = 8 assume_isolated='martyna-tuckerman' / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / ATOMIC_SPECIES O 1.00 O.pbe-kjpaw.UPF H 1.00 H.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} O 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 K_POINTS Gamma espresso-5.1/PW/tests/noncolin.ref0000644000175000017500000006064612341373024015322 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:25:34 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin.in file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 22 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0270270 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0540541 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0540541 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0540541 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0540541 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0540541 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0540541 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0810811 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0270270 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0540541 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0540541 k( 12) = ( 0.1875000 0.0625000 0.0625000), wk = 0.0270270 k( 13) = ( 0.3125000 0.0625000 0.0625000), wk = 0.0270270 k( 14) = ( 0.4375000 0.0625000 0.0625000), wk = 0.0270270 k( 15) = ( 0.5625000 0.0625000 0.0625000), wk = 0.0270270 k( 16) = ( 0.6875000 0.0625000 0.0625000), wk = 0.0270270 k( 17) = ( 0.8125000 0.0625000 0.0625000), wk = 0.0270270 k( 18) = ( 0.1875000 0.1875000 0.0625000), wk = 0.0540541 k( 19) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0540541 k( 20) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0540541 k( 21) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0540541 k( 22) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0540541 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.332318 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.332318 90.000000 0.000000 ============================================================================== Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 0.6 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.573198 magnetization : 3.219577 0.000000 0.000000 magnetization/charge: 0.489804 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.219577 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 1.1 secs total energy = -55.69282469 Ry Harris-Foulkes estimate = -55.74047916 Ry estimated scf accuracy < 0.20220538 Ry total magnetization = 2.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.96 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.53E-03, avg # of iterations = 1.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.450784 magnetization : 3.068257 0.000000 0.000000 magnetization/charge: 0.475641 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.068257 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 1.4 secs total energy = -55.68005815 Ry Harris-Foulkes estimate = -55.70228344 Ry estimated scf accuracy < 0.06290855 Ry total magnetization = 3.05 0.00 0.00 Bohr mag/cell absolute magnetization = 3.05 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.86E-04, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.431606 magnetization : 3.032620 0.000000 0.000000 magnetization/charge: 0.471518 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.032620 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 1.7 secs total energy = -55.69823091 Ry Harris-Foulkes estimate = -55.69347498 Ry estimated scf accuracy < 0.00283656 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.55E-05, avg # of iterations = 3.7 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.404670 magnetization : 2.995707 0.000000 0.000000 magnetization/charge: 0.467738 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.995707 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 2.2 secs total energy = -55.69938139 Ry Harris-Foulkes estimate = -55.69891335 Ry estimated scf accuracy < 0.00071561 Ry total magnetization = 3.12 0.00 0.00 Bohr mag/cell absolute magnetization = 3.12 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 8.95E-06, avg # of iterations = 2.3 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.413943 magnetization : 3.018602 0.000000 0.000000 magnetization/charge: 0.470631 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.018602 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 2.5 secs total energy = -55.69965000 Ry Harris-Foulkes estimate = -55.69965759 Ry estimated scf accuracy < 0.00004735 Ry total magnetization = 3.13 0.00 0.00 Bohr mag/cell absolute magnetization = 3.13 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.92E-07, avg # of iterations = 3.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415233 magnetization : 3.027304 0.000000 0.000000 magnetization/charge: 0.471893 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.027304 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 2.9 secs total energy = -55.69967480 Ry Harris-Foulkes estimate = -55.69967447 Ry estimated scf accuracy < 0.00001979 Ry total magnetization = 3.14 0.00 0.00 Bohr mag/cell absolute magnetization = 3.14 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.47E-07, avg # of iterations = 1.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412032 magnetization : 3.056082 0.000000 0.000000 magnetization/charge: 0.476617 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.056082 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.2 secs total energy = -55.69966537 Ry Harris-Foulkes estimate = -55.69967666 Ry estimated scf accuracy < 0.00001131 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.41E-07, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412006 magnetization : 3.064265 0.000000 0.000000 magnetization/charge: 0.477895 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.064265 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.6 secs total energy = -55.69968182 Ry Harris-Foulkes estimate = -55.69968209 Ry estimated scf accuracy < 0.00000151 Ry total magnetization = 3.17 0.00 0.00 Bohr mag/cell absolute magnetization = 3.17 Bohr mag/cell iteration # 9 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.89E-08, avg # of iterations = 2.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412400 magnetization : 3.062430 0.000000 0.000000 magnetization/charge: 0.477579 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.062430 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.9 secs total energy = -55.69968321 Ry Harris-Foulkes estimate = -55.69968286 Ry estimated scf accuracy < 0.00000054 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell iteration # 10 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 6.77E-09, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412612 magnetization : 3.063216 0.000000 0.000000 magnetization/charge: 0.477686 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063216 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 4.2 secs total energy = -55.69968367 Ry Harris-Foulkes estimate = -55.69968335 Ry estimated scf accuracy < 0.00000003 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell iteration # 11 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.14E-10, avg # of iterations = 3.6 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412621 magnetization : 3.063235 0.000000 0.000000 magnetization/charge: 0.477689 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063235 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 4.7 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.6976 6.4710 11.6774 11.6774 11.9042 13.4681 13.4681 14.6641 14.6641 14.9256 16.5280 16.5281 38.7457 38.7457 39.4535 39.4535 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5809 11.6589 12.2028 13.1727 13.6071 14.5300 14.6022 15.2522 16.1627 16.7005 36.2587 37.2023 37.8445 38.7809 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6164 11.6487 12.6212 12.6638 13.8659 14.4963 14.5192 15.5613 15.7135 16.9736 33.8662 35.0496 35.4791 36.6426 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4571 11.8361 12.3101 13.1164 14.0830 14.4085 14.7054 15.2277 16.2731 17.3568 31.7404 32.7147 33.1542 34.0016 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 9.8490 10.8064 11.2898 12.1935 12.5753 13.2445 13.6127 15.0878 15.5268 15.8163 16.8412 18.2393 29.6281 30.1012 31.1488 31.4631 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 9.9296 10.1061 11.8334 12.4095 12.7227 13.1739 14.0665 15.6755 16.2010 17.3612 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.5655 9.5729 11.6859 11.7777 13.4305 13.8866 14.3760 16.5072 17.0646 17.7257 21.5119 22.9168 25.5707 25.8421 26.8447 27.0459 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.2750 9.2750 11.4415 11.4416 14.0747 14.4154 14.4155 17.3223 17.7665 17.7665 24.4157 24.4157 24.8001 25.5002 25.5002 25.8538 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3181 11.5671 12.6778 13.2539 13.5301 14.2181 14.4049 15.7704 16.2903 16.6104 33.9647 35.1499 36.7273 37.6011 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9223 17.3636 28.6266 30.1620 32.6051 33.8030 k = 0.1875 0.0625 0.0625 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5809 11.6589 12.2028 13.1727 13.6071 14.5300 14.6022 15.2522 16.1626 16.7005 36.2587 37.2023 37.8445 38.7809 k = 0.3125 0.0625 0.0625 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6164 11.6487 12.6211 12.6638 13.8660 14.4963 14.5192 15.5613 15.7135 16.9736 33.8661 35.0496 35.4791 36.6426 k = 0.4375 0.0625 0.0625 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4571 11.8361 12.3101 13.1164 14.0830 14.4086 14.7054 15.2277 16.2731 17.3568 31.7404 32.7147 33.1542 34.0016 k = 0.5625 0.0625 0.0625 ( 148 PWs) bands (ev): 9.8490 10.8064 11.2898 12.1935 12.5754 13.2445 13.6126 15.0878 15.5268 15.8163 16.8412 18.2393 29.6281 30.1012 31.1488 31.4631 k = 0.6875 0.0625 0.0625 ( 146 PWs) bands (ev): 9.9296 10.1061 11.8334 12.4094 12.7227 13.1740 14.0665 15.6755 16.2010 17.3612 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.8125 0.0625 0.0625 ( 144 PWs) bands (ev): 9.5654 9.5729 11.6859 11.7776 13.4305 13.8866 14.3760 16.5072 17.0646 17.7257 21.5120 22.9168 25.5707 25.8421 26.8447 27.0459 k = 0.1875 0.1875 0.0625 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3181 11.5671 12.6778 13.2538 13.5301 14.2181 14.4049 15.7704 16.2902 16.6105 33.9647 35.1499 36.7272 37.6011 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9222 17.3636 28.6266 30.1620 32.6051 33.8030 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9223 17.3637 28.6266 30.1620 32.6051 33.8030 the Fermi energy is 14.6622 ev ! total energy = -55.69968434 Ry Harris-Foulkes estimate = -55.69968370 Ry estimated scf accuracy < 7.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 8.92935697 Ry hartree contribution = 6.13358532 Ry xc contribution = -26.12190369 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00388912 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell convergence has been achieved in 11 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 193.21 0.00131325 0.00000000 0.00000000 193.19 0.00 0.00 0.00000000 0.00131351 0.00000000 0.00 193.22 0.00 0.00000000 0.00000000 0.00131351 0.00 0.00 193.22 Writing output data file pwscf.save init_run : 0.56s CPU 0.56s WALL ( 1 calls) electrons : 3.99s CPU 4.07s WALL ( 1 calls) stress : 0.26s CPU 0.27s WALL ( 1 calls) Called by init_run: wfcinit : 0.08s CPU 0.08s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 2.90s CPU 2.93s WALL ( 11 calls) sum_band : 0.79s CPU 0.80s WALL ( 11 calls) v_of_rho : 0.07s CPU 0.06s WALL ( 12 calls) newd : 0.16s CPU 0.16s WALL ( 12 calls) mix_rho : 0.02s CPU 0.03s WALL ( 11 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.04s WALL ( 528 calls) cegterg : 2.75s CPU 2.78s WALL ( 242 calls) Called by *egterg: h_psi : 1.76s CPU 1.75s WALL ( 871 calls) s_psi : 0.08s CPU 0.07s WALL ( 871 calls) g_psi : 0.05s CPU 0.07s WALL ( 607 calls) cdiaghg : 0.56s CPU 0.57s WALL ( 849 calls) Called by h_psi: add_vuspsi : 0.10s CPU 0.08s WALL ( 871 calls) General routines calbec : 0.06s CPU 0.08s WALL ( 1135 calls) fft : 0.06s CPU 0.07s WALL ( 381 calls) ffts : 0.01s CPU 0.01s WALL ( 92 calls) fftw : 1.32s CPU 1.33s WALL ( 46604 calls) interpolate : 0.03s CPU 0.03s WALL ( 92 calls) davcio : 0.00s CPU 0.02s WALL ( 770 calls) PWSCF : 4.93s CPU 5.06s WALL This run was terminated on: 10:25:39 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/atom-lsda.in0000755000175000017500000000072312341373024015207 0ustar mbamba &control calculation='scf', / &system ibrav=1, celldm(1)=10.0, nat=1, ntyp=1, nbnd=6, ecutwfc=25.0, ecutrho=200.0, occupations='from_input', nspin=2 / &electrons mixing_beta=0.25, / ATOMIC_SPECIES O 15.99994 O.pz-rrkjus.UPF ATOMIC_POSITIONS alat O 0.000000000 0.000000000 0.000000000 K_POINTS {gamma} OCCUPATIONS 1.0 1.0000000000 1.0000000000 1.0000000000 0.0 0.0 1.0 0.3333333333 0.3333333333 0.3333333333 0.0 0.0 espresso-5.1/PW/tests/scf-kauto.in0000644000175000017500000000041412341373024015214 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS alat Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS automatic 2 2 2 1 1 1 espresso-5.1/PW/tests/noncolin-cg.in0000755000175000017500000000164012341373024015533 0ustar mbamba &control calculation='scf' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons diagonalization='cg' mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS (alat) Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 espresso-5.1/PW/tests/dft6.in0000755000175000017500000000053512341373024014172 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 input_dft='hcth' / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/atom.in0000755000175000017500000000062512341373024014267 0ustar mbamba &control calculation='scf', / &system ibrav=1, celldm(1)=10.0, nat=1, ntyp=1, nbnd=6, ecutwfc=25.0, ecutrho=200.0, occupations='from_input', / &electrons mixing_beta=0.25, / ATOMIC_SPECIES O 15.99994 O.pz-rrkjus.UPF ATOMIC_POSITIONS alat O 0.000000000 0.000000000 0.000000000 K_POINTS {gamma} OCCUPATIONS 2.0 1.3333333333 1.3333333333 1.3333333333 0.0 0.0 espresso-5.1/PW/tests/lattice-ibrav5.ref0000644000175000017500000002014012341373024016277 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:22 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav5.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 685 685 163 11935 11935 1459 Tot 343 343 82 bravais-lattice index = 5 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 707.1068 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.500000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 -0.288675 0.816497 ) a(2) = ( 0.000000 0.577350 0.816497 ) a(3) = ( -0.500000 -0.288675 0.816497 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.577350 0.408248 ) b(2) = ( 0.000000 1.154701 0.408248 ) b(3) = ( -1.000000 -0.577350 0.408248 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5968 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 730, 1) NL pseudopotentials 0.00 Mb ( 730, 0) Each V/rho on FFT grid 0.50 Mb ( 32768) Each G-vector array 0.05 Mb ( 5968) G-vector shells 0.00 Mb ( 170) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 730, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 4.00 Mb ( 32768, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.556E-05 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 11.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.351E-06 0.000E+00 total cpu time spent up to now is 0.0 secs total energy = -2.22425996 Ry Harris-Foulkes estimate = -2.29125426 Ry estimated scf accuracy < 0.12801830 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.40E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23591074 Ry Harris-Foulkes estimate = -2.23617759 Ry estimated scf accuracy < 0.00063987 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.20E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23646866 Ry Harris-Foulkes estimate = -2.23646835 Ry estimated scf accuracy < 0.00003311 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23647137 Ry Harris-Foulkes estimate = -2.23646985 Ry estimated scf accuracy < 0.00000333 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 730 PWs) bands (ev): -10.2484 ! total energy = -2.23647187 Ry Harris-Foulkes estimate = -2.23647214 Ry estimated scf accuracy < 0.00000045 Ry The total energy is the sum of the following terms: one-electron contribution = -2.51662686 Ry hartree contribution = 1.35365217 Ry xc contribution = -1.29905274 Ry ewald contribution = 0.22555555 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.06s CPU 0.06s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 5 calls) sum_band : 0.01s CPU 0.01s WALL ( 5 calls) v_of_rho : 0.03s CPU 0.03s WALL ( 6 calls) mix_rho : 0.00s CPU 0.01s WALL ( 5 calls) Called by c_bands: regterg : 0.01s CPU 0.01s WALL ( 5 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 14 calls) g_psi : 0.00s CPU 0.00s WALL ( 8 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 13 calls) Called by h_psi: General routines fft : 0.01s CPU 0.01s WALL ( 23 calls) fftw : 0.01s CPU 0.01s WALL ( 33 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PWSCF : 0.12s CPU 0.12s WALL This run was terminated on: 10:22:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/vc-md1.in0000755000175000017500000000151412341373024014414 0ustar mbamba &CONTROL calculation = "vc-md", dt = 150 nstep=10 / &SYSTEM ibrav = 14, A = 3.70971016 , B = 3.70971016 , C = 3.70971016 , cosAB = 0.49517470 , cosAC = 0.49517470 , cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 / &ELECTRONS conv_thr = 1.0d-7 / &IONS / &CELL cell_dynamics = 'w' , press = 0.00 , wmass = 0.00700000 / ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 espresso-5.1/PW/tests/hse-si111.in0000755000175000017500000000147512341373024014746 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='hse', nqx1=1, nqx2=1, nqx3=1, exxdiv_treatment='gygi-baldereschi' x_gamma_extrapolation = .true. / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/b3lyp-h2o.in0000644000175000017500000000074612341373024015047 0ustar mbamba &control calculation = 'relax', / &system ibrav = 1, celldm(1) = 12.0, nat = 3, ntyp = 2, nbnd = 4, ecutwfc = 80, input_dft = 'B3LYP' exxdiv_treatment = 'gygi-baldereschi' x_gamma_extrapolation = .TRUE. / &electrons / &ions / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.00d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (bohr) O 0.0099 0.0099 0.0000 H 1.8325 -0.2243 -0.0001 H -0.2243 1.8325 0.0002 K_POINTS gamma espresso-5.1/PW/tests/lsda-tot_magnetization.in0000755000175000017500000000056712341373024020014 0ustar mbamba &control calculation='scf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02, tot_magnetization=2 / &electrons / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {alat} Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.1/PW/tests/paw-atom_tqr.ref0000644000175000017500000002334612341373024016112 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:22:15 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/paw-atom_tqr.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2335 2335 583 74249 74249 9377 Tot 1168 1168 292 bravais-lattice index = 2 lattice parameter (alat) = 26.0000 a.u. unit-cell volume = 4394.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 26.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pbe-kjpaw.UPF MD5 check sum: 92cd914fcb04cfd737edc2091ad11b5d Pseudo is Projector augmented-wave + core cor, Zval = 11.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1199 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 0 l(4) = 0 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 1.00000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 37125 G-vectors FFT dimensions: ( 60, 60, 60) Occupations read from input 2.0000 2.0000 2.0000 2.0000 2.0000 1.0000 0.0000 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 4689, 9) NL pseudopotentials 1.29 Mb ( 4689, 18) Each V/rho on FFT grid 3.30 Mb ( 216000) Each G-vector array 0.28 Mb ( 37125) G-vector shells 0.00 Mb ( 574) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.29 Mb ( 4689, 36) Each subspace H/S matrix 0.01 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 26.37 Mb ( 216000, 8) Check: negative/imaginary core charge= -0.000001 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.011950 starting charge 10.99972, renormalised to 11.00000 negative rho (up, down): 0.120E-01 0.000E+00 Starting wfc are 9 randomized atomic wfcs total cpu time spent up to now is 2.4 secs per-process dynamical memory: 46.8 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.17E-06, avg # of iterations = 4.0 negative rho (up, down): 0.111E-01 0.000E+00 total cpu time spent up to now is 3.3 secs total energy = -212.94079569 Ry Harris-Foulkes estimate = -212.94279285 Ry estimated scf accuracy < 0.00246520 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-05, avg # of iterations = 3.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 4.0 secs total energy = -212.94102781 Ry Harris-Foulkes estimate = -212.94298732 Ry estimated scf accuracy < 0.00412787 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-05, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 4.6 secs total energy = -212.94187920 Ry Harris-Foulkes estimate = -212.94187496 Ry estimated scf accuracy < 0.00000437 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-08, avg # of iterations = 9.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 5.4 secs total energy = -212.94189395 Ry Harris-Foulkes estimate = -212.94189850 Ry estimated scf accuracy < 0.00000986 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-08, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 6.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 4689 PWs) bands (ev): -4.6506 -4.6506 -4.6506 -4.6499 -4.6499 -4.2673 -0.3245 -0.2044 -0.2044 highest occupied, lowest unoccupied level (ev): -4.2673 -0.3245 ! total energy = -212.94189022 Ry Harris-Foulkes estimate = -212.94189050 Ry estimated scf accuracy < 0.00000043 Ry total all-electron energy = -3309.698908 Ry The total energy is the sum of the following terms: one-electron contribution = -135.99214869 Ry hartree contribution = 59.89117547 Ry xc contribution = -19.40012168 Ry ewald contribution = -21.33724282 Ry one-center paw contrib. = -96.10355251 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 2.07s CPU 2.10s WALL ( 1 calls) electrons : 3.52s CPU 3.59s WALL ( 1 calls) Called by init_run: wfcinit : 0.04s CPU 0.04s WALL ( 1 calls) potinit : 0.46s CPU 0.49s WALL ( 1 calls) realus : 0.06s CPU 0.06s WALL ( 1 calls) Called by electrons: c_bands : 0.87s CPU 0.88s WALL ( 6 calls) sum_band : 0.24s CPU 0.24s WALL ( 6 calls) v_of_rho : 1.08s CPU 1.12s WALL ( 6 calls) newd : 0.02s CPU 0.01s WALL ( 6 calls) mix_rho : 0.12s CPU 0.12s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.03s WALL ( 13 calls) regterg : 0.81s CPU 0.82s WALL ( 6 calls) Called by *egterg: h_psi : 0.70s CPU 0.70s WALL ( 29 calls) s_psi : 0.00s CPU 0.01s WALL ( 29 calls) g_psi : 0.02s CPU 0.02s WALL ( 22 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 27 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.01s WALL ( 29 calls) General routines calbec : 0.02s CPU 0.03s WALL ( 35 calls) fft : 0.26s CPU 0.25s WALL ( 68 calls) fftw : 0.52s CPU 0.53s WALL ( 240 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PAW routines PAW_pot : 1.54s CPU 1.55s WALL ( 6 calls) PAW_ddot : 0.07s CPU 0.06s WALL ( 22 calls) PAW_symme : 0.00s CPU 0.01s WALL ( 12 calls) PWSCF : 6.01s CPU 6.16s WALL This run was terminated on: 11:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/eval_infix.in20000755000175000017500000000060412341373024015532 0ustar mbamba &control calculation='scf', / &system ibrav=1, celldm(1)=10.0, nat=1, ntyp=1, nbnd=6, ecutwfc=25.0, ecutrho=200.0, occupations='from_input', / &electrons mixing_beta=0.25, / ATOMIC_SPECIES O 15.99994 O.pz-rrkjus.UPF ATOMIC_POSITIONS alat O 0.000000000 0.000000000 0.000000000 K_POINTS {gamma} OCCUPATIONS 2 4/3 1+1/3 (1+2/2*3)/3 3*0 1-1 espresso-5.1/PW/tests/atom-sigmapbe.ref0000644000175000017500000003320412341373024016216 0ustar mbamba Program PWSCF v.4.99 starts on 5Jan2012 at 22:44:12 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/atom-sigmapbe.in file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1597 793 193 47833 16879 2103 Tot 799 397 97 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) Starting magnetic structure atomic species magnetization O 0.000 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 23917 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 8440 G-vectors FFT dimensions: ( 32, 32, 32) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 Spin-down 1.0000 0.3333 0.3333 0.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 1052, 6) NL pseudopotentials 0.13 Mb ( 1052, 8) Each V/rho on FFT grid 2.78 Mb ( 91125, 2) Each G-vector array 0.18 Mb ( 23917) G-vector shells 0.00 Mb ( 424) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 1052, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.379E-05 0.379E-05 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.7 secs per-process dynamical memory: 27.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.5 negative rho (up, down): 0.360E-05 0.256E-05 total cpu time spent up to now is 1.0 secs total energy = -31.42250911 Ry Harris-Foulkes estimate = -31.37473853 Ry estimated scf accuracy < 0.07309318 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.22E-03, avg # of iterations = 1.0 negative rho (up, down): 0.497E-02 0.783E-02 total cpu time spent up to now is 1.3 secs total energy = -31.48680846 Ry Harris-Foulkes estimate = -31.42284589 Ry estimated scf accuracy < 0.04338133 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 7.23E-04, avg # of iterations = 1.5 negative rho (up, down): 0.374E-02 0.548E-02 total cpu time spent up to now is 1.5 secs total energy = -31.49065417 Ry Harris-Foulkes estimate = -31.49010164 Ry estimated scf accuracy < 0.00031459 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 5.24E-06, avg # of iterations = 7.0 negative rho (up, down): 0.288E-02 0.363E-02 total cpu time spent up to now is 1.8 secs total energy = -31.49116619 Ry Harris-Foulkes estimate = -31.49076335 Ry estimated scf accuracy < 0.00004008 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 6.68E-07, avg # of iterations = 2.0 negative rho (up, down): 0.208E-02 0.233E-02 total cpu time spent up to now is 2.1 secs total energy = -31.49103354 Ry Harris-Foulkes estimate = -31.49118900 Ry estimated scf accuracy < 0.00001202 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.00E-07, avg # of iterations = 2.0 negative rho (up, down): 0.139E-02 0.157E-02 total cpu time spent up to now is 2.3 secs total energy = -31.49102618 Ry Harris-Foulkes estimate = -31.49103846 Ry estimated scf accuracy < 0.00000077 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.28E-08, avg # of iterations = 2.0 negative rho (up, down): 0.926E-03 0.104E-02 total cpu time spent up to now is 2.6 secs total energy = -31.49107335 Ry Harris-Foulkes estimate = -31.49102707 Ry estimated scf accuracy < 0.00000003 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 5.01E-10, avg # of iterations = 3.0 negative rho (up, down): 0.599E-03 0.675E-03 total cpu time spent up to now is 2.9 secs total energy = -31.49103020 Ry Harris-Foulkes estimate = -31.49107377 Ry estimated scf accuracy < 0.00000003 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 9 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.37E-10, avg # of iterations = 2.0 negative rho (up, down): 0.380E-03 0.431E-03 total cpu time spent up to now is 3.2 secs total energy = -31.49100971 Ry Harris-Foulkes estimate = -31.49103029 Ry estimated scf accuracy < 0.00000002 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 10 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.85E-10, avg # of iterations = 3.0 negative rho (up, down): 0.237E-03 0.273E-03 total cpu time spent up to now is 3.5 secs total energy = -31.49100424 Ry Harris-Foulkes estimate = -31.49100980 Ry estimated scf accuracy < 0.00000002 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 11 ecut= 25.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.63E-10, avg # of iterations = 2.5 negative rho (up, down): 0.111E-04 0.266E-06 total cpu time spent up to now is 3.7 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -24.6105 -9.5350 -9.5350 -9.5350 -0.6504 4.2820 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 1052 PWs) bands (ev): -21.2305 -6.3592 -6.3592 -6.3592 -0.4257 4.4441 highest occupied, lowest unoccupied level (ev): -6.3592 -0.6504 ! total energy = -31.49101032 Ry Harris-Foulkes estimate = -31.49100429 Ry estimated scf accuracy < 9.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -31.96175336 Ry hartree contribution = 17.29522001 Ry xc contribution = -6.61020597 Ry ewald contribution = -10.21427100 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 11 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.98 -0.00010182 0.00000000 0.00000000 -14.98 0.00 0.00 0.00000000 -0.00010182 0.00000000 0.00 -14.98 0.00 0.00000000 0.00000000 -0.00010182 0.00 0.00 -14.98 Writing output data file pwscf.save init_run : 0.64s CPU 0.65s WALL ( 1 calls) electrons : 2.92s CPU 3.04s WALL ( 1 calls) stress : 0.31s CPU 0.32s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.19s CPU 0.20s WALL ( 1 calls) Called by electrons: c_bands : 0.25s CPU 0.25s WALL ( 11 calls) sum_band : 0.45s CPU 0.47s WALL ( 11 calls) v_of_rho : 1.76s CPU 1.82s WALL ( 12 calls) newd : 0.28s CPU 0.28s WALL ( 12 calls) mix_rho : 0.15s CPU 0.14s WALL ( 11 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.02s WALL ( 48 calls) regterg : 0.22s CPU 0.23s WALL ( 22 calls) Called by *egterg: h_psi : 0.17s CPU 0.18s WALL ( 89 calls) s_psi : 0.00s CPU 0.00s WALL ( 89 calls) g_psi : 0.02s CPU 0.01s WALL ( 65 calls) rdiaghg : 0.02s CPU 0.01s WALL ( 87 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 89 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 113 calls) fft : 0.57s CPU 0.57s WALL ( 371 calls) ffts : 0.01s CPU 0.02s WALL ( 46 calls) fftw : 0.14s CPU 0.14s WALL ( 474 calls) interpolate : 0.10s CPU 0.13s WALL ( 46 calls) davcio : 0.00s CPU 0.00s WALL ( 70 calls) PWSCF : 3.96s CPU 4.14s WALL This run was terminated on: 22:44:17 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/vc-relax1.ref0000644000175000017500000067107212341373024015306 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:48 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/vc-relax1.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 121 4159 4159 833 bravais-lattice index = 14 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.495175 celldm(6)= 0.495175 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.495175 0.868793 0.000000 ) a(3) = ( 0.495175 0.287729 0.819765 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.569957 -0.403996 ) b(2) = ( 0.000000 1.151022 -0.403996 ) b(3) = ( 0.000000 0.000000 1.219862 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) cell mass = 0.00700 AMU/(a.u.)^2 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.5772212 0.3354030 0.2377400 ) 2 As tau( 2) = ( -0.5772212 -0.3354030 -0.2377400 ) number of k points= 32 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.0726331 0.0514837), wk = 0.0625000 k( 2) = ( 0.1250000 0.0726331 0.3564493), wk = 0.0625000 k( 3) = ( 0.1250000 0.0726331 -0.5584473), wk = 0.0625000 k( 4) = ( 0.1250000 0.0726331 -0.2534818), wk = 0.0625000 k( 5) = ( 0.1250000 0.3603885 -0.0495153), wk = 0.0625000 k( 6) = ( 0.1250000 0.3603885 0.2554502), wk = 0.0625000 k( 7) = ( 0.1250000 0.3603885 -0.6594464), wk = 0.0625000 k( 8) = ( 0.1250000 0.3603885 -0.3544809), wk = 0.0625000 k( 9) = ( 0.1250000 -0.5028777 0.2534818), wk = 0.0625000 k( 10) = ( 0.1250000 -0.5028777 0.5584473), wk = 0.0625000 k( 11) = ( 0.1250000 -0.5028777 -0.3564493), wk = 0.0625000 k( 12) = ( 0.1250000 -0.5028777 -0.0514837), wk = 0.0625000 k( 13) = ( 0.1250000 -0.2151223 0.1524828), wk = 0.0625000 k( 14) = ( 0.1250000 -0.2151223 0.4574483), wk = 0.0625000 k( 15) = ( 0.1250000 -0.2151223 -0.4574483), wk = 0.0625000 k( 16) = ( 0.1250000 -0.2151223 -0.1524828), wk = 0.0625000 k( 17) = ( 0.3750000 -0.0698561 -0.0495153), wk = 0.0625000 k( 18) = ( 0.3750000 -0.0698561 0.2554502), wk = 0.0625000 k( 19) = ( 0.3750000 -0.0698561 -0.6594464), wk = 0.0625000 k( 20) = ( 0.3750000 -0.0698561 -0.3544809), wk = 0.0625000 k( 21) = ( 0.3750000 0.2178993 -0.1505144), wk = 0.0625000 k( 22) = ( 0.3750000 0.2178993 0.1544512), wk = 0.0625000 k( 23) = ( 0.3750000 0.2178993 -0.7604454), wk = 0.0625000 k( 24) = ( 0.3750000 0.2178993 -0.4554799), wk = 0.0625000 k( 25) = ( 0.3750000 -0.6453669 0.1524828), wk = 0.0625000 k( 26) = ( 0.3750000 -0.6453669 0.4574483), wk = 0.0625000 k( 27) = ( 0.3750000 -0.6453669 -0.4574483), wk = 0.0625000 k( 28) = ( 0.3750000 -0.6453669 -0.1524828), wk = 0.0625000 k( 29) = ( 0.3750000 -0.3576115 0.0514837), wk = 0.0625000 k( 30) = ( 0.3750000 -0.3576115 0.3564493), wk = 0.0625000 k( 31) = ( 0.3750000 -0.3576115 -0.5584473), wk = 0.0625000 k( 32) = ( 0.3750000 -0.3576115 -0.2534818), wk = 0.0625000 Dense grid: 4159 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.3 secs per-process dynamical memory: 2.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.0 secs total energy = -25.43995377 Ry Harris-Foulkes estimate = -25.44370976 Ry estimated scf accuracy < 0.01555766 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -25.44008188 Ry Harris-Foulkes estimate = -25.44026393 Ry estimated scf accuracy < 0.00088611 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.86E-06, avg # of iterations = 1.8 total cpu time spent up to now is 1.6 secs total energy = -25.44011454 Ry Harris-Foulkes estimate = -25.44011592 Ry estimated scf accuracy < 0.00000522 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.22E-08, avg # of iterations = 3.1 total cpu time spent up to now is 2.0 secs total energy = -25.44012210 Ry Harris-Foulkes estimate = -25.44012241 Ry estimated scf accuracy < 0.00000067 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.69E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.3 secs End of self-consistent calculation k = 0.1250 0.0726 0.0515 ( 531 PWs) bands (ev): -6.9960 4.5196 5.9667 5.9667 8.4360 11.0403 11.7601 11.7602 16.5645 k = 0.1250 0.0726 0.3564 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7170 k = 0.1250 0.0726-0.5584 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250 0.0726-0.2535 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250 0.3604-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1250 0.3604 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1250 0.3604-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250 0.3604-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.5029 0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250-0.5029 0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250-0.5029-0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.1250-0.5029-0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151 0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250-0.2151 0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.3750-0.0699-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.3750-0.0699 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1264 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750-0.0699-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.0699-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750 0.2179-0.1505 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750 0.2179 0.1545 ( 522 PWs) bands (ev): -5.8586 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1191 17.3944 k = 0.3750 0.2179-0.7604 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750 0.2179-0.4555 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.6454 0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.6454 0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.3750-0.6454-0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750-0.6454-0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576 0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750-0.3576 0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.3576-0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576-0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7262 the Fermi energy is 10.0033 ev ! total energy = -25.44012218 Ry Harris-Foulkes estimate = -25.44012218 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.10311786 -0.05991789 -0.04247081 atom 2 type 1 force = 0.10311786 0.05991789 0.04247081 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.52 0.00123597 -0.00028343 -0.00020091 181.82 -41.69 -29.55 -0.00028343 0.00155904 -0.00011672 -41.69 229.34 -17.17 -0.00020091 -0.00011672 0.00164099 -29.55 -17.17 241.40 Wentzcovitch Damped Cell-Dynamics Minimization convergence thresholds: EPSE = 0.10E-03 EPSF = 0.10E-02 EPSP = 0.50E+00 Entering Dynamics; it = 1 time = 0.00000 pico-seconds new lattice vectors (alat unit) : 1.011842653 -0.002715711 -0.001925011 0.498679490 0.880426878 -0.001924849 0.498679438 0.289765194 0.831379247 new unit-cell volume = 255.9441 (a.u.)^3 new positions in cryst coord As 0.288386144 0.288386159 0.288386166 As -0.288386144 -0.288386159 -0.288386166 new positions in cart coord (alat unit) As 0.579425915 0.336684025 0.238648027 As -0.579425915 -0.336684025 -0.238648027 Ekin = 0.00000000 Ry T = 0.0 K Etot = -25.44012218 new unit-cell volume = 255.94411 a.u.^3 ( 37.92700 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.011842653 -0.002715711 -0.001925011 0.498679490 0.880426878 -0.001924849 0.498679438 0.289765194 0.831379247 ATOMIC_POSITIONS (crystal) As 0.288386144 0.288386159 0.288386166 As -0.288386144 -0.288386159 -0.288386166 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1238271 0.0719516 0.0510007), wk = 0.0625000 k( 2) = ( 0.1243992 0.0722840 0.3512468), wk = 0.0625000 k( 3) = ( 0.1226829 0.0712868 -0.5494916), wk = 0.0625000 k( 4) = ( 0.1232550 0.0716192 -0.2492455), wk = 0.0625000 k( 5) = ( 0.1243992 0.3553640 -0.0481218), wk = 0.0625000 k( 6) = ( 0.1249713 0.3556964 0.2521243), wk = 0.0625000 k( 7) = ( 0.1232550 0.3546993 -0.6486140), wk = 0.0625000 k( 8) = ( 0.1238271 0.3550316 -0.3483679), wk = 0.0625000 k( 9) = ( 0.1226830 -0.4948733 0.2492455), wk = 0.0625000 k( 10) = ( 0.1232551 -0.4945409 0.5494917), wk = 0.0625000 k( 11) = ( 0.1215388 -0.4955380 -0.3512467), wk = 0.0625000 k( 12) = ( 0.1221109 -0.4952056 -0.0510006), wk = 0.0625000 k( 13) = ( 0.1232551 -0.2114608 0.1501231), wk = 0.0625000 k( 14) = ( 0.1238272 -0.2111285 0.4503692), wk = 0.0625000 k( 15) = ( 0.1221108 -0.2121256 -0.4503691), wk = 0.0625000 k( 16) = ( 0.1226830 -0.2117932 -0.1501230), wk = 0.0625000 k( 17) = ( 0.3703372 -0.0678900 -0.0481217), wk = 0.0625000 k( 18) = ( 0.3709093 -0.0675577 0.2521244), wk = 0.0625000 k( 19) = ( 0.3691930 -0.0685548 -0.6486139), wk = 0.0625000 k( 20) = ( 0.3697651 -0.0682224 -0.3483678), wk = 0.0625000 k( 21) = ( 0.3709093 0.2155224 -0.1472442), wk = 0.0625000 k( 22) = ( 0.3714814 0.2158548 0.1530020), wk = 0.0625000 k( 23) = ( 0.3697651 0.2148577 -0.7477364), wk = 0.0625000 k( 24) = ( 0.3703372 0.2151900 -0.4474903), wk = 0.0625000 k( 25) = ( 0.3691931 -0.6347149 0.1501232), wk = 0.0625000 k( 26) = ( 0.3697652 -0.6343825 0.4503693), wk = 0.0625000 k( 27) = ( 0.3680489 -0.6353796 -0.4503691), wk = 0.0625000 k( 28) = ( 0.3686210 -0.6350473 -0.1501229), wk = 0.0625000 k( 29) = ( 0.3697651 -0.3513025 0.0510007), wk = 0.0625000 k( 30) = ( 0.3703372 -0.3509701 0.3512469), wk = 0.0625000 k( 31) = ( 0.3686209 -0.3519672 -0.5494915), wk = 0.0625000 k( 32) = ( 0.3691930 -0.3516348 -0.2492454), wk = 0.0625000 extrapolated charge 10.41311, renormalised to 10.00000 total cpu time spent up to now is 2.6 secs per-process dynamical memory: 3.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 3.3 secs total energy = -25.45860856 Ry Harris-Foulkes estimate = -25.70449924 Ry estimated scf accuracy < 0.00082346 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.23E-06, avg # of iterations = 3.1 total cpu time spent up to now is 3.7 secs total energy = -25.46012355 Ry Harris-Foulkes estimate = -25.46039810 Ry estimated scf accuracy < 0.00067885 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.79E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.0 secs total energy = -25.46010233 Ry Harris-Foulkes estimate = -25.46015331 Ry estimated scf accuracy < 0.00014945 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.3 secs total energy = -25.46008422 Ry Harris-Foulkes estimate = -25.46010844 Ry estimated scf accuracy < 0.00004698 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.70E-07, avg # of iterations = 2.4 total cpu time spent up to now is 4.6 secs total energy = -25.46009200 Ry Harris-Foulkes estimate = -25.46009259 Ry estimated scf accuracy < 0.00000113 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-08, avg # of iterations = 2.2 total cpu time spent up to now is 4.9 secs total energy = -25.46009237 Ry Harris-Foulkes estimate = -25.46009245 Ry estimated scf accuracy < 0.00000020 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.02E-09, avg # of iterations = 1.0 total cpu time spent up to now is 5.2 secs End of self-consistent calculation k = 0.1238 0.0720 0.0510 ( 531 PWs) bands (ev): -7.1390 3.6957 5.5400 5.5400 7.8026 10.3999 11.1877 11.1877 15.8506 k = 0.1244 0.0723 0.3512 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0275 k = 0.1227 0.0713-0.5495 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7104 7.2602 10.1665 11.8237 13.0622 17.0367 k = 0.1233 0.0716-0.2492 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7696 k = 0.1244 0.3554-0.0481 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0274 k = 0.1250 0.3557 0.2521 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.1233 0.3547-0.6486 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.1238 0.3550-0.3484 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1568 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1227-0.4949 0.2492 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7104 7.2602 10.1665 11.8237 13.0622 17.0367 k = 0.1233-0.4945 0.5495 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.1215-0.4955-0.3512 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.1221-0.4952-0.0510 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1568 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1233-0.2115 0.1501 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7696 k = 0.1238-0.2111 0.4504 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1221-0.2121-0.4504 ( 521 PWs) bands (ev): -4.9485 -1.8629 2.7436 6.1568 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.1227-0.2118-0.1501 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7696 k = 0.3703-0.0679-0.0481 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0274 k = 0.3709-0.0676 0.2521 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.3692-0.0686-0.6486 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3698-0.0682-0.3484 ( 521 PWs) bands (ev): -4.9485 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.3709 0.2155-0.1472 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.3715 0.2159 0.1530 ( 522 PWs) bands (ev): -6.0213 0.3365 5.4803 5.4803 6.7061 9.4594 9.4594 11.2681 16.7047 k = 0.3698 0.2149-0.7477 ( 520 PWs) bands (ev): -5.0512 -0.5731 2.1761 4.4290 6.9025 10.9015 11.3374 13.7575 16.9831 k = 0.3703 0.2152-0.4475 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.3692-0.6347 0.1501 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3698-0.6344 0.4504 ( 520 PWs) bands (ev): -5.0512 -0.5731 2.1761 4.4290 6.9025 10.9015 11.3374 13.7575 16.9831 k = 0.3680-0.6354-0.4504 ( 520 PWs) bands (ev): -5.0512 -0.5731 2.1761 4.4290 6.9025 10.9015 11.3374 13.7575 16.9831 k = 0.3686-0.6350-0.1501 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3698-0.3513 0.0510 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.3703-0.3510 0.3512 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.3686-0.3520-0.5495 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4087 k = 0.3692-0.3516-0.2492 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7104 7.2602 10.1665 11.8237 13.0622 17.0367 the Fermi energy is 8.9906 ev ! total energy = -25.46009238 Ry Harris-Foulkes estimate = -25.46009238 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.08520934 -0.04951205 -0.03509532 atom 2 type 1 force = 0.08520934 0.04951205 0.03509532 Total force = 0.147944 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 143.05 0.00086728 -0.00012280 -0.00008704 127.58 -18.06 -12.80 -0.00012280 0.00100726 -0.00005058 -18.06 148.17 -7.44 -0.00008704 -0.00005058 0.00104277 -12.80 -7.44 153.40 Entering Dynamics; it = 2 time = 0.00726 pico-seconds new lattice vectors (alat unit) : 1.035662444 -0.006572611 -0.004658880 0.507123599 0.903031061 -0.004658620 0.507123526 0.294671805 0.853613256 new unit-cell volume = 277.0123 (a.u.)^3 new positions in cryst coord As 0.284850348 0.284850374 0.284850340 As -0.284850348 -0.284850374 -0.284850340 new positions in cart coord (alat unit) As 0.583917463 0.339293889 0.240497933 As -0.583917463 -0.339293889 -0.240497933 Ekin = 0.02014338 Ry T = 706.8 K Etot = -25.43994899 new unit-cell volume = 277.01233 a.u.^3 ( 41.04899 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.035662444 -0.006572611 -0.004658880 0.507123599 0.903031061 -0.004658620 0.507123526 0.294671805 0.853613256 ATOMIC_POSITIONS (crystal) As 0.284850348 0.284850374 0.284850340 As -0.284850348 -0.284850374 -0.284850340 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1213681 0.0705228 0.0499879), wk = 0.0625000 k( 2) = ( 0.1226857 0.0712883 0.3418135), wk = 0.0625000 k( 3) = ( 0.1187329 0.0689917 -0.5336634), wk = 0.0625000 k( 4) = ( 0.1200505 0.0697572 -0.2418378), wk = 0.0625000 k( 5) = ( 0.1226857 0.3461334 -0.0459371), wk = 0.0625000 k( 6) = ( 0.1240033 0.3468989 0.2458885), wk = 0.0625000 k( 7) = ( 0.1200505 0.3446023 -0.6295884), wk = 0.0625000 k( 8) = ( 0.1213681 0.3453678 -0.3377628), wk = 0.0625000 k( 9) = ( 0.1187329 -0.4806985 0.2418379), wk = 0.0625000 k( 10) = ( 0.1200506 -0.4799329 0.5336635), wk = 0.0625000 k( 11) = ( 0.1160977 -0.4822295 -0.3418134), wk = 0.0625000 k( 12) = ( 0.1174153 -0.4814640 -0.0499877), wk = 0.0625000 k( 13) = ( 0.1200505 -0.2050879 0.1459129), wk = 0.0625000 k( 14) = ( 0.1213682 -0.2043223 0.4377385), wk = 0.0625000 k( 15) = ( 0.1174153 -0.2066189 -0.4377384), wk = 0.0625000 k( 16) = ( 0.1187329 -0.2058534 -0.1459128), wk = 0.0625000 k( 17) = ( 0.3614692 -0.0648079 -0.0459370), wk = 0.0625000 k( 18) = ( 0.3627868 -0.0640424 0.2458886), wk = 0.0625000 k( 19) = ( 0.3588339 -0.0663390 -0.6295883), wk = 0.0625000 k( 20) = ( 0.3601515 -0.0655734 -0.3377626), wk = 0.0625000 k( 21) = ( 0.3627867 0.2108027 -0.1418620), wk = 0.0625000 k( 22) = ( 0.3641044 0.2115683 0.1499636), wk = 0.0625000 k( 23) = ( 0.3601515 0.2092716 -0.7255133), wk = 0.0625000 k( 24) = ( 0.3614691 0.2100372 -0.4336877), wk = 0.0625000 k( 25) = ( 0.3588340 -0.6160291 0.1459130), wk = 0.0625000 k( 26) = ( 0.3601516 -0.6152636 0.4377386), wk = 0.0625000 k( 27) = ( 0.3561987 -0.6175602 -0.4377383), wk = 0.0625000 k( 28) = ( 0.3575164 -0.6167947 -0.1459126), wk = 0.0625000 k( 29) = ( 0.3601516 -0.3404185 0.0499880), wk = 0.0625000 k( 30) = ( 0.3614692 -0.3396530 0.3418136), wk = 0.0625000 k( 31) = ( 0.3575163 -0.3419496 -0.5336633), wk = 0.0625000 k( 32) = ( 0.3588339 -0.3411840 -0.2418376), wk = 0.0625000 extrapolated charge 10.76052, renormalised to 10.00000 total cpu time spent up to now is 5.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.8 total cpu time spent up to now is 6.2 secs total energy = -25.47744718 Ry Harris-Foulkes estimate = -25.91217889 Ry estimated scf accuracy < 0.00269230 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-05, avg # of iterations = 3.1 total cpu time spent up to now is 6.7 secs total energy = -25.48275706 Ry Harris-Foulkes estimate = -25.48371130 Ry estimated scf accuracy < 0.00243509 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-05, avg # of iterations = 1.0 total cpu time spent up to now is 7.0 secs total energy = -25.48267040 Ry Harris-Foulkes estimate = -25.48285639 Ry estimated scf accuracy < 0.00056797 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.2 secs total energy = -25.48259700 Ry Harris-Foulkes estimate = -25.48269156 Ry estimated scf accuracy < 0.00018863 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-06, avg # of iterations = 2.1 total cpu time spent up to now is 7.5 secs total energy = -25.48262218 Ry Harris-Foulkes estimate = -25.48262563 Ry estimated scf accuracy < 0.00000652 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.52E-08, avg # of iterations = 2.5 total cpu time spent up to now is 7.9 secs total energy = -25.48262557 Ry Harris-Foulkes estimate = -25.48262569 Ry estimated scf accuracy < 0.00000043 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-09, avg # of iterations = 1.8 total cpu time spent up to now is 8.2 secs End of self-consistent calculation k = 0.1214 0.0705 0.0500 ( 531 PWs) bands (ev): -7.3958 2.1406 4.8134 4.8134 6.7360 9.2815 10.1558 10.1558 14.5877 k = 0.1227 0.0713 0.3418 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.1187 0.0690-0.5337 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1714 8.9979 10.4173 11.5749 15.8398 k = 0.1201 0.0698-0.2418 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k = 0.1227 0.3461-0.0459 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.1240 0.3469 0.2459 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0443 11.4135 11.7447 14.3729 k = 0.1201 0.3446-0.6296 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.1214 0.3454-0.3378 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1187-0.4807 0.2418 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1714 8.9979 10.4173 11.5749 15.8398 k = 0.1201-0.4799 0.5337 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.1161-0.4822-0.3418 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8293 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.1174-0.4815-0.0500 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1201-0.2051 0.1459 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k = 0.1214-0.2043 0.4377 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1174-0.2066-0.4377 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.1187-0.2059-0.1459 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k = 0.3615-0.0648-0.0459 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.3628-0.0640 0.2459 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0443 11.4135 11.7447 14.3729 k = 0.3588-0.0663-0.6296 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3602-0.0656-0.3378 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.3628 0.2108-0.1419 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0443 11.4135 11.7447 14.3729 k = 0.3641 0.2116 0.1500 ( 522 PWs) bands (ev): -6.3150 -0.6759 4.8048 4.8048 5.6084 8.3786 8.3786 9.7421 15.4921 k = 0.3602 0.2093-0.7255 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5555 10.0389 12.4680 15.5952 k = 0.3615 0.2100-0.4337 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8293 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.3588-0.6160 0.1459 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3602-0.6153 0.4377 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5555 10.0389 12.4680 15.5952 k = 0.3562-0.6176-0.4377 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5555 10.0389 12.4680 15.5952 k = 0.3575-0.6168-0.1459 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3602-0.3404 0.0500 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.3615-0.3397 0.3418 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8293 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.3575-0.3419-0.5337 ( 510 PWs) bands (ev): -4.5951 -2.8757 1.6091 3.1159 6.3907 9.5728 11.7629 13.5183 14.7116 k = 0.3588-0.3412-0.2418 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1714 8.9979 10.4173 11.5749 15.8398 the Fermi energy is 7.8950 ev ! total energy = -25.48262559 Ry Harris-Foulkes estimate = -25.48262562 Ry estimated scf accuracy < 0.00000009 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.05293481 -0.03075850 -0.02180223 atom 2 type 1 force = 0.05293481 0.03075850 0.02180223 Total force = 0.091908 Total SCF correction = 0.000170 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 33.16 0.00030132 0.00008863 0.00006282 44.33 13.04 9.24 0.00008863 0.00020029 0.00003650 13.04 29.46 5.37 0.00006282 0.00003650 0.00017467 9.24 5.37 25.69 Entering Dynamics; it = 3 time = 0.01452 pico-seconds new lattice vectors (alat unit) : 1.063153112 -0.004058968 -0.002877112 0.519240751 0.927767028 -0.002876984 0.519240667 0.301712654 0.877357447 new unit-cell volume = 299.4245 (a.u.)^3 new positions in cryst coord As 0.280296970 0.280297003 0.280296982 As -0.280296970 -0.280297003 -0.280296982 new positions in cart coord (alat unit) As 0.589081814 0.343481748 0.244307788 As -0.589081814 -0.343481748 -0.244307788 Ekin = 0.04390948 Ry T = 1123.7 K Etot = -25.43871611 new unit-cell volume = 299.42453 a.u.^3 ( 44.37014 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.063153112 -0.004058968 -0.002877112 0.519240751 0.927767028 -0.002876984 0.519240667 0.301712654 0.877357447 ATOMIC_POSITIONS (crystal) As 0.280296970 0.280297003 0.280296982 As -0.280296970 -0.280297003 -0.280296982 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1179702 0.0688599 0.0489757), wk = 0.0625000 k( 2) = ( 0.1187414 0.0693100 0.3333110), wk = 0.0625000 k( 3) = ( 0.1164278 0.0679597 -0.5196951), wk = 0.0625000 k( 4) = ( 0.1171990 0.0684098 -0.2353597), wk = 0.0625000 k( 5) = ( 0.1187449 0.3376025 -0.0439002), wk = 0.0625000 k( 6) = ( 0.1195161 0.3380527 0.2404352), wk = 0.0625000 k( 7) = ( 0.1172025 0.3367023 -0.6125709), wk = 0.0625000 k( 8) = ( 0.1179737 0.3371524 -0.3282356), wk = 0.0625000 k( 9) = ( 0.1164209 -0.4686254 0.2347273), wk = 0.0625000 k( 10) = ( 0.1171921 -0.4681752 0.5190627), wk = 0.0625000 k( 11) = ( 0.1148785 -0.4695256 -0.3339435), wk = 0.0625000 k( 12) = ( 0.1156497 -0.4690755 -0.0496081), wk = 0.0625000 k( 13) = ( 0.1171955 -0.1998827 0.1418515), wk = 0.0625000 k( 14) = ( 0.1179667 -0.1994326 0.4261869), wk = 0.0625000 k( 15) = ( 0.1156532 -0.2007829 -0.4268193), wk = 0.0625000 k( 16) = ( 0.1164244 -0.2003328 -0.1424839), wk = 0.0625000 k( 17) = ( 0.3523648 -0.0626130 -0.0445326), wk = 0.0625000 k( 18) = ( 0.3531360 -0.0621629 0.2398028), wk = 0.0625000 k( 19) = ( 0.3508224 -0.0635132 -0.6132033), wk = 0.0625000 k( 20) = ( 0.3515936 -0.0630631 -0.3288680), wk = 0.0625000 k( 21) = ( 0.3531395 0.2061296 -0.1374084), wk = 0.0625000 k( 22) = ( 0.3539107 0.2065797 0.1469270), wk = 0.0625000 k( 23) = ( 0.3515971 0.2052294 -0.7060792), wk = 0.0625000 k( 24) = ( 0.3523683 0.2056795 -0.4217438), wk = 0.0625000 k( 25) = ( 0.3508154 -0.6000983 0.1412191), wk = 0.0625000 k( 26) = ( 0.3515866 -0.5996482 0.4255544), wk = 0.0625000 k( 27) = ( 0.3492731 -0.6009985 -0.4274517), wk = 0.0625000 k( 28) = ( 0.3500442 -0.6005484 -0.1431163), wk = 0.0625000 k( 29) = ( 0.3515901 -0.3313556 0.0483432), wk = 0.0625000 k( 30) = ( 0.3523613 -0.3309055 0.3326786), wk = 0.0625000 k( 31) = ( 0.3500477 -0.3322559 -0.5203275), wk = 0.0625000 k( 32) = ( 0.3508189 -0.3318057 -0.2359921), wk = 0.0625000 extrapolated charge 10.74848, renormalised to 10.00000 total cpu time spent up to now is 8.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.2 total cpu time spent up to now is 9.2 secs total energy = -25.48340597 Ry Harris-Foulkes estimate = -25.88980743 Ry estimated scf accuracy < 0.00271788 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.72E-05, avg # of iterations = 3.1 total cpu time spent up to now is 9.7 secs total energy = -25.48874007 Ry Harris-Foulkes estimate = -25.48968004 Ry estimated scf accuracy < 0.00242578 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.43E-05, avg # of iterations = 1.0 total cpu time spent up to now is 10.0 secs total energy = -25.48862777 Ry Harris-Foulkes estimate = -25.48883854 Ry estimated scf accuracy < 0.00056399 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.64E-06, avg # of iterations = 1.0 total cpu time spent up to now is 10.2 secs total energy = -25.48859156 Ry Harris-Foulkes estimate = -25.48865494 Ry estimated scf accuracy < 0.00013559 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-06, avg # of iterations = 2.5 total cpu time spent up to now is 10.5 secs total energy = -25.48860985 Ry Harris-Foulkes estimate = -25.48861373 Ry estimated scf accuracy < 0.00000735 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.35E-08, avg # of iterations = 2.3 total cpu time spent up to now is 10.9 secs total energy = -25.48861227 Ry Harris-Foulkes estimate = -25.48861236 Ry estimated scf accuracy < 0.00000030 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-09, avg # of iterations = 1.7 total cpu time spent up to now is 11.2 secs End of self-consistent calculation k = 0.1180 0.0689 0.0490 ( 531 PWs) bands (ev): -7.6349 0.6493 4.2081 4.2110 5.7401 8.3137 9.1783 9.1966 13.4580 k = 0.1187 0.0693 0.3333 ( 522 PWs) bands (ev): -6.7271 -1.8794 3.4754 4.2082 6.4762 7.1951 8.3135 10.5233 12.7041 k = 0.1164 0.0680-0.5197 ( 520 PWs) bands (ev): -5.4463 -3.9915 3.4647 4.0758 5.2013 7.9216 9.0431 10.0223 14.8032 k = 0.1172 0.0684-0.2354 ( 525 PWs) bands (ev): -7.1262 -1.1202 3.4693 4.6004 5.9311 8.4558 8.7497 10.4549 12.6471 k = 0.1187 0.3376-0.0439 ( 522 PWs) bands (ev): -6.7271 -1.8793 3.4754 4.2082 6.4761 7.1951 8.3135 10.5232 12.7040 k = 0.1195 0.3381 0.2404 ( 519 PWs) bands (ev): -6.3979 -1.5520 2.1532 2.8367 4.8356 8.3386 10.1762 10.5374 12.8428 k = 0.1172 0.3367-0.6126 ( 510 PWs) bands (ev): -5.0460 -3.5394 1.1976 2.4204 5.3792 8.4359 10.8756 12.1370 13.1272 k = 0.1180 0.3372-0.3282 ( 521 PWs) bands (ev): -5.7687 -3.2430 1.9105 4.2426 5.3501 8.7946 9.6221 10.7204 12.6986 k = 0.1164-0.4686 0.2347 ( 520 PWs) bands (ev): -5.4462 -3.9914 3.4646 4.0757 5.2012 7.9215 9.0431 10.0221 14.8033 k = 0.1172-0.4682 0.5191 ( 510 PWs) bands (ev): -5.0460 -3.5394 1.1975 2.4204 5.3792 8.4359 10.8756 12.1370 13.1271 k = 0.1149-0.4695-0.3339 ( 510 PWs) bands (ev): -5.3009 -3.0404 1.5630 2.3727 3.7174 8.3759 11.8074 13.2715 13.5962 k = 0.1156-0.4691-0.0496 ( 521 PWs) bands (ev): -5.7614 -3.2542 1.9154 4.2478 5.3440 8.7894 9.6205 10.7097 12.6929 k = 0.1172-0.1999 0.1419 ( 525 PWs) bands (ev): -7.1262 -1.1201 3.4692 4.6005 5.9310 8.4558 8.7497 10.4550 12.6472 k = 0.1180-0.1994 0.4262 ( 521 PWs) bands (ev): -5.7687 -3.2430 1.9106 4.2426 5.3502 8.7947 9.6221 10.7204 12.6986 k = 0.1157-0.2008-0.4268 ( 521 PWs) bands (ev): -5.7614 -3.2543 1.9154 4.2479 5.3440 8.7895 9.6207 10.7097 12.6929 k = 0.1164-0.2003-0.1425 ( 525 PWs) bands (ev): -7.1237 -1.1251 3.4653 4.6016 5.9409 8.4536 8.7476 10.4450 12.6473 k = 0.3524-0.0626-0.0445 ( 522 PWs) bands (ev): -6.7265 -1.8728 3.4701 4.2043 6.4652 7.1844 8.3066 10.5385 12.7107 k = 0.3531-0.0622 0.2398 ( 519 PWs) bands (ev): -6.4025 -1.5415 2.1477 2.8433 4.8321 8.3387 10.1649 10.5422 12.8489 k = 0.3508-0.0635-0.6132 ( 510 PWs) bands (ev): -5.0546 -3.5320 1.1992 2.4227 5.3832 8.4498 10.8812 12.1237 13.1204 k = 0.3516-0.0631-0.3289 ( 521 PWs) bands (ev): -5.7635 -3.2502 1.9166 4.2386 5.3499 8.8039 9.6023 10.7093 12.6937 k = 0.3531 0.2061-0.1374 ( 519 PWs) bands (ev): -6.4025 -1.5415 2.1477 2.8434 4.8321 8.3386 10.1648 10.5421 12.8488 k = 0.3539 0.2066 0.1469 ( 522 PWs) bands (ev): -6.5921 -1.7765 4.2690 4.2697 4.8357 7.3762 7.3910 8.3319 14.3964 k = 0.3516 0.2052-0.7061 ( 520 PWs) bands (ev): -5.7545 -2.5524 1.3349 3.3520 4.9033 8.4167 8.8460 11.2794 14.3242 k = 0.3524 0.2057-0.4217 ( 510 PWs) bands (ev): -5.3152 -3.0255 1.5633 2.3821 3.7195 8.3790 11.8087 13.2632 13.5946 k = 0.3508-0.6001 0.1412 ( 510 PWs) bands (ev): -5.0546 -3.5320 1.1992 2.4227 5.3831 8.4498 10.8812 12.1238 13.1203 k = 0.3516-0.5996 0.4256 ( 520 PWs) bands (ev): -5.7545 -2.5524 1.3349 3.3520 4.9033 8.4167 8.8460 11.2794 14.3243 k = 0.3493-0.6010-0.4275 ( 520 PWs) bands (ev): -5.7524 -2.5492 1.3331 3.3444 4.8912 8.4162 8.8441 11.2950 14.3266 k = 0.3500-0.6005-0.1431 ( 510 PWs) bands (ev): -5.0498 -3.5340 1.1982 2.4197 5.3814 8.4256 10.8802 12.1255 13.1366 k = 0.3516-0.3314 0.0483 ( 521 PWs) bands (ev): -5.7635 -3.2501 1.9165 4.2385 5.3499 8.8038 9.6022 10.7093 12.6938 k = 0.3524-0.3309 0.3327 ( 510 PWs) bands (ev): -5.3152 -3.0255 1.5633 2.3821 3.7196 8.3791 11.8088 13.2631 13.5946 k = 0.3500-0.3323-0.5203 ( 510 PWs) bands (ev): -5.0498 -3.5340 1.1982 2.4198 5.3815 8.4257 10.8802 12.1254 13.1366 k = 0.3508-0.3318-0.2360 ( 520 PWs) bands (ev): -5.4356 -3.9990 3.4567 4.0823 5.1874 7.9079 9.0356 10.0311 14.8077 the Fermi energy is 6.5305 ev ! total energy = -25.48861230 Ry Harris-Foulkes estimate = -25.48861231 Ry estimated scf accuracy < 8.0E-09 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02088795 -0.01249704 -0.00888702 atom 2 type 1 force = 0.02088795 0.01249704 0.00888702 Total force = 0.036646 Total SCF correction = 0.000073 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -45.69 -0.00015350 0.00018739 0.00013324 -22.58 27.57 19.60 0.00018739 -0.00036071 0.00008175 27.57 -53.06 12.03 0.00013324 0.00008175 -0.00041752 19.60 12.03 -61.42 Entering Dynamics; it = 4 time = 0.02178 pico-seconds new lattice vectors (alat unit) : 1.053193482 -0.000998547 -0.000703577 0.532984101 0.912802237 -0.000632356 0.532987490 0.309788206 0.860343585 new unit-cell volume = 285.2599 (a.u.)^3 new positions in cryst coord As 0.275909823 0.275332662 0.275337639 As -0.275909823 -0.275332662 -0.275337639 new positions in cart coord (alat unit) As 0.584085876 0.336345114 0.236516739 As -0.584085876 -0.336345114 -0.236516739 Ekin = 0.04765317 Ry T = 1306.4 K Etot = -25.44095914 new unit-cell volume = 285.25992 a.u.^3 ( 42.27116 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053193482 -0.000998547 -0.000703577 0.532984101 0.912802237 -0.000632356 0.532987490 0.309788206 0.860343585 ATOMIC_POSITIONS (crystal) As 0.275909823 0.275332662 0.275337639 As -0.275909823 -0.275332662 -0.275337639 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1187824 0.0676169 0.0473573), wk = 0.0625000 k( 2) = ( 0.1189765 0.0677047 0.3377870), wk = 0.0625000 k( 3) = ( 0.1183942 0.0674411 -0.5335021), wk = 0.0625000 k( 4) = ( 0.1185883 0.0675290 -0.2430724), wk = 0.0625000 k( 5) = ( 0.1189760 0.3413174 -0.0513153), wk = 0.0625000 k( 6) = ( 0.1191701 0.3414052 0.2391144), wk = 0.0625000 k( 7) = ( 0.1185878 0.3411416 -0.6321747), wk = 0.0625000 k( 8) = ( 0.1187819 0.3412295 -0.3417450), wk = 0.0625000 k( 9) = ( 0.1183952 -0.4797841 0.2447026), wk = 0.0625000 k( 10) = ( 0.1185893 -0.4796963 0.5351323), wk = 0.0625000 k( 11) = ( 0.1180070 -0.4799599 -0.3361568), wk = 0.0625000 k( 12) = ( 0.1182011 -0.4798720 -0.0457271), wk = 0.0625000 k( 13) = ( 0.1185888 -0.2060836 0.1460299), wk = 0.0625000 k( 14) = ( 0.1187829 -0.2059958 0.4364596), wk = 0.0625000 k( 15) = ( 0.1182006 -0.2062594 -0.4348294), wk = 0.0625000 k( 16) = ( 0.1183947 -0.2061715 -0.1443997), wk = 0.0625000 k( 17) = ( 0.3559595 -0.0709378 -0.0496851), wk = 0.0625000 k( 18) = ( 0.3561536 -0.0708499 0.2407446), wk = 0.0625000 k( 19) = ( 0.3555713 -0.0711135 -0.6305445), wk = 0.0625000 k( 20) = ( 0.3557654 -0.0710256 -0.3401148), wk = 0.0625000 k( 21) = ( 0.3561531 0.2027627 -0.1483577), wk = 0.0625000 k( 22) = ( 0.3563472 0.2028506 0.1420720), wk = 0.0625000 k( 23) = ( 0.3557649 0.2025870 -0.7292171), wk = 0.0625000 k( 24) = ( 0.3559590 0.2026749 -0.4387874), wk = 0.0625000 k( 25) = ( 0.3555723 -0.6183388 0.1476601), wk = 0.0625000 k( 26) = ( 0.3557664 -0.6182509 0.4380898), wk = 0.0625000 k( 27) = ( 0.3551841 -0.6185145 -0.4331992), wk = 0.0625000 k( 28) = ( 0.3553782 -0.6184266 -0.1427695), wk = 0.0625000 k( 29) = ( 0.3557659 -0.3446383 0.0489875), wk = 0.0625000 k( 30) = ( 0.3559600 -0.3445504 0.3394172), wk = 0.0625000 k( 31) = ( 0.3553777 -0.3448140 -0.5318719), wk = 0.0625000 k( 32) = ( 0.3555718 -0.3447261 -0.2414422), wk = 0.0625000 extrapolated charge 9.50347, renormalised to 10.00000 total cpu time spent up to now is 11.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.2 total cpu time spent up to now is 12.2 secs total energy = -25.49454181 Ry Harris-Foulkes estimate = -25.21952532 Ry estimated scf accuracy < 0.00268019 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-05, avg # of iterations = 2.8 total cpu time spent up to now is 12.6 secs total energy = -25.49723057 Ry Harris-Foulkes estimate = -25.49778036 Ry estimated scf accuracy < 0.00121551 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.22E-05, avg # of iterations = 1.0 total cpu time spent up to now is 12.9 secs total energy = -25.49723393 Ry Harris-Foulkes estimate = -25.49731779 Ry estimated scf accuracy < 0.00015832 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.58E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.2 secs total energy = -25.49725832 Ry Harris-Foulkes estimate = -25.49725880 Ry estimated scf accuracy < 0.00000103 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-08, avg # of iterations = 3.1 total cpu time spent up to now is 13.6 secs total energy = -25.49725992 Ry Harris-Foulkes estimate = -25.49726010 Ry estimated scf accuracy < 0.00000034 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.38E-09, avg # of iterations = 1.4 total cpu time spent up to now is 13.8 secs End of self-consistent calculation k = 0.1188 0.0676 0.0474 ( 531 PWs) bands (ev): -7.3392 1.3000 4.9288 5.0147 6.1801 9.2175 9.8901 9.9926 14.0218 k = 0.1190 0.0677 0.3378 ( 522 PWs) bands (ev): -6.3722 -1.3152 3.7763 5.0344 7.3580 7.7804 8.7005 11.3748 13.3237 k = 0.1184 0.0674-0.5335 ( 520 PWs) bands (ev): -4.9514 -3.5737 4.1913 4.3964 5.7724 8.6944 9.3692 10.3042 15.4017 k = 0.1186 0.0675-0.2431 ( 525 PWs) bands (ev): -6.7929 -0.4260 4.1816 5.0300 6.3757 9.0852 9.5247 11.0060 13.1000 k = 0.1190 0.3413-0.0513 ( 522 PWs) bands (ev): -6.3688 -1.3051 3.7714 5.0212 7.3397 7.7691 8.6903 11.3737 13.3163 k = 0.1192 0.3414 0.2391 ( 519 PWs) bands (ev): -6.0302 -0.9755 2.5839 3.4808 5.0899 9.4066 11.1213 11.3997 13.3401 k = 0.1186 0.3411-0.6322 ( 510 PWs) bands (ev): -4.5689 -2.9828 1.5750 2.6832 5.8565 9.2921 11.7899 12.9721 13.6369 k = 0.1188 0.3412-0.3417 ( 521 PWs) bands (ev): -5.3238 -2.7015 2.4404 4.5551 5.7789 9.2227 10.5274 11.4422 13.2257 k = 0.1184-0.4798 0.2447 ( 520 PWs) bands (ev): -4.9424 -3.5685 4.1749 4.3891 5.7571 8.6740 9.3578 10.2937 15.4193 k = 0.1186-0.4797 0.5351 ( 510 PWs) bands (ev): -4.5640 -2.9832 1.5702 2.6821 5.8560 9.2768 11.7854 12.9668 13.6326 k = 0.1180-0.4800-0.3362 ( 510 PWs) bands (ev): -4.8832 -2.3438 1.7235 2.9888 3.9768 9.2041 12.4722 13.9130 14.2463 k = 0.1182-0.4799-0.0457 ( 521 PWs) bands (ev): -5.3495 -2.6441 2.4208 4.5140 5.8066 9.1817 10.4697 11.5057 13.2350 k = 0.1186-0.2061 0.1460 ( 525 PWs) bands (ev): -6.7915 -0.4192 4.1649 5.0346 6.3707 9.0843 9.5138 11.0049 13.1002 k = 0.1188-0.2060 0.4365 ( 521 PWs) bands (ev): -5.3258 -2.7067 2.4449 4.5615 5.7869 9.2204 10.5438 11.4462 13.2249 k = 0.1182-0.2063-0.4348 ( 521 PWs) bands (ev): -5.3551 -2.6481 2.4223 4.5239 5.8165 9.1936 10.5005 11.5152 13.2401 k = 0.1184-0.2062-0.1444 ( 525 PWs) bands (ev): -6.8004 -0.3721 4.1352 5.0388 6.3112 9.0495 9.5336 11.0610 13.1256 k = 0.3560-0.0709-0.0497 ( 522 PWs) bands (ev): -6.3623 -1.3154 3.7927 4.9995 7.3537 7.7859 8.7047 11.2613 13.2962 k = 0.3562-0.0708 0.2407 ( 519 PWs) bands (ev): -6.0049 -1.0309 2.5909 3.4937 5.0962 9.3951 11.1455 11.3495 13.2922 k = 0.3556-0.0711-0.6305 ( 510 PWs) bands (ev): -4.5244 -3.0126 1.5750 2.6573 5.8131 9.2301 11.7828 13.0481 13.6529 k = 0.3558-0.0710-0.3401 ( 521 PWs) bands (ev): -5.3358 -2.6512 2.3986 4.5491 5.7613 9.1269 10.5326 11.5100 13.2227 k = 0.3562 0.2028-0.1484 ( 519 PWs) bands (ev): -6.0047 -1.0297 2.5826 3.5096 5.0916 9.3892 11.1337 11.3417 13.2912 k = 0.3563 0.2029 0.1421 ( 522 PWs) bands (ev): -6.1986 -1.6437 5.0719 5.1200 6.0166 7.9391 8.0051 8.9895 15.1497 k = 0.3558 0.2026-0.7292 ( 520 PWs) bands (ev): -5.2662 -2.2677 1.7446 4.0597 5.4534 9.4538 9.5276 12.3396 14.8029 k = 0.3560 0.2027-0.4388 ( 510 PWs) bands (ev): -4.8198 -2.4263 1.7265 3.0076 3.9350 9.1934 12.4485 13.8956 14.3369 k = 0.3556-0.6183 0.1477 ( 510 PWs) bands (ev): -4.5215 -3.0081 1.5731 2.6515 5.8020 9.2174 11.7876 13.0465 13.6483 k = 0.3558-0.6183 0.4381 ( 520 PWs) bands (ev): -5.2635 -2.2657 1.7488 4.0467 5.4422 9.4588 9.5177 12.3474 14.8256 k = 0.3552-0.6185-0.4332 ( 520 PWs) bands (ev): -5.2676 -2.2774 1.7721 4.0469 5.4717 9.4824 9.4981 12.2804 14.8875 k = 0.3554-0.6184-0.1428 ( 510 PWs) bands (ev): -4.5346 -2.9998 1.5644 2.6697 5.8023 9.3040 11.7677 13.0259 13.5710 k = 0.3558-0.3446 0.0490 ( 521 PWs) bands (ev): -5.3322 -2.6526 2.4019 4.5455 5.7595 9.1127 10.5179 11.5039 13.2175 k = 0.3560-0.3446 0.3394 ( 510 PWs) bands (ev): -4.8160 -2.4266 1.7268 2.9901 3.9424 9.1938 12.4497 13.8881 14.3351 k = 0.3554-0.3448-0.5319 ( 510 PWs) bands (ev): -4.5325 -3.0048 1.5614 2.6745 5.8127 9.3012 11.7593 13.0225 13.5708 k = 0.3556-0.3447-0.2414 ( 520 PWs) bands (ev): -4.9768 -3.5119 4.1685 4.3408 5.7829 8.6971 9.3608 10.2137 15.4652 the Fermi energy is 7.7198 ev ! total energy = -25.49725996 Ry Harris-Foulkes estimate = -25.49725996 Ry estimated scf accuracy < 5.0E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00964441 -0.00424655 -0.00282757 atom 2 type 1 force = 0.00964441 0.00424655 0.00282757 Total force = 0.015430 Total SCF correction = 0.000049 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -22.01 -0.00003831 0.00009976 0.00006956 -5.64 14.67 10.23 0.00009976 -0.00019333 0.00002371 14.67 -28.44 3.49 0.00006956 0.00002371 -0.00021732 10.23 3.49 -31.97 Entering Dynamics; it = 5 time = 0.02904 pico-seconds new lattice vectors (alat unit) : 1.055084685 0.004362977 0.003068063 0.549663110 0.912576131 0.002895041 0.549642951 0.319014654 0.859496477 new unit-cell volume = 283.7247 (a.u.)^3 new positions in cryst coord As 0.266718781 0.275329663 0.277246332 As -0.266718781 -0.275329663 -0.277246332 new positions in cart coord (alat unit) As 0.585135952 0.340868609 0.239907646 As -0.585135952 -0.340868609 -0.239907646 Ekin = 0.02805434 Ry T = 1225.9 K Etot = -25.46920561 new unit-cell volume = 283.72474 a.u.^3 ( 42.04367 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.055084685 0.004362977 0.003068063 0.549663110 0.912576131 0.002895041 0.549642951 0.319014654 0.859496477 ATOMIC_POSITIONS (crystal) As 0.266718781 0.275329663 0.277246332 As -0.266718781 -0.275329663 -0.277246332 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1180697 0.0657146 0.0455381), wk = 0.0625000 k( 2) = ( 0.1172236 0.0652993 0.3371014), wk = 0.0625000 k( 3) = ( 0.1197620 0.0665452 -0.5375883), wk = 0.0625000 k( 4) = ( 0.1189159 0.0661299 -0.2460251), wk = 0.0625000 k( 5) = ( 0.1172285 0.3404929 -0.0559118), wk = 0.0625000 k( 6) = ( 0.1163824 0.3400776 0.2356514), wk = 0.0625000 k( 7) = ( 0.1189207 0.3413235 -0.6390383), wk = 0.0625000 k( 8) = ( 0.1180746 0.3409082 -0.3474751), wk = 0.0625000 k( 9) = ( 0.1197523 -0.4838420 0.2484381), wk = 0.0625000 k( 10) = ( 0.1189061 -0.4842573 0.5400013), wk = 0.0625000 k( 11) = ( 0.1214445 -0.4830113 -0.3346883), wk = 0.0625000 k( 12) = ( 0.1205984 -0.4834267 -0.0431251), wk = 0.0625000 k( 13) = ( 0.1189110 -0.2090637 0.1469881), wk = 0.0625000 k( 14) = ( 0.1180649 -0.2094790 0.4385513), wk = 0.0625000 k( 15) = ( 0.1206032 -0.2082330 -0.4361383), wk = 0.0625000 k( 16) = ( 0.1197571 -0.2086484 -0.1445751), wk = 0.0625000 k( 17) = ( 0.3558966 -0.0772191 -0.0534988), wk = 0.0625000 k( 18) = ( 0.3550505 -0.0776345 0.2380644), wk = 0.0625000 k( 19) = ( 0.3575888 -0.0763885 -0.6366252), wk = 0.0625000 k( 20) = ( 0.3567427 -0.0768038 -0.3450620), wk = 0.0625000 k( 21) = ( 0.3550553 0.1975591 -0.1549488), wk = 0.0625000 k( 22) = ( 0.3542092 0.1971438 0.1366144), wk = 0.0625000 k( 23) = ( 0.3567476 0.1983898 -0.7380752), wk = 0.0625000 k( 24) = ( 0.3559014 0.1979745 -0.4465120), wk = 0.0625000 k( 25) = ( 0.3575791 -0.6267757 0.1494012), wk = 0.0625000 k( 26) = ( 0.3567330 -0.6271910 0.4409644), wk = 0.0625000 k( 27) = ( 0.3592713 -0.6259451 -0.4337252), wk = 0.0625000 k( 28) = ( 0.3584252 -0.6263604 -0.1421620), wk = 0.0625000 k( 29) = ( 0.3567378 -0.3519974 0.0479512), wk = 0.0625000 k( 30) = ( 0.3558917 -0.3524128 0.3395144), wk = 0.0625000 k( 31) = ( 0.3584301 -0.3511668 -0.5351752), wk = 0.0625000 k( 32) = ( 0.3575840 -0.3515821 -0.2436120), wk = 0.0625000 extrapolated charge 9.94589, renormalised to 10.00000 total cpu time spent up to now is 14.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.2 total cpu time spent up to now is 14.9 secs total energy = -25.49848261 Ry Harris-Foulkes estimate = -25.46794358 Ry estimated scf accuracy < 0.00022798 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.28E-06, avg # of iterations = 2.0 total cpu time spent up to now is 15.2 secs total energy = -25.49855274 Ry Harris-Foulkes estimate = -25.49857050 Ry estimated scf accuracy < 0.00003627 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.63E-07, avg # of iterations = 1.6 total cpu time spent up to now is 15.5 secs total energy = -25.49855723 Ry Harris-Foulkes estimate = -25.49855752 Ry estimated scf accuracy < 0.00000153 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.53E-08, avg # of iterations = 2.3 total cpu time spent up to now is 15.8 secs End of self-consistent calculation k = 0.1181 0.0657 0.0455 ( 531 PWs) bands (ev): -7.2855 1.2708 5.1889 5.2268 6.1206 9.4453 9.9943 10.1336 14.0760 k = 0.1172 0.0653 0.3371 ( 522 PWs) bands (ev): -6.3209 -1.2255 3.7661 5.2232 7.5363 7.8392 8.7530 11.3631 13.5774 k = 0.1198 0.0665-0.5376 ( 520 PWs) bands (ev): -4.9194 -3.4137 4.3178 4.4313 5.8328 8.8060 9.3310 10.0708 15.1592 k = 0.1189 0.0661-0.2460 ( 525 PWs) bands (ev): -6.7301 -0.2826 4.3791 4.9357 6.4398 8.9681 9.6765 10.9976 13.1441 k = 0.1172 0.3405-0.0559 ( 522 PWs) bands (ev): -6.3082 -1.2128 3.7353 5.2168 7.5084 7.8169 8.7029 11.3937 13.5214 k = 0.1164 0.3401 0.2357 ( 519 PWs) bands (ev): -5.9658 -1.0152 2.6967 3.7267 5.0372 9.8624 11.3316 11.5167 13.2109 k = 0.1189 0.3413-0.6390 ( 510 PWs) bands (ev): -4.4779 -2.9124 1.6492 2.6746 5.9441 9.4269 12.0604 13.1212 13.5116 k = 0.1181 0.3409-0.3475 ( 521 PWs) bands (ev): -5.2581 -2.5384 2.4855 4.5508 5.7931 9.0649 10.6286 11.6881 13.1837 k = 0.1198-0.4838 0.2484 ( 520 PWs) bands (ev): -4.8613 -3.4499 4.2798 4.4134 5.8086 8.7685 9.2897 10.0567 15.2054 k = 0.1189-0.4843 0.5400 ( 510 PWs) bands (ev): -4.4439 -2.9457 1.6479 2.6649 5.9596 9.3661 12.1090 13.1209 13.4597 k = 0.1214-0.4830-0.3347 ( 510 PWs) bands (ev): -4.7398 -2.3711 1.7555 3.2095 3.9053 9.5258 12.4375 13.6954 14.2476 k = 0.1206-0.4834-0.0431 ( 521 PWs) bands (ev): -5.2453 -2.5539 2.5724 4.4365 5.7986 9.0237 10.5527 11.6686 13.2872 k = 0.1189-0.2091 0.1470 ( 525 PWs) bands (ev): -6.7235 -0.2818 4.3499 4.9683 6.3976 8.9866 9.6726 10.9729 13.1038 k = 0.1181-0.2095 0.4386 ( 521 PWs) bands (ev): -5.2647 -2.5476 2.4863 4.5755 5.8278 9.0363 10.6627 11.7326 13.1501 k = 0.1206-0.2082-0.4361 ( 521 PWs) bands (ev): -5.2712 -2.5376 2.5444 4.4708 5.8492 9.0164 10.6130 11.7509 13.2559 k = 0.1198-0.2086-0.1446 ( 525 PWs) bands (ev): -6.7262 -0.2634 4.3728 5.0508 6.1339 9.0018 9.8330 10.9868 12.9796 k = 0.3559-0.0772-0.0535 ( 522 PWs) bands (ev): -6.2742 -1.2684 3.6584 5.3267 7.6389 7.8101 8.5781 11.3203 13.3210 k = 0.3551-0.0776 0.2381 ( 519 PWs) bands (ev): -5.9368 -1.0228 2.6847 3.6966 5.0418 9.6535 11.3314 11.5172 13.3256 k = 0.3576-0.0764-0.6366 ( 510 PWs) bands (ev): -4.4894 -2.8107 1.6332 2.6223 5.7300 9.4571 11.8128 13.1005 13.7300 k = 0.3567-0.0768-0.3451 ( 521 PWs) bands (ev): -5.2268 -2.5406 2.5616 4.4654 5.6114 9.0281 10.6567 11.5435 13.3900 k = 0.3551 0.1976-0.1549 ( 519 PWs) bands (ev): -5.9405 -1.0049 2.6656 3.7185 5.0313 9.6114 11.3036 11.5144 13.3653 k = 0.3542 0.1971 0.1366 ( 522 PWs) bands (ev): -6.1408 -1.8048 5.2624 5.4817 6.4167 7.9847 8.2116 9.1018 15.2185 k = 0.3567 0.1984-0.7381 ( 520 PWs) bands (ev): -5.2011 -2.3149 1.8889 4.2568 5.5328 9.6391 9.7518 12.5580 14.7734 k = 0.3559 0.1980-0.4465 ( 510 PWs) bands (ev): -4.7720 -2.2035 1.6019 3.2132 3.8593 9.2994 12.4219 13.8972 14.3161 k = 0.3576-0.6268 0.1494 ( 510 PWs) bands (ev): -4.4790 -2.8045 1.6324 2.6055 5.6976 9.4275 11.8421 13.0865 13.7224 k = 0.3567-0.6272 0.4410 ( 520 PWs) bands (ev): -5.1862 -2.3237 1.8834 4.2454 5.5160 9.6250 9.7527 12.5863 14.8025 k = 0.3593-0.6259-0.4337 ( 520 PWs) bands (ev): -5.1521 -2.4099 1.8469 4.3276 5.6373 9.5348 9.8316 12.5333 14.8318 k = 0.3584-0.6264-0.1422 ( 510 PWs) bands (ev): -4.3992 -2.9437 1.6522 2.6146 5.7893 9.4307 12.0903 13.0848 13.4587 k = 0.3567-0.3520 0.0480 ( 521 PWs) bands (ev): -5.2071 -2.5667 2.5914 4.4555 5.5944 9.0083 10.6327 11.4977 13.3907 k = 0.3559-0.3524 0.3395 ( 510 PWs) bands (ev): -4.7378 -2.2560 1.6287 3.1834 3.8653 9.3273 12.4138 13.8449 14.3244 k = 0.3584-0.3512-0.5352 ( 510 PWs) bands (ev): -4.3737 -2.9846 1.6515 2.6216 5.8357 9.3965 12.1133 13.0834 13.4361 k = 0.3576-0.3516-0.2436 ( 520 PWs) bands (ev): -4.7482 -3.5638 4.1620 4.4169 5.9096 8.8056 9.2327 9.9592 15.3688 the Fermi energy is 7.7586 ev ! total energy = -25.49855749 Ry Harris-Foulkes estimate = -25.49855755 Ry estimated scf accuracy < 0.00000009 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00391065 -0.00201351 -0.00189884 atom 2 type 1 force = -0.00391065 0.00201351 0.00189884 Total force = 0.006775 Total SCF correction = 0.000275 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -22.05 -0.00011072 0.00003272 0.00002803 -16.29 4.81 4.12 0.00003272 -0.00016059 0.00000165 4.81 -23.62 0.24 0.00002803 0.00000165 -0.00017830 4.12 0.24 -26.23 Entering Dynamics; it = 6 time = 0.03630 pico-seconds new lattice vectors (alat unit) : 1.057860757 0.010286603 0.007120510 0.567268634 0.911287964 0.006486662 0.567128507 0.317443653 0.857281494 new unit-cell volume = 281.4371 (a.u.)^3 new positions in cryst coord As 0.266827854 0.275382610 0.277283069 As -0.266827854 -0.275382610 -0.277283069 new positions in cart coord (alat unit) As 0.595737766 0.341719360 0.241395908 As -0.595737766 -0.341719360 -0.241395908 Ekin = 0.01813955 Ry T = 1108.0 K Etot = -25.48041793 new unit-cell volume = 281.43706 a.u.^3 ( 41.70467 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.057860757 0.010286603 0.007120510 0.567268634 0.911287964 0.006486662 0.567128507 0.317443653 0.857281494 ATOMIC_POSITIONS (crystal) As 0.266827854 0.275382610 0.277283069 As -0.266827854 -0.275382610 -0.277283069 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1172417 0.0638691 0.0445992), wk = 0.0625000 k( 2) = ( 0.1152763 0.0630052 0.3378387), wk = 0.0625000 k( 3) = ( 0.1211726 0.0655968 -0.5418800), wk = 0.0625000 k( 4) = ( 0.1192071 0.0647330 -0.2486404), wk = 0.0625000 k( 5) = ( 0.1152347 0.3401743 -0.0563864), wk = 0.0625000 k( 6) = ( 0.1132693 0.3393104 0.2368531), wk = 0.0625000 k( 7) = ( 0.1191655 0.3419020 -0.6428656), wk = 0.0625000 k( 8) = ( 0.1172001 0.3410382 -0.3496260), wk = 0.0625000 k( 9) = ( 0.1212558 -0.4887413 0.2465703), wk = 0.0625000 k( 10) = ( 0.1192904 -0.4896051 0.5398099), wk = 0.0625000 k( 11) = ( 0.1251866 -0.4870135 -0.3399088), wk = 0.0625000 k( 12) = ( 0.1232212 -0.4878774 -0.0466693), wk = 0.0625000 k( 13) = ( 0.1192488 -0.2124361 0.1455847), wk = 0.0625000 k( 14) = ( 0.1172834 -0.2133000 0.4388243), wk = 0.0625000 k( 15) = ( 0.1231796 -0.2107084 -0.4408944), wk = 0.0625000 k( 16) = ( 0.1212142 -0.2115722 -0.1476548), wk = 0.0625000 k( 17) = ( 0.3556977 -0.0838340 -0.0584565), wk = 0.0625000 k( 18) = ( 0.3537323 -0.0846979 0.2347830), wk = 0.0625000 k( 19) = ( 0.3596285 -0.0821063 -0.6449357), wk = 0.0625000 k( 20) = ( 0.3576631 -0.0829702 -0.3516961), wk = 0.0625000 k( 21) = ( 0.3536906 0.1924712 -0.1594421), wk = 0.0625000 k( 22) = ( 0.3517252 0.1916073 0.1337975), wk = 0.0625000 k( 23) = ( 0.3576214 0.1941989 -0.7459213), wk = 0.0625000 k( 24) = ( 0.3556560 0.1933350 -0.4526817), wk = 0.0625000 k( 25) = ( 0.3597118 -0.6364444 0.1435146), wk = 0.0625000 k( 26) = ( 0.3577463 -0.6373083 0.4367542), wk = 0.0625000 k( 27) = ( 0.3636426 -0.6347167 -0.4429645), wk = 0.0625000 k( 28) = ( 0.3616772 -0.6355805 -0.1497249), wk = 0.0625000 k( 29) = ( 0.3577047 -0.3601392 0.0425291), wk = 0.0625000 k( 30) = ( 0.3557393 -0.3610031 0.3357686), wk = 0.0625000 k( 31) = ( 0.3616355 -0.3584115 -0.5439501), wk = 0.0625000 k( 32) = ( 0.3596701 -0.3592754 -0.2507105), wk = 0.0625000 extrapolated charge 9.91872, renormalised to 10.00000 total cpu time spent up to now is 16.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.7 total cpu time spent up to now is 16.8 secs total energy = -25.49871971 Ry Harris-Foulkes estimate = -25.45267738 Ry estimated scf accuracy < 0.00007297 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.30E-07, avg # of iterations = 2.8 total cpu time spent up to now is 17.2 secs total energy = -25.49878831 Ry Harris-Foulkes estimate = -25.49880557 Ry estimated scf accuracy < 0.00003763 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.76E-07, avg # of iterations = 1.1 total cpu time spent up to now is 17.5 secs total energy = -25.49879089 Ry Harris-Foulkes estimate = -25.49879215 Ry estimated scf accuracy < 0.00000340 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.40E-08, avg # of iterations = 1.0 total cpu time spent up to now is 17.7 secs total energy = -25.49879078 Ry Harris-Foulkes estimate = -25.49879113 Ry estimated scf accuracy < 0.00000066 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.58E-09, avg # of iterations = 2.9 total cpu time spent up to now is 18.1 secs End of self-consistent calculation k = 0.1172 0.0639 0.0446 ( 531 PWs) bands (ev): -7.2765 1.3456 5.3674 5.3926 6.1617 9.5573 10.0902 10.3014 14.2950 k = 0.1153 0.0630 0.3378 ( 522 PWs) bands (ev): -6.3081 -1.1218 3.7355 5.3410 7.7763 7.9787 8.9620 11.4332 13.7448 k = 0.1212 0.0656-0.5419 ( 520 PWs) bands (ev): -4.8816 -3.3276 4.3101 4.5157 6.0010 8.9462 9.4928 10.0017 15.0555 k = 0.1192 0.0647-0.2486 ( 525 PWs) bands (ev): -6.7052 -0.1435 4.5279 4.9411 6.4255 9.0528 9.7883 11.1193 13.2549 k = 0.1152 0.3402-0.0564 ( 522 PWs) bands (ev): -6.2982 -1.1158 3.7074 5.3441 7.7593 7.9657 8.9201 11.4687 13.6964 k = 0.1133 0.3393 0.2369 ( 519 PWs) bands (ev): -5.9497 -0.9545 2.7694 3.8302 5.1755 10.0253 11.6083 11.7030 13.4024 k = 0.1192 0.3419-0.6429 ( 510 PWs) bands (ev): -4.4292 -2.8329 1.7166 2.6982 6.0282 9.6397 12.1757 13.2656 13.5631 k = 0.1172 0.3410-0.3496 ( 521 PWs) bands (ev): -5.2317 -2.4163 2.5179 4.6412 5.7705 9.1416 10.8444 11.9185 13.3493 k = 0.1213-0.4887 0.2466 ( 520 PWs) bands (ev): -4.8282 -3.3707 4.2860 4.5045 5.9867 8.9246 9.4572 9.9992 15.0811 k = 0.1193-0.4896 0.5398 ( 510 PWs) bands (ev): -4.3973 -2.8675 1.7197 2.6885 6.0438 9.5871 12.2284 13.2629 13.5253 k = 0.1252-0.4870-0.3399 ( 510 PWs) bands (ev): -4.6384 -2.3420 1.8196 3.2807 3.9534 9.5562 12.5258 13.7863 14.3614 k = 0.1232-0.4879-0.0467 ( 521 PWs) bands (ev): -5.1759 -2.4831 2.6353 4.5464 5.7548 9.0395 10.7279 11.7906 13.3672 k = 0.1192-0.2124 0.1456 ( 525 PWs) bands (ev): -6.6991 -0.1495 4.5074 4.9750 6.3910 9.0683 9.7932 11.0957 13.2126 k = 0.1173-0.2133 0.4388 ( 521 PWs) bands (ev): -5.2358 -2.4221 2.5147 4.6630 5.7963 9.1135 10.8699 11.9523 13.3162 k = 0.1232-0.2107-0.4409 ( 521 PWs) bands (ev): -5.1988 -2.4606 2.6044 4.5727 5.7959 9.0220 10.7640 11.8701 13.3305 k = 0.1212-0.2116-0.1477 ( 525 PWs) bands (ev): -6.6861 -0.1168 4.4552 5.0705 6.1583 9.0589 9.8918 11.0512 13.0589 k = 0.3557-0.0838-0.0585 ( 522 PWs) bands (ev): -6.2498 -1.0976 3.5992 5.3680 7.7608 7.8783 8.7284 11.4451 13.4974 k = 0.3537-0.0847 0.2348 ( 519 PWs) bands (ev): -5.9398 -0.9279 2.6998 3.9039 5.1439 9.8003 11.5530 11.6917 13.5450 k = 0.3596-0.0821-0.6449 ( 510 PWs) bands (ev): -4.4826 -2.6903 1.7169 2.6388 5.7852 9.7176 12.0301 13.2281 13.7949 k = 0.3577-0.0830-0.3517 ( 521 PWs) bands (ev): -5.1601 -2.4248 2.6057 4.5044 5.5594 9.0768 10.7046 11.6744 13.4961 k = 0.3537 0.1925-0.1594 ( 519 PWs) bands (ev): -5.9450 -0.9095 2.6883 3.9135 5.1354 9.7658 11.5340 11.6956 13.5902 k = 0.3517 0.1916 0.1338 ( 522 PWs) bands (ev): -6.1788 -1.7781 5.4718 5.6275 6.7014 8.1615 8.4791 9.3463 15.2940 k = 0.3576 0.1942-0.7459 ( 520 PWs) bands (ev): -5.2394 -2.2360 1.9600 4.4314 5.7512 9.8624 9.9979 12.7416 14.8349 k = 0.3557 0.1933-0.4527 ( 510 PWs) bands (ev): -4.7463 -2.1244 1.6616 3.3936 3.8889 9.3658 12.5414 14.0663 14.3987 k = 0.3597-0.6364 0.1435 ( 510 PWs) bands (ev): -4.4763 -2.6863 1.7175 2.6275 5.7616 9.6993 12.0592 13.2107 13.7932 k = 0.3577-0.6373 0.4368 ( 520 PWs) bands (ev): -5.2266 -2.2448 1.9499 4.4291 5.7417 9.8331 10.0182 12.7678 14.8410 k = 0.3636-0.6347-0.4430 ( 520 PWs) bands (ev): -5.1771 -2.3012 1.9345 4.4114 5.7691 9.7382 10.0580 12.8197 14.9740 k = 0.3617-0.6356-0.1497 ( 510 PWs) bands (ev): -4.3671 -2.8157 1.7063 2.6194 5.8421 9.5697 12.2767 13.1398 13.5795 k = 0.3577-0.3601 0.0425 ( 521 PWs) bands (ev): -5.1410 -2.4535 2.6338 4.5002 5.5440 9.0660 10.6941 11.6286 13.4985 k = 0.3557-0.3610 0.3358 ( 510 PWs) bands (ev): -4.7109 -2.1811 1.6892 3.3751 3.8891 9.3902 12.5319 14.0181 14.4074 k = 0.3616-0.3584-0.5440 ( 510 PWs) bands (ev): -4.3406 -2.8550 1.7082 2.6219 5.8801 9.5351 12.3020 13.1417 13.5581 k = 0.3597-0.3593-0.2507 ( 520 PWs) bands (ev): -4.6405 -3.4791 4.1318 4.4385 5.9651 8.8157 9.3146 9.8968 15.2988 the Fermi energy is 7.8242 ev ! total energy = -25.49879101 Ry Harris-Foulkes estimate = -25.49879102 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00319110 -0.00281932 -0.00293349 atom 2 type 1 force = -0.00319110 0.00281932 0.00293349 Total force = 0.007313 Total SCF correction = 0.000105 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -12.06 -0.00008557 -0.00004643 -0.00003211 -12.59 -6.83 -4.72 -0.00004643 -0.00007551 0.00001107 -6.83 -11.11 1.63 -0.00003211 0.00001107 -0.00008492 -4.72 1.63 -12.49 Entering Dynamics; it = 7 time = 0.04356 pico-seconds new lattice vectors (alat unit) : 1.060764688 0.007355942 0.004859131 0.561823496 0.909144634 0.003818901 0.561581405 0.316968820 0.854328069 new unit-cell volume = 281.6429 (a.u.)^3 new positions in cryst coord As 0.267150922 0.275253315 0.277070148 As -0.267150922 -0.275253315 -0.277070148 new positions in cart coord (alat unit) As 0.593625487 0.340032818 0.239058091 As -0.593625487 -0.340032818 -0.239058091 Ekin = 0.00762309 Ry T = 967.9 K Etot = -25.49116792 new unit-cell volume = 281.64290 a.u.^3 ( 41.73517 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.060764688 0.007355942 0.004859131 0.561823496 0.909144634 0.003818901 0.561581405 0.316968820 0.854328069 ATOMIC_POSITIONS (crystal) As 0.267150922 0.275253315 0.277070148 As -0.267150922 -0.275253315 -0.277070148 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1171825 0.0648868 0.0452115), wk = 0.0625000 k( 2) = ( 0.1158401 0.0644828 0.3388714), wk = 0.0625000 k( 3) = ( 0.1198672 0.0656948 -0.5421084), wk = 0.0625000 k( 4) = ( 0.1185248 0.0652908 -0.2484485), wk = 0.0625000 k( 5) = ( 0.1157316 0.3411937 -0.0563490), wk = 0.0625000 k( 6) = ( 0.1143892 0.3407898 0.2373110), wk = 0.0625000 k( 7) = ( 0.1184164 0.3420017 -0.6436688), wk = 0.0625000 k( 8) = ( 0.1170740 0.3415977 -0.3500089), wk = 0.0625000 k( 9) = ( 0.1200841 -0.4877271 0.2483323), wk = 0.0625000 k( 10) = ( 0.1187417 -0.4881310 0.5419922), wk = 0.0625000 k( 11) = ( 0.1227689 -0.4869191 -0.3389875), wk = 0.0625000 k( 12) = ( 0.1214265 -0.4873231 -0.0453276), wk = 0.0625000 k( 13) = ( 0.1186333 -0.2114201 0.1467719), wk = 0.0625000 k( 14) = ( 0.1172909 -0.2118241 0.4404318), wk = 0.0625000 k( 15) = ( 0.1213181 -0.2106122 -0.4405480), wk = 0.0625000 k( 16) = ( 0.1199757 -0.2110162 -0.1468880), wk = 0.0625000 k( 17) = ( 0.3543406 -0.0812426 -0.0564651), wk = 0.0625000 k( 18) = ( 0.3529982 -0.0816465 0.2371948), wk = 0.0625000 k( 19) = ( 0.3570254 -0.0804346 -0.6437849), wk = 0.0625000 k( 20) = ( 0.3556830 -0.0808386 -0.3501250), wk = 0.0625000 k( 21) = ( 0.3528897 0.1950644 -0.1580255), wk = 0.0625000 k( 22) = ( 0.3515474 0.1946604 0.1356344), wk = 0.0625000 k( 23) = ( 0.3555745 0.1958723 -0.7453454), wk = 0.0625000 k( 24) = ( 0.3542321 0.1954684 -0.4516854), wk = 0.0625000 k( 25) = ( 0.3572423 -0.6338564 0.1466557), wk = 0.0625000 k( 26) = ( 0.3558999 -0.6342604 0.4403156), wk = 0.0625000 k( 27) = ( 0.3599271 -0.6330485 -0.4406641), wk = 0.0625000 k( 28) = ( 0.3585847 -0.6334525 -0.1470042), wk = 0.0625000 k( 29) = ( 0.3557914 -0.3575495 0.0450953), wk = 0.0625000 k( 30) = ( 0.3544490 -0.3579535 0.3387552), wk = 0.0625000 k( 31) = ( 0.3584762 -0.3567415 -0.5422245), wk = 0.0625000 k( 32) = ( 0.3571338 -0.3571455 -0.2485646), wk = 0.0625000 extrapolated charge 10.00731, renormalised to 10.00000 total cpu time spent up to now is 18.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.09E-08, avg # of iterations = 1.1 total cpu time spent up to now is 19.3 secs total energy = -25.49894385 Ry Harris-Foulkes estimate = -25.50309984 Ry estimated scf accuracy < 0.00000508 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.08E-08, avg # of iterations = 2.0 total cpu time spent up to now is 19.6 secs total energy = -25.49894507 Ry Harris-Foulkes estimate = -25.49894534 Ry estimated scf accuracy < 0.00000059 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.89E-09, avg # of iterations = 1.9 total cpu time spent up to now is 19.9 secs End of self-consistent calculation k = 0.1172 0.0649 0.0452 ( 531 PWs) bands (ev): -7.2720 1.3527 5.3058 5.3882 6.1725 9.5473 10.0654 10.2950 14.2703 k = 0.1158 0.0645 0.3389 ( 522 PWs) bands (ev): -6.2965 -1.1264 3.7554 5.3088 7.7120 7.9505 8.9093 11.4099 13.6993 k = 0.1199 0.0657-0.5421 ( 520 PWs) bands (ev): -4.8719 -3.3279 4.3150 4.4788 5.9592 8.9180 9.4443 10.0130 15.1441 k = 0.1185 0.0653-0.2484 ( 525 PWs) bands (ev): -6.7043 -0.1440 4.4767 4.9668 6.4227 9.0460 9.7689 11.1230 13.2352 k = 0.1157 0.3412-0.0563 ( 522 PWs) bands (ev): -6.2886 -1.1224 3.7290 5.3185 7.6991 7.9381 8.8747 11.4488 13.6560 k = 0.1144 0.3408 0.2373 ( 519 PWs) bands (ev): -5.9350 -0.9693 2.7451 3.8462 5.1439 9.9738 11.5526 11.6458 13.3630 k = 0.1184 0.3420-0.6437 ( 510 PWs) bands (ev): -4.4142 -2.8403 1.7046 2.6837 5.9770 9.5904 12.1697 13.2729 13.5736 k = 0.1171 0.3416-0.3500 ( 521 PWs) bands (ev): -5.2272 -2.4165 2.5172 4.6062 5.7894 9.0959 10.7678 11.8922 13.3055 k = 0.1201-0.4877 0.2483 ( 520 PWs) bands (ev): -4.8241 -3.3708 4.2957 4.4756 5.9464 8.9002 9.4166 10.0174 15.1626 k = 0.1187-0.4881 0.5420 ( 510 PWs) bands (ev): -4.3859 -2.8721 1.7090 2.6745 5.9911 9.5390 12.2220 13.2760 13.5448 k = 0.1228-0.4869-0.3390 ( 510 PWs) bands (ev): -4.6407 -2.3555 1.8033 3.3051 3.9237 9.5516 12.5260 13.8116 14.4156 k = 0.1214-0.4873-0.0453 ( 521 PWs) bands (ev): -5.1804 -2.4948 2.6222 4.5434 5.7630 9.0686 10.7423 11.7644 13.3744 k = 0.1186-0.2114 0.1468 ( 525 PWs) bands (ev): -6.6987 -0.1540 4.4663 4.9938 6.3952 9.0639 9.7740 11.1012 13.1952 k = 0.1173-0.2118 0.4404 ( 521 PWs) bands (ev): -5.2297 -2.4214 2.5116 4.6263 5.8094 9.0656 10.7924 11.9241 13.2755 k = 0.1213-0.2106-0.4405 ( 521 PWs) bands (ev): -5.2004 -2.4715 2.5911 4.5654 5.7978 9.0444 10.7699 11.8391 13.3388 k = 0.1200-0.2110-0.1469 ( 525 PWs) bands (ev): -6.6896 -0.1675 4.4876 5.0622 6.2142 9.0942 9.8936 11.0428 13.0575 k = 0.3543-0.0812-0.0565 ( 522 PWs) bands (ev): -6.2589 -1.1383 3.6333 5.3988 7.7675 7.8999 8.7273 11.4934 13.4796 k = 0.3530-0.0816 0.2372 ( 519 PWs) bands (ev): -5.9340 -0.9259 2.7100 3.8475 5.1308 9.7849 11.5200 11.6839 13.5092 k = 0.3570-0.0804-0.6438 ( 510 PWs) bands (ev): -4.4698 -2.7155 1.6940 2.6565 5.8095 9.6775 11.9832 13.1983 13.7583 k = 0.3557-0.0808-0.3501 ( 521 PWs) bands (ev): -5.1784 -2.4573 2.6185 4.5211 5.6300 9.1252 10.7347 11.6672 13.4826 k = 0.3529 0.1951-0.1580 ( 519 PWs) bands (ev): -5.9399 -0.9055 2.7015 3.8503 5.1247 9.7530 11.5042 11.6891 13.5526 k = 0.3515 0.1947 0.1356 ( 522 PWs) bands (ev): -6.1587 -1.7695 5.4078 5.6207 6.6450 8.1291 8.4132 9.3013 15.3015 k = 0.3556 0.1959-0.7453 ( 520 PWs) bands (ev): -5.2133 -2.2455 1.9581 4.3801 5.7030 9.8185 9.9479 12.7139 14.8826 k = 0.3542 0.1955-0.4517 ( 510 PWs) bands (ev): -4.7485 -2.1189 1.6606 3.3303 3.9130 9.3673 12.5492 14.0270 14.3873 k = 0.3572-0.6339 0.1467 ( 510 PWs) bands (ev): -4.4662 -2.7114 1.6961 2.6468 5.7934 9.6607 12.0079 13.1796 13.7607 k = 0.3559-0.6343 0.4403 ( 520 PWs) bands (ev): -5.2021 -2.2537 1.9464 4.3820 5.6946 9.7941 9.9665 12.7403 14.8797 k = 0.3599-0.6330-0.4407 ( 520 PWs) bands (ev): -5.1649 -2.3107 1.9033 4.4214 5.7506 9.7144 10.0259 12.7770 14.8874 k = 0.3586-0.6335-0.1470 ( 510 PWs) bands (ev): -4.3792 -2.8343 1.7096 2.6345 5.8723 9.5541 12.2417 13.1852 13.5831 k = 0.3558-0.3575 0.0451 ( 521 PWs) bands (ev): -5.1608 -2.4857 2.6441 4.5194 5.6149 9.1196 10.7326 11.6229 13.4877 k = 0.3544-0.3580 0.3388 ( 510 PWs) bands (ev): -4.7146 -2.1753 1.6861 3.3183 3.9093 9.3910 12.5432 13.9820 14.4045 k = 0.3585-0.3567-0.5422 ( 510 PWs) bands (ev): -4.3539 -2.8706 1.7115 2.6352 5.9019 9.5188 12.2697 13.1987 13.5635 k = 0.3571-0.3571-0.2486 ( 520 PWs) bands (ev): -4.6717 -3.5142 4.1949 4.4769 5.9785 8.8710 9.3382 9.9884 15.2794 the Fermi energy is 7.8458 ev ! total energy = -25.49894517 Ry Harris-Foulkes estimate = -25.49894518 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00323053 -0.00298253 -0.00284251 atom 2 type 1 force = -0.00323053 0.00298253 0.00284251 Total force = 0.007404 Total SCF correction = 0.000098 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.26 -0.00010559 -0.00001886 -0.00000710 -15.53 -2.77 -1.04 -0.00001886 -0.00008825 -0.00000124 -2.77 -12.98 -0.18 -0.00000710 -0.00000124 -0.00009699 -1.04 -0.18 -14.27 Entering Dynamics; it = 8 time = 0.05082 pico-seconds new lattice vectors (alat unit) : 1.058114838 0.007077124 0.004744584 0.560920968 0.905867499 0.003733982 0.560746987 0.315999545 0.850283893 new unit-cell volume = 278.6591 (a.u.)^3 new positions in cryst coord As 0.267766558 0.275028022 0.276720458 As -0.267766558 -0.275028022 -0.276720458 new positions in cart coord (alat unit) As 0.592766915 0.338477502 0.237588339 As -0.592766915 -0.338477502 -0.237588339 Ekin = 0.00042244 Ry T = 831.8 K Etot = -25.49852273 new unit-cell volume = 278.65913 a.u.^3 ( 41.29302 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.058114838 0.007077124 0.004744584 0.560920968 0.905867499 0.003733982 0.560746987 0.315999545 0.850283893 ATOMIC_POSITIONS (crystal) As 0.267766558 0.275028022 0.276720458 As -0.267766558 -0.275028022 -0.276720458 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1174962 0.0650477 0.0453488), wk = 0.0625000 k( 2) = ( 0.1161759 0.0646491 0.3403870), wk = 0.0625000 k( 3) = ( 0.1201368 0.0658449 -0.5447278), wk = 0.0625000 k( 4) = ( 0.1188165 0.0654463 -0.2496895), wk = 0.0625000 k( 5) = ( 0.1160997 0.3423119 -0.0567727), wk = 0.0625000 k( 6) = ( 0.1147794 0.3419133 0.2382655), wk = 0.0625000 k( 7) = ( 0.1187402 0.3431092 -0.6468493), wk = 0.0625000 k( 8) = ( 0.1174200 0.3427105 -0.3518110), wk = 0.0625000 k( 9) = ( 0.1202893 -0.4894808 0.2495918), wk = 0.0625000 k( 10) = ( 0.1189690 -0.4898794 0.5446300), wk = 0.0625000 k( 11) = ( 0.1229299 -0.4886836 -0.3404848), wk = 0.0625000 k( 12) = ( 0.1216096 -0.4890822 -0.0454465), wk = 0.0625000 k( 13) = ( 0.1188928 -0.2122166 0.1474703), wk = 0.0625000 k( 14) = ( 0.1175725 -0.2126152 0.4425085), wk = 0.0625000 k( 15) = ( 0.1215333 -0.2114193 -0.4426063), wk = 0.0625000 k( 16) = ( 0.1202130 -0.2118180 -0.1475680), wk = 0.0625000 k( 17) = ( 0.3552055 -0.0817226 -0.0568705), wk = 0.0625000 k( 18) = ( 0.3538852 -0.0821212 0.2381678), wk = 0.0625000 k( 19) = ( 0.3578460 -0.0809254 -0.6469471), wk = 0.0625000 k( 20) = ( 0.3565258 -0.0813240 -0.3519088), wk = 0.0625000 k( 21) = ( 0.3538089 0.1955417 -0.1589920), wk = 0.0625000 k( 22) = ( 0.3524886 0.1951430 0.1360463), wk = 0.0625000 k( 23) = ( 0.3564495 0.1963389 -0.7490686), wk = 0.0625000 k( 24) = ( 0.3551292 0.1959403 -0.4540303), wk = 0.0625000 k( 25) = ( 0.3579986 -0.6362511 0.1473725), wk = 0.0625000 k( 26) = ( 0.3566783 -0.6366497 0.4424108), wk = 0.0625000 k( 27) = ( 0.3606391 -0.6354539 -0.4427041), wk = 0.0625000 k( 28) = ( 0.3593189 -0.6358525 -0.1476658), wk = 0.0625000 k( 29) = ( 0.3566020 -0.3589869 0.0452510), wk = 0.0625000 k( 30) = ( 0.3552817 -0.3593855 0.3402893), wk = 0.0625000 k( 31) = ( 0.3592426 -0.3581896 -0.5448256), wk = 0.0625000 k( 32) = ( 0.3579223 -0.3585882 -0.2497873), wk = 0.0625000 extrapolated charge 9.89293, renormalised to 10.00000 total cpu time spent up to now is 20.3 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 20.7 secs total energy = -25.49908279 Ry Harris-Foulkes estimate = -25.43784473 Ry estimated scf accuracy < 0.00005602 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.60E-07, avg # of iterations = 3.0 total cpu time spent up to now is 21.2 secs total energy = -25.49917704 Ry Harris-Foulkes estimate = -25.49919880 Ry estimated scf accuracy < 0.00005351 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.35E-07, avg # of iterations = 1.0 total cpu time spent up to now is 21.4 secs total energy = -25.49917708 Ry Harris-Foulkes estimate = -25.49918044 Ry estimated scf accuracy < 0.00000937 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.37E-08, avg # of iterations = 1.0 total cpu time spent up to now is 21.7 secs total energy = -25.49917619 Ry Harris-Foulkes estimate = -25.49917754 Ry estimated scf accuracy < 0.00000236 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 2.6 total cpu time spent up to now is 22.0 secs End of self-consistent calculation k = 0.1175 0.0650 0.0453 ( 531 PWs) bands (ev): -7.2243 1.5249 5.4303 5.5069 6.3157 9.7024 10.2318 10.4387 14.4157 k = 0.1162 0.0646 0.3404 ( 522 PWs) bands (ev): -6.2359 -0.9959 3.8378 5.4229 7.8643 8.1105 9.0448 11.5926 13.8337 k = 0.1201 0.0658-0.5447 ( 520 PWs) bands (ev): -4.7830 -3.2433 4.4124 4.5748 6.0890 9.0729 9.5832 10.1610 15.2933 k = 0.1188 0.0654-0.2497 ( 525 PWs) bands (ev): -6.6486 0.0034 4.5821 5.0847 6.5407 9.2094 9.9160 11.2857 13.3715 k = 0.1161 0.3423-0.0568 ( 522 PWs) bands (ev): -6.2301 -0.9967 3.8150 5.4387 7.8621 8.1037 9.0177 11.6276 13.7959 k = 0.1148 0.3419 0.2383 ( 519 PWs) bands (ev): -5.8727 -0.8288 2.8235 3.9479 5.2611 10.0978 11.7516 11.8274 13.5511 k = 0.1187 0.3431-0.6468 ( 510 PWs) bands (ev): -4.3279 -2.7290 1.7744 2.7602 6.0958 9.7575 12.3225 13.4568 13.7511 k = 0.1174 0.3427-0.3518 ( 521 PWs) bands (ev): -5.1508 -2.3113 2.6038 4.7125 5.9029 9.2425 10.9526 12.0557 13.4561 k = 0.1203-0.4895 0.2496 ( 520 PWs) bands (ev): -4.7431 -3.2851 4.3972 4.5795 6.0843 9.0654 9.5641 10.1685 15.3039 k = 0.1190-0.4899 0.5446 ( 510 PWs) bands (ev): -4.3043 -2.7583 1.7807 2.7523 6.1095 9.7165 12.3721 13.4639 13.7285 k = 0.1229-0.4887-0.3405 ( 510 PWs) bands (ev): -4.5636 -2.2321 1.8778 3.4014 4.0225 9.6545 12.7156 14.0168 14.6323 k = 0.1216-0.4891-0.0454 ( 521 PWs) bands (ev): -5.1104 -2.3807 2.6978 4.6557 5.8809 9.2204 10.9323 11.9410 13.5242 k = 0.1189-0.2122 0.1475 ( 525 PWs) bands (ev): -6.6444 -0.0087 4.5816 5.1059 6.5165 9.2257 9.9279 11.2669 13.3358 k = 0.1176-0.2126 0.4425 ( 521 PWs) bands (ev): -5.1524 -2.3134 2.5964 4.7274 5.9189 9.2162 10.9696 12.0830 13.4304 k = 0.1215-0.2114-0.4426 ( 521 PWs) bands (ev): -5.1259 -2.3581 2.6685 4.6717 5.9096 9.1939 10.9452 12.0055 13.4873 k = 0.1202-0.2118-0.1476 ( 525 PWs) bands (ev): -6.6361 -0.0187 4.5960 5.1705 6.3517 9.2491 10.0362 11.2159 13.2106 k = 0.3552-0.0817-0.0569 ( 522 PWs) bands (ev): -6.2026 -1.0103 3.7289 5.5082 7.9208 8.0698 8.8846 11.6636 13.6358 k = 0.3539-0.0821 0.2382 ( 519 PWs) bands (ev): -5.8711 -0.7912 2.7924 3.9506 5.2480 9.9277 11.7220 11.8597 13.6821 k = 0.3578-0.0809-0.6469 ( 510 PWs) bands (ev): -4.3774 -2.6159 1.7643 2.7348 5.9414 9.8349 12.1585 13.3939 13.9154 k = 0.3565-0.0813-0.3519 ( 521 PWs) bands (ev): -5.1057 -2.3476 2.6942 4.6354 5.7573 9.2640 10.9187 11.8505 13.6181 k = 0.3538 0.1955-0.1590 ( 519 PWs) bands (ev): -5.8761 -0.7728 2.7883 3.9458 5.2447 9.8981 11.7141 11.8661 13.7215 k = 0.3525 0.1951 0.1360 ( 522 PWs) bands (ev): -6.1001 -1.6667 5.5368 5.7314 6.8202 8.2819 8.5364 9.4849 15.4610 k = 0.3564 0.1963-0.7491 ( 520 PWs) bands (ev): -5.1390 -2.1379 2.0312 4.4816 5.8343 9.9750 10.1378 12.9181 15.0415 k = 0.3551 0.1959-0.4540 ( 510 PWs) bands (ev): -4.6580 -2.0177 1.7468 3.4179 4.0142 9.4881 12.7356 14.2087 14.6079 k = 0.3580-0.6363 0.1474 ( 510 PWs) bands (ev): -4.3749 -2.6142 1.7674 2.7282 5.9311 9.8248 12.1764 13.3789 13.9182 k = 0.3567-0.6366 0.4424 ( 520 PWs) bands (ev): -5.1300 -2.1466 2.0180 4.4899 5.8324 9.9562 10.1552 12.9377 15.0289 k = 0.3606-0.6355-0.4427 ( 520 PWs) bands (ev): -5.0960 -2.1980 1.9800 4.5240 5.8820 9.8814 10.2132 12.9686 15.0393 k = 0.3593-0.6359-0.1477 ( 510 PWs) bands (ev): -4.2951 -2.7266 1.7794 2.7172 6.0022 9.7295 12.3830 13.3800 13.7627 k = 0.3566-0.3590 0.0453 ( 521 PWs) bands (ev): -5.0917 -2.3725 2.7161 4.6346 5.7446 9.2639 10.9233 11.8136 13.6278 k = 0.3553-0.3594 0.3403 ( 510 PWs) bands (ev): -4.6292 -2.0702 1.7707 3.4153 4.0076 9.5119 12.7309 14.1713 14.6258 k = 0.3592-0.3582-0.5448 ( 510 PWs) bands (ev): -4.2736 -2.7580 1.7824 2.7164 6.0255 9.6986 12.4150 13.3945 13.7466 k = 0.3579-0.3586-0.2498 ( 520 PWs) bands (ev): -4.6049 -3.4128 4.3017 4.5801 6.1129 9.0379 9.4919 10.1372 15.4120 the Fermi energy is 8.0214 ev ! total energy = -25.49917682 Ry Harris-Foulkes estimate = -25.49917684 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00115013 -0.00383627 -0.00359303 atom 2 type 1 force = -0.00115013 0.00383627 0.00359303 Total force = 0.007609 Total SCF correction = 0.000140 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -5.43 -0.00005401 -0.00002553 -0.00001359 -7.94 -3.76 -2.00 -0.00002553 -0.00002961 -0.00000772 -3.76 -4.36 -1.14 -0.00001359 -0.00000772 -0.00002716 -2.00 -1.14 -4.00 Entering Dynamics; it = 9 time = 0.05808 pico-seconds new lattice vectors (alat unit) : 1.057433776 0.006432953 0.004431447 0.559363779 0.902049560 0.003454045 0.559307405 0.314638941 0.845794051 new unit-cell volume = 276.0070 (a.u.)^3 new positions in cryst coord As 0.268414294 0.274641940 0.276128640 As -0.268414294 -0.274641940 -0.276128640 new positions in cart coord (alat unit) As 0.591895887 0.336348160 0.235686050 As -0.591895887 -0.336348160 -0.235686050 Ekin = 0.00056790 Ry T = 730.3 K Etot = -25.49860892 new unit-cell volume = 276.00701 a.u.^3 ( 40.90002 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.057433776 0.006432953 0.004431447 0.559363779 0.902049560 0.003454045 0.559307405 0.314638941 0.845794051 ATOMIC_POSITIONS (crystal) As 0.268414294 0.274641940 0.276128640 As -0.268414294 -0.274641940 -0.276128640 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1176211 0.0654613 0.0456577), wk = 0.0625000 k( 2) = ( 0.1163807 0.0650950 0.3421944), wk = 0.0625000 k( 3) = ( 0.1201021 0.0661937 -0.5474159), wk = 0.0625000 k( 4) = ( 0.1188616 0.0658275 -0.2508791), wk = 0.0625000 k( 5) = ( 0.1163583 0.3437842 -0.0570446), wk = 0.0625000 k( 6) = ( 0.1151179 0.3434180 0.2394922), wk = 0.0625000 k( 7) = ( 0.1188393 0.3445167 -0.6501182), wk = 0.0625000 k( 8) = ( 0.1175988 0.3441504 -0.3535814), wk = 0.0625000 k( 9) = ( 0.1201467 -0.4911847 0.2510621), wk = 0.0625000 k( 10) = ( 0.1189062 -0.4915509 0.5475989), wk = 0.0625000 k( 11) = ( 0.1226277 -0.4904522 -0.3420114), wk = 0.0625000 k( 12) = ( 0.1213872 -0.4908184 -0.0454746), wk = 0.0625000 k( 13) = ( 0.1188839 -0.2128617 0.1483599), wk = 0.0625000 k( 14) = ( 0.1176434 -0.2132279 0.4448967), wk = 0.0625000 k( 15) = ( 0.1213649 -0.2121292 -0.4447137), wk = 0.0625000 k( 16) = ( 0.1201244 -0.2124955 -0.1481769), wk = 0.0625000 k( 17) = ( 0.3553667 -0.0815730 -0.0568616), wk = 0.0625000 k( 18) = ( 0.3541262 -0.0819392 0.2396752), wk = 0.0625000 k( 19) = ( 0.3578477 -0.0808405 -0.6499351), wk = 0.0625000 k( 20) = ( 0.3566072 -0.0812067 -0.3533984), wk = 0.0625000 k( 21) = ( 0.3541039 0.1967500 -0.1595638), wk = 0.0625000 k( 22) = ( 0.3528634 0.1963838 0.1369730), wk = 0.0625000 k( 23) = ( 0.3565849 0.1974825 -0.7526374), wk = 0.0625000 k( 24) = ( 0.3553444 0.1971162 -0.4561006), wk = 0.0625000 k( 25) = ( 0.3578923 -0.6382189 0.1485429), wk = 0.0625000 k( 26) = ( 0.3566518 -0.6385851 0.4450797), wk = 0.0625000 k( 27) = ( 0.3603732 -0.6374864 -0.4445307), wk = 0.0625000 k( 28) = ( 0.3591328 -0.6378526 -0.1479939), wk = 0.0625000 k( 29) = ( 0.3566295 -0.3598959 0.0458407), wk = 0.0625000 k( 30) = ( 0.3553890 -0.3602622 0.3423774), wk = 0.0625000 k( 31) = ( 0.3591104 -0.3591634 -0.5472329), wk = 0.0625000 k( 32) = ( 0.3578700 -0.3595297 -0.2506961), wk = 0.0625000 extrapolated charge 9.90392, renormalised to 10.00000 total cpu time spent up to now is 22.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.3 total cpu time spent up to now is 22.9 secs total energy = -25.49918745 Ry Harris-Foulkes estimate = -25.44374920 Ry estimated scf accuracy < 0.00004215 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-07, avg # of iterations = 3.0 total cpu time spent up to now is 23.3 secs total energy = -25.49926005 Ry Harris-Foulkes estimate = -25.49927680 Ry estimated scf accuracy < 0.00004153 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.15E-07, avg # of iterations = 1.0 total cpu time spent up to now is 23.6 secs total energy = -25.49926002 Ry Harris-Foulkes estimate = -25.49926268 Ry estimated scf accuracy < 0.00000742 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.42E-08, avg # of iterations = 1.0 total cpu time spent up to now is 23.9 secs total energy = -25.49925929 Ry Harris-Foulkes estimate = -25.49926037 Ry estimated scf accuracy < 0.00000186 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-08, avg # of iterations = 2.6 total cpu time spent up to now is 24.2 secs End of self-consistent calculation k = 0.1176 0.0655 0.0457 ( 531 PWs) bands (ev): -7.1772 1.6777 5.5295 5.6351 6.4459 9.8515 10.3798 10.5753 14.5247 k = 0.1164 0.0651 0.3422 ( 522 PWs) bands (ev): -6.1739 -0.8767 3.9136 5.5312 7.9950 8.2490 9.1504 11.7482 13.9512 k = 0.1201 0.0662-0.5474 ( 520 PWs) bands (ev): -4.6925 -3.1643 4.4962 4.6615 6.1994 9.2088 9.6923 10.2808 15.4437 k = 0.1189 0.0658-0.2509 ( 525 PWs) bands (ev): -6.5946 0.1432 4.6732 5.1972 6.6409 9.3470 10.0560 11.4330 13.4865 k = 0.1164 0.3438-0.0570 ( 522 PWs) bands (ev): -6.1704 -0.8828 3.8959 5.5526 8.0041 8.2482 9.1328 11.7756 13.9207 k = 0.1151 0.3434 0.2395 ( 519 PWs) bands (ev): -5.8070 -0.7103 2.8932 4.0567 5.3560 10.2048 11.9259 11.9798 13.7098 k = 0.1188 0.3445-0.6501 ( 510 PWs) bands (ev): -4.2376 -2.6264 1.8384 2.8208 6.1822 9.8973 12.4674 13.6317 13.9130 k = 0.1176 0.3442-0.3536 ( 521 PWs) bands (ev): -5.0759 -2.2074 2.6874 4.7944 6.0051 9.3467 11.0975 12.2076 13.5897 k = 0.1201-0.4912 0.2511 ( 520 PWs) bands (ev): -4.6632 -3.2022 4.4848 4.6744 6.2039 9.2116 9.6844 10.2900 15.4467 k = 0.1189-0.4916 0.5476 ( 510 PWs) bands (ev): -4.2201 -2.6518 1.8462 2.8151 6.1947 9.8704 12.5126 13.6405 13.8976 k = 0.1226-0.4905-0.3420 ( 510 PWs) bands (ev): -4.4860 -2.1206 1.9351 3.5064 4.0966 9.7503 12.8828 14.2042 14.8457 k = 0.1214-0.4908-0.0455 ( 521 PWs) bands (ev): -5.0421 -2.2757 2.7669 4.7579 5.9818 9.3527 11.1148 12.1009 13.6640 k = 0.1189-0.2129 0.1484 ( 525 PWs) bands (ev): -6.5920 0.1299 4.6826 5.2117 6.6202 9.3607 10.0737 11.4197 13.4576 k = 0.1176-0.2132 0.4449 ( 521 PWs) bands (ev): -5.0768 -2.2064 2.6787 4.8027 6.0172 9.3264 11.1050 12.2298 13.5689 k = 0.1214-0.2121-0.4447 ( 521 PWs) bands (ev): -5.0521 -2.2558 2.7415 4.7672 6.0032 9.3266 11.1118 12.1500 13.6280 k = 0.1201-0.2125-0.1482 ( 525 PWs) bands (ev): -6.5847 0.1038 4.7166 5.2598 6.4991 9.3938 10.1729 11.3648 13.3478 k = 0.3554-0.0816-0.0569 ( 522 PWs) bands (ev): -6.1521 -0.9014 3.8229 5.6280 8.0656 8.2331 9.0277 11.8380 13.7892 k = 0.3541-0.0819 0.2397 ( 519 PWs) bands (ev): -5.8109 -0.6676 2.8754 4.0396 5.3481 10.0684 11.9016 12.0281 13.8302 k = 0.3578-0.0808-0.6499 ( 510 PWs) bands (ev): -4.2862 -2.5295 1.8261 2.8108 6.0731 9.9746 12.3179 13.5629 14.0369 k = 0.3566-0.0812-0.3534 ( 521 PWs) bands (ev): -5.0409 -2.2538 2.7739 4.7421 5.8950 9.3997 11.0938 12.0242 13.7382 k = 0.3541 0.1967-0.1596 ( 519 PWs) bands (ev): -5.8145 -0.6529 2.8762 4.0273 5.3478 10.0428 11.9038 12.0334 13.8628 k = 0.3529 0.1964 0.1370 ( 522 PWs) bands (ev): -6.0391 -1.5804 5.6523 5.8435 6.9832 8.4186 8.6367 9.6442 15.6086 k = 0.3566 0.1975-0.7526 ( 520 PWs) bands (ev): -5.0602 -2.0492 2.1034 4.5727 5.9467 10.1056 10.3133 13.1055 15.1968 k = 0.3553 0.1971-0.4561 ( 510 PWs) bands (ev): -4.5725 -1.9204 1.8236 3.4911 4.1093 9.6092 12.9035 14.3541 14.7975 k = 0.3579-0.6382 0.1485 ( 510 PWs) bands (ev): -4.2846 -2.5308 1.8299 2.8074 6.0688 9.9722 12.3276 13.5525 14.0394 k = 0.3567-0.6386 0.4451 ( 520 PWs) bands (ev): -5.0539 -2.0582 2.0896 4.5872 5.9523 10.0925 10.3292 13.1166 15.1759 k = 0.3604-0.6375-0.4445 ( 520 PWs) bands (ev): -5.0273 -2.1007 2.0471 4.6303 5.9972 10.0330 10.3850 13.1469 15.1444 k = 0.3591-0.6379-0.1480 ( 510 PWs) bands (ev): -4.2195 -2.6275 1.8477 2.7948 6.1292 9.8842 12.5102 13.5722 13.9308 k = 0.3566-0.3599 0.0458 ( 521 PWs) bands (ev): -5.0318 -2.2728 2.7906 4.7414 5.8857 9.4052 11.1045 11.9982 13.7524 k = 0.3554-0.3603 0.3424 ( 510 PWs) bands (ev): -4.5515 -1.9651 1.8447 3.4982 4.1009 9.6320 12.9009 14.3271 14.8137 k = 0.3591-0.3592-0.5472 ( 510 PWs) bands (ev): -4.2035 -2.6518 1.8516 2.7928 6.1457 9.8600 12.5455 13.5880 13.9168 k = 0.3579-0.3595-0.2507 ( 520 PWs) bands (ev): -4.5481 -3.3282 4.4186 4.6950 6.2378 9.2077 9.6345 10.2908 15.5059 the Fermi energy is 8.1824 ev ! total energy = -25.49925979 Ry Harris-Foulkes estimate = -25.49925983 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00035549 -0.00427916 -0.00394839 atom 2 type 1 force = 0.00035549 0.00427916 0.00394839 Total force = 0.008250 Total SCF correction = 0.000179 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 2.10 -0.00001448 -0.00002809 -0.00001750 -2.13 -4.13 -2.57 -0.00002809 0.00002303 -0.00001175 -4.13 3.39 -1.73 -0.00001750 -0.00001175 0.00003435 -2.57 -1.73 5.05 Entering Dynamics; it = 10 time = 0.06534 pico-seconds new lattice vectors (alat unit) : 1.056589272 0.005394202 0.003872636 0.557382850 0.902352918 0.002915228 0.557471963 0.313033636 0.847067653 new unit-cell volume = 276.5936 (a.u.)^3 new positions in cryst coord As 0.269047334 0.274108944 0.275325555 As -0.269047334 -0.274108944 -0.275325555 new positions in cart coord (alat unit) As 0.590542429 0.334980460 0.235060384 As -0.590542429 -0.334980460 -0.235060384 Ekin = 0.00063993 Ry T = 651.6 K Etot = -25.49861986 new unit-cell volume = 276.59356 a.u.^3 ( 40.98694 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.056589272 0.005394202 0.003872636 0.557382850 0.902352918 0.002915228 0.557471963 0.313033636 0.847067653 ATOMIC_POSITIONS (crystal) As 0.269047334 0.274108944 0.275325555 As -0.269047334 -0.274108944 -0.275325555 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1178024 0.0656123 0.0457928), wk = 0.0625000 k( 2) = ( 0.1167191 0.0653253 0.3417476), wk = 0.0625000 k( 3) = ( 0.1199689 0.0661863 -0.5461168), wk = 0.0625000 k( 4) = ( 0.1188857 0.0658993 -0.2501620), wk = 0.0625000 k( 5) = ( 0.1167570 0.3436412 -0.0562647), wk = 0.0625000 k( 6) = ( 0.1156738 0.3433542 0.2396901), wk = 0.0625000 k( 7) = ( 0.1189236 0.3442152 -0.6481743), wk = 0.0625000 k( 8) = ( 0.1178403 0.3439282 -0.3522195), wk = 0.0625000 k( 9) = ( 0.1198931 -0.4904455 0.2499079), wk = 0.0625000 k( 10) = ( 0.1188098 -0.4907325 0.5458627), wk = 0.0625000 k( 11) = ( 0.1220596 -0.4898715 -0.3420017), wk = 0.0625000 k( 12) = ( 0.1209764 -0.4901585 -0.0460469), wk = 0.0625000 k( 13) = ( 0.1188477 -0.2124166 0.1478503), wk = 0.0625000 k( 14) = ( 0.1177645 -0.2127036 0.4438051), wk = 0.0625000 k( 15) = ( 0.1210143 -0.2118426 -0.4440592), wk = 0.0625000 k( 16) = ( 0.1199310 -0.2121296 -0.1481045), wk = 0.0625000 k( 17) = ( 0.3555358 -0.0809049 -0.0565188), wk = 0.0625000 k( 18) = ( 0.3544525 -0.0811919 0.2394360), wk = 0.0625000 k( 19) = ( 0.3577023 -0.0803309 -0.6484284), wk = 0.0625000 k( 20) = ( 0.3566191 -0.0806179 -0.3524736), wk = 0.0625000 k( 21) = ( 0.3544904 0.1971240 -0.1585764), wk = 0.0625000 k( 22) = ( 0.3534072 0.1968370 0.1373784), wk = 0.0625000 k( 23) = ( 0.3566570 0.1976980 -0.7504860), wk = 0.0625000 k( 24) = ( 0.3555737 0.1974110 -0.4545312), wk = 0.0625000 k( 25) = ( 0.3576265 -0.6369627 0.1475962), wk = 0.0625000 k( 26) = ( 0.3565432 -0.6372497 0.4435510), wk = 0.0625000 k( 27) = ( 0.3597930 -0.6363887 -0.4443134), wk = 0.0625000 k( 28) = ( 0.3587098 -0.6366757 -0.1483586), wk = 0.0625000 k( 29) = ( 0.3565811 -0.3589338 0.0455387), wk = 0.0625000 k( 30) = ( 0.3554979 -0.3592208 0.3414935), wk = 0.0625000 k( 31) = ( 0.3587477 -0.3583598 -0.5463709), wk = 0.0625000 k( 32) = ( 0.3576644 -0.3586468 -0.2504161), wk = 0.0625000 extrapolated charge 10.02121, renormalised to 10.00000 total cpu time spent up to now is 24.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.98E-08, avg # of iterations = 1.0 total cpu time spent up to now is 25.3 secs total energy = -25.49937038 Ry Harris-Foulkes estimate = -25.51164246 Ry estimated scf accuracy < 0.00000696 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.96E-08, avg # of iterations = 2.0 total cpu time spent up to now is 25.6 secs total energy = -25.49937474 Ry Harris-Foulkes estimate = -25.49937566 Ry estimated scf accuracy < 0.00000185 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-08, avg # of iterations = 1.3 total cpu time spent up to now is 25.9 secs total energy = -25.49937491 Ry Harris-Foulkes estimate = -25.49937496 Ry estimated scf accuracy < 0.00000011 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-09, avg # of iterations = 1.8 total cpu time spent up to now is 26.2 secs End of self-consistent calculation k = 0.1178 0.0656 0.0458 ( 531 PWs) bands (ev): -7.1758 1.6464 5.5196 5.5876 6.4216 9.8394 10.3690 10.5266 14.4881 k = 0.1167 0.0653 0.3417 ( 522 PWs) bands (ev): -6.1732 -0.9139 3.9096 5.5372 7.9659 8.2152 9.0840 11.7275 13.9072 k = 0.1200 0.0662-0.5461 ( 520 PWs) bands (ev): -4.6911 -3.1998 4.4952 4.6593 6.1716 9.1928 9.6422 10.2727 15.4404 k = 0.1189 0.0659-0.2502 ( 525 PWs) bands (ev): -6.5970 0.1041 4.6631 5.1887 6.6246 9.3142 10.0577 11.3902 13.4388 k = 0.1168 0.3436-0.0563 ( 522 PWs) bands (ev): -6.1694 -0.9178 3.8953 5.5515 7.9723 8.2130 9.0670 11.7443 13.8807 k = 0.1157 0.3434 0.2397 ( 519 PWs) bands (ev): -5.8042 -0.7322 2.8932 4.0159 5.3156 10.1699 11.8775 11.9424 13.6597 k = 0.1189 0.3442-0.6482 ( 510 PWs) bands (ev): -4.2396 -2.6480 1.8249 2.8096 6.1551 9.8493 12.4249 13.5988 13.8851 k = 0.1178 0.3439-0.3522 ( 521 PWs) bands (ev): -5.0813 -2.2365 2.6923 4.7644 5.9982 9.3198 11.0708 12.1624 13.5765 k = 0.1199-0.4904 0.2499 ( 520 PWs) bands (ev): -4.6667 -3.2275 4.4821 4.6663 6.1748 9.1930 9.6328 10.2745 15.4490 k = 0.1188-0.4907 0.5459 ( 510 PWs) bands (ev): -4.2247 -2.6688 1.8298 2.8058 6.1657 9.8290 12.4607 13.6027 13.8676 k = 0.1221-0.4899-0.3420 ( 510 PWs) bands (ev): -4.5013 -2.1052 1.8965 3.4706 4.0799 9.7317 12.8444 14.1557 14.8002 k = 0.1210-0.4902-0.0460 ( 521 PWs) bands (ev): -5.0511 -2.2916 2.7591 4.7316 5.9785 9.3128 11.0696 12.0715 13.6261 k = 0.1188-0.2124 0.1479 ( 525 PWs) bands (ev): -6.5951 0.0969 4.6668 5.2016 6.6034 9.3238 10.0716 11.3805 13.4159 k = 0.1178-0.2127 0.4438 ( 521 PWs) bands (ev): -5.0832 -2.2363 2.6869 4.7706 6.0126 9.3061 11.0760 12.1820 13.5593 k = 0.1210-0.2118-0.4441 ( 521 PWs) bands (ev): -5.0597 -2.2785 2.7403 4.7414 5.9991 9.2976 11.0716 12.1105 13.5977 k = 0.1199-0.2121-0.1481 ( 525 PWs) bands (ev): -6.5878 0.0806 4.6809 5.2438 6.5050 9.3531 10.1386 11.3343 13.3236 k = 0.3555-0.0809-0.0565 ( 522 PWs) bands (ev): -6.1523 -0.9244 3.8338 5.6027 8.0040 8.1904 8.9748 11.7978 13.7712 k = 0.3545-0.0812 0.2394 ( 519 PWs) bands (ev): -5.8081 -0.6965 2.8728 4.0137 5.3063 10.0587 11.8525 11.9721 13.7584 k = 0.3577-0.0803-0.6484 ( 510 PWs) bands (ev): -4.2817 -2.5667 1.8171 2.7991 6.0617 9.9151 12.3147 13.5459 13.9870 k = 0.3566-0.0806-0.3525 ( 521 PWs) bands (ev): -5.0485 -2.2720 2.7614 4.7148 5.9038 9.3583 11.0468 12.0035 13.6892 k = 0.3545 0.1971-0.1586 ( 519 PWs) bands (ev): -5.8098 -0.6869 2.8716 4.0076 5.3054 10.0358 11.8515 11.9759 13.7833 k = 0.3534 0.1968 0.1374 ( 522 PWs) bands (ev): -6.0257 -1.6057 5.6509 5.7940 6.9340 8.3846 8.5667 9.5787 15.5866 k = 0.3567 0.1977-0.7505 ( 520 PWs) bands (ev): -5.0441 -2.0884 2.0853 4.5603 5.9068 10.0450 10.2741 13.0630 15.1486 k = 0.3556 0.1974-0.4545 ( 510 PWs) bands (ev): -4.5732 -1.9471 1.8061 3.4753 4.0835 9.6194 12.8612 14.2886 14.7650 k = 0.3576-0.6370 0.1476 ( 510 PWs) bands (ev): -4.2785 -2.5679 1.8192 2.7952 6.0540 9.9125 12.3229 13.5387 13.9865 k = 0.3565-0.6372 0.4436 ( 520 PWs) bands (ev): -5.0384 -2.0963 2.0760 4.5697 5.9115 10.0335 10.2862 13.0705 15.1389 k = 0.3598-0.6364-0.4443 ( 520 PWs) bands (ev): -5.0147 -2.1283 2.0457 4.5938 5.9361 9.9840 10.3258 13.1042 15.1293 k = 0.3587-0.6367-0.1484 ( 510 PWs) bands (ev): -4.2217 -2.6453 1.8297 2.7839 6.1010 9.8286 12.4674 13.5482 13.8959 k = 0.3566-0.3589 0.0455 ( 521 PWs) bands (ev): -5.0418 -2.2850 2.7748 4.7113 5.8977 9.3597 11.0500 11.9846 13.7000 k = 0.3555-0.3592 0.3415 ( 510 PWs) bands (ev): -4.5582 -1.9800 1.8236 3.4777 4.0797 9.6391 12.8589 14.2652 14.7735 k = 0.3587-0.3584-0.5464 ( 510 PWs) bands (ev): -4.2101 -2.6649 1.8325 2.7841 6.1192 9.8111 12.4949 13.5583 13.8801 k = 0.3577-0.3586-0.2504 ( 520 PWs) bands (ev): -4.5670 -3.3249 4.4246 4.6717 6.1881 9.1737 9.5826 10.2696 15.5079 the Fermi energy is 8.0481 ev ! total energy = -25.49937492 Ry Harris-Foulkes estimate = -25.49937493 Ry estimated scf accuracy < 9.1E-09 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00025256 -0.00244866 -0.00242498 atom 2 type 1 force = -0.00025256 0.00244866 0.00242498 Total force = 0.004887 Total SCF correction = 0.000065 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -1.50 -0.00002130 -0.00002520 -0.00001617 -3.13 -3.71 -2.38 -0.00002520 -0.00000129 0.00000901 -3.71 -0.19 1.33 -0.00001617 0.00000901 -0.00000806 -2.38 1.33 -1.19 Entering Dynamics; it = 11 time = 0.07260 pico-seconds new lattice vectors (alat unit) : 1.055473536 0.004017424 0.003094039 0.554973939 0.902179295 0.002370310 0.555224783 0.311355815 0.846916361 new unit-cell volume = 276.5748 (a.u.)^3 new positions in cryst coord As 0.269917559 0.273532581 0.274363417 As -0.269917559 -0.273532581 -0.274363417 new positions in cart coord (alat unit) As 0.589027663 0.333284449 0.233846359 As -0.589027663 -0.333284449 -0.233846359 Ekin = 0.00028681 Ry T = 587.5 K Etot = -25.49908811 new unit-cell volume = 276.57475 a.u.^3 ( 40.98415 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.055473536 0.004017424 0.003094039 0.554973939 0.902179295 0.002370310 0.555224783 0.311355815 0.846916361 ATOMIC_POSITIONS (crystal) As 0.269917559 0.273532581 0.274363417 As -0.269917559 -0.273532581 -0.274363417 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1180449 0.0658174 0.0460092), wk = 0.0625000 k( 2) = ( 0.1171785 0.0655731 0.3418555), wk = 0.0625000 k( 3) = ( 0.1197775 0.0663062 -0.5456835), wk = 0.0625000 k( 4) = ( 0.1189112 0.0660618 -0.2498371), wk = 0.0625000 k( 5) = ( 0.1172853 0.3436585 -0.0556369), wk = 0.0625000 k( 6) = ( 0.1164190 0.3434141 0.2402094), wk = 0.0625000 k( 7) = ( 0.1190179 0.3441472 -0.6473295), wk = 0.0625000 k( 8) = ( 0.1181516 0.3439029 -0.3514832), wk = 0.0625000 k( 9) = ( 0.1195640 -0.4898647 0.2493013), wk = 0.0625000 k( 10) = ( 0.1186977 -0.4901091 0.5451476), wk = 0.0625000 k( 11) = ( 0.1212966 -0.4893760 -0.3423914), wk = 0.0625000 k( 12) = ( 0.1204303 -0.4896204 -0.0465450), wk = 0.0625000 k( 13) = ( 0.1188044 -0.2120237 0.1476552), wk = 0.0625000 k( 14) = ( 0.1179381 -0.2122680 0.4435016), wk = 0.0625000 k( 15) = ( 0.1205371 -0.2115349 -0.4440374), wk = 0.0625000 k( 16) = ( 0.1196708 -0.2117793 -0.1481911), wk = 0.0625000 k( 17) = ( 0.3557605 -0.0801444 -0.0561727), wk = 0.0625000 k( 18) = ( 0.3548942 -0.0803888 0.2396736), wk = 0.0625000 k( 19) = ( 0.3574931 -0.0796557 -0.6478654), wk = 0.0625000 k( 20) = ( 0.3566268 -0.0799001 -0.3520190), wk = 0.0625000 k( 21) = ( 0.3550009 0.1976967 -0.1578188), wk = 0.0625000 k( 22) = ( 0.3541346 0.1974523 0.1380275), wk = 0.0625000 k( 23) = ( 0.3567336 0.1981854 -0.7495114), wk = 0.0625000 k( 24) = ( 0.3558672 0.1979410 -0.4536651), wk = 0.0625000 k( 25) = ( 0.3572796 -0.6358266 0.1471194), wk = 0.0625000 k( 26) = ( 0.3564133 -0.6360710 0.4429657), wk = 0.0625000 k( 27) = ( 0.3590123 -0.6353379 -0.4445733), wk = 0.0625000 k( 28) = ( 0.3581459 -0.6355822 -0.1487269), wk = 0.0625000 k( 29) = ( 0.3565201 -0.3579855 0.0454733), wk = 0.0625000 k( 30) = ( 0.3556537 -0.3582299 0.3413196), wk = 0.0625000 k( 31) = ( 0.3582527 -0.3574968 -0.5462193), wk = 0.0625000 k( 32) = ( 0.3573864 -0.3577412 -0.2503730), wk = 0.0625000 extrapolated charge 9.99932, renormalised to 10.00000 total cpu time spent up to now is 26.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.08E-08, avg # of iterations = 1.1 total cpu time spent up to now is 27.3 secs total energy = -25.49944347 Ry Harris-Foulkes estimate = -25.49904982 Ry estimated scf accuracy < 0.00000207 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.07E-08, avg # of iterations = 1.0 total cpu time spent up to now is 27.6 secs total energy = -25.49944353 Ry Harris-Foulkes estimate = -25.49944354 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.20E-09, avg # of iterations = 1.0 total cpu time spent up to now is 27.8 secs End of self-consistent calculation k = 0.1180 0.0658 0.0460 ( 531 PWs) bands (ev): -7.1650 1.6514 5.5302 5.5671 6.4286 9.8586 10.3955 10.5037 14.4716 k = 0.1172 0.0656 0.3419 ( 522 PWs) bands (ev): -6.1590 -0.9202 3.9212 5.5615 7.9590 8.2101 9.0400 11.7480 13.8868 k = 0.1198 0.0663-0.5457 ( 520 PWs) bands (ev): -4.6668 -3.2177 4.5120 4.6706 6.1642 9.1999 9.6155 10.2958 15.4772 k = 0.1189 0.0661-0.2498 ( 525 PWs) bands (ev): -6.5877 0.0971 4.6673 5.2078 6.6320 9.3166 10.0858 11.3794 13.4171 k = 0.1173 0.3437-0.0556 ( 522 PWs) bands (ev): -6.1571 -0.9272 3.9140 5.5751 7.9721 8.2125 9.0321 11.7524 13.8699 k = 0.1164 0.3434 0.2402 ( 519 PWs) bands (ev): -5.7895 -0.7233 2.9060 4.0000 5.2988 10.1576 11.8633 11.9419 13.6520 k = 0.1190 0.3441-0.6473 ( 510 PWs) bands (ev): -4.2236 -2.6457 1.8245 2.8135 6.1505 9.8313 12.4172 13.6003 13.8947 k = 0.1182 0.3439-0.3515 ( 521 PWs) bands (ev): -5.0699 -2.2468 2.7171 4.7566 6.0166 9.3223 11.0783 12.1446 13.5906 k = 0.1196-0.4899 0.2493 ( 520 PWs) bands (ev): -4.6550 -3.2354 4.5018 4.6809 6.1736 9.2079 9.6141 10.2954 15.4815 k = 0.1187-0.4901 0.5451 ( 510 PWs) bands (ev): -4.2159 -2.6596 1.8290 2.8124 6.1584 9.8269 12.4429 13.6044 13.8800 k = 0.1213-0.4894-0.3424 ( 510 PWs) bands (ev): -4.5046 -2.0627 1.8730 3.4598 4.0839 9.7347 12.8469 14.1577 14.7981 k = 0.1204-0.4896-0.0465 ( 521 PWs) bands (ev): -5.0489 -2.2826 2.7646 4.7294 6.0038 9.3116 11.0683 12.0841 13.6234 k = 0.1188-0.2120 0.1477 ( 525 PWs) bands (ev): -6.5874 0.0928 4.6748 5.2144 6.6144 9.3224 10.1005 11.3766 13.4041 k = 0.1179-0.2123 0.4435 ( 521 PWs) bands (ev): -5.0717 -2.2443 2.7128 4.7563 6.0276 9.3174 11.0744 12.1571 13.5808 k = 0.1205-0.2115-0.4440 ( 521 PWs) bands (ev): -5.0520 -2.2757 2.7537 4.7334 6.0167 9.3029 11.0603 12.1028 13.6014 k = 0.1197-0.2118-0.1482 ( 525 PWs) bands (ev): -6.5812 0.0860 4.6716 5.2497 6.5410 9.3429 10.1392 11.3430 13.3359 k = 0.3558-0.0801-0.0562 ( 522 PWs) bands (ev): -6.1425 -0.9253 3.8675 5.6027 7.9816 8.1884 8.9596 11.7890 13.7875 k = 0.3549-0.0804 0.2397 ( 519 PWs) bands (ev): -5.7923 -0.6975 2.8862 4.0089 5.2889 10.0756 11.8402 11.9561 13.7224 k = 0.3575-0.0797-0.6479 ( 510 PWs) bands (ev): -4.2557 -2.5842 1.8206 2.8032 6.0769 9.8787 12.3470 13.5669 13.9696 k = 0.3566-0.0799-0.3520 ( 521 PWs) bands (ev): -5.0422 -2.2701 2.7659 4.7141 5.9430 9.3424 11.0428 12.0233 13.6663 k = 0.3550 0.1977-0.1578 ( 519 PWs) bands (ev): -5.7918 -0.6945 2.8883 4.0002 5.2904 10.0598 11.8444 11.9584 13.7363 k = 0.3541 0.1975 0.1380 ( 522 PWs) bands (ev): -6.0002 -1.6085 5.6726 5.7676 6.9196 8.3857 8.5163 9.5508 15.5982 k = 0.3567 0.1982-0.7495 ( 520 PWs) bands (ev): -5.0111 -2.1043 2.0831 4.5624 5.8885 10.0148 10.2709 13.0666 15.1424 k = 0.3559 0.1979-0.4537 ( 510 PWs) bands (ev): -4.5524 -1.9558 1.8085 3.4692 4.0817 9.6541 12.8574 14.2543 14.7800 k = 0.3573-0.6358 0.1471 ( 510 PWs) bands (ev): -4.2522 -2.5881 1.8223 2.8019 6.0727 9.8826 12.3480 13.5657 13.9667 k = 0.3564-0.6361 0.4430 ( 520 PWs) bands (ev): -5.0082 -2.1115 2.0764 4.5737 5.8978 10.0087 10.2796 13.0647 15.1323 k = 0.3590-0.6353-0.4446 ( 520 PWs) bands (ev): -4.9891 -2.1333 2.0582 4.5819 5.9074 9.9704 10.3057 13.0942 15.1416 k = 0.3581-0.6356-0.1487 ( 510 PWs) bands (ev): -4.2074 -2.6442 1.8266 2.7929 6.1052 9.8144 12.4480 13.5657 13.8984 k = 0.3565-0.3580 0.0455 ( 521 PWs) bands (ev): -5.0409 -2.2744 2.7725 4.7099 5.9412 9.3460 11.0467 12.0179 13.6781 k = 0.3557-0.3582 0.3413 ( 510 PWs) bands (ev): -4.5478 -1.9736 1.8203 3.4770 4.0789 9.6695 12.8571 14.2433 14.7818 k = 0.3583-0.3575-0.5462 ( 510 PWs) bands (ev): -4.2032 -2.6543 1.8293 2.7933 6.1174 9.8066 12.4725 13.5711 13.8857 k = 0.3574-0.3577-0.2504 ( 520 PWs) bands (ev): -4.5776 -3.3013 4.4550 4.6744 6.1729 9.1816 9.5690 10.2838 15.5359 the Fermi energy is 8.0310 ev ! total energy = -25.49944354 Ry Harris-Foulkes estimate = -25.49944354 Ry estimated scf accuracy < 4.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00073695 -0.00141745 -0.00140033 atom 2 type 1 force = -0.00073695 0.00141745 0.00140033 Total force = 0.003004 Total SCF correction = 0.000064 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -3.21 -0.00002346 -0.00001391 -0.00000849 -3.45 -2.05 -1.25 -0.00001391 -0.00001812 0.00000695 -2.05 -2.67 1.02 -0.00000849 0.00000695 -0.00002386 -1.25 1.02 -3.51 Entering Dynamics; it = 12 time = 0.07986 pico-seconds new lattice vectors (alat unit) : 1.054062693 0.002449449 0.002195598 0.552252786 0.901720248 0.002803041 0.552678216 0.309598348 0.846492617 new unit-cell volume = 276.2343 (a.u.)^3 new positions in cryst coord As 0.271086968 0.272953275 0.273396336 As -0.271086968 -0.272953275 -0.273396336 new positions in cart coord (alat unit) As 0.587582065 0.331434563 0.232788277 As -0.587582065 -0.331434563 -0.232788277 Ekin = 0.00035076 Ry T = 535.2 K Etot = -25.49909278 new unit-cell volume = 276.23429 a.u.^3 ( 40.93370 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.054062693 0.002449449 0.002195598 0.552252786 0.901720248 0.002803041 0.552678216 0.309598348 0.846492617 ATOMIC_POSITIONS (crystal) As 0.271086968 0.272953275 0.273396336 As -0.271086968 -0.272953275 -0.273396336 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1183390 0.0660041 0.0462636), wk = 0.0625000 k( 2) = ( 0.1177239 0.0654610 0.3422003), wk = 0.0625000 k( 3) = ( 0.1195694 0.0670905 -0.5456096), wk = 0.0625000 k( 4) = ( 0.1189542 0.0665473 -0.2496730), wk = 0.0625000 k( 5) = ( 0.1179045 0.3438331 -0.0550665), wk = 0.0625000 k( 6) = ( 0.1172893 0.3432899 0.2408701), wk = 0.0625000 k( 7) = ( 0.1191348 0.3449195 -0.6469397), wk = 0.0625000 k( 8) = ( 0.1185196 0.3443763 -0.3510031), wk = 0.0625000 k( 9) = ( 0.1192081 -0.4896538 0.2489239), wk = 0.0625000 k( 10) = ( 0.1185930 -0.4901970 0.5448606), wk = 0.0625000 k( 11) = ( 0.1204385 -0.4885675 -0.3429493), wk = 0.0625000 k( 12) = ( 0.1198233 -0.4891106 -0.0470127), wk = 0.0625000 k( 13) = ( 0.1187736 -0.2118248 0.1475938), wk = 0.0625000 k( 14) = ( 0.1181584 -0.2123680 0.4435304), wk = 0.0625000 k( 15) = ( 0.1200039 -0.2107385 -0.4442794), wk = 0.0625000 k( 16) = ( 0.1193887 -0.2112817 -0.1483428), wk = 0.0625000 k( 17) = ( 0.3560668 -0.0792734 -0.0558155), wk = 0.0625000 k( 18) = ( 0.3554516 -0.0798166 0.2401211), wk = 0.0625000 k( 19) = ( 0.3572971 -0.0781870 -0.6476888), wk = 0.0625000 k( 20) = ( 0.3566820 -0.0787302 -0.3517522), wk = 0.0625000 k( 21) = ( 0.3556322 0.1985556 -0.1571457), wk = 0.0625000 k( 22) = ( 0.3550171 0.1980124 0.1387909), wk = 0.0625000 k( 23) = ( 0.3568626 0.1996419 -0.7490189), wk = 0.0625000 k( 24) = ( 0.3562474 0.1990988 -0.4530823), wk = 0.0625000 k( 25) = ( 0.3569359 -0.6349314 0.1468448), wk = 0.0625000 k( 26) = ( 0.3563207 -0.6354745 0.4427814), wk = 0.0625000 k( 27) = ( 0.3581662 -0.6338450 -0.4450285), wk = 0.0625000 k( 28) = ( 0.3575511 -0.6343882 -0.1490919), wk = 0.0625000 k( 29) = ( 0.3565013 -0.3571024 0.0455146), wk = 0.0625000 k( 30) = ( 0.3558862 -0.3576456 0.3414512), wk = 0.0625000 k( 31) = ( 0.3577317 -0.3560160 -0.5463586), wk = 0.0625000 k( 32) = ( 0.3571165 -0.3565592 -0.2504220), wk = 0.0625000 extrapolated charge 9.98768, renormalised to 10.00000 total cpu time spent up to now is 28.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.65E-08, avg # of iterations = 1.1 total cpu time spent up to now is 29.0 secs total energy = -25.49948598 Ry Harris-Foulkes estimate = -25.49232820 Ry estimated scf accuracy < 0.00000265 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.65E-08, avg # of iterations = 2.0 total cpu time spent up to now is 29.3 secs total energy = -25.49948677 Ry Harris-Foulkes estimate = -25.49948716 Ry estimated scf accuracy < 0.00000086 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.60E-09, avg # of iterations = 1.5 total cpu time spent up to now is 29.6 secs End of self-consistent calculation k = 0.1183 0.0660 0.0463 ( 531 PWs) bands (ev): -7.1512 1.6788 5.5483 5.5585 6.4542 9.8876 10.4497 10.4851 14.4678 k = 0.1177 0.0655 0.3422 ( 522 PWs) bands (ev): -6.1408 -0.9086 3.9397 5.5909 7.9629 8.2221 9.0160 11.7987 13.8776 k = 0.1196 0.0671-0.5456 ( 520 PWs) bands (ev): -4.6327 -3.2288 4.5406 4.6858 6.1687 9.2174 9.6095 10.3456 15.5333 k = 0.1190 0.0665-0.2497 ( 525 PWs) bands (ev): -6.5738 0.1040 4.6784 5.2413 6.6551 9.3460 10.1214 11.3865 13.4122 k = 0.1179 0.3438-0.0551 ( 522 PWs) bands (ev): -6.1407 -0.9193 3.9395 5.6040 7.9834 8.2296 9.0175 11.7902 13.8699 k = 0.1173 0.3433 0.2409 ( 519 PWs) bands (ev): -5.7742 -0.6892 2.9198 3.9964 5.2983 10.1501 11.8642 11.9658 13.6795 k = 0.1191 0.3449-0.6469 ( 510 PWs) bands (ev): -4.2072 -2.6258 1.8311 2.8275 6.1614 9.8346 12.4272 13.6149 13.9316 k = 0.1185 0.3444-0.3510 ( 521 PWs) bands (ev): -5.0481 -2.2534 2.7526 4.7635 6.0436 9.3518 11.1040 12.1272 13.6203 k = 0.1192-0.4897 0.2489 ( 520 PWs) bands (ev): -4.6331 -3.2373 4.5331 4.6997 6.1847 9.2337 9.6161 10.3425 15.5331 k = 0.1186-0.4902 0.5449 ( 510 PWs) bands (ev): -4.2061 -2.6338 1.8355 2.8293 6.1667 9.8470 12.4431 13.6194 13.9184 k = 0.1204-0.4886-0.3429 ( 510 PWs) bands (ev): -4.5117 -1.9991 1.8600 3.4623 4.1048 9.7431 12.8771 14.1995 14.8126 k = 0.1198-0.4891-0.0470 ( 521 PWs) bands (ev): -5.0443 -2.2574 2.7733 4.7378 6.0446 9.3394 11.0830 12.1179 13.6423 k = 0.1188-0.2118 0.1476 ( 525 PWs) bands (ev): -6.5752 0.1023 4.6892 5.2429 6.6406 9.3471 10.1376 11.3910 13.4091 k = 0.1182-0.2124 0.4435 ( 521 PWs) bands (ev): -5.0499 -2.2482 2.7492 4.7569 6.0512 9.3564 11.0902 12.1326 13.6179 k = 0.1200-0.2107-0.4443 ( 521 PWs) bands (ev): -5.0422 -2.2561 2.7698 4.7360 6.0498 9.3376 11.0644 12.1162 13.6263 k = 0.1194-0.2113-0.1483 ( 525 PWs) bands (ev): -6.5725 0.1104 4.6725 5.2680 6.5870 9.3504 10.1555 11.3828 13.3759 k = 0.3561-0.0793-0.0558 ( 522 PWs) bands (ev): -6.1297 -0.9162 3.9160 5.6090 7.9841 8.2118 8.9759 11.7857 13.8216 k = 0.3555-0.0798 0.2401 ( 519 PWs) bands (ev): -5.7712 -0.6846 2.9069 4.0107 5.2913 10.1019 11.8520 11.9600 13.7091 k = 0.3573-0.0782-0.6477 ( 510 PWs) bands (ev): -4.2182 -2.5948 1.8304 2.8152 6.1077 9.8500 12.3943 13.6118 13.9775 k = 0.3567-0.0787-0.3518 ( 521 PWs) bands (ev): -5.0318 -2.2560 2.7719 4.7341 5.9955 9.3394 11.0715 12.0704 13.6571 k = 0.3556 0.1986-0.1571 ( 519 PWs) bands (ev): -5.7685 -0.6883 2.9127 3.9987 5.2952 10.0931 11.8625 11.9605 13.7121 k = 0.3550 0.1980 0.1388 ( 522 PWs) bands (ev): -5.9727 -1.5937 5.7047 5.7469 6.9193 8.4150 8.4731 9.5466 15.6265 k = 0.3569 0.1996-0.7490 ( 520 PWs) bands (ev): -4.9747 -2.1015 2.0858 4.5696 5.8830 10.0054 10.2840 13.0955 15.1568 k = 0.3562 0.1991-0.4531 ( 510 PWs) bands (ev): -4.5198 -1.9616 1.8251 3.4673 4.0934 9.6951 12.8769 14.2443 14.8293 k = 0.3569-0.6349 0.1468 ( 510 PWs) bands (ev): -4.2143 -2.6018 1.8318 2.8165 6.1066 9.8608 12.3882 13.6166 13.9725 k = 0.3563-0.6355 0.4428 ( 520 PWs) bands (ev): -4.9745 -2.1084 2.0813 4.5832 5.8976 10.0035 10.2911 13.0836 15.1459 k = 0.3582-0.6338-0.4450 ( 520 PWs) bands (ev): -4.9630 -2.1221 2.0775 4.5816 5.9031 9.9800 10.3044 13.0911 15.1749 k = 0.3576-0.6344-0.1491 ( 510 PWs) bands (ev): -4.1884 -2.6327 1.8306 2.8141 6.1240 9.8338 12.4362 13.6049 13.9221 k = 0.3565-0.3571 0.0455 ( 521 PWs) bands (ev): -5.0357 -2.2521 2.7719 4.7293 5.9980 9.3456 11.0761 12.0785 13.6701 k = 0.3559-0.3576 0.3415 ( 510 PWs) bands (ev): -4.5253 -1.9649 1.8316 3.4807 4.0916 9.7062 12.8785 14.2462 14.8233 k = 0.3577-0.3560-0.5464 ( 510 PWs) bands (ev): -4.1914 -2.6337 1.8335 2.8148 6.1306 9.8357 12.4581 13.6048 13.9132 k = 0.3571-0.3566-0.2504 ( 520 PWs) bands (ev): -4.5921 -3.2613 4.4948 4.6878 6.1825 9.2142 9.5858 10.3155 15.5824 the Fermi energy is 8.1622 ev ! total energy = -25.49948686 Ry Harris-Foulkes estimate = -25.49948687 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00051992 -0.00060001 -0.00073592 atom 2 type 1 force = -0.00051992 0.00060001 0.00073592 Total force = 0.001531 Total SCF correction = 0.000047 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -3.41 -0.00001777 0.00000140 -0.00000257 -2.61 0.21 -0.38 0.00000140 -0.00002928 -0.00000137 0.21 -4.31 -0.20 -0.00000257 -0.00000137 -0.00002252 -0.38 -0.20 -3.31 Entering Dynamics; it = 13 time = 0.08712 pico-seconds new lattice vectors (alat unit) : 1.052436056 0.002510377 0.001251178 0.549431494 0.900951997 0.002770842 0.549989325 0.307732140 0.845817063 new unit-cell volume = 275.4555 (a.u.)^3 new positions in cryst coord As 0.272357975 0.272547777 0.272337095 As -0.272357975 -0.272547777 -0.272337095 new positions in cart coord (alat unit) As 0.586168180 0.330043062 0.231443317 As -0.586168180 -0.330043062 -0.231443317 Ekin = 0.00038515 Ry T = 491.7 K Etot = -25.49910171 new unit-cell volume = 275.45554 a.u.^3 ( 40.81830 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.052436056 0.002510377 0.001251178 0.549431494 0.900951997 0.002770842 0.549989325 0.307732140 0.845817063 ATOMIC_POSITIONS (crystal) As 0.272357975 0.272547777 0.272337095 As -0.272357975 -0.272547777 -0.272337095 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1185586 0.0662978 0.0465728), wk = 0.0625000 k( 2) = ( 0.1182083 0.0656009 0.3426263), wk = 0.0625000 k( 3) = ( 0.1192591 0.0676916 -0.5455342), wk = 0.0625000 k( 4) = ( 0.1189089 0.0669947 -0.2494807), wk = 0.0625000 k( 5) = ( 0.1180150 0.3444237 -0.0542638), wk = 0.0625000 k( 6) = ( 0.1176647 0.3437268 0.2417897), wk = 0.0625000 k( 7) = ( 0.1187156 0.3458174 -0.6463708), wk = 0.0625000 k( 8) = ( 0.1183653 0.3451205 -0.3503173), wk = 0.0625000 k( 9) = ( 0.1196456 -0.4899539 0.2482460), wk = 0.0625000 k( 10) = ( 0.1192953 -0.4906508 0.5442996), wk = 0.0625000 k( 11) = ( 0.1203462 -0.4885601 -0.3438610), wk = 0.0625000 k( 12) = ( 0.1199959 -0.4892570 -0.0478075), wk = 0.0625000 k( 13) = ( 0.1191021 -0.2118280 0.1474094), wk = 0.0625000 k( 14) = ( 0.1187518 -0.2125249 0.4434629), wk = 0.0625000 k( 15) = ( 0.1198027 -0.2104343 -0.4446976), wk = 0.0625000 k( 16) = ( 0.1194524 -0.2111312 -0.1486441), wk = 0.0625000 k( 17) = ( 0.3565695 -0.0785355 -0.0554984), wk = 0.0625000 k( 18) = ( 0.3562192 -0.0792324 0.2405551), wk = 0.0625000 k( 19) = ( 0.3572701 -0.0771418 -0.6476054), wk = 0.0625000 k( 20) = ( 0.3569198 -0.0778386 -0.3515519), wk = 0.0625000 k( 21) = ( 0.3560260 0.1995903 -0.1563350), wk = 0.0625000 k( 22) = ( 0.3556757 0.1988935 0.1397185), wk = 0.0625000 k( 23) = ( 0.3567266 0.2009841 -0.7484421), wk = 0.0625000 k( 24) = ( 0.3563763 0.2002872 -0.4523885), wk = 0.0625000 k( 25) = ( 0.3576566 -0.6347872 0.1461748), wk = 0.0625000 k( 26) = ( 0.3573063 -0.6354841 0.4422283), wk = 0.0625000 k( 27) = ( 0.3583572 -0.6333935 -0.4459322), wk = 0.0625000 k( 28) = ( 0.3580069 -0.6340903 -0.1498787), wk = 0.0625000 k( 29) = ( 0.3571130 -0.3566614 0.0453382), wk = 0.0625000 k( 30) = ( 0.3567627 -0.3573582 0.3413917), wk = 0.0625000 k( 31) = ( 0.3578136 -0.3552676 -0.5467688), wk = 0.0625000 k( 32) = ( 0.3574633 -0.3559645 -0.2507153), wk = 0.0625000 extrapolated charge 9.97173, renormalised to 10.00000 total cpu time spent up to now is 30.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.05E-08, avg # of iterations = 1.0 total cpu time spent up to now is 30.7 secs total energy = -25.49949887 Ry Harris-Foulkes estimate = -25.48303192 Ry estimated scf accuracy < 0.00000504 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.04E-08, avg # of iterations = 3.0 total cpu time spent up to now is 31.1 secs total energy = -25.49950449 Ry Harris-Foulkes estimate = -25.49950592 Ry estimated scf accuracy < 0.00000341 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-08, avg # of iterations = 1.0 total cpu time spent up to now is 31.3 secs total energy = -25.49950449 Ry Harris-Foulkes estimate = -25.49950473 Ry estimated scf accuracy < 0.00000052 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.21E-09, avg # of iterations = 1.4 total cpu time spent up to now is 31.6 secs End of self-consistent calculation k = 0.1186 0.0663 0.0466 ( 531 PWs) bands (ev): -7.1331 1.7319 5.5567 5.5950 6.5013 9.9349 10.4995 10.5166 14.4777 k = 0.1182 0.0656 0.3426 ( 522 PWs) bands (ev): -6.1170 -0.8864 3.9710 5.6411 8.0084 8.2667 9.0259 11.8586 13.8873 k = 0.1193 0.0677-0.5455 ( 520 PWs) bands (ev): -4.5954 -3.2266 4.5724 4.7245 6.2100 9.2719 9.6380 10.4094 15.6093 k = 0.1189 0.0670-0.2495 ( 525 PWs) bands (ev): -6.5560 0.1349 4.7097 5.2921 6.6813 9.3991 10.1863 11.4299 13.4340 k = 0.1180 0.3444-0.0543 ( 522 PWs) bands (ev): -6.1187 -0.8904 3.9756 5.6434 8.0150 8.2719 9.0338 11.8526 13.8935 k = 0.1177 0.3437 0.2418 ( 519 PWs) bands (ev): -5.7493 -0.6426 2.9483 4.0013 5.3224 10.1572 11.9080 12.0136 13.7337 k = 0.1187 0.3458-0.6464 ( 510 PWs) bands (ev): -4.1767 -2.5982 1.8493 2.8537 6.1893 9.8762 12.4551 13.6652 13.9882 k = 0.1184 0.3451-0.3503 ( 521 PWs) bands (ev): -5.0236 -2.2348 2.7929 4.7823 6.0900 9.4075 11.1559 12.1521 13.6799 k = 0.1196-0.4900 0.2482 ( 520 PWs) bands (ev): -4.6036 -3.2231 4.5755 4.7301 6.2159 9.2803 9.6451 10.4106 15.6028 k = 0.1193-0.4907 0.5443 ( 510 PWs) bands (ev): -4.1812 -2.5951 1.8504 2.8554 6.1879 9.8872 12.4509 13.6667 13.9914 k = 0.1203-0.4886-0.3439 ( 510 PWs) bands (ev): -4.4973 -1.9311 1.8601 3.4696 4.1393 9.7587 12.9334 14.2668 14.8734 k = 0.1200-0.4893-0.0478 ( 521 PWs) bands (ev): -5.0254 -2.2241 2.7934 4.7691 6.0955 9.3868 11.1257 12.1633 13.6727 k = 0.1191-0.2118 0.1474 ( 525 PWs) bands (ev): -6.5571 0.1346 4.7148 5.2885 6.6843 9.3974 10.1884 11.4346 13.4397 k = 0.1188-0.2125 0.4435 ( 521 PWs) bands (ev): -5.0232 -2.2322 2.7922 4.7779 6.0860 9.4122 11.1489 12.1470 13.6844 k = 0.1198-0.2104-0.4447 ( 521 PWs) bands (ev): -5.0216 -2.2259 2.7970 4.7639 6.0893 9.3876 11.1147 12.1503 13.6747 k = 0.1195-0.2111-0.1486 ( 525 PWs) bands (ev): -6.5562 0.1536 4.6837 5.3013 6.6598 9.3877 10.1802 11.4394 13.4362 k = 0.3566-0.0785-0.0555 ( 522 PWs) bands (ev): -6.1113 -0.8788 3.9704 5.6225 7.9955 8.2543 9.0150 11.8273 13.8786 k = 0.3562-0.0792 0.2406 ( 519 PWs) bands (ev): -5.7446 -0.6504 2.9363 4.0274 5.3152 10.1422 11.8956 11.9964 13.7304 k = 0.3573-0.0771-0.6476 ( 510 PWs) bands (ev): -4.1743 -2.5917 1.8526 2.8416 6.1591 9.8705 12.4661 13.6833 14.0035 k = 0.3569-0.0778-0.3516 ( 521 PWs) bands (ev): -5.0153 -2.2217 2.7873 4.7633 6.0679 9.3728 11.1144 12.1430 13.6746 k = 0.3560 0.1996-0.1563 ( 519 PWs) bands (ev): -5.7436 -0.6540 2.9404 4.0221 5.3176 10.1475 11.9009 11.9966 13.7248 k = 0.3557 0.1989 0.1397 ( 522 PWs) bands (ev): -5.9418 -1.5617 5.7385 5.7582 6.9453 8.4579 8.4677 9.5741 15.6770 k = 0.3567 0.2010-0.7484 ( 520 PWs) bands (ev): -4.9347 -2.0850 2.0967 4.6018 5.9144 10.0234 10.3318 13.1387 15.1915 k = 0.3564 0.2003-0.4524 ( 510 PWs) bands (ev): -4.4878 -1.9476 1.8586 3.4902 4.1222 9.7551 12.9300 14.2743 14.8996 k = 0.3577-0.6348 0.1462 ( 510 PWs) bands (ev): -4.1747 -2.5945 1.8531 2.8442 6.1634 9.8764 12.4610 13.6872 14.0027 k = 0.3573-0.6355 0.4422 ( 520 PWs) bands (ev): -4.9367 -2.0851 2.0969 4.6059 5.9187 10.0267 10.3315 13.1319 15.1857 k = 0.3584-0.6334-0.4459 ( 520 PWs) bands (ev): -4.9317 -2.0869 2.1068 4.5875 5.9103 10.0178 10.3287 13.1327 15.2335 k = 0.3580-0.6341-0.1499 ( 510 PWs) bands (ev): -4.1655 -2.5988 1.8447 2.8457 6.1650 9.8700 12.4585 13.6668 13.9771 k = 0.3571-0.3567 0.0453 ( 521 PWs) bands (ev): -5.0187 -2.2174 2.7830 4.7641 6.0700 9.3768 11.1184 12.1509 13.6770 k = 0.3568-0.3574 0.3414 ( 510 PWs) bands (ev): -4.4939 -1.9401 1.8555 3.4970 4.1209 9.7523 12.9315 14.2834 14.8966 k = 0.3578-0.3553-0.5468 ( 510 PWs) bands (ev): -4.1697 -2.5929 1.8454 2.8447 6.1593 9.8751 12.4592 13.6647 13.9810 k = 0.3575-0.3560-0.2507 ( 520 PWs) bands (ev): -4.5907 -3.2102 4.5526 4.7048 6.2005 9.2551 9.6223 10.3785 15.6437 the Fermi energy is 8.2054 ev ! total energy = -25.49950454 Ry Harris-Foulkes estimate = -25.49950454 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00050696 -0.00017353 -0.00003880 atom 2 type 1 force = 0.00050696 0.00017353 0.00003880 Total force = 0.000760 Total SCF correction = 0.000091 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -1.84 -0.00000015 0.00000496 0.00000219 -0.02 0.73 0.32 0.00000496 -0.00001935 0.00000242 0.73 -2.85 0.36 0.00000219 0.00000242 -0.00001807 0.32 0.36 -2.66 Entering Dynamics; it = 14 time = 0.09438 pico-seconds new lattice vectors (alat unit) : 1.052559704 0.002569851 0.001520783 0.550493631 0.900004847 0.002788390 0.550590260 0.305854186 0.844981846 new unit-cell volume = 274.8842 (a.u.)^3 new positions in cryst coord As 0.272337814 0.272543988 0.272342018 As -0.272337814 -0.272543988 -0.272342018 new positions in cart coord (alat unit) As 0.586634401 0.329287724 0.231298186 As -0.586634401 -0.329287724 -0.231298186 Ekin = 0.00038357 Ry T = 454.9 K Etot = -25.49912097 new unit-cell volume = 274.88424 a.u.^3 ( 40.73364 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.052559704 0.002569851 0.001520783 0.550493631 0.900004847 0.002788390 0.550590260 0.305854186 0.844981846 ATOMIC_POSITIONS (crystal) As 0.272337814 0.272543988 0.272342018 As -0.272337814 -0.272543988 -0.272342018 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1185289 0.0662445 0.0467205), wk = 0.0625000 k( 2) = ( 0.1181022 0.0655872 0.3431008), wk = 0.0625000 k( 3) = ( 0.1193821 0.0675591 -0.5460400), wk = 0.0625000 k( 4) = ( 0.1189555 0.0669018 -0.2496597), wk = 0.0625000 k( 5) = ( 0.1179942 0.3446589 -0.0537075), wk = 0.0625000 k( 6) = ( 0.1175676 0.3440016 0.2426728), wk = 0.0625000 k( 7) = ( 0.1188474 0.3459735 -0.6464680), wk = 0.0625000 k( 8) = ( 0.1184208 0.3453162 -0.3500877), wk = 0.0625000 k( 9) = ( 0.1195982 -0.4905844 0.2475766), wk = 0.0625000 k( 10) = ( 0.1191716 -0.4912417 0.5439568), wk = 0.0625000 k( 11) = ( 0.1204514 -0.4892698 -0.3451839), wk = 0.0625000 k( 12) = ( 0.1200248 -0.4899271 -0.0488037), wk = 0.0625000 k( 13) = ( 0.1190635 -0.2121700 0.1471486), wk = 0.0625000 k( 14) = ( 0.1186369 -0.2128273 0.4435288), wk = 0.0625000 k( 15) = ( 0.1199168 -0.2108554 -0.4456119), wk = 0.0625000 k( 16) = ( 0.1194901 -0.2115127 -0.1492317), wk = 0.0625000 k( 17) = ( 0.3565479 -0.0790238 -0.0557906), wk = 0.0625000 k( 18) = ( 0.3561213 -0.0796811 0.2405897), wk = 0.0625000 k( 19) = ( 0.3574011 -0.0777092 -0.6485511), wk = 0.0625000 k( 20) = ( 0.3569745 -0.0783665 -0.3521708), wk = 0.0625000 k( 21) = ( 0.3560132 0.1993907 -0.1562186), wk = 0.0625000 k( 22) = ( 0.3555866 0.1987334 0.1401616), wk = 0.0625000 k( 23) = ( 0.3568665 0.2007053 -0.7489791), wk = 0.0625000 k( 24) = ( 0.3564398 0.2000480 -0.4525989), wk = 0.0625000 k( 25) = ( 0.3576172 -0.6358527 0.1450654), wk = 0.0625000 k( 26) = ( 0.3571906 -0.6365100 0.4414457), wk = 0.0625000 k( 27) = ( 0.3584704 -0.6345381 -0.4476951), wk = 0.0625000 k( 28) = ( 0.3580438 -0.6351954 -0.1513148), wk = 0.0625000 k( 29) = ( 0.3570825 -0.3574382 0.0446374), wk = 0.0625000 k( 30) = ( 0.3566559 -0.3580955 0.3410177), wk = 0.0625000 k( 31) = ( 0.3579358 -0.3561236 -0.5481231), wk = 0.0625000 k( 32) = ( 0.3575091 -0.3567809 -0.2517428), wk = 0.0625000 extrapolated charge 9.97922, renormalised to 10.00000 total cpu time spent up to now is 32.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.73E-08, avg # of iterations = 1.2 total cpu time spent up to now is 32.6 secs total energy = -25.49950483 Ry Harris-Foulkes estimate = -25.48737925 Ry estimated scf accuracy < 0.00000272 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.72E-08, avg # of iterations = 3.0 total cpu time spent up to now is 33.0 secs total energy = -25.49950845 Ry Harris-Foulkes estimate = -25.49950925 Ry estimated scf accuracy < 0.00000188 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-08, avg # of iterations = 1.0 total cpu time spent up to now is 33.3 secs total energy = -25.49950848 Ry Harris-Foulkes estimate = -25.49950858 Ry estimated scf accuracy < 0.00000027 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-09, avg # of iterations = 1.0 total cpu time spent up to now is 33.5 secs End of self-consistent calculation k = 0.1185 0.0662 0.0467 ( 531 PWs) bands (ev): -7.1241 1.7638 5.5900 5.6174 6.5277 9.9659 10.5298 10.5504 14.4992 k = 0.1181 0.0656 0.3431 ( 522 PWs) bands (ev): -6.1047 -0.8631 3.9877 5.6639 8.0484 8.3010 9.0582 11.8733 13.9168 k = 0.1194 0.0676-0.5460 ( 520 PWs) bands (ev): -4.5830 -3.2017 4.5802 4.7469 6.2435 9.3086 9.6673 10.4203 15.6380 k = 0.1190 0.0669-0.2497 ( 525 PWs) bands (ev): -6.5464 0.1721 4.7302 5.3140 6.6925 9.4239 10.2195 11.4700 13.4652 k = 0.1180 0.3447-0.0537 ( 522 PWs) bands (ev): -6.1079 -0.8696 3.9927 5.6718 8.0596 8.3101 9.0696 11.8748 13.9254 k = 0.1176 0.3440 0.2427 ( 519 PWs) bands (ev): -5.7315 -0.6299 2.9699 4.0205 5.3493 10.1839 11.9627 12.0429 13.7612 k = 0.1188 0.3460-0.6465 ( 510 PWs) bands (ev): -4.1499 -2.5838 1.8619 2.8661 6.2051 9.9122 12.4773 13.7109 14.0171 k = 0.1184 0.3453-0.3501 ( 521 PWs) bands (ev): -5.0157 -2.2004 2.8034 4.7998 6.1147 9.4258 11.1959 12.2108 13.7155 k = 0.1196-0.4906 0.2476 ( 520 PWs) bands (ev): -4.5929 -3.2025 4.5883 4.7586 6.2527 9.3230 9.6788 10.4296 15.6222 k = 0.1192-0.4912 0.5440 ( 510 PWs) bands (ev): -4.1560 -2.5804 1.8652 2.8670 6.2039 9.9230 12.4752 13.7178 14.0260 k = 0.1205-0.4893-0.3452 ( 510 PWs) bands (ev): -4.4633 -1.9261 1.8749 3.4839 4.1516 9.7756 12.9644 14.2947 14.9365 k = 0.1200-0.4899-0.0488 ( 521 PWs) bands (ev): -5.0051 -2.2124 2.8125 4.8016 6.1080 9.4094 11.1802 12.1875 13.6975 k = 0.1191-0.2122 0.1471 ( 525 PWs) bands (ev): -6.5476 0.1667 4.7430 5.3077 6.7008 9.4252 10.2241 11.4726 13.4706 k = 0.1186-0.2128 0.4435 ( 521 PWs) bands (ev): -5.0137 -2.1964 2.8000 4.7947 6.1051 9.4271 11.1881 12.2038 13.7203 k = 0.1199-0.2109-0.4456 ( 521 PWs) bands (ev): -4.9998 -2.2103 2.8137 4.7924 6.0975 9.4008 11.1600 12.1745 13.6973 k = 0.1195-0.2115-0.1492 ( 525 PWs) bands (ev): -6.5426 0.1762 4.7072 5.3202 6.6981 9.4251 10.1990 11.4566 13.4569 k = 0.3565-0.0790-0.0558 ( 522 PWs) bands (ev): -6.1009 -0.8436 3.9781 5.6443 8.0134 8.2818 9.0398 11.8903 13.9106 k = 0.3561-0.0797 0.2406 ( 519 PWs) bands (ev): -5.7355 -0.6192 2.9488 4.0569 5.3363 10.1720 11.9318 12.0371 13.7722 k = 0.3574-0.0777-0.6486 ( 510 PWs) bands (ev): -4.1635 -2.5663 1.8680 2.8596 6.1852 9.9261 12.5055 13.7117 14.0239 k = 0.3570-0.0784-0.3522 ( 521 PWs) bands (ev): -5.0002 -2.1995 2.8081 4.7766 6.0946 9.4135 11.1316 12.1697 13.7028 k = 0.3560 0.1994-0.1562 ( 519 PWs) bands (ev): -5.7358 -0.6200 2.9553 4.0454 5.3403 10.1796 11.9384 12.0430 13.7685 k = 0.3556 0.1987 0.1402 ( 522 PWs) bands (ev): -5.9322 -1.5442 5.7670 5.7855 6.9864 8.4807 8.5080 9.6144 15.7074 k = 0.3569 0.2007-0.7490 ( 520 PWs) bands (ev): -4.9226 -2.0671 2.1154 4.6273 5.9500 10.0563 10.3762 13.1707 15.2288 k = 0.3564 0.2000-0.4526 ( 510 PWs) bands (ev): -4.4805 -1.9154 1.8750 3.5130 4.1455 9.7799 12.9688 14.3152 14.9270 k = 0.3576-0.6359 0.1451 ( 510 PWs) bands (ev): -4.1667 -2.5692 1.8698 2.8644 6.1962 9.9342 12.4989 13.7156 14.0258 k = 0.3572-0.6365 0.4414 ( 520 PWs) bands (ev): -4.9256 -2.0669 2.1126 4.6359 5.9562 10.0619 10.3766 13.1645 15.2114 k = 0.3585-0.6345-0.4477 ( 520 PWs) bands (ev): -4.9182 -2.0604 2.1203 4.6040 5.9261 10.0528 10.3685 13.1951 15.2557 k = 0.3580-0.6352-0.1513 ( 510 PWs) bands (ev): -4.1521 -2.5712 1.8592 2.8585 6.1953 9.8886 12.4935 13.6997 14.0211 k = 0.3571-0.3574 0.0446 ( 521 PWs) bands (ev): -5.0034 -2.1975 2.8035 4.7807 6.0955 9.4233 11.1439 12.1753 13.7080 k = 0.3567-0.3581 0.3410 ( 510 PWs) bands (ev): -4.4846 -1.9120 1.8714 3.5260 4.1396 9.7766 12.9698 14.3270 14.9306 k = 0.3579-0.3561-0.5481 ( 510 PWs) bands (ev): -4.1549 -2.5649 1.8606 2.8546 6.1830 9.8912 12.4981 13.7027 14.0282 k = 0.3575-0.3568-0.2517 ( 520 PWs) bands (ev): -4.5651 -3.1992 4.5790 4.7202 6.2141 9.2739 9.6445 10.4177 15.6555 the Fermi energy is 8.2361 ev ! total energy = -25.49950846 Ry Harris-Foulkes estimate = -25.49950850 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00078465 -0.00034505 -0.00021634 atom 2 type 1 force = 0.00078465 0.00034505 0.00021634 Total force = 0.001250 Total SCF correction = 0.000167 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.00 0.00000499 -0.00000006 -0.00000079 0.73 -0.01 -0.12 -0.00000006 -0.00000263 0.00000913 -0.01 -0.39 1.34 -0.00000079 0.00000913 -0.00000236 -0.12 1.34 -0.35 Entering Dynamics; it = 15 time = 0.10164 pico-seconds new lattice vectors (alat unit) : 1.052633204 0.002629924 0.001511388 0.550530545 0.899032675 0.002886566 0.550619127 0.307513046 0.845000101 new unit-cell volume = 274.5911 (a.u.)^3 new positions in cryst coord As 0.272307616 0.272524129 0.272324032 As -0.272307616 -0.272524129 -0.272324032 new positions in cart coord (alat unit) As 0.586619717 0.329467438 0.231312056 As -0.586619717 -0.329467438 -0.231312056 Ekin = 0.00008169 Ry T = 422.6 K Etot = -25.49942677 new unit-cell volume = 274.59111 a.u.^3 ( 40.69020 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.052633204 0.002629924 0.001511388 0.550530545 0.899032675 0.002886566 0.550619127 0.307513046 0.845000101 ATOMIC_POSITIONS (crystal) As 0.272307616 0.272524129 0.272324032 As -0.272307616 -0.272524129 -0.272324032 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1185173 0.0663137 0.0465678), wk = 0.0625000 k( 2) = ( 0.1180934 0.0656216 0.3429538), wk = 0.0625000 k( 3) = ( 0.1193649 0.0676979 -0.5462042), wk = 0.0625000 k( 4) = ( 0.1189411 0.0670058 -0.2498182), wk = 0.0625000 k( 5) = ( 0.1179660 0.3450525 -0.0545118), wk = 0.0625000 k( 6) = ( 0.1175422 0.3443604 0.2418742), wk = 0.0625000 k( 7) = ( 0.1188137 0.3464367 -0.6472838), wk = 0.0625000 k( 8) = ( 0.1183898 0.3457446 -0.3508978), wk = 0.0625000 k( 9) = ( 0.1196198 -0.4911638 0.2487270), wk = 0.0625000 k( 10) = ( 0.1191960 -0.4918559 0.5451130), wk = 0.0625000 k( 11) = ( 0.1204675 -0.4897797 -0.3440450), wk = 0.0625000 k( 12) = ( 0.1200437 -0.4904717 -0.0476590), wk = 0.0625000 k( 13) = ( 0.1190685 -0.2124251 0.1476474), wk = 0.0625000 k( 14) = ( 0.1186447 -0.2131171 0.4440334), wk = 0.0625000 k( 15) = ( 0.1199162 -0.2110409 -0.4451246), wk = 0.0625000 k( 16) = ( 0.1194924 -0.2117330 -0.1487386), wk = 0.0625000 k( 17) = ( 0.3565269 -0.0791055 -0.0556030), wk = 0.0625000 k( 18) = ( 0.3561031 -0.0797976 0.2407830), wk = 0.0625000 k( 19) = ( 0.3573746 -0.0777214 -0.6483750), wk = 0.0625000 k( 20) = ( 0.3569508 -0.0784134 -0.3519890), wk = 0.0625000 k( 21) = ( 0.3559756 0.1996332 -0.1566826), wk = 0.0625000 k( 22) = ( 0.3555518 0.1989412 0.1397034), wk = 0.0625000 k( 23) = ( 0.3568233 0.2010174 -0.7494546), wk = 0.0625000 k( 24) = ( 0.3563995 0.2003253 -0.4530686), wk = 0.0625000 k( 25) = ( 0.3576295 -0.6365831 0.1465562), wk = 0.0625000 k( 26) = ( 0.3572056 -0.6372752 0.4429422), wk = 0.0625000 k( 27) = ( 0.3584771 -0.6351989 -0.4462158), wk = 0.0625000 k( 28) = ( 0.3580533 -0.6358910 -0.1498298), wk = 0.0625000 k( 29) = ( 0.3570782 -0.3578443 0.0454766), wk = 0.0625000 k( 30) = ( 0.3566544 -0.3585364 0.3418626), wk = 0.0625000 k( 31) = ( 0.3579259 -0.3564601 -0.5472954), wk = 0.0625000 k( 32) = ( 0.3575020 -0.3571522 -0.2509094), wk = 0.0625000 extrapolated charge 9.98933, renormalised to 10.00000 total cpu time spent up to now is 33.9 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.33E-08, avg # of iterations = 2.0 total cpu time spent up to now is 34.6 secs total energy = -25.49951125 Ry Harris-Foulkes estimate = -25.49327706 Ry estimated scf accuracy < 0.00000138 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-08, avg # of iterations = 2.3 total cpu time spent up to now is 34.9 secs total energy = -25.49951238 Ry Harris-Foulkes estimate = -25.49951266 Ry estimated scf accuracy < 0.00000059 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.86E-09, avg # of iterations = 1.2 total cpu time spent up to now is 35.2 secs End of self-consistent calculation k = 0.1185 0.0663 0.0466 ( 531 PWs) bands (ev): -7.1193 1.7788 5.6081 5.6315 6.5399 9.9841 10.5549 10.5576 14.5313 k = 0.1181 0.0656 0.3430 ( 522 PWs) bands (ev): -6.1003 -0.8506 3.9935 5.6819 8.0687 8.3209 9.0766 11.8978 13.9368 k = 0.1194 0.0677-0.5462 ( 520 PWs) bands (ev): -4.5753 -3.1954 4.5920 4.7639 6.2590 9.3287 9.6846 10.4369 15.6363 k = 0.1189 0.0670-0.2498 ( 525 PWs) bands (ev): -6.5404 0.1836 4.7507 5.3196 6.7089 9.4407 10.2360 11.4825 13.4779 k = 0.1180 0.3451-0.0545 ( 522 PWs) bands (ev): -6.1000 -0.8464 3.9940 5.6756 8.0610 8.3175 9.0758 11.8974 13.9396 k = 0.1175 0.3444 0.2419 ( 519 PWs) bands (ev): -5.7289 -0.6101 2.9731 4.0426 5.3573 10.2016 11.9769 12.0650 13.7853 k = 0.1188 0.3464-0.6473 ( 510 PWs) bands (ev): -4.1491 -2.5660 1.8734 2.8726 6.2187 9.9370 12.5069 13.7293 14.0361 k = 0.1184 0.3457-0.3509 ( 521 PWs) bands (ev): -5.0019 -2.1907 2.8131 4.8061 6.1165 9.4384 11.2000 12.2135 13.7257 k = 0.1196-0.4912 0.2487 ( 520 PWs) bands (ev): -4.5754 -3.1907 4.5934 4.7576 6.2529 9.3220 9.6817 10.4353 15.6388 k = 0.1192-0.4919 0.5451 ( 510 PWs) bands (ev): -4.1495 -2.5629 1.8713 2.8724 6.2165 9.9342 12.4998 13.7262 14.0392 k = 0.1205-0.4898-0.3440 ( 510 PWs) bands (ev): -4.4648 -1.9065 1.8832 3.5070 4.1602 9.7911 12.9844 14.3210 14.9457 k = 0.1200-0.4905-0.0477 ( 521 PWs) bands (ev): -4.9976 -2.1917 2.8181 4.8005 6.1159 9.4210 11.1781 12.2076 13.7141 k = 0.1191-0.2124 0.1476 ( 525 PWs) bands (ev): -6.5400 0.1858 4.7449 5.3196 6.7129 9.4388 10.2299 11.4819 13.4800 k = 0.1186-0.2131 0.4440 ( 521 PWs) bands (ev): -5.0017 -2.1927 2.8151 4.8083 6.1149 9.4387 11.2042 12.2114 13.7272 k = 0.1199-0.2110-0.4451 ( 521 PWs) bands (ev): -4.9984 -2.1935 2.8204 4.8019 6.1147 9.4250 11.1864 12.2065 13.7210 k = 0.1195-0.2117-0.1487 ( 525 PWs) bands (ev): -6.5387 0.1943 4.7275 5.3278 6.7006 9.4354 10.2247 11.4803 13.4743 k = 0.3565-0.0791-0.0556 ( 522 PWs) bands (ev): -6.0956 -0.8383 3.9884 5.6645 8.0477 8.3056 9.0618 11.8908 13.9289 k = 0.3561-0.0798 0.2408 ( 519 PWs) bands (ev): -5.7277 -0.6107 2.9648 4.0582 5.3523 10.1912 11.9668 12.0583 13.7880 k = 0.3574-0.0777-0.6484 ( 510 PWs) bands (ev): -4.1513 -2.5586 1.8752 2.8667 6.2017 9.9383 12.5128 13.7352 14.0458 k = 0.3570-0.0784-0.3520 ( 521 PWs) bands (ev): -4.9954 -2.1865 2.8133 4.7939 6.1027 9.4237 11.1738 12.1998 13.7245 k = 0.3560 0.1996-0.1567 ( 519 PWs) bands (ev): -5.7282 -0.6106 2.9623 4.0639 5.3507 10.1940 11.9639 12.0559 13.7853 k = 0.3556 0.1989 0.1397 ( 522 PWs) bands (ev): -5.9274 -1.5372 5.7858 5.7995 7.0111 8.5056 8.5166 9.6359 15.7227 k = 0.3568 0.2010-0.7495 ( 520 PWs) bands (ev): -4.9172 -2.0565 2.1219 4.6440 5.9658 10.0782 10.3991 13.1960 15.2322 k = 0.3564 0.2003-0.4531 ( 510 PWs) bands (ev): -4.4688 -1.9078 1.8811 3.5304 4.1493 9.7906 12.9853 14.3349 14.9542 k = 0.3576-0.6366 0.1466 ( 510 PWs) bands (ev): -4.1519 -2.5564 1.8743 2.8658 6.2004 9.9344 12.5148 13.7343 14.0461 k = 0.3572-0.6373 0.4429 ( 520 PWs) bands (ev): -4.9172 -2.0542 2.1244 4.6381 5.9606 10.0786 10.3963 13.1992 15.2395 k = 0.3585-0.6352-0.4462 ( 520 PWs) bands (ev): -4.9135 -2.0550 2.1288 4.6267 5.9536 10.0724 10.3949 13.2048 15.2646 k = 0.3581-0.6359-0.1498 ( 510 PWs) bands (ev): -4.1445 -2.5606 1.8698 2.8654 6.2018 9.9235 12.5165 13.7239 14.0332 k = 0.3571-0.3578 0.0455 ( 521 PWs) bands (ev): -4.9944 -2.1867 2.8131 4.7947 6.1023 9.4200 11.1697 12.1987 13.7192 k = 0.3567-0.3585 0.3419 ( 510 PWs) bands (ev): -4.4680 -1.9046 1.8787 3.5242 4.1513 9.7866 12.9850 14.3349 14.9536 k = 0.3579-0.3565-0.5473 ( 510 PWs) bands (ev): -4.1443 -2.5598 1.8686 2.8660 6.2009 9.9245 12.5074 13.7218 14.0358 k = 0.3575-0.3572-0.2509 ( 520 PWs) bands (ev): -4.5636 -3.1879 4.5816 4.7422 6.2416 9.3044 9.6664 10.4206 15.6613 the Fermi energy is 8.1185 ev ! total energy = -25.49951241 Ry Harris-Foulkes estimate = -25.49951244 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00068038 -0.00050291 -0.00033279 atom 2 type 1 force = 0.00068038 0.00050291 0.00033279 Total force = 0.001286 Total SCF correction = 0.000131 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 1.02 0.00001100 -0.00000027 -0.00000219 1.62 -0.04 -0.32 -0.00000027 0.00000356 -0.00000107 -0.04 0.52 -0.16 -0.00000219 -0.00000107 0.00000632 -0.32 -0.16 0.93 Entering Dynamics; it = 16 time = 0.10890 pico-seconds new lattice vectors (alat unit) : 1.052857150 0.002590956 0.001474373 0.550640998 0.899636245 0.002866227 0.550699530 0.307514950 0.845051320 new unit-cell volume = 274.8637 (a.u.)^3 new positions in cryst coord As 0.272285429 0.272476104 0.272279767 As -0.272285429 -0.272476104 -0.272279767 new positions in cart coord (alat unit) As 0.586658514 0.329564957 0.231272805 As -0.586658514 -0.329564957 -0.231272805 Ekin = 0.00001827 Ry T = 394.5 K Etot = -25.49949413 new unit-cell volume = 274.86371 a.u.^3 ( 40.73060 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.052857150 0.002590956 0.001474373 0.550640998 0.899636245 0.002866227 0.550699530 0.307514950 0.845051320 ATOMIC_POSITIONS (crystal) As 0.272285429 0.272476104 0.272279767 As -0.272285429 -0.272476104 -0.272279767 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1184962 0.0662686 0.0465837), wk = 0.0625000 k( 2) = ( 0.1180829 0.0655773 0.3429446), wk = 0.0625000 k( 3) = ( 0.1193229 0.0676510 -0.5461381), wk = 0.0625000 k( 4) = ( 0.1189096 0.0669598 -0.2497772), wk = 0.0625000 k( 5) = ( 0.1179522 0.3448134 -0.0544245), wk = 0.0625000 k( 6) = ( 0.1175389 0.3441222 0.2419364), wk = 0.0625000 k( 7) = ( 0.1187788 0.3461959 -0.6471463), wk = 0.0625000 k( 8) = ( 0.1183655 0.3455047 -0.3507854), wk = 0.0625000 k( 9) = ( 0.1195843 -0.4908212 0.2486001), wk = 0.0625000 k( 10) = ( 0.1191710 -0.4915124 0.5449610), wk = 0.0625000 k( 11) = ( 0.1204109 -0.4894388 -0.3441217), wk = 0.0625000 k( 12) = ( 0.1199976 -0.4901300 -0.0477608), wk = 0.0625000 k( 13) = ( 0.1190403 -0.2122763 0.1475919), wk = 0.0625000 k( 14) = ( 0.1186270 -0.2129676 0.4439528), wk = 0.0625000 k( 15) = ( 0.1198669 -0.2108939 -0.4451299), wk = 0.0625000 k( 16) = ( 0.1194536 -0.2115851 -0.1487690), wk = 0.0625000 k( 17) = ( 0.3564461 -0.0790480 -0.0556016), wk = 0.0625000 k( 18) = ( 0.3560328 -0.0797392 0.2407593), wk = 0.0625000 k( 19) = ( 0.3572727 -0.0776656 -0.6483234), wk = 0.0625000 k( 20) = ( 0.3568594 -0.0783568 -0.3519625), wk = 0.0625000 k( 21) = ( 0.3559020 0.1994969 -0.1566099), wk = 0.0625000 k( 22) = ( 0.3554887 0.1988057 0.1397511), wk = 0.0625000 k( 23) = ( 0.3567287 0.2008793 -0.7493317), wk = 0.0625000 k( 24) = ( 0.3563154 0.2001881 -0.4529708), wk = 0.0625000 k( 25) = ( 0.3575341 -0.6361378 0.1464148), wk = 0.0625000 k( 26) = ( 0.3571208 -0.6368290 0.4427757), wk = 0.0625000 k( 27) = ( 0.3583607 -0.6347553 -0.4463070), wk = 0.0625000 k( 28) = ( 0.3579474 -0.6354465 -0.1499461), wk = 0.0625000 k( 29) = ( 0.3569901 -0.3575929 0.0454066), wk = 0.0625000 k( 30) = ( 0.3565768 -0.3582841 0.3417675), wk = 0.0625000 k( 31) = ( 0.3578167 -0.3562104 -0.5473152), wk = 0.0625000 k( 32) = ( 0.3574034 -0.3569017 -0.2509543), wk = 0.0625000 extrapolated charge 10.00992, renormalised to 10.00000 total cpu time spent up to now is 35.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.44E-09, avg # of iterations = 2.9 total cpu time spent up to now is 36.2 secs total energy = -25.49951353 Ry Harris-Foulkes estimate = -25.50530481 Ry estimated scf accuracy < 0.00000042 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.19E-09, avg # of iterations = 3.0 total cpu time spent up to now is 36.6 secs total energy = -25.49951388 Ry Harris-Foulkes estimate = -25.49951407 Ry estimated scf accuracy < 0.00000051 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.19E-09, avg # of iterations = 1.0 total cpu time spent up to now is 36.9 secs total energy = -25.49951386 Ry Harris-Foulkes estimate = -25.49951390 Ry estimated scf accuracy < 0.00000012 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-09, avg # of iterations = 1.0 total cpu time spent up to now is 37.1 secs End of self-consistent calculation k = 0.1185 0.0663 0.0466 ( 531 PWs) bands (ev): -7.1235 1.7607 5.5964 5.6214 6.5248 9.9715 10.5402 10.5429 14.5143 k = 0.1181 0.0656 0.3429 ( 522 PWs) bands (ev): -6.1048 -0.8620 3.9842 5.6710 8.0512 8.3019 9.0574 11.8797 13.9229 k = 0.1193 0.0677-0.5461 ( 520 PWs) bands (ev): -4.5802 -3.2041 4.5812 4.7528 6.2430 9.3101 9.6655 10.4185 15.6250 k = 0.1189 0.0670-0.2498 ( 525 PWs) bands (ev): -6.5450 0.1703 4.7384 5.3090 6.6961 9.4220 10.2228 11.4642 13.4618 k = 0.1180 0.3448-0.0544 ( 522 PWs) bands (ev): -6.1058 -0.8613 3.9862 5.6696 8.0493 8.3027 9.0608 11.8813 13.9277 k = 0.1175 0.3441 0.2419 ( 519 PWs) bands (ev): -5.7346 -0.6235 2.9663 4.0328 5.3439 10.1908 11.9568 12.0480 13.7663 k = 0.1188 0.3462-0.6471 ( 510 PWs) bands (ev): -4.1561 -2.5763 1.8657 2.8647 6.2064 9.9180 12.4923 13.7080 14.0163 k = 0.1184 0.3455-0.3508 ( 521 PWs) bands (ev): -5.0087 -2.2033 2.8081 4.7957 6.1069 9.4230 11.1839 12.1975 13.7112 k = 0.1196-0.4908 0.2486 ( 520 PWs) bands (ev): -4.5836 -3.2015 4.5855 4.7526 6.2416 9.3104 9.6673 10.4215 15.6206 k = 0.1192-0.4915 0.5450 ( 510 PWs) bands (ev): -4.1584 -2.5729 1.8654 2.8646 6.2045 9.9189 12.4869 13.7086 14.0222 k = 0.1204-0.4894-0.3441 ( 510 PWs) bands (ev): -4.4734 -1.9145 1.8732 3.4982 4.1500 9.7824 12.9650 14.2996 14.9214 k = 0.1200-0.4901-0.0478 ( 521 PWs) bands (ev): -5.0055 -2.2027 2.8118 4.7901 6.1071 9.4070 11.1634 12.1941 13.7008 k = 0.1190-0.2123 0.1476 ( 525 PWs) bands (ev): -6.5451 0.1695 4.7391 5.3067 6.7023 9.4217 10.2198 11.4643 13.4648 k = 0.1186-0.2130 0.4440 ( 521 PWs) bands (ev): -5.0077 -2.2033 2.8082 4.7957 6.1021 9.4229 11.1847 12.1935 13.7138 k = 0.1199-0.2109-0.4451 ( 521 PWs) bands (ev): -5.0043 -2.2029 2.8136 4.7877 6.1024 9.4058 11.1622 12.1896 13.7055 k = 0.1195-0.2116-0.1488 ( 525 PWs) bands (ev): -6.5437 0.1809 4.7172 5.3160 6.6878 9.4168 10.2122 11.4637 13.4596 k = 0.3564-0.0790-0.0556 ( 522 PWs) bands (ev): -6.1006 -0.8511 3.9804 5.6548 8.0322 8.2886 9.0451 11.8710 13.9164 k = 0.3560-0.0797 0.2408 ( 519 PWs) bands (ev): -5.7329 -0.6255 2.9564 4.0523 5.3379 10.1797 11.9451 12.0387 13.7675 k = 0.3573-0.0777-0.6483 ( 510 PWs) bands (ev): -4.1576 -2.5691 1.8683 2.8572 6.1863 9.9179 12.5014 13.7171 14.0268 k = 0.3569-0.0784-0.3520 ( 521 PWs) bands (ev): -5.0014 -2.1968 2.8068 4.7815 6.0910 9.4033 11.1517 12.1841 13.7078 k = 0.3559 0.1995-0.1566 ( 519 PWs) bands (ev): -5.7335 -0.6253 2.9570 4.0521 5.3382 10.1845 11.9453 12.0392 13.7649 k = 0.3555 0.1988 0.1398 ( 522 PWs) bands (ev): -5.9319 -1.5494 5.7754 5.7895 6.9957 8.4917 8.5014 9.6168 15.7078 k = 0.3567 0.2009-0.7493 ( 520 PWs) bands (ev): -4.9220 -2.0691 2.1162 4.6328 5.9503 10.0603 10.3809 13.1792 15.2204 k = 0.3563 0.2002-0.4530 ( 510 PWs) bands (ev): -4.4754 -1.9183 1.8723 3.5190 4.1395 9.7823 12.9652 14.3111 14.9306 k = 0.3575-0.6361 0.1464 ( 510 PWs) bands (ev): -4.1594 -2.5683 1.8684 2.8583 6.1897 9.9178 12.5007 13.7176 14.0280 k = 0.3571-0.6368 0.4428 ( 520 PWs) bands (ev): -4.9230 -2.0673 2.1168 4.6317 5.9484 10.0624 10.3791 13.1799 15.2186 k = 0.3584-0.6348-0.4463 ( 520 PWs) bands (ev): -4.9189 -2.0676 2.1229 4.6172 5.9396 10.0556 10.3769 13.1855 15.2506 k = 0.3579-0.6354-0.1499 ( 510 PWs) bands (ev): -4.1515 -2.5719 1.8624 2.8580 6.1909 9.9064 12.5002 13.7042 14.0128 k = 0.3570-0.3576 0.0454 ( 521 PWs) bands (ev): -5.0016 -2.1967 2.8051 4.7838 6.0908 9.4045 11.1538 12.1846 13.7058 k = 0.3566-0.3583 0.3418 ( 510 PWs) bands (ev): -4.4758 -1.9154 1.8693 3.5194 4.1385 9.7782 12.9652 14.3147 14.9325 k = 0.3578-0.3562-0.5473 ( 510 PWs) bands (ev): -4.1520 -2.5693 1.8621 2.8568 6.1856 9.9073 12.4955 13.7045 14.0174 k = 0.3574-0.3569-0.2510 ( 520 PWs) bands (ev): -4.5712 -3.1954 4.5713 4.7333 6.2277 9.2889 9.6495 10.4026 15.6481 the Fermi energy is 8.2392 ev ! total energy = -25.49951386 Ry Harris-Foulkes estimate = -25.49951386 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00044223 -0.00019594 -0.00003275 atom 2 type 1 force = 0.00044223 0.00019594 0.00003275 Total force = 0.000686 Total SCF correction = 0.000097 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.18 0.00000592 -0.00000083 0.00000006 0.87 -0.12 0.01 -0.00000083 -0.00000053 0.00000191 -0.12 -0.08 0.28 0.00000006 0.00000191 -0.00000167 0.01 0.28 -0.25 Entering Dynamics; it = 17 time = 0.11616 pico-seconds new lattice vectors (alat unit) : 1.053161150 0.002581156 0.001476619 0.550782578 0.899625101 0.002888928 0.550818217 0.307530504 0.845043149 new unit-cell volume = 274.9358 (a.u.)^3 new positions in cryst coord As 0.272212965 0.272427734 0.272273337 As -0.272212965 -0.272427734 -0.272273337 new positions in cart coord (alat unit) As 0.586705683 0.329517809 0.231271697 As -0.586705683 -0.329517809 -0.231271697 Ekin = 0.00000312 Ry T = 369.9 K Etot = -25.49951074 new unit-cell volume = 274.93580 a.u.^3 ( 40.74128 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053161150 0.002581156 0.001476619 0.550782578 0.899625101 0.002888928 0.550818217 0.307530504 0.845043149 ATOMIC_POSITIONS (crystal) As 0.272212965 0.272427734 0.272273337 As -0.272212965 -0.272427734 -0.272273337 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1184625 0.0662702 0.0465876), wk = 0.0625000 k( 2) = ( 0.1180487 0.0655718 0.3429544), wk = 0.0625000 k( 3) = ( 0.1192902 0.0676669 -0.5461459), wk = 0.0625000 k( 4) = ( 0.1188764 0.0669685 -0.2497791), wk = 0.0625000 k( 5) = ( 0.1179215 0.3448193 -0.0544301), wk = 0.0625000 k( 6) = ( 0.1175077 0.3441210 0.2419367), wk = 0.0625000 k( 7) = ( 0.1187491 0.3462161 -0.6471636), wk = 0.0625000 k( 8) = ( 0.1183353 0.3455177 -0.3507969), wk = 0.0625000 k( 9) = ( 0.1195447 -0.4908282 0.2486231), wk = 0.0625000 k( 10) = ( 0.1191308 -0.4915266 0.5449899), wk = 0.0625000 k( 11) = ( 0.1203723 -0.4894315 -0.3441104), wk = 0.0625000 k( 12) = ( 0.1199585 -0.4901298 -0.0477436), wk = 0.0625000 k( 13) = ( 0.1190036 -0.2122790 0.1476054), wk = 0.0625000 k( 14) = ( 0.1185898 -0.2129774 0.4439722), wk = 0.0625000 k( 15) = ( 0.1198312 -0.2108823 -0.4451281), wk = 0.0625000 k( 16) = ( 0.1194174 -0.2115807 -0.1487614), wk = 0.0625000 k( 17) = ( 0.3563425 -0.0790403 -0.0555861), wk = 0.0625000 k( 18) = ( 0.3559287 -0.0797387 0.2407807), wk = 0.0625000 k( 19) = ( 0.3571702 -0.0776436 -0.6483196), wk = 0.0625000 k( 20) = ( 0.3567563 -0.0783420 -0.3519528), wk = 0.0625000 k( 21) = ( 0.3558015 0.1995088 -0.1566038), wk = 0.0625000 k( 22) = ( 0.3553876 0.1988105 0.1397629), wk = 0.0625000 k( 23) = ( 0.3566291 0.2009056 -0.7493374), wk = 0.0625000 k( 24) = ( 0.3562153 0.2002072 -0.4529706), wk = 0.0625000 k( 25) = ( 0.3574246 -0.6361387 0.1464494), wk = 0.0625000 k( 26) = ( 0.3570108 -0.6368370 0.4428162), wk = 0.0625000 k( 27) = ( 0.3582523 -0.6347420 -0.4462841), wk = 0.0625000 k( 28) = ( 0.3578384 -0.6354403 -0.1499174), wk = 0.0625000 k( 29) = ( 0.3568836 -0.3575895 0.0454317), wk = 0.0625000 k( 30) = ( 0.3564697 -0.3582879 0.3417984), wk = 0.0625000 k( 31) = ( 0.3577112 -0.3561928 -0.5473019), wk = 0.0625000 k( 32) = ( 0.3572974 -0.3568912 -0.2509351), wk = 0.0625000 extrapolated charge 10.00262, renormalised to 10.00000 total cpu time spent up to now is 37.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.43E-10, avg # of iterations = 3.8 total cpu time spent up to now is 38.2 secs End of self-consistent calculation k = 0.1185 0.0663 0.0466 ( 531 PWs) bands (ev): -7.1235 1.7554 5.5987 5.6189 6.5200 9.9710 10.5377 10.5396 14.5108 k = 0.1180 0.0656 0.3430 ( 522 PWs) bands (ev): -6.1046 -0.8643 3.9819 5.6709 8.0478 8.2970 9.0512 11.8725 13.9206 k = 0.1193 0.0677-0.5461 ( 520 PWs) bands (ev): -4.5806 -3.2041 4.5773 4.7524 6.2388 9.3064 9.6585 10.4095 15.6188 k = 0.1189 0.0670-0.2498 ( 525 PWs) bands (ev): -6.5451 0.1692 4.7371 5.3051 6.6925 9.4142 10.2213 11.4593 13.4560 k = 0.1179 0.3448-0.0544 ( 522 PWs) bands (ev): -6.1055 -0.8637 3.9833 5.6701 8.0461 8.2978 9.0540 11.8752 13.9247 k = 0.1175 0.3441 0.2419 ( 519 PWs) bands (ev): -5.7340 -0.6284 2.9652 4.0343 5.3382 10.1904 11.9527 12.0429 13.7579 k = 0.1187 0.3462-0.6472 ( 510 PWs) bands (ev): -4.1556 -2.5777 1.8640 2.8612 6.2011 9.9135 12.4903 13.7045 14.0098 k = 0.1183 0.3455-0.3508 ( 521 PWs) bands (ev): -5.0089 -2.2032 2.8072 4.7902 6.1037 9.4139 11.1767 12.1957 13.7060 k = 0.1195-0.4908 0.2486 ( 520 PWs) bands (ev): -4.5831 -3.2026 4.5813 4.7525 6.2375 9.3067 9.6601 10.4129 15.6144 k = 0.1191-0.4915 0.5450 ( 510 PWs) bands (ev): -4.1575 -2.5749 1.8639 2.8609 6.1996 9.9134 12.4861 13.7057 14.0153 k = 0.1204-0.4894-0.3441 ( 510 PWs) bands (ev): -4.4729 -1.9168 1.8691 3.4996 4.1445 9.7818 12.9587 14.2912 14.9167 k = 0.1200-0.4901-0.0477 ( 521 PWs) bands (ev): -5.0053 -2.2044 2.8116 4.7858 6.1030 9.4004 11.1598 12.1903 13.6970 k = 0.1190-0.2123 0.1476 ( 525 PWs) bands (ev): -6.5451 0.1679 4.7382 5.3030 6.6983 9.4144 10.2188 11.4588 13.4582 k = 0.1186-0.2130 0.4440 ( 521 PWs) bands (ev): -5.0079 -2.2033 2.8070 4.7905 6.0991 9.4130 11.1778 12.1924 13.7079 k = 0.1198-0.2109-0.4451 ( 521 PWs) bands (ev): -5.0043 -2.2040 2.8126 4.7836 6.0988 9.3981 11.1584 12.1874 13.7007 k = 0.1194-0.2116-0.1488 ( 525 PWs) bands (ev): -6.5437 0.1772 4.7192 5.3115 6.6855 9.4109 10.2122 11.4572 13.4526 k = 0.3563-0.0790-0.0556 ( 522 PWs) bands (ev): -6.1009 -0.8544 3.9773 5.6576 8.0306 8.2851 9.0393 11.8682 13.9138 k = 0.3559-0.0797 0.2408 ( 519 PWs) bands (ev): -5.7329 -0.6292 2.9563 4.0514 5.3328 10.1799 11.9419 12.0353 13.7602 k = 0.3572-0.0776-0.6483 ( 510 PWs) bands (ev): -4.1578 -2.5704 1.8664 2.8549 6.1831 9.9146 12.4978 13.7115 14.0193 k = 0.3568-0.0783-0.3520 ( 521 PWs) bands (ev): -5.0021 -2.1984 2.8072 4.7774 6.0890 9.3980 11.1479 12.1817 13.7038 k = 0.3558 0.1995-0.1566 ( 519 PWs) bands (ev): -5.7336 -0.6284 2.9568 4.0509 5.3330 10.1841 11.9419 12.0363 13.7586 k = 0.3554 0.1988 0.1398 ( 522 PWs) bands (ev): -5.9314 -1.5548 5.7778 5.7883 6.9953 8.4876 8.4981 9.6115 15.7030 k = 0.3566 0.2009-0.7493 ( 520 PWs) bands (ev): -4.9212 -2.0739 2.1164 4.6320 5.9463 10.0560 10.3783 13.1761 15.2159 k = 0.3562 0.2002-0.4530 ( 510 PWs) bands (ev): -4.4766 -1.9172 1.8678 3.5179 4.1360 9.7810 12.9595 14.3029 14.9224 k = 0.3574-0.6361 0.1464 ( 510 PWs) bands (ev): -4.1597 -2.5695 1.8666 2.8559 6.1866 9.9143 12.4974 13.7117 14.0207 k = 0.3570-0.6368 0.4428 ( 520 PWs) bands (ev): -4.9220 -2.0723 2.1166 4.6313 5.9445 10.0579 10.3770 13.1773 15.2134 k = 0.3583-0.6347-0.4463 ( 520 PWs) bands (ev): -4.9181 -2.0725 2.1214 4.6186 5.9363 10.0516 10.3753 13.1834 15.2409 k = 0.3578-0.6354-0.1499 ( 510 PWs) bands (ev): -4.1522 -2.5732 1.8615 2.8551 6.1882 9.9024 12.4981 13.7004 14.0074 k = 0.3569-0.3576 0.0454 ( 521 PWs) bands (ev): -5.0020 -2.1989 2.8060 4.7798 6.0885 9.3994 11.1504 12.1813 13.7022 k = 0.3565-0.3583 0.3418 ( 510 PWs) bands (ev): -4.4762 -1.9157 1.8653 3.5185 4.1346 9.7775 12.9593 14.3057 14.9251 k = 0.3577-0.3562-0.5473 ( 510 PWs) bands (ev): -4.1522 -2.5713 1.8612 2.8538 6.1831 9.9025 12.4943 13.7014 14.0115 k = 0.3573-0.3569-0.2509 ( 520 PWs) bands (ev): -4.5710 -3.1985 4.5689 4.7355 6.2248 9.2872 9.6440 10.3972 15.6384 the Fermi energy is 8.2350 ev ! total energy = -25.49951471 Ry Harris-Foulkes estimate = -25.50104564 Ry estimated scf accuracy < 0.00000007 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00019498 -0.00010605 0.00000490 atom 2 type 1 force = 0.00019498 0.00010605 -0.00000490 Total force = 0.000314 Total SCF correction = 0.000198 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.69 -0.00000118 -0.00000158 -0.00000032 -0.17 -0.23 -0.05 -0.00000158 -0.00000607 0.00000164 -0.23 -0.89 0.24 -0.00000032 0.00000164 -0.00000691 -0.05 0.24 -1.02 Entering Dynamics; it = 18 time = 0.12342 pico-seconds new lattice vectors (alat unit) : 1.053111053 0.002549993 0.001472074 0.550717629 0.899532990 0.002927497 0.550780701 0.307521924 0.844972337 new unit-cell volume = 274.8727 (a.u.)^3 new positions in cryst coord As 0.272142378 0.272359129 0.272277368 As -0.272142378 -0.272359129 -0.272277368 new positions in cart coord (alat unit) As 0.586554240 0.329421243 0.231264789 As -0.586554240 -0.329421243 -0.231264789 Ekin = 0.00000371 Ry T = 348.1 K Etot = -25.49951100 new unit-cell volume = 274.87267 a.u.^3 ( 40.73193 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053111053 0.002549993 0.001472074 0.550717629 0.899532990 0.002927497 0.550780701 0.307521924 0.844972337 ATOMIC_POSITIONS (crystal) As 0.272142378 0.272359129 0.272277368 As -0.272142378 -0.272359129 -0.272277368 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1184703 0.0662787 0.0465893), wk = 0.0625000 k( 2) = ( 0.1180577 0.0655667 0.3429850), wk = 0.0625000 k( 3) = ( 0.1192955 0.0677028 -0.5462022), wk = 0.0625000 k( 4) = ( 0.1188829 0.0669908 -0.2498064), wk = 0.0625000 k( 5) = ( 0.1179370 0.3448561 -0.0544494), wk = 0.0625000 k( 6) = ( 0.1175244 0.3441441 0.2419464), wk = 0.0625000 k( 7) = ( 0.1187622 0.3462801 -0.6472409), wk = 0.0625000 k( 8) = ( 0.1183496 0.3455681 -0.3508451), wk = 0.0625000 k( 9) = ( 0.1195369 -0.4908759 0.2486667), wk = 0.0625000 k( 10) = ( 0.1191244 -0.4915879 0.5450624), wk = 0.0625000 k( 11) = ( 0.1203621 -0.4894519 -0.3441248), wk = 0.0625000 k( 12) = ( 0.1199495 -0.4901639 -0.0477291), wk = 0.0625000 k( 13) = ( 0.1190036 -0.2122986 0.1476280), wk = 0.0625000 k( 14) = ( 0.1185910 -0.2130106 0.4440237), wk = 0.0625000 k( 15) = ( 0.1198288 -0.2108746 -0.4451635), wk = 0.0625000 k( 16) = ( 0.1194162 -0.2115866 -0.1487678), wk = 0.0625000 k( 17) = ( 0.3563569 -0.0790291 -0.0555892), wk = 0.0625000 k( 18) = ( 0.3559443 -0.0797411 0.2408066), wk = 0.0625000 k( 19) = ( 0.3571820 -0.0776051 -0.6483807), wk = 0.0625000 k( 20) = ( 0.3567695 -0.0783171 -0.3519849), wk = 0.0625000 k( 21) = ( 0.3558236 0.1995482 -0.1566279), wk = 0.0625000 k( 22) = ( 0.3554110 0.1988362 0.1397679), wk = 0.0625000 k( 23) = ( 0.3566487 0.2009723 -0.7494193), wk = 0.0625000 k( 24) = ( 0.3562361 0.2002602 -0.4530236), wk = 0.0625000 k( 25) = ( 0.3574235 -0.6361837 0.1464882), wk = 0.0625000 k( 26) = ( 0.3570109 -0.6368957 0.4428840), wk = 0.0625000 k( 27) = ( 0.3582487 -0.6347597 -0.4463033), wk = 0.0625000 k( 28) = ( 0.3578361 -0.6354717 -0.1499075), wk = 0.0625000 k( 29) = ( 0.3568902 -0.3576064 0.0454495), wk = 0.0625000 k( 30) = ( 0.3564776 -0.3583184 0.3418453), wk = 0.0625000 k( 31) = ( 0.3577154 -0.3561824 -0.5473420), wk = 0.0625000 k( 32) = ( 0.3573028 -0.3568944 -0.2509462), wk = 0.0625000 extrapolated charge 9.99770, renormalised to 10.00000 total cpu time spent up to now is 38.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.77E-09, avg # of iterations = 3.2 total cpu time spent up to now is 39.2 secs total energy = -25.49951509 Ry Harris-Foulkes estimate = -25.49817396 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 2.0 total cpu time spent up to now is 39.5 secs End of self-consistent calculation k = 0.1185 0.0663 0.0466 ( 531 PWs) bands (ev): -7.1212 1.7574 5.6037 5.6225 6.5222 9.9780 10.5418 10.5440 14.5141 k = 0.1181 0.0656 0.3430 ( 522 PWs) bands (ev): -6.1020 -0.8616 3.9850 5.6760 8.0508 8.2996 9.0514 11.8755 13.9270 k = 0.1193 0.0677-0.5462 ( 520 PWs) bands (ev): -4.5780 -3.2008 4.5803 4.7568 6.2405 9.3104 9.6585 10.4107 15.6219 k = 0.1189 0.0670-0.2498 ( 525 PWs) bands (ev): -6.5428 0.1729 4.7407 5.3070 6.6968 9.4147 10.2271 11.4617 13.4589 k = 0.1179 0.3449-0.0544 ( 522 PWs) bands (ev): -6.1028 -0.8614 3.9856 5.6763 8.0502 8.3005 9.0533 11.8786 13.9295 k = 0.1175 0.3441 0.2419 ( 519 PWs) bands (ev): -5.7311 -0.6268 2.9691 4.0389 5.3382 10.1977 11.9566 12.0464 13.7582 k = 0.1188 0.3463-0.6472 ( 510 PWs) bands (ev): -4.1524 -2.5745 1.8664 2.8629 6.2032 9.9162 12.4956 13.7094 14.0126 k = 0.1183 0.3456-0.3508 ( 521 PWs) bands (ev): -5.0060 -2.2001 2.8113 4.7911 6.1067 9.4140 11.1793 12.2006 13.7094 k = 0.1195-0.4909 0.2487 ( 520 PWs) bands (ev): -4.5794 -3.2008 4.5834 4.7576 6.2400 9.3112 9.6598 10.4140 15.6180 k = 0.1191-0.4916 0.5451 ( 510 PWs) bands (ev): -4.1535 -2.5729 1.8666 2.8625 6.2023 9.9155 12.4936 13.7109 14.0167 k = 0.1204-0.4895-0.3441 ( 510 PWs) bands (ev): -4.4700 -1.9132 1.8699 3.5042 4.1452 9.7889 12.9612 14.2918 14.9199 k = 0.1199-0.4902-0.0477 ( 521 PWs) bands (ev): -5.0025 -2.2014 2.8159 4.7863 6.1060 9.4014 11.1634 12.1952 13.7019 k = 0.1190-0.2123 0.1476 ( 525 PWs) bands (ev): -6.5428 0.1713 4.7424 5.3055 6.7010 9.4154 10.2259 11.4609 13.4599 k = 0.1186-0.2130 0.4440 ( 521 PWs) bands (ev): -5.0052 -2.2000 2.8107 4.7914 6.1032 9.4127 11.1802 12.1985 13.7104 k = 0.1198-0.2109-0.4452 ( 521 PWs) bands (ev): -5.0019 -2.2004 2.8160 4.7846 6.1031 9.3985 11.1616 12.1941 13.7037 k = 0.1194-0.2116-0.1488 ( 525 PWs) bands (ev): -6.5415 0.1803 4.7243 5.3137 6.6883 9.4120 10.2200 11.4596 13.4544 k = 0.3564-0.0790-0.0556 ( 522 PWs) bands (ev): -6.0983 -0.8529 3.9801 5.6646 8.0360 8.2885 9.0392 11.8714 13.9189 k = 0.3559-0.0797 0.2408 ( 519 PWs) bands (ev): -5.7299 -0.6277 2.9606 4.0550 5.3330 10.1874 11.9466 12.0389 13.7606 k = 0.3572-0.0776-0.6484 ( 510 PWs) bands (ev): -4.1543 -2.5674 1.8685 2.8567 6.1857 9.9171 12.5022 13.7161 14.0222 k = 0.3568-0.0783-0.3520 ( 521 PWs) bands (ev): -4.9995 -2.1954 2.8112 4.7787 6.0925 9.3987 11.1522 12.1873 13.7077 k = 0.3558 0.1995-0.1566 ( 519 PWs) bands (ev): -5.7306 -0.6267 2.9611 4.0539 5.3333 10.1901 11.9467 12.0403 13.7602 k = 0.3554 0.1988 0.1398 ( 522 PWs) bands (ev): -5.9278 -1.5554 5.7839 5.7924 7.0019 8.4895 8.5002 9.6135 15.7082 k = 0.3566 0.2010-0.7494 ( 520 PWs) bands (ev): -4.9169 -2.0739 2.1203 4.6356 5.9475 10.0585 10.3833 13.1819 15.2197 k = 0.3562 0.2003-0.4530 ( 510 PWs) bands (ev): -4.4737 -1.9121 1.8673 3.5209 4.1373 9.7866 12.9619 14.3041 14.9254 k = 0.3574-0.6362 0.1465 ( 510 PWs) bands (ev): -4.1559 -2.5669 1.8688 2.8576 6.1887 9.9170 12.5019 13.7161 14.0235 k = 0.3570-0.6369 0.4429 ( 520 PWs) bands (ev): -4.9175 -2.0729 2.1199 4.6357 5.9466 10.0597 10.3827 13.1830 15.2165 k = 0.3582-0.6348-0.4463 ( 520 PWs) bands (ev): -4.9137 -2.0734 2.1245 4.6238 5.9392 10.0535 10.3812 13.1885 15.2427 k = 0.3578-0.6355-0.1499 ( 510 PWs) bands (ev): -4.1487 -2.5706 1.8640 2.8570 6.1902 9.9061 12.5030 13.7051 14.0103 k = 0.3569-0.3576 0.0454 ( 521 PWs) bands (ev): -4.9993 -2.1963 2.8106 4.7807 6.0919 9.4003 11.1549 12.1863 13.7070 k = 0.3565-0.3583 0.3418 ( 510 PWs) bands (ev): -4.4730 -1.9122 1.8659 3.5220 4.1357 9.7846 12.9617 14.3058 14.9282 k = 0.3577-0.3562-0.5473 ( 510 PWs) bands (ev): -4.1483 -2.5697 1.8640 2.8558 6.1864 9.9055 12.5014 13.7067 14.0131 k = 0.3573-0.3569-0.2509 ( 520 PWs) bands (ev): -4.5678 -3.1970 4.5712 4.7416 6.2283 9.2929 9.6445 10.3987 15.6412 the Fermi energy is 8.2380 ev ! total energy = -25.49951518 Ry Harris-Foulkes estimate = -25.49951521 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000123 -0.00000357 0.00003170 atom 2 type 1 force = -0.00000123 0.00000357 -0.00003170 Total force = 0.000045 Total SCF correction = 0.000234 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.37 0.00000053 -0.00000151 -0.00000043 0.08 -0.22 -0.06 -0.00000151 -0.00000381 0.00000148 -0.22 -0.56 0.22 -0.00000043 0.00000148 -0.00000434 -0.06 0.22 -0.64 Entering Dynamics; it = 19 time = 0.13068 pico-seconds new lattice vectors (alat unit) : 1.053118428 0.002498750 0.001461769 0.550703836 0.899386539 0.002979647 0.550773854 0.307512783 0.844857176 new unit-cell volume = 274.7958 (a.u.)^3 new positions in cryst coord As 0.272140923 0.272355677 0.272286899 As -0.272140923 -0.272355677 -0.272286899 new positions in cart coord (alat unit) As 0.586552442 0.329364744 0.231252871 As -0.586552442 -0.329364744 -0.231252871 Ekin = 0.00000294 Ry T = 328.8 K Etot = -25.49951224 new unit-cell volume = 274.79579 a.u.^3 ( 40.72053 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053118428 0.002498750 0.001461769 0.550703836 0.899386539 0.002979647 0.550773854 0.307512783 0.844857176 ATOMIC_POSITIONS (crystal) As 0.272140923 0.272355677 0.272286899 As -0.272140923 -0.272355677 -0.272286899 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1184732 0.0662869 0.0465925), wk = 0.0625000 k( 2) = ( 0.1180634 0.0655557 0.3430338), wk = 0.0625000 k( 3) = ( 0.1192926 0.0677493 -0.5462900), wk = 0.0625000 k( 4) = ( 0.1188829 0.0670181 -0.2498488), wk = 0.0625000 k( 5) = ( 0.1179524 0.3449079 -0.0544810), wk = 0.0625000 k( 6) = ( 0.1175426 0.3441767 0.2419603), wk = 0.0625000 k( 7) = ( 0.1187718 0.3463703 -0.6473635), wk = 0.0625000 k( 8) = ( 0.1183621 0.3456391 -0.3509223), wk = 0.0625000 k( 9) = ( 0.1195147 -0.4909551 0.2487395), wk = 0.0625000 k( 10) = ( 0.1191050 -0.4916863 0.5451808), wk = 0.0625000 k( 11) = ( 0.1203342 -0.4894926 -0.3441430), wk = 0.0625000 k( 12) = ( 0.1199245 -0.4902239 -0.0477017), wk = 0.0625000 k( 13) = ( 0.1189939 -0.2123341 0.1476660), wk = 0.0625000 k( 14) = ( 0.1185842 -0.2130653 0.4441073), wk = 0.0625000 k( 15) = ( 0.1198134 -0.2108716 -0.4452165), wk = 0.0625000 k( 16) = ( 0.1194037 -0.2116029 -0.1487753), wk = 0.0625000 k( 17) = ( 0.3563500 -0.0790290 -0.0555902), wk = 0.0625000 k( 18) = ( 0.3559402 -0.0797603 0.2408510), wk = 0.0625000 k( 19) = ( 0.3571695 -0.0775666 -0.6484728), wk = 0.0625000 k( 20) = ( 0.3567597 -0.0782978 -0.3520315), wk = 0.0625000 k( 21) = ( 0.3558292 0.1995919 -0.1566637), wk = 0.0625000 k( 22) = ( 0.3554195 0.1988607 0.1397775), wk = 0.0625000 k( 23) = ( 0.3566487 0.2010544 -0.7495463), wk = 0.0625000 k( 24) = ( 0.3562389 0.2003232 -0.4531050), wk = 0.0625000 k( 25) = ( 0.3573916 -0.6362710 0.1465568), wk = 0.0625000 k( 26) = ( 0.3569818 -0.6370022 0.4429980), wk = 0.0625000 k( 27) = ( 0.3582110 -0.6348086 -0.4463258), wk = 0.0625000 k( 28) = ( 0.3578013 -0.6355398 -0.1498845), wk = 0.0625000 k( 29) = ( 0.3568708 -0.3576500 0.0454833), wk = 0.0625000 k( 30) = ( 0.3564610 -0.3583813 0.3419245), wk = 0.0625000 k( 31) = ( 0.3576903 -0.3561876 -0.5473993), wk = 0.0625000 k( 32) = ( 0.3572805 -0.3569188 -0.2509580), wk = 0.0625000 extrapolated charge 9.99720, renormalised to 10.00000 total cpu time spent up to now is 39.9 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.10E-09, avg # of iterations = 3.1 total cpu time spent up to now is 40.6 secs total energy = -25.49951538 Ry Harris-Foulkes estimate = -25.49788123 Ry estimated scf accuracy < 0.00000011 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-09, avg # of iterations = 2.2 total cpu time spent up to now is 40.9 secs End of self-consistent calculation k = 0.1185 0.0663 0.0466 ( 531 PWs) bands (ev): -7.1199 1.7620 5.6081 5.6249 6.5261 9.9821 10.5462 10.5481 14.5193 k = 0.1181 0.0656 0.3430 ( 522 PWs) bands (ev): -6.1004 -0.8576 3.9871 5.6785 8.0543 8.3038 9.0553 11.8804 13.9309 k = 0.1193 0.0677-0.5463 ( 520 PWs) bands (ev): -4.5757 -3.1981 4.5828 4.7590 6.2436 9.3141 9.6621 10.4145 15.6257 k = 0.1189 0.0670-0.2498 ( 525 PWs) bands (ev): -6.5413 0.1770 4.7431 5.3101 6.7003 9.4191 10.2304 11.4660 13.4628 k = 0.1180 0.3449-0.0545 ( 522 PWs) bands (ev): -6.1011 -0.8575 3.9877 5.6789 8.0539 8.3046 9.0569 11.8832 13.9331 k = 0.1175 0.3442 0.2420 ( 519 PWs) bands (ev): -5.7295 -0.6230 2.9706 4.0429 5.3411 10.2011 11.9615 12.0509 13.7633 k = 0.1188 0.3464-0.6474 ( 510 PWs) bands (ev): -4.1503 -2.5710 1.8684 2.8646 6.2059 9.9205 12.5004 13.7146 14.0177 k = 0.1184 0.3456-0.3509 ( 521 PWs) bands (ev): -5.0036 -2.1970 2.8135 4.7937 6.1092 9.4171 11.1829 12.2045 13.7128 k = 0.1195-0.4910 0.2487 ( 520 PWs) bands (ev): -4.5769 -3.1981 4.5855 4.7597 6.2432 9.3148 9.6632 10.4175 15.6223 k = 0.1191-0.4917 0.5452 ( 510 PWs) bands (ev): -4.1512 -2.5697 1.8686 2.8644 6.2052 9.9200 12.4987 13.7159 14.0213 k = 0.1203-0.4895-0.3441 ( 510 PWs) bands (ev): -4.4681 -1.9102 1.8721 3.5082 4.1474 9.7920 12.9664 14.2979 14.9260 k = 0.1199-0.4902-0.0477 ( 521 PWs) bands (ev): -5.0006 -2.1980 2.8177 4.7889 6.1088 9.4057 11.1684 12.2000 13.7066 k = 0.1190-0.2123 0.1477 ( 525 PWs) bands (ev): -6.5412 0.1757 4.7446 5.3088 6.7039 9.4197 10.2294 11.4653 13.4636 k = 0.1186-0.2131 0.4441 ( 521 PWs) bands (ev): -5.0029 -2.1970 2.8130 4.7939 6.1062 9.4160 11.1836 12.2027 13.7136 k = 0.1198-0.2109-0.4452 ( 521 PWs) bands (ev): -5.0001 -2.1971 2.8177 4.7874 6.1063 9.4032 11.1668 12.1990 13.7080 k = 0.1194-0.2116-0.1488 ( 525 PWs) bands (ev): -6.5401 0.1839 4.7286 5.3164 6.6917 9.4166 10.2247 11.4644 13.4585 k = 0.3563-0.0790-0.0556 ( 522 PWs) bands (ev): -6.0970 -0.8502 3.9826 5.6687 8.0417 8.2939 9.0441 11.8761 13.9231 k = 0.3559-0.0798 0.2409 ( 519 PWs) bands (ev): -5.7283 -0.6240 2.9632 4.0572 5.3365 10.1914 11.9528 12.0440 13.7655 k = 0.3572-0.0776-0.6485 ( 510 PWs) bands (ev): -4.1519 -2.5646 1.8702 2.8590 6.1896 9.9212 12.5056 13.7208 14.0269 k = 0.3568-0.0783-0.3520 ( 521 PWs) bands (ev): -4.9978 -2.1927 2.8135 4.7824 6.0960 9.4030 11.1589 12.1924 13.7118 k = 0.3558 0.1996-0.1567 ( 519 PWs) bands (ev): -5.7289 -0.6231 2.9636 4.0562 5.3368 10.1936 11.9529 12.0453 13.7652 k = 0.3554 0.1989 0.1398 ( 522 PWs) bands (ev): -5.9263 -1.5526 5.7879 5.7950 7.0068 8.4939 8.5037 9.6187 15.7124 k = 0.3566 0.2011-0.7495 ( 520 PWs) bands (ev): -4.9150 -2.0707 2.1225 4.6379 5.9508 10.0630 10.3884 13.1877 15.2243 k = 0.3562 0.2003-0.4531 ( 510 PWs) bands (ev): -4.4712 -1.9091 1.8694 3.5229 4.1401 9.7893 12.9670 14.3092 14.9315 k = 0.3574-0.6363 0.1466 ( 510 PWs) bands (ev): -4.1533 -2.5641 1.8705 2.8597 6.1922 9.9212 12.5053 13.7208 14.0280 k = 0.3570-0.6370 0.4430 ( 520 PWs) bands (ev): -4.9155 -2.0698 2.1221 4.6381 5.9500 10.0640 10.3879 13.1887 15.2215 k = 0.3582-0.6348-0.4463 ( 520 PWs) bands (ev): -4.9121 -2.0706 2.1262 4.6277 5.9438 10.0583 10.3868 13.1933 15.2451 k = 0.3578-0.6355-0.1499 ( 510 PWs) bands (ev): -4.1466 -2.5679 1.8662 2.8593 6.1938 9.9118 12.5070 13.7108 14.0154 k = 0.3569-0.3577 0.0455 ( 521 PWs) bands (ev): -4.9976 -2.1935 2.8130 4.7841 6.0955 9.4044 11.1612 12.1916 13.7113 k = 0.3565-0.3584 0.3419 ( 510 PWs) bands (ev): -4.4705 -1.9092 1.8683 3.5239 4.1388 9.7876 12.9667 14.3106 14.9339 k = 0.3577-0.3562-0.5474 ( 510 PWs) bands (ev): -4.1462 -2.5670 1.8662 2.8582 6.1905 9.9113 12.5056 13.7122 14.0178 k = 0.3573-0.3569-0.2510 ( 520 PWs) bands (ev): -4.5663 -3.1949 4.5740 4.7456 6.2332 9.2987 9.6495 10.4033 15.6435 the Fermi energy is 8.2427 ev ! total energy = -25.49951546 Ry Harris-Foulkes estimate = -25.49951550 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00004854 -0.00004247 -0.00000152 atom 2 type 1 force = 0.00004854 0.00004247 0.00000152 Total force = 0.000091 Total SCF correction = 0.000238 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.14 0.00000164 -0.00000163 -0.00000059 0.24 -0.24 -0.09 -0.00000163 -0.00000206 0.00000104 -0.24 -0.30 0.15 -0.00000059 0.00000104 -0.00000234 -0.09 0.15 -0.34 Wentzcovitch Damped Dynamics: convergence achieved, Efinal= -25.49951546 ------------------------------------------------------------------------ Final estimate of lattice vectors (input alat units) 1.053118428 0.002498750 0.001461769 0.550703836 0.899386539 0.002979647 0.550773854 0.307512783 0.844857176 final unit-cell volume = 274.7958 (a.u.)^3 input alat = 7.0103 (a.u.) Begin final coordinates new unit-cell volume = 274.79579 a.u.^3 ( 40.72053 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053118428 0.002498750 0.001461769 0.550703836 0.899386539 0.002979647 0.550773854 0.307512783 0.844857176 ATOMIC_POSITIONS (crystal) As 0.272140923 0.272355677 0.272286899 As -0.272140923 -0.272355677 -0.272286899 End final coordinates Writing output data file pwscf.save init_run : 0.24s CPU 0.25s WALL ( 1 calls) electrons : 32.52s CPU 33.33s WALL ( 20 calls) update_pot : 2.23s CPU 2.24s WALL ( 19 calls) forces : 1.44s CPU 1.45s WALL ( 20 calls) stress : 2.54s CPU 2.56s WALL ( 20 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 0.05s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 27.82s CPU 28.50s WALL ( 96 calls) sum_band : 4.40s CPU 4.45s WALL ( 96 calls) v_of_rho : 0.20s CPU 0.19s WALL ( 104 calls) mix_rho : 0.05s CPU 0.06s WALL ( 96 calls) Called by c_bands: init_us_2 : 0.82s CPU 0.91s WALL ( 7456 calls) cegterg : 27.19s CPU 27.64s WALL ( 3072 calls) Called by *egterg: h_psi : 20.65s CPU 20.63s WALL ( 9734 calls) g_psi : 0.98s CPU 0.97s WALL ( 6630 calls) cdiaghg : 2.08s CPU 2.04s WALL ( 8710 calls) Called by h_psi: add_vuspsi : 0.37s CPU 0.39s WALL ( 9734 calls) General routines calbec : 0.57s CPU 0.60s WALL ( 11014 calls) fft : 0.13s CPU 0.11s WALL ( 539 calls) fftw : 19.72s CPU 19.59s WALL ( 172990 calls) davcio : 0.02s CPU 0.30s WALL ( 10528 calls) PWSCF : 40.09s CPU 41.19s WALL This run was terminated on: 11:29:30 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav9.ref0000644000175000017500000002037212341373024016312 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:24 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav9.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 597 597 149 25351 25351 3159 Tot 299 299 75 bravais-lattice index = 9 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1500.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.750000 0.000000 ) a(2) = ( -0.500000 0.750000 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.666667 0.000000 ) b(2) = ( -1.000000 0.666667 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 8 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 12676 G-vectors FFT dimensions: ( 30, 30, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1580, 1) NL pseudopotentials 0.00 Mb ( 1580, 0) Each V/rho on FFT grid 0.88 Mb ( 57600) Each G-vector array 0.10 Mb ( 12676) G-vector shells 0.01 Mb ( 1384) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 1580, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 7.03 Mb ( 57600, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.002141 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.214E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 14.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.612E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22516182 Ry Harris-Foulkes estimate = -2.29280140 Ry estimated scf accuracy < 0.12896461 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.45E-03, avg # of iterations = 1.0 negative rho (up, down): 0.134E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23664389 Ry Harris-Foulkes estimate = -2.23694577 Ry estimated scf accuracy < 0.00070920 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.55E-05, avg # of iterations = 2.0 negative rho (up, down): 0.365E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23708078 Ry Harris-Foulkes estimate = -2.23707894 Ry estimated scf accuracy < 0.00002428 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.21E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23708309 Ry Harris-Foulkes estimate = -2.23708186 Ry estimated scf accuracy < 0.00000144 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.19E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1580 PWs) bands (ev): -10.3544 ! total energy = -2.23708325 Ry Harris-Foulkes estimate = -2.23708333 Ry estimated scf accuracy < 0.00000014 Ry The total energy is the sum of the following terms: one-electron contribution = -3.66947929 Ry hartree contribution = 1.92433257 Ry xc contribution = -1.30254809 Ry ewald contribution = 0.81061156 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.03s WALL ( 1 calls) electrons : 0.11s CPU 0.12s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.02s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 5 calls) sum_band : 0.02s CPU 0.01s WALL ( 5 calls) v_of_rho : 0.05s CPU 0.05s WALL ( 6 calls) mix_rho : 0.01s CPU 0.01s WALL ( 5 calls) Called by c_bands: regterg : 0.02s CPU 0.02s WALL ( 5 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 14 calls) g_psi : 0.00s CPU 0.00s WALL ( 8 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 13 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 23 calls) fftw : 0.02s CPU 0.02s WALL ( 33 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PWSCF : 0.18s CPU 0.19s WALL This run was terminated on: 10:22:24 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/uspp.in0000755000175000017500000000056212341373024014316 0ustar mbamba &control calculation='scf' tstress=.true. / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, ecutrho=200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons conv_thr=1.e-9 / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS {alat} Cu 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 0 0 0 espresso-5.1/PW/tests/vc-relax3.ref0000644000175000017500000043750612341373024015312 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:29:47 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/vc-relax3.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 121 4159 4159 833 bravais-lattice index = 14 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.495175 celldm(6)= 0.495175 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.495175 0.868793 0.000000 ) a(3) = ( 0.495175 0.287729 0.819765 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.569957 -0.403996 ) b(2) = ( 0.000000 1.151022 -0.403996 ) b(3) = ( 0.000000 0.000000 1.219862 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.5772212 0.3354030 0.2377400 ) 2 As tau( 2) = ( -0.5772212 -0.3354030 -0.2377400 ) number of k points= 32 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.0726331 0.0514837), wk = 0.0625000 k( 2) = ( 0.1250000 0.0726331 0.3564493), wk = 0.0625000 k( 3) = ( 0.1250000 0.0726331 -0.5584473), wk = 0.0625000 k( 4) = ( 0.1250000 0.0726331 -0.2534818), wk = 0.0625000 k( 5) = ( 0.1250000 0.3603885 -0.0495153), wk = 0.0625000 k( 6) = ( 0.1250000 0.3603885 0.2554502), wk = 0.0625000 k( 7) = ( 0.1250000 0.3603885 -0.6594464), wk = 0.0625000 k( 8) = ( 0.1250000 0.3603885 -0.3544809), wk = 0.0625000 k( 9) = ( 0.1250000 -0.5028777 0.2534818), wk = 0.0625000 k( 10) = ( 0.1250000 -0.5028777 0.5584473), wk = 0.0625000 k( 11) = ( 0.1250000 -0.5028777 -0.3564493), wk = 0.0625000 k( 12) = ( 0.1250000 -0.5028777 -0.0514837), wk = 0.0625000 k( 13) = ( 0.1250000 -0.2151223 0.1524828), wk = 0.0625000 k( 14) = ( 0.1250000 -0.2151223 0.4574483), wk = 0.0625000 k( 15) = ( 0.1250000 -0.2151223 -0.4574483), wk = 0.0625000 k( 16) = ( 0.1250000 -0.2151223 -0.1524828), wk = 0.0625000 k( 17) = ( 0.3750000 -0.0698561 -0.0495153), wk = 0.0625000 k( 18) = ( 0.3750000 -0.0698561 0.2554502), wk = 0.0625000 k( 19) = ( 0.3750000 -0.0698561 -0.6594464), wk = 0.0625000 k( 20) = ( 0.3750000 -0.0698561 -0.3544809), wk = 0.0625000 k( 21) = ( 0.3750000 0.2178993 -0.1505144), wk = 0.0625000 k( 22) = ( 0.3750000 0.2178993 0.1544512), wk = 0.0625000 k( 23) = ( 0.3750000 0.2178993 -0.7604454), wk = 0.0625000 k( 24) = ( 0.3750000 0.2178993 -0.4554799), wk = 0.0625000 k( 25) = ( 0.3750000 -0.6453669 0.1524828), wk = 0.0625000 k( 26) = ( 0.3750000 -0.6453669 0.4574483), wk = 0.0625000 k( 27) = ( 0.3750000 -0.6453669 -0.4574483), wk = 0.0625000 k( 28) = ( 0.3750000 -0.6453669 -0.1524828), wk = 0.0625000 k( 29) = ( 0.3750000 -0.3576115 0.0514837), wk = 0.0625000 k( 30) = ( 0.3750000 -0.3576115 0.3564493), wk = 0.0625000 k( 31) = ( 0.3750000 -0.3576115 -0.5584473), wk = 0.0625000 k( 32) = ( 0.3750000 -0.3576115 -0.2534818), wk = 0.0625000 Dense grid: 4159 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 2.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 0.9 secs total energy = -25.43995377 Ry Harris-Foulkes estimate = -25.44370976 Ry estimated scf accuracy < 0.01555766 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -25.44008188 Ry Harris-Foulkes estimate = -25.44026393 Ry estimated scf accuracy < 0.00088611 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.86E-06, avg # of iterations = 1.8 total cpu time spent up to now is 1.5 secs total energy = -25.44011454 Ry Harris-Foulkes estimate = -25.44011592 Ry estimated scf accuracy < 0.00000522 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.22E-08, avg # of iterations = 3.1 total cpu time spent up to now is 1.9 secs total energy = -25.44012210 Ry Harris-Foulkes estimate = -25.44012241 Ry estimated scf accuracy < 0.00000067 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.69E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.1 secs End of self-consistent calculation k = 0.1250 0.0726 0.0515 ( 531 PWs) bands (ev): -6.9960 4.5196 5.9667 5.9667 8.4360 11.0403 11.7601 11.7602 16.5645 k = 0.1250 0.0726 0.3564 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7170 k = 0.1250 0.0726-0.5584 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250 0.0726-0.2535 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250 0.3604-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1250 0.3604 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1250 0.3604-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250 0.3604-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.5029 0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250-0.5029 0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250-0.5029-0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.1250-0.5029-0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151 0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250-0.2151 0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.3750-0.0699-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.3750-0.0699 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1264 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750-0.0699-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.0699-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750 0.2179-0.1505 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750 0.2179 0.1545 ( 522 PWs) bands (ev): -5.8586 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1191 17.3944 k = 0.3750 0.2179-0.7604 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750 0.2179-0.4555 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.6454 0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.6454 0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.3750-0.6454-0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750-0.6454-0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576 0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750-0.3576 0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.3576-0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576-0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7262 the Fermi energy is 10.0033 ev ! total energy = -25.44012218 Ry Harris-Foulkes estimate = -25.44012218 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 7.72810281 Ry hartree contribution = 1.22165926 Ry xc contribution = -6.50440081 Ry ewald contribution = -27.88552884 Ry smearing contrib. (-TS) = 0.00004540 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.10311786 -0.05991789 -0.04247081 atom 2 type 1 force = 0.10311786 0.05991789 0.04247081 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.52 0.00123597 -0.00028343 -0.00020091 181.82 -41.69 -29.55 -0.00028343 0.00155904 -0.00011672 -41.69 229.34 -17.17 -0.00020091 -0.00011672 0.00164099 -29.55 -17.17 241.40 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -25.4401221801 Ry new trust radius = 0.1298066934 bohr new conv_thr = 0.0000001000 Ry new unit-cell volume = 273.57162 a.u.^3 ( 40.53913 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.030899271 -0.007085701 -0.005022645 0.504319227 0.899146860 -0.005022223 0.504319091 0.293042380 0.850068704 ATOMIC_POSITIONS (crystal) As 0.282619597 0.282619664 0.282619694 As -0.282619597 -0.282619664 -0.282619694 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1219853 0.0708814 0.0502421), wk = 0.0625000 k( 2) = ( 0.1234184 0.0717139 0.3431988), wk = 0.0625000 k( 3) = ( 0.1191193 0.0692163 -0.5356713), wk = 0.0625000 k( 4) = ( 0.1205523 0.0700488 -0.2427146), wk = 0.0625000 k( 5) = ( 0.1234183 0.3475815 -0.0459943), wk = 0.0625000 k( 6) = ( 0.1248513 0.3484140 0.2469624), wk = 0.0625000 k( 7) = ( 0.1205522 0.3459164 -0.6319077), wk = 0.0625000 k( 8) = ( 0.1219853 0.3467489 -0.3389510), wk = 0.0625000 k( 9) = ( 0.1191194 -0.4825188 0.2427148), wk = 0.0625000 k( 10) = ( 0.1205524 -0.4816862 0.5356715), wk = 0.0625000 k( 11) = ( 0.1162533 -0.4841839 -0.3431986), wk = 0.0625000 k( 12) = ( 0.1176863 -0.4833513 -0.0502419), wk = 0.0625000 k( 13) = ( 0.1205524 -0.2058187 0.1464784), wk = 0.0625000 k( 14) = ( 0.1219854 -0.2049861 0.4394351), wk = 0.0625000 k( 15) = ( 0.1176863 -0.2074838 -0.4394349), wk = 0.0625000 k( 16) = ( 0.1191193 -0.2066512 -0.1464783), wk = 0.0625000 k( 17) = ( 0.3630900 -0.0648885 -0.0459941), wk = 0.0625000 k( 18) = ( 0.3645230 -0.0640559 0.2469626), wk = 0.0625000 k( 19) = ( 0.3602239 -0.0665536 -0.6319075), wk = 0.0625000 k( 20) = ( 0.3616570 -0.0657210 -0.3389508), wk = 0.0625000 k( 21) = ( 0.3645230 0.2118116 -0.1422305), wk = 0.0625000 k( 22) = ( 0.3659560 0.2126442 0.1507262), wk = 0.0625000 k( 23) = ( 0.3616569 0.2101465 -0.7281439), wk = 0.0625000 k( 24) = ( 0.3630899 0.2109791 -0.4351872), wk = 0.0625000 k( 25) = ( 0.3602240 -0.6182886 0.1464786), wk = 0.0625000 k( 26) = ( 0.3616571 -0.6174561 0.4394353), wk = 0.0625000 k( 27) = ( 0.3573580 -0.6199537 -0.4394348), wk = 0.0625000 k( 28) = ( 0.3587910 -0.6191212 -0.1464781), wk = 0.0625000 k( 29) = ( 0.3616570 -0.3415885 0.0502423), wk = 0.0625000 k( 30) = ( 0.3630901 -0.3407560 0.3431990), wk = 0.0625000 k( 31) = ( 0.3587909 -0.3432536 -0.5356711), wk = 0.0625000 k( 32) = ( 0.3602240 -0.3424211 -0.2427144), wk = 0.0625000 extrapolated charge 11.03081, renormalised to 10.00000 total cpu time spent up to now is 2.5 secs per-process dynamical memory: 11.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.9 total cpu time spent up to now is 3.2 secs total energy = -25.47727525 Ry Harris-Foulkes estimate = -26.08205941 Ry estimated scf accuracy < 0.00507645 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.08E-05, avg # of iterations = 3.1 total cpu time spent up to now is 3.6 secs total energy = -25.48675494 Ry Harris-Foulkes estimate = -25.48847059 Ry estimated scf accuracy < 0.00433268 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.33E-05, avg # of iterations = 1.0 total cpu time spent up to now is 3.9 secs total energy = -25.48659023 Ry Harris-Foulkes estimate = -25.48693967 Ry estimated scf accuracy < 0.00097346 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.73E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.2 secs total energy = -25.48649345 Ry Harris-Foulkes estimate = -25.48663390 Ry estimated scf accuracy < 0.00026426 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.64E-06, avg # of iterations = 2.6 total cpu time spent up to now is 4.5 secs total energy = -25.48654700 Ry Harris-Foulkes estimate = -25.48654775 Ry estimated scf accuracy < 0.00000253 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.53E-08, avg # of iterations = 2.1 total cpu time spent up to now is 4.8 secs total energy = -25.48654747 Ry Harris-Foulkes estimate = -25.48654789 Ry estimated scf accuracy < 0.00000108 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-08, avg # of iterations = 2.0 total cpu time spent up to now is 5.1 secs total energy = -25.48654755 Ry Harris-Foulkes estimate = -25.48654760 Ry estimated scf accuracy < 0.00000011 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-09, avg # of iterations = 2.0 total cpu time spent up to now is 5.4 secs End of self-consistent calculation k = 0.1220 0.0709 0.0502 ( 531 PWs) bands (ev): -7.2733 2.2873 5.0421 5.0421 6.9073 9.5374 10.3838 10.3838 14.6605 k = 0.1234 0.0717 0.3432 ( 522 PWs) bands (ev): -6.2826 -0.8518 4.3354 4.9762 7.6868 8.5620 9.6230 11.9332 13.9340 k = 0.1191 0.0692-0.5357 ( 520 PWs) bands (ev): -4.8740 -3.2673 4.1653 5.0067 6.3106 9.2342 10.4193 11.6361 16.1379 k = 0.1206 0.0700-0.2427 ( 525 PWs) bands (ev): -6.7202 0.0196 4.2084 5.6908 7.0524 9.6997 10.1596 11.9484 13.8704 k = 0.1234 0.3476-0.0460 ( 522 PWs) bands (ev): -6.2826 -0.8518 4.3354 4.9762 7.6868 8.5620 9.6229 11.9332 13.9340 k = 0.1249 0.3484 0.2470 ( 519 PWs) bands (ev): -5.9140 -0.3512 2.7963 3.5201 5.8880 9.3587 11.6627 11.9516 14.3967 k = 0.1206 0.3459-0.6319 ( 510 PWs) bands (ev): -4.4005 -2.7152 1.7325 3.1868 6.4970 9.7753 12.0135 13.7562 14.8126 k = 0.1220 0.3467-0.3390 ( 521 PWs) bands (ev): -5.2250 -2.3973 2.4898 5.2351 6.4407 10.2393 11.1196 12.0033 14.0433 k = 0.1191-0.4825 0.2427 ( 520 PWs) bands (ev): -4.8740 -3.2673 4.1653 5.0067 6.3106 9.2342 10.4193 11.6361 16.1379 k = 0.1206-0.4817 0.5357 ( 510 PWs) bands (ev): -4.4005 -2.7152 1.7325 3.1868 6.4970 9.7753 12.0135 13.7562 14.8126 k = 0.1163-0.4842-0.3432 ( 510 PWs) bands (ev): -4.6717 -2.2062 2.3728 3.0121 4.6420 9.2656 13.5078 15.1149 15.5051 k = 0.1177-0.4834-0.0502 ( 521 PWs) bands (ev): -5.2250 -2.3973 2.4898 5.2351 6.4407 10.2393 11.1196 12.0033 14.0433 k = 0.1206-0.2058 0.1465 ( 525 PWs) bands (ev): -6.7202 0.0195 4.2084 5.6908 7.0524 9.6997 10.1596 11.9484 13.8704 k = 0.1220-0.2050 0.4394 ( 521 PWs) bands (ev): -5.2250 -2.3973 2.4898 5.2351 6.4407 10.2393 11.1196 12.0033 14.0433 k = 0.1177-0.2075-0.4394 ( 521 PWs) bands (ev): -5.2250 -2.3973 2.4898 5.2351 6.4407 10.2393 11.1196 12.0033 14.0433 k = 0.1191-0.2067-0.1465 ( 525 PWs) bands (ev): -6.7202 0.0195 4.2084 5.6908 7.0524 9.6997 10.1596 11.9484 13.8704 k = 0.3631-0.0649-0.0460 ( 522 PWs) bands (ev): -6.2826 -0.8518 4.3354 4.9763 7.6868 8.5620 9.6230 11.9332 13.9340 k = 0.3645-0.0641 0.2470 ( 519 PWs) bands (ev): -5.9140 -0.3512 2.7963 3.5201 5.8880 9.3587 11.6627 11.9516 14.3967 k = 0.3602-0.0666-0.6319 ( 510 PWs) bands (ev): -4.4005 -2.7152 1.7325 3.1868 6.4970 9.7753 12.0135 13.7562 14.8126 k = 0.3617-0.0657-0.3390 ( 521 PWs) bands (ev): -5.2250 -2.3973 2.4898 5.2351 6.4407 10.2393 11.1196 12.0033 14.0433 k = 0.3645 0.2118-0.1422 ( 519 PWs) bands (ev): -5.9140 -0.3512 2.7963 3.5201 5.8880 9.3587 11.6627 11.9516 14.3967 k = 0.3660 0.2126 0.1507 ( 522 PWs) bands (ev): -6.1284 -0.6892 5.0548 5.0548 5.9420 8.4861 8.4861 9.8240 15.7279 k = 0.3617 0.2101-0.7281 ( 520 PWs) bands (ev): -5.1973 -1.5128 1.8546 4.0502 5.9460 9.8236 10.1490 12.7571 15.7098 k = 0.3631 0.2110-0.4352 ( 510 PWs) bands (ev): -4.6717 -2.2062 2.3728 3.0121 4.6420 9.2656 13.5078 15.1149 15.5051 k = 0.3602-0.6183 0.1465 ( 510 PWs) bands (ev): -4.4005 -2.7152 1.7325 3.1868 6.4970 9.7753 12.0135 13.7562 14.8126 k = 0.3617-0.6175 0.4394 ( 520 PWs) bands (ev): -5.1973 -1.5128 1.8546 4.0502 5.9460 9.8236 10.1490 12.7571 15.7098 k = 0.3574-0.6200-0.4394 ( 520 PWs) bands (ev): -5.1973 -1.5128 1.8546 4.0502 5.9460 9.8236 10.1490 12.7571 15.7098 k = 0.3588-0.6191-0.1465 ( 510 PWs) bands (ev): -4.4005 -2.7152 1.7325 3.1868 6.4970 9.7753 12.0135 13.7562 14.8126 k = 0.3617-0.3416 0.0502 ( 521 PWs) bands (ev): -5.2250 -2.3973 2.4898 5.2351 6.4407 10.2393 11.1196 12.0033 14.0433 k = 0.3631-0.3408 0.3432 ( 510 PWs) bands (ev): -4.6717 -2.2062 2.3728 3.0121 4.6420 9.2656 13.5078 15.1149 15.5051 k = 0.3588-0.3433-0.5357 ( 510 PWs) bands (ev): -4.4005 -2.7152 1.7325 3.1868 6.4970 9.7753 12.0135 13.7562 14.8126 k = 0.3602-0.3424-0.2427 ( 520 PWs) bands (ev): -4.8740 -3.2673 4.1653 5.0067 6.3106 9.2342 10.4193 11.6361 16.1379 the Fermi energy is 8.1328 ev ! total energy = -25.48654757 Ry Harris-Foulkes estimate = -25.48654757 Ry estimated scf accuracy < 6.9E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.69355017 Ry hartree contribution = 1.27336472 Ry xc contribution = -6.33967576 Ry ewald contribution = -27.11378670 Ry smearing contrib. (-TS) = 0.00000000 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.04624038 -0.02686857 -0.01904509 atom 2 type 1 force = 0.04624038 0.02686857 0.01904509 Total force = 0.080285 Total SCF correction = 0.000004 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 35.32 0.00033049 0.00010557 0.00007483 48.62 15.53 11.01 0.00010557 0.00021015 0.00004348 15.53 30.91 6.40 0.00007483 0.00004348 0.00017963 11.01 6.40 26.42 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -25.4401221801 Ry enthalpy new = -25.4865475678 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0913060135 bohr new conv_thr = 0.0000000462 Ry new unit-cell volume = 282.73636 a.u.^3 ( 41.89720 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.045376594 -0.003520943 -0.002495805 0.514585070 0.909959438 -0.002495489 0.514584993 0.299007418 0.859434314 ATOMIC_POSITIONS (crystal) As 0.277418037 0.277418141 0.277418125 As -0.277418037 -0.277418141 -0.277418125 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1199268 0.0696852 0.0493942), wk = 0.0625000 k( 2) = ( 0.1206213 0.0700887 0.3397270), wk = 0.0625000 k( 3) = ( 0.1185377 0.0688783 -0.5312714), wk = 0.0625000 k( 4) = ( 0.1192322 0.0692818 -0.2409386), wk = 0.0625000 k( 5) = ( 0.1206213 0.3437674 -0.0463780), wk = 0.0625000 k( 6) = ( 0.1213158 0.3441708 0.2439548), wk = 0.0625000 k( 7) = ( 0.1192322 0.3429605 -0.6270436), wk = 0.0625000 k( 8) = ( 0.1199267 0.3433639 -0.3367108), wk = 0.0625000 k( 9) = ( 0.1185378 -0.4784790 0.2409387), wk = 0.0625000 k( 10) = ( 0.1192323 -0.4780756 0.5312715), wk = 0.0625000 k( 11) = ( 0.1171488 -0.4792860 -0.3397269), wk = 0.0625000 k( 12) = ( 0.1178433 -0.4788825 -0.0493941), wk = 0.0625000 k( 13) = ( 0.1192323 -0.2043969 0.1451665), wk = 0.0625000 k( 14) = ( 0.1199268 -0.2039934 0.4354993), wk = 0.0625000 k( 15) = ( 0.1178432 -0.2052038 -0.4354991), wk = 0.0625000 k( 16) = ( 0.1185378 -0.2048004 -0.1451663), wk = 0.0625000 k( 17) = ( 0.3583913 -0.0654299 -0.0463779), wk = 0.0625000 k( 18) = ( 0.3590858 -0.0650264 0.2439549), wk = 0.0625000 k( 19) = ( 0.3570023 -0.0662368 -0.6270435), wk = 0.0625000 k( 20) = ( 0.3576968 -0.0658334 -0.3367107), wk = 0.0625000 k( 21) = ( 0.3590858 0.2086522 -0.1421502), wk = 0.0625000 k( 22) = ( 0.3597803 0.2090557 0.1481826), wk = 0.0625000 k( 23) = ( 0.3576967 0.2078453 -0.7228158), wk = 0.0625000 k( 24) = ( 0.3583913 0.2082488 -0.4324830), wk = 0.0625000 k( 25) = ( 0.3570023 -0.6135942 0.1451666), wk = 0.0625000 k( 26) = ( 0.3576968 -0.6131907 0.4354994), wk = 0.0625000 k( 27) = ( 0.3556133 -0.6144011 -0.4354990), wk = 0.0625000 k( 28) = ( 0.3563078 -0.6139976 -0.1451662), wk = 0.0625000 k( 29) = ( 0.3576968 -0.3395120 0.0493944), wk = 0.0625000 k( 30) = ( 0.3583913 -0.3391086 0.3397272), wk = 0.0625000 k( 31) = ( 0.3563078 -0.3403190 -0.5312712), wk = 0.0625000 k( 32) = ( 0.3570023 -0.3399155 -0.2409384), wk = 0.0625000 extrapolated charge 10.32413, renormalised to 10.00000 total cpu time spent up to now is 5.7 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.9 total cpu time spent up to now is 6.4 secs total energy = -25.49422734 Ry Harris-Foulkes estimate = -25.67905797 Ry estimated scf accuracy < 0.00063199 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.32E-06, avg # of iterations = 3.0 total cpu time spent up to now is 6.8 secs total energy = -25.49507507 Ry Harris-Foulkes estimate = -25.49521539 Ry estimated scf accuracy < 0.00033439 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.34E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.1 secs total energy = -25.49506648 Ry Harris-Foulkes estimate = -25.49509270 Ry estimated scf accuracy < 0.00005700 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.70E-07, avg # of iterations = 1.1 total cpu time spent up to now is 7.3 secs total energy = -25.49506926 Ry Harris-Foulkes estimate = -25.49507156 Ry estimated scf accuracy < 0.00000426 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.26E-08, avg # of iterations = 3.0 total cpu time spent up to now is 7.7 secs total energy = -25.49507173 Ry Harris-Foulkes estimate = -25.49507174 Ry estimated scf accuracy < 0.00000020 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.02E-09, avg # of iterations = 1.0 total cpu time spent up to now is 8.0 secs total energy = -25.49507166 Ry Harris-Foulkes estimate = -25.49507173 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-09, avg # of iterations = 1.0 total cpu time spent up to now is 8.2 secs End of self-consistent calculation k = 0.1199 0.0697 0.0494 ( 531 PWs) bands (ev): -7.3120 1.5346 4.9268 4.9268 6.3965 9.2615 10.0277 10.0277 14.0906 k = 0.1206 0.0701 0.3397 ( 522 PWs) bands (ev): -6.3364 -1.2281 3.9735 4.9819 7.3551 7.9419 8.8711 11.4917 13.4176 k = 0.1185 0.0689-0.5313 ( 520 PWs) bands (ev): -4.9470 -3.4949 4.1515 4.5881 5.8644 8.8101 9.5949 10.6943 15.7178 k = 0.1192 0.0693-0.2409 ( 525 PWs) bands (ev): -6.7756 -0.3341 4.1248 5.2251 6.5538 9.2898 9.6077 11.2554 13.3170 k = 0.1206 0.3438-0.0464 ( 522 PWs) bands (ev): -6.3364 -1.2281 3.9735 4.9819 7.3551 7.9419 8.8711 11.4917 13.4176 k = 0.1213 0.3442 0.2440 ( 519 PWs) bands (ev): -5.9695 -0.8527 2.6375 3.4341 5.2734 9.3151 11.1840 11.4541 13.5083 k = 0.1192 0.3430-0.6270 ( 510 PWs) bands (ev): -4.4960 -2.9518 1.5958 2.8170 5.9886 9.3167 11.7778 13.1743 13.9166 k = 0.1199 0.3434-0.3367 ( 521 PWs) bands (ev): -5.3174 -2.6226 2.4370 4.7075 6.0020 9.4621 10.6163 11.5918 13.4035 k = 0.1185-0.4785 0.2409 ( 520 PWs) bands (ev): -4.9470 -3.4949 4.1515 4.5881 5.8644 8.8101 9.5949 10.6943 15.7178 k = 0.1192-0.4781 0.5313 ( 510 PWs) bands (ev): -4.4960 -2.9518 1.5958 2.8170 5.9886 9.3167 11.7778 13.1743 13.9166 k = 0.1171-0.4793-0.3397 ( 510 PWs) bands (ev): -4.7993 -2.3500 1.8768 2.9433 4.1365 9.2129 12.7072 14.1850 14.5602 k = 0.1178-0.4789-0.0494 ( 521 PWs) bands (ev): -5.3174 -2.6226 2.4370 4.7075 6.0020 9.4621 10.6163 11.5918 13.4035 k = 0.1192-0.2044 0.1452 ( 525 PWs) bands (ev): -6.7756 -0.3341 4.1248 5.2251 6.5538 9.2898 9.6077 11.2554 13.3170 k = 0.1199-0.2040 0.4355 ( 521 PWs) bands (ev): -5.3174 -2.6226 2.4370 4.7075 6.0020 9.4621 10.6163 11.5918 13.4035 k = 0.1178-0.2052-0.4355 ( 521 PWs) bands (ev): -5.3174 -2.6226 2.4370 4.7075 6.0020 9.4621 10.6163 11.5918 13.4035 k = 0.1185-0.2048-0.1452 ( 525 PWs) bands (ev): -6.7756 -0.3341 4.1248 5.2251 6.5538 9.2898 9.6078 11.2554 13.3170 k = 0.3584-0.0654-0.0464 ( 522 PWs) bands (ev): -6.3364 -1.2281 3.9735 4.9819 7.3551 7.9419 8.8711 11.4917 13.4176 k = 0.3591-0.0650 0.2440 ( 519 PWs) bands (ev): -5.9695 -0.8527 2.6375 3.4340 5.2734 9.3151 11.1840 11.4541 13.5083 k = 0.3570-0.0662-0.6270 ( 510 PWs) bands (ev): -4.4960 -2.9519 1.5958 2.8170 5.9886 9.3167 11.7777 13.1743 13.9166 k = 0.3577-0.0658-0.3367 ( 521 PWs) bands (ev): -5.3174 -2.6226 2.4370 4.7075 6.0020 9.4621 10.6163 11.5918 13.4035 k = 0.3591 0.2087-0.1422 ( 519 PWs) bands (ev): -5.9695 -0.8527 2.6375 3.4340 5.2734 9.3151 11.1840 11.4541 13.5083 k = 0.3598 0.2091 0.1482 ( 522 PWs) bands (ev): -6.1415 -1.3821 5.0158 5.0158 5.8699 8.0221 8.0221 9.0996 15.2884 k = 0.3577 0.2078-0.7228 ( 520 PWs) bands (ev): -5.2103 -2.0884 1.7598 3.9968 5.5056 9.4659 9.5758 12.3593 15.0534 k = 0.3584 0.2082-0.4325 ( 510 PWs) bands (ev): -4.7992 -2.3500 1.8768 2.9432 4.1365 9.2129 12.7072 14.1850 14.5602 k = 0.3570-0.6136 0.1452 ( 510 PWs) bands (ev): -4.4960 -2.9518 1.5958 2.8170 5.9886 9.3167 11.7777 13.1743 13.9166 k = 0.3577-0.6132 0.4355 ( 520 PWs) bands (ev): -5.2103 -2.0884 1.7598 3.9968 5.5056 9.4659 9.5758 12.3593 15.0534 k = 0.3556-0.6144-0.4355 ( 520 PWs) bands (ev): -5.2103 -2.0884 1.7598 3.9968 5.5056 9.4659 9.5758 12.3593 15.0534 k = 0.3563-0.6140-0.1452 ( 510 PWs) bands (ev): -4.4960 -2.9519 1.5958 2.8170 5.9886 9.3167 11.7778 13.1743 13.9166 k = 0.3577-0.3395 0.0494 ( 521 PWs) bands (ev): -5.3174 -2.6226 2.4370 4.7075 6.0020 9.4621 10.6163 11.5918 13.4035 k = 0.3584-0.3391 0.3397 ( 510 PWs) bands (ev): -4.7992 -2.3500 1.8768 2.9432 4.1365 9.2129 12.7072 14.1850 14.5602 k = 0.3563-0.3403-0.5313 ( 510 PWs) bands (ev): -4.4960 -2.9519 1.5958 2.8170 5.9886 9.3167 11.7778 13.1743 13.9166 k = 0.3570-0.3399-0.2409 ( 520 PWs) bands (ev): -4.9470 -3.4949 4.1515 4.5881 5.8644 8.8101 9.5949 10.6943 15.7178 the Fermi energy is 7.8862 ev ! total energy = -25.49507167 Ry Harris-Foulkes estimate = -25.49507167 Ry estimated scf accuracy < 4.3E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.44004222 Ry hartree contribution = 1.27027594 Ry xc contribution = -6.28728564 Ry ewald contribution = -26.91813856 Ry smearing contrib. (-TS) = 0.00003437 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01838108 -0.01068067 -0.00757067 atom 2 type 1 force = 0.01838108 0.01068067 0.00757067 Total force = 0.031914 Total SCF correction = 0.000037 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -12.12 0.00004415 0.00014779 0.00010476 6.49 21.74 15.41 0.00014779 -0.00012432 0.00006087 21.74 -18.29 8.95 0.00010476 0.00006087 -0.00016705 15.41 8.95 -24.57 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -25.4865475678 Ry enthalpy new = -25.4950716705 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0616000937 bohr new conv_thr = 0.0000000184 Ry new unit-cell volume = 283.67505 a.u.^3 ( 42.03631 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.051831532 0.002668113 0.001891141 0.523158405 0.912502787 0.001891418 0.523158348 0.303989058 0.860381276 ATOMIC_POSITIONS (crystal) As 0.273968016 0.273968105 0.273968080 As -0.273968016 -0.273968105 -0.273968080 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1185777 0.0689014 0.0488386), wk = 0.0625000 k( 2) = ( 0.1180553 0.0685977 0.3398324), wk = 0.0625000 k( 3) = ( 0.1196226 0.0695087 -0.5331490), wk = 0.0625000 k( 4) = ( 0.1191002 0.0692050 -0.2421552), wk = 0.0625000 k( 5) = ( 0.1180553 0.3433730 -0.0478198), wk = 0.0625000 k( 6) = ( 0.1175329 0.3430694 0.2431740), wk = 0.0625000 k( 7) = ( 0.1191001 0.3439803 -0.6298074), wk = 0.0625000 k( 8) = ( 0.1185777 0.3436767 -0.3388136), wk = 0.0625000 k( 9) = ( 0.1196226 -0.4800419 0.2421553), wk = 0.0625000 k( 10) = ( 0.1191002 -0.4803456 0.5331491), wk = 0.0625000 k( 11) = ( 0.1206675 -0.4794346 -0.3398323), wk = 0.0625000 k( 12) = ( 0.1201451 -0.4797383 -0.0488385), wk = 0.0625000 k( 13) = ( 0.1191002 -0.2055703 0.1454970), wk = 0.0625000 k( 14) = ( 0.1185778 -0.2058739 0.4364908), wk = 0.0625000 k( 15) = ( 0.1201450 -0.2049630 -0.4364906), wk = 0.0625000 k( 16) = ( 0.1196226 -0.2052666 -0.1454968), wk = 0.0625000 k( 17) = ( 0.3567781 -0.0674639 -0.0478197), wk = 0.0625000 k( 18) = ( 0.3562557 -0.0677676 0.2431741), wk = 0.0625000 k( 19) = ( 0.3578229 -0.0668566 -0.6298073), wk = 0.0625000 k( 20) = ( 0.3573005 -0.0671603 -0.3388135), wk = 0.0625000 k( 21) = ( 0.3562556 0.2070077 -0.1444780), wk = 0.0625000 k( 22) = ( 0.3557332 0.2067041 0.1465158), wk = 0.0625000 k( 23) = ( 0.3573005 0.2076150 -0.7264656), wk = 0.0625000 k( 24) = ( 0.3567781 0.2073114 -0.4354718), wk = 0.0625000 k( 25) = ( 0.3578230 -0.6164072 0.1454971), wk = 0.0625000 k( 26) = ( 0.3573006 -0.6167109 0.4364909), wk = 0.0625000 k( 27) = ( 0.3588678 -0.6157999 -0.4364905), wk = 0.0625000 k( 28) = ( 0.3583454 -0.6161036 -0.1454967), wk = 0.0625000 k( 29) = ( 0.3573005 -0.3419356 0.0488387), wk = 0.0625000 k( 30) = ( 0.3567781 -0.3422392 0.3398325), wk = 0.0625000 k( 31) = ( 0.3583454 -0.3413283 -0.5331489), wk = 0.0625000 k( 32) = ( 0.3578230 -0.3416319 -0.2421551), wk = 0.0625000 extrapolated charge 10.03309, renormalised to 10.00000 total cpu time spent up to now is 8.6 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.7 total cpu time spent up to now is 9.2 secs total energy = -25.49754330 Ry Harris-Foulkes estimate = -25.51648988 Ry estimated scf accuracy < 0.00016874 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-06, avg # of iterations = 2.0 total cpu time spent up to now is 9.5 secs total energy = -25.49757789 Ry Harris-Foulkes estimate = -25.49757893 Ry estimated scf accuracy < 0.00000406 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-08, avg # of iterations = 2.3 total cpu time spent up to now is 9.8 secs total energy = -25.49757886 Ry Harris-Foulkes estimate = -25.49757879 Ry estimated scf accuracy < 0.00000022 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-09, avg # of iterations = 1.1 total cpu time spent up to now is 10.1 secs End of self-consistent calculation k = 0.1186 0.0689 0.0488 ( 531 PWs) bands (ev): -7.2670 1.3559 5.0694 5.0694 6.2450 9.3990 10.0422 10.0422 14.0059 k = 0.1181 0.0686 0.3398 ( 522 PWs) bands (ev): -6.2834 -1.2654 3.8748 5.1902 7.4298 7.8250 8.6357 11.4323 13.3998 k = 0.1196 0.0695-0.5331 ( 520 PWs) bands (ev): -4.8661 -3.4968 4.3212 4.4601 5.8101 8.8097 9.3169 10.3184 15.5502 k = 0.1191 0.0692-0.2422 ( 525 PWs) bands (ev): -6.7274 -0.3234 4.2614 5.1071 6.4445 9.0702 9.7237 11.0732 13.1422 k = 0.1181 0.3434-0.0478 ( 522 PWs) bands (ev): -6.2834 -1.2654 3.8748 5.1902 7.4298 7.8250 8.6357 11.4323 13.3998 k = 0.1175 0.3431 0.2432 ( 519 PWs) bands (ev): -5.9126 -0.9657 2.6926 3.5653 5.0615 9.5672 11.2146 11.4362 13.2468 k = 0.1191 0.3440-0.6298 ( 510 PWs) bands (ev): -4.4242 -2.9374 1.6187 2.7135 5.8803 9.3073 11.8964 13.1420 13.6456 k = 0.1186 0.3437-0.3388 ( 521 PWs) bands (ev): -5.2612 -2.5866 2.5311 4.5433 5.9090 9.1738 10.5946 11.6125 13.2865 k = 0.1196-0.4800 0.2422 ( 520 PWs) bands (ev): -4.8661 -3.4968 4.3212 4.4601 5.8101 8.8097 9.3169 10.3184 15.5502 k = 0.1191-0.4803 0.5331 ( 510 PWs) bands (ev): -4.4242 -2.9374 1.6187 2.7135 5.8803 9.3073 11.8964 13.1420 13.6456 k = 0.1207-0.4794-0.3398 ( 510 PWs) bands (ev): -4.7497 -2.2757 1.7064 3.0709 3.9660 9.3822 12.5107 13.8624 14.3743 k = 0.1201-0.4797-0.0488 ( 521 PWs) bands (ev): -5.2612 -2.5866 2.5311 4.5433 5.9090 9.1738 10.5946 11.6125 13.2865 k = 0.1191-0.2056 0.1455 ( 525 PWs) bands (ev): -6.7274 -0.3234 4.2614 5.1071 6.4445 9.0702 9.7237 11.0732 13.1422 k = 0.1186-0.2059 0.4365 ( 521 PWs) bands (ev): -5.2612 -2.5866 2.5311 4.5433 5.9090 9.1738 10.5946 11.6125 13.2865 k = 0.1201-0.2050-0.4365 ( 521 PWs) bands (ev): -5.2612 -2.5866 2.5311 4.5433 5.9090 9.1738 10.5946 11.6125 13.2865 k = 0.1196-0.2053-0.1455 ( 525 PWs) bands (ev): -6.7274 -0.3234 4.2614 5.1071 6.4445 9.0702 9.7237 11.0732 13.1422 k = 0.3568-0.0675-0.0478 ( 522 PWs) bands (ev): -6.2834 -1.2654 3.8748 5.1902 7.4298 7.8250 8.6357 11.4323 13.3998 k = 0.3563-0.0678 0.2432 ( 519 PWs) bands (ev): -5.9126 -0.9657 2.6926 3.5653 5.0615 9.5672 11.2146 11.4362 13.2468 k = 0.3578-0.0669-0.6298 ( 510 PWs) bands (ev): -4.4242 -2.9374 1.6187 2.7135 5.8803 9.3073 11.8964 13.1420 13.6456 k = 0.3573-0.0672-0.3388 ( 521 PWs) bands (ev): -5.2612 -2.5866 2.5311 4.5433 5.9090 9.1738 10.5946 11.6125 13.2865 k = 0.3563 0.2070-0.1445 ( 519 PWs) bands (ev): -5.9126 -0.9657 2.6926 3.5653 5.0615 9.5672 11.2146 11.4362 13.2468 k = 0.3557 0.2067 0.1465 ( 522 PWs) bands (ev): -6.0672 -1.6674 5.2136 5.2136 6.1482 7.9713 7.9713 8.9702 15.2676 k = 0.3573 0.2076-0.7265 ( 520 PWs) bands (ev): -5.1078 -2.2966 1.8303 4.1506 5.4571 9.4947 9.5940 12.4409 14.8893 k = 0.3568 0.2073-0.4355 ( 510 PWs) bands (ev): -4.7497 -2.2757 1.7064 3.0709 3.9660 9.3822 12.5107 13.8624 14.3743 k = 0.3578-0.6164 0.1455 ( 510 PWs) bands (ev): -4.4242 -2.9374 1.6187 2.7135 5.8803 9.3073 11.8964 13.1420 13.6456 k = 0.3573-0.6167 0.4365 ( 520 PWs) bands (ev): -5.1078 -2.2966 1.8303 4.1506 5.4571 9.4947 9.5940 12.4409 14.8893 k = 0.3589-0.6158-0.4365 ( 520 PWs) bands (ev): -5.1078 -2.2966 1.8303 4.1506 5.4571 9.4947 9.5940 12.4409 14.8893 k = 0.3583-0.6161-0.1455 ( 510 PWs) bands (ev): -4.4242 -2.9374 1.6187 2.7135 5.8803 9.3074 11.8964 13.1420 13.6456 k = 0.3573-0.3419 0.0488 ( 521 PWs) bands (ev): -5.2612 -2.5866 2.5311 4.5433 5.9090 9.1738 10.5946 11.6125 13.2865 k = 0.3568-0.3422 0.3398 ( 510 PWs) bands (ev): -4.7497 -2.2757 1.7064 3.0709 3.9660 9.3822 12.5107 13.8624 14.3743 k = 0.3583-0.3413-0.5331 ( 510 PWs) bands (ev): -4.4242 -2.9374 1.6187 2.7135 5.8803 9.3074 11.8964 13.1420 13.6456 k = 0.3578-0.3416-0.2422 ( 520 PWs) bands (ev): -4.8661 -3.4968 4.3212 4.4601 5.8101 8.8098 9.3169 10.3184 15.5502 the Fermi energy is 7.7678 ev ! total energy = -25.49757888 Ry Harris-Foulkes estimate = -25.49757888 Ry estimated scf accuracy < 4.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.47652864 Ry hartree contribution = 1.24412503 Ry xc contribution = -6.27585032 Ry ewald contribution = -26.94240955 Ry smearing contrib. (-TS) = 0.00002732 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00301101 -0.00174968 -0.00124018 atom 2 type 1 force = 0.00301101 0.00174968 0.00124018 Total force = 0.005228 Total SCF correction = 0.000049 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -24.62 -0.00006848 0.00011545 0.00008183 -10.07 16.98 12.04 0.00011545 -0.00020008 0.00004755 16.98 -29.43 6.99 0.00008183 0.00004755 -0.00023346 12.04 6.99 -34.34 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -25.4950716705 Ry enthalpy new = -25.4975788764 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0331156891 bohr new conv_thr = 0.0000000030 Ry new unit-cell volume = 280.14009 a.u.^3 ( 41.51248 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.052821713 0.008877209 0.006292278 0.529043139 0.910288488 0.006292512 0.529043092 0.307408443 0.856834348 ATOMIC_POSITIONS (crystal) As 0.272134189 0.272134247 0.272134227 As -0.272134189 -0.272134247 -0.272134227 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1178610 0.0684849 0.0485434), wk = 0.0625000 k( 2) = ( 0.1161171 0.0674715 0.3417554), wk = 0.0625000 k( 3) = ( 0.1213487 0.0705116 -0.5378806), wk = 0.0625000 k( 4) = ( 0.1196048 0.0694983 -0.2446686), wk = 0.0625000 k( 5) = ( 0.1161171 0.3448145 -0.0495193), wk = 0.0625000 k( 6) = ( 0.1143732 0.3438011 0.2436927), wk = 0.0625000 k( 7) = ( 0.1196048 0.3468412 -0.6359433), wk = 0.0625000 k( 8) = ( 0.1178610 0.3458278 -0.3427313), wk = 0.0625000 k( 9) = ( 0.1213487 -0.4841743 0.2446687), wk = 0.0625000 k( 10) = ( 0.1196049 -0.4851877 0.5378807), wk = 0.0625000 k( 11) = ( 0.1248365 -0.4821476 -0.3417553), wk = 0.0625000 k( 12) = ( 0.1230926 -0.4831609 -0.0485433), wk = 0.0625000 k( 13) = ( 0.1196049 -0.2078447 0.1466060), wk = 0.0625000 k( 14) = ( 0.1178610 -0.2088581 0.4398180), wk = 0.0625000 k( 15) = ( 0.1230926 -0.2058180 -0.4398179), wk = 0.0625000 k( 16) = ( 0.1213487 -0.2068313 -0.1466059), wk = 0.0625000 k( 17) = ( 0.3570707 -0.0698616 -0.0495192), wk = 0.0625000 k( 18) = ( 0.3553268 -0.0708750 0.2436928), wk = 0.0625000 k( 19) = ( 0.3605584 -0.0678348 -0.6359431), wk = 0.0625000 k( 20) = ( 0.3588145 -0.0688482 -0.3427312), wk = 0.0625000 k( 21) = ( 0.3553268 0.2064680 -0.1475818), wk = 0.0625000 k( 22) = ( 0.3535829 0.2054546 0.1456301), wk = 0.0625000 k( 23) = ( 0.3588145 0.2084948 -0.7340058), wk = 0.0625000 k( 24) = ( 0.3570707 0.2074814 -0.4407938), wk = 0.0625000 k( 25) = ( 0.3605584 -0.6225208 0.1466062), wk = 0.0625000 k( 26) = ( 0.3588146 -0.6235341 0.4398181), wk = 0.0625000 k( 27) = ( 0.3640462 -0.6204940 -0.4398178), wk = 0.0625000 k( 28) = ( 0.3623023 -0.6215074 -0.1466058), wk = 0.0625000 k( 29) = ( 0.3588146 -0.3461912 0.0485435), wk = 0.0625000 k( 30) = ( 0.3570707 -0.3472046 0.3417555), wk = 0.0625000 k( 31) = ( 0.3623023 -0.3441644 -0.5378805), wk = 0.0625000 k( 32) = ( 0.3605584 -0.3451778 -0.2446685), wk = 0.0625000 extrapolated charge 9.87382, renormalised to 10.00000 total cpu time spent up to now is 10.4 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 11.0 secs total energy = -25.49862565 Ry Harris-Foulkes estimate = -25.42597387 Ry estimated scf accuracy < 0.00015851 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-06, avg # of iterations = 2.6 total cpu time spent up to now is 11.4 secs total energy = -25.49878641 Ry Harris-Foulkes estimate = -25.49882596 Ry estimated scf accuracy < 0.00008862 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.86E-07, avg # of iterations = 1.0 total cpu time spent up to now is 11.7 secs total energy = -25.49878772 Ry Harris-Foulkes estimate = -25.49879331 Ry estimated scf accuracy < 0.00001120 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.12E-07, avg # of iterations = 1.5 total cpu time spent up to now is 11.9 secs total energy = -25.49878892 Ry Harris-Foulkes estimate = -25.49878909 Ry estimated scf accuracy < 0.00000032 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.20E-09, avg # of iterations = 3.0 total cpu time spent up to now is 12.3 secs total energy = -25.49878930 Ry Harris-Foulkes estimate = -25.49878932 Ry estimated scf accuracy < 0.00000007 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.38E-10, avg # of iterations = 1.0 total cpu time spent up to now is 12.6 secs total energy = -25.49878928 Ry Harris-Foulkes estimate = -25.49878930 Ry estimated scf accuracy < 0.00000003 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.38E-10, avg # of iterations = 2.0 total cpu time spent up to now is 12.9 secs End of self-consistent calculation k = 0.1179 0.0685 0.0485 ( 531 PWs) bands (ev): -7.1845 1.4873 5.3251 5.3251 6.3242 9.7024 10.2552 10.2552 14.1776 k = 0.1161 0.0675 0.3418 ( 522 PWs) bands (ev): -6.1823 -1.1122 3.9207 5.4626 7.6927 7.9892 8.7143 11.6002 13.6197 k = 0.1213 0.0705-0.5379 ( 520 PWs) bands (ev): -4.7169 -3.3743 4.4998 4.5557 5.9650 9.0263 9.3686 10.2887 15.5607 k = 0.1196 0.0695-0.2447 ( 525 PWs) bands (ev): -6.6311 -0.1157 4.4916 5.1751 6.5460 9.1470 9.9918 11.1884 13.2158 k = 0.1161 0.3448-0.0495 ( 522 PWs) bands (ev): -6.1823 -1.1122 3.9207 5.4626 7.6927 7.9892 8.7143 11.6002 13.6197 k = 0.1144 0.3438 0.2437 ( 519 PWs) bands (ev): -5.8059 -0.8538 2.8385 3.7896 5.1025 9.9055 11.5100 11.6739 13.3598 k = 0.1196 0.3468-0.6359 ( 510 PWs) bands (ev): -4.2761 -2.7851 1.7259 2.7576 5.9903 9.5341 12.1761 13.3889 13.7346 k = 0.1179 0.3458-0.3427 ( 521 PWs) bands (ev): -5.1339 -2.4150 2.6851 4.5954 5.9988 9.1932 10.8198 11.8664 13.4361 k = 0.1213-0.4842 0.2447 ( 520 PWs) bands (ev): -4.7169 -3.3743 4.4998 4.5557 5.9650 9.0263 9.3686 10.2887 15.5607 k = 0.1196-0.4852 0.5379 ( 510 PWs) bands (ev): -4.2761 -2.7851 1.7259 2.7576 5.9903 9.5341 12.1761 13.3889 13.7346 k = 0.1248-0.4821-0.3418 ( 510 PWs) bands (ev): -4.6130 -2.0913 1.7231 3.2812 3.9966 9.6206 12.6511 13.9390 14.5677 k = 0.1231-0.4832-0.0485 ( 521 PWs) bands (ev): -5.1339 -2.4150 2.6851 4.5954 5.9988 9.1932 10.8198 11.8664 13.4361 k = 0.1196-0.2078 0.1466 ( 525 PWs) bands (ev): -6.6311 -0.1157 4.4916 5.1751 6.5460 9.1470 9.9918 11.1884 13.2158 k = 0.1179-0.2089 0.4398 ( 521 PWs) bands (ev): -5.1339 -2.4150 2.6851 4.5954 5.9988 9.1932 10.8198 11.8664 13.4361 k = 0.1231-0.2058-0.4398 ( 521 PWs) bands (ev): -5.1339 -2.4150 2.6851 4.5954 5.9988 9.1932 10.8198 11.8664 13.4361 k = 0.1213-0.2068-0.1466 ( 525 PWs) bands (ev): -6.6311 -0.1157 4.4916 5.1751 6.5460 9.1470 9.9918 11.1884 13.2158 k = 0.3571-0.0699-0.0495 ( 522 PWs) bands (ev): -6.1823 -1.1122 3.9207 5.4626 7.6927 7.9892 8.7143 11.6002 13.6197 k = 0.3553-0.0709 0.2437 ( 519 PWs) bands (ev): -5.8059 -0.8538 2.8385 3.7896 5.1025 9.9055 11.5100 11.6739 13.3598 k = 0.3606-0.0678-0.6359 ( 510 PWs) bands (ev): -4.2761 -2.7851 1.7259 2.7576 5.9903 9.5341 12.1761 13.3889 13.7346 k = 0.3588-0.0688-0.3427 ( 521 PWs) bands (ev): -5.1339 -2.4150 2.6851 4.5954 5.9988 9.1932 10.8198 11.8664 13.4361 k = 0.3553 0.2065-0.1476 ( 519 PWs) bands (ev): -5.8059 -0.8538 2.8385 3.7896 5.1025 9.9055 11.5100 11.6739 13.3598 k = 0.3536 0.2055 0.1456 ( 522 PWs) bands (ev): -5.9628 -1.6927 5.4998 5.4998 6.5537 8.1499 8.1499 9.1754 15.4584 k = 0.3588 0.2085-0.7340 ( 520 PWs) bands (ev): -4.9682 -2.2713 1.9737 4.3868 5.6241 9.6843 9.9439 12.7656 14.9901 k = 0.3571 0.2075-0.4408 ( 510 PWs) bands (ev): -4.6130 -2.0913 1.7231 3.2812 3.9966 9.6206 12.6511 13.9390 14.5677 k = 0.3606-0.6225 0.1466 ( 510 PWs) bands (ev): -4.2761 -2.7851 1.7259 2.7576 5.9903 9.5341 12.1761 13.3889 13.7346 k = 0.3588-0.6235 0.4398 ( 520 PWs) bands (ev): -4.9682 -2.2713 1.9737 4.3868 5.6241 9.6843 9.9439 12.7656 14.9901 k = 0.3640-0.6205-0.4398 ( 520 PWs) bands (ev): -4.9682 -2.2713 1.9737 4.3868 5.6241 9.6843 9.9439 12.7656 14.9901 k = 0.3623-0.6215-0.1466 ( 510 PWs) bands (ev): -4.2761 -2.7851 1.7259 2.7576 5.9903 9.5341 12.1761 13.3889 13.7346 k = 0.3588-0.3462 0.0485 ( 521 PWs) bands (ev): -5.1339 -2.4150 2.6851 4.5954 5.9988 9.1932 10.8198 11.8664 13.4361 k = 0.3571-0.3472 0.3418 ( 510 PWs) bands (ev): -4.6130 -2.0913 1.7231 3.2812 3.9966 9.6206 12.6511 13.9390 14.5677 k = 0.3623-0.3442-0.5379 ( 510 PWs) bands (ev): -4.2761 -2.7851 1.7259 2.7576 5.9903 9.5341 12.1761 13.3889 13.7346 k = 0.3606-0.3452-0.2447 ( 520 PWs) bands (ev): -4.7169 -3.3743 4.4998 4.5557 5.9650 9.0263 9.3686 10.2887 15.5607 the Fermi energy is 7.7500 ev ! total energy = -25.49878929 Ry Harris-Foulkes estimate = -25.49878929 Ry estimated scf accuracy < 1.4E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.65612461 Ry hartree contribution = 1.21084651 Ry xc contribution = -6.28746123 Ry ewald contribution = -27.07832637 Ry smearing contrib. (-TS) = 0.00002719 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00313406 0.00182112 0.00129082 atom 2 type 1 force = -0.00313406 -0.00182112 -0.00129082 Total force = 0.005442 Total SCF correction = 0.000012 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -19.40 -0.00007443 0.00006712 0.00004758 -10.95 9.87 7.00 0.00006712 -0.00015095 0.00002765 9.87 -22.20 4.07 0.00004758 0.00002765 -0.00017035 7.00 4.07 -25.06 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -25.4975788764 Ry enthalpy new = -25.4987892872 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0351136336 bohr new conv_thr = 0.0000000031 Ry new unit-cell volume = 274.74877 a.u.^3 ( 40.71357 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.050970095 0.014485947 0.010267843 0.532999101 0.905902539 0.010268099 0.532999041 0.309707136 0.851379258 ATOMIC_POSITIONS (crystal) As 0.271450006 0.271450067 0.271450040 As -0.271450006 -0.271450067 -0.271450040 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1175236 0.0682888 0.0484044), wk = 0.0625000 k( 2) = ( 0.1146542 0.0666215 0.3444484), wk = 0.0625000 k( 3) = ( 0.1232622 0.0716235 -0.5436836), wk = 0.0625000 k( 4) = ( 0.1203929 0.0699562 -0.2476396), wk = 0.0625000 k( 5) = ( 0.1146542 0.3470741 -0.0512133), wk = 0.0625000 k( 6) = ( 0.1117849 0.3454067 0.2448308), wk = 0.0625000 k( 7) = ( 0.1203929 0.3504088 -0.6433013), wk = 0.0625000 k( 8) = ( 0.1175235 0.3487414 -0.3472573), wk = 0.0625000 k( 9) = ( 0.1232623 -0.4892816 0.2476397), wk = 0.0625000 k( 10) = ( 0.1203930 -0.4909490 0.5436838), wk = 0.0625000 k( 11) = ( 0.1290010 -0.4859469 -0.3444483), wk = 0.0625000 k( 12) = ( 0.1261316 -0.4876143 -0.0484043), wk = 0.0625000 k( 13) = ( 0.1203929 -0.2104964 0.1480221), wk = 0.0625000 k( 14) = ( 0.1175236 -0.2121638 0.4440661), wk = 0.0625000 k( 15) = ( 0.1261316 -0.2071617 -0.4440660), wk = 0.0625000 k( 16) = ( 0.1232623 -0.2088291 -0.1480220), wk = 0.0625000 k( 17) = ( 0.3583094 -0.0722514 -0.0512131), wk = 0.0625000 k( 18) = ( 0.3554401 -0.0739188 0.2448309), wk = 0.0625000 k( 19) = ( 0.3640481 -0.0689167 -0.6433012), wk = 0.0625000 k( 20) = ( 0.3611787 -0.0705841 -0.3472572), wk = 0.0625000 k( 21) = ( 0.3554401 0.2065338 -0.1508308), wk = 0.0625000 k( 22) = ( 0.3525707 0.2048665 0.1452132), wk = 0.0625000 k( 23) = ( 0.3611787 0.2098685 -0.7429188), wk = 0.0625000 k( 24) = ( 0.3583094 0.2082012 -0.4468748), wk = 0.0625000 k( 25) = ( 0.3640481 -0.6298219 0.1480222), wk = 0.0625000 k( 26) = ( 0.3611788 -0.6314892 0.4440662), wk = 0.0625000 k( 27) = ( 0.3697868 -0.6264872 -0.4440659), wk = 0.0625000 k( 28) = ( 0.3669175 -0.6281545 -0.1480218), wk = 0.0625000 k( 29) = ( 0.3611788 -0.3510366 0.0484045), wk = 0.0625000 k( 30) = ( 0.3583094 -0.3527040 0.3444486), wk = 0.0625000 k( 31) = ( 0.3669174 -0.3477019 -0.5436835), wk = 0.0625000 k( 32) = ( 0.3640481 -0.3493693 -0.2476395), wk = 0.0625000 extrapolated charge 9.80378, renormalised to 10.00000 total cpu time spent up to now is 13.2 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.1 total cpu time spent up to now is 13.8 secs total energy = -25.49910937 Ry Harris-Foulkes estimate = -25.38442347 Ry estimated scf accuracy < 0.00021208 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.12E-06, avg # of iterations = 3.0 total cpu time spent up to now is 14.2 secs total energy = -25.49942017 Ry Harris-Foulkes estimate = -25.49949037 Ry estimated scf accuracy < 0.00016670 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-06, avg # of iterations = 1.0 total cpu time spent up to now is 14.5 secs total energy = -25.49942393 Ry Harris-Foulkes estimate = -25.49943205 Ry estimated scf accuracy < 0.00002550 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.55E-07, avg # of iterations = 1.0 total cpu time spent up to now is 14.7 secs total energy = -25.49942040 Ry Harris-Foulkes estimate = -25.49942498 Ry estimated scf accuracy < 0.00000830 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.30E-08, avg # of iterations = 2.3 total cpu time spent up to now is 15.0 secs total energy = -25.49942231 Ry Harris-Foulkes estimate = -25.49942231 Ry estimated scf accuracy < 0.00000006 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.90E-10, avg # of iterations = 2.0 total cpu time spent up to now is 15.4 secs total energy = -25.49942230 Ry Harris-Foulkes estimate = -25.49942232 Ry estimated scf accuracy < 0.00000004 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.24E-10, avg # of iterations = 2.0 total cpu time spent up to now is 15.7 secs total energy = -25.49942230 Ry Harris-Foulkes estimate = -25.49942231 Ry estimated scf accuracy < 9.8E-09 Ry iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.76E-11, avg # of iterations = 2.0 total cpu time spent up to now is 15.9 secs End of self-consistent calculation k = 0.1175 0.0683 0.0484 ( 531 PWs) bands (ev): -7.0921 1.7616 5.6182 5.6182 6.5333 10.0436 10.5567 10.5567 14.4701 k = 0.1147 0.0666 0.3444 ( 522 PWs) bands (ev): -6.0680 -0.8690 4.0319 5.7338 8.0304 8.2905 8.9660 11.8879 13.9301 k = 0.1233 0.0716-0.5437 ( 520 PWs) bands (ev): -4.5481 -3.1962 4.6206 4.7977 6.2201 9.3338 9.5963 10.4379 15.6904 k = 0.1204 0.0700-0.2476 ( 525 PWs) bands (ev): -6.5200 0.1785 4.7498 5.3342 6.7390 9.3876 10.2942 11.4537 13.4338 k = 0.1147 0.3471-0.0512 ( 522 PWs) bands (ev): -6.0680 -0.8690 4.0319 5.7338 8.0304 8.2905 8.9660 11.8879 13.9301 k = 0.1118 0.3454 0.2448 ( 519 PWs) bands (ev): -5.6872 -0.6310 3.0083 4.0441 5.2856 10.2385 11.9301 12.0293 13.6756 k = 0.1204 0.3504-0.6433 ( 510 PWs) bands (ev): -4.1066 -2.5699 1.8705 2.8723 6.2020 9.8757 12.5125 13.7434 14.0092 k = 0.1175 0.3487-0.3473 ( 521 PWs) bands (ev): -4.9821 -2.1873 2.8525 4.7619 6.1660 9.3817 11.1610 12.2169 13.7050 k = 0.1233-0.4893 0.2476 ( 520 PWs) bands (ev): -4.5481 -3.1962 4.6206 4.7977 6.2201 9.3338 9.5963 10.4379 15.6904 k = 0.1204-0.4909 0.5437 ( 510 PWs) bands (ev): -4.1066 -2.5699 1.8705 2.8723 6.2020 9.8757 12.5125 13.7434 14.0092 k = 0.1290-0.4859-0.3444 ( 510 PWs) bands (ev): -4.4446 -1.8694 1.8392 3.5168 4.1338 9.8590 12.9557 14.2383 14.9323 k = 0.1261-0.4876-0.0484 ( 521 PWs) bands (ev): -4.9821 -2.1873 2.8525 4.7619 6.1660 9.3817 11.1610 12.2169 13.7050 k = 0.1204-0.2105 0.1480 ( 525 PWs) bands (ev): -6.5199 0.1785 4.7498 5.3342 6.7390 9.3876 10.2942 11.4537 13.4338 k = 0.1175-0.2122 0.4441 ( 521 PWs) bands (ev): -4.9821 -2.1873 2.8525 4.7619 6.1660 9.3817 11.1610 12.2169 13.7050 k = 0.1261-0.2072-0.4441 ( 521 PWs) bands (ev): -4.9821 -2.1873 2.8525 4.7619 6.1660 9.3817 11.1610 12.2169 13.7050 k = 0.1233-0.2088-0.1480 ( 525 PWs) bands (ev): -6.5200 0.1785 4.7498 5.3342 6.7390 9.3876 10.2942 11.4537 13.4338 k = 0.3583-0.0723-0.0512 ( 522 PWs) bands (ev): -6.0680 -0.8690 4.0319 5.7338 8.0304 8.2905 8.9660 11.8879 13.9301 k = 0.3554-0.0739 0.2448 ( 519 PWs) bands (ev): -5.6872 -0.6310 3.0083 4.0441 5.2856 10.2385 11.9301 12.0293 13.6756 k = 0.3640-0.0689-0.6433 ( 510 PWs) bands (ev): -4.1066 -2.5699 1.8705 2.8723 6.2020 9.8757 12.5125 13.7434 14.0092 k = 0.3612-0.0706-0.3473 ( 521 PWs) bands (ev): -4.9821 -2.1873 2.8525 4.7619 6.1660 9.3817 11.1610 12.2169 13.7050 k = 0.3554 0.2065-0.1508 ( 519 PWs) bands (ev): -5.6872 -0.6310 3.0083 4.0441 5.2856 10.2385 11.9301 12.0293 13.6756 k = 0.3526 0.2049 0.1452 ( 522 PWs) bands (ev): -5.8605 -1.5782 5.8044 5.8044 6.9954 8.4418 8.4418 9.5457 15.7405 k = 0.3612 0.2099-0.7429 ( 520 PWs) bands (ev): -4.8347 -2.1154 2.1401 4.6444 5.8983 10.0063 10.3773 13.1895 15.2226 k = 0.3583 0.2082-0.4469 ( 510 PWs) bands (ev): -4.4446 -1.8694 1.8392 3.5168 4.1338 9.8590 12.9557 14.2383 14.9323 k = 0.3640-0.6298 0.1480 ( 510 PWs) bands (ev): -4.1066 -2.5699 1.8705 2.8723 6.2020 9.8757 12.5125 13.7434 14.0092 k = 0.3612-0.6315 0.4441 ( 520 PWs) bands (ev): -4.8347 -2.1154 2.1401 4.6444 5.8983 10.0063 10.3773 13.1895 15.2226 k = 0.3698-0.6265-0.4441 ( 520 PWs) bands (ev): -4.8347 -2.1154 2.1401 4.6444 5.8983 10.0063 10.3773 13.1895 15.2226 k = 0.3669-0.6282-0.1480 ( 510 PWs) bands (ev): -4.1066 -2.5699 1.8705 2.8723 6.2020 9.8757 12.5125 13.7434 14.0092 k = 0.3612-0.3510 0.0484 ( 521 PWs) bands (ev): -4.9821 -2.1873 2.8525 4.7619 6.1660 9.3817 11.1610 12.2169 13.7050 k = 0.3583-0.3527 0.3444 ( 510 PWs) bands (ev): -4.4446 -1.8694 1.8392 3.5168 4.1338 9.8590 12.9557 14.2383 14.9323 k = 0.3669-0.3477-0.5437 ( 510 PWs) bands (ev): -4.1066 -2.5699 1.8705 2.8723 6.2020 9.8757 12.5125 13.7434 14.0092 k = 0.3640-0.3494-0.2476 ( 520 PWs) bands (ev): -4.5481 -3.1962 4.6206 4.7977 6.2201 9.3338 9.5963 10.4379 15.6904 the Fermi energy is 8.0877 ev ! total energy = -25.49942230 Ry Harris-Foulkes estimate = -25.49942230 Ry estimated scf accuracy < 1.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.88810561 Ry hartree contribution = 1.18012742 Ry xc contribution = -6.31076038 Ry ewald contribution = -27.25692253 Ry smearing contrib. (-TS) = 0.00002757 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00325410 0.00189087 0.00134027 atom 2 type 1 force = -0.00325410 -0.00189087 -0.00134027 Total force = 0.005650 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -4.38 -0.00001357 0.00001892 0.00001341 -2.00 2.78 1.97 0.00001892 -0.00003514 0.00000779 2.78 -5.17 1.15 0.00001341 0.00000779 -0.00004061 1.97 1.15 -5.97 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -25.4987892872 Ry enthalpy new = -25.4994223041 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0073943511 bohr new conv_thr = 0.0000000033 Ry new unit-cell volume = 273.46953 a.u.^3 ( 40.52400 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.050204634 0.015452708 0.010953083 0.533459981 0.904758819 0.010953371 0.533459905 0.309974965 0.850073127 ATOMIC_POSITIONS (crystal) As 0.271766520 0.271766590 0.271766559 As -0.271766520 -0.271766590 -0.271766559 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1175149 0.0682838 0.0484008), wk = 0.0625000 k( 2) = ( 0.1144470 0.0665011 0.3450685), wk = 0.0625000 k( 3) = ( 0.1236506 0.0718492 -0.5449344), wk = 0.0625000 k( 4) = ( 0.1205828 0.0700665 -0.2482668), wk = 0.0625000 k( 5) = ( 0.1144470 0.3476192 -0.0515322), wk = 0.0625000 k( 6) = ( 0.1113792 0.3458365 0.2451354), wk = 0.0625000 k( 7) = ( 0.1205827 0.3511847 -0.6448675), wk = 0.0625000 k( 8) = ( 0.1175149 0.3494019 -0.3481998), wk = 0.0625000 k( 9) = ( 0.1236507 -0.4903871 0.2482669), wk = 0.0625000 k( 10) = ( 0.1205828 -0.4921698 0.5449346), wk = 0.0625000 k( 11) = ( 0.1297864 -0.4868217 -0.3450683), wk = 0.0625000 k( 12) = ( 0.1267185 -0.4886044 -0.0484007), wk = 0.0625000 k( 13) = ( 0.1205828 -0.2110517 0.1483339), wk = 0.0625000 k( 14) = ( 0.1175149 -0.2128344 0.4450015), wk = 0.0625000 k( 15) = ( 0.1267185 -0.2074862 -0.4450014), wk = 0.0625000 k( 16) = ( 0.1236506 -0.2092689 -0.1483337), wk = 0.0625000 k( 17) = ( 0.3586804 -0.0727014 -0.0515321), wk = 0.0625000 k( 18) = ( 0.3556126 -0.0744841 0.2451356), wk = 0.0625000 k( 19) = ( 0.3648162 -0.0691359 -0.6448673), wk = 0.0625000 k( 20) = ( 0.3617483 -0.0709187 -0.3481997), wk = 0.0625000 k( 21) = ( 0.3556126 0.2066341 -0.1514651), wk = 0.0625000 k( 22) = ( 0.3525447 0.2048513 0.1452025), wk = 0.0625000 k( 23) = ( 0.3617483 0.2101995 -0.7448004), wk = 0.0625000 k( 24) = ( 0.3586804 0.2084168 -0.4481327), wk = 0.0625000 k( 25) = ( 0.3648162 -0.6313723 0.1483340), wk = 0.0625000 k( 26) = ( 0.3617484 -0.6331550 0.4450016), wk = 0.0625000 k( 27) = ( 0.3709519 -0.6278068 -0.4450012), wk = 0.0625000 k( 28) = ( 0.3678841 -0.6295895 -0.1483336), wk = 0.0625000 k( 29) = ( 0.3617483 -0.3520368 0.0484010), wk = 0.0625000 k( 30) = ( 0.3586805 -0.3538195 0.3450686), wk = 0.0625000 k( 31) = ( 0.3678841 -0.3484714 -0.5449343), wk = 0.0625000 k( 32) = ( 0.3648162 -0.3502541 -0.2482667), wk = 0.0625000 extrapolated charge 9.95322, renormalised to 10.00000 total cpu time spent up to now is 16.3 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 16.8 secs total energy = -25.49946757 Ry Harris-Foulkes estimate = -25.47197713 Ry estimated scf accuracy < 0.00001273 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-07, avg # of iterations = 3.0 total cpu time spent up to now is 17.2 secs total energy = -25.49948426 Ry Harris-Foulkes estimate = -25.49948744 Ry estimated scf accuracy < 0.00000729 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.29E-08, avg # of iterations = 1.0 total cpu time spent up to now is 17.4 secs total energy = -25.49948443 Ry Harris-Foulkes estimate = -25.49948481 Ry estimated scf accuracy < 0.00000101 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-08, avg # of iterations = 1.0 total cpu time spent up to now is 17.7 secs total energy = -25.49948437 Ry Harris-Foulkes estimate = -25.49948448 Ry estimated scf accuracy < 0.00000022 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.19E-09, avg # of iterations = 3.0 total cpu time spent up to now is 18.0 secs End of self-consistent calculation k = 0.1175 0.0683 0.0484 ( 531 PWs) bands (ev): -7.0799 1.8431 5.6684 5.6684 6.5993 10.0912 10.6226 10.6226 14.5510 k = 0.1144 0.0665 0.3451 ( 522 PWs) bands (ev): -6.0523 -0.8075 4.0601 5.7629 8.1035 8.3705 9.0605 11.9678 13.9912 k = 0.1237 0.0718-0.5449 ( 520 PWs) bands (ev): -4.5224 -3.1560 4.6557 4.8275 6.2871 9.3993 9.6846 10.5071 15.7428 k = 0.1206 0.0701-0.2483 ( 525 PWs) bands (ev): -6.5029 0.2437 4.7914 5.3825 6.7852 9.4763 10.3360 11.5353 13.5104 k = 0.1144 0.3476-0.0515 ( 522 PWs) bands (ev): -6.0523 -0.8075 4.0601 5.7629 8.1035 8.3705 9.0605 11.9678 13.9912 k = 0.1114 0.3458 0.2451 ( 519 PWs) bands (ev): -5.6723 -0.5656 3.0310 4.0882 5.3571 10.2805 12.0280 12.1145 13.7859 k = 0.1206 0.3512-0.6449 ( 510 PWs) bands (ev): -4.0825 -2.5217 1.9009 2.9066 6.2588 9.9647 12.5743 13.8233 14.0978 k = 0.1175 0.3494-0.3482 ( 521 PWs) bands (ev): -4.9565 -2.1412 2.8750 4.8208 6.2035 9.4621 11.2485 12.2863 13.7740 k = 0.1237-0.4904 0.2483 ( 520 PWs) bands (ev): -4.5224 -3.1560 4.6557 4.8275 6.2871 9.3993 9.6846 10.5071 15.7428 k = 0.1206-0.4922 0.5449 ( 510 PWs) bands (ev): -4.0825 -2.5217 1.9009 2.9066 6.2588 9.9647 12.5743 13.8233 14.0978 k = 0.1298-0.4868-0.3451 ( 510 PWs) bands (ev): -4.4156 -1.8332 1.8875 3.5562 4.1842 9.8854 13.0473 14.3516 15.0365 k = 0.1267-0.4886-0.0484 ( 521 PWs) bands (ev): -4.9565 -2.1412 2.8750 4.8208 6.2035 9.4621 11.2485 12.2863 13.7740 k = 0.1206-0.2111 0.1483 ( 525 PWs) bands (ev): -6.5029 0.2437 4.7914 5.3825 6.7852 9.4763 10.3360 11.5353 13.5104 k = 0.1175-0.2128 0.4450 ( 521 PWs) bands (ev): -4.9565 -2.1412 2.8750 4.8208 6.2035 9.4621 11.2485 12.2863 13.7740 k = 0.1267-0.2075-0.4450 ( 521 PWs) bands (ev): -4.9565 -2.1412 2.8750 4.8208 6.2035 9.4621 11.2485 12.2863 13.7740 k = 0.1237-0.2093-0.1483 ( 525 PWs) bands (ev): -6.5029 0.2437 4.7914 5.3825 6.7852 9.4763 10.3360 11.5353 13.5104 k = 0.3587-0.0727-0.0515 ( 522 PWs) bands (ev): -6.0523 -0.8075 4.0601 5.7629 8.1035 8.3705 9.0605 11.9678 13.9912 k = 0.3556-0.0745 0.2451 ( 519 PWs) bands (ev): -5.6723 -0.5656 3.0310 4.0882 5.3571 10.2805 12.0281 12.1145 13.7859 k = 0.3648-0.0691-0.6449 ( 510 PWs) bands (ev): -4.0825 -2.5217 1.9009 2.9066 6.2588 9.9647 12.5743 13.8233 14.0978 k = 0.3617-0.0709-0.3482 ( 521 PWs) bands (ev): -4.9565 -2.1412 2.8750 4.8208 6.2035 9.4621 11.2485 12.2863 13.7740 k = 0.3556 0.2066-0.1515 ( 519 PWs) bands (ev): -5.6723 -0.5656 3.0310 4.0882 5.3571 10.2805 12.0281 12.1145 13.7859 k = 0.3525 0.2049 0.1452 ( 522 PWs) bands (ev): -5.8548 -1.5195 5.8493 5.8493 7.0700 8.5207 8.5207 9.6497 15.8048 k = 0.3617 0.2102-0.7448 ( 520 PWs) bands (ev): -4.8277 -2.0496 2.1663 4.6845 5.9726 10.0951 10.4628 13.2760 15.2955 k = 0.3587 0.2084-0.4481 ( 510 PWs) bands (ev): -4.4156 -1.8332 1.8875 3.5562 4.1842 9.8854 13.0473 14.3516 15.0365 k = 0.3648-0.6314 0.1483 ( 510 PWs) bands (ev): -4.0825 -2.5217 1.9009 2.9066 6.2588 9.9647 12.5743 13.8233 14.0978 k = 0.3617-0.6332 0.4450 ( 520 PWs) bands (ev): -4.8277 -2.0496 2.1663 4.6845 5.9726 10.0951 10.4628 13.2760 15.2955 k = 0.3710-0.6278-0.4450 ( 520 PWs) bands (ev): -4.8277 -2.0496 2.1663 4.6845 5.9726 10.0951 10.4628 13.2760 15.2955 k = 0.3679-0.6296-0.1483 ( 510 PWs) bands (ev): -4.0825 -2.5217 1.9009 2.9066 6.2588 9.9647 12.5743 13.8233 14.0978 k = 0.3617-0.3520 0.0484 ( 521 PWs) bands (ev): -4.9565 -2.1412 2.8750 4.8208 6.2035 9.4621 11.2485 12.2863 13.7740 k = 0.3587-0.3538 0.3451 ( 510 PWs) bands (ev): -4.4156 -1.8332 1.8875 3.5562 4.1842 9.8854 13.0473 14.3516 15.0365 k = 0.3679-0.3485-0.5449 ( 510 PWs) bands (ev): -4.0825 -2.5217 1.9009 2.9066 6.2588 9.9647 12.5743 13.8233 14.0978 k = 0.3648-0.3503-0.2483 ( 520 PWs) bands (ev): -4.5224 -3.1560 4.6557 4.8275 6.2871 9.3993 9.6846 10.5071 15.7428 the Fermi energy is 8.1608 ev ! total energy = -25.49948443 Ry Harris-Foulkes estimate = -25.49948443 Ry estimated scf accuracy < 1.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.93001828 Ry hartree contribution = 1.17889445 Ry xc contribution = -6.31784123 Ry ewald contribution = -27.29058333 Ry smearing contrib. (-TS) = 0.00002740 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00114591 0.00066588 0.00047196 atom 2 type 1 force = -0.00114591 -0.00066588 -0.00047196 Total force = 0.001990 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 1.28 0.00001796 0.00001081 0.00000766 2.64 1.59 1.13 0.00001081 0.00000563 0.00000445 1.59 0.83 0.66 0.00000766 0.00000445 0.00000251 1.13 0.66 0.37 number of scf cycles = 7 number of bfgs steps = 6 enthalpy old = -25.4994223041 Ry enthalpy new = -25.4994844264 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0034745083 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 273.55719 a.u.^3 ( 40.53699 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.050595244 0.015771263 0.011178864 0.533930160 0.904940450 0.011179188 0.533930069 0.310248199 0.850169721 ATOMIC_POSITIONS (crystal) As 0.271957199 0.271957279 0.271957240 As -0.271957199 -0.271957279 -0.271957240 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1174411 0.0682409 0.0483704), wk = 0.0625000 k( 2) = ( 0.1143115 0.0664223 0.3450585), wk = 0.0625000 k( 3) = ( 0.1237003 0.0718781 -0.5450057), wk = 0.0625000 k( 4) = ( 0.1205707 0.0700595 -0.2483176), wk = 0.0625000 k( 5) = ( 0.1143114 0.3475837 -0.0516033), wk = 0.0625000 k( 6) = ( 0.1111818 0.3457651 0.2450848), wk = 0.0625000 k( 7) = ( 0.1205706 0.3512210 -0.6449794), wk = 0.0625000 k( 8) = ( 0.1174410 0.3494023 -0.3482913), wk = 0.0625000 k( 9) = ( 0.1237004 -0.4904448 0.2483178), wk = 0.0625000 k( 10) = ( 0.1205708 -0.4922634 0.5450059), wk = 0.0625000 k( 11) = ( 0.1299596 -0.4868076 -0.3450583), wk = 0.0625000 k( 12) = ( 0.1268300 -0.4886262 -0.0483703), wk = 0.0625000 k( 13) = ( 0.1205707 -0.2111020 0.1483441), wk = 0.0625000 k( 14) = ( 0.1174411 -0.2129206 0.4450322), wk = 0.0625000 k( 15) = ( 0.1268299 -0.2074647 -0.4450320), wk = 0.0625000 k( 16) = ( 0.1237003 -0.2092834 -0.1483440), wk = 0.0625000 k( 17) = ( 0.3585825 -0.0728016 -0.0516031), wk = 0.0625000 k( 18) = ( 0.3554529 -0.0746202 0.2450850), wk = 0.0625000 k( 19) = ( 0.3648417 -0.0691644 -0.6449792), wk = 0.0625000 k( 20) = ( 0.3617121 -0.0709830 -0.3482912), wk = 0.0625000 k( 21) = ( 0.3554528 0.2065412 -0.1515768), wk = 0.0625000 k( 22) = ( 0.3523232 0.2047226 0.1451113), wk = 0.0625000 k( 23) = ( 0.3617120 0.2101785 -0.7449529), wk = 0.0625000 k( 24) = ( 0.3585824 0.2083599 -0.4482649), wk = 0.0625000 k( 25) = ( 0.3648418 -0.6314873 0.1483443), wk = 0.0625000 k( 26) = ( 0.3617122 -0.6333059 0.4450323), wk = 0.0625000 k( 27) = ( 0.3711010 -0.6278501 -0.4450319), wk = 0.0625000 k( 28) = ( 0.3679714 -0.6296687 -0.1483438), wk = 0.0625000 k( 29) = ( 0.3617121 -0.3521444 0.0483706), wk = 0.0625000 k( 30) = ( 0.3585825 -0.3539631 0.3450587), wk = 0.0625000 k( 31) = ( 0.3679713 -0.3485072 -0.5450056), wk = 0.0625000 k( 32) = ( 0.3648417 -0.3503258 -0.2483175), wk = 0.0625000 extrapolated charge 10.00320, renormalised to 10.00000 total cpu time spent up to now is 18.4 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.97E-09, avg # of iterations = 2.3 total cpu time spent up to now is 19.0 secs total energy = -25.49949550 Ry Harris-Foulkes estimate = -25.50137870 Ry estimated scf accuracy < 0.00000035 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.53E-09, avg # of iterations = 2.0 total cpu time spent up to now is 19.3 secs total energy = -25.49949561 Ry Harris-Foulkes estimate = -25.49949567 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-09, avg # of iterations = 1.4 total cpu time spent up to now is 19.6 secs total energy = -25.49949563 Ry Harris-Foulkes estimate = -25.49949563 Ry estimated scf accuracy < 5.8E-09 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.75E-11, avg # of iterations = 2.4 total cpu time spent up to now is 19.9 secs End of self-consistent calculation k = 0.1174 0.0682 0.0484 ( 531 PWs) bands (ev): -7.0867 1.8413 5.6606 5.6606 6.5967 10.0724 10.6155 10.6155 14.5562 k = 0.1143 0.0664 0.3451 ( 522 PWs) bands (ev): -6.0602 -0.8089 4.0518 5.7453 8.1001 8.3681 9.0733 11.9637 13.9839 k = 0.1237 0.0719-0.5450 ( 520 PWs) bands (ev): -4.5307 -3.1593 4.6488 4.8136 6.2867 9.3898 9.6943 10.5056 15.7351 k = 0.1206 0.0701-0.2483 ( 525 PWs) bands (ev): -6.5090 0.2383 4.7829 5.3783 6.7763 9.4814 10.3174 11.5351 13.5139 k = 0.1143 0.3476-0.0516 ( 522 PWs) bands (ev): -6.0602 -0.8089 4.0518 5.7453 8.1001 8.3681 9.0733 11.9637 13.9839 k = 0.1112 0.3458 0.2451 ( 519 PWs) bands (ev): -5.6821 -0.5663 3.0197 4.0829 5.3652 10.2643 12.0246 12.1113 13.7981 k = 0.1206 0.3512-0.6450 ( 510 PWs) bands (ev): -4.0937 -2.5253 1.8976 2.9040 6.2553 9.9664 12.5652 13.8135 14.0980 k = 0.1174 0.3494-0.3483 ( 521 PWs) bands (ev): -4.9630 -2.1473 2.8645 4.8244 6.1915 9.4678 11.2455 12.2758 13.7710 k = 0.1237-0.4904 0.2483 ( 520 PWs) bands (ev): -4.5307 -3.1593 4.6488 4.8136 6.2867 9.3898 9.6943 10.5056 15.7351 k = 0.1206-0.4923 0.5450 ( 510 PWs) bands (ev): -4.0937 -2.5253 1.8976 2.9040 6.2553 9.9664 12.5652 13.8135 14.0980 k = 0.1300-0.4868-0.3451 ( 510 PWs) bands (ev): -4.4236 -1.8448 1.8928 3.5502 4.1855 9.8676 13.0466 14.3620 15.0333 k = 0.1268-0.4886-0.0484 ( 521 PWs) bands (ev): -4.9630 -2.1473 2.8645 4.8244 6.1915 9.4678 11.2455 12.2758 13.7710 k = 0.1206-0.2111 0.1483 ( 525 PWs) bands (ev): -6.5090 0.2383 4.7829 5.3783 6.7763 9.4814 10.3174 11.5351 13.5139 k = 0.1174-0.2129 0.4450 ( 521 PWs) bands (ev): -4.9630 -2.1473 2.8645 4.8244 6.1915 9.4678 11.2455 12.2758 13.7710 k = 0.1268-0.2075-0.4450 ( 521 PWs) bands (ev): -4.9630 -2.1473 2.8645 4.8244 6.1915 9.4678 11.2455 12.2758 13.7710 k = 0.1237-0.2093-0.1483 ( 525 PWs) bands (ev): -6.5090 0.2383 4.7829 5.3783 6.7763 9.4814 10.3174 11.5351 13.5139 k = 0.3586-0.0728-0.0516 ( 522 PWs) bands (ev): -6.0602 -0.8089 4.0518 5.7453 8.1001 8.3681 9.0733 11.9637 13.9839 k = 0.3555-0.0746 0.2451 ( 519 PWs) bands (ev): -5.6821 -0.5663 3.0197 4.0829 5.3652 10.2643 12.0246 12.1113 13.7981 k = 0.3648-0.0692-0.6450 ( 510 PWs) bands (ev): -4.0937 -2.5253 1.8976 2.9041 6.2553 9.9664 12.5651 13.8135 14.0980 k = 0.3617-0.0710-0.3483 ( 521 PWs) bands (ev): -4.9630 -2.1473 2.8645 4.8244 6.1915 9.4678 11.2455 12.2758 13.7710 k = 0.3555 0.2065-0.1516 ( 519 PWs) bands (ev): -5.6821 -0.5663 3.0197 4.0829 5.3652 10.2643 12.0246 12.1113 13.7981 k = 0.3523 0.2047 0.1451 ( 522 PWs) bands (ev): -5.8684 -1.5134 5.8388 5.8388 7.0602 8.5253 8.5253 9.6563 15.7959 k = 0.3617 0.2102-0.7450 ( 520 PWs) bands (ev): -4.8447 -2.0418 2.1593 4.6760 5.9764 10.0995 10.4550 13.2672 15.2952 k = 0.3586 0.2084-0.4483 ( 510 PWs) bands (ev): -4.4236 -1.8448 1.8928 3.5502 4.1855 9.8676 13.0466 14.3620 15.0333 k = 0.3648-0.6315 0.1483 ( 510 PWs) bands (ev): -4.0937 -2.5253 1.8976 2.9040 6.2553 9.9664 12.5651 13.8135 14.0980 k = 0.3617-0.6333 0.4450 ( 520 PWs) bands (ev): -4.8447 -2.0418 2.1593 4.6760 5.9764 10.0995 10.4550 13.2672 15.2952 k = 0.3711-0.6279-0.4450 ( 520 PWs) bands (ev): -4.8447 -2.0418 2.1593 4.6760 5.9764 10.0995 10.4550 13.2672 15.2952 k = 0.3680-0.6297-0.1483 ( 510 PWs) bands (ev): -4.0937 -2.5253 1.8976 2.9041 6.2553 9.9664 12.5652 13.8135 14.0980 k = 0.3617-0.3521 0.0484 ( 521 PWs) bands (ev): -4.9630 -2.1473 2.8645 4.8244 6.1915 9.4678 11.2455 12.2758 13.7710 k = 0.3586-0.3540 0.3451 ( 510 PWs) bands (ev): -4.4236 -1.8448 1.8928 3.5502 4.1855 9.8676 13.0466 14.3620 15.0333 k = 0.3680-0.3485-0.5450 ( 510 PWs) bands (ev): -4.0937 -2.5253 1.8976 2.9041 6.2553 9.9664 12.5652 13.8135 14.0980 k = 0.3648-0.3503-0.2483 ( 520 PWs) bands (ev): -4.5307 -3.1593 4.6488 4.8137 6.2867 9.3898 9.6943 10.5056 15.7351 the Fermi energy is 8.3108 ev ! total energy = -25.49949563 Ry Harris-Foulkes estimate = -25.49949563 Ry estimated scf accuracy < 9.9E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.91889384 Ry hartree contribution = 1.18262465 Ry xc contribution = -6.31817944 Ry ewald contribution = -27.28286212 Ry smearing contrib. (-TS) = 0.00002744 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00038212 0.00022196 0.00015737 atom 2 type 1 force = -0.00038212 -0.00022196 -0.00015737 Total force = 0.000663 Total SCF correction = 0.000029 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 1.91 0.00002094 0.00000930 0.00000660 3.08 1.37 0.97 0.00000930 0.00001033 0.00000383 1.37 1.52 0.56 0.00000660 0.00000383 0.00000764 0.97 0.56 1.12 number of scf cycles = 8 number of bfgs steps = 7 enthalpy old = -25.4994844264 Ry enthalpy new = -25.4994956264 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0038243619 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 273.91448 a.u.^3 ( 40.58994 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.051577746 0.016375644 0.011607286 0.534941752 0.905494783 0.011607550 0.534941683 0.310835960 0.850550889 ATOMIC_POSITIONS (crystal) As 0.272134401 0.272134458 0.272134428 As -0.272134401 -0.272134458 -0.272134428 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1172747 0.0681442 0.0483019), wk = 0.0625000 k( 2) = ( 0.1140295 0.0662585 0.3449592), wk = 0.0625000 k( 3) = ( 0.1237649 0.0719156 -0.5450126), wk = 0.0625000 k( 4) = ( 0.1205198 0.0700299 -0.2483554), wk = 0.0625000 k( 5) = ( 0.1140295 0.3474357 -0.0517249), wk = 0.0625000 k( 6) = ( 0.1107844 0.3455500 0.2449324), wk = 0.0625000 k( 7) = ( 0.1205198 0.3512072 -0.6450394), wk = 0.0625000 k( 8) = ( 0.1172746 0.3493215 -0.3483822), wk = 0.0625000 k( 9) = ( 0.1237650 -0.4904389 0.2483555), wk = 0.0625000 k( 10) = ( 0.1205199 -0.4923246 0.5450128), wk = 0.0625000 k( 11) = ( 0.1302553 -0.4866675 -0.3449590), wk = 0.0625000 k( 12) = ( 0.1270101 -0.4885532 -0.0483018), wk = 0.0625000 k( 13) = ( 0.1205198 -0.2111474 0.1483287), wk = 0.0625000 k( 14) = ( 0.1172747 -0.2130331 0.4449860), wk = 0.0625000 k( 15) = ( 0.1270101 -0.2073759 -0.4449858), wk = 0.0625000 k( 16) = ( 0.1237650 -0.2092616 -0.1483286), wk = 0.0625000 k( 17) = ( 0.3583143 -0.0729732 -0.0517248), wk = 0.0625000 k( 18) = ( 0.3550692 -0.0748590 0.2449325), wk = 0.0625000 k( 19) = ( 0.3648046 -0.0692018 -0.6450393), wk = 0.0625000 k( 20) = ( 0.3615595 -0.0710875 -0.3483820), wk = 0.0625000 k( 21) = ( 0.3550692 0.2063183 -0.1517516), wk = 0.0625000 k( 22) = ( 0.3518240 0.2044326 0.1449057), wk = 0.0625000 k( 23) = ( 0.3615594 0.2100897 -0.7450661), wk = 0.0625000 k( 24) = ( 0.3583143 0.2082040 -0.4484089), wk = 0.0625000 k( 25) = ( 0.3648046 -0.6315563 0.1483288), wk = 0.0625000 k( 26) = ( 0.3615595 -0.6334421 0.4449861), wk = 0.0625000 k( 27) = ( 0.3712949 -0.6277849 -0.4449857), wk = 0.0625000 k( 28) = ( 0.3680498 -0.6296706 -0.1483284), wk = 0.0625000 k( 29) = ( 0.3615595 -0.3522648 0.0483020), wk = 0.0625000 k( 30) = ( 0.3583144 -0.3541505 0.3449593), wk = 0.0625000 k( 31) = ( 0.3680497 -0.3484934 -0.5450125), wk = 0.0625000 k( 32) = ( 0.3648046 -0.3503791 -0.2483552), wk = 0.0625000 extrapolated charge 10.01304, renormalised to 10.00000 total cpu time spent up to now is 20.3 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.11E-09, avg # of iterations = 1.7 total cpu time spent up to now is 20.9 secs total energy = -25.49950541 Ry Harris-Foulkes estimate = -25.50715594 Ry estimated scf accuracy < 0.00000070 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.04E-09, avg # of iterations = 3.0 total cpu time spent up to now is 21.3 secs total energy = -25.49950664 Ry Harris-Foulkes estimate = -25.49950697 Ry estimated scf accuracy < 0.00000087 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.04E-09, avg # of iterations = 1.0 total cpu time spent up to now is 21.6 secs total energy = -25.49950659 Ry Harris-Foulkes estimate = -25.49950668 Ry estimated scf accuracy < 0.00000019 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-09, avg # of iterations = 1.9 total cpu time spent up to now is 21.9 secs total energy = -25.49950661 Ry Harris-Foulkes estimate = -25.49950661 Ry estimated scf accuracy < 1.3E-09 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-11, avg # of iterations = 3.1 total cpu time spent up to now is 22.2 secs End of self-consistent calculation k = 0.1173 0.0681 0.0483 ( 531 PWs) bands (ev): -7.0987 1.8206 5.6449 5.6449 6.5778 10.0396 10.5943 10.5943 14.5516 k = 0.1140 0.0663 0.3450 ( 522 PWs) bands (ev): -6.0743 -0.8215 4.0312 5.7182 8.0852 8.3499 9.0745 11.9405 13.9658 k = 0.1238 0.0719-0.5450 ( 520 PWs) bands (ev): -4.5459 -3.1708 4.6285 4.7912 6.2745 9.3645 9.6902 10.4818 15.7055 k = 0.1205 0.0700-0.2484 ( 525 PWs) bands (ev): -6.5204 0.2203 4.7669 5.3596 6.7524 9.4684 10.2850 11.5174 13.5025 k = 0.1140 0.3474-0.0517 ( 522 PWs) bands (ev): -6.0743 -0.8215 4.0312 5.7182 8.0852 8.3499 9.0745 11.9405 13.9658 k = 0.1108 0.3456 0.2449 ( 519 PWs) bands (ev): -5.6990 -0.5810 3.0001 4.0719 5.3626 10.2381 12.0050 12.0930 13.7958 k = 0.1205 0.3512-0.6450 ( 510 PWs) bands (ev): -4.1139 -2.5380 1.8884 2.8920 6.2387 9.9546 12.5446 13.7837 14.0789 k = 0.1173 0.3493-0.3484 ( 521 PWs) bands (ev): -4.9760 -2.1629 2.8463 4.8173 6.1635 9.4561 11.2249 12.2505 13.7541 k = 0.1238-0.4904 0.2484 ( 520 PWs) bands (ev): -4.5458 -3.1708 4.6285 4.7912 6.2745 9.3645 9.6902 10.4818 15.7055 k = 0.1205-0.4923 0.5450 ( 510 PWs) bands (ev): -4.1139 -2.5380 1.8884 2.8920 6.2387 9.9546 12.5446 13.7837 14.0789 k = 0.1303-0.4867-0.3450 ( 510 PWs) bands (ev): -4.4395 -1.8674 1.8898 3.5386 4.1754 9.8386 13.0262 14.3534 15.0060 k = 0.1270-0.4886-0.0483 ( 521 PWs) bands (ev): -4.9760 -2.1629 2.8463 4.8173 6.1635 9.4561 11.2249 12.2505 13.7541 k = 0.1205-0.2111 0.1483 ( 525 PWs) bands (ev): -6.5204 0.2203 4.7669 5.3596 6.7524 9.4684 10.2850 11.5174 13.5025 k = 0.1173-0.2130 0.4450 ( 521 PWs) bands (ev): -4.9760 -2.1629 2.8463 4.8173 6.1635 9.4561 11.2249 12.2505 13.7541 k = 0.1270-0.2074-0.4450 ( 521 PWs) bands (ev): -4.9760 -2.1629 2.8463 4.8173 6.1635 9.4561 11.2249 12.2505 13.7541 k = 0.1238-0.2093-0.1483 ( 525 PWs) bands (ev): -6.5204 0.2203 4.7669 5.3596 6.7524 9.4684 10.2850 11.5174 13.5025 k = 0.3583-0.0730-0.0517 ( 522 PWs) bands (ev): -6.0743 -0.8215 4.0312 5.7182 8.0852 8.3499 9.0745 11.9405 13.9658 k = 0.3551-0.0749 0.2449 ( 519 PWs) bands (ev): -5.6990 -0.5810 3.0001 4.0718 5.3626 10.2381 12.0050 12.0930 13.7958 k = 0.3648-0.0692-0.6450 ( 510 PWs) bands (ev): -4.1139 -2.5380 1.8884 2.8920 6.2387 9.9546 12.5446 13.7837 14.0789 k = 0.3616-0.0711-0.3484 ( 521 PWs) bands (ev): -4.9760 -2.1629 2.8463 4.8173 6.1635 9.4561 11.2249 12.2505 13.7541 k = 0.3551 0.2063-0.1518 ( 519 PWs) bands (ev): -5.6990 -0.5810 3.0001 4.0718 5.3626 10.2381 12.0050 12.0930 13.7958 k = 0.3518 0.2044 0.1449 ( 522 PWs) bands (ev): -5.8900 -1.5198 5.8207 5.8207 7.0408 8.5206 8.5206 9.6499 15.7703 k = 0.3616 0.2101-0.7451 ( 520 PWs) bands (ev): -4.8710 -2.0449 2.1464 4.6606 5.9709 10.0919 10.4334 13.2427 15.2789 k = 0.3583 0.2082-0.4484 ( 510 PWs) bands (ev): -4.4395 -1.8674 1.8898 3.5386 4.1754 9.8386 13.0262 14.3534 15.0060 k = 0.3648-0.6316 0.1483 ( 510 PWs) bands (ev): -4.1139 -2.5380 1.8884 2.8920 6.2387 9.9546 12.5446 13.7837 14.0789 k = 0.3616-0.6334 0.4450 ( 520 PWs) bands (ev): -4.8710 -2.0449 2.1464 4.6606 5.9709 10.0919 10.4334 13.2427 15.2789 k = 0.3713-0.6278-0.4450 ( 520 PWs) bands (ev): -4.8710 -2.0449 2.1464 4.6606 5.9709 10.0919 10.4334 13.2427 15.2789 k = 0.3680-0.6297-0.1483 ( 510 PWs) bands (ev): -4.1139 -2.5380 1.8884 2.8920 6.2387 9.9546 12.5446 13.7837 14.0789 k = 0.3616-0.3523 0.0483 ( 521 PWs) bands (ev): -4.9760 -2.1629 2.8463 4.8173 6.1635 9.4561 11.2249 12.2505 13.7541 k = 0.3583-0.3542 0.3450 ( 510 PWs) bands (ev): -4.4395 -1.8674 1.8898 3.5386 4.1754 9.8386 13.0262 14.3534 15.0060 k = 0.3680-0.3485-0.5450 ( 510 PWs) bands (ev): -4.1139 -2.5380 1.8884 2.8920 6.2387 9.9546 12.5446 13.7837 14.0789 k = 0.3648-0.3504-0.2484 ( 520 PWs) bands (ev): -4.5459 -3.1708 4.6285 4.7912 6.2745 9.3645 9.6902 10.4818 15.7055 the Fermi energy is 8.2926 ev ! total energy = -25.49950661 Ry Harris-Foulkes estimate = -25.49950661 Ry estimated scf accuracy < 5.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.89545386 Ry hartree contribution = 1.18823858 Ry xc contribution = -6.31737754 Ry ewald contribution = -27.26584897 Ry smearing contrib. (-TS) = 0.00002747 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00013686 -0.00007958 -0.00005638 atom 2 type 1 force = 0.00013686 0.00007958 0.00005638 Total force = 0.000238 Total SCF correction = 0.000020 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 1.75 0.00001744 0.00000650 0.00000461 2.57 0.96 0.68 0.00000650 0.00001003 0.00000268 0.96 1.47 0.39 0.00000461 0.00000268 0.00000815 0.68 0.39 1.20 number of scf cycles = 9 number of bfgs steps = 8 enthalpy old = -25.4994956264 Ry enthalpy new = -25.4995066122 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0057321617 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 274.47890 a.u.^3 ( 40.67358 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053069860 0.017262071 0.012235633 0.536450731 0.906352215 0.012235823 0.536450687 0.311712730 0.851151836 ATOMIC_POSITIONS (crystal) As 0.272270891 0.272270920 0.272270901 As -0.272270891 -0.272270920 -0.272270901 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1170259 0.0679996 0.0481994), wk = 0.0625000 k( 2) = ( 0.1136122 0.0660160 0.3447970), wk = 0.0625000 k( 3) = ( 0.1238532 0.0719669 -0.5449957), wk = 0.0625000 k( 4) = ( 0.1204395 0.0699833 -0.2483982), wk = 0.0625000 k( 5) = ( 0.1136122 0.3472024 -0.0519000), wk = 0.0625000 k( 6) = ( 0.1101986 0.3452188 0.2446976), wk = 0.0625000 k( 7) = ( 0.1204395 0.3511697 -0.6450951), wk = 0.0625000 k( 8) = ( 0.1170259 0.3491860 -0.3484976), wk = 0.0625000 k( 9) = ( 0.1238532 -0.4904059 0.2483982), wk = 0.0625000 k( 10) = ( 0.1204396 -0.4923896 0.5449958), wk = 0.0625000 k( 11) = ( 0.1306805 -0.4864387 -0.3447969), wk = 0.0625000 k( 12) = ( 0.1272669 -0.4884223 -0.0481993), wk = 0.0625000 k( 13) = ( 0.1204396 -0.2112032 0.1482988), wk = 0.0625000 k( 14) = ( 0.1170259 -0.2131868 0.4448964), wk = 0.0625000 k( 15) = ( 0.1272669 -0.2072359 -0.4448963), wk = 0.0625000 k( 16) = ( 0.1238532 -0.2092195 -0.1482987), wk = 0.0625000 k( 17) = ( 0.3579050 -0.0732203 -0.0518999), wk = 0.0625000 k( 18) = ( 0.3544913 -0.0752039 0.2446977), wk = 0.0625000 k( 19) = ( 0.3647323 -0.0692530 -0.6450951), wk = 0.0625000 k( 20) = ( 0.3613186 -0.0712367 -0.3484975), wk = 0.0625000 k( 21) = ( 0.3544913 0.2059825 -0.1519993), wk = 0.0625000 k( 22) = ( 0.3510777 0.2039989 0.1445983), wk = 0.0625000 k( 23) = ( 0.3613186 0.2099498 -0.7451945), wk = 0.0625000 k( 24) = ( 0.3579050 0.2079661 -0.4485969), wk = 0.0625000 k( 25) = ( 0.3647323 -0.6316259 0.1482989), wk = 0.0625000 k( 26) = ( 0.3613187 -0.6336095 0.4448965), wk = 0.0625000 k( 27) = ( 0.3715597 -0.6276586 -0.4448962), wk = 0.0625000 k( 28) = ( 0.3681460 -0.6296422 -0.1482987), wk = 0.0625000 k( 29) = ( 0.3613187 -0.3524231 0.0481995), wk = 0.0625000 k( 30) = ( 0.3579050 -0.3544067 0.3447971), wk = 0.0625000 k( 31) = ( 0.3681460 -0.3484558 -0.5449956), wk = 0.0625000 k( 32) = ( 0.3647323 -0.3504394 -0.2483981), wk = 0.0625000 extrapolated charge 10.02056, renormalised to 10.00000 total cpu time spent up to now is 22.6 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.41E-08, avg # of iterations = 1.7 total cpu time spent up to now is 23.2 secs total energy = -25.49951178 Ry Harris-Foulkes estimate = -25.51154211 Ry estimated scf accuracy < 0.00000139 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-08, avg # of iterations = 3.0 total cpu time spent up to now is 23.6 secs total energy = -25.49951481 Ry Harris-Foulkes estimate = -25.49951553 Ry estimated scf accuracy < 0.00000193 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-08, avg # of iterations = 1.0 total cpu time spent up to now is 23.9 secs total energy = -25.49951474 Ry Harris-Foulkes estimate = -25.49951491 Ry estimated scf accuracy < 0.00000045 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.51E-09, avg # of iterations = 1.0 total cpu time spent up to now is 24.1 secs total energy = -25.49951471 Ry Harris-Foulkes estimate = -25.49951476 Ry estimated scf accuracy < 0.00000010 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.73E-10, avg # of iterations = 2.4 total cpu time spent up to now is 24.5 secs total energy = -25.49951473 Ry Harris-Foulkes estimate = -25.49951473 Ry estimated scf accuracy < 2.8E-09 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.83E-11, avg # of iterations = 1.8 total cpu time spent up to now is 24.7 secs End of self-consistent calculation k = 0.1170 0.0680 0.0482 ( 531 PWs) bands (ev): -7.1140 1.7841 5.6250 5.6250 6.5453 9.9984 10.5631 10.5631 14.5394 k = 0.1136 0.0660 0.3448 ( 522 PWs) bands (ev): -6.0924 -0.8426 4.0007 5.6863 8.0625 8.3192 9.0649 11.9021 13.9411 k = 0.1239 0.0720-0.5450 ( 520 PWs) bands (ev): -4.5652 -3.1880 4.5970 4.7644 6.2533 9.3277 9.6737 10.4383 15.6571 k = 0.1204 0.0700-0.2484 ( 525 PWs) bands (ev): -6.5350 0.1932 4.7469 5.3288 6.7167 9.4394 10.2443 11.4854 13.4786 k = 0.1136 0.3472-0.0519 ( 522 PWs) bands (ev): -6.0924 -0.8426 4.0006 5.6863 8.0625 8.3192 9.0649 11.9021 13.9411 k = 0.1102 0.3452 0.2447 ( 519 PWs) bands (ev): -5.7206 -0.6072 2.9754 4.0581 5.3502 10.2069 11.9739 12.0635 13.7807 k = 0.1204 0.3512-0.6451 ( 510 PWs) bands (ev): -4.1397 -2.5572 1.8750 2.8720 6.2116 9.9326 12.5168 13.7390 14.0436 k = 0.1170 0.3492-0.3485 ( 521 PWs) bands (ev): -4.9932 -2.1852 2.8235 4.8008 6.1230 9.4285 11.1905 12.2152 13.7266 k = 0.1239-0.4904 0.2484 ( 520 PWs) bands (ev): -4.5652 -3.1880 4.5970 4.7644 6.2533 9.3277 9.6737 10.4383 15.6571 k = 0.1204-0.4924 0.5450 ( 510 PWs) bands (ev): -4.1397 -2.5572 1.8750 2.8720 6.2116 9.9326 12.5168 13.7390 14.0436 k = 0.1307-0.4864-0.3448 ( 510 PWs) bands (ev): -4.4609 -1.8970 1.8794 3.5243 4.1554 9.8030 12.9896 14.3276 14.9587 k = 0.1273-0.4884-0.0482 ( 521 PWs) bands (ev): -4.9932 -2.1852 2.8235 4.8008 6.1230 9.4285 11.1905 12.2153 13.7266 k = 0.1204-0.2112 0.1483 ( 525 PWs) bands (ev): -6.5350 0.1932 4.7469 5.3288 6.7167 9.4394 10.2443 11.4854 13.4786 k = 0.1170-0.2132 0.4449 ( 521 PWs) bands (ev): -4.9932 -2.1852 2.8235 4.8008 6.1230 9.4285 11.1906 12.2152 13.7266 k = 0.1273-0.2072-0.4449 ( 521 PWs) bands (ev): -4.9932 -2.1852 2.8235 4.8008 6.1230 9.4285 11.1906 12.2153 13.7266 k = 0.1239-0.2092-0.1483 ( 525 PWs) bands (ev): -6.5350 0.1932 4.7469 5.3288 6.7167 9.4394 10.2443 11.4854 13.4786 k = 0.3579-0.0732-0.0519 ( 522 PWs) bands (ev): -6.0924 -0.8426 4.0007 5.6863 8.0625 8.3192 9.0649 11.9021 13.9411 k = 0.3545-0.0752 0.2447 ( 519 PWs) bands (ev): -5.7206 -0.6072 2.9754 4.0580 5.3502 10.2069 11.9739 12.0635 13.7807 k = 0.3647-0.0693-0.6451 ( 510 PWs) bands (ev): -4.1397 -2.5572 1.8750 2.8720 6.2116 9.9326 12.5168 13.7390 14.0436 k = 0.3613-0.0712-0.3485 ( 521 PWs) bands (ev): -4.9932 -2.1852 2.8235 4.8008 6.1230 9.4285 11.1906 12.2153 13.7266 k = 0.3545 0.2060-0.1520 ( 519 PWs) bands (ev): -5.7206 -0.6072 2.9754 4.0580 5.3502 10.2069 11.9739 12.0635 13.7807 k = 0.3511 0.2040 0.1446 ( 522 PWs) bands (ev): -5.9168 -1.5380 5.7994 5.7994 7.0170 8.5087 8.5087 9.6331 15.7322 k = 0.3613 0.2099-0.7452 ( 520 PWs) bands (ev): -4.9031 -2.0580 2.1302 4.6419 5.9583 10.0749 10.4030 13.2076 15.2492 k = 0.3579 0.2080-0.4486 ( 510 PWs) bands (ev): -4.4609 -1.8970 1.8794 3.5243 4.1554 9.8030 12.9896 14.3276 14.9587 k = 0.3647-0.6316 0.1483 ( 510 PWs) bands (ev): -4.1397 -2.5572 1.8750 2.8720 6.2116 9.9326 12.5168 13.7390 14.0436 k = 0.3613-0.6336 0.4449 ( 520 PWs) bands (ev): -4.9031 -2.0580 2.1302 4.6419 5.9583 10.0749 10.4030 13.2076 15.2492 k = 0.3716-0.6277-0.4449 ( 520 PWs) bands (ev): -4.9031 -2.0580 2.1302 4.6419 5.9583 10.0749 10.4030 13.2076 15.2492 k = 0.3681-0.6296-0.1483 ( 510 PWs) bands (ev): -4.1397 -2.5572 1.8750 2.8720 6.2116 9.9326 12.5168 13.7390 14.0436 k = 0.3613-0.3524 0.0482 ( 521 PWs) bands (ev): -4.9932 -2.1852 2.8235 4.8008 6.1230 9.4285 11.1906 12.2153 13.7266 k = 0.3579-0.3544 0.3448 ( 510 PWs) bands (ev): -4.4609 -1.8970 1.8794 3.5243 4.1554 9.8030 12.9896 14.3276 14.9587 k = 0.3681-0.3485-0.5450 ( 510 PWs) bands (ev): -4.1397 -2.5572 1.8750 2.8720 6.2116 9.9326 12.5168 13.7390 14.0436 k = 0.3647-0.3504-0.2484 ( 520 PWs) bands (ev): -4.5652 -3.1880 4.5970 4.7644 6.2533 9.3277 9.6737 10.4383 15.6571 the Fermi energy is 8.2618 ev ! total energy = -25.49951473 Ry Harris-Foulkes estimate = -25.49951473 Ry estimated scf accuracy < 7.7E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.86337735 Ry hartree contribution = 1.19496996 Ry xc contribution = -6.31562462 Ry ewald contribution = -27.24226512 Ry smearing contrib. (-TS) = 0.00002769 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00032703 -0.00019006 -0.00013470 atom 2 type 1 force = 0.00032703 0.00019006 0.00013470 Total force = 0.000568 Total SCF correction = 0.000022 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.86 0.00000776 0.00000221 0.00000157 1.14 0.33 0.23 0.00000221 0.00000524 0.00000091 0.33 0.77 0.13 0.00000157 0.00000091 0.00000460 0.23 0.13 0.68 number of scf cycles = 10 number of bfgs steps = 9 enthalpy old = -25.4995066122 Ry enthalpy new = -25.4995147325 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0025975239 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 274.74297 a.u.^3 ( 40.71271 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053751829 0.017658448 0.012516607 0.537132794 0.906748449 0.012516753 0.537132762 0.312109025 0.851432653 ATOMIC_POSITIONS (crystal) As 0.272273145 0.272273159 0.272273146 As -0.272273145 -0.272273159 -0.272273146 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1169134 0.0679343 0.0481531), wk = 0.0625000 k( 2) = ( 0.1134247 0.0659070 0.3447198), wk = 0.0625000 k( 3) = ( 0.1238907 0.0719887 -0.5449804), wk = 0.0625000 k( 4) = ( 0.1204021 0.0699615 -0.2484136), wk = 0.0625000 k( 5) = ( 0.1134247 0.3470935 -0.0519772), wk = 0.0625000 k( 6) = ( 0.1099360 0.3450663 0.2445895), wk = 0.0625000 k( 7) = ( 0.1204020 0.3511479 -0.6451107), wk = 0.0625000 k( 8) = ( 0.1169134 0.3491207 -0.3485440), wk = 0.0625000 k( 9) = ( 0.1238908 -0.4903842 0.2484137), wk = 0.0625000 k( 10) = ( 0.1204021 -0.4924114 0.5449804), wk = 0.0625000 k( 11) = ( 0.1308681 -0.4863298 -0.3447197), wk = 0.0625000 k( 12) = ( 0.1273795 -0.4883570 -0.0481530), wk = 0.0625000 k( 13) = ( 0.1204021 -0.2112250 0.1482834), wk = 0.0625000 k( 14) = ( 0.1169134 -0.2132522 0.4448501), wk = 0.0625000 k( 15) = ( 0.1273794 -0.2071706 -0.4448501), wk = 0.0625000 k( 16) = ( 0.1238908 -0.2091978 -0.1482833), wk = 0.0625000 k( 17) = ( 0.3577175 -0.0733293 -0.0519772), wk = 0.0625000 k( 18) = ( 0.3542288 -0.0753565 0.2445896), wk = 0.0625000 k( 19) = ( 0.3646949 -0.0692749 -0.6451106), wk = 0.0625000 k( 20) = ( 0.3612062 -0.0713021 -0.3485439), wk = 0.0625000 k( 21) = ( 0.3542288 0.2058300 -0.1521075), wk = 0.0625000 k( 22) = ( 0.3507401 0.2038028 0.1444593), wk = 0.0625000 k( 23) = ( 0.3612062 0.2098844 -0.7452409), wk = 0.0625000 k( 24) = ( 0.3577175 0.2078572 -0.4486742), wk = 0.0625000 k( 25) = ( 0.3646949 -0.6316477 0.1482835), wk = 0.0625000 k( 26) = ( 0.3612062 -0.6336750 0.4448502), wk = 0.0625000 k( 27) = ( 0.3716723 -0.6275933 -0.4448500), wk = 0.0625000 k( 28) = ( 0.3681836 -0.6296205 -0.1482833), wk = 0.0625000 k( 29) = ( 0.3612062 -0.3524885 0.0481532), wk = 0.0625000 k( 30) = ( 0.3577175 -0.3545157 0.3447199), wk = 0.0625000 k( 31) = ( 0.3681836 -0.3484341 -0.5449803), wk = 0.0625000 k( 32) = ( 0.3646949 -0.3504613 -0.2484136), wk = 0.0625000 extrapolated charge 10.00961, renormalised to 10.00000 total cpu time spent up to now is 25.1 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.6 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.58E-09, avg # of iterations = 3.1 total cpu time spent up to now is 25.8 secs total energy = -25.49951561 Ry Harris-Foulkes estimate = -25.50513184 Ry estimated scf accuracy < 0.00000028 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.84E-09, avg # of iterations = 3.0 total cpu time spent up to now is 26.1 secs total energy = -25.49951626 Ry Harris-Foulkes estimate = -25.49951639 Ry estimated scf accuracy < 0.00000036 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.84E-09, avg # of iterations = 1.0 total cpu time spent up to now is 26.4 secs total energy = -25.49951625 Ry Harris-Foulkes estimate = -25.49951627 Ry estimated scf accuracy < 0.00000008 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.45E-10, avg # of iterations = 1.0 total cpu time spent up to now is 26.7 secs total energy = -25.49951624 Ry Harris-Foulkes estimate = -25.49951625 Ry estimated scf accuracy < 0.00000002 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.18E-10, avg # of iterations = 2.5 total cpu time spent up to now is 27.0 secs End of self-consistent calculation k = 0.1169 0.0679 0.0482 ( 531 PWs) bands (ev): -7.1197 1.7654 5.6179 5.6179 6.5288 9.9838 10.5495 10.5495 14.5317 k = 0.1134 0.0659 0.3447 ( 522 PWs) bands (ev): -6.0991 -0.8529 3.9871 5.6761 8.0524 8.3040 9.0557 11.8831 13.9312 k = 0.1239 0.0720-0.5450 ( 520 PWs) bands (ev): -4.5723 -3.1957 4.5825 4.7556 6.2425 9.3119 9.6616 10.4151 15.6333 k = 0.1204 0.0700-0.2484 ( 525 PWs) bands (ev): -6.5405 0.1811 4.7400 5.3138 6.7007 9.4221 10.2296 11.4685 13.4648 k = 0.1134 0.3471-0.0520 ( 522 PWs) bands (ev): -6.0991 -0.8529 3.9871 5.6761 8.0524 8.3040 9.0557 11.8831 13.9312 k = 0.1099 0.3451 0.2446 ( 519 PWs) bands (ev): -5.7285 -0.6208 2.9665 4.0533 5.3410 10.1967 11.9594 12.0496 13.7689 k = 0.1204 0.3511-0.6451 ( 510 PWs) bands (ev): -4.1492 -2.5658 1.8693 2.8623 6.1985 9.9209 12.5059 13.7190 14.0248 k = 0.1169 0.3491-0.3485 ( 521 PWs) bands (ev): -4.9997 -2.1944 2.8154 4.7908 6.1054 9.4117 11.1736 12.2008 13.7133 k = 0.1239-0.4904 0.2484 ( 520 PWs) bands (ev): -4.5723 -3.1957 4.5825 4.7556 6.2425 9.3119 9.6616 10.4151 15.6333 k = 0.1204-0.4924 0.5450 ( 510 PWs) bands (ev): -4.1492 -2.5658 1.8693 2.8623 6.1985 9.9209 12.5059 13.7190 14.0248 k = 0.1309-0.4863-0.3447 ( 510 PWs) bands (ev): -4.4691 -1.9084 1.8719 3.5194 4.1442 9.7906 12.9704 14.3104 14.9347 k = 0.1274-0.4884-0.0482 ( 521 PWs) bands (ev): -4.9997 -2.1944 2.8154 4.7908 6.1054 9.4117 11.1736 12.2008 13.7133 k = 0.1204-0.2112 0.1483 ( 525 PWs) bands (ev): -6.5405 0.1811 4.7400 5.3138 6.7007 9.4221 10.2296 11.4685 13.4648 k = 0.1169-0.2133 0.4449 ( 521 PWs) bands (ev): -4.9997 -2.1944 2.8154 4.7908 6.1054 9.4116 11.1736 12.2008 13.7133 k = 0.1274-0.2072-0.4449 ( 521 PWs) bands (ev): -4.9997 -2.1944 2.8154 4.7908 6.1054 9.4117 11.1736 12.2008 13.7133 k = 0.1239-0.2092-0.1483 ( 525 PWs) bands (ev): -6.5405 0.1811 4.7400 5.3138 6.7007 9.4221 10.2296 11.4685 13.4648 k = 0.3577-0.0733-0.0520 ( 522 PWs) bands (ev): -6.0991 -0.8529 3.9871 5.6761 8.0524 8.3040 9.0557 11.8831 13.9312 k = 0.3542-0.0754 0.2446 ( 519 PWs) bands (ev): -5.7285 -0.6208 2.9665 4.0533 5.3410 10.1967 11.9594 12.0496 13.7689 k = 0.3647-0.0693-0.6451 ( 510 PWs) bands (ev): -4.1492 -2.5658 1.8693 2.8623 6.1985 9.9209 12.5059 13.7190 14.0248 k = 0.3612-0.0713-0.3485 ( 521 PWs) bands (ev): -4.9997 -2.1944 2.8154 4.7908 6.1054 9.4117 11.1736 12.2008 13.7133 k = 0.3542 0.2058-0.1521 ( 519 PWs) bands (ev): -5.7285 -0.6208 2.9665 4.0533 5.3410 10.1967 11.9594 12.0496 13.7689 k = 0.3507 0.2038 0.1445 ( 522 PWs) bands (ev): -5.9263 -1.5501 5.7926 5.7926 7.0090 8.5015 8.5015 9.6227 15.7152 k = 0.3612 0.2099-0.7452 ( 520 PWs) bands (ev): -4.9141 -2.0677 2.1244 4.6357 5.9508 10.0650 10.3905 13.1929 15.2335 k = 0.3577 0.2079-0.4487 ( 510 PWs) bands (ev): -4.4691 -1.9084 1.8719 3.5194 4.1442 9.7906 12.9704 14.3104 14.9347 k = 0.3647-0.6316 0.1483 ( 510 PWs) bands (ev): -4.1492 -2.5658 1.8693 2.8623 6.1985 9.9209 12.5059 13.7190 14.0248 k = 0.3612-0.6337 0.4449 ( 520 PWs) bands (ev): -4.9141 -2.0677 2.1244 4.6357 5.9508 10.0650 10.3905 13.1929 15.2335 k = 0.3717-0.6276-0.4448 ( 520 PWs) bands (ev): -4.9141 -2.0678 2.1244 4.6357 5.9508 10.0650 10.3905 13.1929 15.2335 k = 0.3682-0.6296-0.1483 ( 510 PWs) bands (ev): -4.1492 -2.5658 1.8693 2.8623 6.1985 9.9209 12.5059 13.7190 14.0248 k = 0.3612-0.3525 0.0482 ( 521 PWs) bands (ev): -4.9997 -2.1944 2.8154 4.7908 6.1054 9.4117 11.1736 12.2008 13.7133 k = 0.3577-0.3545 0.3447 ( 510 PWs) bands (ev): -4.4691 -1.9084 1.8719 3.5194 4.1442 9.7906 12.9704 14.3104 14.9347 k = 0.3682-0.3484-0.5450 ( 510 PWs) bands (ev): -4.1492 -2.5658 1.8693 2.8623 6.1985 9.9209 12.5059 13.7190 14.0248 k = 0.3647-0.3505-0.2484 ( 520 PWs) bands (ev): -4.5723 -3.1957 4.5825 4.7556 6.2425 9.3119 9.6616 10.4151 15.6333 the Fermi energy is 8.2466 ev ! total energy = -25.49951624 Ry Harris-Foulkes estimate = -25.49951624 Ry estimated scf accuracy < 9.2E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.85051372 Ry hartree contribution = 1.19719730 Ry xc contribution = -6.31459582 Ry ewald contribution = -27.23265936 Ry smearing contrib. (-TS) = 0.00002793 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00014073 -0.00008180 -0.00005796 atom 2 type 1 force = 0.00014073 0.00008180 0.00005796 Total force = 0.000244 Total SCF correction = 0.000022 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.18 0.00000139 0.00000020 0.00000014 0.20 0.03 0.02 0.00000020 0.00000116 0.00000008 0.03 0.17 0.01 0.00000014 0.00000008 0.00000110 0.02 0.01 0.16 bfgs converged in 11 scf cycles and 10 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02, cell < 0.50E+00) End of BFGS Geometry Optimization Final enthalpy = -25.4995162411 Ry Begin final coordinates new unit-cell volume = 274.74297 a.u.^3 ( 40.71271 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 1.053751829 0.017658448 0.012516607 0.537132794 0.906748449 0.012516753 0.537132762 0.312109025 0.851432653 ATOMIC_POSITIONS (crystal) As 0.272273145 0.272273159 0.272273146 As -0.272273145 -0.272273159 -0.272273146 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated for the final unit cell Results may differ from those at the preceding step. G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 371 371 121 4675 4675 893 bravais-lattice index = 14 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 274.7430 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.495175 celldm(6)= 0.495175 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.053752 0.017658 0.012517 ) a(2) = ( 0.537133 0.906748 0.012517 ) a(3) = ( 0.537133 0.312109 0.851433 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 0.963216 -0.565054 -0.400521 ) b(2) = ( -0.013955 1.116637 -0.400521 ) b(3) = ( -0.013955 -0.008109 1.186267 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.5794020 0.3366701 0.2386382 ) 2 As tau( 2) = ( -0.5794020 -0.3366701 -0.2386382 ) number of k points= 32 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.1169134 0.0679343 0.0481531), wk = 0.0625000 k( 2) = ( 0.1134247 0.0659070 0.3447198), wk = 0.0625000 k( 3) = ( 0.1238907 0.0719887 -0.5449804), wk = 0.0625000 k( 4) = ( 0.1204021 0.0699615 -0.2484136), wk = 0.0625000 k( 5) = ( 0.1134247 0.3470935 -0.0519772), wk = 0.0625000 k( 6) = ( 0.1099360 0.3450663 0.2445895), wk = 0.0625000 k( 7) = ( 0.1204020 0.3511479 -0.6451107), wk = 0.0625000 k( 8) = ( 0.1169134 0.3491207 -0.3485440), wk = 0.0625000 k( 9) = ( 0.1238908 -0.4903842 0.2484137), wk = 0.0625000 k( 10) = ( 0.1204021 -0.4924114 0.5449804), wk = 0.0625000 k( 11) = ( 0.1308681 -0.4863298 -0.3447197), wk = 0.0625000 k( 12) = ( 0.1273795 -0.4883570 -0.0481530), wk = 0.0625000 k( 13) = ( 0.1204021 -0.2112250 0.1482834), wk = 0.0625000 k( 14) = ( 0.1169134 -0.2132522 0.4448501), wk = 0.0625000 k( 15) = ( 0.1273794 -0.2071706 -0.4448501), wk = 0.0625000 k( 16) = ( 0.1238908 -0.2091978 -0.1482833), wk = 0.0625000 k( 17) = ( 0.3577175 -0.0733293 -0.0519772), wk = 0.0625000 k( 18) = ( 0.3542288 -0.0753565 0.2445896), wk = 0.0625000 k( 19) = ( 0.3646949 -0.0692749 -0.6451106), wk = 0.0625000 k( 20) = ( 0.3612062 -0.0713021 -0.3485439), wk = 0.0625000 k( 21) = ( 0.3542288 0.2058300 -0.1521075), wk = 0.0625000 k( 22) = ( 0.3507401 0.2038028 0.1444593), wk = 0.0625000 k( 23) = ( 0.3612062 0.2098844 -0.7452409), wk = 0.0625000 k( 24) = ( 0.3577175 0.2078572 -0.4486742), wk = 0.0625000 k( 25) = ( 0.3646949 -0.6316477 0.1482835), wk = 0.0625000 k( 26) = ( 0.3612062 -0.6336750 0.4448502), wk = 0.0625000 k( 27) = ( 0.3716723 -0.6275933 -0.4448500), wk = 0.0625000 k( 28) = ( 0.3681836 -0.6296205 -0.1482833), wk = 0.0625000 k( 29) = ( 0.3612062 -0.3524885 0.0481532), wk = 0.0625000 k( 30) = ( 0.3577175 -0.3545157 0.3447199), wk = 0.0625000 k( 31) = ( 0.3681836 -0.3484341 -0.5449803), wk = 0.0625000 k( 32) = ( 0.3646949 -0.3504613 -0.2484136), wk = 0.0625000 Dense grid: 4675 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 592, 9) NL pseudopotentials 0.07 Mb ( 592, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.04 Mb ( 4675) G-vector shells 0.02 Mb ( 2338) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.33 Mb ( 592, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs Writing output data file pwscf.save total cpu time spent up to now is 27.4 secs per-process dynamical memory: 11.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 10.4 total cpu time spent up to now is 28.4 secs total energy = -25.50073134 Ry Harris-Foulkes estimate = -25.50285694 Ry estimated scf accuracy < 0.01040265 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-04, avg # of iterations = 1.0 total cpu time spent up to now is 28.7 secs total energy = -25.50085477 Ry Harris-Foulkes estimate = -25.50104027 Ry estimated scf accuracy < 0.00082110 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.21E-06, avg # of iterations = 1.0 total cpu time spent up to now is 28.9 secs total energy = -25.50089014 Ry Harris-Foulkes estimate = -25.50090923 Ry estimated scf accuracy < 0.00003619 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.62E-07, avg # of iterations = 2.1 total cpu time spent up to now is 29.2 secs total energy = -25.50089922 Ry Harris-Foulkes estimate = -25.50089926 Ry estimated scf accuracy < 0.00000029 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.87E-09, avg # of iterations = 2.1 total cpu time spent up to now is 29.6 secs total energy = -25.50089935 Ry Harris-Foulkes estimate = -25.50089935 Ry estimated scf accuracy < 0.00000001 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-10, avg # of iterations = 2.2 total cpu time spent up to now is 29.9 secs End of self-consistent calculation k = 0.1169 0.0679 0.0482 ( 567 PWs) bands (ev): -7.1195 1.7648 5.6176 5.6176 6.5263 9.9827 10.5489 10.5489 14.5315 k = 0.1134 0.0659 0.3447 ( 579 PWs) bands (ev): -6.0995 -0.8538 3.9862 5.6753 8.0498 8.3007 9.0551 11.8817 13.9299 k = 0.1239 0.0720-0.5450 ( 582 PWs) bands (ev): -4.5728 -3.1963 4.5808 4.7544 6.2398 9.3098 9.6605 10.4130 15.6322 k = 0.1204 0.0700-0.2484 ( 581 PWs) bands (ev): -6.5406 0.1793 4.7390 5.3123 6.6986 9.4204 10.2282 11.4674 13.4640 k = 0.1134 0.3471-0.0520 ( 579 PWs) bands (ev): -6.0995 -0.8538 3.9862 5.6753 8.0497 8.3007 9.0551 11.8817 13.9299 k = 0.1099 0.3451 0.2446 ( 579 PWs) bands (ev): -5.7290 -0.6220 2.9656 4.0522 5.3397 10.1951 11.9565 12.0472 13.7662 k = 0.1204 0.3511-0.6451 ( 579 PWs) bands (ev): -4.1500 -2.5669 1.8681 2.8611 6.1965 9.9187 12.5039 13.7146 14.0211 k = 0.1169 0.3491-0.3485 ( 574 PWs) bands (ev): -5.0001 -2.1947 2.8146 4.7897 6.1036 9.4102 11.1712 12.1988 13.7119 k = 0.1239-0.4904 0.2484 ( 582 PWs) bands (ev): -4.5728 -3.1963 4.5808 4.7544 6.2398 9.3098 9.6605 10.4130 15.6322 k = 0.1204-0.4924 0.5450 ( 579 PWs) bands (ev): -4.1500 -2.5669 1.8681 2.8611 6.1965 9.9187 12.5039 13.7146 14.0211 k = 0.1309-0.4863-0.3447 ( 585 PWs) bands (ev): -4.4700 -1.9100 1.8705 3.5181 4.1424 9.7889 12.9677 14.3061 14.9288 k = 0.1274-0.4884-0.0482 ( 574 PWs) bands (ev): -5.0001 -2.1947 2.8146 4.7897 6.1036 9.4102 11.1712 12.1988 13.7119 k = 0.1204-0.2112 0.1483 ( 581 PWs) bands (ev): -6.5406 0.1793 4.7390 5.3123 6.6986 9.4204 10.2282 11.4674 13.4640 k = 0.1169-0.2133 0.4449 ( 574 PWs) bands (ev): -5.0001 -2.1947 2.8146 4.7897 6.1036 9.4102 11.1712 12.1988 13.7119 k = 0.1274-0.2072-0.4449 ( 574 PWs) bands (ev): -5.0001 -2.1947 2.8146 4.7897 6.1036 9.4102 11.1712 12.1988 13.7119 k = 0.1239-0.2092-0.1483 ( 581 PWs) bands (ev): -6.5406 0.1793 4.7390 5.3123 6.6986 9.4204 10.2282 11.4674 13.4640 k = 0.3577-0.0733-0.0520 ( 579 PWs) bands (ev): -6.0995 -0.8538 3.9862 5.6753 8.0498 8.3007 9.0551 11.8817 13.9299 k = 0.3542-0.0754 0.2446 ( 579 PWs) bands (ev): -5.7290 -0.6220 2.9656 4.0522 5.3397 10.1951 11.9566 12.0472 13.7662 k = 0.3647-0.0693-0.6451 ( 579 PWs) bands (ev): -4.1500 -2.5669 1.8681 2.8611 6.1965 9.9187 12.5039 13.7146 14.0211 k = 0.3612-0.0713-0.3485 ( 574 PWs) bands (ev): -5.0001 -2.1947 2.8146 4.7897 6.1036 9.4102 11.1712 12.1988 13.7119 k = 0.3542 0.2058-0.1521 ( 579 PWs) bands (ev): -5.7290 -0.6220 2.9656 4.0522 5.3397 10.1951 11.9565 12.0472 13.7662 k = 0.3507 0.2038 0.1445 ( 592 PWs) bands (ev): -5.9269 -1.5510 5.7910 5.7910 7.0053 8.5007 8.5007 9.6174 15.7118 k = 0.3612 0.2099-0.7452 ( 583 PWs) bands (ev): -4.9146 -2.0692 2.1232 4.6345 5.9494 10.0636 10.3876 13.1890 15.2325 k = 0.3577 0.2079-0.4487 ( 585 PWs) bands (ev): -4.4700 -1.9100 1.8705 3.5181 4.1424 9.7889 12.9677 14.3061 14.9288 k = 0.3647-0.6316 0.1483 ( 579 PWs) bands (ev): -4.1500 -2.5669 1.8681 2.8611 6.1965 9.9187 12.5039 13.7146 14.0211 k = 0.3612-0.6337 0.4449 ( 583 PWs) bands (ev): -4.9146 -2.0692 2.1232 4.6345 5.9494 10.0636 10.3876 13.1890 15.2325 k = 0.3717-0.6276-0.4448 ( 583 PWs) bands (ev): -4.9146 -2.0692 2.1232 4.6345 5.9494 10.0636 10.3876 13.1890 15.2325 k = 0.3682-0.6296-0.1483 ( 579 PWs) bands (ev): -4.1500 -2.5669 1.8681 2.8611 6.1965 9.9187 12.5039 13.7146 14.0211 k = 0.3612-0.3525 0.0482 ( 574 PWs) bands (ev): -5.0001 -2.1947 2.8146 4.7897 6.1036 9.4102 11.1712 12.1988 13.7119 k = 0.3577-0.3545 0.3447 ( 585 PWs) bands (ev): -4.4700 -1.9100 1.8705 3.5181 4.1424 9.7889 12.9677 14.3061 14.9288 k = 0.3682-0.3484-0.5450 ( 579 PWs) bands (ev): -4.1500 -2.5669 1.8681 2.8611 6.1965 9.9187 12.5039 13.7146 14.0211 k = 0.3647-0.3505-0.2484 ( 582 PWs) bands (ev): -4.5728 -3.1963 4.5808 4.7544 6.2398 9.3098 9.6605 10.4130 15.6322 the Fermi energy is 8.2434 ev ! total energy = -25.50089935 Ry Harris-Foulkes estimate = -25.50089935 Ry estimated scf accuracy < 7.2E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 6.84879121 Ry hartree contribution = 1.19788996 Ry xc contribution = -6.31494924 Ry ewald contribution = -27.23265924 Ry smearing contrib. (-TS) = 0.00002796 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00013563 -0.00007885 -0.00005580 atom 2 type 1 force = 0.00013563 0.00007885 0.00005580 Total force = 0.000235 Total SCF correction = 0.000012 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.08 0.00000234 0.00000210 0.00000149 0.34 0.31 0.22 0.00000210 -0.00000005 0.00000086 0.31 -0.01 0.13 0.00000149 0.00000086 -0.00000066 0.22 0.13 -0.10 Writing output data file pwscf.save init_run : 0.39s CPU 0.40s WALL ( 2 calls) electrons : 24.76s CPU 25.41s WALL ( 12 calls) update_pot : 1.18s CPU 1.18s WALL ( 10 calls) forces : 0.80s CPU 0.80s WALL ( 12 calls) stress : 1.50s CPU 1.51s WALL ( 12 calls) Called by init_run: wfcinit : 0.19s CPU 0.19s WALL ( 2 calls) potinit : 0.08s CPU 0.07s WALL ( 2 calls) Called by electrons: c_bands : 21.06s CPU 21.58s WALL ( 75 calls) sum_band : 3.42s CPU 3.50s WALL ( 75 calls) v_of_rho : 0.15s CPU 0.15s WALL ( 82 calls) mix_rho : 0.06s CPU 0.06s WALL ( 75 calls) Called by c_bands: init_us_2 : 0.72s CPU 0.71s WALL ( 5632 calls) cegterg : 20.56s CPU 20.90s WALL ( 2400 calls) Called by *egterg: h_psi : 15.37s CPU 15.35s WALL ( 7912 calls) g_psi : 0.83s CPU 0.77s WALL ( 5448 calls) cdiaghg : 1.59s CPU 1.68s WALL ( 7368 calls) Called by h_psi: add_vuspsi : 0.33s CPU 0.31s WALL ( 7912 calls) General routines calbec : 0.46s CPU 0.47s WALL ( 8680 calls) fft : 0.10s CPU 0.08s WALL ( 396 calls) fftw : 14.48s CPU 14.49s WALL ( 136104 calls) davcio : 0.02s CPU 0.24s WALL ( 8032 calls) PWSCF : 29.32s CPU 30.10s WALL This run was terminated on: 11:30:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/paw-atom_l=2.in0000644000175000017500000000055312341373024015543 0ustar mbamba &control calculation = 'scf' / &system ibrav= 2, celldm(1) =26.0, nat= 1, ntyp= 1, ecutwfc=25 nbnd=9 occupations='from_input' / &electrons conv_thr = 1.0d-6 / ATOMIC_SPECIES Cu 1.000 Cu.pbe-kjpaw.UPF ATOMIC_POSITIONS {alat} Cu 0.0 0.0 0.0 K_POINTS {gamma} OCCUPATIONS 2.0 2.0 2.0 2.0 2.0 1.0 0.0 0.0 0.0 espresso-5.1/PW/tests/b3lyp-O.in0000755000175000017500000000133212341373024014550 0ustar mbamba&CONTROL calculation = 'scf' , tprnfor = .true. tstress = .false. / &SYSTEM ibrav = 1, celldm(1) = 12.0, nat = 1, ntyp = 1, ecutwfc = 80, input_dft = 'B3LYP' nspin = 2 starting_magnetization(1) = 0.2, nbnd = 4 tot_magnetization = 2.0 exxdiv_treatment = 'gygi-baldereschi' x_gamma_extrapolation = .TRUE. / &ELECTRONS conv_thr = 0.5d-3 / ATOMIC_SPECIES O 16.0 O.blyp-mt.UPF ATOMIC_POSITIONS angstrom O 0.1 0.2 0.3 K_POINTS gamma espresso-5.1/PW/tests/md.in0000755000175000017500000000056312341373024013730 0ustar mbamba &control calculation='md' dt=20, nstep=50 / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / &ions / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS {alat} Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS {automatic} 1 1 1 0 0 0 espresso-5.1/PW/tests/vdw2.in0000644000175000017500000000103012341373024014175 0ustar mbamba&control calculation='scf' tprnfor=.true. tstress=.true. / &system ibrav=4 celldm(1)=4.66 celldm(3)=2.60 nat=4 ecutwfc=18. ecutrho=200. ntyp=1 occupations='smearing' degauss=0.02 smearing='marzari-vanderbilt' input_dft='vdw-DF2' / &electrons mixing_beta=0.5 mixing_ndim=20 / ATOMIC_SPECIES C 12. C.pbe-van_bm.UPF 1 K_POINTS {gamma} ATOMIC_POSITIONS {crystal} C 0.00000 1.00000 0.75000 C 0.66667 0.33333 0.75000 C 0.00000 1.00000 0.25000 C 0.33333 0.66667 0.25000 espresso-5.1/PW/tests/scf.in10000644000175000017500000000056612341373024014164 0ustar mbamba &control calculation = 'bands' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 nbnd=8 / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS alat Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS tpiba_b 5 0.00 0.00 0.00 5 1.00 0.00 0.00 5 1.00 0.25 0.25 5 0.50 0.50 0.50 5 0.00 0.00 0.00 1 espresso-5.1/PW/tests/paw-bfgs.in0000644000175000017500000000114612341373024015031 0ustar mbamba &control calculation = 'relax' / &system ibrav= 2, celldm(1) =25.0, nat= 3, ntyp= 2, ecutwfc=25 occupations = 'smearing' smearing='gauss' degauss = 0.005 starting_magnetization(1) = +0.1 starting_magnetization(2) = -0.1 nspin = 2 / &electrons conv_thr = 1.0d-6 / &ions ion_dynamics = 'bfgs' / ATOMIC_SPECIES O 16.00 O.pbe-kjpaw.UPF H 1.00 H.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} H 1.116339788 -1.457719099 0.000000000 H 1.116339788 1.457719099 0.000000000 O -0.012679577 0.000000000 0.000000000 K_POINTS {gamma} espresso-5.1/PW/tests/relax-damped.in0000755000175000017500000000054112341373024015667 0ustar mbamba&CONTROL calculation = "relax" / &SYSTEM ibrav = 1, celldm(1) =12.0, nat = 2, ntyp = 2, ecutwfc = 24.D0, ecutrho = 144.D0, / &ELECTRONS / &IONS ion_dynamics='damp' / ATOMIC_SPECIES O 1.00 O.pz-rrkjus.UPF C 1.00 C.pz-rrkjus.UPF ATOMIC_POSITIONS {bohr} C 2.256 0.0 0.0 O 0.000 0.0 0.0 0 0 0 K_POINTS {Gamma} espresso-5.1/PW/tests/lda+U_gamma.in0000755000175000017500000000162312341373024015430 0ustar mbamba &control calculation = 'scf' tstress=.true. tprnfor=.true. / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.02, nspin=2, lda_plus_u=.true. Hubbard_U(2)=4.3, Hubbard_U(3)=4.3, starting_ns_eigenvalue(3,2,2) = 1.d0 starting_ns_eigenvalue(3,1,3) = 1.d0 / &electrons mixing_mode = 'plain' mixing_beta = 0.2 conv_thr = 1.0d-8 mixing_fixed_ns = 0 / CELL_PARAMETERS alat 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.025 0.025 0.025 Fe2 0.475 0.475 0.475 K_POINTS {gamma} espresso-5.1/PW/tests/lattice-ibrav7-kauto.ref0000644000175000017500000002007212341373024017426 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:23 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav7-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 885 885 267 16959 16959 2793 bravais-lattice index = 7 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 -0.500000 1.000000 ) a(2) = ( 0.500000 0.500000 1.000000 ) a(3) = ( -0.500000 -0.500000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -1.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.500000 ) b(3) = ( -1.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 3 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.2500000), wk = 0.5000000 k( 2) = ( 0.5000000 0.0000000 0.0000000), wk = 1.0000000 k( 3) = ( 0.5000000 -0.5000000 -0.2500000), wk = 0.5000000 Dense grid: 16959 G-vectors FFT dimensions: ( 40, 40, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 2112, 1) NL pseudopotentials 0.00 Mb ( 2112, 0) Each V/rho on FFT grid 0.98 Mb ( 64000) Each G-vector array 0.13 Mb ( 16959) G-vector shells 0.00 Mb ( 340) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.13 Mb ( 2112, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 7.81 Mb ( 64000, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000116 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.116E-03 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 9.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.259E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.21987681 Ry Harris-Foulkes estimate = -2.29001969 Ry estimated scf accuracy < 0.13315394 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.151E-05 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23087003 Ry Harris-Foulkes estimate = -2.23131829 Ry estimated scf accuracy < 0.00100488 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.02E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs total energy = -2.23117387 Ry Harris-Foulkes estimate = -2.23117512 Ry estimated scf accuracy < 0.00001202 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.01E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.2500 ( 2096 PWs) bands (ev): -10.1390 k = 0.5000 0.0000 0.0000 ( 2100 PWs) bands (ev): -10.1270 k = 0.5000-0.5000-0.2500 ( 2112 PWs) bands (ev): -10.1192 ! total energy = -2.23117494 Ry Harris-Foulkes estimate = -2.23117492 Ry estimated scf accuracy < 0.00000039 Ry The total energy is the sum of the following terms: one-electron contribution = -2.80264487 Ry hartree contribution = 1.51537527 Ry xc contribution = -1.31429478 Ry ewald contribution = 0.37038944 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.04s CPU 0.04s WALL ( 1 calls) electrons : 0.14s CPU 0.15s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.05s CPU 0.05s WALL ( 4 calls) sum_band : 0.03s CPU 0.03s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: cegterg : 0.05s CPU 0.05s WALL ( 12 calls) Called by *egterg: h_psi : 0.05s CPU 0.05s WALL ( 33 calls) g_psi : 0.00s CPU 0.00s WALL ( 18 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 30 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.06s CPU 0.05s WALL ( 84 calls) davcio : 0.00s CPU 0.00s WALL ( 39 calls) PWSCF : 0.23s CPU 0.24s WALL This run was terminated on: 10:22:23 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/relax2.in0000755000175000017500000000137112341373024014523 0ustar mbamba&CONTROL calculation = "relax", / &SYSTEM ibrav = 6, celldm(1) = 5.3033D0, celldm(3) = 8.D0, nat = 7, ntyp = 1, ecutwfc = 12.D0, occupations = "smearing", smearing = "methfessel-paxton", degauss = 0.05D0, / &ELECTRONS mixing_beta = 0.3D0 / &IONS / ATOMIC_SPECIES Al 1.0 Al.pz-vbc.UPF ATOMIC_POSITIONS (alat) Al 0.5000000 0.5000000 -2.121320 Al 0.0000000 0.0000000 -1.414213 Al 0.5000000 0.5000000 -0.707107 Al 0.0000000 0.0000000 0.000000 Al 0.5000000 0.5000000 0.707107 Al 0.0000000 0.0000000 1.414213 Al 0.5000000 0.5000000 2.121320 K_POINTS 3 0.125 0.125 0.0 1.0 0.125 0.375 0.0 2.0 0.375 0.375 0.0 1.0 espresso-5.1/PW/tests/lattice-ibrav-5-kauto.ref0000644000175000017500000001772512341373024017514 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:22 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav-5-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 685 685 199 11935 11935 1837 bravais-lattice index = -5 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 707.1068 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.500000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.000000 0.707107 0.707107 ) a(2) = ( 0.707107 0.000000 0.707107 ) a(3) = ( 0.707107 0.707107 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.707107 0.707107 0.707107 ) b(2) = ( 0.707107 -0.707107 0.707107 ) b(3) = ( 0.707107 0.707107 -0.707107 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 3 cart. coord. in units 2pi/alat k( 1) = ( 0.1767767 0.1767767 0.1767767), wk = 0.5000000 k( 2) = ( -0.1767767 -0.1767767 0.5303301), wk = 0.5000000 k( 3) = ( -0.1767767 0.5303301 -0.1767767), wk = 1.0000000 Dense grid: 11935 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1491, 1) NL pseudopotentials 0.00 Mb ( 1491, 0) Each V/rho on FFT grid 0.50 Mb ( 32768) Each G-vector array 0.09 Mb ( 11935) G-vector shells 0.00 Mb ( 170) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 1491, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 4.00 Mb ( 32768, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.361E-05 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 5.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.454E-06 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.21992371 Ry Harris-Foulkes estimate = -2.28985690 Ry estimated scf accuracy < 0.13300077 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.65E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23093310 Ry Harris-Foulkes estimate = -2.23137073 Ry estimated scf accuracy < 0.00100480 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.02E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23123841 Ry Harris-Foulkes estimate = -2.23124051 Ry estimated scf accuracy < 0.00001252 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.26E-07, avg # of iterations = 1.7 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.1768 0.1768 0.1768 ( 1477 PWs) bands (ev): -10.0521 k =-0.1768-0.1768 0.5303 ( 1491 PWs) bands (ev): -10.0232 k =-0.1768 0.5303-0.1768 ( 1491 PWs) bands (ev): -10.0281 ! total energy = -2.23123967 Ry Harris-Foulkes estimate = -2.23123971 Ry estimated scf accuracy < 0.00000046 Ry The total energy is the sum of the following terms: one-electron contribution = -2.52698877 Ry hartree contribution = 1.38450768 Ry xc contribution = -1.31418037 Ry ewald contribution = 0.22542178 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.03s WALL ( 1 calls) electrons : 0.08s CPU 0.09s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.02s CPU 0.02s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: cegterg : 0.03s CPU 0.03s WALL ( 12 calls) Called by *egterg: h_psi : 0.03s CPU 0.03s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 20 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 32 calls) Called by h_psi: General routines fft : 0.01s CPU 0.01s WALL ( 19 calls) fftw : 0.03s CPU 0.03s WALL ( 88 calls) davcio : 0.00s CPU 0.00s WALL ( 39 calls) PWSCF : 0.14s CPU 0.16s WALL This run was terminated on: 10:22:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/cluster2.in0000755000175000017500000000076012341373024015072 0ustar mbamba&CONTROL calculation = 'relax' / &SYSTEM ibrav = 1, celldm(1) = 12.0 nat = 5, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, tot_charge = +1.0 nbnd = 8 assume_isolated='martyna-tuckerman' / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / ATOMIC_SPECIES N 1.00 N.pbe-kjpaw.UPF H 1.00 H.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} N 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 H -1.0 1.0 -1.0 H 1.0 -1.0 -1.0 K_POINTS Gamma espresso-5.1/PW/tests/md-pot_extrap1.in0000755000175000017500000000062712341373024016175 0ustar mbamba &control calculation='md' dt=20, nstep=50 / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / &ions pot_extrapolation='first_order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS {alat} Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS {automatic} 1 1 1 0 0 0 espresso-5.1/PW/tests/relax-pot_extrap2.ref0000644000175000017500000007065212341373024017061 0ustar mbamba Program PWSCF v.4.0cvs starts ... Today is 23Nov2007 at 10:47:44 Ultrasoft (Vanderbilt) Pseudopotentials and PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 5 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 144.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for C read from file C.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1425 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O ( 1.00) C 4.00 1.00000 C ( 1.00) 8 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.1880000 0.0000000 0.0000000 ) 2 O tau( 2) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 525.2490 ( 25271 G-vectors) FFT grid: ( 48, 48, 48) G cutoff = 350.1660 ( 13805 G-vectors) smooth grid: ( 40, 40, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.13 Mb ( 1704, 5) NL pseudopotentials 0.42 Mb ( 1704, 16) Each V/rho on FFT grid 1.69 Mb ( 110592) Each G-vector array 0.19 Mb ( 25271) G-vector shells 0.00 Mb ( 440) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.26 Mb ( 1704, 20) Each subspace H/S matrix 0.00 Mb ( 20, 20) Each matrix 0.00 Mb ( 16, 5) Arrays for rho mixing 13.50 Mb ( 110592, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003991 starting charge 9.99996, renormalised to 10.00000 negative rho (up, down): 0.399E-02 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 3.95 secs Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.600E-02 0.000E+00 total cpu time spent up to now is 4.49 secs total energy = -43.00811268 Ry Harris-Foulkes estimate = -43.14060715 Ry estimated scf accuracy < 0.20026192 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-03, avg # of iterations = 4.0 negative rho (up, down): 0.111E-01 0.000E+00 total cpu time spent up to now is 5.04 secs total energy = -42.97497349 Ry Harris-Foulkes estimate = -43.21695642 Ry estimated scf accuracy < 0.66789131 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-03, avg # of iterations = 3.0 negative rho (up, down): 0.522E-02 0.000E+00 total cpu time spent up to now is 5.59 secs total energy = -43.09485892 Ry Harris-Foulkes estimate = -43.09784087 Ry estimated scf accuracy < 0.00901545 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.02E-05, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 6.11 secs total energy = -43.09564663 Ry Harris-Foulkes estimate = -43.09615369 Ry estimated scf accuracy < 0.00127296 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-05, avg # of iterations = 4.0 negative rho (up, down): 0.499E-02 0.000E+00 total cpu time spent up to now is 6.66 secs total energy = -43.09623471 Ry Harris-Foulkes estimate = -43.09644052 Ry estimated scf accuracy < 0.00075978 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.60E-06, avg # of iterations = 1.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 7.16 secs total energy = -43.09621832 Ry Harris-Foulkes estimate = -43.09627579 Ry estimated scf accuracy < 0.00017925 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-06, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 7.69 secs total energy = -43.09627392 Ry Harris-Foulkes estimate = -43.09627493 Ry estimated scf accuracy < 0.00000651 Ry iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.51E-08, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 8.24 secs total energy = -43.09627626 Ry Harris-Foulkes estimate = -43.09627629 Ry estimated scf accuracy < 0.00000486 Ry iteration # 9 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.86E-08, avg # of iterations = 1.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 8.75 secs total energy = -43.09627587 Ry Harris-Foulkes estimate = -43.09627649 Ry estimated scf accuracy < 0.00000148 Ry iteration # 10 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-08, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 9.23 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -27.8978 -13.4009 -10.8541 -10.8541 -8.5056 ! total energy = -43.09627613 Ry Harris-Foulkes estimate = -43.09627656 Ry estimated scf accuracy < 0.00000049 Ry The total energy is the sum of the following terms: one-electron contribution = -64.82035765 Ry hartree contribution = 33.54953014 Ry xc contribution = -9.76964889 Ry ewald contribution = -2.05579972 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.21578123 0.00000000 0.00000000 atom 2 type 1 force = 0.21578123 0.00000000 0.00000000 Total force = 0.215781 Total SCF correction = 0.000824 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.0962761273 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (bohr) C 1.756000000 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003991 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004101 negative rho (up, down): 0.524E-02 0.000E+00 total cpu time spent up to now is 10.17 secs Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.0 negative rho (up, down): 0.715E-02 0.000E+00 total cpu time spent up to now is 10.83 secs total energy = -42.78463114 Ry Harris-Foulkes estimate = -42.89207640 Ry estimated scf accuracy < 0.17156681 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.72E-03, avg # of iterations = 2.0 negative rho (up, down): 0.635E-02 0.000E+00 total cpu time spent up to now is 11.36 secs total energy = -42.81869997 Ry Harris-Foulkes estimate = -42.82557580 Ry estimated scf accuracy < 0.01225516 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.23E-04, avg # of iterations = 2.0 negative rho (up, down): 0.622E-02 0.000E+00 total cpu time spent up to now is 11.88 secs total energy = -42.82122315 Ry Harris-Foulkes estimate = -42.82221953 Ry estimated scf accuracy < 0.00188047 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-05, avg # of iterations = 2.0 negative rho (up, down): 0.606E-02 0.000E+00 total cpu time spent up to now is 12.40 secs total energy = -42.82168317 Ry Harris-Foulkes estimate = -42.82179628 Ry estimated scf accuracy < 0.00026711 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.67E-06, avg # of iterations = 2.0 negative rho (up, down): 0.607E-02 0.000E+00 total cpu time spent up to now is 12.93 secs total energy = -42.82172937 Ry Harris-Foulkes estimate = -42.82173477 Ry estimated scf accuracy < 0.00001034 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-07, avg # of iterations = 3.0 negative rho (up, down): 0.607E-02 0.000E+00 total cpu time spent up to now is 13.46 secs total energy = -42.82173558 Ry Harris-Foulkes estimate = -42.82173882 Ry estimated scf accuracy < 0.00000705 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.05E-08, avg # of iterations = 2.0 negative rho (up, down): 0.607E-02 0.000E+00 total cpu time spent up to now is 13.94 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -32.0594 -13.6139 -13.6139 -13.4515 -7.8456 ! total energy = -42.82173666 Ry Harris-Foulkes estimate = -42.82173673 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = -74.40958518 Ry hartree contribution = 38.06601109 Ry xc contribution = -10.35398789 Ry ewald contribution = 3.87582532 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 1.92934742 0.00000000 0.00000000 atom 2 type 1 force = -1.92934742 0.00000000 0.00000000 Total force = 1.929347 Total SCF correction = 0.000468 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.0962761273 Ry energy new = -42.8217366619 Ry CASE: energy_new > energy_old new trust radius = 0.1100204575 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (bohr) C 2.145979542 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.004101 first order charge density extrapolation Check: negative starting charge= -0.004012 negative rho (up, down): 0.862E-02 0.000E+00 total cpu time spent up to now is 14.91 secs Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.0 negative rho (up, down): 0.260E-02 0.000E+00 total cpu time spent up to now is 15.60 secs total energy = -42.93668941 Ry Harris-Foulkes estimate = -43.35635149 Ry estimated scf accuracy < 0.64258834 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.43E-03, avg # of iterations = 2.0 negative rho (up, down): 0.438E-02 0.000E+00 total cpu time spent up to now is 16.15 secs total energy = -43.08382469 Ry Harris-Foulkes estimate = -43.14710722 Ry estimated scf accuracy < 0.10578295 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-03, avg # of iterations = 2.0 negative rho (up, down): 0.460E-02 0.000E+00 total cpu time spent up to now is 16.68 secs total energy = -43.10668554 Ry Harris-Foulkes estimate = -43.11281805 Ry estimated scf accuracy < 0.01210529 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.21E-04, avg # of iterations = 2.0 negative rho (up, down): 0.504E-02 0.000E+00 total cpu time spent up to now is 17.21 secs total energy = -43.10951032 Ry Harris-Foulkes estimate = -43.10956467 Ry estimated scf accuracy < 0.00028115 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.81E-06, avg # of iterations = 4.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 17.76 secs total energy = -43.10951726 Ry Harris-Foulkes estimate = -43.10970235 Ry estimated scf accuracy < 0.00041313 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.81E-06, avg # of iterations = 3.0 negative rho (up, down): 0.510E-02 0.000E+00 total cpu time spent up to now is 18.30 secs total energy = -43.10960506 Ry Harris-Foulkes estimate = -43.10960897 Ry estimated scf accuracy < 0.00001325 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-07, avg # of iterations = 2.0 negative rho (up, down): 0.510E-02 0.000E+00 total cpu time spent up to now is 18.83 secs total energy = -43.10960647 Ry Harris-Foulkes estimate = -43.10960698 Ry estimated scf accuracy < 0.00000117 Ry iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.17E-08, avg # of iterations = 4.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 19.33 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.7709 -13.3835 -11.3624 -11.3624 -8.3837 ! total energy = -43.10960686 Ry Harris-Foulkes estimate = -43.10960706 Ry estimated scf accuracy < 0.00000024 Ry The total energy is the sum of the following terms: one-electron contribution = -66.64215230 Ry hartree contribution = 34.40262330 Ry xc contribution = -9.87406628 Ry ewald contribution = -0.99601158 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.01322150 0.00000000 0.00000000 atom 2 type 1 force = 0.01322150 0.00000000 0.00000000 Total force = 0.013221 Total SCF correction = 0.000453 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.0962761273 Ry energy new = -43.1096068604 Ry CASE: energy_new < energy_old new trust radius = 0.0071812643 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (bohr) C 2.138798278 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.004012 first order charge density extrapolation Check: negative starting charge= -0.004013 negative rho (up, down): 0.945E-02 0.000E+00 total cpu time spent up to now is 20.31 secs Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.595E-02 0.000E+00 total cpu time spent up to now is 20.94 secs total energy = -43.08119124 Ry Harris-Foulkes estimate = -43.15711935 Ry estimated scf accuracy < 0.12212691 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.22E-03, avg # of iterations = 2.0 negative rho (up, down): 0.522E-02 0.000E+00 total cpu time spent up to now is 21.47 secs total energy = -43.10096569 Ry Harris-Foulkes estimate = -43.11709833 Ry estimated scf accuracy < 0.02686676 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-04, avg # of iterations = 4.0 negative rho (up, down): 0.536E-02 0.000E+00 total cpu time spent up to now is 22.02 secs total energy = -43.10671252 Ry Harris-Foulkes estimate = -43.11226793 Ry estimated scf accuracy < 0.01232331 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.23E-04, avg # of iterations = 3.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 22.54 secs total energy = -43.10945205 Ry Harris-Foulkes estimate = -43.10975738 Ry estimated scf accuracy < 0.00083452 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.35E-06, avg # of iterations = 2.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 23.07 secs total energy = -43.10962525 Ry Harris-Foulkes estimate = -43.10962956 Ry estimated scf accuracy < 0.00001246 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-07, avg # of iterations = 5.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 23.65 secs total energy = -43.10964460 Ry Harris-Foulkes estimate = -43.10964792 Ry estimated scf accuracy < 0.00000895 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.95E-08, avg # of iterations = 2.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 24.12 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8296 -13.3831 -11.3976 -11.3976 -8.3766 ! total energy = -43.10964553 Ry Harris-Foulkes estimate = -43.10964574 Ry estimated scf accuracy < 0.00000033 Ry The total energy is the sum of the following terms: one-electron contribution = -66.76721975 Ry hartree contribution = 34.46197995 Ry xc contribution = -9.88153398 Ry ewald contribution = -0.92287175 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.00299315 0.00000000 0.00000000 atom 2 type 1 force = -0.00299315 0.00000000 0.00000000 Total force = 0.002993 Total SCF correction = 0.000384 SCF correction compared to forces is too large, reduce conv_thr number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.1096068604 Ry energy new = -43.1096455319 Ry CASE: energy_new < energy_old new trust radius = 0.0013256281 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) C 2.140123906 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.004013 first order charge density extrapolation Check: negative starting charge= -0.004013 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 25.11 secs Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 negative rho (up, down): 0.510E-02 0.000E+00 total cpu time spent up to now is 25.65 secs total energy = -43.10963814 Ry Harris-Foulkes estimate = -43.10966256 Ry estimated scf accuracy < 0.00004176 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.18E-07, avg # of iterations = 2.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 26.18 secs total energy = -43.10964654 Ry Harris-Foulkes estimate = -43.10964861 Ry estimated scf accuracy < 0.00000376 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.76E-08, avg # of iterations = 2.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 26.75 secs total energy = -43.10964723 Ry Harris-Foulkes estimate = -43.10964775 Ry estimated scf accuracy < 0.00000100 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 3.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 27.29 secs total energy = -43.10964747 Ry Harris-Foulkes estimate = -43.10964752 Ry estimated scf accuracy < 0.00000013 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-09, avg # of iterations = 2.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 27.75 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8187 -13.3827 -11.3907 -11.3907 -8.3785 ! total energy = -43.10964750 Ry Harris-Foulkes estimate = -43.10964750 Ry estimated scf accuracy < 9.0E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -66.74255037 Ry hartree contribution = 34.44915395 Ry xc contribution = -9.87983954 Ry ewald contribution = -0.93641154 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.00006627 0.00000000 0.00000000 atom 2 type 1 force = 0.00006627 0.00000000 0.00000000 Total force = 0.000066 Total SCF correction = 0.000004 bfgs converged in 5 scf cycles and 3 bfgs steps End of BFGS Geometry Optimization Final energy = -43.1096474986 Ry CELL_PARAMETERS (alat) 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 ATOMIC_POSITIONS (bohr) C 2.140123906 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save PWSCF : 28.22s CPU time, 31.21s wall time init_run : 3.52s CPU electrons : 19.92s CPU ( 5 calls, 3.984 s avg) update_pot : 1.36s CPU ( 4 calls, 0.341 s avg) forces : 1.65s CPU ( 5 calls, 0.331 s avg) electrons : 19.92s CPU ( 5 calls, 3.984 s avg) c_bands : 3.97s CPU ( 37 calls, 0.107 s avg) sum_band : 6.60s CPU ( 37 calls, 0.178 s avg) v_of_rho : 2.42s CPU ( 42 calls, 0.058 s avg) v_h : 0.61s CPU ( 42 calls, 0.014 s avg) v_xc : 1.81s CPU ( 42 calls, 0.043 s avg) newd : 5.03s CPU ( 42 calls, 0.120 s avg) mix_rho : 1.09s CPU ( 37 calls, 0.029 s avg) c_bands : 3.97s CPU ( 37 calls, 0.107 s avg) init_us_2 : 0.15s CPU ( 75 calls, 0.002 s avg) cegterg : 3.79s CPU ( 37 calls, 0.102 s avg) sum_band : 6.60s CPU ( 37 calls, 0.178 s avg) becsum : 0.00s CPU ( 37 calls, 0.000 s avg) addusdens : 3.98s CPU ( 37 calls, 0.108 s avg) wfcrot : 0.04s CPU cegterg : 3.79s CPU ( 37 calls, 0.102 s avg) h_psi : 3.33s CPU ( 146 calls, 0.023 s avg) g_psi : 0.04s CPU ( 108 calls, 0.000 s avg) diaghg : 0.04s CPU ( 141 calls, 0.000 s avg) update : 0.08s CPU ( 108 calls, 0.001 s avg) last : 0.05s CPU ( 42 calls, 0.001 s avg) h_psi : 3.33s CPU ( 146 calls, 0.023 s avg) init : 0.01s CPU ( 146 calls, 0.000 s avg) add_vuspsi : 0.10s CPU ( 146 calls, 0.001 s avg) s_psi : 0.11s CPU ( 146 calls, 0.001 s avg) General routines ccalbec : 0.03s CPU ( 37 calls, 0.001 s avg) cft3 : 3.86s CPU ( 335 calls, 0.012 s avg) cft3s : 3.53s CPU ( 920 calls, 0.004 s avg) interpolate : 1.64s CPU ( 79 calls, 0.021 s avg) davcio : 0.00s CPU ( 37 calls, 0.000 s avg) espresso-5.1/PW/tests/vdw-d.in0000644000175000017500000000106712341373024014346 0ustar mbamba&control calculation='scf' tprnfor=.true. tstress=.true. / &system ibrav=4 celldm(1)=4.66 celldm(3)=2.60 nat=4 ecutwfc=18. ecutrho=200. ntyp=1 occupations='smearing' degauss=0.02 smearing='marzari-vanderbilt' london=.true. london_rcut = 150 london_s6 = 0.75 / &electrons mixing_beta=0.5 mixing_ndim=20 / ATOMIC_SPECIES C 12. C.pbe-van_bm.UPF 1 K_POINTS {gamma} ATOMIC_POSITIONS {crystal} C 0.00000 1.00000 0.75000 C 0.66667 0.33333 0.75000 C 0.00000 1.00000 0.25000 C 0.33333 0.66667 0.25000 espresso-5.1/PW/tests/lattice-ibrav8-kauto.in0000644000175000017500000000051112341373024017255 0ustar mbamba &control calculation='scf', / &system ibrav = 8, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/noncolin.in20000755000175000017500000000061512341373024015227 0ustar mbamba &control calculation='nscf' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. nbnd=16 / &electrons mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {alat} Fe 0.0 0.0 0.0 K_POINTS {automatic} 6 6 6 1 1 1 espresso-5.1/PW/tests/pbe0-si222.ref0000644000175000017500000004551112341373024015162 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 9400) starts on 29Nov2012 at 22:11:15 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/pbe0-si222.in IMPORTANT: XC functional enforced from input : Exchange-correlation = PBE0 ( 6 4 8 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want EXX: grid of k+q point setup nkqs = 80 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 ( 6 4 8 4 0) EXX-fraction = 0.25 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.82340308 Ry Harris-Foulkes estimate = -15.83974490 Ry estimated scf accuracy < 0.06415499 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.82634536 Ry Harris-Foulkes estimate = -15.82635445 Ry estimated scf accuracy < 0.00228139 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.2 secs total energy = -15.82644717 Ry Harris-Foulkes estimate = -15.82643482 Ry estimated scf accuracy < 0.00004970 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.5 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4476 4.7282 5.9961 5.9961 8.9449 9.3568 9.3568 11.1864 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1160 4.9391 5.0502 8.5385 10.1246 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8637 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7127 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7928 3.5449 7.2968 8.3741 14.7162 14.7745 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4109 1.6834 3.9583 5.4867 9.1322 10.0722 10.2721 12.7293 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3206 9.2854 9.9751 11.4585 12.3758 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6946 -0.3359 2.2539 4.3555 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9476 0.3457 5.1681 5.1681 8.1196 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6289 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2968 EXX: now go back to refine exchange calculation -2.16226323601972 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 3.6 total cpu time spent up to now is 4.0 secs total energy = -15.84984459 Ry Harris-Foulkes estimate = -15.84984880 Ry estimated scf accuracy < 0.00004279 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.35E-07, avg # of iterations = 1.0 total cpu time spent up to now is 5.8 secs total energy = -15.84984644 Ry Harris-Foulkes estimate = -15.84984603 Ry estimated scf accuracy < 0.00000258 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.23E-08, avg # of iterations = 1.0 total cpu time spent up to now is 7.6 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5247 3.6818 4.9736 4.9736 9.8744 10.2173 10.2173 12.2742 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9637 2.0463 3.8720 4.0587 9.3554 11.0818 11.7979 12.1340 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.8533 0.2795 2.5315 2.9258 8.5269 10.1606 13.4039 13.6743 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1525 -1.9031 1.6835 2.4132 8.0560 9.1635 15.7652 15.8550 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.4278 0.5496 2.8880 4.4926 10.0627 10.9232 11.1647 13.7005 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.3374 -0.8258 1.8533 3.2791 10.1155 10.8515 12.3471 13.3506 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8890 -2.1011 1.0924 2.1744 9.6017 11.5459 12.6304 14.8896 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4655 -1.7729 1.1754 3.2834 9.0802 12.8332 12.8490 14.3963 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.9450 -0.8633 4.1238 4.1238 9.0153 10.7544 10.7544 15.2872 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0445 -1.8761 2.9355 3.5936 9.4718 10.8508 11.4360 14.7823 highest occupied, lowest unoccupied level (ev): 4.9736 8.0560 -2.16226323601972 -2.16309887492190 -2.16412885540793 est. exchange err (dexx) = 0.00009717 Ry ! total energy = -15.84994368 Ry Harris-Foulkes estimate = -15.84994367 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 2.65386312 Ry hartree contribution = 1.09371971 Ry xc contribution = -3.77880238 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.16309887 Ry + Fock energy = -1.08206443 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.23E-08, avg # of iterations = 3.0 total cpu time spent up to now is 10.6 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5227 3.6776 4.9567 4.9567 9.8881 10.2255 10.2255 12.2805 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9610 2.0475 3.8629 4.0540 9.3635 11.0889 11.8002 12.1363 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.8513 0.2818 2.5304 2.9186 8.5346 10.1636 13.4059 13.6729 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1537 -1.9044 1.6828 2.4050 8.0652 9.1660 15.7640 15.8567 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.4251 0.5510 2.8849 4.4818 10.0745 10.9272 11.1685 13.7036 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.3348 -0.8254 1.8534 3.2750 10.1189 10.8543 12.3477 13.3510 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8871 -2.1006 1.0933 2.1718 9.6042 11.5454 12.6314 14.8912 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4639 -1.7728 1.1768 3.2752 9.0896 12.8342 12.8495 14.3985 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.9449 -0.8619 4.1097 4.1097 9.0284 10.7632 10.7632 15.2934 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0443 -1.8774 2.9335 3.5824 9.4809 10.8540 11.4381 14.7829 highest occupied, lowest unoccupied level (ev): 4.9567 8.0652 -2.16412885540793 -2.16437109532785 -2.16461741387335 est. exchange err (dexx) = 0.00000204 Ry ! total energy = -15.84995807 Ry Harris-Foulkes estimate = -15.84995824 Ry estimated scf accuracy < 0.00000066 Ry The total energy is the sum of the following terms: one-electron contribution = 2.65256941 Ry hartree contribution = 1.09408982 Ry xc contribution = -3.77892111 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.16437110 Ry + Fock energy = -1.08230871 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.23E-08, avg # of iterations = 1.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.22E-10, avg # of iterations = 2.4 total cpu time spent up to now is 14.6 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5222 3.6776 4.9548 4.9548 9.8899 10.2270 10.2270 12.2812 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9604 2.0483 3.8622 4.0539 9.3645 11.0900 11.8008 12.1367 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.8507 0.2824 2.5308 2.9181 8.5355 10.1639 13.4065 13.6729 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1535 -1.9045 1.6832 2.4043 8.0663 9.1664 15.7643 15.8571 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.4244 0.5515 2.8847 4.4809 10.0762 10.9280 11.1692 13.7042 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.3340 -0.8252 1.8537 3.2750 10.1195 10.8548 12.3478 13.3512 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8863 -2.1003 1.0937 2.1718 9.6045 11.5454 12.6316 14.8916 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4634 -1.7725 1.1773 3.2745 9.0908 12.8346 12.8498 14.3990 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.9446 -0.8615 4.1080 4.1080 9.0298 10.7648 10.7648 15.2938 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0439 -1.8775 2.9338 3.5813 9.4821 10.8545 11.4387 14.7831 highest occupied, lowest unoccupied level (ev): 4.9548 8.0663 -2.16461741387335 -2.16465347989593 -2.16468968072928 est. exchange err (dexx) = 0.00000007 Ry ! total energy = -15.84995846 Ry Harris-Foulkes estimate = -15.84995847 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 2.65226075 Ry hartree contribution = 1.09417974 Ry xc contribution = -3.77894901 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.16465348 Ry + Fock energy = -1.08234484 Ry convergence has been achieved in 1 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -83.88 -0.00057021 0.00000000 0.00000000 -83.88 0.00 0.00 0.00000000 -0.00057021 0.00000000 0.00 -83.88 0.00 0.00000000 0.00000000 -0.00057021 0.00 0.00 -83.88 Writing output data file pwscf.save init_run : 0.04s CPU 0.04s WALL ( 1 calls) electrons : 14.35s CPU 15.05s WALL ( 1 calls) stress : 0.47s CPU 0.51s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 10.34s CPU 10.85s WALL ( 11 calls) sum_band : 0.05s CPU 0.05s WALL ( 11 calls) v_of_rho : 0.02s CPU 0.03s WALL ( 11 calls) mix_rho : 0.00s CPU 0.00s WALL ( 11 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.01s WALL ( 240 calls) cegterg : 10.32s CPU 10.83s WALL ( 110 calls) Called by *egterg: h_psi : 10.21s CPU 10.71s WALL ( 349 calls) g_psi : 0.00s CPU 0.01s WALL ( 229 calls) cdiaghg : 0.07s CPU 0.06s WALL ( 289 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 349 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 359 calls) fft : 0.01s CPU 0.01s WALL ( 124 calls) ffts : 6.21s CPU 6.73s WALL ( 104960 calls) fftw : 0.30s CPU 0.31s WALL ( 9056 calls) davcio : 0.00s CPU 0.02s WALL ( 490 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.15s CPU 0.17s WALL ( 4 calls) vexx : 10.01s CPU 10.50s WALL ( 187 calls) exxen2 : 3.78s CPU 3.94s WALL ( 9 calls) PWSCF : 14.94s CPU 15.68s WALL This run was terminated on: 22:11:30 29Nov2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav13.in0000644000175000017500000000051412341373024016213 0ustar mbamba &control calculation='scf', / &system ibrav = 13, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(4) = 0.1, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/lattice-ibrav12.in0000644000175000017500000000051412341373024016212 0ustar mbamba &control calculation='scf', / &system ibrav = 12, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, celldm(4) = 0.1, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/lattice-ibrav0-cell_parameters-ang.ref0000644000175000017500000001763712341373024022216 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:15 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav0-cell_parameters-ang.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1135 1135 281 47345 47345 5905 Tot 568 568 141 bravais-lattice index = 0 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2801.4277 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 0.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.450000 1.430909 0.000000 ) a(3) = ( 0.400000 0.083863 1.957796 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.314485 -0.190840 ) b(2) = ( 0.000000 0.698856 -0.029936 ) b(3) = ( 0.000000 0.000000 0.510778 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23673 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 2953, 1) NL pseudopotentials 0.00 Mb ( 2953, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.18 Mb ( 23673) G-vector shells 0.18 Mb ( 23672) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 2953, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003955 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.395E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 20.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.114E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22055184 Ry Harris-Foulkes estimate = -2.29035899 Ry estimated scf accuracy < 0.13253963 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 1.0 negative rho (up, down): 0.245E-03 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23168709 Ry Harris-Foulkes estimate = -2.23211029 Ry estimated scf accuracy < 0.00094325 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-05, avg # of iterations = 2.0 negative rho (up, down): 0.403E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23203745 Ry Harris-Foulkes estimate = -2.23203917 Ry estimated scf accuracy < 0.00001485 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.43E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2953 PWs) bands (ev): -10.3154 ! total energy = -2.23203908 Ry Harris-Foulkes estimate = -2.23203881 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -3.65125628 Ry hartree contribution = 1.92424371 Ry xc contribution = -1.31190432 Ry ewald contribution = 0.80687781 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.15s CPU 0.15s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 0.04s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.03s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.04s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.03s CPU 0.02s WALL ( 19 calls) fftw : 0.03s CPU 0.03s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.32s CPU 0.35s WALL This run was terminated on: 10:22:15 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lda+U_gamma.ref0000644000175000017500000010645212341373024015601 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10170) starts on 21Apr2013 at 12:45:47 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Reading input from /home/giannozz/espresso/PW/tests/lda+U_gamma.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1061 539 133 17255 6111 731 Tot 531 270 67 Generating pointlists ... new r_m : 0.1879 (alat units) 1.5389 (a.u.) for type 1 new r_m : 0.1879 (alat units) 1.5389 (a.u.) for type 2 new r_m : 0.1879 (alat units) 1.5389 (a.u.) for type 3 bravais-lattice index = 0 lattice parameter (alat) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file: /home/giannozz/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file: /home/giannozz/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file: /home/giannozz/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 Simplified LDA+U calculation (l_max = 2) with parameters (eV): atomic species L U alpha J0 beta Fe1 2 4.3000 0.0000 0.0000 0.0000 Fe2 2 4.3000 0.0000 0.0000 0.0000 6 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0500000 0.0500000 0.0500000 ) 4 Fe2 tau( 4) = ( 0.9500000 0.9500000 0.9500000 ) number of k points= 2 gaussian smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 8628 G-vectors FFT dimensions: ( 50, 50, 50) Smooth grid: 3056 G-vectors FFT dimensions: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.11 Mb ( 366, 20) Atomic wavefunctions 0.11 Mb ( 366, 20) NL pseudopotentials 0.29 Mb ( 366, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.07 Mb ( 8628) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.22 Mb ( 366, 80) Each subspace H/S matrix 0.05 Mb ( 80, 80) Each matrix 0.01 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000004 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Number of +U iterations with fixed ns = 0 Starting occupations: --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 5.00000 1.00000 6.00000 spin 1 eigenvalues: 1.000 1.000 1.000 1.000 1.000 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 spin 2 eigenvalues: 0.200 0.200 0.200 0.200 0.200 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atomic mag. moment = 4.000000 atom 4 Tr[ns(na)] (up, down, total) = 1.00000 5.00000 6.00000 spin 1 eigenvalues: 0.200 0.200 0.200 0.200 0.200 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 spin 2 eigenvalues: 1.000 1.000 1.000 1.000 1.000 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atomic mag. moment = -4.000000 N of occupied +U levels = 12.0000000 --- exit write_ns --- Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 randomized atomic wfcs total cpu time spent up to now is 3.9 secs per-process dynamical memory: 31.1 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 4.86126 0.64470 5.50597 spin 1 eigenvalues: 0.898 0.898 0.974 0.974 1.117 eigenvectors: 0.231 0.313 0.073 0.383 0.000 0.033 0.270 0.358 0.005 0.333 0.293 0.010 0.128 0.235 0.333 0.313 0.231 0.383 0.073 0.000 0.129 0.175 0.058 0.305 0.333 occupations: 0.933 0.016 0.016 0.000 0.031 0.016 0.999 0.059 0.027 -0.059 0.016 0.059 0.999 -0.027 -0.059 0.000 0.027 -0.027 0.933 0.000 0.031 -0.059 -0.059 0.000 0.999 spin 2 eigenvalues: 0.061 0.061 0.171 0.176 0.176 eigenvectors: 0.038 0.156 0.000 0.007 0.798 0.165 0.373 0.333 0.107 0.022 0.535 0.002 0.333 0.086 0.044 0.156 0.038 0.000 0.798 0.007 0.106 0.431 0.333 0.001 0.128 occupations: 0.154 0.019 0.019 0.000 0.037 0.019 0.112 0.029 0.032 -0.029 0.019 0.029 0.112 -0.032 -0.029 0.000 0.032 -0.032 0.154 0.000 0.037 -0.029 -0.029 0.000 0.112 atomic mag. moment = 4.216558 atom 4 Tr[ns(na)] (up, down, total) = 0.64469 4.86160 5.50629 spin 1 eigenvalues: 0.060 0.060 0.171 0.176 0.176 eigenvectors: 0.074 0.121 0.000 0.000 0.806 0.075 0.462 0.333 0.097 0.032 0.527 0.010 0.333 0.097 0.032 0.121 0.074 0.000 0.806 0.000 0.204 0.334 0.333 0.000 0.129 occupations: 0.154 0.019 0.019 0.000 0.037 0.019 0.112 0.029 0.032 -0.029 0.019 0.029 0.112 -0.032 -0.029 0.000 0.032 -0.032 0.154 0.000 0.037 -0.029 -0.029 0.000 0.112 spin 2 eigenvalues: 0.898 0.898 0.974 0.974 1.117 eigenvectors: 0.257 0.287 0.052 0.404 0.000 0.025 0.279 0.351 0.012 0.333 0.288 0.016 0.152 0.211 0.333 0.287 0.257 0.404 0.052 0.000 0.144 0.161 0.041 0.321 0.333 occupations: 0.933 0.016 0.016 0.000 0.031 0.016 0.999 0.059 0.027 -0.059 0.016 0.059 0.999 -0.027 -0.059 0.000 0.027 -0.027 0.933 0.000 0.031 -0.059 -0.059 0.000 0.999 atomic mag. moment = -4.216908 N of occupied +U levels = 11.0122596 --- exit write_ns --- Modify starting ns matrices according to input values --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 4.86126 1.47359 6.33485 spin 1 eigenvalues: 0.898 0.898 0.974 0.974 1.117 eigenvectors: 0.229 0.315 0.052 0.403 0.000 0.034 0.270 0.352 0.011 0.333 0.294 0.010 0.151 0.212 0.333 0.315 0.229 0.403 0.052 0.000 0.128 0.176 0.042 0.321 0.333 occupations: 0.933 0.016 0.016 0.000 0.031 0.016 0.999 0.059 0.027 -0.059 0.016 0.059 0.999 -0.027 -0.059 0.000 0.027 -0.027 0.933 0.000 0.031 -0.059 -0.059 0.000 0.999 spin 2 eigenvalues: 0.061 0.061 0.176 0.176 1.000 eigenvectors: 0.097 0.097 0.039 0.767 0.000 0.036 0.501 0.118 0.011 0.333 0.502 0.036 0.070 0.059 0.333 0.097 0.097 0.767 0.039 0.000 0.268 0.269 0.006 0.123 0.333 occupations: 0.154 0.019 0.019 0.000 0.037 0.019 0.389 0.306 0.032 -0.306 0.019 0.306 0.389 -0.032 -0.306 0.000 0.032 -0.032 0.154 0.000 0.037 -0.306 -0.306 0.000 0.389 atomic mag. moment = 3.387675 atom 4 Tr[ns(na)] (up, down, total) = 1.47372 4.86160 6.33532 spin 1 eigenvalues: 0.060 0.060 0.176 0.176 1.000 eigenvectors: 0.123 0.071 0.001 0.804 0.000 0.008 0.529 0.092 0.037 0.333 0.457 0.081 0.102 0.028 0.333 0.071 0.123 0.804 0.001 0.000 0.341 0.196 0.000 0.129 0.333 occupations: 0.154 0.019 0.019 0.000 0.037 0.019 0.389 0.306 0.032 -0.306 0.019 0.306 0.389 -0.032 -0.306 0.000 0.032 -0.032 0.154 0.000 0.037 -0.306 -0.306 0.000 0.389 spin 2 eigenvalues: 0.898 0.898 0.974 0.974 1.117 eigenvectors: 0.292 0.252 0.015 0.441 0.000 0.015 0.289 0.322 0.041 0.333 0.278 0.026 0.210 0.152 0.333 0.252 0.292 0.441 0.015 0.000 0.163 0.141 0.012 0.351 0.333 occupations: 0.933 0.016 0.016 0.000 0.031 0.016 0.999 0.059 0.027 -0.059 0.016 0.059 0.999 -0.027 -0.059 0.000 0.027 -0.027 0.933 0.000 0.031 -0.059 -0.059 0.000 0.999 atomic mag. moment = -3.387877 N of occupied +U levels = 12.6701733 --- exit write_ns --- Magnetic moment per site: atom: 1 charge: 5.2399 magn: 0.0001 constr: 0.0000 atom: 2 charge: 5.4696 magn: -0.0002 constr: 0.0000 atom: 3 charge: 5.3963 magn: 2.9430 constr: 0.0000 atom: 4 charge: 5.3963 magn: -2.9429 constr: 0.0000 total cpu time spent up to now is 4.2 secs total energy = -173.70518303 Ry Harris-Foulkes estimate = -174.83947410 Ry estimated scf accuracy < 4.24278346 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 8.99 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.2754 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.5421 magn: -0.0003 constr: 0.0000 atom: 3 charge: 5.3914 magn: 2.9309 constr: 0.0000 atom: 4 charge: 5.3912 magn: -2.9307 constr: 0.0000 total cpu time spent up to now is 4.5 secs total energy = -173.99179129 Ry Harris-Foulkes estimate = -174.00229843 Ry estimated scf accuracy < 0.24671231 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.68 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 8.81E-04, avg # of iterations = 4.0 Magnetic moment per site: atom: 1 charge: 5.2902 magn: 0.0002 constr: 0.0000 atom: 2 charge: 5.6193 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4431 magn: 2.8669 constr: 0.0000 atom: 4 charge: 5.4419 magn: -2.8676 constr: 0.0000 total cpu time spent up to now is 4.9 secs total energy = -174.02350906 Ry Harris-Foulkes estimate = -174.01727447 Ry estimated scf accuracy < 0.15185313 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.48 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.42E-04, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 5.3034 magn: 0.0002 constr: 0.0000 atom: 2 charge: 5.6195 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.4441 magn: 2.8602 constr: 0.0000 atom: 4 charge: 5.4433 magn: -2.8608 constr: 0.0000 total cpu time spent up to now is 5.3 secs total energy = -174.03885381 Ry Harris-Foulkes estimate = -174.04164288 Ry estimated scf accuracy < 0.09509439 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.39 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.40E-04, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.3603 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.6268 magn: -0.0003 constr: 0.0000 atom: 3 charge: 5.4623 magn: 2.7846 constr: 0.0000 atom: 4 charge: 5.4627 magn: -2.7848 constr: 0.0000 total cpu time spent up to now is 5.6 secs total energy = -174.03789035 Ry Harris-Foulkes estimate = -174.03970793 Ry estimated scf accuracy < 0.06226077 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.35 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.22E-04, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 5.3401 magn: -0.0002 constr: 0.0000 atom: 2 charge: 5.6276 magn: -0.0004 constr: 0.0000 atom: 3 charge: 5.4709 magn: 2.7417 constr: 0.0000 atom: 4 charge: 5.4720 magn: -2.7418 constr: 0.0000 total cpu time spent up to now is 5.9 secs total energy = -174.04704628 Ry Harris-Foulkes estimate = -174.05328745 Ry estimated scf accuracy < 0.06613847 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.05 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.22E-04, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.3353 magn: 0.0003 constr: 0.0000 atom: 2 charge: 5.6168 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.4700 magn: 2.6827 constr: 0.0000 atom: 4 charge: 5.4687 magn: -2.6832 constr: 0.0000 total cpu time spent up to now is 6.3 secs total energy = -174.05335318 Ry Harris-Foulkes estimate = -174.05247190 Ry estimated scf accuracy < 0.00355784 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.09 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.27E-05, avg # of iterations = 3.0 Magnetic moment per site: atom: 1 charge: 5.3311 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.6127 magn: -0.0003 constr: 0.0000 atom: 3 charge: 5.4709 magn: 2.6620 constr: 0.0000 atom: 4 charge: 5.4711 magn: -2.6620 constr: 0.0000 total cpu time spent up to now is 6.6 secs total energy = -174.05435054 Ry Harris-Foulkes estimate = -174.05410967 Ry estimated scf accuracy < 0.00201606 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.99 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.20E-06, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.3236 magn: 0.0004 constr: 0.0000 atom: 2 charge: 5.6042 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.4795 magn: 2.6050 constr: 0.0000 atom: 4 charge: 5.4786 magn: -2.6052 constr: 0.0000 total cpu time spent up to now is 7.0 secs total energy = -174.05481275 Ry Harris-Foulkes estimate = -174.05443187 Ry estimated scf accuracy < 0.00095281 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.98 Bohr mag/cell iteration # 10 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.40E-06, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 5.3283 magn: 0.0002 constr: 0.0000 atom: 2 charge: 5.6038 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.4800 magn: 2.5920 constr: 0.0000 atom: 4 charge: 5.4802 magn: -2.5920 constr: 0.0000 total cpu time spent up to now is 7.3 secs total energy = -174.05497264 Ry Harris-Foulkes estimate = -174.05516389 Ry estimated scf accuracy < 0.00112475 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.94 Bohr mag/cell iteration # 11 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.40E-06, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 5.3271 magn: 0.0002 constr: 0.0000 atom: 2 charge: 5.6018 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.4826 magn: 2.5659 constr: 0.0000 atom: 4 charge: 5.4826 magn: -2.5660 constr: 0.0000 total cpu time spent up to now is 7.7 secs total energy = -174.05516660 Ry Harris-Foulkes estimate = -174.05514695 Ry estimated scf accuracy < 0.00017605 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.90 Bohr mag/cell iteration # 12 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 6.29E-07, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 5.3258 magn: 0.0002 constr: 0.0000 atom: 2 charge: 5.6011 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.4817 magn: 2.5622 constr: 0.0000 atom: 4 charge: 5.4817 magn: -2.5624 constr: 0.0000 total cpu time spent up to now is 8.0 secs total energy = -174.05522307 Ry Harris-Foulkes estimate = -174.05522389 Ry estimated scf accuracy < 0.00005899 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.87 Bohr mag/cell iteration # 13 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.11E-07, avg # of iterations = 2.5 Magnetic moment per site: atom: 1 charge: 5.3261 magn: 0.0001 constr: 0.0000 atom: 2 charge: 5.6008 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4822 magn: 2.5580 constr: 0.0000 atom: 4 charge: 5.4822 magn: -2.5581 constr: 0.0000 total cpu time spent up to now is 8.4 secs total energy = -174.05523553 Ry Harris-Foulkes estimate = -174.05523442 Ry estimated scf accuracy < 0.00000512 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.87 Bohr mag/cell iteration # 14 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.83E-08, avg # of iterations = 4.0 Magnetic moment per site: atom: 1 charge: 5.3260 magn: 0.0001 constr: 0.0000 atom: 2 charge: 5.6008 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4821 magn: 2.5578 constr: 0.0000 atom: 4 charge: 5.4821 magn: -2.5580 constr: 0.0000 total cpu time spent up to now is 8.8 secs total energy = -174.05524091 Ry Harris-Foulkes estimate = -174.05523998 Ry estimated scf accuracy < 0.00000515 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.86 Bohr mag/cell iteration # 15 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.83E-08, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.3260 magn: 0.0001 constr: 0.0000 atom: 2 charge: 5.6009 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4818 magn: 2.5575 constr: 0.0000 atom: 4 charge: 5.4818 magn: -2.5576 constr: 0.0000 total cpu time spent up to now is 9.1 secs total energy = -174.05524221 Ry Harris-Foulkes estimate = -174.05524109 Ry estimated scf accuracy < 0.00000162 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.86 Bohr mag/cell iteration # 16 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.78E-09, avg # of iterations = 1.5 Magnetic moment per site: atom: 1 charge: 5.3261 magn: 0.0001 constr: 0.0000 atom: 2 charge: 5.6009 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4818 magn: 2.5576 constr: 0.0000 atom: 4 charge: 5.4818 magn: -2.5576 constr: 0.0000 total cpu time spent up to now is 9.5 secs total energy = -174.05524316 Ry Harris-Foulkes estimate = -174.05524272 Ry estimated scf accuracy < 0.00000014 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.87 Bohr mag/cell iteration # 17 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.12E-10, avg # of iterations = 4.0 Magnetic moment per site: atom: 1 charge: 5.3261 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.6009 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4819 magn: 2.5579 constr: 0.0000 atom: 4 charge: 5.4818 magn: -2.5579 constr: 0.0000 total cpu time spent up to now is 9.8 secs total energy = -174.05524348 Ry Harris-Foulkes estimate = -174.05524319 Ry estimated scf accuracy < 0.00000009 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.87 Bohr mag/cell iteration # 18 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.16E-10, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.3261 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.6009 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4819 magn: 2.5579 constr: 0.0000 atom: 4 charge: 5.4819 magn: -2.5579 constr: 0.0000 total cpu time spent up to now is 10.2 secs total energy = -174.05524367 Ry Harris-Foulkes estimate = -174.05524350 Ry estimated scf accuracy < 0.00000003 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.87 Bohr mag/cell iteration # 19 ecut= 30.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.04E-10, avg # of iterations = 1.5 Magnetic moment per site: atom: 1 charge: 5.3260 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.6009 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.4819 magn: 2.5580 constr: 0.0000 atom: 4 charge: 5.4819 magn: -2.5580 constr: 0.0000 total cpu time spent up to now is 10.5 secs End of self-consistent calculation --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 4.83799 2.23783 7.07582 spin 1 eigenvalues: 0.902 0.902 0.960 0.960 1.114 eigenvectors: 0.297 0.509 0.046 0.148 0.000 0.019 0.110 0.538 0.000 0.333 0.127 0.002 0.142 0.396 0.333 0.509 0.297 0.148 0.046 0.000 0.048 0.081 0.127 0.410 0.333 occupations: 0.913 0.009 0.009 0.000 0.019 0.009 1.004 0.055 0.016 -0.055 0.009 0.055 1.004 -0.016 -0.055 0.000 0.016 -0.016 0.913 0.000 0.019 -0.055 -0.055 0.000 1.004 spin 2 eigenvalues: 0.039 0.039 0.527 0.527 1.107 eigenvectors: 0.160 0.086 0.015 0.739 0.000 0.421 0.082 0.141 0.023 0.333 0.006 0.497 0.101 0.063 0.333 0.086 0.160 0.739 0.015 0.000 0.328 0.175 0.003 0.160 0.333 occupations: 0.407 0.086 0.086 0.000 0.172 0.086 0.475 0.316 0.149 -0.316 0.086 0.316 0.475 -0.149 -0.316 0.000 0.149 -0.149 0.407 0.000 0.172 -0.316 -0.316 0.000 0.475 atomic mag. moment = 2.600163 atom 4 Tr[ns(na)] (up, down, total) = 2.23782 4.83799 7.07581 spin 1 eigenvalues: 0.039 0.039 0.527 0.527 1.107 eigenvectors: 0.030 0.216 0.001 0.753 0.000 0.205 0.297 0.128 0.036 0.333 0.489 0.014 0.118 0.046 0.333 0.216 0.030 0.753 0.001 0.000 0.060 0.442 0.000 0.164 0.333 occupations: 0.407 0.086 0.086 0.000 0.172 0.086 0.475 0.316 0.149 -0.316 0.086 0.316 0.475 -0.149 -0.316 0.000 0.149 -0.149 0.407 0.000 0.172 -0.316 -0.316 0.000 0.475 spin 2 eigenvalues: 0.902 0.902 0.960 0.960 1.114 eigenvectors: 0.264 0.543 0.047 0.147 0.000 0.023 0.106 0.538 0.000 0.333 0.128 0.001 0.139 0.399 0.333 0.543 0.264 0.147 0.047 0.000 0.042 0.087 0.130 0.408 0.333 occupations: 0.913 0.009 0.009 0.000 0.019 0.009 1.004 0.055 0.016 -0.055 0.009 0.055 1.004 -0.016 -0.055 0.000 0.016 -0.016 0.913 0.000 0.019 -0.055 -0.055 0.000 1.004 atomic mag. moment = -2.600169 N of occupied +U levels = 14.1516299 --- exit write_ns --- ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 366 PWs) bands (ev): -10.6713 -5.8141 0.3554 2.0521 2.0521 5.6327 5.6327 7.3006 7.9538 7.9538 8.2362 9.4792 9.9521 9.9521 11.1194 12.1191 12.1191 13.2994 13.2994 16.0335 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 366 PWs) bands (ev): -10.6713 -5.8141 0.3554 2.0521 2.0521 5.6327 5.6327 7.3006 7.9538 7.9538 8.2362 9.4792 9.9522 9.9522 11.1194 12.1191 12.1191 13.2994 13.2994 16.0335 the Fermi energy is 10.5559 ev ! total energy = -174.05524397 Ry Harris-Foulkes estimate = -174.05524369 Ry estimated scf accuracy < 5.6E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.66409389 Ry hartree contribution = 34.43211405 Ry xc contribution = -66.09039495 Ry ewald contribution = -130.91621185 Ry Hubbard energy = 0.18366180 Ry smearing contrib. (-TS) = -0.00031913 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 5.87 Bohr mag/cell convergence has been achieved in 19 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000400 0.00000400 0.00000400 atom 2 type 1 force = 0.00001159 0.00001159 0.00001159 atom 3 type 2 force = -0.16094218 -0.16094218 -0.16094218 atom 4 type 3 force = 0.16092659 0.16092659 0.16092659 Total force = 0.394207 Total SCF correction = 0.000218 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -47.17 -0.00032065 0.00026701 0.00026701 -47.17 39.28 39.28 0.00026701 -0.00032065 0.00026701 39.28 -47.17 39.28 0.00026701 0.00026701 -0.00032065 39.28 39.28 -47.17 Writing output data file pwscf.save init_run : 3.75s CPU 3.77s WALL ( 1 calls) electrons : 6.67s CPU 6.68s WALL ( 1 calls) forces : 0.27s CPU 0.27s WALL ( 1 calls) stress : 1.09s CPU 1.10s WALL ( 1 calls) Called by init_run: wfcinit : 0.03s CPU 0.03s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 1.17s CPU 1.17s WALL ( 19 calls) sum_band : 2.63s CPU 2.64s WALL ( 19 calls) v_of_rho : 0.87s CPU 0.87s WALL ( 20 calls) newd : 1.46s CPU 1.46s WALL ( 20 calls) mix_rho : 0.27s CPU 0.28s WALL ( 19 calls) Called by c_bands: init_us_2 : 0.06s CPU 0.06s WALL ( 104 calls) regterg : 1.10s CPU 1.09s WALL ( 38 calls) Called by *egterg: h_psi : 0.95s CPU 0.92s WALL ( 117 calls) s_psi : 0.02s CPU 0.02s WALL ( 139 calls) g_psi : 0.02s CPU 0.01s WALL ( 77 calls) rdiaghg : 0.06s CPU 0.08s WALL ( 115 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 117 calls) vhpsi : 0.02s CPU 0.02s WALL ( 117 calls) General routines calbec : 0.08s CPU 0.06s WALL ( 452 calls) fft : 0.76s CPU 0.74s WALL ( 340 calls) ffts : 0.05s CPU 0.06s WALL ( 78 calls) fftw : 0.71s CPU 0.75s WALL ( 2102 calls) interpolate : 0.33s CPU 0.34s WALL ( 78 calls) davcio : 0.00s CPU 0.00s WALL ( 6 calls) Hubbard U routines new_ns : 0.00s CPU 0.01s WALL ( 19 calls) vhpsi : 0.02s CPU 0.02s WALL ( 117 calls) force_hub : 0.01s CPU 0.01s WALL ( 1 calls) stres_hub : 0.10s CPU 0.11s WALL ( 1 calls) PWSCF : 11.91s CPU 11.95s WALL This run was terminated on: 12:45:59 21Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/hse-si444.ref0000644000175000017500000004626412341373024015127 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 9400) starts on 29Nov2012 at 22:26:25 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/hse-si444.in IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want EXX: grid of k+q point setup nkqs = 256 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.82340308 Ry Harris-Foulkes estimate = -15.83974490 Ry estimated scf accuracy < 0.06415499 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.82634536 Ry Harris-Foulkes estimate = -15.82635445 Ry estimated scf accuracy < 0.00228139 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.2 secs total energy = -15.82644717 Ry Harris-Foulkes estimate = -15.82643482 Ry estimated scf accuracy < 0.00004970 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.5 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4476 4.7282 5.9961 5.9961 8.9449 9.3568 9.3568 11.1864 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1160 4.9391 5.0502 8.5385 10.1246 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8637 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7127 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7928 3.5449 7.2968 8.3741 14.7162 14.7745 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4109 1.6834 3.9583 5.4867 9.1322 10.0722 10.2721 12.7293 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3206 9.2854 9.9751 11.4585 12.3758 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6946 -0.3359 2.2539 4.3555 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9476 0.3457 5.1681 5.1681 8.1196 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6289 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2968 EXX: now go back to refine exchange calculation -1.67522369630095 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 3.8 total cpu time spent up to now is 30.8 secs total energy = -15.83303560 Ry Harris-Foulkes estimate = -15.83304879 Ry estimated scf accuracy < 0.00007324 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.16E-07, avg # of iterations = 1.0 total cpu time spent up to now is 45.9 secs total energy = -15.83303739 Ry Harris-Foulkes estimate = -15.83303750 Ry estimated scf accuracy < 0.00000458 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.72E-08, avg # of iterations = 1.0 total cpu time spent up to now is 61.0 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1242 4.3342 5.6431 5.6431 9.3448 9.7501 9.7501 11.7420 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5353 2.4823 4.4916 4.6790 8.8516 10.6096 11.3724 11.7056 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.3480 0.5341 3.0210 3.4484 7.9982 9.6824 13.0714 13.3924 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.6633 -1.5988 2.1284 2.9004 7.5225 8.6413 15.5495 15.6139 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.9626 0.8487 3.4670 5.0771 9.5325 10.5380 10.6959 13.3556 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.8746 -0.5123 2.2955 3.8426 9.6379 10.3784 12.0123 13.0147 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4626 -1.7088 1.4147 2.6737 9.0943 11.1619 12.3109 14.6388 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0484 -1.4209 1.5080 3.8097 8.5739 12.4488 12.5404 14.1263 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.4392 -0.6669 4.7016 4.7016 8.4687 10.3178 10.3178 14.8783 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6232 -1.5707 3.5012 4.1883 8.9801 10.3523 11.0020 14.5247 highest occupied, lowest unoccupied level (ev): 5.6431 7.5225 -1.67522369630095 -1.67849338631343 -1.68202289728714 est. exchange err (dexx) = 0.00012991 Ry ! total energy = -15.83316748 Ry Harris-Foulkes estimate = -15.83316747 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 3.13297772 Ry hartree contribution = 1.10471616 Ry xc contribution = -4.00858471 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.67849339 Ry + Fock energy = -0.84101145 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.72E-08, avg # of iterations = 3.0 total cpu time spent up to now is 84.8 secs total energy = -15.83318226 Ry Harris-Foulkes estimate = -15.83318364 Ry estimated scf accuracy < 0.00000323 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.03E-08, avg # of iterations = 1.0 total cpu time spent up to now is 99.9 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1188 4.3212 5.6217 5.6217 9.3620 9.7652 9.7652 11.7576 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5301 2.4773 4.4779 4.6657 8.8647 10.6233 11.3799 11.7113 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.3442 0.5340 3.0140 3.4386 8.0136 9.6929 13.0762 13.3954 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.6607 -1.5971 2.1238 2.8913 7.5386 8.6520 15.5519 15.6167 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.9581 0.8495 3.4589 5.0581 9.5489 10.5514 10.7005 13.3627 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.8707 -0.5106 2.2929 3.8307 9.6477 10.3874 12.0195 13.0174 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4598 -1.7070 1.4158 2.6667 9.1046 11.1647 12.3188 14.6427 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0457 -1.4182 1.5094 3.7978 8.5888 12.4499 12.5471 14.1308 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.4360 -0.6635 4.6857 4.6857 8.4900 10.3283 10.3283 14.8860 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6197 -1.5669 3.4926 4.1738 8.9946 10.3612 11.0105 14.5286 highest occupied, lowest unoccupied level (ev): 5.6217 7.5386 -1.68202289728714 -1.68256375734629 -1.68310878430589 est. exchange err (dexx) = 0.00000208 Ry ! total energy = -15.83318455 Ry Harris-Foulkes estimate = -15.83318457 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = 3.12796792 Ry hartree contribution = 1.10690262 Ry xc contribution = -4.00930587 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.68256376 Ry + Fock energy = -0.84155439 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.03E-08, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.36E-10, avg # of iterations = 2.0 total cpu time spent up to now is 132.2 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1185 4.3189 5.6191 5.6191 9.3632 9.7669 9.7669 11.7590 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5298 2.4762 4.4762 4.6635 8.8660 10.6248 11.3809 11.7120 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.3440 0.5334 3.0128 3.4376 8.0152 9.6942 13.0764 13.3957 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.6607 -1.5974 2.1230 2.8904 7.5402 8.6534 15.5523 15.6167 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.9579 0.8492 3.4575 5.0557 9.5504 10.5533 10.7008 13.3633 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.8706 -0.5109 2.2923 3.8288 9.6490 10.3885 12.0203 13.0174 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4599 -1.7073 1.4159 2.6656 9.1059 11.1649 12.3196 14.6431 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0459 -1.4182 1.5094 3.7964 8.5903 12.4497 12.5479 14.1312 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.4359 -0.6634 4.6839 4.6839 8.4916 10.3295 10.3295 14.8869 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6197 -1.5667 3.4911 4.1720 8.9958 10.3621 11.0118 14.5291 highest occupied, lowest unoccupied level (ev): 5.6191 7.5402 -1.68310878430589 -1.68319881914294 -1.68328894293286 est. exchange err (dexx) = 0.00000004 Ry ! total energy = -15.83318481 Ry Harris-Foulkes estimate = -15.83318485 Ry estimated scf accuracy < 0.00000008 Ry The total energy is the sum of the following terms: one-electron contribution = 3.12708532 Ry hartree contribution = 1.10739669 Ry xc contribution = -4.00946259 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.68319882 Ry + Fock energy = -0.84164447 Ry convergence has been achieved in 1 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -13.75 -0.00009346 0.00000000 0.00000000 -13.75 0.00 0.00 0.00000000 -0.00009346 0.00000000 0.00 -13.75 0.00 0.00000000 0.00000000 -0.00009346 0.00 0.00 -13.75 Writing output data file pwscf.save init_run : 0.03s CPU 0.04s WALL ( 1 calls) electrons : 130.13s CPU 135.97s WALL ( 1 calls) stress : 4.17s CPU 4.40s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 93.57s CPU 97.77s WALL ( 12 calls) sum_band : 0.05s CPU 0.05s WALL ( 12 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 12 calls) mix_rho : 0.00s CPU 0.00s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.01s WALL ( 260 calls) cegterg : 93.56s CPU 97.75s WALL ( 120 calls) Called by *egterg: h_psi : 93.41s CPU 97.62s WALL ( 368 calls) g_psi : 0.02s CPU 0.01s WALL ( 238 calls) cdiaghg : 0.06s CPU 0.07s WALL ( 308 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.01s WALL ( 368 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 378 calls) fft : 0.01s CPU 0.01s WALL ( 135 calls) ffts : 56.69s CPU 59.70s WALL ( 930816 calls) fftw : 0.28s CPU 0.35s WALL ( 9768 calls) davcio : 0.00s CPU 0.01s WALL ( 530 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.44s CPU 0.52s WALL ( 4 calls) vexx : 93.19s CPU 97.41s WALL ( 206 calls) exxen2 : 36.00s CPU 37.55s WALL ( 10 calls) PWSCF : 2m14.42s CPU 2m20.49s WALL This run was terminated on: 22:28:45 29Nov2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/metaGGA.in0000755000175000017500000000137112341373024014573 0ustar mbamba &control calculation='scf', tprnfor=.true. tstress=.true. / &system ibrav=1, celldm(1)=8.00, nat=10, ntyp=2, nbnd=11, ecutwfc=30.0, / &electrons / ATOMIC_SPECIES H 1.007825035 H.tpss-mt.UPF C 12.00 C.tpss-mt.UPF ATOMIC_POSITIONS bohr H -0.271695E+01 -0.245822E+01 0.236174E+01 H -0.291292E+01 0.249129E+01 0.952936E+00 H 0.203629E+01 -0.270414E+01 -0.104887E+01 H 0.310911E+01 -0.162987E+01 0.189331E+01 H 0.244815E+01 0.263846E+01 0.332670E+00 H 0.940835E+00 0.160187E+01 -0.258377E+01 C -0.121505E+01 -0.130902E+01 0.131661E+01 C -0.136126E+01 0.116614E+01 0.825189E+00 C 0.154872E+01 -0.143358E+01 0.510627E+00 C 0.109484E+01 0.137081E+01 -0.496954E+00 K_POINTS Gamma espresso-5.1/PW/tests/scf-occ.ref0000644000175000017500000002163712341373024015015 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-occ.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Occupations read from input 2.0000 2.0000 2.0000 2.0000 0.0000 0.0000 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 186, 8) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 186, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.13E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79061218 Ry Harris-Foulkes estimate = -15.81245070 Ry estimated scf accuracy < 0.06478474 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.10E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79439479 Ry Harris-Foulkes estimate = -15.79462332 Ry estimated scf accuracy < 0.00199658 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79448810 Ry Harris-Foulkes estimate = -15.79449054 Ry estimated scf accuracy < 0.00005531 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.91E-07, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8695 2.3799 5.5379 5.5379 8.3832 9.8755 9.8755 13.2658 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9158 -0.0646 2.6800 4.0362 7.8014 10.7870 12.1284 12.3531 highest occupied, lowest unoccupied level (ev): 5.5379 7.8014 ! total energy = -15.79449575 Ry Harris-Foulkes estimate = -15.79449585 Ry estimated scf accuracy < 0.00000028 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83385442 Ry hartree contribution = 1.08418278 Ry xc contribution = -4.81277438 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 4 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.42 -0.00020681 0.00000000 0.00000000 -30.42 0.00 0.00 0.00000000 -0.00020681 0.00000000 0.00 -30.42 0.00 0.00000000 0.00000000 -0.00020681 0.00 0.00 -30.42 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.03s CPU 0.04s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.03s WALL ( 5 calls) sum_band : 0.00s CPU 0.01s WALL ( 5 calls) v_of_rho : 0.01s CPU 0.00s WALL ( 5 calls) mix_rho : 0.00s CPU 0.00s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 24 calls) cegterg : 0.02s CPU 0.02s WALL ( 10 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 32 calls) g_psi : 0.00s CPU 0.00s WALL ( 20 calls) cdiaghg : 0.00s CPU 0.01s WALL ( 28 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 32 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 34 calls) fft : 0.01s CPU 0.00s WALL ( 24 calls) fftw : 0.02s CPU 0.01s WALL ( 498 calls) davcio : 0.00s CPU 0.00s WALL ( 34 calls) PWSCF : 0.12s CPU 0.13s WALL This run was terminated on: 11:28:20 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lsda-tot_magnetization.ref0000644000175000017500000003500512341373024020152 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:40 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda-tot_magnetization.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 (up: 6.00, down: 4.00) number of Kohn-Sham states= 10 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.000 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 10) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 144, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 18, 10) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.4 total cpu time spent up to now is 1.0 secs total energy = -85.36100764 Ry Harris-Foulkes estimate = -85.65775224 Ry estimated scf accuracy < 0.56238269 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.62E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.2 secs total energy = -85.50364204 Ry Harris-Foulkes estimate = -85.68883154 Ry estimated scf accuracy < 0.34556341 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.46E-03, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -85.57763781 Ry Harris-Foulkes estimate = -85.57534556 Ry estimated scf accuracy < 0.00434602 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.35E-05, avg # of iterations = 1.9 total cpu time spent up to now is 1.4 secs total energy = -85.57808381 Ry Harris-Foulkes estimate = -85.57822591 Ry estimated scf accuracy < 0.00031552 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.16E-06, avg # of iterations = 1.5 total cpu time spent up to now is 1.6 secs total energy = -85.57814925 Ry Harris-Foulkes estimate = -85.57814691 Ry estimated scf accuracy < 0.00000214 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.14E-08, avg # of iterations = 2.6 total cpu time spent up to now is 1.7 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.0167 11.1480 11.4082 11.4082 12.3588 12.3588 36.7679 40.7678 42.9798 42.9798 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 8.7014 10.9123 11.3766 11.6633 12.3143 13.3895 28.3060 34.1286 41.4433 43.2812 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 9.3338 11.0224 11.4988 12.0071 13.1797 15.8523 21.2957 35.2284 37.7277 38.9300 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.5591 10.7423 11.5734 11.7226 12.2779 12.6680 32.6773 37.9601 38.3906 41.8248 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 9.2819 10.1243 11.7369 12.3061 13.0617 13.7471 29.4136 32.8973 33.8298 37.8183 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 9.9132 10.2367 11.3079 12.4470 13.1949 19.7157 23.2541 27.1404 29.6279 41.8520 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 9.8077 10.6890 11.0124 12.0476 12.8589 15.5033 25.1284 31.0941 34.4152 42.4200 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 9.2993 9.6872 12.6181 12.8734 13.2744 17.3590 26.0074 27.5864 31.4714 37.0212 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 8.8766 11.3378 11.3378 12.5461 12.9435 12.9435 23.9740 38.5918 41.1692 41.1692 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 10.0081 10.5813 11.2531 12.0227 12.9080 18.3031 22.0905 28.4560 35.9344 38.3825 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.7870 12.8645 13.1573 13.1573 14.1691 14.1691 37.6532 41.4991 43.8297 43.8298 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.6215 12.4876 13.0790 13.4199 14.1200 15.1588 29.3155 35.0366 42.2020 44.1830 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.7274 12.6811 13.2371 13.5202 15.0534 17.0351 22.5062 36.0965 38.6012 39.7587 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.3577 12.4089 13.3177 13.4851 14.0383 14.5007 33.6268 38.8505 39.2201 42.6862 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.4104 11.7315 13.3283 14.1042 14.9240 15.2873 30.3673 33.8485 34.6841 38.7838 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.4108 11.7877 12.9054 14.2367 15.0707 20.8231 24.2887 28.1675 30.5412 42.7301 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.1075 12.2166 12.6428 13.8038 14.6944 16.9324 26.1722 32.0289 35.3272 43.2425 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.7292 11.2641 14.3126 14.7129 15.1569 18.3991 27.1089 28.4883 32.2782 38.0436 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 10.0791 13.0694 13.0694 13.6443 14.7976 14.7976 25.0805 39.2907 42.0414 42.0414 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.5005 12.0984 12.8329 13.7914 14.7630 19.4795 23.2102 29.4363 36.8134 39.2537 the spin up/dw Fermi energies are 19.9663 14.2955 ev ! total energy = -85.57815014 Ry Harris-Foulkes estimate = -85.57815074 Ry estimated scf accuracy < 0.00000072 Ry The total energy is the sum of the following terms: one-electron contribution = 0.88807288 Ry hartree contribution = 13.78337126 Ry xc contribution = -29.49556562 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00001569 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file pwscf.save init_run : 0.79s CPU 0.79s WALL ( 1 calls) electrons : 0.84s CPU 0.86s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.45s CPU 0.46s WALL ( 6 calls) sum_band : 0.22s CPU 0.22s WALL ( 6 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 7 calls) newd : 0.13s CPU 0.13s WALL ( 7 calls) mix_rho : 0.01s CPU 0.01s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.02s WALL ( 260 calls) cegterg : 0.42s CPU 0.42s WALL ( 120 calls) Called by *egterg: h_psi : 0.26s CPU 0.27s WALL ( 409 calls) s_psi : 0.02s CPU 0.01s WALL ( 409 calls) g_psi : 0.01s CPU 0.01s WALL ( 269 calls) cdiaghg : 0.12s CPU 0.10s WALL ( 389 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.01s WALL ( 409 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 529 calls) fft : 0.02s CPU 0.03s WALL ( 109 calls) ffts : 0.00s CPU 0.00s WALL ( 26 calls) fftw : 0.22s CPU 0.22s WALL ( 7440 calls) interpolate : 0.01s CPU 0.01s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 380 calls) PWSCF : 1.75s CPU 1.82s WALL This run was terminated on: 10:24:42 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/vc-md2.in0000755000175000017500000000151612341373024014417 0ustar mbamba &CONTROL calculation = "vc-md", dt = 150 nstep=10 / &SYSTEM ibrav = 14, A = 3.70971016 , B = 3.70971016 , C = 3.70971016 , cosAB = 0.49517470 , cosAC = 0.49517470 , cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 / &ELECTRONS conv_thr = 1.0d-7 / &IONS / &CELL cell_dynamics = 'w' , press = 500.00 , wmass = 0.00700000 / ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 espresso-5.1/PW/tests/pbe0-si111.in0000755000175000017500000000147612341373024015016 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='pbe0', nqx1=1, nqx2=1, nqx3=1, exxdiv_treatment='gygi-baldereschi' x_gamma_extrapolation = .true. / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/noncolin.ref20000644000175000017500000002473512341373024015403 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:25:41 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/noncolin.in2 file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 307 155 55 3367 1205 249 Generating pointlists ... new r_m : 0.3572 (alat units) 1.8637 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 14 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.1666667), wk = 0.0277778 k( 2) = ( 0.0000000 -0.1666667 0.3333333), wk = 0.1111111 k( 3) = ( 0.0000000 -0.3333333 0.5000000), wk = 0.1111111 k( 4) = ( -0.1666667 0.1666667 0.1666667), wk = 0.0370370 k( 5) = ( -0.1666667 -0.1666667 0.5000000), wk = 0.1111111 k( 6) = ( -0.1666667 0.6666667 -0.3333333), wk = 0.1111111 k( 7) = ( -0.3333333 0.3333333 0.1666667), wk = 0.1111111 k( 8) = ( 0.5000000 -0.5000000 0.1666667), wk = 0.0555556 k( 9) = ( 0.5000000 -0.6666667 0.3333333), wk = 0.1111111 k( 10) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0277778 k( 11) = ( 0.0000000 -0.1666667 0.6666667), wk = 0.1111111 k( 12) = ( -0.1666667 0.8333333 -0.1666667), wk = 0.0370370 k( 13) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0092593 k( 14) = ( 0.0000000 0.0000000 0.8333333), wk = 0.0277778 Dense grid: 3367 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1205 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Check: negative/imaginary core charge= -0.000013 0.000000 The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 1.2 secs per-process dynamical memory: 13.9 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 15.7 total cpu time spent up to now is 2.1 secs End of band structure calculation k = 0.0000 0.0000 0.1667 band energies (ev): 6.0457 6.8219 11.7338 11.7338 11.9057 13.2007 13.6189 14.7118 14.7118 14.9315 16.1886 16.7144 37.3534 38.1243 39.2166 39.2166 k = 0.0000-0.1667 0.3333 band energies (ev): 8.0596 8.9643 11.2683 11.6432 12.8902 13.0762 13.8441 14.1393 14.2679 15.8741 16.2341 16.9394 31.2369 32.6216 35.7738 36.5906 k = 0.0000-0.3333 0.5000 band energies (ev): 9.1488 10.7823 10.9967 12.4584 13.2931 13.5545 14.3812 14.5189 15.2101 16.3458 17.5700 17.8981 24.0802 25.9915 33.4202 34.1613 k =-0.1667 0.1667 0.1667 band energies (ev): 7.1579 7.9665 11.3212 11.3212 12.9407 13.4066 13.4066 14.1787 14.1787 16.0339 16.4702 16.4702 34.7073 34.7073 35.8036 35.8036 k =-0.1667-0.1667 0.5000 band energies (ev): 9.7109 10.8528 11.1835 11.5367 12.9078 13.3065 13.8856 14.1537 15.6525 15.9338 17.0689 18.3430 27.9458 28.7616 29.5508 30.1080 k =-0.1667 0.6667-0.3333 band energies (ev): 9.9371 10.9342 11.3543 12.0842 13.2769 13.4303 13.5784 14.1756 16.3458 17.3843 19.2158 21.1692 22.6606 24.6363 27.1612 28.5666 k =-0.3333 0.3333 0.1667 band energies (ev): 9.2305 10.5624 10.7147 11.4718 13.4050 13.4384 13.6463 13.7267 15.0013 16.5155 16.7770 18.0180 27.5107 29.0808 31.9483 33.0642 k = 0.5000-0.5000 0.1667 band energies (ev): 9.3521 10.4640 11.3980 12.8941 13.1391 13.5283 13.7392 14.7332 16.6628 16.8989 17.3446 19.6643 22.4934 24.6105 30.8465 31.9171 k = 0.5000-0.6667 0.3333 band energies (ev): 10.1172 10.6778 11.3083 12.3541 13.0356 13.4526 13.5852 13.7680 16.7322 16.9301 18.7833 21.0985 24.7460 25.9552 26.4675 27.4037 k = 0.0000 0.0000 0.5000 band energies (ev): 9.4491 10.5968 11.2674 12.2381 12.2381 13.0672 13.8033 14.9150 15.1545 15.1545 16.2430 17.6649 32.4507 32.4507 32.7002 33.8749 k = 0.0000-0.1667 0.6667 band energies (ev): 9.9232 10.4676 11.9055 12.2093 12.6597 12.8780 14.3590 15.1258 15.8127 17.7102 18.1918 20.0794 25.2051 26.8352 29.4434 30.7570 k =-0.1667 0.8333-0.1667 band energies (ev): 9.9257 9.9257 12.0969 12.0969 12.2839 14.0811 14.0812 15.1109 17.3070 17.3070 22.9816 22.9816 24.5480 24.5480 24.6954 26.1135 k = 0.5000-0.5000 0.5000 band energies (ev): 10.7357 10.7357 10.7357 13.0633 13.0633 13.0633 13.7713 13.7714 16.9400 16.9400 23.5806 23.5806 23.5806 25.3545 25.3545 25.3545 k = 0.0000 0.0000 0.8333 band energies (ev): 9.4277 9.4287 11.5483 11.6342 13.9816 13.9816 14.2879 17.1870 17.1870 17.6398 21.8296 23.1234 25.9461 25.9461 27.0511 27.0511 the Fermi energy is 14.7516 ev Writing output data file pwscf.save init_run : 0.50s CPU 0.50s WALL ( 1 calls) electrons : 0.96s CPU 0.96s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.96s CPU 0.96s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.01s WALL ( 1 calls) newd : 0.02s CPU 0.01s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 14 calls) cegterg : 0.90s CPU 0.90s WALL ( 15 calls) Called by *egterg: h_psi : 0.47s CPU 0.45s WALL ( 249 calls) s_psi : 0.02s CPU 0.02s WALL ( 249 calls) g_psi : 0.03s CPU 0.03s WALL ( 220 calls) cdiaghg : 0.28s CPU 0.29s WALL ( 234 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 249 calls) General routines calbec : 0.02s CPU 0.01s WALL ( 249 calls) fft : 0.00s CPU 0.00s WALL ( 15 calls) ffts : 0.00s CPU 0.00s WALL ( 4 calls) fftw : 0.32s CPU 0.29s WALL ( 9904 calls) interpolate : 0.00s CPU 0.00s WALL ( 4 calls) davcio : 0.00s CPU 0.00s WALL ( 14 calls) PWSCF : 2.17s CPU 2.20s WALL This run was terminated on: 10:25:43 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav14.ref0000644000175000017500000001761412341373024016373 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav14.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1135 1135 281 47345 47345 5905 Tot 568 568 141 bravais-lattice index = 14 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2801.4282 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.100000 celldm(5)= 0.200000 celldm(6)= 0.300000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.450000 1.430909 0.000000 ) a(3) = ( 0.400000 0.083863 1.957796 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.314485 -0.190840 ) b(2) = ( 0.000000 0.698857 -0.029936 ) b(3) = ( 0.000000 0.000000 0.510778 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 23673 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 2953, 1) NL pseudopotentials 0.00 Mb ( 2953, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.18 Mb ( 23673) G-vector shells 0.10 Mb ( 13384) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 2953, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003955 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.395E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 19.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.114E-02 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22055047 Ry Harris-Foulkes estimate = -2.29035874 Ry estimated scf accuracy < 0.13254230 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 1.0 negative rho (up, down): 0.245E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23168688 Ry Harris-Foulkes estimate = -2.23211005 Ry estimated scf accuracy < 0.00094318 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-05, avg # of iterations = 2.0 negative rho (up, down): 0.404E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23203743 Ry Harris-Foulkes estimate = -2.23203917 Ry estimated scf accuracy < 0.00001487 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.43E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2953 PWs) bands (ev): -10.3154 ! total energy = -2.23203907 Ry Harris-Foulkes estimate = -2.23203880 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -3.65125652 Ry hartree contribution = 1.92424384 Ry xc contribution = -1.31190433 Ry ewald contribution = 0.80687794 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.09s CPU 0.09s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.06s CPU 0.06s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.06s CPU 0.07s WALL ( 5 calls) mix_rho : 0.01s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.03s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.03s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.01s CPU 0.02s WALL ( 19 calls) fftw : 0.04s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.27s CPU 0.29s WALL This run was terminated on: 10:22:20 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav9-kauto.ref0000644000175000017500000001772612341373024017444 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:24 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav9-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 597 597 173 25351 25351 3829 bravais-lattice index = 9 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1500.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.750000 0.000000 ) a(2) = ( -0.500000 0.750000 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.666667 0.000000 ) b(2) = ( -1.000000 0.666667 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 8 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.3333333 0.1250000), wk = 1.0000000 k( 2) = ( 0.5000000 0.0000000 0.1250000), wk = 1.0000000 Dense grid: 25351 G-vectors FFT dimensions: ( 30, 30, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 3167, 1) NL pseudopotentials 0.00 Mb ( 3167, 0) Each V/rho on FFT grid 0.88 Mb ( 57600) Each G-vector array 0.19 Mb ( 25351) G-vector shells 0.01 Mb ( 1384) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.19 Mb ( 3167, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 7.03 Mb ( 57600, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.002141 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.214E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 11.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.621E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.21985591 Ry Harris-Foulkes estimate = -2.28988876 Ry estimated scf accuracy < 0.13309428 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.65E-03, avg # of iterations = 1.0 negative rho (up, down): 0.131E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23089127 Ry Harris-Foulkes estimate = -2.23133660 Ry estimated scf accuracy < 0.00100284 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.01E-05, avg # of iterations = 2.0 negative rho (up, down): 0.160E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23119987 Ry Harris-Foulkes estimate = -2.23120209 Ry estimated scf accuracy < 0.00001280 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.40E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.3333 0.1250 ( 3167 PWs) bands (ev): -10.1855 k = 0.5000 0.0000 0.1250 ( 3162 PWs) bands (ev): -10.1724 ! total energy = -2.23120122 Ry Harris-Foulkes estimate = -2.23120125 Ry estimated scf accuracy < 0.00000051 Ry The total energy is the sum of the following terms: one-electron contribution = -3.67603038 Ry hartree contribution = 1.94839170 Ry xc contribution = -1.31417411 Ry ewald contribution = 0.81061156 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.04s CPU 0.04s WALL ( 1 calls) electrons : 0.13s CPU 0.14s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.01s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 0.04s CPU 0.04s WALL ( 4 calls) sum_band : 0.03s CPU 0.03s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 5 calls) mix_rho : 0.01s CPU 0.02s WALL ( 4 calls) Called by c_bands: cegterg : 0.04s CPU 0.03s WALL ( 8 calls) Called by *egterg: h_psi : 0.04s CPU 0.04s WALL ( 24 calls) g_psi : 0.00s CPU 0.00s WALL ( 14 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 22 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.04s CPU 0.03s WALL ( 60 calls) davcio : 0.00s CPU 0.00s WALL ( 26 calls) PWSCF : 0.21s CPU 0.22s WALL This run was terminated on: 10:22:25 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/metal-tetrahedra.in0000755000175000017500000000046712341373024016556 0ustar mbamba &control calculation='scf' / &system ibrav=2, celldm(1) =7.50, nat=1, ntyp=1, ecutwfc =15.0, occupations='smearing', smearing='gaussian', degauss=0.02 / &electrons / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS (alat) Al 0.00 0.00 0.00 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.1/PW/tests/lattice-ibrav10.in0000644000175000017500000000046712341373024016217 0ustar mbamba &control calculation='scf', / &system ibrav = 10, celldm(1) =10.0, celldm(2) = 1.5, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/lsda-mixing_localTF.ref0000644000175000017500000003545712341373024017325 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:32 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda-mixing_localTF.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 local-TF mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 144, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.5 total cpu time spent up to now is 1.0 secs total energy = -85.43798053 Ry Harris-Foulkes estimate = -85.36640314 Ry estimated scf accuracy < 0.92028035 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-03, avg # of iterations = 1.1 total cpu time spent up to now is 1.2 secs total energy = -85.68728704 Ry Harris-Foulkes estimate = -85.63182716 Ry estimated scf accuracy < 0.14325367 Ry total magnetization = 1.13 Bohr mag/cell absolute magnetization = 1.21 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.43E-03, avg # of iterations = 1.0 negative rho (up, down): 0.000E+00 0.750E-04 total cpu time spent up to now is 1.3 secs total energy = -85.71486528 Ry Harris-Foulkes estimate = -85.70014117 Ry estimated scf accuracy < 0.03872169 Ry total magnetization = 0.70 Bohr mag/cell absolute magnetization = 0.88 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.87E-04, avg # of iterations = 1.4 total cpu time spent up to now is 1.4 secs total energy = -85.71856129 Ry Harris-Foulkes estimate = -85.72065420 Ry estimated scf accuracy < 0.00935707 Ry total magnetization = 0.56 Bohr mag/cell absolute magnetization = 0.62 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.36E-05, avg # of iterations = 1.8 total cpu time spent up to now is 1.5 secs total energy = -85.72321988 Ry Harris-Foulkes estimate = -85.72364817 Ry estimated scf accuracy < 0.00107189 Ry total magnetization = 0.74 Bohr mag/cell absolute magnetization = 0.79 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.07E-05, avg # of iterations = 1.4 total cpu time spent up to now is 1.7 secs total energy = -85.72339828 Ry Harris-Foulkes estimate = -85.72339573 Ry estimated scf accuracy < 0.00000813 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.13E-08, avg # of iterations = 2.0 total cpu time spent up to now is 1.8 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.3748 12.4378 12.7328 12.7328 13.8391 13.8391 37.2306 41.0668 43.4113 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.2055 12.0607 12.6970 13.0395 13.7422 14.7845 28.9043 34.6219 41.7707 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.3037 12.3166 12.8640 13.0987 14.6703 16.6315 22.1065 35.6775 38.1888 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.9447 11.9815 12.9286 13.0723 13.6674 14.1608 33.2110 38.4339 38.7921 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.0135 11.3045 12.9383 13.7120 14.5658 14.8881 29.9534 33.4462 34.2668 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.0399 11.3663 12.4808 13.8992 14.6525 20.4136 23.8799 27.7785 30.1427 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 10.6940 11.8160 12.2431 13.4377 14.3024 16.5377 25.7640 31.6193 34.9272 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.3596 10.8359 13.8889 14.3639 14.7572 17.9867 26.7272 28.0810 31.8604 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.6584 12.6902 12.6902 13.2183 14.4199 14.4199 24.6748 38.8449 41.6262 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.0760 11.7361 12.4054 13.4398 14.3580 19.0762 22.8046 29.0403 36.4039 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.4365 13.2089 13.5287 13.5287 14.5893 14.5893 37.3662 41.0789 43.5294 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.3439 12.7254 13.4172 13.7963 14.5353 15.5688 29.1557 34.7853 41.8196 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.8009 12.9443 13.5986 13.6509 15.5221 17.0802 22.5331 35.7965 38.3363 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.0204 12.7123 13.6836 13.8660 14.4245 14.9382 33.4080 38.5930 38.8735 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.2525 11.9871 13.5721 14.5121 15.3840 15.5712 30.1588 33.6287 34.4022 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.5581 11.9906 13.1341 14.6365 15.5403 20.7569 24.1563 28.0293 30.3197 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.0641 12.4022 12.9271 14.1793 15.1318 17.1389 26.0478 31.8046 35.0924 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.8282 11.4934 14.5917 15.1540 15.6324 18.3028 27.0254 28.2531 31.9595 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.9853 13.4261 13.4261 13.5632 15.2510 15.2510 25.0140 38.8322 41.7800 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.6398 12.2595 13.0571 14.1759 15.2169 19.4761 23.1574 29.2602 36.5522 the Fermi energy is 15.3058 ev ! total energy = -85.72339896 Ry Harris-Foulkes estimate = -85.72339881 Ry estimated scf accuracy < 0.00000050 Ry The total energy is the sum of the following terms: one-electron contribution = 0.30105820 Ry hartree contribution = 14.33842308 Ry xc contribution = -29.60889390 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00005802 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell convergence has been achieved in 7 iterations Writing output data file pwscf.save init_run : 0.79s CPU 0.79s WALL ( 1 calls) electrons : 0.88s CPU 0.91s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.42s CPU 0.43s WALL ( 7 calls) sum_band : 0.24s CPU 0.25s WALL ( 7 calls) v_of_rho : 0.05s CPU 0.04s WALL ( 8 calls) newd : 0.15s CPU 0.15s WALL ( 8 calls) mix_rho : 0.02s CPU 0.02s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.02s WALL ( 300 calls) cegterg : 0.39s CPU 0.39s WALL ( 140 calls) Called by *egterg: h_psi : 0.25s CPU 0.27s WALL ( 423 calls) s_psi : 0.02s CPU 0.01s WALL ( 423 calls) g_psi : 0.01s CPU 0.01s WALL ( 263 calls) cdiaghg : 0.08s CPU 0.08s WALL ( 403 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 423 calls) General routines calbec : 0.02s CPU 0.02s WALL ( 563 calls) fft : 0.03s CPU 0.03s WALL ( 126 calls) ffts : 0.01s CPU 0.01s WALL ( 130 calls) fftw : 0.19s CPU 0.21s WALL ( 7338 calls) interpolate : 0.00s CPU 0.01s WALL ( 30 calls) davcio : 0.00s CPU 0.00s WALL ( 440 calls) PWSCF : 1.82s CPU 1.88s WALL This run was terminated on: 10:24:34 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/metal-fermi_dirac.in0000755000175000017500000000131312341373024016666 0ustar mbamba &control calculation='scf' / &system ibrav=2, celldm(1) =7.50, nat=1, ntyp=1, ecutwfc =15.0, occupations='smearing', smearing='fermi-dirac', degauss=0.05 / &electrons / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS (alat) Al 0.00 0.00 0.00 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/lattice-ibrav7-kauto.in0000644000175000017500000000046412341373024017263 0ustar mbamba &control calculation='scf', / &system ibrav = 7, celldm(1) =10.0, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/hse-si444.in0000755000175000017500000000147512341373024014757 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='hse', nqx1=4, nqx2=4, nqx3=4, exxdiv_treatment='gygi-baldereschi' x_gamma_extrapolation = .true. / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 espresso-5.1/PW/tests/uspp1-coulomb.ref0000644000175000017500000003007512341373024016202 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:28 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp1-coulomb.in ============================================================ | pseudopotential report for atomic species: 1 | | pseudo potential version 7 3 2 | ------------------------------------------------------------ | oxygen PBE exchange-corr | | z = 8. zv( 1) = 6. exfact = 5.00000 | | ifpcor = 0 atomic energy = -31.58351 Ry | | index orbital occupation energy | | 1 200 2.00 -1.76 | | 2 210 4.00 -0.66 | | rinner = 0.7000 0.7000 0.7000 | | new generation scheme: | | nbeta = 4 kkbeta = 519 rcloc = 1.0000 | | ibeta l epsilon rcut | | 1 0 -1.76 1.20 | | 2 0 -0.66 1.20 | | 3 1 -1.76 1.20 | | 4 1 -0.66 1.20 | ============================================================ gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3181 3181 793 135043 135043 16879 Tot 1591 1591 397 bravais-lattice index = 1 lattice parameter (alat) = 20.0000 a.u. unit-cell volume = 8000.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for ox read from file: /home/giannozz/trunk/espresso/pseudo/O_US.van MD5 check sum: 7e325307d184e51bd80757047dcf04f9 Pseudo is Ultrasoft, Zval = 6.0 Generated by Vanderbilt code, v. 7.3.2 Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.700 0.700 0.700 PseudoPot. # 2 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.coulomb-ae.UPF MD5 check sum: 77822c82c66c143e367914000e4b9459 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1451 points, 0 beta functions with: atomic species valence mass pseudopotential O 6.00 16.00000 ox( 1.00) H 1.00 2.00000 H ( 1.00) 4 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 H tau( 2) = ( 0.5866250 0.4837850 0.5000000 ) 3 H tau( 3) = ( 0.4837850 0.5866250 0.5000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 67522 G-vectors FFT dimensions: ( 64, 64, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.52 Mb ( 8440, 4) NL pseudopotentials 1.03 Mb ( 8440, 8) Each V/rho on FFT grid 4.00 Mb ( 262144) Each G-vector array 0.52 Mb ( 67522) G-vector shells 0.01 Mb ( 847) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.03 Mb ( 8440, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 32.00 Mb ( 262144, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.065614 starting charge 7.99998, renormalised to 8.00000 negative rho (up, down): 0.656E-01 0.000E+00 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 41.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.600E-01 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -34.11644164 Ry Harris-Foulkes estimate = -34.52231059 Ry estimated scf accuracy < 0.55238346 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.90E-03, avg # of iterations = 3.0 negative rho (up, down): 0.516E-01 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -34.22924946 Ry Harris-Foulkes estimate = -34.52745303 Ry estimated scf accuracy < 0.63709829 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.90E-03, avg # of iterations = 2.0 negative rho (up, down): 0.624E-01 0.000E+00 total cpu time spent up to now is 2.6 secs total energy = -34.35966286 Ry Harris-Foulkes estimate = -34.36267609 Ry estimated scf accuracy < 0.00664153 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.30E-05, avg # of iterations = 2.0 negative rho (up, down): 0.600E-01 0.000E+00 total cpu time spent up to now is 3.1 secs total energy = -34.36202743 Ry Harris-Foulkes estimate = -34.36246066 Ry estimated scf accuracy < 0.00121369 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-05, avg # of iterations = 1.0 negative rho (up, down): 0.600E-01 0.000E+00 total cpu time spent up to now is 3.6 secs total energy = -34.36203971 Ry Harris-Foulkes estimate = -34.36208268 Ry estimated scf accuracy < 0.00012691 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-06, avg # of iterations = 2.0 negative rho (up, down): 0.602E-01 0.000E+00 total cpu time spent up to now is 4.2 secs total energy = -34.36205214 Ry Harris-Foulkes estimate = -34.36205234 Ry estimated scf accuracy < 0.00000126 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.58E-08, avg # of iterations = 3.0 negative rho (up, down): 0.602E-01 0.000E+00 total cpu time spent up to now is 4.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 8440 PWs) bands (ev): -25.4732 -13.5022 -8.8356 -7.1781 ! total energy = -34.36205223 Ry Harris-Foulkes estimate = -34.36205257 Ry estimated scf accuracy < 0.00000089 Ry The total energy is the sum of the following terms: one-electron contribution = -65.19442244 Ry hartree contribution = 34.05257341 Ry xc contribution = -8.46885269 Ry ewald contribution = 5.24864950 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.09645927 -0.09645927 0.00000000 atom 2 type 2 force = 0.10483315 -0.00837388 0.00000000 atom 3 type 2 force = -0.00837388 0.10483315 0.00000000 Total force = 0.201814 Total SCF correction = 0.000494 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.33 0.00000523 -0.00000613 0.00000000 0.77 -0.90 0.00 -0.00000613 0.00000523 0.00000000 -0.90 0.77 0.00 0.00000000 0.00000000 -0.00001714 0.00 0.00 -2.52 Writing output data file pwscf.save init_run : 0.77s CPU 0.80s WALL ( 1 calls) electrons : 3.74s CPU 3.85s WALL ( 1 calls) forces : 0.20s CPU 0.21s WALL ( 1 calls) stress : 0.71s CPU 0.73s WALL ( 1 calls) Called by init_run: wfcinit : 0.03s CPU 0.03s WALL ( 1 calls) potinit : 0.30s CPU 0.32s WALL ( 1 calls) Called by electrons: c_bands : 0.57s CPU 0.59s WALL ( 7 calls) sum_band : 0.70s CPU 0.70s WALL ( 7 calls) v_of_rho : 1.88s CPU 1.96s WALL ( 8 calls) newd : 0.56s CPU 0.57s WALL ( 8 calls) mix_rho : 0.19s CPU 0.19s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.05s WALL ( 15 calls) regterg : 0.54s CPU 0.55s WALL ( 7 calls) Called by *egterg: h_psi : 0.49s CPU 0.48s WALL ( 23 calls) s_psi : 0.00s CPU 0.01s WALL ( 23 calls) g_psi : 0.02s CPU 0.02s WALL ( 15 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 22 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 23 calls) General routines calbec : 0.04s CPU 0.02s WALL ( 35 calls) fft : 0.62s CPU 0.63s WALL ( 111 calls) fftw : 0.35s CPU 0.36s WALL ( 100 calls) davcio : 0.00s CPU 0.00s WALL ( 7 calls) PWSCF : 5.54s CPU 5.73s WALL This run was terminated on: 11:28:34 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/metal-fermi_dirac.ref0000644000175000017500000002263412341373024017042 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:51 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metal-fermi_dirac.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 37 869 869 169 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Fermi-Dirac smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 107, 6) NL pseudopotentials 0.01 Mb ( 107, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.04 Mb ( 107, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 0.9 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.90E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.20868278 Ry Harris-Foulkes estimate = -4.20945992 Ry estimated scf accuracy < 0.00569006 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -4.20867864 Ry Harris-Foulkes estimate = -4.20870674 Ry estimated scf accuracy < 0.00044105 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-05, avg # of iterations = 1.4 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 107 PWs) bands (ev): -2.7443 16.7411 20.1776 20.1776 23.2660 24.1701 k = 0.1250 0.1250 0.3750 ( 105 PWs) bands (ev): -1.5658 13.6731 17.3081 18.8453 20.1238 22.7017 k = 0.1250 0.1250 0.6250 ( 102 PWs) bands (ev): 0.7472 11.5538 13.9809 15.3785 16.8416 20.9935 k = 0.1250 0.1250 0.8750 ( 104 PWs) bands (ev): 4.0812 8.6635 10.5450 14.4177 15.7400 20.0593 k = 0.1250 0.3750 0.3750 ( 100 PWs) bands (ev): -0.4020 10.5617 15.0559 20.2774 22.2908 22.3006 k = 0.1250 0.3750 0.6250 ( 103 PWs) bands (ev): 1.8811 8.4255 12.9744 15.1029 21.3103 23.4573 k = 0.1250 0.3750 0.8750 ( 104 PWs) bands (ev): 5.1664 7.3400 9.7851 12.0710 20.3573 24.5649 k = 0.1250 0.6250 0.6250 ( 101 PWs) bands (ev): 4.1094 6.2824 10.9020 16.3654 18.2355 26.3735 k = 0.3750 0.3750 0.3750 ( 99 PWs) bands (ev): 0.7460 7.4135 19.3051 19.3051 21.2999 21.3000 k = 0.3750 0.3750 0.6250 ( 103 PWs) bands (ev): 3.0018 5.2344 16.0308 17.3381 19.1703 23.3108 the Fermi energy is 8.2800 ev ! total energy = -4.20868148 Ry Harris-Foulkes estimate = -4.20868139 Ry estimated scf accuracy < 0.00000030 Ry The total energy is the sum of the following terms: one-electron contribution = 2.96284101 Ry hartree contribution = 0.00975533 Ry xc contribution = -1.63459930 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = -0.04484398 Ry convergence has been achieved in 3 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.07s CPU 0.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.06s CPU 0.06s WALL ( 4 calls) sum_band : 0.02s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 4 calls) mix_rho : 0.00s CPU 0.00s WALL ( 4 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 90 calls) cegterg : 0.06s CPU 0.06s WALL ( 40 calls) Called by *egterg: h_psi : 0.04s CPU 0.04s WALL ( 126 calls) g_psi : 0.00s CPU 0.00s WALL ( 76 calls) cdiaghg : 0.01s CPU 0.01s WALL ( 106 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 126 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 126 calls) fft : 0.00s CPU 0.00s WALL ( 17 calls) fftw : 0.04s CPU 0.04s WALL ( 1576 calls) davcio : 0.00s CPU 0.00s WALL ( 130 calls) PWSCF : 0.16s CPU 0.18s WALL This run was terminated on: 10:24:51 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lda+U.ref0000644000175000017500000007702712341373024014444 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10170) starts on 21Apr2013 at 12:45:59 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Reading input from /home/giannozz/espresso/PW/tests/lda+U.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1061 539 163 17255 6111 1081 Generating pointlists ... new r_m : 0.2063 (alat units) 1.6892 (a.u.) for type 1 new r_m : 0.2063 (alat units) 1.6892 (a.u.) for type 2 new r_m : 0.2063 (alat units) 1.6892 (a.u.) for type 3 bravais-lattice index = 0 lattice parameter (alat) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file: /home/giannozz/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file: /home/giannozz/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file: /home/giannozz/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 Simplified LDA+U calculation (l_max = 2) with parameters (eV): atomic species L U alpha J0 beta Fe1 2 4.3000 0.0000 0.0000 0.0000 Fe2 2 4.3000 0.0000 0.0000 0.0000 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 Dense grid: 17255 G-vectors FFT dimensions: ( 50, 50, 50) Smooth grid: 6111 G-vectors FFT dimensions: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Number of +U iterations with fixed ns = 0 Starting occupations: --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 5.00000 1.00000 6.00000 spin 1 eigenvalues: 1.000 1.000 1.000 1.000 1.000 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 spin 2 eigenvalues: 0.200 0.200 0.200 0.200 0.200 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atomic mag. moment = 4.000000 atom 4 Tr[ns(na)] (up, down, total) = 1.00000 5.00000 6.00000 spin 1 eigenvalues: 0.200 0.200 0.200 0.200 0.200 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 spin 2 eigenvalues: 1.000 1.000 1.000 1.000 1.000 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atomic mag. moment = -4.000000 N of occupied +U levels = 12.0000000 --- exit write_ns --- Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 randomized atomic wfcs total cpu time spent up to now is 4.1 secs per-process dynamical memory: 40.6 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.4 --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 5.00244 1.12123 6.12367 spin 1 eigenvalues: 0.997 0.997 1.003 1.003 1.003 eigenvectors: 0.310 0.328 0.116 0.246 0.000 0.018 0.223 0.423 0.003 0.333 0.227 0.015 0.079 0.346 0.333 0.328 0.310 0.246 0.116 0.000 0.117 0.124 0.136 0.289 0.333 occupations: 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 spin 2 eigenvalues: 0.155 0.155 0.257 0.277 0.277 eigenvectors: 0.127 0.866 0.000 0.007 0.001 0.002 0.003 0.333 0.035 0.627 0.005 0.000 0.333 0.351 0.310 0.866 0.127 0.000 0.001 0.007 0.001 0.004 0.333 0.606 0.055 occupations: 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.270 -0.006 -0.007 0.006 -0.004 -0.006 0.270 0.007 0.006 0.000 -0.007 0.007 0.156 0.000 -0.009 0.006 0.006 0.000 0.270 atomic mag. moment = 3.881215 atom 4 Tr[ns(na)] (up, down, total) = 1.12110 5.00233 6.12342 spin 1 eigenvalues: 0.155 0.155 0.257 0.277 0.277 eigenvectors: 0.039 0.954 0.000 0.007 0.000 0.003 0.002 0.333 0.079 0.582 0.005 0.001 0.333 0.270 0.391 0.954 0.039 0.000 0.000 0.007 0.000 0.005 0.333 0.643 0.019 occupations: 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.269 -0.006 -0.007 0.006 -0.004 -0.006 0.269 0.007 0.006 0.000 -0.007 0.007 0.156 0.000 -0.009 0.006 0.006 0.000 0.269 spin 2 eigenvalues: 0.997 0.997 1.003 1.003 1.003 eigenvectors: 0.298 0.343 0.091 0.269 0.000 0.021 0.219 0.427 0.000 0.333 0.227 0.012 0.106 0.321 0.333 0.343 0.298 0.269 0.091 0.000 0.111 0.128 0.108 0.319 0.333 occupations: 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 atomic mag. moment = -3.881229 N of occupied +U levels = 12.2470983 --- exit write_ns --- Magnetic moment per site: atom: 1 charge: 5.7842 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.7842 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.6876 magn: 3.1788 constr: 0.0000 atom: 4 charge: 5.6871 magn: -3.1789 constr: 0.0000 total cpu time spent up to now is 5.3 secs total energy = -173.87029877 Ry Harris-Foulkes estimate = -174.93549708 Ry estimated scf accuracy < 2.39735328 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 8.53 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.56E-03, avg # of iterations = 2.2 Magnetic moment per site: atom: 1 charge: 5.7650 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.7650 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.7005 magn: 3.2219 constr: 0.0000 atom: 4 charge: 5.7055 magn: -3.2168 constr: 0.0000 total cpu time spent up to now is 6.4 secs total energy = -174.41311609 Ry Harris-Foulkes estimate = -174.42300337 Ry estimated scf accuracy < 0.16428207 Ry total magnetization = 0.02 Bohr mag/cell absolute magnetization = 7.23 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.87E-04, avg # of iterations = 3.2 Magnetic moment per site: atom: 1 charge: 5.7937 magn: 0.0002 constr: 0.0000 atom: 2 charge: 5.7937 magn: 0.0002 constr: 0.0000 atom: 3 charge: 5.7138 magn: 3.2635 constr: 0.0000 atom: 4 charge: 5.6650 magn: -3.3098 constr: 0.0000 total cpu time spent up to now is 7.5 secs total energy = -174.43826806 Ry Harris-Foulkes estimate = -174.42959938 Ry estimated scf accuracy < 0.05120336 Ry total magnetization = -0.16 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.83E-04, avg # of iterations = 1.9 Magnetic moment per site: atom: 1 charge: 5.8330 magn: -0.0013 constr: 0.0000 atom: 2 charge: 5.8330 magn: -0.0013 constr: 0.0000 atom: 3 charge: 5.6752 magn: 3.3707 constr: 0.0000 atom: 4 charge: 5.6688 magn: -3.3813 constr: 0.0000 total cpu time spent up to now is 8.5 secs total energy = -174.44522463 Ry Harris-Foulkes estimate = -174.45883685 Ry estimated scf accuracy < 0.30468746 Ry total magnetization = 0.81 Bohr mag/cell absolute magnetization = 7.34 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.83E-04, avg # of iterations = 1.5 Magnetic moment per site: atom: 1 charge: 5.8401 magn: -0.0012 constr: 0.0000 atom: 2 charge: 5.8401 magn: -0.0012 constr: 0.0000 atom: 3 charge: 5.6710 magn: 3.3865 constr: 0.0000 atom: 4 charge: 5.6697 magn: -3.3935 constr: 0.0000 total cpu time spent up to now is 9.6 secs total energy = -174.45733297 Ry Harris-Foulkes estimate = -174.45515204 Ry estimated scf accuracy < 0.01249444 Ry total magnetization = 0.11 Bohr mag/cell absolute magnetization = 7.33 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.46E-05, avg # of iterations = 1.2 Magnetic moment per site: atom: 1 charge: 5.8408 magn: -0.0010 constr: 0.0000 atom: 2 charge: 5.8408 magn: -0.0010 constr: 0.0000 atom: 3 charge: 5.6782 magn: 3.3810 constr: 0.0000 atom: 4 charge: 5.6717 magn: -3.3927 constr: 0.0000 total cpu time spent up to now is 10.6 secs total energy = -174.46143722 Ry Harris-Foulkes estimate = -174.45796196 Ry estimated scf accuracy < 0.00588107 Ry total magnetization = -0.02 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.10E-05, avg # of iterations = 1.8 Magnetic moment per site: atom: 1 charge: 5.8375 magn: -0.0007 constr: 0.0000 atom: 2 charge: 5.8375 magn: -0.0007 constr: 0.0000 atom: 3 charge: 5.6899 magn: 3.3674 constr: 0.0000 atom: 4 charge: 5.6834 magn: -3.3725 constr: 0.0000 total cpu time spent up to now is 11.7 secs total energy = -174.46339897 Ry Harris-Foulkes estimate = -174.46308242 Ry estimated scf accuracy < 0.01162989 Ry total magnetization = 0.12 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.10E-05, avg # of iterations = 1.6 Magnetic moment per site: atom: 1 charge: 5.8392 magn: -0.0002 constr: 0.0000 atom: 2 charge: 5.8392 magn: -0.0002 constr: 0.0000 atom: 3 charge: 5.6816 magn: 3.3743 constr: 0.0000 atom: 4 charge: 5.6818 magn: -3.3731 constr: 0.0000 total cpu time spent up to now is 12.7 secs total energy = -174.46877812 Ry Harris-Foulkes estimate = -174.47148003 Ry estimated scf accuracy < 0.01256081 Ry total magnetization = 0.18 Bohr mag/cell absolute magnetization = 7.26 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.10E-05, avg # of iterations = 1.0 negative rho (up, down): 2.847E-04 1.903E-04 Magnetic moment per site: atom: 1 charge: 5.8385 magn: 0.0006 constr: 0.0000 atom: 2 charge: 5.8385 magn: 0.0006 constr: 0.0000 atom: 3 charge: 5.6865 magn: 3.3485 constr: 0.0000 atom: 4 charge: 5.6890 magn: -3.3408 constr: 0.0000 total cpu time spent up to now is 13.7 secs total energy = -174.46630822 Ry Harris-Foulkes estimate = -174.46978170 Ry estimated scf accuracy < 0.00120764 Ry total magnetization = -0.02 Bohr mag/cell absolute magnetization = 7.29 Bohr mag/cell iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.31E-06, avg # of iterations = 2.1 Magnetic moment per site: atom: 1 charge: 5.8399 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.8399 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.6865 magn: 3.3458 constr: 0.0000 atom: 4 charge: 5.6865 magn: -3.3448 constr: 0.0000 total cpu time spent up to now is 14.8 secs total energy = -174.47108027 Ry Harris-Foulkes estimate = -174.47035463 Ry estimated scf accuracy < 0.00256957 Ry total magnetization = -0.05 Bohr mag/cell absolute magnetization = 7.23 Bohr mag/cell iteration # 11 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.31E-06, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.8402 magn: -0.0002 constr: 0.0000 atom: 2 charge: 5.8402 magn: -0.0002 constr: 0.0000 atom: 3 charge: 5.6863 magn: 3.3446 constr: 0.0000 atom: 4 charge: 5.6861 magn: -3.3449 constr: 0.0000 total cpu time spent up to now is 15.9 secs total energy = -174.47141318 Ry Harris-Foulkes estimate = -174.47125495 Ry estimated scf accuracy < 0.00033492 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.24 Bohr mag/cell iteration # 12 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.20E-06, avg # of iterations = 1.1 Magnetic moment per site: atom: 1 charge: 5.8399 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.8399 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.6859 magn: 3.3451 constr: 0.0000 atom: 4 charge: 5.6861 magn: -3.3451 constr: 0.0000 total cpu time spent up to now is 16.9 secs total energy = -174.47151079 Ry Harris-Foulkes estimate = -174.47143566 Ry estimated scf accuracy < 0.00014909 Ry total magnetization = 0.01 Bohr mag/cell absolute magnetization = 7.25 Bohr mag/cell iteration # 13 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.32E-07, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.8394 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.8394 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.6865 magn: 3.3430 constr: 0.0000 atom: 4 charge: 5.6866 magn: -3.3436 constr: 0.0000 total cpu time spent up to now is 17.9 secs total energy = -174.47154399 Ry Harris-Foulkes estimate = -174.47153055 Ry estimated scf accuracy < 0.00002944 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.25 Bohr mag/cell iteration # 14 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.05E-07, avg # of iterations = 2.5 Magnetic moment per site: atom: 1 charge: 5.8394 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.8394 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.6866 magn: 3.3440 constr: 0.0000 atom: 4 charge: 5.6864 magn: -3.3447 constr: 0.0000 total cpu time spent up to now is 19.0 secs total energy = -174.47155632 Ry Harris-Foulkes estimate = -174.47155719 Ry estimated scf accuracy < 0.00000303 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.25 Bohr mag/cell iteration # 15 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.08E-08, avg # of iterations = 4.0 Magnetic moment per site: atom: 1 charge: 5.8394 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.8394 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.6867 magn: 3.3441 constr: 0.0000 atom: 4 charge: 5.6865 magn: -3.3447 constr: 0.0000 total cpu time spent up to now is 20.4 secs total energy = -174.47156024 Ry Harris-Foulkes estimate = -174.47155984 Ry estimated scf accuracy < 0.00000310 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.25 Bohr mag/cell iteration # 16 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.08E-08, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.8393 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.8393 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.6861 magn: 3.3448 constr: 0.0000 atom: 4 charge: 5.6871 magn: -3.3441 constr: 0.0000 total cpu time spent up to now is 21.4 secs End of self-consistent calculation --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 4.99112 1.84491 6.83603 spin 1 eigenvalues: 0.993 0.993 1.001 1.001 1.003 eigenvectors: 0.274 0.636 0.038 0.052 0.000 0.012 0.048 0.586 0.020 0.333 0.060 0.000 0.068 0.539 0.333 0.636 0.274 0.052 0.038 0.000 0.018 0.042 0.256 0.351 0.333 occupations: 0.994 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.994 0.000 0.002 -0.001 -0.001 0.000 1.001 spin 2 eigenvalues: 0.133 0.262 0.262 0.594 0.594 eigenvectors: 0.000 0.124 0.721 0.103 0.052 0.333 0.102 0.002 0.005 0.558 0.333 0.038 0.065 0.467 0.097 0.000 0.721 0.124 0.052 0.103 0.333 0.015 0.088 0.373 0.190 occupations: 0.313 -0.049 -0.049 0.000 -0.098 -0.049 0.406 -0.137 -0.085 0.137 -0.049 -0.137 0.406 0.085 0.137 0.000 -0.085 0.085 0.313 0.000 -0.098 0.137 0.137 0.000 0.406 atomic mag. moment = 3.146212 atom 4 Tr[ns(na)] (up, down, total) = 1.84594 4.99113 6.83707 spin 1 eigenvalues: 0.133 0.262 0.262 0.595 0.595 eigenvectors: 0.000 0.136 0.709 0.108 0.047 0.333 0.102 0.001 0.002 0.561 0.333 0.036 0.067 0.451 0.112 0.000 0.709 0.136 0.047 0.108 0.333 0.017 0.087 0.392 0.171 occupations: 0.314 -0.049 -0.049 0.000 -0.098 -0.049 0.406 -0.137 -0.085 0.137 -0.049 -0.137 0.406 0.085 0.137 0.000 -0.085 0.085 0.314 0.000 -0.098 0.137 0.137 0.000 0.406 spin 2 eigenvalues: 0.993 0.993 1.001 1.001 1.003 eigenvectors: 0.325 0.585 0.049 0.042 0.000 0.009 0.051 0.553 0.053 0.333 0.059 0.001 0.030 0.577 0.333 0.585 0.325 0.042 0.049 0.000 0.022 0.039 0.327 0.279 0.333 occupations: 0.994 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.994 0.000 0.002 -0.001 -0.001 0.000 1.001 atomic mag. moment = -3.145188 N of occupied +U levels = 13.6731072 --- exit write_ns --- ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7966 -7.5695 1.9777 3.8710 3.8710 5.8127 5.8127 6.4585 7.7601 7.7782 7.7782 8.5012 8.5012 10.5630 10.5630 11.5453 12.6362 13.4445 13.4445 15.3609 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0952 -7.4191 2.6433 3.4869 3.9693 4.1092 5.5734 5.7120 6.2469 6.3354 7.3192 8.6815 9.1439 10.3453 11.4523 12.9772 13.2288 13.3139 17.3246 17.6727 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.9358 -7.5700 1.9093 3.9478 4.0328 4.1617 5.2325 6.3269 6.5889 6.5996 6.8790 8.6436 8.9526 10.5476 11.5331 12.9834 13.5077 13.6739 15.3617 16.6743 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2802 -8.1991 3.1154 3.9954 3.9954 5.2645 5.8609 5.8609 6.9312 6.9312 6.9541 9.4085 9.4085 10.4766 10.4766 12.2809 13.1935 13.1935 14.0573 14.4192 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7968 -7.5696 1.9769 3.8695 3.8695 5.8101 5.8101 6.4571 7.7599 7.7781 7.7781 8.5008 8.5008 10.5634 10.5634 11.5452 12.6379 13.4463 13.4463 15.3609 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0954 -7.4191 2.6423 3.4857 3.9691 4.1077 5.5714 5.7120 6.2470 6.3325 7.3173 8.6804 9.1428 10.3456 11.4528 12.9790 13.2310 13.3161 17.3243 17.6727 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.9359 -7.5702 1.9084 3.9464 4.0315 4.1616 5.2307 6.3241 6.5887 6.5994 6.8769 8.6428 8.9518 10.5478 11.5336 12.9852 13.5097 13.6759 15.3616 16.6741 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2804 -8.1992 3.1141 3.9937 3.9937 5.2647 5.8582 5.8582 6.9315 6.9315 6.9530 9.4076 9.4076 10.4770 10.4770 12.2824 13.1956 13.1956 14.0570 14.4194 the Fermi energy is 10.5911 ev ! total energy = -174.47156021 Ry Harris-Foulkes estimate = -174.47156042 Ry estimated scf accuracy < 0.00000076 Ry The total energy is the sum of the following terms: one-electron contribution = 0.56913720 Ry hartree contribution = 27.93986913 Ry xc contribution = -65.78098766 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.31375716 Ry smearing contrib. (-TS) = -0.00404068 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.25 Bohr mag/cell convergence has been achieved in 16 iterations Writing output data file pwscf.save init_run : 4.04s CPU 4.06s WALL ( 1 calls) electrons : 17.12s CPU 17.26s WALL ( 1 calls) Called by init_run: wfcinit : 0.24s CPU 0.25s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 8.21s CPU 8.24s WALL ( 16 calls) sum_band : 5.42s CPU 5.47s WALL ( 16 calls) v_of_rho : 0.72s CPU 0.72s WALL ( 17 calls) newd : 2.34s CPU 2.38s WALL ( 17 calls) mix_rho : 0.30s CPU 0.30s WALL ( 16 calls) Called by c_bands: init_us_2 : 0.28s CPU 0.30s WALL ( 272 calls) cegterg : 7.66s CPU 7.69s WALL ( 128 calls) Called by *egterg: h_psi : 6.41s CPU 6.43s WALL ( 373 calls) s_psi : 0.23s CPU 0.22s WALL ( 381 calls) g_psi : 0.07s CPU 0.09s WALL ( 237 calls) cdiaghg : 0.36s CPU 0.34s WALL ( 365 calls) Called by h_psi: add_vuspsi : 0.24s CPU 0.25s WALL ( 373 calls) vhpsi : 0.21s CPU 0.17s WALL ( 373 calls) General routines calbec : 0.60s CPU 0.55s WALL ( 1010 calls) fft : 0.56s CPU 0.60s WALL ( 279 calls) ffts : 0.06s CPU 0.05s WALL ( 66 calls) fftw : 5.13s CPU 5.18s WALL ( 13896 calls) interpolate : 0.29s CPU 0.28s WALL ( 66 calls) davcio : 0.00s CPU 0.00s WALL ( 24 calls) Hubbard U routines new_ns : 0.07s CPU 0.07s WALL ( 16 calls) vhpsi : 0.21s CPU 0.17s WALL ( 373 calls) PWSCF : 21.29s CPU 21.47s WALL This run was terminated on: 12:46:21 21Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/uspp-mixing_TF.ref0000644000175000017500000002615012341373024016344 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:47 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/uspp-mixing_TF.in file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 313 151 55 3695 1243 283 bravais-lattice index = 2 lattice parameter (alat) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 TF mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file: /home/giannozz/trunk/espresso/pseudo/Cu.pz-d-rrkjus.UPF MD5 check sum: fd38ae683e239c95a66f426e1f8e5fc7 Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.2500000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.1875000 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.7500000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.3750000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0937500 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.1875000 Dense grid: 3695 G-vectors FFT dimensions: ( 24, 24, 24) Smooth grid: 1243 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3695) G-vector shells 0.00 Mb ( 79) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 169, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.4 secs per-process dynamical memory: 10.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.9 total cpu time spent up to now is 0.5 secs total energy = -87.76243369 Ry Harris-Foulkes estimate = -87.89694855 Ry estimated scf accuracy < 0.24974181 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-03, avg # of iterations = 1.1 total cpu time spent up to now is 0.5 secs total energy = -87.82862582 Ry Harris-Foulkes estimate = -87.83350664 Ry estimated scf accuracy < 0.01160685 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-04, avg # of iterations = 1.6 negative rho (up, down): 0.650E-05 0.000E+00 total cpu time spent up to now is 0.6 secs total energy = -87.83068897 Ry Harris-Foulkes estimate = -87.83067630 Ry estimated scf accuracy < 0.00028544 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.59E-06, avg # of iterations = 3.0 total cpu time spent up to now is 0.6 secs total energy = -87.83068480 Ry Harris-Foulkes estimate = -87.83070501 Ry estimated scf accuracy < 0.00003566 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.7 secs total energy = -87.83069573 Ry Harris-Foulkes estimate = -87.83069882 Ry estimated scf accuracy < 0.00001040 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.45E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.7 secs total energy = -87.83069580 Ry Harris-Foulkes estimate = -87.83069647 Ry estimated scf accuracy < 0.00000150 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-08, avg # of iterations = 1.2 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9886 11.1850 11.1850 11.1850 12.0746 12.0746 38.8575 41.0126 41.0126 41.0126 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1531 10.9382 11.3554 11.3554 12.1663 12.1663 27.5234 38.3699 38.3699 38.4662 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1013 11.1517 11.1517 12.6884 12.6884 13.4640 18.6319 37.0229 37.6064 37.6064 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7919 10.4196 11.6191 11.9026 11.9026 12.3692 32.3364 32.3364 33.7585 34.5388 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7555 10.3166 11.2505 11.8788 12.7320 15.5212 21.5948 27.6704 31.2986 35.1290 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6198 10.6628 10.8812 11.7278 12.0750 14.1915 24.5905 26.0214 35.8947 37.3859 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2484 9.6935 12.6696 12.8423 12.8423 16.0621 22.1014 28.1776 28.1776 32.9153 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0175 10.6636 10.6636 12.0421 12.8429 20.9456 20.9456 23.1289 24.0486 44.6507 the Fermi energy is 15.2763 ev ! total energy = -87.83069607 Ry Harris-Foulkes estimate = -87.83069607 Ry estimated scf accuracy < 3.0E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -10.22275284 Ry hartree contribution = 18.87923799 Ry xc contribution = -14.05431340 Ry ewald contribution = -82.43214134 Ry smearing contrib. (-TS) = -0.00072648 Ry convergence has been achieved in 7 iterations Writing output data file pwscf.save init_run : 0.37s CPU 0.37s WALL ( 1 calls) electrons : 0.36s CPU 0.38s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.19s CPU 0.20s WALL ( 7 calls) sum_band : 0.10s CPU 0.10s WALL ( 7 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 8 calls) newd : 0.06s CPU 0.06s WALL ( 8 calls) mix_rho : 0.00s CPU 0.00s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 120 calls) cegterg : 0.18s CPU 0.18s WALL ( 56 calls) Called by *egterg: h_psi : 0.10s CPU 0.12s WALL ( 183 calls) s_psi : 0.00s CPU 0.00s WALL ( 183 calls) g_psi : 0.01s CPU 0.01s WALL ( 119 calls) cdiaghg : 0.07s CPU 0.04s WALL ( 175 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 183 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 239 calls) fft : 0.02s CPU 0.01s WALL ( 67 calls) ffts : 0.00s CPU 0.00s WALL ( 15 calls) fftw : 0.10s CPU 0.10s WALL ( 3302 calls) interpolate : 0.00s CPU 0.00s WALL ( 15 calls) davcio : 0.00s CPU 0.00s WALL ( 176 calls) PWSCF : 0.80s CPU 0.85s WALL This run was terminated on: 11:28:48 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-mixing_localTF.ref0000644000175000017500000002127712341373024017150 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-mixing_localTF.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 local-TF mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79817013 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79291170 Ry Harris-Foulkes estimate = -15.79905128 Ry estimated scf accuracy < 0.01602833 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79439591 Ry Harris-Foulkes estimate = -15.79436196 Ry estimated scf accuracy < 0.00016444 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-06, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449403 Ry Harris-Foulkes estimate = -15.79449948 Ry estimated scf accuracy < 0.00002127 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.66E-07, avg # of iterations = 1.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8712 2.3780 5.5356 5.5356 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9178 -0.0666 2.6785 4.0342 ! total energy = -15.79449567 Ry Harris-Foulkes estimate = -15.79449573 Ry estimated scf accuracy < 0.00000039 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83344590 Ry hartree contribution = 1.08483968 Ry xc contribution = -4.81302267 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.04s CPU 0.04s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.01s CPU 0.01s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) ffts : 0.00s CPU 0.00s WALL ( 66 calls) fftw : 0.01s CPU 0.01s WALL ( 314 calls) davcio : 0.00s CPU 0.00s WALL ( 38 calls) PWSCF : 0.12s CPU 0.12s WALL This run was terminated on: 11:28:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/metal-tetrahedra.ref20000644000175000017500000002505412341373024017002 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:52 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metal-tetrahedra.in2 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 55 869 869 259 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 (tetrahedron method) cart. coord. in units 2pi/alat k( 1) = ( -0.0833333 0.0833333 0.0833333), wk = 0.0185185 k( 2) = ( -0.2500000 0.2500000 -0.0833333), wk = 0.0555556 k( 3) = ( -0.4166667 0.4166667 -0.2500000), wk = 0.0555556 k( 4) = ( 0.4166667 -0.4166667 0.5833333), wk = 0.0555556 k( 5) = ( 0.2500000 -0.2500000 0.4166667), wk = 0.0555556 k( 6) = ( 0.0833333 -0.0833333 0.2500000), wk = 0.0555556 k( 7) = ( -0.0833333 0.4166667 0.0833333), wk = 0.0555556 k( 8) = ( -0.2500000 0.5833333 -0.0833333), wk = 0.1111111 k( 9) = ( 0.5833333 -0.2500000 0.7500000), wk = 0.1111111 k( 10) = ( 0.4166667 -0.0833333 0.5833333), wk = 0.1111111 k( 11) = ( 0.2500000 0.0833333 0.4166667), wk = 0.1111111 k( 12) = ( -0.0833333 0.7500000 0.0833333), wk = 0.0555556 k( 13) = ( 0.7500000 -0.0833333 0.9166667), wk = 0.1111111 k( 14) = ( 0.5833333 0.0833333 0.7500000), wk = 0.1111111 k( 15) = ( 0.4166667 0.2500000 0.5833333), wk = 0.1111111 k( 16) = ( -0.0833333 -0.9166667 0.0833333), wk = 0.0555556 k( 17) = ( -0.2500000 -0.7500000 -0.0833333), wk = 0.1111111 k( 18) = ( -0.0833333 -0.5833333 0.0833333), wk = 0.0555556 k( 19) = ( -0.2500000 0.2500000 0.2500000), wk = 0.0185185 k( 20) = ( -0.4166667 0.4166667 0.0833333), wk = 0.0555556 k( 21) = ( 0.4166667 -0.4166667 0.9166667), wk = 0.0555556 k( 22) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.0555556 k( 23) = ( -0.2500000 0.5833333 0.2500000), wk = 0.0555556 k( 24) = ( 0.5833333 -0.2500000 1.0833333), wk = 0.1111111 k( 25) = ( 0.4166667 -0.0833333 0.9166667), wk = 0.1111111 k( 26) = ( -0.2500000 -1.0833333 0.2500000), wk = 0.0555556 k( 27) = ( -0.4166667 0.4166667 0.4166667), wk = 0.0185185 k( 28) = ( 0.4166667 -0.4166667 1.2500000), wk = 0.0555556 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 4, 4) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 0.7 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 3.33E-08, avg # of iterations = 10.4 total cpu time spent up to now is 0.3 secs End of band structure calculation k =-0.0833 0.0833 0.0833 band energies (ev): -2.9917 18.4616 20.5668 20.5668 k =-0.2500 0.2500-0.0833 band energies (ev): -1.9382 14.0228 17.0324 21.4892 k =-0.4167 0.4167-0.2500 band energies (ev): 0.6359 8.0210 16.5644 19.8678 k = 0.4167-0.4167 0.5833 band energies (ev): 3.1424 4.6444 17.4638 18.1214 k = 0.2500-0.2500 0.4167 band energies (ev): -0.3860 9.9155 17.6646 19.2619 k = 0.0833-0.0833 0.2500 band energies (ev): -2.4635 16.2604 18.4970 19.8047 k =-0.0833 0.4167 0.0833 band energies (ev): -1.4189 14.4156 16.7827 18.0726 k =-0.2500 0.5833-0.0833 band energies (ev): 0.6376 10.7427 13.9074 15.3651 k = 0.5833-0.2500 0.7500 band energies (ev): 4.1176 5.6172 12.9265 14.4326 k = 0.4167-0.0833 0.5833 band energies (ev): 1.6482 8.8634 12.1518 16.2073 k = 0.2500 0.0833 0.4167 band energies (ev): -0.8998 12.1579 15.3053 19.3351 k =-0.0833 0.7500 0.0833 band energies (ev): 2.1461 11.0181 12.1111 14.6434 k = 0.7500-0.0833 0.9167 band energies (ev): 5.0323 8.2173 9.3936 12.6533 k = 0.5833 0.0833 0.7500 band energies (ev): 5.0888 6.4965 9.7758 13.9438 k = 0.4167 0.2500 0.5833 band energies (ev): 2.1489 6.5775 15.2209 16.6580 k =-0.0833-0.9167 0.0833 band energies (ev): 4.5530 7.7742 11.6180 14.2193 k =-0.2500-0.7500-0.0833 band energies (ev): 2.6451 9.7781 11.5103 13.1555 k =-0.0833-0.5833 0.0833 band energies (ev): 0.1278 13.0055 14.7974 15.4993 k =-0.2500 0.2500 0.2500 band energies (ev): -1.4184 11.7934 19.3985 19.3985 k =-0.4167 0.4167 0.0833 band energies (ev): 0.1280 10.2830 13.5501 19.4288 k = 0.4167-0.4167 0.9167 band energies (ev): 3.1449 7.4413 10.7448 16.8144 k = 0.2500-0.2500 0.7500 band energies (ev): 3.1406 7.5233 12.0340 15.5089 k =-0.2500 0.5833 0.2500 band energies (ev): 1.1430 8.4844 15.7138 16.3681 k = 0.5833-0.2500 1.0833 band energies (ev): 3.6334 7.9105 11.1273 12.6583 k = 0.4167-0.0833 0.9167 band energies (ev): 5.9797 7.4190 9.2075 10.9218 k =-0.2500-1.0833 0.2500 band energies (ev): 5.5043 7.0198 8.8398 15.0808 k =-0.4167 0.4167 0.4167 band energies (ev): 1.6475 6.1012 19.4352 19.4352 k = 0.4167-0.4167 1.2500 band energies (ev): 3.6339 5.1288 13.8983 17.2491 the Fermi energy is 8.3068 ev Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.13s CPU 0.13s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.12s CPU 0.12s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.12s CPU 0.11s WALL ( 28 calls) Called by *egterg: h_psi : 0.09s CPU 0.08s WALL ( 348 calls) g_psi : 0.00s CPU 0.00s WALL ( 292 calls) cdiaghg : 0.02s CPU 0.02s WALL ( 320 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 348 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 348 calls) fft : 0.00s CPU 0.00s WALL ( 3 calls) fftw : 0.06s CPU 0.06s WALL ( 2082 calls) davcio : 0.00s CPU 0.00s WALL ( 28 calls) PWSCF : 0.50s CPU 0.53s WALL This run was terminated on: 10:24:53 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/cluster1.in0000755000175000017500000000057012341373024015070 0ustar mbamba&CONTROL / &SYSTEM ibrav = 1, celldm(1) = 12.0 nat = 1, ntyp = 1, ecutwfc = 30.D0, ecutrho = 120.D0, nspin = 2, tot_magnetization = 3.0, assume_isolated = 'martyna-tuckerman' / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / ATOMIC_SPECIES N 1.00 N.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} N 0.000 0.0 0.0 0 0 0 K_POINTS Gamma espresso-5.1/PW/tests/relax.ref0000644000175000017500000006633512341373024014617 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:10 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/relax.in file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file C.pz-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1649 1101 277 50541 27609 3407 Tot 825 551 139 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 5 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 144.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pz-rrkjus.UPF MD5 check sum: a648be5dbf3fafdfb4e35f5396849845 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1425 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O ( 1.00) C 4.00 1.00000 C ( 1.00) 8 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.1880000 0.0000000 0.0000000 ) 2 O tau( 2) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 25271 G-vectors FFT dimensions: ( 45, 45, 45) Smooth grid: 13805 G-vectors FFT dimensions: ( 40, 40, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.13 Mb ( 1704, 5) NL pseudopotentials 0.42 Mb ( 1704, 16) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.19 Mb ( 25271) G-vector shells 0.00 Mb ( 440) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.26 Mb ( 1704, 20) Each subspace H/S matrix 0.00 Mb ( 20, 20) Each matrix 0.00 Mb ( 16, 5) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003742 starting charge 9.99996, renormalised to 10.00000 negative rho (up, down): 0.374E-02 0.000E+00 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 1.0 secs per-process dynamical memory: 30.4 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.548E-02 0.000E+00 total cpu time spent up to now is 1.1 secs total energy = -43.00560028 Ry Harris-Foulkes estimate = -43.13946473 Ry estimated scf accuracy < 0.20142084 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-03, avg # of iterations = 4.0 negative rho (up, down): 0.113E-01 0.000E+00 total cpu time spent up to now is 1.3 secs total energy = -42.97192905 Ry Harris-Foulkes estimate = -43.22189611 Ry estimated scf accuracy < 0.69794621 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-03, avg # of iterations = 3.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 1.4 secs total energy = -43.09499395 Ry Harris-Foulkes estimate = -43.09749186 Ry estimated scf accuracy < 0.00768862 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.69E-05, avg # of iterations = 2.0 negative rho (up, down): 0.458E-02 0.000E+00 total cpu time spent up to now is 1.5 secs total energy = -43.09571104 Ry Harris-Foulkes estimate = -43.09617585 Ry estimated scf accuracy < 0.00118904 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-05, avg # of iterations = 3.0 negative rho (up, down): 0.461E-02 0.000E+00 total cpu time spent up to now is 1.7 secs total energy = -43.09622618 Ry Harris-Foulkes estimate = -43.09637952 Ry estimated scf accuracy < 0.00054718 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.47E-06, avg # of iterations = 1.0 negative rho (up, down): 0.462E-02 0.000E+00 total cpu time spent up to now is 1.8 secs total energy = -43.09619459 Ry Harris-Foulkes estimate = -43.09625737 Ry estimated scf accuracy < 0.00019300 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-06, avg # of iterations = 3.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 2.0 secs total energy = -43.09625490 Ry Harris-Foulkes estimate = -43.09626006 Ry estimated scf accuracy < 0.00001788 Ry iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-07, avg # of iterations = 2.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 2.1 secs total energy = -43.09625733 Ry Harris-Foulkes estimate = -43.09625777 Ry estimated scf accuracy < 0.00000256 Ry iteration # 9 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.56E-08, avg # of iterations = 3.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 2.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -27.8990 -13.4027 -10.8557 -10.8557 -8.5036 ! total energy = -43.09625738 Ry Harris-Foulkes estimate = -43.09625770 Ry estimated scf accuracy < 0.00000039 Ry The total energy is the sum of the following terms: one-electron contribution = -64.82452638 Ry hartree contribution = 33.55448961 Ry xc contribution = -9.77042089 Ry ewald contribution = -2.05579972 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.21576369 0.00000000 0.00000000 atom 2 type 1 force = 0.21576369 0.00000000 0.00000000 Total force = 0.215764 Total SCF correction = 0.000570 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.0962573845 Ry new trust radius = 0.2157636867 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (bohr) C 2.040236313 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003742 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003805 negative rho (up, down): 0.469E-02 0.000E+00 total cpu time spent up to now is 2.5 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.519E-02 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -43.09141135 Ry Harris-Foulkes estimate = -43.10570457 Ry estimated scf accuracy < 0.02450099 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.45E-04, avg # of iterations = 2.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 2.8 secs total energy = -43.09630706 Ry Harris-Foulkes estimate = -43.09720161 Ry estimated scf accuracy < 0.00178486 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-05, avg # of iterations = 2.0 negative rho (up, down): 0.488E-02 0.000E+00 total cpu time spent up to now is 2.9 secs total energy = -43.09661885 Ry Harris-Foulkes estimate = -43.09674573 Ry estimated scf accuracy < 0.00022392 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-06, avg # of iterations = 3.0 negative rho (up, down): 0.484E-02 0.000E+00 total cpu time spent up to now is 3.1 secs total energy = -43.09664778 Ry Harris-Foulkes estimate = -43.09675067 Ry estimated scf accuracy < 0.00024403 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-06, avg # of iterations = 2.0 negative rho (up, down): 0.486E-02 0.000E+00 total cpu time spent up to now is 3.2 secs total energy = -43.09668898 Ry Harris-Foulkes estimate = -43.09668949 Ry estimated scf accuracy < 0.00000124 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-08, avg # of iterations = 4.0 negative rho (up, down): 0.486E-02 0.000E+00 total cpu time spent up to now is 3.3 secs total energy = -43.09669227 Ry Harris-Foulkes estimate = -43.09669412 Ry estimated scf accuracy < 0.00000476 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-08, avg # of iterations = 3.0 negative rho (up, down): 0.485E-02 0.000E+00 total cpu time spent up to now is 3.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -29.6418 -13.3815 -11.8945 -11.8945 -8.2531 ! total energy = -43.09669286 Ry Harris-Foulkes estimate = -43.09669292 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = -68.53625446 Ry hartree contribution = 35.29035116 Ry xc contribution = -9.98595197 Ry ewald contribution = 0.13516241 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.27789836 0.00000000 0.00000000 atom 2 type 1 force = -0.27789836 0.00000000 0.00000000 Total force = 0.277898 Total SCF correction = 0.000159 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.0962573845 Ry energy new = -43.0966928607 Ry CASE: energy _new > energy _old new trust radius = 0.1089005231 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (bohr) C 2.147099477 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003805 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003773 negative rho (up, down): 0.484E-02 0.000E+00 total cpu time spent up to now is 3.8 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.452E-02 0.000E+00 total cpu time spent up to now is 3.9 secs total energy = -43.10822701 Ry Harris-Foulkes estimate = -43.11217514 Ry estimated scf accuracy < 0.00673031 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.73E-05, avg # of iterations = 2.0 negative rho (up, down): 0.466E-02 0.000E+00 total cpu time spent up to now is 4.0 secs total energy = -43.10959314 Ry Harris-Foulkes estimate = -43.10983938 Ry estimated scf accuracy < 0.00049914 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.99E-06, avg # of iterations = 2.0 negative rho (up, down): 0.468E-02 0.000E+00 total cpu time spent up to now is 4.2 secs total energy = -43.10966909 Ry Harris-Foulkes estimate = -43.10974284 Ry estimated scf accuracy < 0.00013250 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.32E-06, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 4.3 secs total energy = -43.10970218 Ry Harris-Foulkes estimate = -43.10971933 Ry estimated scf accuracy < 0.00004392 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.39E-07, avg # of iterations = 2.0 negative rho (up, down): 0.471E-02 0.000E+00 total cpu time spent up to now is 4.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.7622 -13.3827 -11.3565 -11.3565 -8.3885 ! total energy = -43.10970947 Ry Harris-Foulkes estimate = -43.10970957 Ry estimated scf accuracy < 0.00000025 Ry The total energy is the sum of the following terms: one-electron contribution = -66.62199211 Ry hartree contribution = 34.39252108 Ry xc contribution = -9.87286653 Ry ewald contribution = -1.00737192 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.01574650 0.00000000 0.00000000 atom 2 type 1 force = 0.01574650 0.00000000 0.00000000 Total force = 0.015747 Total SCF correction = 0.000229 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.0962573845 Ry energy new = -43.1097094714 Ry CASE: energy _new < energy _old new trust radius = 0.0085732739 bohr new conv_thr = 0.0000001575 Ry ATOMIC_POSITIONS (bohr) C 2.138526203 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003773 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003775 negative rho (up, down): 0.471E-02 0.000E+00 total cpu time spent up to now is 4.7 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.474E-02 0.000E+00 total cpu time spent up to now is 4.9 secs total energy = -43.10975406 Ry Harris-Foulkes estimate = -43.10978279 Ry estimated scf accuracy < 0.00004742 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.74E-07, avg # of iterations = 2.0 negative rho (up, down): 0.473E-02 0.000E+00 total cpu time spent up to now is 5.0 secs total energy = -43.10976422 Ry Harris-Foulkes estimate = -43.10976717 Ry estimated scf accuracy < 0.00000538 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.38E-08, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 5.1 secs total energy = -43.10976529 Ry Harris-Foulkes estimate = -43.10976538 Ry estimated scf accuracy < 0.00000022 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.15E-09, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 5.3 secs total energy = -43.10976536 Ry Harris-Foulkes estimate = -43.10976565 Ry estimated scf accuracy < 0.00000114 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.15E-09, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 5.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8307 -13.3815 -11.3975 -11.3975 -8.3772 ! total energy = -43.10976531 Ry Harris-Foulkes estimate = -43.10976544 Ry estimated scf accuracy < 0.00000014 Ry The total energy is the sum of the following terms: one-electron contribution = -66.76958990 Ry hartree contribution = 34.46140802 Ry xc contribution = -9.88149278 Ry ewald contribution = -0.92009065 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.00338484 0.00000000 0.00000000 atom 2 type 1 force = -0.00338484 0.00000000 0.00000000 Total force = 0.003385 Total SCF correction = 0.000432 SCF correction compared to forces is large: reduce conv_thr to get better values number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.1097094714 Ry energy new = -43.1097653111 Ry CASE: energy _new < energy _old new trust radius = 0.0015168383 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) C 2.140043041 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file pwscf.save Check: negative starting charge= -0.003775 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.003775 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 5.7 secs per-process dynamical memory: 37.0 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.96E-08, avg # of iterations = 1.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 5.9 secs total energy = -43.10976725 Ry Harris-Foulkes estimate = -43.10976877 Ry estimated scf accuracy < 0.00000225 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.25E-08, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 6.0 secs total energy = -43.10976734 Ry Harris-Foulkes estimate = -43.10976856 Ry estimated scf accuracy < 0.00000256 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.25E-08, avg # of iterations = 3.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 6.2 secs total energy = -43.10976795 Ry Harris-Foulkes estimate = -43.10976806 Ry estimated scf accuracy < 0.00000029 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.89E-09, avg # of iterations = 2.0 negative rho (up, down): 0.472E-02 0.000E+00 total cpu time spent up to now is 6.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8190 -13.3823 -11.3907 -11.3907 -8.3784 ! total energy = -43.10976799 Ry Harris-Foulkes estimate = -43.10976799 Ry estimated scf accuracy < 8.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -66.74427692 Ry hartree contribution = 34.45022354 Ry xc contribution = -9.88012852 Ry ewald contribution = -0.93558609 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.00002275 0.00000000 0.00000000 atom 2 type 1 force = -0.00002275 0.00000000 0.00000000 Total force = 0.000023 Total SCF correction = 0.000054 SCF correction compared to forces is large: reduce conv_thr to get better values bfgs converged in 5 scf cycles and 3 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -43.1097679883 Ry Begin final coordinates ATOMIC_POSITIONS (bohr) C 2.140043041 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 End final coordinates Writing output data file pwscf.save init_run : 0.91s CPU 0.92s WALL ( 1 calls) electrons : 3.97s CPU 4.15s WALL ( 5 calls) update_pot : 0.32s CPU 0.32s WALL ( 4 calls) forces : 0.42s CPU 0.42s WALL ( 5 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.04s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 0.62s CPU 0.64s WALL ( 31 calls) sum_band : 1.46s CPU 1.49s WALL ( 31 calls) v_of_rho : 0.45s CPU 0.48s WALL ( 35 calls) newd : 1.12s CPU 1.15s WALL ( 35 calls) mix_rho : 0.19s CPU 0.20s WALL ( 31 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.05s WALL ( 63 calls) regterg : 0.56s CPU 0.58s WALL ( 31 calls) Called by *egterg: h_psi : 0.45s CPU 0.46s WALL ( 116 calls) s_psi : 0.00s CPU 0.01s WALL ( 116 calls) g_psi : 0.03s CPU 0.02s WALL ( 84 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 110 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 116 calls) General routines calbec : 0.03s CPU 0.03s WALL ( 167 calls) fft : 0.47s CPU 0.48s WALL ( 313 calls) ffts : 0.08s CPU 0.07s WALL ( 66 calls) fftw : 0.37s CPU 0.38s WALL ( 679 calls) interpolate : 0.24s CPU 0.26s WALL ( 66 calls) davcio : 0.00s CPU 0.00s WALL ( 30 calls) PWSCF : 6.10s CPU 6.45s WALL This run was terminated on: 11:28:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/vc-md2.ref0000644000175000017500000035247012341373024014572 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 9400) starts on 2Oct2012 at 21:55:27 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/vc-md2.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 121 4159 4159 833 bravais-lattice index = 14 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 10 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.495175 celldm(6)= 0.495175 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.495175 0.868793 0.000000 ) a(3) = ( 0.495175 0.287729 0.819765 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.569957 -0.403996 ) b(2) = ( 0.000000 1.151022 -0.403996 ) b(3) = ( 0.000000 0.000000 1.219862 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) cell mass = 0.00700 AMU/(a.u.)^2 2 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.5772212 0.3354030 0.2377400 ) 2 As tau( 2) = ( -0.5772212 -0.3354030 -0.2377400 ) number of k points= 32 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.0726331 0.0514837), wk = 0.0625000 k( 2) = ( 0.1250000 0.0726331 0.3564493), wk = 0.0625000 k( 3) = ( 0.1250000 0.0726331 -0.5584473), wk = 0.0625000 k( 4) = ( 0.1250000 0.0726331 -0.2534818), wk = 0.0625000 k( 5) = ( 0.1250000 0.3603885 -0.0495153), wk = 0.0625000 k( 6) = ( 0.1250000 0.3603885 0.2554502), wk = 0.0625000 k( 7) = ( 0.1250000 0.3603885 -0.6594464), wk = 0.0625000 k( 8) = ( 0.1250000 0.3603885 -0.3544809), wk = 0.0625000 k( 9) = ( 0.1250000 -0.5028777 0.2534818), wk = 0.0625000 k( 10) = ( 0.1250000 -0.5028777 0.5584473), wk = 0.0625000 k( 11) = ( 0.1250000 -0.5028777 -0.3564493), wk = 0.0625000 k( 12) = ( 0.1250000 -0.5028777 -0.0514837), wk = 0.0625000 k( 13) = ( 0.1250000 -0.2151223 0.1524828), wk = 0.0625000 k( 14) = ( 0.1250000 -0.2151223 0.4574483), wk = 0.0625000 k( 15) = ( 0.1250000 -0.2151223 -0.4574483), wk = 0.0625000 k( 16) = ( 0.1250000 -0.2151223 -0.1524828), wk = 0.0625000 k( 17) = ( 0.3750000 -0.0698561 -0.0495153), wk = 0.0625000 k( 18) = ( 0.3750000 -0.0698561 0.2554502), wk = 0.0625000 k( 19) = ( 0.3750000 -0.0698561 -0.6594464), wk = 0.0625000 k( 20) = ( 0.3750000 -0.0698561 -0.3544809), wk = 0.0625000 k( 21) = ( 0.3750000 0.2178993 -0.1505144), wk = 0.0625000 k( 22) = ( 0.3750000 0.2178993 0.1544512), wk = 0.0625000 k( 23) = ( 0.3750000 0.2178993 -0.7604454), wk = 0.0625000 k( 24) = ( 0.3750000 0.2178993 -0.4554799), wk = 0.0625000 k( 25) = ( 0.3750000 -0.6453669 0.1524828), wk = 0.0625000 k( 26) = ( 0.3750000 -0.6453669 0.4574483), wk = 0.0625000 k( 27) = ( 0.3750000 -0.6453669 -0.4574483), wk = 0.0625000 k( 28) = ( 0.3750000 -0.6453669 -0.1524828), wk = 0.0625000 k( 29) = ( 0.3750000 -0.3576115 0.0514837), wk = 0.0625000 k( 30) = ( 0.3750000 -0.3576115 0.3564493), wk = 0.0625000 k( 31) = ( 0.3750000 -0.3576115 -0.5584473), wk = 0.0625000 k( 32) = ( 0.3750000 -0.3576115 -0.2534818), wk = 0.0625000 Dense grid: 4159 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.3 secs per-process dynamical memory: 2.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.0 secs total energy = -25.43995377 Ry Harris-Foulkes estimate = -25.44370976 Ry estimated scf accuracy < 0.01555766 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.2 secs total energy = -25.44008188 Ry Harris-Foulkes estimate = -25.44026393 Ry estimated scf accuracy < 0.00088611 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.86E-06, avg # of iterations = 1.8 total cpu time spent up to now is 1.5 secs total energy = -25.44011454 Ry Harris-Foulkes estimate = -25.44011592 Ry estimated scf accuracy < 0.00000522 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.22E-08, avg # of iterations = 3.1 total cpu time spent up to now is 1.9 secs total energy = -25.44012210 Ry Harris-Foulkes estimate = -25.44012241 Ry estimated scf accuracy < 0.00000067 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.69E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.2 secs End of self-consistent calculation k = 0.1250 0.0726 0.0515 ( 531 PWs) bands (ev): -6.9960 4.5196 5.9667 5.9667 8.4360 11.0403 11.7601 11.7602 16.5645 k = 0.1250 0.0726 0.3564 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7170 k = 0.1250 0.0726-0.5584 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250 0.0726-0.2535 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250 0.3604-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1250 0.3604 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1250 0.3604-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250 0.3604-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.5029 0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1250-0.5029 0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.1250-0.5029-0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.1250-0.5029-0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151 0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.1250-0.2151 0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.4574 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.1250-0.2151-0.1525 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.3750-0.0699-0.0495 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.3750-0.0699 0.2555 ( 519 PWs) bands (ev): -5.5427 1.1264 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750-0.0699-0.6594 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.0699-0.3545 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750 0.2179-0.1505 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.3750 0.2179 0.1545 ( 522 PWs) bands (ev): -5.8586 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1191 17.3944 k = 0.3750 0.2179-0.7604 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750 0.2179-0.4555 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.6454 0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.6454 0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.3750-0.6454-0.4574 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 k = 0.3750-0.6454-0.1525 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576 0.0515 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.3750-0.3576 0.3564 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.3750-0.3576-0.5584 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.3750-0.3576-0.2535 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7262 the Fermi energy is 10.0033 ev ! total energy = -25.44012218 Ry Harris-Foulkes estimate = -25.44012218 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.10311786 -0.05991789 -0.04247081 atom 2 type 1 force = 0.10311786 0.05991789 0.04247081 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.52 0.00123597 -0.00028343 -0.00020091 181.82 -41.69 -29.55 -0.00028343 0.00155904 -0.00011672 -41.69 229.34 -17.17 -0.00020091 -0.00011672 0.00164099 -29.55 -17.17 241.40 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 1 time = 0.00000 pico-seconds new lattice vectors (alat unit) : 0.979275245 -0.002715711 -0.001925011 0.482552933 0.852132527 -0.001924849 0.482552881 0.280394619 0.804681633 new unit-cell volume = 232.0702 (a.u.)^3 new positions in cryst coord As 0.288386144 0.288386159 0.288386166 As -0.288386144 -0.288386159 -0.288386166 new positions in cart coord (alat unit) As 0.560732574 0.325821982 0.230948804 As -0.560732574 -0.325821982 -0.230948804 Ekin = 0.00000000 Ry T = 0.0 K Etot = -24.60612472 new unit-cell volume = 232.07021 a.u.^3 ( 34.38926 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.979275245 -0.002715711 -0.001925011 0.482552933 0.852132527 -0.001924849 0.482552881 0.280394619 0.804681633 ATOMIC_POSITIONS (crystal) As 0.288386144 0.288386159 0.288386166 As -0.288386144 -0.288386159 -0.288386166 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1279552 0.0743503 0.0527009), wk = 0.0625000 k( 2) = ( 0.1285659 0.0747051 0.3628929), wk = 0.0625000 k( 3) = ( 0.1267337 0.0736406 -0.5676831), wk = 0.0625000 k( 4) = ( 0.1273445 0.0739954 -0.2574911), wk = 0.0625000 k( 5) = ( 0.1285659 0.3671547 -0.0496943), wk = 0.0625000 k( 6) = ( 0.1291767 0.3675095 0.2604977), wk = 0.0625000 k( 7) = ( 0.1273444 0.3664451 -0.6700782), wk = 0.0625000 k( 8) = ( 0.1279552 0.3667999 -0.3598863), wk = 0.0625000 k( 9) = ( 0.1267338 -0.5112586 0.2574912), wk = 0.0625000 k( 10) = ( 0.1273445 -0.5109038 0.5676832), wk = 0.0625000 k( 11) = ( 0.1255123 -0.5119683 -0.3628928), wk = 0.0625000 k( 12) = ( 0.1261230 -0.5116135 -0.0527008), wk = 0.0625000 k( 13) = ( 0.1273445 -0.2184542 0.1550960), wk = 0.0625000 k( 14) = ( 0.1279552 -0.2180994 0.4652880), wk = 0.0625000 k( 15) = ( 0.1261230 -0.2191638 -0.4652879), wk = 0.0625000 k( 16) = ( 0.1267337 -0.2188090 -0.1550960), wk = 0.0625000 k( 17) = ( 0.3826442 -0.0701085 -0.0496942), wk = 0.0625000 k( 18) = ( 0.3832549 -0.0697537 0.2604978), wk = 0.0625000 k( 19) = ( 0.3814227 -0.0708181 -0.6700782), wk = 0.0625000 k( 20) = ( 0.3820334 -0.0704633 -0.3598862), wk = 0.0625000 k( 21) = ( 0.3832549 0.2226960 -0.1520893), wk = 0.0625000 k( 22) = ( 0.3838656 0.2230508 0.1581026), wk = 0.0625000 k( 23) = ( 0.3820334 0.2219863 -0.7724733), wk = 0.0625000 k( 24) = ( 0.3826441 0.2223412 -0.4622813), wk = 0.0625000 k( 25) = ( 0.3814227 -0.6557174 0.1550961), wk = 0.0625000 k( 26) = ( 0.3820335 -0.6553626 0.4652881), wk = 0.0625000 k( 27) = ( 0.3802012 -0.6564270 -0.4652879), wk = 0.0625000 k( 28) = ( 0.3808120 -0.6560722 -0.1550959), wk = 0.0625000 k( 29) = ( 0.3820334 -0.3629129 0.0527010), wk = 0.0625000 k( 30) = ( 0.3826442 -0.3625581 0.3628930), wk = 0.0625000 k( 31) = ( 0.3808119 -0.3636226 -0.5676830), wk = 0.0625000 k( 32) = ( 0.3814227 -0.3632678 -0.2574910), wk = 0.0625000 extrapolated charge 9.42691, renormalised to 10.00000 total cpu time spent up to now is 2.5 secs per-process dynamical memory: 3.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 3.1 secs total energy = -25.42251869 Ry Harris-Foulkes estimate = -25.06269473 Ry estimated scf accuracy < 0.00179425 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-05, avg # of iterations = 3.1 total cpu time spent up to now is 3.6 secs total energy = -25.42512977 Ry Harris-Foulkes estimate = -25.42560359 Ry estimated scf accuracy < 0.00109850 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 1.0 total cpu time spent up to now is 3.8 secs total energy = -25.42510343 Ry Harris-Foulkes estimate = -25.42518770 Ry estimated scf accuracy < 0.00020010 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.1 secs total energy = -25.42509493 Ry Harris-Foulkes estimate = -25.42511641 Ry estimated scf accuracy < 0.00003627 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.63E-07, avg # of iterations = 3.0 total cpu time spent up to now is 4.4 secs total energy = -25.42510802 Ry Harris-Foulkes estimate = -25.42510823 Ry estimated scf accuracy < 0.00000106 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-08, avg # of iterations = 1.1 total cpu time spent up to now is 4.7 secs total energy = -25.42510774 Ry Harris-Foulkes estimate = -25.42510803 Ry estimated scf accuracy < 0.00000055 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-09, avg # of iterations = 2.0 total cpu time spent up to now is 5.0 secs End of self-consistent calculation k = 0.1280 0.0744 0.0527 ( 531 PWs) bands (ev): -6.6362 5.5053 6.7247 6.7247 9.4283 12.0072 12.6618 12.6618 17.2969 k = 0.1286 0.0747 0.3629 ( 522 PWs) bands (ev): -5.4982 1.0575 6.0202 6.4486 10.2527 11.4591 12.4142 14.5987 16.6366 k = 0.1267 0.0736-0.5677 ( 520 PWs) bands (ev): -3.8389 -1.9396 5.5141 6.8119 8.6766 11.8382 13.2939 14.7676 18.8229 k = 0.1273 0.0740-0.2575 ( 525 PWs) bands (ev): -5.9918 2.1078 5.6819 8.0027 9.2885 11.8006 13.4880 14.9501 16.2973 k = 0.1286 0.3672-0.0497 ( 522 PWs) bands (ev): -5.4982 1.0575 6.0202 6.4486 10.2527 11.4591 12.4142 14.5987 16.6365 k = 0.1292 0.3675 0.2605 ( 519 PWs) bands (ev): -5.0655 1.9296 4.1045 4.9089 8.1218 11.2893 14.7604 14.8740 17.7932 k = 0.1273 0.3664-0.6701 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.1280 0.3668-0.3599 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.1267-0.5113 0.2575 ( 520 PWs) bands (ev): -3.8388 -1.9396 5.5141 6.8119 8.6766 11.8382 13.2939 14.7676 18.8229 k = 0.1273-0.5109 0.5677 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.1255-0.5120-0.3629 ( 510 PWs) bands (ev): -3.4959 -0.8306 4.2046 4.2949 6.6035 10.8966 16.9763 18.8839 19.6708 k = 0.1261-0.5116-0.0527 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.1273-0.2185 0.1551 ( 525 PWs) bands (ev): -5.9918 2.1078 5.6819 8.0027 9.2885 11.8006 13.4880 14.9501 16.2973 k = 0.1280-0.2181 0.4653 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.1261-0.2192-0.4653 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.1267-0.2188-0.1551 ( 525 PWs) bands (ev): -5.9918 2.1078 5.6819 8.0027 9.2885 11.8006 13.4880 14.9501 16.2973 k = 0.3826-0.0701-0.0497 ( 522 PWs) bands (ev): -5.4982 1.0575 6.0202 6.4486 10.2527 11.4591 12.4142 14.5987 16.6365 k = 0.3833-0.0698 0.2605 ( 519 PWs) bands (ev): -5.0655 1.9296 4.1045 4.9089 8.1218 11.2893 14.7604 14.8740 17.7932 k = 0.3814-0.0708-0.6701 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.3820-0.0705-0.3599 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.3833 0.2227-0.1521 ( 519 PWs) bands (ev): -5.0655 1.9296 4.1045 4.9089 8.1218 11.2893 14.7604 14.8740 17.7932 k = 0.3839 0.2231 0.1581 ( 522 PWs) bands (ev): -5.3526 1.3108 6.6337 6.6337 8.4952 10.7707 10.7707 12.9974 18.4444 k = 0.3820 0.2220-0.7725 ( 520 PWs) bands (ev): -4.2572 0.5261 2.8789 5.4510 8.2022 12.7724 12.8745 15.6037 18.6690 k = 0.3826 0.2223-0.4623 ( 510 PWs) bands (ev): -3.4959 -0.8306 4.2046 4.2949 6.6035 10.8966 16.9763 18.8839 19.6708 k = 0.3814-0.6557 0.1551 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.3820-0.6554 0.4653 ( 520 PWs) bands (ev): -4.2572 0.5261 2.8789 5.4510 8.2022 12.7724 12.8745 15.6037 18.6690 k = 0.3802-0.6564-0.4653 ( 520 PWs) bands (ev): -4.2572 0.5261 2.8789 5.4510 8.2022 12.7724 12.8745 15.6037 18.6690 k = 0.3808-0.6561-0.1551 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.3820-0.3629 0.0527 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.3826-0.3626 0.3629 ( 510 PWs) bands (ev): -3.4959 -0.8306 4.2046 4.2949 6.6035 10.8966 16.9763 18.8839 19.6708 k = 0.3808-0.3636-0.5677 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.3814-0.3633-0.2575 ( 520 PWs) bands (ev): -3.8389 -1.9396 5.5141 6.8119 8.6766 11.8382 13.2939 14.7676 18.8229 the Fermi energy is 10.7136 ev ! total energy = -25.42510781 Ry Harris-Foulkes estimate = -25.42510781 Ry estimated scf accuracy < 4.1E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.11171128 -0.06491152 -0.04601045 atom 2 type 1 force = 0.11171128 0.06491152 0.04601045 Total force = 0.193958 Total SCF correction = 0.000003 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 299.79 0.00173673 -0.00035176 -0.00024934 255.48 -51.75 -36.68 -0.00035176 0.00213771 -0.00014488 -51.75 314.47 -21.31 -0.00024934 -0.00014488 0.00223942 -36.68 -21.31 329.43 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 2 time = 0.00726 pico-seconds new lattice vectors (alat unit) : 0.932269060 -0.010851768 -0.007692089 0.452208108 0.815322480 -0.007691761 0.452207985 0.262762373 0.771858885 new unit-cell volume = 204.7567 (a.u.)^3 new positions in cryst coord As 0.283819478 0.283819506 0.283819525 As -0.283819478 -0.283819506 -0.283819525 new positions in cart coord (alat unit) As 0.521287055 0.302901572 0.214702385 As -0.521287055 -0.302901572 -0.214702385 Ekin = 0.03043221 Ry T = 1067.7 K Etot = -24.60588486 new unit-cell volume = 204.75667 a.u.^3 ( 30.34181 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.932269060 -0.010851768 -0.007692089 0.452208108 0.815322480 -0.007691761 0.452207985 0.262762373 0.771858885 ATOMIC_POSITIONS (crystal) As 0.283819478 0.283819506 0.283819525 As -0.283819478 -0.283819506 -0.283819525 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1354580 0.0787099 0.0557911), wk = 0.0625000 k( 2) = ( 0.1381312 0.0802631 0.3775896), wk = 0.0625000 k( 3) = ( 0.1301116 0.0756035 -0.5878059), wk = 0.0625000 k( 4) = ( 0.1327848 0.0771567 -0.2660074), wk = 0.0625000 k( 5) = ( 0.1381311 0.3828628 -0.0493172), wk = 0.0625000 k( 6) = ( 0.1408044 0.3844160 0.2724813), wk = 0.0625000 k( 7) = ( 0.1327847 0.3797564 -0.6929142), wk = 0.0625000 k( 8) = ( 0.1354579 0.3813096 -0.3711157), wk = 0.0625000 k( 9) = ( 0.1301117 -0.5295960 0.2660076), wk = 0.0625000 k( 10) = ( 0.1327849 -0.5280428 0.5878061), wk = 0.0625000 k( 11) = ( 0.1247653 -0.5327023 -0.3775894), wk = 0.0625000 k( 12) = ( 0.1274385 -0.5311491 -0.0557909), wk = 0.0625000 k( 13) = ( 0.1327848 -0.2254430 0.1608993), wk = 0.0625000 k( 14) = ( 0.1354581 -0.2238899 0.4826978), wk = 0.0625000 k( 15) = ( 0.1274384 -0.2285494 -0.4826977), wk = 0.0625000 k( 16) = ( 0.1301116 -0.2269962 -0.1608992), wk = 0.0625000 k( 17) = ( 0.4010276 -0.0695765 -0.0493170), wk = 0.0625000 k( 18) = ( 0.4037008 -0.0680233 0.2724815), wk = 0.0625000 k( 19) = ( 0.3956812 -0.0726828 -0.6929140), wk = 0.0625000 k( 20) = ( 0.3983544 -0.0711297 -0.3711155), wk = 0.0625000 k( 21) = ( 0.4037007 0.2345764 -0.1544253), wk = 0.0625000 k( 22) = ( 0.4063740 0.2361296 0.1673732), wk = 0.0625000 k( 23) = ( 0.3983543 0.2314701 -0.7980223), wk = 0.0625000 k( 24) = ( 0.4010275 0.2330233 -0.4762238), wk = 0.0625000 k( 25) = ( 0.3956813 -0.6778823 0.1608995), wk = 0.0625000 k( 26) = ( 0.3983545 -0.6763291 0.4826980), wk = 0.0625000 k( 27) = ( 0.3903349 -0.6809887 -0.4826975), wk = 0.0625000 k( 28) = ( 0.3930081 -0.6794355 -0.1608990), wk = 0.0625000 k( 29) = ( 0.3983544 -0.3737294 0.0557912), wk = 0.0625000 k( 30) = ( 0.4010277 -0.3721762 0.3775897), wk = 0.0625000 k( 31) = ( 0.3930080 -0.3768358 -0.5878058), wk = 0.0625000 k( 32) = ( 0.3956812 -0.3752826 -0.2660073), wk = 0.0625000 extrapolated charge 8.66610, renormalised to 10.00000 total cpu time spent up to now is 5.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.3 total cpu time spent up to now is 6.0 secs total energy = -25.36409091 Ry Harris-Foulkes estimate = -24.44606232 Ry estimated scf accuracy < 0.00992644 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.93E-05, avg # of iterations = 2.8 total cpu time spent up to now is 6.4 secs total energy = -25.37482535 Ry Harris-Foulkes estimate = -25.37664041 Ry estimated scf accuracy < 0.00396951 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-05, avg # of iterations = 1.0 total cpu time spent up to now is 6.7 secs total energy = -25.37481348 Ry Harris-Foulkes estimate = -25.37508297 Ry estimated scf accuracy < 0.00054793 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-06, avg # of iterations = 1.6 total cpu time spent up to now is 7.0 secs total energy = -25.37485632 Ry Harris-Foulkes estimate = -25.37487321 Ry estimated scf accuracy < 0.00003007 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-07, avg # of iterations = 3.0 total cpu time spent up to now is 7.3 secs total energy = -25.37487646 Ry Harris-Foulkes estimate = -25.37487689 Ry estimated scf accuracy < 0.00000244 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 1.0 total cpu time spent up to now is 7.6 secs total energy = -25.37487570 Ry Harris-Foulkes estimate = -25.37487648 Ry estimated scf accuracy < 0.00000142 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-08, avg # of iterations = 1.8 total cpu time spent up to now is 7.9 secs End of self-consistent calculation k = 0.1355 0.0787 0.0558 ( 531 PWs) bands (ev): -5.7521 7.8337 8.5868 8.5868 11.9288 14.4502 14.8759 14.8759 18.9891 k = 0.1381 0.0803 0.3776 ( 522 PWs) bands (ev): -4.4519 2.6123 7.7419 8.4914 12.4618 13.8089 14.0228 17.0351 18.9841 k = 0.1301 0.0756-0.5878 ( 520 PWs) bands (ev): -2.6091 -0.6674 7.3475 8.4666 10.5623 14.3993 14.9541 17.1995 21.5210 k = 0.1328 0.0772-0.2660 ( 525 PWs) bands (ev): -5.0747 4.0436 7.3981 9.9345 11.2208 14.2878 15.9992 17.3215 18.6785 k = 0.1381 0.3829-0.0493 ( 522 PWs) bands (ev): -4.4519 2.6123 7.7419 8.4914 12.4618 13.8089 14.0228 17.0351 18.9845 k = 0.1408 0.3844 0.2725 ( 519 PWs) bands (ev): -3.8809 3.8726 5.5015 6.3824 9.5204 13.3530 17.1250 17.6971 19.8894 k = 0.1328 0.3798-0.6929 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.1355 0.3813-0.3711 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9498 19.3900 k = 0.1301-0.5296 0.2660 ( 520 PWs) bands (ev): -2.6091 -0.6674 7.3475 8.4666 10.5623 14.3993 14.9541 17.1995 21.5210 k = 0.1328-0.5280 0.5878 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.1248-0.5327-0.3776 ( 510 PWs) bands (ev): -2.1291 0.8630 5.3188 5.7175 8.0225 12.9694 19.5360 21.5425 22.6478 k = 0.1274-0.5311-0.0558 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9498 19.3900 k = 0.1328-0.2254 0.1609 ( 525 PWs) bands (ev): -5.0747 4.0436 7.3981 9.9345 11.2208 14.2878 15.9992 17.3215 18.6785 k = 0.1355-0.2239 0.4827 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9498 19.3900 k = 0.1274-0.2285-0.4827 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9498 19.3900 k = 0.1301-0.2270-0.1609 ( 525 PWs) bands (ev): -5.0747 4.0436 7.3981 9.9345 11.2208 14.2878 15.9992 17.3215 18.6784 k = 0.4010-0.0696-0.0493 ( 522 PWs) bands (ev): -4.4519 2.6123 7.7419 8.4914 12.4618 13.8089 14.0228 17.0351 18.9845 k = 0.4037-0.0680 0.2725 ( 519 PWs) bands (ev): -3.8809 3.8726 5.5015 6.3824 9.5204 13.3530 17.1250 17.6971 19.8894 k = 0.3957-0.0727-0.6929 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.3984-0.0711-0.3711 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9499 19.3900 k = 0.4037 0.2346-0.1544 ( 519 PWs) bands (ev): -3.8809 3.8726 5.5015 6.3824 9.5204 13.3530 17.1250 17.6971 19.8894 k = 0.4064 0.2361 0.1674 ( 522 PWs) bands (ev): -4.0635 2.4506 8.4748 8.4748 11.0475 12.4211 12.4211 15.0027 21.1259 k = 0.3984 0.2315-0.7980 ( 520 PWs) bands (ev): -2.7177 1.7924 4.0294 7.0848 9.8128 14.7736 15.3921 18.3782 20.8064 k = 0.4010 0.2330-0.4762 ( 510 PWs) bands (ev): -2.1291 0.8631 5.3188 5.7175 8.0225 12.9694 19.5360 21.5425 22.6478 k = 0.3957-0.6779 0.1609 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.3984-0.6763 0.4827 ( 520 PWs) bands (ev): -2.7177 1.7924 4.0294 7.0848 9.8128 14.7736 15.3921 18.3782 20.8064 k = 0.3903-0.6810-0.4827 ( 520 PWs) bands (ev): -2.7177 1.7924 4.0294 7.0848 9.8128 14.7736 15.3921 18.3782 20.8064 k = 0.3930-0.6794-0.1609 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.3984-0.3737 0.0558 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9499 19.3900 k = 0.4010-0.3722 0.3776 ( 510 PWs) bands (ev): -2.1291 0.8631 5.3188 5.7175 8.0225 12.9694 19.5360 21.5425 22.6478 k = 0.3930-0.3768-0.5878 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.3957-0.3753-0.2660 ( 520 PWs) bands (ev): -2.6091 -0.6674 7.3475 8.4666 10.5623 14.3993 14.9541 17.1995 21.5210 the Fermi energy is 12.4553 ev ! total energy = -25.37487589 Ry Harris-Foulkes estimate = -25.37487589 Ry estimated scf accuracy < 7.2E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.13007185 -0.07557807 -0.05357005 atom 2 type 1 force = 0.13007185 0.07557807 0.05357005 Total force = 0.225834 Total SCF correction = 0.000014 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 521.23 0.00311714 -0.00049762 -0.00035274 458.55 -73.20 -51.89 -0.00049762 0.00368438 -0.00020492 -73.20 541.99 -30.14 -0.00035274 -0.00020492 0.00382825 -51.89 -30.14 563.16 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 3 time = 0.01452 pico-seconds new lattice vectors (alat unit) : 0.879345305 -0.027201701 -0.019281615 0.411796889 0.777438474 -0.019280427 0.411796452 0.239281376 0.739950985 new unit-cell volume = 180.0788 (a.u.)^3 new positions in cryst coord As 0.275031585 0.275031812 0.275031933 As -0.275031585 -0.275031812 -0.275031933 new positions in cart coord (alat unit) As 0.468362152 0.272149005 0.192904366 As -0.468362152 -0.272149005 -0.192904366 Ekin = 0.07434724 Ry T = 1838.1 K Etot = -24.60457477 new unit-cell volume = 180.07879 a.u.^3 ( 26.68492 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.879345305 -0.027201701 -0.019281615 0.411796889 0.777438474 -0.019280427 0.411796452 0.239281376 0.739950985 ATOMIC_POSITIONS (crystal) As 0.275031585 0.275031812 0.275031933 As -0.275031585 -0.275031812 -0.275031933 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1460967 0.0848916 0.0601728), wk = 0.0625000 k( 2) = ( 0.1535173 0.0892030 0.3925091), wk = 0.0625000 k( 3) = ( 0.1312555 0.0762689 -0.6044999), wk = 0.0625000 k( 4) = ( 0.1386761 0.0805803 -0.2721635), wk = 0.0625000 k( 5) = ( 0.1535170 0.3999013 -0.0458229), wk = 0.0625000 k( 6) = ( 0.1609376 0.4042127 0.2865134), wk = 0.0625000 k( 7) = ( 0.1386758 0.3912786 -0.7104956), wk = 0.0625000 k( 8) = ( 0.1460964 0.3955900 -0.3781592), wk = 0.0625000 k( 9) = ( 0.1312560 -0.5451279 0.2721642), wk = 0.0625000 k( 10) = ( 0.1386766 -0.5408165 0.6045006), wk = 0.0625000 k( 11) = ( 0.1164148 -0.5537506 -0.3925085), wk = 0.0625000 k( 12) = ( 0.1238354 -0.5494392 -0.0601721), wk = 0.0625000 k( 13) = ( 0.1386763 -0.2301181 0.1661685), wk = 0.0625000 k( 14) = ( 0.1460969 -0.2258068 0.4985049), wk = 0.0625000 k( 15) = ( 0.1238352 -0.2387408 -0.4985042), wk = 0.0625000 k( 16) = ( 0.1312558 -0.2344295 -0.1661678), wk = 0.0625000 k( 17) = ( 0.4234491 -0.0646463 -0.0458222), wk = 0.0625000 k( 18) = ( 0.4308697 -0.0603349 0.2865141), wk = 0.0625000 k( 19) = ( 0.4086079 -0.0732690 -0.7104949), wk = 0.0625000 k( 20) = ( 0.4160285 -0.0689576 -0.3781586), wk = 0.0625000 k( 21) = ( 0.4308694 0.2503635 -0.1518179), wk = 0.0625000 k( 22) = ( 0.4382900 0.2546748 0.1805184), wk = 0.0625000 k( 23) = ( 0.4160283 0.2417408 -0.8164906), wk = 0.0625000 k( 24) = ( 0.4234489 0.2460521 -0.4841543), wk = 0.0625000 k( 25) = ( 0.4086084 -0.6946657 0.1661692), wk = 0.0625000 k( 26) = ( 0.4160290 -0.6903544 0.4985055), wk = 0.0625000 k( 27) = ( 0.3937673 -0.7032884 -0.4985035), wk = 0.0625000 k( 28) = ( 0.4011879 -0.6989771 -0.1661671), wk = 0.0625000 k( 29) = ( 0.4160288 -0.3796560 0.0601735), wk = 0.0625000 k( 30) = ( 0.4234494 -0.3753447 0.3925098), wk = 0.0625000 k( 31) = ( 0.4011876 -0.3882787 -0.6044992), wk = 0.0625000 k( 32) = ( 0.4086082 -0.3839674 -0.2721628), wk = 0.0625000 extrapolated charge 8.62966, renormalised to 10.00000 total cpu time spent up to now is 8.3 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.9 total cpu time spent up to now is 9.0 secs total energy = -25.30239889 Ry Harris-Foulkes estimate = -24.25923695 Ry estimated scf accuracy < 0.00874531 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.75E-05, avg # of iterations = 2.5 total cpu time spent up to now is 9.4 secs total energy = -25.30980277 Ry Harris-Foulkes estimate = -25.31092519 Ry estimated scf accuracy < 0.00246105 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-05, avg # of iterations = 1.0 total cpu time spent up to now is 9.6 secs total energy = -25.30977167 Ry Harris-Foulkes estimate = -25.30995505 Ry estimated scf accuracy < 0.00032283 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.23E-06, avg # of iterations = 2.4 total cpu time spent up to now is 10.0 secs total energy = -25.30983351 Ry Harris-Foulkes estimate = -25.30984427 Ry estimated scf accuracy < 0.00001929 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-07, avg # of iterations = 1.5 total cpu time spent up to now is 10.2 secs total energy = -25.30983565 Ry Harris-Foulkes estimate = -25.30983581 Ry estimated scf accuracy < 0.00000032 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-09, avg # of iterations = 3.0 total cpu time spent up to now is 10.6 secs End of self-consistent calculation k = 0.1461 0.0849 0.0602 ( 531 PWs) bands (ev): -4.6704 10.5386 10.7212 10.7212 14.7865 17.5539 17.5540 17.6062 20.5639 k = 0.1535 0.0892 0.3925 ( 522 PWs) bands (ev): -3.1757 4.2504 10.0971 11.2196 14.7106 15.3596 16.6589 19.6035 20.7628 k = 0.1313 0.0763-0.6045 ( 520 PWs) bands (ev): -1.1874 0.7889 9.6637 10.6490 12.4869 16.6351 17.6016 20.4462 24.8602 k = 0.1387 0.0806-0.2722 ( 525 PWs) bands (ev): -3.9875 6.2785 9.4000 11.8962 13.6720 17.6215 18.9914 19.9687 21.4730 k = 0.1535 0.3999-0.0458 ( 522 PWs) bands (ev): -3.1757 4.2504 10.0971 11.2196 14.7105 15.3596 16.6589 19.6035 20.7627 k = 0.1609 0.4042 0.2865 ( 519 PWs) bands (ev): -2.3931 6.1095 7.4451 7.9813 10.8076 15.8470 19.7005 20.7018 21.8444 k = 0.1387 0.3913-0.7105 ( 510 PWs) bands (ev): 0.2148 1.8487 5.2039 7.6915 12.9193 16.9846 18.4316 23.2002 24.3480 k = 0.1461 0.3956-0.3782 ( 521 PWs) bands (ev): -1.8042 2.5586 7.0648 10.1443 13.5351 17.5701 19.2280 20.0867 21.9687 k = 0.1313-0.5451 0.2722 ( 520 PWs) bands (ev): -1.1874 0.7889 9.6637 10.6490 12.4869 16.6351 17.6016 20.4462 24.8602 k = 0.1387-0.5408 0.6045 ( 510 PWs) bands (ev): 0.2148 1.8487 5.2039 7.6915 12.9193 16.9846 18.4316 23.2002 24.3480 k = 0.1164-0.5538-0.3925 ( 510 PWs) bands (ev): -0.5058 3.1558 6.3677 7.2913 9.5809 15.7266 22.3640 24.0997 26.0208 k = 0.1238-0.5494-0.0602 ( 521 PWs) bands (ev): -1.8042 2.5586 7.0648 10.1443 13.5352 17.5701 19.2281 20.0868 21.9687 k = 0.1387-0.2301 0.1662 ( 525 PWs) bands (ev): -3.9875 6.2785 9.4000 11.8962 13.6721 17.6215 18.9914 19.9687 21.4730 k = 0.1461-0.2258 0.4985 ( 521 PWs) bands (ev): -1.8042 2.5586 7.0648 10.1443 13.5351 17.5701 19.2280 20.0868 21.9687 k = 0.1238-0.2387-0.4985 ( 521 PWs) bands (ev): -1.8042 2.5587 7.0648 10.1443 13.5352 17.5701 19.2281 20.0868 21.9687 k = 0.1313-0.2344-0.1662 ( 525 PWs) bands (ev): -3.9875 6.2785 9.4001 11.8962 13.6720 17.6215 18.9914 19.9688 21.4730 k = 0.4234-0.0646-0.0458 ( 522 PWs) bands (ev): -3.1757 4.2503 10.0971 11.2196 14.7106 15.3596 16.6589 19.6035 20.7628 k = 0.4309-0.0603 0.2865 ( 519 PWs) bands (ev): -2.3931 6.1095 7.4451 7.9813 10.8076 15.8470 19.7005 20.7019 21.8444 k = 0.4086-0.0733-0.7105 ( 510 PWs) bands (ev): 0.2148 1.8487 5.2039 7.6915 12.9193 16.9846 18.4316 23.2002 24.3480 k = 0.4160-0.0690-0.3782 ( 521 PWs) bands (ev): -1.8042 2.5586 7.0648 10.1443 13.5352 17.5701 19.2280 20.0868 21.9687 k = 0.4309 0.2504-0.1518 ( 519 PWs) bands (ev): -2.3931 6.1095 7.4451 7.9813 10.8076 15.8470 19.7005 20.7019 21.8444 k = 0.4383 0.2547 0.1805 ( 522 PWs) bands (ev): -2.3376 3.8466 10.6090 10.6090 13.7251 14.0112 14.0112 16.7442 24.5892 k = 0.4160 0.2417-0.8165 ( 520 PWs) bands (ev): -0.5167 2.9306 5.4995 8.9534 11.3665 16.6441 18.2087 21.6895 23.1759 k = 0.4234 0.2461-0.4842 ( 510 PWs) bands (ev): -0.5058 3.1558 6.3677 7.2913 9.5809 15.7266 22.3640 24.0997 26.0209 k = 0.4086-0.6947 0.1662 ( 510 PWs) bands (ev): 0.2148 1.8487 5.2039 7.6915 12.9193 16.9846 18.4316 23.2002 24.3481 k = 0.4160-0.6904 0.4985 ( 520 PWs) bands (ev): -0.5167 2.9306 5.4995 8.9534 11.3665 16.6441 18.2087 21.6895 23.1760 k = 0.3938-0.7033-0.4985 ( 520 PWs) bands (ev): -0.5167 2.9306 5.4995 8.9535 11.3666 16.6441 18.2087 21.6894 23.1759 k = 0.4012-0.6990-0.1662 ( 510 PWs) bands (ev): 0.2148 1.8487 5.2039 7.6915 12.9193 16.9846 18.4316 23.2002 24.3480 k = 0.4160-0.3797 0.0602 ( 521 PWs) bands (ev): -1.8042 2.5586 7.0648 10.1443 13.5351 17.5701 19.2280 20.0868 21.9687 k = 0.4234-0.3753 0.3925 ( 510 PWs) bands (ev): -0.5058 3.1558 6.3677 7.2913 9.5809 15.7266 22.3640 24.0997 26.0209 k = 0.4012-0.3883-0.6045 ( 510 PWs) bands (ev): 0.2148 1.8487 5.2039 7.6915 12.9193 16.9846 18.4316 23.2002 24.3480 k = 0.4086-0.3840-0.2722 ( 520 PWs) bands (ev): -1.1874 0.7889 9.6637 10.6490 12.4869 16.6352 17.6016 20.4462 24.8602 the Fermi energy is 14.7246 ev ! total energy = -25.30983584 Ry Harris-Foulkes estimate = -25.30983584 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.10660001 -0.06193776 -0.04390568 atom 2 type 1 force = 0.10660001 0.06193776 0.04390568 Total force = 0.185081 Total SCF correction = 0.000033 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 822.22 0.00534301 -0.00028766 -0.00020395 785.98 -42.32 -30.00 -0.00028766 0.00567090 -0.00011836 -42.32 834.22 -17.41 -0.00020395 -0.00011836 0.00575406 -30.00 -17.41 846.45 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 4 time = 0.02178 pico-seconds new lattice vectors (alat unit) : 0.869580582 -0.045836028 -0.032491529 0.390772264 0.778181309 -0.032486776 0.390770557 0.227067038 0.745026421 new unit-cell volume = 183.1103 (a.u.)^3 new positions in cryst coord As 0.261876352 0.261877160 0.261877110 As -0.261876352 -0.261877160 -0.261877110 new positions in cart coord (alat unit) As 0.432390786 0.251248199 0.178089058 As -0.432390786 -0.251248199 -0.178089058 Ekin = 0.09820051 Ry T = 2373.9 K Etot = -24.59955987 new unit-cell volume = 183.11026 a.u.^3 ( 27.13414 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.869580582 -0.045836028 -0.032491529 0.390772264 0.778181309 -0.032486776 0.390770557 0.227067038 0.745026421 ATOMIC_POSITIONS (crystal) As 0.261876352 0.261877160 0.261877110 As -0.261876352 -0.261877160 -0.261877110 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1506814 0.0875555 0.0620611), wk = 0.0625000 k( 2) = ( 0.1632750 0.0948713 0.3887846), wk = 0.0625000 k( 3) = ( 0.1254944 0.0729239 -0.5913859), wk = 0.0625000 k( 4) = ( 0.1380879 0.0802397 -0.2646624), wk = 0.0625000 k( 5) = ( 0.1632740 0.3982648 -0.0392409), wk = 0.0625000 k( 6) = ( 0.1758675 0.4055806 0.2874827), wk = 0.0625000 k( 7) = ( 0.1380870 0.3836333 -0.6926879), wk = 0.0625000 k( 8) = ( 0.1506805 0.3909491 -0.3659644), wk = 0.0625000 k( 9) = ( 0.1254964 -0.5338632 0.2646651), wk = 0.0625000 k( 10) = ( 0.1380899 -0.5265475 0.5913886), wk = 0.0625000 k( 11) = ( 0.1003093 -0.5484948 -0.3887820), wk = 0.0625000 k( 12) = ( 0.1129029 -0.5411790 -0.0620585), wk = 0.0625000 k( 13) = ( 0.1380889 -0.2231539 0.1633631), wk = 0.0625000 k( 14) = ( 0.1506824 -0.2158381 0.4900866), wk = 0.0625000 k( 15) = ( 0.1129019 -0.2377854 -0.4900840), wk = 0.0625000 k( 16) = ( 0.1254954 -0.2304696 -0.1633604), wk = 0.0625000 k( 17) = ( 0.4268583 -0.0553587 -0.0392382), wk = 0.0625000 k( 18) = ( 0.4394518 -0.0480429 0.2874853), wk = 0.0625000 k( 19) = ( 0.4016713 -0.0699902 -0.6926853), wk = 0.0625000 k( 20) = ( 0.4142648 -0.0626745 -0.3659617), wk = 0.0625000 k( 21) = ( 0.4394508 0.2553507 -0.1405402), wk = 0.0625000 k( 22) = ( 0.4520443 0.2626664 0.1861833), wk = 0.0625000 k( 23) = ( 0.4142638 0.2407191 -0.7939872), wk = 0.0625000 k( 24) = ( 0.4268573 0.2480349 -0.4672637), wk = 0.0625000 k( 25) = ( 0.4016732 -0.6767774 0.1633657), wk = 0.0625000 k( 26) = ( 0.4142667 -0.6694616 0.4900892), wk = 0.0625000 k( 27) = ( 0.3764862 -0.6914089 -0.4900813), wk = 0.0625000 k( 28) = ( 0.3890797 -0.6840932 -0.1633578), wk = 0.0625000 k( 29) = ( 0.4142657 -0.3660680 0.0620637), wk = 0.0625000 k( 30) = ( 0.4268592 -0.3587523 0.3887873), wk = 0.0625000 k( 31) = ( 0.3890787 -0.3806996 -0.5913833), wk = 0.0625000 k( 32) = ( 0.4016722 -0.3733838 -0.2646598), wk = 0.0625000 extrapolated charge 10.16555, renormalised to 10.00000 total cpu time spent up to now is 11.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.0 total cpu time spent up to now is 11.7 secs total energy = -25.35567682 Ry Harris-Foulkes estimate = -25.48702428 Ry estimated scf accuracy < 0.00181959 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.82E-05, avg # of iterations = 1.3 total cpu time spent up to now is 12.0 secs total energy = -25.35586881 Ry Harris-Foulkes estimate = -25.35588758 Ry estimated scf accuracy < 0.00010534 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-06, avg # of iterations = 1.9 total cpu time spent up to now is 12.3 secs total energy = -25.35588114 Ry Harris-Foulkes estimate = -25.35588136 Ry estimated scf accuracy < 0.00000306 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.06E-08, avg # of iterations = 2.3 total cpu time spent up to now is 12.6 secs End of self-consistent calculation k = 0.1507 0.0876 0.0621 ( 531 PWs) bands (ev): -4.5512 10.2551 10.5070 10.5070 14.1892 17.7434 17.7436 18.0128 19.4420 k = 0.1633 0.0949 0.3888 ( 522 PWs) bands (ev): -3.0313 3.9054 10.5075 11.9981 13.8474 14.1060 16.0792 19.4558 20.3142 k = 0.1255 0.0729-0.5914 ( 520 PWs) bands (ev): -1.1575 0.7081 9.9343 10.9839 11.7671 15.7881 17.6998 20.4010 24.4687 k = 0.1381 0.0802-0.2647 ( 525 PWs) bands (ev): -3.9322 6.1526 9.2988 11.3976 13.6652 17.7145 19.0866 19.6149 20.6991 k = 0.1633 0.3983-0.0392 ( 522 PWs) bands (ev): -3.0313 3.9054 10.5075 11.9981 13.8474 14.1059 16.0791 19.4558 20.3141 k = 0.1759 0.4056 0.2875 ( 519 PWs) bands (ev): -2.1523 5.8950 7.6785 7.8095 9.9215 16.3402 19.1567 19.7977 20.1954 k = 0.1381 0.3836-0.6927 ( 510 PWs) bands (ev): 0.5507 1.6248 5.0588 7.6986 12.6539 16.2099 18.1834 23.1475 23.5083 k = 0.1507 0.3909-0.3660 ( 521 PWs) bands (ev): -1.7842 2.4357 7.4226 9.6166 13.7600 16.9442 19.5280 19.6599 21.1800 k = 0.1255-0.5339 0.2647 ( 520 PWs) bands (ev): -1.1574 0.7081 9.9342 10.9839 11.7670 15.7881 17.6997 20.4010 24.4687 k = 0.1381-0.5265 0.5914 ( 510 PWs) bands (ev): 0.5507 1.6248 5.0588 7.6986 12.6539 16.2098 18.1834 23.1475 23.5084 k = 0.1003-0.5485-0.3888 ( 510 PWs) bands (ev): -0.4478 3.9502 5.4305 7.0614 9.0965 16.5844 21.6910 22.4413 25.2293 k = 0.1129-0.5412-0.0621 ( 521 PWs) bands (ev): -1.7842 2.4358 7.4226 9.6166 13.7601 16.9442 19.5280 19.6598 21.1801 k = 0.1381-0.2232 0.1634 ( 525 PWs) bands (ev): -3.9322 6.1526 9.2988 11.3975 13.6652 17.7145 19.0866 19.6149 20.6991 k = 0.1507-0.2158 0.4901 ( 521 PWs) bands (ev): -1.7842 2.4357 7.4226 9.6167 13.7599 16.9441 19.5280 19.6599 21.1801 k = 0.1129-0.2378-0.4901 ( 521 PWs) bands (ev): -1.7842 2.4358 7.4226 9.6166 13.7601 16.9441 19.5280 19.6599 21.1803 k = 0.1255-0.2305-0.1634 ( 525 PWs) bands (ev): -3.9322 6.1526 9.2989 11.3976 13.6651 17.7145 19.0866 19.6150 20.6991 k = 0.4269-0.0554-0.0392 ( 522 PWs) bands (ev): -3.0313 3.9053 10.5075 11.9981 13.8474 14.1062 16.0793 19.4559 20.3142 k = 0.4395-0.0480 0.2875 ( 519 PWs) bands (ev): -2.1522 5.8948 7.6784 7.8096 9.9215 16.3402 19.1567 19.7979 20.1955 k = 0.4017-0.0700-0.6927 ( 510 PWs) bands (ev): 0.5508 1.6247 5.0588 7.6986 12.6538 16.2098 18.1833 23.1477 23.5085 k = 0.4143-0.0627-0.3660 ( 521 PWs) bands (ev): -1.7842 2.4358 7.4226 9.6167 13.7601 16.9441 19.5280 19.6600 21.1804 k = 0.4395 0.2554-0.1405 ( 519 PWs) bands (ev): -2.1522 5.8949 7.6784 7.8095 9.9215 16.3402 19.1567 19.7978 20.1954 k = 0.4520 0.2627 0.1862 ( 522 PWs) bands (ev): -1.8715 3.7282 10.5226 10.5227 13.1442 13.1443 13.2548 15.2158 24.6901 k = 0.4143 0.2407-0.7940 ( 520 PWs) bands (ev): 0.3299 2.2295 5.5605 8.8270 10.4996 15.7105 17.4736 20.9533 23.6039 k = 0.4269 0.2480-0.4673 ( 510 PWs) bands (ev): -0.4477 3.9502 5.4305 7.0613 9.0965 16.5844 21.6910 22.4413 25.2294 k = 0.4017-0.6768 0.1634 ( 510 PWs) bands (ev): 0.5507 1.6248 5.0587 7.6986 12.6538 16.2097 18.1833 23.1476 23.5086 k = 0.4143-0.6695 0.4901 ( 520 PWs) bands (ev): 0.3299 2.2295 5.5605 8.8270 10.4995 15.7105 17.4735 20.9535 23.6038 k = 0.3765-0.6914-0.4901 ( 520 PWs) bands (ev): 0.3299 2.2294 5.5605 8.8271 10.4997 15.7105 17.4736 20.9531 23.6039 k = 0.3891-0.6841-0.1634 ( 510 PWs) bands (ev): 0.5507 1.6247 5.0588 7.6986 12.6538 16.2100 18.1834 23.1475 23.5083 k = 0.4143-0.3661 0.0621 ( 521 PWs) bands (ev): -1.7842 2.4357 7.4226 9.6167 13.7600 16.9441 19.5280 19.6600 21.1803 k = 0.4269-0.3588 0.3888 ( 510 PWs) bands (ev): -0.4477 3.9501 5.4305 7.0613 9.0964 16.5844 21.6910 22.4413 25.2295 k = 0.3891-0.3807-0.5914 ( 510 PWs) bands (ev): 0.5508 1.6247 5.0588 7.6986 12.6538 16.2100 18.1834 23.1476 23.5084 k = 0.4017-0.3734-0.2647 ( 520 PWs) bands (ev): -1.1575 0.7080 9.9343 10.9839 11.7672 15.7882 17.6999 20.4009 24.4687 the Fermi energy is 13.8558 ev ! total energy = -25.35588195 Ry Harris-Foulkes estimate = -25.35588196 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.03556826 -0.02067346 -0.01465083 atom 2 type 1 force = 0.03556826 0.02067346 0.01465083 Total force = 0.061760 Total SCF correction = 0.000084 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 657.10 0.00459309 0.00014734 0.00010449 675.67 21.67 15.37 0.00014734 0.00442507 0.00006060 21.67 650.95 8.91 0.00010449 0.00006060 0.00438250 15.37 8.91 644.69 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 5 time = 0.02904 pico-seconds new lattice vectors (alat unit) : 0.895661181 -0.053057730 -0.037610900 0.397412550 0.804413872 -0.037604648 0.397410440 0.230925961 0.771474605 new unit-cell volume = 203.0072 (a.u.)^3 new positions in cryst coord As 0.247574298 0.247575210 0.247575190 As -0.247574298 -0.247575210 -0.247575190 new positions in cart coord (alat unit) As 0.418521149 0.243188741 0.172376501 As -0.418521149 -0.243188741 -0.172376501 Ekin = 0.13814828 Ry T = 2992.2 K Etot = -24.59535443 new unit-cell volume = 203.00718 a.u.^3 ( 30.08256 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.895661181 -0.053057730 -0.037610900 0.397412550 0.804413872 -0.037604648 0.397410440 0.230925961 0.771474605 ATOMIC_POSITIONS (crystal) As 0.247574298 0.247575210 0.247575190 As -0.247574298 -0.247575210 -0.247575190 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1471730 0.0855170 0.0606161), wk = 0.0625000 k( 2) = ( 0.1608558 0.0934653 0.3752433), wk = 0.0625000 k( 3) = ( 0.1198075 0.0696203 -0.5686381), wk = 0.0625000 k( 4) = ( 0.1334902 0.0775687 -0.2540110), wk = 0.0625000 k( 5) = ( 0.1608547 0.3850225 -0.0360829), wk = 0.0625000 k( 6) = ( 0.1745375 0.3929708 0.2785443), wk = 0.0625000 k( 7) = ( 0.1334892 0.3691259 -0.6653372), wk = 0.0625000 k( 8) = ( 0.1471719 0.3770742 -0.3507100), wk = 0.0625000 k( 9) = ( 0.1198097 -0.5134941 0.2540142), wk = 0.0625000 k( 10) = ( 0.1334924 -0.5055458 0.5686413), wk = 0.0625000 k( 11) = ( 0.0924441 -0.5293907 -0.3752401), wk = 0.0625000 k( 12) = ( 0.1061269 -0.5214424 -0.0606130), wk = 0.0625000 k( 13) = ( 0.1334913 -0.2139885 0.1573152), wk = 0.0625000 k( 14) = ( 0.1471741 -0.2060402 0.4719423), wk = 0.0625000 k( 15) = ( 0.1061258 -0.2298852 -0.4719391), wk = 0.0625000 k( 16) = ( 0.1198086 -0.2219369 -0.1573120), wk = 0.0625000 k( 17) = ( 0.4141546 -0.0509029 -0.0360797), wk = 0.0625000 k( 18) = ( 0.4278374 -0.0429546 0.2785474), wk = 0.0625000 k( 19) = ( 0.3867891 -0.0667995 -0.6653340), wk = 0.0625000 k( 20) = ( 0.4004718 -0.0588512 -0.3507068), wk = 0.0625000 k( 21) = ( 0.4278363 0.2486026 -0.1327787), wk = 0.0625000 k( 22) = ( 0.4415191 0.2565509 0.1818484), wk = 0.0625000 k( 23) = ( 0.4004707 0.2327060 -0.7620330), wk = 0.0625000 k( 24) = ( 0.4141535 0.2406543 -0.4474059), wk = 0.0625000 k( 25) = ( 0.3867913 -0.6499140 0.1573184), wk = 0.0625000 k( 26) = ( 0.4004740 -0.6419656 0.4719455), wk = 0.0625000 k( 27) = ( 0.3594257 -0.6658106 -0.4719359), wk = 0.0625000 k( 28) = ( 0.3731085 -0.6578623 -0.1573088), wk = 0.0625000 k( 29) = ( 0.4004729 -0.3504084 0.0606193), wk = 0.0625000 k( 30) = ( 0.4141557 -0.3424601 0.3752465), wk = 0.0625000 k( 31) = ( 0.3731074 -0.3663051 -0.5686350), wk = 0.0625000 k( 32) = ( 0.3867902 -0.3583568 -0.2540078), wk = 0.0625000 extrapolated charge 10.98007, renormalised to 10.00000 total cpu time spent up to now is 13.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.3 total cpu time spent up to now is 13.7 secs total energy = -25.42523253 Ry Harris-Foulkes estimate = -26.17451112 Ry estimated scf accuracy < 0.00376204 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.76E-05, avg # of iterations = 2.0 total cpu time spent up to now is 14.1 secs total energy = -25.42775411 Ry Harris-Foulkes estimate = -25.42809937 Ry estimated scf accuracy < 0.00092643 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.26E-06, avg # of iterations = 1.0 total cpu time spent up to now is 14.3 secs total energy = -25.42773877 Ry Harris-Foulkes estimate = -25.42778899 Ry estimated scf accuracy < 0.00011607 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.16E-06, avg # of iterations = 2.0 total cpu time spent up to now is 14.6 secs total energy = -25.42775308 Ry Harris-Foulkes estimate = -25.42775408 Ry estimated scf accuracy < 0.00000255 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.55E-08, avg # of iterations = 2.9 total cpu time spent up to now is 15.0 secs total energy = -25.42775357 Ry Harris-Foulkes estimate = -25.42775385 Ry estimated scf accuracy < 0.00000054 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.39E-09, avg # of iterations = 1.8 total cpu time spent up to now is 15.3 secs End of self-consistent calculation k = 0.1472 0.0855 0.0606 ( 531 PWs) bands (ev): -5.1341 7.8604 8.9769 8.9770 11.9856 15.9535 15.9537 15.9915 17.4932 k = 0.1609 0.0935 0.3752 ( 522 PWs) bands (ev): -3.7204 2.5151 9.0814 10.9812 11.4721 12.1450 13.5090 17.8948 18.5843 k = 0.1198 0.0696-0.5686 ( 520 PWs) bands (ev): -2.0162 -0.3522 8.6677 9.6737 9.8682 13.7512 15.4384 17.7858 22.1346 k = 0.1335 0.0776-0.2540 ( 525 PWs) bands (ev): -4.5737 4.4989 7.9445 9.7001 12.0024 14.9506 17.4132 17.5106 18.0998 k = 0.1609 0.3850-0.0361 ( 522 PWs) bands (ev): -3.7204 2.5152 9.0814 10.9812 11.4720 12.1449 13.5089 17.8948 18.5843 k = 0.1745 0.3930 0.2785 ( 519 PWs) bands (ev): -2.9026 4.0741 6.4386 6.7026 8.3253 15.1760 16.9714 17.1861 17.2711 k = 0.1335 0.3691-0.6653 ( 510 PWs) bands (ev): -0.4787 0.4150 4.1107 6.4821 10.7891 14.0811 16.6293 20.4281 20.5258 k = 0.1472 0.3771-0.3507 ( 521 PWs) bands (ev): -2.6031 1.1740 6.3527 8.1148 11.9484 14.7746 17.0393 18.0397 18.5838 k = 0.1198-0.5135 0.2540 ( 520 PWs) bands (ev): -2.0161 -0.3522 8.6677 9.6737 9.8681 13.7511 15.4383 17.7859 22.1346 k = 0.1335-0.5055 0.5686 ( 510 PWs) bands (ev): -0.4787 0.4151 4.1107 6.4821 10.7891 14.0809 16.6292 20.4283 20.5259 k = 0.0924-0.5294-0.3752 ( 510 PWs) bands (ev): -1.4429 2.8647 3.9635 5.8966 7.6618 15.4158 19.1276 19.3169 22.0728 k = 0.1061-0.5214-0.0606 ( 521 PWs) bands (ev): -2.6031 1.1740 6.3527 8.1148 11.9485 14.7746 17.0394 18.0397 18.5838 k = 0.1335-0.2140 0.1573 ( 525 PWs) bands (ev): -4.5737 4.4989 7.9445 9.7000 12.0025 14.9506 17.4131 17.5105 18.0998 k = 0.1472-0.2060 0.4719 ( 521 PWs) bands (ev): -2.6031 1.1739 6.3528 8.1149 11.9483 14.7746 17.0395 18.0396 18.5839 k = 0.1061-0.2299-0.4719 ( 521 PWs) bands (ev): -2.6032 1.1740 6.3527 8.1148 11.9486 14.7745 17.0395 18.0396 18.5840 k = 0.1198-0.2219-0.1573 ( 525 PWs) bands (ev): -4.5737 4.4989 7.9446 9.7001 12.0023 14.9506 17.4132 17.5107 18.0997 k = 0.4142-0.0509-0.0361 ( 522 PWs) bands (ev): -3.7205 2.5150 9.0815 10.9812 11.4721 12.1452 13.5090 17.8949 18.5844 k = 0.4278-0.0430 0.2785 ( 519 PWs) bands (ev): -2.9025 4.0739 6.4385 6.7027 8.3254 15.1761 16.9714 17.1861 17.2712 k = 0.3868-0.0668-0.6653 ( 510 PWs) bands (ev): -0.4786 0.4149 4.1107 6.4821 10.7890 14.0811 16.6291 20.4284 20.5261 k = 0.4005-0.0589-0.3507 ( 521 PWs) bands (ev): -2.6032 1.1740 6.3527 8.1149 11.9485 14.7745 17.0396 18.0396 18.5841 k = 0.4278 0.2486-0.1328 ( 519 PWs) bands (ev): -2.9026 4.0740 6.4385 6.7027 8.3253 15.1761 16.9714 17.1861 17.2712 k = 0.4415 0.2566 0.1818 ( 522 PWs) bands (ev): -2.5776 2.3473 9.1115 9.1116 11.3383 11.3545 11.3546 12.7042 22.2993 k = 0.4005 0.2327-0.7620 ( 520 PWs) bands (ev): -0.4175 0.6935 4.6624 7.5581 8.7433 13.6536 15.0704 18.3650 22.0384 k = 0.4142 0.2407-0.4474 ( 510 PWs) bands (ev): -1.4428 2.8646 3.9635 5.8966 7.6618 15.4158 19.1277 19.3169 22.0729 k = 0.3868-0.6499 0.1573 ( 510 PWs) bands (ev): -0.4787 0.4150 4.1107 6.4821 10.7890 14.0809 16.6291 20.4284 20.5260 k = 0.4005-0.6420 0.4719 ( 520 PWs) bands (ev): -0.4175 0.6936 4.6624 7.5580 8.7432 13.6536 15.0704 18.3652 22.0384 k = 0.3594-0.6658-0.4719 ( 520 PWs) bands (ev): -0.4175 0.6934 4.6624 7.5582 8.7434 13.6536 15.0705 18.3648 22.0383 k = 0.3731-0.6579-0.1573 ( 510 PWs) bands (ev): -0.4787 0.4149 4.1107 6.4822 10.7890 14.0813 16.6293 20.4281 20.5260 k = 0.4005-0.3504 0.0606 ( 521 PWs) bands (ev): -2.6031 1.1739 6.3528 8.1149 11.9484 14.7745 17.0396 18.0396 18.5840 k = 0.4142-0.3425 0.3752 ( 510 PWs) bands (ev): -1.4427 2.8645 3.9635 5.8965 7.6618 15.4159 19.1277 19.3169 22.0730 k = 0.3731-0.3663-0.5686 ( 510 PWs) bands (ev): -0.4786 0.4149 4.1107 6.4821 10.7890 14.0812 16.6292 20.4282 20.5261 k = 0.3868-0.3584-0.2540 ( 520 PWs) bands (ev): -2.0162 -0.3523 8.6678 9.6737 9.8683 13.7512 15.4385 17.7858 22.1346 the Fermi energy is 12.0008 ev ! total energy = -25.42775362 Ry Harris-Foulkes estimate = -25.42775362 Ry estimated scf accuracy < 6.1E-10 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00641936 0.00372949 0.00264384 atom 2 type 1 force = -0.00641936 -0.00372949 -0.00264384 Total force = 0.011145 Total SCF correction = 0.000009 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 345.16 0.00249149 0.00017008 0.00012010 366.51 25.02 17.67 0.00017008 0.00229848 0.00007048 25.02 338.12 10.37 0.00012010 0.00007048 0.00224904 17.67 10.37 330.85 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 6 time = 0.03630 pico-seconds new lattice vectors (alat unit) : 0.917617985 -0.049391277 -0.035019595 0.411470394 0.821683745 -0.035002464 0.411462097 0.239104290 0.786904993 new unit-cell volume = 215.7042 (a.u.)^3 new positions in cryst coord As 0.234421031 0.234422270 0.234422139 As -0.234421031 -0.234422270 -0.234422139 new positions in cart coord (alat unit) As 0.408022603 0.237093954 0.168053265 As -0.408022603 -0.237093954 -0.168053265 Ekin = 0.14832005 Ry T = 3434.6 K Etot = -24.58942607 new unit-cell volume = 215.70425 a.u.^3 ( 31.96407 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.917617985 -0.049391277 -0.035019595 0.411470394 0.821683745 -0.035002464 0.411462097 0.239104290 0.786904993 ATOMIC_POSITIONS (crystal) As 0.234421031 0.234422270 0.234422139 As -0.234421031 -0.234422270 -0.234422139 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1429395 0.0830554 0.0588723), wk = 0.0625000 k( 2) = ( 0.1551197 0.0901267 0.3680552), wk = 0.0625000 k( 3) = ( 0.1185793 0.0689128 -0.5594935), wk = 0.0625000 k( 4) = ( 0.1307594 0.0759841 -0.2503106), wk = 0.0625000 k( 5) = ( 0.1551153 0.3771339 -0.0368512), wk = 0.0625000 k( 6) = ( 0.1672955 0.3842052 0.2723317), wk = 0.0625000 k( 7) = ( 0.1307550 0.3629912 -0.6552170), wk = 0.0625000 k( 8) = ( 0.1429352 0.3700625 -0.3460341), wk = 0.0625000 k( 9) = ( 0.1185880 -0.5051015 0.2503192), wk = 0.0625000 k( 10) = ( 0.1307681 -0.4980301 0.5595021), wk = 0.0625000 k( 11) = ( 0.0942277 -0.5192441 -0.3680465), wk = 0.0625000 k( 12) = ( 0.1064078 -0.5121728 -0.0588636), wk = 0.0625000 k( 13) = ( 0.1307638 -0.2110230 0.1545958), wk = 0.0625000 k( 14) = ( 0.1429439 -0.2039517 0.4637786), wk = 0.0625000 k( 15) = ( 0.1064035 -0.2251657 -0.4637700), wk = 0.0625000 k( 16) = ( 0.1185836 -0.2180943 -0.1545871), wk = 0.0625000 k( 17) = ( 0.4044627 -0.0519835 -0.0368426), wk = 0.0625000 k( 18) = ( 0.4166429 -0.0449122 0.2723403), wk = 0.0625000 k( 19) = ( 0.3801024 -0.0661262 -0.6552083), wk = 0.0625000 k( 20) = ( 0.3922826 -0.0590548 -0.3460254), wk = 0.0625000 k( 21) = ( 0.4166385 0.2420949 -0.1325660), wk = 0.0625000 k( 22) = ( 0.4288186 0.2491662 0.1766168), wk = 0.0625000 k( 23) = ( 0.3922782 0.2279523 -0.7509318), wk = 0.0625000 k( 24) = ( 0.4044583 0.2350236 -0.4417489), wk = 0.0625000 k( 25) = ( 0.3801112 -0.6401404 0.1546044), wk = 0.0625000 k( 26) = ( 0.3922913 -0.6330691 0.4637873), wk = 0.0625000 k( 27) = ( 0.3557509 -0.6542830 -0.4637613), wk = 0.0625000 k( 28) = ( 0.3679310 -0.6472117 -0.1545785), wk = 0.0625000 k( 29) = ( 0.3922869 -0.3460620 0.0588809), wk = 0.0625000 k( 30) = ( 0.4044671 -0.3389906 0.3680638), wk = 0.0625000 k( 31) = ( 0.3679266 -0.3602046 -0.5594848), wk = 0.0625000 k( 32) = ( 0.3801068 -0.3531333 -0.2503019), wk = 0.0625000 extrapolated charge 10.58861, renormalised to 10.00000 total cpu time spent up to now is 15.6 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.0 total cpu time spent up to now is 16.3 secs total energy = -25.44782661 Ry Harris-Foulkes estimate = -25.87646341 Ry estimated scf accuracy < 0.00269612 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.70E-05, avg # of iterations = 2.2 total cpu time spent up to now is 16.7 secs total energy = -25.44858315 Ry Harris-Foulkes estimate = -25.44876741 Ry estimated scf accuracy < 0.00048253 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.83E-06, avg # of iterations = 1.0 total cpu time spent up to now is 16.9 secs total energy = -25.44860182 Ry Harris-Foulkes estimate = -25.44860717 Ry estimated scf accuracy < 0.00001887 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-07, avg # of iterations = 2.9 total cpu time spent up to now is 17.3 secs total energy = -25.44860561 Ry Harris-Foulkes estimate = -25.44860593 Ry estimated scf accuracy < 0.00000069 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.92E-09, avg # of iterations = 1.0 total cpu time spent up to now is 17.5 secs End of self-consistent calculation k = 0.1429 0.0831 0.0589 ( 531 PWs) bands (ev): -5.5675 6.6221 8.0644 8.0646 10.8939 14.3881 14.5886 14.5893 16.9088 k = 0.1551 0.0901 0.3681 ( 522 PWs) bands (ev): -4.2407 1.7759 8.0720 9.1997 11.1689 11.4514 12.2715 16.4613 17.6364 k = 0.1186 0.0689-0.5595 ( 520 PWs) bands (ev): -2.6174 -0.9751 7.6425 8.5400 9.2084 12.9978 13.9746 16.4868 20.7714 k = 0.1308 0.0760-0.2503 ( 525 PWs) bands (ev): -5.0186 3.5020 7.0916 8.8878 10.9011 13.7706 15.4545 16.2231 17.6046 k = 0.1551 0.3771-0.0369 ( 522 PWs) bands (ev): -4.2407 1.7761 8.0719 9.1997 11.1686 11.4513 12.2714 16.4614 17.6363 k = 0.1673 0.3842 0.2723 ( 519 PWs) bands (ev): -3.5096 3.0833 5.7510 5.7515 7.8668 13.6866 15.8157 15.8611 16.7386 k = 0.1308 0.3630-0.6552 ( 510 PWs) bands (ev): -1.3369 -0.2426 3.5873 5.7626 9.8032 13.0487 15.6298 18.8703 19.2300 k = 0.1429 0.3701-0.3460 ( 521 PWs) bands (ev): -3.1558 0.4097 5.4535 7.5078 10.7383 13.7821 15.6417 16.6707 17.6225 k = 0.1186-0.5051 0.2503 ( 520 PWs) bands (ev): -2.6173 -0.9752 7.6424 8.5401 9.2082 12.9977 13.9744 16.4871 20.7714 k = 0.1308-0.4980 0.5595 ( 510 PWs) bands (ev): -1.3368 -0.2425 3.5873 5.7626 9.8033 13.0482 15.6296 18.8705 19.2306 k = 0.0942-0.5192-0.3680 ( 510 PWs) bands (ev): -2.1212 1.5397 3.8082 5.2258 7.0012 13.9835 17.8688 18.5030 20.4876 k = 0.1064-0.5122-0.0589 ( 521 PWs) bands (ev): -3.1559 0.4099 5.4534 7.5076 10.7386 13.7820 15.6416 16.6708 17.6227 k = 0.1308-0.2110 0.1546 ( 525 PWs) bands (ev): -5.0185 3.5019 7.0916 8.8878 10.9014 13.7706 15.4544 16.2229 17.6045 k = 0.1429-0.2040 0.4638 ( 521 PWs) bands (ev): -3.1557 0.4096 5.4535 7.5080 10.7382 13.7818 15.6420 16.6706 17.6226 k = 0.1064-0.2252-0.4638 ( 521 PWs) bands (ev): -3.1560 0.4101 5.4533 7.5077 10.7387 13.7817 15.6417 16.6708 17.6231 k = 0.1186-0.2181-0.1546 ( 525 PWs) bands (ev): -5.0186 3.5021 7.0916 8.8879 10.9008 13.7706 15.4546 16.2233 17.6046 k = 0.4045-0.0520-0.0368 ( 522 PWs) bands (ev): -4.2407 1.7758 8.0721 9.1997 11.1691 11.4515 12.2715 16.4613 17.6366 k = 0.4166-0.0449 0.2723 ( 519 PWs) bands (ev): -3.5094 3.0827 5.7508 5.7519 7.8669 13.6867 15.8155 15.8615 16.7384 k = 0.3801-0.0661-0.6552 ( 510 PWs) bands (ev): -1.3365 -0.2428 3.5873 5.7624 9.8028 13.0482 15.6294 18.8712 19.2305 k = 0.3923-0.0591-0.3460 ( 521 PWs) bands (ev): -3.1559 0.4100 5.4533 7.5078 10.7385 13.7814 15.6420 16.6708 17.6231 k = 0.4166 0.2421-0.1326 ( 519 PWs) bands (ev): -3.5095 3.0830 5.7508 5.7517 7.8668 13.6867 15.8156 15.8613 16.7385 k = 0.4288 0.2492 0.1766 ( 522 PWs) bands (ev): -3.2830 1.6786 8.1348 8.1348 9.9163 10.6912 10.6917 12.1403 20.7486 k = 0.3923 0.2280-0.7509 ( 520 PWs) bands (ev): -1.5685 0.3795 4.0084 6.7495 8.0712 12.8042 13.8052 17.1710 20.1149 k = 0.4045 0.2350-0.4417 ( 510 PWs) bands (ev): -2.1209 1.5394 3.8082 5.2256 7.0011 13.9835 17.8688 18.5029 20.4880 k = 0.3801-0.6401 0.1546 ( 510 PWs) bands (ev): -1.3366 -0.2426 3.5873 5.7625 9.8031 13.0480 15.6294 18.8709 19.2308 k = 0.3923-0.6331 0.4638 ( 520 PWs) bands (ev): -1.5685 0.3797 4.0083 6.7494 8.0710 12.8042 13.8051 17.1716 20.1148 k = 0.3558-0.6543-0.4638 ( 520 PWs) bands (ev): -1.5685 0.3794 4.0084 6.7497 8.0715 12.8042 13.8053 17.1705 20.1150 k = 0.3679-0.6472-0.1546 ( 510 PWs) bands (ev): -1.3367 -0.2427 3.5874 5.7626 9.8030 13.0489 15.6298 18.8706 19.2298 k = 0.3923-0.3461 0.0589 ( 521 PWs) bands (ev): -3.1558 0.4098 5.4534 7.5080 10.7382 13.7815 15.6422 16.6707 17.6228 k = 0.4045-0.3390 0.3681 ( 510 PWs) bands (ev): -2.1207 1.5391 3.8082 5.2255 7.0010 13.9834 17.8688 18.5028 20.4884 k = 0.3679-0.3602-0.5595 ( 510 PWs) bands (ev): -1.3365 -0.2428 3.5873 5.7625 9.8028 13.0487 15.6296 18.8710 19.2301 k = 0.3801-0.3531-0.2503 ( 520 PWs) bands (ev): -2.6175 -0.9750 7.6426 8.5400 9.2085 12.9979 13.9748 16.4866 20.7713 the Fermi energy is 11.1551 ev ! total energy = -25.44860564 Ry Harris-Foulkes estimate = -25.44860565 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01556542 0.00901506 0.00640581 atom 2 type 1 force = -0.01556542 -0.00901506 -0.00640581 Total force = 0.027003 Total SCF correction = 0.000050 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 256.08 0.00201975 0.00032550 0.00023027 297.12 47.88 33.87 0.00032550 0.00164832 0.00013494 47.88 242.48 19.85 0.00023027 0.00013494 0.00155437 33.87 19.85 228.66 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 7 time = 0.04356 pico-seconds new lattice vectors (alat unit) : 0.928119557 -0.034353678 -0.024374839 0.429735074 0.823365326 -0.024332084 0.429715153 0.249736042 0.784960046 new unit-cell volume = 214.7912 (a.u.)^3 new positions in cryst coord As 0.222423303 0.222423613 0.222423973 As -0.222423303 -0.222423613 -0.222423973 new positions in cart coord (alat unit) As 0.397597597 0.231042114 0.163760370 As -0.397597597 -0.231042114 -0.163760370 Ekin = 0.11335712 Ry T = 3525.0 K Etot = -24.60208455 new unit-cell volume = 214.79117 a.u.^3 ( 31.82877 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.928119557 -0.034353678 -0.024374839 0.429735074 0.823365326 -0.024332084 0.429715153 0.249736042 0.784960046 ATOMIC_POSITIONS (crystal) As 0.222423303 0.222423613 0.222423973 As -0.222423303 -0.222423613 -0.222423973 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1391797 0.0808686 0.0573234), wk = 0.0625000 k( 2) = ( 0.1475626 0.0857240 0.3696771), wk = 0.0625000 k( 3) = ( 0.1224138 0.0711578 -0.5673839), wk = 0.0625000 k( 4) = ( 0.1307967 0.0760132 -0.2550303), wk = 0.0625000 k( 5) = ( 0.1475521 0.3772091 -0.0415411), wk = 0.0625000 k( 6) = ( 0.1559350 0.3820645 0.2708126), wk = 0.0625000 k( 7) = ( 0.1307862 0.3674983 -0.6662484), wk = 0.0625000 k( 8) = ( 0.1391691 0.3723537 -0.3538947), wk = 0.0625000 k( 9) = ( 0.1224349 -0.5118124 0.2550523), wk = 0.0625000 k( 10) = ( 0.1308178 -0.5069570 0.5674060), wk = 0.0625000 k( 11) = ( 0.1056690 -0.5215232 -0.3696550), wk = 0.0625000 k( 12) = ( 0.1140520 -0.5166678 -0.0573014), wk = 0.0625000 k( 13) = ( 0.1308073 -0.2154719 0.1561879), wk = 0.0625000 k( 14) = ( 0.1391902 -0.2106165 0.4685415), wk = 0.0625000 k( 15) = ( 0.1140414 -0.2251827 -0.4685195), wk = 0.0625000 k( 16) = ( 0.1224243 -0.2203273 -0.1561658), wk = 0.0625000 k( 17) = ( 0.4007837 -0.0585901 -0.0415190), wk = 0.0625000 k( 18) = ( 0.4091666 -0.0537347 0.2708347), wk = 0.0625000 k( 19) = ( 0.3840178 -0.0683009 -0.6662264), wk = 0.0625000 k( 20) = ( 0.3924008 -0.0634455 -0.3538727), wk = 0.0625000 k( 21) = ( 0.4091561 0.2377504 -0.1403835), wk = 0.0625000 k( 22) = ( 0.4175390 0.2426058 0.1719702), wk = 0.0625000 k( 23) = ( 0.3923902 0.2280396 -0.7650908), wk = 0.0625000 k( 24) = ( 0.4007732 0.2328950 -0.4527372), wk = 0.0625000 k( 25) = ( 0.3840389 -0.6512711 0.1562099), wk = 0.0625000 k( 26) = ( 0.3924219 -0.6464157 0.4685636), wk = 0.0625000 k( 27) = ( 0.3672730 -0.6609820 -0.4684974), wk = 0.0625000 k( 28) = ( 0.3756560 -0.6561266 -0.1561438), wk = 0.0625000 k( 29) = ( 0.3924113 -0.3549306 0.0573454), wk = 0.0625000 k( 30) = ( 0.4007943 -0.3500752 0.3696991), wk = 0.0625000 k( 31) = ( 0.3756454 -0.3646414 -0.5673619), wk = 0.0625000 k( 32) = ( 0.3840284 -0.3597860 -0.2550082), wk = 0.0625000 extrapolated charge 9.95749, renormalised to 10.00000 total cpu time spent up to now is 17.9 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.9 total cpu time spent up to now is 18.6 secs total energy = -25.43121420 Ry Harris-Foulkes estimate = -25.40166381 Ry estimated scf accuracy < 0.00124537 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-05, avg # of iterations = 1.0 total cpu time spent up to now is 18.9 secs total energy = -25.43132582 Ry Harris-Foulkes estimate = -25.43132873 Ry estimated scf accuracy < 0.00003486 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.49E-07, avg # of iterations = 2.2 total cpu time spent up to now is 19.2 secs total energy = -25.43133119 Ry Harris-Foulkes estimate = -25.43133114 Ry estimated scf accuracy < 0.00000134 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-08, avg # of iterations = 1.8 total cpu time spent up to now is 19.4 secs End of self-consistent calculation k = 0.1392 0.0809 0.0573 ( 531 PWs) bands (ev): -5.7640 6.9376 7.9653 7.9656 10.9373 13.9000 14.2795 14.2812 17.6071 k = 0.1476 0.0857 0.3697 ( 522 PWs) bands (ev): -4.4764 1.9031 7.7393 8.3689 11.3768 12.5223 12.5922 16.0639 17.7277 k = 0.1224 0.0712-0.5674 ( 520 PWs) bands (ev): -2.8126 -1.0053 7.1624 8.2446 9.5610 13.6907 13.7566 16.6969 20.6668 k = 0.1308 0.0760-0.2550 ( 525 PWs) bands (ev): -5.1716 3.4462 6.9299 9.1171 10.7228 14.1486 14.7167 16.3841 18.0072 k = 0.1476 0.3772-0.0415 ( 522 PWs) bands (ev): -4.4764 1.9034 7.7392 8.3688 11.3761 12.5219 12.5919 16.0640 17.7273 k = 0.1559 0.3821 0.2708 ( 519 PWs) bands (ev): -3.8325 3.1772 5.3720 5.7629 8.4643 12.9549 15.9987 16.1310 18.0051 k = 0.1308 0.3675-0.6662 ( 510 PWs) bands (ev): -1.7520 -0.2303 3.5798 5.7325 9.9250 13.3779 15.4909 18.8898 19.8063 k = 0.1392 0.3724-0.3539 ( 521 PWs) bands (ev): -3.3088 0.3340 5.0138 7.8826 10.4473 14.1809 15.7458 16.2229 18.1731 k = 0.1224-0.5118 0.2551 ( 520 PWs) bands (ev): -2.8121 -1.0057 7.1621 8.2448 9.5606 13.6903 13.7560 16.6974 20.6670 k = 0.1308-0.5070 0.5674 ( 510 PWs) bands (ev): -1.7518 -0.2304 3.5798 5.7324 9.9248 13.3767 15.4905 18.8898 19.8077 k = 0.1057-0.5215-0.3697 ( 510 PWs) bands (ev): -2.3217 0.8886 4.4432 5.1918 7.2441 13.0525 18.2564 19.7341 20.8816 k = 0.1141-0.5167-0.0573 ( 521 PWs) bands (ev): -3.3090 0.3346 5.0136 7.8823 10.4477 14.1810 15.7457 16.2231 18.1736 k = 0.1308-0.2155 0.1562 ( 525 PWs) bands (ev): -5.1715 3.4459 6.9298 9.1169 10.7237 14.1484 14.7168 16.3835 18.0071 k = 0.1392-0.2106 0.4685 ( 521 PWs) bands (ev): -3.3087 0.3339 5.0137 7.8832 10.4467 14.1802 15.7465 16.2227 18.1734 k = 0.1140-0.2252-0.4685 ( 521 PWs) bands (ev): -3.3092 0.3350 5.0133 7.8825 10.4477 14.1804 15.7464 16.2230 18.1744 k = 0.1224-0.2203-0.1562 ( 525 PWs) bands (ev): -5.1717 3.4465 6.9300 9.1172 10.7221 14.1487 14.7166 16.3846 18.0073 k = 0.4008-0.0586-0.0415 ( 522 PWs) bands (ev): -4.4765 1.9028 7.7395 8.3690 11.3774 12.5227 12.5925 16.0638 17.7281 k = 0.4092-0.0537 0.2708 ( 519 PWs) bands (ev): -3.8321 3.1759 5.3728 5.7624 8.4644 12.9550 15.9980 16.1321 18.0046 k = 0.3840-0.0683-0.6662 ( 510 PWs) bands (ev): -1.7511 -0.2310 3.5799 5.7322 9.9241 13.3765 15.4901 18.8913 19.8075 k = 0.3924-0.0634-0.3539 ( 521 PWs) bands (ev): -3.3092 0.3348 5.0132 7.8830 10.4472 14.1798 15.7471 16.2229 18.1747 k = 0.4092 0.2378-0.1404 ( 519 PWs) bands (ev): -3.8324 3.1765 5.3724 5.7627 8.4644 12.9549 15.9984 16.1316 18.0048 k = 0.4175 0.2426 0.1720 ( 522 PWs) bands (ev): -3.8082 1.9610 7.8983 7.8983 9.6992 11.2311 11.2325 13.2058 20.4459 k = 0.3924 0.2280-0.7651 ( 520 PWs) bands (ev): -2.3897 0.9661 3.7865 6.5946 8.5803 13.3660 13.9927 17.4103 19.7900 k = 0.4008 0.2329-0.4527 ( 510 PWs) bands (ev): -2.3210 0.8879 4.4433 5.1914 7.2438 13.0524 18.2563 19.7339 20.8824 k = 0.3840-0.6513 0.1562 ( 510 PWs) bands (ev): -1.7514 -0.2308 3.5799 5.7323 9.9244 13.3761 15.4901 18.8905 19.8082 k = 0.3924-0.6464 0.4686 ( 520 PWs) bands (ev): -2.3896 0.9664 3.7865 6.5942 8.5797 13.3659 13.9926 17.4112 19.7900 k = 0.3673-0.6610-0.4685 ( 520 PWs) bands (ev): -2.3898 0.9659 3.7866 6.5949 8.5808 13.3662 13.9928 17.4094 19.7901 k = 0.3757-0.6561-0.1561 ( 510 PWs) bands (ev): -1.7519 -0.2305 3.5799 5.7324 9.9247 13.3782 15.4909 18.8904 19.8057 k = 0.3924-0.3549 0.0573 ( 521 PWs) bands (ev): -3.3089 0.3343 5.0134 7.8834 10.4467 14.1797 15.7472 16.2227 18.1742 k = 0.4008-0.3501 0.3697 ( 510 PWs) bands (ev): -2.3204 0.8872 4.4434 5.1910 7.2435 13.0524 18.2562 19.7337 20.8832 k = 0.3756-0.3646-0.5674 ( 510 PWs) bands (ev): -1.7514 -0.2308 3.5799 5.7322 9.9242 13.3775 15.4905 18.8912 19.8062 k = 0.3840-0.3598-0.2550 ( 520 PWs) bands (ev): -2.8130 -1.0050 7.1627 8.2444 9.5614 13.6910 13.7571 16.6964 20.6666 the Fermi energy is 11.3625 ev ! total energy = -25.43133136 Ry Harris-Foulkes estimate = -25.43133136 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.07280848 0.04216663 0.02996436 atom 2 type 1 force = -0.07280848 -0.04216663 -0.02996436 Total force = 0.126309 Total SCF correction = 0.000012 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 324.50 0.00228247 0.00008833 0.00006214 335.76 12.99 9.14 0.00008833 0.00218012 0.00003771 12.99 320.71 5.55 0.00006214 0.00003771 0.00215520 9.14 5.55 317.04 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 8 time = 0.05082 pico-seconds new lattice vectors (alat unit) : 0.932462129 -0.011731864 -0.008362691 0.451539089 0.815921685 -0.008271625 0.451500623 0.262435532 0.772633129 new unit-cell volume = 205.3633 (a.u.)^3 new positions in cryst coord As 0.212919382 0.212907837 0.212914273 As -0.212919382 -0.212907837 -0.212914273 new positions in cart coord (alat unit) As 0.390806398 0.227094450 0.160962948 As -0.390806398 -0.227094450 -0.160962948 Ekin = 0.10076567 Ry T = 3526.5 K Etot = -24.60050523 new unit-cell volume = 205.36329 a.u.^3 ( 30.43170 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.932462129 -0.011731864 -0.008362691 0.451539089 0.815921685 -0.008271625 0.451500623 0.262435532 0.772633129 ATOMIC_POSITIONS (crystal) As 0.212919382 0.212907837 0.212914273 As -0.212919382 -0.212907837 -0.212914273 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1355452 0.0787549 0.0558262), wk = 0.0625000 k( 2) = ( 0.1384477 0.0804060 0.3771381), wk = 0.0625000 k( 3) = ( 0.1297404 0.0754526 -0.5867976), wk = 0.0625000 k( 4) = ( 0.1326428 0.0771037 -0.2654857), wk = 0.0625000 k( 5) = ( 0.1384264 0.3824993 -0.0490285), wk = 0.0625000 k( 6) = ( 0.1413289 0.3841505 0.2722834), wk = 0.0625000 k( 7) = ( 0.1326216 0.3791970 -0.6916523), wk = 0.0625000 k( 8) = ( 0.1355240 0.3808482 -0.3703404), wk = 0.0625000 k( 9) = ( 0.1297828 -0.5287341 0.2655356), wk = 0.0625000 k( 10) = ( 0.1326852 -0.5270829 0.5868475), wk = 0.0625000 k( 11) = ( 0.1239780 -0.5320364 -0.3770882), wk = 0.0625000 k( 12) = ( 0.1268804 -0.5303852 -0.0557763), wk = 0.0625000 k( 13) = ( 0.1326640 -0.2249896 0.1606809), wk = 0.0625000 k( 14) = ( 0.1355664 -0.2233385 0.4819928), wk = 0.0625000 k( 15) = ( 0.1268592 -0.2282919 -0.4819429), wk = 0.0625000 k( 16) = ( 0.1297616 -0.2266408 -0.1606310), wk = 0.0625000 k( 17) = ( 0.4008521 -0.0691310 -0.0489786), wk = 0.0625000 k( 18) = ( 0.4037545 -0.0674799 0.2723333), wk = 0.0625000 k( 19) = ( 0.3950472 -0.0724333 -0.6916025), wk = 0.0625000 k( 20) = ( 0.3979496 -0.0707822 -0.3702906), wk = 0.0625000 k( 21) = ( 0.4037333 0.2346134 -0.1538333), wk = 0.0625000 k( 22) = ( 0.4066357 0.2362646 0.1674786), wk = 0.0625000 k( 23) = ( 0.3979284 0.2313111 -0.7964572), wk = 0.0625000 k( 24) = ( 0.4008309 0.2329623 -0.4751452), wk = 0.0625000 k( 25) = ( 0.3950896 -0.6766200 0.1607308), wk = 0.0625000 k( 26) = ( 0.3979921 -0.6749688 0.4820427), wk = 0.0625000 k( 27) = ( 0.3892848 -0.6799223 -0.4818931), wk = 0.0625000 k( 28) = ( 0.3921872 -0.6782711 -0.1605812), wk = 0.0625000 k( 29) = ( 0.3979709 -0.3728755 0.0558761), wk = 0.0625000 k( 30) = ( 0.4008733 -0.3712244 0.3771880), wk = 0.0625000 k( 31) = ( 0.3921660 -0.3761778 -0.5867478), wk = 0.0625000 k( 32) = ( 0.3950684 -0.3745267 -0.2654359), wk = 0.0625000 extrapolated charge 9.54094, renormalised to 10.00000 total cpu time spent up to now is 19.8 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.8 total cpu time spent up to now is 20.5 secs total energy = -25.35910533 Ry Harris-Foulkes estimate = -25.04025876 Ry estimated scf accuracy < 0.00170458 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.70E-05, avg # of iterations = 2.6 total cpu time spent up to now is 20.9 secs total energy = -25.36036239 Ry Harris-Foulkes estimate = -25.36055828 Ry estimated scf accuracy < 0.00039554 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.96E-06, avg # of iterations = 1.2 total cpu time spent up to now is 21.2 secs total energy = -25.36038295 Ry Harris-Foulkes estimate = -25.36039726 Ry estimated scf accuracy < 0.00003221 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-07, avg # of iterations = 2.0 total cpu time spent up to now is 21.5 secs total energy = -25.36038730 Ry Harris-Foulkes estimate = -25.36038778 Ry estimated scf accuracy < 0.00000119 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-08, avg # of iterations = 2.5 total cpu time spent up to now is 21.8 secs End of self-consistent calculation k = 0.1355 0.0788 0.0558 ( 531 PWs) bands (ev): -5.8460 7.9036 8.3856 8.3857 11.8348 14.3276 14.6957 14.6987 19.0795 k = 0.1384 0.0804 0.3771 ( 522 PWs) bands (ev): -4.5611 2.5268 7.7399 8.2109 12.3819 13.7604 14.1826 16.8013 18.5480 k = 0.1297 0.0755-0.5868 ( 520 PWs) bands (ev): -2.7450 -0.7487 7.1083 8.4590 10.5579 14.2551 15.1397 17.3422 21.3696 k = 0.1326 0.0771-0.2655 ( 525 PWs) bands (ev): -5.1705 3.8952 7.2048 9.9749 11.1915 14.0736 16.1047 17.3405 18.6127 k = 0.1384 0.3825-0.0490 ( 522 PWs) bands (ev): -4.5610 2.5276 7.7398 8.2103 12.3801 13.7592 14.1819 16.8014 18.5469 k = 0.1413 0.3842 0.2723 ( 519 PWs) bands (ev): -4.0049 3.7971 5.4472 6.2203 9.6327 13.1281 17.0053 17.5286 20.0462 k = 0.1326 0.3792-0.6917 ( 510 PWs) bands (ev): -1.8898 0.1378 3.8405 6.1126 10.6757 14.6636 16.1057 19.5526 21.3055 k = 0.1355 0.3808-0.3703 ( 521 PWs) bands (ev): -3.2279 0.6432 4.9057 8.7848 10.6729 15.3957 16.3780 16.7959 19.4761 k = 0.1298-0.5287 0.2655 ( 520 PWs) bands (ev): -2.7440 -0.7493 7.1072 8.4598 10.5563 14.2536 15.1387 17.3431 21.3696 k = 0.1327-0.5271 0.5868 ( 510 PWs) bands (ev): -1.8892 0.1375 3.8405 6.1128 10.6751 14.6615 16.1042 19.5524 21.3082 k = 0.1240-0.5320-0.3771 ( 510 PWs) bands (ev): -2.2564 0.6571 5.4595 5.5561 8.0924 12.7610 19.5933 21.6967 22.6527 k = 0.1269-0.5304-0.0558 ( 521 PWs) bands (ev): -3.2285 0.6443 4.9053 8.7841 10.6736 15.3970 16.3783 16.7962 19.4769 k = 0.1327-0.2250 0.1607 ( 525 PWs) bands (ev): -5.1703 3.8951 7.2041 9.9741 11.1931 14.0731 16.1051 17.3395 18.6131 k = 0.1356-0.2233 0.4820 ( 521 PWs) bands (ev): -3.2278 0.6428 4.9058 8.7861 10.6718 15.3940 16.3771 16.7980 19.4772 k = 0.1269-0.2283-0.4819 ( 521 PWs) bands (ev): -3.2291 0.6450 4.9049 8.7848 10.6732 15.3966 16.3779 16.7986 19.4787 k = 0.1298-0.2266-0.1606 ( 525 PWs) bands (ev): -5.1707 3.8954 7.2054 9.9756 11.1900 14.0740 16.1044 17.3414 18.6123 k = 0.4009-0.0691-0.0490 ( 522 PWs) bands (ev): -4.5612 2.5260 7.7400 8.2115 12.3834 13.7615 14.1832 16.8012 18.5490 k = 0.4038-0.0675 0.2723 ( 519 PWs) bands (ev): -4.0042 3.7954 5.4482 6.2186 9.6327 13.1287 17.0043 17.5312 20.0455 k = 0.3950-0.0724-0.6916 ( 510 PWs) bands (ev): -1.8882 0.1365 3.8406 6.1126 10.6743 14.6598 16.1041 19.5534 21.3084 k = 0.3979-0.0708-0.3703 ( 521 PWs) bands (ev): -3.2289 0.6447 4.9050 8.7860 10.6722 15.3950 16.3772 16.8005 19.4797 k = 0.4037 0.2346-0.1538 ( 519 PWs) bands (ev): -4.0046 3.7963 5.4477 6.2194 9.6327 13.1284 17.0048 17.5298 20.0459 k = 0.4066 0.2363 0.1675 ( 522 PWs) bands (ev): -4.2096 2.5926 8.2351 8.2358 10.7943 12.4042 12.4069 15.0687 20.9999 k = 0.3979 0.2313-0.7965 ( 520 PWs) bands (ev): -2.9026 1.8935 3.9098 6.8866 9.8088 14.7720 15.2049 18.1547 20.8843 k = 0.4008 0.2330-0.4751 ( 510 PWs) bands (ev): -2.2551 0.6562 5.4596 5.5550 8.0916 12.7609 19.5932 21.6961 22.6536 k = 0.3951-0.6766 0.1607 ( 510 PWs) bands (ev): -1.8885 0.1368 3.8405 6.1128 10.6744 14.6596 16.1034 19.5528 21.3095 k = 0.3980-0.6750 0.4820 ( 520 PWs) bands (ev): -2.9024 1.8942 3.9098 6.8857 9.8073 14.7718 15.2049 18.1554 20.8852 k = 0.3893-0.6799-0.4819 ( 520 PWs) bands (ev): -2.9028 1.8929 3.9098 6.8875 9.8102 14.7722 15.2050 18.1541 20.8833 k = 0.3922-0.6783-0.1606 ( 510 PWs) bands (ev): -1.8896 0.1375 3.8406 6.1125 10.6756 14.6638 16.1063 19.5532 21.3045 k = 0.3980-0.3729 0.0559 ( 521 PWs) bands (ev): -3.2283 0.6435 4.9054 8.7867 10.6715 15.3937 16.3768 16.8002 19.4789 k = 0.4009-0.3712 0.3772 ( 510 PWs) bands (ev): -2.2537 0.6552 5.4597 5.5539 8.0908 12.7607 19.5931 21.6955 22.6546 k = 0.3922-0.3762-0.5867 ( 510 PWs) bands (ev): -1.8888 0.1369 3.8407 6.1124 10.6748 14.6618 16.1055 19.5536 21.3060 k = 0.3951-0.3745-0.2654 ( 520 PWs) bands (ev): -2.7460 -0.7482 7.1092 8.4582 10.5594 14.2566 15.1406 17.3413 21.3695 the Fermi energy is 12.3998 ev ! total energy = -25.36038786 Ry Harris-Foulkes estimate = -25.36038787 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.14010646 0.08149090 0.05771694 atom 2 type 1 force = -0.14010646 -0.08149090 -0.05771694 Total force = 0.243318 Total SCF correction = 0.000116 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 546.87 0.00320224 -0.00060282 -0.00043237 471.07 -88.68 -63.60 -0.00060282 0.00388764 -0.00023926 -88.68 571.89 -35.20 -0.00043237 -0.00023926 0.00406280 -63.60 -35.20 597.66 NEW FEATURE: constraints with variable cell ------------------------------------------- Entering Dynamics; it = 9 time = 0.05808 pico-seconds new lattice vectors (alat unit) : 0.942629687 0.005534946 0.003767339 0.471575097 0.816170953 0.004081286 0.471447266 0.274224818 0.768832789 new unit-cell volume = 202.4015 (a.u.)^3 new positions in cryst coord As 0.207414474 0.207398427 0.207407025 As -0.207414474 -0.207398427 -0.207407025 new positions in cart coord (alat unit) As 0.391100449 0.227296754 0.161089175 As -0.391100449 -0.227296754 -0.161089175 Ekin = 0.06401739 Ry T = 3366.5 K Etot = -24.59835471 new unit-cell volume = 202.40154 a.u.^3 ( 29.99281 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.942629687 0.005534946 0.003767339 0.471575097 0.816170953 0.004081286 0.471447266 0.274224818 0.768832789 ATOMIC_POSITIONS (crystal) As 0.207414474 0.207398427 0.207407025 As -0.207414474 -0.207398427 -0.207407025 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1319405 0.0766486 0.0543396), wk = 0.0625000 k( 2) = ( 0.1306417 0.0757675 0.3806185), wk = 0.0625000 k( 3) = ( 0.1345382 0.0784108 -0.5982183), wk = 0.0625000 k( 4) = ( 0.1332393 0.0775297 -0.2719394), wk = 0.0625000 k( 5) = ( 0.1305693 0.3842938 -0.0545495), wk = 0.0625000 k( 6) = ( 0.1292704 0.3834127 0.2717295), wk = 0.0625000 k( 7) = ( 0.1331669 0.3860560 -0.7071074), wk = 0.0625000 k( 8) = ( 0.1318681 0.3851749 -0.3808284), wk = 0.0625000 k( 9) = ( 0.1346830 -0.5386417 0.2721177), wk = 0.0625000 k( 10) = ( 0.1333842 -0.5395228 0.5983966), wk = 0.0625000 k( 11) = ( 0.1372807 -0.5368795 -0.3804402), wk = 0.0625000 k( 12) = ( 0.1359818 -0.5377606 -0.0541613), wk = 0.0625000 k( 13) = ( 0.1333118 -0.2309966 0.1632286), wk = 0.0625000 k( 14) = ( 0.1320129 -0.2318777 0.4895076), wk = 0.0625000 k( 15) = ( 0.1359094 -0.2292343 -0.4893293), wk = 0.0625000 k( 16) = ( 0.1346106 -0.2301155 -0.1630503), wk = 0.0625000 k( 17) = ( 0.3984916 -0.0768182 -0.0543711), wk = 0.0625000 k( 18) = ( 0.3971928 -0.0776993 0.2719078), wk = 0.0625000 k( 19) = ( 0.4010893 -0.0750560 -0.7069290), wk = 0.0625000 k( 20) = ( 0.3997904 -0.0759371 -0.3806501), wk = 0.0625000 k( 21) = ( 0.3971204 0.2308269 -0.1632602), wk = 0.0625000 k( 22) = ( 0.3958215 0.2299458 0.1630188), wk = 0.0625000 k( 23) = ( 0.3997180 0.2325892 -0.8158181), wk = 0.0625000 k( 24) = ( 0.3984192 0.2317080 -0.4895391), wk = 0.0625000 k( 25) = ( 0.4012341 -0.6921086 0.1634070), wk = 0.0625000 k( 26) = ( 0.3999353 -0.6929897 0.4896859), wk = 0.0625000 k( 27) = ( 0.4038318 -0.6903464 -0.4891509), wk = 0.0625000 k( 28) = ( 0.4025329 -0.6912275 -0.1628720), wk = 0.0625000 k( 29) = ( 0.3998629 -0.3844634 0.0545179), wk = 0.0625000 k( 30) = ( 0.3985640 -0.3853445 0.3807969), wk = 0.0625000 k( 31) = ( 0.4024605 -0.3827012 -0.5980400), wk = 0.0625000 k( 32) = ( 0.4011617 -0.3835823 -0.2717610), wk = 0.0625000 extrapolated charge 9.85368, renormalised to 10.00000 total cpu time spent up to now is 22.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.6 total cpu time spent up to now is 22.9 secs total energy = -25.30234368 Ry Harris-Foulkes estimate = -25.20223608 Ry estimated scf accuracy < 0.00057442 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.74E-06, avg # of iterations = 2.4 total cpu time spent up to now is 23.2 secs total energy = -25.30254706 Ry Harris-Foulkes estimate = -25.30258857 Ry estimated scf accuracy < 0.00008707 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.71E-07, avg # of iterations = 1.4 total cpu time spent up to now is 23.5 secs total energy = -25.30255469 Ry Harris-Foulkes estimate = -25.30255586 Ry estimated scf accuracy < 0.00000469 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.69E-08, avg # of iterations = 2.4 total cpu time spent up to now is 23.8 secs total energy = -25.30255551 Ry Harris-Foulkes estimate = -25.30255561 Ry estimated scf accuracy < 0.00000020 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.96E-09, avg # of iterations = 2.0 total cpu time spent up to now is 24.1 secs End of self-consistent calculation k = 0.1319 0.0766 0.0543 ( 531 PWs) bands (ev): -6.0767 7.9390 8.4094 8.4105 12.3385 14.3701 14.7179 14.7289 19.8733 k = 0.1306 0.0758 0.3806 ( 522 PWs) bands (ev): -4.8120 2.7004 7.4706 7.9010 12.7390 14.1628 15.0188 17.2536 18.9132 k = 0.1345 0.0784-0.5982 ( 520 PWs) bands (ev): -2.8932 -0.8198 6.8387 8.4074 10.9517 14.1904 15.8735 17.2487 21.2856 k = 0.1332 0.0775-0.2719 ( 525 PWs) bands (ev): -5.3434 3.8758 7.1422 10.1772 11.2910 13.6760 16.6679 17.6542 18.6561 k = 0.1306 0.3843-0.0545 ( 522 PWs) bands (ev): -4.8116 2.7032 7.4709 7.8983 12.7327 14.1578 15.0161 17.2545 18.9092 k = 0.1293 0.3834 0.2717 ( 519 PWs) bands (ev): -4.3374 3.8453 5.3589 6.3200 10.2173 13.1568 17.3656 18.1766 20.9935 k = 0.1332 0.3861-0.7071 ( 510 PWs) bands (ev): -2.2272 0.1422 3.8030 6.2042 10.9163 15.2989 16.3527 19.4393 21.7526 k = 0.1319 0.3852-0.3808 ( 521 PWs) bands (ev): -3.3639 0.5850 4.6209 9.1808 10.5098 15.9154 16.2326 17.1355 19.8503 k = 0.1347-0.5386 0.2721 ( 520 PWs) bands (ev): -2.8895 -0.8216 6.8347 8.4107 10.9452 14.1850 15.8693 17.2518 21.2849 k = 0.1334-0.5395 0.5984 ( 510 PWs) bands (ev): -2.2250 0.1407 3.8029 6.2054 10.9137 15.2919 16.3460 19.4385 21.7604 k = 0.1373-0.5369-0.3804 ( 510 PWs) bands (ev): -2.4505 0.2765 5.5927 5.9175 8.5012 12.4216 20.1082 22.2010 23.6070 k = 0.1360-0.5378-0.0542 ( 521 PWs) bands (ev): -3.3660 0.5885 4.6196 9.1786 10.5115 15.9212 16.2343 17.1376 19.8519 k = 0.1333-0.2310 0.1632 ( 525 PWs) bands (ev): -5.3427 3.8759 7.1394 10.1743 11.2958 13.6740 16.6695 17.6512 18.6587 k = 0.1320-0.2319 0.4895 ( 521 PWs) bands (ev): -3.3636 0.5838 4.6213 9.1855 10.5062 15.9084 16.2293 17.1435 19.8536 k = 0.1359-0.2292-0.4893 ( 521 PWs) bands (ev): -3.3679 0.5910 4.6186 9.1810 10.5097 15.9204 16.2329 17.1478 19.8568 k = 0.1346-0.2301-0.1631 ( 525 PWs) bands (ev): -5.3441 3.8756 7.1448 10.1798 11.2866 13.6779 16.6664 17.6570 18.6536 k = 0.3985-0.0768-0.0544 ( 522 PWs) bands (ev): -4.8124 2.6978 7.4704 7.9036 12.7449 14.1675 15.0213 17.2527 18.9168 k = 0.3972-0.0777 0.2719 ( 519 PWs) bands (ev): -4.3352 3.8426 5.3609 6.3133 10.2158 13.1593 17.3624 18.1861 20.9908 k = 0.4011-0.0751-0.7069 ( 510 PWs) bands (ev): -2.2221 0.1374 3.8037 6.2051 10.9129 15.2814 16.3475 19.4391 21.7600 k = 0.3998-0.0759-0.3807 ( 521 PWs) bands (ev): -3.3677 0.5899 4.6189 9.1854 10.5064 15.9139 16.2299 17.1552 19.8598 k = 0.3971 0.2308-0.1633 ( 519 PWs) bands (ev): -4.3363 3.8440 5.3598 6.3168 10.2165 13.1580 17.3640 18.1812 20.9922 k = 0.3958 0.2299 0.1630 ( 522 PWs) bands (ev): -4.7007 2.7676 8.2476 8.2503 11.4722 12.9170 12.9271 15.9815 21.0644 k = 0.3997 0.2326-0.8158 ( 520 PWs) bands (ev): -3.4616 2.2493 3.8753 6.8631 10.4193 15.4622 15.6760 18.2216 21.5420 k = 0.3984 0.2317-0.4895 ( 510 PWs) bands (ev): -2.4461 0.2738 5.5886 5.9183 8.4981 12.4206 20.1071 22.1975 23.6098 k = 0.4012-0.6921 0.1634 ( 510 PWs) bands (ev): -2.2226 0.1384 3.8032 6.2058 10.9121 15.2835 16.3435 19.4384 21.7639 k = 0.3999-0.6930 0.4897 ( 520 PWs) bands (ev): -3.4608 2.2516 3.8756 6.8595 10.4135 15.4614 15.6759 18.2227 21.5456 k = 0.4038-0.6903-0.4892 ( 520 PWs) bands (ev): -3.4623 2.2472 3.8750 6.8665 10.4246 15.4635 15.6755 18.2207 21.5388 k = 0.4025-0.6912-0.1629 ( 510 PWs) bands (ev): -2.2268 0.1414 3.8035 6.2035 10.9170 15.2970 16.3564 19.4400 21.7490 k = 0.3999-0.3845 0.0545 ( 521 PWs) bands (ev): -3.3654 0.5862 4.6203 9.1878 10.5046 15.9077 16.2280 17.1530 19.8581 k = 0.3986-0.3853 0.3808 ( 510 PWs) bands (ev): -2.4414 0.2708 5.5842 5.9190 8.4947 12.4195 20.1060 22.1937 23.6129 k = 0.4025-0.3827-0.5980 ( 510 PWs) bands (ev): -2.2242 0.1389 3.8038 6.2040 10.9153 15.2879 16.3537 19.4399 21.7528 k = 0.4012-0.3836-0.2718 ( 520 PWs) bands (ev): -2.8967 -0.8181 6.8424 8.4043 10.9578 14.1953 15.8774 17.2457 21.2862 the Fermi energy is 12.4771 ev ! total energy = -25.30255553 Ry Harris-Foulkes estimate = -25.30255553 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.16721857 0.09625489 0.06872709 atom 2 type 1 force = -0.16721857 -0.09625489 -0.06872709 Total force = 0.289657 Total SCF correction = 0.000018 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 648.68 0.00360355 -0.00094755 -0.00066509 530.10 -139.39 -97.84 -0.00094755 0.00467433 -0.00039767 -139.39 687.62 -58.50 -0.00066509 -0.00039767 0.00495103 -97.84 -58.50 728.32 NEW FEATURE: constraints with variable cell ------------------------------------------- Variable-cell Dynamics: 10 iterations completed, stopping Entering Dynamics; it = 10 time = 0.06534 pico-seconds new lattice vectors (alat unit) : 0.957807615 0.007901765 0.005439787 0.481147100 0.828022992 0.005822234 0.481015008 0.279795128 0.779531264 new unit-cell volume = 210.9505 (a.u.)^3 new positions in cryst coord As 0.206271703 0.206170848 0.206223281 As -0.206271703 -0.206170848 -0.206223281 new positions in cart coord (alat unit) As 0.395963607 0.230044383 0.163079944 As -0.395963607 -0.230044383 -0.163079944 Ekin = 0.01321730 Ry T = 3043.9 K Etot = -24.60138926 new unit-cell volume = 210.95052 a.u.^3 ( 31.25964 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.957807615 0.007901765 0.005439787 0.481147100 0.828022992 0.005822234 0.481015008 0.279795128 0.779531264 ATOMIC_POSITIONS (crystal) As 0.206271703 0.206170848 0.206223281 As -0.206271703 -0.206170848 -0.206223281 Writing output data file pwscf.save init_run : 0.22s CPU 0.23s WALL ( 1 calls) electrons : 20.06s CPU 20.53s WALL ( 10 calls) update_pot : 1.03s CPU 1.03s WALL ( 9 calls) forces : 0.62s CPU 0.62s WALL ( 10 calls) stress : 1.26s CPU 1.27s WALL ( 10 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 0.05s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 17.24s CPU 17.62s WALL ( 55 calls) sum_band : 2.60s CPU 2.66s WALL ( 55 calls) v_of_rho : 0.13s CPU 0.12s WALL ( 64 calls) mix_rho : 0.04s CPU 0.04s WALL ( 55 calls) Called by c_bands: init_us_2 : 0.51s CPU 0.51s WALL ( 4192 calls) cegterg : 16.85s CPU 17.14s WALL ( 1760 calls) Called by *egterg: h_psi : 12.21s CPU 12.36s WALL ( 6510 calls) g_psi : 0.67s CPU 0.65s WALL ( 4718 calls) cdiaghg : 1.62s CPU 1.49s WALL ( 6158 calls) Called by h_psi: add_vuspsi : 0.26s CPU 0.25s WALL ( 6510 calls) General routines calbec : 0.37s CPU 0.37s WALL ( 7150 calls) fft : 0.06s CPU 0.06s WALL ( 307 calls) fftw : 11.52s CPU 11.62s WALL ( 107984 calls) davcio : 0.02s CPU 0.16s WALL ( 5952 calls) PWSCF : 23.78s CPU 24.37s WALL This run was terminated on: 21:55:51 2Oct2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav6-kauto.in0000644000175000017500000000046412341373024017262 0ustar mbamba &control calculation='scf', / &system ibrav = 6, celldm(1) =10.0, celldm(3) = 2.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/relax-el.ref0000644000175000017500000010110212341373024015173 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:27:42 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/relax-el.in Presently no symmetry can be used with electric field file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file C.pz-rrkjus.UPF: wavefunction(s) 2S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2385 793 193 87655 16879 2103 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 5 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for C read from file: /home/giannozz/trunk/espresso/pseudo/C.pz-rrkjus.UPF MD5 check sum: a648be5dbf3fafdfb4e35f5396849845 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1425 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99940 O ( 1.00) C 4.00 12.01070 C ( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 -0.1100000 ) 2 C tau( 2) = ( 0.0000000 0.0000000 0.1100000 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 87655 G-vectors FFT dimensions: ( 60, 60, 60) Smooth grid: 16879 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 2103, 5) NL pseudopotentials 0.51 Mb ( 2103, 16) Each V/rho on FFT grid 3.30 Mb ( 216000) Each G-vector array 0.67 Mb ( 87655) G-vector shells 0.00 Mb ( 635) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 2103, 20) Each subspace H/S matrix 0.01 Mb ( 20, 20) Each matrix 0.00 Mb ( 16, 5) Arrays for rho mixing 26.37 Mb ( 216000, 8) Adding external electric field E field amplitude [Ha a.u.]: 1.0000E-03 Potential amp. 0.0180 Ry Total length 9.0000 bohr Initial potential from superposition of free atoms starting charge 9.99996, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 1.3 secs per-process dynamical memory: 43.4 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 total cpu time spent up to now is 1.8 secs total energy = -43.05880401 Ry Harris-Foulkes estimate = -43.17209775 Ry estimated scf accuracy < 0.20682944 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.07E-03, avg # of iterations = 4.0 negative rho (up, down): 0.259E-03 0.000E+00 total cpu time spent up to now is 2.3 secs total energy = -43.08760496 Ry Harris-Foulkes estimate = -43.16506846 Ry estimated scf accuracy < 0.20572372 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.06E-03, avg # of iterations = 2.0 negative rho (up, down): 0.106E-04 0.000E+00 total cpu time spent up to now is 2.7 secs total energy = -43.11976114 Ry Harris-Foulkes estimate = -43.12236322 Ry estimated scf accuracy < 0.00594316 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.94E-05, avg # of iterations = 3.0 negative rho (up, down): 0.456E-05 0.000E+00 total cpu time spent up to now is 3.2 secs total energy = -43.12352614 Ry Harris-Foulkes estimate = -43.12406769 Ry estimated scf accuracy < 0.00308951 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.09E-05, avg # of iterations = 1.0 total cpu time spent up to now is 3.7 secs total energy = -43.12242224 Ry Harris-Foulkes estimate = -43.12359281 Ry estimated scf accuracy < 0.00209224 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.09E-05, avg # of iterations = 2.0 total cpu time spent up to now is 4.1 secs total energy = -43.12296464 Ry Harris-Foulkes estimate = -43.12317487 Ry estimated scf accuracy < 0.00070633 Ry iteration # 7 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.06E-06, avg # of iterations = 2.0 negative rho (up, down): 0.109E-07 0.000E+00 total cpu time spent up to now is 4.6 secs total energy = -43.12297547 Ry Harris-Foulkes estimate = -43.12302115 Ry estimated scf accuracy < 0.00016452 Ry iteration # 8 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.65E-06, avg # of iterations = 3.0 total cpu time spent up to now is 5.1 secs total energy = -43.12301712 Ry Harris-Foulkes estimate = -43.12301807 Ry estimated scf accuracy < 0.00000300 Ry iteration # 9 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.00E-08, avg # of iterations = 2.0 total cpu time spent up to now is 5.5 secs total energy = -43.12301761 Ry Harris-Foulkes estimate = -43.12301786 Ry estimated scf accuracy < 0.00000091 Ry iteration # 10 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.15E-09, avg # of iterations = 3.0 total cpu time spent up to now is 6.0 secs total energy = -43.12301773 Ry Harris-Foulkes estimate = -43.12301775 Ry estimated scf accuracy < 0.00000011 Ry iteration # 11 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 4.0 total cpu time spent up to now is 6.5 secs total energy = -43.12301774 Ry Harris-Foulkes estimate = -43.12301780 Ry estimated scf accuracy < 0.00000043 Ry iteration # 12 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 1.0 total cpu time spent up to now is 6.9 secs total energy = -43.12301773 Ry Harris-Foulkes estimate = -43.12301775 Ry estimated scf accuracy < 0.00000024 Ry iteration # 13 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 1.0 total cpu time spent up to now is 7.4 secs total energy = -43.12301771 Ry Harris-Foulkes estimate = -43.12301773 Ry estimated scf accuracy < 0.00000018 Ry iteration # 14 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 1.0 total cpu time spent up to now is 7.9 secs total energy = -43.12301768 Ry Harris-Foulkes estimate = -43.12301772 Ry estimated scf accuracy < 0.00000011 Ry iteration # 15 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.07E-09, avg # of iterations = 3.0 total cpu time spent up to now is 8.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2103 PWs) bands (ev): -27.8000 -12.8530 -10.5718 -10.5718 -8.0073 ! total energy = -43.12301771 Ry Harris-Foulkes estimate = -43.12301772 Ry estimated scf accuracy < 7.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -57.17358204 Ry hartree contribution = 29.88182871 Ry xc contribution = -9.81279041 Ry ewald contribution = -6.03287397 Ry electric field correction = 0.01440000 Ry convergence has been achieved in 15 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000006 -0.00000007 0.11753844 atom 2 type 2 force = -0.00000006 0.00000007 -0.11753844 Total force = 0.166224 Total SCF correction = 0.000195 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.1230177103 Ry new trust radius = 0.1175384425 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) O 0.000000063 -0.000000070 -0.982461558 C -0.000000063 0.000000070 0.982461558 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential Adding external electric field E field amplitude [Ha a.u.]: 1.0000E-03 Potential amp. 0.0180 Ry Total length 9.0000 bohr total cpu time spent up to now is 9.2 secs per-process dynamical memory: 43.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.0 total cpu time spent up to now is 9.7 secs total energy = -43.07677514 Ry Harris-Foulkes estimate = -43.09327416 Ry estimated scf accuracy < 0.02933153 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.93E-04, avg # of iterations = 2.0 total cpu time spent up to now is 10.2 secs total energy = -43.08043707 Ry Harris-Foulkes estimate = -43.08087293 Ry estimated scf accuracy < 0.00117402 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.17E-05, avg # of iterations = 3.0 total cpu time spent up to now is 10.6 secs total energy = -43.08060035 Ry Harris-Foulkes estimate = -43.08081405 Ry estimated scf accuracy < 0.00060094 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.01E-06, avg # of iterations = 2.0 total cpu time spent up to now is 11.1 secs total energy = -43.08066536 Ry Harris-Foulkes estimate = -43.08067685 Ry estimated scf accuracy < 0.00005978 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.98E-07, avg # of iterations = 3.0 total cpu time spent up to now is 11.6 secs total energy = -43.08065886 Ry Harris-Foulkes estimate = -43.08069780 Ry estimated scf accuracy < 0.00008943 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.98E-07, avg # of iterations = 3.0 total cpu time spent up to now is 12.0 secs total energy = -43.08067565 Ry Harris-Foulkes estimate = -43.08067568 Ry estimated scf accuracy < 0.00000050 Ry iteration # 7 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.04E-09, avg # of iterations = 2.0 total cpu time spent up to now is 12.5 secs total energy = -43.08067584 Ry Harris-Foulkes estimate = -43.08067585 Ry estimated scf accuracy < 0.00000010 Ry iteration # 8 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.78E-10, avg # of iterations = 2.0 total cpu time spent up to now is 13.0 secs total energy = -43.08067584 Ry Harris-Foulkes estimate = -43.08067584 Ry estimated scf accuracy < 0.00000003 Ry iteration # 9 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.72E-10, avg # of iterations = 2.0 total cpu time spent up to now is 13.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2103 PWs) bands (ev): -29.7633 -12.8684 -11.7911 -11.7911 -7.7260 ! total energy = -43.08067584 Ry Harris-Foulkes estimate = -43.08067584 Ry estimated scf accuracy < 1.3E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -61.30746481 Ry hartree contribution = 31.81086010 Ry xc contribution = -10.06403890 Ry ewald contribution = -3.53396208 Ry electric field correction = 0.01392985 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000004 -0.00000004 -0.57554674 atom 2 type 2 force = -0.00000004 0.00000004 0.57554674 Total force = 0.813946 Total SCF correction = 0.000123 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.1230177103 Ry energy new = -43.0806758410 Ry CASE: energy _new > energy _old new trust radius = 0.0232066672 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) O 0.000000012 -0.000000014 -1.076793333 C -0.000000012 0.000000014 1.076793333 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential Adding external electric field E field amplitude [Ha a.u.]: 1.0000E-03 Potential amp. 0.0180 Ry Total length 9.0000 bohr total cpu time spent up to now is 14.3 secs per-process dynamical memory: 43.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.0 total cpu time spent up to now is 14.8 secs total energy = -43.12350353 Ry Harris-Foulkes estimate = -43.13471658 Ry estimated scf accuracy < 0.01996795 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.00E-04, avg # of iterations = 2.0 total cpu time spent up to now is 15.3 secs total energy = -43.12620086 Ry Harris-Foulkes estimate = -43.12646599 Ry estimated scf accuracy < 0.00083041 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.30E-06, avg # of iterations = 3.0 total cpu time spent up to now is 15.8 secs total energy = -43.12627892 Ry Harris-Foulkes estimate = -43.12648916 Ry estimated scf accuracy < 0.00069209 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.92E-06, avg # of iterations = 2.0 total cpu time spent up to now is 16.2 secs total energy = -43.12631976 Ry Harris-Foulkes estimate = -43.12634949 Ry estimated scf accuracy < 0.00007920 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.92E-07, avg # of iterations = 3.0 total cpu time spent up to now is 16.7 secs total energy = -43.12634298 Ry Harris-Foulkes estimate = -43.12639473 Ry estimated scf accuracy < 0.00020473 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.92E-07, avg # of iterations = 2.0 total cpu time spent up to now is 17.2 secs total energy = -43.12634159 Ry Harris-Foulkes estimate = -43.12635549 Ry estimated scf accuracy < 0.00003311 Ry iteration # 7 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.31E-07, avg # of iterations = 3.0 total cpu time spent up to now is 17.6 secs total energy = -43.12635022 Ry Harris-Foulkes estimate = -43.12635064 Ry estimated scf accuracy < 0.00000180 Ry iteration # 8 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.80E-08, avg # of iterations = 2.0 total cpu time spent up to now is 18.1 secs total energy = -43.12635015 Ry Harris-Foulkes estimate = -43.12635032 Ry estimated scf accuracy < 0.00000062 Ry iteration # 9 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.22E-09, avg # of iterations = 3.0 total cpu time spent up to now is 18.6 secs total energy = -43.12635025 Ry Harris-Foulkes estimate = -43.12635026 Ry estimated scf accuracy < 0.00000002 Ry iteration # 10 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.87E-10, avg # of iterations = 3.0 total cpu time spent up to now is 19.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2103 PWs) bands (ev): -28.1761 -12.8496 -10.7935 -10.7935 -7.9565 ! total energy = -43.12635026 Ry Harris-Foulkes estimate = -43.12635026 Ry estimated scf accuracy < 1.6E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -57.93151161 Ry hartree contribution = 30.23439301 Ry xc contribution = -9.85766028 Ry ewald contribution = -5.58587854 Ry electric field correction = 0.01430717 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.02344701 atom 2 type 2 force = 0.00000000 0.00000000 -0.02344701 Total force = 0.033159 Total SCF correction = 0.000068 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.1230177103 Ry energy new = -43.1263502600 Ry CASE: energy _new < energy _old new trust radius = 0.0057829600 bohr new conv_thr = 0.0000000023 Ry ATOMIC_POSITIONS (bohr) O -0.000000001 0.000000001 -1.071010373 C 0.000000001 -0.000000001 1.071010373 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential Adding external electric field E field amplitude [Ha a.u.]: 1.0000E-03 Potential amp. 0.0180 Ry Total length 9.0000 bohr total cpu time spent up to now is 19.9 secs per-process dynamical memory: 43.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 20.3 secs total energy = -43.12646412 Ry Harris-Foulkes estimate = -43.12649566 Ry estimated scf accuracy < 0.00005710 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.71E-07, avg # of iterations = 2.0 total cpu time spent up to now is 20.8 secs total energy = -43.12647078 Ry Harris-Foulkes estimate = -43.12647336 Ry estimated scf accuracy < 0.00000423 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.23E-08, avg # of iterations = 2.0 total cpu time spent up to now is 21.3 secs total energy = -43.12647134 Ry Harris-Foulkes estimate = -43.12647163 Ry estimated scf accuracy < 0.00000081 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.12E-09, avg # of iterations = 2.0 total cpu time spent up to now is 21.7 secs total energy = -43.12647144 Ry Harris-Foulkes estimate = -43.12647147 Ry estimated scf accuracy < 0.00000010 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.03E-09, avg # of iterations = 2.0 total cpu time spent up to now is 22.2 secs total energy = -43.12647144 Ry Harris-Foulkes estimate = -43.12647149 Ry estimated scf accuracy < 0.00000012 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.03E-09, avg # of iterations = 2.0 total cpu time spent up to now is 22.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2103 PWs) bands (ev): -28.2708 -12.8491 -10.8500 -10.8500 -7.9437 ! total energy = -43.12647146 Ry Harris-Foulkes estimate = -43.12647146 Ry estimated scf accuracy < 8.0E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -58.12453872 Ry hartree contribution = 30.32417392 Ry xc contribution = -9.86916882 Ry ewald contribution = -5.47122188 Ry electric field correction = 0.01428404 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00265915 atom 2 type 2 force = 0.00000000 0.00000000 0.00265915 Total force = 0.003761 Total SCF correction = 0.000032 number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.1263502600 Ry energy new = -43.1264714603 Ry CASE: energy _new < energy _old new trust radius = 0.0005890469 bohr new conv_thr = 0.0000000001 Ry ATOMIC_POSITIONS (bohr) O 0.000000001 -0.000000001 -1.071599420 C -0.000000001 0.000000001 1.071599420 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential Adding external electric field E field amplitude [Ha a.u.]: 1.0000E-03 Potential amp. 0.0180 Ry Total length 9.0000 bohr total cpu time spent up to now is 23.5 secs per-process dynamical memory: 43.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.09E-09, avg # of iterations = 1.0 total cpu time spent up to now is 24.2 secs total energy = -43.12647347 Ry Harris-Foulkes estimate = -43.12647383 Ry estimated scf accuracy < 0.00000065 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.49E-09, avg # of iterations = 2.0 total cpu time spent up to now is 24.6 secs total energy = -43.12647355 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.30E-10, avg # of iterations = 3.0 total cpu time spent up to now is 25.1 secs total energy = -43.12647355 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 0.00000002 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.69E-10, avg # of iterations = 2.0 total cpu time spent up to now is 25.6 secs total energy = -43.12647356 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 1.5E-09 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.45E-11, avg # of iterations = 3.0 total cpu time spent up to now is 26.0 secs total energy = -43.12647356 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 1.2E-09 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.23E-11, avg # of iterations = 1.0 total cpu time spent up to now is 26.5 secs total energy = -43.12647356 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 3.4E-10 Ry iteration # 7 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.44E-12, avg # of iterations = 3.0 total cpu time spent up to now is 27.0 secs total energy = -43.12647356 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 2.0E-10 Ry iteration # 8 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.96E-12, avg # of iterations = 1.0 total cpu time spent up to now is 27.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2103 PWs) bands (ev): -28.2611 -12.8491 -10.8442 -10.8442 -7.9450 ! total energy = -43.12647356 Ry Harris-Foulkes estimate = -43.12647356 Ry estimated scf accuracy < 7.0E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -58.10474695 Ry hartree contribution = 30.31492284 Ry xc contribution = -9.86797398 Ry ewald contribution = -5.48296186 Ry electric field correction = 0.01428640 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00005899 atom 2 type 2 force = 0.00000000 0.00000000 -0.00005899 Total force = 0.000083 Total SCF correction = 0.000019 SCF correction compared to forces is large: reduce conv_thr to get better values bfgs converged in 5 scf cycles and 3 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -43.1264735566 Ry Begin final coordinates ATOMIC_POSITIONS (bohr) O 0.000000001 -0.000000001 -1.071599420 C -0.000000001 0.000000001 1.071599420 End final coordinates Writing output data file pwscf.save init_run : 1.23s CPU 1.24s WALL ( 1 calls) electrons : 21.85s CPU 22.59s WALL ( 5 calls) update_pot : 0.61s CPU 0.62s WALL ( 4 calls) forces : 2.09s CPU 2.12s WALL ( 5 calls) Called by init_run: wfcinit : 0.02s CPU 0.01s WALL ( 1 calls) potinit : 0.09s CPU 0.10s WALL ( 1 calls) Called by electrons: c_bands : 1.50s CPU 1.52s WALL ( 49 calls) sum_band : 8.47s CPU 8.75s WALL ( 49 calls) v_of_rho : 1.70s CPU 1.73s WALL ( 53 calls) newd : 9.01s CPU 9.29s WALL ( 53 calls) mix_rho : 0.87s CPU 0.88s WALL ( 49 calls) Called by c_bands: init_us_2 : 0.12s CPU 0.11s WALL ( 99 calls) cegterg : 1.38s CPU 1.40s WALL ( 49 calls) Called by *egterg: h_psi : 1.11s CPU 1.10s WALL ( 173 calls) s_psi : 0.06s CPU 0.04s WALL ( 173 calls) g_psi : 0.04s CPU 0.04s WALL ( 123 calls) cdiaghg : 0.01s CPU 0.02s WALL ( 167 calls) Called by h_psi: add_vuspsi : 0.06s CPU 0.07s WALL ( 173 calls) General routines calbec : 0.10s CPU 0.10s WALL ( 227 calls) fft : 1.73s CPU 1.74s WALL ( 475 calls) ffts : 0.04s CPU 0.04s WALL ( 102 calls) fftw : 0.46s CPU 0.52s WALL ( 1693 calls) interpolate : 0.66s CPU 0.68s WALL ( 102 calls) davcio : 0.00s CPU 0.01s WALL ( 48 calls) PWSCF : 26.86s CPU 27.89s WALL This run was terminated on: 11:28:10 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/vc-relax2.ref0000644000175000017500000040616712341373024015310 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:29:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/vc-relax2.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 349 349 121 4159 4159 833 bravais-lattice index = 0 lattice parameter (alat) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 nstep = 50 celldm(1)= 0.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.580130 0.000000 0.814524 ) a(2) = ( -0.290065 0.502407 0.814524 ) a(3) = ( -0.290065 -0.502407 0.814524 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.149169 0.000000 0.409237 ) b(2) = ( -0.574584 0.995209 0.409237 ) b(3) = ( -0.574584 -0.995209 0.409237 ) PseudoPot. # 1 for As read from file: /home/giannozz/trunk/espresso/pseudo/As.pz-bhs.UPF MD5 check sum: 451cd3365afcfc94d28b1934951c34a8 Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) cell mass = 0.00700 AMU/(a.u.)^2 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.7086605 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.7086605 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0050 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.1534638), wk = 0.0625000 k( 2) = ( -0.1436461 -0.2488023 0.2557731), wk = 0.1875000 k( 3) = ( 0.2872922 0.4976046 -0.0511547), wk = 0.1875000 k( 4) = ( 0.1436461 0.2488023 0.0511546), wk = 0.1875000 k( 5) = ( -0.2872922 0.0000000 0.3580823), wk = 0.1875000 k( 6) = ( 0.1436461 0.7464070 0.0511546), wk = 0.3750000 k( 7) = ( 0.0000000 0.4976046 0.1534638), wk = 0.3750000 k( 8) = ( 0.5745844 0.0000000 -0.2557731), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4603915), wk = 0.0625000 k( 10) = ( 0.4309383 0.7464070 0.1534638), wk = 0.1875000 Dense grid: 4159 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.2 secs per-process dynamical memory: 2.8 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 0.4 secs total energy = -25.43995304 Ry Harris-Foulkes estimate = -25.44370905 Ry estimated scf accuracy < 0.01555592 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.5 secs total energy = -25.44007840 Ry Harris-Foulkes estimate = -25.44026102 Ry estimated scf accuracy < 0.00088841 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.88E-06, avg # of iterations = 2.3 total cpu time spent up to now is 0.6 secs total energy = -25.44011434 Ry Harris-Foulkes estimate = -25.44011580 Ry estimated scf accuracy < 0.00000523 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.23E-08, avg # of iterations = 3.1 total cpu time spent up to now is 0.7 secs total energy = -25.44012214 Ry Harris-Foulkes estimate = -25.44012246 Ry estimated scf accuracy < 0.00000069 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.94E-09, avg # of iterations = 1.4 total cpu time spent up to now is 0.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.1535 ( 531 PWs) bands (ev): -6.9960 4.5196 5.9667 5.9667 8.4360 11.0403 11.7601 11.7601 16.5645 k =-0.1436-0.2488 0.2558 ( 522 PWs) bands (ev): -5.9250 0.3917 5.3512 5.6501 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.2873 0.4976-0.0512 ( 520 PWs) bands (ev): -4.3490 -2.4704 4.7883 6.1554 7.8796 10.8149 12.5849 13.8261 17.7262 k = 0.1436 0.2488 0.0512 ( 525 PWs) bands (ev): -6.3695 1.3043 4.9860 7.1720 8.5435 10.8049 12.4702 13.9612 15.3511 k =-0.2873 0.0000 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1264 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1436 0.7464 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3270 4.2466 8.0539 11.6204 13.3234 15.7202 17.3489 k = 0.0000 0.4976 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.5746 0.0000-0.2558 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.0000 0.0000 0.4604 ( 522 PWs) bands (ev): -5.8586 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1191 17.3944 k = 0.4309 0.7464 0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7700 the Fermi energy is 10.0033 ev ! total energy = -25.44012222 Ry Harris-Foulkes estimate = -25.44012223 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.12659777 atom 2 type 1 force = 0.00000000 0.00000000 0.12659777 Total force = 0.179036 Total SCF correction = 0.000024 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.52 0.00172374 0.00000000 0.00000000 253.57 0.00 0.00 0.00000000 0.00172374 0.00000000 0.00 253.57 0.00 0.00000000 0.00000000 0.00098853 0.00 0.00 145.42 Wentzcovitch Damped Cell-Dynamics Minimization convergence thresholds: EPSE = 0.10E-03 EPSF = 0.10E-02 EPSP = 0.50E+00 Entering Dynamics; it = 1 time = 0.00000 pico-seconds new lattice vectors (alat unit) : 0.570817823 0.000000000 0.795712276 -0.285408728 0.494342690 0.795712278 -0.285408728 -0.494342690 0.795712278 new unit-cell volume = 232.0702 (a.u.)^3 new positions in cryst coord As 0.288386168 0.288386167 0.288386167 As -0.288386168 -0.288386167 -0.288386167 new positions in cart coord (alat unit) As 0.000000107 0.000000000 0.688417242 As -0.000000107 0.000000000 -0.688417242 Ekin = 0.00000000 Ry T = 0.0 K Etot = -24.60612481 new unit-cell volume = 232.07022 a.u.^3 ( 34.38926 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.570817823 0.000000000 0.795712276 -0.285408728 0.494342690 0.795712278 -0.285408728 -0.494342690 0.795712278 ATOMIC_POSITIONS (crystal) As 0.288386168 0.288386167 0.288386167 As -0.288386168 -0.288386167 -0.288386167 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1570920), wk = 0.0625000 k( 2) = ( -0.1459894 -0.2528610 0.2618200), wk = 0.1875000 k( 3) = ( 0.2919788 0.5057221 -0.0523640), wk = 0.1875000 k( 4) = ( 0.1459894 0.2528610 0.0523640), wk = 0.1875000 k( 5) = ( -0.2919788 0.0000000 0.3665479), wk = 0.1875000 k( 6) = ( 0.1459894 0.7585831 0.0523640), wk = 0.3750000 k( 7) = ( 0.0000000 0.5057221 0.1570920), wk = 0.3750000 k( 8) = ( 0.5839576 0.0000000 -0.2618200), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4712759), wk = 0.0625000 k( 10) = ( 0.4379682 0.7585831 0.1570919), wk = 0.1875000 extrapolated charge 9.42691, renormalised to 10.00000 total cpu time spent up to now is 1.1 secs per-process dynamical memory: 3.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 1.2 secs total energy = -25.42251891 Ry Harris-Foulkes estimate = -25.06269548 Ry estimated scf accuracy < 0.00179419 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-05, avg # of iterations = 3.1 total cpu time spent up to now is 1.4 secs total energy = -25.42512981 Ry Harris-Foulkes estimate = -25.42560360 Ry estimated scf accuracy < 0.00109843 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 1.0 total cpu time spent up to now is 1.5 secs total energy = -25.42510347 Ry Harris-Foulkes estimate = -25.42518774 Ry estimated scf accuracy < 0.00020008 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-06, avg # of iterations = 1.0 total cpu time spent up to now is 1.6 secs total energy = -25.42509497 Ry Harris-Foulkes estimate = -25.42511645 Ry estimated scf accuracy < 0.00003626 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.63E-07, avg # of iterations = 3.0 total cpu time spent up to now is 1.7 secs total energy = -25.42510806 Ry Harris-Foulkes estimate = -25.42510827 Ry estimated scf accuracy < 0.00000106 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-08, avg # of iterations = 1.1 total cpu time spent up to now is 1.8 secs total energy = -25.42510778 Ry Harris-Foulkes estimate = -25.42510808 Ry estimated scf accuracy < 0.00000055 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.49E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1571 ( 531 PWs) bands (ev): -6.6362 5.5053 6.7247 6.7247 9.4284 12.0072 12.6618 12.6618 17.2969 k =-0.1460-0.2529 0.2618 ( 522 PWs) bands (ev): -5.4982 1.0575 6.0202 6.4486 10.2527 11.4591 12.4142 14.5987 16.6365 k = 0.2920 0.5057-0.0524 ( 520 PWs) bands (ev): -3.8388 -1.9396 5.5141 6.8119 8.6766 11.8382 13.2939 14.7676 18.8229 k = 0.1460 0.2529 0.0524 ( 525 PWs) bands (ev): -5.9918 2.1078 5.6819 8.0027 9.2885 11.8006 13.4880 14.9501 16.2973 k =-0.2920 0.0000 0.3665 ( 519 PWs) bands (ev): -5.0655 1.9296 4.1045 4.9089 8.1218 11.2893 14.7604 14.8740 17.7932 k = 0.1460 0.7586 0.0524 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7676 8.8006 12.5747 14.1899 16.8468 18.4536 k = 0.0000 0.5057 0.1571 ( 521 PWs) bands (ev): -4.2437 -0.8137 3.5838 7.2970 8.5969 13.2110 14.1762 14.3181 17.0482 k = 0.5840 0.0000-0.2618 ( 510 PWs) bands (ev): -3.4959 -0.8306 4.2046 4.2949 6.6035 10.8966 16.9763 18.8839 19.6708 k = 0.0000 0.0000 0.4713 ( 522 PWs) bands (ev): -5.3526 1.3108 6.6337 6.6337 8.4952 10.7707 10.7707 12.9974 18.4444 k = 0.4380 0.7586 0.1571 ( 520 PWs) bands (ev): -4.2572 0.5261 2.8789 5.4510 8.2022 12.7724 12.8745 15.6037 18.6690 the Fermi energy is 10.7136 ev ! total energy = -25.42510785 Ry Harris-Foulkes estimate = -25.42510785 Ry estimated scf accuracy < 4.2E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.13714908 atom 2 type 1 force = 0.00000000 0.00000000 0.13714908 Total force = 0.193958 Total SCF correction = 0.000004 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 299.79 0.00234211 0.00000000 0.00000000 344.54 0.00 0.00 0.00000000 0.00234211 0.00000000 0.00 344.54 0.00 0.00000000 0.00000000 0.00142963 0.00 0.00 210.31 Entering Dynamics; it = 2 time = 0.00726 pico-seconds new lattice vectors (alat unit) : 0.551671050 0.000000000 0.751639015 -0.275835358 0.477761098 0.751639025 -0.275835358 -0.477761098 0.751639025 new unit-cell volume = 204.7566 (a.u.)^3 new positions in cryst coord As 0.283819529 0.283819525 0.283819525 As -0.283819529 -0.283819525 -0.283819525 new positions in cart coord (alat unit) As 0.000000097 0.000000000 0.639989493 As -0.000000097 0.000000000 -0.639989493 Ekin = 0.03043213 Ry T = 1067.7 K Etot = -24.60588496 new unit-cell volume = 204.75665 a.u.^3 ( 30.34180 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.551671050 0.000000000 0.751639015 -0.275835358 0.477761098 0.751639025 -0.275835358 -0.477761098 0.751639025 ATOMIC_POSITIONS (crystal) As 0.283819529 0.283819525 0.283819525 As -0.283819529 -0.283819525 -0.283819525 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1663032), wk = 0.0625000 k( 2) = ( -0.1510562 -0.2616370 0.2771721), wk = 0.1875000 k( 3) = ( 0.3021125 0.5232741 -0.0554345), wk = 0.1875000 k( 4) = ( 0.1510562 0.2616370 0.0554344), wk = 0.1875000 k( 5) = ( -0.3021125 0.0000000 0.3880409), wk = 0.1875000 k( 6) = ( 0.1510562 0.7849111 0.0554344), wk = 0.3750000 k( 7) = ( 0.0000000 0.5232741 0.1663032), wk = 0.3750000 k( 8) = ( 0.6042249 0.0000000 -0.2771721), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4989097), wk = 0.0625000 k( 10) = ( 0.4531687 0.7849111 0.1663032), wk = 0.1875000 extrapolated charge 8.66610, renormalised to 10.00000 total cpu time spent up to now is 2.1 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.3 total cpu time spent up to now is 2.3 secs total energy = -25.36409080 Ry Harris-Foulkes estimate = -24.44606117 Ry estimated scf accuracy < 0.00992657 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.93E-05, avg # of iterations = 2.9 total cpu time spent up to now is 2.5 secs total energy = -25.37482527 Ry Harris-Foulkes estimate = -25.37664034 Ry estimated scf accuracy < 0.00396951 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-05, avg # of iterations = 1.0 total cpu time spent up to now is 2.6 secs total energy = -25.37481341 Ry Harris-Foulkes estimate = -25.37508289 Ry estimated scf accuracy < 0.00054793 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-06, avg # of iterations = 1.8 total cpu time spent up to now is 2.7 secs total energy = -25.37485625 Ry Harris-Foulkes estimate = -25.37487313 Ry estimated scf accuracy < 0.00003007 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-07, avg # of iterations = 2.9 total cpu time spent up to now is 2.8 secs total energy = -25.37487639 Ry Harris-Foulkes estimate = -25.37487682 Ry estimated scf accuracy < 0.00000244 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 1.1 total cpu time spent up to now is 2.9 secs total energy = -25.37487563 Ry Harris-Foulkes estimate = -25.37487641 Ry estimated scf accuracy < 0.00000142 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-08, avg # of iterations = 1.9 total cpu time spent up to now is 3.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.1663 ( 531 PWs) bands (ev): -5.7521 7.8337 8.5868 8.5868 11.9288 14.4502 14.8759 14.8759 18.9891 k =-0.1511-0.2616 0.2772 ( 522 PWs) bands (ev): -4.4519 2.6123 7.7419 8.4914 12.4618 13.8089 14.0228 17.0351 18.9845 k = 0.3021 0.5233-0.0554 ( 520 PWs) bands (ev): -2.6091 -0.6674 7.3475 8.4666 10.5623 14.3993 14.9541 17.1995 21.5210 k = 0.1511 0.2616 0.0554 ( 525 PWs) bands (ev): -5.0747 4.0436 7.3981 9.9345 11.2208 14.2878 15.9992 17.3215 18.6785 k =-0.3021 0.0000 0.3880 ( 519 PWs) bands (ev): -3.8809 3.8726 5.5015 6.3824 9.5204 13.3530 17.1250 17.6971 19.8894 k = 0.1511 0.7849 0.0554 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2290 19.6611 21.1950 k = 0.0000 0.5233 0.1663 ( 521 PWs) bands (ev): -3.1143 0.7703 5.0752 8.7028 10.7185 15.3242 16.4731 16.9499 19.3900 k = 0.6042 0.0000-0.2772 ( 510 PWs) bands (ev): -2.1291 0.8631 5.3188 5.7175 8.0225 12.9694 19.5360 21.5425 22.6478 k = 0.0000 0.0000 0.4989 ( 522 PWs) bands (ev): -4.0635 2.4507 8.4748 8.4748 11.0475 12.4211 12.4211 15.0027 21.1259 k = 0.4532 0.7849 0.1663 ( 520 PWs) bands (ev): -2.7177 1.7924 4.0294 7.0848 9.8128 14.7736 15.3921 18.3782 20.8064 the Fermi energy is 12.4553 ev ! total energy = -25.37487581 Ry Harris-Foulkes estimate = -25.37487581 Ry estimated scf accuracy < 6.2E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.15968889 atom 2 type 1 force = 0.00000000 0.00000000 0.15968889 Total force = 0.225834 Total SCF correction = 0.000010 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 521.23 0.00397352 0.00000000 0.00000000 584.53 0.00 0.00 0.00000000 0.00397352 0.00000000 0.00 584.53 0.00 0.00000000 0.00000000 0.00268271 0.00 0.00 394.64 Entering Dynamics; it = 3 time = 0.01452 pico-seconds new lattice vectors (alat unit) : 0.557922242 0.000000000 0.696904761 -0.278960964 0.483174788 0.696904788 -0.278960964 -0.483174788 0.696904788 new unit-cell volume = 194.1731 (a.u.)^3 new positions in cryst coord As 0.275031810 0.275031803 0.275031803 As -0.275031810 -0.275031803 -0.275031803 new positions in cart coord (alat unit) As 0.000000090 0.000000000 0.575012938 As -0.000000090 0.000000000 -0.575012938 Ekin = 0.07434736 Ry T = 1838.2 K Etot = -24.60457464 new unit-cell volume = 194.17312 a.u.^3 ( 28.77349 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.557922242 0.000000000 0.696904761 -0.278960964 0.483174788 0.696904788 -0.278960964 -0.483174788 0.696904788 ATOMIC_POSITIONS (crystal) As 0.275031810 0.275031803 0.275031803 As -0.275031810 -0.275031803 -0.275031803 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1793645), wk = 0.0625000 k( 2) = ( -0.1493637 -0.2587056 0.2989409), wk = 0.1875000 k( 3) = ( 0.2987275 0.5174111 -0.0597882), wk = 0.1875000 k( 4) = ( 0.1493637 0.2587056 0.0597882), wk = 0.1875000 k( 5) = ( -0.2987275 0.0000000 0.4185173), wk = 0.1875000 k( 6) = ( 0.1493637 0.7761167 0.0597882), wk = 0.3750000 k( 7) = ( 0.0000000 0.5174111 0.1793645), wk = 0.3750000 k( 8) = ( 0.5974549 0.0000000 -0.2989410), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5380936), wk = 0.0625000 k( 10) = ( 0.4480912 0.7761167 0.1793645), wk = 0.1875000 extrapolated charge 9.45497, renormalised to 10.00000 total cpu time spent up to now is 3.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.3 total cpu time spent up to now is 3.5 secs total energy = -25.37635602 Ry Harris-Foulkes estimate = -24.96965185 Ry estimated scf accuracy < 0.00119043 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-05, avg # of iterations = 2.6 total cpu time spent up to now is 3.6 secs total energy = -25.37727046 Ry Harris-Foulkes estimate = -25.37745384 Ry estimated scf accuracy < 0.00043018 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.30E-06, avg # of iterations = 1.0 total cpu time spent up to now is 3.7 secs total energy = -25.37726202 Ry Harris-Foulkes estimate = -25.37729302 Ry estimated scf accuracy < 0.00006046 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.05E-07, avg # of iterations = 2.2 total cpu time spent up to now is 3.8 secs total energy = -25.37727252 Ry Harris-Foulkes estimate = -25.37727434 Ry estimated scf accuracy < 0.00000362 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.62E-08, avg # of iterations = 1.3 total cpu time spent up to now is 3.9 secs total energy = -25.37727270 Ry Harris-Foulkes estimate = -25.37727282 Ry estimated scf accuracy < 0.00000020 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.04E-09, avg # of iterations = 2.9 total cpu time spent up to now is 4.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.1794 ( 531 PWs) bands (ev): -5.0853 9.1217 9.3993 9.3993 12.9832 16.0292 16.1461 16.1461 19.0560 k =-0.1494-0.2587 0.2989 ( 522 PWs) bands (ev): -3.6669 3.1355 9.4105 10.0630 13.1269 13.8912 14.7038 17.9083 19.2387 k = 0.2987 0.5174-0.0598 ( 520 PWs) bands (ev): -1.8905 0.0326 8.6120 9.8052 11.1187 15.2829 16.0062 19.1708 22.8104 k = 0.1494 0.2587 0.0598 ( 525 PWs) bands (ev): -4.4721 5.0339 8.2520 10.6361 12.5098 16.3548 17.0666 18.4957 20.0397 k =-0.2987 0.0000 0.4185 ( 519 PWs) bands (ev): -2.8981 4.8664 6.6617 6.8556 9.6824 14.6638 17.9194 18.3698 19.7814 k = 0.1494 0.7761 0.0598 ( 510 PWs) bands (ev): -0.5112 0.8923 4.4668 6.9922 11.6114 15.1285 17.1060 21.3695 22.2617 k = 0.0000 0.5174 0.1794 ( 521 PWs) bands (ev): -2.4438 1.5768 6.2759 9.1443 12.3621 16.0874 18.0383 18.2197 20.1848 k = 0.5975 0.0000-0.2989 ( 510 PWs) bands (ev): -1.2505 2.3615 5.4550 6.2490 8.4988 14.8781 20.4966 21.9122 23.5508 k = 0.0000 0.0000 0.5381 ( 522 PWs) bands (ev): -2.7665 3.2077 9.2870 9.2870 11.6207 12.5640 12.5640 14.7909 22.8680 k = 0.4481 0.7761 0.1794 ( 520 PWs) bands (ev): -1.0542 2.0706 4.7416 7.8235 9.8855 14.9307 16.0220 19.6201 21.8487 the Fermi energy is 13.1129 ev ! total energy = -25.37727276 Ry Harris-Foulkes estimate = -25.37727278 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.09622820 atom 2 type 1 force = 0.00000000 0.00000000 0.09622820 Total force = 0.136087 Total SCF correction = 0.000088 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 558.35 0.00376446 0.00000000 0.00000000 553.77 0.00 0.00 0.00000000 0.00376446 0.00000000 0.00 553.77 0.00 0.00000000 0.00000000 0.00385784 0.00 0.00 567.51 Entering Dynamics; it = 4 time = 0.02178 pico-seconds new lattice vectors (alat unit) : 0.564949004 0.000000000 0.730143077 -0.282474354 0.489260142 0.730143112 -0.282474354 -0.489260142 0.730143112 new unit-cell volume = 208.5906 (a.u.)^3 new positions in cryst coord As 0.262508269 0.262508260 0.262508260 As -0.262508269 -0.262508260 -0.262508260 new positions in cart coord (alat unit) As 0.000000083 0.000000000 0.575005790 As -0.000000083 0.000000000 -0.575005790 Ekin = 0.10396595 Ry T = 2441.4 K Etot = -24.61332569 new unit-cell volume = 208.59063 a.u.^3 ( 30.90994 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.564949004 0.000000000 0.730143077 -0.282474354 0.489260142 0.730143112 -0.282474354 -0.489260142 0.730143112 ATOMIC_POSITIONS (crystal) As 0.262508269 0.262508260 0.262508260 As -0.262508269 -0.262508260 -0.262508260 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1711993), wk = 0.0625000 k( 2) = ( -0.1475060 -0.2554878 0.2853322), wk = 0.1875000 k( 3) = ( 0.2950119 0.5109756 -0.0570665), wk = 0.1875000 k( 4) = ( 0.1475060 0.2554878 0.0570664), wk = 0.1875000 k( 5) = ( -0.2950119 0.0000000 0.3994651), wk = 0.1875000 k( 6) = ( 0.1475060 0.7664634 0.0570664), wk = 0.3750000 k( 7) = ( 0.0000000 0.5109756 0.1711993), wk = 0.3750000 k( 8) = ( 0.5900238 0.0000000 -0.2853323), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5135980), wk = 0.0625000 k( 10) = ( 0.4425179 0.7664634 0.1711993), wk = 0.1875000 extrapolated charge 10.69116, renormalised to 10.00000 total cpu time spent up to now is 4.3 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.5 total cpu time spent up to now is 4.5 secs total energy = -25.43947909 Ry Harris-Foulkes estimate = -25.95110354 Ry estimated scf accuracy < 0.00169024 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-05, avg # of iterations = 2.9 total cpu time spent up to now is 4.6 secs total energy = -25.44104340 Ry Harris-Foulkes estimate = -25.44125354 Ry estimated scf accuracy < 0.00052918 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.29E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.7 secs total energy = -25.44103738 Ry Harris-Foulkes estimate = -25.44107117 Ry estimated scf accuracy < 0.00007798 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.80E-07, avg # of iterations = 2.1 total cpu time spent up to now is 4.8 secs total energy = -25.44104668 Ry Harris-Foulkes estimate = -25.44104692 Ry estimated scf accuracy < 0.00000065 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.51E-09, avg # of iterations = 2.7 total cpu time spent up to now is 4.9 secs total energy = -25.44104718 Ry Harris-Foulkes estimate = -25.44104729 Ry estimated scf accuracy < 0.00000021 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-09, avg # of iterations = 2.1 total cpu time spent up to now is 5.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.1712 ( 531 PWs) bands (ev): -5.3964 7.1786 8.8207 8.8207 11.3672 15.2418 15.2419 15.3242 17.5418 k =-0.1475-0.2555 0.2853 ( 522 PWs) bands (ev): -4.0360 2.3472 8.0024 9.9164 11.8784 11.9249 13.2232 17.3388 18.1939 k = 0.2950 0.5110-0.0571 ( 520 PWs) bands (ev): -2.2300 -0.6489 8.2187 8.6343 9.7454 13.3450 14.6560 16.6039 21.9442 k = 0.1475 0.2555 0.0571 ( 525 PWs) bands (ev): -4.7882 4.1498 7.7366 9.2808 11.2218 14.5614 15.9192 16.5758 17.7303 k =-0.2950 0.0000 0.3995 ( 519 PWs) bands (ev): -3.3248 3.4960 6.1759 6.4418 8.0637 14.3237 16.7203 17.1116 17.6522 k = 0.1475 0.7665 0.0571 ( 510 PWs) bands (ev): -1.0183 0.2429 3.9126 5.8016 10.2888 13.9945 16.2375 19.8681 20.0872 k = 0.0000 0.5110 0.1712 ( 521 PWs) bands (ev): -2.8318 0.9061 5.8090 7.7148 11.1288 14.0121 16.5949 17.1006 18.2610 k = 0.5900 0.0000-0.2853 ( 510 PWs) bands (ev): -1.7757 2.0161 3.9183 5.8560 7.2753 14.1796 18.5886 19.3429 21.6749 k = 0.0000 0.0000 0.5136 ( 522 PWs) bands (ev): -3.1781 1.6312 8.9877 8.9877 11.2057 11.3993 11.3993 13.1514 21.3720 k = 0.4425 0.7665 0.1712 ( 520 PWs) bands (ev): -1.3686 0.4989 4.3931 7.4239 8.8240 13.6713 15.1519 18.4072 20.3389 the Fermi energy is 11.8653 ev ! total energy = -25.44104720 Ry Harris-Foulkes estimate = -25.44104722 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.02044828 atom 2 type 1 force = 0.00000000 0.00000000 0.02044828 Total force = 0.028918 Total SCF correction = 0.000106 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 325.27 0.00204483 0.00000000 0.00000000 300.81 0.00 0.00 0.00000000 0.00204483 0.00000000 0.00 300.81 0.00 0.00000000 0.00000000 0.00254382 0.00 0.00 374.21 Entering Dynamics; it = 5 time = 0.02904 pico-seconds new lattice vectors (alat unit) : 0.560390988 0.000000000 0.734537466 -0.280195343 0.485312785 0.734537501 -0.280195343 -0.485312785 0.734537501 new unit-cell volume = 206.4736 (a.u.)^3 new positions in cryst coord As 0.249599085 0.249599092 0.249599092 As -0.249599085 -0.249599092 -0.249599092 new positions in cart coord (alat unit) As 0.000000072 0.000000000 0.550019666 As -0.000000072 0.000000000 -0.550019666 Ekin = 0.12667617 Ry T = 2942.2 K Etot = -24.60538577 new unit-cell volume = 206.47362 a.u.^3 ( 30.59623 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.560390988 0.000000000 0.734537466 -0.280195343 0.485312785 0.734537501 -0.280195343 -0.485312785 0.734537501 ATOMIC_POSITIONS (crystal) As 0.249599085 0.249599092 0.249599092 As -0.249599085 -0.249599092 -0.249599092 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1701751), wk = 0.0625000 k( 2) = ( -0.1487057 -0.2575659 0.2836252), wk = 0.1875000 k( 3) = ( 0.2974114 0.5151317 -0.0567251), wk = 0.1875000 k( 4) = ( 0.1487057 0.2575659 0.0567250), wk = 0.1875000 k( 5) = ( -0.2974114 0.0000000 0.3970753), wk = 0.1875000 k( 6) = ( 0.1487057 0.7726976 0.0567250), wk = 0.3750000 k( 7) = ( 0.0000000 0.5151317 0.1701751), wk = 0.3750000 k( 8) = ( 0.5948229 0.0000000 -0.2836253), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5105253), wk = 0.0625000 k( 10) = ( 0.4461172 0.7726976 0.1701751), wk = 0.1875000 extrapolated charge 9.89747, renormalised to 10.00000 total cpu time spent up to now is 5.3 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.0 total cpu time spent up to now is 5.6 secs total energy = -25.44089309 Ry Harris-Foulkes estimate = -25.36551760 Ry estimated scf accuracy < 0.00214389 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.14E-05, avg # of iterations = 1.0 total cpu time spent up to now is 5.6 secs total energy = -25.44092757 Ry Harris-Foulkes estimate = -25.44095355 Ry estimated scf accuracy < 0.00014660 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-06, avg # of iterations = 1.0 total cpu time spent up to now is 5.7 secs total energy = -25.44093218 Ry Harris-Foulkes estimate = -25.44093244 Ry estimated scf accuracy < 0.00000110 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-08, avg # of iterations = 3.1 total cpu time spent up to now is 5.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.1702 ( 531 PWs) bands (ev): -5.2862 7.2183 9.1627 9.1627 11.5072 15.5958 15.5958 16.0294 17.5680 k =-0.1487-0.2576 0.2836 ( 522 PWs) bands (ev): -3.9035 2.5234 8.0021 10.9810 11.1823 12.1298 13.5198 17.9542 17.9838 k = 0.2974 0.5151-0.0567 ( 520 PWs) bands (ev): -2.0236 -0.5316 8.6082 8.6991 9.8307 13.2370 14.9719 16.4848 22.0434 k = 0.1487 0.2576 0.0567 ( 525 PWs) bands (ev): -4.6634 4.4108 8.0488 9.3082 11.3775 14.6194 16.6022 16.8622 17.0345 k =-0.2974 0.0000 0.3971 ( 519 PWs) bands (ev): -3.1794 3.5380 6.6153 6.7296 7.8243 14.8054 17.0245 17.5043 17.6402 k = 0.1487 0.7727 0.0567 ( 510 PWs) bands (ev): -0.7767 0.3999 4.0340 5.7798 10.4411 14.2194 16.5249 20.0466 20.5226 k = 0.0000 0.5151 0.1702 ( 521 PWs) bands (ev): -2.6694 1.1143 6.0966 7.6116 11.3804 13.8046 16.8634 17.5242 18.3130 k = 0.5948 0.0000-0.2836 ( 510 PWs) bands (ev): -1.5945 2.5290 3.5903 6.1303 7.2824 14.4921 18.7182 19.2615 21.9625 k = 0.0000 0.0000 0.5105 ( 522 PWs) bands (ev): -3.0064 1.4691 9.4445 9.4445 11.5032 11.5032 11.8451 13.2107 21.6660 k = 0.4461 0.7727 0.1702 ( 520 PWs) bands (ev): -0.9277 0.1622 4.6222 7.7490 8.9776 13.8587 15.6740 18.7863 20.7189 the Fermi energy is 11.5163 ev ! total energy = -25.44093299 Ry Harris-Foulkes estimate = -25.44093301 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00123306 atom 2 type 1 force = 0.00000000 0.00000000 -0.00123306 Total force = 0.001744 Total SCF correction = 0.000128 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 312.45 0.00189638 0.00000000 0.00000000 278.97 0.00 0.00 0.00000000 0.00189638 0.00000000 0.00 278.97 0.00 0.00000000 0.00000000 0.00257925 0.00 0.00 379.42 Entering Dynamics; it = 6 time = 0.03630 pico-seconds new lattice vectors (alat unit) : 0.546101824 0.000000000 0.743593724 -0.273050758 0.472938000 0.743593755 -0.273050758 -0.472938000 0.743593755 new unit-cell volume = 198.4958 (a.u.)^3 new positions in cryst coord As 0.249837169 0.249837176 0.249837176 As -0.249837169 -0.249837176 -0.249837176 new positions in cart coord (alat unit) As 0.000000073 0.000000000 0.557332079 As -0.000000073 0.000000000 -0.557332079 Ekin = 0.12161361 Ry T = 3207.1 K Etot = -24.61752970 new unit-cell volume = 198.49578 a.u.^3 ( 29.41404 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.546101824 0.000000000 0.743593724 -0.273050758 0.472938000 0.743593755 -0.273050758 -0.472938000 0.743593755 ATOMIC_POSITIONS (crystal) As 0.249837169 0.249837176 0.249837176 As -0.249837169 -0.249837176 -0.249837176 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1681025), wk = 0.0625000 k( 2) = ( -0.1525967 -0.2643053 0.2801709), wk = 0.1875000 k( 3) = ( 0.3051934 0.5286105 -0.0560342), wk = 0.1875000 k( 4) = ( 0.1525967 0.2643053 0.0560342), wk = 0.1875000 k( 5) = ( -0.3051934 0.0000000 0.3922393), wk = 0.1875000 k( 6) = ( 0.1525967 0.7929158 0.0560342), wk = 0.3750000 k( 7) = ( 0.0000000 0.5286105 0.1681025), wk = 0.3750000 k( 8) = ( 0.6103869 0.0000000 -0.2801710), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5043076), wk = 0.0625000 k( 10) = ( 0.4577902 0.7929158 0.1681025), wk = 0.1875000 extrapolated charge 9.59810, renormalised to 10.00000 total cpu time spent up to now is 6.1 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.4 total cpu time spent up to now is 6.3 secs total energy = -25.42385368 Ry Harris-Foulkes estimate = -25.12212697 Ry estimated scf accuracy < 0.00024045 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.40E-06, avg # of iterations = 3.2 total cpu time spent up to now is 6.5 secs total energy = -25.42425661 Ry Harris-Foulkes estimate = -25.42429047 Ry estimated scf accuracy < 0.00009650 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.65E-07, avg # of iterations = 1.0 total cpu time spent up to now is 6.5 secs total energy = -25.42424822 Ry Harris-Foulkes estimate = -25.42425895 Ry estimated scf accuracy < 0.00002150 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.15E-07, avg # of iterations = 2.0 total cpu time spent up to now is 6.6 secs total energy = -25.42425076 Ry Harris-Foulkes estimate = -25.42425082 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-09, avg # of iterations = 2.7 total cpu time spent up to now is 6.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.1681 ( 531 PWs) bands (ev): -5.0749 7.7095 9.9734 9.9734 12.4245 16.3609 16.3609 17.0867 18.3674 k =-0.1526-0.2643 0.2802 ( 522 PWs) bands (ev): -3.6507 3.1508 8.1474 11.7358 11.8246 12.9727 14.5725 18.5393 18.9233 k = 0.3052 0.5286-0.0560 ( 520 PWs) bands (ev): -1.6113 -0.1231 8.9150 9.2315 10.5642 13.8438 15.7819 16.8563 22.1174 k = 0.1526 0.2643 0.0560 ( 525 PWs) bands (ev): -4.3993 5.1406 8.7475 9.7723 11.8682 15.4649 17.1157 17.2120 17.8532 k =-0.3052 0.0000 0.3922 ( 519 PWs) bands (ev): -2.9316 3.9806 7.1572 7.4397 8.3307 15.3061 18.0294 18.7236 19.0078 k = 0.1526 0.7929 0.0560 ( 510 PWs) bands (ev): -0.3928 0.9427 4.4355 5.9991 11.0495 15.1749 17.2906 20.9157 21.7255 k = 0.0000 0.5286 0.1681 ( 521 PWs) bands (ev): -2.3076 1.6802 6.5177 8.0130 11.8444 14.2293 17.6957 18.3678 19.3064 k = 0.6104 0.0000-0.2802 ( 510 PWs) bands (ev): -1.1830 3.0634 3.8506 6.7840 7.7352 14.7764 19.5450 20.3416 23.1049 k = 0.0000 0.0000 0.5043 ( 522 PWs) bands (ev): -2.8289 1.6408 10.2889 10.2889 12.3312 12.3312 13.0492 14.4185 22.4392 k = 0.4578 0.7929 0.1681 ( 520 PWs) bands (ev): -0.6922 0.4676 5.0867 8.4450 9.8219 14.8138 17.0239 19.9812 21.1603 the Fermi energy is 12.3808 ev ! total energy = -25.42425082 Ry Harris-Foulkes estimate = -25.42425082 Ry estimated scf accuracy < 5.8E-09 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00059500 atom 2 type 1 force = 0.00000000 0.00000000 -0.00059500 Total force = 0.000841 Total SCF correction = 0.000004 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 394.28 0.00258680 0.00000000 0.00000000 380.53 0.00 0.00 0.00000000 0.00258680 0.00000000 0.00 380.53 0.00 0.00000000 0.00000000 0.00286718 0.00 0.00 421.78 Entering Dynamics; it = 7 time = 0.04356 pico-seconds new lattice vectors (alat unit) : 0.523762304 0.000000000 0.739444796 -0.261881002 0.453591403 0.739444828 -0.261881002 -0.453591403 0.739444828 new unit-cell volume = 181.5693 (a.u.)^3 new positions in cryst coord As 0.250081295 0.250081303 0.250081303 As -0.250081295 -0.250081303 -0.250081303 new positions in cart coord (alat unit) As 0.000000071 0.000000000 0.554763963 As -0.000000071 0.000000000 -0.554763963 Ekin = 0.01482589 Ry T = 2759.3 K Etot = -24.73475136 new unit-cell volume = 181.56935 a.u.^3 ( 26.90580 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.523762304 0.000000000 0.739444796 -0.261881002 0.453591403 0.739444828 -0.261881002 -0.453591403 0.739444828 ATOMIC_POSITIONS (crystal) As 0.250081295 0.250081303 0.250081303 As -0.250081295 -0.250081303 -0.250081303 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1690457), wk = 0.0625000 k( 2) = ( -0.1591053 -0.2755784 0.2817429), wk = 0.1875000 k( 3) = ( 0.3182106 0.5511568 -0.0563486), wk = 0.1875000 k( 4) = ( 0.1591053 0.2755784 0.0563486), wk = 0.1875000 k( 5) = ( -0.3182105 0.0000000 0.3944401), wk = 0.1875000 k( 6) = ( 0.1591053 0.8267352 0.0563486), wk = 0.3750000 k( 7) = ( 0.0000000 0.5511568 0.1690457), wk = 0.3750000 k( 8) = ( 0.6364211 0.0000000 -0.2817430), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5071372), wk = 0.0625000 k( 10) = ( 0.4773159 0.8267352 0.1690457), wk = 0.1875000 extrapolated charge 9.06781, renormalised to 10.00000 total cpu time spent up to now is 7.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.2 total cpu time spent up to now is 7.2 secs total energy = -25.36345655 Ry Harris-Foulkes estimate = -24.63671633 Ry estimated scf accuracy < 0.00149567 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-05, avg # of iterations = 3.3 total cpu time spent up to now is 7.4 secs total energy = -25.36528768 Ry Harris-Foulkes estimate = -25.36539796 Ry estimated scf accuracy < 0.00030363 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.04E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.4 secs total energy = -25.36527128 Ry Harris-Foulkes estimate = -25.36529669 Ry estimated scf accuracy < 0.00005319 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.32E-07, avg # of iterations = 2.0 total cpu time spent up to now is 7.5 secs total energy = -25.36525930 Ry Harris-Foulkes estimate = -25.36525961 Ry estimated scf accuracy < 0.00000083 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.30E-09, avg # of iterations = 2.4 total cpu time spent up to now is 7.6 secs total energy = -25.36527753 Ry Harris-Foulkes estimate = -25.36527765 Ry estimated scf accuracy < 0.00000021 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.15E-09, avg # of iterations = 1.9 total cpu time spent up to now is 7.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.1690 ( 531 PWs) bands (ev): -4.5367 8.9917 11.6538 11.6538 14.8969 18.2007 18.2007 19.3522 19.6810 k =-0.1591-0.2756 0.2817 ( 522 PWs) bands (ev): -3.0131 4.5143 8.9827 13.3296 13.4153 14.8042 16.8599 20.3012 20.9831 k = 0.3182 0.5512-0.0563 ( 520 PWs) bands (ev): -0.7153 0.8355 9.8747 10.6172 12.1907 15.4109 17.7606 18.3498 23.2769 k = 0.1591 0.2756 0.0563 ( 525 PWs) bands (ev): -3.7797 6.7306 10.2153 11.0631 13.2400 17.4483 18.2720 18.9231 19.8953 k =-0.3182 0.0000 0.3944 ( 519 PWs) bands (ev): -2.2630 5.1594 8.3877 8.8420 9.7415 16.5575 20.2016 21.2203 21.8574 k = 0.1591 0.8267 0.0563 ( 510 PWs) bands (ev): 0.5716 2.1358 5.3618 6.8063 12.5736 17.2153 18.9747 22.9916 23.7660 k = 0.0000 0.5512 0.1690 ( 521 PWs) bands (ev): -1.4933 2.9298 7.5615 9.1316 13.2001 15.6454 19.4327 20.5966 21.5841 k = 0.6364 0.0000-0.2817 ( 510 PWs) bands (ev): -0.2149 4.3519 4.5941 8.0913 9.0036 15.8031 21.5770 22.7448 25.6590 k = 0.0000 0.0000 0.5071 ( 522 PWs) bands (ev): -2.2378 2.4119 11.9695 11.9695 14.0561 14.0561 15.4576 16.7868 24.4883 k = 0.4773 0.8267 0.1690 ( 520 PWs) bands (ev): 0.0561 1.3657 6.1299 9.8658 11.5721 16.8142 19.7024 21.9540 23.2164 the Fermi energy is 14.3696 ev ! total energy = -25.36527755 Ry Harris-Foulkes estimate = -25.36527756 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00044356 atom 2 type 1 force = 0.00000000 0.00000000 0.00044356 Total force = 0.000627 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 659.96 0.00451636 0.00000000 0.00000000 664.38 0.00 0.00 0.00000000 0.00451636 0.00000000 0.00 664.38 0.00 0.00000000 0.00000000 0.00442628 0.00 0.00 651.13 Entering Dynamics; it = 8 time = 0.05082 pico-seconds new lattice vectors (alat unit) : 0.536640417 0.000000000 0.757278280 -0.268320064 0.464744179 0.757278319 -0.268320064 -0.464744179 0.757278319 new unit-cell volume = 195.2048 (a.u.)^3 new positions in cryst coord As 0.250071440 0.250071448 0.250071448 As -0.250071440 -0.250071448 -0.250071448 new positions in cart coord (alat unit) As 0.000000068 0.000000000 0.568121042 As -0.000000068 0.000000000 -0.568121042 Ekin = 0.01401464 Ry T = 2435.4 K Etot = -24.73412114 new unit-cell volume = 195.20484 a.u.^3 ( 28.92637 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.536640417 0.000000000 0.757278280 -0.268320064 0.464744179 0.757278319 -0.268320064 -0.464744179 0.757278319 ATOMIC_POSITIONS (crystal) As 0.250071440 0.250071448 0.250071448 As -0.250071440 -0.250071448 -0.250071448 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1650648), wk = 0.0625000 k( 2) = ( -0.1552871 -0.2689652 0.2751080), wk = 0.1875000 k( 3) = ( 0.3105743 0.5379304 -0.0550216), wk = 0.1875000 k( 4) = ( 0.1552871 0.2689652 0.0550216), wk = 0.1875000 k( 5) = ( -0.3105742 0.0000000 0.3851513), wk = 0.1875000 k( 6) = ( 0.1552871 0.8068955 0.0550216), wk = 0.3750000 k( 7) = ( 0.0000000 0.5379304 0.1650648), wk = 0.3750000 k( 8) = ( 0.6211485 0.0000000 -0.2751081), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4951944), wk = 0.0625000 k( 10) = ( 0.4658614 0.8068955 0.1650648), wk = 0.1875000 extrapolated charge 10.69849, renormalised to 10.00000 total cpu time spent up to now is 8.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 8.2 secs total energy = -25.41438783 Ry Harris-Foulkes estimate = -25.95207086 Ry estimated scf accuracy < 0.00034218 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.42E-06, avg # of iterations = 3.0 total cpu time spent up to now is 8.4 secs total energy = -25.41543694 Ry Harris-Foulkes estimate = -25.41553022 Ry estimated scf accuracy < 0.00029414 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.94E-06, avg # of iterations = 1.0 total cpu time spent up to now is 8.4 secs total energy = -25.41539413 Ry Harris-Foulkes estimate = -25.41544183 Ry estimated scf accuracy < 0.00009008 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.01E-07, avg # of iterations = 2.0 total cpu time spent up to now is 8.5 secs total energy = -25.41540458 Ry Harris-Foulkes estimate = -25.41540779 Ry estimated scf accuracy < 0.00000599 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.99E-08, avg # of iterations = 2.0 total cpu time spent up to now is 8.6 secs total energy = -25.41540527 Ry Harris-Foulkes estimate = -25.41540553 Ry estimated scf accuracy < 0.00000053 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.28E-09, avg # of iterations = 1.5 total cpu time spent up to now is 8.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.1651 ( 531 PWs) bands (ev): -4.9897 7.6625 10.4708 10.4708 12.9256 16.7191 16.7192 17.6770 18.4333 k =-0.1553-0.2690 0.2751 ( 522 PWs) bands (ev): -3.5473 3.4729 8.0242 12.1337 12.1512 13.4304 15.0669 18.6045 19.5600 k = 0.3106 0.5379-0.0550 ( 520 PWs) bands (ev): -1.3873 0.0680 8.8499 9.5747 10.9359 14.0808 16.1121 16.7107 21.7410 k = 0.1553 0.2690 0.0550 ( 525 PWs) bands (ev): -4.2731 5.5183 9.1662 9.8511 12.0267 15.6573 17.0250 17.3948 18.1977 k =-0.3106 0.0000 0.3852 ( 519 PWs) bands (ev): -2.8482 4.0271 7.4429 7.8964 8.5957 15.5332 18.5722 19.4201 19.7846 k = 0.1553 0.8069 0.0550 ( 510 PWs) bands (ev): -0.2404 1.2293 4.6494 5.9967 11.2618 15.6648 17.7725 21.1139 22.2284 k = 0.0000 0.5379 0.1651 ( 521 PWs) bands (ev): -2.1218 1.9797 6.7004 8.1471 11.8726 14.2445 18.0038 18.8865 19.7900 k = 0.6211 0.0000-0.2751 ( 510 PWs) bands (ev): -0.9849 3.2585 3.9321 7.1984 7.9004 14.8193 19.8182 20.7930 23.4604 k = 0.0000 0.0000 0.4952 ( 522 PWs) bands (ev): -2.8132 1.5512 10.8231 10.8231 12.8232 12.8232 13.8251 15.1760 22.6844 k = 0.4659 0.8069 0.1651 ( 520 PWs) bands (ev): -0.6659 0.5115 5.3673 8.8738 10.3257 15.3507 17.8501 20.4457 21.3789 the Fermi energy is 12.8762 ev ! total energy = -25.41540532 Ry Harris-Foulkes estimate = -25.41540532 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00027752 atom 2 type 1 force = 0.00000000 0.00000000 0.00027752 Total force = 0.000392 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 435.67 0.00300170 0.00000000 0.00000000 441.57 0.00 0.00 0.00000000 0.00300170 0.00000000 0.00 441.56 0.00 0.00000000 0.00000000 0.00288142 0.00 0.00 423.87 Entering Dynamics; it = 9 time = 0.05808 pico-seconds new lattice vectors (alat unit) : 0.533163686 0.000000000 0.752296355 -0.266581704 0.461733241 0.752296395 -0.266581704 -0.461733241 0.752296395 new unit-cell volume = 191.4161 (a.u.)^3 new positions in cryst coord As 0.250056515 0.250056523 0.250056523 As -0.250056515 -0.250056523 -0.250056523 new positions in cart coord (alat unit) As 0.000000065 0.000000000 0.564349847 As -0.000000065 0.000000000 -0.564349847 Ekin = 0.00327526 Ry T = 2145.3 K Etot = -24.74864220 new unit-cell volume = 191.41607 a.u.^3 ( 28.36494 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.533163686 0.000000000 0.752296355 -0.266581704 0.461733241 0.752296395 -0.266581704 -0.461733241 0.752296395 ATOMIC_POSITIONS (crystal) As 0.250056515 0.250056523 0.250056523 As -0.250056515 -0.250056523 -0.250056523 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1661579), wk = 0.0625000 k( 2) = ( -0.1562997 -0.2707191 0.2769299), wk = 0.1875000 k( 3) = ( 0.3125995 0.5414382 -0.0553860), wk = 0.1875000 k( 4) = ( 0.1562997 0.2707191 0.0553860), wk = 0.1875000 k( 5) = ( -0.3125995 0.0000000 0.3877018), wk = 0.1875000 k( 6) = ( 0.1562997 0.8121573 0.0553860), wk = 0.3750000 k( 7) = ( 0.0000000 0.5414382 0.1661579), wk = 0.3750000 k( 8) = ( 0.6251990 0.0000000 -0.2769299), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4984738), wk = 0.0625000 k( 10) = ( 0.4688992 0.8121573 0.1661579), wk = 0.1875000 extrapolated charge 9.80207, renormalised to 10.00000 total cpu time spent up to now is 9.0 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.3 total cpu time spent up to now is 9.2 secs total energy = -25.40343408 Ry Harris-Foulkes estimate = -25.25152675 Ry estimated scf accuracy < 0.00004858 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.86E-07, avg # of iterations = 3.0 total cpu time spent up to now is 9.3 secs total energy = -25.40352164 Ry Harris-Foulkes estimate = -25.40352814 Ry estimated scf accuracy < 0.00001842 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.84E-07, avg # of iterations = 1.0 total cpu time spent up to now is 9.4 secs total energy = -25.40351992 Ry Harris-Foulkes estimate = -25.40352206 Ry estimated scf accuracy < 0.00000420 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.20E-08, avg # of iterations = 2.0 total cpu time spent up to now is 9.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.1662 ( 531 PWs) bands (ev): -4.8699 8.0229 10.7809 10.7809 13.4362 17.1118 17.1118 18.1189 18.7630 k =-0.1563-0.2707 0.2769 ( 522 PWs) bands (ev): -3.4056 3.7501 8.2791 12.4585 12.4749 13.7930 15.5410 19.0560 19.9307 k = 0.3126 0.5414-0.0554 ( 520 PWs) bands (ev): -1.2091 0.2722 9.1223 9.8491 11.2669 14.4330 16.5489 17.1488 22.1510 k = 0.1563 0.2707 0.0554 ( 525 PWs) bands (ev): -4.1426 5.8420 9.4417 10.1708 12.3483 16.1458 17.3404 17.8012 18.6473 k =-0.3126 0.0000 0.3877 ( 519 PWs) bands (ev): -2.6925 4.3314 7.6915 8.1442 8.8950 15.8043 19.0034 19.8951 20.3293 k = 0.1563 0.8122 0.0554 ( 510 PWs) bands (ev): -0.0243 1.4701 4.8364 6.2111 11.6079 16.0740 18.0888 21.6207 22.6301 k = 0.0000 0.5414 0.1662 ( 521 PWs) bands (ev): -1.9551 2.2323 6.9274 8.4074 12.2247 14.6172 18.4009 19.3181 20.2651 k = 0.6252 0.0000-0.2769 ( 510 PWs) bands (ev): -0.7805 3.5512 4.1065 7.4325 8.1887 15.0807 20.2857 21.3098 24.0439 k = 0.0000 0.0000 0.4985 ( 522 PWs) bands (ev): -2.6598 1.7825 11.1239 11.1239 13.1478 13.1478 14.2547 15.5995 23.1578 k = 0.4689 0.8122 0.1662 ( 520 PWs) bands (ev): -0.4728 0.7397 5.5672 9.1343 10.6530 15.7361 18.3379 20.8528 21.8580 the Fermi energy is 13.2050 ev ! total energy = -25.40352041 Ry Harris-Foulkes estimate = -25.40352044 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00024311 atom 2 type 1 force = 0.00000000 0.00000000 0.00024311 Total force = 0.000344 Total SCF correction = 0.000003 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 490.01 0.00336856 0.00000000 0.00000000 495.53 0.00 0.00 0.00000000 0.00336856 0.00000000 0.00 495.53 0.00 0.00000000 0.00000000 0.00325594 0.00 0.00 478.97 Entering Dynamics; it = 10 time = 0.06534 pico-seconds new lattice vectors (alat unit) : 0.529349391 0.000000000 0.750386616 -0.264674567 0.458429964 0.750386660 -0.264674567 -0.458429964 0.750386660 new unit-cell volume = 188.2081 (a.u.)^3 new positions in cryst coord As 0.250036496 0.250036504 0.250036504 As -0.250036496 -0.250036504 -0.250036504 new positions in cart coord (alat unit) As 0.000000060 0.000000000 0.562872154 As -0.000000060 0.000000000 -0.562872154 Ekin = 0.00063911 Ry T = 1909.4 K Etot = -24.75227118 new unit-cell volume = 188.20807 a.u.^3 ( 27.88956 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.529349391 0.000000000 0.750386616 -0.264674567 0.458429964 0.750386660 -0.264674567 -0.458429964 0.750386660 ATOMIC_POSITIONS (crystal) As 0.250036496 0.250036504 0.250036504 As -0.250036496 -0.250036504 -0.250036504 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1665808), wk = 0.0625000 k( 2) = ( -0.1574260 -0.2726698 0.2776347), wk = 0.1875000 k( 3) = ( 0.3148520 0.5453396 -0.0555270), wk = 0.1875000 k( 4) = ( 0.1574260 0.2726698 0.0555269), wk = 0.1875000 k( 5) = ( -0.3148519 0.0000000 0.3886885), wk = 0.1875000 k( 6) = ( 0.1574260 0.8180094 0.0555269), wk = 0.3750000 k( 7) = ( 0.0000000 0.5453396 0.1665808), wk = 0.3750000 k( 8) = ( 0.6297039 0.0000000 -0.2776347), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4997424), wk = 0.0625000 k( 10) = ( 0.4722780 0.8180094 0.1665807), wk = 0.1875000 extrapolated charge 9.82956, renormalised to 10.00000 total cpu time spent up to now is 9.8 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.3 total cpu time spent up to now is 9.9 secs total energy = -25.39214946 Ry Harris-Foulkes estimate = -25.26013507 Ry estimated scf accuracy < 0.00003299 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.30E-07, avg # of iterations = 3.0 total cpu time spent up to now is 10.0 secs total energy = -25.39221132 Ry Harris-Foulkes estimate = -25.39221595 Ry estimated scf accuracy < 0.00001332 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-07, avg # of iterations = 1.0 total cpu time spent up to now is 10.1 secs total energy = -25.39221003 Ry Harris-Foulkes estimate = -25.39221161 Ry estimated scf accuracy < 0.00000312 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.12E-08, avg # of iterations = 2.0 total cpu time spent up to now is 10.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.1666 ( 531 PWs) bands (ev): -4.7666 8.2783 11.0881 11.0881 13.9073 17.4612 17.4612 18.5371 19.0093 k =-0.1574-0.2727 0.2776 ( 522 PWs) bands (ev): -3.2833 4.0042 8.4571 12.7441 12.7856 14.1324 15.9657 19.4071 20.3096 k = 0.3149 0.5453-0.0555 ( 520 PWs) bands (ev): -1.0426 0.4536 9.3219 10.1070 11.5698 14.7348 16.9262 17.4598 22.4121 k = 0.1574 0.2727 0.0555 ( 525 PWs) bands (ev): -4.0256 6.1388 9.7110 10.4232 12.6161 16.5313 17.5715 18.1364 19.0373 k =-0.3149 0.0000 0.3887 ( 519 PWs) bands (ev): -2.5625 4.5629 7.9216 8.3974 9.1671 16.0432 19.4065 20.3514 20.8514 k = 0.1574 0.8180 0.0555 ( 510 PWs) bands (ev): 0.1608 1.6928 5.0099 6.3750 11.8997 16.4511 18.4004 22.0220 22.9382 k = 0.0000 0.5453 0.1666 ( 521 PWs) bands (ev): -1.8026 2.4656 7.1262 8.6253 12.4932 14.9026 18.7364 19.7301 20.6934 k = 0.6297 0.0000-0.2776 ( 510 PWs) bands (ev): -0.5973 3.7976 4.2516 7.6693 8.4348 15.2884 20.6754 21.7599 24.5232 k = 0.0000 0.0000 0.4997 ( 522 PWs) bands (ev): -2.5407 1.9446 11.4282 11.4282 13.4641 13.4641 14.6910 16.0267 23.5525 k = 0.4723 0.8180 0.1666 ( 520 PWs) bands (ev): -0.3228 0.9178 5.7610 9.3932 10.9732 16.1039 18.8233 21.1880 22.2909 the Fermi energy is 13.5214 ev ! total energy = -25.39221039 Ry Harris-Foulkes estimate = -25.39221042 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00017048 atom 2 type 1 force = 0.00000000 0.00000000 0.00017048 Total force = 0.000241 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 540.66 0.00373140 0.00000000 0.00000000 548.91 0.00 0.00 0.00000000 0.00373140 0.00000000 0.00 548.91 0.00 0.00000000 0.00000000 0.00356326 0.00 0.00 524.17 Entering Dynamics; it = 11 time = 0.07260 pico-seconds new lattice vectors (alat unit) : 0.532807200 0.000000000 0.751434395 -0.266403468 0.461424515 0.751434438 -0.266403468 -0.461424515 0.751434438 new unit-cell volume = 190.9412 (a.u.)^3 new positions in cryst coord As 0.250012831 0.250012839 0.250012839 As -0.250012831 -0.250012839 -0.250012839 new positions in cart coord (alat unit) As 0.000000062 0.000000000 0.563604754 As -0.000000062 0.000000000 -0.563604754 Ekin = 0.00029609 Ry T = 1719.5 K Etot = -24.75220797 new unit-cell volume = 190.94116 a.u.^3 ( 28.29456 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.532807200 0.000000000 0.751434395 -0.266403468 0.461424515 0.751434438 -0.266403468 -0.461424515 0.751434438 ATOMIC_POSITIONS (crystal) As 0.250012831 0.250012839 0.250012839 As -0.250012831 -0.250012839 -0.250012839 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1663485), wk = 0.0625000 k( 2) = ( -0.1564043 -0.2709002 0.2772475), wk = 0.1875000 k( 3) = ( 0.3128086 0.5418004 -0.0554495), wk = 0.1875000 k( 4) = ( 0.1564043 0.2709002 0.0554495), wk = 0.1875000 k( 5) = ( -0.3128086 0.0000000 0.3881466), wk = 0.1875000 k( 6) = ( 0.1564043 0.8127006 0.0554495), wk = 0.3750000 k( 7) = ( 0.0000000 0.5418004 0.1663485), wk = 0.3750000 k( 8) = ( 0.6256173 0.0000000 -0.2772476), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4990455), wk = 0.0625000 k( 10) = ( 0.4692130 0.8127006 0.1663485), wk = 0.1875000 extrapolated charge 10.14313, renormalised to 10.00000 total cpu time spent up to now is 10.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.2 total cpu time spent up to now is 10.7 secs total energy = -25.40189088 Ry Harris-Foulkes estimate = -25.51244206 Ry estimated scf accuracy < 0.00001970 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-07, avg # of iterations = 3.0 total cpu time spent up to now is 10.8 secs total energy = -25.40193480 Ry Harris-Foulkes estimate = -25.40193827 Ry estimated scf accuracy < 0.00001027 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-07, avg # of iterations = 1.0 total cpu time spent up to now is 10.9 secs total energy = -25.40193362 Ry Harris-Foulkes estimate = -25.40193499 Ry estimated scf accuracy < 0.00000267 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.67E-08, avg # of iterations = 2.0 total cpu time spent up to now is 11.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.1663 ( 531 PWs) bands (ev): -4.8537 8.0750 10.8181 10.8181 13.5017 17.1621 17.1621 18.1732 18.8094 k =-0.1564-0.2709 0.2772 ( 522 PWs) bands (ev): -3.3866 3.7851 8.3167 12.4998 12.5154 13.8378 15.6015 19.1188 19.9734 k = 0.3128 0.5418-0.0554 ( 520 PWs) bands (ev): -1.1867 0.2986 9.1616 9.8832 11.3086 14.4795 16.6058 17.2125 22.2133 k = 0.1564 0.2709 0.0554 ( 525 PWs) bands (ev): -4.1255 5.8827 9.4750 10.2154 12.3914 16.2125 17.3862 17.8559 18.7059 k =-0.3128 0.0000 0.3881 ( 519 PWs) bands (ev): -2.6713 4.3742 7.7227 8.1731 8.9335 15.8386 19.0568 19.9527 20.3959 k = 0.1564 0.8127 0.0554 ( 510 PWs) bands (ev): 0.0044 1.5005 4.8598 6.2414 11.6542 16.1254 18.1259 21.6898 22.6866 k = 0.0000 0.5418 0.1663 ( 521 PWs) bands (ev): -1.9338 2.2641 6.9569 8.4423 12.2744 14.6695 18.4510 19.3729 20.3255 k = 0.6256 0.0000-0.2772 ( 510 PWs) bands (ev): -0.7540 3.5902 4.1300 7.4600 8.2274 15.1160 20.3482 21.3771 24.1228 k = 0.0000 0.0000 0.4990 ( 522 PWs) bands (ev): -2.6380 1.8166 11.1592 11.1592 13.1869 13.1869 14.3044 15.6488 23.2213 k = 0.4692 0.8127 0.1663 ( 520 PWs) bands (ev): -0.4456 0.7717 5.5915 9.1652 10.6924 15.7834 18.3955 20.9059 21.9202 the Fermi energy is 13.2441 ev ! total energy = -25.40193393 Ry Harris-Foulkes estimate = -25.40193395 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00005568 atom 2 type 1 force = 0.00000000 0.00000000 0.00005568 Total force = 0.000079 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 497.04 0.00341374 0.00000000 0.00000000 502.18 0.00 0.00 0.00000000 0.00341374 0.00000000 0.00 502.18 0.00 0.00000000 0.00000000 0.00330890 0.00 0.00 486.76 Entering Dynamics; it = 12 time = 0.07986 pico-seconds new lattice vectors (alat unit) : 0.532953124 0.000000000 0.750185088 -0.266476434 0.461550889 0.750185135 -0.266476434 -0.461550889 0.750185135 new unit-cell volume = 190.7281 (a.u.)^3 new positions in cryst coord As 0.249987977 0.249987985 0.249987985 As -0.249987977 -0.249987985 -0.249987985 new positions in cart coord (alat unit) As 0.000000060 0.000000000 0.562611793 As -0.000000060 0.000000000 -0.562611793 Ekin = 0.00000213 Ry T = 1563.2 K Etot = -24.75293586 new unit-cell volume = 190.72814 a.u.^3 ( 28.26299 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.532953124 0.000000000 0.750185088 -0.266476434 0.461550889 0.750185135 -0.266476434 -0.461550889 0.750185135 ATOMIC_POSITIONS (crystal) As 0.249987977 0.249987985 0.249987985 As -0.249987977 -0.249987985 -0.249987985 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1666255), wk = 0.0625000 k( 2) = ( -0.1563615 -0.2708260 0.2777092), wk = 0.1875000 k( 3) = ( 0.3127230 0.5416521 -0.0555419), wk = 0.1875000 k( 4) = ( 0.1563615 0.2708260 0.0555418), wk = 0.1875000 k( 5) = ( -0.3127230 0.0000000 0.3887930), wk = 0.1875000 k( 6) = ( 0.1563615 0.8124781 0.0555418), wk = 0.3750000 k( 7) = ( 0.0000000 0.5416521 0.1666255), wk = 0.3750000 k( 8) = ( 0.6254460 0.0000000 -0.2777093), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.4998766), wk = 0.0625000 k( 10) = ( 0.4690845 0.8124781 0.1666255), wk = 0.1875000 extrapolated charge 9.98883, renormalised to 10.00000 total cpu time spent up to now is 11.3 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.21E-09, avg # of iterations = 2.3 total cpu time spent up to now is 11.5 secs total energy = -25.40123371 Ry Harris-Foulkes estimate = -25.39262229 Ry estimated scf accuracy < 0.00000028 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.75E-09, avg # of iterations = 3.0 total cpu time spent up to now is 11.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.1666 ( 531 PWs) bands (ev): -4.8460 8.1180 10.8222 10.8222 13.5249 17.1825 17.1825 18.1863 18.8460 k =-0.1564-0.2708 0.2777 ( 522 PWs) bands (ev): -3.3777 3.7960 8.3501 12.5137 12.5280 13.8500 15.6248 19.1627 19.9743 k = 0.3127 0.5417-0.0555 ( 520 PWs) bands (ev): -1.1808 0.3092 9.1934 9.8923 11.3226 14.5027 16.6331 17.2669 22.2770 k = 0.1564 0.2708 0.0555 ( 525 PWs) bands (ev): -4.1190 5.8952 9.4799 10.2456 12.4157 16.2554 17.4253 17.8876 18.7334 k =-0.3127 0.0000 0.3888 ( 519 PWs) bands (ev): -2.6598 4.4048 7.7325 8.1731 8.9482 15.8538 19.0711 19.9637 20.4097 k = 0.1564 0.8125 0.0555 ( 510 PWs) bands (ev): 0.0184 1.5094 4.8671 6.2637 11.6791 16.1414 18.1306 21.7340 22.7293 k = 0.0000 0.5417 0.1666 ( 521 PWs) bands (ev): -1.9269 2.2734 6.9703 8.4617 12.3110 14.7076 18.4738 19.3897 20.3479 k = 0.6254 0.0000-0.2777 ( 510 PWs) bands (ev): -0.7440 3.6103 4.1435 7.4609 8.2479 15.1399 20.3826 21.4076 24.1682 k = 0.0000 0.0000 0.4999 ( 522 PWs) bands (ev): -2.6229 1.8459 11.1604 11.1604 13.1928 13.1928 14.3051 15.6506 23.2578 k = 0.4691 0.8125 0.1666 ( 520 PWs) bands (ev): -0.4270 0.7934 5.5959 9.1681 10.6981 15.7937 18.4002 20.9334 21.9470 the Fermi energy is 13.2501 ev ! total energy = -25.40123401 Ry Harris-Foulkes estimate = -25.40123404 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00005229 atom 2 type 1 force = 0.00000000 0.00000000 -0.00005229 Total force = 0.000074 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.46 0.00342810 0.00000000 0.00000000 504.29 0.00 0.00 0.00000000 0.00342810 0.00000000 0.00 504.29 0.00 0.00000000 0.00000000 0.00334989 0.00 0.00 492.79 Entering Dynamics; it = 13 time = 0.08712 pico-seconds new lattice vectors (alat unit) : 0.533390223 0.000000000 0.748259328 -0.266694992 0.461929427 0.748259381 -0.266694992 -0.461929427 0.748259381 new unit-cell volume = 190.5507 (a.u.)^3 new positions in cryst coord As 0.249988829 0.249988837 0.249988837 As -0.249988829 -0.249988837 -0.249988837 new positions in cart coord (alat unit) As 0.000000056 0.000000000 0.561169458 As -0.000000056 0.000000000 -0.561169458 Ekin = 0.00002902 Ry T = 1433.0 K Etot = -24.75293311 new unit-cell volume = 190.55071 a.u.^3 ( 28.23670 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.533390223 0.000000000 0.748259328 -0.266694992 0.461929427 0.748259381 -0.266694992 -0.461929427 0.748259381 ATOMIC_POSITIONS (crystal) As 0.249988829 0.249988837 0.249988837 As -0.249988829 -0.249988837 -0.249988837 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1670544), wk = 0.0625000 k( 2) = ( -0.1562333 -0.2706041 0.2784240), wk = 0.1875000 k( 3) = ( 0.3124667 0.5412082 -0.0556848), wk = 0.1875000 k( 4) = ( 0.1562334 0.2706041 0.0556848), wk = 0.1875000 k( 5) = ( -0.3124667 0.0000000 0.3897936), wk = 0.1875000 k( 6) = ( 0.1562334 0.8118123 0.0556848), wk = 0.3750000 k( 7) = ( 0.0000000 0.5412082 0.1670544), wk = 0.3750000 k( 8) = ( 0.6249334 0.0000000 -0.2784240), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5011631), wk = 0.0625000 k( 10) = ( 0.4687001 0.8118123 0.1670543), wk = 0.1875000 extrapolated charge 9.99069, renormalised to 10.00000 total cpu time spent up to now is 11.9 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.09E-09, avg # of iterations = 2.0 total cpu time spent up to now is 12.1 secs total energy = -25.40065211 Ry Harris-Foulkes estimate = -25.39346915 Ry estimated scf accuracy < 0.00000030 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.00E-09, avg # of iterations = 2.4 total cpu time spent up to now is 12.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.1671 ( 531 PWs) bands (ev): -4.8389 8.1743 10.8129 10.8129 13.5380 17.1975 17.1975 18.1858 18.8925 k =-0.1562-0.2706 0.2784 ( 522 PWs) bands (ev): -3.3695 3.8003 8.3952 12.5215 12.5323 13.8521 15.6402 19.2157 19.9564 k = 0.3125 0.5412-0.0557 ( 520 PWs) bands (ev): -1.1799 0.3168 9.2348 9.8937 11.3294 14.5247 16.6578 17.3392 22.3671 k = 0.1562 0.2706 0.0557 ( 525 PWs) bands (ev): -4.1145 5.9000 9.4740 10.2809 12.4414 16.3039 17.4776 17.9219 18.7580 k =-0.3125 0.0000 0.3898 ( 519 PWs) bands (ev): -2.6479 4.4423 7.7363 8.1599 8.9581 15.8661 19.0734 19.9576 20.4044 k = 0.1562 0.8118 0.0557 ( 510 PWs) bands (ev): 0.0315 1.5122 4.8699 6.2917 11.7043 16.1474 18.1223 21.7844 22.7832 k = 0.0000 0.5412 0.1671 ( 521 PWs) bands (ev): -1.9237 2.2764 6.9818 8.4819 12.3560 14.7547 18.4931 19.3955 20.3620 k = 0.6249 0.0000-0.2784 ( 510 PWs) bands (ev): -0.7372 3.6301 4.1580 7.4502 8.2683 15.1683 20.4181 21.4333 24.2159 k = 0.0000 0.0000 0.5012 ( 522 PWs) bands (ev): -2.6047 1.8850 11.1464 11.1464 13.1861 13.1861 14.2835 15.6313 23.2965 k = 0.4687 0.8118 0.1671 ( 520 PWs) bands (ev): -0.4045 0.8194 5.5932 9.1593 10.6908 15.7910 18.3822 20.9587 21.9699 the Fermi energy is 13.2434 ev ! total energy = -25.40065233 Ry Harris-Foulkes estimate = -25.40065235 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00004907 atom 2 type 1 force = 0.00000000 0.00000000 -0.00004907 Total force = 0.000069 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 503.47 0.00343359 0.00000000 0.00000000 505.10 0.00 0.00 0.00000000 0.00343358 0.00000000 0.00 505.10 0.00 0.00000000 0.00000000 0.00340035 0.00 0.00 500.21 Entering Dynamics; it = 14 time = 0.09438 pico-seconds new lattice vectors (alat unit) : 0.534175910 0.000000000 0.748343075 -0.267087847 0.462609852 0.748343133 -0.267087847 -0.462609852 0.748343133 new unit-cell volume = 191.1339 (a.u.)^3 new positions in cryst coord As 0.249990717 0.249990725 0.249990725 As -0.249990717 -0.249990725 -0.249990725 new positions in cart coord (alat unit) As 0.000000050 0.000000000 0.561236506 As -0.000000050 0.000000000 -0.561236506 Ekin = 0.00005093 Ry T = 1322.9 K Etot = -24.75293259 new unit-cell volume = 191.13388 a.u.^3 ( 28.32312 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534175910 0.000000000 0.748343075 -0.267087847 0.462609852 0.748343133 -0.267087847 -0.462609852 0.748343133 ATOMIC_POSITIONS (crystal) As 0.249990717 0.249990725 0.249990725 As -0.249990717 -0.249990725 -0.249990725 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1670357), wk = 0.0625000 k( 2) = ( -0.1560035 -0.2702061 0.2783928), wk = 0.1875000 k( 3) = ( 0.3120071 0.5404122 -0.0556786), wk = 0.1875000 k( 4) = ( 0.1560036 0.2702061 0.0556785), wk = 0.1875000 k( 5) = ( -0.3120071 0.0000000 0.3897499), wk = 0.1875000 k( 6) = ( 0.1560036 0.8106183 0.0556785), wk = 0.3750000 k( 7) = ( 0.0000000 0.5404122 0.1670357), wk = 0.3750000 k( 8) = ( 0.6240142 0.0000000 -0.2783929), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5011070), wk = 0.0625000 k( 10) = ( 0.4680107 0.8106183 0.1670356), wk = 0.1875000 extrapolated charge 10.03051, renormalised to 10.00000 total cpu time spent up to now is 12.5 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.47E-09, avg # of iterations = 1.8 total cpu time spent up to now is 12.6 secs total energy = -25.40264245 Ry Harris-Foulkes estimate = -25.42615571 Ry estimated scf accuracy < 0.00000089 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.90E-09, avg # of iterations = 3.0 total cpu time spent up to now is 12.8 secs total energy = -25.40263541 Ry Harris-Foulkes estimate = -25.40263557 Ry estimated scf accuracy < 0.00000048 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.78E-09, avg # of iterations = 1.0 total cpu time spent up to now is 12.9 secs total energy = -25.40263536 Ry Harris-Foulkes estimate = -25.40263542 Ry estimated scf accuracy < 0.00000013 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-09, avg # of iterations = 2.0 total cpu time spent up to now is 13.0 secs End of self-consistent calculation k = 0.0000 0.0000 0.1670 ( 531 PWs) bands (ev): -4.8575 8.1328 10.7541 10.7541 13.4523 17.1341 17.1341 18.1072 18.8524 k =-0.1560-0.2702 0.2784 ( 522 PWs) bands (ev): -3.3915 3.7530 8.3679 12.4693 12.4742 13.7887 15.5620 19.1568 19.8838 k = 0.3120 0.5404-0.0557 ( 520 PWs) bands (ev): -1.2111 0.2836 9.2030 9.8455 11.2733 14.4711 16.5903 17.2904 22.3304 k = 0.1560 0.2702 0.0557 ( 525 PWs) bands (ev): -4.1360 5.8448 9.4227 10.2380 12.3947 16.2372 17.4410 17.8636 18.6880 k =-0.3120 0.0000 0.3897 ( 519 PWs) bands (ev): -2.6709 4.4032 7.6937 8.1106 8.9090 15.8232 18.9980 19.8709 20.3056 k = 0.1560 0.8106 0.0557 ( 510 PWs) bands (ev): -0.0017 1.4706 4.8378 6.2647 11.6527 16.0771 18.0633 21.7149 22.7332 k = 0.0000 0.5404 0.1670 ( 521 PWs) bands (ev): -1.9520 2.2329 6.9460 8.4438 12.3113 14.7074 18.4330 19.3191 20.2834 k = 0.6240 0.0000-0.2784 ( 510 PWs) bands (ev): -0.7708 3.5861 4.1327 7.4043 8.2251 15.1336 20.3493 21.3517 24.1308 k = 0.0000 0.0000 0.5011 ( 522 PWs) bands (ev): -2.6247 1.8597 11.0875 11.0875 13.1259 13.1259 14.1989 15.5485 23.2276 k = 0.4680 0.8106 0.1670 ( 520 PWs) bands (ev): -0.4298 0.7892 5.5567 9.1096 10.6298 15.7215 18.2887 20.8955 21.8954 the Fermi energy is 13.1832 ev ! total energy = -25.40263537 Ry Harris-Foulkes estimate = -25.40263537 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00003997 atom 2 type 1 force = 0.00000000 0.00000000 -0.00003997 Total force = 0.000057 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 494.62 0.00336823 0.00000000 0.00000000 495.48 0.00 0.00 0.00000000 0.00336823 0.00000000 0.00 495.48 0.00 0.00000000 0.00000000 0.00335066 0.00 0.00 492.90 Entering Dynamics; it = 15 time = 0.10164 pico-seconds new lattice vectors (alat unit) : 0.533810443 0.000000000 0.747680670 -0.266905110 0.462293348 0.747680730 -0.266905110 -0.462293348 0.747680730 new unit-cell volume = 190.7035 (a.u.)^3 new positions in cryst coord As 0.249993442 0.249993450 0.249993450 As -0.249993442 -0.249993450 -0.249993450 new positions in cart coord (alat unit) As 0.000000051 0.000000000 0.560745835 As -0.000000051 0.000000000 -0.560745835 Ekin = 0.00002048 Ry T = 1228.5 K Etot = -24.75296391 new unit-cell volume = 190.70348 a.u.^3 ( 28.25934 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.533810443 0.000000000 0.747680670 -0.266905110 0.462293348 0.747680730 -0.266905110 -0.462293348 0.747680730 ATOMIC_POSITIONS (crystal) As 0.249993442 0.249993450 0.249993450 As -0.249993442 -0.249993450 -0.249993450 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1671837), wk = 0.0625000 k( 2) = ( -0.1561103 -0.2703911 0.2786395), wk = 0.1875000 k( 3) = ( 0.3122207 0.5407822 -0.0557279), wk = 0.1875000 k( 4) = ( 0.1561104 0.2703911 0.0557279), wk = 0.1875000 k( 5) = ( -0.3122207 0.0000000 0.3900952), wk = 0.1875000 k( 6) = ( 0.1561104 0.8111733 0.0557279), wk = 0.3750000 k( 7) = ( 0.0000000 0.5407822 0.1671837), wk = 0.3750000 k( 8) = ( 0.6244415 0.0000000 -0.2786395), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5015510), wk = 0.0625000 k( 10) = ( 0.4683311 0.8111733 0.1671836), wk = 0.1875000 extrapolated charge 9.97743, renormalised to 10.00000 total cpu time spent up to now is 13.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.55E-09, avg # of iterations = 2.1 total cpu time spent up to now is 13.4 secs total energy = -25.40117764 Ry Harris-Foulkes estimate = -25.38377836 Ry estimated scf accuracy < 0.00000062 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.18E-09, avg # of iterations = 3.0 total cpu time spent up to now is 13.5 secs total energy = -25.40118786 Ry Harris-Foulkes estimate = -25.40118795 Ry estimated scf accuracy < 0.00000025 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-09, avg # of iterations = 1.0 total cpu time spent up to now is 13.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.1672 ( 531 PWs) bands (ev): -4.8431 8.1774 10.7891 10.7891 13.5115 17.1797 17.1797 18.1576 18.8928 k =-0.1561-0.2704 0.2786 ( 522 PWs) bands (ev): -3.3747 3.7848 8.3999 12.5055 12.5129 13.8302 15.6171 19.2115 19.9248 k = 0.3122 0.5408-0.0557 ( 520 PWs) bands (ev): -1.1906 0.3075 9.2367 9.8770 11.3115 14.5127 16.6416 17.3447 22.3826 k = 0.1561 0.2704 0.0557 ( 525 PWs) bands (ev): -4.1206 5.8820 9.4539 10.2768 12.4330 16.2953 17.4811 17.9120 18.7408 k =-0.3122 0.0000 0.3901 ( 519 PWs) bands (ev): -2.6522 4.4404 7.7224 8.1382 8.9438 15.8546 19.0472 19.9247 20.3674 k = 0.1561 0.8112 0.0557 ( 510 PWs) bands (ev): 0.0239 1.4983 4.8594 6.2910 11.6939 16.1242 18.0986 21.7756 22.7824 k = 0.0000 0.5408 0.1672 ( 521 PWs) bands (ev): -1.9326 2.2619 6.9727 8.4748 12.3544 14.7529 18.4778 19.3700 20.3384 k = 0.6244 0.0000-0.2786 ( 510 PWs) bands (ev): -0.7469 3.6208 4.1536 7.4304 8.2594 15.1650 20.4048 21.4123 24.2004 k = 0.0000 0.0000 0.5016 ( 522 PWs) bands (ev): -2.6059 1.8886 11.1210 11.1210 13.1625 13.1625 14.2464 15.5956 23.2840 k = 0.4683 0.8112 0.1672 ( 520 PWs) bands (ev): -0.4062 0.8170 5.5793 9.1388 10.6667 15.7654 18.3431 20.9437 21.9510 the Fermi energy is 13.4542 ev ! total energy = -25.40118783 Ry Harris-Foulkes estimate = -25.40118787 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00002859 atom 2 type 1 force = 0.00000000 0.00000000 -0.00002859 Total force = 0.000040 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 501.13 0.00341114 0.00000000 0.00000000 501.80 0.00 0.00 0.00000000 0.00341114 0.00000000 0.00 501.80 0.00 0.00000000 0.00000000 0.00339751 0.00 0.00 499.79 Entering Dynamics; it = 16 time = 0.10890 pico-seconds new lattice vectors (alat unit) : 0.533931579 0.000000000 0.746998900 -0.266965680 0.462398255 0.746998962 -0.266965680 -0.462398255 0.746998962 new unit-cell volume = 190.6161 (a.u.)^3 new positions in cryst coord As 0.249996774 0.249996782 0.249996782 As -0.249996774 -0.249996782 -0.249996782 new positions in cart coord (alat unit) As 0.000000050 0.000000000 0.560241988 As -0.000000050 0.000000000 -0.560241988 Ekin = 0.00000567 Ry T = 1146.6 K Etot = -24.75299409 new unit-cell volume = 190.61607 a.u.^3 ( 28.24639 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.533931579 0.000000000 0.746998900 -0.266965680 0.462398255 0.746998962 -0.266965680 -0.462398255 0.746998962 ATOMIC_POSITIONS (crystal) As 0.249996774 0.249996782 0.249996782 As -0.249996774 -0.249996782 -0.249996782 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1673362), wk = 0.0625000 k( 2) = ( -0.1560749 -0.2703297 0.2788938), wk = 0.1875000 k( 3) = ( 0.3121499 0.5406595 -0.0557788), wk = 0.1875000 k( 4) = ( 0.1560750 0.2703297 0.0557787), wk = 0.1875000 k( 5) = ( -0.3121499 0.0000000 0.3904513), wk = 0.1875000 k( 6) = ( 0.1560750 0.8109892 0.0557787), wk = 0.3750000 k( 7) = ( 0.0000000 0.5406595 0.1673362), wk = 0.3750000 k( 8) = ( 0.6242998 0.0000000 -0.2788938), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5020087), wk = 0.0625000 k( 10) = ( 0.4682249 0.8109892 0.1673362), wk = 0.1875000 extrapolated charge 9.99541, renormalised to 10.00000 total cpu time spent up to now is 13.9 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.35E-10, avg # of iterations = 3.4 total cpu time spent up to now is 14.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8393 8.1988 10.7885 10.7885 13.5194 17.1882 17.1882 18.1614 18.9130 k =-0.1561-0.2703 0.2789 ( 522 PWs) bands (ev): -3.3703 3.7885 8.4179 12.5112 12.5170 13.8344 15.6261 19.2332 19.9235 k = 0.3121 0.5407-0.0558 ( 520 PWs) bands (ev): -1.1885 0.3120 9.2535 9.8802 11.3170 14.5231 16.6540 17.3729 22.4177 k = 0.1561 0.2703 0.0558 ( 525 PWs) bands (ev): -4.1176 5.8861 9.4545 10.2912 12.4449 16.3149 17.5034 17.9271 18.7530 k =-0.3121 0.0000 0.3905 ( 519 PWs) bands (ev): -2.6465 4.4552 7.7265 8.1363 8.9499 15.8633 19.0514 19.9265 20.3692 k = 0.1561 0.8110 0.0558 ( 510 PWs) bands (ev): 0.0302 1.5013 4.8629 6.3031 11.7054 16.1293 18.1004 21.7962 22.8054 k = 0.0000 0.5407 0.1673 ( 521 PWs) bands (ev): -1.9298 2.2651 6.9792 8.4844 12.3724 14.7721 18.4885 19.3761 20.3470 k = 0.6243 0.0000-0.2789 ( 510 PWs) bands (ev): -0.7429 3.6297 4.1610 7.4293 8.2689 15.1791 20.4200 21.4246 24.2196 k = 0.0000 0.0000 0.5020 ( 522 PWs) bands (ev): -2.5981 1.9038 11.1191 11.1191 13.1633 13.1633 14.2433 15.5933 23.3017 k = 0.4682 0.8110 0.1673 ( 520 PWs) bands (ev): -0.3968 0.8276 5.5810 9.1386 10.6674 15.7674 18.3410 20.9556 21.9637 the Fermi energy is 13.4622 ev ! total energy = -25.40089038 Ry Harris-Foulkes estimate = -25.39735340 Ry estimated scf accuracy < 0.00000007 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00001418 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001418 Total force = 0.000020 Total SCF correction = 0.000002 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 503.28 0.00342091 0.00000000 0.00000000 503.23 0.00 0.00 0.00000000 0.00342091 0.00000000 0.00 503.23 0.00 0.00000000 0.00000000 0.00342188 0.00 0.00 503.38 Entering Dynamics; it = 17 time = 0.11616 pico-seconds new lattice vectors (alat unit) : 0.534270426 0.000000000 0.747641565 -0.267135107 0.462691706 0.747641628 -0.267135107 -0.462691706 0.747641628 new unit-cell volume = 191.0223 (a.u.)^3 new positions in cryst coord As 0.249996875 0.249996883 0.249996883 As -0.249996875 -0.249996883 -0.249996883 new positions in cart coord (alat unit) As 0.000000049 0.000000000 0.560724208 As -0.000000049 0.000000000 -0.560724208 Ekin = 0.00000476 Ry T = 1074.9 K Etot = -24.75299465 new unit-cell volume = 191.02229 a.u.^3 ( 28.30658 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534270426 0.000000000 0.747641565 -0.267135107 0.462691706 0.747641628 -0.267135107 -0.462691706 0.747641628 ATOMIC_POSITIONS (crystal) As 0.249996875 0.249996883 0.249996883 As -0.249996875 -0.249996883 -0.249996883 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1671924), wk = 0.0625000 k( 2) = ( -0.1559759 -0.2701583 0.2786540), wk = 0.1875000 k( 3) = ( 0.3119519 0.5403166 -0.0557308), wk = 0.1875000 k( 4) = ( 0.1559760 0.2701583 0.0557308), wk = 0.1875000 k( 5) = ( -0.3119519 0.0000000 0.3901156), wk = 0.1875000 k( 6) = ( 0.1559760 0.8104749 0.0557308), wk = 0.3750000 k( 7) = ( 0.0000000 0.5403166 0.1671924), wk = 0.3750000 k( 8) = ( 0.6239038 0.0000000 -0.2786541), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5015772), wk = 0.0625000 k( 10) = ( 0.4679279 0.8104749 0.1671924), wk = 0.1875000 extrapolated charge 10.02126, renormalised to 10.00000 total cpu time spent up to now is 14.4 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.70E-09, avg # of iterations = 2.1 total cpu time spent up to now is 14.6 secs total energy = -25.40226887 Ry Harris-Foulkes estimate = -25.41865969 Ry estimated scf accuracy < 0.00000081 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.06E-09, avg # of iterations = 3.0 total cpu time spent up to now is 14.7 secs total energy = -25.40226999 Ry Harris-Foulkes estimate = -25.40227007 Ry estimated scf accuracy < 0.00000020 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-09, avg # of iterations = 1.0 total cpu time spent up to now is 14.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.1672 ( 531 PWs) bands (ev): -4.8537 8.1558 10.7552 10.7552 13.4634 17.1443 17.1443 18.1131 18.8724 k =-0.1560-0.2702 0.2787 ( 522 PWs) bands (ev): -3.3871 3.7579 8.3862 12.4762 12.4800 13.7943 15.5734 19.1803 19.8833 k = 0.3120 0.5403-0.0557 ( 520 PWs) bands (ev): -1.2086 0.2887 9.2203 9.8497 11.2800 14.4831 16.6044 17.3201 22.3660 k = 0.1560 0.2702 0.0557 ( 525 PWs) bands (ev): -4.1330 5.8506 9.4244 10.2537 12.4076 16.2593 17.4629 17.8804 18.7023 k =-0.3120 0.0000 0.3901 ( 519 PWs) bands (ev): -2.6650 4.4194 7.6984 8.1096 8.9163 15.8313 19.0045 19.8753 20.3110 k = 0.1560 0.8105 0.0557 ( 510 PWs) bands (ev): 0.0053 1.4746 4.8413 6.2768 11.6656 16.0845 18.0652 21.7381 22.7567 k = 0.0000 0.5403 0.1672 ( 521 PWs) bands (ev): -1.9488 2.2371 6.9528 8.4540 12.3307 14.7280 18.4448 19.3270 20.2945 k = 0.6239 0.0000-0.2787 ( 510 PWs) bands (ev): -0.7660 3.5963 4.1398 7.4039 8.2356 15.1470 20.3671 21.3669 24.1537 k = 0.0000 0.0000 0.5016 ( 522 PWs) bands (ev): -2.6168 1.8755 11.0869 11.0869 13.1281 13.1281 14.1978 15.5480 23.2468 k = 0.4679 0.8105 0.1672 ( 520 PWs) bands (ev): -0.4199 0.8006 5.5585 9.1102 10.6318 15.7257 18.2894 20.9086 21.9103 the Fermi energy is 13.4061 ev ! total energy = -25.40226998 Ry Harris-Foulkes estimate = -25.40227000 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00001351 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001351 Total force = 0.000019 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 496.59 0.00337679 0.00000000 0.00000000 496.74 0.00 0.00 0.00000000 0.00337679 0.00000000 0.00 496.74 0.00 0.00000000 0.00000000 0.00337375 0.00 0.00 496.30 Entering Dynamics; it = 18 time = 0.12342 pico-seconds new lattice vectors (alat unit) : 0.534100727 0.000000000 0.747294785 -0.267050257 0.462544742 0.747294848 -0.267050257 -0.462544742 0.747294848 new unit-cell volume = 190.8124 (a.u.)^3 new positions in cryst coord As 0.249997013 0.249997021 0.249997021 As -0.249997013 -0.249997021 -0.249997021 new positions in cart coord (alat unit) As 0.000000049 0.000000000 0.560464436 As -0.000000049 0.000000000 -0.560464436 Ekin = 0.00000344 Ry T = 1011.7 K Etot = -24.75299486 new unit-cell volume = 190.81242 a.u.^3 ( 28.27548 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534100727 0.000000000 0.747294785 -0.267050257 0.462544742 0.747294848 -0.267050257 -0.462544742 0.747294848 ATOMIC_POSITIONS (crystal) As 0.249997013 0.249997021 0.249997021 As -0.249997013 -0.249997021 -0.249997021 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1672700), wk = 0.0625000 k( 2) = ( -0.1560255 -0.2702441 0.2787833), wk = 0.1875000 k( 3) = ( 0.3120510 0.5404883 -0.0557567), wk = 0.1875000 k( 4) = ( 0.1560255 0.2702441 0.0557566), wk = 0.1875000 k( 5) = ( -0.3120510 0.0000000 0.3902967), wk = 0.1875000 k( 6) = ( 0.1560255 0.8107324 0.0557566), wk = 0.3750000 k( 7) = ( 0.0000000 0.5404883 0.1672700), wk = 0.3750000 k( 8) = ( 0.6241021 0.0000000 -0.2787834), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5018100), wk = 0.0625000 k( 10) = ( 0.4680766 0.8107324 0.1672699), wk = 0.1875000 extrapolated charge 9.98900, renormalised to 10.00000 total cpu time spent up to now is 15.1 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.52E-09, avg # of iterations = 3.0 total cpu time spent up to now is 15.3 secs total energy = -25.40155918 Ry Harris-Foulkes estimate = -25.39308071 Ry estimated scf accuracy < 0.00000011 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-09, avg # of iterations = 3.0 total cpu time spent up to now is 15.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8462 8.1788 10.7725 10.7725 13.4928 17.1670 17.1670 18.1379 18.8925 k =-0.1560-0.2702 0.2788 ( 522 PWs) bands (ev): -3.3784 3.7739 8.4028 12.4942 12.4993 13.8147 15.6007 19.2080 19.9029 k = 0.3121 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1981 0.3009 9.2375 9.8653 11.2989 14.5040 16.6299 17.3478 22.3926 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1250 5.8692 9.4399 10.2734 12.4268 16.2886 17.4831 17.9048 18.7286 k =-0.3121 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6553 4.4385 7.7126 8.1232 8.9337 15.8465 19.0288 19.9017 20.3414 k = 0.1560 0.8107 0.0558 ( 510 PWs) bands (ev): 0.0185 1.4886 4.8520 6.2903 11.6864 16.1078 18.0821 21.7687 22.7814 k = 0.0000 0.5405 0.1673 ( 521 PWs) bands (ev): -1.9390 2.2518 6.9662 8.4696 12.3527 14.7510 18.4669 19.3520 20.3218 k = 0.6241 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7538 3.6140 4.1504 7.4167 8.2529 15.1624 20.3950 21.3972 24.1888 k = 0.0000 0.0000 0.5018 ( 522 PWs) bands (ev): -2.6070 1.8906 11.1034 11.1034 13.1461 13.1461 14.2207 15.5708 23.2748 k = 0.4681 0.8107 0.1673 ( 520 PWs) bands (ev): -0.4077 0.8150 5.5697 9.1246 10.6498 15.7474 18.3158 20.9325 21.9379 the Fermi energy is 13.4355 ev ! total energy = -25.40155942 Ry Harris-Foulkes estimate = -25.40155945 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00001302 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001302 Total force = 0.000018 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.51 0.00339575 0.00000000 0.00000000 499.53 0.00 0.00 0.00000000 0.00339575 0.00000000 0.00 499.53 0.00 0.00000000 0.00000000 0.00339521 0.00 0.00 499.45 Entering Dynamics; it = 19 time = 0.13068 pico-seconds new lattice vectors (alat unit) : 0.534069509 0.000000000 0.746896528 -0.267034649 0.462517706 0.746896593 -0.267034649 -0.462517706 0.746896593 new unit-cell volume = 190.6884 (a.u.)^3 new positions in cryst coord As 0.249997148 0.249997156 0.249997156 As -0.249997148 -0.249997156 -0.249997156 new positions in cart coord (alat unit) As 0.000000048 0.000000000 0.560166050 As -0.000000048 0.000000000 -0.560166050 Ekin = 0.00000165 Ry T = 955.5 K Etot = -24.75299944 new unit-cell volume = 190.68844 a.u.^3 ( 28.25711 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534069509 0.000000000 0.746896528 -0.267034649 0.462517706 0.746896593 -0.267034649 -0.462517706 0.746896593 ATOMIC_POSITIONS (crystal) As 0.249997148 0.249997156 0.249997156 As -0.249997148 -0.249997156 -0.249997156 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1673592), wk = 0.0625000 k( 2) = ( -0.1560346 -0.2702599 0.2789320), wk = 0.1875000 k( 3) = ( 0.3120693 0.5405198 -0.0557864), wk = 0.1875000 k( 4) = ( 0.1560346 0.2702599 0.0557864), wk = 0.1875000 k( 5) = ( -0.3120693 0.0000000 0.3905048), wk = 0.1875000 k( 6) = ( 0.1560346 0.8107798 0.0557864), wk = 0.3750000 k( 7) = ( 0.0000000 0.5405198 0.1673592), wk = 0.3750000 k( 8) = ( 0.6241385 0.0000000 -0.2789320), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5020775), wk = 0.0625000 k( 10) = ( 0.4681039 0.8107798 0.1673591), wk = 0.1875000 extrapolated charge 9.99350, renormalised to 10.00000 total cpu time spent up to now is 15.7 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.45E-09, avg # of iterations = 3.0 total cpu time spent up to now is 15.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1674 ( 531 PWs) bands (ev): -4.8410 8.1965 10.7800 10.7800 13.5083 17.1805 17.1805 18.1507 18.9108 k =-0.1560-0.2703 0.2789 ( 522 PWs) bands (ev): -3.3725 3.7823 8.4172 12.5047 12.5094 13.8260 15.6163 19.2284 19.9130 k = 0.3121 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1924 0.3081 9.2519 9.8739 11.3099 14.5172 16.6464 17.3707 22.4186 k = 0.1560 0.2703 0.0558 ( 525 PWs) bands (ev): -4.1199 5.8788 9.4473 10.2876 12.4403 16.3085 17.5021 17.9213 18.7450 k =-0.3121 0.0000 0.3905 ( 519 PWs) bands (ev): -2.6486 4.4522 7.7212 8.1290 8.9440 15.8589 19.0412 19.9142 20.3551 k = 0.1560 0.8108 0.0558 ( 510 PWs) bands (ev): 0.0267 1.4959 4.8591 6.3015 11.6999 16.1200 18.0924 21.7895 22.8023 k = 0.0000 0.5405 0.1674 ( 521 PWs) bands (ev): -1.9332 2.2594 6.9753 8.4808 12.3690 14.7686 18.4818 19.3660 20.3371 k = 0.6241 0.0000-0.2789 ( 510 PWs) bands (ev): -0.7468 3.6249 4.1588 7.4226 8.2644 15.1768 20.4126 21.4148 24.2104 k = 0.0000 0.0000 0.5021 ( 522 PWs) bands (ev): -2.5994 1.9030 11.1103 11.1103 13.1548 13.1548 14.2306 15.5810 23.2948 k = 0.4681 0.8108 0.1674 ( 520 PWs) bands (ev): -0.3986 0.8253 5.5763 9.1314 10.6588 15.7577 18.3271 20.9484 21.9552 the Fermi energy is 13.4510 ev ! total energy = -25.40113719 Ry Harris-Foulkes estimate = -25.39612329 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00001248 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001248 Total force = 0.000018 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 502.35 0.00341303 0.00000000 0.00000000 502.07 0.00 0.00 0.00000000 0.00341303 0.00000000 0.00 502.07 0.00 0.00000000 0.00000000 0.00341874 0.00 0.00 502.91 Entering Dynamics; it = 20 time = 0.13794 pico-seconds new lattice vectors (alat unit) : 0.534095013 0.000000000 0.747231730 -0.267047400 0.462539794 0.747231794 -0.267047400 -0.462539794 0.747231794 new unit-cell volume = 190.7922 (a.u.)^3 new positions in cryst coord As 0.249997277 0.249997285 0.249997285 As -0.249997277 -0.249997285 -0.249997285 new positions in cart coord (alat unit) As 0.000000049 0.000000000 0.560417738 As -0.000000049 0.000000000 -0.560417738 Ekin = 0.00000092 Ry T = 905.2 K Etot = -24.75299934 new unit-cell volume = 190.79224 a.u.^3 ( 28.27249 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534095013 0.000000000 0.747231730 -0.267047400 0.462539794 0.747231794 -0.267047400 -0.462539794 0.747231794 ATOMIC_POSITIONS (crystal) As 0.249997277 0.249997285 0.249997285 As -0.249997277 -0.249997285 -0.249997285 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1672841), wk = 0.0625000 k( 2) = ( -0.1560272 -0.2702470 0.2788069), wk = 0.1875000 k( 3) = ( 0.3120544 0.5404940 -0.0557614), wk = 0.1875000 k( 4) = ( 0.1560272 0.2702470 0.0557614), wk = 0.1875000 k( 5) = ( -0.3120543 0.0000000 0.3903296), wk = 0.1875000 k( 6) = ( 0.1560272 0.8107411 0.0557614), wk = 0.3750000 k( 7) = ( 0.0000000 0.5404940 0.1672841), wk = 0.3750000 k( 8) = ( 0.6241087 0.0000000 -0.2788069), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5018523), wk = 0.0625000 k( 10) = ( 0.4680816 0.8107411 0.1672841), wk = 0.1875000 extrapolated charge 10.00544, renormalised to 10.00000 total cpu time spent up to now is 16.2 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.25E-09, avg # of iterations = 3.0 total cpu time spent up to now is 16.4 secs total energy = -25.40149075 Ry Harris-Foulkes estimate = -25.40568576 Ry estimated scf accuracy < 0.00000019 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-09, avg # of iterations = 2.2 total cpu time spent up to now is 16.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8460 8.1810 10.7731 10.7731 13.4946 17.1686 17.1686 18.1394 18.8950 k =-0.1560-0.2702 0.2788 ( 522 PWs) bands (ev): -3.3780 3.7746 8.4045 12.4953 12.5003 13.8160 15.6026 19.2107 19.9041 k = 0.3121 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1978 0.3014 9.2393 9.8661 11.3001 14.5055 16.6320 17.3509 22.3962 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1248 5.8701 9.4405 10.2751 12.4284 16.2911 17.4857 17.9068 18.7306 k =-0.3121 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6549 4.4400 7.7134 8.1236 8.9348 15.8481 19.0302 19.9031 20.3429 k = 0.1560 0.8107 0.0558 ( 510 PWs) bands (ev): 0.0191 1.4891 4.8526 6.2915 11.6879 16.1091 18.0833 21.7714 22.7842 k = 0.0000 0.5405 0.1673 ( 521 PWs) bands (ev): -1.9386 2.2524 6.9671 8.4708 12.3547 14.7533 18.4688 19.3537 20.3236 k = 0.6241 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7533 3.6151 4.1512 7.4171 8.2542 15.1643 20.3972 21.3994 24.1915 k = 0.0000 0.0000 0.5019 ( 522 PWs) bands (ev): -2.6064 1.8919 11.1039 11.1039 13.1469 13.1469 14.2218 15.5719 23.2774 k = 0.4681 0.8107 0.1673 ( 520 PWs) bands (ev): -0.4069 0.8160 5.5702 9.1251 10.6507 15.7485 18.3171 20.9345 21.9401 the Fermi energy is 13.4373 ev ! total energy = -25.40149085 Ry Harris-Foulkes estimate = -25.40149085 Ry estimated scf accuracy < 7.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00001184 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001184 Total force = 0.000017 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.07 0.00339922 0.00000000 0.00000000 500.04 0.00 0.00 0.00000000 0.00339922 0.00000000 0.00 500.04 0.00 0.00000000 0.00000000 0.00339970 0.00 0.00 500.11 Entering Dynamics; it = 21 time = 0.14520 pico-seconds new lattice vectors (alat unit) : 0.534097885 0.000000000 0.747242343 -0.267048837 0.462542280 0.747242408 -0.267048837 -0.462542280 0.747242408 new unit-cell volume = 190.7970 (a.u.)^3 new positions in cryst coord As 0.249997399 0.249997407 0.249997407 As -0.249997399 -0.249997407 -0.249997407 new positions in cart coord (alat unit) As 0.000000048 0.000000000 0.560425972 As -0.000000048 0.000000000 -0.560425972 Ekin = 0.00000000 Ry T = 860.0 K Etot = -24.75300111 new unit-cell volume = 190.79700 a.u.^3 ( 28.27320 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534097885 0.000000000 0.747242343 -0.267048837 0.462542280 0.747242408 -0.267048837 -0.462542280 0.747242408 ATOMIC_POSITIONS (crystal) As 0.249997399 0.249997407 0.249997407 As -0.249997399 -0.249997407 -0.249997407 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1672817), wk = 0.0625000 k( 2) = ( -0.1560263 -0.2702456 0.2788029), wk = 0.1875000 k( 3) = ( 0.3120527 0.5404911 -0.0557606), wk = 0.1875000 k( 4) = ( 0.1560264 0.2702456 0.0557606), wk = 0.1875000 k( 5) = ( -0.3120527 0.0000000 0.3903241), wk = 0.1875000 k( 6) = ( 0.1560264 0.8107367 0.0557606), wk = 0.3750000 k( 7) = ( 0.0000000 0.5404911 0.1672817), wk = 0.3750000 k( 8) = ( 0.6241054 0.0000000 -0.2788029), wk = 0.1875000 k( 9) = ( 0.0000000 0.0000000 0.5018452), wk = 0.0625000 k( 10) = ( 0.4680791 0.8107367 0.1672817), wk = 0.1875000 extrapolated charge 10.00025, renormalised to 10.00000 total cpu time spent up to now is 16.8 secs per-process dynamical memory: 4.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.13E-12, avg # of iterations = 3.0 total cpu time spent up to now is 16.9 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8461 8.1806 10.7729 10.7729 13.4942 17.1682 17.1682 18.1390 18.8944 k =-0.1560-0.2702 0.2788 ( 522 PWs) bands (ev): -3.3781 3.7745 8.4042 12.4950 12.5001 13.8156 15.6021 19.2101 19.9036 k = 0.3121 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1979 0.3013 9.2389 9.8659 11.2998 14.5051 16.6314 17.3503 22.3955 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1249 5.8699 9.4403 10.2748 12.4280 16.2906 17.4851 17.9064 18.7301 k =-0.3121 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6550 4.4398 7.7132 8.1234 8.9345 15.8476 19.0298 19.9027 20.3425 k = 0.1560 0.8107 0.0558 ( 510 PWs) bands (ev): 0.0190 1.4890 4.8524 6.2912 11.6876 16.1088 18.0829 21.7708 22.7836 k = 0.0000 0.5405 0.1673 ( 521 PWs) bands (ev): -1.9387 2.2522 6.9669 8.4705 12.3543 14.7528 18.4683 19.3532 20.3232 k = 0.6241 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7535 3.6149 4.1510 7.4169 8.2539 15.1637 20.3967 21.3989 24.1910 k = 0.0000 0.0000 0.5018 ( 522 PWs) bands (ev): -2.6065 1.8917 11.1037 11.1037 13.1467 13.1467 14.2214 15.5715 23.2768 k = 0.4681 0.8107 0.1673 ( 520 PWs) bands (ev): -0.4071 0.8158 5.5700 9.1249 10.6504 15.7482 18.3167 20.9340 21.9395 the Fermi energy is 13.4369 ev ! total energy = -25.40150703 Ry Harris-Foulkes estimate = -25.40169946 Ry estimated scf accuracy < 7.5E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00001125 atom 2 type 1 force = 0.00000000 0.00000000 -0.00001125 Total force = 0.000016 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.89 0.00339810 0.00000000 0.00000000 499.88 0.00 0.00 0.00000000 0.00339810 0.00000000 0.00 499.88 0.00 0.00000000 0.00000000 0.00339844 0.00 0.00 499.93 Wentzcovitch Damped Dynamics: convergence achieved, Efinal= -25.40150703 ------------------------------------------------------------------------ Final estimate of lattice vectors (input alat units) 0.534097885 0.000000000 0.747242343 -0.267048837 0.462542280 0.747242408 -0.267048837 -0.462542280 0.747242408 final unit-cell volume = 190.7970 (a.u.)^3 input alat = 7.0103 (a.u.) Begin final coordinates new unit-cell volume = 190.79700 a.u.^3 ( 28.27320 Ang^3 ) CELL_PARAMETERS (alat= 7.01033623) 0.534097885 0.000000000 0.747242343 -0.267048837 0.462542280 0.747242408 -0.267048837 -0.462542280 0.747242408 ATOMIC_POSITIONS (crystal) As 0.249997399 0.249997407 0.249997407 As -0.249997399 -0.249997407 -0.249997407 End final coordinates Writing output data file pwscf.save init_run : 0.15s CPU 0.15s WALL ( 1 calls) electrons : 10.57s CPU 10.85s WALL ( 22 calls) update_pot : 2.46s CPU 2.47s WALL ( 21 calls) forces : 1.10s CPU 1.10s WALL ( 22 calls) stress : 1.61s CPU 1.64s WALL ( 22 calls) Called by init_run: wfcinit : 0.03s CPU 0.03s WALL ( 1 calls) potinit : 0.05s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 8.80s CPU 9.02s WALL ( 96 calls) sum_band : 1.46s CPU 1.46s WALL ( 96 calls) v_of_rho : 0.25s CPU 0.20s WALL ( 107 calls) mix_rho : 0.03s CPU 0.06s WALL ( 96 calls) Called by c_bands: init_us_2 : 0.31s CPU 0.29s WALL ( 2370 calls) cegterg : 8.61s CPU 8.74s WALL ( 960 calls) Called by *egterg: h_psi : 6.30s CPU 6.35s WALL ( 3286 calls) g_psi : 0.38s CPU 0.33s WALL ( 2316 calls) cdiaghg : 0.78s CPU 0.72s WALL ( 2956 calls) Called by h_psi: add_vuspsi : 0.10s CPU 0.13s WALL ( 3286 calls) General routines calbec : 0.18s CPU 0.20s WALL ( 3726 calls) fft : 0.10s CPU 0.11s WALL ( 559 calls) fftw : 5.99s CPU 5.96s WALL ( 55992 calls) davcio : 0.02s CPU 0.10s WALL ( 3330 calls) PWSCF : 16.67s CPU 17.11s WALL This run was terminated on: 11:29:47 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/dft2.in0000755000175000017500000000053712341373024014170 0ustar mbamba &control calculation = 'scf' / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 input_dft='revpbe' / &electrons / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/xdm.ref0000644000175000017500000003343412341373024014266 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10469M) starts on 3Oct2013 at 12: 0:59 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 1 processors Waiting for input... Reading input from standard input Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 file C.pbe-n-kjpaw_psl.0.1.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used signal trapping enabled: kill the code with -SIGUSR1 to stop cleanly the si mulation Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 301 109 31 10915 2349 287 Tot 151 55 16 bravais-lattice index = 4 lattice parameter (alat) = 4.6600 a.u. unit-cell volume = 227.8567 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 12 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 20 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) celldm(1)= 4.660000 celldm(2)= 0.000000 celldm(3)= 2.600000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.600000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.384615 ) PseudoPot. # 1 for C read from file: ./C.pbe-n-kjpaw_psl.0.1.UPF MD5 check sum: c849119b86527ef673bbe9c4f1f1b6ab Pseudo is Projector augmented-wave + core cor, Zval = 4.0 Generated using "atomic" code by A. Dal Corso v.5.0.2 svn rev. 9415 Shape of augmentation charge: BESSEL Using radial grid of 1073 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential C 4.00 12.00000 C( 1.00) 8 Sym. Ops., with inversion, found ( 4 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( -0.5000000 0.8660254 1.9500000 ) 2 C tau( 2) = ( 0.5000050 0.2886722 1.9500000 ) 3 C tau( 3) = ( -0.5000000 0.8660254 0.6500000 ) 4 C tau( 4) = ( -0.0000050 0.5773532 0.6500000 ) number of k points= 1 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5458 G-vectors FFT dimensions: ( 24, 24, 60) Smooth grid: 1175 G-vectors FFT dimensions: ( 15, 15, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 144, 12) NL pseudopotentials 0.07 Mb ( 144, 32) Each V/rho on FFT grid 0.53 Mb ( 34560) Each G-vector array 0.04 Mb ( 5458) G-vector shells 0.00 Mb ( 616) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 144, 48) Each subspace H/S matrix 0.02 Mb ( 48, 48) Each matrix 0.00 Mb ( 32, 12) Arrays for rho mixing 10.55 Mb ( 34560, 20) Check: negative/imaginary core charge= -0.000011 0.000000 Initial potential from superposition of free atoms starting charge 15.99983, renormalised to 16.00000 Starting wfc are 16 randomized atomic wfcs Checking if some PAW data can be deallocated... total cpu time spent up to now is 1.0 secs per-process dynamical memory: 11.5 Mb Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 total cpu time spent up to now is 1.6 secs total energy = -70.75696246 Ry Harris-Foulkes estimate = -70.93981621 Ry estimated scf accuracy < 0.53772235 Ry iteration # 2 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.36E-03, avg # of iterations = 1.0 total cpu time spent up to now is 2.1 secs total energy = -70.74797408 Ry Harris-Foulkes estimate = -70.77687693 Ry estimated scf accuracy < 0.08906399 Ry iteration # 3 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.57E-04, avg # of iterations = 2.0 total cpu time spent up to now is 2.7 secs total energy = -70.75427887 Ry Harris-Foulkes estimate = -70.75473766 Ry estimated scf accuracy < 0.00241122 Ry iteration # 4 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.51E-05, avg # of iterations = 2.0 total cpu time spent up to now is 3.3 secs total energy = -70.75443837 Ry Harris-Foulkes estimate = -70.75445713 Ry estimated scf accuracy < 0.00003810 Ry iteration # 5 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.38E-07, avg # of iterations = 9.0 total cpu time spent up to now is 3.9 secs total energy = -70.74792325 Ry Harris-Foulkes estimate = -70.74792324 Ry estimated scf accuracy < 0.00000142 Ry iteration # 6 ecut= 18.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.85E-09, avg # of iterations = 2.0 total cpu time spent up to now is 4.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 144 PWs) bands (ev): -12.2285 -11.8060 -0.1530 1.9646 6.9306 6.9308 7.9258 7.9259 12.2469 18.3083 18.3089 18.9456 the Fermi energy is 8.1765 ev * XDM dispersion a1 = 0.327500 a2 (ang) = 2.767300 a2 (bohr) = 5.229439 + Volumes and moments # All results in atomic units (Hartree,bohr) # i V Vfree M1 M2 M3 1 3.502570E+01 3.899308E+01 3.018403E+00 3.883027E+01 7.140367E+02 2 3.502051E+01 3.899308E+01 3.030460E+00 3.886995E+01 7.135457E+02 3 3.502564E+01 3.899308E+01 3.018407E+00 3.883029E+01 7.140367E+02 4 3.502047E+01 3.899308E+01 3.030458E+00 3.886997E+01 7.135459E+02 + Dispersion coefficients # All results in atomic units (Hartree,bohr). # i j C6 C8 C10 Rc Rvdw 1 1 1.610111E+01 6.213985E+02 2.642716E+04 6.366254E+00 7.314387E+00 2 1 1.613200E+01 6.216692E+02 2.640908E+04 6.362124E+00 7.313035E+00 2 2 1.616303E+01 6.219413E+02 2.639104E+04 6.357992E+00 7.311682E+00 3 1 1.610111E+01 6.213981E+02 2.642714E+04 6.366253E+00 7.314387E+00 3 2 1.613200E+01 6.216689E+02 2.640906E+04 6.362123E+00 7.313034E+00 3 3 1.610111E+01 6.213978E+02 2.642712E+04 6.366252E+00 7.314387E+00 4 1 1.613199E+01 6.216690E+02 2.640907E+04 6.362126E+00 7.313035E+00 4 2 1.616301E+01 6.219411E+02 2.639103E+04 6.357994E+00 7.311682E+00 4 3 1.613199E+01 6.216686E+02 2.640905E+04 6.362124E+00 7.313035E+00 4 4 1.616300E+01 6.219408E+02 2.639103E+04 6.357995E+00 7.311682E+00 + van der Waals energies, forces and stresses (Ry,bohr) Evdw(total,Ry) = -3.716185694922E-02 Evdw(C6,Ry) = -1.857211334122E-02 Evdw(C8,Ry) = -1.079408362251E-02 Evdw(C10,Ry) = -7.795659985487E-03 Fvdw (001,Ry/bohr) = 1.076050516402E-09 -6.212580407088E-10 3.804013440207E-19 Fvdw (002,Ry/bohr) = -8.314769468593E-10 4.800534397040E-10 2.063412522703E-19 Fvdw (003,Ry/bohr) = -1.008476748181E-09 5.822443117194E-10 -4.092841598479E-20 Fvdw (004,Ry/bohr) = 7.639031782121E-10 -4.410397080044E-10 -2.814150755227E-20 sigma_vdw (Ry/bohr**3) = -1.671678619647E-04 3.653079669259E-11 -8.005435793764E-23 3.653079669259E-11 -1.671678197825E-04 6.296644334780E-22 -8.005435793764E-23 6.296644334780E-22 -1.954498798975E-04 sigma_vdw (GPa) = -2.459123736448E+00 5.373864820806E-07 -1.177640064884E-18 5.373864820806E-07 -2.459123115928E+00 9.262682050036E-18 -1.177640064884E-18 9.262682050036E-18 -2.875166514025E+00 ! total energy = -70.78508555 Ry Harris-Foulkes estimate = -70.78508533 Ry estimated scf accuracy < 0.00000024 Ry total all-electron energy = -301.841492 Ry The total energy is the sum of the following terms: one-electron contribution = -4.01450216 Ry hartree contribution = 12.15493336 Ry xc contribution = -16.66359122 Ry ewald contribution = -35.87244982 Ry Dispersion XDM Correction = -0.03716186 Ry one-center paw contrib. = -26.35883785 Ry smearing contrib. (-TS) = 0.00652398 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00002656 -0.00001534 0.00000000 atom 2 type 1 force = -0.00002956 0.00001707 0.00000000 atom 3 type 1 force = -0.00002656 0.00001534 0.00000000 atom 4 type 1 force = 0.00002956 -0.00001707 -0.00000000 Total force = 0.000065 Total SCF correction = 0.000080 SCF correction compared to forces is large: reduce conv_thr to get better values entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P=-2730.14 -0.01813130 -0.00000035 0.00000000 -2667.21 -0.05 0.00 -0.00000035 -0.01813170 0.00000000 -0.05 -2667.26 0.00 0.00000000 0.00000000 -0.01941433 0.00 0.00 -2855.95 Writing output data file pwscf.save init_run : 0.82s CPU 0.83s WALL ( 1 calls) electrons : 8.84s CPU 8.87s WALL ( 1 calls) forces : 0.10s CPU 0.09s WALL ( 1 calls) stress : 0.24s CPU 0.25s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.52s CPU 0.54s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.03s WALL ( 6 calls) sum_band : 0.21s CPU 0.21s WALL ( 6 calls) v_of_rho : 0.12s CPU 0.12s WALL ( 7 calls) newd : 0.16s CPU 0.17s WALL ( 7 calls) mix_rho : 0.02s CPU 0.02s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 13 calls) regterg : 0.02s CPU 0.03s WALL ( 6 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 26 calls) s_psi : 0.00s CPU 0.00s WALL ( 26 calls) g_psi : 0.00s CPU 0.00s WALL ( 19 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 25 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 26 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 37 calls) fft : 0.05s CPU 0.08s WALL ( 171 calls) ffts : 0.00s CPU 0.00s WALL ( 19 calls) fftw : 0.01s CPU 0.02s WALL ( 350 calls) interpolate : 0.01s CPU 0.01s WALL ( 19 calls) davcio : 0.00s CPU 0.00s WALL ( 1 calls) Parallel routines fft_scatter : 0.01s CPU 0.01s WALL ( 540 calls) PAW routines PAW_pot : 3.42s CPU 3.43s WALL ( 7 calls) PAW_symme : 0.01s CPU 0.00s WALL ( 13 calls) PWSCF : 10.16s CPU 10.22s WALL This run was terminated on: 12: 1: 9 3Oct2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/spinorbit.ref10000644000175000017500000002113412341373024015562 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:44:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/spinorbit.in1 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 475 223 85 6855 2229 459 bravais-lattice index = 2 lattice parameter (alat) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file: /home/giannozz/trunk/espresso/pseudo/Pt.rel-pz-n-rrkjus.UPF MD5 check sum: 4baafe8ec1942611396c7a5466f52249 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 79.90000 Pt( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 (tetrahedron method) cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0156250 k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.1250000 k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0937500 k( 5) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.3750000 k( 6) = ( 0.5000000 0.0000000 0.5000000), wk = 0.1875000 k( 7) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0468750 k( 8) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0937500 Dense grid: 6855 G-vectors FFT dimensions: ( 27, 27, 27) Smooth grid: 2229 G-vectors FFT dimensions: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.14 Mb ( 580, 16) NL pseudopotentials 0.12 Mb ( 290, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.57 Mb ( 580, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 26, 2, 16) Check: negative/imaginary core charge= -0.000004 0.000000 The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 1.2 secs per-process dynamical memory: 17.3 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 14.5 total cpu time spent up to now is 2.0 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 7.2728 7.2728 13.2972 13.2972 13.2972 13.2972 14.2908 14.2908 16.1185 16.1185 16.1185 16.1185 34.8404 34.8404 38.3611 38.3611 k =-0.2500 0.2500-0.2500 band energies (ev): 9.3081 9.3081 13.2365 13.2365 13.4824 13.4824 14.6832 14.6832 15.9663 15.9663 16.5594 16.5594 31.1289 31.1289 35.9733 35.9733 k = 0.5000-0.5000 0.5000 band energies (ev): 10.1739 10.1739 13.1418 13.1418 14.1581 14.1581 16.9034 16.9034 17.2990 17.2990 17.9629 17.9629 23.3574 23.3574 33.8780 33.8780 k = 0.0000 0.5000 0.0000 band energies (ev): 10.0109 10.0109 12.0836 12.0836 14.0946 14.0946 15.5834 15.5834 15.6557 15.6557 16.9101 16.9101 33.7855 33.7855 35.8288 35.8288 k = 0.7500-0.2500 0.7500 band energies (ev): 11.2318 11.2318 12.3531 12.3531 13.8685 13.8685 15.4952 15.4952 17.7576 17.7576 20.5934 20.5934 24.9747 24.9747 31.5983 31.5983 k = 0.5000 0.0000 0.5000 band energies (ev): 11.6296 11.6296 12.7413 12.7413 13.2274 13.2274 15.0123 15.0123 16.0285 16.0285 19.4786 19.4786 28.3128 28.3128 30.4317 30.4317 k = 0.0000-1.0000 0.0000 band energies (ev): 10.4414 10.4414 10.8730 10.8730 17.3736 17.3736 17.6769 17.6769 18.6587 18.6587 19.1028 19.1028 26.2686 26.2686 28.7375 28.7375 k =-0.5000-1.0000 0.0000 band energies (ev): 11.8136 11.8136 12.7585 12.7585 13.0246 13.0246 15.7118 15.7118 18.0854 18.0854 24.7132 24.7132 25.1084 25.1084 26.4868 26.4868 the Fermi energy is 17.8036 ev Writing output data file pwscf.save init_run : 1.06s CPU 1.06s WALL ( 1 calls) electrons : 0.78s CPU 0.78s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.77s CPU 0.77s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) newd : 0.05s CPU 0.05s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 8 calls) cegterg : 0.68s CPU 0.69s WALL ( 8 calls) Called by *egterg: h_psi : 0.45s CPU 0.44s WALL ( 132 calls) s_psi : 0.02s CPU 0.02s WALL ( 132 calls) g_psi : 0.02s CPU 0.02s WALL ( 116 calls) cdiaghg : 0.10s CPU 0.12s WALL ( 124 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 132 calls) General routines calbec : 0.01s CPU 0.02s WALL ( 132 calls) fft : 0.00s CPU 0.00s WALL ( 12 calls) ffts : 0.00s CPU 0.00s WALL ( 4 calls) fftw : 0.28s CPU 0.29s WALL ( 4556 calls) interpolate : 0.00s CPU 0.00s WALL ( 4 calls) davcio : 0.00s CPU 0.00s WALL ( 8 calls) PWSCF : 2.10s CPU 2.14s WALL This run was terminated on: 11:44:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-ncpp.ref0000644000175000017500000002200312341373024015175 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-ncpp.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PZ ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.bhs MD5 check sum: a27a73b327aba9ec6bb45d294069e23f Pseudo is Norm-conserving, Zval = 4.0 From published tables, or generated by old fitcar code (analytical format) Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99900, renormalised to 8.00000 Starting wfc are 18 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.5 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.96E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.83637767 Ry Harris-Foulkes estimate = -15.85758351 Ry estimated scf accuracy < 0.06475710 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.09E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.83927443 Ry Harris-Foulkes estimate = -15.83963130 Ry estimated scf accuracy < 0.00242740 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.03E-05, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs total energy = -15.83975392 Ry Harris-Foulkes estimate = -15.83977528 Ry estimated scf accuracy < 0.00006147 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.68E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.83976471 Ry Harris-Foulkes estimate = -15.83976620 Ry estimated scf accuracy < 0.00000391 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.89E-08, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.9627 2.3059 5.4686 5.4686 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -3.0107 -0.1465 2.6235 3.9834 ! total energy = -15.83976536 Ry Harris-Foulkes estimate = -15.83976538 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 4.78714168 Ry hartree contribution = 1.08788645 Ry xc contribution = -4.81503490 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -54.09 -0.00036772 0.00000000 0.00000000 -54.09 0.00 0.00 0.00000000 -0.00036772 0.00000000 0.00 -54.09 0.00 0.00000000 0.00000000 -0.00036772 0.00 0.00 -54.09 Writing output data file pwscf.save init_run : 0.03s CPU 0.03s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) stress : 0.00s CPU 0.00s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.02s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 36 calls) g_psi : 0.00s CPU 0.00s WALL ( 22 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 32 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 36 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 38 calls) fft : 0.00s CPU 0.00s WALL ( 28 calls) fftw : 0.02s CPU 0.01s WALL ( 360 calls) davcio : 0.00s CPU 0.00s WALL ( 40 calls) PWSCF : 0.11s CPU 0.13s WALL This run was terminated on: 11:28:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/md-pot_extrap2.in0000755000175000017500000000063012341373024016170 0ustar mbamba &control calculation='md' dt=20, nstep=50 / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / &ions pot_extrapolation='second_order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS {alat} Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS {automatic} 1 1 1 0 0 0 espresso-5.1/PW/tests/paw-atom_spin.ref0000644000175000017500000002450012341373024016246 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:21:57 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/paw-atom_spin.in gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2587 2587 649 86907 86907 10849 Tot 1294 1294 325 bravais-lattice index = 2 lattice parameter (alat) = 25.0000 a.u. unit-cell volume = 3906.2500 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 7 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 25.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pbe-kjpaw.UPF MD5 check sum: 90f4868982d1b5f8aada8373f3a0510a Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) Starting magnetic structure atomic species magnetization O 0.000 No symmetry found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 43454 G-vectors FFT dimensions: ( 64, 64, 64) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 Spin-down 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.58 Mb ( 5425, 7) NL pseudopotentials 0.66 Mb ( 5425, 8) Each V/rho on FFT grid 8.00 Mb ( 262144, 2) Each G-vector array 0.33 Mb ( 43454) G-vector shells 0.00 Mb ( 636) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.16 Mb ( 5425, 28) Each subspace H/S matrix 0.01 Mb ( 28, 28) Each matrix 0.00 Mb ( 8, 7) Arrays for rho mixing 32.00 Mb ( 262144, 8) Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000870 Check: negative starting charge=(component2): -0.000870 starting charge 6.00001, renormalised to 6.00000 negative rho (up, down): 0.870E-03 0.870E-03 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 1.8 secs per-process dynamical memory: 59.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.5 negative rho (up, down): 0.133E-02 0.138E-02 total cpu time spent up to now is 3.4 secs total energy = -41.23972817 Ry Harris-Foulkes estimate = -41.12659484 Ry estimated scf accuracy < 0.13264910 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.21E-03, avg # of iterations = 1.0 negative rho (up, down): 0.165E-02 0.207E-02 total cpu time spent up to now is 4.7 secs total energy = -41.26326404 Ry Harris-Foulkes estimate = -41.24460665 Ry estimated scf accuracy < 0.01327977 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.21E-04, avg # of iterations = 5.5 negative rho (up, down): 0.168E-02 0.200E-02 total cpu time spent up to now is 6.2 secs total energy = -41.26485237 Ry Harris-Foulkes estimate = -41.26488891 Ry estimated scf accuracy < 0.00039000 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.50E-06, avg # of iterations = 15.5 negative rho (up, down): 0.173E-02 0.195E-02 total cpu time spent up to now is 8.1 secs total energy = -41.26499927 Ry Harris-Foulkes estimate = -41.26497531 Ry estimated scf accuracy < 0.00005784 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.64E-07, avg # of iterations = 9.5 negative rho (up, down): 0.173E-02 0.193E-02 total cpu time spent up to now is 9.6 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 5425 PWs) bands (ev): -24.9956 -10.7285 -10.7284 -8.6396 -0.6272 1.7930 1.7943 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 5425 PWs) bands (ev): -21.3870 -7.4232 -6.3289 -6.3255 -0.5091 1.9391 2.0640 highest occupied, lowest unoccupied level (ev): -7.4232 -6.3289 ! total energy = -41.26501001 Ry Harris-Foulkes estimate = -41.26500949 Ry estimated scf accuracy < 0.00000049 Ry total all-electron energy = -150.025756 Ry The total energy is the sum of the following terms: one-electron contribution = -38.87639260 Ry hartree contribution = 20.87866631 Ry xc contribution = -6.69553199 Ry ewald contribution = -6.60220143 Ry one-center paw contrib. = -9.96955029 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 1.56s CPU 1.60s WALL ( 1 calls) electrons : 7.64s CPU 7.83s WALL ( 1 calls) Called by init_run: wfcinit : 0.15s CPU 0.15s WALL ( 1 calls) potinit : 0.64s CPU 0.66s WALL ( 1 calls) Called by electrons: c_bands : 3.02s CPU 3.04s WALL ( 5 calls) sum_band : 0.95s CPU 0.96s WALL ( 5 calls) v_of_rho : 2.54s CPU 2.62s WALL ( 6 calls) newd : 0.38s CPU 0.38s WALL ( 6 calls) mix_rho : 0.22s CPU 0.23s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.05s CPU 0.04s WALL ( 22 calls) regterg : 2.98s CPU 2.99s WALL ( 10 calls) Called by *egterg: h_psi : 2.85s CPU 2.84s WALL ( 86 calls) s_psi : 0.02s CPU 0.01s WALL ( 86 calls) g_psi : 0.06s CPU 0.04s WALL ( 74 calls) rdiaghg : 0.00s CPU 0.02s WALL ( 84 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 86 calls) General routines calbec : 0.06s CPU 0.04s WALL ( 96 calls) fft : 1.00s CPU 1.02s WALL ( 146 calls) fftw : 2.51s CPU 2.53s WALL ( 374 calls) davcio : 0.00s CPU 0.01s WALL ( 32 calls) PAW routines PAW_pot : 0.89s CPU 0.89s WALL ( 6 calls) PAW_ddot : 0.04s CPU 0.03s WALL ( 21 calls) PWSCF : 9.45s CPU 9.71s WALL This run was terminated on: 11:22: 7 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lda+U-noU.ref0000644000175000017500000006356412341373024015204 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10170) starts on 21Apr2013 at 12:46:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Reading input from /home/giannozz/espresso/PW/tests/lda+U-noU.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1061 539 163 17255 6111 1081 Generating pointlists ... new r_m : 0.2063 (alat units) 1.6892 (a.u.) for type 1 new r_m : 0.2063 (alat units) 1.6892 (a.u.) for type 2 new r_m : 0.2063 (alat units) 1.6892 (a.u.) for type 3 bravais-lattice index = 0 lattice parameter (alat) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file: /home/giannozz/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file: /home/giannozz/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file: /home/giannozz/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 Simplified LDA+U calculation (l_max = 2) with parameters (eV): atomic species L U alpha J0 beta Fe1 2 0.0000 0.0000 0.0000 0.0000 Fe2 2 0.0000 0.0000 0.0000 0.0000 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 Dense grid: 17255 G-vectors FFT dimensions: ( 50, 50, 50) Smooth grid: 6111 G-vectors FFT dimensions: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Number of +U iterations with fixed ns = 0 Starting occupations: --- enter write_ns --- LDA+U parameters: U( 2) = 0.00000001 alpha( 2) = 0.00000000 U( 3) = 0.00000001 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 5.00000 1.00000 6.00000 spin 1 eigenvalues: 1.000 1.000 1.000 1.000 1.000 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 spin 2 eigenvalues: 0.200 0.200 0.200 0.200 0.200 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atomic mag. moment = 4.000000 atom 4 Tr[ns(na)] (up, down, total) = 1.00000 5.00000 6.00000 spin 1 eigenvalues: 0.200 0.200 0.200 0.200 0.200 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 spin 2 eigenvalues: 1.000 1.000 1.000 1.000 1.000 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atomic mag. moment = -4.000000 N of occupied +U levels = 12.0000000 --- exit write_ns --- Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 randomized atomic wfcs total cpu time spent up to now is 4.1 secs per-process dynamical memory: 40.6 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.2 --- enter write_ns --- LDA+U parameters: U( 2) = 0.00000001 alpha( 2) = 0.00000000 U( 3) = 0.00000001 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 4.96671 1.45673 6.42344 spin 1 eigenvalues: 0.987 0.987 0.997 0.997 0.998 eigenvectors: 0.321 0.597 0.031 0.052 0.000 0.009 0.046 0.601 0.011 0.333 0.054 0.001 0.089 0.523 0.333 0.597 0.321 0.052 0.031 0.000 0.019 0.036 0.228 0.384 0.333 occupations: 0.988 0.001 0.001 0.000 0.002 0.001 0.997 0.001 0.002 -0.001 0.001 0.001 0.997 -0.002 -0.001 0.000 0.002 -0.002 0.988 0.000 0.002 -0.001 -0.001 0.000 0.997 spin 2 eigenvalues: 0.200 0.200 0.335 0.335 0.387 eigenvectors: 0.194 0.801 0.005 0.000 0.000 0.001 0.002 0.114 0.549 0.333 0.003 0.000 0.224 0.439 0.333 0.801 0.194 0.000 0.005 0.000 0.001 0.003 0.657 0.006 0.333 occupations: 0.201 -0.004 -0.004 0.000 -0.008 -0.004 0.352 0.017 -0.007 -0.017 -0.004 0.017 0.352 0.007 -0.017 0.000 -0.007 0.007 0.201 0.000 -0.008 -0.017 -0.017 0.000 0.352 atomic mag. moment = 3.509985 atom 4 Tr[ns(na)] (up, down, total) = 1.45701 4.96653 6.42354 spin 1 eigenvalues: 0.200 0.200 0.335 0.335 0.387 eigenvectors: 0.125 0.869 0.005 0.000 0.000 0.001 0.002 0.163 0.500 0.333 0.003 0.000 0.169 0.494 0.333 0.869 0.125 0.000 0.005 0.000 0.000 0.003 0.663 0.000 0.333 occupations: 0.201 -0.004 -0.004 0.000 -0.008 -0.004 0.352 0.017 -0.007 -0.017 -0.004 0.017 0.352 0.007 -0.017 0.000 -0.007 0.007 0.201 0.000 -0.008 -0.017 -0.017 0.000 0.352 spin 2 eigenvalues: 0.987 0.987 0.997 0.997 0.998 eigenvectors: 0.278 0.641 0.025 0.056 0.000 0.011 0.043 0.610 0.003 0.333 0.054 0.000 0.121 0.492 0.333 0.641 0.278 0.056 0.025 0.000 0.016 0.038 0.188 0.424 0.333 occupations: 0.988 0.001 0.001 0.000 0.002 0.001 0.997 0.001 0.002 -0.001 0.001 0.001 0.997 -0.002 -0.001 0.000 0.002 -0.002 0.988 0.000 0.002 -0.001 -0.001 0.000 0.997 atomic mag. moment = -3.509523 N of occupied +U levels = 12.8469803 --- exit write_ns --- Magnetic moment per site: atom: 1 charge: 5.7541 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.7541 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.7332 magn: 3.0953 constr: 0.0000 atom: 4 charge: 5.7330 magn: -3.0952 constr: 0.0000 total cpu time spent up to now is 5.3 secs total energy = -174.40657174 Ry Harris-Foulkes estimate = -175.24220324 Ry estimated scf accuracy < 1.85501351 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.81 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.63E-03, avg # of iterations = 2.1 Magnetic moment per site: atom: 1 charge: 5.7305 magn: -0.0002 constr: 0.0000 atom: 2 charge: 5.7305 magn: -0.0002 constr: 0.0000 atom: 3 charge: 5.7521 magn: 3.1081 constr: 0.0000 atom: 4 charge: 5.7530 magn: -3.1066 constr: 0.0000 total cpu time spent up to now is 6.4 secs total energy = -174.79966555 Ry Harris-Foulkes estimate = -174.82972373 Ry estimated scf accuracy < 0.11307297 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.80 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.04E-04, avg # of iterations = 3.0 Magnetic moment per site: atom: 1 charge: 5.8100 magn: 0.0001 constr: 0.0000 atom: 2 charge: 5.8100 magn: 0.0001 constr: 0.0000 atom: 3 charge: 5.7092 magn: 3.2194 constr: 0.0000 atom: 4 charge: 5.6941 magn: -3.2327 constr: 0.0000 total cpu time spent up to now is 7.5 secs total energy = -174.82183181 Ry Harris-Foulkes estimate = -174.81950450 Ry estimated scf accuracy < 0.01949884 Ry total magnetization = -0.02 Bohr mag/cell absolute magnetization = 7.04 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.96E-05, avg # of iterations = 2.5 Magnetic moment per site: atom: 1 charge: 5.8156 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.8156 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.6957 magn: 3.2395 constr: 0.0000 atom: 4 charge: 5.7020 magn: -3.2334 constr: 0.0000 total cpu time spent up to now is 8.6 secs total energy = -174.82053471 Ry Harris-Foulkes estimate = -174.82655002 Ry estimated scf accuracy < 0.07598372 Ry total magnetization = 0.45 Bohr mag/cell absolute magnetization = 7.04 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.96E-05, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.8122 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.8122 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.7054 magn: 3.2438 constr: 0.0000 atom: 4 charge: 5.7051 magn: -3.2449 constr: 0.0000 total cpu time spent up to now is 9.6 secs total energy = -174.82361011 Ry Harris-Foulkes estimate = -174.82487248 Ry estimated scf accuracy < 0.01660723 Ry total magnetization = -0.21 Bohr mag/cell absolute magnetization = 7.05 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.93E-05, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.8187 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.8187 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.7024 magn: 3.2662 constr: 0.0000 atom: 4 charge: 5.7028 magn: -3.2658 constr: 0.0000 total cpu time spent up to now is 10.6 secs total energy = -174.82453028 Ry Harris-Foulkes estimate = -174.82438221 Ry estimated scf accuracy < 0.00045167 Ry total magnetization = 0.02 Bohr mag/cell absolute magnetization = 7.07 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.61E-06, avg # of iterations = 2.8 Magnetic moment per site: atom: 1 charge: 5.8170 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.8170 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.7015 magn: 3.2760 constr: 0.0000 atom: 4 charge: 5.7012 magn: -3.2763 constr: 0.0000 total cpu time spent up to now is 11.8 secs total energy = -174.82463916 Ry Harris-Foulkes estimate = -174.82462430 Ry estimated scf accuracy < 0.00006089 Ry total magnetization = -0.01 Bohr mag/cell absolute magnetization = 7.08 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.17E-07, avg # of iterations = 3.2 Magnetic moment per site: atom: 1 charge: 5.8160 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.8160 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.7019 magn: 3.2779 constr: 0.0000 atom: 4 charge: 5.7019 magn: -3.2778 constr: 0.0000 total cpu time spent up to now is 13.0 secs total energy = -174.82465390 Ry Harris-Foulkes estimate = -174.82465845 Ry estimated scf accuracy < 0.00007695 Ry total magnetization = 0.01 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.17E-07, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 5.8164 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.8164 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.7019 magn: 3.2791 constr: 0.0000 atom: 4 charge: 5.7017 magn: -3.2793 constr: 0.0000 total cpu time spent up to now is 14.0 secs End of self-consistent calculation --- enter write_ns --- LDA+U parameters: U( 2) = 0.00000001 alpha( 2) = 0.00000000 U( 3) = 0.00000001 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 4.97023 1.96875 6.93898 spin 1 eigenvalues: 0.986 0.986 0.999 0.999 1.000 eigenvectors: 0.189 0.791 0.010 0.010 0.000 0.004 0.009 0.613 0.040 0.333 0.013 0.000 0.048 0.605 0.333 0.791 0.189 0.010 0.010 0.000 0.003 0.011 0.319 0.334 0.333 occupations: 0.986 0.001 0.001 0.000 0.002 0.001 0.999 0.000 0.001 0.000 0.001 0.000 0.999 -0.001 0.000 0.000 0.001 -0.001 0.986 0.000 0.002 0.000 0.000 0.000 0.999 spin 2 eigenvalues: 0.330 0.330 0.431 0.439 0.439 eigenvectors: 0.020 0.846 0.000 0.093 0.042 0.078 0.012 0.333 0.003 0.575 0.055 0.035 0.333 0.465 0.112 0.846 0.020 0.000 0.042 0.093 0.002 0.087 0.333 0.398 0.179 occupations: 0.345 -0.015 -0.015 0.000 -0.030 -0.015 0.427 0.002 -0.026 -0.002 -0.015 0.002 0.427 0.026 -0.002 0.000 -0.026 0.026 0.345 0.000 -0.030 -0.002 -0.002 0.000 0.427 atomic mag. moment = 3.001488 atom 4 Tr[ns(na)] (up, down, total) = 1.96849 4.97023 6.93873 spin 1 eigenvalues: 0.330 0.330 0.431 0.439 0.439 eigenvectors: 0.086 0.779 0.000 0.098 0.036 0.086 0.004 0.333 0.000 0.577 0.039 0.050 0.333 0.443 0.134 0.779 0.086 0.000 0.036 0.098 0.009 0.081 0.333 0.422 0.155 occupations: 0.345 -0.015 -0.015 0.000 -0.030 -0.015 0.426 0.002 -0.026 -0.002 -0.015 0.002 0.426 0.026 -0.002 0.000 -0.026 0.026 0.345 0.000 -0.030 -0.002 -0.002 0.000 0.426 spin 2 eigenvalues: 0.986 0.986 1.000 1.000 1.000 eigenvectors: 0.209 0.770 0.012 0.008 0.000 0.004 0.010 0.570 0.083 0.333 0.013 0.000 0.016 0.637 0.333 0.770 0.209 0.008 0.012 0.000 0.003 0.011 0.393 0.260 0.333 occupations: 0.986 0.001 0.001 0.000 0.002 0.001 0.999 0.000 0.001 0.000 0.001 0.000 0.999 -0.001 0.000 0.000 0.001 -0.001 0.986 0.000 0.002 0.000 0.000 0.000 0.999 atomic mag. moment = -3.001738 N of occupied +U levels = 13.8777079 --- exit write_ns --- ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.9542 -7.7480 2.7536 5.1275 5.1275 7.5751 7.5985 7.5985 7.7789 7.7789 8.0645 8.9388 8.9388 11.0564 11.0564 11.2568 11.5022 12.8926 12.8926 15.3687 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.7720 -7.7526 3.6502 3.9122 4.7743 5.3275 5.3830 6.0694 7.7221 8.2487 8.6482 9.6399 9.8405 10.4286 11.7000 11.8240 12.6006 12.6274 17.2950 17.6034 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.7632 -7.7516 2.7891 4.0514 5.1677 5.1901 6.4310 6.4436 7.1586 8.2371 8.5577 9.3830 9.6069 10.7260 11.7102 11.8177 13.0234 13.0936 15.3293 16.7014 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.4157 -8.3818 4.4370 4.8295 5.5353 5.5353 6.5033 6.5033 7.8494 7.8494 8.2979 9.9325 9.9325 10.9592 10.9720 10.9720 12.4952 12.4952 13.9938 14.2623 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.9542 -7.7480 2.7536 5.1275 5.1275 7.5751 7.5984 7.5984 7.7789 7.7789 8.0650 8.9390 8.9390 11.0563 11.0563 11.2567 11.5021 12.8924 12.8924 15.3687 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.7720 -7.7526 3.6501 3.9123 4.7743 5.3275 5.3831 6.0693 7.7224 8.2487 8.6484 9.6401 9.8408 10.4285 11.6999 11.8239 12.6004 12.6272 17.2951 17.6032 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.7632 -7.7516 2.7891 4.0514 5.1678 5.1901 6.4310 6.4436 7.1588 8.2371 8.5580 9.3832 9.6070 10.7259 11.7101 11.8175 13.0232 13.0934 15.3293 16.7014 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.4158 -8.3817 4.4369 4.8296 5.5352 5.5352 6.5034 6.5034 7.8495 7.8495 8.2984 9.9326 9.9326 10.9590 10.9719 10.9719 12.4950 12.4950 13.9935 14.2627 the Fermi energy is 10.9763 ev ! total energy = -174.82465698 Ry Harris-Foulkes estimate = -174.82465696 Ry estimated scf accuracy < 0.00000084 Ry The total energy is the sum of the following terms: one-electron contribution = 0.56010501 Ry hartree contribution = 27.86327621 Ry xc contribution = -65.73556056 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.00000000 Ry smearing contrib. (-TS) = -0.00318230 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell convergence has been achieved in 9 iterations Writing output data file pwscf.save init_run : 4.05s CPU 4.06s WALL ( 1 calls) electrons : 9.86s CPU 9.93s WALL ( 1 calls) Called by init_run: wfcinit : 0.24s CPU 0.24s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 4.85s CPU 4.85s WALL ( 9 calls) sum_band : 3.05s CPU 3.07s WALL ( 9 calls) v_of_rho : 0.43s CPU 0.42s WALL ( 10 calls) newd : 1.40s CPU 1.42s WALL ( 10 calls) mix_rho : 0.14s CPU 0.14s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.20s CPU 0.17s WALL ( 160 calls) cegterg : 4.53s CPU 4.54s WALL ( 72 calls) Called by *egterg: h_psi : 3.85s CPU 3.84s WALL ( 231 calls) s_psi : 0.16s CPU 0.14s WALL ( 239 calls) g_psi : 0.05s CPU 0.06s WALL ( 151 calls) cdiaghg : 0.22s CPU 0.22s WALL ( 223 calls) Called by h_psi: add_vuspsi : 0.17s CPU 0.15s WALL ( 231 calls) vhpsi : 0.09s CPU 0.10s WALL ( 231 calls) General routines calbec : 0.34s CPU 0.32s WALL ( 614 calls) fft : 0.35s CPU 0.35s WALL ( 160 calls) ffts : 0.02s CPU 0.03s WALL ( 38 calls) fftw : 3.03s CPU 3.06s WALL ( 8220 calls) interpolate : 0.16s CPU 0.16s WALL ( 38 calls) davcio : 0.00s CPU 0.00s WALL ( 24 calls) Hubbard U routines new_ns : 0.03s CPU 0.04s WALL ( 9 calls) vhpsi : 0.09s CPU 0.10s WALL ( 231 calls) PWSCF : 14.03s CPU 14.13s WALL This run was terminated on: 12:46:35 21Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav6-kauto.ref0000644000175000017500000001747612341373024017443 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:23 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav6-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 793 793 221 33775 33775 4885 bravais-lattice index = 6 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.1250000), wk = 2.0000000 Dense grid: 33775 G-vectors FFT dimensions: ( 32, 32, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.06 Mb ( 4235, 1) NL pseudopotentials 0.00 Mb ( 4235, 0) Each V/rho on FFT grid 1.00 Mb ( 65536) Each G-vector array 0.26 Mb ( 33775) G-vector shells 0.00 Mb ( 467) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.26 Mb ( 4235, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 8.00 Mb ( 65536, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.002648 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.265E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 13.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.767E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22021107 Ry Harris-Foulkes estimate = -2.29046448 Ry estimated scf accuracy < 0.13330394 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.67E-03, avg # of iterations = 1.0 negative rho (up, down): 0.162E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23123513 Ry Harris-Foulkes estimate = -2.23168469 Ry estimated scf accuracy < 0.00100471 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.02E-05, avg # of iterations = 2.0 negative rho (up, down): 0.195E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23153918 Ry Harris-Foulkes estimate = -2.23154077 Ry estimated scf accuracy < 0.00001233 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.17E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.2500 0.2500 0.1250 ( 4235 PWs) bands (ev): -10.2358 ! total energy = -2.23154046 Ry Harris-Foulkes estimate = -2.23154047 Ry estimated scf accuracy < 0.00000049 Ry The total energy is the sum of the following terms: one-electron contribution = -3.61668192 Ry hartree contribution = 1.91472471 Ry xc contribution = -1.31448611 Ry ewald contribution = 0.78490285 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.04s CPU 0.05s WALL ( 1 calls) electrons : 0.14s CPU 0.15s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 4 calls) sum_band : 0.02s CPU 0.03s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.05s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: cegterg : 0.02s CPU 0.02s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 12 calls) g_psi : 0.00s CPU 0.00s WALL ( 7 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 11 calls) Called by h_psi: General routines fft : 0.00s CPU 0.01s WALL ( 19 calls) fftw : 0.02s CPU 0.02s WALL ( 30 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.22s CPU 0.24s WALL This run was terminated on: 10:22:23 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/berry.in10000644000175000017500000000120512341373024014523 0ustar mbamba &control calculation = 'nscf' lberry = .true. gdir = 3 nppstr = 7 / &system ibrav = 1 celldm(1) = 7.3699 nat = 5 ntyp = 3 nbnd = 22 ecutwfc = 25.0 ecutrho =200.0 / &electrons / ATOMIC_SPECIES Pb 207.2 Pb.pz-d-van.UPF Ti 47.867 Ti.pz-sp-van_ak.UPF O 15.9994 O.pz-van_ak.UPF ATOMIC_POSITIONS {alat} Pb 0.000 0.000 0.010 Ti 0.500 0.500 0.500 O 0.000 0.500 0.500 O 0.500 0.500 0.000 O 0.500 0.000 0.500 K_POINTS {automatic} 4 4 7 1 1 1 espresso-5.1/PW/tests/electric0.in0000755000175000017500000000533412341373024015203 0ustar mbamba &control calculation='scf' gdir=3, nppstr=7, lelfield=.false., nberrycyc=1 / &system ibrav= 1, celldm(1)=10.18, nat= 8, ntyp= 1, ecutwfc = 20.0, nosym=.true. / &electrons conv_thr = 1.0d-8, mixing_beta = 0.5, startingwfc='random', efield=0. / ATOMIC_SPECIES Si 28.086 Si.pbe-rrkj.UPF ATOMIC_POSITIONS (alat) Si -0.123 -0.123 -0.123 Si 0.377 0.377 -0.123 Si 0.377 -0.123 0.377 Si -0.123 0.377 0.377 Si 0.123 0.123 0.123 Si 0.623 0.623 0.123 Si 0.623 0.123 0.623 Si 0.123 0.623 0.623 K_POINTS 63 0. 0. 0. 1 0. 0. 0.142857143 1 0. 0. 0.285714286 1 0. 0. 0.428571429 1 0. 0. 0.571428571 1 0. 0. 0.714285714 1 0. 0. 0.857142857 1 0. 0.333333333 0. 1 0. 0.333333333 0.142857143 1 0. 0.333333333 0.285714286 1 0. 0.333333333 0.428571429 1 0. 0.333333333 0.571428571 1 0. 0.333333333 0.714285714 1 0. 0.333333333 0.857142857 1 0. 0.666666667 0. 1 0. 0.666666667 0.142857143 1 0. 0.666666667 0.285714286 1 0. 0.666666667 0.428571429 1 0. 0.666666667 0.571428571 1 0. 0.666666667 0.714285714 1 0. 0.666666667 0.857142857 1 0.333333333 0. 0. 1 0.333333333 0. 0.142857143 1 0.333333333 0. 0.285714286 1 0.333333333 0. 0.428571429 1 0.333333333 0. 0.571428571 1 0.333333333 0. 0.714285714 1 0.333333333 0. 0.857142857 1 0.333333333 0.333333333 0. 1 0.333333333 0.333333333 0.142857143 1 0.333333333 0.333333333 0.285714286 1 0.333333333 0.333333333 0.428571429 1 0.333333333 0.333333333 0.571428571 1 0.333333333 0.333333333 0.714285714 1 0.333333333 0.333333333 0.857142857 1 0.333333333 0.666666667 0. 1 0.333333333 0.666666667 0.142857143 1 0.333333333 0.666666667 0.285714286 1 0.333333333 0.666666667 0.428571429 1 0.333333333 0.666666667 0.571428571 1 0.333333333 0.666666667 0.714285714 1 0.333333333 0.666666667 0.857142857 1 0.666666667 0. 0. 1 0.666666667 0. 0.142857143 1 0.666666667 0. 0.285714286 1 0.666666667 0. 0.428571429 1 0.666666667 0. 0.571428571 1 0.666666667 0. 0.714285714 1 0.666666667 0. 0.857142857 1 0.666666667 0.333333333 0. 1 0.666666667 0.333333333 0.142857143 1 0.666666667 0.333333333 0.285714286 1 0.666666667 0.333333333 0.428571429 1 0.666666667 0.333333333 0.571428571 1 0.666666667 0.333333333 0.714285714 1 0.666666667 0.333333333 0.857142857 1 0.666666667 0.666666667 0. 1 0.666666667 0.666666667 0.142857143 1 0.666666667 0.666666667 0.285714286 1 0.666666667 0.666666667 0.428571429 1 0.666666667 0.666666667 0.571428571 1 0.666666667 0.666666667 0.714285714 1 0.666666667 0.666666667 0.857142857 1 espresso-5.1/PW/tests/uspp-cg.in0000755000175000017500000000054512341373024014706 0ustar mbamba &control calculation='scf' / &system ibrav=2, celldm(1) =6.73, nat=1, ntyp=1, ecutwfc = 25.0, ecutrho=200.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02 / &electrons diagonalization='cg' / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS {alat} Cu 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 0 0 0 espresso-5.1/PW/tests/lattice-ibrav13.ref0000644000175000017500000001761412341373024016372 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav13.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1329 1329 327 25161 25161 3133 Tot 665 665 164 bravais-lattice index = 13 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1492.4812 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.100000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.000000 -1.000000 ) a(2) = ( 0.150000 1.492481 0.000000 ) a(3) = ( 0.500000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.100504 -0.500000 ) b(2) = ( 0.000000 0.670025 0.000000 ) b(3) = ( 1.000000 -0.100504 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 12581 G-vectors FFT dimensions: ( 36, 48, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1567, 1) NL pseudopotentials 0.00 Mb ( 1567, 0) Each V/rho on FFT grid 0.95 Mb ( 62208) Each G-vector array 0.10 Mb ( 12581) G-vector shells 0.04 Mb ( 5219) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 1567, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 7.59 Mb ( 62208, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001481 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.148E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 15.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.399E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22070774 Ry Harris-Foulkes estimate = -2.29004082 Ry estimated scf accuracy < 0.13180581 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.59E-03, avg # of iterations = 1.0 negative rho (up, down): 0.750E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23195293 Ry Harris-Foulkes estimate = -2.23234772 Ry estimated scf accuracy < 0.00089305 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.47E-05, avg # of iterations = 2.0 negative rho (up, down): 0.974E-05 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23236081 Ry Harris-Foulkes estimate = -2.23236178 Ry estimated scf accuracy < 0.00001785 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.92E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1567 PWs) bands (ev): -10.2849 ! total energy = -2.23236272 Ry Harris-Foulkes estimate = -2.23236223 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -3.19987212 Ry hartree contribution = 1.69887259 Ry xc contribution = -1.30944162 Ry ewald contribution = 0.57807843 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.04s CPU 0.04s WALL ( 1 calls) electrons : 0.09s CPU 0.10s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.02s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.02s WALL ( 4 calls) sum_band : 0.01s CPU 0.01s WALL ( 4 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: regterg : 0.01s CPU 0.02s WALL ( 4 calls) Called by *egterg: h_psi : 0.01s CPU 0.02s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.02s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.16s CPU 0.18s WALL This run was terminated on: 10:22:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lsda.ref0000644000175000017500000004274512341373024014426 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:27 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lsda.in file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 421 139 55 5601 1067 259 bravais-lattice index = 2 lattice parameter (alat) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-10 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file: /home/giannozz/trunk/espresso/pseudo/Ni.pz-nd-rrkjus.UPF MD5 check sum: bf64e4f20c74808dea28321d1ca350c3 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 k( 11) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 13) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 14) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 15) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 17) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 18) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 19) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 20) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 5601 G-vectors FFT dimensions: ( 25, 25, 25) Smooth grid: 1067 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 144, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 0.8 secs per-process dynamical memory: 13.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.5 total cpu time spent up to now is 1.0 secs total energy = -85.30555924 Ry Harris-Foulkes estimate = -85.36640314 Ry estimated scf accuracy < 0.92028035 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-03, avg # of iterations = 1.9 total cpu time spent up to now is 1.1 secs total energy = -85.52433182 Ry Harris-Foulkes estimate = -85.85735982 Ry estimated scf accuracy < 1.00824645 Ry total magnetization = 0.70 Bohr mag/cell absolute magnetization = 0.77 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.20E-03, avg # of iterations = 1.0 total cpu time spent up to now is 1.3 secs total energy = -85.70688770 Ry Harris-Foulkes estimate = -85.67488439 Ry estimated scf accuracy < 0.04598695 Ry total magnetization = 1.01 Bohr mag/cell absolute magnetization = 1.11 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.60E-04, avg # of iterations = 1.1 total cpu time spent up to now is 1.4 secs total energy = -85.72318398 Ry Harris-Foulkes estimate = -85.72298378 Ry estimated scf accuracy < 0.00053474 Ry total magnetization = 0.71 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.35E-06, avg # of iterations = 2.8 total cpu time spent up to now is 1.5 secs total energy = -85.72334924 Ry Harris-Foulkes estimate = -85.72327578 Ry estimated scf accuracy < 0.00008053 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.05E-07, avg # of iterations = 1.5 total cpu time spent up to now is 1.6 secs total energy = -85.72339412 Ry Harris-Foulkes estimate = -85.72337220 Ry estimated scf accuracy < 0.00008976 Ry total magnetization = 0.72 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.05E-07, avg # of iterations = 1.3 total cpu time spent up to now is 1.7 secs total energy = -85.72339802 Ry Harris-Foulkes estimate = -85.72339154 Ry estimated scf accuracy < 0.00001881 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.79 Bohr mag/cell iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-07, avg # of iterations = 1.2 total cpu time spent up to now is 1.9 secs total energy = -85.72339966 Ry Harris-Foulkes estimate = -85.72339429 Ry estimated scf accuracy < 0.00001099 Ry total magnetization = 0.72 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 9 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-07, avg # of iterations = 1.0 total cpu time spent up to now is 2.0 secs total energy = -85.72339901 Ry Harris-Foulkes estimate = -85.72339901 Ry estimated scf accuracy < 5.7E-09 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 10 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.72E-11, avg # of iterations = 2.5 total cpu time spent up to now is 2.1 secs total energy = -85.72339901 Ry Harris-Foulkes estimate = -85.72339901 Ry estimated scf accuracy < 3.0E-09 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 11 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.02E-11, avg # of iterations = 1.0 total cpu time spent up to now is 2.2 secs total energy = -85.72339901 Ry Harris-Foulkes estimate = -85.72339901 Ry estimated scf accuracy < 6.6E-10 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 12 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.58E-12, avg # of iterations = 1.0 total cpu time spent up to now is 2.3 secs End of self-consistent calculation ------ SPIN UP ------------ k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.3750 12.4373 12.7323 12.7323 13.8399 13.8399 37.2307 41.0671 43.4115 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.2056 12.0604 12.6971 13.0396 13.7423 14.7847 28.9044 34.6221 41.7709 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.3034 12.3170 12.8643 13.0985 14.6704 16.6317 22.1064 35.6778 38.1890 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 7.9449 11.9811 12.9286 13.0719 13.6677 14.1614 33.2111 38.4341 38.7924 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.0138 11.3041 12.9384 13.7119 14.5662 14.8881 29.9536 33.4465 34.2670 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.0404 11.3661 12.4804 13.8999 14.6521 20.4137 23.8800 27.7788 30.1429 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 10.6940 11.8161 12.2431 13.4380 14.3024 16.5378 25.7641 31.6195 34.9275 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.3601 10.8355 13.8885 14.3644 14.7570 17.9868 26.7277 28.0811 31.8606 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.6583 12.6903 12.6903 13.2183 14.4200 14.4200 24.6748 38.8452 41.6264 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.0757 11.7367 12.4051 13.4403 14.3578 19.0764 22.8045 29.0405 36.4042 ------ SPIN DOWN ---------- k =-0.1250 0.1250 0.1250 ( 138 PWs) bands (ev): 6.4364 13.2116 13.5315 13.5315 14.5913 14.5913 37.3665 41.0787 43.5295 k =-0.3750 0.3750-0.1250 ( 140 PWs) bands (ev): 9.3441 12.7277 13.4194 13.7986 14.5378 15.5713 29.1564 34.7856 41.8195 k = 0.3750-0.3750 0.6250 ( 134 PWs) bands (ev): 10.8026 12.9459 13.6008 13.6527 15.5249 17.0816 22.5346 35.7966 38.3366 k = 0.1250-0.1250 0.3750 ( 140 PWs) bands (ev): 8.0203 12.7149 13.6860 13.8687 14.4269 14.9404 33.4085 38.5933 38.8734 k =-0.1250 0.6250 0.1250 ( 137 PWs) bands (ev): 10.2529 11.9895 13.5740 14.5147 15.3865 15.5736 30.1593 33.6290 34.4024 k = 0.6250-0.1250 0.8750 ( 132 PWs) bands (ev): 11.5593 11.9928 13.1363 14.6385 15.5435 20.7580 24.1571 28.0298 30.3200 k = 0.3750 0.1250 0.6250 ( 136 PWs) bands (ev): 11.0651 12.4041 12.9293 14.1815 15.1346 17.1408 26.0486 31.8050 35.0927 k =-0.1250-0.8750 0.1250 ( 131 PWs) bands (ev): 10.8293 11.4957 14.5941 15.1562 15.6354 18.3038 27.0260 28.2535 31.9595 k =-0.3750 0.3750 0.3750 ( 144 PWs) bands (ev): 9.9862 13.4283 13.4283 13.5643 15.2537 15.2537 25.0151 38.8318 41.7803 k = 0.3750-0.3750 1.1250 ( 129 PWs) bands (ev): 11.6416 12.2608 13.0594 14.1780 15.2198 19.4773 23.1585 29.2607 36.5524 the Fermi energy is 15.3088 ev ! total energy = -85.72339901 Ry Harris-Foulkes estimate = -85.72339901 Ry estimated scf accuracy < 6.3E-11 Ry The total energy is the sum of the following terms: one-electron contribution = 0.30223721 Ry hartree contribution = 14.33673853 Ry xc contribution = -29.60837116 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = 0.00004076 Ry total magnetization = 0.73 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell convergence has been achieved in 12 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -14.96 -0.00010170 0.00000000 0.00000000 -14.96 0.00 0.00 0.00000000 -0.00010170 0.00000000 0.00 -14.96 0.00 0.00000000 0.00000000 -0.00010170 0.00 0.00 -14.96 Writing output data file pwscf.save init_run : 0.78s CPU 0.77s WALL ( 1 calls) electrons : 1.47s CPU 1.51s WALL ( 1 calls) stress : 0.26s CPU 0.27s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.69s CPU 0.71s WALL ( 12 calls) sum_band : 0.42s CPU 0.43s WALL ( 12 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 13 calls) newd : 0.23s CPU 0.24s WALL ( 13 calls) mix_rho : 0.02s CPU 0.02s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.03s WALL ( 520 calls) cegterg : 0.64s CPU 0.64s WALL ( 240 calls) Called by *egterg: h_psi : 0.42s CPU 0.44s WALL ( 675 calls) s_psi : 0.02s CPU 0.02s WALL ( 675 calls) g_psi : 0.00s CPU 0.02s WALL ( 415 calls) cdiaghg : 0.16s CPU 0.12s WALL ( 655 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 675 calls) General routines calbec : 0.03s CPU 0.03s WALL ( 935 calls) fft : 0.05s CPU 0.06s WALL ( 216 calls) ffts : 0.00s CPU 0.00s WALL ( 50 calls) fftw : 0.38s CPU 0.35s WALL ( 12160 calls) interpolate : 0.00s CPU 0.02s WALL ( 50 calls) davcio : 0.00s CPU 0.01s WALL ( 760 calls) PWSCF : 2.66s CPU 2.72s WALL This run was terminated on: 10:24:30 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/metal.ref20000644000175000017500000002507612341373024014665 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:24:52 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/metal.in2 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 121 121 55 869 869 259 bravais-lattice index = 2 lattice parameter (alat) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file: /home/giannozz/trunk/espresso/pseudo/Al.pz-vbc.UPF MD5 check sum: 614279c88ff8d45c90147292d03ed420 Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 Marzari-Vanderbilt smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( -0.0833333 0.0833333 0.0833333), wk = 0.0185185 k( 2) = ( -0.2500000 0.2500000 -0.0833333), wk = 0.0555556 k( 3) = ( -0.4166667 0.4166667 -0.2500000), wk = 0.0555556 k( 4) = ( 0.4166667 -0.4166667 0.5833333), wk = 0.0555556 k( 5) = ( 0.2500000 -0.2500000 0.4166667), wk = 0.0555556 k( 6) = ( 0.0833333 -0.0833333 0.2500000), wk = 0.0555556 k( 7) = ( -0.0833333 0.4166667 0.0833333), wk = 0.0555556 k( 8) = ( -0.2500000 0.5833333 -0.0833333), wk = 0.1111111 k( 9) = ( 0.5833333 -0.2500000 0.7500000), wk = 0.1111111 k( 10) = ( 0.4166667 -0.0833333 0.5833333), wk = 0.1111111 k( 11) = ( 0.2500000 0.0833333 0.4166667), wk = 0.1111111 k( 12) = ( -0.0833333 0.7500000 0.0833333), wk = 0.0555556 k( 13) = ( 0.7500000 -0.0833333 0.9166667), wk = 0.1111111 k( 14) = ( 0.5833333 0.0833333 0.7500000), wk = 0.1111111 k( 15) = ( 0.4166667 0.2500000 0.5833333), wk = 0.1111111 k( 16) = ( -0.0833333 -0.9166667 0.0833333), wk = 0.0555556 k( 17) = ( -0.2500000 -0.7500000 -0.0833333), wk = 0.1111111 k( 18) = ( -0.0833333 -0.5833333 0.0833333), wk = 0.0555556 k( 19) = ( -0.2500000 0.2500000 0.2500000), wk = 0.0185185 k( 20) = ( -0.4166667 0.4166667 0.0833333), wk = 0.0555556 k( 21) = ( 0.4166667 -0.4166667 0.9166667), wk = 0.0555556 k( 22) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.0555556 k( 23) = ( -0.2500000 0.5833333 0.2500000), wk = 0.0555556 k( 24) = ( 0.5833333 -0.2500000 1.0833333), wk = 0.1111111 k( 25) = ( 0.4166667 -0.0833333 0.9166667), wk = 0.1111111 k( 26) = ( -0.2500000 -1.0833333 0.2500000), wk = 0.0555556 k( 27) = ( -0.4166667 0.4166667 0.4166667), wk = 0.0185185 k( 28) = ( 0.4166667 -0.4166667 1.2500000), wk = 0.0555556 Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 4, 4) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 0.7 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 3.33E-08, avg # of iterations = 10.4 total cpu time spent up to now is 0.3 secs End of band structure calculation k =-0.0833 0.0833 0.0833 band energies (ev): -2.9919 18.4611 20.5664 20.5664 k =-0.2500 0.2500-0.0833 band energies (ev): -1.9384 14.0224 17.0321 21.4887 k =-0.4167 0.4167-0.2500 band energies (ev): 0.6357 8.0207 16.5640 19.8674 k = 0.4167-0.4167 0.5833 band energies (ev): 3.1421 4.6441 17.4635 18.1210 k = 0.2500-0.2500 0.4167 band energies (ev): -0.3863 9.9152 17.6642 19.2617 k = 0.0833-0.0833 0.2500 band energies (ev): -2.4637 16.2599 18.4965 19.8042 k =-0.0833 0.4167 0.0833 band energies (ev): -1.4192 14.4151 16.7823 18.0723 k =-0.2500 0.5833-0.0833 band energies (ev): 0.6373 10.7422 13.9071 15.3647 k = 0.5833-0.2500 0.7500 band energies (ev): 4.1174 5.6168 12.9263 14.4322 k = 0.4167-0.0833 0.5833 band energies (ev): 1.6480 8.8630 12.1516 16.2069 k = 0.2500 0.0833 0.4167 band energies (ev): -0.9000 12.1574 15.3049 19.3347 k =-0.0833 0.7500 0.0833 band energies (ev): 2.1458 11.0180 12.1106 14.6431 k = 0.7500-0.0833 0.9167 band energies (ev): 5.0320 8.2172 9.3932 12.6530 k = 0.5833 0.0833 0.7500 band energies (ev): 5.0886 6.4961 9.7756 13.9434 k = 0.4167 0.2500 0.5833 band energies (ev): 2.1486 6.5771 15.2206 16.6576 k =-0.0833-0.9167 0.0833 band energies (ev): 4.5527 7.7741 11.6176 14.2189 k =-0.2500-0.7500-0.0833 band energies (ev): 2.6448 9.7777 11.5101 13.1551 k =-0.0833-0.5833 0.0833 band energies (ev): 0.1275 13.0051 14.7972 15.4989 k =-0.2500 0.2500 0.2500 band energies (ev): -1.4187 11.7930 19.3981 19.3981 k =-0.4167 0.4167 0.0833 band energies (ev): 0.1277 10.2826 13.5498 19.4284 k = 0.4167-0.4167 0.9167 band energies (ev): 3.1446 7.4409 10.7445 16.8140 k = 0.2500-0.2500 0.7500 band energies (ev): 3.1403 7.5229 12.0337 15.5085 k =-0.2500 0.5833 0.2500 band energies (ev): 1.1427 8.4840 15.7136 16.3677 k = 0.5833-0.2500 1.0833 band energies (ev): 3.6331 7.9101 11.1271 12.6579 k = 0.4167-0.0833 0.9167 band energies (ev): 5.9794 7.4187 9.2073 10.9213 k =-0.2500-1.0833 0.2500 band energies (ev): 5.5040 7.0195 8.8395 15.0804 k =-0.4167 0.4167 0.4167 band energies (ev): 1.6472 6.1009 19.4348 19.4348 k = 0.4167-0.4167 1.2500 band energies (ev): 3.6336 5.1285 13.8981 17.2487 the Fermi energy is 8.2521 ev Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.12s CPU 0.12s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.12s CPU 0.12s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 28 calls) cegterg : 0.12s CPU 0.11s WALL ( 28 calls) Called by *egterg: h_psi : 0.08s CPU 0.08s WALL ( 348 calls) g_psi : 0.01s CPU 0.00s WALL ( 292 calls) cdiaghg : 0.03s CPU 0.02s WALL ( 320 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 348 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 348 calls) fft : 0.00s CPU 0.00s WALL ( 3 calls) fftw : 0.06s CPU 0.06s WALL ( 2082 calls) davcio : 0.00s CPU 0.00s WALL ( 28 calls) PWSCF : 0.32s CPU 0.33s WALL This run was terminated on: 10:24:52 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav0-cell_parameters+a.in0000644000175000017500000000057212341373024021507 0ustar mbamba &control calculation='scf', / &system ibrav = 0 nat=2, ntyp=1, ecutwfc = 25.0 a=5.29177 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 CELL_PARAMETERS alat 1.000000 .000000 .000000 .450000 1.430909 .000000 .400000 .083863 1.957796 K_POINTS {gamma} espresso-5.1/PW/tests/hse-si111.ref0000644000175000017500000004550612341373024015114 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 9400) starts on 29Nov2012 at 22:26:10 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/PW/tests/hse-si111.in IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want EXX: grid of k+q point setup nkqs = 10 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.82340308 Ry Harris-Foulkes estimate = -15.83974490 Ry estimated scf accuracy < 0.06415499 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.82634536 Ry Harris-Foulkes estimate = -15.82635445 Ry estimated scf accuracy < 0.00228139 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.2 secs total energy = -15.82644717 Ry Harris-Foulkes estimate = -15.82643482 Ry estimated scf accuracy < 0.00004970 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.5 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4476 4.7282 5.9961 5.9961 8.9449 9.3568 9.3568 11.1864 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1160 4.9391 5.0502 8.5385 10.1246 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8637 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7127 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7928 3.5449 7.2968 8.3741 14.7162 14.7745 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4109 1.6834 3.9583 5.4867 9.1322 10.0722 10.2721 12.7293 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3206 9.2854 9.9751 11.4585 12.3758 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6946 -0.3359 2.2539 4.3555 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9476 0.3457 5.1681 5.1681 8.1196 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6289 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2968 EXX: now go back to refine exchange calculation -1.80209843402430 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 3.8 total cpu time spent up to now is 0.8 secs total energy = -15.89584873 Ry Harris-Foulkes estimate = -15.89586952 Ry estimated scf accuracy < 0.00008114 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-06, avg # of iterations = 1.0 total cpu time spent up to now is 1.1 secs total energy = -15.89585569 Ry Harris-Foulkes estimate = -15.89585471 Ry estimated scf accuracy < 0.00000229 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.87E-08, avg # of iterations = 1.5 total cpu time spent up to now is 1.4 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -6.7312 3.6236 4.8616 4.8616 9.8243 10.1947 10.1947 12.1850 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.1589 2.0079 3.8638 3.9164 9.3060 10.9826 11.7273 11.9702 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.0673 0.2713 2.4838 2.9428 8.4780 9.9993 13.2864 13.5277 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.5291 -1.6557 1.7172 2.4513 7.9959 9.0262 15.5047 15.6654 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.6319 0.5720 2.8922 4.3255 9.9983 10.8440 11.0788 13.5425 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.6111 -0.6396 1.8684 3.2308 10.0202 10.7339 12.1626 13.2138 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.3116 -1.7186 1.1091 2.2149 9.4835 11.3733 12.4556 14.6322 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -3.8680 -1.4638 1.1817 3.2569 9.0118 12.6457 12.7274 14.1281 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.1806 -0.8045 4.0514 4.0514 8.9862 10.6566 10.6566 15.0711 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.4019 -1.6045 2.9149 3.5813 9.4332 10.7406 11.2920 14.5404 highest occupied, lowest unoccupied level (ev): 4.8616 7.9959 -1.80209843402430 -1.80173854188134 -1.80154756292412 est. exchange err (dexx) = 0.00008446 Ry ! total energy = -15.89594036 Ry Harris-Foulkes estimate = -15.89594030 Ry estimated scf accuracy < 0.00000012 Ry The total energy is the sum of the following terms: one-electron contribution = 3.01900457 Ry hartree contribution = 1.08620950 Ry xc contribution = -4.00236063 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.80173854 Ry + Fock energy = -0.90077378 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.87E-08, avg # of iterations = 3.0 total cpu time spent up to now is 1.8 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -6.7349 3.6209 4.8441 4.8441 9.8348 10.1990 10.1990 12.1884 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.1594 2.0093 3.8557 3.9102 9.3115 10.9855 11.7273 11.9734 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.0658 0.2749 2.4822 2.9384 8.4829 10.0005 13.2878 13.5268 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.5263 -1.6520 1.7172 2.4481 7.9998 9.0268 15.5031 15.6679 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.6315 0.5756 2.8908 4.3153 10.0055 10.8457 11.0827 13.5442 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.6084 -0.6343 1.8689 3.2284 10.0227 10.7356 12.1624 13.2152 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.3065 -1.7121 1.1102 2.2152 9.4843 11.3728 12.4562 14.6325 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -3.8651 -1.4585 1.1830 3.2526 9.0166 12.6441 12.7309 14.1285 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.1813 -0.8044 4.0417 4.0417 8.9964 10.6617 10.6617 15.0750 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.4005 -1.6017 2.9145 3.5753 9.4398 10.7431 11.2927 14.5404 highest occupied, lowest unoccupied level (ev): 4.8441 7.9998 -1.80154756292412 -1.80147405862253 -1.80140399344231 est. exchange err (dexx) = 0.00000172 Ry ! total energy = -15.89595241 Ry Harris-Foulkes estimate = -15.89595269 Ry estimated scf accuracy < 0.00000081 Ry The total energy is the sum of the following terms: one-electron contribution = 3.02042939 Ry hartree contribution = 1.08435472 Ry xc contribution = -4.00175000 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.80147406 Ry + Fock energy = -0.90070200 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.87E-08, avg # of iterations = 1.6 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 1.8 total cpu time spent up to now is 2.5 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -6.7384 3.6180 4.8374 4.8374 9.8337 10.1974 10.1974 12.1849 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.1623 2.0066 3.8512 3.9060 9.3101 10.9833 11.7245 11.9723 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.0684 0.2722 2.4794 2.9350 8.4815 9.9990 13.2852 13.5241 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.5289 -1.6547 1.7150 2.4451 7.9985 9.0250 15.5004 15.6653 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.6343 0.5735 2.8879 4.3107 10.0036 10.8440 11.0809 13.5420 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.6110 -0.6363 1.8665 3.2254 10.0209 10.7336 12.1602 13.2128 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.3087 -1.7142 1.1083 2.2129 9.4824 11.3707 12.4538 14.6300 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -3.8678 -1.4604 1.1810 3.2493 9.0152 12.6419 12.7286 14.1262 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.1845 -0.8069 4.0372 4.0372 8.9947 10.6605 10.6605 15.0742 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.4035 -1.6036 2.9117 3.5715 9.4382 10.7411 11.2908 14.5383 highest occupied, lowest unoccupied level (ev): 4.8374 7.9985 -1.80140399344231 -1.80143796849660 -1.80147211125558 est. exchange err (dexx) = 0.00000008 Ry ! total energy = -15.89595287 Ry Harris-Foulkes estimate = -15.89595288 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = 3.02032881 Ry hartree contribution = 1.08457334 Ry xc contribution = -4.00179836 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.80143797 Ry + Fock energy = -0.90073606 Ry convergence has been achieved in 1 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -64.22 -0.00043654 0.00000000 0.00000000 -64.22 0.00 0.00 0.00000000 -0.00043654 0.00000000 0.00 -64.22 0.00 0.00000000 0.00000000 -0.00043654 0.00 0.00 -64.22 Writing output data file pwscf.save init_run : 0.03s CPU 0.04s WALL ( 1 calls) electrons : 2.34s CPU 2.45s WALL ( 1 calls) stress : 0.08s CPU 0.09s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 1.68s CPU 1.77s WALL ( 11 calls) sum_band : 0.04s CPU 0.05s WALL ( 11 calls) v_of_rho : 0.05s CPU 0.06s WALL ( 11 calls) mix_rho : 0.00s CPU 0.00s WALL ( 11 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.01s WALL ( 240 calls) cegterg : 1.67s CPU 1.75s WALL ( 110 calls) Called by *egterg: h_psi : 1.59s CPU 1.64s WALL ( 349 calls) g_psi : 0.01s CPU 0.01s WALL ( 229 calls) cdiaghg : 0.03s CPU 0.06s WALL ( 289 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.01s WALL ( 349 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 359 calls) fft : 0.00s CPU 0.01s WALL ( 124 calls) ffts : 0.88s CPU 0.85s WALL ( 13064 calls) fftw : 0.27s CPU 0.30s WALL ( 9028 calls) davcio : 0.00s CPU 0.01s WALL ( 490 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.03s CPU 0.03s WALL ( 4 calls) vexx : 1.40s CPU 1.44s WALL ( 187 calls) exxen2 : 0.52s CPU 0.54s WALL ( 9 calls) PWSCF : 2.53s CPU 2.67s WALL This run was terminated on: 22:26:12 29Nov2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/pbeq2d.in0000644000175000017500000000070012341373024014473 0ustar mbamba &control calculation='scf' / &system ibrav= 2, celldm(1) =6.67296786, nat=1, ntyp=1 nbnd = 50 ecutwfc = 35.0, ecutrho = 300.0, occupations='smearing', smearing='methfessel-paxton', degauss=0.01 input_dft='sla+pw+q2dx+q2dc' / &electrons conv_thr = 1.0d-7 mixing_beta = 0.3 / ATOMIC_SPECIES Cu 103.1 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS (crystal) Cu 0.00 0.00 0.00 K_POINTS {automatic} 10 10 10 0 0 0 espresso-5.1/PW/tests/lda+U-user_ns.ref0000644000175000017500000007334412341373024016116 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10170) starts on 21Apr2013 at 12:46:35 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Reading input from /home/giannozz/espresso/PW/tests/lda+U-user_ns.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1061 539 163 17255 6111 1081 Generating pointlists ... new r_m : 0.2063 (alat units) 1.6892 (a.u.) for type 1 new r_m : 0.2063 (alat units) 1.6892 (a.u.) for type 2 new r_m : 0.2063 (alat units) 1.6892 (a.u.) for type 3 bravais-lattice index = 0 lattice parameter (alat) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file: /home/giannozz/espresso/pseudo/O.pz-rrkjus.UPF MD5 check sum: 24fb942a68ef5d262e498166c462ef4a Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file: /home/giannozz/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file: /home/giannozz/espresso/pseudo/Fe.pz-nd-rrkjus.UPF MD5 check sum: 2e083728ad07023434bc1cc596eb954d Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 Simplified LDA+U calculation (l_max = 2) with parameters (eV): atomic species L U alpha J0 beta Fe1 2 4.3000 0.0000 0.0000 0.0000 Fe2 2 4.3000 0.0000 0.0000 0.0000 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 Dense grid: 17255 G-vectors FFT dimensions: ( 50, 50, 50) Smooth grid: 6111 G-vectors FFT dimensions: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Number of +U iterations with fixed ns = 0 Starting occupations: --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 5.00000 1.00000 6.00000 spin 1 eigenvalues: 1.000 1.000 1.000 1.000 1.000 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 spin 2 eigenvalues: 0.200 0.200 0.200 0.200 0.200 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atomic mag. moment = 4.000000 atom 4 Tr[ns(na)] (up, down, total) = 1.00000 5.00000 6.00000 spin 1 eigenvalues: 0.200 0.200 0.200 0.200 0.200 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 spin 2 eigenvalues: 1.000 1.000 1.000 1.000 1.000 eigenvectors: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 occupations: 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atomic mag. moment = -4.000000 N of occupied +U levels = 12.0000000 --- exit write_ns --- Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 randomized atomic wfcs total cpu time spent up to now is 4.2 secs per-process dynamical memory: 40.6 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.4 --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 5.00244 1.12123 6.12367 spin 1 eigenvalues: 0.997 0.997 1.003 1.003 1.003 eigenvectors: 0.310 0.328 0.116 0.246 0.000 0.018 0.223 0.423 0.003 0.333 0.227 0.015 0.079 0.346 0.333 0.328 0.310 0.246 0.116 0.000 0.117 0.124 0.136 0.289 0.333 occupations: 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 spin 2 eigenvalues: 0.155 0.155 0.257 0.277 0.277 eigenvectors: 0.127 0.866 0.000 0.007 0.001 0.002 0.003 0.333 0.035 0.627 0.005 0.000 0.333 0.351 0.310 0.866 0.127 0.000 0.001 0.007 0.001 0.004 0.333 0.606 0.055 occupations: 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.270 -0.006 -0.007 0.006 -0.004 -0.006 0.270 0.007 0.006 0.000 -0.007 0.007 0.156 0.000 -0.009 0.006 0.006 0.000 0.270 atomic mag. moment = 3.881215 atom 4 Tr[ns(na)] (up, down, total) = 1.12110 5.00233 6.12342 spin 1 eigenvalues: 0.155 0.155 0.257 0.277 0.277 eigenvectors: 0.039 0.954 0.000 0.007 0.000 0.003 0.002 0.333 0.079 0.582 0.005 0.001 0.333 0.270 0.391 0.954 0.039 0.000 0.000 0.007 0.000 0.005 0.333 0.643 0.019 occupations: 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.269 -0.006 -0.007 0.006 -0.004 -0.006 0.269 0.007 0.006 0.000 -0.007 0.007 0.156 0.000 -0.009 0.006 0.006 0.000 0.269 spin 2 eigenvalues: 0.997 0.997 1.003 1.003 1.003 eigenvectors: 0.298 0.343 0.091 0.269 0.000 0.021 0.219 0.427 0.000 0.333 0.227 0.012 0.106 0.321 0.333 0.343 0.298 0.269 0.091 0.000 0.111 0.128 0.108 0.319 0.333 occupations: 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 atomic mag. moment = -3.881229 N of occupied +U levels = 12.2470983 --- exit write_ns --- Modify starting ns matrices according to input values --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 5.00244 1.86399 6.86644 spin 1 eigenvalues: 0.997 0.997 1.003 1.003 1.003 eigenvectors: 0.401 0.237 0.142 0.220 0.000 0.004 0.237 0.415 0.010 0.333 0.206 0.035 0.055 0.370 0.333 0.237 0.401 0.220 0.142 0.000 0.152 0.090 0.167 0.258 0.333 occupations: 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 spin 2 eigenvalues: 0.155 0.155 0.277 0.277 1.000 eigenvectors: 0.084 0.908 0.008 0.000 0.000 0.002 0.003 0.123 0.538 0.333 0.005 0.000 0.211 0.450 0.333 0.908 0.084 0.000 0.008 0.000 0.000 0.005 0.658 0.004 0.333 occupations: 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.517 0.241 -0.007 -0.241 -0.004 0.241 0.517 0.007 -0.241 0.000 -0.007 0.007 0.156 0.000 -0.009 -0.241 -0.241 0.000 0.517 atomic mag. moment = 3.138453 atom 4 Tr[ns(na)] (up, down, total) = 1.86416 5.00233 6.86648 spin 1 eigenvalues: 0.155 0.155 0.277 0.277 1.000 eigenvectors: 0.056 0.937 0.003 0.005 0.000 0.003 0.002 0.101 0.560 0.333 0.005 0.000 0.652 0.010 0.333 0.937 0.056 0.005 0.003 0.000 0.000 0.005 0.239 0.422 0.333 occupations: 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.517 0.241 -0.007 -0.241 -0.004 0.241 0.517 0.007 -0.241 0.000 -0.007 0.007 0.156 0.000 -0.009 -0.241 -0.241 0.000 0.517 spin 2 eigenvalues: 0.997 0.997 1.003 1.003 1.003 eigenvectors: 0.285 0.356 0.066 0.293 0.000 0.023 0.216 0.424 0.003 0.333 0.229 0.010 0.138 0.289 0.333 0.356 0.285 0.293 0.066 0.000 0.107 0.133 0.078 0.349 0.333 occupations: 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 atomic mag. moment = -3.138170 N of occupied +U levels = 13.7329189 --- exit write_ns --- Magnetic moment per site: atom: 1 charge: 5.7842 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.7842 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.6876 magn: 3.1788 constr: 0.0000 atom: 4 charge: 5.6871 magn: -3.1789 constr: 0.0000 total cpu time spent up to now is 5.3 secs total energy = -174.07153699 Ry Harris-Foulkes estimate = -174.93549708 Ry estimated scf accuracy < 2.39735328 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 8.53 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.56E-03, avg # of iterations = 2.2 Magnetic moment per site: atom: 1 charge: 5.7630 magn: -0.0002 constr: 0.0000 atom: 2 charge: 5.7630 magn: -0.0002 constr: 0.0000 atom: 3 charge: 5.7129 magn: 3.2040 constr: 0.0000 atom: 4 charge: 5.7132 magn: -3.2037 constr: 0.0000 total cpu time spent up to now is 6.4 secs total energy = -174.49892747 Ry Harris-Foulkes estimate = -174.52899663 Ry estimated scf accuracy < 0.27207227 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.16 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.72E-04, avg # of iterations = 2.5 Magnetic moment per site: atom: 1 charge: 5.8487 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.8487 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.6889 magn: 3.3497 constr: 0.0000 atom: 4 charge: 5.6885 magn: -3.3496 constr: 0.0000 total cpu time spent up to now is 7.5 secs total energy = -174.52701987 Ry Harris-Foulkes estimate = -174.51778970 Ry estimated scf accuracy < 0.09636570 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.33 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.44E-04, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 5.8537 magn: -0.0001 constr: 0.0000 atom: 2 charge: 5.8537 magn: -0.0001 constr: 0.0000 atom: 3 charge: 5.6840 magn: 3.3538 constr: 0.0000 atom: 4 charge: 5.6841 magn: -3.3536 constr: 0.0000 total cpu time spent up to now is 8.6 secs total energy = -174.53642354 Ry Harris-Foulkes estimate = -174.53660911 Ry estimated scf accuracy < 0.00264565 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.34 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.45E-06, avg # of iterations = 3.0 Magnetic moment per site: atom: 1 charge: 5.8542 magn: 0.0001 constr: 0.0000 atom: 2 charge: 5.8542 magn: 0.0001 constr: 0.0000 atom: 3 charge: 5.6848 magn: 3.3569 constr: 0.0000 atom: 4 charge: 5.6844 magn: -3.3571 constr: 0.0000 total cpu time spent up to now is 9.8 secs total energy = -174.53718200 Ry Harris-Foulkes estimate = -174.53699672 Ry estimated scf accuracy < 0.00100954 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.61E-06, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 5.8539 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.8539 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.6856 magn: 3.3569 constr: 0.0000 atom: 4 charge: 5.6858 magn: -3.3569 constr: 0.0000 total cpu time spent up to now is 10.9 secs total energy = -174.53736480 Ry Harris-Foulkes estimate = -174.53736447 Ry estimated scf accuracy < 0.00010845 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.87E-07, avg # of iterations = 3.6 Magnetic moment per site: atom: 1 charge: 5.8533 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.8533 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.6867 magn: 3.3545 constr: 0.0000 atom: 4 charge: 5.6866 magn: -3.3545 constr: 0.0000 total cpu time spent up to now is 12.1 secs total energy = -174.53740628 Ry Harris-Foulkes estimate = -174.53739490 Ry estimated scf accuracy < 0.00001496 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.34E-08, avg # of iterations = 3.1 Magnetic moment per site: atom: 1 charge: 5.8529 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.8529 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.6870 magn: 3.3527 constr: 0.0000 atom: 4 charge: 5.6870 magn: -3.3527 constr: 0.0000 total cpu time spent up to now is 13.3 secs total energy = -174.53741373 Ry Harris-Foulkes estimate = -174.53741007 Ry estimated scf accuracy < 0.00000276 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.86E-09, avg # of iterations = 2.4 Magnetic moment per site: atom: 1 charge: 5.8528 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.8528 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.6870 magn: 3.3521 constr: 0.0000 atom: 4 charge: 5.6870 magn: -3.3521 constr: 0.0000 total cpu time spent up to now is 14.4 secs total energy = -174.53741567 Ry Harris-Foulkes estimate = -174.53741447 Ry estimated scf accuracy < 0.00000026 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.17E-10, avg # of iterations = 3.4 Magnetic moment per site: atom: 1 charge: 5.8528 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.8528 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.6870 magn: 3.3518 constr: 0.0000 atom: 4 charge: 5.6870 magn: -3.3518 constr: 0.0000 total cpu time spent up to now is 15.7 secs total energy = -174.53741636 Ry Harris-Foulkes estimate = -174.53741578 Ry estimated scf accuracy < 0.00000004 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 11 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.31E-10, avg # of iterations = 1.9 Magnetic moment per site: atom: 1 charge: 5.8529 magn: 0.0000 constr: 0.0000 atom: 2 charge: 5.8529 magn: 0.0000 constr: 0.0000 atom: 3 charge: 5.6871 magn: 3.3517 constr: 0.0000 atom: 4 charge: 5.6871 magn: -3.3517 constr: 0.0000 total cpu time spent up to now is 16.8 secs End of self-consistent calculation --- enter write_ns --- LDA+U parameters: U( 2) = 4.30000000 alpha( 2) = 0.00000000 U( 3) = 4.30000000 alpha( 3) = 0.00000000 atom 3 Tr[ns(na)] (up, down, total) = 4.99244 1.77368 6.76612 spin 1 eigenvalues: 0.994 0.994 1.001 1.001 1.002 eigenvectors: 0.292 0.617 0.034 0.056 0.000 0.011 0.049 0.595 0.012 0.333 0.060 0.000 0.085 0.521 0.333 0.617 0.292 0.056 0.034 0.000 0.019 0.041 0.230 0.376 0.333 occupations: 0.995 0.001 0.001 0.000 0.002 0.001 1.001 0.000 0.001 0.000 0.001 0.000 1.001 -0.001 0.000 0.000 0.001 -0.001 0.995 0.000 0.002 0.000 0.000 0.000 1.001 spin 2 eigenvalues: 0.102 0.102 0.293 0.293 0.984 eigenvectors: 0.004 0.005 0.076 0.916 0.000 0.058 0.603 0.003 0.003 0.333 0.629 0.032 0.005 0.000 0.333 0.005 0.004 0.916 0.076 0.000 0.305 0.356 0.000 0.005 0.333 occupations: 0.291 0.007 0.007 0.000 0.014 0.007 0.397 0.293 0.012 -0.293 0.007 0.293 0.397 -0.012 -0.293 0.000 0.012 -0.012 0.291 0.000 0.014 -0.293 -0.293 0.000 0.397 atomic mag. moment = 3.218761 atom 4 Tr[ns(na)] (up, down, total) = 1.77368 4.99244 6.76613 spin 1 eigenvalues: 0.102 0.102 0.293 0.293 0.984 eigenvectors: 0.003 0.005 0.172 0.820 0.000 0.105 0.556 0.002 0.004 0.333 0.653 0.008 0.006 0.000 0.333 0.005 0.003 0.820 0.172 0.000 0.234 0.427 0.001 0.005 0.333 occupations: 0.291 0.007 0.007 0.000 0.014 0.007 0.397 0.293 0.012 -0.293 0.007 0.293 0.397 -0.012 -0.293 0.000 0.012 -0.012 0.291 0.000 0.014 -0.293 -0.293 0.000 0.397 spin 2 eigenvalues: 0.994 0.994 1.001 1.001 1.002 eigenvectors: 0.314 0.596 0.036 0.054 0.000 0.010 0.050 0.591 0.016 0.333 0.060 0.001 0.076 0.530 0.333 0.596 0.314 0.054 0.036 0.000 0.021 0.040 0.242 0.364 0.333 occupations: 0.995 0.001 0.001 0.000 0.002 0.001 1.001 0.000 0.001 0.000 0.001 0.000 1.001 -0.001 0.000 0.000 0.001 -0.001 0.995 0.000 0.002 0.000 0.000 0.000 1.001 atomic mag. moment = -3.218759 N of occupied +U levels = 13.5322480 --- exit write_ns --- ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7189 -7.4684 1.4534 3.6646 3.6646 5.4889 5.4889 6.8731 7.8278 7.8798 7.8798 8.4594 8.4594 9.8913 11.5962 12.5856 12.5856 13.4540 13.4540 15.5162 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0112 -7.3313 2.4596 3.6248 4.1630 4.2251 5.5879 5.6548 6.2711 6.5391 7.3465 8.7893 9.2127 9.4779 12.5138 12.7481 13.3321 13.6647 17.3707 17.6640 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.8311 -7.4839 1.8596 4.1299 4.1639 4.2153 5.6545 5.6827 6.6619 6.6847 7.2423 8.6729 8.8893 9.7813 12.5717 12.8514 13.7787 13.8675 15.3276 16.6999 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2028 -8.1498 3.4507 3.7652 3.7652 4.2978 5.5347 5.5347 6.9738 6.9738 7.8690 9.4386 9.4386 9.5130 12.5344 12.5344 13.1769 13.1769 14.1102 14.3870 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7189 -7.4684 1.4534 3.6646 3.6646 5.4889 5.4889 6.8731 7.8278 7.8798 7.8798 8.4594 8.4594 9.8913 11.5962 12.5856 12.5856 13.4540 13.4540 15.5162 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0112 -7.3313 2.4596 3.6248 4.1630 4.2251 5.5879 5.6548 6.2711 6.5391 7.3465 8.7893 9.2127 9.4779 12.5138 12.7481 13.3321 13.6647 17.3707 17.6640 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.8311 -7.4839 1.8596 4.1298 4.1639 4.2153 5.6545 5.6827 6.6619 6.6847 7.2423 8.6729 8.8893 9.7813 12.5717 12.8514 13.7787 13.8675 15.3276 16.6999 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2028 -8.1498 3.4507 3.7652 3.7652 4.2978 5.5346 5.5346 6.9739 6.9739 7.8690 9.4386 9.4386 9.5130 12.5344 12.5344 13.1769 13.1769 14.1102 14.3870 the Fermi energy is 10.7836 ev ! total energy = -174.53741691 Ry Harris-Foulkes estimate = -174.53741636 Ry estimated scf accuracy < 5.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 0.54002505 Ry hartree contribution = 28.09159804 Ry xc contribution = -65.85591995 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.19617530 Ry smearing contrib. (-TS) = 0.00000000 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell convergence has been achieved in 11 iterations Writing output data file pwscf.save init_run : 4.06s CPU 4.08s WALL ( 1 calls) electrons : 12.58s CPU 12.66s WALL ( 1 calls) Called by init_run: wfcinit : 0.24s CPU 0.25s WALL ( 1 calls) potinit : 0.09s CPU 0.09s WALL ( 1 calls) Called by electrons: c_bands : 6.43s CPU 6.45s WALL ( 11 calls) sum_band : 3.75s CPU 3.79s WALL ( 11 calls) v_of_rho : 0.50s CPU 0.51s WALL ( 12 calls) newd : 1.65s CPU 1.68s WALL ( 12 calls) mix_rho : 0.18s CPU 0.19s WALL ( 11 calls) Called by c_bands: init_us_2 : 0.18s CPU 0.21s WALL ( 192 calls) cegterg : 6.06s CPU 6.07s WALL ( 88 calls) Called by *egterg: h_psi : 4.99s CPU 5.03s WALL ( 324 calls) s_psi : 0.21s CPU 0.18s WALL ( 332 calls) g_psi : 0.11s CPU 0.08s WALL ( 228 calls) cdiaghg : 0.38s CPU 0.34s WALL ( 316 calls) Called by h_psi: add_vuspsi : 0.15s CPU 0.20s WALL ( 324 calls) vhpsi : 0.12s CPU 0.13s WALL ( 324 calls) General routines calbec : 0.44s CPU 0.41s WALL ( 832 calls) fft : 0.41s CPU 0.42s WALL ( 194 calls) ffts : 0.02s CPU 0.03s WALL ( 46 calls) fftw : 3.97s CPU 3.89s WALL ( 10332 calls) interpolate : 0.19s CPU 0.19s WALL ( 46 calls) davcio : 0.00s CPU 0.00s WALL ( 24 calls) Hubbard U routines new_ns : 0.05s CPU 0.05s WALL ( 11 calls) vhpsi : 0.12s CPU 0.13s WALL ( 324 calls) PWSCF : 16.77s CPU 16.88s WALL This run was terminated on: 12:46:52 21Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/spinorbit.ref0000644000175000017500000002762512341373024015514 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:42:16 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/spinorbit.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 475 223 85 6855 2229 531 bravais-lattice index = 2 lattice parameter (alat) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file: /home/giannozz/trunk/espresso/pseudo/Pt.rel-pz-n-rrkjus.UPF MD5 check sum: 4baafe8ec1942611396c7a5466f52249 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 79.90000 Pt( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 Methfessel-Paxton smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 Dense grid: 6855 G-vectors FFT dimensions: ( 27, 27, 27) Smooth grid: 2229 G-vectors FFT dimensions: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 586, 18) NL pseudopotentials 0.12 Mb ( 293, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 586, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Arrays for rho mixing 2.40 Mb ( 19683, 8) Check: negative/imaginary core charge= -0.000004 0.000000 Initial potential from superposition of free atoms starting charge 9.99989, renormalised to 10.00000 Starting wfc are 12 randomized atomic wfcs total cpu time spent up to now is 1.3 secs per-process dynamical memory: 17.3 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.9 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.30E-05, avg # of iterations = 1.8 total cpu time spent up to now is 2.2 secs total energy = -69.48938193 Ry Harris-Foulkes estimate = -69.49382717 Ry estimated scf accuracy < 0.00670259 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.70E-05, avg # of iterations = 2.0 total cpu time spent up to now is 2.6 secs total energy = -69.49113570 Ry Harris-Foulkes estimate = -69.49216790 Ry estimated scf accuracy < 0.00173999 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-05, avg # of iterations = 1.9 total cpu time spent up to now is 3.1 secs total energy = -69.49152613 Ry Harris-Foulkes estimate = -69.49152600 Ry estimated scf accuracy < 0.00002105 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.11E-07, avg # of iterations = 2.9 total cpu time spent up to now is 3.5 secs End of self-consistent calculation k =-0.1250 0.1250 0.1250 ( 289 PWs) bands (ev): 7.8772 7.8772 13.2296 13.2296 13.4269 13.4269 14.4379 14.4379 15.9230 15.9230 16.1367 16.1367 35.3888 35.3888 36.0586 36.0586 39.4166 39.4168 k =-0.3750 0.3750-0.1250 ( 290 PWs) bands (ev): 10.2486 10.2486 12.9957 12.9957 13.5536 13.5536 14.7284 14.7284 15.8290 15.8290 17.6684 17.6684 29.6955 29.6955 34.5992 34.5992 37.2963 37.2964 k = 0.3750-0.3750 0.6250 ( 280 PWs) bands (ev): 10.6355 10.6355 13.0663 13.0663 14.2342 14.2342 15.0194 15.0194 17.6458 17.6458 19.5050 19.5050 23.6877 23.6877 34.1690 34.1691 35.7959 35.7959 k = 0.1250-0.1250 0.3750 ( 293 PWs) bands (ev): 9.3017 9.3017 12.6963 12.6963 13.7331 13.7331 14.9248 14.9248 15.6321 15.6321 16.6866 16.6866 33.0451 33.0451 36.5818 36.5819 37.3442 37.3443 k =-0.1250 0.6250 0.1250 ( 287 PWs) bands (ev): 10.8909 10.8909 11.8402 11.8402 14.0060 14.0060 15.7865 15.7865 17.0483 17.0483 17.7788 17.7788 29.8173 29.8173 33.2624 33.2625 34.5896 34.5896 k = 0.6250-0.1250 0.8750 ( 282 PWs) bands (ev): 11.6208 11.6208 12.1717 12.1717 13.7383 13.7383 15.9949 15.9949 17.6847 17.6847 22.8389 22.8389 24.6337 24.6337 28.6993 28.6993 31.3281 31.3281 k = 0.3750 0.1250 0.6250 ( 283 PWs) bands (ev): 11.4019 11.4019 12.7869 12.7869 13.1478 13.1478 15.2403 15.2403 16.8802 16.8802 19.5406 19.5406 26.7748 26.7748 31.9767 31.9767 34.7573 34.7573 k =-0.1250-0.8750 0.1250 ( 282 PWs) bands (ev): 10.7846 10.7846 11.2352 11.2352 15.8008 15.8008 16.9114 16.9114 17.9874 17.9874 20.3559 20.3559 26.3675 26.3675 29.2337 29.2337 31.0473 31.0473 k =-0.3750 0.3750 0.3750 ( 281 PWs) bands (ev): 10.1225 10.1225 13.2701 13.2701 14.3343 14.3343 14.8705 14.8705 16.9003 16.9003 17.4680 17.4680 26.2485 26.2485 34.5189 34.5189 38.0606 38.0607 k = 0.3750-0.3750 1.1250 ( 280 PWs) bands (ev): 11.5841 11.5841 12.6793 12.6793 13.7605 13.7605 15.1969 15.1969 17.0723 17.0723 21.4666 21.4666 24.6729 24.6729 29.9118 29.9118 35.7352 35.7354 the Fermi energy is 17.6826 ev ! total energy = -69.49152948 Ry Harris-Foulkes estimate = -69.49152949 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 17.06723634 Ry hartree contribution = 3.77048098 Ry xc contribution = -28.53653129 Ry ewald contribution = -61.79059399 Ry smearing contrib. (-TS) = -0.00212152 Ry convergence has been achieved in 4 iterations entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -23.43 -0.00015930 0.00000000 0.00000000 -23.43 0.00 0.00 0.00000000 -0.00015930 0.00000000 0.00 -23.43 0.00 0.00000000 0.00000000 -0.00015930 0.00 0.00 -23.43 Writing output data file pwscf.save init_run : 1.17s CPU 1.18s WALL ( 1 calls) electrons : 2.19s CPU 2.20s WALL ( 1 calls) stress : 0.96s CPU 0.97s WALL ( 1 calls) Called by init_run: wfcinit : 0.08s CPU 0.09s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 1.46s CPU 1.47s WALL ( 5 calls) sum_band : 0.48s CPU 0.49s WALL ( 5 calls) v_of_rho : 0.02s CPU 0.01s WALL ( 5 calls) newd : 0.25s CPU 0.25s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.02s WALL ( 120 calls) cegterg : 1.34s CPU 1.36s WALL ( 50 calls) Called by *egterg: h_psi : 0.98s CPU 0.96s WALL ( 195 calls) s_psi : 0.03s CPU 0.05s WALL ( 195 calls) g_psi : 0.05s CPU 0.03s WALL ( 135 calls) cdiaghg : 0.17s CPU 0.17s WALL ( 175 calls) Called by h_psi: add_vuspsi : 0.07s CPU 0.05s WALL ( 195 calls) General routines calbec : 0.08s CPU 0.05s WALL ( 255 calls) fft : 0.04s CPU 0.04s WALL ( 121 calls) ffts : 0.00s CPU 0.00s WALL ( 40 calls) fftw : 0.71s CPU 0.73s WALL ( 11744 calls) interpolate : 0.03s CPU 0.02s WALL ( 40 calls) davcio : 0.00s CPU 0.01s WALL ( 170 calls) PWSCF : 4.45s CPU 4.54s WALL This run was terminated on: 11:42:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/uspp1-coulomb.in0000755000175000017500000000056512341373024016040 0ustar mbamba&CONTROL calculation = 'scf' tstress=.true. tprnfor=.true. / &SYSTEM ibrav = 1, celldm(1) = 20.0, nat = 3, ntyp = 2, ecutwfc = 25.D0 / &ELECTRONS / ATOMIC_SPECIES O 16.D0 O_US.van H 2.D0 H.coulomb-ae.UPF ATOMIC_POSITIONS (bohr) O 10.0000 10.0000 10.000 H 11.7325 9.6757 10.000 H 9.6757 11.7325 10.000 espresso-5.1/PW/tests/lattice-ibrav8-kauto.ref0000644000175000017500000001747612341373024017445 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:24 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav8-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1185 1185 325 50615 50615 7161 bravais-lattice index = 8 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 3000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.500000 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 0.666667 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 8 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.1666667 0.1250000), wk = 2.0000000 Dense grid: 50615 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 6340, 1) NL pseudopotentials 0.00 Mb ( 6340, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.39 Mb ( 50615) G-vector shells 0.01 Mb ( 1676) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.39 Mb ( 6340, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.004385 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.439E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.128E-02 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22012947 Ry Harris-Foulkes estimate = -2.29037207 Ry estimated scf accuracy < 0.13324730 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.274E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23112373 Ry Harris-Foulkes estimate = -2.23157673 Ry estimated scf accuracy < 0.00100653 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.03E-05, avg # of iterations = 2.0 negative rho (up, down): 0.361E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23142667 Ry Harris-Foulkes estimate = -2.23142810 Ry estimated scf accuracy < 0.00001209 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.04E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.2500 0.1667 0.1250 ( 6340 PWs) bands (ev): -10.2888 ! total energy = -2.23142786 Ry Harris-Foulkes estimate = -2.23142782 Ry estimated scf accuracy < 0.00000041 Ry The total energy is the sum of the following terms: one-electron contribution = -3.69942741 Ry hartree contribution = 1.95208987 Ry xc contribution = -1.31442581 Ry ewald contribution = 0.83033548 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.07s CPU 0.07s WALL ( 1 calls) electrons : 0.20s CPU 0.22s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.03s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.03s WALL ( 4 calls) sum_band : 0.05s CPU 0.04s WALL ( 4 calls) v_of_rho : 0.08s CPU 0.07s WALL ( 5 calls) mix_rho : 0.04s CPU 0.04s WALL ( 4 calls) Called by c_bands: cegterg : 0.02s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.03s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.02s CPU 0.03s WALL ( 28 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.30s CPU 0.33s WALL This run was terminated on: 10:22:24 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-ncpp.in0000644000175000017500000000052412341373024015033 0ustar mbamba &control calculation = 'scf' tstress=.true. / &system ibrav=2, celldm(1) =10.20, nat=2, ntyp=1, ecutwfc=12.0 / &electrons / ATOMIC_SPECIES Si 28.086 Si.bhs ATOMIC_POSITIONS (alat) Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 2 0.250000 0.250000 0.250000 1.00 0.250000 0.250000 0.750000 3.00 espresso-5.1/PW/tests/scf-cg.ref0000644000175000017500000002073612341373024014641 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-cg.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold CG style diagonalization ethr = 7.97E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79101134 Ry Harris-Foulkes estimate = -15.81239619 Ry estimated scf accuracy < 0.06381026 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 CG style diagonalization ethr = 7.98E-04, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -15.79405035 Ry Harris-Foulkes estimate = -15.79438669 Ry estimated scf accuracy < 0.00232668 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 CG style diagonalization ethr = 2.91E-05, avg # of iterations = 3.8 total cpu time spent up to now is 0.1 secs total energy = -15.79447689 Ry Harris-Foulkes estimate = -15.79450490 Ry estimated scf accuracy < 0.00007073 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 CG style diagonalization ethr = 8.84E-07, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449478 Ry Harris-Foulkes estimate = -15.79449785 Ry estimated scf accuracy < 0.00000723 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 CG style diagonalization ethr = 9.04E-08, avg # of iterations = 4.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8700 2.3793 5.5373 5.5373 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9163 -0.0652 2.6796 4.0356 ! total energy = -15.79449590 Ry Harris-Foulkes estimate = -15.79449594 Ry estimated scf accuracy < 0.00000008 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83380433 Ry hartree contribution = 1.08426481 Ry xc contribution = -4.81280647 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.02s WALL ( 6 calls) sum_band : 0.01s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) ccgdiagg : 0.00s CPU 0.01s WALL ( 12 calls) wfcrot : 0.01s CPU 0.00s WALL ( 10 calls) Called by *cgdiagg: h_psi : 0.01s CPU 0.01s WALL ( 136 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 136 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 262 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) fftw : 0.02s CPU 0.01s WALL ( 396 calls) davcio : 0.00s CPU 0.00s WALL ( 38 calls) PWSCF : 0.10s CPU 0.11s WALL This run was terminated on: 11:28:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf-mixing_beta.ref0000644000175000017500000002174712341373024016541 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-mixing_beta.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79488919 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79349341 Ry Harris-Foulkes estimate = -15.79658476 Ry estimated scf accuracy < 0.01075533 Ry iteration # 3 ecut= 12.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.34E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79439181 Ry Harris-Foulkes estimate = -15.79448464 Ry estimated scf accuracy < 0.00024732 Ry iteration # 4 ecut= 12.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.09E-06, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs total energy = -15.79448711 Ry Harris-Foulkes estimate = -15.79451387 Ry estimated scf accuracy < 0.00005140 Ry iteration # 5 ecut= 12.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.42E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79449564 Ry Harris-Foulkes estimate = -15.79449658 Ry estimated scf accuracy < 0.00000223 Ry iteration # 6 ecut= 12.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.78E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8703 2.3790 5.5368 5.5368 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9167 -0.0655 2.6794 4.0353 ! total energy = -15.79449593 Ry Harris-Foulkes estimate = -15.79449594 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83375085 Ry hartree contribution = 1.08434395 Ry xc contribution = -4.81283216 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 6 iterations Writing output data file pwscf.save init_run : 0.03s CPU 0.02s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.02s WALL ( 7 calls) sum_band : 0.01s CPU 0.01s WALL ( 7 calls) v_of_rho : 0.01s CPU 0.00s WALL ( 7 calls) mix_rho : 0.00s CPU 0.00s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 30 calls) cegterg : 0.01s CPU 0.02s WALL ( 14 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 41 calls) g_psi : 0.00s CPU 0.00s WALL ( 25 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 37 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 41 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 41 calls) fft : 0.00s CPU 0.00s WALL ( 29 calls) fftw : 0.00s CPU 0.01s WALL ( 378 calls) davcio : 0.00s CPU 0.00s WALL ( 44 calls) PWSCF : 0.11s CPU 0.12s WALL This run was terminated on: 11:28:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav3-kauto.in0000644000175000017500000000043612341373024017256 0ustar mbamba &control calculation='scf', / &system ibrav = 3, celldm(1) =10.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {automatic} 2 2 2 1 1 1 espresso-5.1/PW/tests/metal-tetrahedra.in20000755000175000017500000000044212341373024016631 0ustar mbamba &control calculation='nscf' / &system ibrav=2, celldm(1) =7.50, nat=1, ntyp=1, ecutwfc =15.0, occupations='tetrahedra' nbnd=4 / &electrons / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS {alat} Al 0.00 0.00 0.00 K_POINTS {automatic} 6 6 6 1 1 1 espresso-5.1/PW/tests/cluster1.ref0000644000175000017500000002543412341373024015241 0ustar mbamba Program PWSCF v.4.99 starts on 5Jan2012 at 22:44:52 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/cluster1.in file N.pbe-kjpaw.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used Message from routine setup: the system is metallic, specify occupations G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1369 1369 349 38401 38401 4801 Tot 685 685 175 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file: /home/giannozz/trunk/espresso/pseudo/N.pbe-kjpaw.UPF MD5 check sum: 784def1e20c8513c628b118ec611e520 Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) Starting magnetic structure atomic species magnetization N 0.000 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 19201 G-vectors FFT dimensions: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.15 Mb ( 2401, 4) NL pseudopotentials 0.29 Mb ( 2401, 8) Each V/rho on FFT grid 2.78 Mb ( 91125, 2) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 2401, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 11.12 Mb ( 91125, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000005 0.000000 Initial potential from superposition of free atoms starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.126E-05 0.126E-05 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 1.0 secs per-process dynamical memory: 28.4 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.863E-04 0.157E-03 total cpu time spent up to now is 1.4 secs total energy = -27.79823834 Ry Harris-Foulkes estimate = -27.59607647 Ry estimated scf accuracy < 0.11189026 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-03, avg # of iterations = 1.0 negative rho (up, down): 0.191E-03 0.657E-03 total cpu time spent up to now is 1.8 secs total energy = -27.82537996 Ry Harris-Foulkes estimate = -27.80248651 Ry estimated scf accuracy < 0.01529401 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.06E-04, avg # of iterations = 1.5 negative rho (up, down): 0.195E-03 0.579E-03 total cpu time spent up to now is 2.2 secs total energy = -27.82650391 Ry Harris-Foulkes estimate = -27.82662091 Ry estimated scf accuracy < 0.00021619 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.32E-06, avg # of iterations = 2.0 negative rho (up, down): 0.248E-03 0.518E-03 total cpu time spent up to now is 2.6 secs total energy = -27.82661704 Ry Harris-Foulkes estimate = -27.82661758 Ry estimated scf accuracy < 0.00001957 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.91E-07, avg # of iterations = 2.0 negative rho (up, down): 0.243E-03 0.520E-03 total cpu time spent up to now is 3.1 secs total energy = -27.82662256 Ry Harris-Foulkes estimate = -27.82662442 Ry estimated scf accuracy < 0.00000504 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-07, avg # of iterations = 2.0 negative rho (up, down): 0.241E-03 0.520E-03 total cpu time spent up to now is 3.5 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -19.8778 -8.2465 -8.2465 -8.2465 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -15.2898 -4.0720 -4.0719 -4.0719 ! total energy = -27.82662328 Ry Harris-Foulkes estimate = -27.82662326 Ry estimated scf accuracy < 0.00000004 Ry total all-electron energy = -109.125425 Ry The total energy is the sum of the following terms: one-electron contribution = -30.96980531 Ry hartree contribution = 16.58305829 Ry xc contribution = -5.12492313 Ry ewald contribution = -0.00000003 Ry one-center paw contrib. = -8.31495310 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file pwscf.save init_run : 0.79s CPU 0.80s WALL ( 1 calls) electrons : 2.42s CPU 2.47s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.32s CPU 0.32s WALL ( 1 calls) Called by electrons: c_bands : 0.18s CPU 0.18s WALL ( 6 calls) sum_band : 0.21s CPU 0.21s WALL ( 6 calls) v_of_rho : 1.01s CPU 1.03s WALL ( 7 calls) newd : 0.12s CPU 0.13s WALL ( 7 calls) mix_rho : 0.10s CPU 0.11s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 26 calls) regterg : 0.16s CPU 0.16s WALL ( 12 calls) Called by *egterg: h_psi : 0.15s CPU 0.14s WALL ( 33 calls) s_psi : 0.01s CPU 0.00s WALL ( 33 calls) g_psi : 0.00s CPU 0.01s WALL ( 19 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 33 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 45 calls) fft : 0.29s CPU 0.27s WALL ( 172 calls) fftw : 0.13s CPU 0.12s WALL ( 154 calls) davcio : 0.01s CPU 0.00s WALL ( 38 calls) PAW routines PAW_pot : 1.01s CPU 1.02s WALL ( 7 calls) PAW_ddot : 0.04s CPU 0.04s WALL ( 36 calls) PAW_symme : 0.00s CPU 0.00s WALL ( 13 calls) PWSCF : 3.46s CPU 3.55s WALL This run was terminated on: 22:44:55 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lsda-nelup+neldw.in0000755000175000017500000000057112341373024016500 0ustar mbamba &control calculation='scf' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin=2, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.02, tot_magnetization=2.0 / &electrons / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {alat} Ni 0.0 0.0 0.0 K_POINTS {automatic} 4 4 4 1 1 1 espresso-5.1/PW/tests/lattice-ibrav8.ref0000644000175000017500000001761312341373024016315 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:23 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav8.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1185 1185 293 50615 50615 6327 Tot 593 593 147 bravais-lattice index = 8 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 3000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.500000 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 0.666667 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 8 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 25308 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.05 Mb ( 3164, 1) NL pseudopotentials 0.00 Mb ( 3164, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.19 Mb ( 25308) G-vector shells 0.01 Mb ( 1676) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 3164, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.004385 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.439E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.127E-02 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22050162 Ry Harris-Foulkes estimate = -2.29028481 Ry estimated scf accuracy < 0.13248956 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.62E-03, avg # of iterations = 1.0 negative rho (up, down): 0.274E-03 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23163346 Ry Harris-Foulkes estimate = -2.23205365 Ry estimated scf accuracy < 0.00094355 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-05, avg # of iterations = 2.0 negative rho (up, down): 0.461E-04 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23197996 Ry Harris-Foulkes estimate = -2.23198149 Ry estimated scf accuracy < 0.00001463 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.32E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 3164 PWs) bands (ev): -10.3215 ! total energy = -2.23198155 Ry Harris-Foulkes estimate = -2.23198129 Ry estimated scf accuracy < 0.00000042 Ry The total energy is the sum of the following terms: one-electron contribution = -3.69716667 Ry hartree contribution = 1.94675741 Ry xc contribution = -1.31190777 Ry ewald contribution = 0.83033548 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.04s CPU 0.05s WALL ( 1 calls) electrons : 0.15s CPU 0.16s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.02s CPU 0.03s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 5 calls) mix_rho : 0.02s CPU 0.02s WALL ( 4 calls) Called by c_bands: regterg : 0.03s CPU 0.03s WALL ( 4 calls) Called by *egterg: h_psi : 0.03s CPU 0.03s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.04s CPU 0.02s WALL ( 19 calls) fftw : 0.03s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.24s CPU 0.25s WALL This run was terminated on: 10:22:24 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/scf.ref10000644000175000017500000002422612341373024014331 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf.in1 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 1459 1459 331 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 21 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 k( 2) = ( 0.2000000 0.0000000 0.0000000), wk = 2.0000000 k( 3) = ( 0.4000000 0.0000000 0.0000000), wk = 2.0000000 k( 4) = ( 0.6000000 0.0000000 0.0000000), wk = 2.0000000 k( 5) = ( 0.8000000 0.0000000 0.0000000), wk = 2.0000000 k( 6) = ( 1.0000000 0.0000000 0.0000000), wk = 2.0000000 k( 7) = ( 1.0000000 0.0500000 0.0500000), wk = 2.0000000 k( 8) = ( 1.0000000 0.1000000 0.1000000), wk = 2.0000000 k( 9) = ( 1.0000000 0.1500000 0.1500000), wk = 2.0000000 k( 10) = ( 1.0000000 0.2000000 0.2000000), wk = 2.0000000 k( 11) = ( 1.0000000 0.2500000 0.2500000), wk = 2.0000000 k( 12) = ( 0.9000000 0.3000000 0.3000000), wk = 2.0000000 k( 13) = ( 0.8000000 0.3500000 0.3500000), wk = 2.0000000 k( 14) = ( 0.7000000 0.4000000 0.4000000), wk = 2.0000000 k( 15) = ( 0.6000000 0.4500000 0.4500000), wk = 2.0000000 k( 16) = ( 0.5000000 0.5000000 0.5000000), wk = 2.0000000 k( 17) = ( 0.4000000 0.4000000 0.4000000), wk = 2.0000000 k( 18) = ( 0.3000000 0.3000000 0.3000000), wk = 2.0000000 k( 19) = ( 0.2000000 0.2000000 0.2000000), wk = 2.0000000 k( 20) = ( 0.1000000 0.1000000 0.1000000), wk = 2.0000000 k( 21) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 194, 8) NL pseudopotentials 0.02 Mb ( 194, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 194, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 1.5 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 12.2 total cpu time spent up to now is 0.4 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -5.6687 6.3360 6.3360 6.3360 8.8977 8.8977 8.8977 9.8994 k = 0.2000 0.0000 0.0000 band energies (ev): -5.5035 5.4454 5.7234 5.7234 8.5043 9.7229 9.7229 10.6608 k = 0.4000 0.0000 0.0000 band energies (ev): -4.9866 3.7828 4.7737 4.7737 7.7521 10.2158 11.2953 11.2953 k = 0.6000 0.0000 0.0000 band energies (ev): -4.1136 1.9721 4.0067 4.0067 7.1390 8.7032 13.0662 13.0662 k = 0.8000 0.0000 0.0000 band energies (ev): -2.9485 0.1736 3.5278 3.5278 6.8246 7.5723 14.9321 14.9321 k = 1.0000 0.0000 0.0000 band energies (ev): -1.4850 -1.4850 3.3662 3.3662 6.9634 6.9634 16.4944 16.4944 k = 1.0000 0.0500 0.0500 band energies (ev): -1.4923 -1.4612 3.2169 3.3843 6.9843 7.1849 16.2778 16.3621 k = 1.0000 0.1000 0.1000 band energies (ev): -1.5207 -1.3958 2.8622 3.4386 7.0440 7.7574 15.7717 16.0203 k = 1.0000 0.1500 0.1500 band energies (ev): -1.5798 -1.2602 2.4549 3.5283 7.1511 8.5465 15.1579 15.5735 k = 1.0000 0.2000 0.2000 band energies (ev): -1.6804 -1.1105 2.0973 3.6521 7.2847 9.4656 14.5296 15.0768 k = 1.0000 0.2500 0.2500 band energies (ev): -1.8691 -0.8929 1.8512 3.8081 7.4704 10.4622 13.8961 14.4265 k = 0.9000 0.3000 0.3000 band energies (ev): -2.2719 -0.5830 1.9303 4.0284 7.7398 11.5404 12.8398 12.9952 k = 0.8000 0.3500 0.3500 band energies (ev): -2.6934 -0.5107 2.5730 4.3285 8.1281 11.4263 11.6625 12.8909 k = 0.7000 0.4000 0.4000 band energies (ev): -3.0177 -0.6089 3.5481 4.6665 8.5204 10.1860 10.6575 14.0689 k = 0.6000 0.4500 0.4500 band energies (ev): -3.2069 -0.7161 4.5528 4.9555 8.3606 9.6341 9.9523 14.1718 k = 0.5000 0.5000 0.5000 band energies (ev): -3.2602 -0.7570 5.0794 5.0794 7.9254 9.6978 9.6978 13.8859 k = 0.4000 0.4000 0.4000 band energies (ev): -3.7594 -0.0186 5.1539 5.1539 8.0020 9.7831 9.7831 14.0013 k = 0.3000 0.3000 0.3000 band energies (ev): -4.5385 1.4884 5.3733 5.3733 8.2161 9.9000 9.9000 13.9086 k = 0.2000 0.2000 0.2000 band energies (ev): -5.1604 3.3112 5.7239 5.7239 8.5984 9.7278 9.7278 12.4378 k = 0.1000 0.1000 0.1000 band energies (ev): -5.5450 5.1930 6.1230 6.1230 8.9569 9.2022 9.2022 10.7501 k = 0.0000 0.0000 0.0000 band energies (ev): -5.6687 6.3360 6.3360 6.3360 8.8977 8.8977 8.8977 9.8994 Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.24s CPU 0.25s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.24s CPU 0.25s WALL ( 1 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 21 calls) cegterg : 0.22s CPU 0.23s WALL ( 21 calls) Called by *egterg: h_psi : 0.10s CPU 0.12s WALL ( 299 calls) g_psi : 0.01s CPU 0.01s WALL ( 257 calls) cdiaghg : 0.08s CPU 0.07s WALL ( 278 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 299 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 299 calls) fft : 0.00s CPU 0.00s WALL ( 3 calls) fftw : 0.09s CPU 0.09s WALL ( 3250 calls) PWSCF : 0.41s CPU 0.43s WALL This run was terminated on: 11:28:18 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/berry.in20000644000175000017500000000120512341373024014524 0ustar mbamba &control calculation = 'nscf' lberry = .true. gdir = 3 nppstr = 7 / &system ibrav = 1 celldm(1) = 7.3699 nat = 5 ntyp = 3 nbnd = 24 ecutwfc = 25.0 ecutrho =200.0 / &electrons / ATOMIC_SPECIES Pb 207.2 Pb.pz-d-van.UPF Ti 47.867 Ti.pz-sp-van_ak.UPF O 15.9994 O.pz-van_ak.UPF ATOMIC_POSITIONS {alat} Pb 0.000 0.000 0.010 Ti 0.500 0.500 0.500 O 0.000 0.500 0.500 O 0.500 0.500 0.000 O 0.500 0.000 0.500 K_POINTS {automatic} 4 4 7 1 1 1 espresso-5.1/PW/tests/scf-mixing_TF.ref0000644000175000017500000002116612341373024016132 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 11:28:19 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/scf-mixing_TF.in G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 TF mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 186, 4) NL pseudopotentials 0.02 Mb ( 186, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 186, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 1.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.94E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79822294 Ry Harris-Foulkes estimate = -15.81238857 Ry estimated scf accuracy < 0.06376300 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -15.79288059 Ry Harris-Foulkes estimate = -15.79906957 Ry estimated scf accuracy < 0.01618395 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.02E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -15.79440204 Ry Harris-Foulkes estimate = -15.79427569 Ry estimated scf accuracy < 0.00035270 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.41E-06, avg # of iterations = 2.5 total cpu time spent up to now is 0.1 secs total energy = -15.79449058 Ry Harris-Foulkes estimate = -15.79450266 Ry estimated scf accuracy < 0.00004519 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.65E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8713 2.3779 5.5355 5.5355 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9178 -0.0667 2.6785 4.0342 ! total energy = -15.79449555 Ry Harris-Foulkes estimate = -15.79449533 Ry estimated scf accuracy < 0.00000053 Ry The total energy is the sum of the following terms: one-electron contribution = 4.83344814 Ry hartree contribution = 1.08483632 Ry xc contribution = -4.81302143 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.02s CPU 0.02s WALL ( 1 calls) electrons : 0.03s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.01s WALL ( 6 calls) sum_band : 0.01s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.00s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 25 calls) fftw : 0.01s CPU 0.01s WALL ( 314 calls) davcio : 0.00s CPU 0.00s WALL ( 38 calls) PWSCF : 0.10s CPU 0.11s WALL This run was terminated on: 11:28:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav12-kauto.ref0000644000175000017500000001772712341373024017517 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav12-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1177 1177 327 50347 50347 7175 bravais-lattice index = 12 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 2984.9623 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.100000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.150000 1.492481 0.000000 ) a(3) = ( 0.000000 0.000000 2.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 -0.100504 0.000000 ) b(2) = ( 0.000000 0.670025 0.000000 ) b(3) = ( 0.000000 0.000000 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 4 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.1423804 0.1250000), wk = 1.0000000 k( 2) = ( 0.2500000 -0.1926322 0.1250000), wk = 1.0000000 Dense grid: 50347 G-vectors FFT dimensions: ( 32, 48, 64) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 6314, 1) NL pseudopotentials 0.00 Mb ( 6314, 0) Each V/rho on FFT grid 1.50 Mb ( 98304) Each G-vector array 0.38 Mb ( 50347) G-vector shells 0.07 Mb ( 9783) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.39 Mb ( 6314, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 12.00 Mb ( 98304, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.004355 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.435E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 20.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.127E-02 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.22012426 Ry Harris-Foulkes estimate = -2.29037129 Ry estimated scf accuracy < 0.13325589 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.272E-03 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23112487 Ry Harris-Foulkes estimate = -2.23157802 Ry estimated scf accuracy < 0.00100706 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.04E-05, avg # of iterations = 2.0 negative rho (up, down): 0.355E-04 0.000E+00 total cpu time spent up to now is 0.3 secs total energy = -2.23142854 Ry Harris-Foulkes estimate = -2.23143006 Ry estimated scf accuracy < 0.00001221 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.10E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.4 secs End of self-consistent calculation k = 0.2500 0.1424 0.1250 ( 6314 PWs) bands (ev): -10.2890 k = 0.2500-0.1926 0.1250 ( 6310 PWs) bands (ev): -10.2877 ! total energy = -2.23142974 Ry Harris-Foulkes estimate = -2.23142970 Ry estimated scf accuracy < 0.00000042 Ry The total energy is the sum of the following terms: one-electron contribution = -3.69694977 Ry hartree contribution = 1.95088698 Ry xc contribution = -1.31442612 Ry ewald contribution = 0.82905917 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.10s CPU 0.11s WALL ( 1 calls) electrons : 0.24s CPU 0.25s WALL ( 1 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.05s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 0.06s CPU 0.06s WALL ( 4 calls) sum_band : 0.05s CPU 0.05s WALL ( 4 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 5 calls) mix_rho : 0.04s CPU 0.04s WALL ( 4 calls) Called by c_bands: cegterg : 0.06s CPU 0.06s WALL ( 8 calls) Called by *egterg: h_psi : 0.06s CPU 0.06s WALL ( 22 calls) g_psi : 0.00s CPU 0.00s WALL ( 12 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 20 calls) Called by h_psi: General routines fft : 0.02s CPU 0.02s WALL ( 19 calls) fftw : 0.06s CPU 0.05s WALL ( 56 calls) davcio : 0.00s CPU 0.00s WALL ( 26 calls) PWSCF : 0.38s CPU 0.40s WALL This run was terminated on: 10:22:19 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/dft1.ref0000644000175000017500000002242212341373024014327 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10839) starts on 3Apr2014 at 8:38:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/pw91.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = PW91 ( 1 4 2 2 0) Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 27 728 728 141 Max 82 82 28 731 731 142 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PW91 ( 1 4 2 2 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 93, 4) NL pseudopotentials 0.01 Mb ( 93, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 93, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.67E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.83026471 Ry Harris-Foulkes estimate = -15.84661787 Ry estimated scf accuracy < 0.06959862 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.70E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.83307490 Ry Harris-Foulkes estimate = -15.83307826 Ry estimated scf accuracy < 0.00306664 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.83E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.83337180 Ry Harris-Foulkes estimate = -15.83337589 Ry estimated scf accuracy < 0.00006573 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.22E-07, avg # of iterations = 3.0 total cpu time spent up to now is 0.1 secs total energy = -15.83340516 Ry Harris-Foulkes estimate = -15.83340530 Ry estimated scf accuracy < 0.00000117 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -4.8500 2.3923 5.5060 5.5060 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -2.9166 -0.0593 2.7215 4.0318 highest occupied level (ev): 5.5060 ! total energy = -15.83340547 Ry Harris-Foulkes estimate = -15.83340547 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 4.81205034 Ry hartree contribution = 1.12418824 Ry xc contribution = -4.86988547 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.00s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.00s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.00s CPU 0.01s WALL ( 36 calls) g_psi : 0.00s CPU 0.00s WALL ( 22 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 32 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 36 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 36 calls) fft : 0.01s CPU 0.00s WALL ( 67 calls) fftw : 0.01s CPU 0.01s WALL ( 328 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.01s CPU 0.00s WALL ( 395 calls) PWSCF : 0.10s CPU 0.10s WALL This run was terminated on: 8:38:30 3Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/dft8.ref0000644000175000017500000002242512341373024014341 0ustar mbamba Program PWSCF v.5.0.2 (svn rev. 10839) starts on 3Apr2014 at 8:38:30 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Reading input from /home/giannozz/trunk/espresso/PW/tests/sogga.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = SOGGA ( 1 4 17 4 0) Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 27 728 728 141 Max 82 82 28 731 731 142 Sum 163 163 55 1459 1459 283 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SOGGA ( 1 4 17 4 0) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 0.5000000 k( 2) = ( 0.2500000 0.2500000 0.7500000), wk = 1.5000000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 93, 4) NL pseudopotentials 0.01 Mb ( 93, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 93, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 3.0 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.16E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.65360193 Ry Harris-Foulkes estimate = -15.68728598 Ry estimated scf accuracy < 0.05752285 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.19E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.0 secs total energy = -15.65313170 Ry Harris-Foulkes estimate = -15.65686236 Ry estimated scf accuracy < 0.00195526 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -15.65368564 Ry Harris-Foulkes estimate = -15.65354369 Ry estimated scf accuracy < 0.00004843 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.05E-07, avg # of iterations = 2.5 total cpu time spent up to now is 0.0 secs total energy = -15.65355036 Ry Harris-Foulkes estimate = -15.65370097 Ry estimated scf accuracy < 0.00000162 Ry iteration # 5 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 180 PWs) bands (ev): -5.0653 2.1852 5.3605 5.3605 k = 0.2500 0.2500 0.7500 ( 186 PWs) bands (ev): -3.1056 -0.2560 2.4698 3.8347 highest occupied level (ev): 5.3605 ! total energy = -15.65355476 Ry Harris-Foulkes estimate = -15.65355070 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 4.84922183 Ry hartree contribution = 1.06012582 Ry xc contribution = -4.66314383 Ry ewald contribution = -16.89975858 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.02s CPU 0.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.01s WALL ( 6 calls) sum_band : 0.00s CPU 0.00s WALL ( 6 calls) v_of_rho : 0.00s CPU 0.01s WALL ( 6 calls) mix_rho : 0.00s CPU 0.00s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 26 calls) cegterg : 0.01s CPU 0.01s WALL ( 12 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 35 calls) g_psi : 0.00s CPU 0.00s WALL ( 21 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 31 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 35 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 35 calls) fft : 0.00s CPU 0.00s WALL ( 67 calls) fftw : 0.02s CPU 0.01s WALL ( 330 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 0.00s CPU 0.00s WALL ( 397 calls) PWSCF : 0.08s CPU 0.10s WALL This run was terminated on: 8:38:30 3Apr2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/electric1.ref0000644000175000017500000006301112341373024015343 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 12:14:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/electric1.in Found symmetry operation: I + ( -0.5000 -0.5000 0.0000) This is a supercell, fractional translations are disabled G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 665 665 225 12893 12893 2553 bravais-lattice index = 1 lattice parameter (alat) = 10.1800 a.u. unit-cell volume = 1054.9778 (a.u.)^3 number of atoms/cell = 8 number of atomic types = 1 number of electrons = 32.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Using Berry phase electric field Direction : 3 Intensity (Ry a.u.) : 0.0000000000 Strings composed by: 7 k-points Number of iterative cycles: 1 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Si read from file: /home/giannozz/trunk/espresso/pseudo/Si.pbe-rrkj.UPF MD5 check sum: cf7ab5690cd9a85b22c4813f7e365554 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 883 points, 3 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.3770000 0.3770000 -0.1230000 ) 3 Si tau( 3) = ( 0.3770000 -0.1230000 0.3770000 ) 4 Si tau( 4) = ( -0.1230000 0.3770000 0.3770000 ) 5 Si tau( 5) = ( 0.1230000 0.1230000 0.1230000 ) 6 Si tau( 6) = ( 0.6230000 0.6230000 0.1230000 ) 7 Si tau( 7) = ( 0.6230000 0.1230000 0.6230000 ) 8 Si tau( 8) = ( 0.1230000 0.6230000 0.6230000 ) number of k points= 63 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0317460 k( 2) = ( 0.0000000 0.0000000 0.1428571), wk = 0.0317460 k( 3) = ( 0.0000000 0.0000000 0.2857143), wk = 0.0317460 k( 4) = ( 0.0000000 0.0000000 0.4285714), wk = 0.0317460 k( 5) = ( 0.0000000 0.0000000 0.5714286), wk = 0.0317460 k( 6) = ( 0.0000000 0.0000000 0.7142857), wk = 0.0317460 k( 7) = ( 0.0000000 0.0000000 0.8571429), wk = 0.0317460 k( 8) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0317460 k( 9) = ( 0.0000000 0.3333333 0.1428571), wk = 0.0317460 k( 10) = ( 0.0000000 0.3333333 0.2857143), wk = 0.0317460 k( 11) = ( 0.0000000 0.3333333 0.4285714), wk = 0.0317460 k( 12) = ( 0.0000000 0.3333333 0.5714286), wk = 0.0317460 k( 13) = ( 0.0000000 0.3333333 0.7142857), wk = 0.0317460 k( 14) = ( 0.0000000 0.3333333 0.8571429), wk = 0.0317460 k( 15) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0317460 k( 16) = ( 0.0000000 0.6666667 0.1428571), wk = 0.0317460 k( 17) = ( 0.0000000 0.6666667 0.2857143), wk = 0.0317460 k( 18) = ( 0.0000000 0.6666667 0.4285714), wk = 0.0317460 k( 19) = ( 0.0000000 0.6666667 0.5714286), wk = 0.0317460 k( 20) = ( 0.0000000 0.6666667 0.7142857), wk = 0.0317460 k( 21) = ( 0.0000000 0.6666667 0.8571429), wk = 0.0317460 k( 22) = ( 0.3333333 0.0000000 0.0000000), wk = 0.0317460 k( 23) = ( 0.3333333 0.0000000 0.1428571), wk = 0.0317460 k( 24) = ( 0.3333333 0.0000000 0.2857143), wk = 0.0317460 k( 25) = ( 0.3333333 0.0000000 0.4285714), wk = 0.0317460 k( 26) = ( 0.3333333 0.0000000 0.5714286), wk = 0.0317460 k( 27) = ( 0.3333333 0.0000000 0.7142857), wk = 0.0317460 k( 28) = ( 0.3333333 0.0000000 0.8571429), wk = 0.0317460 k( 29) = ( 0.3333333 0.3333333 0.0000000), wk = 0.0317460 k( 30) = ( 0.3333333 0.3333333 0.1428571), wk = 0.0317460 k( 31) = ( 0.3333333 0.3333333 0.2857143), wk = 0.0317460 k( 32) = ( 0.3333333 0.3333333 0.4285714), wk = 0.0317460 k( 33) = ( 0.3333333 0.3333333 0.5714286), wk = 0.0317460 k( 34) = ( 0.3333333 0.3333333 0.7142857), wk = 0.0317460 k( 35) = ( 0.3333333 0.3333333 0.8571429), wk = 0.0317460 k( 36) = ( 0.3333333 0.6666667 0.0000000), wk = 0.0317460 k( 37) = ( 0.3333333 0.6666667 0.1428571), wk = 0.0317460 k( 38) = ( 0.3333333 0.6666667 0.2857143), wk = 0.0317460 k( 39) = ( 0.3333333 0.6666667 0.4285714), wk = 0.0317460 k( 40) = ( 0.3333333 0.6666667 0.5714286), wk = 0.0317460 k( 41) = ( 0.3333333 0.6666667 0.7142857), wk = 0.0317460 k( 42) = ( 0.3333333 0.6666667 0.8571429), wk = 0.0317460 k( 43) = ( 0.6666667 0.0000000 0.0000000), wk = 0.0317460 k( 44) = ( 0.6666667 0.0000000 0.1428571), wk = 0.0317460 k( 45) = ( 0.6666667 0.0000000 0.2857143), wk = 0.0317460 k( 46) = ( 0.6666667 0.0000000 0.4285714), wk = 0.0317460 k( 47) = ( 0.6666667 0.0000000 0.5714286), wk = 0.0317460 k( 48) = ( 0.6666667 0.0000000 0.7142857), wk = 0.0317460 k( 49) = ( 0.6666667 0.0000000 0.8571429), wk = 0.0317460 k( 50) = ( 0.6666667 0.3333333 0.0000000), wk = 0.0317460 k( 51) = ( 0.6666667 0.3333333 0.1428571), wk = 0.0317460 k( 52) = ( 0.6666667 0.3333333 0.2857143), wk = 0.0317460 k( 53) = ( 0.6666667 0.3333333 0.4285714), wk = 0.0317460 k( 54) = ( 0.6666667 0.3333333 0.5714286), wk = 0.0317460 k( 55) = ( 0.6666667 0.3333333 0.7142857), wk = 0.0317460 k( 56) = ( 0.6666667 0.3333333 0.8571429), wk = 0.0317460 k( 57) = ( 0.6666667 0.6666667 0.0000000), wk = 0.0317460 k( 58) = ( 0.6666667 0.6666667 0.1428571), wk = 0.0317460 k( 59) = ( 0.6666667 0.6666667 0.2857143), wk = 0.0317460 k( 60) = ( 0.6666667 0.6666667 0.4285714), wk = 0.0317460 k( 61) = ( 0.6666667 0.6666667 0.5714286), wk = 0.0317460 k( 62) = ( 0.6666667 0.6666667 0.7142857), wk = 0.0317460 k( 63) = ( 0.6666667 0.6666667 0.8571429), wk = 0.0317460 Dense grid: 12893 G-vectors FFT dimensions: ( 30, 30, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.39 Mb ( 1602, 16) NL pseudopotentials 0.98 Mb ( 1602, 40) Each V/rho on FFT grid 0.41 Mb ( 27000) Each G-vector array 0.10 Mb ( 12893) G-vector shells 0.00 Mb ( 178) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.56 Mb ( 1602, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 40, 16) Arrays for rho mixing 3.30 Mb ( 27000, 8) The initial density is read from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc from file total cpu time spent up to now is 0.1 secs per-process dynamical memory: 8.4 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-05, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.31E-12, avg # of iterations = 3.6 Expectation value of exp(iGx): (0.335972157281994,-2.660528399052841E-008) 1.00000000000000 Electronic Dipole per cell (Ry a.u.) -3.628921002389412E-007 Ionic Dipole per cell (Ry a.u.) 115.173552519665 total cpu time spent up to now is 8.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1575 PWs) bands (ev): -5.5830 -1.4243 -1.4243 -1.4241 -1.2843 -1.2841 -1.2841 3.5437 3.5437 3.5439 3.6151 3.6151 3.6151 6.2761 6.5935 6.5935 k = 0.0000 0.0000 0.1429 ( 1599 PWs) bands (ev): -5.4919 -2.4256 -1.3945 -1.3945 -1.2524 -1.2523 -0.1757 3.2963 3.2963 3.3714 3.3714 3.6254 3.6977 5.8815 6.1638 6.2318 k = 0.0000 0.0000 0.2857 ( 1582 PWs) bands (ev): -5.2197 -3.3614 -1.3237 -1.3237 -1.1763 -1.1763 1.0750 2.8448 2.8448 2.9264 2.9264 3.8681 3.9437 4.8825 5.4538 5.5537 k = 0.0000 0.0000 0.4286 ( 1602 PWs) bands (ev): -4.7696 -4.1473 -1.2623 -1.2622 -1.1098 -1.1097 2.3644 2.5394 2.5394 2.6260 2.6260 3.6527 4.2648 4.3464 4.8031 4.8938 k = 0.0000 0.0000 0.5714 ( 1602 PWs) bands (ev): -4.7696 -4.1473 -1.2623 -1.2622 -1.1098 -1.1097 2.3644 2.5394 2.5394 2.6260 2.6260 3.6527 4.2648 4.3464 4.8031 4.8938 k = 0.0000 0.0000 0.7143 ( 1582 PWs) bands (ev): -5.2197 -3.3614 -1.3237 -1.3237 -1.1763 -1.1763 1.0750 2.8448 2.8448 2.9264 2.9264 3.8681 3.9437 4.8825 5.4538 5.5537 k = 0.0000 0.0000 0.8571 ( 1599 PWs) bands (ev): -5.4919 -2.4256 -1.3945 -1.3945 -1.2524 -1.2523 -0.1757 3.2963 3.2963 3.3714 3.3714 3.6254 3.6977 5.8815 6.1638 6.2318 k = 0.0000 0.3333 0.0000 ( 1594 PWs) bands (ev): -5.0893 -3.6408 -1.2991 -1.2990 -1.1499 -1.1498 1.5024 2.7156 2.7156 2.7991 2.7992 3.9834 4.0608 4.4851 5.2269 5.3247 k = 0.0000 0.3333 0.1429 ( 1586 PWs) bands (ev): -4.9992 -3.5717 -2.1651 -1.5713 -0.9132 -0.2527 1.4074 2.1670 2.6306 3.1383 3.5664 3.6687 3.8455 3.9985 4.9368 5.7805 k = 0.0000 0.3333 0.2857 ( 1602 PWs) bands (ev): -4.7346 -3.3589 -3.0023 -2.0371 -0.5112 0.6342 1.0675 1.9513 2.7441 2.9926 3.0387 3.8154 4.0449 4.2467 4.2668 6.0556 k = 0.0000 0.3333 0.4286 ( 1598 PWs) bands (ev): -4.3006 -3.7290 -3.0200 -2.5292 -0.0518 0.5887 1.4696 2.0733 2.1487 2.4626 3.0726 3.6153 4.2217 4.4698 4.6885 5.6611 k = 0.0000 0.3333 0.5714 ( 1598 PWs) bands (ev): -4.3154 -3.7067 -2.9802 -2.5897 0.0870 0.4531 1.3323 2.0840 2.2951 2.4701 3.0963 3.5835 4.3276 4.3723 4.8110 5.5142 k = 0.0000 0.3333 0.7143 ( 1602 PWs) bands (ev): -4.7437 -3.3349 -2.9695 -2.1228 -0.3731 0.5132 0.9476 1.9856 2.7558 3.0584 3.1450 3.9107 4.1453 4.1588 4.2294 5.8900 k = 0.0000 0.3333 0.8571 ( 1586 PWs) bands (ev): -5.0034 -3.5604 -2.1172 -1.6814 -0.7784 -0.3487 1.3319 2.2252 2.6249 3.2010 3.4842 3.6953 3.9968 4.0581 4.8940 5.6305 k = 0.0000 0.6667 0.0000 ( 1594 PWs) bands (ev): -5.0893 -3.6408 -1.2991 -1.2990 -1.1499 -1.1498 1.5024 2.7156 2.7156 2.7991 2.7992 3.9834 4.0608 4.4851 5.2269 5.3247 k = 0.0000 0.6667 0.1429 ( 1586 PWs) bands (ev): -5.0034 -3.5604 -2.1172 -1.6814 -0.7784 -0.3487 1.3319 2.2252 2.6249 3.2010 3.4842 3.6953 3.9968 4.0581 4.8940 5.6305 k = 0.0000 0.6667 0.2857 ( 1602 PWs) bands (ev): -4.7437 -3.3349 -2.9695 -2.1228 -0.3731 0.5132 0.9476 1.9856 2.7558 3.0584 3.1450 3.9107 4.1453 4.1588 4.2294 5.8900 k = 0.0000 0.6667 0.4286 ( 1598 PWs) bands (ev): -4.3154 -3.7067 -2.9802 -2.5897 0.0870 0.4531 1.3323 2.0840 2.2951 2.4701 3.0963 3.5835 4.3276 4.3723 4.8110 5.5142 k = 0.0000 0.6667 0.5714 ( 1598 PWs) bands (ev): -4.3006 -3.7290 -3.0200 -2.5292 -0.0518 0.5887 1.4696 2.0733 2.1487 2.4626 3.0726 3.6153 4.2217 4.4698 4.6885 5.6611 k = 0.0000 0.6667 0.7143 ( 1602 PWs) bands (ev): -4.7346 -3.3589 -3.0023 -2.0371 -0.5112 0.6342 1.0675 1.9513 2.7441 2.9926 3.0387 3.8154 4.0449 4.2467 4.2668 6.0556 k = 0.0000 0.6667 0.8571 ( 1586 PWs) bands (ev): -4.9992 -3.5717 -2.1651 -1.5713 -0.9132 -0.2527 1.4074 2.1670 2.6306 3.1383 3.5664 3.6687 3.8455 3.9985 4.9368 5.7805 k = 0.3333 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0893 -3.6408 -1.2991 -1.2990 -1.1499 -1.1498 1.5024 2.7156 2.7156 2.7991 2.7992 3.9834 4.0608 4.4851 5.2269 5.3247 k = 0.3333 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9992 -3.5717 -2.1651 -1.5713 -0.9132 -0.2527 1.4074 2.1670 2.6306 3.1383 3.5664 3.6687 3.8455 3.9985 4.9368 5.7805 k = 0.3333 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7346 -3.3589 -3.0023 -2.0371 -0.5112 0.6342 1.0675 1.9513 2.7441 2.9926 3.0387 3.8154 4.0449 4.2467 4.2668 6.0556 k = 0.3333 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3006 -3.7290 -3.0200 -2.5292 -0.0518 0.5887 1.4696 2.0733 2.1487 2.4626 3.0726 3.6153 4.2217 4.4698 4.6885 5.6611 k = 0.3333 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3154 -3.7067 -2.9802 -2.5897 0.0870 0.4531 1.3323 2.0840 2.2951 2.4701 3.0963 3.5835 4.3276 4.3723 4.8110 5.5141 k = 0.3333 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7437 -3.3349 -2.9695 -2.1228 -0.3731 0.5132 0.9476 1.9856 2.7558 3.0584 3.1450 3.9107 4.1453 4.1588 4.2294 5.8899 k = 0.3333 0.0000 0.8571 ( 1586 PWs) bands (ev): -5.0034 -3.5604 -2.1172 -1.6814 -0.7783 -0.3487 1.3319 2.2252 2.6249 3.2010 3.4842 3.6953 3.9968 4.0581 4.8940 5.6305 k = 0.3333 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6084 -3.2586 -3.2586 -2.2016 -0.3645 0.9167 0.9167 1.9569 2.7083 2.8313 2.8313 4.0394 4.0933 4.0933 4.3808 6.0006 k = 0.3333 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5203 -3.2122 -3.2122 -2.4136 -0.3130 0.6023 0.6023 2.1009 2.3095 3.0595 3.0595 4.2858 4.2859 4.4535 4.6759 5.8904 k = 0.3333 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2703 -3.0945 -3.0945 -2.8714 -0.1999 0.0452 0.0452 1.2653 3.2206 3.4648 3.4648 4.6449 4.6449 4.6531 5.4169 5.6263 k = 0.3333 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8707 -3.4154 -2.9829 -2.9829 -0.3326 -0.3326 0.1383 0.5271 3.7372 3.7373 4.2881 4.8503 4.8503 4.9585 5.2746 5.3370 k = 0.3333 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.9127 -3.3507 -2.9816 -2.9815 -0.3404 -0.3404 -0.0486 0.6869 3.7976 3.7977 4.4499 4.7969 4.7969 4.9193 5.1643 5.3260 k = 0.3333 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2954 -3.0921 -3.0921 -2.7818 -0.4135 0.0232 0.0232 1.4044 3.3693 3.6145 3.6145 4.5126 4.5126 4.6276 5.2566 5.6806 k = 0.3333 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5320 -3.2106 -3.2106 -2.3301 -0.4977 0.5733 0.5733 2.2164 2.4227 3.1951 3.1951 4.1746 4.1746 4.4411 4.5528 5.9274 k = 0.3333 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6192 -3.2298 -3.2298 -2.2784 -0.2263 0.7895 0.7895 1.9830 2.8473 2.8474 2.8586 4.0037 4.1981 4.1981 4.2903 5.8394 k = 0.3333 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5376 -3.1964 -3.1643 -2.4395 -0.2844 0.4160 0.5357 2.2566 2.4022 3.1000 3.1817 4.3159 4.3174 4.3553 4.6357 5.7560 k = 0.3333 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2967 -3.0892 -3.0215 -2.8720 -0.2140 -0.1563 0.0189 1.4105 3.3425 3.5699 3.6201 4.5442 4.5676 4.6209 5.3504 5.5677 k = 0.3333 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.9104 -3.4111 -2.9855 -2.8861 -0.5463 -0.3368 0.1203 0.6774 3.8725 3.8902 4.4186 4.6892 4.8262 4.8436 5.1305 5.3759 k = 0.3333 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.9104 -3.4111 -2.9855 -2.8861 -0.5463 -0.3368 0.1203 0.6774 3.8725 3.8902 4.4186 4.6892 4.8262 4.8436 5.1305 5.3759 k = 0.3333 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2967 -3.0892 -3.0215 -2.8720 -0.2140 -0.1563 0.0189 1.4105 3.3425 3.5699 3.6201 4.5442 4.5676 4.6209 5.3504 5.5677 k = 0.3333 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5376 -3.1964 -3.1643 -2.4395 -0.2844 0.4160 0.5357 2.2566 2.4022 3.1000 3.1817 4.3159 4.3174 4.3553 4.6357 5.7560 k = 0.6667 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0893 -3.6408 -1.2991 -1.2990 -1.1499 -1.1498 1.5024 2.7156 2.7156 2.7991 2.7992 3.9834 4.0608 4.4851 5.2269 5.3247 k = 0.6667 0.0000 0.1429 ( 1586 PWs) bands (ev): -5.0034 -3.5604 -2.1172 -1.6814 -0.7783 -0.3487 1.3319 2.2252 2.6249 3.2010 3.4842 3.6953 3.9968 4.0581 4.8940 5.6305 k = 0.6667 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7437 -3.3349 -2.9695 -2.1228 -0.3731 0.5132 0.9476 1.9856 2.7558 3.0584 3.1450 3.9107 4.1453 4.1588 4.2294 5.8899 k = 0.6667 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3154 -3.7067 -2.9802 -2.5897 0.0870 0.4531 1.3323 2.0840 2.2951 2.4701 3.0963 3.5835 4.3276 4.3723 4.8110 5.5141 k = 0.6667 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3006 -3.7290 -3.0200 -2.5292 -0.0518 0.5887 1.4696 2.0733 2.1487 2.4626 3.0726 3.6153 4.2217 4.4698 4.6885 5.6611 k = 0.6667 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7346 -3.3589 -3.0023 -2.0371 -0.5112 0.6342 1.0675 1.9513 2.7441 2.9926 3.0387 3.8154 4.0449 4.2467 4.2668 6.0556 k = 0.6667 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9992 -3.5717 -2.1651 -1.5713 -0.9132 -0.2527 1.4074 2.1670 2.6306 3.1383 3.5664 3.6687 3.8455 3.9985 4.9368 5.7805 k = 0.6667 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6192 -3.2298 -3.2298 -2.2784 -0.2263 0.7895 0.7895 1.9830 2.8473 2.8474 2.8586 4.0037 4.1981 4.1981 4.2903 5.8394 k = 0.6667 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5376 -3.1964 -3.1643 -2.4395 -0.2844 0.4160 0.5357 2.2566 2.4022 3.1000 3.1817 4.3159 4.3174 4.3553 4.6357 5.7560 k = 0.6667 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2967 -3.0892 -3.0215 -2.8720 -0.2140 -0.1563 0.0189 1.4105 3.3425 3.5699 3.6201 4.5442 4.5676 4.6209 5.3504 5.5677 k = 0.6667 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.9104 -3.4111 -2.9855 -2.8861 -0.5463 -0.3368 0.1203 0.6774 3.8725 3.8902 4.4186 4.6892 4.8262 4.8436 5.1305 5.3759 k = 0.6667 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.9104 -3.4111 -2.9855 -2.8861 -0.5463 -0.3368 0.1203 0.6774 3.8725 3.8902 4.4186 4.6892 4.8262 4.8436 5.1305 5.3759 k = 0.6667 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2967 -3.0892 -3.0215 -2.8720 -0.2140 -0.1563 0.0189 1.4105 3.3425 3.5699 3.6201 4.5442 4.5676 4.6209 5.3504 5.5677 k = 0.6667 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5376 -3.1964 -3.1643 -2.4395 -0.2844 0.4160 0.5357 2.2566 2.4022 3.1000 3.1817 4.3159 4.3174 4.3553 4.6357 5.7560 k = 0.6667 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6084 -3.2586 -3.2586 -2.2016 -0.3645 0.9167 0.9167 1.9569 2.7083 2.8313 2.8313 4.0394 4.0933 4.0933 4.3808 6.0006 k = 0.6667 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5320 -3.2106 -3.2106 -2.3301 -0.4977 0.5733 0.5733 2.2164 2.4227 3.1951 3.1951 4.1746 4.1746 4.4411 4.5528 5.9274 k = 0.6667 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2954 -3.0921 -3.0921 -2.7818 -0.4135 0.0232 0.0232 1.4044 3.3693 3.6145 3.6145 4.5126 4.5126 4.6276 5.2566 5.6806 k = 0.6667 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.9127 -3.3507 -2.9816 -2.9815 -0.3404 -0.3404 -0.0486 0.6869 3.7976 3.7977 4.4499 4.7969 4.7969 4.9193 5.1643 5.3260 k = 0.6667 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8707 -3.4154 -2.9829 -2.9829 -0.3326 -0.3326 0.1383 0.5271 3.7372 3.7373 4.2881 4.8503 4.8503 4.9585 5.2746 5.3370 k = 0.6667 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2703 -3.0945 -3.0945 -2.8714 -0.1999 0.0452 0.0452 1.2653 3.2206 3.4648 3.4648 4.6449 4.6449 4.6531 5.4169 5.6263 k = 0.6667 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5203 -3.2122 -3.2122 -2.4136 -0.3130 0.6023 0.6023 2.1009 2.3095 3.0595 3.0595 4.2858 4.2859 4.4535 4.6759 5.8904 ! total energy = -62.95044808 Ry Harris-Foulkes estimate = -62.95044808 Ry estimated scf accuracy < 1.5E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 19.82836980 Ry hartree contribution = 4.30446435 Ry xc contribution = -19.35674535 Ry ewald contribution = -67.72653689 Ry convergence has been achieved in 1 iterations Writing output data file pwscf.save init_run : 0.11s CPU 0.11s WALL ( 1 calls) electrons : 7.75s CPU 7.92s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.02s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 6.30s CPU 6.45s WALL ( 2 calls) sum_band : 0.70s CPU 0.71s WALL ( 2 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 2 calls) mix_rho : 0.00s CPU 0.00s WALL ( 2 calls) Called by c_bands: init_us_2 : 0.15s CPU 0.18s WALL ( 252 calls) cegterg : 6.02s CPU 6.10s WALL ( 126 calls) Called by *egterg: h_psi : 3.94s CPU 3.99s WALL ( 416 calls) g_psi : 0.23s CPU 0.24s WALL ( 290 calls) cdiaghg : 0.35s CPU 0.36s WALL ( 290 calls) Called by h_psi: add_vuspsi : 0.45s CPU 0.43s WALL ( 416 calls) General routines calbec : 0.35s CPU 0.42s WALL ( 416 calls) fft : 0.01s CPU 0.01s WALL ( 22 calls) fftw : 3.06s CPU 3.04s WALL ( 13346 calls) davcio : 0.00s CPU 0.08s WALL ( 504 calls) PWSCF : 8.00s CPU 8.18s WALL This run was terminated on: 12:14:26 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/berry.ref10000644000175000017500000004553112341373024014703 0ustar mbamba Program PWSCF v.4.99 starts on 5Jan2012 at 22:44:20 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/berry.in1 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tmp/pwscf.save/ G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 869 437 137 19213 6763 1213 bravais-lattice index = 1 lattice parameter (alat) = 7.3699 a.u. unit-cell volume = 400.2993 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 3 number of electrons = 44.00 number of Kohn-Sham states= 22 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 7.369900 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Pb read from file: /home/giannozz/trunk/espresso/pseudo/Pb.pz-d-van.UPF MD5 check sum: 4e1e5920686a026ae26139ac417581ff Pseudo is Ultrasoft, Zval = 14.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 2 for Ti read from file: /home/giannozz/trunk/espresso/pseudo/Ti.pz-sp-van_ak.UPF MD5 check sum: 545d0e6e05332b8871a8093f427cb0ca Pseudo is Ultrasoft, Zval = 12.0 Generated by new atomic code, or converted to UPF format Using radial grid of 851 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 3 for O read from file: /home/giannozz/trunk/espresso/pseudo/O.pz-van_ak.UPF MD5 check sum: d814fcb982dd9af4fc6452aae6bb9318 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 atomic species valence mass pseudopotential Pb 14.00 207.20000 Pb( 1.00) Ti 12.00 47.86700 Ti( 1.00) O 6.00 15.99940 O ( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Pb tau( 1) = ( 0.0000000 0.0000000 0.0100000 ) 2 Ti tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) 3 O tau( 3) = ( 0.0000000 0.5000000 0.5000000 ) 4 O tau( 4) = ( 0.5000000 0.5000000 0.0000000 ) 5 O tau( 5) = ( 0.5000000 0.0000000 0.5000000 ) number of k points= 21 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 -0.5000000), wk = 0.0714286 k( 2) = ( 0.1250000 0.1250000 -0.3333333), wk = 0.0714286 k( 3) = ( 0.1250000 0.1250000 -0.1666667), wk = 0.0714286 k( 4) = ( 0.1250000 0.1250000 0.0000000), wk = 0.0714286 k( 5) = ( 0.1250000 0.1250000 0.1666667), wk = 0.0714286 k( 6) = ( 0.1250000 0.1250000 0.3333333), wk = 0.0714286 k( 7) = ( 0.1250000 0.1250000 0.5000000), wk = 0.0714286 k( 8) = ( 0.1250000 0.3750000 -0.5000000), wk = 0.1428571 k( 9) = ( 0.1250000 0.3750000 -0.3333333), wk = 0.1428571 k( 10) = ( 0.1250000 0.3750000 -0.1666667), wk = 0.1428571 k( 11) = ( 0.1250000 0.3750000 0.0000000), wk = 0.1428571 k( 12) = ( 0.1250000 0.3750000 0.1666667), wk = 0.1428571 k( 13) = ( 0.1250000 0.3750000 0.3333333), wk = 0.1428571 k( 14) = ( 0.1250000 0.3750000 0.5000000), wk = 0.1428571 k( 15) = ( 0.3750000 0.3750000 -0.5000000), wk = 0.0714286 k( 16) = ( 0.3750000 0.3750000 -0.3333333), wk = 0.0714286 k( 17) = ( 0.3750000 0.3750000 -0.1666667), wk = 0.0714286 k( 18) = ( 0.3750000 0.3750000 0.0000000), wk = 0.0714286 k( 19) = ( 0.3750000 0.3750000 0.1666667), wk = 0.0714286 k( 20) = ( 0.3750000 0.3750000 0.3333333), wk = 0.0714286 k( 21) = ( 0.3750000 0.3750000 0.5000000), wk = 0.0714286 Dense grid: 19213 G-vectors FFT dimensions: ( 36, 36, 36) Smooth grid: 6763 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.29 Mb ( 858, 22) NL pseudopotentials 0.79 Mb ( 858, 60) Each V/rho on FFT grid 0.71 Mb ( 46656) Each G-vector array 0.15 Mb ( 19213) G-vector shells 0.00 Mb ( 232) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.15 Mb ( 858, 88) Each subspace H/S matrix 0.12 Mb ( 88, 88) Each matrix 0.02 Mb ( 60, 22) The potential is recalculated from file : /home/giannozz/trunk/espresso/tmp/pwscf.save/charge-density.dat Starting wfc are 31 randomized atomic wfcs total cpu time spent up to now is 1.6 secs per-process dynamical memory: 22.4 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 2.27E-09, avg # of iterations = 11.3 total cpu time spent up to now is 5.8 secs End of band structure calculation k = 0.1250 0.1250-0.5000 band energies (ev): -44.7030 -21.3840 -21.3143 -21.3142 -6.0482 -5.3493 -5.3048 -4.5245 -4.4479 -4.4253 -4.3761 -4.2223 3.4839 6.4509 7.2038 7.8124 8.2026 8.4259 9.2312 9.7817 9.9819 10.7887 k = 0.1250 0.1250-0.3333 band energies (ev): -44.7035 -21.3644 -21.3152 -21.3150 -6.1905 -5.4009 -5.3678 -4.5048 -4.4531 -4.4365 -4.3318 -4.2199 3.6761 6.8998 7.1929 7.6374 8.3669 8.6540 9.2519 9.7983 9.9394 10.4605 k = 0.1250 0.1250-0.1667 band energies (ev): -44.7041 -21.3247 -21.3169 -21.3165 -6.4698 -5.4917 -5.4817 -4.4631 -4.4569 -4.4415 -4.2582 -4.2377 4.1639 7.1337 7.1547 7.8934 8.8542 8.8873 9.6954 9.7689 9.8530 9.9290 k = 0.1250 0.1250 0.0000 band energies (ev): -44.7046 -21.3178 -21.3172 -21.3047 -6.6056 -5.5354 -5.5325 -4.4531 -4.4413 -4.4402 -4.2554 -4.2273 4.4674 7.1283 7.2347 7.6339 9.1136 9.3302 9.5923 9.7708 10.0123 10.0578 k = 0.1250 0.1250 0.1667 band energies (ev): -44.7041 -21.3247 -21.3169 -21.3165 -6.4698 -5.4917 -5.4817 -4.4631 -4.4569 -4.4415 -4.2582 -4.2377 4.1639 7.1337 7.1547 7.8934 8.8542 8.8873 9.6954 9.7689 9.8530 9.9290 k = 0.1250 0.1250 0.3333 band energies (ev): -44.7035 -21.3644 -21.3152 -21.3150 -6.1905 -5.4009 -5.3678 -4.5048 -4.4531 -4.4365 -4.3318 -4.2199 3.6761 6.8998 7.1929 7.6374 8.3669 8.6540 9.2519 9.7983 9.9394 10.4605 k = 0.1250 0.1250 0.5000 band energies (ev): -44.7030 -21.3840 -21.3143 -21.3142 -6.0482 -5.3493 -5.3048 -4.5245 -4.4479 -4.4253 -4.3761 -4.2223 3.4839 6.4509 7.2038 7.8124 8.2026 8.4259 9.2312 9.7817 9.9819 10.7887 k = 0.1250 0.3750-0.5000 band energies (ev): -44.7017 -21.3810 -21.3697 -21.3119 -5.9357 -5.2092 -5.1602 -4.4862 -4.4269 -4.3671 -4.3011 -4.0855 3.1845 6.4407 6.7600 6.9541 7.2882 8.5795 9.0929 9.4148 9.4972 10.6953 k = 0.1250 0.3750-0.3333 band energies (ev): -44.7023 -21.3708 -21.3616 -21.3127 -5.9551 -5.3018 -5.2238 -4.4905 -4.4519 -4.3846 -4.2731 -4.1504 3.3098 6.7090 6.8615 7.0270 7.5013 8.4782 9.2427 9.4225 9.9187 10.4759 k = 0.1250 0.3750-0.1667 band energies (ev): -44.7032 -21.3727 -21.3223 -21.3144 -6.0878 -5.3810 -5.3277 -4.5084 -4.4533 -4.4227 -4.3163 -4.2249 3.5461 6.7247 7.0941 7.5669 8.2099 8.6318 9.0719 9.8771 9.9249 10.5099 k = 0.1250 0.3750 0.0000 band energies (ev): -44.7036 -21.3737 -21.3152 -21.3025 -6.1942 -5.3809 -5.3567 -4.5076 -4.4747 -4.4380 -4.3885 -4.2156 3.6491 6.7215 7.5633 7.6678 8.2608 8.5651 9.5673 9.6887 9.9519 10.7306 k = 0.1250 0.3750 0.1667 band energies (ev): -44.7032 -21.3727 -21.3223 -21.3144 -6.0878 -5.3810 -5.3277 -4.5084 -4.4533 -4.4227 -4.3163 -4.2249 3.5461 6.7247 7.0941 7.5669 8.2099 8.6318 9.0719 9.8771 9.9249 10.5099 k = 0.1250 0.3750 0.3333 band energies (ev): -44.7023 -21.3708 -21.3616 -21.3127 -5.9551 -5.3018 -5.2238 -4.4905 -4.4519 -4.3846 -4.2731 -4.1504 3.3098 6.7090 6.8615 7.0270 7.5013 8.4782 9.2427 9.4225 9.9187 10.4759 k = 0.1250 0.3750 0.5000 band energies (ev): -44.7017 -21.3810 -21.3697 -21.3119 -5.9357 -5.2092 -5.1602 -4.4862 -4.4269 -4.3671 -4.3011 -4.0855 3.1845 6.4407 6.7600 6.9541 7.2882 8.5795 9.0929 9.4148 9.4972 10.6953 k = 0.3750 0.3750-0.5000 band energies (ev): -44.7010 -21.3785 -21.3674 -21.3672 -5.5581 -5.4573 -5.3867 -4.4063 -4.3881 -3.9987 -3.9888 -3.9453 4.0117 5.6335 5.7716 6.3480 6.8313 6.9482 7.1788 10.5511 10.6154 10.6924 k = 0.3750 0.3750-0.3333 band energies (ev): -44.7011 -21.3683 -21.3680 -21.3591 -5.6142 -5.4180 -5.3964 -4.4182 -4.4115 -4.1181 -4.0375 -4.0199 3.7644 5.8960 5.9504 6.6163 6.9610 7.1215 8.0005 10.4394 10.4468 10.5774 k = 0.3750 0.3750-0.1667 band energies (ev): -44.7020 -21.3701 -21.3698 -21.3200 -5.8810 -5.3028 -5.2442 -4.4765 -4.4328 -4.3223 -4.2400 -4.1108 3.3321 6.6426 6.6543 6.7627 7.1586 8.2814 9.2510 9.6215 9.7580 10.5659 k = 0.3750 0.3750 0.0000 band energies (ev): -44.7022 -21.3710 -21.3706 -21.3001 -6.0230 -5.2107 -5.1379 -4.4867 -4.4756 -4.4665 -4.3379 -4.1452 3.1509 6.6820 6.8041 7.9517 8.0865 8.1061 8.5101 9.2796 10.0820 10.5693 k = 0.3750 0.3750 0.1667 band energies (ev): -44.7020 -21.3701 -21.3698 -21.3200 -5.8810 -5.3028 -5.2442 -4.4765 -4.4328 -4.3223 -4.2400 -4.1108 3.3321 6.6426 6.6543 6.7627 7.1586 8.2814 9.2510 9.6215 9.7580 10.5659 k = 0.3750 0.3750 0.3333 band energies (ev): -44.7011 -21.3683 -21.3680 -21.3591 -5.6142 -5.4180 -5.3964 -4.4182 -4.4115 -4.1181 -4.0375 -4.0199 3.7644 5.8960 5.9504 6.6163 6.9610 7.1215 8.0005 10.4394 10.4468 10.5774 k = 0.3750 0.3750 0.5000 band energies (ev): -44.7010 -21.3785 -21.3674 -21.3672 -5.5581 -5.4573 -5.3867 -4.4063 -4.3881 -3.9987 -3.9888 -3.9453 4.0117 5.6335 5.7716 6.3480 6.8313 6.9482 7.1788 10.5511 10.6154 10.6924 ================================================== POLARIZATION CALCULATION !!! NOT THOROUGHLY TESTED !!! -------------------------------------------------- K-POINTS STRINGS USED IN CALCULATIONS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ G-vector along string (2 pi/a): 0.00000 0.00000 1.00000 Modulus of the vector (1/bohr): 0.85255 Number of k-points per string: 7 Number of different strings : 3 IONIC POLARIZATION ~~~~~~~~~~~~~~~~~~ Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2,+1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1) ============================================================================ Ion Species Charge Position Phase ---------------------------------------------------------------------------- 1 Pb 14.000 0.0000 0.0000 0.0100 0.14000 (mod 2) 2 Ti 12.000 0.5000 0.5000 0.5000 0.00000 (mod 2) 3 O 6.000 0.0000 0.5000 0.5000 -1.00000 (mod 2) 4 O 6.000 0.5000 0.5000 0.0000 0.00000 (mod 2) 5 O 6.000 0.5000 0.0000 0.5000 -1.00000 (mod 2) ---------------------------------------------------------------------------- IONIC PHASE: 0.14000 (mod 2) ============================================================================ ELECTRONIC POLARIZATION ~~~~~~~~~~~~~~~~~~~~~~~ Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2,+1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1) ============================================================================ Spin String Weight First k-point in string Phase ---------------------------------------------------------------------------- up 1 0.250000 0.1250 0.1250 -0.5000 -0.05389 (mod 1) up 2 0.500000 0.1250 0.3750 -0.5000 -0.04819 (mod 1) up 3 0.250000 0.3750 0.3750 -0.5000 -0.05007 (mod 1) ---------------------------------------------------------------------------- down 1 0.250000 0.1250 0.1250 -0.5000 -0.05389 (mod 1) down 2 0.500000 0.1250 0.3750 -0.5000 -0.04819 (mod 1) down 3 0.250000 0.3750 0.3750 -0.5000 -0.05007 (mod 1) ---------------------------------------------------------------------------- Average phase (up): -0.05008 (mod 1) Average phase (down): -0.05008 (mod 1) ELECTRONIC PHASE: -0.10017 (mod 2) ============================================================================ SUMMARY OF PHASES ~~~~~~~~~~~~~~~~~ Ionic Phase: 0.14000 (mod 2) Electronic Phase: -0.10017 (mod 2) TOTAL PHASE: 0.03983 (mod 2) VALUES OF POLARIZATION ~~~~~~~~~~~~~~~~~~~~~~ The calculation of phases done along the direction of vector 3 of the reciprocal lattice gives the following contribution to the polarization vector (in different units, and being Omega the volume of the unit cell): P = 0.2935522 (mod 14.7398000) (e/Omega).bohr P = 0.0007333 (mod 0.0368220) e/bohr^2 P = 0.0419258 (mod 2.1051744) C/m^2 The polarization direction is: ( 0.00000 , 0.00000 , 1.00000 ) ================================================== Writing output data file pwscf.save init_run : 1.48s CPU 1.49s WALL ( 1 calls) electrons : 4.78s CPU 4.80s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 4.12s CPU 4.14s WALL ( 1 calls) v_of_rho : 0.01s CPU 0.01s WALL ( 1 calls) newd : 0.13s CPU 0.13s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.05s CPU 0.05s WALL ( 57 calls) cegterg : 3.64s CPU 3.66s WALL ( 21 calls) Called by *egterg: h_psi : 1.96s CPU 1.95s WALL ( 279 calls) s_psi : 0.22s CPU 0.23s WALL ( 279 calls) g_psi : 0.10s CPU 0.13s WALL ( 237 calls) cdiaghg : 0.60s CPU 0.60s WALL ( 258 calls) Called by h_psi: add_vuspsi : 0.29s CPU 0.26s WALL ( 279 calls) General routines calbec : 0.28s CPU 0.29s WALL ( 315 calls) fft : 0.00s CPU 0.00s WALL ( 5 calls) ffts : 0.00s CPU 0.00s WALL ( 1 calls) fftw : 1.04s CPU 1.05s WALL ( 9538 calls) interpolate : 0.00s CPU 0.00s WALL ( 1 calls) davcio : 0.00s CPU 0.01s WALL ( 57 calls) PWSCF : 6.49s CPU 6.56s WALL This run was terminated on: 22:44:26 5Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav1-kauto.ref0000644000175000017500000001747612341373024017436 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:20 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav1-kauto.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 793 793 221 16879 16879 2517 bravais-lattice index = 1 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1000.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.2500000 0.2500000 0.2500000), wk = 2.0000000 Dense grid: 16879 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 2118, 1) NL pseudopotentials 0.00 Mb ( 2118, 0) Each V/rho on FFT grid 0.50 Mb ( 32768) Each G-vector array 0.13 Mb ( 16879) G-vector shells 0.00 Mb ( 213) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.13 Mb ( 2118, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 4.00 Mb ( 32768, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000288 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.288E-03 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 6.9 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.727E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22029946 Ry Harris-Foulkes estimate = -2.29051436 Ry estimated scf accuracy < 0.13331630 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.67E-03, avg # of iterations = 1.0 negative rho (up, down): 0.881E-05 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23134075 Ry Harris-Foulkes estimate = -2.23178524 Ry estimated scf accuracy < 0.00100420 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.02E-05, avg # of iterations = 2.0 negative rho (up, down): 0.116E-06 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23164493 Ry Harris-Foulkes estimate = -2.23164652 Ry estimated scf accuracy < 0.00001256 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.28E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.2500 0.2500 0.2500 ( 2118 PWs) bands (ev): -10.1383 ! total energy = -2.23164631 Ry Harris-Foulkes estimate = -2.23164635 Ry estimated scf accuracy < 0.00000052 Ry The total energy is the sum of the following terms: one-electron contribution = -2.83047918 Ry hartree contribution = 1.52876421 Ry xc contribution = -1.31446785 Ry ewald contribution = 0.38453652 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.03s CPU 0.03s WALL ( 1 calls) electrons : 0.08s CPU 0.08s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.01s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.02s CPU 0.03s WALL ( 5 calls) mix_rho : 0.02s CPU 0.01s WALL ( 4 calls) Called by c_bands: cegterg : 0.02s CPU 0.01s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.01s WALL ( 12 calls) g_psi : 0.00s CPU 0.00s WALL ( 7 calls) cdiaghg : 0.00s CPU 0.00s WALL ( 11 calls) Called by h_psi: General routines fft : 0.00s CPU 0.01s WALL ( 19 calls) fftw : 0.02s CPU 0.01s WALL ( 30 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.16s CPU 0.17s WALL This run was terminated on: 10:22:21 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav1.in0000644000175000017500000000041312341373024016126 0ustar mbamba &control calculation='scf' / &system ibrav = 1, celldm(1) =10.0, nat=2, ntyp=1, ecutwfc = 25.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 K_POINTS {gamma} espresso-5.1/PW/tests/lattice-ibrav11.ref0000644000175000017500000001761412341373024016370 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav11.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 993 993 245 25319 25319 3151 Tot 497 497 123 bravais-lattice index = 11 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 1500.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 1.500000 celldm(3)= 2.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.750000 1.000000 ) a(2) = ( -0.500000 0.750000 1.000000 ) a(3) = ( -0.500000 -0.750000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.500000 ) b(2) = ( -1.000000 0.666667 0.000000 ) b(3) = ( 0.000000 -0.666667 0.500000 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 8 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 12660 G-vectors FFT dimensions: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 1576, 1) NL pseudopotentials 0.00 Mb ( 1576, 0) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.10 Mb ( 12660) G-vector shells 0.01 Mb ( 1383) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 1576, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 11.12 Mb ( 91125, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001236 starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.124E-02 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.1 secs per-process dynamical memory: 17.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.313E-03 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.22028319 Ry Harris-Foulkes estimate = -2.28998067 Ry estimated scf accuracy < 0.13240981 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.62E-03, avg # of iterations = 1.0 negative rho (up, down): 0.453E-04 0.000E+00 total cpu time spent up to now is 0.1 secs total energy = -2.23150947 Ry Harris-Foulkes estimate = -2.23191956 Ry estimated scf accuracy < 0.00093119 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.66E-05, avg # of iterations = 2.0 negative rho (up, down): 0.231E-05 0.000E+00 total cpu time spent up to now is 0.2 secs total energy = -2.23189114 Ry Harris-Foulkes estimate = -2.23189150 Ry estimated scf accuracy < 0.00001714 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.57E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1576 PWs) bands (ev): -10.2547 ! total energy = -2.23189311 Ry Harris-Foulkes estimate = -2.23189279 Ry estimated scf accuracy < 0.00000046 Ry The total energy is the sum of the following terms: one-electron contribution = -3.10906629 Ry hartree contribution = 1.65708095 Ry xc contribution = -1.31115771 Ry ewald contribution = 0.53124995 Ry convergence has been achieved in 4 iterations Writing output data file pwscf.save init_run : 0.03s CPU 0.04s WALL ( 1 calls) electrons : 0.14s CPU 0.14s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.02s CPU 0.02s WALL ( 1 calls) Called by electrons: c_bands : 0.02s CPU 0.02s WALL ( 4 calls) sum_band : 0.02s CPU 0.02s WALL ( 4 calls) v_of_rho : 0.06s CPU 0.06s WALL ( 5 calls) mix_rho : 0.01s CPU 0.01s WALL ( 4 calls) Called by c_bands: regterg : 0.02s CPU 0.02s WALL ( 4 calls) Called by *egterg: h_psi : 0.02s CPU 0.02s WALL ( 11 calls) g_psi : 0.00s CPU 0.00s WALL ( 6 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 10 calls) Called by h_psi: General routines fft : 0.02s CPU 0.03s WALL ( 19 calls) fftw : 0.01s CPU 0.02s WALL ( 26 calls) davcio : 0.00s CPU 0.00s WALL ( 4 calls) PWSCF : 0.20s CPU 0.22s WALL This run was terminated on: 10:22:17 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/atom-sigmapbe.in0000755000175000017500000000077212341373024016057 0ustar mbamba &control calculation='scf', tstress=.true. / &system ibrav=1, celldm(1)=10.0, nat=1, ntyp=1, nbnd=6, ecutwfc=25.0, ecutrho=200.0, occupations='from_input', nspin=2 / &electrons mixing_beta=0.25, conv_thr=1.0e-8 / ATOMIC_SPECIES O 15.99994 O.pbe-rrkjus.UPF ATOMIC_POSITIONS alat O 0.000000000 0.000000000 0.000000000 K_POINTS {gamma} OCCUPATIONS 1.0 1.0000000000 1.0000000000 1.0000000000 0.0 0.0 1.0 0.3333333333 0.3333333333 0.3333333333 0.0 0.0 espresso-5.1/PW/tests/lattice-ibrav-5.ref0000644000175000017500000002005512341373024016361 0ustar mbamba Program PWSCF v.4.99 starts on 6Jan2012 at 10:22:22 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Reading input from /home/giannozz/trunk/espresso/tests/lattice-ibrav-5.in file H.pz-vbc.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 685 685 163 11935 11935 1459 Tot 343 343 82 bravais-lattice index = -5 lattice parameter (alat) = 10.0000 a.u. unit-cell volume = 707.1068 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 2.00 number of Kohn-Sham states= 1 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 celldm(1)= 10.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.500000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.000000 0.707107 0.707107 ) a(2) = ( 0.707107 0.000000 0.707107 ) a(3) = ( 0.707107 0.707107 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -0.707107 0.707107 0.707107 ) b(2) = ( 0.707107 -0.707107 0.707107 ) b(3) = ( 0.707107 0.707107 -0.707107 ) PseudoPot. # 1 for H read from file: /home/giannozz/trunk/espresso/pseudo/H.pz-vbc.UPF MD5 check sum: 90becb985b714f09656c73597998d266 Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 131 points, 0 beta functions with: atomic species valence mass pseudopotential H 1.00 1.00080 H ( 1.00) 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 H tau( 1) = ( 0.0000000 0.0000000 -0.0661404 ) 2 H tau( 2) = ( 0.0000000 0.0000000 0.0661404 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5968 G-vectors FFT dimensions: ( 32, 32, 32) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 730, 1) NL pseudopotentials 0.00 Mb ( 730, 0) Each V/rho on FFT grid 0.50 Mb ( 32768) Each G-vector array 0.05 Mb ( 5968) G-vector shells 0.00 Mb ( 170) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.02 Mb ( 730, 4) Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 0, 1) Arrays for rho mixing 4.00 Mb ( 32768, 8) Initial potential from superposition of free atoms starting charge 1.99995, renormalised to 2.00000 negative rho (up, down): 0.361E-05 0.000E+00 Starting wfc are 2 randomized atomic wfcs total cpu time spent up to now is 0.0 secs per-process dynamical memory: 11.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.0 secs total energy = -2.22474959 Ry Harris-Foulkes estimate = -2.29186000 Ry estimated scf accuracy < 0.12823788 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.41E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23642413 Ry Harris-Foulkes estimate = -2.23669484 Ry estimated scf accuracy < 0.00063929 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.20E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs total energy = -2.23698387 Ry Harris-Foulkes estimate = -2.23698362 Ry estimated scf accuracy < 0.00003339 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-06, avg # of iterations = 1.0 total cpu time spent up to now is 0.1 secs total energy = -2.23698656 Ry Harris-Foulkes estimate = -2.23698504 Ry estimated scf accuracy < 0.00000346 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-07, avg # of iterations = 2.0 total cpu time spent up to now is 0.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 730 PWs) bands (ev): -10.2487 ! total energy = -2.23698709 Ry Harris-Foulkes estimate = -2.23698736 Ry estimated scf accuracy < 0.00000045 Ry The total energy is the sum of the following terms: one-electron contribution = -2.51719803 Ry hartree contribution = 1.35407475 Ry xc contribution = -1.29928559 Ry ewald contribution = 0.22542178 Ry convergence has been achieved in 5 iterations Writing output data file pwscf.save init_run : 0.01s CPU 0.01s WALL ( 1 calls) electrons : 0.06s CPU 0.06s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 0.01s CPU 0.01s WALL ( 5 calls) sum_band : 0.01s CPU 0.01s WALL ( 5 calls) v_of_rho : 0.03s CPU 0.03s WALL ( 6 calls) mix_rho : 0.01s CPU 0.01s WALL ( 5 calls) Called by c_bands: regterg : 0.01s CPU 0.01s WALL ( 5 calls) Called by *egterg: h_psi : 0.01s CPU 0.01s WALL ( 14 calls) g_psi : 0.00s CPU 0.00s WALL ( 8 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 13 calls) Called by h_psi: General routines fft : 0.02s CPU 0.01s WALL ( 23 calls) fftw : 0.01s CPU 0.01s WALL ( 33 calls) davcio : 0.00s CPU 0.00s WALL ( 5 calls) PWSCF : 0.11s CPU 0.13s WALL This run was terminated on: 10:22:22 6Jan2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/tests/lattice-ibrav0-cell_parameters+celldm.in0000644000175000017500000000057712341373024022534 0ustar mbamba &control calculation='scf', / &system ibrav = 0 nat=2, ntyp=1, ecutwfc = 25.0 celldm(1)=10.0 / &electrons / ATOMIC_SPECIES H 1.0008 H.pz-vbc.UPF ATOMIC_POSITIONS {angstrom} H 0.00 0.00 -0.35 H 0.00 0.00 0.35 CELL_PARAMETERS alat 1.000000 .000000 .000000 .450000 1.430909 .000000 .400000 .083863 1.957796 K_POINTS {gamma} espresso-5.1/PW/src/0000755000175000017500000000000012341373041012415 5ustar mbambaespresso-5.1/PW/src/allocate_nlpot.f900000644000175000017500000001052412341373025015741 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine allocate_nlpot !----------------------------------------------------------------------- ! ! This routine computes the dimension of the Hamiltonian matrix and ! allocates arrays containing the non-local part of the pseudopotential ! ! It computes the following global quantities: ! ! ngk ! number of plane waves (for each k point) ! npwx ! maximum number of plane waves ! nqx ! number of points of the interpolation table ! nqxq ! as above, for q-function interpolation table ! ! USE ions_base, ONLY : nat, nsp, ityp USE cell_base, ONLY : tpiba2 USE cellmd, ONLY : cell_factor USE gvect, ONLY : ngm, gcutm, g USE klist, ONLY : xk, wk, ngk, nks, qnorm USE lsda_mod, ONLY : nspin USE ldaU, ONLY : Hubbard_lmax USE scf, ONLY : rho USE noncollin_module, ONLY : noncolin USE wvfct, ONLY : npwx, npw, igk, g2kin, ecutwfc USE us, ONLY : qrad, tab, tab_d2y, tab_at, dq, nqx, & nqxq, spline_ps USE uspp, ONLY : indv, nhtol, nhtolm, ijtoh, qq, dvan, deeq, & vkb, indv_ijkb0, okvan, nkb, nkbus, nhtoj, & becsum, qq_so,dvan_so, deeq_nc USE uspp_param, ONLY : upf, lmaxq, lmaxkb, nh, nhm, nbetam USE spin_orb, ONLY : lspinorb, fcoef USE control_flags, ONLY : program_name USE io_global, ONLY : stdout USE exx, ONLY : exx_n_plane_waves ! implicit none ! ! a few local variables ! integer :: nwfcm integer,allocatable :: ngkq(:) ! counters on atom type, atoms, beta functions ! ! calculate number of PWs for all kpoints ! allocate (ngk( nks )) ! call n_plane_waves (ecutwfc, tpiba2, nks, xk, g, ngm, npwx, ngk) ! ! more plane waves are required in the exx case (only with ultrasoft) call exx_n_plane_waves (ecutwfc, tpiba2, g, ngm, npwx) ! ! igk relates the index of PW k+G to index in the list of G vector ! allocate (igk( npwx ), g2kin ( npwx ) ) ! ! Note: computation of the number of beta functions for ! each atomic type and the maximum number of beta functions ! and the number of beta functions of the solid has been ! moved to init_run.f90 : pre_init() ! allocate (indv( nhm, nsp)) allocate (nhtol(nhm, nsp)) allocate (nhtolm(nhm, nsp)) allocate (nhtoj(nhm, nsp)) allocate (ijtoh(nhm, nhm, nsp)) allocate (indv_ijkb0(nat)) allocate (deeq( nhm, nhm, nat, nspin)) if (noncolin) then allocate (deeq_nc( nhm, nhm, nat, nspin)) endif allocate (qq( nhm, nhm, nsp)) if (lspinorb) then allocate (qq_so(nhm, nhm, 4, nsp)) allocate (dvan_so( nhm, nhm, nspin, nsp)) allocate (fcoef(nhm,nhm,2,2,nsp)) else allocate (dvan( nhm, nhm, nsp)) endif ! GIPAW needs a slighly larger q-space interpolation for quantities calculated ! at k+q_gipaw if (trim(program_name) == 'GIPAW') then if (cell_factor == 1.d0) cell_factor = 1.1d0 write(stdout,"(5X,'q-space interpolation up to ',F8.2,' Rydberg')") ecutwfc*cell_factor endif ! ! This routine is called also by the phonon code, in which case it should ! allocate an array that includes q+G vectors up to |q+G|_max <= |Gmax|+|q| ! nqxq = INT( ( (sqrt(gcutm) + qnorm) / dq + 4) * cell_factor ) lmaxq = 2*lmaxkb+1 ! if (lmaxq > 0) allocate (qrad( nqxq, nbetam*(nbetam+1)/2, lmaxq, nsp)) allocate (vkb( npwx, nkb)) allocate (becsum( nhm * (nhm + 1)/2, nat, nspin)) ! ! Calculate dimensions for array tab (including a possible factor ! coming from cell contraction during variable cell relaxation/MD) ! nqx = INT( (sqrt (ecutwfc) / dq + 4) * cell_factor ) allocate (tab( nqx , nbetam , nsp)) ! d2y is for the cubic splines if (spline_ps) allocate (tab_d2y( nqx , nbetam , nsp)) nwfcm = MAXVAL ( upf(1:nsp)%nwfc ) allocate (tab_at( nqx , nwfcm , nsp)) return end subroutine allocate_nlpot espresso-5.1/PW/src/vhpsi.f900000644000175000017500000001202212341373025014065 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine vhpsi (ldap, np, mps, psip, hpsi) !----------------------------------------------------------------------- ! ! This routine computes the Hubbard potential applied to the electronic ! structure of the current k-point. The result is added to hpsi ! USE kinds, ONLY : DP USE becmod, ONLY : bec_type, calbec, allocate_bec_type, deallocate_bec_type USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, is_Hubbard, nwfcU, wfcU, & offsetU USE lsda_mod, ONLY : current_spin USE scf, ONLY : v USE ions_base, ONLY : nat, ntyp => nsp, ityp USE control_flags, ONLY : gamma_only USE mp, ONLY: mp_sum ! implicit none ! integer, intent (in) :: ldap, np, mps complex(DP), intent(in) :: psip (ldap, mps) complex(DP), intent(inout) :: hpsi (ldap, mps) ! integer :: ibnd, na, nt, m1, m2, ldim REAL(DP), ALLOCATABLE :: rtemp(:,:) COMPLEX(DP), ALLOCATABLE :: ctemp(:,:) type (bec_type) :: proj CALL start_clock('vhpsi') ! ! Offset of atomic wavefunctions initialized in setup and stored in offsetU ! CALL allocate_bec_type ( nwfcU,mps, proj ) CALL calbec (np, wfcU, psip, proj) ! DO nt = 1, ntyp IF ( is_hubbard(nt) ) THEN ldim = 2*Hubbard_l(nt) + 1 IF (gamma_only) THEN ALLOCATE ( rtemp(ldim,mps) ) ELSE ALLOCATE ( ctemp(ldim,mps) ) END IF DO na = 1, nat IF ( nt == ityp (na) ) THEN IF (gamma_only) THEN CALL DGEMM ('n','n', ldim,mps,ldim, 1.0_dp, & v%ns(1,1,current_spin,na),2*Hubbard_lmax+1, & proj%r(offsetU(na)+1,1),nwfcU, 0.0_dp, rtemp, ldim) CALL DGEMM ('n','n', 2*np, mps, ldim, 1.0_dp, & wfcU(1,offsetU(na)+1), 2*ldap, rtemp, ldim, & 1.0_dp, hpsi, 2*ldap) ELSE !$omp parallel do default(shared), private(m1,ibnd,m2) DO m1 = 1,ldim DO ibnd = 1, mps ctemp(m1,ibnd) = (0.0_dp, 0.0_dp) DO m2 = 1,ldim ctemp(m1,ibnd) = ctemp(m1,ibnd) + & v%ns(m1,m2,current_spin,na) * & proj%k(offsetU(na)+m2, ibnd) ENDDO ENDDO ENDDO !$omp end parallel do CALL ZGEMM ('n','n', np, mps, ldim, (1.0_dp,0.0_dp), & wfcU(1,offsetU(na)+1), ldap, ctemp, ldim, & (1.0_dp,0.0_dp), hpsi, ldap) ENDIF ENDIF ENDDO IF (gamma_only) THEN DEALLOCATE ( rtemp ) ELSE DEALLOCATE ( ctemp ) ENDIF ENDIF ENDDO ! CALL deallocate_bec_type (proj) ! CALL stop_clock('vhpsi') RETURN END subroutine vhpsi subroutine vhpsi_nc (ldap, np, mps, psip, hpsi) !----------------------------------------------------------------------- ! ! Noncollinear version (A. Smogunov). ! USE kinds, ONLY : DP USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, is_Hubbard, nwfcU, & wfcU, offsetU USE scf, ONLY : v USE ions_base, ONLY : nat, ntyp => nsp, ityp USE noncollin_module, ONLY : npol USE wvfct, ONLY : npwx USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! integer, intent (in) :: ldap, np, mps complex(DP), intent(in) :: psip (ldap*npol, mps) complex(DP), intent(inout) :: hpsi (ldap*npol, mps) ! integer :: ibnd, na, nwfc, is1, is2, nt, m1, m2 complex(DP) :: temp, zdotc complex(DP), allocatable :: proj(:,:) CALL start_clock('vhpsi') ALLOCATE( proj(nwfcU, mps) ) !-- FIXME: to be replaced with ZGEMM ! calculate DO ibnd = 1, mps DO na = 1, nwfcU proj(na, ibnd) = zdotc (ldap*npol, wfcU(1, na), 1, psip(1, ibnd), 1) ENDDO ENDDO #ifdef __MPI CALL mp_sum ( proj, intra_bgrp_comm ) #endif !-- do ibnd = 1, mps do na = 1, nat nt = ityp (na) if ( is_hubbard(nt) ) then nwfc = 2 * Hubbard_l(nt) + 1 do is1 = 1, npol do m1 = 1, nwfc temp = 0.d0 do is2 = 1, npol do m2 = 1, nwfc temp = temp + v%ns_nc( m1, m2, npol*(is1-1)+is2, na) * & proj(offsetU(na)+(is2-1)*nwfc+m2, ibnd) enddo enddo call zaxpy (ldap*npol, temp, wfcU(1,offsetU(na)+(is1-1)*nwfc+m1),& 1, hpsi(1,ibnd),1) enddo enddo endif enddo enddo deallocate (proj) CALL stop_clock('vhpsi') return end subroutine vhpsi_nc espresso-5.1/PW/src/potinit.f900000644000175000017500000001761612341373025014440 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE potinit() !---------------------------------------------------------------------------- ! ! ... This routine initializes the self consistent potential in the array ! ... vr. There are three possible cases: ! ! ... a) the code is restarting from a broken run: ! ... read rho from data stored during the previous run ! ... b) the code is performing a non-scf calculation following a scf one: ! ... read rho from the file produced by the scf calculation ! ... c) the code starts a new calculation: ! ... calculate rho as a sum of atomic charges ! ! ... In all cases the scf potential is recalculated and saved in vr ! USE kinds, ONLY : DP USE constants, ONLY : pi USE io_global, ONLY : stdout USE cell_base, ONLY : alat, omega USE ions_base, ONLY : nat, ityp, ntyp => nsp USE basis, ONLY : starting_pot USE klist, ONLY : nelec USE lsda_mod, ONLY : lsda, nspin USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, gstart, nl, g, gg USE gvecs, ONLY : doublegrid USE control_flags, ONLY : lscf USE scf, ONLY : rho, rho_core, rhog_core, & vltot, v, vrs, kedtau USE funct, ONLY : dft_is_meta USE wavefunctions_module, ONLY : psic USE ener, ONLY : ehart, etxc, vtxc, epaw USE ldaU, ONLY : lda_plus_u, Hubbard_lmax, eth, & niter_with_fixed_ns USE noncollin_module, ONLY : noncolin, report USE io_files, ONLY : tmp_dir, prefix, input_drho USE spin_orb, ONLY : domag USE mp, ONLY : mp_sum USE mp_bands , ONLY : intra_bgrp_comm USE io_global, ONLY : ionode, ionode_id USE pw_restart, ONLY : pw_readfile USE io_rho_xml, ONLY : read_rho USE xml_io_base, ONLY : check_file_exst ! USE uspp, ONLY : becsum USE paw_variables, ONLY : okpaw, ddd_PAW USE paw_init, ONLY : PAW_atomic_becsum USE paw_onecenter, ONLY : PAW_potential ! IMPLICIT NONE ! REAL(DP) :: charge ! the starting charge REAL(DP) :: etotefield ! REAL(DP) :: fact INTEGER :: is, ios LOGICAL :: exst CHARACTER(LEN=256) :: filename ! CALL start_clock('potinit') ! ! check for both .dat and .xml extensions (compatibility reasons) ! filename = TRIM( tmp_dir ) // TRIM( prefix ) // '.save/charge-density.dat' exst = check_file_exst( TRIM(filename) ) ! IF ( .NOT. exst ) THEN ! filename = TRIM( tmp_dir ) // TRIM( prefix ) // '.save/charge-density.xml' exst = check_file_exst( TRIM(filename) ) ! ENDIF ! ! IF ( starting_pot == 'file' .AND. exst ) THEN ! ! ... Cases a) and b): the charge density is read from file ! ... this also reads rho%ns if lda+U and rho%bec if PAW ! CALL pw_readfile( 'rho', ios ) ! IF ( ios /= 0 ) THEN ! WRITE( stdout, '(/5X,"Error reading from file :"/5X,A,/)' ) & TRIM( filename ) ! CALL errore ( 'potinit' , 'reading starting density', ios) ! ELSE IF ( lscf ) THEN ! WRITE( stdout, '(/5X, & & "The initial density is read from file :"/5X,A,/)' ) & TRIM( filename ) ! ELSE ! WRITE( stdout, '(/5X, & & "The potential is recalculated from file :"/5X,A,/)' ) & TRIM( filename ) ! END IF ! ELSE ! ! ... Case c): the potential is built from a superposition ! ... of atomic charges contained in the array rho_at ! IF ( starting_pot == 'file' .AND. .NOT. exst ) & WRITE( stdout, '(5X,"Cannot read rho : file not found")' ) ! WRITE( UNIT = stdout, & FMT = '(/5X,"Initial potential from superposition of free atoms")' ) ! CALL atomic_rho( rho%of_r, nspin ) ! ... in the lda+U case set the initial value of ns IF (lda_plus_u) THEN ! IF (noncolin) THEN CALL init_ns_nc() ELSE CALL init_ns() ENDIF ! ENDIF ! ... in the paw case uses atomic becsum IF ( okpaw ) CALL PAW_atomic_becsum() ! IF ( input_drho /= ' ' ) THEN ! IF ( nspin > 1 ) CALL errore & ( 'potinit', 'spin polarization not allowed in drho', 1 ) ! CALL read_rho ( v%of_r, 1, input_drho ) ! WRITE( UNIT = stdout, & FMT = '(/5X,"a scf correction to at. rho is read from",A)' ) & TRIM( input_drho ) ! rho%of_r = rho%of_r + v%of_r ! END IF ! END IF ! ! ... check the integral of the starting charge ! IF ( nspin == 2 ) THEN ! charge = SUM ( rho%of_r(:,1:nspin) )*omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! ELSE ! charge = SUM ( rho%of_r(:,1) )*omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! END IF ! CALL mp_sum( charge , intra_bgrp_comm ) ! IF ( lscf .AND. ABS( charge - nelec ) > ( 1.D-7 * charge ) ) THEN ! IF ( charge > 1.D-8 .AND. nat > 0 ) THEN WRITE( stdout, '(/,5X,"starting charge ",F10.5, & & ", renormalised to ",F10.5)') charge, nelec rho%of_r = rho%of_r / charge * nelec ELSE WRITE( stdout, '(/,5X,"Starting from uniform charge")') IF ( nspin == 2 ) THEN rho%of_r(:,1:nspin) = nelec / omega / nspin ELSE rho%of_r(:,1) = nelec / omega END IF ENDIF ! ELSE IF ( .NOT. lscf .AND. ABS( charge - nelec ) > (1.D-3 * charge ) ) THEN ! CALL errore( 'potinit', 'starting and expected charges differ', 1 ) ! END IF ! ! ... bring starting rho to G-space ! DO is = 1, nspin ! psic(:) = rho%of_r(:,is) ! CALL fwfft ('Dense', psic, dfftp) ! rho%of_g(:,is) = psic(nl(:)) ! END DO ! if ( dft_is_meta()) then ! ... define a starting (TF) guess for rho%kin_r and rho%kin_g fact = (3.d0/5.d0)*(3.d0*pi*pi)**(2.0/3.0) ! ! ... for obscure reasons this starting guess doesn't seem much better ! ... (and sometimes it is much worse) than starting from zero ! !!! fact = 0.0_dp DO is = 1, nspin rho%kin_r(:,is) = fact * abs(rho%of_r(:,is)*nspin)**(5.0/3.0)/nspin psic(:) = rho%kin_r(:,is) CALL fwfft ('Dense', psic, dfftp) rho%kin_g(:,is) = psic(nl(:)) END DO ! end if ! ! ... compute the potential and store it in v ! CALL v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v ) IF (okpaw) CALL PAW_potential(rho%bec, ddd_PAW, epaw) ! ! ... define the total local potential (external+scf) ! CALL set_vrs( vrs, vltot, v%of_r, kedtau, v%kin_r, dfftp%nnr, nspin, doublegrid ) ! ! ... write on output the parameters used in the lda+U calculation ! IF ( lda_plus_u ) THEN ! WRITE( stdout, '(5X,"Number of +U iterations with fixed ns =",I3)') & niter_with_fixed_ns WRITE( stdout, '(5X,"Starting occupations:")') ! IF (noncolin) THEN CALL write_ns_nc() ELSE CALL write_ns() ENDIF ! END IF ! IF ( report /= 0 .AND. & noncolin .AND. domag .AND. lscf ) CALL report_mag() ! CALL stop_clock('potinit') ! RETURN ! END SUBROUTINE potinit espresso-5.1/PW/src/plugin_print_energies.f900000644000175000017500000000164612341373025017341 0ustar mbamba! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE plugin_print_energies() !---------------------------------------------------------------------------- ! ! This routine is used for printing energy contrib from plugins ! DO NOT REMOVE THE TAGS ! ***ADDSON_NAME KIND_OF_PATCH*** ! USE io_global, ONLY : stdout, ionode USE kinds, ONLY : DP USE io_files, ONLY : tmp_dir ! USE plugin_flags ! ! ! ***Environ MODULES BEGIN*** ! ***Environ MODULES END*** ! IMPLICIT NONE ! ! ***Environ VARIABLES BEGIN*** ! ***Environ VARIABLES END*** ! ! ***Environ CALLS BEGIN*** ! ***Environ CALLS END*** ! END SUBROUTINE plugin_print_energies espresso-5.1/PW/src/gen_at_dy.f900000644000175000017500000001040612341373025014671 0ustar mbamba! ! Copyright (C) 2002-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine gen_at_dy ( ik, natw, is_hubbard, hubbard_l, u, dwfcat ) !---------------------------------------------------------------------- ! ! This routines calculates the atomic wfc generated by the derivative ! (with respect to the q vector) of the spherical harmonic. This quantity ! is needed in computing the the internal stress tensor. ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : tpi, fpi USE atom, ONLY : msh USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : omega, at, bg, tpiba USE klist, ONLY : xk USE gvect, ONLY : mill, eigts1, eigts2, eigts3, g USE wvfct, ONLY : npw, npwx, igk USE us, ONLY : tab_at, dq USE uspp_param, ONLY : upf ! implicit none ! ! I/O variables ! integer, intent(in) :: ik, natw, hubbard_l(ntyp) logical, intent(in) :: is_hubbard(ntyp) real (DP), intent(in) :: u(3) complex (DP) :: dwfcat(npwx,natw) ! ! local variables ! integer :: ig, na, nt, nb, l, lm, m, iig, ipol, iatw, i0, i1, i2, i3, & lmax_wfc, nwfcm real (DP) :: arg, px, ux, vx, wx complex (DP) :: phase, pref real (DP), allocatable :: q(:), gk(:,:), dylm(:,:), dylm_u(:,:), & chiq(:,:,:) complex (DP), allocatable :: sk(:) nwfcm = MAXVAL ( upf(1:ntyp)%nwfc ) allocate ( q(npw), gk(3,npw), chiq(npwx,nwfcm,ntyp) ) dwfcat(:,:) = (0.d0,0.d0) do ig = 1,npw gk (1, ig) = xk (1, ik) + g (1, igk (ig) ) gk (2, ig) = xk (2, ik) + g (2, igk (ig) ) gk (3, ig) = xk (3, ik) + g (3, igk (ig) ) q (ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 end do lmax_wfc = MAXVAL ( hubbard_l(:) ) allocate ( dylm_u(npw,(lmax_wfc+1)**2) ) allocate ( dylm(npw,(lmax_wfc+1)**2) ) dylm_u(:,:) = 0.d0 do ipol=1,3 call dylmr2 ((lmax_wfc+1)**2, npw, gk, q, dylm, ipol) call daxpy(npw*(lmax_wfc+1)**2,u(ipol),dylm,1,dylm_u,1) end do deallocate (dylm) q(:) = sqrt ( q(:) ) * tpiba ! ! here we compute the radial fourier transform of the chi functions ! do nt = 1,ntyp do nb = 1,upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then do ig = 1, npw px = q (ig) / dq - int (q (ig) / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = q (ig) / dq + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 chiq(ig,nb,nt) = tab_at (i0, nb, nt) * ux * vx * wx / 6.d0 + & tab_at (i1, nb, nt) * px * vx * wx / 2.d0 - & tab_at (i2, nb, nt) * px * ux * wx / 2.d0 + & tab_at (i3, nb, nt) * px * ux * vx / 6.d0 enddo endif enddo enddo allocate ( sk(npw) ) iatw=0 do na = 1,nat nt = ityp(na) if ( .not. is_hubbard(nt) ) cycle arg=(xk(1,ik)*tau(1,na)+xk(2,ik)*tau(2,na)+xk(3,ik)*tau(3,na))*tpi phase=CMPLX(cos(arg),-sin(arg),kind=DP) do ig =1,npw iig = igk(ig) sk(ig) = eigts1(mill(1,iig),na) * & eigts2(mill(2,iig),na) * & eigts3(mill(3,iig),na) * phase end do do nb = 1,upf(nt)%nwfc l = upf(nt)%lchi(nb) if ( upf(nt)%oc(nb) >= 0.d0 .and. l == hubbard_l(nt) ) then pref = (0.d0,1.d0)**l do m = 1,2*l+1 lm = l*l+m iatw = iatw+1 do ig=1,npw dwfcat(ig,iatw) = chiq(ig,nb,nt) * sk(ig) * & dylm_u(ig,lm) * pref / tpiba end do end do end if enddo enddo if (iatw.ne.natw) then WRITE( stdout,*) 'iatw =',iatw,'natw =',natw call errore('gen_at_dy','unexpected error',1) end if deallocate (sk) deallocate (dylm_u) deallocate ( q, gk, chiq ) return end subroutine gen_at_dy espresso-5.1/PW/src/clean_pw.f900000644000175000017500000001602312341373025014531 0ustar mbamba ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- SUBROUTINE clean_pw( lflag ) !---------------------------------------------------------------------- ! ! ... This routine deallocates dynamically allocated arrays ! ... if lflag=.TRUE. all arrays are deallocated (end of calculation) ! ... if lflag=.FALSE. ion-related variables and arrays allocated ! ... at the very beginning of the calculation (routines iosys, read_file, ! ... setup, read_pseudo) are not deallocated; all others arrayes are. ! ... This is used when a new calculation has to be performed (e.g. in neb, ! ... phonon, vc-relax). Beware: the new calculation should not call any ! ... of the routines mentioned above ! USE basis, ONLY : swfcatom USE cellmd, ONLY : lmovecell USE ions_base, ONLY : deallocate_ions_base USE gvect, ONLY : g, gg, gl, nl, nlm, igtongl, mill, & eigts1, eigts2, eigts3 USE gvecs, ONLY : nls, nlsm USE fixed_occ, ONLY : f_inp USE ktetra, ONLY : tetra USE klist, ONLY : ngk USE gvect, ONLY : ig_l2g USE vlocal, ONLY : strf, vloc USE wvfct, ONLY : igk, g2kin, et, wg, btype USE force_mod, ONLY : force USE scf, ONLY : rho, v, vltot, rho_core, rhog_core, & vrs, kedtau, destroy_scf_type, vnew USE symm_base, ONLY : irt USE symme, ONLY : sym_rho_deallocate USE wavefunctions_module, ONLY : evc, psic, psic_nc USE us, ONLY : qrad, tab, tab_at, tab_d2y, spline_ps USE uspp, ONLY : deallocate_uspp USE uspp_param, ONLY : upf USE ldaU, ONLY : deallocate_ldaU USE extfield, ONLY : forcefield USE fft_base, ONLY : dfftp, dffts USE stick_base, ONLY : sticks_deallocate USE fft_types, ONLY : fft_dlay_deallocate USE spin_orb, ONLY : lspinorb, fcoef USE noncollin_module, ONLY : deallocate_noncol USE dynamics_module, ONLY : deallocate_dyn_vars USE paw_init, ONLY : deallocate_paw_internals USE atom, ONLY : msh, rgrid USE radial_grids, ONLY : deallocate_radial_grid USE wannier_new, ONLY : use_wannier ! USE london_module, ONLY : dealloca_london USE xdm_module, ONLY : cleanup_xdm USE constraints_module, ONLY : deallocate_constraint USE realus, ONLY : deallocatenewdreal USE pseudo_types, ONLY : deallocate_pseudo_upf USE bp, ONLY : deallocate_bp_efield USE exx, ONLY : deallocate_exx ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: lflag ! INTEGER :: nt ! IF ( lflag ) THEN ! ! ... arrays allocated at the very beginning of the calculation ! IF( ALLOCATED( upf ) ) THEN DO nt = 1, SIZE( upf ) CALL deallocate_pseudo_upf( upf( nt ) ) END DO DEALLOCATE( upf ) END IF IF (ALLOCATED(msh)) DEALLOCATE (msh) CALL deallocate_radial_grid(rgrid) ! CALL deallocate_ions_base() ! IF ( ALLOCATED( force ) ) DEALLOCATE( force ) IF ( ALLOCATED( forcefield ) ) DEALLOCATE( forcefield ) IF ( ALLOCATED( irt ) ) DEALLOCATE( irt ) ! CALL deallocate_bp_efield() CALL dealloca_london() CALL cleanup_xdm() CALL deallocate_constraint() ! END IF ! CALL deallocate_ldaU ( lflag ) ! IF ( ALLOCATED( f_inp ) ) DEALLOCATE( f_inp ) IF ( ALLOCATED( tetra ) ) DEALLOCATE( tetra ) ! ! ... arrays allocated in ggen.f90 ! IF ( ALLOCATED( ig_l2g ) ) DEALLOCATE( ig_l2g ) IF ( .NOT. lmovecell ) THEN IF ( ASSOCIATED( gl ) ) DEALLOCATE ( gl ) END IF ! CALL sym_rho_deallocate ( ) ! ! ... arrays allocated in allocate_fft.f90 ( and never deallocated ) ! IF ( ALLOCATED( g ) ) DEALLOCATE( g ) IF ( ALLOCATED( gg ) ) DEALLOCATE( gg ) IF ( ALLOCATED( nl ) ) DEALLOCATE( nl ) IF ( ALLOCATED( nlm ) ) DEALLOCATE( nlm ) IF ( ALLOCATED( igtongl ) ) DEALLOCATE( igtongl ) IF ( ALLOCATED( mill ) ) DEALLOCATE( mill ) call destroy_scf_type(rho) call destroy_scf_type(v) call destroy_scf_type(vnew) IF ( ALLOCATED( kedtau ) ) DEALLOCATE( kedtau ) IF ( ALLOCATED( vltot ) ) DEALLOCATE( vltot ) IF ( ALLOCATED( rho_core ) ) DEALLOCATE( rho_core ) IF ( ALLOCATED( rhog_core ) ) DEALLOCATE( rhog_core ) IF ( ALLOCATED( psic ) ) DEALLOCATE( psic ) IF ( ALLOCATED( psic_nc ) ) DEALLOCATE( psic_nc ) IF ( ALLOCATED( vrs ) ) DEALLOCATE( vrs ) if (spline_ps) then IF ( ALLOCATED( tab_d2y) ) DEALLOCATE( tab_d2y ) endif IF ( ALLOCATED( nls ) ) DEALLOCATE( nls ) IF ( ALLOCATED( nlsm ) ) DEALLOCATE( nlsm ) ! ! ... arrays allocated in allocate_locpot.f90 ( and never deallocated ) ! IF ( ALLOCATED( vloc ) ) DEALLOCATE( vloc ) IF ( ALLOCATED( strf ) ) DEALLOCATE( strf ) IF ( ALLOCATED( eigts1 ) ) DEALLOCATE( eigts1 ) IF ( ALLOCATED( eigts2 ) ) DEALLOCATE( eigts2 ) IF ( ALLOCATED( eigts3 ) ) DEALLOCATE( eigts3 ) ! ! ... arrays allocated in allocate_nlpot.f90 ( and never deallocated ) ! IF ( ALLOCATED( ngk ) ) DEALLOCATE( ngk ) IF ( ALLOCATED( igk ) ) DEALLOCATE( igk ) IF ( ALLOCATED( g2kin ) ) DEALLOCATE( g2kin ) IF ( ALLOCATED( qrad ) ) DEALLOCATE( qrad ) IF ( ALLOCATED( tab ) ) DEALLOCATE( tab ) IF ( ALLOCATED( tab_at ) ) DEALLOCATE( tab_at ) IF ( lspinorb ) THEN IF ( ALLOCATED( fcoef ) ) DEALLOCATE( fcoef ) END IF ! CALL deallocate_uspp() CALL deallocate_noncol() ! ! ... arrays allocated in init_run.f90 ( and never deallocated ) ! IF ( ALLOCATED( et ) ) DEALLOCATE( et ) IF ( ALLOCATED( wg ) ) DEALLOCATE( wg ) IF ( ALLOCATED( btype ) ) DEALLOCATE( btype ) ! ! ... arrays allocated in allocate_wfc.f90 ( and never deallocated ) ! IF ( ALLOCATED( evc ) ) DEALLOCATE( evc ) IF ( ALLOCATED( swfcatom ) ) DEALLOCATE( swfcatom ) ! ! ... fft structures allocated in data_structure.f90 ! CALL fft_dlay_deallocate( dfftp ) CALL fft_dlay_deallocate( dffts ) ! ! ... stick-owner matrix allocated in sticks_base ! CALL sticks_deallocate() ! ! ... arrays allocated for dynamics ! CALL deallocate_dyn_vars() ! ! ... additional arrays for PAW ! CALL deallocate_paw_internals() ! ! ... arrays for real-space algorithm ! CALL deallocatenewdreal() ! ! for Wannier_ac if (use_wannier) CALL wannier_clean() ! CALL deallocate_exx ( ) ! CALL plugin_clean( lflag ) ! RETURN ! END SUBROUTINE clean_pw espresso-5.1/PW/src/spinor.f900000644000175000017500000000260612341373025014255 0ustar mbamba! ! Copyright (C) 2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! function spinor(l,j,m,spin) ! This function calculates the numerical coefficient of a spinor ! with orbital angular momentum l, total angular momentum j, ! projection along z of the total angular momentum m+-1/2. Spin selects ! the up (spin=1) or down (spin=2) coefficient. use kinds implicit none real(DP) :: spinor integer :: l, & ! orbital angular momentum m, & ! projection of the total angular momentum+-1/2 spin ! 1 or 2 select the component real(DP) :: j ! total angular momentum real(DP) :: denom ! denominator if (spin.ne.1.and.spin.ne.2) call errore('spinor','spin direction unknown',1) if (m.lt.-l-1.or.m.gt.l) call errore('spinor','m not allowed',1) denom=1.d0/(2.d0*l+1.d0) if (abs(j-l-0.5d0).lt.1.d-8) then if (spin.eq.1) spinor= sqrt((l+m+1.d0)*denom) if (spin.eq.2) spinor= sqrt((l-m)*denom) elseif (abs(j-l+0.5d0).lt.1.d-8) then if (m.lt.-l+1) then spinor=0.d0 else if (spin.eq.1) spinor= sqrt((l-m+1.d0)*denom) if (spin.eq.2) spinor= -sqrt((l+m)*denom) endif else call errore('spinor','j and l not compatible',1) endif return end function spinor espresso-5.1/PW/src/deriv_drhoc.f900000644000175000017500000000361212341373025015231 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine deriv_drhoc (ngl, gl, omega, tpiba2, mesh, r, rab, rhoc, drhocg) !----------------------------------------------------------------------- USE kinds USE constants, ONLY : pi, fpi implicit none ! ! first the dummy variables ! integer :: ngl, mesh ! input: the number of g shell ! input: the number of radial mesh points real(DP), intent(in) :: gl (ngl), r (mesh), rab (mesh), rhoc (mesh), & omega, tpiba2 real(DP), intent(out) :: drhocg (ngl) ! input: the number of G shells ! input: the radial mesh ! input: the derivative of the radial mesh ! input: the radial core charge ! input: the volume of the unit cell ! input: 2 times pi / alat ! output: fourier transform of d Rho_c/dG ! ! here the local variables ! real(DP) :: gx, rhocg1 ! the modulus of g for a given shell ! the fourier transform real(DP), allocatable :: aux (:) ! auxiliary memory for integration integer :: ir, igl, igl0 ! counter on radial mesh points ! counter on g shells ! lower limit for loop on ngl ! ! G=0 term ! if (gl (1) < 1.0d-8) then drhocg (1) = 0.0d0 igl0 = 2 else igl0 = 1 endif ! ! G <> 0 term ! allocate (aux( mesh)) do igl = igl0, ngl gx = sqrt (gl (igl) * tpiba2) do ir = 1, mesh aux (ir) = r (ir) * rhoc (ir) * (r (ir) * cos (gx * r (ir) ) & / gx - sin (gx * r (ir) ) / gx**2) enddo call simpson (mesh, aux, rab, rhocg1) drhocg (igl) = fpi / omega * rhocg1 enddo deallocate (aux) return end subroutine deriv_drhoc espresso-5.1/PW/src/tweights.f900000644000175000017500000001736412341373025014610 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------- subroutine tweights (nks, nspin, nbnd, nelec, ntetra, tetra, et, & ef, wg, is, isk ) !-------------------------------------------------------------------- ! ! ... calculates Ef and weights with the tetrahedron method (P.E.Bloechl) ! ... Wrapper routine: computes first Ef, then the weights ! USE kinds implicit none ! I/O variables integer, intent(in) :: nks, nspin, is, isk(nks), nbnd, ntetra, & tetra (4, ntetra) real(DP), intent(in) :: et (nbnd, nks), nelec ! wg must be (inout) and not (out) because if is/=0 only terms for ! spin=is are initialized; the remaining terms should be kept, not lost real(DP), intent(inout) :: wg (nbnd, nks) real(DP), intent(out) :: ef ! local variables real(DP), external :: efermit ! Calculate the Fermi energy ef ef = efermit (et, nbnd, nks, nelec, nspin, ntetra, tetra, is, isk) ! ! if efermit cannot find a sensible value for Ef it returns Ef=1d10 ! if (abs(ef) > 1.0d8) call errore ('tweights', 'bad Fermi energy ',1) ! CALL tweights_only (nks, nspin, is, isk, nbnd, nelec, ntetra, & tetra, et, ef, wg) ! return end subroutine tweights !-------------------------------------------------------------------- subroutine tweights_only (nks, nspin, is, isk, nbnd, nelec, ntetra, & tetra, et, ef, wg) !-------------------------------------------------------------------- ! ! ... calculates weights with the tetrahedron method (P.E.Bloechl) ! ... Fermi energy has to be calculated in previous step ! ... Generalization to noncollinear case courtesy of Yurii Timrov USE kinds implicit none ! I/O variables integer, intent(in) :: nks, nspin, is, isk(nks), nbnd, ntetra, & tetra (4, ntetra) real(DP), intent(in) :: et (nbnd, nks), nelec, ef ! wg must be (inout) and not (out) because if is/=0 only terms for ! spin=is are initialized; the remaining terms should be kept, not lost real(DP), intent(inout) :: wg (nbnd, nks) ! local variables real(DP) :: e1, e2, e3, e4, c1, c2, c3, c4, etetra (4), dosef integer :: ik, ibnd, nt, nk, ns, i, kp1, kp2, kp3, kp4, itetra (4) integer :: nspin_lsda ! do ik = 1, nks if (is /= 0) then if (isk(ik) .ne. is) cycle end if do ibnd = 1, nbnd wg (ibnd, ik) = 0.d0 enddo enddo IF ( nspin == 2 ) THEN nspin_lsda = 2 ELSE nspin_lsda = 1 END IF do ns = 1, nspin_lsda if (is /= 0) then if (ns .ne. is) cycle end if ! ! nk is used to select k-points with up (ns=1) or down (ns=2) spin ! if (ns.eq.1) then nk = 0 else nk = nks / 2 endif do nt = 1, ntetra do ibnd = 1, nbnd ! ! etetra are the energies at the vertexes of the nt-th tetrahedron ! do i = 1, 4 etetra (i) = et (ibnd, tetra (i, nt) + nk) enddo itetra (1) = 0 call hpsort (4, etetra, itetra) ! ! ...sort in ascending order: e1 < e2 < e3 < e4 ! e1 = etetra (1) e2 = etetra (2) e3 = etetra (3) e4 = etetra (4) ! ! kp1-kp4 are the irreducible k-points corresponding to e1-e4 ! kp1 = tetra (itetra (1), nt) + nk kp2 = tetra (itetra (2), nt) + nk kp3 = tetra (itetra (3), nt) + nk kp4 = tetra (itetra (4), nt) + nk ! ! calculate weights wg ! if (ef.ge.e4) then wg (ibnd, kp1) = wg (ibnd, kp1) + 0.25d0 / ntetra wg (ibnd, kp2) = wg (ibnd, kp2) + 0.25d0 / ntetra wg (ibnd, kp3) = wg (ibnd, kp3) + 0.25d0 / ntetra wg (ibnd, kp4) = wg (ibnd, kp4) + 0.25d0 / ntetra elseif (ef.lt.e4.and.ef.ge.e3) then c4 = 0.25d0 / ntetra * (e4 - ef) **3 / (e4 - e1) / (e4 - e2) & / (e4 - e3) dosef = 3.d0 / ntetra * (e4 - ef) **2 / (e4 - e1) / (e4 - e2) & / (e4 - e3) wg (ibnd, kp1) = wg (ibnd, kp1) + 0.25d0 / ntetra - c4 * & (e4 - ef) / (e4 - e1) + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et & (ibnd, kp1) ) / 40.d0 wg (ibnd, kp2) = wg (ibnd, kp2) + 0.25d0 / ntetra - c4 * & (e4 - ef) / (e4 - e2) + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et & (ibnd, kp2) ) / 40.d0 wg (ibnd, kp3) = wg (ibnd, kp3) + 0.25d0 / ntetra - c4 * & (e4 - ef) / (e4 - e3) + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et & (ibnd, kp3) ) / 40.d0 wg (ibnd, kp4) = wg (ibnd, kp4) + 0.25d0 / ntetra - c4 * & (4.d0 - (e4 - ef) * (1.d0 / (e4 - e1) + 1.d0 / (e4 - e2) & + 1.d0 / (e4 - e3) ) ) + dosef * (e1 + e2 + e3 + e4 - 4.d0 * & et (ibnd, kp4) ) / 40.d0 elseif (ef.lt.e3.and.ef.ge.e2) then c1 = 0.25d0 / ntetra * (ef - e1) **2 / (e4 - e1) / (e3 - e1) c2 = 0.25d0 / ntetra * (ef - e1) * (ef - e2) * (e3 - ef) & / (e4 - e1) / (e3 - e2) / (e3 - e1) c3 = 0.25d0 / ntetra * (ef - e2) **2 * (e4 - ef) / (e4 - e2) & / (e3 - e2) / (e4 - e1) dosef = 1.d0 / ntetra / (e3 - e1) / (e4 - e1) * (3.d0 * & (e2 - e1) + 6.d0 * (ef - e2) - 3.d0 * (e3 - e1 + e4 - e2) & * (ef - e2) **2 / (e3 - e2) / (e4 - e2) ) wg (ibnd, kp1) = wg (ibnd, kp1) + c1 + (c1 + c2) * (e3 - ef) & / (e3 - e1) + (c1 + c2 + c3) * (e4 - ef) / (e4 - e1) + dosef * & (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp1) ) / 40.d0 wg (ibnd, kp2) = wg (ibnd, kp2) + c1 + c2 + c3 + (c2 + c3) & * (e3 - ef) / (e3 - e2) + c3 * (e4 - ef) / (e4 - e2) + dosef * & (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp2) ) / 40.d0 wg (ibnd, kp3) = wg (ibnd, kp3) + (c1 + c2) * (ef - e1) & / (e3 - e1) + (c2 + c3) * (ef - e2) / (e3 - e2) + dosef * & (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp3) ) / 40.d0 wg (ibnd, kp4) = wg (ibnd, kp4) + (c1 + c2 + c3) * (ef - e1) & / (e4 - e1) + c3 * (ef - e2) / (e4 - e2) + dosef * (e1 + e2 + & e3 + e4 - 4.d0 * et (ibnd, kp4) ) / 40.d0 elseif (ef.lt.e2.and.ef.ge.e1) then c4 = 0.25d0 / ntetra * (ef - e1) **3 / (e2 - e1) / (e3 - e1) & / (e4 - e1) dosef = 3.d0 / ntetra * (ef - e1) **2 / (e2 - e1) / (e3 - e1) & / (e4 - e1) wg (ibnd, kp1) = wg (ibnd, kp1) + c4 * (4.d0 - (ef - e1) & * (1.d0 / (e2 - e1) + 1.d0 / (e3 - e1) + 1.d0 / (e4 - e1) ) ) & + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp1) ) / 40.d0 wg (ibnd, kp2) = wg (ibnd, kp2) + c4 * (ef - e1) / (e2 - e1) & + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp2) ) / 40.d0 wg (ibnd, kp3) = wg (ibnd, kp3) + c4 * (ef - e1) / (e3 - e1) & + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp3) ) / 40.d0 wg (ibnd, kp4) = wg (ibnd, kp4) + c4 * (ef - e1) / (e4 - e1) & + dosef * (e1 + e2 + e3 + e4 - 4.d0 * et (ibnd, kp4) ) / 40.d0 endif enddo enddo enddo ! add correct spin normalization (2 for LDA, 1 for all other cases) IF ( nspin == 1 ) wg (:,1:nks) = wg (:,1:nks) * 2.d0 ! return end subroutine tweights_only espresso-5.1/PW/src/acfdt_in_pw.f900000644000175000017500000000075412341373025015222 0ustar mbamba! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! !!!! ACFDT_WILL BE UPDATE_IN_PW !!!! ! MODULE acfdt_ener ! USE kinds, ONLY : DP ! REAL(DP) :: acfdt_eband ! END MODULE acfdt_ener espresso-5.1/PW/src/g_psi.f900000644000175000017500000000366512341373025014052 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define TEST_NEW_PRECONDITIONING ! !----------------------------------------------------------------------- subroutine g_psi (lda, n, m, npol, psi, e) !----------------------------------------------------------------------- ! ! This routine computes an estimate of the inverse Hamiltonian ! and applies it to m wavefunctions ! USE kinds USE g_psi_mod implicit none integer :: lda, n, m, npol, ipol ! input: the leading dimension of psi ! input: the real dimension of psi ! input: the number of bands ! input: the number of coordinates of psi ! local variable: counter of coordinates of psi real(DP) :: e (m) ! input: the eigenvectors complex(DP) :: psi (lda, npol, m) ! inp/out: the psi vector ! ! Local variables ! real(DP), parameter :: eps = 1.0d-4 ! a small number real(DP) :: x, scala, denm integer :: k, i ! counter on psi functions ! counter on G vectors ! call start_clock ('g_psi') ! #ifdef TEST_NEW_PRECONDITIONING scala = 1.d0 do ipol=1,npol do k = 1, m do i = 1, n x = (h_diag(i,ipol) - e(k)*s_diag(i,ipol))*scala denm = 0.5_dp*(1.d0+x+sqrt(1.d0+(x-1)*(x-1.d0)))/scala psi (i, ipol, k) = psi (i, ipol, k) / denm enddo enddo enddo #else do ipol=1,npol do k = 1, m do i = 1, n denm = h_diag (i,ipol) - e (k) * s_diag (i,ipol) ! ! denm = g2+v(g=0) - e(k) ! if (abs (denm) < eps) denm = sign (eps, denm) ! ! denm = sign( max( abs(denm),eps ), denm ) ! psi (i, ipol, k) = psi (i, ipol, k) / denm enddo enddo enddo #endif call stop_clock ('g_psi') return end subroutine g_psi espresso-5.1/PW/src/compute_ux.f900000644000175000017500000000352012341373025015127 0ustar mbamba! ! Copyright (C) 2007-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE compute_ux(m_loc,ux,nat) ! ! This subroutine determines the direction of a fixed quantization axis ! from the starting magnetization. ! USE kinds, ONLY : dp USE constants, ONLY: pi, eps12 USE io_global, ONLY : stdout USE noncollin_module, ONLY : lsign IMPLICIT NONE INTEGER, INTENT(IN) :: nat ! number of atoms REAL(DP), INTENT(OUT) :: ux(3) ! fixed direction to calculate signs REAL(DP), INTENT(IN) :: m_loc(3,nat) ! local moments REAL(DP) :: amag, uxmod ! modulus of the magnetization and of ux INTEGER :: na ! counter on atoms INTEGER :: starting_na ! auxiliary variable LOGICAL :: is_parallel ! external function true if two vectors are parallel ! ! Do not use the sign feature in the general case ! lsign=.FALSE. ux=0.0_DP starting_na=0 DO na=1,nat amag=m_loc(1,na)**2+m_loc(2,na)**2+m_loc(3,na)**2 IF (amag > eps12) THEN ux(:)=m_loc(:,na) starting_na=na lsign=.TRUE. GOTO 20 ENDIF ENDDO 20 CONTINUE ! ! The sign feature is used only when all initial magnetizations are parallel ! to a fixed direction that is taken as the quantization axis. ! DO na=starting_na+1, nat lsign=lsign.AND.is_parallel(ux,m_loc(:,na)) ENDDO IF (lsign) THEN uxmod=ux(1)**2+ux(2)**2+ux(3)**2 IF (uxmod0) ax_save(:,which_irr(iclass))=ax(:) ELSEIF (ts==2) THEN which_irr(iclass)=5 ENDIF ENDDO ! ! Otherwise choose the first free axis ! DO iclass=2,nclass IF (which_irr(iclass)==0) THEN ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==4) THEN DO i=1,3 IF (done_ax(i)) THEN which_irr(iclass)=i+1 done_ax(i)=.FALSE. GOTO 100 END IF END DO 100 CONTINUE CALL versor(smat(1,1,elem(1,iclass)),ax) ax_save(:,which_irr(iclass))=ax(:) ENDIF ENDIF ENDDO ! ! Finally it orders the mirror planes. The perpendicular to the plane ! must be parallel to one of the C_2 axis. ! ! DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==5) THEN CALL mirror_axis(smat(1,1,elem(1,iclass)),ax) DO i=2,4 IF (is_parallel(ax,ax_save(1,i))) which_irr(iclass)=i+4 ENDDO END IF IF (which_irr(iclass)==0) CALL errore('divide_class',& 'something wrong D_2h',1) END DO ELSEIF (code_group==21) THEN ! ! D_3h ! IF (nclass /= 6) CALL errore('divide_class','Wrong classes for D_3h',1) DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==3) THEN which_irr(iclass)=2 ELSE IF (ts==4) THEN which_irr(iclass)=3 ELSE IF (ts==5) THEN IF (nelem(iclass)>1) THEN which_irr(iclass)=6 ELSE which_irr(iclass)=4 END IF ELSE IF (ts==6) THEN which_irr(iclass)=5 END IF END DO ELSEIF (code_group==22) THEN ! ! D_4h ! ! ! First search the order 4 axis ! IF (nclass /= 10) CALL errore('divide_class','Wrong classes for D_4h',1) DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==3) THEN which_irr(iclass)=2 CALL versor(smat(1,1,elem(1,iclass)),ax) axis=0 DO ipol=1,3 IF (is_axis(ax,ipol)) axis=ipol ENDDO IF (axis==0) call errore('divide_class','unknown D_4h axis ',1) ENDIF END DO DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==4) THEN which_irr(iclass)=0 CALL versor(smat(1,1,elem(1,iclass)),ax) IF (is_axis(ax,axis)) THEN which_irr(iclass)=3 ELSE DO ipol=1,3 IF (is_axis(ax,ipol)) which_irr(iclass)=4 ENDDO IF (which_irr(iclass)==0) which_irr(iclass)=5 END IF ELSEIF (ts==2) THEN which_irr(iclass)=6 ELSEIF (ts==5) THEN which_irr(iclass)=0 CALL mirror_axis(smat(1,1,elem(1,iclass)),ax) IF (is_axis(ax,axis)) THEN which_irr(iclass)=8 ELSE DO ipol=1,3 IF (is_axis(ax,ipol)) which_irr(iclass)=9 ENDDO IF (which_irr(iclass)==0) which_irr(iclass)=10 END IF ELSEIF (ts==6) THEN which_irr(iclass)=7 END IF END DO ELSEIF (code_group==23) THEN ! ! D_6h ! IF (nclass /= 12) CALL errore('divide_class','Wrong classes for D_6h',1) first=.TRUE. first1=.TRUE. DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==3) THEN ars=angle_rot(smat(1,1,elem(1,iclass))) IF ((ABS(ars-60.d0)=0. In the xy plane the axis is in the y>0 region and the positive ! x axis is taken for z=0 and y=0. ! USE kinds, ONLY : DP IMPLICIT NONE REAL(DP) :: smat(3,3), ax(3) REAL(DP), PARAMETER :: eps=1.d-7 REAL(DP) :: a1(3), norm INTEGER :: ipol, jpol, tipo_sym, ts ! ! Check if it is a 180 rotation ! ts=tipo_sym(smat) IF (ts/=3.and.ts/=4.and.ts/=6) & call errore('versor','called in the wrong case',1) IF (ts==4) THEN ! ! First the case where the axis is parallel to a coordinate axis ! ax=0.d0 DO ipol=1,3 IF (ABS(smat(ipol,ipol)-1.d0) < eps ) ax(ipol)=1.d0 END DO norm=sqrt(ax(1)**2+ax(2)**2+ax(3)**2) IF (ABS(norm)>eps) RETURN ! ! then the general case ! DO ipol=1,3 ax(ipol)=sqrt(ABS(smat(ipol,ipol)+1.d0)/2.d0) END DO DO ipol=1,3 DO jpol=ipol+1,3 IF (ABS(ax(ipol)*ax(jpol))>eps) THEN ax(ipol)=0.5d0*smat(ipol,jpol)/ax(jpol) END IF END DO END DO RETURN END IF ! ! It is not a 180 rotation: compute the rotation axis ! a1(1) =-smat(2,3)+smat(3,2) a1(2) =-smat(3,1)+smat(1,3) a1(3) =-smat(1,2)+smat(2,1) ! ! The direction of the axis is arbitrarily chosen ! IF (a1(3) < -eps ) THEN a1=-a1 ELSEIF (abs(a1(3))eps) THEN sint=SIGN(sint,a1(1)/ax(1)) ELSEIF (ABS(a1(2))>eps) THEN sint=SIGN(sint,a1(2)/ax(2)) ELSEIF (ABS(a1(3))>eps) THEN sint=SIGN(sint,a1(3)/ax(3)) END IF ! ! Compute the cos of the angle ! ax=a1/(2.d0*sint) IF (ABS(ax(1)**2-1.d0)>eps) THEN cost=(smat(1,1)-ax(1)**2)/(1.d0-ax(1)**2) ELSE IF (ABS(ax(2)**2-1.d0)>eps) THEN cost=(smat(2,2)-ax(2)**2)/(1.d0-ax(2)**2) ELSE IF (ABS(ax(3)**2-1.d0)>eps) THEN cost=(smat(3,3)-ax(3)**2)/(1.d0-ax(3)**2) END IF IF (ABS(sint**2+cost**2-1.d0) > eps ) & CALL errore('angle_rot','problem with the matrix',1) angle_rot1=ASIN(sint)*180.d0/pi IF (angle_rot1 < 0.d0) THEN IF (cost < 0.d0) THEN angle_rot1=-angle_rot1+180.d0 ELSE angle_rot1=360.d0+angle_rot1 ENDIF ELSE IF (cost < 0.d0) angle_rot1=-angle_rot1+180.d0 ENDIF angle_rot=angle_rot1 RETURN END FUNCTION angle_rot !----------------------------------------------------------------------------- FUNCTION angle_rot_s(smat) !----------------------------------------------------------------------------- ! ! This subroutine receives an improper rotation matrix and determines the ! rotation angle. ! USE kinds, ONLY : DP IMPLICIT NONE REAL(DP) :: smat(3,3) REAL(DP) :: aux_mat(3,3) REAL(DP) :: angle_rot, angle_rot_s aux_mat=-smat angle_rot_s=mod(angle_rot(aux_mat)+180.0_DP,360.0_DP) RETURN END FUNCTION angle_rot_s !----------------------------------------------------------------------------- SUBROUTINE set_irr_rap(code_group,nclass_ref,char_mat,name_rap, & name_class,ir_ram) !----------------------------------------------------------------------------- ! ! This subroutine collects the character tables of the 32 crystallographic ! point groups. ! Various names have been used in the litterature to identify ! the irreducible representations. Several equivalent names are ! collected in this routine. The first name is taken ! from the book of P.W. Atkins, M.S. Child, and C.S.G. Phillips, ! "Tables for group theory". ! D, G, L, S are used for Delta, Gamma, Lambda and Sigma. ! Representations which correspond to infrared or raman active modes ! are identified with the string in ir_ram: I (infrared active), ! R (Raman active), I+R (Infrared and Raman active). ! ! USE kinds, ONLY : DP IMPLICIT NONE INTEGER :: nclass_ref, & ! Output: number of irreducible representation code_group ! Input: code of the group CHARACTER(LEN=15) :: name_rap(12) ! Output: name of the representations CHARACTER(LEN=5) :: name_class(12) ! Output: name of the classes CHARACTER(LEN=3) :: ir_ram(12) COMPLEX(DP) :: char_mat(12,12) ! Output: character matrix REAL(DP) :: sqr3d2 sqr3d2=SQRT(3.d0)*0.5d0 char_mat=(1.d0,0.d0) name_class(1)="E " ir_ram=" " IF (code_group==1) THEN ! ! C_1 ! nclass_ref=1 name_rap(1)="A " ir_ram(1)="I+R" ELSEIF (code_group==2) THEN ! ! C_i ! nclass_ref=2 name_class(2)="i " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="A_u " ir_ram(2)="I" char_mat(2,2)=(-1.d0,0.d0) ELSEIF (code_group==3) THEN ! ! C_s ! nclass_ref=2 name_class(2)="s " name_rap(1)="A' " ir_ram(1)="I+R" name_rap(2)="A'' " ir_ram(2)="I+R" char_mat(2,2)=(-1.d0,0.d0) ELSEIF (code_group==4) THEN ! ! C_2 ! nclass_ref=2 name_class(2)="C2 " name_rap(1)="A " ir_ram(1)="I+R" name_rap(2)="B " ir_ram(2)="I+R" char_mat(2,2)=(-1.d0,0.d0) ELSEIF (code_group==5) THEN ! ! C_3 ! nclass_ref=3 name_class(2)="C3 " name_class(3)="C3^2 " name_rap(1)="A " ir_ram(1)="I+R" name_rap(2)="E " ir_ram(2)="I+R" char_mat(2,2)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(2,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(3)="E* " ir_ram(3)="I+R" char_mat(3,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) ELSEIF (code_group==6) THEN ! ! C_4 ! nclass_ref=4 name_class(2)="C4 " name_class(3)="C2 " name_class(4)="C4^3 " name_rap(1)="A " ir_ram(1)="I+R" name_rap(2)="B " ir_ram(2)="R" char_mat(2,2)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) name_rap(3)="E " ir_ram(3)="I+R" char_mat(3,2)=( 0.d0,1.d0) char_mat(3,3)=(-1.d0,0.d0) char_mat(3,4)=( 0.d0,-1.d0) name_rap(4)="E* " ir_ram(4)="I+R" char_mat(4,2)=( 0.d0,-1.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,4)=( 0.d0,1.d0) ELSEIF (code_group==7) THEN ! ! C_6 ! nclass_ref=6 name_class(2)="C6 " name_class(3)="C3 " name_class(4)="C2 " name_class(5)="C3^2 " name_class(6)="C6^5 " name_rap(1)="A " ir_ram(1)="I+R" name_rap(2)="B " char_mat(2,2)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) name_rap(3)="E_1 " ir_ram(3)="I+R" char_mat(3,2)=CMPLX( 0.5d0,sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(3,4)=(-1.d0,0.d0) char_mat(3,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,6)=CMPLX( 0.5d0,-sqr3d2,kind=DP) name_rap(4)="E_1*" ir_ram(4)="I+R" char_mat(4,2)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(4,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(4,6)=CMPLX( 0.5d0,sqr3d2,kind=DP) name_rap(5)="E_2 " ir_ram(5)="R" char_mat(5,2)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(5,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(5,5)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(5,6)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(6)="E_2*" ir_ram(6)="R" char_mat(6,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(6,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,6)=CMPLX(-0.5d0,sqr3d2,kind=DP) ELSEIF (code_group==8) THEN ! ! D_2 ! nclass_ref=4 name_class(2)="C2z " name_class(3)="C2y " name_class(4)="C2x " name_rap(1)="A " ir_ram(1)="R" name_rap(2)="B_1 " ir_ram(2)="I+R" char_mat(2,3)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) name_rap(3)="B_2 " ir_ram(3)="I+R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) name_rap(4)="B_3 " ir_ram(4)="I+R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) ELSEIF (code_group==9) THEN ! ! D_3 ! nclass_ref=3 name_class(2)="2C3 " name_class(3)="3C2' " name_rap(1)="A_1 " ir_ram(1)="R" name_rap(2)="A_2 " ir_ram(2)="I" char_mat(2,3)=(-1.d0,0.d0) name_rap(3)="E " ir_ram(3)="I+R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 0.d0,0.d0) ELSEIF (code_group==10) THEN ! ! D_4 ! nclass_ref=5 name_class(2)="2C4 " name_class(3)="C2 " name_class(4)="2C2' " name_class(5)="2C2''" name_rap(1)="A_1 " ir_ram(1)="R" name_rap(2)="A_2 " ir_ram(2)="I" char_mat(2,4)=(-1.d0,0.d0) char_mat(2,5)=(-1.d0,0.d0) name_rap(3)="B_1 " ir_ram(3)="R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,5)=(-1.d0,0.d0) name_rap(4)="B_2 " ir_ram(4)="R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) name_rap(5)="E " ir_ram(5)="I+R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,3)=(-2.d0,0.d0) char_mat(5,4)=( 0.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) ELSEIF (code_group==11) THEN ! ! D_6 ! nclass_ref=6 name_class(2)="2C6 " name_class(3)="2C3 " name_class(4)="C2 " name_class(5)="3C2' " name_class(6)="3C2''" name_rap(1)="A_1 " ir_ram(1)="R" name_rap(2)="A_2 " ir_ram(2)="I" char_mat(2,5)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) name_rap(3)="B_1 " char_mat(3,2)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) char_mat(3,6)=(-1.d0,0.d0) name_rap(4)="B_2 " char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) name_rap(5)="E_1 " ir_ram(5)="I+R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-2.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) char_mat(5,6)=( 0.d0,0.d0) name_rap(6)="E_2 " ir_ram(6)="R" char_mat(6,1)=( 2.d0,0.d0) char_mat(6,2)=(-1.d0,0.d0) char_mat(6,3)=(-1.d0,0.d0) char_mat(6,4)=( 2.d0,0.d0) char_mat(6,5)=( 0.d0,0.d0) char_mat(6,6)=( 0.d0,0.d0) ELSEIF (code_group==12) THEN ! ! C_2v ! nclass_ref=4 name_class(2)="C2 " name_class(3)="s_xz " name_class(4)="s_yz " name_rap(1)="A_1 D_1 S_1" ir_ram(1)="I+R" name_rap(2)="A_2 D_2 S_2" ir_ram(2)="R" char_mat(2,3)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) name_rap(3)="B_1 D_3 S_3" ir_ram(3)="I+R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) name_rap(4)="B_2 D_4 S_4" ir_ram(4)="I+R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) ELSEIF (code_group==13) THEN ! ! C_3v ! nclass_ref=3 name_class(2)="2C3 " name_class(3)="3s_v " name_rap(1)="A_1 L_1" ir_ram(1)="I+R" name_rap(2)="A_2 L_2" char_mat(2,3)=(-1.d0,0.d0) name_rap(3)="E L_3" ir_ram(3)="I+R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 0.d0,0.d0) ELSEIF (code_group==14) THEN ! ! C_4v ! nclass_ref=5 name_class(2)="2C4 " name_class(3)="C2 " name_class(4)="2s_v " name_class(5)="2s_d " name_rap(1)="A_1 G_1 D_1" ir_ram(1)="I+R" name_rap(2)="A_2 G_2 D_1'" char_mat(2,4)=(-1.d0,0.d0) char_mat(2,5)=(-1.d0,0.d0) name_rap(3)="B_1 G_3 D_2" ir_ram(3)="R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,5)=(-1.d0,0.d0) name_rap(4)="B_2 G_4 D_2'" ir_ram(4)="R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) name_rap(5)="E G_5 D_5" ir_ram(5)="I+R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,3)=(-2.d0,0.d0) char_mat(5,4)=( 0.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) ELSEIF (code_group==15) THEN ! ! C_6v ! nclass_ref=6 name_class(2)="2C6 " name_class(3)="2C3 " name_class(4)="C2 " name_class(5)="3s_v " name_class(6)="3s_d " name_rap(1)="A_1 " ir_ram(1)="I+R" name_rap(2)="A_2 " char_mat(2,5)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) name_rap(3)="B_1 " char_mat(3,2)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) char_mat(3,6)=(-1.d0,0.d0) name_rap(4)="B_2 " char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) name_rap(5)="E_1 " ir_ram(5)="I+R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-2.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) char_mat(5,6)=( 0.d0,0.d0) name_rap(6)="E_2 " ir_ram(6)="R" char_mat(6,1)=( 2.d0,0.d0) char_mat(6,2)=(-1.d0,0.d0) char_mat(6,3)=(-1.d0,0.d0) char_mat(6,4)=( 2.d0,0.d0) char_mat(6,5)=( 0.d0,0.d0) char_mat(6,6)=( 0.d0,0.d0) ELSEIF (code_group==16) THEN ! ! C_2h ! nclass_ref=4 name_class(2)="C2 " name_class(3)="i " name_class(4)="s_h " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="B_g " ir_ram(2)="R" char_mat(2,2)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) name_rap(3)="A_u " ir_ram(3)="I" char_mat(3,3)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) name_rap(4)="B_u " ir_ram(4)="I" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) ELSEIF (code_group==17) THEN ! ! C_3h ! nclass_ref=6 name_class(2)="C3 " name_class(3)="C3^2 " name_class(4)="s_h " name_class(5)="S3 " name_class(6)="S3^5 " name_rap(1)="A' " ir_ram(1)="R" name_rap(2)="E' " ir_ram(2)="I+R" char_mat(2,2)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(2,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(2,5)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(2,6)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(3)="E'* " ir_ram(3)="I+R" char_mat(3,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(3,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,6)=CMPLX(-0.5d0,sqr3d2,kind=DP) name_rap(4)="A'' " ir_ram(4)="I" char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) char_mat(4,6)=(-1.d0,0.d0) name_rap(5)="E'' " ir_ram(5)="R" char_mat(5,2)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(5,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(5,4)=(-1.d0,0.d0) char_mat(5,5)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(5,6)=CMPLX(0.5d0,sqr3d2,kind=DP) name_rap(6)="E''*" ir_ram(6)="R" char_mat(6,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(6,4)=(-1.d0,0.d0) char_mat(6,5)=CMPLX( 0.5d0,sqr3d2,kind=DP) char_mat(6,6)=CMPLX(0.5d0,-sqr3d2,kind=DP) ELSEIF (code_group==18) THEN ! ! C_4h ! nclass_ref=8 name_class(2)="C4 " name_class(3)="C2 " name_class(4)="C4^3 " name_class(5)="i " name_class(6)="S4^3 " name_class(7)="s_h " name_class(8)="S4 " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="B_g " ir_ram(2)="R" char_mat(2,2)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) char_mat(2,8)=(-1.d0,0.d0) name_rap(3)="E_g " ir_ram(3)="R" char_mat(3,2)=( 0.d0,1.d0) char_mat(3,3)=(-1.d0,0.d0) char_mat(3,4)=( 0.d0,-1.d0) char_mat(3,6)=( 0.d0,1.d0) char_mat(3,7)=(-1.d0,0.d0) char_mat(3,8)=( 0.d0,-1.d0) name_rap(4)="E_g*" ir_ram(4)="R" char_mat(4,2)=(0.d0,-1.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,4)=( 0.d0,1.d0) char_mat(4,6)=( 0.d0,-1.d0) char_mat(4,7)=(-1.d0,0.d0) char_mat(4,8)=( 0.d0,1.d0) name_rap(5)="A_u " ir_ram(5)="I" char_mat(5,5)=(-1.d0,0.d0) char_mat(5,6)=(-1.d0,0.d0) char_mat(5,7)=(-1.d0,0.d0) char_mat(5,8)=(-1.d0,0.d0) name_rap(6)="B_u " char_mat(6,2)=(-1.d0,0.d0) char_mat(6,4)=(-1.d0,0.d0) char_mat(6,5)=(-1.d0,0.d0) char_mat(6,7)=(-1.d0,0.d0) name_rap(7)="E_u " ir_ram(7)="I" char_mat(7,2)=( 0.d0,1.d0) char_mat(7,3)=(-1.d0,0.d0) char_mat(7,4)=( 0.d0,-1.d0) char_mat(7,5)=(-1.d0, 0.d0) char_mat(7,6)=( 0.d0,-1.d0) char_mat(7,8)=( 0.d0,1.d0) name_rap(8)="E_u*" ir_ram(8)="I" char_mat(8,2)=( 0.d0,-1.d0) char_mat(8,3)=(-1.d0,0.d0) char_mat(8,4)=( 0.d0,1.d0) char_mat(8,5)=(-1.d0, 0.d0) char_mat(8,6)=( 0.d0,1.d0) char_mat(8,8)=( 0.d0,-1.d0) ELSEIF (code_group==19) THEN ! ! C_6h ! nclass_ref=12 name_class(2)="C6 " name_class(3)="C3 " name_class(4)="C2 " name_class(5)="C3^2 " name_class(6)="C6^5 " name_class(7)="i " name_class(8)="S3^5 " name_class(9)="S6^5 " name_class(10)="s_h " name_class(11)="S6 " name_class(12)="S3 " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="B_g " char_mat(2,2)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) char_mat(2,8)=(-1.d0,0.d0) char_mat(2,10)=(-1.d0,0.d0) char_mat(2,12)=(-1.d0,0.d0) name_rap(3)="E_1g" ir_ram(3)="R" char_mat(3,2)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(3,4)=(-1.d0,0.d0) char_mat(3,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,6)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(3,8)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(3,9)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(3,10)=(-1.d0,0.d0) char_mat(3,11)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,12)=CMPLX( 0.5d0,-sqr3d2,kind=DP) name_rap(4)="E1g*" ir_ram(4)="R" char_mat(4,2)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(4,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(4,6)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(4,8)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(4,9)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(4,10)=(-1.d0,0.d0) char_mat(4,11)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(4,12)=CMPLX( 0.5d0,sqr3d2,kind=DP) name_rap(5)="E_2g" ir_ram(5)="R" char_mat(5,2)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(5,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(5,5)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(5,6)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(5,8)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(5,9)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(5,11)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(5,12)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(6)="E2g*" ir_ram(6)="R" char_mat(6,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(6,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,6)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(6,8)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,9)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(6,11)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,12)=CMPLX(-0.5d0, sqr3d2,kind=DP) name_rap(7)="A_u " ir_ram(7)="I" char_mat(7,7)=(-1.d0,0.d0) char_mat(7,8)=(-1.d0,0.d0) char_mat(7,9)=(-1.d0,0.d0) char_mat(7,10)=(-1.d0,0.d0) char_mat(7,11)=(-1.d0,0.d0) char_mat(7,12)=(-1.d0,0.d0) name_rap(8)="B_u " char_mat(8,2)=(-1.d0,0.d0) char_mat(8,4)=(-1.d0,0.d0) char_mat(8,6)=(-1.d0,0.d0) char_mat(8,7)=(-1.d0,0.d0) char_mat(8,9)=(-1.d0,0.d0) char_mat(8,11)=(-1.d0,0.d0) name_rap(9)="E_1u" ir_ram(9)="I" char_mat(9,2)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(9,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(9,4)=(-1.d0,0.d0) char_mat(9,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(9,6)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(9,7)=(-1.d0,0.d0) char_mat(9,8)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(9,9)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(9,11)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(9,12)=CMPLX(-0.5d0, sqr3d2,kind=DP) name_rap(10)="E1u*" ir_ram(10)="I" char_mat(10,2)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(10,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(10,4)=(-1.d0,0.d0) char_mat(10,5)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(10,6)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(10,7)=(-1.d0,0.d0) char_mat(10,8)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(10,9)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(10,11)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(10,12)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(11)="E_2u" char_mat(11,2)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(11,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(11,5)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(11,6)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(11,7)=(-1.d0,0.d0) char_mat(11,8)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(11,9)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(11,10)=(-1.d0,0.d0) char_mat(11,11)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(11,12)=CMPLX( 0.5d0, sqr3d2,kind=DP) name_rap(12)="E2u*" char_mat(12,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(12,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(12,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(12,6)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(12,7)=(-1.d0,0.d0) char_mat(12,8)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(12,9)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(12,10)=(-1.d0,0.d0) char_mat(12,11)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(12,12)=CMPLX( 0.5d0,-sqr3d2,kind=DP) ELSEIF (code_group==20) THEN ! ! D_2h ! nclass_ref=8 name_class(2)="C2_z " name_class(3)="C2_y " name_class(4)="C2_x " name_class(5)="i " name_class(6)="s_xy " name_class(7)="s_xz " name_class(8)="s_yz " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="B_1g" ir_ram(2)="R" char_mat(2,3)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) char_mat(2,7)=(-1.d0,0.d0) char_mat(2,8)=(-1.d0,0.d0) name_rap(3)="B_2g" ir_ram(3)="R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) char_mat(3,6)=(-1.d0,0.d0) char_mat(3,8)=(-1.d0,0.d0) name_rap(4)="B_3g" ir_ram(4)="R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,6)=(-1.d0,0.d0) char_mat(4,7)=(-1.d0,0.d0) name_rap(5)="A_u " char_mat(5,5)=(-1.d0,0.d0) char_mat(5,6)=(-1.d0,0.d0) char_mat(5,7)=(-1.d0,0.d0) char_mat(5,8)=(-1.d0,0.d0) name_rap(6)="B_1u" ir_ram(6)="I" char_mat(6,3)=(-1.d0,0.d0) char_mat(6,4)=(-1.d0,0.d0) char_mat(6,5)=(-1.d0,0.d0) char_mat(6,6)=(-1.d0,0.d0) name_rap(7)="B_2u" ir_ram(7)="I" char_mat(7,2)=(-1.d0,0.d0) char_mat(7,4)=(-1.d0,0.d0) char_mat(7,5)=(-1.d0,0.d0) char_mat(7,7)=(-1.d0,0.d0) name_rap(8)="B_3u" ir_ram(8)="I" char_mat(8,2)=(-1.d0,0.d0) char_mat(8,3)=(-1.d0,0.d0) char_mat(8,5)=(-1.d0,0.d0) char_mat(8,8)=(-1.d0,0.d0) ELSEIF (code_group==21) THEN ! ! D_3h ! nclass_ref=6 name_class(2)="2C3 " name_class(3)="3C2 " name_class(4)="s_h " name_class(5)="2S3 " name_class(6)="3s_v " name_rap(1)="A'_1" ir_ram(1)="R" name_rap(2)="A'_2" char_mat(2,3)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) name_rap(3)="E' " ir_ram(3)="I+R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 0.d0,0.d0) char_mat(3,4)=( 2.d0,0.d0) char_mat(3,5)=(-1.d0,0.d0) char_mat(3,6)=( 0.d0,0.d0) name_rap(4)="A''1" char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) char_mat(4,6)=(-1.d0,0.d0) name_rap(5)="A''2" ir_ram(5)="I" char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-1.d0,0.d0) char_mat(5,5)=(-1.d0,0.d0) name_rap(6)="E'' " ir_ram(6)="R" char_mat(6,1)=( 2.d0,0.d0) char_mat(6,2)=(-1.d0,0.d0) char_mat(6,3)=( 0.d0,0.d0) char_mat(6,4)=(-2.d0,0.d0) char_mat(6,6)=( 0.d0,0.d0) ELSEIF (code_group==22) THEN ! ! D_4h ! nclass_ref=10 name_class(2)="2C4 " name_class(3)="C2 " name_class(4)="2C2' " name_class(5)="2C2''" name_class(6)="i " name_class(7)="2S4 " name_class(8)="s_h " name_class(9)="2s_v " name_class(10)="2s_d " name_rap(1)="A_1g X_1 M_1" ir_ram(1)="R" name_rap(2)="A_2g X_4 M_4" char_mat(2,4)=(-1.d0,0.d0) char_mat(2,5)=(-1.d0,0.d0) char_mat(2,9)=(-1.d0,0.d0) char_mat(2,10)=(-1.d0,0.d0) name_rap(3)="B_1g X_2 M_2" ir_ram(3)="R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,5)=(-1.d0,0.d0) char_mat(3,7)=(-1.d0,0.d0) char_mat(3,10)=(-1.d0,0.d0) name_rap(4)="B_2g X_3 M_3" ir_ram(4)="R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) char_mat(4,7)=(-1.d0,0.d0) char_mat(4,9)=(-1.d0,0.d0) name_rap(5)="E_g X_5 M_5" ir_ram(5)="R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,3)=(-2.d0,0.d0) char_mat(5,4)=( 0.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) char_mat(5,6)=( 2.d0,0.d0) char_mat(5,7)=( 0.d0,0.d0) char_mat(5,8)=(-2.d0,0.d0) char_mat(5,9)=( 0.d0,0.d0) char_mat(5,10)=( 0.d0,0.d0) name_rap(6)="A_1u X_1' M_1'" char_mat(6,6)=(-1.d0,0.d0) char_mat(6,7)=(-1.d0,0.d0) char_mat(6,8)=(-1.d0,0.d0) char_mat(6,9)=(-1.d0,0.d0) char_mat(6,10)=(-1.d0,0.d0) name_rap(7)="A_2u X_4' M_4'" ir_ram(7)="I" char_mat(7,4)=(-1.d0,0.d0) char_mat(7,5)=(-1.d0,0.d0) char_mat(7,6)=(-1.d0,0.d0) char_mat(7,7)=(-1.d0,0.d0) char_mat(7,8)=(-1.d0,0.d0) name_rap(8)="B_1u X_2' M_2'" char_mat(8,2)=(-1.d0,0.d0) char_mat(8,5)=(-1.d0,0.d0) char_mat(8,6)=(-1.d0,0.d0) char_mat(8,8)=(-1.d0,0.d0) char_mat(8,9)=(-1.d0,0.d0) name_rap(9)="B_2u X_3' M_3'" char_mat(9,2)=(-1.d0,0.d0) char_mat(9,4)=(-1.d0,0.d0) char_mat(9,6)=(-1.d0,0.d0) char_mat(9,8)=(-1.d0,0.d0) char_mat(9,10)=(-1.d0,0.d0) name_rap(10)="E_u X_5' M_5'" ir_ram(10)="I" char_mat(10,1)=( 2.d0,0.d0) char_mat(10,2)=( 0.d0,0.d0) char_mat(10,3)=(-2.d0,0.d0) char_mat(10,4)=( 0.d0,0.d0) char_mat(10,5)=( 0.d0,0.d0) char_mat(10,6)=(-2.d0,0.d0) char_mat(10,7)=( 0.d0,0.d0) char_mat(10,8)=( 2.d0,0.d0) char_mat(10,9)=( 0.d0,0.d0) char_mat(10,10)=( 0.d0,0.d0) ELSEIF (code_group==23) THEN ! ! D_6h ! nclass_ref=12 name_class(2)="2C6 " name_class(3)="2C3 " name_class(4)="C2 " name_class(5)="3C2' " name_class(6)="3C2''" name_class(7)="i " name_class(8)="2S3 " name_class(9)="2S6 " name_class(10)="s_h " name_class(11)="3s_d " name_class(12)="3s_v " name_rap(1)="A_1g" ir_ram(1)="R" name_rap(2)="A_2g" char_mat(2,5)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) char_mat(2,11)=(-1.d0,0.d0) char_mat(2,12)=(-1.d0,0.d0) name_rap(3)="B_1g" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,4)=(-1.d0,0.d0) char_mat(3,6)=(-1.d0,0.d0) char_mat(3,8)=(-1.d0,0.d0) char_mat(3,10)=(-1.d0,0.d0) char_mat(3,12)=(-1.d0,0.d0) name_rap(4)="B_2g" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) char_mat(4,8)=(-1.d0,0.d0) char_mat(4,10)=(-1.d0,0.d0) char_mat(4,11)=(-1.d0,0.d0) name_rap(5)="E_1g" ir_ram(5)="R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-2.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) char_mat(5,6)=( 0.d0,0.d0) char_mat(5,7)=( 2.d0,0.d0) char_mat(5,9)=(-1.d0,0.d0) char_mat(5,10)=(-2.d0,0.d0) char_mat(5,11)=( 0.d0,0.d0) char_mat(5,12)=( 0.d0,0.d0) name_rap(6)="E_2g" ir_ram(6)="R" char_mat(6,1)=( 2.d0,0.d0) char_mat(6,2)=(-1.d0,0.d0) char_mat(6,3)=(-1.d0,0.d0) char_mat(6,4)=( 2.d0,0.d0) char_mat(6,5)=( 0.d0,0.d0) char_mat(6,6)=( 0.d0,0.d0) char_mat(6,7)=( 2.d0,0.d0) char_mat(6,8)=(-1.d0,0.d0) char_mat(6,9)=(-1.d0,0.d0) char_mat(6,10)=( 2.d0,0.d0) char_mat(6,11)=( 0.d0,0.d0) char_mat(6,12)=( 0.d0,0.d0) name_rap(7)="A_1u" char_mat(7,7)=(-1.d0,0.d0) char_mat(7,8)=(-1.d0,0.d0) char_mat(7,9)=(-1.d0,0.d0) char_mat(7,10)=(-1.d0,0.d0) char_mat(7,11)=(-1.d0,0.d0) char_mat(7,12)=(-1.d0,0.d0) name_rap(8)="A_2u" ir_ram(8)="I" char_mat(8,5)=(-1.d0,0.d0) char_mat(8,6)=(-1.d0,0.d0) char_mat(8,7)=(-1.d0,0.d0) char_mat(8,8)=(-1.d0,0.d0) char_mat(8,9)=(-1.d0,0.d0) char_mat(8,10)=(-1.d0,0.d0) name_rap(9)="B_1u" char_mat(9,2)=(-1.d0,0.d0) char_mat(9,4)=(-1.d0,0.d0) char_mat(9,6)=(-1.d0,0.d0) char_mat(9,7)=(-1.d0,0.d0) char_mat(9,9)=(-1.d0,0.d0) char_mat(9,11)=(-1.d0,0.d0) name_rap(10)="B_2u" char_mat(10,2)=(-1.d0,0.d0) char_mat(10,4)=(-1.d0,0.d0) char_mat(10,5)=(-1.d0,0.d0) char_mat(10,7)=(-1.d0,0.d0) char_mat(10,9)=(-1.d0,0.d0) char_mat(10,12)=(-1.d0,0.d0) name_rap(11)="E_1u" ir_ram(11)="I" char_mat(11,1)=( 2.d0,0.d0) char_mat(11,3)=(-1.d0,0.d0) char_mat(11,4)=(-2.d0,0.d0) char_mat(11,5)=( 0.d0,0.d0) char_mat(11,6)=( 0.d0,0.d0) char_mat(11,7)=(-2.d0,0.d0) char_mat(11,8)=(-1.d0,0.d0) char_mat(11,10)=( 2.d0,0.d0) char_mat(11,11)=( 0.d0,0.d0) char_mat(11,12)=( 0.d0,0.d0) name_rap(12)="E_2u" char_mat(12,1)=( 2.d0,0.d0) char_mat(12,2)=(-1.d0,0.d0) char_mat(12,3)=(-1.d0,0.d0) char_mat(12,4)=( 2.d0,0.d0) char_mat(12,5)=( 0.d0,0.d0) char_mat(12,6)=( 0.d0,0.d0) char_mat(12,7)=(-2.d0,0.d0) char_mat(12,10)=(-2.d0,0.d0) char_mat(12,11)=( 0.d0,0.d0) char_mat(12,12)=( 0.d0,0.d0) ELSEIF (code_group==24) THEN ! ! D_2d ! nclass_ref=5 name_class(2)="2S4 " name_class(3)="C2 " name_class(4)="2C2' " name_class(5)="2s_d " name_rap(1)="A_1 X_1 W_1" ir_ram(1)="R" name_rap(2)="A_2 X_4 W_2'" char_mat(2,4)=(-1.d0,0.d0) char_mat(2,5)=(-1.d0,0.d0) name_rap(3)="B_1 X_2 W_1'" ir_ram(3)="R" char_mat(3,2)=(-1.d0,0.d0) char_mat(3,5)=(-1.d0,0.d0) name_rap(4)="B_2 X_3 W_2" ir_ram(4)="I+R" char_mat(4,2)=(-1.d0,0.d0) char_mat(4,4)=(-1.d0,0.d0) name_rap(5)="E X_5 W_3" ir_ram(5)="I+R" char_mat(5,1)=( 2.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,3)=(-2.d0,0.d0) char_mat(5,4)=( 0.d0,0.d0) char_mat(5,5)=( 0.d0,0.d0) ELSEIF (code_group==25) THEN ! ! D_3d ! nclass_ref=6 name_class(2)="2C3 " name_class(3)="3C2' " name_class(4)="i " name_class(5)="2S6 " name_class(6)="3s_d " name_rap(1)="A_1g L_1" ir_ram(1)="R" name_rap(2)="A_2g L_2" char_mat(2,3)=(-1.d0,0.d0) char_mat(2,6)=(-1.d0,0.d0) name_rap(3)="E_g L_3" ir_ram(3)="R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 0.d0,0.d0) char_mat(3,4)=( 2.d0,0.d0) char_mat(3,5)=(-1.d0,0.d0) char_mat(3,6)=( 0.d0,0.d0) name_rap(4)="A_1u L_1'" char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) char_mat(4,6)=(-1.d0,0.d0) name_rap(5)="A_2u L_2'" ir_ram(5)="I" char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-1.d0,0.d0) char_mat(5,5)=(-1.d0,0.d0) name_rap(6)="E_u L_3'" ir_ram(6)="I" char_mat(6,1)=( 2.d0,0.d0) char_mat(6,2)=(-1.d0,0.d0) char_mat(6,3)=( 0.d0,0.d0) char_mat(6,4)=(-2.d0,0.d0) char_mat(6,6)=( 0.d0,0.d0) ELSEIF (code_group==26) THEN ! ! S_4 ! nclass_ref=4 name_class(2)="S4 " name_class(3)="C2 " name_class(4)="S4^3 " name_rap(1)="A W_1" ir_ram(1)="R" name_rap(2)="B W_3" ir_ram(2)="I+R" char_mat(2,2)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) name_rap(3)="E W_4" ir_ram(3)="I+R" char_mat(3,2)=( 0.d0, 1.d0) char_mat(3,3)=(-1.d0,0.d0) char_mat(3,4)=( 0.d0,-1.d0) name_rap(4)="E* W_2" ir_ram(4)="I+R" char_mat(4,2)=( 0.d0,-1.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,4)=( 0.d0, 1.d0) ELSEIF (code_group==27) THEN ! ! S_6 ! nclass_ref=6 name_class(2)="C3 " name_class(3)="C3^2 " name_class(4)="i " name_class(5)="S6^5 " name_class(6)="S6 " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="E_g " ir_ram(2)="R" char_mat(2,2)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(2,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(2,5)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(2,6)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(3)="E_g*" ir_ram(3)="R" char_mat(3,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(3,5)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,6)=CMPLX(-0.5d0,sqr3d2,kind=DP) name_rap(4)="A_u " ir_ram(4)="I" char_mat(4,4)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) char_mat(4,6)=(-1.d0,0.d0) name_rap(5)="E_u " ir_ram(5)="I" char_mat(5,2)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(5,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(5,4)=(-1.d0,0.d0) char_mat(5,5)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(5,6)=CMPLX( 0.5d0, sqr3d2,kind=DP) name_rap(6)="E_u*" ir_ram(6)="I" char_mat(6,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,3)=CMPLX(-0.5d0,sqr3d2,kind=DP) char_mat(6,4)=(-1.d0,0.d0) char_mat(6,5)=CMPLX( 0.5d0,sqr3d2,kind=DP) char_mat(6,6)=CMPLX( 0.5d0,-sqr3d2,kind=DP) ELSEIF (code_group==28) THEN ! ! T ! nclass_ref=4 name_class(2)="4C3 " name_class(3)="4C3' " name_class(4)="3C2 " name_rap(1)="A " ir_ram(1)="R" name_rap(2)="E " ir_ram(2)="R" char_mat(2,2)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(2,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(3)="E* " ir_ram(3)="R" char_mat(3,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) name_rap(4)="T " ir_ram(4)="I+R" char_mat(4,1)=( 3.0d0,0.d0) char_mat(4,2)=( 0.0d0,0.d0) char_mat(4,3)=( 0.0d0,0.d0) char_mat(4,4)=(-1.0d0,0.d0) ELSEIF (code_group==29) THEN ! ! T_h ! nclass_ref=8 name_class(2)="4C3 " name_class(3)="4C3' " name_class(4)="3C2 " name_class(5)="i " name_class(6)="4S6 " name_class(7)="4S6^5" name_class(8)="3s_h " name_rap(1)="A_g " ir_ram(1)="R" name_rap(2)="E_g " ir_ram(2)="R" char_mat(2,2)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(2,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(2,6)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(2,7)=CMPLX(-0.5d0,-sqr3d2,kind=DP) name_rap(3)="E_g*" ir_ram(3)="R" char_mat(3,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(3,6)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(3,7)=CMPLX(-0.5d0, sqr3d2,kind=DP) name_rap(4)="T_g " ir_ram(4)="R" char_mat(4,1)=( 3.0d0,0.d0) char_mat(4,2)=( 0.0d0,0.d0) char_mat(4,3)=( 0.0d0,0.d0) char_mat(4,4)=(-1.0d0,0.d0) char_mat(4,5)=( 3.0d0,0.d0) char_mat(4,6)=( 0.0d0,0.d0) char_mat(4,7)=( 0.0d0,0.d0) char_mat(4,8)=(-1.0d0,0.d0) name_rap(5)="A_u " char_mat(5,5)=(-1.0d0,0.d0) char_mat(5,6)=(-1.0d0,0.d0) char_mat(5,7)=(-1.0d0,0.d0) char_mat(5,8)=(-1.0d0,0.d0) name_rap(6)="E_u " char_mat(6,2)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(6,3)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(6,5)=(-1.0d0,0.d0) char_mat(6,6)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(6,7)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(6,8)=(-1.0d0,0.d0) name_rap(7)="E_u*" char_mat(7,2)=CMPLX(-0.5d0,-sqr3d2,kind=DP) char_mat(7,3)=CMPLX(-0.5d0, sqr3d2,kind=DP) char_mat(7,5)=(-1.0d0,0.d0) char_mat(7,6)=CMPLX( 0.5d0, sqr3d2,kind=DP) char_mat(7,7)=CMPLX( 0.5d0,-sqr3d2,kind=DP) char_mat(7,8)=(-1.0d0,0.d0) name_rap(8)="T_u " ir_ram(8)="I" char_mat(8,1)=( 3.0d0,0.d0) char_mat(8,2)=( 0.0d0,0.d0) char_mat(8,3)=( 0.0d0,0.d0) char_mat(8,4)=(-1.0d0,0.d0) char_mat(8,5)=(-3.0d0,0.d0) char_mat(8,6)=( 0.0d0,0.d0) char_mat(8,7)=( 0.0d0,0.d0) ELSEIF (code_group==30) THEN ! ! T_d ! nclass_ref=5 name_class(2)="8C3 " name_class(3)="3C2 " name_class(4)="6S4 " name_class(5)="6s_d " name_rap(1)="A_1 G_1 P_1" ir_ram(1)="R" name_rap(2)="A_2 G_2 P_2" char_mat(2,4)=(-1.d0,0.d0) char_mat(2,5)=(-1.d0,0.d0) name_rap(3)="E G_12 P_3" ir_ram(3)="R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 2.d0,0.d0) char_mat(3,4)=( 0.d0,0.d0) char_mat(3,5)=( 0.d0,0.d0) name_rap(4)="T_1 G_25 P_5" char_mat(4,1)=( 3.d0,0.d0) char_mat(4,2)=( 0.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) name_rap(5)="T_2 G_15 P_4" ir_ram(5)="I+R" char_mat(5,1)=( 3.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-1.d0,0.d0) ELSEIF (code_group==31) THEN ! ! O ! nclass_ref=5 name_class(2)="8C3 " name_class(3)="3C2 " name_class(4)="6C2 " name_class(5)="6C4 " name_rap(1)="A_1 " ir_ram(1)="R" name_rap(2)="A_2 " char_mat(2,4)=(-1.d0,0.d0) char_mat(2,5)=(-1.d0,0.d0) name_rap(3)="E " ir_ram(3)="R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 2.d0,0.d0) char_mat(3,4)=( 0.d0,0.d0) char_mat(3,5)=( 0.d0,0.d0) name_rap(4)="T_1 " ir_ram(4)="I" char_mat(4,1)=( 3.d0,0.d0) char_mat(4,2)=( 0.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) name_rap(5)="T_2 " ir_ram(5)="R" char_mat(5,1)=( 3.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,3)=(-1.d0,0.d0) char_mat(5,4)=(-1.d0,0.d0) ELSEIF (code_group==32) THEN ! ! O_h ! nclass_ref=10 name_class(2)="8C3 " name_class(3)="6C2' " name_class(4)="6C4 " name_class(5)="3C2 " name_class(6)="i " name_class(7)="6S4 " name_class(8)="8S6 " name_class(9)="3s_h " name_class(10)="6s_d " name_rap(1)="A_1g G_1 G_1+" ir_ram(1)="R" name_rap(2)="A_2g G_2 G_2+" char_mat(2,3)=(-1.d0,0.d0) char_mat(2,4)=(-1.d0,0.d0) char_mat(2,7)=(-1.d0,0.d0) char_mat(2,10)=(-1.d0,0.d0) name_rap(3)="E_g G_12 G_3+" ir_ram(3)="R" char_mat(3,1)=( 2.d0,0.d0) char_mat(3,2)=(-1.d0,0.d0) char_mat(3,3)=( 0.d0,0.d0) char_mat(3,4)=( 0.d0,0.d0) char_mat(3,5)=( 2.d0,0.d0) char_mat(3,6)=( 2.d0,0.d0) char_mat(3,7)=( 0.d0,0.d0) char_mat(3,8)=(-1.d0,0.d0) char_mat(3,9)=( 2.d0,0.d0) char_mat(3,10)=( 0.d0,0.d0) name_rap(4)="T_1g G_15' G_4+" char_mat(4,1)=( 3.d0,0.d0) char_mat(4,2)=( 0.d0,0.d0) char_mat(4,3)=(-1.d0,0.d0) char_mat(4,5)=(-1.d0,0.d0) char_mat(4,6)=( 3.d0,0.d0) char_mat(4,8)=( 0.d0,0.d0) char_mat(4,9)=(-1.d0,0.d0) char_mat(4,10)=(-1.d0,0.d0) name_rap(5)="T_2g G_25' G_5+" ir_ram(5)="R" char_mat(5,1)=( 3.d0,0.d0) char_mat(5,2)=( 0.d0,0.d0) char_mat(5,4)=(-1.d0,0.d0) char_mat(5,5)=(-1.d0,0.d0) char_mat(5,6)=( 3.d0,0.d0) char_mat(5,7)=(-1.d0,0.d0) char_mat(5,8)=( 0.d0,0.d0) char_mat(5,9)=(-1.d0,0.d0) name_rap(6)="A_1u G_1' G_1-" char_mat(6,6)=(-1.d0,0.d0) char_mat(6,7)=(-1.d0,0.d0) char_mat(6,8)=(-1.d0,0.d0) char_mat(6,9)=(-1.d0,0.d0) char_mat(6,10)=(-1.d0,0.d0) name_rap(7)="A_2u G_2' G_2-" char_mat(7,3)=(-1.d0,0.d0) char_mat(7,4)=(-1.d0,0.d0) char_mat(7,6)=(-1.d0,0.d0) char_mat(7,8)=(-1.d0,0.d0) char_mat(7,9)=(-1.d0,0.d0) name_rap(8)="E_u G_12' G_3-" char_mat(8,1)=( 2.d0,0.d0) char_mat(8,2)=(-1.d0,0.d0) char_mat(8,3)=( 0.d0,0.d0) char_mat(8,4)=( 0.d0,0.d0) char_mat(8,5)=( 2.d0,0.d0) char_mat(8,6)=(-2.d0,0.d0) char_mat(8,7)=( 0.d0,0.d0) char_mat(8,9)=(-2.d0,0.d0) char_mat(8,10)=( 0.d0,0.d0) name_rap(9)="T_1u G_15 G_4-" ir_ram(9)="I" char_mat(9,1)=( 3.d0,0.d0) char_mat(9,2)=( 0.d0,0.d0) char_mat(9,3)=(-1.d0,0.d0) char_mat(9,5)=(-1.d0,0.d0) char_mat(9,6)=(-3.d0,0.d0) char_mat(9,7)=(-1.d0,0.d0) char_mat(9,8)=( 0.d0,0.d0) name_rap(10)="T_2u G_25 G_5-" char_mat(10,1)=( 3.d0,0.d0) char_mat(10,2)=( 0.d0,0.d0) char_mat(10,4)=(-1.d0,0.d0) char_mat(10,5)=(-1.d0,0.d0) char_mat(10,6)=(-3.d0,0.d0) char_mat(10,8)=( 0.d0,0.d0) char_mat(10,10)=(-1.d0,0.d0) ELSE CALL errore('set_irr_rap','code number not allowed',1) END IF RETURN END SUBROUTINE !-------------------------------------------------------------------------- FUNCTION is_complex(code) !-------------------------------------------------------------------------- ! This function receives a code of the group and provide .true. or ! .false. if the group HAS or HAS NOT complex irreducible ! representations. ! The order is the following: ! ! 1 "C_1 " F 11 "D_6 " F 21 "D_3h" F 31 "O " F ! 2 "C_i " F 12 "C_2v" F 22 "D_4h" F 32 "O_h " F ! 3 "C_s " F 13 "C_3v" F 23 "D_6h" F ! 4 "C_2 " F 14 "C_4v" F 24 "D_2d" F ! 5 "C_3 " T 15 "C_6v" F 25 "D_3d" F ! 6 "C_4 " T 16 "C_2h" F 26 "S_4 " T ! 7 "C_6 " T 17 "C_3h" T 27 "S_6 " T ! 8 "D_2 " F 18 "C_4h" T 28 "T " T ! 9 "D_3 " F 19 "C_6h" T 29 "T_h " T ! 10 "D_4 " F 20 "D_2h" F 30 "T_d " F ! IMPLICIT NONE INTEGER :: code LOGICAL :: is_complex LOGICAL :: complex_aux(32) data complex_aux / .FALSE., .FALSE., .FALSE., .FALSE., .TRUE. , & .TRUE. , .TRUE. , .FALSE., .FALSE., .FALSE., & .FALSE., .FALSE., .FALSE., .FALSE., .FALSE., & .FALSE., .TRUE. , .TRUE. , .TRUE. , .FALSE., & .FALSE., .FALSE., .FALSE., .FALSE., .FALSE., & .TRUE. , .TRUE. , .TRUE. , .TRUE. , .FALSE., & .FALSE., .FALSE. / IF (code < 1 .OR. code > 32 ) CALL errore('is_complex', & 'code is out of range',1) is_complex= complex_aux(code) RETURN END FUNCTION is_complex FUNCTION is_parallel(a,b) ! ! This function returns true if a(3) and b(3) are parallel vectors ! USE kinds, ONLY : DP IMPLICIT none LOGICAL :: is_parallel REAL(DP) :: a(3), b(3) REAL(DP) :: cross cross=(a(2)*b(3)-a(3)*b(2))**2+(a(3)*b(1)-a(1)*b(3))**2+(a(1)*b(2)-a(2)*b(1))**2 is_parallel=(ABS(cross)< 1.d-6) RETURN END FUNCTION is_parallel FUNCTION angle_vectors(ax,bx) ! ! This function returns the angle, in degrees between two vectors ! USE kinds, ONLY : DP USE constants, ONLY : pi IMPLICIT none REAL(DP) :: angle_vectors REAL(DP) :: ax(3), bx(3) REAL(DP) :: cosangle, moda, modb moda=sqrt(ax(1)**2+ax(2)**2+ax(3)**2) modb=sqrt(bx(1)**2+bx(2)**2+bx(3)**2) IF (moda<1.d-12.OR.modb<1.d-12) & CALL errore('angle vectors','zero module vector',1) cosangle = (ax(1)*bx(1)+ax(2)*bx(2)+ax(3)*bx(3))/moda/modb angle_vectors = acos(cosangle) * 180.d0 / pi RETURN END FUNCTION angle_vectors espresso-5.1/PW/src/allocate_locpot.f900000644000175000017500000000167312341373025016112 0ustar mbamba ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine allocate_locpot !----------------------------------------------------------------------- ! ! dynamical allocation of arrays: ! local potential for each kind of atom, structure factor ! USE ions_base, ONLY : nat, ntyp => nsp USE vlocal, ONLY : vloc, strf USE gvect, ONLY : eigts1, eigts2, eigts3, ngm, ngl USE fft_base , ONLY : dfftp ! implicit none ! allocate (vloc( ngl, ntyp)) allocate (strf( ngm, ntyp)) allocate( eigts1(-dfftp%nr1:dfftp%nr1,nat) ) allocate( eigts2(-dfftp%nr2:dfftp%nr2,nat) ) allocate( eigts3(-dfftp%nr3:dfftp%nr3,nat) ) return end subroutine allocate_locpot espresso-5.1/PW/src/stres_cc.f900000644000175000017500000000630412341373025014547 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine stres_cc (sigmaxcc) !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE atom, ONLY : rgrid USE uspp_param, ONLY : upf USE ions_base, ONLY : ntyp => nsp USE cell_base, ONLY : alat, omega, tpiba, tpiba2 USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, gstart, nl, g, gg, ngl, gl,igtongl USE ener, ONLY : etxc, vtxc USE lsda_mod, ONLY : nspin USE scf, ONLY : rho, rho_core, rhog_core USE vlocal, ONLY : strf USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! output real(DP) :: sigmaxcc (3, 3) ! local variables integer :: nt, ng, l, m, ir ! counters real(DP) :: fact, sigmadiag real(DP) , allocatable:: rhocg (:), vxc (:,:) sigmaxcc(:,:) = 0.d0 if ( ANY (upf(1:ntyp)%nlcc) ) goto 15 return 15 continue ! ! recalculate the exchange-correlation potential ! allocate ( vxc(dfftp%nnr,nspin) ) call v_xc (rho, rho_core, rhog_core, etxc, vtxc, vxc) if (nspin.eq.1.or.nspin.eq.4) then do ir = 1, dfftp%nnr psic (ir) = vxc (ir, 1) enddo else do ir = 1, dfftp%nnr psic (ir) = 0.5d0 * (vxc (ir, 1) + vxc (ir, 2) ) enddo endif deallocate (vxc) CALL fwfft ('Dense', psic, dfftp) ! ! psic contains now Vxc(G) ! allocate(rhocg(ngl)) sigmadiag = 0.0d0 if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if do nt = 1, ntyp if ( upf(nt)%nlcc ) then call drhoc (ngl, gl, omega, tpiba2, rgrid(nt)%mesh, rgrid(nt)%r, & rgrid(nt)%rab, upf(nt)%rho_atc, rhocg) ! diagonal term if (gstart==2) sigmadiag = sigmadiag + & CONJG(psic (nl(1) ) ) * strf (1,nt) * rhocg (igtongl (1) ) do ng = gstart, ngm sigmadiag = sigmadiag + CONJG(psic (nl (ng) ) ) * & strf (ng,nt) * rhocg (igtongl (ng) ) * fact enddo call deriv_drhoc (ngl, gl, omega, tpiba2, rgrid(nt)%mesh, & rgrid(nt)%r, rgrid(nt)%rab, upf(nt)%rho_atc, rhocg) ! non diagonal term (g=0 contribution missing) do ng = gstart, ngm do l = 1, 3 do m = 1, 3 sigmaxcc (l, m) = sigmaxcc (l, m) + CONJG(psic (nl (ng) ) ) & * strf (ng, nt) * rhocg (igtongl (ng) ) * tpiba * & g (l, ng) * g (m, ng) / sqrt (gg (ng) ) * fact enddo enddo enddo endif enddo do l = 1, 3 sigmaxcc (l, l) = sigmaxcc (l, l) + sigmadiag enddo call mp_sum( sigmaxcc, intra_bgrp_comm ) deallocate (rhocg) return end subroutine stres_cc espresso-5.1/PW/src/atomic_wfc_mod.f900000644000175000017500000000152212341373025015711 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE basis ! ! ... The variables needed to describe atomic wavefunctions ! USE kinds, ONLY : dp SAVE ! INTEGER :: & natomwfc ! number of (starting) atomic wavefunctions COMPLEX(dp), ALLOCATABLE :: & swfcatom(:,:) ! S * (starting) atomic wavefunctions CHARACTER(len=30) :: &! starting_wfc, &! 'random','atomic','file','atomic+random' (default) starting_pot, &! 'atomic' or 'file' startingconfig ! 'input' or 'file' ! END MODULE basis espresso-5.1/PW/src/v_of_rho.f900000644000175000017500000010637612341373025014555 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v ) !---------------------------------------------------------------------------- ! ! ... This routine computes the Hartree and Exchange and Correlation ! ... potential and energies which corresponds to a given charge density ! ... The XC potential is computed in real space, while the ! ... Hartree potential is computed in reciprocal space. ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm USE noncollin_module, ONLY : noncolin, nspin_lsda USE ions_base, ONLY : nat, tau USE ldaU, ONLY : lda_plus_U USE funct, ONLY : dft_is_meta USE scf, ONLY : scf_type USE cell_base, ONLY : alat USE control_flags, ONLY : ts_vdw USE tsvdw_module, ONLY : tsvdw_calculate, UtsvdW ! IMPLICIT NONE ! TYPE(scf_type), INTENT(IN) :: rho ! the valence charge TYPE(scf_type), INTENT(INOUT) :: v ! the scf (Hxc) potential !!!!!!!!!!!!!!!!! NB: NOTE that in F90 derived data type must be INOUT and !!!!!!!!!!!!!!!!! not just OUT because otherwise their allocatable or pointer !!!!!!!!!!!!!!!!! components are NOT defined !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! REAL(DP), INTENT(IN) :: rho_core(dfftp%nnr) ! the core charge COMPLEX(DP), INTENT(IN) :: rhog_core(ngm) ! the core charge in reciprocal space REAL(DP), INTENT(OUT) :: vtxc, etxc, ehart, eth, charge ! the integral V_xc * rho ! the E_xc energy ! the hartree energy ! the hubbard energy ! the integral of the charge REAL(DP), INTENT(INOUT) :: etotefield ! electric field energy - inout due to the screwed logic of add_efield ! ! INTEGER :: is, ir ! CALL start_clock( 'v_of_rho' ) ! ! ... calculate exchange-correlation potential ! if (dft_is_meta()) then call v_xc_meta( rho, rho_core, rhog_core, etxc, vtxc, v%of_r, v%kin_r ) else CALL v_xc( rho, rho_core, rhog_core, etxc, vtxc, v%of_r ) endif ! ! ... add a magnetic field (if any) ! CALL add_bfield( v%of_r, rho%of_r ) ! ! ... calculate hartree potential ! CALL v_h( rho%of_g, ehart, charge, v%of_r ) ! ! ... LDA+U: build up Hubbard potential ! if (lda_plus_u) then if(noncolin) then call v_hubbard_nc(rho%ns_nc,v%ns_nc,eth) else call v_hubbard(rho%ns,v%ns,eth) endif endif ! ! ... add an electric field ! DO is = 1, nspin_lsda CALL add_efield(v%of_r(1,is), etotefield, rho%of_r, .false. ) END DO ! ! ... add Tkatchenko-Scheffler potential (factor 2: Ha -> Ry) ! IF (ts_vdw) THEN CALL tsvdw_calculate(tau*alat,rho%of_r) DO is = 1, nspin_lsda DO ir=1,dfftp%nnr v%of_r(ir,is)=v%of_r(ir,is)+2.0d0*UtsvdW(ir) END DO END DO END IF ! CALL stop_clock( 'v_of_rho' ) ! RETURN ! END SUBROUTINE v_of_rho !---------------------------------------------------------------------------- SUBROUTINE v_xc_meta( rho, rho_core, rhog_core, etxc, vtxc, v, kedtaur ) !---------------------------------------------------------------------------- ! ! ... Exchange-Correlation potential Vxc(r) from n(r) ! USE kinds, ONLY : DP USE constants, ONLY : e2, eps8 USE io_global, ONLY : stdout USE fft_base, ONLY : dfftp USE gvect, ONLY : g, nl,ngm USE lsda_mod, ONLY : nspin USE cell_base, ONLY : omega, alat USE spin_orb, ONLY : domag USE funct, ONLY : xc, xc_spin, tau_xc, tau_xc_spin, & get_igcx, get_igcc USE scf, ONLY : scf_type USE mp, ONLY : mp_sum USE mp_bands, ONLY : intra_bgrp_comm ! IMPLICIT NONE ! TYPE (scf_type), INTENT(IN) :: rho REAL(DP), INTENT(IN) :: rho_core(dfftp%nnr) ! the core charge in real space COMPLEX(DP), INTENT(IN) :: rhog_core(ngm) ! the core charge in reciprocal space REAL(DP), INTENT(OUT) :: v(dfftp%nnr,nspin), kedtaur(dfftp%nnr,nspin), & vtxc, etxc ! v: V_xc potential ! kedtau: local K energy density ! vtxc: integral V_xc * rho ! etxc: E_xc energy ! ! ... local variables ! REAL(DP) :: zeta, rh INTEGER :: k, ipol, is REAL(DP) :: ex, ec, v1x, v2x, v3x,v1c, v2c, v3c, & & v1xup, v1xdw, v2xup, v2xdw, v1cup, v1cdw, v2cup, v2cdw , & & v3xup, v3xdw,v3cup, v3cdw, & & arho, atau, fac, rhoup, rhodw, ggrho2, tauup,taudw REAL(DP), DIMENSION(2) :: grho2, rhoneg REAL(DP), DIMENSION(3) :: grhoup, grhodw, v2cup_vec, v2cdw_vec ! REAL(DP), ALLOCATABLE :: grho(:,:,:), h(:,:,:), dh(:) REAL(DP), ALLOCATABLE :: rhoout(:,:) COMPLEX(DP), ALLOCATABLE :: rhogsum(:,:) REAL(DP), PARAMETER :: eps12 = 1.0d-12, zero=0._dp ! !---------------------------------------------------------------------------- ! ! CALL start_clock( 'v_xc_meta' ) ! ! etxc = zero vtxc = zero v(:,:) = zero rhoneg(:) = zero ! ! ALLOCATE (grho(3,dfftp%nnr,nspin)) ALLOCATE (h(3,dfftp%nnr,nspin)) ALLOCATE (rhoout(dfftp%nnr,nspin)) ALLOCATE (rhogsum(ngm,nspin)) ! ! ... calculate the gradient of rho + rho_core in real space ! rhoout(:,1:nspin)=rho%of_r(:,1:nspin) rhogsum(:,1:nspin)=rho%of_g(:,1:nspin) fac = 1.D0 / DBLE( nspin ) ! DO is = 1, nspin ! rhoout(:,is) = fac * rho_core(:) + rhoout(:,is) rhogsum(:,is) = fac * rhog_core(:) + rhogsum(:,is) ! CALL gradrho( dfftp%nnr, rhogsum(1,is), ngm, g, nl, grho(1,1,is) ) ! END DO ! do k = 1, dfftp%nnr do is = 1, nspin grho2 (is) = grho(1,k, is)**2 + grho(2,k,is)**2 + grho(3,k, is)**2 end do if (nspin == 1) then ! ! This is the spin-unpolarised case ! arho = ABS (rho%of_r (k, 1) ) atau = rho%kin_r(k,1) / e2 ! kinetic energy density in Hartree if ( (arho > eps8) .and. (grho2 (1) > eps12) .and. & (abs(atau) > eps8)) then call tau_xc (arho, grho2(1),atau, ex, ec, v1x, v2x,v3x,v1c, v2c,v3c) v(k, 1) = (v1x + v1c )*e2 ! h contains D(rho*Exc)/D(|grad rho|) * (grad rho) / |grad rho| h(:,k,1) = (v2x + v2c)*grho (:,k,1) *e2 kedtaur(k,1)= (v3x + v3c) * 0.5d0 * e2 etxc = etxc + (ex + ec) *e2 !* segno vtxc = vtxc + (v1x+v1c)*e2*arho else h (:, k, 1) = zero kedtaur(k,1)= zero end if if (rho%of_r (k, 1) < zero ) rhoneg(1) = rhoneg(1) - rho%of_r (k, 1) else ! ! spin-polarised case ! rhoup=rho%of_r(k, 1) rhodw=rho%of_r(k, 2) rh = rhoup + rhodw do ipol=1,3 grhoup(ipol)=grho(ipol,k,1) grhodw(ipol)=grho(ipol,k,2) end do ggrho2 = ( grho2 (1) + grho2 (2) ) * 4._dp tauup = rho%kin_r(k,1) / e2 taudw = rho%kin_r(k,2) / e2 atau = tauup + taudw if ((rh > eps8) .and. (ggrho2 > eps12) .and. (abs(atau) > eps8) ) then call tau_xc_spin (rhoup, rhodw, grhoup, grhodw, tauup, taudw, ex, ec, & v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw, v1cup, v1cdw, & v2cup, v2cdw, v2cup_vec, v2cdw_vec, v3cup, v3cdw ) ! ! first term of the gradient correction : D(rho*Exc)/D(rho) ! v(k, 1) = (v1xup + v1cup)*e2 v(k, 2) = (v1xdw + v1cdw)*e2 ! ! h contains D(rho*Exc)/D(|grad rho|) * (grad rho) / |grad rho| ! if (get_igcx()==7.AND.get_igcc()==6) then ! tpss functional ! h(:,k,1) = (v2xup * grhoup(:) + v2cup_vec(:)) * e2 h(:,k,2) = (v2xdw * grhodw(:) + v2cdw_vec(:)) * e2 ! else ! h(:,k,1) = (v2xup + v2cup) * grhoup(:) * e2 h(:,k,2) = (v2xdw + v2cdw) * grhodw(:) * e2 ! end if ! kedtaur(k,1)= (v3xup + v3cup) * 0.5d0 * e2 kedtaur(k,2)= (v3xdw + v3cdw) * 0.5d0 * e2 ! etxc = etxc + (ex + ec) * e2 vtxc = vtxc + (v1xup+v1cup+v1xdw+v1cdw) * e2 * rh ! else h(:,k,1) = zero h(:,k,2) = zero ! kedtaur(k,1)= zero kedtaur(k,2)= zero end if if (rho%of_r (k, 1) < zero ) rhoneg(1) = rhoneg(1) - rho%of_r (k, 1) if (rho%of_r (k, 2) < zero ) rhoneg(2) = rhoneg(2) - rho%of_r (k, 2) end if end do ! ! ALLOCATE( dh( dfftp%nnr ) ) ! ! ... second term of the gradient correction : ! ... \sum_alpha (D / D r_alpha) ( D(rho*Exc)/D(grad_alpha rho) ) ! DO is = 1, nspin ! CALL grad_dot( dfftp%nnr, h(1,1,is), ngm, g, nl, alat, dh ) ! v(:,is) = v(:,is) - dh(:) ! rhoout(:,is)=rhoout(:,is)-fac*rho_core(:) vtxc = vtxc - SUM( dh(:) * rhoout(:,is) ) ! END DO DEALLOCATE(dh) ! call mp_sum ( rhoneg, intra_bgrp_comm ) ! rhoneg(:) = rhoneg(:) * omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! if ((rhoneg(1) > eps8) .or. (rhoneg(2) > eps8)) then write (stdout, '(/,5x, "negative rho (up,down): ", 2es10.3)') rhoneg(:) end if ! vtxc = omega * vtxc / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) etxc = omega * etxc / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! CALL mp_sum( vtxc , intra_bgrp_comm ) CALL mp_sum( etxc , intra_bgrp_comm ) ! DEALLOCATE(grho) DEALLOCATE(h) DEALLOCATE(rhoout) DEALLOCATE(rhogsum) ! RETURN ! END SUBROUTINE v_xc_meta SUBROUTINE v_xc( rho, rho_core, rhog_core, etxc, vtxc, v ) !---------------------------------------------------------------------------- ! ! ... Exchange-Correlation potential Vxc(r) from n(r) ! USE kinds, ONLY : DP USE constants, ONLY : e2, eps8 USE io_global, ONLY : stdout USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm USE lsda_mod, ONLY : nspin USE cell_base, ONLY : omega USE spin_orb, ONLY : domag USE funct, ONLY : xc, xc_spin USE scf, ONLY : scf_type USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! TYPE (scf_type), INTENT(IN) :: rho REAL(DP), INTENT(IN) :: rho_core(dfftp%nnr) ! the core charge COMPLEX(DP), INTENT(IN) :: rhog_core(ngm) ! input: the core charge in reciprocal space REAL(DP), INTENT(OUT) :: v(dfftp%nnr,nspin), vtxc, etxc ! V_xc potential ! integral V_xc * rho ! E_xc energy ! ! ... local variables ! REAL(DP) :: rhox, arhox, zeta, amag, vs, ex, ec, vx(2), vc(2), rhoneg(2) ! the total charge in each point ! the absolute value of the charge ! the absolute value of the charge ! local exchange energy ! local correlation energy ! local exchange potential ! local correlation potential INTEGER :: ir, ipol ! counter on mesh points ! counter on nspin ! REAL(DP), PARAMETER :: vanishing_charge = 1.D-10, & vanishing_mag = 1.D-20 ! ! CALL start_clock( 'v_xc' ) ! etxc = 0.D0 vtxc = 0.D0 v(:,:) = 0.D0 rhoneg = 0.D0 ! IF ( nspin == 1 .OR. ( nspin == 4 .AND. .NOT. domag ) ) THEN ! ! ... spin-unpolarized case ! !$omp parallel do private( rhox, arhox, ex, ec, vx, vc ), & !$omp reduction(+:etxc,vtxc), reduction(-:rhoneg) DO ir = 1, dfftp%nnr ! rhox = rho%of_r(ir,1) + rho_core(ir) ! arhox = ABS( rhox ) ! IF ( arhox > vanishing_charge ) THEN ! CALL xc( arhox, ex, ec, vx(1), vc(1) ) ! v(ir,1) = e2*( vx(1) + vc(1) ) ! etxc = etxc + e2*( ex + ec ) * rhox ! vtxc = vtxc + v(ir,1) * rho%of_r(ir,1) ! ENDIF ! IF ( rho%of_r(ir,1) < 0.D0 ) rhoneg(1) = rhoneg(1) - rho%of_r(ir,1) ! END DO !$omp end parallel do ! ELSE IF ( nspin == 2 ) THEN ! ! ... spin-polarized case ! !$omp parallel do private( rhox, arhox, zeta, ex, ec, vx, vc ), & !$omp reduction(+:etxc,vtxc), reduction(-:rhoneg) DO ir = 1, dfftp%nnr ! rhox = rho%of_r(ir,1) + rho%of_r(ir,2) + rho_core(ir) ! arhox = ABS( rhox ) ! IF ( arhox > vanishing_charge ) THEN ! zeta = ( rho%of_r(ir,1) - rho%of_r(ir,2) ) / arhox ! IF ( ABS( zeta ) > 1.D0 ) zeta = SIGN( 1.D0, zeta ) ! IF ( rho%of_r(ir,1) < 0.D0 ) rhoneg(1) = rhoneg(1) - rho%of_r(ir,1) IF ( rho%of_r(ir,2) < 0.D0 ) rhoneg(2) = rhoneg(2) - rho%of_r(ir,2) ! CALL xc_spin( arhox, zeta, ex, ec, vx(1), vx(2), vc(1), vc(2) ) ! v(ir,:) = e2*( vx(:) + vc(:) ) ! etxc = etxc + e2*( ex + ec ) * rhox ! vtxc = vtxc + ( v(ir,1)*rho%of_r(ir,1) + v(ir,2)*rho%of_r(ir,2) ) ! END IF ! END DO !$omp end parallel do ! ELSE IF ( nspin == 4 ) THEN ! ! ... noncolinear case ! DO ir = 1,dfftp%nnr ! amag = SQRT( rho%of_r(ir,2)**2 + rho%of_r(ir,3)**2 + rho%of_r(ir,4)**2 ) ! rhox = rho%of_r(ir,1) + rho_core(ir) ! IF ( rho%of_r(ir,1) < 0.D0 ) rhoneg(1) = rhoneg(1) - rho%of_r(ir,1) ! arhox = ABS( rhox ) ! IF ( arhox > vanishing_charge ) THEN ! zeta = amag / arhox ! IF ( ABS( zeta ) > 1.D0 ) THEN ! rhoneg(2) = rhoneg(2) + 1.D0 / omega ! zeta = SIGN( 1.D0, zeta ) ! END IF ! CALL xc_spin( arhox, zeta, ex, ec, vx(1), vx(2), vc(1), vc(2) ) ! vs = 0.5D0*( vx(1) + vc(1) - vx(2) - vc(2) ) ! v(ir,1) = e2*( 0.5D0*( vx(1) + vc(1) + vx(2) + vc(2 ) ) ) ! IF ( amag > vanishing_mag ) THEN ! DO ipol = 2, 4 ! v(ir,ipol) = e2 * vs * rho%of_r(ir,ipol) / amag ! vtxc = vtxc + v(ir,ipol) * rho%of_r(ir,ipol) ! END DO ! END IF ! etxc = etxc + e2*( ex + ec ) * rhox vtxc = vtxc + v(ir,1) * rho%of_r(ir,1) ! END IF ! END DO ! END IF ! CALL mp_sum( rhoneg , intra_bgrp_comm ) ! rhoneg(:) = rhoneg(:) * omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! IF ( rhoneg(1) > eps8 .OR. rhoneg(2) > eps8 ) & WRITE( stdout,'(/,5X,"negative rho (up, down): ",2ES10.3)') rhoneg ! ! ... energy terms, local-density contribution ! vtxc = omega * vtxc / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) etxc = omega * etxc / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! ! ... add gradient corrections (if any) ! CALL gradcorr( rho%of_r, rho%of_g, rho_core, rhog_core, etxc, vtxc, v ) ! ! ... add non local corrections (if any) ! CALL nonloccorr(rho%of_r, rho_core, etxc, vtxc, v) ! CALL mp_sum( vtxc , intra_bgrp_comm ) CALL mp_sum( etxc , intra_bgrp_comm ) ! CALL stop_clock( 'v_xc' ) ! RETURN ! END SUBROUTINE v_xc ! !---------------------------------------------------------------------------- SUBROUTINE v_h( rhog, ehart, charge, v ) !---------------------------------------------------------------------------- ! ! ... Hartree potential VH(r) from n(G) ! USE constants, ONLY : fpi, e2 USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : invfft USE gvect, ONLY : nl, nlm, ngm, gg, gstart USE lsda_mod, ONLY : nspin USE cell_base, ONLY : omega, tpiba2 USE control_flags, ONLY : gamma_only USE mp_bands, ONLY: intra_bgrp_comm USE mp, ONLY: mp_sum USE martyna_tuckerman, ONLY : wg_corr_h, do_comp_mt USE esm, ONLY: do_comp_esm, esm_hartree, esm_bc ! IMPLICIT NONE ! COMPLEX(DP), INTENT(IN) :: rhog(ngm,nspin) REAL(DP), INTENT(INOUT) :: v(dfftp%nnr,nspin) REAL(DP), INTENT(OUT) :: ehart, charge ! REAL(DP) :: fac REAL(DP), ALLOCATABLE :: aux1(:,:) REAL(DP) :: rgtot_re, rgtot_im, eh_corr INTEGER :: is, ig COMPLEX(DP), ALLOCATABLE :: aux(:), rgtot(:), vaux(:) INTEGER :: nt ! CALL start_clock( 'v_h' ) ! ALLOCATE( aux( dfftp%nnr ), aux1( 2, ngm ) ) charge = 0.D0 ! IF ( gstart == 2 ) THEN ! charge = omega*REAL( rhog(1,1) ) ! IF ( nspin == 2 ) charge = charge + omega*REAL( rhog(1,2) ) ! END IF ! CALL mp_sum( charge , intra_bgrp_comm ) ! ! ... calculate hartree potential in G-space (NB: V(G=0)=0 ) ! IF ( do_comp_esm .and. ( esm_bc .ne. 'pbc' ) ) THEN ! ! ... calculate modified Hartree potential for ESM ! CALL esm_hartree (rhog, ehart, aux) ! ELSE ! ehart = 0.D0 aux1(:,:) = 0.D0 ! !$omp parallel do private( fac, rgtot_re, rgtot_im ), reduction(+:ehart) DO ig = gstart, ngm ! fac = 1.D0 / gg(ig) ! rgtot_re = REAL( rhog(ig,1) ) rgtot_im = AIMAG( rhog(ig,1) ) ! IF ( nspin == 2 ) THEN ! rgtot_re = rgtot_re + REAL( rhog(ig,2) ) rgtot_im = rgtot_im + AIMAG( rhog(ig,2) ) ! END IF ! ehart = ehart + ( rgtot_re**2 + rgtot_im**2 ) * fac ! aux1(1,ig) = rgtot_re * fac aux1(2,ig) = rgtot_im * fac ! ENDDO !$omp end parallel do ! fac = e2 * fpi / tpiba2 ! ehart = ehart * fac ! aux1 = aux1 * fac ! IF ( gamma_only ) THEN ! ehart = ehart * omega ! ELSE ! ehart = ehart * 0.5D0 * omega ! END IF ! if (do_comp_mt) then ALLOCATE( vaux( ngm ), rgtot(ngm) ) rgtot(:) = rhog(:,1) if (nspin==2) rgtot(:) = rgtot(:) + rhog(:,2) CALL wg_corr_h (omega, ngm, rgtot, vaux, eh_corr) aux1(1,1:ngm) = aux1(1,1:ngm) + REAL( vaux(1:ngm)) aux1(2,1:ngm) = aux1(2,1:ngm) + AIMAG(vaux(1:ngm)) ehart = ehart + eh_corr DEALLOCATE( rgtot, vaux ) end if ! CALL mp_sum( ehart , intra_bgrp_comm ) ! aux(:) = 0.D0 ! aux(nl(1:ngm)) = CMPLX ( aux1(1,1:ngm), aux1(2,1:ngm), KIND=dp ) ! IF ( gamma_only ) THEN ! aux(nlm(1:ngm)) = CMPLX ( aux1(1,1:ngm), -aux1(2,1:ngm), KIND=dp ) ! END IF END IF ! ! ... transform hartree potential to real space ! CALL invfft ('Dense', aux, dfftp) ! ! ... add hartree potential to the xc potential ! IF ( nspin == 4 ) THEN ! v(:,1) = v(:,1) + DBLE (aux(:)) ! ELSE ! DO is = 1, nspin ! v(:,is) = v(:,is) + DBLE (aux(:)) ! END DO ! END IF ! DEALLOCATE( aux, aux1 ) ! CALL stop_clock( 'v_h' ) ! RETURN ! END SUBROUTINE v_h ! !----------------------------------------------------------------------- SUBROUTINE v_hubbard(ns, v_hub, eth) ! ! Computes Hubbard potential and Hubbard energy ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, Hubbard_U, & Hubbard_J, Hubbard_alpha, lda_plus_u_kind,& Hubbard_J0, Hubbard_beta USE lsda_mod, ONLY : nspin USE control_flags, ONLY : iverbosity USE io_global, ONLY : stdout IMPLICIT NONE ! REAL(DP), INTENT(IN) :: ns(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat) REAL(DP), INTENT(OUT) :: v_hub(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat) REAL(DP), INTENT(OUT) :: eth REAL(DP) :: n_tot, n_spin, eth_dc, eth_u, mag2, effU INTEGER :: is, isop, is1, na, nt, m1, m2, m3, m4 REAL(DP), ALLOCATABLE :: u_matrix(:,:,:,:) ALLOCATE( u_matrix(2*Hubbard_lmax+1, 2*Hubbard_lmax+1, 2*Hubbard_lmax+1, 2*Hubbard_lmax+1) ) eth = 0.d0 eth_dc = 0.d0 eth_u = 0.d0 v_hub(:,:,:,:) = 0.d0 if (lda_plus_u_kind.eq.0) then DO na = 1, nat nt = ityp (na) IF (Hubbard_U(nt).NE.0.d0 .OR. Hubbard_alpha(nt).NE.0.d0) THEN IF (Hubbard_J0(nt).NE.0.d0) THEN effU = Hubbard_U(nt) - Hubbard_J0(nt) ELSE effU = Hubbard_U(nt) END IF DO is = 1, nspin DO m1 = 1, 2 * Hubbard_l(nt) + 1 eth = eth + ( Hubbard_alpha(nt) + 0.5D0 * effU ) * & ns(m1,m1,is,na) v_hub(m1,m1,is,na) = v_hub(m1,m1,is,na) + & ( Hubbard_alpha(nt) + 0.5D0 * effU ) DO m2 = 1, 2 * Hubbard_l(nt) + 1 eth = eth - 0.5D0 * effU * & ns(m2,m1,is,na)* ns(m1,m2,is,na) v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) - & effU * ns(m2,m1,is,na) ENDDO ENDDO ENDDO ENDIF IF (Hubbard_J0(nt).NE.0.d0 .OR. Hubbard_beta(nt).NE.0.d0) THEN DO is=1, nspin IF (is .eq. 2) THEN isop = 1 ELSE isop = 2 END IF DO m1 = 1, 2 * Hubbard_l(nt) + 1 IF ( is .eq. 1) THEN eth = eth + Hubbard_beta(nt) * ns(m1,m1,is,na) v_hub(m1,m1,is,na) = v_hub(m1,m1,is,na) + Hubbard_beta(nt) DO m2 = 1, 2 * Hubbard_l(nt) + 1 eth = eth + 0.5D0 * Hubbard_J0(nt) * & ns(m2,m1,is,na)* ns(m1,m2,isop,na) v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) + & Hubbard_J0(nt) * ns(m2,m1,isop,na) END DO ELSE IF (is .eq. 2) THEN eth = eth - Hubbard_beta(nt) * ns(m1,m1,is,na) v_hub(m1,m1,is,na) = v_hub(m1,m1,is,na) - Hubbard_beta(nt) DO m2 = 1, 2 * Hubbard_l(nt) + 1 eth = eth + 0.5D0 * Hubbard_J0(nt) * & ns(m2,m1,is,na) * ns(m1,m2,isop,na) v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) + & Hubbard_J0(nt) * ns(m2,m1,isop,na) END DO END IF END DO END DO END IF END DO IF (nspin.EQ.1) eth = 2.d0 * eth !-- output of hubbard energies: IF ( iverbosity > 0 ) THEN write(stdout,*) '--- in v_hubbard ---' write(stdout,'(''Hubbard energy '',f9.4)') eth write(stdout,*) '-------' ENDIF !-- else DO na = 1, nat nt = ityp (na) IF (Hubbard_U(nt).NE.0.d0) THEN ! initialize U(m1,m2,m3,m4) matrix call hubbard_matrix (Hubbard_lmax, Hubbard_l(nt), Hubbard_U(nt), & Hubbard_J(1,nt), u_matrix) !--- total N and M^2 for DC (double counting) term n_tot = 0.d0 do is = 1, nspin do m1 = 1, 2 * Hubbard_l(nt) + 1 n_tot = n_tot + ns(m1,m1,is,na) enddo enddo if (nspin.eq.1) n_tot = 2.d0 * n_tot mag2 = 0.d0 if (nspin.eq.2) then do m1 = 1, 2 * Hubbard_l(nt) + 1 mag2 = mag2 + ns(m1,m1,1,na) - ns(m1,m1,2,na) enddo endif mag2 = mag2**2 !--- !--- hubbard energy: DC term eth_dc = eth_dc + 0.5d0*( Hubbard_U(nt)*n_tot*(n_tot-1.d0) - & Hubbard_J(1,nt)*n_tot*(0.5d0*n_tot-1.d0) - & 0.5d0*Hubbard_J(1,nt)*mag2 ) !-- DO is = 1, nspin !--- n_spin = up/down N n_spin = 0.d0 do m1 = 1, 2 * Hubbard_l(nt) + 1 n_spin = n_spin + ns(m1,m1,is,na) enddo !--- DO m1 = 1, 2 * Hubbard_l(nt) + 1 ! hubbard potential: DC contribution v_hub(m1,m1,is,na) = v_hub(m1,m1,is,na) + Hubbard_J(1,nt)*n_spin + & 0.5d0*(Hubbard_U(nt)-Hubbard_J(1,nt)) - Hubbard_U(nt)*n_tot ! +U contributions DO m2 = 1, 2 * Hubbard_l(nt) + 1 do m3 = 1, 2 * Hubbard_l(nt) + 1 do m4 = 1, 2 * Hubbard_l(nt) + 1 if (nspin.eq.1) then v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) + & 2.d0*u_matrix(m1,m3,m2,m4)*ns(m3,m4,is,na) else do is1 = 1, nspin v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) + & u_matrix(m1,m3,m2,m4)*ns(m3,m4,is1,na) enddo endif v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) - & u_matrix(m1,m3,m4,m2) * ns(m3,m4,is,na) eth_u = eth_u + 0.5d0*( & ( u_matrix(m1,m2,m3,m4)-u_matrix(m1,m2,m4,m3) )* & ns(m1,m3,is,na)*ns(m2,m4,is,na) + & u_matrix(m1,m2,m3,m4)*ns(m1,m3,is,na)*ns(m2,m4,nspin+1-is,na) ) enddo enddo ENDDO ENDDO ENDDO endif enddo if (nspin.eq.1) eth_u = 2.d0 * eth_u eth = eth_u - eth_dc !-- output of hubbard energies: IF ( iverbosity > 0 ) THEN write(stdout,*) '--- in v_hubbard ---' write(stdout,'(''Hubbard energies (dc, U, total) '',3f9.4)') eth_dc, eth_u, eth write(stdout,*) '-------' ENDIF !-- endif DEALLOCATE (u_matrix) RETURN END SUBROUTINE v_hubbard !------------------------------------- !------------------------------------- SUBROUTINE v_hubbard_nc(ns, v_hub, eth) ! ! Noncollinear version of v_hubbard. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, & Hubbard_U, Hubbard_J, Hubbard_alpha USE lsda_mod, ONLY : nspin USE control_flags, ONLY : iverbosity USE io_global, ONLY : stdout IMPLICIT NONE ! COMPLEX(DP) :: ns(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat) COMPLEX(DP) :: v_hub(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat) REAL(DP) :: eth, eth_dc, eth_noflip, eth_flip, psum, mx, my, mz, mag2 INTEGER :: is, is1, js, i, j, na, nt, m1, m2, m3, m4 COMPLEX(DP) :: n_tot, n_aux REAL(DP), ALLOCATABLE :: u_matrix(:,:,:,:) ALLOCATE( u_matrix(2*Hubbard_lmax+1, 2*Hubbard_lmax+1, 2*Hubbard_lmax+1, 2*Hubbard_lmax+1) ) eth = 0.d0 eth_dc = 0.d0 eth_noflip = 0.d0 eth_flip = 0.d0 v_hub(:,:,:,:) = 0.d0 DO na = 1, nat nt = ityp (na) IF (Hubbard_U(nt).NE.0.d0) THEN ! initialize U(m1,m2,m3,m4) matrix call hubbard_matrix (Hubbard_lmax, Hubbard_l(nt), Hubbard_U(nt), & Hubbard_J(1,nt), u_matrix) !--- total N and M^2 for DC (double counting) term n_tot = 0.d0 mx = 0.d0 my = 0.d0 mz = 0.d0 do m1 = 1, 2 * Hubbard_l(nt) + 1 n_tot = n_tot + ns(m1,m1,1,na) + ns(m1,m1,4,na) mx = mx + DBLE( ns(m1, m1, 2, na) + ns(m1, m1, 3, na) ) my = my + 2.d0 * AIMAG( ns(m1, m1, 2, na) ) mz = mz + DBLE( ns(m1, m1, 1, na) - ns(m1, m1, 4, na) ) enddo mag2 = mx**2 + my**2 + mz**2 !--- !--- hubbard energy: DC term mx = REAL(n_tot) eth_dc = eth_dc + 0.5d0*( Hubbard_U(nt)*mx*(mx-1.d0) - & Hubbard_J(1,nt)*mx*(0.5d0*mx-1.d0) - & 0.5d0*Hubbard_J(1,nt)*mag2 ) !-- DO is = 1, nspin if (is.eq.2) then is1 = 3 elseif (is.eq.3) then is1 = 2 else is1 = is endif !--- hubbard energy: if (is1.eq.is) then ! non spin-flip contribution DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 do m3 = 1, 2 * Hubbard_l(nt) + 1 do m4 = 1, 2 * Hubbard_l(nt) + 1 eth_noflip = eth_noflip + 0.5d0*( & ( u_matrix(m1,m2,m3,m4)-u_matrix(m1,m2,m4,m3) )* & ns(m1,m3,is,na)*ns(m2,m4,is,na) + & u_matrix(m1,m2,m3,m4)*ns(m1,m3,is,na)*ns(m2,m4,nspin+1-is,na) ) enddo enddo ENDDO ENDDO else ! spin-flip contribution DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 do m3 = 1, 2 * Hubbard_l(nt) + 1 do m4 = 1, 2 * Hubbard_l(nt) + 1 eth_flip = eth_flip - 0.5d0*u_matrix(m1,m2,m4,m3)* & ns(m1,m3,is,na)*ns(m2,m4,is1,na) enddo enddo ENDDO ENDDO endif !--- !--- hubbard potential: non spin-flip contribution if (is1.eq.is) then DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 do m3 = 1, 2 * Hubbard_l(nt) + 1 do m4 = 1, 2 * Hubbard_l(nt) + 1 v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) + & u_matrix(m1,m3,m2,m4)*( ns(m3,m4,1,na)+ns(m3,m4,4,na) ) enddo enddo ENDDO ENDDO endif !--- !--- n_aux = /sum_{i} n_{i,i}^{sigma2, sigma1} for DC term n_aux = 0.d0 do m1 = 1, 2 * Hubbard_l(nt) + 1 n_aux = n_aux + ns(m1,m1,is1,na) enddo !--- DO m1 = 1, 2 * Hubbard_l(nt) + 1 !--- hubbard potential: DC contribution v_hub(m1,m1,is,na) = v_hub(m1,m1,is,na) + Hubbard_J(1,nt)*n_aux if (is1.eq.is) then v_hub(m1,m1,is,na) = v_hub(m1,m1,is,na) + & 0.5d0*(Hubbard_U(nt)-Hubbard_J(1,nt)) - Hubbard_U(nt)*n_tot endif !--- !--- hubbard potential: spin-flip contribution DO m2 = 1, 2 * Hubbard_l(nt) + 1 do m3 = 1, 2 * Hubbard_l(nt) + 1 do m4 = 1, 2 * Hubbard_l(nt) + 1 v_hub(m1,m2,is,na) = v_hub(m1,m2,is,na) - & u_matrix(m1,m3,m4,m2) * ns(m3,m4,is1,na) enddo enddo ENDDO !--- ENDDO ENDDO ENDIF ENDDO eth = eth_noflip + eth_flip - eth_dc !-- output of hubbard energies: IF ( iverbosity > 0 ) THEN write(stdout,*) '--- in v_hubbard ---' write(stdout,'(''Hub. E (dc, noflip, flip, total) '',4f9.4)') & eth_dc, eth_noflip, eth_flip, eth write(stdout,*) '-------' ENDIF !-- DEALLOCATE (u_matrix) RETURN END SUBROUTINE v_hubbard_nc !------------------------------------------- !---------------------------------------------------------------------------- SUBROUTINE v_h_of_rho_r( rhor, ehart, charge, v ) !---------------------------------------------------------------------------- ! ! ... Hartree potential VH(r) from a density in R space n(r) ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : nl, ngm USE lsda_mod, ONLY : nspin ! IMPLICIT NONE ! ! ... Declares variables ! REAL( DP ), INTENT(IN) :: rhor( dfftp%nnr, nspin ) REAL( DP ), INTENT(INOUT) :: v( dfftp%nnr, nspin ) REAL( DP ), INTENT(OUT) :: ehart, charge ! ! ... Local variables ! COMPLEX( DP ), ALLOCATABLE :: rhog( : , : ) COMPLEX( DP ), ALLOCATABLE :: aux( : ) INTEGER :: is ! ! ... bring the (unsymmetrized) rho(r) to G-space (use aux as work array) ! ALLOCATE( rhog( ngm, nspin ) ) ALLOCATE( aux( dfftp%nnr ) ) DO is = 1, nspin aux(:) = CMPLX(rhor( : , is ),0.D0,kind=dp) CALL fwfft ('Dense', aux, dfftp) rhog(:,is) = aux(nl(:)) END DO DEALLOCATE( aux ) ! ! ... compute VH(r) from n(G) ! CALL v_h( rhog, ehart, charge, v ) DEALLOCATE( rhog ) ! RETURN ! END SUBROUTINE v_h_of_rho_r !---------------------------------------------------------------------------- SUBROUTINE gradv_h_of_rho_r( rho, gradv ) !---------------------------------------------------------------------------- ! ! ... Gradient of Hartree potential in R space from a total ! (spinless) density in R space n(r) ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft, invfft USE constants, ONLY : fpi, e2 USE control_flags, ONLY : gamma_only USE cell_base, ONLY : tpiba, omega USE gvect, ONLY : nl, ngm, nlm, gg, gstart, g USE martyna_tuckerman, ONLY : wg_corr_h, do_comp_mt ! IMPLICIT NONE ! ! ... Declares variables ! REAL( DP ), INTENT(IN) :: rho( dfftp%nnr ) REAL( DP ), INTENT(OUT) :: gradv( 3, dfftp%nnr ) ! ! ... Local variables ! COMPLEX( DP ), ALLOCATABLE :: rhoaux( : ) COMPLEX( DP ), ALLOCATABLE :: gaux( : ) COMPLEX( DP ), ALLOCATABLE :: rgtot(:), vaux(:) REAL( DP ) :: fac, eh_corr INTEGER :: ig, ipol ! ! ... Bring rho to G space ! ALLOCATE( rhoaux( dfftp%nnr ) ) rhoaux( : ) = CMPLX( rho( : ), 0.D0 ) ! CALL fwfft('Dense', rhoaux, dfftp) ! ! ... Compute total potential in G space ! ALLOCATE( gaux( dfftp%nnr ) ) ! DO ipol = 1, 3 ! gaux(:) = CMPLX(0.d0,0.d0,kind=dp) ! DO ig = gstart, ngm ! fac = g(ipol,ig) / gg(ig) gaux(nl(ig)) = CMPLX(-AIMAG(rhoaux(nl(ig))),REAL(rhoaux(nl(ig))),kind=dp) * fac ! END DO ! ! ...and add the factor e2*fpi/2\pi/a coming from the missing prefactor of ! V = e2 * fpi divided by the 2\pi/a factor missing in G ! fac = e2 * fpi / tpiba gaux = gaux * fac ! ! ...add martyna-tuckerman correction, if needed ! if (do_comp_mt) then ALLOCATE( vaux( ngm ), rgtot(ngm) ) rgtot(1:ngm) = rhoaux(nl(1:ngm)) CALL wg_corr_h (omega, ngm, rgtot, vaux, eh_corr) DO ig = gstart, ngm fac = g(ipol,ig) * tpiba gaux(nl(ig)) = gaux(nl(ig)) + CMPLX(-AIMAG(vaux(ig)),REAL(vaux(ig)),kind=dp)*fac END DO DEALLOCATE( rgtot, vaux ) end if ! IF ( gamma_only ) THEN ! gaux(nlm(:)) = & CMPLX( REAL( gaux(nl(:)) ), -AIMAG( gaux(nl(:)) ) ,kind=DP) ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', gaux, dfftp) ! gradv(ipol,:) = REAL( gaux(:) ) ! ENDDO ! DEALLOCATE(gaux) ! RETURN ! END SUBROUTINE gradv_h_of_rho_r espresso-5.1/PW/src/ewald.f900000644000175000017500000001260512341373025014037 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- function ewald (alat, nat, ntyp, ityp, zv, at, bg, tau, omega, g, & gg, ngm, gcutm, gstart, gamma_only, strf) !----------------------------------------------------------------------- ! ! Calculates Ewald energy with both G- and R-space terms. ! Determines optimal alpha. Should hopefully work for any structure. ! ! USE kinds USE constants, ONLY : tpi, e2 USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE martyna_tuckerman, ONLY : wg_corr_ewald, do_comp_mt USE esm, ONLY : do_comp_esm, esm_bc, esm_ewald implicit none ! ! first the dummy variables ! integer :: nat, ntyp, ityp (nat), ngm, gstart ! input: number of atoms in the unit cell ! input: number of different types of atoms ! input: the type of each atom ! input: number of plane waves for G sum ! input: first non-zero G vector logical :: gamma_only real(DP) :: tau (3, nat), g (3, ngm), gg (ngm), zv (ntyp), & at (3, 3), bg (3, 3), omega, alat, gcutm ! input: the positions of the atoms in the cell ! input: the coordinates of G vectors ! input: the square moduli of G vectors ! input: the charge of each type of atoms ! input: the direct lattice vectors ! input: the reciprocal lattice vectors ! input: the volume of the unit cell ! input: lattice parameter ! input: cut-off of g vectors complex(DP) :: strf (ngm, ntyp) ! input: structure factor real(DP) :: ewald ! output: the ewald energy ! ! here the local variables ! integer, parameter :: mxr = 50 ! the maximum number of R vectors included in r integer :: ng, nr, na, nb, nt, nrm ! counter over reciprocal G vectors ! counter over direct vectors ! counter on atoms ! counter on atoms ! counter on atomic types ! number of R vectors included in r sum real(DP) :: charge, tpiba2, ewaldg, ewaldr, dtau (3), alpha, & r (3, mxr), r2 (mxr), rmax, rr, upperbound, fact ! total ionic charge in the cell ! length in reciprocal space ! ewald energy computed in reciprocal space ! ewald energy computed in real space ! the difference tau_s - tau_s' ! alpha term in ewald sum ! input of the rgen routine ( not used here ) ! the square modulus of R_j-tau_s-tau_s' ! the maximum radius to consider real space sum ! buffer variable ! used to optimize alpha complex(DP) :: rhon real(DP), external :: qe_erfc tpiba2 = (tpi / alat) **2 charge = 0.d0 do na = 1, nat charge = charge+zv (ityp (na) ) enddo alpha = 2.9d0 100 alpha = alpha - 0.1d0 ! ! choose alpha in order to have convergence in the sum over G ! upperbound is a safe upper bound for the error in the sum over G ! if (alpha.le.0.d0) call errore ('ewald', 'optimal alpha not found', 1) upperbound = 2.d0 * charge**2 * sqrt (2.d0 * alpha / tpi) * qe_erfc ( & sqrt (tpiba2 * gcutm / 4.d0 / alpha) ) if (upperbound.gt.1.0d-7) goto 100 ! ! G-space sum here. ! Determine if this processor contains G=0 and set the constant term ! IF ( do_comp_esm .and. ( esm_bc .ne. 'pbc') ) THEN ! ! ... call ESM-specific Ewald routine for G-space sum only ! CALL esm_ewald (charge, alpha, ewaldg) ! ELSE if (gstart==2) then ewaldg = - charge**2 / alpha / 4.0d0 else ewaldg = 0.0d0 endif if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if do ng = gstart, ngm rhon = (0.d0, 0.d0) do nt = 1, ntyp rhon = rhon + zv (nt) * CONJG(strf (ng, nt) ) enddo ewaldg = ewaldg + fact * abs (rhon) **2 * exp ( - gg (ng) * tpiba2 / & alpha / 4.d0) / gg (ng) / tpiba2 enddo ewaldg = 2.d0 * tpi / omega * ewaldg ! ! Here add the other constant term ! if (gstart.eq.2) then do na = 1, nat ewaldg = ewaldg - zv (ityp (na) ) **2 * sqrt (8.d0 / tpi * & alpha) enddo endif ENDIF ! ! R-space sum here (only for the processor that contains G=0) ! ewaldr = 0.d0 if (gstart.eq.2) then rmax = 4.d0 / sqrt (alpha) / alat ! ! with this choice terms up to ZiZj*erfc(4) are counted (erfc(4)=2x10^-8 ! do na = 1, nat do nb = 1, nat dtau (:) = tau (:, na) - tau (:, nb) ! ! generates nearest-neighbors shells ! call rgen (dtau, rmax, mxr, at, bg, r, r2, nrm) ! ! and sum to the real space part ! do nr = 1, nrm rr = sqrt (r2 (nr) ) * alat ewaldr = ewaldr + zv (ityp (na) ) * zv (ityp (nb) ) * qe_erfc ( & sqrt (alpha) * rr) / rr enddo enddo enddo endif ewald = 0.5d0 * e2 * (ewaldg + ewaldr) if ( do_comp_mt ) ewald = ewald + wg_corr_ewald ( omega, ntyp, ngm, zv, strf ) ! call mp_sum( ewald, intra_bgrp_comm ) ! call mp_sum( ewaldr, intra_bgrp_comm ) ! call mp_sum( ewaldg, intra_bgrp_comm ) ! WRITE( stdout,'(/5x,"alpha used in ewald term: ",f4.2/ ! + 5x,"R-space term: ",f12.7,5x,"G-space term: ",f12.7/)') ! + alpha, ewaldr, ewaldg return end function ewald espresso-5.1/PW/src/bp_mod.f900000644000175000017500000001517712341373025014212 0ustar mbamba! ! Copyright (C) 2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE bp ! ! ... The variables needed for the Berry phase polarization calculation ! USE kinds, ONLY: DP USE becmod, ONLY : bec_type ! SAVE PRIVATE PUBLIC:: lberry, lelfield, lorbm, gdir, nppstr, nberrycyc, evcel, evcelp, evcelm, & fact_hepsi, bec_evcel, mapgp_global, mapgm_global, nppstr_3d, & ion_pol, el_pol, fc_pol, l_el_pol_old, el_pol_old, el_pol_acc, & nx_el, l3dstring, efield, efield_cart, efield_cry, transform_el,& mapg_owner PUBLIC :: lcalc_z2, z2_m_threshold, z2_z_threshold PUBLIC :: allocate_bp_efield, deallocate_bp_efield, bp_global_map ! LOGICAL :: & lberry =.false., & ! if .TRUE. calculate polarization using Berry phase lelfield=.false., & ! if .TRUE. finite electric field using Berry phase lorbm=.false. ! if .TRUE. calculate orbital magnetization (Kubo terms) LOGICAL :: & lcalc_z2 =.false. ! if .TRUE. calculate Z2 without inversion symmetry REAL(DP) :: z2_m_threshold, z2_z_threshold INTEGER :: & gdir, &! G-vector for polarization calculation nppstr, &! number of k-points (parallel vector) nberrycyc ! number of cycles for convergence in electric field ! without changing the selfconsistent charge REAL(DP) :: efield ! electric field intensity in a.u. COMPLEX(DP), ALLOCATABLE , TARGET :: evcel(:,:) ! wavefunctions for calculating the electric field operator COMPLEX(DP), ALLOCATABLE , TARGET :: evcelm(:,:,:) ! wavefunctions for storing projectors for electric field operator COMPLEX(DP), ALLOCATABLE , TARGET :: evcelp(:,:,:) ! wavefunctions for storing projectors for electric field operator COMPLEX(DP), ALLOCATABLE, TARGET :: fact_hepsi(:,:) ! factors for hermitean electric field operators !COMPLEX(DP), ALLOCATABLE, TARGET :: bec_evcel(:,:) ! !for storing bec's factors with evcel TYPE(bec_type) :: bec_evcel INTEGER, ALLOCATABLE, TARGET :: mapgp_global(:,:) ! map for G'= G+1 correspondence INTEGER, ALLOCATABLE, TARGET :: mapgm_global(:,:) ! map for G'= G-1 correspondence REAL(DP) :: ion_pol(3) ! the ionic polarization REAL(DP) :: el_pol(3) ! the electronic polarization REAL(DP) :: fc_pol(3) ! the prefactor for the electronic polarization LOGICAL :: l_el_pol_old! if true there is already stored a n older value for the polarization ! neeeded for having correct polarization during MD REAL(DP) :: el_pol_old(3)! the old electronic polarization REAL(DP) :: el_pol_acc(3)! accumulator for the electronic polarization INTEGER :: nppstr_3d(3) ! number of element of strings along the reciprocal directions INTEGER, ALLOCATABLE :: nx_el(:,:) ! index for string to k-point map, (nks*nspin,dir=3) LOGICAL :: l3dstring ! if true strings are on the 3 three directions REAL(DP) :: efield_cart(3) ! electric field vector in cartesian units REAL(DP) :: efield_cry(3) ! electric field vector in crystal units REAL(DP) :: transform_el(3,3)! transformation matrix from cartesian coordinates to normed reciprocal space INTEGER, ALLOCATABLE :: mapg_owner(:,:) ! CONTAINS SUBROUTINE allocate_bp_efield ( ) USE gvect, ONLY : ngm_g ! allocate memory for the Berry's phase electric field ! NOTICE: should be allocated ONLY in parallel case, for gdir=1 or 2 IMPLICIT NONE IF ( lberry .OR. lelfield .OR. lorbm .OR. lcalc_z2) THEN ALLOCATE(mapgp_global(ngm_g,3)) ALLOCATE(mapgm_global(ngm_g,3)) ALLOCATE(mapg_owner(2,ngm_g)) ENDIF l_el_pol_old=.false. el_pol_acc=0.d0 RETURN END SUBROUTINE allocate_bp_efield SUBROUTINE deallocate_bp_efield ! deallocate memory used in Berry's phase electric field calculation IMPLICIT NONE IF ( lberry .OR. lelfield .OR. lorbm .OR. lcalc_z2) THEN IF ( ALLOCATED(mapgp_global) ) DEALLOCATE(mapgp_global) IF ( ALLOCATED(mapgm_global) ) DEALLOCATE(mapgm_global) IF ( ALLOCATED(nx_el) ) DEALLOCATE(nx_el) IF ( ALLOCATED(mapg_owner) ) DEALLOCATE (mapg_owner) ENDIF RETURN END SUBROUTINE deallocate_bp_efield SUBROUTINE bp_global_map !this subroutine sets up the global correspondence map G+1 and G-1 USE mp, ONLY : mp_sum USE mp_world, ONLY : world_comm,mpime,nproc USE gvect, ONLY : ngm_g, g, ngm, ig_l2g USE fft_base, ONLY : dfftp USE cell_base, ONLY : at IMPLICIT NONE INTEGER :: ig, mk1,mk2,mk3, idir, imk(3) INTEGER, ALLOCATABLE :: ln_g(:,:,:) INTEGER, ALLOCATABLE :: g_ln(:,:) IF ( .NOT.lberry .AND. .NOT. lelfield .AND. .NOT. lorbm .AND. .NOT. lcalc_z2) RETURN ! set up correspondence ln_g ix,iy,iz ---> global g index in ! (for now...) coarse grid ! and inverse realtion global g (coarse) to ix,iy,iz ALLOCATE(ln_g(-dfftp%nr1:dfftp%nr1,-dfftp%nr2:dfftp%nr2,-dfftp%nr3:dfftp%nr3)) ALLOCATE(g_ln(3,ngm_g)) ln_g(:,:,:)=0!it means also not found DO ig=1,ngm mk1=nint(g(1,ig)*at(1,1)+g(2,ig)*at(2,1)+g(3,ig)*at(3,1)) mk2=nint(g(1,ig)*at(1,2)+g(2,ig)*at(2,2)+g(3,ig)*at(3,2)) mk3=nint(g(1,ig)*at(1,3)+g(2,ig)*at(2,3)+g(3,ig)*at(3,3)) ln_g(mk1,mk2,mk3)=ig_l2g(ig) ENDDO CALL mp_sum(ln_g(:,:,:),world_comm) g_ln(:,:)= 0!it means also not found DO ig=1,ngm mk1=nint(g(1,ig)*at(1,1)+g(2,ig)*at(2,1)+g(3,ig)*at(3,1)) mk2=nint(g(1,ig)*at(1,2)+g(2,ig)*at(2,2)+g(3,ig)*at(3,2)) mk3=nint(g(1,ig)*at(1,3)+g(2,ig)*at(2,3)+g(3,ig)*at(3,3)) g_ln(1,ig_l2g(ig))=mk1 g_ln(2,ig_l2g(ig))=mk2 g_ln(3,ig_l2g(ig))=mk3 ENDDO CALL mp_sum(g_ln(:,:),world_comm) !loop on direction DO idir=1,3 !for every g on global array find G+1 and G-1 and put on DO ig=1,ngm_g imk(:)=g_ln(:,ig) imk(idir)=imk(idir)+1 !table array mapgp_global(ig,idir)=ln_g(imk(1),imk(2),imk(3)) imk(idir)=imk(idir)-2 mapgm_global(ig,idir)=ln_g(imk(1),imk(2),imk(3)) ENDDO ENDDO mapg_owner=0 DO ig=1,ngm mapg_owner(1,ig_l2g(ig))=mpime+1 mapg_owner(2,ig_l2g(ig))=ig END DO call mp_sum(mapg_owner, world_comm) DEALLOCATE(ln_g,g_ln) RETURN END SUBROUTINE bp_global_map END MODULE bp espresso-5.1/PW/src/rdiagh.f900000755000175000017500000000754212341373025014210 0ustar mbamba! ! Copyright (C) 2001-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE rdiagh( n, h, ldh, e, v ) !---------------------------------------------------------------------------- ! ! ... calculates all the eigenvalues and eigenvectors of a real ! ... simmetric matrix H . On output, the matrix is unchanged ! USE kinds, ONLY : DP USE mp_bands, ONLY : me_bgrp, root_bgrp, intra_bgrp_comm USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! ! ... on INPUT ! INTEGER :: n, ldh ! dimension of the matrix to be diagonalized ! leading dimension of h, as declared in the calling pgm unit REAL(DP) :: h(ldh,n) ! matrix to be diagonalized ! ! ... on OUTPUT ! REAL(DP) :: e(n) ! eigenvalues REAL(DP) :: v(ldh,n) ! eigenvectors (column-wise) ! ! CALL start_clock( 'diagh' ) ! #if defined (__ESSL) CALL rdiagh_aix() #else CALL rdiagh_lapack() #endif ! CALL stop_clock( 'diagh' ) ! RETURN ! CONTAINS ! ! ... internal procedures ! #if defined (__ESSL) ! !----------------------------------------------------------------------- SUBROUTINE rdiagh_aix() !----------------------------------------------------------------------- ! IMPLICIT NONE ! ! ... local variables (ESSL version) ! INTEGER :: naux, i, j, ij COMPLEX(DP), ALLOCATABLE :: hp(:), aux(:) ! ! naux = 4 * n ! ALLOCATE( hp( n * (n + 1) / 2 ) ) ALLOCATE( aux( naux ) ) ! ! ... copy to upper triangular packed matrix ! ij = 0 DO j = 1, n DO i = 1, j ij = ij + 1 hp(ij) = h(i,j) END DO END DO ! ! ... only the first processor diagonalize the matrix ! IF ( me_bgrp == root_bgrp ) THEN ! CALL DSPEV( 21, hp, e, v, ldh, n, aux, naux ) ! END IF ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v, root_bgrp, intra_bgrp_comm ) ! DEALLOCATE( aux ) DEALLOCATE( hp ) ! RETURN ! END SUBROUTINE rdiagh_aix ! #else ! !----------------------------------------------------------------------- SUBROUTINE rdiagh_lapack( ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! ! ... local variables (LAPACK version) ! INTEGER :: lwork, nb, info INTEGER, EXTERNAL :: ILAENV ! ILAENV returns optimal block size "nb" REAL (KIND=DP), ALLOCATABLE :: work(:) ! ! ! ... check for the block size ! nb = ILAENV( 1, 'DSYTRD', 'U', n, - 1, - 1, - 1 ) ! IF ( nb < 1 .OR. nb >= n ) THEN ! lwork = 3*n ! ELSE ! lwork = ( nb + 2 ) * n ! END IF ! ! ... only the first processor diagonalize the matrix ! IF ( me_bgrp == root_bgrp ) THEN ! ! ... allocate workspace ! v = h ! ALLOCATE( work( lwork ) ) ! CALL DSYEV( 'V', 'U', n, v, ldh, e, work, lwork, info ) ! CALL errore( 'rdiagh', 'diagonalization (DSYEV) failed', ABS( info ) ) ! ! ... deallocate workspace ! DEALLOCATE( work ) ! END IF ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v, root_bgrp, intra_bgrp_comm ) ! RETURN ! END SUBROUTINE rdiagh_lapack ! #endif ! END SUBROUTINE rdiagh espresso-5.1/PW/src/paw_onecenter.f900000644000175000017500000027062112341373025015600 0ustar mbamba! ! Copyright (C) 2007-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! NOTE ON PARALLELIZATION: ! this code is parallelized on atoms, i.e. each node computes potential, energy, ! newd coefficients, ddots and \int v \times n on a reduced number of atoms. ! The implementation assumes that divisions of atoms among the nodes is always ! done in the same way! By doing so we can avoid to allocate the potential for ! all the atoms on all the nodes, and (most important) we don't need to ! distribute the potential among the nodes after computing it. ! Beware: paw_ddot, paw_potential, paw_dpotential, must be called by all ! processors of an image, or else they will hang ! MODULE paw_onecenter ! USE kinds, ONLY : DP USE paw_variables, ONLY : paw_info, rad, radial_grad_style, vs_rad USE mp_images, ONLY : nproc_image, me_image, intra_image_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! entry points: PUBLIC :: PAW_potential ! prepare paw potential and store it, ! also computes energy if required PUBLIC :: PAW_ddot ! error estimate for mix_rho PUBLIC :: PAW_dpotential ! calculate change of the paw potential ! and derivatives of D^1-~D^1 coefficients PUBLIC :: PAW_rho_lm ! uses becsum to generate one-center charges ! (all-electron and pseudo) on radial grid PUBLIC :: PAW_h_potential ! computes hartree potential, only used by paw_exx ! INTEGER, SAVE :: paw_comm, me_paw, nproc_paw ! INTEGER, SAVE :: nx_loc, ix_s, ix_e ! parallelization on the directions ! PRIVATE REAL(DP), ALLOCATABLE :: msmall_lm(:,:,:) ! magnetiz. due to small ! components expanded on Y_lm REAL(DP), ALLOCATABLE :: g_lm(:,:,:) ! potential density as lm components ! LOGICAL :: with_small_so = .FALSE. ! ! the following global variable controls the use of several fine-grained clocks ! set it to .false. in order to disable them, set it to .true. to enable them. ! LOGICAL, PARAMETER :: TIMING = .false. ! INTEGER, EXTERNAL :: ldim_block INTEGER, EXTERNAL :: gind_block CONTAINS !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! Computes V_h and V_xc using the "density" becsum provided and then !!! !!! Update the descreening coefficients: !!! D_ij = \int v_Hxc p_ij - \int vt_Hxc (pt_ij + augfun_ij) !!! !!! calculate the onecenter contribution to the energy !!! SUBROUTINE PAW_potential(becsum, d, energy, e_cmp) USE atom, ONLY : g => rgrid USE ions_base, ONLY : nat, ityp USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nh, nhm, upf USE noncollin_module, ONLY : nspin_lsda, nspin_mag USE mp, ONLY : mp_barrier, mp_comm_split, mp_comm_free, mp_size, mp_rank REAL(DP), INTENT(IN) :: becsum(nhm*(nhm+1)/2,nat,nspin)! cross band occupations REAL(DP), INTENT(OUT) :: d(nhm*(nhm+1)/2,nat,nspin) ! descreening coefficients (AE - PS) REAL(DP), INTENT(OUT), OPTIONAL :: energy ! if present compute E[rho] REAL(DP), INTENT(OUT), OPTIONAL :: e_cmp(nat, 2, 2) ! components of the energy ! {AE!PS} INTEGER, PARAMETER :: AE = 1, PS = 2,& ! All-Electron and Pseudo XC = 1, H = 2 ! XC and Hartree REAL(DP), POINTER :: rho_core(:) ! pointer to AE/PS core charge density TYPE(paw_info) :: i ! minimal info on atoms INTEGER :: i_what ! counter on AE and PS INTEGER :: is ! spin index INTEGER :: lm ! counters on angmom and radial grid INTEGER :: nb, mb, nmb ! augfun indexes INTEGER :: ia,ia_s,ia_e ! atoms counters and indexes INTEGER :: mykey ! my index in the atom group INTEGER :: j, l2, kkbeta, imesh ! REAL(DP), ALLOCATABLE :: v_lm(:,:,:) ! workspace: potential REAL(DP), ALLOCATABLE :: rho_lm(:,:,:) ! density expanded on Y_lm REAL(DP), ALLOCATABLE :: savedv_lm(:,:,:) ! workspace: potential ! fake cross band occupations to select only one pfunc at a time: REAL(DP) :: becfake(nhm*(nhm+1)/2,nat,nspin) REAL(DP) :: integral ! workspace REAL(DP) :: energy_tot REAL(DP) :: sgn ! +1 for AE -1 for PS CALL start_clock('PAW_pot') ! Some initialization becfake(:,:,:) = 0._dp d(:,:,:) = 0._dp energy_tot = 0._dp ! ! ! Parallel: divide tasks among all the processor for this image ! (i.e. all the processors except for NEB and similar) ! CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) ! ! build the group of all the procs associated with the same atom ! CALL mp_comm_split( intra_image_comm, ia_s - 1, me_image, paw_comm ) ! me_paw = mp_rank( paw_comm ) nproc_paw = mp_size( paw_comm ) ! atoms: DO ia = ia_s, ia_e ! i%a = ia ! atom's index i%t = ityp(ia) ! type of atom ia i%m = g(i%t)%mesh ! radial mesh size for atom i%t i%b = upf(i%t)%nbeta ! number of beta functions for i%t i%l = upf(i%t)%lmax_rho+1 ! max ang.mom. in augmentation for ia l2 = i%l**2 kkbeta = upf(i%t)%kkbeta imesh = i%m ! ifpaw: IF (upf(i%t)%tpawp) THEN ! ! parallelization over the direction. Here each processor chooses ! its directions ! nx_loc = ldim_block( rad(i%t)%nx, nproc_paw, me_paw ) ix_s = gind_block( 1, rad(i%t)%nx, nproc_paw, me_paw ) ix_e = ix_s + nx_loc - 1 ! ! Arrays are allocated inside the cycle to allow reduced ! memory usage as different atoms have different meshes ALLOCATE(v_lm(i%m,l2,nspin)) ALLOCATE(savedv_lm(i%m,l2,nspin)) ALLOCATE(rho_lm(i%m,l2,nspin)) ! ! whattodo: DO i_what = AE, PS ! STEP: 1 [ build rho_lm (PAW_rho_lm) ] i%ae=i_what NULLIFY(rho_core) IF (i_what == AE) THEN ! Compute rho spherical harmonics expansion from becsum and pfunc CALL PAW_rho_lm(i, becsum, upf(i%t)%paw%pfunc, rho_lm) with_small_so=upf(i%t)%has_so.AND.nspin_mag==4 IF (with_small_so) THEN ALLOCATE(msmall_lm(i%m,l2,nspin)) ALLOCATE(g_lm(i%m,l2,nspin)) CALL PAW_rho_lm(i, becsum, upf(i%t)%paw%pfunc_rel, msmall_lm) ENDIF ! used later for xc potential: rho_core => upf(i%t)%paw%ae_rho_atc ! sign to sum up the enrgy sgn = +1._dp ELSE CALL PAW_rho_lm(i, becsum, upf(i%t)%paw%ptfunc, rho_lm, upf(i%t)%qfuncl) ! optional argument for pseudo part (aug. charge) --> ^^^ rho_core => upf(i%t)%rho_atc ! as before sgn = -1._dp ! as before with_small_so=.FALSE. ENDIF ! cleanup auxiliary potentials savedv_lm(:,:,:) = 0._dp ! First compute the Hartree potential (it does not depend on spin...): CALL PAW_h_potential(i, rho_lm, v_lm(:,:,1), energy) ! ! NOTE: optional variables works recursively: e.g. if energy is not present here ! it will not be present in PAW_h_potential too! !IF (present(energy)) write(*,*) 'H',i%a,i_what,sgn*energy IF (present(energy) .AND. mykey == 0 ) energy_tot = energy_tot + sgn*energy IF (present(e_cmp) .AND. mykey == 0 ) e_cmp(ia, H, i_what) = energy DO is = 1,nspin_lsda ! ... v_H has to be copied to all spin components savedv_lm(:,:,is) = v_lm(:,:,1) ENDDO ! Then the XC one: CALL PAW_xc_potential(i, rho_lm, rho_core, v_lm, energy) !IF (present(energy)) write(*,*) 'X',i%a,i_what,sgn*energy IF (present(energy) .AND. mykey == 0 ) energy_tot = energy_tot + sgn*energy IF (present(e_cmp) .AND. mykey == 0 ) e_cmp(ia, XC, i_what) = energy savedv_lm(:,:,:) = savedv_lm(:,:,:) + v_lm(:,:,:) ! spins: DO is = 1, nspin_mag nmb = 0 ! loop on all pfunc for this kind of pseudo DO nb = 1, nh(i%t) DO mb = nb, nh(i%t) nmb = nmb+1 ! nmb = 1, nh*(nh+1)/2 ! ! compute the density from a single pfunc becfake(nmb,ia,is) = 1._dp IF (i_what == AE) THEN CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%pfunc, rho_lm) IF (with_small_so) & CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%pfunc_rel, msmall_lm) ELSE CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%ptfunc, rho_lm, upf(i%t)%qfuncl) ! optional argument for pseudo part --> ^^^ ENDIF ! ! Now I multiply the rho_lm and the potential, I can use ! rho_lm itself as workspace DO lm = 1, l2 DO j = 1, imesh rho_lm(j,lm,is) = rho_lm(j,lm,is) * savedv_lm(j,lm,is) END DO ! Integrate! CALL simpson(kkbeta,rho_lm(1,lm,is),g(i%t)%rab(1), integral) d(nmb,i%a,is) = d(nmb,i%a,is) + sgn * integral IF (is>1.and.with_small_so.AND.i_what== AE ) THEN DO j=1, imesh msmall_lm(j,lm,is)=msmall_lm(j,lm,is)*g_lm(j,lm,is) ENDDO CALL simpson(kkbeta,msmall_lm(1,lm,is), g(i%t)%rab(1), integral) d(nmb,i%a,is) = d(nmb,i%a,is) + sgn * integral ENDIF ENDDO ! restore becfake to zero becfake(nmb,ia,is) = 0._dp ENDDO ! mb ENDDO ! nb ENDDO spins IF (with_small_so) THEN DEALLOCATE ( msmall_lm ) DEALLOCATE ( g_lm ) END IF ENDDO whattodo ! cleanup DEALLOCATE(rho_lm) DEALLOCATE(savedv_lm) DEALLOCATE(v_lm) ! ENDIF ifpaw ENDDO atoms #ifdef __MPI ! recollect D coeffs and total one-center energy IF( mykey /= 0 ) energy_tot = 0.0d0 CALL mp_sum(energy_tot, intra_image_comm) IF( mykey /= 0 ) d = 0.0d0 CALL mp_sum(d, intra_image_comm) #endif ! put energy back in the output variable IF ( present(energy) ) energy = energy_tot ! CALL mp_comm_free( paw_comm ) ! CALL stop_clock('PAW_pot') END SUBROUTINE PAW_potential !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! As rho_ddot in mix_rho for radial grids !! FUNCTION PAW_ddot(bec1,bec2) USE constants, ONLY : e2, pi USE noncollin_module, ONLY : nspin_lsda, nspin_mag USE lsda_mod, ONLY : nspin USE ions_base, ONLY : nat, ityp USE atom, ONLY : g => rgrid USE uspp_param, ONLY : nhm, upf REAL(DP) :: PAW_ddot REAL(DP), INTENT(IN) :: & bec1(nhm*(nhm+1)/2,nat,nspin), &! cross band occupations (previous step) bec2(nhm*(nhm+1)/2,nat,nspin) ! cross band occupations (next step) INTEGER, PARAMETER :: AE = 1, PS = 2 ! All-Electron and Pseudo INTEGER :: i_what ! counter on AE and PS INTEGER :: ia,mykey,ia_s,ia_e ! atoms counters and indexes INTEGER :: lm,k ! counters on angmom and radial grid ! hartree energy scalar fields expanded on Y_lm REAL(DP), ALLOCATABLE :: rho_lm(:,:,:) ! radial density expanded on Y_lm REAL(DP), ALLOCATABLE :: rho_lm_save(:,:,:) ! radial density expanded on Y_lm REAL(DP), ALLOCATABLE :: v_lm(:,:) ! hartree potential, summed on spins (from bec1) ! REAL(DP) :: i_sign ! +1 for AE, -1 for PS REAL(DP) :: integral ! workspace TYPE(paw_info) :: i CALL start_clock ('PAW_ddot') ! initialize PAW_ddot = 0._dp ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) ! atoms: DO ia = ia_s, ia_e ! i%a = ia ! the index of the atom i%t = ityp(ia) ! the type of atom ia i%m = g(i%t)%mesh ! radial mesh size for atom ia i%b = upf(i%t)%nbeta i%l = upf(i%t)%lmax_rho+1 ! ifpaw: IF (upf(i%t)%tpawp) THEN ! IF (nspin_mag>1) ALLOCATE(rho_lm_save(i%m,i%l**2,nspin)) ALLOCATE(rho_lm(i%m,i%l**2,nspin)) ALLOCATE(v_lm(i%m,i%l**2)) ! whattodo: DO i_what = AE, PS ! Build rho from the occupations in bec1 IF (i_what == AE) THEN CALL PAW_rho_lm(i, bec1, upf(i%t)%paw%pfunc, rho_lm) i_sign = +1._dp ELSE CALL PAW_rho_lm(i, bec1, upf(i%t)%paw%ptfunc, rho_lm, upf(i%t)%qfuncl) i_sign = -1._dp ENDIF IF (nspin_mag>1) rho_lm_save=rho_lm ! ! Compute the hartree potential from bec1 CALL PAW_h_potential(i, rho_lm, v_lm) ! ! Now a new rho is computed, this time from bec2 IF (i_what == AE) THEN CALL PAW_rho_lm(i, bec2, upf(i%t)%paw%pfunc, rho_lm) ELSE CALL PAW_rho_lm(i, bec2, upf(i%t)%paw%ptfunc, rho_lm, upf(i%t)%qfuncl) ENDIF ! ! Finally compute the integral DO lm = 1, i%l**2 ! I can use v_lm as workspace DO k = 1, i%m v_lm(k,lm) = v_lm(k,lm) * SUM(rho_lm(k,lm,1:nspin_lsda)) ENDDO CALL simpson (upf(i%t)%kkbeta,v_lm(:,lm),g(i%t)%rab,integral) ! ! Sum all the energies in PAW_ddot PAW_ddot = PAW_ddot + i_sign * integral * 0.5_DP ! ENDDO IF (nspin_mag==2) THEN DO lm = 1, i%l**2 ! I can use rho_lm_save as workspace DO k = 1, i%m rho_lm_save(k,lm,1) = (rho_lm_save(k,lm,1)- rho_lm_save(k,lm,2)) & * (rho_lm(k,lm,1)-rho_lm(k,lm,2)) ENDDO CALL simpson (upf(i%t)%kkbeta,rho_lm_save(:,lm,1),g(i%t)%rab,integral) ! ! Sum all the energies in PAW_ddot PAW_ddot = PAW_ddot + i_sign * integral * 0.5_DP* e2/pi ! ENDDO ELSEIF (nspin_mag==4) THEN DO lm = 1, i%l**2 ! I can use rho_lm_save as workspace DO k = 1, i%m rho_lm_save(k,lm,1) = & rho_lm_save(k,lm,2)*rho_lm(k,lm,2)+ & rho_lm_save(k,lm,3)*rho_lm(k,lm,3)+ & rho_lm_save(k,lm,4)*rho_lm(k,lm,4) ENDDO CALL simpson (upf(i%t)%kkbeta,rho_lm_save(:,lm,1),& g(i%t)%rab,integral) ! ! Sum all the energies in PAW_ddot PAW_ddot = PAW_ddot + i_sign * integral * 0.5_DP *e2 /pi ! ENDDO ENDIF ENDDO whattodo ! DEALLOCATE(v_lm) DEALLOCATE(rho_lm) IF (nspin_mag>1) DEALLOCATE(rho_lm_save) ENDIF ifpaw ENDDO atoms #ifdef __MPI IF( mykey /= 0 ) PAW_ddot = 0.0_dp CALL mp_sum(PAW_ddot, intra_image_comm) #endif CALL stop_clock ('PAW_ddot') END FUNCTION PAW_ddot !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! use the density produced by sum_rad_rho to compute xc potential and energy, as !!! xc functional is not diagonal on angular momentum numerical integration is performed SUBROUTINE PAW_xc_potential(i, rho_lm, rho_core, v_lm, energy) USE noncollin_module, ONLY : nspin_mag USE constants, ONLY : e2, eps12 USE uspp_param, ONLY : upf USE lsda_mod, ONLY : nspin USE atom, ONLY : g => rgrid USE funct, ONLY : dft_is_gradient, evxc_t_vec, xc_spin USE constants, ONLY : fpi ! REMOVE TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info REAL(DP), INTENT(IN) :: rho_lm(i%m,i%l**2,nspin)! charge density as lm components REAL(DP), INTENT(IN) :: rho_core(i%m) ! core charge, radial and spherical REAL(DP), INTENT(OUT) :: v_lm(i%m,i%l**2,nspin) ! potential density as lm components REAL(DP),OPTIONAL,INTENT(OUT) :: energy ! XC energy (if required) ! REAL(DP), ALLOCATABLE :: rho_loc(:,:) ! local density (workspace), up and down REAL(DP) :: v_rad(i%m,rad(i%t)%nx,nspin) ! radial potential (to be integrated) REAL(DP), ALLOCATABLE :: g_rad(:,:,:) ! radial potential REAL(DP), ALLOCATABLE :: rho_rad(:,:) ! workspace (only one radial slice of rho) ! REAL(DP), ALLOCATABLE :: e_rad(:) ! aux, used to store radial slices of energy REAL(DP), ALLOCATABLE :: e_of_tid(:) ! aux, for openmp parallel reduce REAL(DP) :: e ! aux, used to integrate energy ! INTEGER :: ix,k ! counters on directions and radial grid INTEGER :: lsd ! switch for local spin density REAL(DP) :: arho, amag, zeta, ex, ec, vx(2), vc(2), vs INTEGER :: kpol INTEGER :: mytid, ntids #ifdef __OPENMP INTEGER, EXTERNAL :: omp_get_thread_num, omp_get_num_threads #endif if(TIMING) CALL start_clock ('PAW_xc_pot') ! ! true if using spin lsd = 0 IF (nspin==2) lsd=1 IF (with_small_so) THEN ALLOCATE(g_rad(i%m,rad(i%t)%nx,nspin)) g_rad = 0.0_DP ENDIF ! !$omp parallel default(private), & !$omp shared(i,rad,v_lm,rho_lm,rho_core,v_rad,ix_s,ix_e,energy,e_of_tid,nspin,g,lsd,nspin_mag,with_small_so,g_rad) #ifdef __OPENMP mytid = omp_get_thread_num()+1 ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads #else mytid = 1 ntids = 1 #endif ! This will hold the "true" charge density, without r**2 or other factors ALLOCATE( rho_loc(i%m,nspin_mag) ) rho_loc = 0._dp ! ALLOCATE( rho_rad(i%m,nspin_mag) ) ! IF (present(energy)) THEN !$omp single energy = 0._dp ALLOCATE(e_of_tid(ntids)) !$omp end single ALLOCATE(e_rad(i%m)) e_of_tid(mytid) = 0._dp ENDIF !$omp workshare v_rad = 0.0_dp !$omp end workshare !$omp do DO ix = ix_s, ix_e ! ! *** LDA (and LSDA) part (no gradient correction) *** ! convert _lm density to real density along ix ! CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin_mag) ! ! compute the potential along ix ! IF ( nspin_mag ==4 ) THEN IF (with_small_so.AND.i%ae==1) CALL add_small_mag(i,ix,rho_rad) DO k=1,i%m rho_loc(k,1:nspin) = rho_rad(k,1:nspin)*g(i%t)%rm2(k) arho = rho_loc(k,1)+rho_core(k) amag = SQRT(rho_loc(k,2)**2+rho_loc(k,3)**2+rho_loc(k,4)**2) arho = ABS( arho ) IF ( arho > eps12 ) THEN zeta = amag / arho IF ( ABS( zeta ) > 1.D0 ) zeta = SIGN( 1.D0, zeta ) CALL xc_spin( arho, zeta, ex, ec, vx(1), vx(2), vc(1), vc(2) ) IF (present(energy)) & e_rad(k) = e2*(ex+ec)*(rho_rad(k,1)+rho_core(k)*g(i%t)%r2(k)) vs = e2*0.5D0*( vx(1) + vc(1) - vx(2) - vc(2) ) v_rad(k,ix,1) = e2*(0.5D0*( vx(1) + vc(1) + vx(2) + vc(2))) IF ( amag > eps12 ) THEN v_rad(k,ix,2:4) = vs * rho_loc(k,2:4) / amag ELSE v_rad(k,ix,2:4)=0.0_DP ENDIF ELSE v_rad(k,ix,:)=0.0_DP IF (present(energy)) e_rad(k)=0.0_DP END IF END DO IF (with_small_so) CALL compute_g(i,ix,v_rad,g_rad) ELSEIF (nspin==2) THEN DO k = 1,i%m rho_loc(k,1) = rho_rad(k,1)*g(i%t)%rm2(k) rho_loc(k,2) = rho_rad(k,2)*g(i%t)%rm2(k) ENDDO ELSE DO k = 1,i%m rho_loc(k,1) = rho_rad(k,1)*g(i%t)%rm2(k) ENDDO END IF ! ! Integrate to obtain the energy ! IF (present(energy)) THEN IF (nspin_mag <= 2 ) THEN CALL evxc_t_vec(rho_loc, rho_core, lsd, i%m, v_rad(:,ix,:), e_rad) IF ( nspin_mag < 2 ) THEN e_rad = e_rad * ( rho_rad(:,1) + rho_core*g(i%t)%r2 ) ELSE IF (nspin_mag == 2) THEN e_rad = e_rad *(rho_rad(:,1)+rho_rad(:,2)+rho_core*g(i%t)%r2 ) END IF END IF ! Integrate to obtain the energy CALL simpson(i%m, e_rad, g(i%t)%rab, e) e_of_tid(mytid) = e_of_tid(mytid) + e * rad(i%t)%ww(ix) ELSE IF (nspin_mag <= 2) & CALL evxc_t_vec(rho_loc, rho_core, lsd, i%m, v_rad(:,ix,:)) ENDIF ENDDO !$omp end do nowait IF(present(energy)) DEALLOCATE(e_rad) DEALLOCATE( rho_rad ) DEALLOCATE( rho_loc ) !$omp end parallel IF(present(energy)) THEN energy = sum(e_of_tid) DEALLOCATE(e_of_tid) CALL mp_sum( energy, paw_comm ) END IF ! Recompose the sph. harm. expansion CALL PAW_rad2lm(i, v_rad, v_lm, i%l, nspin_mag) IF (with_small_so) THEN CALL PAW_rad2lm(i, g_rad, g_lm, i%l, nspin_mag) DEALLOCATE( g_rad ) END IF ! Add gradient correction, if necessary IF( dft_is_gradient() ) & CALL PAW_gcxc_potential( i, rho_lm, rho_core, v_lm, energy ) if(TIMING) CALL stop_clock ('PAW_xc_pot') RETURN END SUBROUTINE PAW_xc_potential !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! add gradient correction to v_xc, code mostly adapted from ../atomic/vxcgc.f90 !!! in order to support non-spherical charges (as Y_lm expansion) !!! Note that the first derivative in vxcgc becames a gradient, while the second is a divergence. !!! We also have to temporary store some additional Y_lm components in order not to loose !!! precision during the calculation, even if only the ones up to lmax_rho (the maximum in the !!! density of charge) matter when computing \int v * rho SUBROUTINE PAW_gcxc_potential(i, rho_lm,rho_core, v_lm, energy) USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : noncolin, nspin_mag, nspin_gga USE atom, ONLY : g => rgrid USE constants, ONLY : sqrtpi, fpi,pi,e2, eps => eps12, eps2 => eps24 USE funct, ONLY : gcxc, gcx_spin_vec, gcc_spin, gcx_spin USE mp, ONLY : mp_sum ! TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info REAL(DP), INTENT(IN) :: rho_lm(i%m,i%l**2,nspin) ! charge density as lm components REAL(DP), INTENT(IN) :: rho_core(i%m) ! core charge, radial and spherical REAL(DP), INTENT(INOUT) :: v_lm(i%m,i%l**2,nspin) ! potential to be updated REAL(DP),OPTIONAL,INTENT(INOUT) :: energy ! if present, add GC to energy REAL(DP),ALLOCATABLE :: rho_rad(:,:)! charge density sampled REAL(DP),ALLOCATABLE :: grad(:,:,:) ! gradient REAL(DP),ALLOCATABLE :: grad2(:,:) ! square modulus of gradient ! (first of charge, than of hamiltonian) REAL(DP),ALLOCATABLE :: gc_rad(:,:,:) ! GC correction to V (radial samples) REAL(DP),ALLOCATABLE :: gc_lm(:,:,:) ! GC correction to V (Y_lm expansion) REAL(DP),ALLOCATABLE :: h_rad(:,:,:,:)! hamiltonian (vector field) REAL(DP),ALLOCATABLE :: h_lm(:,:,:,:)! hamiltonian (vector field) !!! ^^^^^^^^^^^^^^^^^^ expanded to higher lm than rho !!! REAL(DP),ALLOCATABLE :: div_h(:,:,:) ! div(hamiltonian) REAL(DP), ALLOCATABLE :: rhoout_lm(:,:,:) ! charge density as lm components REAL(DP), ALLOCATABLE :: vout_lm(:,:,:) ! potential as lm components REAL(DP), ALLOCATABLE :: segni_rad(:,:) ! sign of the magnetization REAL(DP),ALLOCATABLE :: e_rad(:) ! aux, used to store energy REAL(DP) :: e, e_gcxc ! aux, used to integrate energy INTEGER :: k, ix, is, lm ! counters on spin and mesh REAL(DP) :: sx,sc,v1x,v2x,v1c,v2c ! workspace REAL(DP) :: v1cup, v1cdw ! workspace REAL(DP) :: sgn, arho ! workspace REAL(DP) :: co2 ! workspace REAL(DP) :: rh, zeta, grh2 REAL(DP), ALLOCATABLE :: rup_vec(:), rdw_vec(:) REAL(DP), ALLOCATABLE :: sx_vec(:) REAL(DP), ALLOCATABLE :: v1xup_vec(:), v1xdw_vec(:) REAL(DP), ALLOCATABLE :: v2xup_vec(:), v2xdw_vec(:) INTEGER :: mytid, ntids #ifdef __OPENMP INTEGER, EXTERNAL :: omp_get_thread_num, omp_get_num_threads #endif REAL(DP),ALLOCATABLE :: egcxc_of_tid(:) if(TIMING) CALL start_clock ('PAW_gcxc_v') e_gcxc = 0._dp ALLOCATE( gc_rad(i%m,rad(i%t)%nx,nspin_gga) )! GC correction to V (radial samples) ALLOCATE( gc_lm(i%m,i%l**2,nspin_gga) )! GC correction to V (Y_lm expansion) ALLOCATE( h_rad(i%m,3,rad(i%t)%nx,nspin_gga))! hamiltonian (vector field) ALLOCATE( h_lm(i%m,3,(i%l+rad(i%t)%ladd)**2,nspin_gga) ) !!! ^^^^^^^^^^^^^^^^^^ expanded to higher lm than rho !!! ALLOCATE(div_h(i%m,i%l**2,nspin_gga)) ALLOCATE(rhoout_lm(i%m,i%l**2,nspin_gga)) ! charge density as lm components ALLOCATE(vout_lm(i%m,i%l**2,nspin_gga)) ! potential as lm components ALLOCATE(segni_rad(i%m,rad(i%t)%nx)) ! charge density as lm components vout_lm=0.0_DP IF ( nspin_mag == 2 .OR. nspin_mag == 4 ) THEN ! transform the noncollinear case into sigma-GGA case IF (noncolin) THEN CALL compute_rho_spin_lm(i, rho_lm, rhoout_lm, segni_rad) ELSE rhoout_lm=rho_lm ENDIF ENDIF !$omp parallel default(private), & !$omp shared(i,g,nspin,nspin_gga,nspin_mag,rad,e_gcxc,egcxc_of_tid,gc_rad,h_rad,rho_lm,rhoout_lm,rho_core,energy,ix_s,ix_e) mytid = 1 ntids = 1 #ifdef __OPENMP mytid = omp_get_thread_num()+1 ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads #endif ALLOCATE( rho_rad(i%m,nspin_gga))! charge density sampled ALLOCATE( grad(i%m,3,nspin_gga) )! gradient ALLOCATE( grad2(i%m,nspin_gga) )! square modulus of gradient ! (first of charge, than of hamiltonian) !$omp workshare gc_rad = 0.0d0 h_rad = 0.0d0 !$omp end workshare nowait IF (present(energy)) THEN !$omp single allocate(egcxc_of_tid(ntids)) !$omp end single egcxc_of_tid(mytid) = 0.0_dp ALLOCATE(e_rad(i%m)) ENDIF spin:& !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX IF ( nspin_mag == 1 ) THEN ! ! GGA case ! !$omp do DO ix = ix_s, ix_e ! ! WARNING: the next 2 calls are duplicated for spin==2 CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin_mag) CALL PAW_gradient(i, ix, rho_lm, rho_rad, rho_core, grad2, grad) DO k = 1, i%m ! arho is the absolute value of real charge, sgn is its sign arho = rho_rad(k,1)*g(i%t)%rm2(k) + rho_core(k) sgn = SIGN(1._dp,arho) arho = ABS(arho) ! I am using grad(rho)**2 here, so its eps has to be eps**2 IF ( (arho>eps) .and. (grad2(k,1)>eps2) ) THEN CALL gcxc(arho,grad2(k,1), sx,sc,v1x,v2x,v1c,v2c) IF (present(energy)) & e_rad(k) = sgn *e2* (sx+sc) * g(i%t)%r2(k) gc_rad(k,ix,1) = (v1x+v1c)!*g(i%t)%rm2(k) h_rad(k,:,ix,1) = (v2x+v2c)*grad(k,:,1)*g(i%t)%r2(k) ELSE IF (present(energy)) & e_rad(k) = 0._dp gc_rad(k,ix,1) = 0._dp h_rad(k,:,ix,1) = 0._dp ENDIF ENDDO ! ! integrate energy (if required) IF (present(energy)) THEN CALL simpson(i%m, e_rad, g(i%t)%rab, e) egcxc_of_tid(mytid) = egcxc_of_tid(mytid) + e * rad(i%t)%ww(ix) ENDIF ENDDO !$omp end do !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ELSEIF ( nspin_mag == 2 .OR. nspin_mag == 4 ) THEN ALLOCATE( rup_vec(i%m) ) ALLOCATE( rdw_vec(i%m) ) ALLOCATE( sx_vec(i%m) ) ALLOCATE( v1xup_vec(i%m) ) ALLOCATE( v1xdw_vec(i%m) ) ALLOCATE( v2xup_vec(i%m) ) ALLOCATE( v2xdw_vec(i%m) ) ! ! this is the \sigma-GGA case ! !$omp do DO ix = ix_s, ix_e ! CALL PAW_lm2rad(i, ix, rhoout_lm, rho_rad, nspin_gga) CALL PAW_gradient(i, ix, rhoout_lm, rho_rad, rho_core, & grad2, grad) ! DO k = 1,i%m ! ! Prepare the necessary quantities ! rho_core is considered half spin up and half spin down: co2 = rho_core(k)/2._dp ! than I build the real charge dividing by r**2 rup_vec(k) = rho_rad(k,1)*g(i%t)%rm2(k) + co2 rdw_vec(k) = rho_rad(k,2)*g(i%t)%rm2(k) + co2 END DO ! bang! CALL gcx_spin_vec (rup_vec, rdw_vec, grad2(:,1), grad2(:,2), & sx_vec, v1xup_vec, v1xdw_vec, v2xup_vec, v2xdw_vec, i%m) DO k = 1,i%m rh = rup_vec(k) + rdw_vec(k) ! total charge IF ( rh > eps ) THEN zeta = (rup_vec(k) - rdw_vec(k) ) / rh ! polarization ! grh2 = (grad(k,1,1) + grad(k,1,2))**2 & + (grad(k,2,1) + grad(k,2,2))**2 & + (grad(k,3,1) + grad(k,3,2))**2 CALL gcc_spin (rh, zeta, grh2, sc, v1cup, v1cdw, v2c) ELSE sc = 0._dp v1cup = 0._dp v1cdw = 0._dp v2c = 0._dp ENDIF IF (present(energy)) & e_rad(k) = e2*(sx_vec(k)+sc)* g(i%t)%r2(k) gc_rad(k,ix,1) = (v1xup_vec(k)+v1cup)!*g(i%t)%rm2(k) gc_rad(k,ix,2) = (v1xdw_vec(k)+v1cdw)!*g(i%t)%rm2(k) ! h_rad(k,:,ix,1) =( (v2xup_vec(k)+v2c)*grad(k,:,1)+v2c*grad(k,:,2) )*g(i%t)%r2(k) h_rad(k,:,ix,2) =( (v2xdw_vec(k)+v2c)*grad(k,:,2)+v2c*grad(k,:,1) )*g(i%t)%r2(k) ENDDO ! k ! integrate energy (if required) ! NOTE: this integration is duplicated for every spin, FIXME! IF (present(energy)) THEN CALL simpson(i%m, e_rad, g(i%t)%rab, e) egcxc_of_tid(mytid) = egcxc_of_tid(mytid) + e * rad(i%t)%ww(ix) ENDIF ENDDO ! ix !$omp end do nowait DEALLOCATE( rup_vec ) DEALLOCATE( rdw_vec ) DEALLOCATE( sx_vec ) DEALLOCATE( v1xup_vec ) DEALLOCATE( v1xdw_vec ) DEALLOCATE( v2xup_vec ) DEALLOCATE( v2xdw_vec ) !XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ELSE spin !$omp master CALL errore('PAW_gcxc_v', 'unknown spin number', 2) !$omp end master ENDIF spin ! IF (present(energy)) THEN DEALLOCATE(e_rad) ENDIF DEALLOCATE( rho_rad ) DEALLOCATE( grad ) DEALLOCATE( grad2 ) !$omp end parallel ! ! IF (present(energy)) THEN e_gcxc = sum(egcxc_of_tid) CALL mp_sum( e_gcxc, paw_comm ) energy = energy + e_gcxc ENDIF ! IF (present(energy)) THEN deallocate(egcxc_of_tid) ENDIF ! ! convert the first part of the GC correction back to spherical harmonics CALL PAW_rad2lm(i, gc_rad, gc_lm, i%l, nspin_gga) ! ! Note that the expansion into spherical harmonics of the derivative ! with respect to theta of the spherical harmonics, is very slow to ! converge and would require a huge angular momentum ladd. ! This derivative divided by sin_th is much faster to converge, so ! we divide here before calculating h_lm and keep into account for ! this factor sin_th in the expression of the divergence. ! ! ADC 30/04/2009. ! DO ix = ix_s, ix_e h_rad(1:i%m,3,ix,1:nspin_gga) = h_rad(1:i%m,3,ix,1:nspin_gga)/& rad(i%t)%sin_th(ix) ENDDO ! We need the gradient of h to calculate the last part of the exchange ! and correlation potential. First we have to convert H to its Y_lm expansion CALL PAW_rad2lm3(i, h_rad, h_lm, i%l+rad(i%t)%ladd,nspin_gga) ! ! Compute div(H) CALL PAW_divergence(i, h_lm, div_h, i%l+rad(i%t)%ladd, i%l) ! input max lm --^ ^-- output max lm ! Finally sum it back into v_xc DO is = 1,nspin_gga DO lm = 1,i%l**2 vout_lm(1:i%m,lm,is) = vout_lm(1:i%m,lm,is) + e2*(gc_lm(1:i%m,lm,is)-div_h(1:i%m,lm,is)) ENDDO ENDDO IF (nspin_mag == 4 ) THEN CALL compute_pot_nonc(i,vout_lm,v_lm,segni_rad,rho_lm) ELSE v_lm(:,:,1:nspin_mag)=v_lm(:,:,1:nspin_mag)+vout_lm(:,:,1:nspin_mag) ENDIF DEALLOCATE( gc_rad ) DEALLOCATE( gc_lm ) DEALLOCATE( h_rad ) DEALLOCATE( h_lm ) DEALLOCATE( div_h ) DEALLOCATE(rhoout_lm) DEALLOCATE(vout_lm) DEALLOCATE(segni_rad) !if(present(energy)) write(*,*) "gcxc -->", e_gcxc if(TIMING) CALL stop_clock ('PAW_gcxc_v') END SUBROUTINE PAW_gcxc_potential !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! compute divergence of a vector field (actutally the hamiltonian) !!! it is assumed that: 1. the input function is multiplied by r**2; !!! 2. the output function is multiplied by r**2 too SUBROUTINE PAW_divergence(i, F_lm, div_F_lm, lmaxq_in, lmaxq_out) USE constants, ONLY : sqrtpi, fpi, e2 USE noncollin_module, ONLY : nspin_gga USE lsda_mod, ONLY : nspin USE atom, ONLY : g => rgrid TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info INTEGER, INTENT(IN) :: lmaxq_in ! max angular momentum to derive ! (divergence is reliable up to lmaxq_in-2) INTEGER, INTENT(IN) :: lmaxq_out ! max angular momentum to reconstruct for output REAL(DP), INTENT(IN) :: F_lm(i%m,3,lmaxq_in**2,nspin_gga) ! Y_lm expansion of F REAL(DP), INTENT(OUT):: div_F_lm(i%m,lmaxq_out**2,nspin_gga)! div(F) ! REAL(DP) :: div_F_rad(i%m,rad(i%t)%nx,nspin_gga)! div(F) on rad. grid REAL(DP) :: aux(i%m)!,aux2(i%m) ! workspace ! counters on: spin, angular momentum, radial grid point: INTEGER :: is, lm, ix if(TIMING) CALL start_clock ('PAW_div') ! This is the divergence in spherical coordinates: ! {1 \over r^2}{\partial ( r^2 A_r ) \over \partial r} ! + {1 \over r\sin\theta}{\partial \over \partial \theta} ( A_\theta\sin\theta ) ! + {1 \over r\sin\theta}{\partial A_\phi \over \partial \phi} ! ! The derivative sum_LM d(Y_LM sin(theta) )/dtheta will be expanded as: ! sum_LM ( Y_lm cos(theta) + sin(theta) dY_lm/dtheta ) ! The radial component of the divergence is computed last, for practical reasons ! CALL errore('PAW_divergence', 'More angular momentum components are needed (in input)'//& ! ' to provide the number you have requested (in output)', lmaxq_out-lmaxq_in+2) ! phi component div_F_rad=0.0_DP DO is = 1,nspin_gga DO ix = ix_s,ix_e aux(:) = 0._dp ! this derivative has no spherical component, so lm starts from 2 DO lm = 2,lmaxq_in**2 aux(1:i%m) = aux(1:i%m) + rad(i%t)%dylmp(ix,lm)* (F_lm(1:i%m,2,lm,is))! & !* g(i%t)%rm1(1:i%m) !/sin_th(ix) ! as for PAW_gradient this is already present in dylmp --^ ENDDO div_F_rad(1:i%m,ix,is) = aux(1:i%m) ENDDO ENDDO ! theta component DO is = 1,nspin_gga DO ix = ix_s,ix_e aux(:) = 0._dp ! this derivative has a spherical component too! DO lm = 1,lmaxq_in**2 aux(1:i%m) = aux(1:i%m) + F_lm(1:i%m,3,lm,is) & * (rad(i%t)%dylmt(ix,lm)*rad(i%t)%sin_th(ix)& + 2.0_DP*rad(i%t)%ylm(ix,lm)*rad(i%t)%cos_th(ix)) ! *( rad(i%t)%dylmt(ix,lm) & ! + rad(i%t)%ylm(ix,lm) * rad(i%t)%cotg_th(ix) ) ENDDO div_F_rad(1:i%m,ix,is) = div_F_rad(1:i%m,ix,is)+aux(1:i%m) ENDDO ENDDO ! Convert what I have done so far to Y_lm CALL PAW_rad2lm(i, div_F_rad, div_F_lm, lmaxq_out, nspin_gga) ! Multiply by 1/r**3: 1/r is for theta and phi componente only ! 1/r**2 is common to all the three components. DO is = 1,nspin_gga DO lm = 1,lmaxq_out**2 div_F_lm(1:i%m,lm,is) = div_F_lm(1:i%m,lm,is) * g(i%t)%rm3(1:i%m) ENDDO ENDDO ! Compute partial radial derivative d/dr DO is = 1,nspin_gga DO lm = 1,lmaxq_out**2 ! Derive along \hat{r} (F already contains a r**2 factor, otherwise ! it may be better to expand (1/r**2) d(A*r**2)/dr = dA/dr + 2A/r) CALL radial_gradient(F_lm(1:i%m,1,lm,is), aux, g(i%t)%r, i%m, radial_grad_style) ! Sum it in the divergence: it is already in the right Y_lm form aux(1:i%m) = aux(1:i%m)*g(i%t)%rm2(1:i%m) ! div_F_lm(1:i%m,lm,is) = div_F_lm(1:i%m,lm,is) + aux(1:i%m) ENDDO ENDDO if(TIMING) CALL stop_clock ('PAW_div') END SUBROUTINE PAW_divergence !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! build gradient of radial charge distribution from its spherical harmonics expansion SUBROUTINE PAW_gradient(i, ix, rho_lm, rho_rad, rho_core, grho_rad2, grho_rad) USE constants, ONLY : fpi USE noncollin_module, ONLY : nspin_gga USE lsda_mod, ONLY : nspin USE atom, ONLY : g => rgrid INTEGER, INTENT(IN) :: ix ! line of the dylm2 matrix to use actually it is ! one of the nx spherical integration directions TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info REAL(DP), INTENT(IN) :: rho_lm(i%m,i%l**2,nspin_gga)! Y_lm expansion of rho REAL(DP), INTENT(IN) :: rho_rad(i%m,nspin_gga) ! radial density along direction ix REAL(DP), INTENT(IN) :: rho_core(i%m) ! core density REAL(DP), INTENT(OUT):: grho_rad2(i%m,nspin_gga) ! |grad(rho)|^2 on rad. grid REAL(DP), OPTIONAL,INTENT(OUT):: grho_rad(i%m,3,nspin_gga) ! vector gradient (only for gcxc) ! r, theta and phi components ---^ ! REAL(DP) :: aux(i%m),aux2(i%m), fact ! workspace INTEGER :: is, lm ! counters on: spin, angular momentum if(TIMING) CALL start_clock ('PAW_grad') ! 1. build real charge density = rho/r**2 + rho_core ! 2. compute the partial derivative of rho_rad fact=1.0_DP/DBLE(nspin_gga) grho_rad2(:,:) = 0._dp DO is = 1,nspin_gga ! build real charge density aux(1:i%m) = rho_rad(1:i%m,is)*g(i%t)%rm2(1:i%m) & + rho_core(1:i%m)*fact CALL radial_gradient(aux, aux2, g(i%t)%r, i%m, radial_grad_style) ! compute the square grho_rad2(:,is) = aux2(:)**2 ! store in vector gradient, if present: IF (present(grho_rad)) grho_rad(:,1,is) = aux2(:) ENDDO spin: & DO is = 1,nspin_gga aux(:) = 0._dp aux2(:) = 0._dp ! Spherical (lm=1) component (that would also include core correction) can be omitted ! as its contribution to non-radial derivative is zero DO lm = 2,i%l**2 ! 5. [ \sum_{lm} rho(r) (dY_{lm}/dphi /cos(theta)) ]**2 aux(1:i%m) = aux(1:i%m) + rad(i%t)%dylmp(ix,lm)* rho_lm(1:i%m,lm,is) ! 6. [ \sum_{lm} rho(r) (dY_{lm}/dtheta) ]**2 aux2(1:i%m) = aux2(1:i%m) + rad(i%t)%dylmt(ix,lm)* rho_lm(1:i%m,lm,is) ENDDO ! Square and sum up these 2 components, the (1/r**2)**3 factor come from: ! a. 1/r**2 from the derivative in spherical coordinates ! b. (1/r**2)**2 from rho_lm being multiplied by r**2 ! (as the derivative is orthogonal to r you can multiply after deriving) grho_rad2(1:i%m,is) = grho_rad2(1:i%m,is)& + (aux(1:i%m)**2 + aux2(1:i%m)**2)& * g(i%t)%rm2(1:i%m)**3 ! Store vector components: IF (present(grho_rad)) THEN grho_rad(1:i%m,2,is) = aux(1:i%m) *g(i%t)%rm3(1:i%m) ! phi grho_rad(1:i%m,3,is) = aux2(1:i%m) *g(i%t)%rm3(1:i%m) ! theta ENDIF ENDDO spin if(TIMING) CALL stop_clock ('PAW_grad') END SUBROUTINE PAW_gradient !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! computes H potential from rho, used by PAW_h_energy and PAW_ddot SUBROUTINE PAW_h_potential(i, rho_lm, v_lm, energy) USE constants, ONLY : fpi, e2 USE radial_grids, ONLY : hartree USE uspp_param, ONLY : upf USE noncollin_module, ONLY : nspin_lsda USE ions_base, ONLY : ityp USE lsda_mod, ONLY : nspin USE atom, ONLY : g => rgrid TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info ! charge density as lm components already summed on spin: REAL(DP), INTENT(IN) :: rho_lm(i%m,i%l**2,nspin) REAL(DP), INTENT(OUT) :: v_lm (i%m,i%l**2) ! potential as lm components REAL(DP),INTENT(OUT),OPTIONAL :: energy ! if present, compute energy ! REAL(DP) :: aux(i%m) ! workspace REAL(DP) :: pref ! workspace INTEGER :: lm,l ! counter on composite angmom lm = l**2 +m INTEGER :: k ! counter on radial grid (only for energy) REAL(DP) :: e ! workspace if(TIMING) CALL start_clock ('PAW_h_pot') ! this loop computes the hartree potential using the following formula: ! l is the first argument in hartree subroutine ! r1 = min(r,r'); r2 = MAX(r,r') ! V_h(r) = \sum{lm} Y_{lm}(\hat{r})/(2l+1) \int dr' 4\pi r'^2 \rho^{lm}(r') (r1^l/r2^{l+1}) ! done here --> ^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^ <-- input to the hartree subroutine ! output from the h.s. --> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ v_lm=0.0_DP DO lm = 1, i%l**2 l = INT(sqrt(DBLE(lm-1))) ! l has to start from *zero* pref = e2*fpi/DBLE(2*l+1) DO k = 1, i%m aux(k) = pref * SUM(rho_lm(k,lm,1:nspin_lsda)) ENDDO ! CALL hartree(l, 2*l+2, i%m, g(i%t), aux(:), v_lm(:,lm)) ENDDO ! compute energy if required: ! E_h = \sum_lm \int v_lm(r) (rho_lm(r) r^2) dr IF(present(energy)) THEN energy = 0._dp DO lm = 1, i%l**2 ! I can use v_lm as workspace DO k = 1, i%m aux(k) = v_lm(k,lm) * SUM(rho_lm(k,lm,1:nspin_lsda)) ENDDO ! FIXME: CALL simpson (i%m, aux, g(i%t)%rab, e) ! CALL simpson (upf(i%t)%kkbeta, aux, g(i%t)%rab, e) ! ! Sum all the energies in PAW_ddot energy = energy + e ! ENDDO ! fix double counting energy = energy/2._dp ENDIF if(TIMING) CALL stop_clock ('PAW_h_pot') END SUBROUTINE PAW_h_potential !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! sum up pfuncs x occupation to build radial density's angular momentum components SUBROUTINE PAW_rho_lm(i, becsum, pfunc, rho_lm, aug) USE ions_base, ONLY : nat USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : nspin_mag USE uspp_param, ONLY : upf, nh, nhm USE uspp, ONLY : indv, ap, nhtolm,lpl,lpx USE constants, ONLY : eps12 USE atom, ONLY : g => rgrid TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info REAL(DP), INTENT(IN) :: becsum(nhm*(nhm+1)/2,nat,nspin_mag)! cross band occupation REAL(DP), INTENT(IN) :: pfunc(i%m,i%b,i%b) ! psi_i * psi_j REAL(DP), INTENT(OUT) :: rho_lm(i%m,i%l**2,nspin_mag) ! AE charge density on rad. grid REAL(DP), OPTIONAL,INTENT(IN) :: & aug(i%m,i%b*(i%b+1)/2,0:2*upf(i%t)%lmax) ! augmentation functions (only for PS part) REAL(DP) :: pref ! workspace (ap*becsum) INTEGER :: ih,jh, & ! counters for pfunc ih,jh = 1, nh (CRYSTAL index) nb,mb, & ! counters for pfunc nb,mb = 1, nbeta (ATOMIC index) ijh,nmb, & ! composite "triangular" index for pfunc nmb = 1,nh*(nh+1)/2 lm,lp,l, & ! counters for angular momentum lm = l**2+m ispin ! counter for spin (FIXME: may be unnecessary) ! This subroutine computes the angular momentum components of rho ! using the following formula: ! rho(\vec{r}) = \sum_{LM} Y_{LM} \sum_{i,j} (\hat{r}) a_{LM}^{(lm)_i(lm)_j} becsum_ij pfunc_ij(r) ! where a_{LM}^{(lm)_i(lm)_j} are the Clebsh-Gordan coefficients. ! ! actually different angular momentum components are stored separately: ! rho^{LM}(\vec{r}) = \sum_{i,j} (\hat{r}) a_{LM}^{(lm)_i(lm)_j} becsum_ij pfunc_ij(r) ! ! notice that pfunc's are already multiplied by r^2 and they are indexed on the atom ! (they only depends on l, not on m), the augmentation charge depend only on l ! but the becsum depend on both l and m. if(TIMING) CALL start_clock ('PAW_rho_lm') ! initialize density rho_lm(:,:,:) = 0._dp spins: DO ispin = 1, nspin_mag ijh = 0 ! loop on all pfunc for this kind of pseudo DO ih = 1, nh(i%t) DO jh = ih, nh(i%t) ijh = ijh+1 nb = indv(ih,i%t) mb = indv(jh,i%t) nmb = mb * (mb-1)/2 + nb ! mb has to be .ge. nb !write(*,'(99i4)') nb,mb,nmb IF (ABS(becsum(ijh,i%a,ispin)) < eps12) CYCLE ! angular_momentum: & DO lp = 1, lpx (nhtolm(jh,i%t), nhtolm(ih,i%t)) !lmaxq**2 ! the lpl array contains the possible combination of LM,lm_j,lm_j that ! have non-zero a_{LM}^{(lm)_i(lm)_j} (it saves some loops) lm = lpl (nhtolm(jh,i%t), nhtolm(ih,i%t), lp) ! ! becsum already contains a factor 2 for off-diagonal pfuncs pref = becsum(ijh,i%a,ispin) * ap(lm, nhtolm(ih,i%t), nhtolm(jh,i%t)) ! rho_lm(1:i%m,lm,ispin) = rho_lm(1:i%m,lm,ispin) & +pref * pfunc(1:i%m, nb, mb) IF (present(aug)) THEN ! if I'm doing the pseudo part I have to add the augmentation charge l = INT(SQRT(DBLE(lm-1))) ! l has to start from zero, lm = l**2 +m rho_lm(1:i%m,lm,ispin) = rho_lm(1:i%m,lm,ispin) & +pref * aug(1:i%m, nmb, l) ENDIF ! augfun ENDDO angular_momentum ENDDO !mb ENDDO !nb ENDDO spins if(TIMING) CALL stop_clock ('PAW_rho_lm') END SUBROUTINE PAW_rho_lm !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! build radial charge distribution from its spherical harmonics expansion SUBROUTINE PAW_lm2rad(i, ix, F_lm, F_rad, nspin) TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info INTEGER :: ix ! line of the ylm matrix to use ! actually it is one of the nx directions INTEGER, INTENT(IN) :: nspin REAL(DP), INTENT(IN) :: F_lm(i%m,i%l**2,nspin)! Y_lm expansion of rho REAL(DP), INTENT(OUT) :: F_rad(i%m,nspin) ! charge density on rad. grid ! INTEGER :: ispin, lm ! counters on angmom and spin if(TIMING) CALL start_clock ('PAW_lm2rad') F_rad(:,:) = 0._dp ! cycling on spin is a bit less general... spins: DO ispin = 1,nspin DO lm = 1, i%l**2 F_rad(:,ispin) = F_rad(:,ispin) +& rad(i%t)%ylm(ix,lm)*F_lm(:,lm,ispin) ENDDO ! lm ENDDO spins if(TIMING) CALL stop_clock ('PAW_lm2rad') END SUBROUTINE PAW_lm2rad !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! computes F_lm(r) = \int d \Omega F(r,th,ph) Y_lm(th,ph) SUBROUTINE PAW_rad2lm(i, F_rad, F_lm, lmax_loc, nspin) TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info INTEGER, INTENT(IN) :: nspin INTEGER, INTENT(IN) :: lmax_loc ! in some cases I have to keep higher angular components ! than the default ones (=lmaxq =the ones present in rho) REAL(DP), INTENT(OUT):: F_lm(i%m, lmax_loc**2, nspin) ! lm component of F up to lmax_loc REAL(DP), INTENT(IN) :: F_rad(i%m, rad(i%t)%nx, nspin)! radial samples of F ! INTEGER :: ix ! counter for integration INTEGER :: lm ! counter for angmom INTEGER :: ispin ! counter for spin INTEGER :: j if(TIMING) CALL start_clock ('PAW_rad2lm') !$omp parallel default(shared), private(ispin,lm,ix,j) DO ispin = 1,nspin !$omp do DO lm = 1,lmax_loc**2 F_lm(:,lm,ispin) = 0._dp DO ix = ix_s, ix_e DO j = 1, i%m F_lm(j, lm, ispin) = F_lm(j, lm, ispin) + F_rad(j,ix,ispin)* rad(i%t)%wwylm(ix,lm) ENDDO ENDDO ENDDO !$omp end do ENDDO !$omp end parallel ! ! This routine recollects the result within the paw communicator ! CALL mp_sum( F_lm, paw_comm ) if(TIMING) CALL stop_clock ('PAW_rad2lm') END SUBROUTINE PAW_rad2lm !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! computes F_lm(r) = \int d \Omega F(r,th,ph) Y_lm(th,ph) !!! duplicated version to work on vector fields, necessary for performance reasons SUBROUTINE PAW_rad2lm3(i, F_rad, F_lm, lmax_loc, nspin) TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info INTEGER, INTENT(IN) :: lmax_loc ! in some cases I have to keep higher angular components ! than the default ones (=lmaxq =the ones present in rho) REAL(DP), INTENT(OUT):: F_lm(i%m, 3, lmax_loc**2, nspin) ! lm component of F up to lmax_loc REAL(DP), INTENT(IN) :: F_rad(i%m, 3, rad(i%t)%nx, nspin)! radial samples of F ! REAL(DP) :: aux(i%m) ! optimization INTEGER, INTENT(IN) :: nspin INTEGER :: ix ! counter for integration INTEGER :: lm ! counter for angmom INTEGER :: ispin ! counter for spin if(TIMING) CALL start_clock ('PAW_rad2lm3') ! Third try: 50% faster than blind implementation (60% with prefetch) DO ispin = 1,nspin DO lm = 1,lmax_loc**2 aux(:) = 0._dp DO ix = ix_s, ix_e aux(1:i%m) = aux(1:i%m) + F_rad(1:i%m,1,ix,ispin) * rad(i%t)%wwylm(ix,lm) !CALL MM_PREFETCH( F_rad(1:i%m,1,MIN(ix+1,rad(i%t)%nx),ispin), 1 ) ENDDO F_lm(1:i%m, 1, lm, ispin) = aux(1:i%m) ! aux(:) = 0._dp DO ix = ix_s, ix_e aux(1:i%m) = aux(1:i%m) + F_rad(1:i%m,2,ix,ispin) * rad(i%t)%wwylm(ix,lm) !CALL MM_PREFETCH( F_rad(1:i%m,2,MIN(ix+1,rad(i%t)%nx),ispin), 1 ) ENDDO F_lm(1:i%m, 2, lm, ispin) = aux(1:i%m) ! aux(:) = 0._dp DO ix = ix_s, ix_e aux(1:i%m) = aux(1:i%m) + F_rad(1:i%m,3,ix,ispin) * rad(i%t)%wwylm(ix,lm) !CALL MM_PREFETCH( F_rad(1:i%m,3,MIN(ix+1,rad(i%t)%nx),ispin), 1 ) ENDDO F_lm(1:i%m, 3, lm, ispin) = aux(1:i%m) ENDDO ENDDO ! ! NB: this routine collects the result among the paw communicator ! CALL mp_sum( F_lm, paw_comm ) if(TIMING) CALL stop_clock ('PAW_rad2lm3') END SUBROUTINE PAW_rad2lm3 ! ! Computes dV_h and dV_xc using the "change of density" dbecsum provided ! Update the change of the descreening coefficients: ! D_ij = \int dv_Hxc p_ij - \int dvt_Hxc (pt_ij + augfun_ij) ! ! SUBROUTINE PAW_dpotential(dbecsum, becsum, int3, npe) USE atom, ONLY : g => rgrid USE ions_base, ONLY : nat, ityp USE mp, ONLY : mp_comm_split, mp_comm_free, mp_size, mp_rank USE noncollin_module, ONLY : nspin_lsda, nspin_mag USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nh, nhm, upf INTEGER, INTENT(IN) :: npe ! number of perturbations REAL(DP), INTENT(IN) :: becsum(nhm*(nhm+1)/2,nat,nspin_mag) ! cross band ! occupations COMPLEX(DP), INTENT(IN) :: dbecsum(nhm*(nhm+1)/2,nat,nspin_mag,npe)! COMPLEX(DP), INTENT(OUT) :: int3(nhm,nhm,npe,nat,nspin_mag) ! change of !descreening coefficients (AE - PS) INTEGER, PARAMETER :: AE = 1, PS = 2,& ! All-Electron and Pseudo XC = 1, H = 2 ! XC and Hartree REAL(DP), POINTER :: rho_core(:) ! pointer to AE/PS core charge density TYPE(paw_info) :: i ! minimal info on atoms INTEGER :: i_what ! counter on AE and PS INTEGER :: is ! spin index INTEGER :: lm ! counters on angmom and radial grid INTEGER :: nb, mb, nmb ! augfun indexes INTEGER :: ia,mykey,ia_s,ia_e ! atoms counters and indexes ! REAL(DP), ALLOCATABLE :: rho_lm(:,:,:) ! density expanded on Y_lm REAL(DP), ALLOCATABLE :: dv_lm(:,:,:) ! workspace: change of potential REAL(DP), ALLOCATABLE :: drhor_lm(:,:,:,:) ! change of density expanded ! on Y_lm (real part) REAL(DP), ALLOCATABLE :: drhoi_lm(:,:,:,:) ! change of density expanded ! on Y_lm (imaginary part) REAL(DP), ALLOCATABLE :: savedvr_lm(:,:,:,:) ! workspace: potential REAL(DP), ALLOCATABLE :: savedvi_lm(:,:,:,:) ! workspace: potential REAL(DP), ALLOCATABLE :: aux_lm(:) ! auxiliary radial function ! fake cross band occupations to select only one pfunc at a time: REAL(DP) :: becfake(nhm*(nhm+1)/2,nat,nspin_mag) REAL(DP) :: integral_r ! workspace REAL(DP) :: integral_i ! workspace REAL(DP) :: sgn ! +1 for AE -1 for PS INTEGER :: ipert CALL start_clock('PAW_dpot') ! Some initialization becfake(:,:,:) = 0._dp int3 = (0.0_DP, 0.0_DP) ! ! Parallel: divide tasks among all the processor for this image ! (i.e. all the processors except for NEB and similar) CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) ! build the group of all the procs associated with the same atom ! CALL mp_comm_split( intra_image_comm, ia_s - 1, me_image, paw_comm ) ! me_paw = mp_rank( paw_comm ) nproc_paw = mp_size( paw_comm ) ! atoms: DO ia = ia_s, ia_e ! i%a = ia ! atom's index i%t = ityp(ia) ! type of atom ia i%m = g(i%t)%mesh ! radial mesh size for atom i%t i%b = upf(i%t)%nbeta ! number of beta functions for i%t i%l = upf(i%t)%lmax_rho+1 ! max ang.mom. in augmentation for ia ! ifpaw: IF (upf(i%t)%tpawp) THEN ! ! Initialize parallelization over the directions ! nx_loc = ldim_block( rad(i%t)%nx, nproc_paw, me_paw ) ix_s = gind_block( 1, rad(i%t)%nx, nproc_paw, me_paw ) ix_e = ix_s + nx_loc - 1 ! ! Arrays are allocated inside the cycle to allow reduced ! memory usage as differnt atoms have different meshes ! ALLOCATE(dv_lm(i%m,i%l**2,nspin_mag)) ALLOCATE(savedvr_lm(i%m,i%l**2,nspin_mag,npe)) ALLOCATE(savedvi_lm(i%m,i%l**2,nspin_mag,npe)) ALLOCATE(rho_lm(i%m,i%l**2,nspin_mag)) ALLOCATE(drhor_lm(i%m,i%l**2,nspin_mag,npe)) ALLOCATE(drhoi_lm(i%m,i%l**2,nspin_mag,npe)) ALLOCATE(aux_lm(i%m)) ! whattodo: DO i_what = AE, PS NULLIFY(rho_core) IF (i_what == AE) THEN CALL PAW_rho_lm(i, becsum, upf(i%t)%paw%pfunc, rho_lm) rho_core => upf(i%t)%paw%ae_rho_atc sgn = +1._dp ELSE CALL PAW_rho_lm(i, becsum, upf(i%t)%paw%ptfunc, rho_lm, upf(i%t)%qfuncl) rho_core => upf(i%t)%rho_atc sgn = -1._dp ENDIF ! ! Compute the change of the charge density. Complex because the ! displacements might be complex ! DO ipert=1,npe IF (i_what == AE) THEN becfake(:,ia,:)=DBLE(dbecsum(:,ia,:,ipert)) CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%pfunc, drhor_lm(1,1,1,ipert)) becfake(:,ia,:)=AIMAG(dbecsum(:,ia,:,ipert)) CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%pfunc, drhoi_lm(1,1,1,ipert)) ELSE becfake(:,ia,:)=DBLE(dbecsum(:,ia,:,ipert)) CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%ptfunc, drhor_lm(1,1,1,ipert), upf(i%t)%qfuncl) becfake(:,ia,:)=AIMAG(dbecsum(:,ia,:,ipert)) CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%ptfunc, drhoi_lm(1,1,1,ipert), upf(i%t)%qfuncl) END IF END DO savedvr_lm(:,:,:,:) = 0._dp savedvi_lm(:,:,:,:) = 0._dp DO ipert=1,npe ! ! Change of Hartree potential ! CALL PAW_h_potential(i, drhor_lm(1,1,1,ipert), dv_lm(:,:,1)) DO is = 1,nspin_lsda savedvr_lm(:,:,is,ipert) = dv_lm(:,:,1) ENDDO CALL PAW_h_potential(i, drhoi_lm(1,1,1,ipert), dv_lm(:,:,1)) DO is = 1,nspin_lsda savedvi_lm(:,:,is,ipert) = dv_lm(:,:,1) ENDDO ! ! Change of Exchange-correlation potential ! CALL PAW_dxc_potential(i, drhor_lm(1,1,1,ipert), & rho_lm, rho_core, dv_lm) savedvr_lm(:,:,:,ipert) = savedvr_lm(:,:,:,ipert)+dv_lm(:,:,:) CALL PAW_dxc_potential(i, drhoi_lm(1,1,1,ipert), & rho_lm, rho_core, dv_lm) savedvi_lm(:,:,:,ipert) = savedvi_lm(:,:,:,ipert)+dv_lm(:,:,:) END DO ! spins: DO is = 1, nspin_mag nmb = 0 ! loop on all pfunc for this kind of pseudo becfake=0.0_DP DO nb = 1, nh(i%t) DO mb = nb, nh(i%t) nmb = nmb+1 becfake(nmb,ia,is) = 1._dp IF (i_what == AE) THEN CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%pfunc, rho_lm) ELSE CALL PAW_rho_lm(i, becfake, upf(i%t)%paw%ptfunc, & rho_lm, upf(i%t)%qfuncl) ENDIF ! ! Integrate the change of Hxc potential and the partial waves ! to find the change of the D coefficients: D^1-~D^1 ! DO ipert=1,npe DO lm = 1,i%l**2 aux_lm(1:i%m)=rho_lm(1:i%m,lm,is)* & savedvr_lm(1:i%m,lm,is,ipert) CALL simpson (upf(i%t)%kkbeta,aux_lm, & g(i%t)%rab,integral_r) aux_lm(1:i%m)=rho_lm(1:i%m,lm,is)* & savedvi_lm(1:i%m,lm,is,ipert) CALL simpson (upf(i%t)%kkbeta,aux_lm, & g(i%t)%rab,integral_i) int3(nb,mb,ipert,i%a,is) = & int3(nb,mb,ipert,i%a,is) & + sgn * CMPLX(integral_r, integral_i,kind=DP) ENDDO IF (nb /= mb) int3(mb,nb,ipert,i%a,is) = & int3(nb,mb,ipert,i%a,is) ENDDO becfake(nmb,ia,is) = 0._dp ENDDO ! mb ENDDO ! nb ENDDO spins ENDDO whattodo ! cleanup DEALLOCATE(rho_lm) DEALLOCATE(drhor_lm) DEALLOCATE(drhoi_lm) DEALLOCATE(savedvr_lm) DEALLOCATE(savedvi_lm) DEALLOCATE(dv_lm) DEALLOCATE(aux_lm) ! ENDIF ifpaw ENDDO atoms #ifdef __MPI IF( mykey /= 0 ) int3 = 0.0_dp CALL mp_sum(int3, intra_image_comm) #endif CALL mp_comm_free( paw_comm ) CALL stop_clock('PAW_dpot') END SUBROUTINE PAW_dpotential SUBROUTINE PAW_dxc_potential(i, drho_lm, rho_lm, rho_core, v_lm) ! ! This routine computes the change of the exchange and correlation ! potential in the spherical basis. It receives as input the charge ! density and its variation. ! USE spin_orb, ONLY : domag USE noncollin_module, ONLY : nspin_mag USE lsda_mod, ONLY : nspin USE atom, ONLY : g => rgrid USE funct, ONLY : dmxc, dmxc_spin, dmxc_nc, & dft_is_gradient TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info REAL(DP), INTENT(IN) :: rho_lm(i%m,i%l**2,nspin_mag) ! charge density as ! lm components REAL(DP), INTENT(IN) :: drho_lm(i%m,i%l**2,nspin_mag)! change of charge ! density as lm components REAL(DP), INTENT(IN) :: rho_core(i%m) ! core charge, radial ! and spherical REAL(DP), INTENT(OUT) :: v_lm(i%m,i%l**2,nspin_mag) ! potential density ! as lm components REAL(DP), ALLOCATABLE :: dmuxc(:,:,:) ! fxc in the lsda case REAL(DP), ALLOCATABLE :: v_rad(:,:,:) ! radial potential ! (to be integrated) REAL(DP), ALLOCATABLE :: rho_rad(:,:) ! workspace (only one ! radial slice of rho) REAL(DP) :: rho_loc(nspin_mag) ! workspace REAL(DP) :: rhotot, rhoup, rhodw ! auxiliary REAL(DP) :: auxdmuxc(nspin_mag,nspin_mag) ! auxiliary space INTEGER :: is,js,ix,k ! counters on directions ! and radial grid CALL start_clock ('PAW_dxc_pot') ALLOCATE(dmuxc(i%m,nspin_mag,nspin_mag)) ALLOCATE(v_rad(i%m,rad(i%t)%nx,nspin_mag)) ALLOCATE(rho_rad(i%m,nspin_mag)) ! DO ix = ix_s, ix_e ! ! *** LDA (and LSDA) part (no gradient correction) *** ! convert _lm density to real density along ix ! CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin_mag) ! ! Compute the fxc function on the radial mesh along ix ! DO k = 1,i%m rho_loc(1:nspin_mag) = rho_rad(k,1:nspin_mag)*g(i%t)%rm2(k) IF (nspin_mag==4) THEN rhotot = rho_loc(1) + rho_core (k) CALL dmxc_nc (rhotot, rho_loc(2), rho_loc(3), rho_loc(4), auxdmuxc) DO is=1,nspin_mag DO js=1,nspin_mag dmuxc(k,is,js)=auxdmuxc(is,js) END DO END DO ELSEIF (nspin_mag==2) THEN rhoup = rho_loc(1) + 0.5_DP * rho_core (k) rhodw = rho_loc(2) + 0.5_DP * rho_core (k) CALL dmxc_spin (rhoup, rhodw, dmuxc(k,1,1), dmuxc(k,2,1), & dmuxc(k,1,2), dmuxc(k,2,2) ) ELSE rhotot = rho_loc(1) + rho_core (k) IF (rhotot.GT.1.d-30) v_rad (k,ix,1) = dmxc (rhotot) IF (rhotot.LT. - 1.d-30) v_rad(k, ix, 1) = - dmxc ( - rhotot) IF (rhotot.LT.1.d-30.AND.rhotot.GT.-1.d-30) v_rad(k,ix,1)=0.0_DP ENDIF ENDDO ! ! Compute the change of the charge on the radial mesh along ix ! CALL PAW_lm2rad(i, ix, drho_lm, rho_rad, nspin_mag) ! ! fxc * dn ! IF (nspin_mag==1) THEN DO k = 1,i%m v_rad(k,ix,1)=v_rad(k,ix,1)*rho_rad(k,1)*g(i%t)%rm2(k) ENDDO ELSE DO k = 1,i%m DO is=1,nspin_mag v_rad(k,ix,is)=0.0_DP DO js=1,nspin_mag v_rad(k,ix,is)= v_rad(k,ix,is) + & dmuxc(k,is,js)*rho_rad(k,js)*g(i%t)%rm2(k) ENDDO ENDDO ENDDO ENDIF ENDDO ! ! Recompose the sph. harm. expansion ! CALL PAW_rad2lm(i, v_rad, v_lm, i%l, nspin_mag) ! ! Add gradient correction, if necessary ! IF( dft_is_gradient() ) & CALL PAW_dgcxc_potential(i,rho_lm,rho_core,drho_lm,v_lm) DEALLOCATE(rho_rad) DEALLOCATE(v_rad) DEALLOCATE(dmuxc) CALL stop_clock ('PAW_dxc_pot') RETURN END SUBROUTINE PAW_dxc_potential ! ! add gradient correction to dvxc. Both unpolarized and ! spin polarized cases are supported. ! SUBROUTINE PAW_dgcxc_potential(i,rho_lm,rho_core, drho_lm, v_lm) USE noncollin_module, ONLY : nspin_mag, nspin_gga USE lsda_mod, ONLY : nspin USE atom, ONLY : g => rgrid USE constants, ONLY : pi,e2, eps => eps12, eps2 => eps24 USE funct, ONLY : gcxc, gcx_spin, gcc_spin, dgcxc, & dgcxc_spin ! TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info REAL(DP), INTENT(IN) :: rho_lm(i%m,i%l**2,nspin_mag) ! charge density as lm components REAL(DP), INTENT(IN) :: drho_lm(i%m,i%l**2,nspin_mag) ! change of charge density as lm components REAL(DP), INTENT(IN) :: rho_core(i%m) ! core charge, radial and spherical REAL(DP), INTENT(INOUT) :: v_lm(i%m,i%l**2,nspin_mag) ! potential to be updated REAL(DP) :: zero(i%m) ! dcore charge, not used REAL(DP) :: rho_rad(i%m,nspin_gga)! charge density sampled REAL(DP) :: drho_rad(i%m,nspin_gga)! charge density sampled REAL(DP) :: grad(i%m,3,nspin_gga) ! gradient REAL(DP) :: grad2(i%m,nspin_gga) ! square modulus of gradient ! (first of charge, than of hamiltonian) REAL(DP) :: dgrad(i%m,3,nspin_gga) ! gradient REAL(DP) :: dgrad2(i%m,nspin_gga) ! square modulus of gradient ! of dcharge REAL(DP) :: gc_rad(i%m,rad(i%t)%nx,nspin_gga) ! GC correction to V (radial samples) REAL(DP) :: gc_lm(i%m,i%l**2,nspin_gga) ! GC correction to V (Y_lm expansion) REAL(DP) :: h_rad(i%m,3,rad(i%t)%nx,nspin_gga)! hamiltonian (vector field) REAL(DP) :: h_lm(i%m,3,(i%l+rad(i%t)%ladd)**2,nspin_gga)! hamiltonian (vector field) !!! ^^^^^^^^^^^^^^^^^^ expanded to higher lm than rho !!! REAL(DP) :: vout_lm(i%m,i%l**2,nspin_gga) ! potential to be updated REAL(DP) :: rhoout_lm(i%m,i%l**2,nspin_gga) ! change of charge density as lm components REAL(DP) :: drhoout_lm(i%m,i%l**2,nspin_gga) ! change of charge density as lm components REAL(DP) :: segni_rad(i%m, rad(i%t)%nx) REAL(DP) :: div_h(i%m,i%l**2,nspin_gga) ! div(hamiltonian) INTEGER :: k, ix, is, lm ! counters on spin and mesh REAL(DP) :: sx,sc,v1x,v2x,v1c,v2c ! workspace REAL(DP) :: v1xup, v1xdw, v2xup, v2xdw, v1cup, v1cdw ! workspace REAL(DP) :: vrrx,vsrx,vssx,vrrc,vsrc,vssc ! workspace REAL(DP) :: dvxc_rr, dvxc_sr, dvxc_ss, dvxc_s ! workspace REAL(DP) :: vrrxup, vrrxdw, vrsxup, vrsxdw, vssxup, vssxdw, & vrrcup, vrrcdw, vrscup, vrscdw, vrzcup, vrzcdw REAL(DP) :: dsvxc_rr(2,2), dsvxc_sr(2,2), & dsvxc_ss(2,2), dsvxc_s(2,2) ! workspace REAL(DP) :: a(2,2,2), b(2,2,2,2), c(2,2,2) REAL(DP) :: arho, s1 ! workspace REAL(DP) :: rup, rdw, co2 ! workspace REAL(DP) :: rh, zeta, grh2 REAL(DP) :: grho(3,2), ps(2,2), ps1(3,2,2), ps2(3,2,2,2) INTEGER :: js, ls, ks, ipol if(TIMING) CALL start_clock ('PAW_dgcxc_v') zero=0.0_DP gc_rad=0.0_DP h_rad=0.0_DP vout_lm=0.0_DP IF ( nspin_mag == 1 ) THEN ! ! GGA case - no spin polarization ! DO ix = ix_s, ix_e ! CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin_mag) CALL PAW_gradient(i, ix, rho_lm, rho_rad, rho_core, grad2, grad) CALL PAW_lm2rad(i, ix, drho_lm, drho_rad, nspin_mag) CALL PAW_gradient(i, ix, drho_lm, drho_rad, zero, dgrad2, dgrad) DO k = 1, i%m ! arho is the absolute value of real charge, sgn is its sign arho = rho_rad(k,1)*g(i%t)%rm2(k) + rho_core(k) arho = ABS(arho) s1 = grad (k, 1, 1) * dgrad(k, 1, 1) + & grad (k, 2, 1) * dgrad(k, 2, 1) + & grad (k, 3, 1) * dgrad(k, 3, 1) ! I am using grad(rho)**2 here, so its eps has to be eps**2 IF ( (arho>eps) .and. (grad2(k,1)>eps2) ) THEN CALL gcxc(arho,grad2(k,1),sx,sc,v1x,v2x,v1c,v2c) CALL dgcxc(arho,grad2(k,1),vrrx,vsrx,vssx,vrrc,vsrc,vssc) dvxc_rr = vrrx + vrrc dvxc_sr = vsrx + vsrc dvxc_ss = vssx + vssc dvxc_s = v2x + v2c gc_rad(k,ix,1) = dvxc_rr*drho_rad(k, 1)*g(i%t)%rm2(k) & + dvxc_sr*s1 h_rad(k,:,ix,1) = ((dvxc_sr*drho_rad(k, 1)*g(i%t)%rm2(k) + & dvxc_ss*s1)*grad(k,:, 1) + & dvxc_s*dgrad(k,:,1))*g(i%t)%r2(k) ELSE gc_rad(k,ix,1) = 0._dp h_rad(k,:,ix,1) = 0._dp ENDIF ENDDO ENDDO ELSEIF ( nspin_mag == 2 .OR. nspin_mag == 4 ) THEN ! ! \sigma-GGA case - spin polarization ! IF (nspin_mag==4) THEN CALL compute_drho_spin_lm(i, rho_lm, drho_lm, rhoout_lm, & drhoout_lm, segni_rad) ELSE rhoout_lm=rho_lm drhoout_lm=drho_lm ENDIF DO ix = ix_s, ix_e ! CALL PAW_lm2rad(i, ix, rhoout_lm, rho_rad, nspin_gga) CALL PAW_gradient(i, ix, rhoout_lm, rho_rad, rho_core, & grad2, grad) CALL PAW_lm2rad(i, ix, drhoout_lm, drho_rad, nspin_gga) CALL PAW_gradient(i, ix, drhoout_lm, drho_rad, zero, dgrad2, dgrad) ! DO k = 1,i%m ! ! Prepare the necessary quantities ! rho_core is considered half spin up and half spin down: co2 = rho_core(k)/DBLE(nspin_gga) rup = rho_rad(k,1)*g(i%t)%rm2(k) + co2 rdw = rho_rad(k,2)*g(i%t)%rm2(k) + co2 CALL gcx_spin (rup, rdw, grad2(k,1), grad2(k,2), & sx, v1xup, v1xdw, v2xup, v2xdw) grho(:,:)=grad(k,:,:) CALL dgcxc_spin (rup, rdw, grho (1,1), grho (1, 2), vrrxup, & vrrxdw, vrsxup, vrsxdw, vssxup, vssxdw, & vrrcup, vrrcdw, vrscup, vrscdw, vssc, vrzcup, vrzcdw) rh = rup + rdw ! total charge IF ( rh > eps ) THEN zeta = (rup - rdw ) / rh ! polarization ! grh2 = (grad(k,1,1) + grad(k,1,2))**2 & + (grad(k,2,1) + grad(k,2,2))**2 & + (grad(k,3,1) + grad(k,3,2))**2 CALL gcc_spin (rh, zeta, grh2, sc, v1cup, v1cdw, v2c) dsvxc_rr (1, 1) = vrrxup + vrrcup + vrzcup *(1.d0 - zeta) / rh dsvxc_rr (1, 2) = vrrcup - vrzcup * (1.d0 + zeta) / rh dsvxc_rr (2, 1) = vrrcdw + vrzcdw * (1.d0 - zeta) / rh dsvxc_rr (2, 2) = vrrxdw + vrrcdw - vrzcdw *(1.d0 + zeta) / rh dsvxc_s (1, 1) = v2xup + v2c dsvxc_s (1, 2) = v2c dsvxc_s (2, 1) = v2c dsvxc_s (2, 2) = v2xdw + v2c ELSE sc = 0._DP v1cup = 0._DP v1cdw = 0._DP v2c = 0._DP dsvxc_rr = 0._DP dsvxc_s = 0._DP ENDIF dsvxc_sr (1, 1) = vrsxup + vrscup dsvxc_sr (1, 2) = vrscup dsvxc_sr (2, 1) = vrscdw dsvxc_sr (2, 2) = vrsxdw + vrscdw dsvxc_ss (1, 1) = vssxup + vssc dsvxc_ss (1, 2) = vssc dsvxc_ss (2, 1) = vssc dsvxc_ss (2, 2) = vssxdw + vssc ps (:,:) = (0._DP, 0._DP) DO is = 1, nspin_gga DO js = 1, nspin_gga ps1(:, is, js)=drho_rad(k,is)*g(i%t)%rm2(k)*grad(k,:,js) DO ipol=1,3 ps(is, js)=ps(is,js)+grad(k,ipol,is)*dgrad(k,ipol,js) ENDDO DO ks = 1, nspin_gga IF (is == js .AND. js == ks) THEN a (is, js, ks) = dsvxc_sr (is, is) c (is, js, ks) = dsvxc_sr (is, is) ELSE IF (is == 1) THEN a (is, js, ks) = dsvxc_sr (1, 2) ELSE a (is, js, ks) = dsvxc_sr (2, 1) ENDIF IF (js == 1) THEN c (is, js, ks) = dsvxc_sr (1, 2) ELSE c (is, js, ks) = dsvxc_sr (2, 1) ENDIF ENDIF ps2 (:, is, js, ks) = ps (is, js) * grad (k,:,ks) DO ls = 1, nspin_gga IF (is == js .AND. js == ks .AND. ks == ls) THEN b (is, js, ks, ls) = dsvxc_ss (is, is) ELSE IF (is == 1) THEN b (is, js, ks, ls) = dsvxc_ss (1, 2) ELSE b (is, js, ks, ls) = dsvxc_ss (2, 1) ENDIF ENDIF ENDDO ENDDO ENDDO ENDDO DO is = 1, nspin_gga DO js = 1, nspin_gga gc_rad(k,ix,is) = gc_rad(k,ix,is)+ dsvxc_rr (is,js) & *drho_rad(k, js)*g(i%t)%rm2(k) h_rad(k,:,ix,is) = h_rad(k,:,ix,is) + & dsvxc_s (is,js) * dgrad(k,:,js) DO ks = 1, nspin_gga gc_rad(k,ix,is) = gc_rad(k,ix,is)+a(is,js,ks)*ps(js,ks) h_rad(k,:,ix,is) = h_rad(k,:,ix,is) + & c (is, js, ks) * ps1 (:, js, ks) DO ls = 1, nspin_gga h_rad(k,:,ix,is) = h_rad(k,:,ix,is) + & b (is, js, ks, ls) * ps2 (:, js, ks, ls) ENDDO ENDDO ENDDO ENDDO h_rad(k,:,ix,:)=h_rad(k,:,ix,:)*g(i%t)%r2(k) ENDDO ! k ENDDO ! ix ELSE CALL errore('PAW_gcxc_v', 'unknown spin number', 2) ENDIF ! ! convert the first part of the GC correction back to spherical harmonics CALL PAW_rad2lm(i, gc_rad, gc_lm, i%l, nspin_gga) ! ! We need the divergence of h to calculate the last part of the exchange ! and correlation potential. First we have to convert H to its Y_lm expansion DO ix = ix_s, ix_e h_rad(1:i%m,3,ix,1:nspin_gga)=h_rad(1:i%m,3,ix,1:nspin_gga)& /rad(i%t)%sin_th(ix) ENDDO CALL PAW_rad2lm3(i, h_rad, h_lm, i%l+rad(i%t)%ladd, nspin_gga) ! ! Compute div(H) CALL PAW_divergence(i, h_lm, div_h, i%l+rad(i%t)%ladd, i%l) ! input max lm --^ ^-- output max lm ! Finally sum it back into v_xc DO is = 1,nspin_gga DO lm = 1,i%l**2 vout_lm(1:i%m,lm,is) = vout_lm(1:i%m,lm,is) + & e2*(gc_lm(1:i%m,lm,is)-div_h(1:i%m,lm,is)) ENDDO ENDDO ! ! In the noncollinear case we have to calculate the four components of ! the potential ! IF (nspin_mag == 4 ) THEN CALL compute_dpot_nonc(i,vout_lm,v_lm,segni_rad,rho_lm,drho_lm) ELSE v_lm(:,:,1:nspin_mag)=v_lm(:,:,1:nspin_mag)+vout_lm(:,:,1:nspin_mag) ENDIF if(TIMING) CALL stop_clock ('PAW_dgcxc_v') END SUBROUTINE PAW_dgcxc_potential ! SUBROUTINE compute_rho_spin_lm(i,rho_lm,rhoout_lm,segni_rad) ! ! This subroutine diagonalizes the spin density matrix and gives ! the spin-up and spin-down components of the charge. In input ! the spin_density is decomposed into the lm components and in ! output the spin-up and spin-down densities are decomposed into ! the lm components. segni_rad is an output variable with the sign ! of the direction of the magnetization in each point. ! USE kinds, ONLY : dp USE constants, ONLY: eps12 USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : ux, nspin_gga, nspin_mag USE uspp_param, ONLY : upf USE atom, ONLY : g => rgrid USE io_global, ONLY : stdout TYPE(paw_info), INTENT(IN) :: i REAL(DP), INTENT(IN) :: rho_lm(i%m, i%l**2, nspin) ! input: the four components of the charge REAL(DP), INTENT(OUT) :: rhoout_lm(i%m, i%l**2, nspin_gga) ! output: the spin up and spin down charge REAL(DP), INTENT(OUT) :: segni_rad(i%m, rad(i%t)%nx) ! output: keep track of the spin direction REAL(DP) :: rho_rad(i%m, nspin) ! auxiliary: the charge+mag along a line REAL(DP) :: rhoout_rad(i%m, rad(i%t)%nx, nspin_gga) ! auxiliary: rho up and down along a line REAL(DP) :: mag ! modulus of the magnetization REAL(DP) :: m(3) INTEGER :: ix, k, ipol, kpol ! counter on mesh points IF (nspin /= 4) CALL errore('compute_rho_spin_lm','called in the wrong case',1) segni_rad=0.0_DP DO ix = ix_s, ix_e CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin) IF (with_small_so) CALL add_small_mag(i,ix,rho_rad) DO k=1, i%m rho_rad(k, 1:nspin) = rho_rad(k, 1:nspin)*g(i%t)%rm2(k) mag = sqrt( rho_rad(k,2)**2 + rho_rad(k,3)**2 + rho_rad(k,4)**2 ) ! ! Choose rhoup and rhodw depending on the projection of the magnetization ! on the chosen direction ! IF (mag.LT.eps12) THEN segni_rad(k,ix)=1.0_DP ELSE DO ipol=1,3 m(ipol)=rho_rad(k,1+ipol)/mag ENDDO ! ! The axis ux is chosen in the corresponding routine in real space. ! segni_rad(k,ix)=SIGN(1.0_DP, m(1)*ux(1)+m(2)*ux(2)+m(3)*ux(3)) ENDIF rhoout_rad(k, ix, 1)= 0.5d0*( rho_rad(k,1) + segni_rad(k,ix)*mag )* & g(i%t)%r2(k) rhoout_rad(k, ix, 2)= 0.5d0*( rho_rad(k,1) - segni_rad(k,ix)*mag )* & g(i%t)%r2(k) ENDDO ENDDO CALL PAW_rad2lm(i, rhoout_rad, rhoout_lm, i%l, nspin_gga) #ifdef __MPI CALL mp_sum( segni_rad, paw_comm ) #endif RETURN END SUBROUTINE compute_rho_spin_lm ! SUBROUTINE compute_pot_nonc(i,vout_lm,v_lm,segni_rad,rho_lm) ! ! This subroutine receives the GGA potential for spin up and ! spin down and calculates the exchange and correlation potential and ! magnetic field. ! USE kinds, ONLY : dp USE constants, ONLY: eps12 USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : nspin_gga, nspin_mag USE uspp_param, ONLY : upf USE atom, ONLY : g => rgrid USE io_global, ONLY : stdout TYPE(paw_info), INTENT(IN) :: i REAL(DP), INTENT(IN) :: rho_lm(i%m, i%l**2, nspin) ! input: the charge and magnetization densities REAL(DP), INTENT(IN) :: vout_lm(i%m, i%l**2, nspin_gga) ! input: the spin up and spin down charges REAL(DP), INTENT(IN) :: segni_rad(i%m, rad(i%t)%nx) ! input: keep track of the direction of the magnetization REAL(DP), INTENT(INOUT) :: v_lm(i%m, i%l**2, nspin) ! output: the xc potential and magnetic field REAL(DP) :: vsave_lm(i%m, i%l**2, nspin) ! auxiliary: v_lm is updated REAL(DP) :: gsave_lm(i%m, i%l**2, nspin) ! auxiliary: g_lm is updated REAL(DP) :: vout_rad(i%m, nspin_gga) ! auxiliary: the potential along a line REAL(DP) :: rho_rad(i%m, nspin) ! auxiliary: the charge+mag along a line REAL(DP) :: v_rad(i%m, rad(i%t)%nx, nspin) ! auxiliary: rho up and down along a line REAL(DP) :: g_rad(i%m, rad(i%t)%nx, nspin) ! auxiliary: rho up and down along a line REAL(DP) :: mag ! modulus of the magnetization integer :: ix, k, ipol, kpol ! counter on mesh points IF (nspin /= 4) CALL errore('compute_pot_nonc','called in the wrong case',1) v_rad=0.0_DP IF (upf(i%t)%has_so.and.i%ae==1) g_rad=0.0_DP DO ix = ix_s, ix_e CALL PAW_lm2rad(i, ix, vout_lm, vout_rad, nspin_gga) CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin_mag) IF (with_small_so) CALL add_small_mag(i,ix,rho_rad) DO k=1, i%m rho_rad(k, 1:nspin) = rho_rad(k, 1:nspin) * g(i%t)%rm2(k) mag = sqrt( rho_rad(k,2)**2 + rho_rad(k,3)**2 + rho_rad(k,4)**2 ) v_rad(k, ix, 1) = 0.5_DP * ( vout_rad(k,1) + vout_rad(k,2) ) vs_rad(k,ix,i%a) = 0.5_DP * ( vout_rad(k,1) - vout_rad(k,2) ) ! ! Choose rhoup and rhodw depending on the projection of the magnetization ! on the chosen direction ! IF (mag.GT.eps12) THEN DO ipol=2,4 v_rad(k, ix, ipol) = vs_rad(k,ix,i%a) * segni_rad(k,ix) * & rho_rad(k,ipol) / mag ENDDO ENDIF ENDDO IF (with_small_so) CALL compute_g(i,ix,v_rad,g_rad) ENDDO CALL PAW_rad2lm(i, v_rad, vsave_lm, i%l, nspin) v_lm=v_lm+vsave_lm IF (with_small_so) THEN CALL PAW_rad2lm(i, g_rad, gsave_lm, i%l, nspin) g_lm=g_lm+gsave_lm ENDIF RETURN END SUBROUTINE compute_pot_nonc ! SUBROUTINE compute_drho_spin_lm(i, rho_lm, drho_lm, rhoout_lm, & drhoout_lm, segni_rad) ! ! This routine receives as input the induced charge and magnetization ! densities and gives as output the spin up and spin down components of ! the induced densities ! ! USE kinds, ONLY : dp USE constants, ONLY : eps12 USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : ux, nspin_gga USE atom, ONLY : g => rgrid USE io_global, ONLY : stdout TYPE(paw_info), INTENT(IN) :: i REAL(DP), INTENT(IN) :: rho_lm(i%m, i%l**2, nspin) ! input: the four components of the charge REAL(DP), INTENT(IN) :: drho_lm(i%m, i%l**2, nspin) ! input: the four components of the induced charge REAL(DP), INTENT(OUT) :: rhoout_lm(i%m, i%l**2, nspin_gga) ! output: the spin up and spin down charge REAL(DP), INTENT(OUT) :: drhoout_lm(i%m, i%l**2, nspin_gga) ! output: the induced spin-up and spin-down charge REAL(DP), INTENT(OUT) :: segni_rad(i%m, rad(i%t)%nx) ! output: keep track of the magnetization direction REAL(DP) :: rho_rad(i%m, nspin) ! auxiliary: the charge+mag along a line REAL(DP) :: drho_rad(i%m, nspin) ! auxiliary: the induced ch+mag along a line REAL(DP) :: rhoout_rad(i%m, rad(i%t)%nx, nspin_gga) ! auxiliary: rho up and down along a line REAL(DP) :: drhoout_rad(i%m, rad(i%t)%nx, nspin_gga) ! auxiliary: the charge of the charge+mag along a line REAL(DP) :: mag ! modulus of the magnetization REAL(DP) :: prod REAL(DP) :: m(3) integer :: ix, k, ipol ! counter on mesh points IF (nspin /= 4) CALL errore('compute_drho_spin_lm','called in the wrong case',1) DO ix = ix_s, ix_e CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin) CALL PAW_lm2rad(i, ix, drho_lm, drho_rad, nspin) ! ! Qui manca il pezzo della small component ! DO k=1, i%m mag = sqrt( rho_rad(k,2)**2 + rho_rad(k,3)**2 + rho_rad(k,4)**2 ) ! ! Choose rhoup and rhodw depending on the projection of the magnetization ! on the chosen direction ! IF (mag*g(i%t)%rm2(k).LT.eps12) THEN segni_rad(k,ix)=1.0_DP ELSE DO ipol=1,3 m(ipol)=rho_rad(k,1+ipol)/mag ENDDO ! ! The axis ux is chosen in the corresponding routine in real space. ! segni_rad(k,ix)=sign(1.0_DP, m(1)*ux(1)+m(2)*ux(2)+m(3)*ux(3)) ENDIF rhoout_rad(k, ix, 1)= 0.5d0*( rho_rad(k,1) + segni_rad(k,ix)*mag ) rhoout_rad(k, ix, 2)= 0.5d0*( rho_rad(k,1) - segni_rad(k,ix)*mag ) drhoout_rad(k, ix, 1)= 0.5d0 * drho_rad(k,1) drhoout_rad(k, ix, 2)= 0.5d0 * drho_rad(k,1) IF (mag*g(i%t)%rm2(k)>eps12) THEN prod=0.0_DP DO ipol=1,3 prod=prod + m(ipol) * drho_rad(k,ipol+1) ENDDO prod=0.5_DP * prod drhoout_rad(k, ix, 1)= drhoout_rad(k,ix,1) + segni_rad(k,ix) * prod drhoout_rad(k, ix, 2)= drhoout_rad(k,ix,2) - segni_rad(k,ix) * prod ENDIF ENDDO ENDDO CALL PAW_rad2lm(i, rhoout_rad, rhoout_lm, i%l, nspin_gga) CALL PAW_rad2lm(i, drhoout_rad, drhoout_lm, i%l, nspin_gga) RETURN END SUBROUTINE compute_drho_spin_lm ! SUBROUTINE compute_dpot_nonc(i,vout_lm,v_lm,segni_rad,rho_lm,drho_lm) ! ! Anche qui manca ancora il pezzo dovuto alla small component. ! This subroutine receives the GGA potential for spin up and ! spin down and calculate the effective potential and the effective ! magnetic field. ! USE kinds, ONLY : dp USE constants, ONLY: eps12 USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : nspin_gga USE atom, ONLY : g => rgrid USE io_global, ONLY : stdout TYPE(paw_info), INTENT(IN) :: i REAL(DP), INTENT(IN) :: rho_lm(i%m, i%l**2, nspin) ! input: the four components of the charge REAL(DP), INTENT(IN) :: drho_lm(i%m, i%l**2, nspin) ! input: the four components of the charge REAL(DP), INTENT(IN) :: vout_lm(i%m, i%l**2, nspin_gga) ! output: the spin up and spin down charge REAL(DP), INTENT(INOUT) :: v_lm(i%m, i%l**2, nspin) ! output: the spin up and spin down charge REAL(DP), INTENT(IN) :: segni_rad(i%m, rad(i%t)%nx) ! output: keep track of the spin direction REAL(DP) :: vsave_lm(i%m, i%l**2, nspin) ! auxiliary: v_lm is not overwritten REAL(DP) :: vout_rad(i%m, nspin_gga) ! auxiliary: the potential along a line REAL(DP) :: rho_rad(i%m, nspin) ! auxiliary: the charge+mag along a line REAL(DP) :: drho_rad(i%m, nspin) ! auxiliary: the d n along a line REAL(DP) :: v_rad(i%m, rad(i%t)%nx, nspin) ! auxiliary: rho up and down along a line REAL(DP) :: mag, dvs, term, term1 ! auxiliary integer :: ix, k, ipol ! counter on mesh points v_rad=0.0_DP DO ix = ix_s, ix_e CALL PAW_lm2rad(i, ix, vout_lm, vout_rad, nspin_gga) CALL PAW_lm2rad(i, ix, rho_lm, rho_rad, nspin) CALL PAW_lm2rad(i, ix, drho_lm, drho_rad, nspin) DO k=1, i%m ! ! Core charge is not added because we need only the magnetization. ! rho_rad(k, 1:nspin) =rho_rad(k, 1:nspin) * g(i%t)%rm2(k) drho_rad(k, 1:nspin) =drho_rad(k, 1:nspin) * g(i%t)%rm2(k) mag = sqrt( rho_rad(k,2)**2 + rho_rad(k,3)**2 + rho_rad(k,4)**2 ) v_rad(k, ix, 1) = 0.5_DP * ( vout_rad(k,1) + vout_rad(k,2) ) dvs = 0.5_DP * ( vout_rad(k,1) - vout_rad(k,2) ) ! ! Choose rhoup and rhodw depending on the projection of the magnetization ! on the chosen direction ! IF (mag.GT.eps12) THEN ! ! The axis ux is chosen in the corresponding routine in real space. ! term=0.0_DP DO ipol=2,4 term=term+rho_rad(k,ipol)*drho_rad(k,ipol) ENDDO DO ipol=2,4 term1 = term*rho_rad(k,ipol)/mag**2 v_rad(k, ix, ipol)= segni_rad(k,ix)*( dvs*rho_rad(k,ipol) + & vs_rad(k,ix,i%a)*(drho_rad(k,ipol)-term1))/mag ENDDO ENDIF ENDDO ENDDO CALL PAW_rad2lm(i, v_rad, vsave_lm, i%l, nspin) v_lm=v_lm+vsave_lm RETURN END SUBROUTINE compute_dpot_nonc ! SUBROUTINE add_small_mag(i, ix, rho_rad) USE noncollin_module, ONLY : nspin_mag ! ! This subroutine computes the contribution of the small component to the ! magnetization in the noncollinear case and adds its to rho_rad. ! The calculation is done along the radial line ix. ! ! NB: Both the input and the output magnetizations are multiplied by ! r^2. ! TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info INTEGER, INTENT(IN) :: ix ! the line REAL(DP), INTENT(INOUT) :: rho_rad(i%m,nspin_mag) ! the magnetization REAL(DP) :: msmall_rad(i%m, nspin_mag) ! auxiliary: the mag of the small ! components along a line REAL(DP) :: hatr(3) INTEGER :: k, ipol, kpol CALL PAW_lm2rad(i, ix, msmall_lm, msmall_rad, nspin_mag) hatr(1)=rad(i%t)%sin_th(ix)*rad(i%t)%cos_phi(ix) hatr(2)=rad(i%t)%sin_th(ix)*rad(i%t)%sin_phi(ix) hatr(3)=rad(i%t)%cos_th(ix) DO k=1,i%m DO ipol=1,3 DO kpol=1,3 rho_rad(k,ipol+1) = rho_rad(k,ipol+1) - & msmall_rad(k,kpol+1) * hatr(ipol) * hatr(kpol) * 2.0_DP ENDDO ENDDO ENDDO RETURN END SUBROUTINE add_small_mag ! SUBROUTINE compute_g(i, ix, v_rad, g_rad) ! ! This routine receives as input B_{xc} and calculates the function G ! described in Phys. Rev. B 82, 075116 (2010). The same routine can ! be used when v_rad contains the induced B_{xc}. In this case the ! output is the change of G. ! USE noncollin_module, ONLY : nspin_mag TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info INTEGER, INTENT(IN) :: ix ! the line REAL(DP), INTENT(IN) :: v_rad(i%m,rad(i%t)%nx,nspin_mag) ! radial pot REAL(DP), INTENT(INOUT) :: g_rad(i%m,rad(i%t)%nx,nspin_mag) ! radial potential (small comp) REAL(DP) :: hatr(3) INTEGER :: k, ipol, kpol hatr(1)=rad(i%t)%sin_th(ix)*rad(i%t)%cos_phi(ix) hatr(2)=rad(i%t)%sin_th(ix)*rad(i%t)%sin_phi(ix) hatr(3)=rad(i%t)%cos_th(ix) DO k=1, i%m DO ipol=1,3 DO kpol=1,3 ! ! v_rad contains -B_{xc} with the notation of the papers ! g_rad(k,ix,ipol+1)=g_rad(k,ix,ipol+1) - & v_rad(k,ix,kpol+1)*hatr(kpol)*hatr(ipol)*2.0_DP ENDDO ENDDO ENDDO RETURN END SUBROUTINE compute_g ! END MODULE paw_onecenter espresso-5.1/PW/src/addusdens.f900000644000175000017500000001033212341373025014710 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE addusdens(rho) !---------------------------------------------------------------------- ! USE realus, ONLY : addusdens_r USE control_flags, ONLY : tqr USE noncollin_module, ONLY : nspin_mag USE fft_base, ONLY : dfftp USE kinds, ONLY : DP ! IMPLICIT NONE ! ! REAL(kind=dp), intent(inout) :: rho(dfftp%nnr,nspin_mag) ! IF ( tqr ) THEN CALL addusdens_r(rho,.true.) ELSE #if defined(__CUDA) && !defined(__DISABLE_CUDA_ADDUSDENS) CALL addusdens_g_gpu(rho) #else CALL addusdens_g(rho) #endif END IF ! RETURN ! END SUBROUTINE addusdens ! !---------------------------------------------------------------------- subroutine addusdens_g(rho) !---------------------------------------------------------------------- ! ! This routine adds to the charge density the part which is due to ! the US augmentation. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : invfft USE gvect, ONLY : ngm, nl, nlm, gg, g, & eigts1, eigts2, eigts3, mill USE noncollin_module, ONLY : noncolin, nspin_mag USE uspp, ONLY : becsum, okvan USE uspp_param, ONLY : upf, lmaxq, nh USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic ! implicit none ! REAL(kind=dp), intent(inout) :: rho(dfftp%nnr,nspin_mag) ! ! here the local variables ! integer :: ig, na, nt, ih, jh, ijh, is ! counters real(DP) :: tbecsum(nspin_mag) real(DP), allocatable :: qmod (:), ylmk0 (:,:) ! the modulus of G ! the spherical harmonics complex(DP) :: skk complex(DP), allocatable :: aux (:,:), qgm(:) ! work space for rho(G,nspin) ! Fourier transform of q if (.not.okvan) return call start_clock ('addusdens') allocate (aux ( ngm, nspin_mag)) allocate (qmod( ngm)) allocate (qgm( ngm)) allocate (ylmk0( ngm, lmaxq * lmaxq)) aux (:,:) = (0.d0, 0.d0) call ylmr2 (lmaxq * lmaxq, ngm, g, gg, ylmk0) do ig = 1, ngm qmod (ig) = sqrt (gg (ig) ) enddo do nt = 1, ntyp if ( upf(nt)%tvanp ) then ijh = 0 do ih = 1, nh (nt) do jh = ih, nh (nt) #ifdef DEBUG_ADDUSDENS call start_clock ('addus:qvan2') #endif call qvan2 (ngm, ih, jh, nt, qmod, qgm, ylmk0) #ifdef DEBUG_ADDUSDENS call stop_clock ('addus:qvan2') #endif ijh = ijh + 1 do na = 1, nat if (ityp (na) .eq.nt) then ! ! Multiply becsum and qg with the correct structure factor tbecsum(1:nspin_mag) = becsum(ijh,na,1:nspin_mag) ! #ifdef DEBUG_ADDUSDENS call start_clock ('addus:aux') #endif do is = 1, nspin_mag !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(skk, ig) do ig = 1, ngm skk = eigts1 (mill (1,ig), na) * & eigts2 (mill (2,ig), na) * & eigts3 (mill (3,ig), na) aux(ig,is)=aux(ig,is) + qgm(ig)*skk*tbecsum(is) enddo !$OMP END PARALLEL DO enddo #ifdef DEBUG_ADDUSDENS call stop_clock ('addus:aux') #endif endif enddo enddo enddo endif enddo ! deallocate (ylmk0) deallocate (qgm) deallocate (qmod) ! ! convert aux to real space and add to the charge density ! do is = 1, nspin_mag psic(:) = (0.d0, 0.d0) psic( nl(:) ) = aux(:,is) if (gamma_only) psic( nlm(:) ) = CONJG(aux(:,is)) CALL invfft ('Dense', psic, dfftp) rho(:, is) = rho(:, is) + DBLE (psic (:) ) enddo deallocate (aux) call stop_clock ('addusdens') return end subroutine addusdens_g espresso-5.1/PW/src/gk_sort.f900000644000175000017500000000466312341373025014420 0ustar mbamba! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE gk_sort( k, ngm, g, ecut, ngk, igk, gk ) !---------------------------------------------------------------------------- ! ! ... sorts k+g in order of increasing magnitude, up to ecut ! ... NB: this version should yield the same ordering for different ecut ! ... and the same ordering in all machines ! USE kinds, ONLY : DP USE constants, ONLY : eps8 USE wvfct, ONLY : npwx ! IMPLICIT NONE ! REAL(DP), INTENT(in) :: k(3) ! the k point INTEGER, INTENT(in) :: ngm ! the number of g vectors REAL(DP), INTENT(in) :: g(3,ngm) ! the coordinates of G vectors REAL(DP), INTENT(in) :: ecut ! the cut-off energy INTEGER, INTENT(out) :: ngk ! the number of k+G vectors inside the "ecut sphere" INTEGER, INTENT(out) :: igk(npwx) ! the correspondence k+G <-> G REAL(DP), INTENT(out) :: gk(npwx) ! the moduli of k+G ! INTEGER :: ng ! counter on G vectors INTEGER :: nk ! counter on k+G vectors REAL(DP) :: q ! |k+G|^2 REAL(DP) :: q2x ! upper bound for |G| ! ! ... first we count the number of k+G vectors inside the cut-off sphere ! q2x = ( sqrt( sum(k(:)**2) ) + sqrt( ecut ) )**2 ! ngk = 0 igk(:) = 0 gk (:) = 0.0_dp ! DO ng = 1, ngm q = sum( ( k(:) + g(:,ng) )**2 ) IF(q<=eps8) q=0.d0 ! ! ... here if |k+G|^2 <= Ecut ! IF ( q <= ecut ) THEN ngk = ngk + 1 IF ( ngk > npwx ) & CALL errore( 'gk_sort', 'array gk out-of-bounds', 1 ) ! gk(ngk) = q ! ! set the initial value of index array igk(ngk) = ng ELSE ! if |G| > |k| + SQRT( Ecut ) stop search and order vectors IF ( sum( g(:,ng)**2 ) > ( q2x + eps8 ) ) exit ENDIF ENDDO ! IF ( ng > ngm ) & CALL infomsg( 'gk_sort', 'unexpected exit from do-loop') ! ! ... order vector gk keeping initial position in index ! CALL hpsort_eps( ngk, gk, igk, eps8 ) ! ! ... now order true |k+G| ! DO nk = 1, ngk gk(nk) = sum( (k(:) + g(:,igk(nk)) )**2 ) ENDDO ! END SUBROUTINE gk_sort espresso-5.1/PW/src/realus.f900000644000175000017500000026675512341373025014257 0ustar mbamba! ! Copyright (C) 2004-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- MODULE realus !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! ! ... module originally written by Antonio Suriano and Stefano de Gironcoli ! ... modified by Carlo Sbraccia ! ... modified by O. Baris Malcioglu (2008) ! ... modified by P. Umari and G. Stenuit (2009) ! ... TODO : Write the k points part REAL(DP), ALLOCATABLE :: boxrad(:) ! radius of boxes, does not depend on the grid ! Beta function in real space INTEGER, ALLOCATABLE :: box_beta(:,:), maxbox_beta(:) REAL(DP), ALLOCATABLE :: betasave(:,:,:) REAL(DP), ALLOCATABLE :: boxrad_beta(:) REAL(DP), ALLOCATABLE :: boxdist_beta(:,:), xyz_beta(:,:,:) REAL(DP), ALLOCATABLE :: spher_beta(:,:,:) !General LOGICAL :: real_space INTEGER :: real_space_debug = 0 ! FIXME: must disappear ! if true perform calculations in real spave INTEGER :: initialisation_level ! init_realspace_vars sets this to 3; qpointlist adds 5; betapointlist adds 7 ! so the value should be 15 if the real space routine is initalised properly INTEGER, ALLOCATABLE :: & igk_k(:,:),& ! The g<->k correspondance for each k point npw_k(:) ! number of plane waves at each k point ! They are (used many times, it is much better to hold them in memory ! FIXME: npw_k is redundant. it is already there ! COMPLEX(DP), ALLOCATABLE :: tg_psic(:) COMPLEX(DP), ALLOCATABLE :: psic_temp(:),tg_psic_temp(:) !Copies of psic and tg_psic COMPLEX(DP), ALLOCATABLE :: tg_vrs(:) !task groups linear V memory COMPLEX(DP), ALLOCATABLE :: psic_box_temp(:),tg_psic_box_temp(:) ! ! Contains the augmentation functions and related quantities, in realspace for a single atom TYPE realsp_augmentation REAL(DP),ALLOCATABLE :: qr(:,:) ! (maxbox,number_of_q_funcs) the Q functions sampled over R points INTEGER,ALLOCATABLE :: box(:) ! (maxbox) Index of point R in the global order of the R-space grid INTEGER :: maxbox = 0 ! number of R points in the augmentatiin sphere of this atom END TYPE realsp_augmentation ! Augmentation functions on the RHO (HARD) grid for all atoms TYPE(realsp_augmentation),POINTER :: tabp(:) => null() ! Augmentation functions on the SMOOTH grid for all atoms TYPE(realsp_augmentation),POINTER :: tabs(:) => null() ! CONTAINS !------------------------------------------------------------------------ SUBROUTINE generate_qpointlist !------------------------------------------------------------------------ USE fft_base, ONLY : dfftp, dffts USE funct, ONLY : dft_is_hybrid USE gvecs, ONLY : doublegrid USE io_global, ONLY : stdout IMPLICIT NONE ! ! 1. initialize hard grid WRITE(stdout, '(/,5x,a)') "Initializing real-space augmentation for DENSE grid" CALL qpointlist(dfftp, tabp) ! ! 2. initialize smooth grid (only for EXX at this moment) IF ( dft_is_hybrid() ) THEN IF(doublegrid)THEN WRITE(stdout, '(5x,a)') "Initializing real-space augmentation for SMOOTH grid" CALL qpointlist(dffts, tabs) ELSE ! smooth and rho grid are the same if not double grid WRITE(stdout, '(7x,a)') " SMOOTH grid -> DENSE grid" tabs => tabp ENDIF ENDIF ! RETURN !------------------------------------------------------------------------ END SUBROUTINE generate_qpointlist !------------------------------------------------------------------------ !---------------------------------------------------------------------------- SUBROUTINE init_realspace_vars() !--------------------------------------------------------------------------- !This subroutine should be called to allocate/reset real space related variables. !--------------------------------------------------------------------------- USE wvfct, ONLY : npwx,npw, igk, g2kin, ecutwfc USE klist, ONLY : nks, xk USE gvect, ONLY : ngm, g USE cell_base, ONLY : tpiba2 USE control_flags, ONLY : tqr USE fft_base, ONLY : dffts USE io_global, ONLY : stdout IMPLICIT NONE INTEGER :: ik !print *, "<<<<>>>>>>" IF ( allocated( igk_k ) ) DEALLOCATE( igk_k ) IF ( allocated( npw_k ) ) DEALLOCATE( npw_k ) ALLOCATE(igk_k(npwx,nks)) ALLOCATE(npw_k(nks)) !real space, allocation for task group fft work arrays IF( dffts%have_task_groups ) THEN ! IF (allocated( tg_psic ) ) DEALLOCATE( tg_psic ) ! ALLOCATE( tg_psic( dffts%tg_nnr * dffts%nogrp ) ) ALLOCATE( tg_vrs( dffts%tg_nnr * dffts%nogrp ) ) ! ENDIF ! DO ik=1,nks ! CALL gk_sort( xk(1,ik), ngm, g, ( ecutwfc / tpiba2 ), npw, igk, g2kin ) npw_k(ik) = npw igk_k(:,ik) = igk(:) ! ENDDO initialisation_level = initialisation_level + 7 IF (real_space_debug > 20 .and. real_space_debug < 30) THEN real_space=.false. IF (tqr) THEN tqr = .false. WRITE(stdout,'("Debug level forced tqr to be set false")') ELSE WRITE(stdout,'("tqr was already set false")') ENDIF real_space_debug=real_space_debug-20 ENDIF END SUBROUTINE init_realspace_vars !------------------------------------------------------------------------ SUBROUTINE deallocatenewdreal() !------------------------------------------------------------------------ ! USE ions_base, ONLY : nat USE gvecs, ONLY : doublegrid IMPLICIT NONE INTEGER :: ia IF ( allocated( boxrad ) ) DEALLOCATE( boxrad ) ! ------------ tabp ------------ IF ( associated( tabp) ) THEN DO ia=1,nat IF(allocated(tabp(ia)%qr)) DEALLOCATE(tabp(ia)%qr) IF(allocated(tabp(ia)%box)) DEALLOCATE(tabp(ia)%box) tabp(ia)%maxbox = 0 ENDDO DEALLOCATE(tabp) ENDIF ! ------------ tabs ------------ IF(doublegrid)THEN IF ( associated( tabs) ) THEN DO ia=1,nat IF(allocated(tabs(ia)%qr)) DEALLOCATE(tabs(ia)%qr) IF(allocated(tabs(ia)%box)) DEALLOCATE(tabs(ia)%box) tabs(ia)%maxbox = 0 ENDDO DEALLOCATE(tabs) ENDIF ELSE NULLIFY(tabs) ENDIF ! END SUBROUTINE deallocatenewdreal ! !------------------------------------------------------------------------ SUBROUTINE qpointlist(dfft, tabp) !------------------------------------------------------------------------ ! ! ... This subroutine is the driver routine of the box system in this ! ... implementation of US in real space. ! ... All the variables common in the module are computed and stored for ! ... reusing. ! ... This routine has to be called every time the atoms are moved and of ! ... course at the beginning. ! ... A set of spherical boxes are computed for each atom. ! ... In boxradius there are the radii of the boxes. ! ... In maxbox the upper limit of leading index, namely the number of ! ... points of the fine mesh contained in each box. ! ... In xyz there are the coordinates of the points with origin in the ! ... centre of atom. ! ... In boxdist the distance from the centre. ! ... In spher the spherical harmonics computed for each box ! ... In tabp the q value interpolated in these boxes. ! ! ... Most of time is spent here; the calling routines are faster. ! USE constants, ONLY : pi, fpi, eps8, eps16 USE ions_base, ONLY : nat, nsp, ityp, tau USE cell_base, ONLY : at, bg, omega, alat USE uspp, ONLY : okvan, indv, nhtol, nhtolm, ap, nhtoj, lpx, lpl USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE atom, ONLY : rgrid USE fft_types, ONLY : fft_dlay_descriptor USE mp_bands, ONLY : me_bgrp USE splinelib, ONLY : spline, splint ! IMPLICIT NONE ! TYPE(fft_dlay_descriptor),INTENT(in) :: dfft TYPE(realsp_augmentation),POINTER,INTENT(inout) :: tabp(:) ! INTEGER :: qsdim, ia, mbia, iqs, iqsia, nfuncs INTEGER :: indm, idimension, & ih, jh, ijh, lllnbnt, lllmbnt INTEGER :: roughestimate, goodestimate, lamx2, l, nt INTEGER, ALLOCATABLE :: buffpoints(:,:) REAL(DP), ALLOCATABLE :: buffdist(:,:) REAL(DP) :: distsq, qtot_int, first, second INTEGER :: idx0, idx, ir INTEGER :: i, j, k, ipol, lm, nb, mb, ijv, ilast REAL(DP) :: posi(3) REAL(DP), ALLOCATABLE :: rl(:,:), rl2(:), d1y(:), d2y(:) REAL(DP), ALLOCATABLE :: tempspher(:,:), qtot(:,:,:), & xsp(:), ysp(:), wsp(:) REAL(DP) :: mbr, mbx, mby, mbz, dmbx, dmby, dmbz, aux REAL(DP) :: inv_nr1, inv_nr2, inv_nr3, tau_ia(3), boxradsq_ia ! REAL(DP), ALLOCATABLE :: boxdist(:,:), xyz(:,:,:) REAL(DP), ALLOCATABLE :: spher(:,:,:) ! initialisation_level = 3 IF ( .not. okvan ) RETURN ! CALL start_clock( 'realus' ) ! ! ... tabp is deallocated here to free the memory for the buffers ! IF( associated(tabp) ) THEN DO ia=1,nat IF(allocated(tabp(ia)%qr)) DEALLOCATE(tabp(ia)%qr) IF(allocated(tabp(ia)%box)) DEALLOCATE(tabp(ia)%box) ENDDO DEALLOCATE(tabp) ENDIF ! ALLOCATE(tabp(nat)) ! IF ( .not. allocated( boxrad ) ) THEN ! ! ... here we calculate the radius of each spherical box ( one ! ... for each non-local projector ) ! ALLOCATE( boxrad( nsp ) ) ! boxrad(:) = 0.D0 ! DO nt = 1, nsp IF ( .not. upf(nt)%tvanp ) CYCLE DO ijv = 1, upf(nt)%nbeta*(upf(nt)%nbeta+1)/2 DO indm = upf(nt)%mesh,1,-1 ! IF( upf(nt)%q_with_l ) THEN aux = sum(abs( upf(nt)%qfuncl(indm,ijv,:) )) ELSE aux = abs( upf(nt)%qfunc(indm,ijv) ) ENDIF IF ( aux > eps16 ) THEN boxrad(nt) = max( rgrid(nt)%r(indm), boxrad(nt) ) exit ENDIF ! ENDDO ENDDO ENDDO ! boxrad(:) = boxrad(:) / alat ! ENDIF ! ! ... a rough estimate for the number of grid-points per box ! ... is provided here ! mbr = maxval( boxrad(:) ) ! mbx = mbr*sqrt( bg(1,1)**2 + bg(1,2)**2 + bg(1,3)**2 ) mby = mbr*sqrt( bg(2,1)**2 + bg(2,2)**2 + bg(2,3)**2 ) mbz = mbr*sqrt( bg(3,1)**2 + bg(3,2)**2 + bg(3,3)**2 ) ! dmbx = 2*anint( mbx*dfft%nr1x ) + 2 dmby = 2*anint( mby*dfft%nr2x ) + 2 dmbz = 2*anint( mbz*dfft%nr3x ) + 2 ! roughestimate = anint( dble( dmbx*dmby*dmbz ) * pi / 6.D0 ) ! CALL start_clock( 'realus:boxes' ) ! ALLOCATE( buffpoints( roughestimate, nat ) ) ALLOCATE( buffdist( roughestimate, nat ) ) ! ALLOCATE( xyz( 3, roughestimate, nat ) ) ! buffpoints(:,:) = 0 buffdist(:,:) = 0.D0 ! ! ... now we find the points ! #if defined (__MPI) idx0 = dfft%nr1x*dfft%nr2x * sum ( dfft%npp(1:me_bgrp) ) #else idx0 = 0 #endif ! inv_nr1 = 1.D0 / dble( dfft%nr1 ) inv_nr2 = 1.D0 / dble( dfft%nr2 ) inv_nr3 = 1.D0 / dble( dfft%nr3 ) ! DO ia = 1, nat ! nt = ityp(ia) ! IF ( .not. upf(nt)%tvanp ) CYCLE ! boxradsq_ia = boxrad(nt)**2 ! tau_ia(1) = tau(1,ia) tau_ia(2) = tau(2,ia) tau_ia(3) = tau(3,ia) ! DO ir = 1, dfft%nnr ! ! ... three dimensional indices (i,j,k) ! idx = idx0 + ir - 1 k = idx / (dfft%nr1x*dfft%nr2x) idx = idx - (dfft%nr1x*dfft%nr2x)*k j = idx / dfft%nr1x idx = idx - dfft%nr1x*j i = idx ! ! ... do not include points outside the physical range! ! IF ( i >= dfft%nr1 .or. j >= dfft%nr2 .or. k >= dfft%nr3 ) CYCLE ! DO ipol = 1, 3 posi(ipol) = dble( i )*inv_nr1*at(ipol,1) + & dble( j )*inv_nr2*at(ipol,2) + & dble( k )*inv_nr3*at(ipol,3) ENDDO ! posi(:) = posi(:) - tau_ia(:) ! ! ... minimum image convention ! CALL cryst_to_cart( 1, posi, bg, -1 ) posi(:) = posi(:) - anint( posi(:) ) CALL cryst_to_cart( 1, posi, at, 1 ) distsq = posi(1)**2 + posi(2)**2 + posi(3)**2 ! IF ( distsq < boxradsq_ia ) THEN ! mbia = tabp(ia)%maxbox + 1 IF(mbia>roughestimate) THEN CALL errore( 'qpointlist', 'rough-estimate is too rough', 3 ) ENDIF tabp(ia)%maxbox = mbia buffpoints(mbia,ia) = ir buffdist(mbia,ia) = sqrt( distsq )*alat xyz(:,mbia,ia) = posi(:)*alat ! ENDIF ENDDO ENDDO ! ! ... count the points and store them in a more convenient place ! goodestimate = 0 DO ia = 1,nat goodestimate = max( goodestimate, tabp(ia)%maxbox ) ! !IF ( allocated( tabp(ia)%box ) ) DEALLOCATE( tabp(ia)%box ) ALLOCATE( tabp(ia)%box(tabp(ia)%maxbox) ) tabp(ia)%box(:) = buffpoints(1:tabp(ia)%maxbox,ia) ENDDO ! IF ( goodestimate > roughestimate ) & CALL errore( 'qpointlist', 'rough-estimate is too rough', 2 ) ! ALLOCATE( boxdist( goodestimate, nat ) ) ! boxdist(:,:) = buffdist(1:goodestimate,:) ! DEALLOCATE( buffpoints ) DEALLOCATE( buffdist ) ! CALL stop_clock( 'realus:boxes' ) CALL start_clock( 'realus:spher' ) ! ! ... now it computes the spherical harmonics ! lamx2 = lmaxq*lmaxq ! IF ( allocated( spher ) ) DEALLOCATE( spher ) ! ALLOCATE( spher( goodestimate, lamx2, nat ) ) ! spher(:,:,:) = 0.D0 ! DO ia = 1, nat ! nt = ityp(ia) IF ( .not. upf(nt)%tvanp ) CYCLE idimension = tabp(ia)%maxbox ALLOCATE( rl( 3, idimension ), rl2( idimension ) ) DO ir = 1, idimension rl(:,ir) = xyz(:,ir,ia) rl2(ir) = rl(1,ir)**2 + rl(2,ir)**2 + rl(3,ir)**2 ENDDO ! ALLOCATE( tempspher( idimension, lamx2 ) ) CALL ylmr2( lamx2, idimension, rl, rl2, tempspher ) spher(1:idimension,:,ia) = tempspher(:,:) DEALLOCATE( rl, rl2, tempspher ) ! ENDDO ! DEALLOCATE( xyz ) ! CALL stop_clock( 'realus:spher' ) CALL start_clock( 'realus:tabp' ) ! ! ... let's do the main work ! qsdim = 0 DO ia = 1, nat mbia = tabp(ia)%maxbox IF ( mbia == 0 ) CYCLE nt = ityp(ia) IF ( .not. upf(nt)%tvanp ) CYCLE DO ih = 1, nh(nt) DO jh = ih, nh(nt) qsdim = qsdim + mbia ENDDO ENDDO ENDDO ! ! ... the source is inspired by init_us_1 ! ! ... we perform two steps: first we compute for each l the qtot ! ... (radial q), then we interpolate it in our mesh, and then we ! ... add it to tabp with the correct spherical harmonics ! ! ... Q is read from pseudo and it is divided into two parts: ! ... in the inner radius a polinomial representation is known and so ! ... strictly speaking we do not use interpolation but just compute ! ... the correct value ! iqs = 0 iqsia = 0 ! DO ia = 1, nat ! mbia = tabp(ia)%maxbox IF ( mbia == 0 ) CYCLE ! nt = ityp(ia) IF ( .not. upf(nt)%tvanp ) CYCLE ! ALLOCATE( qtot( upf(nt)%kkbeta, upf(nt)%nbeta, upf(nt)%nbeta ) ) ! ! ... variables used for spline interpolation ! ALLOCATE( xsp( upf(nt)%kkbeta ), ysp( upf(nt)%kkbeta ), & wsp( upf(nt)%kkbeta ) ) ! ! ... the radii in x ! xsp(:) = rgrid(nt)%r(1:upf(nt)%kkbeta) ! nfuncs = ( nh(nt)**2+nh(nt) )/2 ALLOCATE(tabp(ia)%qr(mbia, nfuncs)) tabp(ia)%qr=0._dp ! DO l = 0, upf(nt)%nqlc - 1 ! ! ... first we build for each nb,mb,l the total Q(|r|) function ! ... note that l is the true (combined) angular momentum ! ... and that the arrays have dimensions 1..l+1 ! DO nb = 1, upf(nt)%nbeta DO mb = nb, upf(nt)%nbeta ijv = mb * (mb-1) /2 + nb ! lllnbnt = upf(nt)%lll(nb) lllmbnt = upf(nt)%lll(mb) ! IF ( .not. ( l >= abs( lllnbnt - lllmbnt ) .and. & l <= lllnbnt + lllmbnt .and. & mod( l + lllnbnt + lllmbnt, 2 ) == 0 ) ) CYCLE ! IF( upf(nt)%q_with_l ) THEN qtot(1:upf(nt)%kkbeta,nb,mb) = & upf(nt)%qfuncl(1:upf(nt)%kkbeta,ijv,l) & / rgrid(nt)%r(1:upf(nt)%kkbeta)**2 ELSE DO ir = 1, upf(nt)%kkbeta IF ( rgrid(nt)%r(ir) >= upf(nt)%rinner(l+1) ) THEN qtot(ir,nb,mb) = upf(nt)%qfunc(ir,ijv) / & rgrid(nt)%r(ir)**2 ELSE ilast = ir ENDIF ENDDO ENDIF ! IF ( upf(nt)%rinner(l+1) > 0.D0 ) & CALL setqfcorr( upf(nt)%qfcoef(1:,l+1,nb,mb), & qtot(1,nb,mb), rgrid(nt)%r, upf(nt)%nqf, l, ilast ) ! ! ... we save the values in y ! ysp(:) = qtot(1:upf(nt)%kkbeta,nb,mb) ! IF ( upf(nt)%nqf > 0 ) THEN ! ! ... compute the first derivative in first point ! CALL setqfcorrptfirst( upf(nt)%qfcoef(1:,l+1,nb,mb), & first, rgrid(nt)%r(1), upf(nt)%nqf, l ) ! ! ... compute the second derivative in first point ! CALL setqfcorrptsecond( upf(nt)%qfcoef(1:,l+1,nb,mb), & second, rgrid(nt)%r(1), upf(nt)%nqf, l ) ELSE ! ! ... if we don't have the analitical coefficients, try to do ! ... the same numerically (note that setting first=0.d0 and ! ... second=0.d0 makes almost no difference) ! ALLOCATE( d1y(upf(nt)%kkbeta), d2y(upf(nt)%kkbeta) ) CALL radial_gradient(ysp(1:upf(nt)%kkbeta), d1y, & rgrid(nt)%r, upf(nt)%kkbeta, 1) CALL radial_gradient(d1y, d2y, rgrid(nt)%r, upf(nt)%kkbeta, 1) ! first = d1y(1) ! first derivative in first point second =d2y(1) ! second derivative in first point DEALLOCATE( d1y, d2y ) ENDIF ! ! ... call spline ! CALL spline( xsp, ysp, first, second, wsp ) ! DO ir = 1, tabp(ia)%maxbox ! IF ( boxdist(ir,ia) < upf(nt)%rinner(l+1) ) THEN ! ! ... if in the inner radius just compute the ! ... polynomial ! CALL setqfcorrpt( upf(nt)%qfcoef(1:,l+1,nb,mb), & qtot_int, boxdist(ir,ia), upf(nt)%nqf, l ) ! ELSE ! ! ... spline interpolation ! qtot_int = splint( xsp, ysp, wsp, boxdist(ir,ia) ) ! ENDIF ! ijh = 0 ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! iqs = iqsia + ijh*mbia + ir ijh = ijh + 1 ! IF ( .not.( nb == indv(ih,nt) .and. & mb == indv(jh,nt) ) ) CYCLE ! DO lm = l**2+1, (l+1)**2 tabp(ia)%qr(ir,ijh) = tabp(ia)%qr(ir,ijh) + & qtot_int*spher(ir,lm,ia)*& ap(lm,nhtolm(ih,nt),nhtolm(jh,nt)) ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ! iqsia = iqs ! DEALLOCATE( qtot ) DEALLOCATE( xsp ) DEALLOCATE( ysp ) DEALLOCATE( wsp ) ! ENDDO ! DEALLOCATE( boxdist ) DEALLOCATE( spher ) ! CALL stop_clock( 'realus:tabp' ) CALL stop_clock( 'realus' ) ! END SUBROUTINE qpointlist ! !------------------------------------------------------------------------ SUBROUTINE betapointlist() !------------------------------------------------------------------------ ! ! ... This subroutine is the driver routine of the box system in this ! ... implementation of US in real space. ! ... All the variables common in the module are computed and stored for ! ... reusing. ! ... This routine has to be called every time the atoms are moved and of ! ... course at the beginning. ! ... A set of spherical boxes are computed for each atom. ! ... In boxradius there are the radii of the boxes. ! ... In maxbox the upper limit of leading index, namely the number of ! ... points of the fine mesh contained in each box. ! ... In xyz there are the coordinates of the points with origin in the ! ... centre of atom. ! ... In boxdist the distance from the centre. ! ... In spher the spherical harmonics computed for each box ! ... In tabp the q value interpolated in these boxes. ! ! ... Most of time is spent here; the calling routines are faster. ! ! The source inspired by qsave ! USE constants, ONLY : pi, eps8, eps16 USE ions_base, ONLY : nat, nsp, ityp, tau USE cell_base, ONLY : at, bg, omega, alat USE uspp, ONLY : okvan, indv, nhtol, nhtolm, ap USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE atom, ONLY : rgrid USE fft_base, ONLY : dffts USE mp_bands, ONLY : me_bgrp USE splinelib, ONLY : spline, splint USE ions_base, ONLY : ntyp => nsp ! IMPLICIT NONE ! INTEGER :: betasdim, ia, it, mbia INTEGER :: indm, inbrx, idimension, ih INTEGER :: roughestimate, goodestimate, lamx2, nt INTEGER, ALLOCATABLE :: buffpoints(:,:) REAL(DP), ALLOCATABLE :: buffdist(:,:) REAL(DP) :: distsq, qtot_int, first, second INTEGER :: idx0, idx, ir INTEGER :: i, j, k, ipol, lm, nb REAL(DP) :: posi(3) REAL(DP), ALLOCATABLE :: rl(:,:), rl2(:) REAL(DP), ALLOCATABLE :: tempspher(:,:), qtot(:,:,:), & xsp(:), ysp(:), wsp(:), d1y(:), d2y(:) REAL(DP) :: mbr, mbx, mby, mbz, dmbx, dmby, dmbz REAL(DP) :: inv_nr1s, inv_nr2s, inv_nr3s, tau_ia(3), boxradsq_ia ! initialisation_level = initialisation_level + 5 IF ( .not. okvan ) RETURN ! !print *, "<<>>" ! CALL start_clock( 'betapointlist' ) ! ! ... betasave is deallocated here to free the memory for the buffers ! IF ( allocated( betasave ) ) DEALLOCATE( betasave ) ! IF ( .not. allocated( boxrad_beta ) ) THEN ! ! ... here we calculate the radius of each spherical box ( one ! ... for each non-local projector ) ! ALLOCATE( boxrad_beta( nsp ) ) boxrad_beta(:) = 0.D0 ! DO it = 1, nsp DO inbrx = 1, upf(it)%nbeta DO indm = upf(it)%kkbeta, 1, -1 IF ( abs( upf(it)%beta(indm,inbrx) ) > 0.d0 ) THEN boxrad_beta(it) = max( rgrid(it)%r(indm), boxrad_beta(it) ) CYCLE ENDIF ENDDO ENDDO ENDDO ! boxrad_beta(:) = boxrad_beta(:) / alat ! ENDIF ! ! ... a rough estimate for the number of grid-points per box ! ... is provided here ! mbr = maxval( boxrad_beta(:) ) ! mbx = mbr*sqrt( bg(1,1)**2 + bg(1,2)**2 + bg(1,3)**2 ) mby = mbr*sqrt( bg(2,1)**2 + bg(2,2)**2 + bg(2,3)**2 ) mbz = mbr*sqrt( bg(3,1)**2 + bg(3,2)**2 + bg(3,3)**2 ) ! dmbx = 2*anint( mbx*dffts%nr1x ) + 2 dmby = 2*anint( mby*dffts%nr2x ) + 2 dmbz = 2*anint( mbz*dffts%nr3x ) + 2 ! roughestimate = anint( dble( dmbx*dmby*dmbz ) * pi / 6.D0 ) ! CALL start_clock( 'realus:boxes' ) ! ALLOCATE( buffpoints( roughestimate, nat ) ) ALLOCATE( buffdist( roughestimate, nat ) ) ! ALLOCATE( xyz_beta( 3, roughestimate, nat ) ) ! buffpoints(:,:) = 0 buffdist(:,:) = 0.D0 ! IF ( .not.allocated( maxbox_beta ) ) ALLOCATE( maxbox_beta( nat ) ) ! maxbox_beta(:) = 0 ! ! ... now we find the points ! ! The beta functions are treated on smooth grid #if defined (__MPI) idx0 = dffts%nr1x*dffts%nr2x * dffts%ipp(me_bgrp+1) #else idx0 = 0 #endif ! inv_nr1s = 1.D0 / dble( dffts%nr1 ) inv_nr2s = 1.D0 / dble( dffts%nr2 ) inv_nr3s = 1.D0 / dble( dffts%nr3 ) ! DO ia = 1, nat ! IF ( .not. upf(ityp(ia))%tvanp ) CYCLE ! boxradsq_ia = boxrad_beta(ityp(ia))**2 ! tau_ia(1) = tau(1,ia) tau_ia(2) = tau(2,ia) tau_ia(3) = tau(3,ia) ! DO ir = 1, dffts%nr1x*dffts%nr2x * dffts%npl ! ! ... three dimensional indexes ! idx = idx0 + ir - 1 k = idx / (dffts%nr1x*dffts%nr2x) idx = idx - (dffts%nr1x*dffts%nr2x)*k j = idx / dffts%nr1x idx = idx - dffts%nr1x*j i = idx ! DO ipol = 1, 3 posi(ipol) = dble( i )*inv_nr1s*at(ipol,1) + & dble( j )*inv_nr2s*at(ipol,2) + & dble( k )*inv_nr3s*at(ipol,3) ENDDO ! posi(:) = posi(:) - tau_ia(:) ! ! ... minimum image convenction ! CALL cryst_to_cart( 1, posi, bg, -1 ) ! posi(:) = posi(:) - anint( posi(:) ) ! CALL cryst_to_cart( 1, posi, at, 1 ) ! distsq = posi(1)**2 + posi(2)**2 + posi(3)**2 ! IF ( distsq < boxradsq_ia ) THEN ! mbia = maxbox_beta(ia) + 1 ! maxbox_beta(ia) = mbia buffpoints(mbia,ia) = ir buffdist(mbia,ia) = sqrt( distsq )*alat xyz_beta(:,mbia,ia) = posi(:)*alat ! ENDIF ENDDO ENDDO ! goodestimate = maxval( maxbox_beta ) ! IF ( goodestimate > roughestimate ) & CALL errore( 'betapointlist', 'rough-estimate is too rough', 2 ) ! ! ... now store them in a more convenient place ! IF ( allocated( box_beta ) ) DEALLOCATE( box_beta ) IF ( allocated( boxdist_beta ) ) DEALLOCATE( boxdist_beta ) ! ALLOCATE( box_beta ( goodestimate, nat ) ) ALLOCATE( boxdist_beta( goodestimate, nat ) ) ! box_beta(:,:) = buffpoints(1:goodestimate,:) boxdist_beta(:,:) = buffdist(1:goodestimate,:) ! DEALLOCATE( buffpoints ) DEALLOCATE( buffdist ) ! CALL stop_clock( 'realus:boxes' ) CALL start_clock( 'realus:spher' ) ! ! ... now it computes the spherical harmonics ! lamx2 = lmaxq*lmaxq ! IF ( allocated( spher_beta ) ) DEALLOCATE( spher_beta ) ! ALLOCATE( spher_beta( goodestimate, lamx2, nat ) ) ! spher_beta(:,:,:) = 0.D0 ! DO ia = 1, nat ! IF ( .not. upf(ityp(ia))%tvanp ) CYCLE ! idimension = maxbox_beta(ia) ALLOCATE( rl( 3, idimension ), rl2( idimension ) ) ! DO ir = 1, idimension rl(:,ir) = xyz_beta(:,ir,ia) rl2(ir) = rl(1,ir)**2 + rl(2,ir)**2 + rl(3,ir)**2 ENDDO ! ALLOCATE( tempspher( idimension, lamx2 ) ) CALL ylmr2( lamx2, idimension, rl, rl2, tempspher ) spher_beta(1:idimension,:,ia) = tempspher(:,:) DEALLOCATE( rl, rl2, tempspher ) ! ENDDO ! DEALLOCATE( xyz_beta ) ! CALL stop_clock( 'realus:spher' ) CALL start_clock( 'realus:tabp' ) ! ! ... let's do the main work ! betasdim = 0 DO ia = 1, nat mbia = maxbox_beta(ia) IF ( mbia == 0 ) CYCLE nt = ityp(ia) IF ( .not. upf(nt)%tvanp ) CYCLE DO ih = 1, nh(nt) betasdim = betasdim + mbia ENDDO ENDDO ! ALLOCATE( betasave( nat, nhm, goodestimate ) ) ! betasave = 0.D0 ! Box is set, Y_lm is known in the box, now the calculation can commence ! Reminder: In real space ! |Beta_lm(r)>=f_l(r).Y_lm(r) ! In q space (calculated in init_us_1 and then init_us_2 ) ! |Beta_lm(q)>= (4pi/omega).Y_lm(q).f_l(q).(i^l).S(q) ! Where ! f_l(q)=\int_0 ^\infty dr r^2 f_l (r) j_l(q.r) ! ! We know f_l(r) and Y_lm(r) for certain points, ! basically we interpolate the known values to new mesh using splint ! iqs = 0 ! DO ia = 1, nat ! mbia = maxbox_beta(ia) IF ( mbia == 0 ) CYCLE ! nt = ityp(ia) IF ( .not. upf(nt)%tvanp ) CYCLE ! ALLOCATE( qtot( upf(nt)%kkbeta, upf(nt)%nbeta, upf(nt)%nbeta ) ) ! ! ... variables used for spline interpolation ! ALLOCATE( xsp( upf(nt)%kkbeta ), ysp( upf(nt)%kkbeta ), wsp( upf(nt)%kkbeta ) ) ! ! ... the radii in x ! xsp(:) = rgrid(nt)%r(1:upf(nt)%kkbeta) ! DO ih = 1, nh (nt) ! lm = nhtolm(ih, nt) nb = indv(ih, nt) ! !OBM rgrid(nt)%r(1) == 0, attempting correction ! In the UPF file format, beta field is r*|beta> IF (rgrid(nt)%r(1)==0) THEN ysp(2:) = upf(nt)%beta(2:upf(nt)%kkbeta,nb) / rgrid(nt)%r(2:upf(nt)%kkbeta) ysp(1)=0.d0 ELSE ysp(:) = upf(nt)%beta(1:upf(nt)%kkbeta,nb) / rgrid(nt)%r(1:upf(nt)%kkbeta) ENDIF ALLOCATE( d1y(upf(nt)%kkbeta), d2y(upf(nt)%kkbeta) ) CALL radial_gradient(ysp(1:upf(nt)%kkbeta), d1y, & rgrid(nt)%r, upf(nt)%kkbeta, 1) CALL radial_gradient(d1y, d2y, rgrid(nt)%r, upf(nt)%kkbeta, 1) first = d1y(1) ! first derivative in first point second =d2y(1) ! second derivative in first point DEALLOCATE( d1y, d2y ) CALL spline( xsp, ysp, first, second, wsp ) DO ir = 1, mbia ! ! ... spline interpolation ! qtot_int = splint( xsp, ysp, wsp, boxdist_beta(ir,ia) ) !the value of f_l(r) in point ir in atom ia ! !iqs = iqs + 1 ! betasave(ia,ih,ir) = qtot_int*spher_beta(ir,lm,ia) !spher_beta is the Y_lm in point ir for atom ia ! ENDDO ENDDO ! DEALLOCATE( qtot ) DEALLOCATE( xsp ) DEALLOCATE( ysp ) DEALLOCATE( wsp ) ! ENDDO ! DEALLOCATE( boxdist_beta ) DEALLOCATE( spher_beta ) ! CALL stop_clock( 'realus:tabp' ) CALL stop_clock( 'betapointlist' ) ! END SUBROUTINE betapointlist !------------------------------------------------------------------------ SUBROUTINE newq_r(vr,deeq,skip_vltot) ! ! This routine computes the integral of the perturbed potential with ! the Q function in real space ! USE cell_base, ONLY : omega USE fft_base, ONLY : dfftp USE lsda_mod, ONLY : nspin USE ions_base, ONLY : nat, ityp USE uspp_param, ONLY : upf, nh, nhm USE uspp, ONLY : ijtoh USE control_flags, ONLY : tqr USE noncollin_module, ONLY : nspin_mag USE scf, ONLY : vltot USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! Input: potential , output: contribution to integral REAL(kind=dp), INTENT(in) :: vr(dfftp%nnr,nspin) REAL(kind=dp), INTENT(out) :: deeq( nhm, nhm, nat, nspin ) LOGICAL, INTENT(in) :: skip_vltot !If .false. vltot is added to vr when necessary !Internal REAL(DP), ALLOCATABLE :: aux(:) ! INTEGER :: ia, ih, jh, is, ir, nt INTEGER :: mbia, nhnt, iqs ! IF (tqr .and. .not. associated(tabp)) THEN CALL generate_qpointlist() ENDIF deeq(:,:,:,:) = 0.D0 ! ALLOCATE( aux( dfftp%nnr ) ) ! DO is = 1, nspin_mag ! IF ( (nspin_mag == 4 .and. is /= 1) .or. skip_vltot ) THEN aux(:) = vr(:,is) ELSE aux(:) = vltot(:) + vr(:,is) ENDIF ! iqs = 0 ! DO ia = 1, nat ! mbia = tabp(ia)%maxbox IF ( mbia == 0 ) CYCLE ! nt = ityp(ia) IF ( .not. upf(nt)%tvanp ) CYCLE ! nhnt = nh(nt) ! DO ih = 1, nhnt DO jh = ih, nhnt DO ir = 1, mbia iqs = iqs + 1 deeq(ih,jh,ia,is)= deeq(ih,jh,ia,is) + & tabp(ia)%qr(ir,ijtoh(ih,jh,nt))*aux(tabp(ia)%box(ir)) ENDDO deeq(jh,ih,ia,is) = deeq(ih,jh,ia,is) ENDDO ENDDO ENDDO ENDDO ! deeq(:,:,:,:) = deeq(:,:,:,:)*omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3) DEALLOCATE( aux ) CALL mp_sum( deeq(:,:,:,1:nspin_mag) , intra_bgrp_comm ) ! END SUBROUTINE newq_r !------------------------------------------------------------------------ SUBROUTINE newd_r() !------------------------------------------------------------------------ ! ! ... this subroutine is the version of newd in real space ! USE ions_base, ONLY : nat, ityp USE lsda_mod, ONLY : nspin USE scf, ONLY : v USE uspp, ONLY : okvan, deeq, deeq_nc, dvan, dvan_so USE uspp_param, ONLY : upf, nh, nhm USE noncollin_module, ONLY : noncolin, nspin_mag USE spin_orb, ONLY : domag, lspinorb ! IMPLICIT NONE ! INTEGER :: ia, ih, jh, is, nt INTEGER :: nht, nhnt ! IF ( .not. okvan ) THEN ! ! ... no ultrasoft potentials: use bare coefficients for projectors ! DO ia = 1, nat ! nt = ityp(ia) nht = nh(nt) ! IF ( lspinorb ) THEN ! deeq_nc(1:nht,1:nht,ia,1:nspin) = dvan_so(1:nht,1:nht,1:nspin,nt) ! ELSEIF ( noncolin ) THEN ! deeq_nc(1:nht,1:nht,ia,1) = dvan(1:nht,1:nht,nt) deeq_nc(1:nht,1:nht,ia,2) = ( 0.D0, 0.D0 ) deeq_nc(1:nht,1:nht,ia,3) = ( 0.D0, 0.D0 ) deeq_nc(1:nht,1:nht,ia,4) = dvan(1:nht,1:nht,nt) ! ELSE ! DO is = 1, nspin deeq(1:nht,1:nht,ia,is) = dvan(1:nht,1:nht,nt) ENDDO ! ENDIF ! ENDDO ! ! ... early return ! RETURN ! ENDIF ! CALL start_clock( 'newd' ) ! CALL newq_r(v%of_r,deeq,.false.) IF (noncolin) CALL add_paw_to_deeq(deeq) ! DO ia = 1, nat ! nt = ityp(ia) IF ( noncolin ) THEN ! IF ( upf(nt)%has_so ) THEN CALL newd_so( ia ) ELSE CALL newd_nc( ia ) ENDIF ! ELSE ! nhnt = nh(nt) DO is = 1, nspin_mag DO ih = 1, nhnt DO jh = ih, nhnt deeq(ih,jh,ia,is) = deeq(ih,jh,ia,is) + dvan(ih,jh,nt) deeq(jh,ih,ia,is) = deeq(ih,jh,ia,is) ENDDO ENDDO ENDDO ! ENDIF ENDDO ! CALL stop_clock( 'newd' ) ! RETURN ! CONTAINS ! !-------------------------------------------------------------------- SUBROUTINE newd_so( ia ) !-------------------------------------------------------------------- ! USE spin_orb, ONLY : fcoef, domag, lspinorb ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ia INTEGER :: ijs, is1, is2, kh, lh ! ! nt = ityp(ia) ijs = 0 ! DO is1 = 1, 2 DO is2 = 1, 2 ! ijs = ijs + 1 ! IF ( domag ) THEN ! DO ih = 1, nh(nt) DO jh = 1, nh(nt) ! deeq_nc(ih,jh,ia,ijs) = dvan_so(ih,jh,ijs,nt) ! DO kh = 1, nh(nt) DO lh = 1, nh(nt) ! deeq_nc(ih,jh,ia,ijs) = deeq_nc(ih,jh,ia,ijs) + & deeq (kh,lh,ia,1)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,1,is2,nt) + & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,2,is2,nt)) + & deeq (kh,lh,ia,2)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,2,is2,nt) + & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,1,is2,nt)) + & (0.D0,-1.D0)*deeq (kh,lh,ia,3)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,2,is2,nt) - & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,1,is2,nt)) + & deeq (kh,lh,ia,4)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,1,is2,nt) - & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,2,is2,nt)) ! ENDDO ENDDO ENDDO ENDDO ! ELSE ! DO ih = 1, nh(nt) DO jh = 1, nh(nt) ! deeq_nc(ih,jh,ia,ijs) = dvan_so(ih,jh,ijs,nt) ! DO kh = 1, nh(nt) DO lh = 1, nh(nt) ! deeq_nc(ih,jh,ia,ijs) = deeq_nc(ih,jh,ia,ijs) + & deeq (kh,lh,ia,1)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,1,is2,nt) + & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,2,is2,nt) ) ! ENDDO ENDDO ENDDO ENDDO ! ENDIF ! ENDDO ENDDO ! RETURN ! END SUBROUTINE newd_so ! !-------------------------------------------------------------------- SUBROUTINE newd_nc( ia ) !-------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ia ! nt = ityp(ia) ! DO ih = 1, nh(nt) DO jh = 1, nh(nt) ! IF ( lspinorb ) THEN ! deeq_nc(ih,jh,ia,1) = dvan_so(ih,jh,1,nt) + & deeq(ih,jh,ia,1) + deeq(ih,jh,ia,4) deeq_nc(ih,jh,ia,4) = dvan_so(ih,jh,4,nt) + & deeq(ih,jh,ia,1) - deeq(ih,jh,ia,4) ! ELSE ! deeq_nc(ih,jh,ia,1) = dvan(ih,jh,nt) + & deeq(ih,jh,ia,1) + deeq(ih,jh,ia,4) deeq_nc(ih,jh,ia,4) = dvan(ih,jh,nt) + & deeq(ih,jh,ia,1) - deeq(ih,jh,ia,4) ! ENDIF ! deeq_nc(ih,jh,ia,2) = deeq(ih,jh,ia,2) - & ( 0.D0, 1.D0 ) * deeq(ih,jh,ia,3) ! deeq_nc(ih,jh,ia,3) = deeq(ih,jh,ia,2) + & ( 0.D0, 1.D0 ) * deeq(ih,jh,ia,3) ! ENDDO ENDDO ! RETURN ! END SUBROUTINE newd_nc ! END SUBROUTINE newd_r ! !------------------------------------------------------------------------ SUBROUTINE setqfcorr( qfcoef, rho, r, nqf, ltot, mesh ) !----------------------------------------------------------------------- ! ! ... This routine compute the first part of the Q function up to rinner. ! ... On output it contains Q ! IMPLICIT NONE ! INTEGER, INTENT(in):: nqf, ltot, mesh ! input: the number of coefficients ! input: the angular momentum ! input: the number of mesh point REAL(DP), INTENT(in) :: r(mesh), qfcoef(nqf) ! input: the radial mesh ! input: the coefficients of Q REAL(DP), INTENT(out) :: rho(mesh) ! output: the function to be computed ! INTEGER :: ir, i REAL(DP) :: rr ! DO ir = 1, mesh rr = r(ir)**2 rho(ir) = qfcoef(1) DO i = 2, nqf rho(ir) = rho(ir) + qfcoef(i)*rr**(i-1) ENDDO rho(ir) = rho(ir)*r(ir)**ltot ENDDO ! RETURN ! END SUBROUTINE setqfcorr ! !------------------------------------------------------------------------ SUBROUTINE setqfcorrpt( qfcoef, rho, r, nqf, ltot ) !------------------------------------------------------------------------ ! ! ... This routine compute the first part of the Q function at the ! ... point r. On output it contains Q ! IMPLICIT NONE ! INTEGER, INTENT(in):: nqf, ltot ! input: the number of coefficients ! input: the angular momentum REAL(DP), INTENT(in) :: r, qfcoef(nqf) ! input: the radial mesh ! input: the coefficients of Q REAL(DP), INTENT(out) :: rho ! output: the function to be computed ! INTEGER :: i REAL(DP) :: rr ! rr = r*r ! rho = qfcoef(1) DO i = 2, nqf rho = rho + qfcoef(i)*rr**(i-1) ENDDO rho = rho*r**ltot ! RETURN ! END SUBROUTINE setqfcorrpt ! !------------------------------------------------------------------------ SUBROUTINE setqfcorrptfirst( qfcoef, rho, r, nqf, ltot ) !------------------------------------------------------------------------ ! ! ... On output it contains Q' (probably wrong) ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nqf, ltot ! input: the number of coefficients ! input: the angular momentum REAL(DP), INTENT(in) :: r, qfcoef(nqf) ! input: the radial mesh ! input: the coefficients of Q REAL(DP), INTENT(out) :: rho ! output: the function to be computed ! INTEGER :: i REAL(DP) :: rr ! rr = r*r rho = 0.D0 DO i = max( 1, 2-ltot ), nqf rho = rho + qfcoef(i)*rr**(i-2+ltot)*(i-1+ltot) ENDDO ! RETURN ! END SUBROUTINE setqfcorrptfirst ! !------------------------------------------------------------------------ SUBROUTINE setqfcorrptsecond( qfcoef, rho, r, nqf, ltot ) !------------------------------------------------------------------------ ! ! ... On output it contains Q ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nqf, ltot ! input: the number of coefficients ! input: the angular momentum REAL(DP), INTENT(in) :: r, qfcoef(nqf) ! input: the radial mesh ! input: the coefficients of Q REAL(DP), INTENT(out) :: rho ! output: the function to be computed ! INTEGER :: i REAL(DP) :: rr ! rr = r*r rho = 0.D0 DO i = max( 3-ltot, 1 ), nqf rho = rho + qfcoef(i)*rr**(i-3+ltot)*(i-1+ltot)*(i-2+ltot) ENDDO ! RETURN ! END SUBROUTINE setqfcorrptsecond ! !------------------------------------------------------------------------ SUBROUTINE addusdens_r(rho_1,rescale) !------------------------------------------------------------------------ ! ! ... This routine adds to the charge density the part which is due to ! ... the US augmentation. ! USE ions_base, ONLY : nat, ityp USE cell_base, ONLY : omega USE lsda_mod, ONLY : nspin !USE scf, ONLY : rho USE klist, ONLY : nelec USE fft_base, ONLY : dfftp USE uspp, ONLY : okvan, becsum USE uspp_param, ONLY : upf, nh USE noncollin_module, ONLY : noncolin, nspin_mag, nspin_lsda USE spin_orb, ONLY : domag USE mp_pools, ONLY : inter_pool_comm USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! The charge density to be augmented REAL(kind=dp), INTENT(inout) :: rho_1(dfftp%nnr,nspin_mag) ! If this is the ground charge density, enable rescaling LOGICAL, INTENT(in) :: rescale ! INTEGER :: ia, nt, ir, irb, ih, jh, ijh, is, mbia, nhnt, iqs CHARACTER(len=80) :: msg REAL(DP) :: charge REAL(DP) :: tolerance ! ! IF ( .not. okvan ) RETURN tolerance = 1.d-3 IF ( real_space ) tolerance = 1.d-2 !Charge loss in real_space case is even worse. !Final verdict: Mixing of Real Space paradigm and !Q space paradigm results in fast but not so ! accurate code. Not giving up though, I think ! I can still increase the accuracy a bit... ! CALL start_clock( 'addusdens' ) ! DO is = 1, nspin_mag ! iqs = 0 DO ia = 1, nat ! mbia = tabp(ia)%maxbox IF ( mbia == 0 ) CYCLE ! nt = ityp(ia) IF ( .not. upf(nt)%tvanp ) CYCLE ! nhnt = nh(nt) ijh = 0 DO ih = 1, nhnt DO jh = ih, nhnt ijh = ijh + 1 DO ir = 1, mbia irb = tabp(ia)%box(ir) iqs = iqs + 1 rho_1(irb,is) = rho_1(irb,is) + tabp(ia)%qr(ir,ijh)*becsum(ijh,ia,is) ENDDO ENDDO ENDDO ENDDO ! ENDDO ! ! ... check the integral of the total charge ! IF (rescale) THEN ! RHO IS NOT NECESSARILY GROUND STATE CHARGE DENSITY, thus rescaling is optional charge = sum( rho_1(:,1:nspin_lsda) )*omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) CALL mp_sum( charge , intra_bgrp_comm ) CALL mp_sum( charge , inter_pool_comm ) IF ( abs( charge - nelec ) / nelec > tolerance ) THEN ! ! ... the error on the charge is too large ! WRITE (msg,'("expected ",f10.6,", found ",f10.6)') & nelec, charge CALL errore( 'addusdens_r', 'WRONG CHARGE '//trim(msg)//& ': ions may be overlapping or increase ecutrho', 1 ) ! ELSE ! ! ... rescale the density to impose the correct number of electrons ! rho_1(:,:) = rho_1(:,:) / charge * nelec ! ENDIF ENDIF ! CALL stop_clock( 'addusdens' ) ! RETURN ! END SUBROUTINE addusdens_r !-------------------------------------------------------------------------- SUBROUTINE calbec_rs_gamma ( ibnd, m, becp_r ) !-------------------------------------------------------------------------- ! ! Subroutine written by Dario Rocca Stefano de Gironcoli, modified by O. Baris Malcioglu ! ! Calculates becp_r in real space ! Requires BETASAVE (the beta functions at real space) calculated by betapointlist() ! (added to realus) ! ibnd is an index that runs over the number of bands, which is given by m ! So you have to call this subroutine inside a cycle with index ibnd ! In this cycle you have to perform a Fourier transform of the orbital ! corresponding to ibnd, namely you have to transform the orbital to ! real space and store it in the global variable psic. ! Remember that in the gamma_only case you ! perform two fast Fourier transform at the same time, and so you have ! that the real part correspond to ibnd, and the imaginary part to ibnd+1 ! ! WARNING: For the sake of speed, there are no checks performed in this routine, check beforehand! USE kinds, ONLY : DP USE cell_base, ONLY : omega USE wavefunctions_module, ONLY : psic USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh, nhm USE fft_base, ONLY : tg_gather, dffts USE mp_bands, ONLY : me_bgrp, intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ibnd, m INTEGER :: iqs, iqsp, ikb, nt, ia, ih, mbia REAL(DP) :: fac REAL(DP), ALLOCATABLE, DIMENSION(:) :: wr, wi REAL(DP) :: bcr, bci REAL(DP), DIMENSION(:,:), INTENT(out) :: becp_r ! REAL(DP), EXTERNAL :: ddot ! ! CALL start_clock( 'calbec_rs' ) ! IF( ( dffts%have_task_groups ) .and. ( m >= dffts%nogrp ) ) THEN CALL errore( 'calbec_rs_gamma', 'task_groups not implemented', 1 ) ELSE !non task groups part starts here fac = sqrt(omega) / (dffts%nr1*dffts%nr2*dffts%nr3) ! becp_r(:,ibnd)=0.d0 IF ( ibnd+1 <= m ) becp_r(:,ibnd+1)=0.d0 ! Clearly for an odd number of bands for ibnd=nbnd=m you don't have ! anymore bands, and so the imaginary part equal zero ! ! iqs = 1 ikb = 0 ! DO nt = 1, ntyp ! DO ia = 1, nat ! IF ( ityp(ia) == nt ) THEN ! mbia = maxbox_beta(ia) ! maxbox_beta contains the maximum number of real space points necessary ! to describe the beta function corresponding to the atom ia ! Namely this is the number of grid points for which beta is ! different from zero ! ALLOCATE( wr(mbia), wi(mbia) ) ! just working arrays ! DO ih = 1, nh(nt) ! nh is the number of beta functions, or something similar ! ikb = ikb + 1 iqsp = iqs+mbia-1 wr(:) = dble ( psic( box_beta(1:mbia,ia) ) ) wi(:) = aimag( psic( box_beta(1:mbia,ia) ) ) !print *, "betasave check", betasave(ia,ih,:) ! box_beta contains explictly the points of the real space grid in ! which the beta functions are differet from zero. Remember ! that dble(psic) corresponds to ibnd, and aimag(psic) to ibnd+1: ! this is the standard way to perform fourier transform in pwscf ! in the gamma_only case bcr = ddot( mbia, betasave(ia,ih,:), 1, wr(:) , 1 ) bci = ddot( mbia, betasave(ia,ih,:), 1, wi(:) , 1 ) ! in the previous two lines the real space integral is performed, using ! few points of the real space mesh only becp_r(ikb,ibnd) = fac * bcr IF ( ibnd+1 <= m ) becp_r(ikb,ibnd+1) = fac * bci ! It is necessary to multiply by fac which to obtain the integral ! in real space !print *, becp_r(ikb,ibnd) iqs = iqsp + 1 ! ENDDO ! DEALLOCATE( wr, wi ) ! ENDIF ! ENDDO ! ENDDO ! ! ENDIF CALL mp_sum( becp_r( :, ibnd ), intra_bgrp_comm ) IF ( ibnd+1 <= m ) CALL mp_sum( becp_r( :, ibnd+1 ), intra_bgrp_comm ) CALL stop_clock( 'calbec_rs' ) ! RETURN END SUBROUTINE calbec_rs_gamma ! SUBROUTINE calbec_rs_k ( ibnd, m ) !-------------------------------------------------------------------------- ! The k_point generalised version of calbec_rs_gamma. Basically same as above, ! but becp is used instead of becp_r, skipping the gamma point reduction ! derived from above by OBM 051108 USE kinds, ONLY : DP USE cell_base, ONLY : omega USE wavefunctions_module, ONLY : psic USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh, nhm USE becmod, ONLY : bec_type, becp USE fft_base, ONLY : tg_gather, dffts USE mp_bands, ONLY : me_bgrp ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ibnd, m INTEGER :: iqs, iqsp, ikb, nt, ia, ih, mbia REAL(DP) :: fac REAL(DP), ALLOCATABLE, DIMENSION(:) :: wr, wi REAL(DP) :: bcr, bci !COMPLEX(DP), allocatable, dimension(:) :: bt !integer :: ir, k ! REAL(DP), EXTERNAL :: ddot ! ! CALL start_clock( 'calbec_rs' ) ! IF( ( dffts%have_task_groups ) .and. ( m >= dffts%nogrp ) ) THEN CALL errore( 'calbec_rs_k', 'task_groups not implemented', 1 ) ELSE !non task groups part starts here fac = sqrt(omega) / (dffts%nr1*dffts%nr2*dffts%nr3) ! becp%k(:,ibnd)=0.d0 iqs = 1 ikb = 0 ! DO nt = 1, ntyp ! DO ia = 1, nat ! IF ( ityp(ia) == nt ) THEN ! mbia = maxbox_beta(ia) ALLOCATE( wr(mbia), wi(mbia) ) DO ih = 1, nh(nt) ! nh is the number of beta functions, or something similar ! ikb = ikb + 1 iqsp = iqs+mbia-1 wr(:) = dble ( psic( box_beta(1:mbia,ia) ) ) wi(:) = aimag( psic( box_beta(1:mbia,ia) ) ) bcr = ddot( mbia, betasave(ia,ih,:), 1, wr(:) , 1 ) bci = ddot( mbia, betasave(ia,ih,:), 1, wi(:) , 1 ) becp%k(ikb,ibnd) = fac * cmplx( bcr, bci,kind=DP) iqs = iqsp + 1 ! ENDDO DEALLOCATE( wr, wi ) ! ENDIF ! ENDDO ! ENDDO ! ! ENDIF CALL stop_clock( 'calbec_rs' ) ! RETURN END SUBROUTINE calbec_rs_k !-------------------------------------------------------------------------- SUBROUTINE s_psir_gamma ( ibnd, m ) !-------------------------------------------------------------------------- ! ! ... This routine applies the S matrix to m wavefunctions psi in real space ! ... (in psic), and puts the results again in psic for backtransforming. ! ... Requires becp%r (calbecr in REAL SPACE) and betasave (from betapointlist ! ... in realus) ! Subroutine written by Dario Rocca, modified by O. Baris Malcioglu ! WARNING ! for the sake of speed, no checks performed in this subroutine USE kinds, ONLY : DP USE cell_base, ONLY : omega USE wavefunctions_module, ONLY : psic USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh USE lsda_mod, ONLY : current_spin USE uspp, ONLY : qq USE becmod, ONLY : bec_type, becp USE fft_base, ONLY : tg_gather, dffts USE mp_bands, ONLY : me_bgrp ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ibnd, m ! INTEGER :: ih, jh, iqs, jqs, ikb, jkb, nt, ia, ir, mbia REAL(DP) :: fac REAL(DP), ALLOCATABLE, DIMENSION(:) :: w1, w2 ! REAL(DP), EXTERNAL :: ddot ! CALL start_clock( 's_psir' ) IF( ( dffts%have_task_groups ) .and. ( m >= dffts%nogrp ) ) THEN CALL errore( 's_psir_gamma', 'task_groups not implemented', 1 ) ELSE ! non task groups part starts here ! fac = sqrt(omega) ! ikb = 0 iqs = 0 jqs = 0 ! DO nt = 1, ntyp ! DO ia = 1, nat ! IF ( ityp(ia) == nt ) THEN ! mbia = maxbox_beta(ia) !print *, "mbia=",mbia ALLOCATE( w1(nh(nt)), w2(nh(nt)) ) w1 = 0.D0 w2 = 0.D0 ! DO ih = 1, nh(nt) DO jh = 1, nh(nt) jkb = ikb + jh w1(ih) = w1(ih) + qq(ih,jh,nt) * becp%r(jkb, ibnd) IF ( ibnd+1 <= m ) w2(ih) = w2(ih) + qq(ih,jh,nt) * becp%r(jkb, ibnd+1) ENDDO ENDDO ! w1 = w1 * fac w2 = w2 * fac ikb = ikb + nh(nt) ! DO ih = 1, nh(nt) ! DO ir = 1, mbia iqs = jqs + ir psic( box_beta(ir,ia) ) = psic( box_beta(ir,ia) ) + betasave(ia,ih,ir)*cmplx( w1(ih), w2(ih) ,kind=DP) ENDDO ! jqs = iqs ! ENDDO ! DEALLOCATE( w1, w2 ) ! ENDIF ! ENDDO ! ENDDO ! ENDIF CALL stop_clock( 's_psir' ) ! RETURN ! END SUBROUTINE s_psir_gamma ! SUBROUTINE s_psir_k ( ibnd, m ) !-------------------------------------------------------------------------- ! Same as s_psir_gamma but for generalised k point scheme i.e.: ! 1) Only one band is considered at a time ! 2) Becp is a complex entity now ! Derived from s_psir_gamma by OBM 061108 USE kinds, ONLY : DP USE cell_base, ONLY : omega USE wavefunctions_module, ONLY : psic USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh USE lsda_mod, ONLY : current_spin USE uspp, ONLY : qq USE becmod, ONLY : bec_type, becp USE fft_base, ONLY : tg_gather, dffts USE mp_bands, ONLY : me_bgrp ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ibnd, m ! INTEGER :: ih, jh, iqs, jqs, ikb, jkb, nt, ia, ir, mbia REAL(DP) :: fac COMPLEX(DP) , ALLOCATABLE, DIMENSION(:) :: w1 ! REAL(DP), EXTERNAL :: ddot ! CALL start_clock( 's_psir' ) IF( ( dffts%have_task_groups ) .and. ( m >= dffts%nogrp ) ) THEN CALL errore( 's_psir_k', 'task_groups not implemented', 1 ) ELSE !non task groups part starts here ! fac = sqrt(omega) ! ikb = 0 iqs = 0 jqs = 0 ! DO nt = 1, ntyp ! DO ia = 1, nat ! IF ( ityp(ia) == nt ) THEN ! mbia = maxbox_beta(ia) ALLOCATE( w1(nh(nt)) ) w1 = 0.D0 ! DO ih = 1, nh(nt) DO jh = 1, nh(nt) jkb = ikb + jh w1(ih) = w1(ih) + qq(ih,jh,nt) * becp%k(jkb, ibnd) ENDDO ENDDO ! w1 = w1 * fac ikb = ikb + nh(nt) ! DO ih = 1, nh(nt) ! DO ir = 1, mbia ! iqs = jqs + ir psic( box_beta(ir,ia) ) = psic( box_beta(ir,ia) ) + betasave(ia,ih,ir)*w1(ih) ! ENDDO ! jqs = iqs ! ENDDO ! DEALLOCATE( w1 ) ! ENDIF ! ENDDO ! ENDDO ! ENDIF CALL stop_clock( 's_psir' ) ! RETURN ! END SUBROUTINE s_psir_k ! SUBROUTINE add_vuspsir_gamma ( ibnd, m ) !-------------------------------------------------------------------------- ! ! This routine applies the Ultra-Soft Hamiltonian to a ! vector transformed in real space contained in psic. ! ibnd is an index that runs over the number of bands, which is given by m ! Requires the products of psi with all beta functions ! in array becp%r(nkb,m) (calculated by calbecr in REAL SPACE) ! Subroutine written by Dario Rocca, modified by O. Baris Malcioglu ! WARNING ! for the sake of speed, no checks performed in this subroutine USE kinds, ONLY : DP USE cell_base, ONLY : omega USE wavefunctions_module, ONLY : psic USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh USE lsda_mod, ONLY : current_spin USE uspp, ONLY : deeq USE becmod, ONLY : bec_type, becp USE fft_base, ONLY : tg_gather, dffts USE mp_bands, ONLY : me_bgrp ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ibnd, m ! INTEGER :: ih, jh, iqs, jqs, ikb, jkb, nt, ia, ir, mbia REAL(DP) :: fac REAL(DP), ALLOCATABLE, DIMENSION(:) :: w1, w2 ! REAL(DP), EXTERNAL :: ddot ! CALL start_clock( 'add_vuspsir' ) IF( ( dffts%have_task_groups ) .and. ( m >= dffts%nogrp ) ) THEN CALL errore( 'add_vuspsir_gamma', 'task_groups not implemented', 1 ) ELSE !non task groups part starts here ! fac = sqrt(omega) ! ikb = 0 iqs = 0 jqs = 0 ! DO nt = 1, ntyp ! DO ia = 1, nat ! IF ( ityp(ia) == nt ) THEN ! mbia = maxbox_beta(ia) ALLOCATE( w1(nh(nt)), w2(nh(nt)) ) w1 = 0.D0 w2 = 0.D0 ! DO ih = 1, nh(nt) ! DO jh = 1, nh(nt) ! jkb = ikb + jh ! w1(ih) = w1(ih) + deeq(ih,jh,ia,current_spin) * becp%r(jkb,ibnd) IF ( ibnd+1 <= m ) w2(ih) = w2(ih) + deeq(ih,jh,ia,current_spin)* & becp%r(jkb,ibnd+1) ! ENDDO ! ENDDO ! w1 = w1 * fac w2 = w2 * fac ikb = ikb + nh(nt) ! DO ih = 1, nh(nt) ! DO ir = 1, mbia ! iqs = jqs + ir psic( box_beta(ir,ia) ) = psic( box_beta(ir,ia) ) + & betasave(ia,ih,ir)*cmplx( w1(ih), w2(ih) ,kind=DP) ! ENDDO ! jqs = iqs ! ENDDO ! DEALLOCATE( w1, w2 ) ! ENDIF ! ENDDO ! ENDDO ! ENDIF CALL stop_clock( 'add_vuspsir' ) ! RETURN ! END SUBROUTINE add_vuspsir_gamma ! SUBROUTINE add_vuspsir_k ( ibnd, m ) !-------------------------------------------------------------------------- ! ! This routine applies the Ultra-Soft Hamiltonian to a ! vector transformed in real space contained in psic. ! ibnd is an index that runs over the number of bands, which is given by m ! Requires the products of psi with all beta functions ! in array becp(nkb,m) (calculated by calbecr in REAL SPACE) ! Subroutine written by Stefano de Gironcoli, modified by O. Baris Malcioglu ! WARNING ! for the sake of speed, no checks performed in this subroutine ! USE kinds, ONLY : DP USE cell_base, ONLY : omega USE wavefunctions_module, ONLY : psic USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh USE lsda_mod, ONLY : current_spin USE uspp, ONLY : deeq USE becmod, ONLY : bec_type, becp USE fft_base, ONLY : tg_gather, dffts USE mp_bands, ONLY : me_bgrp ! IMPLICIT NONE ! INTEGER, INTENT(in) :: ibnd, m ! INTEGER :: ih, jh, iqs, jqs, ikb, jkb, nt, ia, ir, mbia REAL(DP) :: fac ! COMPLEX(DP), ALLOCATABLE, DIMENSION(:) :: w1 ! REAL(DP), EXTERNAL :: ddot ! CALL start_clock( 'add_vuspsir' ) IF( ( dffts%have_task_groups ) .and. ( m >= dffts%nogrp ) ) THEN CALL errore( 'add_vuspsir_k', 'task_groups not implemented', 1 ) ELSE ! non task groups part starts here ! fac = sqrt(omega) ! ikb = 0 iqs = 0 jqs = 0 ! DO nt = 1, ntyp ! DO ia = 1, nat ! IF ( ityp(ia) == nt ) THEN ! mbia = maxbox_beta(ia) ALLOCATE( w1(nh(nt)) ) w1 = (0.d0, 0d0) ! DO ih = 1, nh(nt) ! DO jh = 1, nh(nt) ! jkb = ikb + jh ! w1(ih) = w1(ih) + deeq(ih,jh,ia,current_spin) * becp%k(jkb,ibnd) ! ENDDO ! ENDDO ! w1 = w1 * fac ikb = ikb + nh(nt) ! DO ih = 1, nh(nt) ! DO ir = 1, mbia ! iqs = jqs + ir psic( box_beta(ir,ia) ) = psic( box_beta(ir,ia) ) + & betasave(ia,ih,ir)*w1(ih) ! ENDDO ! jqs = iqs ! ENDDO ! DEALLOCATE( w1) ! ENDIF ! ENDDO ! ENDDO ENDIF CALL stop_clock( 'add_vuspsir' ) RETURN ! END SUBROUTINE add_vuspsir_k !-------------------------------------------------------------------------- SUBROUTINE fft_orbital_gamma (orbital, ibnd, nbnd, conserved) !-------------------------------------------------------------------------- ! ! OBM 241008 ! This driver subroutine transforms the given orbital using fft and puts the ! result in psic ! Warning! In order to be fast, no checks on the supplied data are performed! ! orbital: the orbital to be transformed ! ibnd: band index ! nbnd: total number of bands USE wavefunctions_module, ONLY : psic USE gvecs, ONLY : nls,nlsm,doublegrid USE kinds, ONLY : DP USE fft_base, ONLY : dffts, tg_gather USE fft_interfaces,ONLY : invfft USE mp_bands, ONLY : me_bgrp IMPLICIT NONE INTEGER, INTENT(in) :: ibnd,& ! Current index of the band currently being transformed nbnd ! Total number of bands you want to transform COMPLEX(DP),INTENT(in) :: orbital(:,:) LOGICAL, OPTIONAL :: conserved ! if this flag is true, the orbital is stored in temporary memory !Internal temporary variables INTEGER :: j, idx, ioff LOGICAL :: use_tg !Task groups INTEGER :: v_siz !The new task group version based on vloc_psi !print *, "->Real space" CALL start_clock( 'fft_orbital' ) ! ! The following is dirty trick to prevent usage of task groups if ! the number of bands is smaller than the number of task groups ! use_tg = dffts%have_task_groups dffts%have_task_groups = ( dffts%have_task_groups ) .and. ( nbnd >= dffts%nogrp ) IF( dffts%have_task_groups ) THEN ! tg_psic = (0.d0, 0.d0) ioff = 0 ! DO idx = 1, 2*dffts%nogrp, 2 IF( idx + ibnd - 1 < nbnd ) THEN DO j = 1, npw_k(1) tg_psic(nls (igk_k(j,1))+ioff) = orbital(j,idx+ibnd-1) +& (0.0d0,1.d0) * orbital(j,idx+ibnd) tg_psic(nlsm(igk_k(j,1))+ioff) =conjg(orbital(j,idx+ibnd-1) -& (0.0d0,1.d0) * orbital(j,idx+ibnd) ) ENDDO ELSEIF( idx + ibnd - 1 == nbnd ) THEN DO j = 1, npw_k(1) tg_psic(nls (igk_k(j,1))+ioff) = orbital(j,idx+ibnd-1) tg_psic(nlsm(igk_k(j,1))+ioff) = conjg( orbital(j,idx+ibnd-1)) ENDDO ENDIF ioff = ioff + dffts%tg_nnr ENDDO ! ! CALL invfft ('Wave', tg_psic, dffts) ! ! IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (.not. allocated(tg_psic_temp)) ALLOCATE( tg_psic_temp( dffts%tg_nnr * dffts%nogrp ) ) tg_psic_temp=tg_psic ENDIF ENDIF ELSE !Task groups not used ! psic(:) = (0.d0, 0.d0) IF (ibnd < nbnd) THEN ! two ffts at the same time DO j = 1, npw_k(1) psic (nls (igk_k(j,1))) = orbital(j, ibnd) + (0.0d0,1.d0)*orbital(j, ibnd+1) psic (nlsm(igk_k(j,1))) = conjg(orbital(j, ibnd) - (0.0d0,1.d0)*orbital(j, ibnd+1)) ENDDO ELSE DO j = 1, npw_k(1) psic (nls (igk_k(j,1))) = orbital(j, ibnd) psic (nlsm(igk_k(j,1))) = conjg(orbital(j, ibnd)) ENDDO ENDIF ! CALL invfft ('Wave', psic, dffts) ! IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (.not. allocated(psic_temp) ) ALLOCATE (psic_temp(size(psic))) CALL zcopy(size(psic),psic,1,psic_temp,1) ENDIF ENDIF ENDIF dffts%have_task_groups = use_tg CALL stop_clock( 'fft_orbital' ) END SUBROUTINE fft_orbital_gamma ! ! !-------------------------------------------------------------------------- SUBROUTINE bfft_orbital_gamma (orbital, ibnd, nbnd,conserved) !-------------------------------------------------------------------------- ! ! OBM 241008 ! This driver subroutine -back- transforms the given orbital using fft using ! the already existent data in psic. ! Warning! This subroutine does not reset the orbital, use carefully! ! Warning 2! In order to be fast, no checks on the supplied data are performed! ! Variables: ! orbital: the orbital to be transformed ! ibnd: band index ! nbnd: total number of bands USE wavefunctions_module, ONLY : psic USE gvecs, ONLY : nls,nlsm,doublegrid USE kinds, ONLY : DP USE fft_base, ONLY : dffts, tg_gather USE fft_interfaces,ONLY : fwfft USE mp_bands, ONLY : me_bgrp IMPLICIT NONE INTEGER, INTENT(in) :: ibnd,& ! Current index of the band currently being transformed nbnd ! Total number of bands you want to transform COMPLEX(DP),INTENT(out) :: orbital(:,:) LOGICAL, OPTIONAL :: conserved !if this flag is true, the orbital is stored in temporary memory !Internal temporary variables COMPLEX(DP) :: fp, fm INTEGER :: j, idx, ioff LOGICAL :: use_tg !Task groups INTEGER :: v_siz !print *, "->fourier space" CALL start_clock( 'bfft_orbital' ) !New task_groups versions use_tg = dffts%have_task_groups dffts%have_task_groups = ( dffts%have_task_groups ) .and. ( nbnd >= dffts%nogrp ) IF( dffts%have_task_groups ) THEN ! CALL fwfft ('Wave', tg_psic, dffts ) ! ioff = 0 ! DO idx = 1, 2*dffts%nogrp, 2 ! IF( idx + ibnd - 1 < nbnd ) THEN DO j = 1, npw_k(1) fp= ( tg_psic( nls(igk_k(j,1)) + ioff ) + & tg_psic( nlsm(igk_k(j,1)) + ioff ) ) * 0.5d0 fm= ( tg_psic( nls(igk_k(j,1)) + ioff ) - & tg_psic( nlsm(igk_k(j,1)) + ioff ) ) * 0.5d0 orbital (j, ibnd+idx-1) = cmplx( dble(fp), aimag(fm),kind=DP) orbital (j, ibnd+idx ) = cmplx(aimag(fp),- dble(fm),kind=DP) ENDDO ELSEIF( idx + ibnd - 1 == nbnd ) THEN DO j = 1, npw_k(1) orbital (j, ibnd+idx-1) = tg_psic( nls(igk_k(j,1)) + ioff ) ENDDO ENDIF ! ioff = ioff + dffts%nr3x * dffts%nsw( me_bgrp + 1 ) ! ENDDO ! IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (allocated(tg_psic_temp)) DEALLOCATE( tg_psic_temp ) ENDIF ENDIF ELSE !Non task_groups version !larger memory slightly faster CALL fwfft ('Wave', psic, dffts) IF (ibnd < nbnd) THEN ! two ffts at the same time DO j = 1, npw_k(1) fp = (psic (nls(igk_k(j,1))) + psic (nlsm(igk_k(j,1))))*0.5d0 fm = (psic (nls(igk_k(j,1))) - psic (nlsm(igk_k(j,1))))*0.5d0 orbital( j, ibnd) = cmplx( dble(fp), aimag(fm),kind=DP) orbital( j, ibnd+1) = cmplx(aimag(fp),- dble(fm),kind=DP) ENDDO ELSE DO j = 1, npw_k(1) orbital(j, ibnd) = psic (nls(igk_k(j,1))) ENDDO ENDIF IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (allocated(psic_temp) ) DEALLOCATE(psic_temp) ENDIF ENDIF ENDIF dffts%have_task_groups = use_tg ! CALL stop_clock( 'bfft_orbital' ) END SUBROUTINE bfft_orbital_gamma ! !-------------------------------------------------------------------------- SUBROUTINE fft_orbital_k (orbital, ibnd, nbnd, ik, conserved) !-------------------------------------------------------------------------- ! ! OBM 110908 ! This subroutine transforms the given orbital using fft and puts the result ! in psic ! Warning! In order to be fast, no checks on the supplied data are performed! ! orbital: the orbital to be transformed ! ibnd: band index ! nbnd: total number of bands USE kinds, ONLY : DP USE wavefunctions_module, ONLY : psic USE gvecs, ONLY : nls, nlsm, doublegrid USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : invfft USE mp_bands, ONLY : me_bgrp IMPLICIT NONE INTEGER, INTENT(in) :: ibnd,& ! Index of the band currently being transformed nbnd,& ! Total number of bands you want to transform ik ! kpoint index of the bands COMPLEX(DP),INTENT(in) :: orbital(:,:) LOGICAL, OPTIONAL :: conserved !if this flag is true, the orbital is stored in temporary memory ! Internal variables INTEGER :: ioff, idx LOGICAL :: use_tg CALL start_clock( 'fft_orbital' ) use_tg = dffts%have_task_groups dffts%have_task_groups = ( dffts%have_task_groups ) .and. ( nbnd >= dffts%nogrp ) IF( dffts%have_task_groups ) THEN ! tg_psic = ( 0.D0, 0.D0 ) ioff = 0 ! DO idx = 1, dffts%nogrp ! IF( idx + ibnd - 1 <= nbnd ) THEN !DO j = 1, size(orbital,1) tg_psic( nls( igk_k(:, ik) ) + ioff ) = orbital(:,idx+ibnd-1) !END DO ENDIF ioff = ioff + dffts%tg_nnr ENDDO ! CALL invfft ('Wave', tg_psic, dffts) IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (.not. allocated(tg_psic_temp)) & &ALLOCATE( tg_psic_temp( dffts%tg_nnr * dffts%nogrp ) ) tg_psic_temp=tg_psic ENDIF ENDIF ! ELSE !non task_groups version ! psic(1:dffts%nnr) = ( 0.D0, 0.D0 ) ! psic(nls(igk_k(1:npw_k(ik), ik))) = orbital(1:npw_k(ik),ibnd) ! CALL invfft ('Wave', psic, dffts) IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (.not. allocated(psic_temp) ) ALLOCATE (psic_temp(size(psic))) psic_temp=psic ENDIF ENDIF ! ENDIF dffts%have_task_groups = use_tg CALL stop_clock( 'fft_orbital' ) END SUBROUTINE fft_orbital_k !-------------------------------------------------------------------------- SUBROUTINE bfft_orbital_k (orbital, ibnd, nbnd, ik, conserved) !-------------------------------------------------------------------------- ! ! OBM 110908 ! This subroutine transforms the given orbital using fft and puts the result ! in psic ! Warning! In order to be fast, no checks on the supplied data are performed! ! orbital: the orbital to be transformed ! ibnd: band index ! nbnd: total number of bands USE wavefunctions_module, ONLY : psic USE gvecs, ONLY : nls, nlsm, doublegrid USE kinds, ONLY : DP USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : fwfft USE mp_bands, ONLY : me_bgrp IMPLICIT NONE INTEGER, INTENT(in) :: ibnd,& ! Index of the band currently being transformed nbnd,& ! Total number of bands you want to transform ik ! kpoint index of the bands COMPLEX(DP),INTENT(out) :: orbital(:,:) LOGICAL, OPTIONAL :: conserved !if this flag is true, the orbital is stored in temporary memory ! Internal variables INTEGER :: ioff, idx LOGICAL :: use_tg CALL start_clock( 'bfft_orbital' ) use_tg = dffts%have_task_groups dffts%have_task_groups = ( dffts%have_task_groups ) .and. ( nbnd >= dffts%nogrp ) IF( dffts%have_task_groups ) THEN ! CALL fwfft ('Wave', tg_psic, dffts) ! ioff = 0 ! DO idx = 1, dffts%nogrp ! IF( idx + ibnd - 1 <= nbnd ) THEN orbital (:, ibnd+idx-1) = tg_psic( nls(igk_k(:,ik)) + ioff ) ENDIF ! ioff = ioff + dffts%nr3x * dffts%nsw( me_bgrp + 1 ) ! ENDDO IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (allocated(tg_psic_temp)) DEALLOCATE( tg_psic_temp ) ENDIF ENDIF ! ELSE !non task groups version ! CALL fwfft ('Wave', psic, dffts) ! orbital(1:npw_k(ik),ibnd) = psic(nls(igk_k(1:npw_k(ik),ik))) ! IF (present(conserved)) THEN IF (conserved .eqv. .true.) THEN IF (allocated(psic_temp) ) DEALLOCATE(psic_temp) ENDIF ENDIF ENDIF dffts%have_task_groups = use_tg CALL stop_clock( 'bfft_orbital' ) END SUBROUTINE bfft_orbital_k !-------------------------------------------------------------------------- SUBROUTINE v_loc_psir (ibnd, nbnd) !-------------------------------------------------------------------------- ! Basically the same thing as v_loc but without implicit fft ! modified for real space implementation ! OBM 241008 ! USE wavefunctions_module, ONLY : psic USE gvecs, ONLY : nls,nlsm,doublegrid USE kinds, ONLY : DP USE fft_base, ONLY : dffts, tg_gather USE mp_bands, ONLY : me_bgrp USE scf, ONLY : vrs USE lsda_mod, ONLY : current_spin IMPLICIT NONE INTEGER, INTENT(in) :: ibnd,& ! Current index of the band currently being transformed nbnd ! Total number of bands you want to transform !Internal temporary variables INTEGER :: j !Task groups REAL(DP), ALLOCATABLE :: tg_v(:) INTEGER :: v_siz CALL start_clock( 'v_loc_psir' ) IF( dffts%have_task_groups .and. nbnd >= dffts%nogrp ) THEN IF (ibnd == 1 ) THEN CALL tg_gather( dffts, vrs(:,current_spin), tg_v ) !if ibnd==1 this is a new calculation, and tg_v should be distributed. ENDIF ! DO j = 1, dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ) tg_psic (j) = tg_psic (j) + tg_psic_temp (j) * tg_v(j) ENDDO ! DEALLOCATE( tg_v ) ELSE ! product with the potential v on the smooth grid ! DO j = 1, dffts%nnr psic (j) = psic (j) + psic_temp (j) * vrs(j,current_spin) ENDDO ENDIF CALL stop_clock( 'v_loc_psir' ) END SUBROUTINE v_loc_psir !-------------------------------------------------------------------------- ! HERE starts the part added by GWW team ! NOW start the part added by GWW team ! SUBROUTINE adduspos_gamma_r(iw,jw,r_ij,ik,becp_iw,becp_jw) !---------------------------------------------------------------------- ! ! This routine adds the US term < Psi_iw|r> ! to the array r_ij ! this is a GAMMA only routine (i.e. r_ij is real) ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, nlm, gg, g USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE uspp, ONLY : okvan, becsum, nkb, ijtoh USE uspp_param, ONLY : upf, lmaxq, nh USE wvfct, ONLY : wg USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE io_global, ONLY : stdout USE cell_base, ONLY : omega ! USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! INTEGER, INTENT(in) :: iw,jw!the states indices REAL(kind=DP), INTENT(inout) :: r_ij(dfftp%nnr)!where to add the us term INTEGER, INTENT(in) :: ik!spin index for spin polarized calculations NOT IMPLEMENTED YET REAL(kind=DP), INTENT(in) :: becp_iw( nkb)!overlap of wfcs with us projectors REAL(kind=DP), INTENT(in) :: becp_jw( nkb)!overlap of wfcs with us projectors ! here the local variables ! INTEGER :: na, nt, nhnt, ir, ih, jh, is , ia, mbia, irb, iqs, sizeqsave INTEGER :: ikb, jkb, ijkb0, np ! counters ! work space for rho(G,nspin) ! Fourier transform of q IF (.not.okvan) RETURN IF( .not.gamma_only) THEN WRITE(stdout,*) ' adduspos_gamma_r is a gamma ONLY routine' STOP ENDIF ijkb0 = 0 DO is=1,nspin ! DO np = 1, ntyp ! iqs = 0 ! IF ( upf(np)%tvanp ) THEN ! DO ia = 1, nat ! mbia = tabp(ia)%maxbox nt = ityp(ia) nhnt = nh(nt) ! IF ( ityp(ia) /= np ) iqs=iqs+(nhnt+1)*nhnt*mbia/2 IF ( ityp(ia) /= np ) CYCLE ! DO ih = 1, nhnt ! ikb = ijkb0 + ih ! DO jh = ih, nhnt ! jkb = ijkb0 + jh ! DO ir = 1, mbia ! irb = tabp(ia)%box(ir) iqs = iqs + 1 ! r_ij(irb) = r_ij(irb) + tabp(ia)%qr(ir,ijtoh(ih,jh,np))& *becp_iw(ikb)*becp_jw(jkb)*omega ! IF ( ih /= jh ) THEN r_ij(irb) = r_ij(irb) + tabp(ia)%qr(ir,ijtoh(ih,jh,np))& *becp_iw(jkb)*becp_jw(ikb)*omega ENDIF ENDDO ENDDO ENDDO ijkb0 = ijkb0 + nhnt ! ENDDO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! ENDDO ! ENDIF ENDDO ENDDO ! RETURN ! END SUBROUTINE adduspos_gamma_r ! SUBROUTINE adduspos_r(r_ij,becp_iw,becp_jw) !---------------------------------------------------------------------- ! ! This routine adds the US term < Psi_iw|r> ! to the array r_ij USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, nlm, gg, g USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE uspp, ONLY : okvan, becsum, nkb, ijtoh USE uspp_param, ONLY : upf, lmaxq, nh USE wvfct, ONLY : wg USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE cell_base, ONLY : omega ! IMPLICIT NONE ! COMPLEX(kind=DP), INTENT(inout) :: r_ij(dfftp%nnr)!where to add the us term COMPLEX(kind=DP), INTENT(in) :: becp_iw( nkb)!overlap of wfcs with us projectors COMPLEX(kind=DP), INTENT(in) :: becp_jw( nkb)!overlap of wfcs with us projectors ! here the local variables ! INTEGER :: na, ia, nt, nhnt, ir, ih, jh, is, mbia, irb, iqs INTEGER :: ikb, jkb, ijkb0, np ! counters ! work space for rho(G,nspin) ! Fourier transform of q IF (.not.okvan) RETURN ijkb0 = 0 DO is=1,nspin ! DO np = 1, ntyp ! iqs = 0 ! IF ( upf(np)%tvanp ) THEN ! DO ia = 1, nat ! mbia = tabp(ia)%maxbox nt = ityp(ia) nhnt = nh(nt) ! IF ( ityp(ia) /= np ) iqs=iqs+(nhnt+1)*nhnt*mbia/2 IF ( ityp(ia) /= np ) CYCLE ! DO ih = 1, nhnt ! ikb = ijkb0 + ih DO jh = ih, nhnt ! jkb = ijkb0 + jh ! DO ir = 1, mbia ! irb = tabp(ia)%box(ir) iqs = iqs + 1 ! r_ij(irb) = r_ij(irb) + tabp(ia)%qr(ir,ijtoh(ih,jh,np))& *conjg(becp_iw(ikb))*becp_jw(jkb)*omega ! IF ( ih /= jh ) THEN r_ij(irb) = r_ij(irb) + tabp(ia)%qr(ir,ijtoh(ih,jh,np))& *conjg(becp_iw(jkb))*becp_jw(ikb)*omega ENDIF ENDDO ENDDO ENDDO ijkb0 = ijkb0 + nhnt ! ENDDO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! ENDDO ! ENDIF ENDDO ENDDO ! RETURN END SUBROUTINE adduspos_r ! SUBROUTINE adduspos_real(sca,qq_op,becp_iw,becp_jw) !---------------------------------------------------------------------- ! ! This routine adds the US term < Psi_iw|r> ! to the array r_ij USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE gvect, ONLY : ngm, nl, nlm, gg, g USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE uspp, ONLY : okvan, becsum, nkb, qq USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE wvfct, ONLY : wg USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE cell_base, ONLY : omega ! USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! REAL(kind=DP), INTENT(inout) :: sca!where to add the us term REAL(kind=DP), INTENT(in) :: becp_iw( nkb)!overlap of wfcs with us projectors REAL(kind=DP), INTENT(in) :: becp_jw( nkb)!overlap of wfcs with us projectors REAL(kind=DP), INTENT(in) :: qq_op(nhm, nhm,nat)!US augmentation charges ! here the local variables ! INTEGER :: na, ia, nhnt, nt, ih, jh, is, mbia INTEGER :: ikb, jkb, ijkb0, np ! counters ! work space for rho(G,nspin) ! Fourier transform of q IF (.not.okvan) RETURN ijkb0 = 0 DO is=1,nspin ! DO np = 1, ntyp ! IF ( upf(np)%tvanp ) THEN ! DO ia = 1, nat ! IF ( ityp(ia) /= np ) CYCLE ! mbia = tabp(ia)%maxbox nt = ityp(ia) nhnt = nh(nt) ! DO ih = 1, nhnt ! ikb = ijkb0 + ih DO jh = ih, nhnt ! jkb = ijkb0 + jh ! sca = sca + qq_op(ih,jh,ia) * becp_iw(ikb)*becp_jw(jkb) ! IF ( ih /= jh ) THEN sca = sca + qq_op(jh,ih,ia) * becp_iw(ikb)*becp_jw(jkb) ENDIF ! ENDDO ENDDO ijkb0 = ijkb0 + nhnt ! ENDDO ! ELSE ! DO ia = 1, nat ! IF ( ityp(ia) == np ) ijkb0 = ijkb0 + nh(np) ! ENDDO ! ENDIF ENDDO ENDDO ! RETURN ! END SUBROUTINE adduspos_real ! END MODULE realus espresso-5.1/PW/src/summary.f900000644000175000017500000005542512341373025014447 0ustar mbamba! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE summary() !----------------------------------------------------------------------- ! ! This routine writes on output all the information obtained from ! the input file and from the setup routine, before starting the ! self-consistent calculation. ! ! if iverbosity < 1 only a partial summary is done. ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE run_info, ONLY: title USE constants, ONLY : amu_ry, rytoev USE cell_base, ONLY : alat, ibrav, omega, at, bg, celldm USE ions_base, ONLY : nat, atm, zv, tau, ntyp => nsp, ityp USE cellmd, ONLY : calc, cmass USE ions_base, ONLY : amass USE gvect, ONLY : ecutrho, ngm, ngm_g, gcutm USE gvecs, ONLY : doublegrid, ngms, gcutms USE fft_base, ONLY : dfftp USE fft_base, ONLY : dffts USE lsda_mod, ONLY : lsda, starting_magnetization USE ldaU, ONLY : lda_plus_U, Hubbard_u, Hubbard_j, Hubbard_alpha, & Hubbard_l, lda_plus_u_kind, Hubbard_lmax,& Hubbard_J0, Hubbard_beta USE klist, ONLY : degauss, smearing, lgauss, nkstot, xk, wk, & nelec, nelup, neldw, two_fermi_energies USE ktetra, ONLY : ltetra USE control_flags, ONLY : imix, nmix, mixing_beta, nstep, lscf, & tr2, isolve, lmd, lbfgs, iverbosity, tqr USE noncollin_module,ONLY : noncolin USE spin_orb, ONLY : domag, lspinorb USE funct, ONLY : write_dft_name USE bp, ONLY : lelfield, gdir, nppstr_3d, efield, nberrycyc, & l3dstring,efield_cart,efield_cry USE fixed_occ, ONLY : f_inp, tfixed_occ USE uspp_param, ONLY : upf USE wvfct, ONLY : nbnd, ecutwfc, qcutz, ecfixed, q2sigma USE lsda_mod, ONLY : nspin USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE esm, ONLY : do_comp_esm, esm_summary USE martyna_tuckerman,ONLY: do_comp_mt USE realus, ONLY : real_space ! IMPLICIT NONE ! ! ... declaration of the local variables ! INTEGER :: i, ipol, apol, na, isym, ik, nt, ibnd, ngmtot ! counter on the celldm elements ! counter on polarizations ! counter on direct or reciprocal lattice vect ! counter on atoms ! counter on symmetries ! counter on k points ! counter on beta functions ! counter on types ! counter on bands ! total number of G-vectors (parallel execution) ! REAL(DP), ALLOCATABLE :: xau(:,:) ! atomic coordinate referred to the crystal axes REAL(DP) :: xkg(3) ! coordinates of the k point in crystal axes CHARACTER :: mixing_style * 9 REAL(DP) :: xp ! fraction contributing to a given atom type (obsolescent) ! ! ... we start with a general description of the run ! IF ( imix == 0 ) mixing_style = 'plain' IF ( imix == 1 ) mixing_style = 'TF' IF ( imix == 2 ) mixing_style = 'local-TF' ! IF ( title /= ' ') WRITE( stdout, "(/,5X,'Title: ',/,5X,A75)" ) title ! WRITE( stdout, 100) ibrav, alat, omega, nat, ntyp IF ( two_fermi_energies ) THEN WRITE( stdout, 101) nelec, nelup, neldw ELSE WRITE( stdout, 102) nelec END IF WRITE( stdout, 103) nbnd, ecutwfc, ecutrho IF ( lscf) WRITE( stdout, 104) tr2, mixing_beta, nmix, mixing_style ! 100 FORMAT( /,/,5X, & & 'bravais-lattice index = ',I12,/,5X, & & 'lattice parameter (alat) = ',F12.4,' a.u.',/,5X, & & 'unit-cell volume = ',F12.4,' (a.u.)^3',/,5X, & & 'number of atoms/cell = ',I12,/,5X, & & 'number of atomic types = ',I12) 101 FORMAT(5X, & & 'number of electrons = ',F12.2,' (up:',f7.2,', down:',f7.2,')') 102 FORMAT(5X, & & 'number of electrons = ',f12.2) 103 FORMAT(5X, & & 'number of Kohn-Sham states= ',I12,/,5X, & & 'kinetic-energy cutoff = ',F12.4,' Ry',/,5X, & & 'charge density cutoff = ',F12.4,' Ry') 104 FORMAT(5X, & & 'convergence threshold = ',1PE12.1,/,5X, & & 'mixing beta = ',0PF12.4,/,5X, & & 'number of iterations used = ',I12,2X,A,' mixing') ! call write_dft_name ( ) ! IF ( lmd .OR. lbfgs ) & WRITE( stdout, '(5X,"nstep = ",I12,/)' ) nstep ! IF (noncolin) THEN IF (lspinorb) THEN IF (domag) THEN WRITE( stdout, '(5X, "Noncollinear calculation with spin-orbit",/)') ELSE WRITE( stdout, '(5X, "Non magnetic calculation with spin-orbit",/)') ENDIF ELSE WRITE( stdout, '(5X, "Noncollinear calculation without spin-orbit",/)') END IF END IF ! IF ( qcutz > 0.D0 ) THEN ! WRITE( stdout, 110 ) ecfixed, qcutz, q2sigma ! 110 FORMAT( 5X,'A smooth kinetic-energy cutoff is imposed at ', & & F12.4,' Ry',/5X,'height of the smooth ', & & 'step-function =',F21.4,' Ry',/5X, & & 'width of the smooth step-function =',F21.4,' Ry',/ ) ! END IF ! CALL plugin_summary() ! ! ! ... ESM ! IF ( do_comp_esm ) CALL esm_summary() ! IF ( do_comp_mt ) WRITE( stdout, & '(5X, "Assuming isolated system, Martyna-Tuckerman method",/)') IF ( lelfield ) THEN !here information for berry's phase el. fields calculations WRITE(stdout, *) WRITE(stdout, '(" Using Berry phase electric field")') if(.not.l3dstring) then WRITE(stdout, '(" Direction :", i4)') gdir WRITE(stdout, '(" Intensity (Ry a.u.) :", f13.10)') efield WRITE(stdout, '(" Strings composed by:", i5," k-points")') nppstr_3d(gdir) else write(stdout,'(" In a.u.(Ry) cartesian system of reference" )') do i=1,3 write(stdout,'(7x,f13.10)') efield_cart(i) enddo write(stdout,'(" In a.u.(Ry) crystal system of reference" )') do i=1,3 write(stdout,'(7x,f13.10)') efield_cry(i) enddo endif WRITE(stdout, '(" Number of iterative cycles:", i4)') nberrycyc WRITE(stdout, *) ENDIF ! ! ... and here more detailed information. Description of the unit cell ! WRITE( stdout, '(/2(3X,3(2X,"celldm(",I1,")=",F11.6),/))' ) & ( i, celldm(i), i = 1, 6 ) ! WRITE( stdout, '(5X, & & "crystal axes: (cart. coord. in units of alat)",/, & & 3(15x,"a(",i1,") = (",3f11.6," ) ",/ ) )') (apol, & (at (ipol, apol) , ipol = 1, 3) , apol = 1, 3) ! WRITE( stdout, '(5x, & & "reciprocal axes: (cart. coord. in units 2 pi/alat)",/, & & 3(15x,"b(",i1,") = (",3f10.6," ) ",/ ) )') (apol,& & (bg (ipol, apol) , ipol = 1, 3) , apol = 1, 3) ! CALL print_ps_info ( ) ! ! ! ... print the vdw table information if needed CALL print_vdw_info () ! WRITE( stdout, '(/5x, "atomic species valence mass pseudopotential")') xp = 1.d0 DO nt = 1, ntyp WRITE( stdout, '(5x,a6,6x,f10.2,2x,f10.5,5x,5 (a2,"(",f5.2,")"))') & atm(nt), zv(nt), amass(nt), upf(nt)%psd, xp ENDDO IF (calc.EQ.'cd' .OR. calc.EQ.'cm' ) & WRITE( stdout, '(/5x," cell mass =", f10.5, " AMU ")') cmass/amu_ry IF (calc.EQ.'nd' .OR. calc.EQ.'nm' ) & WRITE( stdout, '(/5x," cell mass =", f10.5, " AMU/(a.u.)^2 ")') cmass/amu_ry IF (lsda) THEN WRITE( stdout, '(/5x,"Starting magnetic structure ", & & /5x,"atomic species magnetization")') DO nt = 1, ntyp WRITE( stdout, '(5x,a6,9x,f6.3)') atm(nt), starting_magnetization(nt) ENDDO ENDIF ! ! Some output for LDA+U ! IF ( lda_plus_U ) THEN IF (lda_plus_u_kind == 0) THEN ! WRITE( stdout, '(/,/,5x,"Simplified LDA+U calculation (l_max = ",i1, & &") with parameters (eV):")') Hubbard_lmax WRITE( stdout, '(5x,A)') & &"atomic species L U alpha J0 beta" DO nt = 1, ntyp IF ( Hubbard_U(nt) /= 0.D0 .OR. Hubbard_alpha(nt) /= 0.D0 .OR. & Hubbard_J0(nt) /= 0.D0 .OR. Hubbard_beta(nt) /= 0.D0 ) THEN WRITE( stdout,'(5x,a6,12x,i1,2x,4f9.4)') atm(nt), Hubbard_L(nt), & Hubbard_U(nt)*rytoev, Hubbard_alpha(nt)*rytoev, & Hubbard_J0(nt)*rytoev, Hubbard_beta(nt)*rytoev END IF END DO ! ELSEIF(lda_plus_u_kind == 1) THEN ! WRITE( stdout, '(/,/,5x,"Full LDA+U calculation (l_max = ",i1, & &") with parameters (eV):")') Hubbard_lmax DO nt = 1, ntyp IF (Hubbard_U(nt) /= 0.d0) THEN IF (Hubbard_l(nt) == 0) THEN WRITE (stdout,'(5x,a,i2,a,f12.8)') & 'U(',nt,') =', Hubbard_U(nt) * rytoev ELSEIF (Hubbard_l(nt) == 1) THEN WRITE (stdout,'(5x,2(a,i3,a,f9.4,3x))') & 'U(',nt,') =', Hubbard_U(nt)*rytoev, & 'J(',nt,') =', Hubbard_J(1,nt)*rytoev ELSEIF (Hubbard_l(nt) == 2) THEN WRITE (stdout,'(5x,3(a,i3,a,f9.4,3x))') & 'U(',nt,') =', Hubbard_U(nt)*rytoev, & 'J(',nt,') =', Hubbard_J(1,nt)*rytoev, & 'B(',nt,') =', Hubbard_J(2,nt)*rytoev ELSEIF (Hubbard_l(nt) == 3) THEN WRITE (stdout,'(5x,4(a,i3,a,f9.4,3x))') & 'U (',nt,') =', Hubbard_U(nt)*rytoev, & 'J (',nt,') =', Hubbard_J(1,nt)*rytoev, & 'E2(',nt,') =', Hubbard_J(2,nt)*rytoev, & 'E3(',nt,') =', Hubbard_J(3,nt)*rytoev END IF END IF ENDDO IF (lspinorb) THEN WRITE(stdout, '(5x,"LDA+U on averaged j=l+1/2,l-1/2 radial WFs")') END IF ! END IF ! WRITE( stdout,'(/)') END IF ! ! description of symmetries ! CALL print_symmetries ( iverbosity, noncolin, domag ) ! ! description of the atoms inside the unit cell ! WRITE( stdout, '(/,3x,"Cartesian axes")') WRITE( stdout, '(/,5x,"site n. atom positions (alat units)")') WRITE( stdout, '(6x,i4,8x,a6," tau(",i4,") = (",3f12.7," )")') & (na, atm(ityp(na)), na, (tau(ipol,na), ipol=1,3), na=1,nat) ! ! output of starting magnetization ! IF (iverbosity > 0) THEN ! ! allocate work space ! ALLOCATE (xau(3,nat)) ! ! Compute the coordinates of each atom in the basis of the ! direct lattice vectors ! DO na = 1, nat DO ipol = 1, 3 xau(ipol,na) = bg(1,ipol)*tau(1,na) + bg(2,ipol)*tau(2,na) + & bg(3,ipol)*tau(3,na) ENDDO ENDDO ! ! description of the atoms inside the unit cell ! (in crystallographic coordinates) ! WRITE( stdout, '(/,3x,"Crystallographic axes")') WRITE( stdout, '(/,5x,"site n. atom ", & & " positions (cryst. coord.)")') WRITE( stdout, '(6x,i4,8x,a6," tau(",i4,") = (",3f11.7," )")') & (na, atm(ityp(na)), na, (xau(ipol,na), ipol=1,3), na=1,nat) ! ! deallocate work space ! DEALLOCATE(xau) ENDIF IF (lgauss) THEN WRITE( stdout, '(/5x,"number of k points=", i6, 2x, & & a," smearing, width (Ry)=",f8.4)') & & nkstot, TRIM(smearing), degauss ELSE IF (ltetra) THEN WRITE( stdout,'(/5x,"number of k points=",i6, & & " (tetrahedron method)")') nkstot ELSE WRITE( stdout, '(/5x,"number of k points=",i6)') nkstot ENDIF IF ( iverbosity > 0 .OR. nkstot < 100 ) THEN WRITE( stdout, '(23x,"cart. coord. in units 2pi/alat")') DO ik = 1, nkstot WRITE( stdout, '(8x,"k(",i5,") = (",3f12.7,"), wk =",f12.7)') ik, & (xk (ipol, ik) , ipol = 1, 3) , wk (ik) ENDDO ELSE WRITE( stdout, '(/5x,a)') & "Number of k-points >= 100: set verbosity='high' to print them." ENDIF IF ( iverbosity > 0 ) THEN WRITE( stdout, '(/23x,"cryst. coord.")') DO ik = 1, nkstot DO ipol = 1, 3 xkg(ipol) = at(1,ipol)*xk(1,ik) + at(2,ipol)*xk(2,ik) + & at(3,ipol)*xk(3,ik) ! xkg are the component in the crystal RL basis ENDDO WRITE( stdout, '(8x,"k(",i5,") = (",3f12.7,"), wk =",f12.7)') & ik, (xkg (ipol) , ipol = 1, 3) , wk (ik) ENDDO ENDIF WRITE( stdout, '(/5x,"Dense grid: ",i8," G-vectors", 5x, & & "FFT dimensions: (",i4,",",i4,",",i4,")")') & & ngm_g, dfftp%nr1, dfftp%nr2, dfftp%nr3 IF (doublegrid) THEN ! ngmtot = ngms CALL mp_sum (ngmtot, intra_bgrp_comm) ! WRITE( stdout, '(/5x,"Smooth grid: ",i8," G-vectors", 5x, & & "FFT dimensions: (",i4,",",i4,",",i4,")")') & & ngmtot, dffts%nr1, dffts%nr2, dffts%nr3 ENDIF IF ( real_space ) WRITE( stdout, & & '(5x,"Real space treatment of Beta functions,", & & " V.1 (BE SURE TO CHECK MANUAL!)")' ) IF ( tqr ) WRITE( stdout, '(5x,"Real space treatment of Q(r)")' ) IF (tfixed_occ) THEN WRITE( stdout, '(/,5X,"Occupations read from input ")' ) IF (nspin==2) THEN WRITE(stdout, '(/,5X," Spin-up")' ) WRITE(stdout, '(/,(5X,8f9.4))') (f_inp(ibnd,1),ibnd=1,nbnd) WRITE(stdout, '(/,5X," Spin-down")' ) WRITE(stdout, '(/,(5X,8f9.4))') (f_inp(ibnd,2),ibnd=1,nbnd) ELSE WRITE(stdout, '(/,(5X,8f9.4))') (f_inp(ibnd,1), ibnd=1,nbnd) END IF END IF ! CALL flush_unit( stdout ) ! RETURN ! END SUBROUTINE summary ! !----------------------------------------------------------------------- SUBROUTINE print_ps_info !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE io_files, ONLY : pseudo_dir, psfile USE ions_base, ONLY : ntyp => nsp USE atom, ONLY : rgrid USE uspp_param, ONLY : upf USE funct, ONLY : dft_is_gradient ! INTEGER :: nt, lmax CHARACTER :: ps*35 ! DO nt = 1, ntyp ! IF ( upf(nt)%tpawp ) THEN ! Note: for PAW pseudo also tvanp is .true. ps="Projector augmented-wave" ELSE IF ( upf(nt)%tvanp ) THEN ps='Ultrasoft' ELSE ps='Norm-conserving' END IF ! IF ( upf(nt)%nlcc ) ps = TRIM(ps) // ' + core correction' ! WRITE( stdout, '(/5x,"PseudoPot. #",i2," for ",a2," read from file:", & & /5x,a)') nt, upf(nt)%psd, TRIM(pseudo_dir)//TRIM (psfile(nt)) WRITE( stdout, '(5x,"MD5 check sum: ", a )') upf(nt)%md5_cksum ! WRITE( stdout, '( 5x,"Pseudo is ",a,", Zval =",f5.1)') & TRIM (ps), upf(nt)%zp ! WRITE( stdout, '(5x,A)') TRIM(upf(nt)%generated) ! IF(upf(nt)%tpawp) & WRITE( stdout, '(5x,a,a)') & "Shape of augmentation charge: ", TRIM(upf(nt)%paw%augshape) ! ! info added for 1/r pseudos (AF) IF(upf(nt)%tcoulombp ) & WRITE( stdout, '(5x,a,a)') "1/r Coulomb pseudo" ! WRITE( stdout, '(5x,"Using radial grid of ", i4, " points, ", & &i2," beta functions with: ")') rgrid(nt)%mesh, upf(nt)%nbeta DO ib = 1, upf(nt)%nbeta IF (ib < 10 ) THEN WRITE( stdout, '(15x," l(",i1,") = ",i3)') ib, upf(nt)%lll(ib) ELSE WRITE( stdout, '(14x," l(",i2,") = ",i3)') ib, upf(nt)%lll(ib) ENDIF END DO IF ( upf(nt)%tvanp ) THEN IF (upf(nt)%nqf==0) THEN WRITE( stdout, '(5x,"Q(r) pseudized with 0 coefficients ",/)') ELSE WRITE( stdout, '(5x,"Q(r) pseudized with ", & & i2," coefficients, rinner = ",3f8.3,/ & & 52x,3f8.3,/ 52x,3f8.3)') & & upf(nt)%nqf, (upf(nt)%rinner(i), i=1,upf(nt)%nqlc) END IF ENDIF ENDDO END SUBROUTINE print_ps_info ! !----------------------------------------------------------------------- SUBROUTINE print_vdw_info !----------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE io_files, ONLY : psfile USE funct, ONLY : get_inlc USE kernel_table, ONLY : vdw_table_name, vdw_kernel_md5_cksum integer :: inlc inlc = get_inlc() if (inlc==1 .or. inlc==2) then WRITE( stdout, '(/5x,"vdW kernel table read from file ",a)')& TRIM (vdw_table_name) WRITE( stdout, '(5x,"MD5 check sum: ", a )') vdw_kernel_md5_cksum endif END SUBROUTINE print_vdw_info ! SUBROUTINE print_symmetries ( iverbosity, noncolin, domag ) !----------------------------------------------------------------------- ! USE kinds, ONLY : dp USE io_global, ONLY : stdout USE symm_base, ONLY : nsym, nsym_ns, nsym_na, invsym, s, sr, & t_rev, ftau, sname USE rap_point_group, ONLY : code_group, nclass, nelem, elem, & which_irr, char_mat, name_rap, name_class, gname, ir_ram USE rap_point_group_so, ONLY : nrap, nelem_so, elem_so, has_e, & which_irr_so, char_mat_so, name_rap_so, name_class_so, d_spin, & name_class_so1 USE rap_point_group_is, ONLY : nsym_is, sr_is, ftau_is, d_spin_is, & gname_is, sname_is, code_group_is USE cell_base, ONLY : at USE fft_base, ONLY : dfftp ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iverbosity LOGICAL, INTENT(IN) :: noncolin, domag ! INTEGER :: nclass_ref ! The number of classes of the point group INTEGER :: isym, ipol REAL (dp) :: ft1, ft2, ft3 ! ! IF (nsym <= 1) THEN WRITE( stdout, '(/5x,"No symmetry found")') ELSE IF (invsym) THEN IF ( nsym_ns > 0 ) THEN WRITE( stdout, '(/5x,i2," Sym. Ops., with inversion, found ", & & "(",i2," have fractional translation)")' ) nsym, nsym_ns ELSE WRITE( stdout, '(/5x,i2," Sym. Ops., with inversion, found")' )& nsym END IF ELSE IF ( nsym_ns > 0 ) THEN WRITE( stdout, '(/5x,i2," Sym. Ops. (no inversion) found ",& & "(",i2," have fractional translation)")' ) nsym, nsym_ns ELSE WRITE( stdout,'(/5x,i2," Sym. Ops. (no inversion) found")' ) nsym END IF ENDIF ENDIF IF ( nsym_na > 0 ) THEN WRITE( stdout, '(10x,"(note: ",i2," additional sym.ops. were found ", & & "but ignored",/,10x," their fractional translations ",& & "are incommensurate with FFT grid)",/)') nsym_na ELSE WRITE( stdout, '(/)' ) END IF IF ( iverbosity > 0 ) THEN WRITE( stdout, '(36x,"s",24x,"frac. trans.")') nsym_is=0 DO isym = 1, nsym WRITE( stdout, '(/6x,"isym = ",i2,5x,a45/)') isym, sname(isym) IF (noncolin) THEN IF (domag) THEN WRITE(stdout,*) 'Time Reversal ', t_rev(isym) IF (t_rev(isym)==0) THEN nsym_is=nsym_is+1 sr_is(:,:,nsym_is) = sr(:,:,isym) CALL find_u(sr_is(1,1,nsym_is), d_spin_is(1,1,nsym_is)) ftau_is(:,nsym_is)=ftau(:,isym) sname_is(nsym_is)=sname(isym) ENDIF ELSE CALL find_u(sr(1,1,isym),d_spin(1,1,isym)) END IF END IF IF ( ftau(1,isym).NE.0 .OR. ftau(2,isym).NE.0 .OR. & ftau(3,isym).NE.0) THEN ft1 = at(1,1)*ftau(1,isym)/dfftp%nr1 + at(1,2)*ftau(2,isym)/dfftp%nr2 + & at(1,3)*ftau(3,isym)/dfftp%nr3 ft2 = at(2,1)*ftau(1,isym)/dfftp%nr1 + at(2,2)*ftau(2,isym)/dfftp%nr2 + & at(2,3)*ftau(3,isym)/dfftp%nr3 ft3 = at(3,1)*ftau(1,isym)/dfftp%nr1 + at(3,2)*ftau(2,isym)/dfftp%nr2 + & at(3,3)*ftau(3,isym)/dfftp%nr3 WRITE( stdout, '(1x,"cryst.",3x,"s(",i2,") = (",3(i6,5x), & & " ) f =( ",f10.7," )")') & isym, (s(1,ipol,isym),ipol=1,3), DBLE(ftau(1,isym))/DBLE(dfftp%nr1) WRITE( stdout, '(17x," (",3(i6,5x), " ) ( ",f10.7," )")') & (s(2,ipol,isym),ipol=1,3), DBLE(ftau(2,isym))/DBLE(dfftp%nr2) WRITE( stdout, '(17x," (",3(i6,5x), " ) ( ",f10.7," )"/)') & (s(3,ipol,isym),ipol=1,3), DBLE(ftau(3,isym))/DBLE(dfftp%nr3) WRITE( stdout, '(1x,"cart. ",3x,"s(",i2,") = (",3f11.7, & & " ) f =( ",f10.7," )")') & isym, (sr(1,ipol,isym),ipol=1,3), ft1 WRITE( stdout, '(17x," (",3f11.7, " ) ( ",f10.7," )")') & (sr(2,ipol,isym),ipol=1,3), ft2 WRITE( stdout, '(17x," (",3f11.7, " ) ( ",f10.7," )"/)') & (sr(3,ipol,isym),ipol=1,3), ft3 ELSE WRITE( stdout, '(1x,"cryst.",3x,"s(",i2,") = (",3(i6,5x), " )")') & isym, (s (1, ipol, isym) , ipol = 1,3) WRITE( stdout, '(17x," (",3(i6,5x)," )")') (s(2,ipol,isym), ipol=1,3) WRITE( stdout, '(17x," (",3(i6,5x)," )"/)') (s(3,ipol,isym), ipol=1,3) WRITE( stdout, '(1x,"cart. ",3x,"s(",i2,") = (",3f11.7," )")') & isym, (sr (1, ipol,isym) , ipol = 1, 3) WRITE( stdout, '(17x," (",3f11.7," )")') (sr (2, ipol,isym) , ipol = 1, 3) WRITE( stdout, '(17x," (",3f11.7," )"/)') (sr (3, ipol,isym) , ipol = 1, 3) END IF END DO CALL find_group(nsym,sr,gname,code_group) IF (noncolin.AND.domag) THEN CALL find_group(nsym_is,sr_is,gname_is,code_group_is) CALL set_irr_rap_so(code_group_is,nclass_ref,nrap,char_mat_so, & name_rap_so,name_class_so,name_class_so1) CALL divide_class_so(code_group_is,nsym_is,sr_is,d_spin_is, & has_e,nclass,nelem_so,elem_so,which_irr_so) IF (nclass.ne.nclass_ref) CALL errore('summary', & 'point double group ?',1) ELSE IF (noncolin) THEN CALL set_irr_rap_so(code_group,nclass_ref,nrap,char_mat_so, & name_rap_so,name_class_so,name_class_so1) CALL divide_class_so(code_group,nsym,sr,d_spin,has_e,nclass, & nelem_so, elem_so,which_irr_so) IF (nclass.ne.nclass_ref) CALL errore('summary', & 'point double group ?',1) ELSE CALL set_irr_rap(code_group,nclass_ref,char_mat,name_rap, & name_class,ir_ram) CALL divide_class(code_group,nsym,sr,nclass,nelem,elem,which_irr) IF (nclass.ne.nclass_ref) CALL errore('summary','point group ?',1) ENDIF ENDIF CALL write_group_info(.true.) END IF ! END SUBROUTINE print_symmetries espresso-5.1/PW/src/s_1psi.f900000644000175000017500000000311712341373025014137 0ustar mbamba! ! Copyright (C) 2001-2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE s_1psi( npwx, n, psi, spsi ) !---------------------------------------------------------------------------- ! ! ... spsi = S*psi for one wavefunction ! ... Wrapper routine - calls calbec and s_psi ! USE kinds, ONLY : DP USE uspp, ONLY : vkb, nkb USE becmod, ONLY : bec_type, becp, calbec USE control_flags, ONLY : gamma_only USE noncollin_module, ONLY : noncolin, npol USE realus, ONLY : real_space, fft_orbital_gamma, bfft_orbital_gamma, & calbec_rs_gamma, s_psir_gamma, initialisation_level USE wvfct, ONLY: nbnd ! IMPLICIT NONE ! INTEGER :: npwx, n, ibnd COMPLEX(DP) :: psi(npwx*npol,1), spsi(npwx*npol,1) ! ! CALL start_clock( 's_1psi' ) ! IF ( gamma_only .and. real_space) then do ibnd=1,nbnd,2 ! transform the orbital to real space call fft_orbital_gamma(psi,ibnd,nbnd) ! global becp%r is updated call calbec_rs_gamma(ibnd,nbnd,becp%r) enddo call s_psir_gamma(1,1) call bfft_orbital_gamma(spsi,1,1) ! ELSE ! CALL calbec( n, vkb, psi, becp ) ! END IF ! if (.not. real_space) CALL s_psi( npwx, n, 1, psi, spsi ) ! CALL stop_clock( 's_1psi' ) ! RETURN ! END SUBROUTINE s_1psi espresso-5.1/PW/src/eqvect.f900000644000175000017500000000161512341373025014231 0ustar mbamba! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- logical function eqvect (x, y, f, accep ) !----------------------------------------------------------------------- ! ! This function test if the difference x-y-f is an integer. ! x, y = 3d vectors in crystal axis, f = fractionary translation ! USE kinds implicit none real(DP), intent(in) :: x (3), y (3), f (3), accep ! eqvect = abs( x(1)-y(1)-f(1) - nint(x(1)-y(1)-f(1)) ) < accep .and. & abs( x(2)-y(2)-f(2) - nint(x(2)-y(2)-f(2)) ) < accep .and. & abs( x(3)-y(3)-f(3) - nint(x(3)-y(3)-f(3)) ) < accep ! return end function eqvect espresso-5.1/PW/src/stress.f900000644000175000017500000001623612341373025014272 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine stress ( sigma ) !---------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE cell_base, ONLY : omega, alat, at, bg USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv USE constants, ONLY : ry_kbar USE ener, ONLY : etxc, vtxc USE gvect, ONLY : ngm, gstart, nl, g, gg, gcutm USE fft_base, ONLY : dfftp USE ldaU, ONLY : lda_plus_u, U_projection USE lsda_mod, ONLY : nspin USE scf, ONLY : rho, rho_core, rhog_core USE control_flags, ONLY : iverbosity, gamma_only, llondon, lxdm USE noncollin_module, ONLY : noncolin USE funct, ONLY : dft_is_meta, dft_is_gradient USE symme, ONLY : symmatrix USE bp, ONLY : lelfield USE uspp, ONLY : okvan USE london_module, ONLY : stres_london USE xdm_module, ONLY : stress_xdm USE exx, ONLY : exx_stress USE funct, ONLY : dft_is_hybrid ! IMPLICIT NONE ! REAL(DP), INTENT(OUT) :: sigma(3,3) ! real(DP) :: sigmakin (3, 3), sigmaloc (3, 3), sigmahar (3, 3), & sigmaxc (3, 3), sigmaxcc (3, 3), sigmaewa (3, 3), sigmanlc (3, 3), & sigmabare (3, 3), sigmah (3, 3), sigmael( 3, 3), sigmaion(3, 3), & sigmalon ( 3 , 3 ), sigmaxdm(3, 3), sigma_nonloc_dft (3 ,3), sigmaexx(3,3) integer :: l, m ! WRITE( stdout, '(//5x,"entering subroutine stress ..."/)') IF ( dft_is_meta() ) THEN CALL infomsg ('stress','Meta-GGA and stress not implemented') RETURN ELSE IF ( noncolin .AND. dft_is_gradient() ) then CALL infomsg('stres', 'noncollinear stress + GGA not implemented') RETURN ELSE IF ( lelfield .AND. okvan ) THEN CALL infomsg('stres', 'stress with USPP and electric fields (Berry) not implemented') RETURN END IF ! call start_clock ('stress') ! ! contribution from local potential ! call stres_loc (sigmaloc) ! ! hartree contribution ! call stres_har (sigmahar) ! ! xc contribution (diagonal) ! sigmaxc(:,:) = 0.d0 do l = 1, 3 sigmaxc (l, l) = - (etxc - vtxc) / omega enddo ! ! xc contribution: add gradient corrections (non diagonal) ! call stres_gradcorr ( rho%of_r, rho%of_g, rho_core, rhog_core, nspin, & dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nnr, nl, ngm, g, alat, omega, sigmaxc) ! ! core correction contribution ! call stres_cc (sigmaxcc) ! ! ewald contribution ! call stres_ewa (alat, nat, ntyp, ityp, zv, at, bg, tau, omega, g, & gg, ngm, gstart, gamma_only, gcutm, sigmaewa) ! ! semi-empirical dispersion contribution ! sigmalon ( : , : ) = 0.d0 ! IF ( llondon ) & sigmalon = stres_london ( alat , nat , ityp , at , bg , tau , omega ) ! xdm dispersion sigmaxdm = 0._dp if (lxdm) sigmaxdm = stress_xdm() ! ! kinetic + nonlocal contribuition ! call stres_knl (sigmanlc, sigmakin) ! do l = 1, 3 do m = 1, 3 sigmabare (l, m) = sigmaloc (l, m) + sigmanlc (l, m) enddo enddo ! ! Hubbard contribution ! (included by stres_knl if using beta as local projectors) ! sigmah(:,:) = 0.d0 IF ( lda_plus_u .AND. U_projection.NE.'pseudo' ) CALL stres_hub(sigmah) ! ! Electric field contribution ! sigmael(:,:)=0.d0 sigmaion(:,:)=0.d0 !the following is for calculating the improper stress tensor ! call stress_bp_efield (sigmael ) ! call stress_ion_efield (sigmaion ) ! ! DFT-non_local contribution ! sigma_nonloc_dft (:,:) = 0.d0 call stres_nonloc_dft(rho%of_r, rho_core, nspin, sigma_nonloc_dft) ! ! SUM ! sigma(:,:) = sigmakin(:,:) + sigmaloc(:,:) + sigmahar(:,:) + & sigmaxc(:,:) + sigmaxcc(:,:) + sigmaewa(:,:) + & sigmanlc(:,:) + sigmah(:,:) + sigmael(:,:) + & sigmaion(:,:) + sigmalon(:,:) + sigmaxdm(:,:) + & sigma_nonloc_dft(:,:) ! IF (dft_is_hybrid()) THEN sigmaexx = exx_stress() CALL symmatrix ( sigmaexx ) sigma(:,:) = sigma(:,:) + sigmaexx(:,:) ELSE sigmaexx = 0.d0 ENDIF ! Resymmetrize the total stress. This should not be strictly necessary, ! but prevents loss of symmetry in long vc-bfgs runs CALL symmatrix ( sigma ) ! ! write results in Ryd/(a.u.)^3 and in kbar ! WRITE( stdout, 9000) (sigma(1,1) + sigma(2,2) + sigma(3,3)) * ry_kbar/3d0, & (sigma(l,1), sigma(l,2), sigma(l,3), & sigma(l,1)*ry_kbar, sigma(l,2)*ry_kbar, sigma(l,3)*ry_kbar, l=1,3) if ( iverbosity > 0 ) WRITE( stdout, 9005) & (sigmakin(l,1)*ry_kbar,sigmakin(l,2)*ry_kbar,sigmakin(l,3)*ry_kbar, l=1,3),& (sigmaloc(l,1)*ry_kbar,sigmaloc(l,2)*ry_kbar,sigmaloc(l,3)*ry_kbar, l=1,3),& (sigmanlc(l,1)*ry_kbar,sigmanlc(l,2)*ry_kbar,sigmanlc(l,3)*ry_kbar, l=1,3),& (sigmahar(l,1)*ry_kbar,sigmahar(l,2)*ry_kbar,sigmahar(l,3)*ry_kbar, l=1,3),& (sigmaxc (l,1)*ry_kbar,sigmaxc (l,2)*ry_kbar,sigmaxc (l,3)*ry_kbar, l=1,3),& (sigmaxcc(l,1)*ry_kbar,sigmaxcc(l,2)*ry_kbar,sigmaxcc(l,3)*ry_kbar, l=1,3),& (sigmaewa(l,1)*ry_kbar,sigmaewa(l,2)*ry_kbar,sigmaewa(l,3)*ry_kbar, l=1,3),& (sigmah (l,1)*ry_kbar,sigmah (l,2)*ry_kbar,sigmah (l,3)*ry_kbar, l=1,3),& (sigmalon(l,1)*ry_kbar,sigmalon(l,2)*ry_kbar,sigmalon(l,3)*ry_kbar, l=1,3), & (sigmaxdm(l,1)*ry_kbar,sigmaxdm(l,2)*ry_kbar,sigmaxdm(l,3)*ry_kbar, l=1,3), & (sigma_nonloc_dft(l,1)*ry_kbar,sigma_nonloc_dft(l,2)*ry_kbar,sigma_nonloc_dft(l,3)*ry_kbar, l=1,3) IF ( dft_is_hybrid() .AND. (iverbosity > 0) ) WRITE( stdout, 9006) & (sigmaexx(l,1)*ry_kbar,sigmaexx(l,2)*ry_kbar,sigmaexx(l,3)*ry_kbar, l=1,3) 9006 format (5x,'EXX stress (kbar)',3f10.2/2(26x,3f10.2/)/ ) if( lelfield .and. iverbosity > 0 ) then write(stdout,*) "Stress tensor electronic el field part:" write(stdout,*) (sigmael(l,1),sigmael(l,2),sigmael(l,3), l=1,3) write(stdout,*) "Stress tensor electronic el field part:" write(stdout,*) (sigmaion(l,1),sigmaion(l,2),sigmaion(l,3), l=1,3) endif call stop_clock ('stress') return 9000 format (10x,'total stress (Ry/bohr**3) ',18x,'(kbar)', & &5x,'P=',f8.2/3 (3f13.8,4x,3f10.2/)) 9005 format & & (5x,'kinetic stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'local stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'nonloc. stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'hartree stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'exc-cor stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'corecor stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'ewald stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'hubbard stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'london stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'XDM stress (kbar)',3f10.2/2(26x,3f10.2/)/ & & 5x,'dft-nl stress (kbar)',3f10.2/2(26x,3f10.2/)/ ) end subroutine stress espresso-5.1/PW/src/sumkg.f900000644000175000017500000000314012341373025014063 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- function sumkg (et, nbnd, nks, wk, degauss, ngauss, e, is, isk) !----------------------------------------------------------------------- ! ! This function computes the number of states under a given energy e ! ! USE kinds USE mp_pools, ONLY : inter_pool_comm USE mp, ONLY : mp_sum implicit none ! Output variable real(DP) :: sumkg ! Input variables integer, intent(in) :: nks, nbnd, ngauss ! input: the total number of K points ! input: the number of bands ! input: the type of smearing real(DP), intent(in) :: wk (nks), et (nbnd, nks), degauss, e ! input: the weight of the k points ! input: the energy eigenvalues ! input: gaussian broadening ! input: the energy to check integer, intent(in) :: is, isk(nks) ! ! local variables ! real(DP), external :: wgauss ! function which compute the smearing real(DP) ::sum1 integer :: ik, ibnd ! counter on k points ! counter on the band energy ! sumkg = 0.d0 do ik = 1, nks sum1 = 0.d0 if (is /= 0) then if (isk(ik).ne.is) cycle end if do ibnd = 1, nbnd sum1 = sum1 + wgauss ( (e-et (ibnd, ik) ) / degauss, ngauss) enddo sumkg = sumkg + wk (ik) * sum1 enddo #ifdef __MPI call mp_sum ( sumkg, inter_pool_comm ) #endif return end function sumkg espresso-5.1/PW/src/setlocal.f900000644000175000017500000000506412341373025014552 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE setlocal !---------------------------------------------------------------------- ! ! This routine computes the local potential in real space vltot(ir) ! USE kinds, ONLY : DP USE constants, ONLY : eps8 USE ions_base, ONLY : zv, ntyp => nsp USE cell_base, ONLY : omega USE extfield, ONLY : tefield, dipfield, etotefield USE gvect, ONLY : igtongl, gg USE scf, ONLY : rho, v_of_0, vltot USE vlocal, ONLY : strf, vloc USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : invfft USE gvect, ONLY : nl, nlm, ngm USE control_flags, ONLY : gamma_only USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE martyna_tuckerman, ONLY : wg_corr_loc, do_comp_mt USE esm, ONLY : esm_local, esm_bc, do_comp_esm USE qmmm, ONLY : qmmm_add_mm_field ! IMPLICIT NONE COMPLEX(DP), ALLOCATABLE :: aux (:), v_corr(:) ! auxiliary variable INTEGER :: nt, ng ! counter on atom types ! counter on g vectors ! ALLOCATE (aux( dfftp%nnr)) aux(:)=(0.d0,0.d0) ! IF (do_comp_mt) THEN ALLOCATE(v_corr(ngm)) CALL wg_corr_loc(omega,ntyp,ngm,zv,strf,v_corr) aux(nl(:)) = v_corr(:) DEALLOCATE(v_corr) END IF ! DO nt = 1, ntyp DO ng = 1, ngm aux (nl(ng))=aux(nl(ng)) + vloc (igtongl (ng), nt) * strf (ng, nt) END DO END DO IF (gamma_only) THEN DO ng = 1, ngm aux (nlm(ng)) = CONJG(aux (nl(ng))) END DO END IF ! IF ( do_comp_esm .AND. ( esm_bc .NE. 'pbc' ) ) THEN ! ! ... Perform ESM correction to local potential ! CALL esm_local ( aux ) ENDIF ! ! ... v_of_0 is (Vloc)(G=0) ! v_of_0=0.0_DP IF (gg(1) < eps8) v_of_0 = DBLE ( aux (nl(1)) ) ! CALL mp_sum( v_of_0, intra_bgrp_comm ) ! ! ... aux = potential in G-space . FFT to real space ! CALL invfft ('Dense', aux, dfftp) ! vltot (:) = DBLE (aux (:) ) ! ! ... If required add an electric field to the local potential ! IF ( tefield .AND. ( .NOT. dipfield ) ) & CALL add_efield(vltot,etotefield,rho%of_r,.TRUE.) ! ! ... Add the electrostatic field generated by MM atoms ! in a QM/MM calculation to the local potential ! CALL qmmm_add_mm_field() ! DEALLOCATE(aux) ! RETURN END SUBROUTINE setlocal espresso-5.1/PW/src/h_psi.f900000644000175000017500000001163412341373025014046 0ustar mbamba ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE h_psi( lda, n, m, psi, hpsi ) !---------------------------------------------------------------------------- ! ! ... This routine computes the product of the Hamiltonian ! ... matrix with m wavefunctions contained in psi ! ! ... input: ! ... lda leading dimension of arrays psi, spsi, hpsi ! ... n true dimension of psi, spsi, hpsi ! ... m number of states psi ! ... psi ! ! ... output: ! ... hpsi H*psi ! USE kinds, ONLY : DP USE bp, ONLY : lelfield,l3dstring,gdir, efield, efield_cry USE becmod, ONLY : bec_type, becp, calbec USE lsda_mod, ONLY : current_spin USE scf, ONLY : vrs USE wvfct, ONLY : g2kin USE uspp, ONLY : vkb, nkb USE ldaU, ONLY : lda_plus_u, U_projection USE gvect, ONLY : gstart USE funct, ONLY : dft_is_meta USE control_flags, ONLY : gamma_only USE noncollin_module, ONLY: npol, noncolin USE realus, ONLY : real_space, fft_orbital_gamma, initialisation_level, & bfft_orbital_gamma, calbec_rs_gamma, & add_vuspsir_gamma, v_loc_psir USE fft_base, ONLY : dffts USE exx, ONLY : vexx USE funct, ONLY : exx_is_active ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: lda, n, m COMPLEX(DP), INTENT(IN) :: psi(lda*npol,m) COMPLEX(DP), INTENT(OUT) :: hpsi(lda*npol,m) ! INTEGER :: ipol, ibnd, incr ! CALL start_clock( 'h_psi' ) ! ! ... Here we apply the kinetic energy (k+G)^2 psi ! DO ibnd = 1, m hpsi (1:n, ibnd) = g2kin (1:n) * psi (1:n, ibnd) hpsi (n+1:lda,ibnd) = (0.0_dp, 0.0_dp) IF ( noncolin ) THEN hpsi (lda+1:lda+n, ibnd) = g2kin (1:n) * psi (lda+1:lda+n, ibnd) hpsi (lda+n+1:lda*npol, ibnd) = (0.0_dp, 0.0_dp) END IF END DO ! if (dft_is_meta()) call h_psi_meta (lda, n, m, psi, hpsi) ! ! ... Here we add the Hubbard potential times psi ! IF ( lda_plus_u .AND. U_projection.NE."pseudo" ) THEN ! IF (noncolin) THEN CALL vhpsi_nc( lda, n, m, psi, hpsi ) ELSE call vhpsi( lda, n, m, psi, hpsi ) ENDIF ! ENDIF ! ! ! ... the local potential V_Loc psi ! CALL start_clock( 'h_psi:vloc' ) ! IF ( gamma_only ) THEN ! IF ( real_space .and. nkb > 0 ) then ! ! ... real-space algorithm ! ... fixme: real_space without beta functions does not make sense ! IF ( dffts%have_task_groups .AND. ( m >= dffts%nogrp )) then incr = 2 * dffts%nogrp ELSE incr = 2 ENDIF DO ibnd = 1, m, incr ! ... transform psi to real space, saved in temporary memory CALL fft_orbital_gamma(psi,ibnd,m,.true.) ! ... becp%r = < beta|psi> on psi in real space CALL calbec_rs_gamma(ibnd,m,becp%r) ! ... psi is now replaced by hpsi ??? WHAT FOR ??? CALL fft_orbital_gamma(hpsi,ibnd,m) ! ... hpsi -> hpsi + psi*vrs (psi read from temporary memory) CALL v_loc_psir(ibnd,m) ! ... hpsi -> hpsi + vusp CALL add_vuspsir_gamma(ibnd,m) ! ... transform back hpsi, clear psi in temporary memory CALL bfft_orbital_gamma(hpsi,ibnd,m,.true.) END DO ! ELSE ! ... usual reciprocal-space algorithm CALL vloc_psi_gamma ( lda, n, m, psi, vrs(1,current_spin), hpsi ) ENDIF ! ELSE IF ( noncolin ) THEN ! CALL vloc_psi_nc ( lda, n, m, psi, vrs, hpsi ) ! ELSE ! CALL vloc_psi_k ( lda, n, m, psi, vrs(1,current_spin), hpsi ) ! END IF CALL stop_clock( 'h_psi:vloc' ) ! ! ... Here the product with the non local potential V_NL psi ! ... (not in the real-space case: it is done together with V_loc) ! IF ( nkb > 0 .AND. .NOT. real_space) THEN ! CALL start_clock( 'h_psi:vnl' ) CALL calbec ( n, vkb, psi, becp, m ) CALL add_vuspsi( lda, n, m, hpsi ) CALL stop_clock( 'h_psi:vnl' ) ! END IF IF ( exx_is_active() ) CALL vexx( lda, n, m, psi, hpsi, becp ) ! ! ... electric enthalpy if required ! IF ( lelfield ) THEN ! IF ( .NOT.l3dstring ) THEN CALL h_epsi_her_apply( lda, n, m, psi, hpsi,gdir, efield ) ELSE DO ipol=1,3 CALL h_epsi_her_apply( lda, n, m, psi, hpsi,ipol,efield_cry(ipol) ) END DO END IF ! END IF ! ! ... Gamma-only trick: set to zero the imaginary part of hpsi at G=0 ! IF ( gamma_only .AND. gstart == 2 ) & hpsi(1,1:m) = CMPLX( DBLE( hpsi(1,1:m) ), 0.D0 ,kind=DP) ! CALL stop_clock( 'h_psi' ) ! RETURN ! END SUBROUTINE h_psi espresso-5.1/PW/src/read_file.f900000644000175000017500000002501012341373025014647 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE read_file() !---------------------------------------------------------------------------- ! ! Wrapper routine, for compatibility ! USE io_files, ONLY : nwordwfc, iunwfc, tmp_dir, wfc_dir USE io_global, ONLY : stdout USE buffers, ONLY : open_buffer, close_buffer USE wvfct, ONLY : nbnd, npwx USE noncollin_module, ONLY : npol USE klist, ONLY : nks USE paw_variables, ONLY : okpaw, ddd_PAW USE paw_onecenter, ONLY : paw_potential USE uspp, ONLY : becsum USE scf, ONLY : rho USE realus, ONLY : betapointlist, & init_realspace_vars,real_space USE dfunct, ONLY : newd USE ldaU, ONLY : lda_plus_u, U_projection USE pw_restart, ONLY : pw_readfile USE control_flags, ONLY : io_level ! IMPLICIT NONE INTEGER :: ierr LOGICAL :: exst ! ! ... Read the contents of the xml data file ! CALL read_xml_file ( ) ! ! ... Open unit iunwfc, for Kohn-Sham orbitals - we assume that wfcs ! ... have been written to tmp_dir, not to a different directory! ! ... io_level = 1 so that a real file is opened ! wfc_dir = tmp_dir nwordwfc = nbnd*npwx*npol io_level = 1 CALL open_buffer ( iunwfc, 'wfc', nwordwfc, io_level, exst ) ! ! ... Read orbitals, write them in 'distributed' form to iunwfc ! CALL pw_readfile( 'wave', ierr ) ! ! ... Assorted initialization: pseudopotentials, PAW ! ... Not sure which ones (if any) should be done here ! CALL init_us_1() ! IF (lda_plus_u .AND. (U_projection == 'pseudo')) CALL init_q_aeps() ! IF (okpaw) THEN becsum = rho%bec CALL PAW_potential(rho%bec, ddd_PAW) ENDIF ! IF ( real_space ) THEN CALL betapointlist() CALL init_realspace_vars() WRITE(stdout,'(5X,"Real space initialisation completed")') ENDIF CALL newd() ! CALL close_buffer ( iunwfc, 'KEEP' ) ! END SUBROUTINE read_file ! !---------------------------------------------------------------------------- SUBROUTINE read_xml_file() !---------------------------------------------------------------------------- ! ! ... This routine allocates space for all quantities already computed ! ... in the pwscf program and reads them from the data file. ! ... All quantities that are initialized in subroutine "setup" when ! ... starting from scratch should be initialized here when restarting ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, nsp, ityp, tau, if_pos, extfor USE cell_base, ONLY : tpiba2, alat,omega, at, bg, ibrav USE force_mod, ONLY : force USE klist, ONLY : nkstot, nks, xk, wk USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE wvfct, ONLY : nbnd, nbndx, et, wg, ecutwfc USE symm_base, ONLY : irt, d1, d2, d3, checkallsym USE ktetra, ONLY : tetra, ntetra USE extfield, ONLY : forcefield, tefield USE cellmd, ONLY : cell_factor, lmovecell USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE grid_subroutines, ONLY : realspace_grids_init USE recvec_subs, ONLY : ggen USE gvect, ONLY : gg, ngm, g, gcutm, & eigts1, eigts2, eigts3, nl, gstart USE fft_base, ONLY : dfftp, dffts USE gvecs, ONLY : ngms, nls, gcutms USE spin_orb, ONLY : lspinorb, domag USE scf, ONLY : rho, rho_core, rhog_core, v USE wavefunctions_module, ONLY : psic USE vlocal, ONLY : strf USE io_files, ONLY : tmp_dir, prefix, iunpun, nwordwfc, iunwfc USE noncollin_module, ONLY : noncolin, npol, nspin_lsda, nspin_mag, nspin_gga USE pw_restart, ONLY : pw_readfile USE read_pseudo_mod, ONLY : readpp USE xml_io_base, ONLY : pp_check_file USE uspp, ONLY : becsum USE uspp_param, ONLY : upf USE paw_variables, ONLY : okpaw, ddd_PAW USE paw_init, ONLY : paw_init_onecenter, allocate_paw_internals USE ldaU, ONLY : lda_plus_u, eth, init_lda_plus_u USE control_flags, ONLY : gamma_only USE funct, ONLY : get_inlc, get_dft_name USE kernel_table, ONLY : initialize_kernel_table USE esm, ONLY : do_comp_esm, esm_ggen_2d ! IMPLICIT NONE INTEGER :: i, is, ik, ibnd, nb, nt, ios, isym, ierr, inlc REAL(DP) :: rdum(1,1), ehart, etxc, vtxc, etotefield, charge REAL(DP) :: sr(3,3,48) CHARACTER(LEN=20) dft_name ! ! ... first we get the version of the qexml file ! if not already read ! CALL pw_readfile( 'header', ierr ) CALL errore( 'read_xml_file ', 'unable to determine qexml version', ABS(ierr) ) ! ! ... then we check if the file can be used for post-processing ! IF ( .NOT. pp_check_file() ) CALL infomsg( 'read_xml_file', & & 'file ' // TRIM( tmp_dir ) // TRIM( prefix ) & & // '.save not guaranteed to be safe for post-processing' ) ! ! ... a reset of the internal flags is necessary because some codes call ! ... read_xml_file() more than once ! CALL pw_readfile( 'reset', ierr ) ! ! ... here we read the variables that dimension the system ! ... in parallel execution, only root proc reads the file ! ... and then broadcasts the values to all other procs ! CALL pw_readfile( 'dim', ierr ) CALL errore( 'read_xml_file ', 'problem reading file ' // & & TRIM( tmp_dir ) // TRIM( prefix ) // '.save', ierr ) ! ! ... allocate space for atomic positions, symmetries, forces, tetrahedra ! IF ( nat < 0 ) CALL errore( 'read_xml_file', 'wrong number of atoms', 1 ) ! ! ... allocation ! ALLOCATE( ityp( nat ) ) ALLOCATE( tau( 3, nat ) ) ALLOCATE( if_pos( 3, nat ) ) ALLOCATE( force( 3, nat ) ) ALLOCATE( extfor( 3, nat ) ) ! IF ( tefield ) ALLOCATE( forcefield( 3, nat ) ) ! ALLOCATE( irt( 48, nat ) ) ALLOCATE( tetra( 4, MAX( ntetra, 1 ) ) ) ! CALL set_dimensions() CALL realspace_grids_init ( dfftp, dffts, at, bg, gcutm, gcutms ) ! ! ... check whether LSDA ! IF ( lsda ) THEN ! nspin = 2 npol = 1 ! ELSE IF ( noncolin ) THEN ! nspin = 4 npol = 2 current_spin = 1 ! ELSE ! nspin = 1 npol = 1 current_spin = 1 ! END IF ! if (cell_factor == 0.d0) cell_factor = 1.D0 ! ! ... allocate memory for eigenvalues and weights (read from file) ! nbndx = nbnd ALLOCATE( et( nbnd, nkstot ) , wg( nbnd, nkstot ) ) ! ! ... here we read all the variables defining the system ! CALL pw_readfile( 'nowave', ierr ) ! ! ... distribute across pools k-points and related variables. ! ... nks is defined by the following routine as the number ! ... of k-points in the current pool ! CALL divide_et_impera( xk, wk, isk, lsda, nkstot, nks ) ! CALL poolscatter( nbnd, nkstot, et, nks, et ) CALL poolscatter( nbnd, nkstot, wg, nks, wg ) ! ! ... check on symmetry ! IF (nat > 0) CALL checkallsym( nat, tau, ityp, dfftp%nr1, dfftp%nr2, dfftp%nr3 ) ! ! Set the different spin indices ! nspin_mag = nspin nspin_lsda = nspin nspin_gga = nspin IF (nspin==4) THEN nspin_lsda=1 IF (domag) THEN nspin_gga=2 ELSE nspin_gga=1 nspin_mag=1 ENDIF ENDIF ! ! ... read pseudopotentials ! CALL pw_readfile( 'pseudo', ierr ) dft_name = get_dft_name () ! already set, should not be set again CALL readpp ( dft_name ) ! ! ... read the vdw kernel table if needed ! inlc = get_inlc() if (inlc > 0 ) then call initialize_kernel_table(inlc) endif ! okpaw = ANY ( upf(1:nsp)%tpawp ) ! IF ( .NOT. lspinorb ) CALL average_pp ( nsp ) ! ! ... allocate memory for G- and R-space fft arrays ! CALL pre_init() CALL allocate_fft() CALL ggen ( gamma_only, at, bg ) IF (do_comp_esm) CALL esm_ggen_2d () CALL gshells ( lmovecell ) ! ! ... allocate the potential and wavefunctions ! CALL allocate_locpot() CALL allocate_nlpot() IF (okpaw) THEN CALL allocate_paw_internals() CALL paw_init_onecenter() CALL d_matrix(d1,d2,d3) ENDIF ! IF ( lda_plus_u ) THEN CALL init_lda_plus_u ( upf(1:nsp)%psd, noncolin ) ENDIF ! CALL allocate_wfc() ! ! ... read the charge density ! CALL pw_readfile( 'rho', ierr ) ! ! ... re-calculate the local part of the pseudopotential vltot ! ... and the core correction charge (if any) - This is done here ! ... for compatibility with the previous version of read_file ! CALL init_vloc() CALL struc_fact( nat, tau, nsp, ityp, ngm, g, bg, dfftp%nr1, dfftp%nr2, & dfftp%nr3, strf, eigts1, eigts2, eigts3 ) CALL setlocal() CALL set_rhoc() ! ! ... bring rho to G-space ! DO is = 1, nspin ! psic(:) = rho%of_r(:,is) CALL fwfft ('Dense', psic, dfftp) rho%of_g(:,is) = psic(nl(:)) ! END DO ! ! ... read info needed for hybrid functionals ! CALL pw_readfile('exx', ierr) ! ! ... recalculate the potential ! CALL v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v ) ! RETURN ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE set_dimensions() !------------------------------------------------------------------------ ! USE constants, ONLY : pi USE cell_base, ONLY : alat, tpiba, tpiba2 USE gvect, ONLY : ecutrho, gcutm USE wvfct, ONLY : ecutwfc USE gvecs, ONLY : gcutms, dual, doublegrid ! ! ! ... Set the units in real and reciprocal space ! tpiba = 2.D0 * pi / alat tpiba2 = tpiba**2 ! ! ... Compute the cut-off of the G vectors ! gcutm = dual * ecutwfc / tpiba2 ecutrho=dual * ecutwfc ! doublegrid = ( dual > 4.D0 ) IF ( doublegrid ) THEN gcutms = 4.D0 * ecutwfc / tpiba2 ELSE gcutms = gcutm END IF ! END SUBROUTINE set_dimensions ! END SUBROUTINE read_xml_file espresso-5.1/PW/src/divide_et_impera.f900000644000175000017500000000470512341373025016236 0ustar mbamba! ! Copyright (C) 2001-2008 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE divide_et_impera( xk, wk, isk, lsda, nkstot, nks ) !---------------------------------------------------------------------------- ! ! ... This routine divides the k points across nodes, sets the variable ! ... nks equal to the local (on this processors) number of k-points ! ... (nkstot on input is the total number of k-points) ! ... The distributed has "granularity kunit", that is, kunit consecutive ! ... points stay on the same processor. Usually kunit=1; kunit=2 is used ! ... in phonon calculations, when one has interspersed k_i and k_i+q and ! ... it is needed that they stay on the same processor ! USE io_global, only : stdout USE kinds, ONLY : DP USE mp_pools, ONLY : my_pool_id, npool, kunit ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: lsda ! logical for local spin density approx. INTEGER, INTENT(IN) :: nkstot ! total number of k-points INTEGER, INTENT(INOUT) :: isk(nkstot) ! spin index of each kpoint (when lsda=.t.) INTEGER, INTENT(OUT) :: nks ! number of k-points per pool REAL (DP), INTENT(INOUT) :: xk(3,nkstot), wk(nkstot) ! k-points ! k-point weights ! #if defined (__MPI) ! INTEGER :: ik, nbase, rest ! ! IF ( MOD( nkstot, kunit ) /= 0 ) & CALL errore( 'divide_et_impera', ' nkstot/kunit is not an integer', nkstot ) ! nks = kunit * ( nkstot / kunit / npool ) ! IF ( nks == 0 ) CALL errore( 'divide_et_impera', ' some nodes have no k-points', 1 ) ! rest = ( nkstot - nks * npool ) / kunit ! IF ( ( my_pool_id + 1 ) <= rest ) nks = nks + kunit ! ! ... calculates nbase = the position in the list of the first point that ! ... belong to this npool - 1 ! nbase = nks * my_pool_id ! IF ( ( my_pool_id + 1 ) > rest ) nbase = nbase + rest * kunit ! ! ... displaces these points in the first positions of the list ! IF ( nbase > 0 ) THEN ! xk(:,1:nks) = xk(:,nbase+1:nbase+nks) ! wk(1:nks) = wk(nbase+1:nbase+nks) ! IF ( lsda ) isk(1:nks) = isk(nbase+1:nbase+nks) ! ! END IF ! #else ! nks = nkstot ! #endif ! RETURN ! END SUBROUTINE divide_et_impera espresso-5.1/PW/src/close_files.f900000644000175000017500000000511412341373025015227 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE close_files(lflag) !---------------------------------------------------------------------------- ! ! ... Close all files and synchronize processes for a new scf calculation. ! USE ldaU, ONLY : lda_plus_u, U_projection USE control_flags, ONLY : twfcollect, io_level USE fixed_occ, ONLY : one_atom_occupations USE io_files, ONLY : prefix, iunwfc, iunigk, iunsat, & iunhub, iunefield, iunefieldm, iunefieldp USE buffers, ONLY : close_buffer USE mp_images, ONLY : intra_image_comm USE mp, ONLY : mp_barrier USE wannier_new, ONLY : use_wannier USE bp, ONLY : lelfield ! IMPLICIT NONE ! LOGICAL, intent(in) :: lflag ! LOGICAL :: opnd ! ! ... close buffer/file containing wavefunctions: discard if ! ... wavefunctions are written in xml format, save otherwise ! IF ( lflag .AND. (twfcollect .OR. io_level < 0 )) THEN CALL close_buffer ( iunwfc, 'DELETE' ) ELSE CALL close_buffer ( iunwfc, 'KEEP' ) END IF ! ! ... iunigk is kept open during the execution - close and remove ! INQUIRE( UNIT = iunigk, OPENED = opnd ) IF ( opnd ) CLOSE( UNIT = iunigk, STATUS = 'DELETE' ) ! ! ... iunsat contains the (orthogonalized) atomic wfcs * S ! ... iunhub as above, only for wavefcts having an associated Hubbard U ! IF ( lda_plus_u .AND. (U_projection.NE.'pseudo') ) THEN IF ( io_level < 0 ) THEN CALL close_buffer ( iunhub,'DELETE' ) ELSE CALL close_buffer ( iunhub,'KEEP' ) END IF END IF IF ( use_wannier .OR. one_atom_occupations ) THEN IF ( io_level < 0 ) THEN CALL close_buffer ( iunsat,'DELETE' ) ELSE CALL close_buffer ( iunsat,'KEEP' ) END IF END IF ! ! ... close unit for electric field if needed ! IF ( lelfield ) THEN ! IF ( io_level < 0 ) THEN CALL close_buffer ( iunefield, 'DELETE' ) CALL close_buffer ( iunefieldm,'DELETE' ) CALL close_buffer ( iunefieldp,'DELETE' ) ELSE CALL close_buffer ( iunefield, 'KEEP' ) CALL close_buffer ( iunefieldm,'KEEP' ) CALL close_buffer ( iunefieldp,'KEEP' ) ENDIF ! END IF ! CALL mp_barrier( intra_image_comm ) ! RETURN ! END SUBROUTINE close_files espresso-5.1/PW/src/s_psi.f900000644000175000017500000002364312341373025014064 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE s_psi( lda, n, m, psi, spsi ) !---------------------------------------------------------------------------- ! ! ... This routine applies the S matrix to m wavefunctions psi ! ... and puts the results in spsi. ! ... Requires the products of psi with all beta functions ! ... in array becp(nkb,m) (calculated in h_psi or by calbec) ! ! ... input: ! ! ... lda leading dimension of arrays psi, spsi ! ... n true dimension of psi, spsi ! ... m number of states psi ! ... psi ! ! ... output: ! ! ... spsi S*psi ! USE kinds, ONLY : DP USE uspp, ONLY : vkb, nkb, qq, okvan USE uspp_param, ONLY : upf, nh USE ions_base, ONLY : nat, nsp, ityp USE control_flags, ONLY: gamma_only USE noncollin_module, ONLY: npol, noncolin USE realus, ONLY : real_space, fft_orbital_gamma, initialisation_level,& bfft_orbital_gamma, calbec_rs_gamma, s_psir_gamma ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: lda, n, m COMPLEX(DP), INTENT(IN) :: psi(lda*npol,m) COMPLEX(DP), INTENT(OUT)::spsi(lda*npol,m) ! INTEGER :: ibnd ! ! ... initialize spsi ! spsi = psi ! IF ( nkb == 0 .OR. .NOT. okvan ) RETURN ! CALL start_clock( 's_psi' ) ! ! ... The product with the beta functions ! IF ( gamma_only ) THEN ! IF (real_space ) THEN ! DO ibnd = 1, m, 2 ! transform the orbital to real space CALL fft_orbital_gamma(psi,ibnd,m) CALL s_psir_gamma(ibnd,m) CALL bfft_orbital_gamma(spsi,ibnd,m) END DO ! ELSE ! CALL s_psi_gamma() ! END IF ! ELSE IF ( noncolin ) THEN ! CALL s_psi_nc() ! ELSE ! CALL s_psi_k() ! END IF ! CALL stop_clock( 's_psi' ) ! RETURN ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE s_psi_gamma() !----------------------------------------------------------------------- ! ! ... gamma version ! USE becmod, ONLY : bec_type, becp USE mp, ONLY: mp_get_comm_null, mp_circular_shift_left ! IMPLICIT NONE ! ! ... here the local variables ! INTEGER :: ikb, jkb, ih, jh, na, nt, ijkb0, ibnd, ierr ! counters INTEGER :: nproc, mype, m_loc, m_begin, ibnd_loc, icyc, icur_blk, m_max ! data distribution indexes INTEGER, EXTERNAL :: ldim_block, lind_block, gind_block ! data distribution functions REAL(DP), ALLOCATABLE :: ps(:,:) ! the product vkb and psi ! m_loc = m m_begin = 1 m_max = m nproc = 1 mype = 0 ! IF( becp%comm /= mp_get_comm_null() ) THEN nproc = becp%nproc mype = becp%mype m_loc = becp%nbnd_loc m_begin = becp%ibnd_begin m_max = SIZE(becp%r,2) IF( ( m_begin + m_loc - 1 ) > m ) m_loc = m - m_begin + 1 END IF ! ALLOCATE( ps( nkb, m_max ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' s_psi_gamma ', ' cannot allocate memory (ps) ', ABS(ierr) ) ! ps(:,:) = 0.D0 ! ijkb0 = 0 DO nt = 1, nsp IF ( upf(nt)%tvanp ) THEN DO na = 1, nat IF ( ityp(na) == nt ) THEN DO ibnd_loc = 1, m_loc DO jh = 1, nh(nt) jkb = ijkb0 + jh DO ih = 1, nh(nt) ikb = ijkb0 + ih ps(ikb,ibnd_loc) = ps(ikb,ibnd_loc) + & qq(ih,jh,nt) * becp%r(jkb,ibnd_loc) END DO END DO END DO ijkb0 = ijkb0 + nh(nt) END IF END DO ELSE DO na = 1, nat IF ( ityp(na) == nt ) ijkb0 = ijkb0 + nh(nt) END DO END IF END DO ! IF( becp%comm /= mp_get_comm_null() ) THEN ! ! parallel block multiplication of vkb and ps ! icur_blk = mype ! DO icyc = 0, nproc - 1 m_loc = ldim_block( becp%nbnd , nproc, icur_blk ) m_begin = gind_block( 1, becp%nbnd, nproc, icur_blk ) IF( ( m_begin + m_loc - 1 ) > m ) m_loc = m - m_begin + 1 IF( m_loc > 0 ) THEN CALL DGEMM( 'N', 'N', 2 * n, m_loc, nkb, 1.D0, vkb, & 2 * lda, ps, nkb, 1.D0, spsi( 1, m_begin ), 2 * lda ) END IF ! block rotation ! CALL mp_circular_shift_left( ps, icyc, becp%comm ) icur_blk = icur_blk + 1 IF( icur_blk == nproc ) icur_blk = 0 END DO ! ELSE IF ( m == 1 ) THEN ! CALL DGEMV( 'N', 2 * n, nkb, 1.D0, vkb, & 2 * lda, ps, 1, 1.D0, spsi, 1 ) ! ELSE ! CALL DGEMM( 'N', 'N', 2 * n, m, nkb, 1.D0, vkb, & 2 * lda, ps, nkb, 1.D0, spsi, 2 * lda ) ! END IF ! DEALLOCATE( ps ) ! RETURN ! END SUBROUTINE s_psi_gamma ! !----------------------------------------------------------------------- SUBROUTINE s_psi_k() !----------------------------------------------------------------------- ! ! ... k-points version ! USE becmod, ONLY : becp ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: ikb, jkb, ih, jh, na, nt, ijkb0, ibnd, ierr ! counters COMPLEX(DP), ALLOCATABLE :: ps(:,:) ! the product vkb and psi ! ALLOCATE( ps( nkb, m ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' s_psi_k ', ' cannot allocate memory (ps) ', ABS(ierr) ) ! ps(:,:) = ( 0.D0, 0.D0 ) ! ijkb0 = 0 DO nt = 1, nsp IF ( upf(nt)%tvanp ) THEN DO na = 1, nat IF ( ityp(na) == nt ) THEN DO ibnd = 1, m DO jh = 1, nh(nt) jkb = ijkb0 + jh DO ih = 1, nh(nt) ikb = ijkb0 + ih ps(ikb,ibnd) = ps(ikb,ibnd) + & qq(ih,jh,nt) * becp%k(jkb,ibnd) END DO END DO END DO ijkb0 = ijkb0 + nh(nt) END IF END DO ELSE DO na = 1, nat IF ( ityp(na) == nt ) ijkb0 = ijkb0 + nh(nt) END DO END IF END DO ! IF ( m == 1 ) THEN ! CALL ZGEMV( 'N', n, nkb, ( 1.D0, 0.D0 ), vkb, & lda, ps, 1, ( 1.D0, 0.D0 ), spsi, 1 ) ! ELSE ! CALL ZGEMM( 'N', 'N', n, m, nkb, ( 1.D0, 0.D0 ), vkb, & lda, ps, nkb, ( 1.D0, 0.D0 ), spsi, lda ) ! END IF ! DEALLOCATE( ps ) ! RETURN ! END SUBROUTINE s_psi_k ! ! !----------------------------------------------------------------------- SUBROUTINE s_psi_nc ( ) !----------------------------------------------------------------------- ! USE uspp, ONLY: qq_so USE becmod, ONLY: bec_type, becp USE spin_orb, ONLY: lspinorb IMPLICIT NONE ! ! here the local variables ! INTEGER :: ikb, jkb, ih, jh, na, nt, ijkb0, ibnd, ipol, ierr ! counters COMPLEX (DP), ALLOCATABLE :: ps (:,:,:) ! the product vkb and psi ! ALLOCATE (ps(nkb,npol,m),STAT=ierr) IF( ierr /= 0 ) & CALL errore( ' s_psi_nc ', ' cannot allocate memory (ps) ', ABS(ierr) ) ps(:,:,:) = (0.D0,0.D0) ! ijkb0 = 0 do nt = 1, nsp if ( upf(nt)%tvanp ) then do na = 1, nat if (ityp (na) == nt) then do ih = 1,nh(nt) ikb = ijkb0 + ih do ibnd = 1, m do jh = 1, nh (nt) jkb = ijkb0 + jh if (lspinorb) then ps(ikb,1,ibnd)=ps(ikb,1,ibnd) + & qq_so(ih,jh,1,nt)*becp%nc(jkb,1,ibnd)+ & qq_so(ih,jh,2,nt)*becp%nc(jkb,2,ibnd) ps(ikb,2,ibnd)=ps(ikb,2,ibnd) + & qq_so(ih,jh,3,nt)*becp%nc(jkb,1,ibnd)+ & qq_so(ih,jh,4,nt)*becp%nc(jkb,2,ibnd) else do ipol=1,npol ps(ikb,ipol,ibnd)=ps(ikb,ipol,ibnd) + & qq(ih,jh,nt)*becp%nc(jkb,ipol,ibnd) enddo endif enddo enddo enddo ijkb0 = ijkb0 + nh (nt) endif enddo else do na = 1, nat if (ityp (na) == nt) ijkb0 = ijkb0 + nh (nt) enddo endif enddo call ZGEMM ('N', 'N', n, m*npol, nkb, (1.d0, 0.d0) , vkb, & lda, ps, nkb, (1.d0, 0.d0) , spsi(1,1), lda) DEALLOCATE(ps) RETURN END SUBROUTINE s_psi_nc END SUBROUTINE s_psi espresso-5.1/PW/src/h_psi_meta.f900000644000175000017500000000676712341373025015067 0ustar mbamba! ! Copyright (C) 2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine h_psi_meta (ldap, np, mp, psip, hpsi) !----------------------------------------------------------------------- ! ! This routine computes the specific contribution from the meta-GGA ! potential to H*psi; the result is added to hpsi ! USE kinds, ONLY : DP USE cell_base, ONLY : tpiba USE lsda_mod, ONLY : nspin, current_spin USE wvfct, ONLY : igk, current_k USE gvecs, ONLY : nls, nlsm USE gvect, ONLY : g USE scf, ONLY : kedtau USE klist, ONLY : xk USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : fwfft, invfft ! implicit none ! COMPLEX(DP), PARAMETER :: ci=(0.d0,1.d0) integer :: ldap, np, mp complex(DP) :: psip (ldap, mp), hpsi (ldap, mp) real (DP), allocatable :: kplusg (:) ! complex (DP), allocatable :: psi(:) ! integer :: im, j, nrxxs ! CALL start_clock( 'h_psi_meta' ) nrxxs = dffts%nnr allocate (kplusg(np)) if (gamma_only) then ! ! gamma algorithm ! do im = 1, mp, 2 do j =1,3 psic(1:nrxxs) = ( 0.D0, 0.D0 ) ! kplusg (1:np) = (xk(j,current_k)+g(j,igk(1:np))) * tpiba if (im < mp ) then psic(nls(igk(1:np))) = ci * kplusg(1:np) * & ( psip (1:np,im) + ci * psip(1:np,im+1) ) psic(nlsm(igk(1:np)))= -ci * kplusg(1:np) * & CONJG ( psip (1:np,im) - ci * psip(1:np,im+1) ) else psic(nls(igk(1:np))) = ci * kplusg(1:np) * psip(1:np,im) psic(nlsm(igk(1:np)))= -ci * kplusg(1:np) * CONJG(psip(1:np,im)) end if ! CALL invfft ('Wave', psic, dffts) ! psic(1:nrxxs) = kedtau(1:nrxxs,current_spin) * psic(1:nrxxs) ! CALL fwfft ('Wave', psic, dffts) ! if ( im < mp ) then hpsi(1:np,im) = hpsi(1:np,im) - ci * kplusg(1:np) * 0.5d0 * & ( psic(nls(igk(1:np))) + CONJG(psic(nlsm(igk(1:np)))) ) hpsi(1:np,im+1)= hpsi(1:np,im+1) - kplusg(1:np) * 0.5d0 * & ( psic(nls(igk(1:np))) - CONJG(psic(nlsm(igk(1:np)))) ) else hpsi(1:np,im) = hpsi(1:np,im) - ci * kplusg(1:np) * & psic(nls(igk(1:np))) end if end do end do else ! ! generic k algorithm ! do im = 1, mp do j =1,3 psic(1:nrxxs) = ( 0.D0, 0.D0 ) ! kplusg (1:np) = (xk(j,current_k)+g(j,igk(1:np))) * tpiba psic(nls(igk(1:np))) = CMPLX(0d0, kplusg(1:np),kind=DP) * psip (1:np,im) ! CALL invfft ('Wave', psic, dffts) ! psic(1:nrxxs) = kedtau(1:nrxxs,current_spin) * psic(1:nrxxs) ! CALL fwfft ('Wave', psic, dffts) ! hpsi(1:np,im) = hpsi(1:np,im) - & CMPLX(0d0, kplusg(1:np),kind=DP) * psic(nls(igk(1:np))) end do end do end if deallocate (kplusg) CALL stop_clock( 'h_psi_meta' ) return end subroutine h_psi_meta espresso-5.1/PW/src/coset.f900000644000175000017500000000475712341373025014071 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine coset (nrot, table, sym, nsym, irg) !----------------------------------------------------------------------- ! ! Divides the elements of a given group into left cosets of one ! of its subgroups. ! The input is the array sym which is true only for the ! operations of the subgroup, the output is nsym, and the array irg, ! which contains as its first elements the indices of the subgroup, ! and then its right cosets. ! ! revised layout 1 may 1995 by A. Dal Corso ! USE kinds implicit none ! ! first the dummy variables ! integer :: nrot, table (48, 48), nsym, irg (48) ! input: order of the group ! input: multiplication table of the group ! output: order of the subgroup ! output: gives the correspondence of symme ! operations forming a n-th coset ! input: flag indicating if an operations logical :: sym (48) ! belongs to the subgroup ! ! here the local variables ! logical :: done (48) ! if true the operation has been already ch integer :: irot, ncos, isym, nc, nelm ! counter on rotations ! number of cosets (=nrot/nsym) ! counter on symmetries ! counter on cosets ! counter on the number of elements ! ! here we count the elements of the subgroup and set the first part o ! irg which contain the subgroup ! nsym = 0 do irot = 1, nrot done (irot) = sym (irot) if (sym (irot) ) then nsym = nsym + 1 irg (nsym) = irot endif enddo ! ! we check that the order of the subgroup is a divisor of the order ! total group. ncos is the number of cosets ! IF ( nsym == 0 ) CALL errore( 'coset', 'nsym == 0', 1 ) ! ncos = nrot / nsym if (ncos * nsym.ne.nrot) call errore ('coset', & 'The order'//' of the group is not a multiple of that of the subgroup', 1) ! ! here we set the other elements of irg, by using the multiplication ! nelm = nsym do nc = 2, ncos do irot = 1, nrot if (.not.done (irot) ) then do isym = 1, nsym nelm = nelm + 1 irg (nelm) = table (irot, irg (isym) ) done (irg (nelm) ) = .true. enddo endif enddo enddo return end subroutine coset espresso-5.1/PW/src/rotate_wfc_k.f900000644000175000017500000002304212341373025015407 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE rotate_wfc_k( npwx, npw, nstart, nbnd, npol, psi, overlap, evc, e ) !---------------------------------------------------------------------------- ! ! ... Serial version of rotate_wfc for colinear, k-point calculations ! USE kinds, ONLY : DP USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER, INTENT(IN) :: npw, npwx, nstart, nbnd, npol ! dimension of the matrix to be diagonalized ! leading dimension of matrix psi, as declared in the calling pgm unit ! input number of states ! output number of states ! number of spin polarizations LOGICAL :: overlap ! if .FALSE. : S|psi> not needed COMPLEX(DP) :: psi(npwx*npol,nstart), evc(npwx*npol,nbnd) ! input and output eigenvectors (may overlap) REAL(DP) :: e(nbnd) ! eigenvalues ! ! ... local variables ! INTEGER :: kdim, kdmx COMPLEX(DP), ALLOCATABLE :: aux(:,:), hc(:,:), sc(:,:), vc(:,:) REAL(DP), ALLOCATABLE :: en(:) ! IF ( npol == 1 ) THEN ! kdim = npw kdmx = npwx ! ELSE ! kdim = npwx*npol kdmx = npwx*npol ! END IF ! ALLOCATE( aux(kdmx, nstart ) ) ALLOCATE( hc( nstart, nstart) ) ALLOCATE( sc( nstart, nstart) ) ALLOCATE( vc( nstart, nstart) ) ALLOCATE( en( nstart ) ) ! ! ... Set up the Hamiltonian and Overlap matrix on the subspace : ! ! ... H_ij = S_ij = ! CALL h_psi( npwx, npw, nstart, psi, aux ) ! call ZGEMM( 'C', 'N', nstart, nstart, kdim, ( 1.D0, 0.D0 ), psi, kdmx, aux, kdmx, ( 0.D0, 0.D0 ), hc, nstart ) ! CALL mp_sum( hc , intra_bgrp_comm ) ! IF ( overlap ) THEN ! CALL s_psi( npwx, npw, nstart, psi, aux ) ! CALL ZGEMM( 'C', 'N', nstart, nstart, kdim, ( 1.D0, 0.D0 ), psi, kdmx, aux, kdmx, ( 0.D0, 0.D0 ), sc, nstart ) ! ELSE ! CALL ZGEMM( 'C', 'N', nstart, nstart, kdim, ( 1.D0, 0.D0 ), psi, kdmx, psi, kdmx, ( 0.D0, 0.D0 ), sc, nstart ) ! END IF ! CALL mp_sum( sc , intra_bgrp_comm ) ! ! ... Diagonalize ! CALL cdiaghg( nstart, nbnd, hc, sc, nstart, en, vc ) ! e(:) = en(1:nbnd) ! ! ... update the basis set ! CALL ZGEMM( 'N', 'N', kdim, nbnd, nstart, ( 1.D0, 0.D0 ), psi, kdmx, vc, nstart, ( 0.D0, 0.D0 ), aux, kdmx ) ! evc(:,:) = aux(:,1:nbnd) ! DEALLOCATE( en ) DEALLOCATE( vc ) DEALLOCATE( sc ) DEALLOCATE( hc ) DEALLOCATE( aux ) ! RETURN ! END SUBROUTINE rotate_wfc_k ! ! !---------------------------------------------------------------------------- SUBROUTINE protate_wfc_k( npwx, npw, nstart, nbnd, npol, psi, overlap, evc, e ) !---------------------------------------------------------------------------- ! ! ... Parallel version of rotate_wfc for colinear, k-point calculations ! ... Subroutine with distributed matrices, written by Carlo Cavazzoni ! USE kinds, ONLY : DP USE mp_bands, ONLY : intra_bgrp_comm USE mp_diag, ONLY : ortho_comm, np_ortho, me_ortho, ortho_comm_id,& leg_ortho USE descriptors, ONLY : descla_init , la_descriptor USE parallel_toolkit, ONLY : zsqmred, zsqmher, zsqmdst USE mp, ONLY : mp_bcast, mp_root_sum, mp_sum, mp_barrier ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER :: npw, npwx, nstart, nbnd, npol ! dimension of the matrix to be diagonalized ! leading dimension of matrix psi, as declared in the calling pgm unit ! input number of states ! output number of states ! number of spin polarizations LOGICAL :: overlap ! if .FALSE. : S|psi> not needed COMPLEX(DP) :: psi(npwx*npol,nstart), evc(npwx*npol,nbnd) ! input and output eigenvectors (may overlap) REAL(DP) :: e(nbnd) ! eigenvalues ! ! ... local variables ! INTEGER :: kdim, kdmx COMPLEX(DP), ALLOCATABLE :: aux(:,:), hc(:,:), sc(:,:), vc(:,:) REAL(DP), ALLOCATABLE :: en(:) ! TYPE(la_descriptor) :: desc ! matrix distribution descriptors INTEGER :: nx ! maximum local block dimension LOGICAL :: la_proc ! flag to distinguish procs involved in linear algebra TYPE(la_descriptor), ALLOCATABLE :: desc_ip( :, : ) INTEGER, ALLOCATABLE :: rank_ip( :, : ) ! ALLOCATE( desc_ip( np_ortho(1), np_ortho(2) ) ) ALLOCATE( rank_ip( np_ortho(1), np_ortho(2) ) ) ! CALL desc_init( nstart, desc, desc_ip ) ! IF ( npol == 1 ) THEN ! kdim = npw kdmx = npwx ! ELSE ! kdim = npwx*npol kdmx = npwx*npol ! END IF ! ALLOCATE( aux(kdmx, nstart ) ) ALLOCATE( hc( nx, nx) ) ALLOCATE( sc( nx, nx) ) ALLOCATE( vc( nx, nx) ) ALLOCATE( en( nstart ) ) aux=(0.0_DP,0.0_DP) ! ! ... Set up the Hamiltonian and Overlap matrix on the subspace : ! ! ... H_ij = S_ij = ! CALL h_psi( npwx, npw, nstart, psi, aux ) ! CALL compute_distmat( hc, psi, aux ) ! IF ( overlap ) THEN ! CALL s_psi( npwx, npw, nstart, psi, aux ) ! CALL compute_distmat( sc, psi, aux ) ! ELSE ! CALL compute_distmat( sc, psi, psi ) ! END IF ! ! ... Diagonalize ! CALL pcdiaghg( nstart, hc, sc, nx, en, vc, desc ) ! e(:) = en(1:nbnd) ! ! ... update the basis set ! CALL refresh_evc() ! evc(:,:) = aux(:,1:nbnd) ! DEALLOCATE( en ) DEALLOCATE( vc ) DEALLOCATE( sc ) DEALLOCATE( hc ) DEALLOCATE( aux ) ! DEALLOCATE( desc_ip ) DEALLOCATE( rank_ip ) ! RETURN ! ! CONTAINS ! SUBROUTINE desc_init( nsiz, desc, desc_ip ) ! INTEGER, INTENT(IN) :: nsiz TYPE(la_descriptor), INTENT(OUT) :: desc TYPE(la_descriptor), INTENT(OUT) :: desc_ip(:,:) INTEGER :: i, j, rank INTEGER :: coor_ip( 2 ) ! CALL descla_init( desc, nsiz, nsiz, np_ortho, me_ortho, ortho_comm, ortho_comm_id ) ! nx = desc%nrcx ! DO j = 0, desc%npc - 1 DO i = 0, desc%npr - 1 coor_ip( 1 ) = i coor_ip( 2 ) = j CALL descla_init( desc_ip(i+1,j+1), desc%n, desc%nx, & np_ortho, coor_ip, ortho_comm, 1 ) CALL GRID2D_RANK( 'R', desc%npr, desc%npc, i, j, rank ) rank_ip( i+1, j+1 ) = rank * leg_ortho END DO END DO ! la_proc = .FALSE. IF( desc%active_node > 0 ) la_proc = .TRUE. ! RETURN END SUBROUTINE desc_init ! ! SUBROUTINE compute_distmat( dm, v, w ) ! ! This subroutine compute and store the ! result in distributed matrix dm ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root COMPLEX(DP), INTENT(OUT) :: dm( :, : ) COMPLEX(DP) :: v(:,:), w(:,:) COMPLEX(DP), ALLOCATABLE :: work( :, : ) ! ALLOCATE( work( nx, nx ) ) ! work = ( 0.0_DP, 0.0_DP ) ! DO ipc = 1, desc%npc ! loop on column procs ! nc = desc_ip( 1, ipc )%nc ic = desc_ip( 1, ipc )%ic ! DO ipr = 1, ipc ! desc%npr ! ipc ! use symmetry for the loop on row procs ! nr = desc_ip( ipr, ipc )%nr ir = desc_ip( ipr, ipc )%ir ! ! rank of the processor for which this block (ipr,ipc) is destinated ! root = rank_ip( ipr, ipc ) ! use blas subs. on the matrix block CALL ZGEMM( 'C', 'N', nr, nc, kdim, ( 1.D0, 0.D0 ) , v(1,ir), kdmx, w(1,ic), kdmx, ( 0.D0, 0.D0 ), work, nx ) ! accumulate result on dm of root proc. CALL mp_root_sum( work, dm, root, intra_bgrp_comm ) END DO ! END DO ! CALL zsqmher( nstart, dm, nx, desc ) ! DEALLOCATE( work ) ! RETURN END SUBROUTINE compute_distmat SUBROUTINE refresh_evc( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root COMPLEX(DP), ALLOCATABLE :: vtmp( :, : ) COMPLEX(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = desc_ip( 1, ipc )%nc ic = desc_ip( 1, ipc )%ic ! IF( ic <= nbnd ) THEN ! nc = min( nc, nbnd - ic + 1 ) ! beta = ( 0.D0, 0.D0 ) DO ipr = 1, desc%npr ! nr = desc_ip( ipr, ipc )%nr ir = desc_ip( ipr, ipc )%ir ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vc(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ( 1.D0, 0.D0 ), psi(1,ir), kdmx, vc, nx, beta, aux(1,ic), kdmx ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ( 1.D0, 0.D0 ), psi(1,ir), kdmx, vtmp, nx, beta, aux(1,ic), kdmx ) END IF ! beta = ( 1.D0, 0.D0 ) END DO ! END IF ! END DO ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE refresh_evc END SUBROUTINE protate_wfc_k espresso-5.1/PW/src/c_bands.f900000644000175000017500000005304012341373025014332 0ustar mbamba ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE c_bands( iter ) !---------------------------------------------------------------------------- ! ! ... Driver routine for Hamiltonian diagonalization routines ! ... It reads the Hamiltonian and an initial guess of the wavefunctions ! ... from a file and computes initialization quantities for the ! ... diagonalization routines. ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files, ONLY : iunigk, iunhub, iunwfc, nwordwfc, nwordwfcU USE buffers, ONLY : get_buffer, save_buffer, close_buffer USE klist, ONLY : nkstot, nks, xk, ngk USE uspp, ONLY : vkb, nkb USE gvect, ONLY : g USE wvfct, ONLY : et, nbnd, npwx, igk, npw, current_k USE control_flags, ONLY : ethr, isolve, restart USE ldaU, ONLY : lda_plus_u, U_projection, wfcU USE lsda_mod, ONLY : current_spin, lsda, isk USE wavefunctions_module, ONLY : evc USE bp, ONLY : lelfield USE mp_pools, ONLY : npool, kunit, inter_pool_comm USE mp, ONLY : mp_sum USE check_stop, ONLY : check_stop_now ! IMPLICIT NONE ! INTEGER, INTENT (in) :: iter ! ! ... local variables ! REAL(DP) :: avg_iter ! average number of H*psi products INTEGER :: ik_, ik, nkdum, ios ! ik : counter on k points ! ik_: k-point already done in a previous run LOGICAL :: exst ! CALL start_clock( 'c_bands' ) ! ik_ = 0 avg_iter = 0.D0 IF ( restart ) CALL restart_in_cbands(ik_, ethr, avg_iter, et ) ! IF ( isolve == 0 ) THEN WRITE( stdout, '(5X,"Davidson diagonalization with overlap")' ) ELSE IF ( isolve == 1 ) THEN WRITE( stdout, '(5X,"CG style diagonalization")') ELSE CALL errore ( 'c_bands', 'invalid type of diagonalization', isolve) END IF ! if ( nks > 1 ) REWIND( iunigk ) ! ! ... For each k point diagonalizes the hamiltonian ! k_loop: DO ik = 1, nks ! current_k = ik IF ( lsda ) current_spin = isk(ik) npw = ngk(ik) ! ! ... Reads the list of indices k+G <-> G of this k point ! IF ( nks > 1 ) READ( iunigk ) igk ! ! ... Dirty restart trick: iunigk is sequential so it has to be read ! ... for all k-points, or else the wrong igk would be read. ! ... Calculated wavefunctions have to be read from buffer. ! ... (not for a single k-point: this is done in wfcinit, ! ... directly from file, in order to avoid wasting memory) ! IF ( ik < ik_+1 ) THEN IF ( nks > 1 .OR. lelfield ) & CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) CYCLE k_loop END IF ! ! ... various initializations ! IF ( nkb > 0 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! ! ... kinetic energy ! call g2_kin( ik ) ! ! ... read in wavefunctions from the previous iteration ! IF ( nks > 1 .OR. lelfield ) & CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) ! ! ... Needed for LDA+U ! IF ( nks > 1 .AND. lda_plus_u .AND. (U_projection .NE. 'pseudo') ) & CALL get_buffer ( wfcU, nwordwfcU, iunhub, ik ) ! ! ... diagonalization of bands for k-point ik ! call diag_bands ( iter, ik, avg_iter ) ! ! ... save wave-functions to be used as input for the ! ... iterative diagonalization of the next scf iteration ! ... and for rho calculation ! IF ( nks > 1 .OR. lelfield ) & CALL save_buffer ( evc, nwordwfc, iunwfc, ik ) ! ! ... beware: with pools, if the number of k-points on different ! ... pools differs, make sure that all processors are still in ! ... the loop on k-points before checking for stop condition ! nkdum = kunit * ( nkstot / kunit / npool ) ! IF (ik .le. nkdum) THEN IF (check_stop_now()) THEN CALL save_in_cbands(ik, ethr, avg_iter, et ) RETURN END IF ENDIF ! END DO k_loop ! CALL mp_sum( avg_iter, inter_pool_comm ) avg_iter = avg_iter / nkstot ! WRITE( stdout, & '( 5X,"ethr = ",1PE9.2,", avg # of iterations =",0PF5.1 )' ) & ethr, avg_iter ! CALL stop_clock( 'c_bands' ) ! RETURN ! END SUBROUTINE c_bands ! !---------------------------------------------------------------------------- SUBROUTINE diag_bands( iter, ik, avg_iter ) !---------------------------------------------------------------------------- ! ! ... Driver routine for diagonalization at each k-point ! ... Two types of iterative diagonalizations are currently used: ! ... a) Davidson algorithm (all-band) ! ... b) Conjugate Gradient (band-by-band) ! ... ! ... internal procedures : ! ! ... diag_bands_gamma(): optimized algorithms for gamma sampling of the BZ ! ... (real Hamiltonian) ! ... diag_bands_k() : general algorithm for arbitrary BZ sampling ! ... (complex Hamiltonian) ! ... test_exit_cond() : the test on the iterative diagonalization ! ! USE kinds, ONLY : DP USE buffers, ONLY : get_buffer USE io_global, ONLY : stdout USE io_files, ONLY : nwordwfc, iunefieldp, iunefieldm USE uspp, ONLY : vkb, nkb, okvan USE gvect, ONLY : gstart USE wvfct, ONLY : g2kin, nbndx, et, nbnd, npwx, npw, & current_k, btype USE control_flags, ONLY : ethr, lscf, max_cg_iter, isolve, istep, & gamma_only, use_para_diag USE noncollin_module, ONLY : noncolin, npol USE wavefunctions_module, ONLY : evc USE g_psi_mod, ONLY : h_diag, s_diag USE scf, ONLY : v_of_0 USE bp, ONLY : lelfield, evcel, evcelp, evcelm, bec_evcel,& gdir, l3dstring, efield, efield_cry USE becmod, ONLY : bec_type, becp, calbec, & allocate_bec_type, deallocate_bec_type USE klist, ONLY : nks USE mp_bands, ONLY : nproc_bgrp, intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iter, ik ! REAL (KIND=DP), INTENT(INOUT) :: avg_iter ! REAL (KIND=DP) :: cg_iter ! (weighted) number of iterations in Conjugate-Gradient INTEGER :: ig, dav_iter, ntry, notconv ! number of iterations in Davidson ! number or repeated call to diagonalization in case of non convergence ! number of notconverged elements INTEGER :: ierr, ipw ! LOGICAL :: lrot ! .TRUE. if the wfc have already be rotated ! ALLOCATE( h_diag( npwx, npol ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' diag_bands ', ' cannot allocate h_diag ', ABS(ierr) ) ! ALLOCATE( s_diag( npwx, npol ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' diag_bands ', ' cannot allocate s_diag ', ABS(ierr) ) ! ! ... allocate space for - used in h_psi and s_psi ! ipw=npwx CALL mp_sum(ipw, intra_bgrp_comm) IF ( nbndx > ipw ) & CALL errore ( 'diag_bands', 'too many bands, or too few plane waves',1) ! CALL allocate_bec_type ( nkb, nbnd, becp, intra_bgrp_comm ) ! IF ( gamma_only ) THEN ! CALL diag_bands_gamma() ! ELSE ! CALL diag_bands_k() ! END IF ! ! ... deallocate work space ! CALL deallocate_bec_type ( becp ) DEALLOCATE( s_diag ) DEALLOCATE( h_diag ) ! IF ( notconv > MAX( 5, nbnd / 4 ) ) THEN ! CALL errore( 'c_bands', & & 'too many bands are not converged', 1 ) ! ELSE IF ( notconv > 0 ) THEN ! WRITE( stdout, '(5X,"c_bands: ",I2, & & " eigenvalues not converged")' ) notconv ! END IF ! RETURN ! CONTAINS ! ! ... internal procedures ! !----------------------------------------------------------------------- SUBROUTINE diag_bands_gamma() !----------------------------------------------------------------------- ! ! ... Diagonalization of a real Hamiltonian ! IMPLICIT NONE ! IF ( isolve == 1 ) THEN ! ! ... Conjugate-Gradient diagonalization ! ! ... h_diag is the precondition matrix ! FORALL( ig = 1 : npw ) ! h_diag(ig,1) = 1.D0 + g2kin(ig) + & SQRT( 1.D0 + ( g2kin(ig) - 1.D0 )**2 ) ! END FORALL ! ntry = 0 ! CG_loop : DO ! lrot = ( iter == 1 .AND. istep ==0 .AND. ntry == 0 ) ! IF ( .NOT. lrot ) THEN ! CALL rotate_wfc ( npwx, npw, nbnd, gstart, nbnd, & evc, npol, okvan, evc, et(1,ik) ) ! avg_iter = avg_iter + 1.D0 ! END IF ! CALL rcgdiagg( npwx, npw, nbnd, evc, et(1,ik), btype(1,ik), & h_diag, ethr, max_cg_iter, .NOT. lscf, notconv, cg_iter ) ! avg_iter = avg_iter + cg_iter ! ntry = ntry + 1 ! ! ... exit condition ! IF ( test_exit_cond() ) EXIT CG_loop ! END DO CG_loop ! ELSE ! ! ... Davidson diagonalization ! ! ... h_diag are the diagonal matrix elements of the ! ... hamiltonian used in g_psi to evaluate the correction ! ... to the trial eigenvectors ! h_diag(1:npw, 1) = g2kin(1:npw) + v_of_0 ! CALL usnldiag( h_diag, s_diag ) ! ntry = 0 ! david_loop: DO ! lrot = ( iter == 1 ) ! IF ( use_para_diag ) then ! CALL pregterg( npw, npwx, nbnd, nbndx, evc, ethr, & okvan, gstart, et(1,ik), btype(1,ik), & notconv, lrot, dav_iter ) ! ELSE ! CALL regterg ( npw, npwx, nbnd, nbndx, evc, ethr, & okvan, gstart, et(1,ik), btype(1,ik), & notconv, lrot, dav_iter ) END IF ! avg_iter = avg_iter + dav_iter ! ntry = ntry + 1 ! ! ... exit condition ! IF ( test_exit_cond() ) EXIT david_loop ! END DO david_loop ! END IF ! RETURN ! END SUBROUTINE diag_bands_gamma ! !----------------------------------------------------------------------- SUBROUTINE diag_bands_k() !----------------------------------------------------------------------- ! ! ... Complex Hamiltonian diagonalization ! IMPLICIT NONE ! ! ... here the local variables ! INTEGER :: ipol, ierr REAL(dp) :: eps ! --- Define a small number --- eps=0.000001d0 ! IF ( lelfield ) THEN ! ! ... save wave functions from previous iteration for electric field ! evcel = evc ! !... read projectors from disk ! if(.not.l3dstring .and. ABS(efield)>eps ) then CALL get_buffer (evcelm(:,:,gdir), nwordwfc, iunefieldm, ik+(gdir-1)*nks) CALL get_buffer (evcelp(:,:,gdir), nwordwfc, iunefieldp, ik+(gdir-1)*nks) else do ipol=1,3 if(ABS(efield_cry(ipol))>eps) then CALL get_buffer (evcelm(:,:,ipol), nwordwfc, iunefieldm, ik+(ipol-1)*nks) CALL get_buffer (evcelp(:,:,ipol), nwordwfc, iunefieldp, ik+(ipol-1)*nks) endif enddo endif ! IF ( okvan ) THEN ! call allocate_bec_type(nkb,nbnd,bec_evcel) ! CALL calbec(npw, vkb, evcel, bec_evcel) ! ENDIF ! END IF ! IF ( isolve == 1 ) THEN ! ! ... Conjugate-Gradient diagonalization ! ! ... h_diag is the precondition matrix ! h_diag = 1.D0 ! FORALL( ig = 1 : npwx ) ! h_diag(ig,:) = 1.D0 + g2kin(ig) + & SQRT( 1.D0 + ( g2kin(ig) - 1.D0 )**2 ) ! END FORALL ! ntry = 0 ! CG_loop : DO ! lrot = ( iter == 1 .AND. istep ==0 .AND. ntry == 0 ) ! IF ( .NOT. lrot ) THEN ! CALL rotate_wfc ( npwx, npw, nbnd, gstart, nbnd, & evc, npol, okvan, evc, et(1,ik) ) ! avg_iter = avg_iter + 1.D0 ! END IF ! CALL ccgdiagg( npwx, npw, nbnd, npol, evc, et(1,ik), btype(1,ik), & h_diag, ethr, max_cg_iter, .NOT. lscf, notconv, cg_iter ) ! avg_iter = avg_iter + cg_iter ! ntry = ntry + 1 ! ! ... exit condition ! IF ( test_exit_cond() ) EXIT CG_loop ! END DO CG_loop ! ELSE ! ! ... Davidson diagonalization ! ! ... h_diag are the diagonal matrix elements of the ! ... hamiltonian used in g_psi to evaluate the correction ! ... to the trial eigenvectors ! DO ipol = 1, npol ! h_diag(1:npw, ipol) = g2kin(1:npw) + v_of_0 ! END DO ! CALL usnldiag( h_diag, s_diag ) ! ntry = 0 ! david_loop: DO ! lrot = ( iter == 1 ) ! IF ( use_para_diag ) then ! CALL pcegterg( npw, npwx, nbnd, nbndx, npol, evc, ethr, & okvan, et(1,ik), btype(1,ik), & notconv, lrot, dav_iter ) ! ELSE ! CALL cegterg ( npw, npwx, nbnd, nbndx, npol, evc, ethr, & okvan, et(1,ik), btype(1,ik), & notconv, lrot, dav_iter ) END IF ! avg_iter = avg_iter + dav_iter ! ! ... save wave-functions to be used as input for the ! ... iterative diagonalization of the next scf iteration ! ... and for rho calculation ! ntry = ntry + 1 ! ! ... exit condition ! IF ( test_exit_cond() ) EXIT david_loop ! END DO david_loop ! END IF ! IF ( lelfield .AND. okvan ) call deallocate_bec_type( bec_evcel) ! RETURN ! END SUBROUTINE diag_bands_k ! !----------------------------------------------------------------------- FUNCTION test_exit_cond() !----------------------------------------------------------------------- ! ! ... this logical function is .TRUE. when iterative diagonalization ! ... is converged ! IMPLICIT NONE ! LOGICAL :: test_exit_cond ! ! test_exit_cond = .NOT. ( ( ntry <= 5 ) .AND. & ( ( .NOT. lscf .AND. ( notconv > 0 ) ) .OR. & ( lscf .AND. ( notconv > 5 ) ) ) ) ! END FUNCTION test_exit_cond ! END SUBROUTINE diag_bands ! !---------------------------------------------------------------------------- SUBROUTINE c_bands_efield ( iter ) !---------------------------------------------------------------------------- ! ! ... Driver routine for Hamiltonian diagonalization under an electric field ! USE noncollin_module, ONLY : noncolin, npol USE kinds, ONLY : DP USE bp, ONLY : nberrycyc, fact_hepsi, & evcel, evcelp, evcelm, gdir, l3dstring,& efield, efield_cry USE klist, ONLY : nks USE wvfct, ONLY : nbnd, npwx USE io_global, ONLY : stdout ! IMPLICIT NONE ! INTEGER, INTENT (in) :: iter ! INTEGER :: inberry, ipol, ierr ! ! ALLOCATE( evcel ( npol*npwx, nbnd ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' c_bands_efield ', ' cannot allocate evcel ', ABS( ierr ) ) ALLOCATE( evcelm( npol*npwx, nbnd, 3 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' c_bands_efield ', ' cannot allocate evcelm ', ABS( ierr ) ) ALLOCATE( evcelp( npol*npwx, nbnd, 3 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' c_bands_efield ', ' cannot allocate evcelp ', ABS( ierr ) ) ALLOCATE( fact_hepsi(nks, 3), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' c_bands_efield ', ' cannot allocate fact_hepsi ', ABS( ierr ) ) ! DO inberry = 1, nberrycyc ! !...set up electric field hermitean operator ! call flush_unit(stdout) if(.not.l3dstring) then CALL h_epsi_her_set (gdir, efield) else do ipol=1,3 CALL h_epsi_her_set(ipol, efield_cry(ipol)) enddo endif call flush_unit(stdout) ! CALL c_bands( iter ) ! END DO ! DEALLOCATE( fact_hepsi ) DEALLOCATE( evcelp ) DEALLOCATE( evcelm ) DEALLOCATE( evcel ) ! RETURN ! END SUBROUTINE c_bands_efield ! SUBROUTINE c_bands_nscf( ) !---------------------------------------------------------------------------- ! ! ... Driver routine for Hamiltonian diagonalization routines ! ... specialized to non-self-consistent calculations (no electric field) ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files, ONLY : iunigk, iunhub, iunwfc, nwordwfc, nwordwfcU USE buffers, ONLY : get_buffer, save_buffer, close_buffer USE basis, ONLY : starting_wfc USE klist, ONLY : nkstot, nks, xk, ngk USE uspp, ONLY : vkb, nkb USE gvect, ONLY : g USE wvfct, ONLY : et, nbnd, npwx, igk, npw, current_k USE control_flags, ONLY : ethr, restart, isolve, io_level, iverbosity USE ldaU, ONLY : lda_plus_u, U_projection, wfcU USE lsda_mod, ONLY : current_spin, lsda, isk USE wavefunctions_module, ONLY : evc USE mp_pools, ONLY : npool, kunit, inter_pool_comm USE mp, ONLY : mp_sum USE check_stop, ONLY : check_stop_now ! IMPLICIT NONE ! REAL(DP) :: avg_iter, ethr_ ! average number of H*psi products INTEGER :: ik_, ik, nkdum, ios ! ik_: k-point already done in a previous run ! ik : counter on k points LOGICAL :: exst ! REAL(DP), EXTERNAL :: get_clock ! CALL start_clock( 'c_bands' ) ! ik_ = 0 avg_iter = 0.D0 IF ( restart ) CALL restart_in_cbands(ik_, ethr, avg_iter, et ) ! IF ( isolve == 0 ) THEN WRITE( stdout, '(5X,"Davidson diagonalization with overlap")' ) ELSE IF ( isolve == 1 ) THEN WRITE( stdout, '(5X,"CG style diagonalization")') ELSE CALL errore ( 'c_bands', 'invalid type of diagonalization', isolve) END IF ! if ( nks > 1 ) REWIND( iunigk ) ! ! ... For each k point (except those already calculated if restarting) ! ... diagonalizes the hamiltonian ! k_loop: DO ik = 1, nks ! current_k = ik IF ( lsda ) current_spin = isk(ik) npw = ngk(ik) ! ! ... Reads the list of indices k+G <-> G of this k point ! IF ( nks > 1 ) READ( iunigk ) igk ! ! ... Dirty restart trick: iunigk is sequential so it has to be read ! ... for all k-points, or else the wrong igk would be read. ! ... Calculated wavefunctions have to be read from buffer. ! IF ( ik < ik_+1 ) THEN CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) CYCLE k_loop END IF ! IF ( iverbosity > 0 ) WRITE( stdout, 9001 ) ik ! ! ... various initializations ! IF ( nkb > 0 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! ! ... kinetic energy ! call g2_kin( ik ) ! ! ... Needed for LDA+U ! IF ( nks > 1 .AND. lda_plus_u .AND. (U_projection .NE. 'pseudo') ) & CALL get_buffer ( wfcU, nwordwfcU, iunhub, ik ) ! ! ... calculate starting wavefunctions ! IF ( TRIM(starting_wfc) == 'file' ) THEN ! CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) ! ELSE ! CALL init_wfc ( ik ) ! END IF ! ! ... diagonalization of bands for k-point ik ! call diag_bands ( 1, ik, avg_iter ) ! ! ... save wave-functions (unless disabled in input) ! IF ( io_level > -1 ) CALL save_buffer ( evc, nwordwfc, iunwfc, ik ) ! ! ... beware: with pools, if the number of k-points on different ! ... pools differs, make sure that all processors are still in ! ... the loop on k-points before checking for stop condition ! nkdum = kunit * ( nkstot / kunit / npool ) IF (ik .le. nkdum) THEN ! ! ... stop requested by user: save restart information, ! ... save wavefunctions to file ! IF (check_stop_now()) THEN CALL save_in_cbands(ik, ethr, avg_iter, et ) RETURN END IF ENDIF ! ! report about timing ! IF ( iverbosity > 0 ) THEN WRITE( stdout, 9000 ) get_clock( 'PWSCF' ) CALL flush_unit( stdout ) ENDIF ! END DO k_loop ! CALL mp_sum( avg_iter, inter_pool_comm ) avg_iter = avg_iter / nkstot ! WRITE( stdout, '(/,5X,"ethr = ",1PE9.2,", avg # of iterations =",0PF5.1)' ) & ethr, avg_iter ! CALL stop_clock( 'c_bands' ) ! RETURN ! ! formats ! 9001 FORMAT(/' Computing kpt #: ',I5 ) 9000 FORMAT( ' total cpu time spent up to now is ',F10.1,' secs' ) ! END SUBROUTINE c_bands_nscf espresso-5.1/PW/src/wannier_occ.f900000644000175000017500000000253212341373025015230 0ustar mbamba! Copyright (C) 2006-2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) !---------------------------------------------------------------------- subroutine wannier_occupancies(occ) !---------------------------------------------------------------------- ! ! ... This routine computes occupation of each wannier. It is assumed that WF generated already and stored if the buffer. ! use kinds, only: DP use wannier_new, only: nwan, pp use io_global, only : stdout use wvfct, only: nbnd, et, wg use klist, only: nks use lsda_mod, only: current_spin, lsda, nspin, isk USE io_files USE buffers implicit none real(DP), intent(out) :: occ(nwan,nwan,nspin) integer :: i,j,k,ik occ = ZERO current_spin = 1 DO ik=1, nks IF (lsda) current_spin = isk(ik) CALL get_buffer( pp, nwordwpp, iunwpp, ik) DO i=1, nwan DO j=1,nwan DO k=1, nbnd occ(i,j,current_spin) = occ(i,j,current_spin) + pp(i,k)*conjg(pp(j,k))*wg(k,ik) END DO END DO END DO END DO IF(nspin.eq.1) occ=occ*0.5D0 return end subroutine wannier_occupancies espresso-5.1/PW/src/pw2blip.f900000644000175000017500000002573212341373025014327 0ustar mbambaMODULE pw2blip USE kinds, ONLY: DP USE io_global, ONLY: ionode, ionode_id USE mp_pools, ONLY: me_pool,nproc_pool,intra_pool_comm USE mp, ONLY: mp_get USE control_flags, ONLY: gamma_only USE constants, ONLY: tpi USE cell_base, ONLY: at,alat USE fft_scalar, ONLY: allowed, good_fft_dimension PRIVATE PUBLIC pw2blip_init,pw2blip_cleanup,pw2blip_transform,pw2blip_transform2,& &blipgrid,cavc,avc1,avc2,pw2blip_get,blipeval,blip3dk,g_int INTEGER,PUBLIC :: blipreal = 0 ! blipreal == 0 -- complex wfn1 ! blipreal == 1 -- one real wfn (gamma_only) ! blipreal == 2 -- two real wfn (gamma_only) INTEGER :: ngtot COMPLEX(dp),ALLOCATABLE :: psic(:),cavc_flat(:) INTEGER :: blipgrid(3),ld_bg(3),bg_vol REAL(dp),ALLOCATABLE :: gamma(:) INTEGER,PARAMETER :: gamma_approx = 1 REAL(dp),PARAMETER :: pi = 3.14159265358979324d0 INTEGER,ALLOCATABLE :: map_igk_to_fft(:) INTEGER,ALLOCATABLE :: map_minus_igk_to_fft(:) ! gamma_only INTEGER,ALLOCATABLE :: do_fft_x(:),do_fft_y(:) INTEGER :: nr(3) INTEGER,ALLOCATABLE :: g_int(:,:) REAL(dp) :: rnr(3),rnr2(3),bg(3,3),lvp(6) CONTAINS SUBROUTINE pw2blip_init(ngtot_in,g_vec,multiplicity) INTEGER,INTENT(in) :: ngtot_in REAL(dp),INTENT(in) :: g_vec(3,ngtot_in) REAL(dp),INTENT(in) :: multiplicity REAL(dp) :: da(3),k,k2,k4,cosk INTEGER :: ig,ig2,d,g_idx(3) INTEGER,PARAMETER :: nmax = 5000 ngtot = ngtot_in ALLOCATE(g_int(3,ngtot)) DO ig=1,ngtot g_int(1,ig) = nint (sum(g_vec(:,ig) * at (:,1))) g_int(2,ig) = nint (sum(g_vec(:,ig) * at (:,2))) g_int(3,ig) = nint (sum(g_vec(:,ig) * at (:,3))) ENDDO IF(any(g_int(:,1)/=0))THEN CALL errore('pw2blip_init','first G vector is not zero',0) ENDIF ! choose size of blip grid in real space DO d=1,3 blipgrid(d) = 2*ceiling(dble(maxval(abs(g_int(d,:))))*multiplicity)+2 DO WHILE(.not.allowed(blipgrid(d))) blipgrid(d) = blipgrid(d) + 1 ENDDO IF (blipgrid(d)>nmax) & CALL errore ('pw2blip_init', 'blipgrid is unreasonably large', blipgrid(d)) ENDDO nr(:) = blipgrid(:) rnr(:) = dble(nr(:)) rnr2(:) = rnr(:)*rnr(:) CALL inve(at,bg) bg=transpose(bg) lvp(1)=bg(1,1)**2+bg(2,1)**2+bg(3,1)**2 lvp(2)=bg(1,2)**2+bg(2,2)**2+bg(3,2)**2 lvp(3)=bg(1,3)**2+bg(2,3)**2+bg(3,3)**2 lvp(4)=2.d0*(bg(1,1)*bg(1,2)+bg(2,1)*bg(2,2)+bg(3,1)*bg(3,2)) lvp(5)=2.d0*(bg(1,2)*bg(1,3)+bg(2,2)*bg(2,3)+bg(3,2)*bg(3,3)) lvp(6)=2.d0*(bg(1,3)*bg(1,1)+bg(2,3)*bg(2,1)+bg(3,3)*bg(3,1)) ! set up leading dimensions of fft data array ld_bg(1) = good_fft_dimension(blipgrid(1)) ld_bg(2) = blipgrid(2) ld_bg(3) = blipgrid(3) bg_vol = ld_bg(1)*ld_bg(2)*ld_bg(3) ! Set up indices to fft grid: map_igk_to_fft ALLOCATE(map_igk_to_fft(ngtot)) ! map_igk_to_fft(1) = 1 IF(gamma_only)THEN ALLOCATE(map_minus_igk_to_fft(ngtot)) ! map_minus_igk_to_fft(1) = 1 ENDIF ALLOCATE(do_fft_x(blipgrid(3)*ld_bg(2)),do_fft_y(blipgrid(3))) do_fft_x(:)=0 ; do_fft_y(:)=0 ! do_fft_x(1)=1 ; do_fft_y(1)=1 DO ig=1,ngtot g_idx(:) = modulo(g_int(:,ig),blipgrid(:)) do_fft_x(1 + g_idx(2) + ld_bg(2)*g_idx(3)) = 1 do_fft_y(1 + g_idx(3)) = 1 map_igk_to_fft (ig) = 1 + g_idx(1) + ld_bg(1)*(g_idx(2) + ld_bg(2)*g_idx(3)) IF(gamma_only)THEN ! gamma_only g_idx(:) = modulo(-g_int(:,ig),blipgrid(:)) do_fft_x(1 + g_idx(2) + ld_bg(2)*g_idx(3)) = 1 do_fft_y(1 + g_idx(3)) = 1 map_minus_igk_to_fft (ig) = 1 + g_idx(1) + ld_bg(1)*(g_idx(2) + ld_bg(2)*g_idx(3)) ENDIF ENDDO ! Set up blipgrid ALLOCATE(psic(bg_vol)) ! local FFT grid for transform ! Calculating gamma. ALLOCATE(gamma(ngtot)) gamma(:) = 1.d0 da(1:3)=2.d0*pi/dble( blipgrid(:) ) IF(gamma_approx==1)THEN DO ig=1,ngtot DO d=1,3 IF(g_int(d,ig)/=0)THEN k=da(d)*dble(g_int(d,ig)) ; cosk=cos(k) ; k2=k*k ; k4=k2*k2 gamma(ig)=gamma(ig)*k4/(6.d0*((cosk-2.d0)*cosk+1.d0)) ELSE gamma(ig)=gamma(ig)*2.d0/3.d0 ENDIF ENDDO ENDDO ! ig ELSEIF(gamma_approx==2)THEN DO ig=1,ngtot gamma(ig)=1.d0/(& & (1.d0+0.5d0*cos(da(1)*g_vec(1,ig))) & &*(1.d0+0.5d0*cos(da(2)*g_vec(2,ig))) & &*(1.d0+0.5d0*cos(da(3)*g_vec(3,ig))) & &) ENDDO ! ig ELSE WRITE(6,*)'Bug: bad gamma_approx.' ; STOP ENDIF ! gamma_approx END SUBROUTINE pw2blip_init SUBROUTINE pw2blip_cleanup DEALLOCATE(psic,gamma,g_int) DEALLOCATE(map_igk_to_fft,do_fft_x,do_fft_y) IF(gamma_only)DEALLOCATE(map_minus_igk_to_fft) END SUBROUTINE pw2blip_cleanup SUBROUTINE pw2blip_transform(psi) USE fft_scalar, ONLY: cfft3ds COMPLEX(DP), INTENT(in) :: psi(ngtot) psic (:) = (0.d0, 0.d0) psic (map_igk_to_fft (1:ngtot)) = psi(1:ngtot)*gamma(1:ngtot) IF(gamma_only)THEN psic (map_minus_igk_to_fft (1:ngtot)) = conjg(psi(1:ngtot))*gamma(1:ngtot) blipreal = 1 ENDIF ! perform the transformation CALL cfft3ds (psic,blipgrid(1),blipgrid(2),blipgrid(3),& &ld_bg(1),ld_bg(2),ld_bg(3),+1,do_fft_x(:),do_fft_y(:)) END SUBROUTINE SUBROUTINE pw2blip_transform2(psi1,psi2) USE fft_scalar, ONLY: cfft3ds COMPLEX(DP), INTENT(in) :: psi1(ngtot),psi2(ngtot) IF(.not.gamma_only)THEN CALL errore("pw2blip_transform2","BUG: can only perform one complex FFT at a time",3) ENDIF blipreal = 2 psic (:) = (0.d0, 0.d0) psic (map_igk_to_fft (1:ngtot)) = (psi1(1:ngtot)+(0.d0,1.d0)*psi2(1:ngtot))*gamma(1:ngtot) psic (map_minus_igk_to_fft (1:ngtot)) = conjg((psi1(1:ngtot)-(0.d0,1.d0)*psi2(1:ngtot)))*gamma(1:ngtot) ! perform the transformation CALL cfft3ds (psic,blipgrid(1),blipgrid(2),blipgrid(3),& &ld_bg(1),ld_bg(2),ld_bg(3),+1,do_fft_x(:),do_fft_y(:)) END SUBROUTINE SUBROUTINE pw2blip_get(node) INTEGER,INTENT(in) :: node IF(ionode_id /= node)THEN CALL mp_get(psic,psic,me_pool,ionode_id,node,2498,intra_pool_comm) CALL mp_get(blipreal,blipreal,me_pool,ionode_id,node,2314,intra_pool_comm) ENDIF END SUBROUTINE pw2blip_get COMPLEX(dp) FUNCTION cavc(i1,i2,i3) INTEGER,INTENT(in) :: i1,i2,i3 cavc = psic(1+i1+ld_bg(1)*(i2+ld_bg(2)*i3)) END FUNCTION cavc REAL(dp) FUNCTION avc1(i1,i2,i3) INTEGER,INTENT(in) :: i1,i2,i3 avc1 = real(psic(1+i1+ld_bg(1)*(i2+ld_bg(2)*i3))) END FUNCTION avc1 REAL(dp) FUNCTION avc2(i1,i2,i3) INTEGER,INTENT(in) :: i1,i2,i3 avc2 = aimag(psic(1+i1+ld_bg(1)*(i2+ld_bg(2)*i3))) END FUNCTION avc2 SUBROUTINE blipeval(r,rpsi,grad,lap) !----------------------------------------------------------------------------! ! This subroutine evaluates the value of a function, its gradient and its ! ! Laplacian at a vector point r, using the overlapping of blip functions. ! ! The blip grid is defined on a cubic cell, so r should always be given in ! ! units of the crystal lattice vectors. ! !----------------------------------------------------------------------------! IMPLICIT NONE DOUBLE PRECISION,INTENT(in) :: r(3) COMPLEX(dp),INTENT(out) :: rpsi,grad(3),lap REAL(dp) t(3) INTEGER i(3),idx(3,4),jx,jy,jz REAL(dp) x(3),tx(3,4),dtx(3,4),d2tx(3,4) COMPLEX(dp) sderiv(6),C rpsi=(0.d0,0.d0) ; grad(:)=(0.d0,0.d0) ; sderiv(:)=(0.d0,0.d0) t(:) = r(:)*rnr(:) i(:) = modulo(floor(t(:)),nr(:)) idx(:,1) = modulo(i(:)-1,nr(:)) idx(:,2) = i(:) idx(:,3) = modulo(i(:)+1,nr(:)) idx(:,4) = modulo(i(:)+2,nr(:)) x(:)=t(:)-dble(idx(:,2)-1) tx(:,1)=2.d0+x(:)*(-3.d0+x(:)*(1.5d0-0.25d0*x(:))) ! == (8+x*(-12+x*(6-x)))/4 == (2-x)(4-2x+x2)/4 dtx(:,1)=(-3.d0+x(:)*(3.d0-0.75d0*x(:)))*rnr(:) ! == (-12+x*(12-3*x))r/4 == (2-x)(x-2)3r/4 d2tx(:,1)=(3.d0-1.5d0*x(:))*rnr2(:) ! == (2-x)3r2/2 x(:)=t(:)-dble(idx(:,2)) tx(:,2)=1.d0+x(:)*x(:)*(-1.5d0+0.75d0*x(:)) ! == (4-3x2(2-x))/4 dtx(:,2)=x(:)*(-3.d0+2.25d0*x(:))*rnr(:) ! == -x(12-9x)r/4 d2tx(:,2)=(-3.d0+4.5d0*x(:))*rnr2(:) ! == -(6-9x)r2/2 x(:)=t(:)-dble(idx(:,2)+1) tx(:,3)=1.d0+x(:)*x(:)*(-1.5d0-0.75d0*x(:)) ! == (4-3x2(2+x))/4 dtx(:,3)=x(:)*(-3.d0-2.25d0*x(:))*rnr(:) ! == -x(12+9x)r/4 d2tx(:,3)=(-3.d0-4.5d0*x(:))*rnr2(:) ! == -(6+9x)r2/2 x(:)=t(:)-dble(idx(:,2)+2) tx(:,4)=2.d0+x(:)*(3.d0+x(:)*(1.5d0+0.25d0*x(:))) ! == (8+x*(12+x*(6+x)))/4 == (2+x)(4+2x+x2)/4 dtx(:,4)=(3.d0+x(:)*(3.d0+0.75d0*x(:)))*rnr(:) ! == (12+x*(12+3*x))r/4 == (2+x)(x+2)3r/4 d2tx(:,4)=(3.d0+1.5d0*x(:))*rnr2(:) ! == (2+x)3r2/2 DO jx=1,4 DO jy=1,4 DO jz=1,4 C = cavc(idx(1,jx),idx(2,jy),idx(3,jz)) rpsi = rpsi + C * tx(1,jx)*tx(2,jy)*tx(3,jz) grad(1) = grad(1) + C * dtx(1,jx)*tx(2,jy)*tx(3,jz) grad(2) = grad(2) + C * tx(1,jx)*dtx(2,jy)*tx(3,jz) grad(3) = grad(3) + C * tx(1,jx)*tx(2,jy)*dtx(3,jz) sderiv(1) = sderiv(1) + C * d2tx(1,jx)*tx(2,jy)*tx(3,jz) sderiv(2) = sderiv(2) + C * tx(1,jx)*d2tx(2,jy)*tx(3,jz) sderiv(3) = sderiv(3) + C * tx(1,jx)*tx(2,jy)*d2tx(3,jz) sderiv(4) = sderiv(4) + C * dtx(1,jx)*dtx(2,jy)*tx(3,jz) sderiv(5) = sderiv(5) + C * tx(1,jx)*dtx(2,jy)*dtx(3,jz) sderiv(6) = sderiv(6) + C * dtx(1,jx)*tx(2,jy)*dtx(3,jz) ENDDO ENDDO ENDDO ! Transformation of gradient to the Cartesian grid grad(1:3)=matmul(bg/alat,grad(1:3)) ! The Laplacian: summing all contributions with appropriate transformation lap= sum(sderiv(:)*lvp(:))/alat**2 END SUBROUTINE blipeval SUBROUTINE inve(v,inv) !-----------------------! ! Inverts 3x3 matrices. ! !-----------------------! IMPLICIT NONE REAL(dp),INTENT(in) :: v(3,3) REAL(dp),INTENT(out) :: inv(3,3) REAL(dp) d d=v(1,1)*(v(2,2)*v(3,3)-v(2,3)*v(3,2))+ & &v(2,1)*(v(3,2)*v(1,3)-v(1,2)*v(3,3))+ & &v(3,1)*(v(1,2)*v(2,3)-v(1,3)*v(2,2)) IF(d==0.d0)THEN WRITE(6,*)'Trying to invert a singular determinant.' STOP ENDIF d=1.d0/d inv(1,1)=(v(2,2)*v(3,3)-v(2,3)*v(3,2))*d inv(1,2)=(v(3,2)*v(1,3)-v(1,2)*v(3,3))*d inv(1,3)=(v(1,2)*v(2,3)-v(1,3)*v(2,2))*d inv(2,1)=(v(3,1)*v(2,3)-v(2,1)*v(3,3))*d inv(2,2)=(v(1,1)*v(3,3)-v(3,1)*v(1,3))*d inv(2,3)=(v(2,1)*v(1,3)-v(1,1)*v(2,3))*d inv(3,1)=(v(2,1)*v(3,2)-v(2,2)*v(3,1))*d inv(3,2)=(v(3,1)*v(1,2)-v(1,1)*v(3,2))*d inv(3,3)=(v(1,1)*v(2,2)-v(1,2)*v(2,1))*d END SUBROUTINE inve END MODULE espresso-5.1/PW/src/sumkt.f900000644000175000017500000000606412341373025014110 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------- FUNCTION sumkt (et, nbnd, nks, nspin, ntetra, tetra, e, is, isk) !-------------------------------------------------------------------- ! ! ... Sum over all states with tetrahedron method ! ... At Fermi energy e=E_F, sumkt(e) == number of electrons ! ... Generalization to noncollinear case courtesy of Yurii Timrov ! USE kinds implicit none ! output variable real(DP) :: sumkt ! input variable integer, intent(in) :: nbnd, nks, nspin, ntetra, tetra (4, ntetra) real(DP), intent(in) :: et (nbnd, nks), e integer, intent(in) :: is, isk ! local variables real(DP) :: etetra (4), e1, e2, e3, e4 integer :: nt, nk, ns, ibnd, i, nspin_lsda IF ( nspin == 2 ) THEN nspin_lsda = 2 ELSE nspin_lsda = 1 END IF sumkt = 0.0d0 do ns = 1, nspin_lsda if (is /= 0) then if ( ns .ne. is) cycle end if ! ! nk is used to select k-points with up (ns=1) or down (ns=2) spin ! if (ns.eq.1) then nk = 0 else nk = nks / 2 endif do nt = 1, ntetra do ibnd = 1, nbnd ! ! etetra are the energies at the vertexes of the nt-th tetrahedron ! do i = 1, 4 etetra (i) = et (ibnd, tetra (i, nt) + nk) enddo call piksort (4, etetra) ! ! ...sort in ascending order: e1 < e2 < e3 < e4 ! e1 = etetra (1) e2 = etetra (2) e3 = etetra (3) e4 = etetra (4) ! ! calculate sum over k of the integrated charge ! if (e.ge.e4) then sumkt = sumkt + 1.d0 / ntetra elseif (e.lt.e4.and.e.ge.e3) then sumkt = sumkt + 1.d0 / ntetra * (1.0d0 - (e4 - e) **3 / (e4 - e1) & / (e4 - e2) / (e4 - e3) ) elseif (e.lt.e3.and.e.ge.e2) then sumkt = sumkt + 1.d0 / ntetra / (e3 - e1) / (e4 - e1) * & ( (e2 - e1) **2 + 3.0d0 * (e2 - e1) * (e-e2) + 3.0d0 * (e-e2) **2 - & (e3 - e1 + e4 - e2) / (e3 - e2) / (e4 - e2) * (e-e2) **3) elseif (e.lt.e2.and.e.ge.e1) then sumkt = sumkt + 1.d0 / ntetra * (e-e1) **3 / (e2 - e1) / & (e3 - e1) / (e4 - e1) endif enddo enddo enddo ! add correct spin normalization (2 for LDA, 1 for other cases) IF ( nspin == 1 ) sumkt = sumkt * 2.d0 return end function sumkt subroutine piksort (n, a) USE kinds implicit none integer :: n real(DP) :: a (n) integer :: i, j real(DP) :: temp ! do j = 2, n temp = a (j) do i = j - 1, 1, - 1 if (a (i) .le.temp) goto 10 a (i + 1) = a (i) enddo i = 0 10 a (i + 1) = temp enddo ! return end subroutine piksort espresso-5.1/PW/src/kpoint_grid.f900000644000175000017500000003370212341373025015255 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE kpoint_grid ( nrot, time_reversal, skip_equivalence, s, t_rev, & bg, npk, k1,k2,k3, nk1,nk2,nk3, nks, xk, wk) !----------------------------------------------------------------------- ! ! Automatic generation of a uniform grid of k-points ! USE kinds, ONLY: DP IMPLICIT NONE ! INTEGER, INTENT(in):: nrot, npk, k1, k2, k3, nk1, nk2, nk3, & t_rev(48), s(3,3,48) LOGICAL, INTENT(in):: time_reversal, skip_equivalence real(DP), INTENT(in):: bg(3,3) ! INTEGER, INTENT(out) :: nks real(DP), INTENT(out):: xk(3,npk) real(DP), INTENT(out):: wk(npk) ! LOCAL: real(DP), PARAMETER :: eps=1.0d-5 real(DP) :: xkr(3), fact, xx, yy, zz real(DP), ALLOCATABLE:: xkg(:,:), wkk(:) INTEGER :: nkr, i,j,k, ns, n, nk INTEGER, ALLOCATABLE :: equiv(:) LOGICAL :: in_the_list ! nkr=nk1*nk2*nk3 ALLOCATE (xkg( 3,nkr),wkk(nkr)) ALLOCATE (equiv( nkr)) ! DO i=1,nk1 DO j=1,nk2 DO k=1,nk3 ! this is nothing but consecutive ordering n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 ! xkg are the components of the complete grid in crystal axis xkg(1,n) = dble(i-1)/nk1 + dble(k1)/2/nk1 xkg(2,n) = dble(j-1)/nk2 + dble(k2)/2/nk2 xkg(3,n) = dble(k-1)/nk3 + dble(k3)/2/nk3 ENDDO ENDDO ENDDO ! equiv(nk) =nk : k-point nk is not equivalent to any previous k-point ! equiv(nk)!=nk : k-point nk is equivalent to k-point equiv(nk) DO nk=1,nkr equiv(nk)=nk ENDDO IF ( skip_equivalence ) THEN CALL infomsg('kpoint_grid', 'ATTENTION: skip check of k-points equivalence') wkk = 1.d0 ELSE DO nk=1,nkr ! check if this k-point has already been found equivalent to another IF (equiv(nk) == nk) THEN wkk(nk) = 1.0d0 ! check if there are equivalent k-point to this in the list ! (excepted those previously found to be equivalent to another) ! check both k and -k DO ns=1,nrot DO i=1,3 xkr(i) = s(i,1,ns) * xkg(1,nk) & + s(i,2,ns) * xkg(2,nk) & + s(i,3,ns) * xkg(3,nk) xkr(i) = xkr(i) - nint( xkr(i) ) ENDDO IF(t_rev(ns)==1) xkr = -xkr xx = xkr(1)*nk1 - 0.5d0*k1 yy = xkr(2)*nk2 - 0.5d0*k2 zz = xkr(3)*nk3 - 0.5d0*k3 in_the_list = abs(xx-nint(xx))<=eps .and. & abs(yy-nint(yy))<=eps .and. & abs(zz-nint(zz))<=eps IF (in_the_list) THEN i = mod ( nint ( xkr(1)*nk1 - 0.5d0*k1 + 2*nk1), nk1 ) + 1 j = mod ( nint ( xkr(2)*nk2 - 0.5d0*k2 + 2*nk2), nk2 ) + 1 k = mod ( nint ( xkr(3)*nk3 - 0.5d0*k3 + 2*nk3), nk3 ) + 1 n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 IF (n>nk .and. equiv(n)==n) THEN equiv(n) = nk wkk(nk)=wkk(nk)+1.0d0 ELSE IF (equiv(n)/=nk .or. nnk .and. equiv(n)==n) THEN equiv(n) = nk wkk(nk)=wkk(nk)+1.0d0 ELSE IF (equiv(n)/=nk.or.nnpk) CALL errore('kpoint_grid','too many k-points',1) wk(nks) = wkk(nk) fact = fact+wk(nks) ! bring back into to the first BZ DO i=1,3 xk(i,nks) = xkg(i,nk)-nint(xkg(i,nk)) ENDDO ENDIF ENDDO ! go to cartesian axis (in units 2pi/a0) CALL cryst_to_cart(nks,xk,bg,1) ! normalize weights to one DO nk=1,nks wk(nk) = wk(nk)/fact ENDDO DEALLOCATE(equiv) DEALLOCATE(xkg,wkk) RETURN END SUBROUTINE kpoint_grid ! !----------------------------------------------------------------------- SUBROUTINE tetrahedra ( nsym, s, time_reversal, t_rev, at, bg, npk, & k1,k2,k3, nk1,nk2,nk3, nks, xk, wk, ntetra, tetra ) !----------------------------------------------------------------------- ! ! Tetrahedron method according to P. E. Bloechl et al, PRB49, 16223 (1994) ! USE kinds, ONLY: DP IMPLICIT NONE ! INTEGER, INTENT(IN):: nks, nsym, t_rev(48), s(3,3,48), npk, & k1, k2, k3, nk1, nk2, nk3, ntetra LOGICAL, INTENT (IN) :: time_reversal real(DP), INTENT(IN) :: at(3,3), bg(3,3), xk(3,npk), wk(npk) ! INTEGER, INTENT(OUT) :: tetra(4,ntetra) ! real(DP) :: xkr(3), deltap(3), deltam(3) real(DP), PARAMETER:: eps=1.0d-5 real(DP), ALLOCATABLE :: xkg(:,:) INTEGER :: nkr, i,j,k, ns, n, nk, ip1,jp1,kp1, & n1,n2,n3,n4,n5,n6,n7,n8 INTEGER, ALLOCATABLE:: equiv(:) ! ! Re-generate a uniform grid of k-points xkg ! nkr=nk1*nk2*nk3 ! ntetra=6*nkr ALLOCATE (xkg( 3,nkr)) ALLOCATE (equiv( nkr)) ! DO i=1,nk1 DO j=1,nk2 DO k=1,nk3 ! this is nothing but consecutive ordering n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 ! xkg are the components of the complete grid in crystal axis xkg(1,n) = dble(i-1)/nk1 + dble(k1)/2/nk1 xkg(2,n) = dble(j-1)/nk2 + dble(k2)/2/nk2 xkg(3,n) = dble(k-1)/nk3 + dble(k3)/2/nk3 ENDDO ENDDO ENDDO ! locate k-points of the uniform grid in the list of irreducible k-points ! that was previously calculated ! bring irreducible k-points to crystal axis CALL cryst_to_cart (nks,xk,at,-1) ! DO nk=1,nkr DO n=1,nks DO ns=1,nsym DO i=1,3 xkr(i) = s(i,1,ns) * xk(1,n) + & s(i,2,ns) * xk(2,n) + & s(i,3,ns) * xk(3,n) ENDDO IF(t_rev(ns)==1) xkr = -xkr ! xkr is the n-th irreducible k-point rotated wrt the ns-th symmetry DO i=1,3 deltap(i) = xkr(i)-xkg(i,nk) - nint (xkr(i)-xkg(i,nk) ) deltam(i) = xkr(i)+xkg(i,nk) - nint (xkr(i)+xkg(i,nk) ) ENDDO ! deltap is the difference vector, brought back in the first BZ ! deltam is the same but with k => -k (for time reversal) IF ( sqrt ( deltap(1)**2 + & deltap(2)**2 + & deltap(3)**2 ) < eps .or. ( time_reversal .and. & sqrt ( deltam(1)**2 + & deltam(2)**2 + & deltam(3)**2 ) < eps ) ) THEN ! equivalent irreducible k-point found equiv(nk) = n GOTO 15 ENDIF ENDDO ENDDO ! equivalent irreducible k-point found - something wrong CALL errore('tetrahedra','cannot locate k point',nk) 15 CONTINUE ENDDO DO n=1,nks DO nk=1,nkr IF (equiv(nk)==n) GOTO 20 ENDDO ! this failure of the algorithm may indicate that the displaced grid ! (with k1,k2,k3.ne.0) does not have the full symmetry of the lattice CALL errore('tetrahedra','cannot remap grid on k-point list',n) 20 CONTINUE ENDDO ! bring irreducible k-points back to cartesian axis CALL cryst_to_cart (nks,xk,bg, 1) ! construct tetrahedra DO i=1,nk1 DO j=1,nk2 DO k=1,nk3 ! n1-n8 are the indices of k-point 1-8 forming a cube ip1 = mod(i,nk1)+1 jp1 = mod(j,nk2)+1 kp1 = mod(k,nk3)+1 n1 = ( k-1) + ( j-1)*nk3 + ( i-1)*nk2*nk3 + 1 n2 = ( k-1) + ( j-1)*nk3 + (ip1-1)*nk2*nk3 + 1 n3 = ( k-1) + (jp1-1)*nk3 + ( i-1)*nk2*nk3 + 1 n4 = ( k-1) + (jp1-1)*nk3 + (ip1-1)*nk2*nk3 + 1 n5 = (kp1-1) + ( j-1)*nk3 + ( i-1)*nk2*nk3 + 1 n6 = (kp1-1) + ( j-1)*nk3 + (ip1-1)*nk2*nk3 + 1 n7 = (kp1-1) + (jp1-1)*nk3 + ( i-1)*nk2*nk3 + 1 n8 = (kp1-1) + (jp1-1)*nk3 + (ip1-1)*nk2*nk3 + 1 ! there are 6 tetrahedra per cube (and nk1*nk2*nk3 cubes) n = 6 * ( (k-1) + (j-1)*nk3 + (i-1)*nk3*nk2 ) tetra (1,n+1) = equiv(n1) tetra (2,n+1) = equiv(n2) tetra (3,n+1) = equiv(n3) tetra (4,n+1) = equiv(n6) tetra (1,n+2) = equiv(n2) tetra (2,n+2) = equiv(n3) tetra (3,n+2) = equiv(n4) tetra (4,n+2) = equiv(n6) tetra (1,n+3) = equiv(n1) tetra (2,n+3) = equiv(n3) tetra (3,n+3) = equiv(n5) tetra (4,n+3) = equiv(n6) tetra (1,n+4) = equiv(n3) tetra (2,n+4) = equiv(n4) tetra (3,n+4) = equiv(n6) tetra (4,n+4) = equiv(n8) tetra (1,n+5) = equiv(n3) tetra (2,n+5) = equiv(n6) tetra (3,n+5) = equiv(n7) tetra (4,n+5) = equiv(n8) tetra (1,n+6) = equiv(n3) tetra (2,n+6) = equiv(n5) tetra (3,n+6) = equiv(n6) tetra (4,n+6) = equiv(n7) ENDDO ENDDO ENDDO ! check DO n=1,ntetra DO i=1,4 IF ( tetra(i,n)<1 .or. tetra(i,n)>nks ) & CALL errore ('tetrahedra','something wrong',n) ENDDO ENDDO DEALLOCATE(equiv) DEALLOCATE(xkg) RETURN END SUBROUTINE tetrahedra !----------------------------------------------------------------------- SUBROUTINE kpoint_grid_efield (at, bg, npk, & k1,k2,k3, nk1,nk2,nk3, nks, xk, wk, nspin) !----------------------------------------------------------------------- ! ! Automatic generation of a uniform grid of k-points, for Berry's phase electric field ! USE kinds, ONLY : DP USE bp, ONLY : nppstr_3d, nx_el, l3dstring, efield_cart, efield_cry,& transform_el USE io_global, ONLY : stdout USE noncollin_module, ONLY : noncolin IMPLICIT NONE ! INTEGER, INTENT(in):: npk, k1, k2, k3, nk1, nk2, nk3,nspin real(DP), INTENT(in):: bg(3,3), at(3,3) ! INTEGER, INTENT(out) :: nks real(DP), INTENT(out):: xk(3,npk) real(DP), INTENT(out):: wk(npk) INTEGER :: i,j,k,n,nk,m INTEGER :: nppstr_max real(DP) :: fact, sca real(DP) :: cry_to_cart(3,3) real(DP) :: bg_n(3,3) ! ! DO i=1,nk1 DO j=1,nk2 DO k=1,nk3 ! this is nothing but consecutive ordering n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 ! xkg are the components of the complete grid in crystal axis xk(1,n) = dble(i-1)/nk1 + dble(k1)/2/nk1 xk(2,n) = dble(j-1)/nk2 + dble(k2)/2/nk2 xk(3,n) = dble(k-1)/nk3 + dble(k3)/2/nk3 ENDDO ENDDO ENDDO nks=nk1*nk2*nk3 ! go to cartesian axis (in units 2pi/a0) CALL cryst_to_cart(nks,xk,bg,1) fact=1.d0/dble(nks) ! normalize weights to one DO nk=1,nks wk(nk) = fact ENDDO !setup nppstr_3d nppstr_3d(1)=nk1 nppstr_3d(2)=nk2 nppstr_3d(3)=nk3 !allocate and set up correspondence nppstr_max=nk1*nk2*nk3 IF(noncolin) THEN ALLOCATE(nx_el(nppstr_max,3)) ELSE ALLOCATE(nx_el(nppstr_max*nspin,3)) END IF !establih correspondence DO i=1,nk1 DO j=1,nk2 DO k=1,nk3 n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 nx_el(n,3)=n m = (i-1) + (k-1)*nk1 + (j-1)*nk3*nk1 + 1 nx_el(m,1)=n m = (j-1) + (i-1)*nk2 + (k-1)*nk1*nk2 + 1 nx_el(m,2)=n ENDDO ENDDO ENDDO IF(nspin==2) THEN DO i=1,nks nx_el(i+nks,:)=nx_el(i,:)+nks ENDDO ENDIF l3dstring=.true. !setup transfromation matrix ! do i=1,3 ! cry_to_cart(:,i)=bg(:,i) ! sca=sqrt(cry_to_cart(1,i)**2.d0+cry_to_cart(2,i)**2.d0+cry_to_cart(3,i)**2.d0) ! cry_to_cart(:,i)=cry_to_cart(:,i)/sca ! enddo ! call invmat (3, cry_to_cart, transform_el, sca) DO i=1,3 sca=at(1,i)**2.d0+at(2,i)**2.d0+at(3,i)**2.d0 sca=dsqrt(sca) bg_n(1:3,i)=(1.d0/sca)*at(1:3,i) ENDDO DO i=1,3 DO j=1,3 cry_to_cart(j,i)=bg_n(1,j)*bg_n(1,i)+bg_n(2,j)*bg_n(2,i)+bg_n(3,j)*bg_n(3,i) ENDDO ENDDO CALL invmat (3, cry_to_cart, transform_el, sca) !set up electric field !calculate EFFECTIVE electric field on crystal axis efield_cry(:)=0.d0 ! do i=1,3 ! do j=1,3 ! efield_cry(i)=efield_cry(i)+transform_el(i,j)*efield_cart(j) ! enddo ! enddo DO i=1,3 ! do j=1,3 !efield_cry(i)=efield_cry(i)+transform_el(i,j)*(efield_cart(1)*bg_n(1,j)+efield_cart(2)*bg_n(2,j)+efield_cart(3)*bg_n(3,j)) efield_cry(i)=efield_cry(i)+efield_cart(1)*bg_n(1,i)+efield_cart(2)*bg_n(2,i)+efield_cart(3)*bg_n(3,i) !enddo ENDDO !efield_cry(:)=0.001d0 !efield_cry(3)=0.001d0 WRITE(*,*) 'EFIELD CART', efield_cart(1),efield_cart(2), efield_cart(3) WRITE(*,*) 'EFIELD CRY', efield_cry(1),efield_cry(2), efield_cry(3) WRITE(*,*) 'BG1', bg(1,1),bg(2,1),bg(3,1) WRITE(*,*) 'BG1', at(1,1),at(2,1),at(3,1) ! WRITE(*,*) 'nx_el1', nx_el(1:nks,1) ! write(*,*) 'nx_el2', nx_el(1:nks,2) ! write(*,*) 'nx_el3', nx_el(1:nks,3) RETURN END SUBROUTINE kpoint_grid_efield espresso-5.1/PW/src/sph_ind.f900000644000175000017500000000252312341373025014365 0ustar mbamba! ! Copyright (C) 2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! function sph_ind(l,j,m,spin) ! This function calculates the m index of the spherical harmonic ! in a spinor with orbital angular momentum l, total angular ! momentum j, projection along z of the total angular momentum m+-1/2. ! Spin selects the up (spin=1) or down (spin=2) coefficient. ! use kinds implicit none integer :: sph_ind integer :: l, & ! orbital angular momentum m, & ! projection of the total angular momentum+-1/2 spin ! 1 or 2 select the component real(DP) :: j ! total angular momentum if (spin.ne.1.and.spin.ne.2) call errore('sph_ind','spin direction unknown',1) if (m.lt.-l-1.or.m.gt.l) call errore('sph_ind','m not allowed',1) if (abs(j-l-0.5d0).lt.1.d-8) then if (spin.eq.1) sph_ind= m if (spin.eq.2) sph_ind= m+1 elseif (abs(j-l+0.5d0).lt.1.d-8) then if (m.lt.-l+1) then sph_ind=0 else if (spin.eq.1) sph_ind= m-1 if (spin.eq.2) sph_ind= m endif else write(6,*) l, j call errore('sph_ind','l and j not compatible',1) endif if (sph_ind.lt.-l.or.sph_ind.gt.l) sph_ind=0 return end function sph_ind espresso-5.1/PW/src/move_ions.f900000644000175000017500000003143712341373025014745 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE move_ions() !---------------------------------------------------------------------------- ! ! ... This routine moves the ions according to the requested scheme: ! ! ... lbfgs bfgs minimizations ! ... lmd molecular dynamics ( verlet of vcsmd ) ! ... lmd + lconstrain constrained molecular dynamics, ! ! ... coefficients for potential and wavefunctions extrapolation are ! ... also computed here ! USE constants, ONLY : e2, eps8, ry_kbar USE io_global, ONLY : stdout USE io_files, ONLY : tmp_dir, iunupdate, seqopn USE kinds, ONLY : DP USE cell_base, ONLY : alat, at, bg, omega, cell_force, fix_volume, fix_area USE cellmd, ONLY : omega_old, at_old, press, lmovecell, calc USE ions_base, ONLY : nat, ityp, tau, if_pos USE fft_base, ONLY : dfftp USE fft_base, ONLY : dffts USE grid_subroutines, ONLY : realspace_grids_init USE gvect, ONLY : gcutm USE gvecs, ONLY : gcutms USE grid_subroutines, ONLY : realspace_grids_init USE symm_base, ONLY : checkallsym USE ener, ONLY : etot USE force_mod, ONLY : force, sigma USE control_flags, ONLY : istep, nstep, upscale, lbfgs, ldamped, & lconstrain, conv_ions, use_SMC, & lmd, llang, history, tr2 USE relax, ONLY : epse, epsf, epsp, starting_scf_threshold USE lsda_mod, ONLY : lsda, absmag USE mp_images, ONLY : intra_image_comm USE io_global, ONLY : ionode_id, ionode USE mp, ONLY : mp_bcast USE bfgs_module, ONLY : bfgs, terminate_bfgs USE basic_algebra_routines, ONLY : norm USE dynamics_module, ONLY : verlet, langevin_md, proj_verlet USE dynamics_module, ONLY : smart_MC USE dfunct, only : newd ! IMPLICIT NONE ! LOGICAL, SAVE :: lcheck_mag = .TRUE., & restart_with_starting_magnetiz = .FALSE., & lcheck_cell= .TRUE., & final_cell_calculation=.FALSE. REAL(DP), ALLOCATABLE :: tauold(:,:,:) REAL(DP) :: energy_error, gradient_error, cell_error LOGICAL :: step_accepted, exst REAL(DP), ALLOCATABLE :: pos(:), grad(:) REAL(DP) :: h(3,3), fcell(3,3)=0.d0, epsp1 INTEGER, ALLOCATABLE :: fixion(:) real(dp) :: tr ! IF (use_SMC) CALL smart_MC() ! for smart monte carlo method ! ! ... only one node does the calculation in the parallel case ! IF ( ionode ) THEN ! conv_ions = .FALSE. ! ALLOCATE( tauold( 3, nat, 3 ) ) ! ! ... the file containing old positions is opened ! ... ( needed for extrapolation ) ! CALL seqopn( iunupdate, 'update', 'FORMATTED', exst ) ! IF ( exst ) THEN ! READ( UNIT = iunupdate, FMT = * ) history READ( UNIT = iunupdate, FMT = * ) tauold ! ELSE ! history = 0 tauold = 0.D0 ! WRITE( UNIT = iunupdate, FMT = * ) history WRITE( UNIT = iunupdate, FMT = * ) tauold ! END IF ! CLOSE( UNIT = iunupdate, STATUS = 'KEEP' ) ! ! ... save the previous two steps ( a total of three steps is saved ) ! tauold(:,:,3) = tauold(:,:,2) tauold(:,:,2) = tauold(:,:,1) tauold(:,:,1) = tau(:,:) ! ! ... history is updated (a new ionic step has been done) ! history = MIN( 3, ( history + 1 ) ) ! ! ... old positions are written on file ! CALL seqopn( iunupdate, 'update', 'FORMATTED', exst ) ! WRITE( UNIT = iunupdate, FMT = * ) history WRITE( UNIT = iunupdate, FMT = * ) tauold ! CLOSE( UNIT = iunupdate, STATUS = 'KEEP' ) ! DEALLOCATE( tauold ) ! ! ... do the minimization / dynamics step ! IF ( lmovecell .AND. lconstrain ) THEN ! IF ( lbfgs) CALL errore('move_ions', & & 'variable-cell bfgs and constraints not implemented yet', 1 ) WRITE(stdout, '(5x,"-------------------------------------------")') WRITE(stdout, '(5x,"NEW FEATURE: constraints with variable cell")') WRITE(stdout, '(5x,"-------------------------------------------")') ! END IF ! ! ... BFGS algorithm is used to minimize ionic configuration ! bfgs_minimization : & IF ( lbfgs ) THEN ! ! ... the bfgs procedure is used ! ALLOCATE( pos( 3*nat ), grad( 3*nat ), fixion( 3*nat ) ) ! h = at * alat ! pos = RESHAPE( tau, (/ 3 * nat /) ) CALL cryst_to_cart( nat, pos, bg, -1 ) grad = - RESHAPE( force, (/ 3 * nat /) ) * alat CALL cryst_to_cart( nat, grad, at, -1 ) fixion = RESHAPE( if_pos, (/ 3 * nat /) ) ! IF ( lmovecell ) THEN at_old = at omega_old = omega etot = etot + press * omega CALL cell_force( fcell, - transpose(bg)/alat, sigma, omega, press ) epsp1 = epsp / ry_kbar END IF ! CALL bfgs( pos, h, etot, grad, fcell, fixion, tmp_dir, stdout, epse,& epsf, epsp1, energy_error, gradient_error, cell_error, & istep, nstep, step_accepted, conv_ions, lmovecell ) ! IF ( lmovecell ) THEN ! changes needed only if cell moves if (fix_volume) call impose_deviatoric_strain(alat*at, h) if (fix_area) call impose_deviatoric_strain_2d(alat*at, h) at = h /alat CALL recips( at(1,1),at(1,2),at(1,3), bg(1,1),bg(1,2),bg(1,3) ) CALL volume( alat, at(1,1), at(1,2), at(1,3), omega ) END IF ! CALL cryst_to_cart( nat, pos, at, 1 ) tau = RESHAPE( pos, (/ 3 , nat /) ) CALL cryst_to_cart( nat, grad, bg, 1 ) force = - RESHAPE( grad, (/ 3, nat /) ) ! IF ( conv_ions ) THEN ! IF ( ( lsda .AND. ( absmag < eps8 ) .AND. lcheck_mag ) ) THEN ! ! ... lsda relaxation : a final configuration with zero ! ... absolute magnetization has been found. ! A check on this configuration is needed restart_with_starting_magnetiz = .true. ! ELSE IF (lmovecell.and.lcheck_cell) THEN ! ! After the cell relaxation we make a final calculation ! with the correct g vectors corresponding to the relaxed ! cell. ! final_cell_calculation=.TRUE. CALL terminate_bfgs ( etot, epse, epsf, epsp, lmovecell, & stdout, tmp_dir ) ! ELSE ! CALL terminate_bfgs ( etot, epse, epsf, epsp, lmovecell, & stdout, tmp_dir ) ! END IF ! ELSE ! ! ... if a new bfgs step is done, new threshold is computed ! IF ( step_accepted ) THEN ! tr2 = starting_scf_threshold * & MIN( 1.D0, ( energy_error / ( epse * upscale ) ), & ( gradient_error / ( epsf * upscale ) ) ) tr2 = MAX( ( starting_scf_threshold / upscale ), tr2 ) ! END IF ! IF ( tr2 > 1.D-10 ) THEN WRITE( stdout, & '(5X,"new conv_thr",T30,"= ",0PF18.10," Ry",/)' ) tr2 ELSE WRITE( stdout, & '(5X,"new conv_thr",T30,"= ",1PE18.1 ," Ry",/)' ) tr2 END IF ! ! ... the logical flag lcheck_mag is set again to .TRUE. (needed if ! ... a new configuration with zero absolute magnetization is ! ... identified in the following steps of the relaxation) ! lcheck_mag = .TRUE. IF (lmovecell) lcheck_cell = .TRUE. ! END IF ! CALL output_tau( lmovecell, conv_ions ) ! DEALLOCATE( pos, grad, fixion ) ! END IF bfgs_minimization ! ! ... molecular dynamics schemes are used ! IF ( lmd ) THEN ! IF ( calc == ' ' ) THEN ! ! ... dynamics algorithms ! IF ( ldamped ) THEN ! CALL proj_verlet() ! ELSE IF ( llang ) THEN ! CALL langevin_md() ! ELSE ! CALL verlet() ! END IF ! ELSE IF ( calc /= ' ' ) THEN ! ! ... variable cell shape md ! CALL vcsmd() ! END IF ! END IF ! ! ... before leaving check that the new positions still transform ! ... according to the symmetry of the system. ! CALL checkallsym( nat, tau, ityp, dfftp%nr1, dfftp%nr2, dfftp%nr3 ) ! END IF CALL mp_bcast(restart_with_starting_magnetiz,ionode_id,intra_image_comm) CALL mp_bcast(final_cell_calculation,ionode_id,intra_image_comm) ! IF ( final_cell_calculation ) THEN ! ! ... Variable-cell optimization: once convergence is achieved, ! ... make a final calculation with G-vectors and plane waves ! ... calculated for the final cell (may differ from the curent ! ... result, using G_vectors and PWs for the starting cell) ! WRITE( UNIT = stdout, FMT = 9110 ) WRITE( UNIT = stdout, FMT = 9120 ) ! CALL clean_pw( .FALSE. ) CALL close_files(.TRUE.) lmovecell=.FALSE. lcheck_cell=.FALSE. final_cell_calculation=.FALSE. lbfgs=.FALSE. lmd=.FALSE. lcheck_mag = .FALSE. restart_with_starting_magnetiz = .FALSE. ! ... conv_ions is set to .FALSE. to perform a final scf cycle conv_ions = .FALSE. ! ... allow re-calculation of FFT grid ! dfftp%nr1=0; dfftp%nr2=0; dfftp%nr3=0; dffts%nr1=0; dffts%nr2=0; dffts%nr3=0 CALL realspace_grids_init (dfftp, dffts,at, bg, gcutm, gcutms ) CALL init_run() ! ELSE IF (restart_with_starting_magnetiz) THEN ! ! ... lsda optimization : a final configuration with zero ! ... absolute magnetization has been found and we check ! ... if it is really the minimum energy structure by ! ... performing a new scf iteration without any "electronic" history ! WRITE( UNIT = stdout, FMT = 9010 ) WRITE( UNIT = stdout, FMT = 9020 ) ! lcheck_mag = .FALSE. restart_with_starting_magnetiz = .FALSE. ! ... conv_ions is set to .FALSE. to perform a final scf cycle conv_ions = .FALSE. ! ! ... re-initialize the potential and wavefunctions ! CALL potinit() CALL newd() CALL wfcinit() ! END IF ! ! ... broadcast calculated quantities to all nodes ! CALL mp_bcast( istep, ionode_id, intra_image_comm ) CALL mp_bcast( tau, ionode_id, intra_image_comm ) CALL mp_bcast( force, ionode_id, intra_image_comm ) CALL mp_bcast( tr2, ionode_id, intra_image_comm ) CALL mp_bcast( conv_ions, ionode_id, intra_image_comm ) CALL mp_bcast( history, ionode_id, intra_image_comm ) ! IF ( lmovecell ) THEN ! CALL mp_bcast( at, ionode_id, intra_image_comm ) CALL mp_bcast( at_old, ionode_id, intra_image_comm ) CALL mp_bcast( omega, ionode_id, intra_image_comm ) CALL mp_bcast( omega_old, ionode_id, intra_image_comm ) CALL mp_bcast( bg, ionode_id, intra_image_comm ) ! END IF ! RETURN 9010 FORMAT( /5X,'lsda relaxation : a final configuration with zero', & & /5X,' absolute magnetization has been found' ) 9020 FORMAT( /5X,'the program is checking if it is really ', & & 'the minimum energy structure', & & /5X,'by performing a new scf iteration ', & & 'without any "electronic" history' ) ! 9110 FORMAT( /5X,'A final scf calculation at the relaxed structure.' ) 9120 FORMAT( 5X,'The G-vectors are recalculated for the final unit cell'/ & 5X,'Results may differ from those at the preceding step.' ) ! END SUBROUTINE move_ions ! espresso-5.1/PW/src/plugin_init_potential.f900000644000175000017500000000130512341373025017336 0ustar mbamba! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine plugin_init_potential() ! ! This routine is used for initializing potentials in plugins ! DO NOT REMOVE THE TAGS ! ***ADDSON_NAME KIND_OF_PATCH*** ! USE plugin_flags USE fft_base, ONLY : dfftp USE scf, ONLY : vltot ! ! ***Environ MODULES BEGIN*** ! ***Environ MODULES END*** ! implicit none ! ! ***Environ VARIABLES BEGIN*** ! ***Environ VARIABLES END*** ! ! ***Environ CALLS BEGIN*** ! ***Environ CALLS END*** ! end subroutine plugin_init_potential espresso-5.1/PW/src/buffers.f900000644000175000017500000004574712341373025014414 0ustar mbamba! ! ~~~ BUffer Input/Output Library. ~~~ ! Copyright Lorenzo Paulatto 2013 ! ! Contains a few changes by PG wrt the original implementation: ! - data is complex, not real ! - most routines are functions that return error status instead of stopping ! ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt ! ! <<^V^\\=========================================//-//-//========//O\\// MODULE buiol USE kinds, ONLY : DP ! PUBLIC :: init_buiol ! init the linked chain of i/o units PUBLIC :: stop_buiol ! destroy the linked chain, dealloc everything PUBLIC :: report_buiol ! report on total number of units and memory usage PUBLIC :: buiol_open_unit ! (unit, recl) open a new unit PUBLIC :: buiol_close_unit ! (unit) close the unit, dealloc the space PUBLIC :: buiol_check_unit ! (unit) returns recl, if opened, -1 if closed PUBLIC :: buiol_report_unit ! (unit, mem?) report about unit status (on stdout) PUBLIC :: buiol_write_record ! (unit, recl, nrec, DATA) write DATA(recl) in record nrec of unit PUBLIC :: buiol_read_record ! (unit, recl, nrec, DATA) read DATA(recl) from record nrec of unit ! PRIVATE ! initial number of records in the buffer (each record will only be allocated on write!) INTEGER,PARAMETER :: nrec0 = 1024 ! when writing beyond the last available record increase the index by AT LEAST this factor.. REAL(DP),PARAMETER :: fact0 = 1.5_dp ! .. furthermore, allocate up to AT LEAST this factor times the required overflowing nrec REAL(DP),PARAMETER :: fact1 = 1.2_dp ! NOTE: the new buffer size will be determined with both methods, taking the MAX of the two ! ! Size of the single item of the record (for memory usage report only) INTEGER,PARAMETER :: size0 = DP ! 8 bytes ! ! base element of the linked chain of buffers TYPE index_of_list TYPE(data_in_the_list),POINTER :: index(:) INTEGER :: nrec, unit, recl TYPE(index_of_list),POINTER :: next => null() END TYPE ! ! sub-structure containing the data buffer TYPE data_in_the_list COMPLEX(DP), POINTER :: data(:) => null() END TYPE ! ! beginning of the linked chain, statically allocated (for implementation simplicity) TYPE(index_of_list),SAVE,POINTER :: ENTRY => null() ! ! set to true when the library has been initialized LOGICAL,SAVE :: is_init_buiol = .false. ! CONTAINS ! <<^V^\\=========================================//-//-//========//O\\// ! SUBROUTINE init_buiol IMPLICIT NONE ! avoid initializing twice, or we will loose the head of the list! IF (is_init_buiol) THEN #ifdef __DEBUG CALL infomsg('buiol', 'already initialized') #endif RETURN ENDIF ! ALLOCATE(ENTRY) ALLOCATE(ENTRY%index(0)) ENTRY%nrec = 0 ENTRY%unit = -1 ENTRY%recl = -1 NULLIFY(ENTRY%next) is_init_buiol = .true. ! RETURN END SUBROUTINE init_buiol ! \/o\________\\\_________________________________________/^> SUBROUTINE stop_buiol IMPLICIT NONE TYPE(index_of_list),POINTER :: CURSOR, AUX IF (.not.is_init_buiol) RETURN IF (.not.associated(ENTRY) ) CALL errore('stop_buiol', 'ENTRY was lost.',1) ! CURSOR => ENTRY DO WHILE (associated(CURSOR%NEXT)) AUX => CURSOR CURSOR => CURSOR%NEXT CALL dealloc_buffer(AUX) ENDDO CALL dealloc_buffer(CURSOR) ! is_init_buiol=.false. RETURN END SUBROUTINE stop_buiol ! \/o\________\\\_________________________________________/^> SUBROUTINE report_buiol IMPLICIT NONE TYPE(index_of_list),POINTER :: CURSOR INTEGER :: mem ! IF (.not.is_init_buiol) THEN WRITE(*,'(2x,a,3i14)') "[BUIOL] not even initialized" RETURN ENDIF ! WRITE(*,'(2x,106("-") )') mem = 0 CURSOR => ENTRY DO WHILE (associated(CURSOR%NEXT)) CALL buiol_report_buffer(CURSOR, mem) CURSOR => CURSOR%NEXT ENDDO CALL buiol_report_buffer(CURSOR, mem) WRITE(*,'(2x,106("-"))') WRITE(*,'(2x,a,3i14)') "[BUIOL] total memory used B/KB/MB", mem, mem/1024, mem/1024**2 WRITE(*,'(2x,106("-"))') RETURN END SUBROUTINE report_buiol ! \/o\________\\\_________________________________________/^> FUNCTION buiol_open_unit(unit, recl) RESULT (ierr) IMPLICIT NONE INTEGER,INTENT(in) :: unit, recl INTEGER :: ierr TYPE(index_of_list),POINTER :: CURSOR ! IF (.not.is_init_buiol) CALL errore('buiol_open_unit', 'You must init before open',1) IF(recl<0) THEN #ifdef __DEBUG CALL infomsg('buiol_open_unit', 'wrong recl') #endif ierr = 1 RETURN END IF ! ! check if the unit is already opened CURSOR => find_unit(unit) IF(associated(CURSOR)) THEN #ifdef __DEBUG CALL infomsg('buiol_open_unit', 'unit already opened') #endif ierr = -1 RETURN END IF ! ! all is fine, allocate a new unit with standard size CURSOR => alloc_buffer(unit, recl, nrec0) ! ! place it at the beginning of the chain CURSOR%next => ENTRY%next ENTRY%next => CURSOR ierr = 0 ! RETURN ! END FUNCTION buiol_open_unit ! \/o\________\\\_________________________________________/^> FUNCTION buiol_close_unit(unit) RESULT (ierr) IMPLICIT NONE INTEGER,INTENT(in) :: unit INTEGER :: ierr TYPE(index_of_list),POINTER :: CURSOR, AUX ! ! find the unit to close CURSOR => find_prev_unit(unit) IF(.not.associated(CURSOR)) THEN #ifdef __DEBUG CALL infomsg('buiol_close_unit', 'cannot close this unit') #endif ierr = 1 END IF IF(.not.associated(CURSOR%next)) THEN #ifdef __DEBUG CALL infomsg('buiol_close_unit', 'cannot find unit to close',1) #endif ierr = 2 END IF ! ! replace this unit with the next, but keep track of it AUX => CURSOR%next CURSOR%next => AUX%next ! <--- works even if %next is null() ! ! destroy the closed unit CALL dealloc_buffer(AUX) ierr = 0 ! RETURN ! END FUNCTION buiol_close_unit ! \/o\________\\\_________________________________________/^> FUNCTION buiol_check_unit(unit) RESULT(recl) IMPLICIT NONE INTEGER,INTENT(in) :: unit INTEGER :: recl TYPE(index_of_list),POINTER :: CURSOR ! ! find the unit CURSOR => find_unit(unit) IF(.not.associated(CURSOR)) THEN recl = -1 ELSE recl = CURSOR%recl ENDIF ! RETURN ! END FUNCTION buiol_check_unit ! \/o\______\\_______________________________________/^> SUBROUTINE increase_nrec(nrec_new, CURSOR) IMPLICIT NONE INTEGER,INTENT(in) :: nrec_new TYPE(index_of_list),POINTER,INTENT(inout) :: CURSOR ! INTEGER :: i TYPE(data_in_the_list),POINTER :: new(:), old(:) ! IF(nrec_new < CURSOR%nrec) CALL errore('increase_nrec', 'wrong new nrec',1) ! ! create a new index with more space ALLOCATE(new(nrec_new)) ! ! associate the data to the new unit old => CURSOR%index DO i = 1, CURSOR%nrec new(i)%data => old(i)%data ! <-- also the null() are copied ENDDO CURSOR%index => new ! ! clean the old index CURSOR%nrec = nrec_new DEALLOCATE(old) ! RETURN ! END SUBROUTINE increase_nrec ! \/o\________\\\_________________________________________/^> FUNCTION buiol_write_record(unit, recl, nrec, DATA) RESULT (ierr) IMPLICIT NONE INTEGER,INTENT(in) :: unit, recl, nrec COMPLEX(dp),INTENT(in) :: DATA(recl) INTEGER :: ierr ! TYPE(index_of_list),POINTER :: CURSOR INTEGER :: nrec_new ! ! find the unit, if it exists CURSOR => find_unit(unit) IF(.not.associated(CURSOR)) THEN #ifdef __DEBUG CALL infomsg('buiol_write_record', 'cannot write: unit not opened') #endif ierr = 1 RETURN END IF IF(CURSOR%recl/=recl) THEN #ifdef __DEBUG CALL infomsg('buiol_write_record', 'cannot write: wrong recl') #endif ierr = 2 RETURN END IF ! ! increase size of index, if necessary IF(CURSOR%nrec FUNCTION buiol_read_record(unit, recl, nrec, DATA) RESULT (ierr) IMPLICIT NONE INTEGER,INTENT(in) :: unit, recl, nrec COMPLEX(dp),INTENT(out) :: DATA(recl) INTEGER :: ierr ! TYPE(index_of_list),POINTER :: CURSOR ! ! sanity checks CURSOR => find_unit(unit) IF(.not.associated(CURSOR)) THEN #ifdef __DEBUG CALL infomsg('buiol_read_record', 'cannot read: unit not opened') #endif ierr = 1 RETURN END IF IF(CURSOR%recl/=recl) THEN #ifdef __DEBUG CALL infomsg('buiol_read_record', 'cannot read: wrong recl') #endif ierr = 1 RETURN END IF IF(CURSOR%nrec SUBROUTINE buiol_report_unit(unit) IMPLICIT NONE INTEGER,INTENT(in) :: unit ! TYPE(index_of_list),POINTER :: CURSOR ! sanity checks CURSOR => find_unit(unit) #ifdef __DEBUG IF(.not.associated(CURSOR)) CALL errore('buiol_report_unit', 'cannot report: unit not opened',1) #endif CALL buiol_report_buffer(CURSOR) RETURN ! END SUBROUTINE buiol_report_unit ! \/o\________\\\_________________________________________/^> SUBROUTINE buiol_report_buffer(CURSOR, mem) IMPLICIT NONE TYPE(index_of_list),INTENT(in) :: CURSOR INTEGER,OPTIONAL,INTENT(inout) :: mem ! INTEGER :: i, ndata, bytes ! ndata = 0 DO i = 1,CURSOR%nrec IF(associated(CURSOR%index(i)%data)) ndata=ndata+1 ENDDO ! bytes = ndata*CURSOR%recl*size0 WRITE(*,'(2x,a,2(a,i8),(a,2i8),(a,i12))') "[BUIOL] ", & "unit:", CURSOR%unit, & " | recl:", CURSOR%recl, & " | nrec (idx/alloc):", CURSOR%nrec, ndata, & " | memory used:", bytes IF(present(mem)) mem = mem+bytes RETURN ! END SUBROUTINE buiol_report_buffer ! \/o\________\\\_________________________________________/^> FUNCTION find_unit(unit) RESULT(CURSOR) IMPLICIT NONE INTEGER,INTENT(in) :: unit TYPE(index_of_list),POINTER :: CURSOR ! IF (.not.is_init_buiol) CALL errore('find_unit', 'You must init before find_unit',1) ! CURSOR => ENTRY DO WHILE (associated(CURSOR%NEXT)) CURSOR => CURSOR%NEXT IF(CURSOR%unit == unit) RETURN ! <-- found ENDDO CURSOR => null() ! <------------------ not found RETURN END FUNCTION find_unit ! \/o\________\\\_________________________________________/^> FUNCTION find_prev_unit(unit) RESULT(CURSOR) IMPLICIT NONE INTEGER,INTENT(in) :: unit TYPE(index_of_list),POINTER :: CURSOR ! IF (.not.is_init_buiol) CALL errore('find_prev_unit', 'You must init before find_prev_unit',1) ! CURSOR => ENTRY DO WHILE (associated(CURSOR%NEXT)) IF(CURSOR%next%unit == unit) RETURN ! <-- found CURSOR => CURSOR%NEXT ENDDO CURSOR => null() ! <------------------ not found RETURN END FUNCTION find_prev_unit ! \/o\________\\\_________________________________________/^> FUNCTION alloc_buffer(unit, recl, nrec) IMPLICIT NONE INTEGER,INTENT(in) :: unit, recl, nrec TYPE(index_of_list),POINTER :: alloc_buffer TYPE(index_of_list),POINTER :: CURSOR ! ALLOCATE(CURSOR) CURSOR%unit = unit CURSOR%recl = recl CURSOR%nrec = nrec0 NULLIFY(CURSOR%next) ALLOCATE(CURSOR%index(CURSOR%nrec)) ! alloc_buffer => CURSOR RETURN END FUNCTION alloc_buffer ! \/o\________\\\_________________________________________/^> SUBROUTINE dealloc_buffer(CURSOR) IMPLICIT NONE TYPE(index_of_list),POINTER,INTENT(inout) :: CURSOR ! INTEGER :: i DO i = 1,CURSOR%nrec IF(associated(CURSOR%index(i)%data)) THEN DEALLOCATE(CURSOR%index(i)%data) NULLIFY(CURSOR%index(i)%data) ENDIF ENDDO DEALLOCATE(CURSOR%index) CURSOR%unit = -1 CURSOR%recl = -1 CURSOR%nrec = -1 DEALLOCATE(CURSOR) NULLIFY(CURSOR) ! END SUBROUTINE dealloc_buffer ! \/o\________\\\_________________________________________/^> END MODULE buiol ! <<^V^\\=========================================//-//-//========//O\\// Module buffers use kinds, only: dp use buiol, only: init_buiol, buiol_open_unit, buiol_close_unit, & buiol_check_unit, buiol_read_record, buiol_write_record implicit none ! ! QE interfaces to BUIOL module ! PUBLIC :: open_buffer, get_buffer, save_buffer, close_buffer ! PRIVATE INTEGER:: nunits = 0 ! contains !---------------------------------------------------------------------------- SUBROUTINE open_buffer (unit, extension, nword, io_level, exst, exst_file, direc) !--------------------------------------------------------------------------- ! ! io_level>0: connect unit "unit" to file "wfc_dir"/"prefix"."extension" ! (or "direc"/"prefix"."extension" if optional variable direc specified) ! for direct I/O access, with record length = nword complex numbers; ! on output, exst=T(F) if the file (does not) exists ! ! io_level=0: in addition to opening unit "unit" as above, open a ! buffer for storing records of length nword complex numbers; ! on output, exst=T(F) if the buffer is already allocated ! ! on output, optional variable exst_file=T(F) if file is present (absent) ! USE io_files, ONLY : diropn, wfc_dir ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: extension CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: direc INTEGER, INTENT(IN) :: unit, nword, io_level LOGICAL, INTENT(OUT) :: exst LOGICAL, INTENT(OUT), OPTIONAL :: exst_file CHARACTER(LEN=256) :: save_dir ! INTEGER :: ierr ! ! not-so-elegant way to initialize the linked chain with units ! IF ( nunits == 0 ) CALL init_buiol( ) ! IF (extension == ' ') & CALL errore ('open_buffer','filename extension not given',1) ! IF (present(direc)) THEN save_dir=TRIM(direc) ELSE save_dir=TRIM(wfc_dir) ENDIF CALL diropn ( unit, extension, 2*nword, exst, save_dir ) IF (present(exst_file)) exst_file=exst nunits = nunits + 1 ! IF ( io_level <= 0 ) THEN ierr = buiol_open_unit ( unit, nword ) IF ( ierr > 0 ) CALL errore ('open_buffer', ' cannot open unit', 2) exst = ( ierr == -1 ) IF (exst) THEN CALL infomsg ('open_buffer', 'unit already opened') nunits = nunits - 1 END IF ENDIF ! RETURN ! END SUBROUTINE open_buffer !---------------------------------------------------------------------------- SUBROUTINE save_buffer( vect, nword, unit, nrec ) !--------------------------------------------------------------------------- ! ! ... copy vect(1:nword) into the "nrec"-th record of a previously ! ... allocated buffer / opened direct-access file, depending upon ! ... how "open_buffer" was called ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nword, unit, nrec COMPLEX(DP), INTENT(IN) :: vect(nword) INTEGER :: ierr ! ierr = buiol_check_unit (unit) IF( ierr > 0 ) THEN ierr = buiol_write_record ( unit, nword, nrec, vect ) if ( ierr > 0 ) & CALL errore ('save_buffer', 'cannot write record', unit) #ifdef __DEBUG print *, 'save_buffer: record', nrec, ' written to unit', unit #endif ELSE CALL davcio ( vect, 2*nword, unit, nrec, +1 ) END IF ! END SUBROUTINE save_buffer ! !---------------------------------------------------------------------------- SUBROUTINE get_buffer( vect, nword, unit, nrec ) !--------------------------------------------------------------------------- ! ! ... copy vect(1:nword) from the "nrec"-th record of a previously ! ... allocated buffer / opened direct-access file, depending upon ! ... how "open_buffer" was called ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nword, unit, nrec COMPLEX(DP), INTENT(OUT) :: vect(nword) INTEGER :: ierr ! ierr = buiol_check_unit (unit) IF( ierr > 0 ) THEN ierr = buiol_read_record ( unit, nword, nrec, vect ) #ifdef __DEBUG print *, 'get_buffer: record', nrec, ' read from unit', unit #endif if ( ierr < 0 ) then ! record not found: read from file .... CALL davcio ( vect, 2*nword, unit, nrec, -1 ) ! ... and save to memory ierr = buiol_write_record ( unit, nword, nrec, vect ) if ( ierr /= 0 ) CALL errore ('get_buffer', & 'cannot store record in memory', unit) #ifdef __DEBUG print *, 'get_buffer: record', nrec, ' read from file', unit #endif end if #ifdef __DEBUG print *, 'get_buffer: record', nrec, ' read from unit', unit #endif ELSE CALL davcio ( vect, 2*nword, unit, nrec, -1 ) END IF ! END SUBROUTINE get_buffer SUBROUTINE close_buffer ( unit, status ) ! ! close unit with status "status" ('keep' or 'delete') ! deallocate related buffer if any; if "status='keep'" ! save it to file (using saved value of extension) ! doesn't complain if closing an already closed unit ! USE io_files, ONLY : diropn ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: unit CHARACTER(LEN=*), INTENT(IN) :: status ! COMPLEX(dp), ALLOCATABLE :: vect(:) INTEGER :: n, ierr, nrec, nword LOGICAL :: opnd ! ierr = buiol_check_unit (unit) IF( ierr > 0 ) THEN if ( status == 'keep' .or. status == 'KEEP' ) then ! nword = buiol_check_unit ( unit ) allocate (vect(nword)) n = 1 10 continue ierr = buiol_read_record ( unit, nword, n, vect ) IF ( ierr /= 0 ) go to 20 CALL davcio ( vect, 2*nword, unit, n, +1 ) n = n+1 go to 10 20 deallocate (vect) end if ierr = buiol_close_unit ( unit ) if ( ierr < 0 ) & CALL errore ('close_buffer', 'error closing', ABS(unit)) #ifdef __DEBUG print *, 'close_buffer: unit ',unit, 'closed' #endif END IF INQUIRE( UNIT = unit, OPENED = opnd ) IF ( opnd ) CLOSE( UNIT = unit, STATUS = status ) nunits = nunits - 1 ! END SUBROUTINE close_buffer ! end interface for old "buffers" module end module buffers espresso-5.1/PW/src/allocate_fft_custom.f900000644000175000017500000000210512341373025016752 0ustar mbamba! ! Copyright (C) 2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- ! This subroutine allocates all of the fft stuff for the custom defined grid ! SUBROUTINE allocate_fft_custom(fc) USE kinds, ONLY : DP USE gvect, ONLY : g, mill USE cell_base, ONLY : at, bg, tpiba2 USE control_flags, ONLY : gamma_only USE fft_custom, ONLY : fft_cus, set_custom_grid, ggent USE grid_subroutines, ONLY : realspace_grid_init_custom IMPLICIT NONE TYPE (fft_cus) :: fc INTEGER :: ng,n1t,n2t,n3t IF(fc%initalized) RETURN ! fc%gcutmt = fc%dual_t*fc%ecutt / tpiba2 ! CALL realspace_grid_init_custom(fc%dfftt, at, bg, fc%gcutmt) ! CALL data_structure_custom(fc, .TRUE.) ! fc%initalized = .true. ! CALL ggent(fc) RETURN END SUBROUTINE allocate_fft_custom espresso-5.1/PW/src/para.f900000644000175000017500000001361312341373025013666 0ustar mbamba! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! ! ... here are all parallel subroutines (wrappers to MPI calls) used ! ... by the PWscf code ! !---------------------------------------------------------------------------- SUBROUTINE poolscatter( nsize, nkstot, f_in, nks, f_out ) !---------------------------------------------------------------------------- ! ! ... This routine scatters a quantity ( typically the eigenvalues ) ! ... among the pools. ! ... On input, f_in is required only on the first node of the first pool. ! ... f_in and f_out may coincide. ! ... Not a smart implementation! ! USE kinds, ONLY : DP USE mp_pools, ONLY : intra_pool_comm, inter_pool_comm, & my_pool_id, npool, me_pool, root_pool, kunit USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! INTEGER :: nsize, nkstot, nks ! first dimension of vectors f_in and f_out ! number of k-points per pool ! total number of k-points REAL(DP) :: f_in(nsize,nkstot), f_out(nsize,nks) ! input ( contains values for all k-point ) ! output ( only for k-points of mypool ) ! #if defined (__MPI) ! INTEGER :: rest, nbase ! the rest of the integer division nkstot / npo ! the position in the original list ! ! ! ... copy from the first node of the first pool ! ... to the first node of all the other pools ! IF ( me_pool == root_pool ) & CALL mp_bcast( f_in, root_pool, inter_pool_comm ) ! ! ... distribute the vector on the first node of each pool ! rest = nkstot / kunit - ( nkstot / kunit / npool ) * npool ! nbase = nks * my_pool_id ! IF ( ( my_pool_id + 1 ) > rest ) nbase = nbase + rest * kunit ! f_out(:,1:nks) = f_in(:,(nbase+1):(nbase+nks)) ! ! ... copy from the first node of every pool ! ... to the other nodes of every pool ! CALL mp_bcast( f_out, root_pool, intra_pool_comm ) ! #endif ! RETURN ! END SUBROUTINE poolscatter ! ! ... other parallel subroutines ! !----------------------------------------------------------------------- SUBROUTINE poolrecover( vec, length, nkstot, nks ) !----------------------------------------------------------------------- ! ! ... recovers on the first processor of the first pool a ! ... distributed vector ! USE kinds, ONLY : DP USE mp_images, ONLY : intra_image_comm USE mp_pools, ONLY : inter_pool_comm, npool, me_pool, root_pool, my_pool_id, kunit USE mp, ONLY : mp_barrier USE parallel_include ! IMPLICIT NONE ! INTEGER :: length, nks, nkstot REAL(DP) :: vec(length,nkstot) ! #if defined (__MPI) ! INTEGER :: status(MPI_STATUS_SIZE) INTEGER :: i, nks1, rest, fine, nbase, info ! ! IF ( npool <= 1 ) RETURN ! IF ( MOD( nkstot, kunit ) /= 0 ) & CALL errore( 'poolrecover', 'nkstot/kunit is not an integer', nkstot ) ! nks1 = kunit * ( nkstot / kunit / npool ) ! rest = ( nkstot - nks1 * npool ) / kunit ! CALL mp_barrier( intra_image_comm ) ! IF ( me_pool == root_pool .AND. my_pool_id > 0 ) THEN ! CALL MPI_SEND( vec, (length*nks), MPI_DOUBLE_PRECISION, 0, 17, & inter_pool_comm, info ) ! CALL errore( 'poolrecover', 'info<>0 in send', info ) ! END IF ! DO i = 2, npool ! IF ( i <= rest ) THEN ! fine = nks1 + kunit ! nbase = ( nks1 + kunit ) * ( i - 1 ) ! ELSE ! fine = nks1 ! nbase = rest * (nks1 + kunit) + (i - 1 - rest) * nks1 ! END IF ! IF ( me_pool == root_pool .AND. my_pool_id == 0 ) THEN ! CALL MPI_RECV( vec(1,nbase+1), (length*fine), MPI_DOUBLE_PRECISION, & (i-1), 17, inter_pool_comm, status, info ) ! CALL errore( 'poolrecover', 'info<>0 in recv', info ) ! END IF ! END DO ! #endif ! RETURN ! END SUBROUTINE poolrecover ! !------------------------------------------------------------------------ SUBROUTINE ipoolrecover( ivec, length, nkstot, nks ) !------------------------------------------------------------------------ ! ! ... as above, for an integer vector ! USE mp_images, ONLY : intra_image_comm USE mp_pools, ONLY : inter_pool_comm, npool, me_pool, root_pool, my_pool_id, kunit USE mp, ONLY : mp_barrier USE parallel_include ! IMPLICIT NONE ! INTEGER :: length, nks, nkstot INTEGER :: ivec(length,nkstot) ! #if defined (__MPI) ! INTEGER :: status(MPI_STATUS_SIZE) INTEGER :: i, nks1, rest, fine, nbase, info ! ! IF ( npool <= 1 ) RETURN ! IF ( MOD( nkstot, kunit ) /= 0 ) & CALL errore( 'poolrecover', 'nkstot/kunit is not an integer', nkstot ) ! nks1 = kunit * ( nkstot / kunit / npool ) ! rest = ( nkstot - nks1 * npool ) / kunit ! CALL mp_barrier( intra_image_comm ) ! IF ( me_pool == root_pool .AND. my_pool_id > 0 ) THEN ! CALL MPI_SEND( ivec, (length*nks), MPI_INTEGER, 0, 17, & inter_pool_comm, info ) ! CALL errore( 'ipoolrecover', 'info<>0 in send', info ) ! END IF ! DO i = 2, npool ! IF ( i <= rest ) THEN ! fine = nks1 + kunit ! nbase = ( nks1 + kunit ) * ( i - 1 ) ! ELSE ! fine = nks1 ! nbase = rest * ( nks1 + kunit ) + ( i - 1 - rest ) * nks1 ! END IF ! IF ( me_pool == root_pool .AND. my_pool_id == 0 ) THEN ! CALL MPI_RECV( ivec(1,nbase+1), (length*fine), MPI_INTEGER, & (i-1), 17, inter_pool_comm, status, info ) ! CALL errore( 'ipoolrecover', 'info<>0 in recv', info ) ! END IF ! END DO ! #endif ! RETURN ! END SUBROUTINE ipoolrecover espresso-5.1/PW/src/nonloccorr.f900000644000175000017500000000263012341373025015116 0ustar mbamba! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE nonloccorr( rho, rho_core, enl, vnl, v ) !---------------------------------------------------------------------------- ! USE constants, ONLY : e2 USE kinds, ONLY : DP USE gvect, ONLY : nl, ngm, g USE lsda_mod, ONLY : nspin USE cell_base, ONLY : omega, alat USE funct, ONLY : dft_is_nonlocc, get_inlc, nlc USE spin_orb, ONLY : domag USE noncollin_module, ONLY : ux USE wavefunctions_module, ONLY : psic USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: rho(dfftp%nnr,nspin), rho_core(dfftp%nnr) REAL(DP), INTENT(INOUT) :: v(dfftp%nnr,nspin) REAL(DP), INTENT(INOUT) :: vnl, enl ! INTEGER :: k, ipol, is, nspin0, ir, jpol ! ! REAL(DP), PARAMETER :: epsr = 1.D-6, epsg = 1.D-10 ! ! IF ( .NOT. dft_is_nonlocc() ) RETURN ! ! Everything is summed inside the proc ! CALL nlc( rho, rho_core, nspin, enl, vnl, v ) ! RETURN ! END SUBROUTINE nonloccorr espresso-5.1/PW/src/transform_qq_so.f900000644000175000017500000000360212341373025016155 0ustar mbamba ! Copyright (C) 2012 Quantum-Espresso group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- SUBROUTINE transform_qq_so(qq,qq_so) !---------------------------------------------------------------------- ! ! USE kinds, ONLY : DP USE ions_base, ONLY : ntyp => nsp USE uspp_param, ONLY : upf, nhm, nh USE spin_orb, ONLY : lspinorb, fcoef ! implicit none ! ! here a few local variables ! integer :: nt, ih, jh, kh, lh, ijs, is1, is2, is complex(DP) :: qq(nhm,nhm,ntyp), qq_so(nhm,nhm,4,ntyp) qq_so=(0.0_DP, 0.0_DP) DO nt = 1, ntyp IF ( upf(nt)%tvanp ) THEN IF (upf(nt)%has_so) THEN DO ih=1,nh(nt) DO jh=1,nh(nt) DO kh=1,nh(nt) DO lh=1,nh(nt) ijs=0 DO is1=1,2 DO is2=1,2 ijs=ijs+1 DO is=1,2 qq_so(kh,lh,ijs,nt) = qq_so(kh,lh,ijs,nt) & + qq(ih,jh,nt)*fcoef(kh,ih,is1,is,nt)& *fcoef(jh,lh,is,is2,nt) ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ELSE DO ih = 1, nh (nt) DO jh = ih, nh (nt) IF (lspinorb) THEN qq_so (ih, jh, 1, nt) = qq (ih, jh, nt) qq_so (jh, ih, 1, nt) = qq_so (ih, jh, 1, nt) qq_so (ih, jh, 4, nt) = qq_so (ih, jh, 1, nt) qq_so (jh, ih, 4, nt) = qq_so (ih, jh, 4, nt) ENDIF ENDDO ENDDO ENDIF ENDIF ENDDO RETURN END SUBROUTINE transform_qq_so espresso-5.1/PW/src/transform_becsum_so.f900000644000175000017500000000627312341373025017021 0ustar mbamba! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE transform_becsum_so(becsum_nc,becsum,na) !---------------------------------------------------------------------------- ! ! This routine multiply becsum_nc by the identity and the Pauli ! matrices, rotate it as appropriate for the spin-orbit case ! and saves it in becsum for the calculation of ! augmentation charge and magnetization. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh, nhm USE lsda_mod, ONLY : nspin USE uspp, ONLY : ijtoh USE noncollin_module, ONLY : npol, nspin_mag USE spin_orb, ONLY : fcoef, domag ! IMPLICIT NONE COMPLEX(DP) :: becsum_nc(nhm*(nhm+1)/2,nat,npol,npol) REAL(DP) :: becsum(nhm*(nhm+1)/2,nat,nspin_mag) INTEGER :: na ! ! ... local variables ! INTEGER :: ih, jh, lh, kh, ijh, np, is1, is2 COMPLEX(DP) :: fac INTEGER :: ijh_l LOGICAL :: same_lj np=ityp(na) DO ih = 1, nh(np) DO jh = 1, nh(np) ijh=ijtoh(ih,jh,np) DO kh = 1, nh(np) IF (same_lj(kh,ih,np)) THEN DO lh=1,nh(np) IF (same_lj(lh,jh,np)) THEN ijh_l=ijtoh(kh,lh,np) DO is1=1,npol DO is2=1,npol IF (kh <= lh) THEN fac=becsum_nc(ijh_l,na,is1,is2) ELSE fac=CONJG(becsum_nc(ijh_l,na,is2,is1)) ENDIF becsum(ijh,na,1)=becsum(ijh,na,1) + fac * & (fcoef(kh,ih,is1,1,np)*fcoef(jh,lh,1,is2,np) + & fcoef(kh,ih,is1,2,np)*fcoef(jh,lh,2,is2,np) ) IF (domag) THEN becsum(ijh,na,2)=becsum(ijh,na,2)+fac * & (fcoef(kh,ih,is1,1,np)*fcoef(jh,lh,2,is2,np) +& fcoef(kh,ih,is1,2,np)*fcoef(jh,lh,1,is2,np) ) becsum(ijh,na,3)=becsum(ijh,na,3)+fac*(0.d0,-1.d0)*& (fcoef(kh,ih,is1,1,np)*fcoef(jh,lh,2,is2,np) - & fcoef(kh,ih,is1,2,np)*fcoef(jh,lh,1,is2,np) ) becsum(ijh,na,4)=becsum(ijh,na,4) + fac * & (fcoef(kh,ih,is1,1,np)*fcoef(jh,lh,1,is2,np) - & fcoef(kh,ih,is1,2,np)*fcoef(jh,lh,2,is2,np) ) END IF END DO END DO END IF END DO END IF END DO END DO END DO ! RETURN END SUBROUTINE transform_becsum_so FUNCTION same_lj(ih,jh,np) USE uspp, ONLY : nhtol, nhtoj, indv IMPLICIT NONE LOGICAL :: same_lj INTEGER :: ih, jh, np same_lj = ((nhtol(ih,np)==nhtol(jh,np)).AND. & (ABS(nhtoj(ih,np)-nhtoj(jh,np))<1.d8).AND. & (indv(ih,np)==indv(jh,np)) ) RETURN END FUNCTION same_lj espresso-5.1/PW/src/dynamics_module.f900000644000175000017500000014323012341373025016116 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! #undef __NPT #if defined (__NPT) #define RELAXTIME 2000.D0 #define TARGPRESS 2.39D0 #endif ! !---------------------------------------------------------------------------- MODULE dynamics_module !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE ions_base, ONLY : amass USE io_global, ONLY : stdout USE io_files, ONLY : prefix, tmp_dir, seqopn USE constants, ONLY : tpi, fpi USE constants, ONLY : amu_ry, ry_to_kelvin, au_ps, bohr_radius_cm, ry_kbar USE constants, ONLY : eps8 USE control_flags, ONLY : tolp ! USE basic_algebra_routines ! IMPLICIT NONE ! SAVE ! REAL(DP) :: & dt, &! time step temperature, &! starting temperature virial, &! virial (used for the pressure) delta_t ! parameter used in thermalization INTEGER :: & nraise, &! parameter used in thermalization ndof, &! the number of degrees of freedom num_accept=0 ! Number of the accepted proposal in Smart_MC LOGICAL :: & vel_defined, &! if true, vel is used rather than tau_old to do the next step control_temp, &! if true a thermostat is used to control the temperature refold_pos, &! if true the positions are refolded into the supercell first_iter=.true. ! if this is the first ionic iteration CHARACTER(len=10) & thermostat ! the thermostat used to control the temperature ! tau_smart and force_smart is used for smart Monte Carlo to store the atomic position of the ! previous step. REAL(DP), ALLOCATABLE :: tau_smart(:,:), force_smart(:,:) real(dp) :: etot_smart REAL(DP), ALLOCATABLE :: tau_old(:,:), tau_new(:,:), tau_ref(:,:) REAL(DP), ALLOCATABLE :: vel(:,:), acc(:,:), chi(:,:) REAL(DP), ALLOCATABLE :: mass(:) REAL(DP), ALLOCATABLE :: diff_coeff(:) REAL(DP), ALLOCATABLE :: radial_distr(:,:) ! INTEGER, PARAMETER :: hist_len = 1000 ! CONTAINS ! ! ... public methods ! !------------------------------------------------------------------------ SUBROUTINE allocate_dyn_vars() !------------------------------------------------------------------------ ! USE ions_base, ONLY : nat ! IF ( .not.allocated( mass ) ) ALLOCATE( mass( nat ) ) ! IF ( .not.allocated( tau_old ) ) ALLOCATE( tau_old( 3, nat ) ) IF ( .not.allocated( tau_new ) ) ALLOCATE( tau_new( 3, nat ) ) IF ( .not.allocated( tau_ref ) ) ALLOCATE( tau_ref( 3, nat ) ) ! IF ( .not.allocated( vel ) ) ALLOCATE( vel( 3, nat ) ) IF ( .not.allocated( acc ) ) ALLOCATE( acc( 3, nat ) ) IF ( .not.allocated( chi ) ) ALLOCATE( chi( 3, nat ) ) ! IF ( .not.allocated( diff_coeff ) ) ALLOCATE( diff_coeff( nat ) ) ! IF ( .not.allocated( radial_distr ) ) & ALLOCATE( radial_distr( hist_len , nat ) ) ! END SUBROUTINE allocate_dyn_vars ! !------------------------------------------------------------------------ SUBROUTINE deallocate_dyn_vars() !------------------------------------------------------------------------ ! IF ( allocated( mass ) ) DEALLOCATE( mass ) IF ( allocated( tau_old ) ) DEALLOCATE( tau_old ) IF ( allocated( tau_new ) ) DEALLOCATE( tau_new ) IF ( allocated( tau_ref ) ) DEALLOCATE( tau_ref ) IF ( allocated( vel ) ) DEALLOCATE( vel ) IF ( allocated( acc ) ) DEALLOCATE( acc ) IF ( allocated( chi ) ) DEALLOCATE( chi ) IF ( allocated( diff_coeff ) ) DEALLOCATE( diff_coeff ) IF ( allocated( radial_distr ) ) DEALLOCATE( radial_distr ) ! END SUBROUTINE deallocate_dyn_vars ! !------------------------------------------------------------------------ SUBROUTINE verlet() !------------------------------------------------------------------------ ! ! ... This routine performs one step of molecular dynamics evolution ! ... using the Verlet algorithm. ! ! ... Parameters: ! ... mass mass of the atoms ! ... dt time step ! ... temperature starting temperature ! ... The starting velocities of atoms are set accordingly ! ... to the starting temperature, in random directions. ! ... The initial velocity distribution is therefore a ! ... constant. ! ! ... Dario Alfe' 1997 and Carlo Sbraccia 2004-2006 ! USE ions_base, ONLY : nat, nsp, ityp, tau, if_pos, atm USE cell_base, ONLY : alat, omega USE ener, ONLY : etot USE force_mod, ONLY : force, lstres USE control_flags, ONLY : istep, nstep, conv_ions, lconstrain, tv0rd ! USE constraints_module, ONLY : nconstr, check_constraint USE constraints_module, ONLY : remove_constr_force, remove_constr_vec ! IMPLICIT NONE ! REAL(DP) :: ekin, etotold REAL(DP) :: total_mass, temp_new, temp_av, elapsed_time REAL(DP) :: delta(3), ml(3), mlt INTEGER :: na ! istep0 counts MD steps done during this run ! (istep counts instead all MD steps, including those of previous runs) INTEGER, SAVE :: istep0 = 0 #if defined (__NPT) REAL(DP) :: chi, press_new #endif LOGICAL :: file_exists, leof REAL(DP), EXTERNAL :: dnrm2 REAL(DP) :: kstress(3,3) INTEGER :: i, j ! ! ... the number of degrees of freedom ! IF ( ANY( if_pos(:,:) == 0 ) ) THEN ! ndof = 3*nat - count( if_pos(:,:) == 0 ) - nconstr ! ELSE ! ndof = 3*nat - 3 - nconstr ! ENDIF ! vel_defined = .true. temp_av = 0.D0 ! CALL seqopn( 4, 'md', 'FORMATTED', file_exists ) ! IF ( file_exists ) THEN ! ! ... the file is read : simulation is continuing ! READ( UNIT = 4, FMT = * ) etotold, istep, tau_old(:,:), leof ! IF ( leof ) THEN ! ! ... the file was created by projected_verlet: Ignore it ! CALL md_init() ! ELSE ! vel_defined = .false. ! READ( UNIT = 4, FMT = * ) & temp_new, temp_av, mass(:), total_mass, elapsed_time, & tau_ref(:,:) ! ENDIF ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! ELSE ! CLOSE( UNIT = 4, STATUS = 'DELETE' ) ! ! ... the file is absent : simulation is starting from scratch ! CALL md_init() ! ENDIF ! IF ( istep0 >= nstep ) THEN ! conv_ions = .true. ! WRITE( UNIT = stdout, & FMT = '(/,5X,"The maximum number of steps has been reached.")' ) WRITE( UNIT = stdout, & FMT = '(/,5X,"End of molecular dynamics calculation")' ) ! CALL print_averages() ! ENDIF ! ! ... elapsed_time is in picoseconds ! elapsed_time = elapsed_time + dt*2.D0*au_ps ! istep0= istep0+ 1 istep = istep + 1 ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Entering Dynamics:",T28,"iteration",T37," = ", & &I5,/,T28,"time",T37," = ",F8.4," pico-seconds",/)' ) & istep, elapsed_time ! IF ( control_temp ) CALL apply_thermostat() ! ! ... we first remove the component of the force along the ! ... constraint gradient ( this constitutes the initial ! ... guess for the calculation of the lagrange multipliers ) ! IF ( lconstrain ) & CALL remove_constr_force( nat, tau, if_pos, ityp, alat, force ) ! ! ... calculate accelerations in a.u. units / alat ! FORALL( na = 1:nat ) acc(:,na) = force(:,na) / mass(na) / alat ! ! ... Verlet integration scheme ! IF (vel_defined) THEN ! ! ... remove the component of the velocity along the ! ... constraint gradient ! IF ( lconstrain ) & CALL remove_constr_vec( nat, tau, if_pos, ityp, alat, vel ) ! tau_new(:,:) = tau(:,:) + vel(:,:) * dt + 0.5_DP * acc(:,:) * dt**2 tau_old(:,:) = tau(:,:) - vel(:,:) * dt + 0.5_DP * acc(:,:) * dt**2 ! ELSE ! tau_new(:,:) = 2.D0*tau(:,:) - tau_old(:,:) + acc(:,:) * dt**2 ! ENDIF ! IF ( .NOT. ANY( if_pos(:,:) == 0 ) ) THEN ! ! ... if no atom has been fixed we compute the displacement of the ! ... center of mass and we subtract it from the displaced positions ! delta(:) = 0.D0 DO na = 1, nat delta(:) = delta(:) + mass(na)*( tau_new(:,na) - tau(:,na) ) ENDDO delta(:) = delta(:) / total_mass FORALL( na = 1:nat ) tau_new(:,na) = tau_new(:,na) - delta(:) ! IF (vel_defined) THEN delta(:) = 0.D0 DO na = 1, nat delta(:) = delta(:) + mass(na)*( tau_old(:,na) - tau(:,na) ) ENDDO delta(:) = delta(:) / total_mass FORALL( na = 1:nat ) tau_old(:,na) = tau_old(:,na) - delta(:) ENDIF ! ENDIF ! IF ( lconstrain ) THEN ! ! ... check if the new positions satisfy the constrain equation ! CALL check_constraint( nat, tau_new, tau, & force, if_pos, ityp, alat, dt**2, amu_ry ) ! #if ! defined (__REDUCE_OUTPUT) ! WRITE( stdout, '(/,5X,"Constrained forces (Ry/au):",/)') ! DO na = 1, nat ! WRITE( stdout, & '(5X,"atom ",I3," type ",I2,3X,"force = ",3F14.8)' ) & na, ityp(na), force(:,na) ! ENDDO ! WRITE( stdout, '(/5X,"Total force = ",F12.6)') dnrm2( 3*nat, force, 1 ) ! #endif IF (vel_defined) THEN CALL check_constraint( nat, tau_old, tau, & force, if_pos, ityp, alat, dt**2, amu_ry ) ENDIF ! ENDIF ! ! ... the linear momentum and the kinetic energy are computed here ! vel = ( tau_new - tau_old ) / ( 2.D0*dt ) * dble( if_pos ) ! ml = 0.D0 ekin = 0.D0 kstress = 0.d0 ! DO na = 1, nat ! ml(:) = ml(:) + vel(:,na) * mass(na) ekin = ekin + 0.5D0 * mass(na) * & ( vel(1,na)**2 + vel(2,na)**2 + vel(3,na)**2 ) do i = 1, 3 do j = 1, 3 kstress(i,j) = kstress(i,j) + mass(na)*vel(i,na)*vel(j,na) enddo enddo ! ENDDO ! ekin = ekin*alat**2 kstress = kstress * alat**2 / omega ! ! ... find the new temperature and update the average ! temp_new = 2.D0 / dble( ndof ) * ekin * ry_to_kelvin ! temp_av = temp_av + temp_new ! #if defined (__NPT) ! ! ... find the new pressure (in Kbar) ! press_new = ry_kbar*( nat*temp_new/ry_to_kelvin + virial ) / omega ! chi = 1.D0 - dt / RELAXTIME*( TARGPRESS - press_new ) ! omega = chi * omega alat = chi**(1.D0/3.D0) * alat ! WRITE( stdout, '(/,5X,"NEW ALAT = ",F8.5,2X,"Bohr" )' ) alat WRITE( stdout, '( 5X,"PRESSURE = ",F8.5,2X,"Kbar",/)' ) press_new ! #endif ! ! ... save all the needed quantities on file ! CALL seqopn( 4, 'md', 'FORMATTED', file_exists ) ! leof = .false. WRITE( UNIT = 4, FMT = * ) etot, istep, tau(:,:), leof ! WRITE( UNIT = 4, FMT = * ) & temp_new, temp_av, mass(:), total_mass, elapsed_time, tau_ref(:,:) ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! ! ... here the tau are shifted ! tau(:,:) = tau_new(:,:) ! #if ! defined (__REDUCE_OUTPUT) ! CALL output_tau( .false., .false. ) ! #endif ! ! ... infos are written on the standard output ! WRITE( stdout, '(5X,"kinetic energy (Ekin) = ",F14.8," Ry",/, & & 5X,"temperature = ",F14.8," K ",/, & & 5X,"Ekin + Etot (const) = ",F14.8," Ry")' ) & ekin, temp_new, ( ekin + etot ) IF (lstres) WRITE ( stdout, & '(5X,"Ions kinetic stress = ",F10.2," (kbar)",/3(27X,3F10.2/)/)') & ((kstress(1,1)+kstress(2,2)+kstress(3,3))/3.d0*ry_kbar), & (kstress(i,1)*ry_kbar,kstress(i,2)*ry_kbar,kstress(i,3)*ry_kbar, i=1,3) ! IF ( .not.( lconstrain .or. ANY( if_pos(:,:) == 0 ) ) ) THEN ! ! ... total linear momentum must be zero if all atoms move ! mlt = norm( ml(:) ) ! IF ( mlt > eps8 ) & CALL infomsg( 'dynamics', 'Total linear momentum <> 0' ) ! WRITE( stdout, '(/,5X,"Linear momentum :",3(2X,F14.10))' ) ml(:) ! ENDIF ! ! ... compute the average quantities ! CALL compute_averages( istep ) ! CONTAINS ! !-------------------------------------------------------------------- SUBROUTINE md_init() !-------------------------------------------------------------------- ! IMPLICIT NONE ! istep = 0 ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Molecular Dynamics Calculation")' ) ! ! ... atoms are refold in the central box if required ! IF ( refold_pos ) CALL refold_tau() ! ! ... reference positions ! tau_ref(:,:) = tau(:,:) ! IF ( control_temp ) THEN ! WRITE( stdout, & '(/,5X,"Starting temperature",T27," = ",F8.2," K")' ) & temperature ! SELECT CASE( trim( thermostat ) ) ! CASE( 'andersen', 'Andersen' ) ! WRITE( UNIT = stdout, & FMT = '(/,5X,"temperature is controlled by Andersen ", & & "thermostat",/,5x,"Collision frequency =",& & f7.4,"/timestep")' ) 1.0_dp/nraise ! CASE( 'berendsen', 'Berendsen' ) ! WRITE( UNIT = stdout, & FMT = '(/,5X,"temperature is controlled by soft ", & & "(Berendsen) velocity rescaling",/,5x,& & "Characteristic time =",i3,"*timestep")') & nraise ! CASE( 'initial', 'Initial' ) ! WRITE( UNIT = stdout, & FMT = '(/,5X,"temperature is set once at start"/)' ) ! CASE DEFAULT ! WRITE( UNIT = stdout, & FMT = '(/,5X,"temperature is controlled by ", & & "velocity rescaling (",A,")"/)' )& trim( thermostat ) ! END SELECT ! ENDIF ! DO na = 1, nsp ! WRITE( UNIT = stdout, & FMT = '(5X,"mass ",A2,T27," = ",F8.2)' ) atm(na), amass(na) ! ENDDO ! WRITE( UNIT = stdout, & FMT = '(5X,"Time step",T27," = ",F8.2," a.u.,",F8.4, & & " femto-seconds")' ) dt, dt*2.D+3*au_ps ! ! ... masses in rydberg atomic units ! total_mass = 0.D0 ! DO na = 1, nat ! mass(na) = amass( ityp(na) ) * amu_ry ! total_mass = total_mass + mass(na) ! ENDDO ! IF ( tv0rd ) THEN ! initial velocities available from input file ! vel(:,:) = vel(:,:) / alat ! ELSEIF ( control_temp ) THEN ! ! ... initial thermalization. N.B. tau is in units of alat ! CALL start_therm() vel_defined = .true. ! temp_new = temperature ! temp_av = 0.D0 ! ELSE ! vel(:,:) = 0.0_DP vel_defined = .true. ! ENDIF ! elapsed_time = 0.D0 ! END SUBROUTINE md_init ! !-------------------------------------------------------------------- SUBROUTINE apply_thermostat() !-------------------------------------------------------------------- ! USE random_numbers, ONLY : randy, gauss_dist ! IMPLICIT NONE ! INTEGER :: nat_moved REAL(DP) :: sigma, kt ! IF(.not.vel_defined)THEN vel(:,:) = (tau(:,:) - tau_old(:,:)) / dt ENDIF ! SELECT CASE( trim( thermostat ) ) CASE( 'rescaling' ) IF ( abs (temp_new-temperature) > tolp ) THEN ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Velocity rescaling: T (",F6.1,"K) ", & & "out of range, reset to " ,F6.1)' ) & temp_new, temperature CALL thermalize( 0, temp_new, temperature ) ! ENDIF CASE( 'rescale-v', 'rescale-V', 'rescale_v', 'rescale_V' ) IF ( mod( istep, nraise ) == 0 ) THEN ! temp_av = temp_av / dble( nraise ) ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Velocity rescaling: average T on ",i3, & &" steps (",F6.1,"K) reset to ",F6.1)' ) & nraise, temp_av, temperature ! CALL thermalize( 0, temp_new, temperature ) ! temp_av = 0.D0 ! ENDIF CASE( 'rescale-T', 'rescale-t', 'rescale_T', 'rescale_t' ) IF ( delta_t > 0 ) THEN ! temperature = temp_new*delta_t ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Thermalization: T (",F6.1,"K) rescaled ",& & "by a factor ",F6.3)' ) temp_new, delta_t ! CALL thermalize( 0, temp_new, temperature ) ! ENDIF CASE( 'reduce-T', 'reduce-t', 'reduce_T', 'reduce_t' ) IF ( mod( istep, nraise ) == 0 .and. delta_t < 0 ) THEN ! temperature = temp_new + delta_t ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Thermalization: T (",F6.1,"K) reduced ",& & "by ",F6.3)' ) temp_new, -delta_t ! CALL thermalize( 0, temp_new, temperature ) ! ENDIF ! CASE( 'berendsen', 'Berendsen' ) ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Soft (Berendsen) velocity rescaling")' ) ! CALL thermalize( nraise, temp_new, temperature ) ! CASE( 'andersen', 'Andersen' ) ! kt = temperature / ry_to_kelvin nat_moved = 0 ! DO na = 1, nat ! IF ( randy() < 1.D0 / dble( nraise ) ) THEN ! nat_moved = nat_moved + 1 sigma = sqrt( kt / mass(na) ) ! ! ... N.B. velocities must in a.u. units of alat and are zero ! ... for fixed ions ! vel(:,na) = dble( if_pos(:,na) ) * & gauss_dist( 0.D0, sigma, 3 ) / alat ! ENDIF ! ENDDO ! IF ( nat_moved > 0) WRITE( UNIT = stdout, & FMT = '(/,5X,"Andersen thermostat: ",I4," collisions")' ) & nat_moved ! CASE( 'initial', 'Initial' ) ! CONTINUE ! END SELECT ! ! ... the old positions are updated to reflect the new velocities ! IF(.not.vel_defined)THEN tau_old(:,:) = tau(:,:) - vel(:,:) * dt ENDIF ! END SUBROUTINE apply_thermostat ! !----------------------------------------------------------------------- SUBROUTINE start_therm() !----------------------------------------------------------------------- ! ! ... Starting thermalization of the system ! USE symm_base, ONLY : invsym, nsym, irt USE cell_base, ONLY : alat USE ions_base, ONLY : nat, if_pos USE random_numbers, ONLY : gauss_dist, set_random_seed ! IMPLICIT NONE ! INTEGER :: na, nb REAL(DP) :: total_mass, kt, sigma, ek, ml(3), system_temp ! ! ... next command prevents different MD runs to start ! ... with exactly the same "random" velocities ! call set_random_seed ( ) kt = temperature / ry_to_kelvin ! ! ... starting velocities have a Maxwell-Boltzmann distribution ! DO na = 1, nat ! sigma = sqrt( kt / mass(na) ) ! ! ... N.B. velocities must in a.u. units of alat ! vel(:,na) = gauss_dist( 0.D0, sigma, 3 ) / alat ! ENDDO ! ! ... the velocity of fixed ions must be zero ! vel = vel * dble( if_pos ) ! IF ( lconstrain ) THEN ! ! ... remove the component of the velocity along the ! ... constraint gradient ! CALL remove_constr_vec( nat, tau, if_pos, ityp, alat, vel ) ! ENDIF ! IF ( invsym ) THEN ! ! ... if there is inversion symmetry, equivalent atoms have ! ... opposite velocities ! DO na = 1, nat ! nb = irt( ( nsym / 2 + 1 ), na ) ! IF ( nb > na ) vel(:,nb) = - vel(:,na) ! ! ... the atom on the inversion center is kept fixed ! IF ( na == nb ) vel(:,na) = 0.D0 ! ENDDO ! ELSE ! ! ... put total linear momentum equal zero if all atoms ! ... are free to move ! ml(:) = 0.D0 ! IF ( .NOT. ANY( if_pos(:,:) == 0 ) ) THEN ! total_mass = SUM ( mass(1:nat) ) DO na = 1, nat ml(:) = ml(:) + mass(na)*vel(:,na) ENDDO ml(:) = ml(:) / total_mass ! ENDIF ! ENDIF ! ek = 0.D0 ! DO na = 1, nat ! vel(:,na) = vel(:,na) - ml(:) ! ek = ek + 0.5D0 * mass(na) * & ( ( vel(1,na) )**2 + ( vel(2,na) )**2 + ( vel(3,na) )**2 ) ! ENDDO ! ! ... after the velocity of the center of mass has been subtracted the ! ... temperature is usually changed. Set again the temperature to the ! ... right value. ! system_temp = 2.D0 / dble( ndof ) * ek * alat**2 * ry_to_kelvin ! CALL thermalize( 0, system_temp, temperature ) ! END SUBROUTINE start_therm ! END SUBROUTINE verlet ! !------------------------------------------------------------------------ SUBROUTINE proj_verlet() !------------------------------------------------------------------------ ! ! ... This routine performs one step of structural relaxation using ! ... the preconditioned-projected-Verlet algorithm. ! USE ions_base, ONLY : nat, ityp, tau, if_pos USE cell_base, ONLY : alat USE ener, ONLY : etot USE force_mod, ONLY : force USE relax, ONLY : epse, epsf USE control_flags, ONLY : istep, nstep, conv_ions, lconstrain ! USE constraints_module, ONLY : remove_constr_force, check_constraint ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: step(:,:) REAL(DP) :: norm_step, etotold, delta(3) INTEGER :: na LOGICAL :: file_exists,leof ! REAL(DP), PARAMETER :: step_max = 0.6D0 ! bohr ! REAL(DP), EXTERNAL :: dnrm2 ! ! ALLOCATE( step( 3, nat ) ) ! tau_old(:,:) = tau(:,:) tau_new(:,:) = 0.D0 vel(:,:) = 0.D0 acc(:,:) = 0.D0 ! CALL seqopn( 4, 'md', 'FORMATTED', file_exists ) ! IF ( file_exists ) THEN ! ! ... the file is read ! READ( UNIT = 4, FMT = * ) etotold, istep, tau_old(:,:) ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! ELSE ! CLOSE( UNIT = 4, STATUS = 'DELETE' ) ! ! ... atoms are refold in the central box ! IF ( refold_pos ) CALL refold_tau() ! tau_old(:,:) = tau(:,:) ! etotold = etot ! istep = 0 ! ENDIF ! IF ( lconstrain ) THEN ! ! ... we first remove the component of the force along the ! ... constraint gradient (this constitutes the initial guess ! ... for the calculation of the lagrange multipliers) ! CALL remove_constr_force( nat, tau, if_pos, ityp, alat, force ) ! #if ! defined (__REDUCE_OUTPUT) ! WRITE( stdout, '(/,5X,"Constrained forces (Ry/au):",/)') ! DO na = 1, nat ! WRITE( stdout, & '(5X,"atom ",I3," type ",I2,3X,"force = ",3F14.8)' ) & na, ityp(na), force(:,na) ! ENDDO ! WRITE( stdout, & '(/5X,"Total force = ",F12.6)') dnrm2( 3*nat, force, 1 ) ! #endif ! ENDIF ! istep = istep + 1 ! IF ( istep == 1 ) & WRITE( UNIT = stdout, & FMT = '(/,5X,"Damped Dynamics Calculation")' ) ! ! ... check if convergence for structural minimization is achieved ! conv_ions = ( etotold - etot ) < epse conv_ions = conv_ions .and. ( maxval( abs( force ) ) < epsf ) ! IF ( conv_ions ) THEN ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Damped Dynamics: convergence achieved in " & & ,I3," steps")' ) istep WRITE( UNIT = stdout, & FMT = '(/,5X,"End of damped dynamics calculation")' ) WRITE( UNIT = stdout, & FMT = '(/,5X,"Final energy = ",F18.10," Ry"/)' ) etot ! CALL output_tau( .true., .true. ) ! ENDIF ! IF ( istep >= nstep ) THEN ! conv_ions = .true. ! WRITE( UNIT = stdout, & FMT = '(/,5X,"The maximum number of steps has been reached.")' ) WRITE( UNIT = stdout, & FMT = '(/,5X,"End of damped dynamics calculation")' ) ! CALL output_tau( .true., .true. ) ! ENDIF ! WRITE( stdout, '(/,5X,"Entering Dynamics:",& & T28,"iteration",T37," = ",I5)' ) istep ! ! ... Damped dynamics ( based on the projected-Verlet algorithm ) ! vel(:,:) = tau(:,:) - tau_old(:,:) ! CALL force_precond( istep, force, etotold ) ! acc(:,:) = force(:,:) / alat / amu_ry ! CALL project_velocity() ! step(:,:) = vel(:,:) + dt**2 * acc(:,:) ! norm_step = dnrm2( 3*nat, step, 1 ) ! step(:,:) = step(:,:) / norm_step ! tau_new(:,:) = tau(:,:) + step(:,:)*min( norm_step, step_max / alat ) ! IF ( .NOT. ANY( if_pos(:,:) == 0 ) ) THEN ! ! ... if no atom has been fixed we compute the displacement of the ! ... center of mass and we subtract it from the displaced positions ! delta(:) = 0.D0 ! DO na = 1, nat ! delta(:) = delta(:) + ( tau_new(:,na) - tau(:,na) ) ! ENDDO ! delta(:) = delta(:) / dble( nat ) ! FORALL( na = 1:nat ) tau_new(:,na) = tau_new(:,na) - delta(:) ! ENDIF ! IF ( lconstrain ) THEN ! ! ... check if the new positions satisfy the constrain equation ! CALL check_constraint( nat, tau_new, tau, & force, if_pos, ityp, alat, dt**2, amu_ry ) ! ENDIF ! ! ... save on file all the needed quantities ! CALL seqopn( 4, 'md', 'FORMATTED', file_exists ) ! leof = .true. WRITE( UNIT = 4, FMT = * ) etot, istep, tau(:,:), leof ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! ! ... here the tau are shifted ! tau(:,:) = tau_new(:,:) ! #if ! defined (__REDUCE_OUTPUT) ! CALL output_tau( .false., .false. ) ! #endif ! DEALLOCATE( step ) ! END SUBROUTINE proj_verlet ! !------------------------------------------------------------------------ SUBROUTINE langevin_md() !------------------------------------------------------------------------ ! ! ... ! USE ions_base, ONLY : nat, ityp, tau, if_pos USE cell_base, ONLY : alat USE ener, ONLY : etot USE force_mod, ONLY : force USE control_flags, ONLY : istep, nstep, conv_ions, lconstrain USE random_numbers, ONLY : gauss_dist ! USE constraints_module, ONLY : nconstr USE constraints_module, ONLY : remove_constr_force, check_constraint ! IMPLICIT NONE ! REAL(DP) :: sigma, kt REAL(DP) :: delta(3) INTEGER :: na LOGICAL :: file_exists ! REAL(DP), EXTERNAL :: dnrm2 ! CALL seqopn( 4, 'md', 'FORMATTED', file_exists ) ! IF ( file_exists ) THEN ! ! ... the file is read : simulation is continuing ! READ( UNIT = 4, FMT = * ) istep ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! ELSE ! CLOSE( UNIT = 4, STATUS = 'DELETE' ) ! ! ... the file is absent : simulation is starting from scratch ! istep = 0 ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Over-damped Langevin Dynamics Calculation")' ) ! ! ... atoms are refold in the central box if required ! IF ( refold_pos ) CALL refold_tau() ! WRITE( UNIT = stdout, & FMT = '(5X,"Integration step",T27," = ",F8.2," a.u.,")' ) dt ! ENDIF ! IF ( istep >= nstep ) THEN ! conv_ions = .true. ! WRITE( UNIT = stdout, & FMT = '(/,5X,"The maximum number of steps has been reached.")' ) WRITE( UNIT = stdout, & FMT = '(/,5X,"End of Langevin Dynamics calculation")' ) ! ENDIF ! istep = istep + 1 ! WRITE( UNIT = stdout, & FMT = '(/,5X,"Entering Dynamics:",T28, & & "iteration",T37," = ",I5,/)' ) istep ! IF ( lconstrain ) THEN ! ! ... we first remove the component of the force along the ! ... constraint gradient ( this constitutes the initial ! ... guess for the calculation of the lagrange multipliers ) ! CALL remove_constr_force( nat, tau, if_pos, ityp, alat, force ) ! ENDIF ! ! ... compute the stochastic term ! kt = temperature / ry_to_kelvin ! sigma = sqrt( 2.D0*dt*kt ) ! delta(:) = 0.D0 ! DO na = 1, nat ! chi(:,na) = gauss_dist( 0.D0, sigma, 3 )*dble( if_pos(:,na) ) ! delta(:) = delta(:) + chi(:,na) ! ENDDO ! FORALL( na = 1:nat ) chi(:,na) = chi(:,na) - delta(:) / dble( nat ) ! PRINT *, "|F| = ", dt*dnrm2( 3*nat, force, 1 ) PRINT *, "|CHI| = ", dnrm2( 3*nat, chi, 1 ) ! ! ... over-damped Langevin dynamics ! tau_new(:,:) = tau(:,:) + ( dt*force(:,:) + chi(:,:) ) / alat ! IF ( .NOT. ANY( if_pos(:,:) == 0 ) ) THEN ! ! ... here we compute the displacement of the center of mass and we ! ... subtract it from the displaced positions ! delta(:) = 0.D0 ! DO na = 1, nat ! delta(:) = delta(:) + ( tau_new(:,na) - tau(:,na) ) ! ENDDO ! FORALL( na = 1:nat ) tau_new(:,na) = tau_new(:,na) - delta(:) ! ENDIF ! IF ( lconstrain ) THEN ! ! ... check if the new positions satisfy the constrain equation ! CALL check_constraint( nat, tau_new, tau, & force, if_pos, ityp, alat, dt**2, amu_ry ) ! #if ! defined (__REDUCE_OUTPUT) ! WRITE( stdout, '(/,5X,"Constrained forces (Ry/au):",/)') ! DO na = 1, nat ! WRITE( stdout, & '(5X,"atom ",I3," type ",I2,3X,"force = ",3F14.8)' ) & na, ityp(na), force(:,na) ! ENDDO ! WRITE( stdout, '(/5X,"Total force = ",F12.6)') dnrm2( 3*nat, force, 1 ) ! #endif ! ENDIF ! ! ... save all the needed quantities on file ! CALL seqopn( 4, 'md', 'FORMATTED', file_exists ) ! WRITE( UNIT = 4, FMT = * ) istep ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! ! ... here the tau are shifted ! tau(:,:) = tau_new(:,:) ! !!!IF ( nat == 2 ) & !!! PRINT *, "DISTANCE = ", dnrm2( 3, ( tau(:,1) - tau(:,2) ), 1 ) * ALAT ! #if ! defined (__REDUCE_OUTPUT) ! CALL output_tau( .false., .false. ) ! #endif ! END SUBROUTINE langevin_md ! !----------------------------------------------------------------------- SUBROUTINE refold_tau() !----------------------------------------------------------------------- ! USE ions_base, ONLY : nat, tau USE cell_base, ONLY : alat USE constraints_module, ONLY : pbc ! IMPLICIT NONE ! INTEGER :: ia ! ! DO ia = 1, nat ! tau(:,ia) = pbc( tau(:,ia) * alat ) / alat ! ENDDO ! END SUBROUTINE refold_tau ! !----------------------------------------------------------------------- SUBROUTINE compute_averages( istep ) !----------------------------------------------------------------------- ! USE ions_base, ONLY : nat, tau, fixatom USE cell_base, ONLY : alat, at USE constraints_module, ONLY : pbc USE io_files, ONLY : delete_if_present ! IMPLICIT NONE ! INTEGER, INTENT(in) :: istep ! INTEGER :: i, j, idx REAL(DP) :: dx, dy, dz REAL(DP) :: dtau(3) REAL(DP) :: inv_dmax REAL(DP), ALLOCATABLE :: msd(:) REAL(DP), PARAMETER :: max_dist(3) = (/ 0.5D0, 0.5D0, 0.5D0 /) ! ! ... MSD and diffusion coefficient ! ALLOCATE( msd( nat ) ) ! IF ( istep == 1 ) THEN ! radial_distr(:,:) = 0.D0 ! CALL delete_if_present( trim( tmp_dir ) // & & trim( prefix ) // ".msd.dat" ) ! ENDIF ! DO i = 1, nat ! dx = ( tau(1,i) - tau_ref(1,i) ) * alat dy = ( tau(2,i) - tau_ref(2,i) ) * alat dz = ( tau(3,i) - tau_ref(3,i) ) * alat ! msd(i) = dx*dx + dy*dy + dz*dz ! ENDDO ! diff_coeff(:) = msd(:) / ( 6.D0*dble( istep )*dt ) ! ! ... conversion from Rydberg atomic units to cm^2/sec ! diff_coeff(:) = diff_coeff(:) * bohr_radius_cm**2 / ( 2.D-12*au_ps ) ! OPEN( UNIT = 4, POSITION = 'APPEND', & FILE = trim( tmp_dir ) // trim( prefix ) // ".msd.dat" ) ! WRITE( 4, '(2(2X,F16.8))' ) & ( istep*dt*2.D0*au_ps ), sum( msd(:) ) / dble( nat-fixatom ) ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! DEALLOCATE( msd ) ! ! ... radial distribution function g(r) ! inv_dmax = 1.D0 / ( norm( matmul( at(:,:), max_dist(:) ) ) * alat ) ! DO i = 1, nat ! DO j = 1, nat ! IF ( i == j ) CYCLE ! dtau(:) = pbc( ( tau(:,i) - tau(:,j) ) * alat ) ! idx = anint( norm( dtau(:) ) * inv_dmax * dble( hist_len ) ) ! IF( idx > 0 .and. idx <= size( radial_distr, 1 ) ) & radial_distr(idx,i) = radial_distr(idx,i) + 1.D0 ! ENDDO ! ENDDO ! END SUBROUTINE compute_averages ! !----------------------------------------------------------------------- SUBROUTINE print_averages() !----------------------------------------------------------------------- ! USE control_flags, ONLY : nstep USE cell_base, ONLY : omega, at, alat USE ions_base, ONLY : nat, fixatom ! IMPLICIT NONE ! INTEGER :: i, idx REAL(DP) :: dist, dmax REAL(DP), PARAMETER :: max_dist(3) = (/ 0.5D0, 0.5D0, 0.5D0 /) ! ! ... diffusion coefficient ! WRITE( UNIT = stdout, & FMT = '(/,5X,"diffusion coefficients :")' ) ! DO i = 1, nat ! WRITE( UNIT = stdout, & FMT = '(5X,"atom ",I5," D = ",F16.8," cm^2/s")' ) & i, diff_coeff(i) ! ENDDO ! WRITE( UNIT = stdout, FMT = '(/,5X,"< D > = ",F16.8," cm^2/s")' ) & sum( diff_coeff(:) ) / dble( nat-fixatom ) ! ! ... radial distribution function g(r) ! dmax = norm( matmul( at(:,:), max_dist(:) ) ) * alat ! radial_distr(:,:) = radial_distr(:,:) * omega / dble( nat ) / fpi ! radial_distr(:,:) = radial_distr(:,:) / ( dmax / dble( hist_len ) ) ! radial_distr(:,:) = radial_distr(:,:) / dble( nstep ) ! OPEN( UNIT = 4, FILE = trim( tmp_dir ) // trim( prefix ) // ".rdf.dat" ) ! DO idx = 1, hist_len ! dist = dble( idx ) / dble( hist_len ) * dmax ! IF ( dist > dmax / sqrt( 3.0d0 ) ) CYCLE ! radial_distr(idx,:) = radial_distr(idx,:) / dist**2 ! WRITE( 4, '(2(2X,F16.8))' ) & dist, sum( radial_distr(idx,:) ) / dble( nat ) ! ENDDO ! CLOSE( UNIT = 4 ) ! END SUBROUTINE print_averages ! !----------------------------------------------------------------------- SUBROUTINE force_precond( istep, force, etotold ) !----------------------------------------------------------------------- ! ! ... this routine computes an estimate of H^-1 by using the BFGS ! ... algorithm and the preconditioned gradient pg = H^-1 * g ! ... ( it works in atomic units ) ! USE ener, ONLY : etot USE cell_base, ONLY : alat USE ions_base, ONLY : nat, tau USE io_files, ONLY : iunbfgs, tmp_dir ! IMPLICIT NONE ! INTEGER, INTENT(in) :: istep REAL(DP), INTENT(inout) :: force(:,:) REAL(DP), INTENT(in) :: etotold ! REAL(DP), ALLOCATABLE :: pos(:), pos_p(:) REAL(DP), ALLOCATABLE :: grad(:), grad_p(:), precond_grad(:) REAL(DP), ALLOCATABLE :: inv_hess(:,:) REAL(DP), ALLOCATABLE :: y(:), s(:) REAL(DP), ALLOCATABLE :: Hy(:), yH(:) REAL(DP) :: sdoty, pg_norm INTEGER :: dim CHARACTER(len=256) :: bfgs_file LOGICAL :: file_exists ! INTEGER, PARAMETER :: nrefresh = 25 REAL(DP), PARAMETER :: max_pg_norm = 0.8D0 ! ! dim = 3 * nat ! ALLOCATE( pos( dim ), pos_p( dim ) ) ALLOCATE( grad( dim ), grad_p( dim ), precond_grad( dim ) ) ALLOCATE( y( dim ), s( dim ) ) ALLOCATE( inv_hess( dim, dim ) ) ALLOCATE( Hy( dim ), yH( dim ) ) ! pos(:) = reshape( tau, (/ dim /) ) * alat grad(:) = - reshape( force, (/ dim /) ) ! bfgs_file = trim( tmp_dir ) // trim( prefix ) // '.bfgs' ! INQUIRE( FILE = trim( bfgs_file ) , EXIST = file_exists ) ! IF ( file_exists ) THEN ! OPEN( UNIT = iunbfgs, & FILE = trim( bfgs_file ), STATUS = 'OLD', ACTION = 'READ' ) ! READ( iunbfgs, * ) pos_p READ( iunbfgs, * ) grad_p READ( iunbfgs, * ) inv_hess ! CLOSE( UNIT = iunbfgs ) ! ! ... the approximate inverse hessian is reset to one every nrefresh ! ... iterations: this is one to clean-up the memory of the starting ! ... configuration ! IF ( mod( istep, nrefresh ) == 0 ) inv_hess(:,:) = identity( dim ) ! IF ( etot < etotold ) THEN ! ! ... BFGS update ! s(:) = pos(:) - pos_p(:) y(:) = grad(:) - grad_p(:) ! sdoty = ( s(:) .dot. y(:) ) ! IF ( sdoty > eps8 ) THEN ! Hy(:) = ( inv_hess(:,:) .times. y(:) ) yH(:) = ( y(:) .times. inv_hess(:,:) ) ! inv_hess = inv_hess + 1.D0 / sdoty * & ( ( 1.D0 + ( y .dot. Hy ) / sdoty ) * matrix( s, s ) - & ( matrix( s, yH ) + matrix( Hy, s ) ) ) ! ENDIF ! ENDIF ! ELSE ! inv_hess(:,:) = identity( dim ) ! ENDIF ! precond_grad(:) = ( inv_hess(:,:) .times. grad(:) ) ! IF ( ( precond_grad(:) .dot. grad(:) ) < 0.D0 ) THEN ! WRITE( UNIT = stdout, & FMT = '(/,5X,"uphill step: resetting bfgs history",/)' ) ! precond_grad(:) = grad(:) ! inv_hess(:,:) = identity( dim ) ! ENDIF ! OPEN( UNIT = iunbfgs, & FILE = trim( bfgs_file ), STATUS = 'UNKNOWN', ACTION = 'WRITE' ) ! WRITE( iunbfgs, * ) pos(:) WRITE( iunbfgs, * ) grad(:) WRITE( iunbfgs, * ) inv_hess(:,:) ! CLOSE( UNIT = iunbfgs ) ! ! ... the length of the step is always shorter than pg_norm ! pg_norm = norm( precond_grad(:) ) ! precond_grad(:) = precond_grad(:) / pg_norm precond_grad(:) = precond_grad(:) * min( pg_norm, max_pg_norm ) ! force(:,:) = - reshape( precond_grad(:), (/ 3, nat /) ) ! DEALLOCATE( pos, pos_p ) DEALLOCATE( grad, grad_p, precond_grad ) DEALLOCATE( inv_hess ) DEALLOCATE( y, s ) DEALLOCATE( Hy, yH ) ! END SUBROUTINE force_precond ! !----------------------------------------------------------------------- SUBROUTINE project_velocity() !----------------------------------------------------------------------- ! ! ... quick-min algorithm ! USE control_flags, ONLY : istep USE ions_base, ONLY : nat ! IMPLICIT NONE ! REAL(DP) :: norm_acc, projection REAL(DP), ALLOCATABLE :: acc_versor(:,:) ! REAL(DP), EXTERNAL :: dnrm2, ddot ! ! IF ( istep == 1 ) RETURN ! ALLOCATE( acc_versor( 3, nat ) ) ! norm_acc = dnrm2( 3*nat, acc(:,:), 1 ) ! acc_versor(:,:) = acc(:,:) / norm_acc ! projection = ddot( 3*nat, vel(:,:), 1, acc_versor(:,:), 1 ) ! WRITE( UNIT = stdout, FMT = '(/,5X," = ",F12.8)' ) & projection / dnrm2( 3*nat, vel, 1 ) ! vel(:,:) = acc_versor(:,:) * max( 0.D0, projection ) ! DEALLOCATE( acc_versor ) ! END SUBROUTINE project_velocity ! !----------------------------------------------------------------------- SUBROUTINE thermalize( nraise, system_temp, required_temp ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), INTENT(in) :: system_temp, required_temp INTEGER, INTENT(in) :: nraise ! REAL(DP) :: aux ! IF ( nraise > 0 ) THEN ! ! ... Berendsen rescaling (Eq. 7.59 of Allen & Tildesley) ! ... the "rise time" is tau=nraise*dt so dt/tau=1/nraise ! ... Equivalent to traditional rescaling if nraise=1 ! IF ( system_temp > 0.D0 .and. required_temp > 0.D0 ) THEN ! aux = sqrt( 1.d0 + (required_temp / system_temp - 1.d0) * & (1.D0/dble (nraise) ) ) ! ELSE ! aux = 0.d0 ! ENDIF ! ELSE ! ! ... rescale the velocities by a factor 3 / 2KT / Ek ! IF ( system_temp > 0.D0 .and. required_temp > 0.D0 ) THEN ! aux = sqrt( required_temp / system_temp ) ! ELSE ! aux = 0.d0 ! ENDIF ! ENDIF ! vel(:,:) = vel(:,:) * aux ! END SUBROUTINE thermalize ! !----------------------------------------------------------------------- subroutine smart_MC() !----------------------------------------------------------------------- ! Routine to apply smart_MC ! Implemented by Xiaochuan Ge, Jul., 2013 ! ! At this moment works only with langevin dynamics !! ! For the formula see R.J.Rossky, JCP, 69, 4628(1978) USE ions_base, ONLY : nat, ityp, tau, if_pos,atm USE cell_base, ONLY : alat USE ener, ONLY : etot USE force_mod, ONLY : force USE control_flags, ONLY : istep, nstep, conv_ions, lconstrain, llang USE constraints_module, ONLY : remove_constr_force, check_constraint USE random_numbers, ONLY : randy use io_files, only : prefix use io_global, only : ionode USE constants, ONLY : bohr_radius_angs implicit none logical :: accept real(dp) :: kt,sigma2,& T_ij,T_ji,boltzman_ji,& ! boltzman_ji=exp[-(etot_new-etot_old)/kt] temp,p_smc ! *_smart means *_old, the quantity of the ! previous step integer :: ia, ip if(.not. llang) call errore( ' smart_MC ', "At this moment, smart_MC works& &only with langevin." ) IF ( lconstrain ) THEN ! ... we first remove the component of the force along the ! ... constraint gradient ( this constitutes the initial ! ... guess for the calculation of the lagrange multipliers ) CALL remove_constr_force( nat, tau, if_pos, ityp, alat, force ) ENDIF if(first_iter) then ! For the first iteration allocate(tau_smart(3,nat)) allocate(force_smart(3,nat)) tau_smart=tau etot_smart=etot force_smart=force first_iter=.false. return endif kt = temperature / ry_to_kelvin sigma2 = 2.D0*dt*kt T_ij=0.0d0 T_ji=0.0d0 do ia=1,nat do ip = 1, 3 T_ij=T_ij+((tau(ip,ia)-tau_smart(ip,ia))*alat-dt*force_smart(ip,ia))**2 T_ji=T_ji+((tau_smart(ip,ia)-tau(ip,ia))*alat-dt*force(ip,ia))**2 enddo enddo T_ij=exp(-T_ij/(2*sigma2)) T_ji=exp(-T_ji/(2*sigma2)) boltzman_ji=exp(-(etot-etot_smart)/kt) p_smc=T_ji*boltzman_ji/T_ij write(stdout, '(5x,"The old energy is:",3x,F17.8," Ry")') etot_smart write(stdout, '(5x,"The new energy is:",3x,F17.8," Ry")') etot write(stdout, '(5x,"The possibility to accept this step is:",3x,F10.7/)') p_smc write(stdout, '(5x,"Nervously waiting for the fate ..."/)') ! Decide if accept the new config temp = randy() write(stdout, '(5x,"The fate says:",5x,F10.7)') temp if(temp .le. p_smc) then write(stdout, '(5x,"The new config is accepted")') num_accept=num_accept+1 tau_smart=tau etot_smart=etot force_smart=force else write(stdout, '(5x,"The new config is not accepted")') tau=tau_smart etot=etot_smart force=force_smart endif write (stdout, '(5x,"The current acceptance is :",3x,F10.6)') dble(num_accept)/istep ! Print the trajectory #ifdef __MPI if(ionode) then #endif OPEN(117,file="trajectory-"//trim(prefix)//".xyz",status="unknown",position='APPEND') write(117,'(I5)') nat write(117,'("# Step: ",I5,5x,"Total energy: ",F17.8,5x,"Ry")') istep-1, etot do ia = 1, nat WRITE( 117, '(A3,3X,3F14.9)') atm(ityp(ia)),tau(:,ia)*alat*bohr_radius_angs enddo close(117) #ifdef __MPI endif #endif return end subroutine smart_MC END MODULE dynamics_module espresso-5.1/PW/src/mix_rho.f900000644000175000017500000004130212341373025014404 0ustar mbamba! ! Copyright (C) 2002-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! #define ZERO ( 0._dp, 0._dp ) ! ! This macro force the normalization of betamix matrix, usually not necessary !#define __NORMALIZE_BETAMIX ! #ifdef __GFORTRAN ! gfortran hack - for some mysterious reason gfortran doesn't save ! derived-type variables even with the SAVE attribute MODULE mix_save USE scf, ONLY : mix_type TYPE(mix_type), ALLOCATABLE, SAVE :: & df(:), &! information from preceding iterations dv(:) ! " " " " " " END MODULE mix_save #endif !---------------------------------------------------------------------------- SUBROUTINE mix_rho( input_rhout, rhoin, alphamix, dr2, tr2_min, iter, n_iter,& iunmix, conv ) !---------------------------------------------------------------------------- ! ! ... Modified Broyden's method for charge density mixing ! ... D.D. Johnson PRB 38, 12807 (1988) ! ... Extended to mix also quantities needed for PAW, meta-GGA, DFT+U, ! ... electric field (all these are included into mix_type) ! ... On output: the mixed density is in rhoin ! input_rhout is unchanged ! USE kinds, ONLY : DP USE ions_base, ONLY : nat USE gvect, ONLY : ngm USE gvecs, ONLY : ngms USE lsda_mod, ONLY : nspin USE control_flags, ONLY : imix, ngm0, tr2, io_level ! ... for PAW: USE uspp_param, ONLY : nhm USE scf, ONLY : scf_type, create_scf_type, destroy_scf_type, & mix_type, create_mix_type, destroy_mix_type, & assign_scf_to_mix_type, assign_mix_to_scf_type, & mix_type_AXPY, davcio_mix_type, rho_ddot, & high_frequency_mixing, & mix_type_COPY, mix_type_SCAL USE io_global, ONLY : stdout #ifdef __GFORTRAN USE mix_save #endif ! IMPLICIT NONE ! ! ... First the I/O variable ! INTEGER, INTENT(IN) :: & iter, &! counter of the number of iterations n_iter, &! number of iterations used in mixing iunmix ! I/O unit where data from previous iterations is stored REAL(DP), INTENT(IN) :: & alphamix, &! mixing factor tr2_min ! estimated error in diagonalization. If the estimated ! scf error is smaller than this, exit: a more accurate ! diagonalization is needed REAL(DP), INTENT(OUT) :: & dr2 ! the estimated error on the energy LOGICAL, INTENT(OUT) :: & conv ! .true. if the convergence has been reached type(scf_type), intent(in) :: input_rhout type(scf_type), intent(inout) :: rhoin ! ! ... Here the local variables ! type(mix_type) :: rhout_m, rhoin_m INTEGER, PARAMETER :: & maxmix = 25 ! max number of iterations for charge mixing INTEGER :: & iter_used, &! actual number of iterations used ipos, &! index of the present iteration inext, &! index of the next iteration i, j, &! counters on number of iterations info, &! flag saying if the exec. of libr. routines was ok ldim ! 2 * Hubbard_lmax + 1 REAL(DP),ALLOCATABLE :: betamix(:,:), work(:) INTEGER, ALLOCATABLE :: iwork(:) REAL(DP) :: gamma0 #ifdef __NORMALIZE_BETAMIX REAL(DP) :: norm2, obn #endif ! ! ... saved variables and arrays ! INTEGER, SAVE :: & mixrho_iter = 0 ! history of mixing #ifndef __GFORTRAN TYPE(mix_type), ALLOCATABLE, SAVE :: & df(:), &! information from preceding iterations dv(:) ! " " " " " " #endif REAL(DP) :: dr2_paw, norm INTEGER, PARAMETER :: read_ = -1, write_ = +1 ! ! ... external functions ! INTEGER, EXTERNAL :: find_free_unit ! CALL start_clock( 'mix_rho' ) ! ! ngm0 = ngms ! mixrho_iter = iter ! IF ( n_iter > maxmix ) CALL errore( 'mix_rho', 'n_iter too big', 1 ) ! ! define mix_type variables and copy scf_type variables there ! call create_mix_type(rhout_m) call create_mix_type(rhoin_m) ! call assign_scf_to_mix_type(rhoin, rhoin_m) call assign_scf_to_mix_type(input_rhout, rhout_m) call mix_type_AXPY ( -1.d0, rhoin_m, rhout_m ) ! dr2 = rho_ddot( rhout_m, rhout_m, ngms ) !!!! this used to be ngm NOT ngms ! IF (dr2 < 0.0_DP) CALL errore('mix_rho','negative dr2',1) ! conv = ( dr2 < tr2 ) ! IF ( conv .OR. dr2 < tr2_min ) THEN ! ! ... if convergence is achieved or if the self-consistency error (dr2) is ! ... smaller than the estimated error due to diagonalization (tr2_min), ! ... exit and leave rhoin and rhocout unchanged ! IF ( ALLOCATED( df ) ) THEN DO i=1, n_iter call destroy_mix_type(df(i)) END DO DEALLOCATE( df ) END IF IF ( ALLOCATED( dv ) ) THEN DO i=1, n_iter call destroy_mix_type(dv(i)) END DO DEALLOCATE( dv ) END IF ! call destroy_mix_type(rhoin_m) call destroy_mix_type(rhout_m) CALL stop_clock( 'mix_rho' ) ! RETURN ! END IF ! IF ( .NOT. ALLOCATED( df ) ) THEN ALLOCATE( df( n_iter ) ) DO i=1,n_iter CALL create_mix_type( df(i) ) END DO END IF IF ( .NOT. ALLOCATED( dv ) ) THEN ALLOCATE( dv( n_iter ) ) DO i=1,n_iter CALL create_mix_type( dv(i) ) END DO END IF ! ! ... iter_used = mixrho_iter-1 if mixrho_iter <= n_iter ! ... iter_used = n_iter if mixrho_iter > n_iter ! iter_used = MIN( ( mixrho_iter - 1 ), n_iter ) ! ! ... ipos is the position in which results from the present iteration ! ... are stored. ipos=mixrho_iter-1 until ipos=n_iter, then back to 1,2,... ! ipos = mixrho_iter - 1 - ( ( mixrho_iter - 2 ) / n_iter ) * n_iter ! IF ( mixrho_iter > 1 ) THEN ! CALL davcio_mix_type( df(ipos), iunmix, 1, read_ ) CALL davcio_mix_type( dv(ipos), iunmix, 2, read_ ) ! call mix_type_AXPY ( -1.d0, rhout_m, df(ipos) ) call mix_type_AXPY ( -1.d0, rhoin_m, dv(ipos) ) #ifdef __NORMALIZE_BETAMIX ! NORMALIZE norm2 = rho_ddot( df(ipos), df(ipos), ngm0 ) obn = 1.d0/sqrt(norm2) call mix_type_SCAL (obn,df(ipos)) call mix_type_SCAL (obn,dv(ipos)) #endif ! END IF ! DO i = 1, iter_used ! IF ( i /= ipos ) THEN ! CALL davcio_mix_type( df(i), iunmix, 2*i+1, read_ ) CALL davcio_mix_type( dv(i), iunmix, 2*i+2, read_ ) END IF ! END DO ! CALL davcio_mix_type( rhout_m, iunmix, 1, write_ ) CALL davcio_mix_type( rhoin_m, iunmix, 2, write_ ) ! IF ( mixrho_iter > 1 ) THEN CALL davcio_mix_type( df(ipos), iunmix, 2*ipos+1, write_ ) CALL davcio_mix_type( dv(ipos), iunmix, 2*ipos+2, write_ ) END IF ! ! Nothing else to do on first iteration skip_on_first: & IF (iter_used > 0) THEN ! ALLOCATE(betamix(iter_used, iter_used)) !iter_used)) betamix = 0._dp ! DO i = 1, iter_used ! DO j = i, iter_used ! betamix(i,j) = rho_ddot( df(j), df(i), ngm0 ) betamix(j,i) = betamix(i,j) ! END DO ! END DO ! ! allocate(e(iter_used), v(iter_used, iter_used)) ! CALL rdiagh(iter_used, betamix, iter_used, e, v) ! write(*,'(1e11.3)') e(:) ! write(*,*) ! deallocate(e,v) allocate(work(iter_used), iwork(iter_used)) !write(*,*) betamix(:,:) CALL DSYTRF( 'U', iter_used, betamix, iter_used, iwork, work, iter_used, info ) CALL errore( 'broyden', 'factorization', abs(info) ) ! CALL DSYTRI( 'U', iter_used, betamix, iter_used, iwork, work, info ) CALL errore( 'broyden', 'DSYTRI', abs(info) ) ! deallocate(iwork) ! FORALL( i = 1:iter_used, & j = 1:iter_used, j > i ) betamix(j,i) = betamix(i,j) ! DO i = 1, iter_used work(i) = rho_ddot( df(i), rhout_m, ngm0 ) END DO ! DO i = 1, iter_used ! gamma0 = DOT_PRODUCT( betamix(1:iter_used,i), work(1:iter_used) ) ! call mix_type_AXPY ( -gamma0, dv(i), rhoin_m ) call mix_type_AXPY ( -gamma0, df(i), rhout_m ) ! END DO DEALLOCATE(betamix, work) ! ! ... auxiliary vectors dv and df not needed anymore ! ENDIF skip_on_first ! IF ( ALLOCATED( df ) ) THEN DO i=1, n_iter call destroy_mix_type(df(i)) END DO DEALLOCATE( df ) END IF IF ( ALLOCATED( dv ) ) THEN DO i=1, n_iter call destroy_mix_type(dv(i)) END DO DEALLOCATE( dv ) END IF ! ! ... preconditioning the new search direction ! IF ( imix == 1 ) THEN ! CALL approx_screening( rhout_m ) ! ELSE IF ( imix == 2 ) THEN ! CALL approx_screening2( rhout_m, rhoin_m ) ! END IF ! ! ... set new trial density ! call mix_type_AXPY ( alphamix, rhout_m, rhoin_m ) ! ... simple mixing for high_frequencies (and set to zero the smooth ones) call high_frequency_mixing ( rhoin, input_rhout, alphamix ) ! ... add the mixed rho for the smooth frequencies call assign_mix_to_scf_type(rhoin_m,rhoin) ! call destroy_mix_type(rhout_m) call destroy_mix_type(rhoin_m) CALL stop_clock( 'mix_rho' ) ! RETURN ! END SUBROUTINE mix_rho ! !---------------------------------------------------------------------------- SUBROUTINE approx_screening( drho ) !---------------------------------------------------------------------------- ! ! ... apply an average TF preconditioning to drho ! USE kinds, ONLY : DP USE constants, ONLY : e2, pi, fpi USE cell_base, ONLY : omega, tpiba2 USE gvect, ONLY : gg, ngm, nl, nlm USE klist, ONLY : nelec USE lsda_mod, ONLY : nspin USE control_flags, ONLY : ngm0 USE scf, ONLY : mix_type USE wavefunctions_module, ONLY : psic ! IMPLICIT NONE ! type (mix_type), intent(INOUT) :: drho ! (in/out) ! REAL(DP) :: rrho, rmag, rs, agg0 INTEGER :: ig, is ! rs = ( 3.D0 * omega / fpi / nelec )**( 1.D0 / 3.D0 ) ! agg0 = ( 12.D0 / pi )**( 2.D0 / 3.D0 ) / tpiba2 / rs ! IF ( nspin == 1 .OR. nspin == 4 ) THEN ! drho%of_g(:ngm0,1) = drho%of_g(:ngm0,1) * gg(:ngm0) / (gg(:ngm0)+agg0) ! ELSE IF ( nspin == 2 ) THEN ! DO ig = 1, ngm0 ! rrho = ( drho%of_g(ig,1) + drho%of_g(ig,2) ) * gg(ig) / (gg(ig)+agg0) rmag = ( drho%of_g(ig,1) - drho%of_g(ig,2) ) ! drho%of_g(ig,1) = 0.5D0*( rrho + rmag ) drho%of_g(ig,2) = 0.5D0*( rrho - rmag ) ! END DO ! END IF ! RETURN ! END SUBROUTINE approx_screening ! !---------------------------------------------------------------------------- SUBROUTINE approx_screening2( drho, rhobest ) !---------------------------------------------------------------------------- ! ! ... apply a local-density dependent TF preconditioning to drho ! USE kinds, ONLY : DP USE constants, ONLY : e2, pi, tpi, fpi, eps8, eps32 USE cell_base, ONLY : omega, tpiba2 USE gvecs, ONLY : nls, nlsm USE gvect, ONLY : gg, ngm, nl, nlm USE wavefunctions_module, ONLY : psic USE klist, ONLY : nelec USE lsda_mod, ONLY : nspin USE control_flags, ONLY : ngm0, gamma_only USE scf, ONLY : mix_type, local_tf_ddot USE mp, ONLY : mp_sum USE mp_bands, ONLY : intra_bgrp_comm USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : fwfft, invfft ! IMPLICIT NONE ! type(mix_type), intent(inout) :: drho type(mix_type), intent(in) :: rhobest ! INTEGER, PARAMETER :: mmx = 12 ! INTEGER :: & iwork(mmx), i, j, m, info, is REAL(DP) :: & rs, avg_rsm1, target, dr2_best REAL(DP) :: & aa(mmx,mmx), invaa(mmx,mmx), bb(mmx), work(mmx), vec(mmx), agg0 COMPLEX(DP), ALLOCATABLE :: & v(:,:), &! v(ngm0,mmx) w(:,:), &! w(ngm0,mmx) dv(:), &! dv(ngm0) vbest(:), &! vbest(ngm0) wbest(:) ! wbest(ngm0) REAL(DP), ALLOCATABLE :: & alpha(:) ! alpha(dffts%nnr) ! COMPLEX(DP) :: rrho, rmag INTEGER :: ir, ig REAL(DP), PARAMETER :: one_third = 1.D0 / 3.D0 ! ! IF ( nspin == 2 ) THEN ! DO ig = 1, ngm0 ! rrho = drho%of_g(ig,1) + drho%of_g(ig,2) rmag = drho%of_g(ig,1) - drho%of_g(ig,2) ! drho%of_g(ig,1) = rrho drho%of_g(ig,2) = rmag ! END DO ! END IF ! target = 0.D0 ! IF ( gg(1) < eps8 ) drho%of_g(1,1) = ZERO ! ALLOCATE( alpha( dffts%nnr ) ) ALLOCATE( v( ngm0, mmx ), & w( ngm0, mmx ), dv( ngm0 ), vbest( ngm0 ), wbest( ngm0 ) ) ! v(:,:) = ZERO w(:,:) = ZERO dv(:) = ZERO vbest(:) = ZERO wbest(:) = ZERO ! ! ... calculate alpha from density ! psic(:) = ZERO ! IF ( nspin == 2 ) THEN ! psic(nls(:ngm0)) = ( rhobest%of_g(:ngm0,1) + rhobest%of_g(:ngm0,2) ) ! ELSE ! psic(nls(:ngm0)) = rhobest%of_g(:ngm0,1) ! END IF ! IF ( gamma_only ) psic(nlsm(:ngm0)) = CONJG( psic(nls(:ngm0)) ) ! CALL invfft ('Smooth', psic, dffts) ! alpha(:) = REAL( psic(1:dffts%nnr) ) ! avg_rsm1 = 0.D0 ! DO ir = 1, dffts%nnr ! alpha(ir) = ABS( alpha(ir) ) ! IF ( alpha(ir) > eps32 ) THEN ! rs = ( 3.D0 / fpi / alpha(ir) )**one_third avg_rsm1 = avg_rsm1 + 1.D0 / rs alpha(ir) = rs ! END IF ! END DO ! alpha = 3.D0 * ( tpi / 3.D0 )**( 5.D0 / 3.D0 ) * alpha rs = ( 3.D0 * omega / fpi / nelec )**one_third ! CALL mp_sum( avg_rsm1 , intra_bgrp_comm ) avg_rsm1 = ( dffts%nr1*dffts%nr2*dffts%nr3 ) / avg_rsm1 agg0 = ( 12.D0 / pi )**( 2.D0 / 3.D0 ) / tpiba2 / avg_rsm1 ! ! ... calculate deltaV and the first correction vector ! psic(:) = ZERO ! psic(nls(:ngm0)) = drho%of_g(:ngm0,1) ! IF ( gamma_only ) psic(nlsm(:ngm0)) = CONJG( psic(nls(:ngm0)) ) ! CALL invfft ('Smooth', psic, dffts) ! psic(:dffts%nnr) = psic(:dffts%nnr) * alpha(:) ! CALL fwfft ('Smooth', psic, dffts) ! dv(:) = psic(nls(:ngm0)) * gg(:ngm0) * tpiba2 v(:,1)= psic(nls(:ngm0)) * gg(:ngm0) / ( gg(:ngm0) + agg0 ) ! m = 1 aa(:,:) = 0.D0 bb(:) = 0.D0 ! repeat_loop: DO ! ! ... generate the vector w ! w(:,m) = fpi * e2 * v(:,m) ! psic(:) = ZERO ! psic(nls(:ngm0)) = v(:,m) ! IF ( gamma_only ) psic(nlsm(:ngm0)) = CONJG( psic(nls(:ngm0)) ) ! CALL invfft ('Smooth', psic, dffts) ! psic(:dffts%nnr) = psic(:dffts%nnr) * alpha(:) ! CALL fwfft ('Smooth', psic, dffts) ! w(:,m) = w(:,m) + gg(:ngm0) * tpiba2 * psic(nls(:ngm0)) ! ! ... build the linear system ! DO i = 1, m ! aa(i,m) = local_tf_ddot( w(1,i), w(1,m), ngm0) ! aa(m,i) = aa(i,m) ! END DO ! bb(m) = local_tf_ddot( w(1,m), dv, ngm0) ! ! ... solve it -> vec ! invaa = aa ! CALL DSYTRF( 'U', m, invaa, mmx, iwork, work, mmx, info ) CALL errore( 'broyden', 'factorization', info ) ! CALL DSYTRI( 'U', m, invaa, mmx, iwork, work, info ) CALL errore( 'broyden', 'DSYTRI', info ) ! FORALL( i = 1:m, j = 1:m, j > i ) invaa(j,i) = invaa(i,j) ! FORALL( i = 1:m ) vec(i) = SUM( invaa(i,:)*bb(:) ) ! vbest(:) = ZERO wbest(:) = dv(:) ! DO i = 1, m ! vbest = vbest + vec(i) * v(:,i) wbest = wbest - vec(i) * w(:,i) ! END DO ! dr2_best = local_tf_ddot( wbest, wbest, ngm0 ) ! IF ( target == 0.D0 ) target = MAX( 1.D-12, 1.D-6*dr2_best ) ! IF ( dr2_best < target ) THEN ! drho%of_g(:ngm0,1) = vbest(:) ! IF ( nspin == 2 ) THEN ! DO ig = 1, ngm0 ! rrho = drho%of_g(ig,1) rmag = drho%of_g(ig,2) ! drho%of_g(ig,1) = 0.5D0 * ( rrho + rmag ) drho%of_g(ig,2) = 0.5D0 * ( rrho - rmag ) ! END DO ! END IF ! DEALLOCATE( alpha, v, w, dv, vbest, wbest ) ! EXIT repeat_loop ! ELSE IF ( m >= mmx ) THEN ! m = 1 ! v(:,m) = vbest(:) aa(:,:) = 0.D0 bb(:) = 0.D0 ! CYCLE repeat_loop ! END IF ! m = m + 1 ! v(:,m) = wbest(:) / ( gg(:ngm0) + agg0 ) ! END DO repeat_loop ! RETURN ! END SUBROUTINE approx_screening2 espresso-5.1/PW/src/vloc_of_g.f900000644000175000017500000001066112341373025014700 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine vloc_of_g (mesh, msh, rab, r, vloc_at, zp, tpiba2, ngl, & gl, omega, vloc) !---------------------------------------------------------------------- ! ! This routine computes the Fourier transform of the local ! part of an atomic pseudopotential, given in numerical form. ! A term erf(r)/r is subtracted in real space (thus making the ! function short-ramged) and added again in G space (for G<>0) ! The G=0 term contains \int (V_loc(r)+ Ze^2/r) 4pi r^2 dr. ! This is the "alpha" in the so-called "alpha Z" term of the energy. ! Atomic Ry units everywhere. ! USE kinds USE constants, ONLY : pi, fpi, e2, eps8 USE esm, ONLY : do_comp_esm, esm_bc implicit none ! ! first the dummy variables ! integer, intent(in) :: ngl, mesh, msh ! ngl : the number of shells of G vectors ! mesh: number of grid points in the radial grid ! msh : as above, used for radial integration ! real(DP), intent(in) :: zp, rab (mesh), r (mesh), vloc_at (mesh), tpiba2, & omega, gl (ngl) ! zp : valence pseudocharge ! rab: the derivative of mesh points ! r : the mesh points ! vloc_at: local part of the atomic pseudopotential on the radial mesh ! tpiba2 : 2 pi / alat ! omega : the volume of the unit cell ! gl : the moduli of g vectors for each shell ! real(DP), intent(out):: vloc (ngl) ! ! vloc: the fourier transform of the potential ! ! local variables ! real(DP) :: vlcp, fac, gx real(DP), allocatable :: aux (:), aux1 (:) integer :: igl, igl0, ir ! igl :counter on g shells vectors ! igl0:first shell with g != 0 ! ir :counter on mesh points ! real(DP), external :: qe_erf ! allocate ( aux(msh), aux1(msh) ) if (gl (1) < eps8) then ! ! first the G=0 term ! IF ( do_comp_esm .and. ( esm_bc .ne. 'pbc' ) ) THEN ! ! ... temporarily redefine term for ESM calculation ! do ir = 1, msh aux (ir) = r (ir) * (r (ir) * vloc_at (ir) + zp * e2 & * qe_erf (r (ir) ) ) enddo ELSE do ir = 1, msh aux (ir) = r (ir) * (r (ir) * vloc_at (ir) + zp * e2) enddo END IF call simpson (msh, aux, rab, vlcp) vloc (1) = vlcp igl0 = 2 else igl0 = 1 endif ! ! here the G<>0 terms, we first compute the part of the integrand ! function independent of |G| in real space ! do ir = 1, msh aux1 (ir) = r (ir) * vloc_at (ir) + zp * e2 * qe_erf (r (ir) ) enddo fac = zp * e2 / tpiba2 ! ! and here we perform the integral, after multiplying for the |G| ! dependent part ! do igl = igl0, ngl gx = sqrt (gl (igl) * tpiba2) do ir = 1, msh aux (ir) = aux1 (ir) * sin (gx * r (ir) ) / gx enddo call simpson (msh, aux, rab, vlcp) IF ( ( .not. do_comp_esm ) .or. ( esm_bc .eq. 'pbc' ) ) THEN ! ! here we re-add the analytic fourier transform of the erf function ! vlcp = vlcp - fac * exp ( - gl (igl) * tpiba2 * 0.25d0) / gl (igl) END IF vloc (igl) = vlcp enddo vloc (:) = vloc(:) * fpi / omega deallocate (aux, aux1) return end subroutine vloc_of_g ! !---------------------------------------------------------------------- subroutine vloc_coul (zp, tpiba2, ngl, gl, omega, vloc) !---------------------------------------------------------------------- ! ! Fourier transform of the Coulomb potential - For all-electron ! calculations, in specific cases only, for testing purposes ! USE kinds USE constants, ONLY : fpi, e2, eps8 implicit none ! integer, intent(in) :: ngl ! the number of shells of G vectors real(DP), intent(in) :: zp, tpiba2, omega, gl (ngl) ! valence pseudocharge ! 2 pi / alat ! the volume of the unit cell ! the moduli of g vectors for each shell real(DP), intent (out) :: vloc (ngl) ! the fourier transform of the potential ! integer :: igl0 ! if (gl (1) < eps8) then igl0 = 2 vloc(1) = 0.0_dp else igl0 = 1 endif vloc (igl0:ngl) = - fpi * zp *e2 / omega / tpiba2 / gl (igl0:ngl) return end subroutine vloc_coul espresso-5.1/PW/src/init_run.f900000644000175000017500000001027612341373025014574 0ustar mbamba! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE init_run() !---------------------------------------------------------------------------- ! USE klist, ONLY : nkstot USE symme, ONLY : sym_rho_init USE wvfct, ONLY : nbnd, et, wg, btype USE control_flags, ONLY : lmd, gamma_only, smallmem, ts_vdw USE cell_base, ONLY : at, bg, set_h_ainv USE cellmd, ONLY : lmovecell USE dynamics_module, ONLY : allocate_dyn_vars USE paw_variables, ONLY : okpaw USE paw_init, ONLY : paw_init_onecenter, allocate_paw_internals #ifdef __MPI USE paw_init, ONLY : paw_post_init #endif USE bp, ONLY : allocate_bp_efield, bp_global_map USE fft_base, ONLY : dffts USE funct, ONLY : dft_is_hybrid USE recvec_subs, ONLY : ggen USE wannier_new, ONLY : use_wannier USE dfunct, ONLY : newd USE esm, ONLY : do_comp_esm, esm_ggen_2d USE mp_bands, ONLY : intra_bgrp_comm USE tsvdw_module, ONLY : tsvdw_initialize ! IMPLICIT NONE ! ! CALL start_clock( 'init_run' ) ! ! ... calculate limits of some indices, used in subsequent allocations ! CALL pre_init() ! ! ... allocate memory for G- and R-space fft arrays ! CALL allocate_fft() ! IF ( dft_is_hybrid() .AND. dffts%have_task_groups ) & CALL errore ('init_run', '-ntg option incompatible with EXX',1) ! ! ... generate reciprocal-lattice vectors and fft indices ! IF( smallmem ) THEN CALL ggen( gamma_only, at, bg, intra_bgrp_comm, no_global_sort = .TRUE. ) ELSE CALL ggen( gamma_only, at, bg ) END IF ! IF (do_comp_esm) CALL esm_ggen_2d () CALL gshells ( lmovecell ) ! ! ... variable initialization for parallel symmetrization ! CALL sym_rho_init (gamma_only ) ! CALL summary() ! ! ... allocate memory for all other arrays (potentials, wavefunctions etc) ! CALL allocate_nlpot() IF (okpaw) THEN CALL allocate_paw_internals() CALL paw_init_onecenter() ENDIF CALL allocate_locpot() CALL allocate_wfc() CALL allocate_bp_efield() CALL bp_global_map() ! call plugin_initbase() ! CALL memory_report() ! ALLOCATE( et( nbnd, nkstot ) , wg( nbnd, nkstot ), btype( nbnd, nkstot ) ) ! et(:,:) = 0.D0 wg(:,:) = 0.D0 ! btype(:,:) = 1 ! IF (ts_vdw) THEN CALL tsvdw_initialize() CALL set_h_ainv() END IF ! CALL openfil() ! CALL hinit0() ! CALL potinit() ! CALL newd() ! CALL wfcinit() ! IF(use_wannier) CALL wannier_init() ! #ifdef __MPI ! Cleanup PAW arrays that are only used for init IF (okpaw) CALL paw_post_init() ! only parallel! #endif ! IF ( lmd ) CALL allocate_dyn_vars() ! CALL stop_clock( 'init_run' ) ! RETURN ! END SUBROUTINE init_run ! !---------------------------------------------------------------------------- SUBROUTINE pre_init() !---------------------------------------------------------------------------- ! USE ions_base, ONLY : nat, nsp, ityp USE uspp_param, ONLY : upf, lmaxkb, nh, nhm, nbetam USE uspp, ONLY : nkb, nkbus IMPLICIT NONE INTEGER :: na, nt, nb ! ! calculate the number of beta functions for each atomic type ! lmaxkb = - 1 DO nt = 1, nsp ! nh (nt) = 0 ! ! do not add any beta projector if pseudo in 1/r fmt (AF) IF ( upf(nt)%tcoulombp ) CYCLE ! DO nb = 1, upf(nt)%nbeta nh (nt) = nh (nt) + 2 * upf(nt)%lll(nb) + 1 lmaxkb = MAX (lmaxkb, upf(nt)%lll(nb) ) ENDDO ! ENDDO ! ! calculate the maximum number of beta functions ! nhm = MAXVAL (nh (1:nsp)) nbetam = MAXVAL (upf(:)%nbeta) ! ! calculate the number of beta functions of the solid ! nkb = 0 nkbus = 0 do na = 1, nat nt = ityp(na) nkb = nkb + nh (nt) if (upf(nt)%tvanp) nkbus = nkbus + nh (nt) enddo END SUBROUTINE pre_init espresso-5.1/PW/src/plugin_initialization.f900000644000175000017500000000121312341373025017341 0ustar mbamba! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE plugin_initialization() !---------------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE kinds, ONLY : DP USE io_files, ONLY : tmp_dir ! USE plugin_flags ! IMPLICIT NONE ! ! END SUBROUTINE plugin_initialization espresso-5.1/PW/src/data_structure.f900000644000175000017500000000455112341373025015775 0ustar mbamba! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE data_structure( gamma_only ) !----------------------------------------------------------------------- ! this routine sets the data structure for the fft arrays ! (both the smooth and the dense grid) ! In the parallel case, it distributes columns to processes, too ! USE kinds, ONLY : DP USE mp, ONLY : mp_max USE mp_bands, ONLY : me_bgrp, nproc_bgrp, root_bgrp, intra_bgrp_comm, & ntask_groups USE mp_pools, ONLY : inter_pool_comm USE fft_base, ONLY : dfftp, dffts USE cell_base, ONLY : bg, tpiba USE klist, ONLY : xk, nks USE gvect, ONLY : gcutm, gvect_init USE gvecs, ONLY : gcutms, gvecs_init USE stick_set, ONLY : pstickset USE wvfct, ONLY : ecutwfc ! IMPLICIT NONE LOGICAL, INTENT(in) :: gamma_only REAL (DP) :: gkcut INTEGER :: ik, ngm_, ngs_, ngw_ ! ! ... calculate gkcut = max |k+G|^2, in (2pi/a)^2 units ! IF (nks == 0) THEN ! ! if k-points are automatically generated (which happens later) ! use max(bg)/2 as an estimate of the largest k-point ! gkcut = 0.5d0 * max ( & sqrt (sum(bg (1:3, 1)**2) ), & sqrt (sum(bg (1:3, 2)**2) ), & sqrt (sum(bg (1:3, 3)**2) ) ) ELSE gkcut = 0.0d0 DO ik = 1, nks gkcut = max (gkcut, sqrt ( sum(xk (1:3, ik)**2) ) ) ENDDO ENDIF gkcut = (sqrt (ecutwfc) / tpiba + gkcut)**2 ! ! ... find maximum value among all the processors ! CALL mp_max (gkcut, inter_pool_comm ) ! ! ... set up fft descriptors, including parallel stuff: sticks, planes, etc. ! CALL pstickset( gamma_only, bg, gcutm, gkcut, gcutms, & dfftp, dffts, ngw_ , ngm_ , ngs_ , me_bgrp, & root_bgrp, nproc_bgrp, intra_bgrp_comm, ntask_groups ) ! ! on output, ngm_ and ngs_ contain the local number of G-vectors ! for the two grids. Initialize local and global number of G-vectors ! call gvect_init ( ngm_ , intra_bgrp_comm ) call gvecs_init ( ngs_ , intra_bgrp_comm ); ! END SUBROUTINE data_structure espresso-5.1/PW/src/init_q_aeps.f900000644000175000017500000002012112341373025015226 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE init_q_aeps ( ) !------------------------------------------------------------------------ ! ! Initialization of the pseudopotential-dependent quantities needed for ! LDA+U method with projections computed through : ! q_ae = integral of the AE wfc up to r_core ! q_ps = integral of the PS wfc up to r_core (not used at the moment) ! USE kinds, ONLY : DP USE ions_base, ONLY : ntyp => nsp, ityp, nat USE atom, ONLY : rgrid, msh USE lsda_mod, ONLY : nspin USE ldaU, ONLY : q_ae, q_ps, Hubbard_l, & U_projection, is_hubbard, nwfcU, offsetU USE uspp_param, ONLY : nbetam, nh, nhm, upf USE uspp, ONLY : indv, nhtol, nhtolm, nkb USE control_flags, ONLY : iverbosity USE io_global, ONLY : ionode ! IMPLICIT NONE ! LOCAL INTEGER :: l, m, mb, nb, ndm, cnt, kk, iwfc, jwfc INTEGER :: nt, nt_, na, ih, jh, ib, jb, lH, nchiH, nbH !INTEGER :: ijkb0, ikb, jkb REAL(DP), ALLOCATABLE :: aux (:), qq_ae(:,:,:), qq_ps(:,:,:) REAL(DP) :: psint, aeint, wsgn ! ! ALLOCATE ( q_ae(nwfcU,nhm,nat), q_ps(nwfcU,nhm,nat) ) ! ndm = MAXVAL (msh(1:ntyp)) ALLOCATE ( aux(ndm), qq_ae(nbetam,nbetam,ntyp), qq_ps(nbetam,nbetam,ntyp) ) ! qq_ae(:,:,:) = 0.0_DP qq_ps(:,:,:) = 0.0_DP q_ae(:,:,:) = 0.0_DP q_ps(:,:,:) = 0.0_DP ! ! ! Compute the integrals of the AE and PS wavefunctions up to core radii ! (only for atomic types entering in the Hubbard Hamiltonian) ! DO nt = 1, ntyp ! IF ( .NOT. is_hubbard(nt) ) CYCLE ! IF ( .NOT.upf(nt)%has_wfc ) CALL errore('init_q_aeps', & "All-electron atomic-wavefunctions needed for pseudo U_projection",1) ! DO nb = 1, upf(nt)%nbeta ! DO mb = nb, upf(nt)%nbeta ! IF ( upf(nt)%lll(mb) == upf(nt)%lll(nb) ) then ! kk = MAX(upf(nt)%kbeta(mb),upf(nt)%kbeta(nb)) ! needed ??? aux(1:msh(nt)) = upf(nt)%aewfc(1:msh(nt),mb)*upf(nt)%aewfc(1:msh(nt),nb) CALL simpson (upf(nt)%kbeta(nb),aux,rgrid(nt)%rab,aeint) qq_ae(nb,mb,nt) = aeint qq_ae(mb,nb,nt) = aeint aux(1:msh(nt)) = upf(nt)%pswfc(1:msh(nt),mb)*upf(nt)%pswfc(1:msh(nt),nb) CALL simpson (upf(nt)%kbeta(nb),aux,rgrid(nt)%rab,psint) qq_ps(nb,mb,nt) = psint qq_ps(mb,nb,nt) = psint ! ENDIF ENDDO ENDDO !!! WARNING: when generated with lsave_wfc, the PP file contains the !!! AE and PS wfcs for every beta projector (in principle more than one !!! for each l). We identify which beta corresponds to the bound state !!! by checking the norm of the difference |pswfc(r) - chi(r)| lH = Hubbard_l(nt) nbH = -1 ! ! select chi corresponding to bound states (the same used to build initial ! wfcs) AND with l = Hubbard_l (only for species with Hubbard_l defined) ! IF ( lH .GE. 0 ) THEN ! !!! NOTE: one might run into troubles when using a PP with semicore !!! states with same l as valence states (also otherwhere for LDA+U) DO nb = 1, upf(nt)%nwfc IF (upf(nt)%lchi(nb) == lH .AND. upf(nt)%oc(nb) >= 0.d0) nchiH = nb ENDDO ! DO nb = 1, upf(nt)%nbeta ! IF (upf(nt)%lll(nb) == lH) THEN ! check if chi and pswfc have the same sign or not aux(1:msh(nt)) = upf(nt)%pswfc(:,nb)*upf(nt)%chi(:,nchiH) CALL simpson(msh(nt),aux,rgrid(nt)%rab,psint) wsgn = sign(1.0_DP,psint) ! compute norm of the difference [pswfc(r) - chi(r)] aux(1:msh(nt)) = (upf(nt)%pswfc(:,nb) - wsgn*upf(nt)%chi(:,nchiH))**2 CALL simpson(msh(nt),aux,rgrid(nt)%rab,psint) IF ( abs(psint) .LE. 1.d-9 ) nbH = nb ENDIF ! ENDDO ! !!! DEBUG if ( ionode .AND. iverbosity == 1 ) then write(*,*) '> QQ_AE matrix:' do nb = 1, upf(nt)%nbeta write(*,'(99F9.6)') qq_ae(nb,1:upf(nt)%nbeta,nt) enddo write(*,*) "nbH=",nbH,", lH",lH endif !!! ! IF ( nbH .EQ. -1 ) CALL errore("init_q_aeps", "could not set nbH", 1) ! ENDIF cnt = 0 ! ! initialize q_ae and q_ps for U projectors on beta functions (in the solid) DO na = 1, nat ! on atoms ! nt_ = ityp(na) ! offset for atomic wavefunctions (initialized in offset_atom_wfc) iwfc = offsetU(na) IF ( nt_ == nt .AND. lH .GE. 0 ) THEN ! !! we use indv instead of this (should give the same): ! compute offset for beta functions !IF ( nt == 0 ) THEN ! ijkb0 = 0 !ELSE ! ijkb0 = SUM(nh(1:nt-1)) !ENDIF !!! DEBUG if ( ionode .AND. iverbosity == 1 ) then write(*,*) "na, ityp, lH=",na,ityp(na),lH write(*,*) "nbH,lH,offset",nbH,lH,iwfc endif !!! DO jh = 1, nh(nt) ! !jkb = ijkb0 + jh IF (nhtol(jh,nt) .NE. lH) CYCLE jb = indv(jh,nt) ! DO ih = 1, nh(nt) ! !ikb = ijkb0 + ih ib = indv(ih,nt) IF (nhtol(ih,nt) .NE. lH) CYCLE IF (ib .NE. nbH) CYCLE IF ( nhtolm(ih,nt)==nhtolm(jh,nt) ) THEN ! m=nhtolm(ih,nt)-lH*lH !!! DEBUG if ( ionode .AND. iverbosity == 1 ) write(*,'(A,6I3,F9.6)') & "jh,ih,nhtolm,lH,m,iwfc+m,qq",jh,ih,nhtolm(ih,nt),lH,m,iwfc+m,qq_ae(jb,ib,nt) !!! ! q_ae(iwfc+m,jh,na) = qq_ae(jb,ib,nt) q_ps(iwfc+m,jh,na) = qq_ps(jb,ib,nt) ! !!! DEBUG if ( ionode .AND. iverbosity == 1 ) THEN write(*,'(A,3I3,2F9.6)') "iwfc,jh,na,q_ae,qq_ae", & iwfc+m,jh,na,q_ae(iwfc+m,jh,na),qq_ae(jb,ib,nt) write(*,'(A,3I3,2F9.6)') "iwfc,jh,na,q_ps,qq_ps", & iwfc+m,jh,na,q_ps(iwfc+m,jh,na),qq_ps(jb,ib,nt) endif !!! ! ENDIF ! ENDDO ! ih ENDDO ! jh ENDIF ! ityp ENDDO ! on atoms ! ENDDO ! on atomic types !!! DEBUG if ( ionode .AND. iverbosity == 1 ) then iwfc=0 do na = 1,nat nt = ityp(na) write(*,*) ">>> atom ",na,", type ",nt jwfc=iwfc write(*,*) " q_ae matrix" do nb = 1, upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l = upf(nt)%lchi(nb) do m = 1,2*l+1 jwfc=jwfc+1 write(*,'(2I1,99F6.3)') l,m,q_ae(jwfc,:,na) ! enddo endif enddo ! jwfc=iwfc write(*,*) " q_ps matrix" do nb = 1, upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l = upf(nt)%lchi(nb) do m = 1,2*l+1 jwfc=jwfc+1 write(*,'(2I1,99F6.3)') l,m,q_ps(jwfc,:,na) ! enddo endif enddo ! iwfc=jwfc ! enddo endif !!! ! ! deallocate( aux, qq_ae, qq_ps ) ! RETURN END SUBROUTINE init_q_aeps ! espresso-5.1/PW/src/pw_restart.f900000644000175000017500000027312212341373025015140 0ustar mbamba! ! Copyright (C) 2005-2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- MODULE pw_restart !---------------------------------------------------------------------------- ! ! ... this module contains methods to read and write data produced by PWscf ! ! ... originally written by Carlo Sbraccia (2005) ! ! USE iotk_module ! USE qexml_module,ONLY : qexml_init,qexml_openfile, qexml_closefile, & qexml_write_header, qexml_write_control , & qexml_write_cell, qexml_write_moving_cell, & qexml_write_ions, qexml_write_symmetry, & qexml_write_efield, qexml_write_planewaves, & qexml_write_spin, qexml_write_magnetization, & qexml_write_xc, qexml_write_exx, qexml_write_occ, & qexml_write_bz,qexml_write_para, qexml_write_bands_info, & qexml_write_bands_pw, qexml_wfc_filename, & default_fmt_version => qexml_default_version, & qexml_save_history, qexml_kpoint_dirname, & qexml_read_header, qexml_read_cell, qexml_read_moving_cell, & qexml_read_planewaves, qexml_read_ions, qexml_read_spin, & qexml_read_magnetization, qexml_read_xc, qexml_read_occ, qexml_read_bz, & qexml_read_bands_info, qexml_read_bands_pw, qexml_read_symmetry, & qexml_read_efield, qexml_read_para, qexml_read_exx ! USE xml_io_base, ONLY : rho_binary,read_wfc, write_wfc, create_directory ! ! USE kinds, ONLY : DP USE constants, ONLY : e2, PI USE io_files, ONLY : tmp_dir, prefix, iunpun, xmlpun, delete_if_present, & qexml_version, qexml_version_init, pseudo_dir USE io_global, ONLY : ionode, ionode_id USE mp_images, ONLY : intra_image_comm USE mp_pools, ONLY : my_pool_id USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_bcast, mp_sum, mp_max USE parser, ONLY : version_compare ! ! IMPLICIT NONE ! CHARACTER(LEN=256), external :: trimcheck ! SAVE ! PRIVATE ! PUBLIC :: pw_writefile, pw_readfile ! INTEGER, PRIVATE :: iunout ! LOGICAL :: lcell_read = .FALSE., & lpw_read = .FALSE., & lions_read = .FALSE., & lspin_read = .FALSE., & lstarting_mag_read = .FALSE., & lxc_read = .FALSE., & locc_read = .FALSE., & lbz_read = .FALSE., & lbs_read = .FALSE., & lefield_read = .FALSE., & lwfc_read = .FALSE., & lsymm_read = .FALSE. ! ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE pw_writefile( what ) !------------------------------------------------------------------------ ! USE control_flags, ONLY : istep, twfcollect, conv_ions, & lscf, lkpoint_dir, gamma_only, & tqr, noinv, do_makov_payne, smallmem USE realus, ONLY : real_space USE global_version, ONLY : version_number USE cell_base, ONLY : at, bg, alat, tpiba, tpiba2, & ibrav, celldm USE gvect, ONLY : ig_l2g USE ions_base, ONLY : nsp, ityp, atm, nat, tau, if_pos USE noncollin_module, ONLY : noncolin, npol USE io_files, ONLY : nwordwfc, iunwfc, iunigk, psfile USE buffers, ONLY : get_buffer USE wavefunctions_module, ONLY : evc USE klist, ONLY : nks, nkstot, xk, ngk, wk, qnorm, & lgauss, ngauss, degauss, nelec, & two_fermi_energies, nelup, neldw USE start_k, ONLY : nk1, nk2, nk3, k1, k2, k3, & nks_start, xk_start, wk_start USE ktetra, ONLY : ntetra, tetra, ltetra USE gvect, ONLY : ngm, ngm_g, g, mill USE fft_base, ONLY : dfftp USE basis, ONLY : natomwfc USE gvecs, ONLY : ngms_g, dual USE fft_base, ONLY : dffts USE wvfct, ONLY : npw, npwx, g2kin, et, wg, & igk, nbnd, ecutwfc USE ener, ONLY : ef, ef_up, ef_dw USE fixed_occ, ONLY : tfixed_occ, f_inp USE ldaU, ONLY : lda_plus_u, lda_plus_u_kind, U_projection, & Hubbard_lmax, Hubbard_l, Hubbard_U, Hubbard_J, & Hubbard_alpha, Hubbard_J0, Hubbard_beta USE spin_orb, ONLY : lspinorb, domag USE symm_base, ONLY : nrot, nsym, invsym, s, ft, irt, & t_rev, sname, time_reversal, no_t_rev USE lsda_mod, ONLY : nspin, isk, lsda, starting_magnetization USE noncollin_module, ONLY : angle1, angle2, i_cons, mcons, bfield, & lambda USE ions_base, ONLY : amass USE funct, ONLY : get_dft_name, get_inlc USE kernel_table, ONLY : vdw_table_name USE scf, ONLY : rho USE extfield, ONLY : tefield, dipfield, edir, & emaxpos, eopreg, eamp USE io_rho_xml, ONLY : write_rho USE mp_world, ONLY : nproc USE mp_images, ONLY : nproc_image USE mp_pools, ONLY : kunit, nproc_pool, me_pool, root_pool, & intra_pool_comm, inter_pool_comm USE mp_bands, ONLY : nproc_bgrp, me_bgrp, root_bgrp, & intra_bgrp_comm, inter_bgrp_comm, & nbgrp, ntask_groups USE mp_pots, ONLY : nproc_pot USE mp_diag, ONLY : nproc_ortho USE funct, ONLY : get_exx_fraction, dft_is_hybrid, & get_gau_parameter, & get_screening_parameter, exx_is_active USE exx, ONLY : x_gamma_extrapolation, nq1, nq2, nq3, & exxdiv_treatment, yukawa, ecutvcut USE cellmd, ONLY : lmovecell, cell_factor USE martyna_tuckerman, ONLY : do_comp_mt USE esm, ONLY : do_comp_esm ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: what ! CHARACTER(LEN=20) :: dft_name CHARACTER(LEN=256) :: dirname, filename INTEGER :: i, ig, ik, ngg, ierr, ipol, num_k_points INTEGER :: npool, nkbl, nkl, nkr, npwx_g INTEGER :: ike, iks, npw_g, ispin, inlc INTEGER, ALLOCATABLE :: ngk_g(:) INTEGER, ALLOCATABLE :: igk_l2g(:,:), igk_l2g_kdip(:,:), mill_g(:,:) LOGICAL :: lwfc, lrho CHARACTER(iotk_attlenx) :: attr ! ! SELECT CASE( what ) CASE( "all" ) ! ! ... do not overwrite the scf charge density with a non-scf one ! lrho = lscf lwfc = twfcollect ! CASE( "config" ) ! ! ... write just the xml data file, not the charge density and the wavefunctions ! lwfc = .FALSE. lrho = .FALSE. ! CASE DEFAULT ! CALL errore( 'pw_writefile', 'unexpected case: '//TRIM(what), 1 ) ! END SELECT ! IF ( ionode ) THEN ! ! ... look for an empty unit (only ionode needs it) ! CALL iotk_free_unit( iunout, ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'pw_writefile ', & 'no free units to write wavefunctions', ierr ) ! dirname = TRIM( tmp_dir ) // TRIM( prefix ) // '.save' ! ! ... create the main restart directory ! CALL create_directory( dirname ) ! ! ... create the k-points subdirectories ! IF ( nspin == 2 ) THEN num_k_points = nkstot / 2 ELSE num_k_points = nkstot END IF ! IF (lkpoint_dir) THEN ! DO i = 1, num_k_points ! CALL create_directory( qexml_kpoint_dirname( dirname, i ) ) ! END DO ! END IF ! IF ( nkstot > 0 ) THEN ! ! ... find out the number of pools ! npool = nproc_image / nproc_pool ! ! ... find out number of k points blocks ! nkbl = nkstot / kunit ! ! ... k points per pool ! nkl = kunit * ( nkbl / npool ) ! ! ... find out the reminder ! nkr = ( nkstot - nkl * npool ) / kunit ! ! ... Assign the reminder to the first nkr pools ! IF ( my_pool_id < nkr ) nkl = nkl + kunit ! ! ... find out the index of the first k point in this pool ! iks = nkl*my_pool_id + 1 ! IF ( my_pool_id >= nkr ) iks = iks + nkr*kunit ! ! ... find out the index of the last k point in this pool ! ike = iks + nkl - 1 ! END IF ! ! ... find out the global number of G vectors: ngm_g ! ngm_g = ngm ! CALL mp_sum( ngm_g, intra_bgrp_comm ) ! ! ... collect all G-vectors across processors within the pools ! ALLOCATE( mill_g( 3, ngm_g ) ) ! mill_g = 0 ! DO ig = 1, ngm ! mill_g(1,ig_l2g(ig)) = mill(1,ig) mill_g(2,ig_l2g(ig)) = mill(2,ig) mill_g(3,ig_l2g(ig)) = mill(3,ig) ! END DO ! CALL mp_sum( mill_g, intra_bgrp_comm ) ! ! ... build the igk_l2g array, yielding the correspondence between ! ... the local k+G index and the global G index - see also ig_l2g ! ... igk_l2g is build from arrays igk, previously stored in hinit0 ! ... Beware: for variable-cell case, one has to use starting G and ! ... k+G vectors ! ALLOCATE ( igk_l2g( npwx, nks ) ) ! igk_l2g = 0 ! IF ( nks > 1 ) REWIND( iunigk ) ! DO ik = 1, nks ! npw = ngk (ik) IF ( nks > 1 ) READ( iunigk ) igk ! CALL gk_l2gmap( ngm, ig_l2g(1), npw, igk(1), igk_l2g(1,ik) ) ! END DO ! ! ... compute the global number of G+k vectors for each k point ! ALLOCATE( ngk_g( nkstot ) ) ! ngk_g = 0 ngk_g(iks:ike) = ngk(1:nks) ! CALL mp_sum( ngk_g, inter_pool_comm) CALL mp_sum( ngk_g, intra_pool_comm) ! ngk_g = ngk_g / nbgrp ! ! ... compute the maximum G vector index among all G+k an processors ! npw_g = MAXVAL( igk_l2g(:,:) ) ! CALL mp_max( npw_g, inter_pool_comm ) CALL mp_max( npw_g, intra_pool_comm ) ! ! ... compute the maximum number of G vector among all k points ! npwx_g = MAXVAL( ngk_g(1:nkstot) ) ! ! ... define a further l2g map to write gkvectors and wfc coherently ! ALLOCATE ( igk_l2g_kdip( npwx_g, nks ) ) ! igk_l2g_kdip = 0 ! DO ik = iks, ike ! CALL gk_l2gmap_kdip( npw_g, ngk_g(ik), ngk(ik-iks+1), & igk_l2g(1,ik-iks+1), igk_l2g_kdip(1,ik-iks+1) ) END DO ! IF ( ionode ) THEN ! ! ... open XML descriptor ! CALL qexml_init( iunpun ) CALL qexml_openfile( TRIM( dirname ) // '/' // TRIM( xmlpun ), & 'write', BINARY = .FALSE., IERR = ierr ) ! IF (.NOT.(lkpoint_dir)) & CALL iotk_open_write( iunout, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun )//'.eig', BINARY = .FALSE., IERR = ierr ) END IF ! ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'pw_writefile ', & 'cannot open restart file for writing', ierr ) ! IF ( ionode ) THEN ! ! ... here we start writing the punch-file ! !------------------------------------------------------------------------------- ! ... HEADER !------------------------------------------------------------------------------- ! CALL qexml_write_header( "PWSCF", TRIM(version_number) ) ! !------------------------------------------------------------------------------- ! ... CONTROL !------------------------------------------------------------------------------- ! CALL qexml_write_control( PP_CHECK_FLAG=conv_ions, LKPOINT_DIR=lkpoint_dir, & Q_REAL_SPACE=tqr, BETA_REAL_SPACE=real_space ) ! !------------------------------------------------------------------------------- ! ... CELL !------------------------------------------------------------------------------- ! CALL qexml_write_cell( ibrav, celldm, alat, & at(:,1), at(:,2), at(:,3), bg(:,1), bg(:,2), bg(:,3), & "Bohr","Bohr","2 pi / a", & do_makov_payne, do_comp_mt, do_comp_esm ) ! IF (lmovecell) CALL qexml_write_moving_cell(lmovecell, cell_factor) ! !------------------------------------------------------------------------------- ! ... IONS !------------------------------------------------------------------------------- ! CALL qexml_write_ions( nsp, nat, atm, ityp, psfile, & pseudo_dir, amass, 'a.m.u.', tau, 'Bohr', if_pos, dirname, alat ) ! !------------------------------------------------------------------------------- ! ... SYMMETRIES !------------------------------------------------------------------------------- ! CALL qexml_write_symmetry( ibrav, nrot, nsym, invsym, noinv, & time_reversal, no_t_rev, ft, s, sname, "Crystal", irt, & nat, t_rev ) ! !------------------------------------------------------------------------------- ! ... ELECTRIC FIELD !------------------------------------------------------------------------------- ! CALL qexml_write_efield( tefield, dipfield, edir, emaxpos, eopreg, eamp) ! ! !------------------------------------------------------------------------------- ! ... PLANE_WAVES !------------------------------------------------------------------------------- ! CALL qexml_write_planewaves( ecutwfc/e2, ecutwfc*dual/e2, npwx_g, gamma_only, & dfftp%nr1, dfftp%nr2, dfftp%nr3, ngm_g, & dffts%nr1, dffts%nr2, dffts%nr3, ngms_g, dfftp%nr1, & dfftp%nr2, dfftp%nr3, mill_g, lwfc,'Hartree' ) ! !------------------------------------------------------------------------------- ! ... SPIN !------------------------------------------------------------------------------- ! CALL qexml_write_spin( lsda, noncolin, npol, lspinorb, domag ) ! CALL qexml_write_magnetization(starting_magnetization, & angle1*180.0_DP/PI , angle2*180.0_DP/PI, nsp, & two_fermi_energies, i_cons, mcons, bfield, & ef_up/e2, ef_dw/e2, nelup, neldw, lambda,'Hartree') ! !------------------------------------------------------------------------------- ! ... EXCHANGE_CORRELATION !------------------------------------------------------------------------------- ! dft_name = get_dft_name() inlc = get_inlc() ! CALL qexml_write_xc( DFT = dft_name, NSP = nsp, LDA_PLUS_U = lda_plus_u, & LDA_PLUS_U_KIND = lda_plus_u_kind, U_PROJECTION = U_projection, & HUBBARD_LMAX = Hubbard_lmax, HUBBARD_L = Hubbard_l, & HUBBARD_U = Hubbard_U, HUBBARD_J = Hubbard_J, & HUBBARD_J0 = Hubbard_J0, HUBBARD_BETA = Hubbard_beta, & HUBBARD_ALPHA = Hubbard_alpha, & INLC = inlc, VDW_TABLE_NAME = vdw_table_name, & PSEUDO_DIR = pseudo_dir, DIRNAME = dirname) IF ( dft_is_hybrid() ) CALL qexml_write_exx & ( x_gamma_extrapolation, nq1, nq2, nq3, & exxdiv_treatment, yukawa, ecutvcut, & get_exx_fraction(), get_gau_parameter(), & get_screening_parameter(), exx_is_active() ) ! !------------------------------------------------------------------------------- ! ... OCCUPATIONS !------------------------------------------------------------------------------- ! CALL qexml_write_occ( LGAUSS = lgauss, NGAUSS = ngauss, & DEGAUSS = degauss/e2,DEGAUSS_UNITS='Hartree', LTETRA = ltetra, NTETRA = ntetra, & TETRA = tetra, TFIXED_OCC = tfixed_occ, LSDA = lsda, & NSTATES_UP = nbnd, NSTATES_DW = nbnd, INPUT_OCC = f_inp ) ! !------------------------------------------------------------------------------- ! ... BRILLOUIN_ZONE !------------------------------------------------------------------------------- ! CALL qexml_write_bz( num_k_points, xk, wk, k1, k2, k3, nk1, nk2, nk3, & '2 pi / a',qnorm, nks_start, xk_start, wk_start ) ! !------------------------------------------------------------------------------- ! ... PARALLELISM !------------------------------------------------------------------------------- ! ! CALL qexml_write_para( kunit, nproc, nproc_pool, nproc_image, ntask_groups,& nproc_pot, nproc_bgrp, nproc_ortho ) ! !------------------------------------------------------------------------------- ! ... CHARGE DENSITY !------------------------------------------------------------------------------- ! ! filename = "./charge-density.dat" IF ( .NOT. rho_binary ) filename = "./charge-density.xml" ! CALL iotk_link( iunpun, "CHARGE-DENSITY", TRIM(filename), & CREATE=.FALSE., BINARY=.TRUE. ) ! !------------------------------------------------------------------------------- ! ... BAND_STRUCTURE_INFO !------------------------------------------------------------------------------- ! CALL qexml_write_bands_info( num_k_points, natomwfc, & nbnd, nbnd, nbnd, & nspin, nelec,NINT(nelup),NINT(neldw), & "Hartree", "2 pi / a", & ef=ef/e2, two_fermi_energies=two_fermi_energies ,& ef_up=ef_up/e2, ef_down=ef_dw/e2, noncolin=noncolin ) ! !------------------------------------------------------------------------------- ! ... EIGENVALUES !------------------------------------------------------------------------------- ! CALL qexml_write_bands_pw( nbnd, num_k_points, nspin, xk, wk, wg,et/e2,"Hartree" , lkpoint_dir , iunout , dirname ) ! ! IF (.NOT. lkpoint_dir ) CALL iotk_close_write( iunout ) ! !------------------------------------------------------------------------------- ! ... EIGENVECTORS !------------------------------------------------------------------------------- ! CALL iotk_write_begin( iunpun, "EIGENVECTORS" ) ! CALL iotk_write_dat ( iunpun, "MAX_NUMBER_OF_GK-VECTORS", npwx_g ) ! END IF ! k_points_loop2: DO ik = 1, num_k_points ! IF ( ionode ) THEN ! CALL iotk_write_begin( iunpun, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! ! ... G+K vectors ! CALL iotk_write_dat( iunpun, "NUMBER_OF_GK-VECTORS", ngk_g(ik) ) ! IF ( lwfc ) THEN ! filename = qexml_wfc_filename( ".", 'gkvectors', ik, DIR=lkpoint_dir ) ! CALL iotk_link( iunpun, "GK-VECTORS", & filename, CREATE = .FALSE., BINARY = .TRUE. ) ! filename = qexml_wfc_filename( dirname, 'gkvectors', ik, & DIR=lkpoint_dir ) END IF ! END IF ! IF ( lwfc ) THEN ! IF ( .NOT. smallmem ) CALL write_gk( iunout, ik, filename ) ! CALL write_this_wfc ( iunout, ik ) ! END IF ! IF ( ionode ) THEN ! CALL iotk_write_end( iunpun, "K-POINT" // TRIM( iotk_index(ik) ) ) ! END IF ! END DO k_points_loop2 ! IF ( ionode ) THEN ! CALL iotk_write_end( iunpun, "EIGENVECTORS" ) ! CALL qexml_closefile( 'write', IERR=ierr) ! ! CALL delete_if_present( TRIM( dirname ) // '/' // TRIM( xmlpun ) // '.bck' ) ! END IF ! DEALLOCATE ( igk_l2g ) DEALLOCATE ( igk_l2g_kdip ) ! !------------------------------------------------------------------------------- ! ... CHARGE-DENSITY FILES !------------------------------------------------------------------------------- ! ! ... do not overwrite the scf charge density with a non-scf one ! ... also writes rho%ns if lda+U and rho%bec if PAW ! IF ( lscf ) CALL write_rho( rho, nspin ) !------------------------------------------------------------------------------- ! ... END RESTART SECTIONS !------------------------------------------------------------------------------- ! DEALLOCATE( mill_g ) DEALLOCATE( ngk_g ) ! IF (ionode) CALL qexml_save_history( dirname, istep, ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'pw_writefile ', & 'cannot save history', ierr ) ! RETURN ! CONTAINS ! !-------------------------------------------------------------------- SUBROUTINE write_gk( iun, ik, filename ) !-------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iun, ik CHARACTER(LEN=256), INTENT(IN) :: filename ! INTEGER, ALLOCATABLE :: igwk(:,:) INTEGER, ALLOCATABLE :: itmp(:) ! ! ALLOCATE( igwk( npwx_g, nkstot ) ) ! igwk(:,ik) = 0 ! ALLOCATE( itmp( npw_g ) ) ! itmp = 0 ! IF ( ik >= iks .AND. ik <= ike ) THEN ! DO ig = 1, ngk(ik-iks+1) ! itmp(igk_l2g(ig,ik-iks+1)) = igk_l2g(ig,ik-iks+1) ! END DO ! END IF ! CALL mp_sum( itmp, inter_pool_comm ) CALL mp_sum( itmp, intra_pool_comm ) ! ngg = 0 ! DO ig = 1, npw_g ! if ( itmp(ig) == ig ) THEN ! ngg = ngg + 1 ! igwk(ngg,ik) = ig ! END IF ! END DO ! DEALLOCATE( itmp ) ! IF ( ionode ) THEN ! CALL iotk_open_write( iun, FILE = TRIM( filename ), & ROOT="GK-VECTORS", BINARY = .TRUE. ) ! CALL iotk_write_dat( iun, "NUMBER_OF_GK-VECTORS", ngk_g(ik) ) CALL iotk_write_dat( iun, "MAX_NUMBER_OF_GK-VECTORS", npwx_g ) CALL iotk_write_dat( iun, "GAMMA_ONLY", gamma_only ) ! CALL iotk_write_attr ( attr, "UNITS", "2 pi / a", FIRST = .TRUE. ) CALL iotk_write_dat( iun, "K-POINT_COORDS", xk(:,ik), ATTR = attr ) ! CALL iotk_write_dat( iun, "INDEX", igwk(1:ngk_g(ik),ik) ) CALL iotk_write_dat( iun, "GRID", mill_g(1:3,igwk(1:ngk_g(ik),ik)), & COLUMNS = 3 ) ! CALL iotk_close_write( iun ) ! END IF ! DEALLOCATE( igwk ) ! END SUBROUTINE write_gk ! !-------------------------------------------------------------------- SUBROUTINE write_this_wfc ( iun, ik ) !-------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iun, ik CHARACTER(LEN=256) :: filename INTEGER :: ispin,ik_eff ! ! ... wavefunctions ! IF ( nspin == 2 ) THEN ! ! ... beware: with pools, this is correct only on ionode ! ispin = isk(ik) ! IF ( ( ik >= iks ) .AND. ( ik <= ike ) ) THEN ! CALL get_buffer ( evc, nwordwfc, iunwfc, (ik-iks+1) ) ! END IF ! IF ( ionode ) THEN ! filename = qexml_wfc_filename( ".", 'evc', ik, ispin, & DIR=lkpoint_dir ) ! CALL iotk_link( iunpun, "WFC" // TRIM( iotk_index (ispin) ), & filename, CREATE = .FALSE., BINARY = .TRUE. ) ! filename = qexml_wfc_filename( dirname, 'evc', ik, ispin, & DIR=lkpoint_dir ) ! END IF ! CALL write_wfc( iunout, ik, nkstot, kunit, ispin, nspin, & evc, npw_g, gamma_only, nbnd, igk_l2g_kdip(:,ik-iks+1), & ngk(ik-iks+1), filename, 1.D0, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! ik_eff = ik + num_k_points ! ispin = isk(ik_eff) ! IF ( ( nks > 1 ) .AND. ( ik_eff >= iks ) .AND. ( ik_eff <= ike ) ) THEN ! CALL get_buffer ( evc, nwordwfc, iunwfc, (ik_eff-iks+1) ) ! END IF ! IF ( ionode ) THEN ! filename = qexml_wfc_filename( ".", 'evc', ik, ispin, & DIR=lkpoint_dir ) ! CALL iotk_link( iunpun, "WFC"//TRIM( iotk_index( ispin ) ), & filename, CREATE = .FALSE., BINARY = .TRUE. ) ! filename = qexml_wfc_filename( dirname, 'evc', ik, ispin, & DIR=lkpoint_dir ) ! END IF ! CALL write_wfc( iunout, ik_eff, nkstot, kunit, ispin, nspin, & evc, npw_g, gamma_only, nbnd, igk_l2g_kdip(:,ik_eff-iks+1), & ngk(ik_eff-iks+1), filename, 1.D0, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! ELSE ! IF ( ( nks > 1 ) .AND. ( ik >= iks ) .AND. ( ik <= ike ) ) THEN ! CALL get_buffer( evc, nwordwfc, iunwfc, (ik-iks+1) ) ! END IF ! IF ( noncolin ) THEN ! DO ipol = 1, npol ! IF ( ionode ) THEN ! filename = qexml_wfc_filename( ".", 'evc', ik, ipol, & DIR=lkpoint_dir ) ! CALL iotk_link(iunpun,"WFC"//TRIM(iotk_index(ipol)), & filename, CREATE = .FALSE., BINARY = .TRUE. ) ! filename = qexml_wfc_filename( dirname, 'evc', ik, ipol, & DIR=lkpoint_dir) ! END IF ! !!! TEMP nkl=(ipol-1)*npwx+1 nkr= ipol *npwx CALL write_wfc( iunout, ik, nkstot, kunit, ipol, npol, & evc(nkl:nkr,:), npw_g, gamma_only, nbnd, & igk_l2g_kdip(:,ik-iks+1), ngk(ik-iks+1), & filename, 1.D0, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! END DO ! ELSE ! ispin = 1 ! IF ( ionode ) THEN ! filename = qexml_wfc_filename( ".", 'evc', ik, DIR=lkpoint_dir ) ! CALL iotk_link( iunpun, "WFC", filename, & CREATE = .FALSE., BINARY = .TRUE. ) ! filename =qexml_wfc_filename( dirname, 'evc', ik, & DIR=lkpoint_dir ) ! END IF ! CALL write_wfc( iunout, ik, nkstot, kunit, ispin, nspin, & evc, npw_g, gamma_only, nbnd, & igk_l2g_kdip(:,ik-iks+1), & ngk(ik-iks+1), filename, 1.D0, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! END IF ! END IF ! END SUBROUTINE write_this_wfc ! END SUBROUTINE pw_writefile ! !------------------------------------------------------------------------ SUBROUTINE pw_readfile( what, ierr ) !------------------------------------------------------------------------ ! USE io_rho_xml, ONLY : read_rho USE scf, ONLY : rho USE lsda_mod, ONLY : nspin USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: what INTEGER, INTENT(OUT) :: ierr ! CHARACTER(LEN=256) :: dirname CHARACTER(LEN=80) :: errmsg LOGICAL :: lcell, lpw, lions, lspin, linit_mag, & lxc, locc, lbz, lbs, lwfc, lheader, & lsymm, lrho, lefield, ldim, & lef, lexx ! LOGICAL :: need_qexml INTEGER :: tmp ! ierr = 0 ! dirname = TRIM( tmp_dir ) // TRIM( prefix ) // '.save' ! ! ... look for an empty unit ! CALL iotk_free_unit( iunout, ierr ) ! CALL errore( 'pw_readfile', & 'no free units to read wavefunctions', ierr ) ! need_qexml = .FALSE. ! lheader = .NOT. qexml_version_init IF (lheader) need_qexml = .TRUE. ! ldim = .FALSE. lcell = .FALSE. lpw = .FALSE. lions = .FALSE. lspin = .FALSE. linit_mag = .FALSE. lxc = .FALSE. locc = .FALSE. lbz = .FALSE. lbs = .FALSE. lwfc = .FALSE. lsymm = .FALSE. lrho = .FALSE. lefield = .FALSE. lef = .FALSE. lexx = .FALSE. ! SELECT CASE( what ) CASE( 'header' ) ! lheader = .TRUE. need_qexml = .TRUE. ! CASE( 'dim' ) ! ldim = .TRUE. lbz = .TRUE. need_qexml = .TRUE. ! CASE( 'pseudo' ) ! lions = .TRUE. need_qexml = .TRUE. ! CASE( 'config' ) ! lcell = .TRUE. lions = .TRUE. need_qexml = .TRUE. ! CASE( 'rho' ) ! lrho = .TRUE. ! CASE( 'wave' ) ! lpw = .TRUE. lwfc = .TRUE. need_qexml = .TRUE. ! CASE( 'nowave' ) ! lcell = .TRUE. lpw = .TRUE. lions = .TRUE. lspin = .TRUE. linit_mag = .TRUE. lxc = .TRUE. locc = .TRUE. lbz = .TRUE. lbs = .TRUE. lsymm = .TRUE. lefield = .TRUE. need_qexml = .TRUE. ! CASE( 'all' ) ! lcell = .TRUE. lpw = .TRUE. lions = .TRUE. lspin = .TRUE. linit_mag = .TRUE. lxc = .TRUE. locc = .TRUE. lbz = .TRUE. lbs = .TRUE. lwfc = .TRUE. lsymm = .TRUE. lefield = .TRUE. lrho = .TRUE. need_qexml = .TRUE. ! CASE( 'reset' ) ! lcell_read = .FALSE. lpw_read = .FALSE. lions_read = .FALSE. lspin_read = .FALSE. lstarting_mag_read = .FALSE. lxc_read = .FALSE. locc_read = .FALSE. lbz_read = .FALSE. lbs_read = .FALSE. lwfc_read = .FALSE. lsymm_read = .FALSE. lefield_read = .FALSE. ! CASE( 'ef' ) ! lef = .TRUE. need_qexml = .TRUE. ! CASE( 'exx' ) ! lexx = .TRUE. need_qexml = .TRUE. ! END SELECT ! IF ( .NOT. lheader .AND. .NOT. qexml_version_init) & CALL errore( 'pw_readfile', 'qexml version not set', 71 ) ! IF ( ionode .AND. need_qexml ) THEN ! CALL qexml_init( iunpun ) CALL qexml_openfile( TRIM( dirname ) // '/' // TRIM( xmlpun ), & 'read', BINARY = .FALSE., IERR = ierr ) ! ENDIF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr /=0 ) THEN errmsg='error opening xml data file' GOTO 100 END IF ! IF ( lheader ) THEN ! CALL read_header( ierr ) IF ( ierr > 0 ) THEN errmsg='error reading header of xml data file' GOTO 100 END IF ! ENDIF ! IF ( ldim ) THEN ! CALL read_dim( ierr ) IF ( ierr > 0 ) THEN errmsg='error reading dimensions in xml data file' GOTO 100 END IF ! ENDIF ! IF ( lcell ) THEN ! CALL read_cell( ierr ) IF ( ierr > 0 ) THEN errmsg='error reading cell info in xml data file' GOTO 100 END IF ! END IF IF ( lpw ) THEN ! CALL read_planewaves( ierr ) IF ( ierr > 0 ) THEN errmsg='error reading plane-wave info in xml data file' GOTO 100 END IF ! END IF IF ( lions ) THEN ! CALL read_ions( dirname, ierr ) IF ( ierr > 0 ) THEN errmsg='error reading info on ions in xml data file' GOTO 100 END IF ! END IF IF ( lspin ) THEN ! CALL read_spin( ierr ) IF ( ierr > 0 ) THEN errmsg='error reading spin in xml data file' GOTO 100 END IF ! END IF IF (linit_mag) THEN ! CALL read_magnetization( ierr ) IF ( ierr > 0 ) THEN errmsg='error reading magnetization in xml data file' GOTO 100 END IF ! ENDIF IF ( lxc ) THEN ! CALL read_xc( ierr ) IF ( ierr > 0 ) THEN errmsg='error reading XC functional in xml data file' GOTO 100 END IF ! END IF IF ( locc ) THEN ! CALL read_occupations( ierr ) IF ( ierr > 0 ) THEN errmsg='error reading occupation numbers in xml data file' GOTO 100 END IF ! END IF IF ( lbz ) THEN ! CALL read_brillouin_zone( ierr ) IF ( ierr > 0 ) THEN errmsg='error reading Brillouin Zone in xml data file' GOTO 100 END IF ! END IF IF ( lbs ) THEN ! CALL read_band_structure( dirname, ierr ) IF ( ierr > 0 ) THEN errmsg='error reading band structure in xml data file' GOTO 100 END IF ! END IF IF ( lwfc ) THEN ! CALL read_wavefunctions( dirname, ierr ) IF ( ierr > 0 ) THEN errmsg='error reading wavefunctions in xml data file' GOTO 100 END IF ! END IF IF ( lsymm ) THEN ! CALL read_symmetry( ierr ) IF ( ierr > 0 ) THEN errmsg='error reading symmetry in xml data file' GOTO 100 END IF ! END IF IF ( lefield ) THEN ! CALL read_efield( ierr ) IF ( ierr > 0 ) THEN errmsg='error reading electric fields in xml data file' GOTO 100 END IF ! END IF IF ( lrho ) THEN ! ! ... to read the charge-density we use the routine from io_rho_xml ! ... it also reads ns for ldaU and becsum for PAW ! CALL read_rho( rho, nspin ) ! END IF IF ( lef ) THEN ! CALL read_ef( ierr ) IF ( ierr > 0 ) THEN errmsg='error reading Fermi energy in xml data file' GOTO 100 END IF ! END IF IF ( lexx ) THEN ! CALL read_exx( ierr ) IF ( ierr > 0 ) THEN errmsg='error reading hybrid functional in xml data file' GOTO 100 END IF ! END IF ! IF (ionode .AND. need_qexml) THEN ! CALL qexml_closefile( 'read', IERR=ierr) ! ENDIF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr > 0 ) THEN errmsg='error closing xml data file' GOTO 100 END IF ! RETURN ! ! uncomment to continue execution after an error occurs ! 100 IF (ionode .AND. need_qexml) THEN ! CALL qexml_closefile( 'read', IERR=tmp) ! ENDIF ! RETURN ! comment to continue execution after an error occurs 100 CALL errore('pw_readfile',TRIM(errmsg),ierr) ! END SUBROUTINE pw_readfile ! !------------------------------------------------------------------------ SUBROUTINE read_header( ierr ) !------------------------------------------------------------------------ ! ! ... this routine reads the format version of the current xml datafile ! IMPLICIT NONE ! INTEGER, INTENT(OUT) :: ierr ! ierr = 0 ! IF ( qexml_version_init ) RETURN ! IF ( ionode ) THEN ! CALL qexml_read_header( FORMAT_VERSION = qexml_version, ierr = ierr ) ! qexml_version_init = .TRUE. ! ENDIF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr /=0 ) RETURN ! CALL mp_bcast( qexml_version, ionode_id, intra_image_comm ) CALL mp_bcast( qexml_version_init, ionode_id, intra_image_comm ) ! ! END SUBROUTINE read_header ! !------------------------------------------------------------------------ SUBROUTINE read_dim( ierr ) !------------------------------------------------------------------------ ! ! ... this routine collects array dimensions from various sections ! ... plus with some other variables needed for array allocation ! USE ions_base, ONLY : nat, nsp USE symm_base, ONLY : nsym USE gvect, ONLY : ngm_g, ecutrho USE fft_base, ONLY : dfftp USE gvecs, ONLY : ngms_g, dual USE fft_base, ONLY : dffts USE lsda_mod, ONLY : lsda USE noncollin_module, ONLY : noncolin USE ktetra, ONLY : ntetra USE klist, ONLY : nkstot, nelec USE wvfct, ONLY : nbnd, npwx, ecutwfc USE control_flags, ONLY : gamma_only USE mp_pools, ONLY : kunit USE mp_global, ONLY : nproc_file, nproc_pool_file, & nproc_image_file, ntask_groups_file, & nproc_pot_file, nproc_bgrp_file, & nproc_ortho_file ! IMPLICIT NONE ! !CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! INTEGER :: npwx_ LOGICAL :: found, found2 CHARACTER(iotk_attlenx) :: attr ! ! ! ... first the entire CELL section is read ! ... ierr=0 ! CALL read_cell( ierr ) IF ( ierr /= 0) GOTO 100 ! IF ( ionode ) THEN ! CALL qexml_read_ions( NAT=nat, NSP=nsp, IERR=ierr) IF ( ierr /= 0) GOTO 100 ! CALL qexml_read_symmetry(NSYM=nsym, FOUND=found, IERR=ierr) IF ( ierr /= 0) GOTO 100 ! IF ( .NOT. found ) THEN ! nsym = 1 ! ENDIF ! CALL qexml_read_planewaves( ECUTWFC=ecutwfc, ECUTRHO=ecutrho, NPWX=npwx_,GAMMA_ONLY=gamma_only, & NR1 = dfftp%nr1, NR2 = dfftp%nr2, NR3 = dfftp%nr3, NGM = ngm_g, & NR1S = dffts%nr1, NR2S = dffts%nr2, NR3S = dffts%nr3, NGMS = ngms_g, IERR=ierr ) IF ( ierr /= 0) GOTO 100 ! ecutwfc = ecutwfc * e2 ecutrho = ecutrho * e2 ! dual = ecutrho / ecutwfc ! CALL qexml_read_spin( LSDA = lsda, NONCOLIN = noncolin, IERR=ierr ) IF ( ierr /= 0) GOTO 100 ! CALL qexml_read_occ( NTETRA = ntetra, IERR=ierr ) IF ( ierr /= 0) GOTO 100 ! CALL qexml_read_bz( NUM_K_POINTS= nkstot, IERR = ierr ) IF ( ierr /= 0) GOTO 100 ! IF ( lsda ) nkstot = nkstot * 2 ! CALL qexml_read_bands_info( NBND=nbnd, NELEC=nelec, IERR=ierr ) IF ( ierr /= 0) GOTO 100 ! CALL qexml_read_para( KUNIT=kunit, NPROC=nproc_file, NPROC_POOL=nproc_pool_file, & NPROC_IMAGE=nproc_image_file, NTASK_GROUPS = ntask_groups_file, & NPROC_POT=nproc_pot_file, NPROC_BGRP=nproc_bgrp_file, NPROC_ORTHO=nproc_ortho_file, FOUND=found, IERR=ierr ) IF ( ierr /= 0) GOTO 100 ! IF ( .NOT. found ) THEN ! kunit = 1 nproc_file=1 nproc_pool_file=1 nproc_image_file=1 ntask_groups_file=1 nproc_pot_file=1 nproc_bgrp_file=1 nproc_ortho_file=1 ! ENDIF ! END IF ! 100 CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! CALL mp_bcast( nat, ionode_id, intra_image_comm ) CALL mp_bcast( nsp, ionode_id, intra_image_comm ) CALL mp_bcast( nsym, ionode_id, intra_image_comm ) CALL mp_bcast( ecutwfc, ionode_id, intra_image_comm ) CALL mp_bcast( ecutrho, ionode_id, intra_image_comm ) CALL mp_bcast( dual, ionode_id, intra_image_comm ) CALL mp_bcast( npwx_, ionode_id, intra_image_comm ) CALL mp_bcast( gamma_only, ionode_id, intra_image_comm ) CALL mp_bcast( dfftp%nr1, ionode_id, intra_image_comm ) CALL mp_bcast( dfftp%nr2, ionode_id, intra_image_comm ) CALL mp_bcast( dfftp%nr3, ionode_id, intra_image_comm ) CALL mp_bcast( ngm_g, ionode_id, intra_image_comm ) CALL mp_bcast( dffts%nr1, ionode_id, intra_image_comm ) CALL mp_bcast( dffts%nr2, ionode_id, intra_image_comm ) CALL mp_bcast( dffts%nr3, ionode_id, intra_image_comm ) CALL mp_bcast( ngms_g, ionode_id, intra_image_comm ) CALL mp_bcast( lsda, ionode_id, intra_image_comm ) CALL mp_bcast( noncolin, ionode_id, intra_image_comm ) CALL mp_bcast( ntetra, ionode_id, intra_image_comm ) CALL mp_bcast( nkstot, ionode_id, intra_image_comm ) CALL mp_bcast( nelec, ionode_id, intra_image_comm ) CALL mp_bcast( nbnd, ionode_id, intra_image_comm ) CALL mp_bcast( kunit, ionode_id, intra_image_comm ) CALL mp_bcast( nproc_file, ionode_id, intra_image_comm ) CALL mp_bcast( nproc_pool_file, ionode_id, intra_image_comm ) CALL mp_bcast( nproc_image_file, ionode_id, intra_image_comm ) CALL mp_bcast( ntask_groups_file, ionode_id, intra_image_comm ) CALL mp_bcast( nproc_pot_file, ionode_id, intra_image_comm ) CALL mp_bcast( nproc_bgrp_file, ionode_id, intra_image_comm ) CALL mp_bcast( nproc_ortho_file, ionode_id, intra_image_comm ) ! RETURN ! END SUBROUTINE read_dim ! !------------------------------------------------------------------------ SUBROUTINE read_cell( ierr ) !------------------------------------------------------------------------ ! USE run_info, ONLY : title USE cell_base, ONLY : ibrav, alat, at, bg, celldm USE cell_base, ONLY : tpiba, tpiba2, omega USE cellmd, ONLY : lmovecell, cell_factor USE control_flags, ONLY : do_makov_payne USE martyna_tuckerman, ONLY : do_comp_mt USE esm, ONLY : do_comp_esm ! IMPLICIT NONE ! INTEGER, INTENT(OUT) :: ierr ! CHARACTER(LEN=80) :: bravais_lattice, es_corr ! ! ierr = 0 IF ( lcell_read ) RETURN ! IF ( ionode ) THEN ! CALL qexml_read_cell( BRAVAIS_LATTICE=bravais_lattice,CELLDM=celldm, ALAT=alat, & A1=at(:,1), A2=at(:,2), A3=at(:,3), ES_CORR=es_corr, IERR=ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! SELECT CASE ( TRIM(es_corr)) CASE ("Makov-Payne") do_makov_payne = .true. do_comp_mt = .false. do_comp_esm = .false. CASE ("Martyna-Tuckerman") do_makov_payne = .false. do_comp_mt = .true. do_comp_esm = .false. CASE ("ESM") do_makov_payne = .false. do_comp_mt = .false. do_comp_esm = .true. CASE ("None") do_makov_payne = .false. do_comp_mt = .false. do_comp_esm = .false. END SELECT ! SELECT CASE ( TRIM(bravais_lattice) ) CASE( "free" ) ibrav = 0 CASE( "cubic P (sc)" ) ibrav = 1 CASE( "cubic F (fcc)" ) ibrav = 2 CASE( "cubic I (bcc)" ) ibrav = 3 CASE( "Hexagonal and Trigonal P" ) ibrav = 4 CASE( "Trigonal R" ) ibrav = 5 CASE( "Tetragonal P (st)" ) ibrav = 6 CASE( "Tetragonal I (bct)" ) ibrav = 7 CASE( "Orthorhombic P" ) ibrav = 8 CASE( "Orthorhombic base-centered(bco)" ) ibrav = 9 CASE( "Orthorhombic face-centered" ) ibrav = 10 CASE( "Orthorhombic body-centered" ) ibrav = 11 CASE( "Monoclinic P" ) ibrav = 12 CASE( "Monoclinic base-centered" ) ibrav = 13 CASE( "Triclinic P" ) ibrav = 14 CASE DEFAULT ibrav = 0 END SELECT ! ! ... some internal variables ! tpiba = 2.D0 * pi / alat tpiba2 = tpiba**2 ! ! ... to alat units ! at(:,:) = at(:,:) / alat ! CALL volume( alat, at(1,1), at(1,2), at(1,3), omega ) ! ! ... Generate the reciprocal lattice vectors ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) ! CALL qexml_read_moving_cell(lmovecell, cell_factor, ierr) ! ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr > 0 ) RETURN ! CALL mp_bcast( ibrav, ionode_id, intra_image_comm ) CALL mp_bcast( alat, ionode_id, intra_image_comm ) CALL mp_bcast( celldm, ionode_id, intra_image_comm ) CALL mp_bcast( tpiba, ionode_id, intra_image_comm ) CALL mp_bcast( tpiba2, ionode_id, intra_image_comm ) CALL mp_bcast( omega, ionode_id, intra_image_comm ) CALL mp_bcast( at, ionode_id, intra_image_comm ) CALL mp_bcast( bg, ionode_id, intra_image_comm ) CALL mp_bcast( do_makov_payne, ionode_id, intra_image_comm ) CALL mp_bcast( do_comp_mt, ionode_id, intra_image_comm ) CALL mp_bcast( do_comp_esm, ionode_id, intra_image_comm ) CALL mp_bcast( lmovecell, ionode_id, intra_image_comm ) IF (lmovecell) THEN CALL mp_bcast( cell_factor, ionode_id, intra_image_comm ) ELSE cell_factor=1.0_DP END IF ! title = ' ' ! lcell_read = .TRUE. ! RETURN ! END SUBROUTINE read_cell ! !------------------------------------------------------------------------ SUBROUTINE read_ions( dirname, ierr ) !------------------------------------------------------------------------ ! USE ions_base, ONLY : nat, nsp, ityp, amass, atm, tau, if_pos USE cell_base, ONLY : alat USE io_files, ONLY : psfile, pseudo_dir, pseudo_dir_cur ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! INTEGER :: i LOGICAL :: exst ! ierr = 0 IF ( lions_read ) RETURN ! IF ( .NOT. lcell_read ) & CALL errore( 'read_ions', 'read cell first', 1 ) ! ! this is where PP files should be read from ! pseudo_dir_cur = trimcheck ( dirname ) ! IF ( ionode ) THEN ! CALL qexml_read_ions( NSP=nsp, NAT=nat, ATM=atm, ITYP=ityp, & PSFILE=psfile, AMASS=amass, & TAU=tau, IF_POS=if_pos, PSEUDO_DIR=pseudo_dir, & IERR=ierr ) ! ENDIF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! DO i = 1, nat ! tau(:,i) = tau(:,i) / alat ! END DO ! END IF ! CALL mp_bcast( nat, ionode_id, intra_image_comm ) CALL mp_bcast( nsp, ionode_id, intra_image_comm ) CALL mp_bcast( atm, ionode_id, intra_image_comm ) CALL mp_bcast( amass, ionode_id, intra_image_comm ) CALL mp_bcast( psfile, ionode_id, intra_image_comm ) CALL mp_bcast( pseudo_dir, ionode_id, intra_image_comm ) CALL mp_bcast( ityp, ionode_id, intra_image_comm ) CALL mp_bcast( tau, ionode_id, intra_image_comm ) CALL mp_bcast( if_pos, ionode_id, intra_image_comm ) ! lions_read = .TRUE. ! RETURN ! END SUBROUTINE read_ions ! !------------------------------------------------------------------------ SUBROUTINE read_symmetry( ierr ) !------------------------------------------------------------------------ ! USE symm_base, ONLY : nrot, nsym, invsym, s, ft,ftau, irt, t_rev, & sname, sr, invs, inverse_s, s_axis_to_cart, & time_reversal, no_t_rev USE control_flags, ONLY : noinv USE fft_base, ONLY : dfftp ! IMPLICIT NONE ! INTEGER, INTENT(OUT) :: ierr CHARACTER(iotk_attlenx) :: attr ! INTEGER :: i LOGICAL :: found ! ierr = 0 IF ( lsymm_read ) RETURN ! IF ( .NOT. lpw_read ) & CALL errore( 'read_symmetry', 'read planewaves first', 1 ) ! IF ( ionode ) THEN ! CALL qexml_read_symmetry( NSYM=nsym, NROT=nrot, INVSYM=invsym, NOINV=noinv, & TIME_REVERSAL=time_reversal, NO_T_REV=no_t_rev, & TRASL=ft, S=s, SNAME=sname, T_REV=t_rev, & IRT=irt, FOUND=found, IERR=ierr ) ! ENDIF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! IF ( .NOT. found ) THEN ! nsym = 1 s(:,:,nsym) = 0 s(1,1,nsym) = 1 s(2,2,nsym) = 1 s(3,3,nsym) = 1 sr(:,:,nsym) = DBLE(s(:,:,nsym)) ftau(:,nsym)= 0 ft (:,nsym)= 0.0_DP sname(nsym) = 'identity' do i = 1, SIZE( irt, 2 ) irt(nsym,i) = i end do invsym = .FALSE. noinv=.FALSE. t_rev(nsym) = 0 invs(1)=1 time_reversal=.TRUE. no_t_rev=.FALSE. ! ELSE ! DO i = 1, nsym ! ftau(1,i) = NINT( ft(1,i)*DBLE( dfftp%nr1 ) ) ftau(2,i) = NINT( ft(2,i)*DBLE( dfftp%nr2 ) ) ftau(3,i) = NINT( ft(3,i)*DBLE( dfftp%nr3 ) ) ! END DO ! ! indices of inverse operations and matrices in cartesian axis ! are not saved to disk (maybe they should), are recalculated here ! CALL inverse_s () CALL s_axis_to_cart () ! END IF ! ! END IF ! CALL mp_bcast( nsym, ionode_id, intra_image_comm ) CALL mp_bcast( nrot, ionode_id, intra_image_comm ) CALL mp_bcast( invsym, ionode_id, intra_image_comm ) CALL mp_bcast( noinv, ionode_id, intra_image_comm ) CALL mp_bcast( time_reversal, ionode_id, intra_image_comm ) CALL mp_bcast( no_t_rev, ionode_id, intra_image_comm ) CALL mp_bcast( s, ionode_id, intra_image_comm ) CALL mp_bcast( ftau, ionode_id, intra_image_comm ) CALL mp_bcast( ft, ionode_id, intra_image_comm ) CALL mp_bcast( sname, ionode_id, intra_image_comm ) CALL mp_bcast( irt, ionode_id, intra_image_comm ) CALL mp_bcast( t_rev, ionode_id, intra_image_comm ) CALL mp_bcast( invs, ionode_id, intra_image_comm ) CALL mp_bcast( sr, ionode_id, intra_image_comm ) ! lsymm_read = .TRUE. ! RETURN ! END SUBROUTINE read_symmetry ! !------------------------------------------------------------------------ SUBROUTINE read_efield( ierr ) !---------------------------------------------------------------------- ! USE extfield, ONLY : tefield, dipfield, edir, emaxpos, eopreg, eamp ! IMPLICIT NONE ! INTEGER, INTENT(OUT) :: ierr LOGICAL :: found ! ierr = 0 IF ( lefield_read ) RETURN ! ! IF ( ionode ) THEN ! CALL qexml_read_efield( TEFIELD=tefield, DIPFIELD=dipfield, EDIR=edir, & EMAXPOS=emaxpos, EOPREG=eopreg, EAMP=eamp, & FOUND=found, IERR=ierr ) ENDIF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( (ionode).AND.(.NOT.found) ) THEN ! tefield = .FALSE. dipfield = .FALSE. ! END IF ! CALL mp_bcast( tefield, ionode_id, intra_image_comm ) CALL mp_bcast( dipfield, ionode_id, intra_image_comm ) CALL mp_bcast( edir, ionode_id, intra_image_comm ) CALL mp_bcast( emaxpos, ionode_id, intra_image_comm ) CALL mp_bcast( eopreg, ionode_id, intra_image_comm ) CALL mp_bcast( eamp, ionode_id, intra_image_comm ) ! lefield_read = .TRUE. ! RETURN ! END SUBROUTINE read_efield ! !------------------------------------------------------------------------ SUBROUTINE read_planewaves( ierr ) !------------------------------------------------------------------------ ! USE gvect, ONLY : ngm_g, ecutrho USE gvecs, ONLY : ngms_g, dual USE fft_base, ONLY : dfftp USE fft_base, ONLY : dffts USE wvfct, ONLY : npwx, g2kin, ecutwfc USE control_flags, ONLY : gamma_only ! IMPLICIT NONE ! INTEGER, INTENT(OUT) :: ierr ! INTEGER :: npwx_ ! ierr = 0 IF ( lpw_read ) RETURN ! ! IF ( ionode ) CALL qexml_read_planewaves( ECUTWFC=ecutwfc, ECUTRHO=ecutrho, NPWX=npwx_, & GAMMA_ONLY=gamma_only, & NR1 = dfftp%nr1, NR2 = dfftp%nr2, NR3 = dfftp%nr3, NGM=ngm_g, & NR1S= dffts%nr1, NR2S= dffts%nr2, NR3S= dffts%nr3, & NGMS=ngms_g, IERR=ierr ) CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! ecutwfc = ecutwfc * e2 ecutrho = ecutrho * e2 ! dual = ecutrho / ecutwfc ! END IF ! CALL mp_bcast( ecutwfc, ionode_id, intra_image_comm ) CALL mp_bcast( ecutrho, ionode_id, intra_image_comm ) CALL mp_bcast( dual, ionode_id, intra_image_comm ) CALL mp_bcast( npwx_, ionode_id, intra_image_comm ) CALL mp_bcast( gamma_only, ionode_id, intra_image_comm ) CALL mp_bcast( dfftp%nr1, ionode_id, intra_image_comm ) CALL mp_bcast( dfftp%nr2, ionode_id, intra_image_comm ) CALL mp_bcast( dfftp%nr3, ionode_id, intra_image_comm ) CALL mp_bcast( ngm_g, ionode_id, intra_image_comm ) CALL mp_bcast( dffts%nr1, ionode_id, intra_image_comm ) CALL mp_bcast( dffts%nr2, ionode_id, intra_image_comm ) CALL mp_bcast( dffts%nr3, ionode_id, intra_image_comm ) CALL mp_bcast( ngms_g, ionode_id, intra_image_comm ) ! lpw_read = .TRUE. ! RETURN ! END SUBROUTINE read_planewaves ! !------------------------------------------------------------------------ SUBROUTINE read_spin( ierr ) !------------------------------------------------------------------------ ! USE spin_orb, ONLY : lspinorb, domag USE lsda_mod, ONLY : nspin, lsda USE noncollin_module, ONLY : noncolin, npol ! IMPLICIT NONE ! INTEGER, INTENT(OUT) :: ierr ! LOGICAL :: found ! ierr = 0 IF ( lspin_read ) RETURN ! IF ( ionode ) THEN ! CALL qexml_read_spin( lsda, noncolin, npol, lspinorb, domag, ierr ) ! IF ( lsda ) THEN ! nspin = 2 ! ELSE IF ( noncolin ) THEN ! nspin = 4 ! ELSE ! nspin = 1 ! END IF ! END IF ! CALL mp_bcast( lsda, ionode_id, intra_image_comm ) CALL mp_bcast( nspin, ionode_id, intra_image_comm ) CALL mp_bcast( noncolin, ionode_id, intra_image_comm ) CALL mp_bcast( npol, ionode_id, intra_image_comm ) CALL mp_bcast( lspinorb, ionode_id, intra_image_comm ) CALL mp_bcast( domag, ionode_id, intra_image_comm ) ! lspin_read = .TRUE. ! RETURN ! END SUBROUTINE read_spin ! !-------------------------------------------------------------------------- SUBROUTINE read_magnetization( ierr ) !------------------------------------------------------------------------ ! USE klist, ONLY : two_fermi_energies, nelup, neldw USE ener, ONLY : ef_up, ef_dw USE lsda_mod, ONLY : starting_magnetization USE noncollin_module, ONLY : angle1, angle2, i_cons, mcons, bfield, & lambda ! IMPLICIT NONE ! INTEGER, INTENT(OUT) :: ierr ! LOGICAL :: found INTEGER :: i, nsp ! ierr = 0 IF ( lstarting_mag_read ) RETURN ! ! IF ( ionode ) THEN ! CALL qexml_read_magnetization(STARTING_MAGNETIZATION=starting_magnetization, & ANGLE1=angle1, ANGLE2=angle2, & TWO_FERMI_ENERGIES=two_fermi_energies, I_CONS=i_cons, MCONS=mcons, & BFIELD=bfield, EF_UP=ef_up, EF_DW=ef_dw, NELUP=nelup, NELDW=neldw, & LAMBDA=lambda, FOUND=found, IERR= ierr) ! angle1(:)=angle1(:)*PI/180.d0 angle2(:)=angle2(:)*PI/180.d0 ! IF (two_fermi_energies) THEN ! ef_up = ef_up * e2 ef_dw = ef_dw * e2 ! ENDIF ! END IF ! CALL mp_bcast( found, ionode_id, intra_image_comm ) ! IF( found ) THEN ! CALL mp_bcast( starting_magnetization, ionode_id, intra_image_comm ) CALL mp_bcast( angle1, ionode_id, intra_image_comm ) CALL mp_bcast( angle2, ionode_id, intra_image_comm ) CALL mp_bcast( two_fermi_energies, ionode_id, intra_image_comm ) CALL mp_bcast( i_cons, ionode_id, intra_image_comm ) CALL mp_bcast( mcons, ionode_id, intra_image_comm ) CALL mp_bcast( bfield, ionode_id, intra_image_comm ) CALL mp_bcast( nelup, ionode_id, intra_image_comm ) CALL mp_bcast( neldw, ionode_id, intra_image_comm ) CALL mp_bcast( ef_up, ionode_id, intra_image_comm ) CALL mp_bcast( ef_dw, ionode_id, intra_image_comm ) CALL mp_bcast( lambda, ionode_id, intra_image_comm ) ! ENDIF ! lstarting_mag_read = .TRUE. ! RETURN ! END SUBROUTINE read_magnetization ! !------------------------------------------------------------------------ SUBROUTINE read_xc( ierr ) !------------------------------------------------------------------------ ! USE ions_base, ONLY : nsp USE funct, ONLY : enforce_input_dft USE ldaU, ONLY : lda_plus_u, lda_plus_u_kind, Hubbard_lmax, & Hubbard_l, Hubbard_U, Hubbard_J, Hubbard_alpha, & Hubbard_J0, Hubbard_beta, U_projection USE kernel_table, ONLY : vdw_table_name ! IMPLICIT NONE ! INTEGER, INTENT(OUT) :: ierr ! CHARACTER(LEN=20) :: dft_name INTEGER :: nsp_, inlc LOGICAL :: nomsg = .true. ! ierr = 0 IF ( lxc_read ) RETURN ! IF ( .NOT. lions_read ) & CALL errore( 'read_xc', 'read ions first', 1 ) ! IF ( ionode ) THEN ! CALL qexml_read_xc( dft_name, lda_plus_u, lda_plus_u_kind, U_projection,& Hubbard_lmax, Hubbard_l, nsp_, Hubbard_U, Hubbard_J, & Hubbard_J0, Hubbard_alpha, Hubbard_beta, & inlc, vdw_table_name, ierr ) ! END IF ! CALL mp_bcast( dft_name, ionode_id, intra_image_comm ) CALL mp_bcast( lda_plus_u, ionode_id, intra_image_comm ) CALL mp_bcast( inlc, ionode_id, intra_image_comm ) ! IF ( lda_plus_u ) THEN ! CALL mp_bcast( lda_plus_u_kind, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_lmax, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_l , ionode_id, intra_image_comm ) CALL mp_bcast( U_projection, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_U, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_J, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_J0, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_alpha, ionode_id, intra_image_comm ) CALL mp_bcast( Hubbard_beta, ionode_id, intra_image_comm ) ! END IF IF ( inlc == 1 .OR. inlc == 2 ) THEN CALL mp_bcast( vdw_table_name, ionode_id, intra_image_comm ) END IF ! discard any further attempt to set a different dft CALL enforce_input_dft( dft_name, nomsg ) ! lxc_read = .TRUE. ! RETURN ! END SUBROUTINE read_xc ! !------------------------------------------------------------------------ SUBROUTINE read_brillouin_zone( ierr ) !------------------------------------------------------------------------ ! USE lsda_mod, ONLY : lsda USE klist, ONLY : nkstot, xk, wk, qnorm USE start_k, ONLY : nks_start, xk_start, wk_start, & nk1, nk2, nk3, k1, k2, k3 USE symm_base, ONLY : nrot, s, sname ! IMPLICIT NONE ! INTEGER, INTENT(OUT) :: ierr CHARACTER(iotk_attlenx) :: attr ! INTEGER :: i, ik, num_k_points LOGICAL :: found ! ierr = 0 IF ( lbz_read ) RETURN ! ! IF ( ionode ) THEN ! ! xk_start and wk_start are ALLOCATABLE inside the function CALL qexml_read_bz( NUM_K_POINTS=num_k_points, XK=xk, WK=wk, K1=k1, K2=k2, K3=k3, & NK1=nk1, NK2=nk2, NK3=nk3, & NKS_START=nks_start, XK_START=xk_start, WK_START=wk_start, QNORM=qnorm, IERR=ierr ) ! nkstot = num_k_points ! IF ( lsda ) nkstot = num_k_points * 2 ! DO ik = 1, num_k_points ! IF ( lsda ) THEN ! xk(:,ik+num_k_points) = xk(:,ik) ! wk(ik+num_k_points) = wk(ik) ! END IF ! END DO ! END IF ! CALL mp_bcast( nkstot, ionode_id, intra_image_comm ) CALL mp_bcast( xk, ionode_id, intra_image_comm ) CALL mp_bcast( wk, ionode_id, intra_image_comm ) CALL mp_bcast( nk1, ionode_id, intra_image_comm ) CALL mp_bcast( nk2, ionode_id, intra_image_comm ) CALL mp_bcast( nk3, ionode_id, intra_image_comm ) CALL mp_bcast( k1, ionode_id, intra_image_comm ) CALL mp_bcast( k2, ionode_id, intra_image_comm ) CALL mp_bcast( k3, ionode_id, intra_image_comm ) CALL mp_bcast( qnorm, ionode_id, intra_image_comm) CALL mp_bcast( nks_start, ionode_id, intra_image_comm ) IF (nks_start>0.and..NOT.ionode) THEN IF (.NOT.ALLOCATED(xk_start)) ALLOCATE(xk_start(3,nks_start)) IF (.NOT.ALLOCATED(wk_start)) ALLOCATE(wk_start(nks_start)) ENDIF IF (nks_start>0) THEN CALL mp_bcast( xk_start, ionode_id, intra_image_comm ) CALL mp_bcast( wk_start, ionode_id, intra_image_comm ) ENDIF CALL mp_bcast( nrot, ionode_id, intra_image_comm ) CALL mp_bcast( s, ionode_id, intra_image_comm ) CALL mp_bcast( sname, ionode_id, intra_image_comm ) ! lbz_read = .TRUE. ! RETURN ! END SUBROUTINE read_brillouin_zone ! !------------------------------------------------------------------------ SUBROUTINE read_occupations( ierr ) !------------------------------------------------------------------------ ! USE lsda_mod, ONLY : lsda, nspin USE fixed_occ, ONLY : tfixed_occ, f_inp USE ktetra, ONLY : ntetra, tetra, ltetra USE klist, ONLY : lgauss, ngauss, degauss, smearing USE electrons_base, ONLY : nupdwn USE wvfct, ONLY : nbnd ! IMPLICIT NONE ! INTEGER, INTENT(OUT) :: ierr CHARACTER(iotk_attlenx) :: attr ! INTEGER :: i LOGICAL :: found ! ierr = 0 IF ( locc_read ) RETURN ! IF ( ionode ) THEN ! ! necessary to don't send nbnd and nspin as input in read_occ IF ( .NOT. ALLOCATED( f_inp ) ) THEN ! IF ( nspin == 4 ) THEN ALLOCATE( f_inp( nbnd, 1 ) ) ELSE ALLOCATE( f_inp( nbnd, nspin ) ) ENDIF ! ENDIF ! f_inp( :, :) = 0.0d0 ! CALL qexml_read_occ( LGAUSS=lgauss, NGAUSS=ngauss, DEGAUSS=degauss, & LTETRA=ltetra, NTETRA=ntetra, TETRA=tetra, TFIXED_OCC=tfixed_occ, & NSTATES_UP=nupdwn(1), NSTATES_DW=nupdwn(2), INPUT_OCC=f_inp, IERR=ierr ) ! ENDIF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! IF ( lgauss ) THEN ! SELECT CASE (ngauss ) CASE (0) smearing = 'gaussian' CASE (1) smearing = 'Methfessel-Paxton' CASE (-1) smearing = 'Marzari-Vanderbilt' CASE (-99) smearing = 'Fermi-Dirac' CASE DEFAULT CALL errore('read_occupations',& 'wrong smearing index', abs(1000+ngauss) ) END SELECT ! degauss = degauss * e2 ! ELSE ! ngauss = 0 degauss = 0.d0 ! END IF ! IF ( .NOT. ltetra ) THEN ! ntetra = 0 ! END IF ! IF ( .NOT. tfixed_occ ) THEN ! DEALLOCATE( f_inp ) ! ENDIF ! ! END IF ! CALL mp_bcast( lgauss, ionode_id, intra_image_comm ) ! IF ( lgauss ) THEN ! CALL mp_bcast( ngauss, ionode_id, intra_image_comm ) CALL mp_bcast( degauss, ionode_id, intra_image_comm ) CALL mp_bcast( smearing, ionode_id, intra_image_comm ) ! END IF ! CALL mp_bcast( ltetra, ionode_id, intra_image_comm ) ! IF ( ltetra ) THEN ! CALL mp_bcast( ntetra, ionode_id, intra_image_comm ) CALL mp_bcast( tetra, ionode_id, intra_image_comm ) ! END IF ! CALL mp_bcast( tfixed_occ, ionode_id, intra_image_comm ) ! IF ( tfixed_occ ) THEN ! CALL mp_bcast( nupdwn, ionode_id, intra_image_comm ) ! IF ( .NOT. ALLOCATED( f_inp ) ) THEN ! IF ( nspin == 4 ) THEN ALLOCATE( f_inp( nbnd, 1 ) ) ELSE ALLOCATE( f_inp( nbnd, nspin ) ) END IF ! ENDIF ! CALL mp_bcast( f_inp, ionode_id, intra_image_comm ) ! ENDIF ! locc_read = .TRUE. ! RETURN ! END SUBROUTINE read_occupations ! !------------------------------------------------------------------------ SUBROUTINE read_band_structure( dirname, ierr ) !------------------------------------------------------------------------ ! USE control_flags, ONLY : lkpoint_dir USE basis, ONLY : natomwfc USE lsda_mod, ONLY : lsda, isk USE klist, ONLY : nkstot, wk, nelec USE wvfct, ONLY : et, wg, nbnd USE ener, ONLY : ef, ef_up, ef_dw ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! INTEGER :: ik, ik_eff, num_k_points LOGICAL :: found, two_fermi_energies_ CHARACTER(LEN=256) :: filename ! ierr = 0 IF ( lbs_read ) RETURN ! IF ( .NOT. lspin_read ) & CALL errore( 'read_band_structure', 'read spin first', 1 ) IF ( .NOT. lbz_read ) & CALL errore( 'read_band_structure', 'read band_structure first', 1 ) ! ! IF ( ionode ) THEN ! we don't need to read nspin, noncolin CALL qexml_read_bands_info( NBND=nbnd, NUM_K_POINTS=num_k_points, NATOMWFC=natomwfc, & NELEC=nelec, EF=ef, TWO_FERMI_ENERGIES=two_fermi_energies_, & EF_UP=ef_up, EF_DW=ef_dw, IERR=ierr ) ! ENDIF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN IF ( .NOT. two_fermi_energies_) THEN ef = ef * e2 ELSE ef = 0.d0 ef_up = ef_up * e2 ef_dw = ef_dw * e2 END IF ! END IF ! num_k_points = nkstot ! IF ( lsda ) num_k_points = nkstot / 2 ! IF ( ionode ) THEN ! IF (.NOT.lkpoint_dir) filename = TRIM( dirname ) // '/' // TRIM( xmlpun )//'.eig' ! CALL qexml_read_bands_pw( num_k_points, nbnd, nkstot, lsda, lkpoint_dir, filename , ISK=isk, ET=et, WG=wg , IERR=ierr) ! et(:,:) = et(:,:) * e2 ! FORALL( ik = 1:nkstot ) wg(:,ik) = wg(:,ik)*wk(ik) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! CALL mp_bcast( nelec, ionode_id, intra_image_comm ) CALL mp_bcast( natomwfc, ionode_id, intra_image_comm ) CALL mp_bcast( nbnd, ionode_id, intra_image_comm ) CALL mp_bcast( isk, ionode_id, intra_image_comm ) CALL mp_bcast( et, ionode_id, intra_image_comm ) CALL mp_bcast( wg, ionode_id, intra_image_comm ) CALL mp_bcast( ef, ionode_id, intra_image_comm ) ! lbs_read = .TRUE. ! RETURN ! END SUBROUTINE read_band_structure ! !------------------------------------------------------------------------ SUBROUTINE read_wavefunctions( dirname, ierr ) !------------------------------------------------------------------------ ! ! ... This routines reads wavefunctions from the new file format and ! ... writes them into the old format ! USE control_flags, ONLY : twfcollect, lkpoint_dir USE cell_base, ONLY : tpiba2 USE lsda_mod, ONLY : nspin, isk USE klist, ONLY : nkstot, wk, nks, xk, ngk USE wvfct, ONLY : npw, npwx, g2kin, et, wg, nbnd, ecutwfc USE wavefunctions_module, ONLY : evc USE io_files, ONLY : nwordwfc, iunwfc USE buffers, ONLY : save_buffer USE gvect, ONLY : ngm, ngm_g, g, ig_l2g USE noncollin_module, ONLY : noncolin, npol USE mp_images, ONLY : nproc_image, intra_image_comm USE mp_pools, ONLY : kunit, nproc_pool, me_pool, root_pool, & intra_pool_comm, inter_pool_comm USE mp_bands, ONLY : me_bgrp, nbgrp, root_bgrp, & intra_bgrp_comm, inter_bgrp_comm ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! CHARACTER(LEN=256) :: filename INTEGER :: ik, ipol, ik_eff, num_k_points INTEGER, ALLOCATABLE :: kisort(:) INTEGER :: npool, nkbl, nkl, nkr, npwx_g INTEGER :: nupdwn(2), ike, iks, npw_g, ispin INTEGER, ALLOCATABLE :: ngk_g(:) INTEGER, ALLOCATABLE :: igk_l2g(:,:), igk_l2g_kdip(:,:) LOGICAL :: opnd REAL(DP) :: scalef ! ! The ierr output var is actually not given any value ! except this initialization ! ierr = 0 ! IF ( iunwfc > 0 ) THEN ! INQUIRE( UNIT = iunwfc, OPENED = opnd ) ! IF ( .NOT. opnd ) CALL errore( 'read_wavefunctions', & & 'wavefunctions unit (iunwfc) is not opened', 1 ) END IF ! IF ( ionode ) THEN ! !CALL iotk_open_read( iunpun+1, FILE = TRIM( dirname ) // '/' // & ! & TRIM( xmlpun ), IERR = ierr ) ! !PRINT*,TRIM( dirname ) // '/' // & ! & TRIM( xmlpun ) END IF ! !CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! !IF ( ierr > 0 ) RETURN ! IF ( nkstot > 0 ) THEN ! ! ... find out the number of pools ! npool = nproc_image / nproc_pool ! ! ... find out number of k points blocks ! nkbl = nkstot / kunit ! ! k points per pool ! nkl = kunit * ( nkbl / npool ) ! ! ... find out the reminder ! nkr = ( nkstot - nkl * npool ) / kunit ! ! ... Assign the reminder to the first nkr pools ! IF ( my_pool_id < nkr ) nkl = nkl + kunit ! ! ... find out the index of the first k point in this pool ! iks = nkl * my_pool_id + 1 ! IF ( my_pool_id >= nkr ) iks = iks + nkr * kunit ! ! ... find out the index of the last k point in this pool ! ike = iks + nkl - 1 ! END IF ! ! ... find out the global number of G vectors: ngm_g ! ngm_g = ngm ! CALL mp_sum( ngm_g, intra_bgrp_comm ) ! ! ... build the igk_l2g array, yielding the correspondence between ! ... the local k+G index and the global G index - see also ig_l2g ! ALLOCATE ( igk_l2g( npwx, nks ) ) igk_l2g = 0 ! ALLOCATE( kisort( npwx ) ) ! DO ik = 1, nks ! kisort = 0 npw = npwx ! CALL gk_sort( xk(1,ik+iks-1), ngm, g, & ecutwfc/tpiba2, npw, kisort(1), g2kin ) ! CALL gk_l2gmap( ngm, ig_l2g(1), npw, kisort(1), igk_l2g(1,ik) ) ! ngk(ik) = npw ! END DO ! DEALLOCATE( kisort ) ! ! ... compute the global number of G+k vectors for each k point ! ALLOCATE( ngk_g( nkstot ) ) ! ngk_g = 0 ngk_g(iks:ike) = ngk(1:nks) ! CALL mp_sum( ngk_g, inter_pool_comm ) CALL mp_sum( ngk_g, intra_pool_comm ) ngk_g = ngk_g / nbgrp ! ! ... compute the Maximum G vector index among all G+k an processors ! npw_g = MAXVAL( igk_l2g(:,:) ) ! CALL mp_max( npw_g, inter_pool_comm ) CALL mp_max( npw_g, intra_pool_comm ) ! ! ... compute the Maximum number of G vector among all k points ! npwx_g = MAXVAL( ngk_g(1:nkstot) ) ! ! ! ... define a further l2g map to read gkvectors and wfc coherently ! ALLOCATE( igk_l2g_kdip( npwx_g, nks ) ) igk_l2g_kdip = 0 ! DO ik = iks, ike ! CALL gk_l2gmap_kdip( npw_g, ngk_g(ik), ngk(ik-iks+1), & igk_l2g(1,ik-iks+1), igk_l2g_kdip(1,ik-iks+1) ) END DO ! ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "EIGENVECTORS" ) ! END IF ! num_k_points = nkstot ! IF ( nspin == 2 ) num_k_points = nkstot / 2 ! k_points_loop: DO ik = 1, num_k_points ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! IF ( nspin == 2 .OR. noncolin ) THEN ! CALL iotk_scan_begin( iunpun, "WFC.1", FOUND = twfcollect ) IF ( twfcollect ) CALL iotk_scan_end( iunpun, "WFC.1" ) ! ELSE ! CALL iotk_scan_begin( iunpun, "WFC", FOUND = twfcollect ) IF ( twfcollect ) CALL iotk_scan_end( iunpun, "WFC" ) ! ENDIF ! END IF ! CALL mp_bcast( twfcollect, ionode_id, intra_image_comm ) ! IF ( .NOT. twfcollect ) THEN ! IF ( ionode ) THEN ! CALL iotk_scan_end( iunpun, & "K-POINT" // TRIM( iotk_index( ik ) ) ) ! END IF ! EXIT k_points_loop ! END IF ! IF ( nspin == 2 ) THEN ! ispin = 1 evc=(0.0_DP, 0.0_DP) ! ! ... no need to read isk here: they are read from band structure ! ... and correctly distributed across pools in read_file !!! isk(ik) = 1 ! IF ( ionode ) THEN ! filename = TRIM( qexml_wfc_filename( dirname, 'evc', ik, ispin, & DIR=lkpoint_dir ) ) ! END IF ! CALL read_wfc( iunout, ik, nkstot, kunit, ispin, nspin, & evc, npw_g, nbnd, igk_l2g_kdip(:,ik-iks+1), & ngk(ik-iks+1), filename, scalef, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! IF ( ( ik >= iks ) .AND. ( ik <= ike ) ) THEN ! CALL save_buffer ( evc, nwordwfc, iunwfc, (ik-iks+1) ) ! END IF ! ispin = 2 ik_eff = ik + num_k_points evc=(0.0_DP, 0.0_DP) ! ! ... no need to read isk here (see above why) !isk(ik_eff) = 2 ! IF ( ionode ) THEN ! filename = TRIM( qexml_wfc_filename( dirname, 'evc', ik, ispin, & DIR=lkpoint_dir ) ) ! END IF ! CALL read_wfc( iunout, ik_eff, nkstot, kunit, ispin, nspin, & evc, npw_g, nbnd, igk_l2g_kdip(:,ik_eff-iks+1), & ngk(ik_eff-iks+1), filename, scalef, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! IF ( ( ik_eff >= iks ) .AND. ( ik_eff <= ike ) ) THEN ! CALL save_buffer ( evc, nwordwfc, iunwfc, (ik_eff-iks+1) ) ! END IF ! ELSE ! ! ... no need to read isk here (see above why) !isk(ik) = 1 ! evc=(0.0_DP, 0.0_DP) IF ( noncolin ) THEN ! DO ipol = 1, npol ! IF ( ionode ) THEN ! filename = TRIM( qexml_wfc_filename( dirname, 'evc', ik, ipol, & DIR=lkpoint_dir ) ) ! END IF ! !!! TEMP nkl=(ipol-1)*npwx+1 nkr= ipol *npwx CALL read_wfc( iunout, ik, nkstot, kunit, ispin, & npol, evc(nkl:nkr,:), npw_g, nbnd, & igk_l2g_kdip(:,ik-iks+1), ngk(ik-iks+1), & filename, scalef, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! END DO ! ELSE ! IF ( ionode ) THEN ! filename = TRIM( qexml_wfc_filename( dirname, 'evc', ik, & DIR=lkpoint_dir ) ) ! END IF ! CALL read_wfc( iunout, ik, nkstot, kunit, ispin, nspin, & evc, npw_g, nbnd, igk_l2g_kdip(:,ik-iks+1), & ngk(ik-iks+1), filename, scalef, & ionode, root_pool, intra_pool_comm, inter_pool_comm, intra_image_comm ) ! END IF ! IF ( ( ik >= iks ) .AND. ( ik <= ike ) ) THEN ! CALL save_buffer ( evc, nwordwfc, iunwfc, (ik-iks+1) ) ! ! the following two line can be used to debug read_wfc ! WRITE(200+10*ik+me_pool,fmt="(2D18.10)") evc ! CLOSE(200+10*ik+me_pool ) ! END IF ! END IF ! IF ( ionode ) THEN ! CALL iotk_scan_end( iunpun, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! END IF ! END DO k_points_loop ! DEALLOCATE ( igk_l2g ) DEALLOCATE ( igk_l2g_kdip ) ! IF ( ionode ) THEN ! CALL iotk_scan_end( iunpun, "EIGENVECTORS" ) ! !CALL iotk_close_read( iunpun ) ! END IF ! RETURN ! END SUBROUTINE read_wavefunctions ! !------------------------------------------------------------------------ SUBROUTINE read_ef( ierr ) !------------------------------------------------------------------------ ! ! ... this routine reads only the Fermi energy ! USE ener, ONLY : ef, ef_up, ef_dw USE klist, ONLY : two_fermi_energies ! IMPLICIT NONE INTEGER, INTENT(OUT) :: ierr ! ! ... then selected tags are read from the other sections ! IF ( ionode ) THEN ! CALL qexml_read_bands_info( EF = ef , TWO_FERMI_ENERGIES=two_fermi_energies, EF_UP=ef_up, EF_DW=ef_dw, IERR=ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr > 0 ) RETURN ! IF (ionode) THEN ! IF (.NOT. two_fermi_energies) THEN ef = ef * e2 ef_up = 0.d0 ef_dw = 0.d0 ELSE ef = 0.d0 ef_up = ef_up * e2 ef_dw = ef_dw * e2 END IF ! END IF ! CALL mp_bcast( two_fermi_energies, ionode_id, intra_image_comm ) CALL mp_bcast( ef, ionode_id, intra_image_comm ) CALL mp_bcast( ef_up, ionode_id, intra_image_comm ) CALL mp_bcast( ef_dw, ionode_id, intra_image_comm ) ! RETURN ! END SUBROUTINE read_ef ! !------------------------------------------------------------------------ SUBROUTINE read_exx( ierr ) !------------------------------------------------------------------------ ! ! ... read EXX variables ! USE funct, ONLY : set_exx_fraction, set_screening_parameter, & set_gau_parameter, enforce_input_dft, start_exx USE exx, ONLY : x_gamma_extrapolation, nq1, nq2, nq3, & exxdiv_treatment, yukawa, ecutvcut IMPLICIT NONE ! INTEGER, INTENT(OUT) :: ierr REAL(DP) :: exx_fraction, screening_parameter, gau_parameter LOGICAL :: exx_is_active, found ! IF ( ionode ) THEN CALL qexml_read_exx( X_GAMMA_EXTRAPOLATION=x_gamma_extrapolation, & NQX1=nq1, NQX2=nq2, NQX3=nq3, EXXDIV_TREATMENT=exxdiv_treatment, & YUKAWA = yukawa, ECUTVCUT=ecutvcut, EXX_FRACTION=exx_fraction, & SCREENING_PARAMETER=screening_parameter, GAU_PARAMETER=gau_parameter, & EXX_IS_ACTIVE=exx_is_active, FOUND=found, IERR=ierr ) ! ENDIF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr > 0 ) RETURN ! CALL mp_bcast( found, ionode_id, intra_image_comm ) ! IF ( .NOT. found ) RETURN ! CALL mp_bcast( x_gamma_extrapolation, ionode_id, intra_image_comm ) CALL mp_bcast( nq1, ionode_id, intra_image_comm ) CALL mp_bcast( nq2, ionode_id, intra_image_comm ) CALL mp_bcast( nq3, ionode_id, intra_image_comm ) CALL mp_bcast( exxdiv_treatment, ionode_id, intra_image_comm ) CALL mp_bcast( yukawa, ionode_id, intra_image_comm ) CALL mp_bcast( ecutvcut, ionode_id, intra_image_comm ) CALL mp_bcast( exx_fraction, ionode_id, intra_image_comm ) CALL mp_bcast( screening_parameter, ionode_id, intra_image_comm ) CALL mp_bcast( gau_parameter, ionode_id, intra_image_comm ) CALL mp_bcast( exx_is_active, ionode_id, intra_image_comm ) ! CALL set_exx_fraction(exx_fraction) CALL set_screening_parameter(screening_parameter) CALL set_gau_parameter(gau_parameter) IF (exx_is_active) CALL start_exx( ) ! RETURN ! END SUBROUTINE read_exx ! !------------------------------------------------------------------------ SUBROUTINE read_( dirname, ierr ) !------------------------------------------------------------------------ ! ! ... this is a template for a "read section" subroutine ! IMPLICIT NONE ! CHARACTER(LEN=*), INTENT(IN) :: dirname INTEGER, INTENT(OUT) :: ierr ! INTEGER :: idum ! ! IF ( ionode ) THEN ! CALL iotk_open_read( iunpun, FILE = TRIM( dirname ) // '/' // & & TRIM( xmlpun ), IERR = ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF ( ierr > 0 ) RETURN ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "" ) ! CALL iotk_scan_end( iunpun, "" ) ! CALL iotk_close_read( iunpun ) ! END IF ! CALL mp_bcast( idum, ionode_id, intra_image_comm ) ! RETURN ! END SUBROUTINE read_ ! !---------------------------------------------------------------------------- SUBROUTINE gk_l2gmap( ngm, ig_l2g, ngk, igk, igk_l2g ) !---------------------------------------------------------------------------- ! ! ... This subroutine maps local G+k index to the global G vector index ! ... the mapping is used to collect wavefunctions subsets distributed ! ... across processors. ! ... Written by Carlo Cavazzoni ! IMPLICIT NONE ! ! ... Here the dummy variables ! INTEGER, INTENT(IN) :: ngm, ngk, igk(ngk), ig_l2g(ngm) INTEGER, INTENT(OUT) :: igk_l2g(ngk) INTEGER :: ig ! ! ... input: mapping between local and global G vector index ! DO ig = 1, ngk ! igk_l2g(ig) = ig_l2g(igk(ig)) ! END DO ! RETURN ! END SUBROUTINE gk_l2gmap ! !----------------------------------------------------------------------- SUBROUTINE gk_l2gmap_kdip( npw_g, ngk_g, ngk, igk_l2g, igk_l2g_kdip, igwk ) !----------------------------------------------------------------------- ! ! ... This subroutine maps local G+k index to the global G vector index ! ... the mapping is used to collect wavefunctions subsets distributed ! ... across processors. ! ... This map is used to obtained the G+k grids related to each kpt ! IMPLICIT NONE ! ! ... Here the dummy variables ! INTEGER, INTENT(IN) :: npw_g, ngk_g, ngk INTEGER, INTENT(IN) :: igk_l2g(ngk) INTEGER, OPTIONAL, INTENT(OUT) :: igwk(ngk_g), igk_l2g_kdip(ngk) ! INTEGER, ALLOCATABLE :: igwk_(:), itmp(:), igwk_lup(:) INTEGER :: ig, ig_, ngg ! ! ALLOCATE( itmp( npw_g ) ) ALLOCATE( igwk_( ngk_g ) ) ! itmp(:) = 0 igwk_(:) = 0 ! ! DO ig = 1, ngk ! itmp(igk_l2g(ig)) = igk_l2g(ig) ! END DO ! CALL mp_sum( itmp, intra_bgrp_comm ) ! ngg = 0 DO ig = 1, npw_g ! IF ( itmp(ig) == ig ) THEN ! ngg = ngg + 1 ! igwk_(ngg) = ig ! END IF ! END DO ! IF ( ngg /= ngk_g ) & CALL errore( 'gk_l2gmap_kdip', 'unexpected dimension in ngg', 1 ) ! IF ( PRESENT( igwk ) ) THEN ! igwk(1:ngk_g) = igwk_(1:ngk_g) ! END IF ! IF ( PRESENT( igk_l2g_kdip ) ) THEN ! ALLOCATE( igwk_lup( npw_g ) ) ! !$omp parallel private(ig_, ig) !$omp workshare igwk_lup = 0 !$omp end workshare !$omp do do ig_ = 1, ngk_g igwk_lup(igwk_(ig_)) = ig_ end do !$omp end do !$omp do do ig = 1, ngk igk_l2g_kdip(ig) = igwk_lup(igk_l2g(ig)) end do !$omp end do !$omp end parallel ! DEALLOCATE( igwk_lup ) END IF ! DEALLOCATE( itmp, igwk_ ) ! RETURN ! END SUBROUTINE gk_l2gmap_kdip ! END MODULE pw_restart espresso-5.1/PW/src/get_locals.f900000644000175000017500000000441512341373025015057 0ustar mbamba! ! Copyright (C) 2005 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------------- subroutine get_locals(rholoc,magloc, rho) !--------------------------------------------------------------------------- ! ! Here local integrations are carried out around atoms. ! The points and weights for these integrations are determined in the ! subroutine make_pointlists, the result may be printed in the ! subroutine report_mag. If constraints are present, the results of this ! calculation are used in v_of_rho for determining the penalty functional. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat USE cell_base, ONLY : omega USE lsda_mod, ONLY : nspin USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE fft_base, ONLY : dfftp USE noncollin_module, ONLY : pointlist, factlist, noncolin implicit none ! ! I/O variables ! real(DP) :: & rholoc(nat), & ! integrated charge arount the atoms magloc(nspin-1,nat) ! integrated magnetic moment around the atom real(DP) :: rho (dfftp%nnr, nspin) ! ! local variables ! integer i,ipol real(DP) :: fact real(DP), allocatable :: auxrholoc(:,:) allocate (auxrholoc(0:nat,nspin)) auxrholoc(:,:) = 0.d0 do i=1,dfftp%nnr auxrholoc(pointlist(i),1:nspin) = auxrholoc(pointlist(i),1:nspin) + & rho(i,1:nspin) * factlist(i) end do ! call mp_sum( auxrholoc( 0:nat, 1:nspin), intra_bgrp_comm ) ! fact = omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3) if (nspin.eq.2) then rholoc(1:nat) = (auxrholoc(1:nat,1)+auxrholoc(1:nat,2)) * fact magloc(1,1:nat) = (auxrholoc(1:nat,1)-auxrholoc(1:nat,2)) * fact else rholoc(1:nat) = auxrholoc(1:nat,1) * fact if (noncolin) then do ipol=1,3 magloc(ipol,1:nat) = auxrholoc(1:nat,ipol+1) * fact end do end if endif ! deallocate (auxrholoc) end subroutine get_locals espresso-5.1/PW/src/symm_base.f900000644000175000017500000011552612341373025014730 0ustar mbamba! ! Copyright (C) 2010-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE symm_base USE kinds, ONLY : DP USE cell_base, ONLY : at, bg ! ! ... The variables needed to describe the symmetry properties ! ... and the routines to find crystal symmetries ! ! ... these are acceptance criteria ! REAL(DP), PARAMETER :: eps1 = 1.0d-6, eps2 = 1.0d-5 ! SAVE ! PRIVATE ! ! ... Exported variables ! PUBLIC :: s, sr, sname, ft, ftau, nrot, nsym, nsym_ns, nsym_na, t_rev, & no_t_rev, time_reversal, irt, invs, invsym, d1, d2, d3, & allfrac, nofrac, nosym, nosym_evc INTEGER :: & s(3,3,48), &! symmetry matrices, in crystal axis invs(48), &! index of inverse operation: S^{-1}_i=S(invs(i)) ftau(3,48), &! fractional translations, in FFT coordinates nrot, &! number of bravais lattice symmetries nsym = 1, &! total number of crystal symmetries nsym_ns = 0, &! nonsymmorphic (fractional translation) symms nsym_na = 0 ! excluded nonsymmorphic symmetries because ! fract. transl. is noncommensurate with FFT grid REAL (DP) :: & ft (3,48), &! fractional translations, in crystal axis sr (3,3,48), &! symmetry matrices, in cartesian axis accep = 1.0d-5 ! initial value of the acceptance threshold ! for position comparison by eqvect in checksym ! ! ... note: ftau are used for symmetrization in real space (phonon, exx) ! ... in which case they must be commensurated with the FFT grid ! CHARACTER(len=45) :: sname(48) ! name of the symmetries INTEGER :: & t_rev(48) = 0 ! time reversal flag, for noncolinear magnetism INTEGER, ALLOCATABLE :: & irt(:,:) ! symmetric atom for each atom and sym.op. LOGICAL :: & time_reversal=.true., &! if .TRUE. the system has time reversal symmetry invsym, &! if .TRUE. the system has inversion symmetry nofrac= .false., &! if .TRUE. fract. translations are not allowed allfrac= .false., &! if .TRUE. all fractionary translations allowed, ! even those not commensurate with FFT grid nosym = .false., &! if .TRUE. no symmetry is used nosym_evc = .false., &! if .TRUE. symmetry is used only to symmetrize ! k points no_t_rev=.false. ! if .TRUE. remove the symmetries that ! require time reversal REAL(DP),TARGET :: & d1(3,3,48), &! matrices for rotating spherical d2(5,5,48), &! harmonics (d1 for l=1, ...) d3(7,7,48) ! ! ! ... Exported routines ! PUBLIC :: find_sym, inverse_s, copy_sym, checkallsym, & s_axis_to_cart, set_sym, set_sym_bl, find_sym_ifc ! CONTAINS ! SUBROUTINE inverse_s ( ) !----------------------------------------------------------------------- ! ! Locate index of S^{-1} ! IMPLICIT NONE ! INTEGER :: isym, jsym, ss (3, 3) LOGICAL :: found ! DO isym = 1, nsym found = .false. DO jsym = 1, nsym ! ss = matmul (s(:,:,jsym),s(:,:,isym)) ! s(:,:,1) is the identity IF ( all ( s(:,:,1) == ss(:,:) ) ) THEN invs (isym) = jsym found = .true. ENDIF ENDDO IF ( .not.found) CALL errore ('inverse_s', ' Not a group', 1) ENDDO ! END SUBROUTINE inverse_s ! !----------------------------------------------------------------------- SUBROUTINE set_sym_bl ( ) !----------------------------------------------------------------------- ! ! Provides symmetry operations for all bravais lattices ! Tests first the 24 proper rotations for the cubic lattice; ! then the 8 rotations specific for the hexagonal axis (special axis c); ! then inversion is added ! IMPLICIT NONE ! ! sin3 = sin(pi/3), cos3 = cos(pi/3), msin3 = -sin(pi/3), mcos3 = -cos(pi/3) ! real(DP), PARAMETER :: sin3 = 0.866025403784438597d0, cos3 = 0.5d0, & msin3 =-0.866025403784438597d0, mcos3 = -0.5d0 real(DP) :: s0(3, 3, 32), overlap (3, 3), rat (3), rot (3, 3), value ! s0: the s matrices in cartesian axis ! overlap: inverse overlap matrix between direct lattice ! rat: the rotated of a direct vector ( cartesian ) ! rot: the rotated of a direct vector ( crystal axis ) ! value: component of the s matrix in axis basis INTEGER :: jpol, kpol, mpol, irot, imat(24) ! counters over the polarizations and the rotations CHARACTER (len=45) :: s0name (64) ! full name of the rotational part of each symmetry operation data s0/ 1.d0, 0.d0, 0.d0, 0.d0, 1.d0, 0.d0, 0.d0, 0.d0, 1.d0, & -1.d0, 0.d0, 0.d0, 0.d0, -1.d0, 0.d0, 0.d0, 0.d0, 1.d0, & -1.d0, 0.d0, 0.d0, 0.d0, 1.d0, 0.d0, 0.d0, 0.d0, -1.d0, & 1.d0, 0.d0, 0.d0, 0.d0, -1.d0, 0.d0, 0.d0, 0.d0, -1.d0, & 0.d0, 1.d0, 0.d0, 1.d0, 0.d0, 0.d0, 0.d0, 0.d0, -1.d0, & 0.d0, -1.d0, 0.d0, -1.d0, 0.d0, 0.d0, 0.d0, 0.d0, -1.d0, & 0.d0, -1.d0, 0.d0, 1.d0, 0.d0, 0.d0, 0.d0, 0.d0, 1.d0, & 0.d0, 1.d0, 0.d0, -1.d0, 0.d0, 0.d0, 0.d0, 0.d0, 1.d0, & 0.d0, 0.d0, 1.d0, 0.d0, -1.d0, 0.d0, 1.d0, 0.d0, 0.d0, & 0.d0, 0.d0, -1.d0, 0.d0, -1.d0, 0.d0, -1.d0, 0.d0, 0.d0, & 0.d0, 0.d0, -1.d0, 0.d0, 1.d0, 0.d0, 1.d0, 0.d0, 0.d0, & 0.d0, 0.d0, 1.d0, 0.d0, 1.d0, 0.d0, -1.d0, 0.d0, 0.d0, & -1.d0, 0.d0, 0.d0, 0.d0, 0.d0, 1.d0, 0.d0, 1.d0, 0.d0, & -1.d0, 0.d0, 0.d0, 0.d0, 0.d0, -1.d0, 0.d0, -1.d0, 0.d0, & 1.d0, 0.d0, 0.d0, 0.d0, 0.d0, -1.d0, 0.d0, 1.d0, 0.d0, & 1.d0, 0.d0, 0.d0, 0.d0, 0.d0, 1.d0, 0.d0, -1.d0, 0.d0, & 0.d0, 0.d0, 1.d0, 1.d0, 0.d0, 0.d0, 0.d0, 1.d0, 0.d0, & 0.d0, 0.d0, -1.d0, -1.d0, 0.d0, 0.d0, 0.d0, 1.d0, 0.d0, & 0.d0, 0.d0, -1.d0, 1.d0, 0.d0, 0.d0, 0.d0, -1.d0, 0.d0, & 0.d0, 0.d0, 1.d0, -1.d0, 0.d0, 0.d0, 0.d0, -1.d0, 0.d0, & 0.d0, 1.d0, 0.d0, 0.d0, 0.d0, 1.d0, 1.d0, 0.d0, 0.d0, & 0.d0, -1.d0, 0.d0, 0.d0, 0.d0, -1.d0, 1.d0, 0.d0, 0.d0, & 0.d0, -1.d0, 0.d0, 0.d0, 0.d0, 1.d0, -1.d0, 0.d0, 0.d0, & 0.d0, 1.d0, 0.d0, 0.d0, 0.d0, -1.d0, -1.d0, 0.d0, 0.d0, & cos3, sin3, 0.d0, msin3, cos3, 0.d0, 0.d0, 0.d0, 1.d0, & cos3, msin3, 0.d0, sin3, cos3, 0.d0, 0.d0, 0.d0, 1.d0, & mcos3, sin3, 0.d0, msin3, mcos3, 0.d0, 0.d0, 0.d0, 1.d0, & mcos3, msin3, 0.d0, sin3, mcos3, 0.d0, 0.d0, 0.d0, 1.d0, & cos3, msin3, 0.d0, msin3, mcos3, 0.d0, 0.d0, 0.d0, -1.d0, & cos3, sin3, 0.d0, sin3, mcos3, 0.d0, 0.d0, 0.d0, -1.d0, & mcos3, msin3, 0.d0, msin3, cos3, 0.d0, 0.d0, 0.d0, -1.d0, & mcos3, sin3, 0.d0, sin3, cos3, 0.d0, 0.d0, 0.d0, -1.d0 / data s0name/ 'identity ',& '180 deg rotation - cart. axis [0,0,1] ',& '180 deg rotation - cart. axis [0,1,0] ',& '180 deg rotation - cart. axis [1,0,0] ',& '180 deg rotation - cart. axis [1,1,0] ',& '180 deg rotation - cart. axis [1,-1,0] ',& ' 90 deg rotation - cart. axis [0,0,-1] ',& ' 90 deg rotation - cart. axis [0,0,1] ',& '180 deg rotation - cart. axis [1,0,1] ',& '180 deg rotation - cart. axis [-1,0,1] ',& ' 90 deg rotation - cart. axis [0,1,0] ',& ' 90 deg rotation - cart. axis [0,-1,0] ',& '180 deg rotation - cart. axis [0,1,1] ',& '180 deg rotation - cart. axis [0,1,-1] ',& ' 90 deg rotation - cart. axis [-1,0,0] ',& ' 90 deg rotation - cart. axis [1,0,0] ',& '120 deg rotation - cart. axis [-1,-1,-1] ',& '120 deg rotation - cart. axis [-1,1,1] ',& '120 deg rotation - cart. axis [1,1,-1] ',& '120 deg rotation - cart. axis [1,-1,1] ',& '120 deg rotation - cart. axis [1,1,1] ',& '120 deg rotation - cart. axis [-1,1,-1] ',& '120 deg rotation - cart. axis [1,-1,-1] ',& '120 deg rotation - cart. axis [-1,-1,1] ',& ' 60 deg rotation - cryst. axis [0,0,1] ',& ' 60 deg rotation - cryst. axis [0,0,-1] ',& '120 deg rotation - cryst. axis [0,0,1] ',& '120 deg rotation - cryst. axis [0,0,-1] ',& '180 deg rotation - cryst. axis [1,-1,0] ',& '180 deg rotation - cryst. axis [2,1,0] ',& '180 deg rotation - cryst. axis [0,1,0] ',& '180 deg rotation - cryst. axis [1,1,0] ',& 'inversion ',& 'inv. 180 deg rotation - cart. axis [0,0,1] ',& 'inv. 180 deg rotation - cart. axis [0,1,0] ',& 'inv. 180 deg rotation - cart. axis [1,0,0] ',& 'inv. 180 deg rotation - cart. axis [1,1,0] ',& 'inv. 180 deg rotation - cart. axis [1,-1,0] ',& 'inv. 90 deg rotation - cart. axis [0,0,-1] ',& 'inv. 90 deg rotation - cart. axis [0,0,1] ',& 'inv. 180 deg rotation - cart. axis [1,0,1] ',& 'inv. 180 deg rotation - cart. axis [-1,0,1] ',& 'inv. 90 deg rotation - cart. axis [0,1,0] ',& 'inv. 90 deg rotation - cart. axis [0,-1,0] ',& 'inv. 180 deg rotation - cart. axis [0,1,1] ',& 'inv. 180 deg rotation - cart. axis [0,1,-1] ',& 'inv. 90 deg rotation - cart. axis [-1,0,0] ',& 'inv. 90 deg rotation - cart. axis [1,0,0] ',& 'inv. 120 deg rotation - cart. axis [-1,-1,-1]',& 'inv. 120 deg rotation - cart. axis [-1,1,1] ',& 'inv. 120 deg rotation - cart. axis [1,1,-1] ',& 'inv. 120 deg rotation - cart. axis [1,-1,1] ',& 'inv. 120 deg rotation - cart. axis [1,1,1] ',& 'inv. 120 deg rotation - cart. axis [-1,1,-1] ',& 'inv. 120 deg rotation - cart. axis [1,-1,-1] ',& 'inv. 120 deg rotation - cart. axis [-1,-1,1] ',& 'inv. 60 deg rotation - cryst. axis [0,0,1] ',& 'inv. 60 deg rotation - cryst. axis [0,0,-1] ',& 'inv. 120 deg rotation - cryst. axis [0,0,1] ',& 'inv. 120 deg rotation - cryst. axis [0,0,-1] ',& 'inv. 180 deg rotation - cryst. axis [1,-1,0] ',& 'inv. 180 deg rotation - cryst. axis [2,1,0] ',& 'inv. 180 deg rotation - cryst. axis [0,1,0] ',& 'inv. 180 deg rotation - cryst. axis [1,1,0] ' / ! compute the overlap matrix for crystal axis DO jpol = 1,3 DO kpol = 1,3 rot(kpol,jpol) = at(1,kpol)*at(1,jpol) +& at(2,kpol)*at(2,jpol) +& at(3,kpol)*at(3,jpol) ENDDO ENDDO ! ! then its inverse (rot is used as work space) ! CALL invmat (3, rot, overlap, value) nrot = 1 DO irot = 1,32 ! ! for each possible symmetry ! DO jpol = 1,3 DO mpol = 1,3 ! ! compute, in cartesian coordinates the rotated vector ! rat(mpol) = s0(mpol,1,irot)*at(1,jpol) +& s0(mpol,2,irot)*at(2,jpol) +& s0(mpol,3,irot)*at(3,jpol) ENDDO DO kpol = 1,3 ! ! the rotated vector is projected on the direct lattice ! rot(kpol,jpol) = at(1,kpol)*rat(1) +& at(2,kpol)*rat(2) +& at(3,kpol)*rat(3) ENDDO ENDDO ! ! and the inverse of the overlap matrix is applied ! DO jpol = 1,3 DO kpol = 1,3 value = overlap(jpol,1)*rot(1,kpol) +& & overlap(jpol,2)*rot(2,kpol) +& & overlap(jpol,3)*rot(3,kpol) IF ( abs(dble(nint(value))-value) > eps1 ) THEN ! ! if a noninteger is obtained, this implies that this operation ! is not a symmetry operation for the given lattice ! GOTO 10 ENDIF s(kpol,jpol,nrot) = nint(value) ENDDO ENDDO sname(nrot)=s0name(irot) imat(nrot)=irot nrot = nrot+1 IF (nrot > 25) CALL errore('set_sym_bl','some problem with symmetries',1) 10 CONTINUE ENDDO nrot = nrot-1 IF ( nrot /= 1 .AND. nrot /= 2 .AND. nrot /= 4 .AND. nrot /= 6 .AND. & nrot /= 8 .AND. nrot /=12 .AND. nrot /=24 ) CALL errore('set_sym_bl',& 'wrong number of symmetries! Use standard orientations for axis',nrot) ! ! set the inversion symmetry ( Bravais lattices have always inversion ! symmetry ) ! DO irot = 1, nrot sname(irot+nrot) = s0name(imat(irot)+32) DO kpol = 1,3 DO jpol = 1,3 s(kpol,jpol,irot+nrot) = -s(kpol,jpol,irot) ENDDO ENDDO ENDDO nrot = 2*nrot ! ! reset fractional translations to zero before checking the group ! ft(:,:) = 0.0_dp IF ( .not. is_group ( nrot ) ) THEN ! This happens for instance for an hexagonal lattice with one axis ! oriented at 15 degrees from the x axis, the other along (-1,1,0) CALL errore ('set_sym_bl', & 'Symmetry group not a group! Use standard orientations for axis',1) ENDIF ! RETURN ! END SUBROUTINE set_sym_bl ! !----------------------------------------------------------------------- SUBROUTINE find_sym ( nat, tau, ityp, nr1, nr2, nr3, magnetic_sym, m_loc ) !----------------------------------------------------------------------- ! ! This routine finds the point group of the crystal, by eliminating ! the symmetries of the Bravais lattice which are not allowed ! by the atomic positions (or by the magnetization if present) ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat, ityp (nat), nr1, nr2, nr3 real(DP), INTENT(in) :: tau (3,nat), m_loc(3,nat) LOGICAL, INTENT(in) :: magnetic_sym ! INTEGER :: i LOGICAL :: sym (48) ! if true the corresponding operation is a symmetry operation ! IF ( .not. allocated(irt) ) ALLOCATE( irt( 48, nat ) ) irt( :, : ) = 0 ! ! Here we find the true symmetries of the crystal ! symm: DO i=1,3 !emine: if it is not resolved in 3 steps it is sth else? CALL sgam_at ( nat, tau, ityp, nr1, nr2, nr3, sym ) ! ! Here we check for magnetic symmetries ! IF ( magnetic_sym ) CALL sgam_at_mag ( nat, m_loc, sym ) ! ! If nosym_evc is true from now on we do not use the symmetry any more ! IF (nosym_evc) THEN sym=.false. sym(1)=.true. ENDIF ! ! Here we re-order all rotations in such a way that true sym.ops ! are the first nsym; rotations that are not sym.ops. follow ! nsym = copy_sym ( nrot, sym ) ! IF ( .not. is_group ( nsym ) ) THEN IF (i == 1) CALL infomsg ('find_sym', & 'Not a group! Trying with lower acceptance parameter...') accep = accep * 0.5d0 IF (i == 3) THEN CALL infomsg ('find_sym', 'Still not a group! symmetry disabled') nsym = 1 ENDIF CYCLE symm ELSE IF (i > 1) CALL infomsg ('find_sym', 'Symmetry operations form a group') exit symm ENDIF ENDDO symm ! ! check if inversion (I) is a symmetry. ! If so, it should be the (nsym/2+1)-th operation of the group ! invsym = all ( s(:,:,nsym/2+1) == -s(:,:,1) ) ! CALL inverse_s ( ) ! CALL s_axis_to_cart ( ) ! RETURN ! END SUBROUTINE find_sym ! !----------------------------------------------------------------------- SUBROUTINE sgam_at ( nat, tau, ityp, nr1, nr2, nr3, sym ) !----------------------------------------------------------------------- ! ! Given the point group of the Bravais lattice, this routine finds ! the subgroup which is the point group of the considered crystal. ! Non symmorphic groups are allowed, provided that fractional ! translations are allowed (nofrac=.false), that the unit cell is ! not a supercell, and that they are commensurate with the FFT grid ! ! On output, the array sym is set to .true.. for each operation ! of the original point group that is also a symmetry operation ! of the crystal symmetry point group ! USE io_global, ONLY : stdout USE kinds IMPLICIT NONE ! INTEGER, INTENT(in) :: nat, ityp (nat), nr1, nr2, nr3 ! nat : number of atoms in the unit cell ! ityp : species of each atom in the unit cell ! nr* : dimensions of the FFT mesh ! real(DP), INTENT(in) :: tau (3, nat) ! ! tau : cartesian coordinates of the atoms ! ! output variables ! LOGICAL, INTENT(out) :: sym (48) ! sym(isym) : flag indicating if sym.op. isym in the parent group ! is a true symmetry operation of the crystal ! INTEGER :: na, kpol, nb, irot, i, j ! counters real(DP) , ALLOCATABLE :: xau (:,:), rau (:,:) ! atomic coordinates in crystal axis LOGICAL :: fractional_translations real(DP) :: ft_(3), ft1, ft2, ft3 ! ALLOCATE(xau(3,nat)) ALLOCATE(rau(3,nat)) ! ! Compute the coordinates of each atom in the basis of ! the direct lattice vectors ! DO na = 1, nat xau(:,na) = bg(1,:) * tau(1,na) + bg(2,:) * tau(2,na) + bg(3,:) * tau(3,na) ENDDO ! ! check if the identity has fractional translations ! (this means that the cell is actually a supercell). ! When this happens, fractional translations are disabled, ! because there is no guarantee that the generated sym.ops. ! form a group ! nb = 1 irot = 1 ! fractional_translations = .not. nofrac DO na = 2, nat IF ( fractional_translations ) THEN IF (ityp (nb) == ityp (na) ) THEN ft_(:) = xau(:,na) - xau(:,nb) - nint( xau(:,na) - xau(:,nb) ) ! sym(irot) = checksym ( irot, nat, ityp, xau, xau, ft_ ) ! IF ( sym (irot) .and. & (abs (ft_(1) **2 + ft_(2) **2 + ft_(3) **2) < 1.d-8) ) & CALL errore ('sgam_at', 'overlapping atoms', na) IF (sym (irot) ) THEN fractional_translations = .false. WRITE( stdout, '(5x,"Found symmetry operation: I + (",& & 3f8.4, ")",/,5x,"This is a supercell,", & & " fractional translations are disabled")') ft_ ENDIF ENDIF ENDIF ENDDO ! nsym_ns = 0 DO irot = 1, nrot ! ! check that the grid is compatible with the S rotation ! IF ( mod (s (2, 1, irot) * nr1, nr2) /= 0 .or. & mod (s (3, 1, irot) * nr1, nr3) /= 0 .or. & mod (s (1, 2, irot) * nr2, nr1) /= 0 .or. & mod (s (3, 2, irot) * nr2, nr3) /= 0 .or. & mod (s (1, 3, irot) * nr3, nr1) /= 0 .or. & mod (s (2, 3, irot) * nr3, nr2) /= 0 ) THEN sym (irot) = .false. WRITE( stdout, '(5x,"warning: symmetry operation # ",i2, & & " not compatible with FFT grid. ")') irot WRITE( stdout, '(3i4)') ( (s (i, j, irot) , j = 1, 3) , i = 1, 3) GOTO 100 ENDIF DO na = 1, nat ! rau = rotated atom coordinates rau (:, na) = s (1,:, irot) * xau (1, na) + & s (2,:, irot) * xau (2, na) + & s (3,:, irot) * xau (3, na) ENDDO ! ! first attempt: no fractional translation ! ftau (:, irot) = 0 ft (:, irot) = 0 ft_(:) = 0.d0 ! sym(irot) = checksym ( irot, nat, ityp, xau, rau, ft_ ) ! IF (.not.sym (irot) .and. fractional_translations) THEN nb = 1 DO na = 1, nat IF (ityp (nb) == ityp (na) ) THEN ! ! second attempt: check all possible fractional translations ! ft_ (:) = rau(:,na) - xau(:,nb) - nint( rau(:,na) - xau(:,nb) ) ! sym(irot) = checksym ( irot, nat, ityp, xau, rau, ft_ ) ! IF (sym (irot) ) THEN nsym_ns = nsym_ns + 1 ft (:,irot) = ft_(:) GOTO 100 ENDIF ENDIF ENDDO ENDIF 100 CONTINUE ENDDO ! ! convert ft to FFT coordinates, check if compatible with FFT grid ! for real-space symmetrization (if done: currently, exx, phonon) ! nsym_na = 0 DO irot =1, nrot IF ( sym(irot) .and. .not. allfrac ) THEN ft1 = ft(1,irot) * nr1 ft2 = ft(2,irot) * nr2 ft3 = ft(3,irot) * nr3 ! check if the fractional translations are commensurate ! with the FFT grid, discard sym.op. if not ! (needed because ph.x symmetrizes in real space) IF (abs (ft1 - nint (ft1) ) / nr1 > eps2 .or. & abs (ft2 - nint (ft2) ) / nr2 > eps2 .or. & abs (ft3 - nint (ft3) ) / nr3 > eps2 ) THEN ! WRITE( stdout, '(5x,"warning: symmetry operation", & ! & " # ",i2," not allowed. fractional ", & ! & "translation:"/5x,3f11.7," in crystal", & ! & " coordinates")') irot, ft_ sym (irot) = .false. nsym_na = nsym_na + 1 nsym_ns = nsym_ns - 1 ENDIF ftau (1, irot) = nint (ft1) ftau (2, irot) = nint (ft2) ftau (3, irot) = nint (ft3) ENDIF ENDDO ! ! deallocate work space ! DEALLOCATE (rau) DEALLOCATE (xau) ! RETURN END SUBROUTINE sgam_at ! !----------------------------------------------------------------------- SUBROUTINE sgam_at_mag ( nat, m_loc, sym ) !----------------------------------------------------------------------- ! ! Find magnetic symmetries, i.e. point-group symmetries that are ! also symmetries of the local magnetization - including ! rotation + time reversal operations ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat real(DP), INTENT(in) :: m_loc(3, nat) ! ! m_loc: local magnetization, must be invariant under the sym.op. ! LOGICAL, INTENT(inout) :: sym (48) ! ! sym(isym) = .true. if rotation isym is a sym.op. of the crystal ! (i.e. not of the bravais lattice only) ! INTEGER :: na, nb, irot LOGICAL :: t1, t2 real(DP) , ALLOCATABLE :: mxau(:,:), mrau(:,:) ! magnetization and rotated magnetization in crystal axis ! ALLOCATE ( mxau(3,nat), mrau(3,nat) ) ! ! Compute the local magnetization of each atom in the basis of ! the direct lattice vectors ! DO na = 1, nat mxau (:, na)= bg (1, :) * m_loc (1, na) + & bg (2, :) * m_loc (2, na) + & bg (3, :) * m_loc (3, na) ENDDO ! DO irot = 1, nrot ! t_rev(irot) = 0 ! IF ( sym (irot) ) THEN ! ! mrau = rotated local magnetization ! DO na = 1, nat mrau(:,na) = s(1,:,irot) * mxau(1,na) + & s(2,:,irot) * mxau(2,na) + & s(3,:,irot) * mxau(3,na) ENDDO IF (sname(irot)(1:3)=='inv') mrau = -mrau ! ! check if this a magnetic symmetry ! t1 = .true. t2 = .true. DO na = 1, nat ! nb = irt (irot,na) IF ( nb < 1 .or. nb > nat ) CALL errore ('check_mag_sym', & 'internal error: out-of-bound atomic index', na) ! t1 = ( abs(mrau(1,na) - mxau(1,nb)) + & abs(mrau(2,na) - mxau(2,nb)) + & abs(mrau(3,na) - mxau(3,nb)) < eps2 ) .and. t1 t2 = ( abs(mrau(1,na) + mxau(1,nb))+ & abs(mrau(2,na) + mxau(2,nb))+ & abs(mrau(3,na) + mxau(3,nb)) < eps2 ) .and. t2 ! ENDDO ! IF ( .not.t1 .and. .not.t2 ) THEN ! not a magnetic symmetry sym(irot) = .false. ELSEIF( t2 .and. .not. t1 ) THEN ! magnetic symmetry with time reversal, if allowed IF (no_t_rev) THEN sym(irot) = .false. ELSE t_rev(irot) = 1 ENDIF ENDIF ! ENDIF ! ENDDO ! ! deallocate work space ! DEALLOCATE ( mrau, mxau ) ! RETURN END SUBROUTINE sgam_at_mag ! SUBROUTINE set_sym(nat, tau, ityp, nspin_mag, m_loc, nr1, nr2, nr3) ! ! This routine receives as input atomic types and positions, if there ! is noncollinear magnetism and the initial magnetic moments, the fft ! dimensions nr1, nr2, nr3; it sets the symmetry elements of this module. ! Note that at and bg are those in cell_base. It sets nrot, nsym, s, ! sname, sr, invs, ftau, irt, t_rev, time_reversal, and invsym ! !----------------------------------------------------------------------- ! IMPLICIT NONE ! input INTEGER, INTENT(in) :: nat, ityp(nat), nspin_mag, nr1, nr2, nr3 REAL(DP), INTENT(in) :: tau(3,nat) REAL(DP), INTENT(in) :: m_loc(3,nat) ! time_reversal = (nspin_mag /= 4) t_rev(:) = 0 CALL set_sym_bl ( ) CALL find_sym ( nat, tau, ityp, nr1, nr2, nr3, .not.time_reversal, m_loc ) ! RETURN END SUBROUTINE set_sym ! !----------------------------------------------------------------------- INTEGER FUNCTION copy_sym ( nrot_, sym ) !----------------------------------------------------------------------- ! IMPLICIT NONE INTEGER, INTENT(in) :: nrot_ LOGICAL, INTENT(inout) :: sym(48) ! INTEGER :: stemp(3,3), ftemp(3), ttemp, irot, jrot REAL(dp) :: ft_(3) INTEGER, ALLOCATABLE :: irtemp(:) CHARACTER(len=45) :: nametemp ! ! copy symm. operations in sequential order so that ! s(i,j,irot) , irot <= nsym are the sym.ops. of the crystal ! nsym+1 < irot <= nrot are the sym.ops. of the lattice ! on exit copy_sym returns nsym ! ALLOCATE ( irtemp( size(irt,2) ) ) jrot = 0 DO irot = 1, nrot_ IF (sym (irot) ) THEN jrot = jrot + 1 IF ( irot > jrot ) THEN stemp = s(:,:,jrot) s (:,:, jrot) = s (:,:, irot) s (:,:, irot) = stemp ftemp(:) = ftau(:,jrot) ftau (:, jrot) = ftau (:, irot) ftau (:, irot) = ftemp(:) ft_(:) = ft(:,jrot) ft (:, jrot) = ft (:, irot) ft (:, irot) = ft_(:) irtemp (:) = irt (jrot,:) irt (jrot,:) = irt (irot,:) irt (irot,:) = irtemp (:) nametemp = sname (jrot) sname (jrot) = sname (irot) sname (irot) = nametemp ttemp = t_rev(jrot) t_rev(jrot) = t_rev(irot) t_rev(irot) = ttemp ENDIF ENDIF ENDDO sym (1:jrot) = .true. sym (jrot+1:nrot_) = .false. DEALLOCATE ( irtemp ) ! copy_sym = jrot RETURN ! END FUNCTION copy_sym ! !----------------------------------------------------------------------- LOGICAL FUNCTION is_group ( nsym_ ) !----------------------------------------------------------------------- ! ! Checks that {S} is a group ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nsym_ INTEGER :: isym, jsym, ksym, ss (3, 3) REAL (DP) :: st(3), dt(3) LOGICAL :: found ! DO isym = 1, nsym_ DO jsym = 1, nsym_ ! ss = matmul (s(:,:,isym),s(:,:,jsym)) st(:)= ft(:,jsym) + s(1,:,jsym)*ft(1,isym) + & s(2,:,jsym)*ft(2,isym) + & s(3,:,jsym)*ft(3,isym) ! ! here we check that the input matrices really form a group: ! S(k) = S(i)*S(j) ! ftau_k = S(j)*ftau_i+ftau_j (modulo a lattice vector) ! found = .false. DO ksym = 1, nsym_ dt(:) = ft(:,ksym) - st(:) - nint( ft(:,ksym) - st(:) ) IF ( all( s(:,:,ksym) == ss(:,:) ) .and. & ( abs ( dt(1) ) < eps2 ) .and. & ( abs ( dt(2) ) < eps2 ) .and. & ( abs ( dt(3) ) < eps2 ) ) THEN IF (found) THEN is_group = .false. RETURN ENDIF found = .true. ENDIF ENDDO IF ( .NOT. found ) THEN is_group = .false. RETURN ENDIF ENDDO ENDDO is_group=.true. RETURN ! END FUNCTION is_group ! !----------------------------------------------------------------------- LOGICAL FUNCTION checksym ( irot, nat, ityp, xau, rau, ft_ ) !----------------------------------------------------------------------- ! ! This function receives as input all the atomic positions xau, ! and the rotated rau by the symmetry operation ir. It returns ! true if for each atom na, it is possible to find an atom nb ! which is of the same type of na, and coincide with it after the ! symmetry operation. Fractional translations are allowed. ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat, ityp (nat), irot ! nat : number of atoms ! ityp: the type of each atom real(DP), INTENT(in) :: xau (3, nat), rau (3, nat), ft_(3) ! xau: the initial vectors (in crystal coordinates) ! rau: the rotated vectors (as above) ! ft_: fractionary translation (as above) ! INTEGER :: na, nb LOGICAL, EXTERNAL :: eqvect ! the testing function ! DO na = 1, nat DO nb = 1, nat checksym = ( ityp (na) == ityp (nb) .and. & eqvect (rau (1, na), xau (1, nb), ft_ , accep) ) IF ( checksym ) THEN ! ! the rotated atom does coincide with one of the like atoms ! keep track of which atom the rotated atom coincides with ! irt (irot, na) = nb GOTO 10 ENDIF ENDDO ! ! the rotated atom does not coincide with any of the like atoms ! s(ir) + ft is not a symmetry operation ! RETURN 10 CONTINUE ENDDO ! ! s(ir) + ft is a symmetry operation ! RETURN END FUNCTION checksym ! !----------------------------------------------------------------------- SUBROUTINE checkallsym ( nat, tau, ityp, nr1, nr2, nr3 ) !----------------------------------------------------------------------- ! given a crystal group this routine checks that the actual ! atomic positions and bravais lattice vectors are compatible with ! it. Used in relaxation/MD runs to check that atomic motion is ! consistent with assumed symmetry. ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat, ityp (nat), nr1, nr2, nr3 real(DP), INTENT(in) :: tau (3, nat) ! INTEGER :: na, kpol, isym, i, j, k, l LOGICAL :: loksym (48) real(DP) :: sx (3, 3), sy(3,3) real(DP) , ALLOCATABLE :: xau(:,:), rau(:,:) ! ALLOCATE (xau( 3 , nat)) ALLOCATE (rau( 3 , nat)) ! ! check that s(i,j, isym) is an orthogonal operation ! DO isym = 1, nsym sx = dble( s(:,:,isym) ) sy = matmul ( bg, sx ) sx = matmul ( sy, transpose(at) ) ! sx is s in cartesian axis sy = matmul ( transpose ( sx ), sx ) ! sy = s*transpose(s) = I DO i = 1, 3 sy (i,i) = sy (i,i) - 1.0_dp ENDDO IF (any (abs (sy) > eps1 ) ) & CALL errore ('checkallsym', 'not orthogonal operation', isym) ENDDO ! ! Compute the coordinates of each atom in the basis of the lattice ! DO na = 1, nat DO kpol = 1, 3 xau (kpol, na) = bg (1, kpol) * tau (1, na) + & bg (2, kpol) * tau (2, na) + & bg (3, kpol) * tau (3, na) ENDDO ENDDO ! ! generate the coordinates of the rotated atoms ! DO isym = 1, nsym DO na = 1, nat DO kpol = 1, 3 rau (kpol, na) = s (1, kpol, isym) * xau (1, na) + & s (2, kpol, isym) * xau (2, na) + & s (3, kpol, isym) * xau (3, na) ENDDO ENDDO ! loksym(isym) = checksym ( isym, nat, ityp, xau, rau, ft(1,isym) ) ! ENDDO ! ! deallocate work space ! DEALLOCATE(rau) DEALLOCATE(xau) ! DO isym = 1,nsym IF (.not.loksym (isym) ) CALL errore ('checkallsym', & 'the following symmetry operation is not satisfied ', -isym) ENDDO IF (any (.not.loksym (1:nsym) ) ) THEN !call symmetrize_at (nsym, s, invs, ft, irt, nat, tau, at, bg, & ! alat, omega) CALL errore ('checkallsym', & 'some of the original symmetry operations not satisfied ',1) ENDIF ! RETURN END SUBROUTINE checkallsym !---------------------------------------------------------------------- SUBROUTINE s_axis_to_cart ( ) !---------------------------------------------------------------------- ! ! This routine transforms symmetry matrices expressed in the ! basis of the crystal axis into rotations in cartesian axis ! USE kinds IMPLICIT NONE ! INTEGER :: isym real(dp):: sa(3,3), sb(3,3) ! DO isym = 1,nsym sa (:,:) = dble ( s(:,:,isym) ) sb = matmul ( bg, sa ) sr (:,:, isym) = matmul ( at, transpose (sb) ) ENDDO ! END SUBROUTINE s_axis_to_cart !----------------------------------------------------------------------- SUBROUTINE find_sym_ifc ( nat, tau, ityp) !----------------------------------------------------------------------- ! ! This routine finds the point group of the crystal, by eliminating ! the symmetries of the Bravais lattice which are not allowed ! by the atomic positions (for use in the FD package) ! IMPLICIT NONE ! INTEGER, INTENT(in) :: nat, ityp (nat) real(DP), INTENT(in) :: tau (3,nat) ! INTEGER :: i LOGICAL :: sym (48) ! if true the corresponding operation is a symmetry operation ! IF ( .not. allocated(irt) ) ALLOCATE( irt( 48, nat ) ) irt( :, : ) = 0 ! ! Here we find the true symmetries of the crystal ! !symm: DO i=1,3 !emine: if it is not resolved in 3 steps it is sth else? CALL sgam_at_ifc ( nat, tau, ityp, sym ) ! ! Here we re-order all rotations in such a way that true sym.ops ! are the first nsym; rotations that are not sym.ops. follow ! nsym = copy_sym ( nrot, sym ) ! ! IF ( .not. is_group ( nsym ) ) THEN ! IF (i == 1) CALL infomsg ('find_sym', & ! 'Not a group! Trying with lower acceptance parameter...') ! accep = accep * 0.5d0 ! IF (i == 3) THEN ! CALL infomsg ('find_sym', 'Still not a group! symmetry disabled') ! nsym = 1 ! ENDIF ! CYCLE symm ! ELSE ! IF (i > 1) CALL infomsg ('find_sym', 'Symmetry operations form a group') ! exit symm ! ENDIF !ENDDO symm ! ! check if inversion (I) is a symmetry. ! If so, it should be the (nsym/2+1)-th operation of the group ! invsym = all ( s(:,:,nsym/2+1) == -s(:,:,1) ) ! CALL inverse_s ( ) ! CALL s_axis_to_cart ( ) ! RETURN ! END SUBROUTINE find_sym_ifc ! !----------------------------------------------------------------------- SUBROUTINE sgam_at_ifc ( nat, tau, ityp, sym ) !----------------------------------------------------------------------- ! ! Given the point group of the Bravais lattice, this routine finds ! the subgroup which is the point group of the considered crystal. ! Non symmorphic groups are allowed, provided that fractional ! translations are allowed (nofrac=.false), that the unit cell is ! not a supercell. ! ! On output, the array sym is set to .true.. for each operation ! of the original point group that is also a symmetry operation ! of the crystal symmetry point group ! USE io_global, ONLY : stdout USE kinds IMPLICIT NONE ! INTEGER, INTENT(in) :: nat, ityp (nat) ! nat : number of atoms in the unit cell ! ityp : species of each atom in the unit cell ! real(DP), INTENT(in) :: tau (3, nat) ! ! tau : cartesian coordinates of the atoms ! ! output variables ! LOGICAL, INTENT(out) :: sym (48) ! sym(isym) : flag indicating if sym.op. isym in the parent group ! is a true symmetry operation of the crystal ! INTEGER :: na, kpol, nb, irot, i, j ! counters real(DP) , ALLOCATABLE :: xau (:,:), rau (:,:) ! atomic coordinates in crystal axis LOGICAL :: fractional_translations real(DP) :: ft_(3), ft1, ft2, ft3 ! ALLOCATE(xau(3,nat)) ALLOCATE(rau(3,nat)) ! ! Compute the coordinates of each atom in the basis of ! the direct lattice vectors ! DO na = 1, nat xau(:,na) = bg(1,:) * tau(1,na) + bg(2,:) * tau(2,na) + bg(3,:) * tau(3,na) ENDDO ! ! check if the identity has fractional translations ! (this means that the cell is actually a supercell). ! When this happens, fractional translations are disabled, ! because there is no guarantee that the generated sym.ops. ! form a group ! nb = 1 irot = 1 ! fractional_translations = .not. nofrac DO na = 2, nat IF ( fractional_translations ) THEN IF (ityp (nb) == ityp (na) ) THEN ft_(:) = xau(:,na) - xau(:,nb) - nint( xau(:,na) - xau(:,nb) ) ! sym(irot) = checksym ( irot, nat, ityp, xau, xau, ft_ ) ! IF ( sym (irot) .and. & (abs (ft_(1) **2 + ft_(2) **2 + ft_(3) **2) < 1.d-8) ) & CALL errore ('sgam_at_ifc', 'overlapping atoms', na) ENDIF ENDIF ENDDO ! nsym_ns = 0 DO irot = 1, nrot DO na = 1, nat ! rau = rotated atom coordinates rau (:, na) = s (1,:, irot) * xau (1, na) + & s (2,:, irot) * xau (2, na) + & s (3,:, irot) * xau (3, na) ENDDO ! ! first attempt: no fractional translation ! ftau (:, irot) = 0 ft (:, irot) = 0 ft_(:) = 0.d0 ! sym(irot) = checksym ( irot, nat, ityp, xau, rau, ft_ ) ! IF (.not.sym (irot) .and. fractional_translations) THEN nb = 1 DO na = 1, nat IF (ityp (nb) == ityp (na) ) THEN ! ! second attempt: check all possible fractional translations ! ft_ (:) = rau(:,na) - xau(:,nb) - nint( rau(:,na) - xau(:,nb) ) ! sym(irot) = checksym ( irot, nat, ityp, xau, rau, ft_ ) ! IF (sym (irot) ) THEN nsym_ns = nsym_ns + 1 ft (:,irot) = ft_(:) GOTO 100 ENDIF ENDIF ENDDO ENDIF 100 CONTINUE ENDDO ! DEALLOCATE (rau) DEALLOCATE (xau) ! RETURN END SUBROUTINE sgam_at_ifc END MODULE symm_base espresso-5.1/PW/src/atomic_wfc.f900000644000175000017500000002532612341373025015062 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE atomic_wfc (ik, wfcatom) !----------------------------------------------------------------------- ! ! This routine computes the superposition of atomic wavefunctions ! for k-point "ik" - output in "wfcatom" ! USE kinds, ONLY : DP USE constants, ONLY : tpi, fpi, pi USE cell_base, ONLY : omega, tpiba USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE basis, ONLY : natomwfc USE gvect, ONLY : mill, eigts1, eigts2, eigts3, g USE klist, ONLY : xk USE wvfct, ONLY : npwx, npw, nbnd, igk USE us, ONLY : tab_at, dq USE uspp_param, ONLY : upf USE noncollin_module, ONLY : noncolin, npol, angle1, angle2 USE spin_orb, ONLY : lspinorb, rot_ylm, fcoef, lmaxx, domag, & starting_spin_angle ! implicit none ! integer, intent(in) :: ik complex(DP), intent(out) :: wfcatom (npwx, npol, natomwfc) ! integer :: n_starting_wfc, lmax_wfc, nt, l, nb, na, m, lm, ig, iig, & i0, i1, i2, i3, nwfcm real(DP), allocatable :: qg(:), ylm (:,:), chiq (:,:,:), gk (:,:) complex(DP), allocatable :: sk (:), aux(:) complex(DP) :: kphase, lphase real(DP) :: arg, px, ux, vx, wx call start_clock ('atomic_wfc') ! calculate max angular momentum required in wavefunctions lmax_wfc = 0 do nt = 1, ntyp lmax_wfc = MAX ( lmax_wfc, MAXVAL (upf(nt)%lchi(1:upf(nt)%nwfc) ) ) enddo ! nwfcm = MAXVAL ( upf(1:ntyp)%nwfc ) ! allocate ( ylm (npw,(lmax_wfc+1)**2), chiq(npw,nwfcm,ntyp), & sk(npw), gk(3,npw), qg(npw) ) ! do ig = 1, npw gk (1,ig) = xk(1, ik) + g(1, igk(ig) ) gk (2,ig) = xk(2, ik) + g(2, igk(ig) ) gk (3,ig) = xk(3, ik) + g(3, igk(ig) ) qg(ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo ! ! ylm = spherical harmonics ! call ylmr2 ((lmax_wfc+1)**2, npw, gk, qg, ylm) ! ! set now q=|k+G| in atomic units ! do ig = 1, npw qg(ig) = sqrt(qg(ig))*tpiba enddo ! n_starting_wfc = 0 ! ! chiq = radial fourier transform of atomic orbitals chi ! do nt = 1, ntyp do nb = 1, upf(nt)%nwfc if ( upf(nt)%oc (nb) >= 0.d0) then do ig = 1, npw px = qg (ig) / dq - int (qg (ig) / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = INT( qg (ig) / dq ) + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 chiq (ig, nb, nt) = & tab_at (i0, nb, nt) * ux * vx * wx / 6.d0 + & tab_at (i1, nb, nt) * px * vx * wx / 2.d0 - & tab_at (i2, nb, nt) * px * ux * wx / 2.d0 + & tab_at (i3, nb, nt) * px * ux * vx / 6.d0 enddo endif enddo enddo deallocate (qg, gk) allocate ( aux(npw) ) ! wfcatom(:,:,:) = (0.0_dp, 0.0_dp) ! do na = 1, nat arg = (xk(1,ik)*tau(1,na) + xk(2,ik)*tau(2,na) + xk(3,ik)*tau(3,na)) * tpi kphase = CMPLX(cos (arg), - sin (arg) ,kind=DP) ! ! sk is the structure factor ! do ig = 1, npw iig = igk (ig) sk (ig) = kphase * eigts1 (mill (1,iig), na) * & eigts2 (mill (2,iig), na) * & eigts3 (mill (3,iig), na) enddo ! nt = ityp (na) do nb = 1, upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l = upf(nt)%lchi(nb) lphase = (0.d0,1.d0)**l ! ! the factor i^l MUST BE PRESENT in order to produce ! wavefunctions for k=0 that are real in real space ! IF ( noncolin ) THEN ! IF ( upf(nt)%has_so ) THEN ! IF (starting_spin_angle.OR..not.domag) THEN call atomic_wfc_so ( ) ELSE call atomic_wfc_so_mag ( ) ENDIF ! ELSE ! call atomic_wfc_nc ( ) ! ENDIF ! ELSE ! call atomic_wfc___ ( ) ! END IF ! END IF ! END DO ! END DO if (n_starting_wfc /= natomwfc) call errore ('atomic_wfc', & 'internal error: some wfcs were lost ', 1) deallocate(aux, sk, chiq, ylm) call stop_clock ('atomic_wfc') return CONTAINS SUBROUTINE atomic_wfc_so ( ) ! ! ... spin-orbit case ! real(DP) :: fact(2), j real(DP), external :: spinor integer :: ind, ind1, n1, is, sph_ind ! j = upf(nt)%jchi(nb) do m = -l-1, l fact(1) = spinor(l,j,m,1) fact(2) = spinor(l,j,m,2) if (abs(fact(1)) > 1.d-8 .or. abs(fact(2)) > 1.d-8) then n_starting_wfc = n_starting_wfc + 1 if (n_starting_wfc > natomwfc) call errore & ('atomic_wfc_so', 'internal error: too many wfcs', 1) DO is=1,2 IF (abs(fact(is)) > 1.d-8) THEN ind=lmaxx+1+sph_ind(l,j,m,is) aux=(0.d0,0.d0) DO n1=1,2*l+1 ind1=l**2+n1 if (abs(rot_ylm(ind,n1)) > 1.d-8) & aux(:)=aux(:)+rot_ylm(ind,n1)*ylm(:,ind1) ENDDO DO ig=1,npw wfcatom (ig,is,n_starting_wfc) = lphase*fact(is)*& sk(ig)*aux(ig)*chiq (ig, nb, nt) END DO ELSE wfcatom (:,is,n_starting_wfc) = (0.d0,0.d0) END IF END DO END IF END DO ! END SUBROUTINE atomic_wfc_so ! SUBROUTINE atomic_wfc_so_mag ( ) ! ! ... spin-orbit case, magnetization along "angle1" and "angle2" ! In the magnetic case we always assume that magnetism is much larger ! than spin-orbit and average the wavefunctions at l+1/2 and l-1/2 ! filling then the up and down spinors with the average wavefunctions, ! according to the direction of the magnetization, following what is ! done in the noncollinear case ! real(DP) :: alpha, gamman, j complex(DP) :: fup, fdown real(DP), ALLOCATABLE :: chiaux(:) integer :: nc, ib ! j = upf(nt)%jchi(nb) ! ! This routine creates two functions only in the case j=l+1/2 or exit in the ! other case ! IF (ABS(j-l+0.5_DP)<1.d-4) RETURN ALLOCATE(chiaux(npw)) ! ! Find the functions j=l-1/2 ! IF (l == 0) THEN chiaux(:)=chiq(:,nb,nt) ELSE DO ib=1, upf(nt)%nwfc IF ((upf(nt)%lchi(ib) == l).AND. & (ABS(upf(nt)%jchi(ib)-l+0.5_DP)<1.d-4)) THEN nc=ib EXIT ENDIF ENDDO ! ! Average the two functions ! chiaux(:)=(chiq(:,nb,nt)*(l+1.0_DP)+chiq(:,nc,nt)*l)/(2.0_DP*l+1.0_DP) ENDIF ! ! and construct the starting wavefunctions as in the noncollinear case. ! alpha = angle1(nt) gamman = - angle2(nt) + 0.5d0*pi ! DO m = 1, 2 * l + 1 lm = l**2 + m n_starting_wfc = n_starting_wfc + 1 if (n_starting_wfc + 2*l+1 > natomwfc) call errore & ('atomic_wfc_nc', 'internal error: too many wfcs', 1) DO ig=1,npw aux(ig) = sk(ig)*ylm(ig,lm)*chiaux(ig) END DO ! ! now, rotate wfc as needed ! first : rotation with angle alpha around (OX) ! DO ig=1,npw fup = cos(0.5d0*alpha)*aux(ig) fdown = (0.d0,1.d0)*sin(0.5d0*alpha)*aux(ig) ! ! Now, build the orthogonal wfc ! first rotation with angle (alpha+pi) around (OX) ! wfcatom(ig,1,n_starting_wfc) = (cos(0.5d0*gamman) & +(0.d0,1.d0)*sin(0.5d0*gamman))*fup wfcatom(ig,2,n_starting_wfc) = (cos(0.5d0*gamman) & -(0.d0,1.d0)*sin(0.5d0*gamman))*fdown ! ! second: rotation with angle gamma around (OZ) ! ! Now, build the orthogonal wfc ! first rotation with angle (alpha+pi) around (OX) ! fup = cos(0.5d0*(alpha+pi))*aux(ig) fdown = (0.d0,1.d0)*sin(0.5d0*(alpha+pi))*aux(ig) ! ! second, rotation with angle gamma around (OZ) ! wfcatom(ig,1,n_starting_wfc+2*l+1) = (cos(0.5d0*gamman) & +(0.d0,1.d0)*sin(0.5d0 *gamman))*fup wfcatom(ig,2,n_starting_wfc+2*l+1) = (cos(0.5d0*gamman) & -(0.d0,1.d0)*sin(0.5d0*gamman))*fdown END DO END DO n_starting_wfc = n_starting_wfc + 2*l+1 DEALLOCATE(chiaux) ! END SUBROUTINE atomic_wfc_so_mag ! SUBROUTINE atomic_wfc_nc ( ) ! ! ... noncolinear case, magnetization along "angle1" and "angle2" ! real(DP) :: alpha, gamman complex(DP) :: fup, fdown ! alpha = angle1(nt) gamman = - angle2(nt) + 0.5d0*pi ! DO m = 1, 2 * l + 1 lm = l**2 + m n_starting_wfc = n_starting_wfc + 1 if (n_starting_wfc + 2*l+1 > natomwfc) call errore & ('atomic_wfc_nc', 'internal error: too many wfcs', 1) DO ig=1,npw aux(ig) = sk(ig)*ylm(ig,lm)*chiq(ig,nb,nt) END DO ! ! now, rotate wfc as needed ! first : rotation with angle alpha around (OX) ! DO ig=1,npw fup = cos(0.5d0*alpha)*aux(ig) fdown = (0.d0,1.d0)*sin(0.5d0*alpha)*aux(ig) ! ! Now, build the orthogonal wfc ! first rotation with angle (alpha+pi) around (OX) ! wfcatom(ig,1,n_starting_wfc) = (cos(0.5d0*gamman) & +(0.d0,1.d0)*sin(0.5d0*gamman))*fup wfcatom(ig,2,n_starting_wfc) = (cos(0.5d0*gamman) & -(0.d0,1.d0)*sin(0.5d0*gamman))*fdown ! ! second: rotation with angle gamma around (OZ) ! ! Now, build the orthogonal wfc ! first rotation with angle (alpha+pi) around (OX) ! fup = cos(0.5d0*(alpha+pi))*aux(ig) fdown = (0.d0,1.d0)*sin(0.5d0*(alpha+pi))*aux(ig) ! ! second, rotation with angle gamma around (OZ) ! wfcatom(ig,1,n_starting_wfc+2*l+1) = (cos(0.5d0*gamman) & +(0.d0,1.d0)*sin(0.5d0 *gamman))*fup wfcatom(ig,2,n_starting_wfc+2*l+1) = (cos(0.5d0*gamman) & -(0.d0,1.d0)*sin(0.5d0*gamman))*fdown END DO END DO n_starting_wfc = n_starting_wfc + 2*l+1 ! END SUBROUTINE atomic_wfc_nc SUBROUTINE atomic_wfc___( ) ! ! ... LSDA or nonmagnetic case ! DO m = 1, 2 * l + 1 lm = l**2 + m n_starting_wfc = n_starting_wfc + 1 if (n_starting_wfc > natomwfc) call errore & ('atomic_wfc___', 'internal error: too many wfcs', 1) ! DO ig = 1, npw wfcatom (ig, 1, n_starting_wfc) = lphase * & sk (ig) * ylm (ig, lm) * chiq (ig, nb, nt) ENDDO ! END DO ! END SUBROUTINE atomic_wfc___ ! END SUBROUTINE atomic_wfc espresso-5.1/PW/src/compute_becsum.f900000644000175000017500000003012112341373025015746 0ustar mbamba! ! Copyright (C) 2001-2005 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE compute_becsum(iflag) !---------------------------------------------------------------------------- ! ! ... calculates the becsum term ! ... this version works also for metals (gaussian spreading technique) ! USE kinds, ONLY : DP USE control_flags, ONLY : gamma_only USE ions_base, ONLY : nat, ntyp => nsp, ityp USE cell_base, ONLY : tpiba2 USE klist, ONLY : nks, nkstot, wk, xk, ngk USE gvect USE lsda_mod, ONLY : lsda, current_spin, isk USE io_files, ONLY : iunwfc, nwordwfc, iunigk USE buffers, ONLY : get_buffer USE uspp, ONLY : nkb, vkb, becsum, okvan USE uspp_param, ONLY : upf, nh, nhm USE wavefunctions_module, ONLY : evc, psic, psic_nc USE noncollin_module, ONLY : noncolin, npol USE wvfct, ONLY : nbnd, npwx, npw, igk, wg, g2kin, ecutwfc USE paw_symmetry, ONLY : PAW_symmetrize USE paw_variables, ONLY : okpaw USE becmod, ONLY : calbec USE mp_pools, ONLY : inter_pool_comm USE mp, ONLY : mp_sum USE scf, ONLY : rho ! IMPLICIT NONE INTEGER, INTENT(IN) :: iflag ! if 1 compute also the weights ! ! ... local variables ! INTEGER :: ikb, jkb, ijkb0, ih, jh, ijh, na, np ! counters on beta functions, atoms, pseudopotentials INTEGER :: is, ibnd, ik ! counter on spin polarizations ! counter on bands ! counter on k points ! ! CALL start_clock( 'compute_becsum' ) ! becsum(:,:,:) = 0.D0 ! ! ... calculates weights of Kohn-Sham orbitals used in calculation of rho ! IF (iflag==1) CALL weights ( ) ! IF (gamma_only) THEN CALL compute_becsum_gamma() ELSE CALL compute_becsum_k() ENDIF ! ... Needed for PAW: becsum has to be symmetrized so that they reflect a real integral ! in k-space, not only on the irreducible zone. For USPP there is no need to do this as ! becsums are only used to compute the density, which is symmetrized later. ! IF( okpaw ) THEN rho%bec(:,:,:) = becsum(:,:,:) CALL mp_sum(rho%bec, inter_pool_comm) CALL PAW_symmetrize(rho%bec) ENDIF ! CALL stop_clock( 'compute_becsum' ) ! RETURN ! CONTAINS ! ! ... internal procedures ! !----------------------------------------------------------------------- SUBROUTINE compute_becsum_gamma() !----------------------------------------------------------------------- ! ! ... gamma version ! IMPLICIT NONE ! ! ... local variables ! REAL(DP) :: w1 ! weights REAL(DP), ALLOCATABLE :: rbecp(:,:) ! contains ! ! ALLOCATE( rbecp( nkb, nbnd ) ) ! ! ... here we sum for each k point the contribution ! ... of the wavefunctions to the charge ! IF ( nks > 1 ) REWIND( iunigk ) ! k_loop: DO ik = 1, nks ! IF ( lsda ) current_spin = isk(ik) npw = ngk(ik) ! IF ( nks > 1 ) THEN ! READ( iunigk ) igk CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) ! END IF ! IF ( nkb > 0 ) & CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! IF ( .NOT. okvan ) CYCLE k_loop ! CALL calbec( npw, vkb, evc, rbecp ) ! CALL start_clock( 'becsum' ) ! DO ibnd = 1, nbnd ! w1 = wg(ibnd,ik) ijkb0 = 0 ! DO np = 1, ntyp ! IF ( upf(np)%tvanp ) THEN ! DO na = 1, nat ! IF ( ityp(na) == np ) THEN ! ijh = 1 ! DO ih = 1, nh(np) ! ikb = ijkb0 + ih ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + & w1 *rbecp(ikb,ibnd) *rbecp(ikb,ibnd) ! ijh = ijh + 1 ! DO jh = ( ih + 1 ), nh(np) ! jkb = ijkb0 + jh ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + & w1 * 2.D0 *rbecp(ikb,ibnd) *rbecp(jkb,ibnd) ! ijh = ijh + 1 ! END DO ! END DO ! ijkb0 = ijkb0 + nh(np) ! END IF ! END DO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! END DO ! END IF ! END DO ! END DO ! CALL stop_clock( 'becsum' ) ! END DO k_loop ! DEALLOCATE(rbecp ) ! RETURN ! END SUBROUTINE compute_becsum_gamma ! !----------------------------------------------------------------------- SUBROUTINE compute_becsum_k() !----------------------------------------------------------------------- ! ! ... k-points version ! IMPLICIT NONE ! ! ... local variables ! REAL(DP) :: w1 ! weights COMPLEX(DP), ALLOCATABLE :: becp(:,:), becp_nc(:,:,:) ! contains ! COMPLEX(DP), ALLOCATABLE :: becsum_nc(:,:,:,:) ! INTEGER :: js ! IF (okvan) THEN IF (noncolin) THEN ALLOCATE(becsum_nc(nhm*(nhm+1)/2,nat,npol,npol)) becsum_nc=(0.d0, 0.d0) ALLOCATE( becp_nc( nkb, npol, nbnd ) ) ELSE ALLOCATE( becp( nkb, nbnd ) ) END IF ELSE RETURN ENDIF ! ! ... here we sum for each k point the contribution ! ... of the wavefunctions to the charge ! REWIND( iunigk ) ! k_loop: DO ik = 1, nks ! IF ( lsda ) current_spin = isk(ik) npw = ngk (ik) ! IF ( nks > 1 ) THEN ! READ( iunigk ) igk CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) ! END IF ! IF ( nkb > 0 ) & CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! IF (noncolin) THEN CALL calbec( npw, vkb, evc, becp_nc ) ELSE CALL calbec( npw, vkb, evc, becp ) ENDIF ! CALL start_clock( 'becsum' ) ! DO ibnd = 1, nbnd ! w1 = wg(ibnd,ik) ijkb0 = 0 ! DO np = 1, ntyp ! IF ( upf(np)%tvanp ) THEN ! DO na = 1, nat ! IF (ityp(na)==np) THEN ! ijh = 1 ! DO ih = 1, nh(np) ! ikb = ijkb0 + ih ! IF (noncolin) THEN ! DO is=1,npol ! DO js=1,npol becsum_nc(ijh,na,is,js) = & becsum_nc(ijh,na,is,js)+w1 * & CONJG(becp_nc(ikb,is,ibnd)) * & becp_nc(ikb,js,ibnd) END DO ! END DO ! ELSE ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + & w1 * DBLE( CONJG( becp(ikb,ibnd) ) * & becp(ikb,ibnd) ) ! END IF ! ijh = ijh + 1 ! DO jh = ( ih + 1 ), nh(np) ! jkb = ijkb0 + jh ! IF (noncolin) THEN ! DO is=1,npol ! DO js=1,npol becsum_nc(ijh,na,is,js) = & becsum_nc(ijh,na,is,js) + w1 * & CONJG(becp_nc(ikb,is,ibnd)) * & becp_nc(jkb,js,ibnd) END DO ! END DO ! ELSE ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * 2.D0 * & DBLE( CONJG( becp(ikb,ibnd) ) * & becp(jkb,ibnd) ) ENDIF ! ijh = ijh + 1 ! END DO ! END DO ! ijkb0 = ijkb0 + nh(np) ! END IF ! END DO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! END DO ! END IF ! END DO ! END DO ! CALL stop_clock( 'becsum' ) ! END DO k_loop IF (noncolin.and.okvan) THEN DO np = 1, ntyp IF ( upf(np)%tvanp ) THEN DO na = 1, nat IF (ityp(na)==np) THEN IF (upf(np)%has_so) THEN CALL transform_becsum_so(becsum_nc,becsum,na) ELSE CALL transform_becsum_nc(becsum_nc,becsum,na) END IF END IF END DO END IF END DO END IF ! IF (okvan) THEN IF (noncolin) THEN DEALLOCATE( becsum_nc ) DEALLOCATE( becp_nc ) ELSE DEALLOCATE( becp ) ENDIF END IF ! RETURN ! END SUBROUTINE compute_becsum_k ! END SUBROUTINE compute_becsum espresso-5.1/PW/src/compute_dip.f900000644000175000017500000001052212341373025015247 0ustar mbamba! ! Copyright (C) 2003-2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! 25/06/2009 (Riccardo Sabatini) ! reformulation using a unique saw(x) function (included in ! cell_base) in all e-field related routines and inclusion of ! a macroscopic electronic dipole contribution in the mixing ! scheme. ! ! the calculation of the dipole is split in the ionic (compute_ion_dip) ! and electronic (compute_el_dip) contributions. ! SUBROUTINE compute_ion_dip(emaxpos, eopreg, edir, ion_dipole) ! ! !--------------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE ions_base, ONLY : nat, ityp, tau, zv USE constants, ONLY : fpi USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, omega, alat, saw ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: emaxpos, eopreg INTEGER, INTENT(IN) :: edir REAL(DP), INTENT(OUT) :: ion_dipole ! REAL(DP) :: bmod INTEGER :: na REAL(DP) :: sawarg, tvectb, zvia !-------------------------- ! Fix some values for later calculations !-------------------------- bmod=SQRT(bg(1,edir)**2+bg(2,edir)**2+bg(3,edir)**2) !-------------------------- ! Calculate IONIC dipole !-------------------------- ! ! P_{ion} = \sum^{nat}_{s} z_{v} Saw\left( \vec{t_{s}}\cdot\vec{b_{edir}}} ! \right) \frac{alat}{bmod} \frac{4\pi}{\Omega} ! ion_dipole=0.d0 DO na = 1, nat ! ! Ion charge zvia = zv(ityp(na)) ! Position vector tvectb = tau(1,na)*bg(1,edir) + tau(2,na)*bg(2,edir) + tau(3,na)*bg(3,edir) ion_dipole = ion_dipole + zvia* saw(emaxpos,eopreg, tvectb ) & * (alat/bmod) * (fpi/omega) END DO RETURN END SUBROUTINE compute_ion_dip ! SUBROUTINE compute_el_dip(emaxpos, eopreg, edir, charge, e_dipole) ! ! !--------------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE lsda_mod, ONLY : nspin USE constants, ONLY : fpi USE kinds, ONLY : DP USE cell_base, ONLY : at, bg, omega, alat, saw USE fft_base, ONLY : dfftp USE mp_bands, ONLY : me_bgrp, intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: emaxpos, eopreg REAL(DP), INTENT(IN), DIMENSION(dfftp%nnr,nspin) :: charge INTEGER, INTENT(IN) :: edir REAL(DP), INTENT(OUT) :: e_dipole ! REAL(DP), ALLOCATABLE :: rho_all(:), aux(:) REAL(DP) :: rhoir,bmod INTEGER :: i, k, j, ip, ir, idx, idx0, na REAL(DP) :: sawarg, tvectb !-------------------------- ! Fix some values for later calculations !-------------------------- bmod=SQRT(bg(1,edir)**2+bg(2,edir)**2+bg(3,edir)**2) ! !-------------------------- ! Calculate ELECTRONIC dipole !-------------------------- ! ! Case with edir = 3 (in the formula changes only tha rgument of saw, i for ! edir=1 and j for edir = 2) ! ! P_{ele} = \sum_{ijk} \rho_{r_{ijk}} Saw\left( \frac{k}{nr3} \right) ! \frac{alat}{bmod} \frac{\Omega}{nrxx} \frac{4\pi}{\Omega} ! e_dipole = 0.D0 ! ! Procedure for parallel summation ! #if defined (__MPI) idx0 = dfftp%nr1x*dfftp%nr2x * dfftp%ipp(me_bgrp+1) #else idx0 = 0 #endif ! ! Loop in the charge array ! DO ir = 1, dfftp%nr1x*dfftp%nr2x * dfftp%npl ! ! ... three dimensional indices ! idx = idx0 + ir - 1 k = idx / (dfftp%nr1x*dfftp%nr2x) idx = idx - (dfftp%nr1x*dfftp%nr2x)*k j = idx / dfftp%nr1x idx = idx - dfftp%nr1x*j i = idx ! ! Define the argument for the saw function ! if (edir.eq.1) sawarg = DBLE(i)/DBLE(dfftp%nr1) if (edir.eq.2) sawarg = DBLE(j)/DBLE(dfftp%nr2) if (edir.eq.3) sawarg = DBLE(k)/DBLE(dfftp%nr3) rhoir = charge(ir,1) ! IF ( nspin == 2 ) rhoir = rhoir + charge(ir,2) e_dipole = e_dipole + rhoir * saw(emaxpos,eopreg, sawarg) & * (alat/bmod) * (fpi/(dfftp%nr1*dfftp%nr2*dfftp%nr3)) END DO CALL mp_sum( e_dipole , intra_bgrp_comm ) RETURN END SUBROUTINE compute_el_dip espresso-5.1/PW/src/save_in_cbands.f900000644000175000017500000000427712341373025015707 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE save_in_cbands (ik, ethr, avg_iter, et) !----------------------------------------------------------------------- USE kinds, ONLY: dp USE io_files, ONLY: iunres, seqopn USE klist, ONLY: nks USE wvfct, ONLY: nbnd ! IMPLICIT NONE ! INTEGER, INTENT (in) :: ik REAL(dp), INTENT(in) :: ethr, avg_iter, et(nbnd,nks) ! LOGICAL :: exst ! CALL seqopn (iunres, 'restart_k', 'formatted', exst) WRITE (iunres, *) ik, ethr, avg_iter WRITE (iunres, *) et(1:nbnd,1:nks) CLOSE ( unit=iunres, status='keep') ! END SUBROUTINE save_in_cbands ! !----------------------------------------------------------------------- SUBROUTINE restart_in_cbands (ik, ethr, avg_iter, et) !----------------------------------------------------------------------- USE kinds, ONLY: dp USE io_global, ONLY: stdout USE io_files, ONLY: iunres, seqopn USE klist, ONLY: nks USE wvfct, ONLY: nbnd ! IMPLICIT NONE ! INTEGER, INTENT (inout) :: ik REAL(dp), INTENT(inout) :: ethr, avg_iter, et(nbnd,nks) ! REAL(dp), ALLOCATABLE :: et_(:,:) REAL(dp):: ethr_, avg_iter_ INTEGER :: ios LOGICAL :: exst ! CALL seqopn (iunres, 'restart_k', 'formatted', exst) IF ( exst ) THEN ios = 0 READ (iunres, *, iostat=ios) ik, ethr_, avg_iter_ IF ( ios /= 0 ) THEN ik = 0 ELSE IF ( ik < 1 .OR. ik > nks ) THEN ik = 0 ELSE ALLOCATE (et_(nbnd,nks)) READ (iunres, *, iostat=ios) et_ IF ( ios /= 0 ) THEN ik = 0 ELSE WRITE( stdout, & '(5x,"Calculation restarted from kpoint #",i6)' ) ik + 1 ethr = ethr_ avg_iter = avg_iter_ et (:,:) = et_(:,:) END IF DEALLOCATE (et_) END IF ELSE ik = 0 END IF CLOSE ( unit=iunres, status='delete') ! END SUBROUTINE restart_in_cbands espresso-5.1/PW/src/compute_rho.f900000644000175000017500000000272112341373025015265 0ustar mbamba! ! Copyright (C) 2005-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE compute_rho(rho,rhoout,segni,nrxx) ! ! This subroutine diagonalizes the spin density matrix and gives as output ! the spin up and spin down compotents of the charge ! If lsign is true up and dw are with respect to the fixed quantization ! axis ux, otherwise rho+|m| is always rhoup and rho-|m| is always ! rhodw ! USE kinds, ONLY : dp USE noncollin_module, ONLY : lsign, ux IMPLICIT NONE INTEGER :: nrxx ! input: the dimension of the mesh REAL(DP), INTENT(IN) :: rho(nrxx,4) REAL(DP), INTENT(OUT) :: rhoout(nrxx,2) REAL(DP), INTENT(OUT) :: segni(nrxx) ! input: the four components of the charge ! output: the spin up and spin down charge ! output: the orientation when needed REAL(DP) :: amag INTEGER :: ir ! counter on mesh points segni=1.0_DP IF (lsign) THEN DO ir=1,nrxx segni(ir)=SIGN(1.0_DP,rho(ir,2)*ux(1)+rho(ir,3)*ux(2)+rho(ir,4)*ux(3)) ENDDO ENDIF DO ir=1,nrxx amag=SQRT(rho(ir,2)**2+rho(ir,3)**2+rho(ir,4)**2) rhoout(ir,1)=0.5d0*(rho(ir,1)+segni(ir)*amag) rhoout(ir,2)=0.5d0*(rho(ir,1)-segni(ir)*amag) ENDDO RETURN END SUBROUTINE compute_rho espresso-5.1/PW/src/vcsmd.f900000644000175000017500000003642712341373025014067 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE vcsmd() !---------------------------------------------------------------------------- ! ! Main (interface) routine between PWSCF and the variable-cell shape ! molecular dynamics code by R.M. Wentzcovitch, PRB 44, 2358 (1991). ! ! Molecular and/or cell dynamics is performed according to the value of ! the switch variable calc: ! ! calc = 'md' : standard molecular dynamics ! calc = 'mm' : structural minimization by damped dynamics ! calc = 'cd' : Parrinello-Rahman cell dynamics ! calc = 'cm' : Parrinello-Rahman cell minimization by damped dynami ! calc = 'nd' : Wentzcovitch's new cell dynamics ! calc = 'nm' : Wentzcovitch's new cell minimization by damped dynam ! ! Dynamics performed using Beeman algorithm, J. Comp. Phys. 20, 130 (1976)) ! ! Contraints with vcsmd have been implemented by Vivek Ranjan in 2012 ! from the Department of Physics, North Carolina State University ! Raleigh, North Carolina, USA ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : e2, ry_kbar, amu_ry USE cell_base, ONLY : omega, alat, at, bg, iforceh, fix_volume, fix_area USE ions_base, ONLY : tau, nat, ntyp => nsp, ityp, atm, if_pos USE cellmd, ONLY : nzero, ntimes, calc, press, at_old, omega_old, & cmass, ntcheck, lmovecell USE dynamics_module, ONLY : dt, temperature USE ions_base, ONLY : amass, if_pos USE relax, ONLY : epse, epsf, epsp USE force_mod, ONLY : force, sigma USE control_flags, ONLY : nstep, istep, tolp, conv_ions, lconstrain USE parameters, ONLY : ntypx USE ener, ONLY : etot USE io_files, ONLY : prefix, delete_if_present, seqopn USE constraints_module, ONLY : nconstr USE constraints_module, ONLY : remove_constr_force, check_constraint ! ! IMPLICIT NONE ! ! ... I/O variable first ! ! PWSCF variables ! nat = total number of atoms ! ntyp = total number of atomic types ! ityp(na) = atomic type for na-th atom ! tau(i,na) = position of the na-th atom ! at (icar,ivec) = direct Bravais lattice vectors ! bg (icar,ivec) = reciprocal lattice vectors ! amass_(nt) = mass (in atomic ryd units) for atom of nt-th type ! cmass = cell mass in ryd units. ! press = target pressure in ryd/(a.u.)^3 ! ! ... local variables #if ! defined (__REDUCE_OUTPUT) ! for vcsmd with constraints REAL(DP), EXTERNAL :: DNRM2 ! #endif ! REAL(DP) :: p, & ! virial pressure vcell, & ! cell volume avec(3,3), & ! at(3,3) * alat aveci(3,3), & ! avec at t-dt avecd(3,3), & ! d(avec)/dt avec2d(3,3), & ! d2(avec)/dt2 avec2di(3,3), & ! d2(avec)/dt2 at t-dt avec0(3,3), & ! avec at t = 0 sig0(3,3), & ! sigma at t=0 v0 ! volume at t=0 REAL(DP), ALLOCATABLE :: & amass_(:), & ! scaled atomic masses rat(:,:), & ! atomic positions (lattice coord) rati(:,:), & ! rat at previous step ratd(:,:), & ! rat derivatives at current step rat2d(:,:), & ! rat 2nd derivatives at current step rat2di(:,:), & ! rat 2nd derivatives at previous step tauold(:,:,:) ! additional history variables REAL(DP) :: & avmod(3), theta(3,3), & ! used to monitor cell dynamics enew, e_start, & ! DFT energy at current and first step eold, & ! DFT energy at previous step uta, eka, eta, ekla, utl, etl, ut, ekint, edyn, & ! other energies acu, ack, acp, acpv, avu, avk, avp, avpv, & ! acc.& avrg. ener tnew=0.0_dp, pv, & ! instantaneous temperature and p*vcell sigmamet(3,3), & ! sigma = avec^-1 * vcell = bg/alat*omega vx2(ntypx), vy2(ntypx), vz2(ntypx), & ! work vectors vmean(ntypx), rms(ntypx), ekin(ntypx), & ! work vectors tempo, time_au CHARACTER(LEN=3) :: ios ! status (old or new) for I/O files CHARACTER(LEN=6) :: ipos ! status ('append' or 'asis') for I/O files CHARACTER(LEN=80):: calc_long ! Verbose description of type of calculation LOGICAL :: exst INTEGER, SAVE :: idone = 0 ! counter on completed moves on this run INTEGER :: na, nst, ipol, i, j, k ! counters ! ! ... I/O units ! INTEGER, PARAMETER :: iun_e = 21, & iun_eal = 22, & iun_ave = 23, & iun_p = 24, & iun_avec = 25, & iun_tv = 26 ! ! ! ... Allocate work arrays ! ALLOCATE( amass_(ntyp) ) amass_(1:ntyp) = amass(1:ntyp) * amu_ry ALLOCATE( rat(3,nat) ) ALLOCATE( rati(3,nat) ) ALLOCATE( ratd(3,nat) ) ALLOCATE( rat2d(3,nat) ) ALLOCATE( rat2di(3,nat) ) ALLOCATE( tauold(3,nat,3) ) ! ! ... open MD history file (if not present this is a new run!) ! CALL seqopn( 4, 'md', 'FORMATTED', exst ) ! IF ( .NOT. exst ) THEN ! CLOSE( UNIT = 4, STATUS = 'DELETE' ) ! IF ( istep /= 0 ) & CALL errore( 'vcsmd', 'previous MD history got lost', 1 ) ! tnew = 0.D0 acu = 0.D0 ack = 0.D0 acp = 0.D0 acpv = 0.D0 avu = 0.D0 avk = 0.D0 avp = 0.D0 avpv = 0.D0 nzero = 0 tauold(:,:,:) = 0.D0 ! ! ... set value for eold at first iteration ! eold = etot + 2.D0 * epse ! ELSE ! ! ... read MD run history ! READ( 4, * ) rati, ratd, rat2d, rat2di, tauold READ( 4, * ) aveci, avecd, avec2d, avec2di READ( 4, * ) avec0, sig0, v0, e_start, eold READ( 4, * ) acu, ack, acp, acpv, avu, avk, avp, avpv, sigmamet READ( 4, * ) istep, nzero, ntimes ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! tauold(:,:,3) = tauold(:,:,2) tauold(:,:,2) = tauold(:,:,1) ! END IF ! idone = idone + 1 istep = istep + 1 ! IF ( calc == 'cm' ) THEN calc_long="Parrinello-Rahman Damped Cell Dynamics Minimization: " ELSE IF ( calc == 'nm' ) THEN calc_long="Wentzcovitch Damped Cell Dynamics Minimization: " ELSE IF ( calc == 'mm' ) THEN calc_long="Beeman Damped Dynamics Minimization: " ELSE IF ( calc == 'cd' ) THEN calc_long="Parrinello-Rahman Cell Dynamics: " ELSE IF ( calc == 'nd' ) THEN calc_long="Wentzcovitch Cell Dynamics: " ELSE IF ( calc == 'md' ) THEN calc_long="Beeman Dynamics: " END IF ! conv_ions = .FALSE. IF ( calc(2:2) == 'm' ) THEN ! ! ... check if convergence for structural minimization is achieved ! conv_ions = ( (eold - etot) < epse ) .AND. ALL(ABS(force(:,1:nat)) < epsf) ! IF ( lmovecell ) THEN DO i = 1, 3 conv_ions = conv_ions .AND. & ( ABS( sigma(i,i) - press ) * ry_kbar * iforceh(i,i) < epsp ) DO j = ( i + 1 ), 3 conv_ions = conv_ions .AND. & ( ABS( sigma(i,j) ) * ry_kbar * iforceh(i,j) < epsp ) END DO END DO END IF ! IF ( conv_ions ) THEN ! WRITE( UNIT = stdout, FMT = '(/,5X,A,/,5X,"convergence achieved, ",& & "Efinal=", F15.8)' ) TRIM(calc_long), etot ! IF ( lmovecell ) THEN WRITE( UNIT = stdout, & FMT = '(/72("-")//5X,"Final estimate of lattice vectors ", & & "(input alat units)")' ) WRITE( UNIT = stdout, & FMT = '(3F14.9)') ( ( at(i,k) , i = 1, 3 ) , k = 1, 3 ) WRITE( UNIT = stdout, & FMT = '(" final unit-cell volume =",F12.4," (a.u.)^3")') omega WRITE( UNIT = stdout, & FMT = '(" input alat = ",F12.4," (a.u.)")') alat END IF ! CALL output_tau( lmovecell, .TRUE. ) ! RETURN ! END IF ! END IF ! tauold(:,:,1) = tau(:,:) ! time_au = 0.0000242d0 * e2 ! tempo = ( istep - 1 ) * dt * time_au ! IF ( istep == 1 ) THEN ! IF ( calc(2:2) == 'm' ) THEN WRITE( stdout,'(/5X,A,/,5x,"convergence thresholds EPSE = ",ES8.2, & & " EPSF = ",ES8.2)' ) TRIM(calc_long), epse, epsf END IF ! END IF ! WRITE( stdout, '(/5X,"Entering Dynamics; it = ",I5," time = ", & & F8.5," pico-seconds"/)' ) istep, tempo ! IF ( lconstrain ) THEN ! ! ... we first remove the component of the force along the ! ... constraint gradient ( this constitutes the initial ! ... guess for the calculation of the lagrange multipliers ) ! CALL remove_constr_force( nat, tau, if_pos, ityp, alat, force ) ! END IF ! ! ... save cell shape of previous step ! at_old = at ! omega_old = omega ! ! ... Translate ! ! ... define rat as the atomic positions in lattice coordinates ! rat = tau ! CALL cryst_to_cart( nat, rat, bg, -1 ) ! avec = alat * at ! ! ... convert forces to lattice coordinates ! CALL cryst_to_cart( nat, force, bg, -1 ) ! force = force / alat ! ! ... scale stress to stress*omega ! sigma = sigma * omega ! vcell = omega ! IF ( istep == 1 ) THEN ! e_start = etot ! enew = etot - e_start ! CALL vcinit( ntyp, nat, ntyp, nat, rat, ityp, avec, vcell, force, if_pos, & sigma, calc, temperature, vx2, vy2, vz2, rms, vmean, ekin, & avmod, theta, amass_,cmass, press, p, dt, aveci, avecd, avec2d,& avec2di, sigmamet, sig0, avec0, v0, rati, ratd, rat2d, rat2di, & enew, uta, eka, eta, ekla, utl, etl, ut, ekint, edyn, iforceh ) ! ELSE ! enew = etot - e_start ! CALL vcmove( ntyp, nat, ntyp, ityp, rat, avec, vcell, force, if_pos, & sigma, calc, avmod, theta, amass_,cmass, press, p, dt, avecd, & avec2d, aveci, avec2di, sigmamet, sig0, avec0, v0, ratd, rat2d,& rati, rat2di, enew, uta, eka, eta, ekla, utl, etl, ut, ekint, & edyn, temperature, tolp, ntcheck, ntimes, istep, tnew, nzero, & nat, acu, ack, acp, acpv, avu, avk, avp, avpv, iforceh) ! END IF ! pv = p * omega ! IF ( calc(2:2) == 'd' ) THEN ! ! ... Dynamics: write to output files several control quantities ! ! ... NB: at the first iteration files should not be present, ! ... for subsequent iterations they should. ! IF ( istep == 1 ) THEN ! CALL delete_if_present( 'e' ) CALL delete_if_present( 'eal' ) CALL delete_if_present( 'ave' ) CALL delete_if_present( 'p' ) CALL delete_if_present( 'avec' ) CALL delete_if_present( 'tv' ) ! ios = 'NEW' ipos = 'ASIS' ! ELSE ! ios = 'OLD' ipos = 'APPEND' ! END IF ! OPEN( UNIT = iun_e, FILE = 'e', STATUS = ios, & FORM = 'FORMATTED', POSITION = ipos ) OPEN( UNIT = iun_eal, FILE = 'eal', STATUS = ios, & FORM = 'FORMATTED', POSITION = ipos ) OPEN( UNIT = iun_ave, FILE = 'ave', STATUS = ios, & FORM = 'FORMATTED', POSITION = ipos ) OPEN( UNIT = iun_p, FILE = 'p', STATUS = ios, & FORM = 'FORMATTED', POSITION = ipos ) OPEN( UNIT = iun_avec, FILE = 'avec', STATUS = ios, & FORM = 'FORMATTED', POSITION = ipos ) OPEN( UNIT = iun_tv, FILE = 'tv', STATUS = ios, & FORM = 'FORMATTED', POSITION = ipos ) ! nst = istep - 1 ! WRITE( iun_e, 101 ) ut, ekint, edyn, pv, nst WRITE( iun_eal, 103 ) uta, eka, eta, utl, ekla, etl, nst WRITE( iun_ave, 104 ) avu, avk, nst WRITE( iun_p, 105 ) press, p, avp, nst ! IF ( calc(1:1) /= 'm' ) & WRITE( iun_avec, 103 ) & avmod(:), theta(1,2), theta(2,3), theta(3,1), nst ! WRITE( iun_tv, 104 ) vcell, tnew, nst ! CLOSE( UNIT = iun_e, STATUS = 'KEEP' ) CLOSE( UNIT = iun_eal, STATUS = 'KEEP' ) CLOSE( UNIT = iun_ave, STATUS = 'KEEP' ) CLOSE( UNIT = iun_p, STATUS = 'KEEP' ) CLOSE( UNIT = iun_avec, STATUS = 'KEEP' ) CLOSE( UNIT = iun_tv, STATUS = 'KEEP' ) ! END IF ! ! ... update configuration in PWSCF variables ! if (fix_volume) call impose_deviatoric_strain(alat*at, avec) ! if (fix_area) call impose_deviatoric_strain_2d(alat*at, avec) ! at = avec / alat ! CALL volume( alat, at(1,1), at(1,2), at(1,3), omega ) ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2) , bg(1,3) ) ! tau = rat ! IF ( lmovecell ) THEN ! WRITE( stdout, * ) ' new lattice vectors (alat unit) :' WRITE( stdout, '(3F14.9)') ( ( at(i,k) , i = 1, 3 ) , k = 1, 3 ) WRITE( stdout,'(A,F12.4,A)') ' new unit-cell volume =', omega, ' (a.u.)^3' ! END IF ! WRITE( stdout, * ) ' new positions in cryst coord' WRITE( stdout,'(A3,3X,3F14.9)') ( atm(ityp(na)), tau(:,na), na = 1, nat ) WRITE( stdout, * ) ' new positions in cart coord (alat unit)' ! CALL cryst_to_cart( nat, tau, at, 1 ) ! WRITE( stdout,'(A3,3X,3F14.9)') ( atm(ityp(na)), tau(:,na), na = 1, nat ) WRITE( stdout, '(/5X,"Ekin = ",F14.8," Ry T = ",F6.1," K ", & & " Etot = ",F14.8)') ekint, tnew, edyn + e_start ! CALL cryst_to_cart( nat, force, at, 1 ) force = force*alat ! CALL output_tau( lmovecell, .FALSE. ) ! ! ... for vcsmd with constraints ! IF ( lconstrain ) THEN ! ! ... check if the new positions satisfy the constrain equation ! CALL check_constraint( nat, tau, tauold(:,:,1), & force, if_pos, ityp, alat, dt**2, amu_ry ) ! #if ! defined (__REDUCE_OUTPUT) ! WRITE( stdout, '(/,5X,"Constrained forces (Ry/au):",/)') ! DO na = 1, nat ! WRITE( stdout, & '(5X,"atom ",I3," type ",I2,3X,"force = ",3F14.8)' ) & na, ityp(na), force(:,na) ! END DO ! WRITE( stdout, '(/5X,"Total force = ",F12.6)') DNRM2( 3*nat, force, 1 ) ! #endif ! END IF ! ! ... save MD history to file ! CALL seqopn( 4, 'md', 'FORMATTED', exst ) ! WRITE(4,*) rati, ratd, rat2d, rat2di, tauold WRITE(4,*) aveci, avecd, avec2d, avec2di WRITE(4,*) avec0, sig0, v0, e_start, etot WRITE(4,*) acu, ack, acp, acpv, avu, avk, avp, avpv, sigmamet WRITE(4,*) istep, nzero, ntimes ! CLOSE( UNIT = 4, STATUS = 'KEEP' ) ! DEALLOCATE( amass_, rat, rati, ratd, rat2d, rat2di, tauold ) ! ! ... check if max number of steps reached ! conv_ions = ( idone == nstep ) IF ( conv_ions ) WRITE( UNIT = stdout, FMT = '(/,5X,A,i4," iterations ", & & "completed, stopping")' ) TRIM(calc_long),nstep ! RETURN ! 101 FORMAT(1X,4D12.5,I6) 103 FORMAT(1X,6D12.5,I6) 104 FORMAT(1X,2D12.5,I6) 105 FORMAT(1X,3D12.5,I6) ! END SUBROUTINE vcsmd espresso-5.1/PW/src/plugin_clock.f900000644000175000017500000000122312341373025015406 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine plugin_clock() ! ! This routine is used for printing plugins clocks ! DO NOT REMOVE THE TAGS ! ***ADDSON_NAME KIND_OF_PATCH*** ! USE plugin_flags USE io_global, ONLY : stdout ! ! ***Environ MODULES BEGIN*** ! ***Environ MODULES END*** ! implicit none ! ! ***Environ VARIABLES BEGIN*** ! ***Environ VARIABLES END*** ! ! ***Environ CALLS BEGIN*** ! ***Environ CALLS END*** ! end subroutine plugin_clock espresso-5.1/PW/src/make_pointlists.f900000644000175000017500000001266412341373025016155 0ustar mbamba! ! Copyright (C) 2001-2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------------- SUBROUTINE make_pointlists !-------------------------------------------------------------------------- ! ! This initialization is needed in order to integrate charge (or ! magnetic moment) in a sphere around the atomic positions. ! This can be used to simply monitor these quantities during the scf ! cycles or in order to calculate constrains on these quantities. ! ! If the integration radius r_m is not provided in input, it is ! calculated here. The integration is a sum over all points in real ! space with the weight 1, if they are closer than r_m to an atom ! and 1 - (distance-r_m)/(0.2*r_m) if r_m nsp, ityp USE cell_base, ONLY : at, bg, alat USE mp_bands, ONLY : me_bgrp USE fft_base, ONLY : dfftp USE noncollin_module, ONLY : factlist, pointlist, r_m ! IMPLICIT NONE ! INTEGER idx0,idx,indproc,iat,ir,iat1 INTEGER i,j,k,i0,j0,k0,ipol,nt,nt1 REAL(DP) :: posi(3), distance REAL(DP), ALLOCATABLE :: tau0(:,:), distmin(:) WRITE( stdout,'(5x,"Generating pointlists ...")') ALLOCATE(tau0(3,nat)) ALLOCATE( distmin(ntyp) ) ! First, the real-space position of every point ir is needed ... ! In the parallel case, find the index-offset to account for the planes ! treated by other procs #if defined (__MPI) idx0 = dfftp%nr1x*dfftp%nr2x * dfftp%ipp(me_bgrp+1) #else idx0 = 0 #endif ! Bring all the atomic positions on the first unit cell tau0=tau CALL cryst_to_cart(nat,tau0,bg,-1) DO iat=1,nat DO ipol=1,3 tau0(ipol,iat)=tau0(ipol,iat)-NINT(tau0(ipol,iat)) ENDDO ENDDO CALL cryst_to_cart(nat,tau0,at,1) ! Check the minimum distance between two atoms in the system distmin(:) = 1.d0 DO iat = 1,nat nt = ityp(iat) DO iat1 = 1,nat nt1 = ityp(iat1) ! posi is the position of a second atom DO i = -1,1 DO j = -1,1 DO k = -1,1 distance = 0.d0 DO ipol = 1,3 posi(ipol) = tau0(ipol,iat1) + DBLE(i)*at(ipol,1) & + DBLE(j)*at(ipol,2) & + DBLE(k)*at(ipol,3) distance = distance + (posi(ipol)-tau0(ipol,iat))**2 ENDDO distance = SQRT(distance) IF ((distance.LT.distmin(nt)).AND.(distance.GT.1.d-8)) & & distmin(nt) = distance IF ((distance.LT.distmin(nt1)).AND.(distance.GT.1.d-8)) & & distmin(nt1) = distance ENDDO ! k ENDDO ! j ENDDO ! i ENDDO ! iat1 ENDDO ! iat DO nt = 1, ntyp IF ((distmin(nt).LT.(2.d0*r_m(nt)*1.2d0)).OR.(r_m(nt).LT.1.d-8)) THEN ! Set the radius r_m to a value a little smaller than the minimum ! distance divided by 2*1.2 (so no point in space can belong to more ! than one atom) r_m(nt) = 0.5d0*distmin(nt)/1.2d0 * 0.99d0 WRITE( stdout,'(5x,"new r_m : ",f8.4," (alat units)", f8.4, & &" (a.u.) for type",i5)') & r_m(nt), r_m(nt) * alat, nt ENDIF ENDDO DEALLOCATE(distmin) ! Now, set for every point in the fft grid an index corresponding ! to the atom whose integration sphere the grid point belong to. ! if the point is outside of all spherical regions set the index to 0. ! Set as well the integration weight ! This also works in the parallel case. pointlist(:) = 0 factlist(:) = 0.d0 DO ir=1,dfftp%nr1x*dfftp%nr2x * dfftp%npl idx = idx0 + ir - 1 k0 = idx/(dfftp%nr1x*dfftp%nr2x) idx = idx - (dfftp%nr1x*dfftp%nr2x) * k0 j0 = idx / dfftp%nr1x idx = idx - dfftp%nr1x*j0 i0 = idx DO i = i0-dfftp%nr1,i0+dfftp%nr1, dfftp%nr1 DO j = j0-dfftp%nr2, j0+dfftp%nr2, dfftp%nr2 DO k = k0-dfftp%nr3, k0+dfftp%nr3, dfftp%nr3 DO ipol=1,3 posi(ipol) = DBLE(i)/DBLE(dfftp%nr1) * at(ipol,1) & + DBLE(j)/DBLE(dfftp%nr2) * at(ipol,2) & + DBLE(k)/DBLE(dfftp%nr3) * at(ipol,3) ENDDO DO iat = 1,nat nt=ityp(iat) distance = SQRT( (posi(1)-tau0(1,iat))**2 + & (posi(2)-tau0(2,iat))**2 + & (posi(3)-tau0(3,iat))**2) IF (distance.LE.r_m(nt)) THEN factlist(ir) = 1.d0 pointlist(ir) = iat GO TO 10 ELSE IF (distance.LE.1.2*r_m(nt)) THEN factlist(ir) = 1.d0 - (distance -r_m(nt))/(0.2d0*r_m(nt)) pointlist(ir) = iat GO TO 10 ENDIF ENDDO ENDDO ! k ENDDO ! j ENDDO ! i 10 CONTINUE ENDDO ! ir DEALLOCATE(tau0) END SUBROUTINE make_pointlists espresso-5.1/PW/src/scale_h.f900000644000175000017500000000540312341373025014337 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine scale_h !----------------------------------------------------------------------- ! When variable cell calculation are performed this routine scales the ! quantities needed in the calculation of the hamiltonian using the ! new and old cell parameters. ! USE kinds, ONLY : dp USE io_global, ONLY : stdout USE cell_base, ONLY : bg, omega USE cellmd, ONLY : at_old, omega_old USE gvect, ONLY : g, gg, ngm USE klist, ONLY : xk, wk, nkstot USE us, ONLY : nqxq, qrad, tab, tab_at, dq USE control_flags, ONLY : iverbosity USE start_k, ONLY : nks_start, xk_start USE input_parameters, ONLY : k_points USE exx, ONLY : exx_grid_reinit USE funct, ONLY : dft_is_hybrid USE mp, ONLY : mp_max USE mp_bands, ONLY : intra_bgrp_comm ! implicit none ! integer :: ig ! counter on G vectors integer :: ik, ipol real(dp) :: gg_max ! ! scale the k points ! call cryst_to_cart (nkstot, xk, at_old, - 1) call cryst_to_cart (nkstot, xk, bg, + 1) call cryst_to_cart (nks_start, xk_start, at_old, - 1) call cryst_to_cart (nks_start, xk_start, bg, + 1) IF(k_points/='automatic' .and. k_points/='gamma')THEN IF ( iverbosity > 0 .OR. nkstot < 100 ) THEN WRITE( stdout, '(5x,a)' ) 'NEW k-points:' do ik = 1, nkstot WRITE( stdout, '(3f12.7,f12.7)') (xk (ipol, ik) , ipol = 1, 3) , wk (ik) enddo ELSE WRITE( stdout, '(5x,a)' ) "NEW k-points: (use verbosity='high' to print them)" ENDIF ENDIF ! ! scale the g vectors (as well as gg and gl arrays) ! call cryst_to_cart (ngm, g, at_old, - 1) call cryst_to_cart (ngm, g, bg, + 1) gg_max = 0.0_dp do ig = 1, ngm gg (ig) = g(1, ig) * g(1, ig) + g(2, ig) * g(2, ig) + g(3, ig) * g(3, ig) gg_max = max(gg(ig), gg_max) enddo CALL mp_max (gg_max, intra_bgrp_comm) if(nqxq < int(sqrt(gg_max)/dq)+4) then call errore('scale_h', 'Not enough space allocated for radial FFT: '//& 'try restarting with a larger cell_factor.',1) endif ! ! scale the non-local pseudopotential tables ! tab(:,:,:) = tab(:,:,:) * sqrt (omega_old/omega) qrad(:,:,:,:) = qrad(:,:,:,:) * omega_old/omega tab_at(:,:,:) = tab_at(:,:,:) * sqrt (omega_old/omega) ! ! recalculate the local part of the pseudopotential ! call init_vloc ( ) ! ! for hybrid functionals ! IF ( dft_is_hybrid() ) CALL exx_grid_reinit() ! return end subroutine scale_h espresso-5.1/PW/src/init_us_1.f900000644000175000017500000003362412341373025014641 0ustar mbamba ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine init_us_1 !---------------------------------------------------------------------- ! ! This routine performs the following tasks: ! a) For each non vanderbilt pseudopotential it computes the D and ! the betar in the same form of the Vanderbilt pseudopotential. ! b) It computes the indices indv which establish the correspondence ! nh <-> beta in the atom ! c) It computes the indices nhtol which establish the correspondence ! nh <-> angular momentum of the beta function ! d) It computes the indices nhtolm which establish the correspondence ! nh <-> combined (l,m) index for the beta function. ! e) It computes the coefficients c_{LM}^{nm} which relates the ! spherical harmonics in the Q expansion ! f) It computes the radial fourier transform of the Q function on ! all the g vectors ! g) It computes the q terms which define the S matrix. ! h) It fills the interpolation table for the beta functions ! USE kinds, ONLY : DP USE parameters, ONLY : lmaxx USE constants, ONLY : fpi, sqrt2 USE atom, ONLY : rgrid USE ions_base, ONLY : ntyp => nsp, ityp, nat USE cell_base, ONLY : omega, tpiba USE gvect, ONLY : g, gg USE lsda_mod, ONLY : nspin USE us, ONLY : nqxq, dq, nqx, tab, tab_d2y, qrad, spline_ps USE splinelib USE uspp, ONLY : nhtol, nhtoj, nhtolm, ijtoh, dvan, qq, indv,& ap, aainit, qq_so, dvan_so, okvan, indv_ijkb0 USE uspp_param, ONLY : upf, lmaxq, nbetam, nh, nhm, lmaxkb USE spin_orb, ONLY : lspinorb, rot_ylm, fcoef USE paw_variables,ONLY : okpaw USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! ! here a few local variables ! integer :: nt, ih, jh, nb, mb, ijv, l, m, ir, iq, is, startq, & lastq, ilast, ndm, ia ! various counters real(DP), allocatable :: aux (:), aux1 (:), besr (:), qtot (:,:) ! various work space real(DP) :: prefr, pref, q, qi ! the prefactor of the q functions ! the prefactor of the beta functions ! the modulus of g for each shell ! q-point grid for interpolation real(DP), allocatable :: ylmk0 (:) ! the spherical harmonics real(DP) :: vqint, j ! interpolated value ! J=L+S (noninteger!) integer :: n1, m0, m1, n, li, mi, vi, vj, ijs, is1, is2, & lk, mk, vk, kh, lh integer, external :: sph_ind complex(DP) :: coeff, qgm(1) real(DP) :: spinor, ji, jk ! real(DP), allocatable :: xdata(:) real(DP) :: d1 ! call start_clock ('init_us_1') ! ! Initialization of the variables ! ndm = MAXVAL ( upf(:)%kkbeta ) allocate (aux ( ndm)) allocate (aux1( ndm)) allocate (besr( ndm)) allocate (qtot( ndm , nbetam*(nbetam+1)/2 )) allocate (ylmk0( lmaxq * lmaxq)) ap (:,:,:) = 0.d0 if (lmaxq > 0) qrad(:,:,:,:)= 0.d0 ! ! the following prevents an out-of-bound error: upf(nt)%nqlc=2*lmax+1 ! but in some versions of the PP files lmax is not set to the maximum ! l of the beta functions but includes the l of the local potential ! do nt=1,ntyp upf(nt)%nqlc = MIN ( upf(nt)%nqlc, lmaxq ) IF ( upf(nt)%nqlc < 0 ) upf(nt)%nqlc = 0 end do prefr = fpi / omega if (lspinorb) then ! ! In the spin-orbit case we need the unitary matrix u which rotates the ! real spherical harmonics and yields the complex ones. ! rot_ylm=(0.d0,0.d0) l=lmaxx rot_ylm(l+1,1)=(1.d0,0.d0) do n1=2,2*l+1,2 m=n1/2 n=l+1-m rot_ylm(n,n1)=CMPLX((-1.d0)**m/sqrt2,0.0_dp,kind=DP) rot_ylm(n,n1+1)=CMPLX(0.d0,-(-1.d0)**m/sqrt2,kind=DP) n=l+1+m rot_ylm(n,n1)=CMPLX(1.0_dp/sqrt2,0.d0,kind=DP) rot_ylm(n,n1+1)=CMPLX(0.d0, 1.0_dp/sqrt2,kind=DP) enddo fcoef=(0.d0,0.d0) dvan_so = (0.d0,0.d0) qq_so=(0.d0,0.d0) qq = 0.d0 else qq = 0.d0 dvan = 0.d0 endif ! ! For each pseudopotential we initialize the indices nhtol, nhtolm, ! nhtoj, indv, and if the pseudopotential is of KB type we initialize the ! atomic D terms ! do nt = 1, ntyp ih = 1 do nb = 1, upf(nt)%nbeta l = upf(nt)%lll (nb) do m = 1, 2 * l + 1 nhtol (ih, nt) = l nhtolm(ih, nt) = l*l+m indv (ih, nt) = nb ih = ih + 1 enddo enddo if ( upf(nt)%has_so ) then ih = 1 do nb = 1, upf(nt)%nbeta l = upf(nt)%lll (nb) j = upf(nt)%jjj (nb) do m = 1, 2 * l + 1 nhtoj (ih, nt) = j ih = ih + 1 enddo enddo endif ! ! ijtoh map augmentation channel indexes ih and jh to composite ! "triangular" index ijh ijtoh(:,:,nt) = -1 ijv = 0 do ih = 1,nh(nt) do jh = ih,nh(nt) ijv = ijv+1 ijtoh(ih,jh,nt) = ijv ijtoh(jh,ih,nt) = ijv enddo enddo ! ! ijkb0 is just before the first beta "in the solid" for atom ia ! i.e. ijkb0+1,.. ijkb0+nh(ityp(ia)) are the nh beta functions of ! atom ia in the global list of beta functions indv_ijkb0(1) = 0 do ia = 2,nat indv_ijkb0(ia) = indv_ijkb0(ia-1)+nh(ityp(ia-1)) enddo ! ! From now on the only difference between KB and US pseudopotentials ! is in the presence of the q and Q functions. ! ! Here we initialize the D of the solid ! if (upf(nt)%has_so) then ! ! first calculate the fcoef coefficients ! do ih = 1, nh (nt) li = nhtol(ih, nt) ji = nhtoj(ih, nt) mi = nhtolm(ih, nt)-li*li vi = indv (ih, nt) do kh=1,nh(nt) lk = nhtol(kh, nt) jk = nhtoj(kh, nt) mk = nhtolm(kh, nt)-lk*lk vk = indv (kh, nt) if (li == lk .and. abs(ji-jk) < 1.d-7) then do is1=1,2 do is2=1,2 coeff = (0.d0, 0.d0) do m=-li-1, li m0= sph_ind(li,ji,m,is1) + lmaxx + 1 m1= sph_ind(lk,jk,m,is2) + lmaxx + 1 coeff=coeff + rot_ylm(m0,mi)*spinor(li,ji,m,is1)* & CONJG(rot_ylm(m1,mk))*spinor(lk,jk,m,is2) enddo fcoef(ih,kh,is1,is2,nt)=coeff enddo enddo endif enddo enddo ! ! and calculate the bare coefficients ! do ih = 1, nh (nt) vi = indv (ih, nt) do jh = 1, nh (nt) vj = indv (jh, nt) ijs=0 do is1=1,2 do is2=1,2 ijs=ijs+1 dvan_so(ih,jh,ijs,nt) = upf(nt)%dion(vi,vj) * & fcoef(ih,jh,is1,is2,nt) if (vi.ne.vj) fcoef(ih,jh,is1,is2,nt)=(0.d0,0.d0) enddo enddo enddo enddo else do ih = 1, nh (nt) do jh = 1, nh (nt) if (nhtol (ih, nt) == nhtol (jh, nt) .and. & nhtolm(ih, nt) == nhtolm(jh, nt) ) then ir = indv (ih, nt) is = indv (jh, nt) if (lspinorb) then dvan_so (ih, jh, 1, nt) = upf(nt)%dion (ir, is) dvan_so (ih, jh, 4, nt) = upf(nt)%dion (ir, is) else dvan (ih, jh, nt) = upf(nt)%dion (ir, is) endif endif enddo enddo endif enddo ! ! compute Clebsch-Gordan coefficients ! if (okvan .or. okpaw) call aainit (lmaxkb + 1) ! ! here for the US types we compute the Fourier transform of the ! Q functions. ! call divide (intra_bgrp_comm, nqxq, startq, lastq) ! do nt = 1, ntyp if ( upf(nt)%tvanp ) then do l = 0, upf(nt)%nqlc -1 ! ! first we build for each nb,mb,l the total Q(|r|) function ! note that l is the true (combined) angular momentum ! and that the arrays have dimensions 0..l (no more 1..l+1) ! do nb = 1, upf(nt)%nbeta do mb = nb, upf(nt)%nbeta respect_sum_rule : & if ( ( l >= abs(upf(nt)%lll(nb) - upf(nt)%lll(mb)) ) .and. & ( l <= upf(nt)%lll(nb) + upf(nt)%lll(mb) ) .and. & (mod (l+upf(nt)%lll(nb)+upf(nt)%lll(mb), 2) == 0) ) then ijv = mb * (mb-1) / 2 + nb paw : & ! in PAW formalism aug. charge is computed elsewhere if (upf(nt)%q_with_l .or. upf(nt)%tpawp) then qtot(1:upf(nt)%kkbeta,ijv) =& upf(nt)%qfuncl(1:upf(nt)%kkbeta,ijv,l) else do ir = 1, upf(nt)%kkbeta if (rgrid(nt)%r(ir) >=upf(nt)%rinner (l+1) ) then qtot (ir, ijv) = upf(nt)%qfunc(ir,ijv) else ilast = ir endif enddo if ( upf(nt)%rinner (l+1) > 0.0_dp) & call setqf(upf(nt)%qfcoef (1, l+1, nb, mb), & qtot(1,ijv), rgrid(nt)%r, upf(nt)%nqf, & l, ilast) endif paw endif respect_sum_rule enddo ! mb enddo ! nb ! ! here we compute the spherical bessel function for each |g| ! do iq = startq, lastq q = (iq - 1) * dq * tpiba call sph_bes ( upf(nt)%kkbeta, rgrid(nt)%r, q, l, aux) ! ! and then we integrate with all the Q functions ! do nb = 1, upf(nt)%nbeta ! ! the Q are symmetric with respect to indices ! do mb = nb, upf(nt)%nbeta ijv = mb * (mb - 1) / 2 + nb if ( ( l >= abs(upf(nt)%lll(nb) - upf(nt)%lll(mb)) ) .and. & ( l <= upf(nt)%lll(nb) + upf(nt)%lll(mb) ) .and. & (mod(l+upf(nt)%lll(nb)+upf(nt)%lll(mb),2)==0) ) then do ir = 1, upf(nt)%kkbeta aux1 (ir) = aux (ir) * qtot (ir, ijv) enddo call simpson ( upf(nt)%kkbeta, aux1, rgrid(nt)%rab, & qrad(iq,ijv,l + 1, nt) ) endif enddo enddo ! igl enddo ! l enddo qrad (:, :, :, nt) = qrad (:, :, :, nt)*prefr call mp_sum ( qrad (:, :, :, nt), intra_bgrp_comm ) endif ! ntyp enddo ! ! and finally we compute the qq coefficients by integrating the Q. ! q are the g=0 components of Q. ! #ifdef __MPI if (gg (1) > 1.0d-8) goto 100 #endif call ylmr2 (lmaxq * lmaxq, 1, g, gg, ylmk0) do nt = 1, ntyp if ( upf(nt)%tvanp ) then if (upf(nt)%has_so) then do ih=1,nh(nt) do jh=1,nh(nt) call qvan2 (1, ih, jh, nt, gg, qgm, ylmk0) qq (ih, jh, nt) = omega * DBLE (qgm (1) ) do kh=1,nh(nt) do lh=1,nh(nt) ijs=0 do is1=1,2 do is2=1,2 ijs=ijs+1 do is=1,2 qq_so(kh,lh,ijs,nt) = qq_so(kh,lh,ijs,nt) & + omega* DBLE(qgm(1))*fcoef(kh,ih,is1,is,nt)& *fcoef(jh,lh,is,is2,nt) enddo enddo enddo enddo enddo enddo enddo else do ih = 1, nh (nt) do jh = ih, nh (nt) call qvan2 (1, ih, jh, nt, gg, qgm, ylmk0) if (lspinorb) then qq_so (ih, jh, 1, nt) = omega * DBLE (qgm (1) ) qq_so (jh, ih, 1, nt) = qq_so (ih, jh, 1, nt) qq_so (ih, jh, 4, nt) = qq_so (ih, jh, 1, nt) qq_so (jh, ih, 4, nt) = qq_so (ih, jh, 4, nt) endif qq (ih, jh, nt) = omega * DBLE (qgm (1) ) qq (jh, ih, nt) = qq (ih, jh, nt) enddo enddo endif endif enddo #ifdef __MPI 100 continue if (lspinorb) then call mp_sum( qq_so , intra_bgrp_comm ) call mp_sum( qq , intra_bgrp_comm ) else call mp_sum( qq , intra_bgrp_comm ) endif #endif ! ! fill the interpolation table tab ! pref = fpi / sqrt (omega) call divide (intra_bgrp_comm, nqx, startq, lastq) tab (:,:,:) = 0.d0 do nt = 1, ntyp do nb = 1, upf(nt)%nbeta l = upf(nt)%lll (nb) do iq = startq, lastq qi = (iq - 1) * dq call sph_bes (upf(nt)%kkbeta, rgrid(nt)%r, qi, l, besr) do ir = 1, upf(nt)%kkbeta aux (ir) = upf(nt)%beta (ir, nb) * besr (ir) * rgrid(nt)%r(ir) enddo call simpson (upf(nt)%kkbeta, aux, rgrid(nt)%rab, vqint) tab (iq, nb, nt) = vqint * pref enddo enddo enddo call mp_sum( tab, intra_bgrp_comm ) ! initialize spline interpolation if (spline_ps) then allocate( xdata(nqx) ) do iq = 1, nqx xdata(iq) = (iq - 1) * dq enddo do nt = 1, ntyp do nb = 1, upf(nt)%nbeta d1 = (tab(2,nb,nt) - tab(1,nb,nt)) / dq call spline(xdata, tab(:,nb,nt), 0.d0, d1, tab_d2y(:,nb,nt)) enddo enddo deallocate(xdata) endif deallocate (ylmk0) deallocate (qtot) deallocate (besr) deallocate (aux1) deallocate (aux) call stop_clock ('init_us_1') return end subroutine init_us_1 espresso-5.1/PW/src/orthoatwfc.f900000644000175000017500000002170712341373025015126 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE orthoUwfc !----------------------------------------------------------------------- ! ! This routine saves to buffer "iunhub" atomic wavefunctions having an ! associated Hubbard U term, for DFT+U calculations. Atomic wavefunctions ! are orthogonalized if desired, depending upon the value of "U_projection" ! "swfcatom" must NOT be allocated on input. ! USE kinds, ONLY : DP USE buffers, ONLY : get_buffer, save_buffer USE io_global, ONLY : stdout USE io_files, ONLY : iunhub, nwordwfcU, iunigk USE ions_base, ONLY : nat USE basis, ONLY : natomwfc, swfcatom USE klist, ONLY : nks, xk, ngk USE ldaU, ONLY : U_projection, wfcU, nwfcU, copy_U_wfc USE wvfct, ONLY : npwx, npw, igk USE uspp, ONLY : nkb, vkb USE becmod, ONLY : allocate_bec_type, deallocate_bec_type, & bec_type, becp, calbec USE control_flags, ONLY : gamma_only USE noncollin_module, ONLY : noncolin, npol ! IMPLICIT NONE ! ! INTEGER :: ik, ibnd, info, i, j, k, na, nb, nt, isym, n, ntemp, m, & l, lm, ltot, ntot, ipol ! ik: the k point under consideration ! ibnd: counter on bands LOGICAL :: orthogonalize_wfc, normalize_only COMPLEX(DP) , ALLOCATABLE :: wfcatom (:,:) IF ( U_projection == "pseudo" ) THEN WRITE( stdout,*) 'Beta functions used for LDA+U Projector' RETURN ELSE IF (U_projection=="file") THEN ! ! Read atomic wavefunctions from file (produced by pmw.x). In this case, ! U-specific atomic wavefunctions wfcU coincide with atomic wavefunctions ! WRITE( stdout,*) 'LDA+U Projector read from file ' DO ik = 1, nks CALL get_buffer (wfcU, nwordwfcU, iunhub, ik) END DO RETURN ELSE IF (U_projection=="atomic") THEN orthogonalize_wfc = .FALSE. normalize_only = .FALSE. WRITE( stdout,*) 'Atomic wfc used for LDA+U Projector are NOT orthogonalized' ELSE IF (U_projection=="ortho-atomic") THEN orthogonalize_wfc = .TRUE. normalize_only = .FALSE. WRITE( stdout,*) 'Atomic wfc used for LDA+U Projector are orthogonalized' IF (gamma_only) CALL errore('orthoatwfc', & 'Gamma-only calculation for this case not implemented', 1 ) ELSE IF (U_projection=="norm-atomic") THEN orthogonalize_wfc = .TRUE. normalize_only = .TRUE. WRITE( stdout,*) 'Atomic wfc used for LDA+U Projector are normalized but NOT orthogonalized' IF (gamma_only) CALL errore('orthoatwfc', & 'Gamma-only calculation for this case not implemented', 1 ) ELSE WRITE( stdout,*) "U_projection_type =", U_projection CALL errore ("orthoatwfc"," this U_projection_type is not valid",1) END IF ALLOCATE ( wfcatom(npwx*npol, natomwfc), swfcatom(npwx*npol, natomwfc) ) ! Allocate the array becp = CALL allocate_bec_type (nkb,natomwfc, becp) IF (nks > 1) REWIND (iunigk) DO ik = 1, nks npw = ngk (ik) IF (nks > 1) READ (iunigk) igk IF (noncolin) THEN CALL atomic_wfc_nc_updown (ik, wfcatom) ELSE CALL atomic_wfc (ik, wfcatom) ENDIF CALL init_us_2 (npw, igk, xk (1, ik), vkb) CALL calbec (npw, vkb, wfcatom, becp) CALL s_psi (npwx, npw, natomwfc, wfcatom, swfcatom) IF (orthogonalize_wfc) & CALL ortho_swfc ( normalize_only, natomwfc, wfcatom, swfcatom ) ! ! copy atomic wavefunctions with Hubbard U term only in wfcU ! save to unit iunhub ! CALL copy_U_wfc (swfcatom, noncolin) IF ( nks > 1 ) & CALL save_buffer (wfcU, nwordwfcU, iunhub, ik) ! ENDDO DEALLOCATE (wfcatom, swfcatom) CALL deallocate_bec_type ( becp ) ! RETURN END SUBROUTINE orthoUwfc ! !----------------------------------------------------------------------- SUBROUTINE orthoatwfc (orthogonalize_wfc) !----------------------------------------------------------------------- ! ! This routine calculates atomic wavefunctions, orthogonalizes them ! if "orthogonalzie_wfc" is .true., saves them into buffer "iunsat". ! "swfcatom" must be allocated on input. ! Useful for options "wannier" and "one_atom_occupations" ! USE kinds, ONLY : DP USE buffers, ONLY : save_buffer USE io_global, ONLY : stdout USE io_files, ONLY : iunsat, nwordatwfc, iunigk USE ions_base, ONLY : nat USE basis, ONLY : natomwfc, swfcatom USE klist, ONLY : nks, xk, ngk USE wvfct, ONLY : npwx, npw, igk USE uspp, ONLY : nkb, vkb USE becmod, ONLY : allocate_bec_type, deallocate_bec_type, & bec_type, becp, calbec USE control_flags, ONLY : gamma_only USE noncollin_module, ONLY : noncolin, npol ! IMPLICIT NONE ! LOGICAL, INTENT(in) :: orthogonalize_wfc ! INTEGER :: ik, ibnd, info, i, j, k, na, nb, nt, isym, n, ntemp, m, & l, lm, ltot, ntot, ipol ! ik: the k point under consideration ! ibnd: counter on bands LOGICAL :: normalize_only = .FALSE. COMPLEX(DP) , ALLOCATABLE :: wfcatom (:,:) normalize_only=.FALSE. ALLOCATE (wfcatom( npwx*npol, natomwfc)) ! Allocate the array becp = CALL allocate_bec_type (nkb,natomwfc, becp) IF (nks > 1) REWIND (iunigk) DO ik = 1, nks npw = ngk (ik) IF (nks > 1) READ (iunigk) igk IF (noncolin) THEN CALL atomic_wfc_nc_updown (ik, wfcatom) ELSE CALL atomic_wfc (ik, wfcatom) ENDIF CALL init_us_2 (npw, igk, xk (1, ik), vkb) CALL calbec (npw, vkb, wfcatom, becp) CALL s_psi (npwx, npw, natomwfc, wfcatom, swfcatom) IF (orthogonalize_wfc) & CALL ortho_swfc ( normalize_only, natomwfc, wfcatom, swfcatom ) ! ! write S * atomic wfc to unit iunsat ! CALL save_buffer (swfcatom, nwordatwfc, iunsat, ik) ! ENDDO DEALLOCATE (wfcatom) CALL deallocate_bec_type ( becp ) ! RETURN END SUBROUTINE orthoatwfc ! !----------------------------------------------------------------------- SUBROUTINE ortho_swfc ( normalize_only, m, wfc, swfc ) !----------------------------------------------------------------------- ! ! On input : wfc (npwx*npol,m) = \psi = a set of "m" (atomic) wavefcts ! swfc(npwx*npol,m) = S\psi ! normalize_only = only normalize, do not orthonormalize ! On output: swfc = S^{-1/2}\psi = orthonormalized wavefunctions ! (i.e. = \delta_{ij}) ! wfc = currently unchanged ! USE kinds, ONLY : DP USE wvfct, ONLY : npwx, npw USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE noncollin_module, ONLY : noncolin, npol ! INTEGER, INTENT(in) :: m LOGICAL, INTENT(in) :: normalize_only COMPLEX(dp), INTENT(IN ) :: wfc (npwx*npol,m) COMPLEX(dp), INTENT(INOUT) :: swfc(npwx*npol,m) COMPLEX(DP) :: temp COMPLEX(DP) , ALLOCATABLE :: work (:,:), overlap (:,:) REAL(DP) , ALLOCATABLE :: e (:) ALLOCATE (overlap( m , m)) ALLOCATE (work ( m , m)) ALLOCATE (e ( m)) overlap(:,:) = (0.d0,0.d0) work(:,:) = (0.d0,0.d0) ! ! calculate overlap matrix ! IF (noncolin) THEN CALL zgemm ('c', 'n', m, m, npwx*npol, (1.d0, 0.d0), wfc, & npwx*npol, swfc, npwx*npol, (0.d0,0.d0), overlap, m) ELSE CALL zgemm ('c', 'n', m, m, npw, (1.d0, 0.d0), wfc, & npwx, swfc, npwx, (0.d0, 0.d0), overlap, m) END IF ! CALL mp_sum( overlap, intra_bgrp_comm ) ! IF ( normalize_only ) THEN DO i = 1, m DO j = i+1, m overlap(i,j) = CMPLX(0.d0,0.d0, kind=dp) overlap(j,i) = CMPLX(0.d0,0.d0, kind=dp) ENDDO ENDDO END IF ! ! find O^-.5 ! CALL cdiagh (m, overlap, m, e, work) DO i = 1, m e (i) = 1.d0 / SQRT (e (i) ) ENDDO DO i = 1, m DO j = i, m temp = (0.d0, 0.d0) DO k = 1, m temp = temp + e (k) * work (j, k) * CONJG (work (i, k) ) ENDDO overlap (i, j) = temp IF (j.NE.i) overlap (j, i) = CONJG (temp) ENDDO ENDDO ! ! trasform atomic orbitals O^-.5 psi ! FIXME: can be done in a faster way by using wfc as work space ! DO i = 1, npw work(:,1) = (0.d0,0.d0) IF (noncolin) THEN DO ipol=1,npol j = i + (ipol-1)*npwx CALL zgemv ('n',m,m,(1.d0,0.d0),overlap, & m, swfc(j,1),npwx*npol, (0.d0,0.d0),work,1) CALL zcopy (m,work,1,swfc(j,1),npwx*npol) END DO ELSE CALL zgemv ('n', m, m, (1.d0, 0.d0) , overlap, & m, swfc (i, 1) , npwx, (0.d0, 0.d0) , work, 1) CALL zcopy (m, work, 1, swfc (i, 1), npwx) END IF ENDDO DEALLOCATE (overlap) DEALLOCATE (work) DEALLOCATE (e) END SUBROUTINE ortho_swfc espresso-5.1/PW/src/new_ns.f900000644000175000017500000004342412341373025014237 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE new_ns(ns) !----------------------------------------------------------------------- ! ! This routine computes the new value for ns (the occupation numbers of ! ortogonalized atomic wfcs). ! These quantities are defined as follows: ns_{I,s,m1,m2} = \sum_{k,v} ! f_{kv} <\fi^{at}_{I,m1}|\psi_{k,v,s}><\psi_{k,v,s}|\fi^{at}_{I,m2}> ! It seems that the order of {m1, m2} in the definition should be opposite. ! Hovewer, since ns is symmetric (and real for collinear case, due to time ! reversal) it does not matter. ! (A.Smogunov) ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE klist, ONLY : nks, ngk USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, q_ae, wfcU, & U_projection, is_hubbard, nwfcU, offsetU USE symm_base, ONLY : d1, d2, d3 USE lsda_mod, ONLY : lsda, current_spin, nspin, isk USE symm_base, ONLY : nsym, irt USE wvfct, ONLY : nbnd, npw, npwx, igk, wg USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : evc USE io_files, ONLY : iunigk, nwordwfc, iunwfc, nwordwfcU, iunhub USE buffers, ONLY : get_buffer USE mp_pools, ONLY : inter_pool_comm USE mp, ONLY : mp_sum USE becmod, ONLY : bec_type, calbec, & allocate_bec_type, deallocate_bec_type IMPLICIT NONE ! REAL(DP), INTENT(OUT) :: ns(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat) ! TYPE (bec_type) :: proj ! proj(nwfcU,nbnd) INTEGER :: ik, ibnd, is, i, na, nb, nt, isym, m1, m2, m0, m00, ldim ! counter on k points ! " " bands ! " " spins REAL(DP) , ALLOCATABLE :: nr (:,:,:,:) REAL(DP) :: psum CALL start_clock('new_ns') ldim = 2 * Hubbard_lmax + 1 ALLOCATE( nr(ldim,ldim,nspin,nat) ) CALL allocate_bec_type ( nwfcU, nbnd, proj ) ! ! D_Sl for l=1, l=2 and l=3 are already initialized, for l=0 D_S0 is 1 ! ! Offset of atomic wavefunctions initialized in setup and stored in offsetU ! nr (:,:,:,:) = 0.d0 ns (:,:,:,:) = 0.d0 ! ! we start a loop on k points ! IF (nks > 1) REWIND (iunigk) DO ik = 1, nks IF (lsda) current_spin = isk(ik) npw = ngk (ik) IF (nks > 1) THEN READ (iunigk) igk CALL get_buffer (evc, nwordwfc, iunwfc, ik) END IF ! ! make the projection ! IF ( U_projection == 'pseudo' ) THEN ! CALL compute_pproj( q_ae, proj ) ! does not need mp_sum intra-pool, since it is already done in calbec ! ELSE IF (nks > 1) CALL get_buffer (wfcU, nwordwfcU, iunhub, ik) CALL calbec ( npw, wfcU, evc, proj ) END IF ! ! compute the occupation numbers (the quantities n(m1,m2)) of the ! atomic orbitals ! DO na = 1, nat nt = ityp (na) IF ( is_hubbard(nt) ) THEN DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = m1, 2 * Hubbard_l(nt) + 1 IF ( gamma_only ) THEN DO ibnd = 1, nbnd nr(m1,m2,current_spin,na) = nr(m1,m2,current_spin,na) + & proj%r(offsetU(na)+m2,ibnd) * & proj%r(offsetU(na)+m1,ibnd) * wg(ibnd,ik) ENDDO ELSE DO ibnd = 1, nbnd nr(m1,m2,current_spin,na) = nr(m1,m2,current_spin,na) + & DBLE( proj%k(offsetU(na)+m2,ibnd) * & CONJG(proj%k(offsetU(na)+m1,ibnd)) ) * wg(ibnd,ik) ENDDO END IF ENDDO ENDDO ENDIF ENDDO ! on k-points ENDDO CALL deallocate_bec_type (proj) ! CALL mp_sum( nr, inter_pool_comm ) ! IF (nspin.EQ.1) nr = 0.5d0 * nr ! ! impose hermiticity of n_{m1,m2} ! DO na = 1, nat nt = ityp(na) DO is = 1, nspin DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = m1 + 1, 2 * Hubbard_l(nt) + 1 nr (m2, m1, is, na) = nr (m1, m2, is, na) ENDDO ENDDO ENDDO ENDDO ! symmetrize the quantities nr -> ns DO na = 1, nat nt = ityp (na) IF ( is_hubbard(nt) ) THEN DO is = 1, nspin DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 DO isym = 1, nsym nb = irt (isym, na) DO m0 = 1, 2 * Hubbard_l(nt) + 1 DO m00 = 1, 2 * Hubbard_l(nt) + 1 IF (Hubbard_l(nt).EQ.0) THEN ns(m1,m2,is,na) = ns(m1,m2,is,na) + & nr(m0,m00,is,nb) / nsym ELSE IF (Hubbard_l(nt).EQ.1) THEN ns(m1,m2,is,na) = ns(m1,m2,is,na) + & d1(m0 ,m1,isym) * nr(m0,m00,is,nb) * & d1(m00,m2,isym) / nsym ELSE IF (Hubbard_l(nt).EQ.2) THEN ns(m1,m2,is,na) = ns(m1,m2,is,na) + & d2(m0 ,m1,isym) * nr(m0,m00,is,nb) * & d2(m00,m2,isym) / nsym ELSE IF (Hubbard_l(nt).EQ.3) THEN ns(m1,m2,is,na) = ns(m1,m2,is,na) + & d3(m0 ,m1,isym) * nr(m0,m00,is,nb) * & d3(m00,m2,isym) / nsym ELSE CALL errore ('new_ns', & 'angular momentum not implemented', & ABS(Hubbard_l(nt)) ) END IF ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ENDIF ENDDO ! Now we make the matrix ns(m1,m2) strictly hermitean DO na = 1, nat nt = ityp (na) IF ( is_hubbard(nt) ) THEN DO is = 1, nspin DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = m1, 2 * Hubbard_l(nt) + 1 psum = ABS ( ns(m1,m2,is,na) - ns(m2,m1,is,na) ) IF (psum.GT.1.d-10) THEN WRITE( stdout, * ) na, is, m1, m2 WRITE( stdout, * ) ns (m1, m2, is, na) WRITE( stdout, * ) ns (m2, m1, is, na) CALL errore ('new_ns', 'non hermitean matrix', 1) ELSE ns(m1,m2,is,na) = 0.5d0 * (ns(m1,m2,is,na) + & ns(m2,m1,is,na) ) ns(m2,m1,is,na) = ns(m1,m2,is,na) ENDIF ENDDO ENDDO ENDDO ENDIF ENDDO DEALLOCATE ( nr ) CALL stop_clock('new_ns') RETURN CONTAINS ! !------------------------------------------------------------------ SUBROUTINE compute_pproj( q, p ) ! ! Here we compute LDA+U projections using the overlaps ! USE ions_base, ONLY : ntyp => nsp USE klist, ONLY : xk USE becmod, ONLY : becp USE uspp, ONLY : nkb, vkb USE uspp_param, ONLY : nhm, nh ! IMPLICIT NONE REAL(DP), INTENT(IN) :: q(nwfcU,nhm,nat) TYPE(bec_type), INTENT(INOUT) :: p ! INTEGER :: ib, iw, nt, na, ijkb0, ikb, ih IF ( nkb == 0 ) RETURN ! ! compute ! CALL allocate_bec_type (nkb, nbnd, becp) CALL init_us_2 (npw,igk,xk(1,ik),vkb) CALL calbec (npw, vkb, evc, becp) ! IF ( gamma_only ) THEN p%r(:,:) = 0.0_DP ELSE p%k(:,:) = (0.0_DP,0.0_DP) ENDIF ! ijkb0 = 0 ! DO nt = 1, ntyp ! DO na = 1, nat ! IF ( ityp(na) == nt ) THEN ! IF ( is_hubbard(nt) ) THEN ! DO ib = 1, nbnd ! DO ih = 1, nh(nt) ! ikb = ijkb0 + ih DO iw = 1, nwfcU ! IF ( gamma_only ) THEN p%r(iw,ib) = p%r(iw,ib) + q(iw,ih,na)*becp%r(ikb,ib) ELSE p%k(iw,ib) = p%k(iw,ib) + q(iw,ih,na)*becp%k(ikb,ib) ENDIF ! ENDDO ! END DO ! END DO ! END IF ! ijkb0 = ijkb0 + nh(nt) ! END IF ! END DO ! END DO ! CALL deallocate_bec_type ( becp ) RETURN END SUBROUTINE compute_pproj ! END SUBROUTINE new_ns SUBROUTINE new_ns_nc(ns) !----------------------------------------------------------------------- ! ! Noncollinear version (A. Smogunov). ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE klist, ONLY : nks, ngk USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, wfcU, & d_spin_ldau, is_hubbard, nwfcU, offsetU USE symm_base, ONLY : d1, d2, d3 USE lsda_mod, ONLY : lsda, current_spin, nspin, isk USE noncollin_module, ONLY : noncolin, npol USE symm_base, ONLY : nsym, irt, time_reversal, t_rev USE wvfct, ONLY : nbnd, npw, npwx, igk, wg USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : evc USE gvect, ONLY : gstart USE io_files, ONLY : iunigk, nwordwfc, iunwfc, nwordwfcU, iunhub USE buffers, ONLY : get_buffer USE mp_bands, ONLY : intra_bgrp_comm USE mp_pools, ONLY : inter_pool_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! I/O variables ! COMPLEX(DP) :: ns(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat) INTEGER :: ik, ibnd, is, js, i, j, sigmay2, na, nb, nt, isym, & m1, m2, m3, m4, is1, is2, is3, is4, m0, m00, ldim COMPLEX(DP) , ALLOCATABLE :: nr (:,:,:,:,:), nr1 (:,:,:,:,:), proj(:,:) COMPLEX(DP) :: z, zdotc REAL(DP) :: psum CALL start_clock('new_ns') ldim = 2 * Hubbard_lmax + 1 ALLOCATE( nr(ldim,ldim,npol,npol,nat), nr1(ldim,ldim,npol,npol,nat) ) ALLOCATE( proj(nwfcU,nbnd) ) nr (:,:,:,:,:) = 0.d0 nr1 (:,:,:,:,:) = 0.d0 ns (:,:,:,:) = 0.d0 !-- ! loop on k points ! IF (nks > 1) REWIND (iunigk) DO ik = 1, nks npw = ngk (ik) IF (nks > 1) THEN READ (iunigk) igk CALL get_buffer (evc, nwordwfc, iunwfc, ik) END IF CALL get_buffer (wfcU, nwordwfcU, iunhub, ik) ! ! make the projection - FIXME: use ZGEMM or calbec instead ! DO ibnd = 1, nbnd DO i = 1, nwfcU proj(i, ibnd) = zdotc (npwx*npol, wfcU (1, i), 1, evc (1, ibnd), 1) ENDDO ENDDO CALL mp_sum ( proj, intra_bgrp_comm ) ! ! compute the occupation matrix ! do na = 1, nat nt = ityp (na) if ( is_hubbard(nt) ) then ldim = 2 * Hubbard_l(nt) + 1 do m1 = 1, 2 * Hubbard_l(nt) + 1 do m2 = 1, 2 * Hubbard_l(nt) + 1 do is1 = 1, npol do is2 = 1, npol do ibnd = 1, nbnd nr(m1,m2,is1,is2,na) = nr(m1,m2,is1,is2,na) + & wg(ibnd,ik) * CONJG( proj(offsetU(na)+m1+ldim*(is1-1),ibnd) ) * & proj(offsetU(na)+m2+ldim*(is2-1),ibnd) enddo enddo enddo enddo enddo endif enddo enddo !--- CALL mp_sum( nr, inter_pool_comm ) !-- symmetrize: nr --> nr1 ! do na = 1, nat nt = ityp (na) if ( is_hubbard(nt) ) then do m1 = 1, 2 * Hubbard_l(nt) + 1 do m2 = 1, 2 * Hubbard_l(nt) + 1 do is1 = 1, npol do is2 = 1, npol loopisym: do isym = 1, nsym nb = irt (isym, na) do m3 = 1, 2 * Hubbard_l(nt) + 1 do m4 = 1, 2 * Hubbard_l(nt) + 1 do is3 = 1, npol do is4 = 1, npol if (Hubbard_l(nt).eq.0) then if (t_rev(isym).eq.1) then nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )* & nr(m4,m3,is4,is3,nb)/nsym * & d_spin_ldau(is2,is4,isym) else nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )* & nr(m3,m4,is3,is4,nb)/nsym * & d_spin_ldau(is2,is4,isym) endif elseif (Hubbard_l(nt).eq.1) then if (t_rev(isym).eq.1) then nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )*d1(m1,m3,isym)* & nr(m4,m3,is4,is3,nb)/nsym * & d_spin_ldau(is2,is4,isym) *d1(m2,m4,isym) else nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )*d1(m1,m3,isym)* & nr(m3,m4,is3,is4,nb)/nsym * & d_spin_ldau(is2,is4,isym) *d1(m2,m4,isym) endif elseif (Hubbard_l(nt).eq.2) then if (t_rev(isym).eq.1) then nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )*d2(m1,m3,isym)* & nr(m4,m3,is4,is3,nb)/nsym * & d_spin_ldau(is2,is4,isym) *d2(m2,m4,isym) else nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )*d2(m1,m3,isym)* & nr(m3,m4,is3,is4,nb)/nsym * & d_spin_ldau(is2,is4,isym) *d2(m2,m4,isym) endif elseif (Hubbard_l(nt).eq.3) then if (t_rev(isym).eq.1) then nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )*d3(m1,m3,isym)* & nr(m4,m3,is4,is3,nb)/nsym * & d_spin_ldau(is2,is4,isym) *d3(m2,m4,isym) else nr1(m1,m2,is1,is2,na) = nr1(m1,m2,is1,is2,na) + & CONJG( d_spin_ldau(is1,is3,isym) )*d3(m1,m3,isym)* & nr(m3,m4,is3,is4,nb)/nsym * & d_spin_ldau(is2,is4,isym) *d3(m2,m4,isym) endif else CALL errore ('new_ns', & 'angular momentum not implemented', & ABS(Hubbard_l(nt)) ) endif enddo enddo enddo enddo enddo loopisym enddo enddo enddo enddo endif enddo !-- !-- Setup the output matrix ns with combined spin index ! DO na = 1, nat nt = ityp (na) IF ( is_hubbard(nt) ) THEN DO is1 = 1, npol do is2 = 1, npol i = npol*(is1-1) + is2 DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 ns(m1,m2,i,na) = nr1(m1,m2,is1,is2,na) ENDDO ENDDO enddo ENDDO ENDIF ENDDO !-- !-- make the matrix ns strictly hermitean ! DO na = 1, nat nt = ityp (na) IF ( is_hubbard(nt) ) THEN DO is1 = 1, npol do is2 = 1, npol i = npol*(is1-1) + is2 j = is1 + npol*(is2-1) DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 psum = ABS ( ns(m1,m2,i,na) - CONJG(ns(m2,m1,j,na)) ) IF (psum.GT.1.d-10) THEN WRITE( stdout, * ) na, m1, m2, is1, is2 WRITE( stdout, * ) ns (m1, m2, i, na) WRITE( stdout, * ) ns (m2, m1, j, na) CALL errore ('new_ns', 'non hermitean matrix', 1) ELSE ns (m2, m1, j, na) = CONJG( ns(m1, m2, i, na)) ENDIF ENDDO ENDDO enddo ENDDO ENDIF ENDDO !-- DEALLOCATE ( nr, nr1 ) CALL stop_clock('new_ns') RETURN END SUBROUTINE new_ns_nc espresso-5.1/PW/src/efermit.f900000644000175000017500000000745212341373025014402 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- FUNCTION efermit (et, nbnd, nks, nelec, nspin, ntetra, tetra, is, isk) !-------------------------------------------------------------------- ! ! Finds the Fermi energy - tetrahedron method ! (see P. E. Bloechl et al, PRB49, 16223 (1994)) ! USE io_global, ONLY : stdout USE kinds, ONLY: DP USE constants, ONLY: rytoev implicit none integer, intent(in) :: nks, nbnd, nspin, ntetra, tetra (4, ntetra) ! nks : the number of k points ! nbnd : the number of bands ! nspin : the number of spin components ! ntetra: the number of tetrahedra ! tetra : the vertices of a tetrahedron real(DP), intent(in) :: et (nbnd, nks), nelec ! input: the eigenvalues ! input: the number of electrons real(DP):: efermit ! output: the fermi energy integer, intent(in) :: is, isk(nks) ! ! two parameters ! integer, parameter :: maxiter = 300 ! the maximum number of iterations in bisection real(DP), parameter :: eps= 1.0d-10 ! a small quantity ! ! here the local variables ! integer :: nlw, ik, iter ! the minimum energy band ! counter on k points ! counter on iterations real(DP) :: ef, elw, eup, sumkup, sumklw, sumkmid ! elw, eup: lower and upper bounds for fermi energy (ef) ! sumklw, sumkup: number of states for ef=elw, ef=eup resp. ! sumkmid: number of states for ef=(elw+eup)/2 real(DP), external :: sumkt real(DP) :: efbetter, better ! ! find bounds for the Fermi energy. ! nlw = max (1, nint (nelec / 2.0d0 - 5.0d0) ) elw = et (nlw, 1) eup = et (nbnd, 1) do ik = 2, nks elw = min (elw, et (nlw, ik) ) eup = max (eup, et (nbnd, ik) ) enddo ! ! Bisection method ! sumkup = sumkt (et, nbnd, nks, nspin, ntetra, tetra, eup, is, isk) sumklw = sumkt (et, nbnd, nks, nspin, ntetra, tetra, elw, is, isk) better = 1.0d+10 if ( (sumkup - nelec) < -eps .or. (sumklw - nelec) > eps) then ! ! this is a serious error and the code should stop here ! we don't stop because this may occasionally happen in nonscf ! calculations where it may be completely irrelevant ! call infomsg ('efermit', 'internal error, cannot bracket Ef') efermit = better return end if do iter = 1, maxiter ef = (eup + elw) / 2.d0 sumkmid = sumkt (et, nbnd, nks, nspin, ntetra, tetra, ef, is, isk) if (abs (sumkmid-nelec) < better) then better = abs (sumkmid-nelec) efbetter = ef endif ! converged if (abs (sumkmid-nelec) < eps) then goto 100 elseif ( (sumkmid-nelec) < -eps) then elw = ef else eup = ef endif enddo ! unconverged exit: ! the best available ef is used . Needed in some difficult cases ef = efbetter sumkmid = sumkt (et, nbnd, nks, nspin, ntetra, tetra, ef, is, isk ) if (is /= 0) WRITE(stdout, '(5x,"Spin Component #",i3)') is WRITE( stdout, 9010) ef * rytoev, sumkmid ! converged exit: 100 continue ! Check if Fermi level is above any of the highest eigenvalues do ik = 1, nks if (is /= 0) then if (isk(ik) /= is ) cycle end if if (ef > et (nbnd, ik) + 1.d-4) & WRITE( stdout, 9020) ef * rytoev, ik, et (nbnd, ik) * rytoev enddo efermit = ef return 9010 format (/5x,'Warning: too many iterations in bisection'/ & & 5x,'ef = ',f10.6,' sumk = ',f10.6,' electrons') 9020 format (/5x,'Warning: ef =',f10.6, & & ' is above the highest band at k-point',i4,/5x,9x, & & 'e = ',f10.6) end FUNCTION efermit espresso-5.1/PW/src/tabd.f900000644000175000017500000000531512341373025013655 0ustar mbamba! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- FUNCTION hubbard_occ ( psd ) !----------------------------------------------------------------------- ! ! This routine is a table (far from being complete) for the total number ! of localized electrons in transition metals or rare earths ! (PPs usually are built on non physical configurations) ! USE kinds, ONLY: DP ! IMPLICIT NONE ! CHARACTER(LEN=2), INTENT(IN) :: psd REAL(DP) :: hubbard_occ ! SELECT CASE( TRIM(ADJUSTL(psd)) ) ! ! TRANSITION METALS ! CASE( 'Ti', 'Zr', 'Hf' ) hubbard_occ = 2.d0 ! CASE( 'V', 'Nb', 'Ta' ) hubbard_occ = 3.d0 ! CASE( 'Cr', 'Mo', 'W' ) hubbard_occ = 5.d0 ! CASE( 'Mn', 'Tc', 'Re' ) hubbard_occ = 5.d0 ! CASE( 'Fe', 'Ru', 'Os' ) hubbard_occ = 6.d0 ! CASE( 'Co', 'Rh', 'Ir' ) hubbard_occ = 7.d0 ! CASE( 'Ni', 'Pd', 'Pt' ) hubbard_occ = 8.d0 ! CASE( 'Cu', 'Ag', 'Au' ) hubbard_occ = 10.d0 ! CASE( 'Zn', 'Cd', 'Hg' ) hubbard_occ = 10.d0 ! ! RARE EARTHS ! CASE( 'Ce', 'Th' ) hubbard_occ = 2.d0 ! CASE( 'Pr', 'Pa' ) hubbard_occ = 3.d0 ! CASE( 'Nd', 'U' ) hubbard_occ = 4.d0 ! CASE( 'Pm', 'Np' ) hubbard_occ = 5.d0 ! CASE( 'Sm', 'Pu' ) hubbard_occ = 6.d0 ! CASE( 'Eu', 'Am' ) hubbard_occ = 6.d0 ! CASE( 'Gd', 'Cm' ) hubbard_occ = 7.d0 ! CASE( 'Tb', 'Bk' ) hubbard_occ = 8.d0 ! CASE( 'Dy', 'Cf' ) hubbard_occ = 9.d0 ! CASE( 'Ho', 'Es' ) hubbard_occ =10.d0 ! CASE( 'Er', 'Fm' ) hubbard_occ =11.d0 ! CASE( 'Tm', 'Md' ) hubbard_occ =12.d0 ! CASE( 'Yb', 'No' ) hubbard_occ =13.d0 ! CASE( 'Lu', 'Lr' ) hubbard_occ =14.d0 ! ! OTHER ELEMENTS ! CASE( 'C' ) hubbard_occ = 2.d0 ! CASE( 'N' ) hubbard_occ = 3.d0 ! CASE( 'O' ) hubbard_occ = 4.d0 ! CASE( 'H' ) hubbard_occ = 1.d0 ! CASE( 'Ga', 'In' ) hubbard_occ = 10.d0 ! ! ! NOT INSERTED ! CASE DEFAULT hubbard_occ = 0.d0 call errore ('hubbard_occ', 'pseudopotential not yet inserted', 1) ! END SELECT RETURN END FUNCTION hubbard_occ espresso-5.1/PW/src/makov_payne.f900000644000175000017500000002674612341373025015267 0ustar mbamba! ! Copyright (C) 2007-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ... original code written by Giovanni Cantele and Paolo Cazzato ! ... adapted to work in the parallel case by Carlo Sbraccia ! ... code for the calculation of the vacuum level written by Carlo Sbraccia ! !#define _PRINT_ON_FILE ! !--------------------------------------------------------------------------- SUBROUTINE makov_payne( etot ) !--------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE ions_base, ONLY : nat, tau, ityp, zv USE cell_base, ONLY : at, bg, alat USE fft_base, ONLY : dfftp USE scf, ONLY : rho USE lsda_mod, ONLY : nspin USE plugin_flags ! ! ***Environ MODULES BEGIN*** ! ***Environ MODULES END*** ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: etot ! INTEGER :: ia REAL(DP) :: x0(3), zvtot, qq REAL(DP) :: e_dipole(0:3), e_quadrupole(3) ! ! ... x0 is the center of charge of the system ! zvtot = 0.D0 x0(:) = 0.D0 ! DO ia = 1, nat ! zvtot = zvtot + zv(ityp(ia)) ! x0(:) = x0(:) + tau(:,ia)*zv(ityp(ia)) ! END DO ! x0(:) = x0(:) / zvtot ! CALL compute_dipole( dfftp%nnr, nspin, rho%of_r, x0, e_dipole, e_quadrupole ) ! CALL write_dipole( etot, x0, e_dipole, e_quadrupole, qq ) ! ! ***Environ CALLS BEGIN*** ! ***Environ CALLS END*** ! CALL vacuum_level( x0, zvtot ) ! RETURN ! END SUBROUTINE makov_payne ! !--------------------------------------------------------------------------- SUBROUTINE write_dipole( etot, x0, dipole_el, quadrupole_el, qq ) !--------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : e2, pi, rytoev, au_debye USE ions_base, ONLY : nat, ityp, tau, zv USE cell_base, ONLY : at, bg, omega, alat, ibrav USE io_global, ONLY : ionode ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: etot REAL(DP), INTENT(IN) :: x0(3) REAL(DP), INTENT(IN) :: dipole_el(0:3), quadrupole_el(3) REAL(DP), INTENT(OUT) :: qq ! REAL(DP) :: dipole_ion(3), quadrupole_ion(3), dipole(3), quadrupole(3) REAL(DP) :: zvia, zvtot REAL(DP) :: corr1, corr2, aa, bb INTEGER :: ia, ip ! ! ... Note that the definition of the Madelung constant used here ! ... differs from the "traditional" one found in the literature. See ! ... Lento, Mozos, Nieminen, J. Phys.: Condens. Matter 14 (2002), 2637-2645 ! REAL(DP), PARAMETER :: madelung(3) = (/ 2.8373D0, 2.8883D0, 2.885D0 /) ! ! IF ( .NOT. ionode ) RETURN ! ! ... compute ion dipole moments ! zvtot = 0.D0 dipole_ion = 0.D0 quadrupole_ion = 0.D0 ! DO ia = 1, nat ! zvia = zv(ityp(ia)) ! zvtot = zvtot + zvia ! DO ip = 1, 3 ! dipole_ion(ip) = dipole_ion(ip) + & zvia*( tau(ip,ia) - x0(ip) )*alat quadrupole_ion(ip) = quadrupole_ion(ip) + & zvia*( ( tau(ip,ia) - x0(ip) )*alat )**2 ! END DO END DO ! ! ... compute ionic+electronic total charge, dipole and quadrupole moments ! qq = -dipole_el(0) + zvtot ! dipole(:) = -dipole_el(1:3) + dipole_ion(:) quadrupole = -quadrupole_el + quadrupole_ion ! WRITE( stdout, '(/5X,"charge density inside the ", & & "Wigner-Seitz cell:",3F14.8," el.")' ) dipole_el(0) ! WRITE( stdout, & '(/5X,"reference position (x0):",5X,3F14.8," bohr")' ) x0(:)*alat ! ! ... A positive dipole goes from the - charge to the + charge. ! WRITE( stdout, '(/5X,"Dipole moments (with respect to x0):")' ) WRITE( stdout, '( 5X,"Elect",3F9.4," au (Ha),",3F9.4," Debye")' ) & (-dipole_el(ip), ip = 1, 3), (-dipole_el(ip)*au_debye, ip = 1, 3 ) WRITE( stdout, '( 5X,"Ionic",3F9.4," au (Ha),", 3F9.4," Debye")' ) & ( dipole_ion(ip),ip = 1, 3), ( dipole_ion(ip)*au_debye,ip = 1, 3 ) WRITE( stdout, '( 5X,"Total",3F9.4," au (Ha),", 3F9.4," Debye")' ) & ( dipole(ip), ip = 1, 3), ( dipole(ip)*au_debye, ip = 1, 3 ) ! ! ... print the electronic, ionic and total quadrupole moments ! WRITE( stdout, '(/5X,"Electrons quadrupole moment",F20.8," a.u. (Ha)")' ) & -SUM(quadrupole_el(:)) WRITE( stdout, '( 5X," Ions quadrupole moment",F20.8," a.u. (Ha)")' ) & SUM(quadrupole_ion(:)) WRITE( stdout, '( 5X," Total quadrupole moment",F20.8," a.u. (Ha)")' ) & SUM(quadrupole(:)) ! IF ( ibrav < 1 .OR. ibrav > 3 ) THEN call errore(' write_dipole', & 'Makov-Payne correction defined only for cubic lattices', 1) ! END IF ! ! ... Makov-Payne correction, PRB 51, 4014 (1995) ! ... Note that Eq. 15 has the wrong sign for the quadrupole term ! corr1 = - madelung(ibrav) / alat * qq**2 / 2.0D0 * e2 ! aa = SUM(quadrupole(:)) bb = dipole(1)**2 + dipole(2)**2 + dipole(3)**2 ! corr2 = ( 2.D0 / 3.D0 * pi )*( qq*aa - bb ) / alat**3 * e2 ! ! ... print the Makov-Payne correction ! WRITE( stdout, '(/,5X,"********* MAKOV-PAYNE CORRECTION *********")' ) WRITE( stdout, & '(/5X,"Makov-Payne correction with Madelung constant = ",F8.4)' ) & madelung(ibrav) ! WRITE( stdout,'(/5X,"Makov-Payne correction ",F14.8," Ry = ",F6.3, & & " eV (1st order, 1/a0)")' ) -corr1, -corr1*rytoev WRITE( stdout,'( 5X," ",F14.8," Ry = ",F6.3, & & " eV (2nd order, 1/a0^3)")' ) -corr2, -corr2*rytoev WRITE( stdout,'( 5X," ",F14.8," Ry = ",F6.3, & & " eV (total)")' ) -corr1-corr2, (-corr1-corr2)*rytoev ! WRITE( stdout,'(/"! Total+Makov-Payne energy = ",F16.8," Ry")' ) & etot - corr1 - corr2 ! RETURN ! END SUBROUTINE write_dipole ! !--------------------------------------------------------------------------- SUBROUTINE vacuum_level( x0, zion ) !--------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout, ionode USE io_files, ONLY : prefix USE constants, ONLY : e2, pi, tpi, fpi, rytoev, eps32 USE gvect, ONLY : g, gg, ngm, gstart, igtongl USE scf, ONLY : rho USE lsda_mod, ONLY : nspin USE cell_base, ONLY : at, alat, tpiba, tpiba2 USE ions_base, ONLY : nsp USE vlocal, ONLY : strf, vloc USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE control_flags, ONLY : gamma_only USE basic_algebra_routines, ONLY : norm ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: x0(3) REAL(DP), INTENT(IN) :: zion ! INTEGER :: i, ir, ig, first_point REAL(DP) :: r, dr, rmax, rg, phase, sinxx COMPLEX(DP), ALLOCATABLE :: vg(:) COMPLEX(DP) :: vgig, qgig REAL(DP) :: vsph, qsph, qqr REAL(DP) :: absg, qq, vol, fac, rgtot_re, rgtot_im INTEGER, PARAMETER :: npts = 100 REAL(DP), PARAMETER :: x(3) = (/ 0.5D0, 0.0D0, 0.0D0 /), & y(3) = (/ 0.0D0, 0.5D0, 0.0D0 /), & z(3) = (/ 0.0D0, 0.0D0, 0.5D0 /) ! ! IF ( .NOT.gamma_only ) RETURN ! rmax = norm( MATMUL( at(:,:), x(:) ) ) ! rmax = MIN( rmax, norm( MATMUL( at(:,:), y(:) ) ) ) rmax = MIN( rmax, norm( MATMUL( at(:,:), z(:) ) ) ) ! rmax = rmax*alat ! dr = rmax / DBLE( npts ) ! ALLOCATE( vg( ngm ) ) ! ! ... the local ionic potential ! vg(:) = ( 0.D0, 0.D0 ) ! DO i = 1, nsp DO ig = 1, ngm vg(ig) = vg(ig) + vloc(igtongl(ig),i)*strf(ig,i) END DO END DO ! ! ... add the hartree potential in G-space (NB: V(G=0)=0 ) ! DO ig = gstart, ngm ! fac = e2*fpi / ( tpiba2*gg(ig) ) ! rgtot_re = REAL( rho%of_g(ig,1) ) rgtot_im = AIMAG( rho%of_g(ig,1) ) ! IF ( nspin == 2 ) THEN ! rgtot_re = rgtot_re + REAL( rho%of_g(ig,2) ) rgtot_im = rgtot_im + AIMAG( rho%of_g(ig,2) ) ! END IF ! vg(ig) = vg(ig) + CMPLX( rgtot_re, rgtot_im ,kind=DP)*fac ! END DO ! first_point = npts ! #if defined _PRINT_ON_FILE ! first_point = 1 ! IF ( ionode ) THEN ! OPEN( UNIT = 123, FILE = TRIM( prefix ) // ".E_vac.dat" ) ! WRITE( 123, '("# estimate of the vacuum level as a function of r")' ) WRITE( 123, '("#",/,"#",8X,"r (bohr)", & &8X,"E_vac (eV)",6X,"integrated charge")' ) ! END IF ! #endif ! DO ir = first_point, npts ! ! ... r is in atomic units ! r = dr*ir ! vol = ( 4.D0 / 3.D0 )*pi*(r*r*r) ! vsph = ( 0.D0, 0.D0 ) qsph = ( 0.D0, 0.D0 ) qqr = ( 0.D0, 0.D0 ) ! DO ig = 1, ngm ! ! ... g vectors are in units of 2pi / alat : ! ... to go to atomic units g must be multiplied by 2pi / alat ! absg = tpiba*SQRT( gg(ig) ) ! rg = r*absg ! IF ( r == 0.D0 .AND. absg /= 0 ) THEN ! sinxx = 1.D0 ! ELSE IF ( absg == 0 ) THEN ! sinxx = 0.5D0 ! ELSE ! sinxx = SIN( rg ) / rg ! END IF ! vgig = vg(ig) qgig = rho%of_g(ig,1) ! IF ( nspin == 2 ) qgig = qgig + rho%of_g(ig,2) ! ! ... add the phase factor corresponding to the translation of the ! ... origin by x0 (notice that x0 is in alat units) ! phase = tpi*( g(1,ig)*x0(1) + g(2,ig)*x0(2) + g(3,ig)*x0(3) ) ! vgig = vgig*CMPLX( COS( phase ), SIN( phase ) ,kind=DP) qgig = qgig*CMPLX( COS( phase ), SIN( phase ) ,kind=DP) ! ! ... vsph is the spherical average of the periodic electrostatic ! ... potential on a sphere of radius r centered in x0 ! ... so this should be the monopole term in the potential ! vsph = vsph + 2.D0*REAL( vgig )*sinxx qsph = qsph + 2.D0*REAL( qgig )*sinxx ! IF ( absg /= 0.D0 ) THEN ! ! ... qqr is the integral of the electronic charge in the sphere ! qqr = qqr + 2.D0*REAL( qgig )* & ( fpi / absg**3 )*( SIN( rg ) - rg*COS( rg ) ) ! ELSE ! qqr = qqr + REAL( qgig )*vol ! END IF ! END DO ! CALL mp_sum( vsph, intra_bgrp_comm ) CALL mp_sum( qsph, intra_bgrp_comm ) CALL mp_sum( qqr, intra_bgrp_comm ) ! ! ... qq is therefore the total (positive) charge of the system ! qq = ( zion - qqr ) ! ! ... that by Gauss theorem gives a monopole average potential on the ! ... sphere seen by electrons of: - qq e2 / r ! ... so (vsph + qq e2/r) should be the shift of the isolated molecule ! ... monopole wrt the periodic potential ! #if defined _PRINT_ON_FILE IF ( ionode ) & WRITE( 123, '(3(2X,F16.8))' ) r, ( vsph + e2*qq / r )*rytoev, qqr #endif ! END DO ! #if defined _PRINT_ON_FILE IF ( ionode ) CLOSE( UNIT = 123 ) #endif ! ! ... one should see (if a range of r's are computed) that this corrections ! ... should become a constant when the charge density of the molecule is decayed ! WRITE( stdout, '(5X,"Corrected vacuum level = ",F16.8," eV")' ) & ( vsph + e2*qq / rmax )*rytoev ! DEALLOCATE( vg ) ! RETURN ! END SUBROUTINE vacuum_level espresso-5.1/PW/src/add_vuspsi.f900000644000175000017500000002063112341373025015102 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE add_vuspsi( lda, n, m, hpsi ) !---------------------------------------------------------------------------- ! ! This routine applies the Ultra-Soft Hamiltonian to a ! vector psi and puts the result in hpsi. ! Requires the products of psi with all beta functions ! in array becp(nkb,m) (calculated by calbec) ! input: ! lda leading dimension of arrays psi, spsi ! n true dimension of psi, spsi ! m number of states psi ! output: ! hpsi V_US|psi> is added to hpsi ! USE kinds, ONLY: DP USE ions_base, ONLY: nat, ntyp => nsp, ityp USE lsda_mod, ONLY: current_spin USE control_flags, ONLY: gamma_only USE noncollin_module USE uspp, ONLY: vkb, nkb, deeq, deeq_nc USE uspp_param, ONLY: nh USE becmod, ONLY: bec_type, becp ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER, INTENT(IN) :: lda, n, m COMPLEX(DP), INTENT(INOUT) :: hpsi(lda*npol,m) ! ! ... here the local variables ! INTEGER :: jkb, ikb, ih, jh, na, nt, ijkb0, ibnd ! counters ! ! CALL start_clock( 'add_vuspsi' ) ! IF ( gamma_only ) THEN ! CALL add_vuspsi_gamma() ! ELSE IF ( noncolin) THEN ! CALL add_vuspsi_nc () ! ELSE ! CALL add_vuspsi_k() ! END IF ! CALL stop_clock( 'add_vuspsi' ) ! RETURN ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE add_vuspsi_gamma() !----------------------------------------------------------------------- ! USE mp, ONLY: mp_get_comm_null, mp_circular_shift_left ! IMPLICIT NONE INTEGER, EXTERNAL :: ldim_block, lind_block, gind_block REAL(DP), ALLOCATABLE :: ps (:,:) INTEGER :: ierr INTEGER :: nproc, mype, m_loc, m_begin, ibnd_loc, icyc, icur_blk, m_max ! IF ( nkb == 0 ) RETURN ! m_loc = m m_begin = 1 m_max = m nproc = 1 mype = 0 ! IF( becp%comm /= mp_get_comm_null() ) THEN nproc = becp%nproc mype = becp%mype m_loc = becp%nbnd_loc m_begin = becp%ibnd_begin m_max = SIZE( becp%r, 2 ) IF( ( m_begin + m_loc - 1 ) > m ) m_loc = m - m_begin + 1 END IF ! ALLOCATE (ps (nkb,m_max), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' add_vuspsi_gamma ', ' cannot allocate ps ', ABS( ierr ) ) ! ps(:,:) = 0.D0 ! ijkb0 = 0 ! DO nt = 1, ntyp ! DO na = 1, nat ! IF ( ityp(na) == nt ) THEN ! DO ibnd = 1, m_loc ! DO jh = 1, nh(nt) ! jkb = ijkb0 + jh ! DO ih = 1, nh(nt) ! ikb = ijkb0 + ih ! ps(ikb,ibnd) = ps(ikb,ibnd) + & deeq(ih,jh,na,current_spin) * becp%r(jkb,ibnd) ! END DO ! END DO ! END DO ! ijkb0 = ijkb0 + nh(nt) ! END IF ! END DO ! END DO ! IF( becp%comm /= mp_get_comm_null() ) THEN ! ! parallel block multiplication of vkb and ps ! icur_blk = mype ! DO icyc = 0, nproc - 1 m_loc = ldim_block( becp%nbnd , nproc, icur_blk ) m_begin = gind_block( 1, becp%nbnd, nproc, icur_blk ) IF( ( m_begin + m_loc - 1 ) > m ) m_loc = m - m_begin + 1 IF( m_loc > 0 ) THEN CALL DGEMM( 'N', 'N', ( 2 * n ), m_loc, nkb, 1.D0, vkb, & ( 2 * lda ), ps, nkb, 1.D0, hpsi( 1, m_begin ), ( 2 * lda ) ) END IF ! block rotation ! CALL mp_circular_shift_left( ps, icyc, becp%comm ) icur_blk = icur_blk + 1 IF( icur_blk == nproc ) icur_blk = 0 END DO ELSE CALL DGEMM( 'N', 'N', ( 2 * n ), m, nkb, 1.D0, vkb, & ( 2 * lda ), ps, nkb, 1.D0, hpsi, ( 2 * lda ) ) END IF ! DEALLOCATE (ps) ! RETURN ! END SUBROUTINE add_vuspsi_gamma ! !----------------------------------------------------------------------- SUBROUTINE add_vuspsi_k() !----------------------------------------------------------------------- ! IMPLICIT NONE COMPLEX(DP), ALLOCATABLE :: ps (:,:) INTEGER :: ierr ! IF ( nkb == 0 ) RETURN ! ALLOCATE (ps (nkb,m), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' add_vuspsi_k ', ' cannot allocate ps ', ABS( ierr ) ) ps(:,:) = ( 0.D0, 0.D0 ) ! ijkb0 = 0 ! DO nt = 1, ntyp ! DO na = 1, nat ! IF ( ityp(na) == nt ) THEN ! DO ibnd = 1, m ! DO jh = 1, nh(nt) ! jkb = ijkb0 + jh ! DO ih = 1, nh(nt) ! ikb = ijkb0 + ih ! ps(ikb,ibnd) = ps(ikb,ibnd) + & deeq(ih,jh,na,current_spin) * becp%k(jkb,ibnd) ! END DO ! END DO ! END DO ! ijkb0 = ijkb0 + nh(nt) ! END IF ! END DO ! END DO ! CALL ZGEMM( 'N', 'N', n, m, nkb, ( 1.D0, 0.D0 ) , vkb, & lda, ps, nkb, ( 1.D0, 0.D0 ) , hpsi, lda ) ! DEALLOCATE (ps) ! RETURN ! END SUBROUTINE add_vuspsi_k ! !----------------------------------------------------------------------- SUBROUTINE add_vuspsi_nc() !----------------------------------------------------------------------- ! ! IMPLICIT NONE COMPLEX(DP), ALLOCATABLE :: ps (:,:,:) INTEGER :: ierr ! IF ( nkb == 0 ) RETURN ! ALLOCATE (ps( nkb,npol, m), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' add_vuspsi_nc ', ' error allocating ps ', ABS( ierr ) ) ! ps (:,:,:) = (0.d0, 0.d0) ! ijkb0 = 0 ! DO nt = 1, ntyp ! DO na = 1, nat ! IF ( ityp(na) == nt ) THEN ! DO ibnd = 1, m ! DO jh = 1, nh(nt) ! jkb = ijkb0 + jh ! DO ih = 1, nh(nt) ! ikb = ijkb0 + ih ! ps(ikb,1,ibnd) = ps(ikb,1,ibnd) + & deeq_nc(ih,jh,na,1)*becp%nc(jkb,1,ibnd)+ & deeq_nc(ih,jh,na,2)*becp%nc(jkb,2,ibnd) ps(ikb,2,ibnd) = ps(ikb,2,ibnd) + & deeq_nc(ih,jh,na,3)*becp%nc(jkb,1,ibnd)+& deeq_nc(ih,jh,na,4)*becp%nc(jkb,2,ibnd) ! END DO ! END DO ! END DO ! ijkb0 = ijkb0 + nh(nt) ! END IF ! END DO ! END DO ! call ZGEMM ('N', 'N', n, m*npol, nkb, ( 1.D0, 0.D0 ) , vkb, & lda, ps, nkb, ( 1.D0, 0.D0 ) , hpsi, lda ) ! DEALLOCATE (ps) ! RETURN ! END SUBROUTINE add_vuspsi_nc ! ! END SUBROUTINE add_vuspsi espresso-5.1/PW/src/find_group.f900000644000175000017500000002315612341373025015102 0ustar mbamba! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE find_group(nrot,smat,gname,code_group) ! ! Given a group of nrot rotation matrices smat (in cartesian coordinates) ! this routine finds the name of the point group. It assumes but does not ! check that: ! 1) The nrot matrices smat are actually a group. ! 2) The group is one of the thirty-two point groups. ! USE kinds, ONLY : DP IMPLICIT NONE INTEGER :: nrot, code_group REAL(DP) :: smat(3,3,nrot) CHARACTER (LEN=11) :: gname, group_name INTEGER :: noperation(6), irot, ts, tipo_sym ! ! For each possible group operation the function tipo_sym gives a code ! 1 identity, ! 2 inversion, ! 3 proper rotation <> 180, ! 4 proper rotation 180 degrees, ! 5 mirror, ! 6 improper rotation ! the variable noperation counts how many operations are present in the group. ! noperation=0 DO irot=1,nrot ts=tipo_sym(smat(1,1,irot)) noperation(ts)=noperation(ts)+1 END DO IF (noperation(1).ne.1) call errore('find_group','the group has not identity',1) code_group=0 IF (noperation(2)==0) THEN ! ! There is not inversion ! IF (nrot==1) THEN code_group=1 ! C_1 ELSEIF (nrot==2) THEN IF (noperation(4)==1) code_group=4 ! C_2 IF (noperation(5)==1) code_group=3 ! C_s ELSEIF (nrot==3) THEN IF (noperation(3)==2) code_group=5 ! C_3 ELSEIF (nrot==4) THEN IF (noperation(6)>0) code_group=26 ! S_4 IF (noperation(5)>0.and.code_group==0) code_group=12 ! C_2v IF (noperation(3)>0.and.code_group==0) code_group=6 ! C_4 IF (noperation(4)>0.and.code_group==0) code_group=8 ! D_2 ELSEIF (nrot==6) THEN IF (noperation(5)==3) code_group=13 ! C_3v IF (noperation(5)==1) code_group=17 ! C_3h IF (noperation(4)==3.and.code_group==0) code_group=9 ! D_3 IF (noperation(3)>0.and.code_group==0) code_group=7 ! C_6 ELSEIF (nrot==8) THEN IF (noperation(5)==4) code_group=14 ! C_4v IF (noperation(5)==2) code_group=24 ! D_2d IF (noperation(3)>0.and.code_group==0) code_group=10 ! D_4 ELSEIF (nrot==12) THEN IF (noperation(5)==6) code_group=15 ! C_6v IF (noperation(5)==4) code_group=21 ! D_3h IF (noperation(4)>6.and.code_group==0) code_group=11 ! D_6 IF (noperation(3)>0.and.code_group==0) code_group=28 ! T ELSEIF (nrot==24) THEN IF (noperation(5)>0) code_group=30 ! T_d IF (noperation(5)==0) code_group=31 ! O ELSE CALL errore('find_group','wrong number of elements',1) ENDIF ELSEIF (noperation(2)==1) THEN ! ! There is inversion ! IF (nrot==2) THEN code_group=2 ! C_i ELSEIF (nrot==4) THEN code_group=16 ! C_2h ELSEIF (nrot==6) THEN code_group=27 ! S_6 ELSEIF (nrot==8) THEN IF (noperation(5)==3) code_group=20 ! D_2h IF (noperation(5)==1) code_group=18 ! C_4h ELSEIF (nrot==12) THEN IF (noperation(5)==3) code_group=25 ! D_3d IF (noperation(5)==1) code_group=19 ! C_6h ELSEIF (nrot==16) THEN IF (noperation(5)==5) code_group=22 ! D_4h ELSEIF (nrot==24) THEN IF (noperation(5)>6) code_group=23 ! D_6h IF (noperation(5)==3) code_group=29 ! T_h ELSEIF (nrot==48) THEN code_group=32 ! O_h ELSE CALL errore('find_group','wrong number of elements',1) ENDIF ELSE CALL errore('find_group','too many inversions',1) ENDIF IF (code_group==0) call errore('find_group','incompatible operations',1) gname=group_name(code_group) RETURN END SUBROUTINE find_group !-------------------------------------------------------------------------- FUNCTION group_name(code) !-------------------------------------------------------------------------- ! This function receives a code of the group and provides the name of the ! group. The order is the following: ! ! 1 "C_1 " 11 "D_6 " 21 "D_3h" 31 "O " ! 2 "C_i " 12 "C_2v" 22 "D_4h" 32 "O_h " ! 3 "C_s " 13 "C_3v" 23 "D_6h" ! 4 "C_2 " 14 "C_4v" 24 "D_2d" ! 5 "C_3 " 15 "C_6v" 25 "D_3d" ! 6 "C_4 " 16 "C_2h" 26 "S_4 " ! 7 "C_6 " 17 "C_3h" 27 "S_6 " ! 8 "D_2 " 18 "C_4h" 28 "T " ! 9 "D_3 " 19 "C_6h" 29 "T_h " ! 10 "D_4 " 20 "D_2h" 30 "T_d " ! IMPLICIT NONE INTEGER :: code CHARACTER(LEN=11) :: group_name CHARACTER(LEN=11) :: gname(32) data gname / "C_1 (1) ", "C_i (-1) ", "C_s (m) ", "C_2 (2) ", & "C_3 (3) ", "C_4 (4) ", "C_6 (6) ", "D_2 (222) ", & "D_3 (32) ", "D_4 (422) ", "D_6 (622) ", "C_2v (mm2) ", & "C_3v (3m) ", "C_4v (4mm) ", "C_6v (6mm) ", "C_2h (2/m) ", & "C_3h (-6) ", "C_4h (4/m) ", "C_6h (6/m) ", "D_2h (mmm) ", & "D_3h (-62m)", "D_4h(4/mmm)", "D_6h(6/mmm)", "D_2d (-42m)", & "D_3d (-3m) ", "S_4 (-4) ", "S_6 (-3) ", "T (23) ", & "T_h (m-3) ", "T_d (-43m) ", "O (432) ", "O_h (m-3m) " / IF (code < 1 .OR. code > 32 ) CALL errore('group_name','code is out of range',1) group_name=gname(code) RETURN END FUNCTION group_name !-------------------------------------------------------------------------- FUNCTION tipo_sym(s) !-------------------------------------------------------------------------- ! This function receives a 3x3 orthogonal matrix which is a symmetry ! operation of the point group of the crystal written in cartesian ! coordinates and gives as output a code according to the following: ! ! 1 Identity ! 2 Inversion ! 3 Proper rotation of an angle <> 180 degrees ! 4 Proper rotation of 180 degrees ! 5 Mirror symmetry ! 6 Improper rotation ! USE kinds, ONLY : DP IMPLICIT NONE REAL(DP), PARAMETER :: eps=1.d-7 REAL(DP) :: s(3,3), det, det1 INTEGER :: tipo_sym ! ! Check for identity ! IF ((ABS(s(1,1)-1.d0) < eps).AND. & (ABS(s(2,2)-1.d0) < eps).AND. & (ABS(s(3,3)-1.d0) < eps).AND. & (ABS(s(1,2)) < eps).AND.(ABS(s(2,1)) < eps).AND.(ABS(s(2,3)) < eps).AND. & (ABS(s(3,2)) < eps).AND.(ABS(s(1,3)) < eps).AND.(ABS(s(3,1)) < eps)) THEN tipo_sym=1 RETURN ENDIF ! ! Check for inversion ! IF ((ABS(s(1,1)+1.d0) < eps).AND. & (ABS(s(2,2)+1.d0) < eps).AND. & (ABS(s(3,3)+1.d0) < eps).AND. & (ABS(s(1,2)) < eps).AND.(ABS(s(2,1)) < eps).AND.(ABS(s(2,3)) < eps).AND. & (ABS(s(3,2)) < eps).AND.(ABS(s(1,3)) < eps).AND.(ABS(s(3,1)) < eps)) THEN tipo_sym=2 RETURN ENDIF ! ! compute the determinant ! det = s(1,1) * ( s(2,2) * s(3,3) - s(3,2) * s(2,3) )- & s(1,2) * ( s(2,1) * s(3,3) - s(3,1) * s(2,3) )+ & s(1,3) * ( s(2,1) * s(3,2) - s(3,1) * s(2,2) ) ! ! Determinant equal to 1: proper rotation ! IF (abs(det-1.d0) < eps) THEN ! ! check if an eigenvalue is equal to -1.d0 (180 rotation) ! det1=(s(1,1)+1.d0)*((s(2,2)+1.d0)*(s(3,3)+1.d0)-s(3,2)*s(2,3))- & s(1,2)* (s(2,1)* (s(3,3)+1.d0)-s(3,1)*s(2,3))+ & s(1,3)* (s(2,1)*s(3,2) -s(3,1)*(s(2,2)+1.d0)) IF (abs(det1) < eps) THEN tipo_sym=4 ! 180 proper rotation ELSE tipo_sym=3 ! proper rotation <> 180 ENDIF RETURN ENDIF ! ! Determinant equal to -1: mirror symmetry or improper rotation ! IF (abs(det+1.d0) < eps) THEN ! ! check if an eigenvalue is equal to 1.d0 (mirror symmetry) ! det1=(s(1,1)-1.d0)*((s(2,2)-1.d0)*(s(3,3)-1.d0)-s(3,2)*s(2,3))- & s(1,2)* (s(2,1)* (s(3,3)-1.d0)-s(3,1)*s(2,3))+ & s(1,3)* (s(2,1)*s(3,2) -s(3,1)*(s(2,2)-1.d0)) IF (abs(det1) < eps) THEN tipo_sym=5 ! mirror symmetry ELSE tipo_sym=6 ! improper rotation ENDIF RETURN ELSE call errore('tipo_sym','symmetry not recognized',1) ENDIF END FUNCTION tipo_sym ! !-------------------------------------------------------------------------- FUNCTION laue_class(code) !-------------------------------------------------------------------------- ! This function receives a code of the point group and provides the ! code of the point group that defines the Laue class (that is the point ! group obtained by multipling by inversion). ! The order is the following: ! ! 1 "C_1 " -> 2 11 "D_6 " -> 23 21 "D_3h" -> 23 31 "O " -> 32 ! 2 "C_i " -> 2 12 "C_2v" -> 20 22 "D_4h" -> 22 32 "O_h " -> 32 ! 3 "C_s " -> 16 13 "C_3v" -> 25 23 "D_6h" -> 23 ! 4 "C_2 " -> 16 14 "C_4v" -> 22 24 "D_2d" -> 22 ! 5 "C_3 " -> 27 15 "C_6v" -> 23 25 "D_3d" -> 25 ! 6 "C_4 " -> 18 16 "C_2h" -> 16 26 "S_4 " -> 18 ! 7 "C_6 " -> 19 17 "C_3h" -> 19 27 "S_6 " -> 27 ! 8 "D_2 " -> 20 18 "C_4h" -> 18 28 "T " -> 29 ! 9 "D_3 " -> 25 19 "C_6h" -> 19 29 "T_h " -> 29 ! 10 "D_4 " -> 22 20 "D_2h" -> 20 30 "T_d " -> 32 ! IMPLICIT NONE INTEGER :: code INTEGER :: laue_class INTEGER :: laue(32) DATA laue / 2, 2, 16, 16, 27, 18, 19, 20, 25, 22, & 23, 20, 25, 22, 23, 16, 19, 18, 19, 20, & 23, 22, 23, 22, 25, 18, 27, 29, 29, 32, & 32, 32 / IF (code < 1 .OR. code > 32 ) CALL errore('laue_class','code is out of range',1) laue_class=laue(code) RETURN END FUNCTION laue_class espresso-5.1/PW/src/orbm_kubo.f900000644000175000017500000004736712341373025014737 0ustar mbamba!==============================================================================! ! ! Copyright (C) 2001-2010 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! this routine is used to calculate the Kubo terms ! of orbital magnetization (in SI, i.e., A/m) ! written by Andrei Malashevich at UC Berkeley ! For details see ! New. J. Phys. 12, 053032 (2010) ! Many parts from bp_c_phase.f90 and ! h_epsi_her_set.f90 are reused ! NOTES: ! ! In order to compute Kubo terms one must first perform a usual SCF ! calculation, then NSCF calculation with flag ! lorbm=.true. (in the "control" section) using a UNIFORM grid ! of k-points. ! !==============================================================================! SUBROUTINE orbm_kubo() !------------------------------------------------------------------------------! ! --- Make use of the module with common information --- USE ener, ONLY : ef USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files, ONLY : iunwfc, nwordwfc USE buffers, ONLY : get_buffer USE noncollin_module, ONLY : noncolin, npol USE wvfct, ONLY : npwx, nbnd,ecutwfc, g2kin,npw_k=>npw,igk_k=>igk,et USE lsda_mod, ONLY : nspin USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm,ngm_g,g,gcutm,ig_l2g USE start_k, ONLY : nk1, nk2, nk3 USE klist, ONLY : nks,xk USE cell_base, ONLY : tpiba,tpiba2,gpar=>bg,at,alat,omega USE mp, ONLY : mp_sum,mp_barrier USE constants, ONLY : pi, tpi,rytoev USE bp, ONLY : lelfield,mapgp_global,mapgm_global,nx_el USE becmod, ONLY : bec_type, becp, calbec, & allocate_bec_type, deallocate_bec_type USE uspp, ONLY : nkb,vkb USE scf, ONLY : vrs, vltot, v, kedtau USE gvecs, ONLY : doublegrid USE mp_pools, ONLY : intra_pool_comm USE mp_world, ONLY : world_comm ! --- Avoid implicit definitions --- IMPLICIT NONE COMPLEX(DP), ALLOCATABLE :: evc_k(:,:)!for wavefunctios at k COMPLEX(DP), ALLOCATABLE :: evc_kp(:,:)!for wavefunctios at k' COMPLEX(DP), ALLOCATABLE :: aux_k(:) COMPLEX(DP), ALLOCATABLE :: aux_kp(:) COMPLEX(DP), ALLOCATABLE :: aux_kp_g(:) COMPLEX(DP), ALLOCATABLE :: evcpm(:,:,:) COMPLEX(DP), ALLOCATABLE :: H_evc(:,:) COMPLEX(DP), ALLOCATABLE :: temp(:),temp2(:) COMPLEX(DP) :: store1, store2 COMPLEX(DP) :: sca ! map g-space global to g-space k-point dependent INTEGER, ALLOCATABLE :: ln(:,:,:) INTEGER, ALLOCATABLE :: map_g(:) INTEGER :: ik INTEGER :: i,j,k,n,np ! Numbering of k-points ! np (n') is used in the loop over neigboring k-points INTEGER :: signum INTEGER :: tmp INTEGER :: ipol ! from 1 to npol INTEGER :: istart, iend ! ranges of some arrays LOGICAL :: inbz(6) ! if true k' is in BZ REAL(DP) :: gtr(3) ! G+G_0 INTEGER :: npw_kp INTEGER :: igk_kp(npwx) INTEGER :: nb, mb INTEGER :: ig INTEGER :: n1,n2,n3,ng COMPLEX(DP) :: mat(nbnd,nbnd) REAL(DP) :: eps ! small number ! For matrix inversion (zgedi) INTEGER :: ivpt(nbnd) INTEGER :: info COMPLEX(DP) :: cdet(2) COMPLEX(DP) :: cdwork(nbnd) REAL(DP) :: mlc(3),mic(3) ! orbital magnetization (LC and IC terms) COMPLEX(DP) :: zdotc INTEGER :: kpt_arr(3) ! k-point mesh INTEGER :: eps_i(3) ! these play role of the antisymmetric tensor e_ijk INTEGER :: eps_j(3) INTEGER :: sig, sigp INTEGER :: l REAL(DP) :: pref ! prefactor for MAGNETIZATION in SI REAL(DP) :: pref_bm ! prefactor for MAGNETIC MOMENT per cell in Bohr magnetons REAL(DP) :: pbm ! prefactor for MAGNETIC MOMENT per cell in Bohr magnetons REAL(DP), PARAMETER :: el_si=1.60217646E-19 ! electron charge (SI) REAL(DP), PARAMETER :: hbar_si=1.054571628E-34 ! hbar (SI) REAL(DP), PARAMETER :: bohr_si=5.2917720859E-11 ! Bohr radius in m REAL(DP), PARAMETER :: ry_si=2.179871993E-18 ! Rydberg in J (energy) REAL(DP), PARAMETER :: ry_ev=13.6056923 ! Rydberg in eV (energy) LOGICAL :: store_flag INTEGER :: nbr(6) ! map for 6 neighboring k-points ! Allocate necessary arrays ALLOCATE(evc_k(npwx*npol,nbnd)) ALLOCATE(evc_kp(npwx*npol,nbnd)) ALLOCATE(map_g(npwx)) ALLOCATE(ln(-dfftp%nr1:dfftp%nr1,-dfftp%nr2:dfftp%nr2,-dfftp%nr3:dfftp%nr3) ) ALLOCATE(aux_k(ngm*npol)) ALLOCATE(aux_kp(ngm*npol)) ALLOCATE(evcpm(npol*npwx,nbnd,6)) ALLOCATE(H_evc(npol*npwx,nbnd)) ALLOCATE(temp(ngm)) CALL set_vrs( vrs, vltot, v%of_r, kedtau, v%kin_r, dfftp%nnr, nspin, doublegrid ) CALL allocate_bec_type ( nkb, nbnd, becp ) ! Initializations ! Define small number eps=1.0d-6 mlc=0.0d0 mic=0.0d0 kpt_arr(1)=nk1 kpt_arr(2)=nk2 kpt_arr(3)=nk3 eps_i(1)=2 eps_i(2)=3 eps_i(3)=1 eps_j(1)=3 eps_j(2)=1 eps_j(3)=2 ! convert energy from Ry to J ! alat is in a.u. (Bohr) need to convert to SI pref=ry_si*el_si/hbar_si/4.0_dp/(tpi**3)*tpiba/bohr_si ! magnetic moment in Bohr magnetons ! need to multiply by unit-cell volume omega ! convert Ry to Ha by dividing by 2.0 ! Bohr magneton in a.u. is 1/2 ! so these two factors cancel out ! e=hbar=1 so forget about it ! the rest is in atomic units already pref_bm=omega/4.0_dp/(tpi**3)*tpiba pbm=pref_bm/pref !--- Recalculate FFT correspondence (see ggen.f90) --- ln=0 DO ng=1,ngm n1=nint(g(1,ng)*at(1,1)+g(2,ng)*at(2,1)+g(3,ng)*at(3,1)) n2=nint(g(1,ng)*at(1,2)+g(2,ng)*at(2,2)+g(3,ng)*at(3,2)) n3=nint(g(1,ng)*at(1,3)+g(2,ng)*at(2,3)+g(3,ng)*at(3,3)) ln(n1,n2,n3) = ng END DO DO i=1,nk1 ! x DO j=1,nk2 ! y DO k=1,nk3 ! z ! Consecutive ordering of k-points n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 ! Read wavefunction at k CALL get_buffer ( evc_k, nwordwfc, iunwfc, n ) CALL gk_sort(xk(1,n),ngm,g,ecutwfc/tpiba2, & npw_k,igk_k,g2kin) CALL init_us_2(npw_k,igk_k,xk(1,n),vkb) evcpm=(0.0d0,0.0d0) !====================================================! !=== Compute dual vectors ===========================! !====================================================! inbz=.false. ! Find indices of neighboring k-points ! Current point ! n = (k-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 ! ! k'=k-dx IF(i>1) THEN !np = (k-1) + (j-1)*nk3 + (i-2)*nk2*nk3 + 1 nbr(1)=n-nk2*nk3 inbz(1)=.true. ELSE !np = (k-1) + (j-1)*nk3 + (nk1-1)*nk2*nk3 + 1 nbr(1)=n+(nk1-1)*nk2*nk3 END IF ! k'=k+dx IF(i1) THEN !np = (k-1) + (j-2)*nk3 + (i-1)*nk2*nk3 + 1 nbr(3)=n-nk3 inbz(3)=.true. ELSE !np = (k-1) + (nk2-1)*nk3 + (nk1-1)*nk2*nk3 + 1 nbr(3)=n+(nk2-1)*nk3 END IF ! k'=k+dy IF(j1) THEN !np = (k-2) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 nbr(5)=n-1 inbz(5)=.true. ELSE !np = (nk3-1) + (j-1)*nk3 + (i-1)*nk2*nk3 + 1 nbr(5)=n+(nk3-1) END IF ! k'=k+dz IF(k4)) THEN ! regular treatment, same for serial and parallel map_g=0 DO ig=1,npw_kp !--- If k'=k+G_o, the relation psi_k+G_o (G-G_o) --- !--- = psi_k(G) is used, gpar=G_o, gtr = G-G_o --- !--- or psi_k'(G)=psi_k(G+G_0) ! np=1,3,5 sign "+" ! np=2,4,6 sign "-" (use signum for this purpose) ! np=1,2 gpar(:,1) ! np=3,4 gpar(:,2) ! np=5,6 gpar(:,3) ! (use (np+1)/2 for this purpose, note integer arithmetic) gtr(1)=g(1,igk_kp(ig)) - DBLE(signum) * gpar(1,(np+1)/2) gtr(2)=g(2,igk_kp(ig)) - DBLE(signum) * gpar(2,(np+1)/2) gtr(3)=g(3,igk_kp(ig)) - DBLE(signum) * gpar(3,(np+1)/2) !--- Find crystal coordinates of gtr, n1,n2,n3 --- !--- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1)+gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2)+gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3)+gtr(3)*at(3,3)) ng=ln(n1,n2,n3) IF ((ABS(g(1,ng)-gtr(1)) > eps) .OR. & (ABS(g(2,ng)-gtr(2)) > eps) .OR. & (ABS(g(3,ng)-gtr(3)) > eps)) THEN WRITE(6,*) ' error hepsiher: translated G=', & gtr(1),gtr(2),gtr(3), & ' with crystal coordinates',n1,n2,n3, & ' corresponds to ng=',ng,' but G(ng)=', & g(1,ng),g(2,ng),g(3,ng) WRITE(6,*) ' probably because G_par is NOT', & ' a reciprocal lattice vector ' !WRITE(6,*) 'DBGG: n,np=',n,np STOP ENDIF ELSE WRITE(6,*) ' |gtr| > gcutm for gtr=', & gtr(1),gtr(2),gtr(3) STOP END IF map_g(ig)=ng END DO END IF ! regular treatment DO mb=1,nbnd IF((ngm==ngm_g).OR.(np>4)) THEN ! regular treatment, same for serial and parallel DO nb=1,nbnd aux_k=(0.d0,0.d0) aux_kp=(0.d0,0.d0) DO ipol=1,npol istart = (ipol-1)*npwx+1 iend = istart+npw_k-1 aux_k(igk_k(1:npw_k)+ngm*(ipol-1))=evc_k(istart:iend,nb) iend = istart+npw_kp-1 aux_kp(map_g(1:npw_kp)+ngm*(ipol-1))=evc_kp(istart:iend,mb) END DO mat(nb,mb) = zdotc(ngm*npol,aux_k,1,aux_kp,1) END DO ELSE ! Special parallel treatment ! allocate global array ALLOCATE(aux_kp_g(ngm_g*npol)) aux_kp_g=(0.0d0,0.0d0) DO ipol=1,npol istart = (ipol-1)*npwx+1 iend = istart+npw_kp-1 IF(np==1) THEN aux_kp_g(mapgp_global(ig_l2g(igk_kp(1:npw_kp)),1)+ngm_g*(ipol-1))= & evc_kp(istart:iend,mb) END IF IF(np==2) THEN aux_kp_g(mapgm_global(ig_l2g(igk_kp(1:npw_kp)),1)+ngm_g*(ipol-1))= & evc_kp(istart:iend,mb) END IF IF(np==3) THEN aux_kp_g(mapgp_global(ig_l2g(igk_kp(1:npw_kp)),2)+ngm_g*(ipol-1))= & evc_kp(istart:iend,mb) END IF IF(np==4) THEN aux_kp_g(mapgm_global(ig_l2g(igk_kp(1:npw_kp)),2)+ngm_g*(ipol-1))= & evc_kp(istart:iend,mb) END IF END DO CALL mp_sum(aux_kp_g(:),world_comm) DO nb=1,nbnd sca=(0.0d0,0.0d0) DO ipol=1,npol DO ig=1,npw_k sca=sca+CONJG(evc_k(ig+npwx*(ipol-1),nb))*& aux_kp_g(ig_l2g(igk_k(ig))+ngm_g*(ipol-1)) END DO END DO mat(nb,mb)=sca END DO DEALLOCATE(aux_kp_g) END IF ! parallel treatment END DO CALL mp_sum( mat, intra_pool_comm ) END IF !--- Calculate matrix inverse --- CALL zgefa(mat,nbnd,nbnd,ivpt,info) CALL errore('orbm_kubo','error in zgefa',abs(info)) CALL zgedi(mat,nbnd,nbnd,ivpt,cdet,cdwork,1) DO nb=1,nbnd DO ipol=1,npol temp=(0.0d0,0.0d0) istart = (ipol-1)*npwx+1 iend = istart+npw_kp-1 ! map_g is needed only if kp is outside of BZ ! otherwise use igk_kp IF (inbz(np)) THEN temp(igk_kp(1:npw_kp))=evc_kp(istart:iend,nb) ELSE IF((ngm==ngm_g).OR.(np>4)) THEN ! regular treatment temp(map_g(1:npw_kp))=evc_kp(istart:iend,nb) ELSE ! map_g is not defined ALLOCATE(temp2(ngm_g)) temp2=(0.0d0,0.0d0) !playing role of temp above IF(np==1) THEN temp2(mapgp_global(ig_l2g(igk_kp(1:npw_kp)),1))=& evc_kp(istart:iend,nb) END IF IF(np==2) THEN temp2(mapgm_global(ig_l2g(igk_kp(1:npw_kp)),1))=& evc_kp(istart:iend,nb) END IF IF(np==3) THEN temp2(mapgp_global(ig_l2g(igk_kp(1:npw_kp)),2))=& evc_kp(istart:iend,nb) END IF IF(np==4) THEN temp2(mapgm_global(ig_l2g(igk_kp(1:npw_kp)),2))=& evc_kp(istart:iend,nb) END IF CALL mp_sum(temp2(:),world_comm) END IF END IF iend = istart+npw_k-1 DO mb=1,nbnd IF(inbz(np).OR.(np>4).OR.(ngm==ngm_g)) THEN evcpm(istart:iend,mb,np)=evcpm(istart:iend,mb,np)+& mat(nb,mb)*temp(igk_k(1:npw_k)) ELSE ! special parallel case evcpm(istart:iend,mb,np)=evcpm(istart:iend,mb,np)+& mat(nb,mb)*temp2(ig_l2g(igk_k(1:npw_k))) END IF END DO IF(ALLOCATED(temp2)) DEALLOCATE(temp2) END DO END DO END DO ! loop over neighbors !====================================================! !=== Compute orbital magnetization ==================! !====================================================! CALL gk_sort(xk(1,nbr(1)),ngm,g,ecutwfc/tpiba2, & npw_kp,igk_kp,g2kin) ! gk_sort overwrites the kinetic energy - recalculate at ik g2kin(1:npw_k)=( ( xk(1,n) + g(1,igk_k(1:npw_k)) )**2 + & ( xk(2,n) + g(2,igk_k(1:npw_k)) )**2 + & ( xk(3,n) + g(3,igk_k(1:npw_k)) )**2 ) * tpiba2 ! these 2 lines are equivalent to the kinetic energy calculation above ! CALL gk_sort(xk(1,n), ngm, g, ecutwfc/tpiba2, npw_k, igk_k, g2kin) ! g2kin(1:npw) = g2kin(1:npw) * tpiba2 ! LC TERM DO l=1,3 ! loop over gpar's DO sig=0,1 ! i -/+ DO sigp=0,1 ! j -/+ IF(sig==sigp) THEN signum=1 ELSE signum=-1 END IF ! H | u_{nk j sigp} > H_evc=(0.0d0,0.0d0) store_flag=lelfield lelfield=.false. CALL h_psi(npwx, npw_k, nbnd, evcpm(:,:,2*eps_j(l)+sigp-1), H_evc) lelfield=store_flag DO nb=1,nbnd ! loop over bands mlc=mlc+DBLE(signum)*pref*gpar(:,l)/kpt_arr(l)* & AIMAG( zdotc(npwx*npol,evcpm(:,nb,2*eps_i(l)+sig-1),1,H_evc(:,nb),1) ) END DO END DO END DO END DO ! IC TERM DO l=1,3 ! loop over gpar's DO sig=0,1 ! i +/- DO sigp=0,1 ! j +/- IF(sig==sigp) THEN signum=1 ELSE signum=-1 END IF H_evc=(0.0d0,0.0d0) store_flag=lelfield lelfield=.false. CALL h_psi(npwx, npw_k, nbnd, evc_k, H_evc) lelfield=store_flag DO nb=1,nbnd ! loop over bands DO mb=1,nbnd ! loop over bands store1=zdotc(npw_k,evc_k(1:npw_k,nb),1,H_evc(1:npw_k,mb),1) store2=zdotc(npw_k,evcpm(1:npw_k,mb,2*eps_i(l)+sig-1),1, & evcpm(1:npw_k,nb,2*eps_j(l)+sigp-1),1) IF(noncolin) THEN store1=store1+zdotc(npw_k,evc_k(npwx+1:npwx+npw_k,nb),1,H_evc(npwx+1:npwx+npw_k,mb),1) store2=store2+zdotc(npw_k,evcpm(npwx+1:npwx+npw_k,mb,2*eps_i(l)+sig-1),1, & evcpm(npwx+1:npwx+npw_k,nb,2*eps_j(l)+sigp-1),1) END IF CALL mp_sum(store1,world_comm) CALL mp_sum(store2,world_comm) mic=mic+DBLE(signum)*pref*gpar(:,l)/kpt_arr(l)*AIMAG(store1*store2) END DO END DO END DO END DO END DO END DO ! loop over k-points END DO END DO CALL mp_sum(mlc,world_comm) WRITE (stdout,*) ' ' WRITE (stdout,*) '==============================================' WRITE (stdout,*) '= ORBITAL MAGNETIZATION (KUBO TERMS) =' WRITE (stdout,*) '==============================================' WRITE (stdout,*) ' ' WRITE (stdout,*) '= Local circulation term =' WRITE (stdout,*) 'M_LC = ', mlc(1), mlc(2), mlc(3),' (A/m)' WRITE (stdout,*) 'M_LC = ', mlc(1)*pbm, mlc(2)*pbm, mlc(3)*pbm,' (Bohr mag/cell)' WRITE (stdout,*) ' ' WRITE (stdout,*) '= Itinerant circulation term =' WRITE (stdout,*) 'M_IC = ', mic(1), mic(2), mic(3),' (A/m)' WRITE (stdout,*) 'M_IC = ', mic(1)*pbm, mic(2)*pbm, mic(3)*pbm,' (Bohr mag/cell)' WRITE (stdout,*) ' ' WRITE (stdout,*) '==============================================' WRITE (stdout,*) ' ' ! Deallocate arrays CALL deallocate_bec_type ( becp ) DEALLOCATE(evc_k) DEALLOCATE(evc_kp) DEALLOCATE(aux_k) DEALLOCATE(aux_kp) DEALLOCATE(ln) DEALLOCATE(map_g) DEALLOCATE(evcpm) DEALLOCATE(H_evc) DEALLOCATE(temp) END SUBROUTINE orbm_kubo !==============================================================================! espresso-5.1/PW/src/forces_bp_efield.f900000644000175000017500000011272612341373025016222 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE forces_ion_efield (forces_bp, pdir, e_field) !calculate ionic contribution , which is in the !a_gdir direction USE kinds, ONLY : dp USE cell_base, ONLY : at USE ions_base, ONLY : nat,zv, ityp implicit none INTEGER, INTENT(in) :: pdir!direction on which the polarization is calculated REAL(DP), INTENT(in) :: e_field!intensity of the field REAL(DP), INTENT(inout) :: forces_bp(3,nat)!atomic forces to be update INTEGER i REAL(DP) :: e!electronic charge (Ry. a.u.) REAL(DP) :: a(3),sca e=dsqrt(2.d0) do i=1,nat forces_bp(pdir,i)=forces_bp(pdir,i)+ e*e_field*zv(ityp(i)) enddo return END SUBROUTINE forces_ion_efield SUBROUTINE forces_us_efield(forces_bp, pdir, e_field) !----------------------------------------------------------------------! !it calculates the US correction to the atomic forces !due to Berry's phase electric field ! --- Make use of the module with common information --- USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files, ONLY : iunwfc, nwordwfc USE buffers, ONLY : get_buffer USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv, atm USE cell_base, ONLY : at, alat, tpiba, omega, tpiba2 USE constants, ONLY : pi, tpi USE gvect, ONLY : ngm, g, gcutm, ngm_g,ngmx USE fft_base, ONLY : dfftp USE uspp, ONLY : nkb, vkb, okvan USE uspp_param, ONLY : upf, lmaxq, nbetam, nh, nhm USE lsda_mod, ONLY : nspin USE klist, ONLY : nelec, degauss, nks, xk, wk USE wvfct, ONLY : npwx, npw, nbnd, ecutwfc USE wavefunctions_module, ONLY : evc USE bp, ONLY : nppstr_3d, mapgm_global, nx_el,mapg_owner USE fixed_occ USE gvect, ONLY : ig_l2g USE mp, ONLY : mp_sum,mp_barrier USE mp_world, ONLY : world_comm,mpime,nproc USE mp_bands, ONLY : intra_bgrp_comm USE becmod, ONLY : bec_type, becp, calbec,allocate_bec_type, deallocate_bec_type USE noncollin_module, ONLY : noncolin, npol USE spin_orb, ONLY: lspinorb USE mytime USE parallel_include ! --- Avoid implicit definitions --- IMPLICIT NONE REAL(DP), INTENT(inout) :: forces_bp(3,nat)!atomic forces to be update INTEGER, INTENT(in) :: pdir!direction of electric field REAL(DP), INTENT(in) :: e_field!initensity of the field ! --- Internal definitions --- INTEGER :: i INTEGER :: igk1(npwx) INTEGER :: igk0(npwx) INTEGER :: ig INTEGER :: info INTEGER :: is INTEGER :: istring INTEGER :: iv INTEGER :: ivpt(nbnd) INTEGER :: j INTEGER :: jkb INTEGER :: jkb_bp INTEGER :: jkb1 INTEGER :: jv INTEGER :: kort INTEGER :: kpar INTEGER :: kpoint INTEGER :: kstart INTEGER :: mb INTEGER :: mk1 INTEGER :: mk2 INTEGER :: mk3 INTEGER , ALLOCATABLE :: mod_elec(:) INTEGER , ALLOCATABLE :: ln(:,:,:) INTEGER :: n1 INTEGER :: n2 INTEGER :: n3 INTEGER :: na INTEGER :: nb INTEGER :: ng INTEGER :: nhjkb INTEGER :: nhjkbm INTEGER :: nkbtona(nkb) INTEGER :: nkbtonh(nkb) INTEGER :: nkort INTEGER :: np INTEGER :: npw1 INTEGER :: npw0 INTEGER :: nstring INTEGER :: nt REAL(dp) :: dk(3) REAL(dp) :: dkmod REAL(dp) :: el_loc REAL(dp) :: eps REAL(dp) :: fac REAL(dp) :: g2kin_bp(npwx) REAL(dp) :: gpar(3) REAL(dp) :: gtr(3) REAL(dp) :: gvec REAL(dp), ALLOCATABLE :: loc_k(:) REAL(dp), ALLOCATABLE :: pdl_elec(:) REAL(dp), ALLOCATABLE :: phik(:) REAL(dp) :: qrad_dk(nbetam,nbetam,lmaxq,ntyp) REAL(dp) :: weight REAL(dp) :: pola, pola_ion REAL(dp), ALLOCATABLE :: wstring(:) REAL(dp) :: ylm_dk(lmaxq*lmaxq) REAL(dp) :: zeta_mod COMPLEX(dp), ALLOCATABLE :: aux(:),aux_2(:) COMPLEX(dp), ALLOCATABLE :: aux0(:),aux0_2(:) COMPLEX(dp) , ALLOCATABLE :: cphik(:) COMPLEX(dp) :: det COMPLEX(dp), ALLOCATABLE :: mat(:,:) COMPLEX(dp) :: cdet(2) COMPLEX(dp) :: cdwork(nbnd) COMPLEX(dp) :: pref COMPLEX(dp) :: q_dk(nhm,nhm,ntyp) COMPLEX(dp) :: struc(nat),struc_r(3,nat) COMPLEX(dp) :: zdotc COMPLEX(dp) :: zeta COMPLEX(dp), ALLOCATABLE :: psi(:,:) COMPLEX(dp), ALLOCATABLE :: psi1(:,:) COMPLEX(dp) :: zeta_loc LOGICAL, ALLOCATABLE :: l_cal(:) ! flag for occupied/empty bands INTEGER, ALLOCATABLE :: map_g(:) REAL(dp) :: dkfact COMPLEX(dp) :: zeta_tot COMPLEX(kind=DP) :: sca COMPLEX(kind=DP), ALLOCATABLE :: aux_g(:),aux_g_mpi(:,:),aux_proc(:,:),aux_rcv(:,:) COMPLEX(DP), ALLOCATABLE :: dbecp0(:,:,:), dbecp_bp(:,:,:),vkb1(:,:) INTEGER :: ipol COMPLEX(DP) :: forces_tmp(3,nat) REAL(DP) :: fact TYPE(bec_type) :: becp0, becp_bp INTEGER :: nspin_eff COMPLEX(DP), ALLOCATABLE :: q_dk_so(:,:,:,:) COMPLEX(kind=DP), ALLOCATABLE :: fbmata_1(:,:,:),fbmatb_1(:,:,:,:) COMPLEX(kind=DP), ALLOCATABLE :: fbmata_2(:,:,:,:),fbmatb_2(:,:,:,:,:) COMPLEX(kind=DP), ALLOCATABLE :: fbmata_3(:,:,:),fbmatb_3(:,:,:,:,:) COMPLEX(kind=DP), ALLOCATABLE :: dbecp0_ord(:,:,:,:), dbecp_bp_ord(:,:,:,:) INTEGER :: igg,max_aux,max_aux_proc,iproc INTEGER, ALLOCATABLE :: aux_g_mpi_ind(:,:),ind_g(:),aux_proc_ind(:,:),aux_rcv_ind(:,:) INTEGER :: req, ierr ! ------------------------------------------------------------------------- ! ! INITIALIZATIONS ! ------------------------------------------------------------------------- ! allocate(ind_g(nproc)) nspin_eff=nspin if(noncolin) then nspin_eff=1 endif ALLOCATE (psi1(npwx*npol,nbnd)) ALLOCATE (psi(npwx*npol,nbnd)) ALLOCATE (aux(ngm),aux_2(ngm)) ALLOCATE (aux0(ngm),aux0_2(ngm)) ALLOCATE (map_g(npwx)) ALLOCATE (mat(nbnd,nbnd)) ALLOCATE (dbecp0( nkb, nbnd*npol, 3 ) ,dbecp_bp( nkb, nbnd*npol, 3 )) ALLOCATE (dbecp0_ord( nkb,npol,3, nbnd) ,dbecp_bp_ord( nkb, npol,3,nbnd)) ALLOCATE( vkb1( npwx, nkb ) ) ALLOCATE( l_cal(nbnd) ) if(okvan) then CALL allocate_bec_type (nkb,nbnd,becp0) CALL allocate_bec_type (nkb,nbnd,becp_bp) IF (lspinorb) ALLOCATE(q_dk_so(nhm,nhm,4,ntyp)) endif pola=0.d0 !set to 0 electronic polarization zeta_tot=(1.d0,0.d0) ! --- Check that we are working with an insulator with no empty bands --- IF ( degauss > 0.0_dp ) CALL errore('forces_us_efield', & 'Polarization only for insulators and no empty bands',1) ! --- Define a small number --- eps=1.0E-6_dp ! --- Recalculate FFT correspondence (see ggen.f90) --- ALLOCATE (ln (-dfftp%nr1:dfftp%nr1, -dfftp%nr2:dfftp%nr2, -dfftp%nr3:dfftp%nr3) ) ln=0 DO ng=1,ngm mk1=nint(g(1,ng)*at(1,1)+g(2,ng)*at(2,1)+g(3,ng)*at(3,1)) mk2=nint(g(1,ng)*at(1,2)+g(2,ng)*at(2,2)+g(3,ng)*at(3,2)) mk3=nint(g(1,ng)*at(1,3)+g(2,ng)*at(2,3)+g(3,ng)*at(3,3)) ln(mk1,mk2,mk3) = ng END DO call mp_sum(ln,intra_bgrp_comm) if (okvan) then ! --- Initialize arrays --- jkb_bp=0 DO nt=1,ntyp DO na=1,nat IF (ityp(na).eq.nt) THEN DO i=1, nh(nt) jkb_bp=jkb_bp+1 nkbtona(jkb_bp) = na nkbtonh(jkb_bp) = i END DO END IF END DO END DO endif ! --- Get the number of strings --- nstring=nks/nppstr_3d(pdir) nkort=nstring/(nspin_eff) ! --- Allocate memory for arrays --- ALLOCATE(phik(nstring)) ALLOCATE(loc_k(nstring)) ALLOCATE(cphik(nstring)) ALLOCATE(wstring(nstring)) ALLOCATE(pdl_elec(nstring)) ALLOCATE(mod_elec(nstring)) call flush_unit(stdout) ! ------------------------------------------------------------------------- ! ! electronic polarization: set values for k-points strings ! ! ------------------------------------------------------------------------- ! ! --- Find vector along strings --- if(nppstr_3d(pdir) .ne. 1) then gpar(1)=(xk(1,nx_el(nppstr_3d(pdir),pdir))-xk(1,nx_el(1,pdir)))*& &DBLE(nppstr_3d(pdir))/DBLE(nppstr_3d(pdir)-1) gpar(2)=(xk(2,nx_el(nppstr_3d(pdir),pdir))-xk(2,nx_el(1,pdir)))*& &DBLE(nppstr_3d(pdir))/DBLE(nppstr_3d(pdir)-1) gpar(3)=(xk(3,nx_el(nppstr_3d(pdir),pdir))-xk(3,nx_el(1,pdir)))*& &DBLE(nppstr_3d(pdir))/DBLE(nppstr_3d(pdir)-1) gvec=dsqrt(gpar(1)**2+gpar(2)**2+gpar(3)**2)*tpiba else gpar(1)=0.d0 gpar(2)=0.d0 gpar(3)=0.d0 gpar(pdir)=1.d0/at(pdir,pdir)! gvec=tpiba/sqrt(at(pdir,1)**2.d0+at(pdir,2)**2.d0+at(pdir,3)**2.d0) endif ! --- Find vector between consecutive points in strings --- if(nppstr_3d(pdir).ne.1) then ! orthorhombic cell dk(1)=xk(1,nx_el(2,pdir))-xk(1,nx_el(1,pdir)) dk(2)=xk(2,nx_el(2,pdir))-xk(2,nx_el(1,pdir)) dk(3)=xk(3,nx_el(2,pdir))-xk(3,nx_el(1,pdir)) dkmod=SQRT(dk(1)**2+dk(2)**2+dk(3)**2)*tpiba else ! Gamma point case, only cubic cell for now dk(1)=0.d0 dk(2)=0.d0 dk(3)=0.d0 dk(pdir)=1.d0/at(pdir,pdir) dkmod=tpiba/sqrt(at(pdir,1)**2.d0+at(pdir,2)**2.d0+at(pdir,3)**2.d0) endif ! ------------------------------------------------------------------------- ! ! electronic polarization: weight strings ! ! ------------------------------------------------------------------------- ! ! --- Calculate string weights, normalizing to 1 (no spin) or 1+1 (spin) --- DO is=1,nspin_eff weight=0.0_dp DO kort=1,nkort istring=kort+(is-1)*nkort wstring(istring)=wk(nppstr_3d(pdir)*istring) weight=weight+wstring(istring) END DO DO kort=1,nkort istring=kort+(is-1)*nkort wstring(istring)=wstring(istring)/weight END DO END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: structure factor ! ! ------------------------------------------------------------------------- ! ! --- Calculate structure factor e^{-i dk*R} --- DO na=1,nat fac=(dk(1)*tau(1,na)+dk(2)*tau(2,na)+dk(3)*tau(3,na))*tpi struc(na)=CMPLX(cos(fac),-sin(fac),kind=DP) END DO ! Calculate derivatives of structure factors do na=1,nat do ipol=1,3 struc_r(ipol,na)=struc(na)*CMPLX(0.d0,-1.d0, kind=dp)*dk(ipol) enddo enddo ! ------------------------------------------------------------------------- ! ! electronic polarization: form factor ! ! ------------------------------------------------------------------------- ! if(okvan) then ! --- Calculate Bessel transform of Q_ij(|r|) at dk [Q_ij^L(|r|)] --- CALL calc_btq(dkmod,qrad_dk,0) ! --- Calculate the q-space real spherical harmonics at dk [Y_LM] --- dkmod = dk(1)**2+dk(2)**2+dk(3)**2 CALL ylmr2(lmaxq*lmaxq, 1, dk, dkmod, ylm_dk) ! --- Form factor: 4 pi sum_LM c_ij^LM Y_LM(Omega) Q_ij^L(|r|) --- q_dk=(0.d0,0.d0) DO np =1, ntyp if( upf(np)%tvanp ) then DO iv = 1, nh(np) DO jv = iv, nh(np) call qvan3(iv,jv,np,pref,ylm_dk,qrad_dk) q_dk(iv,jv,np) = omega*pref q_dk(jv,iv,np) = omega*pref ENDDO ENDDO endif ENDDO IF (lspinorb) CALL transform_qq_so(q_dk,q_dk_so) endif !calculate factor call factor_a(pdir,at,dkfact) fact=dsqrt(2.d0)*e_field*dkfact if(nspin_eff==1.and. .not.noncolin) fact=fact*2.d0 ! ------------------------------------------------------------------------- ! ! electronic polarization: strings phases ! ! ------------------------------------------------------------------------- ! el_loc=0.d0 kpoint=0 zeta=(1.d0,0.d0) ! --- Start loop over spin --- DO is=1,nspin_eff ! l_cal(n) = .true./.false. if n-th state is occupied/empty DO nb = 1, nbnd IF ( nspin_eff == 2 .AND. tfixed_occ) THEN l_cal(nb) = ( f_inp(nb,is) /= 0.0_dp ) ELSE IF(noncolin) THEN l_cal(nb) = ( nb <= NINT ( nelec ) ) ELSE l_cal(nb) = ( nb <= NINT ( nelec/2.0_dp ) ) END IF ENDIF END DO ! --- Start loop over orthogonal k-points --- DO kort=1,nkort zeta_loc=(1.d0,0.d0) ! --- Index for this string --- istring=kort+(is-1)*nkort ! --- Initialize expectation value of the phase operator --- zeta_mod = 1.d0 ! --- Start loop over parallel k-points --- DO kpar = 1,nppstr_3d(pdir)+1 ! --- Set index of k-point --- kpoint = kpoint + 1 ! --- Calculate dot products between wavefunctions and betas --- IF (kpar /= 1 ) THEN ! --- Dot wavefunctions and betas for PREVIOUS k-point --- CALL gk_sort(xk(1,nx_el(kpoint-1,pdir)),ngm,g,ecutwfc/tpiba2, & npw0,igk0,g2kin_bp) CALL get_buffer (psi,nwordwfc,iunwfc,nx_el(kpoint-1,pdir)) if (okvan) then CALL init_us_2 (npw0,igk0,xk(1,nx_el(kpoint-1,pdir)),vkb) CALL calbec( npw0, vkb, psi, becp0) DO ipol = 1, 3 DO jkb = 1, nkb DO ig = 1, npw0 vkb1(ig,jkb) = vkb(ig,jkb)*(0.D0,-1.D0)*g(ipol,igk0(ig)) END DO END DO IF ( nkb > 0 ) & CALL ZGEMM( 'C', 'N', nkb, nbnd*npol, npw0, ( 1.D0, 0.D0 ), & vkb1, npwx, psi, npwx, ( 0.D0, 0.D0 ), & dbecp0(1,1,ipol), nkb ) call mp_sum(dbecp0(1:nkb,1:nbnd*npol,ipol),intra_bgrp_comm) ENDDO endif ! --- Dot wavefunctions and betas for CURRENT k-point --- IF (kpar /= (nppstr_3d(pdir)+1)) THEN CALL gk_sort(xk(1,nx_el(kpoint,pdir)),ngm,g,ecutwfc/tpiba2, & npw1,igk1,g2kin_bp) CALL get_buffer (psi1,nwordwfc,iunwfc,nx_el(kpoint,pdir)) if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(kpoint,pdir)),vkb) CALL calbec( npw1, vkb, psi1, becp_bp) DO ipol = 1, 3 DO jkb = 1, nkb DO ig = 1, npw1 vkb1(ig,jkb) = vkb(ig,jkb)*(0.D0,-1.D0)*g(ipol,igk1(ig)) END DO END DO IF ( nkb > 0 ) & CALL ZGEMM( 'C', 'N', nkb, nbnd*npol, npw1, ( 1.D0, 0.D0 ), & vkb1, npwx, psi1, npwx, ( 0.D0, 0.D0 ), & dbecp_bp(1,1,ipol), nkb ) call mp_sum(dbecp_bp(1:nkb,1:nbnd*npol,ipol),intra_bgrp_comm) ENDDO endif ELSE kstart = kpoint-(nppstr_3d(pdir)+1)+1 CALL gk_sort(xk(1,nx_el(kstart,pdir)),ngm,g,ecutwfc/tpiba2, & npw1,igk1,g2kin_bp) CALL get_buffer (psi1,nwordwfc,iunwfc,nx_el(kstart,pdir)) if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(kstart,pdir)),vkb) CALL calbec( npw1, vkb, psi1, becp_bp) DO ipol = 1, 3 DO jkb = 1, nkb DO ig = 1, npw1 vkb1(ig,jkb) = vkb(ig,jkb)*(0.D0,-1.D0)*g(ipol,igk1(ig)) END DO END DO IF ( nkb > 0 ) & CALL ZGEMM( 'C', 'N', nkb, nbnd*npol, npw1, ( 1.D0, 0.D0 ), & vkb1, npwx, psi1, npwx, ( 0.D0, 0.D0 ), & dbecp_bp(1,1,ipol), nkb ) call mp_sum(dbecp_bp(1:nkb,1:nbnd*npol,ipol),intra_bgrp_comm) ENDDO endif ENDIF ! --- Matrix elements calculation --- mat=(0.d0,0.d0) DO nb=1,nbnd aux=(0.d0,0.d0) aux0=(0.d0,0.d0) IF(noncolin) THEN aux_2=(0.d0,0.d0) aux0_2=(0.d0,0.d0) ENDIF DO ig=1,npw0 aux0(igk0(ig))=psi(ig,nb) END DO if(noncolin) then DO ig=1,npw0 aux0_2(igk0(ig))=psi(ig+npwx,nb) END DO endif IF (kpar /= (nppstr_3d(pdir)+1)) THEN DO mb=1,nbnd IF ( .NOT. l_cal(nb) .OR. .NOT. l_cal(mb) ) THEN IF ( nb == mb ) mat(nb,mb)=1.d0 ELSE do ig=1,npw1 aux(igk1(ig))=psi1(ig,mb) enddo IF(noncolin) THEN do ig=1,npw1 aux_2(igk1(ig))=psi1(ig+npwx,mb) enddo END IF mat(nb,mb) = zdotc(ngm,aux0,1,aux,1) if(noncolin) then mat(nb,mb) = mat(nb,mb) + zdotc(ngm,aux0_2,1,aux_2,1) endif call mp_sum( mat(nb,mb), intra_bgrp_comm ) END IF END DO END IF END DO IF (kpar == (nppstr_3d(pdir)+1) ) THEN ! allocate global array allocate(aux_g(ngm_g),aux_g_mpi(ngmx,nproc),aux_g_mpi_ind(ngmx,nproc)) do ipol=0,npol-1 do mb=1,nbnd aux_g_mpi=0.d0 aux_g_mpi_ind=0 ind_g=0 do ig=1,npw1 igg=mapgm_global(ig_l2g(igk1(ig)),pdir) ind_g(mapg_owner(1,igg))=ind_g(mapg_owner(1,igg))+1 aux_g_mpi(ind_g(mapg_owner(1,igg)),mapg_owner(1,igg))=psi1(ig+npwx*ipol,mb) aux_g_mpi_ind(ind_g(mapg_owner(1,igg)),mapg_owner(1,igg))=mapg_owner(2,igg) enddo max_aux=0 do iproc=1,nproc if(iproc/=mpime+1) then max_aux_proc=0 do ig=1,ngmx if(aux_g_mpi_ind(ig,iproc) > 0) then max_aux_proc=max_aux_proc+1 else exit endif enddo if(max_aux_proc>max_aux) max_aux=max_aux_proc endif enddo max_aux_proc=max_aux #if defined (__MPI) CALL MPI_ALLREDUCE( max_aux_proc,max_aux,1,MPI_INTEGER, MPI_MAX,intra_bgrp_comm, req,IERR ) #endif allocate(aux_proc(max_aux,nproc),aux_proc_ind(max_aux,nproc)) allocate(aux_rcv(max_aux,nproc),aux_rcv_ind(max_aux,nproc)) aux_proc=(0.d0,0.d0) aux_proc_ind=0 do iproc=1,nproc if(iproc/=mpime+1) then do ig=1,max_aux if(aux_g_mpi_ind(ig,iproc) > 0) then aux_proc(ig,iproc)=aux_g_mpi(ig,iproc) aux_proc_ind(ig,iproc)=aux_g_mpi_ind(ig,iproc) else exit end if enddo endif enddo #if defined (__MPI) CALL MPI_ALLTOALL( aux_proc, max_aux, MPI_DOUBLE_COMPLEX, & aux_rcv, max_aux, MPI_DOUBLE_COMPLEX, intra_bgrp_comm, ierr ) CALL MPI_ALLTOALL( aux_proc_ind, max_aux, MPI_INTEGER, & aux_rcv_ind, max_aux, MPI_INTEGER, intra_bgrp_comm, ierr ) #else aux_rcv(1:max_aux,1)=aux_proc(1:max_aux,1) aux_rcv_ind(1:max_aux,1)=aux_proc_ind(1:max_aux,1) #endif do nb=1,nbnd IF ( .NOT. l_cal(nb) .OR. .NOT. l_cal(mb) ) THEN IF ( nb == mb ) mat(nb,mb)=1.d0 ELSE aux=(0.d0,0.d0) aux0=(0.d0,0.d0) IF(noncolin) THEN aux_2=(0.d0,0.d0) aux0_2=(0.d0,0.d0) ENDIF DO ig=1,npw0 aux0(igk0(ig))=psi(ig,nb) END DO if(noncolin) then DO ig=1,npw0 aux0_2(igk0(ig))=psi(ig+npwx,nb) END DO endif sca=0.d0 do iproc=1,nproc if(iproc/=mpime+1) then do ig=1,max_aux if(aux_rcv_ind(ig,iproc)/=0) then if(aux_rcv_ind(ig,iproc)<0.or.aux_rcv_ind(ig,iproc)> ngm) then write(stdout,*) 'OH BOY', aux_rcv_ind(ig,iproc) else if(ipol==0) then sca=sca+conjg(aux0(aux_rcv_ind(ig,iproc)))*aux_rcv(ig,iproc) else sca=sca+conjg(aux0_2(aux_rcv_ind(ig,iproc)))*aux_rcv(ig,iproc) endif endif else exit endif enddo endif enddo do ig=1,ngmx if(aux_g_mpi_ind(ig,mpime+1)/=0) then if(aux_g_mpi_ind(ig,mpime+1)<0.or.aux_g_mpi_ind(ig,mpime+1)>ngm) then write(stdout,*) 'OH BOY',aux_g_mpi_ind(ig,mpime+1) else if(ipol==0) then sca=sca+conjg(aux0(aux_g_mpi_ind(ig,mpime+1)))*aux_g_mpi(ig,mpime+1) else sca=sca+conjg(aux0_2(aux_g_mpi_ind(ig,mpime+1)))*aux_g_mpi(ig,mpime+1) endif endif else exit endif enddo call mp_sum(sca,intra_bgrp_comm) mat(nb,mb)=mat(nb,mb)+sca endif enddo deallocate(aux_proc,aux_proc_ind) deallocate(aux_rcv,aux_rcv_ind) enddo enddo deallocate(aux_g,aux_g_mpi,aux_g_mpi_ind) ENDIF DO nb=1,nbnd do mb=1,nbnd IF ( l_cal(nb) .AND. l_cal(mb) ) THEN ! --- Calculate the augmented part: ij=KB projectors, --- ! --- R=atom index: SUM_{ijR} q(ijR) --- ! --- e^i(k-k')*R = --- ! --- also = = becp^* --- if(okvan) then pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb DO j = 1,nhjkbm if(lspinorb) then pref = pref+CONJG(becp0%nc(jkb,1,nb))*becp_bp%nc(jkb1+j,1,mb) & *q_dk_so(nhjkb,j,1,np)*struc(na) pref = pref+CONJG(becp0%nc(jkb,1,nb))*becp_bp%nc(jkb1+j,2,mb) & *q_dk_so(nhjkb,j,2,np)*struc(na) pref = pref+CONJG(becp0%nc(jkb,2,nb))*becp_bp%nc(jkb1+j,1,mb) & *q_dk_so(nhjkb,j,3,np)*struc(na) pref = pref+CONJG(becp0%nc(jkb,2,nb))*becp_bp%nc(jkb1+j,2,mb) & *q_dk_so(nhjkb,j,4,np)*struc(na) else pref = pref+CONJG(becp0%k(jkb,nb))*becp_bp%k(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc(na) endif ENDDO ENDDO mat(nb,mb) = mat(nb,mb) + pref endif endif !on l_cal ENDDO ENDDO ! --- Calculate matrix determinant --- ! calculate inverse ! CALL zgefa(mat,nbnd,nbnd,ivpt,info) CALL errore('forces_us_efield','error in zgefa',abs(info)) CALL zgedi(mat,nbnd,nbnd,ivpt,cdet,cdwork,1) !calculate terms forces_tmp(:,:)=(0.d0,0.d0) if(okvan) then allocate(fbmatb_1(nkb,npol,nkb,npol),fbmata_1(nbnd,nkb,npol)) allocate(fbmatb_2(nkb,npol,nkb,npol,3),fbmata_2(nbnd,nkb,npol,3)) allocate(fbmatb_3(nkb,npol,3,nkb,npol),fbmata_3(nbnd,nkb,npol)) if(lspinorb) then call ZGEMM('N','C',nbnd,nkb*npol,nbnd,(1.d0,0.d0),& &mat,nbnd,becp0%nc(1,1,1),nkb*npol,(0.d0,0.d0),fbmata_1,nbnd) call ZGEMM('N','N',nkb*npol,nkb*npol,nbnd,(1.d0,0.d0),& &becp_bp%nc(1,1,1),nkb*npol,fbmata_1,nbnd,(0.d0,0.d0),fbmatb_1,nkb*npol) do ipol=1,npol do nb=1,nbnd dbecp0_ord(1:nkb,ipol,1:3,nb)=dbecp0(1:nkb,(nb-1)*npol+ipol,1:3) dbecp_bp_ord(1:nkb,ipol,1:3,nb)=dbecp_bp(1:nkb,(nb-1)*npol+ipol,1:3) enddo enddo call ZGEMM('N','C',nbnd,nkb*npol*3,nbnd,(1.d0,0.d0),& &mat,nbnd,dbecp0_ord,nkb*npol*3,(0.d0,0.d0),fbmata_2,nbnd) call ZGEMM('N','N',nkb*npol,nkb*npol*3,nbnd,(1.d0,0.d0),& &becp_bp%nc(1,1,1),nkb*npol,fbmata_2,nbnd,(0.d0,0.d0),fbmatb_2,nkb*npol) call ZGEMM('N','C',nbnd,nkb*npol,nbnd,(1.d0,0.d0),& &mat,nbnd,becp0%nc(1,1,1),nkb*npol,(0.d0,0.d0),fbmata_3,nbnd) call ZGEMM('N','N',nkb*npol*3,nkb*npol,nbnd,(1.d0,0.d0),& &dbecp_bp_ord,nkb*npol*3,fbmata_3,nbnd,(0.d0,0.d0),fbmatb_3,nkb*npol*3) do jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb do j = 1,nhjkbm forces_tmp(1:3,na)= forces_tmp(1:3,na)+ & & q_dk_so(nhjkb,j,1,np)*struc_r(1:3,na)*fbmatb_1(jkb1+j,1,jkb,1) forces_tmp(1:3,na)= forces_tmp(1:3,na)+ & q_dk_so(nhjkb,j,1,np)*struc(na)*fbmatb_2(jkb1+j,1,jkb,1,1:3) forces_tmp(1:3,na)= forces_tmp(1:3,na)+ & q_dk_so(nhjkb,j,1,np)*struc(na)*fbmatb_3(jkb1+j,1,1:3,jkb,1) forces_tmp(1:3,na)= forces_tmp(1:3,na)+ & & q_dk_so(nhjkb,j,2,np)*struc_r(1:3,na)*fbmatb_1(jkb1+j,2,jkb,1) forces_tmp(1:3,na)= forces_tmp(1:3,na)+ & q_dk_so(nhjkb,j,2,np)*struc(na)*fbmatb_2(jkb1+j,2,jkb,1,1:3) forces_tmp(1:3,na)= forces_tmp(1:3,na)+ & q_dk_so(nhjkb,j,2,np)*struc(na)*fbmatb_3(jkb1+j,2,1:3,jkb,1) forces_tmp(1:3,na)= forces_tmp(1:3,na)+ & & q_dk_so(nhjkb,j,3,np)*struc_r(1:3,na)*fbmatb_1(jkb1+j,1,jkb,2) forces_tmp(1:3,na)= forces_tmp(1:3,na)+ & q_dk_so(nhjkb,j,3,np)*struc(na)*fbmatb_2(jkb1+j,1,jkb,2,1:3) forces_tmp(1:3,na)= forces_tmp(1:3,na)+ & q_dk_so(nhjkb,j,3,np)*struc(na)*fbmatb_3(jkb1+j,1,1:3,jkb,2) forces_tmp(1:3,na)= forces_tmp(1:3,na)+ & & q_dk_so(nhjkb,j,4,np)*struc_r(1:3,na)*fbmatb_1(jkb1+j,2,jkb,2) forces_tmp(1:3,na)= forces_tmp(1:3,na)+ & q_dk_so(nhjkb,j,4,np)*struc(na)*fbmatb_2(jkb1+j,2,jkb,2,1:3) forces_tmp(1:3,na)= forces_tmp(1:3,na)+ & q_dk_so(nhjkb,j,4,np)*struc(na)*fbmatb_3(jkb1+j,2,1:3,jkb,2) enddo enddo endif if(.not.lspinorb) then do jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb do j = 1,nhjkbm do nb=1,nbnd do mb=1,nbnd if(lspinorb) then ! forces_tmp(1:3,na)= forces_tmp(1:3,na)+CONJG(becp0%nc(jkb,1,nb))*becp_bp%nc(jkb1+j,1,mb) & ! *q_dk_so(nhjkb,j,1,np)*struc_r(1:3,na)*mat(mb,nb) ! forces_tmp(1:3,na)= forces_tmp(1:3,na)+CONJG(dbecp0(jkb,(nb-1)*npol+1,1:3)) & ! *becp_bp%nc(jkb1+j,1,mb)*q_dk_so(nhjkb,j,1,np)*struc(na)*mat(mb,nb) ! forces_tmp(1:3,na)= forces_tmp(1:3,na)+CONJG(becp0%nc(jkb,1,nb)) & ! *dbecp_bp(jkb1+j,(mb-1)*npol+1,1:3)*q_dk_so(nhjkb,j,1,np)*struc(na)*mat(mb,nb) ! forces_tmp(1:3,na)= forces_tmp(1:3,na)+CONJG(becp0%nc(jkb,1,nb))*becp_bp%nc(jkb1+j,2,mb) & ! *q_dk_so(nhjkb,j,2,np)*struc_r(1:3,na)*mat(mb,nb) ! forces_tmp(1:3,na)= forces_tmp(1:3,na)+CONJG(dbecp0(jkb,(nb-1)*npol+1,1:3))& ! *becp_bp%nc(jkb1+j,2,mb)*q_dk_so(nhjkb,j,2,np)*struc(na)*mat(mb,nb) ! forces_tmp(1:3,na)= forces_tmp(1:3,na)+CONJG(becp0%nc(jkb,1,nb))& ! *dbecp_bp(jkb1+j,(mb-1)*npol+2,1:3)*q_dk_so(nhjkb,j,2,np)*struc(na)*mat(mb,nb) ! forces_tmp(1:3,na)= forces_tmp(1:3,na)+CONJG(becp0%nc(jkb,2,nb))*becp_bp%nc(jkb1+j,1,mb) & ! *q_dk_so(nhjkb,j,3,np)*struc_r(1:3,na)*mat(mb,nb) ! forces_tmp(1:3,na)= forces_tmp(1:3,na)+CONJG(dbecp0(jkb,(nb-1)*npol+2,1:3))& ! *becp_bp%nc(jkb1+j,1,mb)*q_dk_so(nhjkb,j,3,np)*struc(na)*mat(mb,nb) ! forces_tmp(1:3,na)= forces_tmp(1:3,na)+CONJG(becp0%nc(jkb,2,nb)) & ! *dbecp_bp(jkb1+j,(mb-1)*npol+1,1:3)*q_dk_so(nhjkb,j,3,np)*struc(na)*mat(mb,nb) !forces_tmp(1:3,na)= forces_tmp(1:3,na)+CONJG(becp0%nc(jkb,2,nb))*becp_bp%nc(jkb1+j,2,mb) & ! *q_dk_so(nhjkb,j,4,np)*struc_r(1:3,na)*mat(mb,nb) !forces_tmp(1:3,na)= forces_tmp(1:3,na)+CONJG(dbecp0(jkb,(nb-1)*npol+2,1:3))& ! *becp_bp%nc(jkb1+j,2,mb)*q_dk_so(nhjkb,j,4,np)*struc(na)*mat(mb,nb) !forces_tmp(1:3,na)= forces_tmp(1:3,na)+CONJG(becp0%nc(jkb,2,nb))& ! *dbecp_bp(jkb1+j,(mb-1)*npol+2,1:3)*q_dk_so(nhjkb,j,4,np)*struc(na)*mat(mb,nb) else forces_tmp(:,na)= forces_tmp(:,na)+CONJG(becp0%k(jkb,nb))*becp_bp%k(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc_r(:,na)*mat(mb,nb) forces_tmp(:,na)= forces_tmp(:,na)+CONJG(dbecp0(jkb,nb,:))*becp_bp%k(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc(na)*mat(mb,nb) forces_tmp(:,na)= forces_tmp(:,na)+CONJG(becp0%k(jkb,nb))*dbecp_bp(jkb1+j,mb,:) & *q_dk(nhjkb,j,np)*struc(na)*mat(mb,nb) endif enddo enddo enddo end do end if deallocate(fbmata_1,fbmatb_1) deallocate(fbmata_2,fbmatb_2) deallocate(fbmata_3,fbmatb_3) endif forces_bp(:,:)=forces_bp(:,:)+fact*aimag(forces_tmp(:,:))*wstring(istring) ! --- End of dot products between wavefunctions and betas --- ENDIF ! --- End loop over parallel k-points --- END DO kpoint=kpoint-1 ! --- End loop over orthogonal k-points --- END DO ! --- End loop over spin --- END DO ! ------------------------------------------------------------------------- ! ! --- Free memory --- DEALLOCATE(l_cal) DEALLOCATE(pdl_elec) DEALLOCATE(mod_elec) DEALLOCATE(wstring) DEALLOCATE(loc_k) DEALLOCATE(phik) DEALLOCATE(cphik) DEALLOCATE(ln) DEALLOCATE(map_g) DEALLOCATE(aux,aux_2) DEALLOCATE(aux0,aux0_2) DEALLOCATE(psi) DEALLOCATE(psi1) DEALLOCATE(mat) if(okvan) then call deallocate_bec_type(becp0) call deallocate_bec_type(becp_bp) if(lspinorb) deallocate(q_dk_so) endif DEALLOCATE(dbecp0,dbecp0_ord,dbecp_bp,dbecp_bp_ord) DEALLOCATE(ind_g) !------------------------------------------------------------------------------! END SUBROUTINE forces_us_efield SUBROUTINE stress_bp_efield (sigmael ) !calculate the stress contribution due to the electric field !electronic part USE kinds, ONLY : DP USE bp, ONLY : efield_cart, el_pol, fc_pol,l3dstring USE cell_base, ONLY: at, alat, tpiba, omega, tpiba2 USE constants, ONLY : pi implicit none REAL(DP), INTENT(out) :: sigmael(3,3)!stress contribution to be calculated REAL(DP) :: phases(3) INTEGER :: i,j,ipol sigmael(:,:)=0.d0 if(.not.l3dstring ) return phases(:)=el_pol(:)/fc_pol(:) do ipol=1,3 do i=1,3 do j=1,3 sigmael(i,j)=sigmael(i,j)-efield_cart(i)*at(j,ipol)*phases(ipol) enddo enddo enddo sigmael(:,:)=sigmael(:,:)*alat*dsqrt(2.d0)/(2.d0*pi)/omega return END SUBROUTINE stress_bp_efield SUBROUTINE stress_ion_efield (sigmaion ) !calculate the stress contribution due to the electric field !ionic part USE kinds, ONLY : DP USE bp, ONLY : efield_cart, ion_pol,l3dstring USE cell_base, ONLY: at, alat, omega, bg USE constants, ONLY : pi implicit none REAL(DP), INTENT(out) :: sigmaion(3,3)!stress contribution to be calculated REAL(DP) :: pol_cry(3) INTEGER :: i,j,ipol sigmaion(:,:)=0.d0 if(.not.l3dstring ) return pol_cry(:)=ion_pol(:) call cryst_to_cart (1, pol_cry, at, -1) do ipol=1,3 do i=1,3 do j=1,3 sigmaion(i,j)=sigmaion(i,j)-efield_cart(i)*at(j,ipol)*pol_cry(ipol) enddo enddo enddo sigmaion(:,:)=sigmaion(:,:)/omega return END SUBROUTINE stress_ion_efield espresso-5.1/PW/src/add_bfield.f900000644000175000017500000001776112341373025015010 0ustar mbamba! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE add_bfield (v,rho) !-------------------------------------------------------------------- ! ! If noncolinear is set, one can calculate constrains either on ! the local magnetization, calculated in get_locals or on the ! total magnetization. ! ! To this end, a "penalty term" of the form ! E_p = lambda * ( m_loc - m_loc_constr)^2 ! is added to the energy. Here we calculate the resulting ! "constraining B-field" and add it to v(ir,2..4) ! Moreover there is also the possibility to add a fixed ! magnetic field (apparently disabled at the moment). ! ! NB: So far, the contribution of the orbital currents ! to the magnetization is not included. ! ! USE kinds, ONLY : DP USE constants, ONLY : pi USE io_global, ONLY : stdout USE ions_base, ONLY : nat, ntyp => nsp, ityp USE cell_base, ONLY : omega USE fft_base, ONLY : dfftp USE lsda_mod, ONLY : nspin USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE noncollin_module, ONLY : bfield, lambda, i_cons, mcons, & pointlist, factlist, noncolin IMPLICIT NONE ! input/outpt variables REAL(DP), INTENT(IN) :: rho(dfftp%nnr,nspin) REAL(DP), INTENT(INOUT) :: v(dfftp%nnr, nspin) ! local variables REAL(DP) :: ma, mperp, xx, fact, m1(3), etcon, fact1(3) REAL(DP), allocatable :: m2(:,:), m_loc(:,:), r_loc(:) INTEGER :: ir, ipol, nt, na, npol etcon=0.D0 IF (nspin ==1 .or. i_cons==0) RETURN ! i_cons==0, no constraint npol = nspin - 1 ! number of relevant magnetic components ! 3 for non-collinear case; 1 for collinear case ! ! get the actual values of the local integrated quantities IF (i_cons.LT.3) THEN allocate ( m2(npol,nat), m_loc(npol,nat), r_loc(nat) ) CALL get_locals(r_loc, m_loc, rho) DO na = 1,nat nt = ityp(na) IF (i_cons==1) THEN ! i_cons = 1 means that the npol components of the magnetization ! are constrained, they are given in the input-file m2(1:npol,na) = m_loc(1:npol,na) - mcons(1:npol,nt) do ipol=1,npol etcon = etcon + lambda * m2(ipol,na)*m2(ipol,na) end do ELSE IF (i_cons==2) THEN ! i_cons = 2 means that the angle theta between the local ! magn. moment and the z-axis is constrained ! mcons (3,nt) is the cos of the constraining angle theta ! the penalty functional in this case is ! lambda*(m_loc(z)/|m_loc| - cos(theta) )^2 IF (.NOT. noncolin) CALL errore('add_bfield', & 'this magnetic constraint only applies to non collinear calculations',2) ma = dsqrt(m_loc(1,na)**2+m_loc(2,na)**2+m_loc(3,na)**2) if (ma.lt.1.d-30) call errore('add_bfield', & 'local magnetization is zero',1) xx=(m_loc(3,na)/ma - mcons(3,nt)) m2(1,na) = - xx*m_loc(1,na)*m_loc(3,na) / (ma*ma*ma) m2(2,na) = - xx*m_loc(2,na)*m_loc(3,na) / (ma*ma*ma) m2(3,na) = xx*(-m_loc(3,na)*m_loc(3,na) / (ma*ma*ma) + 1.d0/ma) etcon = etcon + & lambda * (m_loc(3,na)/ma - mcons(3,nt))**2 END IF END DO ! na if (noncolin) then DO ir = 1, dfftp%nnr if (pointlist(ir) .eq. 0 ) cycle fact = 2.D0*lambda*factlist(ir)*omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3) DO ipol = 1,3 v(ir,ipol+1) = v(ir,ipol+1) + fact*m2(ipol,pointlist(ir)) END DO ! ipol END DO ! points else DO ir = 1, dfftp%nnr if (pointlist(ir) .eq. 0 ) cycle fact = 2.D0*lambda*factlist(ir)*omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3) v(ir,1) = v(ir,1) + fact*m2(1,pointlist(ir)) v(ir,2) = v(ir,2) - fact*m2(1,pointlist(ir)) END DO ! points end if deallocate (m2, m_loc, r_loc) write (stdout,'(4x,a,F15.8)' ) " constraint energy (Ryd) = ", etcon ELSE IF (i_cons==3.or.i_cons==6) THEN m1 = 0.d0 IF (npol==1) THEN DO ir = 1,dfftp%nnr m1(1) = m1(1) + rho(ir,1) - rho(ir,2) END DO m1(1) = m1(1) * omega / ( dfftp%nr1 * dfftp%nr2 * dfftp%nr3 ) ELSE DO ipol = 1, 3 DO ir = 1,dfftp%nnr m1(ipol) = m1(ipol) + rho(ir,ipol+1) END DO m1(ipol) = m1(ipol) * omega / ( dfftp%nr1 * dfftp%nr2 * dfftp%nr3 ) END DO END IF CALL mp_sum( m1, intra_bgrp_comm ) IF (i_cons==3) THEN IF (npol==1) THEN fact = 2.D0*lambda bfield(1)=-fact*(m1(1)-mcons(1,1)) DO ir =1,dfftp%nnr v(ir,1) = v(ir,1)-bfield(1) v(ir,2) = v(ir,2)+bfield(1) END DO ELSE fact = 2.D0*lambda DO ipol=1,3 bfield(ipol)=-fact*(m1(ipol)-mcons(ipol,1)) DO ir =1,dfftp%nnr v(ir,ipol+1) = v(ir,ipol+1)-bfield(ipol) END DO END DO END IF write(stdout,'(5x," External magnetic field: ", 3f13.5)') & (bfield(ipol),ipol=1,npol) END IF IF (i_cons==6) THEN ! IF (.NOT. noncolin) CALL errore('add_bfield', & 'this magnetic constraint only applies to non collinear calculations',6) ! ! penalty functional: E = lambda*(arccos(m_z/|m|) - theta)^2 ! ! modulus and azimuthal component of the magnetization: ma = SQRT(m1(1)**2 + m1(2)**2 + m1(3)**2) mperp = SQRT(m1(1)**2 + m1(2)**2) IF (ma < 1.D-12) CALL errore('add_bfield', & 'magnetization too small, cannot constrain polar angle', 1) fact = ACOS(m1(3)/ma) xx = fact - mcons(3,1)/180.D0*pi IF (mperp < 1.D-14) THEN fact1(1:2) = 0.D0 ! when m is along z, in order to allow the magnetization to rotate ! add a tiny B_ext along x (when required, because of theta-target > 0) IF (mcons(3,1) > 0.D0) fact1(1) = 1.D-14 ELSE fact1(1:2) = m1(1:2)/mperp * m1(3)/ma/ma ENDIF fact1(3) = - SQRT(1.D0 - (m1(3)/ma)**2)/ma etcon = lambda * xx**2 bfield(:) = 2.D0 * lambda * xx * fact1(:) DO ipol = 1,3 DO ir =1,dfftp%nnr v(ir,ipol+1) = v(ir,ipol+1)+bfield(ipol) END DO END DO ! write(stdout,'(/,5x,"Constraint on the polar angle of the magnetization")') ! N.B.: since the magnetization is here computed starting from the mixed ! rho (i.e. the input rho for the next scf iteration), as all the other ! contributions to the potential for the next iteration, it will differ ! from the magnetization written on the output, since that is calculated ! with the output rho of the current iteration. At convergence the two ! magnetizations will coincide (and so will do the polar angles). write(stdout,'(5x,"theta (target): ",F10.5," (",F10.5,")")') & ACOS(m1(3)/ma)*180.d0/pi, mcons(3,1) write(stdout,'(5x,"E_constraint: ",F15.9," (lambda:",F15.9,")")') etcon, lambda write(stdout,'(5x,"External magnetic field: ", 3F12.6)') bfield(1:npol) !write(stdout,'(5x,"Magnetization : ", 3F12.6)') m1(1:npol) ! END IF ELSE IF (i_cons==4) THEN write(stdout,'(5x," External magnetic field: ", 3f13.5)') & (bfield(ipol),ipol=1,npol) IF (npol==1) THEN DO ir =1,dfftp%nnr v(ir,1) = v(ir,1)-bfield(ipol) v(ir,2) = v(ir,2)+bfield(ipol) END DO ELSE DO ipol = 1,3 DO ir =1,dfftp%nnr v(ir,ipol+1) = v(ir,ipol+1)-bfield(ipol) END DO END DO END IF ELSE CALL errore('add_bfield','i_cons not programmed',1) END IF RETURN END SUBROUTINE add_bfield espresso-5.1/PW/src/vcsubs.f900000644000175000017500000011446312341373025014255 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !* !* subroutine vcinit (mxdtyp, mxdatm, ntype, natot, rat, ityp, avec, & vcell, force, if_pos, frr, calc, temp, vx2, vy2, vz2, rms, vmean, ekin, & avmod, theta, atmass, cmass, press, p, dt, aveci, avecd, avec2d, & avec2di, sigma, sig0, avec0, v0, rati, ratd, rat2d, rat2di, enew, & uta, eka, eta, ekla, utl, etl, ut, ekint, etot, iforceh) ! ! rmw (18/8/99) ! Cesar RS Silva (04/12/2005) ! ! input: ! mxdtyp = array dimension for type of atoms ! mxdatm = array dimension for atoms (irrespective of type) ! ntype = number of types of atoms ! atmass(nt) = atomic masses for atoms of type nt (in proton masses) ! natot = total number of atoms ! rat(j,na) = atomic positions in lattice coordinates ! ityp(na) = atomic type of na-th atom ! avec(3,3) = lattice vectors ! enew = DFT total energy ! calc = calculation type ! temp = temperature in Kelvin ! ! output: ! rat(j,na) = atomic positions in lattice coordinates ! rati(j,na) = atomic positions for previous step ! ratd(j,na) = atomic velocities " " ! rat2d(i,na) = " acceleration " " ! rat2di(i,na) = " acceleration " " (previous step) ! avec(3,3) = lattice vectors ! aveci(3,3) = lattice vectors for "previous" step ! avecd(3,3) = 1st lattice vectors derivatives ! avec2d(3,3) = 2nd lattice vectors derivatives ! avec2di(3,3) = 2nd lattice vectors derivatives (previous step) ! p = internal (virial) pressure ! ut = new total potential energy ! ekin = new total kinetic energy ! etot = total energy ! we also obtain the same quantities for atomic and lattice components ! uta,eka,eta,utl,ekla,etl ! theta(3,3) = angle between lattice vectors ! avmod(3) = lattice vectors moduli ! USE kinds implicit none ! real(DP) :: zero, um, dois, tres, quatro, seis parameter (zero = 0.0d0, um = 1.0d0, dois = 2.0d0, tres = 3.0d0, & quatro = 4.0d0, seis = 6.0d0) ! character (len=2) :: calc ! integer :: mxdatm, mxdtyp real(DP) :: avec (3, 3), avecd (3, 3), avec2d (3, 3), avec2di (3, & 3), aveci (3, 3), g (3, 3), gm1 (3, 3), gd (3, 3), sigma (3, 3), & sigav (3, 3), gmgd (3, 3), avec0 (3, 3), sig0 (3, 3), avmod (3), & theta (3, 3), pim (3, 3), piml (3, 3), frr (3, 3) ! integer :: ityp (mxdatm), natot, if_pos(3,mxdatm), iforceh(3,3) real(DP) :: atmass (mxdtyp), rat (3, mxdatm), ratd (3, mxdatm), & rati (3, mxdatm), rat2d (3, mxdatm), rat2di (3, mxdatm) ! real(DP) :: force (3, mxdatm), d2 (3, 3) ! real(DP) :: vx2 (mxdtyp), vy2 (mxdtyp), vz2 (mxdtyp) real(DP) :: rms (mxdtyp), vmean (mxdtyp), ekin (mxdtyp) real(DP) :: ekint, ut, etot, tr, ekk, etl, & cmass, uta, enew, v0, eka, utl, ekla, eta, dt, vcell, p, press, & temp, ww, pv integer :: na, nt, i, j, l, k, m, ntype ! real(DP) :: scaloff=1.0d0 ! IF ( COUNT( iforceh == 2 ) > 0 ) scaloff=0.5d0 ! ! calculate the metric for the current step ! call setg (avec, g) ! ! initialize cell related quantities ! do j = 1, 3 do i = 1, 3 avecd (i, j) = zero avec2d (i, j) = zero avec2di (i, j) = zero enddo enddo ! ! update metric related quantities ! call updg (avec, avecd, g, gd, gm1, gmgd, sigma, vcell) ! ! define reference cell ! do j = 1, 3 do i = 1, 3 avec0 (i, j) = avec (i, j) sig0 (i, j) = sigma (i, j) enddo enddo v0 = vcell ! ! establish maxwellian distribution of velocities ! if (calc (2:2) .eq.'d') then ! ! NB: velocities are generated in cartesian coordinates by ranv ! and converted to lattice coordinates immediately after. ! In order to avoid the use of an additional array just for ! this call, rat2di is used and contains therefore the velocities ! in cartesian coordinate. It is set to zero shortly after. ! ! I apologize, sdg. :-) ! call ranv (ntype, natot, ityp, atmass, mxdtyp, mxdatm, temp, & ekint, rat2di, vmean, rms, vx2, vy2, vz2, ekin) ! do na = 1, natot do l = 1, 3 ratd(l,na) = zero do k = 1, 3 IF ( if_pos(l,na) == 1 ) & ratd(l,na) = rat2di(k,na) * sigma(k,l) / vcell + ratd(l,na) enddo enddo enddo else do na = 1, natot do k = 1, 3 ratd(k,na) = zero enddo enddo endif ! ! define (uncorrected) accelerations and initialize rat2di ! do na = 1, natot nt = ityp(na) do l = 1, 3 rat2d (l, na) = if_pos(l,na) * force (l, na) / atmass (nt) rat2di(l, na) = zero enddo enddo ! ! update cell related quantities ! if (calc (1:1) .ne.'m') then ! ! initialize piml (virial stress in lattice coordinates) ! do j = 1, 3 do i = 1, 3 piml (i, j) = zero enddo enddo ! ! correct forces on atoms ! do na = 1, natot nt = ityp (na) do k = 1, 3 do m = 1, 3 rat2d (k, na) = rat2d (k, na) - gmgd (k, m) * ratd (m, na) enddo enddo ! ! calculate virial stress in lattice coordinates ! do j = 1, 3 do i = 1, 3 piml(i,j) = piml(i,j) + atmass(nt) * ratd(i,na) * ratd(j,na) enddo enddo enddo ! ! calculate virial stress in cartesian coordinates ! do j = 1, 3 do i = 1, 3 pim (i, j) = zero do l = 1, 3 do m = 1, 3 pim(i,j) = pim(i,j) + avec(i,l) * piml(l,m) * avec(j,m) enddo enddo enddo enddo ! ! add potential energy contribution to stress ! do j = 1, 3 do i = 1, 3 pim (i, j) = (pim (i, j) + frr (i, j) ) / vcell avec2d (i, j) = zero enddo enddo ! ! subtract external pressure from diagonal term ! pim (1, 1) = pim (1, 1) - press pim (2, 2) = pim (2, 2) - press pim (3, 3) = pim (3, 3) - press ! do j = 1, 3 do i = 1, 3 do k = 1, 3 avec2d (i, j) = avec2d (i, j) + pim (i, k) * sigma (k, j) enddo avec2d (i, j) = avec2d (i, j) / cmass enddo enddo ! ! if new cell dynamics... ! if (calc (1:1) .eq.'n') then call sigp (avec, avecd, avec2d, sigma, vcell) endif ! ! strain/stress symmetrization ! do i = 1, 3 do j = 1, 3 d2 (i, j) = zero do k = 1, 3 d2 (i, j) = d2 (i, j) + avec2d (i, k) * sig0 (j, k) enddo d2 (i, j) = d2 (i, j) / v0 enddo enddo ! d2 (1, 2) = (d2 (1, 2) + d2 (2, 1) ) / dois d2 (1, 3) = (d2 (1, 3) + d2 (3, 1) ) / dois d2 (2, 3) = (d2 (2, 3) + d2 (3, 2) ) / dois d2 (2, 1) = d2 (1, 2) d2 (3, 1) = d2 (1, 3) d2 (3, 2) = d2 (2, 3) ! do i = 1, 3 do j = 1, 3 avec2d (i, j) = zero do k = 1, 3 avec2d (i, j) = avec2d (i, j) + d2 (i, k) * avec0 (k, j) enddo enddo enddo else do i = 1, 3 do j = 1, 3 avec2d (i, j) = zero enddo enddo endif ! ! WRITE( stdout,*) avec2d(2,1),avec2d(3,1), avec2d(3,2) ! ! compute atomic energies ! eka = zero do na = 1, natot nt = ityp (na) do i = 1, 3 ekk = zero do j = 1, 3 ekk = ekk + ratd (i, na) * g (i, j) * ratd (j, na) enddo eka = eka + ekk * atmass (nt) / dois enddo enddo uta = enew eta = eka + uta ! ! WRITE( stdout,*) 'eka,ekint', eka, ekint ! ! lattice contribution ! ekla = zero if (calc (1:1) .ne.'m') then ! ! new dynamics case ! if (calc (1:1) .eq.'n') then do j = 1, 3 do i = 1, 3 sigav (i, j) = zero do l = 1, 3 sigav (i, j) = sigav (i, j) + sigma (l, i) * avecd (l, j) enddo enddo enddo do k = 1, 3 tr = zero do m = 1, 3 tr = tr + sigav (m, k) * sigav (m, k) enddo ekla = ekla + tr enddo endif ! ! parrinello rahman case ! if (calc (1:1) .eq.'c') then do k = 1, 3 tr = zero do m = 1, 3 tr = tr + avecd (m, k) * avecd (m, k) enddo ekla = ekla + tr enddo endif endif ! ekla = ekla * cmass / dois utl = + press * vcell etl = utl + ekla ! ! total energy ! ekint = eka + ekla ut = uta + utl etot = ekint + ut ! ! calculate "internal (virial) pressure" ! ww = frr (1, 1) + frr (2, 2) + frr (3, 3) p = (dois * eka + ww) / tres / vcell pv = p * vcell ! ! WRITE( stdout,1001) ekint,ut,etot ! ! now make the initial move ! ! ! update atomic positions and calculate intermediate velocities ! and accelerations ! do na = 1, natot do k = 1, 3 rati (k, na) = rat (k, na) rat (k, na) = rat (k, na) + dt * ratd (k, na) + dt * dt * (quatro & * rat2d (k, na) - rat2di (k, na) ) / seis rat2di (k, na) = rat2d (k, na) enddo enddo ! ! update lattice vectors if cell dynamics ! if (calc (1:1) .ne.'m') then do j = 1, 3 do i = 1, 3 aveci (i, j) = avec (i, j) avec (i, j) = avec (i, j) + dt * avecd (i, j) + (dt * dt * & (quatro * avec2d (i, j) - avec2di (i, j) ) / seis) * dble(iforceh(i,j))*scaloff avec2di (i, j) = avec2d (i, j) enddo enddo ! ! update cell quantities just in case forclj need them ! call updg (avec, avecd, g, gd, gm1, gmgd, sigma, vcell) endif return end subroutine vcinit !* !* subroutine vcmove (mxdtyp, mxdatm, ntype, ityp, rat, avec, vcell, & force, if_pos, frr, calc, avmod, theta, atmass, cmass, press, p, dt, & avecd, avec2d, aveci, avec2di, sigma, sig0, avec0, v0, ratd, & rat2d, rati, rat2di, enew, uta, eka, eta, ekla, utl, etl, ut, & ekint, etot, temp, tolp, ntcheck, ntimes, nst, tnew, nzero, natot, & acu, ack, acp, acpv, avu, avk, avp, avpv, iforceh) ! ! rmw (18/8/99) ! ! input: ! mxdtyp = array dimension for type of atoms ! mxdatm = array dimension for atoms (irrespective of type) ! ntype = number of types of atoms ! atmass(nt) = atomic masses for atoms of type nt (in proton masses) ! ityp(na) = atomic type of na-th atom ! rat(j,na) = atomic positions in lattice coordinates ! rati(j,na) = atomic positions in lattice coordinates (previous ste ! ratd(j,na) = atomic velocities " " ! rat2di(i,na) = " acceleration " " (previous step) ! avec(3,3) = lattice vectors ! aveci(3,3) = lattice vectors (previous step) ! avecd(3,3) = 1st lattice vectors derivatives ! avec2d(3,3) = 2nd lattice vectors derivatives ! avec2di(3,3) = 2nd lattice vectors derivatives (previous step) ! avec0(3,3) = initial lattice vectors ! sig0(3,3) = initial reciprocal lattice vectors * vcell / 2 pi ! v0 = initial volume ! enew = DFT total energy ! ! output: ! rat(j,na) = atomic positions in lattice coordinates (updated) ! ratd(j,na) = atomic velocities " " (updated) ! rat2d(i,na) = " acceleration " " (updated) ! rati(j,na) and rat2di(i,na) (updated) ! avec(3,3) = lattice vectors ! avecd(3,3) = 1st lattice vectors derivatives ! avec2d(3,3) = 2nd lattice vectors derivatives ! aveci(3,3) and avec2di(3,3) (updated) ! p = internal (virial) pressure ! ut = new total potential energy ! ekin = new total kinetic energy ! etot = total energy ! we also obtain the same quantities for atomic and lattice componen ! uta,eka,eta,utl,ekl,etl ! theta(3,3) = angle between lattice vectors ! avmod(3) = lattice vectors moduli ! ! USE kinds, only : DP USE constants, ONLY : pi, eps16, k_boltzmann_ry USE io_global, ONLY : stdout implicit none ! real(DP) :: zero, um, dois, tres, quatro, seis parameter (zero = 0.0d0, um = 1.0d0, dois = 2.0d0, tres = 3.0d0, & quatro = 4.0d0, seis = 6.0d0) ! character (len=2) :: calc ! integer :: mxdatm, mxdtyp integer :: ityp (mxdatm), if_pos(3,mxdatm), iforceh(3,3) real(DP) :: avec (3, 3), rat (3, mxdatm) ! real(DP) :: atmass (mxdtyp), ratd (3, mxdatm), rat2d (3, mxdatm), & avecd (3, 3), avec2d (3, 3), g (3, 3), gm1 (3, 3), gd (3, 3), & sigma (3, 3), avec0 (3, 3), sig0 (3, 3), avmod (3), theta (3, 3), & pim (3, 3), piml (3, 3), frr (3, 3), rati (3, mxdatm), rat2di (3, & mxdatm), sigav (3, 3), gmgd (3, 3), aveci (3, 3), avec2di (3, 3) integer :: i, j, k, l, m, na, nt, nst, natot, nzero, ntimes, & ntcheck, ntype, i_update, n_update real(DP) :: avpv, pv, ww, ts, xx, alpha, x, & tr, tnew, tolp, temp, avk, avu, ekk, avp, ack, acu, acpv, acp, dt, & p, enew, v0, vcell, press, ut, etl, etot, ekint, utl, uta, cmass, & eka, ekla, eta logical :: symmetrize_stress ! real(DP) :: force (3, mxdatm), d2 (3, 3) ! real(DP) :: scaloff=1.0d0 ! IF ( COUNT( iforceh == 2 ) > 0 ) scaloff=0.5d0 ! ! ! zero energy components ! ut = zero ekint = zero etot = zero uta = zero eka = zero eta = zero utl = zero ekla = zero etl = zero p = zero ! ! set the metric for the current step ! call setg (avec, g) ! ! calculate (uncorrected) rat2d ! do na = 1, natot nt = ityp (na) do i = 1, 3 rat2d (i, na) = if_pos(i,na) * force (i, na) / atmass (nt) enddo enddo ! ! if variable cell, estimate velocities and set the number of update to ! be performed in order to have them accurate. This is needed only for ! variable cell shape dynamics (where accelerations depends on velocities) ! and a few, even just one, iteration is usually enough ! if (calc (1:1) .ne.'m') then do na = 1, natot do k = 1, 3 ratd (k, na) = ratd (k, na) + dt * rat2di (k, na) enddo enddo do j = 1, 3 do i = 1, 3 avecd (i, j) = avecd (i, j) + dt * avec2di (i, j) !* dble(iforceh(i,j)) enddo enddo n_update = 19 else n_update = 1 endif do i_update = 1, n_update if (calc (1:1) .ne.'m') then ! ! update metric related quantities ! call updg (avec, avecd, g, gd, gm1, gmgd, sigma, vcell) ! ! zero piml (virial stress in lattice coordinates) ! do j = 1, 3 do i = 1, 3 piml (i, j) = zero enddo enddo ! ! correct forces on atoms and set cell forces ! do na = 1, natot nt = ityp (na) do k = 1, 3 rat2d (k, na) = if_pos(k,na) * force (k, na) / atmass (nt) do m = 1, 3 rat2d (k, na) = rat2d (k, na) - gmgd (k, m) * ratd (m, na) enddo enddo ! ! calculate virial stress in lattice coordinates ! do j = 1, 3 do i = 1, 3 piml(i,j) = piml(i,j) + atmass(nt) * ratd(i,na) * ratd(j,na) enddo enddo enddo ! ! calculate virial stress in cartesian coordinates ! do i = 1, 3 do j = 1, 3 pim (i, j) = zero do l = 1, 3 do m = 1, 3 pim(i,j) = pim(i,j) + avec(i,l) * piml(l,m) * avec(j,m) enddo enddo enddo enddo ! ! add potential energy contribution to stress ! do j = 1, 3 do i = 1, 3 pim (i, j) = (pim (i, j) + frr (i, j) ) / vcell enddo enddo ! ! subtract external pressure from diagonal term ! pim (1, 1) = pim (1, 1) - press pim (2, 2) = pim (2, 2) - press pim (3, 3) = pim (3, 3) - press ! do j = 1, 3 do i = 1, 3 avec2d (i, j) = zero do k = 1, 3 avec2d (i, j) = avec2d (i, j) + pim (i, k) * sigma (k, j) enddo avec2d (i, j) = avec2d (i, j) / cmass enddo enddo ! ! if new cell dynamics... ! if (calc (1:1) .eq.'n') call sigp (avec, avecd, avec2d, sigma, vcell) ! ! strain/stress symmetrization ! symmetrize_stress = .true. if (.not.symmetrize_stress) goto 666 do i = 1, 3 do j = 1, 3 d2 (i, j) = zero do k = 1, 3 d2 (i, j) = d2 (i, j) + avec2d (i, k) * sig0 (j, k) enddo d2 (i, j) = d2 (i, j) / v0 enddo enddo ! d2 (1, 2) = (d2 (1, 2) + d2 (2, 1) ) / dois d2 (1, 3) = (d2 (1, 3) + d2 (3, 1) ) / dois d2 (2, 3) = (d2 (2, 3) + d2 (3, 2) ) / dois d2 (2, 1) = d2 (1, 2) d2 (3, 1) = d2 (1, 3) d2 (3, 2) = d2 (2, 3) ! do i = 1, 3 do j = 1, 3 avec2d (i, j) = zero do k = 1, 3 avec2d (i, j) = avec2d (i, j) + d2 (i, k) * avec0 (k, j) enddo enddo enddo 666 continue ! ! calculate correct lattice velocities and ... ! do j = 1, 3 do i = 1, 3 avecd (i, j) = (avec (i, j) - aveci (i, j) ) / dt + (dt * & (dois * avec2d (i, j) + avec2di (i, j) ) / seis) * dble(iforceh(i,j))*scaloff enddo enddo endif ! ! calculate correct atomic velocities ! do na = 1, natot do k = 1, 3 ratd (k, na) = (rat (k, na) - rati (k, na) ) / dt + dt * (dois * & rat2d (k, na) + rat2di (k, na) ) / seis enddo enddo ! and do-loop on n_update enddo ! ! calculate basis vectors' moduli and angles ! if (calc (1:1) .ne.'m') then do k = 1, 3 avmod (k) = zero do l = 1, 3 theta (l, k) = zero avmod (k) = avmod (k) + avec (l, k) * avec (l, k) do m = 1, 3 theta (l, k) = theta (l, k) + avec (m, l) * avec (m, k) enddo enddo avmod (k) = dsqrt (avmod (k) ) enddo do k = 1, 3 do l = 1, 3 x = theta (l, k) / avmod (l) / avmod (k) if (x.ge.0.d0) then x = dmin1 (1.d0, x) else x = dmax1 ( - 1.d0, x) endif theta (l, k) = dacos (x) * 180.d0 / pi enddo enddo endif ! ! compute atomic energies ! do na = 1, natot nt = ityp (na) do i = 1, 3 ekk = zero do j = 1, 3 ekk = ekk + ratd (i, na) * g (i, j) * ratd (j, na) enddo eka = eka + ekk * atmass (nt) / dois enddo enddo ! uta = enew eta = eka + uta ! ! lattice contribution ! ekla = zero if (calc (1:1) .ne.'m') then if (calc (1:1) .eq.'n') then ! ! new dynamics or new minimization cases ! do j = 1, 3 do i = 1, 3 sigav (i, j) = zero do l = 1, 3 sigav (i, j) = sigav (i, j) + sigma (l, i) * avecd (l, j) enddo enddo enddo do k = 1, 3 tr = zero do m = 1, 3 tr = tr + sigav (m, k) * sigav (m, k) enddo ekla = ekla + tr enddo endif ! if (calc (1:1) .eq.'c') then ! ! cell dynamics or cell minimization cases ! do k = 1, 3 tr = zero do m = 1, 3 tr = tr + avecd (m, k) * avecd (m, k) enddo ekla = ekla + tr enddo endif endif ! ekla = ekla * cmass / dois utl = + press * vcell etl = utl + ekla ! ! total energy ! ekint = eka + ekla ut = uta + utl etot = ekint + ut ! ! calculate "internal (virial) pressure" ! ww = frr (1, 1) + frr (2, 2) + frr (3, 3) p = (dois * eka + ww) / tres / vcell pv = p * vcell ! ! update accumulators and set averages ! nzero = nzero + 1 acu = acu + ut ack = ack + ekint acp = acp + p acpv = acpv + pv avu = acu / DBLE (nzero) avk = ack / DBLE (nzero) avp = acp / DBLE (nzero) avpv = acpv / DBLE (nzero) ! ! choose # of degrees of freedom and calculate tnew ! if (calc (1:1) .ne.'m') then tnew = dois / tres / DBLE (natot + 1) * avk / k_boltzmann_ry else tnew = dois / tres / DBLE (natot - 1) * avk / k_boltzmann_ry endif ! ! rescale velocities ! if ( mod (nst, ntcheck) == 0 ) then ! ! with the new definition of tolp, this is the test to perform ! if ( ( ABS (tnew - temp ) > tolp) .and. ( abs(ntimes) > 0) ) then ! if ( tnew < 1.0d-12) then alpha = 1.0_dp else alpha = sqrt (temp / tnew) endif do na = 1, natot do k = 1, 3 ratd (k, na) = alpha * ratd (k, na) enddo enddo if (calc (2:2) .eq.'d') then do k = 1, 3 do l = 1, 3 avecd (l, k) = alpha * avecd (l, k) !* dble(iforceh(i,j)) enddo enddo endif ! ! update ntimes and nzero and reset accumulators ! acu = zero ack = zero acp = zero acpv = zero if ( ntimes > 0 ) ntimes = ntimes - 1 nzero = 0 endif endif if (calc (2:2) .eq.'m') then ! WRITE( stdout,109) alpha,nst ! if(.true. ) = original version modified by Cesar Da Silva ! if(.false.) = modified algorithm by SdG if (.false.) then do na = 1, natot do k = 1, 3 xx = rat2di (k, na) * rat2d (k, na) if (xx.lt.zero) then ratd (k, na) = zero rat(k,na)=rat2d(k,na)*rati(k,na)-rat2di(k,na)*rat(k,na) rat(k,na)=rat(k,na)/(rat2d(k,na)-rat2di(k,na)) rat2d(k,na)=zero rat2di(k,na)=zero endif enddo enddo else do na = 1, natot xx = 0.d0 do k=1,3 xx = rat2d(1,na) * g(1,k) * ratd(k,na) + & rat2d(2,na) * g(2,k) * ratd(k,na) + & rat2d(3,na) * g(3,k) * ratd(k,na) + xx end do if (xx.gt.eps16) then ratd (:,na) = rat2d (:,na) * xx xx = 0.d0 do k=1,3 xx = rat2d(1,na) * g(1,k) * rat2d(k,na) + & rat2d(2,na) * g(2,k) * rat2d(k,na) + & rat2d(3,na) * g(3,k) * rat2d(k,na) + xx end do ratd(:,na) = ratd(:,na) / xx else ratd(:, na) = zero endif enddo endif if (calc (1:1) .ne.'m') then do k = 1, 3 do l = 1, 3 xx = avec2d (l, k) * avec2di (l, k) if (xx.lt.zero) then avecd (l, k) = zero avec(l, k)=avec2d(l,k)*aveci(l,k)-avec2di(l,k)*avec(l,k) avec(l, k)=avec(l,k)/(avec2d(l,k)-avec2di(l,k)) avec2d(l,k)=zero avec2di(l,k)=zero endif enddo enddo endif endif ! ! update atomic positions and calculate intermediate velocities ! and accelerations ! do na = 1, natot do k = 1, 3 rati (k, na) = rat (k, na) rat (k, na) = rat (k, na) + dt * ratd (k, na) + dt * dt * (quatro & * rat2d (k, na) - rat2di (k, na) ) / seis rat2di (k, na) = rat2d (k, na) enddo enddo ! ! update lattice vectors if cell dynamics ! if (calc (1:1) .ne.'m') then do j = 1, 3 do i = 1, 3 aveci (i, j) = avec (i, j) avec (i, j) = avec (i, j) + dt * avecd (i, j) + (dt * dt * & (quatro * avec2d (i, j) - avec2di (i, j) ) / seis) * dble(iforceh(i,j))*scaloff avec2di (i, j) = avec2d (i, j) enddo enddo endif ! ! update metric related quantities just in case are needed by forclj ! call updg (avec, avecd, g, gd, gm1, gmgd, sigma, vcell) return end subroutine vcmove !* !* subroutine ranv (ntype, natot, ityp, atmass, mxdtyp, mxdatm, temp, & ekint, v, vmean, rms, vx2, vy2, vz2, ekin) ! ! sets up random velocities with maxwellian distribution ! at temperature t. total linear momentum components are zero ! rewritten on 1/31/90 by rmw ! extracted from car & parrinello 's program ! ! input: ! mxdtyp = array dimension for type of atoms ! mxdatm = array dimension for atoms (irrespective of type) ! ntype = number of types of atoms ! natot = total number of atoms ! ityp(na) = atomic type of na-th atom ! atmass(i) = atomic masses for atoms of type i (in proton masses) ! temp = temperature in k ! ! output: ! v(i,na) = initial velocity of atom na of type nt ! vmean(nt), rms(nt),vx2(nt),vy2(nt),vz2(nt) ! USE io_global, ONLY : stdout USE constants, ONLY : k_boltzmann_ry USE kinds , only : DP implicit none ! integer :: mxdtyp, mxdatm real(DP) :: atmass (mxdtyp) real(DP) :: v (3, mxdatm), p (3) real(DP) :: vx2 (mxdtyp), vy2 (mxdtyp), vz2 (mxdtyp) real(DP) :: rms (mxdtyp), vmean (mxdtyp), ekin (mxdtyp) ! integer :: ityp (mxdatm), natot integer :: na, nt, j, k, ntype, iseed, natom real(DP) :: ran3, vfac, sig, tfac, vr, atemp, eps, temp, ekint, t real(DP) :: b0, b1, c0, c1 real(DP) :: zero, um, dois, tres data b0, b1, c0, c1 / 2.30753d0, 0.27061d0, 0.99229d0, 0.04481d0 / data zero, um, dois, tres / 0.d0, 1.d0, 2.d0, 3.0d0 / ! ! example run ! do nt = 1, ntype ekin (nt) = zero enddo ekint = zero ! ! if (natot.ne.1) then ! ! assign random velocities ! t = temp if (temp.lt.1.d-14) t = 1.d-14 iseed = - 119 eps = ran3 (iseed) ! ! establish gaussian distribution for each atom kind ! ! natom (the number of atoms of a given type) is calculated when needed ! do nt = 1, ntype natom = 0 vfac = dsqrt (k_boltzmann_ry * t / atmass (nt) ) ! WRITE( stdout,901) ! WRITE( stdout,*) 'vfac = ',vfac iseed = iseed+382 do na = 1, natot if (ityp (na) .eq.nt) then natom = natom + 1 do j = 1, 3 eps = ran3 (iseed) if (eps.lt.1.d-10) eps = 1.d-10 if (eps.le.0.5d0) goto 100 eps = eps - um if (eps.gt. - 1.d-10) eps = - 1.d-10 100 sig = dsqrt (log (um / (eps * eps) ) ) vr = sig - (b0 + b1 * sig) / (um + c0 * sig + c1 * sig * & sig) vr = vr * vfac if (eps.lt.zero) vr = - vr v (j, na) = vr enddo endif enddo ! p (1) = zero p (2) = zero p (3) = zero ekin (nt) = zero if (natom.eq.0) then WRITE( stdout,*) 'natom=0 for type',nt,'in sub ranv (1) !!!! ' go to 111 end if ! ! calculate linear-momentum. ! do na = 1, natot if (ityp (na) .eq.nt) then p (1) = p (1) + v (1, na) p (2) = p (2) + v (2, na) p (3) = p (3) + v (3, na) endif enddo p (1) = p (1) / DBLE (natom) p (2) = p (2) / DBLE (natom) p (3) = p (3) / DBLE (natom) ! ! zero linear momentum for atom type nt ! do na = 1, natot if (ityp (na) .eq.nt) then v (1, na) = v (1, na) - p (1) v (2, na) = v (2, na) - p (2) v (3, na) = v (3, na) - p (3) endif enddo do na = 1, natot if (ityp (na) .eq.nt) then ekin(nt) = ekin(nt) + ( v(1,na)*v(1,na) + v(2,na)*v(2,na) + & v(3,na)*v(3,na) ) / dois endif enddo ! WRITE( stdout,*) 'ekin(nt)',ekin(nt) ekin (nt) = atmass (nt) * ekin (nt) ekint = ekint + ekin (nt) 111 continue enddo ! ! rescale velocities to give correct temperature ! atemp = dois * ekint / tres / DBLE (natot - 1) / k_boltzmann_ry tfac = dsqrt (t / atemp) if (temp.lt.1d-14) tfac = zero ! WRITE( stdout,*) 'atemp = ',atemp,' k' ! WRITE( stdout,*) 'tfac = ',tfac do nt = 1, ntype vmean (nt) = zero rms (nt) = zero vx2 (nt) = zero vy2 (nt) = zero vz2 (nt) = zero enddo do na = 1, natot nt = ityp (na) v (1, na) = v (1, na) * tfac v (2, na) = v (2, na) * tfac v (3, na) = v (3, na) * tfac vmean(nt) = vmean(nt) + dsqrt (v(1,na)**2 + v(2,na)**2 + v(3,na)**2) vx2 (nt) = vx2 (nt) + v (1, na) **2 vy2 (nt) = vy2 (nt) + v (2, na) **2 vz2 (nt) = vz2 (nt) + v (3, na) **2 enddo do nt = 1, ntype natom = 0 do na = 1, natot if (ityp (na) .eq.nt) natom = natom + 1 enddo if (natom.gt.0) then vmean (nt) = vmean (nt) / DBLE (natom) rms (nt) = dsqrt ( (vx2 (nt) + vy2 (nt) + vz2 (nt) ) / & DBLE ( natom) ) vx2 (nt) = dsqrt (vx2 (nt) / DBLE (natom) ) vy2 (nt) = dsqrt (vy2 (nt) / DBLE (natom) ) vz2 (nt) = dsqrt (vz2 (nt) / DBLE (natom) ) else vmean (nt) = zero rms (nt) = zero vx2 (nt) = zero vy2 (nt) = zero vz2 (nt) = zero end if enddo ekint = ekint * tfac * tfac else ekint = zero do k = 1, 3 v (k, 1) = zero enddo vmean (1) = zero rms (1) = zero vx2 (1) = zero vy2 (1) = zero ekin (1) = zero endif return end subroutine ranv !* !* subroutine sigp (avec, avecd, avec2d, sigma, vcell) ! ! calculates sigmap matrices and avec2d for ! new dynamics(rmw 5/30/90) ! ! input: ! avec = lattice vectors ! avecd = time derivative of lattice vectors ! avec2d = 2nd time derivative of lattice vectors ! sigma = volume * rec. latt. vectors / 2 pi ! vcell = cell volume ! ! output: ! avec2d = new 2nd time derivative of lattice vectors ! USE kinds, only : DP implicit none ! real(DP) :: avec (3, 3), avecd (3, 3), avec2d (3, 3), sigmap (3, & 3, 3, 3), sigmad (3, 3), sigma (3, 3), e (3, 3), fp (3, 3, 3, 3), & fd (3, 3), fm1 (3, 3), fm (3, 3), sm (3, 3), avint (3, 3), & vcell ! integer :: i, j, k, l, m, n real(DP) :: zero, dois parameter (zero = 0.d0, dois = 2.d0) ! ! sigmap_ijkl = d sigma_ij / d h_kl ! =( sigma_ij * sigma_kl - sigma_kj * sigma_il ) / vcell ! do i = 1, 3 do j = 1, 3 do k = 1, 3 do l = 1, 3 sigmap(i,j,k,l) = ( sigma(i,j)*sigma(k,l) - & sigma(k,j)*sigma(i,l) ) / vcell enddo enddo enddo enddo ! _1 t 2 ! calculate f = h * h / vcell ! do j = 1, 3 do i = 1, 3 fm1 (i, j) = zero do l = 1, 3 fm1 (i, j) = fm1 (i, j) + avec (l, i) * avec (l, j) enddo fm1 (i, j) = fm1 (i, j) / vcell / vcell enddo enddo ! .t . ! calculate e = h * h ! do j = 1, 3 do i = 1, 3 e (i, j) = zero do m = 1, 3 e (i, j) = e (i, j) + avecd (m, i) * avecd (m, j) enddo enddo enddo ! ij t t ij ! calculate f' = sigma' * sigma + sigma * sigma' ! do n = 1, 3 do m = 1, 3 do j = 1, 3 do i = 1, 3 fp(i,j,m,n) = zero do l = 1, 3 fp(i,j,m,n) = fp(i,j,m,n) + sigmap(i,j,l,m) * sigma(l,n) + & sigma(l,m) * sigmap(i,j,l,n) enddo enddo enddo enddo enddo ! ! calculate sigmad ! do n = 1, 3 do m = 1, 3 sigmad(m,n) = zero do j = 1, 3 do i = 1, 3 sigmad(m,n) = sigmad(m,n) + sigmap(i,j,m,n)*avecd(i,j) enddo enddo enddo enddo ! . ! calculate f ! do j = 1, 3 do i = 1, 3 fd(i,j) = zero do l = 1, 3 fd(i,j) = fd(i,j) + sigmad(l,i)*sigma(l,j) + sigma(l,i)*sigmad(l,j) enddo enddo enddo ! ! calculate fm ! do j = 1, 3 do i = 1, 3 fm (i, j) = zero do l = 1, 3 do k = 1, 3 fm (i, j) = fm (i, j) + e (l, k) * fp (i, j, k, l) enddo enddo fm (i, j) = fm (i, j) / dois enddo enddo ! ! calculate sm ! do j = 1, 3 do i = 1, 3 sm (i, j) = zero do l = 1, 3 sm (i, j) = sm (i, j) + avecd (i, l) * fd (l, j) enddo enddo enddo ! ! calculate new avec2d ! do j = 1, 3 do i = 1, 3 avint (i, j) = avec2d (i, j) + fm (i, j) - sm (i, j) enddo enddo ! ! do j = 1, 3 do i = 1, 3 avec2d (i, j) = zero do m = 1, 3 avec2d (i, j) = avec2d (i, j) + avint (i, m) * fm1 (m, j) enddo enddo enddo ! return end subroutine sigp !* !* subroutine updg (avec, avecd, g, gd, gm1, gmgd, sigma, vcell) ! ! ! update metric related quantities ! (rmw 18/8/99) ! ! input: ! avec(3,3) = lattice vectors ! avecd(3,3) = derivative of lattice vectors ! ! output: t ! g(3,3) = avec * avec ! t t ! gd(3,3) = avecd * avec + avecd * avec ! _1 ! gm1(3,3) = g ! _1 ! gmgd(3,3) = g * gd ! sigma(3,3) = reciprocal lattice vectors / twopi ! vcell = cell volume ! USE kinds, only : DP implicit none ! real(DP) :: zero, um, dois, tres parameter (zero = 0.0d0, um = 1.0d0, dois = 2.0d0, tres = 3.0d0) ! real(DP) :: avec (3, 3), avecd (3, 3), sigma (3, 3) real(DP) :: g (3, 3), gd (3, 3), gmgd (3, 3), gm1 (3, 3) real(DP) :: vcell integer :: i, j, m ! ! compute the lattice wave-vectors/twopi and the cell volume ! ! vcell = abs (det (h_ij)) ! NOTE the abs value ! ! ! sigma_ij = d vcell / d h_ij ! sigma (1, 1) = avec (2, 2) * avec (3, 3) - avec (3, 2) * avec (2, 3) sigma (2, 1) = avec (3, 2) * avec (1, 3) - avec (1, 2) * avec (3, 3) sigma (3, 1) = avec (1, 2) * avec (2, 3) - avec (2, 2) * avec (1, 3) sigma (1, 2) = avec (2, 3) * avec (3, 1) - avec (3, 3) * avec (2, 1) sigma (2, 2) = avec (3, 3) * avec (1, 1) - avec (1, 3) * avec (3, 1) sigma (3, 2) = avec (1, 3) * avec (2, 1) - avec (2, 3) * avec (1, 1) sigma (1, 3) = avec (2, 1) * avec (3, 2) - avec (3, 1) * avec (2, 2) sigma (2, 3) = avec (3, 1) * avec (1, 2) - avec (1, 1) * avec (3, 2) sigma (3, 3) = avec (1, 1) * avec (2, 2) - avec (2, 1) * avec (1, 2) ! ! compute cell volume and modify sigma if needed ! vcell = sigma (1, 1) * avec (1, 1) + sigma (2, 1) * avec (2, 1) & + sigma (3, 1) * avec (3, 1) if (vcell.lt.0.d0) then vcell = - vcell do i = 1, 3 do j = 1, 3 sigma (i, j) = - sigma (i, j) enddo enddo endif ! ! calculate g, gd, and gm1 matrices ! do j = 1, 3 do i = 1, 3 g (i, j) = zero gm1 (i, j) = zero gd (i, j) = zero enddo enddo do j = 1, 3 do i = 1, 3 do m = 1, 3 g(i, j) = g(i, j) + avec(m,i)*avec(m,j) gm1(i, j) = gm1(i, j) + sigma(m,i)*sigma(m,j) gd(i, j) = gd(i, j) + avec(m,i)*avecd(m,j) + avecd(m,i)*avec(m,j) enddo gm1(i,j) = gm1(i,j) / vcell / vcell enddo enddo ! _1 . ! calculate g * g ( = gmgd) ! do j = 1, 3 do i = 1, 3 gmgd (i, j) = zero do m = 1, 3 gmgd (i, j) = gmgd (i, j) + gm1 (i, m) * gd (m, j) enddo enddo enddo return end subroutine updg !* !* subroutine setg (avec, g) ! ! ! update metric related quantities ! (rmw 18/8/99) ! ! input: ! avec(3,3) = lattice vectors ! ! output: t ! g(3,3) = avec * avec ! USE kinds, only : DP implicit none ! real(DP) :: zero parameter (zero = 0.0d0) ! real(DP) :: avec (3, 3), g (3, 3) integer :: i, j, m ! ! calculate g ! do j = 1, 3 do i = 1, 3 g (i, j) = zero enddo enddo do j = 1, 3 do i = 1, 3 do m = 1, 3 g (i, j) = g (i, j) + avec (m, i) * avec (m, j) enddo enddo enddo return end subroutine setg !* !* real(8) function ran3 (idum) USE kinds, only : DP implicit none save ! implicit real*4(m) ! parameter (mbig=4000000.,mseed=1618033.,mz=0.,fac=2.5e-7) integer :: mbig, mseed, mz real(DP) :: fac parameter (mbig = 1000000000, mseed = 161803398, mz = 0, fac = 1.d-9) integer :: ma (55), iff, k, inext, inextp, ii, mj, idum, i, mk ! common /ranz/ ma,inext,inextp data iff / 0 / if (idum.lt.0.or.iff.eq.0) then iff = 1 mj = mseed-iabs (idum) mj = mod (mj, mbig) ma (55) = mj mk = 1 do i = 1, 54 ii = mod (21 * i, 55) ma (ii) = mk mk = mj - mk if (mk.lt.mz) mk = mk + mbig mj = ma (ii) enddo do k = 1, 4 do i = 1, 55 ma (i) = ma (i) - ma (1 + mod (i + 30, 55) ) if (ma (i) .lt.mz) ma (i) = ma (i) + mbig enddo enddo inext = 0 inextp = 31 idum = 1 endif inext = inext + 1 if (inext.eq.56) inext = 1 inextp = inextp + 1 if (inextp.eq.56) inextp = 1 mj = ma (inext) - ma (inextp) if (mj.lt.mz) mj = mj + mbig ma (inext) = mj ran3 = mj * fac return end function ran3 espresso-5.1/PW/src/rcgdiagg.f900000644000175000017500000002607012341373025014513 0ustar mbamba! ! Copyright (C) 2002-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE rcgdiagg( npwx, npw, nbnd, psi, e, btype, precondition, & ethr, maxter, reorder, notconv, avg_iter ) !---------------------------------------------------------------------------- ! ! ... "poor man" iterative diagonalization of a complex hermitian matrix ! ... through preconditioned conjugate gradient algorithm ! ... Band-by-band algorithm with minimal use of memory ! ... Calls h_1psi and s_1psi to calculate H|psi> and S|psi> ! ... Works for generalized eigenvalue problem (US pseudopotentials) as well ! USE constants, ONLY : pi USE kinds, ONLY : DP USE gvect, ONLY : gstart USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER, INTENT(IN) :: npwx, npw, nbnd, maxter INTEGER, INTENT(IN) :: btype(nbnd) REAL (DP), INTENT(IN) :: precondition(npw), ethr COMPLEX (DP), INTENT(INOUT) :: psi(npwx,nbnd) REAL (DP), INTENT(INOUT) :: e(nbnd) INTEGER, INTENT(OUT) :: notconv REAL (DP), INTENT(OUT) :: avg_iter ! ! ... local variables ! INTEGER :: i, j, m, iter, moved REAL (DP), ALLOCATABLE :: lagrange(:) COMPLEX (DP), ALLOCATABLE :: hpsi(:), spsi(:), g(:), cg(:), & scg(:), ppsi(:), g0(:) REAL (DP) :: psi_norm, a0, b0, gg0, gamma, gg, gg1, & cg0, e0, es(2) REAL (DP) :: theta, cost, sint, cos2t, sin2t LOGICAL :: reorder INTEGER :: npw2, npwx2 REAL (DP) :: empty_ethr ! ! ... external functions ! REAL (DP), EXTERNAL :: ddot ! ! CALL start_clock( 'rcgdiagg' ) ! empty_ethr = MAX( ( ethr * 5.D0 ), 1.D-5 ) ! npw2 = 2 * npw npwx2 = 2 * npwx ! ALLOCATE( spsi( npwx ) ) ALLOCATE( scg( npwx ) ) ALLOCATE( hpsi( npwx ) ) ALLOCATE( g( npwx ) ) ALLOCATE( cg( npwx ) ) ALLOCATE( g0( npwx ) ) ALLOCATE( ppsi( npwx ) ) ! ALLOCATE( lagrange( nbnd ) ) ! avg_iter = 0.D0 notconv = 0 moved = 0 ! ! ... every eigenfunction is calculated separately ! DO m = 1, nbnd ! ! ... calculate S|psi> ! CALL s_1psi( npwx, npw, psi(1,m), spsi ) ! ! ... orthogonalize starting eigenfunction to those already calculated ! CALL DGEMV( 'T', npw2, m, 2.D0, psi, npwx2, spsi, 1, 0.D0, lagrange, 1 ) ! IF ( gstart == 2 ) lagrange(1:m) = lagrange(1:m) - psi(1,1:m) * spsi(1) ! CALL mp_sum( lagrange( 1:m ), intra_bgrp_comm ) ! psi_norm = lagrange(m) ! DO j = 1, m - 1 ! psi(:,m) = psi(:,m) - lagrange(j) * psi(:,j) ! psi_norm = psi_norm - lagrange(j)**2 ! END DO ! psi_norm = SQRT( psi_norm ) ! psi(:,m) = psi(:,m) / psi_norm ! ... set Im[ psi(G=0) ] - needed for numerical stability IF ( gstart == 2 ) psi(1,m) = CMPLX( DBLE(psi(1,m)), 0.D0 ,kind=DP) ! ! ... calculate starting gradient (|hpsi> = H|psi>) ... ! CALL h_1psi( npwx, npw, psi(1,m), hpsi, spsi ) ! ! ... and starting eigenvalue (e = = ) ! ! ... NB: ddot(2*npw,a,1,b,1) = DBLE( zdotc(npw,a,1,b,1) ) ! e(m) = 2.D0 * ddot( npw2, psi(1,m), 1, hpsi, 1 ) ! IF ( gstart == 2 ) e(m) = e(m) - psi(1,m) * hpsi(1) ! CALL mp_sum( e(m), intra_bgrp_comm ) ! ! ... start iteration for this band ! iterate: DO iter = 1, maxter ! ! ... calculate P (PHP)|y> ! ... ( P = preconditioning matrix, assumed diagonal ) ! g(1:npw) = hpsi(1:npw) / precondition(:) ppsi(1:npw) = spsi(1:npw) / precondition(:) ! ! ... ppsi is now S P(P^2)|y> = S P^2|psi>) ! es(1) = 2.D0 * ddot( npw2, spsi(1), 1, g(1), 1 ) es(2) = 2.D0 * ddot( npw2, spsi(1), 1, ppsi(1), 1 ) ! IF ( gstart == 2 ) THEN ! es(1) = es(1) - spsi(1) * g(1) es(2) = es(2) - spsi(1) * ppsi(1) ! END IF ! CALL mp_sum( es , intra_bgrp_comm ) ! es(1) = es(1) / es(2) ! g(:) = g(:) - es(1) * ppsi(:) ! ! ... e1 = / ensures that ! ... = 0 ! ! ... orthogonalize to lowest eigenfunctions (already calculated) ! ! ... scg is used as workspace ! CALL s_1psi( npwx, npw, g(1), scg(1) ) ! CALL DGEMV( 'T', npw2, ( m - 1 ), 2.D0, & psi, npwx2, scg, 1, 0.D0, lagrange, 1 ) ! IF ( gstart == 2 ) & lagrange(1:m-1) = lagrange(1:m-1) - psi(1,1:m-1) * scg(1) ! CALL mp_sum( lagrange( 1 : m-1 ), intra_bgrp_comm ) ! DO j = 1, ( m - 1 ) ! g(:) = g(:) - lagrange(j) * psi(:,j) scg(:) = scg(:) - lagrange(j) * psi(:,j) ! END DO ! IF ( iter /= 1 ) THEN ! ! ... gg1 is (used in Polak-Ribiere formula) ! gg1 = 2.D0 * ddot( npw2, g(1), 1, g0(1), 1 ) ! IF ( gstart == 2 ) gg1 = gg1 - g(1) * g0(1) ! CALL mp_sum( gg1 , intra_bgrp_comm ) ! END IF ! ! ... gg is ! g0(:) = scg(:) ! g0(1:npw) = g0(1:npw) * precondition(:) ! gg = 2.D0 * ddot( npw2, g(1), 1, g0(1), 1 ) ! IF ( gstart == 2 ) gg = gg - g(1) * g0(1) ! CALL mp_sum( gg , intra_bgrp_comm ) ! IF ( iter == 1 ) THEN ! ! ... starting iteration, the conjugate gradient |cg> = |g> ! gg0 = gg ! cg(:) = g(:) ! ELSE ! ! ... |cg(n+1)> = |g(n+1)> + gamma(n) * |cg(n)> ! ! ... Polak-Ribiere formula : ! gamma = ( gg - gg1 ) / gg0 gg0 = gg ! cg(:) = cg(:) * gamma cg(:) = g + cg(:) ! ! ... The following is needed because ! ... is not 0. In fact : ! ... = sin(theta)* ! psi_norm = gamma * cg0 * sint ! cg(:) = cg(:) - psi_norm * psi(:,m) ! END IF ! ! ... |cg> contains now the conjugate gradient ! ... set Im[ cg(G=0) ] - needed for numerical stability IF ( gstart == 2 ) cg(1) = CMPLX( DBLE(cg(1)), 0.D0 ,kind=DP) ! ! ... |scg> is S|cg> ! CALL h_1psi( npwx, npw, cg(1), ppsi(1), scg(1) ) ! cg0 = 2.D0 * ddot( npw2, cg(1), 1, scg(1), 1 ) ! IF ( gstart == 2 ) cg0 = cg0 - cg(1) * scg(1) ! CALL mp_sum( cg0 , intra_bgrp_comm ) ! cg0 = SQRT( cg0 ) ! ! ... |ppsi> contains now HP|cg> ! ... minimize , where : ! ... |y(t)> = cos(t)|y> + sin(t)/cg0 |cg> ! ... Note that = 1, = 0 , ! ... = cg0^2 ! ... so that the result is correctly normalized : ! ... = 1 ! a0 = 4.D0 * ddot( npw2, psi(1,m), 1, ppsi(1), 1 ) ! IF ( gstart == 2 ) a0 = a0 - 2.D0 * psi(1,m) * ppsi(1) ! a0 = a0 / cg0 ! CALL mp_sum( a0 , intra_bgrp_comm ) ! b0 = 2.D0 * ddot( npw2, cg(1), 1, ppsi(1), 1 ) ! IF ( gstart == 2 ) b0 = b0 - cg(1) * ppsi(1) ! b0 = b0 / cg0**2 ! CALL mp_sum( b0 , intra_bgrp_comm ) ! e0 = e(m) ! theta = 0.5D0 * ATAN( a0 / ( e0 - b0 ) ) ! cost = COS( theta ) sint = SIN( theta ) ! cos2t = cost*cost - sint*sint sin2t = 2.D0*cost*sint ! es(1) = 0.5D0 * ( ( e0 - b0 ) * cos2t + a0 * sin2t + e0 + b0 ) es(2) = 0.5D0 * ( - ( e0 - b0 ) * cos2t - a0 * sin2t + e0 + b0 ) ! ! ... there are two possible solutions, choose the minimum ! IF ( es(2) < es(1) ) THEN ! theta = theta + 0.5D0 * pi ! cost = COS( theta ) sint = SIN( theta ) ! END IF ! ! ... new estimate of the eigenvalue ! e(m) = MIN( es(1), es(2) ) ! ! ... upgrade |psi> ! psi(:,m) = cost * psi(:,m) + sint / cg0 * cg(:) ! ! ... here one could test convergence on the energy ! IF ( btype(m) == 1 ) THEN ! IF ( ABS( e(m) - e0 ) < ethr ) EXIT iterate ! ELSE ! IF ( ABS( e(m) - e0 ) < empty_ethr ) EXIT iterate ! END IF ! ! ... upgrade H|psi> and S|psi> ! spsi(:) = cost * spsi(:) + sint / cg0 * scg(:) ! hpsi(:) = cost * hpsi(:) + sint / cg0 * ppsi(:) ! END DO iterate ! IF ( iter >= maxter ) notconv = notconv + 1 ! avg_iter = avg_iter + iter + 1 ! ! ... reorder eigenvalues if they are not in the right order ! ... ( this CAN and WILL happen in not-so-special cases ) ! IF ( m > 1 .AND. reorder ) THEN ! IF ( e(m) - e(m-1) < - 2.D0 * ethr ) THEN ! ! ... if the last calculated eigenvalue is not the largest... ! DO i = m - 2, 1, - 1 ! IF ( e(m) - e(i) > 2.D0 * ethr ) EXIT ! END DO ! i = i + 1 ! moved = moved + 1 ! ! ... last calculated eigenvalue should be in the ! ... i-th position: reorder ! e0 = e(m) ! ppsi(:) = psi(:,m) ! DO j = m, i + 1, - 1 ! e(j) = e(j-1) ! psi(:,j) = psi(:,j-1) ! END DO ! e(i) = e0 ! psi(:,i) = ppsi(:) ! ! ... this procedure should be good if only a few inversions occur, ! ... extremely inefficient if eigenvectors are often in bad order ! ... ( but this should not happen ) ! END IF ! END IF ! END DO ! avg_iter = avg_iter / DBLE( nbnd ) ! DEALLOCATE( lagrange ) DEALLOCATE( ppsi ) DEALLOCATE( g0 ) DEALLOCATE( cg ) DEALLOCATE( g ) DEALLOCATE( hpsi ) DEALLOCATE( scg ) DEALLOCATE( spsi ) ! CALL stop_clock( 'rcgdiagg' ) ! RETURN ! END SUBROUTINE rcgdiagg espresso-5.1/PW/src/pwscf.f900000644000175000017500000000201512341373025014057 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- PROGRAM pwscf !---------------------------------------------------------------------------- ! ! ... Main program calling one instance of Plane Wave Self-Consistent Field code ! USE environment, ONLY : environment_start USE mp_global, ONLY : mp_startup USE read_input, ONLY : read_input_file USE command_line_options, ONLY: input_file_ ! IMPLICIT NONE INTEGER :: exit_status ! ! CALL mp_startup ( ) CALL environment_start ( 'PWSCF' ) ! CALL read_input_file ('PW', input_file_ ) ! ! ... Perform actual calculation ! CALL run_pwscf ( exit_status ) ! CALL stop_run( exit_status ) CALL do_stop( exit_status ) ! STOP ! END PROGRAM pwscf espresso-5.1/PW/src/rdiaghg.f900000644000175000017500000002302712341373025014350 0ustar mbamba! ! Copyright (C) 2003-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE rdiaghg( n, m, h, s, ldh, e, v ) !---------------------------------------------------------------------------- ! ! ... calculates eigenvalues and eigenvectors of the generalized problem ! ... Hv=eSv, with H symmetric matrix, S overlap matrix. ! ... On output both matrix are unchanged ! USE kinds, ONLY : DP ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n, m, ldh REAL(DP), INTENT(INOUT) :: h(ldh,n), s(ldh,n) REAL(DP), INTENT(OUT) :: e(n) REAL(DP), INTENT(OUT) :: v(ldh,m) ! #if defined(__CUDA) && defined(__MAGMA) CALL rdiaghg_gpu( n, m, h, s, ldh, e, v ) #else CALL rdiaghg_compute( n, m, h, s, ldh, e, v ) #endif ! RETURN ! END SUBROUTINE rdiaghg !---------------------------------------------------------------------------- SUBROUTINE rdiaghg_compute( n, m, h, s, ldh, e, v ) !---------------------------------------------------------------------------- ! ! ... calculates eigenvalues and eigenvectors of the generalized problem ! ... Hv=eSv, with H symmetric matrix, S overlap matrix. ! ... On output both matrix are unchanged ! ! ... LAPACK version - uses both DSYGV and DSYGVX ! USE kinds, ONLY : DP USE mp, ONLY : mp_bcast USE mp_bands, ONLY : me_bgrp, root_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n, m, ldh ! dimension of the matrix to be diagonalized ! number of eigenstates to be calculated ! leading dimension of h, as declared in the calling pgm unit REAL(DP), INTENT(INOUT) :: h(ldh,n), s(ldh,n) ! matrix to be diagonalized ! overlap matrix ! REAL(DP), INTENT(OUT) :: e(n) ! eigenvalues REAL(DP), INTENT(OUT) :: v(ldh,m) ! eigenvectors (column-wise) ! INTEGER :: i, j, lwork, nb, mm, info ! mm = number of calculated eigenvectors REAL(DP) :: abstol REAL(DP), PARAMETER :: one = 1_DP REAL(DP), PARAMETER :: zero = 0_DP INTEGER, ALLOCATABLE :: iwork(:), ifail(:) REAL(DP), ALLOCATABLE :: work(:), sdiag(:), hdiag(:) LOGICAL :: all_eigenvalues INTEGER, EXTERNAL :: ILAENV ! ILAENV returns optimal block size "nb" ! CALL start_clock( 'rdiaghg' ) ! ! ... only the first processor diagonalize the matrix ! IF ( me_bgrp == root_bgrp ) THEN ! ! ... save the diagonal of input S (it will be overwritten) ! ALLOCATE( sdiag( n ) ) DO i = 1, n sdiag(i) = s(i,i) END DO ! all_eigenvalues = ( m == n ) ! ! ... check for optimal block size ! nb = ILAENV( 1, 'DSYTRD', 'U', n, -1, -1, -1 ) ! IF ( nb < 5 .OR. nb >= n ) THEN ! lwork = 8*n ! ELSE ! lwork = ( nb + 3 )*n ! END IF ! ALLOCATE( work( lwork ) ) ! IF ( all_eigenvalues ) THEN ! ! ... calculate all eigenvalues ! v(:,:) = h(:,:) ! #if defined (__ESSL) ! ! ... there is a name conflict between essl and lapack ... ! CALL DSYGV( 1, v, ldh, s, ldh, e, v, ldh, n, work, lwork ) ! info = 0 #else CALL DSYGV( 1, 'V', 'U', n, v, ldh, s, ldh, e, work, lwork, info ) #endif ! ELSE ! ! ... calculate only m lowest eigenvalues ! ALLOCATE( iwork( 5*n ) ) ALLOCATE( ifail( n ) ) ! ! ... save the diagonal of input H (it will be overwritten) ! ALLOCATE( hdiag( n ) ) DO i = 1, n hdiag(i) = h(i,i) END DO ! abstol = 0.D0 ! abstol = 2.D0*DLAMCH( 'S' ) ! CALL DSYGVX( 1, 'V', 'I', 'U', n, h, ldh, s, ldh, & 0.D0, 0.D0, 1, m, abstol, mm, e, v, ldh, & work, lwork, iwork, ifail, info ) ! DEALLOCATE( ifail ) DEALLOCATE( iwork ) ! ! ... restore input H matrix from saved diagonal and lower triangle ! DO i = 1, n h(i,i) = hdiag(i) DO j = i + 1, n h(i,j) = h(j,i) END DO DO j = n + 1, ldh h(j,i) = 0.0_DP END DO END DO ! DEALLOCATE( hdiag ) ! END IF ! DEALLOCATE( work ) ! IF ( info > n ) THEN CALL errore( 'rdiaghg', 'S matrix not positive definite', ABS( info ) ) ELSE IF ( info > 0 ) THEN CALL errore( 'rdiaghg', 'eigenvectors failed to converge', ABS( info ) ) ELSE IF ( info < 0 ) THEN CALL errore( 'rdiaghg', 'incorrect call to DSYGV*', ABS( info ) ) END IF ! ... restore input S matrix from saved diagonal and lower triangle ! DO i = 1, n s(i,i) = sdiag(i) DO j = i + 1, n s(i,j) = s(j,i) END DO DO j = n + 1, ldh s(j,i) = 0.0_DP END DO END DO ! DEALLOCATE( sdiag ) ! END IF ! ! ... broadcast eigenvectors and eigenvalues to all other processors ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v, root_bgrp, intra_bgrp_comm ) ! CALL stop_clock( 'rdiaghg' ) ! RETURN ! END SUBROUTINE rdiaghg_compute ! !---------------------------------------------------------------------------- SUBROUTINE prdiaghg( n, h, s, ldh, e, v, desc ) !---------------------------------------------------------------------------- ! ! ... calculates eigenvalues and eigenvectors of the generalized problem ! ... Hv=eSv, with H symmetric matrix, S overlap matrix. ! ... On output both matrix are unchanged ! ! ... Parallel version with full data distribution ! USE kinds, ONLY : DP USE mp, ONLY : mp_bcast USE mp_bands, ONLY : root_bgrp, intra_bgrp_comm USE descriptors, ONLY : la_descriptor #if defined __SCALAPACK USE mp_diag, ONLY : ortho_cntx, me_blacs, np_ortho, me_ortho USE dspev_module, ONLY : pdsyevd_drv #endif ! ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n, ldh ! dimension of the matrix to be diagonalized and number of eigenstates to be calculated ! leading dimension of h, as declared in the calling pgm unit REAL(DP), INTENT(INOUT) :: h(ldh,ldh), s(ldh,ldh) ! matrix to be diagonalized ! overlap matrix ! REAL(DP), INTENT(OUT) :: e(n) ! eigenvalues REAL(DP), INTENT(OUT) :: v(ldh,ldh) ! eigenvectors (column-wise) TYPE(la_descriptor), INTENT(IN) :: desc ! INTEGER :: nx ! local block size REAL(DP), PARAMETER :: one = 1_DP REAL(DP), PARAMETER :: zero = 0_DP REAL(DP), ALLOCATABLE :: hh(:,:) REAL(DP), ALLOCATABLE :: ss(:,:) #ifdef __SCALAPACK INTEGER :: desch( 16 ), info #endif ! CALL start_clock( 'rdiaghg' ) ! IF( desc%active_node > 0 ) THEN ! nx = desc%nrcx ! IF( nx /= ldh ) & CALL errore(" prdiaghg ", " inconsistent leading dimension ", ldh ) ! ALLOCATE( hh( nx, nx ) ) ALLOCATE( ss( nx, nx ) ) ! hh(1:nx,1:nx) = h(1:nx,1:nx) ss(1:nx,1:nx) = s(1:nx,1:nx) ! END IF ! CALL start_clock( 'rdiaghg:choldc' ) ! ! ... Cholesky decomposition of s ( L is stored in s ) ! IF( desc%active_node > 0 ) THEN ! #ifdef __SCALAPACK CALL descinit( desch, n, n, desc%nrcx, desc%nrcx, 0, 0, ortho_cntx, SIZE( hh, 1 ) , info ) IF( info /= 0 ) CALL errore( ' rdiaghg ', ' descinit ', ABS( info ) ) #endif ! #ifdef __SCALAPACK CALL PDPOTRF( 'L', n, ss, 1, 1, desch, info ) IF( info /= 0 ) CALL errore( ' rdiaghg ', ' problems computing cholesky ', ABS( info ) ) #else CALL qe_pdpotrf( ss, nx, n, desc ) #endif ! END IF ! CALL stop_clock( 'rdiaghg:choldc' ) ! ! ... L is inverted ( s = L^-1 ) ! CALL start_clock( 'rdiaghg:inversion' ) ! IF( desc%active_node > 0 ) THEN ! #ifdef __SCALAPACK ! CALL sqr_dsetmat( 'U', n, zero, ss, size(ss,1), desc ) CALL PDTRTRI( 'L', 'N', n, ss, 1, 1, desch, info ) ! IF( info /= 0 ) CALL errore( ' rdiaghg ', ' problems computing inverse ', ABS( info ) ) #else CALL qe_pdtrtri ( ss, nx, n, desc ) #endif ! END IF ! CALL stop_clock( 'rdiaghg:inversion' ) ! ! ... v = L^-1*H ! CALL start_clock( 'rdiaghg:paragemm' ) ! IF( desc%active_node > 0 ) THEN ! CALL sqr_mm_cannon( 'N', 'N', n, ONE, ss, nx, hh, nx, ZERO, v, nx, desc ) ! END IF ! ! ... h = ( L^-1*H )*(L^-1)^T ! IF( desc%active_node > 0 ) THEN ! CALL sqr_mm_cannon( 'N', 'T', n, ONE, v, nx, ss, nx, ZERO, hh, nx, desc ) ! END IF ! CALL stop_clock( 'rdiaghg:paragemm' ) ! IF ( desc%active_node > 0 ) THEN ! ! Compute local dimension of the cyclically distributed matrix ! #ifdef __SCALAPACK CALL pdsyevd_drv( .true., n, desc%nrcx, hh, SIZE(hh,1), e, ortho_cntx ) #else CALL qe_pdsyevd( .true., n, desc, hh, SIZE(hh,1), e ) #endif ! END IF ! ! ... v = (L^T)^-1 v ! CALL start_clock( 'rdiaghg:paragemm' ) ! IF ( desc%active_node > 0 ) THEN ! CALL sqr_mm_cannon( 'T', 'N', n, ONE, ss, nx, hh, nx, ZERO, v, nx, desc ) ! DEALLOCATE( ss ) DEALLOCATE( hh ) ! END IF ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) ! CALL stop_clock( 'rdiaghg:paragemm' ) ! CALL stop_clock( 'rdiaghg' ) ! RETURN ! END SUBROUTINE prdiaghg espresso-5.1/PW/src/force_cc.f900000644000175000017500000000646212341373025014512 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine force_cc (forcecc) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : tpi USE atom, ONLY : rgrid USE uspp_param, ONLY : upf USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : alat, omega, tpiba, tpiba2 USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, gstart, nl, g, gg, ngl, gl, igtongl USE ener, ONLY : etxc, vtxc USE lsda_mod, ONLY : nspin USE scf, ONLY : rho, rho_core, rhog_core USE control_flags, ONLY : gamma_only USE noncollin_module, ONLY : noncolin USE wavefunctions_module, ONLY : psic USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! ! first the dummy variable ! real(DP) :: forcecc (3, nat) ! output: the local forces on atoms integer :: ipol, ig, ir, nt, na ! counter on polarizations ! counter on G vectors ! counter on FFT grid points ! counter on types of atoms ! counter on atoms real(DP), allocatable :: vxc (:,:), rhocg (:) ! exchange-correlation potential ! radial fourier trasform of rho core real(DP) :: arg, fact ! forcecc(:,:) = 0.d0 if ( ANY ( upf(1:ntyp)%nlcc ) ) go to 15 return ! 15 continue if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if ! ! recalculate the exchange-correlation potential ! allocate ( vxc(dfftp%nnr,nspin) ) ! call v_xc (rho, rho_core, rhog_core, etxc, vtxc, vxc) ! psic=(0.0_DP,0.0_DP) if (nspin == 1 .or. nspin == 4) then do ir = 1, dfftp%nnr psic (ir) = vxc (ir, 1) enddo else do ir = 1, dfftp%nnr psic (ir) = 0.5d0 * (vxc (ir, 1) + vxc (ir, 2) ) enddo endif deallocate (vxc) CALL fwfft ('Dense', psic, dfftp) ! ! psic contains now Vxc(G) ! allocate ( rhocg(ngl) ) ! ! core correction term: sum on g of omega*ig*exp(-i*r_i*g)*n_core(g)*vxc ! g = 0 term gives no contribution ! do nt = 1, ntyp if ( upf(nt)%nlcc ) then call drhoc (ngl, gl, omega, tpiba2, rgrid(nt)%mesh, rgrid(nt)%r,& rgrid(nt)%rab, upf(nt)%rho_atc, rhocg) do na = 1, nat if (nt.eq.ityp (na) ) then do ig = gstart, ngm arg = (g (1, ig) * tau (1, na) + g (2, ig) * tau (2, na) & + g (3, ig) * tau (3, na) ) * tpi do ipol = 1, 3 forcecc (ipol, na) = forcecc (ipol, na) + tpiba * omega * & rhocg (igtongl (ig) ) * CONJG(psic (nl (ig) ) ) * & CMPLX( sin (arg), cos (arg) ,kind=DP) * g (ipol, ig) * fact enddo enddo endif enddo endif enddo ! call mp_sum( forcecc, intra_bgrp_comm ) ! deallocate (rhocg) ! return end subroutine force_cc espresso-5.1/PW/src/trnvecc.f900000644000175000017500000000273312341373025014410 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine trnvecc (u, at, bg, iflg) !----------------------------------------------------------------------- ! ! transforms a COMPLEX vector in real space (like a displacement) ! from crystal to cartesian axis (iflag.gt.0) and viceversa (iflag.le.0 ! USE kinds, only : DP implicit none integer :: iflg ! input: gives the versus of the transformatio real(DP) :: at (3, 3), bg (3, 3) ! input: the direct lattice vectors ! input: the reciprocal lattice vectors complex(DP) :: u (3) ! inp/out: the vector to transform integer :: i, k ! ! counter on polarizations !/ complex(DP) :: wrk (3) ! auxiliary variable if (iflg.gt.0) then ! ! forward transformation : ! do i = 1, 3 wrk (i) = u (i) enddo do i = 1, 3 u (i) = 0.d0 do k = 1, 3 u (i) = u (i) + wrk (k) * at (i, k) enddo enddo else ! ! backward transformation : ! do i = 1, 3 wrk (i) = 0.d0 do k = 1, 3 wrk (i) = wrk (i) + u (k) * bg (k, i) enddo enddo do i = 1, 3 u (i) = wrk (i) enddo endif return end subroutine trnvecc espresso-5.1/PW/src/xk_wk_collect.f900000644000175000017500000001371412341373025015575 0ustar mbamba! ! Copyright (C) 2007-2012 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE xk_wk_collect( xk_collect, wk_collect, xk, wk, nkstot, nks ) !---------------------------------------------------------------------------- ! ! ... This routine collects the k points (with granularity kunit) among ! ... nodes and sets the variable xk_collect and wk_collect with the total ! ... number of k-points ! USE io_global, only : stdout USE kinds, ONLY : DP USE mp_pools, ONLY : my_pool_id, npool, kunit, & inter_pool_comm, intra_pool_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER :: nkstot, nks ! total number of k-points ! number of k-points per pool REAL (DP) :: xk(3,nks), wk(nks) REAL (DP) :: xk_collect(3,nkstot), wk_collect(nkstot) ! k-points ! k-point weights ! #if defined (__MPI) ! INTEGER :: nbase, rest, nks1 ! xk_collect=0.d0 ! wk_collect=0.d0 ! nks1 = kunit * ( nkstot / kunit / npool ) ! rest = ( nkstot - nks1 * npool ) / kunit ! IF ( ( my_pool_id + 1 ) <= rest ) nks1 = nks1 + kunit ! IF (nks1.ne.nks) & call errore('xk_wk_collect','problems with nks1',1) ! ! ... calculates nbase = the position in the list of the first point that ! ... belong to this npool - 1 ! nbase = nks * my_pool_id ! IF ( ( my_pool_id + 1 ) > rest ) nbase = nbase + rest * kunit ! ! copy the original points in the correct position of the list ! xk_collect(:,nbase+1:nbase+nks) = xk(:,1:nks) ! wk_collect(nbase+1:nbase+nks)=wk(1:nks) ! CALL mp_sum( xk_collect, inter_pool_comm ) ! CALL mp_sum( wk_collect, inter_pool_comm ) ! #endif ! RETURN ! END SUBROUTINE xk_wk_collect ! !---------------------------------------------------------------------------- SUBROUTINE wg_all(wg_collect, wg, nkstot, nks ) !---------------------------------------------------------------------------- ! ! ... This routine collects all the weights and copy them in all pools. ! USE kinds, ONLY : DP USE mp_pools, ONLY : my_pool_id, npool, kunit, inter_pool_comm USE mp, ONLY : mp_sum USE wvfct, ONLY : nbnd ! IMPLICIT NONE ! INTEGER :: nkstot, nks ! total number of k-points ! number of k-points per pool REAL (DP) :: wg(nbnd, nks) REAL (DP) :: wg_collect(nbnd, nkstot) ! distributed weights of the k points of this pool ! collected weights of all k points ! #if defined (__MPI) ! INTEGER :: nbase, rest, nks1 ! wg_collect=(0.0_DP, 0.0_DP) ! nks1 = ( nkstot / npool ) ! rest = ( nkstot - nks1 * npool ) ! IF ( ( my_pool_id + 1 ) <= rest ) nks1 = nks1 + 1 ! IF (nks1.ne.nks) & call errore('wg_all','problems with nks1',1) ! ! ... calculates nbase = the position in the list of the first point that ! ... belong to this npool - 1 ! nbase = nks * my_pool_id ! IF ( ( my_pool_id + 1 ) > rest ) nbase = nbase + rest ! ! copy the original wavefunctions in the correct position of the list ! wg_collect(:,nbase+1:nbase+nks) = wg(:,1:nks) ! CALL mp_sum( wg_collect, inter_pool_comm ) ! #endif ! RETURN ! END SUBROUTINE wg_all ! ! INTEGER FUNCTION find_current_k(ik, nkstot, nks) !---------------------------------------------------------------------------- ! ! ... This function receives the index of a k point in the list ! ... of nks k-points within a pool and gives the index in the ! ... full list of nkstot k-points ! ! USE kinds, ONLY : DP USE mp_pools, ONLY : my_pool_id, npool, kunit ! IMPLICIT NONE ! INTEGER :: nkstot, nks ! total number of k-points ! number of k-points per pool INTEGER :: ik ! k-points ! #if defined (__MPI) ! INTEGER :: nbase, rest, nks1 ! nks1 = kunit * ( nkstot / kunit / npool ) ! rest = ( nkstot - nks1 * npool ) / kunit ! IF ( ( my_pool_id + 1 ) <= rest ) nks1 = nks1 + kunit ! IF (nks1.ne.nks) & call errore('isk_ngk_collect','problems with nks1',1) ! ! ... calculates nbase = the position in the list of the first point that ! ... belong to this npool - 1 ! nbase = nks * my_pool_id ! IF ( ( my_pool_id + 1 ) > rest ) nbase = nbase + rest * kunit ! ! copy the original points in the correct position of the list ! ! find_current_k = nbase+ik #else find_current_k = ik #endif ! RETURN END FUNCTION find_current_k ! SUBROUTINE xk_collect( xk_col, xk, nkstot, nks ) !---------------------------------------------------------------------------- ! ! ... This routine collects the k points (with granularity kunit) among ! ... nodes and sets the variable xk_col with the total ! ... number of k-points ! USE kinds, ONLY : DP USE mp_pools, ONLY : my_pool_id, npool, kunit, inter_pool_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER :: nkstot, nks ! total number of k-points ! number of k-points per pool REAL (DP) :: xk(3,nks) REAL (DP) :: xk_col(3,nkstot) ! k-points ! #if defined (__MPI) ! INTEGER :: nbase, rest, nks1 ! xk_col=0.d0 ! nks1 = kunit * ( nkstot / kunit / npool ) ! rest = ( nkstot - nks1 * npool ) / kunit ! IF ( ( my_pool_id + 1 ) <= rest ) nks1 = nks1 + kunit ! IF (nks1.ne.nks) & call errore('xk_collect','problems with nks1',1) ! ! ... calculates nbase = the position in the list of the first point that ! ... belong to this npool - 1 ! nbase = nks * my_pool_id ! IF ( ( my_pool_id + 1 ) > rest ) nbase = nbase + rest * kunit ! ! copy the original points in the correct position of the list ! xk_col(:,nbase+1:nbase+nks) = xk(:,1:nks) ! CALL mp_sum( xk_col, inter_pool_comm ) ! #endif ! RETURN ! END SUBROUTINE xk_collect ! ! espresso-5.1/PW/src/addusstress.f900000644000175000017500000001122512341373025015304 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- subroutine addusstres (sigmanlc) !---------------------------------------------------------------------- ! ! This routine computes the part of the atomic force which is due ! to the dependence of the Q function on the atomic position. ! Adds contribution to input sigmanlc, does not sum contributions ! from various processors (sum is performed by calling routine) ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE cell_base, ONLY : omega, tpiba USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, nlm, gg, g, eigts1, eigts2, eigts3, mill USE lsda_mod, ONLY : nspin USE scf, ONLY : v, vltot USE uspp, ONLY : becsum, okvan USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE control_flags, ONLY : gamma_only USE fft_interfaces,ONLY : fwfft ! implicit none ! real(DP) :: sigmanlc (3, 3) ! the nonlocal stress integer :: ig, nt, ih, jh, ijh, ipol, jpol, is, na ! counter on g vectors ! counter on mesh points ! number of composite nm components ! the atom type ! counter on atomic beta functions ! counter on atomic beta functions ! composite index for beta function ! counter on polarizations ! counter on polarizations ! counter on spin polarizations ! counter on atoms complex(DP), allocatable :: aux(:,:), aux1(:), vg(:), qgm(:) complex(DP) :: cfac ! used to contain the potential ! used to compute a product ! used to contain the structure fac real(DP) :: ps, ddot, sus(3,3) real(DP) , allocatable :: qmod(:), ylmk0(:,:), dylmk0(:,:) ! the integral ! the ultrasoft part of the stress ! the modulus of G ! the spherical harmonics ! the spherical harmonics derivativ ! of V_eff and dQ ! function which compute the scal. allocate ( aux(ngm,nspin), aux1(ngm), vg(dfftp%nnr), qgm(ngm), qmod(ngm) ) allocate ( ylmk0(ngm,lmaxq*lmaxq), dylmk0(ngm,lmaxq*lmaxq) ) ! sus(:,:) = 0.d0 ! call ylmr2 (lmaxq * lmaxq, ngm, g, gg, ylmk0) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) do ig = 1, ngm qmod (ig) = sqrt (gg (ig) ) enddo !$OMP END PARALLEL DO ! ! fourier transform of the total effective potential ! do is = 1, nspin if ( nspin == 4 .and. is /= 1 ) then ! vg(:) = v%of_r(:,is) ! ELSE ! vg(:) = vltot(:) + v%of_r(:,is) ! END IF CALL fwfft ('Dense', vg, dfftp) do ig = 1, ngm aux (ig, is) = vg (nl (ig) ) enddo enddo ! ! here we compute the integral Q*V for each atom, ! I = sum_G i G_a exp(-iR.G) Q_nm v^* ! (no contribution from G=0) ! do ipol = 1, 3 call dylmr2 (lmaxq * lmaxq, ngm, g, gg, dylmk0, ipol) do nt = 1, ntyp if ( upf(nt)%tvanp ) then ijh = 1 do ih = 1, nh (nt) do jh = ih, nh (nt) call dqvan2 (ngm, ih, jh, nt, qmod, qgm, ylmk0, dylmk0, ipol) do na = 1, nat if (ityp (na) == nt) then ! do is = 1, nspin do jpol = 1, ipol !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig, cfac) do ig = 1, ngm cfac = aux (ig, is) * & CONJG( eigts1 (mill (1,ig), na) * & eigts2 (mill (2,ig), na) * & eigts3 (mill (3,ig), na) ) aux1 (ig) = cfac * g (jpol, ig) enddo !$OMP END PARALLEL DO ! ! and the product with the Q functions ! ps = omega * ddot (2 * ngm, aux1, 1, qgm, 1) sus (ipol, jpol) = sus (ipol, jpol) - & ps * becsum (ijh, na, is) enddo enddo endif enddo ijh = ijh + 1 enddo enddo endif enddo enddo if (gamma_only) then sigmanlc(:,:) = sigmanlc(:,:) + 2.d0*sus(:,:) else sigmanlc(:,:) = sigmanlc(:,:) + sus(:,:) end if deallocate (ylmk0, dylmk0) deallocate (aux, aux1, vg, qgm, qmod) return end subroutine addusstres espresso-5.1/PW/src/gen_at_dj.f900000644000175000017500000001007612341373025014655 0ustar mbamba! ! Copyright (C) 2002-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine gen_at_dj ( kpoint, natw, is_hubbard, hubbard_l, dwfcat ) !---------------------------------------------------------------------- ! ! This routine calculates the atomic wfc generated by the derivative ! (with respect to the q vector) of the bessel function. This vector ! is needed in computing the Hubbard contribution to the stress tensor. ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : tpi, fpi USE atom, ONLY : msh USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : omega, at, bg, tpiba USE klist, ONLY : xk USE gvect, ONLY : mill, eigts1, eigts2, eigts3, g USE wvfct, ONLY : npw, npwx, igk USE us, ONLY : tab_at, dq USE uspp_param, ONLY : upf ! implicit none ! ! I/O variables ! integer, intent (in) :: kpoint, natw, hubbard_l(ntyp) logical, intent (in) :: is_hubbard(ntyp) complex (DP), intent(out) :: dwfcat(npwx,natw) ! ! local variables ! integer :: l, na, nt, nb, iatw, iig, ig, i0, i1, i2 ,i3, m, lm, & nwfcm, lmax_wfc real (DP) :: eps, qt, arg, px, ux, vx, wx parameter (eps=1.0d-8) complex (DP) :: phase, pref real (DP), allocatable :: gk(:,:), q(:), ylm(:,:), djl(:,:,:) complex (DP), allocatable :: sk(:) ! sk(npw) nwfcm = MAXVAL ( upf(1:ntyp)%nwfc ) lmax_wfc = MAXVAL ( hubbard_l(:) ) allocate ( ylm (npw,(lmax_wfc+1)**2) , djl (npw,nwfcm,ntyp) ) allocate ( gk(3,npw), q (npw) ) do ig = 1, npw gk (1,ig) = xk(1, kpoint) + g(1, igk(ig) ) gk (2,ig) = xk(2, kpoint) + g(2, igk(ig) ) gk (3,ig) = xk(3, kpoint) + g(3, igk(ig) ) q (ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo ! ! ylm = spherical harmonics ! call ylmr2 ((lmax_wfc+1)**2, npw, gk, q, ylm) q(:) = dsqrt ( q(:) ) do nt=1,ntyp do nb=1,upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then do ig = 1, npw qt=q(ig)*tpiba px = qt / dq - int (qt / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = qt / dq + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 djl(ig,nb,nt) = & ( tab_at (i0, nb, nt) * (-vx*wx-ux*wx-ux*vx)/6.d0 + & tab_at (i1, nb, nt) * (+vx*wx-px*wx-px*vx)/2.d0 - & tab_at (i2, nb, nt) * (+ux*wx-px*wx-px*ux)/2.d0 + & tab_at (i3, nb, nt) * (+ux*vx-px*vx-px*ux)/6.d0 )/dq enddo end if end do end do deallocate ( q, gk ) allocate ( sk(npw) ) iatw = 0 do na=1,nat nt=ityp(na) if ( .not. is_hubbard(nt) ) cycle arg = ( xk(1,kpoint) * tau(1,na) + & xk(2,kpoint) * tau(2,na) + & xk(3,kpoint) * tau(3,na) ) * tpi phase=CMPLX(cos(arg),-sin(arg),kind=DP) do ig =1,npw iig = igk(ig) sk(ig) = eigts1(mill(1,iig),na) * & eigts2(mill(2,iig),na) * & eigts3(mill(3,iig),na) * phase end do do nb = 1,upf(nt)%nwfc l = upf(nt)%lchi(nb) if ( upf(nt)%oc(nb) >= 0.d0 .and. l == hubbard_l(nt) ) then pref = (0.d0,1.d0)**l do m = 1,2*l+1 lm = l*l+m iatw = iatw+1 do ig=1,npw dwfcat(ig,iatw)= djl(ig,nb,nt)*sk(ig)*ylm(ig,lm)*pref end do end do end if enddo enddo if (iatw.ne.natw) then WRITE( stdout,*) 'iatw =',iatw,'natw =',natw call errore('gen_at_dj','unexpected error',1) end if deallocate ( sk ) deallocate ( djl, ylm ) return end subroutine gen_at_dj espresso-5.1/PW/src/average_pp.f900000644000175000017500000001075012341373025015053 0ustar mbamba! ! Copyright (C) 2005-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE average_pp ( ntyp ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE atom, ONLY : rgrid USE uspp_param, ONLY : upf ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: ntyp ! INTEGER :: nt, nb, nbe, ind, ind1, l REAL(DP) :: vionl ! ! DO nt = 1, ntyp ! IF ( upf(nt)%has_so ) THEN ! IF ( upf(nt)%tvanp ) & CALL errore( 'average_pp', 'FR-PP please use lspinorb=.true.', 1 ) ! nbe = 0 ! DO nb = 1, upf(nt)%nbeta ! nbe = nbe + 1 ! IF ( upf(nt)%lll(nb) /= 0 .AND. & ABS( upf(nt)%jjj(nb) - upf(nt)%lll(nb) - 0.5D0 ) < 1.D-7 ) & nbe = nbe - 1 END DO ! upf(nt)%nbeta = nbe ! nbe = 0 ! DO nb = 1, upf(nt)%nbeta ! nbe = nbe + 1 ! l = upf(nt)%lll(nbe) ! IF ( l /= 0 ) THEN ! IF (ABS(upf(nt)%jjj(nbe)-upf(nt)%lll(nbe)+0.5d0) < 1.d-7) THEN IF ( ABS( upf(nt)%jjj(nbe+1)-upf(nt)%lll(nbe+1)-0.5d0 ) & > 1.d-7 ) call errore('average_pp','wrong beta functions',1) ind=nbe+1 ind1=nbe ELSE IF (ABS(upf(nt)%jjj(nbe+1)-upf(nt)%lll(nbe+1)+0.5d0) > 1.d-7) & call errore('average_pp','wrong beta functions',2) ind=nbe ind1=nbe+1 ENDIF ! vionl = ( ( l + 1.D0 ) * upf(nt)%dion(ind,ind) + & l * upf(nt)%dion(ind1,ind1) ) / ( 2.D0 * l + 1.D0 ) ! upf(nt)%beta(1:rgrid(nt)%mesh,nb) = 1.D0 / ( 2.D0 * l + 1.D0 ) * & ( ( l + 1.D0 ) * SQRT( upf(nt)%dion(ind,ind) / vionl ) * & upf(nt)%beta(1:rgrid(nt)%mesh,ind) + & l * SQRT( upf(nt)%dion(ind1,ind1) / vionl ) * & upf(nt)%beta(1:rgrid(nt)%mesh,ind1) ) ! upf(nt)%dion(nb,nb) = vionl ! nbe = nbe + 1 ! ELSE ! upf(nt)%beta(1:rgrid(nt)%mesh,nb) = & upf(nt)%beta(1:rgrid(nt)%mesh,nbe) ! upf(nt)%dion(nb,nb) = upf(nt)%dion(nbe,nbe) ! END IF ! upf(nt)%lll(nb)=upf(nt)%lll(nbe) ! END DO ! nbe = 0 ! DO nb = 1, upf(nt)%nwfc ! nbe = nbe + 1 ! IF ( upf(nt)%lchi(nb) /= 0 .AND. & ABS(upf(nt)%jchi(nb)-upf(nt)%lchi(nb)-0.5D0 ) < 1.D-7 ) & nbe = nbe - 1 ! END DO ! upf(nt)%nwfc = nbe ! nbe = 0 ! do nb = 1, upf(nt)%nwfc ! nbe = nbe + 1 ! l = upf(nt)%lchi(nbe) ! IF ( l /= 0 ) THEN ! IF (ABS(upf(nt)%jchi(nbe)-upf(nt)%lchi(nbe)+0.5d0) < 1.d-7) THEN IF ( ABS(upf(nt)%jchi(nbe+1)-upf(nt)%lchi(nbe+1)-0.5d0) > & 1.d-7) call errore('average_pp','wrong chi functions',3) ind=nbe+1 ind1=nbe ELSE IF ( ABS(upf(nt)%jchi(nbe+1)-upf(nt)%lchi(nbe+1)+0.5d0) > & 1.d-7) call errore('average_pp','wrong chi functions',4) ind=nbe ind1=nbe+1 END IF ! upf(nt)%chi(1:rgrid(nt)%mesh,nb) = & ((l+1.D0) * upf(nt)%chi(1:rgrid(nt)%mesh,ind)+ & l * upf(nt)%chi(1:rgrid(nt)%mesh,ind1)) / ( 2.D0 * l + 1.D0 ) ! nbe = nbe + 1 ! ELSE ! upf(nt)%chi(1:rgrid(nt)%mesh,nb) = upf(nt)%chi(1:rgrid(nt)%mesh,nbe) ! END IF ! upf(nt)%lchi(nb)= upf(nt)%lchi(nbe) ! END DO ! END IF ! upf(nt)%has_so = .FALSE. ! END DO ! END SUBROUTINE average_pp espresso-5.1/PW/src/update_pot.f900000644000175000017500000005727312341373025015121 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! #define ONE (1.D0,0.D0) #define ZERO (0.D0,0.D0) ! !---------------------------------------------------------------------------- SUBROUTINE update_pot() !---------------------------------------------------------------------------- ! ! ... update the potential extrapolating the charge density and extrapolates ! ... the wave-functions ! ! ... charge density extrapolation : ! ! ... pot_order = 0 copy the old potential (nothing is done) ! ! ... pot_order = 1 subtract old atomic charge density and sum the new ! ... if dynamics is done the routine extrapolates also ! ... the difference between the the scf charge and the ! ... atomic one, ! ! ... pot_order = 2 first order extrapolation : ! ! ... rho(t+dt) = 2*rho(t) - rho(t-dt) ! ! ... pot_order = 3 second order extrapolation : ! ! ... rho(t+dt) = rho(t) + ! ... + alpha0*( rho(t) - rho(t-dt) ) ! ... + beta0* ( rho(t-dt) - rho(t-2*dt) ) ! ! ! ... wave-functions extrapolation : ! ! ... wfc_order = 0 nothing is done ! ! ... wfc_order = 2 first order extrapolation : ! ! ... |psi(t+dt)> = 2*|psi(t)> - |psi(t-dt)> ! ! ... wfc_order = 3 second order extrapolation : ! ! ... |psi(t+dt)> = |psi(t)> + ! ... + alpha0*( |psi(t)> - |psi(t-dt)> ) ! ... + beta0* ( |psi(t-dt)> - |psi(t-2*dt)> ) ! ! ! ... alpha0 and beta0 are calculated in "find_alpha_and_beta()" so that ! ... |tau'-tau(t+dt)| is minimum; ! ... tau' and tau(t+dt) are respectively the atomic positions at time ! ... t+dt and the extrapolated one: ! ! ... tau(t+dt) = tau(t) + alpha0*( tau(t) - tau(t-dt) ) ! ... + beta0*( tau(t-dt) -tau(t-2*dt) ) ! ! USE kinds, ONLY : DP USE control_flags, ONLY : pot_order, wfc_order, history, alpha0, beta0 USE io_files, ONLY : prefix, iunupdate, tmp_dir, wfc_dir, nd_nmbr, seqopn USE io_global, ONLY : ionode, ionode_id USE cell_base, ONLY : bg USE ions_base, ONLY : nat, tau, nsp, ityp USE gvect, ONLY : ngm, g USE vlocal, ONLY : strf USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: tauold(:,:,:) INTEGER :: rho_extr, wfc_extr LOGICAL :: exists ! ! CALL start_clock( 'update_pot' ) ! ALLOCATE( tauold( 3, nat, 3 ) ) ! IF ( ionode ) THEN ! CALL seqopn( iunupdate, 'update', 'FORMATTED', exists ) ! IF ( exists ) THEN ! READ( UNIT = iunupdate, FMT = * ) history READ( UNIT = iunupdate, FMT = * ) tauold ! ! ... find the best coefficients for the extrapolation ! ... of the charge density and of the wavefunctions ! ... (see Arias et al. PRB 45, 1538 (1992) ) ! CALL find_alpha_and_beta( nat, tau, tauold, alpha0, beta0 ) ! CLOSE( UNIT = iunupdate, STATUS = 'KEEP' ) ! ELSE ! ! ... default values of extrapolation coefficients ! alpha0 = 1.D0 beta0 = 0.D0 history = 0 tauold = 0.0_dp ! CLOSE( UNIT = iunupdate, STATUS = 'DELETE' ) ! END IF ! END IF ! CALL mp_bcast( alpha0, ionode_id, intra_image_comm ) CALL mp_bcast( beta0, ionode_id, intra_image_comm ) CALL mp_bcast( tauold, ionode_id, intra_image_comm ) ! IF ( wfc_order > 0 ) THEN ! ! ... determines the maximum effective order of the extrapolation on the ! ... basis of the files that are really available (for wavefunctions) ! IF ( ionode ) THEN ! wfc_extr = MIN( 1, history, wfc_order ) ! INQUIRE( FILE = TRIM( wfc_dir ) // & & TRIM( prefix ) // '.oldwfc' // nd_nmbr, EXIST = exists ) ! IF ( exists ) THEN ! wfc_extr = MIN( 2, history, wfc_order ) ! INQUIRE( FILE = TRIM( wfc_dir ) // & & TRIM( prefix ) // '.old2wfc' // nd_nmbr , EXIST = exists ) ! IF ( exists ) wfc_extr = MIN( 3, history, wfc_order ) ! END IF ! END IF ! CALL mp_bcast( wfc_extr, ionode_id, intra_image_comm ) ! ! ! ... save tau(t+dt), replace with tau(t) ! ... extrapolate_wfcs needs tau(t) to evaluate S(t) ! ... note that structure factors have not yet been updated ! tauold (:,:,2) = tau (:,:) tau (:,:) = tauold (:,:,1) ! CALL extrapolate_wfcs( wfc_extr ) ! ! ... restore tau(t+dt) ! tau (:,:) = tauold (:,:,2) ! END IF ! DEALLOCATE( tauold ) ! ! ... determines the maximum effective order of the extrapolation on the ! ... basis of the files that are really available (for the charge density) ! IF ( ionode ) THEN ! rho_extr = MIN( 1, history, pot_order ) ! INQUIRE( FILE = TRIM( tmp_dir ) // TRIM( prefix ) // & & '.save/charge-density.old.dat', EXIST = exists ) ! IF ( .NOT. exists ) & ! INQUIRE( FILE = TRIM( tmp_dir ) // TRIM( prefix ) // & & '.save/charge-density.old.xml', EXIST = exists ) ! IF ( exists ) THEN ! rho_extr = MIN( 2, history, pot_order ) ! INQUIRE( FILE = TRIM( tmp_dir ) // TRIM( prefix ) // & & '.save/charge-density.old2.dat', EXIST = exists ) ! IF ( .NOT. exists ) & ! INQUIRE( FILE = TRIM( tmp_dir ) // TRIM( prefix ) // & & '.save/charge-density.old2.xml', EXIST = exists ) ! IF ( exists ) rho_extr = MIN( 3, history, pot_order ) ! END IF ! END IF ! CALL mp_bcast( rho_extr, ionode_id, intra_image_comm ) ! CALL extrapolate_charge( rho_extr ) ! CALL stop_clock( 'update_pot' ) ! RETURN ! END SUBROUTINE update_pot ! !---------------------------------------------------------------------------- SUBROUTINE extrapolate_charge( rho_extr ) !---------------------------------------------------------------------------- ! USE constants, ONLY : eps32 USE io_global, ONLY : stdout USE kinds, ONLY : DP USE cell_base, ONLY : omega, bg USE ions_base, ONLY : nat, tau, nsp, ityp USE fft_base, ONLY : dfftp, dffts USE fft_interfaces, ONLY : fwfft, invfft USE gvect, ONLY : ngm, g, gg, gstart, nl, eigts1, eigts2, eigts3 USE lsda_mod, ONLY : lsda, nspin USE scf, ONLY : rho, rho_core, rhog_core, v USE ldaU, ONLY : eth USE wavefunctions_module, ONLY : psic USE control_flags, ONLY : alpha0, beta0 USE ener, ONLY : ehart, etxc, vtxc, epaw USE extfield, ONLY : etotefield USE cellmd, ONLY : lmovecell, omega_old USE vlocal, ONLY : strf USE noncollin_module, ONLY : noncolin USE klist, ONLY : nelec USE io_rho_xml, ONLY : write_rho, read_rho USE paw_variables, ONLY : okpaw, ddd_paw USE paw_onecenter, ONLY : PAW_potential USE funct, ONLY : stop_exx ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: rho_extr ! REAL(DP), ALLOCATABLE :: work(:,:), work1(:,:) ! work is the difference between rho and atomic rho at time t ! work1 is the same thing at time t-dt REAL(DP) :: charge ! INTEGER :: is ! IF ( rho_extr < 1 ) THEN ! ! ... calculate structure factors for the new positions ! IF ( lmovecell ) THEN CALL scale_h() CALL stop_exx() ENDIF ! CALL struc_fact( nat, tau, nsp, ityp, ngm, g, bg, & dfftp%nr1, dfftp%nr2, dfftp%nr3, strf, eigts1, eigts2, eigts3 ) ! ! ... new charge density from extrapolated wfcs ! IF ( rho_extr < 0 ) THEN ! CALL sum_band () ! WRITE( UNIT = stdout, FMT = '(5X, & & "charge density from extrapolated wavefunctions")' ) ELSE ! WRITE( UNIT = stdout, FMT = '(5X, & & "charge density from previous step")' ) ! END IF ! CALL set_rhoc() ! ELSE ! ALLOCATE( work( dfftp%nnr, 1 ) ) ! work = 0.D0 ! ! ... in the lsda case the magnetization will follow rigidly the density ! ... keeping fixed the value of zeta = mag / rho_tot. ! ... zeta is set here and put in rho%of_r(:,2) while rho%of_r(:,1) ! ... will contain the total valence charge ! IF ( lsda ) CALL rho2zeta( rho%of_r, rho_core, dfftp%nnr, nspin, 1 ) ! IF ( noncolin ) THEN ! DO is = 2, nspin ! WHERE( rho%of_r(:,1) > eps32 ) ! rho%of_r(:,is) = rho%of_r(:,is) / rho%of_r(:,1) ! ELSEWHERE ! rho%of_r(:,is) = 0.D0 ! END WHERE ! END DO ! END IF ! ! ... subtract the old atomic charge density ! CALL atomic_rho( work, 1 ) ! rho%of_r(:,1) = rho%of_r(:,1) - work(:,1) ! IF ( lmovecell ) rho%of_r(:,1) = rho%of_r(:,1) * omega_old ! ! ... extrapolate the difference between the atomic charge and ! ... the self-consistent one ! IF ( rho_extr == 1 ) THEN ! ! ... if rho_extr = 1 update the potential subtracting to the charge ! ... density the "old" atomic charge and summing the ! ... new one ! WRITE( UNIT = stdout, FMT = '(5X, & & "NEW-OLD atomic charge density approx. for the potential")' ) ! CALL write_rho( rho%of_r, 1, 'old' ) ! ELSE IF ( rho_extr == 2 ) THEN ! WRITE( UNIT = stdout, & FMT = '(5X,"first order charge density extrapolation")' ) ! ! ... oldrho -> work ! CALL read_rho( work, 1, 'old' ) ! ! ... rho%of_r -> oldrho ! ... work -> oldrho2 ! CALL write_rho( rho%of_r, 1, 'old' ) CALL write_rho( work, 1, 'old2' ) ! ! ... extrapolation ! rho%of_r(:,1) = 2.D0*rho%of_r(:,1) - work(:,1) ! ELSE IF ( rho_extr == 3 ) THEN ! WRITE( UNIT = stdout, & FMT = '(5X,"second order charge density extrapolation")' ) ! ALLOCATE( work1( dfftp%nnr, 1 ) ) ! work1 = 0.D0 ! ! ... oldrho2 -> work1 ! ... oldrho -> work ! CALL read_rho( work1, 1, 'old2' ) CALL read_rho( work, 1, 'old' ) ! ! ... rho%of_r -> oldrho ! ... work -> oldrho2 ! CALL write_rho( rho%of_r, 1, 'old' ) CALL write_rho( work, 1, 'old2' ) ! rho%of_r(:,1) = rho%of_r(:,1) + alpha0*( rho%of_r(:,1) - work(:,1) ) + & beta0*( work(:,1) - work1(:,1) ) ! DEALLOCATE( work1 ) ! END IF ! IF ( lmovecell ) rho%of_r(:,1) = rho%of_r(:,1) / omega ! ! ... calculate structure factors for the new positions ! IF ( lmovecell ) CALL scale_h() ! CALL struc_fact( nat, tau, nsp, ityp, ngm, g, bg, & dfftp%nr1, dfftp%nr2, dfftp%nr3, strf, eigts1, eigts2, eigts3 ) ! CALL set_rhoc() ! ! ... add atomic charges in the new positions ! CALL atomic_rho( work, 1 ) ! rho%of_r(:,1) = rho%of_r(:,1) + work(:,1) ! ! ... reset up and down charge densities in the LSDA case ! IF ( lsda ) CALL rho2zeta( rho%of_r, rho_core, dfftp%nnr, nspin, -1 ) ! IF ( noncolin ) THEN ! DO is = 2, nspin ! WHERE( rho%of_r(:,1) > eps32 ) ! rho%of_r(:,is) = rho%of_r(:,is)*rho%of_r(:,1) ! ELSEWHERE ! rho%of_r(:,is) = 0.D0 ! END WHERE ! END DO ! END IF ! DEALLOCATE( work ) ! END IF ! ! ... bring extrapolated rho to G-space ! DO is = 1, nspin ! psic(:) = rho%of_r(:,is) ! CALL fwfft ('Dense', psic, dfftp) ! rho%of_g(:,is) = psic(nl(:)) ! END DO ! CALL v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v ) IF (okpaw) CALL PAW_potential(rho%bec, ddd_PAW, epaw) ! IF ( ABS( charge - nelec ) / charge > 1.D-7 ) THEN ! WRITE( stdout, & '(5X,"extrapolated charge ",F10.5,", renormalised to ",F10.5)') & charge, nelec ! rho%of_r = rho%of_r / charge*nelec rho%of_g = rho%of_g / charge*nelec ! END IF ! RETURN ! END SUBROUTINE extrapolate_charge ! !----------------------------------------------------------------------- SUBROUTINE extrapolate_wfcs( wfc_extr ) !----------------------------------------------------------------------- ! ! ... This routine extrapolate the wfc's after a "parallel alignment" ! ... of the basis of the t-dt and t time steps, according to a recipe ! ... by Mead, Rev. Mod. Phys., vol 64, pag. 51 (1992), eqs. 3.20-3.29 ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE klist, ONLY : nks, ngk, xk USE lsda_mod, ONLY : lsda, current_spin, isk USE control_flags, ONLY : alpha0, beta0, wfc_order USE wvfct, ONLY : nbnd, npw, npwx, igk, current_k USE ions_base, ONLY : nat, tau USE io_files, ONLY : nwordwfc, iunigk, iunwfc, iunoldwfc, & iunoldwfc2, diropn USE buffers, ONLY : get_buffer, save_buffer USE uspp, ONLY : nkb, vkb, okvan USE wavefunctions_module, ONLY : evc USE noncollin_module, ONLY : noncolin, npol USE control_flags, ONLY : gamma_only USE becmod, ONLY : allocate_bec_type, deallocate_bec_type, & bec_type, becp, calbec USE mp_images, ONLY : intra_image_comm USE mp, ONLY : mp_barrier ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: wfc_extr ! INTEGER :: ik, zero_ew, lwork, info ! do-loop variables ! counter on k-points ! number of zero 'eigenvalues' of the s_m matrix ! used by singular value decomposition (ZGESVD) ! flag returned by ZGESVD COMPLEX(DP), ALLOCATABLE :: sp_m(:,:), u_m(:,:), w_m(:,:), work(:) ! the overlap matrix s^+ (eq. 3.24) ! left unitary matrix in the SVD of sp_m ! right unitary matrix in the SVD of sp_m ! workspace for ZGESVD COMPLEX(DP), ALLOCATABLE :: evcold(:,:), aux(:,:) ! wavefunctions at previous iteration + workspace REAL(DP), ALLOCATABLE :: ew(:), rwork(:), rp_m(:,:) ! the eigenvalues of s_m ! workspace for ZGESVD ! real version of sp_m LOGICAL :: exst ! CALL mp_barrier( intra_image_comm ) ! debug ! IF ( wfc_extr == 1 ) THEN ! CALL diropn( iunoldwfc, 'oldwfc', 2*nwordwfc, exst ) ! DO ik = 1, nks ! ! ... "now" -> "old" ! IF ( nks > 1 ) CALL get_buffer( evc, nwordwfc, iunwfc, ik ) CALL davcio( evc, 2*nwordwfc, iunoldwfc, ik, +1 ) ! END DO ! CLOSE( UNIT = iunoldwfc, STATUS = 'KEEP' ) ! ELSE ! CALL diropn( iunoldwfc, 'oldwfc', 2*nwordwfc, exst ) IF ( wfc_extr > 2 .OR. wfc_order > 2 ) & CALL diropn( iunoldwfc2, 'old2wfc', 2*nwordwfc, exst ) ! IF ( wfc_extr == 2 ) THEN ! WRITE( stdout, '(/5X,"first order wave-functions extrapolation")' ) ! ELSE ! WRITE( stdout, '(/5X,"second order wave-functions extrapolation")' ) ! END IF ! ALLOCATE( evcold( npwx*npol, nbnd ), aux( npwx*npol, nbnd ) ) ALLOCATE( sp_m( nbnd, nbnd ), u_m( nbnd, nbnd ), w_m( nbnd, nbnd ), ew( nbnd ) ) CALL allocate_bec_type ( nkb, nbnd, becp ) ! IF( SIZE( aux ) /= SIZE( evc ) ) & CALL errore('extrapolate_wfcs ', ' aux wrong size ', ABS( SIZE( aux ) - SIZE( evc ) ) ) ! ! query workspace ! lwork = 5*nbnd ! ALLOCATE( rwork( lwork ) ) ALLOCATE( work( lwork ) ) lwork = -1 CALL ZGESVD( 'A', 'A', nbnd, nbnd, sp_m, nbnd, ew, u_m, & nbnd, w_m, nbnd, work, lwork, rwork, info ) ! lwork = INT(work( 1 )) + 1 ! IF( lwork > SIZE( work ) ) THEN DEALLOCATE( work ) ALLOCATE( work( lwork ) ) END IF ! IF ( nks > 1 ) REWIND( iunigk ) ! zero_ew = 0 ! DO ik = 1, nks ! ! ... read wavefcts as (t-dt), replace with wavefcts at (t) ! CALL davcio( evcold, 2*nwordwfc, iunoldwfc, ik, -1 ) IF ( nks > 1 ) CALL get_buffer( evc, nwordwfc, iunwfc, ik ) CALL davcio( evc, 2*nwordwfc, iunoldwfc, ik, +1 ) ! IF ( okvan ) THEN ! ! ... Ultrasoft PP: calculate overlap matrix ! ... various initializations: k, spin, number of PW, indices ! current_k = ik IF ( lsda ) current_spin = isk(ik) npw = ngk (ik) IF ( nks > 1 ) READ( iunigk ) igk ! call g2_kin (ik) ! ! ... Calculate nonlocal pseudopotential projectors |beta> ! IF ( nkb > 0 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! CALL calbec( npw, vkb, evc, becp ) ! CALL s_psi ( npwx, npw, nbnd, evc, aux ) ELSE ! ! ... Norm-Conserving PP: no overlap matrix ! aux = evc ! END IF ! ! ... construct s^+_m = ! IF ( gamma_only ) THEN ALLOCATE( rp_m ( nbnd, nbnd ) ) CALL calbec ( npw, aux, evcold, rp_m ) sp_m(:,:) = CMPLX(rp_m(:,:),0.0_DP,kind=DP) DEALLOCATE( rp_m ) ELSE IF ( noncolin) THEN CALL calbec ( npwx*npol, aux, evcold, sp_m ) ELSE CALL calbec ( npw, aux, evcold, sp_m ) END IF ! ! ... the unitary matrix [sp_m*s_m]^(-1/2)*sp_m (eq. 3.29) by means the ! ... singular value decomposition (SVD) of sp_m = u_m*diag(ew)*w_m ! ... becomes u_m * w_m ! CALL ZGESVD( 'A', 'A', nbnd, nbnd, sp_m, nbnd, ew, u_m, & nbnd, w_m, nbnd, work, lwork, rwork, info ) ! ! ... check on eigenvalues ! zero_ew = COUNT( ew(:) < 0.1D0 ) ! ! ... use sp_m to store u_m * w_m ! CALL ZGEMM( 'N', 'N', nbnd, nbnd, nbnd, ONE, & u_m, nbnd, w_m, nbnd, ZERO, sp_m, nbnd ) ! ! ... now use aux as workspace to calculate "aligned" wavefcts: ! ! ... aux_i = sum_j evcold_j*s_m_ji (eq.3.21) ! CALL ZGEMM( 'N', 'C', npw, nbnd, nbnd, ONE, & evcold, npwx, sp_m, nbnd, ZERO, aux, npwx ) ! ! ... alpha0 and beta0 are calculated in "move_ions" ! ... for first-order interpolation, alpha=1, beta0=0 ! IF ( wfc_extr == 3 ) THEN evc = ( 1.0_dp + alpha0 ) * evc + ( beta0 - alpha0 ) * aux ELSE evc = 2.0_dp * evc - aux END IF ! IF ( wfc_order > 2 ) THEN ! ! ... second-order interpolation: ! ... read wavefcts at (t-2dt), save aligned wavefcts at (t-dt) ! IF ( wfc_extr == 3 ) & CALL davcio( evcold, 2*nwordwfc, iunoldwfc2, ik, -1 ) ! CALL davcio( aux, 2*nwordwfc, iunoldwfc2, ik, +1 ) ! IF ( wfc_extr ==3 ) THEN ! ! ... align wfcs at (t-2dt), add to interpolation formula ! CALL ZGEMM( 'N', 'C', npw, nbnd, nbnd, ONE, & evcold, npwx, sp_m, nbnd, ZERO, aux, npwx ) ! evc = evc - beta0 * aux ! END IF ! END IF ! ! ... save interpolated wavefunctions to file iunwfc ! IF ( nks > 1 ) CALL save_buffer( evc, nwordwfc, iunwfc, ik ) ! END DO ! IF ( zero_ew > 0 ) & WRITE( stdout, '( 5X,"Message from extrapolate_wfcs: ",/, & & 5X,"the matrix has ", & & I2," small (< 0.1) eigenvalues")' ) zero_ew ! DEALLOCATE( u_m, w_m, ew, aux, evcold, sp_m ) DEALLOCATE( work, rwork ) CALL deallocate_bec_type ( becp ) ! CLOSE( UNIT = iunoldwfc, STATUS = 'KEEP' ) IF ( wfc_extr > 2 .OR. wfc_order > 2 ) & CLOSE( UNIT = iunoldwfc2, STATUS = 'KEEP' ) ! END IF ! CALL mp_barrier( intra_image_comm ) ! debug ! RETURN ! END SUBROUTINE extrapolate_wfcs ! ! ... this routine is used also by compute_scf (NEB) and compute_fes_grads ! !---------------------------------------------------------------------------- SUBROUTINE find_alpha_and_beta( nat, tau, tauold, alpha0, beta0 ) !---------------------------------------------------------------------------- ! ! ... This routine finds the best coefficients alpha0 and beta0 so that ! ! ... | tau(t+dt) - tau' | is minimum, where ! ! ... tau' = tau(t) + alpha0 * ( tau(t) - tau(t-dt) ) ! ... + beta0 * ( tau(t-dt) -tau(t-2*dt) ) ! USE constants, ONLY : eps16 USE kinds, ONLY : DP USE io_global, ONLY : stdout USE control_flags, ONLY : history ! IMPLICIT NONE ! INTEGER :: nat, na, ipol REAL(DP) :: alpha0, beta0, tau(3,nat), tauold(3,nat,3) REAL(DP) :: a11, a12, a21, a22, b1, b2, c, det ! ! IF ( history <= 2 ) RETURN ! ! ... solution of the linear system ! a11 = 0.D0 a12 = 0.D0 a21 = 0.D0 a22 = 0.D0 b1 = 0.D0 b2 = 0.D0 c = 0.D0 ! DO na = 1, nat ! DO ipol = 1, 3 ! a11 = a11 + ( tauold(ipol,na,1) - tauold(ipol,na,2) )**2 ! a12 = a12 + ( tauold(ipol,na,1) - tauold(ipol,na,2) ) * & ( tauold(ipol,na,2) - tauold(ipol,na,3) ) ! a22 = a22 + ( tauold(ipol,na,2) - tauold(ipol,na,3) )**2 ! b1 = b1 - ( tauold(ipol,na,1) - tau(ipol,na) ) * & ( tauold(ipol,na,1) - tauold(ipol,na,2) ) ! b2 = b2 - ( tauold(ipol,na,1) - tau(ipol,na) ) * & ( tauold(ipol,na,2) - tauold(ipol,na,3) ) ! c = c + ( tauold(ipol,na,1) - tau(ipol,na) )**2 ! END DO ! END DO ! a21 = a12 ! det = a11 * a22 - a12 * a21 ! IF ( det < - eps16 ) THEN ! alpha0 = 0.D0 beta0 = 0.D0 ! WRITE( UNIT = stdout, & FMT = '(5X,"WARNING: in find_alpha_and_beta det = ",F10.6)' ) det ! END IF ! ! ... case det > 0: a well defined minimum exists ! IF ( det > eps16 ) THEN ! alpha0 = ( b1 * a22 - b2 * a12 ) / det beta0 = ( a11 * b2 - a21 * b1 ) / det ! ELSE ! ! ... case det = 0 : the two increments are linearly dependent, ! ... chose solution with alpha = b1 / a11 and beta = 0 ! ... ( discard oldest configuration ) ! alpha0 = 0.D0 beta0 = 0.D0 ! IF ( a11 /= 0.D0 ) alpha0 = b1 / a11 ! END IF ! RETURN ! END SUBROUTINE find_alpha_and_beta espresso-5.1/PW/src/addusforce.f900000644000175000017500000001147512341373025015066 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine addusforce (forcenl) !---------------------------------------------------------------------- ! ! This routine computes the contribution to atomic forces due ! to the dependence of the Q function on the atomic position. ! On output: the contribution is added to forcenl ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE cell_base, ONLY : omega, tpiba USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, nlm, gg, g, eigts1, eigts2, eigts3, mill USE noncollin_module, ONLY : nspin_mag USE scf, ONLY : v, vltot USE uspp, ONLY : becsum, okvan USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE control_flags, ONLY : gamma_only USE fft_interfaces,ONLY : fwfft ! implicit none ! real(DP) :: forcenl (3, nat) ! local variables integer :: ig, ir, dim, nt, ih, jh, ijh, ipol, is, na complex(DP):: cfac real(DP) :: fact, ddot ! work space complex(DP), allocatable :: aux(:,:), aux1(:,:), vg(:), qgm(:) real(DP) , allocatable :: ddeeq(:,:,:,:), qmod(:), ylmk0(:,:) ! if (.not.okvan) return ! if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if allocate (aux(ngm,nspin_mag)) ! ! fourier transform of the total effective potential ! allocate (vg(dfftp%nnr)) do is = 1, nspin_mag if (nspin_mag.eq.4.and.is.ne.1) then vg (:) = v%of_r(:,is) else vg (:) = vltot (:) + v%of_r (:, is) endif CALL fwfft ('Dense', vg, dfftp) aux (:, is) = vg (nl (:) ) * tpiba * (0.d0, -1.d0) enddo deallocate (vg) ! allocate (aux1(ngm,3)) allocate (ddeeq( 3, (nhm*(nhm+1))/2,nat,nspin_mag)) allocate (qgm( ngm)) allocate (qmod( ngm)) allocate (ylmk0(ngm,lmaxq*lmaxq)) ! ddeeq(:,:,:,:) = 0.d0 ! call ylmr2 (lmaxq * lmaxq, ngm, g, gg, ylmk0) ! !qmod (:) = sqrt (gg (:) ) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) do ig = 1, ngm qmod (ig) = sqrt (gg (ig) ) enddo !$OMP END PARALLEL DO ! ! here we compute the integral Q*V for each atom, ! I = sum_G i G_a exp(-iR.G) Q_nm v^* ! do nt = 1, ntyp if ( upf(nt)%tvanp ) then ijh = 1 do ih = 1, nh (nt) do jh = ih, nh (nt) call qvan2 (ngm, ih, jh, nt, qmod, qgm, ylmk0) do na = 1, nat if (ityp (na) == nt) then ! ! The product of potential, structure factor and iG ! do is = 1, nspin_mag !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig, cfac) do ig = 1, ngm cfac = aux (ig, is) * CONJG(eigts1 (mill(1,ig), na) *& eigts2 (mill(2,ig), na) *& eigts3 (mill(3,ig), na) ) aux1 (ig, 1) = g (1, ig) * cfac aux1 (ig, 2) = g (2, ig) * cfac aux1 (ig, 3) = g (3, ig) * cfac enddo !$OMP END PARALLEL DO ! ! and the product with the Q functions ! G=0 term gives no contribution ! do ipol = 1, 3 ddeeq (ipol, ijh, na, is) = omega * fact * & ddot (2 * ngm, aux1 (1, ipol), 1, qgm, 1) enddo enddo endif enddo ijh = ijh + 1 enddo enddo endif enddo call mp_sum ( ddeeq, intra_bgrp_comm ) ! WRITE( stdout,'( "dmatrix atom ",i4)') na ! do ih = 1, nh(nt) ! WRITE( stdout,'(8f9.4)') (ddeeq(ipol,ih,jh,na),jh=1,nh(nt)) ! end do ! WRITE( stdout,'( "dion pseudo ",i4)') nt ! do ih = 1, nh(nt) ! WRITE( stdout,'(8f9.4)') (dvan(ih,jh,nt),jh=1,nh(nt)) ! end do do is = 1, nspin_mag do na = 1, nat nt = ityp (na) dim = (nh (nt) * (nh (nt) + 1) ) / 2 do ipol = 1, 3 do ir = 1, dim forcenl (ipol, na) = forcenl (ipol, na) + & ddeeq (ipol, ir, na, is) * becsum (ir, na, is) enddo enddo enddo enddo deallocate (ylmk0) deallocate (qgm) deallocate (qmod) deallocate (ddeeq) deallocate (aux1) deallocate (aux) return end subroutine addusforce espresso-5.1/PW/src/c_phase_field.f900000644000175000017500000005760312341373025015517 0ustar mbamba! ! Copyright (C) 2001-2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! this routine is used to calculate the electronic polarization ! when a finite electric field, described through the modern ! theory of the polarization, is applied. ! It is very similar to the routine c_phase in bp_c_phase ! however the numbering of the k-points in the strings is different !======================================================================! SUBROUTINE c_phase_field(el_pola,ion_pola, fact_pola, pdir) !----------------------------------------------------------------------! ! Geometric phase calculation along a strip of nppstr_3d(pdir) k-points ! averaged over a 2D grid of nkort k-points ortogonal to nppstr_3d(pdir) ! --- Make use of the module with common information --- USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files, ONLY : iunwfc, nwordwfc USE buffers, ONLY : get_buffer USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv, atm USE cell_base, ONLY : at, alat, tpiba, omega, tpiba2 USE constants, ONLY : pi, tpi USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, g, gcutm, ngm_g USE uspp, ONLY : nkb, vkb, okvan USE uspp_param, ONLY : upf, lmaxq, nbetam, nh, nhm USE lsda_mod, ONLY : nspin USE klist, ONLY : nelec, degauss, nks, xk, wk USE wvfct, ONLY : npwx, npw, nbnd, ecutwfc USE noncollin_module, ONLY : noncolin, npol USE bp, ONLY : nppstr_3d, mapgm_global, nx_el USE fixed_occ USE gvect, ONLY : ig_l2g USE mp, ONLY : mp_sum USE mp_bands, ONLY : intra_bgrp_comm USE mp_world, ONLY : world_comm USE becmod, ONLY : calbec,bec_type,allocate_bec_type,deallocate_bec_type USE spin_orb, ONLY: lspinorb ! --- Avoid implicit definitions --- IMPLICIT NONE REAL(kind=DP), INTENT(out) :: el_pola!in output electronic polarization REAL(kind=DP), INTENT(out) :: ion_pola!in output ionic polarization REAL(kind=DP), INTENT(out) :: fact_pola!in outout the prefactor of the polarization INTEGER, INTENT(in) :: pdir!direction on which the polarization is calculated ! --- Internal definitions --- INTEGER :: i INTEGER :: igk1(npwx) INTEGER :: igk0(npwx) INTEGER :: ig INTEGER :: info INTEGER :: is INTEGER :: istring INTEGER :: iv INTEGER :: ivpt(nbnd) INTEGER :: j INTEGER :: jkb INTEGER :: jkb_bp INTEGER :: jkb1 INTEGER :: jv INTEGER :: kort INTEGER :: kpar INTEGER :: kpoint INTEGER :: kstart INTEGER :: mb INTEGER :: mk1 INTEGER :: mk2 INTEGER :: mk3 INTEGER , ALLOCATABLE :: mod_elec(:) INTEGER , ALLOCATABLE :: ln(:,:,:) INTEGER :: n1 INTEGER :: n2 INTEGER :: n3 INTEGER :: na INTEGER :: nb INTEGER :: ng INTEGER :: nhjkb INTEGER :: nhjkbm INTEGER :: nkbtona(nkb) INTEGER :: nkbtonh(nkb) INTEGER :: nkort INTEGER :: np INTEGER :: npw1 INTEGER :: npw0 INTEGER :: nstring INTEGER :: nt INTEGER :: nspinnc REAL(dp) :: dk(3) REAL(dp) :: dkmod REAL(dp) :: el_loc REAL(dp) :: eps REAL(dp) :: fac REAL(dp) :: g2kin_bp(npwx) REAL(dp) :: gpar(3) REAL(dp) :: gtr(3) REAL(dp) :: gvec REAL(dp), ALLOCATABLE :: loc_k(:) REAL(dp), ALLOCATABLE :: pdl_elec(:) REAL(dp), ALLOCATABLE :: phik(:) REAL(dp) :: qrad_dk(nbetam,nbetam,lmaxq,ntyp) REAL(dp) :: weight REAL(dp) :: pola, pola_ion REAL(dp), ALLOCATABLE :: wstring(:) REAL(dp) :: ylm_dk(lmaxq*lmaxq) REAL(dp) :: zeta_mod COMPLEX(dp), ALLOCATABLE :: aux(:,:) COMPLEX(dp), ALLOCATABLE :: aux0(:,:) ! For noncollinear calculations COMPLEX(dp), ALLOCATABLE :: aux_2(:,:) COMPLEX(dp), ALLOCATABLE :: aux0_2(:,:) COMPLEX(dp) , ALLOCATABLE :: cphik(:) COMPLEX(dp) :: det COMPLEX(dp) :: mat(nbnd,nbnd) COMPLEX(dp) :: pref COMPLEX(dp) :: q_dk(nhm,nhm,ntyp) COMPLEX(dp) :: struc(nat) COMPLEX(dp) :: zdotc COMPLEX(dp) :: zeta COMPLEX(dp), ALLOCATABLE :: psi(:,:) COMPLEX(dp), ALLOCATABLE :: psi1(:,:) COMPLEX(dp) :: zeta_loc LOGICAL, ALLOCATABLE :: l_cal(:) ! flag for occupied/empty states INTEGER, ALLOCATABLE :: map_g(:) REAL(dp) :: dkfact COMPLEX(dp) :: zeta_tot LOGICAL :: l_para! if true new parallel treatment COMPLEX(kind=DP) :: sca COMPLEX(kind=DP), ALLOCATABLE :: aux_g(:) COMPLEX(kind=DP), ALLOCATABLE :: aux_g_2(:) ! noncollinear case TYPE(bec_type) :: becp0, becp_bp COMPLEX(DP), ALLOCATABLE :: q_dk_so(:,:,:,:) ! ------------------------------------------------------------------------- ! ! INITIALIZATIONS ! ------------------------------------------------------------------------- ! call start_clock('c_phase_field') ALLOCATE (psi1(npol*npwx,nbnd)) ALLOCATE (psi(npol*npwx,nbnd)) ALLOCATE (aux(ngm,nbnd)) ALLOCATE (aux0(ngm,nbnd)) nspinnc=nspin IF (noncolin) THEN nspinnc=1 ALLOCATE (aux_2(ngm,nbnd)) ALLOCATE (aux0_2(ngm,nbnd)) END IF ALLOCATE (map_g(npwx)) ALLOCATE (l_cal(nbnd)) if(pdir==3) then l_para=.false. else l_para=.true. endif if(okvan) then call allocate_bec_type(nkb,nbnd,becp0) call allocate_bec_type(nkb,nbnd,becp_bp) IF (lspinorb) ALLOCATE(q_dk_so(nhm,nhm,4,ntyp)) endif pola=0.d0 !set to 0 electronic polarization zeta_tot=(1.d0,0.d0) ! --- Check that we are working with an insulator with no empty bands --- IF ( degauss > 0.0_dp ) CALL errore('c_phase_field', & 'Polarization only for insulators and no empty bands',1) ! --- Define a small number --- eps=1.0E-6_dp ! --- Recalculate FFT correspondence (see ggen.f90) --- ALLOCATE (ln (-dfftp%nr1:dfftp%nr1, -dfftp%nr2:dfftp%nr2, -dfftp%nr3:dfftp%nr3) ) DO ng=1,ngm mk1=nint(g(1,ng)*at(1,1)+g(2,ng)*at(2,1)+g(3,ng)*at(3,1)) mk2=nint(g(1,ng)*at(1,2)+g(2,ng)*at(2,2)+g(3,ng)*at(3,2)) mk3=nint(g(1,ng)*at(1,3)+g(2,ng)*at(2,3)+g(3,ng)*at(3,3)) ln(mk1,mk2,mk3) = ng END DO if (okvan) then ! --- Initialize arrays --- jkb_bp=0 DO nt=1,ntyp DO na=1,nat IF (ityp(na).eq.nt) THEN DO i=1, nh(nt) jkb_bp=jkb_bp+1 nkbtona(jkb_bp) = na nkbtonh(jkb_bp) = i END DO END IF END DO END DO endif ! --- Get the number of strings --- nstring=nks/nppstr_3d(pdir) nkort=nstring/(nspinnc) ! Include noncollinear case ! --- Allocate memory for arrays --- ALLOCATE(phik(nstring)) ALLOCATE(loc_k(nstring)) ALLOCATE(cphik(nstring)) ALLOCATE(wstring(nstring)) ALLOCATE(pdl_elec(nstring)) ALLOCATE(mod_elec(nstring)) ! ------------------------------------------------------------------------- ! ! electronic polarization: set values for k-points strings ! ! ------------------------------------------------------------------------- ! ! --- Find vector along strings --- if(nppstr_3d(pdir) .ne. 1) then gpar(1)=(xk(1,nx_el(nppstr_3d(pdir),pdir))-xk(1,nx_el(1,pdir)))*& &DBLE(nppstr_3d(pdir))/DBLE(nppstr_3d(pdir)-1) gpar(2)=(xk(2,nx_el(nppstr_3d(pdir),pdir))-xk(2,nx_el(1,pdir)))*& &DBLE(nppstr_3d(pdir))/DBLE(nppstr_3d(pdir)-1) gpar(3)=(xk(3,nx_el(nppstr_3d(pdir),pdir))-xk(3,nx_el(1,pdir)))*& &DBLE(nppstr_3d(pdir))/DBLE(nppstr_3d(pdir)-1) gvec=dsqrt(gpar(1)**2+gpar(2)**2+gpar(3)**2)*tpiba else gpar(1)=0.d0 gpar(2)=0.d0 gpar(3)=0.d0 gpar(pdir)=1.d0/at(pdir,pdir)! gvec=tpiba/sqrt(at(pdir,1)**2.d0+at(pdir,2)**2.d0+at(pdir,3)**2.d0) endif ! --- Find vector between consecutive points in strings --- if(nppstr_3d(pdir).ne.1) then ! orthorhombic cell dk(1)=xk(1,nx_el(2,pdir))-xk(1,nx_el(1,pdir)) dk(2)=xk(2,nx_el(2,pdir))-xk(2,nx_el(1,pdir)) dk(3)=xk(3,nx_el(2,pdir))-xk(3,nx_el(1,pdir)) dkmod=SQRT(dk(1)**2+dk(2)**2+dk(3)**2)*tpiba else ! Gamma point case, only cubic cell for now dk(1)=0.d0 dk(2)=0.d0 dk(3)=0.d0 dk(pdir)=1.d0/at(pdir,pdir) dkmod=tpiba/sqrt(at(pdir,1)**2.d0+at(pdir,2)**2.d0+at(pdir,3)**2.d0) endif ! ------------------------------------------------------------------------- ! ! electronic polarization: weight strings ! ! ------------------------------------------------------------------------- ! ! --- Calculate string weights, normalizing to 1 (no spin) or 1+1 (spin) --- DO is=1,nspinnc ! Include noncollinear case weight=0.0_dp DO kort=1,nkort istring=kort+(is-1)*nkort wstring(istring)=wk(nppstr_3d(pdir)*istring) weight=weight+wstring(istring) END DO DO kort=1,nkort istring=kort+(is-1)*nkort wstring(istring)=wstring(istring)/weight END DO END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: structure factor ! ! ------------------------------------------------------------------------- ! ! --- Calculate structure factor e^{-i dk*R} --- DO na=1,nat fac=(dk(1)*tau(1,na)+dk(2)*tau(2,na)+dk(3)*tau(3,na))*tpi struc(na)=CMPLX(cos(fac),-sin(fac),kind=DP) END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: form factor ! ! ------------------------------------------------------------------------- ! if(okvan) then ! --- Calculate Bessel transform of Q_ij(|r|) at dk [Q_ij^L(|r|)] --- CALL calc_btq(dkmod,qrad_dk,0) ! --- Calculate the q-space real spherical harmonics at dk [Y_LM] --- dkmod = dk(1)**2+dk(2)**2+dk(3)**2 CALL ylmr2(lmaxq*lmaxq, 1, dk, dkmod, ylm_dk) ! --- Form factor: 4 pi sum_LM c_ij^LM Y_LM(Omega) Q_ij^L(|r|) --- q_dk=(0.d0,0.d0) DO np =1, ntyp if( upf(np)%tvanp ) then DO iv = 1, nh(np) DO jv = iv, nh(np) call qvan3(iv,jv,np,pref,ylm_dk,qrad_dk) q_dk(iv,jv,np) = omega*pref q_dk(jv,iv,np) = omega*pref ENDDO ENDDO endif ENDDO IF (lspinorb) CALL transform_qq_so(q_dk,q_dk_so) endif ! ------------------------------------------------------------------------- ! ! electronic polarization: strings phases ! ! ------------------------------------------------------------------------- ! el_loc=0.d0 kpoint=0 zeta=(1.d0,0.d0) ! --- Start loop over spin --- DO is=1,nspinnc ! Include noncollinear case ! l_cal(n) = .true./.false. if n-th state is occupied/empty DO nb = 1, nbnd IF ( nspin == 2 .AND. tfixed_occ) THEN l_cal(nb) = ( f_inp(nb,is) /= 0.0_dp ) ELSE IF (noncolin) THEN l_cal(nb) = ( nb <= NINT ( nelec) ) ELSE l_cal(nb) = ( nb <= NINT ( nelec/2.0_dp ) ) ENDIF ENDIF END DO ! --- Start loop over orthogonal k-points --- DO kort=1,nkort zeta_loc=(1.d0,0.d0) ! --- Index for this string --- istring=kort+(is-1)*nkort ! --- Initialize expectation value of the phase operator --- zeta_mod = 1.d0 ! --- Start loop over parallel k-points --- DO kpar = 1,nppstr_3d(pdir)+1 ! --- Set index of k-point --- kpoint = kpoint + 1 ! --- Calculate dot products between wavefunctions and betas --- IF (kpar /= 1 ) THEN ! --- Dot wavefunctions and betas for PREVIOUS k-point --- CALL gk_sort(xk(1,nx_el(kpoint-1,pdir)),ngm,g,ecutwfc/tpiba2, & npw0,igk0,g2kin_bp) CALL get_buffer (psi,nwordwfc,iunwfc,nx_el(kpoint-1,pdir)) if (okvan) then CALL init_us_2 (npw0,igk0,xk(1,nx_el(kpoint-1,pdir)),vkb) CALL calbec( npw0, vkb, psi, becp0) endif ! --- Dot wavefunctions and betas for CURRENT k-point --- IF (kpar /= (nppstr_3d(pdir)+1)) THEN CALL gk_sort(xk(1,nx_el(kpoint,pdir)),ngm,g,ecutwfc/tpiba2, & npw1,igk1,g2kin_bp) CALL get_buffer (psi1,nwordwfc,iunwfc,nx_el(kpoint,pdir)) if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(kpoint,pdir)),vkb) CALL calbec( npw1, vkb, psi1, becp_bp) endif ELSE kstart = kpoint-(nppstr_3d(pdir)+1)+1 CALL gk_sort(xk(1,nx_el(kstart,pdir)),ngm,g,ecutwfc/tpiba2, & npw1,igk1,g2kin_bp) CALL get_buffer (psi1,nwordwfc,iunwfc,nx_el(kstart,pdir)) if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(kstart,pdir)),vkb) CALL calbec( npw1, vkb, psi1, becp_bp) endif ENDIF ! --- Matrix elements calculation --- IF (kpar == (nppstr_3d(pdir)+1) .and. .not.l_para) THEN map_g(:) = 0 do ig=1,npw1 ! --- If k'=k+G_o, the relation psi_k+G_o (G-G_o) --- ! --- = psi_k(G) is used, gpar=G_o, gtr = G-G_o --- gtr(1)=g(1,igk1(ig)) - gpar(1) gtr(2)=g(2,igk1(ig)) - gpar(2) gtr(3)=g(3,igk1(ig)) - gpar(3) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & +gtr(3)*at(3,3)) ng=ln(n1,n2,n3) IF ( (ABS(g(1,ng)-gtr(1)) > eps) .OR. & (ABS(g(2,ng)-gtr(2)) > eps) .OR. & (ABS(g(3,ng)-gtr(3)) > eps) ) THEN WRITE(6,*) ' error: translated G=', & gtr(1),gtr(2),gtr(3), & & ' with crystal coordinates',n1,n2,n3, & & ' corresponds to ng=',ng,' but G(ng)=', & & g(1,ng),g(2,ng),g(3,ng) WRITE(6,*) ' probably because G_par is NOT', & & ' a reciprocal lattice vector ' WRITE(6,*) ' Possible choices as smallest ', & ' G_par:' DO i=1,50 WRITE(6,*) ' i=',i,' G=', & g(1,i),g(2,i),g(3,i) ENDDO STOP ENDIF ELSE WRITE(6,*) ' |gtr| > gcutm for gtr=', & gtr(1),gtr(2),gtr(3) STOP END IF map_g(ig)=ng enddo ENDIF mat=(0.d0,0.d0) aux=(0.d0,0.d0) if(noncolin) aux_2=(0.d0,0.d0) DO mb=1,nbnd IF ( .NOT. l_cal(mb) ) THEN mat(mb,mb)=(1.d0, 0.d0) ELSE IF (kpar /= (nppstr_3d(pdir)+1)) THEN DO ig=1,npw1 aux(igk1(ig),mb)=psi1(ig,mb) IF (noncolin) aux_2(igk1(ig),mb)=psi1(ig+npwx,mb) ENDDO ELSE IF( .not. l_para) THEN DO ig=1,npw1 aux(map_g(ig),mb)=psi1(ig,mb) IF (noncolin) aux_2(map_g(ig),mb)=psi1(ig+npwx,mb) ENDDO ELSE ! allocate global array ALLOCATE (aux_g(ngm_g)) IF(noncolin) ALLOCATE (aux_g_2(ngm_g)) aux_g=(0.d0,0.d0) IF(noncolin) aux_g_2=(0.d0,0.d0) ! put psi1 on global array DO ig=1,npw1 aux_g(mapgm_global(ig_l2g(igk1(ig)),pdir))=psi1(ig,mb) IF(noncolin) aux_g_2(mapgm_global(ig_l2g(igk1(ig)),pdir))=psi1(ig+npwx,mb) ENDDO CALL mp_sum(aux_g(:),world_comm) IF (noncolin) CALL mp_sum(aux_g_2(:),world_comm) !non-collinear DO ig=1,ngm aux(ig,mb) = aux_g(ig_l2g(ig)) IF (noncolin) aux_2(ig,mb) = aux_g_2(ig_l2g(ig)) ENDDO DEALLOCATE (aux_g) IF(noncolin) DEALLOCATE (aux_g_2) END IF END IF END DO aux0=(0.d0,0.d0) if(noncolin) aux0_2=(0.d0,0.d0) DO nb=1,nbnd DO ig=1,npw0 aux0(igk0(ig),nb)=psi(ig,nb) IF(noncolin) aux0_2(igk0(ig),nb)=psi(ig+npwx,nb) END DO ENDDO call ZGEMM('C','N',nbnd,nbnd,ngm,(1.d0,0.d0),aux0,ngm,aux,ngm,(0.d0,0.d0),mat,nbnd) if(noncolin) call ZGEMM('C','N',nbnd,nbnd,ngm,(1.d0,0.d0),aux0_2,ngm,aux_2,ngm,(1.d0,0.d0),mat,nbnd) ! DO nb=1,nbnd ! IF ( l_cal(nb) ) THEN ! aux0=(0.d0,0.d0) ! IF(noncolin) aux0_2=(0.d0,0.d0) ! DO ig=1,npw0 ! aux0(igk0(ig))=psi(ig,nb) ! IF(noncolin) aux0_2(igk0(ig))=psi(ig+npwx,nb) ! END DO ! do scalar product ! mat(nb,mb) = zdotc(ngm,aux0,1,aux,1) ! IF (noncolin) mat(nb,mb) = mat(nb,mb)+zdotc(ngm,aux0_2,1,aux_2,1) ! END IF ! ENDDO ! END IF ! ENDDO ! CALL mp_sum( mat, intra_bgrp_comm ) ! --- Calculate the augmented part: ij=KB projectors, --- ! --- R=atom index: SUM_{ijR} q(ijR) --- ! --- e^i(k-k')*R = --- ! --- also = = becp^* --- IF (okvan) THEN DO mb=1,nbnd DO nb=1,nbnd IF ( l_cal(mb) .AND. l_cal(nb) ) THEN pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb DO j = 1,nhjkbm if(lspinorb) then pref = pref+CONJG(becp0%nc(jkb,1,nb))*becp_bp%nc(jkb1+j,1,mb) & *q_dk_so(nhjkb,j,1,np)*struc(na) pref = pref+CONJG(becp0%nc(jkb,1,nb))*becp_bp%nc(jkb1+j,2,mb) & *q_dk_so(nhjkb,j,2,np)*struc(na) pref = pref+CONJG(becp0%nc(jkb,2,nb))*becp_bp%nc(jkb1+j,1,mb) & *q_dk_so(nhjkb,j,3,np)*struc(na) pref = pref+CONJG(becp0%nc(jkb,2,nb))*becp_bp%nc(jkb1+j,2,mb) & *q_dk_so(nhjkb,j,4,np)*struc(na) else pref = pref+CONJG(becp0%k(jkb,nb))*becp_bp%k(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc(na) endif ENDDO ENDDO mat(nb,mb) = mat(nb,mb) + pref ENDIF ENDDO ENDDO ENDIF ! --- Calculate matrix determinant --- call ZGETRF(nbnd,nbnd,mat,nbnd,ivpt,info) CALL errore('c_phase_field','error in zgetrf',abs(info)) det=(1.d0,0.d0) do nb=1,nbnd if(nb.ne.ivpt(nb)) det=-det det = det*mat(nb,nb) enddo ! --- Multiply by the already calculated determinants --- zeta=zeta*det zeta_loc=zeta_loc*det ! --- End of dot products between wavefunctions and betas --- ENDIF ! --- End loop over parallel k-points --- END DO zeta_tot=zeta_tot*(zeta_loc**wstring(istring)) pola=pola+wstring(istring)*aimag(log(zeta_loc)) kpoint=kpoint-1 ! --- Calculate the phase for this string --- phik(istring)=AIMAG(LOG(zeta)) cphik(istring)=COS(phik(istring))*(1.0_dp,0.0_dp) & +SIN(phik(istring))*(0.0_dp,1.0_dp) ! --- Calculate the localization for current kort --- zeta_mod= DBLE(CONJG(zeta)*zeta) loc_k(istring)= - (nppstr_3d(pdir)-1) / gvec**2 / nbnd *log(zeta_mod) ! --- End loop over orthogonal k-points --- END DO ! --- End loop over spin --- END DO !-----calculate polarization !-----the factor 2. is because of spin !new system for avoiding phases problem pola=aimag(log(zeta_tot)) if(nspin==1) pola=pola*2.d0 !pola=pola/(gpar(pdir)*tpiba) call factor_a(pdir,at,dkfact) !factor sqrt(2) is the electronic charge in Rydberg units pola=pola*dsqrt(2.d0)/tpiba*dkfact !write output write(stdout,*) write(stdout,*) " Expectation value of exp(iGx):",zeta_tot,dkfact write(stdout,*) " Electronic Dipole per cell (Ry a.u.)",pola ! ------------------------------------------------------------------------- ! ! ionic polarization ! ! ------------------------------------------------------------------------- ! !factor sqrt(2) is the electronic charge in Rydberg units pola_ion=0.d0 DO na=1,nat pola_ion=pola_ion+zv(ityp(na))*tau(pdir,na)*alat*dsqrt(2.d0) END DO write(stdout,*) " Ionic Dipole per cell (Ry a.u.)",pola_ion el_pola=pola ion_pola=pola_ion fact_pola=dsqrt(2.d0)/tpiba*dkfact ! ------------------------------------------------------------------------- ! ! --- Free memory --- DEALLOCATE(l_cal) DEALLOCATE(pdl_elec) DEALLOCATE(mod_elec) DEALLOCATE(wstring) DEALLOCATE(loc_k) DEALLOCATE(phik) DEALLOCATE(cphik) DEALLOCATE(ln) DEALLOCATE(map_g) DEALLOCATE(aux) DEALLOCATE(aux0) DEALLOCATE(psi) DEALLOCATE(psi1) IF (ALLOCATED(aux_2)) DEALLOCATE(aux_2) IF (ALLOCATED(aux0_2)) DEALLOCATE(aux0_2) if(okvan) then call deallocate_bec_type(becp0) call deallocate_bec_type(becp_bp) IF (lspinorb) DEALLOCATE(q_dk_so) endif call stop_clock('c_phase_field') !------------------------------------------------------------------------------! END SUBROUTINE c_phase_field !==============================================================================! espresso-5.1/PW/src/read_conf_from_file.f900000644000175000017500000000363012341373025016703 0ustar mbamba! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- FUNCTION read_config_from_file() RESULT (ierr) !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE ions_base, ONLY : nat, ityp, tau USE cell_base, ONLY : at, bg, omega USE cellmd, ONLY : at_old, omega_old, lmovecell USE io_files, ONLY : tmp_dir, prefix USE pw_restart, ONLY : pw_readfile ! IMPLICIT NONE ! INTEGER :: ierr ! ! WRITE( stdout, '(/5X,"Atomic positions and unit cell read from directory:", & & /,5X,A)') TRIM( tmp_dir ) // TRIM( prefix ) // ".save/" ! ! ... check if restart file is present, if yes read config parameters ! CALL pw_readfile( 'config', ierr ) ! IF ( ierr > 0 ) THEN ! WRITE( stdout, '(5X,"Nothing found: ", & & "using input atomic positions and unit cell",/)' ) RETURN ! END IF ! WRITE( stdout, * ) ! IF ( lmovecell ) THEN ! ! ... input value of at and omega (currently stored in xxx_old variables) ! ... must be used to initialize G vectors and other things ! ... swap xxx and xxx_old variables and scale the atomic position to the ! ... input cell shape in order to check the symmetry. ! CALL cryst_to_cart( nat, tau, bg, - 1 ) ! CALL dswap( 9, at, 1, at_old,1 ) CALL dswap( 1, omega, 1, omega_old, 1 ) ! CALL cryst_to_cart( nat, tau, at, + 1 ) ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) ! END IF ! RETURN ! END FUNCTION read_config_from_file espresso-5.1/PW/src/plugin_scf_potential.f900000644000175000017500000000220412341373025017145 0ustar mbamba! ! Copyright (C) 2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE plugin_scf_potential(rhoin,conv_elec,dr2) !---------------------------------------------------------------------------- ! This routine is used to calculate plugin energy related quantities ! that needs to be solved inside the scf cycle ! USE io_global, ONLY : stdout, ionode USE kinds, ONLY : DP USE io_files, ONLY : tmp_dir ! USE fft_base, ONLY : dfftp USE lsda_mod, ONLY : nspin USE scf, ONLY : scf_type, vltot ! USE plugin_flags ! ! ***Environ MODULES BEGIN*** ! ***Environ MODULES END*** ! IMPLICIT NONE ! type(scf_type), intent(in) :: rhoin LOGICAL, intent(in) :: conv_elec real(DP), intent(in) :: dr2 ! ! ***Environ VARIABLES BEGIN*** ! ***Environ VARIABLES END*** ! ! ***Environ CALLS BEGIN*** ! ***Environ CALLS END*** ! END SUBROUTINE plugin_scf_potential espresso-5.1/PW/src/esm.f900000644000175000017500000013753212341373025013536 0ustar mbamba! ! Copyright (C) 2007-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Original version by Minoru Otani (AIST), Yoshio Miura (Tohoku U.), ! Nicephore Bonet (MIT), Nicola Marzari (MIT), Brandon Wood (LLNL), ! Tadashi Ogitsu (LLNL) ! ! Contains subroutines for implementation of the ESM (Effective Screening ! Medium Method) developed by M. Otani and O. Sugino (see PRB 73, 115407 ! [2006]). ! ! ESM enables description of a surface slab sandwiched between two ! semi-infinite media, making it possible to deal with polarized surfaces ! without using dipole corrections. It is useful for simulating interfaces ! with vacuum, one or more electrodes, or an electrolyte. ! ! Modified subroutines for calculating the Hartree potential, the local ! potential, and the Ewald sum are contained here, along with subroutines for ! calculating force contributions based on the modified local potential and ! Ewald term. ! !---------------------------------------------------------------------------- MODULE esm !---------------------------------------------------------------------------- ! ! ... this module contains the variables and subroutines needed for the ! ... EFFECTIVE SCREENING MEDIUM (ESM) METHOD ! USE kinds, ONLY : DP USE constants, ONLY : pi, tpi, fpi, eps4, eps8, e2 SAVE ! LOGICAL :: do_comp_esm=.FALSE. INTEGER :: esm_nfit REAL(KIND=DP) :: esm_efield, esm_w CHARACTER (LEN=3) :: esm_bc INTEGER, ALLOCATABLE, TARGET :: mill_2d(:,:), imill_2d(:,:) INTEGER :: ngm_2d = 0 ! PUBLIC :: esm_hartree, esm_local, esm_ewald, esm_force_lc, esm_force_ew, & esm_printpot, esm_summary, esm_ggen_2d, esm_deallocate_gvect_2d CONTAINS SUBROUTINE esm_deallocate_gvect_2d IF( ALLOCATED( mill_2d ) ) DEALLOCATE( mill_2d ) RETURN END SUBROUTINE esm_deallocate_gvect_2d SUBROUTINE esm_ggen_2d() USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, mill USE control_flags, ONLY : gamma_only USE fft_scalar, ONLY : cft_1z ! IMPLICIT NONE ! INTEGER :: n1xh, n2xh, ng, n1, n2, ng_2d Logical, ALLOCATABLE :: do_mill_2d(:,:) COMPLEX(DP), ALLOCATABLE :: vg2_in(:), vg2(:) ! ! Make g parallel array ! n1xh = dfftp%nr1x/2 n2xh = dfftp%nr2x/2 ALLOCATE( do_mill_2d(-n1xh:n1xh,-n2xh:n2xh) ) do_mill_2d(:,:) = .false. DO ng = 1, ngm n1 = mill(1,ng) n2 = mill(2,ng) do_mill_2d(n1,n2) = .true. ENDDO ngm_2d = COUNT( do_mill_2d ) !*** do_mill_2d(h,k) = .true. means there is an h,k vector on this proc !*** ngm_2d = total number of vectors (h,k) on this proc, excluding duplicates !*** with different l values ALLOCATE( mill_2d(2,ngm_2d), imill_2d(-n1xh:n1xh,-n2xh:n2xh) ) mill_2d(:,:) = 0 imill_2d(:,:) = 0 ng_2d = 1 DO n1 = -n1xh, n1xh DO n2 = -n2xh, n2xh IF( do_mill_2d(n1,n2) ) THEN mill_2d(1,ng_2d) = n1 mill_2d(2,ng_2d) = n2 imill_2d(n1,n2) = ng_2d ng_2d = ng_2d + 1 ENDIF ENDDO ENDDO DEALLOCATE(do_mill_2d) !**** mill_2d(:,ig) = h,k indices of vector ig !**** imill_2d(h,k) = 2d index of vector with h,k indices !**** ng_2d = total number of 2d g vectors on this proc RETURN END SUBROUTINE esm_ggen_2d ! !----------------------------------------------------------------------- !--------------ESM HARTREE SUBROUTINE----------------------------------- !----------------------------------------------------------------------- SUBROUTINE esm_hartree (rhog, ehart, aux) USE gvect, ONLY : g, nl, nlm, ngm, mill USE lsda_mod, ONLY : nspin USE cell_base, ONLY : omega, alat, tpiba, tpiba2, at, bg USE control_flags, ONLY : gamma_only USE fft_scalar, ONLY : cft_1z USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE fft_base, ONLY : dfftp ! IMPLICIT NONE ! COMPLEX(DP) :: rhog(ngm,nspin) ! n(G) REAL(DP) :: ehart ! Hartree energy COMPLEX(DP) :: aux(dfftp%nnr) ! v_h(G) ! ! here the local variables ! real(DP) :: tt, t(2), zz, gz, z0, gp, gp2, z1, kn, cc, ss, z, L, & z_l, z_r, eh integer :: ipol, k, k1, k2, k3, iz, ng, n1, n2, n3, & nz_r, nz_l, ng_2d complex(DP),allocatable :: rhog3(:,:), vg2(:), vg2_in(:), vg3(:,:) complex(DP) :: xc, ci, tmp, tmp1, tmp2, tmp3, tmp4, f1, f2, f3, f4, & a0, a1, a2, a3, c_r, c_l, s_r, s_l, rg3 allocate(vg2(dfftp%nr3),vg2_in(dfftp%nr3),rhog3(dfftp%nr3,ngm_2d)) ! ! Map to FFT mesh (dfftp%nr3,ngm_2d) rhog3(:,:)=(0.d0,0.d0) do ng=1,ngm n1 = mill(1,ng) n2 = mill(2,ng) ng_2d = imill_2d(n1,n2) n3 = mill(3,ng)+1 IF (n3<1) n3 = n3 + dfftp%nr3 if (nspin == 2) then rg3 = rhog(ng,1)+rhog(ng,2) else rg3 = rhog(ng,1) endif rhog3(n3,ng_2d)=rg3 if ( gamma_only .and. n1==0 .and. n2==0 ) then n3 = -mill(3,ng)+1 IF (n3<1) n3 = n3 + dfftp%nr3 rhog3(n3,ng_2d)=CONJG(rg3) endif enddo ! End mapping ! allocate(vg3(dfftp%nr3,ngm_2d)) vg3(:,:)=(0.d0,0.d0) L=at(3,3)*alat z0=L/2.d0 z1=z0+abs(esm_w) ci=(0.d0,1.d0) !****For gp!=0 case ******************** !$omp parallel do private( k1, k2, gp2, ipol, t, gp, tmp1, tmp2, vg2, iz, kn, & !$omp cc, ss, tmp, vg2_in, k3, z, rg3 ) do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if(k1==0.and.k2==0) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) tmp1=(0.d0,0.d0); tmp2=(0.d0,0.d0) vg2(:)=(0.d0,0.d0) do iz=1, dfftp%nr3 if(iz<=dfftp%nr3/2) kn=dble(iz-1) * tpi/L if(iz> dfftp%nr3/2) kn=dble(iz-1-dfftp%nr3) * tpi/L cc=cos(kn*z0) ss=sin(kn*z0) rg3=rhog3(iz,ng_2d) vg2(iz)=fpi*rg3/(gp**2+kn**2) if (esm_bc.eq.'bc1') then tmp1=tmp1+rg3*(cc+ci*ss)/(gp-ci*kn) tmp2=tmp2+rg3*(cc-ci*ss)/(gp+ci*kn) else if (esm_bc.eq.'bc2') then tmp=((gp+ci*kn)*exp(gp*(z1-z0))+(gp-ci*kn)*exp(-gp*(z1-z0)))/(2.d0*gp) tmp1=tmp1+rg3*(cc+ci*ss)/(gp**2+kn**2)*tmp tmp=((gp-ci*kn)*exp(gp*(z1-z0))+(gp+ci*kn)*exp(-gp*(z1-z0)))/(2.d0*gp) tmp2=tmp2+rg3*(cc-ci*ss)/(gp**2+kn**2)*tmp else if (esm_bc.eq.'bc3') then tmp=((gp+ci*kn)*exp(gp*(z1-z0))+(gp-ci*kn)*exp(-gp*(z1-z0)))/(2.d0*gp) tmp1=tmp1+rg3*(cc+ci*ss)/(gp**2+kn**2)*tmp tmp=(gp-ci*kn)/gp tmp2=tmp2+rg3*(cc-ci*ss)/(gp**2+kn**2)*tmp endif enddo vg2_in(1:dfftp%nr3)=vg2(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2_in,1,dfftp%nr3,dfftp%nr3,1,vg2) do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L if (esm_bc.eq.'bc1') then vg2(iz)=vg2(iz)-tpi/gp*(exp(gp*(z-z0))*tmp1+exp(-gp*(z+z0))*tmp2) else if (esm_bc.eq.'bc2') then vg2(iz)=vg2(iz)-fpi*(exp(gp*(z-z1))-exp(-gp*(z+3.d0*z1)))*tmp1 & /(1.d0-exp(-4.d0*gp*z1)) & +fpi*(exp(gp*(z-3.d0*z1))-exp(-gp*(z+z1)))*tmp2 & /(1.d0-exp(-4.d0*gp*z1)) else if (esm_bc.eq.'bc3') then vg2(iz)=vg2(iz)-fpi*exp(gp*(z-z1))*tmp1 & +tpi*(exp(gp*(z-z0-2.d0*z1))-exp(-gp*(z+z0)))*tmp2 endif enddo vg2_in(1:dfftp%nr3)=vg2(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2_in,1,dfftp%nr3,dfftp%nr3,-1,vg2) vg3(1:dfftp%nr3,ng_2d)=vg2(1:dfftp%nr3)*2.d0 enddo !****For gp=0 case ******************** ng_2d = imill_2d(0,0) if( ng_2d > 0 ) then tmp1=(0.d0,0.d0); tmp2=(0.d0,0.d0); tmp3=(0.d0,0.d0); tmp4=(0.d0,0.d0) !for smoothing f1=(0.d0,0.d0); f2=(0.d0,0.d0); f3=(0.d0,0.d0); f4=(0.d0,0.d0) nz_l=dfftp%nr3/2+1+esm_nfit nz_r=dfftp%nr3/2+1-esm_nfit z_l=dble(nz_l-1)*L/dble(dfftp%nr3)-L z_r=dble(nz_r-1)*L/dble(dfftp%nr3) ! rg3=rhog3(1,ng_2d) if (esm_bc.eq.'bc1') then vg2(1)=-tpi*z0**2*rg3 else if (esm_bc.eq.'bc2') then vg2(1)= tpi*(2.d0*z1-z0)*z0*rg3 else if (esm_bc.eq.'bc3') then vg2(1)= tpi*(4.d0*z1-z0)*z0*rg3 endif do iz=2,dfftp%nr3 if(iz<=dfftp%nr3/2) kn=dble(iz-1) *tpi/L if(iz> dfftp%nr3/2) kn=dble(iz-1-dfftp%nr3) *tpi/L cc=cos(kn*z0) ss=sin(kn*z0) rg3=rhog3(iz,ng_2d) if (esm_bc.eq.'bc1') then tmp1=tmp1+rg3*ci*(cc+ci*ss)/kn tmp2=tmp2+rg3*ci*(cc-ci*ss)/kn tmp3=tmp3+rg3*cc/kn**2 tmp4=tmp4+(0.d0,0.d0) else if (esm_bc.eq.'bc2') then tmp1=tmp1+rg3*(cc+ci*ss)/kn**2 tmp2=tmp2+rg3*(cc-ci*ss)/kn**2 tmp3=tmp3+rg3*ci*cc/kn tmp4=tmp4+rg3*ss/kn else if (esm_bc.eq.'bc3') then tmp1=tmp1+rg3*(cc+ci*ss)/kn**2 tmp2=tmp2+rg3*(cc-ci*ss)/kn tmp3=tmp3+rg3*(cc+ci*ss)/kn tmp4=tmp4+(0.d0,0.d0) endif vg2(iz)=fpi*rg3/(kn**2) !for smoothing c_r=cos(kn*z_r) s_r=sin(kn*z_r) c_l=cos(kn*z_l) s_l=sin(kn*z_l) f1=f1+fpi* rg3*(c_r+ci*s_r)/kn**2 f2=f2+fpi* rg3*(c_l+ci*s_l)/kn**2 f3=f3+fpi*ci*rg3*(c_r+ci*s_r)/kn f4=f4+fpi*ci*rg3*(c_l+ci*s_l)/kn ! enddo vg2_in(1:dfftp%nr3)=vg2(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2_in,1,dfftp%nr3,dfftp%nr3,1,vg2) rg3=rhog3(1,ng_2d) do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L if (esm_bc.eq.'bc1') then vg2(iz)=vg2(iz)-tpi*z**2*rg3 & -tpi*(z-z0)*tmp1 & -tpi*(z+z0)*tmp2 & -fpi*tmp3 else if (esm_bc.eq.'bc2') then vg2(iz)=vg2(iz)-tpi*z**2*rg3 & -tpi*(z+z1)*tmp1/z1 & +tpi*(z-z1)*tmp2/z1 & -fpi*z*(z1-z0)/z1*tmp3 & +fpi*(z1-z0)*tmp4 else if (esm_bc.eq.'bc3') then vg2(iz)=vg2(iz)-tpi*(z**2+2.d0*z*z0)*rg3 & -fpi*tmp1 & -fpi*ci*(z-z0)*tmp2 & -fpi*ci*(z1-z0)*tmp3 endif enddo !for smoothing if (esm_bc.eq.'bc1') then f1=f1-tpi*z_r**2*rg3 & -tpi*(z_r-z0)*tmp1 & -tpi*(z_r+z0)*tmp2 & -fpi*tmp3 f1=f1-tpi*z0**2*rg3 f2=f2-tpi*z_l**2*rg3 & -tpi*(z_l-z0)*tmp1 & -tpi*(z_l+z0)*tmp2 & -fpi*tmp3 f2=f2-tpi*z0**2*rg3 f3=f3-tpi*tmp1-tpi*tmp2-fpi*z_r*rg3 f4=f4-tpi*tmp1-tpi*tmp2-fpi*z_l*rg3 else if (esm_bc.eq.'bc2') then f1=f1-tpi*z_r**2*rg3 & -tpi*(z_r+z1)*tmp1/z1 & +tpi*(z_r-z1)*tmp2/z1 & -fpi*z*(z1-z0)/z1*tmp3 & +fpi *(z1-z0) *tmp4 f1=f1+tpi*(2.d0*z1-z0)*z0*rg3 f2=f2-tpi*z_l**2*rg3 & -tpi*(z_l+z1)*tmp1/z1 & +tpi*(z_l-z1)*tmp2/z1 & -fpi*z*(z1-z0)/z1*tmp3 & +fpi *(z1-z0) *tmp4 f2=f2+tpi*(2.d0*z1-z0)*z0*rg3 f3=f3-fpi*z_r*rg3-tpi*tmp1/z1+tpi*tmp2/z1-fpi*(z1-z0)/z1*tmp3 f4=f4-fpi*z_l*rg3-tpi*tmp1/z1+tpi*tmp2/z1-fpi*(z1-z0)/z1*tmp3 else if (esm_bc.eq.'bc3') then f1=f1-tpi*(z_r**2+2.d0*z_r*z0)*rg3 & -fpi*tmp1 & -fpi*ci*(z_r-z1)*tmp2 & -fpi*ci*(z1 -z0)*tmp3 f1=f1+tpi*(4.d0*z1-z0)*z0*rg3 f2=f2-tpi*(z_l**2+2.d0*z_l*z0)*rg3 & -fpi*tmp1 & -fpi*ci*(z_l-z1)*tmp2 & -fpi*ci*(z1 -z0)*tmp3 f2=f2+tpi*(4.d0*z1-z0)*z0*rg3 f3=f3-tpi*(2.d0*z_r+2.d0*z0)*rg3-fpi*ci*tmp2 f4=f4-tpi*(2.d0*z_l+2.d0*z0)*rg3-fpi*ci*tmp2 endif ! for smoothing !factor 2 will be multiplied later (at vg3 <= vg2) !f1=f1*2.d0; f2=f2*2.d0; f3=f3*2.d0; f4=f4*2.d0 z_r=z_r z_l=z_l+L a0=(f1*z_l**2*(z_l-3.d0*z_r)+z_r*(f3*z_l**2*(-z_l+z_r) & +z_r*(f2*(3.d0*z_l-z_r)+f4*z_l*(-z_l+z_r))))/(z_l-z_r)**3 a1=(f3*z_l**3+z_l*(6.d0*f1-6.d0*f2+(f3+2.d0*f4)*z_l)*z_r & -(2*f3+f4)*z_l*z_r**2-f4*z_r**3)/(z_l-z_r)**3 a2=(-3*f1*(z_l+z_r)+3.d0*f2*(z_l+z_r)-(z_l-z_r)*(2*f3*z_l & +f4*z_l+f3*z_r+2*f4*z_r))/(z_l-z_r)**3 a3=(2.d0*f1-2.d0*f2+(f3+f4)*(z_l-z_r))/(z_l-z_r)**3 do iz=nz_r,nz_l z=dble(iz-1)/dble(dfftp%nr3)*L vg2(iz)=(a0+a1*z+a2*z**2+a3*z**3) enddo vg2_in(1:dfftp%nr3)=vg2(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2_in,1,dfftp%nr3,dfftp%nr3,-1,vg2) vg3(1:dfftp%nr3,ng_2d)=vg2(1:dfftp%nr3)*2.d0 endif ! if( ng_2d > 0 ) ! Hartree Energy ehart=0.d0 !$omp parallel private( ng_2d, k1, k2, k, eh ) eh = 0d0 !$omp do do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) eh = eh + sum( vg3(:,ng_2d)*conjg(rhog3(:,ng_2d)) ) enddo !$omp atomic ehart=ehart+eh !$omp end parallel if( gamma_only ) then ehart = ehart * 2d0 ng_2d = imill_2d(0,0) if( ng_2d > 0 ) then ehart = ehart - sum( vg3(:,ng_2d)*conjg(rhog3(:,ng_2d)) ) endif endif ehart = ehart *omega*0.5d0 ! call mp_sum( ehart, intra_bgrp_comm ) ! ! Map to FFT mesh (dfftp%nrx) aux=0.0d0 do ng=1,ngm n1 = mill(1,ng) n2 = mill(2,ng) ng_2d = imill_2d(n1,n2) n3 = mill(3,ng) + 1 if (n3<1) n3 = n3 + dfftp%nr3 aux(nl(ng))= aux(nl(ng)) + vg3(n3,ng_2d) enddo if (gamma_only) then do ng=1,ngm aux(nlm(ng))=CONJG(aux(nl(ng))) enddo endif deallocate (vg3) deallocate (vg2,vg2_in,rhog3) RETURN END SUBROUTINE esm_hartree !----------------------------------------------------------------------- !--------------ESM EWALD SUBROUTINE------------------------------------- !----------------------------------------------------------------------- SUBROUTINE esm_ewald ( charge, alpha, ewg ) USE gvect, ONLY : gstart USE cell_base, ONLY : omega, alat, tpiba, tpiba2, at, bg USE ions_base, ONLY : nat, tau, ityp, ntyp=>nsp USE uspp_param, ONLY : upf USE fft_base, ONLY : dfftp USE control_flags, ONLY : gamma_only implicit none REAL(DP) :: charge, alpha, ewg ! ! here the local variables ! real(DP), external :: qe_erfc, qe_erf real(DP) :: gp2, t(2), gp, sa, z1, z0, L integer :: k1, k2, k3, ipol, it1, it2, ng_2d real(DP) :: tt, z, zp, kk1, kk2, g, cc1, cc2, arg1, arg2, t1, t2, ff, argmax, ew #ifdef __OPENMP INTEGER :: nth, ith, omp_get_thread_num, omp_get_num_threads #endif argmax=0.9*log(huge(1.d0)) ewg=0.d0 L=at(3,3)*alat z0=L/2.d0 z1=z0+abs(esm_w) g=sqrt(alpha) sa=omega/L #ifdef __OPENMP !$omp parallel private( nth, ith, ew, it1, it2, z, zp, tt, kk1, kk2, cc1, cc2, & !$omp ng_2d, k1, k2, gp2, ipol, t, gp, ff, arg1, arg2, t1, t2 ) #endif #ifdef __OPENMP nth=omp_get_num_threads() ith=omp_get_thread_num() #endif ew=0d0 do it1=1,nat do it2=1,it1 #ifdef __OPENMP if( mod( (it1-1)*it1/2+it2-1, nth) /= ith ) cycle #endif z=tau(3,it1) if (z.gt.at(3,3)*0.5) z=z-at(3,3) z=z*alat zp=tau(3,it2) if (zp.gt.at(3,3)*0.5) zp=zp-at(3,3) zp=zp*alat tt=upf(ityp(it1))%zp*upf(ityp(it2))%zp*tpi/sa kk1=0.5d0*(-(z-zp)*qe_erf(g*(z-zp))-exp(-g**2*(z-zp)**2)/g/sqrt(pi)) if (esm_bc.eq.'bc1') then kk2=0.d0 else if (esm_bc.eq.'bc2') then kk2=0.5d0*(z1-z*zp/z1) else if (esm_bc.eq.'bc3') then kk2=0.5d0*(2.d0*z1-z-zp) endif cc1=0.d0 cc2=0.d0 if (it1.eq.it2) then do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if( k1==0 .and. k2==0 ) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) arg1=-gp*(z-zp) arg2= gp*(z-zp) arg1=min(arg1,argmax) arg2=min(arg2,argmax) t1=exp(arg1)*qe_erfc(gp/2.d0/g-g*(z-zp)) t2=exp(arg2)*qe_erfc(gp/2.d0/g+g*(z-zp)) cc1=cc1+(t1+t2)/4.d0/gp if (esm_bc.eq.'bc1') then cc2=0.d0 else if (esm_bc.eq.'bc2') then cc2=cc2+(exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & -exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp else if (esm_bc.eq.'bc3') then cc2=cc2+(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp endif enddo if( gamma_only ) then cc1 = cc1 * 2d0 cc2 = cc2 * 2d0 endif ew=ew+tt*(cc1+cc2) if(gstart==2) ew=ew+tt*(kk1+kk2) else do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if( k1==0 .and. k2==0 ) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) ff = ( ( k1*bg(1,1)+k2*bg(1,2) ) * ( tau(1,it1)-tau(1,it2) ) & + ( k1*bg(2,1)+k2*bg(2,2) ) * ( tau(2,it1)-tau(2,it2) ) ) * tpi arg1=-gp*(z-zp) arg2= gp*(z-zp) arg1=min(arg1,argmax) arg2=min(arg2,argmax) t1=exp(arg1)*qe_erfc(gp/2.d0/g-g*(z-zp)) t2=exp(arg2)*qe_erfc(gp/2.d0/g+g*(z-zp)) cc1=cc1+cos(ff)*(t1+t2)/4.d0/gp if (esm_bc.eq.'bc1') then cc2=0.d0 else if (esm_bc.eq.'bc2') then cc2=cc2+cos(ff)*(exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & -exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp else if (esm_bc.eq.'bc3') then cc2=cc2+cos(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp endif enddo if( gamma_only ) then cc1 = cc1 * 2d0 cc2 = cc2 * 2d0 endif ew=ew+tt*(cc1+cc2)*2d0 if(gstart==2) ew=ew+tt*(kk1+kk2)*2d0 endif enddo enddo !$omp atomic ewg=ewg+ew #ifdef __OPENMP !$omp end parallel #endif ewg=2.0*ewg if( gstart == 2 ) then do it1=1,nat ewg=ewg- upf(ityp(it1))%zp **2 * sqrt (8.d0 / tpi * alpha) enddo endif return end subroutine esm_ewald !----------------------------------------------------------------------- !--------------ESM LOCAL POTENTIAL SUBROUTINE--------------------------- !----------------------------------------------------------------------- subroutine esm_local (aux) USE kinds, ONLY : DP USE gvect, ONLY : g, ngm, nl, nlm, mill USE control_flags, ONLY : gamma_only USE cell_base, ONLY : at, bg, alat, tpiba2, tpiba, omega USE ions_base, ONLY : nat, tau, ityp USE uspp_param, ONLY : upf USE scf, ONLY : rho USE lsda_mod, ONLY : nspin USE fft_scalar, ONLY : cft_1z USE fft_base, ONLY : dfftp ! implicit none COMPLEX(DP) :: aux( dfftp%nnr ) ! aux contains v_loc_short(G) (input) and v_loc(G) (output) ! ! here the local variables ! complex(DP),allocatable :: vloc3(:,:),vg2(:),vg2_in(:) real(DP),allocatable :: rhog(:,:),bgauss(:,:) real(DP), external :: qe_erf, qe_erfc real(DP) :: t(3),tt,gp,gp2,sa,z1,z0,pp,cc,ss,t1,t2, & z,zp,arg11,arg12,arg21,arg22,v0,tmp,L,argmax, & z_l,z_r integer :: iz,ig,it,ipol,k1,k2,k3,ng,n1,n2,n3, & nz_l,nz_r, ng_2d complex(DP) :: cs,cc1,cc2,ci,a0,a1,a2,a3,f1,f2,f3,f4 argmax=0.9*log(huge(1.d0)) L =at(3,3)*alat z0=L/2.d0 z1=z0+abs(esm_w) allocate(vloc3(dfftp%nr3,ngm_2d),vg2(dfftp%nr3),vg2_in(dfftp%nr3),bgauss(nat,1)) do it=1,nat bgauss(it,1)=1.d0 enddo sa=omega/L v0=esm_efield*z1*2.d0/2.d0 ! factor 1/2: unit Ry. -> hartree ci=(0.d0,1.d0) ! for gp!=0 !$omp parallel do private( k1, k2, gp2, gp, vg2, it, tt, pp, cc, ss, cs, zp, iz, & !$omp k3, z, cc1, ig, tmp, arg11, arg12, arg21, arg22, t1, t2, & !$omp cc2, vg2_in ) do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if(k1==0.and.k2==0) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) vg2(1:dfftp%nr3)=(0.d0,0.d0) do it=1,nat tt=-fpi*upf(ityp(it))%zp/sa pp=-tpi*(tau(1,it)*(k1*bg(1,1)+k2*bg(1,2))+tau(2,it)*(k1*bg(2,1)+k2*bg(2,2))) cc=cos(pp) ss=sin(pp) cs=CMPLX ( cc, ss, kind=DP ) zp=tau(3,it) if (zp.gt.at(3,3)*0.5) zp=zp-at(3,3) zp=zp*alat do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L cc1=(0.d0,0.d0) do ig=1,1 tmp=1.d0 arg11=-gp*(z-zp) arg11=min(arg11,argmax) arg12= gp/2.d0/tmp-tmp*(z-zp) arg21= gp*(z-zp) arg21=min(arg21,argmax) arg22= gp/2.d0/tmp+tmp*(z-zp) t1=exp(arg11)*qe_erfc(arg12) t2=exp(arg21)*qe_erfc(arg22) cc1=cc1+bgauss(it,ig)*cs*(t1+t2)/4.d0/gp enddo if (esm_bc.eq.'bc1') then cc2=(0.d0,0.d0) else if (esm_bc.eq.'bc2') then cc2=cs*( exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & -exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1))) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp else if (esm_bc.eq.'bc3') then cc2=cs*(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp endif vg2(iz) = vg2(iz) + tt*(cc1+cc2)*2.d0 ! factor 2: hartree -> Ry. enddo enddo vg2_in(1:dfftp%nr3)=vg2(1:dfftp%nr3) call cft_1z(vg2_in,1,dfftp%nr3,dfftp%nr3,-1,vg2) do iz=1,dfftp%nr3 vloc3(iz,ng_2d)=vg2(iz) enddo enddo ng_2d=imill_2d(0,0) if( ng_2d > 0 ) then vg2(1:dfftp%nr3)=(0.d0,0.d0) ! for smoothing f1=0.d0; f2=0.d0; f3=0.d0; f4=0.d0 nz_l=dfftp%nr3/2+1+esm_nfit nz_r=dfftp%nr3/2+1-esm_nfit z_l=dble(nz_l-1)*L/dble(dfftp%nr3)-L z_r=dble(nz_r-1)*L/dble(dfftp%nr3) ! add constant potential (capacitor term) do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L vg2(iz)=-0.5d0*v0*(z-z1)/z1*2.d0 ! factor 2: hartree -> Ry. enddo f1=-0.5d0*v0*(z_r-z1)/z1 ! unit: hartree f2=-0.5d0*v0*(z_l-z1)/z1 ! unit: hartree f3=-0.5d0*v0/z1 ! unit: hartree/a.u. f4=-0.5d0*v0/z1 ! unit: harteee/a.u. ! for gp=0 do it=1,nat tt=-fpi*upf(ityp(it))%zp/sa zp=tau(3,it) if (zp.gt.at(3,3)*0.5) zp=zp-at(3,3) zp=zp*alat do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L cc1=(0.d0,0.d0) do ig=1,1 tmp=1.d0 cc1=cc1+bgauss(it,ig)*0.5d0*(-(z-zp)*qe_erf(tmp*(z-zp)) & -exp(-tmp**2*(z-zp)**2)/tmp/sqrt(pi)) enddo if (esm_bc.eq.'bc1') then cc2=(0.d0,0.d0) else if (esm_bc.eq.'bc2') then cc2=0.5d0*(z1-z*zp/z1) else if (esm_bc.eq.'bc3') then cc2=0.5d0*(2.d0*z1-z-zp) endif vg2(iz) = vg2(iz) + tt*(cc1+cc2)*2.d0 ! factor 2: hartree -> Ry. enddo ! smoothing cell edge potential (avoiding unphysical oscillation) do ig=1,1 tmp=1.d0 f1=f1+tt*bgauss(it,ig)*0.5d0*(-(z_r-zp)*qe_erf(tmp*(z_r-zp)) & -exp(-tmp**2*(z_r-zp)**2)/tmp/sqrt(pi)) f2=f2+tt*bgauss(it,ig)*0.5d0*(-(z_l-zp)*qe_erf(tmp*(z_l-zp)) & -exp(-tmp**2*(z_l-zp)**2)/tmp/sqrt(pi)) f3=f3-tt*bgauss(it,ig)*0.5d0*qe_erf(tmp*(z_r-zp)) f4=f4-tt*bgauss(it,ig)*0.5d0*qe_erf(tmp*(z_l-zp)) enddo if(esm_bc.eq.'bc1')then f1=f1+tt*0.d0 f2=f2+tt*0.d0 f3=f3+tt*0.d0 f4=f4+tt*0.d0 elseif(esm_bc.eq.'bc2')then f1=f1+tt*0.5d0*(z1-z_r*zp/z1) f2=f2+tt*0.5d0*(z1-z_l*zp/z1) f3=f3+tt*(-0.5d0*(zp/z1)) f4=f4+tt*(-0.5d0*(zp/z1)) elseif(esm_bc.eq.'bc3')then f1=f1+tt*0.5d0*(2.d0*z1-z_r-zp) f2=f2+tt*0.5d0*(2.d0*z1-z_l-zp) f3=f3-tt*0.5d0 f4=f4-tt*0.5d0 endif enddo ! for smoothing f1=f1*2.d0; f2=f2*2.d0; f3=f3*2.d0; f4=f4*2.d0 ! factor 2: hartree -> Ry. z_r=z_r z_l=z_l+L a0=(f1*z_l**2*(z_l-3.d0*z_r)+z_r*(f3*z_l**2*(-z_l+z_r) & +z_r*(f2*(3.d0*z_l-z_r)+f4*z_l*(-z_l+z_r))))/(z_l-z_r)**3 a1=(f3*z_l**3+z_l*(6.d0*f1-6.d0*f2+(f3+2.d0*f4)*z_l)*z_r & -(2*f3+f4)*z_l*z_r**2-f4*z_r**3)/(z_l-z_r)**3 a2=(-3*f1*(z_l+z_r)+3.d0*f2*(z_l+z_r)-(z_l-z_r)*(2*f3*z_l & +f4*z_l+f3*z_r+2*f4*z_r))/(z_l-z_r)**3 a3=(2.d0*f1-2.d0*f2+(f3+f4)*(z_l-z_r))/(z_l-z_r)**3 do iz=nz_r,nz_l z=dble(iz-1)/dble(dfftp%nr3)*L vg2(iz)=(a0+a1*z+a2*z**2+a3*z**3) enddo vg2_in(1:dfftp%nr3)=vg2(1:dfftp%nr3) call cft_1z(vg2_in,1,dfftp%nr3,dfftp%nr3,-1,vg2) do iz=1,dfftp%nr3 vloc3(iz,ng_2d)=vg2(iz) enddo endif ! if( ng_2d > 0 ) deallocate(vg2,vg2_in,bgauss) ! Map to FFT mesh (dfftp%nrx) do ng=1,ngm n1 = mill(1,ng) n2 = mill(2,ng) ng_2d = imill_2d(n1,n2) n3 = mill(3,ng) + 1 IF (n3<1) n3 = n3 + dfftp%nr3 aux(nl(ng))= aux(nl(ng)) + vloc3(n3,ng_2d) enddo if (gamma_only) then do ng=1,ngm aux (nlm(ng))=CONJG(aux(nl(ng))) enddo endif deallocate(vloc3) return end subroutine esm_local !----------------------------------------------------------------------- !--------------ESM EWALD-DERIVED FORCE SUBROUTINE----------------------- !----------------------------------------------------------------------- subroutine esm_force_ew ( alpha, forceion ) USE kinds USE cell_base, ONLY : omega, alat, tpiba2, at, bg USE control_flags, ONLY : gamma_only USE ions_base, ONLY : nat, tau, ityp USE uspp_param, ONLY : upf USE fft_base, ONLY : dfftp USE gvect, ONLY : gstart implicit none REAL(DP) :: alpha REAL(DP) :: forceion(3,nat) ! ! here the local variables ! real(DP), external :: qe_erfc, qe_erf integer :: it1, it2, ipol, k1, k2, k3, ng_2d integer :: nth, ith, omp_get_num_threads, omp_get_thread_num real(DP) :: t1_for, t2_for, z, zp, kk1_for, kk2_for, g, for_g(3, nat), gp2, gp, z1, t(2), L real(DP) :: cx1_for, cy1_for, cz1_for, cx2_for, cy2_for, cz2_for, arg1, arg2, t1, t2, ff real(DP) :: sa, z0, g_b,tauz1,tauz2,gt,tt,gz,argmax,for(3, nat) argmax=0.9*log(huge(1.d0)) for_g(:,:)=0.d0 forceion(:,:)=0.d0 L=at(3,3)*alat z0=L/2.d0 z1=z0+abs(esm_w) sa=omega/L g=sqrt(alpha) !$omp parallel private( nth, ith, for, z, zp, t1_for, t2_for, kk1_for, kk2_for, & !$omp cz1_for, cz2_for, ng_2d, k1, k2, gp2, gp, arg1, arg2, t1, t2, & !$omp cx1_for, cy1_for, cx2_for, cy2_for, ff ) #ifdef __OPENMP nth=omp_get_num_threads() ith=omp_get_thread_num() #endif for=0d0 do it1=1,nat do it2=1,nat #ifdef __OPENMP if( mod( (it1-1)*nat+it2-1, nth) /= ith ) cycle #endif z=tau(3,it1) if (z.gt.at(3,3)*0.5) z=z-at(3,3) z=z*alat zp=tau(3,it2) if (zp.gt.at(3,3)*0.5) zp=zp-at(3,3) zp=zp*alat if (gamma_only) then t1_for=upf(ityp(it1))%zp*upf(ityp(it2))%zp*fpi/sa*2.d0 else t1_for=upf(ityp(it1))%zp*upf(ityp(it2))%zp*fpi/sa endif t2_for=upf(ityp(it1))%zp*upf(ityp(it2))%zp*fpi/sa kk1_for=0.5d0*qe_erf(g*(z-zp)) if (esm_bc.eq.'bc1') then kk2_for=0.d0 else if (esm_bc.eq.'bc2') then kk2_for=-0.5d0*(z/z1) else if (esm_bc.eq.'bc3') then kk2_for=-0.5d0 endif if (it1.eq.it2) then cz1_for=0.d0 cz2_for=0.d0 do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if(k1==0.and.k2==0) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) arg1=-gp*(z-zp) arg2= gp*(z-zp) arg1=min(arg1,argmax) arg2=min(arg2,argmax) t1=exp(arg1)*qe_erfc(gp/2.d0/g-g*(z-zp)) t2=exp(arg2)*qe_erfc(gp/2.d0/g+g*(z-zp)) cz1_for=0.d0 if (esm_bc.eq.'bc1') then cz2_for=0.d0 else if (esm_bc.eq.'bc2') then cz2_for=cz2_for - (exp(gp*(z-zp-4.d0*z1))-exp(-gp*(z-zp+4.d0*z1)) & +exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0 else if (esm_bc.eq.'bc3') then cz2_for=cz2_for - exp(gp*(z+zp-2.d0*z1))/2.d0 endif enddo for(3,it2) = for(3,it2) + t1_for*(cz1_for+cz2_for) if(gstart==2) then for(3,it2) = for(3,it2) + t2_for*(kk1_for+kk2_for) endif else if (it1.gt.it2) then cx1_for=0.d0 cy1_for=0.d0 cz1_for=0.d0 cx2_for=0.d0 cy2_for=0.d0 cz2_for=0.d0 do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if(k1==0.and.k2==0) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) ff = ( ( k1*bg(1,1)+k2*bg(1,2) ) * ( tau(1,it1)-tau(1,it2) ) & + ( k1*bg(2,1)+k2*bg(2,2) ) * ( tau(2,it1)-tau(2,it2) ) ) * tpi arg1=-gp*(z-zp) arg2= gp*(z-zp) arg1=min(arg1,argmax) arg2=min(arg2,argmax) t1=exp(arg1)*qe_erfc(gp/2.d0/g-g*(z-zp)) t2=exp(arg2)*qe_erfc(gp/2.d0/g+g*(z-zp)) cx1_for=cx1_for+sin(ff)*(t1+t2)/4.d0/gp*k1 cy1_for=cy1_for+sin(ff)*(t1+t2)/4.d0/gp*k2 cz1_for=cz1_for+cos(ff)*(t1-t2)/4.d0 if (esm_bc.eq.'bc1') then cx2_for=0.d0 cy2_for=0.d0 cz2_for=0.d0 else if (esm_bc.eq.'bc2') then cx2_for=cx2_for + sin(ff)*(exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & - exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp*k1 cy2_for=cy2_for + sin(ff)*(exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & - exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp*k2 cz2_for=cz2_for - cos(ff)*(exp(gp*(z-zp-4.d0*z1))-exp(-gp*(z-zp+4.d0*z1)) & + exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0 else if (esm_bc.eq.'bc3') then cx2_for=cx2_for+sin(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp*k1 cy2_for=cy2_for+sin(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp*k2 cz2_for=cz2_for+cos(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0 endif enddo for(1,it2)=for(1,it2)+t1_for*(cx1_for+cx2_for) for(2,it2)=for(2,it2)+t1_for*(cy1_for+cy2_for) for(3,it2)=for(3,it2)+t1_for*(cz1_for+cz2_for) if(gstart==2) then for(3,it2)=for(3,it2)+t2_for*(kk1_for+kk2_for) endif else if (it1.lt.it2) then cx1_for=0.d0 cy1_for=0.d0 cz1_for=0.d0 cx2_for=0.d0 cy2_for=0.d0 cz2_for=0.d0 do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if(k1==0.and.k2==0) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) ff = ( ( k1*bg(1,1)+k2*bg(1,2) ) * ( tau(1,it1)-tau(1,it2) ) & + ( k1*bg(2,1)+k2*bg(2,2) ) * ( tau(2,it1)-tau(2,it2) ) ) * tpi arg1=-gp*(z-zp) arg2= gp*(z-zp) arg1=min(arg1,argmax) arg2=min(arg2,argmax) t1=exp(arg1)*qe_erfc(gp/2.d0/g-g*(z-zp)) t2=exp(arg2)*qe_erfc(gp/2.d0/g+g*(z-zp)) cx1_for=cx1_for+sin(ff)*(t1+t2)/4.d0/gp*k1 cy1_for=cy1_for+sin(ff)*(t1+t2)/4.d0/gp*k2 cz1_for=cz1_for+cos(ff)*(t1-t2)/4.d0 if (esm_bc.eq.'bc1') then cx2_for=0.d0 cy2_for=0.d0 cz2_for=0.d0 else if (esm_bc.eq.'bc2') then cx2_for=cx2_for + sin(ff)*(exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & - exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp*k1 cy2_for=cy2_for + sin(ff)*(exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & - exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp*k2 cz2_for=cz2_for - cos(ff)*(exp(gp*(z-zp-4.d0*z1))-exp(-gp*(z-zp+4.d0*z1)) & + exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1)) ) & /(1.d0-exp(-4.d0*gp*z1))/2.d0 else if (esm_bc.eq.'bc3') then cx2_for=cx2_for+sin(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp*k1 cy2_for=cy2_for+sin(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp*k2 cz2_for=cz2_for+cos(ff)*(-exp(gp*(z+zp-2.d0*z1)))/2.d0 endif enddo for(1,it2)=for(1,it2)+t1_for*(cx1_for+cx2_for) for(2,it2)=for(2,it2)+t1_for*(cy1_for+cy2_for) for(3,it2)=for(3,it2)+t1_for*(cz1_for+cz2_for) if(gstart==2) then for(3,it2)=for(3,it2)+t2_for*(kk1_for+kk2_for) endif endif enddo enddo !$omp critical for_g(:,:) = for_g(:,:) + for(:,:) !$omp end critical !$omp end parallel for_g(:,:)=2.0*for_g(:,:) do it1=1,nat forceion(1,it1)=sum( for_g(1:2,it1)*bg(1,1:2) )*sqrt(tpiba2) forceion(2,it1)=sum( for_g(1:2,it1)*bg(2,1:2) )*sqrt(tpiba2) forceion(3,it1)=for_g(3,it1) enddo forceion(:,:)=-forceion(:,:) return end subroutine esm_force_ew !----------------------------------------------------------------------- !--------------ESM LOCAL POTENTIAL-DERIVED FORCE SUBROUTINE------------- !----------------------------------------------------------------------- subroutine esm_force_lc ( aux, forcelc ) USE kinds USE gvect, ONLY : g, ngm, nl, nlm, mill USE cell_base, ONLY : omega, alat, tpiba, tpiba2, at, bg USE control_flags, ONLY : gamma_only USE ions_base, ONLY : nat, tau, ityp USE uspp_param, ONLY : upf USE fft_scalar, ONLY : cft_1z USE fft_base, ONLY : dfftp implicit none COMPLEX(DP) :: aux(dfftp%nnr) ! aux contains n(G) (input) REAL(DP) :: forcelc(3,nat) ! ! here are the local variables ! real(DP),allocatable :: bgauss(:,:),for(:,:),for_g(:,:) real(DP), external :: qe_erf, qe_erfc real(DP) :: t(3),tt,gp,gp2,sa,z1,z0,pp,cc,ss,t1,t2,z,zp,L real(DP) :: arg11,arg12,arg21,arg22,tmp,r1,r2,fx1,fy1,fz1,fx2,fy2,fz2,argmax integer :: iz,ig,it,ipol,k1,k2,k3,ng,n1,n2,n3,ng_2d complex(DP),allocatable :: vg2(:),vg2_fx(:),vg2_fy(:),vg2_fz(:),rhog3(:,:) complex(DP) :: cx1,cy1,cz1,cx2,cy2,cz2,cc1,cc2 argmax=0.9*log(huge(1.d0)) ! Map to FULL FFT mesh (dfftp%nr1x,dfftp%nr2x,dfftp%nr3) allocate(rhog3(dfftp%nr3,ngm_2d)) rhog3(:,:)=(0.d0,0.d0) do ng=1,ngm n1 = mill(1,ng) n2 = mill(2,ng) ng_2d = imill_2d(n1,n2) n3 = mill(3,ng) + 1 IF (n3<1) n3 = n3 + dfftp%nr3 rhog3(n3,ng_2d)=aux(nl(ng)) if (gamma_only .and. n1==0 .and. n2==0) then n3 = -mill(3,ng)+1 IF(n3<1)n3=n3+dfftp%nr3 rhog3(n3,ng_2d)=aux(nlm(ng)) endif enddo L=at(3,3)*alat z0=L/2.d0 z1=z0+abs(esm_w) allocate(vg2(dfftp%nr3),vg2_fx(dfftp%nr3),vg2_fy(dfftp%nr3),vg2_fz(dfftp%nr3),bgauss(nat,1)) allocate(for_g(3,nat)) do it=1,nat bgauss(it,1)=1.d0 enddo sa=omega/L for_g(:,:)=0.d0 vg2_fx(:)=(0.d0,0.d0) vg2_fy(:)=(0.d0,0.d0) vg2_fz(:)=(0.d0,0.d0) !**** for gp!=0 ********* !$omp parallel private( k1, k2, gp2, gp, it, tt, pp, cc, ss, zp, iz, & !$omp k3, z, cx1, cy1, cz1, tmp, arg11, arg12, arg21, arg22, & !$omp t1, t2, cx2, cy2, cz2, vg2_fx, vg2_fy, vg2_fz, vg2, & !$omp r1, r2, fx1, fy1, fz1, fx2, fy2, fz2, for ) allocate(for(3,nat)) for(:,:)=0.d0 !$omp do do ng_2d = 1, ngm_2d k1 = mill_2d(1,ng_2d) k2 = mill_2d(2,ng_2d) if(k1==0.and.k2==0) cycle t(1:2) = k1 * bg (1:2, 1) + k2 * bg (1:2, 2) gp2 = sum( t(:) * t(:) ) * tpiba2 gp=sqrt(gp2) do it=1,nat IF (gamma_only) THEN tt=-fpi*upf(ityp(it))%zp/sa*2.d0 ELSE tt=-fpi*upf(ityp(it))%zp/sa ENDIF pp=-tpi*(tau(1,it)*(k1*bg(1,1)+k2*bg(1,2))+tau(2,it)*(k1*bg(2,1)+k2*bg(2,2))) cc=cos(pp) ss=sin(pp) zp=tau(3,it) if (zp.gt.at(3,3)*0.5) zp=zp-at(3,3) zp=zp*alat do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L cx1=(0.d0,0.d0); cy1=(0.d0,0.d0); cz1=(0.d0,0.d0) do ig=1,1 tmp=1.d0 arg11=-gp*(z-zp) arg11=min(arg11,argmax) arg12= gp/2.d0/tmp-tmp*(z-zp) arg21= gp*(z-zp) arg21=min(arg21,argmax) arg22= gp/2.d0/tmp+tmp*(z-zp) t1=exp(arg11)*qe_erfc(arg12) t2=exp(arg21)*qe_erfc(arg22) cx1=cx1+bgauss(it,ig)*CMPLX(ss, -cc, kind=DP) & *(t1+t2)/4.d0/gp*k1 cy1=cy1+bgauss(it,ig)*CMPLX(ss, -cc, kind=DP) & *(t1+t2)/4.d0/gp*k2 cz1=cz1+bgauss(it,ig)*CMPLX(cc, ss, kind=DP) & *(t1-t2)/4.d0 enddo if (esm_bc.eq.'bc1') then cx2=(0.d0,0.d0) cy2=(0.d0,0.d0) cz2=(0.d0,0.d0) else if (esm_bc.eq.'bc2') then cx2=CMPLX(ss, -cc, kind=DP)* & (exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & -exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1))) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp*k1 cy2=CMPLX(ss, -cc, kind=DP)* & (exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & -exp(gp*(z+zp-2.d0*z1))-exp(-gp*(z+zp+2.d0*z1))) & /(1.d0-exp(-4.d0*gp*z1))/2.d0/gp*k2 cz2=CMPLX(cc, ss, kind=DP)* & (-exp(gp*(z-zp-4.d0*z1))+exp(-gp*(z-zp+4.d0*z1)) & -exp(gp*(z+zp-2.d0*z1))+exp(-gp*(z+zp+2.d0*z1))) & /(1.d0-exp(-4.d0*gp*z1))/2.d0 else if (esm_bc.eq.'bc3') then cx2=CMPLX(ss, -cc, kind=DP)* & (-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp*k1 cy2=CMPLX(ss, -cc, kind=DP)* & (-exp(gp*(z+zp-2.d0*z1)))/2.d0/gp*k2 cz2=CMPLX(cc, ss, kind=DP)* & (-exp(gp*(z+zp-2.d0*z1)))/2.d0 endif vg2_fx(iz) = tt*(cx1+cx2) vg2_fy(iz) = tt*(cy1+cy2) vg2_fz(iz) = tt*(cz1+cz2) enddo vg2(1:dfftp%nr3)=vg2_fx(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2,1,dfftp%nr3,dfftp%nr3,-1,vg2_fx) vg2(1:dfftp%nr3)=vg2_fy(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2,1,dfftp%nr3,dfftp%nr3,-1,vg2_fy) vg2(1:dfftp%nr3)=vg2_fz(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2,1,dfftp%nr3,dfftp%nr3,-1,vg2_fz) do iz=1,dfftp%nr3 r1= dble(rhog3(iz,ng_2d)) r2=aimag(rhog3(iz,ng_2d)) fx1=dble( vg2_fx(iz)) fy1=dble( vg2_fy(iz)) fz1=dble( vg2_fz(iz)) fx2=aimag( vg2_fx(iz)) fy2=aimag( vg2_fy(iz)) fz2=aimag( vg2_fz(iz)) for(1,it)=for(1,it)-r1*fx1-r2*fx2 for(2,it)=for(2,it)-r1*fy1-r2*fy2 for(3,it)=for(3,it)-r1*fz1-r2*fz2 enddo enddo enddo !$omp critical for_g(:,:) = for_g(:,:) + for(:,:) deallocate(for) !$omp end critical !$omp end parallel !***** for gp==0******** ng_2d = imill_2d(0,0) if( ng_2d > 0 ) then vg2_fz(:)=(0.d0,0.d0) do it=1,nat tt=-fpi*upf(ityp(it))%zp/sa zp=tau(3,it) if (zp.gt.at(3,3)*0.5) zp=zp-at(3,3) zp=zp*alat do iz=1,dfftp%nr3 k3=iz-1 if (k3.gt.dfftp%nr3/2) k3=iz-dfftp%nr3-1 z=dble(k3)/dble(dfftp%nr3)*L cc1=(0.d0,0.d0) do ig=1,1 tmp=1.d0 cc1=cc1+bgauss(it,ig)*(0.5d0*qe_erf(tmp*(z-zp))) enddo if (esm_bc.eq.'bc1') then cc2=(0.d0,0.d0) else if (esm_bc.eq.'bc2') then cc2=-0.5d0*(z/z1) else if (esm_bc.eq.'bc3') then cc2=-0.5d0 endif vg2_fz(iz) = tt*(cc1+cc2) enddo vg2(1:dfftp%nr3)=vg2_fz(1:dfftp%nr3) ! Since cft_1z is not in-place call cft_1z(vg2,1,dfftp%nr3,dfftp%nr3,-1,vg2_fz) do iz=1,dfftp%nr3 r1=dble( rhog3(iz,ng_2d)) r2=aimag(rhog3(iz,ng_2d)) fz1=dble( vg2_fz(iz)) fz2=aimag(vg2_fz(iz)) for_g(3,it)=for_g(3,it)-r1*fz1-r2*fz2 enddo enddo endif ! if( ng_2d > 0 ) deallocate(vg2,vg2_fx,vg2_fy,vg2_fz,bgauss) !***** sum short_range part and long_range part in local potential force at cartecian coordinate do it=1,nat forcelc(1,it)=forcelc(1,it)+sum(for_g(1:2,it)*bg(1,1:2))*sqrt(tpiba2)*omega*2.d0 forcelc(2,it)=forcelc(2,it)+sum(for_g(1:2,it)*bg(2,1:2))*sqrt(tpiba2)*omega*2.d0 forcelc(3,it)=forcelc(3,it)+for_g(3,it)*omega*2.d0 enddo deallocate(for_g) call setlocal() deallocate(rhog3) return end subroutine esm_force_lc !----------------------------------------------------------------------- !--------------ESM FINAL PRINTOUT SUBROUTINE---------------------------- !----------------------------------------------------------------------- ! ! Prints out vlocal and vhartree to stdout once electrons are converged ! Format: z, rho(r), v_hartree, v_local, (v_hartree + v_local) ! SUBROUTINE esm_printpot () USE kinds, ONLY : DP USE cell_base, ONLY : at, alat USE scf, ONLY : rho, vltot USE lsda_mod, ONLY : nspin USE mp, ONLY : mp_sum USE mp_bands, ONLY : intra_bgrp_comm USE fft_base, ONLY : dfftp USE io_global, ONLY : ionode, stdout USE constants, ONLY : rytoev, bohr_radius_angs ! IMPLICIT NONE ! REAL(DP) :: z1,z2,z3,z4,charge,ehart,L,area REAL(DP), ALLOCATABLE :: work1(:),work2(:,:),work3(:), work4(:,:) INTEGER :: ix,iy,iz,izz,i,k3 allocate(work1(dfftp%nnr)) allocate(work2(dfftp%nnr,nspin)) allocate(work3(dfftp%nnr)) allocate(work4(5,dfftp%nr3)) work1(:)=0.d0; work2(:,:)=0.d0; work3(:)=0.d0; work4(:,:)=0.d0 L=alat*at(3,3) area=(at(1,1)*at(2,2)-at(2,1)*at(1,2))*alat**2 CALL v_h (rho%of_g, ehart, charge, work2) work3(1:dfftp%nnr)=vltot(1:dfftp%nnr) if( nspin == 2 ) then work1(:)=rho%of_r(:,1)+rho%of_r(:,2) else work1(:)=rho%of_r(:,1) endif ! z = position along slab (A) ! rho = planar-summed charge density of slab section (e) ! v_hartree = planar-averaged hartree potential term (eV) ! v_local = planar-averaged local potential term (eV) !$omp parallel do private( iz, izz, k3, z1, z2, z3, z4, iy, ix, i ) do iz = 1, dfftp%npp(dfftp%mype+1) izz = iz + dfftp%ipp(dfftp%mype+1) k3 = izz - 1 if( k3 > dfftp%nr3/2 ) k3 = k3 - dfftp%nr3 z1=0.d0;z2=0.d0;z3=0.d0;z4=0.d0 do iy=1,dfftp%nr2 do ix=1,dfftp%nr1 i=ix+(iy-1)*dfftp%nr1+(iz-1)*dfftp%nr1*dfftp%nr2 z1=z1+work1(i)*area/dble(dfftp%nr1*dfftp%nr2) z2=z2+(work2(i,1)+work3(i))/dble(dfftp%nr1*dfftp%nr2) z3=z3+work2(i,1)/dble(dfftp%nr1*dfftp%nr2) z4=z4+work3(i)/dble(dfftp%nr1*dfftp%nr2) enddo enddo work4(1:5,izz) = (/dble(k3)/dble(dfftp%nr3)*L*bohr_radius_angs, & z1/bohr_radius_angs, z3*rytoev,z4*rytoev, & z2*rytoev/) enddo ! call mp_sum(work4, intra_bgrp_comm) ! IF ( ionode ) then write(stdout, & FMT = '(/,5x, "ESM Charge and Potential",& &/,5x, "========================",/)' ) write(stdout, 9051) write(stdout, 9052) do k3 = dfftp%nr3/2-dfftp%nr3+1, dfftp%nr3/2 iz = k3 + dfftp%nr3 + 1 if( iz > dfftp%nr3 ) iz = iz - dfftp%nr3 write(stdout,'(f9.2,f12.4,2f19.7,f18.7)') work4(1:5,iz) enddo write(stdout,*) ENDIF deallocate(work1,work2,work3,work4) 9051 FORMAT( 4x,'z (A)',3x,'Tot chg (e/A)',3x,'Avg v_hartree',8x,& &'Avg v_local',2x,'Avg v_hart+v_loc' ) 9052 FORMAT(37x,'(eV)',15x,'(eV)',14x,'(eV)',/,4x,& &'==========================================================================' ) END SUBROUTINE esm_printpot ! !----------------------------------------------------------------------- !--------------ESM SUMMARY PRINTOUT SUBROUTINE-------------------------- !----------------------------------------------------------------------- ! ! Prints summary of ESM parameters to stdout ! SUBROUTINE esm_summary () ! USE io_global, ONLY : stdout, & ionode ! IMPLICIT NONE ! WRITE( UNIT = stdout, & FMT = '(/,5x, "Effective Screening Medium Method", & &/,5x, "=================================")' ) ! WRITE( UNIT = stdout, FMT = 9051 ) esm_efield ! WRITE( UNIT = stdout, FMT = 9052 ) esm_w ! WRITE( UNIT = stdout, FMT = 9053 ) esm_nfit ! IF( ionode ) THEN ! SELECT CASE( TRIM( esm_bc ) ) ! CASE( 'pbc' ) WRITE( UNIT = stdout, & FMT = '(5x, "Ordinary Periodic Boundary Conditions")' ) CASE( 'bc1' ) WRITE( UNIT = stdout, & FMT = '(5x, "Boundary Conditions: Vacuum-Slab-Vacuum")' ) CASE( 'bc2' ) WRITE( UNIT = stdout, & FMT = '(5x, "Boundary Conditions: Metal-Slab-Metal")' ) CASE( 'bc3' ) WRITE( UNIT = stdout, & FMT = '(5x, "Boundary Conditions: Vacuum-Slab-Metal")' ) END SELECT END IF ! WRITE( stdout, * ) ! 9051 FORMAT( ' field strength (Ry/a.u.) = ', F10.2,' ') 9052 FORMAT( ' ESM offset from cell edge (a.u.) = ', F10.2,' ' ) 9053 FORMAT( ' grid points for fit at edges = ', I10,' ') END SUBROUTINE esm_summary END MODULE esm espresso-5.1/PW/src/usnldiag.f900000644000175000017500000000744212341373025014554 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine usnldiag (h_diag, s_diag) !----------------------------------------------------------------------- ! ! add nonlocal pseudopotential term to diagonal part of Hamiltonian ! compute the diagonal part of the S matrix ! USE kinds, ONLY: DP USE ions_base, ONLY : nat, ityp, ntyp => nsp USE wvfct, ONLY: npw, npwx USE lsda_mod, ONLY: current_spin USE uspp, ONLY: deeq, vkb, qq, qq_so, deeq_nc USE uspp_param, ONLY: upf, nh, newpseudo USE spin_orb, ONLY: lspinorb USE noncollin_module, ONLY: noncolin, npol ! implicit none ! ! here the dummy variables ! real(DP) :: h_diag (npwx,npol), s_diag (npwx,npol) ! input/output: the diagonal part of the hamiltonian ! output: the diagonal part of the S matrix ! ! and here the local variables ! integer :: ikb, jkb, ih, jh, na, nt, ig, ijkb0, ipol ! counters complex(DP) :: ps1(2), ps2(2), ar ! ! initialise s_diag ! s_diag = 1.d0 ! ! multiply on projectors ! ijkb0 = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) == nt) then do ih = 1, nh (nt) ikb = ijkb0 + ih if (lspinorb) then ps1(1) = deeq_nc (ih, ih, na, 1) ps1(2) = deeq_nc (ih, ih, na, 4) ps2(1) = qq_so(ih, ih, 1, nt) ps2(2) = qq_so(ih, ih, 4, nt) else if (noncolin) then ps1(1) = deeq_nc (ih, ih, na, 1) ps1(2) = deeq_nc (ih, ih, na, 4) ps2(1) = qq (ih, ih, nt) ps2(2) = qq (ih, ih, nt) else ps1(1) = deeq (ih, ih, na, current_spin) ps2(1) = qq (ih, ih, nt) end if do ipol =1, npol do ig = 1, npw ar = vkb (ig, ikb)*CONJG(vkb (ig, ikb)) h_diag (ig,ipol) = h_diag (ig,ipol) + ps1(ipol) * ar s_diag (ig,ipol) = s_diag (ig,ipol) + ps2(ipol) * ar enddo enddo if ( upf(nt)%tvanp .or.newpseudo (nt) ) then do jh = 1, nh (nt) if (jh.ne.ih) then jkb = ijkb0 + jh if (lspinorb) then ps1(1) = deeq_nc (ih, jh, na, 1) ps1(2) = deeq_nc (ih, jh, na, 4) ps2(1) = qq_so(ih, jh, 1, nt) ps2(2) = qq_so(ih, jh, 4, nt) else if (noncolin) then ps1(1) = deeq_nc (ih, jh, na, 1) ps1(2) = deeq_nc (ih, jh, na, 4) ps2(1) = qq (ih, jh, nt) ps2(2) = qq (ih, jh, nt) else ps1(1) = deeq (ih, jh, na, current_spin) ps2(1) = qq (ih, jh, nt) end if do ipol = 1, npol do ig = 1, npw ar = vkb (ig, ikb) *CONJG( vkb (ig, jkb)) h_diag (ig,ipol) = h_diag (ig,ipol) + & ps1(ipol) * ar s_diag (ig,ipol) = s_diag (ig,ipol) + & ps2(ipol) * ar enddo enddo endif enddo endif enddo ijkb0 = ijkb0 + nh (nt) endif enddo enddo return end subroutine usnldiag espresso-5.1/PW/src/memory_report.f900000644000175000017500000000753212341373025015651 0ustar mbamba! ! Copyright (C) 2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE memory_report() !---------------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE wvfct, ONLY : npwx, nbnd, nbndx USE basis, ONLY : natomwfc USE fft_base, ONLY : dfftp USE gvect, ONLY : ngl, ngm USE uspp, ONLY : nkb USE ldaU, ONLY : lda_plus_u, U_projection, nwfcU USE fixed_occ, ONLY : one_atom_occupations USE wannier_new,ONLY: use_wannier USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : npol USE control_flags, ONLY: isolve, nmix, gamma_only, lscf USE mp_diag, ONLY : np_ortho ! IMPLICIT NONE ! INTEGER, PARAMETER :: Mb=1024*1024, complex_size=16, real_size=8 INTEGER :: g_size, nbnd_l ! ! the conversions to double prevent integer overflow in very large run ! WRITE( stdout, '(/5x,"Largest allocated arrays",5x,"est. size (Mb)", & &5x,"dimensions")') WRITE( stdout, '(8x,"Kohn-Sham Wavefunctions ",f10.2," Mb", & & 5x,"(",i8,",",i5,")")') & complex_size*nbnd*npol*DBLE(npwx)/Mb, npwx*npol,nbnd IF ( one_atom_occupations .OR. use_wannier ) & WRITE( stdout, '(8x,"Atomic wavefunctions ",f10.2," Mb", & & 5x,"(",i8,",",i5,")")') & & complex_size*natomwfc*npol*DBLE(npwx)/Mb, npwx*npol,natomwfc IF ( lda_plus_u .AND. U_projection .NE. 'pseudo' ) & WRITE( stdout, '(8x,"Atomic Hubbard wavefuncts ",f10.2," Mb", & & 5x,"(",i8,",",i5,")")') & & complex_size*nwfcU*npol*DBLE(npwx)/Mb, npwx*npol,nwfcU WRITE( stdout, '(8x,"NL pseudopotentials ",f10.2," Mb", & & 5x,"(",i8,",",i5,")")') & complex_size*nkb*DBLE(npwx)/Mb, npwx, nkb IF ( nspin == 2 ) THEN WRITE( stdout, '(8x,"Each V/rho on FFT grid ",f10.2," Mb", & & 5x,"(",i8,",",i4,")")') & complex_size*nspin*DBLE(dfftp%nnr)/Mb, dfftp%nnr, nspin ELSE WRITE( stdout, '(8x,"Each V/rho on FFT grid ",f10.2," Mb", & & 5x,"(",i8,")")') DBLE(complex_size*dfftp%nnr)/Mb, dfftp%nnr END IF WRITE( stdout, '(8x,"Each G-vector array ",f10.2," Mb", & & 5x,"(",i8,")")') DBLE(real_size*ngm)/Mb, ngm WRITE( stdout, '(8x,"G-vector shells ",f10.2," Mb", & & 5x,"(",i8,")")') DBLE(real_size*ngl)/Mb, ngl ! WRITE( stdout, '(5x,"Largest temporary arrays",5x,"est. size (Mb)", & &5x,"dimensions")') IF ( gamma_only) THEN g_size = real_size ELSE g_size = complex_size END IF ! IF ( isolve == 0 ) THEN WRITE( stdout, '(8x,"Auxiliary wavefunctions ",f10.2," Mb", & & 5x,"(",i8,",",i5,")")') & g_size*nbndx*npol*DBLE(npwx)/Mb, npwx*npol, nbndx ENDIF ! nbnd_l : estimated dimension of distributed matrices nbnd_l = nbndx/np_ortho(1) WRITE( stdout, '(8x,"Each subspace H/S matrix ",f10.2," Mb", & & 5x,"(",i8,",",i5,")")') & g_size*nbnd_l*DBLE(nbnd_l)/Mb, nbnd_l, nbnd_l ! IF ( npol > 1 ) THEN WRITE( stdout, '(8x,"Each matrix",f10.2," Mb", & & 5x,"(",i8,",",i4,",",i5,")")') & g_size*nkb*DBLE(npol*nbnd)/Mb, nkb, npol, nbnd ELSE WRITE( stdout, '(8x,"Each matrix",f10.2," Mb", & & 5x,"(",i8,",",i5,")")') & g_size*nkb*DBLE(nbnd)/Mb, nkb, nbnd END IF ! IF ( lscf) WRITE( stdout, & '(8x,"Arrays for rho mixing ",f10.2," Mb", 5x,"(",i8,",",i5,")")') & complex_size*dfftp%nnr*DBLE(nmix)/Mb, dfftp%nnr, nmix ! RETURN ! END subroutine memory_report espresso-5.1/PW/src/remove_atomic_rho.f900000644000175000017500000000232112341373025016436 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine remove_atomic_rho !----------------------------------------------------------------------- USE io_global, ONLY: stdout USE io_files, ONLY: output_drho USE kinds, ONLY: DP USE fft_base, ONLY: dfftp USE lsda_mod, ONLY: nspin USE scf, ONLY: rho USE io_rho_xml, ONLY : write_rho implicit none real(DP), allocatable :: work (:,:) ! workspace, is the difference between the charge density ! and the superposition of atomic charges allocate ( work( dfftp%nnr, 1 ) ) work = 0.d0 ! IF ( nspin > 1 ) CALL errore & ( 'remove_atomic_rho', 'spin polarization not allowed in drho', 1 ) WRITE( stdout, '(/5x,"remove atomic charge density from scf rho")') ! ! subtract the old atomic charge density ! call atomic_rho (work, nspin) ! work = rho%of_r - work ! call write_rho ( work, 1, output_drho ) ! deallocate(work) return end subroutine remove_atomic_rho espresso-5.1/PW/src/init_at_1.f900000644000175000017500000000400412341373025014604 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine init_at_1() !----------------------------------------------------------------------- ! ! This routine computes a table with the radial Fourier transform ! of the atomic wavefunctions. ! USE kinds, ONLY : dp USE atom, ONLY : rgrid, msh USE constants, ONLY : fpi USE cell_base, ONLY : omega USE ions_base, ONLY : ntyp => nsp USE us, ONLY : tab_at, nqx, dq USE uspp_param, ONLY : upf USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! integer :: nt, nb, iq, ir, l, startq, lastq, ndm ! real(DP), allocatable :: aux (:), vchi (:) real(DP) :: vqint, pref, q call start_clock ('init_at_1') ndm = MAXVAL (msh(1:ntyp)) allocate (aux(ndm),vchi(ndm)) ! ! chiq = radial fourier transform of atomic orbitals chi ! pref = fpi/sqrt(omega) ! needed to normalize atomic wfcs (not a bad idea in general and ! necessary to compute correctly lda+U projections) call divide (intra_bgrp_comm, nqx, startq, lastq) tab_at(:,:,:) = 0.d0 do nt = 1, ntyp do nb = 1, upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l = upf(nt)%lchi (nb) do iq = startq, lastq q = dq * (iq - 1) call sph_bes (msh(nt), rgrid(nt)%r, q, l, aux) do ir = 1, msh(nt) vchi(ir) = upf(nt)%chi(ir,nb) * aux(ir) * rgrid(nt)%r(ir) enddo call simpson (msh(nt), vchi, rgrid(nt)%rab, vqint) tab_at (iq, nb, nt) = vqint * pref enddo endif enddo enddo call mp_sum ( tab_at, intra_bgrp_comm ) deallocate(aux ,vchi) call stop_clock ('init_at_1') return end subroutine init_at_1 espresso-5.1/PW/src/exx.f900000644000175000017500000026151612341373025013556 0ustar mbamba! ! Copyright (C) 2005-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------- MODULE exx !-------------------------------------- ! USE kinds, ONLY : DP USE coulomb_vcut_module, ONLY : vcut_init, vcut_type, vcut_info, & vcut_get, vcut_spheric_get USE noncollin_module, ONLY : noncolin, npol USE io_global, ONLY : ionode USE fft_custom, ONLY : fft_cus ! ! FIXME: put in subroutines USE us_exx, ONLY : dovanxx, eps_occ_usxx => eps_occ USE control_flags, ONLY : tqr IMPLICIT NONE SAVE ! ! general purpose vars ! REAL(DP):: exxalfa=0._dp ! 1 if exx, 0 elsewhere INTEGER :: exx_nwordwfc, ji CHARACTER(len=1) :: exx_augmented = 'x' ! r -> real space ! k -> reciprocal space ! x -> do not augment ! ! variables defining the auxiliary k-point grid ! used in X BZ integration ! INTEGER :: nq1=1, nq2=1, nq3=1 ! integers defining the X integration mesh INTEGER :: nqs=1 ! number of points in the q-gridd INTEGER :: nkqs ! total number of different k+q ! REAL(DP), ALLOCATABLE :: xkq_collect(:,:) ! xkq(3,nkqs) the auxiliary k+q set REAL(DP), ALLOCATABLE :: x_occupation(:,:) ! x_occupation(nbnd,nks) the weight of ! auxiliary functions in the density matrix COMPLEX(DP), ALLOCATABLE :: exxbuff(:,:,:) ! temporary buffer for wfc storage ! ! ! let xk(:,ik) + xq(:,iq) = xkq(:,ikq) = S(isym)*xk(ik') + G ! ! index_xkq(ik,iq) = ikq ! index_xk(ikq) = ik' ! index_sym(ikq) = isym ! INTEGER, ALLOCATABLE :: index_xkq(:,:) ! index_xkq(nks,nqs) INTEGER, ALLOCATABLE :: index_xk(:) ! index_xk(nkqs) INTEGER, ALLOCATABLE :: index_sym(:) ! index_sym(nkqs) INTEGER, ALLOCATABLE :: rir(:,:) ! rotations to take k to q ! ! Used for k points pool parallelization. All pools need these quantities. ! They are allocated only IF needed. ! REAL(DP), ALLOCATABLE :: xk_collect(:,:) REAL(DP), ALLOCATABLE :: wk_collect(:) REAL(DP), ALLOCATABLE :: wg_collect(:,:) ! ! Internal: LOGICAL :: exx_grid_initialized = .false. ! ! variables to deal with Coulomb divergence ! and related issues ! REAL(DP) :: eps = 1.d-6 REAL(DP) :: eps_qdiv = 1.d-8 ! |q| > eps_qdiv REAL(DP) :: eps_occ = eps_occ_usxx ! skip band where occupation is less than this REAL(DP) :: exxdiv = 0._dp CHARACTER(32) :: exxdiv_treatment = '' ! ! x_gamma_extrapolation LOGICAL :: x_gamma_extrapolation =.TRUE. LOGICAl :: on_double_grid =.FALSE. REAL(DP) :: grid_factor = 1.d0 !8.d0/7.d0 ! ! Gygi-Baldereschi LOGICAL :: use_regularization = .TRUE. ! ! yukawa method REAL(DP) :: yukawa = 0._dp ! ! erfc screening REAL(DP) :: erfc_scrlen = 0._dp ! ! erf screening REAL(DP) :: erf_scrlen = 0._dp ! ! gau-pbe screening REAL (DP) :: gau_scrlen = 0.d0 ! ! cutoff techniques LOGICAL :: use_coulomb_vcut_ws = .FALSE. LOGICAL :: use_coulomb_vcut_spheric = .FALSE. REAL(DP) :: ecutvcut TYPE(vcut_type) :: vcut ! ! energy related variables ! REAL(DP) :: fock0 = 0.0_DP, & ! sum fock1 = 0.0_DP, & ! sum fock2 = 0.0_DP, & ! sum dexx = 0.0_DP ! fock1 - 0.5*(fock2+fock0) ! ! custom fft grids ! TYPE(fft_cus) exx_fft_g2r ! Grid for wfcs -> real space TYPE(fft_cus) exx_fft_r2g ! Grid for real space -> restricted G space REAL(DP) :: ecutfock ! energy cutoff for custom grid REAL(DP) :: exx_dual = 4.0_DP! dual for the custom grid CONTAINS #define _CX(A) CMPLX(A,0._dp,kind=DP) #define _CY(A) CMPLX(0._dp,-A,kind=DP) !------------------------------------------------------------------------ SUBROUTINE exx_grid_convert( psi, npw, fft, psi_t, sign, igkt ) !------------------------------------------------------------------------ ! ! This routine reorders the gvectors of the wavefunction psi and ! puts the result in psi_t. This reordering is needed when going ! between two different fft grids. ! ! sign > 0 goes from the smooth grid to the grid defined in fft ! sign < 0 goes from the grid defined in fft to the smooth grid ! USE mp_bands, ONLY : me_bgrp, nproc_bgrp, intra_bgrp_comm USE fft_custom, ONLY : reorderwfp_col USE gvect, ONLY : ig_l2g IMPLICIT NONE INTEGER, INTENT(IN) :: npw COMPLEX(kind=DP), INTENT(IN) :: psi(npw) COMPLEX(kind=DP), INTENT(INOUT) :: psi_t(:) INTEGER, OPTIONAL, INTENT(INOUT) :: igkt(:) INTEGER, INTENT(IN) :: sign TYPE(fft_cus), INTENT(IN) :: fft INTEGER :: ig CALL start_clock('exx_grid_convert') IF(sign > 0 .AND. PRESENT(igkt) ) THEN DO ig=1, fft%ngmt igkt(ig)=ig ENDDO ENDIF IF( fft%dual_t==4.d0) THEN psi_t(1:fft%npwt)=psi(1:fft%npwt) ELSE IF (sign > 0 ) THEN CALL reorderwfp_col ( 1, npw, fft%npwt, psi, psi_t, npw, fft%npwt,& & ig_l2g, fft%ig_l2gt, fft%ngmt_g, me_bgrp, nproc_bgrp,& & intra_bgrp_comm ) ELSE CALL reorderwfp_col ( 1, fft%npwt, npw, psi, psi_t, fft%npwt, npw,& & fft%ig_l2gt, ig_l2g, fft%ngmt_g, me_bgrp, nproc_bgrp,& & intra_bgrp_comm ) ENDIF ENDIF CALL stop_clock('exx_grid_convert') RETURN END SUBROUTINE exx_grid_convert !------------------------------------------------------------------------ ! !------------------------------------------------------------------------ SUBROUTINE exx_fft_create () USE wvfct, ONLY : ecutwfc, npw USE gvect, ONLY : ecutrho, ig_l2g USE uspp, ONLY : okvan USE paw_variables,ONLY : okpaw USE control_flags,ONLY : gamma_only IMPLICIT NONE IF(ecutfock <= 0.0_DP) ecutfock = 4.0_DP*ecutwfc IF(ecutfock < ecutwfc) CALL errore('exx_fft_create', & 'ecutfock can not be smaller than ecutwfc!', 1) IF(ecutfock < ecutrho .AND. .NOT.gamma_only) CALL infomsg & ('exx_fft_create','Warning: ecutfock implemented only for Gamma') IF(ecutfock < ecutrho .AND. (okvan .OR. okpaw)) CALL errore & ('exx_fft_create','ecutfock not implemented with US or PAW',2) ! Initalise the g2r grid that allows us to put the wavefunction ! onto the new (smaller) grid for rho. exx_fft_g2r%ecutt=ecutwfc exx_fft_g2r%dual_t=ecutfock/ecutwfc CALL allocate_fft_custom(exx_fft_g2r) IF (MAXVAL( ABS(ig_l2g(1:npw)-exx_fft_g2r%ig_l2gt(1:npw))) /= 0) THEN CALL errore('exx_fft_create', ' exx fft grid not compatible with & &the smooth fft grid. ', 1 ) ENDIF ! Initalise the r2g grid that we then use when applying the Fock ! operator in our new restricted space. exx_fft_r2g%ecutt=ecutfock/exx_dual exx_fft_r2g%dual_t=exx_dual CALL allocate_fft_custom(exx_fft_r2g) !------------------------------------------------------------------------ END SUBROUTINE exx_fft_create !------------------------------------------------------------------------ ! !------------------------------------------------------------------------ SUBROUTINE exx_fft_destroy () !------------------------------------------------------------------------ USE fft_custom, ONLY : deallocate_fft_custom IMPLICIT NONE CALL deallocate_fft_custom(exx_fft_g2r) CALL deallocate_fft_custom(exx_fft_r2g) !------------------------------------------------------------------------ END SUBROUTINE exx_fft_destroy !------------------------------------------------------------------------ ! !------------------------------------------------------------------------ SUBROUTINE deallocate_exx () !------------------------------------------------------------------------ ! USE becmod, ONLY : deallocate_bec_type, is_allocated_bec_type, bec_type USE us_exx, ONLY : becxx IMPLICIT NONE INTEGER :: ikq ! IF ( allocated(index_xkq) ) DEALLOCATE(index_xkq) IF ( allocated(index_xk ) ) DEALLOCATE(index_xk ) IF ( allocated(index_sym) ) DEALLOCATE(index_sym) IF ( ALLOCATED (rir) ) DEALLOCATE (rir) IF ( allocated(x_occupation) ) DEALLOCATE(x_occupation) IF ( allocated(xkq_collect) ) DEALLOCATE(xkq_collect) IF ( allocated(exxbuff) ) DEALLOCATE(exxbuff) ! IF(ALLOCATED(becxx)) THEN DO ikq = 1, nkqs IF(is_allocated_bec_type(becxx(ikq))) CALL deallocate_bec_type(becxx(ikq)) ENDDO DEALLOCATE(becxx) ENDIF ! CALL exx_fft_destroy() ! ! Pool variables deallocation ! IF ( allocated (xk_collect) ) DEALLOCATE( xk_collect ) IF ( allocated (wk_collect) ) DEALLOCATE( wk_collect ) IF ( allocated (wg_collect) ) DEALLOCATE( wg_collect ) ! ! !------------------------------------------------------------------------ END SUBROUTINE deallocate_exx !------------------------------------------------------------------------ ! SUBROUTINE exx_grid_reinit() IMPLICIT NONE DEALLOCATE(xkq_collect,index_xk,index_sym) exx_grid_initialized = .false. CALL exx_grid_init() END SUBROUTINE exx_grid_reinit !------------------------------------------------------------------------ SUBROUTINE exx_grid_init() !------------------------------------------------------------------------ ! USE symm_base, ONLY : nsym, s USE cell_base, ONLY : bg, at USE spin_orb, ONLY : domag USE noncollin_module, ONLY : nspin_lsda USE klist, ONLY : xk, wk, nkstot, nks USE wvfct, ONLY : nbnd USE io_global, ONLY : stdout USE start_k, ONLY : nk1,nk2,nk3 USE mp_pools, ONLY : npool ! IMPLICIT NONE ! CHARACTER(13) :: sub_name='exx_grid_init' INTEGER :: iq1, iq2, iq3, isym, ik, ikq, iq, max_nk, temp_nkqs INTEGER, allocatable :: temp_index_xk(:), temp_index_sym(:) INTEGER, allocatable :: temp_index_ikq(:), new_ikq(:) REAL(DP),allocatable :: temp_xkq(:,:) LOGICAL :: xk_not_found REAL(DP) :: sxk(3), dxk(3), xk_cryst(3) REAL(DP) :: dq1, dq2, dq3 CHARACTER (LEN=6), EXTERNAL :: int_to_char ! CALL start_clock ('exx_grid') ! IF(nq1<=0) nq1 = nk1 IF(nq2<=0) nq2 = nk2 IF(nq3<=0) nq3 = nk3 IF(nkstot==nspin_lsda) THEN nq1=1; nq2=1; nq3=1 ENDIF IF(ANY((/nq1,nq2,nq3/)<=0)) CALL errore('exx_grid_init',"wrong EXX q grid", 1) ! IF(exx_grid_initialized) CALL errore('exx_grid_init', "grid already initialized",1) exx_grid_initialized = .true. ! ! definitions and checks ! grid_factor = 1._dp IF (x_gamma_extrapolation) & grid_factor = 8.d0/7.d0 ! nqs = nq1 * nq2 * nq3 ! ! all processors need to have access to all k+q points ! IF ( .NOT.allocated (xk_collect) ) ALLOCATE(xk_collect(3,nkstot)) IF ( .NOT.allocated (wk_collect) ) ALLOCATE(wk_collect(nkstot)) ! the next if/then if probably not necessary, as xk_wk collect can ! deal with npool==1, leaving it for clarity. IF ( npool > 1 ) THEN CALL xk_wk_collect(xk_collect, wk_collect, xk, wk, nkstot, nks) ELSE xk_collect(:,1:nks) = xk(:,1:nks) wk_collect(1:nks) = wk(1:nks) ENDIF ! ! set a safe limit as the maximum number of auxiliary points we may need ! and allocate auxiliary arrays max_nk = nkstot * min(48, 2 * nsym) ALLOCATE( temp_index_xk(max_nk), temp_index_sym(max_nk) ) ALLOCATE( temp_index_ikq(max_nk), new_ikq(max_nk) ) ALLOCATE( temp_xkq(3,max_nk) ) ! ! find all k-points equivalent by symmetry to the points in the k-list ! temp_nkqs = 0 DO isym=1,nsym DO ik =1, nkstot ! go to crystalline coordinates xk_cryst(:) = xk_collect(:,ik) CALL cryst_to_cart(1, xk_cryst, at, -1) ! rotate with this sym.op. sxk(:) = s(:,1,isym)*xk_cryst(1) + & s(:,2,isym)*xk_cryst(2) + & s(:,3,isym)*xk_cryst(3) ! add sxk to the auxiliary list IF it is not already present xk_not_found = .true. ! *** do-loop skipped the first time because temp_nksq == 0 DO ikq=1, temp_nkqs IF (xk_not_found ) THEN dxk(:) = sxk(:)-temp_xkq(:,ikq) - nint(sxk(:)-temp_xkq(:,ikq)) IF ( abs(dxk(1)).le.eps .and. & abs(dxk(2)).le.eps .and. & abs(dxk(3)).le.eps ) xk_not_found = .false. ENDIF ENDDO IF (xk_not_found) THEN temp_nkqs = temp_nkqs + 1 temp_xkq(:,temp_nkqs) = sxk(:) temp_index_xk(temp_nkqs) = ik temp_index_sym(temp_nkqs) = isym ENDIF sxk(:) = - sxk(:) xk_not_found = .true. DO ikq=1, temp_nkqs IF (xk_not_found ) THEN dxk(:) = sxk(:) - temp_xkq(:,ikq) - nint(sxk(:) - temp_xkq(:,ikq)) IF ( abs(dxk(1)).le.eps .and. & abs(dxk(2)).le.eps .and. & abs(dxk(3)).le.eps ) xk_not_found = .false. ENDIF ENDDO IF (xk_not_found .and. .not. (noncolin.and.domag) ) THEN temp_nkqs = temp_nkqs + 1 temp_xkq(:,temp_nkqs) = sxk(:) temp_index_xk(temp_nkqs) = ik temp_index_sym(temp_nkqs) =-isym ENDIF ENDDO ENDDO ! ! define the q-mesh step-sizes ! dq1= 1._dp/DBLE(nq1) dq2= 1._dp/DBLE(nq2) dq3= 1._dp/DBLE(nq3) ! ! allocate and fill the array index_xkq(nkstot,nqs) ! if(.not.allocated(index_xkq)) ALLOCATE( index_xkq(nkstot,nqs) ) if(.not.allocated(x_occupation)) ALLOCATE( x_occupation(nbnd,nkstot) ) nkqs = 0 new_ikq(:) = 0 DO ik=1,nkstot ! go to crystalline coordinates xk_cryst(:) = xk_collect(:,ik) CALL cryst_to_cart(1, xk_cryst, at, -1) ! iq = 0 DO iq1=1, nq1 sxk(1) = xk_cryst(1) + (iq1-1) * dq1 DO iq2 =1, nq2 sxk(2) = xk_cryst(2) + (iq2-1) * dq2 DO iq3 =1, nq3 sxk(3) = xk_cryst(3) + (iq3-1) * dq3 iq = iq + 1 xk_not_found = .true. ! DO ikq=1, temp_nkqs IF ( xk_not_found ) THEN dxk(:) = sxk(:)-temp_xkq(:,ikq) - nint(sxk(:)-temp_xkq(:,ikq)) IF ( ALL(abs(dxk) < eps ) ) THEN xk_not_found = .false. IF ( new_ikq(ikq) == 0) THEN nkqs = nkqs + 1 temp_index_ikq(nkqs) = ikq new_ikq(ikq) = nkqs ENDIF index_xkq(ik,iq) = new_ikq(ikq) ENDIF ENDIF ENDDO ! ikq ! IF (xk_not_found) THEN write (*,*) ik, iq, temp_nkqs write (*,*) sxk(:) CALL errore(sub_name, ' k + q is not an S*k ', (ik-1) * nqs + iq ) ENDIF ENDDO ENDDO ENDDO ENDDO WRITE(stdout, '(5x,3a)') "EXX: setup a grid of "//TRIM(int_to_char(nkqs))& //" q-points centered on each k-point" ! ! allocate and fill the arrays xkq(3,nkqs), index_xk(nkqs) and index_sym(nkqs) ! ALLOCATE( xkq_collect(3,nspin_lsda*nkqs), index_xk(nspin_lsda*nkqs), & index_sym(nspin_lsda*nkqs) ) DO ik =1, nkqs ikq = temp_index_ikq(ik) xkq_collect(:,ik) = temp_xkq(:,ikq) index_xk(ik) = temp_index_xk(ikq) index_sym(ik) = temp_index_sym(ikq) ENDDO CALL cryst_to_cart(nkqs, xkq_collect, bg, +1) ! IF(verbosity='high')THEN WRITE( stdout, '(5x,a)' ) '(k+q)-points:' do ik = 1, nkqs WRITE( stdout, '(3f12.7,5x,i2,i5)') (xkq_collect (ikq, ik) , ikq = 1, 3) , & index_xk(ik), index_sym(ik) enddo ! ENDIF ! if nspin == 2, the kpoints are repeated in couples (spin up, spin down) IF (nspin_lsda == 2) THEN DO ik = 1, nkstot/2 DO iq =1, nqs index_xkq(nkstot/2+ik,iq) = index_xkq(ik,iq) + nkqs END DO ENDDO DO ikq=1,nkqs xkq_collect(:,ikq + nkqs) = xkq_collect(:,ikq) index_xk(ikq + nkqs) = index_xk(ikq) + nkstot/2 index_sym(ikq + nkqs) = index_sym(ikq) ENDDO nkqs = 2 * nkqs ENDIF ! ! clean up DEALLOCATE(temp_index_xk, temp_index_sym, temp_index_ikq, new_ikq, temp_xkq) ! ! check that everything is what it should be CALL exx_grid_check () ! CALL exx_set_qnorm(nkqs, xkq_collect) ! CALL stop_clock ('exx_grid') ! RETURN !------------------------------------------------------------------------ END SUBROUTINE exx_grid_init !------------------------------------------------------------------------ ! !----------------------------------------------------------------------- SUBROUTINE exx_n_plane_waves(ecutwfc, tpiba2, g, ngm, npwx) !----------------------------------------------------------------------- ! ! Find number of plane waves for each k-point, keeping in mind that EXX uses ! a larger non-reduced grid of k and k+q points USE kinds, ONLY : DP !USE exx, ONLY : nkqs, xkq_collect,exx_grid_initialized USE funct, ONLY : dft_is_hybrid USE uspp, ONLY : okvan IMPLICIT NONE ! integer, intent(in) :: ngm real(DP),intent(in) :: ecutwfc, tpiba2, g (3, ngm) integer, intent(out):: npwx integer,allocatable :: ngkq(:) IF(.not. okvan) RETURN IF(.not.dft_is_hybrid()) RETURN IF(.not.exx_grid_initialized) & CALL errore("exx_n_plane_waves","you must initialize the grid first",1) ALLOCATE(ngkq(nkqs)) CALL n_plane_waves (ecutwfc, tpiba2, nkqs, xkq_collect, g, ngm, npwx, ngkq) DEALLOCATE(ngkq) RETURN !------------------------------------------------------------------------ END SUBROUTINE exx_n_plane_waves !------------------------------------------------------------------------ ! !------------------------------------------------------------------------ SUBROUTINE exx_set_qnorm(nq, xkq) !------------------------------------------------------------------------ ! ! WARNING: setting qnorm increases the amount of space allocated in allocate_nlpot ! DOING IT HERE AND TO USE QNORM FOR THIS IS WRONG because: ! 1. phonon may overwrite it later with something smaller, ! the actual qnorm should include the rotated(k+q_phonon) in it ! 2. the value we use is sufficient, but may be too large, not clear to me USE kinds, ONLY : DP USE klist, ONLY : qnorm USE uspp, ONLY : okvan USE klist, ONLY : xk, nks ! IMPLICIT NONE INTEGER,INTENT(in) :: nq REAL(DP),INTENT(in) :: xkq(3,nq) INTEGER :: i,j ! IF(.not.okvan) RETURN ! DO i = 1,nq ! qnorm = MAX(qnorm, SQRT(SUM(xkq(:,i)**2)) ) ! ENDDO DO i = 1,nq DO j = 1,nks qnorm = MAX(qnorm, SQRT( SUM((xk(:,j)-xkq(:,i))**2) )) ENDDO ENDDO RETURN !------------------------------------------------------------------------ END SUBROUTINE exx_set_qnorm !------------------------------------------------------------------------ ! !------------------------------------------------------------------------ SUBROUTINE exx_div_check() !------------------------------------------------------------------------ ! USE cell_base, ONLY : at, alat USE io_global, ONLY : stdout USE funct, ONLY : get_screening_parameter ! IMPLICIT NONE ! REAL(DP) :: atws(3,3) CHARACTER(13) :: sub_name='exx_div_check' ! ! EXX singularity treatment ! SELECT CASE ( TRIM(exxdiv_treatment) ) CASE ( "gygi-baldereschi", "gygi-bald", "g-b", "gb" ) ! use_regularization = .TRUE. ! ! CASE ( "vcut_ws" ) ! use_coulomb_vcut_ws = .TRUE. IF ( x_gamma_extrapolation ) & CALL errore(sub_name,'cannot USE x_gamm_extrap and vcut_ws', 1) ! CASE ( "vcut_spherical" ) ! use_coulomb_vcut_spheric = .TRUE. IF ( x_gamma_extrapolation ) & CALL errore(sub_name,'cannot USE x_gamm_extrap and vcut_spherical', 1) ! CASE ( "none" ) use_regularization = .FALSE. ! CASE DEFAULT CALL errore(sub_name,'invalid exxdiv_treatment: '//TRIM(exxdiv_treatment), 1) END SELECT ! ! Set variables for Coulomb vcut ! NOTE: some memory is allocated inside this routine (in the var vcut) ! and should be deallocated somewehre, at the end of the run ! IF ( use_coulomb_vcut_ws .OR. use_coulomb_vcut_spheric ) THEN ! ! build the superperiodicity direct lattice ! atws = alat * at ! atws(:,1) = atws(:,1) * nq1 atws(:,2) = atws(:,2) * nq2 atws(:,3) = atws(:,3) * nq3 ! CALL vcut_init( vcut, atws, ecutvcut ) ! IF ( ionode ) CALL vcut_info( stdout, vcut ) ! ENDIF RETURN !------------------------------------------------------------------------ END SUBROUTINE exx_div_check !------------------------------------------------------------------------ !------------------------------------------------------------------------ SUBROUTINE exx_grid_check ( ) !------------------------------------------------------------------------ USE symm_base, ONLY : s USE cell_base, ONLY : at USE klist, ONLY : nkstot, xk USE mp_pools, ONLY : npool IMPLICIT NONE REAL(DP) :: sxk(3), dxk(3), xk_cryst(3), xkk_cryst(3) INTEGER :: iq1, iq2, iq3, isym, ik, ikk, ikq, iq REAL(DP) :: dq1, dq2, dq3 dq1= 1._dp/DBLE(nq1) dq2= 1._dp/DBLE(nq2) dq3= 1._dp/DBLE(nq3) DO ik =1, nkstot xk_cryst(:) = xk_collect(:,ik) CALL cryst_to_cart(1, xk_cryst, at, -1) ! iq = 0 DO iq1=1, nq1 sxk(1) = xk_cryst(1) + (iq1-1) * dq1 DO iq2 =1, nq2 sxk(2) = xk_cryst(2) + (iq2-1) * dq2 DO iq3 =1, nq3 sxk(3) = xk_cryst(3) + (iq3-1) * dq3 iq = iq + 1 ikq = index_xkq(ik,iq) ikk = index_xk(ikq) isym = index_sym(ikq) IF (npool>1) THEN xkk_cryst(:) = at(1,:)*xk_collect(1,ikk)+at(2,:)*xk_collect(2,ikk)+at(3,:)*xk_collect(3,ikk) ELSE xkk_cryst(:) = at(1,:)*xk(1,ikk)+at(2,:)*xk(2,ikk)+at(3,:)*xk(3,ikk) ENDIF IF (isym < 0 ) xkk_cryst(:) = - xkk_cryst(:) isym = abs (isym) dxk(:) = s(:,1,isym)*xkk_cryst(1) + & s(:,2,isym)*xkk_cryst(2) + & s(:,3,isym)*xkk_cryst(3) - sxk(:) dxk(:) = dxk(:) - nint(dxk(:)) IF ( .not. ( abs(dxk(1)).le.eps .and. & abs(dxk(2)).le.eps .and. & abs(dxk(3)).le.eps ) ) THEN write(*,*) ik,iq write(*,*) ikq,ikk,isym write(*,*) dxk(:) CALL errore('exx_grid_check', 'something wrong', 1 ) ENDIF ENDDO ENDDO ENDDO ENDDO ! return !------------------------------------------------------------------------ END SUBROUTINE exx_grid_check !------------------------------------------------------------------------ ! !------------------------------------------------------------------------ SUBROUTINE exx_restart(l_exx_was_active) !------------------------------------------------------------------------ !This SUBROUTINE is called when restarting an exx calculation USE funct, ONLY : get_exx_fraction, start_exx, exx_is_active, & get_screening_parameter USE fft_base, ONLY : dffts IMPLICIT NONE LOGICAL, INTENT(IN) :: l_exx_was_active IF (.not. l_exx_was_active ) return ! nothing had happpened yet ! exx_nwordwfc=2*dffts%nnr erfc_scrlen = get_screening_parameter() exxdiv = exx_divergence() exxalfa = get_exx_fraction() CALL start_exx CALL weights() CALL exxinit() fock0 = exxenergy2() RETURN !------------------------------------------------------------------------ END SUBROUTINE exx_restart !------------------------------------------------------------------------ ! !------------------------------------------------------------------------ SUBROUTINE exxinit() !------------------------------------------------------------------------ ! This SUBROUTINE is run before the first H_psi() of each iteration. ! It saves the wavefunctions for the right density matrix, in real space ! USE wavefunctions_module, ONLY : evc USE io_files, ONLY : nwordwfc, iunwfc, iunigk USE buffers, ONLY : get_buffer USE gvecs, ONLY : nls USE wvfct, ONLY : nbnd, npwx, npw, igk, wg USE control_flags, ONLY : gamma_only USE klist, ONLY : ngk, nks, nkstot USE symm_base, ONLY : nsym, s, sr, ftau USE mp_pools, ONLY : npool, nproc_pool, me_pool, inter_pool_comm USE mp_bands, ONLY : nproc_bgrp, me_bgrp, init_index_over_band,& inter_bgrp_comm, ibnd_start, ibnd_end USE mp, ONLY : mp_sum USE funct, ONLY : get_exx_fraction, start_exx,exx_is_active,& get_screening_parameter, get_gau_parameter USE fft_base, ONLY : cgather_smooth, cscatter_smooth,& dffts, cgather_custom, cscatter_custom USE fft_interfaces, ONLY : invfft USE becmod, ONLY : allocate_bec_type, is_allocated_bec_type, bec_type USE uspp, ONLY : nkb, okvan USE us_exx, ONLY : becxx USE paw_variables, ONLY : okpaw USE paw_exx, ONLY : dopawxx, PAW_init_keeq IMPLICIT NONE INTEGER :: ik,ibnd, i, j, k, ir, ri, rj, rk, isym, ikq, ig INTEGER :: h_ibnd INTEGER :: ibnd_loop_start, ibnd_buff_start, ibnd_buff_end INTEGER :: ipol, jpol COMPLEX(DP),ALLOCATABLE :: temppsic(:), psic(:), tempevc(:,:) COMPLEX(DP),ALLOCATABLE :: temppsic_nc(:,:), psic_nc(:,:) INTEGER :: nxxs, nrxxs, nr1x,nr2x,nr3x,nr1,nr2,nr3 #ifdef __MPI COMPLEX(DP),allocatable :: temppsic_all(:), psic_all(:) COMPLEX(DP), ALLOCATABLE :: temppsic_all_nc(:,:), psic_all_nc(:,:) #endif COMPLEX(DP) :: d_spin(2,2,48) INTEGER :: current_ik logical, allocatable :: ispresent(:) integer :: find_current_k CALL start_clock ('exxinit') ! ! prepare the symmetry matrices for the spin part ! IF (noncolin) THEN DO isym=1,nsym CALL find_u(sr(:,:,isym), d_spin(:,:,isym)) ENDDO ENDIF ! Beware: not the same as nrxxs in parallel case IF(gamma_only) THEN CALL exx_fft_create() nxxs =exx_fft_g2r%dfftt%nr1x *exx_fft_g2r%dfftt%nr2x *exx_fft_g2r%dfftt%nr3x nrxxs= exx_fft_g2r%dfftt%nnr nr1 = exx_fft_g2r%dfftt%nr1 nr2 = exx_fft_g2r%dfftt%nr2 nr3 = exx_fft_g2r%dfftt%nr3 nr1x = exx_fft_g2r%dfftt%nr1x nr2x = exx_fft_g2r%dfftt%nr2x nr3x = exx_fft_g2r%dfftt%nr3x ELSE nxxs = dffts%nr1x * dffts%nr2x * dffts%nr3x nrxxs= dffts%nnr nr1 = dffts%nr1 nr2 = dffts%nr2 nr3 = dffts%nr3 nr1x = dffts%nr1x nr2x = dffts%nr2x nr3x = dffts%nr3x ENDIF #ifdef __MPI IF (noncolin) THEN ALLOCATE(psic_all_nc(nxxs,npol), temppsic_all_nc(nxxs,npol) ) ELSE ALLOCATE(psic_all(nxxs), temppsic_all(nxxs) ) ENDIF #endif CALL init_index_over_band(inter_bgrp_comm,nbnd) IF (noncolin) THEN ALLOCATE(temppsic_nc(nrxxs, npol), psic_nc(nrxxs, npol)) ELSE ALLOCATE(temppsic(nrxxs), psic(nrxxs)) ENDIF ! ! prepare space to keep the scalar products (for ultrasoft/paw only) IF(.not. allocated(becxx) .and. okvan .and. dovanxx) THEN ALLOCATE(becxx(nkqs)) DO ikq = 1,nkqs CALL allocate_bec_type( nkb, nbnd, becxx(ikq)) ENDDO ENDIF ! IF ( gamma_only ) THEN ibnd_buff_start = ibnd_start/2 IF(MOD(ibnd_start,2)==0) ibnd_buff_start = ibnd_buff_start -1 ! ibnd_buff_end = ibnd_end/2 IF(MOD(ibnd_end,2)==1) ibnd_buff_end = ibnd_buff_end +1 ELSE ibnd_buff_start = ibnd_start ibnd_buff_end = ibnd_end ENDIF ! IF (.NOT. allocated(exxbuff)) & ALLOCATE( exxbuff(nrxxs*npol, ibnd_buff_start:ibnd_buff_end, nkqs)) ! ALLOCATE(tempevc( npwx*npol, nbnd )) ALLOCATE(ispresent(nsym)) IF(.NOT. ALLOCATED(rir)) ALLOCATE(rir(nxxs,nsym)) rir = 0 exx_nwordwfc=2*nrxxs IF (.not.exx_is_active()) THEN ! erfc_scrlen = get_screening_parameter() gau_scrlen = get_gau_parameter() exxdiv = exx_divergence() exxalfa = get_exx_fraction() ! CALL start_exx() ENDIF IF (.NOT.allocated (wg_collect)) ALLOCATE(wg_collect(nbnd,nkstot)) IF (npool>1) THEN CALL wg_all(wg_collect, wg, nkstot, nks) ELSE wg_collect = wg ENDIF IF ( nks > 1 ) REWIND( iunigk ) ispresent(1:nsym) = .false. DO ikq =1,nkqs isym = abs(index_sym(ikq)) IF (.not. ispresent(isym) ) THEN ispresent(isym) = .true. IF ( mod(s(2, 1, isym) * nr1, nr2) /= 0 .or. & mod(s(3, 1, isym) * nr1, nr3) /= 0 .or. & mod(s(1, 2, isym) * nr2, nr1) /= 0 .or. & mod(s(3, 2, isym) * nr2, nr3) /= 0 .or. & mod(s(1, 3, isym) * nr3, nr1) /= 0 .or. & mod(s(2, 3, isym) * nr3, nr2) /= 0 ) THEN CALL errore ('exxinit',' EXX smooth grid is not compatible with symmetry: & & change ecutfock',isym) ENDIF DO ir=1, nxxs rir(ir,isym) = ir ENDDO DO k = 1, nr3 DO j = 1, nr2 DO i = 1, nr1 CALL ruotaijk (s(1,1,isym), ftau(1,isym), i,j,k, nr1,nr2,nr3, ri,rj,rk) ir = i + ( j-1)*nr1x + ( k-1)*nr1x*nr2x rir(ir,isym) = ri + (rj-1)*nr1x + (rk-1)*nr1x*nr2x ENDDO ENDDO ENDDO ENDIF ENDDO exxbuff=(0.0_DP,0.0_DP) ! set appropriately the x_occupation DO ik =1,nkstot IF(ABS(wk_collect(ik)) > eps_occ ) THEN x_occupation(1:nbnd,ik) = wg_collect (1:nbnd, ik) / wk_collect(ik) ELSE x_occupation(1:nbnd,ik) = 0._dp ENDIF ENDDO ! ! This is parallelized over pool. Each pool computes only its k-points ! KPOINTS_LOOP : & DO ik = 1, nks npw = ngk (ik) IF ( nks > 1 ) THEN READ( iunigk ) igk CALL get_buffer(tempevc, nwordwfc, iunwfc, ik) ELSE tempevc(1:npwx*npol,1:nbnd) = evc(1:npwx*npol,1:nbnd) ENDIF ! ! only useful for npool>1, but always work current_ik=find_current_k(ik, nkstot, nks) ! IF_GAMMA_ONLY : & IF (gamma_only) THEN ! h_ibnd = ibnd_start/2 ! IF(MOD(ibnd_start,2)==0) THEN h_ibnd=h_ibnd-1 ibnd_loop_start=ibnd_start-1 ELSE ibnd_loop_start=ibnd_start ENDIF DO ibnd = ibnd_loop_start, ibnd_end, 2 h_ibnd = h_ibnd + 1 ! temppsic(:) = ( 0._dp, 0._dp ) ! if ( ibnd < ibnd_end ) then DO ig=1,exx_fft_g2r%npwt temppsic(exx_fft_g2r%nlt(ig)) = tempevc(ig,ibnd) & + ( 0._dp, 1._dp ) * tempevc(ig,ibnd+1) temppsic(exx_fft_g2r%nltm(ig)) = CONJG( tempevc(ig,ibnd) ) & + ( 0._dp, 1._dp ) * CONJG( tempevc(ig,ibnd+1) ) END DO else DO ig=1,exx_fft_g2r%npwt temppsic(exx_fft_g2r%nlt (ig)) = tempevc(ig,ibnd) temppsic(exx_fft_g2r%nltm(ig)) = CONJG( tempevc(ig,ibnd) ) END DO end if CALL invfft ('CustomWave', temppsic, exx_fft_g2r%dfftt) DO ikq=1,nkqs IF (index_xk(ikq) .ne. current_ik) cycle isym = abs(index_sym(ikq) ) #ifdef __MPI CALL cgather_custom(temppsic,temppsic_all, exx_fft_g2r%dfftt) IF ( me_bgrp == 0 ) & psic_all(1:nxxs) = temppsic_all(rir(1:nxxs,isym)) CALL cscatter_custom(psic_all,psic, exx_fft_g2r%dfftt) #else psic(1:nrxxs) = temppsic(rir(1:nrxxs,isym)) #endif IF (index_sym(ikq) < 0 ) & CALL errore('exxinit','index_sym < 0 with gamma_only (!?)',1) exxbuff(1:nrxxs,h_ibnd,ikq)=psic(1:nrxxs) ENDDO END DO ! ELSE IF_GAMMA_ONLY ! IBND_LOOP_K : & DO ibnd = ibnd_start, ibnd_end ! IF (noncolin) THEN temppsic_nc(:,:) = ( 0._dp, 0._dp ) temppsic_nc(nls(igk(1:npw)),1) = tempevc(1:npw,ibnd) CALL invfft ('Wave', temppsic_nc(:,1), dffts) temppsic_nc(nls(igk(1:npw)),2) = tempevc(npwx+1:npwx+npw,ibnd) CALL invfft ('Wave', temppsic_nc(:,2), dffts) ELSE temppsic(:) = ( 0._dp, 0._dp ) temppsic(nls(igk(1:npw))) = tempevc(1:npw,ibnd) CALL invfft ('Wave', temppsic, dffts) ENDIF ! DO ikq=1,nkqs ! IF (index_xk(ikq) /= current_ik) CYCLE isym = abs(index_sym(ikq) ) ! IF (noncolin) THEN ! noncolinear #ifdef __MPI DO ipol=1,npol CALL cgather_smooth(temppsic_nc(:,ipol), temppsic_all_nc(:,ipol)) ENDDO IF ( me_bgrp == 0 ) THEN psic_all_nc(:,:) = (0.0_DP, 0.0_DP) DO ipol=1,npol DO jpol=1,npol psic_all_nc(:,ipol)=psic_all_nc(:,ipol) & + CONJG(d_spin(jpol,ipol,isym))* & temppsic_all_nc(rir(:,isym),jpol) ENDDO ENDDO ENDIF DO ipol=1,npol CALL cscatter_smooth(psic_all_nc(:,ipol), psic_nc(:,ipol)) ENDDO #else psic_nc(:,:) = (0._dp, 0._dp) DO ipol=1,npol DO jpol=1,npol psic_nc(:,ipol) = psic_nc(:,ipol) + & CONJG(d_spin(jpol,ipol,isym))* & temppsic_nc(rir(:,isym),jpol) END DO END DO #endif exxbuff( 1: nrxxs,ibnd,ikq)=psic_nc(:,1) exxbuff(nrxxs+1:2*nrxxs,ibnd,ikq)=psic_nc(:,2) ELSE ! noncolinear #ifdef __MPI CALL cgather_smooth(temppsic,temppsic_all) IF ( me_bgrp == 0 ) & psic_all(1:nxxs) = temppsic_all(rir(1:nxxs,isym)) CALL cscatter_smooth(psic_all,psic) #else psic(1:nrxxs) = temppsic(rir(1:nrxxs,isym)) #endif IF (index_sym(ikq) < 0 ) psic(1:nrxxs) = CONJG(psic(1:nrxxs)) exxbuff(1:nrxxs,ibnd,ikq)=psic(1:nrxxs) ! ENDIF ! noncolinear ENDDO ! ENDDO & IBND_LOOP_K ! ENDIF & IF_GAMMA_ONLY ENDDO & KPOINTS_LOOP ! ! All pools must have the complete set of wavefunctions (i.e. from every kpoint) IF (npool>1) CALL mp_sum(exxbuff, inter_pool_comm) ! ! compute for the entire de-symmetrized k+q grid CALL compute_becxx() ! CHECKME: probably it's enough that each pool computes its own bec ! and then I sum them like exxbuff, but check it. In this case this ! call should only act when index_xk(ikq) = current_ik ! ! Initialize 4-wavefunctions one-center Fock integral \int \psi_a(r)\phi_a(r)\phi_b(r')\psi_b(r')/|r-r'| IF(okpaw.and.dopawxx) CALL PAW_init_keeq() ! DEALLOCATE(tempevc) DEALLOCATE(ispresent) IF (noncolin) THEN DEALLOCATE(temppsic_nc, psic_nc) #ifdef __MPI DEALLOCATE(temppsic_all_nc, psic_all_nc) #endif ELSE DEALLOCATE(temppsic, psic) #ifdef __MPI DEALLOCATE(temppsic_all, psic_all) #endif ENDIF CALL stop_clock ('exxinit') ! !----------------------------------------------------------------------- END SUBROUTINE exxinit !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- SUBROUTINE compute_becxx ( ) !----------------------------------------------------------------------- ! ! prepare the necessary quantities, then call calbec to compute ! and store it becxx(ikq). This must be called AFTER exxbuff and xkq_collected are done ! (i.e. at the end of exxinit) ! USE kinds, ONLY : DP USE wvfct, ONLY : g2kin, npwx, ecutwfc, nbnd USE gvect, ONLY : g, ngm USE gvecs, ONLY : nls, nlsm USE cell_base, ONLY : tpiba2 USE uspp, ONLY : nkb, okvan USE becmod, ONLY : calbec USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : fwfft USE control_flags, ONLY : gamma_only USE us_exx, ONLY : becxx IMPLICIT NONE ! INTEGER :: npwq, ibnd, i, ikq, j, h_ibnd REAL(DP) :: gcutwfc INTEGER,ALLOCATABLE :: igkq(:) ! order of wavefunctions at k+q[+G] COMPLEX(DP),ALLOCATABLE :: vkbq(:,:) ! |beta_I> COMPLEX(DP),ALLOCATABLE :: evcq(:,:) ! |psi_j,k> in g-space COMPLEX(DP),ALLOCATABLE :: phi(:) ! aux space for fwfft COMPLEX(DP) :: fp, fm ! ! NOTE: I do not want to use vkb from uspp, as you never know if it is going to be used again or not, ! this way we are wasting some memory, but the fault is with uspp that should not use global ! variables for temporary data (lp-2012-10-03) ! IF(.not. (okvan .and. dovanxx) ) RETURN ! CALL start_clock('becxx') ! gcutwfc = ecutwfc / tpiba2 ALLOCATE(igkq(npwx)) ALLOCATE(vkbq(npwx,nkb)) ALLOCATE(phi(dffts%nnr)) ALLOCATE(evcq(npwx,nbnd)) ! DO ikq = 1,nkqs ! each pool only does its own k-points, then it calls mp_sum (to be tested) ! bands count is reset at each k-point ! ! prepare the g-vectors mapping CALL gk_sort(xkq_collect(:, ikq), ngm, g, gcutwfc, npwq, igkq, g2kin ) ! prepare the |beta> function at k+q CALL init_us_2(npwq, igkq, xkq_collect(:, ikq), vkbq) ! ! take rotated phi to G space IF (gamma_only) THEN h_ibnd=0 DO ibnd = 1,nbnd,2 h_ibnd = h_ibnd + 1 phi(:) = exxbuff(:,h_ibnd,ikq) CALL fwfft ('Wave', phi, dffts) IF (ibnd < nbnd) THEN ! two ffts at the same time DO j = 1, npwq fp = (phi (nls(igkq(j))) + phi (nlsm(igkq(j))))*0.5d0 fm = (phi (nls(igkq(j))) - phi (nlsm(igkq(j))))*0.5d0 evcq( j, ibnd) = CMPLX( DBLE(fp), AIMAG(fm),kind=DP) evcq( j, ibnd+1) = CMPLX(AIMAG(fp),- DBLE(fm),kind=DP) ENDDO ELSE DO j = 1, npwq evcq(j, ibnd) = phi(nls(igkq(j))) ENDDO ENDIF ENDDO ELSE DO ibnd = 1,nbnd phi(:) = exxbuff(:,ibnd,ikq) CALL fwfft ('Wave', phi, dffts) FORALL(i=1:npwq) evcq(i,ibnd) = phi(nls(igkq(i))) ENDDO ENDIF ! ! compute at this k+q point, for all band and all projectors CALL calbec(npwq, vkbq, evcq, becxx(ikq), nbnd) ! ENDDO ! ! only work for k (only to be called once...): ! CALL mp_sum(becxx%k, inter_pool_comm) ! DEALLOCATE(igkq, vkbq, phi, evcq) ! CALL stop_clock('becxx') !----------------------------------------------------------------------- END SUBROUTINE compute_becxx !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- SUBROUTINE vexx(lda, n, m, psi, hpsi, becpsi) !----------------------------------------------------------------------- !This routine calculates V_xx \Psi ! ! ... This routine computes the product of the Hamiltonian ! ... matrix with m wavefunctions contained in psi ! ! ... input: ! ... lda leading dimension of arrays psi, spsi, hpsi ! ... n true dimension of psi, spsi, hpsi ! ... m number of states psi ! ... psi ! ! ... output: ! ... hpsi Vexx*psi ! USE constants, ONLY : fpi, e2, pi USE cell_base, ONLY : omega USE gvect, ONLY : ngm, g USE gvecs, ONLY : nls, ngms USE wvfct, ONLY : npwx, npw, igk, current_k, ecutwfc USE control_flags, ONLY : gamma_only USE klist, ONLY : xk, nks, nkstot USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : fwfft, invfft USE becmod, ONLY : bec_type USE mp_bands, ONLY : ibnd_start, ibnd_end, inter_bgrp_comm, & intra_bgrp_comm, my_bgrp_id, nbgrp USE mp, ONLY : mp_sum, mp_barrier USE uspp, ONLY : nkb, okvan USE paw_variables, ONLY : okpaw USE us_exx, ONLY : bexg_merge, becxx, addusxx_g, addusxx_r, & newdxx_g, newdxx_r, add_nlxx_pot USE paw_exx, ONLY : dopawxx, PAW_newdxx IMPLICIT NONE INTEGER :: lda, n, m COMPLEX(DP) :: psi(lda*npol,m) COMPLEX(DP) :: hpsi(lda*npol,m) TYPE(bec_type), OPTIONAL :: becpsi ! or call a calbec(...psi) instead ! ! local variables COMPLEX(DP),ALLOCATABLE :: tempphic(:), temppsic(:), result(:) COMPLEX(DP),ALLOCATABLE :: tempphic_nc(:,:), temppsic_nc(:,:), & result_nc(:,:) ! COMPLEX(DP),ALLOCATABLE :: rhoc(:), vc(:), deexx(:)!,:,:) REAL(DP), ALLOCATABLE :: fac(:) INTEGER :: ibnd, ik, im , ikq, iq, ipol INTEGER :: ir, ig INTEGER :: current_ik INTEGER :: ibnd_loop_start INTEGER :: h_ibnd, nrxxs REAL(DP) :: x1, x2, xkp(3) REAL(DP) :: xkq(3) ! temp array for vcut_spheric INTEGER :: find_current_k IF ( (okvan.OR.okpaw) .AND. .NOT. PRESENT(becpsi)) & CALL errore('vexx','becpsi needed for US/PAW case',1) CALL start_clock ('vexx') IF(gamma_only) THEN ALLOCATE( fac(exx_fft_r2g%ngmt) ) nrxxs= exx_fft_g2r%dfftt%nnr ELSE ALLOCATE( fac(ngm) ) nrxxs = dffts%nnr ENDIF IF (noncolin) THEN ALLOCATE( tempphic_nc(nrxxs,npol), temppsic_nc(nrxxs,npol), result_nc(nrxxs,npol) ) ELSE ALLOCATE( tempphic(nrxxs), temppsic(nrxxs), result(nrxxs) ) ENDIF ALLOCATE(rhoc(nrxxs), vc(nrxxs)) IF(okvan .and. dovanxx) ALLOCATE(deexx(nkb)) ! current_ik=find_current_k(current_k,nkstot,nks) xkp = xk_collect(:,current_ik) ! ! This is to stop numerical inconsistencies creeping in through the band parallelization. ! IF(my_bgrp_id>0) THEN hpsi=(0.0_DP,0.0_DP) psi=(0.0_DP,0.0_DP) ENDIF IF (nbgrp>1) THEN CALL mp_sum(hpsi,inter_bgrp_comm) CALL mp_sum(psi,inter_bgrp_comm) ENDIF ! LOOP_ON_PSI_BANDS : & DO im = 1,m !for each band of psi (the k cycle is outside band) IF(okvan .and. dovanxx) deexx(:) = (0._dp, 0._dp) ! IF (noncolin) THEN temppsic_nc = ( 0._dp, 0._dp ) ELSE temppsic(:) = ( 0._dp, 0._dp ) ENDIF ! IF(gamma_only) THEN ! !$omp parallel do default(shared), private(ig) DO ig = 1, exx_fft_g2r%npwt temppsic( exx_fft_g2r%nlt(ig)) = psi(ig, im) temppsic( exx_fft_g2r%nltm(ig)) = CONJG(psi(ig,im)) ENDDO !$omp end parallel do ! CALL invfft ('CustomWave', temppsic, exx_fft_g2r%dfftt) ! ELSE IF (noncolin) THEN ! !$omp parallel do default(shared), private(ig) DO ig = 1, npw temppsic_nc(nls(igk(ig)),1) = psi(ig,im) ENDDO !$omp end parallel do !$omp parallel do default(shared), private(ig) DO ig = 1, npw temppsic_nc(nls(igk(ig)),2) = psi(npwx+ig,im) ENDDO !$omp end parallel do ! CALL invfft ('Wave', temppsic_nc(:,1), dffts) CALL invfft ('Wave', temppsic_nc(:,2), dffts) ! ELSE ! !$omp parallel do default(shared), private(ig) DO ig = 1, npw temppsic( nls(igk(ig)) ) = psi(ig,im) ENDDO !$omp end parallel do CALL invfft ('Wave', temppsic, dffts) ! ENDIF ENDIF IF (noncolin) THEN result_nc(:,:) = (0.0_DP,0.0_DP) ELSE result(:) = (0.0_DP,0.0_DP) ENDIF INTERNAL_LOOP_ON_Q : & DO iq=1,nqs ! ikq = index_xkq(current_ik,iq) ik = index_xk(ikq) xkq = xkq_collect(:,ikq) ! ! calculate the 1/|r-r'| (actually, k+q+g) factor and place it in fac IF(gamma_only) THEN CALL g2_convolution(exx_fft_r2g%ngmt, exx_fft_r2g%gt, xk(:,current_k), xkq, fac) ELSE CALL g2_convolution(ngms, g, xk(:,current_k), xkq, fac) ENDIF ! IF_GAMMA_ONLY : & IF (gamma_only) THEN ! h_ibnd = ibnd_start/2 ! IF(MOD(ibnd_start,2)==0) THEN h_ibnd=h_ibnd-1 ibnd_loop_start=ibnd_start-1 ELSE ibnd_loop_start=ibnd_start ENDIF IBND_LOOP_GAM : & DO ibnd=ibnd_loop_start,ibnd_end, 2 !for each band of psi ! h_ibnd = h_ibnd + 1 IF( ibnd < ibnd_start ) THEN x1 = 0._dp ELSE x1 = x_occupation(ibnd, ik) ENDIF IF( ibnd == ibnd_end) THEN x2 = 0._dp ELSE x2 = x_occupation(ibnd+1, ik) ENDIF IF ( ABS(x1) < eps_occ .AND. ABS(x2) < eps_occ ) CYCLE ! ! calculate rho in real space. Gamma tricks are used. ! temppsic is real; tempphic contains one band in the real part, ! another one in the imaginary part; the same applies to rhoc ! !$omp parallel do default(shared), private(ir) DO ir = 1, nrxxs tempphic(ir) = exxbuff(ir,h_ibnd,ikq) rhoc(ir) = CMPLX( DBLE(tempphic(ir))*DBLE(temppsic(ir)),& AIMAG(tempphic(ir))*DBLE(temppsic(ir)),& KIND=dp) / omega ENDDO !$omp end parallel do ! ! bring rho to G-space ! ! >>>> add augmentation in REAL SPACE here IF(okvan .and. dovanxx .AND. TQR) THEN IF(ibnd>=ibnd_start) & CALL addusxx_r(rhoc, _CX(becxx(ikq)%r(:,ibnd)), _CX(becpsi%r(:,im))) IF(ibnd>>> add augmentation in G SPACE here IF(okvan .and. dovanxx .AND. .NOT. TQR) THEN ! contribution from one band added to real (in real space) part of rhoc IF(ibnd>=ibnd_start) & CALL addusxx_g(rhoc, xkq, xkp, 'r', & becphi_r=becxx(ikq)%r(:,ibnd), becpsi_r=becpsi%r(:,im) ) ! contribution from following band added to imaginary (in real space) part of rhoc IF(ibnd>>> charge density done ! vc(:) = ( 0._dp, 0._dp ) ! !$omp parallel do default(shared), private(ig) DO ig = 1, exx_fft_r2g%ngmt ! vc(exx_fft_r2g%nlt(ig)) = fac(ig) * rhoc(exx_fft_r2g%nlt(ig)) vc(exx_fft_r2g%nltm(ig)) = fac(ig) * rhoc(exx_fft_r2g%nltm(ig)) ! ENDDO !$omp end parallel do ! ! >>>> compute =ibnd_start) & CALL newdxx_g(vc, xkq, xkp, & 'r', deexx, becphi_r=x1*becxx(ikq)%r(:,ibnd)) IF(ibnd>>> compute =ibnd_start) & CALL newdxx_r(vc, CMPLX(x1*becxx(ikq)%r(:,ibnd), 0.0_dp, & KIND=dp), deexx) IF(ibnd=ibnd_start) & CALL PAW_newdxx(x1/nqs, _CX(becxx(ikq)%r(:,ibnd)), & _CX(becpsi%r(:,im)), deexx) IF(ibnd>>> calculate rho in real space IF (noncolin) THEN !$omp parallel do default(shared), private(ir) DO ir = 1, nrxxs rhoc(ir) = ( CONJG(tempphic_nc(ir,1))*temppsic_nc(ir,1) + & CONJG(tempphic_nc(ir,2))*temppsic_nc(ir,2) )/omega ENDDO !$omp end parallel do ELSE !$omp parallel do default(shared), private(ir) DO ir = 1, nrxxs rhoc(ir)=CONJG(tempphic(ir))*temppsic(ir) / omega ENDDO !$omp end parallel do ENDIF ! >>>> add augmentation in REAL space HERE IF(okvan .and. dovanxx .AND. TQR) THEN ! augment the "charge" in real space CALL addusxx_r(rhoc, becxx(ikq)%k(:,ibnd), becpsi%k(:,im)) ENDIF ! ! >>>> brings it to G-space CALL fwfft('Smooth', rhoc, dffts) ! ! >>>> add augmentation in G space HERE IF(okvan .and. dovanxx .AND. .NOT. TQR) THEN CALL addusxx_g(rhoc, xkq, xkp, 'c', & becphi_c=becxx(ikq)%k(:,ibnd),becpsi_c=becpsi%k(:,im)) ENDIF ! >>>> charge done ! vc(:) = ( 0._dp, 0._dp ) ! !$omp parallel do default(shared), private(ig) DO ig = 1, ngms vc(nls(ig)) = fac(ig) * rhoc(nls(ig)) * & x_occupation(ibnd,ik) / nqs ENDDO !$omp end parallel do ! ! Add ultrasoft contribution (RECIPROCAL SPACE) ! compute alpha_I,j,k+q = \sum_J \int V_i,j,k,q Q_I,J(r) d3r IF(okvan .and. dovanxx .AND. .NOT. TQR) THEN CALL newdxx_g(vc, xkq, xkp, & 'c', deexx, becphi_c=becxx(ikq)%k(:,ibnd)) ENDIF ! !brings back v in real space CALL invfft ('Smooth', vc, dffts) ! ! Add ultrasoft contribution (REAL SPACE) IF(okvan .and. dovanxx .AND. TQR) & CALL newdxx_r(vc, becxx(ikq)%k(:,ibnd),deexx) ! ! Add PAW one-center contribution IF(okpaw .and. dopawxx) THEN CALL PAW_newdxx(x_occupation(ibnd,ik)/nqs, & becxx(ikq)%k(:,ibnd), becpsi%k(:,im), deexx) ENDIF ! !accumulates over bands and k points IF (noncolin) THEN DO ipol=1,npol !$omp parallel do default(shared), private(ir) DO ir = 1, nrxxs result_nc(ir,ipol)= result_nc(ir,ipol) & +vc(ir) * tempphic_nc(ir,ipol) ENDDO !$omp end parallel do ENDDO ELSE !$omp parallel do default(shared), private(ir) DO ir = 1, nrxxs result(ir) = result(ir) +vc(ir)*tempphic(ir) ENDDO !$omp end parallel do ENDIF ! ENDDO & IBND_LOOP_K END IF & IF_GAMMA_ONLY ! END DO & INTERNAL_LOOP_ON_Q ! IF(okvan.and.dovanxx) THEN CALL mp_sum(deexx,intra_bgrp_comm) CALL mp_sum(deexx,inter_bgrp_comm) ENDIF ! IF (noncolin) THEN CALL mp_sum( result_nc(1:nrxxs,1:npol), inter_bgrp_comm) ELSE CALL mp_sum( result(1:nrxxs), inter_bgrp_comm) END IF ! !brings back result in G-space IF( gamma_only) THEN ! CALL fwfft( 'CustomWave' , result, exx_fft_g2r%dfftt ) ! !$omp parallel do default(shared), private(ig) DO ig = 1, npw hpsi(ig,im)=hpsi(ig,im) - exxalfa*result(exx_fft_g2r%nlt(ig)) ENDDO !$omp end parallel do ELSE IF (noncolin) THEN !brings back result in G-space CALL fwfft ('Wave', result_nc(:,1), dffts) CALL fwfft ('Wave', result_nc(:,2), dffts) ! !adds it to hpsi !$omp parallel do default(shared), private(ig) DO ig = 1, n hpsi(ig,im) = hpsi(ig,im) - exxalfa*result_nc(nls(igk(ig)),1) ENDDO !$omp end parallel do !$omp parallel do default(shared), private(ig) DO ig = 1, n hpsi(lda+ig,im) = hpsi(lda+ig,im) - exxalfa*result_nc(nls(igk(ig)),2) ENDDO !$omp end parallel do ! ELSE CALL fwfft ('Wave', result, dffts) ! !adds it to hpsi !$omp parallel do default(shared), private(ig) DO ig = 1, npw hpsi(ig,im)=hpsi(ig,im) - exxalfa*result(nls(igk(ig))) ENDDO !$omp end parallel do ENDIF ! ENDIF ! add non-local \sum_I |beta_I> \alpha_Ii (the sum on i is outside) IF(okvan .and. dovanxx) CALL add_nlxx_pot(lda, hpsi(:,im), xkp, & npw, igk, deexx, exxalfa) ! END DO & LOOP_ON_PSI_BANDS IF (noncolin) THEN DEALLOCATE(tempphic_nc, temppsic_nc, result_nc) ELSE DEALLOCATE(tempphic, temppsic, result) END IF DEALLOCATE(rhoc, vc, fac ) IF(okvan .and. dovanxx) DEALLOCATE( deexx) ! CALL stop_clock ('vexx') ! !----------------------------------------------------------------------- END SUBROUTINE vexx !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- SUBROUTINE g2_convolution(ngm, g, xk, xkq, fac) !----------------------------------------------------------------------- ! This routine calculates the 1/|r-r'| part of the exact exchange ! expression in reciprocal space (the G^-2 factor). ! It then regularizes it according to the specified recipe USE kinds, ONLY : DP USE cell_base, ONLY : tpiba, at USE constants, ONLY : fpi, e2, pi IMPLICIT NONE INTEGER, INTENT(IN) :: ngm ! Number of G vectors REAL(DP), INTENT(IN) :: g(3,ngm) ! Cartesian components of G vectors REAL(DP), INTENT(IN) :: xk(3) ! current k vector REAL(DP), INTENT(IN) :: xkq(3) ! current q vector REAL(DP), INTENT(INOUT) :: fac(ngm) ! Calculated convolution !Local variables INTEGER :: ig !Counters REAL(DP) :: q(3), qq, x DO ig=1,ngm ! q(:)= xk(:) - xkq(:) + g(:,ig) ! q = q * tpiba ! qq = SUM(q(:)**2) ! IF (x_gamma_extrapolation) THEN on_double_grid = .TRUE. x= 0.5d0/tpiba*(q(1)*at(1,1)+q(2)*at(2,1)+q(3)*at(3,1))*nq1 on_double_grid = on_double_grid .AND. (ABS(x-NINT(x)) 0) THEN fac(ig)=e2*((pi/gau_scrlen)**(1.5d0))* & EXP(-qq/4.d0/gau_scrlen) * grid_factor IF (on_double_grid) fac(ig) = 0._dp ! ELSE IF (qq > eps_qdiv) THEN ! IF ( erfc_scrlen > 0 ) THEN fac(ig)=e2*fpi/qq*(1._dp-EXP(-qq/4.d0/erfc_scrlen**2)) * grid_factor ELSEIF( erf_scrlen > 0 ) THEN fac(ig)=e2*fpi/qq*(EXP(-qq/4.d0/erf_scrlen**2)) * grid_factor ELSE fac(ig)=e2*fpi/( qq + yukawa ) * grid_factor ! as HARTREE END IF IF (on_double_grid) fac(ig) = 0._dp ! ELSE ! fac(ig)= - exxdiv ! or rather something ELSE (see F.Gygi) ! IF ( yukawa > 0._dp.AND. .NOT. x_gamma_extrapolation ) & fac(ig) = fac(ig) + e2*fpi/( qq + yukawa ) IF( erfc_scrlen > 0._dp.AND. .NOT. x_gamma_extrapolation ) fac(ig) = fac(ig) + e2*pi/(erfc_scrlen**2) ! ENDIF ! ENDDO END SUBROUTINE g2_convolution !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- FUNCTION exxenergy2() !----------------------------------------------------------------------- ! USE constants, ONLY : fpi, e2, pi USE io_files, ONLY : iunigk,iunwfc, nwordwfc USE buffers, ONLY : get_buffer USE cell_base, ONLY : alat, omega, bg, at, tpiba USE symm_base, ONLY : nsym, s USE gvect, ONLY : ngm, gstart, g, nl USE gvecs, ONLY : ngms, nls, nlsm, doublegrid USE wvfct, ONLY : nbnd, npwx, npw, igk, wg, ecutwfc USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : evc USE klist, ONLY : xk, ngk, nks, nkstot USE lsda_mod, ONLY : lsda, current_spin, isk USE mp_pools, ONLY : inter_pool_comm USE mp_bands, ONLY : inter_bgrp_comm, intra_bgrp_comm, & nbgrp, ibnd_start, ibnd_end USE mp, ONLY : mp_sum USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : fwfft, invfft USE gvect, ONLY : ecutrho USE klist, ONLY : wk USE uspp, ONLY : okvan,nkb,vkb USE becmod, ONLY : bec_type, allocate_bec_type, deallocate_bec_type, calbec USE paw_variables, ONLY : okpaw USE paw_exx, ONLY : dopawxx, PAW_xx_energy USE us_exx, ONLY : bexg_merge, becxx, addusxx_g, addusxx_r ! IMPLICIT NONE ! REAL(DP) :: exxenergy2, energy ! ! local variables COMPLEX(DP), ALLOCATABLE :: tempphic(:), temppsic(:) COMPLEX(DP), ALLOCATABLE :: tempphic_nc(:,:), temppsic_nc(:,:) COMPLEX(DP), ALLOCATABLE :: rhoc(:) REAL(DP), ALLOCATABLE :: fac(:) INTEGER :: jbnd, ibnd, ik, ikk, ig, ikq, iq, ir INTEGER :: h_ibnd, nrxxs, current_ik, ibnd_loop_start REAL(DP) :: x1, x2 REAL(DP) :: xkq(3), xkp(3), vc ! temp array for vcut_spheric INTEGER, EXTERNAL :: find_current_k TYPE(bec_type) :: becpsi COMPLEX(DP), ALLOCATABLE :: psi_t(:), prod_tot(:) INTEGER, ALLOCATABLE :: igkt(:) ! CALL start_clock ('exxen2') IF(gamma_only) THEN nrxxs= exx_fft_g2r%dfftt%nnr ALLOCATE( fac(exx_fft_r2g%ngmt) ) ELSE nrxxs = dffts%nnr ALLOCATE( fac(ngms) ) ENDIF IF (noncolin) THEN ALLOCATE(tempphic_nc(nrxxs,npol), temppsic_nc(nrxxs,npol)) ELSE ALLOCATE(tempphic(nrxxs), temppsic(nrxxs)) ENDIF ALLOCATE( rhoc(nrxxs) ) energy=0._dp CALL allocate_bec_type( nkb, nbnd, becpsi) IF ( nks > 1 ) REWIND( iunigk ) IKK_LOOP : & DO ikk=1,nks current_ik=find_current_k(ikk,nkstot,nks) xkp = xk_collect(:,current_ik) ! IF ( lsda ) current_spin = isk(ikk) npw = ngk (ikk) IF ( nks > 1 ) THEN READ( iunigk ) igk CALL get_buffer (evc, nwordwfc, iunwfc, ikk) END IF ! ! prepare the |beta> function at k+q CALL init_us_2(npw, igk, xk(:,ikk), vkb) ! compute at this k+q point, for all band and all projectors CALL calbec(npw, vkb, evc, becpsi, nbnd) ! JBND_LOOP : & DO jbnd = 1, nbnd !for each band of psi (the k cycle is outside band) ! IF (noncolin) THEN temppsic_nc = ( 0._dp, 0._dp ) ELSE temppsic = ( 0._dp, 0._dp ) ENDIF IF(gamma_only) THEN ! !$omp parallel do default(shared), private(ig) DO ig = 1, exx_fft_g2r%npwt temppsic(exx_fft_g2r%nlt(ig)) = evc(ig,jbnd) temppsic(exx_fft_g2r%nltm(ig)) = CONJG(evc(ig,jbnd)) ENDDO !$omp end parallel do ! CALL invfft ('CustomWave', temppsic, exx_fft_g2r%dfftt) ! ELSE IF (noncolin) THEN ! !$omp parallel do default(shared), private(ig) DO ig = 1, npw temppsic_nc(nls(igk(ig)),1) = evc(ig,jbnd) ENDDO !$omp end parallel do !$omp parallel do default(shared), private(ig) DO ig = 1, npw temppsic_nc(nls(igk(ig)),2) = evc(npwx+ig,jbnd) ENDDO !$omp end parallel do ! CALL invfft ('Wave', temppsic_nc(:,1), dffts) CALL invfft ('Wave', temppsic_nc(:,2), dffts) ! ELSE !$omp parallel do default(shared), private(ig) DO ig = 1, npw temppsic(nls(igk(ig))) = evc(ig,jbnd) ENDDO !$omp end parallel do ! CALL invfft ('Wave', temppsic, dffts) ENDIF ENDIF IQ_LOOP : & DO iq = 1,nqs ! ikq = index_xkq(current_ik,iq) ik = index_xk(ikq) ! xkq = xkq_collect(:,ikq) ! IF(gamma_only) THEN CALL g2_convolution(exx_fft_r2g%ngmt, exx_fft_r2g%gt, xk(:,current_ik), xkq, fac) fac(exx_fft_r2g%gstart_t:) = 2 * fac(exx_fft_r2g%gstart_t:) ELSE CALL g2_convolution(ngms, g, xk(:,current_ik), xkq, fac) ENDIF IF_GAMMA_ONLY : & IF (gamma_only) THEN ! h_ibnd = ibnd_start/2 IF(MOD(ibnd_start,2)==0) THEN h_ibnd=h_ibnd-1 ibnd_loop_start=ibnd_start-1 ELSE ibnd_loop_start=ibnd_start ENDIF ! IBND_LOOP_GAM : & DO ibnd = ibnd_loop_start, ibnd_end, 2 !for each band of psi ! h_ibnd = h_ibnd + 1 ! IF ( ibnd < ibnd_start ) THEN x1 = 0.0_dp ELSE x1 = x_occupation(ibnd,ik) ENDIF ! IF ( ibnd < ibnd_end ) THEN x2 = x_occupation(ibnd+1,ik) ELSE x2 = 0.0_dp ENDIF IF ( abs(x1) < eps_occ .and. abs(x2) < eps_occ ) CYCLE IBND_LOOP_GAM ! calculate rho in real space. Gamma tricks are used. ! temppsic is real; tempphic contains band 1 in the real part, ! band 2 in the imaginary part; the same applies to rhoc ! !$omp parallel do default(shared), private(ir) DO ir = 1, nrxxs tempphic(ir) = exxbuff(ir,h_ibnd,ikq) rhoc(ir) = CMPLX( DBLE(tempphic(ir))*DBLE(temppsic(ir)),& AIMAG(tempphic(ir))*DBLE(temppsic(ir)),& KIND=dp) / omega ENDDO !$omp end parallel do ! ! IF(okvan .and. dovanxx.and.TQR) THEN IF(ibnd>=ibnd_start) & CALL addusxx_r(rhoc, _CX(becxx(ikq)%r(:,ibnd)), _CX(becpsi%r(:,jbnd))) IF(ibnd=ibnd_start ) & CALL addusxx_g( rhoc, xkq, xkp, 'r', & becphi_r=becxx(ikq)%r(:,ibnd), becpsi_r=becpsi%r(:,jbnd) ) IF(ibnd=ibnd_start) & energy = energy +exxalfa*wg(jbnd,ikk)*& x1 * PAW_xx_energy(_CX(becxx(ikq)%r(:,ibnd)),_CX(becpsi%r(:,jbnd)) ) IF(ibnd 1.d-8 ) THEN IF ( erfc_scrlen > 0 ) THEN div = div + exp( -alpha * qq) / qq * & (1._dp-exp(-qq*tpiba2/4.d0/erfc_scrlen**2)) * grid_factor ELSEIF ( erf_scrlen >0 ) THEN div = div + exp( -alpha * qq) / qq * & (exp(-qq*tpiba2/4.d0/erf_scrlen**2)) * grid_factor ELSE div = div + exp( -alpha * qq) / (qq + yukawa/tpiba2) & * grid_factor ENDIF ENDIF ENDIF ENDDO ENDDO ENDDO ENDDO CALL mp_sum( div, intra_bgrp_comm ) IF (gamma_only) THEN div = 2.d0 * div ENDIF IF ( .not. x_gamma_extrapolation ) THEN IF ( yukawa > 0._dp) THEN div = div + tpiba2/yukawa ELSEIF( erfc_scrlen > 0._dp ) THEN div = div + tpiba2/4.d0/erfc_scrlen**2 ELSE div = div - alpha ENDIF ENDIF div = div * e2 * fpi / tpiba2 / nqs alpha = alpha / tpiba2 nqq = 100000 dq = 5.0d0 / sqrt(alpha) /nqq aa = 0._dp DO iq=0, nqq q_ = dq * (iq+0.5d0) qq = q_ * q_ IF ( erfc_scrlen > 0 ) THEN aa = aa -exp( -alpha * qq) * exp(-qq/4.d0/erfc_scrlen**2) * dq ELSEIF ( erf_scrlen > 0 ) THEN aa = 0._dp ELSE aa = aa - exp( -alpha * qq) * yukawa / (qq + yukawa) * dq ENDIF ENDDO aa = aa * 8.d0 /fpi aa = aa + 1._dp/sqrt(alpha*0.25d0*fpi) if( erf_scrlen > 0) aa = 1._dp/sqrt((alpha+1._dp/4.d0/erf_scrlen**2)*0.25d0*fpi) div = div - e2*omega * aa exx_divergence = div * nqs CALL stop_clock ('exx_div') return !----------------------------------------------------------------------- END FUNCTION exx_divergence !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- FUNCTION exx_stress() !----------------------------------------------------------------------- ! ! This is Eq.(10) of PRB 73, 125120 (2006). ! USE constants, ONLY : fpi, e2, pi, tpi USE io_files, ONLY : iunigk,iunwfc, nwordwfc USE buffers, ONLY : get_buffer USE cell_base, ONLY : alat, omega, bg, at, tpiba USE symm_base, ONLY : nsym, s USE gvect, ONLY : ngm USE gvecs, ONLY : nls, nlsm, doublegrid USE wvfct, ONLY : nbnd, npwx, npw, igk, wg, current_k USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : evc USE klist, ONLY : xk, ngk, nks USE lsda_mod, ONLY : lsda, current_spin, isk USE gvect, ONLY : g, nl USE mp_pools, ONLY : npool, inter_pool_comm USE mp_bands, ONLY : inter_bgrp_comm, intra_bgrp_comm, & ibnd_start, ibnd_end USE mp, ONLY : mp_sum USE fft_base, ONLY : dffts USE fft_interfaces, ONLY : fwfft, invfft ! ! ---- local variables ------------------------------------------------- ! IMPLICIT NONE ! ! local variables REAL(DP) :: exx_stress(3,3), exx_stress_(3,3) ! COMPLEX(DP),ALLOCATABLE :: tempphic(:), temppsic(:), result(:) COMPLEX(DP),ALLOCATABLE :: tempphic_nc(:,:), temppsic_nc(:,:), & result_nc(:,:) COMPLEX(DP),ALLOCATABLE :: rhoc(:) REAL(DP), allocatable :: fac(:), fac_tens(:,:,:), fac_stress(:) INTEGER :: jbnd, ibnd, ik, ikk, ig, ir, ikq, iq, isym INTEGER :: h_ibnd, nqi, iqi, beta, nrxxs INTEGER :: ibnd_loop_start REAL(DP) :: x1, x2 REAL(DP) :: qq, xk_cryst(3), sxk(3), xkq(3), vc(3,3), x, q(3) ! temp array for vcut_spheric REAL(DP) :: delta(3,3) CALL start_clock ('exx_stress') IF (npool>1) CALL errore('exx_stress','stress not available with pools',1) IF (noncolin) CALL errore('exx_stress','stress not available with noncolin',1) nrxxs = dffts%nnr delta = reshape( (/1._dp,0._dp,0._dp, 0._dp,1._dp,0._dp, 0._dp,0._dp,1._dp/), (/3,3/)) exx_stress_ = 0._dp allocate( tempphic(nrxxs), temppsic(nrxxs), rhoc(nrxxs), fac(ngm) ) allocate( fac_tens(3,3,ngm), fac_stress(ngm) ) IF ( nks > 1 ) rewind( iunigk ) ! nqi=nqs ! ! loop over k-points DO ikk = 1, nks current_k = ikk IF (lsda) current_spin = isk(ikk) npw = ngk(ikk) IF (nks > 1) THEN read(iunigk) igk CALL get_buffer(evc, nwordwfc, iunwfc, ikk) ENDIF ! loop over bands DO jbnd = 1, nbnd ! temppsic(:) = ( 0._dp, 0._dp ) !$omp parallel do default(shared), private(ig) DO ig = 1, npw temppsic(nls(igk(ig))) = evc(ig,jbnd) ENDDO !$omp end parallel do ! IF(gamma_only) THEN !$omp parallel do default(shared), private(ig) DO ig = 1, npw temppsic(nlsm(igk(ig))) = conjg(evc(ig,jbnd)) ENDDO !$omp end parallel do ENDIF CALL invfft ('Wave', temppsic, dffts) DO iqi = 1, nqi ! iq=iqi ! ikq = index_xkq(current_k,iq) ik = index_xk(ikq) isym = abs(index_sym(ikq)) ! FIXME: use cryst_to_cart and company as above.. xk_cryst(:)=at(1,:)*xk(1,ik)+at(2,:)*xk(2,ik)+at(3,:)*xk(3,ik) IF (index_sym(ikq) < 0) xk_cryst = -xk_cryst sxk(:) = s(:,1,isym)*xk_cryst(1) + & s(:,2,isym)*xk_cryst(2) + & s(:,3,isym)*xk_cryst(3) xkq(:) = bg(:,1)*sxk(1) + bg(:,2)*sxk(2) + bg(:,3)*sxk(3) !CALL start_clock ('exxen2_ngmloop') !$omp parallel do default(shared), private(ig, beta, q, qq, on_double_grid, x) DO ig = 1, ngm q(1)= xk(1,current_k) - xkq(1) + g(1,ig) q(2)= xk(2,current_k) - xkq(2) + g(2,ig) q(3)= xk(3,current_k) - xkq(3) + g(3,ig) q = q * tpiba qq = ( q(1)*q(1) + q(2)*q(2) + q(3)*q(3) ) DO beta = 1, 3 fac_tens(1:3,beta,ig) = q(1:3)*q(beta) ENDDO IF (x_gamma_extrapolation) THEN on_double_grid = .true. x= 0.5d0/tpiba*(q(1)*at(1,1)+q(2)*at(2,1)+q(3)*at(3,1))*nq1 on_double_grid = on_double_grid .and. (abs(x-nint(x)) 1.d-8) fac(ig) = 2.d0 * fac(ig) ELSE IF ( use_coulomb_vcut_spheric ) THEN fac(ig) = vcut_spheric_get(vcut, q) fac_stress(ig) = 0._dp ! not implemented IF (gamma_only .and. qq > 1.d-8) fac(ig) = 2.d0 * fac(ig) ELSE IF (gau_scrlen > 0) then fac(ig)=e2*((pi/gau_scrlen)**(1.5d0))* & exp(-qq/4.d0/gau_scrlen) * grid_factor fac_stress(ig) = e2*2.d0/4.d0/gau_scrlen * & exp(-qq/4.d0/gau_scrlen) *((pi/gau_scrlen)**(1.5d0))* & grid_factor IF (gamma_only) fac(ig) = 2.d0 * fac(ig) IF (gamma_only) fac_stress(ig) = 2.d0 * fac_stress(ig) IF (on_double_grid) fac(ig) = 0._dp IF (on_double_grid) fac_stress(ig) = 0._dp ELSE IF (qq > 1.d-8) THEN IF ( erfc_scrlen > 0 ) THEN fac(ig)=e2*fpi/qq*(1._dp-exp(-qq/4.d0/erfc_scrlen**2)) * grid_factor fac_stress(ig) = -e2*fpi * 2.d0/qq**2 * ( & (1._dp+qq/4.d0/erfc_scrlen**2)*exp(-qq/4.d0/erfc_scrlen**2) - 1._dp) * & grid_factor ELSE fac(ig)=e2*fpi/( qq + yukawa ) * grid_factor fac_stress(ig) = 2.d0 * e2*fpi/(qq+yukawa)**2 * grid_factor ENDIF IF (gamma_only) fac(ig) = 2.d0 * fac(ig) IF (gamma_only) fac_stress(ig) = 2.d0 * fac_stress(ig) IF (on_double_grid) fac(ig) = 0._dp IF (on_double_grid) fac_stress(ig) = 0._dp ELSE fac(ig)= -exxdiv ! or rather something else (see f.gygi) fac_stress(ig) = 0._dp ! or -exxdiv_stress (not yet implemented) IF ( yukawa> 0._dp .and. .not. x_gamma_extrapolation) THEN fac(ig) = fac(ig) + e2*fpi/( qq + yukawa ) fac_stress(ig) = 2.d0 * e2*fpi/(qq+yukawa)**2 ENDIF IF (erfc_scrlen > 0._dp .and. .not. x_gamma_extrapolation) THEN fac(ig) = e2*fpi / (4.d0*erfc_scrlen**2) fac_stress(ig) = e2*fpi / (8.d0*erfc_scrlen**4) ENDIF ENDIF ENDDO !$omp end parallel do !CALL stop_clock ('exxen2_ngmloop') IF (gamma_only) THEN ! h_ibnd = ibnd_start/2 ! IF(MOD(ibnd_start,2)==0) THEN h_ibnd=h_ibnd-1 ibnd_loop_start=ibnd_start-1 ELSE ibnd_loop_start=ibnd_start ENDIF ! DO ibnd = ibnd_loop_start, ibnd_end, 2 !for each band of psi ! h_ibnd = h_ibnd + 1 ! IF( ibnd < ibnd_start ) THEN x1 = 0._dp ELSE x1 = x_occupation(ibnd, ik) ENDIF IF( ibnd == ibnd_end) THEN x2 = 0._dp ELSE x2 = x_occupation(ibnd+1, ik) ENDIF IF ( abs(x1) < eps_occ .and. abs(x2) < eps_occ ) CYCLE ! ! calculate rho in real space !$omp parallel do default(shared), private(ir) DO ir = 1, nrxxs tempphic(ir) = exxbuff(ir,h_ibnd,ikq) rhoc(ir) = CONJG(tempphic(ir))*temppsic(ir) / omega ENDDO !$omp end parallel do ! bring it to G-space CALL fwfft ('Smooth', rhoc, dffts) vc = 0._dp !$omp parallel do default(shared), private(ig), reduction(+:vc) DO ig = 1, ngm ! vc(:,:) = vc(:,:) + fac(ig) * x1 * & abs( rhoc(nls(ig))+CONJG(rhoc(nlsm(ig))))**2 * & (fac_tens(:,:,ig)*fac_stress(ig)/2.d0 - delta(:,:)*fac(ig)) vc(:,:) = vc(:,:) + fac(ig) * x2 * & abs( rhoc(nls(ig))-CONJG(rhoc(nlsm(ig))))**2 * & (fac_tens(:,:,ig)*fac_stress(ig)/2.d0 - delta(:,:)*fac(ig)) enddo !$omp end parallel do vc = vc / nqs / 4.d0 exx_stress_ = exx_stress_ + exxalfa * vc * wg(jbnd,ikk) ENDDO ELSE DO ibnd = ibnd_start, ibnd_end !for each band of psi ! IF ( abs(x_occupation(ibnd,ik)) < 1.d-6) cycle ! ! calculate rho in real space !$omp parallel do default(shared), private(ir) DO ir = 1, nrxxs tempphic(ir) = exxbuff(ir,ibnd,ikq) rhoc(ir) = CONJG(tempphic(ir))*temppsic(ir) / omega ENDDO !$omp end parallel do ! bring it to G-space CALL fwfft ('Smooth', rhoc, dffts) vc = 0._dp !$omp parallel do default(shared), private(ig), reduction(+:vc) DO ig = 1, ngm vc(:,:) = vc(:,:) + rhoc(nls(ig))*CONJG(rhoc(nls(ig))) * & (fac_tens(:,:,ig)*fac_stress(ig)/2.d0 - delta(:,:)*fac(ig)) ENDDO !$omp end parallel do vc = vc * x_occupation(ibnd,ik) / nqs / 4.d0 exx_stress_ = exx_stress_ + exxalfa * vc * wg(jbnd,ikk) ENDDO ENDIF ! gamma or k-points ENDDO ! iqi ENDDO ! jbnd ENDDO ! ikk deALLOCATE(tempphic, temppsic, rhoc, fac, fac_tens, fac_stress ) ! CALL mp_sum( exx_stress_, intra_bgrp_comm ) CALL mp_sum( exx_stress_, inter_bgrp_comm ) CALL mp_sum( exx_stress_, inter_pool_comm ) exx_stress = exx_stress_ CALL stop_clock ('exx_stress') !----------------------------------------------------------------------- END FUNCTION exx_stress !----------------------------------------------------------------------- !----------------------------------------------------------------------- END MODULE exx !----------------------------------------------------------------------- espresso-5.1/PW/src/cegterg.f900000644000175000017500000011710712341373025014366 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO ( 0.D0, 0.D0 ) #define ONE ( 1.D0, 0.D0 ) ! ! !---------------------------------------------------------------------------- SUBROUTINE cegterg( npw, npwx, nvec, nvecx, npol, evc, ethr, & uspp, e, btype, notcnv, lrot, dav_iter ) !---------------------------------------------------------------------------- ! ! ... iterative solution of the eigenvalue problem: ! ! ... ( H - e S ) * evc = 0 ! ! ... where H is an hermitean operator, e is a real scalar, ! ... S is an overlap matrix, evc is a complex vector ! USE kinds, ONLY : DP USE mp_bands , ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: npw, npwx, nvec, nvecx, npol ! dimension of the matrix to be diagonalized ! leading dimension of matrix evc, as declared in the calling pgm unit ! integer number of searched low-lying roots ! maximum dimension of the reduced basis set : ! (the basis set is refreshed when its dimension would exceed nvecx) ! umber of spin polarizations COMPLEX(DP), INTENT(INOUT) :: evc(npwx,npol,nvec) ! evc contains the refined estimates of the eigenvectors REAL(DP), INTENT(IN) :: ethr ! energy threshold for convergence : ! root improvement is stopped, when two consecutive estimates of the root ! differ by less than ethr. LOGICAL, INTENT(IN) :: uspp ! if .FALSE. : do not calculate S|psi> INTEGER, INTENT(IN) :: btype(nvec) ! band type ( 1 = occupied, 0 = empty ) LOGICAL, INTENT(IN) :: lrot ! .TRUE. if the wfc have already been rotated REAL(DP), INTENT(OUT) :: e(nvec) ! contains the estimated roots. INTEGER, INTENT(OUT) :: dav_iter, notcnv ! integer number of iterations performed ! number of unconverged roots ! ! ... LOCAL variables ! INTEGER, PARAMETER :: maxter = 20 ! maximum number of iterations ! INTEGER :: kter, nbase, np, kdim, kdmx, n, m, nb1, nbn ! counter on iterations ! dimension of the reduced basis ! counter on the reduced basis vectors ! adapted npw and npwx ! do-loop counters INTEGER :: ierr COMPLEX(DP), ALLOCATABLE :: hc(:,:), sc(:,:), vc(:,:) ! Hamiltonian on the reduced basis ! S matrix on the reduced basis ! the eigenvectors of the Hamiltonian COMPLEX(DP), ALLOCATABLE :: psi(:,:,:), hpsi(:,:,:), spsi(:,:,:) ! work space, contains psi ! the product of H and psi ! the product of S and psi REAL(DP), ALLOCATABLE :: ew(:) ! eigenvalues of the reduced hamiltonian LOGICAL, ALLOCATABLE :: conv(:) ! true if the root is converged REAL(DP) :: empty_ethr ! threshold for empty bands ! REAL(DP), EXTERNAL :: ddot ! ! EXTERNAL h_psi, s_psi, g_psi ! h_psi(npwx,npw,nvec,psi,hpsi) ! calculates H|psi> ! s_psi(npwx,npw,nvec,spsi) ! calculates S|psi> (if needed) ! Vectors psi,hpsi,spsi are dimensioned (npwx,npol,nvec) ! g_psi(npwx,npw,notcnv,psi,e) ! calculates (diag(h)-e)^-1 * psi, diagonal approx. to (h-e)^-1*psi ! the first nvec columns contain the trial eigenvectors ! CALL start_clock( 'cegterg' ) ! IF ( nvec > nvecx / 2 ) CALL errore( 'cegterg', 'nvecx is too small', 1 ) ! ! ... threshold for empty bands ! empty_ethr = MAX( ( ethr * 5.D0 ), 1.D-5 ) ! IF ( npol == 1 ) THEN ! kdim = npw kdmx = npwx ! ELSE ! kdim = npwx*npol kdmx = npwx*npol ! END IF ! ALLOCATE( psi( npwx, npol, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate psi ', ABS(ierr) ) ALLOCATE( hpsi( npwx, npol, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate hpsi ', ABS(ierr) ) ! IF ( uspp ) THEN ALLOCATE( spsi( npwx, npol, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate spsi ', ABS(ierr) ) END IF ! ALLOCATE( sc( nvecx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate sc ', ABS(ierr) ) ALLOCATE( hc( nvecx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate hc ', ABS(ierr) ) ALLOCATE( vc( nvecx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate vc ', ABS(ierr) ) ALLOCATE( ew( nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate ew ', ABS(ierr) ) ALLOCATE( conv( nvec ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' cegterg ',' cannot allocate conv ', ABS(ierr) ) ! notcnv = nvec nbase = nvec conv = .FALSE. ! IF ( uspp ) spsi = ZERO ! hpsi = ZERO psi = ZERO psi(:,:,1:nvec) = evc(:,:,1:nvec) ! ! ... hpsi contains h times the basis vectors ! CALL h_psi( npwx, npw, nvec, psi, hpsi ) ! ! ... spsi contains s times the basis vectors ! IF ( uspp ) CALL s_psi( npwx, npw, nvec, psi, spsi ) ! ! ... hc contains the projection of the hamiltonian onto the reduced ! ... space vc contains the eigenvectors of hc ! hc(:,:) = ZERO sc(:,:) = ZERO vc(:,:) = ZERO ! CALL ZGEMM( 'C', 'N', nbase, nbase, kdim, ONE, & psi, kdmx, hpsi, kdmx, ZERO, hc, nvecx ) ! CALL mp_sum( hc( :, 1:nbase ), intra_bgrp_comm ) ! IF ( uspp ) THEN ! CALL ZGEMM( 'C', 'N', nbase, nbase, kdim, ONE, & psi, kdmx, spsi, kdmx, ZERO, sc, nvecx ) ! ELSE ! CALL ZGEMM( 'C', 'N', nbase, nbase, kdim, ONE, & psi, kdmx, psi, kdmx, ZERO, sc, nvecx ) ! END IF ! CALL mp_sum( sc( :, 1:nbase ), intra_bgrp_comm ) ! IF ( lrot ) THEN ! DO n = 1, nbase ! e(n) = REAL( hc(n,n) ) ! vc(n,n) = ONE ! END DO ! ELSE ! ! ... diagonalize the reduced hamiltonian ! CALL cdiaghg( nbase, nvec, hc, sc, nvecx, ew, vc ) ! e(1:nvec) = ew(1:nvec) ! END IF ! ! ... iterate ! iterate: DO kter = 1, maxter ! dav_iter = kter ! CALL start_clock( 'cegterg:update' ) ! np = 0 ! DO n = 1, nvec ! IF ( .NOT. conv(n) ) THEN ! ! ... this root not yet converged ... ! np = np + 1 ! ! ... reorder eigenvectors so that coefficients for unconverged ! ... roots come first. This allows to use quick matrix-matrix ! ... multiplications to set a new basis vector (see below) ! IF ( np /= n ) vc(:,np) = vc(:,n) ! ! ... for use in g_psi ! ew(nbase+np) = e(n) ! END IF ! END DO ! nb1 = nbase + 1 ! ! ... expand the basis set with new basis vectors ( H - e*S )|psi> ... ! IF ( uspp ) THEN ! CALL ZGEMM( 'N', 'N', kdim, notcnv, nbase, ONE, spsi, & kdmx, vc, nvecx, ZERO, psi(1,1,nb1), kdmx ) ! ELSE ! CALL ZGEMM( 'N', 'N', kdim, notcnv, nbase, ONE, psi, & kdmx, vc, nvecx, ZERO, psi(1,1,nb1), kdmx ) ! END IF ! DO np = 1, notcnv ! psi(:,:,nbase+np) = - ew(nbase+np)*psi(:,:,nbase+np) ! END DO ! CALL ZGEMM( 'N', 'N', kdim, notcnv, nbase, ONE, hpsi, & kdmx, vc, nvecx, ONE, psi(1,1,nb1), kdmx ) ! CALL stop_clock( 'cegterg:update' ) ! ! ... approximate inverse iteration ! CALL g_psi( npwx, npw, notcnv, npol, psi(1,1,nb1), ew(nb1) ) ! ! ... "normalize" correction vectors psi(:,nb1:nbase+notcnv) in ! ... order to improve numerical stability of subspace diagonalization ! ... (cdiaghg) ew is used as work array : ! ! ... ew = , i = nbase + 1, nbase + notcnv ! DO n = 1, notcnv ! nbn = nbase + n ! IF ( npol == 1 ) THEN ! ew(n) = ddot( 2*npw, psi(1,1,nbn), 1, psi(1,1,nbn), 1 ) ! ELSE ! ew(n) = ddot( 2*npw, psi(1,1,nbn), 1, psi(1,1,nbn), 1 ) + & ddot( 2*npw, psi(1,2,nbn), 1, psi(1,2,nbn), 1 ) ! END IF ! END DO ! CALL mp_sum( ew( 1:notcnv ), intra_bgrp_comm ) ! DO n = 1, notcnv ! psi(:,:,nbase+n) = psi(:,:,nbase+n) / SQRT( ew(n) ) ! END DO ! ! ... here compute the hpsi and spsi of the new functions ! ! CALL h_psi( npwx, npw, notcnv, psi(1,1,nb1), hpsi(1,1,nb1) ) ! IF ( uspp ) & CALL s_psi( npwx, npw, notcnv, psi(1,1,nb1), spsi(1,1,nb1) ) ! ! ... update the reduced hamiltonian ! CALL start_clock( 'cegterg:overlap' ) ! CALL ZGEMM( 'C', 'N', nbase+notcnv, notcnv, kdim, ONE, psi, & kdmx, hpsi(1,1,nb1), kdmx, ZERO, hc(1,nb1), nvecx ) ! CALL mp_sum( hc( :, nb1:nb1+notcnv-1 ), intra_bgrp_comm ) ! IF ( uspp ) THEN ! CALL ZGEMM( 'C', 'N', nbase+notcnv, notcnv, kdim, ONE, psi, & kdmx, spsi(1,1,nb1), kdmx, ZERO, sc(1,nb1), nvecx ) ! ELSE ! CALL ZGEMM( 'C', 'N', nbase+notcnv, notcnv, kdim, ONE, psi, & kdmx, psi(1,1,nb1), kdmx, ZERO, sc(1,nb1), nvecx ) ! END IF ! CALL mp_sum( sc( :, nb1:nb1+notcnv-1 ), intra_bgrp_comm ) ! CALL stop_clock( 'cegterg:overlap' ) ! nbase = nbase + notcnv ! DO n = 1, nbase ! ! ... the diagonal of hc and sc must be strictly real ! hc(n,n) = CMPLX( REAL( hc(n,n) ), 0.D0 ,kind=DP) sc(n,n) = CMPLX( REAL( sc(n,n) ), 0.D0 ,kind=DP) ! DO m = n + 1, nbase ! hc(m,n) = CONJG( hc(n,m) ) sc(m,n) = CONJG( sc(n,m) ) ! END DO ! END DO ! ! ... diagonalize the reduced hamiltonian ! CALL cdiaghg( nbase, nvec, hc, sc, nvecx, ew, vc ) ! ! ... test for convergence ! WHERE( btype(1:nvec) == 1 ) ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < ethr ) ) ! ELSEWHERE ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < empty_ethr ) ) ! END WHERE ! notcnv = COUNT( .NOT. conv(:) ) ! e(1:nvec) = ew(1:nvec) ! ! ... if overall convergence has been achieved, or the dimension of ! ... the reduced basis set is becoming too large, or in any case if ! ... we are at the last iteration refresh the basis set. i.e. replace ! ... the first nvec elements with the current estimate of the ! ... eigenvectors; set the basis dimension to nvec. ! IF ( notcnv == 0 .OR. & nbase+notcnv > nvecx .OR. dav_iter == maxter ) THEN ! CALL start_clock( 'cegterg:last' ) ! CALL ZGEMM( 'N', 'N', kdim, nvec, nbase, ONE, & psi, kdmx, vc, nvecx, ZERO, evc, kdmx ) ! IF ( notcnv == 0 ) THEN ! ! ... all roots converged: return ! CALL stop_clock( 'cegterg:last' ) ! EXIT iterate ! ELSE IF ( dav_iter == maxter ) THEN ! ! ... last iteration, some roots not converged: return ! !!!WRITE( stdout, '(5X,"WARNING: ",I5, & !!! & " eigenvalues not converged")' ) notcnv ! CALL stop_clock( 'cegterg:last' ) ! EXIT iterate ! END IF ! ! ... refresh psi, H*psi and S*psi ! psi(:,:,1:nvec) = evc(:,:,1:nvec) ! IF ( uspp ) THEN ! CALL ZGEMM( 'N', 'N', kdim, nvec, nbase, ONE, spsi, & kdmx, vc, nvecx, ZERO, psi(1,1,nvec+1), kdmx ) ! spsi(:,:,1:nvec) = psi(:,:,nvec+1:nvec+nvec) ! END IF ! CALL ZGEMM( 'N', 'N', kdim, nvec, nbase, ONE, hpsi, & kdmx, vc, nvecx, ZERO, psi(1,1,nvec+1), kdmx ) ! hpsi(:,:,1:nvec) = psi(:,:,nvec+1:nvec+nvec) ! ! ... refresh the reduced hamiltonian ! nbase = nvec ! hc(:,1:nbase) = ZERO sc(:,1:nbase) = ZERO vc(:,1:nbase) = ZERO ! DO n = 1, nbase ! ! hc(n,n) = REAL( e(n) ) hc(n,n) = CMPLX( e(n), 0.0_DP ,kind=DP) ! sc(n,n) = ONE vc(n,n) = ONE ! END DO ! CALL stop_clock( 'cegterg:last' ) ! END IF ! END DO iterate ! DEALLOCATE( conv ) DEALLOCATE( ew ) DEALLOCATE( vc ) DEALLOCATE( hc ) DEALLOCATE( sc ) ! IF ( uspp ) DEALLOCATE( spsi ) ! DEALLOCATE( hpsi ) DEALLOCATE( psi ) ! CALL stop_clock( 'cegterg' ) ! RETURN ! END SUBROUTINE cegterg ! ! Subroutine with distributed matrixes ! (written by Carlo Cavazzoni) ! !---------------------------------------------------------------------------- SUBROUTINE pcegterg( npw, npwx, nvec, nvecx, npol, evc, ethr, & uspp, e, btype, notcnv, lrot, dav_iter ) !---------------------------------------------------------------------------- ! ! ... iterative solution of the eigenvalue problem: ! ! ... ( H - e S ) * evc = 0 ! ! ... where H is an hermitean operator, e is a real scalar, ! ... S is an uspp matrix, evc is a complex vector ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mp_bands, ONLY : intra_bgrp_comm USE mp_diag, ONLY : ortho_comm, np_ortho, me_ortho, ortho_comm_id, & leg_ortho USE descriptors, ONLY : la_descriptor, descla_init , descla_local_dims USE parallel_toolkit, ONLY : zsqmred, zsqmher, zsqmdst USE mp, ONLY : mp_bcast, mp_root_sum, mp_sum, mp_barrier ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: npw, npwx, nvec, nvecx, npol ! dimension of the matrix to be diagonalized ! leading dimension of matrix evc, as declared in the calling pgm unit ! integer number of searched low-lying roots ! maximum dimension of the reduced basis set ! (the basis set is refreshed when its dimension would exceed nvecx) ! number of spin polarizations COMPLEX(DP), INTENT(INOUT) :: evc(npwx,npol,nvec) ! evc contains the refined estimates of the eigenvectors REAL(DP), INTENT(IN) :: ethr ! energy threshold for convergence: root improvement is stopped, ! when two consecutive estimates of the root differ by less than ethr. LOGICAL, INTENT(IN) :: uspp ! if .FALSE. : S|psi> not needed INTEGER, INTENT(IN) :: btype(nvec) ! band type ( 1 = occupied, 0 = empty ) LOGICAL, INTENT(IN) :: lrot ! .TRUE. if the wfc have already been rotated REAL(DP), INTENT(OUT) :: e(nvec) ! contains the estimated roots. INTEGER, INTENT(OUT) :: dav_iter, notcnv ! integer number of iterations performed ! number of unconverged roots ! ! ... LOCAL variables ! INTEGER, PARAMETER :: maxter = 20 ! maximum number of iterations ! INTEGER :: kter, nbase, np, kdim, kdmx, n, nb1, nbn ! counter on iterations ! dimension of the reduced basis ! counter on the reduced basis vectors ! do-loop counters INTEGER :: ierr REAL(DP), ALLOCATABLE :: ew(:) COMPLEX(DP), ALLOCATABLE :: hl(:,:), sl(:,:), vl(:,:) ! Hamiltonian on the reduced basis ! S matrix on the reduced basis ! eigenvectors of the Hamiltonian ! eigenvalues of the reduced hamiltonian COMPLEX(DP), ALLOCATABLE :: psi(:,:,:), hpsi(:,:,:), spsi(:,:,:) ! work space, contains psi ! the product of H and psi ! the product of S and psi LOGICAL, ALLOCATABLE :: conv(:) ! true if the root is converged REAL(DP) :: empty_ethr ! threshold for empty bands TYPE(la_descriptor) :: desc, desc_old INTEGER, ALLOCATABLE :: irc_ip( : ) INTEGER, ALLOCATABLE :: nrc_ip( : ) INTEGER, ALLOCATABLE :: rank_ip( :, : ) ! matrix distribution descriptors INTEGER :: nx ! maximum local block dimension LOGICAL :: la_proc ! flag to distinguish procs involved in linear algebra INTEGER, ALLOCATABLE :: notcnv_ip( : ) INTEGER, ALLOCATABLE :: ic_notcnv( : ) ! REAL(DP), EXTERNAL :: ddot ! ! EXTERNAL h_psi, s_psi, g_psi ! h_psi(npwx,npw,nvec,psi,hpsi) ! calculates H|psi> ! s_psi(npwx,npw,nvec,psi,spsi) ! calculates S|psi> (if needed) ! Vectors psi,hpsi,spsi are dimensioned (npwx,nvec) ! g_psi(npwx,npw,notcnv,psi,e) ! calculates (diag(h)-e)^-1 * psi, diagonal approx. to (h-e)^-1*psi ! the first nvec columns contain the trial eigenvectors ! ! CALL start_clock( 'cegterg' ) ! IF ( nvec > nvecx / 2 ) CALL errore( 'pcegterg', 'nvecx is too small', 1 ) ! ! ... threshold for empty bands ! empty_ethr = MAX( ( ethr * 5.D0 ), 1.D-5 ) ! IF ( npol == 1 ) THEN ! kdim = npw kdmx = npwx ! ELSE ! kdim = npwx*npol kdmx = npwx*npol ! END IF ALLOCATE( psi( npwx, npol, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate psi ', ABS(ierr) ) ! ALLOCATE( hpsi( npwx, npol, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate hpsi ', ABS(ierr) ) ! IF ( uspp ) THEN ALLOCATE( spsi( npwx, npol, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate spsi ', ABS(ierr) ) END IF ! ! ... Initialize the matrix descriptor ! ALLOCATE( ic_notcnv( np_ortho(2) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate ic_notcnv ', ABS(ierr) ) ! ALLOCATE( notcnv_ip( np_ortho(2) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate notcnv_ip ', ABS(ierr) ) ! ALLOCATE( irc_ip( np_ortho(1) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate irc_ip ', ABS(ierr) ) ! ALLOCATE( nrc_ip( np_ortho(1) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate nrc_ip ', ABS(ierr) ) ! ALLOCATE( rank_ip( np_ortho(1), np_ortho(2) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate rank_ip ', ABS(ierr) ) ! CALL desc_init( nvec, desc, irc_ip, nrc_ip ) ! IF( la_proc ) THEN ! ! only procs involved in the diagonalization need to allocate local ! matrix block. ! ALLOCATE( vl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate vl ', ABS(ierr) ) ! ALLOCATE( sl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate sl ', ABS(ierr) ) ! ALLOCATE( hl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate hl ', ABS(ierr) ) ! ELSE ! ALLOCATE( vl( 1 , 1 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate vl ', ABS(ierr) ) ! ALLOCATE( sl( 1 , 1 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate sl ', ABS(ierr) ) ! ALLOCATE( hl( 1 , 1 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate hl ', ABS(ierr) ) ! END IF ! ALLOCATE( ew( nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate ew ', ABS(ierr) ) ! ALLOCATE( conv( nvec ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate conv ', ABS(ierr) ) ! notcnv = nvec nbase = nvec conv = .FALSE. ! IF ( uspp ) spsi = ZERO ! hpsi = ZERO psi = ZERO psi(:,:,1:nvec) = evc(:,:,1:nvec) ! ! ... hpsi contains h times the basis vectors ! CALL h_psi( npwx, npw, nvec, psi, hpsi ) ! IF ( uspp ) CALL s_psi( npwx, npw, nvec, psi, spsi ) ! ! ... hl contains the projection of the hamiltonian onto the reduced ! ... space, vl contains the eigenvectors of hl. Remember hl, vl and sl ! ... are all distributed across processors, global replicated matrixes ! ... here are never allocated ! CALL compute_distmat( hl, psi, hpsi ) ! IF ( uspp ) THEN ! CALL compute_distmat( sl, psi, spsi ) ! ELSE ! CALL compute_distmat( sl, psi, psi ) ! END IF ! IF ( lrot ) THEN ! CALL set_e_from_h() ! CALL set_to_identity( vl, desc ) ! ELSE ! ! ... diagonalize the reduced hamiltonian ! Calling block parallel algorithm ! CALL pcdiaghg( nbase, hl, sl, nx, ew, vl, desc ) ! e(1:nvec) = ew(1:nvec) ! END IF ! ! ... iterate ! iterate: DO kter = 1, maxter ! dav_iter = kter ! CALL start_clock( 'cegterg:update' ) ! CALL reorder_v() ! nb1 = nbase + 1 ! ! ... expand the basis set with new basis vectors ( H - e*S )|psi> ... ! CALL hpsi_dot_v() ! CALL stop_clock( 'cegterg:update' ) ! ! ... approximate inverse iteration ! CALL g_psi( npwx, npw, notcnv, npol, psi(1,1,nb1), ew(nb1) ) ! ! ... "normalize" correction vectors psi(:,nb1:nbase+notcnv) in ! ... order to improve numerical stability of subspace diagonalization ! ... (cdiaghg) ew is used as work array : ! ! ... ew = , i = nbase + 1, nbase + notcnv ! DO n = 1, notcnv ! nbn = nbase + n ! IF ( npol == 1 ) THEN ! ew(n) = ddot( 2*npw, psi(1,1,nbn), 1, psi(1,1,nbn), 1 ) ! ELSE ! ew(n) = ddot( 2*npw, psi(1,1,nbn), 1, psi(1,1,nbn), 1 ) + & ddot( 2*npw, psi(1,2,nbn), 1, psi(1,2,nbn), 1 ) ! END IF ! END DO ! CALL mp_sum( ew( 1:notcnv ), intra_bgrp_comm ) ! DO n = 1, notcnv ! psi(:,:,nbase+n) = psi(:,:,nbase+n) / SQRT( ew(n) ) ! END DO ! ! ... here compute the hpsi and spsi of the new functions ! CALL h_psi( npwx, npw, notcnv, psi(1,1,nb1), hpsi(1,1,nb1) ) ! IF ( uspp ) & CALL s_psi( npwx, npw, notcnv, psi(1,1,nb1), spsi(1,1,nb1) ) ! ! ... update the reduced hamiltonian ! ! we need to save the old descriptor in order to redistribute matrices ! desc_old = desc ! ! ... RE-Initialize the matrix descriptor ! CALL desc_init( nbase+notcnv, desc, irc_ip, nrc_ip ) ! IF( la_proc ) THEN ! redistribute hl and sl (see dsqmred), since the dimension of the subspace has changed ! vl = hl DEALLOCATE( hl ) ALLOCATE( hl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate hl ', ABS(ierr) ) CALL zsqmred( nbase, vl, desc_old%nrcx, desc_old, nbase+notcnv, hl, nx, desc ) vl = sl DEALLOCATE( sl ) ALLOCATE( sl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate sl ', ABS(ierr) ) CALL zsqmred( nbase, vl, desc_old%nrcx, desc_old, nbase+notcnv, sl, nx, desc ) DEALLOCATE( vl ) ALLOCATE( vl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate vl ', ABS(ierr) ) END IF ! CALL start_clock( 'cegterg:overlap' ) ! CALL update_distmat( hl, psi, hpsi ) ! IF ( uspp ) THEN ! CALL update_distmat( sl, psi, spsi ) ! ELSE ! CALL update_distmat( sl, psi, psi ) ! END IF ! CALL stop_clock( 'cegterg:overlap' ) ! nbase = nbase + notcnv ! ! ... diagonalize the reduced hamiltonian ! Call block parallel algorithm ! CALL pcdiaghg( nbase, hl, sl, nx, ew, vl, desc ) ! ! ... test for convergence ! WHERE( btype(1:nvec) == 1 ) ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < ethr ) ) ! ELSEWHERE ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < empty_ethr ) ) ! END WHERE ! notcnv = COUNT( .NOT. conv(:) ) ! e(1:nvec) = ew(1:nvec) ! ! ... if overall convergence has been achieved, or the dimension of ! ... the reduced basis set is becoming too large, or in any case if ! ... we are at the last iteration refresh the basis set. i.e. replace ! ... the first nvec elements with the current estimate of the ! ... eigenvectors; set the basis dimension to nvec. ! IF ( notcnv == 0 .OR. nbase+notcnv > nvecx .OR. dav_iter == maxter ) THEN ! CALL start_clock( 'cegterg:last' ) ! CALL refresh_evc() ! IF ( notcnv == 0 ) THEN ! ! ... all roots converged: return ! CALL stop_clock( 'cegterg:last' ) ! EXIT iterate ! ELSE IF ( dav_iter == maxter ) THEN ! ! ... last iteration, some roots not converged: return ! !!!WRITE( stdout, '(5X,"WARNING: ",I5, & !!! & " eigenvalues not converged")' ) notcnv ! CALL stop_clock( 'cegterg:last' ) ! EXIT iterate ! END IF ! ! ... refresh psi, H*psi and S*psi ! psi(:,:,1:nvec) = evc(:,:,1:nvec) ! IF ( uspp ) THEN ! CALL refresh_spsi() ! END IF ! CALL refresh_hpsi() ! ! ... refresh the reduced hamiltonian ! nbase = nvec ! CALL desc_init( nvec, desc, irc_ip, nrc_ip ) ! IF( la_proc ) THEN ! ! note that nx has been changed by desc_init ! we need to re-alloc with the new size. ! DEALLOCATE( vl, hl, sl ) ALLOCATE( vl( nx, nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate vl ', ABS(ierr) ) ALLOCATE( hl( nx, nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate hl ', ABS(ierr) ) ALLOCATE( sl( nx, nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' pcegterg ',' cannot allocate sl ', ABS(ierr) ) ! END IF ! CALL set_h_from_e( ) ! CALL set_to_identity( vl, desc ) CALL set_to_identity( sl, desc ) ! CALL stop_clock( 'cegterg:last' ) ! END IF ! END DO iterate ! DEALLOCATE( vl, hl, sl ) ! DEALLOCATE( rank_ip ) DEALLOCATE( ic_notcnv ) DEALLOCATE( irc_ip ) DEALLOCATE( nrc_ip ) DEALLOCATE( notcnv_ip ) DEALLOCATE( conv ) DEALLOCATE( ew ) ! IF ( uspp ) DEALLOCATE( spsi ) ! DEALLOCATE( hpsi ) DEALLOCATE( psi ) ! CALL stop_clock( 'cegterg' ) ! RETURN ! ! CONTAINS ! ! SUBROUTINE desc_init( nsiz, desc, irc_ip, nrc_ip ) ! INTEGER, INTENT(IN) :: nsiz TYPE(la_descriptor), INTENT(OUT) :: desc INTEGER, INTENT(OUT) :: irc_ip(:) INTEGER, INTENT(OUT) :: nrc_ip(:) INTEGER :: i, j, rank ! CALL descla_init( desc, nsiz, nsiz, np_ortho, me_ortho, ortho_comm, ortho_comm_id ) ! nx = desc%nrcx ! DO j = 0, desc%npc - 1 CALL descla_local_dims( irc_ip( j + 1 ), nrc_ip( j + 1 ), desc%n, desc%nx, np_ortho(1), j ) DO i = 0, desc%npr - 1 CALL GRID2D_RANK( 'R', desc%npr, desc%npc, i, j, rank ) rank_ip( i+1, j+1 ) = rank * leg_ortho END DO END DO ! la_proc = .FALSE. IF( desc%active_node > 0 ) la_proc = .TRUE. ! RETURN END SUBROUTINE desc_init ! ! SUBROUTINE set_to_identity( distmat, desc ) TYPE(la_descriptor), INTENT(IN) :: desc COMPLEX(DP), INTENT(OUT) :: distmat(:,:) INTEGER :: i distmat = ( 0_DP , 0_DP ) IF( desc%myc == desc%myr .AND. desc%active_node > 0 ) THEN DO i = 1, desc%nc distmat( i, i ) = ( 1_DP , 0_DP ) END DO END IF RETURN END SUBROUTINE set_to_identity ! ! SUBROUTINE reorder_v() ! INTEGER :: ipc INTEGER :: nc, ic INTEGER :: nl, npl ! np = 0 ! notcnv_ip = 0 ! n = 0 ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! npl = 0 ! IF( ic <= nvec ) THEN ! DO nl = 1, min( nvec - ic + 1, nc ) ! n = n + 1 ! IF ( .NOT. conv(n) ) THEN ! ! ... this root not yet converged ... ! np = np + 1 npl = npl + 1 IF( npl == 1 ) ic_notcnv( ipc ) = np ! ! ... reorder eigenvectors so that coefficients for unconverged ! ... roots come first. This allows to use quick matrix-matrix ! ... multiplications to set a new basis vector (see below) ! notcnv_ip( ipc ) = notcnv_ip( ipc ) + 1 ! IF ( npl /= nl ) THEN IF( la_proc .AND. desc%myc == ipc-1 ) THEN vl( :, npl) = vl( :, nl ) END IF END IF ! ! ... for use in g_psi ! ew(nbase+np) = e(n) ! END IF ! END DO ! END IF ! END DO ! END SUBROUTINE reorder_v ! ! SUBROUTINE hpsi_dot_v() ! INTEGER :: ipc, ipr INTEGER :: nr, ir, ic, notcl, root, np COMPLEX(DP), ALLOCATABLE :: vtmp( :, : ) COMPLEX(DP), ALLOCATABLE :: ptmp( :, :, : ) COMPLEX(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ALLOCATE( ptmp( npwx, npol, nx ) ) DO ipc = 1, desc%npc ! IF( notcnv_ip( ipc ) > 0 ) THEN notcl = notcnv_ip( ipc ) ic = ic_notcnv( ipc ) ptmp = ZERO beta = ZERO DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN vtmp(:,1:notcl) = vl(:,1:notcl) END IF CALL mp_bcast( vtmp(:,1:notcl), root, intra_bgrp_comm ) ! IF ( uspp ) THEN ! CALL ZGEMM( 'N', 'N', kdim, notcl, nr, ONE, & spsi( 1, 1, ir ), kdmx, vtmp, nx, beta, psi(1,1,nb1+ic-1), kdmx ) ! ELSE ! CALL ZGEMM( 'N', 'N', kdim, notcl, nr, ONE, & psi( 1, 1, ir ), kdmx, vtmp, nx, beta, psi(1,1,nb1+ic-1), kdmx ) ! END IF ! CALL ZGEMM( 'N', 'N', kdim, notcl, nr, ONE, & hpsi( 1, 1, ir ), kdmx, vtmp, nx, ONE, ptmp, kdmx ) beta = ONE END DO DO np = 1, notcl ! psi(:,:,nbase+np+ic-1) = ptmp(:,:,np) - ew(nbase+np+ic-1) * psi(:,:,nbase+np+ic-1) ! END DO ! END IF ! END DO DEALLOCATE( vtmp ) DEALLOCATE( ptmp ) RETURN END SUBROUTINE hpsi_dot_v ! ! SUBROUTINE refresh_evc( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root COMPLEX(DP), ALLOCATABLE :: vtmp( :, : ) COMPLEX(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic <= nvec ) THEN ! nc = min( nc, nvec - ic + 1 ) ! beta = ZERO DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vl(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ONE, & psi(1,1,ir), kdmx, vl, nx, beta, evc(1,1,ic), kdmx ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ONE, & psi(1,1,ir), kdmx, vtmp, nx, beta, evc(1,1,ic), kdmx ) END IF ! beta = ONE END DO ! END IF ! END DO ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE refresh_evc ! ! SUBROUTINE refresh_spsi( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root COMPLEX(DP), ALLOCATABLE :: vtmp( :, : ) COMPLEX(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic <= nvec ) THEN ! nc = min( nc, nvec - ic + 1 ) ! beta = ZERO ! DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vl(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ONE, & spsi(1,1,ir), kdmx, vl, nx, beta, psi(1,1,nvec+ic), kdmx ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ONE, & spsi(1,1,ir), kdmx, vtmp, nx, beta, psi(1,1,nvec+ic), kdmx ) END IF ! beta = ONE END DO ! END IF ! END DO ! spsi(:,:,1:nvec) = psi(:,:,nvec+1:nvec+nvec) ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE refresh_spsi ! ! ! SUBROUTINE refresh_hpsi( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root COMPLEX(DP), ALLOCATABLE :: vtmp( :, : ) COMPLEX(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic <= nvec ) THEN ! nc = min( nc, nvec - ic + 1 ) ! beta = ZERO ! DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vl(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ONE, & hpsi(1,1,ir), kdmx, vl, nx, beta, psi(1,1,nvec+ic), kdmx ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL ZGEMM( 'N', 'N', kdim, nc, nr, ONE, & hpsi(1,1,ir), kdmx, vtmp, nx, beta, psi(1,1,nvec+ic), kdmx ) END IF ! beta = ONE END DO ! END IF ! END DO ! DEALLOCATE( vtmp ) hpsi(:,:,1:nvec) = psi(:,:,nvec+1:nvec+nvec) RETURN END SUBROUTINE refresh_hpsi ! ! SUBROUTINE compute_distmat( dm, v, w ) ! ! This subroutine compute and store the ! result in distributed matrix dm ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root COMPLEX(DP), INTENT(OUT) :: dm( :, : ) COMPLEX(DP) :: v(:,:,:), w(:,:,:) COMPLEX(DP), ALLOCATABLE :: work( :, : ) ! ALLOCATE( work( nx, nx ) ) ! work = ZERO ! ! Only upper triangle is computed, then the matrix is hermitianized ! DO ipc = 1, desc%npc ! loop on column procs ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! DO ipr = 1, ipc ! desc%npr ! ipc ! use symmetry for the loop on row procs ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! ! rank of the processor for which this block (ipr,ipc) is destinated ! root = rank_ip( ipr, ipc ) ! use blas subs. on the matrix block CALL ZGEMM( 'C', 'N', nr, nc, kdim, ONE , & v(1,1,ir), kdmx, w(1,1,ic), kdmx, ZERO, work, nx ) ! accumulate result on dm of root proc. CALL mp_root_sum( work, dm, root, intra_bgrp_comm ) END DO ! END DO ! ! The matrix is hermitianized using upper triangle ! CALL zsqmher( nbase, dm, nx, desc ) ! DEALLOCATE( work ) ! RETURN END SUBROUTINE compute_distmat ! ! SUBROUTINE update_distmat( dm, v, w ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root, icc, ii COMPLEX(DP) :: dm( :, : ) COMPLEX(DP) :: v(:,:,:), w(:,:,:) COMPLEX(DP), ALLOCATABLE :: vtmp( :, : ) ALLOCATE( vtmp( nx, nx ) ) ! vtmp = ZERO ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic+nc-1 >= nb1 ) THEN nc = MIN( nc, ic+nc-1 - nb1 + 1 ) IF( ic >= nb1 ) THEN ii = ic icc = 1 ELSE ii = nb1 icc = nb1-ic+1 END IF DO ipr = 1, ipc ! desc%npr use symmetry ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) CALL ZGEMM( 'C', 'N', nr, nc, kdim, ONE, v( 1, 1, ir ), & kdmx, w(1,1,ii), kdmx, ZERO, vtmp, nx ) ! IF( (desc%active_node > 0) .AND. (ipr-1 == desc%myr) .AND. (ipc-1 == desc%myc) ) THEN CALL mp_root_sum( vtmp(:,1:nc), dm(:,icc:icc+nc-1), root, intra_bgrp_comm ) ELSE CALL mp_root_sum( vtmp(:,1:nc), dm, root, intra_bgrp_comm ) END IF END DO ! END IF ! END DO ! CALL zsqmher( nbase+notcnv, dm, nx, desc ) ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE update_distmat ! ! ! SUBROUTINE set_e_from_h() INTEGER :: nc, ic, i e(1:nbase) = 0_DP IF( desc%myc == desc%myr .AND. la_proc ) THEN nc = desc%nc ic = desc%ic DO i = 1, nc e( i + ic - 1 ) = REAL( hl( i, i ) ) END DO END IF CALL mp_sum( e(1:nbase), intra_bgrp_comm ) RETURN END SUBROUTINE set_e_from_h ! SUBROUTINE set_h_from_e() INTEGER :: nc, ic, i IF( la_proc ) THEN hl = ZERO IF( desc%myc == desc%myr ) THEN nc = desc%nc ic = desc%ic DO i = 1, nc hl(i,i) = CMPLX( e( i + ic - 1 ), 0_DP ,kind=DP) END DO END IF END IF RETURN END SUBROUTINE set_h_from_e ! END SUBROUTINE pcegterg espresso-5.1/PW/src/rho2zeta.f900000644000175000017500000000437712341373025014510 0ustar mbamba! ! Copyright (C) 2001-2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE rho2zeta( rho, rho_core, nrxx, nspin, iop ) !--------------------------------------------------------------------------- ! ! ... if ( iopi == 1 ) transform the spin up spin down charge density ! ... rho(*,is) into : ! ! ... rho(*,1) = ( rho_up + rho_dw ) and ! ... rho(*,2) = ( rho_up - rho_dw ) / rho_tot = zeta ! ! ... if ( iopi == -1) do the opposit transformation ! USE constants, ONLY : eps32 USE io_global, ONLY : stdout USE kinds, ONLY : DP ! IMPLICIT NONE ! INTEGER :: iop, nspin, nrxx, ir ! the input option ! the number of spin polarizations ! the fft grid dimension ! the counter for fft grid REAL(DP) :: rho(nrxx,nspin), rho_core(nrxx), & rho_up, rho_dw, zeta, rhox ! the scf charge density ! the core charge density ! auxiliary variable for rho up ! auxiliary variable for rho dw ! auxiliary variable for zeta ! auxiliary variable for total rho ! ! IF ( nspin == 1 ) RETURN ! IF ( iop == 1 ) THEN ! DO ir = 1, nrxx ! rhox = rho(ir,1) + rho(ir,2) + rho_core(ir) ! IF ( rhox > eps32 ) THEN ! zeta = ( rho(ir,1) - rho(ir,2) ) / rhox ! ELSE ! zeta = 0.D0 ! END IF ! rho(ir,1) = rho(ir,1) + rho(ir,2) rho(ir,2) = zeta ! END DO ! ELSE IF ( iop == - 1 ) THEN ! DO ir = 1, nrxx ! rhox = rho(ir,1) + rho_core(ir) ! rho_up = 0.5D0 * ( rho(ir,1) + rho(ir,2) * rhox ) rho_dw = 0.5D0 * ( rho(ir,1) - rho(ir,2) * rhox ) ! rho(ir,1) = rho_up rho(ir,2) = rho_dw ! END DO ! ELSE ! WRITE( stdout , '(5X,"iop = ",I5)' ) iop ! CALL errore( 'mag2zeta', 'wrong iop', 1 ) ! END IF ! RETURN ! END SUBROUTINE rho2zeta espresso-5.1/PW/src/setup.f900000644000175000017500000005070312341373025014104 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE setup() !---------------------------------------------------------------------------- ! ! ... This routine is called at the beginning of the calculation and ! ... 1) determines various parameters of the calculation: ! ... zv charge of each atomic type ! ... nelec total number of electrons (if not given in input) ! ... nbnd total number of bands (if not given in input) ! ... nbndx max number of bands used in iterative diagonalization ! ... tpiba 2 pi / a (a = lattice parameter) ! ... tpiba2 square of tpiba ! ... gcutm cut-off in g space for charge/potentials ! ... gcutms cut-off in g space for smooth charge ! ... ethr convergence threshold for iterative diagonalization ! ... 2) finds actual crystal symmetry: ! ... s symmetry matrices in the direct lattice vectors basis ! ... nsym number of crystal symmetry operations ! ... nrot number of lattice symmetry operations ! ... ft fractionary translations ! ... irt for each atom gives the corresponding symmetric ! ... invsym if true the system has inversion symmetry ! ... 3) generates k-points corresponding to the actual crystal symmetry ! ... 4) calculates various quantities used in magnetic, spin-orbit, PAW ! ... electric-field, LDA+U calculations, and for parallelism ! USE kinds, ONLY : DP USE constants, ONLY : eps8, rytoev USE parameters, ONLY : npk USE io_global, ONLY : stdout USE io_files, ONLY : tmp_dir, prefix, xmlpun, delete_if_present USE constants, ONLY : pi, degspin USE cell_base, ONLY : at, bg, alat, tpiba, tpiba2, ibrav, omega USE ions_base, ONLY : nat, tau, ntyp => nsp, ityp, zv USE basis, ONLY : starting_pot, natomwfc USE gvect, ONLY : gcutm USE fft_base, ONLY : dfftp USE fft_base, ONLY : dffts USE grid_subroutines, ONLY : realspace_grids_init USE gvecs, ONLY : doublegrid, gcutms, dual USE klist, ONLY : xk, wk, nks, nelec, degauss, lgauss, & lxkcry, nkstot, & nelup, neldw, two_fermi_energies, & tot_charge, tot_magnetization USE lsda_mod, ONLY : lsda, nspin, current_spin, isk, & starting_magnetization USE ener, ONLY : ef USE electrons_base, ONLY : set_nelup_neldw USE start_k, ONLY : nks_start, xk_start, wk_start, & nk1, nk2, nk3, k1, k2, k3 USE ktetra, ONLY : tetra, ntetra, ltetra USE symm_base, ONLY : s, t_rev, irt, nrot, nsym, invsym, nosym, & d1,d2,d3, time_reversal, sname, set_sym_bl, & find_sym, inverse_s, no_t_rev USE wvfct, ONLY : nbnd, nbndx, ecutwfc USE control_flags, ONLY : tr2, ethr, lscf, lmd, david, lecrpa, & isolve, niter, noinv, ts_vdw, & lbands, use_para_diag, gamma_only USE cellmd, ONLY : calc USE uspp_param, ONLY : upf, n_atom_wfc USE uspp, ONLY : okvan USE ldaU, ONLY : lda_plus_u, init_lda_plus_u USE bp, ONLY : gdir, lberry, nppstr, lelfield, lorbm, nx_el, nppstr_3d,l3dstring, efield, lcalc_z2 USE fixed_occ, ONLY : f_inp, tfixed_occ, one_atom_occupations USE funct, ONLY : set_dft_from_name USE mp_pools, ONLY : kunit USE spin_orb, ONLY : lspinorb, domag USE noncollin_module, ONLY : noncolin, npol, m_loc, i_cons, & angle1, angle2, bfield, ux, nspin_lsda, & nspin_gga, nspin_mag USE pw_restart, ONLY : pw_readfile USE exx, ONLY : exx_grid_init, exx_div_check USE funct, ONLY : dft_is_meta, dft_is_hybrid, dft_is_gradient USE paw_variables, ONLY : okpaw USE cellmd, ONLY : lmovecell ! IMPLICIT NONE ! INTEGER :: na, is, ierr, ibnd, ik LOGICAL :: magnetic_sym, skip_equivalence=.FALSE. REAL(DP) :: iocc, ionic_charge, one ! LOGICAL, EXTERNAL :: check_para_diag ! ! ... okvan/okpaw = .TRUE. : at least one pseudopotential is US/PAW ! okvan = ANY( upf(:)%tvanp ) okpaw = ANY( upf(1:ntyp)%tpawp ) ! ! ... check for features not implemented with US-PP or PAW ! IF ( okvan .OR. okpaw ) THEN IF ( dft_is_meta() ) CALL errore( 'setup', & 'US/PAW and Meta-GGA not yet implemented', 1 ) IF ( noncolin .AND. lberry) CALL errore( 'iosys', & 'Noncolinear Berry Phase/electric not implemented with USPP', 1 ) IF (ts_vdw ) CALL errore ('iosys',& 'Tkatchenko-Scheffler not implemented with USPP',1) END IF IF ( dft_is_hybrid() ) THEN IF (.NOT. lscf) CALL errore( 'setup ', & 'HYBRID XC not allowed in non-scf calculations', 1 ) IF ( ANY (upf(1:ntyp)%nlcc) ) CALL infomsg( 'setup ', 'BEWARE:' // & & ' nonlinear core correction is not consistent with hybrid XC') IF (lmovecell) CALL errore('setup','Variable cell and EXX not tested!',1) IF (noncolin) no_t_rev=.true. END IF ! ! ... Compute the ionic charge for each atom type and the total ionic charge ! zv(1:ntyp) = upf(1:ntyp)%zp ! #if defined (__PGI) ionic_charge = 0._DP DO na = 1, nat ionic_charge = ionic_charge + zv( ityp(na) ) END DO #else ionic_charge = SUM( zv(ityp(1:nat)) ) #endif ! ! ... set the number of electrons ! nelec = ionic_charge - tot_charge ! ! ... magnetism-related quantities ! ALLOCATE( m_loc( 3, nat ) ) ! time reversal operation is set up to 0 by default t_rev = 0 IF ( noncolin ) THEN ! ! gamma_only and noncollinear not allowed ! if (gamma_only) call errore('setup', & 'gamma_only and noncolin not allowed',1) ! ! ... wavefunctions are spinors with 2 components ! npol = 2 ! ! ... Set the domag variable to make a spin-orbit calculation with zero ! ... magnetization ! IF ( lspinorb ) THEN ! domag = ANY ( ABS( starting_magnetization(1:ntyp) ) > 1.D-6 ) ! ELSE ! domag = .TRUE. ! END IF ! DO na = 1, nat ! m_loc(1,na) = starting_magnetization(ityp(na)) * & SIN( angle1(ityp(na)) ) * COS( angle2(ityp(na)) ) m_loc(2,na) = starting_magnetization(ityp(na)) * & SIN( angle1(ityp(na)) ) * SIN( angle2(ityp(na)) ) m_loc(3,na) = starting_magnetization(ityp(na)) * & COS( angle1(ityp(na)) ) END DO ! ! initialize the quantization direction for gga ! ux=0.0_DP if (dft_is_gradient()) call compute_ux(m_loc,ux,nat) ! ELSE ! ! ... wavefunctions are scalars ! IF (lspinorb) CALL errore( 'setup ', & 'spin orbit requires a non collinear calculation', 1 ) npol = 1 ! ! IF ( i_cons == 1) then do na=1,nat m_loc(1,na) = starting_magnetization(ityp(na)) end do end if IF ( i_cons /= 0 .AND. nspin ==1) & CALL errore( 'setup', 'this i_cons requires a magnetic calculation ', 1 ) IF ( i_cons /= 0 .AND. i_cons /= 1 ) & CALL errore( 'setup', 'this i_cons requires a non colinear run', 1 ) END IF ! ! Set the different spin indices ! nspin_mag = nspin nspin_lsda = nspin nspin_gga = nspin IF (nspin==4) THEN nspin_lsda=1 IF (domag) THEN nspin_gga=2 ELSE nspin_gga=1 nspin_mag=1 ENDIF ENDIF ! ! ... if this is not a spin-orbit calculation, all spin-orbit pseudopotentials ! ... are transformed into standard pseudopotentials ! IF ( lspinorb .AND. ALL ( .NOT. upf(:)%has_so ) ) & CALL infomsg ('setup','At least one non s.o. pseudo') ! IF ( .NOT. lspinorb ) CALL average_pp ( ntyp ) ! ! ... If the occupations are from input, check the consistency with the ! ... number of electrons ! IF ( tfixed_occ ) THEN ! iocc = 0 ! DO is = 1, nspin_lsda ! #if defined (__PGI) DO ibnd = 1, nbnd iocc = iocc + f_inp(ibnd,is) END DO #else iocc = iocc + SUM( f_inp(1:nbnd,is) ) #endif ! DO ibnd = 1, nbnd if (f_inp(ibnd,is) > 2.d0/nspin_lsda .or. f_inp(ibnd,is) < 0.d0) & call errore('setup','wrong fixed occupations',is) END DO END DO ! IF ( ABS( iocc - nelec ) > 1D-5 ) & CALL errore( 'setup', 'strange occupations: '//& 'number of electrons from occupations is wrong.', 1 ) ! END IF ! ! ... Check: if there is an odd number of electrons, the crystal is a metal ! IF ( lscf .AND. ABS( NINT( nelec / 2.D0 ) - nelec / 2.D0 ) > eps8 & .AND. .NOT. lgauss .AND. .NOT. ltetra .AND. .NOT. tfixed_occ ) & CALL infomsg( 'setup', 'the system is metallic, specify occupations' ) ! ! ... Check: spin-polarized calculations require either broadening or ! fixed occupation ! IF ( lscf .AND. lsda & .AND. .NOT. lgauss .AND. .NOT. ltetra & .AND. .NOT. tfixed_occ .AND. .NOT. two_fermi_energies ) & CALL errore( 'setup', 'spin-polarized system, specify occupations', 1 ) ! ! ... setting nelup/neldw ! call set_nelup_neldw ( tot_magnetization, nelec, nelup, neldw ) ! ! ... Set the number of occupied bands if not given in input ! IF ( nbnd == 0 ) THEN ! IF (nat==0) CALL errore('setup','free electrons: nbnd required in input',1) ! nbnd = MAX ( NINT( nelec / degspin ), NINT(nelup), NINT(neldw) ) ! IF ( lgauss .OR. ltetra ) THEN ! ! ... metallic case: add 20% more bands, with a minimum of 4 ! nbnd = MAX( NINT( 1.2D0 * nelec / degspin ), & NINT( 1.2D0 * nelup), NINT( 1.2d0 * neldw ), & ( nbnd + 4 ) ) ! END IF ! ! ... In the case of noncollinear magnetism, bands are NOT ! ... twofold degenerate : ! IF ( noncolin ) nbnd = INT( degspin ) * nbnd ! ELSE ! IF ( nbnd < NINT( nelec / degspin ) .AND. lscf ) & CALL errore( 'setup', 'too few bands', 1 ) ! IF ( nbnd < NINT( nelup ) .AND. lscf ) & CALL errore( 'setup', 'too few spin up bands', 1 ) IF ( nbnd < NINT( neldw ) .AND. lscf ) & CALL errore( 'setup', 'too few spin dw bands', 1 ) ! IF ( nbnd < NINT( nelec ) .AND. lscf .AND. noncolin ) & CALL errore( 'setup', 'too few bands', 1 ) ! END IF ! ! ... Here we set the precision of the diagonalization for the first scf ! ... iteration of for the first ionic step ! ... for subsequent steps ethr is automatically updated in electrons ! IF ( nat==0 ) THEN ethr=1.0D-8 ELSE IF ( .NOT. lscf ) THEN ! IF ( ethr == 0.D0 ) ethr = 0.1D0 * MIN( 1.D-2, tr2 / nelec ) ! ELSE ! IF ( ethr == 0.D0 ) THEN ! IF ( starting_pot == 'file' ) THEN ! ! ... if you think that the starting potential is good ! ... do not spoil it with a lousy first diagonalization : ! ... set a strict ethr in the input file (diago_thr_init) ! ethr = 1.D-5 ! ELSE ! ! ... starting atomic potential is probably far from scf ! ... do not waste iterations in the first diagonalizations ! ethr = 1.0D-2 ! END IF ! END IF ! END IF ! IF ( .NOT. lscf ) niter = 1 ! ! ... set number of atomic wavefunctions ! natomwfc = n_atom_wfc( nat, ityp, noncolin ) ! ! ... set the max number of bands used in iterative diagonalization ! nbndx = nbnd IF ( isolve == 0 ) nbndx = david * nbnd ! #ifdef __MPI use_para_diag = check_para_diag( nbnd ) #else use_para_diag = .FALSE. #endif ! ! ... Set the units in real and reciprocal space ! tpiba = 2.D0 * pi / alat tpiba2 = tpiba**2 ! ! ... Compute the cut-off of the G vectors ! doublegrid = ( dual > 4.D0 ) IF ( doublegrid .AND. (.NOT.okvan .AND. .not.okpaw) ) & CALL infomsg ( 'setup', 'no reason to have ecutrho>4*ecutwfc' ) gcutm = dual * ecutwfc / tpiba2 ! IF ( doublegrid ) THEN ! gcutms = 4.D0 * ecutwfc / tpiba2 ! ELSE ! gcutms = gcutm ! END IF ! ! ... Test that atoms do not overlap ! call check_atoms ( nat, tau, bg ) ! ! ... calculate dimensions of the FFT grid ! CALL realspace_grids_init ( dfftp, dffts, at, bg, gcutm, gcutms ) ! ! ... generate transformation matrices for the crystal point group ! ... First we generate all the symmetry matrices of the Bravais lattice ! call set_sym_bl ( ) ! ! ... If lecrpa is true, nosym must be set to true also ! IF ( lecrpa ) nosym = .TRUE. IF ( lecrpa ) skip_equivalence=.TRUE. ! ! ... If nosym is true do not use any point-group symmetry ! IF ( nosym ) nrot = 1 ! ! ... time_reversal = use q=>-q symmetry for k-point generation ! magnetic_sym = noncolin .AND. domag time_reversal = .NOT. noinv .AND. .NOT. magnetic_sym ! ! ... Automatic generation of k-points (if required) ! IF ( nks_start == 0 ) THEN ! IF (lelfield .OR. lorbm) THEN ! CALL kpoint_grid_efield (at,bg, npk, & k1,k2,k3, nk1,nk2,nk3, nkstot, xk, wk, nspin) nosym = .TRUE. nrot = 1 nsym = 1 ! ELSE IF (lberry .OR. lcalc_z2) THEN ! CALL kp_strings( nppstr, gdir, nrot, s, bg, npk, & k1, k2, k3, nk1, nk2, nk3, nkstot, xk, wk ) nosym = .TRUE. nrot = 1 nsym = 1 ! ELSE ! CALL kpoint_grid ( nrot, time_reversal, skip_equivalence, s, t_rev, bg,& npk, k1,k2,k3, nk1,nk2,nk3, nkstot, xk, wk) ! END IF ! ELSE nkstot = nks_start xk(:,1:nkstot) = xk_start(:,1:nks_start) wk(1:nkstot) = wk_start(1:nks_start) ! IF( lelfield) THEN ! IF(noncolin) THEN allocate(nx_el(nkstot,3)) ELSE allocate(nx_el(nkstot*nspin,3)) END IF ! IF ( gdir<1 .OR. gdir>3 ) CALL errore('setup','invalid gdir value'& &' (valid values: 1=x, 2=y, 3=z)',10) ! DO ik=1,nkstot nx_el(ik,gdir)=ik END DO ! sanity check (when nkstot==1 we /could/ just set nppstr=1): IF(nppstr==0) CALL errore('setup', 'When lefield is true and kpoint are '& &'specified manually you MUST set nppstr',1) if(nspin==2) nx_el(nkstot+1:2*nkstot,:) = nx_el(1:nkstot,:) + nkstot nppstr_3d(gdir)=nppstr l3dstring=.false. nosym = .TRUE. nrot = 1 nsym = 1 ! END IF END IF ! IF ( nat==0 ) THEN ! nsym=nrot invsym=.true. CALL inverse_s ( ) ! ELSE ! ! ... eliminate rotations that are not symmetry operations ! CALL find_sym ( nat, tau, ityp, dfftp%nr1, dfftp%nr2, dfftp%nr3, & magnetic_sym, m_loc ) ! END IF ! ! ... Input k-points are assumed to be given in the IBZ of the Bravais ! ... lattice, with the full point symmetry of the lattice. ! ... If some symmetries of the lattice are missing in the crystal, ! ... "irreducible_BZ" computes the missing k-points. ! IF ( .NOT. lbands ) THEN CALL irreducible_BZ (nrot, s, nsym, time_reversal, & magnetic_sym, at, bg, npk, nkstot, xk, wk, t_rev) ELSE one = SUM (wk(1:nkstot)) IF ( one > 0.0_dp ) wk(1:nkstot) = wk(1:nkstot) / one END IF ! ! ... if dynamics is done the system should have no symmetries ! ... (inversion symmetry alone is allowed) ! IF ( lmd .AND. ( nsym == 2 .AND. .NOT. invsym .OR. nsym > 2 ) & .AND. .NOT. ( calc == 'mm' .OR. calc == 'nm' ) ) & CALL infomsg( 'setup', 'Dynamics, you should have no symmetries' ) ! ntetra = 0 ! IF ( lbands ) THEN ! ! ... if calculating bands, we read the Fermi energy ! CALL pw_readfile( 'reset', ierr ) CALL pw_readfile( 'ef', ierr ) CALL errore( 'setup ', 'problem reading ef from file ' // & & TRIM( tmp_dir ) // TRIM( prefix ) // '.save', ierr ) ! ELSE IF ( ltetra ) THEN ! ! ... Calculate quantities used in tetrahedra method ! ntetra = 6 * nk1 * nk2 * nk3 ! ALLOCATE( tetra( 4, ntetra ) ) ! CALL tetrahedra( nsym, s, time_reversal, t_rev, at, bg, npk, k1, k2, k3, & nk1, nk2, nk3, nkstot, xk, wk, ntetra, tetra ) ! END IF ! ! IF ( lsda ) THEN ! ! ... LSDA case: two different spin polarizations, ! ... each with its own kpoints ! if (nspin /= 2) call errore ('setup','nspin should be 2; check iosys',1) ! CALL set_kup_and_kdw( xk, wk, isk, nkstot, npk ) ! ELSE IF ( noncolin ) THEN ! ! ... noncolinear magnetism: potential and charge have dimension 4 (1+3) ! if (nspin /= 4) call errore ('setup','nspin should be 4; check iosys',1) current_spin = 1 isk(:) = 1 ! ELSE ! ! ... LDA case: the two spin polarizations are identical ! wk(1:nkstot) = wk(1:nkstot) * degspin current_spin = 1 isk(:) = 1 ! IF ( nspin /= 1 ) & CALL errore( 'setup', 'nspin should be 1; check iosys', 1 ) ! END IF ! IF ( nkstot > npk ) CALL errore( 'setup', 'too many k points', nkstot ) ! #ifdef __MPI ! ! ! ... distribute k-points (and their weights and spin indices) ! kunit = 1 CALL divide_et_impera( xk, wk, isk, lsda, nkstot, nks ) ! #else ! nks = nkstot ! #endif IF ( dft_is_hybrid() ) THEN CALL exx_grid_init() CALL exx_div_check() ENDIF IF (one_atom_occupations) THEN DO ik=1,nkstot DO ibnd=natomwfc+1, nbnd IF (f_inp(ibnd,ik)> 0.0_DP) CALL errore('setup', & 'no atomic wavefunction for some band',1) ENDDO ENDDO ENDIF ! ! ... Set up Hubbard parameters for LDA+U calculation ! CALL init_lda_plus_u ( upf(1:ntyp)%psd, noncolin ) ! ! ... initialize d1 and d2 to rotate the spherical harmonics ! IF (lda_plus_u .or. okpaw ) CALL d_matrix( d1, d2, d3 ) ! RETURN ! END SUBROUTINE setup ! !---------------------------------------------------------------------------- LOGICAL FUNCTION check_para_diag( nbnd ) ! USE io_global, ONLY : stdout, ionode, ionode_id USE mp_diag, ONLY : np_ortho USE control_flags, ONLY : gamma_only IMPLICIT NONE INTEGER, INTENT(IN) :: nbnd LOGICAL, SAVE :: first = .TRUE. LOGICAL, SAVE :: saved_value = .FALSE. IF( .NOT. first ) then check_para_diag = saved_value RETURN end if first = .FALSE. ! IF( np_ortho(1) > nbnd ) & CALL errore ('check_para_diag', 'Too few bands for required ndiag',nbnd) ! check_para_diag = ( np_ortho( 1 ) > 1 .AND. np_ortho( 2 ) > 1 ) saved_value = check_para_diag ! IF ( ionode ) THEN ! WRITE( stdout, '(/,5X,"Subspace diagonalization in iterative solution ",& & "of the eigenvalue problem:")' ) IF ( check_para_diag ) THEN #if defined(__ELPA) WRITE( stdout, '(5X,"ELPA distributed-memory algorithm ", & & "(size of sub-group: ", I2, "*", I3, " procs)",/)') & np_ortho(1), np_ortho(2) #elif defined(__SCALAPACK) WRITE( stdout, '(5X,"scalapack distributed-memory algorithm ", & & "(size of sub-group: ", I2, "*", I3, " procs)",/)') & np_ortho(1), np_ortho(2) #else WRITE( stdout, '(5X,"custom distributed-memory algorithm ", & & "(size of sub-group: ", I2, "*", I3, " procs)",/)') & np_ortho(1), np_ortho(2) #endif ELSE WRITE( stdout, '(5X,"a serial algorithm will be used",/)' ) END IF ! END IF ! RETURN END FUNCTION check_para_diag espresso-5.1/PW/src/offset_atom_wfc.f900000644000175000017500000000563012341373025016110 0ustar mbamba! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! SUBROUTINE offset_atom_wfc( Hubbard_only, offset, counter ) !---------------------------------------------------------------------------- ! ! For each Hubbard atom, compute the index of the projector in the list of ! atomic wavefunctions. IMPORTANT NOTICE: if there is more than one state ! with the chosen value of Hubbard_l, the one selected for U calculation is ! the last state with the given l, but with strictly positive occupation, ! If Hubbard_only=.true., find offsets with respect to the array of atomic ! wavefunctions including only those with a Hubbard U term (wfcU in ldaU.f90) ! USE uspp_param, ONLY : upf USE noncollin_module, ONLY : noncolin USE ions_base, ONLY : nat, ityp USE ldaU, ONLY : Hubbard_l, Hubbard_U, Hubbard_alpha IMPLICIT NONE ! LOGICAL, INTENT(IN) :: Hubbard_only INTEGER, INTENT(OUT) :: offset(nat), counter ! INTEGER :: na, nt, n, l LOGICAL :: hubbard_wfc ! ! counter = 0 offset(:) = -99 ! DO na = 1, nat ! nt = ityp(na) ! DO n = 1, upf(nt)%nwfc ! IF ( upf(nt)%oc(n) >= 0.D0 ) THEN ! l = upf(nt)%lchi(n) hubbard_wfc = ( upf(nt)%oc(n)>0.D0 .AND. l == Hubbard_l(nt) ) ! IF ( noncolin ) THEN ! IF ( upf(nt)%has_so ) THEN ! ! offset to be set at the first occurrence of required l IF (hubbard_wfc .AND. offset(na).eq.-99 ) offset(na) = counter ! IF (hubbard_wfc .OR. .NOT. hubbard_only) THEN ! j = l-1/2, degeneracy 2l counter = counter + 2*l ! j = l+1/2, degeneracy 2*l+2 IF (ABS( upf(nt)%jchi(n)-l-0.5D0 ) < 1.D-6) & counter = counter + 2 END IF ! ELSE ! IF (hubbard_wfc) offset(na) = counter ! IF (hubbard_wfc .OR. .NOT. hubbard_only) THEN counter = counter + 2*( 2*l + 1 ) END IF ! END IF ! ELSE ! IF (hubbard_wfc) offset(na) = counter ! IF (hubbard_wfc .OR. .NOT. hubbard_only) THEN counter = counter + 2*l + 1 END IF ! END IF END IF END DO IF ( (Hubbard_U(nt).NE.0.D0 .OR. Hubbard_alpha(nt).NE.0.D0 ) .AND. & offset(na) < 0 ) CALL errore('offset_atom_wfc', 'wrong offset', na) END DO ! RETURN ! END SUBROUTINE offset_atom_wfc ! espresso-5.1/PW/src/input.f900000644000175000017500000014174712341373025014114 0ustar mbamba ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE iosys() !----------------------------------------------------------------------------- ! ! ... Copy data read from input file (in subroutine "read_input_file") and ! ... stored in modules input_parameters into internal modules ! ... Note that many variables in internal modules, having the same name as ! ... those in input_parameters, are locally renamed by adding a "_" ! USE kinds, ONLY : DP USE funct, ONLY : dft_has_finite_size_correction, & set_finite_size_volume, get_inlc USE funct, ONLY: set_exx_fraction, set_screening_parameter USE control_flags, ONLY: adapt_thr, tr2_init, tr2_multi USE constants, ONLY : autoev, eV_to_kelvin, pi, rytoev, & ry_kbar, amu_ry, bohr_radius_angs, eps8 USE mp_pools, ONLY : npool ! USE io_global, ONLY : stdout, ionode, ionode_id ! USE kernel_table, ONLY : initialize_kernel_table ! USE bp, ONLY : nppstr_ => nppstr, & gdir_ => gdir, & lberry_ => lberry, & lcalc_z2_ => lcalc_z2, & z2_m_threshold_ => z2_m_threshold, & z2_z_threshold_ => z2_z_threshold, & lelfield_ => lelfield, & lorbm_ => lorbm, & efield_ => efield, & nberrycyc_ => nberrycyc, & efield_cart_ => efield_cart ! USE cell_base, ONLY : at, alat, omega, & cell_base_init, init_dofree ! USE ions_base, ONLY : if_pos, ityp, tau, extfor, & ntyp_ => nsp, & nat_ => nat, & amass, tau_format ! USE basis, ONLY : startingconfig, starting_wfc, starting_pot ! USE run_info, ONLY : title_ => title ! USE cellmd, ONLY : cmass, omega_old, at_old, ntcheck, & cell_factor_ => cell_factor , & press_ => press, & calc, lmovecell ! USE dynamics_module, ONLY : control_temp, temperature, thermostat, & dt_ => dt, & delta_t_ => delta_t, & nraise_ => nraise, & refold_pos_ => refold_pos ! USE extfield, ONLY : tefield_ => tefield, & dipfield_ => dipfield, & edir_ => edir, & emaxpos_ => emaxpos, & eopreg_ => eopreg, & eamp_ => eamp, & forcefield ! USE io_files, ONLY : input_drho, output_drho, & psfile, tmp_dir, wfc_dir, & prefix_ => prefix, & pseudo_dir_ => pseudo_dir ! USE force_mod, ONLY : lforce, lstres, force ! USE gvecs, ONLY : dual USE gvect, ONLY : ecutrho_ => ecutrho ! USE fft_base, ONLY : dfftp USE fft_base, ONLY : dffts ! USE klist, ONLY : lgauss, ngauss, two_fermi_energies, & smearing_ => smearing, & degauss_ => degauss, & tot_charge_ => tot_charge, & tot_magnetization_ => tot_magnetization ! USE ktetra, ONLY : ltetra USE start_k, ONLY : init_start_k ! USE ldaU, ONLY : Hubbard_U_ => hubbard_u, & Hubbard_J0_ => hubbard_j0, & Hubbard_J_ => hubbard_j, & Hubbard_alpha_ => hubbard_alpha, & Hubbard_beta_ => hubbard_beta, & lda_plus_u_ => lda_plus_u, & lda_plus_u_kind_ => lda_plus_u_kind, & niter_with_fixed_ns, starting_ns, U_projection ! USE martyna_tuckerman, ONLY: do_comp_mt ! USE esm, ONLY: do_comp_esm, & esm_bc_ => esm_bc, & esm_nfit_ => esm_nfit, & esm_efield_ => esm_efield, & esm_w_ => esm_w ! USE a2F, ONLY : la2F_ => la2F ! USE exx, ONLY : x_gamma_extrapolation_ => x_gamma_extrapolation, & nqx1_ => nq1, & nqx2_ => nq2, & nqx3_ => nq3, & exxdiv_treatment_ => exxdiv_treatment, & yukawa_ => yukawa, & ecutvcut_ => ecutvcut, & ecutfock_ => ecutfock ! ! USE lsda_mod, ONLY : nspin_ => nspin, & starting_magnetization_ => starting_magnetization, & lsda ! USE kernel_table, ONLY : vdw_table_name_ => vdw_table_name ! USE relax, ONLY : epse, epsf, epsp, starting_scf_threshold ! USE control_flags, ONLY : isolve, max_cg_iter, david, tr2, imix, gamma_only,& nmix, iverbosity, niter, pot_order, wfc_order, & remove_rigid_rot_ => remove_rigid_rot, & diago_full_acc_ => diago_full_acc, & tolp_ => tolp, & upscale_ => upscale, & mixing_beta_ => mixing_beta, & nstep_ => nstep, & iprint_ => iprint, & noinv_ => noinv, & lkpoint_dir_ => lkpoint_dir, & tqr_ => tqr, & io_level, ethr, lscf, lbfgs, lmd, & ldamped, lbands, llang, use_SMC, & lconstrain, restart, twfcollect, & llondon, do_makov_payne, lxdm, & ts_vdw_ => ts_vdw, & lecrpa_ => lecrpa, & smallmem USE control_flags, ONLY: scf_must_converge_ => scf_must_converge ! USE wvfct, ONLY : nbnd_ => nbnd, & ecutwfc_ => ecutwfc, & ecfixed_ => ecfixed, & qcutz_ => qcutz, & q2sigma_ => q2sigma ! USE fixed_occ, ONLY : tfixed_occ, f_inp, & one_atom_occupations_ => one_atom_occupations ! USE noncollin_module, ONLY : i_cons, mcons, bfield, & noncolin_ => noncolin, & lambda_ => lambda, & angle1_ => angle1, & angle2_ => angle2, & report_ => report ! USE spin_orb, ONLY : lspinorb_ => lspinorb, & starting_spin_angle_ => starting_spin_angle ! USE symm_base, ONLY : no_t_rev_ => no_t_rev, nofrac, allfrac, & nosym_ => nosym, nosym_evc_=> nosym_evc ! USE bfgs_module, ONLY : bfgs_ndim_ => bfgs_ndim, & trust_radius_max_ => trust_radius_max, & trust_radius_min_ => trust_radius_min, & trust_radius_ini_ => trust_radius_ini, & w_1_ => w_1, & w_2_ => w_2 USE wannier_new, ONLY : use_wannier_ => use_wannier, & use_energy_int_ => use_energy_int, & nwan_ => nwan, & print_wannier_coeff_ => print_wannier_coeff USE realus, ONLY : real_space_ => real_space USE read_pseudo_mod, ONLY : readpp USE qmmm, ONLY : qmmm_config ! ! ... CONTROL namelist ! USE input_parameters, ONLY : title, calculation, verbosity, restart_mode, & nstep, iprint, tstress, tprnfor, dt, outdir, & wfcdir, prefix, etot_conv_thr, forc_conv_thr, & pseudo_dir, disk_io, tefield, dipfield, lberry, & gdir, nppstr, wf_collect,lelfield,lorbm,efield, & nberrycyc, lkpoint_dir, efield_cart, lecrpa, & vdw_table_name, memory, tqmmm, & lcalc_z2, z2_m_threshold, z2_z_threshold ! ! ... SYSTEM namelist ! USE input_parameters, ONLY : ibrav, celldm, a, b, c, cosab, cosac, cosbc, & nat, ntyp, nbnd,tot_charge,tot_magnetization,& ecutwfc, ecutrho, nr1, nr2, nr3, nr1s, nr2s, & nr3s, noinv, nosym, nosym_evc, no_t_rev, & use_all_frac, force_symmorphic, & starting_magnetization, & occupations, degauss, smearing, nspin, & ecfixed, qcutz, q2sigma, lda_plus_U, & lda_plus_U_kind, Hubbard_U, Hubbard_J, & Hubbard_J0, Hubbard_beta, & Hubbard_alpha, input_dft, la2F, & starting_ns_eigenvalue, U_projection_type, & x_gamma_extrapolation, nqx1, nqx2, nqx3, & exxdiv_treatment, yukawa, ecutvcut, & exx_fraction, screening_parameter, ecutfock, & gau_parameter, & edir, emaxpos, eopreg, eamp, noncolin, lambda, & angle1, angle2, constrained_magnetization, & B_field, fixed_magnetization, report, lspinorb,& starting_spin_angle, assume_isolated,spline_ps,& vdw_corr, london, london_s6, london_rcut, & ts_vdw, ts_vdw_isolated, ts_vdw_econv_thr, & xdm, xdm_a1, xdm_a2, & one_atom_occupations, & esm_bc, esm_efield, esm_w, esm_nfit ! ! ... ELECTRONS namelist ! USE input_parameters, ONLY : electron_maxstep, mixing_mode, mixing_beta, & mixing_ndim, mixing_fixed_ns, conv_thr, & tqr, diago_thr_init, diago_cg_maxiter, & diago_david_ndim, diagonalization, & diago_full_acc, startingwfc, startingpot, & real_space, scf_must_converge USE input_parameters, ONLY : adaptive_thr, conv_thr_init, conv_thr_multi ! ! ... IONS namelist ! USE input_parameters, ONLY : phase_space, ion_dynamics, ion_positions, tolp, & tempw, delta_t, nraise, ion_temperature, & refold_pos, remove_rigid_rot, upscale, & pot_extrapolation, wfc_extrapolation, & w_1, w_2, trust_radius_max, trust_radius_min, & trust_radius_ini, bfgs_ndim ! ! ... CELL namelist ! USE input_parameters, ONLY : cell_parameters, cell_dynamics, press, wmass, & cell_temperature, cell_factor, press_conv_thr, & cell_dofree ! ! ... WANNIER_NEW namelist ! USE input_parameters, ONLY : use_wannier, nwan, constrain_pot, & use_energy_int, print_wannier_coeff ! ! ... CARDS ! USE input_parameters, ONLY : k_points, xk, wk, nk1, nk2, nk3, & k1, k2, k3, nkstot USE input_parameters, ONLY : nconstr_inp, trd_ht, rd_ht, cell_units ! USE constraints_module, ONLY : init_constraint USE read_namelists_module, ONLY : read_namelists, sm_not_set USE london_module, ONLY : init_london, lon_rcut, scal6 USE xdm_module, ONLY : init_xdm, a1i, a2i USE tsvdw_module, ONLY : vdw_isolated, vdw_econv_thr USE us, ONLY : spline_ps_ => spline_ps ! USE input_parameters, ONLY : deallocate_input_parameters ! IMPLICIT NONE ! CHARACTER(LEN=256), EXTERNAL :: trimcheck INTEGER, EXTERNAL :: read_config_from_file ! INTEGER :: ia, nt, inlc, ierr LOGICAL :: exst, parallelfs REAL(DP) :: theta, phi ! ! ! ... various initializations of control variables ! lforce = tprnfor ! SELECT CASE( trim( calculation ) ) CASE( 'scf' ) ! lscf = .true. nstep = 1 ! CASE( 'nscf' ) ! lforce = .false. nstep = 1 ! CASE( 'bands' ) ! lforce = .false. lbands = .true. nstep = 1 ! CASE( 'relax' ) ! lscf = .true. lforce = .true. ! epse = etot_conv_thr epsf = forc_conv_thr ! SELECT CASE( trim( ion_dynamics ) ) CASE( 'bfgs' ) ! lbfgs = .true. ! CASE ( 'damp' ) ! lmd = .true. ldamped = .true. ! ntcheck = nstep + 1 ! CASE DEFAULT ! CALL errore( 'iosys', 'calculation=' // trim( calculation ) // & & ': ion_dynamics=' // trim( ion_dynamics ) // & & ' not supported', 1 ) ! END SELECT ! CASE( 'md' ) ! lscf = .true. lmd = .true. lforce = .true. ! SELECT CASE( trim( ion_dynamics ) ) CASE( 'verlet' ) ! CONTINUE ! CASE( 'langevin', 'langevin-smc', 'langevin+smc' ) ! llang = .true. temperature = tempw use_SMC = ( trim( ion_dynamics ) == 'langevin-smc' .OR. & trim( ion_dynamics ) == 'langevin+smc' ) ! CASE DEFAULT ! CALL errore( 'iosys ', 'calculation=' // trim( calculation ) // & & ': ion_dynamics=' // trim( ion_dynamics ) // & & ' not supported', 1 ) END SELECT ! CASE( 'vc-relax' ) ! lscf = .true. lmd = .true. lmovecell = .true. lforce = .true. ldamped = .true. ! epse = etot_conv_thr epsf = forc_conv_thr epsp = press_conv_thr ! SELECT CASE( trim( cell_dynamics ) ) CASE( 'none' ) ! calc = 'mm' ntcheck = nstep + 1 ! CASE( 'damp-pr' ) ! calc = 'cm' ntcheck = nstep + 1 ! CASE( 'damp-w' ) ! calc = 'nm' ntcheck = nstep + 1 ! CASE( 'bfgs' ) ! lbfgs = .true. lmd = .false. ldamped = .false. ! CASE DEFAULT ! CALL errore( 'iosys', 'calculation=' // trim( calculation ) // & & ': cell_dynamics=' // trim( cell_dynamics ) // & & ' not supported', 1 ) ! END SELECT ! IF ( .not. ldamped .and. .not. lbfgs) & CALL errore( 'iosys', 'calculation='// trim( calculation ) // & & ': incompatible ion (' // trim( ion_dynamics )// & & ') and cell dynamics ('// trim(cell_dynamics )// ')', 1 ) ! CASE( 'vc-md' ) ! lscf = .true. lmd = .true. lmovecell = .true. lforce = .true. ! ntcheck = nstep + 1 ! SELECT CASE( trim( cell_dynamics ) ) CASE( 'none' ) ! calc = 'md' ! CASE( 'pr' ) ! calc = 'cd' ! CASE( 'w' ) ! calc = 'nd' ! CASE DEFAULT ! CALL errore( 'iosys', 'calculation=' // trim( calculation ) // & & ': ion_dynamics=' // trim( ion_dynamics ) // & & ' not supported', 1 ) ! END SELECT ! IF ( trim( ion_dynamics ) /= 'beeman' ) & CALL errore( 'iosys', 'calculation=' // trim( calculation ) // & & ': ion_dynamics=' // trim( ion_dynamics ) // & & ' not supported', 1 ) ! CASE DEFAULT ! CALL errore( 'iosys', 'calculation ' // & & trim( calculation ) // ' not implemented', 1 ) ! END SELECT ! lstres = lmovecell .OR. ( tstress .and. lscf ) ! IF ( tefield .and. ( .not. nosym ) ) THEN nosym = .true. WRITE( stdout, & '(5x,"Presently no symmetry can be used with electric field",/)' ) ENDIF IF ( tefield .and. tstress ) THEN tstress = .false. WRITE( stdout, & '(5x,"Presently stress not available with electric field",/)' ) ENDIF IF ( tefield .and. ( nspin > 2 ) ) THEN CALL errore( 'iosys', 'LSDA not available with electric field' , 1 ) ENDIF ! ! ... define memory- and disk-related internal switches ! smallmem = ( TRIM( memory ) == 'small' ) twfcollect = wf_collect ! ! ... Set Values for electron and bands ! tfixed_occ = .false. ltetra = .false. lgauss = .false. ! SELECT CASE( trim( occupations ) ) CASE( 'fixed' ) ! ngauss = 0 IF ( degauss /= 0.D0 ) THEN CALL errore( ' iosys ', & & ' fixed occupations, gauss. broadening ignored', -1 ) degauss = 0.D0 ENDIF ! CASE( 'smearing' ) ! lgauss = ( degauss > 0.0_dp ) IF ( .NOT. lgauss ) & CALL errore( ' iosys ', & & ' smearing requires gaussian broadening', 1 ) ! SELECT CASE ( trim( smearing ) ) CASE ( 'gaussian', 'gauss', 'Gaussian', 'Gauss' ) ngauss = 0 smearing_ = 'gaussian' CASE ( 'methfessel-paxton', 'm-p', 'mp', 'Methfessel-Paxton', 'M-P', 'MP' ) ngauss = 1 smearing_ = 'Methfessel-Paxton' CASE ( 'marzari-vanderbilt', 'cold', 'm-v', 'mv', 'Marzari-Vanderbilt', 'M-V', 'MV') ngauss = -1 smearing_ = 'Marzari-Vanderbilt' CASE ( 'fermi-dirac', 'f-d', 'fd', 'Fermi-Dirac', 'F-D', 'FD') ngauss = -99 smearing_ = 'Fermi-Dirac' CASE DEFAULT CALL errore( ' iosys ', ' smearing '//trim(smearing)//' unknown', 1 ) END SELECT ! CASE( 'tetrahedra' ) ! ! replace "errore" with "infomsg" in the next line if you really want ! to perform a calculation with forces using tetrahedra ! IF( lforce ) CALL errore( 'iosys', & 'force calculation with tetrahedra not recommanded: use smearing',1) ! ! as above, for stress ! IF( lstres ) CALL errore( 'iosys', & 'stress calculation with tetrahedra not recommanded: use smearing',1) ngauss = 0 ltetra = .true. ! CASE( 'from_input' ) ! ngauss = 0 tfixed_occ = .true. ! CASE DEFAULT ! CALL errore( 'iosys','occupations ' // trim( occupations ) // & & 'not implemented', 1 ) ! END SELECT ! IF( nbnd < 1 ) & CALL errore( 'iosys', 'nbnd less than 1', nbnd ) ! SELECT CASE( nspin ) CASE( 1 ) ! lsda = .false. IF ( noncolin ) nspin = 4 ! CASE( 2 ) ! lsda = .true. IF ( noncolin ) CALL errore( 'iosys', & 'noncolin .and. nspin==2 are conflicting flags', 1 ) ! CASE( 4 ) ! lsda = .false. noncolin = .true. ! CASE DEFAULT ! CALL errore( 'iosys', 'wrong input value for nspin', 1 ) ! END SELECT ! IF ( lda_plus_u .AND. lda_plus_u_kind == 0 .AND. noncolin ) THEN CALL errore('iosys', 'simplified LDA+U not implemented with & &noncol. magnetism, use lda_plus_u_kind = 1', 1) END IF ! two_fermi_energies = ( tot_magnetization /= -1._DP) IF ( two_fermi_energies .and. tot_magnetization < 0._DP) & CALL errore( 'iosys', 'tot_magnetization only takes positive values', 1 ) IF ( two_fermi_energies .and. .not. lsda ) & CALL errore( 'iosys', 'tot_magnetization requires nspin=2', 1 ) ! IF ( occupations == 'fixed' .and. lsda .and. lscf ) THEN ! IF ( two_fermi_energies ) THEN ! IF ( abs( nint(tot_magnetization ) - tot_magnetization ) > eps8 ) & CALL errore( 'iosys', & & 'fixed occupations requires integer tot_magnetization', 1 ) IF ( abs( nint(tot_charge ) - tot_charge ) > eps8 ) & CALL errore( 'iosys', & & 'fixed occupations requires integer charge', 1 ) ! ELSE ! CALL errore( 'iosys', & & 'fixed occupations and lsda need tot_magnetization', 1 ) ! ENDIF ! ENDIF ! IF (noncolin) THEN DO nt = 1, ntyp ! angle1(nt) = pi * angle1(nt) / 180.D0 angle2(nt) = pi * angle2(nt) / 180.D0 ! ENDDO ELSE angle1=0.d0 angle2=0.d0 ENDIF ! SELECT CASE( trim( constrained_magnetization ) ) CASE( 'none' ) ! ! ... starting_magnetization(nt) = sm_not_set means "not set" ! ... if no constraints are imposed on the magnetization, ! ... starting_magnetization must be set for at least one atomic type ! IF ( lscf .AND. lsda .AND. ( .NOT. tfixed_occ ) .AND. & ( .not. two_fermi_energies ) .AND. & ALL (starting_magnetization(1:ntyp) == sm_not_set) ) & CALL errore('iosys','some starting_magnetization MUST be set', 1 ) ! ! ... bring starting_magnetization between -1 and 1 ! DO nt = 1, ntyp ! IF ( starting_magnetization(nt) == sm_not_set ) THEN starting_magnetization(nt) = 0.0_dp ELSEIF ( starting_magnetization(nt) > 1.0_dp ) THEN starting_magnetization(nt) = 1.0_dp ELSEIF ( starting_magnetization(nt) <-1.0_dp ) THEN starting_magnetization(nt) =-1.0_dp ENDIF ! ENDDO ! i_cons = 0 ! CASE( 'atomic' ) ! IF ( nspin == 1 ) & CALL errore( 'iosys','constrained atomic magnetizations ' // & & 'require nspin=2 or 4 ', 1 ) IF ( ALL (starting_magnetization(1:ntyp) == sm_not_set) ) & CALL errore( 'iosys','constrained atomic magnetizations ' // & & 'require that some starting_magnetization is set', 1 ) ! i_cons = 1 ! IF (nspin == 4) THEN ! non-collinear case DO nt = 1, ntyp ! theta = angle1(nt) phi = angle2(nt) ! mcons(1,nt) = starting_magnetization(nt) * sin( theta ) * cos( phi ) mcons(2,nt) = starting_magnetization(nt) * sin( theta ) * sin( phi ) mcons(3,nt) = starting_magnetization(nt) * cos( theta ) ! ENDDO ELSE ! collinear case DO nt = 1, ntyp ! mcons(1,nt) = starting_magnetization(nt) ! ENDDO ENDIF ! CASE( 'atomic direction' ) ! IF ( nspin == 1 ) & CALL errore( 'iosys','constrained atomic magnetization ' // & & 'directions require nspin=2 or 4 ', 1 ) ! i_cons = 2 ! DO nt = 1, ntyp ! ! ... angle between the magnetic moments and the z-axis is ! ... constrained ! theta = angle1(nt) mcons(3,nt) = cos(theta) ! ENDDO ! CASE( 'total' ) ! IF ( nspin == 4 ) THEN ! i_cons = 3 ! mcons(1,1) = fixed_magnetization(1) mcons(2,1) = fixed_magnetization(2) mcons(3,1) = fixed_magnetization(3) ! ELSE ! CALL errore( 'iosys','constrained total magnetization ' // & & 'requires nspin= 4 ', 1 ) ! ENDIF ! CASE( 'total direction' ) i_cons = 6 mcons(3,1) = fixed_magnetization(3) IF ( mcons(3,1) < 0.D0 .or. mcons(3,1) > 180.D0 ) & CALL errore( 'iosys','constrained magnetization angle: ' // & & 'theta must be within [0,180] degrees', 1 ) ! CASE DEFAULT ! CALL errore( 'iosys','constrained magnetization ' // & & trim( constrained_magnetization ) // 'not implemented', 1 ) ! END SELECT ! IF ( B_field(1) /= 0.D0 .or. & B_field(2) /= 0.D0 .or. & B_field(3) /= 0.D0 ) THEN ! IF ( nspin == 1 ) CALL errore( 'iosys', & & 'non-zero external B_field requires nspin=2 or 4', 1 ) IF ( TRIM( constrained_magnetization ) /= 'none' ) & CALL errore( 'iosys', 'constrained_magnetization and ' // & & 'non-zero external B_field are conflicting flags', 1 ) IF ( nspin == 2 .AND. ( B_field(1) /= 0.D0 .OR. B_field(2) /= 0.D0 ) ) & CALL errore('iosys','only B_field(3) can be specified with nspin=2', 1) IF ( i_cons /= 0 ) CALL errore( 'iosys', & & 'non-zero external B_field and constrained magnetization?', i_cons) ! ! i_cons=4 signals the presence of an external B field ! this should be done in a cleaner way ! i_cons = 4 bfield(:)=B_field(:) ! ENDIF ! IF ( ecutrho <= 0.D0 ) THEN ! dual = 4.D0 ecutrho = dual*ecutwfc ! ELSE ! dual = ecutrho / ecutwfc IF ( dual <= 1.D0 ) & CALL errore( 'iosys', 'invalid dual?', 1 ) ! ENDIF ! SELECT CASE( trim( restart_mode ) ) CASE( 'from_scratch' ) ! restart = .false. IF ( lscf ) THEN startingconfig = 'input' ELSE startingconfig = 'file' ENDIF ! CASE( 'restart' ) ! restart = .true. IF ( trim( ion_positions ) == 'from_input' ) THEN startingconfig = 'input' ELSE startingconfig = 'file' ENDIF ! CASE DEFAULT ! CALL errore( 'iosys', & & 'unknown restart_mode ' // trim( restart_mode ), 1 ) ! END SELECT ! SELECT CASE( trim( disk_io ) ) CASE( 'high' ) ! io_level = 2 ! CASE ( 'medium' ) ! io_level = 1 ! CASE ( 'low' ) ! io_level = 0 ! CASE ( 'none' ) ! io_level = -1 IF ( twfcollect ) THEN CALL infomsg('iosys', 'minimal I/O required, wf_collect reset to FALSE') twfcollect= .false. ENDIF ! CASE DEFAULT ! io_level = 0 ! END SELECT ! Hubbard_U(:) = Hubbard_U(:) / rytoev Hubbard_J0(:) = Hubbard_J0(:) / rytoev Hubbard_J(:,:) = Hubbard_J(:,:) / rytoev Hubbard_alpha(:)= Hubbard_alpha(:) / rytoev Hubbard_beta(:) = Hubbard_beta(:) / rytoev ! ethr = diago_thr_init ! IF ( startingpot /= 'atomic' .and. startingpot /= 'file' ) THEN ! CALL infomsg( 'iosys', 'wrong startingpot: use default (1)' ) IF ( lscf ) THEN startingpot = 'atomic' ELSE startingpot = 'file' END IF ! ENDIF ! IF ( .not. lscf .and. startingpot /= 'file' ) THEN ! CALL infomsg( 'iosys', 'wrong startingpot: use default (2)' ) startingpot = 'file' ! ENDIF ! IF ( startingwfc /= 'atomic' .and. & startingwfc /= 'random' .and. & startingwfc /= 'atomic+random' .and. & startingwfc /= 'file' ) THEN ! CALL infomsg( 'iosys', 'wrong startingwfc: use default (atomic+random)' ) startingwfc = 'atomic+random' ! ENDIF ! IF (one_atom_occupations .and. startingwfc /= 'atomic' ) THEN CALL infomsg( 'iosys', 'one_atom_occupations requires startingwfc atomic' ) startingwfc = 'atomic' ENDIF ! SELECT CASE( trim( diagonalization ) ) CASE ( 'cg' ) ! isolve = 1 max_cg_iter = diago_cg_maxiter ! CASE ( 'david', 'davidson' ) ! isolve = 0 david = diago_david_ndim ! CASE DEFAULT ! CALL errore( 'iosys', 'diagonalization ' // & & trim( diagonalization ) // ' not implemented', 1 ) ! END SELECT ! tr2 = conv_thr niter = electron_maxstep adapt_thr = adaptive_thr tr2_init = conv_thr_init tr2_multi = conv_thr_multi ! pot_order = 1 SELECT CASE( trim( pot_extrapolation ) ) CASE( 'from_wfcs', 'from-wfcs' ) ! not actually implemented pot_order =-1 ! CASE( 'none' ) ! pot_order = 0 ! CASE( 'first_order', 'first-order', 'first order' ) ! IF ( lmd ) THEN pot_order = 2 ELSE CALL infomsg('iosys', "pot_extrapolation='"//trim(pot_extrapolation)//& "' not available, using 'atomic'") ENDIF ! CASE( 'second_order', 'second-order', 'second order' ) ! IF ( lmd ) THEN pot_order = 3 ELSE CALL infomsg('iosys', "pot_extrapolation='"//trim(pot_extrapolation)//& "' not available, using 'atomic'") ENDIF ! CASE DEFAULT ! pot_order = 1 ! END SELECT ! wfc_order = 0 SELECT CASE( trim( wfc_extrapolation ) ) ! CASE( 'first_order', 'first-order', 'first order' ) ! IF ( lmd ) THEN wfc_order = 2 ELSE CALL infomsg('iosys', "wfc_extrapolation='"//trim(pot_extrapolation)//& "' not available, using 'atomic'") ENDIF ! CASE( 'second_order', 'second-order', 'second order' ) ! IF ( lmd ) THEN wfc_order = 3 ELSE CALL infomsg('iosys', "wfc_extrapolation='"//trim(pot_extrapolation)//& "' not available, using 'atomic'") ENDIF ! END SELECT ! SELECT CASE( trim( ion_temperature ) ) CASE( 'not_controlled', 'not-controlled', 'not controlled' ) ! control_temp = .false. ! CASE( 'initial' ) ! control_temp = .TRUE. thermostat = TRIM( ion_temperature ) temperature = tempw ! CASE( 'rescaling' ) ! control_temp = .true. thermostat = trim( ion_temperature ) temperature = tempw tolp_ = tolp ntcheck = nraise ! CASE( 'rescale-v', 'rescale-V', 'rescale_v', 'rescale_V' ) ! control_temp = .true. thermostat = trim( ion_temperature ) temperature = tempw nraise_ = nraise ! CASE( 'reduce-T', 'reduce-t', 'reduce_T', 'reduce_t' ) ! control_temp = .true. thermostat = trim( ion_temperature ) temperature = tempw delta_t_ = delta_t nraise_ = nraise ! CASE( 'rescale-T', 'rescale-t', 'rescale_T', 'rescale_t' ) ! control_temp = .true. thermostat = trim( ion_temperature ) temperature = tempw delta_t_ = delta_t ! CASE( 'berendsen', ' Berendsen' ) ! control_temp = .true. thermostat = trim( ion_temperature ) temperature = tempw nraise_ = nraise ! CASE( 'andersen', 'Andersen' ) ! control_temp = .true. thermostat = trim( ion_temperature ) temperature = tempw nraise_ = nraise ! CASE DEFAULT ! CALL errore( 'iosys', & & 'unknown ion_temperature ' // trim( ion_temperature ), 1 ) ! END SELECT ! SELECT CASE( trim( mixing_mode ) ) CASE( 'plain' ) imix = 0 CASE( 'TF' ) imix = 1 CASE( 'local-TF' ) imix = 2 CASE( 'potential' ) CALL errore( 'iosys', 'potential mixing no longer implemented', 1 ) CASE DEFAULT CALL errore( 'iosys', 'unknown mixing ' // trim( mixing_mode ), 1 ) END SELECT ! starting_scf_threshold = tr2 nmix = mixing_ndim niter_with_fixed_ns = mixing_fixed_ns ! IF ( ion_dynamics == ' bfgs' .and. epse <= 20.D0 * ( tr2 / upscale ) ) & CALL errore( 'iosys', 'required etot_conv_thr is too small:' // & & ' conv_thr must be reduced', 1 ) ! SELECT CASE( trim( verbosity ) ) CASE( 'debug', 'high', 'medium' ) iverbosity = 1 CASE( 'low', 'default', 'minimal' ) iverbosity = 0 CASE DEFAULT iverbosity = 0 END SELECT ! IF ( lberry .OR. lelfield ) THEN IF ( npool > 1 ) CALL errore( 'iosys', & 'Berry Phase/electric fields not implemented with pools', 1 ) IF ( lgauss .OR. ltetra ) CALL errore( 'iosys', & 'Berry Phase/electric fields only for insulators!', 1 ) END IF ! ! ... Copy values from input module to PW internals ! nppstr_ = nppstr gdir_ = gdir lberry_ = lberry lcalc_z2_ = lcalc_z2 z2_m_threshold_ = z2_m_threshold z2_z_threshold_ = z2_z_threshold lelfield_ = lelfield lorbm_ = lorbm efield_ = efield nberrycyc_ = nberrycyc efield_cart_ = efield_cart tqr_ = tqr real_space_ = real_space ! title_ = title lkpoint_dir_=lkpoint_dir dt_ = dt tefield_ = tefield dipfield_ = dipfield prefix_ = trim( prefix ) pseudo_dir_ = trimcheck( pseudo_dir ) nstep_ = nstep iprint_ = iprint lecrpa_ = lecrpa scf_must_converge_ = scf_must_converge ! nat_ = nat ntyp_ = ntyp edir_ = edir emaxpos_ = emaxpos eopreg_ = eopreg eamp_ = eamp dfftp%nr1 = nr1 dfftp%nr2 = nr2 dfftp%nr3 = nr3 ecutrho_ = ecutrho ecutwfc_ = ecutwfc ecfixed_ = ecfixed qcutz_ = qcutz q2sigma_ = q2sigma dffts%nr1 = nr1s dffts%nr2 = nr2s dffts%nr3 = nr3s degauss_ = degauss ! tot_charge_ = tot_charge tot_magnetization_ = tot_magnetization ! lspinorb_ = lspinorb starting_spin_angle_ = starting_spin_angle noncolin_ = noncolin angle1_ = angle1 angle2_ = angle2 report_ = report lambda_ = lambda one_atom_occupations_ = one_atom_occupations ! no_t_rev_ = no_t_rev allfrac = use_all_frac ! spline_ps_ = spline_ps ! Hubbard_U_(1:ntyp) = hubbard_u(1:ntyp) Hubbard_J_(1:3,1:ntyp) = hubbard_j(1:3,1:ntyp) Hubbard_J0_(1:ntyp) = hubbard_j0(1:ntyp) Hubbard_alpha_(1:ntyp) = hubbard_alpha(1:ntyp) Hubbard_beta_(1:ntyp) = hubbard_beta(1:ntyp) lda_plus_u_ = lda_plus_u lda_plus_u_kind_ = lda_plus_u_kind la2F_ = la2F nspin_ = nspin starting_magnetization_ = starting_magnetization starting_ns = starting_ns_eigenvalue U_projection = U_projection_type noinv_ = noinv nosym_ = nosym nosym_evc_ = nosym_evc nofrac = force_symmorphic nbnd_ = nbnd ! x_gamma_extrapolation_ = x_gamma_extrapolation ! nqx1_ = nqx1 nqx2_ = nqx2 nqx3_ = nqx3 ! exxdiv_treatment_ = trim(exxdiv_treatment) yukawa_ = yukawa ecutvcut_ = ecutvcut ecutfock_ = ecutfock ! vdw_table_name_ = vdw_table_name ! diago_full_acc_ = diago_full_acc starting_wfc = startingwfc starting_pot = startingpot mixing_beta_ = mixing_beta ! remove_rigid_rot_ = remove_rigid_rot upscale_ = upscale refold_pos_ = refold_pos press_ = press cell_factor_ = cell_factor ! ! ... for WANNIER_AC ! use_wannier_ = use_wannier use_energy_int_ = use_energy_int nwan_ = nwan print_wannier_coeff_ = print_wannier_coeff ! ! ! ... BFGS specific ! bfgs_ndim_ = bfgs_ndim trust_radius_max_ = trust_radius_max trust_radius_min_ = trust_radius_min trust_radius_ini_ = trust_radius_ini w_1_ = w_1 w_2_ = w_2 ! ! ... ESM ! esm_bc_ = esm_bc esm_efield_ = esm_efield esm_w_ = esm_w esm_nfit_ = esm_nfit ! IF (trim(occupations) /= 'from_input') one_atom_occupations_=.false. ! ! ... initialize variables for vdW (dispersions) corrections ! SELECT CASE( TRIM( vdw_corr ) ) ! CASE( 'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d' ) ! llondon= .TRUE. ts_vdw_= .FALSE. lxdm = .FALSE. ! CASE( 'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler' ) ! llondon= .FALSE. ts_vdw_= .TRUE. lxdm = .FALSE. ! CASE( 'XDM', 'xdm' ) ! llondon= .FALSE. ts_vdw_= .FALSE. lxdm = .TRUE. ! CASE DEFAULT ! llondon= .FALSE. ts_vdw_= .FALSE. lxdm = .FALSE. ! END SELECT IF ( london ) THEN CALL infomsg("iosys","london is obsolete, use ""vdw_corr='grimme-d2'"" instead") llondon = .TRUE. END IF IF ( xdm ) THEN CALL infomsg("iosys","xdm is obsolete, use ""vdw_corr='xdm'"" instead") lxdm = .TRUE. END IF IF ( ts_vdw ) THEN CALL infomsg("iosys","ts_vdw is obsolete, use ""vdw_corr='TS'"" instead") ts_vdw_ = .TRUE. END IF IF ( llondon.AND.lxdm .OR. llondon.AND.ts_vdw_ .OR. lxdm.AND.ts_vdw_ ) & CALL errore("iosys","must choose a unique vdW correction!", 1) ! IF ( llondon) THEN lon_rcut = london_rcut scal6 = london_s6 END IF IF ( lxdm ) THEN a1i = xdm_a1 a2i = xdm_a2 END IF IF ( ts_vdw_ ) THEN vdw_isolated = ts_vdw_isolated vdw_econv_thr= ts_vdw_econv_thr END IF ! ! QM/MM specific parameters ! IF (.NOT. tqmmm) CALL qmmm_config( mode=-1 ) ! do_makov_payne = .false. do_comp_mt = .false. do_comp_esm = .false. ! SELECT CASE( trim( assume_isolated ) ) ! CASE( 'makov-payne', 'm-p', 'mp' ) ! do_makov_payne = .true. IF ( ibrav < 1 .OR. ibrav > 3 ) CALL errore(' iosys', & 'Makov-Payne correction defined only for cubic lattices', 1) ! CASE( 'dcc' ) ! CALL errore('iosys','density countercharge correction currently disabled',1) ! CASE( 'martyna-tuckerman', 'm-t', 'mt' ) ! do_comp_mt = .true. ! CASE( 'esm' ) ! do_comp_esm = .true. ! END SELECT ! CALL plugin_read_input() ! ! ... read following cards ! ALLOCATE( ityp( nat_ ) ) ALLOCATE( tau( 3, nat_ ) ) ALLOCATE( force( 3, nat_ ) ) ALLOCATE( if_pos( 3, nat_ ) ) ALLOCATE( extfor( 3, nat_ ) ) IF ( tfixed_occ ) THEN IF ( nspin_ == 4 ) THEN ALLOCATE( f_inp( nbnd_, 1 ) ) ELSE ALLOCATE( f_inp( nbnd_, nspin_ ) ) ENDIF ENDIF ! IF ( tefield ) ALLOCATE( forcefield( 3, nat_ ) ) ! ! ... note that read_cards_pw no longer reads cards! ! CALL read_cards_pw ( psfile, tau_format ) ! ! ... set up atomic positions and crystal lattice ! call cell_base_init ( ibrav, celldm, a, b, c, cosab, cosac, cosbc, & trd_ht, rd_ht, cell_units ) ! ! ... Files (for compatibility) and directories ! This stuff must be done before calling read_config_from_file! ! input_drho = ' ' output_drho = ' ' tmp_dir = trimcheck ( outdir ) IF ( .not. trim( wfcdir ) == 'undefined' ) THEN wfc_dir = trimcheck ( wfcdir ) ELSE wfc_dir = tmp_dir ENDIF ! ! ... Read atomic positions and unit cell from data file, if needed, ! ... overwriting what has just been read before from input ! ierr = 1 IF ( startingconfig == 'file' ) ierr = read_config_from_file() ! ! ... read_config_from_file returns 0 if structure successfully read ! ... Atomic positions (tau) must be converted to internal units ! ... only if they were read from input, not from file ! IF ( ierr /= 0 ) CALL convert_tau ( tau_format, nat_, tau) ! ! ... set up k-points ! CALL init_start_k ( nk1, nk2, nk3, k1, k2, k3, k_points, nkstot, xk, wk ) gamma_only = ( k_points == 'gamma' ) ! IF ( real_space .AND. .NOT. gamma_only ) & CALL errore ('iosys', 'Real space only with Gamma point', 1) IF ( lelfield .AND. gamma_only ) & CALL errore( 'iosys', 'electric fields not available for k=0 only', 1 ) ! IF ( wmass == 0.D0 ) THEN ! ! ... set default value of wmass ! #if defined __PGI DO ia = 1, nat_ wmass = wmass + amass( ityp(ia) ) ENDDO #else wmass = sum( amass(ityp(:)) ) #endif ! wmass = wmass * amu_ry IF ( calc == 'nd' .or. calc == 'nm' ) THEN wmass = 0.75D0 * wmass / pi / pi / omega**( 2.D0 / 3.D0 ) ELSEIF ( calc == 'cd' .or. calc == 'cm' ) THEN wmass = 0.75D0 * wmass / pi / pi ENDIF ! cmass = wmass ! ELSE ! ! ... wmass is given in amu, Renata's dynamics uses masses in atomic units ! cmass = wmass * amu_ry ! ENDIF ! ! ... unit conversion for pressure ! press_ = press_ / ry_kbar ! ! ... set constraints for cell dynamics/optimization ! CALL init_dofree ( cell_dofree ) ! ! ... read pseudopotentials (also sets DFT) ! CALL readpp ( input_dft ) ! ! Set variables for hybrid functional HSE ! IF (exx_fraction >= 0.0_DP) CALL set_exx_fraction (exx_fraction) IF (screening_parameter >= 0.0_DP) & & CALL set_screening_parameter (screening_parameter) ! ! ... read the vdw kernel table if needed ! inlc = get_inlc() if (inlc > 0) then call initialize_kernel_table(inlc) endif ! ! ... if DFT finite size corrections are needed, define the appropriate volume ! IF (dft_has_finite_size_correction()) & CALL set_finite_size_volume(REAL(omega*nk1*nk2*nk3)) ! ! ... In the case of variable cell dynamics save old cell variables ! ... and initialize a few other variables ! IF ( lmovecell ) THEN ! at_old = at omega_old = omega IF ( cell_factor_ <= 0.D0 ) cell_factor_ = 1.2D0 ! IF ( cmass <= 0.D0 ) & CALL errore( 'iosys', & & 'vcsmd: a positive value for cell mass is required', 1 ) ! ELSE ! cell_factor_ = 1.D0 ! ENDIF ! ! ... allocate arrays for dispersion correction ! IF ( llondon) CALL init_london ( ) IF ( lxdm) CALL init_xdm ( ) ! ! ... variables for constrained dynamics are set here ! lconstrain = ( nconstr_inp > 0 ) ! IF ( lconstrain ) THEN IF ( lbfgs .OR. lmovecell ) CALL errore( 'iosys', & 'constraints only with fixed-cell dynamics', 1 ) CALL init_constraint( nat, tau, ityp, alat ) END IF ! ! ... End of reading input parameters ! CALL deallocate_input_parameters () ! ! ... Initialize temporary directory(-ies) ! CALL check_tempdir ( tmp_dir, exst, parallelfs ) IF ( .NOT. exst .AND. restart ) THEN CALL infomsg('iosys', 'restart disabled: needed files not found') restart = .false. ELSE IF ( .NOT. exst .AND. (lbands .OR. .NOT. lscf) ) THEN CALL errore('iosys', 'bands or non-scf calculation not possible: ' // & 'needed files are missing', 1) ELSE IF ( exst .AND. .NOT.restart ) THEN CALL clean_tempdir ( tmp_dir ) END IF IF ( TRIM(wfc_dir) /= TRIM(tmp_dir) ) & CALL check_tempdir( wfc_dir, exst, parallelfs ) ! CALL restart_from_file() ! RETURN ! END SUBROUTINE iosys ! !---------------------------------------------------------------------------- SUBROUTINE read_cards_pw ( psfile, tau_format ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE input_parameters, ONLY : atom_label, atom_pfile, atom_mass, taspc, & tapos, rd_pos, atomic_positions, if_pos, & sp_pos, f_inp, rd_for, tavel, sp_vel, rd_vel USE dynamics_module, ONLY : vel USE cell_base, ONLY : at, ibrav USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, atm, extfor USE fixed_occ, ONLY : tfixed_occ, f_inp_ => f_inp USE ions_base, ONLY : if_pos_ => if_pos, amass, fixatom USE control_flags, ONLY : textfor, tv0rd ! IMPLICIT NONE ! CHARACTER (len=256) :: psfile(ntyp) CHARACTER (len=80) :: tau_format INTEGER, EXTERNAL :: atomic_number REAL(DP), EXTERNAL :: atom_weight ! INTEGER :: is, ia ! ! amass = 0 ! IF ( .not. taspc ) & CALL errore( 'read_cards_pw', 'atomic species info missing', 1 ) IF ( .not. tapos ) & CALL errore( 'read_cards_pw', 'atomic position info missing', 1 ) ! DO is = 1, ntyp ! amass(is) = atom_mass(is) psfile(is) = atom_pfile(is) atm(is) = atom_label(is) ! IF ( amass(is) <= 0.0_DP ) amass(is)= & atom_weight(atomic_number(trim(atm(is)))) IF ( amass(is) <= 0.D0 ) CALL errore( 'read_cards_pw', 'invalid mass', is ) ! ENDDO ! textfor = .false. IF( any( rd_for /= 0.0_DP ) ) textfor = .true. ! DO ia = 1, nat ! tau(:,ia) = rd_pos(:,ia) ityp(ia) = sp_pos(ia) extfor(:,ia) = rd_for(:,ia) ! ENDDO ! ! ... check for initial velocities read from input file ! IF ( tavel .AND. ANY ( sp_pos(:) /= sp_vel(:) ) ) & CALL errore("cards","list of species in block ATOMIC_VELOCITIES & & must be identical to those in ATOMIC_POSITIONS",1) tv0rd = tavel IF ( tv0rd ) THEN ALLOCATE( vel(3, nat) ) DO ia = 1, nat vel(:,ia) = rd_vel(:,ia) END DO END IF ! ! ... The constrain on fixed coordinates is implemented using the array ! ... if_pos whose value is 0 when the coordinate is to be kept fixed, 1 ! ... otherwise. ! if_pos_(:,:) = if_pos(:,1:nat) fixatom = COUNT( if_pos_(1,:)==0 .AND. if_pos_(2,:)==0 .AND. if_pos_(3,:)==0 ) ! tau_format = trim( atomic_positions ) ! IF ( tfixed_occ ) THEN ! f_inp_ = f_inp ! DEALLOCATE ( f_inp ) ! ENDIF ! RETURN ! END SUBROUTINE read_cards_pw ! !----------------------------------------------------------------------- SUBROUTINE convert_tau (tau_format, nat_, tau) !----------------------------------------------------------------------- ! ! ... convert input atomic positions to internally used format: ! ... tau in a0 units ! USE kinds, ONLY : DP USE constants, ONLY : bohr_radius_angs USE cell_base, ONLY : at, alat IMPLICIT NONE CHARACTER (len=*), INTENT(in) :: tau_format INTEGER, INTENT(in) :: nat_ REAL (DP), INTENT(inout) :: tau(3,nat_) ! SELECT CASE( tau_format ) CASE( 'alat' ) ! ! ... input atomic positions are divided by a0: do nothing ! CASE( 'bohr' ) ! ! ... input atomic positions are in a.u.: divide by alat ! tau = tau / alat ! CASE( 'crystal' ) ! ! ... input atomic positions are in crystal axis ! CALL cryst_to_cart( nat_, tau, at, 1 ) ! CASE( 'angstrom' ) ! ! ... atomic positions in A: convert to a.u. and divide by alat ! tau = tau / bohr_radius_angs / alat ! CASE DEFAULT ! CALL errore( 'iosys','tau_format=' // & & trim( tau_format ) // ' not implemented', 1 ) ! END SELECT ! END SUBROUTINE convert_tau !----------------------------------------------------------------------- SUBROUTINE check_tempdir ( tmp_dir, exst, pfs ) !----------------------------------------------------------------------- ! ! ... Verify if tmp_dir exists, creates it if not ! ... On output: ! ... exst= .t. if tmp_dir exists ! ... pfs = .t. if tmp_dir visible from all procs of an image ! USE wrappers, ONLY : f_mkdir_safe USE io_global, ONLY : ionode, ionode_id USE mp_images, ONLY : intra_image_comm, nproc_image, me_image USE mp, ONLY : mp_barrier, mp_bcast, mp_sum ! IMPLICIT NONE ! CHARACTER(len=*), INTENT(in) :: tmp_dir LOGICAL, INTENT(out) :: exst, pfs ! INTEGER :: ios, image, proc, nofi CHARACTER (len=256) :: file_path, filename CHARACTER(len=6), EXTERNAL :: int_to_char ! ! ... create tmp_dir on ionode ! ... f_mkdir_safe returns -1 if tmp_dir already exists ! ... 0 if created ! ... 1 if cannot be created ! IF ( ionode ) ios = f_mkdir_safe( TRIM(tmp_dir) ) CALL mp_bcast ( ios, ionode_id, intra_image_comm ) exst = ( ios == -1 ) IF ( ios > 0 ) CALL errore ('check_tempdir','tmp_dir cannot be opened',1) ! ! ... let us check now if tmp_dir is visible on all nodes ! ... if not, a local tmp_dir is created on each node ! ios = f_mkdir_safe( TRIM(tmp_dir) ) CALL mp_sum ( ios, intra_image_comm ) pfs = ( ios == -nproc_image ) ! actually this is true only if .not.exst ! RETURN ! END SUBROUTINE check_tempdir ! !----------------------------------------------------------------------- SUBROUTINE clean_tempdir( tmp_dir ) !----------------------------------------------------------------------- ! USE io_files, ONLY : prefix, delete_if_present USE io_global, ONLY : ionode ! IMPLICIT NONE ! CHARACTER(len=*), INTENT(in) :: tmp_dir ! CHARACTER (len=256) :: file_path, filename ! ! ... remove temporary files from tmp_dir ( only by the master node ) ! file_path = trim( tmp_dir ) // trim( prefix ) IF ( ionode ) THEN CALL delete_if_present( trim( file_path ) // '.update' ) CALL delete_if_present( trim( file_path ) // '.md' ) CALL delete_if_present( trim( file_path ) // '.bfgs' ) ENDIF ! RETURN ! END SUBROUTINE clean_tempdir espresso-5.1/PW/src/vloc_psi.f900000644000175000017500000003535112341373025014564 0ustar mbamba! ! Copyright (C) 2003-2013 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE vloc_psi_gamma(lda, n, m, psi, v, hpsi) !----------------------------------------------------------------------- ! ! Calculation of Vloc*psi using dual-space technique - Gamma point ! USE parallel_include USE kinds, ONLY : DP USE gvecs, ONLY : nls, nlsm USE wvfct, ONLY : igk USE mp_bands, ONLY : me_bgrp USE fft_base, ONLY : dffts, tg_gather USE fft_interfaces,ONLY : fwfft, invfft USE wavefunctions_module, ONLY: psic ! IMPLICIT NONE ! INTEGER, INTENT(in) :: lda, n, m COMPLEX(DP), INTENT(in) :: psi (lda, m) COMPLEX(DP), INTENT(inout):: hpsi (lda, m) REAL(DP), INTENT(in) :: v(dffts%nnr) ! INTEGER :: ibnd, j, incr COMPLEX(DP) :: fp, fm ! LOGICAL :: use_tg ! Variables for task groups REAL(DP), ALLOCATABLE :: tg_v(:) COMPLEX(DP), ALLOCATABLE :: tg_psic(:) INTEGER :: v_siz, idx, ioff ! #if defined(__CUDA) && !defined(__DISABLE_CUDA_VLOCPSI) && ( !defined(__PARA) || defined(__USE_3D_FFT) ) CALL vloc_psi_gamma_gpu ( lda, n, m, psi, v, hpsi ) RETURN #endif ! incr = 2 ! ! The following is dirty trick to prevent usage of task groups if ! the number of bands is smaller than the number of task groups ! use_tg = dffts%have_task_groups dffts%have_task_groups = dffts%have_task_groups .and. ( m >= dffts%nogrp ) ! IF( dffts%have_task_groups ) THEN ! v_siz = dffts%tg_nnr * dffts%nogrp ! ALLOCATE( tg_v ( v_siz ) ) ALLOCATE( tg_psic( v_siz ) ) ! CALL tg_gather( dffts, v, tg_v ) ! incr = 2 * dffts%nogrp ! ENDIF ! ! the local potential V_Loc psi. First bring psi to real space ! DO ibnd = 1, m, incr ! IF( dffts%have_task_groups ) THEN ! tg_psic = (0.d0, 0.d0) ioff = 0 ! DO idx = 1, 2*dffts%nogrp, 2 IF( idx + ibnd - 1 < m ) THEN DO j = 1, n tg_psic(nls (igk(j))+ioff) = psi(j,idx+ibnd-1) + & (0.0d0,1.d0) * psi(j,idx+ibnd) tg_psic(nlsm(igk(j))+ioff) = conjg( psi(j,idx+ibnd-1) - & (0.0d0,1.d0) * psi(j,idx+ibnd) ) ENDDO ELSEIF( idx + ibnd - 1 == m ) THEN DO j = 1, n tg_psic(nls (igk(j))+ioff) = psi(j,idx+ibnd-1) tg_psic(nlsm(igk(j))+ioff) = conjg( psi(j,idx+ibnd-1) ) ENDDO ENDIF ioff = ioff + dffts%tg_nnr ENDDO ! ELSE ! psic(:) = (0.d0, 0.d0) IF (ibnd < m) THEN ! two ffts at the same time DO j = 1, n psic(nls (igk(j)))= psi(j,ibnd) + (0.0d0,1.d0)*psi(j,ibnd+1) psic(nlsm(igk(j)))=conjg(psi(j,ibnd) - (0.0d0,1.d0)*psi(j,ibnd+1)) ENDDO ELSE DO j = 1, n psic (nls (igk(j))) = psi(j, ibnd) psic (nlsm(igk(j))) = conjg(psi(j, ibnd)) ENDDO ENDIF ! ENDIF ! ! fft to real space ! product with the potential v on the smooth grid ! back to reciprocal space ! IF( dffts%have_task_groups ) THEN ! CALL invfft ('Wave', tg_psic, dffts) ! DO j = 1, dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ) tg_psic (j) = tg_psic (j) * tg_v(j) ENDDO ! CALL fwfft ('Wave', tg_psic, dffts) ! ELSE ! CALL invfft ('Wave', psic, dffts) ! DO j = 1, dffts%nnr psic (j) = psic (j) * v(j) ENDDO ! CALL fwfft ('Wave', psic, dffts) ! ENDIF ! ! addition to the total product ! IF( dffts%have_task_groups ) THEN ! ioff = 0 ! DO idx = 1, 2*dffts%nogrp, 2 ! IF( idx + ibnd - 1 < m ) THEN DO j = 1, n fp= ( tg_psic( nls(igk(j)) + ioff ) + & tg_psic( nlsm(igk(j)) + ioff ) ) * 0.5d0 fm= ( tg_psic( nls(igk(j)) + ioff ) - & tg_psic( nlsm(igk(j)) + ioff ) ) * 0.5d0 hpsi (j, ibnd+idx-1) = hpsi (j, ibnd+idx-1) + & cmplx( dble(fp), aimag(fm),kind=DP) hpsi (j, ibnd+idx ) = hpsi (j, ibnd+idx ) + & cmplx(aimag(fp),- dble(fm),kind=DP) ENDDO ELSEIF( idx + ibnd - 1 == m ) THEN DO j = 1, n hpsi (j, ibnd+idx-1) = hpsi (j, ibnd+idx-1) + & tg_psic( nls(igk(j)) + ioff ) ENDDO ENDIF ! ioff = ioff + dffts%nr3x * dffts%nsw( me_bgrp + 1 ) ! ENDDO ! ELSE IF (ibnd < m) THEN ! two ffts at the same time DO j = 1, n fp = (psic (nls(igk(j))) + psic (nlsm(igk(j))))*0.5d0 fm = (psic (nls(igk(j))) - psic (nlsm(igk(j))))*0.5d0 hpsi (j, ibnd) = hpsi (j, ibnd) + & cmplx( dble(fp), aimag(fm),kind=DP) hpsi (j, ibnd+1) = hpsi (j, ibnd+1) + & cmplx(aimag(fp),- dble(fm),kind=DP) ENDDO ELSE DO j = 1, n hpsi (j, ibnd) = hpsi (j, ibnd) + psic (nls(igk(j))) ENDDO ENDIF ENDIF ! ENDDO ! IF( dffts%have_task_groups ) THEN ! DEALLOCATE( tg_psic ) DEALLOCATE( tg_v ) ! ENDIF dffts%have_task_groups = use_tg ! RETURN END SUBROUTINE vloc_psi_gamma ! !----------------------------------------------------------------------- SUBROUTINE vloc_psi_k(lda, n, m, psi, v, hpsi) !----------------------------------------------------------------------- ! ! Calculation of Vloc*psi using dual-space technique - k-points ! USE parallel_include USE kinds, ONLY : DP USE gvecs, ONLY : nls, nlsm USE wvfct, ONLY : igk USE mp_bands, ONLY : me_bgrp USE fft_base, ONLY : dffts, tg_gather USE fft_interfaces,ONLY : fwfft, invfft USE wavefunctions_module, ONLY: psic ! IMPLICIT NONE ! INTEGER, INTENT(in) :: lda, n, m COMPLEX(DP), INTENT(in) :: psi (lda, m) COMPLEX(DP), INTENT(inout):: hpsi (lda, m) REAL(DP), INTENT(in) :: v(dffts%nnr) ! INTEGER :: ibnd, j, incr ! LOGICAL :: use_tg ! Task Groups REAL(DP), ALLOCATABLE :: tg_v(:) COMPLEX(DP), ALLOCATABLE :: tg_psic(:) INTEGER :: v_siz, idx, ioff ! #if defined(__CUDA) && !defined(__DISABLE_CUDA_VLOCPSI) && ( !defined(__PARA) || defined(__USE_3D_FFT) ) CALL vloc_psi_k_gpu ( lda, n, m, psi, v, hpsi ) RETURN #endif ! ! The following is dirty trick to prevent usage of task groups if ! the number of bands is smaller than the number of task groups ! use_tg = dffts%have_task_groups dffts%have_task_groups = dffts%have_task_groups .and. ( m >= dffts%nogrp ) ! incr = 1 ! IF( dffts%have_task_groups ) THEN ! v_siz = dffts%tg_nnr * dffts%nogrp ! ALLOCATE( tg_v ( v_siz ) ) ALLOCATE( tg_psic( v_siz ) ) ! CALL tg_gather( dffts, v, tg_v ) incr = dffts%nogrp ! ENDIF ! ! the local potential V_Loc psi. First bring psi to real space ! DO ibnd = 1, m, incr ! IF( dffts%have_task_groups ) THEN ! tg_psic = (0.d0, 0.d0) ioff = 0 ! DO idx = 1, dffts%nogrp IF( idx + ibnd - 1 <= m ) THEN !$omp parallel do DO j = 1, n tg_psic(nls (igk(j))+ioff) = psi(j,idx+ibnd-1) ENDDO !$omp end parallel do ENDIF ioff = ioff + dffts%tg_nnr ENDDO ! CALL invfft ('Wave', tg_psic, dffts) ! ELSE ! psic(:) = (0.d0, 0.d0) psic (nls (igk(1:n))) = psi(1:n, ibnd) ! CALL invfft ('Wave', psic, dffts) ! ENDIF ! ! fft to real space ! product with the potential v on the smooth grid ! back to reciprocal space ! IF( dffts%have_task_groups ) THEN ! !$omp parallel do DO j = 1, dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ) tg_psic (j) = tg_psic (j) * tg_v(j) ENDDO !$omp end parallel do ! CALL fwfft ('Wave', tg_psic, dffts) ! ELSE ! !$omp parallel do DO j = 1, dffts%nnr psic (j) = psic (j) * v(j) ENDDO !$omp end parallel do ! CALL fwfft ('Wave', psic, dffts) ! ENDIF ! ! addition to the total product ! IF( dffts%have_task_groups ) THEN ! ioff = 0 ! DO idx = 1, dffts%nogrp ! IF( idx + ibnd - 1 <= m ) THEN !$omp parallel do DO j = 1, n hpsi (j, ibnd+idx-1) = hpsi (j, ibnd+idx-1) + tg_psic( nls(igk(j)) + ioff ) ENDDO !$omp end parallel do ENDIF ! ioff = ioff + dffts%nr3x * dffts%nsw( me_bgrp + 1 ) ! ENDDO ! ELSE !$omp parallel do DO j = 1, n hpsi (j, ibnd) = hpsi (j, ibnd) + psic (nls(igk(j))) ENDDO !$omp end parallel do ENDIF ! ENDDO ! IF( dffts%have_task_groups ) THEN ! DEALLOCATE( tg_psic ) DEALLOCATE( tg_v ) ! ENDIF dffts%have_task_groups = use_tg ! RETURN END SUBROUTINE vloc_psi_k ! !----------------------------------------------------------------------- SUBROUTINE vloc_psi_nc (lda, n, m, psi, v, hpsi) !----------------------------------------------------------------------- ! ! Calculation of Vloc*psi using dual-space technique - noncolinear ! USE parallel_include USE kinds, ONLY : DP USE gvecs, ONLY : nls, nlsm USE wvfct, ONLY : igk USE mp_bands, ONLY : me_bgrp USE fft_base, ONLY : dffts, dfftp, tg_gather USE fft_interfaces,ONLY : fwfft, invfft USE lsda_mod, ONLY : nspin USE spin_orb, ONLY : domag USE noncollin_module, ONLY: npol USE wavefunctions_module, ONLY: psic_nc ! IMPLICIT NONE ! INTEGER, INTENT(in) :: lda, n, m REAL(DP), INTENT(in) :: v(dfftp%nnr,4) ! beware dimensions! COMPLEX(DP), INTENT(in) :: psi (lda*npol, m) COMPLEX(DP), INTENT(inout):: hpsi (lda,npol,m) ! INTEGER :: ibnd, j,ipol, incr, is COMPLEX(DP) :: sup, sdwn ! LOGICAL :: use_tg ! Variables for task groups REAL(DP), ALLOCATABLE :: tg_v(:,:) COMPLEX(DP), ALLOCATABLE :: tg_psic(:,:) INTEGER :: v_siz, idx, ioff ! ! incr = 1 ! ! The following is dirty trick to prevent usage of task groups if ! the number of bands is smaller than the number of task groups ! use_tg = dffts%have_task_groups dffts%have_task_groups = dffts%have_task_groups .and. ( m >= dffts%nogrp ) ! IF( dffts%have_task_groups ) THEN v_siz = dffts%tg_nnr * dffts%nogrp IF (domag) THEN ALLOCATE( tg_v( v_siz, 4 ) ) DO is=1,nspin CALL tg_gather( dffts, v(:,is), tg_v(:,is) ) ENDDO ELSE ALLOCATE( tg_v( v_siz, 1 ) ) CALL tg_gather( dffts, v(:,1), tg_v(:,1) ) ENDIF ALLOCATE( tg_psic( v_siz, npol ) ) incr = dffts%nogrp ENDIF ! ! the local potential V_Loc psi. First the psi in real space ! DO ibnd = 1, m, incr IF( dffts%have_task_groups ) THEN ! DO ipol = 1, npol ! tg_psic(:,ipol) = ( 0.D0, 0.D0 ) ioff = 0 ! DO idx = 1, dffts%nogrp ! IF( idx + ibnd - 1 <= m ) THEN DO j = 1, n tg_psic( nls( igk(j) ) + ioff, ipol ) = psi( j +(ipol-1)*lda, idx+ibnd-1 ) ENDDO ENDIF ioff = ioff + dffts%tg_nnr ENDDO ! CALL invfft ('Wave', tg_psic(:,ipol), dffts) ! ENDDO ! ELSE psic_nc = (0.d0,0.d0) DO ipol=1,npol DO j = 1, n psic_nc(nls(igk(j)),ipol) = psi(j+(ipol-1)*lda,ibnd) ENDDO CALL invfft ('Wave', psic_nc(:,ipol), dffts) ENDDO ENDIF ! ! product with the potential v = (vltot+vr) on the smooth grid ! IF( dffts%have_task_groups ) THEN IF (domag) THEN DO j=1, dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ) sup = tg_psic(j,1) * (tg_v(j,1)+tg_v(j,4)) + & tg_psic(j,2) * (tg_v(j,2)-(0.d0,1.d0)*tg_v(j,3)) sdwn = tg_psic(j,2) * (tg_v(j,1)-tg_v(j,4)) + & tg_psic(j,1) * (tg_v(j,2)+(0.d0,1.d0)*tg_v(j,3)) tg_psic(j,1)=sup tg_psic(j,2)=sdwn ENDDO ELSE DO j=1, dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ) tg_psic(j,:) = tg_psic(j,:) * tg_v(j,1) ENDDO ENDIF ELSE IF (domag) THEN DO j=1, dffts%nnr sup = psic_nc(j,1) * (v(j,1)+v(j,4)) + & psic_nc(j,2) * (v(j,2)-(0.d0,1.d0)*v(j,3)) sdwn = psic_nc(j,2) * (v(j,1)-v(j,4)) + & psic_nc(j,1) * (v(j,2)+(0.d0,1.d0)*v(j,3)) psic_nc(j,1)=sup psic_nc(j,2)=sdwn ENDDO ELSE DO j=1, dffts%nnr psic_nc(j,:) = psic_nc(j,:) * v(j,1) ENDDO ENDIF ENDIF ! ! back to reciprocal space ! IF( dffts%have_task_groups ) THEN ! DO ipol = 1, npol CALL fwfft ('Wave', tg_psic(:,ipol), dffts) ! ioff = 0 ! DO idx = 1, dffts%nogrp ! IF( idx + ibnd - 1 <= m ) THEN DO j = 1, n hpsi (j, ipol, ibnd+idx-1) = hpsi (j, ipol, ibnd+idx-1) + & tg_psic( nls(igk(j)) + ioff, ipol ) ENDDO ENDIF ! ioff = ioff + dffts%nr3x * dffts%nsw( me_bgrp + 1 ) ! ENDDO ENDDO ! ELSE DO ipol=1,npol CALL fwfft ('Wave', psic_nc(:,ipol), dffts) ENDDO ! ! addition to the total product ! DO ipol=1,npol DO j = 1, n hpsi(j,ipol,ibnd) = hpsi(j,ipol,ibnd) + psic_nc(nls(igk(j)),ipol) ENDDO ENDDO ENDIF ENDDO IF( dffts%have_task_groups ) THEN ! DEALLOCATE( tg_v ) DEALLOCATE( tg_psic ) ! ENDIF dffts%have_task_groups = use_tg ! RETURN END SUBROUTINE vloc_psi_nc espresso-5.1/PW/src/plugin_init_cell.f900000644000175000017500000000134612341373025016263 0ustar mbamba! ! Copyright (C) 2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE plugin_init_cell() !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE plugin_flags ! ! ***Environ MODULES BEGIN*** ! ***Environ MODULES END*** ! IMPLICIT NONE ! ! ***Environ VARIABLES BEGIN*** ! ***Environ VARIABLES END*** ! ! ***Environ CALLS BEGIN*** ! ***Environ CALLS END*** ! END SUBROUTINE plugin_init_cell espresso-5.1/PW/src/rotate_wfc.f900000644000175000017500000000460012341373025015074 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE rotate_wfc & ( npwx, npw, nstart, gstart, nbnd, psi, npol, overlap, evc, e ) !---------------------------------------------------------------------------- ! ! ... Driver routine (maybe it should be an interface) for ! ... Hamiltonian diagonalization in the subspace spanned ! ... by nstart states psi ( atomic or random wavefunctions ). ! ... Produces on output nbnd eigenvectors ( nbnd <= nstart ) in evc. ! ... Calls h_psi, s_psi to calculate H|psi> ans S|psi> ! ... It only uses an auxiliary array of the same size as psi. ! USE kinds, ONLY : DP USE control_flags, ONLY : use_para_diag, gamma_only ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER, INTENT(IN) :: npw, npwx, nstart, nbnd, gstart, npol ! dimension of the matrix to be diagonalized ! leading dimension of matrix psi, as declared in the calling pgm unit ! input number of states ! output number of states ! first G with nonzero norm ! number of spin polarizations LOGICAL, INTENT(IN) :: overlap ! if .FALSE. : S|psi> not needed COMPLEX(DP), INTENT(INOUT) :: psi(npwx*npol,nstart), evc(npwx*npol,nbnd) ! input and output eigenvectors (may overlap) REAL(DP), INTENT(OUT) :: e(nbnd) ! eigenvalues ! CALL start_clock( 'wfcrot' ) ! IF( use_para_diag ) THEN ! ! use data distributed subroutine ! IF ( gamma_only ) THEN ! CALL protate_wfc_gamma & ( npwx, npw, nstart, gstart, nbnd, psi, overlap, evc, e ) ! ELSE ! CALL protate_wfc_k & ( npwx, npw, nstart, nbnd, npol, psi, overlap, evc, e ) ! END IF ! ELSE ! ! use serial subroutines ! IF ( gamma_only ) THEN ! CALL rotate_wfc_gamma & ( npwx, npw, nstart, gstart, nbnd, psi, overlap, evc, e ) ! ELSE ! CALL rotate_wfc_k & ( npwx, npw, nstart, nbnd, npol, psi, overlap, evc, e ) ! END IF ! END IF ! CALL stop_clock( 'wfcrot' ) ! END SUBROUTINE rotate_wfc espresso-5.1/PW/src/plugin_int_forces.f900000644000175000017500000000310712341373025016451 0ustar mbamba! ! Copyright (C) 2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE plugin_int_forces() !---------------------------------------------------------------------------- ! ! USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm USE io_global, ONLY : stdout, ionode, ionode_id USE kinds, ONLY : DP USE io_files, ONLY : outdir USE cell_base, ONLY : at, bg, alat, omega USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv, amass USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, gstart, ngl, nl, igtongl, g, gg, gcutm USE lsda_mod, ONLY : nspin USE force_mod, ONLY : force USE scf, ONLY : rho USE vlocal, ONLY : strf, vloc USE control_flags, ONLY : iverbosity, gamma_only USE martyna_tuckerman, ONLY: do_comp_mt, wg_corr_force ! USE plugin_flags ! ! ***Environ MODULES BEGIN*** ! ***Environ MODULES END*** ! IMPLICIT NONE ! ! aux is used to store a possible additional density ! now defined in real space ! COMPLEX(DP), ALLOCATABLE :: auxg(:), auxr(:) ! INTEGER :: ipol, na ! counter on polarization ! counter on atoms ! ! ***Environ VARIABLES BEGIN*** ! ***Environ VARIABLES END*** ! ! ***Environ CALLS BEGIN*** ! ***Environ CALLS END*** ! END SUBROUTINE plugin_int_forces espresso-5.1/PW/src/atomic_rho.f900000644000175000017500000001466612341373025015100 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine atomic_rho (rhoa, nspina) !----------------------------------------------------------------------- ! This routine calculates rhoa as the superposition of atomic charges. ! ! nspina is the number of spin components to be calculated ! ! if nspina = 1 the total atomic charge density is calculated ! if nspina = 2 the spin up and spin down atomic charge densities are ! calculated assuming an uniform atomic spin-polarization ! equal to starting_magnetization(nt) ! if nspina = 4 noncollinear case. The total density is calculated ! in the first component and the magnetization vector ! in the other three. ! ! NB: nspina may not be equal to nspin because in some cases (as in update) ! the total charge only could be needed, even in a LSDA calculation. ! ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE atom, ONLY : rgrid, msh USE ions_base, ONLY : ntyp => nsp USE cell_base, ONLY : tpiba, omega USE gvect, ONLY : ngm, ngl, gstart, nl, nlm, gl, igtongl USE lsda_mod, ONLY : starting_magnetization, lsda USE vlocal, ONLY : strf USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE noncollin_module, ONLY : angle1, angle2 USE uspp_param, ONLY : upf USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : invfft ! implicit none ! integer :: nspina ! the number of spin polarizations real(DP) :: rhoa (dfftp%nnr, nspina) ! the output atomic charge ! ! local variables ! real(DP) :: rhoneg, rhoima, gx real(DP), allocatable :: rhocgnt (:), aux (:) complex(DP), allocatable :: rhocg (:,:) integer :: ir, is, ig, igl, nt, ndm ! ! superposition of atomic charges contained in the array rho_at ! (read from pseudopotential files) ! ! allocate work space (psic must already be allocated) ! allocate (rhocg( ngm, nspina)) ndm = MAXVAL ( msh(1:ntyp) ) allocate (aux(ndm)) allocate (rhocgnt( ngl)) rhoa(:,:) = 0.d0 rhocg(:,:) = (0.d0,0.d0) do nt = 1, ntyp ! ! Here we compute the G=0 term ! if (gstart == 2) then do ir = 1, msh (nt) aux (ir) = upf(nt)%rho_at (ir) enddo call simpson (msh (nt), aux, rgrid(nt)%rab, rhocgnt (1) ) endif ! ! Here we compute the G<>0 term ! do igl = gstart, ngl gx = sqrt (gl (igl) ) * tpiba do ir = 1, msh (nt) if (rgrid(nt)%r(ir) < 1.0d-8) then aux(ir) = upf(nt)%rho_at(ir) else aux(ir) = upf(nt)%rho_at(ir) * & sin(gx*rgrid(nt)%r(ir)) / (rgrid(nt)%r(ir)*gx) endif enddo call simpson (msh (nt), aux, rgrid(nt)%rab, rhocgnt (igl) ) enddo ! ! we compute the 3D atomic charge in reciprocal space ! if (nspina == 1) then do ig = 1, ngm rhocg(ig,1) = rhocg(ig,1) + & strf(ig,nt) * rhocgnt(igtongl(ig)) / omega enddo else if (nspina == 2) then do ig = 1, ngm rhocg(ig,1) = rhocg(ig,1) + & 0.5d0 * ( 1.d0 + starting_magnetization(nt) ) * & strf(ig,nt) * rhocgnt(igtongl(ig)) / omega rhocg(ig,2) = rhocg(ig,2) + & 0.5d0 * ( 1.d0 - starting_magnetization(nt) ) * & strf(ig,nt) * rhocgnt(igtongl(ig)) / omega enddo else ! ! Noncolinear case ! do ig = 1,ngm rhocg(ig,1) = rhocg(ig,1) + & strf(ig,nt)*rhocgnt(igtongl(ig))/omega ! Now, the rotated value for the magnetization rhocg(ig,2) = rhocg(ig,2) + & starting_magnetization(nt)* & sin(angle1(nt))*cos(angle2(nt))* & strf(ig,nt)*rhocgnt(igtongl(ig))/omega rhocg(ig,3) = rhocg(ig,3) + & starting_magnetization(nt)* & sin(angle1(nt))*sin(angle2(nt))* & strf(ig,nt)*rhocgnt(igtongl(ig))/omega rhocg(ig,4) = rhocg(ig,4) + & starting_magnetization(nt)* & cos(angle1(nt))* & strf(ig,nt)*rhocgnt(igtongl(ig))/omega end do endif enddo deallocate (rhocgnt) deallocate (aux) do is = 1, nspina ! ! and we return to real space ! psic(:) = (0.d0,0.d0) psic (nl (:) ) = rhocg (:, is) if (gamma_only) psic ( nlm(:) ) = CONJG( rhocg (:, is) ) CALL invfft ('Dense', psic, dfftp) ! ! we check that everything is correct ! rhoneg = 0.d0 rhoima = 0.d0 do ir = 1, dfftp%nnr rhoneg = rhoneg + MIN (0.d0, DBLE (psic (ir)) ) rhoima = rhoima + abs (AIMAG (psic (ir) ) ) enddo rhoneg = omega * rhoneg / (dfftp%nr1 * dfftp%nr2 * dfftp%nr3) rhoima = omega * rhoima / (dfftp%nr1 * dfftp%nr2 * dfftp%nr3) ! call mp_sum( rhoneg, intra_bgrp_comm ) call mp_sum( rhoima, intra_bgrp_comm ) ! IF ( rhoima > 1.0d-4 ) THEN WRITE( stdout,'(5x,"Check: imaginary charge or magnetization=",& & f12.6," (component ",i1,") set to zero")') rhoima, is END IF IF ( (is == 1) .OR. lsda ) THEN ! IF ( (rhoneg < -1.0d-4) ) THEN IF ( lsda ) THEN WRITE( stdout,'(5x,"Check: negative starting charge=", & &"(component",i1,"):",f12.6)') is, rhoneg ELSE WRITE( stdout,'(5x,"Check: negative starting charge=", & & f12.6)') rhoneg END IF END IF END IF ! ! set imaginary terms to zero - negative terms are not set to zero ! because it is basically useless to do it in real space: negative ! charge will re-appear when Fourier-transformed back and forth ! DO ir = 1, dfftp%nnr rhoa (ir, is) = DBLE (psic (ir)) END DO ! enddo deallocate (rhocg) return end subroutine atomic_rho espresso-5.1/PW/src/pw2casino.f900000644000175000017500000000522712341373025014652 0ustar mbamba! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! This routine is inspired by the former routine pw2casino of ! Norbert Nemec ! (C) 2010 by Norbert Nemec !---------------------------------------------------------------------------- SUBROUTINE pw2casino() !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! USE mp_images, ONLY : nimage USE mp_pools, ONLY : npool ! USE control_flags, ONLY : istep, nstep ! USE io_files, ONLY : tmp_dir ! USE plugin_flags, ONLY : use_pw2casino ! IMPLICIT NONE ! CHARACTER(len=4) :: postfix ! CHARACTER(len=6), EXTERNAL :: int_to_char ! INTEGER, EXTERNAL :: find_free_unit ! INTEGER :: tmp_unit ! INTEGER :: ios LOGICAL :: casino_gather = .true. LOGICAL :: blip_convert = .true. LOGICAL :: blip_binary = .true. LOGICAL :: blip_single_prec = .false. REAL(dp) :: blip_multiplicity = 1.d0 INTEGER :: n_points_for_test = 0 ! NAMELIST / inputpp / & blip_convert, & blip_multiplicity, & blip_binary, & blip_single_prec, & n_points_for_test ! ! IF ( use_pw2casino ) THEN ! IF ( npool > 1 .or. nimage > 1) THEN CALL errore('pw2casino', 'pool or image parallelization not (yet) implemented',1) ENDIF ! tmp_unit = find_free_unit() OPEN(unit=tmp_unit,file = trim(tmp_dir)//'/'//'pw2casino.dat',status='old',err=20) READ(tmp_unit,inputpp,iostat=ios) CLOSE(tmp_unit) 20 CONTINUE IF ( .not. blip_convert ) blip_binary = .false. IF ( nstep == 1 ) THEN write(postfix,*) '' CALL write_casino_wfn( & casino_gather, & ! gather blip_convert, & ! blip blip_multiplicity, & ! multiplicity blip_binary, & ! binwrite blip_single_prec, & ! single_precision_blips n_points_for_test, & ! n_points_for_test postfix) ! postfix ELSE ! write(postfix,'(i4.4)') istep postfix=trim(int_to_char(istep)) ! CALL write_casino_wfn( & casino_gather, & ! gather blip_convert, & ! blip blip_multiplicity, & ! multiplicity blip_binary, & ! binwrite blip_single_prec, & ! single_precision_blips n_points_for_test, & ! n_points_for_test '.'//postfix) ! postfix ENDIF ENDIF ! ! END SUBROUTINE pw2casino espresso-5.1/PW/src/g_psi_mod.f900000644000175000017500000000102412341373025014674 0ustar mbamba! ! Copyright (C) 2001-2007 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE g_psi_mod ! ! ... These are the variables needed in g_psi ! USE kinds, only : DP ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: & h_diag (:,:),& ! diagonal part of the Hamiltonian s_diag (:,:) ! diagonal part of the overlap matrix ! END MODULE g_psi_mod espresso-5.1/PW/src/wannier_init.f900000644000175000017500000000447012341373025015432 0ustar mbamba! Copyright (C) 2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) !---------------------------------------------------------------------- SUBROUTINE wannier_init(hwwa) !---------------------------------------------------------------------- ! ! ... This routine ALLOCATEs all dynamically ALLOCATEd arrays for wannier calc ! USE wannier_new USE wvfct, only : nbnd, npwx USE input_parameters, only: constrain_pot, wan_data USE lsda_mod, only: nspin USE ions_base, only : nat USE basis, only : natomwfc, swfcatom USE constants, only: rytoev USE klist, only: nks USE io_files USE buffers USE noncollin_module, ONLY : npol IMPLICIT NONE LOGICAL,INTENT(IN) :: hwwa ! have we Wannier already? LOGICAL :: exst = .FALSE.,opnd INTEGER :: i, io_level ALLOCATE(pp(nwan,nbnd)) ALLOCATE(wan_in(nwan,nspin)) ALLOCATE(wannier_energy(nwan,nspin)) ALLOCATE(wannier_occ(nwan,nwan,nspin)) ALLOCATE(coef(natomwfc,nwan,nspin)) coef = ZERO wannier_energy = ZERO wannier_occ = ZERO wan_in(1:nwan,1:nspin) = wan_data(1:nwan,1:nspin) IF(.NOT. hwwa) THEN IF(use_energy_int) THEN do i=1,nwan wan_in(i,:)%bands_from = (1.d0/rytoev)*wan_in(i,:)%bands_from wan_in(i,:)%bands_to = (1.d0/rytoev)*wan_in(i,:)%bands_to end do END IF CALL wannier_check() end if ALLOCATE(wan_pot(nwan,nspin)) wan_pot(1:nwan,1:nspin) = constrain_pot(1:nwan,1:nspin) !now open files to store projectors and wannier functions nwordwpp = nwan*nbnd*npol nwordwf = nwan*npwx*npol io_level = 1 CALL open_buffer( iunwpp, 'wproj', nwordwpp, io_level, exst ) CALL open_buffer( iunwf, 'wwf', nwordwf, io_level, exst ) ! For atomic wavefunctions INQUIRE( UNIT = iunigk, OPENED = opnd ) IF(.NOT. opnd) CALL seqopn( iunigk, 'igk', 'UNFORMATTED', exst ) IF(.NOT. ALLOCATED(swfcatom)) ALLOCATE( swfcatom( npwx, natomwfc)) nwordatwfc = npwx*natomwfc*npol INQUIRE( UNIT = iunsat, OPENED = opnd ) IF(.NOT. opnd) CALL open_buffer( iunsat,'satwfc',nwordatwfc,io_level,exst ) RETURN ! END SUBROUTINE wannier_init espresso-5.1/PW/src/punch.f900000644000175000017500000000270712341373025014062 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE punch( what ) !---------------------------------------------------------------------------- ! ! ... This routine is called at the end of the run to save to a file ! ... the information needed for further processing (phonon etc.) ! USE io_global, ONLY : stdout USE io_files, ONLY : prefix, iunpun, iunwfc, nwordwfc USE control_flags, ONLY : io_level, twfcollect USE klist, ONLY : nks USE pw_restart, ONLY : pw_writefile USE a2F, ONLY : la2F, a2Fsave USE wavefunctions_module, ONLY : evc ! IMPLICIT NONE ! CHARACTER(LEN=*) :: what ! ! IF (io_level < 0 ) RETURN ! WRITE( UNIT = stdout, FMT = '(/,5X,"Writing output data file ",A)' ) & TRIM( prefix ) // '.save' ! ! ... if wavefunctions are stored in "distributed" format, ! ... save here wavefunctions to file if never saved before ! IF ( .NOT. twfcollect .AND. nks == 1 ) & CALL davcio ( evc, 2*nwordwfc, iunwfc, nks, 1 ) iunpun = 4 ! CALL pw_writefile( TRIM( what ) ) ! IF ( la2F ) CALL a2Fsave() ! RETURN ! END SUBROUTINE punch espresso-5.1/PW/src/force_us.f900000644000175000017500000003473512341373025014560 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE force_us( forcenl ) !---------------------------------------------------------------------------- ! ! ... nonlocal potential contribution to forces ! ... wrapper routine, calls gamma-only and k-point versions ! USE kinds, ONLY : DP USE control_flags, ONLY : gamma_only USE cell_base, ONLY : at, bg, tpiba USE ions_base, ONLY : nat, ntyp => nsp, ityp USE klist, ONLY : nks, xk, ngk USE gvect, ONLY : g USE uspp, ONLY : nkb, vkb, qq, deeq, qq_so, deeq_nc USE uspp_param, ONLY : upf, nh, newpseudo, nhm USE wvfct, ONLY : nbnd, npw, npwx, igk, wg, et USE lsda_mod, ONLY : lsda, current_spin, isk, nspin USE symme, ONLY : symvector USE wavefunctions_module, ONLY : evc USE noncollin_module, ONLY : npol, noncolin USE spin_orb, ONLY : lspinorb USE io_files, ONLY : iunwfc, nwordwfc, iunigk USE buffers, ONLY : get_buffer USE becmod, ONLY : bec_type, becp, allocate_bec_type, deallocate_bec_type USE mp_pools, ONLY : inter_pool_comm USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum, mp_get_comm_null ! IMPLICIT NONE ! REAL(DP), INTENT(OUT) :: forcenl(3,nat) ! the nonlocal contribution ! CALL allocate_bec_type ( nkb, nbnd, becp, intra_bgrp_comm ) ! IF ( gamma_only ) THEN ! CALL force_us_gamma( forcenl ) ! ELSE ! CALL force_us_k( forcenl ) ! END IF ! CALL deallocate_bec_type ( becp ) ! RETURN ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE force_us_gamma( forcenl ) !----------------------------------------------------------------------- ! ! ... calculation at gamma ! USE becmod, ONLY : calbec IMPLICIT NONE ! REAL(DP) :: forcenl(3,nat) TYPE(bec_type) :: rdbecp ! auxiliary variable, contains COMPLEX(DP), ALLOCATABLE :: vkb1(:,:) ! auxiliary variable contains g*|beta> REAL(DP) :: ps INTEGER :: ik, ipol, ibnd, ibnd_loc, ig, ih, jh, na, nt, ikb, jkb, ijkb0 ! counters ! ! ... Important notice about parallelization over the band group of processors: ! ... 1) internally, "calbec" parallelises on plane waves over the band group ! ... 2) the results of "calbec" are distributed across processors of the band ! ... group: the band index of becp, rdbecp is distributed ! ... 3) the band group is subsequently used to parallelize over bands ! forcenl(:,:) = 0.D0 ! CALL allocate_bec_type ( nkb, nbnd, rdbecp, intra_bgrp_comm ) ALLOCATE( vkb1( npwx, nkb ) ) ! IF ( nks > 1 ) REWIND iunigk ! ! ... the forces are a sum over the K points and over the bands ! DO ik = 1, nks IF ( lsda ) current_spin = isk(ik) ! npw = ngk (ik) IF ( nks > 1 ) THEN READ( iunigk ) igk CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) IF ( nkb > 0 ) & CALL init_us_2( npw, igk, xk(1,ik), vkb ) END IF ! CALL calbec ( npw, vkb, evc, becp ) ! DO ipol = 1, 3 DO jkb = 1, nkb !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) DO ig = 1, npw vkb1(ig,jkb) = vkb(ig,jkb) * (0.D0,-1.D0) * g(ipol,igk(ig)) END DO !$OMP END PARALLEL DO END DO ! CALL calbec ( npw, vkb1, evc, rdbecp ) ! ! ... from now on, sums over bands are parallelized over the band group ! ijkb0 = 0 DO nt = 1, ntyp DO na = 1, nat IF ( ityp(na) == nt ) THEN DO ih = 1, nh(nt) ikb = ijkb0 + ih DO ibnd_loc = 1, becp%nbnd_loc ibnd = ibnd_loc + becp%ibnd_begin - 1 ps = deeq(ih,ih,na,current_spin) - & et(ibnd,ik) * qq(ih,ih,nt) forcenl(ipol,na) = forcenl(ipol,na) - & ps * wg(ibnd,ik) * 2.D0 * tpiba * & rdbecp%r(ikb,ibnd_loc) *becp%r(ikb,ibnd_loc) END DO END DO ! IF ( upf(nt)%tvanp .OR. newpseudo(nt) ) THEN ! ! ... in US case there is a contribution for jh<>ih. ! ... We use here the symmetry in the interchange ! ... of ih and jh ! DO ih = 1, nh(nt) ikb = ijkb0 + ih DO jh = ( ih + 1 ), nh(nt) jkb = ijkb0 + jh DO ibnd_loc = 1, becp%nbnd_loc ibnd = ibnd_loc + becp%ibnd_begin - 1 ps = deeq(ih,jh,na,current_spin) - & et(ibnd,ik) * qq(ih,jh,nt) forcenl(ipol,na) = forcenl(ipol,na) - & ps * wg(ibnd,ik) * 2.d0 * tpiba * & (rdbecp%r(ikb,ibnd_loc) *becp%r(jkb,ibnd_loc) + & rdbecp%r(jkb,ibnd_loc) *becp%r(ikb,ibnd_loc) ) END DO END DO END DO END IF ijkb0 = ijkb0 + nh(nt) END IF END DO END DO END DO END DO ! IF( becp%comm /= mp_get_comm_null() ) CALL mp_sum( forcenl, becp%comm ) ! DEALLOCATE( vkb1 ) CALL deallocate_bec_type ( rdbecp ) ! ! ... The total D matrix depends on the ionic position via the ! ... augmentation part \int V_eff Q dr, the term deriving from the ! ... derivative of Q is added in the routine addusforce ! CALL addusforce( forcenl ) ! ! ... collect contributions across pools (sum over k-points) ! CALL mp_sum( forcenl, inter_pool_comm ) ! ! ... Since our summation over k points was only on the irreducible ! ... BZ we have to symmetrize the forces ! CALL symvector ( nat, forcenl ) ! RETURN ! END SUBROUTINE force_us_gamma ! !----------------------------------------------------------------------- SUBROUTINE force_us_k( forcenl ) !----------------------------------------------------------------------- ! USE becmod, ONLY : calbec IMPLICIT NONE ! REAL(DP) :: forcenl(3,nat) COMPLEX(DP), ALLOCATABLE :: dbecp(:,:), dbecp_nc(:,:,:) ! auxiliary variable contains and COMPLEX(DP), ALLOCATABLE :: vkb1(:,:) ! auxiliary variable contains g*|beta> COMPLEX(DP) :: psc(2,2), fac COMPLEX(DP), ALLOCATABLE :: deff_nc(:,:,:,:) REAL(DP), ALLOCATABLE :: deff(:,:,:) REAL(DP) :: ps INTEGER :: ik, ipol, ibnd, ig, ih, jh, na, nt, ikb, jkb, ijkb0, & is, js, ijs ! counters ! ! forcenl(:,:) = 0.D0 ! IF (noncolin) then ALLOCATE( dbecp_nc(nkb,npol,nbnd) ) ALLOCATE( deff_nc(nhm,nhm,nat,nspin) ) ELSE ALLOCATE( dbecp( nkb, nbnd ) ) ALLOCATE( deff(nhm,nhm,nat) ) ENDIF ALLOCATE( vkb1( npwx, nkb ) ) ! IF ( nks > 1 ) REWIND iunigk ! ! ... the forces are a sum over the K points and the bands ! DO ik = 1, nks IF ( lsda ) current_spin = isk(ik) ! npw = ngk(ik) IF ( nks > 1 ) THEN READ( iunigk ) igk CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) IF ( nkb > 0 ) & CALL init_us_2( npw, igk, xk(1,ik), vkb ) END IF ! CALL calbec ( npw, vkb, evc, becp) ! DO ipol = 1, 3 DO jkb = 1, nkb !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) DO ig = 1, npw vkb1(ig,jkb) = vkb(ig,jkb)*(0.D0,-1.D0)*g(ipol,igk(ig)) END DO !$OMP END PARALLEL DO END DO ! IF (noncolin) THEN IF ( nkb > 0 ) & CALL ZGEMM( 'C', 'N', nkb, nbnd*npol, npw, ( 1.D0, 0.D0 ),& vkb1, npwx, evc, npwx, ( 0.D0, 0.D0 ), & dbecp_nc, nkb ) ELSE IF ( nkb > 0 ) & CALL ZGEMM( 'C', 'N', nkb, nbnd, npw, ( 1.D0, 0.D0 ), & vkb1, npwx, evc, npwx, ( 0.D0, 0.D0 ), & dbecp, nkb ) END IF ! DO ibnd = 1, nbnd IF (noncolin) THEN CALL compute_deff_nc(deff_nc,et(ibnd,ik)) ELSE CALL compute_deff(deff,et(ibnd,ik)) ENDIF fac=wg(ibnd,ik)*tpiba ijkb0 = 0 DO nt = 1, ntyp DO na = 1, nat IF ( ityp(na) == nt ) THEN DO ih = 1, nh(nt) ikb = ijkb0 + ih IF (noncolin) THEN ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 forcenl(ipol,na) = forcenl(ipol,na)- & deff_nc(ih,ih,na,ijs)*fac*( & CONJG(dbecp_nc(ikb,is,ibnd))* & becp%nc(ikb,js,ibnd)+ & CONJG(becp%nc(ikb,is,ibnd))* & dbecp_nc(ikb,js,ibnd) ) END DO END DO ELSE forcenl(ipol,na) = forcenl(ipol,na) - & 2.D0 * fac * deff(ih,ih,na)*& DBLE( CONJG( dbecp(ikb,ibnd) ) * & becp%k(ikb,ibnd) ) END IF END DO ! IF ( upf(nt)%tvanp .OR. newpseudo(nt) ) THEN DO ih = 1, nh(nt) ikb = ijkb0 + ih ! ! ... in US case there is a contribution for jh<>ih. ! ... We use here the symmetry in the interchange ! ... of ih and jh ! DO jh = ( ih + 1 ), nh(nt) jkb = ijkb0 + jh IF (noncolin) THEN ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 forcenl(ipol,na)=forcenl(ipol,na)- & deff_nc(ih,jh,na,ijs)*fac*( & CONJG(dbecp_nc(ikb,is,ibnd))* & becp%nc(jkb,js,ibnd)+ & CONJG(becp%nc(ikb,is,ibnd))* & dbecp_nc(jkb,js,ibnd))- & deff_nc(jh,ih,na,ijs)*fac*( & CONJG(dbecp_nc(jkb,is,ibnd))* & becp%nc(ikb,js,ibnd)+ & CONJG(becp%nc(jkb,is,ibnd))* & dbecp_nc(ikb,js,ibnd) ) END DO END DO ELSE forcenl(ipol,na) = forcenl (ipol,na) - & 2.D0 * fac * deff(ih,jh,na)* & DBLE( CONJG( dbecp(ikb,ibnd) ) * & becp%k(jkb,ibnd) + & dbecp(jkb,ibnd) * & CONJG( becp%k(ikb,ibnd) ) ) END IF END DO !jh END DO !ih END IF ! tvanp ijkb0 = ijkb0 + nh(nt) END IF ! ityp(na) == nt END DO ! nat END DO ! ntyp END DO ! nbnd END DO ! ipol END DO ! nks ! CALL mp_sum( forcenl , intra_bgrp_comm ) ! DEALLOCATE( vkb1 ) IF (noncolin) THEN DEALLOCATE( dbecp_nc ) DEALLOCATE( deff_nc ) ELSE DEALLOCATE( dbecp ) DEALLOCATE( deff ) ENDIF ! ! ... The total D matrix depends on the ionic position via the ! ... augmentation part \int V_eff Q dr, the term deriving from the ! ... derivative of Q is added in the routine addusforce ! CALL addusforce( forcenl ) ! ! ! ... collect contributions across pools ! CALL mp_sum( forcenl, inter_pool_comm ) ! ! ... Since our summation over k points was only on the irreducible ! ... BZ we have to symmetrize the forces. ! CALL symvector ( nat, forcenl ) ! RETURN ! END SUBROUTINE force_us_k ! END SUBROUTINE force_us espresso-5.1/PW/src/symme.f900000644000175000017500000007205312341373025014100 0ustar mbamba! ! Copyright (C) 2008-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE symme USE kinds, ONLY : DP USE cell_base, ONLY : at, bg USE symm_base, ONLY : s, sname, ft, nrot, nsym, t_rev, time_reversal, & irt, invs, invsym ! ! ... Routines used for symmetrization ! SAVE PRIVATE ! ! General-purpose symmetrizaton routines ! PUBLIC :: symscalar, symvector, symtensor, symmatrix, symv, & symtensor3, symmatrix3, crys_to_cart, cart_to_crys ! ! For symmetrization in reciprocal space (all variables are private) ! PUBLIC :: sym_rho_init, sym_rho, sym_rho_deallocate ! LOGICAL :: & no_rho_sym=.true. ! do not perform symetrization of charge density INTEGER :: ngs ! number of symmetry-related G-vector shells TYPE shell_type INTEGER, POINTER :: vect(:) END TYPE shell_type ! shell contains a list of symmetry-related G-vectors for each shell TYPE(shell_type), ALLOCATABLE :: shell(:) ! Arrays used for parallel symmetrization INTEGER, ALLOCATABLE :: sendcnt(:), recvcnt(:), sdispls(:), rdispls(:) ! CONTAINS ! LOGICAL FUNCTION rho_sym_needed ( ) !----------------------------------------------------------------------- rho_sym_needed = .NOT. no_rho_sym END FUNCTION rho_sym_needed ! SUBROUTINE symscalar (nat, scalar) !----------------------------------------------------------------------- ! Symmetrize a function f(na), na=atom index ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nat REAL(DP), intent(INOUT) :: scalar(nat) ! INTEGER :: isym REAL(DP), ALLOCATABLE :: work (:) IF (nsym == 1) RETURN ALLOCATE (work(nat)) work(:) = 0.0_dp DO isym = 1, nsym work (:) = work (:) + scalar(irt(isym,:)) END DO scalar(:) = work(:) / DBLE(nsym) DEALLOCATE (work) END SUBROUTINE symscalar ! SUBROUTINE symvector (nat, vect) !----------------------------------------------------------------------- ! Symmetrize a function f(i,na), i=cartesian component, na=atom index ! e.g. : forces (in cartesian axis) ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nat REAL(DP), intent(INOUT) :: vect(3,nat) ! INTEGER :: na, isym, nar REAL(DP), ALLOCATABLE :: work (:,:) ! IF (nsym == 1) RETURN ! ALLOCATE (work(3,nat)) ! ! bring vector to crystal axis ! DO na = 1, nat work(:,na) = vect(1,na)*at(1,:) + & vect(2,na)*at(2,:) + & vect(3,na)*at(3,:) END DO ! ! symmetrize in crystal axis ! vect (:,:) = 0.0_dp DO na = 1, nat DO isym = 1, nsym nar = irt (isym, na) vect (:, na) = vect (:, na) + & s (:, 1, isym) * work (1, nar) + & s (:, 2, isym) * work (2, nar) + & s (:, 3, isym) * work (3, nar) END DO END DO work (:,:) = vect (:,:) / DBLE(nsym) ! ! bring vector back to cartesian axis ! DO na = 1, nat vect(:,na) = work(1,na)*bg(:,1) + & work(2,na)*bg(:,2) + & work(3,na)*bg(:,3) END DO ! DEALLOCATE (work) ! END SUBROUTINE symvector ! SUBROUTINE symtensor (nat, tens) !----------------------------------------------------------------------- ! Symmetrize a function f(i,j,na), i,j=cartesian components, na=atom index ! e.g. : effective charges (in cartesian axis) ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nat REAL(DP), intent(INOUT) :: tens(3,3,nat) ! INTEGER :: na, isym, nar, i,j,k,l REAL(DP), ALLOCATABLE :: work (:,:,:) ! IF (nsym == 1) RETURN ! ! bring tensor to crystal axis ! DO na=1,nat CALL cart_to_crys ( tens (:,:,na) ) END DO ! ! symmetrize in crystal axis ! ALLOCATE (work(3,3,nat)) work (:,:,:) = 0.0_dp DO na = 1, nat DO isym = 1, nsym nar = irt (isym, na) DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 work (i,j,na) = work (i,j,na) + & s (i,k,isym) * s (j,l,isym) * tens (k,l,nar) END DO END DO END DO END DO END DO END DO tens (:,:,:) = work (:,:,:) / DBLE(nsym) DEALLOCATE (work) ! ! bring tensor back to cartesian axis ! DO na=1,nat CALL crys_to_cart ( tens (:,:,na) ) END DO ! ! END SUBROUTINE symtensor ! !----------------------------------------------------------------------- SUBROUTINE symv ( vect) !-------------------------------------------------------------------- ! ! Symmetrize a vector f(i), i=cartesian components ! The vector is supposed to be axial: inversion does not change it. ! Time reversal changes its sign. Note that only groups compatible with ! a finite magnetization give a nonzero output vector. ! IMPLICIT NONE ! REAL (DP), INTENT(inout) :: vect(3) ! the vector to rotate ! integer :: isym real(DP) :: work (3), segno ! IF (nsym == 1) RETURN ! ! bring vector to crystal axis ! work(:) = vect(1)*at(1,:) + vect(2)*at(2,:) + vect(3)*at(3,:) vect = work work=0.0_DP do isym = 1, nsym segno=1.0_DP IF (sname(isym)(1:3)=='inv') segno=-1.0_DP IF (t_rev(isym)==1) segno=-1.0_DP*segno work (:) = work (:) + segno * ( & s (:, 1, isym) * vect (1) + & s (:, 2, isym) * vect (2) + & s (:, 3, isym) * vect (3) ) enddo work=work/nsym ! ! And back in cartesian coordinates. ! vect(:) = work(1) * bg(:,1) + work(2) * bg(:,2) + work(3) * bg(:,3) ! end subroutine symv ! SUBROUTINE symmatrix ( matr ) !----------------------------------------------------------------------- ! Symmetrize a function f(i,j), i,j=cartesian components ! e.g. : stress, dielectric tensor (in cartesian axis) ! IMPLICIT NONE ! REAL(DP), intent(INOUT) :: matr(3,3) ! INTEGER :: isym, i,j,k,l REAL(DP) :: work (3,3) ! IF (nsym == 1) RETURN ! ! bring matrix to crystal axis ! CALL cart_to_crys ( matr ) ! ! symmetrize in crystal axis ! work (:,:) = 0.0_dp DO isym = 1, nsym DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 work (i,j) = work (i,j) + & s (i,k,isym) * s (j,l,isym) * matr (k,l) END DO END DO END DO END DO END DO matr (:,:) = work (:,:) / DBLE(nsym) ! ! bring matrix back to cartesian axis ! CALL crys_to_cart ( matr ) ! END SUBROUTINE symmatrix ! SUBROUTINE symmatrix3 ( mat3 ) !----------------------------------------------------------------------- ! ! Symmetrize a function f(i,j,k), i,j,k=cartesian components ! e.g. : nonlinear susceptibility ! BEWARE: input in crystal axis, output in cartesian axis ! IMPLICIT NONE ! REAL(DP), intent(INOUT) :: mat3(3,3,3) ! INTEGER :: isym, i,j,k,l,m,n REAL(DP) :: work (3,3,3) ! IF (nsym == 1) RETURN ! work (:,:,:) = 0.0_dp DO isym = 1, nsym DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 DO m = 1, 3 DO n = 1, 3 work (i, j, k) = work (i, j, k) + & s (i, l, isym) * s (j, m, isym) * & s (k, n, isym) * mat3 (l, m, n) END DO END DO END DO END DO END DO END DO END DO mat3 = work/ DBLE(nsym) ! ! Bring to cartesian axis ! CALL crys_to_cart_mat3 ( mat3 ) ! END SUBROUTINE symmatrix3 ! ! SUBROUTINE symtensor3 (nat, tens3 ) !----------------------------------------------------------------------- ! Symmetrize a function f(i,j,k, na), i,j,k=cartesian, na=atom index ! e.g. : raman tensor ! BEWARE: input in crystal axis, output in cartesian axis ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nat REAL(DP), intent(INOUT) :: tens3(3,3,3,nat) ! INTEGER :: na, isym, nar, i,j,k,l,n,m REAL(DP), ALLOCATABLE :: work (:,:,:,:) ! IF (nsym == 1) RETURN ! ! symmetrize in crystal axis ! ALLOCATE (work(3,3,3,nat)) work (:,:,:,:) = 0.0_dp DO na = 1, nat DO isym = 1, nsym nar = irt (isym, na) DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 DO m =1, 3 DO n =1, 3 work (i, j, k, na) = work (i, j, k, na) + & s (i, l, isym) * s (j, m, isym) * & s (k, n, isym) * tens3 (l, m, n, nar) END DO END DO END DO END DO END DO END DO END DO END DO tens3 (:,:,:,:) = work(:,:,:,:) / DBLE (nsym) DEALLOCATE (work) ! ! Bring to cartesian axis ! DO na = 1, nat CALL crys_to_cart_mat3 ( tens3(:,:,:,na) ) END DO ! END SUBROUTINE symtensor3 ! ! Routines for crystal to cartesian axis conversion ! !INTERFACE cart_to_crys ! MODULE PROCEDURE cart_to_crys_mat, cart_to_crys_mat3 !END INTERFACE !INTERFACE crys_to_cart ! MODULE PROCEDURE crys_to_cart !END INTERFACE ! SUBROUTINE cart_to_crys ( matr ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), intent(INOUT) :: matr(3,3) ! REAL(DP) :: work(3,3) INTEGER :: i,j,k,l ! work(:,:) = 0.0_dp DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 work(i,j) = work(i,j) + matr(k,l) * at(k,i) * at(l,j) END DO END DO END DO END DO ! matr(:,:) = work(:,:) ! END SUBROUTINE cart_to_crys ! SUBROUTINE crys_to_cart ( matr ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), intent(INOUT) :: matr(3,3) ! REAL(DP) :: work(3,3) INTEGER :: i,j,k,l ! work(:,:) = 0.0_dp DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 work(i,j) = work(i,j) + & matr(k,l) * bg(i,k) * bg(j,l) END DO END DO END DO END DO matr(:,:) = work(:,:) ! END SUBROUTINE crys_to_cart ! SUBROUTINE crys_to_cart_mat3 ( mat3 ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), intent(INOUT) :: mat3(3,3,3) ! REAL(DP) :: work(3,3,3) INTEGER :: i,j,k,l,m,n ! work(:,:,:) = 0.0_dp DO i = 1, 3 DO j = 1, 3 DO k = 1, 3 DO l = 1, 3 DO m = 1, 3 DO n = 1, 3 work (i, j, k) = work (i, j, k) + & mat3 (l, m, n) * bg (i, l) * bg (j, m) * bg (k, n) END DO END DO END DO END DO END DO END DO mat3(:,:,:) = work (:,:,:) ! END SUBROUTINE crys_to_cart_mat3 ! ! G-space symmetrization ! SUBROUTINE sym_rho_init ( gamma_only ) !----------------------------------------------------------------------- ! ! Initialize arrays needed for symmetrization in reciprocal space ! USE gvect, ONLY : ngm, g ! LOGICAL, INTENT(IN) :: gamma_only ! no_rho_sym = gamma_only .OR. (nsym==1) IF (no_rho_sym) RETURN #ifdef __MPI CALL sym_rho_init_para ( ) #else CALL sym_rho_init_shells( ngm, g ) #endif ! END SUBROUTINE sym_rho_init ! #ifdef __MPI ! SUBROUTINE sym_rho_init_para ( ) !----------------------------------------------------------------------- ! ! Initialize arrays needed for parallel symmetrization ! USE parallel_include USE mp_bands, ONLY : nproc_bgrp, me_bgrp, intra_bgrp_comm USE gvect, ONLY : ngm, gcutm, g, gg ! IMPLICIT NONE ! REAL(DP), PARAMETER :: twothirds = 0.6666666666666666_dp REAL(DP), ALLOCATABLE :: gcut_(:), g_(:,:) INTEGER :: np, ig, ngloc, ngpos, ierr, ngm_ ! ALLOCATE ( sendcnt(nproc_bgrp), recvcnt(nproc_bgrp), & sdispls(nproc_bgrp), rdispls(nproc_bgrp) ) ALLOCATE ( gcut_(nproc_bgrp) ) ! ! the gcut_ cutoffs are estimated in such a way that there is an similar ! number of G-vectors in each shell gcut_(i) < G^2 < gcut_(i+1) ! DO np = 1, nproc_bgrp gcut_(np) = gcutm * np**twothirds/nproc_bgrp**twothirds END DO ! ! find the number of G-vectors in each shell (defined as above) ! beware: will work only if G-vectors are in order of increasing |G| ! ngpos=0 DO np = 1, nproc_bgrp sdispls(np) = ngpos ngloc=0 DO ig=ngpos+1,ngm IF ( gg(ig) > gcut_(np) ) EXIT ngloc = ngloc+1 END DO IF ( ngloc < 1 ) CALL infomsg('sym_rho_init', & 'likely internal error: no G-vectors found') sendcnt(np) = ngloc ngpos = ngpos + ngloc IF ( ngpos > ngm ) & CALL errore('sym_rho','internal error: too many G-vectors', ngpos) END DO IF ( ngpos /= ngm .OR. ngpos /= SUM (sendcnt)) & CALL errore('sym_rho_init', & 'internal error: inconsistent number of G-vectors', ngpos) DEALLOCATE ( gcut_ ) ! ! sendcnt(i) = n_j(i) = number of G-vectors in shell i for processor j (this) ! sdispls(i) = \sum_{k=1}^i n_j(k) = starting position of shell i for proc j ! we need the number and positions of G-vector shells for other processors ! CALL mpi_alltoall( sendcnt, 1, MPI_INTEGER, recvcnt, 1, MPI_INTEGER, & intra_bgrp_comm, ierr) ! rdispls(1) = 0 DO np = 2, nproc_bgrp rdispls(np) = rdispls(np-1)+ recvcnt(np-1) END DO ! ! recvcnt(i) = n_i(j) = number of G-vectors in shell j for processor i ! rdispls(i) = \sum_{k=1}^i n_k(j) = start.pos. of shell j for proc i ! ! now collect G-vector shells on each processor ! ngm_ = SUM(recvcnt) ALLOCATE (g_(3,ngm_)) ! remember that G-vectors have 3 components sendcnt(:) = 3*sendcnt(:) recvcnt(:) = 3*recvcnt(:) sdispls(:) = 3*sdispls(:) rdispls(:) = 3*rdispls(:) CALL mpi_alltoallv ( g , sendcnt, sdispls, MPI_DOUBLE_PRECISION, & g_, recvcnt, rdispls, MPI_DOUBLE_PRECISION, & intra_bgrp_comm, ierr) sendcnt(:) = sendcnt(:)/3 recvcnt(:) = recvcnt(:)/3 sdispls(:) = sdispls(:)/3 rdispls(:) = rdispls(:)/3 ! ! find shells of symmetry-related G-vectors ! CALL sym_rho_init_shells( ngm_, g_ ) ! DEALLOCATE (g_) ! END SUBROUTINE sym_rho_init_para ! #endif ! SUBROUTINE sym_rho_init_shells ( ngm_, g_ ) !----------------------------------------------------------------------- ! ! Initialize G-vector shells needed for symmetrization ! USE constants, ONLY : eps8 USE mp_bands, ONLY : nproc_bgrp IMPLICIT NONE ! INTEGER, INTENT(IN) :: ngm_ REAL(DP), INTENT(IN) :: g_(3,ngm_) ! LOGICAL, ALLOCATABLE :: done(:) INTEGER, ALLOCATABLE :: n(:,:), igsort(:) REAL(DP), ALLOCATABLE :: g2sort_g(:) INTEGER :: i,j,is,ig, iig, jg, ng, sn(3), gshell(3,48) LOGICAL :: found ! ngs = 0 ! shell should be allocated to the number of symmetry shells ! since this is unknown, we use the number of all G-vectors ALLOCATE ( shell(ngm_) ) ALLOCATE ( done(ngm_), n(3,ngm_) ) ALLOCATE ( igsort (ngm_)) DO ig=1,ngm_ ! done(ig) = .false. ! G-vectors are stored as integer indices in crystallographic axis: ! G = n(1)*at(1) + n(2)*at(2) + n(3)*at(3) n(:,ig) = nint ( at(1,:)*g_(1,ig) + at(2,:)*g_(2,ig) + at(3,:)*g_(3,ig) ) ! NULLIFY(shell(ig)%vect) ! END DO ! ! The following algorithm can become very slow if ngm_ is large and ! g vectors are not ordered in increasing order. This happens ! in the parallel case. ! IF (nproc_bgrp > 1 .AND. ngm_ > 20000) THEN ALLOCATE ( g2sort_g(ngm_)) g2sort_g(:)=g_(1,:)*g_(1,:)+g_(2,:)*g_(2,:)+g_(3,:)*g_(3,:) igsort(1) = 0 CALL hpsort_eps( ngm_, g2sort_g, igsort, eps8 ) DEALLOCATE( g2sort_g) ELSE DO ig=1,ngm_ igsort(ig)=ig ENDDO ENDIF ! DO iig=1,ngm_ ! ig=igsort(iig) IF ( done(ig) ) CYCLE ! ! we start a new shell of symmetry-equivalent G-vectors ngs = ngs+1 ! ng: counter on G-vectors in this shell ng = 0 DO is=1,nsym ! integer indices for rotated G-vector sn(:)=s(:,1,is)*n(1,ig)+s(:,2,is)*n(2,ig)+s(:,3,is)*n(3,ig) found = .false. ! check if this rotated G-vector is equivalent to any other ! vector already present in this shell shelloop: DO i=1,ng found = ( sn(1)==gshell(1,i) .and. & sn(2)==gshell(2,i) .and. & sn(3)==gshell(3,i) ) if (found) exit shelloop END DO shelloop IF ( .not. found ) THEN ! add rotated G-vector to this shell ng = ng + 1 IF (ng > 48) CALL errore('sym_rho_init_shell','internal error',48) gshell(:,ng) = sn(:) END IF END DO ! there are ng vectors gshell in shell ngs ! now we have to locate them in the list of G-vectors ALLOCATE ( shell(ngs)%vect(ng)) DO i=1,ng gloop: DO jg=iig,ngm_ j=igsort(jg) IF (done(j)) CYCLE gloop found = ( gshell(1,i)==n(1,j) .and. & gshell(2,i)==n(2,j) .and. & gshell(3,i)==n(3,j) ) IF ( found ) THEN done(j)=.true. shell(ngs)%vect(i) = j EXIT gloop END IF END DO gloop IF (.not. found) CALL errore('sym_rho_init_shell','lone vector',i) END DO ! END DO DEALLOCATE ( n, done ) DEALLOCATE( igsort) END SUBROUTINE sym_rho_init_shells ! !----------------------------------------------------------------------- SUBROUTINE sym_rho (nspin, rhog) !----------------------------------------------------------------------- ! ! Symmetrize the charge density rho in reciprocal space ! Distributed parallel algorithm: collects entire shells of G-vectors ! and corresponding rho(G), calls sym_rho_serial to perform the ! symmetrization, re-distributed rho(G) into original ordering ! rhog(ngm,nspin) components of rho: rhog(ig) = rho(G(:,ig)) ! unsymmetrized on input, symmetrized on output ! nspin=1,2,4 unpolarized, LSDA, non-colinear magnetism ! USE constants, ONLY : eps8, eps6 USE gvect, ONLY : ngm, g USE parallel_include USE mp_bands, ONLY : intra_bgrp_comm ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nspin COMPLEX(DP), INTENT(INOUT) :: rhog(ngm,nspin) ! REAL(DP), allocatable :: g0(:,:), g_(:,:), gg_(:) REAL(DP) :: gg0_, gg1_ COMPLEX(DP), allocatable :: rhog_(:,:) INTEGER :: is, ig, igl, np, ierr, ngm_ ! IF ( no_rho_sym) RETURN #ifndef __MPI ! CALL sym_rho_serial ( ngm, g, nspin, rhog ) ! #else ! ! we transpose the matrix of G-vectors and their coefficients ! ngm_ = SUM(recvcnt) ALLOCATE (rhog_(ngm_,nspin),g_(3,ngm_)) DO is=1,nspin CALL mpi_alltoallv (rhog (1,is) , sendcnt, sdispls, MPI_DOUBLE_COMPLEX,& rhog_(1,is), recvcnt, rdispls, MPI_DOUBLE_COMPLEX, & intra_bgrp_comm, ierr) END DO ! remember that G-vectors have 3 components sendcnt(:) = 3*sendcnt(:) recvcnt(:) = 3*recvcnt(:) sdispls(:) = 3*sdispls(:) rdispls(:) = 3*rdispls(:) CALL mpi_alltoallv ( g , sendcnt, sdispls, MPI_DOUBLE_PRECISION, & g_, recvcnt, rdispls, MPI_DOUBLE_PRECISION, & intra_bgrp_comm, ierr) ! ! Now symmetrize ! CALL sym_rho_serial ( ngm_, g_, nspin, rhog_ ) ! DEALLOCATE ( g_ ) ! ! bring symmetrized rho(G) back to original distributed form ! sendcnt(:) = sendcnt(:)/3 recvcnt(:) = recvcnt(:)/3 sdispls(:) = sdispls(:)/3 rdispls(:) = rdispls(:)/3 DO is = 1, nspin CALL mpi_alltoallv (rhog_(1,is), recvcnt, rdispls, MPI_DOUBLE_COMPLEX, & rhog (1,is), sendcnt, sdispls, MPI_DOUBLE_COMPLEX, & intra_bgrp_comm, ierr) END DO DEALLOCATE ( rhog_ ) #endif ! RETURN END SUBROUTINE sym_rho ! !----------------------------------------------------------------------- SUBROUTINE sym_rho_serial ( ngm_, g_, nspin_, rhog_ ) !----------------------------------------------------------------------- ! ! symmetrize the charge density rho in reciprocal space ! Serial algorithm - requires in input: ! g_(3,ngm_) list of G-vectors ! nspin_ number of spin components to be symmetrized ! rhog_(ngm_,nspin_) rho in reciprocal space: rhog_(ig) = rho(G(:,ig)) ! unsymmetrized on input, symmetrized on output ! USE kinds USE constants, ONLY : tpi ! IMPLICIT NONE ! INTEGER, INTENT (IN) :: ngm_, nspin_ REAL(DP) , INTENT (IN) :: g_( 3, ngm_ ) COMPLEX(DP) , INTENT (INOUT) :: rhog_( ngm_, nspin_ ) ! REAL(DP), ALLOCATABLE :: g0(:,:) REAL(DP) :: sg(3), ft_(3,48), arg COMPLEX(DP) :: fact, rhosum(2), mag(3), magrot(3), magsum(3) INTEGER :: irot(48), ig, isg, igl, ng, ns, nspin_lsda, is LOGICAL, ALLOCATABLE :: done(:) LOGICAL :: non_symmorphic(48) ! ! convert fractional translations to cartesian, in a0 units ! DO ns=1,nsym non_symmorphic(ns) = ( ft(1,ns) /= 0.0_dp .OR. & ft(2,ns) /= 0.0_dp .OR. & ft(3,ns) /= 0.0_dp ) IF ( non_symmorphic(ns) ) ft_(:,ns) = at(:,1)*ft(1,ns) + & at(:,2)*ft(2,ns) + & at(:,3)*ft(3,ns) END DO ! IF ( nspin_ == 4 ) THEN nspin_lsda = 1 ! ELSE IF ( nspin_ == 1 .OR. nspin_ == 2 ) THEN nspin_lsda = nspin_ ELSE CALL errore('sym_rho_serial','incorrect value of nspin',nspin_) END IF ! ! scan shells of G-vectors ! DO igl=1, ngs ! ! symmetrize: \rho_sym(G) = \sum_S rho(SG) for all G-vectors in the star ! ng = SIZE ( shell(igl)%vect ) allocate ( g0(3,ng), done(ng) ) IF ( ng < 1 ) CALL errore('sym_rho_serial','internal error',1) ! ! bring G-vectors to crystal axis ! DO ig=1,ng g0(:,ig) = g_(:,shell(igl)%vect(ig) ) END DO CALL cryst_to_cart (ng, g0, at,-1) ! ! rotate G-vectors ! done(1:ng) = .false. DO ig=1,ng IF ( .NOT. done(ig)) THEN rhosum(:) = (0.0_dp, 0.0_dp) magsum(:) = (0.0_dp, 0.0_dp) ! S^{-1} are needed here DO ns=1,nsym sg(:) = s(:,1,invs(ns)) * g0(1,ig) + & s(:,2,invs(ns)) * g0(2,ig) + & s(:,3,invs(ns)) * g0(3,ig) irot(ns) = 0 DO isg=1,ng IF ( ABS ( sg(1)-g0(1,isg) ) < 1.0D-5 .AND. & ABS ( sg(2)-g0(2,isg) ) < 1.0D-5 .AND. & ABS ( sg(3)-g0(3,isg) ) < 1.0D-5 ) THEN irot(ns) = isg EXIT END IF END DO IF ( irot(ns) < 1 .OR. irot(ns) > ng ) & CALL errore('sym_rho_serial','internal error',2) ! isg is the index of rotated G-vector isg = shell(igl)%vect(irot(ns)) ! ! non-spin-polarized case: component 1 is the charge ! LSDA case: components 1,2 are spin-up and spin-down charge ! non colinear case: component 1 is the charge density, ! components 2,3,4 are the magnetization ! non colinear case: components 2,3,4 are the magnetization ! IF ( nspin_ == 4 ) THEN ! bring magnetization to crystal axis mag(:) = rhog_(isg, 2) * bg(1,:) + & rhog_(isg, 3) * bg(2,:) + & rhog_(isg, 4) * bg(3,:) ! rotate and add magnetization magrot(:) = s(1,:,invs(ns)) * mag(1) + & s(2,:,invs(ns)) * mag(2) + & s(3,:,invs(ns)) * mag(3) IF (sname(invs(ns))(1:3)=='inv') magrot(:)=-magrot(:) IF (t_rev(invs(ns)) == 1) magrot(:)=-magrot(:) END IF IF ( non_symmorphic (ns) ) THEN arg = tpi * ( g_(1,isg) * ft_(1,ns) + & g_(2,isg) * ft_(2,ns) + & g_(3,isg) * ft_(3,ns) ) fact = CMPLX ( COS(arg), -SIN(arg), KIND=dp ) DO is=1,nspin_lsda rhosum(is) = rhosum(is) + rhog_(isg, is) * fact END DO IF ( nspin_ == 4 ) & magsum(:) = magsum(:) + magrot(:) * fact ELSE DO is=1,nspin_lsda rhosum(is) = rhosum(is) + rhog_(isg, is) END DO IF ( nspin_ == 4 ) & magsum(:) = magsum(:) + magrot(:) END IF END DO ! DO is=1,nspin_lsda rhosum(is) = rhosum(is) / nsym END DO IF ( nspin_ == 4 ) magsum(:) = magsum(:) / nsym ! ! now fill the shell of G-vectors with the symmetrized value ! DO ns=1,nsym isg = shell(igl)%vect(irot(ns)) IF ( nspin_ == 4 ) THEN ! rotate magnetization magrot(:) = s(1,:,ns) * magsum(1) + & s(2,:,ns) * magsum(2) + & s(3,:,ns) * magsum(3) IF (sname(ns)(1:3)=='inv') magrot(:)=-magrot(:) IF (t_rev(ns) == 1) magrot(:)=-magrot(:) ! back to cartesian coordinates mag(:) = magrot(1) * at(:,1) + & magrot(2) * at(:,2) + & magrot(3) * at(:,3) END IF IF ( non_symmorphic (ns) ) THEN arg = tpi * ( g_(1,isg) * ft_(1,ns) + & g_(2,isg) * ft_(2,ns) + & g_(3,isg) * ft_(3,ns) ) fact = CMPLX ( COS(arg), SIN(arg), KIND=dp ) DO is=1,nspin_lsda rhog_(isg,is) = rhosum(is) * fact END DO IF ( nspin_ == 4 ) THEN DO is=2,nspin_ rhog_(isg, is) = mag(is-1)*fact END DO END IF ELSE DO is=1,nspin_lsda rhog_(isg,is) = rhosum(is) END DO IF ( nspin_ == 4 ) THEN DO is=2,nspin_ rhog_(isg, is) = mag(is-1) END DO END IF END IF done(irot(ns)) =.true. END DO END IF END DO DEALLOCATE ( done, g0 ) END DO ! RETURN END SUBROUTINE sym_rho_serial SUBROUTINE sym_rho_deallocate ( ) ! IF ( ALLOCATED (rdispls) ) DEALLOCATE (rdispls) IF ( ALLOCATED (recvcnt) ) DEALLOCATE (recvcnt) IF ( ALLOCATED (sdispls) ) DEALLOCATE (sdispls) IF ( ALLOCATED (sendcnt) ) DEALLOCATE (sendcnt) IF ( ALLOCATED (shell) ) THEN DO i=1,SIZE(shell) IF ( ASSOCIATED(shell(i)%vect) ) DEALLOCATE (shell(i)%vect) END DO DEALLOCATE (shell) END IF ! END SUBROUTINE sym_rho_deallocate ! END MODULE symme espresso-5.1/PW/src/h_1psi.f900000644000175000017500000000312312341373025014121 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE h_1psi( lda, n, psi, hpsi, spsi ) !---------------------------------------------------------------------------- ! ! ... This routine applies the Hamiltonian and the S matrix ! ... to a vector psi and puts the result in hpsi and spsi ! ... Wrapper routine - calls h_psi and s_psi ! USE kinds, ONLY: DP USE bp, ONLY: lelfield USE noncollin_module, ONLY: noncolin, npol USE realus, ONLY : real_space, fft_orbital_gamma, bfft_orbital_gamma, & calbec_rs_gamma, s_psir_gamma, initialisation_level ! IMPLICIT NONE ! INTEGER :: lda, n COMPLEX (DP) :: psi(lda*npol,1), hpsi(n), spsi(n,1) ! ! CALL start_clock( 'h_1psi' ) ! !OBM: I know this form is somewhat inelegant but, leaving the pre-real_space part intact ! makes it easier to debug probable errors, please do not "beautify" if (real_space) then CALL h_psi( lda, n, 1, psi, hpsi ) call fft_orbital_gamma(psi,1,1) !transform the orbital to real space call s_psir_gamma(1,1) call bfft_orbital_gamma(spsi,1,1) else CALL h_psi( lda, n, 1, psi, hpsi ) CALL s_psi( lda, n, 1, psi, spsi ) endif ! CALL stop_clock( 'h_1psi' ) ! RETURN ! END SUBROUTINE h_1psi espresso-5.1/PW/src/write_ns.f900000644000175000017500000002153512341373025014577 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine write_ns !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : rytoev USE ions_base, ONLY : nat, ntyp => nsp, ityp USE lsda_mod, ONLY : nspin USE io_global, ONLY : stdout USE scf, ONLY : rho USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, Hubbard_U, Hubbard_J, & Hubbard_alpha, lda_plus_u_kind, Hubbard_J0, & Hubbard_beta ! implicit none ! integer :: is, na, nt, m1, m2, ldim ! counter on spin component ! counters on atoms and their type ! counters on d components integer, parameter :: ldmx = 7 complex(DP) :: f (ldmx, ldmx), vet (ldmx, ldmx) real(DP) :: lambda (ldmx), nsum, nsuma(2) WRITE (stdout,*) '--- enter write_ns ---' if ( 2 * Hubbard_lmax + 1 > ldmx ) & call errore ('write_ns', 'ldmx is too small', 1) !-- ! output of +U parameters ! write (stdout,*) 'LDA+U parameters:' if (lda_plus_u_kind.eq.0) then do nt = 1, ntyp if (Hubbard_U(nt) /= 0.d0 .or. Hubbard_alpha(nt) /= 0.d0) then if (Hubbard_J0(nt) /= 0.d0 .or. Hubbard_beta(nt) /=0.d0) then write (stdout,'(a,i2,a,f12.8)') 'U(',nt,') =', Hubbard_U(nt)*rytoev write (stdout,'(a,i2,a,f12.8)') 'J0(',nt,') =', Hubbard_J0(nt)*rytoev write (stdout,'(a,i2,a,f12.8)') 'alpha(',nt,') =', Hubbard_alpha(nt)*rytoev write (stdout,'(a,i2,a,f12.8)') 'beta(',nt,') =', Hubbard_beta(nt)*rytoev else write (stdout,'(a,i2,a,f12.8)') 'U(',nt,') =', Hubbard_U(nt)*rytoev write (stdout,'(a,i2,a,f12.8)') 'alpha(',nt,') =', Hubbard_alpha(nt)*rytoev end if endif enddo else do nt = 1, ntyp if (Hubbard_U(nt) /= 0.d0) then if (Hubbard_l(nt).eq.0) then write (stdout,'(a,i2,a,f12.8)') 'U(',nt,') =', Hubbard_U(nt) * rytoev elseif (Hubbard_l(nt).eq.1) then write (stdout,'(2(a,i3,a,f9.4,3x))') 'U(',nt,') =', Hubbard_U(nt)*rytoev, & 'J(',nt,') =', Hubbard_J(1,nt)*rytoev elseif (Hubbard_l(nt).eq.2) then write (stdout,'(3(a,i3,a,f9.4,3x))') 'U(',nt,') =', Hubbard_U(nt)*rytoev, & 'J(',nt,') =', Hubbard_J(1,nt)*rytoev, & 'B(',nt,') =', Hubbard_J(2,nt)*rytoev elseif (Hubbard_l(nt).eq.3) then write (stdout,'(4(a,i3,a,f9.4,3x))') 'U (',nt,') =', Hubbard_U(nt)*rytoev, & 'J (',nt,') =', Hubbard_J(1,nt)*rytoev, & 'E2(',nt,') =', Hubbard_J(2,nt)*rytoev, & 'E3(',nt,') =', Hubbard_J(3,nt)*rytoev endif endif enddo endif !-- nsum = 0.d0 do na = 1, nat nt = ityp (na) if (Hubbard_U(nt) /= 0.d0 .or. Hubbard_alpha(nt) /= 0.d0) then ldim = 2 * Hubbard_l(nt) + 1 nsuma = 0.d0 do is = 1, nspin do m1 = 1, ldim nsuma(is) = nsuma(is) + rho%ns (m1, m1, is, na) enddo nsum = nsum + nsuma(is) enddo if (nspin.eq.1) then WRITE( stdout,'("atom ",i4,3x,"Tr[ns(na)] = ",f9.5)') & na, 2.d0*nsuma(1) else WRITE( stdout,'("atom ",i4,3x,"Tr[ns(na)] (up, down, total) = ",3f9.5)') & na, nsuma(1), nsuma(2), nsuma(1) + nsuma(2) endif do is = 1, nspin do m1 = 1, ldim do m2 = 1, ldim f (m1, m2) = rho%ns (m1, m2, is, na) enddo enddo call cdiagh(ldim, f, ldmx, lambda, vet) if (nspin.ne.1) write( stdout,'(" spin ",i2)') is WRITE( stdout,*) ' eigenvalues: ' WRITE( stdout,'(7f7.3)') (lambda(m1), m1=1, ldim) WRITE( stdout,*) ' eigenvectors:' do m1 = 1, ldim WRITE( stdout,'(7f7.3)') ( REAL(vet(m1,m2))**2 + & AIMAG(vet(m1,m2))**2, m2=1, ldim ) enddo WRITE( stdout,*) ' occupations:' do m1 = 1, ldim WRITE( stdout,'(7f7.3)') ( DBLE(f(m1,m2)), m2=1, ldim ) enddo enddo if (nspin.ne.1) write(stdout,'(''atomic mag. moment = '',f12.6)') & nsuma(1) - nsuma(2) endif enddo if (nspin.eq.1) nsum = 2.d0 * nsum WRITE( stdout, '(a,1x,f11.6)') 'N of occupied +U levels =', nsum WRITE( stdout,*) '--- exit write_ns ---' return end subroutine write_ns subroutine write_ns_nc !--------------------------------- ! Noncollinear version (A. Smogunov). ! USE kinds, ONLY : DP USE constants, ONLY : rytoev USE ions_base, ONLY : nat, ntyp => nsp, ityp USE noncollin_module, ONLY : npol USE io_global, ONLY : stdout USE scf, ONLY : rho USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, Hubbard_alpha, & Hubbard_U, Hubbard_J ! implicit none ! integer :: is, js, i, na, nt, m1, m2, ldim integer, parameter :: ldmx = 7 complex(DP) :: f (2*ldmx, 2*ldmx), vet (2*ldmx, 2*ldmx) real(DP) :: lambda (2*ldmx), nsum, nsuma(2), ns, mx, my, mz WRITE (stdout,*) '--- enter write_ns ---' if ( 2 * Hubbard_lmax + 1 > ldmx ) & call errore ('write_ns', 'ldmx is too small', 1) !-- ! output of +U parameters ! write (stdout,*) 'LDA+U parameters:' do nt = 1, ntyp if (Hubbard_U(nt) /= 0.d0) then if (Hubbard_l(nt).eq.0) then write (stdout,'(a,i2,a,f12.8)') 'U(',nt,') =', Hubbard_U(nt) * rytoev elseif (Hubbard_l(nt).eq.1) then write (stdout,'(2(a,i3,a,f9.4,3x))') 'U(',nt,') =', Hubbard_U(nt)*rytoev, & 'J(',nt,') =', Hubbard_J(1,nt)*rytoev elseif (Hubbard_l(nt).eq.2) then write (stdout,'(3(a,i3,a,f9.4,3x))') 'U(',nt,') =', Hubbard_U(nt)*rytoev, & 'J(',nt,') =', Hubbard_J(1,nt)*rytoev, & 'B(',nt,') =', Hubbard_J(2,nt)*rytoev elseif (Hubbard_l(nt).eq.3) then write (stdout,'(4(a,i3,a,f9.4,3x))') 'U (',nt,') =', Hubbard_U(nt)*rytoev, & 'J (',nt,') =', Hubbard_J(1,nt)*rytoev, & 'E2(',nt,') =', Hubbard_J(2,nt)*rytoev, & 'E3(',nt,') =', Hubbard_J(3,nt)*rytoev endif endif enddo !-- nsum = 0.d0 do na = 1, nat nt = ityp (na) if (Hubbard_U(nt) /= 0.d0 .or. Hubbard_alpha(nt) /= 0.d0) then ldim = 2 * Hubbard_l(nt) + 1 nsuma = 0.d0 do is = 1, npol i = is**2 do m1 = 1, ldim nsuma(is) = nsuma(is) + rho%ns_nc(m1, m1, i, na) end do end do nsum = nsum + nsuma(1) + nsuma(2) WRITE( stdout,'("atom ",i4,3x,"Tr[ns(na)] (up, down, total) = ",3f9.5)') & na, nsuma(1), nsuma(2), nsuma(1) + nsuma(2) do m1 = 1, ldim do m2 = 1, ldim f(m1, m2) = rho%ns_nc(m1, m2, 1, na) f(m1, ldim+m2) = rho%ns_nc(m1, m2, 2, na) f(ldim+m1, m2) = rho%ns_nc(m1, m2, 3, na) f(ldim+m1, ldim+m2) = rho%ns_nc(m1, m2, 4, na) enddo enddo call cdiagh(2*ldim, f, 2*ldmx, lambda, vet) WRITE( stdout,*) 'eigenvalues: ' WRITE( stdout,'(14f7.3)') (lambda(m1), m1=1, 2*ldim) WRITE( stdout,*) 'eigenvectors:' do m1 = 1, 2*ldim WRITE( stdout,'(14f7.3)') ( REAL(vet(m1,m2))**2 + & AIMAG(vet(m1,m2))**2, m2=1, 2*ldim ) enddo WRITE( stdout,*) 'occupations, | n_(i1, i2)^(sigma1, sigma2) |:' do m1 = 1, 2*ldim WRITE( stdout,'(14f7.3)') ( sqrt(REAL(f(m1,m2))**2+ & AIMAG(f(m1,m2))**2), m2=1, 2*ldim) enddo !-- calculate the spin moment on +U atom ! mx = 0.d0 my = 0.d0 mz = 0.d0 do m1 = 1, 2 * Hubbard_l(nt) + 1 mx = mx + DBLE( rho%ns_nc(m1, m1, 2, na) + rho%ns_nc(m1, m1, 3, na) ) my = my + 2.d0 * AIMAG( rho%ns_nc(m1, m1, 2, na) ) mz = mz + DBLE( rho%ns_nc(m1, m1, 1, na) - rho%ns_nc(m1, m1, 4, na) ) enddo write(stdout,'(''atomic mx, my, mz = '',3f12.6)') mx, my, mz !-- endif enddo WRITE( stdout, '(a,1x,f11.6)') 'N of occupied +U levels =', nsum WRITE( stdout,*) '--- exit write_ns ---' return end subroutine write_ns_nc espresso-5.1/PW/src/symmetrize_at.f900000644000175000017500000000712112341373025015634 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine symmetrize_at(nsym, s, invs, ft, irt, nat, tau, at, bg, alat, omega) !----------------------------------------------------------------------- ! ! force atomic coordinates to have the symmetry of a given point group ! do the same for ! USE io_global, ONLY : stdout USE cellmd, ONLY: at_old, lmovecell USE kinds implicit none ! ! input variables ! integer, intent(in) :: nsym, s(3,3,48), invs(48), nat, irt (48, nat) real(DP), intent(in) :: ft (3, 48) real(DP), intent(inout) :: tau (3, nat), at (3, 3), bg (3, 3), alat, omega ! ! local variables ! integer :: na, icar, ipol, jpol, kpol, lpol, irot real(DP) , allocatable :: xau (:,:) ! atomic coordinates in crystal axis real(DP) :: work, bg_old(3,3), sat(3,3), wrk(3,3), ba(3,3) ! allocate(xau(3,nat)) ! ! Compute the coordinates of each atom in the basis of ! the direct lattice vectors ! xau = tau tau = 0.d0 call cryst_to_cart( nat, xau, bg, -1 ) do irot = 1, nsym do na = 1, nat do kpol = 1, 3 work = s (1, kpol, irot) * xau (1, na) + & s (2, kpol, irot) * xau (2, na) + & s (3, kpol, irot) * xau (3, na) - & ft(kpol,irot) tau (kpol, irt(irot,na)) = tau (kpol, irt(irot,na)) + work & - nint(work-xau(kpol,irt(irot,na))) enddo enddo enddo tau (:,:) = tau(:,:)/nsym ! ! If the cell is moving then the lattice vectors has to be ! symmetrized as well ! if (lmovecell) then CALL recips( at_old(1,1), at_old(1,2), at_old(1,3), & bg_old(1,1), bg_old(1,2), bg_old(1,3) ) do ipol=1,3 do jpol=1,3 ba(ipol,jpol) = bg_old(1,ipol) * at(1,jpol) + & bg_old(2,ipol) * at(2,jpol) + & bg_old(3,ipol) * at(3,jpol) end do end do at = 0.d0 ! ! at(i) = 1/nsym sum_S at_old(m) S(l,m) invS(i,k) ! do irot=1,nsym do icar = 1, 3 do lpol = 1, 3 sat(icar,lpol) = at_old(icar,1) * s(lpol,1,irot) & + at_old(icar,2) * s(lpol,2,irot) & + at_old(icar,3) * s(lpol,3,irot) end do end do do icar = 1, 3 do kpol =1, 3 wrk(icar,kpol) = sat(icar,1) * ba(1,kpol) & + sat(icar,2) * ba(2,kpol) & + sat(icar,3) * ba(3,kpol) end do end do do icar = 1, 3 do ipol =1, 3 at(icar,ipol) = at(icar,ipol) & + wrk(icar,1) * s(ipol,1,invs(irot)) & + wrk(icar,2) * s(ipol,2,invs(irot)) & + wrk(icar,3) * s(ipol,3,invs(irot)) end do end do end do at(:,:) = at(:,:) / nsym CALL volume( alat, at(1,1), at(1,2), at(1,3), omega ) CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) end if ! ! deallocate work space ! deallocate (xau) ! call cryst_to_cart(nat, tau, at, 1) write (stdout,*) " SYMMETRIZED ATOMIC COORDINATES " call output_tau(lmovecell, .FALSE.) ! return end subroutine symmetrize_at espresso-5.1/PW/src/plugin_read_input.f900000644000175000017500000000134212341373025016447 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine plugin_read_input() ! ! This routine is used for reading ! plugin input files ! DO NOT REMOVE THE TAGS ! ***ADDSON_NAME KIND_OF_PATCH*** ! USE plugin_flags USE input_parameters, ONLY : nat, ntyp USE input_parameters, ONLY : assume_isolated, ibrav ! ! ***Environ MODULES BEGIN*** ! ***Environ MODULES END*** ! implicit none ! ! ***Environ VARIABLES BEGIN*** ! ***Environ VARIABLES END*** ! ! ***Environ CALLS BEGIN*** ! ***Environ CALLS END*** ! end subroutine plugin_read_input espresso-5.1/PW/src/h_epsi_her_set.f900000755000175000017500000015025412341373025015731 0ustar mbamba! ! Copyright (C) 2005 Paolo Umari ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine h_epsi_her_set(pdir, e_field) !----------------------------------------------------------------------- ! ! this subroutine builds the hermitean operators w_k w_k*, ! (as in Souza,et al. PRB B 69, 085106 (2004)) ! ! wavefunctions from previous iteration are read into 'evcel' ! spin polarized systems supported only with fixed occupations USE noncollin_module, ONLY : noncolin, npol USE spin_orb, ONLY: lspinorb USE kinds, ONLY : DP USE us USE wvfct, ONLY : igk, g2kin, npwx, npw, nbnd, ecutwfc USE ldaU, ONLY : lda_plus_u USE lsda_mod, ONLY : current_spin, nspin USE scf, ONLY : vrs USE gvect USE fft_base, ONLY : dfftp USE uspp USE uspp_param, ONLY: upf, nh, nhm, nbetam, lmaxq USE bp, ONLY : nppstr_3d, fact_hepsi, evcel, evcp=>evcelp, & evcm=>evcelm, mapgp_global, mapgm_global, nx_el USE klist USE cell_base, ONLY: at, alat, tpiba, omega, tpiba2,bg USE ions_base, ONLY: ityp, tau, nat,ntyp => nsp USE io_files, ONLY: iunwfc, nwordwfc, iunefieldm, iunefieldp USE buffers, ONLY: get_buffer, save_buffer USE constants, ONLY : e2, pi, tpi, fpi USE fixed_occ USE mp, ONLY : mp_sum USE mp_bands, ONLY : intra_bgrp_comm USE becmod, ONLY : bec_type, becp, calbec,allocate_bec_type, deallocate_bec_type ! implicit none ! INTEGER, INTENT(in) :: pdir!direction on which the polarization is calculated REAL(DP) :: e_field!electric field along pdir ! ! --- Internal definitions --- COMPLEX(DP), ALLOCATABLE :: evct(:,:)!for temporary wavefunctios INTEGER :: i,ipol INTEGER :: igk1(npwx) INTEGER :: igk0(npwx) INTEGER :: ig INTEGER :: info INTEGER :: is INTEGER :: iv INTEGER :: ivpt(nbnd) INTEGER :: j INTEGER :: jkb INTEGER :: jkb_bp INTEGER :: jkb1 INTEGER :: jv INTEGER :: m INTEGER :: mb INTEGER :: mk1 INTEGER :: mk2 INTEGER :: mk3 INTEGER :: n1 INTEGER :: n2 INTEGER :: n3 INTEGER :: na INTEGER :: nb INTEGER :: ng INTEGER :: nhjkb INTEGER :: nhjkbm INTEGER :: nkbtona(nkb) INTEGER :: nkbtonh(nkb) INTEGER :: np INTEGER :: npw1 INTEGER :: npw0 !INTEGER :: nstring INTEGER :: nt INTEGER :: ik_stringa!k-point index inside string REAL(dp) :: dk(3) REAL(dp) :: dkm(3)! -dk REAL(dp) :: dkmod REAL(dp) :: eps REAL(dp) :: fac REAL(dp) :: g2kin_bp(npwx) REAL(dp) :: gpar(3) REAL(dp) :: gtr(3) !REAL(dp) :: gvec REAL(dp), ALLOCATABLE :: ln(:,:,:) REAL(dp), ALLOCATABLE :: ln0(:,:,:)!map g-space global to g-space k-point dependent REAL(dp) :: qrad_dk(nbetam,nbetam,lmaxq,ntyp) REAL(dp) :: ylm_dk(lmaxq*lmaxq) COMPLEX(dp), ALLOCATABLE :: aux(:) COMPLEX(dp), ALLOCATABLE :: aux0(:) ! Also for noncollinear calculation COMPLEX(DP), ALLOCATABLE :: aux_2(:) COMPLEX(DP), ALLOCATABLE :: aux0_2(:),aux0vec(:,:),aux1vec(:,:) COMPLEX(dp) :: cdet(2) COMPLEX(dp) :: cdwork(nbnd) COMPLEX(dp), ALLOCATABLE :: mat(:,:) COMPLEX(dp) :: pref COMPLEX(dp) :: q_dk(nhm,nhm,ntyp) COMPLEX(dp) :: q_dkp(nhm,nhm,ntyp)!to store the terms T^dagger e^(iGx) T COMPLEX(dp) :: struc(nat) COMPLEX(dp) :: zdotc COMPLEX(dp) :: sca,sca1 COMPLEX(dp) :: ps(nkb,nbnd*npol) COMPLEX(dp) :: matbig(nks,nbnd,nbnd) INTEGER :: mdone(nks) INTEGER :: ijkb0, ibnd,jh, ih, ikb, ik LOGICAL, ALLOCATABLE :: l_cal(:) ! flag for empty/occupied states INTEGER, ALLOCATABLE :: map_g(:) TYPE(bec_type) :: becp_bp,becp0 REAL(dp) :: dkfact LOGICAL :: l_para! if true new parallel treatment COMPLEX(kind=DP), ALLOCATABLE :: aux_g(:) COMPLEX(kind=DP), ALLOCATABLE :: aux_g_2(:) ! non-collinear case COMPLEX(DP), ALLOCATABLE :: q_dk_so(:,:,:,:),q_dkp_so(:,:,:,:) ! --- Define a small number --- eps=0.000001d0 allocate(mat(nbnd,nbnd)) if(ABS(e_field) --- ! --- e^i(k-k')*R = --- ! --- also = = becp^* --- end if END DO END DO ! call mp_sum( mat, intra_bgrp_comm ) ! DO nb=1,nbnd DO mb=1,nbnd IF ( l_cal(nb) .AND. l_cal(mb) ) THEN if(okvan) then pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb if(lspinorb) THEN DO j = 1,nhjkbm pref = pref+CONJG(becp_bp%nc(jkb,1,nb))* becp0%nc(jkb1+j,1,mb) & *q_dkp_so(nhjkb,j,1,np)*CONJG(struc(na)) pref= pref+CONJG(becp_bp%nc(jkb,1,nb))* becp0%nc(jkb1+j,2,mb) & *q_dkp_so(nhjkb,j,2,np)*CONJG(struc(na)) pref= pref +CONJG(becp_bp%nc(jkb,2,nb))* becp0%nc(jkb1+j,1,mb) & *q_dkp_so(nhjkb,j,3,np)*CONJG(struc(na)) pref= pref +CONJG(becp_bp%nc(jkb,2,nb))* becp0%nc(jkb1+j,2,mb) & *q_dkp_so(nhjkb,j,4,np)*CONJG(struc(na)) ENDDO ELSE DO j = 1,nhjkbm pref = pref+CONJG(becp_bp%k(jkb,nb))*becp0%k(jkb1+j,mb) & & *q_dkp(nhjkb,j,np)*CONJG(struc(na)) ENDDO END IF ENDDO mat(nb,mb) = mat(nb,mb) + pref endif ENDIF ENDDO ENDDO ! --- Calculate matrix inverse --- CALL zgefa(mat,nbnd,nbnd,ivpt,info) CALL errore('h_epsi_her_set','error in zgefa',abs(info)) CALL zgedi(mat,nbnd,nbnd,ivpt,cdet,cdwork,1) matbig(nx_el(ik,pdir),:,:)=mat mdone(nx_el(ik,pdir))=1 ELSE mat=matbig(nx_el(ik,pdir),:,:) END IF ! mat=S^-1(k,k-1) do ig=1,npw0 gtr(1)=g(1,igk0(ig)) gtr(2)=g(2,igk0(ig)) gtr(3)=g(3,igk0(ig)) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & & +gtr(3)*at(3,3)) ng=ln0(n1,n2,n3) if(ng .gt. 0) then do m=1,nbnd do nb=1,nbnd evcm(ng,m,pdir)=evcm(ng,m,pdir) + mat(nb,m)*evct(ig,nb) IF (noncolin) evcm(ng+npwx,m,pdir)=evcm(ng+npwx,m,pdir) & +mat(nb,m)*evct(ig+npwx,nb) enddo enddo end if ENDIF enddo ! add US terms into evcm ! calculate |beta_(ik,na,ih)>Q_dkp(na,ih,ij)<|beta_(ik-1,na,ih)| if(okvan) then evct(:,:) = (0.d0, 0.d0) ps (:,:) = (0.d0, 0.d0) ijkb0 = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then do ibnd = 1, nbnd do jh = 1, nh (nt) jkb = ijkb0 + jh do ih = 1, nh (nt) ikb = ijkb0 + ih if(lspinorb) then ps (ikb, (ibnd-1)*npol+1) = ps (ikb,(ibnd-1)*npol+1 ) + & q_dkp_so(ih,jh,1,ityp(na))*CONJG(struc(na))* becp0%nc(jkb,1,ibnd) ps (ikb, (ibnd-1)*npol+1) = ps (ikb,(ibnd-1)*npol+1 ) + & q_dkp_so(ih,jh,2,ityp(na))*CONJG(struc(na))* becp0%nc(jkb,2,ibnd) ps (ikb, (ibnd-1)*npol+2) = ps (ikb,(ibnd-1)*npol+2 ) + & q_dkp_so(ih,jh,3,ityp(na))*CONJG(struc(na))* becp0%nc(jkb,1,ibnd) ps (ikb, (ibnd-1)*npol+2) = ps (ikb,(ibnd-1)*npol+2 ) + & q_dkp_so(ih,jh,4,ityp(na))*CONJG(struc(na))* becp0%nc(jkb,2,ibnd) else ps (ikb, ibnd) = ps (ikb, ibnd) + & q_dkp(ih,jh,ityp(na))*CONJG(struc(na))* becp0%k(jkb,ibnd) endif enddo enddo enddo ijkb0 = ijkb0 + nh (nt) endif enddo enddo call ZGEMM ('N', 'N', npw1, nbnd*npol , nkb, (1.d0, 0.d0) , vkb, &!vkb is relative to the last ik read npwx, ps, nkb, (1.d0, 0.d0) , evct, npwx) do m=1,nbnd do nb=1,nbnd do ig=1,npw1 evcm(ig,m,pdir)=evcm(ig,m,pdir) + mat(nb,m)*evct(ig,nb) enddo if(noncolin) then do ig=1,npw1 evcm(ig+npwx,m,pdir)=evcm(ig+npwx,m,pdir) + mat(nb,m)*evct(ig+npwx,nb) enddo endif enddo enddo endif ! --- End of dot products between wavefunctions and betas --- ELSE !(ik_stringa == 1) CALL gk_sort(xk(1,nx_el(ik+nppstr_3d(pdir)-1,pdir)),ngm,g,ecutwfc/tpiba2, & & npw0,igk0,g2kin_bp) CALL get_buffer (evct,nwordwfc,iunwfc,nx_el(ik+nppstr_3d(pdir)-1,pdir)) ! ! --- Calculate dot products between wavefunctions ! --- Dot wavefunctions and betas for PREVIOUS k-point --- if(okvan) then CALL init_us_2 (npw0,igk0,xk(1,nx_el(ik+nppstr_3d(pdir)-1,pdir)),vkb) CALL calbec( npw0, vkb, evct, becp0 ) endif ! --- Dot wavefunctions and betas for CURRENT k-point --- CALL gk_sort(xk(1,nx_el(ik,pdir)),ngm,g,ecutwfc/tpiba2, & & npw1,igk1,g2kin_bp) ! --- Recalculate FFT correspondence (see ggen.f90) --- if(.not.l_para) then ln0=0!set to 0 DO ig=1,npw1 mk1=nint(g(1,igk1(ig))*at(1,1)+g(2,igk1(ig))*at(2,1)+g(3,igk1(ig))*at(3,1)) mk2=nint(g(1,igk1(ig))*at(1,2)+g(2,igk1(ig))*at(2,2)+g(3,igk1(ig))*at(3,2)) mk3=nint(g(1,igk1(ig))*at(1,3)+g(2,igk1(ig))*at(2,3)+g(3,igk1(ig))*at(3,3)) ln0(mk1,mk2,mk3) = ig END DO endif if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(ik,pdir)),vkb) CALL calbec( npw1, vkb, evcel, becp_bp ) endif ! --- Matrix elements calculation --- IF(mdone(nx_el(ik,pdir))==0) THEN mat=(0.d0,0.d0) if(.not. l_para) then map_g(:) = 0 do ig=1,npw0 ! --- If k'=k+G_o, the relation psi_k+G_o (G-G_o) --- ! --- = psi_k(G) is used, gpar=G_o, gtr = G-G_o --- gtr(1)=g(1,igk0(ig)) + gpar(1) gtr(2)=g(2,igk0(ig)) + gpar(2) gtr(3)=g(3,igk0(ig)) + gpar(3) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & +gtr(3)*at(3,3)) ng=ln(n1,n2,n3) IF ((ABS(g(1,ng)-gtr(1)) > eps) .OR. & (ABS(g(2,ng)-gtr(2)) > eps) .OR. & (ABS(g(3,ng)-gtr(3)) > eps)) THEN WRITE(6,*) ' error hepsiher: translated G=', & gtr(1),gtr(2),gtr(3), & ' with crystal coordinates',n1,n2,n3, & ' corresponds to ng=',ng,' but G(ng)=', & g(1,ng),g(2,ng),g(3,ng) WRITE(6,*) ' probably because G_par is NOT', & ' a reciprocal lattice vector ' WRITE(6,*) ' Possible choices as smallest ', & ' G_par:' DO i=1,50 WRITE(6,*) ' i=',i,' G=', & g(1,i),g(2,i),g(3,i) ENDDO STOP ENDIF ELSE WRITE(6,*) ' |gtr| > gcutm for gtr=', & gtr(1),gtr(2),gtr(3) STOP END IF map_g(ig)=ng enddo endif ! OPTIMIZATION BY AM ! NOTE THERE ARE TOO MANY COMMUNICATION CALLS FOR GLOBAL ARRAY ! CAN REDUCE THEM SIGNIFICANTLY !!! ! NOTE CHANGED ORDER OF LOOPS OVER BANDS!!! DO mb=1,nbnd IF(l_para) THEN !allocate global array allocate(aux_g(ngm_g)) aux_g=(0.d0,0.d0) IF (noncolin) THEN allocate(aux_g_2(ngm_g)) aux_g_2=(0.d0,0.d0) END IF !put psi1 on global array do ig=1,npw0 aux_g(mapgp_global(ig_l2g(igk0(ig)),pdir))=evct(ig,mb) IF (noncolin) aux_g_2(mapgp_global(ig_l2g(igk0(ig)),pdir))=evct(ig+npwx,mb) enddo call mp_sum(aux_g(:),intra_bgrp_comm) IF (noncolin) call mp_sum(aux_g_2(:),intra_bgrp_comm) END IF DO nb=1,nbnd IF ( .NOT. l_cal(nb) .OR. .NOT. l_cal(mb) ) THEN IF ( nb == mb ) mat(nb,mb)=1.d0 ELSE if(.not.l_para) then aux=(0.d0,0.d0) aux0=(0.d0,0.d0) IF(noncolin) aux_2=(0.d0,0.d0) IF(noncolin) aux0_2=(0.d0,0.d0) DO ig=1,npw1 aux0(igk1(ig))=evcel(ig,nb) IF(noncolin) aux0_2(igk1(ig))=evcel(ig+npwx,nb) END DO do ig=1,npw0 aux(map_g(ig))=evct(ig,mb) IF (noncolin) aux_2(map_g(ig))=evct(ig+npwx,mb) ENDDO mat(nb,mb) = zdotc(ngm,aux0,1,aux,1) IF (noncolin) mat(nb,mb) = mat(nb,mb)+zdotc(ngm,aux0_2,1,aux_2,1) else sca=(0.d0,0.d0) !do scalar product do ig=1,npw1 sca=sca+conjg(evcel(ig,nb))*aux_g(ig_l2g(igk1(ig))) IF (noncolin) sca=sca+conjg(evcel(ig+npwx,nb))*aux_g_2(ig_l2g(igk1(ig))) enddo ! mp_sum is done later!!! mat(nb,mb)=sca endif endif END DO IF(l_para) THEN deallocate(aux_g) IF (noncolin) deallocate(aux_g_2) END IF END DO ! call mp_sum( mat, intra_bgrp_comm ) ! DO nb=1,nbnd DO mb=1,nbnd IF ( l_cal(nb) .AND. l_cal(mb) ) THEN ! --- Calculate the augmented part: ij=KB projectors, --- ! --- R=atom index: SUM_{ijR} q(ijR) --- ! --- e^i(k-k')*R = --- ! --- also = = becp^* --- if (okvan) then pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb DO j = 1,nhjkbm if(lspinorb) then pref = pref+CONJG(becp_bp%nc(jkb,1,nb))*becp0%nc(jkb1+j,1,mb) & *q_dkp_so(nhjkb,j,1,np)*CONJG(struc(na)) pref = pref+CONJG(becp_bp%nc(jkb,1,nb))*becp0%nc(jkb1+j,2,mb) & *q_dkp_so(nhjkb,j,2,np)*CONJG(struc(na)) pref = pref+CONJG(becp_bp%nc(jkb,2,nb))*becp0%nc(jkb1+j,1,mb) & *q_dkp_so(nhjkb,j,3,np)*CONJG(struc(na)) pref = pref+CONJG(becp_bp%nc(jkb,2,nb))*becp0%nc(jkb1+j,2,mb) & *q_dkp_so(nhjkb,j,4,np)*CONJG(struc(na)) else pref = pref+CONJG(becp_bp%k(jkb,nb))*becp0%k(jkb1+j,mb) & *q_dkp(nhjkb,j,np)*CONJG(struc(na)) endif ENDDO ENDDO mat(nb,mb) = mat(nb,mb) + pref endif endif ENDDO ENDDO ! --- Calculate matrix inverse --- CALL zgefa(mat,nbnd,nbnd,ivpt,info) CALL errore('h_epsi_her_set','error in zgefa',abs(info)) CALL zgedi(mat,nbnd,nbnd,ivpt,cdet,cdwork,1) matbig(nx_el(ik,pdir),:,:)=mat mdone(nx_el(ik,pdir))=1 ELSE mat=matbig(nx_el(ik,pdir),:,:) END IF ! mat=S^-1(k,k-1) if(.not.l_para) then do ig=1,npw0 gtr(1)=g(1,igk0(ig)) + gpar(1) gtr(2)=g(2,igk0(ig)) + gpar(2) gtr(3)=g(3,igk0(ig)) + gpar(3) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & & +gtr(3)*at(3,3)) ng=ln0(n1,n2,n3) if(ng .gt. 0) then do m=1,nbnd do nb=1,nbnd evcm(ng,m,pdir)=evcm(ng,m,pdir) + mat(nb,m)*evct(ig,nb) IF (noncolin) evcm(ng+npwx,m,pdir)=evcm(ng+npwx,m,pdir) & +mat(nb,m)*evct(ig+npwx,nb) enddo enddo endif ENDIF enddo else !allocate allocate(aux_g(ngm_g)) IF (noncolin) allocate(aux_g_2(ngm_g)) !loop on nb do nb=1,nbnd aux_g(:)=(0.d0,0.d0) IF (noncolin) aux_g_2(:)=(0.d0,0.d0) do ig=1,npw0 aux_g(mapgp_global(ig_l2g(igk0(ig)),pdir))=evct(ig,nb) IF (noncolin) aux_g_2(mapgp_global(ig_l2g(igk0(ig)),pdir))=evct(ig+npwx,nb) enddo !put evct on global array call mp_sum(aux_g(:),intra_bgrp_comm) IF (noncolin) call mp_sum(aux_g_2(:),intra_bgrp_comm) do m=1,nbnd do ig=1,npw1 evcm(ig,m,pdir)=evcm(ig,m,pdir)+mat(nb,m)*aux_g(ig_l2g(igk1(ig))) IF (noncolin) evcm(ig+npwx,m,pdir)=evcm(ig+npwx,m,pdir) & +mat(nb,m)*aux_g_2(ig_l2g(igk1(ig))) enddo enddo enddo deallocate(aux_g) IF (noncolin) deallocate(aux_g_2) endif if(okvan) then evct(:,:) = (0.d0, 0.d0) ps (:,:) = (0.d0, 0.d0) ijkb0 = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then do ibnd = 1, nbnd do jh = 1, nh (nt) jkb = ijkb0 + jh do ih = 1, nh (nt) ikb = ijkb0 + ih if(lspinorb) then ps (ikb, (ibnd-1)*npol+1) = ps (ikb,(ibnd-1)*npol+1 ) + & q_dkp_so(ih,jh,1,ityp(na))*CONJG(struc(na))* becp0%nc(jkb,1,ibnd) ps (ikb, (ibnd-1)*npol+1) = ps (ikb,(ibnd-1)*npol+1 ) + & q_dkp_so(ih,jh,2,ityp(na))*CONJG(struc(na))* becp0%nc(jkb,2,ibnd) ps (ikb, (ibnd-1)*npol+2) = ps (ikb,(ibnd-1)*npol+2 ) + & q_dkp_so(ih,jh,3,ityp(na))*CONJG(struc(na))* becp0%nc(jkb,1,ibnd) ps (ikb, (ibnd-1)*npol+2) = ps (ikb,(ibnd-1)*npol+2 ) + & q_dkp_so(ih,jh,4,ityp(na))*CONJG(struc(na))* becp0%nc(jkb,2,ibnd) else ps (ikb, ibnd) = ps (ikb, ibnd) + & q_dkp(ih,jh,ityp(na))*CONJG(struc(na))* becp0%k(jkb,ibnd) endif enddo enddo enddo ijkb0 = ijkb0 + nh (nt) endif enddo enddo call ZGEMM ('N', 'N', npw1, nbnd*npol , nkb, (1.d0, 0.d0) , vkb, &!vkb is relative to the last ik read npwx, ps, nkb, (1.d0, 0.d0) , evct, npwx) do m=1,nbnd do nb=1,nbnd do ig=1,npw1 evcm(ig,m,pdir)=evcm(ig,m,pdir) + mat(nb,m)*evct(ig,nb) if(noncolin) then evcm(ig+npwx,m,pdir)=evcm(ig+npwx,m,pdir) + mat(nb,m)*evct(ig+npwx,nb) endif enddo enddo enddo endif ENDIF ! calculate S-1(k,k+1) ! if(ik_stringa /= nppstr_3d(pdir)) then CALL gk_sort(xk(1,nx_el(ik+1,pdir)),ngm,g,ecutwfc/tpiba2, & & npw0,igk0,g2kin_bp) CALL get_buffer (evct,nwordwfc,iunwfc,nx_el(ik+1,pdir)) ! ! --- Calculate dot products between wavefunctions ! --- Dot wavefunctions and betas for PREVIOUS k-point --- if(okvan) then CALL init_us_2 (npw0,igk0,xk(1,nx_el(ik+1,pdir)),vkb) CALL calbec( npw0, vkb, evct, becp0) endif ! --- Dot wavefunctions and betas for CURRENT k-point --- CALL gk_sort(xk(1,nx_el(ik,pdir)),ngm,g,ecutwfc/tpiba2, & & npw1,igk1,g2kin_bp) ! --- Recalculate FFT correspondence (see ggen.f90) --- ln0=0!set to 0 DO ig=1,npw1 mk1=nint(g(1,igk1(ig))*at(1,1)+g(2,igk1(ig))*at(2,1)+g(3,igk1(ig))*at(3,1)) mk2=nint(g(1,igk1(ig))*at(1,2)+g(2,igk1(ig))*at(2,2)+g(3,igk1(ig))*at(3,2)) mk3=nint(g(1,igk1(ig))*at(1,3)+g(2,igk1(ig))*at(2,3)+g(3,igk1(ig))*at(3,3)) ln0(mk1,mk2,mk3) = ig END DO if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(ik,pdir)),vkb) CALL calbec( npw1, vkb, evcel, becp_bp ) endif ! --- Matrix elements calculation --- IF(mdone(nx_el(ik+1,pdir))==0) THEN mat=(0.d0,0.d0) allocate(aux0vec(ngm,nbnd),aux1vec(ngm,nbnd)) aux0vec=(0.d0,0.d0) aux1vec=(0.d0,0.d0) do nb=1,nbnd DO ig=1,npw1 aux0vec(igk1(ig),nb)=evcel(ig,nb) END DO end do do nb=1,nbnd DO ig=1,npw0 aux1vec(igk0(ig),nb)=evct(ig,nb) END DO enddo call ZGEMM('C','N',nbnd,nbnd,ngm,(1.d0,0.d0),aux0vec,ngm,aux1vec,ngm,(0.d0,0.d0),mat,nbnd) if(noncolin) then aux0vec=(0.d0,0.d0) aux1vec=(0.d0,0.d0) do nb=1,nbnd DO ig=1,npw1 aux0vec(igk1(ig),nb)=evcel(ig+npwx,nb) END DO end do do nb=1,nbnd DO ig=1,npw0 aux1vec(igk0(ig),nb)=evct(ig+npwx,nb) END DO enddo call ZGEMM('C','N',nbnd,nbnd,ngm,(1.d0,0.d0),aux0vec,ngm,aux1vec,ngm,(1.d0,0.d0),mat,nbnd) endif deallocate(aux0vec,aux1vec) ! call mp_sum( mat, intra_bgrp_comm ) ! DO nb=1,nbnd DO mb=1,nbnd IF ( l_cal(nb) .AND. l_cal(mb) ) THEN if(okvan) then pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb DO j = 1,nhjkbm if(lspinorb) then pref = pref+CONJG(becp_bp%nc(jkb,1,nb))*becp0%nc(jkb1+j,1,mb) & *q_dk_so(nhjkb,j,1,np)*struc(na) pref = pref+CONJG(becp_bp%nc(jkb,1,nb))*becp0%nc(jkb1+j,2,mb) & *q_dk_so(nhjkb,j,2,np)*struc(na) pref = pref+CONJG(becp_bp%nc(jkb,2,nb))*becp0%nc(jkb1+j,1,mb) & *q_dk_so(nhjkb,j,3,np)*struc(na) pref = pref+CONJG(becp_bp%nc(jkb,2,nb))*becp0%nc(jkb1+j,2,mb) & *q_dk_so(nhjkb,j,4,np)*struc(na) else pref = pref+CONJG(becp_bp%k(jkb,nb))*becp0%k(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc(na) endif ENDDO ENDDO mat(nb,mb) = mat(nb,mb) + pref endif ENDIF ENDDO ENDDO ! --- Calculate matrix inverse --- CALL zgefa(mat,nbnd,nbnd,ivpt,info) CALL errore('h_epsi_her_set','error in zgefa',abs(info)) CALL zgedi(mat,nbnd,nbnd,ivpt,cdet,cdwork,1) matbig(nx_el(ik+1,pdir),:,:)=TRANSPOSE(CONJG(mat)) mdone(nx_el(ik+1,pdir))=1 ELSE mat=TRANSPOSE(CONJG(matbig(nx_el(ik+1,pdir),:,:))) END IF ! mat=S^-1(k,k-1) do ig=1,npw0 gtr(1)=g(1,igk0(ig)) gtr(2)=g(2,igk0(ig)) gtr(3)=g(3,igk0(ig)) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & & +gtr(3)*at(3,3)) ng=ln0(n1,n2,n3) if(ng .gt. 0) then do m=1,nbnd do nb=1,nbnd evcp(ng,m,pdir)=evcp(ng,m,pdir) + mat(nb,m)*evct(ig,nb) IF (noncolin) evcp(ng+npwx,m,pdir)=evcp(ng+npwx,m,pdir) & + mat(nb,m)*evct(ig+npwx,nb) enddo enddo endif ENDIF enddo if(okvan) then evct(:,:) = (0.d0, 0.d0) ps (:,:) = (0.d0, 0.d0) ijkb0 = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then do ibnd = 1, nbnd do jh = 1, nh (nt) jkb = ijkb0 + jh do ih = 1, nh (nt) ikb = ijkb0 + ih if(noncolin) then ps (ikb, (ibnd-1)*npol+1) = ps (ikb,(ibnd-1)*npol+1 ) + & q_dk_so(ih,jh,1,ityp(na))*struc(na)* becp0%nc(jkb,1,ibnd) ps (ikb, (ibnd-1)*npol+1) = ps (ikb,(ibnd-1)*npol+1 ) + & q_dk_so(ih,jh,2,ityp(na))*struc(na)* becp0%nc(jkb,2,ibnd) ps (ikb, (ibnd-1)*npol+2) = ps (ikb,(ibnd-1)*npol+2 ) + & q_dk_so(ih,jh,3,ityp(na))*struc(na)* becp0%nc(jkb,1,ibnd) ps (ikb, (ibnd-1)*npol+2) = ps (ikb,(ibnd-1)*npol+2 ) + & q_dk_so(ih,jh,4,ityp(na))*struc(na)* becp0%nc(jkb,2,ibnd) else ps (ikb, ibnd) = ps (ikb, ibnd) + & q_dk(ih,jh,ityp(na))*struc(na)* becp0%k(jkb,ibnd) endif enddo enddo enddo ijkb0 = ijkb0 + nh (nt) endif enddo enddo call ZGEMM ('N', 'N', npw1, nbnd*npol , nkb, (1.d0, 0.d0) , vkb, &!vkb is relative to the last ik read npwx, ps, nkb, (1.d0, 0.d0) , evct, npwx) evct(npw1+1:npwx,1:nbnd)=(0.d0,0.d0) if(noncolin) evct(npwx+npw1+1:2*npwx,1:nbnd)=(0.d0,0.d0) evcp(npw1+1:npwx,1:nbnd,pdir)=(0.d0,0.d0) if(noncolin) evcp(npwx+npw1+1:2*npwx,1:nbnd,pdir)=(0.d0,0.d0) if(.not.noncolin) then call ZGEMM('N','N',npw1,nbnd,nbnd,(1.d0,0.d0),evct,npwx,mat,nbnd,& &(1.d0,0.d0),evcp(1,1,pdir),npwx) else call ZGEMM('N','N',npwx*npol,nbnd,nbnd,(1.d0,0.d0),evct,npwx*npol,mat,nbnd,& &(1.d0,0.d0),evcp(1,1,pdir),npwx*npol) end if endif ! --- End of dot products between wavefunctions and betas --- else CALL gk_sort(xk(1,nx_el(ik-nppstr_3d(pdir)+1,pdir)),ngm,g,ecutwfc/tpiba2, & & npw0,igk0,g2kin_bp) CALL get_buffer (evct,nwordwfc,iunwfc,nx_el(ik-nppstr_3d(pdir)+1,pdir)) ! ! --- Calculate dot products between wavefunctions ! --- Dot wavefunctions and betas for PREVIOUS k-point --- if(okvan) then CALL init_us_2 (npw0,igk0,xk(1,nx_el(ik-nppstr_3d(pdir)+1,pdir)),vkb) CALL calbec( npw0, vkb, evct, becp0 ) endif ! --- Dot wavefunctions and betas for CURRENT k-point --- CALL gk_sort(xk(1,nx_el(ik,pdir)),ngm,g,ecutwfc/tpiba2, & & npw1,igk1,g2kin_bp) ! --- Recalculate FFT correspondence (see ggen.f90) --- if(.not.l_para) then ln0=0! set to 0 DO ig=1,npw1 mk1=nint(g(1,igk1(ig))*at(1,1)+g(2,igk1(ig))*at(2,1)+g(3,igk1(ig))*at(3,1)) mk2=nint(g(1,igk1(ig))*at(1,2)+g(2,igk1(ig))*at(2,2)+g(3,igk1(ig))*at(3,2)) mk3=nint(g(1,igk1(ig))*at(1,3)+g(2,igk1(ig))*at(2,3)+g(3,igk1(ig))*at(3,3)) ln0(mk1,mk2,mk3) = ig END DO endif if(okvan) then CALL init_us_2 (npw1,igk1,xk(1,nx_el(ik,pdir)),vkb) CALL calbec( npw1, vkb, evcel, becp_bp ) endif ! --- Matrix elements calculation --- IF(mdone(nx_el(ik-nppstr_3d(pdir)+1,pdir))==0) THEN if(.not.l_para) then map_g(:) = 0 do ig=1,npw0 ! --- If k'=k+G_o, the relation psi_k+G_o (G-G_o) --- ! --- = psi_k(G) is used, gpar=G_o, gtr = G-G_o --- gtr(1)=g(1,igk0(ig)) - gpar(1) gtr(2)=g(2,igk0(ig)) - gpar(2) gtr(3)=g(3,igk0(ig)) - gpar(3) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & +gtr(3)*at(3,3)) ng=ln(n1,n2,n3) IF ((ABS(g(1,ng)-gtr(1)) > eps) .OR. & (ABS(g(2,ng)-gtr(2)) > eps) .OR. & (ABS(g(3,ng)-gtr(3)) > eps)) THEN WRITE(6,*) ' error hepsiher: translated G=', & gtr(1),gtr(2),gtr(3), & ' with crystal coordinates',n1,n2,n3, & ' corresponds to ng=',ng,' but G(ng)=', & g(1,ng),g(2,ng),g(3,ng) WRITE(6,*) ' probably because G_par is NOT', & ' a reciprocal lattice vector ' WRITE(6,*) ' Possible choices as smallest ', & ' G_par:' DO i=1,50 WRITE(6,*) ' i=',i,' G=', & g(1,i),g(2,i),g(3,i) ENDDO STOP ENDIF ELSE WRITE(6,*) ' |gtr| > gcutm for gtr=', & gtr(1),gtr(2),gtr(3) STOP END IF map_g(ig)=ng ENDDO endif mat=(0.d0,0.d0) DO mb=1,nbnd if(l_para) then !allocate global array allocate(aux_g(ngm_g)) aux_g=(0.d0,0.d0) IF (noncolin) THEN allocate(aux_g_2(ngm_g)) aux_g_2=(0.d0,0.d0) END IF !put psi1 on global array do ig=1,npw0 aux_g(mapgm_global(ig_l2g(igk0(ig)),pdir))=evct(ig,mb) IF (noncolin) aux_g_2(mapgm_global(ig_l2g(igk0(ig)),pdir))=evct(ig+npwx,mb) enddo call mp_sum(aux_g(:),intra_bgrp_comm) IF (noncolin) call mp_sum(aux_g_2(:),intra_bgrp_comm) end if DO nb=1,nbnd IF ( .NOT. l_cal(nb) .OR. .NOT. l_cal(mb) ) THEN IF ( nb == mb ) mat(nb,mb)=1.d0 ELSE if(.not.l_para) then aux=(0.d0,0.d0) aux0=(0.d0,0.d0) IF(noncolin) aux_2=(0.d0,0.d0) IF(noncolin) aux0_2=(0.d0,0.d0) DO ig=1,npw1 aux0(igk1(ig))=evcel(ig,nb) IF(noncolin) aux0_2(igk1(ig))=evcel(ig+npwx,nb) END DO do ig=1,npw0 aux(map_g(ig))=evct(ig,mb) IF(noncolin) aux_2(map_g(ig))=evct(ig+npwx,mb) ENDDO mat(nb,mb) = zdotc(ngm,aux0,1,aux,1) IF (noncolin) mat(nb,mb)=mat(nb,mb)+zdotc(ngm,aux0_2,1,aux_2,1) else sca=(0.d0,0.d0) !do scalar product do ig=1,npw1 sca=sca+conjg(evcel(ig,nb))*aux_g(ig_l2g(igk1(ig))) IF (noncolin) sca=sca+conjg(evcel(ig+npwx,nb)) & *aux_g_2(ig_l2g(igk1(ig))) enddo ! mp_sum is done later!!! mat(nb,mb)=sca endif endif END DO IF(l_para) THEN deallocate(aux_g) IF (noncolin) deallocate(aux_g_2) END IF END DO ! call mp_sum( mat, intra_bgrp_comm ) ! DO nb=1,nbnd DO mb=1,nbnd IF ( l_cal(nb) .AND. l_cal(mb) ) THEN if(okvan) then pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb DO j = 1,nhjkbm if(lspinorb) then pref = pref+CONJG(becp_bp%nc(jkb,1,nb))*becp0%nc(jkb1+j,1,mb) & *q_dk_so(nhjkb,j,1,np)*struc(na) pref = pref+CONJG(becp_bp%nc(jkb,1,nb))*becp0%nc(jkb1+j,2,mb) & *q_dk_so(nhjkb,j,2,np)*struc(na) pref = pref+CONJG(becp_bp%nc(jkb,2,nb))*becp0%nc(jkb1+j,1,mb) & *q_dk_so(nhjkb,j,3,np)*struc(na) pref = pref+CONJG(becp_bp%nc(jkb,2,nb))*becp0%nc(jkb1+j,2,mb) & *q_dk_so(nhjkb,j,4,np)*struc(na) else pref = pref+CONJG(becp_bp%k(jkb,nb))*becp0%k(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc(na) endif ENDDO ENDDO mat(nb,mb) = mat(nb,mb) + pref endif ENDIF ENDDO ENDDO ! --- Calculate matrix inverse --- CALL zgefa(mat,nbnd,nbnd,ivpt,info) CALL errore('h_epsi_her_set','error in zgefa',abs(info)) CALL zgedi(mat,nbnd,nbnd,ivpt,cdet,cdwork,1) matbig(nx_el(ik-nppstr_3d(pdir)+1,pdir),:,:)=TRANSPOSE(CONJG(mat)) mdone(nx_el(ik-nppstr_3d(pdir)+1,pdir))=1 ELSE mat=TRANSPOSE(CONJG(matbig(nx_el(ik-nppstr_3d(pdir)+1,pdir),:,:))) END IF ! mat=S^-1(k,k-1) if(.not.l_para) then do ig=1,npw0 gtr(1)=g(1,igk0(ig)) - gpar(1) gtr(2)=g(2,igk0(ig)) - gpar(2) gtr(3)=g(3,igk0(ig)) - gpar(3) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & & +gtr(3)*at(3,3)) ng=ln0(n1,n2,n3) if(ng .gt. 0) then do m=1,nbnd do nb=1,nbnd evcp(ng,m,pdir)=evcp(ng,m,pdir) + mat(nb,m)*evct(ig,nb) IF (noncolin) evcp(ng+npwx,m,pdir)=evcp(ng+npwx,m,pdir) & +mat(nb,m)*evct(ig+npwx,nb) end do enddo end if ENDIF enddo else !allocate allocate(aux_g(ngm_g)) IF (noncolin) allocate(aux_g_2(ngm_g)) !loop on nb do nb=1,nbnd aux_g(:)=(0.d0,0.d0) IF (noncolin) aux_g_2(:)=(0.d0,0.d0) do ig=1,npw0 aux_g(mapgm_global(ig_l2g(igk0(ig)),pdir))=evct(ig,nb) IF (noncolin) aux_g_2(mapgm_global(ig_l2g(igk0(ig)),pdir))=evct(ig+npwx,nb) enddo !put evct on global array call mp_sum(aux_g(:),intra_bgrp_comm) IF (noncolin) call mp_sum(aux_g_2(:),intra_bgrp_comm) do m=1,nbnd do ig=1,npw1 evcp(ig,m,pdir)=evcp(ig,m,pdir)+mat(nb,m)*aux_g(ig_l2g(igk1(ig))) IF (noncolin) evcp(ig+npwx,m,pdir)=evcp(ig+npwx,m,pdir) & +mat(nb,m)*aux_g_2(ig_l2g(igk1(ig))) enddo enddo enddo deallocate(aux_g) IF (noncolin) deallocate(aux_g_2) endif if(okvan) then evct(:,:) = (0.d0, 0.d0) ps (:,:) = (0.d0, 0.d0) ijkb0 = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then do ibnd = 1, nbnd do jh = 1, nh (nt) jkb = ijkb0 + jh do ih = 1, nh (nt) ikb = ijkb0 + ih if(lspinorb) then ps (ikb, (ibnd-1)*npol+1) = ps (ikb,(ibnd-1)*npol+1 ) + & q_dk_so(ih,jh,1,ityp(na))*struc(na)* becp0%nc(jkb,1,ibnd) ps (ikb, (ibnd-1)*npol+1) = ps (ikb,(ibnd-1)*npol+1 ) + & q_dk_so(ih,jh,2,ityp(na))*struc(na)* becp0%nc(jkb,2,ibnd) ps (ikb, (ibnd-1)*npol+2) = ps (ikb,(ibnd-1)*npol+2 ) + & q_dk_so(ih,jh,3,ityp(na))*struc(na)* becp0%nc(jkb,1,ibnd) ps (ikb, (ibnd-1)*npol+2) = ps (ikb,(ibnd-1)*npol+2 ) + & q_dk_so(ih,jh,4,ityp(na))*struc(na)* becp0%nc(jkb,2,ibnd) else ps (ikb, ibnd) = ps (ikb, ibnd) + & q_dk(ih,jh,ityp(na))*struc(na)* becp0%k(jkb,ibnd) endif enddo enddo enddo ijkb0 = ijkb0 + nh (nt) endif enddo enddo call ZGEMM ('N', 'N', npw1, nbnd*npol , nkb, (1.d0, 0.d0) , vkb, &!vkb is relative to the ik read npwx, ps, nkb, (1.d0, 0.d0) , evct, npwx) do m=1,nbnd do nb=1,nbnd do ig=1,npw1 evcp(ig,m,pdir)=evcp(ig,m,pdir) + mat(nb,m)*evct(ig,nb) if(noncolin) then evcp(ig+npwx,m,pdir)=evcp(ig+npwx,m,pdir) + mat(nb,m)*evct(ig+npwx,nb) endif enddo enddo enddo endif ENDIF !writes projectors to disk call save_buffer (evcm(:,:,pdir), nwordwfc, iunefieldm, nx_el(ik,pdir)+(pdir-1)*nks) call save_buffer (evcp(:,:,pdir), nwordwfc, iunefieldp, nx_el(ik,pdir)+(pdir-1)*nks) END DO !on ik DEALLOCATE (l_cal) DEALLOCATE( evct) DEALLOCATE( map_g) deallocate(ln,ln0) DEALLOCATE(aux,aux0) IF (ALLOCATED(aux_2)) DEALLOCATE(aux_2) IF (ALLOCATED(aux0_2)) DEALLOCATE(aux0_2) if(okvan)CALL deallocate_bec_type (becp0) if(okvan)CALL deallocate_bec_type (becp_bp) if(okvan.and.lspinorb) deallocate(q_dk_so) if(okvan.and.lspinorb) deallocate(q_dkp_so) deallocate(mat) call stop_clock('h_epsi_set') ! -- !------------------------------------------------------------------------------! return END SUBROUTINE h_epsi_her_set !==============================================================================! SUBROUTINE factor_a(dir, a,fact) USE kinds, ONLY : DP IMPLICIT NONE REAL(kind=DP):: a(3,3),fact INTEGER :: dir INTEGER :: d1,d2 REAL(kind=DP) :: v(3), sca if(dir==1) then d1=2 d2=3 else if(dir==2) then d1=3 d2=1 else if(dir==3) then d1=1 d2=2 endif !calculate vect(a(d1,:) X a(d2,:) v(1)=a(2,d1)*a(3,d2)-a(3,d1)*a(2,d2) v(2)=-a(1,d1)*a(3,d2)+a(3,d1)*a(1,d2) v(3)=a(1,d1)*a(2,d2)-a(2,d1)*a(1,d2) !normalize v sca=sqrt(v(1)**2.d0+v(2)**2.d0+v(3)**2.d0) v(:)=v(:)/sca !calculate a(dir:)*v(:) fact=v(1)*a(1,dir)+v(2)*a(2,dir)+v(3)*a(3,dir) !!!!!!!!!!!!!! fact=dsqrt(a(1,dir)**2.d0+a(2,dir)**2.d0+a(3,dir)**2.d0) fact=abs(fact) return END SUBROUTINE factor_a espresso-5.1/PW/src/plugin_clean.f900000644000175000017500000000123712341373025015402 0ustar mbamba! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine plugin_clean(lflag) ! ! This routine is used for cleaning calls ! from plugins ! DO NOT REMOVE THE TAGS ! ***ADDSON_NAME KIND_OF_PATCH*** ! USE plugin_flags ! ! ***Environ MODULES BEGIN*** ! ***Environ MODULES END*** ! implicit none ! LOGICAL, INTENT(IN) :: lflag ! ! ***Environ VARIABLES BEGIN*** ! ***Environ VARIABLES END*** ! ! ***Environ CALLS BEGIN*** ! ***Environ CALLS END*** ! end subroutine plugin_clean espresso-5.1/PW/src/non_scf.f900000644000175000017500000000651312341373025014371 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE non_scf ( ) !----------------------------------------------------------------------- ! ! ... diagonalization of the KS hamiltonian in the non-scf case ! USE kinds, ONLY : DP USE bp, ONLY : lelfield, lberry, lorbm, lcalc_z2 USE check_stop, ONLY : stopped_by_user USE control_flags, ONLY : io_level, conv_elec, lbands USE ener, ONLY : ef USE io_global, ONLY : stdout, ionode USE io_files, ONLY : iunwfc, nwordwfc, iunefield USE buffers, ONLY : save_buffer USE klist, ONLY : xk, wk, nks, nkstot USE lsda_mod, ONLY : lsda, nspin USE wvfct, ONLY : nbnd, et, npwx USE wavefunctions_module, ONLY : evc ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: iter, i REAL(DP), EXTERNAL :: get_clock ! ! CALL start_clock( 'electrons' ) iter = 1 ! WRITE( stdout, 9002 ) CALL flush_unit( stdout ) ! IF ( lelfield) THEN ! CALL c_bands_efield ( iter ) ! ELSE ! CALL c_bands_nscf ( ) ! END IF ! ! ... check if calculation was stopped in c_bands ! IF ( stopped_by_user ) THEN conv_elec=.FALSE. RETURN END IF ! ! ... xk, wk, isk, et, wg are distributed across pools; ! ... the first node has a complete copy of xk, wk, isk, ! ... while eigenvalues et and weights wg must be ! ... explicitly collected to the first node ! ... this is done here for et, in weights () for wg ! CALL poolrecover( et, nbnd, nkstot, nks ) ! ! ... calculate weights of Kohn-Sham orbitals (only weights, not Ef, ! ... for a "bands" calculation where Ef is read from data file) ! ... may be needed in further calculations such as phonon ! IF ( lbands ) THEN CALL weights_only ( ) ELSE CALL weights ( ) END IF ! ! ... Note that if you want to use more k-points for the phonon ! ... calculation then those needed for self-consistency, you can, ! ... by performing a scf with less k-points, followed by a non-scf ! ... one with additional k-points, whose weight on input is set to zero ! WRITE( stdout, 9000 ) get_clock( 'PWSCF' ) ! WRITE( stdout, 9102 ) ! ! ... write band eigenvalues (conv_elec is used in print_ks_energies) ! conv_elec = .true. CALL print_ks_energies ( ) ! ! ... save converged wfc if they have not been written previously ! ... FIXME: it shouldn't be necessary to do this here ! IF ( nks == 1 .AND. (io_level < 2) .AND. (io_level > -1) ) & CALL save_buffer ( evc, nwordwfc, iunwfc, nks ) ! ! ... do a Berry phase polarization calculation if required ! IF ( lberry ) CALL c_phase() ! ! ... do an orbital magnetization (Kubo terms) calculation ! IF ( lorbm ) CALL orbm_kubo() ! CALL stop_clock( 'electrons' ) ! 9000 FORMAT(/' total cpu time spent up to now is ',F10.1,' secs' ) 9002 FORMAT(/' Band Structure Calculation' ) 9102 FORMAT(/' End of band structure calculation' ) ! END SUBROUTINE non_scf espresso-5.1/PW/src/scf_mod.f900000644000175000017500000006746012341373025014366 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE scf ! ! This module contains variables and auxiliary routines needed for ! the self-consistent cycle ! ! ROUTINES: allocate_scf_type ! USE kinds, ONLY : DP ! USE lsda_mod, ONLY : nspin USE ldaU, ONLY : lda_plus_u, Hubbard_lmax USE ions_base, ONLY : nat USE buffers, ONLY : open_buffer, close_buffer, get_buffer, save_buffer USE funct, ONLY : dft_is_meta USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY: invfft USE gvect, ONLY : ngm USE gvecs, ONLY : ngms USE paw_variables,ONLY : okpaw USE uspp_param, ONLY : nhm USE extfield, ONLY : dipfield, emaxpos, eopreg, edir USE control_flags,ONLY : lxdm ! SAVE ! ! Details of PAW implementation: ! NOTE: scf_type is used for two different quantities: density and potential. ! These correspond, for PAW, to becsum and D coefficients. ! Due to interference with the ultrasoft routines only the becsum part ! is stored in the structure (at the moment). ! This only holds for scf_type; mix_type is not affected. ! NOTE: rho%bec is different from becsum for two reasons: ! 1. rho%bec is mixed, while becsum is not ! 2. for npool > 1 rho%bec is collected, becsum is not ! ( this is necessary to make the stress work) #ifdef __STD_F95 TYPE scf_type REAL(DP), POINTER :: of_r(:,:) ! the charge density in R-space COMPLEX(DP),POINTER :: of_g(:,:) ! the charge density in G-space REAL(DP), POINTER :: kin_r(:,:) ! the kinetic energy density in R-space COMPLEX(DP),POINTER :: kin_g(:,:) ! the kinetic energy density in G-space REAL(DP), POINTER :: ns(:,:,:,:)! the LDA+U occupation matrix COMPLEX(DP),POINTER :: ns_nc(:,:,:,:)! --- noncollinear case REAL(DP), POINTER :: bec(:,:,:) ! the PAW hamiltonian elements END TYPE scf_type ! TYPE mix_type COMPLEX(DP), POINTER :: of_g(:,:) ! the charge density in G-space COMPLEX(DP), POINTER :: kin_g(:,:) ! the charge density in G-space REAL(DP), POINTER :: ns(:,:,:,:)! the LDA+U occupation matrix COMPLEX(DP), POINTER :: ns_nc(:,:,:,:)! --- noncollinear case REAL(DP), POINTER :: bec(:,:,:) ! PAW corrections to hamiltonian REAL(DP) :: el_dipole ! electrons dipole END TYPE mix_type #else TYPE scf_type REAL(DP), ALLOCATABLE :: of_r(:,:) ! the charge density in R-space COMPLEX(DP),ALLOCATABLE :: of_g(:,:) ! the charge density in G-space REAL(DP), ALLOCATABLE :: kin_r(:,:) ! the kinetic energy density in R-space COMPLEX(DP),ALLOCATABLE :: kin_g(:,:) ! the kinetic energy density in G-space REAL(DP), ALLOCATABLE :: ns(:,:,:,:)! the LDA+U occupation matrix COMPLEX(DP),ALLOCATABLE :: ns_nc(:,:,:,:)! --- noncollinear case REAL(DP), ALLOCATABLE :: bec(:,:,:) ! the PAW hamiltonian elements END TYPE scf_type ! TYPE mix_type COMPLEX(DP), ALLOCATABLE :: of_g(:,:) ! the charge density in G-space COMPLEX(DP), ALLOCATABLE :: kin_g(:,:) ! the charge density in G-space REAL(DP), ALLOCATABLE :: ns(:,:,:,:)! the LDA+U occupation matrix COMPLEX(DP), ALLOCATABLE :: ns_nc(:,:,:,:)! --- noncollinear case REAL(DP), ALLOCATABLE :: bec(:,:,:) ! PAW corrections to hamiltonian REAL(DP) :: el_dipole ! electrons dipole END TYPE mix_type #endif type (scf_type) :: rho ! the charge density and its other components type (scf_type) :: v ! the scf potential type (scf_type) :: vnew ! used to correct the forces REAL(DP) :: v_of_0 ! vltot(G=0) REAL(DP), ALLOCATABLE :: & vltot(:), &! the local potential in real space vrs(:,:), &! the total pot. in real space (smooth grid) rho_core(:), &! the core charge in real space kedtau(:,:) ! position dependent kinetic energy enhancement factor COMPLEX(DP), ALLOCATABLE :: & rhog_core(:) ! the core charge in reciprocal space INTEGER, PRIVATE :: record_length, & rlen_rho=0, rlen_kin=0, rlen_ldaU=0, rlen_bec=0,& rlen_dip=0, & start_rho=0, start_kin=0, start_ldaU=0, start_bec=0, & start_dipole=0 ! DFT+U, colinear and noncolinear cases LOGICAL, PRIVATE :: lda_plus_u_co, lda_plus_u_nc COMPLEX(DP), PRIVATE, ALLOCATABLE:: io_buffer(:) CONTAINS SUBROUTINE create_scf_type ( rho, do_not_allocate_becsum ) IMPLICIT NONE TYPE (scf_type) :: rho LOGICAL,INTENT(IN),OPTIONAL :: do_not_allocate_becsum ! PAW hack LOGICAL :: allocate_becsum ! PAW hack allocate ( rho%of_r( dfftp%nnr, nspin) ) allocate ( rho%of_g( ngm, nspin ) ) #ifdef __STD_F95 nullify (rho%kin_r, rho%kin_g, rho%ns, rho%ns_nc, rho%bec) #endif if (dft_is_meta() .or. lxdm) then allocate ( rho%kin_r( dfftp%nnr, nspin) ) allocate ( rho%kin_g( ngm, nspin ) ) else allocate ( rho%kin_r(1,1) ) allocate ( rho%kin_g(1,1) ) endif lda_plus_u_co = lda_plus_u .and. .not. (nspin == 4 ) lda_plus_u_nc = lda_plus_u .and. (nspin == 4 ) if (lda_plus_u_co) allocate (rho%ns(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat)) if (lda_plus_u_nc) allocate (rho%ns_nc(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat)) if (okpaw) then ! See the top of the file for clarification if(present(do_not_allocate_becsum)) then allocate_becsum = .not. do_not_allocate_becsum else allocate_becsum = .true. endif if(allocate_becsum) allocate (rho%bec(nhm*(nhm+1)/2,nat,nspin)) endif return END SUBROUTINE create_scf_type SUBROUTINE destroy_scf_type ( rho ) IMPLICIT NONE TYPE (scf_type) :: rho #ifdef __STD_F95 if (ASSOCIATED(rho%of_r)) deallocate(rho%of_r) if (ASSOCIATED(rho%of_g)) deallocate(rho%of_g) if (ASSOCIATED(rho%kin_r)) deallocate(rho%kin_r) if (ASSOCIATED(rho%kin_g)) deallocate(rho%kin_g) if (ASSOCIATED(rho%ns)) deallocate(rho%ns) if (ASSOCIATED(rho%ns_nc)) deallocate(rho%ns_nc) if (ASSOCIATED(rho%bec)) deallocate(rho%bec) #else if (ALLOCATED(rho%of_r)) deallocate(rho%of_r) if (ALLOCATED(rho%of_g)) deallocate(rho%of_g) if (ALLOCATED(rho%kin_r)) deallocate(rho%kin_r) if (ALLOCATED(rho%kin_g)) deallocate(rho%kin_g) if (ALLOCATED(rho%ns)) deallocate(rho%ns) if (ALLOCATED(rho%ns_nc)) deallocate(rho%ns_nc) if (ALLOCATED(rho%bec)) deallocate(rho%bec) #endif return END SUBROUTINE destroy_scf_type ! SUBROUTINE create_mix_type ( rho ) IMPLICIT NONE TYPE (mix_type) :: rho allocate ( rho%of_g( ngms, nspin ) ) #ifdef __STD_F95 nullify (rho%kin_g, rho%ns, rho%ns_nc, rho%bec) #endif rho%of_g = 0._dp if (dft_is_meta() .or. lxdm) then allocate (rho%kin_g( ngms, nspin ) ) rho%kin_g = 0._dp end if lda_plus_u_co = lda_plus_u .and. .not. (nspin == 4 ) lda_plus_u_nc = lda_plus_u .and. (nspin == 4 ) if (lda_plus_u_nc) then allocate (rho%ns_nc(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat)) rho%ns_nc = 0._dp endif if (lda_plus_u_co) then allocate (rho%ns(2*Hubbard_lmax+1,2*Hubbard_lmax+1,nspin,nat)) rho%ns = 0._dp endif if (okpaw) then allocate (rho%bec(nhm*(nhm+1)/2,nat,nspin)) rho%bec = 0._dp end if rho%el_dipole = 0._dp return END SUBROUTINE create_mix_type SUBROUTINE destroy_mix_type ( rho ) IMPLICIT NONE TYPE (mix_type) :: rho #ifdef __STD_F95 if (ASSOCIATED(rho%of_g)) deallocate(rho%of_g) if (ASSOCIATED(rho%kin_g)) deallocate(rho%kin_g) if (ASSOCIATED(rho%ns)) deallocate(rho%ns) if (ASSOCIATED(rho%ns_nc)) deallocate(rho%ns_nc) if (ASSOCIATED(rho%bec)) deallocate(rho%bec) #else if (ALLOCATED(rho%of_g)) deallocate(rho%of_g) if (ALLOCATED(rho%kin_g)) deallocate(rho%kin_g) if (ALLOCATED(rho%ns)) deallocate(rho%ns) if (ALLOCATED(rho%ns_nc)) deallocate(rho%ns_nc) if (ALLOCATED(rho%bec)) deallocate(rho%bec) #endif return END SUBROUTINE destroy_mix_type ! subroutine assign_scf_to_mix_type(rho_s, rho_m) IMPLICIT NONE TYPE (scf_type), INTENT(IN) :: rho_s TYPE (mix_type), INTENT(INOUT) :: rho_m REAL(DP) :: e_dipole rho_m%of_g(1:ngms,:) = rho_s%of_g(1:ngms,:) if (dft_is_meta() .or. lxdm) rho_m%kin_g(1:ngms,:) = rho_s%kin_g(1:ngms,:) if (lda_plus_u_nc) rho_m%ns_nc = rho_s%ns_nc if (lda_plus_u_co) rho_m%ns = rho_s%ns if (okpaw) rho_m%bec = rho_s%bec if (dipfield) then CALL compute_el_dip(emaxpos, eopreg, edir, rho_s%of_r,e_dipole) rho_m%el_dipole = e_dipole endif return end subroutine assign_scf_to_mix_type ! subroutine assign_mix_to_scf_type(rho_m, rho_s) USE wavefunctions_module, ONLY : psic USE control_flags, ONLY : gamma_only USE gvect, ONLY : nl, nlm IMPLICIT NONE TYPE (mix_type), INTENT(IN) :: rho_m TYPE (scf_type), INTENT(INOUT) :: rho_s INTEGER :: is rho_s%of_g(1:ngms,:) = rho_m%of_g(1:ngms,:) ! define rho_s%of_r DO is = 1, nspin psic(:) = ( 0.D0, 0.D0 ) psic(nl(:)) = rho_s%of_g(:,is) IF ( gamma_only ) psic(nlm(:)) = CONJG( rho_s%of_g(:,is) ) CALL invfft ('Dense', psic, dfftp) rho_s%of_r(:,is) = psic(:) END DO if (dft_is_meta() .or. lxdm) then rho_s%kin_g(1:ngms,:) = rho_m%kin_g(:,:) ! define rho_s%kin_r DO is = 1, nspin psic(:) = ( 0.D0, 0.D0 ) psic(nl(:)) = rho_s%kin_g(:,is) IF ( gamma_only ) psic(nlm(:)) = CONJG( rho_s%kin_g(:,is) ) CALL invfft ('Dense', psic, dfftp) rho_s%kin_r(:,is) = psic(:) END DO end if if (lda_plus_u_nc) rho_s%ns_nc(:,:,:,:) = rho_m%ns_nc(:,:,:,:) if (lda_plus_u_co) rho_s%ns(:,:,:,:) = rho_m%ns(:,:,:,:) if (okpaw) rho_s%bec(:,:,:) = rho_m%bec(:,:,:) return end subroutine assign_mix_to_scf_type ! !---------------------------------------------------------------------------- subroutine scf_type_COPY (X,Y) !---------------------------------------------------------------------------- ! works like DCOPY for scf_type copy variables : Y = X USE kinds, ONLY : DP IMPLICIT NONE TYPE(scf_type), INTENT(IN) :: X TYPE(scf_type), INTENT(INOUT) :: Y Y%of_r = X%of_r Y%of_g = X%of_g if (dft_is_meta() .or. lxdm) then Y%kin_r = X%kin_r Y%kin_g = X%kin_g end if if (lda_plus_u_nc) Y%ns_nc = X%ns_nc if (lda_plus_u_co) Y%ns = X%ns if (okpaw) Y%bec = X%bec ! RETURN end subroutine scf_type_COPY ! !---------------------------------------------------------------------------- subroutine mix_type_AXPY (A,X,Y) !---------------------------------------------------------------------------- ! works like daxpy for scf_type variables : Y = A * X + Y ! NB: A is a REAL(DP) number USE kinds, ONLY : DP IMPLICIT NONE REAL(DP) :: A TYPE(mix_type), INTENT(IN) :: X TYPE(mix_type), INTENT(INOUT) :: Y Y%of_g = Y%of_g + A * X%of_g if (dft_is_meta() .or. lxdm) Y%kin_g = Y%kin_g + A * X%kin_g if (lda_plus_u_nc) Y%ns_nc = Y%ns_nc + A * X%ns_nc if (lda_plus_u_co) Y%ns = Y%ns + A * X%ns if (okpaw) Y%bec = Y%bec + A * X%bec if (dipfield) Y%el_dipole = Y%el_dipole + A * X%el_dipole ! RETURN END SUBROUTINE mix_type_AXPY ! !---------------------------------------------------------------------------- subroutine mix_type_COPY (X,Y) !---------------------------------------------------------------------------- ! works like DCOPY for mix_type copy variables : Y = X USE kinds, ONLY : DP IMPLICIT NONE TYPE(mix_type), INTENT(IN) :: X TYPE(mix_type), INTENT(INOUT) :: Y Y%of_g = X%of_g if (dft_is_meta() .or. lxdm) Y%kin_g = X%kin_g if (lda_plus_u_nc) Y%ns_nc = X%ns_nc if (lda_plus_u_co) Y%ns = X%ns if (okpaw) Y%bec = X%bec if (dipfield) Y%el_dipole = X%el_dipole ! RETURN end subroutine mix_type_COPY ! !---------------------------------------------------------------------------- subroutine mix_type_SCAL (A,X) !---------------------------------------------------------------------------- ! works like DSCAL for mix_type copy variables : X = A * X ! NB: A is a REAL(DP) number USE kinds, ONLY : DP IMPLICIT NONE REAL(DP), INTENT(IN) :: A TYPE(mix_type), INTENT(INOUT) :: X X%of_g(:,:) = A * X%of_g(:,:) if (dft_is_meta() .or. lxdm) X%kin_g = A * X%kin_g if (lda_plus_u_nc) X%ns_nc = A * X%ns_nc if (lda_plus_u_co) X%ns = A * X%ns if (okpaw) X%bec= A * X%bec if (dipfield) X%el_dipole = A * X%el_dipole ! RETURN end subroutine mix_type_SCAL ! subroutine high_frequency_mixing ( rhoin, input_rhout, alphamix ) USE wavefunctions_module, ONLY : psic USE control_flags, ONLY : gamma_only USE gvect, ONLY : nl, nlm IMPLICIT NONE TYPE (scf_type), INTENT(INOUT) :: rhoin TYPE (scf_type), INTENT(IN) :: input_rhout REAL(DP), INTENT(IN) :: alphamix INTEGER :: is if (ngms < ngm ) then rhoin%of_g = rhoin%of_g + alphamix * ( input_rhout%of_g-rhoin%of_g) rhoin%of_g(1:ngms,1:nspin) = (0.d0,0.d0) ! define rho_s%of_r DO is = 1, nspin psic(:) = ( 0.D0, 0.D0 ) psic(nl(:)) = rhoin%of_g(:,is) IF ( gamma_only ) psic(nlm(:)) = CONJG( rhoin%of_g(:,is) ) CALL invfft ('Dense', psic, dfftp) rhoin%of_r(:,is) = psic(:) END DO ! if (dft_is_meta() .or. lxdm) then rhoin%kin_g = rhoin%kin_g + alphamix * ( input_rhout%kin_g-rhoin%kin_g) rhoin%kin_g(1:ngms,1:nspin) = (0.d0,0.d0) ! define rho_s%of_r DO is = 1, nspin psic(:) = ( 0.D0, 0.D0 ) psic(nl(:)) = rhoin%kin_g(:,is) IF ( gamma_only ) psic(nlm(:)) = CONJG( rhoin%kin_g(:,is) ) CALL invfft ('Dense', psic, dfftp) rhoin%kin_r(:,is) = psic(:) END DO end if else rhoin%of_g(:,:)= (0.d0,0.d0) rhoin%of_r(:,:)= 0.d0 if (dft_is_meta() .or. lxdm) then rhoin%kin_g(:,:)= (0.d0,0.d0) rhoin%kin_r(:,:)= 0.d0 endif endif if (lda_plus_u_nc) rhoin%ns_nc(:,:,:,:) = 0.d0 if (lda_plus_u_co) rhoin%ns(:,:,:,:) = 0.d0 return end subroutine high_frequency_mixing subroutine open_mix_file( iunit, extension, exst ) USE control_flags, ONLY : io_level implicit none character(len=*), intent(in) :: extension integer, intent(in) :: iunit logical :: exst ! define lengths (in real numbers) of different record chunks rlen_rho = 2 * ngms * nspin if (dft_is_meta() .or. lxdm) rlen_kin = 2 * ngms * nspin if (lda_plus_u_co) rlen_ldaU = (2*Hubbard_lmax+1)**2 *nspin*nat if (lda_plus_u_nc) rlen_ldaU = 2 * (2*Hubbard_lmax+1)**2 *nspin*nat if (okpaw) rlen_bec = (nhm*(nhm+1)/2) * nat * nspin if (dipfield) rlen_dip = 1 ! define the starting point of the different chunks. Beware: each starting point ! is the index of a COMPLEX array. When real arrays with odd dimension are copied ! to/from the complex array io_buffer, the last complex number will be half-filled ! but must still be counted as one! start_rho = 1 start_kin = start_rho + rlen_rho / 2 start_ldaU = start_kin + rlen_kin / 2 start_bec = start_ldaU + ( rlen_ldaU + 1 ) / 2 start_dipole = start_bec + ( rlen_bec + 1 ) / 2 ! define total record length, in complex numbers record_length = start_dipole + rlen_dip - 1 ! open file and allocate io_buffer call open_buffer ( iunit, extension, record_length, io_level, exst) allocate (io_buffer(record_length)) ! setting to zero -prevents trouble with "holes" due to odd dimensions of real arrays io_buffer (:) = (0.0_dp, 0.0_dp) ! return end subroutine open_mix_file ! subroutine close_mix_file( iunit, stat ) implicit none integer, intent(in) :: iunit character(len=*), intent(in) :: stat deallocate (io_buffer) call close_buffer ( iunit, trim(stat) ) return end subroutine close_mix_file subroutine davcio_mix_type( rho, iunit, record, iflag ) implicit none type (mix_type) :: rho integer, intent(in) :: iunit, record, iflag if (iflag > 0) then call DCOPY(rlen_rho,rho%of_g,1,io_buffer(start_rho),1) if (dft_is_meta() .or. lxdm) call DCOPY(rlen_kin, rho%kin_g,1,io_buffer(start_kin),1) if (lda_plus_u_nc) call DCOPY(rlen_ldaU,rho%ns_nc, 1,io_buffer(start_ldaU),1) if (lda_plus_u_co) call DCOPY(rlen_ldaU,rho%ns, 1,io_buffer(start_ldaU),1) if (okpaw) call DCOPY(rlen_bec, rho%bec, 1,io_buffer(start_bec),1) if (dipfield) io_buffer(start_dipole) = CMPLX ( rho%el_dipole, 0.0_dp ) CALL save_buffer( io_buffer, record_length, iunit, record ) else if (iflag < 0 ) then CALL get_buffer( io_buffer, record_length, iunit, record ) call DCOPY(rlen_rho,io_buffer(start_rho),1,rho%of_g,1) if (dft_is_meta() .or. lxdm) call DCOPY(rlen_kin,io_buffer(start_kin), 1,rho%kin_g,1) if (lda_plus_u_co) call DCOPY(rlen_ldaU,io_buffer(start_ldaU),1,rho%ns,1) if (lda_plus_u_nc) call DCOPY(rlen_ldaU,io_buffer(start_ldaU),1,rho%ns_nc,1) if (okpaw) call DCOPY(rlen_bec, io_buffer(start_bec), 1,rho%bec,1) if (dipfield) rho%el_dipole = REAL ( io_buffer(start_dipole) ) end if end subroutine davcio_mix_type ! !---------------------------------------------------------------------------- FUNCTION rho_ddot( rho1, rho2, gf ) !---------------------------------------------------------------------------- ! ! ... calculates 4pi/G^2*rho1(-G)*rho2(G) = V1_Hartree(-G)*rho2(G) ! ... used as an estimate of the self-consistency error on the energy ! USE kinds, ONLY : DP USE constants, ONLY : e2, tpi, fpi USE cell_base, ONLY : omega, tpiba2 USE gvect, ONLY : gg, gstart USE spin_orb, ONLY : domag USE control_flags, ONLY : gamma_only USE paw_onecenter, ONLY : paw_ddot USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! type(mix_type), INTENT(IN) :: rho1, rho2 INTEGER, INTENT(IN) :: gf REAL(DP) :: rho_ddot ! REAL(DP) :: fac INTEGER :: ig ! fac = e2 * fpi / tpiba2 ! rho_ddot = 0.D0 IF ( nspin == 1 ) THEN ! DO ig = gstart, gf ! rho_ddot = rho_ddot + & REAL( CONJG( rho1%of_g(ig,1) )*rho2%of_g(ig,1), DP ) / gg(ig) ! END DO ! rho_ddot = fac*rho_ddot ! IF ( gamma_only ) rho_ddot = 2.D0 * rho_ddot ! ELSE IF ( nspin == 2 ) THEN ! ! ... first the charge ! DO ig = gstart, gf ! rho_ddot = rho_ddot + & REAL( CONJG( rho1%of_g(ig,1)+rho1%of_g(ig,2) ) * & ( rho2%of_g(ig,1)+rho2%of_g(ig,2) ), DP ) / gg(ig) ! END DO ! rho_ddot = fac*rho_ddot ! IF ( gamma_only ) rho_ddot = 2.D0 * rho_ddot ! ! ... then the magnetization ! fac = e2 * fpi / tpi**2 ! lambda = 1 a.u. ! ! ... G=0 term ! IF ( gstart == 2 ) THEN ! rho_ddot = rho_ddot + & fac * REAL( CONJG( rho1%of_g(1,1) - rho1%of_g(1,2) ) * & ( rho2%of_g(1,1) - rho2%of_g(1,2) ), DP ) ! END IF ! IF ( gamma_only ) fac = 2.D0 * fac ! DO ig = gstart, gf ! rho_ddot = rho_ddot + & fac * REAL( CONJG( rho1%of_g(ig,1) - rho1%of_g(ig,2) ) * & ( rho2%of_g(ig,1) - rho2%of_g(ig,2) ), DP ) ! END DO ! ELSE IF ( nspin == 4 ) THEN ! DO ig = gstart, gf ! rho_ddot = rho_ddot + & REAL( CONJG( rho1%of_g(ig,1) )*rho2%of_g(ig,1), DP ) / gg(ig) ! END DO ! rho_ddot = fac*rho_ddot ! IF ( gamma_only ) rho_ddot = 2.D0 * rho_ddot ! IF (domag) THEN fac = e2*fpi / (tpi**2) ! lambda=1 a.u. ! IF ( gstart == 2 ) THEN ! rho_ddot = rho_ddot + & fac * ( REAL( CONJG( rho1%of_g(1,2))*(rho2%of_g(1,2) ),DP ) + & REAL( CONJG( rho1%of_g(1,3))*(rho2%of_g(1,3) ),DP ) + & REAL( CONJG( rho1%of_g(1,4))*(rho2%of_g(1,4) ),DP ) ) ! END IF ! IF ( gamma_only ) fac = 2.D0 * fac ! DO ig = gstart, gf ! rho_ddot = rho_ddot + & fac *( REAL( CONJG( rho1%of_g(ig,2))*(rho2%of_g(ig,2) ), DP ) + & REAL( CONJG( rho1%of_g(ig,3))*(rho2%of_g(ig,3) ), DP ) + & REAL( CONJG( rho1%of_g(ig,4))*(rho2%of_g(ig,4) ), DP ) ) ! END DO ! END IF ! END IF ! rho_ddot = rho_ddot * omega * 0.5D0 ! CALL mp_sum( rho_ddot , intra_bgrp_comm ) ! IF (dft_is_meta()) rho_ddot = rho_ddot + tauk_ddot( rho1, rho2, gf ) IF (lda_plus_u ) rho_ddot = rho_ddot + ns_ddot(rho1,rho2) ! ! Beware: paw_ddot has a hidden parallelization on all processors ! it must be called on all processors or else it will hang ! Beware: commented out because it yields too often negative values ! IF (okpaw) rho_ddot = rho_ddot + paw_ddot(rho1%bec, rho2%bec) IF (dipfield) rho_ddot = rho_ddot + (e2/2.0_DP)* & (rho1%el_dipole * rho2%el_dipole)*omega/fpi RETURN ! END FUNCTION rho_ddot ! !---------------------------------------------------------------------------- FUNCTION tauk_ddot( rho1, rho2, gf ) !---------------------------------------------------------------------------- ! ! ... calculates 4pi/G^2*rho1(-G)*rho2(G) = V1_Hartree(-G)*rho2(G) ! ... used as an estimate of the self-consistency error on the energy ! USE kinds, ONLY : DP USE constants, ONLY : e2, tpi, fpi USE cell_base, ONLY : omega, tpiba2 USE gvect, ONLY : gg, gstart USE control_flags, ONLY : gamma_only USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! type(mix_type), INTENT(IN) :: rho1, rho2 INTEGER, INTENT(IN) :: gf REAL(DP) :: tauk_ddot ! REAL(DP) :: fac INTEGER :: ig ! tauk_ddot = 0.D0 ! ! write (*,*) rho1%kin_g(1:4,1) ! if (.true. ) stop IF ( nspin == 1 ) THEN ! DO ig = gstart, gf tauk_ddot = tauk_ddot + & REAL( CONJG( rho1%kin_g(ig,1) )*rho2%kin_g(ig,1) ) END DO ! IF ( gamma_only ) tauk_ddot = 2.D0 * tauk_ddot ! ! ... G=0 term ! IF ( gstart == 2 ) THEN ! tauk_ddot = tauk_ddot + & REAL( CONJG( rho1%kin_g(1,1) ) * rho2%kin_g(1,1) ) ! END IF ! ELSE IF ( nspin == 2 ) THEN ! DO ig = gstart, gf ! tauk_ddot = tauk_ddot + & ( REAL( CONJG(rho1%kin_g(ig,1))*rho2%kin_g(ig,1) ) + & REAL( CONJG(rho1%kin_g(ig,2))*rho2%kin_g(ig,2) ) ) ! END DO ! IF ( gamma_only ) tauk_ddot = 2.D0 * tauk_ddot ! ! ... G=0 term ! IF ( gstart == 2 ) THEN ! tauk_ddot = tauk_ddot + & ( REAL( CONJG( rho1%kin_g(1,1))*rho2%kin_g(1,1) ) + & REAL( CONJG( rho1%kin_g(1,2))*rho2%kin_g(1,2) ) ) ! END IF tauk_ddot = 0.5D0 * tauk_ddot ! ELSE IF ( nspin == 4 ) THEN ! DO ig = gstart, gf ! tauk_ddot = tauk_ddot + & ( REAL( CONJG(rho1%kin_g(ig,1))*rho2%kin_g(ig,1) ) + & REAL( CONJG(rho1%kin_g(ig,2))*rho2%kin_g(ig,2) ) + & REAL( CONJG(rho1%kin_g(ig,3))*rho2%kin_g(ig,3) ) + & REAL( CONJG(rho1%kin_g(ig,4))*rho2%kin_g(ig,4) ) ) ! END DO ! IF ( gamma_only ) tauk_ddot = 2.D0 * tauk_ddot ! IF ( gstart == 2 ) THEN ! tauk_ddot = tauk_ddot + & ( REAL( CONJG( rho1%kin_g(1,1))*rho2%kin_g(1,1) ) + & REAL( CONJG( rho1%kin_g(1,2))*rho2%kin_g(1,2) ) + & REAL( CONJG( rho1%kin_g(1,3))*rho2%kin_g(1,3) ) + & REAL( CONJG( rho1%kin_g(1,4))*rho2%kin_g(1,4) ) ) ! END IF ! END IF ! fac = e2 * fpi / tpi**2 ! lambda = 1 a.u. ! tauk_ddot = fac * tauk_ddot * omega * 0.5D0 ! CALL mp_sum( tauk_ddot , intra_bgrp_comm ) ! RETURN ! END FUNCTION tauk_ddot !---------------------------------------------------------------------------- FUNCTION ns_ddot( rho1, rho2 ) !---------------------------------------------------------------------------- ! ! ... calculates U/2 \sum_i ns1(i)*ns2(i) ! ... used as an estimate of the self-consistency error on the ! ... LDA+U correction to the energy ! USE kinds, ONLY : DP USE ldaU, ONLY : Hubbard_l, Hubbard_U, Hubbard_alpha USE ions_base, ONLY : nat, ityp ! IMPLICIT NONE ! type(mix_type), INTENT(IN) :: rho1, rho2 REAL(DP) :: ns_ddot ! INTEGER :: na, nt, m1, m2 ! ns_ddot = 0.D0 ! DO na = 1, nat nt = ityp(na) IF ( Hubbard_U(nt) /= 0.D0 .OR. Hubbard_alpha(nt) /= 0.D0 ) THEN m1 = 2 * Hubbard_l(nt) + 1 m2 = 2 * Hubbard_l(nt) + 1 if (nspin.eq.4) then ns_ddot = ns_ddot + 0.5D0 * Hubbard_U(nt) * & SUM( CONJG(rho1%ns_nc(:m1,:m2,:nspin,na))*rho2%ns_nc(:m1,:m2,:nspin,na) ) else ns_ddot = ns_ddot + 0.5D0 * Hubbard_U(nt) * & SUM( rho1%ns(:m1,:m2,:nspin,na)*rho2%ns(:m1,:m2,:nspin,na) ) endif END IF END DO ! IF ( nspin == 1 ) ns_ddot = 2.D0*ns_ddot ! RETURN ! END FUNCTION ns_ddot !---------------------------------------------------------------------------- FUNCTION local_tf_ddot( rho1, rho2, ngm0 ) !---------------------------------------------------------------------------- ! ! ... calculates 4pi/G^2*rho1(-G)*rho2(G) = V1_Hartree(-G)*rho2(G) ! ... used as an estimate of the self-consistency error on the energy ! USE kinds, ONLY : DP USE constants, ONLY : e2, fpi USE cell_base, ONLY : omega, tpiba2 USE gvect, ONLY : gg, gstart USE control_flags, ONLY : gamma_only USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: ngm0 COMPLEX(DP), INTENT(IN) :: rho1(ngm0), rho2(ngm0) REAL(DP) :: local_tf_ddot ! REAL(DP) :: fac INTEGER :: ig ! local_tf_ddot = 0.D0 ! fac = e2 * fpi / tpiba2 ! DO ig = gstart, ngm0 local_tf_ddot = local_tf_ddot + REAL( CONJG(rho1(ig))*rho2(ig) ) / gg(ig) END DO ! local_tf_ddot = fac * local_tf_ddot * omega * 0.5D0 ! IF ( gamma_only ) local_tf_ddot = 2.D0 * local_tf_ddot ! CALL mp_sum( local_tf_ddot , intra_bgrp_comm ) ! RETURN ! END FUNCTION local_tf_ddot ! SUBROUTINE bcast_scf_type ( rho, root, comm ) !---------------------------------------------------------------------------- ! ... Broadcast all mixed quantities from first pool to all others ! ... Needed to prevent divergencies in k-point parallization ! USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! type(scf_type), INTENT(INOUT) :: rho INTEGER, INTENT(IN) :: root, comm ! CALL mp_bcast ( rho%of_g, root, comm ) CALL mp_bcast ( rho%of_r, root, comm ) IF ( dft_is_meta() .or. lxdm) THEN CALL mp_bcast ( rho%kin_g, root, comm ) CALL mp_bcast ( rho%kin_r, root, comm ) END IF IF ( lda_plus_u_co) CALL mp_bcast ( rho%ns, root, comm ) IF ( lda_plus_u_nc) CALL mp_bcast ( rho%ns_nc, root, comm ) IF ( okpaw ) CALL mp_bcast ( rho%bec, root, comm ) ! END SUBROUTINE ! END MODULE scf espresso-5.1/PW/src/interpolate.f900000644000175000017500000001074712341373025015276 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! subroutine interpolate (v, vs, iflag) ! ! This subroutine interpolates : ! from the smooth mesh (vs) to a thicker mesh (v) (iflag>0) ! vs is unchanged on output ! from the thick mesh (v ) to a smoother mesh (vs) (iflag<=0) ! v is unchanged on output ! V and Vs are real and in real space . V and Vs may coincide ! USE kinds, ONLY: DP USE gvect, ONLY: nl, nlm USE gvecs,ONLY: ngms, nls, nlsm, doublegrid USE control_flags, ONLY: gamma_only USE fft_base, ONLY : dfftp, dffts USE fft_interfaces,ONLY : fwfft, invfft ! implicit none real(DP) :: v (dfftp%nnr), vs (dffts%nnr) ! function on thick mesh ! function on smooth mesh complex(DP), allocatable :: aux (:), auxs (:) ! work array on thick mesh ! work array on smooth mesh integer :: iflag ! gives the direction of the interpolation integer :: ig, ir call start_clock ('interpolate') if (iflag <= 0) then ! ! from thick to smooth ! if (doublegrid) then allocate (aux( dfftp%nnr)) allocate (auxs(dffts%nnr)) aux (:) = v (:) CALL fwfft ('Dense', aux, dfftp) auxs (:) = (0.d0, 0.d0) do ig = 1, ngms auxs (nls (ig) ) = aux (nl (ig) ) enddo if (gamma_only) then do ig = 1, ngms auxs (nlsm(ig) ) = aux (nlm(ig) ) enddo end if CALL invfft ('Smooth', auxs, dffts) vs (:) = auxs (:) deallocate (auxs) deallocate (aux) else do ir = 1, dfftp%nnr vs (ir) = v (ir) enddo endif else ! ! from smooth to thick ! if (doublegrid) then allocate (aux( dfftp%nnr)) allocate (auxs(dffts%nnr)) auxs (:) = vs (:) CALL fwfft ('Smooth', auxs, dffts) aux (:) = (0.d0, 0.d0) do ig = 1, ngms aux (nl (ig) ) = auxs (nls (ig) ) enddo if (gamma_only) then do ig = 1, ngms aux (nlm(ig) ) = auxs (nlsm(ig) ) enddo end if CALL invfft ('Dense', aux, dfftp) v (:) = aux (:) deallocate (auxs) deallocate (aux) else do ir = 1, dfftp%nnr v (ir) = vs (ir) enddo endif endif call stop_clock ('interpolate') return end subroutine interpolate ! subroutine cinterpolate (v, vs, iflag) ! ! This subroutine interpolates : ! from the smooth mesh (vs) to a thicker mesh (v) (iflag>0) ! vs is unchanged on output ! from the thick mesh (v ) to a smoother mesh (vs) (iflag<=0) ! v is unchanged on output ! V and Vs are complex and in real space . V and Vs may coincide ! USE kinds, ONLY: DP USE gvect, ONLY: nl, nlm USE gvecs,ONLY: ngms, nls, nlsm, doublegrid USE control_flags, ONLY: gamma_only USE fft_base, ONLY : dfftp, dffts USE fft_interfaces,ONLY : fwfft, invfft ! IMPLICIT NONE complex(DP) :: v (dfftp%nnr), vs (dffts%nnr) ! function on thick mesh ! function on smooth mesh integer :: iflag ! gives the direction of the interpolation complex(DP), allocatable :: aux (:), auxs (:) ! work array on thick mesh ! work array on smooth mesh integer :: ig if (gamma_only) call errore ('cinterpolate','not allowed', 1) call start_clock ('cinterpolate') if (iflag <= 0) then ! ! from thick to smooth ! if (doublegrid) then allocate (aux ( dfftp%nnr)) aux (:) = v(:) CALL fwfft ('Dense', aux, dfftp) vs (:) = (0.d0, 0.d0) do ig = 1, ngms vs (nls (ig) ) = aux (nl (ig) ) enddo CALL invfft ('Smooth', vs, dffts) deallocate (aux) else call zcopy (dfftp%nnr, v, 1, vs, 1) endif else ! ! from smooth to thick ! if (doublegrid) then allocate (auxs (dffts%nnr)) auxs (:) = vs(:) CALL fwfft ('Smooth', auxs, dffts) v (:) = (0.d0, 0.d0) do ig = 1, ngms v (nl (ig) ) = auxs (nls (ig) ) enddo CALL invfft ('Dense', v, dfftp) deallocate (auxs) else call zcopy (dfftp%nnr, vs, 1, v, 1) endif endif call stop_clock ('cinterpolate') return end subroutine cinterpolate espresso-5.1/PW/src/print_ks_energies.f900000644000175000017500000001402512341373025016453 0ustar mbamba! ! Copyright (C) 2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE print_ks_energies() !---------------------------------------------------------------------------- ! ! ... printout of Kohn-Sham eigenvalues ! USE kinds, ONLY : DP USE constants, ONLY : rytoev USE io_global, ONLY : stdout, ionode USE ener, ONLY : ef, ef_up, ef_dw USE klist, ONLY : xk, nelec, ngk, nks, nkstot, & lgauss, two_fermi_energies, nelup, neldw, & wk USE lsda_mod, ONLY : lsda, nspin, isk USE ktetra, ONLY : ltetra USE wvfct, ONLY : nbnd, et, wg USE fixed_occ, ONLY : f_inp, tfixed_occ, one_atom_occupations USE control_flags, ONLY : conv_elec, lbands, iverbosity USE mp_bands, ONLY : root_bgrp, intra_bgrp_comm, inter_bgrp_comm USE mp, ONLY : mp_sum, mp_bcast ! IMPLICIT NONE ! ! ... a few local variables ! INTEGER, ALLOCATABLE :: & ngk_g(:) ! number of plane waves summed on all nodes REAL(DP) :: & ehomo, elumo ! highest occupied and lowest unoccupied levels INTEGER :: & i, &! counter on polarization ik, &! counter on k points kbnd, &! counter on bands ibnd_up, &! counter on bands ibnd_dw, &! counter on bands ibnd ! IF (nkstot >= 100 .and. iverbosity <= 0 ) THEN WRITE( stdout, '(/,5x,a)') & "Number of k-points >= 100: set verbosity='high' to print the bands." ELSE ! ALLOCATE ( ngk_g (nkstot) ) ! ngk_g(1:nks) = ngk(:) ! CALL mp_sum( ngk_g(1:nks), intra_bgrp_comm ) ! CALL ipoolrecover( ngk_g, 1, nkstot, nks ) ! CALL mp_bcast( ngk_g, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( ngk_g, root_bgrp, inter_bgrp_comm ) ! DO ik = 1, nkstot ! IF ( lsda ) THEN ! IF ( ik == 1 ) WRITE( stdout, 9015) IF ( ik == ( 1 + nkstot / 2 ) ) WRITE( stdout, 9016) ! END IF ! IF ( conv_elec ) THEN WRITE( stdout, 9021 ) ( xk(i,ik), i = 1, 3 ), ngk_g(ik) ELSE WRITE( stdout, 9020 ) ( xk(i,ik), i = 1, 3 ) END IF ! WRITE( stdout, 9030 ) ( et(ibnd,ik) * rytoev, ibnd = 1, nbnd ) ! IF( iverbosity > 0 .AND. .NOT. lbands ) THEN ! WRITE( stdout, 9032 ) IF (ABS(wk(ik))>1.d-10) THEN WRITE( stdout, 9030 ) ( wg(ibnd,ik)/wk(ik), ibnd = 1, nbnd ) ELSE WRITE( stdout, 9030 ) ( wg(ibnd,ik), ibnd = 1, nbnd ) ENDIF ! END IF ! END DO ! DEALLOCATE ( ngk_g ) ! ENDIF ! IF ( .NOT. lbands ) THEN ! IF ( lgauss .OR. ltetra ) THEN ! ! ... presumably a metal: print Fermi energy ! IF ( two_fermi_energies ) THEN WRITE( stdout, 9041 ) ef_up*rytoev, ef_dw*rytoev ELSE WRITE( stdout, 9040 ) ef*rytoev END IF ! ELSE ! ! ... presumably not a metal: store in ibnd the position of HOMO ! ... (or in ibnd_up, ibnd_dw for LSDA calculations) ! IF ( tfixed_occ ) THEN ibnd = 0 ibnd_up = 0 ibnd_dw = 0 DO kbnd = 1, nbnd IF ( nspin == 1 .OR. nspin == 4 ) THEN IF ( f_inp(kbnd,1) > 0.D0 ) ibnd = kbnd ELSE IF ( f_inp(kbnd,1) > 0.D0 ) ibnd_up = kbnd IF ( f_inp(kbnd,2) > 0.D0 ) ibnd_dw = kbnd ibnd = MAX(ibnd_up, ibnd_dw) END IF END DO ELSE IF ( nspin == 1 ) THEN ibnd = NINT( nelec ) / 2 ELSE ibnd = NINT( nelec ) ibnd_up = NINT( nelup ) ibnd_dw = NINT( neldw ) END IF END IF ! ! ... print HOMO and LUMO (or just the HOMO if LUMO is not there) ! IF ( ionode .AND. .NOT. one_atom_occupations ) THEN ! IF ( nspin == 1 .OR. nspin == 4 ) THEN ehomo = MAXVAL( et(ibnd, 1:nkstot) ) IF ( nbnd > ibnd ) elumo = MINVAL( et(ibnd+1,1:nkstot) ) ELSE IF ( ibnd_up == 0 ) THEN ! ehomo = MAXVAL( et(ibnd_dw,1:nkstot/2) ) ! ELSE IF ( ibnd_dw == 0 ) THEN ! ehomo = MAXVAL( et(ibnd_up,1:nkstot/2) ) ! ELSE ! ehomo = MAX( MAXVAL( et(ibnd_up,1:nkstot/2) ), & MAXVAL( et(ibnd_dw,nkstot/2+1:nkstot) ) ) ! END IF IF ( nbnd > ibnd ) & elumo = MIN( MINVAL( et(ibnd_up+1,1:nkstot/2) ), & MINVAL( et(ibnd_dw+1,nkstot/2+1:nkstot) ) ) END IF ! IF ( nbnd > ibnd ) THEN WRITE( stdout, 9042 ) ehomo*rytoev, elumo*rytoev ELSE WRITE( stdout, 9043 ) ehomo*rytoev END IF ! END IF END IF ! END IF ! CALL flush_unit( stdout ) ! RETURN ! ! ... formats ! 9015 FORMAT(/' ------ SPIN UP ------------'/ ) 9016 FORMAT(/' ------ SPIN DOWN ----------'/ ) 9020 FORMAT(/' k =',3F7.4,' band energies (ev):'/ ) 9021 FORMAT(/' k =',3F7.4,' (',I6,' PWs) bands (ev):'/ ) 9030 FORMAT( ' ',8F9.4 ) 9032 FORMAT(/' occupation numbers ' ) 9043 FORMAT(/' highest occupied level (ev): ',F10.4 ) 9042 FORMAT(/' highest occupied, lowest unoccupied level (ev): ',2F10.4 ) 9041 FORMAT(/' the spin up/dw Fermi energies are ',2F10.4,' ev' ) 9040 FORMAT(/' the Fermi energy is ',F10.4,' ev' ) ! END SUBROUTINE print_ks_energies espresso-5.1/PW/src/gen_us_dj.f900000644000175000017500000001075112341373025014700 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine gen_us_dj (ik, dvkb) !---------------------------------------------------------------------- ! ! Calculates the beta function pseudopotentials with ! the derivative of the Bessel functions ! USE kinds, ONLY : DP USE constants, ONLY : tpi USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : tpiba USE klist, ONLY : xk USE gvect, ONLY : mill, eigts1, eigts2, eigts3, g USE wvfct, ONLY : npw, npwx, igk USE uspp, ONLY : nkb, indv, nhtol, nhtolm USE us, ONLY : nqx, tab, tab_d2y, dq, spline_ps USE splinelib USE uspp_param, ONLY : upf, lmaxkb, nbetam, nh ! implicit none ! integer :: ik complex(DP) :: dvkb (npwx, nkb) ! ! local variables ! integer :: ikb, nb, ih, ig, i0, i1, i2, i3 , nt ! counter on beta functions ! counter on beta functions ! counter on beta functions ! counter on G vectors ! index of the first nonzero point in the r ! counter on atomic type real(DP) :: arg, px, ux, vx, wx ! argument of the atomic phase factor complex(DP) :: phase, pref ! atomic phase factor ! prefactor integer :: na, l, iig, lm real(DP), allocatable :: djl (:,:,:), ylm (:,:), q (:), gk (:,:) real(DP) :: qt, eps parameter (eps = 1.0d-8) complex(DP), allocatable :: sk (:) integer :: iq real(DP), allocatable :: xdata(:) if (nkb.eq.0) return call start_clock('stres_us31') allocate (djl( npw , nbetam , ntyp)) allocate (ylm( npw ,(lmaxkb + 1) **2)) allocate (gk( 3, npw)) allocate (q( npw)) do ig = 1, npw gk (1,ig) = xk (1, ik) + g(1, igk(ig) ) gk (2,ig) = xk (2, ik) + g(2, igk(ig) ) gk (3,ig) = xk (3, ik) + g(3, igk(ig) ) q (ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo call stop_clock('stres_us31') call start_clock('stres_us32') call ylmr2 ((lmaxkb+1)**2, npw, gk, q, ylm) call stop_clock('stres_us32') call start_clock('stres_us33') if (spline_ps) then allocate(xdata(nqx)) do iq = 1, nqx xdata(iq) = (iq - 1) * dq enddo endif do nt = 1, ntyp do nb = 1, upf(nt)%nbeta do ig = 1, npw qt = sqrt(q (ig)) * tpiba if (spline_ps) then djl(ig,nb,nt) = splint_deriv(xdata, tab(:,nb,nt), & tab_d2y(:,nb,nt), qt) else px = qt / dq - int (qt / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = qt / dq + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 djl(ig,nb,nt) = ( tab (i0, nb, nt) * (-vx*wx-ux*wx-ux*vx)/6.d0 + & tab (i1, nb, nt) * (+vx*wx-px*wx-px*vx)/2.d0 - & tab (i2, nb, nt) * (+ux*wx-px*wx-px*ux)/2.d0 + & tab (i3, nb, nt) * (+ux*vx-px*vx-px*ux)/6.d0 )/dq endif enddo enddo enddo call stop_clock('stres_us33') call start_clock('stres_us34') deallocate (q) deallocate (gk) allocate (sk( npw)) ikb = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then arg = (xk (1, ik) * tau(1,na) + & xk (2, ik) * tau(2,na) + & xk (3, ik) * tau(3,na) ) * tpi phase = CMPLX(cos (arg), - sin (arg) ,kind=DP) do ig = 1, npw iig = igk (ig) sk (ig) = eigts1 (mill (1,iig), na) * & eigts2 (mill (2,iig), na) * & eigts3 (mill (3,iig), na) * phase enddo do ih = 1, nh (nt) nb = indv (ih, nt) l = nhtol (ih, nt) lm= nhtolm(ih, nt) ikb = ikb + 1 pref = (0.d0, -1.d0) **l ! do ig = 1, npw dvkb (ig, ikb) = djl (ig, nb, nt) * sk (ig) * ylm (ig, lm) & * pref enddo enddo endif enddo enddo call stop_clock('stres_us34') if (ikb.ne.nkb) call errore ('gen_us_dj', 'unexpected error', 1) deallocate (sk) deallocate (ylm) deallocate (djl) if (spline_ps) deallocate(xdata) return end subroutine gen_us_dj espresso-5.1/PW/src/compute_qdipol.f900000644000175000017500000001031012341373025015756 0ustar mbamba! ! Copyright (C) 2001-2004 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE compute_qdipol(dpqq) ! ! This routine computes the term dpqq, i.e. the dipole moment of the ! augmentation charge. The output is given on cartesian coordinates ! USE kinds, only: DP USE constants, ONLY: fpi USE atom, ONLY: rgrid USE ions_base, ONLY: ntyp => nsp USE uspp, only: nhtol, nhtolm, indv, nlx, ap USE uspp_param, only: upf, nbetam, nh, nhm implicit none REAL(DP) :: dpqq( nhm, nhm, 3, ntyp) real(DP), allocatable :: qrad2(:,:,:), qtot(:,:,:), aux(:) real(DP) :: fact integer :: nt, l, ir, nb, mb, ijv, ilast, ipol, ih, ivl, jh, jvl, lp, ndm call start_clock('cmpt_qdipol') ndm = MAXVAL ( upf(1:ntyp)%kkbeta ) allocate (qrad2( nbetam , nbetam, ntyp)) allocate (aux( ndm)) allocate (qtot( ndm, nbetam, nbetam)) qrad2(:,:,:)=0.d0 dpqq=0.d0 do nt = 1, ntyp if ( upf(nt)%tvanp ) then l=1 ! ! Only l=1 terms enter in the dipole of Q ! do nb = 1, upf(nt)%nbeta do mb = nb, upf(nt)%nbeta ijv = mb * (mb-1) /2 + nb if ( ( l >= abs(upf(nt)%lll(nb) - upf(nt)%lll(mb)) ) .and. & ( l <= upf(nt)%lll(nb) + upf(nt)%lll(mb) ) .and. & (mod (l+upf(nt)%lll(nb)+upf(nt)%lll(mb), 2) == 0) ) then if (upf(nt)%q_with_l .or. upf(nt)%tpawp) then qtot(1:upf(nt)%kkbeta,nb,mb) =& upf(nt)%qfuncl(1:upf(nt)%kkbeta,ijv,l) else do ir = 1, upf(nt)%kkbeta if (rgrid(nt)%r(ir) >= upf(nt)%rinner(l+1)) then qtot(ir, nb, mb)=upf(nt)%qfunc(ir,ijv) else ilast = ir endif enddo if ( upf(nt)%rinner(l+1) > 0.0_dp) & call setqf( upf(nt)%qfcoef (1, l+1, nb, mb), & qtot(1,nb,mb), rgrid(nt)%r, upf(nt)%nqf, l, ilast) endif endif enddo enddo do nb=1, upf(nt)%nbeta ! ! the Q are symmetric with respect to indices ! do mb=nb, upf(nt)%nbeta if ( ( l >= abs(upf(nt)%lll(nb) - upf(nt)%lll(mb)) ) .and. & ( l <= upf(nt)%lll(nb) + upf(nt)%lll(mb) ) .and. & (mod (l+upf(nt)%lll(nb)+upf(nt)%lll(mb), 2) == 0) ) then do ir = 1, upf(nt)%kkbeta aux(ir)=rgrid(nt)%r(ir)*qtot(ir, nb, mb) enddo call simpson ( upf(nt)%kkbeta, aux, rgrid(nt)%rab, & qrad2(nb,mb,nt) ) endif enddo enddo endif ! ntyp enddo do ipol = 1,3 fact=-sqrt(fpi/3.d0) if (ipol.eq.1) lp=3 if (ipol.eq.2) lp=4 if (ipol.eq.3) then lp=2 fact=-fact endif do nt = 1,ntyp if ( upf(nt)%tvanp ) then do ih = 1, nh(nt) ivl = nhtolm(ih, nt) mb = indv(ih, nt) do jh = ih, nh (nt) jvl = nhtolm(jh, nt) nb=indv(jh,nt) if (ivl > nlx) call errore('compute_qdipol',' ivl > nlx', ivl) if (jvl > nlx) call errore('compute_qdipol',' jvl > nlx', jvl) if (nb > nbetam) & call errore('compute_qdipol',' nb out of bounds', nb) if (mb > nbetam) & call errore('compute_qdipol',' mb out of bounds', mb) if (mb > nb) call errore('compute_qdipol',' mb > nb', 1) dpqq(ih,jh,ipol,nt)=fact*ap(lp,ivl,jvl)*qrad2(mb,nb,nt) dpqq(jh,ih,ipol,nt)=dpqq(ih,jh,ipol,nt) ! WRITE( stdout,'(3i5,2f15.9)') ih,jh,ipol,dpqq(ih,jh,ipol,nt) enddo enddo endif enddo enddo deallocate(qtot) deallocate(aux) deallocate(qrad2) call stop_clock('cmpt_qdipol') return end subroutine compute_qdipol espresso-5.1/PW/src/output_tau.f900000644000175000017500000000645412341373025015161 0ustar mbamba! ! Copyright (C) 2003-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE output_tau( print_lattice, print_final ) !---------------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE constants, ONLY : bohr_radius_angs USE cell_base, ONLY : alat, at, bg, omega, cell_units USE ions_base, ONLY : nat, tau, ityp, atm, if_pos, tau_format ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: print_lattice, print_final REAL (DP), ALLOCATABLE :: tau_out(:,:) INTEGER :: na, i, k ! ! ! ... tau in output format ! ALLOCATE( tau_out(3,nat) ) ! tau_out(:,:) = tau(:,:) ! ! ... print cell parameters if required ! IF ( print_final ) WRITE( stdout, '("Begin final coordinates")') IF ( print_lattice ) THEN ! WRITE( stdout, '(5x,a,1F12.5," a.u.^3 ( ",1F11.5," Ang^3 )")') & "new unit-cell volume = ",omega, omega*bohr_radius_angs**3 SELECT CASE (cell_units) ! ! ... convert output cell from internally used format ! ... (alat units) to the same format used in input ! CASE( 'alat' ) WRITE( stdout, '(/"CELL_PARAMETERS (alat=",f12.8,")")') alat WRITE( stdout, '(3F14.9)') ( ( at(i,k), i = 1, 3), k = 1, 3 ) CASE( 'bohr' ) WRITE( stdout, '(/"CELL_PARAMETERS (bohr)")') WRITE( stdout, '(3F14.9)') ( ( at(i,k) * alat, i = 1, 3), k = 1, 3 ) CASE( 'angstrom' ) WRITE( stdout, '(/"CELL_PARAMETERS (angstrom)")') WRITE( stdout, '(3F14.9)') & ( ( at(i,k) * alat * bohr_radius_angs, i = 1, 3), k = 1, 3 ) CASE DEFAULT WRITE( stdout, '(/"CELL_PARAMETERS (alat=",f12.8,")")') alat WRITE( stdout, '(3F14.9)') ( ( at(i,k), i = 1, 3), k = 1, 3 ) END SELECT ! END IF ! SELECT CASE( tau_format ) ! ! ... convert output atomic positions from internally used format ! ... (a0 units) to the same format used in input ! CASE( 'alat' ) ! WRITE( stdout, '(/"ATOMIC_POSITIONS (alat)")' ) ! CASE( 'bohr' ) ! WRITE( stdout, '(/"ATOMIC_POSITIONS (bohr)")' ) tau_out(:,:) = tau_out(:,:) * alat ! CASE( 'crystal' ) ! WRITE( stdout, '(/"ATOMIC_POSITIONS (crystal)")' ) ! call cryst_to_cart( nat, tau_out, bg, -1 ) ! CASE( 'angstrom' ) ! WRITE( stdout, '(/"ATOMIC_POSITIONS (angstrom)")' ) ! tau_out(:,:) = tau_out(:,:) * alat * bohr_radius_angs ! CASE DEFAULT ! WRITE( stdout, '(/"ATOMIC_POSITIONS")' ) ! END SELECT ! DO na = 1, nat ! IF ( ANY( if_pos(:,na) == 0 ) ) THEN WRITE( stdout,'(A3,3X,3F14.9,1X,3i4)') & atm(ityp(na)), tau_out(:,na), if_pos(:,na) ELSE WRITE( stdout,'(A3,3X,3F14.9)') & atm(ityp(na)), tau_out(:,na) END IF ! END DO ! IF ( print_final ) WRITE( stdout, '("End final coordinates")') WRITE( stdout, '(/)' ) ! DEALLOCATE( tau_out ) ! RETURN ! END SUBROUTINE output_tau espresso-5.1/PW/src/n_plane_waves.f900000644000175000017500000000352512341373025015565 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine n_plane_waves (ecutwfc, tpiba2, nks, xk, g, ngm, npwx, ngk) !----------------------------------------------------------------------- ! ! Find number of plane waves for each k-point ! USE kinds, only: DP USE mp, ONLY : mp_max USE mp_pools, ONLY : inter_pool_comm implicit none ! integer, intent(in) :: nks, ngm real(DP),intent(in) :: ecutwfc, tpiba2, xk (3, nks), g (3, ngm) ! integer, intent(out) :: npwx, ngk (nks) ! integer :: nk, ng real(DP) :: q2 ! npwx = 0 do nk = 1, nks ngk (nk) = 0 do ng = 1, ngm q2 = (xk (1, nk) + g (1, ng) ) **2 + (xk (2, nk) + g (2, ng) ) ** & 2 + (xk (3, nk) + g (3, ng) ) **2 if (q2 <= ecutwfc / tpiba2) then ! ! here if |k+G|^2 <= Ecut increase the number of G inside the sphere ! ngk (nk) = ngk (nk) + 1 else if (sqrt (g (1, ng) **2 + g (2, ng) **2 + g (3, ng) **2) & .gt.sqrt (xk (1, nk) **2 + xk (2, nk) **2 + xk (3, nk) **2) & + sqrt (ecutwfc / tpiba2) ) goto 100 ! ! if |G| > |k| + sqrt(Ecut) stop search ! endif enddo 100 npwx = max (npwx, ngk (nk) ) enddo if (npwx <= 0) call errore ('n_plane_waves', & 'No plane waves found: running on too many processors?', 1) ! ! when using pools, set npwx to the maximum value across pools ! (you may run into trouble at restart otherwise) ! CALL mp_max ( npwx, inter_pool_comm ) ! return end subroutine n_plane_waves espresso-5.1/PW/src/xdm_dispersion.f900000644000175000017500000010314712341373025015774 0ustar mbamba! Module for the calculation of the XDM dispersion correction. See: ! A. Otero de la Roza and E. R. Johnson, J. Chem. Phys. 136 (2012) 174109 and 138, 204109 (2013). ! A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007) and references therein. ! Copyright (C) 2013 A. Otero-de-la-Roza and E. R. Johnson, University of California-Merced. ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . module xdm_module USE kinds, ONLY: DP USE constants, ONLY: bohr_radius_angs, pi, fpi IMPLICIT NONE PRIVATE PUBLIC :: a1i, a2i ! the damping function coefficients (real_dp) PUBLIC :: init_xdm ! initialize XDM: calculate atomic volumes, radial densities,... PUBLIC :: energy_xdm ! compute the XDM dispersion energy and derivatives PUBLIC :: force_xdm ! fetch the forces calculated by energy_xdm PUBLIC :: stress_xdm ! fetch the stresses calculated by energy_xdm PUBLIC :: cleanup_xdm ! deallocate arrays ! atomic environments INTEGER :: nenv REAL(DP), ALLOCATABLE :: xenv(:,:) INTEGER, ALLOCATABLE :: ienv(:), lvec(:,:) INTEGER :: nvec ! moments, polarizabilities, radii, dispersion coefficients REAL(DP), ALLOCATABLE :: alpha(:), ml(:,:) REAL(DP), ALLOCATABLE :: cx(:,:,:), rvdw(:,:) REAL(DP) :: maxc6 ! energies, forces and stresses REAL(DP) :: esave = 0._DP REAL(DP) :: esaveold = 0._DP REAL(DP), ALLOCATABLE :: fsave(:,:), ssave(:,:) ! have moments been computed before? LOGICAL :: saved = .FALSE. ! a1 and a2 coefficients, with defaults for pw86pbe REAL(DP) :: a1i = 0.6836_DP REAL(DP) :: a2i = 1.5045_DP ! radial atomic densities REAL(DP), ALLOCATABLE :: rfree(:,:), w2free(:,:), rmaxg2(:) REAL(DP), ALLOCATABLE :: rcore(:,:), w2core(:,:), rmaxcore2(:) ! free volumes REAL(DP), ALLOCATABLE :: afree(:) ! free atomic polarizabilities from CRC handbook, 88th ed. (ang^3->bohr^3) REAL(DP), PARAMETER :: alpha_free(1:102) = (/0.6668_DP, 0.2051_DP, 24.3300_DP, 5.6000_DP,& 3.0300_DP, 1.7600_DP, 1.1000_DP, 0.8020_DP, 0.5570_DP, 0.3956_DP, 24.1100_DP, 10.6000_DP,& 6.8000_DP, 5.3800_DP, 3.6300_DP, 2.9000_DP, 2.1800_DP, 1.6411_DP, 43.4000_DP, 22.8000_DP,& 17.8000_DP, 14.6000_DP, 12.4000_DP, 11.6000_DP, 9.4000_DP, 8.4000_DP, 7.5000_DP, 6.8000_DP,& 6.2000_DP, 5.7500_DP, 8.1200_DP, 6.0700_DP, 4.3100_DP, 3.7700_DP, 3.0500_DP, 2.4844_DP,& 47.3000_DP, 27.6000_DP, 22.7000_DP, 17.9000_DP, 15.7000_DP, 12.8000_DP, 11.4000_DP, 9.6000_DP,& 8.6000_DP, 4.8000_DP, 7.2000_DP, 7.3600_DP, 10.2000_DP, 7.7000_DP, 6.6000_DP, 5.5000_DP,& 5.3500_DP, 4.0440_DP, 59.4200_DP, 39.7000_DP, 31.1000_DP, 29.6000_DP, 28.2000_DP, 31.4000_DP,& 30.1000_DP, 28.8000_DP, 27.7000_DP, 23.5000_DP, 25.5000_DP, 24.5000_DP, 23.6000_DP, 22.7000_DP,& 21.8000_DP, 21.0000_DP, 21.9000_DP, 16.2000_DP, 13.1000_DP, 11.1000_DP, 9.7000_DP, 8.5000_DP,& 7.6000_DP, 6.5000_DP, 5.8000_DP, 5.0200_DP, 7.6000_DP, 6.8000_DP, 7.4000_DP, 6.8000_DP, 6.0000_DP,& 5.3000_DP, 48.6000_DP, 38.3000_DP, 32.1000_DP, 32.1000_DP, 25.4000_DP, 24.9000_DP, 24.8000_DP,& 24.5000_DP, 23.3000_DP, 23.0000_DP, 22.7000_DP, 20.5000_DP, 19.7000_DP, 23.8000_DP, 18.2000_DP,& 17.5000_DP /) / bohr_radius_angs**3 ! factorials and lambda_l1,l2 REAL(DP), PARAMETER :: fact(0:8) = REAL((/1,1,2,6,24,120,720,5040,40320/),DP) CONTAINS SUBROUTINE init_xdm() ! Initialize storage arrays, calculate the atomic and core radial densities ! and integrate the free volumes. USE ions_base, ONLY: nat USE uspp_param, ONLY : upf USE ions_base, ONLY: ntyp => nsp USE atom, ONLY : rgrid, msh USE splinelib, ONLY : spline INTEGER :: i, j, ialloc, nn REAL(DP), ALLOCATABLE :: d1y(:), d2y(:) IF ( .NOT. ALL (upf(1:ntyp)%tpawp) ) & CALL errore("init_xdm","XDM only implemented for PAW",1) ! allocate c6, etc. ALLOCATE(cx(nat,nat,2:4),rvdw(nat,nat),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("c6, c8, c10, rvdw") ALLOCATE(alpha(nat),ml(3,nat),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("ml, alpha") ALLOCATE(fsave(3,nat),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("fsave") ALLOCATE(ssave(3,3),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("ssave") ! free atomic and core densities nn = 0 DO i = 1, ntyp nn = MAX(nn,msh(i)) END DO ALLOCATE(rfree(nn,ntyp),w2free(nn,ntyp),d1y(nn),d2y(nn),rmaxg2(ntyp),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("rfree") ALLOCATE(rcore(nn,ntyp),w2core(nn,ntyp),rmaxcore2(ntyp),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("rcore") DO i = 1, ntyp nn = msh(i) rfree(1:nn,i) = upf(i)%rho_at(1:nn) / (fpi*rgrid(i)%r(1:nn)**2) + upf(i)%paw%ae_rho_atc(1:nn) CALL radial_gradient(rfree(1:nn,i),d1y(1:nn),rgrid(i)%r(1:nn),nn,1) CALL radial_gradient(d1y(1:nn),d2y(1:nn),rgrid(i)%r(1:nn),nn,1) CALL spline(rgrid(i)%r(1:nn),rfree(1:nn,i),d1y(1),d2y(1),w2free(1:nn,i)) rmaxg2(i) = rgrid(i)%r(nn)**2 rcore(1:nn,i) = upf(i)%paw%ae_rho_atc(1:nn) CALL radial_gradient(rcore(1:nn,i),d1y(1:nn),rgrid(i)%r(1:nn),nn,1) CALL radial_gradient(d1y(1:nn),d2y(1:nn),rgrid(i)%r(1:nn),nn,1) CALL spline(rgrid(i)%r(1:nn),rcore(1:nn,i),d1y(1),d2y(1),w2core(1:nn,i)) if (rcore(1,i) > 1e-8_DP) then DO j = nn, 1, -1 IF (rcore(j,i) > 1e-8_DP) EXIT END DO else j = 1 end if rmaxcore2(i) = rgrid(i)%r(j)**2 END DO ! free volumes ALLOCATE(afree(ntyp)) DO i = 1, ntyp nn = msh(i) d1y = rfree(1:nn,i) * rgrid(i)%r(1:nn)**5 * fpi CALL simpson(nn,d1y,rgrid(i)%rab(1:nn),afree(i)) END DO DEALLOCATE(d1y,d2y) END SUBROUTINE init_xdm SUBROUTINE cleanup_xdm() ! Free all the allocated arrays. IF (ALLOCATED(rvdw)) DEALLOCATE(rvdw) IF (ALLOCATED(cx)) DEALLOCATE(cx) IF (ALLOCATED(alpha)) DEALLOCATE(alpha) IF (ALLOCATED(ml)) DEALLOCATE(ml) IF (ALLOCATED(fsave)) DEALLOCATE(fsave) IF (ALLOCATED(ssave)) DEALLOCATE(ssave) IF (ALLOCATED(rfree)) DEALLOCATE(rfree) IF (ALLOCATED(w2free)) DEALLOCATE(w2free) IF (ALLOCATED(rmaxg2)) DEALLOCATE(rmaxg2) IF (ALLOCATED(rcore)) DEALLOCATE(rcore) IF (ALLOCATED(w2core)) DEALLOCATE(w2core) IF (ALLOCATED(rmaxcore2)) DEALLOCATE(rmaxcore2) IF (ALLOCATED(afree)) DEALLOCATE(afree) IF (ALLOCATED(xenv)) DEALLOCATE(xenv) IF (ALLOCATED(ienv)) DEALLOCATE(ienv) IF (ALLOCATED(lvec)) DEALLOCATE(lvec) END SUBROUTINE cleanup_xdm FUNCTION energy_xdm() RESULT(evdw) ! Calculate the XDM dispersion energy correction, forces (Cx coefficients are assumed constant) ! and stresses using the electron density and the kinetic energy density to obtain ! the dispersion coefficients. The computed coefficients are saved for geometry optimization ! runs. In addition, forces and stresses are saved for subsequent calls to force_xdm ! and stress_xdm. USE control_flags, ONLY: lbfgs, lmd USE scf, ONLY: rho USE io_global, ONLY: stdout, ionode USE fft_base, ONLY : dfftp USE cell_base, ONLY : at, alat, omega USE ions_base, ONLY: nat, tau, atm, ityp, ntyp => nsp USE constants, ONLY: au_gpa USE lsda_mod, ONLY: nspin USE atom, ONLY: msh, rgrid USE splinelib, ONLY : splint USE mp_images, ONLY : me_image, nproc_image, intra_image_comm USE mp_pools, ONLY : me_pool USE mp, ONLY : mp_sum REAL(DP) :: evdw ! energy cutoff for max. interaction distance REAL(DP), PARAMETER :: ecut = 1e-11_DP INTEGER :: ialloc INTEGER :: i, iat, n, ix, iy, iz, j, jj REAL(DP), ALLOCATABLE :: gaux(:,:), ggaux(:,:,:), rhoat(:), rhocor(:), rhoae(:) REAL(DP), ALLOCATABLE :: lapr(:), gmod(:), avol(:), b(:) REAL(DP) :: taus, rhos, ds, qs, rhs, xroot, xshift, xold, expx, gx, fx, ffx REAL(DP) :: grho, lap, rhot, rhofree, db2, ri2, rhosf, rhoaf, rc REAL(DP) :: x(3), wei, weic, db, ri, atb(3,3), taub(3) REAL(DP) :: xij(3), ehadd(6:10), eat, ee INTEGER :: l1, l2, ll, m1, m2 LOGICAL :: docalc REAL(DP) :: a1, a2, rmax, rmax2, den, den2 REAL(DP) :: dij2 REAL(DP) :: rvdwx, dijx, dijxm2, fxx, cn0 INTEGER :: i3, nn REAL(DP) :: for(3,nat), sigma(3,3), sat(3,3) INTEGER :: resto, divid, first, last, it INTEGER :: idx0, idx, ispin INTEGER, EXTERNAL :: atomic_number real*8 :: iix, iiy, iiz ! initialize IF (nspin > 2) CALL errore('energy_xdm','nspin > 2 not implemented',1) evdw = 0._DP fsave = 0._DP ssave = 0._DP atb = at * alat ! do we need to recalculate the coefficients? docalc = .NOT.saved .OR. .NOT.(lbfgs .OR. lmd) ! Define damping coefficients a1 = a1i a2 = a2i / bohr_radius_angs IF (ionode) THEN WRITE (stdout,'(/"* XDM dispersion")') WRITE (stdout,'(" a1 = ",F12.6)') a1 WRITE (stdout,'(" a2 (ang) = ",F12.6)') a2i WRITE (stdout,'(" a2 (bohr) = ",F12.6)') a2 END IF ! calculate the interaction coefficients IF (docalc) THEN ! set up the atomic environment for densities rmax = SQRT(MAXVAL(rmaxg2)) CALL set_environ(rmax) ! total and core promolecular density ALLOCATE(rhoat(dfftp%nnr),rhocor(dfftp%nnr),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("rhoat/rhocor") CALL promolecular_rho(rhoat,rhocor) ! all-electron density ALLOCATE(rhoae(dfftp%nnr),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("rhoae") CALL PAW_make_ae_charge_xdm(rho,rhoae) rhoae = (rhoae + rhocor) / REAL(nspin,DP) ! don't need the core anymore DEALLOCATE(rhocor) ! define the starting index for each processor #ifdef __MPI idx0 = dfftp%nr1x * dfftp%nr2x * SUM(dfftp%npp(1:me_pool)) #else idx0 = 0 #endif ! allocate arrays and initialize ALLOCATE(b(dfftp%nnr),STAT=ialloc) if (ialloc /= 0) CALL alloc_failed("b") ALLOCATE(avol(nat),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("avol") ALLOCATE(lapr(dfftp%nnr),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("lapr") ALLOCATE(gmod(dfftp%nnr),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("gmod") avol = 0._DP ml = 0._DP b = 0._DP ! loop over spins DO ispin = 1, nspin ALLOCATE(gaux(3,dfftp%nnr),ggaux(3,3,dfftp%nnr),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("gaux, ggaux") ! valence gradient and laplacian CALL external_ggradient(rho%of_r(:,ispin),gaux,ggaux) lapr = ggaux(1,1,:) + ggaux(2,2,:) + ggaux(3,3,:) DEALLOCATE(ggaux) gmod = sqrt(gaux(1,:)**2 + gaux(2,:)**2 + gaux(3,:)**2) DEALLOCATE(gaux) ! calculate b on the real-space grid DO i = 1, dfftp%nnr IF (rho%of_r(i,ispin) < 1e-14_DP) CYCLE rhot = MAX(rho%of_r(i,ispin),1e-14_DP) rhos = rhot / 2._DP grho = gmod(i) lap = lapr(i) taus = rho%kin_r(i,ispin) IF (nspin > 1) THEN rhos = rhot rhot = MAX(rho%of_r(i,1)+rho%of_r(i,2),1e-14_DP) ELSE grho = grho / 2._DP lap = lap / 2._DP taus = taus / 2._DP END IF ds = taus - 0.25_DP * grho**2 / rhos qs = 1._DP/6._DP * (lap - 2._DP * ds) rhs = 2._DP/3._DP * pi**(2._DP/3._DP) * (rhos)**(5._DP/3._DP) / qs ! newton seed IF (rhs > 0._DP) THEN xroot = 3._DP xshift = 1._DP DO WHILE ((xroot * EXP(-2._DP*xroot/3._DP)) / (xroot - 2._DP) < rhs) xshift = xshift * 0.1_DP xroot = 2._DP + xshift END DO ELSE xroot = 1._DP xshift = 1._DP DO WHILE ( (xroot * EXP(-2._DP*xroot/3._DP)) / (xroot - 2._DP) > rhs) xshift = xshift * 0.1_DP xroot = 2._DP - xshift END DO END IF ! do newton xold = 2._DP DO WHILE (ABS(xroot - xold) > 1e-10_DP) xold = xroot expx = EXP(-2._DP * xroot / 3._DP) gx = (xroot * expx) / (xroot - 2._DP) fx = gx - rhs ffx = gx * (1._DP / xroot - 2._DP/3._DP - 1._DP / (xroot - 2._DP)) xroot = xroot - fx / ffx END DO b(i) = xroot * (EXP(-xroot) / (8._DP*pi*rhos))**(1._DP/3._DP) END DO ! integrate atomic volumes and moments DO iat = 1, nat it = ityp(iat) nn = msh(it) taub = tau(:,iat) * alat DO n = 1, dfftp%nnr idx = idx0 + n - 1 iz = idx / (dfftp%nr1x*dfftp%nr2x) idx = idx - (dfftp%nr1x*dfftp%nr2x)*iz iy = idx / dfftp%nr1x idx = idx - dfftp%nr1x*iy ix = idx iix = ix / REAL(dfftp%nr1,DP) iiy = iy / REAL(dfftp%nr2,DP) iiz = iz / REAL(dfftp%nr3,DP) rhosf = rho%of_r(n,ispin) / rhoat(n) rhoaf = rhoae(n) / rhoat(n) DO ll = 1, nvec x = (lvec(1,ll) + iix) * atb(:,1) + (lvec(2,ll) + iiy) * atb(:,2) + (lvec(3,ll) + iiz) * atb(:,3) - taub ri = x(1)*x(1) + x(2)*x(2) + x(3)*x(3) IF (ri > rmaxg2(it)) CYCLE ri = SQRT(ri) rhofree = splint(rgrid(it)%r(1:nn),rfree(1:nn,it),w2free(1:nn,it),ri) wei = rhofree * rhosf db = MAX(ri-b(n),0._DP) ri2 = 1._DP db2 = 1._DP DO i = 1, 3 ri2 = ri2 * ri db2 = db2 * db ml(i,iat) = ml(i,iat) + wei * (ri2 - db2)**2 END DO weic = rhofree * rhoaf avol(iat) = avol(iat) + weic * ri2 END DO ! ll END DO ! n END DO ! iat END DO ! ispin #ifdef __MPI CALL mp_sum(avol,intra_image_comm) CALL mp_sum(ml,intra_image_comm) #endif avol = avol * omega / (dfftp%nr1*dfftp%nr2*dfftp%nr3) ml = ml * omega / (dfftp%nr1*dfftp%nr2*dfftp%nr3) ! deallocate stuff IF (ALLOCATED(b)) DEALLOCATE(b) IF (ALLOCATED(rhoat)) DEALLOCATE(rhoat) IF (ALLOCATED(rhoae)) DEALLOCATE(rhoae) IF (ALLOCATED(lapr)) DEALLOCATE(lapr) IF (ALLOCATED(gmod)) DEALLOCATE(gmod) ! atom-in-molecule polarizabilities DO iat = 1, nat it = ityp(iat) alpha(iat) = MIN(avol(iat) / afree(it),1._DP) * alpha_free(atomic_number(atm(it))) END DO ! output the volumes and moments IF (ionode) THEN WRITE (stdout,*) WRITE (stdout,'("+ Volumes and moments")') WRITE (stdout,'("# All results in atomic units (Hartree,bohr)")') WRITE (stdout,'("# i V Vfree M1 M2 M3")') DO iat = 1, nat it = ityp(iat) WRITE (stdout,'(I3,1p,5(X,E14.6))') iat, avol(iat), afree(it), ml(1:3,iat) END DO WRITE (stdout,*) END IF ! calculate dispersion coefficients and rvdw IF (ionode) THEN WRITE (stdout,'("+ Dispersion coefficients")') WRITE (stdout,'("# All results in atomic units (Hartree,bohr).")') WRITE (stdout,'("# i j C6 C8 C10 Rc Rvdw")') END IF ! critical radii, compute c6, c8, c10, rvdw maxc6 = -1._DP DO i = 1, nat DO j = 1, i cx(i,j,2) = alpha(i)*alpha(j)*ml(1,i)*ml(1,j) / (ml(1,i)*alpha(j) + ml(1,j)*alpha(i)) maxc6 = MAX(cx(i,j,2),maxc6) cx(j,i,2) = cx(i,j,2) cx(i,j,3) = 3._DP/2._DP * (alpha(i)*alpha(j)*(ml(1,i)*ml(2,j)+ml(2,i)*ml(1,j))) /& (ml(1,i)*alpha(j)+ml(1,j)*alpha(i)) cx(j,i,3) = cx(i,j,3) cx(i,j,4) = 2 * alpha(i)*alpha(j) * (ml(1,i)*ml(3,j) + ml(3,i)*ml(1,j)) /& (ml(1,i)*alpha(j) + ml(1,j)*alpha(i)) + 21._DP/5._DP * alpha(i)*alpha(j)*& ml(2,i)*ml(2,j) / (alpha(j)*ml(1,i)+alpha(i)*ml(1,j)) cx(j,i,4) = cx(i,j,4) rc = (SQRT(cx(i,j,3)/cx(i,j,2)) + SQRT(cx(i,j,4)/cx(i,j,3)) + (cx(i,j,4)/cx(i,j,2))**(0.25_DP)) / 3 rvdw(i,j) = a1 * rc + a2 rvdw(j,i) = rvdw(i,j) WRITE (stdout,'(I3,X,I3,1p,5(X,E14.6))') i, j, cx(i,j,2), cx(i,j,3), cx(i,j,4), rc, rvdw(i,j) END DO END DO ! clean up and mark as done IF (ALLOCATED(avol)) DEALLOCATE(avol) saved = .TRUE. END IF ! calculate energy contributions IF (ionode) THEN WRITE (stdout,*) WRITE (stdout,'("+ van der Waals energies, forces and stresses (Ry,bohr)")') END IF evdw = 0._DP for = 0._DP sigma = 0._DP ehadd = 0._DP ! set the atomic environment for the energy sum -> it would be nice to rewrite ! this using ewald: Williams, Acta Cryst. A 27 (1971) 452 and some other paper, maybe ! in the international tables for crystallography. rmax = (maxc6/ecut)**(1._DP/6._DP) rmax2 = rmax*rmax CALL set_environ(rmax) ! parallelize over atoms #if defined __MPI resto = MOD ( nat , nproc_image ) divid = nat / nproc_image IF ( me_image + 1 <= resto ) THEN first = ( divid + 1 ) * me_image + 1 last = ( divid + 1 ) * ( me_image + 1 ) ELSE first = ( ( divid + 1 ) * resto ) + ( divid ) * ( me_image-resto ) + 1 last = ( divid + 1 ) * resto + ( divid ) * ( me_image - resto + 1 ) END IF #else first = 1 last = nat #endif DO i = first, last sat = 0._DP eat = 0._DP taub = tau(:,i) * alat ! C6, C8, C10 DO i3 = 2, 4 ! order R^nn nn = 2 * (i3 + 1) DO j = 1, nenv jj = ienv(j) xij = xenv(:,j) - taub dij2 = xij(1)*xij(1) + xij(2)*xij(2) + xij(3)*xij(3) IF (dij2 < 1e-15_DP .OR. dij2>rmax2) CYCLE dijx = dij2**(i3+1) dijxm2 = dijx / dij2 ! energy contribution cn0 = cx(i,jj,i3) den = 1 / (rvdw(i,jj)**nn + dijx) ee = cn0 * den ehadd(nn) = ehadd(nn) + ee eat = eat + ee ! force and stress contribution den2 = den * den fxx = nn * cn0 * dijxm2 * den2 for(:,i) = for(:,i) + fxx * xij DO m1 = 1, 3 sat(m1,m1) = sat(m1,m1) + fxx * xij(m1) * xij(m1) DO m2 = 1, m1-1 sat(m1,m2) = sat(m1,m2) + fxx * xij(m1) * xij(m2) END DO END DO END DO ! j END DO ! i3 sat(1,2) = sat(2,1) sat(1,3) = sat(3,1) sat(2,3) = sat(3,2) evdw = evdw + eat sigma = sigma + sat END DO ! i evdw= -0.5_DP * evdw sigma = -0.5_DP * sigma / omega ehadd = -0.5_DP * ehadd #ifdef __MPI CALL mp_sum(evdw,intra_image_comm) CALL mp_sum(for,intra_image_comm) CALL mp_sum(sigma,intra_image_comm) DO nn = 6, 10 CALL mp_sum(ehadd(nn),intra_image_comm) ENDDO #endif ! Convert to Ry evdw = evdw * 2 for = for * 2 sigma = sigma * 2 ehadd = ehadd * 2 ! save energy, forces and stress tensor esaveold = esave esave = evdw fsave = for(:,1:nat) ssave = sigma IF (ionode) THEN WRITE (stdout,'(" Evdw(total,Ry) = ",1p,E20.12)') evdw WRITE (stdout,'(" Evdw(C6,Ry) = ",1p,E20.12)') ehadd(6) WRITE (stdout,'(" Evdw(C8,Ry) = ",1p,E20.12)') ehadd(8) WRITE (stdout,'(" Evdw(C10,Ry) = ",1p,E20.12)') ehadd(10) DO i = 1, nat WRITE (stdout,'(" Fvdw (",I3.3,",Ry/bohr) = ",1p,3(E20.12,X))') i, for(:,i) END DO WRITE (stdout,'(" sigma_vdw (Ry/bohr**3) = ",1p,3(E20.12,X)," ")') sigma(1,:) WRITE (stdout,'(" ",1p,3(E20.12,X)," ")') sigma(2,:) WRITE (stdout,'(" ",1p,3(E20.12,X)," ")') sigma(3,:) WRITE (stdout,'(" sigma_vdw (GPa) = ",1p,3(E20.12,X)," ")') 0.5_DP*sigma(1,:)*au_gpa WRITE (stdout,'(" ",1p,3(E20.12,X)," ")') 0.5_DP*sigma(2,:)*au_gpa WRITE (stdout,'(" ",1p,3(E20.12,X)," ")') 0.5_DP*sigma(3,:)*au_gpa WRITE (stdout,*) END IF END FUNCTION energy_xdm FUNCTION force_xdm(nat) RESULT(fvdw) ! Fetch the dispersion contribution to forces from a previous energy_xdm execution. INTEGER, INTENT(IN) :: nat REAL(DP) :: fvdw(3,nat) fvdw = fsave END FUNCTION force_xdm FUNCTION stress_xdm() RESULT(svdw) ! Fetch the dispersion contribution to stress from a previous energy_xdm execution. REAL(DP) :: svdw(3,3) svdw = ssave END FUNCTION stress_xdm ! --- private --- SUBROUTINE set_environ (rcut) ! Calculate an atomic environemnt of the entire unit cell up to a distance rcut. ! This environment is saved in the host module arrays ienv, xenv and lvec. USE cell_base, ONLY: at, bg, alat, omega, tpiba2 USE ions_base, ONLY: nat, tau, ityp, atm USE io_global, ONLY: stdout, ionode REAL(DP), INTENT(IN) :: rcut INTEGER :: nadd, imax, jmax, kmax, ialloc REAL(DP) :: rmat(3,3), gtensor(3,3), alp, bet, gam, aa, bb, cc, xx(3) INTEGER :: ii, jj, kk, m, nsize, lsize INTEGER, ALLOCATABLE :: ienvaux(:), lvecaux(:,:) REAL(DP), ALLOCATABLE :: xenvaux(:,:) INTEGER, PARAMETER :: menv = 1000, lenv=100 ! allocate the initial environment nenv = 0 IF (ALLOCATED(ienv)) DEALLOCATE(ienv) IF (ALLOCATED(xenv)) DEALLOCATE(xenv) ALLOCATE(ienv(menv),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("ienv") ALLOCATE(xenv(3,menv),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("xenv") nsize = menv ! allocate the array of lattice vectors nvec = 0 IF (ALLOCATED(lvec)) DEALLOCATE(lvec) ALLOCATE(lvec(3,lenv),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("lenv") lsize = lenv ! determine number of cells (adapted from gulp, by J. Gale) rmat = at * alat gtensor = MATMUL(TRANSPOSE(rmat),rmat) aa = SQRT(gtensor(1,1)) bb = SQRT(gtensor(2,2)) cc = SQRT(gtensor(3,3)) alp = ACOS(gtensor(2,3) / bb / cc) * 180._dp / pi bet = ACOS(gtensor(1,3) / aa / cc) * 180._dp / pi gam = ACOS(gtensor(1,2) / aa / bb) * 180._dp / pi IF (alp<30 .OR. bet<30 .OR. gam<30 .OR. alp>150 .OR. bet>150 .OR. gam>150) THEN nadd = 5 ELSE IF (alp<50 .OR. bet<50 .OR. gam<50 .OR. alp>130 .OR. bet>130 .OR. gam>130) THEN nadd = 4 ELSE IF (alp<70 .OR. bet<70 .OR. gam<70 .OR. alp>110 .OR. bet>110 .OR. gam>110) THEN nadd = 3 ELSE nadd = 2 END IF imax = NINT(rcut / aa) + nadd jmax = NINT(rcut / bb) + nadd kmax = NINT(rcut / cc) + nadd ! build the environment arrays DO ii = -imax, imax DO jj = -jmax, jmax DO kk = -kmax, kmax ! run over the ions in the (i,j,k) cell: DO m = 1, nat xx = tau(:,m) + ii*at(:,1) + jj*at(:,2) + kk*at(:,3) ! dynamically increase the array size nenv = nenv + 1 IF (nenv > nsize) THEN ALLOCATE(ienvaux(NINT(1.5*nsize)),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("ienvaux") ALLOCATE(xenvaux(3,NINT(1.5*nsize)),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("xenvaux") ienvaux(1:nsize) = ienv xenvaux(:,1:nsize) = xenv CALL move_alloc(ienvaux,ienv) CALL move_alloc(xenvaux,xenv) nsize = NINT(1.5*nsize) END IF xenv(:,nenv) = xx * alat ienv(nenv) = m ENDDO ! m ! one more lattice vector nvec = nvec + 1 IF (nvec > lsize) THEN ALLOCATE(lvecaux(3,NINT(1.5*lsize)),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("lvecaux") lvecaux(:,1:lsize) = lvec CALL move_alloc(lvecaux,lvec) lsize = NINT(1.5*lsize) END IF lvec(:,nvec) = (/ii,jj,kk/) END DO ! kk END DO ! jj END DO ! ii ! fit memory snugly ALLOCATE(ienvaux(nsize),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("ienvaux") ienvaux(1:nsize) = ienv CALL move_alloc(ienvaux,ienv) ALLOCATE(xenvaux(3,nsize),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("xenvaux") xenvaux(:,1:nsize) = xenv CALL move_alloc(xenvaux,xenv) ALLOCATE(lvecaux(3,lsize),STAT=ialloc) IF (ialloc /= 0) CALL alloc_failed("lvecaux") lvecaux(:,1:lsize) = lvec CALL move_alloc(lvecaux,lvec) END SUBROUTINE set_environ SUBROUTINE PAW_make_ae_charge_xdm(rho,rhoout) ! Build the true valence electron density from the pseudo-electron density using ! the PAW transformation. This is necessary for the calculation of the atom-in-molecule ! volumes. Adapted from PP. USE paw_variables, ONLY : paw_info USE paw_onecenter, ONLY : paw_rho_lm USE atom, ONLY : g => rgrid USE ions_base, ONLY : nat, ityp, tau, ntyp => nsp USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nh, nhm, upf USE scf, ONLY : scf_type USE fft_base, ONLY : dfftp USE mp, ONLY : mp_bcast, mp_sum USE mp_pools, ONLY : me_pool USE mp_images, ONLY : intra_image_comm USE io_global, ONLY : ionode_id USE splinelib, ONLY : spline, splint USE cell_base, ONLY : at, bg, alat TYPE(scf_type), INTENT(IN) :: rho REAL(DP), INTENT(OUT) :: rhoout(dfftp%nnr) TYPE(paw_info) :: i INTEGER :: ipol, ir, is, it, lm INTEGER :: j, k, l, idx, idx0 INTEGER :: ia, il, im, ml, mm REAL(DP),ALLOCATABLE :: wsp_lm(:,:), ylm_posi(:,:), d1y(:,:), d2y(:,:) REAL(DP),ALLOCATABLE :: rho_lm(:,:,:), rho_lm_ae(:,:,:), rho_lm_ps(:,:,:) REAL(DP) :: posi(3), first, second REAL(DP) :: inv_nr1, inv_nr2, inv_nr3, distsq, g0, g1, g2, r0, r1, rqq INTEGER :: nkk INTEGER, ALLOCATABLE :: iatom(:) ! Some initialization inv_nr1 = 1._DP / DBLE( dfftp%nr1 ) inv_nr2 = 1._DP / DBLE( dfftp%nr2 ) inv_nr3 = 1._DP / DBLE( dfftp%nr3 ) ! copy the density to the output rhoout = 0._DP DO ir = 1, dfftp%nnr DO is = 1, nspin rhoout(ir) = rhoout(ir) + rho%of_r(ir,is) END DO END DO ! allocate the rho_lm array mm = 0 ml = 0 DO it = 1, ntyp mm = MAX(g(it)%mesh,mm) ml = MAX(upf(it)%lmax_rho + 1,ml) END DO ALLOCATE(rho_lm(mm,ml**2,nat)) rho_lm = 0._DP ! count the number of processors per atom ALLOCATE(iatom(nat)) iatom = 0 DO ia = 1, nat IF (ASSOCIATED(upf(ityp(ia))%paw%pfunc)) iatom(ia) = iatom(ia) + 1 END DO CALL mp_sum(iatom,intra_image_comm) ! run over atoms and build rho_lm. Not all atom types are visible to all processors. DO ia = 1, nat i%a = ia ! atom's index i%t = ityp(ia) ! type of atom ia i%m = g(i%t)%mesh ! radial mesh size for atom i%t i%b = upf(i%t)%nbeta ! number of beta functions for i%t i%l = upf(i%t)%lmax_rho+1 ! max ang.mom. in augmentation for ia IF (.NOT.upf(i%t)%tpawp) call errore('paw_make_ae_charge_xdm','non-paw pseudo',1) IF (.NOT.ASSOCIATED(upf(i%t)%paw%pfunc)) CYCLE ALLOCATE(rho_lm_ae(i%m,i%l**2,nspin), rho_lm_ps(i%m,i%l**2,nspin)) CALL PAW_rho_lm(i, rho%bec, upf(i%t)%paw%pfunc, rho_lm_ae) CALL PAW_rho_lm(i, rho%bec, upf(i%t)%paw%ptfunc, rho_lm_ps, upf(i%t)%qfuncl) DO is=1,nspin DO lm = 1,i%l**2 DO ir = 1, i%m rho_lm(ir,lm,ia) = rho_lm(ir,lm,ia) + (rho_lm_ae(ir,lm,is) - rho_lm_ps(ir,lm,is) ) * g(i%t)%rm2(ir) / iatom(ia) ENDDO ENDDO ENDDO DEALLOCATE(rho_lm_ae, rho_lm_ps) END DO call mp_sum(rho_lm,intra_image_comm) DEALLOCATE(iatom) ! Not parallelizing over atoms, because it is already parallelized over charge slabs atoms: DO ia = 1, nat i%a = ia ! atom's index i%t = ityp(ia) ! type of atom ia i%m = g(i%t)%mesh ! radial mesh size for atom i%t i%b = upf(i%t)%nbeta ! number of beta functions for i%t i%l = upf(i%t)%lmax_rho+1 ! max ang.mom. in augmentation for ia ! spline the rho_lm ALLOCATE( d1y(upf(i%t)%kkbeta,i%l**2)) ALLOCATE( d2y(upf(i%t)%kkbeta,i%l**2)) ALLOCATE(wsp_lm(i%m,i%l**2)) DO lm = 1, i%l**2 CALL radial_gradient(rho_lm(1:upf(i%t)%kkbeta,lm,ia),d1y(:,lm),g(i%t)%r,upf(i%t)%kkbeta,1) CALL radial_gradient(d1y(:,lm),d2y(:,lm),g(i%t)%r,upf(i%t)%kkbeta,1) first = d1y(1,lm) ! first derivative in first point second = d2y(1,lm) ! second derivative in first point ! prepare interpolation CALL spline( g(i%t)%r(:), rho_lm(1:i%m,lm,ia), first, second, wsp_lm(:,lm) ) ENDDO DEALLOCATE(d1y,d2y) #if defined __MPI idx0 = dfftp%nr1x* dfftp%nr2x * SUM ( dfftp%npp(1:me_pool) ) #else idx0 = 0 #endif ALLOCATE(ylm_posi(1,i%l**2)) rsp_point : DO ir = 1, dfftp%nnr ! three dimensional indices (i,j,k) idx = idx0 + ir - 1 k = idx / ( dfftp%nr1x* dfftp%nr2x) idx = idx - ( dfftp%nr1x* dfftp%nr2x)*k j = idx / dfftp%nr1x idx = idx - dfftp%nr1x*j l = idx ! ... do not include points outside the physical range! IF ( l >= dfftp%nr1 .OR. j >= dfftp%nr2 .OR. k >= dfftp%nr3 ) CYCLE rsp_point ! DO ipol = 1, 3 posi(ipol) = DBLE( l )*inv_nr1*at(ipol,1) + & DBLE( j )*inv_nr2*at(ipol,2) + & DBLE( k )*inv_nr3*at(ipol,3) ENDDO ! ! find the distance of real-space grid's point ir w.r.t ! closer periodic image of atom ia ! posi(:) = posi(:) - tau(:,ia) CALL cryst_to_cart( 1, posi, bg, -1 ) posi(:) = posi(:) - ANINT( posi(:) ) CALL cryst_to_cart( 1, posi, at, 1 ) ! posi(:) = posi(:) * alat distsq = posi(1)**2 + posi(2)**2 + posi(3)**2 ! don't consider points too far from the atom: IF ( distsq > g(i%t)%r2(upf(i%t)%kkbeta) ) & CYCLE rsp_point ! ! generate the atomic charge on point posi(:), which means ! sum over l and m components rho_lm_ae-rho_lm_ps ! interpolate the radial function at distance |posi(:)| ! ! prepare spherical harmonics CALL ylmr2( i%l**2, 1, posi, distsq, ylm_posi ) rqq = SQRT(distsq) DO lm = 1, i%l**2 rhoout(ir)= rhoout(ir) + ylm_posi(1,lm) * splint(g(i%t)%r(:),rho_lm(:,lm,ia),wsp_lm(:,lm),rqq) ENDDO ENDDO rsp_point DEALLOCATE(ylm_posi, wsp_lm) ENDDO atoms DEALLOCATE(rho_lm) END SUBROUTINE PAW_make_ae_charge_xdm SUBROUTINE promolecular_rho(rhot,rhoc) ! Calculate the promolecular density (i.e. the sum of atomic ! densitites) and the sum of core densities on the real-space ! grid. Unfortunately, aliasing errors prevent using the atomic ! form factor trick, so we're stuck with summing over an ! environment. USE io_global, ONLY: ionode USE kinds, ONLY : DP USE atom, ONLY : rgrid, msh USE ions_base, ONLY : ityp, ntyp => nsp USE cell_base, ONLY : at USE fft_base, ONLY : dfftp USE splinelib, ONLY : splint use cell_base, ONLY : alat USE mp_pools, ONLY : me_pool implicit none real(DP), intent(out) :: rhoc(dfftp%nnr) ! core density in the real-space grid real(DP), intent(out) :: rhot(dfftp%nnr) ! core density in the real-space grid integer :: i, it, nn integer :: n, idx0, idx, ix, iy, iz real(DP) :: x(3), xx(3), r, r2, rrho #ifdef __MPI idx0 = dfftp%nr1x * dfftp%nr2x * SUM(dfftp%npp(1:me_pool)) #else idx0 = 0 #endif rhot = 0._DP rhoc = 0._DP ! run over the real-space density grid DO n = 1, dfftp%nnr idx = idx0 + n - 1 iz = idx / (dfftp%nr1x*dfftp%nr2x) idx = idx - (dfftp%nr1x*dfftp%nr2x)*iz iy = idx / dfftp%nr1x idx = idx - dfftp%nr1x*iy ix = idx x = ix / REAL(dfftp%nr1,DP) * at(:,1) + iy / REAL(dfftp%nr2,DP) * at(:,2) + & iz / REAL(dfftp%nr3,DP) * at(:,3) x = x * alat ! contributions from the environment DO i = 1, nenv it = ityp(ienv(i)) nn = msh(it) xx = x - xenv(:,i) r2 = xx(1)*xx(1) + xx(2)*xx(2) + xx(3)*xx(3) IF (r2 > rmaxg2(it)) CYCLE r = SQRT(r2) rrho = splint(rgrid(it)%r(1:nn),rfree(1:nn,it),w2free(1:nn,it),r) rhot(n) = rhot(n) + rrho IF (r2 > rmaxcore2(it)) CYCLE rrho = splint(rgrid(it)%r(1:nn),rcore(1:nn,it),w2core(1:nn,it),r) rhoc(n) = rhoc(n) + rrho END DO rhot(n) = MAX(rhot(n),1e-14_DP) END DO END SUBROUTINE promolecular_rho SUBROUTINE alloc_failed(message) ! Error message and horrible death CHARACTER*(*), INTENT(IN) :: message CALL errore('energy_xdm','allocation failed: '//TRIM(ADJUSTL(message)),1) END SUBROUTINE alloc_failed END MODULE xdm_module espresso-5.1/PW/src/paw_exx.f900000644000175000017500000004166412341373025014425 0ustar mbamba! ! Copyright (C) 2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Written by Lorenzo Paulatto October 2012 ! ! [1] J. Chem. Phys. 122, 234102 (2005) !=----------------------------------------------------------------------------=! MODULE paw_exx !=----------------------------------------------------------------------------=! USE kinds, ONLY : DP TYPE paw_keeq_type REAL(DP),POINTER :: k(:,:,:,:) END TYPE paw_keeq_type TYPE(paw_keeq_type),ALLOCATABLE :: ke(:) LOGICAL,PRIVATE :: paw_has_init_keeq = .false. LOGICAL,PARAMETER :: dopawxx = .true. ! DEBUG option CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE PAW_newdxx(weight, becphi, becpsi, deexx) !----------------------------------------------------------------------- ! This subroutine computes some sort of EXX contribution to the non-local ! part of the hamiltonian. PAW one-center terms are computed here. USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : upf, nh USE uspp, ONLY : nkb USE paw_variables, ONLY : okpaw USE mp_images, ONLY : me_image USE uspp, ONLY : indv_ijkb0 IMPLICIT NONE ! ! In input I get a slice of and only for this kpoint and this band COMPLEX(DP),INTENT(in) :: becphi(nkb) COMPLEX(DP),INTENT(in) :: becpsi(nkb) COMPLEX(DP),INTENT(inout) :: deexx(nkb) REAL(DP) :: weight ! ! ... local variables INTEGER :: ijkb0, ih, jh, na, np, ikb ! IF(.not.paw_has_init_keeq) & CALL errore("PAW_deexx", "you have to initialize paw keeq before", 1) ! CALL start_clock( 'PAW_newdxx' ) ! IF(.not.(okpaw .and. dopawxx)) RETURN ! Worst possible parallelisation: IF(me_image/=0) RETURN ! DO np = 1, ntyp ONLY_FOR_PAW : & IF ( upf(np)%tpawp ) THEN ! DO ih = 1, nh(np) DO jh = 1, nh(np) ! ATOMS_LOOP : & DO na = 1, nat IF (ityp(na)==np) THEN ! ! NOTE: see addusxx_g for the next line: ijkb0 = indv_ijkb0(na) ikb = ijkb0 + ih deexx(ikb) = deexx(ikb) & - weight*PAW_deexx(na, ih, jh, ijkb0, becphi, becpsi) ! END IF ENDDO ATOMS_LOOP ! nat ENDDO ! jh ENDDO ! ih END IF & ONLY_FOR_PAW ENDDO ! CALL stop_clock( 'PAW_newdxx' ) ! RETURN ! !----------------------------------------------------------------------- END SUBROUTINE PAW_newdxx !----------------------------------------------------------------------- ! !=----------------------------------------------------------------------------=! FUNCTION PAW_deexx(na, ih, jh, ijkb0, becphi, becpsi) !=----------------------------------------------------------------------------=! ! Compute the 2-electron 4-wavefunctions integral ! Integral over bands and kpoints is done outside (doing it here does not fit properly with exx.f90) USE ions_base, ONLY : nat, ityp USE uspp_param, ONLY : nh, upf USE uspp, ONLY : nkb IMPLICIT NONE INTEGER,INTENT(in) :: na, ih, jh, ijkb0 COMPLEX(DP),INTENT(in) :: becphi(nkb), becpsi(nkb) ! COMPLEX(DP) :: PAW_deexx ! INTEGER :: np INTEGER :: oh, uh INTEGER :: ikb, jkb, okb, ukb ! PAW_deexx = 0._dp np = ityp(na) IF(.not.upf(np)%tpawp) RETURN ! ! CALL start_clock("PAW_deexx") ikb = ijkb0 + ih jkb = ijkb0 + jh DO oh = 1, nh(np) okb = ijkb0 + oh DO uh = 1, nh(np) ukb = ijkb0 + uh ! Eq. 35 + 32 Ref. 1, the 1/2 factor comes from 32 PAW_deexx = PAW_deexx & + 0.5_DP *ke(np)%k(ih,jh,oh,uh) * becphi(jkb) & * CONJG(becphi(ukb)) * becpsi(okb) ! ENDDO !uh, ukb ENDDO !oh, okb ! ! CALL stop_clock("PAW_deexx") RETURN !=----------------------------------------------------------------------------=! END FUNCTION PAW_deexx !=----------------------------------------------------------------------------=! ! !=----------------------------------------------------------------------------=! FUNCTION PAW_xx_energy(becphi, becpsi) !=----------------------------------------------------------------------------=! ! Compute the energy: 2-electron 4-wavefunctions integral and sum with weights and ! Integral over bands and kpoints is done outside (doing it here would not fit properly with exx.f90) USE ions_base, ONLY : nat, ityp, ntyp => nsp USE uspp_param, ONLY : nh, upf USE uspp, ONLY : nkb USE mp_images, ONLY : me_image IMPLICIT NONE COMPLEX(DP),INTENT(in) :: becphi(nkb), becpsi(nkb) ! REAL(DP) :: PAW_xx_energy ! INTEGER :: np, na INTEGER :: ih, jh, oh, uh INTEGER :: ikb, jkb, okb, ukb, ijkb0 IF(.not.paw_has_init_keeq) & CALL errore("PAW_xx_energy", "you have to initialize paw keeq before", 1) ! PAW_xx_energy = 0._dp IF(me_image/=0) RETURN ! CALL start_clock("PAW_xx_nrg") ! ijkb0 = 0 DO np = 1, ntyp ONLY_FOR_PAW : & IF ( upf(np)%tpawp ) THEN DO na = 1, nat IF (ityp(na)==np) THEN ! DO ih = 1, nh(np) ikb = ijkb0 + ih DO jh = 1, nh(np) jkb = ijkb0 + jh DO oh = 1, nh(np) okb = ijkb0 + oh DO uh = 1, nh(np) ukb = ijkb0 + uh ! Eq. 32 and 42 Ref. 1 : PAW_xx_energy = PAW_xx_energy + 0.5_dp * ke(np)%k(ih,jh,oh,uh) & * CONJG(becpsi(ikb)) * becpsi(okb) & ! \rho_ik eq. 31 ref. 1 * becphi(jkb) * CONJG(becphi(ukb)) ! \rho_lj eq. 31 ref. 1 ! ENDDO !uh, ukb ENDDO !oh, okb ENDDO !jh, jkb ENDDO !ih, ikb ! ijkb0 = ijkb0 + nh(np) END IF ENDDO ! nat ELSE ONLY_FOR_PAW DO na = 1, nat IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ENDDO END IF & ONLY_FOR_PAW ENDDO ! CALL stop_clock("PAW_xx_nrg") RETURN !=----------------------------------------------------------------------------=! END FUNCTION PAW_xx_energy !=----------------------------------------------------------------------------=! ! !=----------------------------------------------------------------------------=! SUBROUTINE PAW_init_keeq() !=----------------------------------------------------------------------------=! ! Driver to compute the 2-electron 4-wavefunctions integrals USE kinds, ONLY : DP USE ions_base, ONLY : ntyp => nsp USE uspp_param, ONLY : nh IMPLICIT NONE INTEGER :: ns, ih,jh,oh,uh REAL(DP),ALLOCATABLE :: k_ae(:,:,:,:), k_ps(:,:,:,:) IF(paw_has_init_keeq) RETURN !CALL errore("PAW_init_keeq", "already init paw keeq", 1) paw_has_init_keeq = .true. ! ! We have one matrix for the all electron and one for the pseudo part for each atomic specie ALLOCATE(ke(ntyp)) CALL allocate_keeq(ntyp, nh, ke) DO ns = 1,ntyp ! ALLOCATE(k_ae(nh(ns),nh(ns),nh(ns),nh(ns))) CALL PAW_keeq('AE', ns, k_ae) ! ALLOCATE(k_ps(nh(ns),nh(ns),nh(ns),nh(ns))) CALL PAW_keeq('PS', ns, k_ps) ! ! Symmetrize wrt the on-site wavefunctions indexes as the hartree kernel is not ! perfectly symmetrical: the asymmetry accumulates and causes S matrix to be non-positive ! definite (especially with many k-points) DO ih = 1, nh(ns) DO jh = 1, nh(ns) DO oh = 1, nh(ns) DO uh = 1, nh(ns) ! ke(ns)%k(ih,jh,oh,uh) = 0.25_dp * ( & k_ae(ih,jh,oh,uh)-k_ps(ih,jh,oh,uh) & + k_ae(oh,uh,ih,jh)-k_ps(oh,uh,ih,jh) & + k_ae(jh,ih,uh,oh)-k_ps(jh,ih,uh,oh) & + k_ae(uh,oh,jh,ih)-k_ps(uh,oh,jh,ih) ) ! ENDDO ENDDO ENDDO ENDDO ! DEALLOCATE(k_ae, k_ps) ! ENDDO !=----------------------------------------------------------------------------=! END SUBROUTINE PAW_init_keeq !=----------------------------------------------------------------------------=! ! !=----------------------------------------------------------------------------=! SUBROUTINE PAW_destroy_keeq() !=----------------------------------------------------------------------------=! ! ke_ae and ke_ps for later use USE ions_base, ONLY : ityp, ntyp => nsp IMPLICIT NONE IF(.not.paw_has_init_keeq) RETURN !CALL errore("PAW_destroy_keeq", "nothing to destroy :(", 1) paw_has_init_keeq = .false. ! ! We have one matrix for the all electron and one for the pseudo part for each atomic specie CALL deallocate_keeq(ntyp, ke) DEALLOCATE(ke) ! !=----------------------------------------------------------------------------=! END SUBROUTINE PAW_destroy_keeq !=----------------------------------------------------------------------------=! ! !=----------------------------------------------------------------------------=! SUBROUTINE allocate_keeq(ntp, nh, keeq) !=----------------------------------------------------------------------------=! IMPLICIT NONE INTEGER,INTENT(in) :: ntp INTEGER,INTENT(in) :: nh(ntp) TYPE(paw_keeq_type),INTENT(inout) :: keeq(ntp) INTEGER :: i ! DO i = 1,ntp ALLOCATE(keeq(i)%k(nh(i),nh(i),nh(i),nh(i))) ENDDO RETURN !=----------------------------------------------------------------------------=! END SUBROUTINE allocate_keeq !=----------------------------------------------------------------------------=! !=----------------------------------------------------------------------------=! SUBROUTINE deallocate_keeq(ntp, keeq) !=----------------------------------------------------------------------------=! IMPLICIT NONE INTEGER,INTENT(in) :: ntp TYPE(paw_keeq_type),INTENT(inout) :: keeq(ntp) INTEGER :: i ! DO i = 1,ntp DEALLOCATE(keeq(i)%k) ENDDO ! RETURN !=----------------------------------------------------------------------------=! END SUBROUTINE deallocate_keeq !=----------------------------------------------------------------------------=! ! !=----------------------------------------------------------------------------=! SUBROUTINE PAW_keeq(what, np, keeq) !=----------------------------------------------------------------------------=! ! Compute the 2-electron 4-wavefunctions integrals and i.e. the exchange integral ! between two one-center wavefunctions. Includes augmentation in the pseudo case. ! Store it in global variables ke_ae and ke_ps for later use. USE constants, ONLY : e2 USE atom, ONLY : g => rgrid USE ions_base, ONLY : nat, ityp, ntyp => nsp USE uspp_param, ONLY : nh, nhm, upf USE paw_variables, ONLY : paw_info USE paw_onecenter, ONLY : PAW_h_potential USE lsda_mod, ONLY : nspin IMPLICIT NONE INTEGER, INTENT(in) :: np ! atomic type REAL(DP),INTENT(out) :: keeq(nh(np),nh(np),nh(np),nh(np)) CHARACTER(len=2),INTENT(in) :: what ! "AE"= all-electron or "PS"=pseudo ! TYPE(paw_info) :: i REAL(DP), ALLOCATABLE :: v_lm(:,:) ! workspace: potential REAL(DP), ALLOCATABLE :: rho_lm_ij(:,:,:) ! density expanded on Y_lm REAL(DP), ALLOCATABLE :: rho_lm_ou(:,:) ! density expanded on Y_lm REAL(DP), ALLOCATABLE :: aux(:) ! density expanded on Y_lm INTEGER :: ih,jh,oh,uh,k,lm REAL(DP) :: kexx, e IF(what/="AE" .and. what /="PS") CALL errore("PAW_keeq", "can only do all-electron or pseudo", 1) ! Only wavefunctions on the same atom exchange, and the result only depends on the atom type IF (.not.upf(np)%tpawp) THEN keeq = 0._dp RETURN ENDIF ! CALL start_clock('PAW_keeq') ! i%a = -1 ! atom's index (UNUSED HERE) i%t = np ! type of atom i%m = g(i%t)%mesh ! radial mesh size for atom i%t i%b = upf(i%t)%nbeta ! number of beta functions for i%t i%l = upf(i%t)%lmax_rho+1 ! max ang.mom. in augmentation for ia ! ! Note: PAW_h_potential computes the V_H for every spin component, ! here they will be all zero except the 1st ALLOCATE(rho_lm_ij(i%m,i%l**2,nspin)) ALLOCATE(rho_lm_ou(i%m,i%l**2)) ALLOCATE(v_lm(i%m,i%l**2)) ALLOCATE(aux(i%m)) ! DO ih = 1, nh(i%t) DO jh = 1, nh(i%t) ! rho_lm_ij = 0._dp IF(what=="PS")THEN CALL PAW_rho_lm_ij(i, ih, jh, upf(i%t)%paw%ptfunc, rho_lm_ij(:,:,1), upf(i%t)%qfuncl) ELSE CALL PAW_rho_lm_ij(i, ih, jh, upf(i%t)%paw%pfunc, rho_lm_ij(:,:,1)) ENDIF CALL PAW_h_potential(i, rho_lm_ij, v_lm) ! DO oh = 1, nh(i%t) DO uh = 1, nh(i%t) ! rho_lm_ou = 0._dp IF(what=="PS")THEN CALL PAW_rho_lm_ij(i, oh, uh, upf(i%t)%paw%ptfunc, rho_lm_ou, upf(i%t)%qfuncl) ELSE CALL PAW_rho_lm_ij(i, oh, uh, upf(i%t)%paw%pfunc, rho_lm_ou) ENDIF ! ! Now I have rho_ij and rho_ou, I have to compute the 4-wfcs hartree kernel keeq=K_ijou kexx = 0._dp DO lm = 1, i%l**2 DO k = 1, i%m aux(k) = v_lm(k,lm) * rho_lm_ou(k,lm) ENDDO CALL simpson (upf(i%t)%kkbeta, aux, g(i%t)%rab, e) kexx = kexx + e ! ENDDO keeq(ih,jh,oh,uh) = e2*kexx ! = K_ijlk : Eq. 33 Ref. 1 ! ENDDO ENDDO ENDDO ENDDO ! DEALLOCATE(aux, v_lm, rho_lm_ij, rho_lm_ou) ! CALL stop_clock('PAW_keeq') ! !=----------------------------------------------------------------------------=! END SUBROUTINE PAW_keeq !=----------------------------------------------------------------------------=! ! !=----------------------------------------------------------------------------=! SUBROUTINE PAW_rho_lm_ij(i, ih, jh, pfunc, rho_lm, aug) !=----------------------------------------------------------------------------=! ! Computes the fake two-wavefunctions density i.e. phi_i(r)phi_j(r)^*, ! Represent it as spherical harmonics. Details: this is a generalized version of PAW_rho_lm. USE uspp_param, ONLY : upf USE uspp, ONLY : indv, ap, nhtolm,lpl,lpx USE atom, ONLY : g => rgrid USE paw_variables, ONLY : paw_info IMPLICIT NONE TYPE(paw_info), INTENT(IN) :: i ! atom's minimal info INTEGER,INTENT(in) :: ih, jh REAL(DP), INTENT(IN) :: pfunc(i%m,i%b,i%b) ! psi_i * psi_j REAL(DP), INTENT(OUT) :: rho_lm(i%m,i%l**2) ! AE charge density on rad. grid REAL(DP), OPTIONAL,INTENT(IN) :: & aug(i%m,i%b*(i%b+1)/2,0:2*upf(i%t)%lmax) ! augmentation functions (only for PS part) INTEGER :: nb, mb, & nmb, & ! composite "triangular" index for pfunc nmb = 1,nh*(nh+1)/2 lm,lp,l ! counters for angular momentum lm = l**2+m REAL(DP) :: pref ! initialize density rho_lm(:,:) = 0._dp ! loop on all pfunc for this kind of pseudo nb = indv(ih,i%t) mb = indv(jh,i%t) nmb = mb * (mb-1)/2 + nb ! mb has to be .ge. nb ! angular_momentum: & DO lp = 1, lpx (nhtolm(jh,i%t), nhtolm(ih,i%t)) !lmaxq**2 ! the lpl array contains the possible combination of LM,lm_j,lm_j that ! have non-zero Clebch-Goordon coefficient a_{LM}^{(lm)_i(lm)_j} and ! lpx is the number of non-zero CG coeffs... (this way we save some loops) lm = lpl (nhtolm(jh,i%t), nhtolm(ih,i%t), lp) ! ! pref is "just" the Clebsh-Gordon coefficients pref = ap(lm, nhtolm(ih,i%t), nhtolm(jh,i%t)) ! rho_lm(1:i%m,lm) = rho_lm(1:i%m,lm) + pref * pfunc(1:i%m, nb, mb) IF (present(aug)) THEN ! if I'm doing the pseudo part I have to add the augmentation charge l = INT(SQRT(DBLE(lm-1))) ! l has to start from zero, lm = l**2 +m rho_lm(1:i%m,lm) = rho_lm(1:i%m,lm) +pref * aug(1:i%m, nmb, l) ENDIF ! augfun ENDDO angular_momentum ! !=----------------------------------------------------------------------------=! END SUBROUTINE PAW_rho_lm_ij !=----------------------------------------------------------------------------=! ! !=----------------------------------------------------------------------------=! END MODULE paw_exx !=----------------------------------------------------------------------------=! espresso-5.1/PW/src/ldaU.f900000644000175000017500000001562012341373025013630 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! ! MODULE ldaU ! ! ... The quantities needed in lda+U calculations ! USE kinds, ONLY : DP USE parameters, ONLY : lqmax, ntypx USE basis, ONLY : natomwfc USE ions_base, ONLY : nat, ntyp => nsp, ityp ! SAVE ! INTEGER, PARAMETER :: nspinx=2 COMPLEX(DP), ALLOCATABLE :: & wfcU(:,:), &! atomic wfcs with U term d_spin_ldau(:,:,:) ! the rotations in spin space for all symmetries REAL(DP) :: & eth, &! the Hubbard contribution to the energy Hubbard_U(ntypx), &! the Hubbard U Hubbard_J0(ntypx), &! the Hubbard J, in simplified LDA+U Hubbard_J(3,ntypx), &! extra Hubbard parameters for full LDA+U: ! p: J(1) = J ! d: J(1) = J, J(2) = B ! f: J(1) = J, J(2) = E2, J(3) = E3 Hubbard_alpha(ntypx), &! the Hubbard alpha (used to calculate U) Hubbard_beta(ntypx), &! the Hubbard beta (used to calculate J0) starting_ns(lqmax,nspinx,ntypx) ! INTEGER :: & nwfcU, &! total no. of atomic wavefunctions having U term niter_with_fixed_ns, &! no. of iterations with fixed ns lda_plus_u_kind, &! 1/0 --> full/simplified(old) LDA+U calculation Hubbard_l(ntypx), &! the angular momentum of Hubbard states Hubbard_lmax = 0 ! maximum angular momentum of Hubbard states LOGICAL :: & is_hubbard(ntypx), &! .TRUE. if this atom species has U correction lda_plus_u, &! .TRUE. if lda+u calculation is performed conv_ns ! .TRUE. if ns are converged CHARACTER(len=30) :: & ! 'atomic', 'ortho-atomic', 'file' U_projection ! specifies how input coordinates are given INTEGER, ALLOCATABLE :: & oatwfc(:), offsetU(:) ! offset of atomic wfcs used for projections REAL(DP), ALLOCATABLE :: & q_ae(:,:,:), &! coefficients for projecting onto beta functions q_ps(:,:,:) ! (matrix elements on AE and PS atomic wfcs) ! CONTAINS ! SUBROUTINE init_lda_plus_u ( psd, noncolin ) ! IMPLICIT NONE CHARACTER (LEN=2), INTENT(IN) :: psd(:) LOGICAL, INTENT(IN) :: noncolin ! INTEGER, EXTERNAL :: set_Hubbard_l INTEGER :: na, nt ! ! IF ( .NOT. lda_plus_u ) THEN Hubbard_lmax = 0 is_hubbard(:) = .FALSE. RETURN END IF ! Hubbard_lmax = -1 ! Set the default of Hubbard_l for the species which have ! Hubbard_U=0 (in that case set_Hubbard_l will not be called) Hubbard_l(:) = -1 ! if ( lda_plus_u_kind == 0 ) then ! DO nt = 1, ntyp ! is_hubbard(nt) = Hubbard_U(nt)/= 0.0_dp .OR. & Hubbard_alpha(nt) /= 0.0_dp .OR. & Hubbard_J0(nt) /= 0.0_dp .OR. & Hubbard_beta(nt)/= 0.0_dp ! IF ( is_hubbard(nt) ) THEN Hubbard_l(nt) = set_Hubbard_l( psd(nt) ) Hubbard_lmax = MAX( Hubbard_lmax, Hubbard_l(nt) ) END IF ! END DO ! ELSE IF ( lda_plus_u_kind == 1 ) THEN ! IF ( U_projection == 'pseudo' ) CALL errore( 'init_lda_plus_u', & & 'full LDA+U not implemented with pseudo projection type', 1 ) ! IF (noncolin) THEN ALLOCATE( d_spin_ldau(2,2,48) ) call comp_dspinldau () END IF DO nt = 1, ntyp IF (Hubbard_alpha(nt)/=0.d0 ) CALL errore( 'init_lda_plus_u', & 'full LDA+U does not support Hubbard_alpha calculation', 1 ) is_hubbard(nt) = Hubbard_U(nt)/= 0.0_dp .OR. & ANY( Hubbard_J(:,nt) /= 0.0_dp ) IF ( is_hubbard(nt) ) THEN ! Hubbard_l(nt) = set_Hubbard_l( psd(nt) ) Hubbard_lmax = MAX( Hubbard_lmax, Hubbard_l(nt) ) ! if (Hubbard_U(nt) == 0.0_dp) Hubbard_U(nt) = 1.d-14 if ( Hubbard_l(nt) == 2 ) then if ( Hubbard_J(2,nt) == 0.d0 ) & Hubbard_J(2,nt) = 0.114774114774d0 * Hubbard_J(1,nt) elseif ( Hubbard_l(nt) == 3 ) then if ( Hubbard_J(2,nt) == 0.d0 ) & Hubbard_J(2,nt) = 0.002268d0 * Hubbard_J(1,nt) if ( Hubbard_J(3,nt)==0.d0 ) & Hubbard_J(3,nt) = 0.0438d0 * Hubbard_J(1,nt) endif END IF ! END DO else CALL errore( 'init_lda_plus_u', 'lda_plus_u_kind should be 0 or 1', 1 ) endif IF ( Hubbard_lmax == -1 ) CALL errore( 'init_lda_plus_u', & 'lda_plus_u calculation but Hubbard_l not set', 1 ) IF ( Hubbard_lmax > 3 ) & CALL errore( 'init_lda_plus_u', 'Hubbard_l should not be > 3 ', 1 ) ! compute index of atomic wfcs used as projectors IF ( .NOT.allocated(oatwfc)) ALLOCATE ( oatwfc(nat) ) CALL offset_atom_wfc ( .false., oatwfc, nwfcU ) ! nwfcU is set to natomwfc by the routine above IF ( nwfcU .NE.natomwfc ) & CALL errore ('offset_atom_wfc', 'wrong number of wavefunctions', 1) ! IF ( .NOT.allocated(offsetU)) ALLOCATE ( offsetU(nat) ) ! If reading from file, dimensions and offsets for wfcU and wfcatom ! coincide; otherwise, they differ IF ( U_projection == 'file' ) THEN offsetU(:) = oatwfc(:) ELSE CALL offset_atom_wfc ( .true., offsetU, nwfcU ) END IF ! END SUBROUTINE init_lda_plus_u ! SUBROUTINE deallocate_ldaU ( flag ) ! LOGICAL, INTENT (in) :: flag ! IF ( flag ) THEN IF ( ALLOCATED( oatwfc ) ) DEALLOCATE( oatwfc ) IF ( ALLOCATED( offsetU ) ) DEALLOCATE( offsetU ) IF ( ALLOCATED( q_ae ) ) DEALLOCATE( q_ae ) IF ( ALLOCATED( q_ps ) ) DEALLOCATE( q_ps ) END IF IF ( ALLOCATED( wfcU ) ) DEALLOCATE( wfcU ) ! END SUBROUTINE deallocate_ldaU ! SUBROUTINE copy_U_wfc ( swfcatom, noncolin ) ! ! Copy (orthogonalized) atomic wavefunctions "swfcatom" ! having a Hubbard U correction to array "wfcU" ! IMPLICIT NONE COMPLEX (KIND=dp), INTENT (IN) :: swfcatom(:,:) LOGICAL, INTENT(IN), OPTIONAL :: noncolin LOGICAL :: twice INTEGER :: na, nt, m1, m2 IF ( PRESENT (noncolin) ) THEN twice = noncolin ELSE twice = .FALSE. END IF DO na=1,nat nt = ityp(na) if ( is_hubbard(nt) ) then m1 = 1 m2 = 2*hubbard_l(nt)+1 IF ( twice ) m2 = 2*m2 wfcU(:,offsetU(na)+m1:offsetU(na)+m2) = swfcatom(:,oatwfc(na)+m1:oatwfc(na)+m2) end if END DO END SUBROUTINE copy_U_wfc END MODULE ldaU ! espresso-5.1/PW/src/data_structure_custom.f900000644000175000017500000000503412341373025017364 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE data_structure_custom(fc, gamma_only) !----------------------------------------------------------------------- ! this routine sets the data structure for the custom fft array ! In the parallel case, it distributes columns to processes, too ! USE kinds, ONLY : DP USE cell_base, ONLY : bg, tpiba, tpiba2 USE klist, ONLY : xk, nks USE mp, ONLY : mp_sum, mp_max,mp_barrier USE mp_bands, ONLY : me_bgrp, nproc_bgrp, inter_bgrp_comm, & intra_bgrp_comm, root_bgrp, ntask_groups USE stick_set, ONLY : pstickset_custom USE fft_custom, ONLY : fft_cus, gvec_init USE fft_base, ONLY : dfftp USE gvect, ONLY : gcutm ! ! IMPLICIT NONE TYPE(fft_cus) :: fc LOGICAL :: gamma_only REAL (DP) :: gkcut INTEGER :: ik, ngm_, ngs_, ngw_ , nogrp INTEGER :: me, nproc, inter_comm, intra_comm, root INTEGER :: kpoint ! sticks coordinates ! ! Subroutine body ! ! ! compute gkcut calling an internal procedure ! me = me_bgrp nproc = nproc_bgrp inter_comm = inter_bgrp_comm intra_comm = intra_bgrp_comm root = root_bgrp nogrp = ntask_groups IF (nks == 0) THEN ! ! if k-points are automatically generated (which happens later) ! use max(bg)/2 as an estimate of the largest k-point ! gkcut = 0.5d0 * MAX ( & &SQRT (SUM(bg (1:3, 1)**2) ), & &SQRT (SUM(bg (1:3, 2)**2) ), & &SQRT (SUM(bg (1:3, 3)**2) ) ) ELSE gkcut = 0.0d0 DO kpoint = 1, nks gkcut = MAX (gkcut, SQRT ( SUM(xk (1:3, kpoint)**2) ) ) ENDDO ENDIF gkcut = (SQRT (fc%ecutt) / tpiba + gkcut)**2 ! ! ... find maximum value among all the processors ! CALL mp_max (gkcut, inter_comm ) ! ! ... set up fft descriptors, including parallel stuff: sticks, planes, etc. ! CALL pstickset_custom( gamma_only, bg, gcutm, gkcut, fc%gcutmt, & dfftp, fc%dfftt, ngw_ , ngm_, ngs_, me, root, nproc, & intra_comm, nogrp ) ! ! on output, ngm_ and ngs_ contain the local number of G-vectors ! for the two grids. Initialize local and global number of G-vectors ! CALL gvec_init (fc, ngs_ , intra_comm ) END SUBROUTINE data_structure_custom espresso-5.1/PW/src/a2fmod.f900000644000175000017500000000344012341373025014110 0ustar mbamba! ! Copyright (C) 2006 Malgorzata Wierbowska and Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE a2F ! ! This module contains a routine saving variables needed for the ! electron-phonon calculation (new algorithm implemeted by MW) ! USE kinds, ONLY : DP ! LOGICAL :: la2F = .FALSE. ! PRIVATE PUBLIC :: la2F, a2Fsave CONTAINS ! SUBROUTINE a2Fsave USE kinds, ONLY : DP USE klist, ONLY : nks, nkstot, xk, wk USE ions_base, ONLY : nat USE wvfct, ONLY : et, nbnd USE start_k, ONLY : nk1, nk2, nk3 USE symm_base, ONLY : s, nsym, irt USE io_global, ONLY : ionode USE io_files, ONLY : seqopn implicit none ! INTEGER :: iuna2Fsave = 40, i, j, ik, ns, na logical :: exst ! ! parallel case: only first node writes IF ( ionode ) THEN ! CALL seqopn( iuna2Fsave, 'a2Fsave', 'FORMATTED', exst ) !=========================================== ! WRITE( iuna2Fsave, * ) nbnd, nkstot WRITE( iuna2Fsave, * ) et WRITE( iuna2Fsave, * ) ((xk(i,ik), i=1,3), ik=1,nkstot) WRITE( iuna2Fsave, * ) wk(1:nkstot) WRITE( iuna2Fsave, * ) nk1, nk2, nk3 ! WRITE( iuna2Fsave, * ) nsym do ns=1,nsym WRITE( iuna2Fsave, * ) ((s(i,j,ns),j=1,3),i=1,3) enddo WRITE( iuna2Fsave, * ) ((irt(ns,na),ns=1,nsym),na=1,nat) ! CLOSE( UNIT = iuna2Fsave, STATUS = 'KEEP' ) ! END IF ! RETURN END SUBROUTINE a2Fsave END MODULE a2F espresso-5.1/PW/src/plugin_scf_energy.f900000644000175000017500000000213712341373025016444 0ustar mbamba! ! Copyright (C) 2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE plugin_scf_energy(plugin_etot,rhoin) !---------------------------------------------------------------------------- ! This routine is used to calculate plugin energy related quantities ! that needs to be solved inside the scf cycle ! USE io_global, ONLY : stdout, ionode USE kinds, ONLY : DP USE io_files, ONLY : tmp_dir ! USE fft_base, ONLY : dfftp USE lsda_mod, ONLY : nspin USE scf, ONLY : scf_type ! USE plugin_flags ! ! ***Environ MODULES BEGIN*** ! ***Environ MODULES END*** ! IMPLICIT NONE ! real(DP), intent(inout) :: plugin_etot type(scf_type), intent(in) :: rhoin ! ! ***Environ VARIABLES BEGIN*** ! ***Environ VARIABLES END*** ! ! ***Environ CALLS BEGIN*** ! ***Environ CALLS END*** ! END SUBROUTINE plugin_scf_energy espresso-5.1/PW/src/restart_in_electrons.f900000644000175000017500000000302212341373025017164 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE restart_in_electrons (iter, dr2, ethr, et) !----------------------------------------------------------------------- USE kinds, ONLY: dp USE io_global, ONLY: stdout USE io_files, ONLY: iunres, seqopn USE klist, ONLY: nks USE wvfct, ONLY: nbnd ! IMPLICIT NONE ! INTEGER, INTENT (inout) :: iter REAL(dp), INTENT(inout) :: dr2, ethr, et(nbnd,nks) ! REAL(dp), ALLOCATABLE :: et_(:,:) REAL(dp):: dr2_, ethr_ INTEGER :: ios LOGICAL :: exst ! CALL seqopn (iunres, 'restart_scf', 'formatted', exst) IF ( exst ) THEN ios = 0 READ (iunres, *, iostat=ios) iter, dr2_, ethr_ IF ( ios /= 0 ) THEN iter = 0 ELSE IF ( iter < 1 ) THEN iter = 0 ELSE ALLOCATE (et_(nbnd,nks)) READ (iunres, *, iostat=ios) et_ IF ( ios /= 0 ) THEN iter = 0 ELSE WRITE( stdout, & '(5x,"Calculation restarted from scf iteration #",i6)' ) iter + 1 dr2 = dr2_ ethr= ethr_ et (:,:) = et_(:,:) END IF DEALLOCATE (et_) END IF ELSE iter = 0 END IF CLOSE ( unit=iunres, status='delete') ! END SUBROUTINE restart_in_electrons espresso-5.1/PW/src/wannier_check.f900000644000175000017500000000674712341373025015555 0ustar mbamba! Copyright (C) 2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) subroutine wannier_check() use io_global, only : stdout use kinds, only : DP use klist, only : nks, nkstot use ions_base, only : nat, ityp, atm,tau use wvfct, only: nbnd USE basis, only: natomwfc use wannier_new, only: nwan, wan_in, use_energy_int use lsda_mod, only: nspin USE control_flags, ONLY : gamma_only USE uspp_param, ONLY : upf implicit none integer :: nwfc, lmax_wfc, na, nt, n, l, m, i, iwan, ispin ! number of k points in this pool .ne. total number of k points if (nks.ne.nkstot) call errore ('wannier_check', 'not implemented 1', 1) if ( gamma_only ) call errore ('wannier_check', 'gamma_only calculation not implemented', 1) ! here we will write to stdout source of wannier functions (atomic functions from which wannier are generated) do ispin=1, nspin ! write(stdout,'(5x,a4,i2)') 'Spin',ispin do iwan=1,nwan write(stdout,'(7x,"Wannier #",i3," centered on atom ",a3," (position ",3f8.5," )")') & iwan, atm(ityp(wan_in(iwan,ispin)%iatom)), (tau(i,wan_in(iwan,ispin)%iatom),i=1,3) if( use_energy_int) then write(stdout,'(9x,"Bands for generation: from",f6.3," to",f6.3)') & wan_in(iwan,ispin)%bands_from,wan_in(iwan,ispin)%bands_to else write(stdout,'(9x,"Bands for generation: from",i4," to",i4)') & INT(wan_in(iwan,ispin)%bands_from),INT(wan_in(iwan,ispin)%bands_to) end if write(stdout,'(9x,a31)') 'Trial wavefunction ingredients:' do i=1,wan_in(iwan,ispin)%ning nwfc=0 lmax_wfc = 0 write(stdout,'(10x,f12.10," of l=",i1,", m=",i1)') & wan_in(iwan,ispin)%ing(i)%c, wan_in(iwan,ispin)%ing(i)%l, wan_in(iwan,ispin)%ing(i)%m ! now we shoud associate every ingridient of trial wavefunction with atomic orbital ! it will be done only once - for future using in wannier_proj DO na = 1, nat nt = ityp (na) DO n = 1, upf(nt)%nwfc IF (upf(nt)%oc (n) >= 0.d0) THEN l = upf(nt)%lchi (n) lmax_wfc = max (lmax_wfc, l ) DO m=1, 2*l+1 nwfc=nwfc+1 ! the most important part if ( & (na == wan_in(iwan,ispin)%iatom) .AND. & (l == wan_in(iwan,ispin)%ing(i)%l) .AND. & (m == wan_in(iwan,ispin)%ing(i)%m) ) & wan_in(iwan,ispin)%ing(i)%iatomwfc = nwfc enddo endif enddo enddo end do ! ingredients end do ! iwannier end do !ispin ! do iwan=1,nwan ! write(stdout,'(7x,"Wannier #",i3," atomic wavefunction", i3)') iwan, wan_in(iwan,1)%ing(1)%iatomwfc ! end do ! iwannier if (lmax_wfc > 3) call errore ('wannier_check', 'l > 3 not yet implemented', 1) if (nwfc /= natomwfc) call errore ('wannier_check', 'wrong # of atomic wfcs?', 1) if (nwan > nbnd ) call errore( 'wannier_check','too few bands', nwan-nbnd) return end subroutine wannier_check espresso-5.1/PW/src/set_kplusq.f900000644000175000017500000000404612341373025015135 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine set_kplusq (xk, wk, xq, nks, npk) !----------------------------------------------------------------------- ! This routine sets the k and k+q points (with zero weight) used in ! the preparatory run for a linear response calculation. ! ! on input: xk and wk contain k-points and corresponding weights ! ! on output: the number of points is doubled and xk and wk in the ! odd positions are the original ones; those in the ! even positions are the corresponding k+q values. ! the gamma point is treated in a special way. No change is done ! to the k-points ! USE kinds, only : DP implicit none ! ! First the dummy variables ! integer :: npk, nks ! input-output: maximum allowed number of k ! input-output: starting and ending number of real(DP) :: xk (3, npk), wk (npk), eps, xq (3) ! input-output: coordinates of k points ! input-output: weights of k points ! the smallest xq ! input: coordinates of a q-point ! ! And then the local variables ! logical :: lgamma ! true if xq is the gamma point integer :: ik, j ! counter on k ! counter ! eps = 1.d-12 ! ! shift the k points in the odd positions and fill the even ones with k+ ! lgamma = abs (xq (1) ) .lt.eps.and.abs (xq (2) ) .lt.eps.and.abs ( & xq (3) ) .lt.eps if (.not.lgamma) then if (2 * nks.gt.npk) call errore ('set_kplusq', 'too many k points', & & nks) do ik = nks, 1, - 1 do j = 1, 3 xk (j, 2 * ik - 1) = xk (j, ik) xk (j, 2 * ik) = xk (j, ik) + xq (j) enddo wk (2 * ik - 1) = wk (ik) wk (2 * ik) = 0.d0 enddo nks = 2 * nks endif return end subroutine set_kplusq espresso-5.1/PW/src/qvan2.f900000644000175000017500000001075112341373025013772 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine qvan2 (ngy, ih, jh, np, qmod, qg, ylmk0) !----------------------------------------------------------------------- ! ! This routine computes the fourier transform of the Q functions ! The interpolation table for the radial fourier trasform is stored ! in qrad. ! ! The formula implemented here is ! ! q(g,i,j) = sum_lm (-i)^l ap(lm,i,j) yr_lm(g^) qrad(g,l,i,j) ! ! USE kinds, ONLY: DP USE us, ONLY: dq, qrad USE uspp_param, ONLY: lmaxq, nbetam USE uspp, ONLY: nlx, lpl, lpx, ap, indv, nhtolm implicit none ! ! Input variables ! integer,intent(IN) :: ngy, ih, jh, np ! ngy : number of G vectors to compute ! ih, jh: first and second index of Q ! np : index of pseudopotentials ! real(DP),intent(IN) :: ylmk0 (ngy, lmaxq * lmaxq), qmod (ngy) ! ylmk0 : spherical harmonics ! qmod : moduli of the q+g vectors ! ! output: the fourier transform of interest ! real(DP),intent(OUT) :: qg (2,ngy) ! ! here the local variables ! real (DP) :: sig ! the nonzero real or imaginary part of (-i)^L real (DP), parameter :: sixth = 1.d0 / 6.d0 ! integer :: nb, mb, ijv, ivl, jvl, ig, lp, l, lm, i0, i1, i2, i3, ind ! nb,mb : atomic index corresponding to ih,jh ! ijv : combined index (nb,mb) ! ivl,jvl: combined LM index corresponding to ih,jh ! ig : counter on g vectors ! lp : combined LM index ! l-1 is the angular momentum L ! lm : all possible LM's compatible with ih,jh ! i0-i3 : counters for interpolation table ! ind : ind=1 if the results is real (l even), ind=2 if complex (l odd) ! real(DP) :: dqi, qm, px, ux, vx, wx, uvx, pwx, work, qm1 ! 1 divided dq ! qmod/dq ! measures for interpolation table ! auxiliary variables for intepolation ! auxiliary variables ! ! compute the indices which correspond to ih,jh ! dqi = 1.0_DP / dq nb = indv (ih, np) mb = indv (jh, np) if (nb.ge.mb) then ijv = nb * (nb - 1) / 2 + mb else ijv = mb * (mb - 1) / 2 + nb endif ivl = nhtolm(ih, np) jvl = nhtolm(jh, np) if (nb > nbetam .OR. mb > nbetam) & call errore (' qvan2 ', ' wrong dimensions (1)', MAX(nb,mb)) if (ivl > nlx .OR. jvl > nlx) & call errore (' qvan2 ', ' wrong dimensions (2)', MAX(ivl,jvl)) qg = 0.d0 ! ! and make the sum over the non zero LM ! do lm = 1, lpx (ivl, jvl) lp = lpl (ivl, jvl, lm) if ( lp < 1 .or. lp > 49 ) call errore ('qvan2', ' lp wrong ', max(lp,1)) ! ! find angular momentum l corresponding to combined index lp ! if (lp == 1) then l = 1 sig = 1.0d0 ind = 1 elseif ( lp <= 4) then l = 2 sig =-1.0d0 ind = 2 elseif ( lp <= 9 ) then l = 3 sig =-1.0d0 ind = 1 elseif ( lp <= 16 ) then l = 4 sig = 1.0d0 ind = 2 elseif ( lp <= 25 ) then l = 5 sig = 1.0d0 ind = 1 elseif ( lp <= 36 ) then l = 6 sig =-1.0d0 ind = 2 else l = 7 sig =-1.0d0 ind = 1 endif sig = sig * ap (lp, ivl, jvl) qm1 = -1.0_dp ! any number smaller than qmod(1) !$omp parallel do default(shared), private(qm,px,ux,vx,wx,i0,i1,i2,i3,uvx,pwx,work) do ig = 1, ngy ! ! calculate quantites depending on the module of G only when needed ! #if ! defined __OPENMP IF ( ABS( qmod(ig) - qm1 ) > 1.0D-6 ) THEN #endif ! qm = qmod (ig) * dqi px = qm - int (qm) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = INT( qm ) + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 uvx = ux * vx * sixth pwx = px * wx * 0.5d0 work = qrad (i0, ijv, l, np) * uvx * wx + & qrad (i1, ijv, l, np) * pwx * vx - & qrad (i2, ijv, l, np) * pwx * ux + & qrad (i3, ijv, l, np) * px * uvx #if ! defined __OPENMP qm1 = qmod(ig) END IF #endif qg (ind,ig) = qg (ind,ig) + sig * ylmk0 (ig, lp) * work enddo !$omp end parallel do enddo return end subroutine qvan2 espresso-5.1/PW/src/pwcom.f900000644000175000017500000003026712341373025014074 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE klist ! ! ... The variables for the k-points ! USE kinds, ONLY : DP USE parameters, ONLY : npk ! SAVE ! CHARACTER (len=32) :: & smearing ! smearing type REAL(DP) :: & xk(3,npk), &! coordinates of k points wk(npk), &! weight of k points xqq(3), &! coordinates of q point (used in the ACFDT part) degauss, &! smearing parameter nelec, &! number of electrons nelup=0.0_dp, &! number of spin-up electrons (if two_fermi_energies=t) neldw=0.0_dp, &! number of spin-dw electrons (if two_fermi_energies=t) tot_magnetization, &! nelup-neldw >= 0 (negative value means unspecified) tot_charge REAL(DP) :: & qnorm= 0.0_dp ! |q|, used in phonon+US calculations only INTEGER, ALLOCATABLE :: & ngk(:) ! number of plane waves for each k point INTEGER :: & nks, &! number of k points in this pool nkstot, &! total number of k points ngauss ! type of smearing technique LOGICAL :: & lgauss, &! if .TRUE.: use gaussian broadening lxkcry=.false., &! if .TRUE.:k-pnts in cryst. basis accepted in input two_fermi_energies ! if .TRUE.: nelup and neldw set ef_up and ef_dw ! separately ! END MODULE klist ! ! MODULE lsda_mod ! ! ... The variables needed for the lsda calculation ! USE kinds, ONLY : DP USE parameters, ONLY : ntypx, npk ! SAVE ! LOGICAL :: & lsda REAL(DP) :: & magtot, &! total magnetization absmag, &! total absolute magnetization starting_magnetization(ntypx) ! the magnetization used to start with INTEGER :: & nspin, &! number of spin polarization: 2 if lsda, 1 other current_spin, &! spin of the current kpoint isk(npk) ! for each k-point: 1=spin up, 2=spin down ! END MODULE lsda_mod ! ! MODULE ktetra ! ! ... The variables for the tetrahedron method ! SAVE ! INTEGER :: & ntetra ! number of tetrahedra INTEGER, ALLOCATABLE :: & tetra(:,:) ! index of k-points in a given tetrahedron ! shape (4,ntetra) LOGICAL :: & ltetra ! if .TRUE.: use tetrahedron method ! END MODULE ktetra ! ! MODULE rap_point_group ! USE kinds, ONLY : DP ! INTEGER :: & code_group, & ! The code of the point group nclass, & ! The number of classes of the point group nelem(12), & ! The elements of each class elem(8,12), & ! Which elements in the smat list for each class which_irr(12) ! For each class gives its position in the ! character table. ! COMPLEX(DP) :: char_mat(12,12) ! the character tables: rap,class CHARACTER(len=15) :: name_rap(12) ! the name of the representation CHARACTER(len=3) :: ir_ram(12) ! a string I, R or I+R for infrared, ! Raman, or infrared+raman modes. CHARACTER(len=11) :: gname ! the name of the group CHARACTER(len=5) :: name_class(12) ! the name of the class ! END MODULE rap_point_group MODULE rap_point_group_so ! USE kinds, ONLY : DP ! INTEGER :: & nrap, & ! The number of classes of the point group nelem_so(24), &! The elements of each class elem_so(12,24), &! Which elements in the smat list for each class has_e(12,24), & ! if -1 the smat is multiplied by -E which_irr_so(24) ! For each class gives its position in the ! character table. ! COMPLEX(DP) :: char_mat_so(12,24), & ! the character tables d_spin(2,2,48) ! the rotation in spin space CHARACTER(len=15) :: name_rap_so(12) ! the name of the representation CHARACTER(len=5) :: name_class_so(24), & ! the name of the class name_class_so1(24) ! the name of the class ! END MODULE rap_point_group_so ! MODULE rap_point_group_is ! USE kinds, ONLY : DP ! INTEGER :: & ftau_is(3,48), & ! The fractional transl. of the invariant subgroup nsym_is, & ! The number of operations of the invariant subgroup code_group_is ! The code of the point invariant subgroup REAL(DP) :: & sr_is(3,3,48) ! The matrices of the invariant subgroup COMPLEX(DP) :: & d_spin_is(2,2,48) ! the rotation in spin space CHARACTER(len=45) :: sname_is(48) ! name of the symmetries CHARACTER(len=11) :: gname_is ! the name of the invariant group ! END MODULE rap_point_group_is ! MODULE vlocal ! ! ... The variables needed for the local potential in reciprocal space ! USE kinds, ONLY : DP ! SAVE ! COMPLEX(DP), ALLOCATABLE :: & strf(:,:) ! the structure factor REAL(DP), ALLOCATABLE :: & vloc(:,:) ! the local potential for each atom type ! END MODULE vlocal ! ! MODULE wvfct ! ! ... The variables needed to compute the band structure ! USE kinds, ONLY : DP ! SAVE ! INTEGER :: & npwx, &! maximum number of PW for wavefunctions nbndx, &! max number of bands use in iterative diag nbnd, &! number of bands npw, &! the number of plane waves current_k ! the index of k-point under consideration INTEGER, ALLOCATABLE, TARGET :: & igk(:) ! index of G corresponding to a given index of k+G REAL(DP) :: & ecutwfc, &! energy cut-off ecfixed, &! qcutz = 0.0_DP,&! For the modified Ekin functional q2sigma ! REAL(DP), ALLOCATABLE :: & et(:,:), &! eigenvalues of the hamiltonian wg(:,:), &! the weight of each k point and band g2kin(:) ! kinetic energy INTEGER, ALLOCATABLE :: & btype(:,:) ! one if the corresponding state has to be ! converged to full accuracy, zero otherwise ! END MODULE wvfct ! ! MODULE ener ! ! ... The variables needed to compute the energies ! USE kinds, ONLY : DP ! SAVE ! REAL(DP) :: & etot, &! the total Kohn-Sham energy of the solid hwf_energy, &! this is the Harris-Weinert-Foulkes energy eband, &! the band energy deband, &! scf correction to have variational energy ehart, &! the hartree energy etxc, &! the exchange and correlation energy vtxc, &! another exchange-correlation energy etxcc, &! the nlcc exchange and correlation ewld, &! the ewald energy elondon, &! the semi-empirical dispersion energy exdm, &! the XDM dispersion energy demet, &! variational correction ("-TS") for metals epaw, &! sum of one-center paw contributions ef, ef_up, ef_dw ! the fermi energy (up and dw if two_fermi_energies=.T.) ! END MODULE ener ! ! MODULE force_mod ! ! ... The variables for the first derivative of the energy ! USE kinds, ONLY : DP ! SAVE ! REAL(DP), ALLOCATABLE :: & force(:,:) ! the force on each atom REAL(DP) :: & sigma(3,3) ! the stress acting on the system LOGICAL :: & lforce, &! if .TRUE. compute the forces lstres ! if .TRUE. compute the stress ! END MODULE force_mod ! MODULE relax ! ! ... The variables used to control ionic relaxations ! USE kinds, ONLY : DP ! SAVE ! REAL(DP) :: & epse = 0.0_dp, &! threshold on total energy epsf, &! threshold on forces epsp, &! threshold on pressure starting_scf_threshold ! self-explanatory ! END MODULE relax ! ! MODULE cellmd ! ! ... The variables used to control cell relaxation ! USE kinds, ONLY : DP ! SAVE ! REAL(DP) :: & press, cmass, &! target pressure and cell mass, at_old(3,3), &! the lattice vectors at the previous ste omega_old, &! the cell volume at the previous step cell_factor=0.0_dp ! maximum expected (linear) cell contraction ! during relaxation/MD INTEGER :: & nzero, &! iteration # of last thermalization ntimes=-1, &! # of thermalization steps to be performed (-i=inf) ntcheck ! # of steps between thermalizations LOGICAL :: lmovecell ! used in cell relaxation ! CHARACTER(len=2) :: & calc=' ' ! main switch for variable cell shape MD ! see readin, vcsmd and/or INPUT files ! END MODULE cellmd ! ! MODULE us ! ! ... These parameters are needed with the US pseudopotentials ! USE kinds, ONLY : DP ! SAVE ! INTEGER :: & nqxq, &! size of interpolation table nqx ! number of interpolation points REAL(DP), PARAMETER:: & dq = 0.01D0 ! space between points in the pseudopotential tab. REAL(DP), ALLOCATABLE :: & qrad(:,:,:,:), &! radial FT of Q functions tab(:,:,:), &! interpolation table for PPs tab_at(:,:,:) ! interpolation table for atomic wfc LOGICAL :: spline_ps = .false. REAL(DP), ALLOCATABLE :: & tab_d2y(:,:,:) ! for cubic splines ! END MODULE us ! ! MODULE extfield ! ! ... The quantities needed in calculations with external field ! USE kinds, ONLY : DP ! SAVE ! LOGICAL :: & tefield, &! if .TRUE. a finite electric field is added to the ! local potential dipfield ! if .TRUE. the dipole field is subtracted INTEGER :: & edir ! direction of the field REAL(DP) :: & emaxpos, &! position of the maximum of the field (0 nsp, ityp USE uspp_param, ONLY : nh, nhm USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : npol, nspin_mag USE spin_orb, ONLY : domag ! IMPLICIT NONE COMPLEX(DP) :: becsum_nc(nhm*(nhm+1)/2,nat,npol,npol) REAL(DP) :: becsum(nhm*(nhm+1)/2,nat,nspin_mag) INTEGER :: na ! ! ... local variables ! INTEGER :: ih, jh, ijh, np np=ityp(na) ijh=1 DO ih = 1, nh(np) becsum(ijh,na,1)= becsum(ijh,na,1)+ & becsum_nc(ijh,na,1,1)+becsum_nc(ijh,na,2,2) IF (domag) THEN becsum(ijh,na,2)= becsum(ijh,na,2)+ & becsum_nc(ijh,na,1,2)+becsum_nc(ijh,na,2,1) becsum(ijh,na,3)= becsum(ijh,na,3)+(0.d0,-1.d0)* & (becsum_nc(ijh,na,1,2)-becsum_nc(ijh,na,2,1)) becsum(ijh,na,4)= becsum(ijh,na,4)+ & becsum_nc(ijh,na,1,1)-becsum_nc(ijh,na,2,2) END IF ijh=ijh+1 DO jh = ih+1, nh(np) becsum(ijh,na,1)= becsum(ijh,na,1) + & (becsum_nc(ijh,na,1,1)+becsum_nc(ijh,na,2,2)) & + CONJG(becsum_nc(ijh,na,1,1)+becsum_nc(ijh,na,2,2)) IF (domag) THEN becsum(ijh,na,2)= becsum(ijh,na,2) + & becsum_nc(ijh,na,1,2)+becsum_nc(ijh,na,2,1) & + CONJG(becsum_nc(ijh,na,2,1)+becsum_nc(ijh,na,1,2)) becsum(ijh,na,3)= becsum(ijh,na,3) +(0.d0,-1.d0)* & (becsum_nc(ijh,na,1,2)-becsum_nc(ijh,na,2,1) & + CONJG(becsum_nc(ijh,na,2,1)-becsum_nc(ijh,na,1,2)) ) becsum(ijh,na,4)= becsum(ijh,na,4) + & (becsum_nc(ijh,na,1,1)-becsum_nc(ijh,na,2,2)) & + CONJG(becsum_nc(ijh,na,1,1)-becsum_nc(ijh,na,2,2)) END IF ijh=ijh+1 END DO END DO RETURN END SUBROUTINE transform_becsum_nc espresso-5.1/PW/src/init_vloc.f900000644000175000017500000000275412341373025014735 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine init_vloc() !---------------------------------------------------------------------- ! ! This routine computes the fourier coefficient of the local ! potential vloc(ig,it) for each type of atom ! USE atom, ONLY : msh, rgrid USE kinds, ONLY : dp USE uspp_param, ONLY : upf USE ions_base, ONLY : ntyp => nsp USE cell_base, ONLY : omega, tpiba2 USE vlocal, ONLY : vloc USE gvect, ONLY : ngl, gl ! implicit none ! integer :: nt ! counter on atomic types ! call start_clock ('init_vloc') vloc(:,:) = 0._dp do nt = 1, ntyp ! ! compute V_loc(G) for a given type of atom ! IF ( .NOT. ASSOCIATED ( upf(nt)%vloc ) ) THEN ! ! special case: pseudopotential is coulomb 1/r potential ! call vloc_coul (upf(nt)%zp, tpiba2, ngl, gl, omega, vloc (1, nt) ) ! ELSE ! ! normal case ! call vloc_of_g (rgrid(nt)%mesh, msh (nt), rgrid(nt)%rab, rgrid(nt)%r, & upf(nt)%vloc(1), upf(nt)%zp, tpiba2, ngl, gl, omega, vloc (1, nt) ) ! END IF enddo call stop_clock ('init_vloc') return end subroutine init_vloc espresso-5.1/PW/src/multable.f900000644000175000017500000000276112341373025014552 0ustar mbamba! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE multable (nsym, s, table) !----------------------------------------------------------------------- ! ! Checks that {S} is a group and calculates multiplication table ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nsym, s(3,3,nsym) ! nsym = number of symmetry operations ! s = rotation matrix (in crystal axis, represented by integers) INTEGER, INTENT(OUT) :: table (48, 48) ! multiplication table: S(n)*S(m) = S (table(n,m) ) ! INTEGER :: isym, jsym, ksym, ss (3, 3) LOGICAL :: found, smn ! DO isym = 1, nsym DO jsym = 1, nsym ! ss = MATMUL (s(:,:,jsym),s(:,:,isym)) ! ! here we check that the input matrices really form a group ! and we set the multiplication table ! found = .false. DO ksym = 1, nsym smn = ALL ( s(:,:,ksym) == ss(:,:) ) IF (smn) THEN IF (found) CALL errore ('multable', 'Not a group', 1) found = .true. table (jsym, isym) = ksym END IF END DO IF ( .NOT.found) CALL errore ('multable', ' Not a group', 2) END DO END DO RETURN ! END SUBROUTINE multable espresso-5.1/PW/src/init_ns.f900000644000175000017500000001141312341373025014402 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine init_ns !----------------------------------------------------------------------- ! ! This routine computes the starting ns (for lda+U calculation) filling ! up the d states (the only interested by the on-site potential for the ! moment) according to the Hund's rule (valid for the isolated atoms on ! which starting potential is built), and to the starting_magnetization: ! majority spin levels are populated first, then the remaining electrons ! are equally distributed among the minority spin states ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE lsda_mod, ONLY : nspin, starting_magnetization USE ldaU, ONLY : hubbard_u, hubbard_alpha, hubbard_l USE scf, ONLY : rho USE uspp_param,ONLY : upf ! implicit none real(DP) :: totoc real(DP), external :: hubbard_occ integer :: ldim, na, nt, is, m1, majs, mins logical :: nm ! true if the atom is non magnetic rho%ns(:,:,:,:) = 0.d0 do na = 1, nat nt = ityp (na) if (Hubbard_U(nt).ne.0.d0 .or. Hubbard_alpha(nt).ne.0.d0) then ldim = 2*Hubbard_l(nt)+1 totoc = hubbard_occ ( upf(nt)%psd ) nm=.true. if (nspin.eq.2) then if (starting_magnetization (nt) .gt.0.d0) then nm=.false. majs = 1 mins = 2 elseif (starting_magnetization (nt) .lt.0.d0) then nm=.false. majs = 2 mins = 1 endif endif if (.not.nm) then if (totoc.gt.ldim) then do m1 = 1, ldim rho%ns (m1, m1, majs, na) = 1.d0 rho%ns (m1, m1, mins, na) = (totoc - ldim) / ldim enddo else do m1 = 1, ldim rho%ns (m1, m1, majs, na) = totoc / ldim enddo endif else do is = 1,nspin do m1 = 1, ldim rho%ns (m1, m1, is, na) = totoc / 2.d0 / ldim enddo enddo endif endif enddo return end subroutine init_ns !----------------------------------------------------------------------- subroutine init_ns_nc ! ! Noncollinear version (A. Smogunov). ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE lsda_mod, ONLY : nspin, starting_magnetization USE ldaU, ONLY : hubbard_u, hubbard_l USE noncollin_module, ONLY : angle1, angle2 USE scf, ONLY : rho USE uspp_param, ONLY : upf ! implicit none real(DP) :: totoc, cosin real(DP), external :: hubbard_occ complex(DP) :: esin, n, m, ns(4) integer :: ldim, na, nt, is, m1, m2, majs, isym, mins logical :: nm ! true if the atom is non magnetic rho%ns_nc(:,:,:,:) = 0.d0 do na = 1, nat nt = ityp (na) if (Hubbard_U(nt).ne.0.d0) then ldim = 2*Hubbard_l(nt)+1 totoc = hubbard_occ ( upf(nt)%psd ) nm=.true. if (starting_magnetization (nt) .gt.0.d0) then nm=.false. majs = 1 mins = 2 elseif (starting_magnetization (nt) .lt.0.d0) then nm=.false. majs = 2 mins = 1 endif if (.not.nm) then !-- parameters for rotating occ. matrix cosin = COS(angle1(nt)) esin = ( COS(angle2(nt)) + (0.d0,1.d0)*SIN(angle2(nt)) ) * SIN(angle1(nt)) !-- !-- occ. matrix in quantiz. axis if (totoc.gt.ldim) then ns(majs) = 1.d0 ns(mins) = (totoc -ldim ) / ldim else ns(majs) = totoc / ldim ns(mins) = 0.d0 endif !-- !-- charge and moment n = ns(1) + ns(2) m = ns(1) - ns(2) !-- !-- rotating occ. matrix ns(1) = ( n + m*cosin ) / 2.d0 ns(2) = m * esin / 2.d0 ns(3) = m * CONJG( esin ) / 2.d0 ns(4) = ( n - m*cosin ) / 2.d0 do m1 = 1, ldim rho%ns_nc (m1, m1, :, na) = ns(:) enddo !-- else do m1 = 1, ldim rho%ns_nc (m1, m1, 1, na) = totoc / 2.d0 / ldim rho%ns_nc (m1, m1, 4, na) = totoc / 2.d0 / ldim enddo endif endif enddo return end subroutine init_ns_nc espresso-5.1/PW/src/weights.f900000644000175000017500000002050412341373025014412 0ustar mbamba! ! Copyright (C) 2001-2011 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE weights() !---------------------------------------------------------------------------- ! ! ... calculates weights of Kohn-Sham orbitals used in calculation of rho, ! ... Fermi energies, HOMO and LUMO, "-TS" term (gaussian) ! USE kinds, ONLY : DP USE ener, ONLY : demet, ef, ef_up, ef_dw USE fixed_occ, ONLY : f_inp, tfixed_occ USE klist, ONLY : lgauss, degauss, ngauss, nks, & nkstot, wk, xk, nelec, nelup, neldw, & two_fermi_energies USE ktetra, ONLY : ltetra, ntetra, tetra USE lsda_mod, ONLY : nspin, current_spin, isk USE wvfct, ONLY : nbnd, wg, et USE mp_images, ONLY : intra_image_comm USE mp_pools, ONLY : inter_pool_comm USE mp, ONLY : mp_bcast, mp_sum USE io_global, ONLY : ionode, ionode_id ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: ibnd, ik ! counters: bands, k-points real (DP) demet_up, demet_dw ! demet = 0.D0 ! IF ( tfixed_occ .OR. ltetra ) THEN ! ! ... For these two cases, the weights are computed on one processor, ! ... broadcast to the other. All eigenvalues (et) must be present on ! ... the first pool: poolreduce must have been called for et ! IF ( ionode ) THEN ! IF ( tfixed_occ ) THEN ! ! ... occupancies are fixed to the values read from input ! DO ik = 1, nkstot wg(:,ik) = f_inp(:,isk(ik)) * wk(ik) IF ( nspin == 1 ) wg(:,ik) = wg(:,ik)/2.0_dp END DO ! ef = -1.0d10 DO ik = 1, nkstot DO ibnd = 1, nbnd IF ( wg(ibnd,ik) > 0.D0 ) ef = MAX( ef, et(ibnd,ik) ) END DO END DO ! ELSE ! ! ... calculate weights for the metallic case using tetrahedra ! IF (two_fermi_energies) THEN ! CALL tweights( nkstot, nspin, nbnd, nelup, & ntetra, tetra, et, ef_up, wg, 1, isk ) CALL tweights( nkstot, nspin, nbnd, neldw, & ntetra, tetra, et, ef_dw, wg, 2, isk ) ! ELSE ! CALL tweights( nkstot, nspin, nbnd, nelec, & ntetra, tetra, et, ef, wg, 0, isk ) ! END IF ! END IF ! END IF ! CALL poolscatter( nbnd, nkstot, wg, nks, wg ) CALL mp_bcast( ef, ionode_id, intra_image_comm ) ! ELSE ! IF ( lgauss ) THEN ! ! ... calculate weights for the metallic case using smearing ! IF ( two_fermi_energies ) THEN ! CALL gweights( nks, wk, nbnd, nelup, degauss, & ngauss, et, ef_up, demet_up, wg, 1, isk ) CALL gweights( nks, wk, nbnd, neldw, degauss, & ngauss, et, ef_dw, demet_dw, wg, 2, isk ) ! demet = demet_up + demet_dw ! ELSE ! CALL gweights( nks, wk, nbnd, nelec, degauss, & ngauss, et, ef, demet, wg, 0, isk) END IF ! CALL mp_sum( demet, inter_pool_comm ) ! ELSE ! ! ... calculate weights for the insulator case ! IF ( two_fermi_energies ) THEN ! CALL iweights( nks, wk, nbnd, nelup, et, ef_up, wg, 1, isk ) CALL iweights( nks, wk, nbnd, neldw, et, ef_dw, wg, 2, isk ) ! ! the following line to prevent NaN in Ef ! ef = ( ef_up + ef_dw ) / 2.0_dp ! ELSE ! CALL iweights( nks, wk, nbnd, nelec, et, ef, wg, 0, isk ) ! END IF ! END IF ! ! ... collect all weights on the first pool; ! ... not needed for calculation but useful for printout ! CALL poolrecover( wg, nbnd, nkstot, nks ) ! END IF ! RETURN ! END SUBROUTINE weights ! !---------------------------------------------------------------------------- SUBROUTINE weights_only () !---------------------------------------------------------------------------- ! ! ... calculates only weights of Kohn-Sham orbitals, with Fermi energy ! ... given in input ! USE kinds, ONLY : DP USE ener, ONLY : demet, ef, ef_up, ef_dw USE fixed_occ, ONLY : f_inp, tfixed_occ USE klist, ONLY : lgauss, degauss, ngauss, nks, & nkstot, wk, xk, nelec, nelup, neldw, & two_fermi_energies USE ktetra, ONLY : ltetra, ntetra, tetra USE lsda_mod, ONLY : nspin, current_spin, isk USE wvfct, ONLY : nbnd, wg, et USE mp_images, ONLY : intra_image_comm USE mp_pools, ONLY : inter_pool_comm USE mp, ONLY : mp_bcast, mp_sum USE io_global, ONLY : ionode, ionode_id ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: ibnd, ik ! counters: bands, k-points real (DP) demet_up, demet_dw ! demet = 0.D0 ! IF ( tfixed_occ .OR. ltetra ) THEN ! ! ... For these two cases, the weights are computed on one processor, ! ... broadcast to the other. All eigenvalues (et) must be present on ! ... the first pool: poolreduce must have been called for et ! IF ( ionode ) THEN ! IF ( tfixed_occ ) THEN ! ! ... occupancies are fixed to the values read from input ! DO ik = 1, nkstot wg(:,ik) = f_inp(:,isk(ik)) * wk(ik) IF ( nspin == 1 ) wg(:,ik) = wg(:,ik)/2.0_dp END DO ! ELSE ! ! ... calculate weights for the metallic case using tetrahedra ! IF (two_fermi_energies) THEN ! CALL tweights_only( nkstot, nspin, 1, isk, nbnd, nelup, & ntetra, tetra, et, ef_up, wg ) CALL tweights_only( nkstot, nspin, 2, isk, nbnd, neldw, & ntetra, tetra, et, ef_dw, wg ) ! ELSE ! CALL tweights_only ( nkstot, nspin, 0, isk, nbnd, nelec, & ntetra, tetra, et, ef, wg ) ! END IF ! END IF ! END IF ! CALL poolscatter( nbnd, nkstot, wg, nks, wg ) ! ELSE ! IF ( lgauss ) THEN ! ! ... calculate weights for the metallic case using smearing ! IF ( two_fermi_energies ) THEN ! CALL gweights_only ( nks, wk, 1, isk, nbnd, nelup, degauss, & ngauss, et, ef_up, demet_up, wg ) CALL gweights_only ( nks, wk, 2, isk, nbnd, neldw, degauss, & ngauss, et, ef_dw, demet_dw, wg ) ! demet = demet_up + demet_dw ! ELSE ! CALL gweights_only ( nks, wk, 0, isk, nbnd, nelec, degauss, & ngauss, et, ef, demet, wg ) END IF ! CALL mp_sum( demet, inter_pool_comm ) ! ELSE ! ! ... calculate weights for the insulator case ! IF ( two_fermi_energies ) THEN ! CALL iweights_only ( nks, wk, 1, isk, nbnd, nelup, wg ) CALL iweights_only ( nks, wk, 2, isk, nbnd, neldw, wg ) ! ELSE ! CALL iweights_only ( nks, wk, 0, isk, nbnd, nelec, wg ) ! END IF ! END IF ! ! ... collect all weights on the first pool; ! ... not needed for calculation but useful for printout ! CALL poolrecover( wg, nbnd, nkstot, nks ) ! END IF ! RETURN ! END SUBROUTINE weights_only espresso-5.1/PW/src/plugin_initbase.f900000644000175000017500000000127712341373025016122 0ustar mbamba! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine plugin_initbase() ! ! This routine is used for fft related quantities in plugins ! DO NOT REMOVE THE TAGS ! ***ADDSON_NAME KIND_OF_PATCH*** ! USE plugin_flags USE fft_base, ONLY : dfftp USE mp_bands, ONLY : me_bgrp ! ! ***Environ MODULES BEGIN*** ! ***Environ MODULES END*** ! implicit none ! ! ***Environ VARIABLES BEGIN*** ! ***Environ VARIABLES END*** ! ! ***Environ CALLS BEGIN*** ! ***Environ CALLS END*** ! end subroutine plugin_initbase espresso-5.1/PW/src/divide_class_so.f900000644000175000017500000032474612341373025016111 0ustar mbamba! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------------- SUBROUTINE divide_class_so(code_group,nrot,smat,d_spin,has_e,nclass, & nelem,elem, which_irr) !----------------------------------------------------------------------------- ! ! This subroutine receives as input a set of nrot 3x3 matrices smat, ! and nrot complex 2x2 matrices d_spin, which are assumed to be the ! operations of the point group given by code_group. Only the operations ! that do not contain the 2\pi rotation (-E) are given in input. ! smat are in cartesian coordinates. ! This routine divides the double group in classes and find: ! ! nclass the number of classes of the double group ! nelem(iclass) for each class, the number of elements of the class ! elem(i,iclass) 10) ax_save(:,which_irr(iclass))=ax(:) ELSEIF (ts==2) THEN IF (has_e(1,iclass)==-1) THEN which_irr(iclass)=7 ELSE which_irr(iclass)=6 END IF END IF END DO ! ! Otherwise choose the first free axis ! DO iclass=2,nclass IF (which_irr(iclass)==0) THEN ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==4) THEN DO i=1,3 IF (done_ax(i)) THEN which_irr(iclass)=i+2 done_ax(i)=.FALSE. GOTO 100 END IF END DO 100 CONTINUE CALL versor(smat(1,1,elem(1,iclass)),ax) ax_save(:,which_irr(iclass))=ax(:) END IF END IF END DO ! ! Finally consider the mirror planes ! DO iclass=2,nclass IF (which_irr(iclass)==0) THEN ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==5) THEN CALL mirror_axis(smat(1,1,elem(1,iclass)),ax) DO i=3,5 IF (is_parallel(ax,ax_save(:,i))) which_irr(iclass)=i+5 END DO END IF END IF IF (which_irr(iclass)==0) CALL errore('divide_class_so',& 'something wrong D_2h',1) ENDDO ELSEIF (code_group==21) THEN ! ! D_3h ! IF (nclass /= 9) CALL errore('divide_class_so','Wrong classes for D_3h',1) DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==1) THEN which_irr(iclass)=2 ELSE IF (ts==3) THEN which_irr(iclass)=set_e(has_e(1,iclass),3) ELSE IF (ts==4) THEN which_irr(iclass)=5 ELSE IF (ts==5) THEN IF (nelem(iclass)>1) THEN which_irr(iclass)=9 ELSE which_irr(iclass)=6 END IF ELSE IF (ts==6) THEN which_irr(iclass)=set_e(has_e(1,iclass),7) END IF END DO ELSEIF (code_group==22) THEN ! ! D_4h ! ! First search the order 4 axis ! IF (nclass /= 14) CALL errore('divide_class_so','Wrong classes for D_4h',1) DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==3) THEN which_irr(iclass)=set_e(has_e(1,iclass),3) CALL versor(smat(1,1,elem(1,iclass)),ax) axis=0 DO ipol=1,3 IF (is_axis(ax,ipol)) axis=ipol ENDDO IF (axis==0) call errore('divide_class_so','unknown D_4h axis ',1) ENDIF END DO DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==1) THEN which_irr(iclass)=2 ELSE IF (ts==4) THEN which_irr(iclass)=0 CALL versor(smat(1,1,elem(1,iclass)),ax) IF (is_axis(ax,axis)) THEN which_irr(iclass)=5 ELSE DO ipol=1,3 IF (is_axis(ax,ipol)) which_irr(iclass)=6 ENDDO IF (which_irr(iclass)==0) which_irr(iclass)=7 END IF ELSEIF (ts==2) THEN which_irr(iclass)=set_e(has_e(1,iclass),8) ELSEIF (ts==5) THEN which_irr(iclass)=0 CALL mirror_axis(smat(1,1,elem(1,iclass)),ax) IF (is_axis(ax,axis)) THEN which_irr(iclass)=12 ELSE DO ipol=1,3 IF (is_axis(ax,ipol)) which_irr(iclass)=13 ENDDO IF (which_irr(iclass)==0) which_irr(iclass)=14 END IF ELSEIF (ts==6) THEN which_irr(iclass)=set_e(has_e(1,iclass),10) END IF END DO ELSEIF (code_group==23) THEN ! ! D_6h ! IF (nclass /= 18) CALL errore('divide_class_so','Wrong classes for D_6h',1) first=.TRUE. first1=.TRUE. DO iclass=2,nclass ts=tipo_sym(smat(1,1,elem(1,iclass))) IF (ts==1) THEN which_irr(iclass)=2 ELSE IF (ts==3) THEN ars=angle_rot(smat(1,1,elem(1,iclass))) IF ((ABS(ars-60.d0) 32 ) CALL errore('is_complex', & 'code is out of range',1) is_complex_so= complex_aux(code) RETURN END FUNCTION is_complex_so ! !---------------------------------------------------------------------------- SUBROUTINE write_group_info(flag) !---------------------------------------------------------------------------- ! ! This routine writes on output the main information on the point group ! If flag is .false. writes only the character table. If flag is .true. ! writes also the elements of each class. ! ! USE rap_point_group, ONLY : code_group, nclass, nelem, elem, which_irr, & char_mat, name_rap, name_class, gname USE rap_point_group_so, ONLY : nrap, nelem_so, elem_so, has_e, & which_irr_so, char_mat_so, name_rap_so, & name_class_so, d_spin, name_class_so1 USE rap_point_group_is, ONLY : code_group_is, gname_is USE spin_orb, ONLY : domag USE noncollin_module, ONLY : noncolin USE io_global, ONLY : stdout IMPLICIT NONE INTEGER :: iclass, irot, i, idx LOGICAL :: is_complex, is_complex_so, flag IF (noncolin) THEN IF (domag) THEN WRITE(stdout,'(/,5x,"the magnetic double point group is ", & & a11," [",a11,"]")') & gname, gname_is WRITE(stdout,'(5x,"using the double point group ",a11)') & gname_is ELSE WRITE(stdout,'(/,5x,"double point group ",a11)') gname END IF WRITE(stdout,'(5x, "there are", i3," classes and",i3, & & " irreducible representations")') nclass, nrap ELSE WRITE(stdout,'(/,5x,"point group ",a11)') gname WRITE(stdout,'(5x, "there are", i3," classes")') nclass ENDIF WRITE(stdout,'(5x, "the character table:")') IF (noncolin) THEN WRITE(stdout,'(/,7x,12(a5,1x))') (name_class_so(irot), & irot=1,MIN(12,nclass)) WRITE(stdout,'(7x,12(a5,1x))') (name_class_so1(irot), & irot=1,MIN(12,nclass)) DO iclass=1,nrap WRITE(stdout,'(a5,12f6.2)') name_rap_so(iclass), & (REAL(char_mat_so(iclass,irot)), irot=1,MIN(nclass,12)) END DO IF (nclass > 12 ) THEN WRITE(stdout,'(/,7x,12(a5,1x))') (name_class_so(irot), & irot=13,nclass) WRITE(stdout,'(7x,12(a5,1x))') (name_class_so1(irot), & irot=13,nclass) DO iclass=1,nrap WRITE(stdout,'(a5,12f6.2)') name_rap_so(iclass), & (REAL(char_mat_so(iclass,irot)), irot=13,nclass) END DO END IF idx=code_group IF (noncolin.and.domag) idx=code_group_is IF (is_complex_so(idx)) THEN WRITE(stdout,'(/,5x,"imaginary part")') WRITE(stdout,'(/,7x,12(a5,1x))') (name_class_so(irot), & irot=1,MIN(12,nclass)) WRITE(stdout,'(7x,12(a5,1x))') (name_class_so1(irot), & irot=1,MIN(12,nclass)) DO iclass=1,nrap WRITE(stdout,'(a5,12f6.2)') name_rap_so(iclass), & (AIMAG(char_mat_so(iclass,irot)),irot=1, MIN(nclass,12)) END DO IF (nclass > 12 ) THEN WRITE(stdout,'(/,7x,12(a5,1x))') (name_class_so(irot), & irot=13,nclass) WRITE(stdout,'(7x,12(a5,1x))') (name_class_so1(irot), & irot=13,nclass) DO iclass=1,nrap WRITE(stdout,'(a5,12f6.2)') name_rap_so(iclass), & (AIMAG(char_mat_so(iclass,irot)),irot=13, nclass) END DO END IF END IF IF (flag) THEN WRITE(stdout,'(/5x, "the symmetry operations in each class:")') DO iclass=1,nclass WRITE(stdout,'(5x,2a5,12i5)') & name_class_so(which_irr_so(iclass)), & name_class_so1(which_irr_so(iclass)), & (elem_so(i,iclass)*has_e(i,iclass), i=1,nelem_so(iclass)) ENDDO ENDIF ELSE WRITE(stdout,'(/,7x,12(a5,1x))') (name_class(irot),irot=1,nclass) DO iclass=1,nclass WRITE(stdout,'(a5,12f6.2)') name_rap(iclass), & (REAL(char_mat(iclass,irot)),irot=1,nclass) ENDDO idx=code_group IF (noncolin.and.domag) idx=code_group_is IF (is_complex(idx)) THEN WRITE(stdout,'(5x,"imaginary part")') DO iclass=1,nclass WRITE(stdout,'(a5,12f6.2)') name_rap(iclass), & (AIMAG(char_mat(iclass,irot)),irot=1,nclass) ENDDO ENDIF IF (flag) THEN WRITE(stdout,'(/5x, "the symmetry operations in each class:")') DO iclass=1,nclass WRITE(stdout,'(5x,a5,12i5)') name_class(which_irr(iclass)), & (elem(i,iclass), i=1,nelem(iclass)) ENDDO END IF END IF RETURN END SUBROUTINE write_group_info !--------------------------------------------------------------------------- SUBROUTINE find_u(s,u) !--------------------------------------------------------------------------- ! ! This subroutine receives as input a 3x3 rotation matrix s, and gives ! as output the matrix u which represents the same rotation in the spin ! space. Only one of the two u matrices is given. See below for the ! definition of the sign. ! USE kinds, ONLY : DP USE constants, ONLY : pi IMPLICIT NONE REAL(DP) :: s(3,3) COMPLEX(DP) :: u(2,2) REAL(DP), PARAMETER :: eps=1.d-8 REAL(DP) :: det, saux(3,3), ax(3), angle, cosa, sina, angle_rot ! ! For consistency check uncomment here ! !COMPLEX(DP) :: a, as, b, bs !REAL(DP) :: r(3,3), r1(3,3), diff det = s(1,1) * ( s(2,2) * s(3,3) - s(3,2) * s(2,3) )- & s(1,2) * ( s(2,1) * s(3,3) - s(3,1) * s(2,3) )+ & s(1,3) * ( s(2,1) * s(3,2) - s(3,1) * s(2,2) ) ! ! inversion has no effect in spin space, so improper rotations are ! multiplied by inversion ! IF (ABS(det+1.d0) < eps) THEN saux=-s ELSE saux=s ENDIF ! ! Check for identity or inversion ! IF ((ABS(saux(1,1)-1.d0) < eps).AND. & (ABS(saux(2,2)-1.d0) < eps).AND. & (ABS(saux(3,3)-1.d0) < eps).AND. & (ABS(saux(1,2)) < eps).AND.(ABS(saux(2,1)) < eps) & .AND.(ABS(saux(2,3)) < eps).AND. & (ABS(saux(3,2)) < eps).AND.(ABS(saux(1,3)) < eps) & .AND.(ABS(saux(3,1)) < eps)) THEN u(1,1)=(1.d0,0.d0) u(1,2)=(0.d0,0.d0) u(2,1)=(0.d0,0.d0) u(2,2)=(1.d0,0.d0) RETURN ENDIF ! ! Find the rotation axis and the rotation angle ! CALL versor(saux,ax) angle=angle_rot(saux) !write(6,'(3f12.5,5x,f12.5)') ax(1), ax(2), ax(3), angle angle=0.5d0*angle*pi/180.d0 cosa=COS(angle) sina=SIN(angle) !write(6,'(2f12.5)') cosa, sina ! ! set the spin space rotation matrix elements ! u(1,1)=CMPLX(cosa,-ax(3)*sina,kind=DP) u(1,2)=CMPLX(-ax(2)*sina, -ax(1)*sina,kind=DP) u(2,1)=-CONJG(u(1,2)) u(2,2)=CONJG(u(1,1)) ! ! To each 3x3 rotation one can associate two 2x2 rotation matrices in spin ! space. This function returns the U matrix with positive cosa term ! IF (cosa < -eps ) u=-u IF (ABS(cosa) < eps) THEN ! ! Special case when cosa=0. For this rotation we must take the negative sign. ! IF (ax(1)*ax(3) < -eps) u=-u ENDIF ! ! Here compute the 3x3 rotation matrix starting form the axis, angle ! or from the rotation in spin space for consistency check. ! !angle=angle*2.d0 !cosa=COS(angle) !sina=SIN(angle) !r1(1,1)=1.d0+(1.d0-cosa)*(ax(1)**2-1) !r1(1,2)=-ax(3)*sina+(1.d0-cosa)*ax(1)*ax(2) !r1(1,3)=ax(2)*sina+(1.d0-cosa)*ax(1)*ax(3) !r1(2,1)=ax(3)*sina+(1.d0-cosa)*ax(1)*ax(2) !r1(2,2)=1.d0+(1.d0-cosa)*(ax(2)**2-1) !r1(2,3)=-ax(1)*sina+(1.d0-cosa)*ax(2)*ax(3) !r1(3,1)=-ax(2)*sina+(1.d0-cosa)*ax(1)*ax(3) !r1(3,2)=ax(1)*sina+(1.d0-cosa)*ax(2)*ax(3) !r1(3,3)=1.d0+(1.d0-cosa)*(ax(3)**2-1) !a=u(1,1) !as=u(2,2) !b=u(1,2) !bs=-u(2,1) !r(1,1)=0.5d0*(a**2+as**2-b**2-bs**2) !r(1,2)=0.5d0*(0.d0,1.d0)*(as**2+bs**2-a**2-b**2) !r(1,3)=-(a*b+as*bs) !r(2,1)=-0.5d0*(0.d0,1.d0)*(as**2-a**2+b**2-bs**2) !r(2,2)=0.5d0*(a**2+b**2+as**2+bs**2) !r(2,3)=(0.d0,1.d0)*(as*bs-a*b) !r(3,1)=(bs*a+as*b) !r(3,2)=(0.d0,1.d0)*(as*b-bs*a) !r(3,3)=(a*as-b*bs) !diff=ABS(r(1,1)-saux(1,1))+ & ! ABS(r(1,2)-saux(1,2))+ & ! ABS(r(1,3)-saux(1,3))+ & ! ABS(r(2,1)-saux(2,1))+ & ! ABS(r(2,2)-saux(2,2))+ & ! ABS(r(2,3)-saux(2,3))+ & ! ABS(r(3,1)-saux(3,1))+ & ! ABS(r(3,2)-saux(3,2))+ & ! ABS(r(3,3)-saux(3,3)) !write(6,*) diff !write(6,'(3f15.5)') r1(1,1),r1(1,2),r1(1,3) !write(6,'(3f15.5)') r1(2,1),r1(2,2),r1(2,3) !write(6,'(3f15.5)') r1(3,1),r1(3,2),r1(3,3) !write(6,*) !write(6,'(3f15.5)') r(1,1),r(1,2),r(1,3) !write(6,'(3f15.5)') r(2,1),r(2,2),r(2,3) !write(6,'(3f15.5)') r(3,1),r(3,2),r(3,3) !write(6,*) !write(6,'(4f15.5)') u(1,1),u(1,2) !write(6,'(4f15.5)') u(2,1),u(2,2) ! RETURN END SUBROUTINE find_u !----------------------------------------------------------------------------- FUNCTION set_e(hase,ind) !----------------------------------------------------------------------------- IMPLICIT NONE INTEGER :: set_e, hase, ind IF (hase==-1) THEN set_e=ind+1 ELSE set_e=ind ENDIF RETURN END FUNCTION set_e !----------------------------------------------------------------------------- SUBROUTINE check_tgroup(nsym,a,b) !----------------------------------------------------------------------------- ! ! This subroutine receives a set of 2x2 and 3x3 rotation matrices and ! checks if they are a group. ! USE kinds, ONLY : DP IMPLICIT NONE COMPLEX(DP) :: a(2,2,48), c(2,2), a1(2,2), a2(2,2), a3(2,2) REAL(DP) :: b(3,3,48), d(3,3), b1(3,3), b2(3,3), b3(3,3) INTEGER :: nsym, done LOGICAL :: compare_mat_so INTEGER :: i, j, k DO i=1,nsym a1(:,:)=a(:,:,i) b1(:,:)=b(:,:,i) DO j=1,nsym a2(:,:)=a(:,:,j) b2(:,:)=b(:,:,j) c=MATMUL(a1,a2) d=MATMUL(b1,b2) done=0 do k=1,nsym a3(:,:)=a(:,:,k) b3(:,:)=b(:,:,k) IF (compare_mat_so(d,c,b3,a3)) THEN done=done+1 ENDIF ENDDO IF (done.ne.1) write(6,*) 'problem, i,j',i,j END DO END DO RETURN END SUBROUTINE check_tgroup espresso-5.1/PW/src/paw_symmetry.f900000644000175000017500000012035212341373025015502 0ustar mbamba! ! Copyright (C) 2007-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE paw_symmetry ! USE kinds, ONLY : DP USE mp_images, ONLY : nproc_image, me_image, intra_image_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! entry points: PUBLIC :: PAW_symmetrize ! symmetrize becsums PUBLIC :: PAW_symmetrize_ddd ! symmetrize the D coeffiecients PUBLIC :: PAW_desymmetrize! symmetrize dbecsums for electric field PUBLIC :: PAW_dusymmetrize! symmetrize dbecsums for phonon modes PUBLIC :: PAW_dumqsymmetrize! symmetrize dbecsums for phonon modes ! with respect to minus_q ! PRIVATE CONTAINS SUBROUTINE PAW_symmetrize(becsum) USE lsda_mod, ONLY : nspin USE cell_base, ONLY : at, bg USE noncollin_module, ONLY : nspin_mag, nspin_lsda USE spin_orb, ONLY : domag USE uspp_param, ONLY : nhm USE ions_base, ONLY : nat, ityp USE symm_base, ONLY : nsym, irt, d1, d2, d3, t_rev, sname, s, & invs, inverse_s USE uspp, ONLY : nhtolm,nhtol,ijtoh USE uspp_param, ONLY : nh, upf USE io_global, ONLY : stdout, ionode REAL(DP), INTENT(INOUT) :: becsum(nhm*(nhm+1)/2,nat,nspin)! cross band occupations REAL(DP) :: becsym(nhm*(nhm+1)/2,nat,nspin)! symmetrized becsum REAL(DP) :: pref, usym, segno REAL(DP) :: mb(3) INTEGER :: ia,mykey,ia_s,ia_e ! atoms counters and indexes INTEGER :: is, nt ! counters on spin, atom-type INTEGER :: ma ! atom symmetric to na INTEGER :: ih,jh, ijh ! counters for augmentation channels INTEGER :: lm_i, lm_j, &! angular momentums of non-symmetrized becsum l_i, l_j, m_i, m_j INTEGER :: m_o, m_u ! counters for sums on m INTEGER :: oh, uh, ouh ! auxiliary indexes corresponding to m_o and m_u INTEGER :: isym ! counter for symmetry operation INTEGER :: ipol, kpol INTEGER :: table(48, 48) ! The following mess is necessary because the symmetrization operation ! in LDA+U code is simpler than in PAW, so the required quantities are ! represented in a simple but not general way. ! I will fix this when everything works. REAL(DP), TARGET :: d0(1,1,48) TYPE symmetrization_tensor REAL(DP),POINTER :: d(:,:,:) END TYPE symmetrization_tensor TYPE(symmetrization_tensor) :: D(0:3) IF( nsym==1 ) RETURN d0(1,1,:) = 1._dp D(0)%d => d0 ! d0(1,1,48) D(1)%d => d1 ! d1(3,3,48) D(2)%d => d2 ! d2(5,5,48) D(3)%d => d3 ! d3(7,7,48) ! => lm = l**2 + m ! => ih = lm + (l+proj)**2 <-- if the projector index starts from zero! ! = lm + proj**2 + 2*l*proj ! = m + l**2 + proj**2 + 2*l*proj ! ^^^ ! Known ih and m_i I can compute the index oh of a different m = m_o but ! the same augmentation channel (l_i = l_o, proj_i = proj_o): ! oh = ih - m_i + m_o ! this expression should be general inside pwscf. !#define __DEBUG_PAW_SYM CALL start_clock('PAW_symme') becsym(:,:,:) = 0._dp usym = 1._dp / DBLE(nsym) ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) DO is = 1, nspin_lsda ! atoms: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsym ma = irt(isym,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp * usym ELSE pref = usym ENDIF ! becsym(ijh, ia, is) = becsym(ijh, ia, is) & + D(l_i)%d(m_o,m_i, isym) * D(l_j)%d(m_u,m_j, isym) & * pref * becsum(ouh, ma, is) ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,is) = .5_dp * becsym(ijh,ia,is) ENDDO ! ih ENDDO ! jh ENDDO atoms ! nat ENDDO ! nspin IF (nspin==4.and.domag) THEN ! call inverse_s( ) becsym(:,:,2:4) = 0._dp DO ia = 1, nat nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in the basis of the crystal ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,3 mb(ipol)=becsum(ijh,ia,ipol+1) ENDDO DO ipol=1,3 becsum(ijh,ia,ipol+1)=bg(1,ipol)*mb(1)+bg(2,ipol)*mb(2) + & bg(3,ipol)*mb(3) END DO END DO END DO atoms_1: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsym ma = irt(isym,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp * usym ELSE pref = usym ENDIF ! segno=1.0_DP IF (sname(isym)(1:3)=='inv') segno=-segno IF (t_rev(isym)==1) segno=-segno DO is=1,3 DO kpol=1,3 becsym(ijh, ia, is+1) = becsym(ijh, ia, is+1) & + D(l_i)%d(m_o,m_i, isym) * D(l_j)%d(m_u,m_j, isym) & * pref * becsum(ouh, ma, kpol+1)*& s(kpol,is,invs(isym))* & segno ENDDO ENDDO ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,2:4) = .5_dp * becsym(ijh,ia,2:4) ENDDO ! ih ENDDO ! jh ENDDO atoms_1 ! nat DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in cartesian basis ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,3 mb(ipol)=becsym(ijh,ia,ipol+1) ENDDO DO ipol=1,3 becsym(ijh,ia,ipol+1)=at(ipol,1)*mb(1)+at(ipol,2)*mb(2) + & at(ipol,3)*mb(3) END DO END DO END DO END IF #ifdef __MPI IF( mykey /= 0 ) becsym = 0.0_dp CALL mp_sum(becsym, intra_image_comm) #endif #ifdef __DEBUG_PAW_SYM write(stdout,*) "------------" if(ionode) then ia = 1 nt = ityp(ia) DO is = 1, nspin write(*,*) is DO ih = 1, nh(nt) DO jh = 1, nh(nt) ijh = ijtoh(ih,jh,nt) write(stdout,"(1f10.3)", advance='no') becsym(ijh,ia,is) ENDDO write(stdout,*) ENDDO write(stdout,*) ENDDO endif write(stdout,*) "------------" #endif ! Apply symmetrization: becsum(:,:,:) = becsym(:,:,:) CALL stop_clock('PAW_symme') END SUBROUTINE PAW_symmetrize SUBROUTINE PAW_symmetrize_ddd(ddd) USE lsda_mod, ONLY : nspin USE cell_base, ONLY : at, bg USE noncollin_module, ONLY : nspin_mag, nspin_lsda USE spin_orb, ONLY : domag USE uspp_param, ONLY : nhm USE ions_base, ONLY : nat, ityp USE symm_base, ONLY : nsym, irt, d1, d2, d3, t_rev, sname, s, & invs, inverse_s USE uspp, ONLY : nhtolm,nhtol,ijtoh USE uspp_param, ONLY : nh, upf USE io_global, ONLY : stdout, ionode REAL(DP), INTENT(INOUT) :: ddd(nhm*(nhm+1)/2,nat,nspin)! cross band occupations REAL(DP) :: dddsym(nhm*(nhm+1)/2,nat,nspin)! symmetrized becsum REAL(DP) :: usym, segno REAL(DP) :: mb(3) INTEGER :: ia,mykey,ia_s,ia_e ! atoms counters and indexes INTEGER :: is, nt ! counters on spin, atom-type INTEGER :: ma ! atom symmetric to na INTEGER :: ih,jh, ijh ! counters for augmentation channels INTEGER :: lm_i, lm_j, &! angular momentums of non-symmetrized becsum l_i, l_j, m_i, m_j INTEGER :: m_o, m_u ! counters for sums on m INTEGER :: oh, uh, ouh ! auxiliary indexes corresponding to m_o and m_u INTEGER :: isym ! counter for symmetry operation INTEGER :: ipol, kpol INTEGER :: table(48, 48) ! The following mess is necessary because the symmetrization operation ! in LDA+U code is simpler than in PAW, so the required quantities are ! represented in a simple but not general way. ! I will fix this when everything works. REAL(DP), TARGET :: d0(1,1,48) TYPE symmetrization_tensor REAL(DP),POINTER :: d(:,:,:) END TYPE symmetrization_tensor TYPE(symmetrization_tensor) :: D(0:3) IF( nsym==1 ) RETURN d0(1,1,:) = 1._dp D(0)%d => d0 ! d0(1,1,48) D(1)%d => d1 ! d1(3,3,48) D(2)%d => d2 ! d2(5,5,48) D(3)%d => d3 ! d3(7,7,48) ! => lm = l**2 + m ! => ih = lm + (l+proj)**2 <-- if the projector index starts from zero! ! = lm + proj**2 + 2*l*proj ! = m + l**2 + proj**2 + 2*l*proj ! ^^^ ! Known ih and m_i I can compute the index oh of a different m = m_o but ! the same augmentation channel (l_i = l_o, proj_i = proj_o): ! oh = ih - m_i + m_o ! this expression should be general inside pwscf. !#define __DEBUG_PAW_SYM CALL start_clock('PAW_symme') dddsym(:,:,:) = 0._dp usym = 1._dp / DBLE(nsym) ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) DO is = 1, nspin_lsda ! atoms: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsym ma = irt(isym,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! dddsym(ijh, ia, is) = dddsym(ijh, ia, is) & + D(l_i)%d(m_o,m_i, isym) * D(l_j)%d(m_u,m_j, isym) & * usym * ddd(ouh, ma, is) ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ENDDO ! ih ENDDO ! jh ENDDO atoms ! nat ENDDO ! nspin IF (nspin==4.and.domag) THEN ! call inverse_s( ) dddsym(:,:,2:4) = 0._dp DO ia = 1, nat nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in the basis of the crystal ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,3 mb(ipol)=ddd(ijh,ia,ipol+1) ENDDO DO ipol=1,3 ddd(ijh,ia,ipol+1)=bg(1,ipol)*mb(1)+bg(2,ipol)*mb(2) + & bg(3,ipol)*mb(3) END DO END DO END DO atoms_1: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsym ma = irt(isym,ia) segno=1.0_DP IF (sname(invs(isym))(1:3)=='inv') segno=-segno IF (t_rev(invs(isym))==1) segno=-segno DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! DO is=1,3 DO kpol=1,3 dddsym(ijh, ia, is+1) = dddsym(ijh, ia, is+1) & + D(l_i)%d(m_o,m_i, isym) * D(l_j)%d(m_u,m_j, isym) & * usym * ddd(ouh, ma, kpol+1)*& s(kpol,is,invs(isym))*segno ENDDO ENDDO ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ENDDO ! ih ENDDO ! jh ENDDO atoms_1 ! nat DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in cartesian basis ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,3 mb(ipol)=dddsym(ijh,ia,ipol+1) ENDDO DO ipol=1,3 dddsym(ijh,ia,ipol+1)=at(ipol,1)*mb(1)+at(ipol,2)*mb(2) + & at(ipol,3)*mb(3) END DO END DO END DO END IF #ifdef __MPI IF( mykey /= 0 ) dddsym = 0.0_dp CALL mp_sum(dddsym, intra_image_comm) #endif #ifdef __DEBUG_PAW_SYM write(stdout,*) "------------" if(ionode) then ia = 1 nt = ityp(ia) DO is = 1, nspin write(*,*) is DO ih = 1, nh(nt) DO jh = 1, nh(nt) ijh = ijtoh(ih,jh,nt) write(stdout,"(1f10.3)", advance='no') dddsym(ijh,ia,is) ENDDO write(stdout,*) ENDDO write(stdout,*) ENDDO endif write(stdout,*) "------------" #endif ! Apply symmetrization: ddd(:,:,:) = dddsym(:,:,:) CALL stop_clock('PAW_symme') END SUBROUTINE PAW_symmetrize_ddd SUBROUTINE PAW_desymmetrize(dbecsum) ! ! This routine similar to PAW_symmetrize, symmetrize the change of ! dbecsum due to an electric field perturbation. ! USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nhm USE ions_base, ONLY : nat, ityp USE noncollin_module, ONLY : nspin_lsda, nspin_mag USE cell_base, ONLY : at, bg USE spin_orb, ONLY : domag USE symm_base, ONLY : nsym, irt, d1, d2, d3, s, t_rev, sname, & invs, inverse_s USE uspp, ONLY : nhtolm,nhtol,ijtoh USE uspp_param, ONLY : nh, upf USE io_global, ONLY : stdout, ionode COMPLEX(DP), INTENT(INOUT) :: dbecsum(nhm*(nhm+1)/2,nat,nspin_mag,3)! cross band occupations COMPLEX(DP) :: becsym(nhm*(nhm+1)/2,nat,nspin_mag,3)! symmetrized becsum COMPLEX(DP) :: mb(3) REAL(DP) :: pref, usym, segno INTEGER :: ia, mykey,ia_s,ia_e ! atoms counters and indexes INTEGER :: is, nt ! counters on spin, atom-type INTEGER :: ma ! atom symmetric to na INTEGER :: ih,jh, ijh ! counters for augmentation channels INTEGER :: lm_i, lm_j, &! angular momentums of non-symmetrized becsum l_i, l_j, m_i, m_j INTEGER :: m_o, m_u ! counters for sums on m INTEGER :: oh, uh, ouh ! auxiliary indexes corresponding to m_o and m_u INTEGER :: isym ! counter for symmetry operation INTEGER :: ipol, jpol, kpol INTEGER :: table(48, 48) ! The following mess is necessary because the symmetrization operation ! in LDA+U code is simpler than in PAW, so the required quantities are ! represented in a simple but not general way. ! I will fix this when everything works. REAL(DP), TARGET :: d0(1,1,48) TYPE symmetrization_tensor REAL(DP),POINTER :: d(:,:,:) END TYPE symmetrization_tensor TYPE(symmetrization_tensor) :: D(0:3) IF( nsym == 1 ) RETURN d0(1,1,:) = 1._dp D(0)%d => d0 ! d0(1,1,48) D(1)%d => d1 ! d1(3,3,48) D(2)%d => d2 ! d2(5,5,48) D(3)%d => d3 ! d3(7,7,48) ! => lm = l**2 + m ! => ih = lm + (l+proj)**2 <-- if the projector index starts from zero! ! = lm + proj**2 + 2*l*proj ! = m + l**2 + proj**2 + 2*l*proj ! ^^^ ! Known ih and m_i I can compute the index oh of a different m = m_o but ! the same augmentation channel (l_i = l_o, proj_i = proj_o): ! oh = ih - m_i + m_o ! this expression should be general inside pwscf. !#define __DEBUG_PAW_SYM CALL start_clock('PAW_dsymme') becsym(:,:,:,:) = (0.0_DP,0.0_DP) usym = 1._dp / DBLE(nsym) ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) DO is = 1, nspin_lsda ! atoms: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsym ma = irt(isym,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp * usym ELSE pref = usym ENDIF ! DO ipol=1,3 DO jpol=1,3 becsym(ijh, ia, is, ipol) = becsym(ijh, ia, is,ipol) & + D(l_i)%d(m_o,m_i, isym) * D(l_j)%d(m_u,m_j, isym) & * pref * dbecsum(ouh, ma, is, jpol) * s(ipol,jpol,isym) ENDDO ENDDO ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,is,:) = .5_dp * becsym(ijh,ia,is,:) ENDDO ! ih ENDDO ! jh ENDDO atoms ! nat ENDDO ! nspin IF (nspin==4.and.domag) THEN ! ! call inverse_s ( ) becsym(:,:,2:4,1:3) = 0._dp DO ia = 1, nat nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in the basis of the crystal ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,3 DO jpol=1,3 mb(jpol)=dbecsum(ijh,ia,jpol+1,ipol) ENDDO DO jpol=1,3 dbecsum(ijh,ia,jpol+1,ipol)=bg(1,jpol)*mb(1) + & bg(2,jpol)*mb(2) + bg(3,jpol)*mb(3) ENDDO ENDDO ENDDO ENDDO DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsym ma = irt(isym,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp * usym ELSE pref = usym ENDIF segno=1.0_DP IF (sname(isym)(1:3)=='inv') segno=-segno IF (t_rev(isym)==1) segno=-segno ! DO ipol=1,3 DO jpol=1,3 DO is=1,3 DO kpol=1,3 becsym(ijh,ia,is+1,ipol)=becsym(ijh,ia,is+1,ipol) & + D(l_i)%d(m_o,m_i,isym)*D(l_j)%d(m_u,m_j,isym)* & pref*dbecsum(ouh,ma,kpol+1,jpol)*s(ipol,jpol,isym)*& segno*s(kpol,is,invs(isym)) END DO END DO END DO END DO END DO ! m_o END DO ! m_u END DO ! isym ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,is,:) = .5_dp * becsym(ijh,ia,is,:) ENDDO ! ih ENDDO ! jh ENDDO ! nat ! DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in cartesian basis ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,3 DO jpol=1,3 mb(jpol)=becsym(ijh,ia,jpol+1,ipol) ENDDO DO jpol=1,3 becsym(ijh,ia,jpol+1,ipol)=at(jpol,1)*mb(1)+at(jpol,2)*mb(2)+& at(jpol,3)*mb(3) END DO END DO END DO END DO ENDIF #ifdef __MPI IF( mykey /= 0 ) becsym = 0.0_dp CALL mp_sum(becsym, intra_image_comm) #endif #ifdef __DEBUG_PAW_SYM write(stdout,*) "------------" if(ionode) then ia = 1 nt = ityp(ia) DO is = 1, nspin_mag write(*,*) is DO ih = 1, nh(nt) DO jh = 1, nh(nt) ijh = ijtoh(ih,jh,nt) DO ipol=1,3 write(stdout,"(1f10.3)", advance='no') becsym(ijh,ia,is,ipol) ENDDO ENDDO write(stdout,*) ENDDO write(stdout,*) ENDDO endif write(stdout,*) "------------" #endif ! Apply symmetrization: dbecsum(:,:,:,:) = becsym(:,:,:,:) CALL stop_clock('PAW_dsymme') END SUBROUTINE PAW_desymmetrize SUBROUTINE PAW_dusymmetrize(dbecsum,npe,irr,npertx,nsymq,rtau,xq,t) ! ! This routine similar to PAW_symmetrize, symmetrize the change of ! dbecsum due to an electric field perturbation. ! USE noncollin_module, ONLY : nspin_mag, nspin_lsda USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nhm USE ions_base, ONLY : nat, ityp USE cell_base, ONLY : at, bg USE symm_base, ONLY : irt, d1, d2, d3, t_rev, sname, s, nsym, & invs, inverse_s USE spin_orb, ONLY : domag USE constants, ONLY : tpi USE uspp, ONLY : nhtolm,nhtol,ijtoh USE uspp_param, ONLY : nh, upf USE io_global, ONLY : stdout, ionode COMPLEX(DP), INTENT(INOUT) :: dbecsum(nhm*(nhm+1)/2,nat,nspin_mag,npe)! cross band occupations COMPLEX(DP) :: becsym(nhm*(nhm+1)/2,nat,nspin_mag,npe)! symmetrized becsum REAL(DP) :: pref, usym INTEGER, INTENT(IN) :: npe, irr, npertx, nsymq REAL(DP), INTENT(IN) :: rtau(3,48,nat), xq(3) COMPLEX(DP), INTENT(IN) :: t(npertx, npertx, 48, 3*nat) INTEGER :: ia, mykey,ia_s,ia_e ! atoms counters and indexes INTEGER :: is, nt ! counters on spin, atom-type INTEGER :: ma ! atom symmetric to na INTEGER :: ih,jh, ijh ! counters for augmentation channels INTEGER :: lm_i, lm_j, &! angular momentums of non-symmetrized becsum l_i, l_j, m_i, m_j INTEGER :: m_o, m_u ! counters for sums on m INTEGER :: oh, uh, ouh ! auxiliary indexes corresponding to m_o and m_u INTEGER :: isym, irot ! counter for symmetry operation INTEGER :: ipol, jpol COMPLEX(DP) :: fase(48,nat), mb(3) REAL(DP) :: arg, ft(3), segno INTEGER :: kpol INTEGER :: table(48, 48) ! The following mess is necessary because the symmetrization operation ! in LDA+U code is simpler than in PAW, so the required quantities are ! represented in a simple but not general way. ! I will fix this when everything works. REAL(DP), TARGET :: d0(1,1,48) TYPE symmetrization_tensor REAL(DP),POINTER :: d(:,:,:) END TYPE symmetrization_tensor TYPE(symmetrization_tensor) :: D(0:3) IF( nsymq==1 ) RETURN d0(1,1,:) = 1._dp D(0)%d => d0 ! d0(1,1,48) D(1)%d => d1 ! d1(3,3,48) D(2)%d => d2 ! d2(5,5,48) D(3)%d => d3 ! d3(7,7,48) ! => lm = l**2 + m ! => ih = lm + (l+proj)**2 <-- if the projector index starts from zero! ! = lm + proj**2 + 2*l*proj ! = m + l**2 + proj**2 + 2*l*proj ! ^^^ ! Known ih and m_i I can compute the index oh of a different m = m_o but ! the same augmentation channel (l_i = l_o, proj_i = proj_o): ! oh = ih - m_i + m_o ! this expression should be general inside pwscf. !#define __DEBUG_PAW_SYM CALL start_clock('PAW_dusymm') becsym(:,:,:,:) = (0.0_DP,0.0_DP) usym = 1._dp / DBLE(nsymq) do ia=1,nat do isym=1,nsymq irot = isym arg = 0.0_DP do ipol = 1, 3 arg = arg + xq (ipol) * rtau(ipol,irot,ia) enddo arg = arg * tpi fase(irot,ia) = CMPLX(cos (arg), sin (arg) ,kind=DP) enddo enddo ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) DO is = 1, nspin_lsda ! atoms: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsymq irot = isym ma = irt(irot,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp * usym ELSE pref = usym ENDIF ! DO ipol=1,npe DO jpol=1,npe becsym(ijh, ia, is, ipol) = becsym(ijh, ia, is,ipol) & + D(l_i)%d(m_o,m_i, irot) * D(l_j)%d(m_u,m_j, irot) & * pref * dbecsum(ouh, ma, is, jpol) * & t(jpol,ipol,irot,irr) * fase(irot,ia) ENDDO ENDDO ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,is,:) = .5_dp * becsym(ijh,ia,is,:) ENDDO ! ih ENDDO ! jh ENDDO atoms ! nat ENDDO ! nspin IF (nspin==4.and.domag) THEN ! call inverse_s () ! becsym(:,:,2:4,1:npe) = 0._dp DO ia = 1, nat nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in the basis of the crystal ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,npe DO jpol=1,3 mb(jpol)=dbecsum(ijh,ia,jpol+1,ipol) END DO DO jpol=1,3 dbecsum(ijh,ia,jpol+1,ipol)=bg(1,jpol)*mb(1) + & bg(2,jpol)*mb(2) + bg(3,jpol)*mb(3) END DO END DO END DO END DO DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! DO isym = 1,nsymq irot = isym ma = irt(irot,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp * usym ELSE pref = usym ENDIF ! segno=1.0_DP IF (sname(isym)(1:3)=='inv') segno=-segno IF (t_rev(isym)==1) segno=-segno DO ipol=1,npe DO jpol=1,npe DO is=1, 3 DO kpol=1,3 becsym(ijh,ia,is+1,ipol)=becsym(ijh,ia,is+1,ipol) & + D(l_i)%d(m_o,m_i,irot)*D(l_j)%d(m_u,m_j,irot)* & pref*dbecsum(ouh,ma,kpol+1,jpol)* & t(jpol,ipol,irot,irr)*fase(irot,ia)* & segno*s(kpol,is,invs(isym)) ENDDO ENDDO ENDDO ENDDO ENDDO ! m_o ENDDO ! m_u ENDDO ! isym ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,is,:) = .5_dp * becsym(ijh,ia,is,:) ENDDO ! ih ENDDO ! jh ENDDO ! nat DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! ! Bring the magnetization in cartesian basis ! DO ijh=1,(nh(nt)*(nh(nt)+1))/2 DO ipol=1,npe DO jpol=1,3 mb(jpol)=becsym(ijh,ia,jpol+1,ipol) ENDDO DO jpol=1,3 becsym(ijh,ia,jpol+1,ipol)=at(jpol,1)*mb(1)+at(jpol,2)*mb(2)+& at(jpol,3)*mb(3) END DO END DO END DO END DO END IF #ifdef __MPI IF( mykey /= 0 ) becsym = 0.0_dp CALL mp_sum(becsym, intra_image_comm) #endif #ifdef __DEBUG_PAW_SYM write(stdout,*) "------------" if(ionode) then ia = 1 nt = ityp(ia) DO is = 1, nspin_lsda write(*,*) is DO ih = 1, nh(nt) DO jh = 1, nh(nt) ijh = ijtoh(ih,jh,nt) DO ipol=1,npe write(stdout,"(1f10.3)", advance='no') becsym(ijh,ia,is,ipol) ENDDO ENDDO write(stdout,*) ENDDO write(stdout,*) ENDDO endif write(stdout,*) "------------" #endif ! Apply symmetrization: dbecsum(:,:,:,:) = becsym(:,:,:,:) CALL stop_clock('PAW_dusymm') END SUBROUTINE PAW_dusymmetrize SUBROUTINE PAW_dumqsymmetrize(dbecsum,npe,irr,npertx,isymq,rtau,xq,tmq) ! ! This routine similar to PAW_symmetrize, symmetrize the change of ! dbecsum due to an electric field perturbation. ! USE noncollin_module, ONLY : nspin_lsda, nspin_mag USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nhm USE ions_base, ONLY : nat, ityp USE constants, ONLY : tpi USE symm_base, ONLY : nsym, irt, d1, d2, d3 USE uspp, ONLY : nhtolm,nhtol,ijtoh USE uspp_param, ONLY : nh, upf USE io_global, ONLY : stdout, ionode COMPLEX(DP), INTENT(INOUT) :: dbecsum(nhm*(nhm+1)/2,nat,nspin_mag,npe)! cross band occupations COMPLEX(DP) :: becsym(nhm*(nhm+1)/2,nat,nspin_mag,npe)! symmetrized becsum REAL(DP), INTENT(IN) :: rtau(3,48,nat), xq(3) REAL(DP) :: pref INTEGER, INTENT(IN) :: npe, irr, npertx INTEGER, INTENT(IN) :: isymq ! counter for symmetry operation COMPLEX(DP), INTENT(IN) :: tmq(npertx, npertx, 3*nat) INTEGER :: ia, mykey,ia_s,ia_e ! atoms counters and indexes INTEGER :: is, nt ! counters on spin, atom-type INTEGER :: ma ! atom symmetric to na INTEGER :: ih,jh, ijh ! counters for augmentation channels INTEGER :: lm_i, lm_j, &! angular momentums of non-symmetrized becsum l_i, l_j, m_i, m_j INTEGER :: m_o, m_u ! counters for sums on m INTEGER :: oh, uh, ouh ! auxiliary indexes corresponding to m_o and m_u INTEGER :: ipol, jpol REAL(DP) :: arg COMPLEX(DP) :: fase(nat) ! The following mess is necessary because the symmetrization operation ! in LDA+U code is simpler than in PAW, so the required quantities are ! represented in a simple but not general way. ! I will fix this when everything works. REAL(DP), TARGET :: d0(1,1,48) TYPE symmetrization_tensor REAL(DP),POINTER :: d(:,:,:) END TYPE symmetrization_tensor TYPE(symmetrization_tensor) :: D(0:3) IF (nspin_mag==4) call errore('PAW_dumqsymmetrize',& & 'This should not happen',1) CALL start_clock('PAW_dumqsym') d0(1,1,:) = 1._dp D(0)%d => d0 ! d0(1,1,48) D(1)%d => d1 ! d1(3,3,48) D(2)%d => d2 ! d2(5,5,48) D(3)%d => d3 ! d3(7,7,48) ! => lm = l**2 + m ! => ih = lm + (l+proj)**2 <-- if the projector index starts from zero! ! = lm + proj**2 + 2*l*proj ! = m + l**2 + proj**2 + 2*l*proj ! ^^^ ! Known ih and m_i I can compute the index oh of a different m = m_o but ! the same augmentation channel (l_i = l_o, proj_i = proj_o): ! oh = ih - m_i + m_o ! this expression should be general inside pwscf. !#define __DEBUG_PAW_SYM becsym(:,:,:,:) = (0.0_DP,0.0_DP) do ia=1,nat arg = 0.0_DP do ipol = 1, 3 arg = arg + xq (ipol) * rtau(ipol,isymq,ia) enddo arg = arg * tpi fase(ia) = CMPLX(cos (arg), sin (arg) ,kind=DP) enddo ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) DO is = 1, nspin_lsda ! atoms: DO ia = ia_s, ia_e nt = ityp(ia) ! No need to symmetrize non-PAW atoms IF ( .not. upf(nt)%tpawp ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! note: jh >= ih !ijh = nh(nt)*(ih-1) - ih*(ih-1)/2 + jh ijh = ijtoh(ih,jh,nt) ! lm_i = nhtolm(ih,nt) lm_j = nhtolm(jh,nt) ! l_i = nhtol(ih,nt) l_j = nhtol(jh,nt) ! m_i = lm_i - l_i**2 m_j = lm_j - l_j**2 ! ma = irt(isymq,ia) DO m_o = 1, 2*l_i +1 DO m_u = 1, 2*l_j +1 oh = ih - m_i + m_o uh = jh - m_j + m_u ouh = ijtoh(oh,uh,nt) ! In becsum off-diagonal terms are multiplied by 2, I have ! to neutralize this factor and restore it later IF ( oh == uh ) THEN pref = 2._dp ELSE pref = 1._DP ENDIF ! DO ipol=1,npe DO jpol=1,npe becsym(ijh, ia, is, ipol) = becsym(ijh, ia, is,ipol) & + D(l_i)%d(m_o,m_i, isymq) * D(l_j)%d(m_u,m_j, isymq) & * pref * dbecsum(ouh, ma, is, jpol) * & tmq(jpol,ipol,irr)*fase(ia) ENDDO ENDDO ENDDO ! m_o ENDDO ! m_u ! ! Put the prefactor back in: IF ( ih == jh ) becsym(ijh,ia,is,:) = .5_dp * becsym(ijh,ia,is,:) becsym(ijh, ia, is,:)=(CONJG(becsym(ijh, ia, is, :))+ & dbecsum(ijh, ia, is, :))*0.5_DP ENDDO ! ih ENDDO ! jh ENDDO atoms ! nat ENDDO ! nspin #ifdef __MPI IF( mykey /= 0 ) becsym = 0.0_dp CALL mp_sum(becsym, intra_image_comm) #endif #ifdef __DEBUG_PAW_SYM write(stdout,*) "------------" if(ionode) then ia = 1 nt = ityp(ia) DO is = 1, nspin_mag write(*,*) is DO ih = 1, nh(nt) DO jh = 1, nh(nt) ijh = ijtoh(ih,jh,nt) DO ipol=1,npe write(stdout,"(1f10.3)", advance='no') becsym(ijh,ia,is,ipol) ENDDO ENDDO write(stdout,*) ENDDO write(stdout,*) ENDDO endif write(stdout,*) "------------" #endif ! Apply symmetrization: dbecsum(:,:,:,:) = becsym(:,:,:,:) CALL stop_clock('PAW_dumqsym') END SUBROUTINE PAW_dumqsymmetrize END MODULE paw_symmetry espresso-5.1/PW/src/ccgdiagg.f900000644000175000017500000002447412341373025014502 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! #define ZERO ( 0.D0, 0.D0 ) #define ONE ( 1.D0, 0.D0 ) ! !---------------------------------------------------------------------------- SUBROUTINE ccgdiagg( npwx, npw, nbnd, npol, psi, e, btype, precondition, & ethr, maxter, reorder, notconv, avg_iter ) !---------------------------------------------------------------------------- ! ! ... "poor man" iterative diagonalization of a complex hermitian matrix ! ... through preconditioned conjugate gradient algorithm ! ... Band-by-band algorithm with minimal use of memory ! ... Calls h_1psi and s_1psi to calculate H|psi> and S|psi> ! ... Works for generalized eigenvalue problem (US pseudopotentials) as well ! USE constants, ONLY : pi USE kinds, ONLY : DP USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER, INTENT(IN) :: npwx, npw, nbnd, npol, maxter INTEGER, INTENT(IN) :: btype(nbnd) REAL(DP), INTENT(IN) :: precondition(npwx*npol), ethr COMPLEX(DP), INTENT(INOUT) :: psi(npwx*npol,nbnd) REAL(DP), INTENT(INOUT) :: e(nbnd) INTEGER, INTENT(OUT) :: notconv REAL(DP), INTENT(OUT) :: avg_iter ! ! ... local variables ! INTEGER :: i, j, m, iter, moved COMPLEX(DP), ALLOCATABLE :: hpsi(:), spsi(:), lagrange(:), & g(:), cg(:), scg(:), ppsi(:), g0(:) REAL(DP) :: psi_norm, a0, b0, gg0, gamma, gg, gg1, & cg0, e0, es(2) REAL(DP) :: theta, cost, sint, cos2t, sin2t LOGICAL :: reorder INTEGER :: kdim, kdmx, kdim2 REAL(DP) :: empty_ethr, ethr_m ! ! ... external functions ! REAL (DP), EXTERNAL :: ddot ! ! CALL start_clock( 'ccgdiagg' ) ! empty_ethr = MAX( ( ethr * 5.D0 ), 1.D-5 ) ! IF ( npol == 1 ) THEN ! kdim = npw kdmx = npwx ! ELSE ! kdim = npwx * npol kdmx = npwx * npol ! END IF ! kdim2 = 2 * kdim ! ALLOCATE( spsi( kdmx ) ) ALLOCATE( scg( kdmx ) ) ALLOCATE( hpsi( kdmx ) ) ALLOCATE( g( kdmx ) ) ALLOCATE( cg( kdmx ) ) ALLOCATE( g0( kdmx ) ) ALLOCATE( ppsi( kdmx ) ) ! ALLOCATE( lagrange( nbnd ) ) ! avg_iter = 0.D0 notconv = 0 moved = 0 ! ! ... every eigenfunction is calculated separately ! DO m = 1, nbnd ! IF ( btype(m) == 1 ) THEN ! ethr_m = ethr ! ELSE ! ethr_m = empty_ethr ! END IF ! spsi = ZERO scg = ZERO hpsi = ZERO g = ZERO cg = ZERO g0 = ZERO ppsi = ZERO lagrange = ZERO ! ! ... calculate S|psi> ! CALL s_1psi( npwx, npw, psi(1,m), spsi ) ! ! ... orthogonalize starting eigenfunction to those already calculated ! CALL ZGEMV( 'C', kdim, m, ONE, psi, kdmx, spsi, 1, ZERO, lagrange, 1 ) ! CALL mp_sum( lagrange( 1:m ), intra_bgrp_comm ) ! psi_norm = DBLE( lagrange(m) ) ! DO j = 1, m - 1 ! psi(:,m) = psi(:,m) - lagrange(j) * psi(:,j) ! psi_norm = psi_norm - & ( DBLE( lagrange(j) )**2 + AIMAG( lagrange(j) )**2 ) ! END DO ! psi_norm = SQRT( psi_norm ) ! psi(:,m) = psi(:,m) / psi_norm ! ! ... calculate starting gradient (|hpsi> = H|psi>) ... ! CALL h_1psi( npwx, npw, psi(1,m), hpsi, spsi ) ! ! ... and starting eigenvalue (e = = ) ! ! ... NB: ddot(2*npw,a,1,b,1) = REAL( zdotc(npw,a,1,b,1) ) ! e(m) = ddot( kdim2, psi(1,m), 1, hpsi, 1 ) ! CALL mp_sum( e(m), intra_bgrp_comm ) ! ! ... start iteration for this band ! iterate: DO iter = 1, maxter ! ! ... calculate P (PHP)|y> ! ... ( P = preconditioning matrix, assumed diagonal ) ! g(:) = hpsi(:) / precondition(:) ppsi(:) = spsi(:) / precondition(:) ! ! ... ppsi is now S P(P^2)|y> = S P^2|psi>) ! es(1) = ddot( kdim2, spsi(1), 1, g(1), 1 ) es(2) = ddot( kdim2, spsi(1), 1, ppsi(1), 1 ) ! CALL mp_sum( es , intra_bgrp_comm ) ! es(1) = es(1) / es(2) ! g(:) = g(:) - es(1) * ppsi(:) ! ! ... e1 = / ensures that ! ... = 0 ! ... orthogonalize to lowest eigenfunctions (already calculated) ! ! ... scg is used as workspace ! CALL s_1psi( npwx, npw, g(1), scg(1) ) ! CALL ZGEMV( 'C', kdim, ( m - 1 ), ONE, psi, & kdmx, scg, 1, ZERO, lagrange, 1 ) ! CALL mp_sum( lagrange( 1:m-1 ), intra_bgrp_comm ) ! DO j = 1, ( m - 1 ) ! g(:) = g(:) - lagrange(j) * psi(:,j) scg(:) = scg(:) - lagrange(j) * psi(:,j) ! END DO ! IF ( iter /= 1 ) THEN ! ! ... gg1 is (used in Polak-Ribiere formula) ! gg1 = ddot( kdim2, g(1), 1, g0(1), 1 ) ! CALL mp_sum( gg1, intra_bgrp_comm ) ! END IF ! ! ... gg is ! g0(:) = scg(:) ! g0(:) = g0(:) * precondition(:) ! gg = ddot( kdim2, g(1), 1, g0(1), 1 ) ! CALL mp_sum( gg, intra_bgrp_comm ) ! IF ( iter == 1 ) THEN ! ! ... starting iteration, the conjugate gradient |cg> = |g> ! gg0 = gg ! cg(:) = g(:) ! ELSE ! ! ... |cg(n+1)> = |g(n+1)> + gamma(n) * |cg(n)> ! ! ... Polak-Ribiere formula : ! gamma = ( gg - gg1 ) / gg0 gg0 = gg ! cg(:) = cg(:) * gamma cg(:) = g + cg(:) ! ! ... The following is needed because ! ... is not 0. In fact : ! ... = sin(theta)* ! psi_norm = gamma * cg0 * sint ! cg(:) = cg(:) - psi_norm * psi(:,m) ! END IF ! ! ... |cg> contains now the conjugate gradient ! ! ... |scg> is S|cg> ! CALL h_1psi( npwx, npw, cg(1), ppsi(1), scg(1) ) ! cg0 = ddot( kdim2, cg(1), 1, scg(1), 1 ) ! CALL mp_sum( cg0 , intra_bgrp_comm ) ! cg0 = SQRT( cg0 ) ! ! ... |ppsi> contains now HP|cg> ! ... minimize , where : ! ... |y(t)> = cos(t)|y> + sin(t)/cg0 |cg> ! ... Note that = 1, = 0 , ! ... = cg0^2 ! ... so that the result is correctly normalized : ! ... = 1 ! a0 = 2.D0 * ddot( kdim2, psi(1,m), 1, ppsi(1), 1 ) / cg0 ! CALL mp_sum( a0 , intra_bgrp_comm ) ! b0 = ddot( kdim2, cg(1), 1, ppsi(1), 1 ) / cg0**2 ! CALL mp_sum( b0 , intra_bgrp_comm ) ! e0 = e(m) ! theta = 0.5D0 * ATAN( a0 / ( e0 - b0 ) ) ! cost = COS( theta ) sint = SIN( theta ) ! cos2t = cost*cost - sint*sint sin2t = 2.D0*cost*sint ! es(1) = 0.5D0 * ( ( e0 - b0 ) * cos2t + a0 * sin2t + e0 + b0 ) es(2) = 0.5D0 * ( - ( e0 - b0 ) * cos2t - a0 * sin2t + e0 + b0 ) ! ! ... there are two possible solutions, choose the minimum ! IF ( es(2) < es(1) ) THEN ! theta = theta + 0.5D0 * pi ! cost = COS( theta ) sint = SIN( theta ) ! END IF ! ! ... new estimate of the eigenvalue ! e(m) = MIN( es(1), es(2) ) ! ! ... upgrade |psi> ! psi(:,m) = cost * psi(:,m) + sint / cg0 * cg(:) ! ! ... here one could test convergence on the energy ! IF ( ABS( e(m) - e0 ) < ethr_m ) EXIT iterate ! ! ... upgrade H|psi> and S|psi> ! spsi(:) = cost * spsi(:) + sint / cg0 * scg(:) ! hpsi(:) = cost * hpsi(:) + sint / cg0 * ppsi(:) ! END DO iterate ! IF ( iter >= maxter ) notconv = notconv + 1 ! avg_iter = avg_iter + iter + 1 ! ! ... reorder eigenvalues if they are not in the right order ! ... ( this CAN and WILL happen in not-so-special cases ) ! IF ( m > 1 .AND. reorder ) THEN ! IF ( e(m) - e(m-1) < - 2.D0 * ethr_m ) THEN ! ! ... if the last calculated eigenvalue is not the largest... ! DO i = m - 2, 1, - 1 ! IF ( e(m) - e(i) > 2.D0 * ethr_m ) EXIT ! END DO ! i = i + 1 ! moved = moved + 1 ! ! ... last calculated eigenvalue should be in the ! ... i-th position: reorder ! e0 = e(m) ! ppsi(:) = psi(:,m) ! DO j = m, i + 1, - 1 ! e(j) = e(j-1) ! psi(:,j) = psi(:,j-1) ! END DO ! e(i) = e0 ! psi(:,i) = ppsi(:) ! ! ... this procedure should be good if only a few inversions occur, ! ... extremely inefficient if eigenvectors are often in bad order ! ... ( but this should not happen ) ! END IF ! END IF ! END DO ! avg_iter = avg_iter / DBLE( nbnd ) ! DEALLOCATE( lagrange ) DEALLOCATE( ppsi ) DEALLOCATE( g0 ) DEALLOCATE( cg ) DEALLOCATE( g ) DEALLOCATE( hpsi ) DEALLOCATE( scg ) DEALLOCATE( spsi ) ! CALL stop_clock( 'ccgdiagg' ) ! RETURN ! END SUBROUTINE ccgdiagg espresso-5.1/PW/src/new_occ.f900000644000175000017500000002321612341373025014360 0ustar mbamba! ! Copyright (C) 2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE new_evc() !----------------------------------------------------------------------- ! ! This routine is used only for isolated atoms in combination with ! the flag one_atom_occupations. ! It makes linear combinations of the degenerate bands so ! that they have maximum overlap with the atomic states, and order ! the bands in the same order as the atomic states. ! Weights "wg" must have been set to fixed values (as read in input) ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE constants, ONLY : rytoev USE basis, ONLY : natomwfc, swfcatom USE klist, ONLY : nks, ngk USE lsda_mod, ONLY : lsda, current_spin, nspin, isk USE wvfct, ONLY : nbnd, npw, npwx, igk, wg, et USE control_flags, ONLY : gamma_only, iverbosity USE wavefunctions_module, ONLY : evc USE noncollin_module, ONLY : noncolin, npol USE gvect, ONLY : gstart USE io_files, ONLY : iunigk, nwordwfc, iunwfc, nwordatwfc, iunsat USE buffers, ONLY : get_buffer, save_buffer USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! I/O variables ! INTEGER :: ik, ibnd, jbnd, igroup ! counter on k points ! " " bands ! " " groups of bands REAL(DP), EXTERNAL :: ddot COMPLEX(DP), EXTERNAL :: zdotc COMPLEX(DP), ALLOCATABLE :: proj(:,:), aux(:,:), aux_proj(:,:), a(:,:), v(:,:) REAL(DP) :: max_value, save_value, aux_et, maxproj INTEGER :: select_ibnd, iatwfc, first_available_band, info, nsize, & current_band, ngroups INTEGER, ALLOCATABLE :: ind(:), group_size(:), start_band(:), used_atwfc(:) REAL(DP), ALLOCATABLE :: wband(:) IF (natomwfc > nbnd) THEN WRITE(6,'(5x,"natomwfc=", i5, " nbnd=",i5)') natomwfc, nbnd CALL errore('new_evc','increase nbnd',1) ENDIF ALLOCATE(proj(natomwfc,nbnd)) ALLOCATE(wband(nbnd)) ALLOCATE(group_size(nbnd)) ALLOCATE(start_band(nbnd)) ALLOCATE(used_atwfc(nbnd)) ALLOCATE(ind(nbnd)) ! ! we start a loop over k points ! IF (nks > 1) REWIND (iunigk) DO ik = 1, nks IF (lsda) current_spin = isk(ik) npw = ngk (ik) IF (nks > 1) THEN READ (iunigk) igk CALL get_buffer (evc, nwordwfc, iunwfc, ik) END IF CALL get_buffer (swfcatom, nwordatwfc, iunsat, ik) ! ! make the projection on the atomic wavefunctions, ! DO ibnd = 1, nbnd DO iatwfc = 1, natomwfc IF ( gamma_only ) THEN proj (iatwfc, ibnd) = 2.d0 * & ddot(2*npw, swfcatom (1, iatwfc), 1, evc (1, ibnd), 1) IF (gstart.EQ.2) proj (iatwfc, ibnd) = proj (iatwfc, ibnd) - & swfcatom (1, iatwfc) * evc (1, ibnd) ELSE proj(iatwfc, ibnd) = zdotc(npw,swfcatom(1,iatwfc),1,evc(1,ibnd),1) IF (noncolin) & proj (iatwfc, ibnd) = proj(iatwfc, ibnd) + & zdotc (npw, swfcatom(npwx+1,iatwfc), 1, evc(npwx+1,ibnd), 1) ENDIF ENDDO ENDDO CALL mp_sum ( proj, intra_bgrp_comm ) IF ( iverbosity > 0 ) THEN DO ibnd=1,nbnd WRITE(6,*) 'bands ', ibnd, et(ibnd,ik)*rytoev WRITE(6,'(8f9.4)') (ABS(proj(iatwfc,ibnd)), iatwfc=1,natomwfc) END DO END IF ! ! We have to select natomwfc bands that have the largest overlap with ! the atomic states. The other bands are empty and will be put above the ! natomwfc with large projections. ! IF (natomwfc < nbnd) THEN DO ibnd=1,nbnd wband(ibnd) =0.0_DP DO iatwfc=1,natomwfc wband(ibnd) = wband(ibnd) + ABS(proj(iatwfc,ibnd)) ENDDO ind(ibnd)=ibnd ENDDO ! ! order from the largest to the smaller overlap ! wband=-wband CALL hpsort(nbnd, wband, ind) ! ! now put the bands with smaller overlap above the others, change also ! the eigenvalues and the projectors ! ALLOCATE(aux(npwx*npol,1)) ALLOCATE(aux_proj(natomwfc,1)) current_band=natomwfc+1 DO ibnd =1, natomwfc IF (ind(ibnd) > natomwfc) THEN DO jbnd=current_band,nbnd IF (ind(jbnd)<=natomwfc) THEN aux(:,1)=evc(:,ind(ibnd)) evc(:,ind(ibnd))=evc(:,ind(jbnd)) evc(:,ind(jbnd))=aux(:,1) aux_proj(:,1)=proj(:,ind(ibnd)) proj(:,ind(ibnd))=proj(:,ind(jbnd)) proj(:,ind(jbnd))=aux_proj(:,1) aux_et = et(ind(ibnd),ik) et(ind(ibnd),ik)=et(ind(jbnd),ik) et(ind(jbnd),ik)=aux_et current_band=jbnd+1 EXIT ENDIF ENDDO ENDIF ENDDO DEALLOCATE(aux) DEALLOCATE(aux_proj) ENDIF ! ! Here we partition the bands in groups of degenerate bands. ! ngroups=1 group_size=1 start_band(1)=1 DO iatwfc=1,natomwfc-1 IF ( ABS(et(iatwfc,ik)-et(iatwfc+1,ik))>1.d-4) THEN ngroups=ngroups+1 start_band(ngroups)=iatwfc+1 ELSE group_size(ngroups) = group_size(ngroups) + 1 ENDIF ENDDO ! ! For each group of bands we decide which are the atomic states ! with the largest projection on the group of bands ! used_atwfc=0 DO igroup = 1, ngroups DO iatwfc=1, natomwfc wband(iatwfc) = 0.0_DP DO ibnd = start_band(igroup), start_band(igroup)+group_size(igroup)-1 wband(iatwfc) = wband(iatwfc) + ABS(proj(iatwfc,ibnd)) ENDDO ind(iatwfc) = iatwfc IF (used_atwfc(iatwfc)==1) wband(iatwfc)=0.0_DP ENDDO ! ! order the atomic states from the largest to the smaller projection ! wband=-wband CALL hpsort(natomwfc, wband, ind) nsize = group_size(igroup) ! DO iatwfc=1,nsize IF (used_atwfc(ind(iatwfc))==1) THEN CALL errore('new_evc','this atomic wfc already used',ind(iatwfc)) ELSE used_atwfc(ind(iatwfc))=1 ENDIF ENDDO ! ! At this point we solve a linear system of size group_size x group_size ! and find the linear combination of degenerate wavefunctions which has ! projection one on each atomic state. ! IF (nsize>1) THEN ALLOCATE(aux(npwx*npol,nsize)) ALLOCATE(aux_proj(natomwfc,nsize)) ALLOCATE(a(nsize,nsize)) ALLOCATE(v(nsize,nsize)) v=(0.0_DP,0.0_DP) DO ibnd = 1, nsize DO jbnd = 1, nsize a(ibnd,jbnd) = proj(ind(ibnd),start_band(igroup)+jbnd-1) ENDDO v(ibnd,ibnd)=(1.0_DP,0.0_DP) ENDDO CALL ZGESV(nsize, nsize, a, nsize, ind, v, nsize, info) ! ! We cannot use the vectors v to make the linear combinations ! because they are not orthonormal. We orthonormalize them, so the ! projection will not be exactly one, but quite close. ! CALL orthogonalize_vects(nsize, v) ! ! And now make the linear combination. Update also the projections on ! the atomic states. ! aux=(0.0_DP, 0.0_DP) aux_proj=(0.0_DP, 0.0_DP) DO ibnd=1, nsize DO jbnd=1,nsize aux(:,ibnd)=aux(:,ibnd)+ v(jbnd,ibnd)* & evc(:,start_band(igroup)+jbnd-1) aux_proj(:,ibnd)=aux_proj(:,ibnd)+ v(jbnd,ibnd)* & proj(:,start_band(igroup)+jbnd-1) ENDDO ENDDO evc(:,start_band(igroup):start_band(igroup)+nsize-1)= aux(:,:) proj(:,start_band(igroup):start_band(igroup)+nsize-1)= aux_proj(:,:) DEALLOCATE(aux) DEALLOCATE(aux_proj) DEALLOCATE(a) DEALLOCATE(v) ENDIF ENDDO ! loop over the groups of bands ! ! Finally, we order the new bands as the atomic states ! ALLOCATE(aux(npwx*npol,natomwfc)) used_atwfc=0 DO ibnd=1,natomwfc current_band=1 maxproj=0.0_DP DO iatwfc=1,natomwfc IF (ABS(proj(iatwfc,ibnd))>maxproj.AND.used_atwfc(iatwfc)==0) THEN current_band=iatwfc maxproj=ABS(proj(iatwfc,ibnd)) ENDIF ENDDO used_atwfc(current_band)=1 aux(:,current_band)=evc(:,ibnd) wband(current_band)=et(ibnd,ik) ENDDO evc(:,1:natomwfc)=aux(:,:) et(1:natomwfc,ik)=wband(1:natomwfc) DEALLOCATE(aux) ! ! If needed save the new bands on disk ! IF (nks > 1) THEN CALL save_buffer (evc, nwordwfc, iunwfc, ik) END IF ENDDO DEALLOCATE(group_size) DEALLOCATE(start_band) DEALLOCATE(ind) DEALLOCATE(wband) DEALLOCATE(used_atwfc) DEALLOCATE(proj) RETURN END SUBROUTINE new_evc SUBROUTINE orthogonalize_vects(n,v) USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(IN) :: n COMPLEX(DP), INTENT(INOUT) :: v(n,n) COMPLEX(DP) :: sca REAL(DP) :: norm INTEGER :: i,k COMPLEX(DP), EXTERNAL :: zdotc REAL(DP), EXTERNAL :: ddot norm=ddot(2*n,v(:,1),1,v(:,1),1) v(:,1)=v(:,1)/SQRT(norm) DO i=2,n DO k=i-1, 1, -1 sca=zdotc(n, v(:,k),1, v(:,i),1 ) v(:,i)=v(:,i) - sca * v(:,k) ENDDO norm=ddot(2*n,v(:,i),1,v(:,i),1) v(:,i)=v(:,i)/SQRT(norm) ENDDO RETURN END SUBROUTINE orthogonalize_vects espresso-5.1/PW/src/generate_vdW_kernel_table.f900000644000175000017500000012151412341373025020064 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! Copyright (C) 2009 Brian Kolb, Timo Thonhauser - Wake Forest University ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- program generate_kernel !! This is a stand-alone program to generate the file !! "vdW_kernel_table" needed for a van der Waals run. There should be no !! need, in general, to use this program as the default kernel file !! supplied with the distribution should suffice for most cases. !! However, if that file is insufficient for a particular purpose, a more !! suitable kernel file can be generated by running this program. !! This method is based on the method of Guillermo Roman-Perez and Jose !! M. Soler described in: !! G. Roman-Perez and J. M. Soler, PRL 103, 096102 (2009) !! henceforth referred to as SOLER. That method is a new implementation !! of the method found in: !! M. Dion, H. Rydberg, E. Schroeder, D. C. Langreth, and !! B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). !! henceforth referred to as DION. Further information about the !! functional and its corresponding potential can be found in: !! T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, !! and D.C. Langreth, Phys. Rev. B 76, 125112 (2007). !! A review article that shows many of the applications vdW-DF has been !! applied to so far can be found at: !! D. C. Langreth et al., J. Phys.: Condens. Matter 21, 084203 (2009). !! The original definition of the kernel function is given in DION !! equations 13-16. The Soler method makes the kernel function a !! function of only 1 variable (r) by first putting it in the form !! phi(q1*r, q2*r). Then, the q-dependence is removed by expanding the !! function in a special way (see SOLER equation 3). This yields a !! separate function for each pair of q points that is a function of r !! alone. There are (N^2+N)/2 unique functions, where N is the number of !! q points used. In the Soler method, the kernel is first made in the !! form phi(d1, d2) but this is not done here. It was found that, with !! q's chosen judiciously ahead of time, the kernel and the second !! derivatives required for interpolation could be tabulated ahead !! of time for faster use of the vdW_FD functional. This means equations !! 8-10 of SOLER are not used. There is no nead to soften the kernel and !! correct for this later. !! The algorithm employed here is "embarrassingly parallel", meaning that !! it parallelizes very well up to (N^2+N)/2 processors, where, !! again, N is the number of q points chosen. However, parallelization !! on this scale is unnecessary. In testing the code runs in under a !! minute on 16 Intel Xeon processors. !! IMPORTANT NOTICE: results are very sensitive to compilation details. !! In particular, the usage of FMA (Fused Multiply-and-Add) instructions !! used by modern CPU such as AMD Interlagos (Bulldozer), Intel Ivy Bridge, !! may affect quite heavily some components of the kernel table !! (communication by Ake Sandberg, Umea University). In practice this should !! not be a problem, since most affected elements are the less relevant ones. !! Some of the algorithms here are somewhat modified versions of those found !! in the book: !! Numerical Recipes in C; William H. Press, Brian P. Flannery, Saul A. !! Teukolsky, and William T. Vetterling. Cambridge University Press (1988). !! hereafter referred to as NUMERICAL_RECIPES. The routines were !! translated to Fortran, of course and variable names are generally different. !! For the calculation of the kernel we have benefited from access to !! earlier vdW-DF implementation into PWscf and ABINIT, written by Timo !! Thonhauser, Valentino Cooper, and David Langreth. These codes, in turn, !! benefited from earlier codes written by Maxime Dion and Henrik !! Rydberg. !! Use some PWSCF modules. In particular, we need the parallelization modules. !! -------------------------------------------------------------------------------------------- use mp, ONLY : mp_get, mp_barrier use mp_global, ONLY : mp_startup, mp_global_end use mp_world, ONLY : world_comm, nproc, mpime use kinds, ONLY : dp use io_global, ONLY : ionode, ionode_id use constants, ONLY : pi !! -------------------------------------------------------------------------------------------- implicit none !! These are the user set-able parameters. integer, parameter :: Nr_points = 1024 !! The number of radial points (also the number of k points) used in the formation ! !! of the kernel functions for each pair of q values. Increasing this value will ! !! help in case you get a run-time error saying that you are trying to use a k value ! !! that is larger than the largest tabulated k point since the largest k point will ! !! be 2*pi/r_max * Nr_points. Memory usage of the vdW_DF piece of PWSCF will increase ! !! roughly linearly with this variable. real(dp), parameter :: r_max = 100.0D0 !! The value of the maximum radius to use for the real-space kernel functions for each ! !! pair of q values. The larger this value is the smaller the smallest k value will be ! !! since the smallest k point value is 2*pi/r_max. Be careful though, since this will ! !! also decrease the maximum k point value and the vdW_DF code will crash if it encounters ! !! a g-vector with a magnitude greater than 2*pi/r_max *Nr_points !! Integration parameters for the kernel. These are based on DION. !! Changing these MAY make the kernel more accurate. They will not affect the run time or memory !! usage of the vdW-DF code. !!------------------------------------------------------------------------------------------------- integer, parameter :: Nintegration_points = 256 !! Number of integration points for real-space kernel generation (see DION ! !! equation 14). This is how many a's and b's there will be. real(dp), parameter :: a_min = 0.0D0 !! Starting value for the a and b integration in DION equation 14 real(dp), parameter :: a_max = 64.0D0 !! Maximum value for the a and b integration in DION equation 14 !!------------------------------------------------------------------------------------------------- CHARACTER(LEN=30) :: double_format = "(1p4e23.14)" !! The next 2 parameters define the q mesh to be used in the vdW_DF code. These are perhaps the most important to have !! set correctly. Increasing the number of q points will DRAMATICALLY increase the memory usage of the vdW_DF code because !! the memory consumption depends quadratically on the number of q points in the mesh. !! Increasing the number of q points may increase accuracy of the vdW_DF code, although, in testing it was found to have little effect. !! The largest value of the q mesh is q_cut. All values of q0 (DION equation 11) larger than this value during a run will be saturated !! to this value using equations 6-7 of SOLER. In testing, increasing the value of q_cut was found to have little impact on the results, !! though it is possible that in some systems it may be more important. Always make sure that the variable Nqs is consistent with !! the number of q points that are actually in the variable q_mesh. Also, do not set any q value to 0. This will cause an infinity !! in the Fourier transform. !! --------------------------------------------------------------------------------------------------------------------------------------- !! CHANGE THESE VALUES AT YOUR OWN RISK integer, parameter :: Nqs = 20 real(dp), dimension(Nqs):: q_mesh = (/ 1.00D-5, 0.0449420825586261D0, 0.0975593700991365D0, & 0.159162633466142D0, 0.231286496836006D0, 0.315727667369529D0, 0.414589693721418D0, & 0.530335368404141D0, 0.665848079422965D0, 0.824503639537924D0, 1.010254382520950D0, & 1.227727621364570D0, 1.482340921174910D0, 1.780437058359530D0, 2.129442028133640D0, & 2.538050036534580D0, 3.016440085356680D0, 3.576529545442460D0, 4.232271035198720D0, & 5.0D0 /) !! --------------------------------------------------------------------------------------------------------------------------------------- !! The following are a few suggested sets of parameters that may be useful in some systems. Again, only !! change the default values if 1) you know what you're doing and 2) the default values are insufficient !! (or suspected to be insufficient) for your particular system. Use these Sets by commenting out the !! definition of Nqs and q_mesh above and uncommenting 1 of the desired sets below. You may also make your !! own set if you know what you're doing. !! -------------------------------------------------------------------------------------------------------------- !! Uncomment to use a q_mesh of 25 points with a cutoff of 5 ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !integer, parameter :: Nqs = 25 !real(dp), dimension(Nqs) :: q_mesh = (/ 1.0D-5, 0.0319324863726618D0, 0.0683071727114252D0, & ! 0.109742023439998D0, 0.156940969402303D0, 0.210705866844455D0, & ! 0.271950120037604D0, 0.341714198974465D0, 0.421183315767499D0, & ! 0.511707560050586D0, 0.614824835461683D0, 0.732286986871156D0, & ! 0.866089562227575D0, 1.01850571464079D0, 1.19212482065999D0, & ! 1.38989647082725D0, 1.61518057985587D0, 1.87180446774829D0, & ! 2.16412788159658D0, 2.49711706271187D0, 2.87642911739861D0, & ! 3.30850812473687D0, 3.80069461413434D0, 4.36135027254676D0, & ! 5.0D0 /) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !! Uncomment to use a q_mesh of 30 points with a cutoff of 5 ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! integer, parameter :: Nqs = 30 ! real(dp), dimension(Nqs) :: q_mesh = (/ 1.0D-5, 0.026559672691443D0, 0.0561185595841672D0, & ! 0.08901534278204D0, 0.125626949595767D0, 0.166372871329829D0, & ! 0.211719969762446D0, 0.262187826390619D0, 0.318354695731256D0, & ! 0.380864130890569D0, 0.4504323573167D0, 0.527856479223139D0, & ! 0.61402361271113D0, 0.709921050237249D0, 0.816647572889386D0, & ! 0.935426040085808D0, 1.06761740094853D0, 1.21473628789156D0, & ! 1.37846837109353D0, 1.56068967270003D0, 1.76348806205544D0, & ! 1.98918717825406D0, 2.24037305411209D0, 2.51992374661476D0, & ! 2.83104231334061D0, 3.17729351270267D0, 3.56264464851356D0, & ! 3.99151102686645D0, 4.46880654617114D0, 5.0D0 & ! /) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Uncomment to use a q_mesh of 30 poits with a cutoff of 8 ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! integer, parameter :: Nqs = 30 ! real(dp), dimension(Nqs) :: q_mesh = (/ 1.0D-5, 0.0424954763063088D0, 0.0897896953346675D0, & ! 0.142424548451264D0, 0.201003119353227D0, 0.266196594127727D0, & ! 0.338751951619913D0, 0.41950052222499D0, 0.50936751317001D0, & ! 0.609382609424911D0, 0.720691771706719D0, 0.844570366757022D0, & ! 0.982437780337809D0, 1.1358736803796D0, 1.30663611662302D0, & ! 1.49668166413729D0, 1.70818784151764D0, 1.94357806062649D0, & ! 2.20554939374965D0, 2.49710347632005D0, 2.82158089928871D0, & ! 3.18269948520649D0, 3.58459688657934D0, 4.03187799458362D0, & ! 4.52966770134498D0, 5.08366962032427D0, 5.7002314376217D0, & ! 6.38641764298631D0, 7.15009047387383D0, 8.0D0& ! /) ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !! ------------------------------------------------------------------------------------------------------------------ !! DO NOT CHANGE ANYTHING BELOW THIS LINE !! ######################################################################################################### !! ######################################################################################################### !! ######################################################################################################### !! ######################################################################################################### !! DO NOT CHANGE ANYTHING BELOW THIS LINE integer :: a_i, b_i, q1_i, q2_i, r_i, count !! Indexing variables real(dp) :: weights(Nintegration_points) !! Array to hold dx values for the Gaussian-Legendre ! !! integration of the kernel real(dp) :: nu(Nintegration_points), nu1(Nintegration_points) !! Defined in the discussion below equation 16 of DION real(dp) :: a(Nintegration_points), a2(Nintegration_points) !! The values of the points a (DION equation 14) and a^2 real(dp) :: sin_a(Nintegration_points), cos_a(Nintegration_points) !! sine and cosine values of the aforementioned points a real(dp) :: W_ab(Nintegration_points, Nintegration_points) !! Defined in DION equation 16 real(dp) :: dr, d1, d2, d, w, x, y, z, T, integral !! Intermediate values real(dp) :: gamma = 4.0D0*pi/9.0D0 !! Multiplicative factor for exponent in the functions called ! !! "h" in DION real(dp), parameter :: small = 1.0D-15 !! Number at which to employ special algorithms to avoid numerical ! !! problems. This is probably not needed but I like to be careful. !! The following sets up a parallel run. !! ------------------------------------------------------------------------------------------------------------------------------------------ integer :: my_start_q, my_end_q, Ntotal !! starting and ending q value for each processor, also the total number of ! !! calculations to do ( (Nqs^2 + Nqs)/2 ) real(dp), allocatable :: phi(:,:), d2phi_dk2(:,:) !! Arrays to store the kernel functions and their second derivatives. They are ! !! stored as phi(radial_point, idx) integer, allocatable :: indices(:,:), proc_indices(:,:) !! indices holds the values of q1 and q2 as partitioned out to the processors. It is an ! !! Ntotal x 2 array stored as indices(index of point number, q1:q2). ! !! Proc_indices holds the section of the indices array that is assigned to each processor. ! !! This is a Nprocs x 2 array, stored as proc_indices(processor number, starting_index:ending_index) integer :: Nper, Nextra, start_q, end_q !! Baseline number of jobs per processor, number of processors that get an extra job in case the ! !! number of jobs doesn't split evenly over the number of processors, starting index into the ! !! indices array, ending index into the indices array. integer :: idx, proc_i, kernel_file, my_Nqs ! Set up the parallel run using PWSCF methods. ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !! Start a parallel run call mp_startup () ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! The total number of phi_alpha_beta functions that have to be calculated Ntotal = (Nqs**2 + Nqs)/2 allocate( indices(Ntotal, 2) ) count = 1 ! This part fills in the indices array. It just loops through the q1 and q2 values and stores them. Sections ! of this array will be assigned to each of the processors later. ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do q1_i = 1, Nqs do q2_i = 1, q1_i indices(count, 1) = q1_i indices(count, 2) = q2_i count = count + 1 end do end do ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Figure out the baseline number of functions to be calculated by each processor and how many processors get 1 extra job. Nper = Ntotal/nproc Nextra = mod(Ntotal, nproc) allocate(proc_indices(nproc,2) ) start_q = 0 end_q = 0 ! Loop over all the processors and figure out which section of the indices array each processor should do. All processors ! figure this out for every processor so there is no need to communicate results. ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do proc_i = 1, nproc start_q = end_q + 1 end_q = start_q + (Nper - 1) if (proc_i <= Nextra) end_q = end_q + 1 if (proc_i == (mpime+1)) then my_start_q = start_q my_end_q = end_q end if proc_indices(proc_i, 1) = start_q proc_indices(proc_i, 2) = end_q end do ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Store how many jobs are assigned to me my_Nqs = my_end_q - my_start_q + 1 !! ------------------------------------------------------------------------------------------------------------------------------------------ allocate( phi(0:Nr_points, my_Nqs), d2phi_dk2(0:Nr_points, my_Nqs) ) phi = 0.0D0 d2phi_dk2 = 0.0D0 dr = (r_max)/(Nr_points) !! Find the integration points we are going to use in the Gaussian-Legendre integration call prep_gaussian_quadrature(a_min, a_max, a, weights, Nintegration_points) !! Get a, a^2, sin(a), cos(a) and the weights for the Gaussian-Legendre integration !! ------------------------------------------------------------------------------------ do a_i=1, Nintegration_points a(a_i) = tan(a(a_i)) a2(a_i) = a(a_i)**2 weights(a_i) = weights(a_i)*(1+a2(a_i)) cos_a(a_i) = cos(a(a_i)) sin_a(a_i) = sin(a(a_i)) end do !! ------------------------------------------------------------------------------------ !! Calculate the value of the W function defined in DION equation 16 for each value of a and b !! ------------------------------------------------------------------------------------ do a_i = 1, Nintegration_points do b_i = 1, Nintegration_points W_ab(a_i, b_i) = 2.0D0 * weights(a_i)*weights(b_i) * ( & (3.0D0-a2(a_i))*a(b_i)*cos_a(b_i)*sin_a(a_i) + & (3.0D0-a2(b_i))*a(a_i)*cos_a(a_i)*sin_a(b_i) + & (a2(a_i)+a2(b_i)-3.0D0)*sin_a(a_i)*sin_a(b_i) - & 3.0D0*a(a_i)*a(b_i)*cos_a(a_i)*cos_a(b_i) ) / & (a(a_i)*a(b_i)) enddo enddo !! ------------------------------------------------------------------------------------ !! Now, we loop over all the pairs q1,q2 that are assigned to us and perform our calculations !! ----------------------------------------------------------------------------------------------------- do idx = 1, my_Nqs ! First, get the value of phi(q1*r, q2*r) for each r and the particular values of q1 and q2 we are using ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do r_i = 1, Nr_points d1 = q_mesh(indices(idx+my_start_q-1, 1)) * (dr * r_i) d2 = q_mesh(indices(idx+my_start_q-1, 2)) * (dr * r_i) phi(r_i, idx) = phi_value(d1, d2) end do ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Now, perform a radial FFT to turn our phi_alpha_beta(r) into phi_alpha_beta(k) needed for SOLER ! equation 11 call radial_fft( phi(:,idx) ) ! Determine the spline interpolation coefficients for the Fourier transformed kernel function call set_up_splines( phi(:, idx), d2phi_dk2(:, idx) ) end do !! ----------------------------------------------------------------------------------------------------- !! Finally, we write out the results, after letting everybody catch up !! ----------------------------------------------------------------------------------------------------- call mp_barrier( world_comm ) call write_kernel_table_file(phi, d2phi_dk2) !! ----------------------------------------------------------------------------------------------------- !! Finalize the mpi run using the PWSCF method call mp_global_end( ) deallocate( phi, d2phi_dk2, indices, proc_indices ) CONTAINS !! ########################################################################################################### !! | | !! | SET UP SPLINES | !! |__________________| !! This subroutine accepts a function (phi) and finds at each point the second derivative (D2) for use with !! spline interpolation. This function assumes we are using the expansion described in SOLER 3 and 4. That !! is, the derivatives are those needed to interpolate Kronecker delta functions at each of the q values !! Other than some special modification to speed up the algorithm in our particular case, this algorithm is !! taken directly from NUMERICAL_RECIPES pages 96-97. subroutine set_up_splines(phi, D2) real(dp), intent(in) :: phi(0:Nr_points) !! The k-space kernel function for a particular q1 and q2 real(dp), intent(inout) :: D2(0:Nr_points) !! The second derivatives to be used in the interpolation ! !! expansion (SOLER equation 3) real(dp), save :: dk = 2.0D0*pi/r_max !! Spacing of k points real(dp), allocatable :: temp_array(:) !! Temporary storage real(dp) :: temp_1, temp_2 !! allocate( temp_array(0:Nr_points) ) D2 = 0 temp_array = 0 do r_i = 1, Nr_points - 1 temp_1 = dble(r_i - (r_i - 1))/dble( (r_i + 1) - (r_i - 1) ) temp_2 = temp_1 * D2(r_i-1) + 2.0D0 D2(r_i) = (temp_1 - 1.0D0)/temp_2 temp_array(r_i) = ( phi(r_i+1) - phi(r_i))/dble( dk*((r_i+1) - r_i) ) - & ( phi(r_i) - phi(r_i-1))/dble( dk*(r_i - (r_i-1)) ) temp_array(r_i) = (6.0D0*temp_array(r_i)/dble( dk*((r_i+1) - (r_i-1)) )-temp_1*temp_array(r_i-1))/temp_2 end do D2(Nr_points) = 0.0D0 do r_i = Nr_points-1, 0, -1 D2(r_i) = D2(r_i)*D2(r_i+1) + temp_array(r_i) end do deallocate( temp_array ) end subroutine set_up_splines !! ########################################################################################################### !! ########################################################################################################### !! | | !! | PHI_VALUE | !! |_____________| !! This function returns the value of the kernel calculated via DION equation 14. real(dp) function phi_value(d1, d2) real(dp), intent(in) :: d1, d2 !! The point at which to evaluate the kernel. Note that ! !! d1 = q1*r and d2 = q2*r phi_value = 0.0D0 if (d1==0 .and. d2==0) then phi_value = 0.0 return end if !! Loop over all integration points and calculate the value of the nu functions defined in the !! discussion below equation 16 in DION. There are a number of checks here to ensure that we don't !! run into numerical problems for very small d values. They are probably unnecessary but I !! wanted to be careful. !! ---------------------------------------------------------------------------------------------- do a_i = 1, Nintegration_points if ( a(a_i) <= small .and. d1 > small) then nu(a_i) = 9.0D0/8.0D0*d1**2/pi else if (d1 <= small) then nu(a_i) = a(a_i)**2/2.0D0 else nu(a_i) = a(a_i)**2/((-exp(-(a(a_i)**2*gamma)/d1**2) + 1.0D0)*2.0D0) end if if ( a(a_i) <= small .and. d2 > small) then nu1(a_i) = 9.0D0/8.0D0*d2**2/pi else if (d2 < small) then nu1(a_i) = a(a_i)**2/2.0D0 else nu1(a_i) = a(a_i)**2/((-exp(-(a(a_i)**2*gamma)/d2**2) + 1.0D0)*2.0D0) end if end do !! ---------------------------------------------------------------------------------------------- !! Carry out the integration of DION equation 13 !! ---------------------------------------------------------------------------------------------- do a_i = 1, Nintegration_points do b_i = 1, Nintegration_points w = nu(a_i) x = nu(b_i) y = nu1(a_i) z = nu1(b_i) ! Again, watch out for possible numerical problems if (w < small .or. x phi(:,:) call write_data(21, data) !! --------------------------------------------------------------------------------------- end if !! Now, loop over all other processors (if any) and collect their kernel functions in the phi !! array of processor 0, which is big enough to hold any of them. Figure out how many functions !! should have been passed and make data point to just the right amount of the phi array. Then !! write the data. !! ------------------------------------------------------------------------------------------- do proc_i = 1, nproc-1 call mp_get(phi, phi, mpime, 0, proc_i, 0, world_comm) if (ionode) then proc_Nqs = proc_indices(proc_i+1, 2) - proc_indices(proc_i+1,1) + 1 !write(*) "Writing phi proc ", proc_i data => phi(:,1:proc_Nqs) call write_data(21, data) end if end do !! ------------------------------------------------------------------------------------------- !! Here, we basically repeat the process exactly but for the second derivatives d2phi_dk2 !! instead of the kernel itself !! ------------------------------------------------------------------------------------------- if (ionode) then !write(*) "Writing d2phi_dk2 proc ", 0 data => d2phi_dk2(:,:) call write_data(21, data) end if do proc_i = 1, nproc-1 call mp_get(d2phi_dk2, d2phi_dk2, mpime, 0, proc_i, 0, world_comm) if (mpime == 0) then proc_Nqs = proc_indices(proc_i+1,2) - proc_indices(proc_i+1,1) + 1 !write(*) "Writing d2phi_dk2 proc ", proc_i data => d2phi_dk2(:, 1:proc_Nqs) call write_data(21, data) end if end do !! ------------------------------------------------------------------------------------------- if (ionode) then close(21) end if end subroutine write_kernel_table_file !! ########################################################################################################### !! ########################################################################################################### !! | | !! | WRITE_DATA | !! !______________| !! Write matrix data held in the point "array" to the file with unit number "file". Data is written !! in binary format. subroutine write_data(file, array) real(dp), pointer:: array(:,:) !! Input pointer to the matrix data to be written integer, intent(in) :: file !! Unit number of file to write to integer :: idx, ios !! Indexing variable do idx = 1, size(array,2) ! write(file) array(:,idx) write (file, double_format, err=100, iostat=ios) array(:,idx) end do 100 call errore ('generate_vdW_kernel_table', 'Writing table file', abs (ios) ) end subroutine write_data !! ########################################################################################################### !! ########################################################################################################### !! | | !! | RADIAL_FFT | !! |______________| !! This subroutine performs a radial Fourier transform on the real-space kernel functions. Basically, this is !! just int( 4*pi*r^2*phi*sin(k*r)/(k*r))dr integrated from 0 to r_max. That is, it is the kernel function phi !! integrated with the 0^th spherical Bessel function radially, with a 4*pi assumed from angular integration !! since we have spherical symmetry. The spherical symmetry comes in because the kernel function depends only !! on the magnitude of the vector between two points. The integration is done using the trapezoid rule. subroutine radial_fft(phi) real(dp), intent(inout) :: phi(0:Nr_points) !! On input holds the real-space function phi_q1_q2(r) ! !! On output hold the reciprocal-space function phi_q1_q2(k) real(dp) :: phi_k(0:Nr_points) !! Temporary storage for phi_q1_q2(k) real(dp) :: dr = r_max/Nr_points !! Spacing between real-space sample points real(dp) :: dk = 2.0D0*pi/r_max !! Spacing between reciprocal space sample points integer :: k_i, r_i !! Indexing variables real(dp) :: r, k !! The real and reciprocal space points phi_k = 0.0D0 !! Handle the k=0 point separately !! ------------------------------------------------------------------------------------------------- do r_i = 1, Nr_points r = r_i * dr phi_k(0) = phi_k(0) + phi(r_i)*r**2 end do !! Subtract half of the last value of because of the trapezoid rule phi_k(0) = phi_k(0) - 0.5D0 * (Nr_points*dr)**2 * phi(Nr_points) !! ------------------------------------------------------------------------------------------------- !! Integration for the rest of the k-points !! ------------------------------------------------------------------------------------------------- do k_i = 1, Nr_points k = k_i * dk do r_i = 1, Nr_points r = r_i * dr phi_k(k_i) = phi_k(k_i) + phi(r_i) * r * sin(k*r) / k end do phi_k(Nr_points) = phi_k(Nr_points) - 0.5D0 * phi(Nr_points) * r *sin(k*r) / k end do !! Add in the 4*pi and the dr factor for the integration phi = 4.0D0 * pi * phi_k * dr !! ------------------------------------------------------------------------------------------------- end subroutine radial_fft !! ########################################################################################################### end program generate_kernel espresso-5.1/PW/src/gweights.f900000644000175000017500000000600312341373025014557 0ustar mbamba! ! Copyright (C) 2001-2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- subroutine gweights (nks, wk, nbnd, nelec, degauss, ngauss, & et, ef, demet, wg, is, isk) !-------------------------------------------------------------------- ! calculates Ef and weights with the gaussian spreading technique ! ... Wrapper routine: computes first Ef, then the weights ! USE kinds implicit none ! integer, intent(in) :: nks, nbnd, ngauss, is, isk(nks) real(DP), intent(in) :: wk (nks), et (nbnd, nks), nelec, degauss ! wg must be (inout) and not (out) because if is/=0 only terms for ! spin=is are initialized; the remaining terms should be kept, not lost real(DP), intent(inout) :: wg (nbnd, nks) real(DP), intent(out) :: ef, demet ! real(DP), external :: efermig ! Calculate the Fermi energy ef ef = efermig (et, nbnd, nks, nelec, wk, degauss, ngauss, is, isk) ! Calculate weights CALL gweights_only (nks, wk, is, isk, nbnd, nelec, degauss, & ngauss, et, ef, demet, wg) return end subroutine gweights ! !-------------------------------------------------------------------- subroutine gweights_only (nks, wk, is, isk, nbnd, nelec, degauss, & ngauss, et, ef, demet, wg) !-------------------------------------------------------------------- ! calculates weights with the gaussian spreading technique ! Fermi energy is provided in input ! USE kinds implicit none ! integer, intent(in) :: nks, nbnd, ngauss, is, isk(nks) real(DP), intent(in) :: wk (nks), et (nbnd, nks), nelec, degauss, ef ! wg must be (inout) and not (out) because if is/=0 only terms for ! spin=is are initialized; the remaining terms should be kept, not lost real(DP), intent(inout) :: wg (nbnd, nks) real(DP), intent(out) :: demet ! integer :: kpoint, ibnd real(DP) , external :: wgauss, w1gauss demet = 0.d0 do kpoint = 1, nks if (is /= 0) then if (isk(kpoint).ne.is) cycle end if do ibnd = 1, nbnd ! Calculate the gaussian weights wg (ibnd, kpoint) = wk (kpoint) * & wgauss ( (ef-et(ibnd,kpoint)) / degauss, ngauss) ! ! The correct (i.e. variational) form of the band energy is ! Eband = \int e N(e) de for e nsp, ityp, tau, zv, atm USE cell_base, ONLY : at, alat, tpiba, omega, tpiba2 USE constants, ONLY : pi, tpi USE gvect, ONLY : ngm, g, gcutm, ngm_g, ig_l2g USE fft_base, ONLY : dfftp USE uspp, ONLY : nkb, vkb, okvan USE uspp_param, ONLY : upf, lmaxq, nbetam, nh, nhm USE lsda_mod, ONLY : nspin USE klist, ONLY : nelec, degauss, nks, xk, wk USE wvfct, ONLY : npwx, npw, nbnd, ecutwfc, wg USE wavefunctions_module, ONLY : evc USE bp, ONLY : gdir, nppstr, mapgm_global USE becmod, ONLY : calbec, bec_type, allocate_bec_type, & deallocate_bec_type USE noncollin_module, ONLY : noncolin, npol, nspin_lsda USE spin_orb, ONLY : lspinorb USE mp_bands, ONLY : intra_bgrp_comm, nproc_bgrp USE mp, ONLY : mp_sum ! --- Avoid implicit definitions --- IMPLICIT NONE ! --- Internal definitions --- INTEGER :: i INTEGER :: igk1(npwx) INTEGER :: igk0(npwx) INTEGER :: ig INTEGER :: ind1 INTEGER :: info INTEGER :: is INTEGER :: istring INTEGER :: iv INTEGER :: ivpt(nbnd) INTEGER :: j INTEGER :: jkb INTEGER :: jkb_bp INTEGER :: jkb1 INTEGER :: job INTEGER :: jv INTEGER :: kindex INTEGER :: kort INTEGER :: kpar INTEGER :: kpoint INTEGER :: kstart INTEGER :: mb INTEGER :: mk1 INTEGER :: mk2 INTEGER :: mk3 INTEGER , ALLOCATABLE :: mod_elec(:) INTEGER , ALLOCATABLE :: ln(:,:,:) INTEGER :: mod_elec_dw INTEGER :: mod_elec_tot INTEGER :: mod_elec_up INTEGER :: mod_ion(nat) INTEGER :: mod_ion_tot INTEGER :: mod_tot INTEGER :: n1 INTEGER :: n2 INTEGER :: n3 INTEGER :: na INTEGER :: nb INTEGER :: ng INTEGER :: nhjkb INTEGER :: nhjkbm INTEGER :: nkbtona(nkb) INTEGER :: nkbtonh(nkb) INTEGER :: nkort INTEGER :: np INTEGER :: npw1 INTEGER :: npw0 INTEGER :: nstring INTEGER :: nbnd_occ INTEGER :: nt INTEGER, ALLOCATABLE :: map_g(:) LOGICAL :: lodd LOGICAL :: l_para LOGICAL, ALLOCATABLE :: l_cal(:) ! flag for occupied/empty states REAL(DP) :: dk(3) REAL(DP) :: dkmod REAL(DP) :: el_loc REAL(DP) :: eps REAL(DP) :: fac REAL(DP) :: g2kin_bp(npwx) REAL(DP) :: gpar(3) REAL(DP) :: gtr(3) REAL(DP) :: gvec REAL(DP), ALLOCATABLE :: loc_k(:) REAL(DP), ALLOCATABLE :: pdl_elec(:) REAL(DP), ALLOCATABLE :: phik(:) REAL(DP) :: phik_ave REAL(DP) :: qrad_dk(nbetam,nbetam,lmaxq,ntyp) REAL(DP) :: weight REAL(DP) :: upol(3) REAL(DP) :: pdl_elec_dw REAL(DP) :: pdl_elec_tot REAL(DP) :: pdl_elec_up REAL(DP) :: pdl_ion(nat) REAL(DP) :: pdl_ion_tot REAL(DP) :: pdl_tot REAL(DP) :: phidw REAL(DP) :: phiup REAL(DP) :: rmod REAL(DP), ALLOCATABLE :: wstring(:) REAL(DP) :: ylm_dk(lmaxq*lmaxq) REAL(DP) :: zeta_mod COMPLEX(DP), ALLOCATABLE :: aux(:) COMPLEX(DP), ALLOCATABLE :: aux_g(:) COMPLEX(DP), ALLOCATABLE :: aux0(:) TYPE (bec_type) :: becp0 TYPE (bec_type) :: becp_bp COMPLEX(DP) :: cave COMPLEX(DP) , ALLOCATABLE :: cphik(:) COMPLEX(DP) :: det COMPLEX(DP) :: dtheta COMPLEX(DP) :: mat(nbnd,nbnd) COMPLEX(DP) :: pref COMPLEX(DP), ALLOCATABLE :: psi(:,:) COMPLEX(DP), ALLOCATABLE :: q_dk_so(:,:,:,:) COMPLEX(DP) :: q_dk(nhm,nhm,ntyp) COMPLEX(DP) :: struc(nat) COMPLEX(DP) :: theta0 COMPLEX(DP) :: zdotc COMPLEX(DP) :: zeta ! ------------------------------------------------------------------------- ! ! INITIALIZATIONS ! ------------------------------------------------------------------------- ! ALLOCATE (psi(npwx*npol,nbnd)) ALLOCATE (aux(ngm*npol)) ALLOCATE (aux0(ngm*npol)) IF (okvan) THEN CALL allocate_bec_type ( nkb, nbnd, becp0 ) CALL allocate_bec_type ( nkb, nbnd, becp_bp ) IF (lspinorb) ALLOCATE(q_dk_so(nhm,nhm,4,ntyp)) END IF l_para= (nproc_bgrp > 1 .AND. gdir /= 3) IF (l_para) THEN ALLOCATE ( aux_g(ngm_g*npol) ) ELSE ALLOCATE ( map_g(ngm) ) ENDIF ! --- Write header --- WRITE( stdout,"(/,/,/,15X,50('='))") WRITE( stdout,"(28X,'POLARIZATION CALCULATION')") WRITE( stdout,"(25X,'!!! NOT THOROUGHLY TESTED !!!')") WRITE( stdout,"(15X,50('-'),/)") ! --- Check that we are working with an insulator with no empty bands --- IF ( degauss > 0.0_dp ) CALL errore('c_phase', & 'Polarization only for insulators',1) ! --- Define a small number --- eps=1.0E-6_dp ! --- Recalculate FFT correspondence (see ggen.f90) --- ALLOCATE (ln (-dfftp%nr1:dfftp%nr1, -dfftp%nr2:dfftp%nr2, -dfftp%nr3:dfftp%nr3) ) DO ng=1,ngm mk1=nint(g(1,ng)*at(1,1)+g(2,ng)*at(2,1)+g(3,ng)*at(3,1)) mk2=nint(g(1,ng)*at(1,2)+g(2,ng)*at(2,2)+g(3,ng)*at(3,2)) mk3=nint(g(1,ng)*at(1,3)+g(2,ng)*at(2,3)+g(3,ng)*at(3,3)) ln(mk1,mk2,mk3) = ng END DO if(okvan) then ! --- Initialize arrays --- jkb_bp=0 DO nt=1,ntyp DO na=1,nat IF (ityp(na).eq.nt) THEN DO i=1, nh(nt) jkb_bp=jkb_bp+1 nkbtona(jkb_bp) = na nkbtonh(jkb_bp) = i END DO END IF END DO END DO endif ! --- Get the number of strings --- nstring=nks/nppstr nkort=nstring/nspin_lsda ! --- Allocate memory for arrays --- ALLOCATE(phik(nstring)) ALLOCATE(loc_k(nstring)) ALLOCATE(cphik(nstring)) ALLOCATE(wstring(nstring)) ALLOCATE(pdl_elec(nstring)) ALLOCATE(mod_elec(nstring)) ! ------------------------------------------------------------------------- ! ! electronic polarization: set values for k-points strings ! ! ------------------------------------------------------------------------- ! ! --- Find vector along strings --- gpar(1)=xk(1,nppstr)-xk(1,1) gpar(2)=xk(2,nppstr)-xk(2,1) gpar(3)=xk(3,nppstr)-xk(3,1) gvec=dsqrt(gpar(1)**2+gpar(2)**2+gpar(3)**2)*tpiba ! --- Find vector between consecutive points in strings --- dk(1)=xk(1,2)-xk(1,1) dk(2)=xk(2,2)-xk(2,1) dk(3)=xk(3,2)-xk(3,1) dkmod=SQRT(dk(1)**2+dk(2)**2+dk(3)**2)*tpiba IF (ABS(dkmod-gvec/(nppstr-1)) > eps) & CALL errore('c_phase','Wrong k-strings?',1) ! --- Check that k-points form strings --- DO i=1,nspin_lsda*nkort DO j=2,nppstr kindex=j+(i-1)*nppstr IF (ABS(xk(1,kindex)-xk(1,kindex-1)-dk(1)) > eps) & CALL errore('c_phase','Wrong k-strings?',1) IF (ABS(xk(2,kindex)-xk(2,kindex-1)-dk(2)) > eps) & CALL errore('c_phase','Wrong k-strings?',1) IF (ABS(xk(3,kindex)-xk(3,kindex-1)-dk(3)) > eps) & CALL errore('c_phase','Wrong k-strings?',1) IF (ABS(wk(kindex)-wk(kindex-1)) > eps) & CALL errore('c_phase','Wrong k-strings weights?',1) END DO END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: weight strings ! ! ------------------------------------------------------------------------- ! ! --- Calculate string weights, normalizing to 1 (no spin or noncollinear) ! or 1+1 (spin) --- DO is=1,nspin_lsda weight=0.0_dp DO kort=1,nkort istring=kort+(is-1)*nkort wstring(istring)=wk(nppstr*istring) weight=weight+wstring(istring) END DO DO kort=1,nkort istring=kort+(is-1)*nkort wstring(istring)=wstring(istring)/weight END DO END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: structure factor ! ! ------------------------------------------------------------------------- ! ! --- Calculate structure factor e^{-i dk*R} --- DO na=1,nat fac=(dk(1)*tau(1,na)+dk(2)*tau(2,na)+dk(3)*tau(3,na))*tpi struc(na)=CMPLX(cos(fac),-sin(fac),kind=DP) END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: form factor ! ! ------------------------------------------------------------------------- ! if(okvan) then ! --- Calculate Bessel transform of Q_ij(|r|) at dk [Q_ij^L(|r|)] --- CALL calc_btq(dkmod,qrad_dk,0) ! --- Calculate the q-space real spherical harmonics at dk [Y_LM] --- dkmod=dk(1)**2+dk(2)**2+dk(3)**2 CALL ylmr2(lmaxq*lmaxq, 1, dk, dkmod, ylm_dk) ! --- Form factor: 4 pi sum_LM c_ij^LM Y_LM(Omega) Q_ij^L(|r|) --- q_dk = (0.d0, 0.d0) DO np =1, ntyp if( upf(np)%tvanp ) then DO iv = 1, nh(np) DO jv = iv, nh(np) call qvan3(iv,jv,np,pref,ylm_dk,qrad_dk) q_dk(iv,jv,np) = omega*pref q_dk(jv,iv,np) = omega*pref ENDDO ENDDO endif ENDDO IF (lspinorb) CALL transform_qq_so(q_dk,q_dk_so) endif ! ------------------------------------------------------------------------- ! ! electronic polarization: strings phases ! ! ------------------------------------------------------------------------- ! el_loc=0.d0 kpoint=0 ALLOCATE ( l_cal(nbnd) ) CALL weights() ! --- Start loop over spin --- DO is=1,nspin_lsda ! l_cal(n) = .true./.false. if n-th state is occupied/empty nbnd_occ=0 DO nb = 1, nbnd l_cal(nb) = (wg(nb,1+nks*(is-1)/2) > eps) IF (l_cal(nb)) nbnd_occ = nbnd_occ + 1 END DO ! --- Start loop over orthogonal k-points --- DO kort=1,nkort ! --- Index for this string --- istring=kort+(is-1)*nkort ! --- Initialize expectation value of the phase operator --- zeta=(1.d0,0.d0) zeta_mod = 1.d0 ! --- Start loop over parallel k-points --- DO kpar = 1,nppstr ! --- Set index of k-point --- kpoint = kpoint + 1 ! --- Calculate dot products between wavefunctions and betas --- IF (kpar /= 1) THEN ! --- Dot wavefunctions and betas for PREVIOUS k-point --- CALL gk_sort(xk(1,kpoint-1),ngm,g,ecutwfc/tpiba2, & npw0,igk0,g2kin_bp) CALL get_buffer (psi,nwordwfc,iunwfc,kpoint-1) if (okvan) then CALL init_us_2 (npw0,igk0,xk(1,kpoint-1),vkb) CALL calbec (npw0, vkb, psi, becp0) endif ! --- Dot wavefunctions and betas for CURRENT k-point --- IF (kpar /= nppstr) THEN CALL gk_sort(xk(1,kpoint),ngm,g,ecutwfc/tpiba2, & npw1,igk1,g2kin_bp) CALL get_buffer(evc,nwordwfc,iunwfc,kpoint) if (okvan) then CALL init_us_2 (npw1,igk1,xk(1,kpoint),vkb) CALL calbec (npw1, vkb, evc, becp_bp) endif ELSE kstart = kpoint-nppstr+1 CALL gk_sort(xk(1,kstart),ngm,g,ecutwfc/tpiba2, & npw1,igk1,g2kin_bp) CALL get_buffer(evc,nwordwfc,iunwfc,kstart) if (okvan) then CALL init_us_2 (npw1,igk1,xk(1,kstart),vkb) CALL calbec(npw1, vkb, evc, becp_bp) endif ENDIF IF (kpar == nppstr .AND. .NOT. l_para) THEN map_g(:) = 0 DO ig=1,npw1 ! --- If k'=k+G_o, the relation psi_k+G_o (G-G_o) --- ! --- = psi_k(G) is used, gpar=G_o, gtr = G-G_o --- gtr(1)=g(1,igk1(ig)) - gpar(1) gtr(2)=g(2,igk1(ig)) - gpar(2) gtr(3)=g(3,igk1(ig)) - gpar(3) ! --- Find crystal coordinates of gtr, n1,n2,n3 --- ! --- and the position ng in the ngm array --- IF (gtr(1)**2+gtr(2)**2+gtr(3)**2 <= gcutm) THEN n1=NINT(gtr(1)*at(1,1)+gtr(2)*at(2,1) & +gtr(3)*at(3,1)) n2=NINT(gtr(1)*at(1,2)+gtr(2)*at(2,2) & +gtr(3)*at(3,2)) n3=NINT(gtr(1)*at(1,3)+gtr(2)*at(2,3) & +gtr(3)*at(3,3)) ng=ln(n1,n2,n3) IF ( (ABS(g(1,ng)-gtr(1)) > eps) .OR. & (ABS(g(2,ng)-gtr(2)) > eps) .OR. & (ABS(g(3,ng)-gtr(3)) > eps) ) THEN WRITE(6,*) ' error: translated G=', & gtr(1),gtr(2),gtr(3), & & ' with crystal coordinates',n1,n2,n3, & & ' corresponds to ng=',ng,' but G(ng)=', & & g(1,ng),g(2,ng),g(3,ng) WRITE(6,*) ' probably because G_par is NOT', & & ' a reciprocal lattice vector ' WRITE(6,*) ' Possible choices as smallest ', & ' G_par:' DO i=1,50 WRITE(6,*) ' i=',i,' G=', & g(1,i),g(2,i),g(3,i) ENDDO CALL errore('c_phase','wrong g',1) ENDIF ELSE WRITE(6,*) ' |gtr| > gcutm for gtr=', & gtr(1),gtr(2),gtr(3) CALL errore('c_phase','wrong gtr',1) END IF map_g(ig)=ng END DO END IF ! --- Matrix elements calculation --- mat(:,:) = (0.d0, 0.d0) DO mb=1,nbnd IF ( .NOT. l_cal(mb) ) THEN mat(mb,mb)=(1.d0, 0.d0) ELSE aux(:) = (0.d0, 0.d0) IF (kpar /= nppstr) THEN DO ig=1,npw1 aux(igk1(ig))=evc(ig,mb) ENDDO IF (noncolin) THEN DO ig=1,npw1 aux(igk1(ig)+ngm)=evc(ig+npwx,mb) ENDDO ENDIF ELSEIF (.NOT. l_para) THEN DO ig=1,npw1 aux(map_g(ig))=evc(ig,mb) ENDDO IF (noncolin) THEN DO ig=1,npw1 aux(map_g(ig)+ngm)=evc(ig+npwx,mb) ENDDO ENDIF ELSE ! ! In this case this processor might not have the G-G_0 ! aux_g=(0.d0,0.d0) DO ig=1,npw1 aux_g(mapgm_global(ig_l2g(igk1(ig)),gdir)) & =evc(ig,mb) ENDDO IF (noncolin) THEN DO ig=1,npw1 aux_g(mapgm_global(ig_l2g(igk1(ig)),gdir) & + ngm_g) =evc(ig+npwx,mb) ENDDO ENDIF CALL mp_sum(aux_g(:), intra_bgrp_comm ) DO ig=1,ngm aux(ig) = aux_g(ig_l2g(ig)) ENDDO IF (noncolin) THEN DO ig=1,ngm aux(ig+ngm) = aux_g(ig_l2g(ig)+ngm_g) ENDDO ENDIF ENDIF ! DO nb=1,nbnd IF ( l_cal(nb) ) THEN aux0(:)= (0.d0, 0.d0) DO ig=1,npw0 aux0(igk0(ig))=psi(ig,nb) END DO IF (noncolin) THEN DO ig=1,npw0 aux0(igk0(ig)+ngm)=psi(ig+npwx,nb) END DO ENDIF mat(nb,mb) = zdotc (ngm*npol,aux0,1,aux,1) END IF END DO END IF END DO ! call mp_sum( mat, intra_bgrp_comm ) ! DO nb=1,nbnd DO mb=1,nbnd ! --- Calculate the augmented part: ij=KB projectors, --- ! --- R=atom index: SUM_{ijR} q(ijR) --- ! --- e^i(k-k')*R = --- ! --- also = = becp^* --- IF ( l_cal(nb) .AND. l_cal(mb) ) THEN if (okvan) then pref = (0.d0,0.d0) DO jkb=1,nkb nhjkb = nkbtonh(jkb) na = nkbtona(jkb) np = ityp(na) nhjkbm = nh(np) jkb1 = jkb - nhjkb DO j = 1,nhjkbm IF (noncolin) THEN IF (lspinorb) THEN pref = pref+(CONJG(becp0%nc(jkb,1,nb))* & becp_bp%nc(jkb1+j,1,mb) & *q_dk_so(nhjkb,j,1,np) & +CONJG(becp0%nc(jkb,1,nb))* & becp_bp%nc(jkb1+j,2,mb) & *q_dk_so(nhjkb,j,2,np) & +CONJG(becp0%nc(jkb,2,nb))* & becp_bp%nc(jkb1+j,1,mb) & *q_dk_so(nhjkb,j,3,np) & +CONJG(becp0%nc(jkb,2,nb))* & becp_bp%nc(jkb1+j,2,mb) & *q_dk_so(nhjkb,j,4,np))*struc(na) ELSE pref = pref+(CONJG(becp0%nc(jkb,1,nb))* & becp_bp%nc(jkb1+j,1,mb) + & CONJG(becp0%nc(jkb,2,nb))* & becp_bp%nc(jkb1+j,2,mb)) & *q_dk(nhjkb,j,np)*struc(na) END IF ELSE pref = pref+CONJG(becp0%k(jkb,nb))* & becp_bp%k(jkb1+j,mb) & *q_dk(nhjkb,j,np)*struc(na) END IF ENDDO ENDDO mat(nb,mb) = mat(nb,mb) + pref endif endif ENDDO ENDDO ! --- Calculate matrix determinant --- CALL ZGETRF (nbnd,nbnd,mat,nbnd,ivpt,info) CALL errore('c_phase','error in factorization',abs(info)) det=(1.d0,0.d0) do nb=1,nbnd det = det*mat(nb,nb) if(nb.ne.ivpt(nb)) det=-det enddo ! --- Multiply by the already calculated determinants --- zeta=zeta*det ! --- End of dot products between wavefunctions and betas --- ENDIF ! --- End loop over parallel k-points --- END DO ! --- Calculate the phase for this string --- phik(istring)=AIMAG(LOG(zeta)) cphik(istring)=COS(phik(istring))*(1.0_dp,0.0_dp) & +SIN(phik(istring))*(0.0_dp,1.0_dp) ! --- Calculate the localization for current kort --- zeta_mod= DBLE(CONJG(zeta)*zeta) loc_k(istring)= - (nppstr-1) / gvec**2 / nbnd_occ *log(zeta_mod) ! --- End loop over orthogonal k-points --- END DO ! --- End loop over spin --- END DO DEALLOCATE ( l_cal ) ! ------------------------------------------------------------------------- ! ! electronic polarization: phase average ! ! ------------------------------------------------------------------------- ! ! --- Start loop over spins --- DO is=1,nspin_lsda ! --- Initialize average of phases as complex numbers --- cave=(0.0_dp,0.0_dp) phik_ave=(0.0_dp,0.0_dp) ! --- Start loop over strings with same spin --- DO kort=1,nkort ! --- Calculate string index --- istring=kort+(is-1)*nkort ! --- Average phases as complex numbers --- cave=cave+wstring(istring)*cphik(istring) ! --- End loop over strings with same spin --- END DO ! --- Get the angle corresponding to the complex numbers average --- theta0=atan2(AIMAG(cave), DBLE(cave)) ! --- Put the phases in an around theta0 --- DO kort=1,nkort istring=kort+(is-1)*nkort cphik(istring)=cphik(istring)/cave dtheta=atan2(AIMAG(cphik(istring)), DBLE(cphik(istring))) phik(istring)=theta0+dtheta phik_ave=phik_ave+wstring(istring)*phik(istring) END DO ! --- Assign this angle to the corresponding spin phase average --- IF (nspin == 1) THEN phiup=phik_ave !theta0+dtheta phidw=phik_ave !theta0+dtheta ELSE IF (nspin == 2) THEN IF (is == 1) THEN phiup=phik_ave !theta0+dtheta ELSE IF (is == 2) THEN phidw=phik_ave !theta0+dtheta END IF ELSE IF (nspin==4 ) THEN phiup=phik_ave phidw=0.0_DP END IF ! --- End loop over spins END DO ! ------------------------------------------------------------------------- ! ! electronic polarization: remap phases ! ! ------------------------------------------------------------------------- ! ! --- Remap string phases to interval [-0.5,0.5) --- pdl_elec=phik/(2.0_dp*pi) mod_elec=1 ! --- Remap spin average phases to interval [-0.5,0.5) --- pdl_elec_up=phiup/(2.0_dp*pi) mod_elec_up=1 pdl_elec_dw=phidw/(2.0_dp*pi) mod_elec_dw=1 ! --- Depending on nspin, remap total phase to [-1,1) or [-0.5,0.5) --- pdl_elec_tot=pdl_elec_up+pdl_elec_dw IF (nspin == 1) THEN pdl_elec_tot=pdl_elec_tot-2.0_dp*NINT(pdl_elec_tot/2.0_dp) mod_elec_tot=2 ELSE IF (nspin == 2 .OR. nspin == 4) THEN pdl_elec_tot=pdl_elec_tot-1.0_dp*NINT(pdl_elec_tot/1.0_dp) mod_elec_tot=1 END IF ! ------------------------------------------------------------------------- ! ! ionic polarization ! ! ------------------------------------------------------------------------- ! ! --- Look for ions with odd number of charges --- mod_ion=2 lodd=.FALSE. DO na=1,nat IF (MOD(NINT(zv(ityp(na))),2) == 1) THEN mod_ion(na)=1 lodd=.TRUE. END IF END DO ! --- Calculate ionic polarization phase for every ion --- pdl_ion=0.0_dp DO na=1,nat DO i=1,3 pdl_ion(na)=pdl_ion(na)+zv(ityp(na))*tau(i,na)*gpar(i) ENDDO IF (mod_ion(na) == 1) THEN pdl_ion(na)=pdl_ion(na)-1.0_dp*nint(pdl_ion(na)/1.0_dp) ELSE IF (mod_ion(na) == 2) THEN pdl_ion(na)=pdl_ion(na)-2.0_dp*nint(pdl_ion(na)/2.0_dp) END IF ENDDO ! --- Add up the phases modulo 2 iff the ionic charges are even numbers --- pdl_ion_tot=SUM(pdl_ion(1:nat)) IF (lodd) THEN pdl_ion_tot=pdl_ion_tot-1.d0*nint(pdl_ion_tot/1.d0) mod_ion_tot=1 ELSE pdl_ion_tot=pdl_ion_tot-2.d0*nint(pdl_ion_tot/2.d0) mod_ion_tot=2 END IF ! ------------------------------------------------------------------------- ! ! total polarization ! ! ------------------------------------------------------------------------- ! ! --- Add electronic and ionic contributions to total phase --- pdl_tot=pdl_elec_tot+pdl_ion_tot IF ((.NOT.lodd).AND.(nspin == 1)) THEN mod_tot=2 ELSE mod_tot=1 END IF ! ------------------------------------------------------------------------- ! ! write output information ! ! ------------------------------------------------------------------------- ! ! --- Information about the k-points string used --- WRITE( stdout,"(/,21X,'K-POINTS STRINGS USED IN CALCULATIONS')") WRITE( stdout,"(21X,37('~'),/)") WRITE( stdout,"(7X,'G-vector along string (2 pi/a):',3F9.5)") & gpar(1),gpar(2),gpar(3) WRITE( stdout,"(7X,'Modulus of the vector (1/bohr):',F9.5)") & gvec WRITE( stdout,"(7X,'Number of k-points per string:',I4)") nppstr WRITE( stdout,"(7X,'Number of different strings :',I4)") nkort ! --- Information about ionic polarization phases --- WRITE( stdout,"(2/,31X,'IONIC POLARIZATION')") WRITE( stdout,"(31X,18('~'),/)") WRITE( stdout,"(8X,'Note: (mod 1) means that the phases (angles ranging from' & & /,8X,'-pi to pi) have been mapped to the interval [-1/2,+1/2) by',& & /,8X,'dividing by 2*pi; (mod 2) refers to the interval [-1,+1)',& & /)") WRITE( stdout,"(2X,76('='))") WRITE( stdout,"(4X,'Ion',4X,'Species',4X,'Charge',14X, & & 'Position',16X,'Phase')") WRITE( stdout,"(2X,76('-'))") DO na=1,nat WRITE( stdout,"(3X,I3,8X,A2,F12.3,5X,3F8.4,F12.5,' (mod ',I1,')')") & & na,atm(ityp(na)),zv(ityp(na)), & & tau(1,na),tau(2,na),tau(3,na),pdl_ion(na),mod_ion(na) END DO WRITE( stdout,"(2X,76('-'))") WRITE( stdout,"(47X,'IONIC PHASE: ',F9.5,' (mod ',I1,')')") pdl_ion_tot,mod_ion_tot WRITE( stdout,"(2X,76('='))") ! --- Information about electronic polarization phases --- WRITE( stdout,"(2/,28X,'ELECTRONIC POLARIZATION')") WRITE( stdout,"(28X,23('~'),/)") WRITE( stdout,"(8X,'Note: (mod 1) means that the phases (angles ranging from' & & /,8X,'-pi to pi) have been mapped to the interval [-1/2,+1/2) by',& & /,8X,'dividing by 2*pi; (mod 2) refers to the interval [-1,+1)',& & /)") WRITE( stdout,"(2X,76('='))") WRITE( stdout,"(3X,'Spin',4X,'String',5X,'Weight',6X, & & 'First k-point in string',9X,'Phase')") WRITE( stdout,"(2X,76('-'))") DO istring=1,nstring/nspin_lsda ind1=1+(istring-1)*nppstr WRITE( stdout,"(3X,' up ',3X,I5,F14.6,4X,3(F8.4),F12.5,' (mod ',I1,')')") & & istring,wstring(istring), & & xk(1,ind1),xk(2,ind1),xk(3,ind1),pdl_elec(istring),mod_elec(istring) END DO WRITE( stdout,"(2X,76('-'))") ! --- Treat unpolarized/polarized spin cases --- IF (nspin_lsda == 1) THEN ! --- In unpolarized spin, just copy again the same data --- DO istring=1,nstring ind1=1+(istring-1)*nppstr WRITE( stdout,"(3X,'down',3X,I5,F14.6,4X,3(F8.4),F12.5,' (mod ',I1,')')") & istring,wstring(istring), xk(1,ind1),xk(2,ind1),xk(3,ind1), & pdl_elec(istring),mod_elec(istring) END DO ELSE IF (nspin_lsda == 2) THEN ! --- If there is spin polarization, write information for new strings --- DO istring=nstring/2+1,nstring ind1=1+(istring-1)*nppstr WRITE( stdout,"(3X,'down',3X,I4,F15.6,4X,3(F8.4),F12.5,' (mod ',I1,')')") & & istring,wstring(istring), xk(1,ind1),xk(2,ind1),xk(3,ind1), & & pdl_elec(istring),mod_elec(istring) END DO END IF WRITE( stdout,"(2X,76('-'))") IF (noncolin) THEN WRITE( stdout,"(42X,'Average phase : ',F9.5,' (mod ',I1,')')") & pdl_elec_up,mod_elec_up ELSE WRITE( stdout,"(40X,'Average phase (up): ',F9.5,' (mod ',I1,')')") & pdl_elec_up,mod_elec_up WRITE( stdout,"(38X,'Average phase (down): ',F9.5,' (mod ',I1,')')")& pdl_elec_dw,mod_elec_dw WRITE( stdout,"(42X,'ELECTRONIC PHASE: ',F9.5,' (mod ',I1,')')") & pdl_elec_tot,mod_elec_tot ENDIF WRITE( stdout,"(2X,76('='))") ! --- Information about total phase --- WRITE( stdout,"(2/,31X,'SUMMARY OF PHASES')") WRITE( stdout,"(31X,17('~'),/)") WRITE( stdout,"(26X,'Ionic Phase:',F9.5,' (mod ',I1,')')") & pdl_ion_tot,mod_ion_tot WRITE( stdout,"(21X,'Electronic Phase:',F9.5,' (mod ',I1,')')") & pdl_elec_tot,mod_elec_tot WRITE( stdout,"(26X,'TOTAL PHASE:',F9.5,' (mod ',I1,')')") & pdl_tot,mod_tot ! --- Information about the value of polarization --- WRITE( stdout,"(2/,29X,'VALUES OF POLARIZATION')") WRITE( stdout,"(29X,22('~'),/)") WRITE( stdout,"( & & 8X,'The calculation of phases done along the direction of vector ',I1, & & /,8X,'of the reciprocal lattice gives the following contribution to', & & /,8X,'the polarization vector (in different units, and being Omega', & & /,8X,'the volume of the unit cell):')") & gdir ! --- Calculate direction of polarization and modulus of lattice vector --- rmod=SQRT(at(1,gdir)*at(1,gdir)+at(2,gdir)*at(2,gdir) & +at(3,gdir)*at(3,gdir)) upol(:)=at(:,gdir)/rmod rmod=alat*rmod ! --- Give polarization in units of (e/Omega).bohr --- fac=rmod WRITE( stdout,"(/,11X,'P = ',F11.7,' (mod ',F11.7,') (e/Omega).bohr')") & fac*pdl_tot,fac*DBLE(mod_tot) ! --- Give polarization in units of e.bohr --- fac=rmod/omega WRITE( stdout,"(/,11X,'P = ',F11.7,' (mod ',F11.7,') e/bohr^2')") & fac*pdl_tot,fac*DBLE(mod_tot) ! --- Give polarization in SI units (C/m^2) --- fac=(rmod/omega)*(1.60097E-19_dp/5.29177E-11_dp**2) WRITE( stdout,"(/,11X,'P = ',F11.7,' (mod ',F11.7,') C/m^2')") & fac*pdl_tot,fac*DBLE(mod_tot) ! --- Write polarization direction --- WRITE( stdout,"(/,8X,'The polarization direction is: ( ', & & F7.5,' , ',F7.5,' , ',F7.5,' )')") upol(1),upol(2),upol(3) ! --- End of information relative to polarization calculation --- WRITE( stdout,"(/,/,15X,50('=')/,/)") ! ------------------------------------------------------------------------- ! ! finalization ! ! ------------------------------------------------------------------------- ! ! --- Free memory --- DEALLOCATE(mod_elec) DEALLOCATE(pdl_elec) DEALLOCATE(wstring) DEALLOCATE(cphik) DEALLOCATE(loc_k) DEALLOCATE(phik) DEALLOCATE(ln) DEALLOCATE(aux) DEALLOCATE(aux0) DEALLOCATE(psi) IF (l_para) THEN DEALLOCATE ( aux_g ) ELSE DEALLOCATE ( map_g ) ENDIF IF (okvan) THEN CALL deallocate_bec_type ( becp0 ) CALL deallocate_bec_type ( becp_bp ) IF (lspinorb) DEALLOCATE(q_dk_so) END IF !------------------------------------------------------------------------------! END SUBROUTINE c_phase !==============================================================================! espresso-5.1/PW/src/ruotaijk.f900000644000175000017500000000372212341373025014573 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine ruotaijk (s, ftau, i, j, k, nr1, nr2, nr3, ri, rj, rk) !---------------------------------------------------------------------- ! ! This routine computes the rotated of the point i,j,k throught ! the symmetry (s,f). Then it computes the equivalent point ! on the original mesh ! ! USE kinds implicit none ! ! first the dummy variables ! integer :: s (3, 3), ftau (3), i, j, k, nr1, nr2, nr3, ri, rj, rk ! input: the rotation matrix ! input: the fractionary translation ! ! input: the point to rotate ! / ! ! input: the dimension of the mesh ! / ! ! output: the rotated point !/ ! ! local variable ! ! the rotation matrix in scaled crystallographic integer :: ss (3, 3) ! axes. Compatibility with the FFT grid must have ! been checked elsewhere (sgam_at) ! ! this is a temporary fix. Much better would be to pass directly the ss ! matrix ! ss (1, 1) = s (1, 1) ss (2, 1) = s (2, 1) * nr1 / nr2 ss (3, 1) = s (3, 1) * nr1 / nr3 ss (1, 2) = s (1, 2) * nr2 / nr1 ss (2, 2) = s (2, 2) ss (3, 2) = s (3, 2) * nr2 / nr3 ss (1, 3) = s (1, 3) * nr3 / nr1 ss (2, 3) = s (2, 3) * nr3 / nr2 ss (3, 3) = s (3, 3) ! ri = ss (1, 1) * (i - 1) + ss (2, 1) * (j - 1) + ss (3, 1) & * (k - 1) - ftau (1) ri = mod (ri, nr1) + 1 if (ri.lt.1) ri = ri + nr1 rj = ss (1, 2) * (i - 1) + ss (2, 2) * (j - 1) + ss (3, 2) & * (k - 1) - ftau (2) rj = mod (rj, nr2) + 1 if (rj.lt.1) rj = rj + nr2 rk = ss (1, 3) * (i - 1) + ss (2, 3) * (j - 1) + ss (3, 3) & * (k - 1) - ftau (3) rk = mod (rk, nr3) + 1 if (rk.lt.1) rk = rk + nr3 return end subroutine ruotaijk espresso-5.1/PW/src/paw_init.f900000644000175000017500000005127512341373025014563 0ustar mbamba! ! Copyright (C) 2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE paw_init ! USE kinds, ONLY : DP ! IMPLICIT NONE PUBLIC :: PAW_atomic_becsum PUBLIC :: PAW_init_onecenter !PUBLIC :: PAW_increase_lm ! <-- unused #ifdef __MPI PUBLIC :: PAW_post_init #endif PUBLIC :: allocate_paw_internals, deallocate_paw_internals LOGICAL,PARAMETER :: TIMING = .false. !!!========================================================================= CONTAINS ! Allocate PAW internal variables require for SCF calculation SUBROUTINE allocate_paw_internals USE lsda_mod, ONLY : nspin USE ions_base, ONLY : nat USE uspp_param, ONLY : nhm ! USE paw_variables ! IMPLICIT NONE ! ALLOCATE(ddd_paw(nhm*(nhm+1)/2, nat, nspin)) ! END SUBROUTINE allocate_paw_internals ! Called from clean_pw SUBROUTINE deallocate_paw_internals USE uspp_param, ONLY : upf USE ions_base, ONLY : nat, ntyp => nsp USE paw_variables ! IMPLICIT NONE INTEGER :: nt, na ! IF(allocated(ddd_paw)) DEALLOCATE (ddd_paw) ! IF(allocated(rad)) THEN DO nt = 1,ntyp IF(associated(rad(nt)%ww)) DEALLOCATE (rad(nt)%ww) IF(associated(rad(nt)%ylm)) DEALLOCATE (rad(nt)%ylm) IF(associated(rad(nt)%wwylm)) DEALLOCATE (rad(nt)%wwylm) IF(associated(rad(nt)%dylmt)) DEALLOCATE (rad(nt)%dylmt) IF(associated(rad(nt)%dylmp)) DEALLOCATE (rad(nt)%dylmp) IF(associated(rad(nt)%cotg_th)) DEALLOCATE (rad(nt)%cotg_th) IF(associated(rad(nt)%cos_phi)) DEALLOCATE (rad(nt)%cos_phi) IF(associated(rad(nt)%sin_phi)) DEALLOCATE (rad(nt)%sin_phi) IF(associated(rad(nt)%cos_th)) DEALLOCATE (rad(nt)%cos_th) IF(associated(rad(nt)%sin_th)) DEALLOCATE (rad(nt)%sin_th) ENDDO DEALLOCATE(rad) ENDIF IF (allocated(vs_rad)) DEALLOCATE(vs_rad) paw_is_init = .false. RETURN END SUBROUTINE deallocate_paw_internals #ifdef __MPI ! Deallocate variables that are used only at init and then no more necessary. ! This is only useful in parallel, as each node only does a limited number of atoms SUBROUTINE PAW_post_init() ! this routine does nothing at this moment... USE ions_base, ONLY : nat, ntyp=>nsp, ityp USE uspp_param, ONLY : upf USE mp_images, ONLY : me_image, nproc_image, intra_image_comm USE mp, ONLY : mp_sum USE io_global, ONLY : stdout, ionode USE control_flags, ONLY : iverbosity USE funct, ONLY : dft_is_hybrid ! INTEGER :: nt, np, ia, ia_s, ia_e, mykey INTEGER :: info(0:nproc_image-1,ntyp) ! ! FIXME: the PAW EXX code is not parallelized (but it is very fast) IF ( dft_is_hybrid() ) RETURN IF(ionode) & WRITE(stdout,"(5x,a)") & 'Checking if some PAW data can be deallocated... ' info(:,:) = 0 CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) ! ! types : & DO nt = 1,ntyp DO ia =ia_s, ia_e IF (ityp(ia) == nt.or..not.upf(nt)%tpawp ) CYCLE types ENDDO ! If I can't find any atom within first_nat and last_nat ! which is of type nt, then I can deallocate: IF (ASSOCIATED(upf(nt)%paw%ae_rho_atc )) & DEALLOCATE( upf(nt)%paw%ae_rho_atc ) IF (ASSOCIATED(upf(nt)%paw%pfunc)) DEALLOCATE( upf(nt)%paw%pfunc ) IF (ASSOCIATED(upf(nt)%paw%ptfunc)) DEALLOCATE( upf(nt)%paw%ptfunc ) IF (ASSOCIATED(upf(nt)%paw%pfunc_rel)) DEALLOCATE(upf(nt)%paw%pfunc_rel) IF (ASSOCIATED(upf(nt)%paw%ae_vloc)) DEALLOCATE( upf(nt)%paw%ae_vloc ) info(me_image,nt) = 1 ENDDO types CALL mp_sum(info, intra_image_comm) IF(ionode .and. iverbosity>0) THEN DO np = 0,nproc_image-1 DO nt = 1,ntyp IF( info(np,nt) > 0 ) & WRITE(stdout,"(7x,a,i4,a,10i3)") "node ",np,& ", deallocated PAW data for type:", nt ENDDO ENDDO ENDIF END SUBROUTINE PAW_post_init #endif ! Initialize becsum with atomic occupations (for PAW atoms only) ! Notice: requires exact correspondence chi <--> beta in the atom, ! that is that all wavefunctions considered for PAW generation are ! counted in chi (otherwise the array "oc" does not correspond to beta) SUBROUTINE PAW_atomic_becsum() USE kinds, ONLY : dp USE uspp, ONLY : nhtoj, nhtol, indv, becsum USE scf, ONLY : rho USE uspp_param, ONLY : upf, nh, nhm USE ions_base, ONLY : nat, ityp USE lsda_mod, ONLY : nspin, starting_magnetization USE paw_variables, ONLY : okpaw USE paw_symmetry, ONLY : PAW_symmetrize USE random_numbers, ONLY : randy USE basis, ONLY : starting_wfc USE noncollin_module, ONLY : nspin_mag, angle1, angle2 IMPLICIT NONE !REAL(DP), INTENT(INOUT) :: becsum(nhm*(nhm+1)/2,nat,nspin) INTEGER :: ispin, na, nt, ijh, ih, jh, nb, mb REAL(DP) :: noise = 0._dp ! IF (.NOT. okpaw) RETURN IF (.NOT. allocated(becsum)) & CALL errore('PAW_init_becsum', & 'Something bad has happened: becsum is not allocated yet', 1) ! Add a bit of random noise if not starting from atomic or saved wfcs: IF ( starting_wfc=='atomic+random') noise = 0.05_dp IF ( starting_wfc=='random') noise = 0.10_dp ! ! becsum=0.0_DP na_loop: DO na = 1, nat nt = ityp(na) is_paw: IF (upf(nt)%tpawp) THEN ! ijh = 1 ih_loop: DO ih = 1, nh(nt) nb = indv(ih,nt) ! IF (nspin==1) THEN ! becsum(ijh,na,1) = upf(nt)%paw%oc(nb) / DBLE(2*nhtol(ih,nt)+1) ! ELSE IF (nspin==2) THEN ! becsum(ijh,na,1)=0.5_dp*(1._dp+starting_magnetization(nt))* & upf(nt)%paw%oc(nb) / DBLE(2*nhtol(ih,nt)+1) becsum(ijh,na,2)=0.5_dp*(1._dp-starting_magnetization(nt))* & upf(nt)%paw%oc(nb) / DBLE(2*nhtol(ih,nt)+1) ! ELSE IF (nspin==4) THEN becsum(ijh,na,1) = upf(nt)%paw%oc(nb)/DBLE(2*nhtol(ih,nt)+1) IF (nspin_mag==4) THEN becsum(ijh,na,2) = becsum(ijh,na,1)* & starting_magnetization(nt)* & sin(angle1(nt))*cos(angle2(nt)) becsum(ijh,na,3) = becsum(ijh,na,1)* & starting_magnetization(nt)* & sin(angle1(nt))*sin(angle2(nt)) becsum(ijh,na,4) = becsum(ijh,na,1)* & starting_magnetization(nt)* & cos(angle1(nt)) END IF END IF ijh = ijh + 1 ! jh_loop: & DO jh = ( ih + 1 ), nh(nt) !mb = indv(jh,nt) DO ispin = 1, nspin_mag if (noise > 0._dp) & becsum(ijh,na,ispin) = becsum(ijh,na,ispin) + noise *2._dp*(.5_dp-randy()) END DO ! ijh = ijh + 1 ! END DO jh_loop END DO ih_loop END IF is_paw END DO na_loop ! copy becsum in scf structure and symmetrize it rho%bec(:,:,:) = becsum(:,:,:) CALL PAW_symmetrize(rho%bec) END SUBROUTINE PAW_atomic_becsum ! This allocates space to store onecenter potential and ! calls PAW_rad_init to initialize onecenter integration. SUBROUTINE PAW_init_onecenter() USE ions_base, ONLY : nat, ityp, ntyp => nsp USE paw_variables, ONLY : xlm, lm_fact, lm_fact_x, & rad, paw_is_init, vs_rad, & total_core_energy, only_paw USE atom, ONLY : g => rgrid USE radial_grids, ONLY : do_mesh USE uspp_param, ONLY : upf USE lsda_mod, ONLY : nspin USE spin_orb, ONLY : domag USE noncollin_module, ONLY : noncolin USE funct, ONLY : dft_is_gradient USE mp_images, ONLY : me_image, nproc_image USE mp, ONLY : mp_sum INTEGER :: nt, lmax_safe, lmax_add, ia, ia_s, ia_e, na, mykey, max_mesh, & max_nx CHARACTER(len=12) :: env=' ' IF( paw_is_init ) THEN CALL errore('PAW_init_onecenter', 'Already initialized!', 1) RETURN ENDIF ! ! Init only for the atoms that it will actually use later. ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) ! Sum all core energies to get... total_core_energy = 0._dp only_paw = .true. max_nx=0 max_mesh=0 DO na = 1, nat only_paw = only_paw .and. upf(ityp(na))%tpawp ! IF( upf(ityp(na))%tpawp ) & total_core_energy = total_core_energy & +upf(ityp(na))%paw%core_energy ENDDO ! initialize for integration on angular momentum and gradient, integrating ! up to 2*lmaxq (twice the maximum angular momentum of rho) is enough for ! H energy and for XC energy. If I have gradient correction I have to go a bit higher ALLOCATE( rad(ntyp) ) DO nt = 1,ntyp NULLIFY (rad(nt)%ww) NULLIFY (rad(nt)%ylm) NULLIFY (rad(nt)%wwylm) NULLIFY (rad(nt)%dylmt) NULLIFY (rad(nt)%dylmp) NULLIFY (rad(nt)%cotg_th) NULLIFY (rad(nt)%cos_phi) NULLIFY (rad(nt)%sin_phi) NULLIFY (rad(nt)%cos_th) NULLIFY (rad(nt)%sin_th) ENDDO ! types : & DO nt = 1,ntyp IF(.not.upf(nt)%tpawp) CYCLE types ! only allocate radial grid integrator for atomic species ! that are actually present on this parallel node: DO ia = ia_s, ia_e IF (ityp(ia) == nt ) THEN IF (upf(nt)%lmax_rho == 0) THEN ! no need for more than one direction, when it is spherical! lmax_safe = 0 lmax_add = 0 ELSE ! IF ( dft_is_gradient() ) THEN ! Integrate up to a higher maximum lm if using gradient ! correction check expression for d(y_lm)/d\theta for details lmax_safe = lm_fact_x*upf(nt)%lmax_rho lmax_add = xlm ELSE ! no gradient correction: lmax_safe = lm_fact*upf(nt)%lmax_rho lmax_add = 0 ENDIF ENDIF ! !CALL get_environment_variable('LMAX', env) !READ(env, '(i)'), lmax_safe !lmax_safe=max(lmax_safe, upf(nt)%lmax_rho) CALL PAW_rad_init(lmax_safe, lmax_add, rad(nt)) max_mesh = MAX( max_mesh, g(nt)%mesh ) max_nx = MAX( max_nx, rad(nt)%nx ) ! CYCLE types ENDIF ENDDO ENDDO types IF (noncolin.and.domag) ALLOCATE(vs_rad(max_mesh,max_nx,nat)) paw_is_init = .true. END SUBROUTINE PAW_init_onecenter #ifdef __COMPILE_THIS_UNUSED_FUNCTION !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! Increase maximum angularm momentum component for integration !!! from l to l+incr. SUBROUTINE PAW_increase_lm(incr) USE ions_base, ONLY : nat, ityp, ntyp => nsp USE paw_variables, ONLY : rad, paw_is_init USE mp_images, ONLY : me_image, nproc_image, intra_image_comm USE io_global, ONLY : stdout, ionode INTEGER,INTENT(IN) :: incr ! required increase in lm precision INTEGER :: nt, lmax_safe, ia, ia_s, ia_e, mykey IF( .not. paw_is_init .or. .not. allocated(rad)) THEN CALL infomsg('PAW_increase_lm', & 'WARNING: trying to increase max paw angular momentum, but it is not set!') RETURN ENDIF ! Parallel: divide among processors for the same image CALL block_distribute( nat, me_image, nproc_image, ia_s, ia_e, mykey ) IF (ionode) & WRITE( stdout, '(5x,a)') & "WARNING: increasing angular resolution of radial grid for PAW." types : & DO nt = 1,ntyp IF (ionode) THEN WRITE( stdout, '(7x,a,i3,a,i3,a,i3,a,i3)') & "type: ", nt, & ", prev. max{l}:",rad(nt)%lmax, & ", cur. max{l}:",rad(nt)%lmax+incr,& ", directions:",((rad(nt)%lmax+1+incr)*(rad(nt)%lmax+2+incr))/2 ENDIF ! only allocate radial grid integrator for atomic species ! that are actually present on this parallel node: DO ia = ia_s, ia_e IF (ityp(ia) == nt ) THEN IF(associated(rad(nt)%ww)) DEALLOCATE (rad(nt)%ww) IF(associated(rad(nt)%ylm)) DEALLOCATE (rad(nt)%ylm) IF(associated(rad(nt)%wwylm)) DEALLOCATE (rad(nt)%wwylm) IF(associated(rad(nt)%dylmt)) DEALLOCATE (rad(nt)%dylmt) IF(associated(rad(nt)%dylmp)) DEALLOCATE (rad(nt)%dylmp) IF(associated(rad(nt)%cos_phi)) DEALLOCATE (rad(nt)%cos_phi) IF(associated(rad(nt)%sin_phi)) DEALLOCATE (rad(nt)%sin_phi) IF(associated(rad(nt)%cos_th)) DEALLOCATE (rad(nt)%cos_th) IF(associated(rad(nt)%sin_th)) DEALLOCATE (rad(nt)%sin_th) IF(associated(rad(nt)%cotg_th)) DEALLOCATE (rad(nt)%cotg_th) CALL PAW_rad_init(rad(nt)%lmax+incr, rad(nt)) ! CYCLE types ENDIF ENDDO ENDDO types !paw_is_init = .true. END SUBROUTINE PAW_increase_lm #endif !___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!!! !!! initialize several quantities related to radial integration: spherical harmonics and their !!! gradients along a few (depending on lmaxq) directions, weights for spherical integration !! !!! IMPORTANT: routine PW/summary.f90 has the initialization parameters hardcoded in it !!! remember to update it if you change this!!! SUBROUTINE PAW_rad_init(l, ls, rad) USE constants, ONLY : pi, fpi, eps8 USE funct, ONLY : dft_is_gradient USE paw_variables, ONLY : paw_radial_integrator INTEGER,INTENT(IN) :: l ! max angular momentum component that will be ! integrated exactly (to numerical precision) INTEGER,INTENT(IN) :: ls! additional max l that will be used when computing ! gradient and divergence in speherical coords TYPE(paw_radial_integrator),INTENT(OUT) :: & rad ! containt weights and more info to integrate ! on radial grid up to lmax = l REAL(DP),ALLOCATABLE :: x(:),& ! nx versors in smart directions w(:),& ! temporary integration weights r(:,:),& ! integration directions r2(:),& ! square modulus of r ath(:),aph(:)! angles in sph coords for r INTEGER :: i,ii,n,nphi ! counters INTEGER :: lm,m ! indexes for ang.mom REAL(DP) :: phi,dphi,rho ! spherical coordinates REAL(DP) :: z ! cartesian coordinates ! for gradient corrections: INTEGER :: ipol REAL(DP),ALLOCATABLE :: aux(:,:) ! workspace REAL(DP) :: vth(3), vph(3) !versors for theta and phi if(TIMING) CALL start_clock ('PAW_rad_init') ! maximum value of l correctly integrated rad%lmax = l+ls rad%ladd = ls ! volume element for angle phi nphi = rad%lmax+1+mod(rad%lmax,2) dphi = 2._dp*pi/nphi !(rad%lmax+1) ! number of samples for theta angle n = (rad%lmax+2)/2 ALLOCATE(x(n),w(n)) ! compute weights for theta integration CALL gauss_weights(x,w,n) ! number of integration directions rad%nx = n*nphi !(rad%lmax+1) !write(*,*) "paw --> directions",rad%nx," lmax:",rad%lmax ! ALLOCATE(r(3,rad%nx),r2(rad%nx), rad%ww(rad%nx), ath(rad%nx), aph(rad%nx)) ! compute real weights multiplying theta and phi weights ii = 0 do i=1,n z = x(i) rho=sqrt(1._dp-z**2) do m=1,nphi !rad%lmax ii= ii+1 phi = dphi*DBLE(m-1) r(1,ii) = rho*cos(phi) r(2,ii) = rho*sin(phi) r(3,ii) = z rad%ww(ii) = w(i)*2._dp*pi/nphi !(rad%lmax+1) r2(ii) = r(1,ii)**2+r(2,ii)**2+r(3,ii)**2 ! these will be used later: ath(ii) = acos(z/sqrt(r2(ii))) aph(ii) = phi end do end do ! cleanup DEALLOCATE (x,w) ! initialize spherical harmonics that will be used ! to convert rho_lm to radial grid rad%lm_max = (rad%lmax+1)**2 ALLOCATE( rad%ylm(rad%nx, rad%lm_max) ) CALL ylmr2(rad%lm_max, rad%nx, r,r2,rad%ylm) ! As I will mostly use the product ww*ylm I can ! precompute it here: ALLOCATE( rad%wwylm(rad%nx, rad%lm_max) ) DO i = 1,rad%nx DO lm = 1, rad%lm_max rad%wwylm(i, lm) = rad%ww(i) * rad%ylm(i, lm) ENDDO ENDDO ALLOCATE(rad%cos_phi(rad%nx) ) ALLOCATE(rad%sin_phi(rad%nx) ) ALLOCATE(rad%cos_th(rad%nx) ) ALLOCATE(rad%sin_th(rad%nx) ) DO i = 1, rad%nx rad%cos_phi(i) = cos(aph(i)) rad%sin_phi(i) = sin(aph(i)) rad%cos_th(i) = cos(ath(i)) rad%sin_th(i) = sin(ath(i)) ENDDO ! if gradient corrections will be used than we need ! to initialize the gradient of ylm, as we are working in spherical ! coordinates the formula involves \hat{theta} and \hat{phi} gradient: IF (dft_is_gradient()) THEN ALLOCATE( rad%dylmt(rad%nx,rad%lm_max),& rad%dylmp(rad%nx,rad%lm_max),& aux(rad%nx,rad%lm_max) ) ALLOCATE(rad%cotg_th(rad%nx) ) rad%dylmt(:,:) = 0._dp rad%dylmp(:,:) = 0._dp ! compute derivative along x, y and z => gradient, then compute the ! scalar products with \hat{theta} and \hat{phi} and store them in ! dylmt and dylmp respectively DO ipol = 1,3 !x,y,z CALL dylmr2(rad%lm_max, rad%nx, r,r2, aux, ipol) DO lm = 1, rad%lm_max DO i = 1, rad%nx vph = (/-sin(aph(i)), cos(aph(i)), 0._dp/) ! this is the explicit form, but the cross product trick (below) is much faster: ! vth = (/cos(aph(i))*cos(ath(i)), sin(aph(i))*cos(ath(i)), -sin(ath(i))/) vth = (/vph(2)*r(3,i)-vph(3)*r(2,i),& vph(3)*r(1,i)-vph(1)*r(3,i),& vph(1)*r(2,i)-vph(2)*r(1,i)/) rad%dylmt(i,lm) = rad%dylmt(i,lm) + aux(i,lm)*vth(ipol) ! CHECK: the 1/sin(th) factor should be correct, but deals wrong result, why? rad%dylmp(i,lm) = rad%dylmp(i,lm) + aux(i,lm)*vph(ipol) !/sin(ath(i)) ENDDO ENDDO ENDDO DO i = 1, rad%nx rad%cotg_th(i) = cos(ath(i))/sin(ath(i)) ENDDO DEALLOCATE(aux) ENDIF gradient ! cleanup DEALLOCATE (r,r2,ath,aph) if(TIMING) CALL stop_clock ('PAW_rad_init') CONTAINS ! Computes weights for gaussian integrals, ! from numerical recipes SUBROUTINE gauss_weights(x,w,n) USE constants, ONLY : pi, eps => eps12 implicit none integer :: n, i,j,m real(8) :: x(n),w(n), z,z1, p1,p2,p3,pp m=(n+1)/2 do i=1,m z1 = 2._dp z=cos(pi*(i-0.25_dp)/(n+0.5_dp)) do while (abs(z-z1).gt.eps) p1=1._dp p2=0._dp do j=1,n p3=p2 p2=p1 p1=((2._dp*j-1._dp)*z*p2-(j-1._dp)*p3)/j end do pp = n*(z*p1-p2)/(z*z-1._dp) z1=z z=z1-p1/pp end do x(i) = -z x(n+1-i) = z w(i) = 2._dp/((1._dp-z*z)*pp*pp) w(n+1-i) = w(i) end do END SUBROUTINE gauss_weights END SUBROUTINE PAW_rad_init END MODULE paw_init espresso-5.1/PW/src/openfil.f900000644000175000017500000000473112341373025014400 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE openfil() !---------------------------------------------------------------------------- ! ! ... This routine opens some files needed to the self consistent run, ! ... sets various file names, units, record lengths ! ... All units are set in Modules/io_files.f90 ! USE kinds, ONLY : DP USE buffers, ONLY : open_buffer USE control_flags, ONLY : io_level USE io_global, ONLY : stdout USE basis, ONLY : natomwfc, starting_wfc USE wvfct, ONLY : nbnd, npwx USE fixed_occ, ONLY : one_atom_occupations USE ldaU, ONLY : lda_plus_U, U_projection, nwfcU USE io_files, ONLY : prefix, iunpun, iunsat, iunigk, & iunhub, nwordwfcU, nwordwfc, nwordatwfc,& iunefield, iunefieldm, iunefieldp, seqopn USE noncollin_module, ONLY : npol USE bp, ONLY : lelfield USE wannier_new, ONLY : use_wannier ! IMPLICIT NONE ! LOGICAL :: exst ! ! ... Files needed for LDA+U ! ... iunsat contains the (orthogonalized) atomic wfcs * S ! ... iunhub as above, only wfcs with a U correction ! ! ... nwordwfc is the record length (IN COMPLEX WORDS) ! ... for the direct-access file containing wavefunctions ! ... nwordatwfc as above (IN REAL WORDS) for atomic wavefunctions ! nwordwfc = nbnd*npwx*npol nwordatwfc= npwx*natomwfc*npol nwordwfcU = npwx*nwfcU*npol ! IF ( lda_plus_u .AND. (U_projection.NE.'pseudo') ) & CALL open_buffer ( iunhub, 'hub', nwordwfcU, io_level, exst ) IF ( use_wannier .OR. one_atom_occupations ) & CALL open_buffer ( iunsat, 'satwfc', nwordatwfc, io_level, exst ) ! ! ... iunigk contains the number of PW and the indices igk ! CALL seqopn( iunigk, 'igk', 'UNFORMATTED', exst ) ! ! ... open units for electric field calculations ! IF ( lelfield ) THEN CALL open_buffer( iunefield , 'ewfc' , nwordwfc, io_level, exst ) CALL open_buffer( iunefieldm, 'ewfcm', nwordwfc, io_level, exst ) CALL open_buffer( iunefieldp, 'ewfcp', nwordwfc, io_level, exst ) END IF ! RETURN ! END SUBROUTINE openfil espresso-5.1/PW/src/manypw.f900000644000175000017500000000620712341373025014257 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- PROGRAM manypw !---------------------------------------------------------------------------- ! ! ... Poor-man pw.x parallel launcher. Usage (for mpirun): ! ... mpirun -np Np many.x -ni Ni [other options] ! ... or whatever is appropriate for your parallel environment ! ... Starts Ni pw.x instances each running on Np/Ni processors ! ... Each pw.x instances ! ... * reads input data from from pw_N.in, N=0,..,,Ni-1 if no input ! ... file is specified via the -i option; from "input_file"_N ! ... if command-line options -i "input_file" is specified ! ... * saves temporary and final data to "outdir"_N/ directory ! ... (or to tmp_N/ if outdir='./') ! ... * writes output to pw_N.out in the current directory if no input ! ... file is specified via the -i option; to "input_file"_N.out ! ... if command-line options -i "input_file" is specified ! USE input_parameters, ONLY : outdir USE environment, ONLY : environment_start, environment_end USE io_global, ONLY : ionode, ionode_id, stdout USE mp_global, ONLY : mp_startup USE mp_images, ONLY : my_image_id USE read_input, ONLY : read_input_file USE command_line_options, ONLY: input_file_ ! IMPLICIT NONE ! INTEGER :: i, exit_status LOGICAL :: opnd CHARACTER(LEN=256) :: filin, filout CHARACTER(LEN=7) :: image_label CHARACTER(LEN=6), EXTERNAL :: int_to_char ! ! CALL mp_startup ( start_images=.true. ) CALL environment_start ( 'MANYPW' ) ! ! ... Image-specific input files ! image_label = '_' // int_to_char(my_image_id) IF ( TRIM (input_file_) == ' ') THEN filin = 'pw' // TRIM(image_label) // '.in' ELSE filin = TRIM(input_file_) // TRIM(image_label) // '.in' END IF ! ! ... Here open image-specific output files ! IF ( ionode ) THEN ! INQUIRE ( UNIT = stdout, OPENED = opnd ) IF (opnd) CLOSE ( UNIT = stdout ) IF ( TRIM (input_file_) == ' ') THEN filout = 'pw' // TRIM(image_label) // '.out' ELSE filout = TRIM(input_file_) // TRIM(image_label) // '.out' END IF OPEN( UNIT = stdout, FILE = TRIM(filout), STATUS = 'UNKNOWN' ) ! END IF ! CALL start_clock('PWSCF') CALL read_input_file ( prog='PW', input_file_=filin ) ! ! ... Set image-specific value for "outdir", starting from input value ! ... (read in read_input_file) ! DO i=LEN_TRIM(outdir),1,-1 IF ( outdir(i:i) /= '/' .AND. outdir(i:i) /= '.' ) EXIT END DO ! ... i = position of last character different from '/' and '.' IF ( i == 0 ) THEN outdir = 'tmp' // trim(image_label) // '/' ELSE outdir = outdir(1:i) // trim(image_label) // '/' END IF ! ! ... Perform actual calculation ! CALL run_pwscf ( exit_status ) ! CALL stop_run( exit_status ) CALL do_stop( exit_status ) ! STOP ! END PROGRAM manypw espresso-5.1/PW/src/stres_us.f900000644000175000017500000005554312341373025014622 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE stres_us( ik, gk, sigmanlc ) !---------------------------------------------------------------------------- ! ! nonlocal (separable pseudopotential) contribution to the stress ! NOTICE: sum of partial results over procs is performed in calling routine ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE constants, ONLY : eps8 USE klist, ONLY : nks, xk USE lsda_mod, ONLY : current_spin, lsda, isk USE wvfct, ONLY : npw, npwx, nbnd, igk, wg, et USE control_flags, ONLY : gamma_only USE uspp_param, ONLY : upf, lmaxkb, nh, newpseudo, nhm USE uspp, ONLY : nkb, vkb, qq, deeq, deeq_nc, qq_so USE wavefunctions_module, ONLY : evc USE spin_orb, ONLY : lspinorb USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : noncolin, npol USE mp_pools, ONLY : me_pool, root_pool USE mp_bands, ONLY : intra_bgrp_comm, me_bgrp, root_bgrp USE becmod, ONLY : allocate_bec_type, deallocate_bec_type, & bec_type, becp, calbec USE mp, ONLY : mp_sum, mp_get_comm_null, mp_circular_shift_left ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: ik REAL(DP), INTENT(IN) :: gk(3,npw) REAL(DP), INTENT(INOUT):: sigmanlc(3,3) ! REAL(DP), ALLOCATABLE :: qm1(:) REAL(DP) :: q INTEGER :: i ! ! IF ( nkb == 0 ) RETURN ! IF ( lsda ) current_spin = isk(ik) IF ( nks > 1 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! CALL allocate_bec_type ( nkb, nbnd, becp, intra_bgrp_comm ) CALL calbec( npw, vkb, evc, becp ) ! ALLOCATE( qm1( npwx ) ) DO i = 1, npw q = SQRT( gk(1,i)**2 + gk(2,i)**2 + gk(3,i)**2 ) IF ( q > eps8 ) THEN qm1(i) = 1.D0 / q ELSE qm1(i) = 0.D0 END IF END DO ! IF ( gamma_only ) THEN ! CALL stres_us_gamma() ! ELSE ! CALL stres_us_k() ! END IF ! DEALLOCATE( qm1 ) CALL deallocate_bec_type ( becp ) ! RETURN ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE stres_us_gamma() !----------------------------------------------------------------------- ! ! ... gamma version ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: na, np, ibnd, ipol, jpol, l, i, & ikb, jkb, ih, jh, ijkb0, ibnd_loc, & nproc, nbnd_loc, nbnd_begin, icyc INTEGER, EXTERNAL :: ldim_block, lind_block, gind_block REAL(DP) :: fac, xyz(3,3), evps, ddot REAL(DP), ALLOCATABLE :: deff(:,:,:) COMPLEX(DP), ALLOCATABLE :: work1(:), work2(:), dvkb(:,:) ! dvkb contains the derivatives of the kb potential COMPLEX(DP) :: ps ! xyz are the three unit vectors in the x,y,z directions DATA xyz / 1.0d0, 0.0d0, 0.0d0, 0.0d0, 1.0d0, 0.0d0, 0.0d0, 0.0d0, 1.0d0 / ! ! IF( becp%comm /= mp_get_comm_null() ) THEN nproc = becp%nproc nbnd_loc = becp%nbnd_loc nbnd_begin = becp%ibnd_begin IF( ( nbnd_begin + nbnd_loc - 1 ) > nbnd ) nbnd_loc = nbnd - nbnd_begin + 1 ELSE nproc = 1 nbnd_loc = nbnd nbnd_begin = 1 END IF ALLOCATE( work1( npwx ), work2( npwx ) ) ALLOCATE( deff(nhm,nhm,nat) ) ! ! ... diagonal contribution - if the result from "calbec" are not ! ... distributed, must be calculated on a single processor ! evps = 0.D0 IF ( nproc == 1 .AND. me_pool /= root_pool ) GO TO 100 ! DO ibnd_loc = 1, nbnd_loc ibnd = ibnd_loc + becp%ibnd_begin - 1 CALL compute_deff ( deff, et(ibnd,ik) ) fac = wg(ibnd,ik) ijkb0 = 0 DO np = 1, ntyp DO na = 1, nat IF ( ityp(na) == np ) THEN DO ih = 1, nh(np) ikb = ijkb0 + ih evps = evps + fac * deff(ih,ih,na) * & ABS( becp%r(ikb,ibnd_loc) )**2 ! IF ( upf(np)%tvanp .OR. newpseudo(np) ) THEN ! ! ... only in the US case there is a contribution ! ... for jh<>ih ! ... we use here the symmetry in the interchange of ! ... ih and jh ! DO jh = ( ih + 1 ), nh(np) jkb = ijkb0 + jh evps = evps + deff(ih,jh,na) * fac * 2.D0 * & becp%r(ikb,ibnd_loc) * becp%r(jkb,ibnd_loc) END DO END IF END DO ijkb0 = ijkb0 + nh(np) END IF END DO END DO END DO ! 100 CONTINUE ! ! ... non diagonal contribution - derivative of the bessel function !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ALLOCATE( dvkb( npwx, nkb ) ) ! CALL gen_us_dj( ik, dvkb ) ! DO icyc = 0, nproc -1 ! DO ibnd_loc = 1, nbnd_loc ! ibnd = ibnd_loc + becp%ibnd_begin - 1 CALL compute_deff ( deff, et(ibnd,ik) ) work2(:) = (0.D0,0.D0) ijkb0 = 0 DO np = 1, ntyp DO na = 1, nat IF ( ityp(na) == np ) THEN DO ih = 1, nh(np) ikb = ijkb0 + ih IF ( .NOT. ( upf(np)%tvanp .OR. newpseudo(np) ) ) THEN ps = becp%r(ikb,ibnd_loc) * deff(ih,ih,na) ELSE ! ! ... in the US case there is a contribution ! ... also for jh<>ih ! ps = (0.D0,0.D0) DO jh = 1, nh(np) jkb = ijkb0 + jh ps = ps + becp%r(jkb,ibnd_loc) * deff(ih,jh,na) END DO END IF CALL zaxpy( npw, ps, dvkb(1,ikb), 1, work2, 1 ) END DO ijkb0 = ijkb0 + nh(np) END IF END DO END DO ! ! ... a factor 2 accounts for the other half of the G-vector sphere ! DO ipol = 1, 3 DO jpol = 1, ipol DO i = 1, npw work1(i) = evc(i,ibnd) * gk(ipol,i) * gk(jpol,i) * qm1(i) END DO sigmanlc(ipol,jpol) = sigmanlc(ipol,jpol) - & 4.D0 * wg(ibnd,ik) * & ddot( 2 * npw, work1, 1, work2, 1 ) END DO END DO END DO IF ( nproc > 1 ) THEN CALL mp_circular_shift_left(becp%r, icyc, becp%comm) CALL mp_circular_shift_left(becp%ibnd_begin, icyc, becp%comm) CALL mp_circular_shift_left(nbnd_loc, icyc, becp%comm) END IF END DO ! ! ... non diagonal contribution - derivative of the spherical harmonics ! ... (no contribution from l=0) ! IF ( lmaxkb == 0 ) GO TO 10 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! DO ipol = 1, 3 CALL gen_us_dy( ik, xyz(1,ipol), dvkb ) DO icyc = 0, nproc -1 DO ibnd_loc = 1, nbnd_loc ibnd = ibnd_loc + becp%ibnd_begin - 1 CALL compute_deff ( deff, et(ibnd,ik) ) work2(:) = (0.D0,0.D0) ijkb0 = 0 DO np = 1, ntyp DO na = 1, nat IF ( ityp(na) == np ) THEN DO ih = 1, nh(np) ikb = ijkb0 + ih IF ( .NOT. ( upf(np)%tvanp .OR. newpseudo(np) ) ) THEN ps = becp%r(ikb,ibnd_loc) * deff(ih,ih,na) ELSE ! ! ... in the US case there is a contribution ! ... also for jh<>ih ! ps = (0.D0,0.D0) DO jh = 1, nh(np) jkb = ijkb0 + jh ps = ps + becp%r(jkb,ibnd_loc)*deff(ih,jh,na) END DO END IF CALL zaxpy( npw, ps, dvkb(1,ikb), 1, work2, 1 ) END DO ijkb0 = ijkb0 + nh(np) END IF END DO END DO ! ! ... a factor 2 accounts for the other half of the G-vector sphere ! DO jpol = 1, ipol DO i = 1, npw work1(i) = evc(i,ibnd) * gk(jpol,i) END DO sigmanlc(ipol,jpol) = sigmanlc(ipol,jpol) - & 4.D0 * wg(ibnd,ik) * & ddot( 2 * npw, work1, 1, work2, 1 ) END DO END DO IF ( nproc > 1 ) THEN CALL mp_circular_shift_left(becp%r, icyc, becp%comm) CALL mp_circular_shift_left(becp%ibnd_begin, icyc, becp%comm) CALL mp_circular_shift_left(nbnd_loc, icyc, becp%comm) END IF ENDDO END DO 10 CONTINUE ! DO l = 1, 3 sigmanlc(l,l) = sigmanlc(l,l) - evps END DO ! DEALLOCATE( dvkb ) DEALLOCATE( deff, work2, work1 ) ! RETURN ! END SUBROUTINE stres_us_gamma ! ! !---------------------------------------------------------------------- SUBROUTINE stres_us_k() !---------------------------------------------------------------------- ! ! ... k-points version ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: na, np, ibnd, ipol, jpol, l, i, & ikb, jkb, ih, jh, ijkb0, is, js, ijs REAL(DP) :: fac, xyz (3, 3), evps, ddot COMPLEX(DP), ALLOCATABLE :: work1(:), work2(:), dvkb(:,:) COMPLEX(DP), ALLOCATABLE :: work2_nc(:,:) COMPLEX(DP), ALLOCATABLE :: deff_nc(:,:,:,:) REAL(DP), ALLOCATABLE :: deff(:,:,:) ! dvkb contains the derivatives of the kb potential COMPLEX(DP) :: ps, ps_nc(2) ! xyz are the three unit vectors in the x,y,z directions DATA xyz / 1.0d0, 0.0d0, 0.0d0, 0.0d0, 1.0d0, 0.0d0, 0.0d0, 0.0d0, 1.0d0 / ! ! if (noncolin) then ALLOCATE( work2_nc(npwx,npol) ) ALLOCATE( deff_nc(nhm,nhm,nat,nspin) ) else ALLOCATE( deff(nhm,nhm,nat) ) endif ! ALLOCATE( work1(npwx), work2(npwx) ) ! evps = 0.D0 ! ... diagonal contribution ! IF ( me_bgrp /= root_bgrp ) GO TO 100 ! ! ... the contribution is calculated only on one processor because ! ... partial results are later summed over all processors ! DO ibnd = 1, nbnd fac = wg(ibnd,ik) IF (ABS(fac) < 1.d-9) CYCLE IF (noncolin) THEN CALL compute_deff_nc(deff_nc,et(ibnd,ik)) ELSE CALL compute_deff(deff,et(ibnd,ik)) ENDIF ijkb0 = 0 DO np = 1, ntyp DO na = 1, nat IF ( ityp(na) == np ) THEN DO ih = 1, nh(np) ikb = ijkb0 + ih IF (noncolin) THEN ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 evps=evps+fac*deff_nc(ih,ih,na,ijs)* & CONJG(becp%nc(ikb,is,ibnd))* & becp%nc(ikb,js,ibnd) END DO END DO ELSE evps = evps+fac*deff(ih,ih,na)*ABS(becp%k(ikb,ibnd) )**2 END IF ! IF ( upf(np)%tvanp .OR. newpseudo(np) ) THEN ! ! ... only in the US case there is a contribution ! ... for jh<>ih ! ... we use here the symmetry in the interchange of ! ... ih and jh ! DO jh = ( ih + 1 ), nh(np) jkb = ijkb0 + jh IF (noncolin) THEN ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 evps = evps+2.d0*fac& *DBLE(deff_nc(ih,jh,na,ijs)* & (CONJG( becp%nc(ikb,is,ibnd) ) * & becp%nc(jkb,js,ibnd)) ) END DO END DO ELSE evps = evps + deff(ih,jh,na) * fac * 2.D0 * & DBLE( CONJG( becp%k(ikb,ibnd) ) * & becp%k(jkb,ibnd) ) END IF END DO END IF END DO ijkb0 = ijkb0 + nh(np) END IF END DO END DO END DO DO l = 1, 3 sigmanlc(l,l) = sigmanlc(l,l) - evps END DO ! 100 CONTINUE ! ! ... non diagonal contribution - derivative of the bessel function ! ALLOCATE( dvkb( npwx, nkb ) ) ! CALL gen_us_dj( ik, dvkb ) ! DO ibnd = 1, nbnd IF (noncolin) THEN work2_nc = (0.D0,0.D0) CALL compute_deff_nc(deff_nc,et(ibnd,ik)) ELSE work2 = (0.D0,0.D0) CALL compute_deff(deff,et(ibnd,ik)) ENDIF ijkb0 = 0 DO np = 1, ntyp DO na = 1, nat IF ( ityp(na) == np ) THEN DO ih = 1, nh(np) ikb = ijkb0 + ih IF ( .NOT. ( upf(np)%tvanp .OR. newpseudo(np) ) ) THEN IF (noncolin) THEN if (lspinorb) call errore('stres_us','wrong case',1) ijs=0 ps_nc=(0.D0, 0.D0) DO is=1,npol DO js=1,npol ijs=ijs+1 ps_nc(is)=ps_nc(is)+becp%nc(ikb,js,ibnd)* & deff_nc(ih,ih,na,ijs) END DO END DO ELSE ps = becp%k(ikb, ibnd) * deeq(ih,ih,na,current_spin) ENDIF ELSE ! ! ... in the US case there is a contribution ! ... also for jh<>ih ! ps = (0.D0,0.D0) ps_nc = (0.D0,0.D0) DO jh = 1, nh(np) jkb = ijkb0 + jh IF (noncolin) THEN ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 ps_nc(is)=ps_nc(is)+becp%nc(jkb,js,ibnd)* & deff_nc(ih,jh,na,ijs) END DO END DO ELSE ps = ps + becp%k(jkb,ibnd) * deff(ih,jh,na) END IF END DO END IF IF (noncolin) THEN DO is=1,npol CALL zaxpy(npw,ps_nc(is),dvkb(1,ikb),1,& work2_nc(1,is),1) END DO ELSE CALL zaxpy( npw, ps, dvkb(1,ikb), 1, work2, 1 ) END IF END DO ijkb0 = ijkb0 + nh(np) END IF END DO END DO DO ipol = 1, 3 DO jpol = 1, ipol IF (noncolin) THEN DO i = 1, npw work1(i) = evc(i ,ibnd)*gk(ipol,i)* & gk(jpol,i)*qm1(i) work2(i) = evc(i+npwx,ibnd)*gk(ipol,i)* & gk(jpol,i)*qm1(i) END DO sigmanlc(ipol,jpol) = sigmanlc(ipol,jpol) - & 2.D0 * wg(ibnd,ik) * & ( ddot(2*npw,work1,1,work2_nc(1,1), 1) + & ddot(2*npw,work2,1,work2_nc(1,2), 1) ) ELSE DO i = 1, npw work1(i) = evc(i,ibnd)*gk(ipol,i)*gk(jpol,i)*qm1(i) END DO sigmanlc(ipol,jpol) = sigmanlc(ipol,jpol) - & 2.D0 * wg(ibnd,ik) * & ddot( 2 * npw, work1, 1, work2, 1 ) END IF END DO END DO END DO ! ! ... non diagonal contribution - derivative of the spherical harmonics ! ... (no contribution from l=0) ! IF ( lmaxkb == 0 ) GO TO 10 ! DO ipol = 1, 3 CALL gen_us_dy( ik, xyz(1,ipol), dvkb ) DO ibnd = 1, nbnd IF (noncolin) THEN work2_nc = (0.D0,0.D0) CALL compute_deff_nc(deff_nc,et(ibnd,ik)) ELSE work2 = (0.D0,0.D0) CALL compute_deff(deff,et(ibnd,ik)) ENDIF ijkb0 = 0 DO np = 1, ntyp DO na = 1, nat IF ( ityp(na) == np ) THEN DO ih = 1, nh(np) ikb = ijkb0 + ih IF ( .NOT. ( upf(np)%tvanp .OR. newpseudo(np) ) ) THEN IF (noncolin) THEN ijs=0 ps_nc = (0.D0,0.D0) DO is=1,npol DO js=1,npol ijs=ijs+1 ps_nc(is)=ps_nc(is)+becp%nc(ikb,js,ibnd)* & deff_nc(ih,ih,na,ijs) END DO END DO ELSE ps = becp%k(ikb,ibnd) * deeq(ih,ih,na,current_spin) END IF ELSE ! ! ... in the US case there is a contribution ! ... also for jh<>ih ! ps = (0.D0,0.D0) ps_nc = (0.D0,0.D0) DO jh = 1, nh(np) jkb = ijkb0 + jh IF (noncolin) THEN ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 ps_nc(is)=ps_nc(is)+ & becp%nc(jkb,js,ibnd)* & deff_nc(ih,jh,na,ijs) END DO END DO ELSE ps = ps + becp%k(jkb,ibnd) * deff(ih,jh,na) END IF END DO END IF IF (noncolin) THEN DO is=1,npol CALL zaxpy(npw,ps_nc(is),dvkb(1,ikb),1, & work2_nc(1,is),1) END DO ELSE CALL zaxpy( npw, ps, dvkb(1,ikb), 1, work2, 1 ) END IF END DO ijkb0 = ijkb0 + nh(np) END IF END DO END DO DO jpol = 1, ipol IF (noncolin) THEN DO i = 1, npw work1(i) = evc(i ,ibnd) * gk(jpol,i) work2(i) = evc(i+npwx,ibnd) * gk(jpol,i) END DO sigmanlc(ipol,jpol) = sigmanlc(ipol,jpol) - & 2.D0 * wg(ibnd,ik) * & ( ddot( 2 * npw, work1, 1, work2_nc(1,1), 1 ) + & ddot( 2 * npw, work2, 1, work2_nc(1,2), 1 ) ) ELSE DO i = 1, npw work1(i) = evc(i,ibnd) * gk(jpol,i) END DO sigmanlc(ipol,jpol) = sigmanlc(ipol,jpol) - & 2.D0 * wg(ibnd,ik) * & ddot( 2 * npw, work1, 1, work2, 1 ) END IF END DO END DO END DO ! 10 CONTINUE ! IF (noncolin) THEN DEALLOCATE( work2_nc ) DEALLOCATE( deff_nc ) ELSE DEALLOCATE( work2 ) DEALLOCATE( deff ) ENDIF DEALLOCATE( dvkb ) DEALLOCATE( work1 ) ! RETURN ! END SUBROUTINE stres_us_k ! END SUBROUTINE stres_us espresso-5.1/PW/src/compute_deff.f900000644000175000017500000000423412341373025015402 0ustar mbamba! ! Copyright (C) 2009-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------------- SUBROUTINE compute_deff(deff, et) ! ! This routine computes the effective value of the D-eS coefficients ! which appear often in many expressions in the US or PAW case. ! This routine is for the collinear case. ! USE kinds, ONLY : DP USE ions_base, ONLY : nsp, nat, ityp USE uspp, ONLY : deeq, qq, okvan USE uspp_param, ONLY : nhm USE lsda_mod, ONLY : current_spin IMPLICIT NONE INTEGER :: nt, na, is REAL(DP), INTENT(OUT) :: deff(nhm, nhm, nat) REAL(DP), INTENT(IN) :: et deff(:,:,:) = deeq(:,:,:,current_spin) IF (okvan) THEN DO nt = 1, nsp DO na = 1, nat IF ( ityp(na) == nt ) THEN deff(:,:,na) = deff(:,:,na) - et*qq(:,:,nt) END IF END DO END DO ENDIF RETURN END SUBROUTINE compute_deff ! SUBROUTINE compute_deff_nc(deff, et) ! ! This routine computes the effective value of the D-eS coefficients ! which appears often in many expressions. This routine is for the ! noncollinear case. ! USE kinds, ONLY : DP USE ions_base, ONLY : nsp, nat, ityp USE spin_orb, ONLY : lspinorb USE noncollin_module, ONLY : noncolin, npol USE uspp, ONLY : deeq_nc, qq, qq_so, okvan USE uspp_param, ONLY : nhm USE lsda_mod, ONLY : nspin IMPLICIT NONE INTEGER :: nt, na, is, js, ijs COMPLEX(DP), INTENT(OUT) :: deff(nhm, nhm, nat, nspin) REAL(DP), INTENT(IN) :: et deff=deeq_nc IF (okvan) THEN DO nt = 1, nsp DO na = 1, nat IF ( ityp(na) == nt ) THEN IF (lspinorb) THEN deff(:,:,na,:) = deff(:,:,na,:) - et * qq_so(:,:,:,nt) ELSE ijs=0 DO is=1,npol DO js=1,npol ijs=ijs+1 IF (is==js) deff(:,:,na,ijs)=deff(:,:,na,ijs)-et*qq(:,:,nt) END DO END DO END IF END IF END DO END DO ENDIF RETURN END SUBROUTINE compute_deff_nc espresso-5.1/PW/src/stop_run.f900000644000175000017500000000546412341373025014621 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE stop_run( exit_status ) !---------------------------------------------------------------------------- ! ! ... Close all files and synchronize processes before stopping. ! ... If exit_status = 0, successfull execution, remove temporary files ! ... If exit_status =-1, code stopped by user request, or ! exit_status = 1, convergence not achieved : ! ... do not remove temporary files needed for restart. ! USE io_global, ONLY : ionode USE mp_global, ONLY : mp_global_end USE environment, ONLY : environment_end USE io_files, ONLY : iuntmp, seqopn ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: exit_status LOGICAL :: exst, opnd, lflag ! lflag = ( exit_status == 0 ) IF ( lflag ) THEN ! ! ... remove files needed only to restart ! CALL seqopn( iuntmp, 'restart', 'UNFORMATTED', exst ) CLOSE( UNIT = iuntmp, STATUS = 'DELETE' ) ! IF ( ionode ) THEN CALL seqopn( iuntmp, 'update', 'FORMATTED', exst ) CLOSE( UNIT = iuntmp, STATUS = 'DELETE' ) CALL seqopn( iuntmp, 'para', 'FORMATTED', exst ) CLOSE( UNIT = iuntmp, STATUS = 'DELETE' ) END IF ! END IF ! CALL close_files(lflag) ! CALL print_clock_pw() ! CALL clean_pw( .TRUE. ) ! CALL environment_end( 'PWSCF' ) ! CALL mp_global_end () ! END SUBROUTINE stop_run SUBROUTINE do_stop( exit_status ) ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: exit_status ! IF ( exit_status == -1 ) THEN ! -1 is not an acceptable value for stop in fortran; ! convert it to 255 STOP 255 ELSE IF ( exit_status == 0 ) THEN STOP ELSE IF ( exit_status == 1 ) THEN STOP 1 ELSE IF ( exit_status == 2 ) THEN STOP 2 ELSE IF ( exit_status == 3 ) THEN STOP 3 ELSE IF ( exit_status == 4 ) THEN STOP 4 ELSE IF ( exit_status == 255 ) THEN STOP 255 ELSE IF ( exit_status == 254 ) THEN STOP 254 ELSE ! unimplemented value STOP 128 END IF ! END SUBROUTINE do_stop ! !---------------------------------------------------------------------------- SUBROUTINE closefile() !---------------------------------------------------------------------------- ! USE io_global, ONLY : stdout ! ! ... Close all files and synchronize processes before stopping ! ... Called by "sigcatch" when it receives a signal ! WRITE( stdout,'(5X,"Signal Received, stopping ... ")') ! CALL stop_run( 255 ) ! RETURN ! END SUBROUTINE closefile espresso-5.1/PW/src/sum_band.f900000644000175000017500000011271212341373025014533 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE sum_band() !---------------------------------------------------------------------------- ! ! ... calculates the symmetrized charge density and sum of occupied ! ... eigenvalues. ! ... this version works also for metals (gaussian spreading technique) ! USE kinds, ONLY : DP USE ener, ONLY : eband USE control_flags, ONLY : diago_full_acc, gamma_only, tqr, lxdm USE cell_base, ONLY : at, bg, omega, tpiba USE ions_base, ONLY : nat, ntyp => nsp, ityp USE fft_base, ONLY : dfftp, dffts USE fft_interfaces, ONLY : fwfft, invfft USE gvect, ONLY : ngm, g, nl, nlm USE gvecs, ONLY : nls, nlsm, doublegrid USE klist, ONLY : nks, nkstot, wk, xk, ngk USE fixed_occ, ONLY : one_atom_occupations USE ldaU, ONLY : lda_plus_U USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE scf, ONLY : rho USE symme, ONLY : sym_rho USE io_files, ONLY : iunwfc, nwordwfc, iunigk USE buffers, ONLY : get_buffer USE uspp, ONLY : nkb, vkb, becsum, nhtol, nhtoj, indv, okvan USE uspp_param, ONLY : upf, nh, nhm USE wavefunctions_module, ONLY : evc, psic, psic_nc USE noncollin_module, ONLY : noncolin, npol, nspin_mag USE spin_orb, ONLY : lspinorb, domag, fcoef USE wvfct, ONLY : nbnd, npwx, npw, igk, wg, et, btype USE mp_pools, ONLY : inter_pool_comm USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE funct, ONLY : dft_is_meta USE paw_symmetry, ONLY : PAW_symmetrize USE paw_variables, ONLY : okpaw USE becmod, ONLY : allocate_bec_type, deallocate_bec_type, & bec_type, becp USE realus, ONLY : real_space, fft_orbital_gamma, initialisation_level,& bfft_orbital_gamma, calbec_rs_gamma, s_psir_gamma USE wvfct, ONLY: nbnd ! IMPLICIT NONE ! ! ... local variables ! INTEGER :: ikb, jkb, ijkb0, ih, jh, ijh, na, np ! counters on beta functions, atoms, pseudopotentials INTEGER :: ir, is, ig, ibnd, ik ! counter on 3D r points ! counter on spin polarizations ! counter on g vectors ! counter on bands ! counter on k points REAL (DP), ALLOCATABLE :: kplusg (:) ! ! CALL start_clock( 'sum_band' ) ! becsum(:,:,:) = 0.D0 rho%of_r(:,:) = 0.D0 rho%of_g(:,:) = (0.D0, 0.D0) if ( dft_is_meta() .OR. lxdm ) then rho%kin_r(:,:) = 0.D0 rho%kin_g(:,:) = (0.D0, 0.D0) end if eband = 0.D0 ! ! ... calculates weights of Kohn-Sham orbitals used in calculation of rho ! CALL weights ( ) ! IF (one_atom_occupations) CALL new_evc() ! IF ( diago_full_acc ) THEN ! ! ... for diagonalization purposes all the bands are considered occupied ! btype(:,:) = 1 ! ELSE ! ! ... for diagonalization purposes a band is considered empty when its ! ... occupation is less than 1.0 % ! btype(:,:) = 1 ! FORALL( ik = 1:nks, wk(ik) > 0.D0 ) ! WHERE( wg(:,ik) / wk(ik) < 0.01D0 ) btype(:,ik) = 0 ! END FORALL ! END IF ! ! ... Needed for LDA+U ! IF (lda_plus_u) THEN IF(noncolin) THEN CALL new_ns_nc(rho%ns_nc) ELSE CALL new_ns(rho%ns) ENDIF ENDIF ! IF ( okvan.OR.one_atom_occupations ) CALL allocate_bec_type (nkb,nbnd, becp,intra_bgrp_comm) ! ! ... specific routines are called to sum for each k point the contribution ! ... of the wavefunctions to the charge ! IF (dft_is_meta() .OR. lxdm) ALLOCATE (kplusg(npwx)) IF ( gamma_only ) THEN ! CALL sum_band_gamma() ! ELSE ! CALL sum_band_k() ! END IF IF (dft_is_meta() .OR. lxdm) DEALLOCATE (kplusg) ! IF( okpaw ) THEN rho%bec(:,:,:) = becsum(:,:,:) ! becsum is filled in sum_band_{k|gamma} ! rho%bec has to be recollected and symmetrized, becsum must not, otherwise ! it will break stress routines. #ifdef __MPI CALL mp_sum(rho%bec, inter_pool_comm ) #endif CALL PAW_symmetrize(rho%bec) ENDIF ! IF ( okvan .OR. one_atom_occupations ) CALL deallocate_bec_type ( becp ) ! ! ... If a double grid is used, interpolate onto the fine grid ! IF ( doublegrid ) THEN ! DO is = 1, nspin ! CALL interpolate( rho%of_r(1,is), rho%of_r(1,is), 1 ) if (dft_is_meta() .OR. lxdm) CALL interpolate(rho%kin_r(1,is),rho%kin_r(1,is),1) ! END DO ! END IF ! ! ... Here we add the Ultrasoft contribution to the charge ! CALL addusdens(rho%of_r(:,:)) ! okvan is checked inside the routine ! IF ( noncolin .AND. .NOT. domag ) rho%of_r(:,2:4)=0.D0 ! CALL mp_sum( eband, inter_pool_comm ) ! #if defined (__MPI) ! ! ... reduce charge density across pools ! CALL mp_sum( rho%of_r, inter_pool_comm ) if (dft_is_meta() .OR. lxdm) CALL mp_sum( rho%kin_r, inter_pool_comm ) #endif ! ! ... bring the (unsymmetrized) rho(r) to G-space (use psic as work array) ! DO is = 1, nspin psic(:) = rho%of_r(:,is) CALL fwfft ('Dense', psic, dfftp) rho%of_g(:,is) = psic(nl(:)) END DO ! ! ... symmetrize rho(G) ! CALL sym_rho ( nspin_mag, rho%of_g ) ! ! ... same for rho_kin(G) ! IF ( dft_is_meta() .OR. lxdm) THEN DO is = 1, nspin psic(:) = rho%kin_r(:,is) CALL fwfft ('Dense', psic, dfftp) rho%kin_g(:,is) = psic(nl(:)) END DO IF (.NOT. gamma_only) CALL sym_rho( nspin, rho%kin_g ) END IF ! ! ... synchronize rho%of_r to the calculated rho%of_g (use psic as work array) ! DO is = 1, nspin_mag ! psic(:) = ( 0.D0, 0.D0 ) psic(nl(:)) = rho%of_g(:,is) IF ( gamma_only ) psic(nlm(:)) = CONJG( rho%of_g(:,is) ) CALL invfft ('Dense', psic, dfftp) rho%of_r(:,is) = psic(:) ! END DO ! ! ... the same for rho%kin_r and rho%kin_g ! IF ( dft_is_meta() .OR. lxdm) THEN DO is = 1, nspin ! psic(:) = ( 0.D0, 0.D0 ) psic(nl(:)) = rho%kin_g(:,is) IF ( gamma_only ) psic(nlm(:)) = CONJG( rho%kin_g(:,is) ) CALL invfft ('Dense', psic, dfftp) rho%kin_r(:,is) = psic(:) ! END DO END IF ! CALL stop_clock( 'sum_band' ) ! RETURN ! CONTAINS ! ! ... internal procedures ! !----------------------------------------------------------------------- SUBROUTINE sum_band_gamma() !----------------------------------------------------------------------- ! ! ... gamma version ! USE becmod, ONLY : bec_type, becp, calbec USE mp_bands, ONLY : me_bgrp USE mp, ONLY : mp_sum, mp_get_comm_null ! IMPLICIT NONE ! ! ... local variables ! REAL(DP) :: w1, w2 ! weights INTEGER :: idx, ioff, incr, v_siz, j, ibnd_loc COMPLEX(DP), ALLOCATABLE :: tg_psi(:) REAL(DP), ALLOCATABLE :: tg_rho(:) LOGICAL :: use_tg ! ! ! ... here we sum for each k point the contribution ! ... of the wavefunctions to the charge ! IF ( nks > 1 ) REWIND( iunigk ) ! use_tg = dffts%have_task_groups dffts%have_task_groups = ( dffts%have_task_groups ) .AND. ( nbnd >= dffts%nogrp ) ! incr = 2 ! IF( dffts%have_task_groups ) THEN ! IF( dft_is_meta() .OR. lxdm) & CALL errore( ' sum_band ', ' task groups with meta dft, not yet implemented ', 1 ) ! v_siz = dffts%tg_nnr * dffts%nogrp ! ALLOCATE( tg_psi( v_siz ) ) ALLOCATE( tg_rho( v_siz ) ) ! incr = 2 * dffts%nogrp ! END IF ! k_loop: DO ik = 1, nks ! IF( dffts%have_task_groups ) tg_rho = 0.0_DP IF ( lsda ) current_spin = isk(ik) ! npw = ngk(ik) ! IF ( nks > 1 ) THEN ! READ( iunigk ) igk CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) ! END IF ! IF ( nkb > 0 ) & CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! ! ... here we compute the band energy: the sum of the eigenvalues ! DO ibnd = 1, nbnd ! ! ... the sum of eband and demet is the integral for ! ... e < ef of e n(e) which reduces for degauss=0 to the sum of ! ... the eigenvalues. ! eband = eband + et(ibnd,ik) * wg(ibnd,ik) ! END DO ! DO ibnd = 1, nbnd, incr ! IF( dffts%have_task_groups ) THEN ! tg_psi(:) = ( 0.D0, 0.D0 ) ioff = 0 ! DO idx = 1, 2*dffts%nogrp, 2 ! ! ... 2*dffts%nogrp ffts at the same time ! IF( idx + ibnd - 1 < nbnd ) THEN DO j = 1, npw tg_psi(nls (igk(j))+ioff) = evc(j,idx+ibnd-1) + (0.0d0,1.d0) * evc(j,idx+ibnd) tg_psi(nlsm(igk(j))+ioff) = CONJG( evc(j,idx+ibnd-1) - (0.0d0,1.d0) * evc(j,idx+ibnd) ) END DO ELSE IF( idx + ibnd - 1 == nbnd ) THEN DO j = 1, npw tg_psi(nls (igk(j))+ioff) = evc(j,idx+ibnd-1) tg_psi(nlsm(igk(j))+ioff) = CONJG( evc(j,idx+ibnd-1) ) END DO END IF ioff = ioff + dffts%tg_nnr END DO ! CALL invfft ('Wave', tg_psi, dffts) ! ! Now the first proc of the group holds the first two bands ! of the 2*dffts%nogrp bands that we are processing at the same time, ! the second proc. holds the third and fourth band ! and so on ! ! Compute the proper factor for each band ! DO idx = 1, dffts%nogrp IF( dffts%nolist( idx ) == me_bgrp ) EXIT END DO ! ! Remember two bands are packed in a single array : ! proc 0 has bands ibnd and ibnd+1 ! proc 1 has bands ibnd+2 and ibnd+3 ! .... ! idx = 2 * idx - 1 ! IF( idx + ibnd - 1 < nbnd ) THEN w1 = wg( idx + ibnd - 1, ik) / omega w2 = wg( idx + ibnd , ik) / omega ELSE IF( idx + ibnd - 1 == nbnd ) THEN w1 = wg( idx + ibnd - 1, ik) / omega w2 = w1 ELSE w1 = 0.0d0 w2 = w1 END IF ! CALL get_rho_gamma(tg_rho, dffts%tg_npp( me_bgrp + 1 ) * dffts%nr1x * dffts%nr2x, w1, w2, tg_psi) ! ELSE ! psic(:) = ( 0.D0, 0.D0 ) ! IF ( ibnd < nbnd ) THEN ! ! ... two ffts at the same time ! psic(nls(igk(1:npw))) = evc(1:npw,ibnd) + & ( 0.D0, 1.D0 ) * evc(1:npw,ibnd+1) psic(nlsm(igk(1:npw))) = CONJG( evc(1:npw,ibnd) - & ( 0.D0, 1.D0 ) * evc(1:npw,ibnd+1) ) ! ELSE ! psic(nls(igk(1:npw))) = evc(1:npw,ibnd) psic(nlsm(igk(1:npw))) = CONJG( evc(1:npw,ibnd) ) ! END IF ! CALL invfft ('Wave', psic, dffts) ! w1 = wg(ibnd,ik) / omega ! ! ... increment the charge density ... ! IF ( ibnd < nbnd ) THEN ! ! ... two ffts at the same time ! w2 = wg(ibnd+1,ik) / omega ! ELSE ! w2 = w1 ! END IF ! CALL get_rho_gamma(rho%of_r(:,current_spin), dffts%nnr, w1, w2, psic) ! END IF ! IF (dft_is_meta() .OR. lxdm) THEN DO j=1,3 psic(:) = ( 0.D0, 0.D0 ) ! kplusg (1:npw) = (xk(j,ik)+g(j,igk(1:npw))) * tpiba IF ( ibnd < nbnd ) THEN ! ... two ffts at the same time psic(nls(igk(1:npw))) = CMPLX(0d0, kplusg(1:npw),kind=DP) * & ( evc(1:npw,ibnd) + & ( 0.D0, 1.D0 ) * evc(1:npw,ibnd+1) ) psic(nlsm(igk(1:npw))) = CMPLX(0d0, -kplusg(1:npw),kind=DP) * & CONJG( evc(1:npw,ibnd) - & ( 0.D0, 1.D0 ) * evc(1:npw,ibnd+1) ) ELSE psic(nls(igk(1:npw))) = CMPLX(0d0, kplusg(1:npw),kind=DP) * & evc(1:npw,ibnd) psic(nlsm(igk(1:npw))) = CMPLX(0d0, -kplusg(1:npw),kind=DP) * & CONJG( evc(1:npw,ibnd) ) END IF ! CALL invfft ('Wave', psic, dffts) ! ! ... increment the kinetic energy density ... ! DO ir = 1, dffts%nnr rho%kin_r(ir,current_spin) = & rho%kin_r(ir,current_spin) + & w1 * DBLE( psic(ir) )**2 + & w2 * AIMAG( psic(ir) )**2 END DO ! END DO END IF ! ! END DO ! IF( dffts%have_task_groups ) THEN ! ! reduce the group charge ! CALL mp_sum( tg_rho, gid = dffts%ogrp_comm ) ! ioff = 0 DO idx = 1, dffts%nogrp IF( me_bgrp == dffts%nolist( idx ) ) EXIT ioff = ioff + dffts%nr1x * dffts%nr2x * dffts%npp( dffts%nolist( idx ) + 1 ) END DO ! ! copy the charge back to the processor location ! DO ir = 1, dffts%nnr rho%of_r(ir,current_spin) = rho%of_r(ir,current_spin) + tg_rho(ir+ioff) END DO END IF ! ! ... If we have a US pseudopotential we compute here the becsum term ! IF ( .NOT. okvan ) CYCLE k_loop ! IF ( real_space ) then !if (.not. initialisation_level == 15) CALL errore ('sum_band', 'improper initialisation of real space routines' , 4) !print *, "sum band rolling the real space!" do ibnd = 1 , nbnd , 2 !call check_fft_orbital_gamma(psi,ibnd,m) call fft_orbital_gamma(evc,ibnd,nbnd) !transform the orbital to real space call calbec_rs_gamma(ibnd,nbnd,becp%r) !(global rbecp is updated) enddo else CALL calbec( npw, vkb, evc, becp ) endif ! CALL start_clock( 'sum_band:becsum' ) ! DO ibnd_loc = 1, becp%nbnd_loc ! ibnd = ibnd_loc + becp%ibnd_begin - 1 ! w1 = wg(ibnd,ik) ijkb0 = 0 ! DO np = 1, ntyp ! IF ( upf(np)%tvanp ) THEN ! DO na = 1, nat ! IF ( ityp(na) == np ) THEN ! ijh = 1 ! DO ih = 1, nh(np) ! ikb = ijkb0 + ih ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + & w1 *becp%r(ikb,ibnd_loc) *becp%r(ikb,ibnd_loc) ! ijh = ijh + 1 ! DO jh = ( ih + 1 ), nh(np) ! jkb = ijkb0 + jh ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + & w1 * 2.D0 *becp%r(ikb,ibnd_loc) *becp%r(jkb,ibnd_loc) ! ijh = ijh + 1 ! END DO ! END DO ! ijkb0 = ijkb0 + nh(np) ! END IF ! END DO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! END DO ! END IF ! END DO ! END DO ! CALL stop_clock( 'sum_band:becsum' ) ! END DO k_loop ! IF( becp%comm /= mp_get_comm_null() ) call mp_sum( becsum, becp%comm ) ! IF( dffts%have_task_groups ) THEN DEALLOCATE( tg_psi ) DEALLOCATE( tg_rho ) END IF dffts%have_task_groups = use_tg ! RETURN ! END SUBROUTINE sum_band_gamma ! ! !----------------------------------------------------------------------- SUBROUTINE sum_band_k() !----------------------------------------------------------------------- ! ! ... k-points version ! USE becmod, ONLY : bec_type, becp, calbec USE mp_bands, ONLY : me_bgrp USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ... local variables ! REAL(DP) :: w1 ! weights COMPLEX(DP), ALLOCATABLE :: becsum_nc(:,:,:,:) ! INTEGER :: ipol, js ! INTEGER :: idx, ioff, incr, v_siz, j COMPLEX(DP), ALLOCATABLE :: tg_psi(:), tg_psi_nc(:,:) REAL(DP), ALLOCATABLE :: tg_rho(:), tg_rho_nc(:,:) LOGICAL :: use_tg #ifdef __OPENMP INTEGER :: mytid, ntids, omp_get_thread_num, omp_get_num_threads, icnt #endif ! IF (okvan .AND. noncolin) THEN ALLOCATE(becsum_nc(nhm*(nhm+1)/2,nat,npol,npol)) becsum_nc=(0.d0, 0.d0) ENDIF ! ! ... here we sum for each k point the contribution ! ... of the wavefunctions to the charge ! IF ( nks > 1 ) REWIND( iunigk ) ! use_tg = dffts%have_task_groups dffts%have_task_groups = ( dffts%have_task_groups ) .AND. & ( nbnd >= dffts%nogrp ) .AND. ( .NOT. (dft_is_meta() .OR. lxdm) ) ! incr = 1 ! IF( dffts%have_task_groups ) THEN ! v_siz = dffts%tg_nnr * dffts%nogrp ! IF (noncolin) THEN ALLOCATE( tg_psi_nc( v_siz, npol ) ) ALLOCATE( tg_rho_nc( v_siz, nspin_mag ) ) ELSE ALLOCATE( tg_psi( v_siz ) ) ALLOCATE( tg_rho( v_siz ) ) ENDIF ! incr = dffts%nogrp ! END IF ! k_loop: DO ik = 1, nks ! IF( dffts%have_task_groups ) THEN IF (noncolin) THEN tg_rho_nc = 0.0_DP ELSE tg_rho = 0.0_DP ENDIF ENDIF IF ( lsda ) current_spin = isk(ik) npw = ngk (ik) ! IF ( nks > 1 ) THEN ! READ( iunigk ) igk CALL get_buffer ( evc, nwordwfc, iunwfc, ik ) ! END IF ! IF ( nkb > 0 ) & CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! ! ... here we compute the band energy: the sum of the eigenvalues ! DO ibnd = 1, nbnd, incr ! IF( dffts%have_task_groups ) THEN DO idx = 1, dffts%nogrp IF( idx + ibnd - 1 <= nbnd ) eband = eband + et( idx + ibnd - 1, ik ) * wg( idx + ibnd - 1, ik ) END DO ELSE eband = eband + et( ibnd, ik ) * wg( ibnd, ik ) END IF ! ! ... the sum of eband and demet is the integral for e < ef of ! ... e n(e) which reduces for degauss=0 to the sum of the ! ... eigenvalues w1 = wg(ibnd,ik) / omega ! IF (noncolin) THEN IF( dffts%have_task_groups ) THEN ! tg_psi_nc = ( 0.D0, 0.D0 ) ! ioff = 0 ! DO idx = 1, dffts%nogrp ! ! ... dffts%nogrp ffts at the same time ! IF( idx + ibnd - 1 <= nbnd ) THEN DO j = 1, npw tg_psi_nc( nls( igk( j ) ) + ioff, 1 ) = & evc( j, idx+ibnd-1 ) tg_psi_nc( nls( igk( j ) ) + ioff, 2 ) = & evc( j+npwx, idx+ibnd-1 ) END DO END IF ioff = ioff + dffts%tg_nnr END DO ! CALL invfft ('Wave', tg_psi_nc(:,1), dffts) CALL invfft ('Wave', tg_psi_nc(:,2), dffts) ! ! Now the first proc of the group holds the first band ! of the dffts%nogrp bands that we are processing at the same time, ! the second proc. holds the second and so on ! ! Compute the proper factor for each band ! DO idx = 1, dffts%nogrp IF( dffts%nolist( idx ) == me_bgrp ) EXIT END DO ! ! Remember ! proc 0 has bands ibnd ! proc 1 has bands ibnd+1 ! .... ! IF( idx + ibnd - 1 <= nbnd ) THEN w1 = wg( idx + ibnd - 1, ik) / omega ELSE w1 = 0.0d0 END IF ! DO ipol=1,npol CALL get_rho(tg_rho_nc(:,1), dffts%tg_npp( me_bgrp + 1 ) & * dffts%nr1x * dffts%nr2x, w1, tg_psi_nc(:,ipol)) ENDDO ! IF (domag) CALL get_rho_domag(tg_rho_nc(:,:), & dffts%tg_npp( me_bgrp + 1 )*dffts%nr1x*dffts%nr2x, & w1, tg_psi_nc(:,:)) ! ELSE ! ! Noncollinear case without task groups ! psic_nc = (0.D0,0.D0) DO ig = 1, npw psic_nc(nls(igk(ig)),1)=evc(ig ,ibnd) psic_nc(nls(igk(ig)),2)=evc(ig+npwx,ibnd) END DO CALL invfft ('Wave', psic_nc(:,1), dffts) CALL invfft ('Wave', psic_nc(:,2), dffts) ! ! increment the charge density ... ! DO ipol=1,npol CALL get_rho(rho%of_r(:,1), dffts%nnr, w1, psic_nc(:,ipol)) END DO ! ! In this case, calculate also the three ! components of the magnetization (stored in rho%of_r(ir,2-4)) ! IF (domag) THEN CALL get_rho_domag(rho%of_r(:,:), dffts%nnr, w1, psic_nc(:,:)) ELSE rho%of_r(:,2:4)=0.0_DP END IF ! END IF ! ELSE ! IF( dffts%have_task_groups ) THEN ! !$omp parallel default(shared), private(j,ioff,idx) !$omp do DO j = 1, SIZE( tg_psi ) tg_psi(j) = ( 0.D0, 0.D0 ) END DO !$omp end do ! ioff = 0 ! DO idx = 1, dffts%nogrp ! ! ... dffts%nogrp ffts at the same time ! IF( idx + ibnd - 1 <= nbnd ) THEN !$omp do DO j = 1, npw tg_psi( nls( igk( j ) ) + ioff ) = evc( j, idx+ibnd-1 ) END DO !$omp end do END IF ioff = ioff + dffts%tg_nnr END DO !$omp end parallel ! CALL invfft ('Wave', tg_psi, dffts) ! ! Now the first proc of the group holds the first band ! of the dffts%nogrp bands that we are processing at the same time, ! the second proc. holds the second and so on ! ! Compute the proper factor for each band ! DO idx = 1, dffts%nogrp IF( dffts%nolist( idx ) == me_bgrp ) EXIT END DO ! ! Remember ! proc 0 has bands ibnd ! proc 1 has bands ibnd+1 ! .... ! IF( idx + ibnd - 1 <= nbnd ) THEN w1 = wg( idx + ibnd - 1, ik) / omega ELSE w1 = 0.0d0 END IF ! CALL get_rho(tg_rho, dffts%tg_npp( me_bgrp + 1 ) * dffts%nr1x * dffts%nr2x, w1, tg_psi) ! ELSE ! psic(:) = ( 0.D0, 0.D0 ) ! psic(nls(igk(1:npw))) = evc(1:npw,ibnd) ! CALL invfft ('Wave', psic, dffts) ! ! ... increment the charge density ... ! CALL get_rho(rho%of_r(:,current_spin), dffts%nnr, w1, psic) END IF ! IF (dft_is_meta() .OR. lxdm) THEN DO j=1,3 psic(:) = ( 0.D0, 0.D0 ) ! kplusg (1:npw) = (xk(j,ik)+g(j,igk(1:npw))) * tpiba psic(nls(igk(1:npw))) = CMPLX(0d0, kplusg(1:npw),kind=DP) * & evc(1:npw,ibnd) ! CALL invfft ('Wave', psic, dffts) ! ! ... increment the kinetic energy density ... ! CALL get_rho(rho%kin_r(:,current_spin), dffts%nnr, w1, psic) END DO END IF ! END IF ! END DO ! IF( dffts%have_task_groups ) THEN ! ! reduce the group charge ! IF (noncolin) THEN CALL mp_sum( tg_rho_nc, gid = dffts%ogrp_comm ) ELSE CALL mp_sum( tg_rho, gid = dffts%ogrp_comm ) ENDIF ! ioff = 0 DO idx = 1, dffts%nogrp IF( me_bgrp == dffts%nolist( idx ) ) EXIT ioff = ioff + dffts%nr1x * dffts%nr2x * dffts%npp( dffts%nolist( idx ) + 1 ) END DO ! ! copy the charge back to the proper processor location ! IF (noncolin) THEN !$omp parallel do DO ir = 1, dffts%nnr rho%of_r(ir,1) = rho%of_r(ir,1) + & tg_rho_nc(ir+ioff,1) END DO !$omp end parallel do IF (domag) THEN !$omp parallel do DO ipol=2,4 DO ir = 1, dffts%nnr rho%of_r(ir,ipol) = rho%of_r(ir,ipol) + & tg_rho_nc(ir+ioff,ipol) END DO END DO !$omp end parallel do ENDIF ELSE !$omp parallel do DO ir = 1, dffts%nnr rho%of_r(ir,current_spin) = rho%of_r(ir,current_spin) + tg_rho(ir+ioff) END DO !$omp end parallel do END IF ! END IF ! ! ... If we have a US pseudopotential we compute here the becsum term ! IF ( .NOT. okvan ) CYCLE k_loop ! CALL calbec( npw, vkb, evc, becp ) ! CALL start_clock( 'sum_band:becsum' ) ! #ifdef __OPENMP !$omp parallel default(shared), private(ibnd,w1,ijkb0,np,na,ijh,ih,jh,ikb,jkb,is,js,mytid,ntids,icnt) #endif #ifdef __OPENMP mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads icnt = 0 #endif ! DO ibnd = 1, nbnd ! w1 = wg(ibnd,ik) ijkb0 = 0 ! DO np = 1, ntyp ! IF ( upf(np)%tvanp ) THEN ! DO na = 1, nat ! IF (ityp(na)==np) THEN ! #ifdef __OPENMP ! distribute atoms round robin to threads ! icnt = icnt + 1 ! IF( MOD( icnt, ntids ) /= mytid ) THEN ijkb0 = ijkb0 + nh(np) CYCLE END IF #endif ! ijh = 1 ! DO ih = 1, nh(np) ! ikb = ijkb0 + ih ! IF (noncolin) THEN ! DO is=1,npol ! DO js=1,npol becsum_nc(ijh,na,is,js) = & becsum_nc(ijh,na,is,js)+w1 * & CONJG(becp%nc(ikb,is,ibnd)) * & becp%nc(ikb,js,ibnd) END DO ! END DO ! ELSE ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + & w1 * DBLE( CONJG( becp%k(ikb,ibnd) ) * & becp%k(ikb,ibnd) ) ! END IF ! ijh = ijh + 1 ! DO jh = ( ih + 1 ), nh(np) ! jkb = ijkb0 + jh ! IF (noncolin) THEN ! DO is=1,npol ! DO js=1,npol becsum_nc(ijh,na,is,js) = & becsum_nc(ijh,na,is,js) + w1 * & CONJG(becp%nc(ikb,is,ibnd)) * & becp%nc(jkb,js,ibnd) END DO ! END DO ! ELSE ! becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * 2.D0 * & DBLE( CONJG( becp%k(ikb,ibnd) ) * & becp%k(jkb,ibnd) ) ENDIF ! ijh = ijh + 1 ! END DO ! END DO ! ijkb0 = ijkb0 + nh(np) ! END IF ! END DO ! ELSE ! DO na = 1, nat ! IF ( ityp(na) == np ) ijkb0 = ijkb0 + nh(np) ! END DO ! END IF ! !$omp barrier ! END DO ! END DO ! #ifdef __OPENMP !$omp end parallel #endif ! CALL stop_clock( 'sum_band:becsum' ) ! END DO k_loop IF( dffts%have_task_groups ) THEN IF (noncolin) THEN DEALLOCATE( tg_psi_nc ) DEALLOCATE( tg_rho_nc ) ELSE DEALLOCATE( tg_psi ) DEALLOCATE( tg_rho ) END IF END IF dffts%have_task_groups = use_tg IF (noncolin.and.okvan) THEN DO np = 1, ntyp IF ( upf(np)%tvanp ) THEN DO na = 1, nat IF (ityp(na)==np) THEN IF (upf(np)%has_so) THEN CALL transform_becsum_so(becsum_nc,becsum,na) ELSE CALL transform_becsum_nc(becsum_nc,becsum,na) END IF END IF END DO END IF END DO END IF ! IF ( ALLOCATED (becsum_nc) ) DEALLOCATE( becsum_nc ) ! RETURN ! END SUBROUTINE sum_band_k ! ! SUBROUTINE get_rho(rho_loc, nrxxs_loc, w1_loc, psic_loc) IMPLICIT NONE INTEGER :: nrxxs_loc REAL(DP) :: rho_loc(nrxxs_loc) REAL(DP) :: w1_loc COMPLEX(DP) :: psic_loc(nrxxs_loc) INTEGER :: ir !$omp parallel do DO ir = 1, nrxxs_loc ! rho_loc(ir) = rho_loc(ir) + & w1_loc * ( DBLE( psic_loc(ir) )**2 + & AIMAG( psic_loc(ir) )**2 ) ! END DO !$omp end parallel do END SUBROUTINE get_rho SUBROUTINE get_rho_gamma(rho_loc, nrxxs_loc, w1_loc, w2_loc, psic_loc) IMPLICIT NONE INTEGER :: nrxxs_loc REAL(DP) :: rho_loc(nrxxs_loc) REAL(DP) :: w1_loc, w2_loc COMPLEX(DP) :: psic_loc(nrxxs_loc) INTEGER :: ir !$omp parallel do DO ir = 1, nrxxs_loc ! rho_loc(ir) = rho_loc(ir) + & w1_loc * DBLE( psic_loc(ir) )**2 + & w2_loc * AIMAG( psic_loc(ir) )**2 ! END DO !$omp end parallel do END SUBROUTINE get_rho_gamma SUBROUTINE get_rho_domag(rho_loc, nrxxs_loc, w1_loc, psic_loc) IMPLICIT NONE INTEGER :: nrxxs_loc REAL(DP) :: rho_loc(:, :) REAL(DP) :: w1_loc COMPLEX(DP) :: psic_loc(:, :) INTEGER :: ir !$omp parallel do DO ir = 1, nrxxs_loc ! rho_loc(ir,2) = rho_loc(ir,2) + w1_loc*2.D0* & (DBLE(psic_loc(ir,1))* DBLE(psic_loc(ir,2)) + & AIMAG(psic_loc(ir,1))*AIMAG(psic_loc(ir,2))) rho_loc(ir,3) = rho_loc(ir,3) + w1_loc*2.D0* & (DBLE(psic_loc(ir,1))*AIMAG(psic_loc(ir,2)) - & DBLE(psic_loc(ir,2))*AIMAG(psic_loc(ir,1))) rho_loc(ir,4) = rho_loc(ir,4) + w1_loc* & (DBLE(psic_loc(ir,1))**2+AIMAG(psic_loc(ir,1))**2 & -DBLE(psic_loc(ir,2))**2-AIMAG(psic_loc(ir,2))**2) ! END DO !$omp end parallel do END SUBROUTINE get_rho_domag END SUBROUTINE sum_band espresso-5.1/PW/src/ewald_dipole.f900000644000175000017500000001074412341373025015375 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine ewald_dipole (tens,dipole) !----------------------------------------------------------------------- ! ! Calculates the ewald field on each atom due to the presence of dipole, or ! the electic field on each atom due to the ionic charge of other atoms, ! with both G- and R-space terms. ! Determines optimal alpha. Should hopefully work for any structure. ! ! USE kinds , ONLY : dp USE gvect , ONLY : gcutm, gstart, ngm, g, gg USE constants , ONLY : tpi, e2, fpi, pi USE cell_base , ONLY : tpiba2, omega, alat, at, bg USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE vlocal , ONLY : strf USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! real(DP) :: dipole(ntyp),charge, eta, arg, upperbound, temp complex(DP) :: tens(nat,3,3) complex(DP) :: rhon real(DP), external :: qe_erfc complex(DP), allocatable:: ewaldg(:,:,:), ewaldr(:,:,:) integer :: alpha, beta, na, ng, nt, ipol, nb, nrm, nr integer, parameter :: mxr = 50 real (DP) :: r(3,mxr), r2(mxr), rmax, rr, dtau(3) real (DP) :: expcoeff complex(DP) :: carg, recarg, recarg_dgg allocate (ewaldg(nat,3,3)) allocate (ewaldr(nat,3,3)) ewaldg=(0.d0,0.d0) ewaldr=(0.d0,0.d0) ! e2=1.d0 !hartree charge = 0.d0 do na = 1, nat charge = charge+dipole (ityp (na) ) enddo eta = 2.9d0 do eta = eta - 0.1d0 ! ! choose alpha in order to have convergence in the sum over G ! upperbound is a safe upper bound for the error in the sum over G ! if (eta.le.0.d0) call errore ('ewald_dipole', 'optimal eta not found', 1) upperbound = 2.d0 * charge**2 * sqrt (2.d0 * eta / tpi) & * qe_erfc ( sqrt (tpiba2 * gcutm / 4.d0 / eta) ) if (upperbound.le.1.0d-7) exit enddo ! ! G-space sum here. do ng = gstart, ngm rhon = (0.d0, 0.d0) expcoeff = exp ( - gg (ng) * tpiba2 * 0.25d0 / eta ) do nt = 1, ntyp rhon = rhon + dipole (nt) * CONJG(strf (ng, nt) ) enddo do na=1, nat arg = (g (1, ng) * tau (1, na) + g (2, ng) * tau (2, na) & + g (3, ng) * tau (3, na) ) * tpi carg = CMPLX(cos(arg), -sin(arg),kind=DP) recarg = rhon*expcoeff*carg recarg_dgg = recarg / gg(ng) do alpha = 1,3 do beta=1,3 ewaldg(na , alpha, beta) = ewaldg(na, alpha, beta) & - recarg_dgg * g(alpha,ng) * g(beta,ng) enddo ewaldg(na , alpha, alpha) = ewaldg(na, alpha, alpha) & + 1.d0/3.d0 * recarg enddo enddo enddo ewaldg = e2 / 2.d0 * fpi / omega * ewaldg !Temp to compare with paratec ! ewaldg = e2 * fpi / omega * ewaldg ! call mp_sum( ewaldg, intra_bgrp_comm ) ! ! R-space sum here (only for the processor that contains G=0) ! ewaldr = 0.d0 if (gstart.eq.2) then rmax = 4.d0 / sqrt (eta) / alat ! ! with this choice terms up to ZiZj*erfc(4) are counted (erfc(4)=2x10^-8 ! do na = 1, nat do nb = 1, nat do ipol = 1, 3 dtau (ipol) = tau (ipol, na) - tau (ipol, nb) enddo ! ! generates nearest-neighbors shells ! call rgen (dtau, rmax, mxr, at, bg, r, r2, nrm) ! ! and sum to the real space part ! r = r * alat do nr = 1, nrm rr = sqrt (r2 (nr) ) * alat temp= dipole (ityp (na)) * ( 3.d0 / rr**3 * qe_erfc ( sqrt (eta) * rr) & + (6.d0 * sqrt (eta/pi) * 1.d0 / rr*2 + 4.d0 * sqrt (eta**3/pi)) & * exp(-eta* rr**2)) do alpha=1,3 do beta=1,3 ewaldr(na, alpha,beta) = ewaldr(na, alpha,beta) & + temp*r(alpha,nr)*r(beta,nr) / rr**2 enddo ewaldr(na, alpha,alpha)= ewaldr(na, alpha,alpha) & - 1.d0/3.d0 * temp enddo enddo enddo enddo endif ewaldr = e2 * ewaldr ! call mp_sum( ewaldr, intra_bgrp_comm ) ! tens=ewaldg+ewaldr end subroutine ewald_dipole espresso-5.1/PW/src/start_k.f900000644000175000017500000000576112341373025014417 0ustar mbamba! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- ! MODULE start_k ! ! ... Basic variables for k-point generations, as read from input ! USE kinds, ONLY : DP USE cell_base, ONLY : bg ! SAVE ! ! ... uniform k-point grid parameters ! INTEGER :: & nk1, nk2, nk3, &! the special-point grid k1, k2, k3 ! the offset from the origin ! ! ! ... k points and weights, read from input, if any ! INTEGER :: nks_start=0 ! number of k points REAL(DP), ALLOCATABLE :: wk_start(:) ! weights of k points REAL(DP), ALLOCATABLE :: xk_start(:,:) ! coordinates of k points CONTAINS SUBROUTINE init_start_k ( nk1_, nk2_, nk3_, k1_, k2_, k3_, & k_points, nk_, xk_, wk_ ) ! ! initialize the grid of k points ! INTEGER, INTENT (IN) :: nk1_, nk2_, nk3_, k1_, k2_, k3_, nk_ CHARACTER(LEN=*), INTENT (IN) :: k_points REAL(dp),INTENT (IN) :: xk_(3,nk_), wk_(nk_) ! LOGICAL :: done ! ! variables for automatic grid ! nk1 = 0; nk2 = 0; nk3 = 0; k1 = 0; k2 = 0; k3 = 0 done = reset_grid ( nk1_, nk2_, nk3_, k1_, k2_, k3_ ) IF ( k_points == 'automatic' .AND. .not. done ) & CALL errore ('init_start_k','automatic k-points and nk*=0?',1) ! ! variables for manual grid ! IF ( k_points == 'gamma' ) THEN nks_start = 1 ELSE nks_start = nk_ END IF ! IF ( nks_start > 0) THEN IF ( .NOT. ALLOCATED (xk_start) ) ALLOCATE ( xk_start(3,nks_start) ) IF ( .NOT. ALLOCATED (wk_start) ) ALLOCATE ( wk_start(nks_start) ) ! ! k-points in crystal axis: transform to cartesian (in units 2pi/a) ! BEWARE: reciprocal axis bg NEEDED, must have been initialized ! IF ( k_points == 'crystal' ) CALL cryst_to_cart(nk_, xk_, bg, 1) ! IF ( k_points == 'gamma' ) THEN xk_start(:,1) = 0.0_dp wk_start(1) = 1.0_dp ELSE xk_start(:,:) = xk_(:,1:nk_) wk_start(:) = wk_(1:nk_) ENDIF END IF ! END SUBROUTINE init_start_k ! LOGICAL FUNCTION reset_grid ( nk1_, nk2_, nk3_, k1_, k2_, k3_ ) ! ! reset the automatic grid to new values if these are > 0 ! INTEGER, INTENT (IN) :: nk1_, nk2_, nk3_, k1_, k2_, k3_ ! IF ( nk1_ > 0 ) nk1 = nk1_ IF ( nk2_ > 0 ) nk2 = nk2_ IF ( nk3_ > 0 ) nk3 = nk3_ IF ( k1_ > 0 ) k1 = k1_ IF ( k2_ > 0 ) k2 = k2_ IF ( k3_ > 0 ) k3 = k3_ ! reset_grid = (nk1_*nk2_*nk3_ > 0) ! END FUNCTION reset_grid END MODULE start_k espresso-5.1/PW/src/wannier_enrg.f900000644000175000017500000000244512341373025015422 0ustar mbamba! Copyright (C) 2006-2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) !---------------------------------------------------------------------- subroutine wannier_enrg(enrg) !---------------------------------------------------------------------- ! ! ... This routine computes energy of each wannier. It is assumed that WF generated already and stored if the buffer. ! use kinds, only: DP use wannier_new, only: nwan, pp use io_global, only : stdout use wvfct, only: nbnd, et, wg use klist, only: nks, wk use lsda_mod, only: current_spin, lsda, nspin, isk USE io_files USE buffers implicit none real(DP), intent(out) :: enrg(nwan,nspin) integer :: i,j, ik enrg = ZERO current_spin = 1 DO ik=1, nks IF (lsda) current_spin = isk(ik) CALL get_buffer( pp, nwordwpp, iunwpp, ik) DO i=1, nwan DO j=1, nbnd enrg(i,current_spin) = enrg(i,current_spin) + pp(i,j)*conjg(pp(i,j))*wk(ik)*et(j,ik) END DO END DO END DO IF(nspin.eq.1) enrg=enrg*0.5D0 return end subroutine wannier_enrg espresso-5.1/PW/src/divide.f900000644000175000017500000000521412341373025014205 0ustar mbamba! ! Copyright (C) 2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- SUBROUTINE divide (comm, ntodiv, startn, lastn) !----------------------------------------------------------------------- ! Divide ntodiv poins across processors belonging to communicator comm ! Each processor gets points from startn to lastn ! #ifdef __MPI ! USE mp, ONLY : mp_size, mp_rank IMPLICIT NONE ! INTEGER, INTENT(in) :: comm INTEGER, INTENT(in) :: ntodiv INTEGER, INTENT(out):: startn, lastn ! INTEGER :: me_comm, nproc_comm ! INTEGER :: nb, resto, idx, ip ! number of bands per processor ! one additional band if me_pool+1 <= resto ! counter on bands ! counter on processors ! nproc_comm = mp_size(comm) me_comm = mp_rank(comm) ! nb = ntodiv / nproc_comm resto = ntodiv - nb * nproc_comm idx = 0 DO ip = 1, nproc_comm IF (ip <= resto) THEN IF (me_comm+1 == ip) THEN startn = idx + 1 lastn = startn + nb ENDIF idx = idx + nb + 1 ELSE IF (me_comm+1 == ip) THEN startn = idx + 1 lastn = startn + nb - 1 ENDIF idx = idx + nb ENDIF ENDDO #else IMPLICIT NONE ! INTEGER, INTENT(in) :: comm INTEGER, INTENT(in) :: ntodiv INTEGER, INTENT(out):: startn, lastn startn = 1 lastn = ntodiv #endif RETURN END SUBROUTINE divide ! !----------------------------------------------------------------------- SUBROUTINE divide2 (comm1, comm2, ntodiv, startn, lastn) !----------------------------------------------------------------------- ! Divide ntodiv points across processors belonging to two communicators ! comm1 and comm2. The final quantity must be collected among the two ! Each processor gets points from startn to lastn ! #ifdef __MPI ! USE mp, ONLY : mp_size, mp_rank IMPLICIT NONE ! INTEGER, INTENT(in) :: comm1 INTEGER, INTENT(in) :: comm2 INTEGER, INTENT(in) :: ntodiv INTEGER, INTENT(out):: startn, lastn INTEGER :: ntodiv1, start_n1, end_n1, start_n2, end_n2 ! CALL divide( comm1, ntodiv, start_n1, end_n1 ) ntodiv1=end_n1-start_n1+1 CALL divide( comm2, ntodiv1, start_n2, end_n2 ) startn=start_n1+start_n2-1 lastn=start_n1+end_n2-1 #else IMPLICIT NONE ! INTEGER, INTENT(in) :: comm1, comm2 INTEGER, INTENT(in) :: ntodiv INTEGER, INTENT(out):: startn, lastn startn = 1 lastn = ntodiv #endif RETURN END SUBROUTINE divide2 espresso-5.1/PW/src/force_corr.f900000644000175000017500000000640212341373025015064 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine force_corr (forcescc) !----------------------------------------------------------------------- ! This routine calculates the force term vanishing at full ! self-consistency. It follows the suggestion of Chan-Bohnen-Ho ! (PRB 47, 4771 (1993)). The true charge density is approximated ! by means of a free atom superposition. ! (alessio f.) ! Uses superposition of atomic charges contained in the array rho_at ! and read from pseudopotential files ! USE kinds, ONLY : DP USE constants, ONLY : tpi USE atom, ONLY : msh, rgrid USE uspp_param, ONLY : upf USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : tpiba USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, gstart, nl, g, ngl, gl, igtongl USE lsda_mod, ONLY : nspin USE scf, ONLY : vnew USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! real(DP) :: forcescc (3, nat) ! real(DP), allocatable :: rhocgnt (:), aux (:) ! work space real(DP) :: gx, arg, fact ! temp factors integer :: ir, isup, isdw, ig, nt, na, ipol, ndm ! counters ! ! vnew is V_out - V_in, psic is the temp space ! if (nspin == 1 .or. nspin == 4) then psic(:) = vnew%of_r (:, 1) else isup = 1 isdw = 2 psic(:) = (vnew%of_r (:, isup) + vnew%of_r (:, isdw)) * 0.5d0 end if ! ndm = MAXVAL ( msh(1:ntyp) ) allocate ( aux(ndm), rhocgnt(ngl) ) forcescc(:,:) = 0.d0 CALL fwfft ('Dense', psic, dfftp) if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if do nt = 1, ntyp ! ! Here we compute the G.ne.0 term ! do ig = gstart, ngl gx = sqrt (gl (ig) ) * tpiba do ir = 1, msh (nt) if (rgrid(nt)%r(ir) .lt.1.0d-8) then aux (ir) = upf(nt)%rho_at (ir) else aux (ir) = upf(nt)%rho_at (ir) * & sin(gx*rgrid(nt)%r(ir)) / (rgrid(nt)%r(ir)*gx) endif enddo call simpson (msh (nt), aux, rgrid(nt)%rab, rhocgnt (ig) ) enddo do na = 1, nat if (nt.eq.ityp (na) ) then do ig = gstart, ngm arg = (g (1, ig) * tau (1, na) + g (2, ig) * tau (2, na) & + g (3, ig) * tau (3, na) ) * tpi do ipol = 1, 3 forcescc (ipol, na) = forcescc (ipol, na) + fact * & rhocgnt (igtongl(ig) ) * CMPLX(sin(arg),cos(arg),kind=DP) * & g(ipol,ig) * tpiba * CONJG(psic(nl(ig))) enddo enddo endif enddo enddo ! call mp_sum( forcescc, intra_bgrp_comm ) ! deallocate ( aux, rhocgnt ) return end subroutine force_corr espresso-5.1/PW/src/add_paw_to_deeq.f900000644000175000017500000000216312341373025016040 0ustar mbamba! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! SUBROUTINE add_paw_to_deeq(deeq) ! Add paw contributions to deeq (computed in paw_potential) USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : upf, nh, nhm USE paw_variables, ONLY : okpaw, ddd_paw USE lsda_mod, ONLY : nspin IMPLICIT NONE integer :: na, nt, ih, jh, ijh REAL(kind=dp), intent(inout) :: deeq( nhm, nhm, nat, nspin ) if (okpaw) then do na=1,nat nt = ityp(na) IF (.not.upf(nt)%tpawp) cycle ijh=0 do ih=1,nh(nt) do jh=ih,nh(nt) ijh=ijh+1 deeq(ih,jh,na,1:nspin) = deeq(ih,jh,na,1:nspin) & + ddd_paw(ijh,na,1:nspin) deeq(jh,ih,na,1:nspin) = deeq(ih,jh,na,1:nspin) end do end do end do end IF RETURN END SUBROUTINE add_paw_to_deeq espresso-5.1/PW/src/efermig.f900000644000175000017500000000453612341373025014365 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------- FUNCTION efermig (et, nbnd, nks, nelec, wk, Degauss, Ngauss, is, isk) !-------------------------------------------------------------------- ! ! Finds the Fermi energy - Gaussian Broadening ! (see Methfessel and Paxton, PRB 40, 3616 (1989 ) ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE constants, ONLY : rytoev USE mp, ONLY : mp_max, mp_min USE mp_pools, ONLY : inter_pool_comm implicit none ! I/O variables integer, intent(in) :: nks, nbnd, Ngauss, is, isk(nks) real(DP), intent(in) :: wk (nks), et (nbnd, nks), Degauss, nelec real(DP) :: efermig ! real(DP), parameter :: eps= 1.0d-10 integer, parameter :: maxiter = 300 ! internal variables real(DP) :: Ef, Eup, Elw, sumkup, sumklw, sumkmid real(DP), external:: sumkg integer :: i, kpoint ! ! find bounds for the Fermi energy. Very safe choice! ! Elw = et (1, 1) Eup = et (nbnd, 1) do kpoint = 2, nks Elw = min (Elw, et (1, kpoint) ) Eup = max (Eup, et (nbnd, kpoint) ) enddo Eup = Eup + 2 * Degauss Elw = Elw - 2 * Degauss ! ! find min and max across pools ! call mp_max( eup, inter_pool_comm ) call mp_min( elw, inter_pool_comm ) ! ! Bisection method ! sumkup = sumkg (et, nbnd, nks, wk, Degauss, Ngauss, Eup, is, isk) sumklw = sumkg (et, nbnd, nks, wk, Degauss, Ngauss, Elw, is, isk) if ( (sumkup - nelec) < -eps .or. (sumklw - nelec) > eps ) & call errore ('efermig', 'internal error, cannot bracket Ef', 1) do i = 1, maxiter Ef = (Eup + Elw) / 2.d0 sumkmid = sumkg (et, nbnd, nks, wk, Degauss, Ngauss, Ef, is, isk) if (abs (sumkmid-nelec) < eps) then efermig = Ef return elseif ( (sumkmid-nelec) < -eps) then Elw = Ef else Eup = Ef endif enddo if (is /= 0) WRITE(stdout, '(5x,"Spin Component #",i3)') is WRITE( stdout, '(5x,"Warning: too many iterations in bisection"/ & & 5x,"Ef = ",f10.6," sumk = ",f10.6," electrons")' ) & Ef * rytoev, sumkmid ! efermig = Ef return end FUNCTION efermig espresso-5.1/PW/src/drhoc.f900000644000175000017500000000367512341373025014051 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine drhoc (ngl, gl, omega, tpiba2, mesh, r, rab, rhoc, rhocg) !----------------------------------------------------------------------- ! USE kinds USE constants, ONLY : pi, fpi implicit none ! ! first the dummy variables ! integer :: ngl, mesh ! input: the number of g shell ! input: the number of radial mesh points real(DP) :: gl (ngl), r (mesh), rab (mesh), rhoc (mesh), omega, & tpiba2, rhocg (ngl) ! input: the number of G shells ! input: the radial mesh ! input: the derivative of the radial mesh ! input: the radial core charge ! input: the volume of the unit cell ! input: 2 times pi / alat ! output: the fourier transform of the core charge ! ! here the local variables ! real(DP) :: gx, rhocg1 ! the modulus of g for a given shell ! the fourier transform real(DP), allocatable :: aux (:) ! auxiliary memory for integration integer :: ir, igl, igl0 ! counter on radial mesh points ! counter on g shells ! lower limit for loop on ngl allocate (aux( mesh)) ! ! G=0 term ! if (gl (1) < 1.0d-8) then do ir = 1, mesh aux (ir) = r (ir) **2 * rhoc (ir) enddo call simpson (mesh, aux, rab, rhocg1) rhocg (1) = fpi * rhocg1 / omega igl0 = 2 else igl0 = 1 endif ! ! G <> 0 term ! do igl = igl0, ngl gx = sqrt (gl (igl) * tpiba2) call sph_bes (mesh, r, gx, 0, aux) do ir = 1, mesh aux (ir) = r (ir) **2 * rhoc (ir) * aux (ir) enddo call simpson (mesh, aux, rab, rhocg1) rhocg (igl) = fpi * rhocg1 / omega enddo deallocate(aux) ! return end subroutine drhoc espresso-5.1/PW/src/ns_adj.f900000644000175000017500000000664612341373025014211 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine ns_adj !----------------------------------------------------------------------- ! This routine tries to suggest to the code the right atomic orbital to ! localize the charge on. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE ldaU, ONLY : Hubbard_lmax, Hubbard_l, Hubbard_U, starting_ns USE scf, ONLY : rho USE lsda_mod, ONLY : nspin USE noncollin_module, ONLY : noncolin, npol USE io_global, ONLY : stdout implicit none ! integer, parameter:: ldmx=7 integer :: na, nt, is, m1, m2, ldim, i, j, l real(DP) :: lambda(npol*ldmx) complex(DP) :: vet(npol*ldmx,npol*ldmx), f(npol*ldmx,npol*ldmx), temp if (ALL(starting_ns == -1.d0)) return write (stdout,*) "Modify starting ns matrices according to input values " if (2*Hubbard_lmax+1>ldmx) call errore('ns_adj',' ldmx too small',ldmx) do na = 1, nat nt = ityp(na) if (Hubbard_U(nt).ne.0.d0) then ldim = 2 * Hubbard_l(nt) + 1 if (noncolin) then do m1 = 1, ldim do m2 = 1, ldim f(m1, m2) = rho%ns_nc(m1, m2, 1, na) f(m1, ldim+m2) = rho%ns_nc(m1, m2, 2, na) f(ldim+m1, m2) = rho%ns_nc(m1, m2, 3, na) f(ldim+m1, ldim+m2) = rho%ns_nc(m1, m2, 4, na) end do end do call cdiagh( npol*ldim, f, npol*ldmx, lambda, vet) j = 0 do is = 1, npol do i = 1, ldim j = j + 1 if (starting_ns(i,is,nt) >= 0.d0) lambda(j) = starting_ns(i,is,nt) enddo enddo do m1 = 1, npol*ldim do m2 = m1, npol*ldim temp = 0.d0 do i = 1, npol*ldim temp = temp + vet(m1,i)*lambda(i)*CONJG(vet(m2,i)) end do f(m1,m2) = temp f(m2,m1) = CONJG(temp) end do end do do m1 = 1, ldim do m2 = 1, ldim rho%ns_nc(m1, m2, 1, na) = f(m1, m2) rho%ns_nc(m1, m2, 2, na) = f(m1, ldim+m2) rho%ns_nc(m1, m2, 3, na) = f(ldim+m1, m2) rho%ns_nc(m1, m2, 4, na) = f(ldim+m1, ldim+m2) end do end do else do is = 1, nspin do m1 = 1, ldim do m2 = 1, ldim f(m1,m2) = rho%ns(m1,m2,is,na) enddo enddo call cdiagh(ldim, f, ldmx, lambda, vet) do i = 1, ldim if (starting_ns(i,is,nt) >= 0.d0) lambda(i) = starting_ns(i,is,nt) enddo do m1 = 1, ldim do m2 = m1, ldim temp = 0.d0 do i = 1, ldim temp = temp + CONJG(vet(m1,i))*lambda(i)*vet(m2,i) enddo rho%ns(m1,m2,is,na) = DBLE(temp) rho%ns(m2,m1,is,na) = rho%ns(m1,m2,is,na) enddo enddo enddo endif endif enddo ! on na if (noncolin) then CALL write_ns_nc else CALL write_ns endif return end subroutine ns_adj espresso-5.1/PW/src/set_kup_and_kdw.f900000644000175000017500000000273712341373025016111 0ustar mbamba! ! Copyright (C) 2001-2007 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine set_kup_and_kdw (xk, wk, isk, nkstot, npk) !----------------------------------------------------------------------- ! This routine sets the k vectors for the up and down spin wfc ! ! on input: xk and wk contain k-points and corresponding weights ! ! on output: the number of points is doubled and xk and wk in the ! first (nkstot/2) positions correspond to up spin ! those in the second (nkstot/2) ones correspond to down spin ! USE kinds, ONLY : DP implicit none ! ! I/O variables first ! integer :: npk, isk (npk), nkstot ! input: maximum allowed number of k-points ! output: spin associated to a given k-point ! input-output: starting and ending number of k-points real(DP) :: xk (3, npk), wk (npk) ! input-output: coordinates of k points ! input-output: weights of k points ! integer :: ik, iq, ikq ! ! if (2*nkstot > npk) call errore ('set_kup_and_kdw','too many k points',nkstot) do ik = 1, nkstot xk(:,ik+nkstot)= xk(:,ik) wk (ik+nkstot) = wk(ik) isk(ik) = 1 isk(ik+nkstot) = 2 enddo nkstot = 2 * nkstot return end subroutine set_kup_and_kdw espresso-5.1/PW/src/save_in_electrons.f900000644000175000017500000000162512341373025016445 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE save_in_electrons (iter, dr2, ethr, et) !----------------------------------------------------------------------- USE kinds, ONLY: dp USE io_files, ONLY: iunres, seqopn USE klist, ONLY: nks USE wvfct, ONLY: nbnd ! IMPLICIT NONE ! INTEGER, INTENT (in) :: iter REAL(dp), INTENT(in) :: dr2, ethr, et(nbnd,nks) ! LOGICAL :: exst ! CALL seqopn (iunres, 'restart_scf', 'formatted', exst) WRITE (iunres, *) iter, dr2, ethr WRITE (iunres, *) et(1:nbnd,1:nks) CLOSE ( unit=iunres, status='keep') ! END SUBROUTINE save_in_electrons espresso-5.1/PW/src/cdiagh.f900000644000175000017500000001063312341373025014161 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE cdiagh( n, h, ldh, e, v ) !---------------------------------------------------------------------------- ! ! ... calculates all the eigenvalues and eigenvectors of a complex ! ... hermitean matrix H. On output, the matrix is unchanged ! USE kinds, ONLY : DP USE mp_bands, ONLY : nbgrp, me_bgrp, root_bgrp, intra_bgrp_comm USE mp, ONLY : mp_bcast ! IMPLICIT NONE ! ! ... on INPUT ! INTEGER :: n, ldh ! dimension of the matrix to be diagonalized ! leading dimension of h, as declared in the calling pgm unit COMPLEX(DP) :: h(ldh,n) ! matrix to be diagonalized ! ! ... on OUTPUT ! REAL(DP) :: e(n) ! eigenvalues COMPLEX(DP) :: v(ldh,n) ! eigenvectors (column-wise) ! CALL start_clock( 'diagh' ) ! #if defined (__ESSL) CALL cdiagh_aix() #else CALL cdiagh_lapack( v, e ) #endif ! CALL stop_clock( 'diagh' ) ! RETURN ! CONTAINS ! ! ... internal procedures ! #if defined (__ESSL) ! !----------------------------------------------------------------------- SUBROUTINE cdiagh_aix() !----------------------------------------------------------------------- ! IMPLICIT NONE ! ! ... local variables (ESSL version) ! INTEGER :: naux, i, j, ij COMPLEX(DP), ALLOCATABLE :: hp(:), aux(:) ! ! naux = 4 * n ! ALLOCATE( hp( n * (n + 1) / 2 ) ) ALLOCATE( aux( naux ) ) ! ! ... copy to upper triangular packed matrix ! ij = 0 DO j = 1, n DO i = 1, j ij = ij + 1 hp(ij) = h(i,j) END DO END DO ! ! ... only the first processor diagonalize the matrix ! IF ( me_bgrp == root_bgrp ) THEN ! CALL ZHPEV( 21, hp, e, v, ldh, n, aux, naux ) ! END IF ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v, root_bgrp, intra_bgrp_comm ) ! DEALLOCATE( aux ) DEALLOCATE( hp ) ! RETURN ! END SUBROUTINE cdiagh_aix ! #else ! !----------------------------------------------------------------------- SUBROUTINE cdiagh_lapack( v, e ) !----------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP) :: e(n) ! eigenvalues COMPLEX(DP) :: v(ldh,n) ! ! ... local variables (LAPACK version) ! INTEGER :: lwork, nb, info REAL(DP), ALLOCATABLE :: rwork(:) COMPLEX(DP), ALLOCATABLE :: work(:) ! INTEGER, EXTERNAL :: ILAENV ! ILAENV returns optimal block size "nb" ! ! ... check for the block size ! nb = ILAENV( 1, 'ZHETRD', 'U', n, - 1, - 1, - 1 ) ! IF ( nb < 1 .OR. nb >= n ) THEN ! lwork = 2*n ! ELSE ! lwork = ( nb + 1 )*n ! END IF ! ! ... only the first processor diagonalize the matrix ! IF ( me_bgrp == root_bgrp ) THEN ! ! ... allocate workspace ! #ifdef __PGI ! workaround for PGI compiler bug ! v(1:ldh,1:n) = h(1:ldh,1:n) #else v = h #endif ! ALLOCATE( work( lwork ) ) ALLOCATE( rwork( 3 * n - 2 ) ) ! CALL ZHEEV( 'V', 'U', n, v, ldh, e, work, lwork, rwork, info ) ! CALL errore( 'cdiagh', 'diagonalization (ZHEEV) failed', ABS( info ) ) ! ! ... deallocate workspace ! DEALLOCATE( rwork ) DEALLOCATE( work ) ! END IF ! #ifdef __PGI ! workaround for PGI compiler bug ! CALL mp_bcast( e(1:n), root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v(1:ldh,1:n), root_bgrp, intra_bgrp_comm ) #else CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v, root_bgrp, intra_bgrp_comm ) #endif ! RETURN ! END SUBROUTINE cdiagh_lapack ! #endif ! END SUBROUTINE cdiagh espresso-5.1/PW/src/newd.f900000644000175000017500000003331612341373025013702 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! MODULE dfunct CONTAINS !--------------------------------------- SUBROUTINE newq(vr,deeq,skip_vltot) ! ! This routine computes the integral of the perturbed potential with ! the Q function ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE ions_base, ONLY : nat USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : nhm ! IMPLICIT NONE ! ! Input: potential , output: contribution to integral REAL(kind=dp), intent(in) :: vr(dfftp%nnr,nspin) REAL(kind=dp), intent(inout) :: deeq( nhm, nhm, nat, nspin ) LOGICAL, intent(in) :: skip_vltot ! #if defined(__CUDA) && !defined(__DISABLE_CUDA_NEWD) CALL newq_compute_gpu(vr,deeq,skip_vltot) #else CALL newq_compute(vr,deeq,skip_vltot) #endif ! RETURN END SUBROUTINE newq SUBROUTINE newq_compute(vr,deeq,skip_vltot) ! ! This routine computes the integral of the perturbed potential with ! the Q function ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE cell_base, ONLY : omega USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : g, gg, ngm, gstart, mill, & eigts1, eigts2, eigts3, nl USE lsda_mod, ONLY : nspin USE scf, ONLY : vltot USE uspp, ONLY : okvan, indv USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE spin_orb, ONLY : lspinorb, domag USE noncollin_module, ONLY : nspin_mag USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ! Input: potential , output: contribution to integral REAL(kind=dp), intent(in) :: vr(dfftp%nnr,nspin) REAL(kind=dp), intent(out) :: deeq( nhm, nhm, nat, nspin ) LOGICAL, intent(in) :: skip_vltot !If .false. vltot is added to vr when necessary ! INTERNAL INTEGER :: ig, nt, ih, jh, na, is, nht, nb, mb ! counters on g vectors, atom type, beta functions x 2, ! atoms, spin, aux, aux, beta func x2 (again) #ifdef __OPENMP INTEGER :: mytid, ntids, omp_get_thread_num, omp_get_num_threads #endif COMPLEX(DP), ALLOCATABLE :: aux(:,:), qgm(:), qgm_na(:) ! work space COMPLEX(DP) :: dtmp REAL(DP), ALLOCATABLE :: ylmk0(:,:), qmod(:) ! spherical harmonics, modulus of G REAL(DP) :: ddot INTEGER :: fact IF ( gamma_only ) THEN ! fact = 2 ! ELSE ! fact = 1 ! END IF ! CALL start_clock( 'newd' ) ! ALLOCATE( aux( ngm, nspin_mag ), & qgm( ngm ), qmod( ngm ), ylmk0( ngm, lmaxq*lmaxq ) ) ! deeq(:,:,:,:) = 0.D0 ! CALL ylmr2( lmaxq * lmaxq, ngm, g, gg, ylmk0 ) ! qmod(1:ngm) = SQRT( gg(1:ngm) ) ! ! ... fourier transform of the total effective potential ! DO is = 1, nspin_mag ! IF ( (nspin_mag == 4 .AND. is /= 1) .or. skip_vltot ) THEN ! psic(:) = vr(:,is) ! ELSE ! psic(:) = vltot(:) + vr(:,is) ! END IF ! CALL fwfft ('Dense', psic, dfftp) ! aux(1:ngm,is) = psic( nl(1:ngm) ) ! END DO ! ! ... here we compute the integral Q*V for each atom, ! ... I = sum_G exp(-iR.G) Q_nm v^* ! DO nt = 1, ntyp ! IF ( upf(nt)%tvanp ) THEN ! DO ih = 1, nh(nt) ! DO jh = ih, nh(nt) ! ! ... The Q(r) for this atomic species without structure factor ! CALL qvan2( ngm, ih, jh, nt, qmod, qgm, ylmk0 ) ! #ifdef __OPENMP !$omp parallel default(shared), private(na,qgm_na,is,dtmp,ig,mytid,ntids) mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads #endif ALLOCATE( qgm_na( ngm ) ) ! DO na = 1, nat ! #ifdef __OPENMP ! distribute atoms round robin to threads ! IF( MOD( na, ntids ) /= mytid ) CYCLE #endif ! IF ( ityp(na) == nt ) THEN ! ! ... The Q(r) for this specific atom ! qgm_na(1:ngm) = qgm(1:ngm) * eigts1(mill(1,1:ngm),na) & * eigts2(mill(2,1:ngm),na) & * eigts3(mill(3,1:ngm),na) ! ! ... and the product with the Q functions ! DO is = 1, nspin_mag ! #ifdef __OPENMP dtmp = 0.0d0 DO ig = 1, ngm dtmp = dtmp + aux( ig, is ) * CONJG( qgm_na( ig ) ) END DO #else dtmp = ddot( 2 * ngm, aux(1,is), 1, qgm_na, 1 ) #endif deeq(ih,jh,na,is) = fact * omega * DBLE( dtmp ) ! IF ( gamma_only .AND. gstart == 2 ) & deeq(ih,jh,na,is) = deeq(ih,jh,na,is) - & omega * DBLE( aux(1,is) * qgm_na(1) ) ! deeq(jh,ih,na,is) = deeq(ih,jh,na,is) ! END DO ! END IF ! END DO ! DEALLOCATE( qgm_na ) #ifdef __OPENMP !$omp end parallel #endif ! END DO ! END DO ! END IF ! END DO ! CALL mp_sum( deeq( :, :, :, 1:nspin_mag ), intra_bgrp_comm ) ! DEALLOCATE( aux, qgm, qmod, ylmk0 ) ! END SUBROUTINE newq_compute !--------------------------------------- SUBROUTINE newd() USE uspp, ONLY : deeq USE realus, ONLY : newd_r USE noncollin_module, ONLY : noncolin USE control_flags, ONLY : tqr USE ldaU, ONLY : lda_plus_U, U_projection IMPLICIT NONE ! IF (tqr) THEN CALL newd_r() ELSE CALL newd_g() END IF ! IF (.NOT.noncolin) CALL add_paw_to_deeq(deeq) ! IF (lda_plus_U .AND. (U_projection == 'pseudo')) CALL add_vhub_to_deeq(deeq) ! RETURN ! END SUBROUTINE newd !---------------------------------------------------------------------------- SUBROUTINE newd_g() !---------------------------------------------------------------------------- ! ! ... This routine computes the integral of the effective potential with ! ... the Q function and adds it to the bare ionic D term which is used ! ... to compute the non-local term in the US scheme. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE lsda_mod, ONLY : nspin USE uspp, ONLY : deeq, dvan, deeq_nc, dvan_so, okvan, indv USE uspp_param, ONLY : upf, lmaxq, nh, nhm USE spin_orb, ONLY : lspinorb, domag USE noncollin_module, ONLY : noncolin, nspin_mag USE uspp, ONLY : nhtol, nhtolm USE scf, ONLY : v ! IMPLICIT NONE ! INTEGER :: ig, nt, ih, jh, na, is, nht, nb, mb ! counters on g vectors, atom type, beta functions x 2, ! atoms, spin, aux, aux, beta func x2 (again) ! ! IF ( .NOT. okvan ) THEN ! ! ... no ultrasoft potentials: use bare coefficients for projectors ! DO na = 1, nat ! nt = ityp(na) nht = nh(nt) ! IF ( lspinorb ) THEN ! deeq_nc(1:nht,1:nht,na,1:nspin) = dvan_so(1:nht,1:nht,1:nspin,nt) ! ELSE IF ( noncolin ) THEN ! deeq_nc(1:nht,1:nht,na,1) = dvan(1:nht,1:nht,nt) deeq_nc(1:nht,1:nht,na,2) = ( 0.D0, 0.D0 ) deeq_nc(1:nht,1:nht,na,3) = ( 0.D0, 0.D0 ) deeq_nc(1:nht,1:nht,na,4) = dvan(1:nht,1:nht,nt) ! ELSE ! DO is = 1, nspin ! deeq(1:nht,1:nht,na,is) = dvan(1:nht,1:nht,nt) ! END DO ! END IF ! END DO ! ! ... early return ! RETURN ! END IF ! call newq(v%of_r,deeq,.false.) IF (noncolin) call add_paw_to_deeq(deeq) ! atoms : & DO na = 1, nat ! nt = ityp(na) if_noncolin:& IF ( noncolin ) THEN ! IF (upf(nt)%has_so) THEN ! CALL newd_so(na) ! ELSE ! CALL newd_nc(na) ! END IF ! ELSE if_noncolin ! DO is = 1, nspin ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) deeq(ih,jh,na,is) = deeq(ih,jh,na,is) + dvan(ih,jh,nt) deeq(jh,ih,na,is) = deeq(ih,jh,na,is) END DO END DO ! END DO ! END IF if_noncolin ! END DO atoms ! CALL stop_clock( 'newd' ) ! RETURN ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE newd_so(na) !------------------------------------------------------------------------ ! USE spin_orb, ONLY : fcoef ! IMPLICIT NONE ! INTEGER :: na INTEGER :: ijs, is1, is2, kh, lh ! ! nt=ityp(na) ijs = 0 ! DO is1 = 1, 2 ! DO is2 =1, 2 ! ijs = ijs + 1 ! IF (domag) THEN DO ih = 1, nh(nt) ! DO jh = 1, nh(nt) ! deeq_nc(ih,jh,na,ijs) = dvan_so(ih,jh,ijs,nt) ! DO kh = 1, nh(nt) ! DO lh = 1, nh(nt) ! deeq_nc(ih,jh,na,ijs) = deeq_nc(ih,jh,na,ijs) + & deeq (kh,lh,na,1)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,1,is2,nt) + & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,2,is2,nt)) + & deeq (kh,lh,na,2)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,2,is2,nt) + & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,1,is2,nt)) + & (0.D0,-1.D0)*deeq (kh,lh,na,3)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,2,is2,nt) - & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,1,is2,nt)) + & deeq (kh,lh,na,4)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,1,is2,nt) - & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,2,is2,nt)) ! END DO ! END DO ! END DO ! END DO ! ELSE ! DO ih = 1, nh(nt) ! DO jh = 1, nh(nt) ! deeq_nc(ih,jh,na,ijs) = dvan_so(ih,jh,ijs,nt) ! DO kh = 1, nh(nt) ! DO lh = 1, nh(nt) ! deeq_nc(ih,jh,na,ijs) = deeq_nc(ih,jh,na,ijs) + & deeq (kh,lh,na,1)* & (fcoef(ih,kh,is1,1,nt)*fcoef(lh,jh,1,is2,nt) + & fcoef(ih,kh,is1,2,nt)*fcoef(lh,jh,2,is2,nt) ) ! END DO ! END DO ! END DO ! END DO ! END IF ! END DO ! END DO ! RETURN ! END SUBROUTINE newd_so ! !------------------------------------------------------------------------ SUBROUTINE newd_nc(na) !------------------------------------------------------------------------ ! IMPLICIT NONE ! INTEGER :: na ! nt = ityp(na) ! DO ih = 1, nh(nt) ! DO jh = 1, nh(nt) ! IF (lspinorb) THEN deeq_nc(ih,jh,na,1) = dvan_so(ih,jh,1,nt) + & deeq(ih,jh,na,1) + deeq(ih,jh,na,4) ! deeq_nc(ih,jh,na,4) = dvan_so(ih,jh,4,nt) + & deeq(ih,jh,na,1) - deeq(ih,jh,na,4) ! ELSE deeq_nc(ih,jh,na,1) = dvan(ih,jh,nt) + & deeq(ih,jh,na,1) + deeq(ih,jh,na,4) ! deeq_nc(ih,jh,na,4) = dvan(ih,jh,nt) + & deeq(ih,jh,na,1) - deeq(ih,jh,na,4) ! END IF deeq_nc(ih,jh,na,2) = deeq(ih,jh,na,2) - & ( 0.D0, 1.D0 ) * deeq(ih,jh,na,3) ! deeq_nc(ih,jh,na,3) = deeq(ih,jh,na,2) + & ( 0.D0, 1.D0 ) * deeq(ih,jh,na,3) ! END DO ! END DO ! RETURN END SUBROUTINE newd_nc ! END SUBROUTINE newd_g END MODULE dfunct espresso-5.1/PW/src/setqf.f900000644000175000017500000000244312341373025014064 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine setqf (qfcoef, rho, r, nqf, ltot, mesh) !----------------------------------------------------------------------- ! ! This routine compute the first part of the Q function up to rinner. ! On output it contains r^2 Q ! ! USE kinds implicit none ! ! first the dummy variables ! integer :: nqf, ltot, mesh ! input: the number of coefficients ! input: the angular momentum ! input: the number of mesh point real(DP) :: r (mesh), qfcoef (nqf), rho (mesh) ! input: the radial mesh ! input: the coefficients of Q ! output: the function to be computed ! ! here the local variables ! integer :: ir, i ! counter on mesh points ! counter on the coeffients real(DP) :: rr ! the square of the radius do ir = 1, mesh rr = r (ir) **2 rho (ir) = qfcoef (1) do i = 2, nqf rho (ir) = rho (ir) + qfcoef (i) * rr** (i - 1) enddo rho (ir) = rho (ir) * r (ir) ** (ltot + 2) enddo return end subroutine setqf espresso-5.1/PW/src/gradcorr.f900000644000175000017500000005130012341373025014541 0ustar mbamba! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE gradcorr( rho, rhog, rho_core, rhog_core, etxc, vtxc, v ) !---------------------------------------------------------------------------- ! USE constants, ONLY : e2 USE kinds, ONLY : DP USE gvect, ONLY : nl, ngm, g USE lsda_mod, ONLY : nspin USE cell_base, ONLY : omega, alat USE funct, ONLY : gcxc, gcx_spin, gcc_spin, & gcc_spin_more, dft_is_gradient, get_igcc USE spin_orb, ONLY : domag USE noncollin_module, ONLY : ux USE wavefunctions_module, ONLY : psic USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: rho(dfftp%nnr,nspin), rho_core(dfftp%nnr) COMPLEX(DP), INTENT(IN) :: rhog(ngm,nspin), rhog_core(ngm) REAL(DP), INTENT(INOUT) :: v(dfftp%nnr,nspin) REAL(DP), INTENT(INOUT) :: vtxc, etxc ! INTEGER :: k, ipol, is, nspin0, ir, jpol ! REAL(DP), ALLOCATABLE :: grho(:,:,:), h(:,:,:), dh(:) REAL(DP), ALLOCATABLE :: rhoout(:,:), segni(:), vgg(:,:), vsave(:,:) REAL(DP), ALLOCATABLE :: gmag(:,:,:) COMPLEX(DP), ALLOCATABLE :: rhogsum(:,:) ! LOGICAL :: igcc_is_lyp REAL(DP) :: grho2(2), sx, sc, v1x, v2x, v1c, v2c, & v1xup, v1xdw, v2xup, v2xdw, v1cup, v1cdw , & etxcgc, vtxcgc, segno, arho, fac, zeta, rh, grh2, amag REAL(DP) :: v2cup, v2cdw, v2cud, rup, rdw, & grhoup, grhodw, grhoud, grup, grdw, seg ! REAL(DP), PARAMETER :: epsr = 1.D-6, epsg = 1.D-10 ! ! IF ( .NOT. dft_is_gradient() ) RETURN igcc_is_lyp = (get_igcc() == 3 .or. get_igcc() == 7) ! etxcgc = 0.D0 vtxcgc = 0.D0 ! nspin0=nspin if (nspin==4) nspin0=1 if (nspin==4.and.domag) nspin0=2 fac = 1.D0 / DBLE( nspin0 ) ! ALLOCATE( h( 3, dfftp%nnr, nspin0) ) ALLOCATE( grho( 3, dfftp%nnr, nspin0) ) ALLOCATE( rhoout( dfftp%nnr, nspin0) ) IF (nspin==4.AND.domag) THEN ALLOCATE( vgg( dfftp%nnr, nspin0 ) ) ALLOCATE( vsave( dfftp%nnr, nspin ) ) ALLOCATE( segni( dfftp%nnr ) ) vsave=v v=0.d0 ENDIF ! ALLOCATE( rhogsum( ngm, nspin0 ) ) ! ! ... calculate the gradient of rho + rho_core in real space ! IF ( nspin == 4 .AND. domag ) THEN ! CALL compute_rho(rho,rhoout,segni,dfftp%nnr) ! ! ... bring starting rhoout to G-space ! DO is = 1, nspin0 ! psic(:) = rhoout(:,is) ! CALL fwfft ('Dense', psic, dfftp) ! rhogsum(:,is) = psic(nl(:)) ! END DO ELSE ! rhoout(:,1:nspin0) = rho(:,1:nspin0) rhogsum(:,1:nspin0) = rhog(:,1:nspin0) ! ENDIF DO is = 1, nspin0 ! rhoout(:,is) = fac * rho_core(:) + rhoout(:,is) rhogsum(:,is) = fac * rhog_core(:) + rhogsum(:,is) ! CALL gradrho( dfftp%nnr, rhogsum(1,is), ngm, g, nl, grho(1,1,is) ) ! END DO ! DEALLOCATE( rhogsum ) ! IF ( nspin0 == 1 ) THEN ! ! ... This is the spin-unpolarised case ! DO k = 1, dfftp%nnr ! arho = ABS( rhoout(k,1) ) ! IF ( arho > epsr ) THEN ! grho2(1) = grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2 ! IF ( grho2(1) > epsg ) THEN ! segno = SIGN( 1.D0, rhoout(k,1) ) ! CALL gcxc( arho, grho2(1), sx, sc, v1x, v2x, v1c, v2c ) ! ! ... first term of the gradient correction : D(rho*Exc)/D(rho) ! v(k,1) = v(k,1) + e2 * ( v1x + v1c ) ! ! ... h contains : ! ! ... D(rho*Exc) / D(|grad rho|) * (grad rho) / |grad rho| ! h(:,k,1) = e2 * ( v2x + v2c ) * grho(:,k,1) ! vtxcgc = vtxcgc+e2*( v1x + v1c ) * ( rhoout(k,1) - rho_core(k) ) etxcgc = etxcgc+e2*( sx + sc ) * segno ! ELSE h(:,k,1)=0.D0 END IF ! ELSE ! h(:,k,1) = 0.D0 ! END IF ! END DO ! ELSE ! ! ... spin-polarised case ! !$omp parallel do private( rh, grho2, sx, v1xup, v1xdw, v2xup, v2xdw, rup, rdw, & !$omp grhoup, grhodw, grhoud, sc, v1cup, v1cdw, v2cup, v2cdw, v2cud, & !$omp zeta, grh2, v2c, grup, grdw ), & !$omp reduction(+:etxcgc,vtxcgc) DO k = 1, dfftp%nnr ! rh = rhoout(k,1) + rhoout(k,2) ! grho2(:) = grho(1,k,:)**2 + grho(2,k,:)**2 + grho(3,k,:)**2 ! CALL gcx_spin( rhoout(k,1), rhoout(k,2), grho2(1), & grho2(2), sx, v1xup, v1xdw, v2xup, v2xdw ) ! IF ( rh > epsr ) THEN ! IF ( igcc_is_lyp ) THEN ! rup = rhoout(k,1) rdw = rhoout(k,2) ! grhoup = grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2 grhodw = grho(1,k,2)**2 + grho(2,k,2)**2 + grho(3,k,2)**2 ! grhoud = grho(1,k,1) * grho(1,k,2) + & grho(2,k,1) * grho(2,k,2) + & grho(3,k,1) * grho(3,k,2) ! CALL gcc_spin_more( rup, rdw, grhoup, grhodw, grhoud, & sc, v1cup, v1cdw, v2cup, v2cdw, v2cud ) ! ELSE ! zeta = ( rhoout(k,1) - rhoout(k,2) ) / rh if (nspin.eq.4.and.domag) zeta=abs(zeta)*segni(k) ! grh2 = ( grho(1,k,1) + grho(1,k,2) )**2 + & ( grho(2,k,1) + grho(2,k,2) )**2 + & ( grho(3,k,1) + grho(3,k,2) )**2 ! CALL gcc_spin( rh, zeta, grh2, sc, v1cup, v1cdw, v2c ) ! v2cup = v2c v2cdw = v2c v2cud = v2c ! END IF ! ELSE ! sc = 0.D0 v1cup = 0.D0 v1cdw = 0.D0 v2c = 0.D0 v2cup = 0.D0 v2cdw = 0.D0 v2cud = 0.D0 ! ENDIF ! ! ... first term of the gradient correction : D(rho*Exc)/D(rho) ! v(k,1) = v(k,1) + e2 * ( v1xup + v1cup ) v(k,2) = v(k,2) + e2 * ( v1xdw + v1cdw ) ! ! ... h contains D(rho*Exc)/D(|grad rho|) * (grad rho) / |grad rho| ! DO ipol = 1, 3 ! grup = grho(ipol,k,1) grdw = grho(ipol,k,2) h(ipol,k,1) = e2 * ( ( v2xup + v2cup ) * grup + v2cud * grdw ) h(ipol,k,2) = e2 * ( ( v2xdw + v2cdw ) * grdw + v2cud * grup ) ! END DO ! vtxcgc = vtxcgc + & e2 * ( v1xup + v1cup ) * ( rhoout(k,1) - rho_core(k) * fac ) vtxcgc = vtxcgc + & e2 * ( v1xdw + v1cdw ) * ( rhoout(k,2) - rho_core(k) * fac ) etxcgc = etxcgc + e2 * ( sx + sc ) ! END DO !$omp end parallel do ! END IF ! DO is = 1, nspin0 ! rhoout(:,is) = rhoout(:,is) - fac * rho_core(:) ! END DO ! DEALLOCATE( grho ) ! ALLOCATE( dh( dfftp%nnr ) ) ! ! ... second term of the gradient correction : ! ... \sum_alpha (D / D r_alpha) ( D(rho*Exc)/D(grad_alpha rho) ) ! DO is = 1, nspin0 ! CALL grad_dot( dfftp%nnr, h(1,1,is), ngm, g, nl, alat, dh ) ! v(:,is) = v(:,is) - dh(:) ! vtxcgc = vtxcgc - SUM( dh(:) * rhoout(:,is) ) ! END DO ! vtxc = vtxc + omega * vtxcgc / ( dfftp%nr1 * dfftp%nr2 * dfftp%nr3 ) etxc = etxc + omega * etxcgc / ( dfftp%nr1 * dfftp%nr2 * dfftp%nr3 ) IF (nspin==4.AND.domag) THEN DO is=1,nspin0 vgg(:,is)=v(:,is) ENDDO v=vsave DO k=1,dfftp%nnr v(k,1)=v(k,1)+0.5d0*(vgg(k,1)+vgg(k,2)) amag=sqrt(rho(k,2)**2+rho(k,3)**2+rho(k,4)**2) IF (amag.GT.1.d-12) THEN v(k,2)=v(k,2)+segni(k)*0.5d0*(vgg(k,1)-vgg(k,2))*rho(k,2)/amag v(k,3)=v(k,3)+segni(k)*0.5d0*(vgg(k,1)-vgg(k,2))*rho(k,3)/amag v(k,4)=v(k,4)+segni(k)*0.5d0*(vgg(k,1)-vgg(k,2))*rho(k,4)/amag ENDIF ENDDO ENDIF ! DEALLOCATE( dh ) DEALLOCATE( h ) DEALLOCATE( rhoout ) IF (nspin==4.and.domag) THEN DEALLOCATE( vgg ) DEALLOCATE( vsave ) DEALLOCATE( segni ) ENDIF ! RETURN ! END SUBROUTINE gradcorr ! !---------------------------------------------------------------------------- SUBROUTINE gradrho( nrxx, a, ngm, g, nl, ga ) !---------------------------------------------------------------------------- ! ! ... Calculates ga = \grad a in R-space (a is in G-space) ! USE kinds, ONLY : DP USE constants, ONLY : tpi USE cell_base, ONLY : tpiba USE gvect, ONLY : nlm USE control_flags, ONLY : gamma_only USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : invfft ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nrxx INTEGER, INTENT(IN) :: ngm, nl(ngm) COMPLEX(DP), INTENT(IN) :: a(ngm) REAL(DP), INTENT(IN) :: g(3,ngm) REAL(DP), INTENT(OUT) :: ga(3,nrxx) ! INTEGER :: ipol COMPLEX(DP), ALLOCATABLE :: gaux(:) ! ! ALLOCATE( gaux( nrxx ) ) ! ! ... multiply by (iG) to get (\grad_ipol a)(G) ... ! ga(:,:) = 0.D0 ! DO ipol = 1, 3 ! gaux(:) = CMPLX(0.d0,0.d0,kind=dp) ! gaux(nl(:)) = g(ipol,:) * CMPLX( -AIMAG( a(:) ), REAL( a(:) ) ,kind=DP) ! IF ( gamma_only ) THEN ! gaux(nlm(:)) = CMPLX( REAL( gaux(nl(:)) ), -AIMAG( gaux(nl(:)) ) ,kind=DP) ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', gaux, dfftp) ! ! ...and add the factor 2\pi/a missing in the definition of G ! ga(ipol,:) = ga(ipol,:) + tpiba * REAL( gaux(:) ) ! END DO ! DEALLOCATE( gaux ) ! RETURN ! END SUBROUTINE gradrho ! !---------------------------------------------------------------------------- SUBROUTINE gradient( nrxx, a, ngm, g, nl, ga ) !---------------------------------------------------------------------------- ! ! ... Calculates ga = \grad a in R-space (a is also in R-space) ! USE constants, ONLY : tpi USE cell_base, ONLY : tpiba USE kinds, ONLY : DP USE gvect, ONLY : nlm USE control_flags, ONLY : gamma_only USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : fwfft, invfft ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nrxx INTEGER, INTENT(IN) :: ngm, nl(ngm) REAL(DP), INTENT(IN) :: a(nrxx), g(3,ngm) REAL(DP), INTENT(OUT) :: ga(3,nrxx) ! INTEGER :: ipol COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:) ! ! ALLOCATE( aux( nrxx ) ) ALLOCATE( gaux( nrxx ) ) ! aux = CMPLX( a(:), 0.D0 ,kind=DP) ! ! ... bring a(r) to G-space, a(G) ... ! CALL fwfft ('Dense', aux, dfftp) ! ! ... multiply by (iG) to get (\grad_ipol a)(G) ... ! DO ipol = 1, 3 ! gaux(:) = CMPLX(0.d0,0.d0, kind=dp) ! gaux(nl(:)) = g(ipol,:) * & CMPLX( -AIMAG( aux(nl(:)) ), REAL( aux(nl(:)) ) ,kind=DP) ! IF ( gamma_only ) THEN ! gaux(nlm(:)) = CMPLX( REAL( gaux(nl(:)) ), -AIMAG( gaux(nl(:)) ) ,kind=DP) ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', gaux, dfftp) ! ! ...and add the factor 2\pi/a missing in the definition of G ! ga(ipol,:) = tpiba * DBLE( gaux(:) ) ! END DO ! DEALLOCATE( gaux ) DEALLOCATE( aux ) ! RETURN ! END SUBROUTINE gradient ! !---------------------------------------------------------------------------- SUBROUTINE grad_dot( nrxx, a, ngm, g, nl, alat, da ) !---------------------------------------------------------------------------- ! ! ... Calculates da = \sum_i \grad_i a_i in R-space ! USE constants, ONLY : tpi USE cell_base, ONLY : tpiba USE kinds, ONLY : DP USE gvect, ONLY : nlm USE control_flags, ONLY : gamma_only USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : fwfft, invfft ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nrxx, ngm, nl(ngm) REAL(DP), INTENT(IN) :: a(3,nrxx), g(3,ngm), alat REAL(DP), INTENT(OUT) :: da(nrxx) ! INTEGER :: n, ipol COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:) ! ! ALLOCATE( aux( nrxx ), gaux( nrxx ) ) ! gaux(:) = CMPLX(0.d0,0.d0, kind=dp) ! DO ipol = 1, 3 ! aux = CMPLX( a(ipol,:), 0.D0 ,kind=DP) ! ! ... bring a(ipol,r) to G-space, a(G) ... ! CALL fwfft ('Dense', aux, dfftp) ! DO n = 1, ngm ! gaux(nl(n)) = gaux(nl(n)) + g(ipol,n) * & CMPLX( -AIMAG( aux(nl(n)) ), REAL( aux(nl(n)) ) ,kind=DP) ! END DO ! END DO ! IF ( gamma_only ) THEN ! DO n = 1, ngm ! gaux(nlm(n)) = CONJG( gaux(nl(n)) ) ! END DO ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', gaux, dfftp) ! ! ... add the factor 2\pi/a missing in the definition of G and sum ! da(:) = tpiba * REAL( gaux(:) ) ! DEALLOCATE( aux, gaux ) ! RETURN ! END SUBROUTINE grad_dot !-------------------------------------------------------------------- SUBROUTINE hessian( nrxx, a, ngm, g, nl, ga, ha ) !-------------------------------------------------------------------- ! ! ... Calculates ga = \grad a in R-space ! ... and ha = \hessian a in R-space (a is also in R-space) ! USE constants, ONLY : tpi USE cell_base, ONLY : tpiba USE kinds, ONLY : DP USE gvect, ONLY : nlm USE control_flags, ONLY : gamma_only USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : fwfft, invfft ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nrxx INTEGER, INTENT(IN) :: ngm, nl(ngm) REAL(DP), INTENT(IN) :: a(nrxx), g(3,ngm) REAL(DP), INTENT(OUT) :: ga( 3, nrxx ) REAL(DP), INTENT(OUT) :: ha( 3, 3, nrxx ) ! INTEGER :: ipol, jpol COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:), haux(:) ! ! ALLOCATE( aux( nrxx ) ) ALLOCATE( gaux( nrxx ) ) ALLOCATE( haux( nrxx ) ) ! aux = CMPLX( a(:), 0.D0 ,kind=DP) ! ! ... bring a(r) to G-space, a(G) ... ! CALL fwfft ('Dense', aux, dfftp) ! ! ... multiply by (iG) to get (\grad_ipol a)(G) ... ! DO ipol = 1, 3 ! gaux(:) = CMPLX(0.d0,0.d0, kind=dp) ! gaux(nl(:)) = g(ipol,:) * & CMPLX( -AIMAG( aux(nl(:)) ), REAL( aux(nl(:)) ) ,kind=DP) ! IF ( gamma_only ) THEN ! gaux(nlm(:)) = CMPLX( REAL( gaux(nl(:)) ), -AIMAG( gaux(nl(:)) ) ,kind=DP) ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', gaux, dfftp) ! ! ...and add the factor 2\pi/a missing in the definition of G ! ga(ipol,:) = tpiba * DBLE( gaux(:) ) ! ! ... compute the second derivatives ! DO jpol = 1, ipol ! haux(:) = CMPLX(0.d0,0.d0, kind=dp) ! haux(nl(:)) = - g(ipol,:) * g(jpol,:) * & CMPLX( REAL( aux(nl(:)) ), AIMAG( aux(nl(:)) ) ,kind=DP) ! IF ( gamma_only ) THEN ! haux(nlm(:)) = CMPLX( REAL( haux(nl(:)) ), -AIMAG( haux(nl(:)) ) ,kind=DP) ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', haux, dfftp) ! ! ...and add the factor 2\pi/a missing in the definition of G ! ha(ipol, jpol, :) = tpiba * tpiba * DBLE( haux(:) ) ! ha(jpol, ipol, :) = ha(ipol, jpol, :) ! END DO ! END DO ! DEALLOCATE( haux ) DEALLOCATE( gaux ) DEALLOCATE( aux ) ! RETURN ! END SUBROUTINE hessian !-------------------------------------------------------------------- SUBROUTINE ggradient( nrxx, a, ngm, g, nl, ga, gga ) !-------------------------------------------------------------------- ! ! ... Calculates ga = \grad a in R-space ! ... and gga = \grad \grad a in R-space (a is also in R-space) ! USE constants, ONLY : tpi USE cell_base, ONLY : tpiba USE kinds, ONLY : DP USE gvect, ONLY : nlm USE control_flags, ONLY : gamma_only USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : fwfft, invfft ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nrxx INTEGER, INTENT(IN) :: ngm, nl(ngm) REAL(DP), INTENT(IN) :: a(nrxx), g(3,ngm) REAL(DP), INTENT(OUT) :: ga( 3, nrxx ) REAL(DP), INTENT(OUT) :: gga( 3, 3, nrxx ) ! INTEGER :: ipol, jpol COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:), ggaux(:) ! ! ALLOCATE( aux( nrxx ) ) ALLOCATE( gaux( nrxx ) ) ALLOCATE( ggaux( nrxx ) ) ! aux = CMPLX( a(:), 0.D0 ,kind=DP) ! ! ... bring a(r) to G-space, a(G) ... ! CALL fwfft ('Dense', aux, dfftp) ! ! ... multiply by (iG) to get (\grad_ipol a)(G) ... ! DO ipol = 1, 3 ! gaux(:) = CMPLX(0.d0,0.d0, kind=dp) ! gaux(nl(:)) = g(ipol,:) * & CMPLX( -AIMAG( aux(nl(:)) ), REAL( aux(nl(:)) ) ,kind=DP) ! IF ( gamma_only ) THEN ! gaux(nlm(:)) = CMPLX( REAL( gaux(nl(:)) ), -AIMAG( gaux(nl(:)) ) ,kind=DP) ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', gaux, dfftp) ! ! ...and add the factor 2\pi/a missing in the definition of G ! ga(ipol,:) = tpiba * DBLE( gaux(:) ) ! ! ... compute the second derivatives ! DO jpol = 1, ipol ! ggaux(:) = CMPLX(0.d0,0.d0, kind=dp) ! ggaux(nl(:)) = - g(ipol,:) * g(jpol,:) * & CMPLX( REAL( aux(nl(:)) ), AIMAG( aux(nl(:)) ) ,kind=DP) ! IF ( gamma_only ) THEN ! ggaux(nlm(:)) = CMPLX( REAL( ggaux(nl(:)) ), -AIMAG( ggaux(nl(:)) ) ,kind=DP) ! END IF ! ! ... bring back to R-space, (\grad_ipol a)(r) ... ! CALL invfft ('Dense', ggaux, dfftp) ! ! ...and add the factor 2\pi/a missing in the definition of G ! gga(ipol, jpol, :) = tpiba * tpiba * DBLE( ggaux(:) ) ! gga(jpol, ipol, :) = gga(ipol, jpol, :) ! END DO ! END DO ! DEALLOCATE( ggaux ) DEALLOCATE( gaux ) DEALLOCATE( aux ) ! RETURN ! END SUBROUTINE ggradient !-------------------------------------------------------------------- SUBROUTINE external_gradient( a, grada ) !-------------------------------------------------------------------- ! ! Interface for computing gradients in real space, to be called by ! an external module ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, g ! IMPLICIT NONE ! REAL( DP ), INTENT(IN) :: a( dfftp%nnr ) REAL( DP ), INTENT(OUT) :: grada( 3, dfftp%nnr ) ! A in real space, grad(A) in real space CALL gradient( dfftp%nnr, a, ngm, g, nl, grada ) RETURN END SUBROUTINE external_gradient !-------------------------------------------------------------------- SUBROUTINE external_ggradient( a, grada, ggrada ) !-------------------------------------------------------------------- ! ! Interface for computing gradient and hessian in real ! space, to be called by an external module ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, g ! IMPLICIT NONE ! REAL( DP ), INTENT(IN) :: a( dfftp%nnr ) REAL( DP ), INTENT(OUT) :: grada( 3, dfftp%nnr ) REAL( DP ), INTENT(OUT) :: ggrada( 3, 3, dfftp%nnr ) ! A in real space, grad(A) in real space CALL ggradient( dfftp%nnr, a, ngm, g, nl, grada, ggrada ) RETURN END SUBROUTINE external_ggradient !-------------------------------------------------------------------- SUBROUTINE external_hessian( a, grada, hessa ) !-------------------------------------------------------------------- ! ! Interface for computing hessian in real space, to be called by ! an external module ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, nl, g ! IMPLICIT NONE ! REAL( DP ), INTENT(IN) :: a( dfftp%nnr ) REAL( DP ), INTENT(OUT) :: grada( 3, dfftp%nnr ) REAL( DP ), INTENT(OUT) :: hessa( 3, 3, dfftp%nnr ) ! A in real space, grad(A) and hess(A) in real space CALL hessian( dfftp%nnr, a, ngm, g, nl, grada, hessa ) RETURN END SUBROUTINE external_hessian !---------------------------------------------------------------------------- espresso-5.1/PW/src/forces.f900000644000175000017500000002616212341373025014227 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE forces() !---------------------------------------------------------------------------- ! ! ... This routine is a driver routine which computes the forces ! ... acting on the atoms. The complete expression of the forces ! ... contains four parts which are computed by different routines: ! ! ... a) force_lc, local contribution to the forces ! ... b) force_cc, contribution due to NLCC ! ... c) force_ew, contribution due to the electrostatic ewald term ! ... d) force_us, contribution due to the non-local potential ! ... e) force_corr, correction term for incomplete self-consistency ! ... f) force_hub, contribution due to the Hubbard term ! ... g) force_london, semi-empirical correction for dispersion forces ! ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE cell_base, ONLY : at, bg, alat, omega USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv, amass, extfor USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, gstart, ngl, nl, igtongl, g, gg, gcutm USE lsda_mod, ONLY : nspin USE symme, ONLY : symvector USE vlocal, ONLY : strf, vloc USE force_mod, ONLY : force, lforce USE scf, ONLY : rho USE ions_base, ONLY : if_pos USE ldaU, ONLY : lda_plus_u, U_projection USE extfield, ONLY : tefield, forcefield USE control_flags, ONLY : gamma_only, remove_rigid_rot, textfor, & iverbosity, llondon, lxdm, ts_vdw USE plugin_flags USE bp, ONLY : lelfield, gdir, l3dstring, efield_cart, & efield_cry,efield USE uspp, ONLY : okvan USE martyna_tuckerman, ONLY: do_comp_mt, wg_corr_force USE london_module, ONLY : force_london USE xdm_module, ONLY : force_xdm USE tsvdw_module, ONLY : FtsvdW ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: forcenl(:,:), & forcelc(:,:), & forcecc(:,:), & forceion(:,:), & force_disp(:,:),& force_disp_xdm(:,:),& force_mt(:,:), & forcescc(:,:), & forces_bp_efield(:,:), & forceh(:,:) ! nonlocal, local, core-correction, ewald, scf correction terms, and hubbard ! ! aux is used to store a possible additional density ! now defined in real space ! COMPLEX(DP), ALLOCATABLE :: auxg(:), auxr(:) ! REAL(DP) :: sumfor, sumscf, sum_mm REAL(DP),PARAMETER :: eps = 1.e-12_dp INTEGER :: ipol, na ! counter on polarization ! counter on atoms ! ! CALL start_clock( 'forces' ) ! ALLOCATE( forcenl( 3, nat ), forcelc( 3, nat ), forcecc( 3, nat ), & forceh( 3, nat ), forceion( 3, nat ), forcescc( 3, nat ) ) ! forcescc(:,:) = 0.D0 forceh(:,:) = 0.D0 force (:,:) = 0.D0 ! WRITE( stdout, '(/,5x,"Forces acting on atoms (Ry/au):", / )') ! ! ... The nonlocal contribution is computed here ! CALL force_us( forcenl ) ! ! ... The local contribution ! CALL force_lc( nat, tau, ityp, alat, omega, ngm, ngl, igtongl, & g, rho%of_r, nl, nspin, gstart, gamma_only, vloc, & forcelc ) ! ! ... The NLCC contribution ! CALL force_cc( forcecc ) ! ! ... The Hubbard contribution ! (included by force_us if using beta as local projectors) ! IF ( lda_plus_u .AND. U_projection.NE.'pseudo' ) CALL force_hub( forceh ) ! ! ... The ionic contribution is computed here ! CALL force_ew( alat, nat, ntyp, ityp, zv, at, bg, tau, omega, g, & gg, ngm, gstart, gamma_only, gcutm, strf, forceion ) ! ! ... the semi-empirical dispersion correction ! IF ( llondon ) THEN ! ALLOCATE ( force_disp ( 3 , nat ) ) force_disp ( : , : ) = 0.0_DP force_disp = force_london( alat , nat , ityp , at , bg , tau ) ! END IF IF (lxdm) THEN ALLOCATE (force_disp_xdm(3,nat)) force_disp_xdm = 0._dp force_disp_xdm = force_xdm(nat) end if ! ! ... The SCF contribution ! CALL force_corr( forcescc ) ! IF (do_comp_mt) THEN ! ALLOCATE ( force_mt ( 3 , nat ) ) CALL wg_corr_force( .true.,omega, nat, ntyp, ityp, ngm, g, tau, zv, strf, & nspin, rho%of_g, force_mt ) END IF ! ! ... call void routine for user define/ plugin patches on internal forces ! call plugin_int_forces() ! ! Berry's phase electric field terms ! if(lelfield) then ALLOCATE ( forces_bp_efield (3,nat) ) forces_bp_efield(:,:)=0.d0 if(.not.l3dstring) then if(okvan) call forces_us_efield(forces_bp_efield,gdir,efield) call forces_ion_efield(forces_bp_efield,gdir,efield) else if(okvan)then do ipol=1,3 call forces_us_efield(forces_bp_efield,ipol,efield_cry(ipol)) enddo endif do ipol=1,3 call forces_ion_efield(forces_bp_efield,ipol,efield_cart(ipol)) enddo endif endif ! ! ... here we sum all the contributions and compute the total force acting ! ... on the crystal ! DO ipol = 1, 3 ! sumfor = 0.D0 ! DO na = 1, nat ! force(ipol,na) = force(ipol,na) + & forcenl(ipol,na) + & forceion(ipol,na) + & forcelc(ipol,na) + & forcecc(ipol,na) + & forceh(ipol,na) + & forcescc(ipol,na) ! IF ( llondon ) force(ipol,na) = force(ipol,na) + force_disp(ipol,na) IF ( lxdm ) force(ipol,na) = force(ipol,na) + force_disp_xdm(ipol,na) ! factor 2 converts from Ha to Ry a.u. IF ( ts_vdw ) force(ipol,na) = force(ipol,na) + 2.0_dp*FtsvdW(ipol,na) IF ( tefield ) force(ipol,na) = force(ipol,na) + forcefield(ipol,na) IF (lelfield) force(ipol,na) = force(ipol,na) + forces_bp_efield(ipol,na) IF (do_comp_mt)force(ipol,na) = force(ipol,na) + force_mt(ipol,na) sumfor = sumfor + force(ipol,na) ! END DO ! ! ... impose total force = 0 ! DO na = 1, nat ! force(ipol,na) = force(ipol,na) - sumfor / DBLE( nat ) ! END DO ! #ifdef __MS2 ! ! ... impose total force of the quantum subsystem /= 0 ! DO na = 1, nat ! force(ipol,na) = force(ipol,na) + sumfor / DBLE( nat ) ! END DO ! #endif ! END DO ! ! ... resymmetrize (should not be needed, but ...) ! CALL symvector ( nat, force ) ! IF ( remove_rigid_rot ) & CALL remove_tot_torque( nat, tau, amass(ityp(:)), force ) ! IF( textfor ) force(:,:) = force(:,:) + extfor(:,:) ! ! ... call void routine for user define/ plugin patches on external forces ! CALL plugin_ext_forces() ! ! ... write on output the forces ! DO na = 1, nat ! WRITE( stdout, 9035) na, ityp(na), force(:,na) ! END DO ! ! ... forces on fixed coordinates are set to zero ( C.S. 15/10/2003 ) ! force(:,:) = force(:,:) * DBLE( if_pos ) forcescc(:,:) = forcescc(:,:) * DBLE( if_pos ) ! IF ( iverbosity > 0 ) THEN IF ( do_comp_mt ) THEN WRITE( stdout, '(5x,"The Martyna-Tuckerman correction term to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( force_mt(ipol,na), ipol = 1, 3 ) END DO END IF ! WRITE( stdout, '(5x,"The non-local contrib. to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( forcenl(ipol,na), ipol = 1, 3 ) END DO WRITE( stdout, '(5x,"The ionic contribution to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( forceion(ipol,na), ipol = 1, 3 ) END DO WRITE( stdout, '(5x,"The local contribution to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( forcelc(ipol,na), ipol = 1, 3 ) END DO WRITE( stdout, '(5x,"The core correction contribution to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( forcecc(ipol,na), ipol = 1, 3 ) END DO WRITE( stdout, '(5x,"The Hubbard contrib. to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( forceh(ipol,na), ipol = 1, 3 ) END DO WRITE( stdout, '(5x,"The SCF correction term to forces")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), ( forcescc(ipol,na), ipol = 1, 3 ) END DO ! IF ( llondon) THEN WRITE( stdout, '(/,5x,"Dispersion contribution to forces:")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), (force_disp(ipol,na), ipol = 1, 3) END DO END IF ! IF (lxdm) THEN WRITE( stdout, '(/,5x,"XDM contribution to forces:")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), (force_disp_xdm(ipol,na), ipol = 1, 3) END DO END IF ! IF ( ts_vdw) THEN WRITE( stdout, '(/,5x,"TS-VDW contribution to forces:")') DO na = 1, nat WRITE( stdout, 9035) na, ityp(na), (2.0d0*FtsvdW(ipol,na), ipol=1,3) END DO END IF ! END IF ! sumfor = 0.D0 sumscf = 0.D0 ! DO na = 1, nat ! sumfor = sumfor + force(1,na)**2 + force(2,na)**2 + force(3,na)**2 sumscf = sumscf + forcescc(1,na)**2 + forcescc(2,na)**2+ forcescc(3,na)**2 ! END DO ! sumfor = SQRT( sumfor ) sumscf = SQRT( sumscf ) ! WRITE( stdout, '(/5x,"Total force = ",F12.6,5X, & & "Total SCF correction = ",F12.6)') sumfor, sumscf ! IF ( llondon .AND. iverbosity > 0 ) THEN ! sum_mm = 0.D0 DO na = 1, nat sum_mm = sum_mm + & force_disp(1,na)**2 + force_disp(2,na)**2 + force_disp(3,na)**2 END DO sum_mm = SQRT( sum_mm ) WRITE ( stdout, '(/,5x, "Total Dispersion Force = ",F12.6)') sum_mm ! END IF ! IF ( lxdm .AND. iverbosity > 0 ) THEN ! sum_mm = 0.D0 DO na = 1, nat sum_mm = sum_mm + & force_disp_xdm(1,na)**2 + force_disp_xdm(2,na)**2 + force_disp_xdm(3,na)**2 END DO sum_mm = SQRT( sum_mm ) WRITE ( stdout, '(/,5x, "Total XDM Force = ",F12.6)') sum_mm ! END IF ! DEALLOCATE( forcenl, forcelc, forcecc, forceh, forceion, forcescc ) IF ( llondon ) DEALLOCATE ( force_disp ) IF ( lxdm ) DEALLOCATE( force_disp_xdm ) IF ( lelfield ) DEALLOCATE ( forces_bp_efield ) ! lforce = .TRUE. ! CALL stop_clock( 'forces' ) ! IF ( ( sumfor < 10.D0*sumscf ) .AND. ( sumfor > eps ) ) & WRITE( stdout,'(5x,"SCF correction compared to forces is large: ", & & "reduce conv_thr to get better values")') ! IF(ALLOCATED(force_mt)) DEALLOCATE( force_mt ) RETURN ! 9035 FORMAT(5X,'atom ',I4,' type ',I2,' force = ',3F14.8) ! END SUBROUTINE forces espresso-5.1/PW/src/stres_loc.f900000644000175000017500000000621212341373025014735 0ustar mbamba ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine stres_loc (sigmaloc) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE atom, ONLY : msh, rgrid USE ions_base, ONLY : ntyp => nsp USE cell_base, ONLY : omega, tpiba2 USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY : ngm, gstart, nl, g, ngl, gl, igtongl USE lsda_mod, ONLY : nspin USE scf, ONLY : rho USE vlocal, ONLY : strf, vloc USE control_flags, ONLY : gamma_only USE wavefunctions_module, ONLY : psic USE uspp_param, ONLY : upf USE noncollin_module, ONLY : nspin_lsda USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none ! real(DP) :: sigmaloc (3, 3) real(DP) , allocatable :: dvloc(:) real(DP) :: evloc, fact integer :: ng, nt, l, m, is ! counter on g vectors ! counter on atomic type ! counter on angular momentum ! counter on spin components allocate(dvloc(ngl)) sigmaloc(:,:) = 0.d0 psic(:)=(0.d0,0.d0) do is = 1, nspin_lsda call daxpy (dfftp%nnr, 1.d0, rho%of_r (1, is), 1, psic, 2) enddo CALL fwfft ('Dense', psic, dfftp) ! psic contains now the charge density in G space if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if evloc = 0.0d0 do nt = 1, ntyp if (gstart==2) evloc = evloc + & psic (nl (1) ) * strf (1, nt) * vloc (igtongl (1), nt) do ng = gstart, ngm evloc = evloc + DBLE (CONJG(psic (nl (ng) ) ) * strf (ng, nt) ) & * vloc (igtongl (ng), nt) * fact enddo enddo ! ! WRITE( 6,*) ' evloc ', evloc, evloc*omega ! DEBUG ! do nt = 1, ntyp IF ( .NOT. ASSOCIATED ( upf(nt)%vloc ) ) THEN ! ! special case: pseudopotential is coulomb 1/r potential ! call dvloc_coul (upf(nt)%zp, tpiba2, ngl, gl, omega, dvloc) ! ELSE ! ! normal case: dvloc contains dV_loc(G)/dG ! call dvloc_of_g (rgrid(nt)%mesh, msh (nt), rgrid(nt)%rab, rgrid(nt)%r,& upf(nt)%vloc(1), upf(nt)%zp, tpiba2, ngl, gl, omega, dvloc) ! END IF ! no G=0 contribution do ng = 1, ngm do l = 1, 3 do m = 1, l sigmaloc(l, m) = sigmaloc(l, m) + DBLE( CONJG( psic(nl(ng) ) ) & * strf (ng, nt) ) * 2.0d0 * dvloc (igtongl (ng) ) & * tpiba2 * g (l, ng) * g (m, ng) * fact enddo enddo enddo enddo ! do l = 1, 3 sigmaloc (l, l) = sigmaloc (l, l) + evloc do m = 1, l - 1 sigmaloc (m, l) = sigmaloc (l, m) enddo enddo ! call mp_sum( sigmaloc, intra_bgrp_comm ) ! deallocate(dvloc) return end subroutine stres_loc espresso-5.1/PW/src/gen_us_dy.f900000644000175000017500000001054212341373025014715 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine gen_us_dy (ik, u, dvkb) !---------------------------------------------------------------------- ! ! Calculates the kleinman-bylander pseudopotentials with the ! derivative of the spherical harmonics projected on vector u ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : tpi USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : tpiba USE klist, ONLY : xk USE gvect, ONLY : mill, eigts1, eigts2, eigts3, g USE wvfct, ONLY : npw, npwx, igk USE uspp, ONLY : nkb, indv, nhtol, nhtolm USE us, ONLY : nqx, tab, tab_d2y, dq, spline_ps USE splinelib USE uspp_param, ONLY : upf, lmaxkb, nbetam, nh ! implicit none ! integer :: ik real(DP) :: u (3) complex(DP) :: dvkb (npwx, nkb) integer :: na, nt, nb, ih, l, lm, ikb, iig, ipol, i0, i1, i2, & i3, ig real(DP), allocatable :: gk(:,:), q (:) real(DP) :: px, ux, vx, wx, arg real(DP), allocatable :: vkb0 (:,:,:), dylm (:,:), dylm_u (:,:) ! dylm = d Y_lm/dr_i in cartesian axes ! dylm_u as above projected on u complex(DP), allocatable :: sk (:) complex(DP) :: phase, pref integer :: iq real(DP), allocatable :: xdata(:) dvkb(:,:) = (0.d0, 0.d0) if (lmaxkb.le.0) return allocate ( vkb0(npw,nbetam,ntyp), dylm_u(npw,(lmaxkb+1)**2), gk(3,npw) ) allocate ( q(npw) ) do ig = 1, npw gk (1, ig) = xk (1, ik) + g (1, igk (ig) ) gk (2, ig) = xk (2, ik) + g (2, igk (ig) ) gk (3, ig) = xk (3, ik) + g (3, igk (ig) ) q (ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo allocate ( dylm(npw,(lmaxkb+1)**2) ) dylm_u(:,:) = 0.d0 do ipol = 1, 3 call dylmr2 ((lmaxkb+1)**2, npw, gk, q, dylm, ipol) call daxpy (npw * (lmaxkb + 1) **2, u (ipol), dylm, 1, dylm_u, 1) enddo deallocate (dylm) do ig = 1, npw q (ig) = sqrt ( q(ig) ) * tpiba end do if (spline_ps) then allocate(xdata(nqx)) do iq = 1, nqx xdata(iq) = (iq - 1) * dq enddo endif do nt = 1, ntyp ! calculate beta in G-space using an interpolation table do nb = 1, upf(nt)%nbeta do ig = 1, npw if (spline_ps) then vkb0(ig,nb,nt) = splint(xdata, tab(:,nb,nt), & tab_d2y(:,nb,nt), q(ig)) else px = q (ig) / dq - int (q (ig) / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = q (ig) / dq + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 vkb0 (ig, nb, nt) = tab (i0, nb, nt) * ux * vx * wx / 6.d0 + & tab (i1, nb, nt) * px * vx * wx / 2.d0 - & tab (i2, nb, nt) * px * ux * wx / 2.d0 + & tab (i3, nb, nt) * px * ux * vx / 6.d0 endif enddo enddo enddo deallocate (q) allocate ( sk(npw) ) ikb = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then arg = (xk (1, ik) * tau (1, na) + xk (2, ik) * tau (2, na) & + xk (3, ik) * tau (3, na) ) * tpi phase = CMPLX(cos (arg), - sin (arg) ,kind=DP) do ig = 1, npw iig = igk (ig) sk (ig) = eigts1 (mill (1,iig), na) * & eigts2 (mill (2,iig), na) * & eigts3 (mill (3,iig), na) * phase enddo do ih = 1, nh (nt) nb = indv (ih, nt) l = nhtol (ih, nt) lm = nhtolm(ih, nt) ikb = ikb + 1 pref = (0.d0, -1.d0) **l ! do ig = 1, npw dvkb (ig, ikb) = vkb0(ig, nb, nt) * sk(ig) * dylm_u(ig, lm) & * pref / tpiba enddo enddo endif enddo enddo if (ikb.ne.nkb) then WRITE( stdout, * ) ikb, nkb call errore ('gen_us_dy', 'unexpected error', 1) endif deallocate ( sk ) deallocate ( vkb0, dylm_u, gk ) if (spline_ps) deallocate(xdata) return end subroutine gen_us_dy espresso-5.1/PW/src/plus_u_full.f900000644000175000017500000003055212341373025015275 0ustar mbamba! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Set of subroutines needed for full LDA+U calculations ! after Liechtenstein and co-workers (PRB 52, R5467 (1995)). ! Works with two-component spinor WFs and with fully-relativistic ! pseudopotentials. ! In the last case the WFs are projected onto: ! real spherical harmonics * ! averaged j=l+1/2, l-1/2 radial WFs * ! up/down spinor. ! ! A. Smogunov, C. Barreteau !----------------------------------------------------------------------- subroutine hubbard_matrix (lmax, L, U, J, u_matrix) ! ! Build up the matrix of Coulomb integrals u_matrix(1,2,3,4) ! for real spherical harmonics. Implemented for s, p, d, f-shells. ! Integrals with radial WFs are parametrized by U and J parameters. ! See Liechtenstein PRB 52, R5467 (1995), for example. ! USE kinds, ONLY : DP USE constants, ONLY : rytoev, fpi ! implicit none ! integer :: lmax, L ! max and actuel l real(DP), intent(in) :: U, J(3) ! input parameters ! s: U ! p: U, J = J(1) ! d: U, J = J(1), B = J(2) ! f: U, J = J(1), E2 = J(2), E3 = J(3) real(DP) :: u_matrix(2*lmax+1, 2*lmax+1, 2*lmax+1, 2*lmax+1), ak real(DP), allocatable :: ap(:,:,:), F(:) ! integer :: n, nl, moffset, i, m1, m2, m3, m4, k, q !-- ! number of all spher. harm.: ! from l = 0 to l = L nl = (L+1)**2 ! from l = 0 to l = 2L n = (2*L+1)**2 ! up to L moffset = L**2 !-- allocate( ap(n,nl,nl) ) allocate( F(0:6) ) !-- Set up the F_2k coefficients k = 0, 1, ... L F(:) = 0.d0 if (L.eq.0) then F(0) = U elseif (L.eq.1) then F(0) = U F(2) = 5.d0 * J(1) elseif (L.eq.2) then F(0) = U F(2) = 5.d0 * J(1) + 31.5d0 * J(2) F(4) = 9.d0 * J(1) - 31.5d0 * J(2) elseif (L.eq.3) then F(0) = U F(2) = 225.d0/54.d0*J(1) + 32175.d0/42.d0*J(2) + 2475.d0/42.d0*J(3) F(4) = 11.d0*J(1) - 141570.d0/77.d0*J(2) + 4356.d0/77.d0*J(3) F(6) = 7361.64d0/594.d0*J(1) + 36808.2d0/66.d0*J(2) - 11154.d-2*J(3) else call errore( 'hubbard_matrix', & & 'lda_plus_u is not implemented for L > 3 ...', 1 ) endif !-- ap = 0.d0 u_matrix = 0.d0 !-- Calculate Y_{kq} * Y_{lm} * Y_{lm'} integrals call aainit_1(n, nl, ap) !-- do m1 = 1, 2*l+1 do m2 = 1, 2*l+1 do m3 = 1, 2*l+1 do m4 = 1, 2*l+1 i = 0 do k = 0, 2*l, 2 ak = 0.d0 do q = 1, 2*k + 1 i = i + 1 ak = ak + ap(i,moffset+m1,moffset+m3) * ap(i,moffset+m2,moffset+m4) enddo ak = ak * fpi / (2.d0*k+1.d0) u_matrix(m1,m2,m3,m4) = u_matrix(m1,m2,m3,m4) + ak*f(k) i = i + 2*(k+1) + 1 enddo enddo enddo enddo enddo deallocate( ap ) deallocate( f ) return end subroutine hubbard_matrix subroutine aainit_1(n2l, nl, ap) !----------------------------------------------------------------------- ! ! this routine computes the expansion coefficients of ! of two real spherical harmonics: ! ! Y_limi(r) * Y_ljmj(r) = \sum_LM ap(LM,limi,ljmj) Y_LM(r) ! ! using: ! ap(LM,limi,ljmj) = int Y_LM(r) * Y_limi(r) * Y_ljmj(r) ! ! ! On output: ! ap the expansion coefficients ! ! The indices limi,ljmj and LM assume the order for real spherical ! harmonics given in routine ylmr2 ! ! The routine is similar to aainit in Modules/uspp.f90 ! USE kinds, ONLY : DP implicit none ! ! input: n2l = (2*L+1)**2, nl = (L+1)**2 - dimensions of ! {2*L} and {L} full spaces ! integer :: n2l, nl ! ! local variables ! integer :: li, lj, l, ir real(DP) , allocatable :: r(:,:), rr(:), ylm(:,:), mly(:,:) real(DP) :: ap(n2l, nl, nl), compute_ap_1, dum allocate (r( 3, n2l )) allocate (rr( n2l )) allocate (ylm( n2l, n2l )) allocate (mly( n2l, n2l )) r(:,:) = 0.d0 ylm(:,:) = 0.d0 mly(:,:) = 0.d0 ap(:,:,:)= 0.d0 ! - generate an array of random vectors (uniform deviate on unitary sphere) call gen_rndm_r_1 (n2l,r,rr) ! - generate the real spherical harmonics for the array: ylm(ir,lm) call ylmr2(n2l,n2l,r,rr,ylm) !- store the inverse of ylm(ir,lm) in mly(lm,ir) call invmat(n2l, ylm, mly, dum) !- for each l,li,lj compute ap(l,li,lj) do li = 1, nl do lj = 1,nl do l = 1, n2l ap(l,li,lj) = 0.0_DP do ir = 1, n2l ap(l,li,lj) = ap(l,li,lj) + mly(l,ir)*ylm(ir,li)*ylm(ir,lj) end do end do end do end do deallocate(mly) deallocate(ylm) deallocate(rr) deallocate(r) return end subroutine aainit_1 subroutine gen_rndm_r_1(llx,r,rr) !----------------------------------------------------------------------- ! - generate an array of random vectors (uniform deviate on unitary sphere) ! USE kinds, ONLY : DP USE constants, ONLY: tpi USE random_numbers, ONLY: randy implicit none ! ! first the I/O variables ! integer :: llx ! input: the dimension of r and rr real(DP) :: & r(3,llx), &! output: an array of random vectors rr(llx) ! output: the norm of r ! ! here the local variables ! integer :: ir real(DP) :: costheta, sintheta, phi do ir = 1, llx costheta = 2.0_DP * randy() - 1.0_DP sintheta = SQRT ( 1.0_DP - costheta*costheta) phi = tpi * randy() r (1,ir) = sintheta * cos(phi) r (2,ir) = sintheta * sin(phi) r (3,ir) = costheta rr(ir) = 1.0_DP end do return end subroutine gen_rndm_r_1 !----------------------------------------------------------------------- subroutine comp_dspinldau () ! ! Initialize the spin rotation matrix d_spin_ldau for each symmetry operation. ! Will be needed when symmetrizing the +U occupation matrix. ! USE kinds, ONLY : DP USE ldaU, ONLY : d_spin_ldau USE symm_base, ONLY : nsym, sr, t_rev, sname ! implicit none complex(DP) :: a, b integer :: isym d_spin_ldau = 0.d0 do isym = 1, nsym call find_u(sr(1,1,isym),d_spin_ldau(1,1,isym)) !-- if time-reversal: d_spin_ldau --> i sigma_y d_spin_ldau^* ! if (t_rev(isym)==1) then a = CONJG( d_spin_ldau(1,1,isym) ) b = CONJG( d_spin_ldau(1,2,isym) ) d_spin_ldau(1,1,isym) = CONJG( d_spin_ldau(2,1,isym) ) d_spin_ldau(1,2,isym) = CONJG( d_spin_ldau(2,2,isym) ) d_spin_ldau(2,1,isym) = -a d_spin_ldau(2,2,isym) = -b endif enddo !-- return end subroutine comp_dspinldau SUBROUTINE atomic_wfc_nc_updown (ik, wfcatom) !----------------------------------------------------------------------- ! ! For noncollinear case: builds up the superposition (for a k-point "ik") of ! pure spin up or spin down atomic wavefunctions. ! ! Based on atomic_wfc.f90 USE kinds, ONLY : DP USE constants, ONLY : tpi, fpi, pi USE cell_base, ONLY : tpiba USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE basis, ONLY : natomwfc USE gvect, ONLY : mill, eigts1, eigts2, eigts3, g USE klist, ONLY : xk USE wvfct, ONLY : npwx, npw, nbnd, igk USE us, ONLY : tab_at, dq USE uspp_param, ONLY : upf USE noncollin_module, ONLY : noncolin, npol, angle1, angle2 USE spin_orb, ONLY : lspinorb, rot_ylm, fcoef, lmaxx, domag, & starting_spin_angle ! implicit none ! integer, intent(in) :: ik complex(DP), intent(out) :: wfcatom (npwx, npol, natomwfc) ! integer :: n_starting_wfc, lmax_wfc, nt, l, nb, na, m, lm, ig, iig, & i0, i1, i2, i3, nwfcm real(DP), allocatable :: qg(:), ylm (:,:), chiq (:,:,:), gk (:,:) complex(DP), allocatable :: sk (:), aux(:) complex(DP) :: kphase real(DP) :: arg, px, ux, vx, wx call start_clock ('atomic_wfc') ! calculate max angular momentum required in wavefunctions lmax_wfc = 0 do nt = 1, ntyp lmax_wfc = MAX ( lmax_wfc, MAXVAL (upf(nt)%lchi(1:upf(nt)%nwfc) ) ) enddo ! nwfcm = MAXVAL ( upf(1:ntyp)%nwfc ) ! allocate ( ylm (npw,(lmax_wfc+1)**2), chiq(npw,nwfcm,ntyp), & sk(npw), gk(3,npw), qg(npw) ) ! do ig = 1, npw gk (1,ig) = xk(1, ik) + g(1, igk(ig) ) gk (2,ig) = xk(2, ik) + g(2, igk(ig) ) gk (3,ig) = xk(3, ik) + g(3, igk(ig) ) qg(ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo ! ! ylm = spherical harmonics ! call ylmr2 ((lmax_wfc+1)**2, npw, gk, qg, ylm) ! ! set now q=|k+G| in atomic units ! do ig = 1, npw qg(ig) = sqrt(qg(ig))*tpiba enddo ! n_starting_wfc = 0 ! ! chiq = radial fourier transform of atomic orbitals chi ! do nt = 1, ntyp do nb = 1, upf(nt)%nwfc if ( upf(nt)%oc (nb) >= 0.d0) then do ig = 1, npw px = qg (ig) / dq - int (qg (ig) / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = INT( qg (ig) / dq ) + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 chiq (ig, nb, nt) = & tab_at (i0, nb, nt) * ux * vx * wx / 6.d0 + & tab_at (i1, nb, nt) * px * vx * wx / 2.d0 - & tab_at (i2, nb, nt) * px * ux * wx / 2.d0 + & tab_at (i3, nb, nt) * px * ux * vx / 6.d0 enddo endif enddo enddo deallocate (qg, gk) allocate ( aux(npw) ) ! wfcatom(:,:,:) = (0.0_dp, 0.0_dp) ! do na = 1, nat arg = (xk(1,ik)*tau(1,na) + xk(2,ik)*tau(2,na) + xk(3,ik)*tau(3,na)) * tpi kphase = CMPLX(cos (arg), - sin (arg) ,kind=DP) ! ! sk is the structure factor ! do ig = 1, npw iig = igk (ig) sk (ig) = kphase * eigts1 (mill (1,iig), na) * & eigts2 (mill (2,iig), na) * & eigts3 (mill (3,iig), na) enddo ! nt = ityp (na) do nb = 1, upf(nt)%nwfc if (upf(nt)%oc(nb) >= 0.d0) then l = upf(nt)%lchi(nb) ! ! IF ( upf(nt)%has_so ) THEN ! call wfc_atom ( .true. ) ! ELSE ! call wfc_atom ( .false. ) ! ENDIF ! END IF ! END DO ! END DO if (n_starting_wfc /= natomwfc) call errore ('atomic_wfc_nc_updown', & 'internal error: some wfcs were lost ', 1) deallocate(aux, sk, chiq, ylm) call stop_clock ('atomic_wfc') return CONTAINS SUBROUTINE wfc_atom ( soc ) ! ! real(DP) :: j real(DP), ALLOCATABLE :: chiaux(:) integer :: nc, ib logical :: soc ! .true. if the fully-relativistic pseudo ! ! If SOC go on only if j=l+1/2 if (soc) j = upf(nt)%jchi(nb) if (soc.and.ABS(j-l+0.5_DP)<1.d-4 ) return ! allocate (chiaux(npw)) if (soc) then ! ! Find the index for j=l-1/2 ! if (l == 0) then chiaux(:)=chiq(:,nb,nt) else do ib=1, upf(nt)%nwfc if ((upf(nt)%lchi(ib) == l).and. & (ABS(upf(nt)%jchi(ib)-l+0.5_DP)<1.d-4)) then nc=ib exit endif enddo ! ! Average the two radial functions ! chiaux(:)=(chiq(:,nb,nt)*(l+1.0_DP)+chiq(:,nc,nt)*l)/(2.0_DP*l+1.0_DP) endif else chiaux(:) = chiq(:,nb,nt) endif do m = 1, 2 * l + 1 lm = l**2 + m n_starting_wfc = n_starting_wfc + 1 if (n_starting_wfc + 2*l+1 > natomwfc) call errore & ('atomic_wfc_nc', 'internal error: too many wfcs', 1) do ig=1,npw aux(ig) = sk(ig)*ylm(ig,lm)*chiaux(ig) enddo ! do ig=1,npw ! wfcatom(ig,1,n_starting_wfc) = aux(ig) wfcatom(ig,2,n_starting_wfc) = 0.d0 ! wfcatom(ig,1,n_starting_wfc+2*l+1) = 0.d0 wfcatom(ig,2,n_starting_wfc+2*l+1) = aux(ig) ! enddo enddo n_starting_wfc = n_starting_wfc + 2*l+1 deallocate (chiaux) ! END SUBROUTINE wfc_atom ! END SUBROUTINE atomic_wfc_nc_updown espresso-5.1/PW/src/wsweight.f900000644000175000017500000000434112341373025014602 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine wsinit(rws,nrwsx,nrws,atw) !----------------------------------------------------------------------- ! USE kinds, only : DP implicit none integer i, ii, ir, jr, kr, nrws, nrwsx, nx real(DP) eps, rws(0:3,nrwsx), atw(3,3) parameter (eps=1.0d-6,nx=2) ii = 1 do ir=-nx,nx do jr=-nx,nx do kr=-nx,nx do i=1,3 rws(i,ii) = atw(i,1)*ir + atw(i,2)*jr + atw(i,3)*kr end do rws(0,ii)=rws(1,ii)*rws(1,ii)+rws(2,ii)*rws(2,ii)+ & rws(3,ii)*rws(3,ii) rws(0,ii)=0.5d0*rws(0,ii) if (rws(0,ii).gt.eps) ii = ii + 1 if (ii.gt.nrwsx) call errore('wsinit', 'ii.gt.nrwsx',1) end do end do end do nrws = ii - 1 return end subroutine wsinit ! !----------------------------------------------------------------------- function wsweight(r,rws,nrws) !----------------------------------------------------------------------- ! ! wsweights assigns this weight: ! - if a point is inside the Wigner-Seitz cell: weight=1 ! - if a point is outside the WS cell: weight=0 ! - if a point q is on the border of the WS cell, it finds the number N ! of translationally equivalent point q+G (where G is a lattice vector) ! that are also on the border of the cell. Then: weight = 1/N ! I.e. if a point is on the surface of the WS cell of a cubic lattice ! it will have weight 1/2; on the vertex of the WS it would be 1/8; ! the K point of an hexagonal lattice has weight 1/3 and so on. USE kinds, only : dp implicit none integer ir, nreq, nrws real(DP) r(3), rrt, ck, eps, rws(0:3,nrws), wsweight parameter (eps=1.0d-6) ! wsweight = 0.d0 nreq = 1 do ir =1,nrws rrt = r(1)*rws(1,ir) + r(2)*rws(2,ir) + r(3)*rws(3,ir) ck = rrt-rws(0,ir) if ( ck .gt. eps ) return if ( abs(ck) .lt. eps ) nreq = nreq + 1 end do wsweight = 1.d0/DBLE(nreq) return end function wsweight espresso-5.1/PW/src/compute_qdipol_so.f900000644000175000017500000000434312341373025016470 0ustar mbamba ! ! Copyright (C) 2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE compute_qdipol_so(dpqq,dpqq_so) !---------------------------------------------------------------------- ! ! This routine multiplies the dpqq coefficients for the ! spin orbit fcoef coefficients ! USE kinds, ONLY : DP USE ions_base, ONLY : ntyp => nsp USE lsda_mod, ONLY : nspin USE uspp_param, ONLY : upf, nh, nhm USE spin_orb, ONLY : lspinorb, fcoef ! IMPLICIT NONE REAL(DP) :: dpqq( nhm, nhm, 3, ntyp) COMPLEX(DP) :: dpqq_so( nhm, nhm, nspin, 3, ntyp) INTEGER :: ipol ! ! here a few local variables ! INTEGER :: nt, ih, jh, kh, lh, ijs, is1, is2, is dpqq_so=(0.d0,0.d0) DO ipol=1,3 DO nt = 1, ntyp IF ( upf(nt)%tvanp ) THEN IF (upf(nt)%has_so) THEN DO ih=1,nh(nt) DO jh=1,nh(nt) DO kh=1,nh(nt) DO lh=1,nh(nt) ijs=0 DO is1=1,2 DO is2=1,2 ijs=ijs+1 DO is=1,2 dpqq_so(kh,lh,ijs,ipol,nt)=dpqq_so(kh,lh,ijs,ipol,nt)& +dpqq(ih,jh,ipol,nt)*fcoef(kh,ih,is1,is,nt) & *fcoef(jh,lh,is,is2,nt) END DO END DO END DO END DO END DO END DO END DO ELSE DO ih = 1, nh (nt) DO jh = ih, nh (nt) IF (lspinorb) THEN dpqq_so (ih, jh, 1, ipol, nt) = dpqq( ih, jh, ipol, nt) dpqq_so (jh, ih, 1, ipol, nt) = dpqq_so (ih, jh, 1, ipol, nt) dpqq_so (ih, jh, 4, ipol, nt) = dpqq_so (ih, jh, 1, ipol, nt) dpqq_so (jh, ih, 4, ipol, nt) = dpqq_so (ih, jh, 4, ipol, nt) END IF END DO END DO END IF END IF END DO END DO RETURN END SUBROUTINE compute_qdipol_so espresso-5.1/PW/src/stres_har.f900000644000175000017500000000400412341373025014727 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine stres_har (sigmahar) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : e2, fpi USE cell_base, ONLY: omega, tpiba2 USE ener, ONLY: ehart USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : fwfft USE gvect, ONLY: ngm, gstart, nl, g, gg USE lsda_mod, ONLY: nspin USE scf, ONLY: rho USE control_flags, ONLY: gamma_only USE wavefunctions_module, ONLY : psic USE mp_bands, ONLY: intra_bgrp_comm USE mp, ONLY: mp_sum implicit none ! real(DP) :: sigmahar (3, 3), shart, g2 real(DP), parameter :: eps = 1.d-8 integer :: is, ig, l, m, nspin0 sigmahar(:,:) = 0.d0 psic (:) = (0.d0, 0.d0) nspin0=nspin if (nspin==4) nspin0=1 do is = 1, nspin0 call daxpy (dfftp%nnr, 1.d0, rho%of_r (1, is), 1, psic, 2) enddo CALL fwfft ('Dense', psic, dfftp) ! psic contains now the charge density in G space ! the G=0 component is not computed do ig = gstart, ngm g2 = gg (ig) * tpiba2 shart = psic (nl (ig) ) * CONJG(psic (nl (ig) ) ) / g2 do l = 1, 3 do m = 1, l sigmahar (l, m) = sigmahar (l, m) + shart * tpiba2 * 2 * & g (l, ig) * g (m, ig) / g2 enddo enddo enddo ! call mp_sum( sigmahar, intra_bgrp_comm ) ! if (gamma_only) then sigmahar(:,:) = fpi * e2 * sigmahar(:,:) else sigmahar(:,:) = 0.5d0 * fpi * e2 * sigmahar(:,:) end if do l = 1, 3 sigmahar (l, l) = sigmahar (l, l) - ehart / omega enddo do l = 1, 3 do m = 1, l - 1 sigmahar (m, l) = sigmahar (l, m) enddo enddo sigmahar(:,:) = -sigmahar(:,:) return end subroutine stres_har espresso-5.1/PW/src/irrek.f900000644000175000017500000002744012341373025014062 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine irreducible_BZ (nrot, s, nsym, minus_q, magnetic_sym, at, bg, & npk, nks, xk, wk, t_rev) !----------------------------------------------------------------------- ! ! This routine finds the special points in the irreducible wedge of ! the true point group (or small group of q) of the crystal, ! starting from the points in the irreducible BZ wedge ! of the point group of the Bravais lattice. ! USE kinds, only : DP implicit none ! integer, intent(in) :: nrot, nsym, npk, s(3,3,48), t_rev(48) real(DP), intent(in) :: at (3,3), bg (3,3) logical, intent(in) :: minus_q, magnetic_sym integer, intent(inout) :: nks real(DP), intent(inout) :: xk (3, npk), wk (npk) ! integer :: table (48, 48), invs (3, 3, 48), irg (48) ! table: multiplication table of the group ! invs : contains the inverse of each rotation ! irg : gives the correspondence of symmetry operations forming a n-th coset integer :: isym, jsym logical :: sym(48) ! ! We compute the multiplication table of the group ! call multable (nrot, s, table) ! ! And we set the matrices of the inverse ! DO isym = 1, nrot DO jsym = 1, nrot IF (table (isym, jsym)==1) invs (:,:,isym) = s(:,:,jsym) ENDDO ENDDO ! ! Find the coset in the point group of the Bravais lattice ! IF ( magnetic_sym ) THEN call irrek_nc(at, bg, nrot, invs, nsym, irg, npk, nks, xk, & wk, t_rev) ELSE sym(1:nsym) = .true. sym(nsym+1:)= .false. call coset (nrot, table, sym, nsym, irg) ! ! here we set the k-points in the irreducible wedge of the point grou ! of the crystal ! call irrek (at, bg, nrot, invs, nsym, irg, minus_q, npk, nks, xk, & wk, t_rev) ENDIF ! return ! end subroutine irreducible_BZ ! !----------------------------------------------------------------------- subroutine irrek (at, bg, nrot, invs, nsym, irg, minus_q, npk, & nks, xk, wk, t_rev) !----------------------------------------------------------------------- ! ! Given a set of special points in the Irreducible Wedge of some ! group, finds the equivalent special points in the IW of one of ! its subgroups. ! USE kinds, only : DP implicit none ! integer, intent(in) :: npk, nrot, nsym, invs (3, 3, 48), irg (nrot) ! maximum number of special points ! order of the parent point group ! order of the subgroup ! inverse of the elements of the symmetry group ! partition of the elements of the symmetry group into left cosets, ! as given by SUBROUTINE COSET integer, intent(inout) :: nks ! number of special points integer, intent(in) :: t_rev(48) real(DP), intent(in) :: at (3, 3), bg (3, 3) ! basis vectors of the Bravais and reciprocal lattice real(DP), intent(inout) :: xk (3, npk), wk (npk) ! special points and weights logical, intent(in) :: minus_q ! .true. if symmetries q = -q+G are acceptable ! ! here the local variables ! integer :: nks0, jk, kpol, irot, jrot, ncos, jc, ic, isym ! nks0: used to save the initial number of k-points ! ncos: total number of cosets real(DP) :: xkg (3), xks (3, 48), w (48), sw, one ! coordinates of the k point in crystal axis ! coordinates of the rotated k point ! weight of each coset ! buffer which contains the weight of k points ! total weight of k-points logical :: latm, satm ! true if a k-point is equivalent to a previous one ! true if equivalent point found nks0 = nks do jk = 1, nks0 ! ! The k point is first computed in crystal axis ! do kpol = 1, 3 ! xkg are the components ofx k in the crystal RL base xkg (kpol) = at (1, kpol) * xk (1, jk) + & at (2, kpol) * xk (2, jk) + & at (3, kpol) * xk (3, jk) enddo ! ! Then it is rotated with each symmetry of the global group. Note that ! the irg vector is used to divide all the rotated vector in cosets ! do irot = 1, nrot jrot = irg (irot) do kpol = 1, 3 ! the rotated of xkg with respect to the group operations xks (kpol, irot) = invs (kpol, 1, jrot) * xkg (1) + & invs (kpol, 2, jrot) * xkg (2) + & invs (kpol, 3, jrot) * xkg (3) enddo IF (t_rev(jrot)==1) xks (:, irot)=-xks(:, irot) enddo ! ! For each coset one point is tested with all the preceding ! ncos = nrot / nsym do ic = 1, ncos irot = (ic - 1) * nsym + 1 latm = .false. ! ! latm = .true. if the present k-vector is equivalent to some previous ! do jc = 1, ic - 1 do isym = 1, nsym ! ! satm = .true. if the present symmetry operation makes ! the ir and ik k-vectors equivalent ... ! jrot = (jc - 1) * nsym + isym satm = abs (xks (1, irot) - xks (1, jrot) - & nint (xks (1, irot) - xks (1, jrot) ) ) < 1.0d-5 .and. & abs (xks (2, irot) - xks (2, jrot) - & nint (xks (2, irot) - xks (2, jrot) ) ) < 1.0d-5 .and. & abs (xks (3, irot) - xks (3, jrot) - & nint (xks (3, irot) - xks (3, jrot) ) ) < 1.0d-5 ! ! .... or equivalent to minus each other when minus_q=.t. ! if (minus_q) satm = satm .or. & abs (xks (1, irot) + xks (1, jrot) - & nint (xks (1, irot) + xks (1, jrot) ) ) < 1.0d-5 .and. & abs (xks (2, irot) + xks (2, jrot) - & nint (xks (2, irot) + xks (2, jrot) ) ) < 1.0d-5 .and. & abs (xks (3, irot) + xks (3, jrot) - & nint (xks (3, irot) + xks (3, jrot) ) ) < 1.0d-5 latm = latm .or. satm if (satm .and. w (jc) /= 0.d0) then w (jc) = w (jc) + 1.d0 goto 100 endif enddo enddo 100 continue if (latm) then w (ic) = 0.d0 else w (ic) = 1.d0 endif enddo ! ! here the k-point list is updated ! sw = wk (jk) / SUM (w(1:ncos)) wk (jk) = sw * w (1) do ic = 2, ncos irot = (ic - 1) * nsym + 1 if (w (ic) /= 0.d0) then nks = nks + 1 if (nks > npk) call errore ('irrek', 'too many k-points', nks) wk (nks) = sw * w (ic) do kpol = 1, 3 xk (kpol, nks) = bg (kpol, 1) * xks (1, irot) + & bg (kpol, 2) * xks (2, irot) + & bg (kpol, 3) * xks (3, irot) enddo endif enddo enddo ! ! normalize weights to one ! one = SUM (wk(1:nks)) if ( one > 0.d0 ) wk(1:nks) = wk(1:nks) / one ! return end subroutine irrek !----------------------------------------------------------------------- subroutine irrek_nc (at, bg, nrot, invs, nsym, irg, npk, & nks, xk, wk, t_rev) !----------------------------------------------------------------------- ! ! Given a set of special points in the Irreducible Wedge of some ! group, finds the equivalent special points in the IW of one of ! its subgroups. ! USE kinds, only : DP implicit none ! integer, intent(in) :: npk, nrot, nsym, invs (3, 3, 48), irg (nrot) ! maximum number of special points ! order of the parent point group ! order of the subgroup ! inverse of the elements of the symmetry group ! partition of the elements of the symmetry group into left cosets, ! as given by SUBROUTINE COSET integer, intent(inout) :: nks ! number of special points integer, intent(in) :: t_rev(48) real(DP), intent(in) :: at (3, 3), bg (3, 3) ! basis vectors of the Bravais and reciprocal lattice real(DP), intent(inout) :: xk (3, npk), wk (npk) ! special points and weights ! ! here the local variables ! integer :: nks0, jk, kpol, irot, jrot, isym, ik, iks, start_k ! nks0: used to save the initial number of k-points ! ncos: total number of cosets real(DP) :: xkg (3), xks (3), xkn(3), one, xk_new(3,npk), wk_new(npk), & xk_cart(3) ! coordinates of the k point in crystal axis ! coordinates of the rotated k point ! weight of each coset ! buffer which contains the weight of k points ! total weight of k-points logical :: satm ! true if equivalent point found nks0 = nks nks=0 start_k=0 DO jk = 1, nks0 ! ! The k point is first computed in crystal axis ! ! xkg are the components of xk in the crystal base xkg (:) = at (1, :) * xk (1, jk) + & at (2, :) * xk (2, jk) + & at (3, :) * xk (3, jk) ! ! Then it is rotated with each symmetry of the global group. ! DO irot = 1, nrot xks (:) = invs (:, 1, irot) * xkg (1) + & invs (:, 2, irot) * xkg (2) + & invs (:, 3, irot) * xkg (3) ! ! Now check if there is an operation of the subgroup that ! makes xks equivalent to some other already found k point ! DO jrot=1,nsym xkn (:) = invs (:, 1, jrot) * xks (1) + & invs (:, 2, jrot) * xks (2) + & invs (:, 3, jrot) * xks (3) IF (t_rev(jrot)==1) xkn =-xkn DO ik = start_k+1, nks satm = abs (xk_new (1, ik) - xkn (1) - & nint (xk_new (1, ik) - xkn (1) ) ) < 1.0d-5 .and. & abs (xk_new (2, ik) - xkn (2) - & nint (xk_new (2, ik) - xkn (2) ) ) < 1.0d-5 .and. & abs (xk_new (3, ik) - xkn (3) - & nint (xk_new (3, ik) - xkn (3) ) ) < 1.0d-5 IF ( satm ) THEN wk_new(ik) = wk_new(ik) + wk(jk) GOTO 100 ENDIF END DO END DO nks=nks+1 IF (nks > npk) CALL errore('irrek_nc','too many k points',1) xk_new(:,nks)=xks wk_new(nks)=wk(jk) 100 CONTINUE ENDDO start_k=nks ENDDO ! ! The order of the original k points is preserved ! iks=nks0 DO ik = 1, nks ! ! for each new k point found, check if it was in the original list ! DO jk=1, nks0 xkg (:) = at (1, :) * xk (1, jk) + & at (2, :) * xk (2, jk) + & at (3, :) * xk (3, jk) satm = abs (xk_new (1, ik) - xkg (1) - & nint (xk_new (1, ik) - xkg (1) ) ) < 1.0d-5 .and. & abs (xk_new (2, ik) - xkg (2) - & nint (xk_new (2, ik) - xkg (2) ) ) < 1.0d-5 .and. & abs (xk_new (3, ik) - xkg (3) - & nint (xk_new (3, ik) - xkg (3) ) ) < 1.0d-5 IF (satm) THEN ! ! If it was, just update the weight ! wk(jk)=wk_new(ik) goto 200 ENDIF ENDDO ! ! If it was not, bring xk_new in cartesian coodinates and copy it in the ! first free place available ! iks=iks+1 xk_cart (:) = bg (:, 1) * xk_new (1, ik) + & bg (:, 2) * xk_new (2, ik) + & bg (:, 3) * xk_new (3, ik) xk(:,iks)=xk_cart(:) wk(iks)=wk_new(ik) 200 CONTINUE ENDDO IF (iks /= nks ) CALL errore('irrek_nc','Internal problem with k points',1) ! ! normalize weights to one ! one = SUM (wk(1:nks)) IF ( one > 0.d0 ) wk(1:nks) = wk(1:nks) / one ! RETURN END SUBROUTINE irrek_nc espresso-5.1/PW/src/regterg.f900000644000175000017500000011744412341373025014411 0ustar mbamba! ! Copyright (C) 2003-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO ( 0.D0, 0.D0 ) #define ONE ( 1.D0, 0.D0 ) ! ! !---------------------------------------------------------------------------- SUBROUTINE regterg( npw, npwx, nvec, nvecx, evc, ethr, & uspp, gstart, e, btype, notcnv, lrot, dav_iter ) !---------------------------------------------------------------------------- ! ! ... iterative solution of the eigenvalue problem: ! ! ... ( H - e S ) * evc = 0 ! ! ... where H is an hermitean operator, e is a real scalar, ! ... S is an uspp matrix, evc is a complex vector ! ... (real wavefunctions with only half plane waves stored) ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: npw, npwx, nvec, nvecx, gstart ! dimension of the matrix to be diagonalized ! leading dimension of matrix evc, as declared in the calling pgm unit ! integer number of searched low-lying roots ! maximum dimension of the reduced basis set ! (the basis set is refreshed when its dimension would exceed nvecx) COMPLEX(DP), INTENT(INOUT) :: evc(npwx,nvec) ! evc contains the refined estimates of the eigenvectors REAL(DP), INTENT(IN) :: ethr ! energy threshold for convergence: root improvement is stopped, ! when two consecutive estimates of the root differ by less than ethr. LOGICAL, INTENT(IN) :: uspp ! if .FALSE. : S|psi> not needed INTEGER, INTENT(IN) :: btype(nvec) ! band type ( 1 = occupied, 0 = empty ) LOGICAL, INTENT(IN) :: lrot ! .TRUE. if the wfc have already been rotated REAL(DP), INTENT(OUT) :: e(nvec) ! contains the estimated roots. INTEGER, INTENT(OUT) :: dav_iter, notcnv ! integer number of iterations performed ! number of unconverged roots ! ! ... LOCAL variables ! INTEGER, PARAMETER :: maxter = 20 ! maximum number of iterations ! INTEGER :: kter, nbase, np, n, m, nb1, ibnd ! counter on iterations ! dimension of the reduced basis ! counter on the reduced basis vectors ! do-loop counters ! counter on the bands INTEGER :: ierr REAL(DP), ALLOCATABLE :: hr(:,:), sr(:,:), vr(:,:), ew(:) ! Hamiltonian on the reduced basis ! S matrix on the reduced basis ! eigenvectors of the Hamiltonian ! eigenvalues of the reduced hamiltonian COMPLEX(DP), ALLOCATABLE :: psi(:,:), hpsi(:,:), spsi(:,:) ! work space, contains psi ! the product of H and psi ! the product of S and psi LOGICAL, ALLOCATABLE :: conv(:) ! true if the root is converged REAL(DP) :: empty_ethr ! threshold for empty bands INTEGER :: npw2, npwx2 ! REAL(DP), EXTERNAL :: ddot ! ! EXTERNAL h_psi, s_psi, g_psi ! h_psi(npwx,npw,nvec,psi,hpsi) ! calculates H|psi> ! s_psi(npwx,npw,nvec,psi,spsi) ! calculates S|psi> (if needed) ! Vectors psi,hpsi,spsi are dimensioned (npwx,nvec) ! g_psi(npwx,npw,notcnv,psi,e) ! calculates (diag(h)-e)^-1 * psi, diagonal approx. to (h-e)^-1*psi ! the first nvec columns contain the trial eigenvectors ! CALL start_clock( 'regterg' ) ! IF ( nvec > nvecx / 2 ) CALL errore( 'regter', 'nvecx is too small', 1 ) ! ! ... threshold for empty bands ! empty_ethr = MAX( ( ethr * 5.D0 ), 1.D-5 ) ! ALLOCATE( psi( npwx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate psi ', ABS(ierr) ) ALLOCATE( hpsi( npwx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate hpsi ', ABS(ierr) ) ! IF ( uspp ) THEN ALLOCATE( spsi( npwx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' regterg ',' cannot allocate spsi ', ABS(ierr) ) END IF ! ALLOCATE( sr( nvecx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate sr ', ABS(ierr) ) ALLOCATE( hr( nvecx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate hr ', ABS(ierr) ) ALLOCATE( vr( nvecx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate vr ', ABS(ierr) ) ALLOCATE( ew( nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate ew ', ABS(ierr) ) ALLOCATE( conv( nvec ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'regterg ',' cannot allocate conv ', ABS(ierr) ) ! npw2 = 2*npw npwx2 = 2*npwx notcnv = nvec nbase = nvec conv = .FALSE. ! IF ( uspp ) spsi = ZERO ! hpsi = ZERO psi = ZERO psi(:,1:nvec) = evc(:,1:nvec) ! ... set Im[ psi(G=0) ] - needed for numerical stability IF ( gstart == 2 ) psi(1,1:nvec) = CMPLX( DBLE( psi(1,1:nvec) ), 0.D0 ,kind=DP) ! ! ... hpsi contains h times the basis vectors ! CALL h_psi( npwx, npw, nvec, psi, hpsi ) ! IF ( uspp ) CALL s_psi( npwx, npw, nvec, psi, spsi ) ! ! ... hr contains the projection of the hamiltonian onto the reduced ! ... space vr contains the eigenvectors of hr ! hr(:,:) = 0.D0 sr(:,:) = 0.D0 vr(:,:) = 0.D0 ! CALL DGEMM( 'T', 'N', nbase, nbase, npw2, 2.D0 , & psi, npwx2, hpsi, npwx2, 0.D0, hr, nvecx ) ! IF ( gstart == 2 ) & CALL DGER( nbase, nbase, -1.D0, psi, npwx2, hpsi, npwx2, hr, nvecx ) ! CALL mp_sum( hr( :, 1:nbase ), intra_bgrp_comm ) ! IF ( uspp ) THEN ! CALL DGEMM( 'T', 'N', nbase, nbase, npw2, 2.D0, & psi, npwx2, spsi, npwx2, 0.D0, sr, nvecx ) ! IF ( gstart == 2 ) & CALL DGER( nbase, nbase, -1.D0, psi, npwx2, spsi, npwx2, sr, nvecx ) ! ELSE ! CALL DGEMM( 'T', 'N', nbase, nbase, npw2, 2.D0, & psi, npwx2, psi, npwx2, 0.D0, sr, nvecx ) ! IF ( gstart == 2 ) & CALL DGER( nbase, nbase, -1.D0, psi, npwx2, psi, npwx2, sr, nvecx ) ! END IF ! CALL mp_sum( sr( :, 1:nbase ), intra_bgrp_comm ) ! IF ( lrot ) THEN ! DO n = 1, nbase ! e(n) = hr(n,n) vr(n,n) = 1.D0 ! END DO ! ELSE ! ! ... diagonalize the reduced hamiltonian ! CALL rdiaghg( nbase, nvec, hr, sr, nvecx, ew, vr ) ! e(1:nvec) = ew(1:nvec) ! END IF ! ! ... iterate ! iterate: DO kter = 1, maxter ! dav_iter = kter ! CALL start_clock( 'regterg:update' ) ! np = 0 ! DO n = 1, nvec ! IF ( .NOT. conv(n) ) THEN ! ! ... this root not yet converged ... ! np = np + 1 ! ! ... reorder eigenvectors so that coefficients for unconverged ! ... roots come first. This allows to use quick matrix-matrix ! ... multiplications to set a new basis vector (see below) ! IF ( np /= n ) vr(:,np) = vr(:,n) ! ! ... for use in g_psi ! ew(nbase+np) = e(n) ! END IF ! END DO ! nb1 = nbase + 1 ! ! ... expand the basis set with new basis vectors ( H - e*S )|psi> ... ! IF ( uspp ) THEN ! CALL DGEMM( 'N', 'N', npw2, notcnv, nbase, 1.D0, & spsi, npwx2, vr, nvecx, 0.D0, psi(1,nb1), npwx2 ) ! ELSE ! CALL DGEMM( 'N', 'N', npw2, notcnv, nbase, 1.D0, & psi, npwx2, vr, nvecx, 0.D0, psi(1,nb1), npwx2 ) ! END IF ! DO np = 1, notcnv ! psi(:,nbase+np) = - ew(nbase+np) * psi(:,nbase+np) ! END DO ! CALL DGEMM( 'N', 'N', npw2, notcnv, nbase, 1.D0, & hpsi, npwx2, vr, nvecx, 1.D0, psi(1,nb1), npwx2 ) ! CALL stop_clock( 'regterg:update' ) ! ! ... approximate inverse iteration ! CALL g_psi( npwx, npw, notcnv, 1, psi(1,nb1), ew(nb1) ) ! ! ... "normalize" correction vectors psi(:,nb1:nbase+notcnv) in ! ... order to improve numerical stability of subspace diagonalization ! ... (rdiaghg) ew is used as work array : ! ! ... ew = , i = nbase + 1, nbase + notcnv ! DO n = 1, notcnv ! ew(n) = 2.D0 * ddot( npw2, psi(1,nbase+n), 1, psi(1,nbase+n), 1 ) ! IF ( gstart == 2 ) ew(n) = ew(n) - psi(1,nbase+n) * psi(1,nbase+n) ! END DO ! CALL mp_sum( ew( 1:notcnv ), intra_bgrp_comm ) ! DO n = 1, notcnv ! psi(:,nbase+n) = psi(:,nbase+n) / SQRT( ew(n) ) ! ... set Im[ psi(G=0) ] - needed for numerical stability IF ( gstart == 2 ) psi(1,nbase+n) = CMPLX( DBLE(psi(1,nbase+n)), 0.D0 ,kind=DP) ! END DO ! ! ... here compute the hpsi and spsi of the new functions ! CALL h_psi( npwx, npw, notcnv, psi(1,nb1), hpsi(1,nb1) ) ! IF ( uspp ) CALL s_psi( npwx, npw, notcnv, psi(1,nb1), spsi(1,nb1) ) ! ! ... update the reduced hamiltonian ! CALL start_clock( 'regterg:overlap' ) ! CALL DGEMM( 'T', 'N', nbase+notcnv, notcnv, npw2, 2.D0, psi, & npwx2, hpsi(1,nb1), npwx2, 0.D0, hr(1,nb1), nvecx ) ! IF ( gstart == 2 ) & CALL DGER( nbase+notcnv, notcnv, -1.D0, psi, & npwx2, hpsi(1,nb1), npwx2, hr(1,nb1), nvecx ) ! CALL mp_sum( hr( :, nb1 : nb1+notcnv-1 ), intra_bgrp_comm ) ! IF ( uspp ) THEN ! CALL DGEMM( 'T', 'N', nbase+notcnv, notcnv, npw2, 2.D0, psi, & npwx2, spsi(1,nb1), npwx2, 0.D0, sr(1,nb1), nvecx ) ! IF ( gstart == 2 ) & CALL DGER( nbase+notcnv, notcnv, -1.D0, psi, & npwx2, spsi(1,nb1), npwx2, sr(1,nb1), nvecx ) ! ELSE ! CALL DGEMM( 'T', 'N', nbase+notcnv, notcnv, npw2, 2.D0, psi, & npwx2, psi(1,nb1), npwx2, 0.D0, sr(1,nb1) , nvecx ) ! IF ( gstart == 2 ) & CALL DGER( nbase+notcnv, notcnv, -1.D0, psi, & npwx2, psi(1,nb1), npwx2, sr(1,nb1), nvecx ) ! END IF ! CALL mp_sum( sr( :, nb1 : nb1+notcnv-1 ), intra_bgrp_comm ) ! CALL stop_clock( 'regterg:overlap' ) ! nbase = nbase + notcnv ! DO n = 1, nbase ! DO m = n + 1, nbase ! hr(m,n) = hr(n,m) sr(m,n) = sr(n,m) ! END DO ! END DO ! ! ... diagonalize the reduced hamiltonian ! CALL rdiaghg( nbase, nvec, hr, sr, nvecx, ew, vr ) ! ! ... test for convergence ! WHERE( btype(1:nvec) == 1 ) ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < ethr ) ) ! ELSEWHERE ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < empty_ethr ) ) ! END WHERE ! notcnv = COUNT( .NOT. conv(:) ) ! e(1:nvec) = ew(1:nvec) ! ! ... if overall convergence has been achieved, or the dimension of ! ... the reduced basis set is becoming too large, or in any case if ! ... we are at the last iteration refresh the basis set. i.e. replace ! ... the first nvec elements with the current estimate of the ! ... eigenvectors; set the basis dimension to nvec. ! IF ( notcnv == 0 .OR. & nbase+notcnv > nvecx .OR. dav_iter == maxter ) THEN ! CALL start_clock( 'regterg:last' ) ! CALL DGEMM( 'N', 'N', npw2, nvec, nbase, 1.D0, & psi, npwx2, vr, nvecx, 0.D0, evc, npwx2 ) ! IF ( notcnv == 0 ) THEN ! ! ... all roots converged: return ! CALL stop_clock( 'regterg:last' ) ! EXIT iterate ! ELSE IF ( dav_iter == maxter ) THEN ! ! ... last iteration, some roots not converged: return ! WRITE( stdout, '(5X,"WARNING: ",I5, & & " eigenvalues not converged in regterg")' ) notcnv ! CALL stop_clock( 'regterg:last' ) ! EXIT iterate ! END IF ! ! ... refresh psi, H*psi and S*psi ! psi(:,1:nvec) = evc(:,1:nvec) ! IF ( uspp ) THEN ! CALL DGEMM( 'N', 'N', npw2, nvec, nbase, 1.D0, spsi, & npwx2, vr, nvecx, 0.D0, psi(1,nvec+1), npwx2 ) ! spsi(:,1:nvec) = psi(:,nvec+1:nvec+nvec) ! END IF ! CALL DGEMM( 'N', 'N', npw2, nvec, nbase, 1.D0, hpsi, & npwx2, vr, nvecx, 0.D0, psi(1,nvec+1), npwx2 ) ! hpsi(:,1:nvec) = psi(:,nvec+1:nvec+nvec) ! ! ... refresh the reduced hamiltonian ! nbase = nvec ! hr(:,1:nbase) = 0.D0 sr(:,1:nbase) = 0.D0 vr(:,1:nbase) = 0.D0 ! DO n = 1, nbase ! hr(n,n) = e(n) sr(n,n) = 1.D0 vr(n,n) = 1.D0 ! END DO ! CALL stop_clock( 'regterg:last' ) ! END IF ! END DO iterate ! DEALLOCATE( conv ) DEALLOCATE( ew ) DEALLOCATE( vr ) DEALLOCATE( hr ) DEALLOCATE( sr ) ! IF ( uspp ) DEALLOCATE( spsi ) ! DEALLOCATE( hpsi ) DEALLOCATE( psi ) ! CALL stop_clock( 'regterg' ) ! RETURN ! END SUBROUTINE regterg ! ! ! Subroutine with distributed matrixes ! (written by Carlo Cavazzoni) ! !---------------------------------------------------------------------------- SUBROUTINE pregterg( npw, npwx, nvec, nvecx, evc, ethr, & uspp, gstart, e, btype, notcnv, lrot, dav_iter ) !---------------------------------------------------------------------------- ! ! ... iterative solution of the eigenvalue problem: ! ! ... ( H - e S ) * evc = 0 ! ! ... where H is an hermitean operator, e is a real scalar, ! ... S is an uspp matrix, evc is a complex vector ! ... (real wavefunctions with only half plane waves stored) ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mp_bands, ONLY : intra_bgrp_comm USE mp_diag, ONLY : ortho_comm, np_ortho, me_ortho, ortho_comm_id, leg_ortho USE descriptors, ONLY : la_descriptor, descla_init, descla_local_dims USE parallel_toolkit, ONLY : dsqmdst, dsqmcll, dsqmred, dsqmsym USE mp, ONLY : mp_bcast, mp_root_sum, mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: npw, npwx, nvec, nvecx, gstart ! dimension of the matrix to be diagonalized ! leading dimension of matrix evc, as declared in the calling pgm unit ! integer number of searched low-lying roots ! maximum dimension of the reduced basis set ! (the basis set is refreshed when its dimension would exceed nvecx) COMPLEX(DP), INTENT(INOUT) :: evc(npwx,nvec) ! evc contains the refined estimates of the eigenvectors REAL(DP), INTENT(IN) :: ethr ! energy threshold for convergence: root improvement is stopped, ! when two consecutive estimates of the root differ by less than ethr. LOGICAL, INTENT(IN) :: uspp ! if .FALSE. : S|psi> not needed INTEGER, INTENT(IN) :: btype(nvec) ! band type ( 1 = occupied, 0 = empty ) LOGICAL, INTENT(IN) :: lrot ! .TRUE. if the wfc have already be rotated REAL(DP), INTENT(OUT) :: e(nvec) ! contains the estimated roots. INTEGER, INTENT(OUT) :: dav_iter, notcnv ! integer number of iterations performed ! number of unconverged roots ! ! ... LOCAL variables ! INTEGER, PARAMETER :: maxter = 20 ! maximum number of iterations ! INTEGER :: kter, nbase, np, n, m, nb1 ! counter on iterations ! dimension of the reduced basis ! counter on the reduced basis vectors ! do-loop counters INTEGER :: ierr REAL(DP), ALLOCATABLE :: ew(:) REAL(DP), ALLOCATABLE :: hl(:,:), sl(:,:), vl(:,:) ! Hamiltonian on the reduced basis ! S matrix on the reduced basis ! eigenvectors of the Hamiltonian ! eigenvalues of the reduced hamiltonian COMPLEX(DP), ALLOCATABLE :: psi(:,:), hpsi(:,:), spsi(:,:) ! work space, contains psi ! the product of H and psi ! the product of S and psi LOGICAL, ALLOCATABLE :: conv(:) ! true if the root is converged REAL(DP) :: empty_ethr ! threshold for empty bands INTEGER :: npw2, npwx2 TYPE(la_descriptor) :: desc, desc_old INTEGER, ALLOCATABLE :: irc_ip( : ) INTEGER, ALLOCATABLE :: nrc_ip( : ) INTEGER, ALLOCATABLE :: rank_ip( :, : ) ! matrix distribution descriptors INTEGER :: nx ! maximum local block dimension LOGICAL :: la_proc ! flag to distinguish procs involved in linear algebra INTEGER, ALLOCATABLE :: notcnv_ip( : ) INTEGER, ALLOCATABLE :: ic_notcnv( : ) ! REAL(DP), EXTERNAL :: ddot ! ! EXTERNAL h_psi, s_psi, g_psi ! h_psi(npwx,npw,nvec,psi,hpsi) ! calculates H|psi> ! s_psi(npwx,npw,nvec,psi,spsi) ! calculates S|psi> (if needed) ! Vectors psi,hpsi,spsi are dimensioned (npwx,nvec) ! g_psi(npwx,npw,notcnv,psi,e) ! calculates (diag(h)-e)^-1 * psi, diagonal approx. to (h-e)^-1*psi ! the first nvec columns contain the trial eigenvectors ! ! CALL start_clock( 'regterg' ) ! IF ( nvec > nvecx / 2 ) CALL errore( 'regter', 'nvecx is too small', 1 ) ! ! ... threshold for empty bands ! empty_ethr = MAX( ( ethr * 5.D0 ), 1.D-5 ) ! ALLOCATE( psi( npwx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate psi ', ABS(ierr) ) ALLOCATE( hpsi( npwx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate hpsi ', ABS(ierr) ) ! IF ( uspp ) THEN ALLOCATE( spsi( npwx, nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate spsi ', ABS(ierr) ) END IF ! ! ... Initialize the matrix descriptor ! ALLOCATE( ic_notcnv( np_ortho(2) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate ic_notcnv ', ABS(ierr) ) ALLOCATE( notcnv_ip( np_ortho(2) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate notcnv_ip ', ABS(ierr) ) ALLOCATE( irc_ip( np_ortho(1) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate irc_ip ', ABS(ierr) ) ALLOCATE( nrc_ip( np_ortho(1) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate nrc_ip ', ABS(ierr) ) ALLOCATE( rank_ip( np_ortho(1), np_ortho(2) ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate rank_ip ', ABS(ierr) ) ! CALL desc_init( nvec, desc, irc_ip, nrc_ip ) ! IF( la_proc ) THEN ! ! only procs involved in the diagonalization need to allocate local ! matrix block. ! ALLOCATE( vl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate vl ', ABS(ierr) ) ALLOCATE( sl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate sl ', ABS(ierr) ) ALLOCATE( hl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate hl ', ABS(ierr) ) ! ELSE ! ALLOCATE( vl( 1 , 1 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate vl ', ABS(ierr) ) ALLOCATE( sl( 1 , 1 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate sl ', ABS(ierr) ) ALLOCATE( hl( 1 , 1 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate hl ', ABS(ierr) ) ! END IF ! ALLOCATE( ew( nvecx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate ew ', ABS(ierr) ) ALLOCATE( conv( nvec ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate conv ', ABS(ierr) ) ! npw2 = 2*npw npwx2 = 2*npwx notcnv = nvec nbase = nvec conv = .FALSE. ! IF ( uspp ) spsi = ZERO ! hpsi = ZERO psi = ZERO psi(:,1:nvec) = evc(:,1:nvec) ! ... set Im[ psi(G=0) ] - needed for numerical stability IF ( gstart == 2 ) psi(1,1:nvec) = CMPLX( DBLE( psi(1,1:nvec) ), 0.D0 ,kind=DP) ! ! ... hpsi contains h times the basis vectors ! CALL h_psi( npwx, npw, nvec, psi, hpsi ) ! IF ( uspp ) CALL s_psi( npwx, npw, nvec, psi, spsi ) ! ! ... hl contains the projection of the hamiltonian onto the reduced ! ... space, vl contains the eigenvectors of hl. Remember hl, vl and sl ! ... are all distributed across processors, global replicated matrixes ! ... here are never allocated ! CALL compute_distmat( hl, psi, hpsi ) ! IF ( uspp ) THEN ! CALL compute_distmat( sl, psi, spsi ) ! ELSE ! CALL compute_distmat( sl, psi, psi ) ! END IF ! IF ( lrot ) THEN ! CALL set_e_from_h() ! CALL set_to_identity( vl, desc ) ! ELSE ! ! ... diagonalize the reduced hamiltonian ! Calling block parallel algorithm ! CALL prdiaghg( nbase, hl, sl, nx, ew, vl, desc ) ! e(1:nvec) = ew(1:nvec) ! END IF ! ! ... iterate ! iterate: DO kter = 1, maxter ! dav_iter = kter ! CALL start_clock( 'regterg:update' ) ! CALL reorder_v() ! nb1 = nbase + 1 ! ! ... expand the basis set with new basis vectors ( H - e*S )|psi> ... ! CALL hpsi_dot_v() ! CALL stop_clock( 'regterg:update' ) ! ! ... approximate inverse iteration ! CALL g_psi( npwx, npw, notcnv, 1, psi(1,nb1), ew(nb1) ) ! ! ... "normalize" correction vectors psi(:,nb1:nbase+notcnv) in ! ... order to improve numerical stability of subspace diagonalization ! ... (cdiaghg) ew is used as work array : ! ! ... ew = , i = nbase + 1, nbase + notcnv ! DO n = 1, notcnv ! ew(n) = 2.D0 * ddot( npw2, psi(1,nbase+n), 1, psi(1,nbase+n), 1 ) ! IF ( gstart == 2 ) ew(n) = ew(n) - psi(1,nbase+n) * psi(1,nbase+n) ! END DO ! CALL mp_sum( ew( 1:notcnv ), intra_bgrp_comm ) ! DO n = 1, notcnv ! psi(:,nbase+n) = psi(:,nbase+n) / SQRT( ew(n) ) ! ... set Im[ psi(G=0) ] - needed for numerical stability IF ( gstart == 2 ) psi(1,nbase+n) = CMPLX( DBLE(psi(1,nbase+n)), 0.D0 ,kind=DP) ! END DO ! ! ... here compute the hpsi and spsi of the new functions ! CALL h_psi( npwx, npw, notcnv, psi(1,nb1), hpsi(1,nb1) ) ! IF ( uspp ) CALL s_psi( npwx, npw, notcnv, psi(1,nb1), spsi(1,nb1) ) ! ! ... update the reduced hamiltonian ! ! we need to save the old descriptor in order to redistribute matrices ! desc_old = desc ! ! ... RE-Initialize the matrix descriptor ! CALL desc_init( nbase+notcnv, desc, irc_ip, nrc_ip ) ! IF( la_proc ) THEN ! redistribute hl and sl (see dsqmred), since the dimension of the subspace has changed ! vl = hl DEALLOCATE( hl ) ALLOCATE( hl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate hl ', ABS(ierr) ) CALL dsqmred( nbase, vl, desc_old%nrcx, desc_old, nbase+notcnv, hl, nx, desc ) vl = sl DEALLOCATE( sl ) ALLOCATE( sl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate sl ', ABS(ierr) ) CALL dsqmred( nbase, vl, desc_old%nrcx, desc_old, nbase+notcnv, sl, nx, desc ) DEALLOCATE( vl ) ALLOCATE( vl( nx , nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate vl ', ABS(ierr) ) END IF ! CALL start_clock( 'regterg:overlap' ) ! CALL update_distmat( hl, psi, hpsi ) ! IF ( uspp ) THEN ! CALL update_distmat( sl, psi, spsi ) ! ELSE ! CALL update_distmat( sl, psi, psi ) ! END IF ! CALL stop_clock( 'regterg:overlap' ) ! nbase = nbase + notcnv ! ! ... diagonalize the reduced hamiltonian ! Call block parallel algorithm ! CALL prdiaghg( nbase, hl, sl, nx, ew, vl, desc ) ! ! ... test for convergence ! WHERE( btype(1:nvec) == 1 ) ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < ethr ) ) ! ELSEWHERE ! conv(1:nvec) = ( ( ABS( ew(1:nvec) - e(1:nvec) ) < empty_ethr ) ) ! END WHERE ! notcnv = COUNT( .NOT. conv(:) ) ! e(1:nvec) = ew(1:nvec) ! ! ... if overall convergence has been achieved, or the dimension of ! ... the reduced basis set is becoming too large, or in any case if ! ... we are at the last iteration refresh the basis set. i.e. replace ! ... the first nvec elements with the current estimate of the ! ... eigenvectors; set the basis dimension to nvec. ! IF ( notcnv == 0 .OR. nbase+notcnv > nvecx .OR. dav_iter == maxter ) THEN ! CALL start_clock( 'regterg:last' ) ! CALL refresh_evc() ! IF ( notcnv == 0 ) THEN ! ! ... all roots converged: return ! CALL stop_clock( 'regterg:last' ) ! EXIT iterate ! ELSE IF ( dav_iter == maxter ) THEN ! ! ... last iteration, some roots not converged: return ! WRITE( stdout, '(5X,"WARNING: ",I5, & & " eigenvalues not converged")' ) notcnv ! CALL stop_clock( 'regterg:last' ) ! EXIT iterate ! END IF ! ! ... refresh psi, H*psi and S*psi ! psi(:,1:nvec) = evc(:,1:nvec) ! IF ( uspp ) THEN ! CALL refresh_spsi() ! END IF ! CALL refresh_hpsi() ! ! ... refresh the reduced hamiltonian ! nbase = nvec ! CALL desc_init( nvec, desc, irc_ip, nrc_ip ) ! IF( la_proc ) THEN ! ! note that nx has been changed by desc_init ! we need to re-alloc with the new size. ! DEALLOCATE( vl, hl, sl ) ALLOCATE( vl( nx, nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate vl ', ABS(ierr) ) ALLOCATE( hl( nx, nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate hl ', ABS(ierr) ) ALLOCATE( sl( nx, nx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( 'pregterg ',' cannot allocate sl ', ABS(ierr) ) ! END IF ! CALL set_h_from_e( ) ! CALL set_to_identity( vl, desc ) CALL set_to_identity( sl, desc ) ! CALL stop_clock( 'regterg:last' ) ! END IF ! END DO iterate ! DEALLOCATE( vl, hl, sl ) ! DEALLOCATE( rank_ip ) DEALLOCATE( ic_notcnv ) DEALLOCATE( irc_ip ) DEALLOCATE( nrc_ip ) DEALLOCATE( notcnv_ip ) DEALLOCATE( conv ) DEALLOCATE( ew ) ! IF ( uspp ) DEALLOCATE( spsi ) ! DEALLOCATE( hpsi ) DEALLOCATE( psi ) ! CALL stop_clock( 'regterg' ) ! RETURN ! ! CONTAINS ! ! SUBROUTINE desc_init( nsiz, desc, irc_ip, nrc_ip ) ! INTEGER, INTENT(IN) :: nsiz TYPE(la_descriptor), INTENT(OUT) :: desc INTEGER, INTENT(OUT) :: irc_ip(:) INTEGER, INTENT(OUT) :: nrc_ip(:) INTEGER :: i, j, rank ! CALL descla_init( desc, nsiz, nsiz, np_ortho, me_ortho, ortho_comm, ortho_comm_id ) ! nx = desc%nrcx ! DO j = 0, desc%npc - 1 CALL descla_local_dims( irc_ip( j + 1 ), nrc_ip( j + 1 ), desc%n, desc%nx, np_ortho(1), j ) DO i = 0, desc%npr - 1 CALL GRID2D_RANK( 'R', desc%npr, desc%npc, i, j, rank ) rank_ip( i+1, j+1 ) = rank * leg_ortho END DO END DO ! la_proc = .FALSE. IF( desc%active_node > 0 ) la_proc = .TRUE. ! RETURN END SUBROUTINE desc_init ! ! SUBROUTINE set_to_identity( distmat, desc ) TYPE(la_descriptor), INTENT(IN) :: desc REAL(DP), INTENT(OUT) :: distmat(:,:) INTEGER :: i distmat = 0_DP IF( desc%myc == desc%myr .AND. desc%active_node > 0 ) THEN DO i = 1, desc%nc distmat( i, i ) = 1_DP END DO END IF RETURN END SUBROUTINE set_to_identity ! ! SUBROUTINE reorder_v() ! INTEGER :: ipc, ipr INTEGER :: nc, ic INTEGER :: nl, npl ! np = 0 ! notcnv_ip = 0 ! n = 0 ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! npl = 0 ! IF( ic <= nvec ) THEN ! DO nl = 1, min( nvec - ic + 1, nc ) ! n = n + 1 ! IF ( .NOT. conv(n) ) THEN ! ! ... this root not yet converged ... ! np = np + 1 npl = npl + 1 IF( npl == 1 ) ic_notcnv( ipc ) = np ! ! ... reorder eigenvectors so that coefficients for unconverged ! ... roots come first. This allows to use quick matrix-matrix ! ... multiplications to set a new basis vector (see below) ! notcnv_ip( ipc ) = notcnv_ip( ipc ) + 1 ! IF ( npl /= nl ) THEN IF( la_proc .AND. desc%myc == ipc-1 ) THEN vl( :, npl) = vl( :, nl ) END IF END IF ! ! ... for use in g_psi ! ew(nbase+np) = e(n) ! END IF ! END DO ! END IF ! END DO ! END SUBROUTINE reorder_v ! ! SUBROUTINE hpsi_dot_v() ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, notcl, root, np REAL(DP), ALLOCATABLE :: vtmp( :, : ) COMPLEX(DP), ALLOCATABLE :: ptmp( :, : ) REAL(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ALLOCATE( ptmp( npwx, nx ) ) DO ipc = 1, desc%npc ! IF( notcnv_ip( ipc ) > 0 ) THEN notcl = notcnv_ip( ipc ) ic = ic_notcnv( ipc ) ptmp = 0.0d0 beta = 0.0d0 DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN vtmp(:,1:notcl) = vl(:,1:notcl) END IF CALL mp_bcast( vtmp(:,1:notcl), root, intra_bgrp_comm ) ! IF ( uspp ) THEN ! CALL DGEMM( 'N', 'N', npw2, notcl, nr, 1.D0, & spsi( 1, ir ), npwx2, vtmp, nx, beta, psi(1,nb1+ic-1), npwx2 ) ! ELSE ! CALL DGEMM( 'N', 'N', npw2, notcl, nr, 1.D0, & psi( 1, ir ), npwx2, vtmp, nx, beta, psi(1,nb1+ic-1), npwx2 ) ! END IF ! CALL DGEMM( 'N', 'N', npw2, notcl, nr, 1.D0, & hpsi( 1, ir ), npwx2, vtmp, nx, 1.D0, ptmp, npwx2 ) beta = 1.0d0 END DO DO np = 1, notcl ! psi(:,nbase+np+ic-1) = ptmp(:,np) - ew(nbase+np+ic-1) * psi(:,nbase+np+ic-1) ! END DO ! END IF ! END DO DEALLOCATE( vtmp ) DEALLOCATE( ptmp ) RETURN END SUBROUTINE hpsi_dot_v ! ! SUBROUTINE refresh_evc( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root REAL(DP), ALLOCATABLE :: vtmp( :, : ) REAL(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic <= nvec ) THEN ! nc = min( nc, nvec - ic + 1 ) ! beta = 0.0d0 DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vl(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & psi(1,ir), npwx2, vl, nx, beta, evc(1,ic), npwx2 ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & psi(1,ir), npwx2, vtmp, nx, beta, evc(1,ic), npwx2 ) END IF ! beta = 1.0d0 END DO ! END IF ! END DO ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE refresh_evc ! ! SUBROUTINE refresh_spsi( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root REAL(DP), ALLOCATABLE :: vtmp( :, : ) REAL(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic <= nvec ) THEN ! nc = min( nc, nvec - ic + 1 ) ! beta = 0_DP ! DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vl(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & spsi(1,ir), npwx2, vl, nx, beta, psi(1,nvec+ic), npwx2 ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & spsi(1,ir), npwx2, vtmp, nx, beta, psi(1,nvec+ic), npwx2 ) END IF ! beta = 1_DP END DO ! END IF ! END DO ! spsi(:,1:nvec) = psi(:,nvec+1:nvec+nvec) ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE refresh_spsi ! ! ! SUBROUTINE refresh_hpsi( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root REAL(DP), ALLOCATABLE :: vtmp( :, : ) REAL(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic <= nvec ) THEN ! nc = min( nc, nvec - ic + 1 ) ! beta = 0.0d0 ! DO ipr = 1, desc%npr ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vl(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & hpsi(1,ir), npwx2, vl, nx, beta, psi(1,nvec+ic), npwx2 ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, & hpsi(1,ir), npwx2, vtmp, nx, beta, psi(1,nvec+ic), npwx2 ) END IF ! beta = 1.0d0 END DO ! END IF ! END DO ! DEALLOCATE( vtmp ) hpsi(:,1:nvec) = psi(:,nvec+1:nvec+nvec) RETURN END SUBROUTINE refresh_hpsi ! ! SUBROUTINE compute_distmat( dm, v, w ) ! ! This subroutine compute and store the ! result in distributed matrix dm ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root REAL(DP), INTENT(OUT) :: dm( :, : ) COMPLEX(DP) :: v(:,:), w(:,:) REAL(DP), ALLOCATABLE :: work( :, : ) ! ALLOCATE( work( nx, nx ) ) ! work = 0.0d0 ! DO ipc = 1, desc%npc ! loop on column procs ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! DO ipr = 1, ipc ! use symmetry for the loop on row procs ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! ! rank of the processor for which this block (ipr,ipc) is destinated ! root = rank_ip( ipr, ipc ) ! use blas subs. on the matrix block CALL DGEMM( 'T', 'N', nr, nc, npw2, 2.D0 , & v(1,ir), npwx2, w(1,ic), npwx2, 0.D0, work, nx ) IF ( gstart == 2 ) & CALL DGER( nr, nc, -1.D0, v(1,ir), npwx2, w(1,ic), npwx2, work, nx ) ! accumulate result on dm of root proc. CALL mp_root_sum( work, dm, root, intra_bgrp_comm ) END DO ! END DO ! CALL dsqmsym( nbase, dm, nx, desc ) ! DEALLOCATE( work ) ! RETURN END SUBROUTINE compute_distmat ! ! SUBROUTINE update_distmat( dm, v, w ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root, icc, ii REAL(DP) :: dm( :, : ) COMPLEX(DP) :: v(:,:), w(:,:) REAL(DP), ALLOCATABLE :: vtmp( :, : ) ALLOCATE( vtmp( nx, nx ) ) ! vtmp = 0.0d0 ! DO ipc = 1, desc%npc ! nc = nrc_ip( ipc ) ic = irc_ip( ipc ) ! IF( ic+nc-1 >= nb1 ) THEN nc = MIN( nc, ic+nc-1 - nb1 + 1 ) IF( ic >= nb1 ) THEN ii = ic icc = 1 ELSE ii = nb1 icc = nb1-ic+1 END IF DO ipr = 1, ipc ! desc%npr use symmetry ! nr = nrc_ip( ipr ) ir = irc_ip( ipr ) ! root = rank_ip( ipr, ipc ) CALL DGEMM( 'T', 'N', nr, nc, npw2, 2.D0, v( 1, ir ), & npwx2, w(1,ii), npwx2, 0.D0, vtmp, nx ) ! IF ( gstart == 2 ) & CALL DGER( nr, nc, -1.D0, v( 1, ir ), npwx2, w(1,ii), npwx2, vtmp, nx ) IF( (desc%active_node > 0) .AND. (ipr-1 == desc%myr) .AND. (ipc-1 == desc%myc) ) THEN CALL mp_root_sum( vtmp(:,1:nc), dm(:,icc:icc+nc-1), root, intra_bgrp_comm ) ELSE CALL mp_root_sum( vtmp(:,1:nc), dm, root, intra_bgrp_comm ) END IF END DO ! END IF ! END DO ! CALL dsqmsym( nbase+notcnv, dm, nx, desc ) ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE update_distmat ! ! ! SUBROUTINE set_e_from_h() INTEGER :: nc, ic, i e(1:nbase) = 0.0d0 IF( desc%myc == desc%myr .AND. la_proc ) THEN nc = desc%nc ic = desc%ic DO i = 1, nc e( i + ic - 1 ) = hl( i, i ) END DO END IF CALL mp_sum( e(1:nbase), intra_bgrp_comm ) RETURN END SUBROUTINE set_e_from_h ! SUBROUTINE set_h_from_e() INTEGER :: nc, ic, i IF( la_proc ) THEN hl = 0.0d0 IF( desc%myc == desc%myr ) THEN nc = desc%nc ic = desc%ic DO i = 1, nc hl(i,i) = e( i + ic - 1 ) END DO END IF END IF RETURN END SUBROUTINE set_h_from_e ! END SUBROUTINE pregterg espresso-5.1/PW/src/hinit0.f900000644000175000017500000000641612341373025014141 0ustar mbamba! ! Copyright (C) 2001-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE hinit0() !----------------------------------------------------------------------- ! ! ... hamiltonian initialization: ! ... atomic position independent initialization for nonlocal PP, ! ... structure factors, local potential, core charge ! USE ions_base, ONLY : nat, nsp, ityp, tau USE basis, ONLY : startingconfig USE cell_base, ONLY : at, bg, omega, tpiba2 USE cellmd, ONLY : omega_old, at_old, lmovecell USE klist, ONLY : nks, xk USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, ig_l2g, g, eigts1, eigts2, eigts3 USE vlocal, ONLY : strf USE wvfct, ONLY : npw, g2kin, igk, ecutwfc USE io_files, ONLY : iunigk USE realus, ONLY : generate_qpointlist,betapointlist,init_realspace_vars,real_space use ldaU, ONLY : lda_plus_U, U_projection USE control_flags,ONLY : tqr USE io_global, ONLY : stdout ! IMPLICIT NONE ! INTEGER :: ik ! counter on k points ! ! ... calculate the Fourier coefficients of the local part of the PP ! CALL init_vloc() ! ! ... k-point independent parameters of non-local pseudopotentials ! CALL init_us_1() IF ( lda_plus_U .AND. ( U_projection == 'pseudo' ) ) CALL init_q_aeps() CALL init_at_1() ! REWIND( iunigk ) ! ! ... The following loop must NOT be called more than once in a run ! ... or else there will be problems with variable-cell calculations ! DO ik = 1, nks ! ! ... g2kin is used here as work space ! CALL gk_sort( xk(1,ik), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin ) ! ! ... if there is only one k-point npw and igk stay in memory ! IF ( nks > 1 ) WRITE( iunigk ) igk ! END DO ! IF ( lmovecell .AND. startingconfig == 'file' ) THEN ! ! ... If lmovecell and restart are both true the cell shape is read from ! ... the restart file and stored. The xxx_old variables are used instead ! ... of the current (read from input) ones. ! ... xxx and xxx_old are swapped, the atomic positions rescaled and ! ... the hamiltonian scaled. ! CALL cryst_to_cart( nat, tau, bg, - 1 ) ! CALL dswap( 9, at, 1, at_old, 1 ) CALL dswap( 1, omega, 1, omega_old, 1 ) ! CALL cryst_to_cart( nat, tau, at, + 1 ) ! CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) CALL scale_h() ! END IF ! ! ... initialize the structure factor ! CALL struc_fact( nat, tau, nsp, ityp, ngm, g, bg, & dfftp%nr1, dfftp%nr2, dfftp%nr3, strf, eigts1, eigts2, eigts3 ) ! ! ... calculate the total local potential ! CALL setlocal() ! ! ... calculate the core charge (if any) for the nonlinear core correction ! CALL set_rhoc() ! IF ( tqr ) CALL generate_qpointlist() IF (real_space ) then call betapointlist() call init_realspace_vars() write(stdout,'(5X,"Real space initialisation completed")') endif ! RETURN ! END SUBROUTINE hinit0 espresso-5.1/PW/src/add_efield.f900000644000175000017500000001740712341373025015010 0ustar mbamba! ! Copyright (C) 2003-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ... written by J. Tobik ! ! Changes 30/06/2003 (ADC) : ! Calculation of corrections to energy and forces due ! to the field. ! Added possibility to subtract the dipole field ! for slab or molecule calculation. ! (See Bengtsson PRB 59, 12 301 (1999) and ! Meyer and Vanderbilt, PRB 63, 205426 (2001).) ! ! 25/06/2009 (Riccardo Sabatini) ! reformulation using a unique saw(x) function (included in ! cell_base) in all e-field related routines and inclusion of ! a macroscopic electronic dipole contribution in the mixing ! scheme. ! ! !-------------------------------------------------------------------------- SUBROUTINE add_efield(vpoten,etotefield,rho,iflag) !-------------------------------------------------------------------------- ! ! This routine adds an electric field to the local potential. The ! field is made artificially periodic by introducing a saw-tooth ! potential. The field is parallel to a reciprocal lattice vector bg, ! according to the index edir. ! ! if dipfield is false the electric field correction is added to the ! potential given as input (the bare local potential) only ! at the first call to this routine. In the following calls ! the routine exit. ! ! if dipfield is true the dipole moment per unit surface is calculated ! and used to cancel the electric field due to periodic boundary ! conditions. This potential is added to the Hartree and xc potential ! in v_of_rho. NB: in this case the electric field contribution to the ! band energy is subtracted by deband. ! ! USE kinds, ONLY : DP USE constants, ONLY : fpi, eps8, e2, au_debye USE ions_base, ONLY : nat, ityp, zv USE cell_base, ONLY : alat, at, omega, bg, saw USE extfield, ONLY : tefield, dipfield, edir, eamp, emaxpos, & eopreg, forcefield USE force_mod, ONLY : lforce USE io_global, ONLY : stdout,ionode USE control_flags, ONLY : mixing_beta USE lsda_mod, ONLY : nspin USE mp_images, ONLY : intra_image_comm USE mp_bands, ONLY : me_bgrp USE fft_base, ONLY : dfftp USE mp, ONLY : mp_bcast, mp_sum USE control_flags, ONLY : iverbosity IMPLICIT NONE ! ! I/O variables ! REAL(DP),INTENT(INOUT) :: vpoten(dfftp%nnr)! ef is added to this potential REAL(DP),INTENT(INOUT) :: etotefield ! contribution to etot due to ef REAL(DP),INTENT(IN) :: rho(dfftp%nnr,nspin) ! the density whose dipole is computed LOGICAL,INTENT(IN) :: iflag ! set to true to force recalculation of field ! ! local variables ! INTEGER :: index0, i, j, k INTEGER :: ir, na, ipol REAL(DP) :: length, vamp, value, sawarg, e_dipole, ion_dipole REAL(DP) :: tot_dipole, bmod LOGICAL :: first=.TRUE. SAVE first !--------------------- ! Execution control !--------------------- IF (.NOT.tefield) RETURN ! efield only needs to be added on the first iteration, if dipfield ! is not used. note that for relax calculations it has to be added ! again on subsequent relax steps. IF ((.NOT.dipfield).AND.(.NOT.first) .AND..NOT. iflag) RETURN first=.FALSE. IF ((edir.lt.1).or.(edir.gt.3)) THEN CALL errore('add_efield',' wrong edir',1) ENDIF !--------------------- ! Variable initialization !--------------------- bmod=SQRT(bg(1,edir)**2+bg(2,edir)**2+bg(3,edir)**2) tot_dipole=0._dp e_dipole =0._dp ion_dipole=0._dp !--------------------- ! Calculate dipole !--------------------- if (dipfield) then ! ! dipole correction is active ! CALL compute_el_dip(emaxpos, eopreg, edir, rho, e_dipole) CALL compute_ion_dip(emaxpos, eopreg, edir, ion_dipole) tot_dipole = -e_dipole + ion_dipole CALL mp_bcast(tot_dipole, 0, intra_image_comm) ! ! E_{TOT} = -e^{2} \left( eamp - dip \right) dip \frac{\Omega}{4\pi} ! etotefield=-e2*(eamp-tot_dipole/2.d0)*tot_dipole*omega/fpi !--------------------- ! Define forcefield ! ! F_{s} = e^{2} \left( eamp - dip \right) z_{v}\cross\frac{\vec{b_{3}}}{bmod} !--------------------- IF (lforce) THEN DO na=1,nat DO ipol=1,3 forcefield(ipol,na)= e2 *(eamp - tot_dipole) & *zv(ityp(na))*bg(ipol,edir)/bmod ENDDO ENDDO ENDIF else ! ! dipole correction is not active ! CALL compute_ion_dip(emaxpos, eopreg, edir, ion_dipole) ! ! E_{TOT} = -e^{2} eamp * iondip \frac{\Omega}{4\pi} ! etotefield=-e2*eamp*ion_dipole*omega/fpi !--------------------- ! Define forcefield ! ! F_{s} = e^{2} eamp z_{v}\cross\frac{\vec{b_{3}}}{bmod} !--------------------- IF (lforce) THEN DO na=1,nat DO ipol=1,3 forcefield(ipol,na)= e2 *eamp & *zv(ityp(na))*bg(ipol,edir)/bmod ENDDO ENDDO ENDIF end if ! ! Calculate potential and print values ! length=(1._dp-eopreg)*(alat*SQRT(at(1,edir)**2+at(2,edir)**2+at(3,edir)**2)) vamp=e2*(eamp-tot_dipole)*length IF (ionode) THEN ! ! Output data ! WRITE( stdout,*) WRITE( stdout,'(5x,"Adding external electric field":)') IF (dipfield) then WRITE( stdout,'(/5x,"Computed dipole along edir(",i1,") : ")' ) edir ! ! If verbose prints also the different components ! IF ( iverbosity > 0 ) THEN WRITE( stdout, '(8X,"Elec. dipole ",1F15.4," Ry au, ", 1F15.4," Debye")' ) & e_dipole, (e_dipole*au_debye) WRITE( stdout, '(8X,"Ion. dipole ",1F15.4," Ry au,", 1F15.4," Debye")' ) & ion_dipole, (ion_dipole*au_debye) ENDIF WRITE( stdout, '(8X,"Dipole ",1F15.4," Ry au, ", 1F15.4," Debye")' ) & (tot_dipole* (omega/fpi)), & ((tot_dipole* (omega/fpi))*au_debye) WRITE( stdout, '(8x,"Dipole field ", f11.4," Ry au")') tot_dipole WRITE( stdout,*) ENDIF IF (abs(eamp)>0._dp) WRITE( stdout, & '(8x,"E field amplitude [Ha a.u.]: ", es11.4)') eamp WRITE( stdout,'(8x,"Potential amp. ", f11.4," Ry")') vamp WRITE( stdout,'(8x,"Total length ", f11.4," bohr")') length WRITE( stdout,*) ENDIF ! !------------------------------ ! Add potential ! ! V\left(ijk\right) = e^{2} \left( eamp - dip \right) z_{v} ! Saw\left( \frac{k}{nr3} \right) \frac{alat}{bmod} ! !--------------------- ! Index for parallel summation ! index0 = 0 #if defined (__MPI) ! DO i = 1, me_bgrp index0 = index0 + dfftp%nr1x*dfftp%nr2x*dfftp%npp(i) END DO ! #endif ! ! Loop in the charge array ! DO ir = 1, dfftp%nnr ! ! ... three dimensional indexes ! i = index0 + ir - 1 k = i / (dfftp%nr1x*dfftp%nr2x) i = i - (dfftp%nr1x*dfftp%nr2x)*k j = i / dfftp%nr1x i = i - dfftp%nr1x*j if (edir.eq.1) sawarg = DBLE(i)/DBLE(dfftp%nr1) if (edir.eq.2) sawarg = DBLE(j)/DBLE(dfftp%nr2) if (edir.eq.3) sawarg = DBLE(k)/DBLE(dfftp%nr3) value = e2*(eamp - tot_dipole)*saw(emaxpos,eopreg,sawarg) * (alat/bmod) vpoten(ir) = vpoten(ir) + value END DO RETURN END SUBROUTINE add_efield espresso-5.1/PW/src/ortho_wfc.f900000644000175000017500000000540712341373025014737 0ustar mbamba! Copyright (C) 2008 Dmitry Korotin dmitry@korotin.name, Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) SUBROUTINE ortho_wfc(lda,ldb,wfc,ierr) !This subroutine orthogonalizes wfcs. USE kinds, ONLY : DP USE io_global, ONLY : stdout USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE noncollin_module, ONLY : noncolin, npol implicit none INTEGER, intent(in) :: lda,ldb INTEGER, intent(out) :: ierr COMPLEX(DP), intent(inout) :: wfc(lda,ldb) INTEGER :: i,j,k COMPLEX(DP), allocatable :: overlap(:,:),work(:,:), wfc_ortho(:,:) REAL(DP) , ALLOCATABLE :: e (:) ierr = 0 ALLOCATE (overlap( lda , lda)) ALLOCATE (work ( lda , lda)) ALLOCATE (e ( lda)) ALLOCATE (wfc_ortho( lda , ldb)) ! ! calculate overlap matrix ! overlap = ZERO work = ZERO e = 0.d0 CALL ZGEMM ('n', 'c', lda, lda, ldb, (1.d0, 0.d0), & wfc, lda, wfc, lda, (0.d0, 0.d0), overlap, lda) CALL mp_sum( overlap, intra_bgrp_comm ) ! find O^-.5 ! CALL cdiagh (lda, overlap, lda, e, work) DO i = 1, lda IF(ABS(e(i)).lt.1.d-10) THEN ierr = 1 RETURN ELSE e (i) = 1.d0/dsqrt(e(i)) END IF ENDDO overlap = ZERO DO i = 1, lda DO j = 1, lda overlap (i, j) = ZERO DO k = 1, lda overlap (i, j) = overlap (i, j) + e(k)*work(i, k)*DCONJG(work (j, k) ) ENDDO ENDDO ENDDO ! ! trasform wfs O^-.5 psi ! wfc_ortho(:,:) = ZERO call ZGEMM('N', 'N', lda, ldb, lda, ONE, overlap, lda, & wfc, lda, ZERO, wfc_ortho, lda) wfc(:,:) = wfc_ortho(:,:) DEALLOCATE (overlap) DEALLOCATE (work) DEALLOCATE (e) DEALLOCATE (wfc_ortho) RETURN END SUBROUTINE SUBROUTINE check_ortho(lda,ldb,wfc) !This subroutine checks orthogonality of wfs. Created for debug purposes. USE kinds, ONLY : DP USE io_global, ONLY : stdout USE noncollin_module, ONLY : noncolin, npol implicit none INTEGER, intent(in) :: lda,ldb COMPLEX(DP), intent(in) :: wfc(lda,ldb) INTEGER :: i,j,k COMPLEX(DP), allocatable :: overlap(:,:) ALLOCATE (overlap( lda , lda)) overlap = ZERO ! ! calculate overlap matrix ! CALL ZGEMM ('n', 'c', lda, lda, ldb, ONE, & wfc, lda, wfc, lda, ZERO, overlap, lda) write(stdout,'(5x,a45,2i5)') 'check_ortho for wavefunction with dimentions ', lda,ldb do i=1,lda write(stdout,'(5x,8f8.4)') (dreal(overlap(i,j)),j=1,lda) end do write(stdout,'(5x,a18)') 'end of check_ortho' DEALLOCATE (overlap) RETURN END SUBROUTINE espresso-5.1/PW/src/struct_fact.f900000644000175000017500000000551212341373025015263 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine struc_fact (nat, tau, ntyp, ityp, ngm, g, bg, nr1, nr2, & nr3, strf, eigts1, eigts2, eigts3) !---------------------------------------------------------------------- ! ! calculate the structure factors for each type of atoms in the unit ! cell ! USE kinds USE constants, ONLY : tpi implicit none ! ! Here the dummy variables ! integer :: nat, ntyp, ityp (nat), ngm, nr1, nr2, nr3 ! input: the number of atom in the unit cel ! input: the number of atom types ! input: for each atom gives the type ! input: the number of G vectors ! input: fft dimension along x ! input: fft dimension along y ! input: fft dimension along z real(DP) :: bg (3, 3), tau (3, nat), g (3, ngm) ! input: reciprocal crystal basis vectors ! input: the positions of the atoms in the c ! input: the coordinates of the g vectors complex(DP) :: strf (ngm, ntyp), & eigts1 ( -nr1:nr1, nat), & eigts2 ( -nr2:nr2, nat), & eigts3 ( -nr3:nr3, nat) ! output: the structure factor ! ! output: the phases e^{-iG\tau_s} ! ! ! here the local variables ! integer :: nt, na, ng, n1, n2, n3, ipol ! counter over atom type ! counter over atoms ! counter over G vectors ! counter over fft dimension along x ! counter over fft dimension along y ! counter over fft dimension along z ! counter over polarizations real(DP) :: arg, bgtau (3) ! the argument of the exponent ! scalar product of bg and tau strf(:,:) = (0.d0,0.d0) do nt = 1, ntyp do na = 1, nat if (ityp (na) .eq.nt) then do ng = 1, ngm arg = (g (1, ng) * tau (1, na) + g (2, ng) * tau (2, na) & + g (3, ng) * tau (3, na) ) * tpi strf (ng, nt) = strf (ng, nt) + CMPLX(cos (arg), -sin (arg),kind=DP) enddo endif enddo enddo do na = 1, nat do ipol = 1, 3 bgtau (ipol) = bg (1, ipol) * tau (1, na) + & bg (2, ipol) * tau (2, na) + & bg (3, ipol) * tau (3, na) enddo do n1 = - nr1, nr1 arg = tpi * n1 * bgtau (1) eigts1 (n1, na) = CMPLX(cos (arg), - sin (arg) ,kind=DP) enddo do n2 = - nr2, nr2 arg = tpi * n2 * bgtau (2) eigts2 (n2, na) = CMPLX(cos (arg), - sin (arg) ,kind=DP) enddo do n3 = - nr3, nr3 arg = tpi * n3 * bgtau (3) eigts3 (n3, na) = CMPLX(cos (arg), - sin (arg) ,kind=DP) enddo enddo return end subroutine struc_fact espresso-5.1/PW/src/hinit1.f900000644000175000017500000000417612341373025014143 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE hinit1() !---------------------------------------------------------------------------- ! ! ... Atomic configuration dependent hamiltonian initialization ! USE ions_base, ONLY : nat, nsp, ityp, tau USE cell_base, ONLY : at, bg, omega, tpiba2 USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, g USE gvecs, ONLY : doublegrid USE ldaU, ONLY : lda_plus_u USE lsda_mod, ONLY : nspin USE scf, ONLY : vrs, vltot, v, kedtau USE control_flags, ONLY : tqr USE realus, ONLY : generate_qpointlist USE wannier_new, ONLY : use_wannier USE martyna_tuckerman, ONLY : tag_wg_corr_as_obsolete USE scf, ONLY : rho USE paw_variables, ONLY : okpaw, ddd_paw USE paw_onecenter, ONLY : paw_potential USE paw_init, ONLY : paw_atomic_becsum USE paw_symmetry, ONLY : paw_symmetrize_ddd USE dfunct, ONLY : newd ! IMPLICIT NONE ! ! ! ... update the wavefunctions, charge density, potential ! ... update_pot initializes structure factor array as well ! CALL update_pot() ! ! ... calculate the total local potential ! CALL setlocal() ! ! ... define the total local potential (external+scf) ! CALL set_vrs( vrs, vltot, v%of_r, kedtau, v%kin_r, dfftp%nnr, nspin, doublegrid ) ! IF ( tqr ) CALL generate_qpointlist() ! ! ... update the D matrix and the PAW coefficients ! IF (okpaw) THEN CALL compute_becsum(1) CALL PAW_potential(rho%bec, ddd_paw) CALL PAW_symmetrize_ddd(ddd_paw) ENDIF ! CALL newd() ! ! ... and recalculate the products of the S with the atomic wfcs used ! ... in LDA+U calculations ! IF ( lda_plus_u ) CALL orthoUwfc () IF ( use_wannier ) CALL orthoatwfc( .true. ) ! call tag_wg_corr_as_obsolete ! RETURN ! END SUBROUTINE hinit1 espresso-5.1/PW/src/stres_knl.f900000644000175000017500000000730512341373025014750 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine stres_knl (sigmanlc, sigmakin) !----------------------------------------------------------------------- ! USE kinds, ONLY: DP USE constants, ONLY: pi, e2 USE cell_base, ONLY: omega, alat, at, bg, tpiba USE gvect, ONLY: g USE klist, ONLY: nks, xk, ngk USE io_files, ONLY: iunwfc, nwordwfc, iunigk USE buffers, ONLY: get_buffer USE symme, ONLY: symmatrix USE wvfct, ONLY: npw, npwx, nbnd, igk, wg, qcutz, ecfixed, q2sigma USE control_flags, ONLY: gamma_only USE noncollin_module, ONLY: noncolin, npol USE wavefunctions_module, ONLY: evc USE mp_pools, ONLY: inter_pool_comm USE mp_bands, ONLY: intra_bgrp_comm USE mp, ONLY: mp_sum implicit none real(DP) :: sigmanlc (3, 3), sigmakin (3, 3) real(DP), allocatable :: gk (:,:), kfac (:) real(DP) :: twobysqrtpi, gk2, arg integer :: ik, l, m, i, ibnd, is allocate (gk( 3, npwx)) allocate (kfac( npwx)) sigmanlc(:,:) =0.d0 sigmakin(:,:) =0.d0 twobysqrtpi = 2.d0 / sqrt (pi) kfac(:) = 1.d0 if (nks.gt.1) rewind (iunigk) do ik = 1, nks npw = ngk(ik) if (nks > 1) then read (iunigk) igk call get_buffer (evc, nwordwfc, iunwfc, ik) endif do i = 1, npw gk (1, i) = (xk (1, ik) + g (1, igk (i) ) ) * tpiba gk (2, i) = (xk (2, ik) + g (2, igk (i) ) ) * tpiba gk (3, i) = (xk (3, ik) + g (3, igk (i) ) ) * tpiba if (qcutz.gt.0.d0) then gk2 = gk (1, i) **2 + gk (2, i) **2 + gk (3, i) **2 arg = ( (gk2 - ecfixed) / q2sigma) **2 kfac (i) = 1.d0 + qcutz / q2sigma * twobysqrtpi * exp ( - arg) endif enddo ! ! kinetic contribution ! do l = 1, 3 do m = 1, l do ibnd = 1, nbnd do i = 1, npw if (noncolin) then sigmakin (l, m) = sigmakin (l, m) + wg (ibnd, ik) * & gk (l, i) * gk (m, i) * kfac (i) * & ( DBLE (CONJG(evc(i ,ibnd))*evc(i ,ibnd)) + & DBLE (CONJG(evc(i+npwx,ibnd))*evc(i+npwx,ibnd))) else sigmakin (l, m) = sigmakin (l, m) + wg (ibnd, ik) * & gk (l, i) * gk (m, i) * kfac (i) * & DBLE (CONJG(evc (i, ibnd) ) * evc (i, ibnd) ) end if enddo enddo enddo enddo ! ! contribution from the nonlocal part ! call stres_us (ik, gk, sigmanlc) enddo ! ! add the US term from augmentation charge derivatives ! call addusstres (sigmanlc) ! call mp_sum( sigmakin, intra_bgrp_comm ) call mp_sum( sigmanlc, intra_bgrp_comm ) call mp_sum( sigmakin, inter_pool_comm ) call mp_sum( sigmanlc, inter_pool_comm ) ! do l = 1, 3 do m = 1, l - 1 sigmanlc (m, l) = sigmanlc (l, m) sigmakin (m, l) = sigmakin (l, m) enddo enddo ! if (gamma_only) then sigmakin(:,:) = 2.d0 * e2 / omega * sigmakin(:,:) else sigmakin(:,:) = e2 / omega * sigmakin(:,:) end if sigmanlc(:,:) = -1.d0 / omega * sigmanlc(:,:) ! ! symmetrize stress ! call symmatrix ( sigmakin ) call symmatrix ( sigmanlc ) deallocate(kfac) deallocate(gk) return end subroutine stres_knl espresso-5.1/PW/src/force_hub.f900000644000175000017500000005746212341373025014711 0ustar mbamba! ! Copyright (C) 2002-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE force_hub(forceh) !---------------------------------------------------------------------- ! ! This routine computes the Hubbard contribution to the force. It gives ! in output the product (dE_{hub}/dn_{ij}^{alpha})(dn_{ij}^{alpha} ! /du(alpha,ipol)) which is the force acting on the atom at tau_{alpha} ! (in the unit cell) along the direction ipol. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE cell_base, ONLY : at, bg USE ldaU, ONLY : hubbard_lmax, hubbard_l, U_projection, & nwfcU, wfcU, is_hubbard, lda_plus_u_kind, & copy_U_wfc, offsetU USE basis, ONLY : natomwfc USE symme, ONLY : symvector USE io_files, ONLY : prefix USE wvfct, ONLY : nbnd, npwx, npw, igk USE control_flags, ONLY : gamma_only USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE scf, ONLY : v USE mp_pools, ONLY : inter_pool_comm, intra_pool_comm, me_pool, & nproc_pool USE mp, ONLY : mp_sum USE becmod, ONLY : bec_type, becp, calbec, allocate_bec_type, & deallocate_bec_type USE uspp, ONLY : nkb, vkb USE uspp_param, ONLY : nh USE wavefunctions_module, ONLY : evc USE klist, ONLY : nks, xk, ngk USE io_files, ONLY : iunigk, nwordwfc, iunwfc USE buffers, ONLY : get_buffer IMPLICIT NONE REAL (DP) :: forceh(3,nat) ! output: the Hubbard forces type (bec_type) :: proj ! proj(nwfcU,nbnd) COMPLEX (DP), ALLOCATABLE :: spsi(:,:), wfcatom(:,:) REAL (DP), ALLOCATABLE :: dns(:,:,:,:) ! dns(ldim,ldim,nspin,nat) ! the derivative of the atomic occupations INTEGER :: alpha, na, nt, is, m1, m2, ipol, ldim, ik, ijkb0 INTEGER :: nb_s, nb_e, mykey IF (U_projection .NE. "atomic") CALL errore("force_hub", & " forces for this U_projection_type not implemented",1) IF (lda_plus_u_kind == 1) CALL errore("force_hub", & " forces in full LDA+U scheme are not yet implemented",1) call start_clock('force_hub') ldim= 2 * Hubbard_lmax + 1 ALLOCATE ( dns(ldim,ldim,nspin,nat) ) ALLOCATE ( spsi(npwx,nbnd) ) ALLOCATE ( wfcatom (npwx,natomwfc) ) call allocate_bec_type ( nkb, nbnd, becp) call allocate_bec_type ( nwfcU, nbnd, proj ) ! ! poor-man parallelization over bands ! - if nproc_pool=1 : nb_s=1, nb_e=nbnd, mykey=0 ! - if nproc_pool<=nbnd:each processor calculates band nb_s to nb_e; mykey=0 ! - if nproc_pool>nbnd :each processor takes care of band na_s=nb_e; ! mykey labels how many times each band appears (mykey=0 first time etc.) ! CALL block_distribute( nbnd, me_pool, nproc_pool, nb_s, nb_e, mykey ) ! forceh(:,:) = 0.d0 ! ! we start a loop on k points ! IF (nks > 1) REWIND (iunigk) DO ik = 1, nks ! IF (lsda) current_spin = isk(ik) npw = ngk (ik) IF (nks > 1) THEN READ (iunigk) igk CALL get_buffer (evc, nwordwfc, iunwfc, ik) END IF CALL init_us_2 (npw,igk,xk(1,ik),vkb) CALL calbec( npw, vkb, evc, becp ) CALL s_psi (npwx, npw, nbnd, evc, spsi ) ! re-calculate atomic wfc - wfcatom is used here as work space CALL atomic_wfc (ik, wfcatom) call copy_U_wfc (wfcatom) ! wfcU contains Hubbard-U atomic wavefunctions ! proj= - no need to read S*wfcU from buffer CALL calbec( npw, wfcU, spsi, proj ) ! now we need the first derivative of proj with respect to tau(alpha,ipol) DO alpha = 1,nat ! forces are calculated for atom alpha ... ! ! FIXME: ijkb0 (position of beta functions for atom alpha) ! should be calculated and stored once for all in the main code ! ijkb0 = 0 DO nt=1,ntyp DO na=1,nat IF ( ityp(na) .EQ. nt ) THEN IF ( na == alpha ) GO TO 10 ijkb0 = ijkb0 + nh(nt) END IF END DO END DO 10 IF ( ijkb0 < 0 .OR. ijkb0 > nkb ) & CALL errore('force_hub', 'internal error', 1 ) ! DO ipol = 1,3 ! forces are calculated for coordinate ipol ... ! IF ( gamma_only ) THEN CALL dndtau_gamma ( ldim, proj%r, spsi, alpha, ijkb0, ipol, ik, & nb_s, nb_e, mykey, dns ) ELSE CALL dndtau_k ( ldim, proj%k, spsi, alpha, ijkb0, ipol, ik, & nb_s, nb_e, mykey, dns ) ENDIF !!omp parallel do default(shared) private(na,nt,m1,m2,is) DO na = 1,nat ! the Hubbard atom nt = ityp(na) IF ( is_hubbard(nt) ) THEN DO is = 1,nspin DO m2 = 1,ldim DO m1 = 1,ldim forceh(ipol,alpha) = forceh(ipol,alpha) - & v%ns(m2,m1,is,na) * dns(m1,m2,is,na) END DO END DO END DO END IF END DO !!omp end parallel do END DO END DO END DO ! CALL mp_sum( forceh, inter_pool_comm ) ! call deallocate_bec_type (becp) call deallocate_bec_type (proj) DEALLOCATE( wfcatom ) DEALLOCATE( spsi ) DEALLOCATE( dns ) IF (nspin == 1) forceh(:,:) = 2.d0 * forceh(:,:) ! ! ...symmetrize... ! CALL symvector ( nat, forceh ) #ifdef __DEBUG write(66,'("Hubbard contribution Begin")') write(66,'(3f12.6)') forceh(:,:) write(66,'("Hubbard contribution End")') #endif ! call stop_clock('force_hub') ! RETURN END SUBROUTINE force_hub ! !----------------------------------------------------------------------- SUBROUTINE dndtau_k & (ldim, proj, spsi, alpha, jkb0, ipol, ik, nb_s, nb_e, mykey, dns) !----------------------------------------------------------------------- ! ! This routine computes the derivative of the ns with respect to the ionic ! displacement u(alpha,ipol) used to obtain the Hubbard contribution to the ! atomic forces. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE lsda_mod, ONLY : nspin, current_spin USE ldaU, ONLY : is_hubbard, Hubbard_l, nwfcU, offsetU USE wvfct, ONLY : nbnd, npwx, npw, wg USE mp_pools, ONLY : intra_pool_comm, me_pool, nproc_pool USE mp, ONLY : mp_sum IMPLICIT NONE INTEGER, INTENT(IN) :: alpha, jkb0, ipol, ik, ldim INTEGER, INTENT(IN) :: nb_s, nb_e, mykey COMPLEX (DP), INTENT(IN) :: proj(nwfcU,nbnd), spsi(npwx,nbnd) REAL (DP), INTENT (OUT) :: dns(ldim,ldim,nspin,nat) ! INTEGER :: ibnd, is, na, nt, m1, m2 COMPLEX (DP), ALLOCATABLE :: dproj(:,:) ! ! CALL start_clock('dndtau') ! ALLOCATE ( dproj(nwfcU,nb_s:nb_e) ) CALL dprojdtau_k ( spsi, alpha, jkb0, ipol, nb_s, nb_e, mykey, dproj ) ! ! compute the derivative of occupation numbers (the quantities dn(m1,m2)) ! of the atomic orbitals. They are real quantities as well as n(m1,m2) ! dns(:,:,:,:) = 0.d0 ! band parallelization. If each band appears more than once ! compute its contribution only once (i.e. when mykey=0) IF ( mykey /= 0 ) GO TO 10 !!omp parallel do default(shared) private(na,nt,m1,m2,ibnd) DO na = 1, nat nt = ityp(na) IF ( is_hubbard(nt) ) THEN DO m1 = 1, 2*Hubbard_l(nt)+1 DO m2 = m1, 2*Hubbard_l(nt)+1 DO ibnd = nb_s, nb_e dns(m1,m2,current_spin,na) = dns(m1,m2,current_spin,na) + & wg(ibnd,ik) * & DBLE( proj(offsetU(na)+m1,ibnd) * & CONJG(dproj(offsetU(na)+m2,ibnd)) + & dproj(offsetU(na)+m1,ibnd) * & CONJG( proj(offsetU(na)+m2,ibnd)) ) END DO END DO END DO END IF END DO !!omp end parallel do 10 DEALLOCATE ( dproj ) ! CALL mp_sum(dns, intra_pool_comm) ! ! In nspin.eq.1 k-point weight wg is normalized to 2 el/band ! in the whole BZ but we are interested in dns of one spin component ! IF (nspin == 1) dns = 0.5d0 * dns ! ! impose hermiticity of dn_{m1,m2} ! !!omp parallel do default(shared) private(na,is,m1,m2) DO na = 1,nat DO is = 1,nspin DO m1 = 1,ldim DO m2 = m1+1,ldim dns(m2,m1,is,na) = dns(m1,m2,is,na) END DO END DO END DO END DO !!omp end parallel do CALL stop_clock('dndtau') RETURN END SUBROUTINE dndtau_k ! !----------------------------------------------------------------------- SUBROUTINE dndtau_gamma & (ldim, rproj, spsi, alpha, jkb0, ipol, ik, nb_s, nb_e, mykey, dns) !----------------------------------------------------------------------- ! ! This routine computes the derivative of the ns with respect to the ionic ! displacement u(alpha,ipol) used to obtain the Hubbard contribution to the ! atomic forces. ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE lsda_mod, ONLY : nspin, current_spin USE ldaU, ONLY : is_hubbard, Hubbard_l, nwfcU, offsetU USE wvfct, ONLY : nbnd, npwx, npw, wg USE mp_pools, ONLY : intra_pool_comm, me_pool, nproc_pool USE mp, ONLY : mp_sum IMPLICIT NONE INTEGER, INTENT(IN) :: alpha, jkb0, ipol, ik, ldim COMPLEX (DP), INTENT(IN) :: spsi(npwx,nbnd) REAL(DP), INTENT (IN) :: rproj(nwfcU,nbnd) REAL (DP), INTENT (OUT) :: dns(ldim,ldim,nspin,nat) INTEGER, INTENT(IN) :: nb_s, nb_e, mykey ! INTEGER :: ibnd, is, na, nt, m1, m2 REAL (DP), ALLOCATABLE :: dproj(:,:) ! ! CALL start_clock('dndtau') ! ALLOCATE ( dproj(nwfcU,nb_s:nb_e) ) CALL dprojdtau_gamma ( spsi, alpha, jkb0, ipol, nb_s, nb_e, mykey, dproj ) ! ! compute the derivative of occupation numbers (the quantities dn(m1,m2)) ! of the atomic orbitals. They are real quantities as well as n(m1,m2) ! dns(:,:,:,:) = 0.d0 ! band parallelization. If each band appears more than once ! compute its contribution only once (i.e. when mykey=0) IF ( mykey /= 0 ) GO TO 10 !!omp parallel do default(shared) private(na,nt,m1,m2,is) DO na = 1, nat nt = ityp(na) IF ( is_hubbard(nt) ) THEN DO m1 = 1, 2*Hubbard_l(nt)+1 DO m2 = m1, 2*Hubbard_l(nt)+1 DO ibnd = nb_s, nb_e dns(m1,m2,current_spin,na) = dns(m1,m2,current_spin,na) + & wg(ibnd,ik) * ( & rproj(offsetU(na)+m1,ibnd) * & dproj(offsetU(na)+m2,ibnd) + & dproj(offsetU(na)+m1,ibnd) * & rproj(offsetU(na)+m2,ibnd) ) END DO END DO END DO END IF END DO !!omp end parallel do 10 DEALLOCATE ( dproj ) ! CALL mp_sum(dns, intra_pool_comm) ! ! In nspin.eq.1 k-point weight wg is normalized to 2 el/band ! in the whole BZ but we are interested in dns of one spin component ! IF (nspin == 1) dns = 0.5d0 * dns ! ! impose hermiticity of dn_{m1,m2} ! !!omp parallel do default(shared) private(na,is,m1,m2) DO na = 1,nat DO is = 1,nspin DO m1 = 1,ldim DO m2 = m1+1,ldim dns(m2,m1,is,na) = dns(m1,m2,is,na) END DO END DO END DO END DO !!omp end parallel do CALL stop_clock('dndtau') RETURN END SUBROUTINE dndtau_gamma ! !----------------------------------------------------------------------- SUBROUTINE dprojdtau_k (spsi, alpha, ijkb0, ipol, nb_s, nb_e, mykey, dproj) !----------------------------------------------------------------------- ! ! This routine computes the first derivative of the projection ! <\fi^{at}_{I,m1}|S|\psi_{k,v,s}> with respect to the atomic displacement ! u(alpha,ipol) (we remember that ns_{I,s,m1,m2} = \sum_{k,v} ! f_{kv} <\fi^{at}_{I,m1}|S|\psi_{k,v,s}><\psi_{k,v,s}|S|\fi^{at}_{I,m2}>) ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE cell_base, ONLY : tpiba USE gvect, ONLY : g USE klist, ONLY : nks, xk USE ldaU, ONLY : is_hubbard, Hubbard_l, nwfcU, wfcU, offsetU USE wvfct, ONLY : nbnd, npwx, npw, igk, wg USE uspp, ONLY : nkb, vkb, qq USE uspp_param, ONLY : nh USE wavefunctions_module, ONLY : evc USE becmod, ONLY : bec_type, becp, calbec USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE INTEGER, INTENT (IN) :: alpha, &! the displaced atom ipol, &! the component of displacement ijkb0 ! position of beta functions for atom alpha INTEGER, INTENT (IN) :: nb_s, nb_e, mykey ! band parallelization COMPLEX (DP), INTENT (IN) :: spsi(npwx,nbnd) ! S|evc> COMPLEX (DP), INTENT (OUT) :: dproj(nwfcU,nb_s:nb_e) ! derivative of projection ! INTEGER :: nt, ig, na_, m1, ibnd, iwf, nt_, ih, jh, ldim REAL (DP) :: gvec COMPLEX (DP), ALLOCATABLE :: dproj0(:,:), dwfc(:,:), dbeta(:,:), & betapsi(:,:), dbetapsi(:,:), & wfatbeta(:,:), wfatdbeta(:,:) ! dwfc(npwx,ldim), ! the derivative of the atomic d wfc ! dbeta(npwx,nhm), ! the derivative of the beta function ! betapsi(nhm,nbnd), ! ! dbetapsi(nhm,nbnd), ! ! wfatbeta(nwfcU,nhm), ! ! wfatdbeta(nwfcU,nhm) ! call start_clock('dprojdtau') nt = ityp(alpha) ldim = 2 * Hubbard_l(nt) + 1 dproj(:,:) = (0.d0, 0.d0) ! ! First the derivatives of the atomic wfc and the beta are computed ! Note: parallelization here is over plane waves, not over bands! ! IF ( is_hubbard(nt) ) THEN ALLOCATE ( dproj0(ldim,nbnd) ) ALLOCATE ( dwfc(npwx,ldim) ) !!omp parallel do default(shared) private(ig,gvec,m1) DO ig = 1,npw gvec = g(ipol,igk(ig)) * tpiba ! in the expression of dwfc we don't need (k+G) but just G; k always ! multiplies the underived quantity and gives an opposite contribution ! in c.c. term because the sign of the imaginary unit. DO m1 = 1, ldim dwfc(ig,m1) = (0.d0,-1.d0) * gvec * wfcU(ig,offsetU(alpha)+m1) END DO END DO !!omp end parallel do CALL ZGEMM('C','N',ldim, nbnd, npw, (1.d0,0.d0), & dwfc, npwx, spsi, npwx, (0.d0,0.d0), & dproj0, ldim) DEALLOCATE ( dwfc ) CALL mp_sum( dproj0, intra_bgrp_comm ) ! copy to dproj results for the bands treated by this processor dproj( offsetU(alpha)+1:offsetU(alpha)+ldim, :) = dproj0(:, nb_s:nb_e) DEALLOCATE ( dproj0 ) ! END IF ! ALLOCATE (dbetapsi(nh(nt),nbnd) ) ALLOCATE (wfatdbeta(nwfcU,nh(nt)) ) ALLOCATE ( wfatbeta(nwfcU,nh(nt)) ) ALLOCATE ( dbeta(npwx,nh(nt)) ) !!omp parallel do default(shared) private(ig,ih) DO ih=1,nh(nt) DO ig = 1, npw dbeta(ig,ih) = vkb(ig,ijkb0+ih) END DO END DO !!omp end parallel do CALL calbec ( npw, wfcU, dbeta, wfatbeta ) !!omp parallel do default(shared) private(ig,ih) DO ih=1,nh(nt) DO ig = 1, npw gvec = g(ipol,igk(ig)) * tpiba dbeta(ig,ih) = (0.d0,-1.d0) * dbeta(ig,ih) * gvec END DO END DO !!omp end parallel do CALL calbec ( npw, dbeta, evc, dbetapsi ) CALL calbec ( npw, wfcU, dbeta, wfatdbeta ) DEALLOCATE ( dbeta ) ! calculate \sum_j qq(i,j)*dbetapsi(j) ! betapsi is used here as work space ALLOCATE ( betapsi(nh(nt), nbnd) ) betapsi(:,:) = (0.0_dp, 0.0_dp) ! here starts band parallelization !!omp parallel do default(shared) private(ih,ibnd,jh) DO ih=1,nh(nt) DO ibnd=nb_s, nb_e DO jh=1,nh(nt) betapsi(ih,ibnd) = betapsi(ih,ibnd) + & qq(ih,jh,nt) * dbetapsi(jh,ibnd) END DO END DO END DO !!omp end parallel do dbetapsi(:,:) = betapsi(:,:) ! calculate \sum_j qq(i,j)*betapsi(j) betapsi(:,:) = (0.0_dp, 0.0_dp) !!omp parallel do default(shared) private(ih,ibnd,jh) DO ih=1,nh(nt) DO ibnd=nb_s, nb_e DO jh=1,nh(nt) betapsi(ih,ibnd) = betapsi(ih,ibnd) + & qq(ih,jh,nt) * becp%k(ijkb0+jh,ibnd) END DO END DO END DO !!omp end parallel do ! ! dproj(iwf,ibnd) = \sum_ih wfatdbeta(iwf,ih)*betapsi(ih,ibnd) + ! wfatbeta(iwf,ih)*dbetapsi(ih,ibnd) ! IF ( mykey == 0 ) THEN CALL ZGEMM('N','N',nwfcU, nb_e-nb_s+1, nh(nt), 1.0_dp, & wfatdbeta, nwfcU, betapsi(1,nb_s), nh(nt), 1.0_dp,& dproj(1,nb_s), nwfcU) CALL ZGEMM('N','N',nwfcU,nb_e-nb_s+1, nh(nt), 1.0_dp, & wfatbeta, nwfcU, dbetapsi(1,nb_s), nh(nt), 1.0_dp,& dproj(1,nb_s), nwfcU) END IF ! end band parallelization - only dproj(1,nb_s:nb_e) are calculated DEALLOCATE ( betapsi ) DEALLOCATE ( wfatbeta ) DEALLOCATE (wfatdbeta ) DEALLOCATE (dbetapsi ) ! call stop_clock('dprojdtau') RETURN END SUBROUTINE dprojdtau_k ! !----------------------------------------------------------------------- SUBROUTINE dprojdtau_gamma (spsi, alpha, ijkb0, ipol, nb_s, nb_e, mykey, dproj) !----------------------------------------------------------------------- ! ! This routine computes the first derivative of the projection ! <\fi^{at}_{I,m1}|S|\psi_{k,v,s}> with respect to the atomic displacement ! u(alpha,ipol) (we remember that ns_{I,s,m1,m2} = \sum_{k,v} ! f_{kv} <\fi^{at}_{I,m1}|S|\psi_{k,v,s}><\psi_{k,v,s}|S|\fi^{at}_{I,m2}>) ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE cell_base, ONLY : tpiba USE gvect, ONLY : g USE klist, ONLY : nks, xk USE ldaU, ONLY : is_hubbard, Hubbard_l, nwfcU, wfcU, offsetU USE wvfct, ONLY : nbnd, npwx, npw, igk, wg USE uspp, ONLY : nkb, vkb, qq USE uspp_param, ONLY : nh USE wavefunctions_module, ONLY : evc USE becmod, ONLY : bec_type, becp, calbec USE mp_bands, ONLY : intra_bgrp_comm USE mp_pools, ONLY : intra_pool_comm, me_pool, nproc_pool USE mp, ONLY : mp_sum IMPLICIT NONE INTEGER, INTENT (IN) :: alpha, &! the displaced atom ipol, &! the component of displacement ijkb0 ! position of beta functions for atom alpha INTEGER, INTENT (IN) :: nb_s, nb_e, mykey ! band parallelization COMPLEX (DP), INTENT (IN) :: spsi(npwx,nbnd) ! S|evc> REAL (DP), INTENT (OUT) :: dproj(nwfcU,nb_s:nb_e) ! derivative of projection ! INTEGER :: nt, ig, na_, m1, ibnd, iwf, nt_, ih, jh, ldim REAL (DP) :: gvec COMPLEX (DP), ALLOCATABLE :: dwfc(:,:), dbeta(:,:) REAL (DP), ALLOCATABLE :: dproj0(:,:), betapsi(:,:), dbetapsi(:,:), & wfatbeta(:,:), wfatdbeta(:,:), bproj(:,:) ! dwfc(npwx,ldim), ! the derivative of the atomic d wfc ! dbeta(npwx,nhm), ! the derivative of the beta function ! betapsi(nhm,nbnd), ! ! dbetapsi(nhm,nbnd), ! ! wfatbeta(nwfcU,nhm), ! ! wfatdbeta(nwfcU,nhm) ! call start_clock('dprojdtau') nt = ityp(alpha) ldim = 2 * Hubbard_l(nt) + 1 ! ! At first the derivatives of the atomic wfc and the beta are computed ! Note: parallelization here is over plane waves, not over bands! ! dproj(:,:) = 0.0_dp IF (is_hubbard(nt) ) THEN ALLOCATE ( dproj0(ldim,nbnd) ) ALLOCATE ( dwfc(npwx,ldim) ) !!omp parallel do default(shared) private(ig,m1,gvec) DO ig = 1,npw gvec = g(ipol,igk(ig)) * tpiba ! in the expression of dwfc we don't need (k+G) but just G; k always ! multiplies the underived quantity and gives an opposite contribution ! in c.c. term because the sign of the imaginary unit. DO m1 = 1, ldim dwfc(ig,m1) = (0.d0,-1.d0) * gvec * wfcU(ig,offsetU(alpha)+m1) END DO END DO !!omp end parallel do ! there is no G=0 term CALL DGEMM('T','N',ldim, nbnd, 2*npw, 2.0_dp, & dwfc, 2*npwx, spsi, 2*npwx, 0.0_dp,& dproj0, ldim) DEALLOCATE ( dwfc ) CALL mp_sum( dproj0, intra_bgrp_comm ) ! copy to dproj results for the bands treated by this processor dproj( offsetU(alpha)+1:offsetU(alpha)+ldim, :) = dproj0(:, nb_s:nb_e) DEALLOCATE ( dproj0 ) ! END IF ! ALLOCATE (dbetapsi(nh(nt),nbnd) ) ALLOCATE (wfatdbeta(nwfcU,nh(nt)) ) ALLOCATE ( wfatbeta(nwfcU,nh(nt)) ) ALLOCATE ( dbeta(npwx,nh(nt)) ) !!omp parallel do default(shared) private(ih,ig) DO ih=1,nh(nt) DO ig = 1, npw dbeta(ig,ih) = vkb(ig,ijkb0+ih) END DO END DO !!omp end parallel do CALL calbec ( npw, wfcU, dbeta, wfatbeta ) !!omp parallel do default(shared) private(ih,ig,gvec) DO ih=1,nh(nt) DO ig = 1, npw gvec = g(ipol,igk(ig)) * tpiba dbeta(ig,ih) = (0.d0,-1.d0) * dbeta(ig,ih) * gvec END DO END DO !!omp end parallel do CALL calbec ( npw, dbeta, evc, dbetapsi ) CALL calbec ( npw, wfcU, dbeta, wfatdbeta ) DEALLOCATE ( dbeta ) ! ! calculate \sum_j qq(i,j)*dbetapsi(j) ! betapsi is used here as work space ALLOCATE ( betapsi(nh(nt), nbnd) ) betapsi(:,:) = (0.0_dp, 0.0_dp) ! here starts band parallelization !!omp parallel do default(shared) private(ih,ibnd,jh) DO ih=1,nh(nt) DO ibnd=nb_s,nb_e DO jh=1,nh(nt) betapsi(ih,ibnd) = betapsi(ih,ibnd) + & qq(ih,jh,nt) * dbetapsi(jh,ibnd) END DO END DO END DO !!omp end parallel do dbetapsi(:,:) = betapsi(:,:) ! calculate \sum_j qq(i,j)*betapsi(j) betapsi(:,:) = (0.0_dp, 0.0_dp) !!omp parallel do default(shared) private(ih,ibnd,jh) DO ih=1,nh(nt) DO ibnd=nb_s,nb_e DO jh=1,nh(nt) betapsi(ih,ibnd) = betapsi(ih,ibnd) + & qq(ih,jh,nt) * becp%r(ijkb0+jh,ibnd) END DO END DO END DO !!omp end parallel do ! ! dproj(iwf,ibnd) = \sum_ih wfatdbeta(iwf,ih)*betapsi(ih,ibnd) + ! wfatbeta(iwf,ih)*dbetapsi(ih,ibnd) ! IF ( mykey == 0 ) THEN CALL DGEMM('N','N',nwfcU, nb_e-nb_s+1, nh(nt), 1.0_dp, & wfatdbeta, nwfcU, betapsi(1,nb_s), nh(nt), 1.0_dp,& dproj(1,nb_s), nwfcU) CALL DGEMM('N','N',nwfcU, nb_e-nb_s+1, nh(nt), 1.0_dp, & wfatbeta, nwfcU, dbetapsi(1,nb_s), nh(nt), 1.0_dp,& dproj(1,nb_s), nwfcU) END IF ! end band parallelization - only dproj(1,nb_s:nb_e) are calculated DEALLOCATE ( betapsi ) DEALLOCATE ( wfatbeta ) DEALLOCATE (wfatdbeta ) DEALLOCATE (dbetapsi ) ! call stop_clock('dprojdtau') RETURN END SUBROUTINE dprojdtau_gamma espresso-5.1/PW/src/plugin_summary.f900000644000175000017500000000117512341373025016016 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine plugin_summary() ! ! This routine is used for printing ! plugins summary ! DO NOT REMOVE THE TAGS ! ***ADDSON_NAME KIND_OF_PATCH*** ! USE plugin_flags ! ! ***Environ MODULES BEGIN*** ! ***Environ MODULES END*** ! implicit none ! ! ***Environ VARIABLES BEGIN*** ! ***Environ VARIABLES END*** ! ! ***Environ CALLS BEGIN*** ! ***Environ CALLS END*** ! end subroutine plugin_summary espresso-5.1/PW/src/report_mag.f900000644000175000017500000000655412341373025015110 0ustar mbamba! ! Copyright (C) 2005 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- subroutine report_mag !---------------------------------------------------------------------------- ! This subroutine prints out information about the local magnetization ! and/or charge, integrated around the atomic positions at points which ! are calculated in make_pointlists ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, tau, ityp USE io_global, ONLY : stdout use constants, ONLY : pi USE scf, ONLY : rho USE noncollin_module, ONLY : noncolin, mcons, i_cons USE lsda_mod, ONLY : nspin implicit none real(DP) :: theta,phi,norm,norm1 integer :: ipol,iat real (DP) :: r1_loc(nat), m1_loc(nspin-1,nat) ! ! get_local integrates on the previously determined points ! call get_locals(r1_loc,m1_loc,rho%of_r) if (nspin == 2) then write(stdout,*) write(stdout,'(5X,''Magnetic moment per site:'')') endif do iat = 1,nat if (noncolin) then ! ! norm is the length of the magnetic moment vector ! norm= dsqrt(m1_loc(1,iat)**2+m1_loc(2,iat)**2+m1_loc(3,iat)**2) ! ! norm1 is the length of the projection of the mm vector into ! the xy plane ! norm1 = dsqrt(m1_loc(1,iat)**2+m1_loc(2,iat)**2) ! calculate the polar angles of the magnetic moment if(norm.gt.1.d-10) then theta = acos(m1_loc(3,iat)/norm) if (norm1.gt.1.d-10) then phi = acos(m1_loc(1,iat)/norm1) if (m1_loc(2,iat).lt.0.d0) phi = - phi else phi = 2.d0*pi endif else theta = 2.d0*pi phi = 2.d0*pi endif ! go to degrees theta = theta*180.d0/pi phi = phi*180.d0/pi end if if (noncolin) then WRITE( stdout,1010) WRITE( stdout,1011) iat,(tau(ipol,iat),ipol=1,3) WRITE( stdout,1014) r1_loc (iat) WRITE( stdout,1012) (m1_loc(ipol,iat),ipol=1,3) WRITE( stdout,1018) (m1_loc(ipol,iat)/r1_loc(iat),ipol=1,3) WRITE( stdout,1013) norm,theta,phi if (i_cons.eq.1) then WRITE( stdout,1015) (mcons(ipol,ityp(iat)),ipol=1,3) else if (i_cons.eq.2) then WRITE( stdout,1017) 180.d0 * acos(mcons(3,ityp(iat)))/pi endif WRITE( stdout,1010) else WRITE(stdout,1020) iat, r1_loc(iat), m1_loc(1,iat), mcons(1,ityp(iat)) endif enddo 1010 format (/,1x,78('=')) 1011 format (5x,'atom number ',i4,' relative position : ',3f9.4) 1012 format (5x,'magnetization : ',3f12.6) 1013 format (5x,'polar coord.: r, theta, phi [deg] : ',3f12.6) 1014 format (5x,'charge : ',f12.6) 1018 format (5x,'magnetization/charge:',3f12.6) 1015 format (5x,'constrained moment : ',3f12.6) 1017 format (5x,'constrained theta [deg] : ',f12.6) 1020 format (5x,'atom: ',i4,4X,'charge: ',F9.4,4X,'magn: ',F9.4,4X,'constr: ',f9.4) end subroutine report_mag espresso-5.1/PW/src/h_epsi_her_apply.f900000644000175000017500000002265412341373025016262 0ustar mbamba! ! Copyright (C) 2005 Paolo Umari ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine h_epsi_her_apply(lda, n,nbande, psi, hpsi, pdir, e_field) !----------------------------------------------------------------------- ! ! this subroutine applies w_k+w_k* on psi, ! (as in Souza et al. PRB B 69, 085106 (2004)) ! the output is put into hpsi ! ! evcel must contain the wavefunctions from previous iteration ! spin polarized systems supported only with fixed occupations USE noncollin_module, ONLY : noncolin, npol USE kinds, ONLY : DP USE spin_orb, ONLY: lspinorb USE us USE wvfct, ONLY : igk, npwx, npw, nbnd, ik => current_k USE ldaU, ONLY : lda_plus_u USE lsda_mod, ONLY : current_spin, nspin USE scf, ONLY : vrs USE gvect USE uspp USE uspp_param, ONLY: nh, nhm, nbetam USE bp USE klist USE cell_base, ONLY: at, alat, tpiba, omega, tpiba2 USE ions_base, ONLY: ityp, tau, nat,ntyp => nsp USE constants, ONLY : e2, pi, tpi, fpi USE fixed_occ USE io_global, ONLY : stdout USE becmod, ONLY : calbec,bec_type,allocate_bec_type,deallocate_bec_type USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! implicit none INTEGER, INTENT(in) :: pdir!direction on which the polarization is calculated REAL(DP) :: e_field!electric field along pdir ! INTEGER :: lda !leading dimension INTEGER :: n! total number of wavefunctions INTEGER :: nbande!number of wavefunctions to be calculated COMPLEX(DP) :: psi (lda*npol, nbande ), hpsi (lda*npol,nbande) COMPLEX(DP), EXTERNAL :: zdotc COMPLEX(DP), ALLOCATABLE :: evct(:,:)!temporary array COMPLEX(DP) :: ps(nkb,nbnd*npol) TYPE(bec_type) :: becp0 INTEGER :: nkbtona(nkb) INTEGER :: nkbtonh(nkb) COMPLEX(DP) :: sca, sca1, pref INTEGER nb,mb, jkb, nhjkb, na, np, nhjkbm,jkb1,i,j,iv INTEGER :: jkb_bp,nt,ig, ijkb0,ibnd,jh,ih,ikb REAL(dp) :: eps COMPLEX(kind=DP), ALLOCATABLE :: sca_mat(:,:),sca_mat1(:,:) COMPLEX(kind=DP) :: pref0(4) ! --- Define a small number --- eps=0.000001d0 if(ABS(e_field) call start_clock('h_eps_van2') ps (:,:) = (0.d0, 0.d0) ijkb0 = 0 do nt = 1, ntyp do na = 1, nat if (ityp (na) == nt) then do ibnd = 1, nbnd do jh = 1, nh (nt) jkb = ijkb0 + jh do ih = 1, nh (nt) ikb = ijkb0 + ih if(lspinorb) then ps (ikb, (ibnd-1)*npol+1) = ps (ikb, (ibnd-1)*npol+1) + & qq_so(ih,jh,1,nt)* bec_evcel%nc(jkb,1,ibnd) ps (ikb, (ibnd-1)*npol+1) = ps (ikb, (ibnd-1)*npol+1) + & qq_so(ih,jh,2,nt)* bec_evcel%nc(jkb,2,ibnd) ps (ikb, (ibnd-1)*npol+2) = ps (ikb, (ibnd-1)*npol+2) + & qq_so(ih,jh,3,nt)* bec_evcel%nc(jkb,1,ibnd) ps (ikb, (ibnd-1)*npol+2) = ps (ikb, (ibnd-1)*npol+2) + & qq_so(ih,jh,4,nt)* bec_evcel%nc(jkb,2,ibnd) else ps (ikb, ibnd) = ps (ikb, ibnd) + & qq(ih,jh,nt)* bec_evcel%k(jkb,ibnd) endif enddo enddo enddo ijkb0 = ijkb0 + nh (nt) endif enddo enddo call stop_clock('h_eps_van2') call ZGEMM ('N', 'N', npw, nbnd*npol , nkb, (1.d0, 0.d0) , vkb, &!vkb is relative to the last ik read npwx, ps, nkb, (1.d0, 0.d0) , evct, npwx) !!! call ZGEMM('C','N',nbnd,nbande,npw,(1.d0,0.d0),evcelm(1,1,pdir),npwx*npol,psi,npwx*npol,(0.d0,0.d0),sca_mat,nbnd) if(noncolin) then call ZGEMM('C','N',nbnd,nbande,npw,(1.d0,0.d0),evcelm(npwx+1,1,pdir),npwx*npol,& &psi(npwx+1,1),npwx*npol,(1.d0,0.d0),sca_mat,nbnd) endif call mp_sum( sca_mat, intra_bgrp_comm ) call ZGEMM('C','N',nbnd,nbande,npw,(1.d0,0.d0),evcelp(1,1,pdir),npwx*npol,psi,npwx*npol,(0.d0,0.d0),sca_mat1,nbnd) if(noncolin) then call ZGEMM('C','N',nbnd,nbande,npw,(1.d0,0.d0),evcelp(npwx+1,1,pdir),npwx*npol,& &psi(npwx+1,1),npwx*npol,(1.d0,0.d0),sca_mat1,nbnd) endif call mp_sum( sca_mat1, intra_bgrp_comm ) !!!!! sca_mat(1:nbnd,1:nbande)=sca_mat(1:nbnd,1:nbande)-sca_mat1(1:nbnd,1:nbande) call ZGEMM('N','N',npw,nbande,nbnd,dconjg(fact_hepsi(ik,pdir)),evct(1,1),npwx*npol,& &sca_mat,nbnd,(1.d0,0.d0),hpsi,npwx*npol) if (noncolin) then call ZGEMM('N','N',npw,nbande,nbnd,dconjg(fact_hepsi(ik,pdir)),evct(1+npwx,1),npwx*npol,& &sca_mat,nbnd,(1.d0,0.d0),hpsi(1+npwx,1),npwx*npol) endif call stop_clock('h_eps_ap_van') END if DEALLOCATE( evct) call deallocate_bec_type(becp0) call stop_clock('h_epsi_apply') deallocate(sca_mat) deallocate(sca_mat1) ! -- !------------------------------------------------------------------------------! return END SUBROUTINE h_epsi_her_apply espresso-5.1/PW/src/run_pwscf.f900000644000175000017500000001273312341373025014753 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE run_pwscf ( exit_status ) !---------------------------------------------------------------------------- ! ! ... Run an instance of the Plane Wave Self-Consistent Field code ! ... MPI initialization and input data reading is performed in the ! ... calling code - returns in exit_status the exit code for pw.x, ! ... returned in the shell. Values are: ! ... * 0: completed successfully ! ... * 1: an error has occurred (value returned by the errore() routine) ! ... * 2-127: convergence error ! ... * 2: scf convergence error ! ... * 3: ion convergence error ! ... * 128-255: code exited due to specific trigger ! * 255: exit due to user request, or signal trapped, ! or time > max_seconds ! ... (note: in the future, check_stop_now could also return a value ! ... to specify the reason of exiting, and the value could be used ! .. to return a different value for different reasons) ! ... Will be eventually merged with NEB ! USE io_global, ONLY : stdout, ionode, ionode_id USE parameters, ONLY : ntypx, npk, lmaxx USE cell_base, ONLY : fix_volume, fix_area USE control_flags, ONLY : conv_elec, gamma_only, lscf, twfcollect USE control_flags, ONLY : conv_ions, istep, nstep, restart, lmd, lbfgs USE force_mod, ONLY : lforce, lstres, sigma, force USE check_stop, ONLY : check_stop_init, check_stop_now USE mp_images, ONLY : intra_image_comm USE qmmm, ONLY : qmmm_initialization, qmmm_shutdown, & qmmm_update_positions, qmmm_update_forces ! IMPLICIT NONE INTEGER, INTENT(OUT) :: exit_status ! ! exit_status = 0 IF ( ionode ) WRITE( unit = stdout, FMT = 9010 ) ntypx, npk, lmaxx ! IF (ionode) CALL plugin_arguments() CALL plugin_arguments_bcast( ionode_id, intra_image_comm ) ! ! ... needs to come before iosys() so some input flags can be ! overridden without needing to write PWscf specific code. ! CALL qmmm_initialization() ! ! ... convert to internal variables ! CALL iosys() ! IF ( gamma_only ) WRITE( UNIT = stdout, & & FMT = '(/,5X,"gamma-point specific algorithms are used")' ) ! ! call to void routine for user defined / plugin patches initializations ! CALL plugin_initialization() ! CALL check_stop_init() ! CALL setup () ! CALL qmmm_update_positions() ! CALL init_run() ! ! ... dry run: code will stop here if called with exit file present ! ... useful for a quick and automated way to check input data ! IF ( check_stop_now() ) THEN CALL punch( 'config' ) exit_status = 255 RETURN ENDIF ! main_loop: DO ! ! ... electronic self-consistency or band structure calculation ! IF ( .NOT. lscf) THEN CALL non_scf () ELSE CALL electrons() END IF ! ! ... code stopped by user or not converged ! IF ( check_stop_now() .OR. .NOT. conv_elec ) THEN IF ( check_stop_now() ) exit_status = 255 IF ( .NOT. conv_elec ) exit_status = 2 ! workaround for the case of a single k-point twfcollect = .FALSE. CALL punch( 'config' ) RETURN ENDIF ! ! ... ionic section starts here ! CALL start_clock( 'ions' ) conv_ions = .TRUE. ! ! ... recover from a previous run, if appropriate ! !IF ( restart .AND. lscf ) CALL restart_in_ions() ! ! ... file in CASINO format written here if required ! IF ( lmd ) CALL pw2casino() ! ! ... force calculation ! IF ( lforce ) CALL forces() ! ! ... stress calculation ! IF ( lstres ) CALL stress ( sigma ) ! ! ... send out forces to MM code in QM/MM run ! CALL qmmm_update_forces(force) ! IF ( lmd .OR. lbfgs ) THEN ! if (fix_volume) CALL impose_deviatoric_stress(sigma) ! if (fix_area) CALL impose_deviatoric_stress_2d(sigma) ! ! ... ionic step (for molecular dynamics or optimization) ! CALL move_ions() ! ! ... then we save restart information for the new configuration ! IF ( istep < nstep .AND. .NOT. conv_ions ) & CALL punch( 'config' ) ! END IF ! CALL stop_clock( 'ions' ) ! ! ... exit condition (ionic convergence) is checked here ! IF ( conv_ions ) EXIT main_loop ! ! ... receive new positions from MM code in QM/MM run ! CALL qmmm_update_positions() ! ! ... terms of the hamiltonian depending upon nuclear positions ! ... are reinitialized here ! IF ( lmd .OR. lbfgs ) CALL hinit1() ! END DO main_loop ! ! ... save final data file ! IF ( .not. lmd) CALL pw2casino() CALL punch('all') ! CALL qmmm_shutdown() ! IF ( .NOT. conv_ions ) exit_status = 3 RETURN ! 9010 FORMAT( /,5X,'Current dimensions of program PWSCF are:', & & /,5X,'Max number of different atomic species (ntypx) = ',I2,& & /,5X,'Max number of k-points (npk) = ',I6,& & /,5X,'Max angular momentum in pseudopotentials (lmaxx) = ',i2) ! END SUBROUTINE run_pwscf espresso-5.1/PW/src/force_lc.f900000644000175000017500000000615612341373025014523 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine force_lc (nat, tau, ityp, alat, omega, ngm, ngl, & igtongl, g, rho, nl, nspin, gstart, gamma_only, vloc, forcelc) !---------------------------------------------------------------------- ! USE kinds USE constants, ONLY : tpi USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE fft_base, ONLY : dfftp USE fft_interfaces, ONLY : fwfft USE esm, ONLY : esm_force_lc, do_comp_esm, esm_bc implicit none ! ! first the dummy variables ! integer, intent(in) :: nat, ngm, nspin, ngl, gstart, & igtongl (ngm), nl (ngm), ityp (nat) ! nat: number of atoms in the cell ! ngm: number of G vectors ! nspin: number of spin polarizations ! ngl: number of shells ! igtongl correspondence G <-> shell of G ! nl: correspondence fft mesh <-> G vec ! ityp: types of atoms logical, intent(in) :: gamma_only real(DP), intent(in) :: tau (3, nat), g (3, ngm), vloc (ngl, * ), & rho (dfftp%nnr, nspin), alat, omega ! tau: coordinates of the atoms ! g: coordinates of G vectors ! vloc: local potential ! rho: valence charge ! alat: lattice parameter ! omega: unit cell volume real(DP), intent(out) :: forcelc (3, nat) ! the local-potential contribution to forces on atoms integer :: ipol, ig, na ! counter on polarizations ! counter on G vectors ! counter on atoms complex(DP), allocatable :: aux (:) ! auxiliary space for FFT real(DP) :: arg, fact ! ! contribution to the force from the local part of the bare potential ! F_loc = Omega \Sum_G n*(G) d V_loc(G)/d R_i ! allocate (aux(dfftp%nnr)) if ( nspin == 2) then aux(:) = CMPLX( rho(:,1)+rho(:,2), 0.0_dp, kind=dp ) else aux(:) = CMPLX( rho(:,1), 0.0_dp, kind=dp ) end if CALL fwfft ('Dense', aux, dfftp) ! ! aux contains now n(G) ! if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if do na = 1, nat do ipol = 1, 3 forcelc (ipol, na) = 0.d0 enddo ! contribution from G=0 is zero do ig = gstart, ngm arg = (g (1, ig) * tau (1, na) + g (2, ig) * tau (2, na) + & g (3, ig) * tau (3, na) ) * tpi do ipol = 1, 3 forcelc (ipol, na) = forcelc (ipol, na) + & g (ipol, ig) * vloc (igtongl (ig), ityp (na) ) * & (sin(arg)*DBLE(aux(nl(ig))) + cos(arg)*AIMAG(aux(nl(ig))) ) enddo enddo do ipol = 1, 3 forcelc (ipol, na) = fact * forcelc (ipol, na) * omega * tpi / alat enddo enddo IF ( do_comp_esm .and. ( esm_bc .ne. 'pbc' ) ) THEN ! ! ... Perform corrections for ESM method (add long-range part) ! CALL esm_force_lc ( aux, forcelc ) ENDIF ! call mp_sum( forcelc, intra_bgrp_comm ) ! deallocate (aux) return end subroutine force_lc espresso-5.1/PW/src/lchk_tauxk.f900000644000175000017500000000407112341373025015076 0ustar mbamba! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine check_atoms (nvec, vec, trmat) !----------------------------------------------------------------------- ! ! This routine tests that the atomic coordinates (or k-points) ! are different and not related by a lattice translation ! ! USE kinds implicit none ! real(DP), parameter :: accep=1.d-5 ! integer, intent(in) :: nvec ! nvec : number of atomic positions (or k-points) real(DP), intent(in) :: vec (3, nvec), trmat (3, 3) ! vec : cartesian coordinates of atomic positions (or k-points) ! trmat: transformation matrix to crystal axis ! ( = bg , basis of the real-space lattice, for atoms ! = at , basis of the rec.-space lattice, for k-points ) ! integer :: nv1, nv2 real(DP), allocatable :: vaux(:,:) real(DP) :: zero (3) = 0.0_dp character(len=80) :: message logical, external :: eqvect ! ! Copy input positions and transform them to crystal units ! allocate ( vaux(3,nvec) ) vaux = vec call cryst_to_cart ( nvec, vaux, trmat, -1) ! ! Test that all the atomic positions (or k-points) are different ! do nv1 = 1, nvec-1 do nv2 = nv1+1, nvec if ( eqvect ( vaux (1,nv1), vaux (1,nv2), zero, accep ) ) then zero(:) = vaux (:,nv1)-vaux(:,nv2) IF ( ALL ( abs(zero) < accep ) ) THEN WRITE (message,'("atoms #",i4," and #",i4," overlap!")') nv1, nv2 ELSE WRITE (message,'("atoms #",i4," and #",i4," differ by lattice & &vector (",i2,",",i2,",",i2,") in crystal axis")') & nv1, nv2, NINT(zero) ENDIF CALL errore ( 'check_atoms', TRIM(message), 1) end if enddo enddo ! deallocate(vaux) return end subroutine check_atoms espresso-5.1/PW/src/iweights.f900000644000175000017500000000464412341373025014572 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- subroutine iweights (nks, wk, nbnd, nelec, et, Ef, wg, is, isk) !-------------------------------------------------------------------- ! calculates weights for semiconductors and insulators ! (bands are either empty or filled) ! On output, Ef is the highest occupied Kohn-Sham level USE kinds USE noncollin_module, ONLY: noncolin USE mp, ONLY : mp_max USE mp_pools, ONLY : inter_pool_comm implicit none ! integer, intent(in) :: nks, nbnd, is, isk(nks) real(DP), intent(in) :: wk (nks), et(nbnd, nks), nelec ! wg must be (inout) and not (out) because if is/=0 only terms for ! spin=is are initialized; the remaining terms should be kept, not lost real(DP), intent(inout) :: wg (nbnd, nks) real(DP), intent(out) :: Ef integer :: kpoint, ibnd CALL iweights_only (nks, wk, is, isk, nbnd, nelec, wg ) ! Ef = - 1.0d+20 do kpoint = 1, nks if (is /= 0) then if (isk(kpoint) .ne. is ) cycle end if do ibnd = 1, nbnd if (wg (ibnd, kpoint) > 0.d0 ) Ef = MAX (Ef, et (ibnd, kpoint) ) enddo enddo ! ! find max across pools ! CALL mp_max( ef, inter_pool_comm ) return end subroutine iweights ! !-------------------------------------------------------------------- subroutine iweights_only (nks, wk, is, isk, nbnd, nelec, wg ) !-------------------------------------------------------------------- ! calculates weights for semiconductors and insulators ! (bands are either empty or filled) USE kinds USE noncollin_module, ONLY: noncolin implicit none ! integer, intent(in) :: nks, nbnd, is, isk(nks) real(DP), intent(in) :: wk (nks), nelec real(DP), intent(out) :: wg (nbnd, nks) real(DP) :: degspin integer :: kpoint, ibnd degspin=2.d0 if (noncolin) degspin=1.d0 if (is /= 0) degspin=1.d0 do kpoint = 1, nks if (is /= 0) then if (isk(kpoint) .ne. is ) cycle end if do ibnd = 1, nbnd if (ibnd <= nint (nelec) / degspin) then wg (ibnd, kpoint) = wk (kpoint) else wg (ibnd, kpoint) = 0.d0 endif enddo enddo return end subroutine iweights_only espresso-5.1/PW/src/dvloc_of_g.f900000644000175000017500000000742012341373025015043 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine dvloc_of_g (mesh, msh, rab, r, vloc_at, zp, tpiba2, ngl, gl, & omega, dvloc) !---------------------------------------------------------------------- ! ! dvloc = D Vloc (g^2) / D g^2 = (1/2g) * D Vloc(g) / D g ! USE kinds USE constants , ONLY : pi, fpi, e2, eps8 implicit none ! ! first the dummy variables ! integer, intent(in) :: ngl, mesh, msh ! the number of shell of G vectors ! max number of mesh points ! number of mesh points for radial integration real(DP), intent(in) :: zp, rab (mesh), r (mesh), vloc_at (mesh), & tpiba2, omega, gl (ngl) ! valence pseudocharge ! the derivative of the radial grid ! the radial grid ! the pseudo on the radial grid ! 2 pi / alat ! the volume of the unit cell ! the moduli of g vectors for each s ! real(DP), intent(out) :: dvloc (ngl) ! the fourier transform dVloc/dG ! real(DP) :: vlcp, g2a, gx real(DP), allocatable :: aux (:), aux1 (:) real(DP), external :: qe_erf integer :: i, igl, igl0 ! counter on erf functions or gaussians ! counter on g shells vectors ! first shell with g != 0 ! the G=0 component is not computed if (gl (1) < eps8) then dvloc (1) = 0.0d0 igl0 = 2 else igl0 = 1 endif ! Pseudopotentials in numerical form (Vloc contains the local part) ! In order to perform the Fourier transform, a term erf(r)/r is ! subtracted in real space and added again in G space allocate (aux( mesh)) allocate (aux1( mesh)) ! ! This is the part of the integrand function ! indipendent of |G| in real space ! do i = 1, msh aux1 (i) = r (i) * vloc_at (i) + zp * e2 * qe_erf (r (i) ) enddo do igl = igl0, ngl gx = sqrt (gl (igl) * tpiba2) ! ! and here we perform the integral, after multiplying for the |G| ! dependent part ! ! DV(g)/Dg = Integral of r (Dj_0(gr)/Dg) V(r) dr do i = 1, msh aux (i) = aux1 (i) * (r (i) * cos (gx * r (i) ) / gx - sin (gx & * r (i) ) / gx**2) enddo call simpson (msh, aux, rab, vlcp) ! DV(g^2)/Dg^2 = (DV(g)/Dg)/2g vlcp = fpi / omega / 2.0d0 / gx * vlcp ! subtract the long-range term g2a = gl (igl) * tpiba2 / 4.d0 vlcp = vlcp + fpi / omega * zp * e2 * exp ( - g2a) * (g2a + & 1.d0) / (gl (igl) * tpiba2) **2 dvloc (igl) = vlcp enddo deallocate (aux1) deallocate (aux) return end subroutine dvloc_of_g ! !---------------------------------------------------------------------- subroutine dvloc_coul (zp, tpiba2, ngl, gl, omega, dvloc) !---------------------------------------------------------------------- ! ! Fourier transform of the Coulomb potential - For all-electron ! calculations, in specific cases only, for testing purposes ! USE kinds USE constants , ONLY : fpi, e2, eps8 implicit none ! integer, intent(in) :: ngl ! the number of shell of G vectors real(DP), intent(in) :: zp, tpiba2, omega, gl (ngl) ! valence pseudocharge ! 2 pi / alat ! the volume of the unit cell ! the moduli of g vectors for each s real(DP), intent(out) :: dvloc (ngl) ! fourier transform: dvloc = D Vloc (g^2) / D g^2 = 4pi e^2/omegai /G^4 ! integer :: igl0 ! first shell with g != 0 ! the G=0 component is 0 if (gl (1) < eps8) then dvloc (1) = 0.0d0 igl0 = 2 else igl0 = 1 endif dvloc (igl0:ngl) = fpi * zp * e2 / omega / ( tpiba2 * gl (igl0:ngl) ) ** 2 return end subroutine dvloc_coul espresso-5.1/PW/src/io_rho_xml.f900000644000175000017500000003032212341373025015076 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- MODULE io_rho_xml !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE xml_io_base, ONLY : create_directory, write_rho_xml, read_rho_xml ! PRIVATE ! PUBLIC :: write_rho, read_rho ! ! {read|write}_rho_only: read or write the real space charge density ! {read|write}_rho_general: as above, plus read or write ldaU ns coeffs ! and PAW becsum coeffs. INTERFACE write_rho MODULE PROCEDURE write_rho_only, write_rho_general END INTERFACE INTERFACE read_rho MODULE PROCEDURE read_rho_only, read_rho_general END INTERFACE CONTAINS SUBROUTINE write_rho_general( rho, nspin, extension ) USE paw_variables, ONLY : okpaw USE ldaU, ONLY : lda_plus_u USE funct, ONLY : dft_is_meta USE noncollin_module, ONLY : noncolin USE io_files, ONLY : seqopn USE io_global, ONLY : ionode, ionode_id, stdout USE scf, ONLY : scf_type USE mp_images, ONLY : intra_image_comm USE mp, ONLY : mp_bcast ! IMPLICIT NONE TYPE(scf_type), INTENT(IN) :: rho INTEGER, INTENT(IN) :: nspin CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: extension LOGICAL :: lexist INTEGER :: iunocc, iunpaw, ierr INTEGER, EXTERNAL :: find_free_unit ! Use the equivalent routine to write real space density CALL write_rho_only( rho%of_r, nspin, extension ) ! Then write the other terms to separate files IF ( lda_plus_u ) THEN ! iunocc = find_free_unit () IF ( ionode ) THEN CALL seqopn( iunocc, 'occup', 'FORMATTED', lexist ) if (noncolin) then WRITE( iunocc, * , iostat = ierr) rho%ns_nc else WRITE( iunocc, * , iostat = ierr) rho%ns endif END IF CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr/=0 ) CALL errore('write_rho_general', 'Writing ldaU ns', 1) IF ( ionode ) THEN CLOSE( UNIT = iunocc, STATUS = 'KEEP' ) ENDIF ! END IF ! IF ( okpaw ) THEN ! iunpaw = find_free_unit () IF ( ionode ) THEN CALL seqopn( iunpaw, 'paw', 'FORMATTED', lexist ) WRITE( iunpaw, * , iostat = ierr) rho%bec END IF CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr/=0 ) CALL errore('write_rho_general', 'Writing PAW becsum',1) IF ( ionode ) THEN CLOSE( UNIT = iunpaw, STATUS = 'KEEP' ) ENDIF ! END IF ! IF ( dft_is_meta() ) THEN WRITE(stdout,'(5x,"Warning: cannot save meta-gga kinetic terms: not implemented.")') ENDIF RETURN END SUBROUTINE write_rho_general SUBROUTINE read_rho_general( rho, nspin, extension ) USE paw_variables, ONLY : okpaw USE ldaU, ONLY : lda_plus_u USE noncollin_module, ONLY : noncolin USE funct, ONLY : dft_is_meta USE io_files, ONLY : seqopn USE io_global, ONLY : ionode, ionode_id, stdout USE scf, ONLY : scf_type USE mp_images, ONLY : intra_image_comm USE mp, ONLY : mp_bcast, mp_sum ! IMPLICIT NONE TYPE(scf_type), INTENT(INOUT) :: rho INTEGER, INTENT(IN) :: nspin CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: extension LOGICAL :: lexist INTEGER :: iunocc, iunpaw, ierr INTEGER, EXTERNAL :: find_free_unit ! Use the equivalent routine to read real space density CALL read_rho_only( rho%of_r, nspin, extension ) ! IF ( lda_plus_u ) THEN ! ! The occupations ns also need to be read in order to build up ! the potential ! iunocc = find_free_unit () IF ( ionode ) THEN CALL seqopn( iunocc, 'occup', 'FORMATTED', lexist ) if (noncolin) then READ( UNIT = iunocc, FMT = *, iostat = ierr ) rho%ns_nc else READ( UNIT = iunocc, FMT = *, iostat = ierr ) rho%ns endif END IF CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr/=0 ) CALL errore('read_rho_general', 'Reading ldaU ns', 1) IF ( ionode ) THEN CLOSE( UNIT = iunocc, STATUS = 'KEEP') ELSE if (noncolin) then rho%ns_nc(:,:,:,:) = 0.D0 else rho%ns(:,:,:,:) = 0.D0 endif END IF if (noncolin) then CALL mp_sum(rho%ns_nc, intra_image_comm) else CALL mp_sum(rho%ns, intra_image_comm) endif END IF ! IF ( okpaw ) THEN ! ! Also the PAW coefficients are needed: ! iunpaw = find_free_unit () IF ( ionode ) THEN CALL seqopn( iunpaw, 'paw', 'FORMATTED', lexist ) READ( UNIT = iunpaw, FMT = *, iostat=ierr ) rho%bec END IF CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr/=0 ) CALL errore('read_rho_general', 'Reading PAW becsum',1) IF ( ionode ) THEN CLOSE( UNIT = iunpaw, STATUS = 'KEEP') ELSE rho%bec(:,:,:) = 0.D0 END IF CALL mp_sum(rho%bec, intra_image_comm) ! END IF ! IF ( dft_is_meta() ) THEN WRITE(stdout,'(5x,"Warning: cannot read meta-gga kinetic terms: not implemented.")') END IF RETURN END SUBROUTINE read_rho_general ! !------------------------------------------------------------------------ SUBROUTINE write_rho_only( rho, nspin, extension ) !------------------------------------------------------------------------ ! ! ... this routine writes the charge-density in xml format into the ! ... '.save' directory ! ... the '.save' directory is created if not already present ! USE io_files, ONLY : tmp_dir, prefix USE fft_base, ONLY : dfftp USE spin_orb, ONLY : domag USE io_global,ONLY : ionode USE mp_bands, ONLY : intra_bgrp_comm, inter_bgrp_comm ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nspin REAL(DP), INTENT(IN) :: rho(dfftp%nnr,nspin) CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: extension ! CHARACTER(LEN=256) :: dirname, file_base CHARACTER(LEN=256) :: ext REAL(DP), ALLOCATABLE :: rhoaux(:) ! ! ext = ' ' ! dirname = TRIM( tmp_dir ) // TRIM( prefix ) // '.save' ! CALL create_directory( dirname ) ! IF ( PRESENT( extension ) ) ext = '.' // TRIM( extension ) ! file_base = TRIM( dirname ) // '/charge-density' // TRIM( ext ) ! IF ( nspin == 1 ) THEN ! CALL write_rho_xml( file_base, rho(:,1), dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) ! ELSE IF ( nspin == 2 ) THEN ! ALLOCATE( rhoaux( dfftp%nnr ) ) ! rhoaux(:) = rho(:,1) + rho(:,2) ! CALL write_rho_xml( file_base, rhoaux, dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) ! file_base = TRIM( dirname ) // '/spin-polarization' // TRIM( ext ) ! rhoaux(:) = rho(:,1) - rho(:,2) ! CALL write_rho_xml( file_base, rhoaux, dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) ! DEALLOCATE( rhoaux ) ! ELSE IF ( nspin == 4 ) THEN ! CALL write_rho_xml( file_base, rho(:,1), dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) ! IF (domag) THEN file_base = TRIM( dirname ) // '/magnetization.x' // TRIM( ext ) ! CALL write_rho_xml( file_base, rho(:,2), dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) ! file_base = TRIM( dirname ) // '/magnetization.y' // TRIM( ext ) ! CALL write_rho_xml( file_base, rho(:,3), dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) ! file_base = TRIM( dirname ) // '/magnetization.z' // TRIM( ext ) ! CALL write_rho_xml( file_base, rho(:,4), dfftp%nr1, dfftp%nr2, & dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) END IF END IF ! RETURN ! END SUBROUTINE write_rho_only ! !------------------------------------------------------------------------ SUBROUTINE read_rho_only( rho, nspin, extension ) !------------------------------------------------------------------------ ! ! ... this routine reads the charge-density in xml format from the ! ... files saved into the '.save' directory ! USE io_files, ONLY : tmp_dir, prefix USE fft_base, ONLY : dfftp USE spin_orb, ONLY : domag USE io_global, ONLY : ionode ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nspin REAL(DP), INTENT(OUT) :: rho(dfftp%nnr,nspin) CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: extension ! CHARACTER(LEN=256) :: dirname, file_base CHARACTER(LEN=256) :: ext REAL(DP), ALLOCATABLE :: rhoaux(:) ! dirname = TRIM( tmp_dir ) // TRIM( prefix ) // '.save' ext = ' ' IF ( PRESENT( extension ) ) ext = '.' // TRIM( extension ) file_base = TRIM( dirname ) // '/charge-density' // TRIM( ext ) ! CALL read_rho_xml ( file_base, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, rho(:,1) ) ! IF ( nspin == 2 ) THEN ! rho(:,2) = rho(:,1) ! ALLOCATE( rhoaux( dfftp%nnr ) ) ! file_base = TRIM( dirname ) // '/spin-polarization' // TRIM( ext ) CALL read_rho_xml ( file_base, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, rhoaux ) ! rho(:,1) = 0.5D0*( rho(:,1) + rhoaux(:) ) rho(:,2) = 0.5D0*( rho(:,2) - rhoaux(:) ) ! DEALLOCATE( rhoaux ) ! ELSE IF ( nspin == 4 ) THEN ! IF ( domag ) THEN ! file_base = TRIM( dirname ) // '/magnetization.x' // TRIM( ext ) CALL read_rho_xml ( file_base, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, rho(:,2) ) ! file_base = TRIM( dirname ) // '/magnetization.y' // TRIM( ext ) CALL read_rho_xml ( file_base, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, rho(:,3) ) ! file_base = TRIM( dirname ) // '/magnetization.z' // TRIM( ext ) CALL read_rho_xml ( file_base, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, rho(:,4) ) ! ELSE ! rho(:,2:4) = 0.D0 ! END IF END IF ! RETURN ! END SUBROUTINE read_rho_only ! END MODULE io_rho_xml espresso-5.1/PW/src/init_us_2.f900000644000175000017500000001146312341373025014637 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine init_us_2 (npw_, igk_, q_, vkb_) !---------------------------------------------------------------------- ! ! Calculates beta functions (Kleinman-Bylander projectors), with ! structure factor, for all atoms, in reciprocal space. On input: ! npw_ : number of PWs ! igk_(npw_) : indices of G in the list of q+G vectors ! q_(3) : q vector (2pi/a units) ! On output: ! vkb_(npwx,nkb) : beta functions (npw_ <= npwx) ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE cell_base, ONLY : tpiba USE constants, ONLY : tpi USE gvect, ONLY : eigts1, eigts2, eigts3, mill, g USE wvfct, ONLY : npwx USE us, ONLY : nqx, dq, tab, tab_d2y, spline_ps USE splinelib USE uspp, ONLY : nkb, nhtol, nhtolm, indv USE uspp_param, ONLY : upf, lmaxkb, nhm, nh ! implicit none ! INTEGER, INTENT (IN) :: npw_, igk_ (npw_) REAL(dp), INTENT(IN) :: q_(3) COMPLEX(dp), INTENT(OUT) :: vkb_ (npwx, nkb) ! ! Local variables ! integer :: i0,i1,i2,i3, ig, lm, na, nt, nb, ih, jkb real(DP) :: px, ux, vx, wx, arg real(DP), allocatable :: gk (:,:), qg (:), vq (:), ylm (:,:), vkb1(:,:) complex(DP) :: phase, pref complex(DP), allocatable :: sk(:) real(DP), allocatable :: xdata(:) integer :: iq ! ! if (lmaxkb.lt.0) return call start_clock ('init_us_2') allocate (vkb1( npw_,nhm)) allocate ( sk( npw_)) allocate ( qg( npw_)) allocate ( vq( npw_)) allocate ( ylm( npw_, (lmaxkb + 1) **2)) allocate ( gk( 3, npw_)) ! ! write(*,'(3i4,i5,3f10.5)') size(tab,1), size(tab,2), size(tab,3), size(vq), q_ do ig = 1, npw_ gk (1,ig) = q_(1) + g(1, igk_(ig) ) gk (2,ig) = q_(2) + g(2, igk_(ig) ) gk (3,ig) = q_(3) + g(3, igk_(ig) ) qg (ig) = gk(1, ig)**2 + gk(2, ig)**2 + gk(3, ig)**2 enddo ! call ylmr2 ((lmaxkb+1)**2, npw_, gk, qg, ylm) ! ! set now qg=|q+G| in atomic units ! do ig = 1, npw_ qg(ig) = sqrt(qg(ig))*tpiba enddo if (spline_ps) then allocate(xdata(nqx)) do iq = 1, nqx xdata(iq) = (iq - 1) * dq enddo endif ! |beta_lm(q)> = (4pi/omega).Y_lm(q).f_l(q).(i^l).S(q) jkb = 0 do nt = 1, ntyp ! calculate beta in G-space using an interpolation table f_l(q)=\int _0 ^\infty dr r^2 f_l(r) j_l(q.r) do nb = 1, upf(nt)%nbeta do ig = 1, npw_ if (spline_ps) then vq(ig) = splint(xdata, tab(:,nb,nt), tab_d2y(:,nb,nt), qg(ig)) else px = qg (ig) / dq - int (qg (ig) / dq) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = INT( qg (ig) / dq ) + 1 i1 = i0 + 1 i2 = i0 + 2 i3 = i0 + 3 vq (ig) = tab (i0, nb, nt) * ux * vx * wx / 6.d0 + & tab (i1, nb, nt) * px * vx * wx / 2.d0 - & tab (i2, nb, nt) * px * ux * wx / 2.d0 + & tab (i3, nb, nt) * px * ux * vx / 6.d0 endif enddo ! add spherical harmonic part (Y_lm(q)*f_l(q)) do ih = 1, nh (nt) if (nb.eq.indv (ih, nt) ) then !l = nhtol (ih, nt) lm =nhtolm (ih, nt) do ig = 1, npw_ vkb1 (ig,ih) = ylm (ig, lm) * vq (ig) enddo endif enddo enddo ! ! vkb1 contains all betas including angular part for type nt ! now add the structure factor and factor (-i)^l ! do na = 1, nat ! ordering: first all betas for atoms of type 1 ! then all betas for atoms of type 2 and so on if (ityp (na) .eq.nt) then arg = (q_(1) * tau (1, na) + & q_(2) * tau (2, na) + & q_(3) * tau (3, na) ) * tpi phase = CMPLX(cos (arg), - sin (arg) ,kind=DP) do ig = 1, npw_ sk (ig) = eigts1 (mill(1,igk_(ig)), na) * & eigts2 (mill(2,igk_(ig)), na) * & eigts3 (mill(3,igk_(ig)), na) enddo do ih = 1, nh (nt) jkb = jkb + 1 pref = (0.d0, -1.d0) **nhtol (ih, nt) * phase do ig = 1, npw_ vkb_(ig, jkb) = vkb1 (ig,ih) * sk (ig) * pref enddo enddo endif enddo enddo deallocate (gk) deallocate (ylm) deallocate (vq) deallocate (qg) deallocate (sk) deallocate (vkb1) call stop_clock ('init_us_2') return end subroutine init_us_2 espresso-5.1/PW/src/wannier_proj.f900000644000175000017500000000705512341373025015443 0ustar mbamba! Copyright (C) 2006-2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) subroutine wannier_proj(ik, wan_func) ! This routine computes for all eigenvectors ! for current k-point USE kinds, ONLY : DP USE io_global, ONLY : stdout USE io_files USE wannier_new, ONLY : wan_in, nwan, use_energy_int USE ions_base, ONLY : nat, ityp USE wvfct, ONLY : nbnd, npw, npwx, et USE lsda_mod, ONLY : lsda, isk USE constants, ONLY : rytoev USE basis, ONLY : swfcatom USE control_flags, ONLY : gamma_only USE uspp_param, ONLY : upf USE wavefunctions_module, ONLY : evc USE gvect, ONLY : gstart USE noncollin_module, ONLY : npol USE buffers, ONLY : get_buffer, save_buffer implicit none ! input-output INTEGER, intent(in) :: ik COMPLEX(DP), intent(out) :: wan_func(npwx,nwan) ! COMPLEX(DP), ALLOCATABLE :: pp(:,:) COMPLEX(DP), ALLOCATABLE :: trialwf(:,:) INTEGER :: current_spin, i,j,k, ierr, ibnd, iwan REAL(DP), EXTERNAL :: ddot COMPLEX(DP) :: zdotc ALLOCATE(trialwf(npwx,nwan)) ALLOCATE(pp(nwan, nbnd)) current_spin = 1 IF (lsda) current_spin = isk(ik) ! Read current wavefunctions ! evc = ZERO ! See comment in PP/src/openfil.f90 why davcio and not get_buffer ! call get_buffer ( evc, nwordwfc, iunwfc, ik ) call davcio ( evc, 2*nwordwfc, iunwfc, ik, -1 ) ! Reads ortho-atomic wfc ! You should prepare data using orthoatwfc.f90 swfcatom = ZERO CALL get_buffer (swfcatom, nwordatwfc, iunsat, ik) ! generates trial wavefunctions as a sum of ingredients trialwf = ZERO do iwan=1, nwan do j=1,wan_in(iwan,current_spin)%ning do k=1,npwx trialwf(k,iwan) = trialwf(k,iwan) + & CMPLX(wan_in(iwan,current_spin)%ing(j)%c,0.d0,KIND=DP) * & swfcatom(k,wan_in(iwan,current_spin)%ing(j)%iatomwfc) end do end do end do ! computes <\Psi|\hat S|\phi> for all \Psi and \phi ! later one should select only few columns pp = ZERO DO ibnd = 1, nbnd DO iwan = 1, nwan pp (iwan, ibnd) = zdotc (npwx, trialwf (1, iwan), 1, evc (1, ibnd), 1) ENDDO ENDDO ! And now we should nullify few elements do iwan=1, nwan do ibnd=1, nbnd if(use_energy_int) then if( et(ibnd,ik) < wan_in(iwan,current_spin)%bands_from ) pp(iwan,ibnd) = ZERO if( et(ibnd,ik) > wan_in(iwan,current_spin)%bands_to ) pp(iwan,ibnd) = ZERO else if( (ibnd < INT(wan_in(iwan,current_spin)%bands_from)) & .OR. ( ibnd > INT(wan_in(iwan,current_spin)%bands_to) )) then pp(iwan,ibnd) = ZERO ! write(stdout,'(5x,"nullify component for band",i3," of wannier",i3)') ibnd,iwan end if end if end do end do ! Orthogonalize pp CALL ortho_wfc(nwan,nbnd,pp,ierr) IF (ierr .EQ. 1) call errore('wannier_proj', 'wrong orthogonalization on k-point', ik) !And write ortho-pp to file call save_buffer( pp, nwordwpp, iunwpp, ik) wan_func = ZERO call ZGEMM('N', 'C', npw, nwan, nbnd, ONE, evc, & npwx, pp, nwan, ZERO, wan_func, npwx) !And dump wannier to file call save_buffer( wan_func, nwordwf, iunwf, ik) DEALLOCATE(trialwf) DEALLOCATE(pp) RETURN ! END SUBROUTINE wannier_proj espresso-5.1/PW/src/plugin_ext_forces.f900000644000175000017500000000135612341373025016463 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE plugin_ext_forces() !---------------------------------------------------------------------------- ! ! USE mp, ONLY : mp_bcast USE mp_images, ONLY : intra_image_comm USE io_global, ONLY : stdout, ionode, ionode_id USE kinds, ONLY : DP USE io_files, ONLY : outdir ! USE plugin_flags ! IMPLICIT NONE ! ! END SUBROUTINE plugin_ext_forces espresso-5.1/PW/src/bp_calc_btq.f900000644000175000017500000000621612341373025015175 0ustar mbamba! ! Copyright (C) 2004 Vanderbilt's group at Rutgers University, NJ ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- SUBROUTINE calc_btq(ql,qr_k,idbes) !---------------------------------------------------------------------- ! ! Calculates the Bessel-transform (or its derivative if idbes=1) ! of the augmented qrad charges at a given ql point. ! Rydberg atomic units are used. ! USE kinds, ONLY: DP USE atom, ONLY: rgrid USE ions_base, ONLY : ntyp => nsp USE cell_base, ONLY: omega USE constants, ONLY: fpi USE uspp_param, ONLY: upf, nbetam, lmaxq ! IMPLICIT NONE ! REAL(DP) :: ql, qr_k(nbetam,nbetam,lmaxq,ntyp) INTEGER :: idbes ! INTEGER :: i, np, l, ilmin, ilmax, iv, jv, ijv, ilast REAL(DP) :: qrk REAL(DP), ALLOCATABLE :: jl(:), aux(:) ! DO np=1,ntyp ! IF ( upf(np)%tvanp ) THEN ! ALLOCATE ( jl(upf(np)%kkbeta), aux(upf(np)%kkbeta) ) DO iv =1, upf(np)%nbeta DO jv =iv, upf(np)%nbeta ijv = jv * (jv-1) / 2 + iv ilmin = abs ( upf(np)%lll(iv) - upf(np)%lll(jv) ) ilmax = upf(np)%lll(iv) + upf(np)%lll(jv) ! only need to calculate for l=lmin,lmin+2 ...lmax-2,lmax DO l = ilmin,ilmax,2 aux(:) = 0.0_DP IF (upf(np)%q_with_l .or. upf(np)%tpawp) then aux(1:upf(np)%kkbeta) = & upf(np)%qfuncl(1:upf(np)%kkbeta,ijv,l) ELSE DO i = 1, upf(np)%kkbeta IF (rgrid(np)%r(i) >=upf(np)%rinner (l+1) ) THEN aux (i) = upf(np)%qfunc(i,ijv) ELSE ilast = i ENDIF ENDDO IF ( upf(np)%rinner (l+1) > 0.0_dp) & CALL setqf ( upf(np)%qfcoef(1,l+1,iv,jv), aux(1), & rgrid(np)%r, upf(np)%nqf, l, ilast ) ENDIF IF (idbes == 1) THEN ! CALL sph_dbes( upf(np)%kkbeta, rgrid(np)%r, ql, l, jl ) ! ELSE ! CALL sph_bes( upf(np)%kkbeta, rgrid(np)%r, ql, l, jl ) ! ENDIF ! jl is the Bessel function (or its derivative) calculated at ql ! now integrate qfunc*jl*r^2 = Bessel transform of qfunc DO i=1, upf(np)%kkbeta aux(i) = jl(i)*aux(i) ENDDO ! if (tlog(np)) then CALL simpson(upf(np)%kkbeta,aux,rgrid(np)%rab,qrk) qr_k(iv,jv,l+1,np) = qrk*fpi/omega qr_k(jv,iv,l+1,np) = qr_k(iv,jv,l+1,np) END DO END DO ENDDO DEALLOCATE ( aux, jl ) ENDIF ENDDO ! RETURN END SUBROUTINE calc_btq espresso-5.1/PW/src/pw2casino_write.f900000644000175000017500000013431212341373025016062 0ustar mbamba! ! Copyright (C) 2004-2009 Dario Alfe' and Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE write_casino_wfn(gather,blip,multiplicity,binwrite,single_precision_blips,n_points_for_test,postfix) USE kinds, ONLY: DP,sgl USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau, zv, atm USE cell_base, ONLY: omega, alat, tpiba2, at, bg USE run_info, ONLY: title ! title of the run USE constants, ONLY: tpi, e2 USE ener, ONLY: ewld, ehart, etxc, vtxc, etot, etxcc, demet, ef USE fft_base, ONLY: dfftp USE fft_interfaces, ONLY : fwfft USE gvect, ONLY: ngm, gstart, g, gg, gcutm, nl, nlm, igtongl USE klist , ONLY: nks, nelec, xk, wk, degauss, ngauss USE lsda_mod, ONLY: lsda, nspin USE scf, ONLY: rho, rho_core, rhog_core, v USE ldaU, ONLY : eth USE vlocal, ONLY: vloc, strf USE wvfct, ONLY: npw, npwx, nbnd, igk, g2kin, wg, et, ecutwfc USE control_flags, ONLY : gamma_only USE uspp, ONLY: nkb, vkb, dvan USE uspp_param, ONLY: nh USE io_global, ONLY: stdout, ionode, ionode_id USE io_files, ONLY: nd_nmbr, nwordwfc, iunwfc, prefix, tmp_dir, seqopn USE wavefunctions_module, ONLY : evc USE funct, ONLY : dft_is_meta USE mp_pools, ONLY: inter_pool_comm, intra_pool_comm, nproc_pool, me_pool USE mp, ONLY: mp_sum, mp_gather, mp_bcast, mp_get USE buffers, ONLY : get_buffer USE pw2blip IMPLICIT NONE LOGICAL, INTENT(in) :: gather,blip,binwrite,single_precision_blips REAL(dp), INTENT(in) :: multiplicity INTEGER, INTENT(in) :: n_points_for_test CHARACTER(*), INTENT(in) :: postfix INTEGER, PARAMETER :: n_overlap_tests = 12 REAL(dp), PARAMETER :: eps = 1.d-10 INTEGER, PARAMETER :: io = 77, iob = 78 INTEGER :: ig, ibnd, ik, ispin, nbndup, nbnddown, & nk, ig7, ikk, id, ip, iorb, iorb_node, inode, ierr, norb INTEGER :: jk(nproc_pool), jspin(nproc_pool), jbnd(nproc_pool) INTEGER :: jk2(nproc_pool), jspin2(nproc_pool), jbnd2(nproc_pool) INTEGER, ALLOCATABLE :: idx(:), igtog(:), gtoig(:) LOGICAL :: exst,dowrite REAL(DP) :: ek, eloc, enl INTEGER, EXTERNAL :: atomic_number REAL (DP), EXTERNAL :: ewald, w1gauss ! number of g vectors (union of all k points) INTEGER ngtot_l ! on this processor INTEGER, ALLOCATABLE :: ngtot_d(:), ngtot_cumsum(:), indx(:) INTEGER ngtot_g ! sum over processors REAL(DP), ALLOCATABLE :: g_l(:,:), g_g(:,:), g2(:) COMPLEX(DP), ALLOCATABLE :: evc_l(:), evc_g(:), evc_g2(:), avc_tmp(:,:,:), cavc_tmp(:,:,:) LOGICAL dotransform REAL(dp) :: av_overlap(5,2),avsq_overlap(5,2) !----------------------------------------------------------------------------! ! Random number generator, using the method suggested by D.E. Knuth in ! ! Seminumerical Algorithms (vol 2 of The Art of Computer Programming). ! ! The method is based on lagged Fibonacci sequences with subtraction. ! !----------------------------------------------------------------------------! INTEGER,PARAMETER :: KK=100,LL=37 ! Leave these. REAL(DP) :: ranstate(kk) ! Determines output of gen_ran_array. INTEGER,PARAMETER :: default_seed=310952 ! Random seed, betw. 0 & 2^30-3. INTEGER,PARAMETER :: Nran=1009,Nkeep=100 ! See comment on p. 188 of Knuth. INTEGER,SAVE :: ran_array_idx=-1 REAL(DP),SAVE :: ran_array(Nran) dowrite=ionode.or..not.(gather.or.blip) ALLOCATE (idx (ngm) ) ALLOCATE (igtog (ngm) ) ALLOCATE (gtoig (ngm) ) idx(:) = 0 igtog(:) = 0 IF( lsda )THEN nbndup = nbnd nbnddown = nbnd nk = nks/2 ! nspin = 2 ELSE nbndup = nbnd nbnddown = 0 nk = nks ! nspin = 1 ENDIF CALL calc_energies DO ispin = 1, nspin DO ik = 1, nk ikk = ik + nk*(ispin-1) CALL gk_sort (xk (1:3, ikk), ngm, g(1:3,1:ngm), ecutwfc / tpiba2, & ! input &npw, igk, g2kin) ! output idx( igk(1:npw) ) = 1 ENDDO ENDDO ngtot_l = 0 DO ig = 1, ngm IF( idx(ig) >= 1 )THEN ngtot_l = ngtot_l + 1 igtog(ngtot_l) = ig gtoig(ig) = ngtot_l ENDIF ENDDO DEALLOCATE (idx) IF(dowrite)THEN IF(blip)THEN IF(binwrite)THEN WRITE (6,'(a)')'Writing file '//trim(prefix)//'.bwfn.data.b1'//trim(postfix)//' for program CASINO.' OPEN( iob, file=trim(tmp_dir)//'/'//trim(prefix)//'.bwfn.data.b1'//trim(postfix), & form='unformatted', action='write', access='sequential') ELSE WRITE (6,'(a)')'Writing file '//trim(prefix)//'.bwfn.data'//trim(postfix)//' for program CASINO.' OPEN( io, file=trim(tmp_dir)//'/'//trim(prefix)//'.bwfn.data'//trim(postfix), & form='formatted', action='write', access='sequential') ENDIF ELSE IF(gather)THEN WRITE (6,'(a)')'Writing file '//trim(prefix)//'.pwfn.data'//trim(postfix)//' for program CASINO.' OPEN( io, file=trim(tmp_dir)//'/'//trim(prefix)//'.pwfn.data'//trim(postfix), & form='formatted', action='write', access='sequential') ELSE WRITE (6,'(a)')'Writing one file per node '//trim(prefix)//'.pwfn.data'//trim(postfix)//'.XX for program CASINO' CALL seqopn( io, 'pwfn.data'//trim(postfix), 'formatted',exst) ENDIF ENDIF WRITE (6,'(a)') ENDIF ALLOCATE ( g_l(3,ngtot_l), evc_l(ngtot_l) ) DO ig = 1, ngtot_l g_l(:,ig) = g(:,igtog(ig)) ENDDO IF(gather.or.blip)THEN ALLOCATE ( ngtot_d(nproc_pool), ngtot_cumsum(nproc_pool) ) CALL mp_gather( ngtot_l, ngtot_d, ionode_id, intra_pool_comm ) CALL mp_bcast( ngtot_d, ionode_id, intra_pool_comm ) id = 0 DO ip = 1,nproc_pool ngtot_cumsum(ip) = id id = id + ngtot_d(ip) ENDDO ngtot_g = id ALLOCATE ( g_g(3,ngtot_g), g2(ngtot_g), evc_g(ngtot_g) ) IF(blip.and.gamma_only)THEN ALLOCATE( evc_g2(ngtot_g) ) ENDIF CALL mp_gather( g_l, g_g, ngtot_d, ngtot_cumsum, ionode_id, intra_pool_comm) IF(blip)THEN CALL mp_bcast( g_g, ionode_id, intra_pool_comm ) g2(:) = sum(g_g(:,:)**2,dim=1) CALL pw2blip_init(ngtot_g,g_g,multiplicity) IF(dowrite)THEN WRITE (6,'(a)')'Blip grid: '//trim(i2s(blipgrid(1)))//'x'//trim(i2s(blipgrid(2)))//'x'//trim(i2s(blipgrid(3))) WRITE (6,'(a)') ENDIF ELSEIF(dowrite)THEN ALLOCATE ( indx(ngtot_g) ) CALL create_index2(g_g,indx) ENDIF ELSEIF(dowrite)THEN ALLOCATE ( indx(ngtot_l) ) CALL create_index2(g_l,indx) ENDIF IF(dowrite)THEN CALL write_header IF(blip)THEN CALL write_gvecs_blip ELSEIF(gather)THEN CALL write_gvecs(g_g,indx) ELSE CALL write_gvecs(g_l,indx) ENDIF CALL write_wfn_head ENDIF IF(dowrite.and.blip.and.binwrite)THEN IF(gamma_only)THEN ALLOCATE(avc_tmp(blipgrid(1),blipgrid(2),blipgrid(3))) ELSE ALLOCATE(cavc_tmp(blipgrid(1),blipgrid(2),blipgrid(3))) ENDIF ENDIF ! making some assumptions about the parallel layout: IF(ionode_id/=0)CALL errore('write_casino_wfn','ionode_id/=0: ',ionode_id) iorb = 0 norb = nk*nspin*nbnd DO ik = 1, nk DO ispin = 1, nspin ikk = ik + nk*(ispin-1) IF( nks > 1 )THEN CALL gk_sort (xk (1:3, ikk), ngm, g(1:3,1:ngm), ecutwfc / tpiba2, & ! input &npw, igk, g2kin) ! output CALL get_buffer(evc,nwordwfc,iunwfc,ikk) ENDIF DO ibnd = 1, nbnd evc_l(:) = (0.d0, 0d0) evc_l(gtoig(igk(1:npw))) = evc(1:npw,ibnd) IF(blip)THEN iorb = iorb + 1 IF(gamma_only)THEN iorb_node = mod((iorb-1)/2,nproc_pool) ! the node that should compute this orbital IF(mod(iorb,2)==0)THEN jk2(iorb_node+1) = ik jspin2(iorb_node+1) = ispin jbnd2(iorb_node+1) = ibnd dotransform = (iorb_node==nproc_pool-1) ELSE jk(iorb_node+1) = ik jspin(iorb_node+1) = ispin jbnd(iorb_node+1) = ibnd dotransform = .false. ENDIF ELSE iorb_node = mod(iorb-1,nproc_pool) ! the node that should compute this orbital jk(iorb_node+1) = ik jspin(iorb_node+1) = ispin jbnd(iorb_node+1) = ibnd dotransform=(iorb_node==nproc_pool-1) ENDIF DO inode=0,nproc_pool-1 IF(gamma_only.and.mod(iorb,2)==0)THEN CALL mp_get(& evc_g2(ngtot_cumsum(inode+1)+1:ngtot_cumsum(inode+1)+ngtot_d(inode+1)),& evc_l(:),me_pool,iorb_node,inode,1234,intra_pool_comm) ELSE CALL mp_get(& evc_g(ngtot_cumsum(inode+1)+1:ngtot_cumsum(inode+1)+ngtot_d(inode+1)),& evc_l(:),me_pool,iorb_node,inode,1234,intra_pool_comm) ENDIF ENDDO IF(dotransform .or. iorb == norb)THEN IF(me_pool <= iorb_node)THEN IF(gamma_only.and.(me_pool/=iorb_node.or.iorb/=norb.or.mod(norb,2)==0))THEN CALL pw2blip_transform2(evc_g(:),evc_g2(:)) ELSE CALL pw2blip_transform(evc_g(:)) ENDIF ENDIF IF(me_pool <= iorb_node) CALL test_overlap DO inode=0,iorb_node CALL pw2blip_get(inode) IF(gamma_only)THEN IF(ionode)WRITE(6,*)"Transformed real orbital k="//trim(i2s(jk(inode+1)))//& &", spin="//trim(i2s(jspin(inode+1)))//& &", band="//trim(i2s(jbnd(inode+1)))//" on node "//trim(i2s(inode)) CALL print_overlap(inode,1) IF(blipreal==2)THEN IF(ionode)WRITE(6,*)"Transformed real orbital k="//trim(i2s(jk2(inode+1)))//& &", spin="//trim(i2s(jspin2(inode+1)))//& &", band="//trim(i2s(jbnd2(inode+1)))//" on node "//trim(i2s(inode)) ENDIF CALL print_overlap(inode,2) ELSE IF(ionode)WRITE(6,*)"Transformed complex orbital k="//trim(i2s(jk(inode+1)))//& &", spin="//trim(i2s(jspin(inode+1)))//& &", band="//trim(i2s(jbnd(inode+1)))//" on node "//trim(i2s(inode)) CALL print_overlap(inode,1) ENDIF IF(gamma_only)THEN IF(ionode)CALL write_bwfn_data_gamma(1,jk(inode+1),jspin(inode+1),jbnd(inode+1)) IF(blipreal==2)THEN IF(ionode)CALL write_bwfn_data_gamma(2,jk2(inode+1),jspin2(inode+1),jbnd2(inode+1)) ENDIF ELSE IF(ionode)CALL write_bwfn_data(jk(inode+1),jspin(inode+1),jbnd(inode+1)) ENDIF ENDDO ENDIF ELSEIF(gather)THEN CALL mp_gather( evc_l, evc_g, ngtot_d, ngtot_cumsum, ionode_id, intra_pool_comm) IF(dowrite)CALL write_pwfn_data(ik,ispin,ibnd,evc_g,indx) ELSE CALL write_pwfn_data(ik,ispin,ibnd,evc_l,indx) ENDIF ENDDO ENDDO ENDDO IF(dowrite)THEN IF(binwrite)THEN CLOSE(iob) ELSE CLOSE(io) ENDIF ENDIF IF(dowrite.and.blip.and.binwrite)THEN IF(gamma_only)THEN DEALLOCATE(avc_tmp) ELSE DEALLOCATE(cavc_tmp) ENDIF ENDIF IF(blip)CALL pw2blip_cleanup DEALLOCATE (igtog, g_l, evc_l ) IF(blip.or.gather) DEALLOCATE ( ngtot_d, ngtot_cumsum, g_g, evc_g ) IF(dowrite.and..not.blip) DEALLOCATE (indx) CONTAINS SUBROUTINE calc_energies USE becmod, ONLY: becp, calbec, allocate_bec_type, deallocate_bec_type USE exx, ONLY : exxenergy2, fock2 USE funct, ONLY : dft_is_hybrid COMPLEX(DP), ALLOCATABLE :: aux(:) INTEGER :: ibnd, j, ig, ik, ikk, ispin, na, nt, ijkb0, ikb, ih, jh, jkb REAL(DP) :: charge, etotefield, elocg ALLOCATE (aux(dfftp%nnr)) CALL allocate_bec_type ( nkb, nbnd, becp ) ek = 0.d0 eloc= 0.d0 enl = 0.d0 demet=0.d0 fock2=0.d0 ! DO ispin = 1, nspin ! ! calculate the local contribution to the total energy ! ! bring rho to G-space ! aux(:) = cmplx( rho%of_r(:,ispin), 0.d0,kind=DP) CALL fwfft ('Dense', aux, dfftp) ! DO nt=1,ntyp DO ig = 1, ngm elocg = vloc(igtongl(ig),nt) * & dble ( strf(ig,nt) * conjg(aux(nl(ig))) ) eloc = eloc + elocg IF( gamma_only .and. ig>=gstart) eloc = eloc + elocg ENDDO ENDDO DO ik = 1, nk ikk = ik + nk*(ispin-1) CALL gk_sort (xk (1, ikk), ngm, g, ecutwfc / tpiba2, npw, igk, g2kin) CALL get_buffer (evc, nwordwfc, iunwfc, ikk ) CALL init_us_2 (npw, igk, xk (1, ikk), vkb) CALL calbec ( npw, vkb, evc, becp ) ! ! -TS term for metals (ifany) ! IF( degauss > 0.0_dp)THEN DO ibnd = 1, nbnd demet = demet + wk (ik) * & degauss * w1gauss ( (ef-et(ibnd,ik)) / degauss, ngauss) ENDDO ENDIF ! ! calculate the kinetic energy ! DO ibnd = 1, nbnd DO j = 1, npw IF(gamma_only)THEN !.and.j>1)then ek = ek + 2*conjg(evc(j,ibnd)) * evc(j,ibnd) * & g2kin(j) * wg(ibnd,ikk) ELSE ek = ek + conjg(evc(j,ibnd)) * evc(j,ibnd) * & g2kin(j) * wg(ibnd,ikk) ENDIF ENDDO ! ! Calculate Non-local energy ! ijkb0 = 0 DO nt = 1, ntyp DO na = 1, nat IF(ityp (na) == nt)THEN DO ih = 1, nh (nt) ikb = ijkb0 + ih IF(gamma_only)THEN enl=enl+becp%r(ikb,ibnd)*becp%r(ikb,ibnd) & *wg(ibnd,ikk)* dvan(ih,ih,nt) ELSE enl=enl+conjg(becp%k(ikb,ibnd))*becp%k(ikb,ibnd) & *wg(ibnd,ikk)* dvan(ih,ih,nt) ENDIF DO jh = ( ih + 1 ), nh(nt) jkb = ijkb0 + jh IF(gamma_only)THEN enl=enl + & (becp%r(ikb,ibnd)*becp%r(jkb,ibnd)+& becp%r(jkb,ibnd)*becp%r(ikb,ibnd))& * wg(ibnd,ikk) * dvan(ih,jh,nt) ELSE enl=enl + & (conjg(becp%k(ikb,ibnd))*becp%k(jkb,ibnd)+& conjg(becp%k(jkb,ibnd))*becp%k(ikb,ibnd))& * wg(ibnd,ikk) * dvan(ih,jh,nt) ENDIF ENDDO ENDDO ijkb0 = ijkb0 + nh (nt) ENDIF ENDDO ENDDO ENDDO ENDDO ENDDO #ifdef __MPI CALL mp_sum( eloc, intra_pool_comm ) CALL mp_sum( ek, intra_pool_comm ) CALL mp_sum( ek, inter_pool_comm ) CALL mp_sum( enl, inter_pool_comm ) CALL mp_sum( demet, inter_pool_comm ) #endif eloc = eloc * omega ek = ek * tpiba2 ! ! compute ewald contribution ! ewld = ewald( alat, nat, ntyp, ityp, zv, at, bg, tau, omega, & g, gg, ngm, gcutm, gstart, gamma_only, strf ) ! ! compute hartree and xc contribution ! CALL v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v ) ! ! compute exact exchange contribution (if present) ! IF(dft_is_hybrid()) fock2 = 0.5_DP * exxenergy2() ! etot=(ek + (etxc-etxcc)+ehart+eloc+enl+ewld)+demet+fock2 ! CALL deallocate_bec_type (becp) DEALLOCATE (aux) WRITE (stdout,*) WRITE (stdout,*) 'Energies determined by pw2casino tool' WRITE (stdout,*) '-------------------------------------' WRITE (stdout,*) 'Kinetic energy ', ek/e2, ' au = ', ek, ' Ry' WRITE (stdout,*) 'Local energy ', eloc/e2, ' au = ', eloc, ' Ry' WRITE (stdout,*) 'Non-Local energy ', enl/e2, ' au = ', enl, ' Ry' WRITE (stdout,*) 'Ewald energy ', ewld/e2, ' au = ', ewld, ' Ry' WRITE (stdout,*) 'xc contribution ',(etxc-etxcc)/e2, ' au = ', etxc-etxcc, ' Ry' WRITE (stdout,*) 'hartree energy ', ehart/e2, ' au = ', ehart, ' Ry' IF(dft_is_hybrid()) & WRITE (stdout,*) 'EXX energy ', fock2/e2, ' au = ', fock2, ' Ry' IF( degauss > 0.0_dp ) & WRITE (stdout,*) 'Smearing (-TS) ', demet/e2, ' au = ', demet, ' Ry' WRITE (stdout,*) 'Total energy ', etot/e2, ' au = ', etot, ' Ry' WRITE (stdout,*) END SUBROUTINE calc_energies SUBROUTINE test_overlap ! Carry out the overlap test described in the CASINO manual. ! Repeat the whole test n_overlap_tests times, to compute error bars. INTEGER i,j,k REAL(dp) r(3) COMPLEX(dp) xb(5),xp(5) ! 1->val, 2:4->grad, 5->lap REAL(dp) xbb(5,2),xpp(5,2) COMPLEX(dp) xbp(5,2) REAL(dp) overlap(5,2),sum_overlap(5,2),sumsq_overlap(5,2) IF(n_points_for_test<=0)RETURN IF(n_overlap_tests<=0)RETURN CALL init_rng(12345678) sum_overlap(:,:)=0.d0 ; sumsq_overlap(:,:)=0.d0 DO j=1,n_overlap_tests xbb(:,:)=0.d0 ; xpp(:,:)=0.d0 ; xbp(:,:)=0.d0 DO i=1,n_points_for_test r(1)=ranx() ; r(2)=ranx() ; r(3)=ranx() CALL blipeval(r,xb(1),xb(2:4),xb(5)) CALL pweval(r,xp(1),xp(2:4),xp(5)) IF(gamma_only)THEN xbb(:,1)=xbb(:,1)+dble(xb(:))**2 xbp(:,1)=xbp(:,1)+dble(xb(:))*dble(xp(:)) xpp(:,1)=xpp(:,1)+dble(xp(:))**2 IF(blipreal==2)THEN ! two orbitals - use complex and imaginary part independently xbb(:,2)=xbb(:,2)+aimag(xb(:))**2 xbp(:,2)=xbp(:,2)+aimag(xb(:))*aimag(xp(:)) xpp(:,2)=xpp(:,2)+aimag(xp(:))**2 ENDIF ELSE xbb(:,1)=xbb(:,1)+dble(xb(:))**2+aimag(xb(:))**2 xbp(:,1)=xbp(:,1)+xb(:)*conjg(xp(:)) xpp(:,1)=xpp(:,1)+dble(xp(:))**2+aimag(xp(:))**2 ENDIF ENDDO ! i overlap(:,:)=0.d0 DO k=1,5 IF(xbb(k,1)/=0.d0.and.xpp(k,1)/=0.d0)THEN overlap(k,1)=(dble(xbp(k,1))**2+aimag(xbp(k,1))**2)/(xbb(k,1)*xpp(k,1)) ENDIF ! xb & xd nonzero ENDDO ! k IF(blipreal==2)THEN DO k=1,5 IF(xbb(k,2)/=0.d0.and.xpp(k,2)/=0.d0)THEN overlap(k,2)=(dble(xbp(k,2))**2+aimag(xbp(k,2))**2)/(xbb(k,2)*xpp(k,2)) ENDIF ! xb & xd nonzero ENDDO ! k ELSE ENDIF sum_overlap(:,:)=sum_overlap(:,:)+overlap(:,:) sumsq_overlap(:,:)=sumsq_overlap(:,:)+overlap(:,:)**2 ENDDO ! j av_overlap(:,:)=sum_overlap(:,:)/dble(n_overlap_tests) avsq_overlap(:,:)=sumsq_overlap(:,:)/dble(n_overlap_tests) END SUBROUTINE test_overlap SUBROUTINE pweval(r,val,grad,lap) DOUBLE PRECISION,INTENT(in) :: r(3) COMPLEX(dp),INTENT(out) :: val,grad(3),lap INTEGER ig REAL(dp) dot_prod COMPLEX(dp) eigr,eigr2 REAL(dp),PARAMETER :: pi=3.141592653589793238462643d0 COMPLEX(dp),PARAMETER :: iunity=(0.d0,1.d0) val=0.d0 ; grad(:)=0.d0 ; lap=0.d0 DO ig=1,ngtot_g dot_prod=tpi*sum(dble(g_int(:,ig))*r(:)) eigr=evc_g(ig)*cmplx(cos(dot_prod),sin(dot_prod),dp) IF(.not.gamma_only)THEN val=val+eigr grad(:)=grad(:)+(eigr*iunity)*dble(g_int(:,ig)) lap=lap-eigr*g2(ig) ELSEIF(blipreal==1)THEN IF(all(g_int(:,ig)==0))eigr=eigr*0.5d0 val=val+dble(eigr) grad(:)=grad(:)-aimag(eigr)*dble(g_int(:,ig)) lap=lap-dble(eigr)*g2(ig) ELSEIF(blipreal==2)THEN eigr2=evc_g2(ig)*cmplx(cos(dot_prod),sin(dot_prod),dp) IF(all(g_int(:,ig)==0))THEN eigr=eigr*0.5d0 eigr2=eigr2*0.5d0 ENDIF val=val+cmplx(dble(eigr),dble(eigr2)) grad(:)=grad(:)+cmplx(-aimag(eigr),-aimag(eigr2))*dble(g_int(:,ig)) lap=lap-cmplx(dble(eigr),dble(eigr2))*g2(ig) ENDIF ENDDO ! ig IF(gamma_only)THEN val = val*2.d0 grad(:) = grad(:)*2.d0 lap = lap*2.d0 ENDIF grad(:)=matmul(bg(:,:),grad(:))*(tpi/alat) lap=lap*(tpi/alat)**2 END SUBROUTINE pweval SUBROUTINE print_overlap(inode,whichband) !-------------------------------------------------------------------------! ! Write out the overlaps of the value, gradient and Laplacian of the blip ! ! orbitals. Give error bars where possible. ! !-------------------------------------------------------------------------! INTEGER,INTENT(in) :: inode INTEGER,INTENT(in) :: whichband ! 1 or 2, indexing within a pair of real orbitals REAL(dp) :: av(5),avsq(5),err(5) INTEGER k CHARACTER(12) char12_arr(5) IF(n_points_for_test<=0)RETURN IF(n_overlap_tests<=0)RETURN CALL mp_get(av(:),av_overlap(:,whichband),me_pool,ionode_id,inode,6434,intra_pool_comm) CALL mp_get(avsq(:),avsq_overlap(:,whichband),me_pool,ionode_id,inode,6434,intra_pool_comm) IF(.not.ionode)RETURN IF(blipreal==1.and.whichband==2)RETURN IF(n_overlap_tests<2)THEN WRITE(stdout,*)'Error: need at least two overlap tests, to estimate error bars.' STOP ENDIF ! Too few overlap tests err(:)=sqrt(max(avsq(:)-av(:)**2,0.d0)/dble(n_overlap_tests-1)) DO k=1,5 char12_arr(k)=trim(write_mean(av(k),err(k))) ! Not room to quote error bar. Just quote mean. IF(index(char12_arr(k),')')==0)WRITE(char12_arr(k),'(f12.9)')av(k) ENDDO ! k WRITE(stdout,'(2(1x,a),2x,3(1x,a))')char12_arr(1:5) END SUBROUTINE print_overlap FUNCTION to_c80(c) CHARACTER(*),INTENT(in) :: c CHARACTER(80) :: to_c80 to_c80=c END FUNCTION to_c80 SUBROUTINE write_header INTEGER j, na, nt, at_num REAL(dp) :: kvec(3,nk),ksq(nk),kprod(6,nk) IF(blip.and.binwrite)THEN WRITE(iob)& to_c80(title) ,& to_c80("PWSCF") ,& to_c80("DFT") ,& to_c80("unknown"),& to_c80("unknown"),& dble(ecutwfc/2) ,& lsda ,& dble(etot/e2) ,& dble(ek/e2) ,& dble(eloc/e2) ,& dble(enl/e2) ,& dble(ehart/e2) ,& dble(ewld/e2) ,& nint(nelec) ,& nat ,& ngtot_g ,& nk ,& blipgrid(1:3) ,& nbnd ,& gamma_only ,& .true. ,& (/0,0/) ,& alat*at(1:3,1) ,& alat*at(1:3,2) ,& alat*at(1:3,3) ,& 2 ,& nbnd ! some old PGI compiler seems to choke on this commented version.... ! to_c80(title) ,& ! title ! to_c80("PWSCF") ,& ! code ! to_c80("DFT") ,& ! method ! to_c80("unknown"),& ! functional ! to_c80("unknown"),& ! pseudo_type ! dble(ecutwfc/2) ,& ! plane_wave_cutoff ! lsda ,& ! spin_polarized, ! dble(etot/e2) ,& ! total_energy ! dble(ek/e2) ,& ! kinetic_energy ! dble(eloc/e2) ,& ! local_potential_energy ! dble(enl/e2) ,& ! non_local_potential_energy ! dble(ehart/e2) ,& ! electron_electron_energy ! dble(ewld/e2) ,& ! eionion ! nint(nelec) ,& ! num_electrons ! nat ,& ! nbasis ! ngtot_g ,& ! nwvec ! nk ,& ! nkvec ! blipgrid(1:3) ,& ! nr ! nbnd ,& ! maxband ! gamma_only ,& ! gamma_only ! .true. ,& ! ext_orbs_present ! (/0,0/) ,& ! no_loc_orbs ! alat*at(1:3,1) ,& ! pa1 ! alat*at(1:3,2) ,& ! pa2 ! alat*at(1:3,3) ,& ! pa3 ! 2 ,& ! nspin_check ! nbnd ! num_nonloc_max kvec(:,:) = tpi/alat*xk(1:3,1:nk) kprod(1,:)=kvec(1,:)*kvec(1,:) kprod(2,:)=kvec(2,:)*kvec(2,:) kprod(3,:)=kvec(3,:)*kvec(3,:) kprod(4,:)=kvec(1,:)*kvec(2,:) kprod(5,:)=kvec(1,:)*kvec(3,:) kprod(6,:)=kvec(2,:)*kvec(3,:) ksq(:)=kprod(1,:)+kprod(2,:)+kprod(3,:) WRITE(iob)& kvec ,& ksq ,& kprod ,& (atomic_number(trim(atm(ityp(na)))),na=1,nat) ,& (alat*tau(1:3,na),na=1,nat) ,& (nbnd,j=1,nk*2) ,& et(1:nbnd,1:nk*nspin)/e2 ,& (.true.,j=1,nbnd*nk*nspin) ,& (/nbnd,nbnd/) ! kvec ,& ! kvec ! ksq ,& ! ksq ! kprod ,& ! kprod ! (atomic_number(trim(atm(ityp(na)))),na=1,nat) ,& ! atno -- atomic numbers ! (alat*tau(1:3,na),na=1,nat) ,& ! basis -- atom positions ! (nbnd,j=1,nk*2) ,& ! nband ! et(1:nbnd,1:nk*nspin)/e2 ,& ! eigenvalue ! (.true.,j=1,nbnd*nk*nspin) ,& ! on_this_cpu ! (/nbnd,nbnd/) ! num_nonloc WRITE(iob)single_precision_blips ! single_precision_blips ! IF(no_loc_orbs>0)THEN ! ... ! ENDIF WRITE(iob)& (0,j=1,nbnd*nk*2) ,& (0,j=1,nbnd*nk*2) ,& (0,j=1,nbnd*nk*2) ,& (0,j=1,nbnd*nk*2) ! (0,j=1,nbnd*nk*2) ,& ! orb_map_band ! (0,j=1,nbnd*nk*2) ,& ! orb_map_ik ! (0,j=1,nbnd*nk*2) ,& ! orb_map_iorb ! (0,j=1,nbnd*nk*2) ! occupied RETURN ENDIF WRITE(io,'(a)') title WRITE(io,'(a)') WRITE(io,'(a)') ' BASIC INFO' WRITE(io,'(a)') ' ----------' WRITE(io,'(a)') ' Generated by:' WRITE(io,'(a)') ' PWSCF' WRITE(io,'(a)') ' Method:' WRITE(io,'(a)') ' DFT' WRITE(io,'(a)') ' DFT Functional:' WRITE(io,'(a)') ' unknown' WRITE(io,'(a)') ' Pseudopotential' WRITE(io,'(a)') ' unknown' WRITE(io,'(a)') ' Plane wave cutoff (au)' WRITE(io,*) ecutwfc/2 WRITE(io,'(a)') ' Spin polarized:' WRITE(io,*)lsda IF( degauss > 0.0_dp )THEN WRITE(io,'(a)') ' Total energy (au per primitive cell; includes -TS term)' WRITE(io,*)etot/e2, demet/e2 ELSE WRITE(io,'(a)') ' Total energy (au per primitive cell)' WRITE(io,*)etot/e2 ENDIF WRITE(io,'(a)') ' Kinetic energy (au per primitive cell)' WRITE(io,*)ek/e2 WRITE(io,'(a)') ' Local potential energy (au per primitive cell)' WRITE(io,*)eloc/e2 WRITE(io,'(a)') ' Non local potential energy(au per primitive cell)' WRITE(io,*)enl/e2 WRITE(io,'(a)') ' Electron electron energy (au per primitive cell)' WRITE(io,*)ehart/e2 WRITE(io,'(a)') ' Ion-ion energy (au per primitive cell)' WRITE(io,*)ewld/e2 WRITE(io,'(a)') ' Number of electrons per primitive cell' WRITE(io,*)nint(nelec) ! uncomment the following ifyou want the Fermi energy - KN 2/4/09 ! WRITE(io,'(a)') ' Fermi energy (au)' ! WRITE(io,*) ef/e2 WRITE(io,'(a)') ' ' WRITE(io,'(a)') ' GEOMETRY' WRITE(io,'(a)') ' -------- ' WRITE(io,'(a)') ' Number of atoms per primitive cell ' WRITE(io,*) nat WRITE(io,'(a)')' Atomic number and position of the atoms(au) ' DO na = 1, nat nt = ityp(na) at_num = atomic_number(trim(atm(nt))) WRITE(io,'(i6,3f20.14)') at_num, (alat*tau(j,na),j=1,3) ENDDO WRITE(io,'(a)') ' Primitive lattice vectors (au) ' WRITE(io,100) alat*at(1,1), alat*at(2,1), alat*at(3,1) WRITE(io,100) alat*at(1,2), alat*at(2,2), alat*at(3,2) WRITE(io,100) alat*at(1,3), alat*at(2,3), alat*at(3,3) WRITE(io,'(a)') ' ' 100 FORMAT (3(1x,f20.15)) END SUBROUTINE write_header SUBROUTINE write_gvecs(g,indx) REAL(DP),INTENT(in) :: g(:,:) INTEGER,INTENT(in) :: indx(:) INTEGER ig IF(binwrite)RETURN WRITE(io,'(a)') ' G VECTORS' WRITE(io,'(a)') ' ---------' WRITE(io,'(a)') ' Number of G-vectors' WRITE(io,*) size(g,2) WRITE(io,'(a)') ' Gx Gy Gz (au)' DO ig = 1, size(g,2) WRITE(io,'(3(1x,f20.15))') & &tpi/alat*g(1,indx(ig)),tpi/alat*g(2,indx(ig)),tpi/alat*g(3,indx(ig)) ENDDO WRITE(io,'(a)') ' ' END SUBROUTINE write_gvecs SUBROUTINE write_gvecs_blip IF(binwrite)RETURN WRITE(io,'(a)') ' G VECTORS' WRITE(io,'(a)') ' ---------' WRITE(io,'(a)') ' Number of G-vectors' WRITE(io,*) 0 WRITE(io,'(a)') ' Gx Gy Gz (au)' WRITE(io,'(a)') ' Blip grid' WRITE(io,'(3(1x,3i4))') blipgrid WRITE(io,'(a)') ' ' END SUBROUTINE write_gvecs_blip SUBROUTINE write_wfn_head IF(binwrite)RETURN WRITE(io,'(a)') ' WAVE FUNCTION' WRITE(io,'(a)') ' -------------' WRITE(io,'(a)') ' Number of k-points' WRITE(io,*) nk END SUBROUTINE write_wfn_head SUBROUTINE write_pwfn_data(ik,ispin,ibnd,evc,indx) INTEGER,INTENT(in) :: ik,ispin,ibnd COMPLEX(DP),INTENT(in) :: evc(:) INTEGER,INTENT(in) :: indx(:) INTEGER ig,j,ikk IF(binwrite)RETURN ikk = ik + nk*(ispin-1) IF(ispin==1.and.ibnd==1)THEN WRITE(io,'(a)') ' k-point # ; # of bands (up spin/down spin); & & k-point coords (au)' WRITE(io,'(3i4,3f20.16)') ik, nbndup, nbnddown, & (tpi/alat*xk(j,ik),j=1,3) ENDIF IF(binwrite)RETURN ! KN: if you want to print occupancies, replace these two lines ... WRITE(io,'(a)') ' Band, spin, eigenvalue (au)' WRITE(io,*) ibnd, ispin, et(ibnd,ikk)/e2 ! ...with the following two - KN 2/4/09 ! WRITE(io,'(a)') ' Band, spin, eigenvalue (au), occupation number' ! WRITE(io,*) ibnd, ispin, et(ibnd,ikk)/e2, wg(ibnd,ikk)/wk(ikk) WRITE(io,'(a)') ' Eigenvectors coefficients' DO ig=1, size(indx,1) WRITE(io,*)evc(indx(ig)) ENDDO END SUBROUTINE write_pwfn_data SUBROUTINE write_bwfn_data(ik,ispin,ibnd) INTEGER,INTENT(in) :: ik,ispin,ibnd INTEGER lx,ly,lz,ikk,j,l1,l2,l3 IF(binwrite)THEN DO l3=1,blipgrid(3) DO l2=1,blipgrid(2) DO l1=1,blipgrid(1) cavc_tmp(l1,l2,l3) = cavc(l1-1,l2-1,l3-1) ENDDO ENDDO ENDDO IF(single_precision_blips)THEN WRITE(iob)cmplx(cavc_tmp(:,:,:),kind=sgl) ELSE WRITE(iob)cmplx(cavc_tmp(:,:,:),kind=DP) ENDIF RETURN ENDIF ikk = ik + nk*(ispin-1) IF(ispin==1.and.ibnd==1)THEN WRITE(io,'(a)') ' k-point # ; # of bands (up spin/down spin); & & k-point coords (au)' WRITE(io,'(3i4,3f20.16)') ik, nbndup, nbnddown, & (tpi/alat*xk(j,ik),j=1,3) ENDIF ! KN: if you want to print occupancies, replace these two lines ... WRITE(io,'(a)') ' Band, spin, eigenvalue (au), localized' WRITE(io,*) ibnd, ispin, et(ibnd,ikk)/e2,'F' ! ...with the following two - KN 2/4/09 ! WRITE(io,'(a)') ' Band, spin, eigenvalue (au), occupation number' ! WRITE(io,*) ibnd, ispin, et(ibnd,ikk)/e2, wg(ibnd,ikk)/wk(ikk) WRITE(io,*)'Complex blip coefficients for extended orbital' DO lx=0,blipgrid(1)-1 DO ly=0,blipgrid(2)-1 DO lz=0,blipgrid(3)-1 WRITE(io,*)cavc(lx,ly,lz) ENDDO ! lz ENDDO ! ly ENDDO ! lx END SUBROUTINE write_bwfn_data SUBROUTINE write_bwfn_data_gamma(re_im,ik,ispin,ibnd) INTEGER,INTENT(in) :: ik,ispin,ibnd,re_im INTEGER lx,ly,lz,ikk,j,l1,l2,l3 IF(binwrite)THEN IF(re_im==1)THEN DO l3=1,blipgrid(3) DO l2=1,blipgrid(2) DO l1=1,blipgrid(1) avc_tmp(l1,l2,l3) = avc1(l1-1,l2-1,l3-1) ENDDO ENDDO ENDDO ELSE DO l3=1,blipgrid(3) DO l2=1,blipgrid(2) DO l1=1,blipgrid(1) avc_tmp(l1,l2,l3) = avc2(l1-1,l2-1,l3-1) ENDDO ENDDO ENDDO ENDIF IF(single_precision_blips)THEN WRITE(iob)real(avc_tmp(:,:,:),kind=sgl) ELSE WRITE(iob)real(avc_tmp(:,:,:),kind=DP) ENDIF RETURN ENDIF ikk = ik + nk*(ispin-1) IF(ispin==1.and.ibnd==1)THEN WRITE(io,'(a)') ' k-point # ; # of bands (up spin/down spin); & & k-point coords (au)' WRITE(io,'(3i4,3f20.16)') ik, nbndup, nbnddown, & (tpi/alat*xk(j,ik),j=1,3) ENDIF ! KN: if you want to print occupancies, replace these two lines ... WRITE(io,'(a)') ' Band, spin, eigenvalue (au), localized' WRITE(io,*) ibnd, ispin, et(ibnd,ikk)/e2,'F' ! ...with the following two - KN 2/4/09 ! WRITE(io,'(a)') ' Band, spin, eigenvalue (au), occupation number' ! WRITE(io,*) ibnd, ispin, et(ibnd,ikk)/e2, wg(ibnd,ikk)/wk(ikk) WRITE(io,*)'Real blip coefficients for extended orbital' DO lx=0,blipgrid(1)-1 DO ly=0,blipgrid(2)-1 DO lz=0,blipgrid(3)-1 IF(re_im==1)THEN WRITE(io,*)avc1(lx,ly,lz) ELSE WRITE(io,*)avc2(lx,ly,lz) ENDIF ENDDO ! lz ENDDO ! ly ENDDO ! lx END SUBROUTINE write_bwfn_data_gamma SUBROUTINE create_index2(y,x_index) DOUBLE PRECISION,INTENT(in) :: y(:,:) INTEGER,INTENT(out) :: x_index(size(y,2)) DOUBLE PRECISION y2(size(y,2)) INTEGER i DO i = 1,size(y,2) y2(i) = sum(y(:,i)**2) ENDDO CALL create_index(y2,x_index) END SUBROUTINE create_index2 SUBROUTINE create_index(y,x_index) !-----------------------------------------------------------------------------! ! This subroutine creates an index array x_index for the n items of data in ! ! the array y. Adapted from Numerical Recipes. ! ! Copied from merge_pwfn.f90, included with CASINO distribution ! !-----------------------------------------------------------------------------! IMPLICIT NONE DOUBLE PRECISION,INTENT(in) :: y(:) INTEGER,INTENT(out) :: x_index(:) INTEGER,PARAMETER :: ins_sort_thresh=7,stacksize=80 INTEGER n,i,x_indexj,ir,itemp,j,jstack,k,l,lp1,istack(stacksize) DOUBLE PRECISION yj n=size(x_index) DO j=1,n x_index(j)=j ENDDO ! j IF(n<=1)RETURN jstack=0 l=1 ir=n DO IF(ir-ly(x_index(ir)))THEN itemp=x_index(l) ; x_index(l)=x_index(ir) ; x_index(ir)=itemp ENDIF IF(y(x_index(lp1))>y(x_index(ir)))THEN itemp=x_index(lp1) ; x_index(lp1)=x_index(ir) ; x_index(ir)=itemp ENDIF IF(y(x_index(l))>y(x_index(lp1)))THEN itemp=x_index(l) ; x_index(l)=x_index(lp1) ; x_index(lp1)=itemp ENDIF i=lp1 j=ir x_indexj=x_index(lp1) yj=y(x_indexj) DO DO i=i+1 IF(y(x_index(i))>=yj)exit ENDDO ! i DO j=j-1 IF(y(x_index(j))<=yj)exit ENDDO ! j IF(jstacksize)THEN WRITE(6,*)'stacksize is too small.' STOP ENDIF! jstack>stacksize IF(ir-i+1>=j-l)THEN istack(jstack)=ir istack(jstack-1)=i ir=j-1 ELSE istack(jstack)=j-1 istack(jstack-1)=l l=i ENDIF! ir-i+1>=j-l ENDIF! ir-l=1)THEN err_prec=err_prec_in ELSE write_mean='ERROR: NON-POSITIVE PRECISION!!!' RETURN ENDIF ! err_prec_in sensible. ELSE err_prec=err_prec_default ENDIF ! Accuracy of error supplied. ! Work out lowest digit of precision that should be retained in the ! mean (i.e. the digit in terms of which the error is specified). ! Calculate the error in terms of this digit and round. lowest_digit_to_quote=floor(log(std_err_in_mean)/log(10.d0))+1-err_prec err_quote=nint(std_err_in_mean*10.d0**dble(-lowest_digit_to_quote)) IF(err_quote==10**err_prec)THEN lowest_digit_to_quote=lowest_digit_to_quote+1 err_quote=err_quote/10 ENDIF ! err_quote rounds up to next figure. IF(err_quote>=10**err_prec.or.err_quote<10**(err_prec-1))THEN write_mean='ERROR: BUG IN WRITE_MEAN!!!' RETURN ENDIF ! Check error is in range. ! Truncate the mean to the relevant precision. Establish its sign, ! then take the absolute value and work out the integer part. av_quote=anint(av*10.d0**dble(-lowest_digit_to_quote)) & &*10.d0**dble(lowest_digit_to_quote) IF(av_quote<0.d0)THEN sgn='-' av_quote=-av_quote ELSE sgn=' ' ENDIF ! Sign IF(aint(av_quote)>dble(huge(1)))THEN write_mean='ERROR: NUMBERS ARE TOO LARGE IN WRITE_MEAN!' RETURN ENDIF ! Vast number int_part=floor(av_quote) IF(lowest_digit_to_quote<0)THEN ! If the error is in a decimal place then construct string using ! integer part and decimal part, noting that the latter may need to ! be padded with zeros, e.g. if we want "0001" rather than "1". IF(anint((av_quote-dble(int_part)) & &*10.d0**dble(-lowest_digit_to_quote))>dble(huge(1)))THEN write_mean='ERROR: NUMBERS ARE TOO LARGE IN WRITE_MEAN!' RETURN ENDIF ! Vast number dec_part=nint((av_quote-dble(int_part))*10.d0**dble(-lowest_digit_to_quote)) zero_pad=' ' IF(dec_part<0)THEN write_mean='ERROR: BUG IN WRITE_MEAN! (2)' RETURN ENDIF ! dec DO i=1,-lowest_digit_to_quote-no_digits_int(dec_part) zero_pad(i:i)='0' ENDDO ! i write_mean=sgn//trim(i2s(int_part))//'.'//trim(zero_pad) & &//trim(i2s(dec_part))//'('//trim(i2s(err_quote))//')' ELSE ! If the error is in a figure above the decimal point then, of ! course, we don't have to worry about a decimal part. write_mean=sgn//trim(i2s(int_part))//'(' & &//trim(i2s(err_quote*10**lowest_digit_to_quote))//')' ENDIF ! lowest_digit_to_quote<0 END FUNCTION write_mean INTEGER FUNCTION no_digits_int(i) !----------------------------------------------------------------------! ! Calculate the number of digits in integer i. For i>0 this should be ! ! floor(log(i)/log(10))+1, but sometimes rounding errors cause this ! ! expression to give the wrong result. ! !----------------------------------------------------------------------! INTEGER,INTENT(in) :: i INTEGER j,k j=i ; k=1 DO j=j/10 IF(j==0)exit k=k+1 ENDDO no_digits_int=k END FUNCTION no_digits_int SUBROUTINE init_rng(seed) !--------------------------------------------! ! Initialize the RNG: see Knuth's ran_start. ! !--------------------------------------------! INTEGER,INTENT(in) :: seed INTEGER j,s,t,sseed INTEGER,PARAMETER :: MM=2**30,TT=70 REAL(DP) ss,x(KK+KK-1) REAL(DP),PARAMETER :: ULP=1.d0/2.d0**52,ULP2=2.d0*ULP IF(seed<0)THEN sseed=MM-1-mod(-1-seed,MM) ELSE sseed=mod(seed,MM) ENDIF ! seed<0 ss=ULP2*dble(sseed+2) DO j=1,KK x(j)=ss ss=ss+ss IF(ss>=1.d0)ss=ss-1.d0+ULP2 ENDDO ! j x(2)=x(2)+ULP s=sseed t=TT-1 DO DO j=KK,2,-1 x(j+j-1)=x(j) x(j+j-2)=0.d0 ENDDO ! j DO j=KK+KK-1,KK+1,-1 x(j-(KK-LL))=mod(x(j-(KK-LL))+x(j),1.d0) x(j-KK)=mod(x(j-KK)+x(j),1.d0) ENDDO ! j IF(mod(s,2)==1)THEN DO j=KK,1,-1 x(j+1)=x(j) ENDDO ! j x(1)=x(KK+1) x(LL+1)=mod(x(LL+1)+x(KK+1),1.d0) ENDIF ! s odd IF(s/=0)THEN s=s/2 ELSE t=t-1 ENDIF ! s/=0 IF(t<=0)exit ENDDO ranstate(1+KK-LL:KK)=x(1:LL) ranstate(1:KK-LL)=x(LL+1:KK) DO j=1,10 CALL gen_ran_array(x,KK+KK-1) ENDDO ! j ran_array_idx=Nkeep END SUBROUTINE init_rng REAL(dp) FUNCTION ranx() !------------------------------------------------------------------------------! ! Return a random number uniformly distributed in [0,1). ! ! Uses M. Luescher's suggestion: generate 1009 random numbers at a time using ! ! Knuth's algorithm, but only use the first 100. ! !------------------------------------------------------------------------------! IF(ran_array_idx==-1)THEN CALL init_rng(default_seed) ! Initialize the RNG. ENDIF ! First call. IF(ran_array_idx==Nkeep)THEN CALL gen_ran_array(ran_array,Nran) ! Generate a new array of random nos. ran_array_idx=0 ENDIF ! i=Nkeep ran_array_idx=ran_array_idx+1 ranx=ran_array(ran_array_idx) END FUNCTION ranx SUBROUTINE gen_ran_array(ran_array,N) !---------------------------------------------------------------! ! Generate an array of N random numbers: see Knuth's ran_array. ! !---------------------------------------------------------------! INTEGER,INTENT(in) :: N REAL(DP),INTENT(out) :: ran_array(N) INTEGER j ran_array(1:KK)=ranstate(1:KK) DO j=KK+1,N ran_array(j)=mod(ran_array(j-KK)+ran_array(j-LL),1.d0) ENDDO ! j DO j=1,LL ranstate(j)=mod(ran_array(N+j-KK)+ran_array(N+j-LL),1.d0) ENDDO ! j DO j=LL+1,KK ranstate(j)=mod(ran_array(N+j-KK)+ranstate(j-LL),1.d0) ENDDO ! j END SUBROUTINE gen_ran_array END SUBROUTINE write_casino_wfn espresso-5.1/PW/src/wfcinit.f900000644000175000017500000002345112341373025014407 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE wfcinit() !---------------------------------------------------------------------------- ! ! ... This routine computes an estimate of the starting wavefunctions ! ... from superposition of atomic wavefunctions and/or random wavefunctions. ! ... It also open needed files or memory buffers ! USE io_global, ONLY : stdout USE basis, ONLY : natomwfc, starting_wfc USE bp, ONLY : lelfield USE klist, ONLY : xk, nks, ngk USE control_flags, ONLY : io_level, lscf USE fixed_occ, ONLY : one_atom_occupations USE ldaU, ONLY : lda_plus_u, U_projection, wfcU USE lsda_mod, ONLY : lsda, current_spin, isk USE io_files, ONLY : nwordwfc, nwordwfcU, iunhub, iunwfc, iunigk USE buffers, ONLY : open_buffer, get_buffer, save_buffer USE uspp, ONLY : nkb, vkb USE wavefunctions_module, ONLY : evc USE wvfct, ONLY : nbnd, npw, current_k, igk USE wannier_new, ONLY : use_wannier USE pw_restart, ONLY : pw_readfile ! IMPLICIT NONE ! INTEGER :: ik, ierr LOGICAL :: exst_mem, exst_file ! ! CALL start_clock( 'wfcinit' ) ! ! ... Orthogonalized atomic functions needed for LDA+U and other cases ! IF ( use_wannier .OR. one_atom_occupations ) CALL orthoatwfc ( use_wannier ) IF ( lda_plus_u ) CALL orthoUwfc() ! ! ... open files/buffer for wavefunctions (nwordwfc set in openfil) ! ... io_level > 1 : open file, otherwise: open buffer ! CALL open_buffer( iunwfc, 'wfc', nwordwfc, io_level, exst_mem, exst_file ) ! ! ... now the various possible wavefunction initializations ! ... first a check: is "tmp_dir"/"prefix".wfc found on disk? ! IF ( TRIM(starting_wfc) == 'file' .AND. .NOT. exst_file) THEN ! ! ... "tmp_dir"/"prefix".wfc not found on disk: try to read ! ... wavefunctions in "collected" format from "prefix".save/, ! ... rewrite them (in pw_readfile) using the internal format ! ierr = 1 CALL pw_readfile( 'wave', ierr ) IF ( ierr > 0 ) THEN WRITE( stdout, '(5X,"Cannot read wfc : file not found")' ) starting_wfc = 'atomic+random' END IF ! ! ... workaround: with k-point parallelization and 1 k-point per pool, ! ... pw_readfile does not leave evc properly initialized on all pools ! IF ( nks == 1 ) CALL get_buffer( evc, nwordwfc, iunwfc, 1 ) ! ELSE IF ( TRIM(starting_wfc) == 'file' .AND. exst_file) THEN ! ! ... wavefunctions are read from file (or buffer) in routine ! ... c_bands, but not if there is a single k-point. In such ! ... a case, we read wavefunctions (directly from file in ! ... order to avoid a useless buffer allocation) here ! IF ( nks == 1 ) CALL davcio ( evc, 2*nwordwfc, iunwfc, nks, -1 ) ! END IF ! ! ... state what will happen ! IF ( TRIM(starting_wfc) == 'file' ) THEN ! WRITE( stdout, '(5X,"Starting wfc from file")' ) ! ELSE IF ( starting_wfc == 'atomic' ) THEN ! IF ( natomwfc >= nbnd ) THEN WRITE( stdout, '(5X,"Starting wfc are ",I4," atomic wfcs")' ) natomwfc ELSE WRITE( stdout, '(5X,"Starting wfc are ",I4," atomic + ", & & I4," random wfc")' ) natomwfc, nbnd-natomwfc END IF ! ELSE IF ( TRIM(starting_wfc) == 'atomic+random' .AND. natomwfc > 0) THEN ! IF ( natomwfc >= nbnd ) THEN WRITE( stdout, '(5X,"Starting wfc are ",I4," randomized atomic wfcs")')& natomwfc ELSE WRITE( stdout, '(5X,"Starting wfc are ",I4," randomized atomic wfcs + "& & ,I4," random wfc")' ) natomwfc, nbnd-natomwfc END IF ! ELSE ! WRITE( stdout, '(5X,"Starting wfc are random")' ) ! END IF ! ! ... exit here if starting from file or for non-scf calculations. ! ... In the latter case the starting wavefunctions are not ! ... calculated here but just before diagonalization (to reduce I/O) ! IF ( ( .NOT. lscf .AND. .NOT. lelfield ) .OR. TRIM(starting_wfc) == 'file' ) THEN ! CALL stop_clock( 'wfcinit' ) RETURN ! END IF ! IF ( nks > 1 ) REWIND( iunigk ) ! ! ... calculate and write all starting wavefunctions to file ! DO ik = 1, nks ! ! ... various initializations: k, spin, number of PW, indices ! current_k = ik IF ( lsda ) current_spin = isk(ik) npw = ngk (ik) IF ( nks > 1 ) READ( iunigk ) igk ! call g2_kin (ik) ! ! ... Calculate nonlocal pseudopotential projectors |beta> ! IF ( nkb > 0 ) CALL init_us_2( npw, igk, xk(1,ik), vkb ) ! ! ... Needed for LDA+U ! IF ( nks > 1 .AND. lda_plus_u .AND. (U_projection .NE. 'pseudo') ) & CALL get_buffer( wfcU, nwordwfcU, iunhub, ik ) ! ! ... calculate starting wavefunctions ! CALL init_wfc ( ik ) ! ! ... write starting wavefunctions to file ! IF ( nks > 1 .OR. (io_level > 1) .OR. lelfield ) & CALL save_buffer ( evc, nwordwfc, iunwfc, ik ) ! END DO ! CALL stop_clock( 'wfcinit' ) RETURN ! END SUBROUTINE wfcinit ! !---------------------------------------------------------------------------- SUBROUTINE init_wfc ( ik ) !---------------------------------------------------------------------------- ! ! ... This routine computes starting wavefunctions for k-point ik ! USE kinds, ONLY : DP USE bp, ONLY : lelfield USE becmod, ONLY : allocate_bec_type, deallocate_bec_type, & bec_type, becp USE constants, ONLY : tpi USE cell_base, ONLY : tpiba2 USE basis, ONLY : natomwfc, starting_wfc USE gvect, ONLY : g, gstart USE klist, ONLY : xk USE wvfct, ONLY : nbnd, npw, npwx, igk, et USE uspp, ONLY : nkb, okvan USE noncollin_module, ONLY : npol USE wavefunctions_module, ONLY : evc USE random_numbers, ONLY : randy USE mp_bands, ONLY : intra_bgrp_comm USE control_flags, ONLY : gamma_only ! IMPLICIT NONE ! INTEGER :: ik ! INTEGER :: ibnd, ig, ipol, n_starting_wfc, n_starting_atomic_wfc LOGICAL :: lelfield_save ! REAL(DP) :: rr, arg REAL(DP), ALLOCATABLE :: etatom(:) ! atomic eigenvalues ! COMPLEX(DP), ALLOCATABLE :: wfcatom(:,:,:) ! atomic wfcs for initialization ! ! IF ( starting_wfc(1:6) == 'atomic' ) THEN ! n_starting_wfc = MAX( natomwfc, nbnd ) n_starting_atomic_wfc = natomwfc ! ELSE IF ( starting_wfc == 'random' ) THEN ! n_starting_wfc = nbnd n_starting_atomic_wfc = 0 ! ELSE ! ! ...case 'file' should not be done here ! CALL errore ( 'init_wfc', & 'invalid value for startingwfc: ' // TRIM ( starting_wfc ) , 1 ) ! END IF ! ALLOCATE( wfcatom( npwx, npol, n_starting_wfc ) ) ! IF ( starting_wfc(1:6) == 'atomic' ) THEN ! CALL atomic_wfc( ik, wfcatom ) ! IF ( starting_wfc == 'atomic+random' .AND. & n_starting_wfc == n_starting_atomic_wfc ) THEN ! ! ... in this case, introduce a small randomization of wavefunctions ! ... to prevent possible "loss of states" ! DO ibnd = 1, n_starting_atomic_wfc ! DO ipol = 1, npol ! DO ig = 1, npw ! rr = randy() arg = tpi * randy() ! wfcatom(ig,ipol,ibnd) = wfcatom(ig,ipol,ibnd) * & ( 1.0_DP + 0.05_DP * CMPLX( rr*COS(arg), rr*SIN(arg) ,kind=DP) ) ! END DO ! END DO ! END DO ! END IF ! END IF ! ! ... if not enough atomic wfc are available, ! ... fill missing wfcs with random numbers ! DO ibnd = n_starting_atomic_wfc + 1, n_starting_wfc ! DO ipol = 1, npol ! wfcatom(:,ipol,ibnd) = (0.0_dp, 0.0_dp) ! DO ig = 1, npw ! rr = randy() arg = tpi * randy() ! wfcatom(ig,ipol,ibnd) = & CMPLX( rr*COS( arg ), rr*SIN( arg ) ,kind=DP) / & ( ( xk(1,ik) + g(1,igk(ig)) )**2 + & ( xk(2,ik) + g(2,igk(ig)) )**2 + & ( xk(3,ik) + g(3,igk(ig)) )**2 + 1.0_DP ) END DO ! END DO ! END DO ! ! ... Diagonalize the Hamiltonian on the basis of atomic wfcs ! ALLOCATE( etatom( n_starting_wfc ) ) ! ! ... Allocate space for ! CALL allocate_bec_type ( nkb, n_starting_wfc, becp, intra_bgrp_comm ) ! ! ... the following trick is for electric fields with Berry's phase: ! ... by setting lelfield = .false. one prevents the calculation of ! ... electric enthalpy in the Hamiltonian (cannot be calculated ! ... at this stage: wavefunctions at previous step are missing) ! lelfield_save = lelfield lelfield = .FALSE. ! CALL rotate_wfc ( npwx, npw, n_starting_wfc, gstart, & nbnd, wfcatom, npol, okvan, evc, etatom ) ! lelfield = lelfield_save ! ! ... copy the first nbnd eigenvalues ! ... eigenvectors are already copied inside routine rotate_wfc ! et(1:nbnd,ik) = etatom(1:nbnd) ! CALL deallocate_bec_type ( becp ) DEALLOCATE( etatom ) DEALLOCATE( wfcatom ) ! RETURN ! END SUBROUTINE init_wfc espresso-5.1/PW/src/force_ew.f900000644000175000017500000001240512341373025014532 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine force_ew (alat, nat, ntyp, ityp, zv, at, bg, tau, & omega, g, gg, ngm, gstart, gamma_only, gcutm, strf, forceion) !----------------------------------------------------------------------- ! ! This routine computes the Ewald contribution to the forces, ! both the real- and reciprocal-space terms are present ! USE kinds USE constants, ONLY : tpi, e2 USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE esm, ONLY : esm_force_ew, do_comp_esm, esm_bc implicit none ! ! First the dummy variables ! integer :: nat, ntyp, ngm, ityp (nat), gstart ! input: the number of atoms ! input: the number of types of atom ! input: the number of G vectors ! input: the type of each atom ! input: first non-zero G vector logical :: gamma_only real(DP) :: factor, tau (3, nat), g (3, ngm), gg (ngm), zv (ntyp), & at (3, 3), bg (3, 3), omega, gcutm, alat ! input: the coordinates of the atoms ! input: the G vectors ! input: the moduli of G vectors ! input: the charge of the atoms ! input: the direct lattice vectors ! input: the reciprocal lattice vectors ! input: the volume of the unit cell ! input: cut-off of g vectors ! input: the edge of the cell ! complex(DP) :: strf (ngm, ntyp) ! input: the structure factor on the potential ! real(DP) :: forceion (3, nat) ! output: the ewald part of the forces ! integer, parameter :: mxr=50 ! the maximum number of R vectors integer :: ig, n, na, nb, nt, nrm, ipol ! counter on G vectos ! counter on r vectors ! counter on atoms ! counter on atoms ! counter on atomic types ! the number of R vectors for real space su ! counter on polarization real(DP) :: sumnb, arg, tpiba2, alpha, dtau (3), r (3, mxr), & r2 (mxr), rmax, rr, charge, upperbound, fact ! auxiliary variable for speed ! the argument of the exponential ! 2 pi /alat ! the alpha parameter ! the difference of two tau ! the position of the atoms in the shell ! the square of r ! the maximum r ! the modulus of the r vectors ! the total charge ! used to determine alpha complex(DP), allocatable :: aux (:) ! auxiliary space real(DP), external :: qe_erfc ! forceion(:,:) = 0.d0 tpiba2 = (tpi / alat) **2 charge = 0.d0 do na = 1, nat charge = charge+zv (ityp (na) ) enddo ! ! choose alpha in order to have convergence in the sum over G ! upperbound is a safe upper bound for the error ON THE ENERGY ! alpha = 1.1d0 10 alpha = alpha - 0.1d0 if (alpha.eq.0.d0) call errore ('force_ew', 'optimal alpha not found', 1) upperbound = e2 * charge**2 * sqrt (2.d0 * alpha / tpi) * & qe_erfc ( sqrt (tpiba2 * gcutm / 4.d0 / alpha) ) if (upperbound > 1.0d-6) goto 10 ! ! G-space sum here ! IF ( do_comp_esm .and. ( esm_bc .ne. 'pbc') ) THEN ! ! ... Perform ESM calculation ! CALL esm_force_ew ( alpha, forceion ) ! ELSE allocate(aux(ngm)) aux(:) = (0.d0, 0.d0) do nt = 1, ntyp do ig = gstart, ngm aux (ig) = aux (ig) + zv (nt) * CONJG(strf (ig, nt) ) enddo enddo do ig = gstart, ngm aux (ig) = aux (ig) * exp ( - gg (ig) * tpiba2 / alpha / 4.d0) & / (gg (ig) * tpiba2) enddo if (gamma_only) then fact = 4.d0 else fact = 2.d0 end if do na = 1, nat do ig = gstart, ngm arg = tpi * (g (1, ig) * tau (1, na) + g (2, ig) * tau (2, na) & + g (3, ig) * tau (3, na) ) sumnb = cos (arg) * AIMAG (aux(ig)) - sin (arg) * DBLE (aux(ig) ) forceion (1, na) = forceion (1, na) + g (1, ig) * sumnb forceion (2, na) = forceion (2, na) + g (2, ig) * sumnb forceion (3, na) = forceion (3, na) + g (3, ig) * sumnb enddo do ipol = 1, 3 forceion (ipol, na) = - zv (ityp (na) ) * fact * e2 * tpi**2 / & omega / alat * forceion (ipol, na) enddo enddo deallocate (aux) ENDIF if (gstart == 1) goto 100 ! ! R-space sum here (only for the processor that contains G=0) ! rmax = 5.d0 / (sqrt (alpha) * alat) ! ! with this choice terms up to ZiZj*erfc(5) are counted (erfc(5)=2x10^-1 ! do na = 1, nat do nb = 1, nat if (nb.eq.na) goto 50 dtau (:) = tau (:, na) - tau (:, nb) ! ! generates nearest-neighbors shells r(i)=R(i)-dtau(i) ! call rgen (dtau, rmax, mxr, at, bg, r, r2, nrm) do n = 1, nrm rr = sqrt (r2 (n) ) * alat factor = zv (ityp (na) ) * zv (ityp (nb) ) * e2 / rr**2 * & (qe_erfc (sqrt (alpha) * rr) / rr + & sqrt (8.0d0 * alpha / tpi) * exp ( - alpha * rr**2) ) * alat do ipol = 1, 3 forceion (ipol, na) = forceion (ipol, na) - factor * r (ipol, n) enddo enddo 50 continue enddo enddo 100 continue ! CALL mp_sum( forceion, intra_bgrp_comm ) ! return end subroutine force_ew espresso-5.1/PW/src/set_rhoc.f900000644000175000017500000001077112341373025014553 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine set_rhoc !----------------------------------------------------------------------- ! ! This routine computes the core charge on the real space 3D mesh ! ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE atom, ONLY : msh, rgrid USE uspp_param,ONLY : upf USE ions_base, ONLY : ntyp => nsp USE cell_base, ONLY : omega, tpiba2 USE ener, ONLY : etxcc USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : invfft USE gvect, ONLY : ngm, nl, nlm, ngl, gl, igtongl USE scf, ONLY : rho_core, rhog_core USE lsda_mod, ONLY : nspin USE vlocal, ONLY : strf USE control_flags, ONLY : gamma_only USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE scf ! implicit none ! real(DP), parameter :: eps = 1.d-10 complex(DP) , allocatable :: aux (:) ! used for the fft of the core charge real(DP) , allocatable :: rhocg(:) ! the radial fourier trasform real(DP) :: rhoima, rhoneg, rhorea ! used to check the core charge real(DP) :: vtxcc ! dummy xc energy term type(scf_type) :: dum integer :: ir, nt, ng ! counter on mesh points ! counter on atomic types ! counter on g vectors etxcc = 0.0_DP if ( ANY( upf(1:ntyp)%nlcc ) ) goto 10 rhog_core(:) = 0.0_DP rho_core(:) = 0.0_DP return 10 continue allocate (aux( dfftp%nnr)) allocate (rhocg( ngl)) aux (:) = (0.0_DP, 0.0_DP) ! ! the sum is on atom types ! do nt = 1, ntyp if ( upf(nt)%nlcc ) then ! ! drhoc compute the radial fourier transform for each shell of g vec ! call drhoc (ngl, gl, omega, tpiba2, msh (nt), rgrid(nt)%r, & rgrid(nt)%rab, upf(nt)%rho_atc, rhocg) ! ! multiply by the structure factor and sum ! do ng = 1, ngm aux(nl(ng)) = aux(nl(ng)) + strf(ng,nt) * rhocg(igtongl(ng)) enddo endif enddo if (gamma_only) then do ng = 1, ngm aux(nlm(ng)) = CONJG(aux(nl (ng))) end do end if ! rhog_core(:) = aux(nl(:)) ! ! the core charge in real space ! CALL invfft ('Dense', aux, dfftp) ! ! test on the charge and computation of the core energy ! rhoneg = 0.d0 rhoima = 0.d0 do ir = 1, dfftp%nnr rhoneg = rhoneg + min (0.d0, DBLE (aux (ir) ) ) rhoima = rhoima + abs (AIMAG (aux (ir) ) ) rho_core(ir) = DBLE (aux(ir)) ! ! NOTE: Core charge is computed in reciprocal space and brought to real ! space by FFT. For non smooth core charges (or insufficient cut-off) ! this may result in negative values in some grid points. ! Up to October 1999 the core charge was forced to be positive definite. ! This induces an error in the force, and probably stress, calculation if ! the number of grid points where the core charge would be otherwise neg ! is large. The error disappears for sufficiently high cut-off, but may be ! rather large and it is better to leave the core charge as it is. ! If you insist to have it positive definite (with the possible problems ! mentioned above) uncomment the following lines. SdG, Oct 15 1999 ! ! rhorea = max ( DBLE (aux (ir) ), eps) ! rho_core(ir) = rhorea ! enddo rhoneg = rhoneg / (dfftp%nr1 * dfftp%nr2 * dfftp%nr3) rhoima = rhoima / (dfftp%nr1 * dfftp%nr2 * dfftp%nr3) ! call mp_sum( rhoneg, intra_bgrp_comm ) call mp_sum( rhoima, intra_bgrp_comm ) ! IF (rhoneg < -1.0d-6 .OR. rhoima > 1.0d-6) & WRITE( stdout, '(/5x,"Check: negative/imaginary core charge=",2f12.6)')& rhoneg, rhoima ! ! calculate core_only exch-corr energy etxcc=E_xc[rho_core] if required ! The term was present in previous versions of the code but it shouldn't ! ! call create_scf_type(dum) ! dum%of_r(:,:) = 0.0_DP ! dum%of_g(:,:) = (0.0_DP, 0.0_DP) ! ! call v_xc( dum, rho_core, rhog_core, etxcc, vtxcc, aux ) ! ! call destroy_scf_type(dum) ! WRITE( stdout, 9000) etxcc ! WRITE( stdout, * ) 'BEWARE it will be subtracted from total energy !' ! deallocate (rhocg) deallocate (aux) ! return ! 9000 format (5x,'core-only xc energy = ',f15.8,' Ry') end subroutine set_rhoc espresso-5.1/PW/src/stres_ewa.f900000644000175000017500000001250112341373025014732 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine stres_ewa (alat, nat, ntyp, ityp, zv, at, bg, tau, & omega, g, gg, ngm, gstart, gamma_only, gcutm, sigmaewa) !----------------------------------------------------------------------- ! ! Ewald contribution, both real- and reciprocal-space terms are present ! USE kinds USE constants, only : tpi, e2, eps6 USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum implicit none ! ! first the dummy variables ! integer :: nat, ntyp, ityp (nat), ngm, gstart ! input: number of atoms in the unit cell ! input: number of different types of atoms ! input: the type of each atom ! input: number of plane waves for G sum ! input: first nonzero g vector logical :: gamma_only real(DP) :: tau (3, nat), g (3, ngm), gg (ngm), zv (ntyp), & at (3, 3), bg (3, 3), omega, alat, gcutm, sigmaewa (3, 3) ! input: the positions of the atoms in the cell ! input: the coordinates of G vectors ! input: the square moduli of G vectors ! input: the charge of each type of atoms ! input: the direct lattice vectors ! input: the reciprocal lattice vectors ! input: the volume of the unit cell ! input: measure of length ! input: cut-off of g vectors ! output: the ewald stress ! ! here the local variables ! integer, parameter :: mxr = 50 ! the maximum number of R vectors included in r sum integer :: ng, nr, na, nb, l, m, nrm ! counter over reciprocal G vectors ! counter over direct vectors ! counter on atoms ! counter on atoms ! counter on atoms ! number of R vectors included in r sum real(DP) :: charge, arg, tpiba2, dtau (3), alpha, r (3, mxr), & r2 (mxr), rmax, rr, upperbound, fact, fac, g2, g2a, sdewald, sewald ! total ionic charge in the cell ! the argument of the phase ! length in reciprocal space ! the difference tau_s - tau_s' ! alpha term in ewald sum ! input of the rgen routine ( not used here ) ! the square modulus of R_j-tau_s-tau_s' ! the maximum radius to consider real space sum ! buffer variable ! used to optimize alpha ! auxiliary variables ! diagonal term ! nondiagonal term complex(DP) :: rhostar real(DP), external :: qe_erfc ! the erfc function ! tpiba2 = (tpi / alat) **2 sigmaewa(:,:) = 0.d0 charge = 0.d0 do na = 1, nat charge = charge+zv (ityp (na) ) enddo ! ! choose alpha in order to have convergence in the sum over G ! upperbound is a safe upper bound for the error ON THE ENERGY ! alpha = 2.9d0 12 alpha = alpha - 0.1d0 if (alpha.eq.0.0) call errore ('stres_ew', 'optimal alpha not found & &', 1) upperbound = e2 * charge**2 * sqrt (2 * alpha / tpi) * & qe_erfc ( sqrt (tpiba2 * gcutm / 4.0d0 / alpha) ) if (upperbound.gt.1d-7) goto 12 ! ! G-space sum here ! ! Determine if this processor contains G=0 and set the constant term ! if (gstart == 2) then sdewald = tpi * e2 / 4.d0 / alpha * (charge / omega) **2 else sdewald = 0.d0 endif ! sdewald is the diagonal term if (gamma_only) then fact = 2.d0 else fact = 1.d0 end if do ng = gstart, ngm g2 = gg (ng) * tpiba2 g2a = g2 / 4.d0 / alpha rhostar = (0.d0, 0.d0) do na = 1, nat arg = (g (1, ng) * tau (1, na) + g (2, ng) * tau (2, na) + & g (3, ng) * tau (3, na) ) * tpi rhostar = rhostar + zv (ityp (na) ) * CMPLX(cos (arg), sin (arg),kind=DP) enddo rhostar = rhostar / omega sewald = fact * tpi * e2 * exp ( - g2a) / g2 * abs (rhostar) **2 sdewald = sdewald-sewald do l = 1, 3 do m = 1, l sigmaewa (l, m) = sigmaewa (l, m) + sewald * tpiba2 * 2.d0 * & g (l, ng) * g (m, ng) / g2 * (g2a + 1) enddo enddo enddo do l = 1, 3 sigmaewa (l, l) = sigmaewa (l, l) + sdewald enddo ! ! R-space sum here (only for the processor that contains G=0) ! if (gstart.eq.2) then rmax = 4.0d0 / sqrt (alpha) / alat ! ! with this choice terms up to ZiZj*erfc(5) are counted (erfc(5)=2x10^-1 ! do na = 1, nat do nb = 1, nat dtau (:) = tau (:, na) - tau (:, nb) ! ! generates nearest-neighbors shells r(i)=R(i)-dtau(i) ! call rgen (dtau, rmax, mxr, at, bg, r, r2, nrm) do nr = 1, nrm rr = sqrt (r2 (nr) ) * alat fac = - e2 / 2.0d0 / omega * alat**2 * zv (ityp (na) ) * & zv ( ityp (nb) ) / rr**3 * (qe_erfc (sqrt (alpha) * rr) + & rr * sqrt (8 * alpha / tpi) * exp ( - alpha * rr**2) ) do l = 1, 3 do m = 1, l sigmaewa (l, m) = sigmaewa (l, m) + fac * r(l,nr) * r(m,nr) enddo enddo enddo enddo enddo endif ! do l = 1, 3 do m = 1, l - 1 sigmaewa (m, l) = sigmaewa (l, m) enddo enddo do l = 1, 3 do m = 1, 3 sigmaewa (l, m) = - sigmaewa (l, m) enddo enddo call mp_sum( sigmaewa, intra_bgrp_comm ) return end subroutine stres_ewa espresso-5.1/PW/src/d_matrix.f900000644000175000017500000000775612341373025014565 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------- subroutine d_matrix (dy1, dy2, dy3) !--------------------------------------------------------------- ! USE kinds, only: DP USE symm_base, ONLY: nsym, sr USE random_numbers, ONLY : randy implicit none real(DP) :: dy1 (3, 3, 48), dy2 (5, 5, 48), dy3 (7, 7, 48) ! integer, parameter :: maxl = 3, maxm = 2*maxl+1, & maxlm = (maxl+1)*(maxl+1) ! maxl = max value of l allowed ! maxm = number of m components for l=maxl ! maxlm= number of l,m spherical harmonics for l <= maxl integer :: m, n, isym real(DP) :: ylm(maxm, maxlm), yl1 (3, 3), yl2(5, 5), yl3(7,7), & yl1_inv (3, 3), yl2_inv(5, 5), yl3_inv(7, 7), ylms(maxm, maxlm), & rl(3,maxm), rrl (maxm), srl(3,maxm), delta(7,7), capel real(DP), parameter :: eps = 1.0d-9 real(DP), external :: ddot ! ! randomly distributed points on a sphere ! do m = 1, maxm rl (1, m) = randy () - 0.5d0 rl (2, m) = randy () - 0.5d0 rl (3, m) = randy () - 0.5d0 rrl (m) = rl (1,m)**2 + rl (2,m)**2 + rl (3,m)**2 enddo call ylmr2 ( maxlm, 2*maxl+1, rl, rrl, ylm ) ! ! invert Yl for each block of definite l (note the transpose operation) ! ! l = 1 block ! do m = 1, 3 do n = 1, 3 yl1 (m, n) = ylm (n, 1+m) end do end do call invmat (3, yl1, yl1_inv, capel) ! ! l = 2 block ! do m = 1, 5 do n = 1, 5 yl2 (m, n) = ylm (n, 4+m) end do end do call invmat (5, yl2, yl2_inv, capel) ! ! l = 3 block ! do m = 1, 7 do n = 1, 7 yl3 (m, n) = ylm (n, 9+m) end do end do call invmat (7, yl3, yl3_inv, capel) ! ! now for each symmetry operation of the point-group ... ! do isym = 1, nsym ! ! srl(:,m) = rotated rl(:,m) vectors ! srl = matmul (sr(:,:,isym), rl) ! call ylmr2 ( maxlm, maxm, srl, rrl, ylms ) ! ! find D_S = Yl_S * Yl_inv (again, beware the transpose) ! ! l = 1 ! do m = 1, 3 do n = 1, 3 yl1 (m, n) = ylms (n, 1+m) end do end do dy1 (:, :, isym) = matmul (yl1(:,:), yl1_inv(:,:)) ! ! l = 2 block ! do m = 1, 5 do n = 1, 5 yl2 (m, n) = ylms (n, 4+m) end do end do dy2 (:, :, isym) = matmul (yl2(:,:), yl2_inv(:,:)) ! ! l = 3 block ! do m = 1, 7 do n = 1, 7 yl3 (m, n) = ylms (n, 9+m) end do end do dy3 (:, :, isym) = matmul (yl3(:,:), yl3_inv(:,:)) ! enddo ! ! check that D_S matrices are orthogonal as they should if Ylm are ! correctly defined. ! delta(:,:) = 0.d0 do m= 1, 7 delta(m,m) = 1.d0 end do do isym =1,nsym ! ! l = 1 block ! capel = 0.d0 do m = 1, 3 do n = 1, 3 capel = capel + & ( ddot(3,dy1(1,m,isym),1,dy1(1,n,isym),1) - delta(m,n) )**2 end do end do if (capel.gt.eps) call errore ('d_matrix', & 'D_S (l=1) for this symmetry operation is not orthogonal',isym) ! ! l = 2 block ! capel = 0.d0 do m = 1, 5 do n = 1, 5 capel = capel + & ( ddot(5,dy2(1,m,isym),1,dy2(1,n,isym),1) - delta(m,n) )**2 end do end do if (capel.gt.eps) call errore ('d_matrix', & 'D_S (l=2) for this symmetry operation is not orthogonal',isym) ! ! l = 3 block ! capel = 0.d0 do m = 1, 7 do n = 1, 7 capel = capel + & ( ddot(7,dy3(1,m,isym),1,dy3(1,n,isym),1) - delta(m,n) )**2 end do end do if (capel.gt.eps) call errore ('d_matrix', & 'D_S (l=3) for this symmetry operation is not orthogonal',isym) ! end do return end subroutine d_matrix espresso-5.1/PW/src/martyna_tuckerman.f900000644000175000017500000002421112341373025016463 0ustar mbamba! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #undef TESTING MODULE martyna_tuckerman ! ! ... The variables needed to the Martyna-Tuckerman method for isolated ! systems ! USE kinds, ONLY: dp USE constants, ONLY : e2, pi, tpi, fpi USE ws_base ! IMPLICIT NONE ! TYPE (ws_type) :: ws REAL (DP) :: alpha, beta REAL (DP), ALLOCATABLE :: wg_corr(:) LOGICAL :: wg_corr_is_updated = .FALSE. LOGICAL :: do_comp_mt = .FALSE. LOGICAL :: gamma_only = .FALSE. integer :: gstart = 1 ! SAVE PRIVATE PUBLIC :: tag_wg_corr_as_obsolete, do_comp_mt, & wg_corr_ewald, wg_corr_loc, wg_corr_h, wg_corr_force CONTAINS !---------------------------------------------------------------------------- SUBROUTINE tag_wg_corr_as_obsolete !---------------------------------------------------------------------------- wg_corr_is_updated = .FALSE. END SUBROUTINE tag_wg_corr_as_obsolete !---------------------------------------------------------------------------- SUBROUTINE wg_corr_h( omega, ngm, rho, v, eh_corr ) !---------------------------------------------------------------------------- INTEGER, INTENT(IN) :: ngm REAL(DP), INTENT(IN) :: omega COMPLEX(DP), INTENT(IN) :: rho(ngm) COMPLEX(DP), INTENT(OUT) :: v(ngm) REAL(DP), INTENT(OUT) :: eh_corr INTEGER :: ig IF (.NOT.wg_corr_is_updated) CALL init_wg_corr ! v(:) = (0._dp,0._dp) eh_corr = 0._dp DO ig = 1,ngm v(ig) = e2 * wg_corr(ig) * rho(ig) eh_corr = eh_corr + ABS(rho(ig))**2 * wg_corr(ig) END DO iF (gamma_only) v(gstart:ngm) = 0.5_dp * v(gstart:ngm) eh_corr = 0.5_dp * e2 * eh_corr * omega RETURN END SUBROUTINE wg_corr_h !---------------------------------------------------------------------------- SUBROUTINE wg_corr_loc( omega, ntyp, ngm, zv, strf, v ) !---------------------------------------------------------------------------- INTEGER, INTENT(IN) :: ntyp, ngm REAL(DP), INTENT(IN) :: omega, zv(ntyp) COMPLEX(DP), INTENT(IN) :: strf(ngm,ntyp) COMPLEX(DP), INTENT(OUT) :: v(ngm) INTEGER :: ig IF (.NOT.wg_corr_is_updated) CALL init_wg_corr ! do ig=1,ngm v(ig) = - e2 * wg_corr(ig) * SUM(zv(1:ntyp)*strf(ig,1:ntyp)) / omega end do iF (gamma_only) v(gstart:ngm) = 0.5_dp * v(gstart:ngm) RETURN END SUBROUTINE wg_corr_loc !---------------------------------------------------------------------------- SUBROUTINE wg_corr_force( lnuclei, omega, nat, ntyp, ityp, ngm, g, tau, zv, strf, nspin, & rho, force ) !---------------------------------------------------------------------------- USE cell_base, ONLY : tpiba USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum INTEGER, INTENT(IN) :: nat, ntyp, ityp(nat), ngm, nspin REAL(DP), INTENT(IN) :: omega, zv(ntyp), tau(3,nat), g(3,ngm) COMPLEX(DP), INTENT(IN) :: strf(ngm,ntyp), rho(ngm,nspin) LOGICAL, INTENT(IN) :: lnuclei ! this variable is used in wg_corr_force to select if ! corr should be done on rho and nuclei or only on rho REAL(DP), INTENT(OUT) :: force(3,nat) INTEGER :: ig, na REAL (DP) :: arg COMPLEX(DP), ALLOCATABLE :: v(:) COMPLEX(DP) :: rho_tot ! IF (.NOT.wg_corr_is_updated) CALL init_wg_corr ! allocate ( v(ngm) ) do ig=1,ngm rho_tot = rho(ig,1) if(lnuclei) rho_tot = rho_tot - SUM(zv(1:ntyp)*strf(ig,1:ntyp)) / omega if (nspin==2) rho_tot = rho_tot + rho(ig,2) v(ig) = e2 * wg_corr(ig) * rho_tot end do force(:,:) = 0._dp do na=1,nat do ig=1,ngm arg = tpi * SUM ( g(:,ig)*tau(:, na) ) force(:,na) = force(:,na) + g(:,ig) * CMPLX(SIN(arg),-COS(ARG)) * v(ig) end do force(:,na) = - force(:,na) * zv(ityp(na)) * tpiba end do deallocate ( v ) ! call mp_sum( force, intra_bgrp_comm ) ! RETURN END SUBROUTINE wg_corr_force !---------------------------------------------------------------------------- SUBROUTINE init_wg_corr !---------------------------------------------------------------------------- USE mp_bands, ONLY : me_bgrp USE fft_base, ONLY : dfftp USE fft_interfaces,ONLY : fwfft, invfft USE control_flags, ONLY : gamma_only_ => gamma_only USE gvect, ONLY : ngm, gg, gstart_ => gstart, nl, nlm, ecutrho USE cell_base, ONLY : at, alat, tpiba2, omega INTEGER :: idx0, idx, ir, i,j,k, ig, nt REAL(DP) :: r(3), rws, upperbound, rws2 COMPLEX (DP), ALLOCATABLE :: aux(:) REAL(DP), EXTERNAL :: qe_erfc #ifdef TESTING REAL(DP), ALLOCATABLE :: plot(:) CHARACTER (LEN=25) :: filplot LOGICAL, SAVE :: first = .TRUE. #endif IF ( ALLOCATED(wg_corr) ) DEALLOCATE(wg_corr) ALLOCATE(wg_corr(ngm)) ! ! choose alpha in order to have convergence in the sum over G ! upperbound is a safe upper bound for the error in the sum over G ! alpha = 2.9d0 upperbound = 1._dp DO WHILE ( upperbound > 1.e-7_dp) alpha = alpha - 0.1_dp if (alpha<=0._dp) call errore('init_wg_corr','optimal alpha not found',1) upperbound = e2 * sqrt (2.d0 * alpha / tpi) * & qe_erfc ( sqrt ( ecutrho / 4.d0 / alpha) ) END DO beta = 0.5_dp/alpha ! 1._dp/alpha ! write (*,*) " alpha, beta MT = ", alpha, beta ! call ws_init(at,ws) ! gstart = gstart_ gamma_only = gamma_only_ ! ! Index for parallel summation ! #if defined (__MPI) idx0 = dfftp%nr1x*dfftp%nr2x*dfftp%ipp(me_bgrp+1) #else idx0 = 0 #endif ! ALLOCATE (aux(dfftp%nnr)) aux = CMPLX(0._dp,0._dp) DO ir = 1, dfftp%nr1x*dfftp%nr2x * dfftp%npl ! ! ... three dimensional indices ! idx = idx0 + ir - 1 k = idx / (dfftp%nr1x*dfftp%nr2x) idx = idx - (dfftp%nr1x*dfftp%nr2x)*k j = idx / dfftp%nr1x idx = idx - dfftp%nr1x*j i = idx r(:) = ( at(:,1)/dfftp%nr1*i + at(:,2)/dfftp%nr2*j + at(:,3)/dfftp%nr3*k ) rws = ws_dist(r,ws) #ifdef TESTING rws2 = ws_dist_stupid(r,ws) if (abs (rws-rws2) > 1.e-5 ) then write (*,'(4i8)') ir, i,j,k write (*,'(5f14.8)') r(:), rws, rws2 stop end if #endif aux(ir) = smooth_coulomb_r( rws*alat ) END DO CALL fwfft ('Dense', aux, dfftp) do ig =1, ngm wg_corr(ig) = omega * REAL(aux(nl(ig))) - smooth_coulomb_g( tpiba2*gg(ig)) end do wg_corr(:) = wg_corr(:) * exp(-tpiba2*gg(:)*beta/4._dp)**2 ! if (gamma_only) wg_corr(gstart:ngm) = 2.d0 * wg_corr(gstart:ngm) ! wg_corr_is_updated = .true. #ifdef TESTING if (first) then ALLOCATE(plot(dfftp%nnr)) filplot = 'wg_corr_r' CALL invfft ('Dense', aux, dfftp) plot(:) = REAL(aux(:)) call write_wg_on_file(filplot, plot) filplot = 'wg_corr_g' aux(:) = CMPLX(0._dp,0._dp) do ig =1, ngm aux(nl(ig)) = smooth_coulomb_g( tpiba2*gg(ig))/omega end do if (gamma_only) aux(nlm(1:ngm)) = CONJG( aux(nl(1:ngm)) ) CALL invfft ('Dense', aux, dfftp) plot(:) = REAL(aux(:)) call write_wg_on_file(filplot, plot) filplot = 'wg_corr_diff' aux(:) = CMPLX(0._dp,0._dp) aux(nl(1:ngm)) = wg_corr(1:ngm) / omega if (gamma_only) then aux(:) = 0.5_dp * aux(:) aux(nlm(1:ngm)) = aux(nlm(1:ngm)) + CONJG( aux(nl(1:ngm)) ) end if CALL invfft ('Dense', aux, dfftp) plot(:) = REAL(aux(:)) call write_wg_on_file(filplot, plot) DEALLOCATE (plot) first = .false. end if #endif DEALLOCATE (aux) RETURN END SUBROUTINE init_wg_corr !---------------------------------------------------------------------------- SUBROUTINE write_wg_on_file(filplot, plot) !---------------------------------------------------------------------------- USE fft_base, ONLY : dfftp USE gvect, ONLY : gcutm USE wvfct, ONLY : ecutwfc USE gvecs, ONLY : dual USE cell_base, ONLY : at, alat, tpiba2, omega, ibrav, celldm USE ions_base, ONLY : zv, ntyp => nsp, nat, ityp, atm, tau CHARACTER (LEN=25), INTENT(IN) :: filplot REAL(DP) :: plot(dfftp%nnr) CHARACTER (LEN=25) :: title INTEGER :: plot_num=0, iflag=+1 CALL plot_io (filplot, title, dfftp%nr1x, dfftp%nr2x, dfftp%nr3x, dfftp%nr1, dfftp%nr2, & dfftp%nr3, nat, ntyp, ibrav, celldm, at, gcutm, dual, ecutwfc, plot_num, atm, & ityp, zv, tau, plot, iflag) RETURN END SUBROUTINE write_wg_on_file !---------------------------------------------------------------------------- REAL(DP) FUNCTION wg_corr_ewald ( omega, ntyp, ngm, zv, strf ) !---------------------------------------------------------------------------- INTEGER, INTENT(IN) :: ntyp, ngm REAL(DP), INTENT(IN) :: omega, zv(ntyp) COMPLEX(DP), INTENT(IN) :: strf(ngm,ntyp) INTEGER :: ig COMPLEX(DP) :: rhoion IF (.NOT.wg_corr_is_updated) CALL init_wg_corr ! wg_corr_ewald = 0._dp DO ig=1,ngm rhoion = SUM (zv(1:ntyp)* strf(ig,1:ntyp) ) / omega wg_corr_ewald = wg_corr_ewald + ABS(rhoion)**2 * wg_corr(ig) END DO wg_corr_ewald = 0.5_dp * e2 * wg_corr_ewald * omega ! write(*,*) "ewald correction = ", wg_corr_ewald END FUNCTION wg_corr_ewald !---------------------------------------------------------------------------- REAL(DP) FUNCTION smooth_coulomb_r(r) !---------------------------------------------------------------------------- REAL(DP), INTENT(IN) :: r REAL(DP), EXTERNAL :: qe_erf ! smooth_coulomb_r = sqrt(2._dp*alpha/tpi)**3 * exp(-alpha*r*r) ! to be modified IF (r>1.e-6_dp) THEN smooth_coulomb_r = qe_erf(sqrt(alpha)*r)/r ELSE smooth_coulomb_r = 2._dp/sqrt(pi) * sqrt(alpha) END IF END FUNCTION smooth_coulomb_r !---------------------------------------------------------------------------- REAL(DP) FUNCTION smooth_coulomb_g(q2) !---------------------------------------------------------------------------- REAL(DP), INTENT(IN) :: q2 ! smooth_coulomb_g = exp(-q2/4._dp/alpha) ! to be modified IF (q2>1.e-6_dp) THEN smooth_coulomb_g = fpi * exp(-q2/4._dp/alpha)/q2 ! to be modified ELSE smooth_coulomb_g = - 1._dp * fpi * (1._dp/4._dp/alpha + 2._dp*beta/4._dp) END IF END FUNCTION smooth_coulomb_g !---------------------------------------------------------------------------- END MODULE martyna_tuckerman espresso-5.1/PW/src/stres_nonloc_dft.f900000644000175000017500000000301212341373025016300 0ustar mbamba! ! Copyright (C) 2010- Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- subroutine stres_nonloc_dft( rho, rho_core, nspin, sigma_nonloc_dft ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP use funct, ONLY : gcxc, gcx_spin, gcc_spin, gcc_spin_more, & dft_is_gradient, get_igcc, get_inlc USE mp, ONLY : mp_sum USE fft_base, ONLY : dfftp USE vdW_DF, ONLY : stress_vdW_DF USE rVV10, ONLY : stress_rVV10 ! IMPLICIT NONE ! real(DP), intent(in) :: rho (dfftp%nnr, nspin), rho_core (dfftp%nnr) real(DP), intent(inout) :: sigma_nonloc_dft (3, 3) integer ::nspin, inlc integer :: l, m sigma_nonloc_dft(:,:) = 0.d0 inlc = get_inlc() if (inlc==1 .or. inlc==2) then if (nspin>2) call errore('stres_vdW_DF', & 'vdW+DF non implemented in spin polarized calculations',1) CALL stress_vdW_DF(rho, rho_core, nspin, sigma_nonloc_dft) elseif (inlc == 3) then if (nspin>2) call errore('stress_rVV10', & 'rVV10 non implemented with nspin>2',1) CALL stress_rVV10(rho, rho_core, nspin, sigma_nonloc_dft) end if return end subroutine stres_nonloc_dft espresso-5.1/PW/src/dqvan2.f900000644000175000017500000001172112341373025014134 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine dqvan2 (ngy, ih, jh, np, qmod, dqg, ylmk0, dylmk0, ipol) !----------------------------------------------------------------------- ! ! This routine computes the derivatives of the fourier transform of ! the Q function needed in stress assuming that the radial fourier ! trasform is already computed and stored in table qrad. ! ! The formula implemented here is ! ! dq(g,l,k) = sum_lm (-i)^l ap(lm,l,k) * ! ( yr_lm(g^) dqrad(g,l,l,k) + dyr_lm(g^) qrad(g,l,l,k)) ! ! here the dummy variables ! USE kinds, ONLY: DP USE gvect, ONLY: g USE us, ONLY: dq, qrad USE uspp_param, ONLY: lmaxq, nbetam USE uspp, ONLY: nlx, lpl, lpx, ap, indv, nhtol, nhtolm implicit none integer :: ngy, ih, jh, np, ipol ! input: the number of G vectors to compute ! input: the first index of Q ! input: the second index of Q ! input: the number of the pseudopotential ! input: the polarization of the derivative real(DP) :: ylmk0 (ngy, lmaxq * lmaxq), dylmk0 (ngy, lmaxq * lmaxq), & qmod (ngy) ! the spherical harmonics ! the spherical harmonics derivetives ! input: moduli of the q+g vectors complex(DP) :: dqg (ngy) ! output: the fourier transform of interest ! ! here the local variables ! complex(DP) :: sig ! (-i)^L integer :: nb, mb, ijv, ivl, jvl, ig, lp, l, lm, i0, i1, i2, i3 ! the atomic index corresponding to ih ! the atomic index corresponding to jh ! combined index (nb,mb) ! the lm corresponding to ih ! the lm corresponding to jh ! counter on g vectors ! the actual LM ! the angular momentum L ! the possible LM's compatible with ih,j ! counters for interpolation table real(DP) :: sixth, dqi, qm, px, ux, vx, wx, uvx, pwx, work, work1, qm1 ! 1 divided by six ! 1 divided dq ! qmod/dq ! measures for interpolation table ! auxiliary variables for intepolation ! auxiliary variable ! auxiliary variable ! ! compute the indices which correspond to ih,jh ! sixth = 1.d0 / 6.d0 dqi = 1 / dq nb = indv (ih, np) mb = indv (jh, np) if (nb.ge.mb) then ijv = nb * (nb - 1) / 2 + mb else ijv = mb * (mb - 1) / 2 + nb endif ivl = nhtolm (ih, np) jvl = nhtolm (jh, np) if (nb > nbetam .OR. mb > nbetam) & call errore (' dqvan2 ', ' wrong dimensions (1)', MAX(nb,mb)) if (ivl > nlx .OR. jvl > nlx) & call errore (' dqvan2 ', ' wrong dimensions (2)', MAX(ivl,jvl)) dqg(:) = (0.d0,0.d0) ! ! and make the sum over the non zero LM ! do lm = 1, lpx (ivl, jvl) lp = lpl (ivl, jvl, lm) ! ! extraction of angular momentum l from lp: ! if (lp.eq.1) then l = 1 elseif ( (lp.ge.2) .and. (lp.le.4) ) then l = 2 elseif ( (lp.ge.5) .and. (lp.le.9) ) then l = 3 elseif ( (lp.ge.10) .and. (lp.le.16) ) then l = 4 elseif ( (lp.ge.17) .and. (lp.le.25) ) then l = 5 elseif ( (lp.ge.26) .and. (lp.le.36) ) then l = 6 elseif ( (lp.ge.37) .and. (lp.le.49) ) then l = 7 else call errore (' dqvan2 ', ' lp.gt.49 ', lp) endif sig = (0.d0, -1.d0) ** (l - 1) sig = sig * ap (lp, ivl, jvl) ! qm1 = -1.0_dp ! any number smaller than qmod(1) ! !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(qm,px,ux,vx,wx,i0,i1,i2,i3,uvx,pwx,work,work1) do ig = 1, ngy ! ! calculate quantites depending on the module of G only when needed ! #if !defined(__OPENMP) IF ( ABS( qmod(ig) - qm1 ) > 1.0D-6 ) THEN #endif qm = qmod (ig) * dqi px = qm - int (qm) ux = 1.d0 - px vx = 2.d0 - px wx = 3.d0 - px i0 = qm + 1 i1 = qm + 2 i2 = qm + 3 i3 = qm + 4 uvx = ux * vx * sixth pwx = px * wx * 0.5d0 work = qrad (i0, ijv, l, np) * uvx * wx + & qrad (i1, ijv, l, np) * pwx * vx - & qrad (i2, ijv, l, np) * pwx * ux + & qrad (i3, ijv, l, np) * px * uvx work1 = - qrad(i0, ijv, l, np) * (ux*vx + vx*wx + ux*wx) * sixth & + qrad(i1, ijv, l, np) * (wx*vx - px*wx - px*vx) * 0.5d0 & - qrad(i2, ijv, l, np) * (wx*ux - px*wx - px*ux) * 0.5d0 & + qrad(i3, ijv, l, np) * (ux*vx - px*ux - px*vx) * sixth work1 = work1 * dqi #if !defined(__OPENMP) qm1 = qmod(ig) END IF #endif dqg (ig) = dqg (ig) + sig * dylmk0 (ig, lp) * work if (qmod (ig) > 1.d-9) dqg (ig) = dqg (ig) + & sig * ylmk0 (ig, lp) * work1 * g (ipol, ig) / qmod (ig) enddo !$OMP END PARALLEL DO enddo return end subroutine dqvan2 espresso-5.1/PW/src/Makefile0000644000175000017500000001153112341373025014060 0ustar mbamba# Makefile for PW include ../../make.sys # location of needed modules and included files (if any) MODFLAGS= $(MOD_FLAG)../../iotk/src $(MOD_FLAG)../../Modules IFLAGS= PWOBJS = \ pwscf.o MANYPWOBJS = \ manypw.o PWLIBS = \ a2fmod.o \ add_bfield.o \ add_efield.o \ add_vuspsi.o \ add_paw_to_deeq.o \ add_vhub_to_deeq.o \ addusdens.o \ addusforce.o \ addusstress.o \ allocate_fft.o \ allocate_fft_custom.o \ allocate_locpot.o \ allocate_nlpot.o \ allocate_wfc.o \ atomic_rho.o \ atomic_wfc.o \ atomic_wfc_mod.o \ average_pp.o \ acfdt_in_pw.o \ newd.o \ bp_mod.o \ bp_c_phase.o \ bp_calc_btq.o \ bp_qvan3.o \ bp_strings.o \ buffers.o \ c_bands.o \ c_phase_field.o \ orbm_kubo.o \ ccgdiagg.o \ cdiagh.o \ cdiaghg.o \ cegterg.o \ clean_pw.o \ close_files.o \ compute_becsum.o \ compute_deff.o \ compute_dip.o \ compute_rho.o \ compute_qdipol.o \ compute_qdipol_so.o \ compute_ux.o \ coset.o \ d_matrix.o \ data_structure.o \ data_structure_custom.o \ deriv_drhoc.o \ divide_class.o \ divide_class_so.o \ realus.o \ divide.o \ divide_et_impera.o \ dqvan2.o \ drhoc.o \ dvloc_of_g.o \ dynamics_module.o \ efermig.o \ efermit.o \ electrons.o \ eqvect.o \ esm.o \ ewald.o \ ewald_dipole.o \ exx.o \ find_group.o \ forces_bp_efield.o \ force_cc.o \ force_corr.o \ force_ew.o \ force_hub.o \ force_lc.o \ force_us.o \ forces.o \ g_psi.o \ g_psi_mod.o \ gen_at_dj.o \ gen_at_dy.o \ gen_us_dj.o \ gen_us_dy.o \ get_locals.o \ gk_sort.o \ gradcorr.o \ gweights.o \ g2_kin.o \ h_epsi_her_apply.o \ h_epsi_her_set.o \ h_1psi.o \ h_psi.o \ h_psi_meta.o \ hinit0.o \ hinit1.o \ init_ns.o \ init_q_aeps.o \ init_run.o \ init_us_1.o \ init_us_2.o \ init_at_1.o \ init_vloc.o \ input.o \ interpolate.o \ io_rho_xml.o \ irrek.o \ iweights.o \ start_k.o \ kpoint_grid.o \ lchk_tauxk.o \ ldaU.o \ make_pointlists.o \ makov_payne.o \ martyna_tuckerman.o \ memory_report.o \ mix_rho.o \ move_ions.o \ multable.o \ n_plane_waves.o \ new_ns.o \ new_occ.o \ ns_adj.o \ nonloccorr.o \ non_scf.o \ offset_atom_wfc.o \ openfil.o \ orthoatwfc.o \ output_tau.o \ para.o \ paw_exx.o \ paw_init.o \ paw_onecenter.o \ paw_symmetry.o \ plugin_print_energies.o \ plugin_scf_energy.o \ plugin_scf_potential.o \ plugin_init_ions.o \ plugin_init_cell.o \ plugin_init_potential.o \ plugin_initbase.o \ plugin_clean.o \ plugin_clock.o \ plugin_summary.o \ plugin_initialization.o \ plugin_ext_forces.o \ plugin_int_forces.o \ plugin_read_input.o \ plus_u_full.o \ potinit.o \ print_clock_pw.o \ print_ks_energies.o \ punch.o \ pw_restart.o \ pwcom.o \ pw2blip.o \ pw2casino.o \ pw2casino_write.o \ qvan2.o \ rcgdiagg.o \ rdiagh.o \ rdiaghg.o \ read_conf_from_file.o \ read_file.o \ regterg.o \ remove_atomic_rho.o \ report_mag.o \ restart_in_electrons.o \ rho2zeta.o \ rotate_wfc.o \ rotate_wfc_k.o \ rotate_wfc_gamma.o \ ruotaijk.o \ run_pwscf.o \ s_1psi.o \ s_psi.o \ save_in_cbands.o \ save_in_electrons.o \ scale_h.o \ scf_mod.o \ set_kplusq.o \ set_kup_and_kdw.o \ set_rhoc.o \ set_vrs.o \ setlocal.o \ setqf.o \ setup.o \ spinor.o \ sph_ind.o \ stop_run.o \ stres_cc.o \ stres_ewa.o \ stres_gradcorr.o \ stres_har.o \ stres_hub.o \ stres_knl.o \ stres_loc.o \ stres_us.o \ stres_nonloc_dft.o \ stress.o \ struct_fact.o \ sum_band.o \ sumkg.o \ sumkt.o \ summary.o \ symme.o \ symm_base.o \ symmetrize_at.o \ tabd.o \ transform_becsum_so.o \ transform_becsum_nc.o \ transform_qq_so.o \ trnvecc.o \ tweights.o \ update_pot.o \ us_exx.o \ usnldiag.o \ v_of_rho.o \ vcsmd.o \ vcsubs.o \ vhpsi.o \ vloc_of_g.o \ vloc_psi.o \ xdm_dispersion.o \ xk_wk_collect.o \ wfcinit.o \ write_ns.o \ wsweight.o \ weights.o \ ortho_wfc.o \ wannier_proj.o \ wannier_init.o \ wannier_check.o \ wannier_clean.o \ wannier_occ.o \ wannier_enrg.o QEMODS=../../Modules/libqemod.a TLDEPS=bindir mods libs liblapack libblas LIBOBJS = ../../flib/ptools.a ../../flib/flib.a ../../clib/clib.a ../../iotk/src/libiotk.a all : tldeps pw.x manypw.x generate_vdW_kernel_table.x generate_rVV10_kernel_table.x pw.x : $(PWOBJS) libpw.a $(LIBOBJS) $(QEMODS) $(LD) $(LDFLAGS) -o $@ \ $(PWOBJS) libpw.a $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin; ln -fs ../PW/src/$@ . ) manypw.x : $(MANYPWOBJS) libpw.a $(LIBOBJS) $(QEMODS) $(LD) $(LDFLAGS) -o $@ \ $(MANYPWOBJS) libpw.a $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin; ln -fs ../PW/src/$@ . ) libpw.a : $(PWLIBS) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ tldeps : if test -n "$(TLDEPS)" ; then \ ( cd ../.. ; $(MAKE) $(TLDEPS) || exit 1 ) ; fi clean : - /bin/rm -f *.x *.o *.a *~ *.F90 *.d *.mod *.i *.L generate_vdW_kernel_table.x : libpw.a generate_vdW_kernel_table.o $(LD) $(LDFLAGS) -o $@ \ generate_vdW_kernel_table.o $(QEMODS) libpw.a $(LIBOBJS) $(LIBS) - ( cd ../../bin; ln -fs ../PW/src/$@ . ) generate_rVV10_kernel_table.x : libpw.a generate_rVV10_kernel_table.o $(LD) $(LDFLAGS) -o $@ \ generate_rVV10_kernel_table.o $(QEMODS) libpw.a $(LIBOBJS) $(LIBS) - ( cd ../../bin; ln -fs ../PW/src/$@ . ) include make.depend # DO NOT DELETE espresso-5.1/PW/src/allocate_wfc.f900000644000175000017500000000223712341373025015366 0ustar mbamba! ! Copyright (C) 2001-2008 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE allocate_wfc() !---------------------------------------------------------------------------- ! ! ... dynamical allocation of arrays: wavefunctions ! ... must be called after allocate_nlpot ! USE io_global, ONLY : stdout USE wvfct, ONLY : npwx, nbnd USE basis, ONLY : natomwfc, swfcatom USE fixed_occ, ONLY : one_atom_occupations USE ldaU, ONLY : wfcU, nwfcU, lda_plus_u, U_projection USE noncollin_module, ONLY : noncolin, npol USE wavefunctions_module, ONLY : evc USE wannier_new, ONLY : use_wannier ! IMPLICIT NONE ! ! ALLOCATE( evc( npwx*npol, nbnd ) ) IF ( one_atom_occupations .OR. use_wannier ) & ALLOCATE( swfcatom( npwx*npol, natomwfc) ) IF ( lda_plus_u .AND. (U_projection.NE.'pseudo') ) & ALLOCATE( wfcU(npwx*npol, nwfcU) ) ! RETURN ! END SUBROUTINE allocate_wfc espresso-5.1/PW/src/bp_strings.f900000644000175000017500000000501512341373025015112 0ustar mbamba! ! Copyright (C) 2004 Vanderbilt's group at Rutgers University, NJ ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE kp_strings ( nppstr, gdir, nrot, s, bg, npk, & k1,k2,k3, nk1,nk2,nk3, nks, xk, wk ) ! --- Usage of modules --- USE kinds, ONLY: dp ! --- No implicit definitions --- IMPLICIT NONE ! --- Input arguments --- INTEGER , INTENT(IN) :: k1 INTEGER , INTENT(IN) :: k2 INTEGER , INTENT(IN) :: k3 INTEGER , INTENT(IN) :: nk1 INTEGER , INTENT(IN) :: nk2 INTEGER , INTENT(IN) :: nk3 INTEGER , INTENT(IN) :: nppstr INTEGER , INTENT(IN) :: npk INTEGER , INTENT(IN) :: nrot INTEGER , INTENT(IN) :: gdir INTEGER , INTENT(IN) :: s(3,3,48) REAL(dp) , INTENT(IN) :: bg(3,3) ! --- Output arguments --- INTEGER , INTENT(OUT) :: nks REAL(dp), INTENT(OUT) :: xk(3,npk) REAL(dp), INTENT(OUT) :: wk(npk) ! --- Internal definitions --- INTEGER :: ipar INTEGER :: iort INTEGER :: kindex ! time reversal and no magnetic symmetries assumed INTEGER :: t_rev(48) = 0 LOGICAL :: time_reversal = .true., skip_equivalence=.FALSE. REAL(dp) :: dk(3) REAL(dp) :: xk0(3,npk) REAL(dp) :: wk0(npk) ! --- Generate a k-point grid in the two dimensions other than gdir --- IF (gdir == 1) THEN CALL kpoint_grid (nrot, time_reversal, skip_equivalence, s, t_rev, bg, & npk, k1,k2,k3, 1,nk2,nk3, nks, xk0, wk0 ) ELSE IF (gdir == 2) THEN CALL kpoint_grid (nrot, time_reversal, skip_equivalence, s, t_rev, bg, & npk, k1,k2,k3, nk1,1,nk3, nks, xk0, wk0 ) ELSE IF (gdir == 3) THEN CALL kpoint_grid (nrot, time_reversal, skip_equivalence, s, t_rev, bg, & npk, k1,k2,k3, nk1,nk2,1, nks, xk0, wk0 ) ELSE CALL errore('kp_strings','gdir different from 1, 2, or 3',1) END IF ! --- Generate a string of k-points for every k-point in the 2D grid --- kindex=0 dk(1)=bg(1,gdir)/REAL(nppstr-1,dp) dk(2)=bg(2,gdir)/REAL(nppstr-1,dp) dk(3)=bg(3,gdir)/REAL(nppstr-1,dp) DO iort=1,nks DO ipar=1,nppstr kindex=kindex+1 xk(1,kindex)=xk0(1,iort)+REAL(ipar-1,dp)*dk(1) xk(2,kindex)=xk0(2,iort)+REAL(ipar-1,dp)*dk(2) xk(3,kindex)=xk0(3,iort)+REAL(ipar-1,dp)*dk(3) wk(kindex)=wk0(iort)/REAL(nppstr,dp) END DO END DO nks=nks*nppstr END SUBROUTINE kp_strings espresso-5.1/PW/src/electrons.f900000644000175000017500000012227212341373025014743 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE electrons() !---------------------------------------------------------------------------- ! ! ... General self-consistency loop, also for hybrid functionals ! ... For non-hybrid functionals it just calls "electron_scf" ! USE kinds, ONLY : DP USE check_stop, ONLY : check_stop_now, stopped_by_user USE io_global, ONLY : stdout, ionode USE fft_base, ONLY : dfftp USE gvecs, ONLY : doublegrid USE lsda_mod, ONLY : lsda, nspin, magtot, absmag, isk USE ener, ONLY : etot, hwf_energy, eband, deband, ehart, & vtxc, etxc, etxcc, ewld, demet, epaw, & elondon, ef_up, ef_dw USE scf, ONLY : rho, rho_core, rhog_core, v, vltot, vrs, & kedtau, vnew USE control_flags, ONLY : tr2, niter, conv_elec, restart USE io_files, ONLY : iunwfc, iunmix, nwordwfc, output_drho, & iunres, iunefield, seqopn USE buffers, ONLY : save_buffer, close_buffer USE ldaU, ONLY : eth USE extfield, ONLY : tefield, etotefield USE wavefunctions_module, ONLY : evc USE wvfct, ONLY : nbnd, wg, et USE klist, ONLY : nks USE noncollin_module, ONLY : noncolin, magtot_nc, i_cons, bfield, & lambda, report USE uspp, ONLY : okvan USE exx, ONLY : exxinit, exxenergy2, exxbuff, & fock0, fock1, fock2, dexx USE funct, ONLY : dft_is_hybrid, exx_is_active USE control_flags, ONLY : adapt_thr, tr2_init, tr2_multi ! USE paw_variables, ONLY : okpaw, ddd_paw, total_core_energy, only_paw USE paw_onecenter, ONLY : PAW_potential USE paw_symmetry, ONLY : PAW_symmetrize_ddd USE uspp_param, ONLY : nh, nhm ! used for PAW ! ! IMPLICIT NONE ! ! ... a few local variables ! REAL(DP) :: & charge ! the total charge INTEGER :: & idum, &! dummy counter on iterations iter, &! counter on iterations ik, ios REAL(DP) :: & tr2_min, &! estimated error on energy coming from diagonalization tr2_final ! final threshold for exx minimization ! when using adaptive thresholds. LOGICAL :: & first, no_printout, exst ! ! iter = 0 first = .true. tr2_final = tr2 no_printout = dft_is_hybrid() IF (dft_is_hybrid() .AND. adapt_thr ) tr2= tr2_init fock0 = 0.D0 fock1 = 0.D0 IF (.NOT. exx_is_active () ) fock2 = 0.D0 ! ! these routines can be used to patch quantities that are dependent ! on the ions and cell parameters ! CALL plugin_init_ions() CALL plugin_init_cell() ! CALL plugin_init_potential() ! !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !%%%%%%%%%%%%%%%%%%%% Iterate hybrid functional %%%%%%%%%%%%%%%%%%%%% !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ! IF ( restart ) THEN CALL seqopn (iunres, 'restart_e', 'formatted', exst) IF ( exst ) THEN ios = 0 READ (iunres, *, iostat=ios) iter, tr2, dexx IF ( ios /= 0 ) THEN iter = 0 ELSE IF ( iter < 0 .OR. iter > niter ) THEN iter = 0 ELSE READ (iunres, *) fock0, fock1, fock2 ! FIXME: et and wg should be read from xml file READ (iunres, *) (wg(1:nbnd,ik),ik=1,nks) READ (iunres, *) (et(1:nbnd,ik),ik=1,nks) CLOSE ( unit=iunres, status='delete') ! ... if restarting here, exx was already active ! ... initialize stuff for exx first = .false. CALL exxinit() ! FIXME: ugly hack, overwrites exxbuffer from exxinit CALL seqopn (iunres, 'restart_exx', 'unformatted', exst) IF (exst) READ (iunres, iostat=ios) exxbuff IF (ios /= 0) WRITE(stdout,'(5x,"Error in EXX restart!")') ! CALL v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v) IF (okpaw) CALL PAW_potential(rho%bec, ddd_PAW, epaw) CALL set_vrs( vrs, vltot, v%of_r, kedtau, v%kin_r, dfftp%nnr, & nspin, doublegrid ) ! WRITE(stdout,'(5x,"Calculation (EXX) restarted from iteration #", & & i6)') iter END IF END IF CLOSE ( unit=iunres, status='delete') END IF ! DO idum=1,niter ! iter = iter + 1 ! ! ... Self-consistency loop. For hybrid functionals the exchange potential ! ... is calculated with the orbitals at previous step (none at first step) ! CALL electrons_scf ( no_printout ) ! IF ( .NOT. dft_is_hybrid() ) RETURN ! ! ... From now on: hybrid DFT only ! IF ( stopped_by_user .OR. .NOT. conv_elec ) THEN conv_elec=.FALSE. IF ( .NOT. first) THEN CALL seqopn (iunres, 'restart_e', 'formatted', exst) WRITE (iunres, *) iter-1, tr2, dexx WRITE (iunres, *) fock0, fock1, fock2 WRITE (iunres, *) (wg(1:nbnd,ik),ik=1,nks) WRITE (iunres, *) (et(1:nbnd,ik),ik=1,nks) CLOSE (unit=iunres, status='keep') CALL seqopn (iunres, 'restart_exx', 'unformatted', exst) WRITE (iunres) exxbuff CLOSE (unit=iunres, status='keep') END IF RETURN END IF ! first = first .AND. .NOT. exx_is_active ( ) ! ! "first" is true if the scf step was performed without exact exchange ! IF ( first ) THEN ! first = .false. ! ! Activate exact exchange, set orbitals used in its calculation, ! then calculate exchange energy (will be useful at next step) ! CALL exxinit() fock2 = exxenergy2() ! ! Recalculate potential because XC functional has changed, ! start self-consistency loop on exchange ! CALL v_of_rho( rho, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v) IF (okpaw) CALL PAW_potential(rho%bec, ddd_PAW, epaw) CALL set_vrs( vrs, vltot, v%of_r, kedtau, v%kin_r, dfftp%nnr, & nspin, doublegrid ) ! ELSE ! ! fock1 is the exchange energy calculated for orbitals at step n, ! using orbitals at step n-1 in the expression of exchange ! fock1 = exxenergy2() ! ! Set new orbitals for the calculation of the exchange term ! CALL exxinit() ! ! fock2 is the exchange energy calculated for orbitals at step n, ! using orbitals at step n in the expression of exchange ! fock0 is fock2 at previous step ! fock0 = fock2 fock2 = exxenergy2() ! ! check for convergence. dexx is positive definite: if it isn't, ! there is some numerical problem. One such cause could be that ! the treatment of the divergence in exact exchange has failed. ! dexx = fock1 - 0.5D0*(fock0+fock2) IF ( dexx < 0d0 ) CALL errore( 'electrons', 'dexx is negative! & & Check that exxdiv_treatment is appropriate for the system', 1 ) ! etot = etot + 0.5D0*fock2 - fock1 hwf_energy = hwf_energy + 0.5D0*fock2 - fock1 IF ( dexx < tr2_final ) THEN WRITE( stdout, 9066 ) '!', etot, hwf_energy, dexx ELSE WRITE( stdout, 9066 ) ' ', etot, hwf_energy, dexx END IF WRITE( stdout, 9062 ) - fock1 WRITE( stdout, 9064 ) 0.5D0*fock2 ! IF ( dexx < tr2_final ) THEN WRITE( stdout, 9101 ) RETURN END IF ! IF ( adapt_thr ) THEN tr2 = MAX(tr2_multi * dexx, tr2_final) WRITE( stdout, 9121 ) tr2 ENDIF ENDIF ! WRITE( stdout,'(/5x,"EXX: now go back to refine exchange calculation")') ! IF ( check_stop_now() ) THEN conv_elec=.FALSE. CALL seqopn (iunres, 'restart_e', 'formatted', exst) WRITE (iunres, *) iter, tr2, dexx WRITE (iunres, *) fock0, fock1, fock2 ! FIXME: et and wg are written to xml file WRITE (iunres, *) (wg(1:nbnd,ik),ik=1,nks) WRITE (iunres, *) (et(1:nbnd,ik),ik=1,nks) CLOSE (unit=iunres, status='keep') RETURN END IF ! END DO ! WRITE( stdout, 9120 ) iter CALL flush_unit( stdout ) ! RETURN ! ! ... formats ! 9062 FORMAT( ' - averaged Fock potential =',0PF17.8,' Ry' ) 9064 FORMAT( ' + Fock energy =',0PF17.8,' Ry' ) 9066 FORMAT(/,A1,' total energy =',0PF17.8,' Ry' & /' Harris-Foulkes estimate =',0PF17.8,' Ry' & /' est. exchange err (dexx) =',0PF17.8,' Ry' ) 9101 FORMAT(/' EXX self-consistency reached' ) 9120 FORMAT(/' EXX convergence NOT achieved after ',i3,' iterations: stopping' ) 9121 FORMAT(/' scf convergence threshold =',1PE17.1,' Ry' ) ! END SUBROUTINE electrons ! !---------------------------------------------------------------------------- SUBROUTINE electrons_scf ( no_printout ) !---------------------------------------------------------------------------- ! ! ... This routine is a driver of the self-consistent cycle. ! ... It uses the routine c_bands for computing the bands at fixed ! ... Hamiltonian, the routine sum_band to compute the charge density, ! ... the routine v_of_rho to compute the new potential and the routine ! ... mix_rho to mix input and output charge densities. ! ... It prints on output the total energy and its decomposition in ! ... the separate contributions (unless no_printout is .true.) ! USE kinds, ONLY : DP USE check_stop, ONLY : check_stop_now, stopped_by_user USE io_global, ONLY : stdout, ionode USE cell_base, ONLY : at, bg, alat, omega, tpiba2 USE ions_base, ONLY : zv, nat, nsp, ityp, tau, compute_eextfor USE basis, ONLY : starting_pot USE bp, ONLY : lelfield USE fft_base, ONLY : dfftp USE gvect, ONLY : ngm, gstart, nl, nlm, g, gg, gcutm USE gvecs, ONLY : doublegrid, ngms USE klist, ONLY : xk, wk, nelec, ngk, nks, nkstot, lgauss, & two_fermi_energies USE lsda_mod, ONLY : lsda, nspin, magtot, absmag, isk USE vlocal, ONLY : strf USE wvfct, ONLY : nbnd, et, npwx, ecutwfc USE ener, ONLY : etot, hwf_energy, eband, deband, ehart, & vtxc, etxc, etxcc, ewld, demet, epaw, & elondon, ef_up, ef_dw, exdm USE scf, ONLY : scf_type, scf_type_COPY, bcast_scf_type,& create_scf_type, destroy_scf_type, & open_mix_file, close_mix_file, & rho, rho_core, rhog_core, v, vltot, vrs, & kedtau, vnew USE control_flags, ONLY : mixing_beta, tr2, ethr, niter, nmix, & iprint, istep, conv_elec, & restart, io_level, do_makov_payne, & gamma_only, iverbosity, textfor, & llondon, scf_must_converge, lxdm, ts_vdw USE io_files, ONLY : iunwfc, iunmix, nwordwfc, output_drho, & iunres, iunefield, seqopn USE buffers, ONLY : save_buffer, close_buffer USE ldaU, ONLY : eth, Hubbard_U, Hubbard_lmax, & niter_with_fixed_ns, lda_plus_u USE extfield, ONLY : tefield, etotefield USE wavefunctions_module, ONLY : evc USE noncollin_module, ONLY : noncolin, magtot_nc, i_cons, bfield, & lambda, report USE spin_orb, ONLY : domag USE io_rho_xml, ONLY : write_rho USE uspp, ONLY : okvan USE mp_bands, ONLY : intra_bgrp_comm USE mp_pools, ONLY : root_pool, my_pool_id, inter_pool_comm USE mp, ONLY : mp_sum, mp_bcast ! USE london_module, ONLY : energy_london USE xdm_module, ONLY : energy_xdm USE tsvdw_module, ONLY : EtsvdW ! USE paw_variables, ONLY : okpaw, ddd_paw, total_core_energy, only_paw USE paw_onecenter, ONLY : PAW_potential USE paw_symmetry, ONLY : PAW_symmetrize_ddd USE uspp_param, ONLY : nh, nhm ! used for PAW USE dfunct, ONLY : newd USE esm, ONLY : do_comp_esm, esm_printpot USE iso_c_binding, ONLY : c_int ! USE plugin_variables, ONLY : plugin_etot ! IMPLICIT NONE ! LOGICAL, INTENT (IN) :: no_printout ! ! ... a few local variables ! REAL(DP) :: & dr2, &! the norm of the diffence between potential charge, &! the total charge deband_hwf, &! deband for the Harris-Weinert-Foulkes functional mag ! local magnetization INTEGER :: & i, &! counter on polarization idum, &! dummy counter on iterations iter, &! counter on iterations ios INTEGER(kind=c_int) :: kilobytes REAL(DP) :: & tr2_min, &! estimated error on energy coming from diagonalization descf, &! correction for variational energy en_el=0.0_DP,&! electric field contribution to the total energy eext=0.0_DP ! external forces contribution to the total energy LOGICAL :: & first, exst ! ! ... auxiliary variables for calculating and storing temporary copies of ! ... the charge density and of the HXC-potential ! type (scf_type) :: rhoin ! used to store rho_in of current/next iteration ! ! ... external functions ! REAL(DP), EXTERNAL :: ewald, get_clock ! iter = 0 dr2 = 0.0_dp ! ! ... Convergence threshold for iterative diagonalization ! ... for the first scf iteration of each ionic step (after the first), ! ... the threshold is fixed to a default value of 1.D-6 ! IF ( istep > 0 ) ethr = 1.D-6 ! IF ( restart ) CALL restart_in_electrons (iter, dr2, ethr, et ) ! WRITE( stdout, 9000 ) get_clock( 'PWSCF' ) ! CALL memstat( kilobytes ) IF ( kilobytes > 0 ) WRITE( stdout, 9001 ) kilobytes/1000.0 ! CALL start_clock( 'electrons' ) ! CALL flush_unit( stdout ) ! ! ... calculates the ewald contribution to total energy ! ewld = ewald( alat, nat, nsp, ityp, zv, at, bg, tau, & omega, g, gg, ngm, gcutm, gstart, gamma_only, strf ) ! IF ( llondon ) THEN elondon = energy_london ( alat , nat , ityp , at ,bg , tau ) ELSE elondon = 0.d0 END IF ! call create_scf_type ( rhoin ) ! WRITE( stdout, 9002 ) CALL flush_unit( stdout ) ! CALL open_mix_file( iunmix, 'mix', exst ) ! !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !%%%%%%%%%%%%%%%%%%%% iterate ! %%%%%%%%%%%%%%%%%%%%% !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ! DO idum = 1, niter ! IF ( check_stop_now() ) THEN conv_elec=.FALSE. CALL save_in_electrons (iter, dr2, ethr, et ) GO TO 10 END IF iter = iter + 1 ! WRITE( stdout, 9010 ) iter, ecutwfc, mixing_beta ! CALL flush_unit( stdout ) ! ! ... Convergence threshold for iterative diagonalization is ! ... automatically updated during self consistency ! IF ( iter > 1 ) THEN ! IF ( iter == 2 ) ethr = 1.D-2 ethr = MIN( ethr, 0.1D0*dr2 / MAX( 1.D0, nelec ) ) ! ... do not allow convergence threshold to become too small: ! ... iterative diagonalization may become unstable ethr = MAX( ethr, 1.D-13 ) ! END IF ! first = ( iter == 1 ) ! ! ... deband = - \sum_v <\psi_v | V_h + V_xc |\psi_v> is calculated a ! ... first time here using the input density and potential ( to be ! ... used to calculate the Harris-Weinert-Foulkes energy ) ! deband_hwf = delta_e() ! ! ... save input density to rhoin ! call scf_type_COPY( rho, rhoin ) ! scf_step: DO ! ! ... tr2_min is set to an estimate of the error on the energy ! ... due to diagonalization - used only for the first scf iteration ! tr2_min = 0.D0 ! IF ( first ) tr2_min = ethr*MAX( 1.D0, nelec ) ! ! ... diagonalization of the KS hamiltonian ! IF ( lelfield ) THEN CALL c_bands_efield ( iter ) ELSE CALL c_bands( iter ) END IF ! IF ( stopped_by_user ) THEN conv_elec=.FALSE. CALL save_in_electrons (iter-1, dr2, ethr, et ) GO TO 10 END IF ! ! ... xk, wk, isk, et, wg are distributed across pools; ! ... the first node has a complete copy of xk, wk, isk, ! ... while eigenvalues et and weights wg must be ! ... explicitely collected to the first node ! ... this is done here for et, in sum_band for wg ! CALL poolrecover( et, nbnd, nkstot, nks ) ! ! ... the new density is computed here. For PAW: ! ... sum_band computes new becsum (stored in uspp modules) ! ... and a subtly different copy in rho%bec (scf module) ! CALL sum_band() ! ! ... the Harris-Weinert-Foulkes energy is computed here using only ! ... quantities obtained from the input density ! hwf_energy = eband + deband_hwf + (etxc - etxcc) + ewld + ehart + demet If ( okpaw ) hwf_energy = hwf_energy + epaw IF ( lda_plus_u ) hwf_energy = hwf_energy + eth ! IF ( lda_plus_u ) THEN ! IF ( iverbosity > 0 .OR. first ) THEN IF (noncolin) THEN CALL write_ns_nc() ELSE CALL write_ns() ENDIF ENDIF ! IF ( first .AND. istep == 0 .AND. starting_pot == 'atomic' ) THEN CALL ns_adj() IF (noncolin) THEN rhoin%ns_nc = rho%ns_nc ELSE rhoin%ns = rho%ns ENDIF END IF IF ( iter <= niter_with_fixed_ns ) THEN WRITE( stdout, '(/,5X,"RESET ns to initial values (iter <= mixing_fixed_ns)",/)') IF (noncolin) THEN rho%ns_nc = rhoin%ns_nc ELSE rho%ns = rhoin%ns ENDIF END IF ! END IF ! ! ... calculate total and absolute magnetization ! IF ( lsda .OR. noncolin ) CALL compute_magnetization() ! ! ... eband = \sum_v \epsilon_v is calculated by sum_band ! ... deband = - \sum_v <\psi_v | V_h + V_xc |\psi_v> ! ... eband + deband = \sum_v <\psi_v | T + Vion |\psi_v> ! deband = delta_e() ! ! ... mix_rho mixes several quantities: rho in g-space, tauk (for ! ... meta-gga), ns and ns_nc (for lda+u) and becsum (for paw) ! ... Results are broadcast from pool 0 to others to prevent trouble ! ... on machines unable to yield the same results from the same ! ... calculation on same data, performed on different procs ! ... The mixing should be done on pool 0 only as well, but inside ! ... mix_rho there is a call to rho_ddot that in the PAW case ! ... contains a hidden parallelization level on the entire image ! ! IF ( my_pool_id == root_pool ) CALL mix_rho ( rho, rhoin, mixing_beta, dr2, tr2_min, iter, nmix, & iunmix, conv_elec ) CALL bcast_scf_type ( rhoin, root_pool, inter_pool_comm ) CALL mp_bcast ( dr2, root_pool, inter_pool_comm ) CALL mp_bcast ( conv_elec, root_pool, inter_pool_comm ) ! if (.not. scf_must_converge .and. idum == niter) conv_elec = .true. ! ! ... if convergence is achieved or if the self-consistency error ! ... (dr2) is smaller than the estimated error due to diagonalization ! ... (tr2_min), rhoin and rho are unchanged: rhoin contains the input ! ... density and rho contains the output density ! ... In the other cases rhoin contains the mixed charge density ! ... (the new input density) while rho is unchanged ! IF ( first .and. nat > 0) THEN ! ! ... first scf iteration: check if the threshold on diagonalization ! ... (ethr) was small enough wrt the error in self-consistency (dr2) ! ... if not, perform a new diagonalization with reduced threshold ! first = .FALSE. ! IF ( dr2 < tr2_min ) THEN ! WRITE( stdout, '(/,5X,"Threshold (ethr) on eigenvalues was ", & & "too large:",/,5X, & & "Diagonalizing with lowered threshold",/)' ) ! ethr = 0.1D0*dr2 / MAX( 1.D0, nelec ) ! CYCLE scf_step ! END IF ! END IF ! IF ( .NOT. conv_elec ) THEN ! ! ... no convergence yet: calculate new potential from mixed ! ... charge density (i.e. the new estimate) ! CALL v_of_rho( rhoin, rho_core, rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v) IF (okpaw) THEN CALL PAW_potential(rhoin%bec, ddd_paw, epaw) CALL PAW_symmetrize_ddd(ddd_paw) ENDIF ! ! ... estimate correction needed to have variational energy: ! ... T + E_ion (eband + deband) are calculated in sum_band ! ... and delta_e using the output charge density rho; ! ... E_H (ehart) and E_xc (etxc) are calculated in v_of_rho ! ... above, using the mixed charge density rhoin%of_r. ! ... delta_escf corrects for this difference at first order ! descf = delta_escf() ! ! ... now copy the mixed charge density in R- and G-space in rho ! CALL scf_type_COPY( rhoin, rho ) ! ELSE ! ! ... convergence reached: ! ... 1) the output HXC-potential is saved in v ! ... 2) vnew contains V(out)-V(in) ( used to correct the forces ). ! vnew%of_r(:,:) = v%of_r(:,:) CALL v_of_rho( rho,rho_core,rhog_core, & ehart, etxc, vtxc, eth, etotefield, charge, v) vnew%of_r(:,:) = v%of_r(:,:) - vnew%of_r(:,:) ! IF (okpaw) THEN CALL PAW_potential(rho%bec, ddd_paw, epaw) CALL PAW_symmetrize_ddd(ddd_paw) ENDIF ! ! ... note that rho is here the output, not mixed, charge density ! ... so correction for variational energy is no longer needed ! descf = 0._dp ! END IF ! ! ... if we didn't cycle before we can exit the do-loop ! EXIT scf_step ! END DO scf_step ! plugin_etot = 0.0_dp ! CALL plugin_scf_energy(plugin_etot,rhoin) ! CALL plugin_scf_potential(rhoin,conv_elec,dr2) ! ! ... define the total local potential (external + scf) ! CALL sum_vrs( dfftp%nnr, nspin, vltot, v%of_r, vrs ) ! ! ... interpolate the total local potential ! CALL interpolate_vrs( dfftp%nnr, nspin, doublegrid, kedtau, v%kin_r, vrs ) ! ! ... in the US case we have to recompute the self-consistent ! ... term in the nonlocal potential ! ... PAW: newd contains PAW updates of NL coefficients ! CALL newd() ! IF ( lelfield ) en_el = calc_pol ( ) ! IF ( ( MOD(iter,report) == 0 ) .OR. ( report /= 0 .AND. conv_elec ) ) THEN ! IF ( (noncolin .AND. domag) .OR. i_cons==1 .OR. nspin==2) CALL report_mag() ! END IF ! WRITE( stdout, 9000 ) get_clock( 'PWSCF' ) ! IF ( conv_elec ) WRITE( stdout, 9101 ) ! IF ( conv_elec .OR. MOD( iter, iprint ) == 0 ) THEN ! IF ( lda_plus_U .AND. iverbosity == 0 ) THEN IF (noncolin) THEN CALL write_ns_nc() ELSE CALL write_ns() ENDIF ENDIF CALL print_ks_energies() ! END IF ! IF ( ABS( charge - nelec ) / charge > 1.D-7 ) THEN WRITE( stdout, 9050 ) charge, nelec IF ( ABS( charge - nelec ) / charge > 1.D-3 ) THEN IF (.not.lgauss) THEN CALL errore( 'electrons', 'charge is wrong: smearing is needed', 1 ) ELSE CALL errore( 'electrons', 'charge is wrong', 1 ) END IF END IF END IF ! etot = eband + ( etxc - etxcc ) + ewld + ehart + deband + demet + descf ! IF (okpaw) etot = etot + epaw IF ( lda_plus_u ) etot = etot + eth ! IF ( lelfield ) etot = etot + en_el ! not sure about the HWF functional in the above case IF( textfor ) THEN eext = compute_eextfor() etot = etot + eext END IF IF (llondon) THEN etot = etot + elondon hwf_energy = hwf_energy + elondon END IF ! calculate the xdm energy contribution with converged density if (lxdm .and. conv_elec) then exdm = energy_xdm() etot = etot + exdm hwf_energy = hwf_energy + exdm end if IF (ts_vdw) THEN ! factor 2 converts from Ha to Ry units etot = etot + 2.0d0*EtsvdW hwf_energy = hwf_energy + 2.0d0*EtsvdW END IF ! IF ( tefield ) THEN etot = etot + etotefield hwf_energy = hwf_energy + etotefield END IF ! ! ... adds possible external contribution from plugins to the energy ! etot = etot + plugin_etot ! IF ( .NOT. no_printout ) CALL print_energies ( ) ! IF ( conv_elec ) THEN ! ! ... if system is charged add a Makov-Payne correction to the energy ! IF ( do_makov_payne ) CALL makov_payne( etot ) ! ! ... print out ESM potentials if desired ! IF ( do_comp_esm ) CALL esm_printpot() ! WRITE( stdout, 9110 ) iter ! ! ... jump to the end ! GO TO 10 ! END IF ! ! ... uncomment the following line if you wish to monitor the evolution ! ... of the force calculation during self-consistency ! !CALL forces() ! ! ... it can be very useful to track internal clocks during ! ... self-consistency for benchmarking purposes #if defined(__PW_TRACK_ELECTRON_STEPS) CALL print_clock_pw() #endif ! END DO ! WRITE( stdout, 9101 ) WRITE( stdout, 9120 ) iter ! 10 CALL flush_unit( stdout ) ! ! ... exiting: write (unless disables) the charge density to file ! ... (also write ldaU ns coefficients and PAW becsum) ! IF ( io_level > -1 ) CALL write_rho( rho, nspin ) ! ! ... delete mixing info if converged, keep it if not ! IF ( conv_elec ) THEN CALL close_mix_file( iunmix, 'delete' ) ELSE CALL close_mix_file( iunmix, 'keep' ) END IF ! IF ( output_drho /= ' ' ) CALL remove_atomic_rho() call destroy_scf_type ( rhoin ) CALL stop_clock( 'electrons' ) ! RETURN ! ! ... formats ! 9000 FORMAT(/' total cpu time spent up to now is ',F10.1,' secs' ) 9001 FORMAT(/' per-process dynamical memory: ',f7.1,' Mb' ) 9002 FORMAT(/' Self-consistent Calculation' ) 9010 FORMAT(/' iteration #',I3,' ecut=', F9.2,' Ry',5X,'beta=',F4.2 ) 9050 FORMAT(/' WARNING: integrated charge=',F15.8,', expected=',F15.8 ) 9101 FORMAT(/' End of self-consistent calculation' ) 9110 FORMAT(/' convergence has been achieved in ',i3,' iterations' ) 9120 FORMAT(/' convergence NOT achieved after ',i3,' iterations: stopping' ) ! CONTAINS ! !----------------------------------------------------------------------- SUBROUTINE compute_magnetization() !----------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER :: ir ! ! IF ( lsda ) THEN ! magtot = 0.D0 absmag = 0.D0 ! DO ir = 1, dfftp%nnr ! mag = rho%of_r(ir,1) - rho%of_r(ir,2) ! magtot = magtot + mag absmag = absmag + ABS( mag ) ! END DO ! magtot = magtot * omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) absmag = absmag * omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! CALL mp_sum( magtot, intra_bgrp_comm ) CALL mp_sum( absmag, intra_bgrp_comm ) ! IF (two_fermi_energies.and.lgauss) bfield(3)=0.5D0*(ef_up-ef_dw) ! ELSE IF ( noncolin ) THEN ! magtot_nc = 0.D0 absmag = 0.D0 ! DO ir = 1,dfftp%nnr ! mag = SQRT( rho%of_r(ir,2)**2 + & rho%of_r(ir,3)**2 + & rho%of_r(ir,4)**2 ) ! DO i = 1, 3 ! magtot_nc(i) = magtot_nc(i) + rho%of_r(ir,i+1) ! END DO ! absmag = absmag + ABS( mag ) ! END DO ! CALL mp_sum( magtot_nc, intra_bgrp_comm ) CALL mp_sum( absmag, intra_bgrp_comm ) ! DO i = 1, 3 ! magtot_nc(i) = magtot_nc(i) * omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! END DO ! absmag = absmag * omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! END IF ! RETURN ! END SUBROUTINE compute_magnetization ! !----------------------------------------------------------------------- FUNCTION delta_e() !----------------------------------------------------------------------- ! ... delta_e = - \int rho%of_r(r) v%of_r(r) ! - \int rho%kin_r(r) v%kin_r(r) [for Meta-GGA] ! - \sum rho%ns v%ns [for LDA+U] ! - \sum becsum D1_Hxc [for PAW] USE funct, ONLY : dft_is_meta IMPLICIT NONE REAL(DP) :: delta_e, delta_e_hub ! delta_e = - SUM( rho%of_r(:,:)*v%of_r(:,:) ) ! IF ( dft_is_meta() ) & delta_e = delta_e - SUM( rho%kin_r(:,:)*v%kin_r(:,:) ) ! delta_e = omega * delta_e / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! CALL mp_sum( delta_e, intra_bgrp_comm ) ! if (lda_plus_u) then if (noncolin) then delta_e_hub = - SUM (rho%ns_nc(:,:,:,:)*v%ns_nc(:,:,:,:)) delta_e = delta_e + delta_e_hub else delta_e_hub = - SUM (rho%ns(:,:,:,:)*v%ns(:,:,:,:)) if (nspin==1) delta_e_hub = 2.d0 * delta_e_hub delta_e = delta_e + delta_e_hub endif end if ! IF (okpaw) delta_e = delta_e - SUM(ddd_paw(:,:,:)*rho%bec(:,:,:)) ! RETURN ! END FUNCTION delta_e ! !----------------------------------------------------------------------- FUNCTION delta_escf() !----------------------------------------------------------------------- ! ! ... delta_escf = - \int \delta rho%of_r(r) v%of_r(r) ! - \int \delta rho%kin_r(r) v%kin_r(r) [for Meta-GGA] ! - \sum \delta rho%ns v%ns [for LDA+U] ! - \sum \delta becsum D1 [for PAW] ! ... calculates the difference between the Hartree and XC energy ! ... at first order in the charge density difference \delta rho(r) ! USE funct, ONLY : dft_is_meta IMPLICIT NONE REAL(DP) :: delta_escf, delta_escf_hub ! delta_escf = - SUM( ( rhoin%of_r(:,:)-rho%of_r(:,:) )*v%of_r(:,:) ) ! IF ( dft_is_meta() ) & delta_escf = delta_escf - & SUM( (rhoin%kin_r(:,:)-rho%kin_r(:,:) )*v%kin_r(:,:)) ! delta_escf = omega * delta_escf / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! CALL mp_sum( delta_escf, intra_bgrp_comm ) ! if (lda_plus_u) then if (noncolin) then delta_escf_hub = - SUM((rhoin%ns_nc(:,:,:,:)-rho%ns_nc(:,:,:,:))*v%ns_nc(:,:,:,:)) delta_escf = delta_escf + delta_escf_hub else delta_escf_hub = - SUM((rhoin%ns(:,:,:,:)-rho%ns(:,:,:,:))*v%ns(:,:,:,:)) if (nspin==1) delta_escf_hub = 2.d0 * delta_escf_hub delta_escf = delta_escf + delta_escf_hub endif end if IF (okpaw) delta_escf = delta_escf - & SUM(ddd_paw(:,:,:)*(rhoin%bec(:,:,:)-rho%bec(:,:,:))) RETURN ! END FUNCTION delta_escf ! !----------------------------------------------------------------------- FUNCTION calc_pol ( ) RESULT ( en_el ) !----------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : pi USE bp, ONLY : lelfield, ion_pol, el_pol, fc_pol, l_el_pol_old, & el_pol_acc, el_pol_old, efield, l3dstring, gdir, & transform_el, efield_cart ! IMPLICIT NONE REAL (DP) :: en_el ! INTEGER :: i, j REAL(DP):: sca, el_pol_cart(3), el_pol_acc_cart(3) ! IF (.not.l3dstring) THEN CALL c_phase_field(el_pol(gdir),ion_pol(gdir),fc_pol(gdir),gdir) if (.not.l_el_pol_old) then l_el_pol_old=.true. el_pol_old(gdir)=el_pol(gdir) en_el=-efield*(el_pol(gdir)+ion_pol(gdir)) el_pol_acc(gdir)=0.d0 else sca=(el_pol(gdir)-el_pol_old(gdir))/fc_pol(gdir) if(sca < - pi) then el_pol_acc(gdir)=el_pol_acc(gdir)+2.d0*pi*fc_pol(gdir) else if(sca > pi) then el_pol_acc(gdir)=el_pol_acc(gdir)-2.d0*pi*fc_pol(gdir) endif en_el=-efield*(el_pol(gdir)+ion_pol(gdir)+el_pol_acc(gdir)) el_pol_old=el_pol endif ELSE do i=1,3 CALL c_phase_field(el_pol(i),ion_pol(i),fc_pol(i),i) enddo el_pol_cart(:)=0.d0 do i=1,3 do j=1,3 !el_pol_cart(i)=el_pol_cart(i)+transform_el(j,i)*el_pol(j) el_pol_cart(i)=el_pol_cart(i)+at(i,j)*el_pol(j) / & (sqrt(at(1,j)**2.d0+at(2,j)**2.d0+at(3,j)**2.d0)) enddo enddo write(stdout,'( "Electronic Dipole on Cartesian axes" )') do i=1,3 write(stdout,*) i, el_pol_cart(i) enddo write(stdout,'( "Ionic Dipole on Cartesian axes" )') do i=1,3 write(stdout,*) i, ion_pol(i) enddo if(.not.l_el_pol_old) then l_el_pol_old=.true. el_pol_old(:)=el_pol(:) en_el=0.d0 do i=1,3 en_el=en_el-efield_cart(i)*(el_pol_cart(i)+ion_pol(i)) enddo el_pol_acc(:)=0.d0 else do i=1,3 sca=(el_pol(i)-el_pol_old(i))/fc_pol(i) if(sca < - pi) then el_pol_acc(i)=el_pol_acc(i)+2.d0*pi*fc_pol(i) else if(sca > pi) then el_pol_acc(i)=el_pol_acc(i)-2.d0*pi*fc_pol(i) endif enddo el_pol_acc_cart(:)=0.d0 do i=1,3 do j=1,3 el_pol_acc_cart(i)=el_pol_acc_cart(i)+transform_el(j,i)*el_pol_acc(j) enddo enddo en_el=0.d0 do i=1,3 en_el=en_el-efield_cart(i)*(el_pol_cart(i)+ion_pol(i)+el_pol_acc_cart(i)) enddo el_pol_old(:)=el_pol(:) endif ENDIF ! END FUNCTION calc_pol ! !----------------------------------------------------------------------- SUBROUTINE print_energies ( ) !----------------------------------------------------------------------- ! USE constants, ONLY : eps8 USE control_flags, ONLY : lmd ! IF ( ( conv_elec .OR. MOD( iter, iprint ) == 0 ) .AND. .NOT. lmd ) THEN ! IF ( dr2 > eps8 ) THEN WRITE( stdout, 9081 ) etot, hwf_energy, dr2 ELSE WRITE( stdout, 9083 ) etot, hwf_energy, dr2 END IF IF ( only_paw ) WRITE( stdout, 9085 ) etot+total_core_energy ! WRITE( stdout, 9060 ) & ( eband + deband ), ehart, ( etxc - etxcc ), ewld ! IF ( llondon ) WRITE ( stdout , 9074 ) elondon IF ( lxdm ) WRITE ( stdout , 9075 ) exdm IF ( ts_vdw ) WRITE ( stdout , 9076 ) 2.0d0*EtsvdW ! IF ( textfor) WRITE( stdout, & '(/5x,"Energy of the external Forces = ", F18.8)' ) eext IF ( tefield ) WRITE( stdout, 9061 ) etotefield IF ( lda_plus_u ) WRITE( stdout, 9065 ) eth IF ( ABS (descf) > eps8 ) WRITE( stdout, 9069 ) descf IF ( okpaw ) WRITE( stdout, 9067 ) epaw ! ! ... With Fermi-Dirac population factor, etot is the electronic ! ... free energy F = E - TS , demet is the -TS contribution ! IF ( lgauss ) WRITE( stdout, 9070 ) demet ! ELSE IF ( conv_elec .AND. lmd ) THEN ! IF ( dr2 > eps8 ) THEN WRITE( stdout, 9081 ) etot, hwf_energy, dr2 ELSE WRITE( stdout, 9083 ) etot, hwf_energy, dr2 END IF ! ELSE ! IF ( dr2 > eps8 ) THEN WRITE( stdout, 9080 ) etot, hwf_energy, dr2 ELSE WRITE( stdout, 9082 ) etot, hwf_energy, dr2 END IF END IF ! CALL plugin_print_energies() ! IF ( lsda ) WRITE( stdout, 9017 ) magtot, absmag ! IF ( noncolin .AND. domag ) & WRITE( stdout, 9018 ) magtot_nc(1:3), absmag ! IF ( i_cons == 3 .OR. i_cons == 4 ) & WRITE( stdout, 9071 ) bfield(1), bfield(2), bfield(3) IF ( i_cons /= 0 .AND. i_cons < 4 ) & WRITE( stdout, 9073 ) lambda ! CALL flush_unit( stdout ) ! RETURN ! 9017 FORMAT(/' total magnetization =', F9.2,' Bohr mag/cell', & /' absolute magnetization =', F9.2,' Bohr mag/cell' ) 9018 FORMAT(/' total magnetization =',3F9.2,' Bohr mag/cell' & & ,/' absolute magnetization =', F9.2,' Bohr mag/cell' ) 9060 FORMAT(/' The total energy is the sum of the following terms:',/,& /' one-electron contribution =',F17.8,' Ry' & /' hartree contribution =',F17.8,' Ry' & /' xc contribution =',F17.8,' Ry' & /' ewald contribution =',F17.8,' Ry' ) 9061 FORMAT( ' electric field correction =',F17.8,' Ry' ) 9065 FORMAT( ' Hubbard energy =',F17.8,' Ry' ) 9067 FORMAT( ' one-center paw contrib. =',F17.8,' Ry' ) 9069 FORMAT( ' scf correction =',F17.8,' Ry' ) 9070 FORMAT( ' smearing contrib. (-TS) =',F17.8,' Ry' ) 9071 FORMAT( ' Magnetic field =',3F12.7,' Ry' ) 9073 FORMAT( ' lambda =',F11.2,' Ry' ) 9074 FORMAT( ' Dispersion Correction =',F17.8,' Ry' ) 9075 FORMAT( ' Dispersion XDM Correction =',F17.8,' Ry' ) 9076 FORMAT( ' Dispersion T-S Correction =',F17.8,' Ry' ) 9080 FORMAT(/' total energy =',0PF17.8,' Ry' & /' Harris-Foulkes estimate =',0PF17.8,' Ry' & /' estimated scf accuracy <',0PF17.8,' Ry' ) 9081 FORMAT(/'! total energy =',0PF17.8,' Ry' & /' Harris-Foulkes estimate =',0PF17.8,' Ry' & /' estimated scf accuracy <',0PF17.8,' Ry' ) 9082 FORMAT(/' total energy =',0PF17.8,' Ry' & /' Harris-Foulkes estimate =',0PF17.8,' Ry' & /' estimated scf accuracy <',1PE17.1,' Ry' ) 9083 FORMAT(/'! total energy =',0PF17.8,' Ry' & /' Harris-Foulkes estimate =',0PF17.8,' Ry' & /' estimated scf accuracy <',1PE17.1,' Ry' ) 9085 FORMAT(/' total all-electron energy =',0PF17.6,' Ry' ) END SUBROUTINE print_energies ! END SUBROUTINE electrons_scf espresso-5.1/PW/src/cdiaghg.f900000644000175000017500000003023612341373025014331 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! #define ZERO ( 0.D0, 0.D0 ) #define ONE ( 1.D0, 0.D0 ) ! !---------------------------------------------------------------------------- SUBROUTINE cdiaghg( n, m, h, s, ldh, e, v ) !---------------------------------------------------------------------------- ! ! ... calculates eigenvalues and eigenvectors of the generalized problem ! ... Hv=eSv, with H hermitean matrix, S overlap matrix. ! ... On output both matrix are unchanged ! USE kinds, ONLY : DP ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n, m, ldh COMPLEX(DP), INTENT(INOUT) :: h(ldh,n), s(ldh,n) REAL(DP), INTENT(OUT) :: e(n) COMPLEX(DP), INTENT(OUT) :: v(ldh,m) ! #if defined(__CUDA) && defined(__MAGMA) CALL cdiaghg_gpu( n, m, h, s, ldh, e, v ) #else CALL cdiaghg_compute( n, m, h, s, ldh, e, v ) #endif ! RETURN ! END SUBROUTINE cdiaghg !---------------------------------------------------------------------------- SUBROUTINE cdiaghg_compute( n, m, h, s, ldh, e, v ) !---------------------------------------------------------------------------- ! ! ... calculates eigenvalues and eigenvectors of the generalized problem ! ... Hv=eSv, with H hermitean matrix, S overlap matrix. ! ... On output both matrix are unchanged ! ! ... LAPACK version - uses both ZHEGV and ZHEGVX ! USE kinds, ONLY : DP USE mp, ONLY : mp_bcast, mp_sum, mp_barrier, mp_max USE mp_bands, ONLY : me_bgrp, root_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n, m, ldh ! dimension of the matrix to be diagonalized ! number of eigenstates to be calculate ! leading dimension of h, as declared in the calling pgm unit COMPLEX(DP), INTENT(INOUT) :: h(ldh,n), s(ldh,n) ! actually intent(in) but compilers don't know and complain ! matrix to be diagonalized ! overlap matrix REAL(DP), INTENT(OUT) :: e(n) ! eigenvalues COMPLEX(DP), INTENT(OUT) :: v(ldh,m) ! eigenvectors (column-wise) ! INTEGER :: lwork, nb, mm, info, i, j ! mm = number of calculated eigenvectors REAL(DP) :: abstol INTEGER, ALLOCATABLE :: iwork(:), ifail(:) REAL(DP), ALLOCATABLE :: rwork(:), sdiag(:), hdiag(:) COMPLEX(DP), ALLOCATABLE :: work(:) ! various work space LOGICAL :: all_eigenvalues ! REAL(DP), EXTERNAL :: DLAMCH INTEGER, EXTERNAL :: ILAENV ! ILAENV returns optimal block size "nb" ! ! CALL start_clock( 'cdiaghg' ) ! ! ... only the first processor diagonalizes the matrix ! IF ( me_bgrp == root_bgrp ) THEN ! ! ... save the diagonal of input S (it will be overwritten) ! ALLOCATE( sdiag( n ) ) DO i = 1, n sdiag(i) = DBLE( s(i,i) ) END DO ! all_eigenvalues = ( m == n ) ! ! ... check for optimal block size ! nb = ILAENV( 1, 'ZHETRD', 'U', n, -1, -1, -1 ) ! IF ( nb < 1 .OR. nb >= n) THEN ! lwork = 2*n ! ELSE ! lwork = ( nb + 1 )*n ! END IF ! ALLOCATE( work( lwork ) ) ! IF ( all_eigenvalues ) THEN ! ALLOCATE( rwork( 3*n - 2 ) ) ! ! ... calculate all eigenvalues (overwritten to v) ! v(:,:) = h(:,:) ! CALL ZHEGV( 1, 'V', 'U', n, v, ldh, & s, ldh, e, work, lwork, rwork, info ) ! ELSE ! ALLOCATE( rwork( 7*n ) ) ! ! ... save the diagonal of input H (it will be overwritten) ! ALLOCATE( hdiag( n ) ) DO i = 1, n hdiag(i) = DBLE( h(i,i) ) END DO ! ALLOCATE( iwork( 5*n ) ) ALLOCATE( ifail( n ) ) ! ! ... calculate only m lowest eigenvalues ! abstol = 0.D0 ! abstol = 2.D0*DLAMCH( 'S' ) ! ! ... the following commented lines calculate optimal lwork ! !lwork = -1 ! !CALL ZHEGVX( 1, 'V', 'I', 'U', n, h, ldh, s, ldh, & ! 0.D0, 0.D0, 1, m, abstol, mm, e, v, ldh, & ! work, lwork, rwork, iwork, ifail, info ) ! !lwork = INT( work(1) ) + 1 ! !IF( lwork > SIZE( work ) ) THEN ! DEALLOCATE( work ) ! ALLOCATE( work( lwork ) ) !END IF ! CALL ZHEGVX( 1, 'V', 'I', 'U', n, h, ldh, s, ldh, & 0.D0, 0.D0, 1, m, abstol, mm, e, v, ldh, & work, lwork, rwork, iwork, ifail, info ) ! DEALLOCATE( ifail ) DEALLOCATE( iwork ) ! ! ... restore input H matrix from saved diagonal and lower triangle ! DO i = 1, n h(i,i) = CMPLX( hdiag(i), 0.0_DP ,kind=DP) DO j = i + 1, n h(i,j) = CONJG( h(j,i) ) END DO DO j = n + 1, ldh h(j,i) = ( 0.0_DP, 0.0_DP ) END DO END DO ! DEALLOCATE( hdiag ) ! END IF ! ! DEALLOCATE( rwork ) DEALLOCATE( work ) ! IF ( info > n ) THEN CALL errore( 'cdiaghg', 'S matrix not positive definite', ABS( info ) ) ELSE IF ( info > 0 ) THEN CALL errore( 'cdiaghg', 'eigenvectors failed to converge', ABS( info ) ) ELSE IF ( info < 0 ) THEN CALL errore( 'cdiaghg', 'incorrect call to ZHEGV*', ABS( info ) ) END IF ! ! ... restore input S matrix from saved diagonal and lower triangle ! DO i = 1, n s(i,i) = CMPLX( sdiag(i), 0.0_DP ,kind=DP) DO j = i + 1, n s(i,j) = CONJG( s(j,i) ) END DO DO j = n + 1, ldh s(j,i) = ( 0.0_DP, 0.0_DP ) END DO END DO ! DEALLOCATE( sdiag ) ! END IF ! ! ... broadcast eigenvectors and eigenvalues to all other processors ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( v, root_bgrp, intra_bgrp_comm ) ! CALL stop_clock( 'cdiaghg' ) ! RETURN ! END SUBROUTINE cdiaghg_compute ! !---------------------------------------------------------------------------- SUBROUTINE pcdiaghg( n, h, s, ldh, e, v, desc ) !---------------------------------------------------------------------------- ! ! ... calculates eigenvalues and eigenvectors of the generalized problem ! ... Hv=eSv, with H hermitean matrix, S overlap matrix. ! ... On output both matrix are unchanged ! ! ... Parallel version, with full data distribution ! USE kinds, ONLY : DP USE mp, ONLY : mp_bcast USE mp_bands, ONLY : root_bgrp, intra_bgrp_comm USE zhpev_module, ONLY : pzhpev_drv, zhpev_drv USE descriptors, ONLY : la_descriptor USE parallel_toolkit, ONLY : zsqmdst, zsqmcll #if defined __SCALAPACK USE mp_diag, ONLY : ortho_cntx, me_blacs, np_ortho, me_ortho USE zhpev_module, ONLY : pzheevd_drv #endif ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n, ldh ! dimension of the matrix to be diagonalized ! leading dimension of h, as declared in the calling pgm unit COMPLEX(DP), INTENT(INOUT) :: h(ldh,ldh), s(ldh,ldh) ! actually intent(in) but compilers don't know and complain ! matrix to be diagonalized ! overlap matrix REAL(DP), INTENT(OUT) :: e(n) ! eigenvalues COMPLEX(DP), INTENT(OUT) :: v(ldh,ldh) ! eigenvectors (column-wise) TYPE(la_descriptor), INTENT(IN) :: desc ! INTEGER :: nx #if defined __SCALAPACK INTEGER :: descsca( 16 ), info #endif ! local block size COMPLEX(DP), ALLOCATABLE :: ss(:,:), hh(:,:), tt(:,:) ! work space used only in parallel diagonalization ! ! ... input s and h are copied so that they are not destroyed ! CALL start_clock( 'cdiaghg' ) ! IF( desc%active_node > 0 ) THEN ! nx = desc%nrcx ! IF( nx /= ldh ) & CALL errore(" pcdiaghg ", " inconsistent leading dimension ", ldh ) ! ALLOCATE( hh( nx, nx ) ) ALLOCATE( ss( nx, nx ) ) ! hh(1:nx,1:nx) = h(1:nx,1:nx) ss(1:nx,1:nx) = s(1:nx,1:nx) ! END IF CALL start_clock( 'cdiaghg:choldc' ) ! ! ... Cholesky decomposition of sl ( L is stored in sl ) ! IF( desc%active_node > 0 ) THEN ! #if defined __SCALAPACK CALL descinit( descsca, n, n, desc%nrcx, desc%nrcx, 0, 0, ortho_cntx, SIZE( ss, 1 ) , info ) ! IF( info /= 0 ) CALL errore( ' cdiaghg ', ' desckinit ', ABS( info ) ) #endif ! #if defined __SCALAPACK CALL pzpotrf( 'L', n, ss, 1, 1, descsca, info ) IF( info /= 0 ) CALL errore( ' cdiaghg ', ' problems computing cholesky ', ABS( info ) ) #else CALL qe_pzpotrf( ss, nx, n, desc ) #endif ! END IF ! CALL stop_clock( 'cdiaghg:choldc' ) ! ! ... L is inverted ( sl = L^-1 ) ! CALL start_clock( 'cdiaghg:inversion' ) ! IF( desc%active_node > 0 ) THEN ! #if defined __SCALAPACK !CALL clear_upper_tr( ss ) ! set to zero the upper triangle of ss ! CALL sqr_zsetmat( 'U', n, ZERO, ss, size(ss,1), desc ) ! CALL pztrtri( 'L', 'N', n, ss, 1, 1, descsca, info ) ! IF( info /= 0 ) CALL errore( ' cdiaghg ', ' problems computing inverse ', ABS( info ) ) #else CALL qe_pztrtri( ss, nx, n, desc ) #endif ! END IF ! CALL stop_clock( 'cdiaghg:inversion' ) ! ! ... vl = L^-1*H ! CALL start_clock( 'cdiaghg:paragemm' ) ! IF( desc%active_node > 0 ) THEN ! CALL sqr_zmm_cannon( 'N', 'N', n, ONE, ss, nx, hh, nx, ZERO, v, nx, desc ) ! END IF ! ! ... hl = ( L^-1*H )*(L^-1)^T ! IF( desc%active_node > 0 ) THEN ! CALL sqr_zmm_cannon( 'N', 'C', n, ONE, v, nx, ss, nx, ZERO, hh, nx, desc ) ! ! ensure that "hh" is really Hermitian, it is sufficient to set the diagonal ! properly, because only the lower triangle of hh will be used ! CALL sqr_zsetmat( 'H', n, ZERO, hh, size(hh,1), desc ) ! END IF ! CALL stop_clock( 'cdiaghg:paragemm' ) ! ! IF ( desc%active_node > 0 ) THEN ! #ifdef TEST_DIAG CALL test_drv_begin() #endif #ifdef __SCALAPACK ! CALL pzheevd_drv( .true., n, desc%nrcx, hh, e, ortho_cntx ) ! #else ! CALL qe_pzheevd( .true., n, desc, hh, SIZE( hh, 1 ), e ) ! #endif ! #ifdef TEST_DIAG CALL test_drv_end() #endif ! END IF ! ! ... v = (L^T)^-1 v ! CALL start_clock( 'cdiaghg:paragemm' ) ! IF ( desc%active_node > 0 ) THEN ! CALL sqr_zmm_cannon( 'C', 'N', n, ONE, ss, nx, hh, nx, ZERO, v, nx, desc ) ! END IF ! CALL mp_bcast( e, root_bgrp, intra_bgrp_comm ) ! CALL stop_clock( 'cdiaghg:paragemm' ) ! IF ( desc%active_node > 0 ) THEN DEALLOCATE( ss, hh ) END IF ! CALL stop_clock( 'cdiaghg' ) ! RETURN ! CONTAINS ! SUBROUTINE test_drv_begin() ALLOCATE( tt( n, n ) ) CALL zsqmcll( n, hh, nx, tt, n, desc, desc%comm ) RETURN END SUBROUTINE test_drv_begin ! SUBROUTINE test_drv_end() ! INTEGER :: i, j, k COMPLEX(DP), ALLOCATABLE :: diag(:,:) ! IF( desc%myc == 0 .AND. desc%myr == 0 ) THEN write( 100, fmt="(A20,2D18.10)" ) ' e code = ', e( 1 ), e( n ) ALLOCATE( diag( n*(n+1)/2, 1 ) ) k = 1 ! write( 100, fmt="(I5)" ) n DO j = 1, n DO i = j, n diag( k, 1 ) = tt( i, j ) ! write( 100, fmt="(2I5,2D18.10)" ) i, j, tt( i, j ) k = k + 1 END DO END DO call zhpev_drv( 'V', 'L', N, diag(:,1), e, tt, n ) write( 100, fmt="(A20,2D18.10)" ) ' e test = ', e( 1 ), e( n ) ! write( 100, * ) 'eigenvalues and eigenvectors' DO j = 1, n ! write( 100, fmt="(1I5,1D18.10,A)" ) j, e( j ) DO i = 1, n ! write( 100, fmt="(2I5,2D18.10)" ) i, j, tt( i, j ) END DO END DO close(100) DEALLOCATE( diag ) END IF CALL mp_bcast( tt, 0, desc%comm ) CALL zsqmdst( n, tt, n, hh, nx, desc ) DEALLOCATE( tt ) CALL errore('cdiaghg','stop serial',1) RETURN END SUBROUTINE test_drv_end ! END SUBROUTINE pcdiaghg ! espresso-5.1/PW/src/generate_rVV10_kernel_table.f900000755000175000017500000005753712341373025020222 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- program generate_rVV10_kernel_table !! -------------------------------------------------------------------------------------------- use mp, ONLY : mp_get, mp_barrier use mp_global, ONLY : mp_startup, mp_global_end use mp_world, ONLY : world_comm, nproc, mpime use kinds, ONLY : dp use io_global, ONLY : ionode, ionode_id use constants, ONLY : pi !! -------------------------------------------------------------------------------------------- implicit none !! These are the user set-able parameters. integer, parameter :: Nr_points = 1024 !! The number of radial points (also the number of k points) used real(dp), parameter :: r_max =100.0D0 !! The value of the maximum radius to use for the real-space kernel functions !!------------------------------------------------------------------------------------------------- CHARACTER(LEN=30) :: double_format = "(1p4e23.14)" !! integer, parameter :: Nqs = 20 !! !! real(dp), dimension(Nqs):: q_mesh = (/ 1.0D-4, 1.0D-3, 2.180901130847297D-3, 3.730376109554437D-3, & !! 5.763461392415386D-3, 8.431097736459265D-3, 1.193133637576012D-2, 1.652404278396654D-2, & !! 2.255018966296721D-2, 3.045717151192698D-2, 4.083202018639992D-2, 5.444498744423845D-2, & !! 7.230673014309263D-2, 9.574334364529304D-2, 0.126494814076381D0, 0.166844198751147D0, & !! 0.219787125408285D0, 0.289254194252484D0, 0.380402794424442D0, 0.5D0 /) !! integer, parameter :: Nqs = 20 real(dp), dimension(Nqs):: q_mesh = (/ 1.0D-4, 3.0D-4, 5.893850845618885D-4, 1.008103720396345D-3, & 1.613958359589310D-3, 2.490584839564653D-3, 3.758997979748929D-3, 5.594297198907115D-3, & 8.249838297569416D-3, 1.209220822453922D-2, 1.765183095571029D-2, 2.569619042667097D-2, & 3.733577865542191D-2, 5.417739477463518D-2, 7.854595729872216D-2, 0.113805449932145D0, & 0.164823306218807D0, 0.238642339497217D0, 0.345452975434964D0, 0.5D0 /) !! integer, parameter :: Nqs = 20 !! !! real(dp), dimension(Nqs):: q_mesh = (/ 1.0D-4, 5.0D-3, 1.069893648719707D-2, 1.732707466783098D-2, & !! 2.503591926370824D-2, 3.400167757831576D-2, 4.442928720984789D-2, 5.655710047584504D-2, & !! 7.066233262513155D-2, 8.706739837124464D-2, 0.106147281586631D0, 0.128338106612676D0, & !! 0.154147107106948D0, 0.184164220293662D0, 0.219075571636537D0, 0.259679158164142D0, & !! 0.306903088934189D0, 0.361826799573841D0, 0.425705725813956D0, 0.5D0 /) !! !! !! !! integer, parameter :: Nqs = 20 !! !! real(dp), dimension(Nqs):: q_mesh = (/ 1.0D-4, 1.0D-3, 2.236206697581317D-3, 3.934214474408992D-3, & !! 6.266535125808476D-3, 9.470124470438768D-3, 1.387045625280778D-2, 1.991458916496835D-2, & !! 2.821658648395121D-2, 3.961990280509427D-2, 5.528307615046694D-2, 7.679743147816347D-2, & !! 0.106348753867322D0, 0.146939356822725D0, 0.202693107080873D0, 0.279274395396871D0, & !! 0.384463619314253D0, 0.528947645003195D0, 0.727405556392285D0, 1.0D0 /) !! !! !! integer, parameter :: Nqs = 20 !! !! real(dp), dimension(Nqs):: q_mesh = (/ 1.0D-4, 5.0D-4, 1.078773837542156D-3, 1.916221725100339D-3, & !! 3.127954044159392D-3, 4.881251455098552D-3, 7.418158132303510D-3, 1.108889616493409D-2, & !! 1.640021400932794D-2, 2.408534353734285D-2, 3.520522330968714D-2, 5.129496203180489D-2, & !! 7.457576159493165D-2, 0.108261555855433D0, 0.157002696892448D0, 0.227527940002890D0, & !! 0.329573353999449D0, 0.477226393655365D0, 0.690870684621412D0, 1.0D0 /) !! !! DO NOT CHANGE ANYTHING BELOW THIS LINE !! ######################################################################################################### integer :: q1_i, q2_i, r_i, count !! Indexing variables real(dp) :: dr, d1, d2 !! Intermediate values real(dp) :: gamma = 4.0D0*pi/9.0D0 !! Multiplicative factor for exponent in the functions called ! !! "h" in DION real(dp), parameter :: small = 1.0D-15 !! Number at which to employ special algorithms to avoid numerical ! !! problems. This is probably not needed but I like to be careful. !! The following sets up a parallel run. !! ------------------------------------------------------------------------------------------------------------------------------------------ integer :: my_start_q, my_end_q, Ntotal !! starting and ending q value for each processor, also the total number of ! !! calculations to do ( (Nqs^2 + Nqs)/2 ) real(dp), allocatable :: phi(:,:), d2phi_dk2(:,:) !! Arrays to store the kernel functions and their second derivatives. They are ! !! stored as phi(radial_point, index) integer, allocatable :: indices(:,:), proc_indices(:,:) !! indices holds the values of q1 and q2 as partitioned out to the processors. It is an ! !! Ntotal x 2 array stored as indices(index of point number, q1:q2). ! !! Proc_indices holds the section of the indices array that is assigned to each processor. ! !! This is a Nprocs x 2 array, stored as proc_indices(processor number, starting_index:ending_index) integer :: Nper, Nextra, start_q, end_q !! Baseline number of jobs per processor, number of processors that get an extra job in case the ! !! number of jobs doesn't split evenly over the number of processors, starting index into the ! !! indices array, ending index into the indices array. integer :: index, proc_i, kernel_file, my_Nqs integer :: Nprocs, my_rank, group_id !! Variables holding information about the parallel run. The total number of processors, the rank of ! !! this particular processor, and a group id. These are given to the mp_global module and its internal ! !! variables are used in most of this code. ! Set up the parallel run using PWSCF methods. ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !! Start a parallel run call mp_startup () !call mp_start(Nprocs, my_rank, group_id) !! This calls mpoi_init, figures out the total number of processors, !! the index of this particular processor, and a group id for mpi_comm_world !call io_global_start(my_rank, 0) !! This sets processor 0 to be the input/output node. This is assumed below during the output stage !call mp_global_start(0, my_rank, group_id, Nprocs) !! Pass parameters to the mp_global module. Its internal parameters are used hereafter. ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! The total number of phi_alpha_beta functions that have to be calculated Ntotal = (Nqs**2 + Nqs)/2 allocate( indices(Ntotal, 2) ) count = 1 ! This part fills in the indices array. It just loops through the q1 and q2 values and stores them. Sections ! of this array will be assigned to each of the processors later. ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do q1_i = 1, Nqs do q2_i = 1, q1_i indices(count, 1) = q1_i indices(count, 2) = q2_i count = count + 1 end do end do ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Figure out the baseline number of functions to be calculated by each processor and how many processors get 1 extra job. Nper = Ntotal/nproc Nextra = mod(Ntotal, nproc) allocate(proc_indices(nproc,2) ) start_q = 0 end_q = 0 ! Loop over all the processors and figure out which section of the indices array each processor should do. All processors ! figure this out for every processor so there is no need to communicate results. ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do proc_i = 1, nproc start_q = end_q + 1 end_q = start_q + (Nper - 1) if (proc_i <= Nextra) end_q = end_q + 1 if (proc_i == (mpime+1)) then my_start_q = start_q my_end_q = end_q end if proc_indices(proc_i, 1) = start_q proc_indices(proc_i, 2) = end_q end do ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Store how many jobs are assigned to me my_Nqs = my_end_q - my_start_q + 1 !! ------------------------------------------------------------------------------------------------------------------------------------------ allocate( phi(0:Nr_points, my_Nqs), d2phi_dk2(0:Nr_points, my_Nqs) ) phi = 0.0D0 d2phi_dk2 = 0.0D0 dr = (r_max)/(Nr_points) !! Now, we loop over all the pairs q1,q2 that are assigned to us and perform our calculations !! ----------------------------------------------------------------------------------------------------- do index = 1, my_Nqs ! First, get the value of phi(q1*r, q2*r) for each r and the particular values of q1 and q2 we are using ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ do r_i = 1, Nr_points d1 = q_mesh(indices(index+my_start_q-1, 1)) * (dr * r_i)**2 !! Different definition of d1 and d2 for vv10 !!!! d2 = q_mesh(indices(index+my_start_q-1, 2)) * (dr * r_i)**2 !! Different definition of d1 and d2 for vv10 !!!! phi(r_i, index) = phi_value(d1, d2) end do ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Now, perform a radial FFT to turn our phi_alpha_beta(r) into phi_alpha_beta(k) needed for SOLER ! equation 11 call radial_fft( phi(:,index) ) ! Determine the spline interpolation coefficients for the Fourier transformed kernel function call set_up_splines( phi(:, index), d2phi_dk2(:, index) ) end do !! ----------------------------------------------------------------------------------------------------- !! Finally, we write out the results, after letting everybody catch up !! ----------------------------------------------------------------------------------------------------- call mp_barrier(world_comm) call write_kernel_table_file(phi, d2phi_dk2) !! ----------------------------------------------------------------------------------------------------- !! Finalize the mpi run using the PWSCF method call mp_global_end( ) deallocate( phi, d2phi_dk2, indices, proc_indices ) CONTAINS !! ########################################################################################################### !! | | !! | SET UP SPLINES | !! |__________________| !! This subroutine accepts a function (phi) and finds at each point the second derivative (D2) for use with !! spline interpolation. This function assumes we are using the expansion described in SOLER 3 and 4. That !! is, the derivatives are those needed to interpolate Kronecker delta functions at each of the q values !! Other than some special modification to speed up the algorithm in our particular case, this algorithm is !! taken directly from NUMERICAL_RECIPES pages 96-97. subroutine set_up_splines(phi, D2) real(dp), intent(in) :: phi(0:Nr_points) !! The k-space kernel function for a particular q1 and q2 real(dp), intent(inout) :: D2(0:Nr_points) !! The second derivatives to be used in the interpolation ! !! expansion (SOLER equation 3) real(dp), save :: dk = 2.0D0*pi/r_max !! Spacing of k points real(dp), allocatable :: temp_array(:) !! Temporary storage real(dp) :: temp_1, temp_2 !! allocate( temp_array(0:Nr_points) ) D2 = 0 temp_array = 0 do r_i = 1, Nr_points - 1 temp_1 = dble(r_i - (r_i - 1))/dble( (r_i + 1) - (r_i - 1) ) temp_2 = temp_1 * D2(r_i-1) + 2.0D0 D2(r_i) = (temp_1 - 1.0D0)/temp_2 temp_array(r_i) = ( phi(r_i+1) - phi(r_i))/dble( dk*((r_i+1) - r_i) ) - & ( phi(r_i) - phi(r_i-1))/dble( dk*(r_i - (r_i-1)) ) temp_array(r_i) = (6.0D0*temp_array(r_i)/dble( dk*((r_i+1) - (r_i-1)) )-temp_1*temp_array(r_i-1))/temp_2 end do D2(Nr_points) = 0.0D0 do r_i = Nr_points-1, 0, -1 D2(r_i) = D2(r_i)*D2(r_i+1) + temp_array(r_i) end do deallocate( temp_array ) end subroutine set_up_splines !! ########################################################################################################### !! ########################################################################################################### !! | | !! | PHI_VALUE | !! |_____________| !! vv10 kernel phi real(dp) function phi_value(d1, d2) real(dp), intent(in) :: d1, d2 !! The point at which to evaluate the kernel. Note that ! !! d1 = q1*r^2 and d2 = q2*r^2 phi_value = - 24.0D0 / ( ( d1 + 1.0 ) * ( d2 + 1.0 ) * ( d1 + d2 + 2.0 ) ) return end function phi_value !! ########################################################################################################### !! | | !! | WRITE_KERNEL_TABLE_FILE | !! |___________________________| !! Subroutine to write out the vdW_kernel_table file. All processors pass their data to processor 0 which !! is the one that actually does the writing. This is the only communication in the entire program. subroutine write_kernel_table_file(phi, d2phi_dk2) real(dp), target :: phi(:,:), d2phi_dk2(:,:) !! Each processor passes in its array of kernel values and second ! !! derivative values for the q-pairs it calculated. They are stored ! !! as phi(index of function, function_values) integer :: proc_Nqs !! Number of calculated functions for a particular processor real(dp), pointer :: data(:,:) !! Pointer to point to the needed section of the phi and d2phi_dk2 ! !! arrays. This is needed because some processors may have calculated ! !! 1 extra function if the number of processors is not an even divisor ! !! of (Nqs^2+Nqs)/2. Processor 0 is guaranteed to be one of the ones ! !! with an extra calculation (if there are any), so it can collect the ! !! arrays from other processors and put it in its array. Data then ! !! points to either the entire array (if the other processor also had ! !! an extra calculation), or just the first proc_Nqs entries (which is ! !! guaranteed to be at most 1 less than the proc_Nqs for processor 0. if (ionode) then !! Open the file for writing. The file is written in binary to save space. !open(UNIT=21, FILE='vdW_kernel_table', status='replace', form='unformatted', action='write') open(UNIT=21, FILE='rVV10_kernel_table', status='replace', form='formatted', action='write') !! Write the relevant header information that will be read in by the kernel_table module !! --------------------------------------------------------------------------------------- !write(*) "Writing headers..." write(21, '(2i5,f13.8)') Nqs, Nr_points write(21, double_format) r_max write(21, double_format) q_mesh !! --------------------------------------------------------------------------------------- !! Processor 0 writes its kernel functions first. The subroutine "write_data" is defined !! below. !! --------------------------------------------------------------------------------------- !write(*) "Writing phi proc ", 0 data => phi(:,:) call write_data(21, data) !! --------------------------------------------------------------------------------------- end if !! Now, loop over all other processors (if any) and collect their kernel functions in the phi !! array of processor 0, which is big enough to hold any of them. Figure out how many functions !! should have been passed and make data point to just the right amount of the phi array. Then !! write the data. !! ------------------------------------------------------------------------------------------- do proc_i = 1, nproc-1 call mp_get(phi, phi, mpime, 0, proc_i, 0, world_comm) if (ionode) then proc_Nqs = proc_indices(proc_i+1, 2) - proc_indices(proc_i+1,1) + 1 !write(*) "Writing phi proc ", proc_i data => phi(:,1:proc_Nqs) call write_data(21, data) end if end do !! ------------------------------------------------------------------------------------------- !! Here, we basically repeat the process exactly but for the second derivatives d2phi_dk2 !! instead of the kernel itself !! ------------------------------------------------------------------------------------------- if (ionode) then !write(*) "Writing d2phi_dk2 proc ", 0 data => d2phi_dk2(:,:) call write_data(21, data) end if do proc_i = 1, nproc-1 call mp_get(d2phi_dk2, d2phi_dk2, mpime, 0, proc_i, 0, world_comm) if (mpime == 0) then proc_Nqs = proc_indices(proc_i+1,2) - proc_indices(proc_i+1,1) + 1 !write(*) "Writing d2phi_dk2 proc ", proc_i data => d2phi_dk2(:, 1:proc_Nqs) call write_data(21, data) end if end do !! ------------------------------------------------------------------------------------------- if (ionode) then close(21) end if end subroutine write_kernel_table_file !! ########################################################################################################### !! | | !! | WRITE_DATA | !! !______________| !! Write matrix data held in the point "array" to the file with unit number "file". Data is written !! in binary format. subroutine write_data(file, array) real(dp), pointer:: array(:,:) !! Input pointer to the matrix data to be written integer, intent(in) :: file !! Unit number of file to write to integer :: index, ios !! Indexing variable do index = 1, size(array,2) ! write(file) array(:,index) write (file, double_format, err=100, iostat=ios) array(:,index) end do 100 call errore ('generate_vv10_sgd_kernel_table', 'Writing table file', abs (ios) ) end subroutine write_data !! ########################################################################################################### !! | | !! | RADIAL_FFT | !! |______________| !! This subroutine performs a radial Fourier transform on the real-space kernel functions. Basically, this is !! just int( 4*pi*r^2*phi*sin(k*r)/(k*r))dr integrated from 0 to r_max. That is, it is the kernel function phi !! integrated with the 0^th spherical Bessel function radially, with a 4*pi assumed from angular integration !! since we have spherical symmetry. The spherical symmetry comes in because the kernel function depends only !! on the magnitude of the vector between two points. The integration is done using the trapezoid rule. subroutine radial_fft(phi) real(dp), intent(inout) :: phi(0:Nr_points) !! On input holds the real-space function phi_q1_q2(r) ! !! On output hold the reciprocal-space function phi_q1_q2(k) real(dp) :: phi_k(0:Nr_points) !! Temporary storage for phi_q1_q2(k) real(dp) :: dr = r_max/Nr_points !! Spacing between real-space sample points real(dp) :: dk = 2.0D0*pi/r_max !! Spacing between reciprocal space sample points integer :: k_i, r_i !! Indexing variables real(dp) :: r, k !! The real and reciprocal space points phi_k = 0.0D0 !! Handle the k=0 point separately !! ------------------------------------------------------------------------------------------------- do r_i = 1, Nr_points r = r_i * dr phi_k(0) = phi_k(0) + phi(r_i)*r**2 end do !! Subtract half of the last value of because of the trapezoid rule phi_k(0) = phi_k(0) - 0.5D0 * (Nr_points*dr)**2 * phi(Nr_points) !! ------------------------------------------------------------------------------------------------- !! Integration for the rest of the k-points !! ------------------------------------------------------------------------------------------------- do k_i = 1, Nr_points k = k_i * dk do r_i = 1, Nr_points r = r_i * dr phi_k(k_i) = phi_k(k_i) + phi(r_i) * r * sin(k*r) / k end do phi_k(k_i) = phi_k(k_i) - 0.5D0 * phi(Nr_points) * r *sin(k*r) / k end do !! Add in the 4*pi and the dr factor for the integration phi = 4.0D0 * pi * phi_k * dr !! ------------------------------------------------------------------------------------------------- end subroutine radial_fft !! ########################################################################################################### end program generate_rVV10_kernel_table espresso-5.1/PW/src/print_clock_pw.f900000644000175000017500000001575612341373025015772 0ustar mbamba! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE print_clock_pw() !--------------------------------------------------------------------------- ! ! ... this routine prints out the clocks at the end of the run ! ... it tries to construct the calling tree of the program. ! USE io_global, ONLY : stdout USE control_flags, ONLY : isolve, iverbosity, gamma_only USE paw_variables, ONLY : okpaw USE uspp, ONLY : okvan USE realus, ONLY : real_space USE ldaU, ONLY : lda_plus_U USE funct, ONLY : dft_is_hybrid ! IMPLICIT NONE ! ! WRITE( stdout, * ) ! CALL print_clock( 'init_run' ) CALL print_clock( 'electrons' ) CALL print_clock( 'update_pot' ) CALL print_clock( 'forces' ) CALL print_clock( 'stress' ) ! WRITE( stdout, '(/5x,"Called by init_run:")' ) CALL print_clock( 'wfcinit' ) CALL print_clock( 'potinit' ) CALL print_clock( 'realus' ) IF ( iverbosity > 0 ) THEN CALL print_clock( 'realus:boxes' ) CALL print_clock( 'realus:spher' ) CALL print_clock( 'realus:qsave' ) END IF ! WRITE( stdout, '(/5x,"Called by electrons:")' ) CALL print_clock( 'c_bands' ) CALL print_clock( 'sum_band' ) CALL print_clock( 'v_of_rho' ) IF ( iverbosity > 0 ) THEN CALL print_clock( 'v_h' ) CALL print_clock( 'v_xc' ) CALL print_clock( 'v_xc_meta' ) END IF CALL print_clock( 'newd' ) IF ( iverbosity > 0 ) THEN CALL print_clock( 'newd:fftvg' ) CALL print_clock( 'newd:qvan2' ) CALL print_clock( 'newd:int1' ) CALL print_clock( 'newd:int2' ) END IF CALL print_clock( 'mix_rho' ) CALL print_clock( 'vdW_energy' ) CALL print_clock( 'vdW_ffts' ) CALL print_clock( 'vdW_v' ) ! WRITE( stdout, '(/5x,"Called by c_bands:")' ) CALL print_clock( 'init_us_2' ) IF ( isolve == 0 ) THEN IF ( gamma_only ) THEN CALL print_clock( 'regterg' ) ELSE CALL print_clock( 'cegterg' ) ENDIF ELSE IF ( gamma_only ) THEN CALL print_clock( 'rcgdiagg' ) ELSE CALL print_clock( 'ccgdiagg' ) ENDIF CALL print_clock( 'wfcrot' ) ENDIF ! IF ( iverbosity > 0) THEN WRITE( stdout, '(/5x,"Called by sum_band:")' ) CALL print_clock( 'sum_band:becsum' ) CALL print_clock( 'addusdens' ) CALL print_clock( 'addus:qvan2' ) CALL print_clock( 'addus:strf' ) CALL print_clock( 'addus:aux2' ) CALL print_clock( 'addus:aux' ) ENDIF ! IF ( isolve == 0 ) THEN WRITE( stdout, '(/5x,"Called by *egterg:")' ) ELSE WRITE( stdout, '(/5x,"Called by *cgdiagg:")' ) END IF ! IF (real_space ) THEN WRITE( stdout, '(/5x,"Called by real space routines:")' ) CALL print_clock ( 'realus' ) CALL print_clock ( 'betapointlist' ) CALL print_clock ( 'addusdens' ) CALL print_clock ( 'calbec_rs' ) CALL print_clock ( 's_psir' ) CALL print_clock ( 'add_vuspsir' ) CALL print_clock ( 'fft_orbital' ) CALL print_clock ( 'bfft_orbital' ) CALL print_clock ( 'v_loc_psir' ) ELSE CALL print_clock( 'h_psi' ) CALL print_clock( 's_psi' ) CALL print_clock( 'g_psi' ) ENDIF IF ( gamma_only ) THEN CALL print_clock( 'rdiaghg' ) IF ( iverbosity > 0 ) THEN CALL print_clock( 'regterg:overlap' ) CALL print_clock( 'regterg:update' ) CALL print_clock( 'regterg:last' ) CALL print_clock( 'rdiaghg:choldc' ) CALL print_clock( 'rdiaghg:inversion' ) CALL print_clock( 'rdiaghg:paragemm' ) ENDIF ELSE CALL print_clock( 'cdiaghg' ) IF ( iverbosity > 0 ) THEN CALL print_clock( 'cegterg:overlap' ) CALL print_clock( 'cegterg:update' ) CALL print_clock( 'cegterg:last' ) CALL print_clock( 'cdiaghg:choldc' ) CALL print_clock( 'cdiaghg:inversion' ) CALL print_clock( 'cdiaghg:paragemm' ) END IF END IF ! WRITE( stdout, '(/5x,"Called by h_psi:")' ) IF ( iverbosity > 0 ) THEN CALL print_clock( 'h_psi:init' ) CALL print_clock( 'h_psi:vloc' ) CALL print_clock( 'h_psi:vnl' ) END IF CALL print_clock( 'add_vuspsi' ) CALL print_clock( 'vhpsi' ) CALL print_clock( 'h_psi_meta' ) ! WRITE( stdout, '(/5X,"General routines")' ) ! CALL print_clock( 'calbec' ) CALL print_clock( 'fft' ) CALL print_clock( 'ffts' ) CALL print_clock( 'fftw' ) CALL print_clock( 'interpolate' ) CALL print_clock( 'davcio' ) ! WRITE( stdout, * ) ! #if defined (__MPI) WRITE( stdout, '(5X,"Parallel routines")' ) ! CALL print_clock( 'reduce' ) CALL print_clock( 'fft_scatter' ) CALL print_clock( 'ALLTOALL' ) #endif ! IF ( lda_plus_U ) THEN WRITE( stdout, '(5X,"Hubbard U routines")' ) CALL print_clock( 'new_ns' ) CALL print_clock( 'vhpsi' ) CALL print_clock( 'force_hub' ) CALL print_clock( 'stres_hub' ) ENDIF ! IF ( dft_is_hybrid() ) THEN WRITE( stdout, '(/,5X,"EXX routines")' ) CALL print_clock( 'exx_grid' ) CALL print_clock( 'exxinit' ) CALL print_clock( 'vexx' ) !CALL print_clock( 'vexx_ngmloop' ) CALL print_clock( 'exxenergy' ) CALL print_clock( 'exxen2' ) !CALL print_clock( 'exxen2_ngmloop' ) CALL print_clock ('cycleig') IF( okvan) THEN WRITE( stdout, '(/,5X,"EXX+US routines")' ) CALL print_clock( 'becxx' ) CALL print_clock( 'addusxx' ) CALL print_clock( 'newdxx' ) CALL print_clock( 'nlxx_pot' ) ENDIF ENDIF ! IF ( okpaw ) THEN WRITE( stdout, '(/,5X,"PAW routines")' ) ! radial routines: CALL print_clock ('PAW_pot') CALL print_clock ('PAW_newd') CALL print_clock ('PAW_int') CALL print_clock ('PAW_ddot') CALL print_clock ('PAW_rad_init') CALL print_clock ('PAW_energy') CALL print_clock ('PAW_symme') ! second level routines: CALL print_clock ('PAW_rho_lm') CALL print_clock ('PAW_h_pot') CALL print_clock ('PAW_xc_pot') CALL print_clock ('PAW_lm2rad') CALL print_clock ('PAW_rad2lm') ! third level, or deeper: CALL print_clock ('PAW_rad2lm3') CALL print_clock ('PAW_gcxc_v') CALL print_clock ('PAW_div') CALL print_clock ('PAW_grad') IF ( dft_is_hybrid() ) THEN WRITE( stdout, '(/,5X,"PAW+EXX routines")' ) CALL print_clock("PAW_newdxx") CALL print_clock("PAW_xx_nrg") CALL print_clock('PAW_keeq') ENDIF END IF call print_clock('h_epsi_set') call print_clock('h_epsi_apply') call print_clock('c_phase_field') ! CALL plugin_clock() ! RETURN ! END SUBROUTINE print_clock_pw espresso-5.1/PW/src/wannier_clean.f900000644000175000017500000000305512341373025015547 0ustar mbamba! Copyright (C) 2008 Dmitry Korotin dmitry@korotin.name ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #define ZERO (0.d0,0.d0) #define ONE (1.d0,0.d0) !---------------------------------------------------------------------- subroutine wannier_clean() !---------------------------------------------------------------------- ! ! ... This routine deallocates all dynamically allocated arrays for wannier calc and closes all open files ! USE wannier_new, only: wan_in, wan_pot, wannier_energy, wannier_occ, pp, coef USE io_files USE buffers USE basis, ONLY : swfcatom USE ldaU, ONLY : lda_plus_u USE fixed_occ, ONLY : one_atom_occupations IMPLICIT NONE LOGICAL :: opnd if(allocated(wan_in)) deallocate(wan_in) if(allocated(wan_pot)) deallocate(wan_pot) if(allocated(wannier_energy)) deallocate(wannier_energy) if(allocated(wannier_occ)) deallocate(wannier_occ) if(allocated(pp)) deallocate(pp) if(allocated(coef)) deallocate(coef) CALL close_buffer( iunwpp, 'keep' ) CALL close_buffer( iunwf, 'keep' ) IF ( .NOT. ( lda_plus_u .OR. one_atom_occupations ) ) THEN INQUIRE( UNIT = iunsat, OPENED = opnd ) IF ( opnd ) CALL close_buffer( iunsat, 'delete' ) END IF INQUIRE( UNIT = iunigk, OPENED = opnd ) IF ( opnd ) CALL close_buffer( iunigk, 'delete' ) IF(ALLOCATED(swfcatom)) DEALLOCATE(swfcatom) return ! end subroutine wannier_clean espresso-5.1/PW/src/stres_hub.f900000644000175000017500000005660512341373025014751 0ustar mbamba! ! Copyright (C) 2002-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE stres_hub ( sigmah ) !---------------------------------------------------------------------- ! ! This routines computes the Hubbard contribution to the internal stress ! tensor. It gives in output the array sigmah(i,j) which corresponds to ! the quantity -(1/\Omega)dE_{h}/d\epsilon_{i,j} ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ityp USE cell_base, ONLY : omega, at, bg USE ldaU, ONLY : hubbard_lmax, hubbard_l, is_hubbard, & lda_plus_u_kind, U_projection USE scf, ONLY : v USE lsda_mod, ONLY : nspin USE symme, ONLY : symmatrix USE io_files, ONLY : prefix USE io_global, ONLY : stdout, ionode ! IMPLICIT NONE ! REAL (DP), INTENT(OUT) :: sigmah(3,3) ! the Hubbard contribution to stresses ! INTEGER :: ipol, jpol, na, nt, is, m1,m2, ldim REAL (DP), ALLOCATABLE :: dns(:,:,:,:) ! dns(ldim,ldim,nspin,nat), ! the derivative of the atomic occupations ! CALL start_clock( 'stres_hub' ) ! IF (U_projection .NE. "atomic") CALL errore("stres_hub", & " stress for this U_projection_type not implemented",1) IF (lda_plus_u_kind.eq.1) CALL errore("stres_hub", & " stress in full LDA+U scheme is not yet implemented",1) sigmah(:,:) = 0.d0 ldim = 2 * Hubbard_lmax + 1 ALLOCATE (dns(ldim,ldim,nspin,nat)) ! #ifdef DEBUG DO na=1,nat DO is=1,nspin nt = ityp(na) IF ( is_hubbard(nt) ) THEN WRITE( stdout,'(a,2i3)') 'NS(NA,IS) ', na,is DO m1=1,ldim WRITE( stdout,'(7f10.4)') (v%ns(m1,m2,is,na),m2=1,ldim) END DO END IF END DO END DO #endif ! ! NB: both ipol and jpol must run from 1 to 3 because this stress ! contribution is not in general symmetric when computed only ! from k-points in the irreducible wedge of the BZ. ! It is (must be) symmetric after symmetrization but this requires ! the full stress tensor not only its upper triangular part. ! DO ipol = 1,3 DO jpol = 1,3 CALL dndepsilon(ipol,jpol,ldim,dns) DO na = 1,nat nt = ityp(na) IF ( is_hubbard(nt) ) THEN DO is = 1,nspin #ifdef DEBUG WRITE( stdout,'(a,4i3)') 'DNS(IPOL,JPOL,NA,IS) ', ipol,jpol,na,is WRITE( stdout,'(5f10.4)') ((dns(m1,m2,is,na),m2=1,5),m1=1,5) #endif DO m2 = 1, 2 * Hubbard_l(nt) + 1 DO m1 = 1, 2 * Hubbard_l(nt) + 1 sigmah(ipol,jpol) = sigmah(ipol,jpol) - & v%ns(m2,m1,is,na) * dns(m1,m2,is,na) / omega END DO END DO END DO END IF END DO END DO END DO IF (nspin.EQ.1) sigmah(:,:) = 2.d0 * sigmah(:,:) CALL symmatrix ( sigmah ) ! ! Impose symmetry s(i,j) = s(j,i) to the stress tensor ! it should NOT be needed, let's do it for safety. ! DO ipol = 1,3 DO jpol = ipol,3 if ( abs( sigmah(ipol,jpol)-sigmah(jpol,ipol) ) > 1.d-6 ) then write (stdout,'(2i3,2f12.7)') ipol,jpol,sigmah(ipol,jpol), & sigmah(jpol,ipol) call errore('stres_hub',' non-symmetric stress contribution',1) end if sigmah(ipol,jpol) = 0.5d0* ( sigmah(ipol,jpol) + sigmah(jpol,ipol) ) sigmah(jpol,ipol) = sigmah(ipol,jpol) END DO END DO DEALLOCATE (dns) ! CALL stop_clock( 'stres_hub' ) ! RETURN END SUBROUTINE stres_hub ! !----------------------------------------------------------------------- SUBROUTINE dndepsilon ( ipol,jpol,ldim,dns ) !----------------------------------------------------------------------- ! This routine computes the derivative of the ns atomic occupations with ! respect to the strain epsilon(ipol,jpol) used to obtain the hubbard ! contribution to the internal stres tensor. ! USE kinds, ONLY : DP USE wavefunctions_module, ONLY : evc USE ions_base, ONLY : nat, ityp USE control_flags, ONLY : gamma_only USE klist, ONLY : nks, xk, ngk USE ldaU, ONLY : wfcU, nwfcU, offsetU, Hubbard_l, & is_hubbard, copy_U_wfc USE basis, ONLY : natomwfc USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE wvfct, ONLY : nbnd, npwx, npw, igk, wg USE uspp, ONLY : nkb, vkb USE becmod, ONLY : bec_type, becp, calbec, & allocate_bec_type, deallocate_bec_type USE io_files, ONLY : iunigk, nwordwfc, iunwfc, & iunhub, nwordwfcU, nwordatwfc USE buffers, ONLY : get_buffer USE mp_pools, ONLY : inter_pool_comm, intra_pool_comm, & me_pool, nproc_pool USE mp, ONLY : mp_sum IMPLICIT NONE ! ! I/O variables first ! INTEGER, INTENT(IN) :: ipol, jpol, ldim REAL(DP), INTENT(OUT) :: dns(ldim,ldim,nspin,nat) ! ! local variable ! INTEGER :: ik, & ! counter on k points ibnd, & ! " " bands is, & ! " " spins na, nt, m1, m2, nb_s, nb_e, mykey REAL(DP), ALLOCATABLE :: dns_(:,:,:,:) ! partial contribution COMPLEX (DP), ALLOCATABLE :: spsi(:,:), wfcatom(:,:) type (bec_type) :: proj, dproj ! ! poor-man parallelization over bands ! - if nproc_pool=1 : nb_s=1, nb_e=nbnd, mykey=0 ! - if nproc_pool<=nbnd:each processor calculates band nb_s to nb_e; mykey=0 ! - if nproc_pool>nbnd :each processor takes care of band na_s=nb_e; ! mykey labels how many times each band appears (mykey=0 first time etc.) ! CALL block_distribute( nbnd, me_pool, nproc_pool, nb_s, nb_e, mykey ) ! ALLOCATE ( wfcatom (npwx,natomwfc) ) ALLOCATE ( spsi(npwx,nbnd) ) call allocate_bec_type ( nwfcU,nbnd, proj) call allocate_bec_type ( nwfcU,nbnd, dproj ) call allocate_bec_type ( nkb,nbnd, becp ) ALLOCATE ( dns_(ldim,ldim,nspin,nat) ) ! ! D_Sl for l=1 and l=2 are already initialized, for l=0 D_S0 is 1 ! ! Offset of atomic wavefunctions initialized in setup and stored in offsetU dns(:,:,:,:) = 0.d0 ! ! we start a loop on k points ! IF (nks > 1) REWIND (iunigk) DO ik = 1, nks IF (lsda) current_spin = isk(ik) npw = ngk(ik) ! IF (nks > 1) THEN READ (iunigk) igk CALL get_buffer (evc, nwordwfc, iunwfc, ik) END IF CALL init_us_2 (npw,igk,xk(1,ik),vkb) CALL calbec( npw, vkb, evc, becp ) CALL s_psi (npwx, npw, nbnd, evc, spsi ) ! re-calculate atomic wfc - wfcatom is used here as work space CALL atomic_wfc (ik, wfcatom) call copy_U_wfc (wfcatom) ! wfcU contains Hubbard-U atomic wavefunctions ! proj= - no need to read S*wfcU from buffer ! CALL calbec ( npw, wfcU, spsi, proj) ! ! now we need the first derivative of proj with respect to ! epsilon(ipol,jpol) ! IF ( gamma_only ) THEN CALL dprojdepsilon_gamma (spsi, ipol, jpol, nb_s, nb_e, mykey, dproj%r) ELSE CALL dprojdepsilon_k (spsi, ik, ipol, jpol, nb_s, nb_e, mykey, dproj%k) END IF ! ! compute the derivative of the occupation numbers (quantities dn(m1,m2)) ! of the atomic orbitals. They are real quantities as well as n(m1,m2) ! ! band parallelization. If each band appears more than once ! compute its contribution only once (i.e. when mykey=0) dns_(:,:,:,:) = 0.0_dp IF ( mykey /= 0 ) GO TO 10 DO na = 1,nat nt = ityp(na) IF ( is_hubbard(nt) ) THEN DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = m1, 2 * Hubbard_l(nt) + 1 IF ( gamma_only ) THEN DO ibnd = nb_s, nb_e dns_(m1,m2,current_spin,na) = & dns_(m1,m2,current_spin,na) + wg(ibnd,ik) *& ( proj%r(offsetU(na)+m1,ibnd) * & dproj%r(offsetU(na)+m2,ibnd) + & dproj%r(offsetU(na)+m1,ibnd) * & proj%r(offsetU(na)+m2,ibnd)) END DO ELSE DO ibnd = nb_s, nb_e dns_(m1,m2,current_spin,na) = & dns_(m1,m2,current_spin,na) + wg(ibnd,ik) *& DBLE(proj%k(offsetU(na)+m1,ibnd) * & CONJG(dproj%k(offsetU(na)+m2,ibnd) ) + & dproj%k(offsetU(na)+m1,ibnd)* & CONJG(proj%k(offsetU(na)+m2,ibnd) ) ) END DO END IF END DO END DO END IF END DO 10 CALL mp_sum(dns_, intra_pool_comm) dns(:,:,:,:) = dns(:,:,:,:) + dns_(:,:,:,:) END DO ! on k-points ! DEALLOCATE ( dns_ ) CALL mp_sum( dns, inter_pool_comm ) ! ! In nspin.eq.1 k-point weight wg is normalized to 2 el/band ! in the whole BZ but we are interested in dns of one spin component ! IF (nspin.EQ.1) dns = 0.5d0 * dns ! ! impose hermiticity of dn_{m1,m2} ! DO na = 1,nat nt = ityp(na) DO is = 1,nspin DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = m1+1, 2 * Hubbard_l(nt) + 1 dns(m2,m1,is,na) = dns(m1,m2,is,na) END DO END DO END DO END DO call deallocate_bec_type (proj) call deallocate_bec_type (dproj) call deallocate_bec_type (becp) DEALLOCATE ( spsi ) DEALLOCATE ( wfcatom ) RETURN END SUBROUTINE dndepsilon ! !----------------------------------------------------------------------- SUBROUTINE dprojdepsilon_k ( spsi, ik, ipol, jpol, nb_s, nb_e, mykey, dproj ) !----------------------------------------------------------------------- ! ! This routine computes the first derivative of the projection ! <\fi^{at}_{I,m1}|S|\psi_{k,v,s}> with respect to the strain epsilon(i,j) ! (we remember that ns_{I,s,m1,m2} = \sum_{k,v} ! f_{kv} <\fi^{at}_{I,m1}|S|\psi_{k,v,s}><\psi_{k,v,s}|S|\fi^{at}_{I,m2}>) ! USE kinds, ONLY : DP USE cell_base, ONLY : tpiba USE ions_base, ONLY : nat, ntyp => nsp, ityp USE gvect, ONLY : g USE klist, ONLY : nks, xk USE ldaU, ONLY : hubbard_l, is_hubbard, nwfcU, wfcU USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE wvfct, ONLY : nbnd, npwx, npw, igk, wg USE uspp, ONLY : nkb, vkb, qq USE uspp_param, ONLY : upf, nhm, nh USE wavefunctions_module, ONLY : evc USE becmod, ONLY : bec_type, becp, calbec USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! I/O variables first ! INTEGER, INTENT(IN) :: ik, ipol, jpol, nb_s, nb_e, mykey COMPLEX (DP), INTENT(IN) :: & spsi(npwx,nbnd) ! S|evc> COMPLEX (DP), INTENT(OUT) :: & dproj(nwfcU,nbnd) ! the derivative of the projection ! INTEGER :: i, ig, ijkb0, na, ibnd, iwf, nt, ih,jh REAL (DP) :: xyz(3,3), q, a1, a2 REAL (DP), PARAMETER :: eps=1.0d-8 COMPLEX (DP), ALLOCATABLE :: & dwfc(:,:), aux(:,:), dbeta(:,:), aux0(:,:), aux1(:,:), & betapsi(:,:), dbetapsi(:,:), wfatbeta(:,:), wfatdbeta(:,:) ! dwfc(npwx,nwfcU), ! the derivative of the atomic d wfc ! aux(npwx,nwfcU), ! auxiliary array ! dbeta(npwx,nkb), ! the derivative of the beta function ! aux0,aux1(npwx,nkb),! auxiliary arrays ! betapsi(nhm,nbnd), ! ! dbetapsi(nhm,nbnd), ! ! wfatbeta(nwfcU,nhm),! ! wfatdbeta(nwfcU,nhm)! REAL (DP), ALLOCATABLE :: gk(:,:), qm1(:) ! gk(3,npwx), ! qm1(npwx) ! ! xyz are the three unit vectors in the x,y,z directions xyz(:,:) = 0.d0 DO i=1,3 xyz(i,i) = 1.d0 END DO dproj(:,:) = (0.d0,0.d0) ! ! At first the derivatives of the atomic wfcs: we compute the term ! ! ALLOCATE ( qm1(npwx), gk(3,npwx) ) ALLOCATE ( dwfc(npwx,nwfcU), aux(npwx,nwfcU) ) ! here the derivative of the Bessel function CALL gen_at_dj (ik,nwfcU,is_hubbard,hubbard_l,dwfc) ! and here the derivative of the spherical harmonic CALL gen_at_dy (ik,nwfcU,is_hubbard,hubbard_l,xyz(1,ipol),aux) DO ig = 1,npw gk(1,ig) = (xk(1,ik)+g(1,igk(ig)))*tpiba gk(2,ig) = (xk(2,ik)+g(2,igk(ig)))*tpiba gk(3,ig) = (xk(3,ik)+g(3,igk(ig)))*tpiba q = SQRT(gk(1,ig)**2+gk(2,ig)**2+gk(3,ig)**2) IF (q.GT.eps) THEN qm1(ig)=1.d0/q ELSE qm1(ig)=0.d0 END IF a1 = -gk(jpol,ig) a2 = -gk(ipol,ig)*gk(jpol,ig)*qm1(ig) DO iwf = 1,nwfcU dwfc(ig,iwf) = aux(ig,iwf)*a1 + dwfc(ig,iwf)*a2 END DO END DO IF (ipol.EQ.jpol) dwfc(1:npw,:) = dwfc(1:npw,:) - wfcU(1:npw,:)*0.5d0 CALL calbec ( npw, dwfc, spsi, dproj ) DEALLOCATE ( dwfc, aux ) ! ! Now the derivatives of the beta functions: we compute the term ! <\fi^{at}_{I,m1}|dS/d\epsilon(ipol,jpol)|\psi_{k,v,s}> ! ALLOCATE (aux0(npwx,nkb), aux1(npwx,nkb) ) ! here the derivative of the Bessel function CALL gen_us_dj (ik, aux0) ! and here the derivative of the spherical harmonic CALL gen_us_dy (ik, xyz(1,ipol), aux1) ijkb0 = 0 DO nt=1,ntyp ALLOCATE (dbeta(npwx,nh(nt)), dbetapsi(nh(nt),nbnd), betapsi(nh(nt),nbnd), & wfatbeta(nwfcU,nh(nt)), wfatdbeta(nwfcU,nh(nt)) ) DO na=1,nat IF ( ityp(na) .EQ. nt ) THEN DO ih=1,nh(nt) ! now we compute the true dbeta function DO ig = 1,npw dbeta(ig,ih) = - aux1(ig,ijkb0+ih)*gk(jpol,ig) - & aux0(ig,ijkb0+ih) * gk(ipol,ig) * gk(jpol,ig) * qm1(ig) IF (ipol.EQ.jpol) & dbeta(ig,ih) = dbeta(ig,ih) - vkb(ig,ijkb0+ih)*0.5d0 END DO END DO CALL calbec(npw, dbeta, evc, dbetapsi ) CALL calbec(npw, wfcU, dbeta,wfatdbeta ) ! ! dbeta is now used as work space to store vkb DO ih=1,nh(nt) DO ig = 1,npw dbeta(ig,ih) = vkb(ig,ijkb0+ih) END DO END DO CALL calbec(npw, wfcU, dbeta, wfatbeta ) ! ! here starts band parallelization ! beta is here used as work space to calculate dbetapsi betapsi(:,:) = (0.0_dp, 0.0_dp) DO ih=1,nh(nt) DO ibnd = nb_s,nb_e DO jh = 1,nh(nt) betapsi(ih,ibnd) = betapsi(ih,ibnd) + & qq(ih,jh,nt) * dbetapsi(jh,ibnd) END DO END DO END DO dbetapsi (:,:) = betapsi(:,:) ! DO ih=1,nh(nt) DO ibnd = nb_s,nb_e betapsi(ih,ibnd)= (0.0_dp, 0.0_dp) DO jh = 1,nh(nt) betapsi(ih,ibnd) = betapsi(ih,ibnd) + & qq(ih,jh,nt) * becp%k(ijkb0+jh,ibnd) END DO END DO END DO ! ijkb0 = ijkb0 + nh(nt) ! ! dproj(iwf,ibnd) = \sum_ih wfatdbeta(iwf,ih)*betapsi(ih,ibnd) + ! wfatbeta(iwf,ih)*dbetapsi(ih,ibnd) ! IF ( mykey == 0 ) THEN CALL ZGEMM('N','N',nwfcU, nb_e-nb_s+1, nh(nt), (1.0_dp,0.0_dp), & wfatdbeta, nwfcU, betapsi(1,nb_s), nh(nt),(1.0_dp,0.0_dp), & dproj(1,nb_s), nwfcU) CALL ZGEMM('N','N',nwfcU,nb_e-nb_s+1, nh(nt), (1.0_dp,0.0_dp), & wfatbeta, nwfcU, dbetapsi(1,nb_s), nh(nt),(1.0_dp,0.0_dp), & dproj(1,nb_s), nwfcU) END IF ! end band parallelization - only dproj(1,nb_s:nb_e) are calculated END IF END DO DEALLOCATE (dbeta, dbetapsi, betapsi, wfatbeta, wfatdbeta ) END DO DEALLOCATE ( aux0, aux1 ) DEALLOCATE ( qm1, gk ) RETURN END SUBROUTINE dprojdepsilon_k ! !----------------------------------------------------------------------- SUBROUTINE dprojdepsilon_gamma ( spsi, ipol, jpol, nb_s, nb_e, mykey, dproj ) !----------------------------------------------------------------------- ! ! This routine computes the first derivative of the projection ! <\fi^{at}_{I,m1}|S|\psi_{k,v,s}> with respect to the strain epsilon(i,j) ! (we remember that ns_{I,s,m1,m2} = \sum_{k,v} ! f_{kv} <\fi^{at}_{I,m1}|S|\psi_{k,v,s}><\psi_{k,v,s}|S|\fi^{at}_{I,m2}>) ! USE kinds, ONLY : DP USE cell_base, ONLY : tpiba USE ions_base, ONLY : nat, ntyp => nsp, ityp USE gvect, ONLY : g, gstart USE klist, ONLY : nks, xk USE ldaU, ONLY : is_hubbard, hubbard_l, nwfcU, wfcU USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE wvfct, ONLY : nbnd, npwx, npw, igk, wg USE uspp, ONLY : nkb, vkb, qq USE uspp_param, ONLY : upf, nhm, nh USE wavefunctions_module, ONLY : evc USE becmod, ONLY : bec_type, becp, calbec USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum IMPLICIT NONE ! ! I/O variables first ! INTEGER, INTENT(IN) :: ipol, jpol, nb_s, nb_e, mykey COMPLEX (DP), INTENT(IN) :: & spsi(npwx,nbnd) ! S|evc> REAL (DP), INTENT(OUT) :: & dproj(nwfcU,nbnd) ! the derivative of the projection ! INTEGER :: ik=1, i, ig, ijkb0, na, ibnd, iwf, nt, ih,jh REAL (DP) :: xyz(3,3), q, a1, a2 REAL (DP), PARAMETER :: eps=1.0d-8 COMPLEX (DP), ALLOCATABLE :: & dwfc(:,:), aux(:,:), dbeta(:,:), aux0(:,:), aux1(:,:) ! dwfc(npwx,nwfcU), ! the derivative of the atomic d wfc ! aux(npwx,nwfcU), ! auxiliary array ! dbeta(npwx,nkb), ! the derivative of the beta function ! aux0,aux1(npwx,nkb) ! auxiliary arrays REAL (DP), ALLOCATABLE :: & betapsi(:,:), dbetapsi(:,:), wfatbeta(:,:), wfatdbeta(:,:) ! betapsi(nhm,nbnd), ! ! dbetapsi(nhm,nbnd), ! ! wfatbeta(nwfcU,nhm),! ! wfatdbeta(nwfcU,nhm)! REAL (DP), ALLOCATABLE :: gk(:,:), qm1(:) ! gk(3,npwx), ! qm1(npwx) ! ! xyz are the three unit vectors in the x,y,z directions xyz(:,:) = 0.d0 DO i=1,3 xyz(i,i) = 1.d0 END DO dproj(:,:) = 0.d0 ! ! At first the derivatives of the atomic wfcs: we compute the term ! ! ALLOCATE ( qm1(npwx), gk(3,npwx) ) ALLOCATE ( dwfc(npwx,nwfcU), aux(npwx,nwfcU) ) ! here the derivative of the Bessel function CALL gen_at_dj (ik,nwfcU,is_hubbard,hubbard_l,dwfc) ! and here the derivative of the spherical harmonic CALL gen_at_dy (ik,nwfcU,is_hubbard,hubbard_l,xyz(1,ipol),aux) DO ig = 1,npw gk(1,ig) = (xk(1,ik)+g(1,igk(ig)))*tpiba gk(2,ig) = (xk(2,ik)+g(2,igk(ig)))*tpiba gk(3,ig) = (xk(3,ik)+g(3,igk(ig)))*tpiba q = SQRT(gk(1,ig)**2+gk(2,ig)**2+gk(3,ig)**2) IF (q.GT.eps) THEN qm1(ig)=1.d0/q ELSE qm1(ig)=0.d0 END IF a1 = -gk(jpol,ig) a2 = -gk(ipol,ig)*gk(jpol,ig)*qm1(ig) DO iwf = 1,nwfcU dwfc(ig,iwf) = aux(ig,iwf)*a1 + dwfc(ig,iwf)*a2 END DO END DO IF (ipol.EQ.jpol) dwfc(1:npw,:) = dwfc(1:npw,:) - wfcU(1:npw,:)*0.5d0 CALL calbec ( npw, dwfc, spsi, dproj ) DEALLOCATE ( dwfc, aux ) ! ! Now the derivatives of the beta functions: we compute the term ! <\fi^{at}_{I,m1}|dS/d\epsilon(ipol,jpol)|\psi_{k,v,s}> ! ALLOCATE (aux0(npwx,nkb), aux1(npwx,nkb) ) ! here the derivative of the Bessel function CALL gen_us_dj (ik, aux0) ! and here the derivative of the spherical harmonic CALL gen_us_dy (ik, xyz(1,ipol), aux1) ijkb0 = 0 DO nt=1,ntyp ALLOCATE (dbeta(npwx,nh(nt)), dbetapsi(nh(nt),nbnd), betapsi(nh(nt),nbnd), & wfatbeta(nwfcU,nh(nt)), wfatdbeta(nwfcU,nh(nt)) ) DO na=1,nat IF ( ityp(na) .EQ. nt ) THEN DO ih=1,nh(nt) ! now we compute the true dbeta function DO ig = 1,npw dbeta(ig,ih) = - aux1(ig,ijkb0+ih)*gk(jpol,ig) - & aux0(ig,ijkb0+ih) * gk(ipol,ig) * gk(jpol,ig) * qm1(ig) IF (ipol.EQ.jpol) & dbeta(ig,ih) = dbeta(ig,ih) - vkb(ig,ijkb0+ih)*0.5d0 END DO END DO ! CALL calbec(npw, dbeta, evc, dbetapsi ) CALL calbec(npw, wfcU, dbeta, wfatdbeta ) ! ! dbeta is now used as work space to store vkb DO ih=1,nh(nt) DO ig = 1,npw dbeta(ig,ih) = vkb(ig,ijkb0+ih) END DO END DO CALL calbec(npw, wfcU, dbeta, wfatbeta ) ! ! here starts band parallelization ! beta is here used as work space to calculate dbetapsi betapsi(:,:) = 0.0_dp DO ih=1,nh(nt) DO ibnd = nb_s,nb_e DO jh = 1,nh(nt) betapsi(ih,ibnd) = betapsi(ih,ibnd) + & qq(ih,jh,nt) * dbetapsi(jh,ibnd) END DO END DO END DO dbetapsi (:,:) = betapsi(:,:) ! DO ih=1,nh(nt) DO ibnd = nb_s,nb_e betapsi(ih,ibnd)= 0.0_dp DO jh = 1,nh(nt) betapsi(ih,ibnd) = betapsi(ih,ibnd) + & qq(ih,jh,nt) * becp%r(ijkb0+jh,ibnd) END DO END DO END DO ! ijkb0 = ijkb0 + nh(nt) ! ! dproj(iwf,ibnd) = \sum_ih wfatdbeta(iwf,ih)*betapsi(ih,ibnd) + ! wfatbeta(iwf,ih)*dbetapsi(ih,ibnd) ! IF ( mykey == 0 ) THEN CALL DGEMM('N','N',nwfcU, nb_e-nb_s+1, nh(nt), 1.0_dp, & wfatdbeta, nwfcU, betapsi(1,nb_s), nh(nt), 1.0_dp,& dproj(1,nb_s), nwfcU) CALL DGEMM('N','N',nwfcU, nb_e-nb_s+1, nh(nt), 1.0_dp, & wfatbeta, nwfcU, dbetapsi(1,nb_s), nh(nt), 1.0_dp,& dproj(1,nb_s), nwfcU) END IF ! end band parallelization - only dproj(1,nb_s:nb_e) are calculated END IF END DO DEALLOCATE (dbeta, dbetapsi, betapsi, wfatbeta, wfatdbeta ) END DO DEALLOCATE ( aux0, aux1 ) DEALLOCATE ( qm1, gk ) RETURN END SUBROUTINE dprojdepsilon_gamma espresso-5.1/PW/src/bp_qvan3.f900000644000175000017500000000472512341373025014460 0ustar mbamba! ! Copyright (C) 2004 Vanderbilt's group at Rutgers University, NJ ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Modified by PG - Oct.2007: removed obsolete comments !-------------------------------------------------------------------------- subroutine qvan3(iv,jv,is,qg,ylm_k,qr) !-------------------------------------------------------------------------- ! ! calculate qg = SUM_LM (-I)^L AP(LM,iv,jv) YR_LM QRAD(iv,jv,L,is) USE kinds, ONLY: DP USE ions_base, ONLY : ntyp => nsp USE us, ONLY: dq, qrad USE uspp_param, ONLY: lmaxq, nbetam USE uspp, ONLY: nlx, lpl, lpx, ap, indv, nhtol, nhtolm implicit none integer :: iv,jv,is complex(DP) :: qg,sig real(DP) :: ylm_k(lmaxq*lmaxq) real(DP) :: qr(nbetam,nbetam,lmaxq,ntyp) integer ivs,jvs,ivl,jvl,lp,l,i ivs = indv(iv,is) jvs = indv(jv,is) ivl = nhtolm(iv,is) jvl = nhtolm(jv,is) if (ivs > nbetam .OR. jvs > nbetam) & call errore (' qvan3 ', ' wrong dimensions (1)', MAX(ivs,jvs)) if (ivl > nlx .OR. jvl > nlx) & call errore (' qvan3 ', ' wrong dimensions (2)', MAX(ivl,jvl)) qg = (0.0d0,0.0d0) !odl Write(*,*) 'QVAN3 -- ivs jvs = ',ivs,jvs !odl Write(*,*) 'QVAN3 -- ivl jvl = ',ivl,jvl do i=1,lpx(ivl,jvl) !odl Write(*,*) 'QVAN3 -- i = ',i lp = lpl(ivl,jvl,i) !odl Write(*,*) 'QVAN3 -- lp = ',lp ! EXTRACTION OF ANGULAR MOMENT L FROM LP: if (lp.eq.1) then l = 1 else if ((lp.ge.2) .and. (lp.le.4)) then l = 2 else if ((lp.ge.5) .and. (lp.le.9)) then l = 3 else if ((lp.ge.10).and.(lp.le.16)) then l = 4 else if ((lp.ge.17).and.(lp.le.25)) then l = 5 else if ((lp.ge.26).and.(lp.le.36)) then l = 6 else if ((lp.ge.37).and.(lp.le.49)) then l = 7 else if (lp.gt.49) then call errore(' qvan3 ',' l not programmed ',lp) end if sig = (0.d0,-1.d0)**(l-1) sig = sig * ap(lp,ivl,jvl) !odl Write(*,*) 'QVAN3 -- sig = ',sig ! WRITE( stdout,*) 'qvan3',ng1,LP,L,ivs,jvs qg = qg + sig * ylm_k(lp) * qr(ivs,jvs,l,is) end do return end subroutine qvan3 espresso-5.1/PW/src/set_vrs.f900000644000175000017500000000714712341373025014435 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------- subroutine set_vrs (vrs, vltot, vr, kedtau, kedtaur,nrxx, nspin, doublegrid) !-------------------------------------------------------------------- ! set the total local potential vrs on the smooth mesh to be used in ! h_psi, adding the (spin dependent) scf (H+xc) part and the sum of ! all the local pseudopotential contributions. ! USE kinds USE funct, only : dft_is_meta USE fft_base, only : dffts implicit none integer :: nspin, nrxx ! input: number of spin components: 1 if lda, 2 if lsd, 4 if noncolinear ! input: the fft grid dimension real(DP) :: vrs (nrxx, nspin), vltot (nrxx), vr (nrxx, nspin), & kedtau(dffts%nnr,nspin), kedtaur(nrxx,nspin) ! output: total local potential on the smooth grid ! vrs=vltot+vr ! input: the total local pseudopotential ! input: the scf(H+xc) part of the local potential logical :: doublegrid ! input: true if a doublegrid is used ! CALL sum_vrs( nrxx, nspin, vltot, vr, vrs ) ! CALL interpolate_vrs( nrxx, nspin, doublegrid, kedtau, kedtaur, vrs ) ! return end subroutine set_vrs ! !-------------------------------------------------------------------- subroutine sum_vrs ( nrxx, nspin, vltot, vr, vrs ) !-------------------------------------------------------------------- ! accumulates local potential contributions in to vrs ! USE kinds ! implicit none integer :: nspin, nrxx ! input: number of spin components: 1 if lda, 2 if lsd, 4 if noncolinear ! input: the fft grid dimension real(DP) :: vrs (nrxx, nspin), vltot (nrxx), vr (nrxx, nspin) ! output: total local potential on the smooth grid ! vrs=vltot+vr ! input: the total local pseudopotential ! input: the scf(H+xc) part of the local potential integer:: is do is = 1, nspin ! ! define the total local potential (external + scf) for each spin ... ! if (is > 1 .and. nspin == 4) then ! ! noncolinear case: only the first component contains vltot ! vrs (:, is) = vr (:, is) else vrs (:, is) = vltot (:) + vr (:, is) end if ! enddo return end subroutine sum_vrs ! !-------------------------------------------------------------------- subroutine interpolate_vrs ( nrxx, nspin, doublegrid, kedtau, kedtaur, vrs ) !-------------------------------------------------------------------- ! set the total local potential vrs on the smooth mesh to be used in ! h_psi, adding the (spin dependent) scf (H+xc) part and the sum of ! all the local pseudopotential contributions. ! USE kinds USE funct, only : dft_is_meta USE fft_base, only : dffts implicit none integer :: nspin, nrxx ! input: number of spin components: 1 if lda, 2 if lsd, 4 if noncolinear ! input: the fft grid dimension real(DP) :: vrs (nrxx, nspin), & kedtau(dffts%nnr,nspin), kedtaur(nrxx,nspin) ! output: total local potential interpolated on the smooth grid ! input: the scf(H+xc) part of the local potential logical :: doublegrid ! input: true if a doublegrid is used integer:: is do is = 1, nspin ! ! ... and interpolate it on the smooth mesh if necessary ! if (doublegrid) call interpolate (vrs (1, is), vrs (1, is), - 1) if (dft_is_meta()) call interpolate(kedtaur(1,is),kedtau(1,is),-1) enddo return end subroutine interpolate_vrs espresso-5.1/PW/src/us_exx.f900000644000175000017500000006536112341373025014265 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Written by Lorenzo Paulatto (2012-2013) ! Gamma-only tricks by Simon Binnie ! G-space code based on addusdens.f90 and compute_becsum.f90 ! Real space code based on realus.f90 !----------------------------------------------------------------------- MODULE us_exx !----------------------------------------------------------------------- ! Most of the USPP+EXX code is here. ! Notes: ! * compute_becxx is still in exx.f90 as it uses plenty of global variables from there ! * some tests and loops are done directly in exx.f90 ! * PAW specific parts are in paw_exx.f90 ! USE kinds, ONLY : DP USE becmod, ONLY : bec_type, calbec, ALLOCATE_bec_type, DEALLOCATE_bec_type ! IMPLICIT NONE SAVE ! LOGICAL,PARAMETER :: dovanxx = .true. ! DEBUG option ! TYPE(bec_type),ALLOCATABLE :: becxx(:) ! , with the wavefunctions from exxbuff ! the visible index is k; while I and J are inside bec_type COMPLEX(DP),ALLOCATABLE :: becxx_gamma(:,:) ! gamma only version of becxx%r ! two bands stored per stripe ! FIXME: put somewhere else (there is a copy in exx) REAL(DP),PARAMETER :: eps_occ = 1.d-8 ! skip band where occupation is less than this CONTAINS ! ~~+~~---//--~~~-+ ! FUNCTION bexg_merge( w, m,n, imin, imax, i) ! used at Gamma point when number of bands is odd, ! especially for band parallelisation when band group is odd ! returns w(i)+i w(i+1) if imin<=i nsp, ityp, tau USE uspp, ONLY : nkb, vkb, okvan, indv_ijkb0 USE uspp_param, ONLY : upf, nh, nhm, lmaxq USE fft_base, ONLY : dffts USE gvect, ONLY : ngm, nl, nlm, g, & eigts1, eigts2, eigts3, mill, gstart USE gvecs, ONLY : ngms, nls, nlsm USE cell_base, ONLY : tpiba USE control_flags, ONLY : gamma_only IMPLICIT NONE ! ! In input I get a slice of and only for this kpoint and this band COMPLEX(DP),INTENT(inout) :: rhoc(dffts%nnr) COMPLEX(DP),INTENT(in), OPTIONAL :: becphi_c(nkb), becpsi_c(nkb) REAL(DP), INTENT(in), OPTIONAL :: becphi_r(nkb), becpsi_r(nkb) REAL(DP), INTENT(in) :: xkq(3), xk(3) CHARACTER(LEN=1), INTENT(in) :: flag ! ! ... local variables ! REAL(DP),ALLOCATABLE :: qmod(:), q(:,:), qq(:), &! the modulus of G ylmk0(:,:) ! the spherical harmonics COMPLEX(DP),ALLOCATABLE :: qgm(:), aux(:), eigqts(:) INTEGER :: ikb, jkb, ijkb0, ih, jh, na, np, ig COMPLEX(DP) :: skk, becfac_c REAL(DP) :: arg, becfac_r LOGICAL :: add_complex, add_real, add_imaginary ! IF(.not.(okvan .and. dovanxx)) RETURN CALL start_clock( 'addusxx' ) ! add_complex = ( flag=='c' .OR. flag=='C' ) add_real = ( flag=='r' .OR. flag=='R' ) add_imaginary=( flag=='i' .OR. flag=='I' ) IF ( .NOT. (add_complex .OR. add_real .OR. add_imaginary) ) & CALL errore('addusxx_g', 'called with incorrect flag: '//flag, 1 ) IF ( .NOT. gamma_only .AND. ( add_real .OR. add_imaginary) ) & CALL errore('addusxx_g', 'need gamma tricks for this flag: '//flag, 2 ) IF ( gamma_only .AND. add_complex ) & CALL errore('addusxx_g', 'gamma trick not good for this flag: '//flag, 3 ) IF ( ( add_complex .AND. (.NOT. PRESENT(becphi_c) .OR. .NOT. PRESENT(becpsi_c) ) ) .OR. & ( add_real .AND. (.NOT. PRESENT(becphi_r) .OR. .NOT. PRESENT(becpsi_r) ) ) .OR. & ( add_imaginary.AND.(.NOT. PRESENT(becphi_r) .OR. .NOT. PRESENT(becpsi_r) ) ) ) & CALL errore('addusxx_g', 'called with incorrect arguments', 2 ) ! ALLOCATE(qmod(ngms), qgm(ngms), aux(ngms)) ALLOCATE(ylmk0(ngms, lmaxq * lmaxq)) ALLOCATE(qq(ngms), q(3,ngm)) ! DO ig = 1, ngms q(:,ig) = xk(:) - xkq(:) + g(:,ig) qq(ig) = SUM(q(:,ig)**2) qmod(ig)= SQRT(qq(ig)) ENDDO ! CALL ylmr2 (lmaxq * lmaxq, ngms, q, qq, ylmk0) ! DEALLOCATE(qq, q) ALLOCATE(eigqts(nat)) DO na = 1, nat arg = tpi* SUM( (xk(:) - xkq(:))*tau(:,na) ) eigqts(na) = CMPLX( COS(arg), -SIN(arg), kind=DP) END DO ! DO np = 1, ntyp ONLY_FOR_USPP : & IF ( upf(np)%tvanp .and. ANY(ityp(1:nat) == np) ) THEN ! DO ih = 1, nh(np) DO jh = 1, nh(np) ! CALL qvan2(ngms, ih, jh, np, qmod, qgm, ylmk0) ! ATOMS_LOOP : & DO na = 1, nat IF (ityp(na)==np) THEN ! ! NOTE: the next line counts the number of beta in the atoms (not types!) before ! this one (na) this hack is necessary to minimize the number of calls to qvan2 ijkb0 = indv_ijkb0(na) !SUM(nh(ityp(1:na)))-nh(ityp(na)) ikb = ijkb0 + ih jkb = ijkb0 + jh IF ( add_complex ) THEN becfac_c = CONJG(becphi_c(ikb))*becpsi_c(jkb) DO ig = 1, ngms skk = eigts1(mill(1,ig), na) * & eigts2(mill(2,ig), na) * & eigts3(mill(3,ig), na) aux(ig) = qgm(ig)*eigqts(na)*skk*becfac_c ENDDO DO ig = 1,ngms rhoc(nls(ig)) = rhoc(nls(ig)) + aux(ig) ENDDO ELSE becfac_r = becphi_r(ikb)*becpsi_r(jkb) DO ig = 1, ngms skk = eigts1(mill(1,ig), na) * & eigts2(mill(2,ig), na) * & eigts3(mill(3,ig), na) aux(ig) = qgm(ig)*eigqts(na)*skk*becfac_r ENDDO IF ( add_real ) THEN DO ig = 1,ngms rhoc(nls(ig)) = rhoc(nls(ig)) + aux(ig) ENDDO DO ig = gstart,ngms rhoc(nlsm(ig)) = rhoc(nlsm(ig)) + CONJG(aux(ig)) ENDDO ELSE IF ( add_imaginary ) THEN DO ig = 1,ngms rhoc(nls(ig)) = rhoc(nls(ig)) + (0.0_dp,1.0_dp)*aux(ig) ENDDO DO ig = gstart,ngms rhoc(nlsm(ig)) = rhoc(nlsm(ig)) + & (0.0_dp,1.0_dp)*CONJG(aux(ig)) ENDDO ENDIF ENDIF ! END IF ENDDO ATOMS_LOOP ! nat ! END DO ! jh END DO ! ih END IF & ONLY_FOR_USPP ENDDO ! DEALLOCATE( ylmk0, qmod, qgm, eigqts, aux) ! CALL stop_clock( 'addusxx' ) ! RETURN ! !----------------------------------------------------------------------- END SUBROUTINE addusxx_g !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- SUBROUTINE newdxx_g(vc, xkq, xk, flag, deexx, becphi_r, becphi_c) !----------------------------------------------------------------------- ! ! This subroutine computes some sort of EXX contribution to the non-local ! part of the hamiltonian. ! alpha_Ii = \int \sum_Jj Q_IJ(r) V^{i,j}_Fock d^3(r) ! The actual contribution will be (summed outside) ! H = H+\sum_I |beta_I> alpha_Ii ! flag = 'c': V(G) is contained in complex array vc ! flag = 'r': V(G)=v_1(G)+i v_2(G): select v_1(G) ! flag = 'i': V(G)=v_1(G)+i v_2(G): select v_2(G) ! The two latter cases are used together with gamma tricks ! USE constants, ONLY : tpi USE ions_base, ONLY : nat, ntyp => nsp, ityp, tau USE uspp, ONLY : nkb, vkb, okvan, indv_ijkb0 USE uspp_param, ONLY : upf, nh, nhm, lmaxq USE fft_base, ONLY : dffts USE gvect, ONLY : ngm, nl, nlm, gg, g, gstart, & eigts1, eigts2, eigts3, mill USE gvecs, ONLY : ngms, nls, nlsm USE cell_base, ONLY : tpiba, omega USE control_flags, ONLY : gamma_only ! IMPLICIT NONE ! COMPLEX(DP),INTENT(in) :: vc(dffts%nnr) ! In input I get a slice of and only for this kpoint and this band COMPLEX(DP),INTENT(in), OPTIONAL :: becphi_c(nkb) REAL(DP), INTENT(in), OPTIONAL :: becphi_r(nkb) COMPLEX(DP),INTENT(inout) :: deexx(nkb) REAL(DP),INTENT(in) :: xk(3), xkq(3) CHARACTER(LEN=1), INTENT(IN) :: flag ! ! ... local variables INTEGER :: ikb, jkb, ijkb0, ih, jh, na, np !, ijh INTEGER :: ig, fact COMPLEX(DP) :: skk ! REAL(DP),ALLOCATABLE :: qmod (:), q(:,:), qq(:), & ylmk0 (:,:) ! the spherical harmonics COMPLEX(DP),ALLOCATABLE :: qgm(:), & ! the Q(r) function auxvc(:), & ! vc in order of |g| eigqts(:) COMPLEX(DP) :: fp, fm REAL(DP) :: arg LOGICAL :: add_complex, add_real, add_imaginary ! IF(.not.(okvan .and. dovanxx)) RETURN ! add_complex = ( flag=='c' .OR. flag=='C' ) add_real = ( flag=='r' .OR. flag=='R' ) add_imaginary=( flag=='i' .OR. flag=='I' ) IF ( .NOT. (add_complex .OR. add_real .OR. add_imaginary) ) & CALL errore('newdxx_g', 'called with incorrect flag: '//flag, 1 ) IF ( .NOT. gamma_only .AND. ( add_real .OR. add_imaginary) ) & CALL errore('newdxx_g', 'need gamma tricks for this flag: '//flag, 2 ) IF ( gamma_only .AND. add_complex ) & CALL errore('newdxx_g', 'gamma trick not good for this flag: '//flag, 3 ) IF ( ( add_complex .AND. .NOT. PRESENT(becphi_c) ) .OR. & ( add_real .AND. .NOT. PRESENT(becphi_r) ) .OR. & ( add_imaginary.AND..NOT. PRESENT(becphi_r) ) ) & CALL errore('newdxx_g', 'called with incorrect arguments', 2 ) ! CALL start_clock( 'newdxx' ) ! ALLOCATE(qgm(ngms), auxvc(ngms), qmod( ngms)) ALLOCATE(ylmk0(ngms, lmaxq**2)) ALLOCATE(qq(ngms), q(3,ngm)) ! DO ig = 1, ngms q(:,ig) = xk(:) - xkq(:) + g(:,ig) qq(ig) = SUM(q(:,ig)**2) qmod(ig)= SQRT(qq (ig) ) ENDDO CALL ylmr2 (lmaxq * lmaxq, ngms, q, qq, ylmk0) ! DEALLOCATE(qq, q) ALLOCATE(eigqts(nat)) DO na = 1, nat arg = tpi* SUM( (xk(:) - xkq(:))*tau(:,na) ) eigqts(na) = CMPLX( COS(arg), -SIN(arg), kind=DP) END DO ! ! reindex just once at the beginning ! select real or imaginary part if so desired ! fact=2 to account for G and -G components ! auxvc = (0._dp, 0._dp) IF ( add_complex ) THEN auxvc(1:ngms) = vc(nls(1:ngms) ) fact=1.0_dp ELSE IF ( add_real ) THEN DO ig = 1, ngms fp = (vc(nls(ig)) + vc(nlsm(ig)))/2.0_dp fm = (vc(nls(ig)) - vc(nlsm(ig)))/2.0_dp auxvc(ig) = CMPLX( DBLE(fp), AIMAG(fm), KIND=dp) END DO fact=2.0_dp ELSE IF ( add_imaginary ) THEN DO ig = 1, ngms fp = (vc(nls(ig)) + vc(nlsm(ig)))/2.0_dp fm = (vc(nls(ig)) - vc(nlsm(ig)))/2.0_dp auxvc(ig) = CMPLX( AIMAG(fp), -DBLE(fm), KIND=dp) END DO fact=2.0_dp END IF ! DO np = 1, ntyp ONLY_FOR_USPP : & IF ( upf(np)%tvanp ) THEN DO ih = 1, nh(np) DO jh = 1, nh(np) ! CALL qvan2(ngms, ih, jh, np, qmod, qgm, ylmk0) ! ATOMS_LOOP : & DO na = 1, nat IF (ityp(na)==np) THEN ! ! NOTE: see addusxx_g for the next line: ijkb0 = indv_ijkb0(na) !SUM(nh(ityp(1:na)))-nh(ityp(na)) ikb = ijkb0 + ih jkb = ijkb0 + jh ! IF(gamma_only) THEN DO ig = 1, ngms skk = eigts1(mill(1,ig), na) * & eigts2(mill(2,ig), na) * & eigts3(mill(3,ig), na) ! \sum_J Q_IJ V_F deexx(ikb) = deexx(ikb) + becphi_r(jkb)*auxvc(ig)*fact & * omega*CONJG(eigqts(na)*skk*qgm(ig)) ENDDO ! IF(gstart==2) deexx(ikb) = deexx(ikb) - becphi_r(jkb)* & auxvc(1)*omega*CONJG(eigqts(na)*skk*qgm(1)) ELSE DO ig = 1, ngms skk = eigts1(mill(1,ig), na) * & eigts2(mill(2,ig), na) * & eigts3(mill(3,ig), na) ! \sum_J Q_IJ V_F deexx(ikb) = deexx(ikb) + becphi_c(jkb)*auxvc(ig)*fact & * omega*CONJG(eigqts(na)*skk*qgm(ig)) ENDDO ENDIF ! END IF ENDDO ATOMS_LOOP ! nat ENDDO ! jh ENDDO ! ih END IF & ONLY_FOR_USPP ENDDO ! DEALLOCATE( ylmk0, qmod, qgm, auxvc, eigqts) CALL stop_clock( 'newdxx' ) ! RETURN ! !----------------------------------------------------------------------- END SUBROUTINE newdxx_g !----------------------------------------------------------------------- ! ! !---------------------------------------------------------------------- ! SUBROUTINE addusxx_force(forcenl) ! !---------------------------------------------------------------------- ! ! ! ! This routine computes the contribution to atomic forces due ! ! to the dependence of the Q function on the atomic position. ! ! On output: the contribution is added to forcenl ! ! ! USE kinds, ONLY : DP ! USE ions_base, ONLY : nat, ntyp => nsp, ityp ! USE cell_base, ONLY : omega, tpiba ! USE fft_base, ONLY : dfftp ! USE gvect, ONLY : ngm, nl, nlm, gg, g, eigts1, eigts2, eigts3, mill ! USE scf, ONLY : v, vltot ! USE uspp, ONLY : becsum, okvan ! USE uspp_param, ONLY : upf, lmaxq, nh, nhm ! USE mp_bands, ONLY : intra_bgrp_comm ! USE mp, ONLY : mp_sum ! USE noncollin_module, ONLY : nspin_mag ! USE control_flags, ONLY : gamma_only ! USE fft_interfaces, ONLY : fwfft ! ! ! IMPLICIT NONE ! ! ! REAL(DP) :: forcenl (3, nat) ! ! local variables ! INTEGER :: ig, ir, dim, nt, ih, jh, ijh, ipol, is, na ! COMPLEX(DP):: cfac ! REAL(DP) :: fact, ddot ! ! work space ! COMPLEX(DP),ALLOCATABLE :: aux(:,:), aux1(:,:), vg(:), qgm(:), eigqts(:) ! REAL(DP),ALLOCATABLE :: ddeeq(:,:,:,:), qmod(:), ylmk0(:,:) ! ! ! ! if (.not.okvan) return ! ! ! DO ig = 1, ngms ! q(:,ig) = xk(:) - xkq(:) + g(:,ig) ! qq(ig) = SUM(q(:,ig)**2) ! qmod(ig)= SQRT(qq (ig) ) ! ENDDO ! ! ! ALLOCATE(eigqts(nat)) ! DO na = 1, nat ! arg = tpi* SUM( (xk(:) - xkq(:))*tau(:,na) ) ! eigqts(na) = CMPLX( COS(arg), -SIN(arg), kind=DP) ! END DO ! ! ! IF (gamma_only) THEN ! fact = 2.d0 ! ELSE ! fact = 1.d0 ! ENDIF ! ALLOCATE (aux(ngm,nspin_mag)) ! ! ! ! fourier transform of the total effective potential ! ! ! ALLOCATE (vg(dfftp%nnr)) ! DO is = 1, nspin_mag ! IF (nspin_mag.eq.4.and.is.ne.1) then ! vg (:) = v%of_r(:,is) ! ELSE ! vg (:) = vltot (:) + v%of_r (:, is) ! ENDIF ! CALL fwfft ('Dense', vg, dfftp) ! aux (:, is) = vg (nl (:) ) * tpiba * (0.d0, -1.d0) ! ENDDO ! DEALLOCATE (vg) ! ! ! ALLOCATE (aux1(ngm,3)) ! ALLOCATE (ddeeq( 3, (nhm*(nhm+1))/2,nat,nspin_mag)) ! ALLOCATE (qgm( ngm)) ! ALLOCATE (qmod( ngm)) ! ALLOCATE (ylmk0(ngm,lmaxq*lmaxq)) ! ! ! ddeeq(:,:,:,:) = 0.d0 ! ! ! CALL ylmr2 (lmaxq * lmaxq, ngm, g, gg, ylmk0) ! ! ! qmod (:) = sqrt (gg (:) ) ! ! ! ! here we compute the integral Q*V for each atom, ! ! I = sum_G i G_a exp(-iR.G) Q_nm v^* ! ! ! DO nt = 1, ntyp ! IF ( upf(nt)%tvanp ) then ! ijh = 1 ! DO ih = 1, nh (nt) ! DO jh = ih, nh (nt) ! call qvan2 (ngm, ih, jh, nt, qmod, qgm, ylmk0) ! DO na = 1, nat ! IF (ityp (na) == nt) then ! ! ! ! The product of potential, structure factor and iG ! ! ! DO is = 1, nspin_mag ! DO ig = 1, ngm ! cfac = aux(ig, is) * eigqts(na) * & ! CONJG(eigts1(mill(1,ig), na) *& ! eigts2(mill(2,ig), na) *& ! eigts3(mill(3,ig), na) ) ! aux1(ig, 1) = g(1, ig) * cfac ! aux1(ig, 2) = g(2, ig) * cfac ! aux1(ig, 3) = g(3, ig) * cfac ! ENDDO ! ! ! ! and the product with the Q functions ! ! G=0 term gives no contribution ! ! ! DO ipol = 1, 3 ! ddeeq (ipol, ijh, na, is) = omega * fact * & ! ddot (2 * ngm, aux1(1, ipol), 1, qgm, 1) ! ENDDO ! ENDDO ! ENDIF ! ENDDO ! ijh = ijh + 1 ! ENDDO ! ENDDO ! ENDIF ! ! ENDDO ! ! call mp_sum ( ddeeq, intra_bgrp_comm ) ! ! ! DO is = 1, nspin_mag ! DO na = 1, nat ! nt = ityp (na) ! dim = (nh (nt) * (nh (nt) + 1) ) / 2 ! DO ipol = 1, 3 ! DO ir = 1, dim ! forcenl(ipol, na) = forcenl(ipol, na) + & ! ddeeq(ipol, ir, na, is) * becsum(ir, na, is) ! ENDDO ! ENDDO ! ENDDO ! ENDDO ! ! ! DEALLOCATE(ylmk0,qgm,qmod,ddeeq,aux1,aux,eigqts) ! RETURN ! !----------------------------------------------------------------------- ! END SUBROUTINE addusxx_force ! !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- SUBROUTINE add_nlxx_pot(lda, hpsi, xkp, npwp, igkp, deexx, exxalfa) !----------------------------------------------------------------------- ! ! This subroutine computes some sort of EXX contribution to the non-local ! part of the hamiltonian. ! alpha_Ii = \int \sum_Jj Q_IJ(r) V^{i,j}_Fock d^3(r) ! The actual contribution will be (summed outside) ! H = H+\sum_I |beta_I> alpha_Ii ! USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp, ONLY : nkb, okvan USE uspp_param, ONLY : upf, nh USE gvecs, ONLY : nls USE wvfct, ONLY : nbnd, npwx !, ecutwfc USE control_flags, ONLY : gamma_only IMPLICIT NONE ! ! In input I get a slice of and only for this kpoint and this band INTEGER,INTENT(in) :: lda ! leading dimension of hpsi COMPLEX(DP),INTENT(inout) :: hpsi(lda)!*npol) ! the hamiltonian COMPLEX(DP),INTENT(in) :: deexx(nkb) ! \int \sum_J Q_IJ d3r REAL(DP),INTENT(in) :: xkp(3) ! current k point REAL(DP),INTENT(in) :: exxalfa ! fraction of ex. exchange to add INTEGER,INTENT(IN) :: npwp, igkp(npwp) ! ! ... local variables INTEGER :: ikb, ijkb0, ih, na, np INTEGER :: ig ! COMPLEX(DP),ALLOCATABLE :: vkbp(:,:) ! the (real), then with becphi=-i* (imaginary) ! USE ions_base, ONLY : nat, ityp USE cell_base, ONLY : omega USE fft_base, ONLY : dffts USE uspp, ONLY : okvan, nkb, ijtoh, indv_ijkb0 USE uspp_param, ONLY : upf, nh USE spin_orb, ONLY : domag ! USE realus, ONLY : tabs ! IMPLICIT NONE ! COMPLEX(DP),INTENT(inout) :: rho(dffts%nnr) COMPLEX(DP),INTENT(in) :: becphi(nkb) COMPLEX(DP),INTENT(in) :: becpsi(nkb) ! INTEGER :: ia, nt, ir, irb, ih, jh, mbia INTEGER :: ikb, jkb, ijkb0 ! IF ( .not. okvan ) RETURN CALL start_clock( 'addusxx' ) ! DO ia = 1, nat ! mbia = tabs(ia)%maxbox IF ( mbia == 0 ) CYCLE ! nt = ityp(ia) IF ( .not. upf(nt)%tvanp ) CYCLE DO ih = 1, nh(nt) DO jh = 1, nh(nt) ijkb0 = indv_ijkb0(ia) !SUM(nh(ityp(1:ia)))-nh(ityp(ia)) ikb = ijkb0 + ih jkb = ijkb0 + jh ! DO ir = 1, mbia irb = tabs(ia)%box(ir) rho(irb) = rho(irb) + tabs(ia)%qr(ir,ijtoh(ih,jh,nt)) & *CONJG(becphi(ikb))*becpsi(jkb) ENDDO ENDDO ENDDO ENDDO ! CALL stop_clock( 'addusxx' ) ! RETURN !----------------------------------------------------------------------- END SUBROUTINE addusxx_r !----------------------------------------------------------------------- ! !------------------------------------------------------------------------ SUBROUTINE newdxx_r(vr,becphi,deexx) !------------------------------------------------------------------------ ! This routine computes the integral of the perturbed potential with ! the Q function in real space USE cell_base, ONLY : omega USE fft_base, ONLY : dffts USE ions_base, ONLY : nat, ityp USE uspp_param, ONLY : upf, nh, nhm USE uspp, ONLY : nkb, ijtoh, indv_ijkb0 USE control_flags, ONLY : tqr USE noncollin_module, ONLY : nspin_mag USE mp, ONLY : mp_sum USE realus, ONLY : tabs IMPLICIT NONE ! Input: potential , output: contribution to integral COMPLEX(DP),INTENT(in) :: vr(dffts%nnr) COMPLEX(DP),INTENT(in) :: becphi(nkb) COMPLEX(DP),INTENT(inout) :: deexx(nkb) !Internal INTEGER :: ia, ih, jh, ir, nt INTEGER :: mbia INTEGER :: ikb, jkb, ijkb0 REAL(DP) :: domega COMPLEX(DP) :: aux ! domega = omega/(dffts%nr1*dffts%nr2*dffts%nr3) ! DO ia = 1, nat ! mbia = tabs(ia)%maxbox IF ( mbia == 0 ) CYCLE ! nt = ityp(ia) IF ( .not. upf(nt)%tvanp ) CYCLE ! DO ih = 1, nh(nt) DO jh = 1, nh(nt) ijkb0 = indv_ijkb0(ia) !SUM(nh(ityp(1:ia)))-nh(ityp(ia)) ikb = ijkb0 + ih jkb = ijkb0 + jh ! aux = 0._dp DO ir = 1, mbia aux = aux + tabs(ia)%qr(ir,ijtoh(ih,jh,nt))*vr(tabs(ia)%box(ir)) ENDDO deexx(ikb) = deexx(ikb) + becphi(jkb)*domega*aux ! ENDDO ENDDO ! ENDDO ! !------------------------------------------------------------------------ END SUBROUTINE newdxx_r !------------------------------------------------------------------------ ! !----------------------------------------------------------------------- END MODULE us_exx !----------------------------------------------------------------------- espresso-5.1/PW/src/g2_kin.f900000644000175000017500000000255012341373025014112 0ustar mbamba! ! Copyright (C) 2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE g2_kin ( ik ) !---------------------------------------------------------------------------- ! ! ... Calculation of kinetic energy - includes the case of the modified ! ... kinetic energy functional for variable-cell calculations ! USE kinds, ONLY : DP USE cell_base, ONLY : tpiba2 USE klist, ONLY : xk USE gvect, ONLY : g USE wvfct, ONLY : g2kin, igk, npw, ecfixed, qcutz, q2sigma ! IMPLICIT NONE ! INTEGER, INTENT (IN) :: ik ! ! ... local variables ! INTEGER :: ig REAL(DP), EXTERNAL :: qe_erf ! ! g2kin(1:npw) = ( ( xk(1,ik) + g(1,igk(1:npw)) )**2 + & ( xk(2,ik) + g(2,igk(1:npw)) )**2 + & ( xk(3,ik) + g(3,igk(1:npw)) )**2 ) * tpiba2 ! IF ( qcutz > 0.D0 ) THEN ! DO ig = 1, npw ! g2kin(ig) = g2kin(ig) + qcutz * & ( 1.D0 + qe_erf( ( g2kin(ig) - ecfixed ) / q2sigma ) ) ! END DO ! END IF ! RETURN ! END SUBROUTINE g2_kin espresso-5.1/PW/src/stres_gradcorr.f900000644000175000017500000001326412341373025015770 0ustar mbamba! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- subroutine stres_gradcorr( rho, rhog, rho_core, rhog_core, nspin, & nr1, nr2, nr3, nrxx, nl, & ngm, g, alat, omega, sigmaxc ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE noncollin_module, ONLY : noncolin use funct, ONLY : gcxc, gcx_spin, gcc_spin, gcc_spin_more, & dft_is_gradient, get_igcc USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! integer :: nspin, nr1, nr2, nr3, nrxx, ngm, nl (ngm) real(DP) :: rho (nrxx, nspin), rho_core (nrxx), g (3, ngm), & alat, omega, sigmaxc (3, 3) complex(DP) :: rhog(ngm, nspin), rhog_core(ngm) integer :: k, l, m, ipol, is, nspin0 real(DP) , allocatable :: grho (:,:,:) real(DP), parameter :: epsr = 1.0d-6, epsg = 1.0d-10, e2 = 2.d0 real(DP) :: grh2, grho2 (2), sx, sc, v1x, v2x, v1c, v2c, fac, & v1xup, v1xdw, v2xup, v2xdw, v1cup, v1cdw, v2cup, v2cdw, v2cud, & zeta, rh, rup, rdw, grhoup, grhodw, grhoud, grup, grdw, & sigma_gradcorr (3, 3), rhok logical :: igcc_is_lyp if ( .not. dft_is_gradient() ) return if (noncolin) call errore('stres_gradcorr', & 'noncollinear stress + GGA not implemented',1) igcc_is_lyp = (get_igcc() == 3) sigma_gradcorr(:,:) = 0.d0 allocate (grho( 3, nrxx, nspin)) nspin0=nspin if (nspin==4) nspin0=1 fac = 1.d0 / DBLE (nspin0) ! ! calculate the gradient of rho+rhocore in real space ! DO is = 1, nspin0 ! rho(:,is) = fac * rho_core(:) + rho(:,is) rhog(:,is) = fac * rhog_core(:) + rhog(:,is) ! CALL gradrho( nrxx, rhog(1,is), ngm, g, nl, grho(1,1,is) ) ! END DO ! if (nspin.eq.1) then ! ! This is the LDA case ! ! sigma_gradcor_{alpha,beta} == ! omega^-1 \int (grad_alpha rho) ( D(rho*Exc)/D(grad_alpha rho) ) d3 ! do k = 1, nrxx grho2 (1) = grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2 if (abs (rho (k, 1) ) .gt.epsr.and.grho2 (1) .gt.epsg) then call gcxc (rho (k, 1), grho2(1), sx, sc, v1x, v2x, v1c, v2c) do l = 1, 3 do m = 1, l sigma_gradcorr (l, m) = sigma_gradcorr (l, m) + & grho(l,k,1) * grho(m,k,1) * e2 * (v2x + v2c) enddo enddo endif enddo else ! ! This is the LSDA case ! do k = 1, nrxx grho2 (1) = grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2 grho2 (2) = grho(1,k,2)**2 + grho(2,k,2)**2 + grho(3,k,2)**2 if ( (abs (rho (k, 1) ) .gt.epsr.and.grho2 (1) .gt.epsg) .and. & (abs (rho (k, 2) ) .gt.epsr.and.grho2 (2) .gt.epsg) ) then call gcx_spin (rho (k, 1), rho (k, 2), grho2 (1), grho2 (2), & sx, v1xup, v1xdw, v2xup, v2xdw) rh = rho (k, 1) + rho (k, 2) if (rh.gt.epsr) then if ( igcc_is_lyp ) then rup = rho (k, 1) rdw = rho (k, 2) grhoup = grho(1,k,1)**2 + grho(2,k,1)**2 + grho(3,k,1)**2 grhodw = grho(1,k,2)**2 + grho(2,k,2)**2 + grho(3,k,2)**2 grhoud = grho(1,k,1) * grho(1,k,2) + & grho(2,k,1) * grho(2,k,2) + & grho(3,k,1) * grho(3,k,2) call gcc_spin_more(rup, rdw, grhoup, grhodw, grhoud, sc, & v1cup, v1cdw, v2cup, v2cdw, v2cud) else zeta = (rho (k, 1) - rho (k, 2) ) / rh grh2 = (grho (1, k, 1) + grho (1, k, 2) ) **2 + & (grho (2, k, 1) + grho (2, k, 2) ) **2 + & (grho (3, k, 1) + grho (3, k, 2) ) **2 call gcc_spin (rh, zeta, grh2, sc, v1cup, v1cdw, v2c) v2cup = v2c v2cdw = v2c v2cud = v2c end if else sc = 0.d0 v1cup = 0.d0 v1cdw = 0.d0 v2c = 0.d0 v2cup = 0.d0 v2cdw = 0.d0 v2cud = 0.d0 endif do l = 1, 3 do m = 1, l ! exchange sigma_gradcorr (l, m) = sigma_gradcorr (l, m) + & grho (l, k, 1) * grho (m, k, 1) * e2 * v2xup + & grho (l, k, 2) * grho (m, k, 2) * e2 * v2xdw ! correlation sigma_gradcorr (l, m) = sigma_gradcorr (l, m) + & ( grho (l, k, 1) * grho (m, k, 1) * v2cup + & grho (l, k, 2) * grho (m, k, 2) * v2cdw + & (grho (l, k, 1) * grho (m, k, 2) + & grho (l, k, 2) * grho (m, k, 1) ) * v2cud ) * e2 enddo enddo endif enddo endif do l = 1, 3 do m = 1, l - 1 sigma_gradcorr (m, l) = sigma_gradcorr (l, m) enddo enddo call mp_sum( sigma_gradcorr, intra_bgrp_comm ) call dscal (9, 1.d0 / (nr1 * nr2 * nr3), sigma_gradcorr, 1) call daxpy (9, 1.d0, sigma_gradcorr, 1, sigmaxc, 1) DO is = 1, nspin0 ! rho(:,is) = rho(:,is) - fac * rho_core(:) rhog(:,is) = rhog(:,is) - fac * rhog_core(:) ! END DO ! deallocate(grho) return end subroutine stres_gradcorr espresso-5.1/PW/src/add_vhub_to_deeq.f900000644000175000017500000000272112341373025016215 0ustar mbamba! ! Copyright (C) 2010-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE add_vhub_to_deeq(deeq) ! ! Add Hubbard contributions to deeq when U_projection is pseudo ! USE kinds, ONLY : DP USE ions_base, ONLY : nat, ntyp => nsp, ityp USE uspp_param, ONLY : nh, nhm USE lsda_mod, ONLY : nspin USE scf, ONLY : v USE ldaU, ONLY : is_hubbard, Hubbard_l, offsetU, q_ae IMPLICIT NONE REAL(KIND=DP), INTENT(INOUT) :: deeq( nhm, nhm, nat, nspin ) INTEGER :: na, nt, ih, jh, ijh, m1, m2, ow1, ow2 ! ! DO na = 1, nat ! nt = ityp(na) ! ! skip atoms without Hubbard U IF ( .NOT. is_hubbard(nt) ) CYCLE ! DO ih = 1, nh(nt) DO jh = ih, nh(nt) ! DO m1 = 1, 2 * Hubbard_l(nt) + 1 DO m2 = 1, 2 * Hubbard_l(nt) + 1 ! ow1 = offsetU(na)+m1 ow2 = offsetU(na)+m2 deeq(ih,jh,na,1:nspin) = deeq(ih,jh,na,1:nspin) + & v%ns(m1,m2,1:nspin,na)*q_ae(ow1,ih,na)*q_ae(ow2,jh,na) ! ENDDO ENDDO ! deeq(jh,ih,na,1:nspin) = deeq(ih,jh,na,1:nspin) ! ENDDO ENDDO ! ENDDO ! END SUBROUTINE add_vhub_to_deeq espresso-5.1/PW/src/make.depend0000644000175000017500000021726512341373025014532 0ustar mbambaa2fmod.o : ../../Modules/io_files.o a2fmod.o : ../../Modules/io_global.o a2fmod.o : ../../Modules/ions_base.o a2fmod.o : ../../Modules/kind.o a2fmod.o : pwcom.o a2fmod.o : start_k.o a2fmod.o : symm_base.o acfdt_in_pw.o : ../../Modules/kind.o add_bfield.o : ../../Modules/cell_base.o add_bfield.o : ../../Modules/constants.o add_bfield.o : ../../Modules/fft_base.o add_bfield.o : ../../Modules/io_global.o add_bfield.o : ../../Modules/ions_base.o add_bfield.o : ../../Modules/kind.o add_bfield.o : ../../Modules/mp.o add_bfield.o : ../../Modules/mp_bands.o add_bfield.o : ../../Modules/noncol.o add_bfield.o : pwcom.o add_efield.o : ../../Modules/cell_base.o add_efield.o : ../../Modules/constants.o add_efield.o : ../../Modules/control_flags.o add_efield.o : ../../Modules/fft_base.o add_efield.o : ../../Modules/io_global.o add_efield.o : ../../Modules/ions_base.o add_efield.o : ../../Modules/kind.o add_efield.o : ../../Modules/mp.o add_efield.o : ../../Modules/mp_bands.o add_efield.o : ../../Modules/mp_images.o add_efield.o : pwcom.o add_paw_to_deeq.o : ../../Modules/ions_base.o add_paw_to_deeq.o : ../../Modules/kind.o add_paw_to_deeq.o : ../../Modules/paw_variables.o add_paw_to_deeq.o : ../../Modules/uspp.o add_paw_to_deeq.o : pwcom.o add_vhub_to_deeq.o : ../../Modules/ions_base.o add_vhub_to_deeq.o : ../../Modules/kind.o add_vhub_to_deeq.o : ../../Modules/uspp.o add_vhub_to_deeq.o : ldaU.o add_vhub_to_deeq.o : pwcom.o add_vhub_to_deeq.o : scf_mod.o add_vuspsi.o : ../../Modules/becmod.o add_vuspsi.o : ../../Modules/control_flags.o add_vuspsi.o : ../../Modules/ions_base.o add_vuspsi.o : ../../Modules/kind.o add_vuspsi.o : ../../Modules/mp.o add_vuspsi.o : ../../Modules/noncol.o add_vuspsi.o : ../../Modules/uspp.o add_vuspsi.o : pwcom.o addusdens.o : ../../Modules/control_flags.o addusdens.o : ../../Modules/fft_base.o addusdens.o : ../../Modules/fft_interfaces.o addusdens.o : ../../Modules/ions_base.o addusdens.o : ../../Modules/kind.o addusdens.o : ../../Modules/noncol.o addusdens.o : ../../Modules/recvec.o addusdens.o : ../../Modules/uspp.o addusdens.o : ../../Modules/wavefunctions.o addusdens.o : realus.o addusforce.o : ../../Modules/cell_base.o addusforce.o : ../../Modules/control_flags.o addusforce.o : ../../Modules/fft_base.o addusforce.o : ../../Modules/fft_interfaces.o addusforce.o : ../../Modules/ions_base.o addusforce.o : ../../Modules/kind.o addusforce.o : ../../Modules/mp.o addusforce.o : ../../Modules/mp_bands.o addusforce.o : ../../Modules/noncol.o addusforce.o : ../../Modules/recvec.o addusforce.o : ../../Modules/uspp.o addusforce.o : scf_mod.o addusstress.o : ../../Modules/cell_base.o addusstress.o : ../../Modules/control_flags.o addusstress.o : ../../Modules/fft_base.o addusstress.o : ../../Modules/fft_interfaces.o addusstress.o : ../../Modules/ions_base.o addusstress.o : ../../Modules/kind.o addusstress.o : ../../Modules/recvec.o addusstress.o : ../../Modules/uspp.o addusstress.o : pwcom.o addusstress.o : scf_mod.o allocate_fft.o : ../../Modules/control_flags.o allocate_fft.o : ../../Modules/fft_base.o allocate_fft.o : ../../Modules/funct.o allocate_fft.o : ../../Modules/io_global.o allocate_fft.o : ../../Modules/ions_base.o allocate_fft.o : ../../Modules/noncol.o allocate_fft.o : ../../Modules/recvec.o allocate_fft.o : ../../Modules/wavefunctions.o allocate_fft.o : pwcom.o allocate_fft.o : scf_mod.o allocate_fft_custom.o : ../../Modules/cell_base.o allocate_fft_custom.o : ../../Modules/control_flags.o allocate_fft_custom.o : ../../Modules/fft_custom.o allocate_fft_custom.o : ../../Modules/griddim.o allocate_fft_custom.o : ../../Modules/kind.o allocate_fft_custom.o : ../../Modules/recvec.o allocate_locpot.o : ../../Modules/fft_base.o allocate_locpot.o : ../../Modules/ions_base.o allocate_locpot.o : ../../Modules/recvec.o allocate_locpot.o : pwcom.o allocate_nlpot.o : ../../Modules/cell_base.o allocate_nlpot.o : ../../Modules/control_flags.o allocate_nlpot.o : ../../Modules/io_global.o allocate_nlpot.o : ../../Modules/ions_base.o allocate_nlpot.o : ../../Modules/noncol.o allocate_nlpot.o : ../../Modules/recvec.o allocate_nlpot.o : ../../Modules/uspp.o allocate_nlpot.o : exx.o allocate_nlpot.o : ldaU.o allocate_nlpot.o : pwcom.o allocate_nlpot.o : scf_mod.o allocate_wfc.o : ../../Modules/io_global.o allocate_wfc.o : ../../Modules/noncol.o allocate_wfc.o : ../../Modules/wannier_new.o allocate_wfc.o : ../../Modules/wavefunctions.o allocate_wfc.o : atomic_wfc_mod.o allocate_wfc.o : ldaU.o allocate_wfc.o : pwcom.o atomic_rho.o : ../../Modules/atom.o atomic_rho.o : ../../Modules/cell_base.o atomic_rho.o : ../../Modules/control_flags.o atomic_rho.o : ../../Modules/fft_base.o atomic_rho.o : ../../Modules/fft_interfaces.o atomic_rho.o : ../../Modules/io_global.o atomic_rho.o : ../../Modules/ions_base.o atomic_rho.o : ../../Modules/kind.o atomic_rho.o : ../../Modules/mp.o atomic_rho.o : ../../Modules/mp_bands.o atomic_rho.o : ../../Modules/noncol.o atomic_rho.o : ../../Modules/recvec.o atomic_rho.o : ../../Modules/uspp.o atomic_rho.o : ../../Modules/wavefunctions.o atomic_rho.o : pwcom.o atomic_wfc.o : ../../Modules/cell_base.o atomic_wfc.o : ../../Modules/constants.o atomic_wfc.o : ../../Modules/ions_base.o atomic_wfc.o : ../../Modules/kind.o atomic_wfc.o : ../../Modules/noncol.o atomic_wfc.o : ../../Modules/recvec.o atomic_wfc.o : ../../Modules/uspp.o atomic_wfc.o : atomic_wfc_mod.o atomic_wfc.o : pwcom.o atomic_wfc_mod.o : ../../Modules/kind.o average_pp.o : ../../Modules/atom.o average_pp.o : ../../Modules/kind.o average_pp.o : ../../Modules/uspp.o bp_c_phase.o : ../../Modules/becmod.o bp_c_phase.o : ../../Modules/cell_base.o bp_c_phase.o : ../../Modules/constants.o bp_c_phase.o : ../../Modules/fft_base.o bp_c_phase.o : ../../Modules/io_files.o bp_c_phase.o : ../../Modules/io_global.o bp_c_phase.o : ../../Modules/ions_base.o bp_c_phase.o : ../../Modules/kind.o bp_c_phase.o : ../../Modules/mp.o bp_c_phase.o : ../../Modules/mp_bands.o bp_c_phase.o : ../../Modules/noncol.o bp_c_phase.o : ../../Modules/recvec.o bp_c_phase.o : ../../Modules/uspp.o bp_c_phase.o : ../../Modules/wavefunctions.o bp_c_phase.o : bp_mod.o bp_c_phase.o : buffers.o bp_c_phase.o : pwcom.o bp_calc_btq.o : ../../Modules/atom.o bp_calc_btq.o : ../../Modules/cell_base.o bp_calc_btq.o : ../../Modules/constants.o bp_calc_btq.o : ../../Modules/ions_base.o bp_calc_btq.o : ../../Modules/kind.o bp_calc_btq.o : ../../Modules/uspp.o bp_mod.o : ../../Modules/becmod.o bp_mod.o : ../../Modules/cell_base.o bp_mod.o : ../../Modules/fft_base.o bp_mod.o : ../../Modules/kind.o bp_mod.o : ../../Modules/mp.o bp_mod.o : ../../Modules/mp_world.o bp_mod.o : ../../Modules/recvec.o bp_qvan3.o : ../../Modules/ions_base.o bp_qvan3.o : ../../Modules/kind.o bp_qvan3.o : ../../Modules/uspp.o bp_qvan3.o : pwcom.o bp_strings.o : ../../Modules/kind.o buffers.o : ../../Modules/io_files.o buffers.o : ../../Modules/kind.o c_bands.o : ../../Modules/becmod.o c_bands.o : ../../Modules/check_stop.o c_bands.o : ../../Modules/control_flags.o c_bands.o : ../../Modules/io_files.o c_bands.o : ../../Modules/io_global.o c_bands.o : ../../Modules/kind.o c_bands.o : ../../Modules/mp.o c_bands.o : ../../Modules/mp_bands.o c_bands.o : ../../Modules/mp_pools.o c_bands.o : ../../Modules/noncol.o c_bands.o : ../../Modules/recvec.o c_bands.o : ../../Modules/uspp.o c_bands.o : ../../Modules/wavefunctions.o c_bands.o : atomic_wfc_mod.o c_bands.o : bp_mod.o c_bands.o : buffers.o c_bands.o : g_psi_mod.o c_bands.o : ldaU.o c_bands.o : pwcom.o c_bands.o : scf_mod.o c_phase_field.o : ../../Modules/becmod.o c_phase_field.o : ../../Modules/cell_base.o c_phase_field.o : ../../Modules/constants.o c_phase_field.o : ../../Modules/fft_base.o c_phase_field.o : ../../Modules/io_files.o c_phase_field.o : ../../Modules/io_global.o c_phase_field.o : ../../Modules/ions_base.o c_phase_field.o : ../../Modules/kind.o c_phase_field.o : ../../Modules/mp.o c_phase_field.o : ../../Modules/mp_bands.o c_phase_field.o : ../../Modules/mp_world.o c_phase_field.o : ../../Modules/noncol.o c_phase_field.o : ../../Modules/recvec.o c_phase_field.o : ../../Modules/uspp.o c_phase_field.o : bp_mod.o c_phase_field.o : buffers.o c_phase_field.o : pwcom.o ccgdiagg.o : ../../Modules/constants.o ccgdiagg.o : ../../Modules/kind.o ccgdiagg.o : ../../Modules/mp.o ccgdiagg.o : ../../Modules/mp_bands.o cdiagh.o : ../../Modules/kind.o cdiagh.o : ../../Modules/mp.o cdiagh.o : ../../Modules/mp_bands.o cdiaghg.o : ../../Modules/descriptors.o cdiaghg.o : ../../Modules/kind.o cdiaghg.o : ../../Modules/mp.o cdiaghg.o : ../../Modules/mp_bands.o cdiaghg.o : ../../Modules/mp_diag.o cdiaghg.o : ../../Modules/ptoolkit.o cdiaghg.o : ../../Modules/zhpev_drv.o cegterg.o : ../../Modules/descriptors.o cegterg.o : ../../Modules/io_global.o cegterg.o : ../../Modules/kind.o cegterg.o : ../../Modules/mp.o cegterg.o : ../../Modules/mp_bands.o cegterg.o : ../../Modules/mp_diag.o cegterg.o : ../../Modules/ptoolkit.o clean_pw.o : ../../Modules/atom.o clean_pw.o : ../../Modules/constraints_module.o clean_pw.o : ../../Modules/fft_base.o clean_pw.o : ../../Modules/fft_types.o clean_pw.o : ../../Modules/ions_base.o clean_pw.o : ../../Modules/mm_dispersion.o clean_pw.o : ../../Modules/noncol.o clean_pw.o : ../../Modules/pseudo_types.o clean_pw.o : ../../Modules/radial_grids.o clean_pw.o : ../../Modules/recvec.o clean_pw.o : ../../Modules/stick_base.o clean_pw.o : ../../Modules/uspp.o clean_pw.o : ../../Modules/wannier_new.o clean_pw.o : ../../Modules/wavefunctions.o clean_pw.o : atomic_wfc_mod.o clean_pw.o : bp_mod.o clean_pw.o : dynamics_module.o clean_pw.o : exx.o clean_pw.o : ldaU.o clean_pw.o : paw_init.o clean_pw.o : pwcom.o clean_pw.o : realus.o clean_pw.o : scf_mod.o clean_pw.o : symm_base.o clean_pw.o : symme.o clean_pw.o : xdm_dispersion.o close_files.o : ../../Modules/control_flags.o close_files.o : ../../Modules/io_files.o close_files.o : ../../Modules/mp.o close_files.o : ../../Modules/mp_images.o close_files.o : ../../Modules/wannier_new.o close_files.o : bp_mod.o close_files.o : buffers.o close_files.o : ldaU.o close_files.o : pwcom.o compute_becsum.o : ../../Modules/becmod.o compute_becsum.o : ../../Modules/cell_base.o compute_becsum.o : ../../Modules/control_flags.o compute_becsum.o : ../../Modules/io_files.o compute_becsum.o : ../../Modules/ions_base.o compute_becsum.o : ../../Modules/kind.o compute_becsum.o : ../../Modules/mp.o compute_becsum.o : ../../Modules/mp_pools.o compute_becsum.o : ../../Modules/noncol.o compute_becsum.o : ../../Modules/paw_variables.o compute_becsum.o : ../../Modules/recvec.o compute_becsum.o : ../../Modules/uspp.o compute_becsum.o : ../../Modules/wavefunctions.o compute_becsum.o : buffers.o compute_becsum.o : paw_symmetry.o compute_becsum.o : pwcom.o compute_becsum.o : scf_mod.o compute_deff.o : ../../Modules/ions_base.o compute_deff.o : ../../Modules/kind.o compute_deff.o : ../../Modules/noncol.o compute_deff.o : ../../Modules/uspp.o compute_deff.o : pwcom.o compute_dip.o : ../../Modules/cell_base.o compute_dip.o : ../../Modules/constants.o compute_dip.o : ../../Modules/fft_base.o compute_dip.o : ../../Modules/io_global.o compute_dip.o : ../../Modules/ions_base.o compute_dip.o : ../../Modules/kind.o compute_dip.o : ../../Modules/mp.o compute_dip.o : ../../Modules/mp_bands.o compute_dip.o : pwcom.o compute_qdipol.o : ../../Modules/atom.o compute_qdipol.o : ../../Modules/constants.o compute_qdipol.o : ../../Modules/ions_base.o compute_qdipol.o : ../../Modules/kind.o compute_qdipol.o : ../../Modules/uspp.o compute_qdipol_so.o : ../../Modules/ions_base.o compute_qdipol_so.o : ../../Modules/kind.o compute_qdipol_so.o : ../../Modules/uspp.o compute_qdipol_so.o : pwcom.o compute_rho.o : ../../Modules/kind.o compute_rho.o : ../../Modules/noncol.o compute_ux.o : ../../Modules/constants.o compute_ux.o : ../../Modules/io_global.o compute_ux.o : ../../Modules/kind.o compute_ux.o : ../../Modules/noncol.o coset.o : ../../Modules/kind.o d_matrix.o : ../../Modules/kind.o d_matrix.o : ../../Modules/random_numbers.o d_matrix.o : symm_base.o data_structure.o : ../../Modules/cell_base.o data_structure.o : ../../Modules/fft_base.o data_structure.o : ../../Modules/kind.o data_structure.o : ../../Modules/mp.o data_structure.o : ../../Modules/mp_bands.o data_structure.o : ../../Modules/mp_pools.o data_structure.o : ../../Modules/recvec.o data_structure.o : ../../Modules/stick_set.o data_structure.o : pwcom.o data_structure_custom.o : ../../Modules/cell_base.o data_structure_custom.o : ../../Modules/fft_base.o data_structure_custom.o : ../../Modules/fft_custom.o data_structure_custom.o : ../../Modules/kind.o data_structure_custom.o : ../../Modules/mp.o data_structure_custom.o : ../../Modules/mp_bands.o data_structure_custom.o : ../../Modules/recvec.o data_structure_custom.o : ../../Modules/stick_set.o data_structure_custom.o : pwcom.o deriv_drhoc.o : ../../Modules/constants.o deriv_drhoc.o : ../../Modules/kind.o divide.o : ../../Modules/mp.o divide_class.o : ../../Modules/constants.o divide_class.o : ../../Modules/kind.o divide_class_so.o : ../../Modules/constants.o divide_class_so.o : ../../Modules/io_global.o divide_class_so.o : ../../Modules/kind.o divide_class_so.o : ../../Modules/noncol.o divide_class_so.o : pwcom.o divide_et_impera.o : ../../Modules/io_global.o divide_et_impera.o : ../../Modules/kind.o divide_et_impera.o : ../../Modules/mp_pools.o dqvan2.o : ../../Modules/kind.o dqvan2.o : ../../Modules/recvec.o dqvan2.o : ../../Modules/uspp.o dqvan2.o : pwcom.o drhoc.o : ../../Modules/constants.o drhoc.o : ../../Modules/kind.o dvloc_of_g.o : ../../Modules/constants.o dvloc_of_g.o : ../../Modules/kind.o dynamics_module.o : ../../Modules/basic_algebra_routines.o dynamics_module.o : ../../Modules/cell_base.o dynamics_module.o : ../../Modules/constants.o dynamics_module.o : ../../Modules/constraints_module.o dynamics_module.o : ../../Modules/control_flags.o dynamics_module.o : ../../Modules/io_files.o dynamics_module.o : ../../Modules/io_global.o dynamics_module.o : ../../Modules/ions_base.o dynamics_module.o : ../../Modules/kind.o dynamics_module.o : ../../Modules/random_numbers.o dynamics_module.o : pwcom.o dynamics_module.o : symm_base.o efermig.o : ../../Modules/constants.o efermig.o : ../../Modules/io_global.o efermig.o : ../../Modules/kind.o efermig.o : ../../Modules/mp.o efermig.o : ../../Modules/mp_pools.o efermit.o : ../../Modules/constants.o efermit.o : ../../Modules/io_global.o efermit.o : ../../Modules/kind.o electrons.o : ../../Modules/cell_base.o electrons.o : ../../Modules/check_stop.o electrons.o : ../../Modules/constants.o electrons.o : ../../Modules/control_flags.o electrons.o : ../../Modules/fft_base.o electrons.o : ../../Modules/funct.o electrons.o : ../../Modules/io_files.o electrons.o : ../../Modules/io_global.o electrons.o : ../../Modules/ions_base.o electrons.o : ../../Modules/kind.o electrons.o : ../../Modules/mm_dispersion.o electrons.o : ../../Modules/mp.o electrons.o : ../../Modules/mp_bands.o electrons.o : ../../Modules/mp_pools.o electrons.o : ../../Modules/noncol.o electrons.o : ../../Modules/paw_variables.o electrons.o : ../../Modules/plugin_variables.o electrons.o : ../../Modules/recvec.o electrons.o : ../../Modules/tsvdw.o electrons.o : ../../Modules/uspp.o electrons.o : ../../Modules/wavefunctions.o electrons.o : atomic_wfc_mod.o electrons.o : bp_mod.o electrons.o : buffers.o electrons.o : esm.o electrons.o : exx.o electrons.o : io_rho_xml.o electrons.o : ldaU.o electrons.o : newd.o electrons.o : paw_onecenter.o electrons.o : paw_symmetry.o electrons.o : pwcom.o electrons.o : scf_mod.o electrons.o : xdm_dispersion.o eqvect.o : ../../Modules/kind.o esm.o : ../../Modules/cell_base.o esm.o : ../../Modules/constants.o esm.o : ../../Modules/control_flags.o esm.o : ../../Modules/fft_base.o esm.o : ../../Modules/fft_scalar.o esm.o : ../../Modules/io_global.o esm.o : ../../Modules/ions_base.o esm.o : ../../Modules/kind.o esm.o : ../../Modules/mp.o esm.o : ../../Modules/mp_bands.o esm.o : ../../Modules/recvec.o esm.o : ../../Modules/uspp.o esm.o : pwcom.o esm.o : scf_mod.o ewald.o : ../../Modules/constants.o ewald.o : ../../Modules/kind.o ewald.o : ../../Modules/mp.o ewald.o : ../../Modules/mp_bands.o ewald.o : esm.o ewald.o : martyna_tuckerman.o ewald_dipole.o : ../../Modules/cell_base.o ewald_dipole.o : ../../Modules/constants.o ewald_dipole.o : ../../Modules/ions_base.o ewald_dipole.o : ../../Modules/kind.o ewald_dipole.o : ../../Modules/mp.o ewald_dipole.o : ../../Modules/mp_bands.o ewald_dipole.o : ../../Modules/recvec.o ewald_dipole.o : pwcom.o exx.o : ../../Modules/becmod.o exx.o : ../../Modules/cell_base.o exx.o : ../../Modules/constants.o exx.o : ../../Modules/control_flags.o exx.o : ../../Modules/coulomb_vcut.o exx.o : ../../Modules/fft_base.o exx.o : ../../Modules/fft_custom.o exx.o : ../../Modules/fft_interfaces.o exx.o : ../../Modules/funct.o exx.o : ../../Modules/io_files.o exx.o : ../../Modules/io_global.o exx.o : ../../Modules/kind.o exx.o : ../../Modules/mp.o exx.o : ../../Modules/mp_bands.o exx.o : ../../Modules/mp_pools.o exx.o : ../../Modules/noncol.o exx.o : ../../Modules/paw_variables.o exx.o : ../../Modules/recvec.o exx.o : ../../Modules/uspp.o exx.o : ../../Modules/wavefunctions.o exx.o : buffers.o exx.o : paw_exx.o exx.o : pwcom.o exx.o : start_k.o exx.o : symm_base.o exx.o : us_exx.o find_group.o : ../../Modules/kind.o force_cc.o : ../../Modules/atom.o force_cc.o : ../../Modules/cell_base.o force_cc.o : ../../Modules/constants.o force_cc.o : ../../Modules/control_flags.o force_cc.o : ../../Modules/fft_base.o force_cc.o : ../../Modules/fft_interfaces.o force_cc.o : ../../Modules/ions_base.o force_cc.o : ../../Modules/kind.o force_cc.o : ../../Modules/mp.o force_cc.o : ../../Modules/mp_bands.o force_cc.o : ../../Modules/noncol.o force_cc.o : ../../Modules/recvec.o force_cc.o : ../../Modules/uspp.o force_cc.o : ../../Modules/wavefunctions.o force_cc.o : pwcom.o force_cc.o : scf_mod.o force_corr.o : ../../Modules/atom.o force_corr.o : ../../Modules/cell_base.o force_corr.o : ../../Modules/constants.o force_corr.o : ../../Modules/control_flags.o force_corr.o : ../../Modules/fft_base.o force_corr.o : ../../Modules/fft_interfaces.o force_corr.o : ../../Modules/ions_base.o force_corr.o : ../../Modules/kind.o force_corr.o : ../../Modules/mp.o force_corr.o : ../../Modules/mp_bands.o force_corr.o : ../../Modules/recvec.o force_corr.o : ../../Modules/uspp.o force_corr.o : ../../Modules/wavefunctions.o force_corr.o : pwcom.o force_corr.o : scf_mod.o force_ew.o : ../../Modules/constants.o force_ew.o : ../../Modules/kind.o force_ew.o : ../../Modules/mp.o force_ew.o : ../../Modules/mp_bands.o force_ew.o : esm.o force_hub.o : ../../Modules/becmod.o force_hub.o : ../../Modules/cell_base.o force_hub.o : ../../Modules/control_flags.o force_hub.o : ../../Modules/io_files.o force_hub.o : ../../Modules/ions_base.o force_hub.o : ../../Modules/kind.o force_hub.o : ../../Modules/mp.o force_hub.o : ../../Modules/mp_bands.o force_hub.o : ../../Modules/mp_pools.o force_hub.o : ../../Modules/recvec.o force_hub.o : ../../Modules/uspp.o force_hub.o : ../../Modules/wavefunctions.o force_hub.o : atomic_wfc_mod.o force_hub.o : buffers.o force_hub.o : ldaU.o force_hub.o : pwcom.o force_hub.o : scf_mod.o force_hub.o : symme.o force_lc.o : ../../Modules/constants.o force_lc.o : ../../Modules/fft_base.o force_lc.o : ../../Modules/fft_interfaces.o force_lc.o : ../../Modules/kind.o force_lc.o : ../../Modules/mp.o force_lc.o : ../../Modules/mp_bands.o force_lc.o : esm.o force_us.o : ../../Modules/becmod.o force_us.o : ../../Modules/cell_base.o force_us.o : ../../Modules/control_flags.o force_us.o : ../../Modules/io_files.o force_us.o : ../../Modules/ions_base.o force_us.o : ../../Modules/kind.o force_us.o : ../../Modules/mp.o force_us.o : ../../Modules/mp_bands.o force_us.o : ../../Modules/mp_pools.o force_us.o : ../../Modules/noncol.o force_us.o : ../../Modules/recvec.o force_us.o : ../../Modules/uspp.o force_us.o : ../../Modules/wavefunctions.o force_us.o : buffers.o force_us.o : pwcom.o force_us.o : symme.o forces.o : ../../Modules/cell_base.o forces.o : ../../Modules/control_flags.o forces.o : ../../Modules/fft_base.o forces.o : ../../Modules/io_global.o forces.o : ../../Modules/ions_base.o forces.o : ../../Modules/kind.o forces.o : ../../Modules/mm_dispersion.o forces.o : ../../Modules/plugin_flags.o forces.o : ../../Modules/recvec.o forces.o : ../../Modules/tsvdw.o forces.o : ../../Modules/uspp.o forces.o : bp_mod.o forces.o : ldaU.o forces.o : martyna_tuckerman.o forces.o : pwcom.o forces.o : scf_mod.o forces.o : symme.o forces.o : xdm_dispersion.o forces_bp_efield.o : ../../Modules/becmod.o forces_bp_efield.o : ../../Modules/cell_base.o forces_bp_efield.o : ../../Modules/clocks.o forces_bp_efield.o : ../../Modules/constants.o forces_bp_efield.o : ../../Modules/fft_base.o forces_bp_efield.o : ../../Modules/io_files.o forces_bp_efield.o : ../../Modules/io_global.o forces_bp_efield.o : ../../Modules/ions_base.o forces_bp_efield.o : ../../Modules/kind.o forces_bp_efield.o : ../../Modules/mp.o forces_bp_efield.o : ../../Modules/mp_bands.o forces_bp_efield.o : ../../Modules/mp_world.o forces_bp_efield.o : ../../Modules/noncol.o forces_bp_efield.o : ../../Modules/parallel_include.o forces_bp_efield.o : ../../Modules/recvec.o forces_bp_efield.o : ../../Modules/uspp.o forces_bp_efield.o : ../../Modules/wavefunctions.o forces_bp_efield.o : bp_mod.o forces_bp_efield.o : buffers.o forces_bp_efield.o : pwcom.o g2_kin.o : ../../Modules/cell_base.o g2_kin.o : ../../Modules/kind.o g2_kin.o : ../../Modules/recvec.o g2_kin.o : pwcom.o g_psi.o : ../../Modules/kind.o g_psi.o : g_psi_mod.o g_psi_mod.o : ../../Modules/kind.o gen_at_dj.o : ../../Modules/atom.o gen_at_dj.o : ../../Modules/cell_base.o gen_at_dj.o : ../../Modules/constants.o gen_at_dj.o : ../../Modules/io_global.o gen_at_dj.o : ../../Modules/ions_base.o gen_at_dj.o : ../../Modules/kind.o gen_at_dj.o : ../../Modules/recvec.o gen_at_dj.o : ../../Modules/uspp.o gen_at_dj.o : pwcom.o gen_at_dy.o : ../../Modules/atom.o gen_at_dy.o : ../../Modules/cell_base.o gen_at_dy.o : ../../Modules/constants.o gen_at_dy.o : ../../Modules/io_global.o gen_at_dy.o : ../../Modules/ions_base.o gen_at_dy.o : ../../Modules/kind.o gen_at_dy.o : ../../Modules/recvec.o gen_at_dy.o : ../../Modules/uspp.o gen_at_dy.o : pwcom.o gen_us_dj.o : ../../Modules/cell_base.o gen_us_dj.o : ../../Modules/constants.o gen_us_dj.o : ../../Modules/ions_base.o gen_us_dj.o : ../../Modules/kind.o gen_us_dj.o : ../../Modules/recvec.o gen_us_dj.o : ../../Modules/splinelib.o gen_us_dj.o : ../../Modules/uspp.o gen_us_dj.o : pwcom.o gen_us_dy.o : ../../Modules/cell_base.o gen_us_dy.o : ../../Modules/constants.o gen_us_dy.o : ../../Modules/io_global.o gen_us_dy.o : ../../Modules/ions_base.o gen_us_dy.o : ../../Modules/kind.o gen_us_dy.o : ../../Modules/recvec.o gen_us_dy.o : ../../Modules/splinelib.o gen_us_dy.o : ../../Modules/uspp.o gen_us_dy.o : pwcom.o generate_rVV10_kernel_table.o : ../../Modules/constants.o generate_rVV10_kernel_table.o : ../../Modules/io_global.o generate_rVV10_kernel_table.o : ../../Modules/kind.o generate_rVV10_kernel_table.o : ../../Modules/mp.o generate_rVV10_kernel_table.o : ../../Modules/mp_global.o generate_rVV10_kernel_table.o : ../../Modules/mp_world.o generate_vdW_kernel_table.o : ../../Modules/constants.o generate_vdW_kernel_table.o : ../../Modules/io_global.o generate_vdW_kernel_table.o : ../../Modules/kind.o generate_vdW_kernel_table.o : ../../Modules/mp.o generate_vdW_kernel_table.o : ../../Modules/mp_global.o generate_vdW_kernel_table.o : ../../Modules/mp_world.o get_locals.o : ../../Modules/cell_base.o get_locals.o : ../../Modules/fft_base.o get_locals.o : ../../Modules/ions_base.o get_locals.o : ../../Modules/kind.o get_locals.o : ../../Modules/mp.o get_locals.o : ../../Modules/mp_bands.o get_locals.o : ../../Modules/noncol.o get_locals.o : pwcom.o gk_sort.o : ../../Modules/constants.o gk_sort.o : ../../Modules/kind.o gk_sort.o : pwcom.o gradcorr.o : ../../Modules/cell_base.o gradcorr.o : ../../Modules/constants.o gradcorr.o : ../../Modules/control_flags.o gradcorr.o : ../../Modules/fft_base.o gradcorr.o : ../../Modules/fft_interfaces.o gradcorr.o : ../../Modules/funct.o gradcorr.o : ../../Modules/kind.o gradcorr.o : ../../Modules/noncol.o gradcorr.o : ../../Modules/recvec.o gradcorr.o : ../../Modules/wavefunctions.o gradcorr.o : pwcom.o gweights.o : ../../Modules/kind.o h_1psi.o : ../../Modules/kind.o h_1psi.o : ../../Modules/noncol.o h_1psi.o : bp_mod.o h_1psi.o : realus.o h_epsi_her_apply.o : ../../Modules/becmod.o h_epsi_her_apply.o : ../../Modules/cell_base.o h_epsi_her_apply.o : ../../Modules/constants.o h_epsi_her_apply.o : ../../Modules/io_global.o h_epsi_her_apply.o : ../../Modules/ions_base.o h_epsi_her_apply.o : ../../Modules/kind.o h_epsi_her_apply.o : ../../Modules/mp.o h_epsi_her_apply.o : ../../Modules/mp_bands.o h_epsi_her_apply.o : ../../Modules/noncol.o h_epsi_her_apply.o : ../../Modules/recvec.o h_epsi_her_apply.o : ../../Modules/uspp.o h_epsi_her_apply.o : bp_mod.o h_epsi_her_apply.o : ldaU.o h_epsi_her_apply.o : pwcom.o h_epsi_her_apply.o : scf_mod.o h_epsi_her_set.o : ../../Modules/becmod.o h_epsi_her_set.o : ../../Modules/cell_base.o h_epsi_her_set.o : ../../Modules/constants.o h_epsi_her_set.o : ../../Modules/fft_base.o h_epsi_her_set.o : ../../Modules/io_files.o h_epsi_her_set.o : ../../Modules/ions_base.o h_epsi_her_set.o : ../../Modules/kind.o h_epsi_her_set.o : ../../Modules/mp.o h_epsi_her_set.o : ../../Modules/mp_bands.o h_epsi_her_set.o : ../../Modules/noncol.o h_epsi_her_set.o : ../../Modules/recvec.o h_epsi_her_set.o : ../../Modules/uspp.o h_epsi_her_set.o : bp_mod.o h_epsi_her_set.o : buffers.o h_epsi_her_set.o : ldaU.o h_epsi_her_set.o : pwcom.o h_epsi_her_set.o : scf_mod.o h_psi.o : ../../Modules/becmod.o h_psi.o : ../../Modules/control_flags.o h_psi.o : ../../Modules/fft_base.o h_psi.o : ../../Modules/funct.o h_psi.o : ../../Modules/kind.o h_psi.o : ../../Modules/noncol.o h_psi.o : ../../Modules/recvec.o h_psi.o : ../../Modules/uspp.o h_psi.o : bp_mod.o h_psi.o : exx.o h_psi.o : ldaU.o h_psi.o : pwcom.o h_psi.o : realus.o h_psi.o : scf_mod.o h_psi_meta.o : ../../Modules/cell_base.o h_psi_meta.o : ../../Modules/control_flags.o h_psi_meta.o : ../../Modules/fft_base.o h_psi_meta.o : ../../Modules/fft_interfaces.o h_psi_meta.o : ../../Modules/kind.o h_psi_meta.o : ../../Modules/recvec.o h_psi_meta.o : ../../Modules/wavefunctions.o h_psi_meta.o : pwcom.o h_psi_meta.o : scf_mod.o hinit0.o : ../../Modules/cell_base.o hinit0.o : ../../Modules/control_flags.o hinit0.o : ../../Modules/fft_base.o hinit0.o : ../../Modules/io_files.o hinit0.o : ../../Modules/io_global.o hinit0.o : ../../Modules/ions_base.o hinit0.o : ../../Modules/recvec.o hinit0.o : atomic_wfc_mod.o hinit0.o : ldaU.o hinit0.o : pwcom.o hinit0.o : realus.o hinit1.o : ../../Modules/cell_base.o hinit1.o : ../../Modules/control_flags.o hinit1.o : ../../Modules/fft_base.o hinit1.o : ../../Modules/ions_base.o hinit1.o : ../../Modules/paw_variables.o hinit1.o : ../../Modules/recvec.o hinit1.o : ../../Modules/wannier_new.o hinit1.o : ldaU.o hinit1.o : martyna_tuckerman.o hinit1.o : newd.o hinit1.o : paw_init.o hinit1.o : paw_onecenter.o hinit1.o : paw_symmetry.o hinit1.o : pwcom.o hinit1.o : realus.o hinit1.o : scf_mod.o init_at_1.o : ../../Modules/atom.o init_at_1.o : ../../Modules/cell_base.o init_at_1.o : ../../Modules/constants.o init_at_1.o : ../../Modules/ions_base.o init_at_1.o : ../../Modules/kind.o init_at_1.o : ../../Modules/mp.o init_at_1.o : ../../Modules/mp_bands.o init_at_1.o : ../../Modules/uspp.o init_at_1.o : pwcom.o init_ns.o : ../../Modules/ions_base.o init_ns.o : ../../Modules/kind.o init_ns.o : ../../Modules/noncol.o init_ns.o : ../../Modules/uspp.o init_ns.o : ldaU.o init_ns.o : pwcom.o init_ns.o : scf_mod.o init_q_aeps.o : ../../Modules/atom.o init_q_aeps.o : ../../Modules/control_flags.o init_q_aeps.o : ../../Modules/io_global.o init_q_aeps.o : ../../Modules/ions_base.o init_q_aeps.o : ../../Modules/kind.o init_q_aeps.o : ../../Modules/uspp.o init_q_aeps.o : ldaU.o init_q_aeps.o : pwcom.o init_run.o : ../../Modules/cell_base.o init_run.o : ../../Modules/control_flags.o init_run.o : ../../Modules/fft_base.o init_run.o : ../../Modules/funct.o init_run.o : ../../Modules/ions_base.o init_run.o : ../../Modules/mp_bands.o init_run.o : ../../Modules/paw_variables.o init_run.o : ../../Modules/recvec_subs.o init_run.o : ../../Modules/tsvdw.o init_run.o : ../../Modules/uspp.o init_run.o : ../../Modules/wannier_new.o init_run.o : bp_mod.o init_run.o : dynamics_module.o init_run.o : esm.o init_run.o : newd.o init_run.o : paw_init.o init_run.o : pwcom.o init_run.o : symme.o init_us_1.o : ../../Modules/atom.o init_us_1.o : ../../Modules/cell_base.o init_us_1.o : ../../Modules/constants.o init_us_1.o : ../../Modules/ions_base.o init_us_1.o : ../../Modules/kind.o init_us_1.o : ../../Modules/mp.o init_us_1.o : ../../Modules/mp_bands.o init_us_1.o : ../../Modules/parameters.o init_us_1.o : ../../Modules/paw_variables.o init_us_1.o : ../../Modules/recvec.o init_us_1.o : ../../Modules/splinelib.o init_us_1.o : ../../Modules/uspp.o init_us_1.o : pwcom.o init_us_2.o : ../../Modules/cell_base.o init_us_2.o : ../../Modules/constants.o init_us_2.o : ../../Modules/ions_base.o init_us_2.o : ../../Modules/kind.o init_us_2.o : ../../Modules/recvec.o init_us_2.o : ../../Modules/splinelib.o init_us_2.o : ../../Modules/uspp.o init_us_2.o : pwcom.o init_vloc.o : ../../Modules/atom.o init_vloc.o : ../../Modules/cell_base.o init_vloc.o : ../../Modules/ions_base.o init_vloc.o : ../../Modules/kind.o init_vloc.o : ../../Modules/recvec.o init_vloc.o : ../../Modules/uspp.o init_vloc.o : pwcom.o input.o : ../../Modules/bfgs_module.o input.o : ../../Modules/cell_base.o input.o : ../../Modules/constants.o input.o : ../../Modules/constraints_module.o input.o : ../../Modules/control_flags.o input.o : ../../Modules/fft_base.o input.o : ../../Modules/funct.o input.o : ../../Modules/input_parameters.o input.o : ../../Modules/io_files.o input.o : ../../Modules/io_global.o input.o : ../../Modules/ions_base.o input.o : ../../Modules/kernel_table.o input.o : ../../Modules/kind.o input.o : ../../Modules/mm_dispersion.o input.o : ../../Modules/mp.o input.o : ../../Modules/mp_images.o input.o : ../../Modules/mp_pools.o input.o : ../../Modules/noncol.o input.o : ../../Modules/qmmm.o input.o : ../../Modules/read_namelists.o input.o : ../../Modules/read_pseudo.o input.o : ../../Modules/recvec.o input.o : ../../Modules/run_info.o input.o : ../../Modules/tsvdw.o input.o : ../../Modules/wannier_new.o input.o : ../../Modules/wrappers.o input.o : a2fmod.o input.o : atomic_wfc_mod.o input.o : bp_mod.o input.o : dynamics_module.o input.o : esm.o input.o : exx.o input.o : ldaU.o input.o : martyna_tuckerman.o input.o : pwcom.o input.o : realus.o input.o : start_k.o input.o : symm_base.o input.o : xdm_dispersion.o interpolate.o : ../../Modules/control_flags.o interpolate.o : ../../Modules/fft_base.o interpolate.o : ../../Modules/fft_interfaces.o interpolate.o : ../../Modules/kind.o interpolate.o : ../../Modules/recvec.o io_rho_xml.o : ../../Modules/fft_base.o io_rho_xml.o : ../../Modules/funct.o io_rho_xml.o : ../../Modules/io_files.o io_rho_xml.o : ../../Modules/io_global.o io_rho_xml.o : ../../Modules/kind.o io_rho_xml.o : ../../Modules/mp.o io_rho_xml.o : ../../Modules/mp_bands.o io_rho_xml.o : ../../Modules/mp_images.o io_rho_xml.o : ../../Modules/noncol.o io_rho_xml.o : ../../Modules/paw_variables.o io_rho_xml.o : ../../Modules/xml_io_base.o io_rho_xml.o : ldaU.o io_rho_xml.o : pwcom.o io_rho_xml.o : scf_mod.o irrek.o : ../../Modules/kind.o iweights.o : ../../Modules/kind.o iweights.o : ../../Modules/mp.o iweights.o : ../../Modules/mp_pools.o iweights.o : ../../Modules/noncol.o kpoint_grid.o : ../../Modules/io_global.o kpoint_grid.o : ../../Modules/kind.o kpoint_grid.o : ../../Modules/noncol.o kpoint_grid.o : bp_mod.o lchk_tauxk.o : ../../Modules/kind.o ldaU.o : ../../Modules/ions_base.o ldaU.o : ../../Modules/kind.o ldaU.o : ../../Modules/parameters.o ldaU.o : atomic_wfc_mod.o make_pointlists.o : ../../Modules/cell_base.o make_pointlists.o : ../../Modules/fft_base.o make_pointlists.o : ../../Modules/io_global.o make_pointlists.o : ../../Modules/ions_base.o make_pointlists.o : ../../Modules/kind.o make_pointlists.o : ../../Modules/mp_bands.o make_pointlists.o : ../../Modules/noncol.o makov_payne.o : ../../Modules/basic_algebra_routines.o makov_payne.o : ../../Modules/cell_base.o makov_payne.o : ../../Modules/constants.o makov_payne.o : ../../Modules/control_flags.o makov_payne.o : ../../Modules/fft_base.o makov_payne.o : ../../Modules/io_files.o makov_payne.o : ../../Modules/io_global.o makov_payne.o : ../../Modules/ions_base.o makov_payne.o : ../../Modules/kind.o makov_payne.o : ../../Modules/mp.o makov_payne.o : ../../Modules/mp_bands.o makov_payne.o : ../../Modules/plugin_flags.o makov_payne.o : ../../Modules/recvec.o makov_payne.o : pwcom.o makov_payne.o : scf_mod.o manypw.o : ../../Modules/command_line_options.o manypw.o : ../../Modules/environment.o manypw.o : ../../Modules/input_parameters.o manypw.o : ../../Modules/io_global.o manypw.o : ../../Modules/mp_global.o manypw.o : ../../Modules/mp_images.o manypw.o : ../../Modules/read_input.o martyna_tuckerman.o : ../../Modules/cell_base.o martyna_tuckerman.o : ../../Modules/constants.o martyna_tuckerman.o : ../../Modules/control_flags.o martyna_tuckerman.o : ../../Modules/fft_base.o martyna_tuckerman.o : ../../Modules/fft_interfaces.o martyna_tuckerman.o : ../../Modules/ions_base.o martyna_tuckerman.o : ../../Modules/kind.o martyna_tuckerman.o : ../../Modules/mp.o martyna_tuckerman.o : ../../Modules/mp_bands.o martyna_tuckerman.o : ../../Modules/recvec.o martyna_tuckerman.o : ../../Modules/ws_base.o martyna_tuckerman.o : pwcom.o memory_report.o : ../../Modules/control_flags.o memory_report.o : ../../Modules/fft_base.o memory_report.o : ../../Modules/io_global.o memory_report.o : ../../Modules/mp_diag.o memory_report.o : ../../Modules/noncol.o memory_report.o : ../../Modules/recvec.o memory_report.o : ../../Modules/uspp.o memory_report.o : ../../Modules/wannier_new.o memory_report.o : atomic_wfc_mod.o memory_report.o : ldaU.o memory_report.o : pwcom.o mix_rho.o : ../../Modules/cell_base.o mix_rho.o : ../../Modules/constants.o mix_rho.o : ../../Modules/control_flags.o mix_rho.o : ../../Modules/fft_base.o mix_rho.o : ../../Modules/fft_interfaces.o mix_rho.o : ../../Modules/io_global.o mix_rho.o : ../../Modules/ions_base.o mix_rho.o : ../../Modules/kind.o mix_rho.o : ../../Modules/mp.o mix_rho.o : ../../Modules/mp_bands.o mix_rho.o : ../../Modules/recvec.o mix_rho.o : ../../Modules/uspp.o mix_rho.o : ../../Modules/wavefunctions.o mix_rho.o : pwcom.o mix_rho.o : scf_mod.o move_ions.o : ../../Modules/basic_algebra_routines.o move_ions.o : ../../Modules/bfgs_module.o move_ions.o : ../../Modules/cell_base.o move_ions.o : ../../Modules/constants.o move_ions.o : ../../Modules/control_flags.o move_ions.o : ../../Modules/fft_base.o move_ions.o : ../../Modules/griddim.o move_ions.o : ../../Modules/io_files.o move_ions.o : ../../Modules/io_global.o move_ions.o : ../../Modules/ions_base.o move_ions.o : ../../Modules/kind.o move_ions.o : ../../Modules/mp.o move_ions.o : ../../Modules/mp_images.o move_ions.o : ../../Modules/recvec.o move_ions.o : dynamics_module.o move_ions.o : newd.o move_ions.o : pwcom.o move_ions.o : symm_base.o n_plane_waves.o : ../../Modules/kind.o n_plane_waves.o : ../../Modules/mp.o n_plane_waves.o : ../../Modules/mp_pools.o new_ns.o : ../../Modules/becmod.o new_ns.o : ../../Modules/control_flags.o new_ns.o : ../../Modules/io_files.o new_ns.o : ../../Modules/io_global.o new_ns.o : ../../Modules/ions_base.o new_ns.o : ../../Modules/kind.o new_ns.o : ../../Modules/mp.o new_ns.o : ../../Modules/mp_bands.o new_ns.o : ../../Modules/mp_pools.o new_ns.o : ../../Modules/noncol.o new_ns.o : ../../Modules/recvec.o new_ns.o : ../../Modules/uspp.o new_ns.o : ../../Modules/wavefunctions.o new_ns.o : buffers.o new_ns.o : ldaU.o new_ns.o : pwcom.o new_ns.o : symm_base.o new_occ.o : ../../Modules/constants.o new_occ.o : ../../Modules/control_flags.o new_occ.o : ../../Modules/io_files.o new_occ.o : ../../Modules/io_global.o new_occ.o : ../../Modules/kind.o new_occ.o : ../../Modules/mp.o new_occ.o : ../../Modules/mp_bands.o new_occ.o : ../../Modules/noncol.o new_occ.o : ../../Modules/recvec.o new_occ.o : ../../Modules/wavefunctions.o new_occ.o : atomic_wfc_mod.o new_occ.o : buffers.o new_occ.o : pwcom.o newd.o : ../../Modules/cell_base.o newd.o : ../../Modules/control_flags.o newd.o : ../../Modules/fft_base.o newd.o : ../../Modules/fft_interfaces.o newd.o : ../../Modules/ions_base.o newd.o : ../../Modules/kind.o newd.o : ../../Modules/mp.o newd.o : ../../Modules/mp_bands.o newd.o : ../../Modules/noncol.o newd.o : ../../Modules/recvec.o newd.o : ../../Modules/uspp.o newd.o : ../../Modules/wavefunctions.o newd.o : ldaU.o newd.o : pwcom.o newd.o : realus.o newd.o : scf_mod.o non_scf.o : ../../Modules/check_stop.o non_scf.o : ../../Modules/control_flags.o non_scf.o : ../../Modules/io_files.o non_scf.o : ../../Modules/io_global.o non_scf.o : ../../Modules/kind.o non_scf.o : ../../Modules/wavefunctions.o non_scf.o : bp_mod.o non_scf.o : buffers.o non_scf.o : pwcom.o nonloccorr.o : ../../Modules/cell_base.o nonloccorr.o : ../../Modules/constants.o nonloccorr.o : ../../Modules/fft_base.o nonloccorr.o : ../../Modules/fft_interfaces.o nonloccorr.o : ../../Modules/funct.o nonloccorr.o : ../../Modules/kind.o nonloccorr.o : ../../Modules/noncol.o nonloccorr.o : ../../Modules/recvec.o nonloccorr.o : ../../Modules/wavefunctions.o nonloccorr.o : pwcom.o ns_adj.o : ../../Modules/io_global.o ns_adj.o : ../../Modules/ions_base.o ns_adj.o : ../../Modules/kind.o ns_adj.o : ../../Modules/noncol.o ns_adj.o : ldaU.o ns_adj.o : pwcom.o ns_adj.o : scf_mod.o offset_atom_wfc.o : ../../Modules/ions_base.o offset_atom_wfc.o : ../../Modules/noncol.o offset_atom_wfc.o : ../../Modules/uspp.o offset_atom_wfc.o : ldaU.o openfil.o : ../../Modules/control_flags.o openfil.o : ../../Modules/io_files.o openfil.o : ../../Modules/io_global.o openfil.o : ../../Modules/kind.o openfil.o : ../../Modules/noncol.o openfil.o : ../../Modules/wannier_new.o openfil.o : atomic_wfc_mod.o openfil.o : bp_mod.o openfil.o : buffers.o openfil.o : ldaU.o openfil.o : pwcom.o orbm_kubo.o : ../../Modules/becmod.o orbm_kubo.o : ../../Modules/cell_base.o orbm_kubo.o : ../../Modules/constants.o orbm_kubo.o : ../../Modules/fft_base.o orbm_kubo.o : ../../Modules/io_files.o orbm_kubo.o : ../../Modules/io_global.o orbm_kubo.o : ../../Modules/kind.o orbm_kubo.o : ../../Modules/mp.o orbm_kubo.o : ../../Modules/mp_pools.o orbm_kubo.o : ../../Modules/mp_world.o orbm_kubo.o : ../../Modules/noncol.o orbm_kubo.o : ../../Modules/recvec.o orbm_kubo.o : ../../Modules/uspp.o orbm_kubo.o : bp_mod.o orbm_kubo.o : buffers.o orbm_kubo.o : pwcom.o orbm_kubo.o : scf_mod.o orbm_kubo.o : start_k.o ortho_wfc.o : ../../Modules/io_global.o ortho_wfc.o : ../../Modules/kind.o ortho_wfc.o : ../../Modules/mp.o ortho_wfc.o : ../../Modules/mp_bands.o ortho_wfc.o : ../../Modules/noncol.o orthoatwfc.o : ../../Modules/becmod.o orthoatwfc.o : ../../Modules/control_flags.o orthoatwfc.o : ../../Modules/io_files.o orthoatwfc.o : ../../Modules/io_global.o orthoatwfc.o : ../../Modules/ions_base.o orthoatwfc.o : ../../Modules/kind.o orthoatwfc.o : ../../Modules/mp.o orthoatwfc.o : ../../Modules/mp_bands.o orthoatwfc.o : ../../Modules/noncol.o orthoatwfc.o : ../../Modules/uspp.o orthoatwfc.o : atomic_wfc_mod.o orthoatwfc.o : buffers.o orthoatwfc.o : ldaU.o orthoatwfc.o : pwcom.o output_tau.o : ../../Modules/cell_base.o output_tau.o : ../../Modules/constants.o output_tau.o : ../../Modules/io_global.o output_tau.o : ../../Modules/ions_base.o output_tau.o : ../../Modules/kind.o para.o : ../../Modules/kind.o para.o : ../../Modules/mp.o para.o : ../../Modules/mp_images.o para.o : ../../Modules/mp_pools.o para.o : ../../Modules/parallel_include.o paw_exx.o : ../../Modules/atom.o paw_exx.o : ../../Modules/constants.o paw_exx.o : ../../Modules/ions_base.o paw_exx.o : ../../Modules/kind.o paw_exx.o : ../../Modules/mp_images.o paw_exx.o : ../../Modules/paw_variables.o paw_exx.o : ../../Modules/uspp.o paw_exx.o : paw_onecenter.o paw_exx.o : pwcom.o paw_init.o : ../../Modules/atom.o paw_init.o : ../../Modules/constants.o paw_init.o : ../../Modules/control_flags.o paw_init.o : ../../Modules/funct.o paw_init.o : ../../Modules/io_global.o paw_init.o : ../../Modules/ions_base.o paw_init.o : ../../Modules/kind.o paw_init.o : ../../Modules/mp.o paw_init.o : ../../Modules/mp_images.o paw_init.o : ../../Modules/noncol.o paw_init.o : ../../Modules/paw_variables.o paw_init.o : ../../Modules/radial_grids.o paw_init.o : ../../Modules/random_numbers.o paw_init.o : ../../Modules/uspp.o paw_init.o : atomic_wfc_mod.o paw_init.o : paw_symmetry.o paw_init.o : pwcom.o paw_init.o : scf_mod.o paw_onecenter.o : ../../Modules/atom.o paw_onecenter.o : ../../Modules/constants.o paw_onecenter.o : ../../Modules/funct.o paw_onecenter.o : ../../Modules/io_global.o paw_onecenter.o : ../../Modules/ions_base.o paw_onecenter.o : ../../Modules/kind.o paw_onecenter.o : ../../Modules/mp.o paw_onecenter.o : ../../Modules/mp_images.o paw_onecenter.o : ../../Modules/noncol.o paw_onecenter.o : ../../Modules/paw_variables.o paw_onecenter.o : ../../Modules/radial_grids.o paw_onecenter.o : ../../Modules/uspp.o paw_onecenter.o : pwcom.o paw_symmetry.o : ../../Modules/cell_base.o paw_symmetry.o : ../../Modules/constants.o paw_symmetry.o : ../../Modules/io_global.o paw_symmetry.o : ../../Modules/ions_base.o paw_symmetry.o : ../../Modules/kind.o paw_symmetry.o : ../../Modules/mp.o paw_symmetry.o : ../../Modules/mp_images.o paw_symmetry.o : ../../Modules/noncol.o paw_symmetry.o : ../../Modules/uspp.o paw_symmetry.o : pwcom.o paw_symmetry.o : symm_base.o plugin_clean.o : ../../Modules/plugin_flags.o plugin_clock.o : ../../Modules/io_global.o plugin_clock.o : ../../Modules/plugin_flags.o plugin_ext_forces.o : ../../Modules/io_files.o plugin_ext_forces.o : ../../Modules/io_global.o plugin_ext_forces.o : ../../Modules/kind.o plugin_ext_forces.o : ../../Modules/mp.o plugin_ext_forces.o : ../../Modules/mp_images.o plugin_ext_forces.o : ../../Modules/plugin_flags.o plugin_init_cell.o : ../../Modules/fft_base.o plugin_init_cell.o : ../../Modules/kind.o plugin_init_cell.o : ../../Modules/plugin_flags.o plugin_init_ions.o : ../../Modules/fft_base.o plugin_init_ions.o : ../../Modules/kind.o plugin_init_ions.o : ../../Modules/plugin_flags.o plugin_init_potential.o : ../../Modules/fft_base.o plugin_init_potential.o : ../../Modules/plugin_flags.o plugin_init_potential.o : scf_mod.o plugin_initbase.o : ../../Modules/fft_base.o plugin_initbase.o : ../../Modules/mp_bands.o plugin_initbase.o : ../../Modules/plugin_flags.o plugin_initialization.o : ../../Modules/io_files.o plugin_initialization.o : ../../Modules/io_global.o plugin_initialization.o : ../../Modules/kind.o plugin_initialization.o : ../../Modules/plugin_flags.o plugin_int_forces.o : ../../Modules/cell_base.o plugin_int_forces.o : ../../Modules/control_flags.o plugin_int_forces.o : ../../Modules/fft_base.o plugin_int_forces.o : ../../Modules/fft_interfaces.o plugin_int_forces.o : ../../Modules/io_files.o plugin_int_forces.o : ../../Modules/io_global.o plugin_int_forces.o : ../../Modules/ions_base.o plugin_int_forces.o : ../../Modules/kind.o plugin_int_forces.o : ../../Modules/mp.o plugin_int_forces.o : ../../Modules/mp_images.o plugin_int_forces.o : ../../Modules/plugin_flags.o plugin_int_forces.o : ../../Modules/recvec.o plugin_int_forces.o : martyna_tuckerman.o plugin_int_forces.o : pwcom.o plugin_int_forces.o : scf_mod.o plugin_print_energies.o : ../../Modules/io_files.o plugin_print_energies.o : ../../Modules/io_global.o plugin_print_energies.o : ../../Modules/kind.o plugin_print_energies.o : ../../Modules/plugin_flags.o plugin_read_input.o : ../../Modules/input_parameters.o plugin_read_input.o : ../../Modules/plugin_flags.o plugin_scf_energy.o : ../../Modules/fft_base.o plugin_scf_energy.o : ../../Modules/io_files.o plugin_scf_energy.o : ../../Modules/io_global.o plugin_scf_energy.o : ../../Modules/kind.o plugin_scf_energy.o : ../../Modules/plugin_flags.o plugin_scf_energy.o : pwcom.o plugin_scf_energy.o : scf_mod.o plugin_scf_potential.o : ../../Modules/fft_base.o plugin_scf_potential.o : ../../Modules/io_files.o plugin_scf_potential.o : ../../Modules/io_global.o plugin_scf_potential.o : ../../Modules/kind.o plugin_scf_potential.o : ../../Modules/plugin_flags.o plugin_scf_potential.o : pwcom.o plugin_scf_potential.o : scf_mod.o plugin_summary.o : ../../Modules/plugin_flags.o plus_u_full.o : ../../Modules/cell_base.o plus_u_full.o : ../../Modules/constants.o plus_u_full.o : ../../Modules/ions_base.o plus_u_full.o : ../../Modules/kind.o plus_u_full.o : ../../Modules/noncol.o plus_u_full.o : ../../Modules/random_numbers.o plus_u_full.o : ../../Modules/recvec.o plus_u_full.o : ../../Modules/uspp.o plus_u_full.o : atomic_wfc_mod.o plus_u_full.o : ldaU.o plus_u_full.o : pwcom.o plus_u_full.o : symm_base.o potinit.o : ../../Modules/cell_base.o potinit.o : ../../Modules/constants.o potinit.o : ../../Modules/control_flags.o potinit.o : ../../Modules/fft_base.o potinit.o : ../../Modules/fft_interfaces.o potinit.o : ../../Modules/funct.o potinit.o : ../../Modules/io_files.o potinit.o : ../../Modules/io_global.o potinit.o : ../../Modules/ions_base.o potinit.o : ../../Modules/kind.o potinit.o : ../../Modules/mp.o potinit.o : ../../Modules/mp_bands.o potinit.o : ../../Modules/noncol.o potinit.o : ../../Modules/paw_variables.o potinit.o : ../../Modules/recvec.o potinit.o : ../../Modules/uspp.o potinit.o : ../../Modules/wavefunctions.o potinit.o : ../../Modules/xml_io_base.o potinit.o : atomic_wfc_mod.o potinit.o : io_rho_xml.o potinit.o : ldaU.o potinit.o : paw_init.o potinit.o : paw_onecenter.o potinit.o : pw_restart.o potinit.o : pwcom.o potinit.o : scf_mod.o print_clock_pw.o : ../../Modules/control_flags.o print_clock_pw.o : ../../Modules/funct.o print_clock_pw.o : ../../Modules/io_global.o print_clock_pw.o : ../../Modules/paw_variables.o print_clock_pw.o : ../../Modules/uspp.o print_clock_pw.o : ldaU.o print_clock_pw.o : realus.o print_ks_energies.o : ../../Modules/constants.o print_ks_energies.o : ../../Modules/control_flags.o print_ks_energies.o : ../../Modules/io_global.o print_ks_energies.o : ../../Modules/kind.o print_ks_energies.o : ../../Modules/mp.o print_ks_energies.o : ../../Modules/mp_bands.o print_ks_energies.o : pwcom.o punch.o : ../../Modules/control_flags.o punch.o : ../../Modules/io_files.o punch.o : ../../Modules/io_global.o punch.o : ../../Modules/wavefunctions.o punch.o : a2fmod.o punch.o : pw_restart.o punch.o : pwcom.o pw2blip.o : ../../Modules/cell_base.o pw2blip.o : ../../Modules/constants.o pw2blip.o : ../../Modules/control_flags.o pw2blip.o : ../../Modules/fft_scalar.o pw2blip.o : ../../Modules/io_global.o pw2blip.o : ../../Modules/kind.o pw2blip.o : ../../Modules/mp.o pw2blip.o : ../../Modules/mp_pools.o pw2casino.o : ../../Modules/control_flags.o pw2casino.o : ../../Modules/io_files.o pw2casino.o : ../../Modules/kind.o pw2casino.o : ../../Modules/mp_images.o pw2casino.o : ../../Modules/mp_pools.o pw2casino.o : ../../Modules/plugin_flags.o pw2casino_write.o : ../../Modules/becmod.o pw2casino_write.o : ../../Modules/cell_base.o pw2casino_write.o : ../../Modules/constants.o pw2casino_write.o : ../../Modules/control_flags.o pw2casino_write.o : ../../Modules/fft_base.o pw2casino_write.o : ../../Modules/fft_interfaces.o pw2casino_write.o : ../../Modules/funct.o pw2casino_write.o : ../../Modules/io_files.o pw2casino_write.o : ../../Modules/io_global.o pw2casino_write.o : ../../Modules/ions_base.o pw2casino_write.o : ../../Modules/kind.o pw2casino_write.o : ../../Modules/mp.o pw2casino_write.o : ../../Modules/mp_pools.o pw2casino_write.o : ../../Modules/recvec.o pw2casino_write.o : ../../Modules/run_info.o pw2casino_write.o : ../../Modules/uspp.o pw2casino_write.o : ../../Modules/wavefunctions.o pw2casino_write.o : buffers.o pw2casino_write.o : exx.o pw2casino_write.o : ldaU.o pw2casino_write.o : pw2blip.o pw2casino_write.o : pwcom.o pw2casino_write.o : scf_mod.o pw_restart.o : ../../Modules/cell_base.o pw_restart.o : ../../Modules/constants.o pw_restart.o : ../../Modules/control_flags.o pw_restart.o : ../../Modules/electrons_base.o pw_restart.o : ../../Modules/fft_base.o pw_restart.o : ../../Modules/funct.o pw_restart.o : ../../Modules/io_files.o pw_restart.o : ../../Modules/io_global.o pw_restart.o : ../../Modules/ions_base.o pw_restart.o : ../../Modules/kernel_table.o pw_restart.o : ../../Modules/kind.o pw_restart.o : ../../Modules/mp.o pw_restart.o : ../../Modules/mp_bands.o pw_restart.o : ../../Modules/mp_diag.o pw_restart.o : ../../Modules/mp_global.o pw_restart.o : ../../Modules/mp_images.o pw_restart.o : ../../Modules/mp_pools.o pw_restart.o : ../../Modules/mp_pots.o pw_restart.o : ../../Modules/mp_world.o pw_restart.o : ../../Modules/noncol.o pw_restart.o : ../../Modules/parser.o pw_restart.o : ../../Modules/qexml.o pw_restart.o : ../../Modules/recvec.o pw_restart.o : ../../Modules/run_info.o pw_restart.o : ../../Modules/version.o pw_restart.o : ../../Modules/wavefunctions.o pw_restart.o : ../../Modules/xml_io_base.o pw_restart.o : ../../iotk/src/iotk_module.o pw_restart.o : atomic_wfc_mod.o pw_restart.o : buffers.o pw_restart.o : esm.o pw_restart.o : exx.o pw_restart.o : io_rho_xml.o pw_restart.o : ldaU.o pw_restart.o : martyna_tuckerman.o pw_restart.o : pwcom.o pw_restart.o : realus.o pw_restart.o : scf_mod.o pw_restart.o : start_k.o pw_restart.o : symm_base.o pwcom.o : ../../Modules/cell_base.o pwcom.o : ../../Modules/constants.o pwcom.o : ../../Modules/kind.o pwcom.o : ../../Modules/parameters.o pwcom.o : ../../Modules/recvec.o pwcom.o : ldaU.o pwscf.o : ../../Modules/command_line_options.o pwscf.o : ../../Modules/environment.o pwscf.o : ../../Modules/mp_global.o pwscf.o : ../../Modules/read_input.o qvan2.o : ../../Modules/kind.o qvan2.o : ../../Modules/uspp.o qvan2.o : pwcom.o rcgdiagg.o : ../../Modules/constants.o rcgdiagg.o : ../../Modules/kind.o rcgdiagg.o : ../../Modules/mp.o rcgdiagg.o : ../../Modules/mp_bands.o rcgdiagg.o : ../../Modules/recvec.o rdiagh.o : ../../Modules/kind.o rdiagh.o : ../../Modules/mp.o rdiagh.o : ../../Modules/mp_bands.o rdiaghg.o : ../../Modules/descriptors.o rdiaghg.o : ../../Modules/dspev_drv.o rdiaghg.o : ../../Modules/kind.o rdiaghg.o : ../../Modules/mp.o rdiaghg.o : ../../Modules/mp_bands.o rdiaghg.o : ../../Modules/mp_diag.o read_conf_from_file.o : ../../Modules/cell_base.o read_conf_from_file.o : ../../Modules/io_files.o read_conf_from_file.o : ../../Modules/io_global.o read_conf_from_file.o : ../../Modules/ions_base.o read_conf_from_file.o : ../../Modules/kind.o read_conf_from_file.o : pw_restart.o read_conf_from_file.o : pwcom.o read_file.o : ../../Modules/cell_base.o read_file.o : ../../Modules/constants.o read_file.o : ../../Modules/control_flags.o read_file.o : ../../Modules/fft_base.o read_file.o : ../../Modules/fft_interfaces.o read_file.o : ../../Modules/funct.o read_file.o : ../../Modules/griddim.o read_file.o : ../../Modules/io_files.o read_file.o : ../../Modules/io_global.o read_file.o : ../../Modules/ions_base.o read_file.o : ../../Modules/kernel_table.o read_file.o : ../../Modules/kind.o read_file.o : ../../Modules/noncol.o read_file.o : ../../Modules/paw_variables.o read_file.o : ../../Modules/read_pseudo.o read_file.o : ../../Modules/recvec.o read_file.o : ../../Modules/recvec_subs.o read_file.o : ../../Modules/uspp.o read_file.o : ../../Modules/wavefunctions.o read_file.o : ../../Modules/xml_io_base.o read_file.o : buffers.o read_file.o : esm.o read_file.o : ldaU.o read_file.o : newd.o read_file.o : paw_init.o read_file.o : paw_onecenter.o read_file.o : pw_restart.o read_file.o : pwcom.o read_file.o : realus.o read_file.o : scf_mod.o read_file.o : symm_base.o realus.o : ../../Modules/atom.o realus.o : ../../Modules/becmod.o realus.o : ../../Modules/cell_base.o realus.o : ../../Modules/constants.o realus.o : ../../Modules/control_flags.o realus.o : ../../Modules/fft_base.o realus.o : ../../Modules/fft_interfaces.o realus.o : ../../Modules/fft_types.o realus.o : ../../Modules/funct.o realus.o : ../../Modules/io_global.o realus.o : ../../Modules/ions_base.o realus.o : ../../Modules/kind.o realus.o : ../../Modules/mp.o realus.o : ../../Modules/mp_bands.o realus.o : ../../Modules/mp_pools.o realus.o : ../../Modules/noncol.o realus.o : ../../Modules/recvec.o realus.o : ../../Modules/splinelib.o realus.o : ../../Modules/uspp.o realus.o : ../../Modules/wavefunctions.o realus.o : pwcom.o realus.o : scf_mod.o regterg.o : ../../Modules/descriptors.o regterg.o : ../../Modules/io_global.o regterg.o : ../../Modules/kind.o regterg.o : ../../Modules/mp.o regterg.o : ../../Modules/mp_bands.o regterg.o : ../../Modules/mp_diag.o regterg.o : ../../Modules/ptoolkit.o remove_atomic_rho.o : ../../Modules/fft_base.o remove_atomic_rho.o : ../../Modules/io_files.o remove_atomic_rho.o : ../../Modules/io_global.o remove_atomic_rho.o : ../../Modules/kind.o remove_atomic_rho.o : io_rho_xml.o remove_atomic_rho.o : pwcom.o remove_atomic_rho.o : scf_mod.o report_mag.o : ../../Modules/constants.o report_mag.o : ../../Modules/io_global.o report_mag.o : ../../Modules/ions_base.o report_mag.o : ../../Modules/kind.o report_mag.o : ../../Modules/noncol.o report_mag.o : pwcom.o report_mag.o : scf_mod.o restart_in_electrons.o : ../../Modules/io_files.o restart_in_electrons.o : ../../Modules/io_global.o restart_in_electrons.o : ../../Modules/kind.o restart_in_electrons.o : pwcom.o rho2zeta.o : ../../Modules/constants.o rho2zeta.o : ../../Modules/io_global.o rho2zeta.o : ../../Modules/kind.o rotate_wfc.o : ../../Modules/control_flags.o rotate_wfc.o : ../../Modules/kind.o rotate_wfc_gamma.o : ../../Modules/control_flags.o rotate_wfc_gamma.o : ../../Modules/descriptors.o rotate_wfc_gamma.o : ../../Modules/kind.o rotate_wfc_gamma.o : ../../Modules/mp.o rotate_wfc_gamma.o : ../../Modules/mp_bands.o rotate_wfc_gamma.o : ../../Modules/mp_diag.o rotate_wfc_gamma.o : ../../Modules/ptoolkit.o rotate_wfc_k.o : ../../Modules/descriptors.o rotate_wfc_k.o : ../../Modules/kind.o rotate_wfc_k.o : ../../Modules/mp.o rotate_wfc_k.o : ../../Modules/mp_bands.o rotate_wfc_k.o : ../../Modules/mp_diag.o rotate_wfc_k.o : ../../Modules/ptoolkit.o run_pwscf.o : ../../Modules/cell_base.o run_pwscf.o : ../../Modules/check_stop.o run_pwscf.o : ../../Modules/control_flags.o run_pwscf.o : ../../Modules/io_global.o run_pwscf.o : ../../Modules/mp_images.o run_pwscf.o : ../../Modules/parameters.o run_pwscf.o : ../../Modules/qmmm.o run_pwscf.o : pwcom.o ruotaijk.o : ../../Modules/kind.o s_1psi.o : ../../Modules/becmod.o s_1psi.o : ../../Modules/control_flags.o s_1psi.o : ../../Modules/kind.o s_1psi.o : ../../Modules/noncol.o s_1psi.o : ../../Modules/uspp.o s_1psi.o : pwcom.o s_1psi.o : realus.o s_psi.o : ../../Modules/becmod.o s_psi.o : ../../Modules/control_flags.o s_psi.o : ../../Modules/ions_base.o s_psi.o : ../../Modules/kind.o s_psi.o : ../../Modules/mp.o s_psi.o : ../../Modules/noncol.o s_psi.o : ../../Modules/uspp.o s_psi.o : pwcom.o s_psi.o : realus.o save_in_cbands.o : ../../Modules/io_files.o save_in_cbands.o : ../../Modules/io_global.o save_in_cbands.o : ../../Modules/kind.o save_in_cbands.o : pwcom.o save_in_electrons.o : ../../Modules/io_files.o save_in_electrons.o : ../../Modules/kind.o save_in_electrons.o : pwcom.o scale_h.o : ../../Modules/cell_base.o scale_h.o : ../../Modules/control_flags.o scale_h.o : ../../Modules/funct.o scale_h.o : ../../Modules/input_parameters.o scale_h.o : ../../Modules/io_global.o scale_h.o : ../../Modules/kind.o scale_h.o : ../../Modules/mp.o scale_h.o : ../../Modules/mp_bands.o scale_h.o : ../../Modules/recvec.o scale_h.o : exx.o scale_h.o : pwcom.o scale_h.o : start_k.o scf_mod.o : ../../Modules/cell_base.o scf_mod.o : ../../Modules/constants.o scf_mod.o : ../../Modules/control_flags.o scf_mod.o : ../../Modules/fft_base.o scf_mod.o : ../../Modules/fft_interfaces.o scf_mod.o : ../../Modules/funct.o scf_mod.o : ../../Modules/ions_base.o scf_mod.o : ../../Modules/kind.o scf_mod.o : ../../Modules/mp.o scf_mod.o : ../../Modules/mp_bands.o scf_mod.o : ../../Modules/paw_variables.o scf_mod.o : ../../Modules/recvec.o scf_mod.o : ../../Modules/uspp.o scf_mod.o : ../../Modules/wavefunctions.o scf_mod.o : buffers.o scf_mod.o : ldaU.o scf_mod.o : paw_onecenter.o scf_mod.o : pwcom.o set_kplusq.o : ../../Modules/kind.o set_kup_and_kdw.o : ../../Modules/kind.o set_rhoc.o : ../../Modules/atom.o set_rhoc.o : ../../Modules/cell_base.o set_rhoc.o : ../../Modules/control_flags.o set_rhoc.o : ../../Modules/fft_base.o set_rhoc.o : ../../Modules/fft_interfaces.o set_rhoc.o : ../../Modules/io_global.o set_rhoc.o : ../../Modules/ions_base.o set_rhoc.o : ../../Modules/kind.o set_rhoc.o : ../../Modules/mp.o set_rhoc.o : ../../Modules/mp_bands.o set_rhoc.o : ../../Modules/recvec.o set_rhoc.o : ../../Modules/uspp.o set_rhoc.o : pwcom.o set_rhoc.o : scf_mod.o set_vrs.o : ../../Modules/fft_base.o set_vrs.o : ../../Modules/funct.o set_vrs.o : ../../Modules/kind.o setlocal.o : ../../Modules/cell_base.o setlocal.o : ../../Modules/constants.o setlocal.o : ../../Modules/control_flags.o setlocal.o : ../../Modules/fft_base.o setlocal.o : ../../Modules/fft_interfaces.o setlocal.o : ../../Modules/ions_base.o setlocal.o : ../../Modules/kind.o setlocal.o : ../../Modules/mp.o setlocal.o : ../../Modules/mp_bands.o setlocal.o : ../../Modules/qmmm.o setlocal.o : ../../Modules/recvec.o setlocal.o : esm.o setlocal.o : martyna_tuckerman.o setlocal.o : pwcom.o setlocal.o : scf_mod.o setqf.o : ../../Modules/kind.o setup.o : ../../Modules/cell_base.o setup.o : ../../Modules/constants.o setup.o : ../../Modules/control_flags.o setup.o : ../../Modules/electrons_base.o setup.o : ../../Modules/fft_base.o setup.o : ../../Modules/funct.o setup.o : ../../Modules/griddim.o setup.o : ../../Modules/io_files.o setup.o : ../../Modules/io_global.o setup.o : ../../Modules/ions_base.o setup.o : ../../Modules/kind.o setup.o : ../../Modules/mp_diag.o setup.o : ../../Modules/mp_pools.o setup.o : ../../Modules/noncol.o setup.o : ../../Modules/parameters.o setup.o : ../../Modules/paw_variables.o setup.o : ../../Modules/recvec.o setup.o : ../../Modules/uspp.o setup.o : atomic_wfc_mod.o setup.o : bp_mod.o setup.o : exx.o setup.o : ldaU.o setup.o : pw_restart.o setup.o : pwcom.o setup.o : start_k.o setup.o : symm_base.o sph_ind.o : ../../Modules/kind.o spinor.o : ../../Modules/kind.o start_k.o : ../../Modules/cell_base.o start_k.o : ../../Modules/kind.o stop_run.o : ../../Modules/environment.o stop_run.o : ../../Modules/io_files.o stop_run.o : ../../Modules/io_global.o stop_run.o : ../../Modules/mp_global.o stres_cc.o : ../../Modules/atom.o stres_cc.o : ../../Modules/cell_base.o stres_cc.o : ../../Modules/control_flags.o stres_cc.o : ../../Modules/fft_base.o stres_cc.o : ../../Modules/fft_interfaces.o stres_cc.o : ../../Modules/ions_base.o stres_cc.o : ../../Modules/kind.o stres_cc.o : ../../Modules/mp.o stres_cc.o : ../../Modules/mp_bands.o stres_cc.o : ../../Modules/recvec.o stres_cc.o : ../../Modules/uspp.o stres_cc.o : ../../Modules/wavefunctions.o stres_cc.o : pwcom.o stres_cc.o : scf_mod.o stres_ewa.o : ../../Modules/constants.o stres_ewa.o : ../../Modules/kind.o stres_ewa.o : ../../Modules/mp.o stres_ewa.o : ../../Modules/mp_bands.o stres_gradcorr.o : ../../Modules/funct.o stres_gradcorr.o : ../../Modules/kind.o stres_gradcorr.o : ../../Modules/mp.o stres_gradcorr.o : ../../Modules/mp_bands.o stres_gradcorr.o : ../../Modules/noncol.o stres_har.o : ../../Modules/cell_base.o stres_har.o : ../../Modules/constants.o stres_har.o : ../../Modules/control_flags.o stres_har.o : ../../Modules/fft_base.o stres_har.o : ../../Modules/fft_interfaces.o stres_har.o : ../../Modules/kind.o stres_har.o : ../../Modules/mp.o stres_har.o : ../../Modules/mp_bands.o stres_har.o : ../../Modules/recvec.o stres_har.o : ../../Modules/wavefunctions.o stres_har.o : pwcom.o stres_har.o : scf_mod.o stres_hub.o : ../../Modules/becmod.o stres_hub.o : ../../Modules/cell_base.o stres_hub.o : ../../Modules/control_flags.o stres_hub.o : ../../Modules/io_files.o stres_hub.o : ../../Modules/io_global.o stres_hub.o : ../../Modules/ions_base.o stres_hub.o : ../../Modules/kind.o stres_hub.o : ../../Modules/mp.o stres_hub.o : ../../Modules/mp_bands.o stres_hub.o : ../../Modules/mp_pools.o stres_hub.o : ../../Modules/recvec.o stres_hub.o : ../../Modules/uspp.o stres_hub.o : ../../Modules/wavefunctions.o stres_hub.o : atomic_wfc_mod.o stres_hub.o : buffers.o stres_hub.o : ldaU.o stres_hub.o : pwcom.o stres_hub.o : scf_mod.o stres_hub.o : symme.o stres_knl.o : ../../Modules/cell_base.o stres_knl.o : ../../Modules/constants.o stres_knl.o : ../../Modules/control_flags.o stres_knl.o : ../../Modules/io_files.o stres_knl.o : ../../Modules/kind.o stres_knl.o : ../../Modules/mp.o stres_knl.o : ../../Modules/mp_bands.o stres_knl.o : ../../Modules/mp_pools.o stres_knl.o : ../../Modules/noncol.o stres_knl.o : ../../Modules/recvec.o stres_knl.o : ../../Modules/wavefunctions.o stres_knl.o : buffers.o stres_knl.o : pwcom.o stres_knl.o : symme.o stres_loc.o : ../../Modules/atom.o stres_loc.o : ../../Modules/cell_base.o stres_loc.o : ../../Modules/control_flags.o stres_loc.o : ../../Modules/fft_base.o stres_loc.o : ../../Modules/fft_interfaces.o stres_loc.o : ../../Modules/ions_base.o stres_loc.o : ../../Modules/kind.o stres_loc.o : ../../Modules/mp.o stres_loc.o : ../../Modules/mp_bands.o stres_loc.o : ../../Modules/noncol.o stres_loc.o : ../../Modules/recvec.o stres_loc.o : ../../Modules/uspp.o stres_loc.o : ../../Modules/wavefunctions.o stres_loc.o : pwcom.o stres_loc.o : scf_mod.o stres_nonloc_dft.o : ../../Modules/fft_base.o stres_nonloc_dft.o : ../../Modules/funct.o stres_nonloc_dft.o : ../../Modules/kind.o stres_nonloc_dft.o : ../../Modules/mp.o stres_nonloc_dft.o : ../../Modules/xc_rVV10.o stres_nonloc_dft.o : ../../Modules/xc_vdW_DF.o stres_us.o : ../../Modules/becmod.o stres_us.o : ../../Modules/constants.o stres_us.o : ../../Modules/control_flags.o stres_us.o : ../../Modules/ions_base.o stres_us.o : ../../Modules/kind.o stres_us.o : ../../Modules/mp.o stres_us.o : ../../Modules/mp_bands.o stres_us.o : ../../Modules/mp_pools.o stres_us.o : ../../Modules/noncol.o stres_us.o : ../../Modules/uspp.o stres_us.o : ../../Modules/wavefunctions.o stres_us.o : pwcom.o stress.o : ../../Modules/cell_base.o stress.o : ../../Modules/constants.o stress.o : ../../Modules/control_flags.o stress.o : ../../Modules/fft_base.o stress.o : ../../Modules/funct.o stress.o : ../../Modules/io_global.o stress.o : ../../Modules/ions_base.o stress.o : ../../Modules/kind.o stress.o : ../../Modules/mm_dispersion.o stress.o : ../../Modules/noncol.o stress.o : ../../Modules/recvec.o stress.o : ../../Modules/uspp.o stress.o : bp_mod.o stress.o : exx.o stress.o : ldaU.o stress.o : pwcom.o stress.o : scf_mod.o stress.o : symme.o stress.o : xdm_dispersion.o struct_fact.o : ../../Modules/constants.o struct_fact.o : ../../Modules/kind.o sum_band.o : ../../Modules/becmod.o sum_band.o : ../../Modules/cell_base.o sum_band.o : ../../Modules/control_flags.o sum_band.o : ../../Modules/fft_base.o sum_band.o : ../../Modules/fft_interfaces.o sum_band.o : ../../Modules/funct.o sum_band.o : ../../Modules/io_files.o sum_band.o : ../../Modules/ions_base.o sum_band.o : ../../Modules/kind.o sum_band.o : ../../Modules/mp.o sum_band.o : ../../Modules/mp_bands.o sum_band.o : ../../Modules/mp_pools.o sum_band.o : ../../Modules/noncol.o sum_band.o : ../../Modules/paw_variables.o sum_band.o : ../../Modules/recvec.o sum_band.o : ../../Modules/uspp.o sum_band.o : ../../Modules/wavefunctions.o sum_band.o : buffers.o sum_band.o : ldaU.o sum_band.o : paw_symmetry.o sum_band.o : pwcom.o sum_band.o : realus.o sum_band.o : scf_mod.o sum_band.o : symme.o sumkg.o : ../../Modules/kind.o sumkg.o : ../../Modules/mp.o sumkg.o : ../../Modules/mp_pools.o sumkt.o : ../../Modules/kind.o summary.o : ../../Modules/atom.o summary.o : ../../Modules/cell_base.o summary.o : ../../Modules/constants.o summary.o : ../../Modules/control_flags.o summary.o : ../../Modules/fft_base.o summary.o : ../../Modules/funct.o summary.o : ../../Modules/io_files.o summary.o : ../../Modules/io_global.o summary.o : ../../Modules/ions_base.o summary.o : ../../Modules/kernel_table.o summary.o : ../../Modules/kind.o summary.o : ../../Modules/mp.o summary.o : ../../Modules/mp_bands.o summary.o : ../../Modules/noncol.o summary.o : ../../Modules/recvec.o summary.o : ../../Modules/run_info.o summary.o : ../../Modules/uspp.o summary.o : bp_mod.o summary.o : esm.o summary.o : ldaU.o summary.o : martyna_tuckerman.o summary.o : pwcom.o summary.o : realus.o summary.o : symm_base.o symm_base.o : ../../Modules/cell_base.o symm_base.o : ../../Modules/io_global.o symm_base.o : ../../Modules/kind.o symme.o : ../../Modules/cell_base.o symme.o : ../../Modules/constants.o symme.o : ../../Modules/kind.o symme.o : ../../Modules/mp_bands.o symme.o : ../../Modules/parallel_include.o symme.o : ../../Modules/recvec.o symme.o : symm_base.o symmetrize_at.o : ../../Modules/io_global.o symmetrize_at.o : ../../Modules/kind.o symmetrize_at.o : pwcom.o tabd.o : ../../Modules/kind.o transform_becsum_nc.o : ../../Modules/ions_base.o transform_becsum_nc.o : ../../Modules/kind.o transform_becsum_nc.o : ../../Modules/noncol.o transform_becsum_nc.o : ../../Modules/uspp.o transform_becsum_nc.o : pwcom.o transform_becsum_so.o : ../../Modules/ions_base.o transform_becsum_so.o : ../../Modules/kind.o transform_becsum_so.o : ../../Modules/noncol.o transform_becsum_so.o : ../../Modules/uspp.o transform_becsum_so.o : pwcom.o transform_qq_so.o : ../../Modules/ions_base.o transform_qq_so.o : ../../Modules/kind.o transform_qq_so.o : ../../Modules/uspp.o transform_qq_so.o : pwcom.o trnvecc.o : ../../Modules/kind.o tweights.o : ../../Modules/kind.o update_pot.o : ../../Modules/becmod.o update_pot.o : ../../Modules/cell_base.o update_pot.o : ../../Modules/constants.o update_pot.o : ../../Modules/control_flags.o update_pot.o : ../../Modules/fft_base.o update_pot.o : ../../Modules/fft_interfaces.o update_pot.o : ../../Modules/funct.o update_pot.o : ../../Modules/io_files.o update_pot.o : ../../Modules/io_global.o update_pot.o : ../../Modules/ions_base.o update_pot.o : ../../Modules/kind.o update_pot.o : ../../Modules/mp.o update_pot.o : ../../Modules/mp_images.o update_pot.o : ../../Modules/noncol.o update_pot.o : ../../Modules/paw_variables.o update_pot.o : ../../Modules/recvec.o update_pot.o : ../../Modules/uspp.o update_pot.o : ../../Modules/wavefunctions.o update_pot.o : buffers.o update_pot.o : io_rho_xml.o update_pot.o : ldaU.o update_pot.o : paw_onecenter.o update_pot.o : pwcom.o update_pot.o : scf_mod.o us_exx.o : ../../Modules/becmod.o us_exx.o : ../../Modules/cell_base.o us_exx.o : ../../Modules/constants.o us_exx.o : ../../Modules/control_flags.o us_exx.o : ../../Modules/fft_base.o us_exx.o : ../../Modules/ions_base.o us_exx.o : ../../Modules/kind.o us_exx.o : ../../Modules/mp.o us_exx.o : ../../Modules/noncol.o us_exx.o : ../../Modules/recvec.o us_exx.o : ../../Modules/uspp.o us_exx.o : pwcom.o us_exx.o : realus.o usnldiag.o : ../../Modules/ions_base.o usnldiag.o : ../../Modules/kind.o usnldiag.o : ../../Modules/noncol.o usnldiag.o : ../../Modules/uspp.o usnldiag.o : pwcom.o v_of_rho.o : ../../Modules/cell_base.o v_of_rho.o : ../../Modules/constants.o v_of_rho.o : ../../Modules/control_flags.o v_of_rho.o : ../../Modules/fft_base.o v_of_rho.o : ../../Modules/fft_interfaces.o v_of_rho.o : ../../Modules/funct.o v_of_rho.o : ../../Modules/io_global.o v_of_rho.o : ../../Modules/ions_base.o v_of_rho.o : ../../Modules/kind.o v_of_rho.o : ../../Modules/mp.o v_of_rho.o : ../../Modules/mp_bands.o v_of_rho.o : ../../Modules/noncol.o v_of_rho.o : ../../Modules/recvec.o v_of_rho.o : ../../Modules/tsvdw.o v_of_rho.o : esm.o v_of_rho.o : ldaU.o v_of_rho.o : martyna_tuckerman.o v_of_rho.o : pwcom.o v_of_rho.o : scf_mod.o vcsmd.o : ../../Modules/cell_base.o vcsmd.o : ../../Modules/constants.o vcsmd.o : ../../Modules/constraints_module.o vcsmd.o : ../../Modules/control_flags.o vcsmd.o : ../../Modules/io_files.o vcsmd.o : ../../Modules/io_global.o vcsmd.o : ../../Modules/ions_base.o vcsmd.o : ../../Modules/kind.o vcsmd.o : ../../Modules/parameters.o vcsmd.o : dynamics_module.o vcsmd.o : pwcom.o vcsubs.o : ../../Modules/constants.o vcsubs.o : ../../Modules/io_global.o vcsubs.o : ../../Modules/kind.o vhpsi.o : ../../Modules/becmod.o vhpsi.o : ../../Modules/control_flags.o vhpsi.o : ../../Modules/ions_base.o vhpsi.o : ../../Modules/kind.o vhpsi.o : ../../Modules/mp.o vhpsi.o : ../../Modules/mp_bands.o vhpsi.o : ../../Modules/noncol.o vhpsi.o : ldaU.o vhpsi.o : pwcom.o vhpsi.o : scf_mod.o vloc_of_g.o : ../../Modules/constants.o vloc_of_g.o : ../../Modules/kind.o vloc_of_g.o : esm.o vloc_psi.o : ../../Modules/fft_base.o vloc_psi.o : ../../Modules/fft_interfaces.o vloc_psi.o : ../../Modules/kind.o vloc_psi.o : ../../Modules/mp_bands.o vloc_psi.o : ../../Modules/noncol.o vloc_psi.o : ../../Modules/parallel_include.o vloc_psi.o : ../../Modules/recvec.o vloc_psi.o : ../../Modules/wavefunctions.o vloc_psi.o : pwcom.o wannier_check.o : ../../Modules/control_flags.o wannier_check.o : ../../Modules/io_global.o wannier_check.o : ../../Modules/ions_base.o wannier_check.o : ../../Modules/kind.o wannier_check.o : ../../Modules/uspp.o wannier_check.o : ../../Modules/wannier_new.o wannier_check.o : atomic_wfc_mod.o wannier_check.o : pwcom.o wannier_clean.o : ../../Modules/io_files.o wannier_clean.o : ../../Modules/wannier_new.o wannier_clean.o : atomic_wfc_mod.o wannier_clean.o : buffers.o wannier_clean.o : ldaU.o wannier_clean.o : pwcom.o wannier_enrg.o : ../../Modules/io_files.o wannier_enrg.o : ../../Modules/io_global.o wannier_enrg.o : ../../Modules/kind.o wannier_enrg.o : ../../Modules/wannier_new.o wannier_enrg.o : buffers.o wannier_enrg.o : pwcom.o wannier_init.o : ../../Modules/constants.o wannier_init.o : ../../Modules/input_parameters.o wannier_init.o : ../../Modules/io_files.o wannier_init.o : ../../Modules/ions_base.o wannier_init.o : ../../Modules/noncol.o wannier_init.o : ../../Modules/wannier_new.o wannier_init.o : atomic_wfc_mod.o wannier_init.o : buffers.o wannier_init.o : pwcom.o wannier_occ.o : ../../Modules/io_files.o wannier_occ.o : ../../Modules/io_global.o wannier_occ.o : ../../Modules/kind.o wannier_occ.o : ../../Modules/wannier_new.o wannier_occ.o : buffers.o wannier_occ.o : pwcom.o wannier_proj.o : ../../Modules/constants.o wannier_proj.o : ../../Modules/control_flags.o wannier_proj.o : ../../Modules/io_files.o wannier_proj.o : ../../Modules/io_global.o wannier_proj.o : ../../Modules/ions_base.o wannier_proj.o : ../../Modules/kind.o wannier_proj.o : ../../Modules/noncol.o wannier_proj.o : ../../Modules/recvec.o wannier_proj.o : ../../Modules/uspp.o wannier_proj.o : ../../Modules/wannier_new.o wannier_proj.o : ../../Modules/wavefunctions.o wannier_proj.o : atomic_wfc_mod.o wannier_proj.o : buffers.o wannier_proj.o : pwcom.o weights.o : ../../Modules/io_global.o weights.o : ../../Modules/kind.o weights.o : ../../Modules/mp.o weights.o : ../../Modules/mp_images.o weights.o : ../../Modules/mp_pools.o weights.o : pwcom.o wfcinit.o : ../../Modules/becmod.o wfcinit.o : ../../Modules/cell_base.o wfcinit.o : ../../Modules/constants.o wfcinit.o : ../../Modules/control_flags.o wfcinit.o : ../../Modules/io_files.o wfcinit.o : ../../Modules/io_global.o wfcinit.o : ../../Modules/kind.o wfcinit.o : ../../Modules/mp_bands.o wfcinit.o : ../../Modules/noncol.o wfcinit.o : ../../Modules/random_numbers.o wfcinit.o : ../../Modules/recvec.o wfcinit.o : ../../Modules/uspp.o wfcinit.o : ../../Modules/wannier_new.o wfcinit.o : ../../Modules/wavefunctions.o wfcinit.o : atomic_wfc_mod.o wfcinit.o : bp_mod.o wfcinit.o : buffers.o wfcinit.o : ldaU.o wfcinit.o : pw_restart.o wfcinit.o : pwcom.o write_ns.o : ../../Modules/constants.o write_ns.o : ../../Modules/io_global.o write_ns.o : ../../Modules/ions_base.o write_ns.o : ../../Modules/kind.o write_ns.o : ../../Modules/noncol.o write_ns.o : ldaU.o write_ns.o : pwcom.o write_ns.o : scf_mod.o wsweight.o : ../../Modules/kind.o xdm_dispersion.o : ../../Modules/atom.o xdm_dispersion.o : ../../Modules/cell_base.o xdm_dispersion.o : ../../Modules/constants.o xdm_dispersion.o : ../../Modules/control_flags.o xdm_dispersion.o : ../../Modules/fft_base.o xdm_dispersion.o : ../../Modules/io_global.o xdm_dispersion.o : ../../Modules/ions_base.o xdm_dispersion.o : ../../Modules/kind.o xdm_dispersion.o : ../../Modules/mp.o xdm_dispersion.o : ../../Modules/mp_images.o xdm_dispersion.o : ../../Modules/mp_pools.o xdm_dispersion.o : ../../Modules/paw_variables.o xdm_dispersion.o : ../../Modules/splinelib.o xdm_dispersion.o : ../../Modules/uspp.o xdm_dispersion.o : paw_onecenter.o xdm_dispersion.o : pwcom.o xdm_dispersion.o : scf_mod.o xk_wk_collect.o : ../../Modules/io_global.o xk_wk_collect.o : ../../Modules/kind.o xk_wk_collect.o : ../../Modules/mp.o xk_wk_collect.o : ../../Modules/mp_pools.o xk_wk_collect.o : pwcom.o espresso-5.1/PW/src/rotate_wfc_gamma.f900000644000175000017500000002437412341373025016250 0ustar mbamba! ! Copyright (C) 2003-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE rotate_wfc_gamma( npwx, npw, nstart, gstart, nbnd, & psi, overlap, evc, e ) !---------------------------------------------------------------------------- ! ! ... Serial version of rotate_wfc for Gamma-only calculations ! ... This version assumes real wavefunctions (k=0) with only ! ... half plane waves stored: psi(-G)=psi*(G), except G=0 ! USE kinds, ONLY : DP USE control_flags, ONLY : gamma_only USE mp_bands, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER :: npw, npwx, nstart, nbnd, gstart, ibnd ! dimension of the matrix to be diagonalized ! leading dimension of matrix psi, as declared in the calling pgm unit ! input number of states ! output number of states ! first G with nonzero norm LOGICAL :: overlap ! if .FALSE. : S|psi> not needed COMPLEX(DP) :: psi(npwx,nstart), evc(npwx,nbnd) ! input and output eigenvectors (may overlap) REAL(DP) :: e(nbnd) ! eigenvalues ! ! ... auxiliary variables: ! COMPLEX(DP), ALLOCATABLE :: aux(:,:) REAL(DP), ALLOCATABLE :: hr(:,:), sr(:,:), vr(:,:), en(:) ! ALLOCATE( aux( npwx, nstart ) ) ALLOCATE( hr( nstart, nstart ) ) ALLOCATE( sr( nstart, nstart ) ) ALLOCATE( vr( nstart, nstart ) ) ALLOCATE( en( nstart ) ) ! ! ... Set up the Hamiltonian and Overlap matrix on the subspace : ! ! ... H_ij = S_ij = ! ! ... set Im[ psi(G=0) ] - needed for numerical stability ! IF ( gstart == 2 ) & psi(1,1:nstart) = CMPLX( DBLE( psi(1,1:nstart) ), 0.D0 ,kind=DP) ! CALL h_psi( npwx, npw, nstart, psi, aux ) ! CALL DGEMM( 'T', 'N', nstart, nstart, 2 * npw, 2.D0 , psi, 2 * npwx, aux, 2 * npwx, 0.D0, hr, nstart ) ! IF ( gstart == 2 ) & call DGER( nstart, nstart, -1.D0, psi, 2 * npwx, aux, & 2 * npwx, hr, nstart ) ! CALL mp_sum( hr , intra_bgrp_comm ) ! IF ( overlap ) THEN ! CALL s_psi( npwx, npw, nstart, psi, aux ) ! CALL DGEMM( 'T', 'N', nstart, nstart, 2 * npw, 2.D0 , psi, 2 * npwx, aux, 2 * npwx, 0.D0, sr, nstart ) ! IF ( gstart == 2 ) & CALL DGER( nstart, nstart, -1.D0, psi, 2 * npwx, & aux, 2 * npwx, sr, nstart ) ! ELSE ! CALL DGEMM( 'T', 'N', nstart, nstart, 2 * npw, 2.D0, psi, 2 * npwx, psi, 2 * npwx, 0.D0, sr, nstart ) ! IF ( gstart == 2 ) & CALL DGER( nstart, nstart, -1.D0, psi, 2 * npwx, & psi, 2 * npwx, sr, nstart ) ! END IF ! CALL mp_sum( sr , intra_bgrp_comm ) ! ! ... Diagonalize ! CALL rdiaghg( nstart, nbnd, hr, sr, nstart, en, vr ) ! e(:) = en(1:nbnd) ! ! ... update the basis set ! CALL DGEMM( 'N', 'N', 2 * npw, nbnd, nstart, 1.D0, psi, 2 * npwx, vr, nstart, 0.D0, aux, 2 * npwx ) ! evc(:,:) = aux(:,1:nbnd) ! DEALLOCATE( en ) DEALLOCATE( vr ) DEALLOCATE( sr ) DEALLOCATE( hr ) DEALLOCATE( aux ) ! RETURN ! END SUBROUTINE rotate_wfc_gamma ! ! !---------------------------------------------------------------------------- SUBROUTINE protate_wfc_gamma( npwx, npw, nstart, gstart, nbnd, psi, overlap, evc, e ) !---------------------------------------------------------------------------- ! ! ... Parallel version of rotate_wfc for Gamma-only calculations ! ... Subroutine with distributed matrices, written by Carlo Cavazzoni ! ... This version assumes real wavefunctions (k=0) with only ! ... half plane waves stored: psi(-G)=psi*(G), except G=0 ! USE kinds, ONLY : DP USE control_flags, ONLY : gamma_only USE mp_bands, ONLY : intra_bgrp_comm USE mp_diag, ONLY : ortho_comm, np_ortho, me_ortho, ortho_comm_id,& leg_ortho USE descriptors, ONLY : la_descriptor, descla_init USE parallel_toolkit, ONLY : dsqmred, dsqmdst, dsqmsym USE mp, ONLY : mp_bcast, mp_root_sum, mp_sum, mp_barrier ! IMPLICIT NONE ! ! ... I/O variables ! INTEGER :: npw, npwx, nstart, nbnd, gstart ! dimension of the matrix to be diagonalized ! leading dimension of matrix psi, as declared in the calling pgm unit ! input number of states ! output number of states ! first G with nonzero norm LOGICAL :: overlap ! if .FALSE. : S|psi> not needed COMPLEX(DP) :: psi(npwx,nstart), evc(npwx,nbnd) ! input and output eigenvectors (may overlap) REAL(DP) :: e(nbnd) ! eigenvalues ! ! ... auxiliary variables: ! COMPLEX(DP), ALLOCATABLE :: aux(:,:) REAL(DP), ALLOCATABLE :: hr(:,:), sr(:,:), vr(:,:), en(:) ! TYPE(la_descriptor) :: desc ! matrix distribution descriptors INTEGER :: nx ! maximum local block dimension LOGICAL :: la_proc ! flag to distinguish procs involved in linear algebra TYPE(la_descriptor), ALLOCATABLE :: desc_ip( :, : ) INTEGER, ALLOCATABLE :: rank_ip( :, : ) ! Integer :: ibnd ! ALLOCATE( desc_ip( np_ortho(1), np_ortho(2) ) ) ALLOCATE( rank_ip( np_ortho(1), np_ortho(2) ) ) ! CALL desc_init( nstart, desc, desc_ip ) ! ALLOCATE( aux( npwx, nstart ) ) ALLOCATE( hr( nx, nx ) ) ALLOCATE( sr( nx, nx ) ) ALLOCATE( vr( nx, nx ) ) ALLOCATE( en( nstart ) ) ! ! ... Set up the Hamiltonian and Overlap matrix on the subspace : ! ! ... H_ij = S_ij = ! ! ... set Im[ psi(G=0) ] - needed for numerical stability ! IF ( gstart == 2 ) & psi(1,1:nstart) = CMPLX( DBLE( psi(1,1:nstart) ), 0.D0 ,kind=DP) ! CALL h_psi( npwx, npw, nstart, psi, aux ) ! CALL compute_distmat( hr, psi, aux ) ! IF ( overlap ) THEN ! CALL s_psi( npwx, npw, nstart, psi, aux ) CALL compute_distmat( sr, psi, aux ) ! ELSE ! CALL compute_distmat( sr, psi, psi ) ! END IF ! ! ... Diagonalize ! CALL prdiaghg( nstart, hr, sr, nx, en, vr, desc ) ! e(:) = en(1:nbnd) ! ! ... update the basis set ! CALL refresh_evc( ) ! evc(:,:) = aux(:,1:nbnd) ! DEALLOCATE( desc_ip ) DEALLOCATE( rank_ip ) DEALLOCATE( en ) DEALLOCATE( vr ) DEALLOCATE( sr ) DEALLOCATE( hr ) DEALLOCATE( aux ) ! RETURN ! CONTAINS ! SUBROUTINE desc_init( nsiz, desc, desc_ip ) ! INTEGER, INTENT(IN) :: nsiz TYPE(la_descriptor), INTENT(OUT) :: desc TYPE(la_descriptor), INTENT(OUT) :: desc_ip(:,:) INTEGER :: i, j, rank INTEGER :: coor_ip( 2 ) ! CALL descla_init( desc, nsiz, nsiz, np_ortho, me_ortho, ortho_comm, ortho_comm_id ) ! nx = desc%nrcx ! DO j = 0, desc%npc - 1 DO i = 0, desc%npr - 1 coor_ip( 1 ) = i coor_ip( 2 ) = j CALL descla_init( desc_ip(i+1,j+1), desc%n, desc%nx, np_ortho, coor_ip, ortho_comm, 1 ) CALL GRID2D_RANK( 'R', desc%npr, desc%npc, i, j, rank ) rank_ip( i+1, j+1 ) = rank * leg_ortho END DO END DO ! la_proc = .FALSE. IF( desc%active_node > 0 ) la_proc = .TRUE. ! RETURN END SUBROUTINE desc_init ! ! SUBROUTINE compute_distmat( dm, v, w ) ! ! This subroutine compute and store the ! result in distributed matrix dm ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root REAL(DP), INTENT(OUT) :: dm( :, : ) COMPLEX(DP) :: v(:,:), w(:,:) REAL(DP), ALLOCATABLE :: work( :, : ) ! ALLOCATE( work( nx, nx ) ) ! work = 0.0d0 ! DO ipc = 1, desc%npc ! loop on column procs ! nc = desc_ip( 1, ipc )%nc ic = desc_ip( 1, ipc )%ic ! DO ipr = 1, ipc ! use symmetry for the loop on row procs ! nr = desc_ip( ipr, ipc )%nr ir = desc_ip( ipr, ipc )%ir ! ! rank of the processor for which this block (ipr,ipc) is destinated ! root = rank_ip( ipr, ipc ) ! use blas subs. on the matrix block CALL DGEMM( 'T', 'N', nr, nc, 2*npw, 2.D0 , v(1,ir), 2*npwx, w(1,ic), 2*npwx, 0.D0, work, nx ) IF ( gstart == 2 ) & CALL DGER( nr, nc, -1.D0, v(1,ir), 2*npwx, w(1,ic), 2*npwx, work, nx ) ! accumulate result on dm of root proc. CALL mp_root_sum( work, dm, root, intra_bgrp_comm ) END DO ! END DO ! CALL dsqmsym( nstart, dm, nx, desc ) ! DEALLOCATE( work ) ! RETURN END SUBROUTINE compute_distmat ! ! SUBROUTINE refresh_evc( ) ! INTEGER :: ipc, ipr INTEGER :: nr, nc, ir, ic, root REAL(DP), ALLOCATABLE :: vtmp( :, : ) REAL(DP) :: beta ALLOCATE( vtmp( nx, nx ) ) ! DO ipc = 1, desc%npc ! nc = desc_ip( 1, ipc )%nc ic = desc_ip( 1, ipc )%ic ! IF( ic <= nbnd ) THEN ! nc = min( nc, nbnd - ic + 1 ) ! beta = 0.0d0 DO ipr = 1, desc%npr ! nr = desc_ip( ipr, ipc )%nr ir = desc_ip( ipr, ipc )%ir ! root = rank_ip( ipr, ipc ) IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN ! ! this proc sends his block ! CALL mp_bcast( vr(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', 2*npw, nc, nr, 1.D0, psi(1,ir), 2*npwx, vr, nx, beta, aux(1,ic), 2*npwx ) ELSE ! ! all other procs receive ! CALL mp_bcast( vtmp(:,1:nc), root, intra_bgrp_comm ) CALL DGEMM( 'N', 'N', 2*npw, nc, nr, 1.D0, psi(1,ir), 2*npwx, vtmp, nx, beta, aux(1,ic), 2*npwx ) END IF ! beta = 1.0d0 END DO ! END IF ! END DO ! DEALLOCATE( vtmp ) RETURN END SUBROUTINE refresh_evc ! END SUBROUTINE protate_wfc_gamma espresso-5.1/PW/examples/0000755000175000017500000000000012341373041013444 5ustar mbambaespresso-5.1/PW/examples/example06/0000755000175000017500000000000012341373041015245 5ustar mbambaespresso-5.1/PW/examples/example06/run_xml_example0000755000175000017500000010727412341373025020407 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy and" $ECHO "the band structure of four simple systems in the non-collinear case:" $ECHO "Fe, Cu, Ni, O." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Cu.pz-d-rrkjus.UPF Ni.pbe-nd-rrkjus.UPF Fe.pz-nd-rrkjus.UPF \ O.pbe-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > fe.scf.xml << EOF 0.0 0.0 0.0 0.0 0.0 55.847 Fe.pz-nd-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 1 25.0 200.0 0.2 1.0e-8 smearing marzari-vanderbilt 0.05 true 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 EOF $ECHO " running the scf calculation for Fe...\c" $PW_COMMAND < fe.scf.xml > fe.scf.out check_failure $? $ECHO " done" # band structure calculation cat > fe.band.xml << EOF 0.0 0.0 0.0 0.0 0.0 55.847 Fe.pz-nd-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 1 25.0 200.0 0.2 1.0e-8 16 true 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running band structure calculation for Fe...\c" $PW_COMMAND < fe.band.xml > fe.band.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with penalty functional cat > fe.pen.xml << EOF 0.0 0.0 0.0 0.0 0.0 55.847 Fe.pz-nd-rrkjus.UPF 0.5 85.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 1 25.0 200.0 0.2 1.0e-8 smearing marzari-vanderbilt 0.05 true 1.0 atomic 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 EOF $ECHO " running scf calculation for Fe with penalty functional...\c" $PW_COMMAND < fe.pen.xml > fe.pen.out check_failure $? $ECHO " done" # scf calculation with penalty functional (angle with z-axis constrained) cat > fe.angl.xml << EOF 0.0 0.0 0.0 0.0 0.0 55.847 Fe.pz-nd-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 1 25.0 200.0 0.2 1.0e-8 smearing marzari-vanderbilt 0.05 true 1.0 atomic direction 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 EOF $ECHO " running the scf calculation for Fe with constrained angle...\c" $PW_COMMAND < fe.angl.xml > fe.angl.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # scf calculation with penalty functional (total magnetization constrained) cat > fe.total.xml << EOF 0.0 0.0 0.0 0.0 0.0 55.847 Fe.pz-nd-rrkjus.UPF 0.5 45.0 53.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 1 25.0 200.0 0.3 1.0e-9 smearing marzari-vanderbilt 0.05 true 0.3 0.4 0.5 0.5 total 4 4 4 1 1 1 EOF $ECHO " running the scf calculation for Fe with constrained magnetization...\c" $PW_COMMAND < fe.total.xml > fe.total.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > cu.scf.xml << EOF 0.0 0.0 0.0 0.0 0.0 63.55 Cu.pz-d-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 25.0 300.0 0.7 1.0e-8 smearing methfessel-paxton 0.02 true 8 8 8 0 0 0 EOF $ECHO " running the scf calculation for Cu...\c" $PW_COMMAND < cu.scf.xml > cu.scf.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > cu.band.xml << EOF 0.0 0.0 0.0 0.0 0.0 63.55 Cu.pz-d-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 25.0 300.0 8 true 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Cu...\c" $PW_COMMAND < cu.band.xml > cu.band.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with cg diagonalization cat > cu.cg.xml << EOF 0.0 0.0 0.0 0.0 0.0 63.55 Cu.pz-d-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 25.0 300.0 0.7 1.0e-8 cg smearing methfessel-paxton 0.02 true 8 8 8 0 0 0 EOF $ECHO " running the scf calculation for Cu with cg diagonalization...\c" $PW_COMMAND < cu.cg.xml > cu.cg.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with diis diagonalization cat > cu.diis.xml << EOF 0.0 0.0 0.0 0.0 0.0 63.55 Cu.pz-d-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 25.0 300.0 0.7 1.0e-8 diis smearing methfessel-paxton 0.02 true 8 8 8 0 0 0 EOF #$ECHO " running the scf calculation for Cu with diis diagonalization...\c" #$PW_COMMAND < cu.diis.xml > cu.diis.out #check_failure $? #$ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > ni.scf.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pbe-nd-rrkjus.UPF 0.1 90.0 0.0 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 24.0 288.0 0.7 1.0e-8 smearing methfessel-paxton 0.02 true 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Ni...\c" $PW_COMMAND < ni.scf.xml > ni.scf.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > ni.band.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pbe-nd-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 24.0 288.0 8 true 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Ni...\c" $PW_COMMAND < ni.band.xml > ni.band.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation + relaxation of atoms cat > o2.relax.xml << EOF 0.0 0.0 0.0 0.0 0.0 16.0 O.pbe-rrkjus.UPF 0.5 90.0 0.0 16.0 O.pbe-rrkjus.UPF 0.5 90.0 0.0 0.0 0.0 0.0 0.20 0.20 0.20 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 1 25.0 200.0 0.2 smearing gaussian 0.05 true 0.0 0.0 0.0 1.00 EOF $ECHO " running scf calculation with relax for oxygen molecule...\c" $PW_COMMAND < o2.relax.xml > o2.relax.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example06/README0000644000175000017500000000550112341373025016130 0ustar mbamba This example shows how to use pw.x to calculate the total energy and the band structure of four simple systems (Fe, Al, Cu, Ni, Fe) in the non collinear case. The calculation proceeds as follows (for the meaning of the cited input variables see the appropriate INPUT_* file) 1) make a self-consistent calculation for Fe (input=fe.scf.in, output=fe.scf.out). The number of computed bands is internally computed as equal to the number of electrons in the unit cell (16 in this case). 2) make a band structure calculation for Fe (input=fe.band.in, output=fe.band.out). The variable nbnd is explicitly set = 16. The list of k points given in input is the list of point where the bands are computed, the k-point weight is arbitrary and is not used. 3) make a self-consistent calculation for Fe with penalty functional where each component of the magnetization of the two atoms is constrained (input=fe.pen.in, output=fe.pen.out). Iron is a metal : the smearing technique is used for the calculation of the Fermi energy (a value for the broadening degauss is provided). 4) make a self-consistent calculation for Fe with penalty functional where the angle between the direction of the magnetization of each atom and the z axis is constrained; mcons(1) = cosine of this angle. (input=fe.angl.in, output=fe.angl.out). 5) make a self-consistent calculation for Fe with penalty functional where each component of the total magnetization is constrained; fixed_magnetization(ipol) = value of the magnetization. (input=fe.total.in, output=fe.total.out). 6) make a self-consistent calculation for Cu (input=cu.scf.in, output=cu.scf.out). Copper is also a metal. In this case the tetrahedron method is used for the calculation of the Fermi energy. K-points are automatically generated. 7) make a band structure calculation for Cu (input=cu.band.in, output=cu.band.out). The variable nbnd is explicitly set = 8. The list of k points given in input is the list of point where the bands are computed, the k-point weight is arbitrary and is not used. 8) make a self-consistent calculation for Cu (input=cu.cg.in, output=cu.cg.out) with cg diagonalization. 9) make a self-consistent calculation for Cu (input=cu.diis.in, output=cu.diis.out) with diis diagonalization. 10) make a self-consistent calculation for Ni (input=ni.scf.in, output=ni.scf.out). Nickel is a magnetic metal. A local-spin-density calculation is performed by specifying nspin=2 and an initial guess for the magnetization of each atomic species. This initial guess is used to build spin-up and spin-down starting charges from superposition of atomic charges. 11) make a band structure calculation for Ni (input=ni.band.in, output=ni.band.out). 12) make a scf calculation of molecular oxygen relaxing the atoms. espresso-5.1/PW/examples/example06/run_example0000755000175000017500000004265112341373025017524 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy and" $ECHO "the band structure of four simple systems in the non-collinear case:" $ECHO "Fe, Cu, Ni, O." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Cu.pz-d-rrkjus.UPF Ni.pbe-nd-rrkjus.UPF Fe.pz-nd-rrkjus.UPF \ O.pbe-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # self-consistent calculation cat > fe.scf.in << EOF Fe Iron &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='fe' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, report=1, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 EOF $ECHO " running the scf calculation for Fe...\c" $PW_COMMAND < fe.scf.in > fe.scf.out check_failure $? $ECHO " done" # band structure calculation cat > fe.band.in << EOF Fe Iron &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='fe' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, report=1, nbnd = 16 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running band structure calculation for Fe...\c" $PW_COMMAND < fe.band.in > fe.band.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/fe* $ECHO " done" # self-consistent calculation with penalty functional cat > fe.pen.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='fe' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, report=1, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 85.0 angle2(1) = 0.0 constrained_magnetization='atomic' lambda = 1 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 EOF $ECHO " running scf calculation for Fe with penalty functional...\c" $PW_COMMAND < fe.pen.in > fe.pen.out check_failure $? $ECHO " done" # scf calculation with penalty functional (angle with z-axis constrained) cat > fe.angl.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='fe' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, report=1, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 constrained_magnetization='atomic direction' lambda = 1 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.2 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS 11 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 EOF $ECHO " running the scf calculation for Fe with constrained angle...\c" $PW_COMMAND < fe.angl.in > fe.angl.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/fe* $ECHO " done" # scf calculation with penalty functional (total magnetization constrained) cat > fe.total.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='fe' / &system ibrav = 3, celldm(1) =5.217, nat= 1, ntyp= 1, ecutwfc = 25.0,ecutrho = 200.0, report=1, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 45.0 angle2(1) = 53.0 constrained_magnetization='total' fixed_magnetization(1)=0.3, fixed_magnetization(2)=0.4, fixed_magnetization(3)=0.5, lambda = 0.5 / &electrons conv_thr = 1.0e-9 mixing_beta = 0.3 / ATOMIC_SPECIES Fe 55.847 Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Fe 0.0 0.0 0.0 K_POINTS AUTOMATIC 4 4 4 1 1 1 EOF $ECHO " running the scf calculation for Fe with constrained magnetization...\c" $PW_COMMAND < fe.total.in > fe.total.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/fe* $ECHO " done" # self-consistent calculation cat > cu.scf.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='cu' / &system ibrav = 2, celldm(1) =6.73, nat= 1, ntyp= 1, ecutwfc = 25.0, ecutrho = 300.0 occupations='smearing', smearing='methfessel-paxton', degauss=0.02 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS (automatic) 8 8 8 0 0 0 EOF $ECHO " running the scf calculation for Cu...\c" $PW_COMMAND < cu.scf.in > cu.scf.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > cu.band.in << EOF &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='cu' / &system ibrav = 2, celldm(1) =6.73, nat= 1, ntyp= 1, ecutwfc = 25.0, ecutrho = 300.0, nbnd = 8 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Cu...\c" $PW_COMMAND < cu.band.in > cu.band.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cu* $ECHO " done" # self-consistent calculation with cg diagonalization cat > cu.cg.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='cu' / &system ibrav = 2, celldm(1) =6.73, nat= 1, ntyp= 1, ecutwfc = 25.0, ecutrho = 300.0 occupations='smearing', smearing='methfessel-paxton', degauss=0.02 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 diagonalization = 'cg' / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS (automatic) 8 8 8 0 0 0 EOF $ECHO " running the scf calculation for Cu with cg diagonalization...\c" $PW_COMMAND < cu.cg.in > cu.cg.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cu* $ECHO " done" # self-consistent calculation with diis diagonalization cat > cu.diis.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='cu' / &system ibrav = 2, celldm(1) =6.73, nat= 1, ntyp= 1, ecutwfc = 25.0, ecutrho = 300.0 occupations='smearing', smearing='methfessel-paxton', degauss=0.02 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 diagonalization = 'diis' / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS (automatic) 8 8 8 0 0 0 EOF # $ECHO " running the scf calculation for Cu with diis diagonalization...\c" # $PW_COMMAND < cu.diis.in > cu.diis.out # check_failure $? # $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cu* $ECHO " done" # self-consistent calculation cat > ni.scf.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='ni' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='methfessel-paxton', degauss=0.02 noncolin = .true. starting_magnetization(1) = 0.1 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons conv_thr = 1.0e-8 mixing_beta = 0.7 / ATOMIC_SPECIES Ni 58.69 Ni.pbe-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS 60 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Ni...\c" $PW_COMMAND < ni.scf.in > ni.scf.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > ni.band.in << EOF &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='ni' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, nbnd = 8 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 / &electrons / ATOMIC_SPECIES Ni 58.69 Ni.pbe-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Ni...\c" $PW_COMMAND < ni.band.in > ni.band.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/ni* $ECHO " done" # self-consistent calculation + relaxation of atoms cat > o2.relax.in << EOF &control calculation='relax' restart_mode='from_scratch',!'restart', ! pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='o2' / &system ibrav = 1, celldm(1) =7.50, nat= 2, ntyp= 2, ecutwfc = 25.0,ecutrho = 200.0, report=1, occupations='smearing', smearing='gaussian', degauss=0.05 noncolin = .true. starting_magnetization(1) = 0.5 angle1(1) = 90.0 angle2(1) = 0.0 starting_magnetization(2) = 0.5 angle1(2) = 90.0 angle2(2) = 0.0 / &electrons mixing_beta = 0.2 / &ions / ATOMIC_SPECIES O1 16.0 O.pbe-rrkjus.UPF O2 16.0 O.pbe-rrkjus.UPF ATOMIC_POSITIONS O1 0.0 0.0 0.0 O2 0.20 0.20 0.20 K_POINTS 1 0.0 0.0 0.0 1.00 EOF $ECHO " running scf calculation with relax for oxygen molecule...\c" $PW_COMMAND < o2.relax.in > o2.relax.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/o.* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example06/reference/0000755000175000017500000000000012341373041017203 5ustar mbambaespresso-5.1/PW/examples/example06/reference/o2.relax.out0000644000175000017500000021677712341373025021414 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:11:57 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized Fixed quantization axis for GGA: 1.000000 0.000000 0.000000 Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 36 npp = 36 ncplane = 1296 Planes per process (smooth): nr3s= 24 npps= 24 ncplanes= 576 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 36 885 20005 24 437 7123 109 895 Generating pointlists ... new r_m : 0.1429 bravais-lattice index = 1 lattice parameter (a_0) = 7.5000 a.u. unit-cell volume = 421.8750 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 12.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) nstep = 50 Noncollinear calculation without spin-orbit celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for O read from file O.pbe-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 55.84700 O ( 1.00) O2 6.00 55.84700 O ( 1.00) 2 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 O1 tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 O2 tau( 2) = ( 0.2000000 0.2000000 0.2000000 ) number of k points= 1 gaussian broad. (Ry)= 0.0500 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 284.9658 ( 20005 G-vectors) FFT grid: ( 36, 36, 36) G cutoff = 142.4829 ( 7123 G-vectors) smooth grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.55 Mb ( 1790, 20) NL pseudopotentials 0.22 Mb ( 895, 16) Each V/rho on FFT grid 0.71 Mb ( 46656) Each G-vector array 0.15 Mb ( 20005) G-vector shells 0.00 Mb ( 239) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.19 Mb ( 1790, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.01 Mb ( 16, 2, 20) Arrays for rho mixing 5.70 Mb ( 46656, 8) Initial potential from superposition of free atoms starting charge 12.00000, renormalised to 12.00000 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.441447 magnetization : 1.720724 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 1.720724 90.000000 0.000000 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.435534 magnetization : 1.717767 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 1.717767 90.000000 0.000000 ============================================================================== Starting wfc are 16 atomic + 4 random wfc total cpu time spent up to now is 1.65 secs per-process dynamical memory: 33.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.446256 magnetization : 1.518266 0.000009 0.000009 magnetization/charge: 0.440555 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 1.518266 89.999661 0.000339 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.440353 magnetization : 1.515743 -0.000003 -0.000003 magnetization/charge: 0.440578 -0.000001 -0.000001 polar coord.: r, theta, phi [deg] : 1.515743 90.000105 -0.000105 ============================================================================== total cpu time spent up to now is 2.34 secs total energy = -63.26179953 Ry Harris-Foulkes estimate = -63.17438164 Ry estimated scf accuracy < 0.17749789 Ry total magnetization = 2.00 0.00 0.00 Bohr mag/cell absolute magnetization = 2.09 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.48E-03, avg # of iterations = 1.0 negative rho (up, down): 0.620E-04 0.397E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.462775 magnetization : 0.738243 0.000017 0.000017 magnetization/charge: 0.213194 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.738243 89.998682 0.001318 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.457113 magnetization : 0.737523 -0.000009 -0.000009 magnetization/charge: 0.213335 -0.000003 -0.000003 polar coord.: r, theta, phi [deg] : 0.737523 90.000676 -0.000676 ============================================================================== total cpu time spent up to now is 2.95 secs total energy = -63.41641544 Ry Harris-Foulkes estimate = -63.26300220 Ry estimated scf accuracy < 0.11287031 Ry total magnetization = 2.00 0.00 0.00 Bohr mag/cell absolute magnetization = 2.07 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 9.41E-04, avg # of iterations = 1.0 negative rho (up, down): 0.330E-04 0.278E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.456902 magnetization : 0.665855 0.000018 0.000018 magnetization/charge: 0.192616 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.665855 89.998490 0.001510 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.450557 magnetization : 0.665637 0.000008 0.000008 magnetization/charge: 0.192907 0.000002 0.000002 polar coord.: r, theta, phi [deg] : 0.665637 89.999312 0.000688 ============================================================================== total cpu time spent up to now is 3.56 secs total energy = -63.42542505 Ry Harris-Foulkes estimate = -63.42523711 Ry estimated scf accuracy < 0.00335927 Ry total magnetization = 1.98 0.00 0.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.80E-05, avg # of iterations = 9.0 negative rho (up, down): 0.106E-04 0.194E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.455274 magnetization : 0.639825 0.000014 0.000014 magnetization/charge: 0.185173 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.639825 89.998704 0.001296 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.449544 magnetization : 0.639356 0.000009 0.000009 magnetization/charge: 0.185345 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.639356 89.999202 0.000798 ============================================================================== total cpu time spent up to now is 4.23 secs total energy = -63.42608374 Ry Harris-Foulkes estimate = -63.42588015 Ry estimated scf accuracy < 0.00020034 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.67E-06, avg # of iterations = 15.0 negative rho (up, down): 0.158E-05 0.137E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.455352 magnetization : 0.635383 0.000014 0.000014 magnetization/charge: 0.183884 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.635383 89.998710 0.001290 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.449362 magnetization : 0.635062 0.000009 0.000009 magnetization/charge: 0.184110 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.635062 89.999175 0.000825 ============================================================================== total cpu time spent up to now is 4.99 secs total energy = -63.42627237 Ry Harris-Foulkes estimate = -63.42612478 Ry estimated scf accuracy < 0.00005124 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.27E-07, avg # of iterations = 2.0 negative rho (up, down): 0.290E-07 0.924E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.454927 magnetization : 0.626883 0.000013 0.000013 magnetization/charge: 0.181446 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.626883 89.998790 0.001210 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.449087 magnetization : 0.626504 0.000011 0.000011 magnetization/charge: 0.181644 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.626504 89.999004 0.000996 ============================================================================== total cpu time spent up to now is 5.61 secs total energy = -63.42645377 Ry Harris-Foulkes estimate = -63.42627464 Ry estimated scf accuracy < 0.00002906 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.42E-07, avg # of iterations = 2.0 negative rho (up, down): 0.000E+00 0.624E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.454871 magnetization : 0.628769 0.000013 0.000013 magnetization/charge: 0.181995 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.628769 89.998854 0.001146 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.448999 magnetization : 0.628400 0.000011 0.000011 magnetization/charge: 0.182198 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.628400 89.998991 0.001009 ============================================================================== total cpu time spent up to now is 6.28 secs total energy = -63.42646723 Ry Harris-Foulkes estimate = -63.42646490 Ry estimated scf accuracy < 0.00000152 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.26E-08, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 3.455074 magnetization : 0.627743 -0.000001 -0.000001 magnetization/charge: 0.181687 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.627743 90.000049 -0.000049 ============================================================================== ============================================================================== atom number 2 relative position : 0.2000 0.2000 0.2000 charge : 3.449274 magnetization : 0.627333 0.000016 0.000016 magnetization/charge: 0.181874 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.627333 89.998515 0.001485 ============================================================================== total cpu time spent up to now is 6.88 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 895 PWs) bands (ev): -26.9504 -25.6424 -18.6067 -16.8086 -10.0791 -9.3248 -8.9658 -8.9658 -7.0546 -7.0546 -4.9072 -4.9072 -2.6804 -2.6804 1.9337 2.1978 2.2464 3.1239 9.6851 9.6851 the Fermi energy is -3.7938 ev ! total energy = -63.42646629 Ry Harris-Foulkes estimate = -63.42646810 Ry estimated scf accuracy < 0.00000078 Ry The total energy is the sum of the following terms: one-electron contribution = -57.22381755 Ry hartree contribution = 31.82036556 Ry xc contribution = -13.40059233 Ry ewald contribution = -24.61854905 Ry smearing contrib. (-TS) = -0.00387293 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.17165010 0.17164940 0.17164940 atom 2 type 2 force = -0.17165010 -0.17164940 -0.17164940 Total force = 0.420454 Total SCF correction = 0.002548 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -63.4264662924 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) O1 0.027216627 0.027216516 0.027216516 O2 0.172783373 0.172783484 0.172783484 Writing output data file o2.save NEW-OLD atomic charge density approx. for the potential it, count: 1 0 0 1.000000 2.000000 3.000000 total cpu time spent up to now is 7.54 secs per-process dynamical memory: 50.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.000E+00 0.286E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.357987 magnetization : 0.585008 0.000005 0.000005 magnetization/charge: 0.174214 0.000002 0.000002 polar coord.: r, theta, phi [deg] : 0.585008 89.999492 0.000508 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.349132 magnetization : 0.584533 0.000016 0.000016 magnetization/charge: 0.174533 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.584533 89.998432 0.001568 ============================================================================== total cpu time spent up to now is 8.38 secs total energy = -63.22114871 Ry Harris-Foulkes estimate = -63.23702336 Ry estimated scf accuracy < 0.09327087 Ry total magnetization = 1.93 0.00 0.00 Bohr mag/cell absolute magnetization = 1.96 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.77E-04, avg # of iterations = 1.0 negative rho (up, down): 0.729E-04 0.595E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.430951 magnetization : 0.602012 0.000011 0.000011 magnetization/charge: 0.175465 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.602012 89.998945 0.001055 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.421968 magnetization : 0.601221 0.000014 0.000014 magnetization/charge: 0.175695 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.601221 89.998672 0.001328 ============================================================================== total cpu time spent up to now is 8.99 secs total energy = -63.21081552 Ry Harris-Foulkes estimate = -63.22305125 Ry estimated scf accuracy < 0.04194080 Ry total magnetization = 1.94 0.00 0.00 Bohr mag/cell absolute magnetization = 1.97 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.50E-04, avg # of iterations = 2.0 negative rho (up, down): 0.227E-03 0.711E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.413620 magnetization : 0.598926 0.000006 0.000006 magnetization/charge: 0.175452 0.000002 0.000002 polar coord.: r, theta, phi [deg] : 0.598926 89.999422 0.000578 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.404696 magnetization : 0.597937 0.000013 0.000013 magnetization/charge: 0.175621 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.597937 89.998738 0.001262 ============================================================================== total cpu time spent up to now is 9.63 secs total energy = -63.21839816 Ry Harris-Foulkes estimate = -63.21761413 Ry estimated scf accuracy < 0.00296716 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 1.98 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.47E-05, avg # of iterations = 2.0 negative rho (up, down): 0.125E-03 0.571E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.427634 magnetization : 0.602262 0.000008 0.000008 magnetization/charge: 0.175708 0.000002 0.000002 polar coord.: r, theta, phi [deg] : 0.602262 89.999280 0.000720 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.418665 magnetization : 0.601261 0.000014 0.000014 magnetization/charge: 0.175876 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.601261 89.998699 0.001301 ============================================================================== total cpu time spent up to now is 10.29 secs total energy = -63.21877607 Ry Harris-Foulkes estimate = -63.21939744 Ry estimated scf accuracy < 0.00139576 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 1.99 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.16E-05, avg # of iterations = 2.0 negative rho (up, down): 0.715E-04 0.460E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.423590 magnetization : 0.602169 0.000012 0.000012 magnetization/charge: 0.175888 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.602169 89.998882 0.001118 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.414597 magnetization : 0.601152 0.000011 0.000011 magnetization/charge: 0.176054 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.601152 89.998948 0.001052 ============================================================================== total cpu time spent up to now is 10.94 secs total energy = -63.21919140 Ry Harris-Foulkes estimate = -63.21907758 Ry estimated scf accuracy < 0.00005455 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 1.99 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.55E-07, avg # of iterations = 2.0 negative rho (up, down): 0.333E-04 0.333E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.424821 magnetization : 0.602493 0.000012 0.000012 magnetization/charge: 0.175919 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.602493 89.998900 0.001100 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.415838 magnetization : 0.601458 0.000014 0.000014 magnetization/charge: 0.176079 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.601458 89.998657 0.001343 ============================================================================== total cpu time spent up to now is 11.60 secs total energy = -63.21933645 Ry Harris-Foulkes estimate = -63.21921486 Ry estimated scf accuracy < 0.00002500 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.08E-07, avg # of iterations = 2.0 negative rho (up, down): 0.136E-04 0.248E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.425389 magnetization : 0.602762 0.000015 0.000015 magnetization/charge: 0.175969 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.602762 89.998550 0.001450 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.416420 magnetization : 0.601703 0.000017 0.000017 magnetization/charge: 0.176121 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.601703 89.998408 0.001592 ============================================================================== total cpu time spent up to now is 12.25 secs total energy = -63.21945471 Ry Harris-Foulkes estimate = -63.21933986 Ry estimated scf accuracy < 0.00000419 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.49E-08, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0272 0.0272 0.0272 charge : 3.425861 magnetization : 0.602970 0.000016 0.000016 magnetization/charge: 0.176006 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.602970 89.998504 0.001496 ============================================================================== ============================================================================== atom number 2 relative position : 0.1728 0.1728 0.1728 charge : 3.416843 magnetization : 0.601909 0.000020 0.000020 magnetization/charge: 0.176159 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.601909 89.998061 0.001939 ============================================================================== total cpu time spent up to now is 12.85 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 895 PWs) bands (ev): -36.0698 -35.0031 -15.8966 -14.1397 -13.2915 -13.2915 -11.4158 -11.4158 -11.4131 -10.4075 -2.1492 -2.1492 0.1329 0.1329 1.8481 2.1423 9.4718 9.4718 10.5740 10.9053 the Fermi energy is -1.0082 ev ! total energy = -63.21966505 Ry Harris-Foulkes estimate = -63.21945656 Ry estimated scf accuracy < 0.00000028 Ry The total energy is the sum of the following terms: one-electron contribution = -73.18661984 Ry hartree contribution = 39.23761751 Ry xc contribution = -14.06727038 Ry ewald contribution = -15.20000740 Ry smearing contrib. (-TS) = -0.00338493 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.96090217 -0.96090348 -0.96090348 atom 2 type 2 force = 0.96090217 0.96090348 0.96090348 Total force = 2.353722 Total SCF correction = 0.000929 number of scf cycles = 2 number of bfgs steps = 1 energy old = -63.4264662924 Ry energy new = -63.2196650452 Ry CASE: energy _new > energy _old new trust radius = 0.1675769171 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) O1 0.009121757 0.009121720 0.009121720 O2 0.190878243 0.190878280 0.190878280 Writing output data file o2.save NEW-OLD atomic charge density approx. for the potential it, count: 1 0 0 1.000000 2.000000 3.000000 total cpu time spent up to now is 13.51 secs per-process dynamical memory: 50.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.000E+00 0.774E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.526958 magnetization : 0.609116 0.000015 0.000015 magnetization/charge: 0.172703 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.609116 89.998581 0.001419 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.520222 magnetization : 0.608343 0.000017 0.000017 magnetization/charge: 0.172814 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.608343 89.998357 0.001643 ============================================================================== total cpu time spent up to now is 14.33 secs total energy = -63.47792625 Ry Harris-Foulkes estimate = -63.48916937 Ry estimated scf accuracy < 0.05607030 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 1.99 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.67E-04, avg # of iterations = 1.0 negative rho (up, down): 0.112E-05 0.158E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.474859 magnetization : 0.609128 0.000018 0.000018 magnetization/charge: 0.175296 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.609128 89.998328 0.001672 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.468223 magnetization : 0.608413 0.000014 0.000014 magnetization/charge: 0.175425 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.608413 89.998726 0.001274 ============================================================================== total cpu time spent up to now is 14.94 secs total energy = -63.47150425 Ry Harris-Foulkes estimate = -63.47938673 Ry estimated scf accuracy < 0.02371961 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.98E-04, avg # of iterations = 2.0 negative rho (up, down): 0.393E-04 0.335E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.473866 magnetization : 0.622663 0.000017 0.000017 magnetization/charge: 0.179242 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.622663 89.998433 0.001567 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.467253 magnetization : 0.622007 0.000021 0.000021 magnetization/charge: 0.179395 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.622007 89.998059 0.001941 ============================================================================== total cpu time spent up to now is 15.59 secs total energy = -63.47574727 Ry Harris-Foulkes estimate = -63.47510143 Ry estimated scf accuracy < 0.00198534 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.65E-05, avg # of iterations = 2.0 negative rho (up, down): 0.215E-04 0.271E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.476222 magnetization : 0.626261 0.000022 0.000022 magnetization/charge: 0.180156 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.626261 89.997972 0.002028 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.469608 magnetization : 0.625607 0.000018 0.000018 magnetization/charge: 0.180311 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.625607 89.998381 0.001619 ============================================================================== total cpu time spent up to now is 16.22 secs total energy = -63.47609036 Ry Harris-Foulkes estimate = -63.47590526 Ry estimated scf accuracy < 0.00005569 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.64E-07, avg # of iterations = 2.0 negative rho (up, down): 0.716E-05 0.203E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.476551 magnetization : 0.631364 0.000003 0.000003 magnetization/charge: 0.181607 0.000001 0.000001 polar coord.: r, theta, phi [deg] : 0.631364 89.999772 0.000228 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.469949 magnetization : 0.630707 0.000048 0.000048 magnetization/charge: 0.181763 0.000014 0.000014 polar coord.: r, theta, phi [deg] : 0.630707 89.995671 0.004329 ============================================================================== total cpu time spent up to now is 16.88 secs total energy = -63.47626236 Ry Harris-Foulkes estimate = -63.47610476 Ry estimated scf accuracy < 0.00001359 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.13E-07, avg # of iterations = 2.0 negative rho (up, down): 0.157E-05 0.146E-01 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.476286 magnetization : 0.631821 0.000021 0.000021 magnetization/charge: 0.181752 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631821 89.998127 0.001873 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.469678 magnetization : 0.631178 0.000020 0.000020 magnetization/charge: 0.181912 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631178 89.998178 0.001822 ============================================================================== total cpu time spent up to now is 17.53 secs total energy = -63.47635367 Ry Harris-Foulkes estimate = -63.47626637 Ry estimated scf accuracy < 0.00000108 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 9.01E-09, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0091 0.0091 0.0091 charge : 3.476065 magnetization : 0.632711 0.000014 0.000014 magnetization/charge: 0.182019 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.632711 89.998695 0.001305 ============================================================================== ============================================================================== atom number 2 relative position : 0.1909 0.1909 0.1909 charge : 3.469447 magnetization : 0.632057 0.000026 0.000026 magnetization/charge: 0.182178 0.000007 0.000007 polar coord.: r, theta, phi [deg] : 0.632057 89.997674 0.002326 ============================================================================== total cpu time spent up to now is 18.13 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 895 PWs) bands (ev): -29.2446 -28.0110 -17.7671 -15.9637 -10.5485 -9.9981 -9.9981 -9.7185 -8.0931 -8.0931 -4.2571 -4.2571 -1.9861 -1.9861 1.8789 2.1310 5.3163 6.2698 9.5649 9.5649 the Fermi energy is -3.1216 ev ! total energy = -63.47642784 Ry Harris-Foulkes estimate = -63.47635485 Ry estimated scf accuracy < 0.00000020 Ry The total energy is the sum of the following terms: one-electron contribution = -61.61153326 Ry hartree contribution = 33.87381538 Ry xc contribution = -13.56109242 Ry ewald contribution = -22.17413817 Ry smearing contrib. (-TS) = -0.00347937 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.05351510 0.05351511 0.05351511 atom 2 type 2 force = -0.05351510 -0.05351511 -0.05351511 Total force = 0.131085 Total SCF correction = 0.001070 number of scf cycles = 3 number of bfgs steps = 1 energy old = -63.4264662924 Ry energy new = -63.4764278416 Ry CASE: energy _new < energy _old new trust radius = 0.0759125776 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) O1 0.013253895 0.013253886 0.013253886 O2 0.186746105 0.186746114 0.186746114 Writing output data file o2.save NEW-OLD atomic charge density approx. for the potential it, count: 1 0 0 1.000000 2.000000 3.000000 total cpu time spent up to now is 18.79 secs per-process dynamical memory: 50.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.000E+00 0.129E-03 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0133 0.0133 0.0133 charge : 3.465672 magnetization : 0.630438 0.000015 0.000015 magnetization/charge: 0.181909 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.630438 89.998664 0.001336 ============================================================================== ============================================================================== atom number 2 relative position : 0.1867 0.1867 0.1867 charge : 3.458640 magnetization : 0.629736 0.000027 0.000027 magnetization/charge: 0.182076 0.000008 0.000008 polar coord.: r, theta, phi [deg] : 0.629736 89.997503 0.002497 ============================================================================== total cpu time spent up to now is 19.57 secs total energy = -63.47734261 Ry Harris-Foulkes estimate = -63.47762298 Ry estimated scf accuracy < 0.00195781 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.63E-05, avg # of iterations = 1.0 negative rho (up, down): 0.000E+00 0.315E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0133 0.0133 0.0133 charge : 3.476044 magnetization : 0.632534 0.000020 0.000020 magnetization/charge: 0.181969 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632534 89.998190 0.001810 ============================================================================== ============================================================================== atom number 2 relative position : 0.1867 0.1867 0.1867 charge : 3.469009 magnetization : 0.631802 0.000015 0.000015 magnetization/charge: 0.182127 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.631802 89.998649 0.001351 ============================================================================== total cpu time spent up to now is 20.18 secs total energy = -63.47724224 Ry Harris-Foulkes estimate = -63.47738358 Ry estimated scf accuracy < 0.00088987 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.42E-06, avg # of iterations = 2.0 negative rho (up, down): 0.121E-05 0.806E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0133 0.0133 0.0133 charge : 3.474318 magnetization : 0.631755 0.000021 0.000021 magnetization/charge: 0.181836 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631755 89.998091 0.001909 ============================================================================== ============================================================================== atom number 2 relative position : 0.1867 0.1867 0.1867 charge : 3.467264 magnetization : 0.631020 0.000013 0.000013 magnetization/charge: 0.181994 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.631020 89.998827 0.001173 ============================================================================== total cpu time spent up to now is 20.83 secs total energy = -63.47739162 Ry Harris-Foulkes estimate = -63.47738111 Ry estimated scf accuracy < 0.00006977 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.81E-07, avg # of iterations = 2.0 negative rho (up, down): 0.000E+00 0.502E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0133 0.0133 0.0133 charge : 3.475442 magnetization : 0.631938 0.000021 0.000021 magnetization/charge: 0.181829 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631938 89.998112 0.001888 ============================================================================== ============================================================================== atom number 2 relative position : 0.1867 0.1867 0.1867 charge : 3.468409 magnetization : 0.631192 0.000013 0.000013 magnetization/charge: 0.181983 0.000004 0.000004 polar coord.: r, theta, phi [deg] : 0.631192 89.998783 0.001217 ============================================================================== total cpu time spent up to now is 21.47 secs total energy = -63.47741922 Ry Harris-Foulkes estimate = -63.47740339 Ry estimated scf accuracy < 0.00000558 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.65E-08, avg # of iterations = 2.0 negative rho (up, down): 0.000E+00 0.315E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0133 0.0133 0.0133 charge : 3.474778 magnetization : 0.631572 0.000020 0.000020 magnetization/charge: 0.181759 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631572 89.998214 0.001786 ============================================================================== ============================================================================== atom number 2 relative position : 0.1867 0.1867 0.1867 charge : 3.467744 magnetization : 0.630829 0.000016 0.000016 magnetization/charge: 0.181913 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.630829 89.998503 0.001497 ============================================================================== total cpu time spent up to now is 22.12 secs total energy = -63.47744028 Ry Harris-Foulkes estimate = -63.47742115 Ry estimated scf accuracy < 0.00000195 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.63E-08, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0133 0.0133 0.0133 charge : 3.475136 magnetization : 0.631478 0.000020 0.000020 magnetization/charge: 0.181713 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631478 89.998230 0.001770 ============================================================================== ============================================================================== atom number 2 relative position : 0.1867 0.1867 0.1867 charge : 3.468094 magnetization : 0.630736 0.000018 0.000018 magnetization/charge: 0.181868 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.630736 89.998353 0.001647 ============================================================================== total cpu time spent up to now is 22.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 895 PWs) bands (ev): -30.5228 -29.3222 -17.3466 -15.5440 -10.7503 -10.5793 -10.5793 -9.8782 -8.6745 -8.6745 -3.8806 -3.8806 -1.5883 -1.5883 1.9652 2.2542 6.9583 7.8752 9.6078 9.6078 the Fermi energy is -2.7345 ev ! total energy = -63.47745740 Ry Harris-Foulkes estimate = -63.47744106 Ry estimated scf accuracy < 0.00000020 Ry The total energy is the sum of the following terms: one-electron contribution = -63.89588152 Ry hartree contribution = 34.94404931 Ry xc contribution = -13.65434197 Ry ewald contribution = -20.86798242 Ry smearing contrib. (-TS) = -0.00330080 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.05016312 -0.05016312 -0.05016312 atom 2 type 2 force = 0.05016312 0.05016312 0.05016312 Total force = 0.122874 Total SCF correction = 0.000318 number of scf cycles = 4 number of bfgs steps = 2 energy old = -63.4764278416 Ry energy new = -63.4774574012 Ry CASE: energy _new < energy _old new trust radius = 0.0367291379 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) O1 0.011254623 0.011254601 0.011254601 O2 0.188745377 0.188745399 0.188745399 Writing output data file o2.save NEW-OLD atomic charge density approx. for the potential it, count: 1 0 0 1.000000 2.000000 3.000000 total cpu time spent up to now is 23.37 secs per-process dynamical memory: 50.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0113 0.0113 0.0113 charge : 3.481128 magnetization : 0.632285 0.000020 0.000020 magnetization/charge: 0.181632 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632285 89.998232 0.001768 ============================================================================== ============================================================================== atom number 2 relative position : 0.1887 0.1887 0.1887 charge : 3.474299 magnetization : 0.631568 0.000018 0.000018 magnetization/charge: 0.181783 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.631568 89.998343 0.001657 ============================================================================== total cpu time spent up to now is 24.11 secs total energy = -63.47934439 Ry Harris-Foulkes estimate = -63.47941610 Ry estimated scf accuracy < 0.00049144 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.10E-06, avg # of iterations = 1.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0113 0.0113 0.0113 charge : 3.475994 magnetization : 0.631524 0.000019 0.000019 magnetization/charge: 0.181682 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.631524 89.998235 0.001765 ============================================================================== ============================================================================== atom number 2 relative position : 0.1887 0.1887 0.1887 charge : 3.469169 magnetization : 0.630808 0.000019 0.000019 magnetization/charge: 0.181833 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.630808 89.998310 0.001690 ============================================================================== total cpu time spent up to now is 24.72 secs total energy = -63.47929343 Ry Harris-Foulkes estimate = -63.47935533 Ry estimated scf accuracy < 0.00021952 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.83E-06, avg # of iterations = 2.0 negative rho (up, down): 0.000E+00 0.178E-02 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0113 0.0113 0.0113 charge : 3.476592 magnetization : 0.632157 0.000019 0.000019 magnetization/charge: 0.181832 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632157 89.998242 0.001758 ============================================================================== ============================================================================== atom number 2 relative position : 0.1887 0.1887 0.1887 charge : 3.469770 magnetization : 0.631439 0.000019 0.000019 magnetization/charge: 0.181983 0.000005 0.000005 polar coord.: r, theta, phi [deg] : 0.631439 89.998288 0.001712 ============================================================================== total cpu time spent up to now is 25.36 secs total energy = -63.47933669 Ry Harris-Foulkes estimate = -63.47932751 Ry estimated scf accuracy < 0.00001743 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.45E-07, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0113 0.0113 0.0113 charge : 3.476233 magnetization : 0.632334 0.000022 0.000022 magnetization/charge: 0.181902 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632334 89.997986 0.002014 ============================================================================== ============================================================================== atom number 2 relative position : 0.1887 0.1887 0.1887 charge : 3.469394 magnetization : 0.631629 0.000010 0.000010 magnetization/charge: 0.182057 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.631629 89.999074 0.000926 ============================================================================== total cpu time spent up to now is 25.96 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 895 PWs) bands (ev): -29.8768 -28.6562 -17.5451 -15.7435 -10.6446 -10.2813 -10.2813 -9.7964 -8.3744 -8.3744 -4.0635 -4.0635 -1.7784 -1.7784 1.9709 2.2567 6.1627 7.1090 9.6254 9.6254 the Fermi energy is -2.9210 ev ! total energy = -63.47936981 Ry Harris-Foulkes estimate = -63.47933932 Ry estimated scf accuracy < 0.00000068 Ry The total energy is the sum of the following terms: one-electron contribution = -62.76461806 Ry hartree contribution = 34.41329186 Ry xc contribution = -13.60731958 Ry ewald contribution = -21.51736401 Ry smearing contrib. (-TS) = -0.00336003 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00622024 0.00622024 0.00622024 atom 2 type 2 force = -0.00622024 -0.00622024 -0.00622024 Total force = 0.015236 Total SCF correction = 0.002909 SCF correction compared to forces is too large, reduce conv_thr number of scf cycles = 5 number of bfgs steps = 3 energy old = -63.4774574012 Ry energy new = -63.4793698103 Ry CASE: energy _new < energy _old new trust radius = 0.0040519750 bohr new conv_thr = 0.0000006220 Ry ATOMIC_POSITIONS (alat) O1 0.011475184 0.011475163 0.011475163 O2 0.188524816 0.188524837 0.188524837 Writing output data file o2.save NEW-OLD atomic charge density approx. for the potential it, count: 1 0 0 1.000000 2.000000 3.000000 total cpu time spent up to now is 26.63 secs per-process dynamical memory: 50.5 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.91E-08, avg # of iterations = 1.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0115 0.0115 0.0115 charge : 3.475736 magnetization : 0.632280 0.000022 0.000022 magnetization/charge: 0.181912 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632280 89.997999 0.002001 ============================================================================== ============================================================================== atom number 2 relative position : 0.1885 0.1885 0.1885 charge : 3.468886 magnetization : 0.631566 0.000010 0.000010 magnetization/charge: 0.182066 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.631566 89.999061 0.000939 ============================================================================== total cpu time spent up to now is 27.61 secs total energy = -63.47940020 Ry Harris-Foulkes estimate = -63.47940163 Ry estimated scf accuracy < 0.00000809 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 6.74E-08, avg # of iterations = 1.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0115 0.0115 0.0115 charge : 3.476383 magnetization : 0.632439 0.000022 0.000022 magnetization/charge: 0.181924 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632439 89.998019 0.001981 ============================================================================== ============================================================================== atom number 2 relative position : 0.1885 0.1885 0.1885 charge : 3.469536 magnetization : 0.631723 0.000011 0.000011 magnetization/charge: 0.182077 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.631723 89.999046 0.000954 ============================================================================== total cpu time spent up to now is 28.22 secs total energy = -63.47939937 Ry Harris-Foulkes estimate = -63.47940041 Ry estimated scf accuracy < 0.00000338 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.81E-08, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0115 0.0115 0.0115 charge : 3.476325 magnetization : 0.632421 0.000022 0.000022 magnetization/charge: 0.181922 0.000006 0.000006 polar coord.: r, theta, phi [deg] : 0.632421 89.998029 0.001971 ============================================================================== ============================================================================== atom number 2 relative position : 0.1885 0.1885 0.1885 charge : 3.469469 magnetization : 0.631709 0.000011 0.000011 magnetization/charge: 0.182077 0.000003 0.000003 polar coord.: r, theta, phi [deg] : 0.631709 89.999034 0.000966 ============================================================================== total cpu time spent up to now is 28.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 895 PWs) bands (ev): -29.9477 -28.7328 -17.5254 -15.7209 -10.6588 -10.3145 -10.3145 -9.8040 -8.4088 -8.4088 -4.0453 -4.0453 -1.7593 -1.7593 2.0067 2.2907 6.2474 7.1896 9.6257 9.6257 the Fermi energy is -2.9023 ev ! total energy = -63.47940026 Ry Harris-Foulkes estimate = -63.47939993 Ry estimated scf accuracy < 0.00000020 Ry The total energy is the sum of the following terms: one-electron contribution = -62.88911461 Ry hartree contribution = 34.47324504 Ry xc contribution = -13.61280932 Ry ewald contribution = -21.44736844 Ry smearing contrib. (-TS) = -0.00335293 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00004116 0.00004116 0.00004116 atom 2 type 2 force = -0.00004116 -0.00004116 -0.00004116 Total force = 0.000101 Total SCF correction = 0.000338 SCF correction compared to forces is too large, reduce conv_thr bfgs converged in 6 scf cycles and 4 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -63.4794002598 Ry ATOMIC_POSITIONS (alat) O1 0.011475184 0.011475163 0.011475163 O2 0.188524816 0.188524837 0.188524837 Writing output data file o2.save PWSCF : 29.14s CPU time, 30.93s wall time init_run : 1.56s CPU electrons : 23.85s CPU ( 6 calls, 3.975 s avg) update_pot : 1.21s CPU ( 5 calls, 0.241 s avg) forces : 1.30s CPU ( 6 calls, 0.217 s avg) Called by init_run: wfcinit : 0.05s CPU potinit : 0.23s CPU Called by electrons: c_bands : 5.84s CPU ( 37 calls, 0.158 s avg) sum_band : 6.59s CPU ( 37 calls, 0.178 s avg) v_of_rho : 7.57s CPU ( 42 calls, 0.180 s avg) newd : 2.67s CPU ( 42 calls, 0.064 s avg) mix_rho : 0.93s CPU ( 37 calls, 0.025 s avg) Called by c_bands: init_us_2 : 0.06s CPU ( 75 calls, 0.001 s avg) cegterg : 5.75s CPU ( 37 calls, 0.155 s avg) Called by *egterg: h_psi : 4.25s CPU ( 137 calls, 0.031 s avg) s_psi : 0.08s CPU ( 137 calls, 0.001 s avg) g_psi : 0.13s CPU ( 99 calls, 0.001 s avg) cdiaghg : 0.26s CPU ( 130 calls, 0.002 s avg) Called by h_psi: add_vuspsi : 0.09s CPU ( 137 calls, 0.001 s avg) General routines calbec : 0.16s CPU ( 180 calls, 0.001 s avg) cft3s : 9.02s CPU ( 11582 calls, 0.001 s avg) interpolate : 1.24s CPU ( 316 calls, 0.004 s avg) davcio : 0.00s CPU ( 36 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example06/reference/ni.band.out0000644000175000017500000002606612341373025021261 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:56:48 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Fixed quantization axis for GGA: 1.000000 0.000000 0.000000 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) Noncollinear calculation without spin-orbit celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file Ni.pbe-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0238095 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0238095 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0238095 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0238095 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0238095 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0238095 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0238095 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0238095 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0238095 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0238095 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0119048 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0119048 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0119048 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0119048 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0119048 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0119048 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0119048 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0119048 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0119048 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0119048 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.04 Mb ( 288, 8) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.24 Mb ( 15625) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.14 Mb ( 288, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 18, 2, 8) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000016 0.000000 The potential is recalculated from file : ni.save/charge-density.dat it, count: 1 0 0 1.000000 2.000000 3.000000 Starting wfc are 12 atomic wfcs total cpu time spent up to now is 1.00 secs per-process dynamical memory: 10.2 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 6.6 total cpu time spent up to now is 1.62 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 6.1941 6.2493 13.1079 13.1079 13.1079 13.8717 13.8717 13.8717 k = 0.0000 0.0000 0.1000 band energies (ev): 6.3333 6.3884 13.0550 13.1487 13.1487 13.8143 13.9139 13.9139 k = 0.0000 0.0000 0.2000 band energies (ev): 6.7447 6.7997 12.9031 13.2699 13.2699 13.6496 14.0391 14.0391 k = 0.0000 0.0000 0.3000 band energies (ev): 7.4081 7.4613 12.6704 13.3979 13.4668 13.4668 14.0513 14.2430 k = 0.0000 0.0000 0.4000 band energies (ev): 8.2799 8.3248 12.3850 13.0900 13.7312 13.7312 13.8524 14.3989 k = 0.0000 0.0000 0.5000 band energies (ev): 9.2675 9.2829 12.0765 12.7582 13.7748 14.0479 14.0479 14.2671 k = 0.0000 0.0000 0.6000 band energies (ev): 10.1125 10.1802 11.7765 12.4367 14.0515 14.3940 14.3940 14.4314 k = 0.0000 0.0000 0.7000 band energies (ev): 10.5626 10.7589 11.5128 12.1547 14.7367 14.7367 14.9254 15.0650 k = 0.0000 0.0000 0.8000 band energies (ev): 10.6754 10.9648 11.3080 11.9362 15.0332 15.0332 15.1551 15.7830 k = 0.0000 0.0000 0.9000 band energies (ev): 10.6623 10.9933 11.1786 11.7983 15.2133 15.2372 15.2372 15.8433 k = 0.0000 0.0000 1.0000 band energies (ev): 10.6467 10.9889 11.1345 11.7514 15.2334 15.3102 15.3102 15.8641 k = 0.0000 0.0000 0.0000 band energies (ev): 6.1941 6.2493 13.1079 13.1079 13.1079 13.8717 13.8717 13.8717 k = 0.0000 0.1000 0.1000 band energies (ev): 6.4713 6.5264 13.0260 13.1675 13.1842 13.7804 13.9345 13.9491 k = 0.0000 0.2000 0.2000 band energies (ev): 7.2772 7.3300 12.8171 13.3378 13.3392 13.5465 14.0848 14.1152 k = 0.0000 0.3000 0.3000 band energies (ev): 8.5257 8.5637 12.5728 13.2690 13.3575 13.6029 14.0383 14.0406 k = 0.0000 0.4000 0.4000 band energies (ev): 10.0093 10.0305 12.4029 13.0655 13.1376 13.7438 13.9277 13.9278 k = 0.0000 0.5000 0.5000 band energies (ev): 11.2358 11.4195 12.4023 12.7496 13.0367 13.2790 13.9448 14.2768 k = 0.0000 0.6000 0.6000 band energies (ev): 11.7784 12.2100 12.2871 12.6364 12.7154 13.2522 14.1187 14.6130 k = 0.0000 0.7000 0.7000 band energies (ev): 11.6108 11.8759 12.1023 12.3306 13.1351 13.7473 14.4285 14.9039 k = 0.0000 0.8000 0.8000 band energies (ev): 11.1661 11.5091 11.5495 12.0920 13.8844 14.5209 14.7995 15.1257 k = 0.0000 0.9000 0.9000 band energies (ev): 10.7915 11.1405 11.2330 11.8466 14.7760 15.1105 15.2636 15.7332 k = 0.0000 1.0000 1.0000 band energies (ev): 10.6467 10.9889 11.1345 11.7514 15.2334 15.3102 15.3102 15.8641 k = 0.0000 0.0000 0.0000 band energies (ev): 6.1941 6.2493 13.1079 13.1079 13.1079 13.8717 13.8717 13.8717 k = 0.1000 0.1000 0.1000 band energies (ev): 6.6081 6.6630 13.0004 13.1995 13.1995 13.7493 13.9657 13.9657 k = 0.2000 0.2000 0.2000 band energies (ev): 7.7827 7.8283 12.7912 13.3520 13.3520 13.4894 14.0939 14.0939 k = 0.3000 0.3000 0.3000 band energies (ev): 9.3740 9.4143 12.9000 13.3227 13.3227 13.4450 13.9991 13.9991 k = 0.4000 0.4000 0.4000 band energies (ev): 10.3194 10.6302 13.1912 13.1912 13.8300 13.8300 14.1531 14.3129 k = 0.5000 0.5000 0.5000 band energies (ev): 10.4930 10.9230 13.1297 13.1297 13.7579 13.7579 15.1679 15.1679 Writing output data file ni.save PWSCF : 1.70s CPU time, 2.09s wall time init_run : 0.91s CPU electrons : 0.62s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.05s CPU Called by electrons: c_bands : 0.62s CPU v_of_rho : 0.04s CPU newd : 0.03s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) cegterg : 0.50s CPU ( 28 calls, 0.018 s avg) Called by *egterg: h_psi : 0.44s CPU ( 241 calls, 0.002 s avg) s_psi : 0.01s CPU ( 241 calls, 0.000 s avg) g_psi : 0.01s CPU ( 185 calls, 0.000 s avg) cdiaghg : 0.05s CPU ( 213 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 241 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 241 calls, 0.000 s avg) cft3 : 0.01s CPU ( 31 calls, 0.000 s avg) cft3s : 0.26s CPU ( 6644 calls, 0.000 s avg) interpolate : 0.00s CPU ( 4 calls, 0.001 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.1/PW/examples/example06/reference/ni.scf.out0000644000175000017500000016537612341373025021140 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:11:10 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Ni.pbe-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Fixed quantization axis for GGA: 1.000000 0.000000 0.000000 Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 25 npp = 25 ncplane = 625 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 25 421 5601 15 139 1067 55 259 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) Noncollinear calculation without spin-orbit celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file Ni.pbe-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 144 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0039062 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0078125 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0078125 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0078125 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0078125 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0078125 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0078125 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0078125 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0039062 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0078125 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0078125 k( 12) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0078125 k( 13) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0078125 k( 14) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0078125 k( 15) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0078125 k( 16) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0039062 k( 17) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0078125 k( 18) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0078125 k( 19) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0078125 k( 20) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0078125 k( 21) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0078125 k( 22) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0039062 k( 23) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0078125 k( 24) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0078125 k( 25) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0078125 k( 26) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0078125 k( 27) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0039062 k( 28) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0078125 k( 29) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0078125 k( 30) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0039062 k( 31) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0078125 k( 32) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0039062 k( 33) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0039062 k( 34) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0078125 k( 35) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0078125 k( 36) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0078125 k( 37) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0078125 k( 38) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0078125 k( 39) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0039062 k( 40) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0078125 k( 41) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0078125 k( 42) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0078125 k( 43) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0078125 k( 44) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0039062 k( 45) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0078125 k( 46) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0078125 k( 47) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0078125 k( 48) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0039062 k( 49) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0078125 k( 50) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0039062 k( 51) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0039062 k( 52) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0078125 k( 53) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0078125 k( 54) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0078125 k( 55) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0039062 k( 56) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0078125 k( 57) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0078125 k( 58) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0039062 k( 59) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0039062 k( 60) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0078125 k( 61) = ( 0.1875000 0.0625000 0.0625000), wk = 0.0039062 k( 62) = ( 0.3125000 0.0625000 0.0625000), wk = 0.0039062 k( 63) = ( 0.4375000 0.0625000 0.0625000), wk = 0.0039062 k( 64) = ( 0.5625000 0.0625000 0.0625000), wk = 0.0039062 k( 65) = ( 0.6875000 0.0625000 0.0625000), wk = 0.0039062 k( 66) = ( 0.8125000 0.0625000 0.0625000), wk = 0.0039062 k( 67) = ( 0.9375000 0.0625000 0.0625000), wk = 0.0039062 k( 68) = ( 0.1875000 0.1875000 0.0625000), wk = 0.0078125 k( 69) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0078125 k( 70) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0078125 k( 71) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0078125 k( 72) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0078125 k( 73) = ( 0.1875000 0.5625000 0.0625000), wk = 0.0078125 k( 74) = ( 0.5625000 0.0625000 0.1875000), wk = 0.0078125 k( 75) = ( 0.1875000 0.6875000 0.0625000), wk = 0.0078125 k( 76) = ( 0.6875000 0.0625000 0.1875000), wk = 0.0078125 k( 77) = ( 0.1875000 0.8125000 0.0625000), wk = 0.0078125 k( 78) = ( 0.8125000 0.0625000 0.1875000), wk = 0.0078125 k( 79) = ( 0.1875000 0.9375000 0.0625000), wk = 0.0078125 k( 80) = ( 0.9375000 0.0625000 0.1875000), wk = 0.0078125 k( 81) = ( 0.3125000 0.3125000 0.0625000), wk = 0.0078125 k( 82) = ( 0.3125000 0.4375000 0.0625000), wk = 0.0078125 k( 83) = ( 0.4375000 0.0625000 0.3125000), wk = 0.0078125 k( 84) = ( 0.3125000 0.5625000 0.0625000), wk = 0.0078125 k( 85) = ( 0.5625000 0.0625000 0.3125000), wk = 0.0078125 k( 86) = ( 0.3125000 0.6875000 0.0625000), wk = 0.0078125 k( 87) = ( 0.6875000 0.0625000 0.3125000), wk = 0.0078125 k( 88) = ( 0.3125000 0.8125000 0.0625000), wk = 0.0078125 k( 89) = ( 0.8125000 0.0625000 0.3125000), wk = 0.0078125 k( 90) = ( 0.3125000 0.9375000 0.0625000), wk = 0.0078125 k( 91) = ( 0.9375000 0.0625000 0.3125000), wk = 0.0078125 k( 92) = ( 0.4375000 0.4375000 0.0625000), wk = 0.0078125 k( 93) = ( 0.4375000 0.5625000 0.0625000), wk = 0.0078125 k( 94) = ( 0.5625000 0.0625000 0.4375000), wk = 0.0078125 k( 95) = ( 0.4375000 0.6875000 0.0625000), wk = 0.0078125 k( 96) = ( 0.6875000 0.0625000 0.4375000), wk = 0.0078125 k( 97) = ( 0.4375000 0.8125000 0.0625000), wk = 0.0078125 k( 98) = ( 0.8125000 0.0625000 0.4375000), wk = 0.0078125 k( 99) = ( 0.4375000 0.9375000 0.0625000), wk = 0.0078125 k( 100) = ( 0.9375000 0.0625000 0.4375000), wk = 0.0078125 k( 101) = ( 0.5625000 0.5625000 0.0625000), wk = 0.0078125 k( 102) = ( 0.5625000 0.6875000 0.0625000), wk = 0.0078125 k( 103) = ( 0.6875000 0.0625000 0.5625000), wk = 0.0078125 k( 104) = ( 0.5625000 0.8125000 0.0625000), wk = 0.0078125 k( 105) = ( 0.8125000 0.0625000 0.5625000), wk = 0.0078125 k( 106) = ( 0.6875000 0.6875000 0.0625000), wk = 0.0078125 k( 107) = ( 0.6875000 0.8125000 0.0625000), wk = 0.0078125 k( 108) = ( 0.8125000 0.0625000 0.6875000), wk = 0.0078125 k( 109) = ( 0.8125000 0.8125000 0.0625000), wk = 0.0078125 k( 110) = ( 0.3125000 0.1875000 0.1875000), wk = 0.0039062 k( 111) = ( 0.4375000 0.1875000 0.1875000), wk = 0.0039062 k( 112) = ( 0.5625000 0.1875000 0.1875000), wk = 0.0039062 k( 113) = ( 0.6875000 0.1875000 0.1875000), wk = 0.0039062 k( 114) = ( 0.8125000 0.1875000 0.1875000), wk = 0.0039062 k( 115) = ( 0.3125000 0.3125000 0.1875000), wk = 0.0078125 k( 116) = ( 0.3125000 0.4375000 0.1875000), wk = 0.0078125 k( 117) = ( 0.4375000 0.1875000 0.3125000), wk = 0.0078125 k( 118) = ( 0.3125000 0.5625000 0.1875000), wk = 0.0078125 k( 119) = ( 0.5625000 0.1875000 0.3125000), wk = 0.0078125 k( 120) = ( 0.3125000 0.6875000 0.1875000), wk = 0.0078125 k( 121) = ( 0.6875000 0.1875000 0.3125000), wk = 0.0078125 k( 122) = ( 0.3125000 0.8125000 0.1875000), wk = 0.0078125 k( 123) = ( 0.8125000 0.1875000 0.3125000), wk = 0.0078125 k( 124) = ( 0.4375000 0.4375000 0.1875000), wk = 0.0078125 k( 125) = ( 0.4375000 0.5625000 0.1875000), wk = 0.0078125 k( 126) = ( 0.5625000 0.1875000 0.4375000), wk = 0.0078125 k( 127) = ( 0.4375000 0.6875000 0.1875000), wk = 0.0078125 k( 128) = ( 0.6875000 0.1875000 0.4375000), wk = 0.0078125 k( 129) = ( 0.4375000 0.8125000 0.1875000), wk = 0.0078125 k( 130) = ( 0.8125000 0.1875000 0.4375000), wk = 0.0078125 k( 131) = ( 0.5625000 0.5625000 0.1875000), wk = 0.0078125 k( 132) = ( 0.5625000 0.6875000 0.1875000), wk = 0.0078125 k( 133) = ( 0.6875000 0.1875000 0.5625000), wk = 0.0078125 k( 134) = ( 0.6875000 0.6875000 0.1875000), wk = 0.0078125 k( 135) = ( 0.4375000 0.3125000 0.3125000), wk = 0.0039062 k( 136) = ( 0.5625000 0.3125000 0.3125000), wk = 0.0039062 k( 137) = ( 0.6875000 0.3125000 0.3125000), wk = 0.0039062 k( 138) = ( 0.4375000 0.4375000 0.3125000), wk = 0.0078125 k( 139) = ( 0.4375000 0.5625000 0.3125000), wk = 0.0078125 k( 140) = ( 0.5625000 0.3125000 0.4375000), wk = 0.0078125 k( 141) = ( 0.4375000 0.6875000 0.3125000), wk = 0.0078125 k( 142) = ( 0.6875000 0.3125000 0.4375000), wk = 0.0078125 k( 143) = ( 0.5625000 0.5625000 0.3125000), wk = 0.0078125 k( 144) = ( 0.5625000 0.4375000 0.4375000), wk = 0.0039062 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 288, 18) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.24 Mb ( 15625) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.32 Mb ( 288, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 18, 2, 18) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000016 0.000000 Initial potential from superposition of free atoms starting charge 9.99954, renormalised to 10.00000 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.865022 magnetization : 0.886502 0.000000 0.000000 magnetization/charge: 0.100000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.886502 90.000000 0.000000 ============================================================================== Starting wfc are 12 atomic + 6 random wfc total cpu time spent up to now is 2.56 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.527554 magnetization : 0.836594 0.000000 0.000000 magnetization/charge: 0.098105 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.836594 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 9.11 secs total energy = -85.73527911 Ry Harris-Foulkes estimate = -85.96913418 Ry estimated scf accuracy < 0.31642419 Ry total magnetization = 0.81 0.00 0.00 Bohr mag/cell absolute magnetization = 0.82 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.16E-03, avg # of iterations = 2.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.692938 magnetization : 0.732919 0.000000 0.000000 magnetization/charge: 0.084312 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.732919 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 13.89 secs total energy = -85.80724228 Ry Harris-Foulkes estimate = -86.01741192 Ry estimated scf accuracy < 0.47172457 Ry total magnetization = 0.49 0.00 0.00 Bohr mag/cell absolute magnetization = 0.54 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.16E-03, avg # of iterations = 1.2 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.681815 magnetization : 0.615476 0.000000 0.000000 magnetization/charge: 0.070893 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.615476 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 17.69 secs total energy = -85.89138030 Ry Harris-Foulkes estimate = -85.89085666 Ry estimated scf accuracy < 0.00025534 Ry total magnetization = 0.60 0.00 0.00 Bohr mag/cell absolute magnetization = 0.67 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.55E-06, avg # of iterations = 3.4 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.684178 magnetization : 0.623332 0.000000 0.000000 magnetization/charge: 0.071778 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.623332 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 24.48 secs total energy = -85.89189535 Ry Harris-Foulkes estimate = -85.89188963 Ry estimated scf accuracy < 0.00003526 Ry total magnetization = 0.58 0.00 0.00 Bohr mag/cell absolute magnetization = 0.67 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.53E-07, avg # of iterations = 1.0 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.686254 magnetization : 0.621455 0.000000 0.000000 magnetization/charge: 0.071545 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.621455 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 28.21 secs total energy = -85.89190143 Ry Harris-Foulkes estimate = -85.89189967 Ry estimated scf accuracy < 0.00000294 Ry total magnetization = 0.58 0.00 0.00 Bohr mag/cell absolute magnetization = 0.67 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.94E-08, avg # of iterations = 1.8 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.685532 magnetization : 0.623372 0.000000 0.000000 magnetization/charge: 0.071771 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.623372 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 32.23 secs total energy = -85.89190272 Ry Harris-Foulkes estimate = -85.89190224 Ry estimated scf accuracy < 0.00000017 Ry total magnetization = 0.58 0.00 0.00 Bohr mag/cell absolute magnetization = 0.68 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-09, avg # of iterations = 1.8 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.686000 magnetization : 0.623514 0.000000 0.000000 magnetization/charge: 0.071784 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.623514 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 36.17 secs total energy = -85.89190272 Ry Harris-Foulkes estimate = -85.89190275 Ry estimated scf accuracy < 0.00000019 Ry total magnetization = 0.58 0.00 0.00 Bohr mag/cell absolute magnetization = 0.68 Bohr mag/cell iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-09, avg # of iterations = 1.1 it, count: 1 0 0 1.000000 2.000000 3.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 8.685985 magnetization : 0.623543 0.000000 0.000000 magnetization/charge: 0.071787 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.623543 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 39.91 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 137 PWs) bands (ev): 6.3570 6.4122 13.0638 13.1462 13.1462 13.8218 13.9114 13.9114 14.4210 14.4210 15.0228 15.0228 39.7945 39.9295 42.8959 42.9424 44.5638 44.5638 k = 0.0625 0.0625 0.1875 ( 137 PWs) bands (ev): 6.7846 6.8393 12.9192 13.2577 13.2626 13.6638 14.0250 14.0297 14.2814 14.4864 14.8758 15.0924 38.7314 38.7720 41.2331 41.3052 42.3907 42.4165 k = 0.0625 0.0625 0.3125 ( 136 PWs) bands (ev): 7.6070 7.6586 12.6393 13.3608 13.4741 13.4895 14.0680 14.2299 14.2604 14.6074 14.6613 15.2220 37.1037 37.1348 39.7722 39.8356 39.8820 39.9318 k = 0.0625 0.0625 0.4375 ( 135 PWs) bands (ev): 8.7357 8.7710 12.2824 12.9760 13.5956 13.8124 14.0771 14.2100 14.5891 14.7660 14.7834 15.3939 35.3109 35.3706 37.4908 37.5433 38.3056 38.3454 k = 0.0625 0.0625 0.5625 ( 135 PWs) bands (ev): 9.9140 9.9459 11.9082 12.5741 13.6561 14.1721 14.2012 14.5315 14.9385 14.9822 15.2555 15.5874 33.5751 33.6361 35.3700 35.4113 35.5129 35.5332 k = 0.0625 0.0625 0.6875 ( 131 PWs) bands (ev): 10.5993 10.7837 11.5731 12.2154 14.1693 14.6052 14.6664 15.0985 15.3575 15.3757 15.7875 15.9313 31.6704 31.7352 32.3903 32.4562 33.6319 33.6531 k = 0.0625 0.0625 0.8125 ( 131 PWs) bands (ev): 10.7399 11.0399 11.3232 11.9488 14.7461 14.9511 15.2207 15.4335 15.6664 15.9931 16.8602 17.0976 28.5248 28.6641 31.1011 31.1343 32.3809 32.3822 k = 0.0625 0.0625 0.9375 ( 131 PWs) bands (ev): 10.7120 11.0524 11.1903 11.8073 15.0355 15.1563 15.2846 15.7967 15.8195 16.1500 18.4448 18.4897 26.1390 26.3536 30.4888 30.5051 31.7064 31.7229 k = 0.0625 0.1875 0.1875 ( 140 PWs) bands (ev): 7.2006 7.2535 12.8465 13.3143 13.3211 13.5763 14.0734 14.0850 14.2594 14.4931 14.8546 15.1115 36.7719 36.8013 39.5792 39.6067 43.3170 43.3852 k = 0.0625 0.1875 0.3125 ( 138 PWs) bands (ev): 7.9990 8.0453 12.6337 13.3415 13.4070 13.5015 14.1199 14.1391 14.2688 14.6566 14.7471 15.3016 34.7598 34.8286 37.6193 37.6341 42.3768 42.4265 k = 0.0625 0.1875 0.4375 ( 138 PWs) bands (ev): 9.0904 9.1141 12.3291 13.0108 13.3597 13.7843 13.9925 14.2508 14.5333 14.9097 14.9101 15.5847 32.9216 33.0138 35.7430 35.7848 39.8396 39.8599 k = 0.0625 0.1875 0.5625 ( 138 PWs) bands (ev): 10.2077 10.2573 11.9981 12.6531 13.2690 13.8453 14.1356 14.6644 14.8653 15.3039 15.3321 15.9831 31.2988 31.3994 34.0092 34.0586 36.2156 36.2507 k = 0.0625 0.1875 0.6875 ( 135 PWs) bands (ev): 10.8602 11.0620 11.6950 12.3281 13.5131 14.0608 14.5208 15.0074 15.2287 15.7246 16.2192 16.7570 29.9297 30.0244 32.0387 32.1055 33.0119 33.0714 k = 0.0625 0.1875 0.8125 ( 131 PWs) bands (ev): 10.9747 11.2887 11.4658 12.0850 13.9925 14.5988 14.8447 15.1715 15.5084 15.9790 17.8153 18.1311 28.5535 28.6662 29.2294 29.3300 31.7247 31.7573 k = 0.0625 0.1875 0.9375 ( 129 PWs) bands (ev): 10.9314 11.2823 11.3440 11.9564 14.3240 14.9868 14.9944 15.2639 15.6077 16.1366 19.4789 19.6337 26.2485 26.4476 28.5011 28.5727 31.1408 31.1606 k = 0.0625 0.3125 0.3125 ( 140 PWs) bands (ev): 8.7452 8.7759 12.5628 13.2473 13.3426 13.5931 14.0150 14.0849 14.3392 14.7083 14.9193 15.6010 32.6357 32.7361 35.5471 35.5896 43.6390 43.7096 k = 0.0625 0.3125 0.4375 ( 140 PWs) bands (ev): 9.7411 9.7503 12.3967 13.0552 13.1833 13.7806 13.8047 14.1749 14.4678 14.8659 15.3507 16.0400 30.7740 30.8988 33.7247 33.7878 40.8551 40.8698 k = 0.0625 0.3125 0.5625 ( 138 PWs) bands (ev): 10.7085 10.8084 12.1741 12.8043 12.9336 13.5240 14.0692 14.5092 14.7234 15.2371 16.0289 16.6640 29.1779 29.3166 32.1712 32.2444 36.8932 36.9256 k = 0.0625 0.3125 0.6875 ( 133 PWs) bands (ev): 11.2957 11.5400 11.9397 12.5484 12.9046 13.4753 14.4036 14.8450 15.0349 15.6271 17.2347 17.7194 27.8676 28.0076 30.8865 30.9605 33.0735 33.1456 k = 0.0625 0.3125 0.8125 ( 130 PWs) bands (ev): 11.3696 11.7104 11.7475 12.3536 13.2034 13.7884 14.6284 15.0919 15.2362 15.9385 19.0417 19.3575 26.8878 27.0192 29.2129 29.3228 30.3727 30.4481 k = 0.0625 0.3125 0.9375 ( 131 PWs) bands (ev): 11.2948 11.6495 11.6627 12.2549 13.4765 14.0990 14.6808 15.2555 15.2773 16.1319 20.9472 21.1410 26.1151 26.2573 26.9024 27.0571 29.7600 29.8232 k = 0.0625 0.4375 0.4375 ( 137 PWs) bands (ev): 10.5145 10.5986 12.4369 13.0164 13.0651 13.5997 13.7885 14.1940 14.4044 14.9608 15.9871 16.6425 28.9029 29.0564 31.9635 32.0444 41.5448 41.5952 k = 0.0625 0.4375 0.5625 ( 137 PWs) bands (ev): 11.2288 11.4390 12.4102 12.7128 12.9954 13.2787 13.9515 14.4445 14.5477 15.2386 16.9246 17.4823 27.3061 27.4797 30.5208 30.6133 37.8526 37.8804 k = 0.0625 0.4375 0.6875 ( 133 PWs) bands (ev): 11.7090 12.0358 12.2445 12.4935 12.7806 13.0948 14.2082 14.7701 14.7986 15.5936 18.3854 18.7945 25.9956 26.1766 29.4149 29.5137 33.9396 34.0002 k = 0.0625 0.4375 0.8125 ( 134 PWs) bands (ev): 11.7595 12.1089 12.1243 12.5712 12.6990 13.1612 14.3662 14.9517 15.0634 15.9208 20.3953 20.6736 25.0218 25.1980 28.5993 28.7031 30.4237 30.5173 k = 0.0625 0.4375 0.9375 ( 134 PWs) bands (ev): 11.6193 11.9982 12.0977 12.7003 12.7200 13.3276 14.4007 14.9795 15.2534 16.1304 22.5953 22.7861 24.4439 24.6102 27.1378 27.2793 28.5983 28.6993 k = 0.0625 0.5625 0.5625 ( 135 PWs) bands (ev): 11.5893 11.9526 12.4831 12.6118 12.9327 13.2282 13.9627 14.5507 14.5610 15.3801 18.1187 18.5599 25.6869 25.8865 29.2082 29.3170 38.5013 38.5481 k = 0.0625 0.5625 0.6875 ( 132 PWs) bands (ev): 11.8101 12.1489 12.2979 12.5573 12.7091 13.3209 14.1539 14.7421 14.7985 15.6348 19.7651 20.0804 24.3377 24.5491 28.2595 28.3828 35.0838 35.1324 k = 0.0625 0.5625 0.8125 ( 132 PWs) bands (ev): 11.8041 11.9957 12.2004 12.5494 12.7319 13.3439 14.3255 14.9097 15.0643 15.9238 21.8334 22.0503 23.3781 23.5881 27.6376 27.7725 31.5114 31.5840 k = 0.0625 0.6875 0.6875 ( 133 PWs) bands (ev): 11.6399 11.9436 12.1647 12.3551 13.0615 13.6728 14.3240 14.9168 14.9221 15.7597 21.4064 21.6282 22.9984 23.2255 27.4699 27.6164 35.3479 35.3777 k = 0.0625 0.6875 0.8125 ( 133 PWs) bands (ev): 11.4421 11.7380 11.8559 12.2858 13.3410 13.9565 14.5417 15.0967 15.1428 15.9544 21.5562 21.7616 23.8556 24.0254 27.0036 27.1674 32.7493 32.7908 k = 0.0625 0.8125 0.8125 ( 131 PWs) bands (ev): 11.1201 11.4825 11.4947 12.0716 13.9549 14.5910 14.7914 15.1741 15.4153 16.0286 20.2951 20.4868 25.7264 25.8628 26.8181 26.9812 33.0048 33.0093 k = 0.1875 0.1875 0.1875 ( 138 PWs) bands (ev): 7.6009 7.6492 12.8131 13.3397 13.3397 13.5204 14.0883 14.0883 14.3955 14.3955 15.0189 15.0189 34.4497 34.5198 40.9210 41.0612 43.4311 43.4311 k = 0.1875 0.1875 0.3125 ( 141 PWs) bands (ev): 8.3653 8.3997 12.6743 13.3515 13.3857 13.4247 14.0894 14.1504 14.3272 14.6163 14.9817 15.2744 32.3245 32.4272 39.9224 40.0243 40.8551 40.9108 k = 0.1875 0.1875 0.4375 ( 140 PWs) bands (ev): 9.3978 9.4007 12.4374 13.0808 13.2940 13.5955 13.9280 14.3052 14.5971 14.8607 15.2792 15.5523 30.4599 30.5866 38.4696 38.5099 38.5254 38.5774 k = 0.1875 0.1875 0.5625 ( 136 PWs) bands (ev): 10.4009 10.4974 12.1502 12.7562 13.1563 13.7493 13.8536 14.5524 15.0748 15.3566 15.7988 15.9833 28.8588 28.9976 36.0254 36.0267 36.4105 36.4558 k = 0.1875 0.1875 0.6875 ( 136 PWs) bands (ev): 11.0145 11.2673 11.8520 12.4335 13.2982 13.8614 14.1754 14.8637 15.2130 15.9705 16.6526 17.1393 27.5389 27.6761 32.5137 32.5806 34.7616 34.7913 k = 0.1875 0.1875 0.8125 ( 133 PWs) bands (ev): 11.1506 11.5015 11.6084 12.1907 13.6801 14.2718 14.5145 15.1834 15.2437 16.0410 18.4634 18.7832 26.5365 26.6621 29.1461 29.2680 33.6037 33.6180 k = 0.1875 0.3125 0.3125 ( 141 PWs) bands (ev): 9.0539 9.0562 12.7056 13.3303 13.3382 13.4139 14.0166 14.1056 14.3847 14.8155 15.0679 15.5061 30.1635 30.2999 38.4234 38.4431 42.1840 42.2309 k = 0.1875 0.3125 0.4375 ( 140 PWs) bands (ev): 9.8900 9.9596 12.6549 13.1982 13.2212 13.4980 13.8326 14.1694 14.5782 15.2189 15.2856 15.9125 28.3023 28.4675 36.7166 36.7315 40.4913 40.5239 k = 0.1875 0.3125 0.5625 ( 139 PWs) bands (ev): 10.6893 10.8885 12.4740 12.9808 12.9971 13.6168 13.7049 14.3668 14.9418 15.6726 15.9862 16.5864 26.7327 26.9174 35.1173 35.1463 37.1941 37.2264 k = 0.1875 0.3125 0.6875 ( 136 PWs) bands (ev): 11.2249 11.5756 12.1590 12.6433 12.9913 13.5896 13.9980 14.6524 15.1340 15.9057 17.4387 17.8764 25.4603 25.6511 32.9657 33.0163 34.3356 34.3972 k = 0.1875 0.3125 0.8125 ( 132 PWs) bands (ev): 11.4302 11.8535 11.8723 12.3787 13.1715 13.7686 14.3101 14.9470 15.1581 15.9696 19.4441 19.7430 24.5101 24.6946 29.6692 29.7762 33.2448 33.2919 k = 0.1875 0.4375 0.4375 ( 137 PWs) bands (ev): 10.4533 10.6410 12.8864 13.0797 13.3633 13.4731 13.6954 14.1118 14.5682 15.3159 15.8374 16.4839 26.4728 26.6755 35.0195 35.0568 41.0816 41.1426 k = 0.1875 0.4375 0.5625 ( 135 PWs) bands (ev): 10.9662 11.2950 12.7868 12.9521 13.2167 13.5615 13.6186 14.2473 14.7972 15.5607 16.8301 17.3488 24.9652 25.1987 33.5837 33.6359 38.1085 38.1301 k = 0.1875 0.4375 0.6875 ( 135 PWs) bands (ev): 11.3939 11.8370 12.3909 12.8111 12.8953 13.5003 13.8755 14.5009 15.0053 15.7957 18.4123 18.7729 23.7843 24.0375 32.4084 32.4678 34.3626 34.4251 k = 0.1875 0.4375 0.8125 ( 135 PWs) bands (ev): 11.7257 12.0563 12.2234 12.4793 12.8060 13.4168 14.1444 14.7539 15.0725 15.8983 20.4301 20.6747 23.0201 23.2802 30.4575 30.5448 32.0010 32.0766 k = 0.1875 0.5625 0.5625 ( 131 PWs) bands (ev): 11.2159 11.6493 12.6387 13.0855 13.0983 13.6522 13.6546 14.2766 14.8474 15.6328 17.9821 18.3717 23.5672 23.8462 32.2410 32.3087 38.8935 38.9393 k = 0.1875 0.5625 0.6875 ( 129 PWs) bands (ev): 11.4719 11.9742 12.3381 12.7367 13.0070 13.6041 13.8644 14.4861 14.9984 15.7988 19.4532 19.7188 22.6521 22.9620 31.2151 31.2944 35.4731 35.5209 k = 0.1875 0.6875 0.6875 ( 132 PWs) bands (ev): 11.4708 11.9819 12.1267 12.5234 13.0883 13.6981 14.0260 14.6603 15.0994 15.9010 19.8876 20.1383 22.7899 23.0672 30.2823 30.3770 35.8535 35.8867 k = 0.3125 0.3125 0.3125 ( 144 PWs) bands (ev): 9.5480 9.6138 12.9795 13.3074 13.3074 13.4880 13.9772 13.9772 14.7137 14.7137 15.4290 15.4290 28.0020 28.1789 39.7053 39.8519 42.5482 42.5483 k = 0.3125 0.3125 0.4375 ( 141 PWs) bands (ev): 10.1280 10.3089 13.1778 13.2066 13.3211 13.5853 13.8475 13.9791 14.9903 15.0038 15.6896 15.7307 26.1785 26.3947 38.7747 38.8933 40.2369 40.2941 k = 0.3125 0.3125 0.5625 ( 140 PWs) bands (ev): 10.6775 10.9960 12.8770 13.2028 13.3142 13.4602 13.7878 14.1117 15.1635 15.9249 16.0919 16.6157 24.6848 24.9336 36.9196 36.9618 38.3236 38.3720 k = 0.3125 0.3125 0.6875 ( 134 PWs) bands (ev): 11.1364 11.5720 12.4713 12.8847 13.1422 13.7086 13.7444 14.3549 15.2010 15.9807 17.8164 18.1797 23.5282 23.7981 33.6947 33.7366 36.8529 36.8927 k = 0.3125 0.4375 0.4375 ( 140 PWs) bands (ev): 10.4051 10.7096 13.1457 13.2506 13.7351 13.7589 13.8867 14.0476 14.8923 15.5225 15.6488 16.1691 24.4534 24.7247 37.8912 37.9525 40.8341 40.8485 k = 0.3125 0.4375 0.5625 ( 136 PWs) bands (ev): 10.7190 11.1211 12.9554 13.3409 13.4956 13.6751 13.9721 14.1127 15.0757 15.8427 16.5971 17.0356 23.1488 23.4710 36.6166 36.6435 38.8116 38.8463 k = 0.3125 0.4375 0.6875 ( 134 PWs) bands (ev): 11.0798 11.5464 12.6492 13.0993 13.3446 13.5680 13.8950 14.1986 15.1218 15.9053 18.1783 18.4665 22.3706 22.7244 34.4993 34.5202 36.3837 36.4405 k = 0.3125 0.5625 0.5625 ( 131 PWs) bands (ev): 10.8493 11.2978 12.8677 13.3746 13.3920 13.7181 14.0035 14.1806 15.0778 15.8558 17.4194 17.7366 22.2590 22.6374 35.5451 35.5511 39.6702 39.7157 k = 0.4375 0.4375 0.4375 ( 135 PWs) bands (ev): 10.4369 10.8225 13.1549 13.1549 13.7871 13.7871 14.8288 14.8519 15.1065 15.1065 15.8735 15.8735 22.9747 23.3218 38.7229 38.8810 42.0949 42.0949 k = 0.4375 0.4375 0.5625 ( 135 PWs) bands (ev): 10.5820 11.0131 13.0613 13.1984 13.6619 13.8286 14.3820 14.7406 15.1721 15.9462 16.2684 16.6262 22.1540 22.5551 38.0022 38.1163 40.7938 40.8417 k = 0.1875 0.0625 0.0625 ( 137 PWs) bands (ev): 6.7846 6.8393 12.9192 13.2577 13.2626 13.6638 14.0250 14.0297 14.2814 14.4864 14.8758 15.0924 38.7314 38.7720 41.2331 41.3052 42.3907 42.4165 k = 0.3125 0.0625 0.0625 ( 136 PWs) bands (ev): 7.6070 7.6586 12.6393 13.3608 13.4741 13.4895 14.0680 14.2299 14.2604 14.6074 14.6613 15.2220 37.1037 37.1348 39.7722 39.8356 39.8820 39.9318 k = 0.4375 0.0625 0.0625 ( 135 PWs) bands (ev): 8.7357 8.7710 12.2824 12.9760 13.5956 13.8124 14.0771 14.2100 14.5891 14.7660 14.7834 15.3939 35.3109 35.3706 37.4908 37.5433 38.3056 38.3454 k = 0.5625 0.0625 0.0625 ( 135 PWs) bands (ev): 9.9140 9.9459 11.9082 12.5741 13.6561 14.1721 14.2012 14.5315 14.9385 14.9822 15.2555 15.5874 33.5751 33.6361 35.3700 35.4113 35.5129 35.5332 k = 0.6875 0.0625 0.0625 ( 131 PWs) bands (ev): 10.5993 10.7837 11.5731 12.2154 14.1693 14.6052 14.6664 15.0985 15.3575 15.3757 15.7875 15.9313 31.6704 31.7352 32.3903 32.4562 33.6319 33.6531 k = 0.8125 0.0625 0.0625 ( 131 PWs) bands (ev): 10.7399 11.0399 11.3232 11.9488 14.7461 14.9511 15.2207 15.4335 15.6664 15.9931 16.8602 17.0976 28.5248 28.6641 31.1011 31.1343 32.3809 32.3822 k = 0.9375 0.0625 0.0625 ( 131 PWs) bands (ev): 10.7120 11.0524 11.1903 11.8073 15.0355 15.1563 15.2846 15.7967 15.8195 16.1500 18.4448 18.4897 26.1390 26.3536 30.4888 30.5051 31.7064 31.7229 k = 0.1875 0.1875 0.0625 ( 140 PWs) bands (ev): 7.2006 7.2535 12.8465 13.3143 13.3211 13.5763 14.0734 14.0850 14.2594 14.4931 14.8546 15.1115 36.7719 36.8013 39.5792 39.6067 43.3170 43.3852 k = 0.1875 0.3125 0.0625 ( 138 PWs) bands (ev): 7.9990 8.0453 12.6337 13.3415 13.4070 13.5015 14.1199 14.1391 14.2688 14.6566 14.7471 15.3016 34.7598 34.8286 37.6193 37.6341 42.3768 42.4265 k = 0.3125 0.0625 0.1875 ( 138 PWs) bands (ev): 7.9990 8.0453 12.6337 13.3415 13.4070 13.5015 14.1199 14.1391 14.2688 14.6566 14.7471 15.3016 34.7598 34.8286 37.6193 37.6341 42.3768 42.4265 k = 0.1875 0.4375 0.0625 ( 138 PWs) bands (ev): 9.0904 9.1141 12.3291 13.0108 13.3597 13.7843 13.9925 14.2508 14.5333 14.9097 14.9101 15.5847 32.9216 33.0138 35.7430 35.7848 39.8396 39.8599 k = 0.4375 0.0625 0.1875 ( 138 PWs) bands (ev): 9.0904 9.1141 12.3291 13.0108 13.3597 13.7843 13.9925 14.2508 14.5333 14.9097 14.9101 15.5847 32.9216 33.0138 35.7430 35.7848 39.8396 39.8599 k = 0.1875 0.5625 0.0625 ( 138 PWs) bands (ev): 10.2077 10.2573 11.9981 12.6531 13.2690 13.8453 14.1356 14.6644 14.8653 15.3039 15.3321 15.9831 31.2988 31.3994 34.0092 34.0586 36.2156 36.2507 k = 0.5625 0.0625 0.1875 ( 138 PWs) bands (ev): 10.2077 10.2573 11.9981 12.6531 13.2690 13.8453 14.1356 14.6644 14.8653 15.3039 15.3321 15.9831 31.2988 31.3994 34.0092 34.0586 36.2156 36.2507 k = 0.1875 0.6875 0.0625 ( 135 PWs) bands (ev): 10.8602 11.0620 11.6950 12.3281 13.5131 14.0608 14.5208 15.0074 15.2287 15.7246 16.2192 16.7570 29.9297 30.0244 32.0387 32.1055 33.0119 33.0714 k = 0.6875 0.0625 0.1875 ( 135 PWs) bands (ev): 10.8602 11.0620 11.6950 12.3281 13.5131 14.0608 14.5208 15.0074 15.2287 15.7246 16.2192 16.7570 29.9297 30.0244 32.0387 32.1055 33.0119 33.0714 k = 0.1875 0.8125 0.0625 ( 131 PWs) bands (ev): 10.9747 11.2887 11.4658 12.0850 13.9925 14.5988 14.8447 15.1715 15.5084 15.9790 17.8153 18.1311 28.5535 28.6662 29.2294 29.3300 31.7247 31.7573 k = 0.8125 0.0625 0.1875 ( 131 PWs) bands (ev): 10.9747 11.2887 11.4658 12.0850 13.9925 14.5988 14.8447 15.1715 15.5084 15.9790 17.8153 18.1311 28.5535 28.6662 29.2294 29.3300 31.7247 31.7573 k = 0.1875 0.9375 0.0625 ( 129 PWs) bands (ev): 10.9314 11.2823 11.3440 11.9564 14.3240 14.9868 14.9944 15.2639 15.6077 16.1366 19.4789 19.6337 26.2485 26.4476 28.5011 28.5727 31.1408 31.1606 k = 0.9375 0.0625 0.1875 ( 129 PWs) bands (ev): 10.9314 11.2823 11.3440 11.9564 14.3240 14.9868 14.9944 15.2639 15.6077 16.1366 19.4789 19.6337 26.2485 26.4476 28.5011 28.5727 31.1408 31.1606 k = 0.3125 0.3125 0.0625 ( 140 PWs) bands (ev): 8.7452 8.7759 12.5628 13.2473 13.3426 13.5931 14.0150 14.0849 14.3392 14.7083 14.9193 15.6010 32.6357 32.7361 35.5471 35.5896 43.6390 43.7096 k = 0.3125 0.4375 0.0625 ( 140 PWs) bands (ev): 9.7411 9.7503 12.3967 13.0552 13.1833 13.7806 13.8047 14.1749 14.4678 14.8659 15.3507 16.0400 30.7740 30.8988 33.7247 33.7878 40.8551 40.8698 k = 0.4375 0.0625 0.3125 ( 140 PWs) bands (ev): 9.7411 9.7503 12.3967 13.0552 13.1833 13.7806 13.8047 14.1749 14.4678 14.8659 15.3507 16.0400 30.7740 30.8988 33.7247 33.7878 40.8551 40.8698 k = 0.3125 0.5625 0.0625 ( 138 PWs) bands (ev): 10.7085 10.8084 12.1741 12.8043 12.9336 13.5240 14.0692 14.5092 14.7234 15.2371 16.0289 16.6640 29.1779 29.3166 32.1712 32.2444 36.8932 36.9256 k = 0.5625 0.0625 0.3125 ( 138 PWs) bands (ev): 10.7085 10.8084 12.1741 12.8043 12.9336 13.5240 14.0692 14.5092 14.7234 15.2371 16.0289 16.6640 29.1779 29.3166 32.1712 32.2444 36.8932 36.9256 k = 0.3125 0.6875 0.0625 ( 133 PWs) bands (ev): 11.2957 11.5400 11.9397 12.5484 12.9046 13.4753 14.4036 14.8450 15.0349 15.6271 17.2347 17.7194 27.8676 28.0076 30.8865 30.9605 33.0735 33.1456 k = 0.6875 0.0625 0.3125 ( 133 PWs) bands (ev): 11.2957 11.5400 11.9397 12.5484 12.9046 13.4753 14.4036 14.8450 15.0349 15.6271 17.2347 17.7194 27.8676 28.0076 30.8865 30.9605 33.0735 33.1456 k = 0.3125 0.8125 0.0625 ( 130 PWs) bands (ev): 11.3696 11.7104 11.7475 12.3536 13.2034 13.7884 14.6284 15.0919 15.2362 15.9385 19.0417 19.3575 26.8878 27.0192 29.2129 29.3228 30.3727 30.4481 k = 0.8125 0.0625 0.3125 ( 130 PWs) bands (ev): 11.3696 11.7104 11.7475 12.3536 13.2034 13.7884 14.6284 15.0919 15.2362 15.9385 19.0417 19.3575 26.8878 27.0192 29.2129 29.3228 30.3727 30.4481 k = 0.3125 0.9375 0.0625 ( 131 PWs) bands (ev): 11.2948 11.6495 11.6627 12.2549 13.4765 14.0990 14.6808 15.2555 15.2773 16.1319 20.9472 21.1410 26.1151 26.2573 26.9024 27.0571 29.7600 29.8232 k = 0.9375 0.0625 0.3125 ( 131 PWs) bands (ev): 11.2948 11.6495 11.6627 12.2549 13.4765 14.0990 14.6808 15.2555 15.2773 16.1319 20.9472 21.1410 26.1151 26.2573 26.9024 27.0571 29.7600 29.8232 k = 0.4375 0.4375 0.0625 ( 137 PWs) bands (ev): 10.5145 10.5986 12.4369 13.0164 13.0651 13.5997 13.7885 14.1940 14.4044 14.9608 15.9871 16.6425 28.9029 29.0564 31.9635 32.0444 41.5448 41.5952 k = 0.4375 0.5625 0.0625 ( 137 PWs) bands (ev): 11.2288 11.4390 12.4102 12.7128 12.9954 13.2787 13.9515 14.4445 14.5477 15.2386 16.9246 17.4823 27.3061 27.4797 30.5208 30.6133 37.8526 37.8804 k = 0.5625 0.0625 0.4375 ( 137 PWs) bands (ev): 11.2288 11.4390 12.4102 12.7128 12.9954 13.2787 13.9515 14.4445 14.5477 15.2386 16.9246 17.4823 27.3061 27.4797 30.5208 30.6133 37.8526 37.8804 k = 0.4375 0.6875 0.0625 ( 133 PWs) bands (ev): 11.7090 12.0358 12.2445 12.4935 12.7806 13.0948 14.2082 14.7701 14.7986 15.5936 18.3854 18.7945 25.9956 26.1766 29.4149 29.5137 33.9396 34.0002 k = 0.6875 0.0625 0.4375 ( 133 PWs) bands (ev): 11.7090 12.0358 12.2445 12.4935 12.7806 13.0948 14.2082 14.7701 14.7986 15.5936 18.3854 18.7945 25.9956 26.1766 29.4149 29.5137 33.9396 34.0002 k = 0.4375 0.8125 0.0625 ( 134 PWs) bands (ev): 11.7595 12.1089 12.1243 12.5712 12.6990 13.1612 14.3662 14.9517 15.0634 15.9208 20.3953 20.6736 25.0218 25.1980 28.5993 28.7031 30.4237 30.5173 k = 0.8125 0.0625 0.4375 ( 134 PWs) bands (ev): 11.7595 12.1089 12.1243 12.5712 12.6990 13.1612 14.3662 14.9517 15.0634 15.9208 20.3953 20.6736 25.0218 25.1980 28.5993 28.7031 30.4237 30.5173 k = 0.4375 0.9375 0.0625 ( 134 PWs) bands (ev): 11.6193 11.9982 12.0977 12.7003 12.7200 13.3276 14.4007 14.9795 15.2534 16.1304 22.5953 22.7861 24.4439 24.6102 27.1378 27.2793 28.5983 28.6993 k = 0.9375 0.0625 0.4375 ( 134 PWs) bands (ev): 11.6193 11.9982 12.0977 12.7003 12.7200 13.3276 14.4007 14.9795 15.2534 16.1304 22.5953 22.7861 24.4439 24.6102 27.1378 27.2793 28.5983 28.6993 k = 0.5625 0.5625 0.0625 ( 135 PWs) bands (ev): 11.5893 11.9526 12.4831 12.6118 12.9327 13.2282 13.9627 14.5507 14.5610 15.3801 18.1187 18.5599 25.6869 25.8865 29.2082 29.3170 38.5013 38.5481 k = 0.5625 0.6875 0.0625 ( 132 PWs) bands (ev): 11.8101 12.1489 12.2979 12.5573 12.7091 13.3209 14.1539 14.7421 14.7985 15.6348 19.7651 20.0804 24.3377 24.5491 28.2595 28.3828 35.0838 35.1324 k = 0.6875 0.0625 0.5625 ( 132 PWs) bands (ev): 11.8101 12.1489 12.2979 12.5573 12.7091 13.3209 14.1539 14.7421 14.7985 15.6348 19.7651 20.0804 24.3377 24.5491 28.2595 28.3828 35.0838 35.1324 k = 0.5625 0.8125 0.0625 ( 132 PWs) bands (ev): 11.8041 11.9957 12.2004 12.5494 12.7319 13.3439 14.3255 14.9097 15.0643 15.9238 21.8334 22.0503 23.3781 23.5881 27.6376 27.7725 31.5114 31.5840 k = 0.8125 0.0625 0.5625 ( 132 PWs) bands (ev): 11.8041 11.9957 12.2004 12.5494 12.7319 13.3439 14.3255 14.9097 15.0643 15.9238 21.8334 22.0503 23.3781 23.5881 27.6376 27.7725 31.5114 31.5840 k = 0.6875 0.6875 0.0625 ( 133 PWs) bands (ev): 11.6399 11.9436 12.1647 12.3551 13.0615 13.6728 14.3240 14.9168 14.9221 15.7597 21.4064 21.6282 22.9984 23.2255 27.4699 27.6164 35.3479 35.3777 k = 0.6875 0.8125 0.0625 ( 133 PWs) bands (ev): 11.4421 11.7380 11.8559 12.2858 13.3410 13.9565 14.5417 15.0967 15.1428 15.9544 21.5562 21.7616 23.8556 24.0254 27.0036 27.1674 32.7493 32.7908 k = 0.8125 0.0625 0.6875 ( 133 PWs) bands (ev): 11.4421 11.7380 11.8559 12.2858 13.3410 13.9565 14.5417 15.0967 15.1428 15.9544 21.5562 21.7616 23.8556 24.0254 27.0036 27.1674 32.7493 32.7908 k = 0.8125 0.8125 0.0625 ( 131 PWs) bands (ev): 11.1201 11.4825 11.4947 12.0716 13.9549 14.5910 14.7914 15.1741 15.4153 16.0286 20.2951 20.4868 25.7264 25.8628 26.8181 26.9812 33.0048 33.0093 k = 0.3125 0.1875 0.1875 ( 141 PWs) bands (ev): 8.3653 8.3997 12.6743 13.3515 13.3857 13.4247 14.0894 14.1504 14.3272 14.6163 14.9817 15.2744 32.3245 32.4272 39.9224 40.0243 40.8551 40.9108 k = 0.4375 0.1875 0.1875 ( 140 PWs) bands (ev): 9.3978 9.4007 12.4374 13.0808 13.2940 13.5955 13.9280 14.3052 14.5971 14.8607 15.2792 15.5523 30.4599 30.5866 38.4696 38.5099 38.5254 38.5774 k = 0.5625 0.1875 0.1875 ( 136 PWs) bands (ev): 10.4009 10.4974 12.1502 12.7562 13.1563 13.7493 13.8536 14.5524 15.0748 15.3566 15.7988 15.9833 28.8588 28.9976 36.0254 36.0267 36.4105 36.4558 k = 0.6875 0.1875 0.1875 ( 136 PWs) bands (ev): 11.0145 11.2673 11.8520 12.4335 13.2982 13.8614 14.1754 14.8637 15.2130 15.9705 16.6526 17.1393 27.5389 27.6761 32.5137 32.5806 34.7616 34.7913 k = 0.8125 0.1875 0.1875 ( 133 PWs) bands (ev): 11.1506 11.5015 11.6084 12.1907 13.6801 14.2718 14.5145 15.1834 15.2437 16.0410 18.4634 18.7832 26.5365 26.6621 29.1461 29.2680 33.6037 33.6180 k = 0.3125 0.3125 0.1875 ( 141 PWs) bands (ev): 9.0539 9.0562 12.7056 13.3303 13.3382 13.4139 14.0166 14.1056 14.3847 14.8155 15.0679 15.5061 30.1635 30.2999 38.4234 38.4431 42.1840 42.2309 k = 0.3125 0.4375 0.1875 ( 140 PWs) bands (ev): 9.8900 9.9596 12.6549 13.1982 13.2212 13.4980 13.8326 14.1694 14.5782 15.2189 15.2856 15.9125 28.3023 28.4675 36.7166 36.7315 40.4913 40.5239 k = 0.4375 0.1875 0.3125 ( 140 PWs) bands (ev): 9.8900 9.9596 12.6549 13.1982 13.2212 13.4980 13.8326 14.1694 14.5782 15.2189 15.2856 15.9125 28.3023 28.4675 36.7166 36.7315 40.4913 40.5239 k = 0.3125 0.5625 0.1875 ( 139 PWs) bands (ev): 10.6893 10.8885 12.4740 12.9808 12.9971 13.6168 13.7049 14.3668 14.9418 15.6726 15.9862 16.5864 26.7327 26.9174 35.1173 35.1463 37.1941 37.2264 k = 0.5625 0.1875 0.3125 ( 139 PWs) bands (ev): 10.6893 10.8885 12.4740 12.9808 12.9971 13.6168 13.7049 14.3668 14.9418 15.6726 15.9862 16.5864 26.7327 26.9174 35.1173 35.1463 37.1941 37.2264 k = 0.3125 0.6875 0.1875 ( 136 PWs) bands (ev): 11.2249 11.5756 12.1590 12.6433 12.9913 13.5896 13.9980 14.6524 15.1340 15.9057 17.4387 17.8764 25.4603 25.6511 32.9657 33.0163 34.3356 34.3972 k = 0.6875 0.1875 0.3125 ( 136 PWs) bands (ev): 11.2249 11.5756 12.1590 12.6433 12.9913 13.5896 13.9980 14.6524 15.1340 15.9057 17.4387 17.8764 25.4603 25.6511 32.9657 33.0163 34.3356 34.3972 k = 0.3125 0.8125 0.1875 ( 132 PWs) bands (ev): 11.4302 11.8535 11.8723 12.3787 13.1715 13.7686 14.3101 14.9470 15.1581 15.9696 19.4441 19.7430 24.5101 24.6946 29.6692 29.7762 33.2448 33.2919 k = 0.8125 0.1875 0.3125 ( 132 PWs) bands (ev): 11.4302 11.8535 11.8723 12.3787 13.1715 13.7686 14.3101 14.9470 15.1581 15.9696 19.4441 19.7430 24.5101 24.6946 29.6692 29.7762 33.2448 33.2919 k = 0.4375 0.4375 0.1875 ( 137 PWs) bands (ev): 10.4533 10.6410 12.8864 13.0797 13.3633 13.4731 13.6954 14.1118 14.5682 15.3159 15.8374 16.4839 26.4728 26.6755 35.0195 35.0568 41.0816 41.1426 k = 0.4375 0.5625 0.1875 ( 135 PWs) bands (ev): 10.9662 11.2950 12.7868 12.9521 13.2167 13.5615 13.6186 14.2473 14.7972 15.5607 16.8301 17.3488 24.9652 25.1987 33.5837 33.6359 38.1085 38.1301 k = 0.5625 0.1875 0.4375 ( 135 PWs) bands (ev): 10.9662 11.2950 12.7868 12.9521 13.2167 13.5615 13.6186 14.2473 14.7972 15.5607 16.8301 17.3488 24.9652 25.1987 33.5837 33.6359 38.1085 38.1301 k = 0.4375 0.6875 0.1875 ( 135 PWs) bands (ev): 11.3939 11.8370 12.3909 12.8111 12.8953 13.5003 13.8755 14.5009 15.0053 15.7957 18.4123 18.7729 23.7843 24.0375 32.4084 32.4678 34.3626 34.4251 k = 0.6875 0.1875 0.4375 ( 135 PWs) bands (ev): 11.3939 11.8370 12.3909 12.8111 12.8953 13.5003 13.8755 14.5009 15.0053 15.7957 18.4123 18.7729 23.7843 24.0375 32.4084 32.4678 34.3626 34.4251 k = 0.4375 0.8125 0.1875 ( 135 PWs) bands (ev): 11.7257 12.0563 12.2234 12.4793 12.8060 13.4168 14.1444 14.7539 15.0725 15.8983 20.4301 20.6747 23.0201 23.2802 30.4575 30.5448 32.0010 32.0766 k = 0.8125 0.1875 0.4375 ( 135 PWs) bands (ev): 11.7257 12.0563 12.2234 12.4793 12.8060 13.4168 14.1444 14.7539 15.0725 15.8983 20.4301 20.6747 23.0201 23.2802 30.4575 30.5448 32.0010 32.0766 k = 0.5625 0.5625 0.1875 ( 131 PWs) bands (ev): 11.2159 11.6493 12.6387 13.0855 13.0983 13.6522 13.6546 14.2766 14.8474 15.6328 17.9821 18.3717 23.5672 23.8462 32.2410 32.3087 38.8935 38.9393 k = 0.5625 0.6875 0.1875 ( 129 PWs) bands (ev): 11.4719 11.9742 12.3381 12.7367 13.0070 13.6041 13.8644 14.4861 14.9984 15.7988 19.4532 19.7188 22.6521 22.9620 31.2151 31.2944 35.4731 35.5209 k = 0.6875 0.1875 0.5625 ( 129 PWs) bands (ev): 11.4719 11.9742 12.3381 12.7367 13.0070 13.6041 13.8644 14.4861 14.9984 15.7988 19.4532 19.7188 22.6521 22.9620 31.2151 31.2944 35.4731 35.5209 k = 0.6875 0.6875 0.1875 ( 132 PWs) bands (ev): 11.4708 11.9819 12.1267 12.5234 13.0883 13.6981 14.0260 14.6603 15.0994 15.9010 19.8876 20.1383 22.7899 23.0672 30.2823 30.3770 35.8535 35.8867 k = 0.4375 0.3125 0.3125 ( 141 PWs) bands (ev): 10.1280 10.3089 13.1778 13.2066 13.3211 13.5853 13.8475 13.9791 14.9903 15.0038 15.6896 15.7307 26.1785 26.3947 38.7747 38.8933 40.2369 40.2941 k = 0.5625 0.3125 0.3125 ( 140 PWs) bands (ev): 10.6775 10.9960 12.8770 13.2028 13.3142 13.4602 13.7878 14.1117 15.1635 15.9249 16.0919 16.6157 24.6848 24.9336 36.9196 36.9618 38.3236 38.3720 k = 0.6875 0.3125 0.3125 ( 134 PWs) bands (ev): 11.1364 11.5720 12.4713 12.8847 13.1422 13.7086 13.7444 14.3549 15.2010 15.9807 17.8164 18.1797 23.5282 23.7981 33.6947 33.7366 36.8529 36.8927 k = 0.4375 0.4375 0.3125 ( 140 PWs) bands (ev): 10.4051 10.7096 13.1457 13.2506 13.7351 13.7589 13.8867 14.0476 14.8923 15.5225 15.6488 16.1691 24.4534 24.7247 37.8912 37.9525 40.8341 40.8485 k = 0.4375 0.5625 0.3125 ( 136 PWs) bands (ev): 10.7190 11.1211 12.9554 13.3409 13.4956 13.6751 13.9721 14.1127 15.0757 15.8427 16.5971 17.0356 23.1488 23.4710 36.6166 36.6435 38.8116 38.8463 k = 0.5625 0.3125 0.4375 ( 136 PWs) bands (ev): 10.7190 11.1211 12.9554 13.3409 13.4956 13.6751 13.9721 14.1127 15.0757 15.8427 16.5971 17.0356 23.1488 23.4710 36.6166 36.6435 38.8116 38.8463 k = 0.4375 0.6875 0.3125 ( 134 PWs) bands (ev): 11.0798 11.5464 12.6492 13.0993 13.3446 13.5680 13.8950 14.1986 15.1218 15.9053 18.1783 18.4665 22.3706 22.7244 34.4993 34.5202 36.3837 36.4405 k = 0.6875 0.3125 0.4375 ( 134 PWs) bands (ev): 11.0798 11.5464 12.6492 13.0993 13.3446 13.5680 13.8950 14.1986 15.1218 15.9053 18.1783 18.4665 22.3706 22.7244 34.4993 34.5202 36.3837 36.4405 k = 0.5625 0.5625 0.3125 ( 131 PWs) bands (ev): 10.8493 11.2978 12.8677 13.3746 13.3920 13.7181 14.0035 14.1806 15.0778 15.8558 17.4194 17.7366 22.2590 22.6374 35.5451 35.5511 39.6702 39.7157 k = 0.5625 0.4375 0.4375 ( 135 PWs) bands (ev): 10.5820 11.0131 13.0613 13.1984 13.6619 13.8286 14.3820 14.7406 15.1721 15.9462 16.2684 16.6262 22.1540 22.5551 38.0022 38.1163 40.7938 40.9391 the Fermi energy is 15.7818 ev ! total energy = -85.89190276 Ry Harris-Foulkes estimate = -85.89190274 Ry estimated scf accuracy < 2.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 0.62074269 Ry hartree contribution = 14.41281173 Ry xc contribution = -30.17117280 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = -0.00024003 Ry total magnetization = 0.58 0.00 0.00 Bohr mag/cell absolute magnetization = 0.68 Bohr mag/cell convergence has been achieved in 8 iterations Writing output data file ni.save PWSCF : 40.39s CPU time, 43.21s wall time init_run : 2.49s CPU electrons : 37.35s CPU Called by init_run: wfcinit : 1.24s CPU potinit : 0.08s CPU Called by electrons: c_bands : 30.52s CPU ( 8 calls, 3.815 s avg) sum_band : 5.82s CPU ( 8 calls, 0.728 s avg) v_of_rho : 0.55s CPU ( 9 calls, 0.061 s avg) newd : 0.35s CPU ( 9 calls, 0.039 s avg) mix_rho : 0.06s CPU ( 8 calls, 0.008 s avg) Called by c_bands: init_us_2 : 0.25s CPU ( 2448 calls, 0.000 s avg) cegterg : 29.62s CPU ( 1152 calls, 0.026 s avg) Called by *egterg: h_psi : 21.97s CPU ( 3665 calls, 0.006 s avg) s_psi : 0.52s CPU ( 3665 calls, 0.000 s avg) g_psi : 0.48s CPU ( 2369 calls, 0.000 s avg) cdiaghg : 4.64s CPU ( 3521 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.53s CPU ( 3665 calls, 0.000 s avg) General routines calbec : 0.59s CPU ( 4817 calls, 0.000 s avg) cft3s : 19.33s CPU ( 253595 calls, 0.000 s avg) interpolate : 0.09s CPU ( 68 calls, 0.001 s avg) davcio : 0.02s CPU ( 3600 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example06/reference/fe.pen.out0000644000175000017500000012613512341373025021121 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18: 9: 0 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 24 npp = 24 ncplane = 576 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 24 307 3367 15 155 1205 55 249 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 4 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 70 gaussian broad. (Ry)= 0.0500 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0135135 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0135135 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0135135 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0135135 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0135135 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0135135 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0135135 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0405405 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0135135 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0135135 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0135135 k( 12) = ( 0.0625000 0.0625000 -0.0625000), wk = 0.0135135 k( 13) = ( 0.0625000 0.0625000 -0.1875000), wk = 0.0135135 k( 14) = ( 0.1875000 -0.0625000 0.0625000), wk = 0.0135135 k( 15) = ( 0.1875000 0.0625000 -0.0625000), wk = 0.0135135 k( 16) = ( -0.0625000 0.1875000 0.0625000), wk = 0.0135135 k( 17) = ( -0.0625000 -0.1875000 -0.0625000), wk = 0.0135135 k( 18) = ( 0.0625000 0.0625000 -0.3125000), wk = 0.0135135 k( 19) = ( 0.3125000 -0.0625000 0.0625000), wk = 0.0135135 k( 20) = ( 0.3125000 0.0625000 -0.0625000), wk = 0.0135135 k( 21) = ( -0.0625000 0.3125000 0.0625000), wk = 0.0135135 k( 22) = ( -0.0625000 -0.3125000 -0.0625000), wk = 0.0135135 k( 23) = ( 0.0625000 0.0625000 -0.4375000), wk = 0.0135135 k( 24) = ( 0.4375000 -0.0625000 0.0625000), wk = 0.0135135 k( 25) = ( 0.4375000 0.0625000 -0.0625000), wk = 0.0135135 k( 26) = ( -0.0625000 0.4375000 0.0625000), wk = 0.0135135 k( 27) = ( -0.0625000 -0.4375000 -0.0625000), wk = 0.0135135 k( 28) = ( 0.0625000 0.0625000 -0.5625000), wk = 0.0135135 k( 29) = ( 0.5625000 -0.0625000 0.0625000), wk = 0.0135135 k( 30) = ( 0.5625000 0.0625000 -0.0625000), wk = 0.0135135 k( 31) = ( -0.0625000 0.5625000 0.0625000), wk = 0.0135135 k( 32) = ( -0.0625000 -0.5625000 -0.0625000), wk = 0.0135135 k( 33) = ( 0.0625000 0.0625000 -0.6875000), wk = 0.0135135 k( 34) = ( 0.6875000 -0.0625000 0.0625000), wk = 0.0135135 k( 35) = ( 0.6875000 0.0625000 -0.0625000), wk = 0.0135135 k( 36) = ( -0.0625000 0.6875000 0.0625000), wk = 0.0135135 k( 37) = ( -0.0625000 -0.6875000 -0.0625000), wk = 0.0135135 k( 38) = ( 0.0625000 0.0625000 -0.8125000), wk = 0.0135135 k( 39) = ( 0.8125000 -0.0625000 0.0625000), wk = 0.0135135 k( 40) = ( 0.8125000 0.0625000 -0.0625000), wk = 0.0135135 k( 41) = ( -0.0625000 0.8125000 0.0625000), wk = 0.0135135 k( 42) = ( -0.0625000 -0.8125000 -0.0625000), wk = 0.0135135 k( 43) = ( 0.0625000 0.0625000 -0.9375000), wk = 0.0405405 k( 44) = ( 0.1875000 0.0625000 -0.1875000), wk = 0.0135135 k( 45) = ( -0.1875000 -0.0625000 -0.1875000), wk = 0.0135135 k( 46) = ( 0.1875000 -0.1875000 0.0625000), wk = 0.0135135 k( 47) = ( 0.1875000 0.1875000 -0.0625000), wk = 0.0135135 k( 48) = ( -0.0625000 0.1875000 0.1875000), wk = 0.0135135 k( 49) = ( 0.1875000 0.0625000 -0.3125000), wk = 0.0135135 k( 50) = ( -0.1875000 -0.0625000 -0.3125000), wk = 0.0135135 k( 51) = ( 0.3125000 -0.1875000 0.0625000), wk = 0.0135135 k( 52) = ( 0.3125000 0.1875000 -0.0625000), wk = 0.0135135 k( 53) = ( -0.0625000 0.3125000 0.1875000), wk = 0.0135135 k( 54) = ( -0.0625000 -0.3125000 -0.1875000), wk = 0.0135135 k( 55) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0135135 k( 56) = ( 0.1875000 -0.3125000 -0.0625000), wk = 0.0135135 k( 57) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0135135 k( 58) = ( 0.3125000 -0.0625000 -0.1875000), wk = 0.0135135 k( 59) = ( -0.0625000 -0.1875000 0.3125000), wk = 0.0135135 k( 60) = ( 0.1875000 0.0625000 -0.4375000), wk = 0.0135135 k( 61) = ( -0.1875000 -0.0625000 -0.4375000), wk = 0.0135135 k( 62) = ( 0.4375000 -0.1875000 0.0625000), wk = 0.0135135 k( 63) = ( 0.4375000 0.1875000 -0.0625000), wk = 0.0135135 k( 64) = ( -0.0625000 0.4375000 0.1875000), wk = 0.0135135 k( 65) = ( -0.0625000 -0.4375000 -0.1875000), wk = 0.0135135 k( 66) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0135135 k( 67) = ( 0.1875000 -0.4375000 -0.0625000), wk = 0.0135135 k( 68) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0135135 k( 69) = ( 0.4375000 -0.0625000 -0.1875000), wk = 0.0135135 k( 70) = ( -0.0625000 -0.1875000 0.4375000), wk = 0.0135135 G cutoff = 137.8834 ( 3367 G-vectors) FFT grid: ( 24, 24, 24) G cutoff = 68.9417 ( 1205 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 constraint energy (Ryd) = 8.02202247 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.319637 0.000000 0.290431 magnetization/charge: 0.498097 0.000000 0.043578 polar coord.: r, theta, phi [deg] : 3.332318 85.000000 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== Starting wfc are 12 atomic + 4 random wfc total cpu time spent up to now is 1.35 secs per-process dynamical memory: 11.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.4 constraint energy (Ryd) = 6.78548616 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.568754 magnetization : 3.093081 0.000000 0.270612 magnetization/charge: 0.470878 0.000000 0.041197 polar coord.: r, theta, phi [deg] : 3.104897 84.999951 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 4.07 secs total energy = -55.70589717 Ry Harris-Foulkes estimate = -55.76528052 Ry estimated scf accuracy < 0.24768119 Ry total magnetization = 2.35 0.00 0.21 Bohr mag/cell absolute magnetization = 2.36 Bohr mag/cell lambda = 1.00 Ry iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.10E-03, avg # of iterations = 1.0 constraint energy (Ryd) = 4.85666317 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.433700 magnetization : 2.693495 0.000000 0.235650 magnetization/charge: 0.418654 0.000000 0.036627 polar coord.: r, theta, phi [deg] : 2.703784 85.000014 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 5.70 secs total energy = -55.68123633 Ry Harris-Foulkes estimate = -55.71643791 Ry estimated scf accuracy < 0.08260566 Ry total magnetization = 2.36 0.00 0.21 Bohr mag/cell absolute magnetization = 2.37 Bohr mag/cell lambda = 1.00 Ry iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.03E-03, avg # of iterations = 2.1 constraint energy (Ryd) = 3.67711779 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.423122 magnetization : 2.408381 0.000000 0.210711 magnetization/charge: 0.374955 0.000000 0.032805 polar coord.: r, theta, phi [deg] : 2.417581 84.999892 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 7.58 secs total energy = -55.69771277 Ry Harris-Foulkes estimate = -55.69837985 Ry estimated scf accuracy < 0.00391033 Ry total magnetization = 2.32 0.00 0.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell lambda = 1.00 Ry iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.89E-05, avg # of iterations = 3.3 constraint energy (Ryd) = 2.12026596 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.374334 magnetization : 1.948669 0.000000 0.170498 magnetization/charge: 0.305705 0.000000 0.026748 polar coord.: r, theta, phi [deg] : 1.956113 84.999652 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 9.96 secs total energy = -55.69208638 Ry Harris-Foulkes estimate = -55.69901161 Ry estimated scf accuracy < 0.00267815 Ry total magnetization = 2.14 0.00 0.19 Bohr mag/cell absolute magnetization = 2.15 Bohr mag/cell lambda = 1.00 Ry iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.35E-05, avg # of iterations = 2.2 constraint energy (Ryd) = 1.60507184 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.404330 magnetization : 1.760190 0.000000 0.154009 magnetization/charge: 0.274844 0.000000 0.024048 polar coord.: r, theta, phi [deg] : 1.766914 84.999595 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 11.96 secs total energy = -55.69104534 Ry Harris-Foulkes estimate = -55.69395753 Ry estimated scf accuracy < 0.00164749 Ry total magnetization = 1.93 0.00 0.17 Bohr mag/cell absolute magnetization = 1.94 Bohr mag/cell lambda = 1.00 Ry iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.06E-05, avg # of iterations = 2.0 constraint energy (Ryd) = 1.33846190 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.405728 magnetization : 1.650613 0.000000 0.144422 magnetization/charge: 0.257678 0.000000 0.022546 polar coord.: r, theta, phi [deg] : 1.656919 84.999572 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 13.86 secs total energy = -55.69055241 Ry Harris-Foulkes estimate = -55.69189654 Ry estimated scf accuracy < 0.00021596 Ry total magnetization = 1.77 0.00 0.15 Bohr mag/cell absolute magnetization = 1.78 Bohr mag/cell lambda = 1.00 Ry iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.70E-06, avg # of iterations = 3.0 constraint energy (Ryd) = 1.30472546 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.405565 magnetization : 1.635995 0.000000 0.143144 magnetization/charge: 0.255402 0.000000 0.022347 polar coord.: r, theta, phi [deg] : 1.642246 84.999559 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 16.04 secs total energy = -55.69060113 Ry Harris-Foulkes estimate = -55.69076532 Ry estimated scf accuracy < 0.00007448 Ry total magnetization = 1.69 0.00 0.15 Bohr mag/cell absolute magnetization = 1.70 Bohr mag/cell lambda = 1.00 Ry iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 9.31E-07, avg # of iterations = 1.0 constraint energy (Ryd) = 1.80164427 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403151 magnetization : 1.835242 0.000000 0.160571 magnetization/charge: 0.286616 0.000000 0.025077 polar coord.: r, theta, phi [deg] : 1.842253 84.999734 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 17.74 secs total energy = -55.69247279 Ry Harris-Foulkes estimate = -55.69060457 Ry estimated scf accuracy < 0.00006081 Ry total magnetization = 1.68 0.00 0.15 Bohr mag/cell absolute magnetization = 1.69 Bohr mag/cell lambda = 1.00 Ry iteration # 9 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 2.3 constraint energy (Ryd) = 1.20745661 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403688 magnetization : 1.592759 0.000000 0.139356 magnetization/charge: 0.248725 0.000000 0.021762 polar coord.: r, theta, phi [deg] : 1.598843 84.999732 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 19.90 secs total energy = -55.68942023 Ry Harris-Foulkes estimate = -55.69290431 Ry estimated scf accuracy < 0.00023638 Ry total magnetization = 1.82 0.00 0.16 Bohr mag/cell absolute magnetization = 1.83 Bohr mag/cell lambda = 1.00 Ry iteration # 10 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 2.5 constraint energy (Ryd) = 1.25334470 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403376 magnetization : 1.613365 0.000000 0.141159 magnetization/charge: 0.251955 0.000000 0.022044 polar coord.: r, theta, phi [deg] : 1.619529 84.999734 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 22.17 secs total energy = -55.69035001 Ry Harris-Foulkes estimate = -55.69011365 Ry estimated scf accuracy < 0.00000417 Ry total magnetization = 1.64 0.00 0.14 Bohr mag/cell absolute magnetization = 1.65 Bohr mag/cell lambda = 1.00 Ry iteration # 11 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.21E-08, avg # of iterations = 2.1 constraint energy (Ryd) = 1.23918046 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403171 magnetization : 1.607045 0.000000 0.140608 magnetization/charge: 0.250976 0.000000 0.021959 polar coord.: r, theta, phi [deg] : 1.613185 84.999662 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 24.07 secs total energy = -55.69028379 Ry Harris-Foulkes estimate = -55.69035527 Ry estimated scf accuracy < 0.00000124 Ry total magnetization = 1.66 0.00 0.15 Bohr mag/cell absolute magnetization = 1.67 Bohr mag/cell lambda = 1.00 Ry iteration # 12 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.55E-08, avg # of iterations = 2.0 constraint energy (Ryd) = 1.24057066 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.403057 magnetization : 1.607667 0.000000 0.140664 magnetization/charge: 0.251078 0.000000 0.021968 polar coord.: r, theta, phi [deg] : 1.613809 84.999581 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 25.88 secs total energy = -55.69029283 Ry Harris-Foulkes estimate = -55.69028429 Ry estimated scf accuracy < 0.00000054 Ry total magnetization = 1.66 0.00 0.14 Bohr mag/cell absolute magnetization = 1.66 Bohr mag/cell lambda = 1.00 Ry iteration # 13 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 6.71E-09, avg # of iterations = 1.5 constraint energy (Ryd) = 1.24281349 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.402921 magnetization : 1.608670 0.000000 0.140753 magnetization/charge: 0.251240 0.000000 0.021983 polar coord.: r, theta, phi [deg] : 1.614815 84.999562 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 27.60 secs total energy = -55.69030523 Ry Harris-Foulkes estimate = -55.69029289 Ry estimated scf accuracy < 0.00000016 Ry total magnetization = 1.66 0.00 0.14 Bohr mag/cell absolute magnetization = 1.66 Bohr mag/cell lambda = 1.00 Ry iteration # 14 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.99E-09, avg # of iterations = 2.2 constraint energy (Ryd) = 1.24140062 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.402912 magnetization : 1.608038 0.000000 0.140698 magnetization/charge: 0.251142 0.000000 0.021974 polar coord.: r, theta, phi [deg] : 1.614182 84.999559 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 29.53 secs total energy = -55.69029852 Ry Harris-Foulkes estimate = -55.69030527 Ry estimated scf accuracy < 0.00000002 Ry total magnetization = 1.66 0.00 0.15 Bohr mag/cell absolute magnetization = 1.66 Bohr mag/cell lambda = 1.00 Ry iteration # 15 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.90E-10, avg # of iterations = 3.3 constraint energy (Ryd) = 1.24069337 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.402963 magnetization : 1.607722 0.000000 0.140670 magnetization/charge: 0.251090 0.000000 0.021969 polar coord.: r, theta, phi [deg] : 1.613864 84.999569 0.000000 constrained moment : 0.498097 0.000000 0.043578 ============================================================================== total cpu time spent up to now is 31.76 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.9510 6.1972 12.2410 12.2410 12.4711 13.4416 13.4416 13.6871 13.8573 13.8573 15.3269 15.3269 38.9719 38.9719 39.2158 39.2158 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.6174 6.8683 12.1401 12.2142 12.7713 13.3252 13.4020 13.5624 13.9991 14.0010 14.9917 15.4835 36.4898 36.8591 38.1007 38.4417 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.8218 8.0977 12.1697 12.1747 13.0702 13.1921 13.3358 13.3492 14.2594 14.4236 14.4428 15.7458 34.1130 34.5976 35.7762 36.2006 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 9.2171 9.5967 11.8744 12.3823 12.8119 13.0631 13.5377 13.6896 14.0543 14.7940 14.9741 16.1778 32.0176 32.5959 33.0368 33.4999 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 10.1574 10.7922 11.1709 12.3178 12.7381 13.1207 13.9138 14.1900 14.3292 15.5110 16.1736 17.2483 29.9417 30.4398 30.5391 30.9215 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 10.2586 10.4555 11.1468 11.5427 13.2762 13.7328 14.4770 14.6508 14.9686 16.0007 18.6645 19.4164 27.7948 28.0894 28.3347 28.5482 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.9074 9.9096 10.9039 10.9502 13.9972 14.4608 14.9652 15.2526 15.7625 16.3395 21.8272 22.3668 25.8985 26.1775 26.3467 26.5739 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.6135 9.6135 10.6335 10.6335 14.6561 15.0049 15.0049 15.9865 16.3800 16.3800 24.7320 24.7321 25.0940 25.0940 25.1259 25.4523 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 7.2341 7.4959 11.8720 12.0996 13.0363 13.2481 13.2564 13.6596 13.9226 14.4993 15.0929 15.3995 34.2314 34.6951 36.9587 37.2923 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1888 28.9406 29.5444 32.8941 33.3460 k = 0.0625 0.0625-0.0625 ( 141 PWs) bands (ev): 5.9510 6.1972 12.2410 12.2410 12.4711 13.4416 13.4416 13.6871 13.8573 13.8573 15.3269 15.3269 38.9719 38.9719 39.2158 39.2158 k = 0.0625 0.0625-0.1875 ( 148 PWs) bands (ev): 6.6174 6.8683 12.1401 12.2142 12.7713 13.3252 13.4020 13.5624 13.9991 14.0010 14.9917 15.4835 36.4898 36.8591 38.1007 38.4417 k = 0.1875-0.0625 0.0625 ( 148 PWs) bands (ev): 6.6174 6.8683 12.1401 12.2142 12.7713 13.3252 13.4020 13.5624 13.9991 14.0010 14.9917 15.4835 36.4898 36.8591 38.1007 38.4417 k = 0.1875 0.0625-0.0625 ( 148 PWs) bands (ev): 6.6174 6.8683 12.1401 12.2142 12.7713 13.3252 13.4020 13.5624 13.9991 14.0010 14.9917 15.4835 36.4898 36.8591 38.1007 38.4417 k =-0.0625 0.1875 0.0625 ( 148 PWs) bands (ev): 6.6174 6.8683 12.1401 12.2142 12.7713 13.3252 13.4020 13.5624 13.9991 14.0010 14.9917 15.4835 36.4898 36.8591 38.1007 38.4417 k =-0.0625-0.1875-0.0625 ( 148 PWs) bands (ev): 6.6174 6.8683 12.1401 12.2142 12.7713 13.3252 13.4020 13.5624 13.9991 14.0010 14.9917 15.4835 36.4898 36.8591 38.1007 38.4417 k = 0.0625 0.0625-0.3125 ( 152 PWs) bands (ev): 7.8218 8.0977 12.1697 12.1747 13.0702 13.1921 13.3358 13.3492 14.2594 14.4236 14.4428 15.7458 34.1130 34.5976 35.7762 36.2006 k = 0.3125-0.0625 0.0625 ( 152 PWs) bands (ev): 7.8218 8.0977 12.1697 12.1747 13.0702 13.1921 13.3358 13.3492 14.2594 14.4236 14.4428 15.7458 34.1130 34.5976 35.7762 36.2006 k = 0.3125 0.0625-0.0625 ( 152 PWs) bands (ev): 7.8218 8.0977 12.1697 12.1747 13.0702 13.1921 13.3358 13.3492 14.2594 14.4236 14.4428 15.7458 34.1130 34.5976 35.7762 36.2006 k =-0.0625 0.3125 0.0625 ( 152 PWs) bands (ev): 7.8218 8.0977 12.1697 12.1747 13.0702 13.1921 13.3358 13.3492 14.2594 14.4236 14.4428 15.7458 34.1130 34.5976 35.7762 36.2006 k =-0.0625-0.3125-0.0625 ( 152 PWs) bands (ev): 7.8218 8.0977 12.1697 12.1747 13.0702 13.1921 13.3358 13.3492 14.2594 14.4237 14.4428 15.7458 34.1130 34.5976 35.7762 36.2006 k = 0.0625 0.0625-0.4375 ( 156 PWs) bands (ev): 9.2171 9.5967 11.8744 12.3823 12.8119 13.0631 13.5377 13.6896 14.0543 14.7940 14.9741 16.1778 32.0176 32.5959 33.0368 33.4999 k = 0.4375-0.0625 0.0625 ( 156 PWs) bands (ev): 9.2171 9.5967 11.8744 12.3823 12.8119 13.0631 13.5377 13.6896 14.0543 14.7940 14.9741 16.1778 32.0176 32.5958 33.0368 33.4999 k = 0.4375 0.0625-0.0625 ( 156 PWs) bands (ev): 9.2171 9.5967 11.8744 12.3823 12.8119 13.0631 13.5377 13.6896 14.0543 14.7940 14.9741 16.1778 32.0176 32.5958 33.0368 33.4999 k =-0.0625 0.4375 0.0625 ( 156 PWs) bands (ev): 9.2171 9.5967 11.8744 12.3823 12.8119 13.0631 13.5377 13.6896 14.0543 14.7940 14.9741 16.1778 32.0176 32.5959 33.0368 33.4999 k =-0.0625-0.4375-0.0625 ( 156 PWs) bands (ev): 9.2171 9.5967 11.8744 12.3823 12.8119 13.0631 13.5377 13.6896 14.0543 14.7940 14.9741 16.1778 32.0176 32.5959 33.0368 33.4999 k = 0.0625 0.0625-0.5625 ( 148 PWs) bands (ev): 10.1574 10.7922 11.1709 12.3178 12.7381 13.1207 13.9138 14.1900 14.3292 15.5110 16.1736 17.2483 29.9417 30.4398 30.5391 30.9215 k = 0.5625-0.0625 0.0625 ( 148 PWs) bands (ev): 10.1574 10.7922 11.1709 12.3178 12.7381 13.1207 13.9138 14.1900 14.3292 15.5110 16.1736 17.2484 29.9417 30.4398 30.5390 30.9215 k = 0.5625 0.0625-0.0625 ( 148 PWs) bands (ev): 10.1574 10.7922 11.1709 12.3178 12.7381 13.1207 13.9138 14.1900 14.3292 15.5110 16.1736 17.2484 29.9417 30.4398 30.5391 30.9215 k =-0.0625 0.5625 0.0625 ( 148 PWs) bands (ev): 10.1574 10.7922 11.1709 12.3178 12.7381 13.1207 13.9138 14.1900 14.3292 15.5110 16.1736 17.2483 29.9417 30.4398 30.5391 30.9215 k =-0.0625-0.5625-0.0625 ( 148 PWs) bands (ev): 10.1574 10.7922 11.1709 12.3178 12.7381 13.1207 13.9138 14.1900 14.3292 15.5110 16.1736 17.2483 29.9417 30.4398 30.5391 30.9215 k = 0.0625 0.0625-0.6875 ( 146 PWs) bands (ev): 10.2586 10.4555 11.1468 11.5427 13.2762 13.7328 14.4770 14.6508 14.9686 16.0007 18.6645 19.4164 27.7948 28.0894 28.3347 28.5482 k = 0.6875-0.0625 0.0625 ( 146 PWs) bands (ev): 10.2586 10.4555 11.1468 11.5427 13.2762 13.7328 14.4770 14.6508 14.9687 16.0007 18.6645 19.4164 27.7948 28.0894 28.3347 28.5482 k = 0.6875 0.0625-0.0625 ( 146 PWs) bands (ev): 10.2586 10.4555 11.1468 11.5427 13.2762 13.7328 14.4770 14.6508 14.9686 16.0007 18.6645 19.4164 27.7948 28.0894 28.3347 28.5482 k =-0.0625 0.6875 0.0625 ( 146 PWs) bands (ev): 10.2586 10.4555 11.1468 11.5427 13.2762 13.7328 14.4770 14.6508 14.9686 16.0007 18.6645 19.4164 27.7948 28.0894 28.3347 28.5482 k =-0.0625-0.6875-0.0625 ( 146 PWs) bands (ev): 10.2586 10.4555 11.1468 11.5427 13.2762 13.7328 14.4770 14.6508 14.9686 16.0007 18.6645 19.4164 27.7948 28.0894 28.3347 28.5482 k = 0.0625 0.0625-0.8125 ( 144 PWs) bands (ev): 9.9074 9.9096 10.9039 10.9502 13.9972 14.4608 14.9652 15.2526 15.7625 16.3395 21.8272 22.3668 25.8985 26.1775 26.3467 26.5739 k = 0.8125-0.0625 0.0625 ( 144 PWs) bands (ev): 9.9074 9.9096 10.9039 10.9502 13.9972 14.4608 14.9652 15.2526 15.7625 16.3395 21.8272 22.3668 25.8985 26.1775 26.3467 26.5739 k = 0.8125 0.0625-0.0625 ( 144 PWs) bands (ev): 9.9074 9.9096 10.9039 10.9502 13.9972 14.4608 14.9652 15.2526 15.7625 16.3395 21.8272 22.3668 25.8985 26.1775 26.3467 26.5739 k =-0.0625 0.8125 0.0625 ( 144 PWs) bands (ev): 9.9074 9.9096 10.9039 10.9502 13.9972 14.4608 14.9652 15.2526 15.7625 16.3395 21.8272 22.3668 25.8985 26.1775 26.3467 26.5739 k =-0.0625-0.8125-0.0625 ( 144 PWs) bands (ev): 9.9074 9.9096 10.9039 10.9502 13.9972 14.4608 14.9652 15.2526 15.7625 16.3395 21.8272 22.3668 25.8985 26.1775 26.3467 26.5739 k = 0.0625 0.0625-0.9375 ( 143 PWs) bands (ev): 9.6135 9.6135 10.6335 10.6335 14.6561 15.0049 15.0049 15.9865 16.3800 16.3800 24.7321 24.7321 25.0940 25.0940 25.1259 25.4523 k = 0.1875 0.0625-0.1875 ( 151 PWs) bands (ev): 7.2341 7.4959 11.8720 12.0996 13.0363 13.2481 13.2564 13.6596 13.9226 14.4993 15.0929 15.3996 34.2314 34.6951 36.9587 37.2924 k =-0.1875-0.0625-0.1875 ( 151 PWs) bands (ev): 7.2341 7.4959 11.8720 12.0996 13.0363 13.2481 13.2564 13.6596 13.9226 14.4993 15.0929 15.3996 34.2314 34.6951 36.9587 37.2923 k = 0.1875-0.1875 0.0625 ( 151 PWs) bands (ev): 7.2341 7.4959 11.8720 12.0996 13.0363 13.2481 13.2564 13.6596 13.9226 14.4993 15.0929 15.3995 34.2314 34.6951 36.9587 37.2923 k = 0.1875 0.1875-0.0625 ( 151 PWs) bands (ev): 7.2341 7.4959 11.8720 12.0996 13.0363 13.2481 13.2564 13.6596 13.9226 14.4993 15.0929 15.3995 34.2314 34.6951 36.9587 37.2923 k =-0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 7.2341 7.4959 11.8720 12.0996 13.0364 13.2481 13.2564 13.6596 13.9226 14.4993 15.0929 15.3995 34.2314 34.6951 36.9587 37.2923 k = 0.1875 0.0625-0.3125 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k =-0.1875-0.0625-0.3125 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6249 31.4686 32.0117 35.1676 35.5461 k = 0.3125-0.1875 0.0625 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6249 31.4686 32.0117 35.1676 35.5461 k = 0.3125 0.1875-0.0625 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6249 31.4686 32.0117 35.1676 35.5461 k =-0.0625 0.3125 0.1875 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k =-0.0625-0.3125-0.1875 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k = 0.1875-0.3125-0.0625 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0878 15.6249 31.4686 32.0117 35.1676 35.5461 k = 0.3125-0.0625-0.1875 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6249 31.4686 32.0117 35.1676 35.5461 k =-0.0625-0.1875 0.3125 ( 152 PWs) bands (ev): 8.3002 8.6126 11.7207 12.0347 12.8648 13.1318 13.4606 13.8069 14.1459 14.8486 15.0879 15.6248 31.4686 32.0117 35.1676 35.5461 k = 0.1875 0.0625-0.4375 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1889 28.9406 29.5445 32.8941 33.3460 k =-0.1875-0.0625-0.4375 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1888 28.9406 29.5445 32.8941 33.3460 k = 0.4375-0.1875 0.0625 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1889 28.9406 29.5444 32.8941 33.3460 k = 0.4375 0.1875-0.0625 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1889 28.9406 29.5444 32.8941 33.3460 k =-0.0625 0.4375 0.1875 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6023 16.1888 28.9406 29.5445 32.8941 33.3460 k =-0.0625-0.4375-0.1875 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1888 28.9406 29.5445 32.8941 33.3460 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1888 28.9406 29.5445 32.8941 33.3460 k = 0.1875-0.4375-0.0625 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6023 16.1888 28.9406 29.5445 32.8941 33.3460 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1889 28.9406 29.5445 32.8941 33.3460 k = 0.4375-0.0625-0.1875 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1889 28.9406 29.5445 32.8941 33.3460 k =-0.0625-0.1875 0.4375 ( 153 PWs) bands (ev): 9.4219 9.8941 11.6833 11.9894 12.7951 13.0634 13.3322 14.2461 14.6412 14.8731 15.6022 16.1888 28.9406 29.5444 32.8941 33.3460 the Fermi energy is 14.3661 ev ! total energy = -55.69029582 Ry Harris-Foulkes estimate = -55.69029853 Ry estimated scf accuracy < 9.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 8.87153447 Ry hartree contribution = 6.00691782 Ry xc contribution = -25.92672805 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00259201 Ry total magnetization = 1.66 0.00 0.14 Bohr mag/cell absolute magnetization = 1.66 Bohr mag/cell lambda = 1.00 Ry convergence has been achieved in 15 iterations Writing output data file fe.save PWSCF : 32.01s CPU time, 35.22s wall time init_run : 1.29s CPU electrons : 30.41s CPU Called by init_run: wfcinit : 0.53s CPU potinit : 0.02s CPU Called by electrons: c_bands : 23.99s CPU ( 15 calls, 1.599 s avg) sum_band : 5.61s CPU ( 15 calls, 0.374 s avg) v_of_rho : 0.14s CPU ( 16 calls, 0.009 s avg) newd : 0.39s CPU ( 16 calls, 0.024 s avg) mix_rho : 0.10s CPU ( 15 calls, 0.007 s avg) Called by c_bands: init_us_2 : 0.23s CPU ( 2170 calls, 0.000 s avg) cegterg : 23.08s CPU ( 1050 calls, 0.022 s avg) Called by *egterg: h_psi : 16.80s CPU ( 3570 calls, 0.005 s avg) s_psi : 0.49s CPU ( 3570 calls, 0.000 s avg) g_psi : 0.43s CPU ( 2450 calls, 0.000 s avg) cdiaghg : 3.34s CPU ( 3500 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.48s CPU ( 3570 calls, 0.000 s avg) General routines calbec : 0.48s CPU ( 4620 calls, 0.000 s avg) cft3s : 14.98s CPU ( 197254 calls, 0.000 s avg) interpolate : 0.12s CPU ( 124 calls, 0.001 s avg) davcio : 0.03s CPU ( 3220 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example06/reference/cu.cg.out0000644000175000017500000010405112341373025020736 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:10:42 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 307 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 59 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0019531 k( 2) = ( -0.1250000 0.1250000 -0.1250000), wk = 0.0156250 k( 3) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0156250 k( 4) = ( -0.3750000 0.3750000 -0.3750000), wk = 0.0156250 k( 5) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0078125 k( 6) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0078125 k( 7) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0312500 k( 8) = ( -0.2500000 0.5000000 -0.2500000), wk = 0.0312500 k( 9) = ( 0.6250000 -0.3750000 0.6250000), wk = 0.0312500 k( 10) = ( 0.5000000 -0.2500000 0.5000000), wk = 0.0312500 k( 11) = ( 0.3750000 -0.1250000 0.3750000), wk = 0.0312500 k( 12) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0156250 k( 13) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0078125 k( 14) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0312500 k( 15) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0312500 k( 16) = ( 0.6250000 -0.1250000 0.6250000), wk = 0.0312500 k( 17) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0156250 k( 18) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0078125 k( 19) = ( 0.8750000 -0.1250000 0.8750000), wk = 0.0312500 k( 20) = ( 0.7500000 0.0000000 0.7500000), wk = 0.0156250 k( 21) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0039062 k( 22) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0156250 k( 23) = ( 0.6250000 -0.3750000 0.8750000), wk = 0.0312500 k( 24) = ( 0.5000000 -0.2500000 0.7500000), wk = 0.0156250 k( 25) = ( 0.7500000 -0.2500000 1.0000000), wk = 0.0156250 k( 26) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.0312500 k( 27) = ( 0.5000000 0.0000000 0.7500000), wk = 0.0156250 k( 28) = ( -0.2500000 -1.0000000 0.0000000), wk = 0.0078125 k( 29) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0039062 k( 30) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0039062 k( 31) = ( 0.3750000 -0.1250000 -0.1250000), wk = 0.0156250 k( 32) = ( 0.5000000 -0.2500000 -0.2500000), wk = 0.0156250 k( 33) = ( -0.3750000 0.6250000 0.6250000), wk = 0.0156250 k( 34) = ( -0.2500000 0.5000000 0.5000000), wk = 0.0156250 k( 35) = ( -0.1250000 0.3750000 0.3750000), wk = 0.0156250 k( 36) = ( 0.0000000 0.2500000 0.2500000), wk = 0.0078125 k( 37) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0039062 k( 38) = ( 0.6250000 -0.1250000 -0.1250000), wk = 0.0156250 k( 39) = ( -0.2500000 0.7500000 0.7500000), wk = 0.0156250 k( 40) = ( -0.1250000 0.6250000 0.6250000), wk = 0.0156250 k( 41) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0078125 k( 42) = ( 0.7500000 0.0000000 0.0000000), wk = 0.0039062 k( 43) = ( -0.1250000 0.8750000 0.8750000), wk = 0.0156250 k( 44) = ( 0.0000000 0.7500000 0.7500000), wk = 0.0078125 k( 45) = ( -1.0000000 0.0000000 0.0000000), wk = 0.0019531 k( 46) = ( 0.5000000 0.0000000 -0.2500000), wk = 0.0156250 k( 47) = ( 0.0000000 -0.2500000 0.5000000), wk = 0.0156250 k( 48) = ( -0.3750000 0.8750000 0.6250000), wk = 0.0312500 k( 49) = ( 0.8750000 0.6250000 -0.3750000), wk = 0.0312500 k( 50) = ( -0.2500000 0.7500000 0.5000000), wk = 0.0312500 k( 51) = ( -0.2500000 1.0000000 0.7500000), wk = 0.0156250 k( 52) = ( 1.0000000 0.7500000 -0.2500000), wk = 0.0156250 k( 53) = ( -0.1250000 0.8750000 0.6250000), wk = 0.0312500 k( 54) = ( 0.8750000 0.6250000 -0.1250000), wk = 0.0312500 k( 55) = ( 0.0000000 0.7500000 0.5000000), wk = 0.0156250 k( 56) = ( 0.7500000 0.5000000 0.0000000), wk = 0.0156250 k( 57) = ( -1.0000000 0.0000000 -0.2500000), wk = 0.0078125 k( 58) = ( 0.0000000 -0.2500000 -1.0000000), wk = 0.0078125 k( 59) = ( -1.0000000 0.0000000 -0.5000000), wk = 0.0078125 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 338, 20) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.01 Mb ( 20, 20) Each matrix 0.01 Mb ( 13, 2, 20) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.993053 magnetization : 4.996526 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 4.996526 90.000000 0.000000 ============================================================================== Starting wfc are 12 atomic + 8 random wfc total cpu time spent up to now is 1.41 secs per-process dynamical memory: 14.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 5.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.542384 magnetization : 2.366295 0.000000 0.000000 magnetization/charge: 0.247977 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.366295 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 5.67 secs total energy = -87.34485445 Ry Harris-Foulkes estimate = -87.47068783 Ry estimated scf accuracy < 0.85800813 Ry total magnetization = 1.18 0.00 0.00 Bohr mag/cell absolute magnetization = 1.33 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 7.80E-03, avg # of iterations = 3.3 negative rho (up, down): 0.000E+00 0.508E-04 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.756650 magnetization : 1.558800 0.000000 0.000000 magnetization/charge: 0.159768 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 1.558800 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 8.17 secs total energy = -87.71853690 Ry Harris-Foulkes estimate = -87.93344505 Ry estimated scf accuracy < 0.74810492 Ry total magnetization = 0.15 0.00 0.00 Bohr mag/cell absolute magnetization = 0.22 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 6.80E-03, avg # of iterations = 3.0 negative rho (up, down): 0.000E+00 0.508E-04 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.851601 magnetization : -0.056325 0.000000 0.000000 magnetization/charge: -0.005717 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.056325 90.000000 -180.000000 ============================================================================== total cpu time spent up to now is 10.52 secs total energy = -87.82074505 Ry Harris-Foulkes estimate = -87.79459400 Ry estimated scf accuracy < 0.06651541 Ry total magnetization = 0.22 0.00 0.00 Bohr mag/cell absolute magnetization = 0.31 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 6.05E-04, avg # of iterations = 3.4 negative rho (up, down): 0.234E-05 0.508E-04 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.801370 magnetization : -0.130199 0.000000 0.000000 magnetization/charge: -0.013284 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.130199 90.000000 -180.000000 ============================================================================== total cpu time spent up to now is 13.14 secs total energy = -87.83375792 Ry Harris-Foulkes estimate = -87.84636875 Ry estimated scf accuracy < 0.02270823 Ry total magnetization = -0.02 0.00 0.00 Bohr mag/cell absolute magnetization = 0.03 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 2.06E-04, avg # of iterations = 3.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.811522 magnetization : 0.011723 0.000000 0.000000 magnetization/charge: 0.001195 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.011723 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 15.53 secs total energy = -87.84011411 Ry Harris-Foulkes estimate = -87.84037213 Ry estimated scf accuracy < 0.00117760 Ry total magnetization = -0.03 0.00 0.00 Bohr mag/cell absolute magnetization = 0.03 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.70 CG style diagonalization c_bands: 1 eigenvalues not converged ethr = 1.07E-05, avg # of iterations = 3.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.814629 magnetization : 0.010018 0.000000 0.000000 magnetization/charge: 0.001021 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.010018 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 18.22 secs total energy = -87.84036482 Ry Harris-Foulkes estimate = -87.84038918 Ry estimated scf accuracy < 0.00006198 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.01 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 5.63E-07, avg # of iterations = 3.4 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.813623 magnetization : -0.000848 0.000000 0.000000 magnetization/charge: -0.000086 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.000848 90.000000 -180.000000 ============================================================================== total cpu time spent up to now is 20.85 secs total energy = -87.84038575 Ry Harris-Foulkes estimate = -87.84038794 Ry estimated scf accuracy < 0.00000740 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 6.73E-08, avg # of iterations = 3.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.813907 magnetization : 0.000050 0.000000 0.000000 magnetization/charge: 0.000005 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.000050 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 23.30 secs total energy = -87.84038875 Ry Harris-Foulkes estimate = -87.84038924 Ry estimated scf accuracy < 0.00000099 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell iteration # 9 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 8.97E-09, avg # of iterations = 3.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.813845 magnetization : 0.000028 0.000000 0.000000 magnetization/charge: 0.000003 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.000028 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 25.63 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9903 4.9906 11.2121 11.2121 11.2121 11.2123 11.2123 11.2123 12.1017 12.1017 12.1019 12.1019 38.8594 38.8598 41.0136 41.0137 41.0138 41.0139 41.0139 41.0140 k =-0.1250 0.1250-0.1250 ( 165 PWs) bands (ev): 5.5710 5.5713 11.0972 11.0974 11.3139 11.3139 11.3141 11.3141 12.0713 12.0713 12.0715 12.0715 34.2726 34.2728 39.2716 39.2719 39.7096 39.7096 39.7098 39.7098 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1559 7.1562 10.9623 10.9625 11.3822 11.3822 11.3824 11.3824 12.1939 12.1939 12.1941 12.1941 27.5300 27.5302 38.3749 38.3750 38.3751 38.3751 38.4653 38.4657 k =-0.3750 0.3750-0.3750 ( 159 PWs) bands (ev): 8.7626 8.7627 11.2523 11.2523 11.2525 11.2525 11.7765 11.7766 12.5425 12.5425 12.5428 12.5428 21.8077 21.8079 37.4527 37.4530 37.7382 37.7383 37.7385 37.7386 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1197 9.1197 11.1775 11.1775 11.1777 11.1777 12.7174 12.7174 12.7176 12.7176 13.4639 13.4642 18.6473 18.6474 37.0201 37.0203 37.6123 37.6124 37.6125 37.6125 k = 0.0000 0.2500 0.0000 ( 165 PWs) bands (ev): 5.7621 5.7624 10.9832 10.9834 11.4053 11.4053 11.4055 11.4055 11.9008 11.9010 12.1876 12.1878 36.7469 36.7470 36.7472 36.7472 36.7679 36.7682 38.6741 38.6744 k =-0.1250 0.3750-0.1250 ( 160 PWs) bands (ev): 7.0147 7.0150 10.7594 10.7596 11.4425 11.4427 11.5635 11.5637 11.9842 11.9844 12.3198 12.3200 30.0799 30.0801 34.8371 34.8372 36.4463 36.4466 38.9426 38.9428 k =-0.2500 0.5000-0.2500 ( 158 PWs) bands (ev): 8.7316 8.7318 10.8361 10.8362 11.1914 11.1916 11.4999 11.5001 12.6052 12.6054 12.8158 12.8159 23.9455 23.9457 34.0874 34.0876 34.9386 34.9389 36.6385 36.6387 k = 0.6250-0.3750 0.6250 ( 163 PWs) bands (ev): 9.3905 9.3905 10.9735 10.9736 11.3807 11.3809 11.6285 11.6286 12.7295 12.7297 14.6438 14.6439 19.3258 19.3259 32.8149 32.8151 34.6303 34.6306 36.4067 36.4069 k = 0.5000-0.2500 0.5000 ( 161 PWs) bands (ev): 9.3182 9.3182 11.0470 11.0471 11.3799 11.3801 11.4901 11.4901 12.4962 12.4964 14.0608 14.0608 20.5873 20.5874 31.5903 31.5905 36.5331 36.5333 37.3113 37.3115 k = 0.3750-0.1250 0.3750 ( 159 PWs) bands (ev): 8.2149 8.2151 10.8167 10.8168 11.2664 11.2665 11.5182 11.5183 12.0427 12.0429 12.8332 12.8334 25.8888 25.8890 31.4964 31.4966 39.3195 39.3198 39.7103 39.7105 k = 0.2500 0.0000 0.2500 ( 160 PWs) bands (ev): 6.4957 6.4960 10.9088 10.9089 11.4024 11.4026 11.4846 11.4848 11.8808 11.8809 12.2902 12.2904 32.0430 32.0432 32.7835 32.7838 41.5266 41.5268 42.4816 42.4821 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7951 7.7954 10.4449 10.4450 11.6425 11.6427 11.9306 11.9306 11.9308 11.9308 12.3968 12.3970 32.3407 32.3407 32.3409 32.3410 33.7609 33.7612 34.5464 34.5467 k =-0.1250 0.6250-0.1250 ( 162 PWs) bands (ev): 9.0262 9.0263 10.2440 10.2441 11.4597 11.4599 12.0306 12.0308 12.6337 12.6339 12.9945 12.9946 26.9800 26.9802 30.3551 30.3553 31.0993 31.0996 35.0386 35.0388 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7744 9.7745 10.3375 10.3376 11.2740 11.2741 11.9057 11.9059 12.7612 12.7614 15.5349 15.5349 21.6032 21.6034 27.6767 27.6769 31.3028 31.3030 35.1343 35.1346 k = 0.6250-0.1250 0.6250 ( 162 PWs) bands (ev): 10.0265 10.0266 10.5350 10.5351 11.0777 11.0779 11.8009 11.8011 12.5183 12.5185 16.7784 16.7785 20.0961 20.0963 26.0440 26.0442 32.9725 32.9728 35.8429 35.8432 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6306 9.6308 10.6870 10.6871 10.9044 10.9045 11.7538 11.7540 12.1036 12.1038 14.2125 14.2126 24.5989 24.5991 26.0268 26.0270 35.9002 35.9005 37.3884 37.3886 k = 0.0000 0.7500 0.0000 ( 162 PWs) bands (ev): 9.2119 9.2119 9.9262 9.9263 12.5652 12.5652 12.5655 12.5655 12.6090 12.6093 13.2901 13.2903 26.4728 26.4730 29.3005 29.3005 29.3007 29.3007 33.3096 33.3098 k = 0.8750-0.1250 0.8750 ( 164 PWs) bands (ev): 9.4577 9.4577 9.8807 9.8808 12.2123 12.2124 12.4814 12.4817 12.8064 12.8067 15.9158 15.9160 23.7248 23.7249 25.2535 25.2537 29.0137 29.0140 34.1905 34.1907 k = 0.7500 0.0000 0.7500 ( 168 PWs) bands (ev): 9.8693 9.8694 10.1178 10.1179 11.5173 11.5174 12.2491 12.2493 12.6609 12.6611 19.0084 19.0086 20.5170 20.5172 22.9160 22.9162 30.3253 30.3255 34.7847 34.7849 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2662 9.2663 9.7172 9.7173 12.6977 12.6979 12.8722 12.8722 12.8725 12.8725 16.0646 16.0649 22.1124 22.1125 28.1802 28.1802 28.1804 28.1805 32.9253 32.9254 k =-0.2500 0.5000 0.0000 ( 156 PWs) bands (ev): 8.3852 8.3854 10.5346 10.5347 11.2128 11.2129 11.9398 11.9400 11.9926 11.9928 12.8710 12.8712 28.3805 28.3807 29.1687 29.1690 34.7038 34.7041 39.7261 39.7266 k = 0.6250-0.3750 0.8750 ( 161 PWs) bands (ev): 9.6577 9.6578 10.6138 10.6139 10.9352 10.9354 11.8101 11.8103 12.4704 12.4706 14.3857 14.3857 22.9179 22.9180 28.5930 28.5932 31.6521 31.6523 39.6666 39.6667 k = 0.5000-0.2500 0.7500 ( 164 PWs) bands (ev): 9.8978 9.8979 10.5968 10.5969 11.1687 11.1688 11.6980 11.6982 12.6587 12.6589 16.6937 16.6938 19.1460 19.1461 29.3161 29.3164 29.7926 29.7928 39.3676 39.3676 k = 0.7500-0.2500 1.0000 ( 166 PWs) bands (ev): 9.6207 9.6208 10.1242 10.1243 11.4258 11.4259 12.4033 12.4035 12.5614 12.5616 14.7945 14.7945 25.8723 25.8726 26.6522 26.6524 27.2680 27.2682 37.9004 37.9006 k = 0.6250-0.1250 0.8750 ( 161 PWs) bands (ev): 10.0012 10.0013 10.2741 10.2742 11.1336 11.1337 12.1351 12.1353 12.7446 12.7449 18.0204 18.0205 21.2278 21.2280 24.7962 24.7964 27.1035 27.1037 39.0197 39.0199 k = 0.5000 0.0000 0.7500 ( 158 PWs) bands (ev): 10.2801 10.2802 10.4650 10.4651 10.7106 10.7108 12.0139 12.0140 12.5655 12.5657 17.1297 17.1298 21.9674 21.9676 24.2090 24.2092 28.8760 28.8762 40.2138 40.2140 k =-0.2500-1.0000 0.0000 ( 164 PWs) bands (ev): 9.6011 9.6012 9.9544 9.9545 11.8940 11.8942 12.4339 12.4341 12.8725 12.8727 17.7251 17.7254 22.3942 22.3943 24.9311 24.9313 26.0252 26.0255 37.2967 37.2968 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0370 10.0371 10.6872 10.6872 10.6874 10.6874 12.0683 12.0685 12.8729 12.8731 20.9536 20.9536 20.9538 20.9538 23.1356 23.1358 24.0563 24.0565 44.6545 44.6567 k = 0.2500 0.0000 0.0000 ( 165 PWs) bands (ev): 5.7621 5.7624 10.9832 10.9834 11.4053 11.4053 11.4055 11.4055 11.9008 11.9010 12.1876 12.1878 36.7469 36.7469 36.7472 36.7472 36.7679 36.7682 38.6741 38.6743 k = 0.3750-0.1250-0.1250 ( 160 PWs) bands (ev): 7.0147 7.0150 10.7594 10.7596 11.4425 11.4427 11.5635 11.5637 11.9842 11.9844 12.3198 12.3200 30.0799 30.0801 34.8370 34.8373 36.4463 36.4466 38.9428 38.9428 k = 0.5000-0.2500-0.2500 ( 158 PWs) bands (ev): 8.7316 8.7318 10.8361 10.8362 11.1914 11.1916 11.4999 11.5001 12.6052 12.6054 12.8158 12.8159 23.9455 23.9457 34.0874 34.0876 34.9386 34.9389 36.6385 36.6387 k =-0.3750 0.6250 0.6250 ( 163 PWs) bands (ev): 9.3905 9.3905 10.9735 10.9736 11.3807 11.3809 11.6285 11.6286 12.7295 12.7297 14.6438 14.6439 19.3258 19.3259 32.8149 32.8151 34.6303 34.6306 36.4066 36.4069 k =-0.2500 0.5000 0.5000 ( 161 PWs) bands (ev): 9.3182 9.3182 11.0470 11.0471 11.3799 11.3801 11.4901 11.4901 12.4962 12.4964 14.0608 14.0608 20.5873 20.5874 31.5903 31.5905 36.5330 36.5333 37.3113 37.3116 k =-0.1250 0.3750 0.3750 ( 159 PWs) bands (ev): 8.2149 8.2151 10.8167 10.8168 11.2664 11.2665 11.5181 11.5183 12.0427 12.0429 12.8332 12.8334 25.8888 25.8890 31.4964 31.4966 39.3196 39.3198 39.7102 39.7105 k = 0.0000 0.2500 0.2500 ( 160 PWs) bands (ev): 6.4957 6.4960 10.9088 10.9089 11.4024 11.4026 11.4846 11.4848 11.8808 11.8809 12.2902 12.2904 32.0430 32.0432 32.7835 32.7838 41.5267 41.5270 42.4816 42.4837 k = 0.5000 0.0000 0.0000 ( 165 PWs) bands (ev): 7.7951 7.7954 10.4449 10.4450 11.6425 11.6427 11.9306 11.9306 11.9308 11.9308 12.3968 12.3970 32.3407 32.3407 32.3409 32.3409 33.7610 33.7612 34.5464 34.5466 k = 0.6250-0.1250-0.1250 ( 162 PWs) bands (ev): 9.0262 9.0263 10.2440 10.2441 11.4598 11.4599 12.0306 12.0308 12.6337 12.6339 12.9945 12.9946 26.9800 26.9802 30.3551 30.3553 31.0993 31.0996 35.0386 35.0388 k =-0.2500 0.7500 0.7500 ( 158 PWs) bands (ev): 9.7744 9.7745 10.3375 10.3376 11.2740 11.2741 11.9057 11.9059 12.7612 12.7614 15.5349 15.5349 21.6032 21.6034 27.6767 27.6769 31.3028 31.3030 35.1343 35.1345 k =-0.1250 0.6250 0.6250 ( 162 PWs) bands (ev): 10.0265 10.0266 10.5350 10.5351 11.0777 11.0779 11.8009 11.8011 12.5183 12.5185 16.7784 16.7785 20.0961 20.0963 26.0440 26.0442 32.9725 32.9728 35.8429 35.8432 k = 0.0000 0.5000 0.5000 ( 164 PWs) bands (ev): 9.6306 9.6308 10.6870 10.6871 10.9044 10.9045 11.7538 11.7540 12.1036 12.1038 14.2125 14.2126 24.5989 24.5991 26.0268 26.0270 35.9002 35.9005 37.3884 37.3886 k = 0.7500 0.0000 0.0000 ( 162 PWs) bands (ev): 9.2119 9.2119 9.9262 9.9263 12.5652 12.5652 12.5655 12.5655 12.6090 12.6093 13.2901 13.2903 26.4728 26.4730 29.3005 29.3005 29.3007 29.3008 33.3097 33.3098 k =-0.1250 0.8750 0.8750 ( 164 PWs) bands (ev): 9.4577 9.4577 9.8807 9.8808 12.2123 12.2124 12.4814 12.4817 12.8065 12.8067 15.9158 15.9160 23.7248 23.7249 25.2535 25.2537 29.0137 29.0140 34.1905 34.1907 k = 0.0000 0.7500 0.7500 ( 168 PWs) bands (ev): 9.8693 9.8694 10.1178 10.1179 11.5173 11.5174 12.2491 12.2493 12.6609 12.6611 19.0084 19.0086 20.5170 20.5172 22.9160 22.9162 30.3253 30.3255 34.7847 34.7849 k =-1.0000 0.0000 0.0000 ( 150 PWs) bands (ev): 9.2662 9.2663 9.7172 9.7173 12.6977 12.6979 12.8722 12.8722 12.8725 12.8725 16.0646 16.0649 22.1124 22.1125 28.1801 28.1802 28.1804 28.1804 32.9253 32.9259 k = 0.5000 0.0000-0.2500 ( 156 PWs) bands (ev): 8.3852 8.3854 10.5346 10.5347 11.2128 11.2129 11.9398 11.9400 11.9926 11.9928 12.8710 12.8712 28.3805 28.3807 29.1688 29.1690 34.7038 34.7041 39.7259 39.7262 k = 0.0000-0.2500 0.5000 ( 156 PWs) bands (ev): 8.3852 8.3854 10.5346 10.5347 11.2128 11.2129 11.9398 11.9400 11.9926 11.9928 12.8710 12.8712 28.3805 28.3807 29.1687 29.1690 34.7038 34.7041 39.7256 39.7264 k =-0.3750 0.8750 0.6250 ( 161 PWs) bands (ev): 9.6577 9.6578 10.6138 10.6139 10.9352 10.9354 11.8101 11.8103 12.4704 12.4706 14.3857 14.3857 22.9179 22.9180 28.5930 28.5932 31.6521 31.6523 39.6665 39.6669 k = 0.8750 0.6250-0.3750 ( 161 PWs) bands (ev): 9.6577 9.6578 10.6138 10.6139 10.9352 10.9354 11.8101 11.8103 12.4704 12.4706 14.3857 14.3857 22.9179 22.9180 28.5930 28.5932 31.6521 31.6523 39.6665 39.6668 k =-0.2500 0.7500 0.5000 ( 164 PWs) bands (ev): 9.8978 9.8979 10.5968 10.5969 11.1687 11.1688 11.6980 11.6982 12.6587 12.6589 16.6937 16.6938 19.1460 19.1461 29.3161 29.3164 29.7926 29.7928 39.3675 39.3677 k =-0.2500 1.0000 0.7500 ( 166 PWs) bands (ev): 9.6207 9.6208 10.1242 10.1243 11.4258 11.4259 12.4033 12.4035 12.5614 12.5616 14.7945 14.7945 25.8723 25.8726 26.6522 26.6524 27.2680 27.2682 37.9004 37.9005 k = 1.0000 0.7500-0.2500 ( 166 PWs) bands (ev): 9.6207 9.6208 10.1242 10.1243 11.4258 11.4259 12.4033 12.4035 12.5614 12.5616 14.7945 14.7945 25.8724 25.8726 26.6522 26.6524 27.2680 27.2682 37.9003 37.9007 k =-0.1250 0.8750 0.6250 ( 161 PWs) bands (ev): 10.0012 10.0013 10.2741 10.2742 11.1336 11.1337 12.1351 12.1353 12.7446 12.7449 18.0204 18.0205 21.2278 21.2280 24.7962 24.7964 27.1035 27.1037 39.0197 39.0199 k = 0.8750 0.6250-0.1250 ( 161 PWs) bands (ev): 10.0012 10.0013 10.2741 10.2742 11.1335 11.1337 12.1351 12.1353 12.7446 12.7449 18.0204 18.0205 21.2278 21.2280 24.7962 24.7964 27.1035 27.1037 39.0197 39.0199 k = 0.0000 0.7500 0.5000 ( 158 PWs) bands (ev): 10.2801 10.2802 10.4650 10.4651 10.7106 10.7108 12.0139 12.0140 12.5655 12.5657 17.1297 17.1298 21.9674 21.9676 24.2090 24.2092 28.8760 28.8762 40.2138 40.2140 k = 0.7500 0.5000 0.0000 ( 158 PWs) bands (ev): 10.2801 10.2802 10.4650 10.4651 10.7106 10.7108 12.0139 12.0140 12.5655 12.5657 17.1297 17.1298 21.9674 21.9676 24.2090 24.2092 28.8760 28.8762 40.2137 40.2140 k =-1.0000 0.0000-0.2500 ( 164 PWs) bands (ev): 9.6012 9.6012 9.9544 9.9545 11.8940 11.8942 12.4339 12.4341 12.8725 12.8727 17.7251 17.7254 22.3942 22.3943 24.9311 24.9313 26.0253 26.0255 37.2965 37.2969 k = 0.0000-0.2500-1.0000 ( 164 PWs) bands (ev): 9.6011 9.6012 9.9544 9.9545 11.8940 11.8942 12.4339 12.4341 12.8725 12.8727 17.7251 17.7254 22.3942 22.3943 24.9311 24.9313 26.0253 26.0255 37.2966 37.2969 k =-1.0000 0.0000-0.5000 ( 156 PWs) bands (ev): 10.0370 10.0371 10.6872 10.6872 10.6874 10.6874 12.0683 12.0685 12.8729 12.8731 20.9536 20.9536 20.9538 20.9538 23.1356 23.1358 24.0563 24.0565 44.6544 44.6547 the Fermi energy is 14.4914 ev ! total energy = -87.84038898 Ry Harris-Foulkes estimate = -87.84038898 Ry estimated scf accuracy < 3.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -10.24909628 Ry hartree contribution = 18.89878157 Ry xc contribution = -14.05779427 Ry ewald contribution = -82.43214130 Ry smearing contrib. (-TS) = -0.00013869 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell convergence has been achieved in 9 iterations Writing output data file cu.save PWSCF : 25.85s CPU time, 28.28s wall time init_run : 1.37s CPU electrons : 24.22s CPU Called by init_run: wfcinit : 0.60s CPU potinit : 0.03s CPU Called by electrons: c_bands : 20.14s CPU ( 9 calls, 2.238 s avg) sum_band : 3.40s CPU ( 9 calls, 0.378 s avg) v_of_rho : 0.12s CPU ( 10 calls, 0.012 s avg) newd : 0.31s CPU ( 10 calls, 0.031 s avg) mix_rho : 0.09s CPU ( 9 calls, 0.010 s avg) Called by c_bands: init_us_2 : 0.09s CPU ( 1121 calls, 0.000 s avg) ccgdiagg : 15.47s CPU ( 531 calls, 0.029 s avg) wfcrot : 5.19s CPU ( 531 calls, 0.010 s avg) Called by *cgdiagg: h_psi : 17.16s CPU ( 28015 calls, 0.001 s avg) s_psi : 0.91s CPU ( 55499 calls, 0.000 s avg) cdiaghg : 0.15s CPU ( 531 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.55s CPU ( 28015 calls, 0.000 s avg) General routines calbec : 1.08s CPU ( 56030 calls, 0.000 s avg) cft3s : 13.75s CPU ( 174003 calls, 0.000 s avg) interpolate : 0.11s CPU ( 76 calls, 0.002 s avg) davcio : 0.01s CPU ( 1652 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example06/reference/fe.scf.out0000644000175000017500000005653412341373025021117 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18: 8:44 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 24 npp = 24 ncplane = 576 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 24 307 3367 15 155 1205 55 249 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 22 gaussian broad. (Ry)= 0.0500 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0270270 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0540541 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0540541 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0540541 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0540541 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0540541 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0540541 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0810811 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0270270 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0540541 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0540541 k( 12) = ( 0.1875000 0.0625000 0.0625000), wk = 0.0270270 k( 13) = ( 0.3125000 0.0625000 0.0625000), wk = 0.0270270 k( 14) = ( 0.4375000 0.0625000 0.0625000), wk = 0.0270270 k( 15) = ( 0.5625000 0.0625000 0.0625000), wk = 0.0270270 k( 16) = ( 0.6875000 0.0625000 0.0625000), wk = 0.0270270 k( 17) = ( 0.8125000 0.0625000 0.0625000), wk = 0.0270270 k( 18) = ( 0.1875000 0.1875000 0.0625000), wk = 0.0540541 k( 19) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0540541 k( 20) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0540541 k( 21) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0540541 k( 22) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0540541 G cutoff = 137.8834 ( 3367 G-vectors) FFT grid: ( 24, 24, 24) G cutoff = 68.9417 ( 1205 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.332318 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.332318 90.000000 0.000000 ============================================================================== Starting wfc are 12 atomic + 4 random wfc total cpu time spent up to now is 0.97 secs per-process dynamical memory: 11.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.573198 magnetization : 3.219577 0.000000 0.000000 magnetization/charge: 0.489804 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.219577 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 1.90 secs total energy = -55.69282469 Ry Harris-Foulkes estimate = -55.74047916 Ry estimated scf accuracy < 0.20220538 Ry total magnetization = 2.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.96 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.53E-03, avg # of iterations = 1.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.450784 magnetization : 3.068257 0.000000 0.000000 magnetization/charge: 0.475641 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.068257 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 2.49 secs total energy = -55.68005815 Ry Harris-Foulkes estimate = -55.70228344 Ry estimated scf accuracy < 0.06290855 Ry total magnetization = 3.05 0.00 0.00 Bohr mag/cell absolute magnetization = 3.05 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.86E-04, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.431606 magnetization : 3.032620 0.000000 0.000000 magnetization/charge: 0.471518 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.032620 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 3.15 secs total energy = -55.69823091 Ry Harris-Foulkes estimate = -55.69347498 Ry estimated scf accuracy < 0.00283656 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.55E-05, avg # of iterations = 3.7 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.404670 magnetization : 2.995707 0.000000 0.000000 magnetization/charge: 0.467738 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.995707 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 4.01 secs total energy = -55.69938139 Ry Harris-Foulkes estimate = -55.69891335 Ry estimated scf accuracy < 0.00071561 Ry total magnetization = 3.12 0.00 0.00 Bohr mag/cell absolute magnetization = 3.12 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 8.95E-06, avg # of iterations = 2.3 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.413943 magnetization : 3.018602 0.000000 0.000000 magnetization/charge: 0.470631 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.018602 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 4.74 secs total energy = -55.69965000 Ry Harris-Foulkes estimate = -55.69965759 Ry estimated scf accuracy < 0.00004735 Ry total magnetization = 3.13 0.00 0.00 Bohr mag/cell absolute magnetization = 3.13 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.92E-07, avg # of iterations = 3.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415233 magnetization : 3.027304 0.000000 0.000000 magnetization/charge: 0.471893 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.027304 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 5.52 secs total energy = -55.69967480 Ry Harris-Foulkes estimate = -55.69967447 Ry estimated scf accuracy < 0.00001979 Ry total magnetization = 3.14 0.00 0.00 Bohr mag/cell absolute magnetization = 3.14 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.47E-07, avg # of iterations = 1.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412032 magnetization : 3.056082 0.000000 0.000000 magnetization/charge: 0.476617 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.056082 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 6.12 secs total energy = -55.69966537 Ry Harris-Foulkes estimate = -55.69967666 Ry estimated scf accuracy < 0.00001131 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.41E-07, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412006 magnetization : 3.064265 0.000000 0.000000 magnetization/charge: 0.477895 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.064265 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 6.78 secs total energy = -55.69968182 Ry Harris-Foulkes estimate = -55.69968209 Ry estimated scf accuracy < 0.00000151 Ry total magnetization = 3.17 0.00 0.00 Bohr mag/cell absolute magnetization = 3.17 Bohr mag/cell iteration # 9 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.89E-08, avg # of iterations = 2.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412400 magnetization : 3.062430 0.000000 0.000000 magnetization/charge: 0.477579 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.062430 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 7.46 secs total energy = -55.69968321 Ry Harris-Foulkes estimate = -55.69968286 Ry estimated scf accuracy < 0.00000054 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell iteration # 10 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 6.77E-09, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412612 magnetization : 3.063216 0.000000 0.000000 magnetization/charge: 0.477686 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063216 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 8.09 secs total energy = -55.69968367 Ry Harris-Foulkes estimate = -55.69968335 Ry estimated scf accuracy < 0.00000003 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell iteration # 11 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.14E-10, avg # of iterations = 3.6 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412621 magnetization : 3.063235 0.000000 0.000000 magnetization/charge: 0.477689 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063235 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 8.95 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.6976 6.4710 11.6774 11.6774 11.9042 13.4681 13.4681 14.6641 14.6641 14.9256 16.5280 16.5281 38.7457 38.7457 39.4535 39.4535 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5809 11.6589 12.2028 13.1727 13.6071 14.5300 14.6022 15.2522 16.1627 16.7005 36.2587 37.2023 37.8445 38.7809 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6164 11.6487 12.6212 12.6638 13.8659 14.4963 14.5192 15.5613 15.7135 16.9736 33.8662 35.0496 35.4791 36.6426 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4571 11.8361 12.3101 13.1164 14.0830 14.4085 14.7054 15.2277 16.2731 17.3568 31.7404 32.7147 33.1542 34.0016 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 9.8490 10.8064 11.2898 12.1935 12.5753 13.2445 13.6127 15.0878 15.5268 15.8163 16.8412 18.2393 29.6281 30.1012 31.1488 31.4631 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 9.9296 10.1061 11.8334 12.4095 12.7227 13.1739 14.0665 15.6755 16.2010 17.3612 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.5655 9.5729 11.6859 11.7777 13.4305 13.8866 14.3760 16.5072 17.0646 17.7257 21.5119 22.9168 25.5707 25.8421 26.8447 27.0459 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.2750 9.2750 11.4415 11.4416 14.0747 14.4154 14.4155 17.3223 17.7665 17.7665 24.4157 24.4157 24.8001 25.5002 25.5002 25.8538 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3181 11.5671 12.6778 13.2539 13.5301 14.2181 14.4049 15.7704 16.2903 16.6104 33.9647 35.1499 36.7273 37.6011 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9223 17.3636 28.6266 30.1620 32.6051 33.8030 k = 0.1875 0.0625 0.0625 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5809 11.6589 12.2028 13.1727 13.6071 14.5300 14.6022 15.2522 16.1626 16.7005 36.2587 37.2023 37.8445 38.7809 k = 0.3125 0.0625 0.0625 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6164 11.6487 12.6211 12.6638 13.8660 14.4963 14.5192 15.5613 15.7135 16.9736 33.8661 35.0496 35.4791 36.6426 k = 0.4375 0.0625 0.0625 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4571 11.8361 12.3101 13.1164 14.0830 14.4086 14.7054 15.2277 16.2731 17.3568 31.7404 32.7147 33.1542 34.0016 k = 0.5625 0.0625 0.0625 ( 148 PWs) bands (ev): 9.8490 10.8064 11.2898 12.1935 12.5754 13.2445 13.6126 15.0878 15.5268 15.8163 16.8412 18.2393 29.6281 30.1012 31.1488 31.4631 k = 0.6875 0.0625 0.0625 ( 146 PWs) bands (ev): 9.9296 10.1061 11.8334 12.4094 12.7227 13.1740 14.0665 15.6755 16.2010 17.3612 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.8125 0.0625 0.0625 ( 144 PWs) bands (ev): 9.5654 9.5729 11.6859 11.7776 13.4305 13.8866 14.3760 16.5072 17.0646 17.7257 21.5120 22.9168 25.5707 25.8421 26.8447 27.0459 k = 0.1875 0.1875 0.0625 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3181 11.5671 12.6778 13.2538 13.5301 14.2181 14.4049 15.7704 16.2902 16.6105 33.9647 35.1499 36.7272 37.6011 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9222 17.3636 28.6266 30.1620 32.6051 33.8030 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9223 17.3637 28.6266 30.1620 32.6051 33.8030 the Fermi energy is 14.6622 ev ! total energy = -55.69968434 Ry Harris-Foulkes estimate = -55.69968370 Ry estimated scf accuracy < 7.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 8.92935697 Ry hartree contribution = 6.13358532 Ry xc contribution = -26.12190369 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00388912 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell convergence has been achieved in 11 iterations Writing output data file fe.save PWSCF : 9.09s CPU time, 9.73s wall time init_run : 0.91s CPU electrons : 7.97s CPU Called by init_run: wfcinit : 0.17s CPU potinit : 0.02s CPU Called by electrons: c_bands : 5.69s CPU ( 11 calls, 0.517 s avg) sum_band : 1.69s CPU ( 11 calls, 0.154 s avg) v_of_rho : 0.10s CPU ( 12 calls, 0.008 s avg) newd : 0.29s CPU ( 12 calls, 0.024 s avg) mix_rho : 0.07s CPU ( 11 calls, 0.006 s avg) Called by c_bands: init_us_2 : 0.04s CPU ( 506 calls, 0.000 s avg) cegterg : 5.48s CPU ( 242 calls, 0.023 s avg) Called by *egterg: h_psi : 4.01s CPU ( 871 calls, 0.005 s avg) s_psi : 0.10s CPU ( 871 calls, 0.000 s avg) g_psi : 0.08s CPU ( 607 calls, 0.000 s avg) cdiaghg : 0.86s CPU ( 849 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.12s CPU ( 871 calls, 0.000 s avg) General routines calbec : 0.13s CPU ( 1113 calls, 0.000 s avg) cft3s : 3.69s CPU ( 47026 calls, 0.000 s avg) interpolate : 0.09s CPU ( 92 calls, 0.001 s avg) davcio : 0.00s CPU ( 748 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example06/reference/fe.total.out0000644000175000017500000014756712341373025021476 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18: 9:45 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 24 npp = 24 ncplane = 576 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 24 307 3367 15 155 1205 55 249 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 2 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 32 gaussian broad. (Ry)= 0.0500 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0312500 k( 2) = ( 0.0000000 -0.2500000 0.5000000), wk = 0.0312500 k( 3) = ( -0.2500000 0.2500000 0.2500000), wk = 0.0312500 k( 4) = ( -0.2500000 0.7500000 -0.2500000), wk = 0.0312500 k( 5) = ( 0.5000000 -0.5000000 0.2500000), wk = 0.0312500 k( 6) = ( 0.0000000 0.0000000 0.7500000), wk = 0.0312500 k( 7) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0312500 k( 8) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0312500 k( 9) = ( 0.0000000 -0.2500000 -0.5000000), wk = 0.0312500 k( 10) = ( -0.2500000 0.0000000 -0.5000000), wk = 0.0312500 k( 11) = ( 0.2500000 0.0000000 -0.5000000), wk = 0.0312500 k( 12) = ( 0.5000000 0.2500000 0.0000000), wk = 0.0312500 k( 13) = ( -0.5000000 0.2500000 0.0000000), wk = 0.0312500 k( 14) = ( 0.0000000 0.5000000 -0.2500000), wk = 0.0312500 k( 15) = ( 0.0000000 0.5000000 0.2500000), wk = 0.0312500 k( 16) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0312500 k( 17) = ( 0.2500000 0.5000000 0.0000000), wk = 0.0312500 k( 18) = ( 0.5000000 0.0000000 -0.2500000), wk = 0.0312500 k( 19) = ( 0.5000000 0.0000000 0.2500000), wk = 0.0312500 k( 20) = ( 0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 21) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.0312500 k( 22) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 23) = ( 0.2500000 0.7500000 0.2500000), wk = 0.0312500 k( 24) = ( -0.2500000 -0.7500000 0.2500000), wk = 0.0312500 k( 25) = ( 0.7500000 -0.2500000 0.2500000), wk = 0.0312500 k( 26) = ( -0.5000000 -0.5000000 -0.2500000), wk = 0.0312500 k( 27) = ( 0.2500000 0.5000000 0.5000000), wk = 0.0312500 k( 28) = ( -0.2500000 0.5000000 -0.5000000), wk = 0.0312500 k( 29) = ( -0.5000000 0.2500000 -0.5000000), wk = 0.0312500 k( 30) = ( -0.5000000 -0.2500000 0.5000000), wk = 0.0312500 k( 31) = ( 0.7500000 0.0000000 0.0000000), wk = 0.0312500 k( 32) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0312500 G cutoff = 137.8834 ( 3367 G-vectors) FFT grid: ( 24, 24, 24) G cutoff = 68.9417 ( 1205 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 318, 16) NL pseudopotentials 0.04 Mb ( 159, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.31 Mb ( 318, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 External magnetic field: -1.40219 -1.85888 -2.32843 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 1.418059 1.881828 2.356304 magnetization/charge: 0.212774 0.282360 0.353553 polar coord.: r, theta, phi [deg] : 3.332318 45.000000 53.000000 ============================================================================== Starting wfc are 12 atomic + 4 random wfc total cpu time spent up to now is 1.06 secs per-process dynamical memory: 11.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 13.8 External magnetic field: 0.13056 0.17370 0.21696 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.446359 magnetization : 0.234110 0.311683 0.390180 magnetization/charge: 0.036317 0.048350 0.060527 polar coord.: r, theta, phi [deg] : 0.551538 44.972956 53.089266 ============================================================================== total cpu time spent up to now is 3.88 secs total energy = -49.81719842 Ry Harris-Foulkes estimate = -91.11127859 Ry estimated scf accuracy < 2.17499733 Ry total magnetization = -3.41 -4.52 -5.66 Bohr mag/cell absolute magnetization = 8.00 Bohr mag/cell Magnetic field = 0.1305631 0.1736956 0.2169555 Ry lambda = 0.50 Ry iteration # 2 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.4 External magnetic field: -0.20589 -0.27371 -0.34184 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.429165 magnetization : 0.514219 0.684341 0.855520 magnetization/charge: 0.079982 0.106443 0.133069 polar coord.: r, theta, phi [deg] : 1.210230 45.016233 53.078564 ============================================================================== total cpu time spent up to now is 5.77 secs total energy = -54.06914925 Ry Harris-Foulkes estimate = -56.28645457 Ry estimated scf accuracy < 0.19951793 Ry total magnetization = 1.60 2.13 2.66 Bohr mag/cell absolute magnetization = 3.77 Bohr mag/cell Magnetic field = -0.2058912 -0.2737109 -0.3418413 Ry lambda = 0.50 Ry iteration # 3 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.49E-03, avg # of iterations = 4.6 External magnetic field: 0.07343 0.09771 0.12206 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.407114 magnetization : 0.264599 0.352501 0.440964 magnetization/charge: 0.041298 0.055017 0.068824 polar coord.: r, theta, phi [deg] : 0.623473 44.986775 53.106828 ============================================================================== total cpu time spent up to now is 6.90 secs total energy = -53.83961407 Ry Harris-Foulkes estimate = -57.46785425 Ry estimated scf accuracy < 0.65781043 Ry total magnetization = -1.99 -2.64 -3.30 Bohr mag/cell absolute magnetization = 4.67 Bohr mag/cell Magnetic field = 0.0734254 0.0977135 0.1220605 Ry lambda = 0.50 Ry iteration # 4 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.49E-03, avg # of iterations = 1.1 External magnetic field: -0.00170 -0.00227 -0.00286 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412627 magnetization : 0.330583 0.440363 0.550686 magnetization/charge: 0.051552 0.068671 0.085875 polar coord.: r, theta, phi [deg] : 0.778756 44.997596 53.104226 ============================================================================== total cpu time spent up to now is 7.73 secs total energy = -55.41631842 Ry Harris-Foulkes estimate = -55.87270614 Ry estimated scf accuracy < 0.14273868 Ry total magnetization = 1.36 1.81 2.26 Bohr mag/cell absolute magnetization = 3.19 Bohr mag/cell Magnetic field = -0.0017029 -0.0022734 -0.0028561 Ry lambda = 0.50 Ry iteration # 5 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.78E-03, avg # of iterations = 1.0 External magnetic field: 0.00018 0.00025 0.00030 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.411859 magnetization : 0.328654 0.437792 0.547462 magnetization/charge: 0.051257 0.068278 0.085383 polar coord.: r, theta, phi [deg] : 0.774203 44.998111 53.104084 ============================================================================== total cpu time spent up to now is 8.55 secs total energy = -55.54600526 Ry Harris-Foulkes estimate = -55.54495957 Ry estimated scf accuracy < 0.00269714 Ry total magnetization = 0.41 0.54 0.68 Bohr mag/cell absolute magnetization = 0.99 Bohr mag/cell Magnetic field = 0.0001828 0.0002494 0.0003005 Ry lambda = 0.50 Ry iteration # 6 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 4.4 External magnetic field: -0.03679 -0.04793 -0.05955 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.417589 magnetization : 0.353383 0.469731 0.587068 magnetization/charge: 0.055065 0.073194 0.091478 polar coord.: r, theta, phi [deg] : 0.830768 45.036438 53.045463 ============================================================================== total cpu time spent up to now is 9.73 secs total energy = -55.52131512 Ry Harris-Foulkes estimate = -55.54670384 Ry estimated scf accuracy < 0.00468207 Ry total magnetization = 0.47 0.62 0.77 Bohr mag/cell absolute magnetization = 1.12 Bohr mag/cell Magnetic field = -0.0367887 -0.0479304 -0.0595532 Ry lambda = 0.50 Ry iteration # 7 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.6 External magnetic field: -0.03764 -0.04948 -0.06163 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.417726 magnetization : 0.352726 0.469270 0.586622 magnetization/charge: 0.054961 0.073121 0.091407 polar coord.: r, theta, phi [deg] : 0.829913 45.020994 53.069705 ============================================================================== total cpu time spent up to now is 10.60 secs total energy = -55.65322494 Ry Harris-Foulkes estimate = -55.64638115 Ry estimated scf accuracy < 0.15316408 Ry total magnetization = -0.72 -0.93 -1.16 Bohr mag/cell absolute magnetization = 1.65 Bohr mag/cell Magnetic field = -0.0376400 -0.0494799 -0.0616256 Ry lambda = 0.50 Ry iteration # 8 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.5 External magnetic field: -0.03952 -0.04999 -0.06161 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.417781 magnetization : 0.353514 0.468445 0.584973 magnetization/charge: 0.055084 0.072992 0.091149 polar coord.: r, theta, phi [deg] : 0.828617 45.092595 52.959759 ============================================================================== total cpu time spent up to now is 11.46 secs total energy = -55.65613461 Ry Harris-Foulkes estimate = -55.65329192 Ry estimated scf accuracy < 0.15844683 Ry total magnetization = -0.73 -0.96 -1.19 Bohr mag/cell absolute magnetization = 1.70 Bohr mag/cell Magnetic field = -0.0395191 -0.0499928 -0.0616137 Ry lambda = 0.50 Ry iteration # 9 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 2.0 External magnetic field: -0.07154 -0.09400 -0.11704 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.424346 magnetization : 0.332309 0.441753 0.552006 magnetization/charge: 0.051727 0.068762 0.085924 polar coord.: r, theta, phi [deg] : 0.781208 45.040569 53.047634 ============================================================================== total cpu time spent up to now is 12.38 secs total energy = -55.86918235 Ry Harris-Foulkes estimate = -55.65618287 Ry estimated scf accuracy < 0.16055203 Ry total magnetization = -0.78 -0.96 -1.18 Bohr mag/cell absolute magnetization = 1.71 Bohr mag/cell Magnetic field = -0.0715409 -0.0940001 -0.1170410 Ry lambda = 0.50 Ry iteration # 10 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.7 External magnetic field: -0.00267 -0.00356 -0.00447 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.416069 magnetization : 0.309664 0.412615 0.516018 magnetization/charge: 0.048264 0.064310 0.080426 polar coord.: r, theta, phi [deg] : 0.729669 44.992898 53.112121 ============================================================================== total cpu time spent up to now is 13.25 secs total energy = -55.27821099 Ry Harris-Foulkes estimate = -55.92610569 Ry estimated scf accuracy < 0.34895371 Ry total magnetization = -1.39 -1.82 -2.26 Bohr mag/cell absolute magnetization = 3.22 Bohr mag/cell Magnetic field = -0.0026686 -0.0035650 -0.0044662 Ry lambda = 0.50 Ry iteration # 11 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 1.2 External magnetic field: 0.02313 0.03101 0.03870 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.420424 magnetization : 0.234181 0.312007 0.390228 magnetization/charge: 0.036474 0.048596 0.060779 polar coord.: r, theta, phi [deg] : 0.551785 44.991664 53.109498 ============================================================================== total cpu time spent up to now is 14.09 secs total energy = -55.55076122 Ry Harris-Foulkes estimate = -55.54455976 Ry estimated scf accuracy < 0.00238256 Ry total magnetization = 0.34 0.45 0.57 Bohr mag/cell absolute magnetization = 0.83 Bohr mag/cell Magnetic field = 0.0231299 0.0310069 0.0387022 Ry lambda = 0.50 Ry iteration # 12 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.4 External magnetic field: 0.02685 0.03558 0.04472 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.421618 magnetization : 0.238092 0.317519 0.396847 magnetization/charge: 0.037077 0.049445 0.061799 polar coord.: r, theta, phi [deg] : 0.561244 45.001701 53.135540 ============================================================================== total cpu time spent up to now is 14.95 secs total energy = -55.59907053 Ry Harris-Foulkes estimate = -55.58730238 Ry estimated scf accuracy < 0.05335082 Ry total magnetization = 0.82 1.09 1.36 Bohr mag/cell absolute magnetization = 1.93 Bohr mag/cell Magnetic field = 0.0268471 0.0355772 0.0447198 Ry lambda = 0.50 Ry iteration # 13 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.0 External magnetic field: -0.00483 -0.01315 -0.00769 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.398695 magnetization : 0.299340 0.405420 0.498605 magnetization/charge: 0.046781 0.063360 0.077923 polar coord.: r, theta, phi [deg] : 0.708926 45.305641 53.559882 ============================================================================== total cpu time spent up to now is 15.77 secs total energy = -55.50151595 Ry Harris-Foulkes estimate = -55.59960381 Ry estimated scf accuracy < 0.06121387 Ry total magnetization = 0.87 1.16 1.45 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell Magnetic field = -0.0048328 -0.0131529 -0.0076870 Ry lambda = 0.50 Ry iteration # 14 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 4.5 External magnetic field: -0.01355 -0.00193 -0.02473 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.388987 magnetization : 0.327511 0.421315 0.548138 magnetization/charge: 0.051262 0.065944 0.085794 polar coord.: r, theta, phi [deg] : 0.765000 44.232080 52.140171 ============================================================================== total cpu time spent up to now is 16.94 secs total energy = -55.54402034 Ry Harris-Foulkes estimate = -55.54629533 Ry estimated scf accuracy < 0.00348325 Ry total magnetization = 0.28 0.12 0.48 Bohr mag/cell absolute magnetization = 0.62 Bohr mag/cell Magnetic field = -0.0135492 -0.0019297 -0.0247304 Ry lambda = 0.50 Ry iteration # 15 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 3.5 External magnetic field: -0.00845 -0.01090 -0.01381 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.402992 magnetization : 0.308075 0.410611 0.513295 magnetization/charge: 0.048114 0.064128 0.080165 polar coord.: r, theta, phi [deg] : 0.725936 45.002169 53.119680 ============================================================================== total cpu time spent up to now is 17.96 secs total energy = -55.54203379 Ry Harris-Foulkes estimate = -55.55253376 Ry estimated scf accuracy < 0.02036945 Ry total magnetization = 0.01 0.62 -0.06 Bohr mag/cell absolute magnetization = 0.71 Bohr mag/cell Magnetic field = -0.0084466 -0.0108951 -0.0138116 Ry lambda = 0.50 Ry iteration # 16 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 3.9 External magnetic field: 0.00089 0.00115 0.00147 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.407166 magnetization : 0.295224 0.393804 0.492153 magnetization/charge: 0.046077 0.061463 0.076813 polar coord.: r, theta, phi [deg] : 0.696028 45.001448 53.142113 ============================================================================== total cpu time spent up to now is 19.07 secs total energy = -55.53935261 Ry Harris-Foulkes estimate = -55.54667235 Ry estimated scf accuracy < 0.00334793 Ry total magnetization = 0.15 0.22 0.26 Bohr mag/cell absolute magnetization = 0.44 Bohr mag/cell Magnetic field = 0.0008882 0.0011456 0.0014738 Ry lambda = 0.50 Ry iteration # 17 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.0 External magnetic field: 0.00110 -0.00206 -0.00389 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.405905 magnetization : 0.297714 0.400363 0.501687 magnetization/charge: 0.046475 0.062499 0.078316 polar coord.: r, theta, phi [deg] : 0.707541 44.841702 53.365121 ============================================================================== total cpu time spent up to now is 19.88 secs total energy = -55.54493687 Ry Harris-Foulkes estimate = -55.54664927 Ry estimated scf accuracy < 0.00457259 Ry total magnetization = 0.46 0.61 0.76 Bohr mag/cell absolute magnetization = 1.09 Bohr mag/cell Magnetic field = 0.0011015 -0.0020617 -0.0038891 Ry lambda = 0.50 Ry iteration # 18 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.98E-05, avg # of iterations = 1.0 External magnetic field: 0.00570 0.00759 0.00958 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409892 magnetization : 0.292112 0.389338 0.486565 magnetization/charge: 0.045572 0.060740 0.075908 polar coord.: r, theta, phi [deg] : 0.688229 45.010210 53.119868 ============================================================================== total cpu time spent up to now is 20.70 secs total energy = -55.54826949 Ry Harris-Foulkes estimate = -55.54547869 Ry estimated scf accuracy < 0.00206181 Ry total magnetization = 0.48 0.51 0.60 Bohr mag/cell absolute magnetization = 0.94 Bohr mag/cell Magnetic field = 0.0057047 0.0075894 0.0095835 Ry lambda = 0.50 Ry iteration # 19 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 1.0 External magnetic field: 0.00585 0.00740 0.00994 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.411506 magnetization : 0.290732 0.387886 0.484242 magnetization/charge: 0.045345 0.060498 0.075527 polar coord.: r, theta, phi [deg] : 0.685179 45.029953 53.147364 ============================================================================== total cpu time spent up to now is 21.52 secs total energy = -55.55235635 Ry Harris-Foulkes estimate = -55.55229075 Ry estimated scf accuracy < 0.01362194 Ry total magnetization = 0.58 0.78 0.97 Bohr mag/cell absolute magnetization = 1.38 Bohr mag/cell Magnetic field = 0.0058541 0.0074037 0.0099359 Ry lambda = 0.50 Ry iteration # 20 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 1.0 External magnetic field: -0.00400 -0.00517 -0.00646 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409331 magnetization : 0.311213 0.414589 0.518106 magnetization/charge: 0.048556 0.064685 0.080836 polar coord.: r, theta, phi [deg] : 0.732920 45.016154 53.106127 ============================================================================== total cpu time spent up to now is 22.33 secs total energy = -55.53888241 Ry Harris-Foulkes estimate = -55.55236436 Ry estimated scf accuracy < 0.01371205 Ry total magnetization = 0.59 0.77 0.98 Bohr mag/cell absolute magnetization = 1.38 Bohr mag/cell Magnetic field = -0.0040007 -0.0051708 -0.0064627 Ry lambda = 0.50 Ry iteration # 21 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 1.0 External magnetic field: -0.00296 -0.00379 -0.00470 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409511 magnetization : 0.308289 0.410728 0.513276 magnetization/charge: 0.048099 0.064081 0.080080 polar coord.: r, theta, phi [deg] : 0.726080 45.015607 53.108389 ============================================================================== total cpu time spent up to now is 23.15 secs total energy = -55.54492450 Ry Harris-Foulkes estimate = -55.54483130 Ry estimated scf accuracy < 0.00019795 Ry total magnetization = 0.32 0.43 0.54 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell Magnetic field = -0.0029579 -0.0037879 -0.0047030 Ry lambda = 0.50 Ry iteration # 22 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-06, avg # of iterations = 1.0 External magnetic field: -0.00293 -0.00371 -0.00470 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.409629 magnetization : 0.309369 0.412143 0.515130 magnetization/charge: 0.048266 0.064301 0.080368 polar coord.: r, theta, phi [deg] : 0.728649 45.011463 53.106846 ============================================================================== total cpu time spent up to now is 23.96 secs total energy = -55.54500424 Ry Harris-Foulkes estimate = -55.54500779 Ry estimated scf accuracy < 0.00058524 Ry total magnetization = 0.35 0.48 0.60 Bohr mag/cell absolute magnetization = 0.87 Bohr mag/cell Magnetic field = -0.0029320 -0.0037090 -0.0047039 Ry lambda = 0.50 Ry iteration # 23 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-06, avg # of iterations = 1.0 External magnetic field: -0.00563 -0.00754 -0.00921 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.411389 magnetization : 0.314560 0.419368 0.523848 magnetization/charge: 0.049063 0.065410 0.081706 polar coord.: r, theta, phi [deg] : 0.741104 45.020934 53.127123 ============================================================================== total cpu time spent up to now is 24.77 secs total energy = -55.54429286 Ry Harris-Foulkes estimate = -55.54500646 Ry estimated scf accuracy < 0.00052461 Ry total magnetization = 0.36 0.48 0.60 Bohr mag/cell absolute magnetization = 0.88 Bohr mag/cell Magnetic field = -0.0056337 -0.0075434 -0.0092126 Ry lambda = 0.50 Ry iteration # 24 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-06, avg # of iterations = 1.0 External magnetic field: -0.00648 -0.00850 -0.01072 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412476 magnetization : 0.316421 0.421768 0.527153 magnetization/charge: 0.049345 0.065773 0.082207 polar coord.: r, theta, phi [deg] : 0.745588 45.006175 53.121779 ============================================================================== total cpu time spent up to now is 25.59 secs total energy = -55.54506596 Ry Harris-Foulkes estimate = -55.54489799 Ry estimated scf accuracy < 0.00019844 Ry total magnetization = 0.27 0.36 0.46 Bohr mag/cell absolute magnetization = 0.69 Bohr mag/cell Magnetic field = -0.0064840 -0.0085032 -0.0107224 Ry lambda = 0.50 Ry iteration # 25 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-06, avg # of iterations = 1.0 External magnetic field: -0.00476 -0.00674 -0.00778 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412103 magnetization : 0.312689 0.417276 0.520893 magnetization/charge: 0.048765 0.065076 0.081236 polar coord.: r, theta, phi [deg] : 0.737037 45.029746 53.153724 ============================================================================== total cpu time spent up to now is 26.40 secs total energy = -55.54458686 Ry Harris-Foulkes estimate = -55.54512274 Ry estimated scf accuracy < 0.00062387 Ry total magnetization = 0.24 0.33 0.41 Bohr mag/cell absolute magnetization = 0.64 Bohr mag/cell Magnetic field = -0.0047560 -0.0067376 -0.0077844 Ry lambda = 0.50 Ry iteration # 26 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.47E-06, avg # of iterations = 1.0 External magnetic field: -0.00429 -0.00595 -0.00748 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412276 magnetization : 0.312249 0.416552 0.520673 magnetization/charge: 0.048695 0.064962 0.081199 polar coord.: r, theta, phi [deg] : 0.736285 44.995474 53.144649 ============================================================================== total cpu time spent up to now is 27.21 secs total energy = -55.54476851 Ry Harris-Foulkes estimate = -55.54479900 Ry estimated scf accuracy < 0.00001940 Ry total magnetization = 0.30 0.38 0.50 Bohr mag/cell absolute magnetization = 0.74 Bohr mag/cell Magnetic field = -0.0042892 -0.0059546 -0.0074779 Ry lambda = 0.50 Ry iteration # 27 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.43E-07, avg # of iterations = 1.0 External magnetic field: -0.00456 -0.00602 -0.00746 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412277 magnetization : 0.312510 0.416626 0.520661 magnetization/charge: 0.048736 0.064973 0.081198 polar coord.: r, theta, phi [deg] : 0.736429 45.008028 53.126525 ============================================================================== total cpu time spent up to now is 28.02 secs total energy = -55.54478186 Ry Harris-Foulkes estimate = -55.54478302 Ry estimated scf accuracy < 0.00000361 Ry total magnetization = 0.31 0.41 0.51 Bohr mag/cell absolute magnetization = 0.77 Bohr mag/cell Magnetic field = -0.0045559 -0.0060233 -0.0074571 Ry lambda = 0.50 Ry iteration # 28 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.51E-08, avg # of iterations = 1.0 External magnetic field: -0.00504 -0.00673 -0.00840 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412419 magnetization : 0.313450 0.417967 0.522412 magnetization/charge: 0.048882 0.065181 0.081469 polar coord.: r, theta, phi [deg] : 0.738825 45.001707 53.132352 ============================================================================== total cpu time spent up to now is 28.84 secs total energy = -55.54479331 Ry Harris-Foulkes estimate = -55.54478317 Ry estimated scf accuracy < 0.00000105 Ry total magnetization = 0.30 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0050369 -0.0067347 -0.0083993 Ry lambda = 0.50 Ry iteration # 29 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.31E-08, avg # of iterations = 1.1 External magnetic field: -0.00450 -0.00600 -0.00750 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412180 magnetization : 0.312242 0.416335 0.520412 magnetization/charge: 0.048695 0.064929 0.081160 polar coord.: r, theta, phi [deg] : 0.735974 45.000040 53.130943 ============================================================================== total cpu time spent up to now is 29.66 secs total energy = -55.54475926 Ry Harris-Foulkes estimate = -55.54481715 Ry estimated scf accuracy < 0.00004232 Ry total magnetization = 0.29 0.38 0.48 Bohr mag/cell absolute magnetization = 0.73 Bohr mag/cell Magnetic field = -0.0044952 -0.0059989 -0.0074956 Ry lambda = 0.50 Ry iteration # 30 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.31E-08, avg # of iterations = 1.2 External magnetic field: -0.00454 -0.00606 -0.00757 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412160 magnetization : 0.312303 0.416412 0.520505 magnetization/charge: 0.048705 0.064941 0.081175 polar coord.: r, theta, phi [deg] : 0.736109 45.000351 53.130648 ============================================================================== total cpu time spent up to now is 30.48 secs total energy = -55.54478368 Ry Harris-Foulkes estimate = -55.54478295 Ry estimated scf accuracy < 0.00000047 Ry total magnetization = 0.31 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0045394 -0.0060571 -0.0075659 Ry lambda = 0.50 Ry iteration # 31 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.93E-09, avg # of iterations = 1.0 External magnetic field: -0.00455 -0.00607 -0.00758 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412137 magnetization : 0.312332 0.416446 0.520550 magnetization/charge: 0.048709 0.064946 0.081182 polar coord.: r, theta, phi [deg] : 0.736173 45.000319 53.130302 ============================================================================== total cpu time spent up to now is 31.30 secs total energy = -55.54478407 Ry Harris-Foulkes estimate = -55.54478383 Ry estimated scf accuracy < 0.00000001 Ry total magnetization = 0.30 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0045503 -0.0060687 -0.0075822 Ry lambda = 0.50 Ry iteration # 32 ecut= 25.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.65E-10, avg # of iterations = 3.7 External magnetic field: -0.00452 -0.00597 -0.00758 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412140 magnetization : 0.312301 0.416347 0.520551 magnetization/charge: 0.048705 0.064931 0.081182 polar coord.: r, theta, phi [deg] : 0.736105 44.994875 53.126531 ============================================================================== total cpu time spent up to now is 32.40 secs End of self-consistent calculation k = 0.0000 0.0000 0.2500 ( 148 PWs) bands (ev): 7.0426 7.2421 12.7594 12.7594 13.0874 13.0874 13.1316 13.4839 13.7020 14.2562 14.6496 15.2721 36.1707 36.3037 38.5017 38.5020 k = 0.0000-0.2500 0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9091 34.1124 k =-0.2500 0.2500 0.2500 ( 159 PWs) bands (ev): 9.2500 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9863 14.9863 15.4337 15.7935 31.7725 31.7725 31.8291 31.8291 k =-0.2500 0.7500-0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8006 14.8007 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k = 0.5000-0.5000 0.2500 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3661 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5953 k = 0.0000 0.0000 0.7500 ( 144 PWs) bands (ev): 10.4085 10.5101 10.6722 10.8527 14.5280 14.5280 14.8951 14.8952 15.1234 15.5460 20.2842 20.3238 27.6811 27.6811 27.7979 27.7979 k = 0.2500 0.0000 0.0000 ( 148 PWs) bands (ev): 7.0426 7.2421 12.7594 12.7594 13.0874 13.0874 13.1316 13.4838 13.7020 14.2562 14.6496 15.2721 36.1708 36.3037 38.5016 38.5017 k = 0.0000 0.2500 0.0000 ( 148 PWs) bands (ev): 7.0426 7.2421 12.7594 12.7594 13.0874 13.0874 13.1316 13.4839 13.7020 14.2562 14.6496 15.2721 36.1707 36.3037 38.5016 38.5016 k = 0.0000-0.2500-0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k =-0.2500 0.0000-0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k = 0.2500 0.0000-0.5000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k = 0.5000 0.2500 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k =-0.5000 0.2500 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9091 34.1123 k = 0.0000 0.5000-0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9091 34.1124 k = 0.0000 0.5000 0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k =-0.2500 0.5000 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3671 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k = 0.2500 0.5000 0.0000 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k = 0.5000 0.0000-0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k = 0.5000 0.0000 0.2500 ( 151 PWs) bands (ev): 10.0424 10.1070 12.0741 12.3670 12.4515 12.7149 14.0060 14.4647 15.2627 15.6866 15.9320 16.3129 26.5053 26.5553 33.9090 34.1124 k = 0.2500 0.2500-0.2500 ( 159 PWs) bands (ev): 9.2499 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9862 14.9863 15.4337 15.7935 31.7725 31.7725 31.8291 31.8291 k =-0.2500-0.2500-0.2500 ( 159 PWs) bands (ev): 9.2499 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9862 14.9863 15.4337 15.7935 31.7725 31.7725 31.8291 31.8291 k =-0.2500 0.2500-0.2500 ( 159 PWs) bands (ev): 9.2499 9.4066 11.8380 11.8380 12.1231 12.1231 14.3919 14.3919 14.9862 14.9863 15.4337 15.7935 31.7725 31.7725 31.8291 31.8291 k = 0.2500 0.7500 0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8007 14.8007 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k =-0.2500-0.7500 0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8007 14.8007 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k = 0.7500-0.2500 0.2500 ( 146 PWs) bands (ev): 11.3565 11.3565 11.6389 11.6389 11.8381 12.0833 14.8006 14.8007 15.2401 15.2401 22.6998 22.6998 22.7908 22.7908 25.2067 25.2215 k =-0.5000-0.5000-0.2500 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3661 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5953 k = 0.2500 0.5000 0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3661 11.6097 12.9468 13.0622 14.5330 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5953 k =-0.2500 0.5000-0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3661 11.6097 12.9468 13.0622 14.5330 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5953 k =-0.5000 0.2500-0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3661 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5953 k =-0.5000-0.2500 0.5000 ( 150 PWs) bands (ev): 10.5873 10.7503 11.3661 11.6097 12.9468 13.0622 14.5329 14.6520 15.1121 15.2882 19.4975 19.6164 23.3528 23.4708 29.5318 29.5953 k = 0.7500 0.0000 0.0000 ( 144 PWs) bands (ev): 10.4085 10.5101 10.6722 10.8527 14.5280 14.5280 14.8952 14.8952 15.1234 15.5460 20.2842 20.3238 27.6811 27.6811 27.7979 27.7979 k = 0.0000 0.7500 0.0000 ( 144 PWs) bands (ev): 10.4085 10.5101 10.6722 10.8527 14.5280 14.5280 14.8951 14.8952 15.1234 15.5460 20.2842 20.3238 27.6811 27.6811 27.7979 27.7979 the Fermi energy is 14.8546 ev ! total energy = -55.54478331 Ry Harris-Foulkes estimate = -55.54478408 Ry estimated scf accuracy < 8.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 8.97517963 Ry hartree contribution = 6.02996769 Ry xc contribution = -25.89291721 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = -0.01240136 Ry total magnetization = 0.30 0.41 0.51 Bohr mag/cell absolute magnetization = 0.76 Bohr mag/cell Magnetic field = -0.0045179 -0.0059660 -0.0075829 Ry lambda = 0.50 Ry convergence has been achieved in 32 iterations Writing output data file fe.save PWSCF : 32.56s CPU time, 33.61s wall time init_run : 1.00s CPU electrons : 31.34s CPU Called by init_run: wfcinit : 0.24s CPU potinit : 0.02s CPU Called by electrons: c_bands : 23.20s CPU ( 32 calls, 0.725 s avg) sum_band : 6.39s CPU ( 32 calls, 0.200 s avg) v_of_rho : 0.28s CPU ( 33 calls, 0.008 s avg) newd : 0.79s CPU ( 33 calls, 0.024 s avg) mix_rho : 0.24s CPU ( 32 calls, 0.007 s avg) Called by c_bands: init_us_2 : 0.23s CPU ( 2080 calls, 0.000 s avg) cegterg : 22.30s CPU ( 1024 calls, 0.022 s avg) Called by *egterg: h_psi : 15.89s CPU ( 3376 calls, 0.005 s avg) s_psi : 0.44s CPU ( 3376 calls, 0.000 s avg) g_psi : 0.41s CPU ( 2320 calls, 0.000 s avg) cdiaghg : 3.35s CPU ( 3344 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.44s CPU ( 3376 calls, 0.000 s avg) General routines calbec : 0.54s CPU ( 4400 calls, 0.000 s avg) cft3s : 14.65s CPU ( 187911 calls, 0.000 s avg) interpolate : 0.24s CPU ( 260 calls, 0.001 s avg) davcio : 0.01s CPU ( 3104 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example06/reference/fe.band.out0000644000175000017500000003174212341373025021242 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:54:40 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0238095 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0238095 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0238095 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0238095 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0238095 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0238095 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0238095 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0238095 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0238095 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0357143 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0119048 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0119048 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0119048 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0119048 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0119048 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0119048 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0119048 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0119048 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0119048 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0357143 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 G cutoff = 137.8834 ( 3367 G-vectors) FFT grid: ( 24, 24, 24) G cutoff = 68.9417 ( 1205 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 328, 16) NL pseudopotentials 0.05 Mb ( 164, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.32 Mb ( 328, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 The potential is recalculated from file : fe.save/charge-density.dat Starting wfc are 12 atomic + 4 random wfc total cpu time spent up to now is 0.56 secs per-process dynamical memory: 7.9 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-10, avg # of iterations = 25.4 total cpu time spent up to now is 3.99 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 5.4383 6.2099 11.7313 11.7313 11.7313 13.5024 13.5024 14.7359 14.7359 14.7359 16.5708 16.5708 39.7155 39.7155 39.7155 40.2525 k = 0.0000 0.0000 0.1000 band energies (ev): 5.6602 6.4330 11.7301 11.7301 11.7949 13.3923 13.5454 14.7243 14.7243 14.8071 16.4310 16.6247 38.6083 39.2626 39.6021 39.6021 k = 0.0000 0.0000 0.2000 band energies (ev): 6.3036 7.0832 11.7408 11.7408 11.9805 13.0723 13.6680 14.7087 14.7087 15.0153 16.0266 16.7720 36.7280 37.5581 38.8514 38.8514 k = 0.0000 0.0000 0.3000 band energies (ev): 7.2917 8.0975 11.8007 11.8008 12.2726 12.5742 13.8672 14.7379 14.7379 15.3439 15.4030 16.9803 35.0348 36.0466 37.0956 37.0956 k = 0.0000 0.0000 0.4000 band energies (ev): 8.4528 9.3487 11.9503 11.9547 11.9547 12.6461 14.2042 14.6327 14.8704 14.8704 15.7655 17.2410 33.6942 34.8196 34.8196 34.8893 k = 0.0000 0.0000 0.5000 band energies (ev): 9.4491 10.5968 11.2675 12.2382 12.2382 13.0673 13.8033 14.9150 15.1545 15.1545 16.2430 17.6649 32.4507 32.4507 32.7002 33.8748 k = 0.0000 0.0000 0.6000 band energies (ev): 9.9021 10.5972 11.4731 12.6640 12.6640 13.0026 13.4960 15.6143 15.6143 16.3273 16.7313 18.5592 30.1682 30.1682 31.5541 31.5541 k = 0.0000 0.0000 0.7000 band energies (ev): 9.8286 10.0054 11.7507 12.3058 13.2094 13.2094 13.8893 16.2375 16.2375 17.1814 18.4379 20.1749 28.1105 28.1105 29.4064 29.4064 k = 0.0000 0.0000 0.8000 band energies (ev): 9.5311 9.5450 11.6225 11.7698 13.7986 13.7986 14.2058 16.9533 16.9533 17.5451 20.9600 22.3494 26.4056 26.4056 27.5640 27.5640 k = 0.0000 0.0000 0.9000 band energies (ev): 9.2540 9.2598 11.4110 11.4335 14.2865 14.2865 14.4113 17.5911 17.5911 17.7818 23.4739 24.5843 25.2367 25.2367 26.2379 26.2379 k = 0.0000 0.0000 1.0000 band energies (ev): 9.1545 9.1545 11.3190 11.3191 14.4822 14.4822 14.4822 17.8639 17.8639 17.8639 24.8114 24.8114 24.8114 25.7333 25.7333 25.7333 k = 0.0000 0.0000 0.0000 band energies (ev): 5.4383 6.2099 11.7313 11.7313 11.7313 13.5024 13.5024 14.7359 14.7359 14.7359 16.5708 16.5708 39.7155 39.7155 39.7155 40.2525 k = 0.0000 0.1000 0.1000 band energies (ev): 5.8775 6.6526 11.6056 11.7188 11.9804 13.3798 13.5132 14.5797 14.6935 15.0110 16.4186 16.5842 37.6143 38.4547 39.1854 39.5875 k = 0.0000 0.2000 0.2000 band energies (ev): 7.0756 7.8896 11.2861 11.6486 12.6666 13.2221 13.5515 14.1866 14.4460 15.7751 16.2583 16.6346 33.3778 34.6114 37.3445 38.0461 k = 0.0000 0.3000 0.3000 band energies (ev): 8.4475 9.5456 10.9091 11.9262 13.2784 13.5985 13.6206 13.7290 14.1830 16.3720 16.7301 16.8299 28.7065 30.2415 35.2436 35.9136 k = 0.0000 0.4000 0.4000 band energies (ev): 8.9394 10.6171 10.6916 13.2987 13.3787 13.6559 13.6954 14.4418 14.7945 16.5518 16.8368 17.8073 24.5234 26.4015 33.7640 34.3764 k = 0.0000 0.5000 0.5000 band energies (ev): 8.9470 10.5084 10.9319 13.2493 13.4555 13.7287 14.7913 14.9239 15.6592 16.5746 16.8853 18.2206 22.4227 24.6178 33.2384 33.8247 k = 0.0000 0.6000 0.6000 band energies (ev): 8.9394 10.6171 10.6916 13.2987 13.3787 13.6559 13.6954 14.4418 14.7945 16.5518 16.8368 17.8073 24.5234 26.4015 33.7640 34.3764 k = 0.0000 0.7000 0.7000 band energies (ev): 8.4475 9.5456 10.9091 11.9262 13.2784 13.5985 13.6206 13.7290 14.1830 16.3720 16.7301 16.8299 28.7065 30.2415 35.2436 35.9136 k = 0.0000 0.8000 0.8000 band energies (ev): 7.0756 7.8896 11.2861 11.6486 12.6666 13.2221 13.5515 14.1866 14.4460 15.7751 16.2583 16.6346 33.3778 34.6114 37.3445 38.0461 k = 0.0000 0.9000 0.9000 band energies (ev): 5.8775 6.6526 11.6056 11.7188 11.9804 13.3798 13.5132 14.5797 14.6935 15.0110 16.4186 16.5842 37.6143 38.4547 39.1854 39.5875 k = 0.0000 1.0000 1.0000 band energies (ev): 5.4383 6.2099 11.7313 11.7313 11.7313 13.5024 13.5024 14.7359 14.7359 14.7359 16.5708 16.5708 39.7155 39.7155 39.7155 40.2525 k = 0.0000 0.0000 0.0000 band energies (ev): 5.4383 6.2099 11.7313 11.7313 11.7313 13.5024 13.5024 14.7359 14.7359 14.7359 16.5708 16.5708 39.7155 39.7155 39.7155 40.2525 k = 0.1000 0.1000 0.1000 band energies (ev): 6.0909 6.8690 11.5880 11.5881 12.1717 13.4320 13.4320 14.5431 14.5431 15.2165 16.4859 16.4859 37.4580 37.4580 38.3294 38.3294 k = 0.2000 0.2000 0.2000 band energies (ev): 7.8190 8.6657 11.1532 11.1533 13.4255 13.4255 13.4647 13.9488 13.9488 16.5034 16.5034 16.5699 33.3007 33.3007 34.4831 34.4831 k = 0.3000 0.3000 0.3000 band energies (ev): 9.8521 10.6938 10.6938 11.0280 13.3028 13.3028 13.5679 13.5680 15.6667 16.6972 16.6972 18.6042 29.3738 29.3738 30.7749 30.7749 k = 0.4000 0.4000 0.4000 band energies (ev): 10.5408 10.5409 10.9578 12.8247 12.9945 12.9945 13.7144 13.7144 16.8757 16.8757 19.1006 21.4172 26.0966 26.0966 27.6929 27.6966 k = 0.5000 0.5000 0.5000 band energies (ev): 10.7358 10.7358 10.7358 13.0632 13.0632 13.0632 13.7714 13.7714 16.9399 16.9400 23.5806 23.5806 23.5806 25.3544 25.3544 25.3544 Writing output data file fe.save PWSCF : 4.07s CPU time, 4.17s wall time init_run : 0.52s CPU electrons : 3.42s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.02s CPU Called by electrons: c_bands : 3.42s CPU v_of_rho : 0.01s CPU newd : 0.02s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) cegterg : 3.27s CPU ( 49 calls, 0.067 s avg) Called by *egterg: h_psi : 1.77s CPU ( 789 calls, 0.002 s avg) s_psi : 0.07s CPU ( 789 calls, 0.000 s avg) g_psi : 0.06s CPU ( 712 calls, 0.000 s avg) cdiaghg : 0.86s CPU ( 740 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.08s CPU ( 789 calls, 0.000 s avg) General routines calbec : 0.06s CPU ( 789 calls, 0.000 s avg) cft3 : 0.01s CPU ( 15 calls, 0.000 s avg) cft3s : 1.09s CPU ( 27456 calls, 0.000 s avg) interpolate : 0.00s CPU ( 4 calls, 0.000 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.1/PW/examples/example06/reference/fe.angl.out0000644000175000017500000006164512341373025021264 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18: 9:35 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 24 npp = 24 ncplane = 576 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 24 307 3367 15 155 1205 55 249 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.2170 a.u. unit-cell volume = 70.9958 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 5.217000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84700 Fe( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 22 gaussian broad. (Ry)= 0.0500 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0270270 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0540541 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0540541 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0540541 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0540541 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0540541 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0540541 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0810811 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0270270 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0540541 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0540541 k( 12) = ( 0.1875000 0.0625000 0.0625000), wk = 0.0270270 k( 13) = ( 0.3125000 0.0625000 0.0625000), wk = 0.0270270 k( 14) = ( 0.4375000 0.0625000 0.0625000), wk = 0.0270270 k( 15) = ( 0.5625000 0.0625000 0.0625000), wk = 0.0270270 k( 16) = ( 0.6875000 0.0625000 0.0625000), wk = 0.0270270 k( 17) = ( 0.8125000 0.0625000 0.0625000), wk = 0.0270270 k( 18) = ( 0.1875000 0.1875000 0.0625000), wk = 0.0540541 k( 19) = ( 0.1875000 0.3125000 0.0625000), wk = 0.0540541 k( 20) = ( 0.3125000 0.0625000 0.1875000), wk = 0.0540541 k( 21) = ( 0.1875000 0.4375000 0.0625000), wk = 0.0540541 k( 22) = ( 0.4375000 0.0625000 0.1875000), wk = 0.0540541 G cutoff = 137.8834 ( 3367 G-vectors) FFT grid: ( 24, 24, 24) G cutoff = 68.9417 ( 1205 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 312, 16) NL pseudopotentials 0.04 Mb ( 156, 18) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 3367) G-vector shells 0.00 Mb ( 64) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.30 Mb ( 312, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 18, 2, 16) Arrays for rho mixing 1.69 Mb ( 13824, 8) Check: negative/imaginary core charge= -0.000013 0.000000 Initial potential from superposition of free atoms starting charge 7.99953, renormalised to 8.00000 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.664635 magnetization : 3.332318 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.332318 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== Starting wfc are 12 atomic + 4 random wfc total cpu time spent up to now is 1.03 secs per-process dynamical memory: 11.1 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.3 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.573198 magnetization : 3.219577 0.000000 0.000000 magnetization/charge: 0.489804 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.219577 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 1.95 secs total energy = -55.69282469 Ry Harris-Foulkes estimate = -55.74047916 Ry estimated scf accuracy < 0.20220538 Ry total magnetization = 2.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.96 Bohr mag/cell lambda = 1.00 Ry iteration # 2 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.53E-03, avg # of iterations = 1.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.450784 magnetization : 3.068257 0.000000 0.000000 magnetization/charge: 0.475641 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.068257 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 2.54 secs total energy = -55.68005815 Ry Harris-Foulkes estimate = -55.70228344 Ry estimated scf accuracy < 0.06290855 Ry total magnetization = 3.05 0.00 0.00 Bohr mag/cell absolute magnetization = 3.05 Bohr mag/cell lambda = 1.00 Ry iteration # 3 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 7.86E-04, avg # of iterations = 2.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.431606 magnetization : 3.032620 0.000000 0.000000 magnetization/charge: 0.471518 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.032620 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 3.21 secs total energy = -55.69823091 Ry Harris-Foulkes estimate = -55.69347498 Ry estimated scf accuracy < 0.00283656 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell lambda = 1.00 Ry iteration # 4 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 3.55E-05, avg # of iterations = 3.7 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.404670 magnetization : 2.995707 0.000000 0.000000 magnetization/charge: 0.467738 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.995707 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 4.07 secs total energy = -55.69938139 Ry Harris-Foulkes estimate = -55.69891335 Ry estimated scf accuracy < 0.00071561 Ry total magnetization = 3.12 0.00 0.00 Bohr mag/cell absolute magnetization = 3.12 Bohr mag/cell lambda = 1.00 Ry iteration # 5 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 8.95E-06, avg # of iterations = 2.3 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.413943 magnetization : 3.018602 0.000000 0.000000 magnetization/charge: 0.470631 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.018602 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 4.79 secs total energy = -55.69965000 Ry Harris-Foulkes estimate = -55.69965759 Ry estimated scf accuracy < 0.00004735 Ry total magnetization = 3.13 0.00 0.00 Bohr mag/cell absolute magnetization = 3.13 Bohr mag/cell lambda = 1.00 Ry iteration # 6 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 5.92E-07, avg # of iterations = 3.1 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.415233 magnetization : 3.027304 0.000000 0.000000 magnetization/charge: 0.471893 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.027304 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 5.59 secs total energy = -55.69967480 Ry Harris-Foulkes estimate = -55.69967447 Ry estimated scf accuracy < 0.00001979 Ry total magnetization = 3.14 0.00 0.00 Bohr mag/cell absolute magnetization = 3.14 Bohr mag/cell lambda = 1.00 Ry iteration # 7 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 2.47E-07, avg # of iterations = 1.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412032 magnetization : 3.056082 0.000000 0.000000 magnetization/charge: 0.476617 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.056082 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 6.19 secs total energy = -55.69966537 Ry Harris-Foulkes estimate = -55.69967666 Ry estimated scf accuracy < 0.00001131 Ry total magnetization = 3.15 0.00 0.00 Bohr mag/cell absolute magnetization = 3.15 Bohr mag/cell lambda = 1.00 Ry iteration # 8 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.41E-07, avg # of iterations = 2.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412006 magnetization : 3.064265 0.000000 0.000000 magnetization/charge: 0.477895 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.064265 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 6.85 secs total energy = -55.69968182 Ry Harris-Foulkes estimate = -55.69968209 Ry estimated scf accuracy < 0.00000151 Ry total magnetization = 3.17 0.00 0.00 Bohr mag/cell absolute magnetization = 3.17 Bohr mag/cell lambda = 1.00 Ry iteration # 9 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 1.89E-08, avg # of iterations = 2.5 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412400 magnetization : 3.062430 0.000000 0.000000 magnetization/charge: 0.477579 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.062430 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 7.54 secs total energy = -55.69968321 Ry Harris-Foulkes estimate = -55.69968286 Ry estimated scf accuracy < 0.00000054 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell lambda = 1.00 Ry iteration # 10 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 6.77E-09, avg # of iterations = 2.0 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412612 magnetization : 3.063216 0.000000 0.000000 magnetization/charge: 0.477686 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063216 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 8.19 secs total energy = -55.69968367 Ry Harris-Foulkes estimate = -55.69968335 Ry estimated scf accuracy < 0.00000003 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell lambda = 1.00 Ry iteration # 11 ecut= 25.00 Ry beta=0.20 Davidson diagonalization with overlap ethr = 4.14E-10, avg # of iterations = 3.6 constraint energy (Ryd) = 0.00000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.412621 magnetization : 3.063235 0.000000 0.000000 magnetization/charge: 0.477689 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.063235 90.000000 0.000000 constrained theta [deg] : 90.000000 ============================================================================== total cpu time spent up to now is 9.06 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 141 PWs) bands (ev): 5.6976 6.4710 11.6774 11.6774 11.9042 13.4681 13.4681 14.6641 14.6641 14.9256 16.5280 16.5281 38.7457 38.7457 39.4535 39.4535 k = 0.0625 0.0625 0.1875 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5809 11.6589 12.2028 13.1727 13.6071 14.5300 14.6022 15.2522 16.1627 16.7005 36.2587 37.2023 37.8445 38.7809 k = 0.0625 0.0625 0.3125 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6164 11.6487 12.6212 12.6638 13.8659 14.4963 14.5192 15.5613 15.7135 16.9736 33.8662 35.0496 35.4791 36.6426 k = 0.0625 0.0625 0.4375 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4571 11.8361 12.3101 13.1164 14.0830 14.4085 14.7054 15.2277 16.2731 17.3568 31.7404 32.7147 33.1542 34.0016 k = 0.0625 0.0625 0.5625 ( 148 PWs) bands (ev): 9.8490 10.8064 11.2898 12.1935 12.5753 13.2445 13.6127 15.0878 15.5268 15.8163 16.8412 18.2393 29.6281 30.1012 31.1488 31.4631 k = 0.0625 0.0625 0.6875 ( 146 PWs) bands (ev): 9.9296 10.1061 11.8334 12.4095 12.7227 13.1739 14.0665 15.6755 16.2010 17.3612 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.0625 0.0625 0.8125 ( 144 PWs) bands (ev): 9.5655 9.5729 11.6859 11.7777 13.4305 13.8866 14.3760 16.5072 17.0646 17.7257 21.5119 22.9168 25.5707 25.8421 26.8447 27.0459 k = 0.0625 0.0625 0.9375 ( 143 PWs) bands (ev): 9.2750 9.2750 11.4415 11.4416 14.0747 14.4154 14.4155 17.3223 17.7665 17.7665 24.4157 24.4157 24.8001 25.5002 25.5002 25.8538 k = 0.0625 0.1875 0.1875 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3181 11.5671 12.6778 13.2539 13.5301 14.2181 14.4049 15.7704 16.2903 16.6104 33.9647 35.1499 36.7273 37.6011 k = 0.0625 0.1875 0.3125 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.0625 0.1875 0.4375 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9223 17.3636 28.6266 30.1620 32.6051 33.8030 k = 0.1875 0.0625 0.0625 ( 148 PWs) bands (ev): 6.3625 7.1447 11.5809 11.6589 12.2028 13.1727 13.6071 14.5300 14.6022 15.2522 16.1626 16.7005 36.2587 37.2023 37.8445 38.7809 k = 0.3125 0.0625 0.0625 ( 152 PWs) bands (ev): 7.5615 8.3877 11.6164 11.6487 12.6211 12.6638 13.8660 14.4963 14.5192 15.5613 15.7135 16.9736 33.8661 35.0496 35.4791 36.6426 k = 0.4375 0.0625 0.0625 ( 156 PWs) bands (ev): 8.9395 9.9420 11.4571 11.8361 12.3101 13.1164 14.0830 14.4086 14.7054 15.2277 16.2731 17.3568 31.7404 32.7147 33.1542 34.0016 k = 0.5625 0.0625 0.0625 ( 148 PWs) bands (ev): 9.8490 10.8064 11.2898 12.1935 12.5754 13.2445 13.6126 15.0878 15.5268 15.8163 16.8412 18.2393 29.6281 30.1012 31.1488 31.4631 k = 0.6875 0.0625 0.0625 ( 146 PWs) bands (ev): 9.9296 10.1061 11.8334 12.4094 12.7227 13.1740 14.0665 15.6755 16.2010 17.3612 18.3362 20.1534 27.4633 27.7465 28.9140 29.0794 k = 0.8125 0.0625 0.0625 ( 144 PWs) bands (ev): 9.5654 9.5729 11.6859 11.7776 13.4305 13.8866 14.3760 16.5072 17.0646 17.7257 21.5120 22.9168 25.5707 25.8421 26.8447 27.0459 k = 0.1875 0.1875 0.0625 ( 151 PWs) bands (ev): 6.9745 7.7799 11.3181 11.5671 12.6778 13.2538 13.5301 14.2181 14.4049 15.7704 16.2902 16.6105 33.9647 35.1499 36.7272 37.6011 k = 0.1875 0.3125 0.0625 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.3125 0.0625 0.1875 ( 152 PWs) bands (ev): 8.0238 8.9276 11.1744 11.5495 13.0280 13.2372 13.7502 14.0192 14.1912 16.0453 16.3838 16.8490 31.1771 32.5566 34.9136 35.9058 k = 0.1875 0.4375 0.0625 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9222 17.3636 28.6266 30.1620 32.6051 33.8030 k = 0.4375 0.0625 0.1875 ( 153 PWs) bands (ev): 9.1041 10.3061 11.1874 11.5426 12.8522 13.6985 13.7935 14.1434 14.4649 15.8365 16.9223 17.3637 28.6266 30.1620 32.6051 33.8030 the Fermi energy is 14.6622 ev ! total energy = -55.69968434 Ry Harris-Foulkes estimate = -55.69968370 Ry estimated scf accuracy < 7.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 8.92935697 Ry hartree contribution = 6.13358532 Ry xc contribution = -26.12190369 Ry ewald contribution = -44.64461207 Ry smearing contrib. (-TS) = 0.00388912 Ry total magnetization = 3.18 0.00 0.00 Bohr mag/cell absolute magnetization = 3.18 Bohr mag/cell lambda = 1.00 Ry convergence has been achieved in 11 iterations Writing output data file fe.save PWSCF : 9.19s CPU time, 9.52s wall time init_run : 0.91s CPU electrons : 8.03s CPU Called by init_run: wfcinit : 0.17s CPU potinit : 0.02s CPU Called by electrons: c_bands : 5.75s CPU ( 11 calls, 0.523 s avg) sum_band : 1.70s CPU ( 11 calls, 0.154 s avg) v_of_rho : 0.10s CPU ( 12 calls, 0.009 s avg) newd : 0.29s CPU ( 12 calls, 0.024 s avg) mix_rho : 0.07s CPU ( 11 calls, 0.006 s avg) Called by c_bands: init_us_2 : 0.05s CPU ( 506 calls, 0.000 s avg) cegterg : 5.53s CPU ( 242 calls, 0.023 s avg) Called by *egterg: h_psi : 3.99s CPU ( 871 calls, 0.005 s avg) s_psi : 0.13s CPU ( 871 calls, 0.000 s avg) g_psi : 0.10s CPU ( 607 calls, 0.000 s avg) cdiaghg : 0.86s CPU ( 849 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.12s CPU ( 871 calls, 0.000 s avg) General routines calbec : 0.12s CPU ( 1113 calls, 0.000 s avg) cft3s : 3.71s CPU ( 47026 calls, 0.000 s avg) interpolate : 0.08s CPU ( 92 calls, 0.001 s avg) davcio : 0.00s CPU ( 748 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example06/reference/cu.scf.out0000644000175000017500000010230112341373025021114 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:10:19 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 307 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 59 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0019531 k( 2) = ( -0.1250000 0.1250000 -0.1250000), wk = 0.0156250 k( 3) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0156250 k( 4) = ( -0.3750000 0.3750000 -0.3750000), wk = 0.0156250 k( 5) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0078125 k( 6) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0078125 k( 7) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0312500 k( 8) = ( -0.2500000 0.5000000 -0.2500000), wk = 0.0312500 k( 9) = ( 0.6250000 -0.3750000 0.6250000), wk = 0.0312500 k( 10) = ( 0.5000000 -0.2500000 0.5000000), wk = 0.0312500 k( 11) = ( 0.3750000 -0.1250000 0.3750000), wk = 0.0312500 k( 12) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0156250 k( 13) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0078125 k( 14) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0312500 k( 15) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0312500 k( 16) = ( 0.6250000 -0.1250000 0.6250000), wk = 0.0312500 k( 17) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0156250 k( 18) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0078125 k( 19) = ( 0.8750000 -0.1250000 0.8750000), wk = 0.0312500 k( 20) = ( 0.7500000 0.0000000 0.7500000), wk = 0.0156250 k( 21) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0039062 k( 22) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0156250 k( 23) = ( 0.6250000 -0.3750000 0.8750000), wk = 0.0312500 k( 24) = ( 0.5000000 -0.2500000 0.7500000), wk = 0.0156250 k( 25) = ( 0.7500000 -0.2500000 1.0000000), wk = 0.0156250 k( 26) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.0312500 k( 27) = ( 0.5000000 0.0000000 0.7500000), wk = 0.0156250 k( 28) = ( -0.2500000 -1.0000000 0.0000000), wk = 0.0078125 k( 29) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0039062 k( 30) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0039062 k( 31) = ( 0.3750000 -0.1250000 -0.1250000), wk = 0.0156250 k( 32) = ( 0.5000000 -0.2500000 -0.2500000), wk = 0.0156250 k( 33) = ( -0.3750000 0.6250000 0.6250000), wk = 0.0156250 k( 34) = ( -0.2500000 0.5000000 0.5000000), wk = 0.0156250 k( 35) = ( -0.1250000 0.3750000 0.3750000), wk = 0.0156250 k( 36) = ( 0.0000000 0.2500000 0.2500000), wk = 0.0078125 k( 37) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0039062 k( 38) = ( 0.6250000 -0.1250000 -0.1250000), wk = 0.0156250 k( 39) = ( -0.2500000 0.7500000 0.7500000), wk = 0.0156250 k( 40) = ( -0.1250000 0.6250000 0.6250000), wk = 0.0156250 k( 41) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0078125 k( 42) = ( 0.7500000 0.0000000 0.0000000), wk = 0.0039062 k( 43) = ( -0.1250000 0.8750000 0.8750000), wk = 0.0156250 k( 44) = ( 0.0000000 0.7500000 0.7500000), wk = 0.0078125 k( 45) = ( -1.0000000 0.0000000 0.0000000), wk = 0.0019531 k( 46) = ( 0.5000000 0.0000000 -0.2500000), wk = 0.0156250 k( 47) = ( 0.0000000 -0.2500000 0.5000000), wk = 0.0156250 k( 48) = ( -0.3750000 0.8750000 0.6250000), wk = 0.0312500 k( 49) = ( 0.8750000 0.6250000 -0.3750000), wk = 0.0312500 k( 50) = ( -0.2500000 0.7500000 0.5000000), wk = 0.0312500 k( 51) = ( -0.2500000 1.0000000 0.7500000), wk = 0.0156250 k( 52) = ( 1.0000000 0.7500000 -0.2500000), wk = 0.0156250 k( 53) = ( -0.1250000 0.8750000 0.6250000), wk = 0.0312500 k( 54) = ( 0.8750000 0.6250000 -0.1250000), wk = 0.0312500 k( 55) = ( 0.0000000 0.7500000 0.5000000), wk = 0.0156250 k( 56) = ( 0.7500000 0.5000000 0.0000000), wk = 0.0156250 k( 57) = ( -1.0000000 0.0000000 -0.2500000), wk = 0.0078125 k( 58) = ( 0.0000000 -0.2500000 -1.0000000), wk = 0.0078125 k( 59) = ( -1.0000000 0.0000000 -0.5000000), wk = 0.0078125 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.10 Mb ( 338, 20) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.41 Mb ( 338, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.01 Mb ( 13, 2, 20) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.993053 magnetization : 4.996526 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 4.996526 90.000000 0.000000 ============================================================================== Starting wfc are 12 atomic + 8 random wfc total cpu time spent up to now is 1.42 secs per-process dynamical memory: 14.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.534975 magnetization : 2.371907 0.000000 0.000000 magnetization/charge: 0.248759 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.371907 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 5.34 secs total energy = -87.34572418 Ry Harris-Foulkes estimate = -87.48173415 Ry estimated scf accuracy < 0.86901444 Ry total magnetization = 1.18 0.00 0.00 Bohr mag/cell absolute magnetization = 1.35 Bohr mag/cell iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.90E-03, avg # of iterations = 2.2 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.751793 magnetization : 1.566642 0.000000 0.000000 magnetization/charge: 0.160652 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 1.566642 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 7.49 secs total energy = -87.71580467 Ry Harris-Foulkes estimate = -87.94173032 Ry estimated scf accuracy < 0.77410779 Ry total magnetization = 0.15 0.00 0.00 Bohr mag/cell absolute magnetization = 0.22 Bohr mag/cell iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.04E-03, avg # of iterations = 1.1 negative rho (up, down): 0.000E+00 0.508E-04 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.858987 magnetization : -0.072052 0.000000 0.000000 magnetization/charge: -0.007308 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.072052 90.000000 -180.000000 ============================================================================== total cpu time spent up to now is 9.33 secs total energy = -87.82273457 Ry Harris-Foulkes estimate = -87.79539852 Ry estimated scf accuracy < 0.06710278 Ry total magnetization = 0.22 0.00 0.00 Bohr mag/cell absolute magnetization = 0.31 Bohr mag/cell iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.10E-04, avg # of iterations = 2.0 negative rho (up, down): 0.334E-05 0.508E-04 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.811401 magnetization : -0.112193 0.000000 0.000000 magnetization/charge: -0.011435 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.112193 90.000000 -180.000000 ============================================================================== total cpu time spent up to now is 11.45 secs total energy = -87.83585878 Ry Harris-Foulkes estimate = -87.84568066 Ry estimated scf accuracy < 0.01986698 Ry total magnetization = -0.03 0.00 0.00 Bohr mag/cell absolute magnetization = 0.03 Bohr mag/cell iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-04, avg # of iterations = 1.3 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.812740 magnetization : 0.014861 0.000000 0.000000 magnetization/charge: 0.001514 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.014861 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 13.31 secs total energy = -87.84026454 Ry Harris-Foulkes estimate = -87.84018616 Ry estimated scf accuracy < 0.00018702 Ry total magnetization = -0.03 0.00 0.00 Bohr mag/cell absolute magnetization = 0.03 Bohr mag/cell iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.70E-06, avg # of iterations = 2.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.813299 magnetization : 0.006938 0.000000 0.000000 magnetization/charge: 0.000707 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.006938 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 15.47 secs total energy = -87.84038532 Ry Harris-Foulkes estimate = -87.84037686 Ry estimated scf accuracy < 0.00000928 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.01 Bohr mag/cell iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.44E-08, avg # of iterations = 1.3 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.813850 magnetization : -0.000412 0.000000 0.000000 magnetization/charge: -0.000042 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.000412 90.000000 180.000000 ============================================================================== total cpu time spent up to now is 17.34 secs total energy = -87.84038822 Ry Harris-Foulkes estimate = -87.84038779 Ry estimated scf accuracy < 0.00000166 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell iteration # 8 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-08, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 9.813855 magnetization : -0.000103 0.000000 0.000000 magnetization/charge: -0.000010 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 0.000103 90.000000 -180.000000 ============================================================================== total cpu time spent up to now is 19.38 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9899 4.9909 11.2119 11.2119 11.2119 11.2122 11.2122 11.2122 12.1015 12.1015 12.1018 12.1018 38.8589 38.8601 41.0132 41.0132 41.0132 41.0142 41.0142 41.0142 k =-0.1250 0.1250-0.1250 ( 165 PWs) bands (ev): 5.5706 5.5717 11.0970 11.0973 11.3137 11.3137 11.3140 11.3140 12.0711 12.0711 12.0714 12.0714 34.2721 34.2731 39.2711 39.2723 39.7092 39.7092 39.7101 39.7101 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1555 7.1565 10.9621 10.9625 11.3820 11.3820 11.3823 11.3823 12.1937 12.1937 12.1940 12.1940 27.5296 27.5305 38.3745 38.3745 38.3754 38.3754 38.4648 38.4661 k =-0.3750 0.3750-0.3750 ( 159 PWs) bands (ev): 8.7622 8.7629 11.2521 11.2521 11.2524 11.2524 11.7761 11.7768 12.5424 12.5424 12.5426 12.5426 21.8073 21.8081 37.4521 37.4534 37.7379 37.7379 37.7387 37.7387 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1193 9.1199 11.1773 11.1773 11.1776 11.1776 12.7172 12.7172 12.7175 12.7175 13.4635 13.4646 18.6469 18.6476 37.0195 37.0208 37.6118 37.6118 37.6127 37.6127 k = 0.0000 0.2500 0.0000 ( 165 PWs) bands (ev): 5.7617 5.7627 10.9830 10.9833 11.4051 11.4051 11.4054 11.4054 11.9006 11.9009 12.1874 12.1877 36.7465 36.7465 36.7475 36.7475 36.7674 36.7685 38.6737 38.6747 k =-0.1250 0.3750-0.1250 ( 160 PWs) bands (ev): 7.0143 7.0153 10.7592 10.7596 11.4423 11.4426 11.5633 11.5636 11.9840 11.9843 12.3196 12.3199 30.0795 30.0805 34.8366 34.8375 36.4459 36.4470 38.9421 38.9431 k =-0.2500 0.5000-0.2500 ( 158 PWs) bands (ev): 8.7312 8.7321 10.8358 10.8363 11.1912 11.1915 11.4997 11.5000 12.6050 12.6053 12.8155 12.8159 23.9451 23.9460 34.0870 34.0879 34.9382 34.9393 36.6381 36.6390 k = 0.6250-0.3750 0.6250 ( 163 PWs) bands (ev): 9.3901 9.3907 10.9732 10.9736 11.3805 11.3808 11.6282 11.6287 12.7293 12.7296 14.6434 14.6442 19.3254 19.3261 32.8144 32.8154 34.6299 34.6309 36.4062 36.4072 k = 0.5000-0.2500 0.5000 ( 161 PWs) bands (ev): 9.3178 9.3184 11.0467 11.0471 11.3797 11.3800 11.4897 11.4903 12.4960 12.4963 14.0604 14.0610 20.5869 20.5877 31.5898 31.5908 36.5326 36.5335 37.3108 37.3119 k = 0.3750-0.1250 0.3750 ( 159 PWs) bands (ev): 8.2145 8.2154 10.8164 10.8168 11.2661 11.2665 11.5179 11.5183 12.0425 12.0428 12.8330 12.8334 25.8884 25.8893 31.4959 31.4969 39.3191 39.3202 39.7098 39.7107 k = 0.2500 0.0000 0.2500 ( 160 PWs) bands (ev): 6.4953 6.4963 10.9085 10.9089 11.4022 11.4025 11.4844 11.4847 11.8805 11.8809 12.2899 12.2903 32.0426 32.0435 32.7831 32.7841 41.5259 41.5271 42.4821 43.1470 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7947 7.7957 10.4446 10.4450 11.6422 11.6427 11.9304 11.9304 11.9307 11.9307 12.3966 12.3969 32.3403 32.3403 32.3412 32.3412 33.7605 33.7616 34.5459 34.5470 k =-0.1250 0.6250-0.1250 ( 162 PWs) bands (ev): 9.0258 9.0266 10.2437 10.2441 11.4595 11.4599 12.0304 12.0307 12.6335 12.6338 12.9942 12.9946 26.9796 26.9805 30.3547 30.3556 31.0989 31.0999 35.0382 35.0392 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7741 9.7746 10.3372 10.3377 11.2737 11.2741 11.9055 11.9058 12.7610 12.7613 15.5345 15.5352 21.6028 21.6037 27.6763 27.6772 31.3024 31.3033 35.1339 35.1349 k = 0.6250-0.1250 0.6250 ( 162 PWs) bands (ev): 10.0262 10.0267 10.5347 10.5352 11.0775 11.0779 11.8007 11.8010 12.5181 12.5184 16.7780 16.7788 20.0957 20.0965 26.0436 26.0445 32.9722 32.9731 35.8425 35.8435 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6303 9.6310 10.6867 10.6872 10.9041 10.9045 11.7536 11.7539 12.1034 12.1037 14.2122 14.2127 24.5985 24.5994 26.0264 26.0273 35.8998 35.9007 37.3879 37.3890 k = 0.0000 0.7500 0.0000 ( 162 PWs) bands (ev): 9.2115 9.2121 9.9259 9.9263 12.5651 12.5651 12.5653 12.5653 12.6088 12.6091 13.2897 13.2906 26.4724 26.4733 29.3001 29.3001 29.3010 29.3010 33.3091 33.3101 k = 0.8750-0.1250 0.8750 ( 164 PWs) bands (ev): 9.4573 9.4579 9.8804 9.8809 12.2120 12.2124 12.4812 12.4815 12.8063 12.8065 15.9154 15.9163 23.7244 23.7252 25.2531 25.2540 29.0133 29.0143 34.1901 34.1910 k = 0.7500 0.0000 0.7500 ( 168 PWs) bands (ev): 9.8690 9.8695 10.1175 10.1180 11.5170 11.5175 12.2489 12.2492 12.6607 12.6610 19.0080 19.0089 20.5166 20.5175 22.9156 22.9164 30.3249 30.3258 34.7843 34.7852 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2659 9.2664 9.7169 9.7174 12.6975 12.6978 12.8721 12.8721 12.8723 12.8723 16.0642 16.0652 22.1120 22.1127 28.1798 28.1798 28.1807 28.1807 32.9248 32.9258 k =-0.2500 0.5000 0.0000 ( 156 PWs) bands (ev): 8.3848 8.3857 10.5343 10.5347 11.2125 11.2129 11.9396 11.9399 11.9924 11.9927 12.8708 12.8711 28.3801 28.3810 29.1683 29.1693 34.7034 34.7044 39.7252 39.7262 k = 0.6250-0.3750 0.8750 ( 161 PWs) bands (ev): 9.6573 9.6580 10.6135 10.6140 10.9350 10.9353 11.8099 11.8102 12.4702 12.4705 14.3853 14.3859 22.9175 22.9183 28.5926 28.5935 31.6517 31.6526 39.6660 39.6670 k = 0.5000-0.2500 0.7500 ( 164 PWs) bands (ev): 9.8975 9.8980 10.5965 10.5970 11.1684 11.1689 11.6977 11.6981 12.6585 12.6588 16.6932 16.6941 19.1456 19.1463 29.3157 29.3167 29.7922 29.7931 39.3670 39.3680 k = 0.7500-0.2500 1.0000 ( 166 PWs) bands (ev): 9.6203 9.6210 10.1239 10.1243 11.4255 11.4259 12.4031 12.4034 12.5612 12.5615 14.7941 14.7948 25.8719 25.8729 26.6518 26.6528 27.2677 27.2685 37.8998 37.9009 k = 0.6250-0.1250 0.8750 ( 161 PWs) bands (ev): 10.0009 10.0014 10.2738 10.2742 11.1333 11.1337 12.1349 12.1352 12.7444 12.7447 18.0200 18.0208 21.2274 21.2283 24.7958 24.7967 27.1031 27.1040 39.0192 39.0202 k = 0.5000 0.0000 0.7500 ( 158 PWs) bands (ev): 10.2798 10.2803 10.4647 10.4651 10.7104 10.7108 12.0136 12.0140 12.5653 12.5656 17.1293 17.1300 21.9670 21.9679 24.2086 24.2095 28.8756 28.8765 40.2133 40.2143 k =-0.2500-1.0000 0.0000 ( 164 PWs) bands (ev): 9.6008 9.6013 9.9541 9.9545 11.8938 11.8942 12.4337 12.4340 12.8723 12.8726 17.7247 17.7257 22.3938 22.3946 24.9307 24.9316 26.0249 26.0258 37.2961 37.2971 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0366 10.0372 10.6870 10.6870 10.6874 10.6874 12.0681 12.0684 12.8727 12.8730 20.9532 20.9532 20.9541 20.9541 23.1352 23.1361 24.0560 24.0568 44.6548 44.6548 k = 0.2500 0.0000 0.0000 ( 165 PWs) bands (ev): 5.7617 5.7627 10.9830 10.9833 11.4051 11.4051 11.4054 11.4054 11.9006 11.9009 12.1874 12.1877 36.7465 36.7465 36.7475 36.7475 36.7674 36.7685 38.6737 38.6747 k = 0.3750-0.1250-0.1250 ( 160 PWs) bands (ev): 7.0143 7.0153 10.7592 10.7596 11.4423 11.4426 11.5633 11.5636 11.9840 11.9843 12.3196 12.3199 30.0795 30.0805 34.8366 34.8375 36.4459 36.4470 38.9421 38.9431 k = 0.5000-0.2500-0.2500 ( 158 PWs) bands (ev): 8.7312 8.7321 10.8358 10.8363 11.1912 11.1915 11.4997 11.5000 12.6050 12.6053 12.8155 12.8159 23.9451 23.9460 34.0870 34.0879 34.9382 34.9393 36.6381 36.6390 k =-0.3750 0.6250 0.6250 ( 163 PWs) bands (ev): 9.3901 9.3907 10.9732 10.9736 11.3805 11.3808 11.6282 11.6287 12.7293 12.7296 14.6434 14.6442 19.3254 19.3261 32.8144 32.8154 34.6299 34.6309 36.4062 36.4072 k =-0.2500 0.5000 0.5000 ( 161 PWs) bands (ev): 9.3178 9.3184 11.0467 11.0471 11.3797 11.3800 11.4897 11.4903 12.4960 12.4963 14.0604 14.0610 20.5869 20.5877 31.5898 31.5908 36.5326 36.5335 37.3108 37.3119 k =-0.1250 0.3750 0.3750 ( 159 PWs) bands (ev): 8.2145 8.2154 10.8164 10.8168 11.2661 11.2665 11.5179 11.5183 12.0425 12.0428 12.8330 12.8334 25.8884 25.8893 31.4959 31.4969 39.3191 39.3202 39.7098 39.7107 k = 0.0000 0.2500 0.2500 ( 160 PWs) bands (ev): 6.4953 6.4963 10.9085 10.9089 11.4022 11.4025 11.4844 11.4847 11.8805 11.8809 12.2899 12.2903 32.0426 32.0435 32.7831 32.7841 41.5259 41.5271 42.4821 43.1469 k = 0.5000 0.0000 0.0000 ( 165 PWs) bands (ev): 7.7947 7.7957 10.4446 10.4450 11.6422 11.6427 11.9304 11.9304 11.9307 11.9307 12.3966 12.3969 32.3403 32.3403 32.3412 32.3412 33.7605 33.7616 34.5459 34.5470 k = 0.6250-0.1250-0.1250 ( 162 PWs) bands (ev): 9.0258 9.0266 10.2437 10.2441 11.4595 11.4599 12.0304 12.0307 12.6335 12.6338 12.9942 12.9946 26.9796 26.9805 30.3547 30.3556 31.0989 31.0999 35.0382 35.0392 k =-0.2500 0.7500 0.7500 ( 158 PWs) bands (ev): 9.7741 9.7746 10.3372 10.3377 11.2737 11.2741 11.9055 11.9058 12.7610 12.7613 15.5345 15.5352 21.6028 21.6037 27.6763 27.6772 31.3024 31.3033 35.1339 35.1349 k =-0.1250 0.6250 0.6250 ( 162 PWs) bands (ev): 10.0262 10.0267 10.5347 10.5352 11.0775 11.0779 11.8007 11.8010 12.5181 12.5184 16.7780 16.7788 20.0957 20.0965 26.0436 26.0445 32.9722 32.9731 35.8425 35.8435 k = 0.0000 0.5000 0.5000 ( 164 PWs) bands (ev): 9.6303 9.6310 10.6867 10.6872 10.9041 10.9045 11.7536 11.7539 12.1034 12.1037 14.2122 14.2127 24.5985 24.5994 26.0264 26.0273 35.8998 35.9007 37.3879 37.3890 k = 0.7500 0.0000 0.0000 ( 162 PWs) bands (ev): 9.2115 9.2121 9.9259 9.9263 12.5651 12.5651 12.5653 12.5653 12.6088 12.6091 13.2897 13.2906 26.4724 26.4733 29.3001 29.3001 29.3010 29.3010 33.3091 33.3101 k =-0.1250 0.8750 0.8750 ( 164 PWs) bands (ev): 9.4573 9.4579 9.8804 9.8809 12.2120 12.2124 12.4812 12.4815 12.8063 12.8065 15.9154 15.9163 23.7244 23.7252 25.2531 25.2540 29.0133 29.0143 34.1901 34.1910 k = 0.0000 0.7500 0.7500 ( 168 PWs) bands (ev): 9.8690 9.8695 10.1175 10.1180 11.5170 11.5175 12.2489 12.2492 12.6607 12.6610 19.0080 19.0089 20.5166 20.5175 22.9156 22.9164 30.3249 30.3258 34.7843 34.7852 k =-1.0000 0.0000 0.0000 ( 150 PWs) bands (ev): 9.2659 9.2664 9.7169 9.7174 12.6975 12.6978 12.8721 12.8721 12.8723 12.8723 16.0642 16.0652 22.1120 22.1127 28.1798 28.1798 28.1807 28.1807 32.9248 32.9258 k = 0.5000 0.0000-0.2500 ( 156 PWs) bands (ev): 8.3848 8.3857 10.5343 10.5347 11.2125 11.2129 11.9396 11.9399 11.9924 11.9927 12.8708 12.8711 28.3801 28.3810 29.1683 29.1693 34.7034 34.7044 39.7252 39.7262 k = 0.0000-0.2500 0.5000 ( 156 PWs) bands (ev): 8.3848 8.3857 10.5343 10.5347 11.2125 11.2129 11.9396 11.9399 11.9924 11.9927 12.8708 12.8711 28.3801 28.3810 29.1683 29.1693 34.7034 34.7044 39.7252 39.7262 k =-0.3750 0.8750 0.6250 ( 161 PWs) bands (ev): 9.6573 9.6580 10.6135 10.6140 10.9350 10.9353 11.8099 11.8102 12.4702 12.4705 14.3853 14.3859 22.9175 22.9183 28.5926 28.5935 31.6517 31.6526 39.6660 39.6670 k = 0.8750 0.6250-0.3750 ( 161 PWs) bands (ev): 9.6573 9.6580 10.6135 10.6140 10.9350 10.9353 11.8099 11.8102 12.4702 12.4705 14.3853 14.3859 22.9175 22.9183 28.5926 28.5935 31.6517 31.6526 39.6660 39.6670 k =-0.2500 0.7500 0.5000 ( 164 PWs) bands (ev): 9.8975 9.8980 10.5965 10.5970 11.1684 11.1688 11.6977 11.6981 12.6585 12.6588 16.6932 16.6941 19.1456 19.1463 29.3157 29.3167 29.7922 29.7931 39.3670 39.3680 k =-0.2500 1.0000 0.7500 ( 166 PWs) bands (ev): 9.6203 9.6210 10.1239 10.1243 11.4255 11.4259 12.4031 12.4034 12.5612 12.5615 14.7941 14.7948 25.8719 25.8729 26.6518 26.6528 27.2677 27.2685 37.8998 37.9009 k = 1.0000 0.7500-0.2500 ( 166 PWs) bands (ev): 9.6203 9.6210 10.1239 10.1243 11.4255 11.4259 12.4031 12.4034 12.5612 12.5615 14.7941 14.7948 25.8719 25.8729 26.6518 26.6528 27.2677 27.2685 37.8998 37.9009 k =-0.1250 0.8750 0.6250 ( 161 PWs) bands (ev): 10.0009 10.0014 10.2738 10.2742 11.1333 11.1337 12.1349 12.1352 12.7444 12.7447 18.0200 18.0208 21.2274 21.2283 24.7958 24.7967 27.1031 27.1040 39.0192 39.0202 k = 0.8750 0.6250-0.1250 ( 161 PWs) bands (ev): 10.0009 10.0014 10.2738 10.2742 11.1333 11.1337 12.1349 12.1352 12.7444 12.7447 18.0200 18.0208 21.2274 21.2283 24.7958 24.7967 27.1031 27.1040 39.0192 39.0202 k = 0.0000 0.7500 0.5000 ( 158 PWs) bands (ev): 10.2798 10.2803 10.4647 10.4651 10.7104 10.7108 12.0136 12.0140 12.5653 12.5656 17.1293 17.1300 21.9670 21.9679 24.2086 24.2095 28.8756 28.8765 40.2133 40.2143 k = 0.7500 0.5000 0.0000 ( 158 PWs) bands (ev): 10.2798 10.2803 10.4647 10.4651 10.7104 10.7108 12.0136 12.0140 12.5653 12.5656 17.1293 17.1300 21.9670 21.9679 24.2086 24.2095 28.8756 28.8765 40.2133 40.2143 k =-1.0000 0.0000-0.2500 ( 164 PWs) bands (ev): 9.6008 9.6013 9.9541 9.9545 11.8938 11.8942 12.4337 12.4340 12.8723 12.8726 17.7247 17.7257 22.3938 22.3946 24.9307 24.9316 26.0249 26.0258 37.2961 37.2971 k = 0.0000-0.2500-1.0000 ( 164 PWs) bands (ev): 9.6008 9.6013 9.9541 9.9545 11.8938 11.8942 12.4337 12.4340 12.8723 12.8726 17.7247 17.7257 22.3938 22.3946 24.9307 24.9316 26.0249 26.0258 37.2961 37.2971 k =-1.0000 0.0000-0.5000 ( 156 PWs) bands (ev): 10.0366 10.0372 10.6870 10.6870 10.6874 10.6874 12.0681 12.0684 12.8727 12.8730 20.9532 20.9532 20.9541 20.9541 23.1352 23.1361 24.0560 24.0568 44.6548 44.6548 the Fermi energy is 14.4913 ev ! total energy = -87.84038898 Ry Harris-Foulkes estimate = -87.84038896 Ry estimated scf accuracy < 3.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -10.24914238 Ry hartree contribution = 18.89883846 Ry xc contribution = -14.05780514 Ry ewald contribution = -82.43214130 Ry smearing contrib. (-TS) = -0.00013861 Ry total magnetization = 0.00 0.00 0.00 Bohr mag/cell absolute magnetization = 0.00 Bohr mag/cell convergence has been achieved in 8 iterations Writing output data file cu.save PWSCF : 19.60s CPU time, 20.30s wall time init_run : 1.37s CPU electrons : 17.96s CPU Called by init_run: wfcinit : 0.60s CPU potinit : 0.03s CPU Called by electrons: c_bands : 14.35s CPU ( 8 calls, 1.794 s avg) sum_band : 3.00s CPU ( 8 calls, 0.375 s avg) v_of_rho : 0.11s CPU ( 9 calls, 0.012 s avg) newd : 0.28s CPU ( 9 calls, 0.032 s avg) mix_rho : 0.08s CPU ( 8 calls, 0.010 s avg) Called by c_bands: init_us_2 : 0.10s CPU ( 1003 calls, 0.000 s avg) cegterg : 14.10s CPU ( 472 calls, 0.030 s avg) Called by *egterg: h_psi : 10.08s CPU ( 1554 calls, 0.006 s avg) s_psi : 0.18s CPU ( 1554 calls, 0.000 s avg) g_psi : 0.26s CPU ( 1023 calls, 0.000 s avg) cdiaghg : 2.41s CPU ( 1495 calls, 0.002 s avg) Called by h_psi: add_vuspsi : 0.21s CPU ( 1554 calls, 0.000 s avg) General routines calbec : 0.28s CPU ( 2026 calls, 0.000 s avg) cft3s : 8.80s CPU ( 111330 calls, 0.000 s avg) interpolate : 0.10s CPU ( 68 calls, 0.001 s avg) davcio : 0.01s CPU ( 1475 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example06/reference/cu.band.out0000644000175000017500000002537012341373025021257 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:56: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Noncollinear calculation without spin-orbit celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0238095 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0238095 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0238095 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0238095 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0238095 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0238095 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0238095 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0238095 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0238095 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0238095 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0119048 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0119048 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0119048 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0119048 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0119048 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0119048 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0119048 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0119048 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0119048 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0119048 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.04 Mb ( 340, 8) NL pseudopotentials 0.03 Mb ( 170, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.17 Mb ( 340, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 13, 2, 8) Arrays for rho mixing 2.40 Mb ( 19683, 8) The potential is recalculated from file : cu.save/charge-density.dat Starting wfc are 12 atomic wfcs total cpu time spent up to now is 0.53 secs per-process dynamical memory: 9.6 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 9.09E-09, avg # of iterations = 7.0 total cpu time spent up to now is 1.18 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 4.9903 4.9906 11.2116 11.2116 11.2116 11.2117 11.2117 11.2117 k = 0.0000 0.0000 0.1000 band energies (ev): 5.1159 5.1161 11.1731 11.1732 11.2431 11.2431 11.2431 11.2431 k = 0.0000 0.0000 0.2000 band energies (ev): 5.4880 5.4882 11.0620 11.0621 11.3362 11.3362 11.3363 11.3363 k = 0.0000 0.0000 0.3000 band energies (ev): 6.0906 6.0909 10.8906 10.8907 11.4875 11.4875 11.4876 11.4876 k = 0.0000 0.0000 0.4000 band energies (ev): 6.8876 6.8878 10.6773 10.6774 11.6895 11.6895 11.6896 11.6896 k = 0.0000 0.0000 0.5000 band energies (ev): 7.7951 7.7953 10.4445 10.4445 11.6421 11.6422 11.9302 11.9302 k = 0.0000 0.0000 0.6000 band energies (ev): 8.6221 8.6223 10.2154 10.2155 11.8915 11.8916 12.1917 12.1917 k = 0.0000 0.0000 0.7000 band energies (ev): 9.1075 9.1077 10.0120 10.0121 12.4481 12.4481 12.4481 12.4481 k = 0.0000 0.0000 0.8000 band energies (ev): 9.2577 9.2579 9.8526 9.8527 12.6393 12.6394 12.6681 12.6681 k = 0.0000 0.0000 0.9000 band energies (ev): 9.2714 9.2715 9.7513 9.7514 12.6823 12.6824 12.8181 12.8181 k = 0.0000 0.0000 1.0000 band energies (ev): 9.2658 9.2660 9.7168 9.7169 12.6972 12.6973 12.8718 12.8718 k = 0.0000 0.0000 0.0000 band energies (ev): 4.9903 4.9906 11.2116 11.2116 11.2116 11.2117 11.2117 11.2117 k = 0.0000 0.1000 0.1000 band energies (ev): 5.2406 5.2408 11.1525 11.1526 11.2578 11.2579 11.2699 11.2700 k = 0.0000 0.2000 0.2000 band energies (ev): 5.9707 5.9710 11.0003 11.0004 11.3808 11.3809 11.3903 11.3904 k = 0.0000 0.3000 0.3000 band energies (ev): 7.1065 7.1067 10.8191 10.8191 11.3769 11.3769 11.5926 11.5927 k = 0.0000 0.4000 0.4000 band energies (ev): 8.4632 8.4634 10.6900 10.6901 11.1997 11.1998 11.7385 11.7386 k = 0.0000 0.5000 0.5000 band energies (ev): 9.6304 9.6306 10.6866 10.6867 10.9039 10.9040 11.7533 11.7534 k = 0.0000 0.6000 0.6000 band energies (ev): 10.1588 10.1589 10.5468 10.5469 10.8641 10.8642 11.8838 11.8839 k = 0.0000 0.7000 0.7000 band energies (ev): 10.0490 10.0491 10.2430 10.2431 11.2485 11.2486 12.1132 12.1132 k = 0.0000 0.8000 0.8000 band energies (ev): 9.6834 9.6835 9.9909 9.9910 11.8276 11.8277 12.3845 12.3846 k = 0.0000 0.9000 0.9000 band energies (ev): 9.3815 9.3816 9.7902 9.7903 12.4981 12.4982 12.6092 12.6093 k = 0.0000 1.0000 1.0000 band energies (ev): 9.2658 9.2660 9.7168 9.7169 12.6972 12.6973 12.8718 12.8718 k = 0.0000 0.0000 0.0000 band energies (ev): 4.9903 4.9906 11.2116 11.2116 11.2116 11.2117 11.2117 11.2117 k = 0.1000 0.1000 0.1000 band energies (ev): 5.3643 5.3645 11.1345 11.1345 11.2816 11.2816 11.2817 11.2817 k = 0.2000 0.2000 0.2000 band energies (ev): 6.4308 6.4310 10.9837 10.9838 11.3861 11.3861 11.3862 11.3862 k = 0.3000 0.3000 0.3000 band energies (ev): 7.9098 7.9101 11.0742 11.0743 11.3385 11.3385 11.3386 11.3386 k = 0.4000 0.4000 0.4000 band energies (ev): 8.9173 8.9174 11.2266 11.2266 11.2266 11.2266 12.1743 12.1745 k = 0.5000 0.5000 0.5000 band energies (ev): 9.1193 9.1195 11.1770 11.1770 11.1771 11.1771 12.7169 12.7169 Writing output data file cu.save PWSCF : 1.26s CPU time, 1.29s wall time init_run : 0.50s CPU electrons : 0.65s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.02s CPU Called by electrons: c_bands : 0.65s CPU v_of_rho : 0.01s CPU newd : 0.02s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) cegterg : 0.53s CPU ( 28 calls, 0.019 s avg) Called by *egterg: h_psi : 0.46s CPU ( 251 calls, 0.002 s avg) s_psi : 0.01s CPU ( 251 calls, 0.000 s avg) g_psi : 0.01s CPU ( 195 calls, 0.000 s avg) cdiaghg : 0.05s CPU ( 223 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 251 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 251 calls, 0.000 s avg) cft3 : 0.01s CPU ( 14 calls, 0.001 s avg) cft3s : 0.26s CPU ( 6852 calls, 0.000 s avg) interpolate : 0.00s CPU ( 4 calls, 0.001 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.1/PW/examples/example09/0000755000175000017500000000000012341373041015250 5ustar mbambaespresso-5.1/PW/examples/example09/run_xml_example0000755000175000017500000001177712341373025020414 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to perform SCF" $ECHO "simulation of C4H6 with TPSS metaGGA Exc." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="C.tpss-mt.UPF H.tpss-mt.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" cat > c4h6.pw.metaGGA.xml << EOF 0.0 0.0 0.0 0.0 0.0 1.007825035 H.tpss-mt.UPF 12.00 C.tpss-mt.UPF -0.271695E+01 -0.245822E+01 0.236174E+01 -0.291292E+01 0.249129E+01 0.952936E+00 0.203629E+01 -0.270414E+01 -0.104887E+01 0.310911E+01 -0.162987E+01 0.189331E+01 0.244815E+01 0.263846E+01 0.332670E+00 0.940835E+00 0.160187E+01 -0.258377E+01 -0.121505E+01 -0.130902E+01 0.131661E+01 -0.136126E+01 0.116614E+01 0.825189E+00 0.154872E+01 -0.143358E+01 0.510627E+00 0.109484E+01 0.137081E+01 -0.496954E+00 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 30.0 11 EOF $ECHO " running the pw.x SCF calculation...\c" $PW_COMMAND < c4h6.pw.metaGGA.xml > c4h6.pw.metaGGA.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PW/examples/example09/README0000644000175000017500000000012112341373025016124 0ustar mbambaThis example shows how to use pw.x to perform TPSS metaGGA calculation for C4H6 espresso-5.1/PW/examples/example09/run_example0000755000175000017500000000574512341373025017532 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to perform SCF" $ECHO "simulation of C4H6 with TPSS metaGGA Exc." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="C.tpss-mt.UPF H.tpss-mt.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO cat > c4h6.pw.metaGGA.in << EOF &control calculation='scf', restart_mode='from_scratch', pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor=.true. tstress=.true. / &system ibrav=1, celldm(1)=8.00, nat=10, ntyp=2, nbnd=11, ecutwfc=30.0, / &electrons / ATOMIC_SPECIES H 1.007825035 H.tpss-mt.UPF C 12.00 C.tpss-mt.UPF ATOMIC_POSITIONS bohr H -0.271695E+01 -0.245822E+01 0.236174E+01 H -0.291292E+01 0.249129E+01 0.952936E+00 H 0.203629E+01 -0.270414E+01 -0.104887E+01 H 0.310911E+01 -0.162987E+01 0.189331E+01 H 0.244815E+01 0.263846E+01 0.332670E+00 H 0.940835E+00 0.160187E+01 -0.258377E+01 C -0.121505E+01 -0.130902E+01 0.131661E+01 C -0.136126E+01 0.116614E+01 0.825189E+00 C 0.154872E+01 -0.143358E+01 0.510627E+00 C 0.109484E+01 0.137081E+01 -0.496954E+00 K_POINTS Gamma EOF $ECHO " running the pw.x SCF calculation...\c" $PW_COMMAND < c4h6.pw.metaGGA.in > c4h6.pw.metaGGA.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/pwscf* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PW/examples/example09/reference/0000755000175000017500000000000012341373041017206 5ustar mbambaespresso-5.1/PW/examples/example09/reference/c4h6.pw.metaGGA.out0000644000175000017500000002516012341373025022402 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16:20:15 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 8.0000 a.u. unit-cell volume = 512.0000 (a.u.)^3 number of atoms/cell = 10 number of atomic types = 2 number of electrons = 22.00 number of Kohn-Sham states= 11 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW TPSS TPSS (1476) celldm(1)= 8.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for H read from file Hmeta.tm.UPF Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1263 points, 0 beta functions with: PseudoPot. # 2 for C read from file C.meta.tm.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1983 points, 1 beta functions with: l(1) = 0 atomic species valence mass pseudopotential H 1.00 1.00783 H ( 1.00) C 4.00 12.00000 C ( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 H tau( 1) = ( -0.3396188 -0.3072775 0.2952175 ) 2 H tau( 2) = ( -0.3641150 0.3114112 0.1191170 ) 3 H tau( 3) = ( 0.2545363 -0.3380175 -0.1311087 ) 4 H tau( 4) = ( 0.3886387 -0.2037337 0.2366638 ) 5 H tau( 5) = ( 0.3060188 0.3298075 0.0415838 ) 6 H tau( 6) = ( 0.1176044 0.2002337 -0.3229712 ) 7 C tau( 7) = ( -0.1518812 -0.1636275 0.1645763 ) 8 C tau( 8) = ( -0.1701575 0.1457675 0.1031486 ) 9 C tau( 9) = ( 0.1935900 -0.1791975 0.0638284 ) 10 C tau( 10) = ( 0.1368550 0.1713513 -0.0621193 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 194.5367 ( 5682 G-vectors) FFT grid: ( 30, 30, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.11 Mb ( 683, 11) NL pseudopotentials 0.04 Mb ( 683, 4) Each V/rho on FFT grid 0.41 Mb ( 27000) Each G-vector array 0.04 Mb ( 5682) G-vector shells 0.00 Mb ( 164) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.23 Mb ( 683, 44) Each subspace H/S matrix 0.01 Mb ( 44, 44) Each matrix 0.00 Mb ( 4, 11) Arrays for rho mixing 3.30 Mb ( 27000, 8) Initial potential from superposition of free atoms starting charge 21.99977, renormalised to 22.00000 Starting wfc are 22 atomic wfcs total cpu time spent up to now is 0.28 secs per-process dynamical memory: 8.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.45 secs total energy = -51.78293803 Ry Harris-Foulkes estimate = -51.88409720 Ry estimated scf accuracy < 3.10433795 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.59 secs total energy = -51.91358442 Ry Harris-Foulkes estimate = -51.93181256 Ry estimated scf accuracy < 0.30910947 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.41E-03, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.77 secs total energy = -51.94351458 Ry Harris-Foulkes estimate = -51.95251081 Ry estimated scf accuracy < 0.03877186 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.76E-04, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.93 secs total energy = -51.94877237 Ry Harris-Foulkes estimate = -51.94892150 Ry estimated scf accuracy < 0.00074292 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.38E-06, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 1.10 secs total energy = -51.94895420 Ry Harris-Foulkes estimate = -51.94897149 Ry estimated scf accuracy < 0.00014188 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.45E-07, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 1.28 secs total energy = -51.94896459 Ry Harris-Foulkes estimate = -51.94899356 Ry estimated scf accuracy < 0.00011748 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.34E-07, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 1.44 secs total energy = -51.94897431 Ry Harris-Foulkes estimate = -51.94897510 Ry estimated scf accuracy < 0.00000427 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.94E-08, avg # of iterations = 3.0 total cpu time spent up to now is 1.60 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 683 PWs) bands (ev): -16.0447 -10.0090 -9.5472 -7.9890 -4.9924 -4.1286 -3.5507 -2.6531 -1.4013 -1.1572 0.4485 ! total energy = -51.94897533 Ry Harris-Foulkes estimate = -51.94897541 Ry estimated scf accuracy < 0.00000041 Ry The total energy is the sum of the following terms: one-electron contribution = -33.02744095 Ry hartree contribution = 24.10031526 Ry xc contribution = -18.36712010 Ry ewald contribution = -24.65472953 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.09757634 0.00963712 -0.03184016 atom 2 type 1 force = 0.00962257 -0.00778389 0.00125317 atom 3 type 1 force = -0.01775239 0.01459015 -0.01889584 atom 4 type 1 force = -0.06653927 0.02241435 0.00418652 atom 5 type 1 force = -0.00016651 0.00780717 0.00203376 atom 6 type 1 force = -0.00360629 -0.01354863 -0.01506266 atom 7 type 2 force = -0.04067759 -0.08625650 0.11665125 atom 8 type 2 force = -0.01252152 0.09556040 0.01173775 atom 9 type 2 force = 0.02552645 -0.02973626 -0.05883797 atom 10 type 2 force = 0.00853821 -0.01268391 -0.01122582 Total force = 0.233645 Total SCF correction = 0.000605 entering subroutine stress ... Message from routine stress: Meta-GGA and stress not implemented Writing output data file pwscf.save Warning: cannot save meta-gga kinetic terms: not implemented. PWSCF : 1.65s CPU time, 2.17s wall time init_run : 0.26s CPU electrons : 1.32s CPU forces : 0.02s CPU stress : 0.00s CPU Called by init_run: wfcinit : 0.05s CPU potinit : 0.07s CPU Called by electrons: c_bands : 0.61s CPU ( 8 calls, 0.076 s avg) sum_band : 0.14s CPU ( 8 calls, 0.017 s avg) v_of_rho : 0.57s CPU ( 9 calls, 0.064 s avg) mix_rho : 0.03s CPU ( 8 calls, 0.004 s avg) Called by c_bands: init_us_2 : 0.00s CPU ( 17 calls, 0.000 s avg) regterg : 0.61s CPU ( 8 calls, 0.076 s avg) Called by *egterg: h_psi : 0.63s CPU ( 28 calls, 0.023 s avg) g_psi : 0.00s CPU ( 19 calls, 0.000 s avg) rdiaghg : 0.01s CPU ( 27 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.00s CPU ( 28 calls, 0.000 s avg) h_psi_meta : 0.47s CPU ( 28 calls, 0.017 s avg) General routines calbec : 0.00s CPU ( 32 calls, 0.000 s avg) cft3 : 0.10s CPU ( 108 calls, 0.001 s avg) cft3s : 0.66s CPU ( 1312 calls, 0.001 s avg) interpolate : 0.00s CPU ( 9 calls, 0.000 s avg) davcio : 0.00s CPU ( 8 calls, 0.000 s avg) espresso-5.1/PW/examples/example09/reference/c4h6.cp.metaGGA.out0000644000175000017500000010037012341373025022353 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.0 - Mon Apr 28 15:32:33 CEST 2008 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 16:19:59 28Apr2008 Serial Build Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/pseudo/Hmeta.tm.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/pseudo/C.meta.tm.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 500 Print out every 100 MD Steps Reads from unit = 50 Writes to unit = 50 MD Simulation time step = 4.00 Electronic fictitious mass (emass) = 350.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 7486.74 [AU] ibrav = 1 alat = 8.00000000 a1 = 8.00000000 0.00000000 0.00000000 a2 = 0.00000000 8.00000000 0.00000000 a3 = 0.00000000 0.00000000 8.00000000 b1 = 0.12500000 0.00000000 0.00000000 b2 = 0.00000000 0.12500000 0.00000000 b3 = 0.00000000 0.00000000 0.12500000 omega = 512.00000000 Energy Cut-offs --------------- Ecutwfc = 30.0 Ry, Ecutrho = 120.0 Ry, Ecuts = 120.0 Ry Gcutwfc = 7.0 , Gcutrho = 13.9 Gcuts = 13.9 NOTA BENE: refg, mmx = 0.050000 2880 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.1500 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 22, of States = 11 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND WANG Using Generalized Gradient Corrections with Exchange functional: META-TPSS Correlation functional: META-TPSS Exchange-correlation = SLA PW TPSS TPSS (1476) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 6 mass = 1837.15 (a.u.), 1.01 (amu) rcmax = 0.50 (a.u.) -2.716950 -2.458220 2.361740 -2.912920 2.491290 0.952936 2.036290 -2.704140 -1.048870 3.109110 -1.629870 1.893310 2.448150 2.638460 0.332670 0.940835 1.601870 -2.583770 Species 2 atoms = 4 mass = 21874.66 (a.u.), 12.00 (amu) rcmax = 0.50 (a.u.) -1.215050 -1.309020 1.316610 -1.361260 1.166140 0.825189 1.548720 -1.433580 0.510627 1.094840 1.370810 -0.496954 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 8.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 8.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 8.0000 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 305, nstw = 73, nsts = 305 PEs n.st n.stw n.sts n.g n.gw n.gs 1 609 145 609 11363 1365 11363 0 609 145 609 11363 1365 11363 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 27 27 27 27 27 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 27 27 Local number of cell to store the grid ( nnrx ) = 19683 Number of x-y planes for each processors: nr3l = 27 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 27 27 27 27 27 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 27 27 Local number of cell to store the grid ( nnrx ) = 19683 Number of x-y planes for each processors: nr3sl = 27 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 10 10 10 10 10 10 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 10 10 10 Local number of cell to store the grid ( nnrx ) = 1000 unit vectors of box grid cell in real space: in reciprocal space: 2.9630 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 2.9630 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 2.9630 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 5682 5682 5682 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 5682 5682 5682 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 683 683 683 Small box Mesh ngb = 294 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input H -0.339619E+00 -0.307277E+00 0.295218E+00 H -0.364115E+00 0.311411E+00 0.119117E+00 H 0.254536E+00 -0.338018E+00 -0.131109E+00 H 0.388639E+00 -0.203734E+00 0.236664E+00 H 0.306019E+00 0.329807E+00 0.415838E-01 H 0.117604E+00 0.200234E+00 -0.322971E+00 C -0.151881E+00 -0.163628E+00 0.164576E+00 C -0.170157E+00 0.145767E+00 0.103149E+00 C 0.193590E+00 -0.179198E+00 0.638284E-01 C 0.136855E+00 0.171351E+00 -0.621193E-01 Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 dion Specie: 2 1 indv= 1 ang. mom= 0 dion 0.5812 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 11 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 formf: eself= 55.85192 formf: vps(g=0)= -0.0015641 rhops(g=0)= -0.0019531 formf: sum_g vps(g)= -0.9006009 sum_g rhops(g)= -0.7180186 formf: vps(g=0)= -0.0054520 rhops(g=0)= -0.0078125 formf: sum_g vps(g)= -1.1169161 sum_g rhops(g)= -2.8720744 Delta V(G=0): 0.033747Ry, 0.918305eV from rhoofr: total integrated electronic density in g-space = 22.000000 in r-space = 22.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 4.58551 0.0 0.0 52.88652 52.88652 52.88652 57.47204 0.0000 0.0000 0.0000 0.0000 2 9.69883 0.0 0.0 45.39858 45.39858 45.39858 55.09741 0.0000 0.0000 0.0000 0.0000 3 14.33796 0.0 0.0 34.59103 34.59103 34.59103 48.92899 0.0000 0.0000 0.0000 0.0000 4 17.16347 0.0 0.0 22.26575 22.26575 22.26575 39.42921 0.0000 0.0000 0.0000 0.0000 5 17.60369 0.0 0.0 10.46585 10.46585 10.46585 28.06954 0.0000 0.0000 0.0000 0.0000 6 15.99332 0.0 0.0 0.68306 0.68306 0.68306 16.67638 0.0000 0.0000 0.0000 0.0000 7 13.19059 0.0 0.0 -6.52684 -6.52684 -6.52684 6.66375 0.0000 0.0000 0.0000 0.0000 8 10.08652 0.0 0.0 -11.36887 -11.36887 -11.36887 -1.28235 0.0000 0.0000 0.0000 0.0000 9 7.31583 0.0 0.0 -14.43219 -14.43219 -14.43219 -7.11636 0.0000 0.0000 0.0000 0.0000 10 5.18993 0.0 0.0 -16.37442 -16.37442 -16.37442 -11.18449 0.0000 0.0000 0.0000 0.0000 11 3.75101 0.0 0.0 -17.73779 -17.73779 -17.73779 -13.98679 0.0000 0.0000 0.0000 0.0000 12 2.86930 0.0 0.0 -18.87022 -18.87022 -18.87022 -16.00092 0.0000 0.0000 0.0000 0.0000 13 2.34822 0.0 0.0 -19.92772 -19.92772 -19.92772 -17.57950 0.0000 0.0000 0.0000 0.0000 14 2.00739 0.0 0.0 -20.93065 -20.93065 -20.93065 -18.92327 0.0000 0.0000 0.0000 0.0000 15 1.72681 0.0 0.0 -21.83636 -21.83636 -21.83636 -20.10955 0.0000 0.0000 0.0000 0.0000 16 1.45306 0.0 0.0 -22.59796 -22.59796 -22.59796 -21.14490 0.0000 0.0000 0.0000 0.0000 17 1.18119 0.0 0.0 -23.19525 -23.19525 -23.19525 -22.01405 0.0000 0.0000 0.0000 0.0000 18 0.92891 0.0 0.0 -23.63971 -23.63971 -23.63971 -22.71079 0.0000 0.0000 0.0000 0.0000 19 0.71519 0.0 0.0 -23.96346 -23.96346 -23.96346 -23.24828 0.0000 0.0000 0.0000 0.0000 20 0.54922 0.0 0.0 -24.20405 -24.20405 -24.20405 -23.65482 0.0000 0.0000 0.0000 0.0000 21 0.42882 0.0 0.0 -24.39291 -24.39291 -24.39291 -23.96409 0.0000 0.0000 0.0000 0.0000 22 0.34430 0.0 0.0 -24.55048 -24.55048 -24.55048 -24.20619 0.0000 0.0000 0.0000 0.0000 23 0.28381 0.0 0.0 -24.68683 -24.68683 -24.68683 -24.40302 0.0000 0.0000 0.0000 0.0000 24 0.23739 0.0 0.0 -24.80517 -24.80517 -24.80517 -24.56778 0.0000 0.0000 0.0000 0.0000 25 0.19870 0.0 0.0 -24.90586 -24.90586 -24.90586 -24.70716 0.0000 0.0000 0.0000 0.0000 26 0.16484 0.0 0.0 -24.98914 -24.98914 -24.98914 -24.82430 0.0000 0.0000 0.0000 0.0000 27 0.13517 0.0 0.0 -25.05641 -25.05641 -25.05641 -24.92124 0.0000 0.0000 0.0000 0.0000 28 0.10998 0.0 0.0 -25.11019 -25.11019 -25.11019 -25.00020 0.0000 0.0000 0.0000 0.0000 29 0.08953 0.0 0.0 -25.15351 -25.15351 -25.15351 -25.06399 0.0000 0.0000 0.0000 0.0000 30 0.07362 0.0 0.0 -25.18927 -25.18927 -25.18927 -25.11565 0.0000 0.0000 0.0000 0.0000 31 0.06163 0.0 0.0 -25.21974 -25.21974 -25.21974 -25.15811 0.0000 0.0000 0.0000 0.0000 32 0.05268 0.0 0.0 -25.24646 -25.24646 -25.24646 -25.19378 0.0000 0.0000 0.0000 0.0000 33 0.04593 0.0 0.0 -25.27040 -25.27040 -25.27040 -25.22447 0.0000 0.0000 0.0000 0.0000 34 0.04070 0.0 0.0 -25.29209 -25.29209 -25.29209 -25.25139 0.0000 0.0000 0.0000 0.0000 35 0.03653 0.0 0.0 -25.31188 -25.31188 -25.31188 -25.27536 0.0000 0.0000 0.0000 0.0000 36 0.03316 0.0 0.0 -25.33008 -25.33008 -25.33008 -25.29692 0.0000 0.0000 0.0000 0.0000 37 0.03047 0.0 0.0 -25.34699 -25.34699 -25.34699 -25.31652 0.0000 0.0000 0.0000 0.0000 38 0.02837 0.0 0.0 -25.36290 -25.36290 -25.36290 -25.33453 0.0000 0.0000 0.0000 0.0000 39 0.02680 0.0 0.0 -25.37811 -25.37811 -25.37811 -25.35131 0.0000 0.0000 0.0000 0.0000 40 0.02570 0.0 0.0 -25.39288 -25.39288 -25.39288 -25.36718 0.0000 0.0000 0.0000 0.0000 41 0.02499 0.0 0.0 -25.40741 -25.40741 -25.40741 -25.38242 0.0000 0.0000 0.0000 0.0000 42 0.02460 0.0 0.0 -25.42187 -25.42187 -25.42187 -25.39727 0.0000 0.0000 0.0000 0.0000 43 0.02447 0.0 0.0 -25.43639 -25.43639 -25.43639 -25.41192 0.0000 0.0000 0.0000 0.0000 44 0.02455 0.0 0.0 -25.45106 -25.45106 -25.45106 -25.42651 0.0000 0.0000 0.0000 0.0000 45 0.02478 0.0 0.0 -25.46595 -25.46595 -25.46595 -25.44116 0.0000 0.0000 0.0000 0.0000 46 0.02515 0.0 0.0 -25.48112 -25.48112 -25.48112 -25.45597 0.0000 0.0000 0.0000 0.0000 47 0.02562 0.0 0.0 -25.49663 -25.49663 -25.49663 -25.47101 0.0000 0.0000 0.0000 0.0000 48 0.02616 0.0 0.0 -25.51251 -25.51251 -25.51251 -25.48635 0.0000 0.0000 0.0000 0.0000 49 0.02677 0.0 0.0 -25.52879 -25.52879 -25.52879 -25.50202 0.0000 0.0000 0.0000 0.0000 50 0.02740 0.0 0.0 -25.54547 -25.54547 -25.54547 -25.51806 0.0000 0.0000 0.0000 0.0000 51 0.02805 0.0 0.0 -25.56255 -25.56255 -25.56255 -25.53450 0.0000 0.0000 0.0000 0.0000 52 0.02868 0.0 0.0 -25.58002 -25.58002 -25.58002 -25.55133 0.0000 0.0000 0.0000 0.0000 53 0.02928 0.0 0.0 -25.59784 -25.59784 -25.59784 -25.56856 0.0000 0.0000 0.0000 0.0000 54 0.02982 0.0 0.0 -25.61597 -25.61597 -25.61597 -25.58615 0.0000 0.0000 0.0000 0.0000 55 0.03029 0.0 0.0 -25.63437 -25.63437 -25.63437 -25.60408 0.0000 0.0000 0.0000 0.0000 56 0.03066 0.0 0.0 -25.65295 -25.65295 -25.65295 -25.62229 0.0000 0.0000 0.0000 0.0000 57 0.03091 0.0 0.0 -25.67165 -25.67165 -25.67165 -25.64074 0.0000 0.0000 0.0000 0.0000 58 0.03104 0.0 0.0 -25.69038 -25.69038 -25.69038 -25.65934 0.0000 0.0000 0.0000 0.0000 59 0.03102 0.0 0.0 -25.70904 -25.70904 -25.70904 -25.67803 0.0000 0.0000 0.0000 0.0000 60 0.03084 0.0 0.0 -25.72754 -25.72754 -25.72754 -25.69671 0.0000 0.0000 0.0000 0.0000 61 0.03049 0.0 0.0 -25.74577 -25.74577 -25.74577 -25.71528 0.0000 0.0000 0.0000 0.0000 62 0.02998 0.0 0.0 -25.76363 -25.76363 -25.76363 -25.73365 0.0000 0.0000 0.0000 0.0000 63 0.02929 0.0 0.0 -25.78100 -25.78100 -25.78100 -25.75171 0.0000 0.0000 0.0000 0.0000 64 0.02844 0.0 0.0 -25.79779 -25.79779 -25.79779 -25.76936 0.0000 0.0000 0.0000 0.0000 65 0.02742 0.0 0.0 -25.81391 -25.81391 -25.81391 -25.78649 0.0000 0.0000 0.0000 0.0000 66 0.02627 0.0 0.0 -25.82927 -25.82927 -25.82927 -25.80300 0.0000 0.0000 0.0000 0.0000 67 0.02498 0.0 0.0 -25.84380 -25.84380 -25.84380 -25.81881 0.0000 0.0000 0.0000 0.0000 68 0.02359 0.0 0.0 -25.85744 -25.85744 -25.85744 -25.83385 0.0000 0.0000 0.0000 0.0000 69 0.02212 0.0 0.0 -25.87015 -25.87015 -25.87015 -25.84803 0.0000 0.0000 0.0000 0.0000 70 0.02059 0.0 0.0 -25.88192 -25.88192 -25.88192 -25.86133 0.0000 0.0000 0.0000 0.0000 71 0.01904 0.0 0.0 -25.89273 -25.89273 -25.89273 -25.87369 0.0000 0.0000 0.0000 0.0000 72 0.01748 0.0 0.0 -25.90259 -25.90259 -25.90259 -25.88511 0.0000 0.0000 0.0000 0.0000 73 0.01594 0.0 0.0 -25.91152 -25.91152 -25.91152 -25.89558 0.0000 0.0000 0.0000 0.0000 74 0.01444 0.0 0.0 -25.91956 -25.91956 -25.91956 -25.90512 0.0000 0.0000 0.0000 0.0000 75 0.01300 0.0 0.0 -25.92675 -25.92675 -25.92675 -25.91375 0.0000 0.0000 0.0000 0.0000 76 0.01163 0.0 0.0 -25.93314 -25.93314 -25.93314 -25.92151 0.0000 0.0000 0.0000 0.0000 77 0.01035 0.0 0.0 -25.93880 -25.93880 -25.93880 -25.92845 0.0000 0.0000 0.0000 0.0000 78 0.00915 0.0 0.0 -25.94377 -25.94377 -25.94377 -25.93461 0.0000 0.0000 0.0000 0.0000 79 0.00806 0.0 0.0 -25.94812 -25.94812 -25.94812 -25.94006 0.0000 0.0000 0.0000 0.0000 80 0.00706 0.0 0.0 -25.95192 -25.95192 -25.95192 -25.94485 0.0000 0.0000 0.0000 0.0000 81 0.00616 0.0 0.0 -25.95521 -25.95521 -25.95521 -25.94905 0.0000 0.0000 0.0000 0.0000 82 0.00536 0.0 0.0 -25.95806 -25.95806 -25.95806 -25.95270 0.0000 0.0000 0.0000 0.0000 83 0.00464 0.0 0.0 -25.96052 -25.96052 -25.96052 -25.95588 0.0000 0.0000 0.0000 0.0000 84 0.00400 0.0 0.0 -25.96263 -25.96263 -25.96263 -25.95862 0.0000 0.0000 0.0000 0.0000 85 0.00345 0.0 0.0 -25.96444 -25.96444 -25.96444 -25.96099 0.0000 0.0000 0.0000 0.0000 86 0.00296 0.0 0.0 -25.96598 -25.96598 -25.96598 -25.96303 0.0000 0.0000 0.0000 0.0000 87 0.00253 0.0 0.0 -25.96730 -25.96730 -25.96730 -25.96477 0.0000 0.0000 0.0000 0.0000 88 0.00216 0.0 0.0 -25.96843 -25.96843 -25.96843 -25.96626 0.0000 0.0000 0.0000 0.0000 89 0.00184 0.0 0.0 -25.96938 -25.96938 -25.96938 -25.96754 0.0000 0.0000 0.0000 0.0000 90 0.00157 0.0 0.0 -25.97019 -25.97019 -25.97019 -25.96863 0.0000 0.0000 0.0000 0.0000 91 0.00133 0.0 0.0 -25.97088 -25.97088 -25.97088 -25.96955 0.0000 0.0000 0.0000 0.0000 92 0.00113 0.0 0.0 -25.97146 -25.97146 -25.97146 -25.97033 0.0000 0.0000 0.0000 0.0000 93 0.00096 0.0 0.0 -25.97196 -25.97196 -25.97196 -25.97100 0.0000 0.0000 0.0000 0.0000 94 0.00081 0.0 0.0 -25.97238 -25.97238 -25.97238 -25.97156 0.0000 0.0000 0.0000 0.0000 95 0.00069 0.0 0.0 -25.97273 -25.97273 -25.97273 -25.97204 0.0000 0.0000 0.0000 0.0000 96 0.00058 0.0 0.0 -25.97303 -25.97303 -25.97303 -25.97244 0.0000 0.0000 0.0000 0.0000 97 0.00049 0.0 0.0 -25.97328 -25.97328 -25.97328 -25.97279 0.0000 0.0000 0.0000 0.0000 98 0.00042 0.0 0.0 -25.97349 -25.97349 -25.97349 -25.97307 0.0000 0.0000 0.0000 0.0000 99 0.00035 0.0 0.0 -25.97367 -25.97367 -25.97367 -25.97332 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 from rhoofr: total integrated electronic density in g-space = 22.000000 in r-space = 22.000000 total energy = -25.97382 Hartree a.u. kinetic energy = 19.18633 Hartree a.u. electrostatic energy = -35.30678 Hartree a.u. esr = 0.00038 Hartree a.u. eself = 55.85192 Hartree a.u. pseudopotential energy = -3.31575 Hartree a.u. n-l pseudopotential energy = 2.64558 Hartree a.u. exchange-correlation energy = -9.18320 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -16.95 -10.92 -10.46 -8.89 -5.91 -5.05 -4.47 -3.55 -2.30 -2.08 -0.46 Allocated memory (kb) = 11900 CELL_PARAMETERS 8.00000000 0.00000000 0.00000000 0.00000000 8.00000000 0.00000000 0.00000000 0.00000000 8.00000000 System Density [g/cm^3] : 1.1829 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -13.93847909 -6.06452873 -0.75813231 -6.06452873 -13.75984181 -2.00539206 -0.75813231 -2.00539206 -20.08358063 ATOMIC_POSITIONS H -0.271695E+01 -0.245822E+01 0.236174E+01 H -0.291292E+01 0.249129E+01 0.952936E+00 H 0.203629E+01 -0.270414E+01 -0.104887E+01 H 0.310911E+01 -0.162987E+01 0.189331E+01 H 0.244815E+01 0.263846E+01 0.332670E+00 H 0.940835E+00 0.160187E+01 -0.258377E+01 C -0.121505E+01 -0.130902E+01 0.131661E+01 C -0.136126E+01 0.116614E+01 0.825189E+00 C 0.154872E+01 -0.143358E+01 0.510627E+00 C 0.109484E+01 0.137081E+01 -0.496954E+00 ATOMIC_VELOCITIES H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): H 0.484339E-01 0.441839E-02 -0.193341E-01 H 0.222675E-02 -0.411038E-02 -0.231772E-02 H -0.977981E-02 0.810413E-02 -0.809001E-02 H -0.321187E-01 0.969003E-02 0.394347E-02 H 0.161965E-02 0.368851E-02 0.864832E-03 H -0.166186E-02 -0.647797E-02 -0.788998E-02 C -0.173335E-01 -0.436855E-01 0.576932E-01 C -0.589781E-02 0.475733E-01 0.149535E-02 C 0.105803E-01 -0.123403E-01 -0.274883E-01 C 0.418446E-02 -0.666631E-02 -0.263551E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 100 0.00030 0.0 0.0 -25.97382 -25.97382 -25.97382 -25.97352 0.0000 0.0000 0.0000 0.0000 101 0.00025 0.0 0.0 -25.97395 -25.97395 -25.97395 -25.97370 0.0000 0.0000 0.0000 0.0000 102 0.00021 0.0 0.0 -25.97406 -25.97406 -25.97406 -25.97385 0.0000 0.0000 0.0000 0.0000 103 0.00018 0.0 0.0 -25.97415 -25.97415 -25.97415 -25.97397 0.0000 0.0000 0.0000 0.0000 104 0.00015 0.0 0.0 -25.97422 -25.97422 -25.97422 -25.97407 0.0000 0.0000 0.0000 0.0000 105 0.00013 0.0 0.0 -25.97429 -25.97429 -25.97429 -25.97416 0.0000 0.0000 0.0000 0.0000 106 0.00011 0.0 0.0 -25.97434 -25.97434 -25.97434 -25.97424 0.0000 0.0000 0.0000 0.0000 107 0.00009 0.0 0.0 -25.97439 -25.97439 -25.97439 -25.97430 0.0000 0.0000 0.0000 0.0000 108 0.00008 0.0 0.0 -25.97443 -25.97443 -25.97443 -25.97435 0.0000 0.0000 0.0000 0.0000 109 0.00006 0.0 0.0 -25.97446 -25.97446 -25.97446 -25.97440 0.0000 0.0000 0.0000 0.0000 110 0.00005 0.0 0.0 -25.97449 -25.97449 -25.97449 -25.97444 0.0000 0.0000 0.0000 0.0000 111 0.00005 0.0 0.0 -25.97451 -25.97451 -25.97451 -25.97447 0.0000 0.0000 0.0000 0.0000 112 0.00004 0.0 0.0 -25.97453 -25.97453 -25.97453 -25.97450 0.0000 0.0000 0.0000 0.0000 113 0.00003 0.0 0.0 -25.97455 -25.97455 -25.97455 -25.97452 0.0000 0.0000 0.0000 0.0000 114 0.00003 0.0 0.0 -25.97457 -25.97457 -25.97457 -25.97454 0.0000 0.0000 0.0000 0.0000 115 0.00002 0.0 0.0 -25.97458 -25.97458 -25.97458 -25.97455 0.0000 0.0000 0.0000 0.0000 116 0.00002 0.0 0.0 -25.97459 -25.97459 -25.97459 -25.97457 0.0000 0.0000 0.0000 0.0000 117 0.00002 0.0 0.0 -25.97460 -25.97460 -25.97460 -25.97458 0.0000 0.0000 0.0000 0.0000 118 0.00001 0.0 0.0 -25.97460 -25.97460 -25.97460 -25.97459 0.0000 0.0000 0.0000 0.0000 119 0.00001 0.0 0.0 -25.97461 -25.97461 -25.97461 -25.97460 0.0000 0.0000 0.0000 0.0000 120 0.00001 0.0 0.0 -25.97462 -25.97462 -25.97462 -25.97460 0.0000 0.0000 0.0000 0.0000 121 0.00001 0.0 0.0 -25.97462 -25.97462 -25.97462 -25.97461 0.0000 0.0000 0.0000 0.0000 122 0.00001 0.0 0.0 -25.97462 -25.97462 -25.97462 -25.97462 0.0000 0.0000 0.0000 0.0000 123 0.00001 0.0 0.0 -25.97463 -25.97463 -25.97463 -25.97462 0.0000 0.0000 0.0000 0.0000 124 0.00001 0.0 0.0 -25.97463 -25.97463 -25.97463 -25.97462 0.0000 0.0000 0.0000 0.0000 125 0.00000 0.0 0.0 -25.97463 -25.97463 -25.97463 -25.97463 0.0000 0.0000 0.0000 0.0000 126 0.00000 0.0 0.0 -25.97463 -25.97463 -25.97463 -25.97463 0.0000 0.0000 0.0000 0.0000 127 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97463 0.0000 0.0000 0.0000 0.0000 128 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97463 0.0000 0.0000 0.0000 0.0000 129 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 130 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 131 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 132 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 133 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 134 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 135 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.867435D-06 0.1D-05 0.446436D-06 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation * Physical Quantities at step: 136 total energy = -25.97464 Hartree a.u. kinetic energy = 19.18733 Hartree a.u. electrostatic energy = -35.30791 Hartree a.u. esr = 0.00038 Hartree a.u. eself = 55.85192 Hartree a.u. pseudopotential energy = -3.31687 Hartree a.u. n-l pseudopotential energy = 2.64660 Hartree a.u. exchange-correlation energy = -9.18379 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -16.96 -10.93 -10.47 -8.91 -5.91 -5.05 -4.47 -3.57 -2.32 -2.08 -0.47 Allocated memory (kb) = 11900 CELL_PARAMETERS 8.00000000 0.00000000 0.00000000 0.00000000 8.00000000 0.00000000 0.00000000 0.00000000 8.00000000 System Density [g/cm^3] : 1.1829 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -14.16875972 -6.16607537 -1.26759663 -6.16607537 -13.79633079 -1.63595495 -1.26759663 -1.63595495 -19.66080505 ATOMIC_POSITIONS H -0.271695E+01 -0.245822E+01 0.236174E+01 H -0.291292E+01 0.249129E+01 0.952936E+00 H 0.203629E+01 -0.270414E+01 -0.104887E+01 H 0.310911E+01 -0.162987E+01 0.189331E+01 H 0.244815E+01 0.263846E+01 0.332670E+00 H 0.940835E+00 0.160187E+01 -0.258377E+01 C -0.121505E+01 -0.130902E+01 0.131661E+01 C -0.136126E+01 0.116614E+01 0.825189E+00 C 0.154872E+01 -0.143358E+01 0.510627E+00 C 0.109484E+01 0.137081E+01 -0.496954E+00 ATOMIC_VELOCITIES H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): H 0.487237E-01 0.482894E-02 -0.162940E-01 H 0.472494E-02 -0.373208E-02 0.596498E-03 H -0.929220E-02 0.756100E-02 -0.943960E-02 H -0.332618E-01 0.112282E-01 0.227387E-02 H -0.505123E-04 0.393306E-02 0.807105E-03 H -0.140672E-02 -0.624909E-02 -0.756574E-02 C -0.209621E-01 -0.444245E-01 0.584766E-01 C -0.555646E-02 0.465998E-01 0.466845E-02 C 0.134230E-01 -0.136789E-01 -0.306621E-01 C 0.296821E-02 -0.714242E-02 -0.455580E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 136 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.736663D-06 0.1D-05 0.379169D-06 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation writing restart file: /cp_50.save restart file written in 0.049 sec. Averaged Physical Quantities accomulated this run ekinc : 1.00097 1.00097 (AU) ekin : 21.38282 21.38282 (AU) epot : -46.75973 -46.75973 (AU) total energy : -22.67942 -22.67942 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -22.67942 -22.67942 (AU) econs : -22.67942 -22.67942 (AU) pressure : 89.68782 89.68782 (Gpa) volume : 512.00000 512.00000 (AU) initialize : 0.63s CPU total_time : 14.34s CPU ( 136 calls, 0.105 s avg) formf : 0.21s CPU rhoofr : 4.10s CPU ( 137 calls, 0.030 s avg) vofrho : 7.09s CPU ( 137 calls, 0.052 s avg) dforce : 3.06s CPU ( 822 calls, 0.004 s avg) calphi : 0.01s CPU ( 137 calls, 0.000 s avg) ortho : 0.05s CPU ( 137 calls, 0.000 s avg) ortho_iter : 0.01s CPU ( 137 calls, 0.000 s avg) rsg : 0.01s CPU ( 137 calls, 0.000 s avg) rhoset : 0.01s CPU ( 137 calls, 0.000 s avg) updatc : 0.01s CPU ( 137 calls, 0.000 s avg) gram : 0.00s CPU newd : 0.00s CPU ( 137 calls, 0.000 s avg) calbec : 0.00s CPU ( 138 calls, 0.000 s avg) prefor : 0.00s CPU ( 137 calls, 0.000 s avg) strucf : 0.00s CPU nlfl : 0.00s CPU ( 137 calls, 0.000 s avg) nlfq : 0.03s CPU ( 137 calls, 0.000 s avg) nlsm1 : 0.00s CPU ( 412 calls, 0.000 s avg) nlsm2 : 0.02s CPU ( 137 calls, 0.000 s avg) fft : 0.94s CPU ( 1370 calls, 0.001 s avg) ffts : 0.36s CPU ( 548 calls, 0.001 s avg) fftw : 4.18s CPU ( 9864 calls, 0.000 s avg) CP : 15.03s CPU time, 16.14s wall time This run was terminated on: 16:20:15 28Apr2008 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/vdwDF_example/0000755000175000017500000000000012341373041016171 5ustar mbambaespresso-5.1/PW/examples/vdwDF_example/run_example_delta_scf0000755000175000017500000002337012341373025022451 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x with vdw-DF functional. In the" $ECHO "first part a cell relaxation of graphite will be calculated and" $ECHO "then the energy of two water molecules far apart will be computed." $ECHO "Optionally, at the end, you can see how to set up a force relaxation" $ECHO "of an Argon dimer, not activated by default in the distribution." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x generate_vdW_kernel_table.x" PSEUDO_LIST="C.pbe-rrkjus.UPF O.pbe-rrkjus.UPF H.pbe-rrkjus.UPF" VDW_TABLE="vdW_kernel_table" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results_dscf" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results_dscf # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" wget http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE \ -O $PSEUDO_DIR/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" GEN_COMMAND="$PARA_PREFIX $BIN_DIR/generate_vdW_kernel_table.x $PARA_POSTFIX" # check for vdw kernel table if test ! -r $PSEUDO_DIR/$VDW_TABLE ; then $ECHO " " $ECHO " " $ECHO " WARNING: $PSEUDO_DIR/$VDW_TABLE not existent or not readable" $ECHO " WARNING: a new table will be generated, this process will" $ECHO " WARNING: probably take about 20 mins (depending on your cpu" $ECHO " WARNING: power and configuration)." $ECHO $ECHO " Generating $VDW_TABLE...\c" if $GEN_COMMAND ; then if test ! -r $VDW_TABLE ; then $ECHO " ERROR: cannot generate vdW_kernel_table !!" exit 1 fi $ECHO "done ! Table moved to $PSEUDO_DIR" mv $VDW_TABLE $PSEUDO_DIR fi fi $ECHO " done" # Print how we run executables $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # # Graphite cell relaxation # # cat > graphite.scf.0.in << EOF &control calculation = "scf" restart_mode='from_scratch', prefix='graphite', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' verbosity = 'high' forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6411700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the graphite cell relaxation...\c" $PW_COMMAND < graphite.scf.0.in > graphite.scf.0.out check_failure $? $ECHO " done" # cat > graphite.scf.+1.in << EOF &control calculation = "scf" restart_mode='from_scratch', prefix='graphite', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' verbosity = 'high' forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6511700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 29.87113860 ecutrho = 179.22683160 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the graphite cell relaxation...\c" $PW_COMMAND < graphite.scf.+1.in > graphite.scf.+1.out check_failure $? $ECHO " done" cat > graphite.scf.-1.in << EOF &control calculation = "scf" restart_mode='from_scratch', prefix='graphite', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' verbosity = 'high' forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6311700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 30.12969660 ecutrho = 180.77817960 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the graphite cell relaxation...\c" $PW_COMMAND < graphite.scf.-1.in > graphite.scf.-1.out check_failure $? $ECHO " done" # # self-consistent calculation # for water molecules # cat > water.scf.0.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='water_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' verbosity = 'high' / &system ibrav = 8 celldm(1) = 15.0 celldm(2) = 0.954545454545455 celldm(3) = 1.22727272727273 nat = 6 ntyp = 2 occupations = 'fixed' ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 H.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} O 0.0000000 0.0016540 -0.0072484 H 0.0000000 0.0981485 -0.0826521 H 0.0000000 0.0490883 0.1065556 O 0.0000000 0.1117595 0.3550478 H -0.0975766 0.0656956 0.4133167 H 0.0975766 0.0656956 0.4133167 K_POINTS gamma EOF $ECHO " running the scf calculation for water molecules...\c" $PW_COMMAND < water.scf.0.in > water.scf.0.out check_failure $? $ECHO " done" # # self-consistent calculation # for water molecules # cat > water.scf.+1.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='water_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' verbosity = 'high' / &system ibrav = 8 celldm(1) = 15.05 celldm(2) = 0.954545454545455 celldm(3) = 1.22727272727273 nat = 6 ntyp = 2 occupations = 'fixed' ecutwfc = 29.80099530 ecutrho = 178.80597180 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 H.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} O 0.0000000 0.0016540 -0.0072484 H 0.0000000 0.0981485 -0.0826521 H 0.0000000 0.0490883 0.1065556 O 0.0000000 0.1117595 0.3550478 H -0.0975766 0.0656956 0.4133167 H 0.0975766 0.0656956 0.4133167 K_POINTS gamma EOF $ECHO " running the scf calculation for water molecules...\c" $PW_COMMAND < water.scf.+1.in > water.scf.+1.out check_failure $? $ECHO " done" # # self-consistent calculation # for water molecules # cat > water.scf.-1.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='water_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' verbosity = 'high' / &system ibrav = 8 celldm(1) = 14.95 celldm(2) = 0.954545454545455 celldm(3) = 1.22727272727273 nat = 6 ntyp = 2 occupations = 'fixed' ecutwfc = 30.20100420 ecutrho = 181.20602520 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 H.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} O 0.0000000 0.0016540 -0.0072484 H 0.0000000 0.0981485 -0.0826521 H 0.0000000 0.0490883 0.1065556 O 0.0000000 0.1117595 0.3550478 H -0.0975766 0.0656956 0.4133167 H 0.0975766 0.0656956 0.4133167 K_POINTS gamma EOF $ECHO " running the scf calculation for water molecules...\c" $PW_COMMAND < water.scf.-1.in > water.scf.-1.out check_failure $? $ECHO " done" espresso-5.1/PW/examples/vdwDF_example/README0000644000175000017500000000506312341373025017057 0ustar mbamba This example shows how to use the vdw-DF functional in pw.x, a method based on the one proposed by Guillermo Roman-Perez and Jose M. Soler in: G. Roman-Perez and J. M. Soler, PRL 103, 096102 (2009) henceforth referred to as SOLER. That method is a new implementation of the method found in: M. Dion, H. Rydberg, E. Schroeder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). henceforth referred to as DION. Further information about the functional and its corresponding potential can be found in: T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and D.C. Langreth, Phys. Rev. B 76, 125112 (2007). A review article that shows many of the applications vdW-DF has been applied to so far can be found at: D. C. Langreth et al., J. Phys.: Condens. Matter 21, 084203 (2009). --------------------------------------------------------------------- The example will first check if all the necessary files are present, and then run the simulations. As for this particular kind of implementation, the vdw-DF need a so called "vdW_kernel_table", a universal file that has to be generated once and used for all other calculations. This table, stored in ASCII format, usually ships with the QE distribution, in case the file is not present the example will launch the routine needed to generate it. It can be a long process, up to 30 mins in basic single CPU machine, but once generated can be used in any other machine and for any other calculation. After the check, and the possible generation, the example will proceed with two simulations, in particular 1) A variable cell relaxation of a simple 1x1 graphite. The parameters used (such as k-point mesh and energy cutoffs) are not converged, use them only for test runs, increase them accordingly for production runs. Here the stress will be used to converge the cell at 0 pressure. 2) A self-consistent energy calculation of a water dimer in the equilibrium configuration. Check the energies and forces against those in the reference file. bonus) If you have the Ar.pz-rrkj.UPF in the PP_dir, you can activate the last example by removing the comments from the execution lines (277-280). In this example it is shown how to run a BFGS relaxation of the forces for the Argon dimer. Check that the energies and forces agree with those in the reference file, and that the final positions are correct. --- IMPORTANT NOTE: This feature works the most accurately when Revised-PBE (RPB of short-name "revPBE" (Zhang-Yang)) is used as the gradient correction on the exchange part of the XC functional. espresso-5.1/PW/examples/vdwDF_example/run_example0000755000175000017500000001475012341373025020447 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x with vdw-DF functional. In the" $ECHO "first part a cell relaxation of graphite will be calculated and" $ECHO "then the energy of two water molecules far apart will be computed." $ECHO "Optionally, at the end, you can see how to set up a force relaxation" $ECHO "of an Argon dimer, not activated by default in the distribution." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x generate_vdW_kernel_table.x" PSEUDO_LIST="C.pbe-rrkjus.UPF O.pbe-rrkjus.UPF H.pbe-rrkjus.UPF" VDW_TABLE="vdW_kernel_table" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" GEN_COMMAND="$PARA_PREFIX $BIN_DIR/generate_vdW_kernel_table.x $PARA_POSTFIX" # check for vdw kernel table if test ! -r $PSEUDO_DIR/$VDW_TABLE ; then $ECHO " " $ECHO " " $ECHO " WARNING: $PSEUDO_DIR/$VDW_TABLE not existent or not readable" $ECHO " WARNING: a new table will be generated, this process will" $ECHO " WARNING: probably take about 20 mins (depending on your cpu" $ECHO " WARNING: power and configuration)." $ECHO $ECHO " Generating $VDW_TABLE...\c" if $GEN_COMMAND ; then if test ! -r $VDW_TABLE ; then $ECHO " ERROR: cannot generate vdW_kernel_table !!" exit 1 fi $ECHO "done ! Table moved to $PSEUDO_DIR" mv $VDW_TABLE $PSEUDO_DIR fi fi $ECHO " done" # Print how we run executables $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # # Graphite cell relaxation # cat > graphite.scf.in << EOF &control calculation = 'vc-relax' restart_mode='from_scratch', prefix='graphite', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR', outdir='$TMP_DIR' forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6411700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / &ions / &cell press_conv_thr = 0.5D0 press = 0.D0 cell_dynamics = 'bfgs' cell_dofree = 'z' / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the graphite cell relaxation...\c" $PW_COMMAND < graphite.scf.in > graphite.scf.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/graphite* $ECHO " done" # # self-consistent calculation # for water molecules # cat > water.scf.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='water_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' verbosity = 'high' / &system ibrav = 8 celldm(1) = 15 celldm(2) = 0.954545454545455 celldm(3) = 1.22727272727273 nat = 6 ntyp = 2 occupations = 'fixed' ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 H.pbe-rrkjus.UPF ATOMIC_POSITIONS {angstrom} O -0.000000 0.013129 -0.057535 H -0.000000 0.779069 -0.656064 H 0.000000 0.389646 0.845802 O 0.000000 0.887109 2.818248 H -0.774530 0.521469 3.280767 H 0.774530 0.521469 3.280767 K_POINTS gamma EOF $ECHO " running the scf calculation for water molecules...\c" $PW_COMMAND < water.scf.in > water.scf.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/water_vdw* $ECHO " done" # # self-consistent calculation # for Argon dimer # cat > Ar.scf.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='Ar_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' verbosity = 'high' forc_conv_thr = 1.0d-4 / &system ibrav = 8 celldm(1) = 19 celldm(2) = 1 celldm(3) = 1.47368421052632 nat = 2 ntyp = 1 occupations = 'fixed' ecutwfc = 80.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-11 / &ions ion_dynamics = 'bfgs' / ATOMIC_SPECIES Ar 36.00 Ar.pz-rrkj.UPF ATOMIC_POSITIONS {angstrom} Ar 0.000000 0.000000 0.000000 Ar 0.000000 0.000000 4.500000 K_POINTS gamma EOF $ECHO " running the scf calculation for argon dimer...\c" #$PW_COMMAND < Ar.scf.in > Ar.scf.out #check_failure $? #$ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/ar_vdw* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PW/examples/vdwDF_example/reference_G/0000755000175000017500000000000012341373041020375 5ustar mbambaespresso-5.1/PW/examples/vdwDF_example/reference_G/graphite.scf.out0000644000175000017500000022535312341373025023517 0ustar mbamba Program PWSCF v.4.3a starts on 2Feb2011 at 16: 4:15 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! file C.pbe-rrkjus.UPF: wavefunction(s) 2S 2P renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Stick Mesh ---------- nst = 265, nstw = 61, nsts = 187 n.st n.stw n.sts n.g n.gw n.gs min 64 15 46 2392 275 1299 max 67 16 47 2397 278 1307 265 61 187 9583 1107 5211 bravais-lattice index = 4 lattice parameter (a_0) = 4.6412 a.u. unit-cell volume = 236.0493 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 nstep = 50 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.726400 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.366784 ) PseudoPot. # 1 for C read from file C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: 817ad53ab2170a1e8f804b1752af3b34 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.3632000 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.3632000 ) number of k points= 12 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.2165064 0.0458480), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1375440), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0458480), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1375440), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0458480), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1375440), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0458480), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1375440), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0458480), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1375440), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0458480), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1375440), wk = 0.1250000 G cutoff = 98.2127 ( 9583 G-vectors) FFT grid: ( 20, 20, 60) G cutoff = 65.4751 ( 5211 G-vectors) smooth grid: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 163, 8) NL pseudopotentials 0.08 Mb ( 163, 32) Each V/rho on FFT grid 0.09 Mb ( 6000) Each G-vector array 0.02 Mb ( 2397) G-vector shells 0.02 Mb ( 2397) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 163, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 0.73 Mb ( 6000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in Reciprocal space --------------------------------------------------------------------------------- Starting wfc are 16 atomic wfcs total cpu time spent up to now is 0.49 secs per-process dynamical memory: 25.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.73 secs total energy = -45.81473656 Ry Harris-Foulkes estimate = -46.06090438 Ry estimated scf accuracy < 0.43944013 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.75E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.96 secs total energy = -45.88019914 Ry Harris-Foulkes estimate = -45.87894594 Ry estimated scf accuracy < 0.00557291 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.48E-05, avg # of iterations = 2.2 total cpu time spent up to now is 1.18 secs total energy = -45.88102271 Ry Harris-Foulkes estimate = -45.88082389 Ry estimated scf accuracy < 0.00041601 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.60E-06, avg # of iterations = 1.9 total cpu time spent up to now is 1.38 secs total energy = -45.88107381 Ry Harris-Foulkes estimate = -45.88107139 Ry estimated scf accuracy < 0.00000299 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.87E-08, avg # of iterations = 3.5 total cpu time spent up to now is 1.65 secs total energy = -45.88107685 Ry Harris-Foulkes estimate = -45.88107680 Ry estimated scf accuracy < 0.00000017 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 3.2 total cpu time spent up to now is 1.91 secs total energy = -45.88107688 Ry Harris-Foulkes estimate = -45.88107692 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.00E-10, avg # of iterations = 2.6 total cpu time spent up to now is 2.14 secs End of self-consistent calculation k = 0.1250 0.2165 0.0458 ( 646 PWs) bands (ev): -11.5264 -11.2692 -0.0598 0.6943 0.7336 1.6561 1.7746 1.8020 k = 0.1250 0.2165 0.1375 ( 654 PWs) bands (ev): -11.4541 -11.3476 0.3857 0.7057 0.7230 1.0882 1.7820 1.7933 k = 0.1250 0.5052 0.0458 ( 662 PWs) bands (ev): -8.0012 -7.8097 -5.0824 -4.9391 -0.5106 -0.4386 3.9428 5.0425 k = 0.1250 0.5052 0.1375 ( 662 PWs) bands (ev): -7.9466 -7.8673 -5.0417 -4.9823 -0.4898 -0.4600 4.2594 4.7178 k = 0.1250-0.3608 0.0458 ( 661 PWs) bands (ev): -10.0764 -9.8438 -2.0915 -1.9926 0.2592 0.3191 1.6680 3.2327 k = 0.1250-0.3608 0.1375 ( 657 PWs) bands (ev): -10.0106 -9.9143 -2.0629 -2.0219 0.2763 0.3012 2.0797 2.7209 k = 0.1250-0.0722 0.0458 ( 639 PWs) bands (ev): -12.2634 -11.9936 -0.9538 0.8227 2.4753 2.5180 3.1443 3.1754 k = 0.1250-0.0722 0.1375 ( 635 PWs) bands (ev): -12.1876 -12.0760 -0.4938 0.2319 2.4877 2.5054 3.1534 3.1663 k = 0.3750 0.6495 0.0458 ( 647 PWs) bands (ev): -6.3966 -6.3032 -5.4650 -5.4278 -2.7781 -2.6882 5.6601 6.2663 k = 0.3750 0.6495 0.1375 ( 662 PWs) bands (ev): -6.3661 -6.3271 -5.4594 -5.4436 -2.7532 -2.7160 5.8918 6.1558 k = 0.3750-0.2165 0.0458 ( 658 PWs) bands (ev): -9.3653 -9.1451 -3.7809 -3.6460 0.8438 0.8919 2.4638 3.8973 k = 0.3750-0.2165 0.1375 ( 656 PWs) bands (ev): -9.3029 -9.2118 -3.7423 -3.6864 0.8578 0.8777 2.8479 3.4375 ! total energy = -45.88107689 Ry Harris-Foulkes estimate = -45.88107690 Ry estimated scf accuracy < 9.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.17967884 Ry hartree contribution = 13.63787800 Ry xc contribution = -14.43014210 Ry ewald contribution = -33.90913395 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001734 0.00000000 0.00000000 0.00000000 0.00001734 0.00000000 0.00000000 0.00000000 0.00001734 VDW KERNEL stress -0.00006649 0.00000000 0.00000000 0.00000000 -0.00006649 0.00000000 0.00000000 0.00000000 -0.00054437 VDW ALL stress 0.00004915 0.00000000 0.00000000 0.00000000 0.00004915 0.00000000 0.00000000 0.00000000 0.00052703 total stress (Ry/bohr**3) (kbar) P= 34.82 0.00028282 0.00000000 0.00000000 41.60 0.00 0.00 0.00000000 0.00028282 0.00000000 0.00 41.60 0.00 0.00000000 0.00000000 0.00014440 0.00 0.00 21.24 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -45.8810768948 Ry new trust radius = 0.0107785035 bohr new conv_thr = 0.0000000100 Ry new unit-cell volume = 236.85382 a.u.^3 ( 35.09811 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.735692831 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.367846416 C 0.500000000 0.288675135 1.367846416 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0456923), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1370768), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0456923), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1370768), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0456923), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1370768), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0456923), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1370768), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0456923), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1370768), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0456923), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1370768), wk = 0.1250000 extrapolated charge 16.05435, renormalised to 16.00000 total cpu time spent up to now is 3.01 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 3.25 secs total energy = -45.88106888 Ry Harris-Foulkes estimate = -45.85099422 Ry estimated scf accuracy < 0.00004756 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.97E-07, avg # of iterations = 3.2 total cpu time spent up to now is 3.52 secs total energy = -45.88119494 Ry Harris-Foulkes estimate = -45.88122128 Ry estimated scf accuracy < 0.00007042 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.97E-07, avg # of iterations = 1.9 total cpu time spent up to now is 3.72 secs total energy = -45.88118413 Ry Harris-Foulkes estimate = -45.88119754 Ry estimated scf accuracy < 0.00001985 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-07, avg # of iterations = 2.0 total cpu time spent up to now is 3.96 secs total energy = -45.88118817 Ry Harris-Foulkes estimate = -45.88118867 Ry estimated scf accuracy < 0.00000078 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.90E-09, avg # of iterations = 2.4 total cpu time spent up to now is 4.19 secs End of self-consistent calculation k = 0.1250 0.2165 0.0457 ( 646 PWs) bands (ev): -11.5620 -11.3114 -0.0860 0.6557 0.6938 1.6012 1.7357 1.7622 k = 0.1250 0.2165 0.1371 ( 654 PWs) bands (ev): -11.4914 -11.3878 0.3524 0.6667 0.6835 1.0433 1.7429 1.7539 k = 0.1250 0.5052 0.0457 ( 662 PWs) bands (ev): -8.0376 -7.8512 -5.1195 -4.9801 -0.5487 -0.4789 3.9141 4.9948 k = 0.1250 0.5052 0.1371 ( 662 PWs) bands (ev): -7.9844 -7.9073 -5.0799 -5.0222 -0.5286 -0.4997 4.2250 4.6754 k = 0.1250-0.3608 0.0457 ( 661 PWs) bands (ev): -10.1122 -9.8858 -2.1292 -2.0332 0.2209 0.2789 1.6412 3.1793 k = 0.1250-0.3608 0.1371 ( 657 PWs) bands (ev): -10.0482 -9.9544 -2.1014 -2.0617 0.2375 0.2615 2.0462 2.6766 k = 0.1250-0.0722 0.0457 ( 639 PWs) bands (ev): -12.2988 -12.0360 -0.9798 0.7671 2.4366 2.4780 3.1055 3.1355 k = 0.1250-0.0722 0.1371 ( 635 PWs) bands (ev): -12.2249 -12.1162 -0.5270 0.1867 2.4487 2.4658 3.1143 3.1267 k = 0.3750 0.6495 0.0457 ( 647 PWs) bands (ev): -6.4341 -6.3432 -5.5038 -5.4676 -2.8160 -2.7287 5.6299 6.2254 k = 0.3750 0.6495 0.1371 ( 662 PWs) bands (ev): -6.4045 -6.3666 -5.4982 -5.4829 -2.7918 -2.7556 5.8565 6.1154 k = 0.3750-0.2165 0.0457 ( 658 PWs) bands (ev): -9.4013 -9.1870 -3.8181 -3.6870 0.8053 0.8518 2.4364 3.8454 k = 0.3750-0.2165 0.1371 ( 656 PWs) bands (ev): -9.3406 -9.2518 -3.7805 -3.7263 0.8189 0.8381 2.8142 3.3937 ! total energy = -45.88118833 Ry Harris-Foulkes estimate = -45.88118833 Ry estimated scf accuracy < 2.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.44475812 Ry hartree contribution = 13.74716008 Ry xc contribution = -14.42947789 Ry ewald contribution = -33.75411240 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001735 0.00000000 0.00000000 0.00000000 0.00001735 0.00000000 0.00000000 0.00000000 0.00001739 VDW KERNEL stress -0.00006626 0.00000000 0.00000000 0.00000000 -0.00006626 0.00000000 0.00000000 0.00000000 -0.00054474 VDW ALL stress 0.00004891 0.00000000 0.00000000 0.00000000 0.00004891 0.00000000 0.00000000 0.00000000 0.00052736 total stress (Ry/bohr**3) (kbar) P= 34.24 0.00028282 0.00000000 0.00000000 41.60 0.00 0.00 0.00000000 0.00028282 0.00000000 0.00 41.60 0.00 0.00000000 0.00000000 0.00013273 0.00 0.00 19.53 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -45.8810768948 Ry enthalpy new = -45.8811883311 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0161128353 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 238.06067 a.u.^3 ( 35.27695 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.749632078 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.374816039 C 0.500000000 0.288675135 1.374816039 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0454606), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1363819), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0454606), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1363819), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0454606), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1363819), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0454606), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1363819), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0454606), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1363819), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0454606), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1363819), wk = 0.1250000 extrapolated charge 16.08111, renormalised to 16.00000 total cpu time spent up to now is 4.91 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.4 total cpu time spent up to now is 5.16 secs total energy = -45.88106610 Ry Harris-Foulkes estimate = -45.83457815 Ry estimated scf accuracy < 0.00010843 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.78E-07, avg # of iterations = 3.2 total cpu time spent up to now is 5.43 secs total energy = -45.88135225 Ry Harris-Foulkes estimate = -45.88141239 Ry estimated scf accuracy < 0.00016059 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.78E-07, avg # of iterations = 1.9 total cpu time spent up to now is 5.64 secs total energy = -45.88132775 Ry Harris-Foulkes estimate = -45.88135825 Ry estimated scf accuracy < 0.00004518 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.82E-07, avg # of iterations = 2.0 total cpu time spent up to now is 5.88 secs total energy = -45.88133692 Ry Harris-Foulkes estimate = -45.88133798 Ry estimated scf accuracy < 0.00000166 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-08, avg # of iterations = 2.4 total cpu time spent up to now is 6.12 secs total energy = -45.88133726 Ry Harris-Foulkes estimate = -45.88133726 Ry estimated scf accuracy < 3.7E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.31E-11, avg # of iterations = 3.3 total cpu time spent up to now is 6.39 secs total energy = -45.88133726 Ry Harris-Foulkes estimate = -45.88133727 Ry estimated scf accuracy < 3.1E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-11, avg # of iterations = 1.8 total cpu time spent up to now is 6.58 secs End of self-consistent calculation k = 0.1250 0.2165 0.0455 ( 646 PWs) bands (ev): -11.6148 -11.3739 -0.1250 0.5986 0.6349 1.5200 1.6782 1.7034 k = 0.1250 0.2165 0.1364 ( 654 PWs) bands (ev): -11.5468 -11.4472 0.3030 0.6090 0.6250 0.9767 1.6850 1.6955 k = 0.1250 0.5052 0.0455 ( 662 PWs) bands (ev): -8.0915 -7.9127 -5.1744 -5.0408 -0.6052 -0.5386 3.8712 4.9242 k = 0.1250 0.5052 0.1364 ( 662 PWs) bands (ev): -8.0404 -7.9664 -5.1364 -5.0811 -0.5860 -0.5583 4.1739 4.6125 k = 0.1250-0.3608 0.0455 ( 661 PWs) bands (ev): -10.1654 -9.9479 -2.1851 -2.0932 0.1641 0.2195 1.6013 3.1003 k = 0.1250-0.3608 0.1364 ( 657 PWs) bands (ev): -10.1038 -10.0138 -2.1585 -2.1204 0.1800 0.2029 1.9964 2.6110 k = 0.1250-0.0722 0.0455 ( 639 PWs) bands (ev): -12.3513 -12.0986 -1.0184 0.6850 2.3794 2.4188 3.0480 3.0765 k = 0.1250-0.0722 0.1364 ( 635 PWs) bands (ev): -12.2802 -12.1756 -0.5764 0.1198 2.3909 2.4073 3.0564 3.0682 k = 0.3750 0.6495 0.0455 ( 647 PWs) bands (ev): -6.4896 -6.4025 -5.5613 -5.5265 -2.8721 -2.7884 5.5848 6.1649 k = 0.3750 0.6495 0.1364 ( 662 PWs) bands (ev): -6.4614 -6.4250 -5.5557 -5.5410 -2.8488 -2.8141 5.8040 6.0556 k = 0.3750-0.2165 0.0455 ( 658 PWs) bands (ev): -9.4548 -9.2489 -3.8732 -3.7476 0.7483 0.7925 2.3957 3.7687 k = 0.3750-0.2165 0.1364 ( 656 PWs) bands (ev): -9.3963 -9.3111 -3.8372 -3.7852 0.7612 0.7795 2.7640 3.3289 ! total energy = -45.88133726 Ry Harris-Foulkes estimate = -45.88133726 Ry estimated scf accuracy < 9.4E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -11.84280210 Ry hartree contribution = 13.91153098 Ry xc contribution = -14.42848181 Ry ewald contribution = -33.52158433 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001737 0.00000000 0.00000000 0.00000000 0.00001737 0.00000000 0.00000000 0.00000000 0.00001747 VDW KERNEL stress -0.00006593 0.00000000 0.00000000 0.00000000 -0.00006593 0.00000000 0.00000000 0.00000000 -0.00054526 VDW ALL stress 0.00004856 0.00000000 0.00000000 0.00000000 0.00004856 0.00000000 0.00000000 0.00000000 0.00052779 total stress (Ry/bohr**3) (kbar) P= 33.34 0.00028254 0.00000000 0.00000000 41.56 0.00 0.00 0.00000000 0.00028254 0.00000000 0.00 41.56 0.00 0.00000000 0.00000000 0.00011476 0.00 0.00 16.88 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -45.8811883311 Ry enthalpy new = -45.8813372639 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0240467270 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 239.87094 a.u.^3 ( 35.54521 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.770540947 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.385270474 C 0.500000000 0.288675135 1.385270474 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0451175), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1353526), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0451175), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1353526), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0451175), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1353526), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0451175), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1353526), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0451175), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1353526), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0451175), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1353526), wk = 0.1250000 extrapolated charge 16.12075, renormalised to 16.00000 total cpu time spent up to now is 7.32 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 7.57 secs total energy = -45.88090439 Ry Harris-Foulkes estimate = -45.80810192 Ry estimated scf accuracy < 0.00024658 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-06, avg # of iterations = 3.2 total cpu time spent up to now is 7.83 secs total energy = -45.88155534 Ry Harris-Foulkes estimate = -45.88169298 Ry estimated scf accuracy < 0.00036722 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-06, avg # of iterations = 2.0 total cpu time spent up to now is 8.03 secs total energy = -45.88149963 Ry Harris-Foulkes estimate = -45.88156920 Ry estimated scf accuracy < 0.00010317 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.45E-07, avg # of iterations = 2.0 total cpu time spent up to now is 8.27 secs total energy = -45.88152043 Ry Harris-Foulkes estimate = -45.88152260 Ry estimated scf accuracy < 0.00000336 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.10E-08, avg # of iterations = 2.4 total cpu time spent up to now is 8.52 secs total energy = -45.88152120 Ry Harris-Foulkes estimate = -45.88152119 Ry estimated scf accuracy < 0.00000004 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.29E-10, avg # of iterations = 1.8 total cpu time spent up to now is 8.74 secs total energy = -45.88152118 Ry Harris-Foulkes estimate = -45.88152120 Ry estimated scf accuracy < 0.00000004 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.29E-10, avg # of iterations = 2.6 total cpu time spent up to now is 8.98 secs total energy = -45.88152119 Ry Harris-Foulkes estimate = -45.88152119 Ry estimated scf accuracy < 5.7E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.57E-11, avg # of iterations = 1.0 total cpu time spent up to now is 9.19 secs total energy = -45.88152119 Ry Harris-Foulkes estimate = -45.88152119 Ry estimated scf accuracy < 3.9E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.47E-11, avg # of iterations = 2.5 total cpu time spent up to now is 9.42 secs End of self-consistent calculation k = 0.1250 0.2165 0.0451 ( 646 PWs) bands (ev): -11.6932 -11.4661 -0.1831 0.5139 0.5477 1.4004 1.5929 1.6164 k = 0.1250 0.2165 0.1354 ( 654 PWs) bands (ev): -11.6290 -11.5351 0.2297 0.5236 0.5385 0.8785 1.5993 1.6090 k = 0.1250 0.5052 0.0451 ( 662 PWs) bands (ev): -8.1717 -8.0035 -5.2560 -5.1306 -0.6889 -0.6267 3.8074 4.8199 k = 0.1250 0.5052 0.1354 ( 662 PWs) bands (ev): -8.1236 -8.0540 -5.2202 -5.1683 -0.6709 -0.6452 4.0980 4.5195 k = 0.1250-0.3608 0.0451 ( 661 PWs) bands (ev): -10.2445 -10.0396 -2.2679 -2.1819 0.0800 0.1317 1.5418 2.9841 k = 0.1250-0.3608 0.1354 ( 657 PWs) bands (ev): -10.1864 -10.1015 -2.2430 -2.2074 0.0948 0.1162 1.9226 2.5142 k = 0.1250-0.0722 0.0451 ( 639 PWs) bands (ev): -12.4294 -12.1911 -1.0761 0.5642 2.2947 2.3314 2.9628 2.9893 k = 0.1250-0.0722 0.1354 ( 635 PWs) bands (ev): -12.3622 -12.2636 -0.6497 0.0211 2.3054 2.3206 2.9706 2.9816 k = 0.3750 0.6495 0.0451 ( 647 PWs) bands (ev): -6.5720 -6.4902 -5.6464 -5.6135 -2.9552 -2.8769 5.5176 6.0750 k = 0.3750 0.6495 0.1354 ( 662 PWs) bands (ev): -6.5456 -6.5116 -5.6408 -5.6270 -2.9334 -2.9009 5.7260 5.9670 k = 0.3750-0.2165 0.0451 ( 658 PWs) bands (ev): -9.5342 -9.3404 -3.9550 -3.8372 0.6638 0.7048 2.3350 3.6556 k = 0.3750-0.2165 0.1354 ( 656 PWs) bands (ev): -9.4791 -9.3988 -3.9211 -3.8724 0.6757 0.6927 2.6897 3.2331 ! total energy = -45.88152119 Ry Harris-Foulkes estimate = -45.88152119 Ry estimated scf accuracy < 3.2E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -12.44095516 Ry hartree contribution = 14.15926495 Ry xc contribution = -14.42702969 Ry ewald contribution = -33.17280129 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001739 0.00000000 0.00000000 0.00000000 0.00001739 0.00000000 0.00000000 0.00000000 0.00001758 VDW KERNEL stress -0.00006543 0.00000000 0.00000000 0.00000000 -0.00006543 0.00000000 0.00000000 0.00000000 -0.00054595 VDW ALL stress 0.00004804 0.00000000 0.00000000 0.00000000 0.00004804 0.00000000 0.00000000 0.00000000 0.00052836 total stress (Ry/bohr**3) (kbar) P= 31.98 0.00028190 0.00000000 0.00000000 41.47 0.00 0.00 0.00000000 0.00028190 0.00000000 0.00 41.47 0.00 0.00000000 0.00000000 0.00008846 0.00 0.00 13.01 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -45.8813372639 Ry enthalpy new = -45.8815211906 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0357978748 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 242.58634 a.u.^3 ( 35.94759 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.801904252 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.400952126 C 0.500000000 0.288675135 1.400952126 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0446125), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1338375), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0446125), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1338375), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0446125), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1338375), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0446125), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1338375), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0446125), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1338375), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0446125), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1338375), wk = 0.1250000 extrapolated charge 16.17909, renormalised to 16.00000 total cpu time spent up to now is 10.19 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.1 total cpu time spent up to now is 10.47 secs total energy = -45.88029976 Ry Harris-Foulkes estimate = -45.76427883 Ry estimated scf accuracy < 0.00056331 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-06, avg # of iterations = 3.2 total cpu time spent up to now is 10.73 secs total energy = -45.88179155 Ry Harris-Foulkes estimate = -45.88210958 Ry estimated scf accuracy < 0.00084730 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-06, avg # of iterations = 2.0 total cpu time spent up to now is 10.93 secs total energy = -45.88166355 Ry Harris-Foulkes estimate = -45.88182396 Ry estimated scf accuracy < 0.00023801 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-06, avg # of iterations = 2.0 total cpu time spent up to now is 11.18 secs total energy = -45.88171144 Ry Harris-Foulkes estimate = -45.88171562 Ry estimated scf accuracy < 0.00000674 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-08, avg # of iterations = 2.5 total cpu time spent up to now is 11.43 secs total energy = -45.88171288 Ry Harris-Foulkes estimate = -45.88171289 Ry estimated scf accuracy < 0.00000005 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.33E-10, avg # of iterations = 2.3 total cpu time spent up to now is 11.65 secs total energy = -45.88171289 Ry Harris-Foulkes estimate = -45.88171289 Ry estimated scf accuracy < 0.00000003 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-10, avg # of iterations = 2.8 total cpu time spent up to now is 11.92 secs total energy = -45.88171289 Ry Harris-Foulkes estimate = -45.88171290 Ry estimated scf accuracy < 0.00000002 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.07E-10, avg # of iterations = 1.0 total cpu time spent up to now is 12.12 secs total energy = -45.88171289 Ry Harris-Foulkes estimate = -45.88171289 Ry estimated scf accuracy < 0.00000001 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.87E-11, avg # of iterations = 2.5 total cpu time spent up to now is 12.33 secs End of self-consistent calculation k = 0.1250 0.2165 0.0446 ( 646 PWs) bands (ev): -11.8095 -11.6017 -0.2697 0.3888 0.4192 1.2259 1.4670 1.4881 k = 0.1250 0.2165 0.1338 ( 654 PWs) bands (ev): -11.7506 -11.6646 0.1213 0.3975 0.4109 0.7345 1.4728 1.4815 k = 0.1250 0.5052 0.0446 ( 662 PWs) bands (ev): -8.2904 -8.1370 -5.3767 -5.2627 -0.8126 -0.7566 3.7123 4.6668 k = 0.1250 0.5052 0.1338 ( 662 PWs) bands (ev): -8.2465 -8.1830 -5.3441 -5.2969 -0.7965 -0.7732 3.9858 4.3828 k = 0.1250-0.3608 0.0446 ( 661 PWs) bands (ev): -10.3617 -10.1744 -2.3905 -2.3126 -0.0443 0.0022 1.4532 2.8142 k = 0.1250-0.3608 0.1338 ( 657 PWs) bands (ev): -10.3084 -10.2309 -2.3679 -2.3356 -0.0310 -0.0117 1.8134 2.3720 k = 0.1250-0.0722 0.0446 ( 639 PWs) bands (ev): -12.5453 -12.3271 -1.1619 0.3879 2.1695 2.2024 2.8370 2.8606 k = 0.1250-0.0722 0.1338 ( 635 PWs) bands (ev): -12.4835 -12.3932 -0.7580 -0.1236 2.1791 2.1927 2.8440 2.8538 k = 0.3750 0.6495 0.0446 ( 647 PWs) bands (ev): -6.6939 -6.6196 -5.7720 -5.7419 -3.0781 -3.0071 5.4174 5.9421 k = 0.3750 0.6495 0.1338 ( 662 PWs) bands (ev): -6.6702 -6.6392 -5.7665 -5.7539 -3.0582 -3.0288 5.6108 5.8366 k = 0.3750-0.2165 0.0446 ( 658 PWs) bands (ev): -9.6518 -9.4749 -4.0760 -3.9691 0.5389 0.5756 2.2446 3.4903 k = 0.3750-0.2165 0.1338 ( 656 PWs) bands (ev): -9.6014 -9.5281 -4.0452 -4.0010 0.5496 0.5648 2.5797 3.0925 ! total energy = -45.88171289 Ry Harris-Foulkes estimate = -45.88171289 Ry estimated scf accuracy < 1.9E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -13.34082228 Ry hartree contribution = 14.53377199 Ry xc contribution = -14.42501700 Ry ewald contribution = -32.64964560 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001742 0.00000000 0.00000000 0.00000000 0.00001742 0.00000000 0.00000000 0.00000000 0.00001776 VDW KERNEL stress -0.00006470 0.00000000 0.00000000 0.00000000 -0.00006470 0.00000000 0.00000000 0.00000000 -0.00054679 VDW ALL stress 0.00004728 0.00000000 0.00000000 0.00000000 0.00004728 0.00000000 0.00000000 0.00000000 0.00052903 total stress (Ry/bohr**3) (kbar) P= 30.11 0.00028065 0.00000000 0.00000000 41.28 0.00 0.00 0.00000000 0.00028065 0.00000000 0.00 41.28 0.00 0.00000000 0.00000000 0.00005283 0.00 0.00 7.77 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -45.8815211906 Ry enthalpy new = -45.8817128919 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0524851391 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 246.61261 a.u.^3 ( 36.54422 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.848408181 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.424204090 C 0.500000000 0.288675135 1.424204090 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0438842), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1316525), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0438842), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1316525), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0438842), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1316525), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0438842), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1316525), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0438842), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1316525), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0438842), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1316525), wk = 0.1250000 extrapolated charge 16.26122, renormalised to 16.00000 total cpu time spent up to now is 13.16 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.2 total cpu time spent up to now is 13.45 secs total energy = -45.87865933 Ry Harris-Foulkes estimate = -45.69188433 Ry estimated scf accuracy < 0.00126113 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-06, avg # of iterations = 3.2 total cpu time spent up to now is 13.70 secs total energy = -45.88200215 Ry Harris-Foulkes estimate = -45.88272256 Ry estimated scf accuracy < 0.00191335 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.88E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.91 secs total energy = -45.88171356 Ry Harris-Foulkes estimate = -45.88207548 Ry estimated scf accuracy < 0.00053733 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.36E-06, avg # of iterations = 2.0 total cpu time spent up to now is 14.14 secs total energy = -45.88182092 Ry Harris-Foulkes estimate = -45.88182880 Ry estimated scf accuracy < 0.00001244 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.77E-08, avg # of iterations = 2.6 total cpu time spent up to now is 14.39 secs total energy = -45.88182395 Ry Harris-Foulkes estimate = -45.88182394 Ry estimated scf accuracy < 0.00000010 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.55E-10, avg # of iterations = 2.3 total cpu time spent up to now is 14.62 secs total energy = -45.88182394 Ry Harris-Foulkes estimate = -45.88182396 Ry estimated scf accuracy < 0.00000010 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.29E-10, avg # of iterations = 2.5 total cpu time spent up to now is 14.86 secs total energy = -45.88182394 Ry Harris-Foulkes estimate = -45.88182396 Ry estimated scf accuracy < 0.00000004 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.53E-10, avg # of iterations = 2.3 total cpu time spent up to now is 15.09 secs total energy = -45.88182394 Ry Harris-Foulkes estimate = -45.88182394 Ry estimated scf accuracy < 3.8E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.40E-11, avg # of iterations = 2.9 total cpu time spent up to now is 15.34 secs total energy = -45.88182394 Ry Harris-Foulkes estimate = -45.88182394 Ry estimated scf accuracy < 1.0E-09 Ry iteration # 10 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.28E-12, avg # of iterations = 1.3 total cpu time spent up to now is 15.52 secs End of self-consistent calculation k = 0.1250 0.2165 0.0439 ( 646 PWs) bands (ev): -11.9782 -11.7961 -0.3964 0.2083 0.2343 0.9776 1.2855 1.3035 k = 0.1250 0.2165 0.1317 ( 654 PWs) bands (ev): -11.9264 -11.8510 -0.0356 0.2157 0.2271 0.5282 1.2905 1.2979 k = 0.1250 0.5052 0.0439 ( 662 PWs) bands (ev): -8.4624 -8.3287 -5.5513 -5.4523 -0.9913 -0.9433 3.5735 4.4476 k = 0.1250 0.5052 0.1317 ( 662 PWs) bands (ev): -8.4240 -8.3687 -5.5229 -5.4819 -0.9775 -0.9575 3.8234 4.1867 k = 0.1250-0.3608 0.0439 ( 661 PWs) bands (ev): -10.5316 -10.3678 -2.5676 -2.5004 -0.2238 -0.1839 1.3237 2.5723 k = 0.1250-0.3608 0.1317 ( 657 PWs) bands (ev): -10.4849 -10.4171 -2.5480 -2.5202 -0.2123 -0.1958 1.6554 2.1683 k = 0.1250-0.0722 0.0439 ( 639 PWs) bands (ev): -12.7134 -12.5219 -1.2876 0.1372 1.9889 2.0169 2.6557 2.6756 k = 0.1250-0.0722 0.1317 ( 635 PWs) bands (ev): -12.6590 -12.5798 -0.9148 -0.3308 1.9970 2.0087 2.6616 2.6699 k = 0.3750 0.6495 0.0439 ( 647 PWs) bands (ev): -6.8703 -6.8057 -5.9529 -5.9265 -3.2556 -3.1942 5.2709 5.7500 k = 0.3750 0.6495 0.1317 ( 662 PWs) bands (ev): -6.8499 -6.8230 -5.9477 -5.9367 -3.2384 -3.2129 5.4438 5.6489 k = 0.3750-0.2165 0.0439 ( 658 PWs) bands (ev): -9.8224 -9.6678 -4.2511 -4.1585 0.3587 0.3898 2.1124 3.2546 k = 0.3750-0.2165 0.1317 ( 656 PWs) bands (ev): -9.7782 -9.7141 -4.2244 -4.1861 0.3678 0.3806 2.4205 2.8909 ! total energy = -45.88182394 Ry Harris-Foulkes estimate = -45.88182394 Ry estimated scf accuracy < 4.4E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -14.68036820 Ry hartree contribution = 15.09476824 Ry xc contribution = -14.42225024 Ry ewald contribution = -31.87397374 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001745 0.00000000 0.00000000 0.00000000 0.00001745 0.00000000 0.00000000 0.00000000 0.00001803 VDW KERNEL stress -0.00006364 0.00000000 0.00000000 0.00000000 -0.00006364 0.00000000 0.00000000 0.00000000 -0.00054765 VDW ALL stress 0.00004619 0.00000000 0.00000000 0.00000000 0.00004619 0.00000000 0.00000000 0.00000000 0.00052962 total stress (Ry/bohr**3) (kbar) P= 27.39 0.00027790 0.00000000 0.00000000 40.88 0.00 0.00 0.00000000 0.00027790 0.00000000 0.00 40.88 0.00 0.00000000 0.00000000 0.00000280 0.00 0.00 0.41 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -45.8817128919 Ry enthalpy new = -45.8818239426 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0028917254 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 246.83813 a.u.^3 ( 36.57764 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.851012890 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.425506445 C 0.500000000 0.288675135 1.425506445 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0438441), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1315322), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0438441), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1315322), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0438441), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1315322), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0438441), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1315322), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0438441), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1315322), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0438441), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1315322), wk = 0.1250000 extrapolated charge 16.01462, renormalised to 16.00000 total cpu time spent up to now is 16.26 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 1.0 total cpu time spent up to now is 16.61 secs total energy = -45.88181452 Ry Harris-Foulkes estimate = -45.87118089 Ry estimated scf accuracy < 0.00000403 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.52E-08, avg # of iterations = 3.2 total cpu time spent up to now is 16.90 secs total energy = -45.88182487 Ry Harris-Foulkes estimate = -45.88182709 Ry estimated scf accuracy < 0.00000585 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.52E-08, avg # of iterations = 2.0 total cpu time spent up to now is 17.10 secs total energy = -45.88182401 Ry Harris-Foulkes estimate = -45.88182510 Ry estimated scf accuracy < 0.00000160 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 2.0 total cpu time spent up to now is 17.33 secs total energy = -45.88182434 Ry Harris-Foulkes estimate = -45.88182437 Ry estimated scf accuracy < 0.00000006 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-10, avg # of iterations = 2.5 total cpu time spent up to now is 17.55 secs End of self-consistent calculation k = 0.1250 0.2165 0.0438 ( 646 PWs) bands (ev): -11.9875 -11.8068 -0.4035 0.1983 0.2241 0.9641 1.2755 1.2934 k = 0.1250 0.2165 0.1315 ( 654 PWs) bands (ev): -11.9361 -11.8613 -0.0442 0.2057 0.2170 0.5169 1.2805 1.2878 k = 0.1250 0.5052 0.0438 ( 662 PWs) bands (ev): -8.4719 -8.3392 -5.5609 -5.4627 -1.0012 -0.9536 3.5658 4.4355 k = 0.1250 0.5052 0.1315 ( 662 PWs) bands (ev): -8.4338 -8.3789 -5.5327 -5.4921 -0.9875 -0.9677 3.8145 4.1759 k = 0.1250-0.3608 0.0438 ( 661 PWs) bands (ev): -10.5410 -10.3784 -2.5773 -2.5107 -0.2336 -0.1942 1.3165 2.5591 k = 0.1250-0.3608 0.1315 ( 657 PWs) bands (ev): -10.4946 -10.4273 -2.5580 -2.5304 -0.2223 -0.2059 1.6467 2.1571 k = 0.1250-0.0722 0.0438 ( 639 PWs) bands (ev): -12.7227 -12.5326 -1.2946 0.1235 1.9790 2.0067 2.6457 2.6654 k = 0.1250-0.0722 0.1315 ( 635 PWs) bands (ev): -12.6687 -12.5900 -0.9234 -0.3421 1.9870 1.9985 2.6516 2.6598 k = 0.3750 0.6495 0.0438 ( 647 PWs) bands (ev): -6.8800 -6.8159 -5.9629 -5.9367 -3.2654 -3.2045 5.2627 5.7394 k = 0.3750 0.6495 0.1315 ( 662 PWs) bands (ev): -6.8598 -6.8332 -5.9577 -5.9468 -3.2483 -3.2230 5.4346 5.6386 k = 0.3750-0.2165 0.0438 ( 658 PWs) bands (ev): -9.8318 -9.6783 -4.2608 -4.1689 0.3488 0.3796 2.1051 3.2417 k = 0.3750-0.2165 0.1315 ( 656 PWs) bands (ev): -9.7879 -9.7244 -4.2342 -4.1963 0.3578 0.3705 2.4118 2.8799 ! total energy = -45.88182435 Ry Harris-Foulkes estimate = -45.88182435 Ry estimated scf accuracy < 6.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -14.75557476 Ry hartree contribution = 15.12638023 Ry xc contribution = -14.42210068 Ry ewald contribution = -31.83052914 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001745 0.00000000 0.00000000 0.00000000 0.00001745 0.00000000 0.00000000 0.00000000 0.00001804 VDW KERNEL stress -0.00006358 0.00000000 0.00000000 0.00000000 -0.00006358 0.00000000 0.00000000 0.00000000 -0.00054768 VDW ALL stress 0.00004613 0.00000000 0.00000000 0.00000000 0.00004613 0.00000000 0.00000000 0.00000000 0.00052964 total stress (Ry/bohr**3) (kbar) P= 27.24 0.00027770 0.00000000 0.00000000 40.85 0.00 0.00 0.00000000 0.00027770 0.00000000 0.00 40.85 0.00 0.00000000 0.00000000 0.00000003 0.00 0.00 0.00 Begin final coordinates new unit-cell volume = 246.83813 a.u.^3 ( 36.57764 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.851012890 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.425506445 C 0.500000000 0.288675135 1.425506445 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated. Stick Mesh ---------- nst = 265, nstw = 61, nsts = 187 n.st n.stw n.sts n.g n.gw n.gs min 65 15 46 2500 285 1368 max 67 16 47 2503 288 1379 265 61 187 10005 1143 5489 bravais-lattice index = 4 lattice parameter (a_0) = 4.6412 a.u. unit-cell volume = 246.8381 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.851013 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.350753 ) PseudoPot. # 1 for C read from file C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: 817ad53ab2170a1e8f804b1752af3b34 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.4255064 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.4255064 ) number of k points= 12 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.2165064 0.0438441), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1315322), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0438441), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1315322), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0438441), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1315322), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0438441), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1315322), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0438441), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1315322), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0438441), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1315322), wk = 0.1250000 G cutoff = 98.2127 ( 10005 G-vectors) FFT grid: ( 20, 20, 60) G cutoff = 65.4751 ( 5489 G-vectors) smooth grid: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 184, 8) NL pseudopotentials 0.09 Mb ( 184, 32) Each V/rho on FFT grid 0.09 Mb ( 6000) Each G-vector array 0.02 Mb ( 2500) G-vector shells 0.00 Mb ( 524) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 184, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 0.73 Mb ( 6000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 Starting wfc are 16 atomic wfcs Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 18.48 secs per-process dynamical memory: 27.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.9 total cpu time spent up to now is 18.86 secs total energy = -45.81443797 Ry Harris-Foulkes estimate = -46.06544304 Ry estimated scf accuracy < 0.44605070 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.79E-03, avg # of iterations = 2.0 total cpu time spent up to now is 19.08 secs total energy = -45.88108357 Ry Harris-Foulkes estimate = -45.87999763 Ry estimated scf accuracy < 0.00571718 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.57E-05, avg # of iterations = 2.1 total cpu time spent up to now is 19.30 secs total energy = -45.88198904 Ry Harris-Foulkes estimate = -45.88179881 Ry estimated scf accuracy < 0.00038579 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.41E-06, avg # of iterations = 2.0 total cpu time spent up to now is 19.50 secs total energy = -45.88203505 Ry Harris-Foulkes estimate = -45.88203214 Ry estimated scf accuracy < 0.00000398 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 2.8 total cpu time spent up to now is 19.76 secs total energy = -45.88203720 Ry Harris-Foulkes estimate = -45.88203719 Ry estimated scf accuracy < 0.00000012 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.62E-10, avg # of iterations = 3.2 total cpu time spent up to now is 20.01 secs total energy = -45.88203724 Ry Harris-Foulkes estimate = -45.88203727 Ry estimated scf accuracy < 0.00000009 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.76E-10, avg # of iterations = 2.5 total cpu time spent up to now is 20.25 secs total energy = -45.88203725 Ry Harris-Foulkes estimate = -45.88203725 Ry estimated scf accuracy < 2.1E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.32E-11, avg # of iterations = 2.0 total cpu time spent up to now is 20.46 secs End of self-consistent calculation k = 0.1250 0.2165 0.0438 ( 676 PWs) bands (ev): -11.9871 -11.8064 -0.4037 0.1986 0.2243 0.9637 1.2758 1.2935 k = 0.1250 0.2165 0.1315 ( 681 PWs) bands (ev): -11.9357 -11.8609 -0.0447 0.2060 0.2173 0.5166 1.2807 1.2881 k = 0.1250 0.5052 0.0438 ( 688 PWs) bands (ev): -8.4715 -8.3389 -5.5606 -5.4624 -1.0009 -0.9534 3.5654 4.4353 k = 0.1250 0.5052 0.1315 ( 693 PWs) bands (ev): -8.4335 -8.3785 -5.5325 -5.4918 -0.9872 -0.9675 3.8142 4.1757 k = 0.1250-0.3608 0.0438 ( 689 PWs) bands (ev): -10.5407 -10.3781 -2.5770 -2.5104 -0.2334 -0.1940 1.3162 2.5587 k = 0.1250-0.3608 0.1315 ( 687 PWs) bands (ev): -10.4942 -10.4270 -2.5577 -2.5301 -0.2221 -0.2057 1.6464 2.1569 k = 0.1250-0.0722 0.0438 ( 670 PWs) bands (ev): -12.7223 -12.5323 -1.2948 0.1231 1.9792 2.0069 2.6459 2.6657 k = 0.1250-0.0722 0.1315 ( 662 PWs) bands (ev): -12.6683 -12.5896 -0.9236 -0.3426 1.9873 1.9988 2.6517 2.6599 k = 0.3750 0.6495 0.0438 ( 689 PWs) bands (ev): -6.8797 -6.8156 -5.9626 -5.9364 -3.2652 -3.2043 5.2622 5.7391 k = 0.3750 0.6495 0.1315 ( 685 PWs) bands (ev): -6.8594 -6.8328 -5.9574 -5.9464 -3.2480 -3.2228 5.4344 5.6384 k = 0.3750-0.2165 0.0438 ( 688 PWs) bands (ev): -9.8314 -9.6780 -4.2605 -4.1686 0.3490 0.3798 2.1047 3.2413 k = 0.3750-0.2165 0.1315 ( 685 PWs) bands (ev): -9.7876 -9.7240 -4.2340 -4.1959 0.3580 0.3707 2.4115 2.8797 ! total energy = -45.88203725 Ry Harris-Foulkes estimate = -45.88203725 Ry estimated scf accuracy < 3.6E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -14.75624386 Ry hartree contribution = 15.12691366 Ry xc contribution = -14.42217793 Ry ewald contribution = -31.83052913 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001745 0.00000000 0.00000000 0.00000000 0.00001745 0.00000000 0.00000000 0.00000000 0.00001804 VDW KERNEL stress -0.00006359 0.00000000 0.00000000 0.00000000 -0.00006359 0.00000000 0.00000000 0.00000000 -0.00054770 VDW ALL stress 0.00004614 0.00000000 0.00000000 0.00000000 0.00004614 0.00000000 0.00000000 0.00000000 0.00052967 total stress (Ry/bohr**3) (kbar) P= 28.81 0.00028164 0.00000000 0.00000000 41.43 0.00 0.00 0.00000000 0.00028164 0.00000000 0.00 41.43 0.00 0.00000000 0.00000000 0.00002434 0.00 0.00 3.58 Writing output data file graphite.save init_run : 0.43s CPU 0.47s WALL ( 2 calls) electrons : 13.26s CPU 14.38s WALL ( 8 calls) update_pot : 0.74s CPU 0.85s WALL ( 7 calls) forces : 0.37s CPU 0.37s WALL ( 8 calls) stress : 1.51s CPU 1.52s WALL ( 8 calls) Called by init_run: wfcinit : 0.17s CPU 0.17s WALL ( 2 calls) potinit : 0.12s CPU 0.13s WALL ( 2 calls) Called by electrons: c_bands : 8.02s CPU 8.18s WALL ( 61 calls) sum_band : 1.65s CPU 1.67s WALL ( 61 calls) v_of_rho : 3.35s CPU 3.37s WALL ( 69 calls) newd : 0.42s CPU 0.42s WALL ( 69 calls) mix_rho : 0.05s CPU 0.06s WALL ( 61 calls) vdW_energy : 1.29s CPU 1.30s WALL ( 69 calls) vdW_ffts : 0.90s CPU 0.92s WALL ( 154 calls) vdW_v : 0.36s CPU 0.36s WALL ( 69 calls) Called by c_bands: init_us_2 : 0.12s CPU 0.13s WALL ( 1680 calls) cegterg : 7.76s CPU 7.81s WALL ( 732 calls) Called by *egterg: h_psi : 6.26s CPU 6.31s WALL ( 2526 calls) s_psi : 0.24s CPU 0.25s WALL ( 2526 calls) g_psi : 0.04s CPU 0.04s WALL ( 1770 calls) cdiaghg : 0.53s CPU 0.51s WALL ( 2418 calls) Called by h_psi: add_vuspsi : 0.27s CPU 0.26s WALL ( 2526 calls) General routines calbec : 0.55s CPU 0.54s WALL ( 3450 calls) fft : 1.40s CPU 1.43s WALL ( 4946 calls) ffts : 0.03s CPU 0.03s WALL ( 130 calls) fftw : 6.06s CPU 6.10s WALL ( 40050 calls) interpolate : 0.07s CPU 0.08s WALL ( 130 calls) davcio : 0.01s CPU 0.13s WALL ( 2412 calls) Parallel routines fft_scatter : 1.60s CPU 1.65s WALL ( 45126 calls) EXX routines PWSCF : 17.03s CPU 20.97s WALL This run was terminated on: 16: 4:36 2Feb2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/vdwDF_example/reference_G/Ar.scf.in0000644000175000017500000000142112341373025022041 0ustar mbamba&control calculation = 'scf' restart_mode='from_scratch', prefix='Ar_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '/u/cm/degironc/QE/espresso/pseudo/', outdir='/u/cm/degironc/tmp/' verbosity = 'high' forc_conv_thr = 1.0d-4 / &system ibrav = 8 celldm(1) = 19 celldm(2) = 1 celldm(3) = 1.47368421052632 nat = 2 ntyp = 1 occupations = 'fixed' ecutwfc = 80.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-11 / &ions ion_dynamics = 'bfgs' / ATOMIC_SPECIES Ar 36.00 Ar.pz-rrkj.UPF ATOMIC_POSITIONS {angstrom} Ar 0.000000 0.000000 0.000000 Ar 0.000000 0.000000 4.500000 K_POINTS gamma espresso-5.1/PW/examples/vdwDF_example/reference_G/graphite.scf.in0000644000175000017500000000203112341373025023300 0ustar mbamba&control calculation = 'vc-relax' restart_mode='from_scratch', prefix='graphite', tstress = .true. tprnfor = .true. pseudo_dir = '/u/cm/degironc/QE/espresso/pseudo', outdir='/u/cm/degironc/tmp' forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6411700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / &ions / &cell press_conv_thr = 0.5D0 press = 0.D0 cell_dynamics = 'bfgs' cell_dofree = 'z' / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 espresso-5.1/PW/examples/vdwDF_example/reference_G/water.scf.in0000644000175000017500000000171212341373025022624 0ustar mbamba&control calculation = 'scf' restart_mode='from_scratch', prefix='water_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '/u/cm/degironc/QE/espresso/pseudo/', outdir='/u/cm/degironc/tmp/' verbosity = 'high' / &system ibrav = 8 celldm(1) = 15 celldm(2) = 0.954545454545455 celldm(3) = 1.22727272727273 nat = 6 ntyp = 2 occupations = 'fixed' ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 H.pbe-rrkjus.UPF ATOMIC_POSITIONS {angstrom} O -0.000000 0.013129 -0.057535 H -0.000000 0.779069 -0.656064 H 0.000000 0.389646 0.845802 O 0.000000 0.887109 2.818248 H -0.774530 0.521469 3.280767 H 0.774530 0.521469 3.280767 K_POINTS gamma espresso-5.1/PW/examples/vdwDF_example/reference_G/water.scf.out0000644000175000017500000005104512341373025023031 0ustar mbamba Program PWSCF v.4.3a starts on 2Feb2011 at 16: 4:38 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized file H.pbe-rrkjus.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Stick Mesh ---------- nst = 1539, nstw = 258, nsts = 1025 n.st n.stw n.sts n.g n.gw n.gs min 768 127 512 40311 2739 21932 max 770 130 513 40318 2746 21968 3077 515 2049 161263 10971 87777 bravais-lattice index = 8 lattice parameter (a_0) = 15.0000 a.u. unit-cell volume = 3953.7707 (a.u.)^3 number of atoms/cell = 6 number of atomic types = 2 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 15.000000 celldm(2)= 0.954545 celldm(3)= 1.227273 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 0.954545 0.000000 ) a(3) = ( 0.000000 0.000000 1.227273 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.047619 0.000000 ) b(3) = ( 0.000000 0.000000 0.814815 ) PseudoPot. # 1 for O read from file O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-rrkjus.UPF MD5 check sum: 7cc9d459525c9a0585f487a71c3c9563 Pseudo is Ultrasoft, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1061 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: 817ad53ab2170a1e8f804b1752af3b34 atomic species valence mass pseudopotential O 6.00 15.99940 O ( 1.00) H 1.00 1.00794 H ( 1.00) 2 Sym.Ops. (no inversion) s frac. trans. isym = 1 identity cryst. s( 1) = ( 1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 2 inv. 180 deg rotation - cart. axis [1,0,0] cryst. s( 2) = ( -1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) point group C_s (m) there are 2 classes the character table: E s A' 1.00 1.00 A'' 1.00 -1.00 the symmetry operations in each class: E 1 s 2 Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0016540 -0.0072484 ) 2 H tau( 2) = ( 0.0000000 0.0981485 -0.0826521 ) 3 H tau( 3) = ( 0.0000000 0.0490883 0.1065556 ) 4 O tau( 4) = ( 0.0000000 0.1117595 0.3550478 ) 5 H tau( 5) = ( -0.0975766 0.0656956 0.4133167 ) 6 H tau( 6) = ( 0.0975766 0.0656956 0.4133167 ) Crystallographic axes site n. atom positions (cryst. coord.) 1 O tau( 1) = ( 0.0000000 0.0017328 -0.0059061 ) 2 H tau( 2) = ( 0.0000000 0.1028222 -0.0673461 ) 3 H tau( 3) = ( 0.0000000 0.0514258 0.0868231 ) 4 O tau( 4) = ( 0.0000000 0.1170814 0.2892982 ) 5 H tau( 5) = ( -0.0975766 0.0688239 0.3367766 ) 6 H tau( 6) = ( 0.0975766 0.0688239 0.3367766 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 cryst. coord. k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1025.8770 ( 80632 G-vectors) FFT grid: ( 72, 64, 80) G cutoff = 683.9180 ( 43889 G-vectors) smooth grid: ( 54, 50, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.17 Mb ( 1373, 8) NL pseudopotentials 0.50 Mb ( 1373, 24) Each V/rho on FFT grid 1.41 Mb ( 92160) Each G-vector array 0.15 Mb ( 20158) G-vector shells 0.07 Mb ( 9015) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.34 Mb ( 1373, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 24, 8) Arrays for rho mixing 11.25 Mb ( 92160, 8) Initial potential from superposition of free atoms starting charge 15.61518, renormalised to 16.00000 negative rho (up, down): 0.281E-04 0.000E+00 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in Reciprocal space --------------------------------------------------------------------------------- ---------------------------------------------------------------- Non-local correlation energy = 0.275009460339709 ---------------------------------------------------------------- Starting wfc are 12 atomic wfcs total cpu time spent up to now is 2.80 secs per-process dynamical memory: 41.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.249E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.302276450030018 ---------------------------------------------------------------- total cpu time spent up to now is 4.82 secs total energy = -68.62046199 Ry Harris-Foulkes estimate = -69.74417524 Ry estimated scf accuracy < 1.46163505 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.14E-03, avg # of iterations = 2.0 negative rho (up, down): 0.805E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.299196910640524 ---------------------------------------------------------------- total cpu time spent up to now is 6.84 secs total energy = -68.83438749 Ry Harris-Foulkes estimate = -69.33614872 Ry estimated scf accuracy < 0.97202716 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.08E-03, avg # of iterations = 2.0 negative rho (up, down): 0.692E-03 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304349640963476 ---------------------------------------------------------------- total cpu time spent up to now is 8.85 secs total energy = -69.04855722 Ry Harris-Foulkes estimate = -69.06837907 Ry estimated scf accuracy < 0.03465141 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.17E-04, avg # of iterations = 2.0 negative rho (up, down): 0.640E-03 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.303911572658221 ---------------------------------------------------------------- total cpu time spent up to now is 10.85 secs total energy = -69.05568379 Ry Harris-Foulkes estimate = -69.05605206 Ry estimated scf accuracy < 0.00065872 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.12E-06, avg # of iterations = 2.0 negative rho (up, down): 0.177E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304090528590329 ---------------------------------------------------------------- total cpu time spent up to now is 12.85 secs total energy = -69.05588069 Ry Harris-Foulkes estimate = -69.05585932 Ry estimated scf accuracy < 0.00002808 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.76E-07, avg # of iterations = 2.0 negative rho (up, down): 0.188E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304074751530176 ---------------------------------------------------------------- total cpu time spent up to now is 14.85 secs total energy = -69.05588362 Ry Harris-Foulkes estimate = -69.05588579 Ry estimated scf accuracy < 0.00000258 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-08, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304075141784446 ---------------------------------------------------------------- total cpu time spent up to now is 16.85 secs total energy = -69.05588392 Ry Harris-Foulkes estimate = -69.05588407 Ry estimated scf accuracy < 0.00000004 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304074026428808 ---------------------------------------------------------------- total cpu time spent up to now is 18.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5486 PWs) bands (ev): -25.6440 -24.2669 -13.5672 -12.2975 -9.7601 -8.3488 -7.6831 -6.4197 occupation numbers 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ! total energy = -69.05588394 Ry Harris-Foulkes estimate = -69.05588393 Ry estimated scf accuracy < 6.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -122.46810922 Ry hartree contribution = 64.43500836 Ry xc contribution = -17.37524781 Ry ewald contribution = 6.35246473 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00096384 -0.00216571 atom 2 type 2 force = 0.00000000 0.00013476 0.00067594 atom 3 type 2 force = 0.00000000 -0.00035936 0.00014577 atom 4 type 1 force = 0.00000000 0.00088056 0.00121702 atom 5 type 2 force = 0.00003080 -0.00080990 0.00006350 atom 6 type 2 force = -0.00003080 -0.00080990 0.00006350 Total force = 0.003134 Total SCF correction = 0.000096 entering subroutine stress ... VDW GRADIENT stress 0.00000779 0.00000000 0.00000000 0.00000000 0.00000799 0.00000000 0.00000000 0.00000032 0.00000724 VDW KERNEL stress -0.00002786 0.00000000 0.00000000 0.00000000 -0.00002820 0.00000000 0.00000000 -0.00000002 -0.00002322 VDW ALL stress 0.00002008 0.00000000 0.00000000 0.00000000 0.00002022 -0.00000030 0.00000000 -0.00000030 0.00001598 total stress (Ry/bohr**3) (kbar) P= -1.70 -0.00001158 0.00000000 0.00000000 -1.70 0.00 0.00 0.00000000 -0.00001113 -0.00000082 0.00 -1.64 -0.12 0.00000000 -0.00000082 -0.00001193 0.00 -0.12 -1.76 kinetic stress (kbar) 773.91 0.00 0.00 0.00 795.27 35.09 0.00 35.09 748.19 local stress (kbar) -1260.29 0.00 0.00 0.00 -1418.75 -162.43 0.00 -162.43 -2492.38 nonloc. stress (kbar) 278.32 0.00 0.00 0.00 280.60 11.20 0.00 11.20 269.13 hartree stress (kbar) 584.70 0.00 0.00 0.00 685.81 102.02 0.00 102.02 1126.88 exc-cor stress (kbar) -207.38 0.00 0.00 0.00 -207.95 -1.03 0.00 -1.03 -205.76 corecor stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ewald stress (kbar) -173.91 0.00 0.00 0.00 -139.58 15.06 0.00 15.06 549.84 hubbard stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 london stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dft-nl stress (kbar) 2.95 0.00 0.00 0.00 2.97 -0.04 0.00 -0.04 2.35 EXX stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Writing output data file water_vdw.save init_run : 2.43s CPU 2.54s WALL ( 1 calls) electrons : 14.83s CPU 15.91s WALL ( 1 calls) forces : 0.61s CPU 0.61s WALL ( 1 calls) stress : 2.86s CPU 2.93s WALL ( 1 calls) Called by init_run: wfcinit : 0.07s CPU 0.07s WALL ( 1 calls) potinit : 1.73s CPU 1.82s WALL ( 1 calls) Called by electrons: c_bands : 1.12s CPU 1.12s WALL ( 8 calls) sum_band : 1.29s CPU 1.30s WALL ( 8 calls) v_of_rho : 12.26s CPU 12.96s WALL ( 9 calls) v_h : 0.15s CPU 0.18s WALL ( 9 calls) v_xc : 12.11s CPU 12.77s WALL ( 9 calls) newd : 0.84s CPU 0.84s WALL ( 9 calls) mix_rho : 0.33s CPU 0.33s WALL ( 8 calls) vdW_energy : 1.83s CPU 2.12s WALL ( 9 calls) vdW_ffts : 6.14s CPU 6.16s WALL ( 20 calls) vdW_v : 1.45s CPU 1.46s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 17 calls) regterg : 1.10s CPU 1.10s WALL ( 8 calls) Called by sum_band: sum_band:bec : 0.00s CPU 0.00s WALL ( 8 calls) addusdens : 0.53s CPU 0.53s WALL ( 8 calls) Called by *egterg: h_psi : 1.07s CPU 1.07s WALL ( 25 calls) s_psi : 0.02s CPU 0.02s WALL ( 25 calls) g_psi : 0.01s CPU 0.00s WALL ( 16 calls) rdiaghg : 0.01s CPU 0.00s WALL ( 24 calls) regterg:over : 0.02s CPU 0.02s WALL ( 16 calls) regterg:upda : 0.01s CPU 0.01s WALL ( 16 calls) regterg:last : 0.00s CPU 0.01s WALL ( 8 calls) Called by h_psi: h_psi:vloc : 1.01s CPU 1.02s WALL ( 25 calls) h_psi:vnl : 0.05s CPU 0.05s WALL ( 25 calls) add_vuspsi : 0.01s CPU 0.02s WALL ( 25 calls) General routines calbec : 0.05s CPU 0.04s WALL ( 38 calls) fft : 9.75s CPU 9.84s WALL ( 642 calls) ffts : 0.12s CPU 0.12s WALL ( 17 calls) fftw : 0.94s CPU 0.95s WALL ( 228 calls) interpolate : 0.42s CPU 0.43s WALL ( 17 calls) davcio : 0.00s CPU 0.01s WALL ( 8 calls) Parallel routines fft_scatter : 4.45s CPU 4.47s WALL ( 887 calls) EXX routines PWSCF : 21.02s CPU 22.51s WALL This run was terminated on: 16: 5: 0 2Feb2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/vdwDF_example/reference_R/0000755000175000017500000000000012341373041020410 5ustar mbambaespresso-5.1/PW/examples/vdwDF_example/reference_R/graphite.scf.out0000644000175000017500000022612312341373025023526 0ustar mbamba Program PWSCF v.4.3a starts on 2Feb2011 at 15:58:26 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! file C.pbe-rrkjus.UPF: wavefunction(s) 2S 2P renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Stick Mesh ---------- nst = 265, nstw = 61, nsts = 187 n.st n.stw n.sts n.g n.gw n.gs min 64 15 46 2392 275 1299 max 67 16 47 2397 278 1307 265 61 187 9583 1107 5211 bravais-lattice index = 4 lattice parameter (a_0) = 4.6412 a.u. unit-cell volume = 236.0493 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 nstep = 50 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.726400 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.366784 ) PseudoPot. # 1 for C read from file C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: 817ad53ab2170a1e8f804b1752af3b34 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.3632000 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.3632000 ) number of k points= 12 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.2165064 0.0458480), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1375440), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0458480), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1375440), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0458480), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1375440), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0458480), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1375440), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0458480), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1375440), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0458480), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1375440), wk = 0.1250000 G cutoff = 98.2127 ( 9583 G-vectors) FFT grid: ( 20, 20, 60) G cutoff = 65.4751 ( 5211 G-vectors) smooth grid: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 163, 8) NL pseudopotentials 0.08 Mb ( 163, 32) Each V/rho on FFT grid 0.09 Mb ( 6000) Each G-vector array 0.02 Mb ( 2397) G-vector shells 0.02 Mb ( 2397) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 163, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 0.73 Mb ( 6000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in Real space --------------------------------------------------------------------------------- Starting wfc are 16 atomic wfcs total cpu time spent up to now is 0.49 secs per-process dynamical memory: 25.6 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.74 secs total energy = -45.81465557 Ry Harris-Foulkes estimate = -46.06058025 Ry estimated scf accuracy < 0.43927225 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.75E-03, avg # of iterations = 2.0 total cpu time spent up to now is 0.98 secs total energy = -45.88011201 Ry Harris-Foulkes estimate = -45.87885161 Ry estimated scf accuracy < 0.00557033 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.48E-05, avg # of iterations = 2.2 total cpu time spent up to now is 1.20 secs total energy = -45.88094023 Ry Harris-Foulkes estimate = -45.88073512 Ry estimated scf accuracy < 0.00041540 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.60E-06, avg # of iterations = 1.9 total cpu time spent up to now is 1.42 secs total energy = -45.88099092 Ry Harris-Foulkes estimate = -45.88098783 Ry estimated scf accuracy < 0.00000300 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.87E-08, avg # of iterations = 3.5 total cpu time spent up to now is 1.69 secs total energy = -45.88099389 Ry Harris-Foulkes estimate = -45.88099383 Ry estimated scf accuracy < 0.00000017 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 3.2 total cpu time spent up to now is 1.96 secs total energy = -45.88099390 Ry Harris-Foulkes estimate = -45.88099393 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.95E-10, avg # of iterations = 2.6 total cpu time spent up to now is 2.19 secs End of self-consistent calculation k = 0.1250 0.2165 0.0458 ( 646 PWs) bands (ev): -11.5262 -11.2690 -0.0600 0.6953 0.7346 1.6559 1.7758 1.8032 k = 0.1250 0.2165 0.1375 ( 654 PWs) bands (ev): -11.4539 -11.3474 0.3855 0.7067 0.7240 1.0880 1.7832 1.7945 k = 0.1250 0.5052 0.0458 ( 662 PWs) bands (ev): -8.0011 -7.8096 -5.0818 -4.9385 -0.5091 -0.4371 3.9426 5.0423 k = 0.1250 0.5052 0.1375 ( 662 PWs) bands (ev): -7.9464 -7.8672 -5.0411 -4.9817 -0.4884 -0.4585 4.2592 4.7176 k = 0.1250-0.3608 0.0458 ( 661 PWs) bands (ev): -10.0762 -9.8436 -2.0908 -1.9919 0.2606 0.3205 1.6678 3.2325 k = 0.1250-0.3608 0.1375 ( 657 PWs) bands (ev): -10.0104 -9.9142 -2.0622 -2.0213 0.2777 0.3025 2.0794 2.7207 k = 0.1250-0.0722 0.0458 ( 639 PWs) bands (ev): -12.2632 -11.9935 -0.9540 0.8225 2.4767 2.5195 3.1453 3.1764 k = 0.1250-0.0722 0.1375 ( 635 PWs) bands (ev): -12.1874 -12.0758 -0.4940 0.2317 2.4892 2.5069 3.1544 3.1673 k = 0.3750 0.6495 0.0458 ( 647 PWs) bands (ev): -6.3959 -6.3024 -5.4646 -5.4275 -2.7777 -2.6878 5.6598 6.2661 k = 0.3750 0.6495 0.1375 ( 662 PWs) bands (ev): -6.3654 -6.3263 -5.4590 -5.4433 -2.7528 -2.7155 5.8915 6.1556 k = 0.3750-0.2165 0.0458 ( 658 PWs) bands (ev): -9.3649 -9.1448 -3.7802 -3.6453 0.8446 0.8926 2.4635 3.8970 k = 0.3750-0.2165 0.1375 ( 656 PWs) bands (ev): -9.3026 -9.2114 -3.7416 -3.6858 0.8586 0.8785 2.8477 3.4373 ! total energy = -45.88099388 Ry Harris-Foulkes estimate = -45.88099392 Ry estimated scf accuracy < 9.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.17916966 Ry hartree contribution = 13.63716917 Ry xc contribution = -14.42985943 Ry ewald contribution = -33.90913395 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001726 0.00000000 0.00000000 0.00000001 0.00001726 0.00000000 0.00000000 0.00000000 0.00001732 VDW KERNEL stress -0.00006656 0.00000000 0.00000000 0.00000000 -0.00006656 0.00000000 0.00000000 0.00000000 -0.00054458 VDW ALL stress 0.00004930 -0.00000001 0.00000000 -0.00000001 0.00004929 0.00000000 0.00000000 0.00000000 0.00052725 total stress (Ry/bohr**3) (kbar) P= 35.09 0.00028511 0.00000000 0.00000000 41.94 0.00 0.00 0.00000000 0.00028511 0.00000000 0.00 41.94 0.00 0.00000000 0.00000000 0.00014533 0.00 0.00 21.38 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -45.8809938796 Ry new trust radius = 0.0108481490 bohr new conv_thr = 0.0000000100 Ry new unit-cell volume = 236.85902 a.u.^3 ( 35.09888 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.735752877 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.367876438 C 0.500000000 0.288675135 1.367876438 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0456913), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1370738), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0456913), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1370738), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0456913), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1370738), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0456913), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1370738), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0456913), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1370738), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0456913), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1370738), wk = 0.1250000 extrapolated charge 16.05470, renormalised to 16.00000 total cpu time spent up to now is 2.99 secs per-process dynamical memory: 25.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 3.23 secs total energy = -45.88099635 Ry Harris-Foulkes estimate = -45.85072868 Ry estimated scf accuracy < 0.00004816 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-07, avg # of iterations = 3.2 total cpu time spent up to now is 3.49 secs total energy = -45.88112521 Ry Harris-Foulkes estimate = -45.88115068 Ry estimated scf accuracy < 0.00007134 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-07, avg # of iterations = 1.9 total cpu time spent up to now is 3.70 secs total energy = -45.88111599 Ry Harris-Foulkes estimate = -45.88112781 Ry estimated scf accuracy < 0.00002011 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-07, avg # of iterations = 2.0 total cpu time spent up to now is 3.95 secs total energy = -45.88111973 Ry Harris-Foulkes estimate = -45.88112054 Ry estimated scf accuracy < 0.00000079 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.95E-09, avg # of iterations = 2.4 total cpu time spent up to now is 4.18 secs End of self-consistent calculation k = 0.1250 0.2165 0.0457 ( 646 PWs) bands (ev): -11.5620 -11.3115 -0.0864 0.6565 0.6945 1.6007 1.7367 1.7632 k = 0.1250 0.2165 0.1371 ( 654 PWs) bands (ev): -11.4915 -11.3878 0.3520 0.6674 0.6842 1.0428 1.7438 1.7548 k = 0.1250 0.5052 0.0457 ( 662 PWs) bands (ev): -8.0377 -7.8514 -5.1191 -4.9798 -0.5475 -0.4777 3.9136 4.9943 k = 0.1250 0.5052 0.1371 ( 662 PWs) bands (ev): -7.9845 -7.9074 -5.0795 -5.0218 -0.5274 -0.4985 4.2245 4.6748 k = 0.1250-0.3608 0.0457 ( 661 PWs) bands (ev): -10.1123 -9.8858 -2.1288 -2.0328 0.2220 0.2800 1.6408 3.1787 k = 0.1250-0.3608 0.1371 ( 657 PWs) bands (ev): -10.0482 -9.9545 -2.1010 -2.0612 0.2386 0.2627 2.0457 2.6762 k = 0.1250-0.0722 0.0457 ( 639 PWs) bands (ev): -12.2988 -12.0361 -0.9801 0.7666 2.4378 2.4792 3.1062 3.1363 k = 0.1250-0.0722 0.1371 ( 635 PWs) bands (ev): -12.2249 -12.1162 -0.5274 0.1862 2.4499 2.4670 3.1150 3.1275 k = 0.3750 0.6495 0.0457 ( 647 PWs) bands (ev): -6.4336 -6.3427 -5.5037 -5.4675 -2.8158 -2.7284 5.6294 6.2250 k = 0.3750 0.6495 0.1371 ( 662 PWs) bands (ev): -6.4040 -6.3661 -5.4981 -5.4828 -2.7915 -2.7553 5.8560 6.1149 k = 0.3750-0.2165 0.0457 ( 658 PWs) bands (ev): -9.4012 -9.1869 -3.8177 -3.6866 0.8058 0.8523 2.4360 3.8449 k = 0.3750-0.2165 0.1371 ( 656 PWs) bands (ev): -9.3404 -9.2517 -3.7801 -3.7259 0.8194 0.8386 2.8137 3.3933 ! total energy = -45.88111989 Ry Harris-Foulkes estimate = -45.88111990 Ry estimated scf accuracy < 2.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.44595725 Ry hartree contribution = 13.74715338 Ry xc contribution = -14.42920528 Ry ewald contribution = -33.75311074 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001727 0.00000000 0.00000000 0.00000001 0.00001728 0.00000000 0.00000000 0.00000000 0.00001746 VDW KERNEL stress -0.00006633 0.00000000 0.00000000 0.00000000 -0.00006633 0.00000000 0.00000000 0.00000000 -0.00054491 VDW ALL stress 0.00004906 -0.00000001 0.00000000 -0.00000001 0.00004905 0.00000000 0.00000000 0.00000000 0.00052745 total stress (Ry/bohr**3) (kbar) P= 34.52 0.00028517 0.00000000 0.00000000 41.95 0.00 0.00 0.00000000 0.00028517 0.00000000 0.00 41.95 0.00 0.00000000 0.00000000 0.00013366 0.00 0.00 19.66 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -45.8809938796 Ry enthalpy new = -45.8811198949 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0162165926 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 238.07366 a.u.^3 ( 35.27888 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.749782192 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.374891096 C 0.500000000 0.288675135 1.374891096 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0454581), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1363744), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0454581), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1363744), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0454581), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1363744), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0454581), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1363744), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0454581), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1363744), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0454581), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1363744), wk = 0.1250000 extrapolated charge 16.08163, renormalised to 16.00000 total cpu time spent up to now is 4.90 secs per-process dynamical memory: 25.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.4 total cpu time spent up to now is 5.15 secs total energy = -45.88101232 Ry Harris-Foulkes estimate = -45.83421713 Ry estimated scf accuracy < 0.00010979 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.86E-07, avg # of iterations = 3.2 total cpu time spent up to now is 5.41 secs total energy = -45.88130394 Ry Harris-Foulkes estimate = -45.88136304 Ry estimated scf accuracy < 0.00016272 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.86E-07, avg # of iterations = 1.9 total cpu time spent up to now is 5.63 secs total energy = -45.88128170 Ry Harris-Foulkes estimate = -45.88130997 Ry estimated scf accuracy < 0.00004579 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.86E-07, avg # of iterations = 2.0 total cpu time spent up to now is 5.89 secs total energy = -45.88129048 Ry Harris-Foulkes estimate = -45.88129200 Ry estimated scf accuracy < 0.00000168 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-08, avg # of iterations = 2.4 total cpu time spent up to now is 6.14 secs total energy = -45.88129082 Ry Harris-Foulkes estimate = -45.88129084 Ry estimated scf accuracy < 3.6E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.22E-11, avg # of iterations = 3.4 total cpu time spent up to now is 6.41 secs total energy = -45.88129083 Ry Harris-Foulkes estimate = -45.88129083 Ry estimated scf accuracy < 3.0E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-11, avg # of iterations = 1.8 total cpu time spent up to now is 6.60 secs End of self-consistent calculation k = 0.1250 0.2165 0.0455 ( 646 PWs) bands (ev): -11.6151 -11.3743 -0.1256 0.5989 0.6352 1.5190 1.6787 1.7040 k = 0.1250 0.2165 0.1364 ( 654 PWs) bands (ev): -11.5472 -11.4476 0.3022 0.6094 0.6254 0.9759 1.6855 1.6960 k = 0.1250 0.5052 0.0455 ( 662 PWs) bands (ev): -8.0920 -7.9132 -5.1744 -5.0409 -0.6043 -0.5377 3.8705 4.9233 k = 0.1250 0.5052 0.1364 ( 662 PWs) bands (ev): -8.0409 -7.9670 -5.1364 -5.0811 -0.5851 -0.5575 4.1731 4.6116 k = 0.1250-0.3608 0.0455 ( 661 PWs) bands (ev): -10.1658 -9.9483 -2.1850 -2.0932 0.1648 0.2202 1.6006 3.0994 k = 0.1250-0.3608 0.1364 ( 657 PWs) bands (ev): -10.1042 -10.0142 -2.1584 -2.1204 0.1807 0.2037 1.9957 2.6102 k = 0.1250-0.0722 0.0455 ( 639 PWs) bands (ev): -12.3517 -12.0991 -1.0191 0.6841 2.3802 2.4196 3.0483 3.0769 k = 0.1250-0.0722 0.1364 ( 635 PWs) bands (ev): -12.2806 -12.1760 -0.5772 0.1190 2.3917 2.4081 3.0567 3.0686 k = 0.3750 0.6495 0.0455 ( 647 PWs) bands (ev): -6.4895 -6.4024 -5.5616 -5.5268 -2.8722 -2.7886 5.5840 6.1641 k = 0.3750 0.6495 0.1364 ( 662 PWs) bands (ev): -6.4612 -6.4249 -5.5559 -5.5412 -2.8490 -2.8143 5.8031 6.0548 k = 0.3750-0.2165 0.0455 ( 658 PWs) bands (ev): -9.4550 -9.2492 -3.8731 -3.7476 0.7484 0.7926 2.3950 3.7677 k = 0.3750-0.2165 0.1364 ( 656 PWs) bands (ev): -9.3966 -9.3114 -3.8371 -3.7852 0.7613 0.7796 2.7633 3.3280 ! total energy = -45.88129083 Ry Harris-Foulkes estimate = -45.88129083 Ry estimated scf accuracy < 9.4E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -11.84657955 Ry hartree contribution = 13.91259698 Ry xc contribution = -14.42822804 Ry ewald contribution = -33.51908022 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001729 0.00000000 0.00000000 0.00000001 0.00001730 0.00000000 0.00000000 0.00000000 0.00001767 VDW KERNEL stress -0.00006599 0.00000000 0.00000000 0.00000000 -0.00006599 0.00000000 0.00000000 0.00000000 -0.00054537 VDW ALL stress 0.00004871 -0.00000001 0.00000000 -0.00000001 0.00004869 0.00000000 0.00000000 0.00000000 0.00052770 total stress (Ry/bohr**3) (kbar) P= 33.63 0.00028498 0.00000000 0.00000000 41.92 0.00 0.00 0.00000000 0.00028498 0.00000000 0.00 41.92 0.00 0.00000000 0.00000000 0.00011581 0.00 0.00 17.04 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -45.8811198949 Ry enthalpy new = -45.8812908343 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0242007840 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 239.89563 a.u.^3 ( 35.54886 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.770826165 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.385413082 C 0.500000000 0.288675135 1.385413082 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0451129), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1353387), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0451129), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1353387), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0451129), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1353387), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0451129), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1353387), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0451129), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1353387), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0451129), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1353387), wk = 0.1250000 extrapolated charge 16.12152, renormalised to 16.00000 total cpu time spent up to now is 7.34 secs per-process dynamical memory: 25.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 7.60 secs total energy = -45.88087740 Ry Harris-Foulkes estimate = -45.80757480 Ry estimated scf accuracy < 0.00024979 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-06, avg # of iterations = 3.2 total cpu time spent up to now is 7.87 secs total energy = -45.88153962 Ry Harris-Foulkes estimate = -45.88167639 Ry estimated scf accuracy < 0.00037219 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-06, avg # of iterations = 2.0 total cpu time spent up to now is 8.08 secs total energy = -45.88148702 Ry Harris-Foulkes estimate = -45.88155360 Ry estimated scf accuracy < 0.00010458 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.54E-07, avg # of iterations = 2.0 total cpu time spent up to now is 8.32 secs total energy = -45.88150737 Ry Harris-Foulkes estimate = -45.88151021 Ry estimated scf accuracy < 0.00000340 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.12E-08, avg # of iterations = 2.4 total cpu time spent up to now is 8.58 secs total energy = -45.88150814 Ry Harris-Foulkes estimate = -45.88150815 Ry estimated scf accuracy < 0.00000004 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-10, avg # of iterations = 1.8 total cpu time spent up to now is 8.79 secs total energy = -45.88150813 Ry Harris-Foulkes estimate = -45.88150814 Ry estimated scf accuracy < 0.00000004 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.27E-10, avg # of iterations = 2.6 total cpu time spent up to now is 9.06 secs total energy = -45.88150814 Ry Harris-Foulkes estimate = -45.88150814 Ry estimated scf accuracy < 5.9E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.66E-11, avg # of iterations = 1.0 total cpu time spent up to now is 9.26 secs total energy = -45.88150815 Ry Harris-Foulkes estimate = -45.88150814 Ry estimated scf accuracy < 4.1E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.53E-11, avg # of iterations = 2.5 total cpu time spent up to now is 9.49 secs End of self-consistent calculation k = 0.1250 0.2165 0.0451 ( 646 PWs) bands (ev): -11.6940 -11.4671 -0.1842 0.5137 0.5475 1.3988 1.5929 1.6164 k = 0.1250 0.2165 0.1353 ( 654 PWs) bands (ev): -11.6299 -11.5360 0.2285 0.5234 0.5383 0.8771 1.5993 1.6090 k = 0.1250 0.5052 0.0451 ( 662 PWs) bands (ev): -8.1727 -8.0046 -5.2565 -5.1312 -0.6886 -0.6265 3.8062 4.8184 k = 0.1250 0.5052 0.1353 ( 662 PWs) bands (ev): -8.1246 -8.0550 -5.2208 -5.1689 -0.6707 -0.6449 4.0967 4.5181 k = 0.1250-0.3608 0.0451 ( 661 PWs) bands (ev): -10.2454 -10.0406 -2.2684 -2.1825 0.0802 0.1318 1.5407 2.9825 k = 0.1250-0.3608 0.1353 ( 657 PWs) bands (ev): -10.1873 -10.1025 -2.2435 -2.2079 0.0950 0.1164 1.9214 2.5127 k = 0.1250-0.0722 0.0451 ( 639 PWs) bands (ev): -12.4303 -12.1921 -1.0771 0.5627 2.2949 2.3316 2.9626 2.9890 k = 0.1250-0.0722 0.1353 ( 635 PWs) bands (ev): -12.3631 -12.2645 -0.6509 0.0197 2.3056 2.3208 2.9704 2.9814 k = 0.3750 0.6495 0.0451 ( 647 PWs) bands (ev): -6.5724 -6.4906 -5.6472 -5.6144 -2.9558 -2.8776 5.5164 6.0736 k = 0.3750 0.6495 0.1353 ( 662 PWs) bands (ev): -6.5460 -6.5120 -5.6416 -5.6278 -2.9340 -2.9016 5.7247 5.9657 k = 0.3750-0.2165 0.0451 ( 658 PWs) bands (ev): -9.5349 -9.3412 -3.9554 -3.8378 0.6633 0.7043 2.3339 3.6541 k = 0.3750-0.2165 0.1353 ( 656 PWs) bands (ev): -9.4798 -9.3996 -3.9216 -3.8730 0.6753 0.6923 2.6885 3.2317 ! total energy = -45.88150814 Ry Harris-Foulkes estimate = -45.88150815 Ry estimated scf accuracy < 3.1E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -12.44861032 Ry hartree contribution = 14.16195060 Ry xc contribution = -14.42680480 Ry ewald contribution = -33.16804363 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001731 0.00000000 0.00000000 0.00000001 0.00001732 0.00000000 0.00000000 0.00000000 0.00001799 VDW KERNEL stress -0.00006549 0.00000000 0.00000000 0.00000000 -0.00006549 0.00000000 0.00000000 0.00000000 -0.00054596 VDW ALL stress 0.00004818 -0.00000001 0.00000000 -0.00000001 0.00004817 0.00000000 0.00000000 0.00000000 0.00052797 total stress (Ry/bohr**3) (kbar) P= 32.30 0.00028448 0.00000000 0.00000000 41.85 0.00 0.00 0.00000000 0.00028448 0.00000000 0.00 41.85 0.00 0.00000000 0.00000000 0.00008966 0.00 0.00 13.19 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -45.8812908343 Ry enthalpy new = -45.8815081417 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0360254745 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 242.62858 a.u.^3 ( 35.95385 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.802392124 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.401196062 C 0.500000000 0.288675135 1.401196062 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0446047), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1338142), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0446047), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1338142), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0446047), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1338142), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0446047), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1338142), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0446047), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1338142), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0446047), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1338142), wk = 0.1250000 extrapolated charge 16.18022, renormalised to 16.00000 total cpu time spent up to now is 10.20 secs per-process dynamical memory: 26.1 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.1 total cpu time spent up to now is 10.48 secs total energy = -45.88031000 Ry Harris-Foulkes estimate = -45.76345235 Ry estimated scf accuracy < 0.00057085 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.57E-06, avg # of iterations = 3.2 total cpu time spent up to now is 10.75 secs total energy = -45.88182592 Ry Harris-Foulkes estimate = -45.88214429 Ry estimated scf accuracy < 0.00085910 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.57E-06, avg # of iterations = 2.0 total cpu time spent up to now is 10.96 secs total energy = -45.88170189 Ry Harris-Foulkes estimate = -45.88185869 Ry estimated scf accuracy < 0.00024133 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-06, avg # of iterations = 2.0 total cpu time spent up to now is 11.20 secs total energy = -45.88174946 Ry Harris-Foulkes estimate = -45.88175458 Ry estimated scf accuracy < 0.00000684 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.27E-08, avg # of iterations = 2.5 total cpu time spent up to now is 11.45 secs total energy = -45.88175089 Ry Harris-Foulkes estimate = -45.88175096 Ry estimated scf accuracy < 0.00000005 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.43E-10, avg # of iterations = 2.2 total cpu time spent up to now is 11.67 secs total energy = -45.88175085 Ry Harris-Foulkes estimate = -45.88175090 Ry estimated scf accuracy < 0.00000003 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-10, avg # of iterations = 2.9 total cpu time spent up to now is 11.93 secs total energy = -45.88175087 Ry Harris-Foulkes estimate = -45.88175086 Ry estimated scf accuracy < 0.00000002 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.17E-10, avg # of iterations = 1.0 total cpu time spent up to now is 12.13 secs total energy = -45.88175087 Ry Harris-Foulkes estimate = -45.88175087 Ry estimated scf accuracy < 0.00000001 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.62E-11, avg # of iterations = 2.5 total cpu time spent up to now is 12.35 secs End of self-consistent calculation k = 0.1250 0.2165 0.0446 ( 646 PWs) bands (ev): -11.8110 -11.6035 -0.2713 0.3877 0.4181 1.2234 1.4661 1.4872 k = 0.1250 0.2165 0.1338 ( 654 PWs) bands (ev): -11.7523 -11.6663 0.1194 0.3964 0.4098 0.7323 1.4719 1.4806 k = 0.1250 0.5052 0.0446 ( 662 PWs) bands (ev): -8.2922 -8.1390 -5.3780 -5.2641 -0.8132 -0.7572 3.7106 4.6645 k = 0.1250 0.5052 0.1338 ( 662 PWs) bands (ev): -8.2483 -8.1849 -5.3454 -5.2983 -0.7970 -0.7738 3.9839 4.3806 k = 0.1250-0.3608 0.0446 ( 661 PWs) bands (ev): -10.3633 -10.1763 -2.3918 -2.3140 -0.0450 0.0015 1.4516 2.8117 k = 0.1250-0.3608 0.1338 ( 657 PWs) bands (ev): -10.3101 -10.2327 -2.3692 -2.3370 -0.0316 -0.0124 1.8116 2.3698 k = 0.1250-0.0722 0.0446 ( 639 PWs) bands (ev): -12.5468 -12.3289 -1.1636 0.3854 2.1689 2.2017 2.8360 2.8595 k = 0.1250-0.0722 0.1338 ( 635 PWs) bands (ev): -12.4852 -12.3950 -0.7599 -0.1258 2.1784 2.1920 2.8429 2.8527 k = 0.3750 0.6495 0.0446 ( 647 PWs) bands (ev): -6.6951 -6.6208 -5.7736 -5.7435 -3.0795 -3.0086 5.4155 5.9400 k = 0.3750 0.6495 0.1338 ( 662 PWs) bands (ev): -6.6714 -6.6404 -5.7681 -5.7555 -3.0597 -3.0303 5.6087 5.8345 k = 0.3750-0.2165 0.0446 ( 658 PWs) bands (ev): -9.6533 -9.4765 -4.0773 -3.9705 0.5376 0.5742 2.2429 3.4879 k = 0.3750-0.2165 0.1338 ( 656 PWs) bands (ev): -9.6029 -9.5297 -4.0465 -4.0024 0.5483 0.5635 2.5778 3.0903 ! total energy = -45.88175088 Ry Harris-Foulkes estimate = -45.88175088 Ry estimated scf accuracy < 2.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -13.35432891 Ry hartree contribution = 14.53892632 Ry xc contribution = -14.42484046 Ry ewald contribution = -32.64150783 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001734 0.00000000 0.00000000 0.00000001 0.00001735 0.00000000 0.00000000 0.00000000 0.00001847 VDW KERNEL stress -0.00006475 0.00000000 0.00000000 0.00000000 -0.00006475 0.00000000 0.00000000 0.00000000 -0.00054665 VDW ALL stress 0.00004741 -0.00000001 0.00000000 -0.00000001 0.00004740 0.00000000 0.00000000 0.00000000 0.00052818 total stress (Ry/bohr**3) (kbar) P= 30.46 0.00028343 0.00000000 0.00000000 41.69 0.00 0.00 0.00000000 0.00028343 0.00000000 0.00 41.69 0.00 0.00000000 0.00000000 0.00005432 0.00 0.00 7.99 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -45.8815081417 Ry enthalpy new = -45.8817508846 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0534295289 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 246.72801 a.u.^3 ( 36.56132 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.849741063 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.424870531 C 0.500000000 0.288675135 1.424870531 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0438636), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1315909), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0438636), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1315909), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0438636), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1315909), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0438636), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1315909), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0438636), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1315909), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0438636), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1315909), wk = 0.1250000 extrapolated charge 16.26584, renormalised to 16.00000 total cpu time spent up to now is 13.08 secs per-process dynamical memory: 26.1 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.2 total cpu time spent up to now is 13.38 secs total energy = -45.87864336 Ry Harris-Foulkes estimate = -45.68809977 Ry estimated scf accuracy < 0.00130865 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.18E-06, avg # of iterations = 3.2 total cpu time spent up to now is 13.65 secs total energy = -45.88211925 Ry Harris-Foulkes estimate = -45.88286160 Ry estimated scf accuracy < 0.00198755 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.18E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.86 secs total energy = -45.88182786 Ry Harris-Foulkes estimate = -45.88219530 Ry estimated scf accuracy < 0.00055826 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.49E-06, avg # of iterations = 2.0 total cpu time spent up to now is 14.10 secs total energy = -45.88193801 Ry Harris-Foulkes estimate = -45.88194736 Ry estimated scf accuracy < 0.00001285 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.03E-08, avg # of iterations = 2.6 total cpu time spent up to now is 14.35 secs total energy = -45.88194107 Ry Harris-Foulkes estimate = -45.88194116 Ry estimated scf accuracy < 0.00000011 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.78E-10, avg # of iterations = 2.3 total cpu time spent up to now is 14.57 secs total energy = -45.88194104 Ry Harris-Foulkes estimate = -45.88194109 Ry estimated scf accuracy < 0.00000010 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.27E-10, avg # of iterations = 2.5 total cpu time spent up to now is 14.82 secs total energy = -45.88194108 Ry Harris-Foulkes estimate = -45.88194106 Ry estimated scf accuracy < 0.00000004 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.66E-10, avg # of iterations = 2.3 total cpu time spent up to now is 15.04 secs total energy = -45.88194109 Ry Harris-Foulkes estimate = -45.88194109 Ry estimated scf accuracy < 4.1E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.58E-11, avg # of iterations = 2.8 total cpu time spent up to now is 15.31 secs total energy = -45.88194109 Ry Harris-Foulkes estimate = -45.88194109 Ry estimated scf accuracy < 1.0E-09 Ry iteration # 10 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.41E-12, avg # of iterations = 1.3 total cpu time spent up to now is 15.49 secs End of self-consistent calculation k = 0.1250 0.2165 0.0439 ( 646 PWs) bands (ev): -11.9827 -11.8012 -0.4004 0.2040 0.2299 0.9712 1.2814 1.2993 k = 0.1250 0.2165 0.1316 ( 654 PWs) bands (ev): -11.9311 -11.8560 -0.0402 0.2114 0.2227 0.5226 1.2863 1.2938 k = 0.1250 0.5052 0.0439 ( 662 PWs) bands (ev): -8.4672 -8.3340 -5.5557 -5.4570 -0.9951 -0.9472 3.5692 4.4416 k = 0.1250 0.5052 0.1316 ( 662 PWs) bands (ev): -8.4290 -8.3738 -5.5274 -5.4865 -0.9813 -0.9614 3.8187 4.1812 k = 0.1250-0.3608 0.0439 ( 661 PWs) bands (ev): -10.5363 -10.3730 -2.5720 -2.5050 -0.2276 -0.1879 1.3196 2.5659 k = 0.1250-0.3608 0.1316 ( 657 PWs) bands (ev): -10.4897 -10.4221 -2.5526 -2.5248 -0.2162 -0.1998 1.6508 2.1627 k = 0.1250-0.0722 0.0439 ( 639 PWs) bands (ev): -12.7179 -12.5271 -1.2915 0.1307 1.9850 2.0129 2.6513 2.6712 k = 0.1250-0.0722 0.1316 ( 635 PWs) bands (ev): -12.6637 -12.5847 -0.9194 -0.3364 1.9931 2.0047 2.6572 2.6655 k = 0.3750 0.6495 0.0439 ( 647 PWs) bands (ev): -6.8746 -6.8102 -5.9577 -5.9314 -3.2601 -3.1990 5.2664 5.7447 k = 0.3750 0.6495 0.1316 ( 662 PWs) bands (ev): -6.8542 -6.8275 -5.9526 -5.9416 -3.2430 -3.2176 5.4389 5.6436 k = 0.3750-0.2165 0.0439 ( 658 PWs) bands (ev): -9.8269 -9.6727 -4.2555 -4.1632 0.3541 0.3851 2.1083 3.2483 k = 0.3750-0.2165 0.1316 ( 656 PWs) bands (ev): -9.7828 -9.7189 -4.2288 -4.1907 0.3632 0.3760 2.4159 2.8854 ! total energy = -45.88194109 Ry Harris-Foulkes estimate = -45.88194109 Ry estimated scf accuracy < 4.7E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -14.71832564 Ry hartree contribution = 15.11024700 Ry xc contribution = -14.42212019 Ry ewald contribution = -31.85174225 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001737 0.00000000 0.00000000 0.00000001 0.00001738 0.00000000 0.00000000 0.00000000 0.00001920 VDW KERNEL stress -0.00006367 0.00000000 0.00000000 0.00000000 -0.00006366 0.00000000 0.00000000 0.00000000 -0.00054726 VDW ALL stress 0.00004630 -0.00000001 0.00000000 -0.00000001 0.00004628 0.00000000 0.00000000 0.00000000 0.00052805 total stress (Ry/bohr**3) (kbar) P= 27.75 0.00028091 0.00000000 0.00000000 41.32 0.00 0.00 0.00000000 0.00028091 0.00000000 0.00 41.32 0.00 0.00000000 0.00000000 0.00000407 0.00 0.00 0.60 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -45.8817508846 Ry enthalpy new = -45.8819410873 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0042575895 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 247.06020 a.u.^3 ( 36.61054 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.853577863 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.426788931 C 0.500000000 0.288675135 1.426788931 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0438047), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1314140), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0438047), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1314140), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0438047), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1314140), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0438047), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1314140), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0438047), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1314140), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0438047), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1314140), wk = 0.1250000 extrapolated charge 16.02151, renormalised to 16.00000 total cpu time spent up to now is 16.25 secs per-process dynamical memory: 26.1 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.41E-08, avg # of iterations = 1.0 total cpu time spent up to now is 16.61 secs total energy = -45.88192539 Ry Harris-Foulkes estimate = -45.86619890 Ry estimated scf accuracy < 0.00000877 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-08, avg # of iterations = 3.2 total cpu time spent up to now is 16.87 secs total energy = -45.88194840 Ry Harris-Foulkes estimate = -45.88195273 Ry estimated scf accuracy < 0.00001274 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-08, avg # of iterations = 2.0 total cpu time spent up to now is 17.08 secs total energy = -45.88194724 Ry Harris-Foulkes estimate = -45.88194889 Ry estimated scf accuracy < 0.00000348 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.18E-08, avg # of iterations = 2.0 total cpu time spent up to now is 17.32 secs total energy = -45.88194783 Ry Harris-Foulkes estimate = -45.88194802 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.67E-10, avg # of iterations = 2.5 total cpu time spent up to now is 17.56 secs total energy = -45.88194784 Ry Harris-Foulkes estimate = -45.88194786 Ry estimated scf accuracy < 1.2E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.56E-12, avg # of iterations = 2.2 total cpu time spent up to now is 17.79 secs End of self-consistent calculation k = 0.1250 0.2165 0.0438 ( 646 PWs) bands (ev): -11.9966 -11.8171 -0.4108 0.1892 0.2147 0.9512 1.2665 1.2842 k = 0.1250 0.2165 0.1314 ( 654 PWs) bands (ev): -11.9455 -11.8712 -0.0530 0.1965 0.2077 0.5059 1.2714 1.2787 k = 0.1250 0.5052 0.0438 ( 662 PWs) bands (ev): -8.4814 -8.3496 -5.5700 -5.4725 -1.0097 -0.9625 3.5578 4.4238 k = 0.1250 0.5052 0.1314 ( 662 PWs) bands (ev): -8.4435 -8.3890 -5.5420 -5.5016 -0.9961 -0.9765 3.8054 4.1652 k = 0.1250-0.3608 0.0438 ( 661 PWs) bands (ev): -10.5502 -10.3888 -2.5865 -2.5204 -0.2423 -0.2032 1.3090 2.5464 k = 0.1250-0.3608 0.1314 ( 657 PWs) bands (ev): -10.5041 -10.4373 -2.5673 -2.5399 -0.2311 -0.2148 1.6379 2.1462 k = 0.1250-0.0722 0.0438 ( 639 PWs) bands (ev): -12.7317 -12.5430 -1.3019 0.1105 1.9702 1.9978 2.6364 2.6560 k = 0.1250-0.0722 0.1314 ( 635 PWs) bands (ev): -12.6780 -12.5999 -0.9322 -0.3532 1.9782 1.9896 2.6423 2.6504 k = 0.3750 0.6495 0.0438 ( 647 PWs) bands (ev): -6.8890 -6.8254 -5.9725 -5.9465 -3.2747 -3.2143 5.2543 5.7290 k = 0.3750 0.6495 0.1314 ( 662 PWs) bands (ev): -6.8690 -6.8425 -5.9674 -5.9565 -3.2578 -3.2327 5.4253 5.6284 k = 0.3750-0.2165 0.0438 ( 658 PWs) bands (ev): -9.8409 -9.6884 -4.2699 -4.1786 0.3394 0.3699 2.0975 3.2293 k = 0.3750-0.2165 0.1314 ( 656 PWs) bands (ev): -9.7973 -9.7341 -4.2435 -4.2058 0.3483 0.3609 2.4029 2.8691 ! total energy = -45.88194785 Ry Harris-Foulkes estimate = -45.88194784 Ry estimated scf accuracy < 3.2E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -14.82920128 Ry hartree contribution = 15.15693171 Ry xc contribution = -14.42193085 Ry ewald contribution = -31.78774743 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001738 0.00000000 0.00000000 0.00000001 0.00001738 0.00000000 0.00000000 0.00000000 0.00001926 VDW KERNEL stress -0.00006358 0.00000000 0.00000000 0.00000000 -0.00006358 0.00000000 0.00000000 0.00000000 -0.00054729 VDW ALL stress 0.00004621 -0.00000001 0.00000000 -0.00000001 0.00004619 0.00000000 0.00000000 0.00000000 0.00052802 total stress (Ry/bohr**3) (kbar) P= 27.57 0.00028070 0.00000000 0.00000000 41.29 0.00 0.00 0.00000000 0.00028070 0.00000000 0.00 41.29 0.00 0.00000000 0.00000000 0.00000088 0.00 0.00 0.13 Begin final coordinates new unit-cell volume = 247.06020 a.u.^3 ( 36.61054 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.853577863 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.426788931 C 0.500000000 0.288675135 1.426788931 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated. Stick Mesh ---------- nst = 265, nstw = 61, nsts = 187 n.st n.stw n.sts n.g n.gw n.gs min 65 15 46 2502 285 1367 max 67 16 47 2505 288 1383 265 61 187 10017 1143 5489 bravais-lattice index = 4 lattice parameter (a_0) = 4.6412 a.u. unit-cell volume = 247.0602 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.853578 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.350437 ) PseudoPot. # 1 for C read from file C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: 817ad53ab2170a1e8f804b1752af3b34 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.4267889 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.4267889 ) number of k points= 12 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.2165064 0.0438047), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1314140), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0438047), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1314140), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0438047), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1314140), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0438047), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1314140), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0438047), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1314140), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0438047), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1314140), wk = 0.1250000 G cutoff = 98.2127 ( 10017 G-vectors) FFT grid: ( 20, 20, 60) G cutoff = 65.4751 ( 5489 G-vectors) smooth grid: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 185, 8) NL pseudopotentials 0.09 Mb ( 185, 32) Each V/rho on FFT grid 0.09 Mb ( 6000) Each G-vector array 0.02 Mb ( 2505) G-vector shells 0.00 Mb ( 548) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 185, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 0.73 Mb ( 6000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 Starting wfc are 16 atomic wfcs Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 18.73 secs per-process dynamical memory: 26.1 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.9 total cpu time spent up to now is 19.12 secs total energy = -45.81450952 Ry Harris-Foulkes estimate = -46.06540011 Ry estimated scf accuracy < 0.44605658 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.79E-03, avg # of iterations = 2.0 total cpu time spent up to now is 19.35 secs total energy = -45.88120827 Ry Harris-Foulkes estimate = -45.88012080 Ry estimated scf accuracy < 0.00572581 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.58E-05, avg # of iterations = 2.1 total cpu time spent up to now is 19.57 secs total energy = -45.88211907 Ry Harris-Foulkes estimate = -45.88192235 Ry estimated scf accuracy < 0.00038570 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.41E-06, avg # of iterations = 2.0 total cpu time spent up to now is 19.79 secs total energy = -45.88216487 Ry Harris-Foulkes estimate = -45.88216093 Ry estimated scf accuracy < 0.00000398 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.49E-08, avg # of iterations = 2.8 total cpu time spent up to now is 20.05 secs total energy = -45.88216685 Ry Harris-Foulkes estimate = -45.88216689 Ry estimated scf accuracy < 0.00000012 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.54E-10, avg # of iterations = 3.4 total cpu time spent up to now is 20.31 secs total energy = -45.88216688 Ry Harris-Foulkes estimate = -45.88216690 Ry estimated scf accuracy < 0.00000009 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.54E-10, avg # of iterations = 2.5 total cpu time spent up to now is 20.54 secs total energy = -45.88216686 Ry Harris-Foulkes estimate = -45.88216689 Ry estimated scf accuracy < 2.1E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-11, avg # of iterations = 2.0 total cpu time spent up to now is 20.76 secs End of self-consistent calculation k = 0.1250 0.2165 0.0438 ( 678 PWs) bands (ev): -11.9961 -11.8166 -0.4110 0.1896 0.2151 0.9509 1.2669 1.2845 k = 0.1250 0.2165 0.1314 ( 681 PWs) bands (ev): -11.9450 -11.8707 -0.0534 0.1969 0.2081 0.5057 1.2718 1.2791 k = 0.1250 0.5052 0.0438 ( 689 PWs) bands (ev): -8.4808 -8.3491 -5.5695 -5.4720 -1.0093 -0.9622 3.5575 4.4237 k = 0.1250 0.5052 0.1314 ( 693 PWs) bands (ev): -8.4430 -8.3884 -5.5416 -5.5012 -0.9957 -0.9761 3.8052 4.1651 k = 0.1250-0.3608 0.0438 ( 689 PWs) bands (ev): -10.5497 -10.3883 -2.5861 -2.5199 -0.2419 -0.2028 1.3087 2.5461 k = 0.1250-0.3608 0.1314 ( 688 PWs) bands (ev): -10.5036 -10.4368 -2.5669 -2.5395 -0.2307 -0.2144 1.6376 2.1461 k = 0.1250-0.0722 0.0438 ( 670 PWs) bands (ev): -12.7312 -12.5424 -1.3021 0.1102 1.9706 1.9981 2.6369 2.6564 k = 0.1250-0.0722 0.1314 ( 662 PWs) bands (ev): -12.6776 -12.5994 -0.9323 -0.3536 1.9787 1.9900 2.6426 2.6507 k = 0.3750 0.6495 0.0438 ( 690 PWs) bands (ev): -6.8885 -6.8249 -5.9721 -5.9461 -3.2744 -3.2140 5.2539 5.7287 k = 0.3750 0.6495 0.1314 ( 685 PWs) bands (ev): -6.8684 -6.8420 -5.9669 -5.9560 -3.2573 -3.2323 5.4251 5.6282 k = 0.3750-0.2165 0.0438 ( 688 PWs) bands (ev): -9.8403 -9.6880 -4.2694 -4.1782 0.3398 0.3703 2.0971 3.2290 k = 0.3750-0.2165 0.1314 ( 685 PWs) bands (ev): -9.7967 -9.7337 -4.2431 -4.2053 0.3487 0.3613 2.4027 2.8689 ! total energy = -45.88216686 Ry Harris-Foulkes estimate = -45.88216686 Ry estimated scf accuracy < 3.7E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -14.82981884 Ry hartree contribution = 15.15738744 Ry xc contribution = -14.42198804 Ry ewald contribution = -31.78774742 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001737 0.00000000 0.00000000 0.00000001 0.00001738 0.00000000 0.00000000 0.00000000 0.00001925 VDW KERNEL stress -0.00006359 0.00000000 0.00000000 0.00000000 -0.00006358 0.00000000 0.00000000 0.00000000 -0.00054730 VDW ALL stress 0.00004621 -0.00000001 0.00000000 -0.00000001 0.00004620 0.00000000 0.00000000 0.00000000 0.00052805 total stress (Ry/bohr**3) (kbar) P= 29.15 0.00028469 0.00000000 0.00000000 41.88 0.00 0.00 0.00000000 0.00028469 0.00000000 0.00 41.88 0.00 0.00000000 0.00000000 0.00002500 0.00 0.00 3.68 Writing output data file graphite.save init_run : 0.43s CPU 0.47s WALL ( 2 calls) electrons : 13.83s CPU 14.89s WALL ( 8 calls) update_pot : 0.79s CPU 0.89s WALL ( 7 calls) forces : 0.31s CPU 0.31s WALL ( 8 calls) stress : 1.51s CPU 1.51s WALL ( 8 calls) Called by init_run: wfcinit : 0.16s CPU 0.17s WALL ( 2 calls) potinit : 0.14s CPU 0.14s WALL ( 2 calls) Called by electrons: c_bands : 8.09s CPU 8.25s WALL ( 62 calls) sum_band : 1.67s CPU 1.71s WALL ( 62 calls) v_of_rho : 3.86s CPU 3.88s WALL ( 70 calls) newd : 0.42s CPU 0.42s WALL ( 70 calls) mix_rho : 0.06s CPU 0.06s WALL ( 62 calls) vdW_energy : 1.31s CPU 1.31s WALL ( 70 calls) vdW_ffts : 0.93s CPU 0.94s WALL ( 156 calls) vdW_v : 0.83s CPU 0.84s WALL ( 70 calls) Called by c_bands: init_us_2 : 0.14s CPU 0.13s WALL ( 1704 calls) cegterg : 7.81s CPU 7.88s WALL ( 744 calls) Called by *egterg: h_psi : 6.32s CPU 6.38s WALL ( 2567 calls) s_psi : 0.26s CPU 0.25s WALL ( 2567 calls) g_psi : 0.03s CPU 0.04s WALL ( 1799 calls) cdiaghg : 0.53s CPU 0.52s WALL ( 2459 calls) Called by h_psi: add_vuspsi : 0.24s CPU 0.26s WALL ( 2567 calls) General routines calbec : 0.57s CPU 0.55s WALL ( 3503 calls) fft : 1.25s CPU 1.27s WALL ( 4280 calls) ffts : 0.04s CPU 0.03s WALL ( 132 calls) fftw : 6.15s CPU 6.20s WALL ( 40716 calls) interpolate : 0.09s CPU 0.08s WALL ( 132 calls) davcio : 0.02s CPU 0.13s WALL ( 2448 calls) Parallel routines fft_scatter : 1.57s CPU 1.61s WALL ( 45128 calls) EXX routines PWSCF : 17.61s CPU 21.33s WALL This run was terminated on: 15:58:48 2Feb2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/vdwDF_example/reference_R/Ar.scf.in0000644000175000017500000000142112341373025022054 0ustar mbamba&control calculation = 'scf' restart_mode='from_scratch', prefix='Ar_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '/u/cm/degironc/QE/espresso/pseudo/', outdir='/u/cm/degironc/tmp/' verbosity = 'high' forc_conv_thr = 1.0d-4 / &system ibrav = 8 celldm(1) = 19 celldm(2) = 1 celldm(3) = 1.47368421052632 nat = 2 ntyp = 1 occupations = 'fixed' ecutwfc = 80.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-11 / &ions ion_dynamics = 'bfgs' / ATOMIC_SPECIES Ar 36.00 Ar.pz-rrkj.UPF ATOMIC_POSITIONS {angstrom} Ar 0.000000 0.000000 0.000000 Ar 0.000000 0.000000 4.500000 K_POINTS gamma espresso-5.1/PW/examples/vdwDF_example/reference_R/graphite.scf.in0000644000175000017500000000203112341373025023313 0ustar mbamba&control calculation = 'vc-relax' restart_mode='from_scratch', prefix='graphite', tstress = .true. tprnfor = .true. pseudo_dir = '/u/cm/degironc/QE/espresso/pseudo', outdir='/u/cm/degironc/tmp' forc_conv_thr = 1.0D-3 / &system ibrav = 4 celldm(1) = 4.6411700000 celldm(3) = 2.7264000000 nat = 4 ntyp = 1 occupations = 'fixed' smearing = 'methfessel-paxton' degauss = 0.02 ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / &ions / &cell press_conv_thr = 0.5D0 press = 0.D0 cell_dynamics = 'bfgs' cell_dofree = 'z' / ATOMIC_SPECIES C 12.00 C.pbe-rrkjus.UPF ATOMIC_POSITIONS {alat} C 0.0000000000 0.0000000000 0.0000000000 C 0.0000000000 0.5773502692 0.0000000000 C 0.0000000000 0.0000000000 1.3632000000 C 0.5000000000 0.2886751346 1.3632000000 K_POINTS automatic 4 4 4 1 1 1 espresso-5.1/PW/examples/vdwDF_example/reference_R/water.scf.in0000644000175000017500000000171212341373025022637 0ustar mbamba&control calculation = 'scf' restart_mode='from_scratch', prefix='water_vdw', tstress = .true. tprnfor = .true. pseudo_dir = '/u/cm/degironc/QE/espresso/pseudo/', outdir='/u/cm/degironc/tmp/' verbosity = 'high' / &system ibrav = 8 celldm(1) = 15 celldm(2) = 0.954545454545455 celldm(3) = 1.22727272727273 nat = 6 ntyp = 2 occupations = 'fixed' ecutwfc = 30.0 ecutrho = 180.0 input_dft = 'vdW-DF' / &electrons conv_thr = 1.0d-8 / ATOMIC_SPECIES O 15.9994 O.pbe-rrkjus.UPF H 1.00794 H.pbe-rrkjus.UPF ATOMIC_POSITIONS {angstrom} O -0.000000 0.013129 -0.057535 H -0.000000 0.779069 -0.656064 H 0.000000 0.389646 0.845802 O 0.000000 0.887109 2.818248 H -0.774530 0.521469 3.280767 H 0.774530 0.521469 3.280767 K_POINTS gamma espresso-5.1/PW/examples/vdwDF_example/reference_R/water.scf.out0000644000175000017500000005103712341373025023045 0ustar mbamba Program PWSCF v.4.3a starts on 2Feb2011 at 15:58:49 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized file H.pbe-rrkjus.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Stick Mesh ---------- nst = 1539, nstw = 258, nsts = 1025 n.st n.stw n.sts n.g n.gw n.gs min 768 127 512 40311 2739 21932 max 770 130 513 40318 2746 21968 3077 515 2049 161263 10971 87777 bravais-lattice index = 8 lattice parameter (a_0) = 15.0000 a.u. unit-cell volume = 3953.7707 (a.u.)^3 number of atoms/cell = 6 number of atomic types = 2 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 15.000000 celldm(2)= 0.954545 celldm(3)= 1.227273 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 0.954545 0.000000 ) a(3) = ( 0.000000 0.000000 1.227273 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.047619 0.000000 ) b(3) = ( 0.000000 0.000000 0.814815 ) PseudoPot. # 1 for O read from file O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-rrkjus.UPF MD5 check sum: 7cc9d459525c9a0585f487a71c3c9563 Pseudo is Ultrasoft, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1061 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: 817ad53ab2170a1e8f804b1752af3b34 atomic species valence mass pseudopotential O 6.00 15.99940 O ( 1.00) H 1.00 1.00794 H ( 1.00) 2 Sym.Ops. (no inversion) s frac. trans. isym = 1 identity cryst. s( 1) = ( 1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 2 inv. 180 deg rotation - cart. axis [1,0,0] cryst. s( 2) = ( -1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) point group C_s (m) there are 2 classes the character table: E s A' 1.00 1.00 A'' 1.00 -1.00 the symmetry operations in each class: E 1 s 2 Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0016540 -0.0072484 ) 2 H tau( 2) = ( 0.0000000 0.0981485 -0.0826521 ) 3 H tau( 3) = ( 0.0000000 0.0490883 0.1065556 ) 4 O tau( 4) = ( 0.0000000 0.1117595 0.3550478 ) 5 H tau( 5) = ( -0.0975766 0.0656956 0.4133167 ) 6 H tau( 6) = ( 0.0975766 0.0656956 0.4133167 ) Crystallographic axes site n. atom positions (cryst. coord.) 1 O tau( 1) = ( 0.0000000 0.0017328 -0.0059061 ) 2 H tau( 2) = ( 0.0000000 0.1028222 -0.0673461 ) 3 H tau( 3) = ( 0.0000000 0.0514258 0.0868231 ) 4 O tau( 4) = ( 0.0000000 0.1170814 0.2892982 ) 5 H tau( 5) = ( -0.0975766 0.0688239 0.3367766 ) 6 H tau( 6) = ( 0.0975766 0.0688239 0.3367766 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 cryst. coord. k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1025.8770 ( 80632 G-vectors) FFT grid: ( 72, 64, 80) G cutoff = 683.9180 ( 43889 G-vectors) smooth grid: ( 54, 50, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.17 Mb ( 1373, 8) NL pseudopotentials 0.50 Mb ( 1373, 24) Each V/rho on FFT grid 1.41 Mb ( 92160) Each G-vector array 0.15 Mb ( 20158) G-vector shells 0.07 Mb ( 9015) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.34 Mb ( 1373, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 24, 8) Arrays for rho mixing 11.25 Mb ( 92160, 8) Initial potential from superposition of free atoms starting charge 15.61518, renormalised to 16.00000 negative rho (up, down): 0.281E-04 0.000E+00 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 Gradients computed in Real space --------------------------------------------------------------------------------- ---------------------------------------------------------------- Non-local correlation energy = 0.274973507423529 ---------------------------------------------------------------- Starting wfc are 12 atomic wfcs total cpu time spent up to now is 2.86 secs per-process dynamical memory: 42.7 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.249E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.301890299788559 ---------------------------------------------------------------- total cpu time spent up to now is 4.90 secs total energy = -68.62070992 Ry Harris-Foulkes estimate = -69.74340768 Ry estimated scf accuracy < 1.46175692 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.14E-03, avg # of iterations = 2.0 negative rho (up, down): 0.806E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.299177491790602 ---------------------------------------------------------------- total cpu time spent up to now is 6.93 secs total energy = -68.83475351 Ry Harris-Foulkes estimate = -69.33653310 Ry estimated scf accuracy < 0.97182025 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.07E-03, avg # of iterations = 2.0 negative rho (up, down): 0.687E-03 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304378750277082 ---------------------------------------------------------------- total cpu time spent up to now is 8.90 secs total energy = -69.04855188 Ry Harris-Foulkes estimate = -69.06845914 Ry estimated scf accuracy < 0.03453207 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-04, avg # of iterations = 2.0 negative rho (up, down): 0.639E-03 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.303938420004694 ---------------------------------------------------------------- total cpu time spent up to now is 10.86 secs total energy = -69.05564654 Ry Harris-Foulkes estimate = -69.05601345 Ry estimated scf accuracy < 0.00065550 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.10E-06, avg # of iterations = 2.0 negative rho (up, down): 0.177E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304125146283984 ---------------------------------------------------------------- total cpu time spent up to now is 12.82 secs total energy = -69.05584470 Ry Harris-Foulkes estimate = -69.05582135 Ry estimated scf accuracy < 0.00002805 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.75E-07, avg # of iterations = 2.0 negative rho (up, down): 0.187E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304109894804392 ---------------------------------------------------------------- total cpu time spent up to now is 14.76 secs total energy = -69.05584769 Ry Harris-Foulkes estimate = -69.05584984 Ry estimated scf accuracy < 0.00000254 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-08, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304110375053225 ---------------------------------------------------------------- total cpu time spent up to now is 16.71 secs total energy = -69.05584799 Ry Harris-Foulkes estimate = -69.05584813 Ry estimated scf accuracy < 0.00000005 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.84E-10, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304109197735172 ---------------------------------------------------------------- total cpu time spent up to now is 18.52 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5486 PWs) bands (ev): -25.6443 -24.2672 -13.5674 -12.2976 -9.7603 -8.3490 -7.6832 -6.4198 occupation numbers 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ! total energy = -69.05584800 Ry Harris-Foulkes estimate = -69.05584800 Ry estimated scf accuracy < 8.3E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -122.46794354 Ry hartree contribution = 64.43481249 Ry xc contribution = -17.37518168 Ry ewald contribution = 6.35246473 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00095098 -0.00215297 atom 2 type 2 force = 0.00000000 0.00014163 0.00067659 atom 3 type 2 force = 0.00000000 -0.00035563 0.00015670 atom 4 type 1 force = 0.00000000 0.00088192 0.00118093 atom 5 type 2 force = 0.00003045 -0.00080945 0.00006938 atom 6 type 2 force = -0.00003045 -0.00080945 0.00006938 Total force = 0.003109 Total SCF correction = 0.000102 entering subroutine stress ... VDW GRADIENT stress 0.00000778 0.00000000 0.00000000 0.00000000 0.00000797 0.00000000 0.00000000 0.00000032 0.00000722 VDW KERNEL stress -0.00002787 0.00000000 0.00000000 0.00000000 -0.00002821 0.00000000 0.00000000 -0.00000003 -0.00002322 VDW ALL stress 0.00002009 0.00000000 0.00000000 0.00000000 0.00002024 -0.00000029 0.00000000 -0.00000029 0.00001600 total stress (Ry/bohr**3) (kbar) P= -1.69 -0.00001153 0.00000000 0.00000000 -1.70 0.00 0.00 0.00000000 -0.00001107 -0.00000082 0.00 -1.63 -0.12 0.00000000 -0.00000082 -0.00001190 0.00 -0.12 -1.75 kinetic stress (kbar) 773.91 0.00 0.00 0.00 795.27 35.09 0.00 35.09 748.19 local stress (kbar) -1260.29 0.00 0.00 0.00 -1418.75 -162.43 0.00 -162.43 -2492.38 nonloc. stress (kbar) 278.33 0.00 0.00 0.00 280.61 11.21 0.00 11.21 269.13 hartree stress (kbar) 584.70 0.00 0.00 0.00 685.80 102.02 0.00 102.02 1126.87 exc-cor stress (kbar) -207.39 0.00 0.00 0.00 -207.96 -1.03 0.00 -1.03 -205.77 corecor stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ewald stress (kbar) -173.91 0.00 0.00 0.00 -139.58 15.06 0.00 15.06 549.84 hubbard stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 london stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dft-nl stress (kbar) 2.96 0.00 0.00 0.00 2.98 -0.04 0.00 -0.04 2.35 EXX stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Writing output data file water_vdw.save init_run : 2.46s CPU 2.60s WALL ( 1 calls) electrons : 14.62s CPU 15.66s WALL ( 1 calls) forces : 0.75s CPU 0.75s WALL ( 1 calls) stress : 2.81s CPU 2.88s WALL ( 1 calls) Called by init_run: wfcinit : 0.07s CPU 0.07s WALL ( 1 calls) potinit : 1.76s CPU 1.85s WALL ( 1 calls) Called by electrons: c_bands : 1.09s CPU 1.11s WALL ( 8 calls) sum_band : 1.30s CPU 1.30s WALL ( 8 calls) v_of_rho : 12.10s CPU 12.78s WALL ( 9 calls) v_h : 0.19s CPU 0.18s WALL ( 9 calls) v_xc : 11.91s CPU 12.59s WALL ( 9 calls) newd : 0.83s CPU 0.83s WALL ( 9 calls) mix_rho : 0.32s CPU 0.33s WALL ( 8 calls) vdW_energy : 1.80s CPU 2.10s WALL ( 9 calls) vdW_ffts : 6.15s CPU 6.17s WALL ( 20 calls) vdW_v : 1.80s CPU 1.81s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 17 calls) regterg : 1.08s CPU 1.09s WALL ( 8 calls) Called by sum_band: sum_band:bec : 0.00s CPU 0.00s WALL ( 8 calls) addusdens : 0.53s CPU 0.53s WALL ( 8 calls) Called by *egterg: h_psi : 1.05s CPU 1.06s WALL ( 25 calls) s_psi : 0.02s CPU 0.02s WALL ( 25 calls) g_psi : 0.00s CPU 0.00s WALL ( 16 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 24 calls) regterg:over : 0.02s CPU 0.02s WALL ( 16 calls) regterg:upda : 0.01s CPU 0.01s WALL ( 16 calls) regterg:last : 0.00s CPU 0.01s WALL ( 8 calls) Called by h_psi: h_psi:vloc : 1.00s CPU 1.00s WALL ( 25 calls) h_psi:vnl : 0.05s CPU 0.05s WALL ( 25 calls) add_vuspsi : 0.02s CPU 0.02s WALL ( 25 calls) General routines calbec : 0.04s CPU 0.05s WALL ( 38 calls) fft : 8.34s CPU 8.40s WALL ( 548 calls) ffts : 0.11s CPU 0.12s WALL ( 17 calls) fftw : 0.92s CPU 0.93s WALL ( 228 calls) interpolate : 0.43s CPU 0.43s WALL ( 17 calls) davcio : 0.00s CPU 0.01s WALL ( 8 calls) Parallel routines fft_scatter : 3.86s CPU 3.88s WALL ( 793 calls) EXX routines PWSCF : 20.94s CPU 22.44s WALL This run was terminated on: 15:59:11 2Feb2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/vdwDF_example/reference/0000755000175000017500000000000012341373041020127 5ustar mbambaespresso-5.1/PW/examples/vdwDF_example/reference/graphite.scf.out0000644000175000017500000022663212341373025023252 0ustar mbamba Program PWSCF v.> 4.2 starts on 25Jan2011 at 15:38: 6 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! file C.pbe-rrkjus.UPF: wavefunction(s) 2S 2P renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Stick Mesh ---------- nst = 265, nstw = 61, nsts = 187 n.st n.stw n.sts n.g n.gw n.gs min 64 15 46 2392 275 1299 max 67 16 47 2397 278 1307 265 61 187 9583 1107 5211 bravais-lattice index = 4 lattice parameter (a_0) = 4.6412 a.u. unit-cell volume = 236.0493 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 nstep = 50 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.726400 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.366784 ) PseudoPot. # 1 for C read from file C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: fe4853e4b29e331a1c05f2446fb42441 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.3632000 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.3632000 ) number of k points= 12 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.2165064 0.0458480), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1375440), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0458480), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1375440), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0458480), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1375440), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0458480), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1375440), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0458480), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1375440), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0458480), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1375440), wk = 0.1250000 G cutoff = 98.2127 ( 9583 G-vectors) FFT grid: ( 20, 20, 60) G cutoff = 65.4751 ( 5211 G-vectors) smooth grid: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 163, 8) NL pseudopotentials 0.08 Mb ( 163, 32) Each V/rho on FFT grid 0.09 Mb ( 6000) Each G-vector array 0.02 Mb ( 2397) G-vector shells 0.02 Mb ( 2397) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 163, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 0.73 Mb ( 6000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 --------------------------------------------------------------------------------- Starting wfc are 16 atomic wfcs total cpu time spent up to now is 0.86 secs per-process dynamical memory: 23.0 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 1.18 secs total energy = -45.81465546 Ry Harris-Foulkes estimate = -46.06058052 Ry estimated scf accuracy < 0.43927239 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.75E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.48 secs total energy = -45.88011201 Ry Harris-Foulkes estimate = -45.87885162 Ry estimated scf accuracy < 0.00557033 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.48E-05, avg # of iterations = 2.2 total cpu time spent up to now is 1.76 secs total energy = -45.88094023 Ry Harris-Foulkes estimate = -45.88073512 Ry estimated scf accuracy < 0.00041540 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.60E-06, avg # of iterations = 1.9 total cpu time spent up to now is 2.03 secs total energy = -45.88099093 Ry Harris-Foulkes estimate = -45.88098783 Ry estimated scf accuracy < 0.00000300 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.87E-08, avg # of iterations = 3.5 total cpu time spent up to now is 2.38 secs total energy = -45.88099389 Ry Harris-Foulkes estimate = -45.88099383 Ry estimated scf accuracy < 0.00000017 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 3.2 total cpu time spent up to now is 2.72 secs total energy = -45.88099390 Ry Harris-Foulkes estimate = -45.88099393 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.95E-10, avg # of iterations = 2.6 total cpu time spent up to now is 3.03 secs End of self-consistent calculation k = 0.1250 0.2165 0.0458 ( 646 PWs) bands (ev): -11.5262 -11.2690 -0.0600 0.6953 0.7346 1.6559 1.7758 1.8032 k = 0.1250 0.2165 0.1375 ( 654 PWs) bands (ev): -11.4539 -11.3474 0.3855 0.7067 0.7240 1.0880 1.7832 1.7945 k = 0.1250 0.5052 0.0458 ( 662 PWs) bands (ev): -8.0011 -7.8096 -5.0818 -4.9385 -0.5091 -0.4371 3.9426 5.0423 k = 0.1250 0.5052 0.1375 ( 662 PWs) bands (ev): -7.9464 -7.8672 -5.0411 -4.9817 -0.4884 -0.4585 4.2592 4.7176 k = 0.1250-0.3608 0.0458 ( 661 PWs) bands (ev): -10.0762 -9.8436 -2.0908 -1.9919 0.2606 0.3205 1.6678 3.2325 k = 0.1250-0.3608 0.1375 ( 657 PWs) bands (ev): -10.0104 -9.9142 -2.0622 -2.0213 0.2777 0.3025 2.0794 2.7207 k = 0.1250-0.0722 0.0458 ( 639 PWs) bands (ev): -12.2632 -11.9935 -0.9540 0.8225 2.4767 2.5195 3.1453 3.1764 k = 0.1250-0.0722 0.1375 ( 635 PWs) bands (ev): -12.1874 -12.0758 -0.4940 0.2317 2.4892 2.5069 3.1544 3.1673 k = 0.3750 0.6495 0.0458 ( 647 PWs) bands (ev): -6.3959 -6.3024 -5.4646 -5.4275 -2.7777 -2.6878 5.6598 6.2661 k = 0.3750 0.6495 0.1375 ( 662 PWs) bands (ev): -6.3654 -6.3263 -5.4590 -5.4433 -2.7528 -2.7155 5.8915 6.1556 k = 0.3750-0.2165 0.0458 ( 658 PWs) bands (ev): -9.3649 -9.1448 -3.7802 -3.6453 0.8446 0.8926 2.4635 3.8970 k = 0.3750-0.2165 0.1375 ( 656 PWs) bands (ev): -9.3026 -9.2114 -3.7416 -3.6858 0.8586 0.8785 2.8477 3.4373 ! total energy = -45.88099388 Ry Harris-Foulkes estimate = -45.88099392 Ry estimated scf accuracy < 9.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.17916943 Ry hartree contribution = 13.63716887 Ry xc contribution = -14.42985937 Ry ewald contribution = -33.90913395 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001970 0.00000000 0.00000000 0.00000001 0.00001971 0.00000000 0.00000000 0.00000000 -0.00000611 VDW KERNEL stress -0.00006656 0.00000000 0.00000000 0.00000000 -0.00006656 0.00000000 0.00000000 0.00000000 -0.00054458 VDW ALL stress 0.00004686 -0.00000001 0.00000000 -0.00000001 0.00004685 0.00000000 0.00000000 0.00000000 0.00055069 total stress (Ry/bohr**3) (kbar) P= 36.00 0.00028267 0.00000000 0.00000000 41.58 0.00 0.00 0.00000000 0.00028267 0.00000000 0.00 41.58 0.00 0.00000000 0.00000000 0.00016876 0.00 0.00 24.83 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -45.8809938808 Ry new trust radius = 0.0125973069 bohr new conv_thr = 0.0000000100 Ry new unit-cell volume = 236.98958 a.u.^3 ( 35.11823 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.737260937 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.368630468 C 0.500000000 0.288675135 1.368630468 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0456661), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1369983), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0456661), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1369983), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0456661), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1369983), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0456661), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1369983), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0456661), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1369983), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0456661), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1369983), wk = 0.1250000 extrapolated charge 16.06348, renormalised to 16.00000 total cpu time spent up to now is 3.74 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 4.05 secs total energy = -45.88097289 Ry Harris-Foulkes estimate = -45.84571985 Ry estimated scf accuracy < 0.00006511 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.07E-07, avg # of iterations = 3.2 total cpu time spent up to now is 4.38 secs total energy = -45.88114675 Ry Harris-Foulkes estimate = -45.88118145 Ry estimated scf accuracy < 0.00009658 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.07E-07, avg # of iterations = 1.9 total cpu time spent up to now is 4.65 secs total energy = -45.88113394 Ry Harris-Foulkes estimate = -45.88115029 Ry estimated scf accuracy < 0.00002723 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.70E-07, avg # of iterations = 2.0 total cpu time spent up to now is 4.96 secs total energy = -45.88113907 Ry Harris-Foulkes estimate = -45.88114012 Ry estimated scf accuracy < 0.00000108 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.76E-09, avg # of iterations = 2.4 total cpu time spent up to now is 5.26 secs End of self-consistent calculation k = 0.1250 0.2165 0.0457 ( 646 PWs) bands (ev): -11.5678 -11.3183 -0.0906 0.6502 0.6881 1.5918 1.7304 1.7568 k = 0.1250 0.2165 0.1370 ( 654 PWs) bands (ev): -11.4975 -11.3943 0.3466 0.6611 0.6779 1.0356 1.7375 1.7484 k = 0.1250 0.5052 0.0457 ( 662 PWs) bands (ev): -8.0436 -7.8581 -5.1251 -4.9864 -0.5537 -0.4842 3.9090 4.9866 k = 0.1250 0.5052 0.1370 ( 662 PWs) bands (ev): -7.9906 -7.9139 -5.0857 -5.0282 -0.5336 -0.5049 4.2190 4.6680 k = 0.1250-0.3608 0.0457 ( 661 PWs) bands (ev): -10.1181 -9.8926 -2.1349 -2.0393 0.2158 0.2736 1.6364 3.1701 k = 0.1250-0.3608 0.1370 ( 657 PWs) bands (ev): -10.0543 -9.9610 -2.1072 -2.0676 0.2323 0.2563 2.0403 2.6690 k = 0.1250-0.0722 0.0457 ( 639 PWs) bands (ev): -12.3046 -12.0429 -0.9843 0.7577 2.4316 2.4727 3.1000 3.1298 k = 0.1250-0.0722 0.1370 ( 635 PWs) bands (ev): -12.2310 -12.1227 -0.5328 0.1790 2.4436 2.4606 3.1087 3.1211 k = 0.3750 0.6495 0.0457 ( 647 PWs) bands (ev): -6.4396 -6.3492 -5.5100 -5.4739 -2.8219 -2.7350 5.6245 6.2184 k = 0.3750 0.6495 0.1370 ( 662 PWs) bands (ev): -6.4102 -6.3725 -5.5043 -5.4891 -2.7978 -2.7617 5.8503 6.1084 k = 0.3750-0.2165 0.0457 ( 658 PWs) bands (ev): -9.4070 -9.1936 -3.8237 -3.6932 0.7996 0.8458 2.4316 3.8365 k = 0.3750-0.2165 0.1370 ( 656 PWs) bands (ev): -9.3465 -9.2582 -3.7863 -3.7323 0.8131 0.8322 2.8083 3.3862 ! total energy = -45.88113930 Ry Harris-Foulkes estimate = -45.88113931 Ry estimated scf accuracy < 3.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -11.48899678 Ry hartree contribution = 13.76491106 Ry xc contribution = -14.42909984 Ry ewald contribution = -33.72795374 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001971 0.00000000 0.00000000 0.00000001 0.00001972 0.00000000 0.00000000 0.00000000 -0.00000604 VDW KERNEL stress -0.00006630 0.00000000 0.00000000 0.00000000 -0.00006629 0.00000000 0.00000000 0.00000000 -0.00054496 VDW ALL stress 0.00004658 -0.00000001 0.00000000 -0.00000001 0.00004657 0.00000000 0.00000000 0.00000000 0.00055100 total stress (Ry/bohr**3) (kbar) P= 35.34 0.00028271 0.00000000 0.00000000 41.59 0.00 0.00 0.00000000 0.00028271 0.00000000 0.00 41.59 0.00 0.00000000 0.00000000 0.00015530 0.00 0.00 22.85 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -45.8809938808 Ry enthalpy new = -45.8811392992 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0188209847 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 238.40008 a.u.^3 ( 35.32725 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.753552342 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.376776171 C 0.500000000 0.288675135 1.376776171 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0453959), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1361877), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0453959), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1361877), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0453959), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1361877), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0453959), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1361877), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0453959), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1361877), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0453959), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1361877), wk = 0.1250000 extrapolated charge 16.09466, renormalised to 16.00000 total cpu time spent up to now is 5.96 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 6.29 secs total energy = -45.88095698 Ry Harris-Foulkes estimate = -45.82620101 Ry estimated scf accuracy < 0.00014861 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.29E-07, avg # of iterations = 3.2 total cpu time spent up to now is 6.62 secs total energy = -45.88135136 Ry Harris-Foulkes estimate = -45.88143183 Ry estimated scf accuracy < 0.00022059 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.29E-07, avg # of iterations = 1.9 total cpu time spent up to now is 6.89 secs total energy = -45.88132069 Ry Harris-Foulkes estimate = -45.88135954 Ry estimated scf accuracy < 0.00006210 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.88E-07, avg # of iterations = 2.0 total cpu time spent up to now is 7.20 secs total energy = -45.88133270 Ry Harris-Foulkes estimate = -45.88133464 Ry estimated scf accuracy < 0.00000223 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-08, avg # of iterations = 2.4 total cpu time spent up to now is 7.51 secs total energy = -45.88133315 Ry Harris-Foulkes estimate = -45.88133317 Ry estimated scf accuracy < 4.7E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-11, avg # of iterations = 3.2 total cpu time spent up to now is 7.85 secs total energy = -45.88133316 Ry Harris-Foulkes estimate = -45.88133316 Ry estimated scf accuracy < 3.8E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.39E-11, avg # of iterations = 1.8 total cpu time spent up to now is 8.11 secs total energy = -45.88133316 Ry Harris-Foulkes estimate = -45.88133316 Ry estimated scf accuracy < 1.1E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.80E-12, avg # of iterations = 2.6 total cpu time spent up to now is 8.42 secs End of self-consistent calculation k = 0.1250 0.2165 0.0454 ( 646 PWs) bands (ev): -11.6293 -11.3910 -0.1361 0.5836 0.6194 1.4973 1.6633 1.6882 k = 0.1250 0.2165 0.1362 ( 654 PWs) bands (ev): -11.5621 -11.4635 0.2890 0.5939 0.6097 0.9581 1.6700 1.6804 k = 0.1250 0.5052 0.0454 ( 662 PWs) bands (ev): -8.1065 -7.9297 -5.1892 -5.0572 -0.6195 -0.5537 3.8590 4.9044 k = 0.1250 0.5052 0.1362 ( 662 PWs) bands (ev): -8.0560 -7.9828 -5.1516 -5.0969 -0.6005 -0.5732 4.1593 4.5947 k = 0.1250-0.3608 0.0454 ( 661 PWs) bands (ev): -10.1801 -9.9649 -2.2000 -2.1092 0.1496 0.2043 1.5899 3.0782 k = 0.1250-0.3608 0.1362 ( 657 PWs) bands (ev): -10.1192 -10.0301 -2.1737 -2.1361 0.1653 0.1880 1.9823 2.5926 k = 0.1250-0.0722 0.0454 ( 639 PWs) bands (ev): -12.3658 -12.1158 -1.0295 0.6621 2.3649 2.4038 3.0329 3.0611 k = 0.1250-0.0722 0.1362 ( 635 PWs) bands (ev): -12.2954 -12.1920 -0.5904 0.1011 2.3762 2.3924 3.0412 3.0529 k = 0.3750 0.6495 0.0454 ( 647 PWs) bands (ev): -6.5044 -6.4182 -5.5770 -5.5425 -2.8872 -2.8046 5.5719 6.1478 k = 0.3750 0.6495 0.1362 ( 662 PWs) bands (ev): -6.4765 -6.4406 -5.5713 -5.5568 -2.8643 -2.8300 5.7890 6.0387 k = 0.3750-0.2165 0.0454 ( 658 PWs) bands (ev): -9.4693 -9.2658 -3.8879 -3.7638 0.7331 0.7767 2.3840 3.7472 k = 0.3750-0.2165 0.1362 ( 656 PWs) bands (ev): -9.4115 -9.3272 -3.8523 -3.8010 0.7458 0.7639 2.7498 3.3107 ! total energy = -45.88133316 Ry Harris-Foulkes estimate = -45.88133316 Ry estimated scf accuracy < 3.0E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -11.95431490 Ry hartree contribution = 13.95713190 Ry xc contribution = -14.42796098 Ry ewald contribution = -33.45618918 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001972 0.00000000 0.00000000 0.00000001 0.00001973 0.00000000 0.00000000 0.00000000 -0.00000593 VDW KERNEL stress -0.00006590 0.00000000 0.00000000 0.00000000 -0.00006590 0.00000000 0.00000000 0.00000000 -0.00054548 VDW ALL stress 0.00004618 -0.00000001 0.00000000 -0.00000001 0.00004617 0.00000000 0.00000000 0.00000000 0.00055141 total stress (Ry/bohr**3) (kbar) P= 34.29 0.00028247 0.00000000 0.00000000 41.55 0.00 0.00 0.00000000 0.00028247 0.00000000 0.00 41.55 0.00 0.00000000 0.00000000 0.00013444 0.00 0.00 19.78 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -45.8811392992 Ry enthalpy new = -45.8813331607 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0280644454 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 240.51582 a.u.^3 ( 35.64077 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.777989449 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.388994725 C 0.500000000 0.288675135 1.388994725 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0449966), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1349897), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0449966), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1349897), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0449966), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1349897), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0449966), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1349897), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0449966), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1349897), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0449966), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1349897), wk = 0.1250000 extrapolated charge 16.14075, renormalised to 16.00000 total cpu time spent up to now is 9.12 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 9.46 secs total energy = -45.88071766 Ry Harris-Foulkes estimate = -45.79440270 Ry estimated scf accuracy < 0.00033800 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.11E-06, avg # of iterations = 3.2 total cpu time spent up to now is 9.79 secs total energy = -45.88161521 Ry Harris-Foulkes estimate = -45.88180163 Ry estimated scf accuracy < 0.00050599 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.11E-06, avg # of iterations = 2.0 total cpu time spent up to now is 10.06 secs total energy = -45.88154304 Ry Harris-Foulkes estimate = -45.88163434 Ry estimated scf accuracy < 0.00014232 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.89E-07, avg # of iterations = 2.0 total cpu time spent up to now is 10.37 secs total energy = -45.88157084 Ry Harris-Foulkes estimate = -45.88157433 Ry estimated scf accuracy < 0.00000433 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-08, avg # of iterations = 2.4 total cpu time spent up to now is 10.69 secs total energy = -45.88157179 Ry Harris-Foulkes estimate = -45.88157182 Ry estimated scf accuracy < 0.00000004 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-10, avg # of iterations = 2.1 total cpu time spent up to now is 10.96 secs total energy = -45.88157178 Ry Harris-Foulkes estimate = -45.88157180 Ry estimated scf accuracy < 0.00000004 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.62E-10, avg # of iterations = 2.8 total cpu time spent up to now is 11.28 secs total energy = -45.88157179 Ry Harris-Foulkes estimate = -45.88157179 Ry estimated scf accuracy < 1.0E-08 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.23E-11, avg # of iterations = 1.0 total cpu time spent up to now is 11.54 secs total energy = -45.88157180 Ry Harris-Foulkes estimate = -45.88157179 Ry estimated scf accuracy < 7.3E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.56E-11, avg # of iterations = 2.7 total cpu time spent up to now is 11.85 secs End of self-consistent calculation k = 0.1250 0.2165 0.0450 ( 646 PWs) bands (ev): -11.7207 -11.4984 -0.2040 0.4849 0.5179 1.3585 1.5639 1.5868 k = 0.1250 0.2165 0.1350 ( 654 PWs) bands (ev): -11.6579 -11.5658 0.2035 0.4943 0.5089 0.8439 1.5701 1.5796 k = 0.1250 0.5052 0.0450 ( 662 PWs) bands (ev): -8.2000 -8.0354 -5.2842 -5.1616 -0.7171 -0.6564 3.7844 4.7831 k = 0.1250 0.5052 0.1350 ( 662 PWs) bands (ev): -8.1529 -8.0848 -5.2493 -5.1985 -0.6996 -0.6744 4.0709 4.4866 k = 0.1250-0.3608 0.0450 ( 661 PWs) bands (ev): -10.2723 -10.0717 -2.2966 -2.2126 0.0516 0.1020 1.5204 2.9432 k = 0.1250-0.3608 0.1350 ( 657 PWs) bands (ev): -10.2154 -10.1323 -2.2723 -2.2374 0.0660 0.0869 1.8963 2.4800 k = 0.1250-0.0722 0.0450 ( 639 PWs) bands (ev): -12.4569 -12.2235 -1.0968 0.5219 2.2661 2.3018 2.9336 2.9594 k = 0.1250-0.0722 0.1350 ( 635 PWs) bands (ev): -12.3910 -12.2944 -0.6758 -0.0136 2.2765 2.2913 2.9412 2.9519 k = 0.3750 0.6495 0.0450 ( 647 PWs) bands (ev): -6.6004 -6.5204 -5.6761 -5.6439 -2.9841 -2.9076 5.4934 6.0431 k = 0.3750 0.6495 0.1350 ( 662 PWs) bands (ev): -6.5747 -6.5414 -5.6706 -5.6570 -2.9628 -2.9310 5.6982 5.9356 k = 0.3750-0.2165 0.0450 ( 658 PWs) bands (ev): -9.5619 -9.3722 -3.9833 -3.8682 0.6346 0.6745 2.3131 3.6159 k = 0.3750-0.2165 0.1350 ( 656 PWs) bands (ev): -9.5079 -9.4294 -3.9502 -3.9026 0.6462 0.6628 2.6632 3.1993 ! total energy = -45.88157179 Ry Harris-Foulkes estimate = -45.88157180 Ry estimated scf accuracy < 2.4E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -12.65387533 Ry hartree contribution = 14.24720227 Ry xc contribution = -14.42634418 Ry ewald contribution = -33.04855456 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001973 0.00000000 0.00000000 0.00000001 0.00001974 0.00000000 0.00000000 0.00000000 -0.00000576 VDW KERNEL stress -0.00006532 0.00000000 0.00000000 0.00000000 -0.00006532 0.00000000 0.00000000 0.00000000 -0.00054614 VDW ALL stress 0.00004559 -0.00000001 0.00000000 -0.00000001 0.00004558 0.00000000 0.00000000 0.00000000 0.00055189 total stress (Ry/bohr**3) (kbar) P= 32.80 0.00028186 0.00000000 0.00000000 41.46 0.00 0.00 0.00000000 0.00028186 0.00000000 0.00 41.46 0.00 0.00000000 0.00000000 0.00010521 0.00 0.00 15.48 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -45.8813331607 Ry enthalpy new = -45.8815717929 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0417263568 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 243.68944 a.u.^3 ( 36.11105 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.814645111 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.407322555 C 0.500000000 0.288675135 1.407322555 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0444106), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1332317), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0444106), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1332317), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0444106), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1332317), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0444106), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1332317), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0444106), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1332317), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0444106), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1332317), wk = 0.1250000 extrapolated charge 16.20837, renormalised to 16.00000 total cpu time spent up to now is 12.54 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.1 total cpu time spent up to now is 12.91 secs total energy = -45.87986902 Ry Harris-Foulkes estimate = -45.74112664 Ry estimated scf accuracy < 0.00077263 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.83E-06, avg # of iterations = 3.2 total cpu time spent up to now is 13.24 secs total energy = -45.88192273 Ry Harris-Foulkes estimate = -45.88235632 Ry estimated scf accuracy < 0.00116714 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.83E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.51 secs total energy = -45.88175298 Ry Harris-Foulkes estimate = -45.88196723 Ry estimated scf accuracy < 0.00032811 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.82 secs total energy = -45.88181767 Ry Harris-Foulkes estimate = -45.88182405 Ry estimated scf accuracy < 0.00000865 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.40E-08, avg # of iterations = 2.5 total cpu time spent up to now is 14.13 secs total energy = -45.88181953 Ry Harris-Foulkes estimate = -45.88181961 Ry estimated scf accuracy < 0.00000007 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.41E-10, avg # of iterations = 2.3 total cpu time spent up to now is 14.42 secs total energy = -45.88181950 Ry Harris-Foulkes estimate = -45.88181954 Ry estimated scf accuracy < 0.00000004 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.81E-10, avg # of iterations = 2.8 total cpu time spent up to now is 14.74 secs total energy = -45.88181952 Ry Harris-Foulkes estimate = -45.88181951 Ry estimated scf accuracy < 0.00000002 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-10, avg # of iterations = 1.0 total cpu time spent up to now is 15.00 secs total energy = -45.88181952 Ry Harris-Foulkes estimate = -45.88181952 Ry estimated scf accuracy < 0.00000001 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.28E-11, avg # of iterations = 2.5 total cpu time spent up to now is 15.30 secs End of self-consistent calculation k = 0.1250 0.2165 0.0444 ( 646 PWs) bands (ev): -11.8559 -11.6555 -0.3049 0.3396 0.3687 1.1569 1.4177 1.4379 k = 0.1250 0.2165 0.1332 ( 654 PWs) bands (ev): -11.7991 -11.7161 0.0777 0.3479 0.3607 0.6772 1.4233 1.4316 k = 0.1250 0.5052 0.0444 ( 662 PWs) bands (ev): -8.3379 -8.1902 -5.4244 -5.3147 -0.8608 -0.8071 3.6737 4.6059 k = 0.1250 0.5052 0.1332 ( 662 PWs) bands (ev): -8.2956 -8.2344 -5.3930 -5.3476 -0.8453 -0.8230 3.9407 4.3283 k = 0.1250-0.3608 0.0444 ( 661 PWs) bands (ev): -10.4085 -10.2280 -2.4389 -2.3641 -0.0928 -0.0482 1.4172 2.7469 k = 0.1250-0.3608 0.1332 ( 657 PWs) bands (ev): -10.3571 -10.2824 -2.4172 -2.3862 -0.0800 -0.0615 1.7695 2.3154 k = 0.1250-0.0722 0.0444 ( 639 PWs) bands (ev): -12.5915 -12.3810 -1.1969 0.3183 2.1207 2.1522 2.7876 2.8101 k = 0.1250-0.0722 0.1332 ( 635 PWs) bands (ev): -12.5319 -12.4447 -0.8016 -0.1811 2.1299 2.1429 2.7942 2.8036 k = 0.3750 0.6495 0.0444 ( 647 PWs) bands (ev): -6.7420 -6.6705 -5.8218 -5.7928 -3.1268 -3.0585 5.3767 5.8889 k = 0.3750 0.6495 0.1332 ( 662 PWs) bands (ev): -6.7192 -6.6895 -5.8164 -5.8043 -3.1077 -3.0794 5.5643 5.7844 k = 0.3750-0.2165 0.0444 ( 658 PWs) bands (ev): -9.6986 -9.5280 -4.1239 -4.0211 0.4895 0.5246 2.2078 3.4248 k = 0.3750-0.2165 0.1332 ( 656 PWs) bands (ev): -9.6500 -9.5793 -4.0943 -4.0517 0.4998 0.5143 2.5355 3.0365 ! total energy = -45.88181953 Ry Harris-Foulkes estimate = -45.88181953 Ry estimated scf accuracy < 3.0E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -13.70668193 Ry hartree contribution = 14.68609942 Ry xc contribution = -14.42410936 Ry ewald contribution = -32.43712766 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001974 0.00000000 0.00000000 0.00000001 0.00001975 0.00000000 0.00000000 0.00000000 -0.00000549 VDW KERNEL stress -0.00006447 0.00000000 0.00000000 0.00000000 -0.00006446 0.00000000 0.00000000 0.00000000 -0.00054686 VDW ALL stress 0.00004472 -0.00000001 0.00000000 -0.00000001 0.00004471 0.00000000 0.00000000 0.00000000 0.00055234 total stress (Ry/bohr**3) (kbar) P= 30.70 0.00028049 0.00000000 0.00000000 41.26 0.00 0.00 0.00000000 0.00028049 0.00000000 0.00 41.26 0.00 0.00000000 0.00000000 0.00006510 0.00 0.00 9.58 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -45.8815717929 Ry enthalpy new = -45.8818195337 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0617744197 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 248.44986 a.u.^3 ( 36.81647 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.869628602 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.434814301 C 0.500000000 0.288675135 1.434814301 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0435596), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1306789), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0435596), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1306789), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0435596), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1306789), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0435596), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1306789), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0435596), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1306789), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0435596), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1306789), wk = 0.1250000 extrapolated charge 16.30656, renormalised to 16.00000 total cpu time spent up to now is 16.00 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.5 total cpu time spent up to now is 16.38 secs total energy = -45.87748160 Ry Harris-Foulkes estimate = -45.64895652 Ry estimated scf accuracy < 0.00177666 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-05, avg # of iterations = 3.2 total cpu time spent up to now is 16.71 secs total energy = -45.88220842 Ry Harris-Foulkes estimate = -45.88322377 Ry estimated scf accuracy < 0.00271228 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-05, avg # of iterations = 2.0 total cpu time spent up to now is 16.98 secs total energy = -45.88180813 Ry Harris-Foulkes estimate = -45.88231199 Ry estimated scf accuracy < 0.00076281 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.77E-06, avg # of iterations = 2.0 total cpu time spent up to now is 17.29 secs total energy = -45.88195852 Ry Harris-Foulkes estimate = -45.88197024 Ry estimated scf accuracy < 0.00001613 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-07, avg # of iterations = 2.6 total cpu time spent up to now is 17.61 secs total energy = -45.88196257 Ry Harris-Foulkes estimate = -45.88196265 Ry estimated scf accuracy < 0.00000015 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.53E-10, avg # of iterations = 2.2 total cpu time spent up to now is 17.89 secs total energy = -45.88196253 Ry Harris-Foulkes estimate = -45.88196259 Ry estimated scf accuracy < 0.00000017 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.53E-10, avg # of iterations = 2.5 total cpu time spent up to now is 18.21 secs total energy = -45.88196258 Ry Harris-Foulkes estimate = -45.88196256 Ry estimated scf accuracy < 0.00000006 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.45E-10, avg # of iterations = 2.3 total cpu time spent up to now is 18.49 secs total energy = -45.88196259 Ry Harris-Foulkes estimate = -45.88196259 Ry estimated scf accuracy < 4.2E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.61E-11, avg # of iterations = 3.1 total cpu time spent up to now is 18.82 secs total energy = -45.88196259 Ry Harris-Foulkes estimate = -45.88196259 Ry estimated scf accuracy < 1.7E-09 Ry iteration # 10 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-11, avg # of iterations = 1.4 total cpu time spent up to now is 19.07 secs End of self-consistent calculation k = 0.1250 0.2165 0.0436 ( 646 PWs) bands (ev): -12.0536 -11.8821 -0.4540 0.1284 0.1527 0.8688 1.2055 1.2223 k = 0.1250 0.2165 0.1307 ( 654 PWs) bands (ev): -12.0047 -11.9337 -0.1059 0.1353 0.1459 0.4370 1.2101 1.2171 k = 0.1250 0.5052 0.0436 ( 662 PWs) bands (ev): -8.5394 -8.4137 -5.6289 -5.5360 -1.0699 -1.0251 3.5106 4.3506 k = 0.1250 0.5052 0.1307 ( 662 PWs) bands (ev): -8.5033 -8.4513 -5.6022 -5.5637 -1.0570 -1.0383 3.7506 4.0996 k = 0.1250-0.3608 0.0436 ( 661 PWs) bands (ev): -10.6076 -10.4535 -2.6462 -2.5833 -0.3027 -0.2656 1.2648 2.4661 k = 0.1250-0.3608 0.1307 ( 657 PWs) bands (ev): -10.5636 -10.4997 -2.6279 -2.6019 -0.2920 -0.2766 1.5846 2.0781 k = 0.1250-0.0722 0.0436 ( 639 PWs) bands (ev): -12.7885 -12.6081 -1.3447 0.0274 1.9095 1.9355 2.5755 2.5939 k = 0.1250-0.0722 0.1307 ( 635 PWs) bands (ev): -12.7372 -12.6625 -0.9851 -0.4223 1.9170 1.9278 2.5810 2.5887 k = 0.3750 0.6495 0.0436 ( 647 PWs) bands (ev): -6.9485 -6.8879 -6.0333 -6.0085 -3.3345 -3.2770 5.2044 5.6644 k = 0.3750 0.6495 0.1307 ( 662 PWs) bands (ev): -6.9294 -6.9043 -6.0283 -6.0179 -3.3184 -3.2945 5.3690 5.5654 k = 0.3750-0.2165 0.0436 ( 658 PWs) bands (ev): -9.8985 -9.7530 -4.3289 -4.2420 0.2787 0.3076 2.0525 3.1509 k = 0.3750-0.2165 0.1307 ( 656 PWs) bands (ev): -9.8568 -9.7966 -4.3038 -4.2679 0.2872 0.2991 2.3492 2.8017 ! total energy = -45.88196259 Ry Harris-Foulkes estimate = -45.88196259 Ry estimated scf accuracy < 4.6E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -15.29318089 Ry hartree contribution = 15.35232578 Ry xc contribution = -14.42107109 Ry ewald contribution = -31.52003638 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001974 0.00000000 0.00000000 0.00000001 0.00001975 0.00000000 0.00000000 0.00000000 -0.00000506 VDW KERNEL stress -0.00006323 0.00000000 0.00000000 0.00000000 -0.00006322 0.00000000 0.00000000 0.00000000 -0.00054736 VDW ALL stress 0.00004349 -0.00000001 0.00000000 -0.00000001 0.00004348 0.00000000 0.00000000 0.00000000 0.00055242 total stress (Ry/bohr**3) (kbar) P= 27.63 0.00027725 0.00000000 0.00000000 40.79 0.00 0.00 0.00000000 0.00027725 0.00000000 0.00 40.79 0.00 0.00000000 0.00000000 0.00000892 0.00 0.00 1.31 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -45.8818195337 Ry enthalpy new = -45.8819625865 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0096254661 bohr new conv_thr = 0.0000000010 Ry new unit-cell volume = 249.20610 a.u.^3 ( 36.92853 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.878363292 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.439181646 C 0.500000000 0.288675135 1.439181646 Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.1250000 0.2165064 0.0434275), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1302824), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0434275), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1302824), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0434275), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1302824), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0434275), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1302824), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0434275), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1302824), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0434275), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1302824), wk = 0.1250000 extrapolated charge 16.04855, renormalised to 16.00000 total cpu time spent up to now is 19.77 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 total cpu time spent up to now is 20.07 secs total energy = -45.88184840 Ry Harris-Foulkes estimate = -45.84455984 Ry estimated scf accuracy < 0.00004542 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.84E-07, avg # of iterations = 3.2 total cpu time spent up to now is 20.40 secs total energy = -45.88196610 Ry Harris-Foulkes estimate = -45.88199016 Ry estimated scf accuracy < 0.00006617 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.84E-07, avg # of iterations = 2.0 total cpu time spent up to now is 20.67 secs total energy = -45.88195796 Ry Harris-Foulkes estimate = -45.88196865 Ry estimated scf accuracy < 0.00001811 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-07, avg # of iterations = 2.0 total cpu time spent up to now is 20.98 secs total energy = -45.88196141 Ry Harris-Foulkes estimate = -45.88196204 Ry estimated scf accuracy < 0.00000059 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.72E-09, avg # of iterations = 2.3 total cpu time spent up to now is 21.30 secs total energy = -45.88196152 Ry Harris-Foulkes estimate = -45.88196154 Ry estimated scf accuracy < 5.0E-09 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.12E-11, avg # of iterations = 2.4 total cpu time spent up to now is 21.59 secs total energy = -45.88196152 Ry Harris-Foulkes estimate = -45.88196152 Ry estimated scf accuracy < 5.2E-09 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.12E-11, avg # of iterations = 2.6 total cpu time spent up to now is 21.92 secs total energy = -45.88196152 Ry Harris-Foulkes estimate = -45.88196152 Ry estimated scf accuracy < 1.4E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.82E-12, avg # of iterations = 1.0 total cpu time spent up to now is 22.17 secs total energy = -45.88196153 Ry Harris-Foulkes estimate = -45.88196152 Ry estimated scf accuracy < 1.2E-09 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-12, avg # of iterations = 2.5 total cpu time spent up to now is 22.49 secs End of self-consistent calculation k = 0.1250 0.2165 0.0434 ( 646 PWs) bands (ev): -12.0845 -11.9172 -0.4775 0.0955 0.1190 0.8245 1.1724 1.1887 k = 0.1250 0.2165 0.1303 ( 654 PWs) bands (ev): -12.0369 -11.9676 -0.1346 0.1022 0.1125 0.3998 1.1769 1.1837 k = 0.1250 0.5052 0.0434 ( 662 PWs) bands (ev): -8.5710 -8.4484 -5.6608 -5.5704 -1.1025 -1.0590 3.4849 4.3111 k = 0.1250 0.5052 0.1303 ( 662 PWs) bands (ev): -8.5357 -8.4850 -5.6348 -5.5974 -1.0900 -1.0719 3.7209 4.0641 k = 0.1250-0.3608 0.0434 ( 661 PWs) bands (ev): -10.6388 -10.4884 -2.6786 -2.6174 -0.3355 -0.2994 1.2408 2.4228 k = 0.1250-0.3608 0.1303 ( 657 PWs) bands (ev): -10.5958 -10.5335 -2.6608 -2.6355 -0.3251 -0.3101 1.5557 2.0414 k = 0.1250-0.0722 0.0434 ( 639 PWs) bands (ev): -12.8194 -12.6433 -1.3680 -0.0174 1.8765 1.9018 2.5424 2.5603 k = 0.1250-0.0722 0.1303 ( 635 PWs) bands (ev): -12.7692 -12.6964 -1.0137 -0.4596 1.8838 1.8943 2.5477 2.5552 k = 0.3750 0.6495 0.0434 ( 647 PWs) bands (ev): -6.9807 -6.9218 -6.0663 -6.0420 -3.3669 -3.3109 5.1773 5.6294 k = 0.3750 0.6495 0.1303 ( 662 PWs) bands (ev): -6.9622 -6.9377 -6.0613 -6.0512 -3.3512 -3.3279 5.3385 5.5314 k = 0.3750-0.2165 0.0434 ( 658 PWs) bands (ev): -9.9297 -9.7879 -4.3609 -4.2764 0.2459 0.2739 2.0280 3.1087 k = 0.3750-0.2165 0.1303 ( 656 PWs) bands (ev): -9.8891 -9.8303 -4.3364 -4.3016 0.2540 0.2656 2.3201 2.7653 ! total energy = -45.88196152 Ry Harris-Foulkes estimate = -45.88196153 Ry estimated scf accuracy < 3.0E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -15.54603110 Ry hartree contribution = 15.45905275 Ry xc contribution = -14.42063131 Ry ewald contribution = -31.37435187 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001974 0.00000000 0.00000000 0.00000001 0.00001974 0.00000000 0.00000000 0.00000000 -0.00000499 VDW KERNEL stress -0.00006303 0.00000000 0.00000000 0.00000000 -0.00006303 0.00000000 0.00000000 0.00000000 -0.00054739 VDW ALL stress 0.00004330 -0.00000001 0.00000000 -0.00000001 0.00004329 0.00000000 0.00000000 0.00000000 0.00055237 total stress (Ry/bohr**3) (kbar) P= 27.17 0.00027666 0.00000000 0.00000000 40.70 0.00 0.00 0.00000000 0.00027666 0.00000000 0.00 40.70 0.00 0.00000000 0.00000000 0.00000071 0.00 0.00 0.10 Begin final coordinates new unit-cell volume = 249.20610 a.u.^3 ( 36.92853 Ang^3 ) CELL_PARAMETERS (alat= 4.64117000) 1.000000000 0.000000000 0.000000000 -0.500000000 0.866025404 0.000000000 0.000000000 0.000000000 2.878363292 ATOMIC_POSITIONS (alat) C 0.000000000 0.000000000 0.000000000 C 0.000000000 0.577350269 0.000000000 C 0.000000000 0.000000000 1.439181646 C 0.500000000 0.288675135 1.439181646 End final coordinates A final scf calculation at the relaxed structure. The G-vectors are recalculated. Stick Mesh ---------- nst = 265, nstw = 61, nsts = 187 n.st n.stw n.sts n.g n.gw n.gs min 65 15 46 2526 285 1383 max 67 16 47 2529 288 1385 265 61 187 10113 1143 5537 bravais-lattice index = 4 lattice parameter (a_0) = 4.6412 a.u. unit-cell volume = 249.2061 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-09 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 4.641170 celldm(2)= 0.000000 celldm(3)= 2.726400 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.878363 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.347420 ) PseudoPot. # 1 for C read from file C.pbe-rrkjus.UPF MD5 check sum: 00fb224312de0c5b6853bd333518df6f Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 627 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: fe4853e4b29e331a1c05f2446fb42441 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 24 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.0000000 0.5773503 0.0000000 ) 3 C tau( 3) = ( 0.0000000 0.0000000 1.4391816 ) 4 C tau( 4) = ( 0.5000000 0.2886751 1.4391816 ) number of k points= 12 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.2165064 0.0434275), wk = 0.1250000 k( 2) = ( 0.1250000 0.2165064 0.1302824), wk = 0.1250000 k( 3) = ( 0.1250000 0.5051815 0.0434275), wk = 0.2500000 k( 4) = ( 0.1250000 0.5051815 0.1302824), wk = 0.2500000 k( 5) = ( 0.1250000 -0.3608439 0.0434275), wk = 0.2500000 k( 6) = ( 0.1250000 -0.3608439 0.1302824), wk = 0.2500000 k( 7) = ( 0.1250000 -0.0721688 0.0434275), wk = 0.1250000 k( 8) = ( 0.1250000 -0.0721688 0.1302824), wk = 0.1250000 k( 9) = ( 0.3750000 0.6495191 0.0434275), wk = 0.1250000 k( 10) = ( 0.3750000 0.6495191 0.1302824), wk = 0.1250000 k( 11) = ( 0.3750000 -0.2165064 0.0434275), wk = 0.1250000 k( 12) = ( 0.3750000 -0.2165064 0.1302824), wk = 0.1250000 G cutoff = 98.2127 ( 10113 G-vectors) FFT grid: ( 20, 20, 60) G cutoff = 65.4751 ( 5537 G-vectors) smooth grid: ( 18, 18, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 188, 8) NL pseudopotentials 0.09 Mb ( 188, 32) Each V/rho on FFT grid 0.09 Mb ( 6000) Each G-vector array 0.02 Mb ( 2529) G-vector shells 0.00 Mb ( 553) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 188, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 32, 8) Arrays for rho mixing 0.73 Mb ( 6000, 8) Initial potential from superposition of free atoms starting charge 15.99979, renormalised to 16.00000 Starting wfc are 16 atomic wfcs Writing output data file graphite.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 23.37 secs per-process dynamical memory: 25.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.9 total cpu time spent up to now is 23.89 secs total energy = -45.81421653 Ry Harris-Foulkes estimate = -46.06596300 Ry estimated scf accuracy < 0.44690049 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.79E-03, avg # of iterations = 2.0 total cpu time spent up to now is 24.19 secs total energy = -45.88129902 Ry Harris-Foulkes estimate = -45.88023226 Ry estimated scf accuracy < 0.00577855 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.61E-05, avg # of iterations = 2.1 total cpu time spent up to now is 24.47 secs total energy = -45.88221329 Ry Harris-Foulkes estimate = -45.88201535 Ry estimated scf accuracy < 0.00038775 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.42E-06, avg # of iterations = 2.0 total cpu time spent up to now is 24.73 secs total energy = -45.88225842 Ry Harris-Foulkes estimate = -45.88225443 Ry estimated scf accuracy < 0.00000397 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-08, avg # of iterations = 2.8 total cpu time spent up to now is 25.06 secs total energy = -45.88226039 Ry Harris-Foulkes estimate = -45.88226043 Ry estimated scf accuracy < 0.00000011 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.15E-10, avg # of iterations = 3.4 total cpu time spent up to now is 25.40 secs total energy = -45.88226042 Ry Harris-Foulkes estimate = -45.88226044 Ry estimated scf accuracy < 0.00000008 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.90E-10, avg # of iterations = 2.5 total cpu time spent up to now is 25.69 secs total energy = -45.88226040 Ry Harris-Foulkes estimate = -45.88226043 Ry estimated scf accuracy < 1.9E-09 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-11, avg # of iterations = 2.0 total cpu time spent up to now is 25.98 secs End of self-consistent calculation k = 0.1250 0.2165 0.0434 ( 688 PWs) bands (ev): -12.0840 -11.9167 -0.4778 0.0959 0.1194 0.8240 1.1728 1.1890 k = 0.1250 0.2165 0.1303 ( 684 PWs) bands (ev): -12.0363 -11.9670 -0.1352 0.1027 0.1130 0.3995 1.1773 1.1841 k = 0.1250 0.5052 0.0434 ( 697 PWs) bands (ev): -8.5704 -8.4479 -5.6603 -5.5699 -1.1021 -1.0587 3.4844 4.3109 k = 0.1250 0.5052 0.1303 ( 701 PWs) bands (ev): -8.5352 -8.4845 -5.6344 -5.5969 -1.0895 -1.0715 3.7205 4.0638 k = 0.1250-0.3608 0.0434 ( 700 PWs) bands (ev): -10.6382 -10.4879 -2.6781 -2.6169 -0.3351 -0.2991 1.2404 2.4224 k = 0.1250-0.3608 0.1303 ( 694 PWs) bands (ev): -10.5952 -10.5330 -2.6603 -2.6350 -0.3247 -0.3098 1.5552 2.0411 k = 0.1250-0.0722 0.0434 ( 676 PWs) bands (ev): -12.8188 -12.6428 -1.3684 -0.0179 1.8769 1.9021 2.5428 2.5606 k = 0.1250-0.0722 0.1303 ( 670 PWs) bands (ev): -12.7687 -12.6958 -1.0139 -0.4603 1.8843 1.8947 2.5480 2.5554 k = 0.3750 0.6495 0.0434 ( 694 PWs) bands (ev): -6.9802 -6.9212 -6.0658 -6.0416 -3.3666 -3.3106 5.1767 5.6290 k = 0.3750 0.6495 0.1303 ( 688 PWs) bands (ev): -6.9616 -6.9371 -6.0608 -6.0507 -3.3507 -3.3276 5.3382 5.5311 k = 0.3750-0.2165 0.0434 ( 695 PWs) bands (ev): -9.9291 -9.7874 -4.3604 -4.2760 0.2462 0.2742 2.0275 3.1083 k = 0.3750-0.2165 0.1303 ( 693 PWs) bands (ev): -9.8885 -9.8298 -4.3360 -4.3010 0.2544 0.2660 2.3196 2.7650 ! total energy = -45.88226040 Ry Harris-Foulkes estimate = -45.88226040 Ry estimated scf accuracy < 3.2E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -15.54690303 Ry hartree contribution = 15.45969561 Ry xc contribution = -14.42070114 Ry ewald contribution = -31.37435184 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 1 force = 0.00000000 0.00000000 0.00000000 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... VDW GRADIENT stress 0.00001974 0.00000000 0.00000000 0.00000001 0.00001974 0.00000000 0.00000000 0.00000000 -0.00000500 VDW KERNEL stress -0.00006304 0.00000000 0.00000000 0.00000000 -0.00006303 0.00000000 0.00000000 0.00000000 -0.00054741 VDW ALL stress 0.00004330 -0.00000001 0.00000000 -0.00000001 0.00004329 0.00000000 0.00000000 0.00000000 0.00055241 total stress (Ry/bohr**3) (kbar) P= 29.25 0.00028197 0.00000000 0.00000000 41.48 0.00 0.00 0.00000000 0.00028197 0.00000000 0.00 41.48 0.00 0.00000000 0.00000000 0.00003256 0.00 0.00 4.79 Writing output data file graphite.save init_run : 0.62s CPU 0.74s WALL ( 2 calls) electrons : 19.01s CPU 20.05s WALL ( 8 calls) update_pot : 1.32s CPU 1.35s WALL ( 7 calls) forces : 0.51s CPU 0.51s WALL ( 8 calls) stress : 2.15s CPU 2.19s WALL ( 8 calls) Called by init_run: wfcinit : 0.19s CPU 0.25s WALL ( 2 calls) potinit : 0.21s CPU 0.22s WALL ( 2 calls) Called by electrons: c_bands : 10.65s CPU 11.29s WALL ( 65 calls) sum_band : 2.31s CPU 2.41s WALL ( 65 calls) v_of_rho : 5.66s CPU 5.73s WALL ( 74 calls) newd : 0.65s CPU 0.66s WALL ( 74 calls) mix_rho : 0.10s CPU 0.10s WALL ( 65 calls) vdW_energy : 1.19s CPU 1.19s WALL ( 74 calls) vdW_ffts : 1.87s CPU 1.90s WALL ( 164 calls) vdW_v : 1.41s CPU 1.42s WALL ( 74 calls) Called by c_bands: init_us_2 : 0.20s CPU 0.21s WALL ( 1776 calls) cegterg : 10.23s CPU 10.70s WALL ( 780 calls) Called by *egterg: h_psi : 8.15s CPU 8.58s WALL ( 2713 calls) s_psi : 0.32s CPU 0.32s WALL ( 2713 calls) g_psi : 0.07s CPU 0.06s WALL ( 1909 calls) cdiaghg : 0.86s CPU 0.89s WALL ( 2617 calls) Called by h_psi: add_vuspsi : 0.34s CPU 0.36s WALL ( 2713 calls) General routines calbec : 0.65s CPU 0.68s WALL ( 3685 calls) fft : 2.55s CPU 2.60s WALL ( 4508 calls) ffts : 0.04s CPU 0.04s WALL ( 139 calls) fftw : 7.84s CPU 8.18s WALL ( 42906 calls) interpolate : 0.13s CPU 0.14s WALL ( 139 calls) davcio : 0.03s CPU 0.18s WALL ( 2556 calls) Parallel routines fft_scatter : 2.29s CPU 2.41s WALL ( 47553 calls) PWSCF : 24.77s CPU 26.42s WALL This run was terminated on: 15:38:32 25Jan2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/vdwDF_example/reference/Ar.scf.out0000644000175000017500000005515312341373025022007 0ustar mbamba Program PWSCF v.> 4.2 starts on 25Jan2011 at 15:42: 5 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Warning: card &IONS ignored Warning: card ION_DYNAMICS = 'BFGS' ignored Warning: card / ignored XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used warning: symmetry operation # 3 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 4 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 5 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 6 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 9 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 10 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 15 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates warning: symmetry operation # 16 not allowed. fractional translation: 0.0000000 0.0000000 -0.3037060 in crystal coordinates Stick Mesh ---------- nst = 4597, nstw = 1153, nsts = 4597 n.st n.stw n.sts n.g n.gw n.gs min 2298 575 2298 244238 30529 244238 max 2299 578 2299 244242 30534 244242 9193 2305 9193 976959 122127 976959 bravais-lattice index = 8 lattice parameter (a_0) = 19.0000 a.u. unit-cell volume = 10108.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 1.0E-11 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 19.000000 celldm(2)= 1.000000 celldm(3)= 1.473684 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.473684 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.678571 ) PseudoPot. # 1 for Ar read from file Ar.pz-rrkj.UPF MD5 check sum: d89ce2692885da7fe9b9d8f94428612f Pseudo is Norm-conserving, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 967 points, 2 beta functions with: l(1) = 0 l(2) = 1 vdW kernel table read from file vdW_kernel_table MD5 check sum: fe4853e4b29e331a1c05f2446fb42441 atomic species valence mass pseudopotential Ar 8.00 36.00000 Ar( 1.00) 8 Sym.Ops. (no inversion) s frac. trans. isym = 1 identity cryst. s( 1) = ( 1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 2 180 deg rotation - cart. axis [0,0,1] cryst. s( 2) = ( -1 0 0 ) f =( 0.0000000 ) ( 0 -1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 -1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 3 90 deg rotation - cart. axis [0,0,-1] cryst. s( 3) = ( 0 -1 0 ) f =( 0.0000000 ) ( 1 0 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 3) = ( 0.0000000 1.0000000 0.0000000 ) f =( 0.0000000 ) ( -1.0000000 0.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 4 90 deg rotation - cart. axis [0,0,1] cryst. s( 4) = ( 0 1 0 ) f =( 0.0000000 ) ( -1 0 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 4) = ( 0.0000000 -1.0000000 0.0000000 ) f =( 0.0000000 ) ( 1.0000000 0.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 5 inv. 180 deg rotation - cart. axis [0,1,0] cryst. s( 5) = ( 1 0 0 ) f =( 0.0000000 ) ( 0 -1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 5) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 -1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 6 inv. 180 deg rotation - cart. axis [1,0,0] cryst. s( 6) = ( -1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 6) = ( -1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 7 inv. 180 deg rotation - cart. axis [1,1,0] cryst. s( 7) = ( 0 -1 0 ) f =( 0.0000000 ) ( -1 0 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 7) = ( 0.0000000 -1.0000000 0.0000000 ) f =( 0.0000000 ) ( -1.0000000 0.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 8 inv. 180 deg rotation - cart. axis [1,-1,0] cryst. s( 8) = ( 0 1 0 ) f =( 0.0000000 ) ( 1 0 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 8) = ( 0.0000000 1.0000000 0.0000000 ) f =( 0.0000000 ) ( 1.0000000 0.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) point group C_4v (4mm) there are 5 classes the character table: E 2C4 C2 2s_v 2s_d A_1 1.00 1.00 1.00 1.00 1.00 A_2 1.00 1.00 1.00 -1.00 -1.00 B_1 1.00 -1.00 1.00 1.00 -1.00 B_2 1.00 -1.00 1.00 -1.00 1.00 E 2.00 0.00 -2.00 0.00 0.00 the symmetry operations in each class: E 1 C2 2 2C4 3 4 2s_v 5 6 2s_d 7 8 Cartesian axes site n. atom positions (a_0 units) 1 Ar tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Ar tau( 2) = ( 0.0000000 0.0000000 0.4475667 ) Crystallographic axes site n. atom positions (cryst. coord.) 1 Ar tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Ar tau( 2) = ( 0.0000000 0.0000000 0.3037060 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 cryst. coord. k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 2926.1558 ( 488480 G-vectors) FFT grid: (120,120,160) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.86 Mb ( 15266, 8) NL pseudopotentials 1.86 Mb ( 15266, 8) Each V/rho on FFT grid 8.79 Mb ( 576000) Each G-vector array 0.93 Mb ( 122119) G-vector shells 0.27 Mb ( 35242) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 3.73 Mb ( 15266, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 70.31 Mb ( 576000, 8) Initial potential from superposition of free atoms starting charge 16.00000, renormalised to 16.00000 negative rho (up, down): 0.514E-04 0.000E+00 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 --------------------------------------------------------------------------------- ---------------------------------------------------------------- Non-local correlation energy = 0.294217152047509 ---------------------------------------------------------------- Starting wfc are 8 atomic wfcs total cpu time spent up to now is 14.30 secs per-process dynamical memory: 142.3 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.90E-05, avg # of iterations = 2.0 negative rho (up, down): 0.124E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.294842335497814 ---------------------------------------------------------------- total cpu time spent up to now is 29.07 secs total energy = -85.03068417 Ry Harris-Foulkes estimate = -85.03481126 Ry estimated scf accuracy < 0.00672415 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.20E-05, avg # of iterations = 2.0 negative rho (up, down): 0.469E-05 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.294519959562233 ---------------------------------------------------------------- total cpu time spent up to now is 42.76 secs total energy = -85.03232781 Ry Harris-Foulkes estimate = -85.03267407 Ry estimated scf accuracy < 0.00061882 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.87E-06, avg # of iterations = 2.0 negative rho (up, down): 0.156E-06 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.294460488587944 ---------------------------------------------------------------- total cpu time spent up to now is 56.56 secs total energy = -85.03247841 Ry Harris-Foulkes estimate = -85.03246759 Ry estimated scf accuracy < 0.00001389 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.68E-08, avg # of iterations = 2.0 ---------------------------------------------------------------- Non-local correlation energy = 0.294458333949507 ---------------------------------------------------------------- total cpu time spent up to now is 70.35 secs total energy = -85.03247988 Ry Harris-Foulkes estimate = -85.03248007 Ry estimated scf accuracy < 0.00000033 Ry iteration # 5 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-09, avg # of iterations = 2.0 ---------------------------------------------------------------- Non-local correlation energy = 0.294458909809619 ---------------------------------------------------------------- total cpu time spent up to now is 84.13 secs total energy = -85.03247999 Ry Harris-Foulkes estimate = -85.03247997 Ry estimated scf accuracy < 0.00000001 Ry iteration # 6 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.59E-11, avg # of iterations = 2.0 ---------------------------------------------------------------- Non-local correlation energy = 0.294458920738928 ---------------------------------------------------------------- total cpu time spent up to now is 97.98 secs total energy = -85.03247999 Ry Harris-Foulkes estimate = -85.03247999 Ry estimated scf accuracy < 5.6E-11 Ry iteration # 7 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-13, avg # of iterations = 3.0 ---------------------------------------------------------------- Non-local correlation energy = 0.294458902517531 ---------------------------------------------------------------- total cpu time spent up to now is 112.36 secs total energy = -85.03247999 Ry Harris-Foulkes estimate = -85.03247999 Ry estimated scf accuracy < 1.3E-11 Ry iteration # 8 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.27E-14, avg # of iterations = 2.0 ---------------------------------------------------------------- Non-local correlation energy = 0.294458871916206 ---------------------------------------------------------------- total cpu time spent up to now is 125.16 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 61064 PWs) bands (ev): -24.2551 -24.2507 -10.2716 -10.2311 -10.2311 -10.2191 -10.2191 -10.1802 occupation numbers 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ! total energy = -85.03247999 Ry Harris-Foulkes estimate = -85.03247999 Ry estimated scf accuracy < 3.3E-12 Ry The total energy is the sum of the following terms: one-electron contribution = -110.00116009 Ry hartree contribution = 56.57257683 Ry xc contribution = -15.05845253 Ry ewald contribution = -16.54544419 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00061300 atom 2 type 1 force = 0.00000000 0.00000000 -0.00061300 Total force = 0.000867 Total SCF correction = 0.000001 entering subroutine stress ... VDW GRADIENT stress 0.00000142 0.00000000 0.00000000 0.00000000 0.00000142 0.00000000 0.00000000 0.00000000 0.00000139 VDW KERNEL stress -0.00000961 0.00000000 0.00000000 0.00000000 -0.00000961 0.00000000 0.00000000 0.00000000 -0.00000923 VDW ALL stress 0.00000819 0.00000000 0.00000000 0.00000000 0.00000819 0.00000000 0.00000000 0.00000000 0.00000784 total stress (Ry/bohr**3) (kbar) P= 0.19 0.00000147 0.00000000 0.00000000 0.22 0.00 0.00 0.00000000 0.00000147 0.00000000 0.00 0.22 0.00 0.00000000 0.00000000 0.00000096 0.00 0.00 0.14 kinetic stress (kbar) 304.99 0.00 0.00 0.00 304.99 0.00 0.00 0.00 304.97 local stress (kbar) -751.45 0.00 0.00 0.00 -751.45 0.00 0.00 0.00 -947.57 nonloc. stress (kbar) 386.64 0.00 0.00 0.00 386.64 0.00 0.00 0.00 386.63 hartree stress (kbar) 244.43 0.00 0.00 0.00 244.43 0.00 0.00 0.00 334.46 exc-cor stress (kbar) -69.97 0.00 0.00 0.00 -69.97 0.00 0.00 0.00 -69.97 corecor stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ewald stress (kbar) -115.63 0.00 0.00 0.00 -115.63 0.00 0.00 0.00 -9.53 hubbard stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 london stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dft-nl stress (kbar) 1.20 0.00 0.00 0.00 1.20 0.00 0.00 0.00 1.15 Writing output data file Ar_vdw.save init_run : 13.56s CPU 13.95s WALL ( 1 calls) electrons : 107.43s CPU 110.86s WALL ( 1 calls) forces : 1.38s CPU 1.38s WALL ( 1 calls) stress : 15.40s CPU 15.88s WALL ( 1 calls) Called by init_run: wfcinit : 0.57s CPU 0.58s WALL ( 1 calls) potinit : 11.38s CPU 11.70s WALL ( 1 calls) Called by electrons: c_bands : 15.27s CPU 15.33s WALL ( 9 calls) sum_band : 5.56s CPU 5.57s WALL ( 9 calls) v_of_rho : 92.66s CPU 95.19s WALL ( 9 calls) v_h : 1.39s CPU 1.48s WALL ( 9 calls) v_xc : 91.28s CPU 93.71s WALL ( 9 calls) mix_rho : 2.05s CPU 2.06s WALL ( 9 calls) vdW_energy : 9.04s CPU 9.04s WALL ( 9 calls) vdW_ffts : 49.33s CPU 49.40s WALL ( 20 calls) vdW_v : 18.15s CPU 18.17s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.15s CPU 0.15s WALL ( 19 calls) regterg : 15.14s CPU 15.19s WALL ( 9 calls) Called by sum_band: Called by *egterg: h_psi : 14.87s CPU 14.93s WALL ( 28 calls) g_psi : 0.06s CPU 0.06s WALL ( 18 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 26 calls) regterg:over : 0.23s CPU 0.23s WALL ( 18 calls) regterg:upda : 0.23s CPU 0.23s WALL ( 18 calls) regterg:last : 0.08s CPU 0.08s WALL ( 9 calls) Called by h_psi: h_psi:vloc : 14.56s CPU 14.61s WALL ( 28 calls) h_psi:vnl : 0.23s CPU 0.23s WALL ( 28 calls) add_vuspsi : 0.10s CPU 0.10s WALL ( 28 calls) General routines calbec : 0.15s CPU 0.15s WALL ( 33 calls) fft : 62.81s CPU 63.08s WALL ( 509 calls) fftw : 15.06s CPU 15.12s WALL ( 242 calls) davcio : 0.00s CPU 0.03s WALL ( 8 calls) Parallel routines fft_scatter : 19.36s CPU 19.51s WALL ( 751 calls) PWSCF : 2m18.38s CPU 2m22.91s WALL This run was terminated on: 15:44:28 25Jan2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/vdwDF_example/reference/water.scf.out0000644000175000017500000005143312341373025022564 0ustar mbamba Program PWSCF v.> 4.2 starts on 25Jan2011 at 15:38:33 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 4 processors R & G space division: proc/pool = 4 Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... XC functional enforced from input : Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized file H.pbe-rrkjus.UPF: wavefunction(s) 1S renormalized gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Stick Mesh ---------- nst = 1539, nstw = 258, nsts = 1025 n.st n.stw n.sts n.g n.gw n.gs min 768 127 512 40311 2739 21932 max 770 130 513 40318 2746 21968 3077 515 2049 161263 10971 87777 bravais-lattice index = 8 lattice parameter (a_0) = 15.0000 a.u. unit-cell volume = 3953.7707 (a.u.)^3 number of atoms/cell = 6 number of atomic types = 2 number of electrons = 16.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 180.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = VDW-DF (1449) EXX-fraction = 0.00 celldm(1)= 15.000000 celldm(2)= 0.954545 celldm(3)= 1.227273 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 0.954545 0.000000 ) a(3) = ( 0.000000 0.000000 1.227273 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.047619 0.000000 ) b(3) = ( 0.000000 0.000000 0.814815 ) PseudoPot. # 1 for O read from file O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-rrkjus.UPF MD5 check sum: 7cc9d459525c9a0585f487a71c3c9563 Pseudo is Ultrasoft, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1061 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients vdW kernel table read from file vdW_kernel_table MD5 check sum: fe4853e4b29e331a1c05f2446fb42441 atomic species valence mass pseudopotential O 6.00 15.99940 O ( 1.00) H 1.00 1.00794 H ( 1.00) 2 Sym.Ops. (no inversion) s frac. trans. isym = 1 identity cryst. s( 1) = ( 1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) isym = 2 inv. 180 deg rotation - cart. axis [1,0,0] cryst. s( 2) = ( -1 0 0 ) f =( 0.0000000 ) ( 0 1 0 ) ( 0.0000000 ) ( 0 0 1 ) ( 0.0000000 ) cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 ) ( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 ) ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 ) point group C_s (m) there are 2 classes the character table: E s A' 1.00 1.00 A'' 1.00 -1.00 the symmetry operations in each class: E 1 s 2 Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0016540 -0.0072484 ) 2 H tau( 2) = ( 0.0000000 0.0981485 -0.0826521 ) 3 H tau( 3) = ( 0.0000000 0.0490883 0.1065556 ) 4 O tau( 4) = ( 0.0000000 0.1117595 0.3550478 ) 5 H tau( 5) = ( -0.0975766 0.0656956 0.4133167 ) 6 H tau( 6) = ( 0.0975766 0.0656956 0.4133167 ) Crystallographic axes site n. atom positions (cryst. coord.) 1 O tau( 1) = ( 0.0000000 0.0017328 -0.0059061 ) 2 H tau( 2) = ( 0.0000000 0.1028222 -0.0673461 ) 3 H tau( 3) = ( 0.0000000 0.0514258 0.0868231 ) 4 O tau( 4) = ( 0.0000000 0.1170814 0.2892982 ) 5 H tau( 5) = ( -0.0975766 0.0688239 0.3367766 ) 6 H tau( 6) = ( 0.0975766 0.0688239 0.3367766 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 cryst. coord. k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1025.8770 ( 80632 G-vectors) FFT grid: ( 72, 64, 80) G cutoff = 683.9180 ( 43889 G-vectors) smooth grid: ( 54, 50, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.17 Mb ( 1373, 8) NL pseudopotentials 0.50 Mb ( 1373, 24) Each V/rho on FFT grid 1.41 Mb ( 92160) Each G-vector array 0.15 Mb ( 20158) G-vector shells 0.07 Mb ( 9015) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.34 Mb ( 1373, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 24, 8) Arrays for rho mixing 11.25 Mb ( 92160, 8) Initial potential from superposition of free atoms starting charge 15.61518, renormalised to 16.00000 negative rho (up, down): 0.281E-04 0.000E+00 --------------------------------------------------------------------------------- Carrying out vdW-DF run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263 0.23128650 0.31572767 0.41458969 0.53033537 0.66584808 0.82450364 1.01025438 1.22772762 1.48234092 1.78043706 2.12944203 2.53805004 3.01644009 3.57652955 4.23227104 5.00000000 --------------------------------------------------------------------------------- ---------------------------------------------------------------- Non-local correlation energy = 0.274904696116047 ---------------------------------------------------------------- Starting wfc are 12 atomic wfcs total cpu time spent up to now is 3.83 secs per-process dynamical memory: 43.6 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.249E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.301859606238180 ---------------------------------------------------------------- total cpu time spent up to now is 6.04 secs total energy = -68.62054345 Ry Harris-Foulkes estimate = -69.74338030 Ry estimated scf accuracy < 1.46176767 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.14E-03, avg # of iterations = 2.0 negative rho (up, down): 0.806E-04 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.299176558067486 ---------------------------------------------------------------- total cpu time spent up to now is 8.21 secs total energy = -68.83477871 Ry Harris-Foulkes estimate = -69.33634384 Ry estimated scf accuracy < 0.97176223 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.07E-03, avg # of iterations = 2.0 negative rho (up, down): 0.687E-03 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304378686108314 ---------------------------------------------------------------- total cpu time spent up to now is 10.30 secs total energy = -69.04855398 Ry Harris-Foulkes estimate = -69.06844693 Ry estimated scf accuracy < 0.03452251 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-04, avg # of iterations = 2.0 negative rho (up, down): 0.639E-03 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.303938430184660 ---------------------------------------------------------------- total cpu time spent up to now is 12.39 secs total energy = -69.05564659 Ry Harris-Foulkes estimate = -69.05601332 Ry estimated scf accuracy < 0.00065530 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.10E-06, avg # of iterations = 2.0 negative rho (up, down): 0.177E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304125165708814 ---------------------------------------------------------------- total cpu time spent up to now is 14.47 secs total energy = -69.05584470 Ry Harris-Foulkes estimate = -69.05582135 Ry estimated scf accuracy < 0.00002804 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.75E-07, avg # of iterations = 2.0 negative rho (up, down): 0.187E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304109872827670 ---------------------------------------------------------------- total cpu time spent up to now is 16.53 secs total energy = -69.05584769 Ry Harris-Foulkes estimate = -69.05584984 Ry estimated scf accuracy < 0.00000254 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-08, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304110383940431 ---------------------------------------------------------------- total cpu time spent up to now is 18.59 secs total energy = -69.05584799 Ry Harris-Foulkes estimate = -69.05584814 Ry estimated scf accuracy < 0.00000005 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.93E-10, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304109884755319 ---------------------------------------------------------------- total cpu time spent up to now is 20.65 secs total energy = -69.05584798 Ry Harris-Foulkes estimate = -69.05584800 Ry estimated scf accuracy < 0.00000001 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.39E-11, avg # of iterations = 2.0 negative rho (up, down): 0.189E-02 0.000E+00 ---------------------------------------------------------------- Non-local correlation energy = 0.304109294756646 ---------------------------------------------------------------- total cpu time spent up to now is 22.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5486 PWs) bands (ev): -25.6442 -24.2676 -13.5673 -12.2979 -9.7601 -8.3492 -7.6831 -6.4201 occupation numbers 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ! total energy = -69.05584800 Ry Harris-Foulkes estimate = -69.05584798 Ry estimated scf accuracy < 7.8E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -122.46795392 Ry hartree contribution = 64.43483108 Ry xc contribution = -17.37518989 Ry ewald contribution = 6.35246473 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00094057 -0.00216126 atom 2 type 2 force = 0.00000000 0.00013998 0.00068311 atom 3 type 2 force = 0.00000000 -0.00035102 0.00014004 atom 4 type 1 force = 0.00000000 0.00088157 0.00119056 atom 5 type 2 force = 0.00002030 -0.00080555 0.00007378 atom 6 type 2 force = -0.00002030 -0.00080555 0.00007378 Total force = 0.003113 Total SCF correction = 0.000038 entering subroutine stress ... VDW GRADIENT stress 0.00000366 0.00000000 0.00000000 0.00000000 0.00000346 0.00000000 0.00000000 -0.00000002 0.00000315 VDW KERNEL stress -0.00002787 0.00000000 0.00000000 0.00000000 -0.00002821 0.00000000 0.00000000 -0.00000003 -0.00002322 VDW ALL stress 0.00002421 0.00000000 0.00000000 0.00000000 0.00002475 0.00000004 0.00000000 0.00000004 0.00002007 total stress (Ry/bohr**3) (kbar) P= -1.07 -0.00000740 0.00000000 0.00000000 -1.09 0.00 0.00 0.00000000 -0.00000655 -0.00000048 0.00 -0.96 -0.07 0.00000000 -0.00000048 -0.00000784 0.00 -0.07 -1.15 kinetic stress (kbar) 773.91 0.00 0.00 0.00 795.27 35.09 0.00 35.09 748.19 local stress (kbar) -1260.29 0.00 0.00 0.00 -1418.75 -162.43 0.00 -162.43 -2492.38 nonloc. stress (kbar) 278.33 0.00 0.00 0.00 280.61 11.21 0.00 11.21 269.14 hartree stress (kbar) 584.70 0.00 0.00 0.00 685.80 102.02 0.00 102.02 1126.88 exc-cor stress (kbar) -207.39 0.00 0.00 0.00 -207.96 -1.03 0.00 -1.03 -205.77 corecor stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ewald stress (kbar) -173.91 0.00 0.00 0.00 -139.58 15.06 0.00 15.06 549.84 hubbard stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 london stress (kbar) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dft-nl stress (kbar) 3.56 0.00 0.00 0.00 3.64 0.01 0.00 0.01 2.95 Writing output data file water_vdw.save init_run : 3.38s CPU 3.47s WALL ( 1 calls) electrons : 18.42s CPU 18.77s WALL ( 1 calls) forces : 0.92s CPU 0.92s WALL ( 1 calls) stress : 3.55s CPU 3.60s WALL ( 1 calls) Called by init_run: wfcinit : 0.06s CPU 0.07s WALL ( 1 calls) potinit : 2.29s CPU 2.36s WALL ( 1 calls) Called by electrons: c_bands : 1.09s CPU 1.09s WALL ( 9 calls) sum_band : 1.57s CPU 1.58s WALL ( 9 calls) v_of_rho : 15.52s CPU 15.68s WALL ( 10 calls) v_h : 0.20s CPU 0.20s WALL ( 10 calls) v_xc : 15.32s CPU 15.47s WALL ( 10 calls) newd : 0.98s CPU 0.99s WALL ( 10 calls) mix_rho : 0.37s CPU 0.37s WALL ( 9 calls) vdW_energy : 1.76s CPU 1.76s WALL ( 10 calls) vdW_ffts : 7.28s CPU 7.32s WALL ( 22 calls) vdW_v : 2.87s CPU 2.88s WALL ( 10 calls) Called by c_bands: init_us_2 : 0.02s CPU 0.02s WALL ( 19 calls) regterg : 1.06s CPU 1.06s WALL ( 9 calls) Called by sum_band: sum_band:bec : 0.00s CPU 0.00s WALL ( 9 calls) addusdens : 0.74s CPU 0.74s WALL ( 9 calls) Called by *egterg: h_psi : 1.02s CPU 1.02s WALL ( 28 calls) s_psi : 0.01s CPU 0.02s WALL ( 28 calls) g_psi : 0.00s CPU 0.01s WALL ( 18 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 27 calls) regterg:over : 0.02s CPU 0.02s WALL ( 18 calls) regterg:upda : 0.02s CPU 0.01s WALL ( 18 calls) regterg:last : 0.00s CPU 0.01s WALL ( 9 calls) Called by h_psi: h_psi:vloc : 0.97s CPU 0.97s WALL ( 28 calls) h_psi:vnl : 0.04s CPU 0.05s WALL ( 28 calls) add_vuspsi : 0.02s CPU 0.02s WALL ( 28 calls) General routines calbec : 0.04s CPU 0.04s WALL ( 42 calls) fft : 9.98s CPU 10.05s WALL ( 605 calls) ffts : 0.14s CPU 0.15s WALL ( 19 calls) fftw : 0.97s CPU 0.98s WALL ( 254 calls) interpolate : 0.50s CPU 0.51s WALL ( 19 calls) davcio : 0.00s CPU 0.01s WALL ( 9 calls) Parallel routines fft_scatter : 3.23s CPU 3.27s WALL ( 878 calls) PWSCF : 26.67s CPU 27.31s WALL This run was terminated on: 15:39: 1 25Jan2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/example03/0000755000175000017500000000000012341373041015242 5ustar mbambaespresso-5.1/PW/examples/example03/run_xml_example0000755000175000017500000002345612341373025020403 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to perform molecular dynamics for" $ECHO "2- and 8-atom cells of Si starting with compressed bonds along (111)." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pz-vbc.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # MD in a 2-atom cell cat > si.md2.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pz-vbc.UPF -0.123 -0.123 -0.123 0.123 0.123 0.123 from_scratch $PSEUDO_DIR/ $TMP_DIR/ high 8.0 true 0.7 1.0d-8 20.0 100 second-order second-order 1 1 1 0 0 0 EOF $ECHO " running the MD calculation for Si in a 2 atom cell. G-point...\c" $PW_COMMAND < si.md2.xml > si.md2.out check_failure $? $ECHO " done" awk '/Ekin/{ek=$3;et=$11; print it,time,ek,u,et}/Dynamics/{it=$5;time=$8}/^\!/{u=$5}' si.md2.out > MD2 # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # MD in a 8-atom cell cat > si.md8.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pz-vbc.UPF -0.123 -0.123 -0.123 0.377 0.377 -0.123 0.377 -0.123 0.377 -0.123 0.377 0.377 0.123 0.123 0.123 0.623 0.623 0.123 0.623 0.123 0.623 0.123 0.623 0.623 from_scratch $PSEUDO_DIR/ $TMP_DIR/ high 8.0 true 0.7 1.0d-8 20.0 100 second-order second-order 1 1 1 0 0 0 EOF $ECHO " running the MD calculation for Si in a 8 atom cell. G-point...\c" $PW_COMMAND < si.md8.xml > si.md8.out check_failure $? $ECHO " done" awk '/Ekin/{ek=$3;et=$11; print it,time,ek,u,et}/Dynamics/{it=$5;time=$8}/^\!/{u=$5}' si.md8.out > MD8 # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # MD in a 2-atom cell. Gamma+3X cat > si.md2_G3X.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pz-vbc.UPF -0.123 -0.123 -0.123 0.123 0.123 0.123 from_scratch $PSEUDO_DIR/ $TMP_DIR/ high 8.0 true 0.7 1.0d-8 20.0 100 second-order second-order 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 1.0 EOF $ECHO " running the MD calculation for Si in a 2 atom cell. G3X-points...\c" $PW_COMMAND < si.md2_G3X.xml > si.md2_G3X.out check_failure $? $ECHO " done" awk '/Ekin/{ek=$3;et=$11; print it,time,ek,u,et} \ /Dynamics/{it=$5;time=$8}/^\!/{u=$5}' si.md2_G3X.out > MD2_G3X $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example03/README0000644000175000017500000000330112341373025016121 0ustar mbamba This example illustrates how to use pw.x to perform molecular dynamics for an 8-atom cell of Si starting with compressed bonds along 111 The calculation proceeds as follows (for the meaning of the cited input variables see the file 'INPUT_PW' in the directory 'pwdocs') 1) make a MD run for Si in the diamond structure in a 2-atom cell starting with the bond along (111) slightly compressed. Use the Gamma point only. 2) make a MD run for Si in the diamond structure in a 8-atom cell starting with the bond along (111) slightly compressed. Use the Gamma point only. Note that the two calculations do not give exactly the same results because the BZ samplig is different. 3) make a MD run for Si in the diamond structure in a 2-atom cell starting with the bond along (111) slightly compressed. Use the Gamma and the 3 X points for the BZ sampling. It should give the same result as the calculation with 8 atoms (clearly the total energy is 4 times larger) In all the three calculation above: calculation='md' specifies that a MD run is performed. dt=20 defines the time step in (Rydberg) atomic unit of time. The mass of each type of atom is specified in the cards ATOMIC_SPECIES (for Si, 28.086 is the atomic mass in a.m.u.) nstep=100 is the number of steps in the MD run. potential_extrapolation='wfc2' meansd that starting guess for the potential and the wavefunctions at the new atomic positions will be extrapolated from previous history. nosym=.true. states that symmetry should not be used in the MD run. Additional variables (such as temperature) could be set in a MD run. Refer to INPUT_PW for their meaning. espresso-5.1/PW/examples/example03/run_example0000755000175000017500000001162012341373025017511 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to perform molecular dynamics for" $ECHO "2- and 8-atom cells of Si starting with compressed bonds along (111)." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pz-vbc.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # MD in a 2-atom cell cat > si.md2.in << EOF &control calculation='md' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', dt=20, nstep=100, disk_io='high' / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0d-8 mixing_beta = 0.7 / &ions pot_extrapolation='second-order' wfc_extrapolation='second-order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS {automatic} 1 1 1 0 0 0 EOF $ECHO " running the MD calculation for Si in a 2 atom cell. G-point...\c" $PW_COMMAND < si.md2.in > si.md2.out check_failure $? $ECHO " done" awk '/Ekin/{ek=$3;et=$11; print it,time,ek,u,et}/Dynamics/{it=$5;time=$8}/^\!/{u=$5}' si.md2.out > MD2 # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/pwscf* $ECHO " done" # MD in a 8-atom cell cat > si.md8.in << EOF &control calculation='md' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', dt=20, nstep=100, disk_io='high' / &system ibrav= 1, celldm(1)=10.18, nat= 8, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0d-8, mixing_beta = 0.7 / &ions pot_extrapolation='second-order' wfc_extrapolation='second-order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.377 0.377 -0.123 Si 0.377 -0.123 0.377 Si -0.123 0.377 0.377 Si 0.123 0.123 0.123 Si 0.623 0.623 0.123 Si 0.623 0.123 0.623 Si 0.123 0.623 0.623 K_POINTS {automatic} 1 1 1 0 0 0 EOF $ECHO " running the MD calculation for Si in a 8 atom cell. G-point...\c" $PW_COMMAND < si.md8.in > si.md8.out check_failure $? $ECHO " done" awk '/Ekin/{ek=$3;et=$11; print it,time,ek,u,et}/Dynamics/{it=$5;time=$8}/^\!/{u=$5}' si.md8.out > MD8 # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/pwscf* $ECHO " done" # MD in a 2-atom cell. Gamma+3X cat > si.md2_G3X.in << EOF &control calculation='md' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', dt=20, nstep=100, disk_io='high' / &system ibrav= 2, celldm(1)=10.18, nat= 2, ntyp= 1, ecutwfc = 8.0, nosym=.true. / &electrons conv_thr = 1.0d-8, mixing_beta = 0.7 / &ions pot_extrapolation='second-order' wfc_extrapolation='second-order' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si -0.123 -0.123 -0.123 Si 0.123 0.123 0.123 K_POINTS 4 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 1.0 EOF $ECHO " running the MD calculation for Si in a 2 atom cell. G3X-points...\c" $PW_COMMAND < si.md2_G3X.in > si.md2_G3X.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/pwscf* $ECHO " done" awk '/Ekin/{ek=$3;et=$11; print it,time,ek,u,et} \ /Dynamics/{it=$5;time=$8}/^\!/{u=$5}' si.md2_G3X.out > MD2_G3X $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example03/reference/0000755000175000017500000000000012341373041017200 5ustar mbambaespresso-5.1/PW/examples/example03/reference/si.md2.out0000644000175000017500000063766412341373025021055 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:39:28 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 100 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 84.0013 ( 869 G-vectors) FFT grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.02 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.02 secs total energy = -14.43221844 Ry Harris-Foulkes estimate = -14.55439923 Ry estimated scf accuracy < 0.32475485 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.02 secs total energy = -14.44690675 Ry Harris-Foulkes estimate = -14.44918383 Ry estimated scf accuracy < 0.01103534 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.03 secs total energy = -14.44790295 Ry Harris-Foulkes estimate = -14.44786774 Ry estimated scf accuracy < 0.00018520 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.03 secs total energy = -14.44793712 Ry Harris-Foulkes estimate = -14.44793646 Ry estimated scf accuracy < 0.00000454 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-08, avg # of iterations = 1.0 total cpu time spent up to now is 0.03 secs total energy = -14.44793733 Ry Harris-Foulkes estimate = -14.44793732 Ry estimated scf accuracy < 0.00000006 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.59E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1611 7.5135 7.5135 ! total energy = -14.44793734 Ry Harris-Foulkes estimate = -14.44793734 Ry estimated scf accuracy < 5.0E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02329868 -0.02329868 -0.02329868 atom 2 type 1 force = 0.02329868 0.02329868 0.02329868 Total force = 0.057070 Total SCF correction = 0.000008 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123035762 -0.123035762 -0.123035762 Si 0.123035762 0.123035762 0.123035762 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -14.44793734 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.06 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.76E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.06 secs total energy = -14.44798775 Ry Harris-Foulkes estimate = -14.44798775 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.34E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.06 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1652 7.5112 7.5112 ! total energy = -14.44798776 Ry Harris-Foulkes estimate = -14.44798776 Ry estimated scf accuracy < 2.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02286616 -0.02286616 -0.02286616 atom 2 type 1 force = 0.02286616 0.02286616 0.02286616 Total force = 0.056010 Total SCF correction = 0.000009 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123106623 -0.123106623 -0.123106623 Si 0.123106623 0.123106623 0.123106623 kinetic energy (Ekin) = 0.00005655 Ry temperature = 5.95210786 K Ekin + Etot (const) = -14.44793121 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation first order charge density extrapolation total cpu time spent up to now is 0.09 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.88E-10, avg # of iterations = 3.0 total cpu time spent up to now is 0.09 secs total energy = -14.44808490 Ry Harris-Foulkes estimate = -14.44808490 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.32E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.10 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1735 7.5070 7.5070 ! total energy = -14.44808491 Ry Harris-Foulkes estimate = -14.44808491 Ry estimated scf accuracy < 2.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02201813 -0.02201813 -0.02201813 atom 2 type 1 force = 0.02201813 0.02201813 0.02201813 Total force = 0.053933 Total SCF correction = 0.000009 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123211279 -0.123211279 -0.123211279 Si 0.123211279 0.123211279 0.123211279 kinetic energy (Ekin) = 0.00015323 Ry temperature = 16.12920248 K Ekin + Etot (const) = -14.44793167 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.12 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.19E-14, avg # of iterations = 3.0 total cpu time spent up to now is 0.13 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.1856 7.5008 7.5008 ! total energy = -14.44822169 Ry Harris-Foulkes estimate = -14.44822169 Ry estimated scf accuracy < 1.0E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02077327 -0.02077327 -0.02077327 atom 2 type 1 force = 0.02077327 0.02077327 0.02077327 Total force = 0.050884 Total SCF correction = 0.000000 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123347822 -0.123347822 -0.123347822 Si 0.123347822 0.123347822 0.123347822 kinetic energy (Ekin) = 0.00028938 Ry temperature = 30.45975105 K Ekin + Etot (const) = -14.44793231 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.15 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.78E-13, avg # of iterations = 4.0 total cpu time spent up to now is 0.15 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2015 7.4927 7.4927 ! total energy = -14.44838817 Ry Harris-Foulkes estimate = -14.44838817 Ry estimated scf accuracy < 2.7E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01915028 -0.01915028 -0.01915028 atom 2 type 1 force = 0.01915028 0.01915028 0.01915028 Total force = 0.046908 Total SCF correction = 0.000003 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123513760 -0.123513760 -0.123513760 Si 0.123513760 0.123513760 0.123513760 kinetic energy (Ekin) = 0.00045510 Ry temperature = 47.90340302 K Ekin + Etot (const) = -14.44793306 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.17 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.94E-13, avg # of iterations = 3.0 total cpu time spent up to now is 0.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.2208 7.4828 7.4828 ! total energy = -14.44857230 Ry Harris-Foulkes estimate = -14.44857230 Ry estimated scf accuracy < 1.7E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01718564 -0.01718564 -0.01718564 atom 2 type 1 force = 0.01718564 0.01718564 0.01718564 Total force = 0.042096 Total SCF correction = 0.000000 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123706076 -0.123706076 -0.123706076 Si 0.123706076 0.123706076 0.123706076 kinetic energy (Ekin) = 0.00063841 Ry temperature = 67.19764144 K Ekin + Etot (const) = -14.44793389 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.20 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.73E-13, avg # of iterations = 4.0 total cpu time spent up to now is 0.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2432 7.4714 7.4714 ! total energy = -14.44876086 Ry Harris-Foulkes estimate = -14.44876086 Ry estimated scf accuracy < 5.4E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01492116 -0.01492116 -0.01492116 atom 2 type 1 force = 0.01492116 0.01492116 0.01492116 Total force = 0.036549 Total SCF correction = 0.000004 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123921295 -0.123921295 -0.123921295 Si 0.123921295 0.123921295 0.123921295 kinetic energy (Ekin) = 0.00082613 Ry temperature = 86.95693126 K Ekin + Etot (const) = -14.44793473 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.23 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.01E-13, avg # of iterations = 3.0 total cpu time spent up to now is 0.23 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.2684 7.4586 7.4586 ! total energy = -14.44894042 Ry Harris-Foulkes estimate = -14.44894042 Ry estimated scf accuracy < 3.1E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01240093 -0.01240093 -0.01240093 atom 2 type 1 force = 0.01240093 0.01240093 0.01240093 Total force = 0.030376 Total SCF correction = 0.000001 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124155549 -0.124155549 -0.124155549 Si 0.124155549 0.124155549 0.124155549 kinetic energy (Ekin) = 0.00100491 Ry temperature = 105.77453854 K Ekin + Etot (const) = -14.44793552 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.25 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.12E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.2958 7.4447 7.4447 ! total energy = -14.44909834 Ry Harris-Foulkes estimate = -14.44909834 Ry estimated scf accuracy < 1.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00967628 -0.00967628 -0.00967628 atom 2 type 1 force = 0.00967628 0.00967628 0.00967628 Total force = 0.023702 Total SCF correction = 0.000006 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124404656 -0.124404656 -0.124404656 Si 0.124404656 0.124404656 0.124404656 kinetic energy (Ekin) = 0.00116214 Ry temperature = 122.32513948 K Ekin + Etot (const) = -14.44793620 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.28 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.14E-13, avg # of iterations = 2.0 total cpu time spent up to now is 0.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3250 7.4300 7.4300 ! total energy = -14.44922364 Ry Harris-Foulkes estimate = -14.44922364 Ry estimated scf accuracy < 5.1E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00679734 -0.00679734 -0.00679734 atom 2 type 1 force = 0.00679734 0.00679734 0.00679734 Total force = 0.016650 Total SCF correction = 0.000001 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124664196 -0.124664196 -0.124664196 Si 0.124664196 0.124664196 0.124664196 kinetic energy (Ekin) = 0.00128691 Ry temperature = 135.45829612 K Ekin + Etot (const) = -14.44793673 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.30 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.03E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.31 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3554 7.4147 7.4147 ! total energy = -14.44930777 Ry Harris-Foulkes estimate = -14.44930777 Ry estimated scf accuracy < 2.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00382063 -0.00382063 -0.00382063 atom 2 type 1 force = 0.00382063 0.00382063 0.00382063 Total force = 0.009359 Total SCF correction = 0.000008 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124929601 -0.124929601 -0.124929601 Si 0.124929601 0.124929601 0.124929601 kinetic energy (Ekin) = 0.00137071 Ry temperature = 144.27802870 K Ekin + Etot (const) = -14.44793706 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.33 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.02E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.34 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3866 7.3990 7.3990 ! total energy = -14.44934517 Ry Harris-Foulkes estimate = -14.44934517 Ry estimated scf accuracy < 7.3E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00079696 -0.00079696 -0.00079696 atom 2 type 1 force = 0.00079696 0.00079696 0.00079696 Total force = 0.001952 Total SCF correction = 0.000003 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125196229 -0.125196229 -0.125196229 Si 0.125196229 0.125196229 0.125196229 kinetic energy (Ekin) = 0.00140797 Ry temperature = 148.20037832 K Ekin + Etot (const) = -14.44793720 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.36 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.26E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3834 7.3834 7.4180 ! total energy = -14.44933358 Ry Harris-Foulkes estimate = -14.44933358 Ry estimated scf accuracy < 3.5E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00221613 0.00221615 0.00221617 atom 2 type 1 force = -0.00221613 -0.00221615 -0.00221617 Total force = 0.005428 Total SCF correction = 0.000011 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125459455 -0.125459455 -0.125459455 Si 0.125459455 0.125459455 0.125459455 kinetic energy (Ekin) = 0.00139646 Ry temperature = 146.98926761 K Ekin + Etot (const) = -14.44793711 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.39 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.32E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.39 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3679 7.3679 7.4491 ! total energy = -14.44927415 Ry Harris-Foulkes estimate = -14.44927415 Ry estimated scf accuracy < 1.0E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00517209 0.00517209 0.00517209 atom 2 type 1 force = -0.00517209 -0.00517209 -0.00517209 Total force = 0.012669 Total SCF correction = 0.000005 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125714743 -0.125714743 -0.125714743 Si 0.125714743 0.125714743 0.125714743 kinetic energy (Ekin) = 0.00133733 Ry temperature = 140.76454479 K Ekin + Etot (const) = -14.44793683 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.42 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.31E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3530 7.3530 7.4791 ! total energy = -14.44917130 Ry Harris-Foulkes estimate = -14.44917131 Ry estimated scf accuracy < 4.5E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00801548 0.00801547 0.00801546 atom 2 type 1 force = -0.00801548 -0.00801547 -0.00801546 Total force = 0.019634 Total SCF correction = 0.000013 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125957727 -0.125957727 -0.125957727 Si 0.125957727 0.125957727 0.125957727 kinetic energy (Ekin) = 0.00123495 Ry temperature = 129.98851687 K Ekin + Etot (const) = -14.44793636 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.44 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.68E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.45 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.3387 7.3387 7.5080 ! total energy = -14.44903234 Ry Harris-Foulkes estimate = -14.44903234 Ry estimated scf accuracy < 1.7E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01070739 0.01070739 0.01070739 atom 2 type 1 force = -0.01070739 -0.01070739 -0.01070739 Total force = 0.026228 Total SCF correction = 0.000008 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126184276 -0.126184276 -0.126184276 Si 0.126184276 0.126184276 0.126184276 kinetic energy (Ekin) = 0.00109660 Ry temperature = 115.42638916 K Ekin + Etot (const) = -14.44793574 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.47 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.56E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.48 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7621 7.3255 7.3255 7.5347 ! total energy = -14.44886693 Ry Harris-Foulkes estimate = -14.44886693 Ry estimated scf accuracy < 5.5E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01319728 0.01319727 0.01319727 atom 2 type 1 force = -0.01319728 -0.01319727 -0.01319727 Total force = 0.032327 Total SCF correction = 0.000015 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126390568 -0.126390567 -0.126390567 Si 0.126390568 0.126390567 0.126390567 kinetic energy (Ekin) = 0.00093191 Ry temperature = 98.09097868 K Ekin + Etot (const) = -14.44793502 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.50 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.64E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3135 7.3135 7.5593 ! total energy = -14.44868639 Ry Harris-Foulkes estimate = -14.44868639 Ry estimated scf accuracy < 2.8E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01545644 0.01545644 0.01545644 atom 2 type 1 force = -0.01545644 -0.01545644 -0.01545644 Total force = 0.037860 Total SCF correction = 0.000011 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126573135 -0.126573135 -0.126573134 Si 0.126573135 0.126573135 0.126573134 kinetic energy (Ekin) = 0.00075214 Ry temperature = 79.16932707 K Ekin + Etot (const) = -14.44793425 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.53 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.51E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.53 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.3029 7.3029 7.5808 ! total energy = -14.44850296 Ry Harris-Foulkes estimate = -14.44850296 Ry estimated scf accuracy < 6.0E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01744009 0.01744008 0.01744007 atom 2 type 1 force = -0.01744009 -0.01744008 -0.01744007 Total force = 0.042719 Total SCF correction = 0.000016 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126728932 -0.126728932 -0.126728932 Si 0.126728932 0.126728932 0.126728932 kinetic energy (Ekin) = 0.00056949 Ry temperature = 59.94359252 K Ekin + Etot (const) = -14.44793347 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.56 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.20E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.2938 7.2938 7.5995 ! total energy = -14.44832895 Ry Harris-Foulkes estimate = -14.44832895 Ry estimated scf accuracy < 4.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01913086 0.01913087 0.01913087 atom 2 type 1 force = -0.01913086 -0.01913087 -0.01913087 Total force = 0.046861 Total SCF correction = 0.000014 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126855365 -0.126855365 -0.126855365 Si 0.126855365 0.126855365 0.126855365 kinetic energy (Ekin) = 0.00039621 Ry temperature = 41.70423664 K Ekin + Etot (const) = -14.44793274 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.58 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.38E-12, avg # of iterations = 4.0 total cpu time spent up to now is 0.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2865 7.2865 7.6144 ! total energy = -14.44817595 Ry Harris-Foulkes estimate = -14.44817595 Ry estimated scf accuracy < 6.5E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02049240 0.02049240 0.02049239 atom 2 type 1 force = -0.02049240 -0.02049240 -0.02049239 Total force = 0.050196 Total SCF correction = 0.000017 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126950343 -0.126950343 -0.126950343 Si 0.126950343 0.126950343 0.126950343 kinetic energy (Ekin) = 0.00024385 Ry temperature = 25.66674145 K Ekin + Etot (const) = -14.44793210 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.61 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.83E-13, avg # of iterations = 3.0 total cpu time spent up to now is 0.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.2810 7.2810 7.6258 ! total energy = -14.44805409 Ry Harris-Foulkes estimate = -14.44805409 Ry estimated scf accuracy < 5.4E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02151773 0.02151773 0.02151773 atom 2 type 1 force = -0.02151773 -0.02151773 -0.02151773 Total force = 0.052707 Total SCF correction = 0.000016 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127012293 -0.127012293 -0.127012292 Si 0.127012293 0.127012293 0.127012292 kinetic energy (Ekin) = 0.00012249 Ry temperature = 12.89354126 K Ekin + Etot (const) = -14.44793160 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.64 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.55E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2775 7.2775 7.6331 ! total energy = -14.44797142 Ry Harris-Foulkes estimate = -14.44797142 Ry estimated scf accuracy < 5.4E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02218005 0.02218004 0.02218004 atom 2 type 1 force = -0.02218005 -0.02218004 -0.02218004 Total force = 0.054330 Total SCF correction = 0.000015 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127040197 -0.127040197 -0.127040197 Si 0.127040197 0.127040197 0.127040197 kinetic energy (Ekin) = 0.00004016 Ry temperature = 4.22716347 K Ekin + Etot (const) = -14.44793126 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.66 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.45E-13, avg # of iterations = 4.0 total cpu time spent up to now is 0.66 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2758 7.2758 7.6365 ! total energy = -14.44793336 Ry Harris-Foulkes estimate = -14.44793336 Ry estimated scf accuracy < 3.2E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02248208 0.02248208 0.02248208 atom 2 type 1 force = -0.02248208 -0.02248208 -0.02248208 Total force = 0.055070 Total SCF correction = 0.000012 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127033593 -0.127033593 -0.127033593 Si 0.127033593 0.127033593 0.127033593 kinetic energy (Ekin) = 0.00000226 Ry temperature = 0.23754500 K Ekin + Etot (const) = -14.44793110 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.69 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.77E-14, avg # of iterations = 3.0 total cpu time spent up to now is 0.69 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2762 7.2762 7.6357 ! total energy = -14.44794241 Ry Harris-Foulkes estimate = -14.44794241 Ry estimated scf accuracy < 1.2E-11 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02240988 0.02240987 0.02240987 atom 2 type 1 force = -0.02240988 -0.02240987 -0.02240987 Total force = 0.054893 Total SCF correction = 0.000002 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126992591 -0.126992591 -0.126992591 Si 0.126992591 0.126992591 0.126992591 kinetic energy (Ekin) = 0.00001127 Ry temperature = 1.18658975 K Ekin + Etot (const) = -14.44793114 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.71 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.04E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2785 7.2785 7.6310 ! total energy = -14.44799798 Ry Harris-Foulkes estimate = -14.44799799 Ry estimated scf accuracy < 3.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02197387 0.02197388 0.02197389 atom 2 type 1 force = -0.02197387 -0.02197388 -0.02197389 Total force = 0.053825 Total SCF correction = 0.000037 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126917860 -0.126917860 -0.126917860 Si 0.126917860 0.126917860 0.126917860 kinetic energy (Ekin) = 0.00006662 Ry temperature = 7.01270397 K Ekin + Etot (const) = -14.44793136 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.74 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.65E-12, avg # of iterations = 4.0 total cpu time spent up to now is 0.74 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2830 7.2830 7.6217 ! total energy = -14.44809643 Ry Harris-Foulkes estimate = -14.44809644 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02116235 0.02116234 0.02116233 atom 2 type 1 force = -0.02116235 -0.02116234 -0.02116233 Total force = 0.051837 Total SCF correction = 0.000045 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126810647 -0.126810646 -0.126810646 Si 0.126810647 0.126810646 0.126810646 kinetic energy (Ekin) = 0.00016466 Ry temperature = 17.33206256 K Ekin + Etot (const) = -14.44793177 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.77 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.96E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.77 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.2889 7.2889 7.6094 ! total energy = -14.44823127 Ry Harris-Foulkes estimate = -14.44823127 Ry estimated scf accuracy < 9.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02001865 0.02001866 0.02001868 atom 2 type 1 force = -0.02001865 -0.02001866 -0.02001868 Total force = 0.049036 Total SCF correction = 0.000066 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126672705 -0.126672705 -0.126672705 Si 0.126672705 0.126672705 0.126672705 kinetic energy (Ekin) = 0.00029895 Ry temperature = 31.46690210 K Ekin + Etot (const) = -14.44793232 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.80 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.49E-11, avg # of iterations = 4.0 total cpu time spent up to now is 0.80 secs total energy = -14.44839360 Ry Harris-Foulkes estimate = -14.44839361 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.13E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.80 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2971 7.2971 7.5927 ! total energy = -14.44839360 Ry Harris-Foulkes estimate = -14.44839360 Ry estimated scf accuracy < 5.8E-12 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01852099 0.01852098 0.01852098 atom 2 type 1 force = -0.01852099 -0.01852098 -0.01852098 Total force = 0.045367 Total SCF correction = 0.000001 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126506336 -0.126506335 -0.126506335 Si 0.126506336 0.126506335 0.126506335 kinetic energy (Ekin) = 0.00046063 Ry temperature = 48.48510134 K Ekin + Etot (const) = -14.44793297 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.83 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.80E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.83 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7627 7.3067 7.3067 7.5731 ! total energy = -14.44857265 Ry Harris-Foulkes estimate = -14.44857265 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01671927 0.01671928 0.01671929 atom 2 type 1 force = -0.01671927 -0.01671928 -0.01671929 Total force = 0.040954 Total SCF correction = 0.000033 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126314303 -0.126314302 -0.126314302 Si 0.126314303 0.126314302 0.126314302 kinetic energy (Ekin) = 0.00063894 Ry temperature = 67.25363083 K Ekin + Etot (const) = -14.44793371 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.85 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.49E-12, avg # of iterations = 4.0 total cpu time spent up to now is 0.86 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3180 7.3180 7.5500 ! total energy = -14.44875645 Ry Harris-Foulkes estimate = -14.44875645 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01461923 0.01461923 0.01461921 atom 2 type 1 force = -0.01461923 -0.01461923 -0.01461921 Total force = 0.035810 Total SCF correction = 0.000032 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126099830 -0.126099830 -0.126099830 Si 0.126099830 0.126099830 0.126099830 kinetic energy (Ekin) = 0.00082196 Ry temperature = 86.51791019 K Ekin + Etot (const) = -14.44793449 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.88 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.15E-11, avg # of iterations = 2.0 total cpu time spent up to now is 0.89 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7620 7.3303 7.3303 7.5249 ! total energy = -14.44893262 Ry Harris-Foulkes estimate = -14.44893262 Ry estimated scf accuracy < 3.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01227596 0.01227597 0.01227598 atom 2 type 1 force = -0.01227596 -0.01227597 -0.01227598 Total force = 0.030070 Total SCF correction = 0.000040 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125866514 -0.125866514 -0.125866514 Si 0.125866514 0.125866514 0.125866514 kinetic energy (Ekin) = 0.00099738 Ry temperature = 104.98281444 K Ekin + Etot (const) = -14.44793523 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.91 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.32E-11, avg # of iterations = 2.0 total cpu time spent up to now is 0.91 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3442 7.3442 7.4969 ! total energy = -14.44908919 Ry Harris-Foulkes estimate = -14.44908919 Ry estimated scf accuracy < 6.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00969370 0.00969369 0.00969367 atom 2 type 1 force = -0.00969370 -0.00969369 -0.00969367 Total force = 0.023745 Total SCF correction = 0.000051 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125618320 -0.125618319 -0.125618319 Si 0.125618320 0.125618319 0.125618319 kinetic energy (Ekin) = 0.00115326 Ry temperature = 121.39035837 K Ekin + Etot (const) = -14.44793592 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.93 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.97E-11, avg # of iterations = 2.0 total cpu time spent up to now is 0.94 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3584 7.3584 7.4681 ! total energy = -14.44921536 Ry Harris-Foulkes estimate = -14.44921537 Ry estimated scf accuracy < 6.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00695030 0.00695031 0.00695032 atom 2 type 1 force = -0.00695030 -0.00695031 -0.00695032 Total force = 0.017025 Total SCF correction = 0.000056 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125359456 -0.125359456 -0.125359456 Si 0.125359456 0.125359456 0.125359456 kinetic energy (Ekin) = 0.00127889 Ry temperature = 134.61333577 K Ekin + Etot (const) = -14.44793647 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.96 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.27E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.96 secs total energy = -14.44930232 Ry Harris-Foulkes estimate = -14.44930233 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3737 7.3737 7.4372 ! total energy = -14.44930232 Ry Harris-Foulkes estimate = -14.44930232 Ry estimated scf accuracy < 6.0E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00405122 0.00405122 0.00405121 atom 2 type 1 force = -0.00405122 -0.00405122 -0.00405121 Total force = 0.009923 Total SCF correction = 0.000003 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125094375 -0.125094375 -0.125094374 Si 0.125094375 0.125094375 0.125094374 kinetic energy (Ekin) = 0.00136549 Ry temperature = 143.72877558 K Ekin + Etot (const) = -14.44793683 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.99 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.34E-12, avg # of iterations = 2.0 total cpu time spent up to now is 0.99 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3893 7.3893 7.4061 ! total energy = -14.44934380 Ry Harris-Foulkes estimate = -14.44934380 Ry estimated scf accuracy < 8.7E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00107023 0.00107023 0.00107024 atom 2 type 1 force = -0.00107023 -0.00107023 -0.00107024 Total force = 0.002622 Total SCF correction = 0.000020 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124827651 -0.124827650 -0.124827650 Si 0.124827651 0.124827650 0.124827650 kinetic energy (Ekin) = 0.00140677 Ry temperature = 148.07407009 K Ekin + Etot (const) = -14.44793703 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.02 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.26E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.02 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3745 7.4051 7.4051 ! total energy = -14.44933660 Ry Harris-Foulkes estimate = -14.44933660 Ry estimated scf accuracy < 1.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00195751 -0.00195756 -0.00195764 atom 2 type 1 force = 0.00195751 0.00195756 0.00195764 Total force = 0.004795 Total SCF correction = 0.000023 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124563931 -0.124563931 -0.124563931 Si 0.124563931 0.124563931 0.124563931 kinetic energy (Ekin) = 0.00139957 Ry temperature = 147.31657404 K Ekin + Etot (const) = -14.44793702 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.04 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.38E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.05 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3437 7.4205 7.4205 ! total energy = -14.44928086 Ry Harris-Foulkes estimate = -14.44928086 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00496562 -0.00496570 -0.00496580 atom 2 type 1 force = 0.00496562 0.00496570 0.00496580 Total force = 0.012163 Total SCF correction = 0.000031 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124307833 -0.124307833 -0.124307833 Si 0.124307833 0.124307833 0.124307833 kinetic energy (Ekin) = 0.00134406 Ry temperature = 141.47306115 K Ekin + Etot (const) = -14.44793680 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.07 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.20E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.07 secs total energy = -14.44918013 Ry Harris-Foulkes estimate = -14.44918015 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.14E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.08 secs total energy = -14.44918014 Ry Harris-Foulkes estimate = -14.44918015 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.92E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.08 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7615 7.3136 7.4357 7.4357 ! total energy = -14.44918014 Ry Harris-Foulkes estimate = -14.44918014 Ry estimated scf accuracy < 2.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00791392 -0.00791390 -0.00791388 atom 2 type 1 force = 0.00791392 0.00791390 0.00791388 Total force = 0.019385 Total SCF correction = 0.000003 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124063883 -0.124063883 -0.124063884 Si 0.124063883 0.124063883 0.124063884 kinetic energy (Ekin) = 0.00124377 Ry temperature = 130.91680024 K Ekin + Etot (const) = -14.44793637 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.10 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.84E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.11 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7618 7.2851 7.4501 7.4501 ! total energy = -14.44904119 Ry Harris-Foulkes estimate = -14.44904119 Ry estimated scf accuracy < 5.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01073953 -0.01073953 -0.01073938 atom 2 type 1 force = 0.01073953 0.01073953 0.01073938 Total force = 0.026306 Total SCF correction = 0.000034 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123836417 -0.123836418 -0.123836418 Si 0.123836417 0.123836418 0.123836418 kinetic energy (Ekin) = 0.00110541 Ry temperature = 116.35386417 K Ekin + Etot (const) = -14.44793577 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.13 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.85E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.14 secs total energy = -14.44887355 Ry Harris-Foulkes estimate = -14.44887357 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.56E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.14 secs total energy = -14.44887356 Ry Harris-Foulkes estimate = -14.44887356 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.72E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.14 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7621 7.2585 7.4636 7.4636 ! total energy = -14.44887356 Ry Harris-Foulkes estimate = -14.44887356 Ry estimated scf accuracy < 3.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01339306 -0.01339295 -0.01339298 atom 2 type 1 force = 0.01339306 0.01339295 0.01339298 Total force = 0.032806 Total SCF correction = 0.000002 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123629509 -0.123629510 -0.123629510 Si 0.123629509 0.123629510 0.123629510 kinetic energy (Ekin) = 0.00093852 Ry temperature = 98.78700242 K Ekin + Etot (const) = -14.44793504 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.16 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.16E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.17 secs total energy = -14.44868897 Ry Harris-Foulkes estimate = -14.44868898 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.45E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.17 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.2343 7.4759 7.4759 ! total energy = -14.44868897 Ry Harris-Foulkes estimate = -14.44868897 Ry estimated scf accuracy < 4.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01582132 -0.01582132 -0.01582133 atom 2 type 1 force = 0.01582132 0.01582132 0.01582133 Total force = 0.038754 Total SCF correction = 0.000024 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123446886 -0.123446886 -0.123446887 Si 0.123446886 0.123446886 0.123446887 kinetic energy (Ekin) = 0.00075475 Ry temperature = 79.44337220 K Ekin + Etot (const) = -14.44793422 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.19 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.20 secs total energy = -14.44850048 Ry Harris-Foulkes estimate = -14.44850049 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.01E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.20 secs total energy = -14.44850048 Ry Harris-Foulkes estimate = -14.44850049 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.34E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.2130 7.4868 7.4868 ! total energy = -14.44850049 Ry Harris-Foulkes estimate = -14.44850049 Ry estimated scf accuracy < 1.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01797603 -0.01797604 -0.01797601 atom 2 type 1 force = 0.01797603 0.01797604 0.01797601 Total force = 0.044032 Total SCF correction = 0.000001 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123291855 -0.123291855 -0.123291856 Si 0.123291855 0.123291855 0.123291856 kinetic energy (Ekin) = 0.00056710 Ry temperature = 59.69219269 K Ekin + Etot (const) = -14.44793338 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.22 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.27E-12, avg # of iterations = 4.0 total cpu time spent up to now is 1.23 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.1950 7.4960 7.4960 ! total energy = -14.44832156 Ry Harris-Foulkes estimate = -14.44832157 Ry estimated scf accuracy < 6.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01981453 -0.01981454 -0.01981456 atom 2 type 1 force = 0.01981453 0.01981454 0.01981456 Total force = 0.048536 Total SCF correction = 0.000032 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123167238 -0.123167238 -0.123167239 Si 0.123167238 0.123167238 0.123167239 kinetic energy (Ekin) = 0.00038899 Ry temperature = 40.94456225 K Ekin + Etot (const) = -14.44793257 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.25 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.69E-11, avg # of iterations = 4.0 total cpu time spent up to now is 1.25 secs total energy = -14.44816509 Ry Harris-Foulkes estimate = -14.44816511 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.07E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.26 secs total energy = -14.44816510 Ry Harris-Foulkes estimate = -14.44816511 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.95E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1805 7.5034 7.5034 ! total energy = -14.44816510 Ry Harris-Foulkes estimate = -14.44816510 Ry estimated scf accuracy < 9.3E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02129836 -0.02129835 -0.02129838 atom 2 type 1 force = 0.02129836 0.02129835 0.02129838 Total force = 0.052170 Total SCF correction = 0.000002 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123075313 -0.123075313 -0.123075314 Si 0.123075313 0.123075313 0.123075314 kinetic energy (Ekin) = 0.00023324 Ry temperature = 24.55032511 K Ekin + Etot (const) = -14.44793186 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.28 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.89E-12, avg # of iterations = 3.0 total cpu time spent up to now is 1.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1698 7.5089 7.5089 ! total energy = -14.44804243 Ry Harris-Foulkes estimate = -14.44804244 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02239638 -0.02239638 -0.02239635 atom 2 type 1 force = 0.02239638 0.02239638 0.02239635 Total force = 0.054860 Total SCF correction = 0.000030 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123017765 -0.123017765 -0.123017766 Si 0.123017765 0.123017765 0.123017766 kinetic energy (Ekin) = 0.00011113 Ry temperature = 11.69765954 K Ekin + Etot (const) = -14.44793130 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.30 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.67E-11, avg # of iterations = 4.0 total cpu time spent up to now is 1.31 secs total energy = -14.44796249 Ry Harris-Foulkes estimate = -14.44796251 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.52E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.31 secs total energy = -14.44796250 Ry Harris-Foulkes estimate = -14.44796251 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.32 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1631 7.5123 7.5123 ! total energy = -14.44796250 Ry Harris-Foulkes estimate = -14.44796250 Ry estimated scf accuracy < 4.5E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02308520 -0.02308519 -0.02308518 atom 2 type 1 force = 0.02308520 0.02308519 0.02308518 Total force = 0.056547 Total SCF correction = 0.000001 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.122995651 -0.122995652 -0.122995652 Si 0.122995651 0.122995652 0.122995652 kinetic energy (Ekin) = 0.00003157 Ry temperature = 3.32253760 K Ekin + Etot (const) = -14.44793094 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.34 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.28E-12, avg # of iterations = 4.0 total cpu time spent up to now is 1.34 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1605 7.5136 7.5136 ! total energy = -14.44793114 Ry Harris-Foulkes estimate = -14.44793114 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02335022 -0.02335021 -0.02335020 atom 2 type 1 force = 0.02335022 0.02335021 0.02335020 Total force = 0.057196 Total SCF correction = 0.000015 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123009379 -0.123009379 -0.123009380 Si 0.123009379 0.123009379 0.123009380 kinetic energy (Ekin) = 0.00000035 Ry temperature = 0.03681836 K Ekin + Etot (const) = -14.44793079 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.36 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.81E-13, avg # of iterations = 4.0 total cpu time spent up to now is 1.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1621 7.5128 7.5128 ! total energy = -14.44795065 Ry Harris-Foulkes estimate = -14.44795065 Ry estimated scf accuracy < 5.2E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02318573 -0.02318574 -0.02318573 atom 2 type 1 force = 0.02318573 0.02318574 0.02318573 Total force = 0.056793 Total SCF correction = 0.000009 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123058696 -0.123058696 -0.123058696 Si 0.123058696 0.123058696 0.123058696 kinetic energy (Ekin) = 0.00001977 Ry temperature = 2.08095623 K Ekin + Etot (const) = -14.44793088 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.39 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.46E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.40 secs total energy = -14.44801957 Ry Harris-Foulkes estimate = -14.44801963 Ry estimated scf accuracy < 0.00000011 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.40 secs total energy = -14.44801959 Ry Harris-Foulkes estimate = -14.44801962 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.82E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.40 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1678 7.5099 7.5099 ! total energy = -14.44801960 Ry Harris-Foulkes estimate = -14.44801960 Ry estimated scf accuracy < 1.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02259516 -0.02259515 -0.02259514 atom 2 type 1 force = 0.02259516 0.02259515 0.02259514 Total force = 0.055347 Total SCF correction = 0.000002 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123142694 -0.123142695 -0.123142695 Si 0.123142694 0.123142695 0.123142695 kinetic energy (Ekin) = 0.00008840 Ry temperature = 9.30534244 K Ekin + Etot (const) = -14.44793120 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.43 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.15E-13, avg # of iterations = 5.0 total cpu time spent up to now is 1.43 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1776 7.5049 7.5049 ! total energy = -14.44813295 Ry Harris-Foulkes estimate = -14.44813295 Ry estimated scf accuracy < 3.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02159117 -0.02159117 -0.02159118 atom 2 type 1 force = 0.02159117 0.02159117 0.02159118 Total force = 0.052887 Total SCF correction = 0.000016 Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123259834 -0.123259835 -0.123259835 Si 0.123259834 0.123259835 0.123259835 kinetic energy (Ekin) = 0.00020124 Ry temperature = 21.18186327 K Ekin + Etot (const) = -14.44793172 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.46 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.23E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.46 secs total energy = -14.44828241 Ry Harris-Foulkes estimate = -14.44828246 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.09E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.47 secs total energy = -14.44828242 Ry Harris-Foulkes estimate = -14.44828246 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.09E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.47 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1912 7.4979 7.4979 ! total energy = -14.44828244 Ry Harris-Foulkes estimate = -14.44828244 Ry estimated scf accuracy < 3.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02019543 -0.02019542 -0.02019542 atom 2 type 1 force = 0.02019543 0.02019542 0.02019542 Total force = 0.049468 Total SCF correction = 0.000006 Entering Dynamics: iteration = 52 time = 0.0503 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123407973 -0.123407973 -0.123407974 Si 0.123407973 0.123407973 0.123407974 kinetic energy (Ekin) = 0.00035004 Ry temperature = 36.84493191 K Ekin + Etot (const) = -14.44793239 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.49 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.06E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.50 secs total energy = -14.44845716 Ry Harris-Foulkes estimate = -14.44845724 Ry estimated scf accuracy < 0.00000012 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.50 secs total energy = -14.44845718 Ry Harris-Foulkes estimate = -14.44845725 Ry estimated scf accuracy < 0.00000019 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2085 7.4891 7.4891 ! total energy = -14.44845721 Ry Harris-Foulkes estimate = -14.44845721 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01843690 -0.01843690 -0.01843689 atom 2 type 1 force = 0.01843690 0.01843690 0.01843689 Total force = 0.045161 Total SCF correction = 0.000012 Entering Dynamics: iteration = 53 time = 0.0513 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123584412 -0.123584412 -0.123584412 Si 0.123584412 0.123584412 0.123584412 kinetic energy (Ekin) = 0.00052403 Ry temperature = 55.15802684 K Ekin + Etot (const) = -14.44793318 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.53 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.76E-11, avg # of iterations = 5.0 total cpu time spent up to now is 1.53 secs total energy = -14.44864465 Ry Harris-Foulkes estimate = -14.44864467 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.52E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.54 secs total energy = -14.44864466 Ry Harris-Foulkes estimate = -14.44864467 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.79E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.54 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.2291 7.4786 7.4786 ! total energy = -14.44864466 Ry Harris-Foulkes estimate = -14.44864466 Ry estimated scf accuracy < 2.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01635221 -0.01635221 -0.01635220 atom 2 type 1 force = 0.01635221 0.01635221 0.01635220 Total force = 0.040055 Total SCF correction = 0.000005 Entering Dynamics: iteration = 54 time = 0.0522 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123785950 -0.123785950 -0.123785950 Si 0.123785950 0.123785950 0.123785950 kinetic energy (Ekin) = 0.00071063 Ry temperature = 74.80011755 K Ekin + Etot (const) = -14.44793403 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.56 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.32E-12, avg # of iterations = 5.0 total cpu time spent up to now is 1.57 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.2526 7.4666 7.4666 ! total energy = -14.44883136 Ry Harris-Foulkes estimate = -14.44883137 Ry estimated scf accuracy < 5.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01398405 -0.01398405 -0.01398404 atom 2 type 1 force = 0.01398405 0.01398405 0.01398404 Total force = 0.034254 Total SCF correction = 0.000026 Entering Dynamics: iteration = 55 time = 0.0532 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124008953 -0.124008953 -0.124008953 Si 0.124008953 0.124008953 0.124008953 kinetic energy (Ekin) = 0.00089651 Ry temperature = 94.36518665 K Ekin + Etot (const) = -14.44793485 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.59 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.90E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.60 secs total energy = -14.44900406 Ry Harris-Foulkes estimate = -14.44900409 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.18E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.60 secs total energy = -14.44900407 Ry Harris-Foulkes estimate = -14.44900409 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.18E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7619 7.2786 7.4534 7.4534 ! total energy = -14.44900408 Ry Harris-Foulkes estimate = -14.44900408 Ry estimated scf accuracy < 8.7E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01137924 -0.01137924 -0.01137923 atom 2 type 1 force = 0.01137924 0.01137924 0.01137923 Total force = 0.027873 Total SCF correction = 0.000001 Entering Dynamics: iteration = 56 time = 0.0542 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124249422 -0.124249422 -0.124249422 Si 0.124249422 0.124249422 0.124249422 kinetic energy (Ekin) = 0.00106847 Ry temperature = 112.46565251 K Ekin + Etot (const) = -14.44793561 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.63 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.08E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.63 secs total energy = -14.44915069 Ry Harris-Foulkes estimate = -14.44915071 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.64 secs total energy = -14.44915070 Ry Harris-Foulkes estimate = -14.44915071 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3068 7.4391 7.4391 ! total energy = -14.44915070 Ry Harris-Foulkes estimate = -14.44915070 Ry estimated scf accuracy < 5.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00858886 -0.00858886 -0.00858885 atom 2 type 1 force = 0.00858886 0.00858886 0.00858885 Total force = 0.021038 Total SCF correction = 0.000003 Entering Dynamics: iteration = 57 time = 0.0552 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124503075 -0.124503074 -0.124503075 Si 0.124503075 0.124503074 0.124503075 kinetic energy (Ekin) = 0.00121447 Ry temperature = 127.83243558 K Ekin + Etot (const) = -14.44793624 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.66 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.13E-11, avg # of iterations = 4.0 total cpu time spent up to now is 1.67 secs total energy = -14.44926109 Ry Harris-Foulkes estimate = -14.44926111 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.28E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.67 secs total energy = -14.44926109 Ry Harris-Foulkes estimate = -14.44926111 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.28E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.67 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3365 7.4242 7.4242 ! total energy = -14.44926110 Ry Harris-Foulkes estimate = -14.44926110 Ry estimated scf accuracy < 2.3E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00566588 -0.00566588 -0.00566588 atom 2 type 1 force = 0.00566588 0.00566588 0.00566588 Total force = 0.013879 Total SCF correction = 0.000001 Entering Dynamics: iteration = 58 time = 0.0561 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124765424 -0.124765424 -0.124765424 Si 0.124765424 0.124765424 0.124765424 kinetic energy (Ekin) = 0.00132440 Ry temperature = 139.40418397 K Ekin + Etot (const) = -14.44793670 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.70 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.20E-11, avg # of iterations = 4.0 total cpu time spent up to now is 1.70 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3673 7.4087 7.4087 ! total energy = -14.44932781 Ry Harris-Foulkes estimate = -14.44932782 Ry estimated scf accuracy < 8.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00266438 -0.00266438 -0.00266437 atom 2 type 1 force = 0.00266438 0.00266438 0.00266437 Total force = 0.006526 Total SCF correction = 0.000006 Entering Dynamics: iteration = 59 time = 0.0571 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125031863 -0.125031863 -0.125031863 Si 0.125031863 0.125031863 0.125031863 kinetic energy (Ekin) = 0.00139085 Ry temperature = 146.39862355 K Ekin + Etot (const) = -14.44793696 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.73 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.51E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.74 secs total energy = -14.44934646 Ry Harris-Foulkes estimate = -14.44934656 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.10E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.74 secs total energy = -14.44934648 Ry Harris-Foulkes estimate = -14.44934659 Ry estimated scf accuracy < 0.00000030 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.10E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.74 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3930 7.3930 7.3986 ! total energy = -14.44934653 Ry Harris-Foulkes estimate = -14.44934653 Ry estimated scf accuracy < 1.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00036135 0.00036138 0.00036142 atom 2 type 1 force = -0.00036135 -0.00036138 -0.00036142 Total force = 0.000885 Total SCF correction = 0.000003 Entering Dynamics: iteration = 60 time = 0.0581 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125297748 -0.125297747 -0.125297747 Si 0.125297748 0.125297747 0.125297747 kinetic energy (Ekin) = 0.00140951 Ry temperature = 148.36252412 K Ekin + Etot (const) = -14.44793702 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.77 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.51E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.77 secs total energy = -14.44931627 Ry Harris-Foulkes estimate = -14.44931630 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.38E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.78 secs total energy = -14.44931627 Ry Harris-Foulkes estimate = -14.44931630 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.38E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.78 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3774 7.3774 7.4300 ! total energy = -14.44931629 Ry Harris-Foulkes estimate = -14.44931629 Ry estimated scf accuracy < 3.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00335905 0.00335904 0.00335895 atom 2 type 1 force = -0.00335905 -0.00335904 -0.00335895 Total force = 0.008228 Total SCF correction = 0.000006 Entering Dynamics: iteration = 61 time = 0.0590 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125558476 -0.125558476 -0.125558476 Si 0.125558476 0.125558476 0.125558476 kinetic energy (Ekin) = 0.00137943 Ry temperature = 145.19642771 K Ekin + Etot (const) = -14.44793685 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.80 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.65E-11, avg # of iterations = 5.0 total cpu time spent up to now is 1.81 secs total energy = -14.44923952 Ry Harris-Foulkes estimate = -14.44923953 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.75E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.81 secs total energy = -14.44923953 Ry Harris-Foulkes estimate = -14.44923953 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3621 7.3621 7.4607 ! total energy = -14.44923953 Ry Harris-Foulkes estimate = -14.44923953 Ry estimated scf accuracy < 1.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00627747 0.00627742 0.00627744 atom 2 type 1 force = -0.00627747 -0.00627742 -0.00627744 Total force = 0.015377 Total SCF correction = 0.000003 Entering Dynamics: iteration = 62 time = 0.0600 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125809569 -0.125809569 -0.125809569 Si 0.125809569 0.125809569 0.125809569 kinetic energy (Ekin) = 0.00130303 Ry temperature = 137.15447777 K Ekin + Etot (const) = -14.44793650 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.84 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.97E-12, avg # of iterations = 5.0 total cpu time spent up to now is 1.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7617 7.3474 7.3474 7.4904 ! total energy = -14.44912182 Ry Harris-Foulkes estimate = -14.44912183 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00906812 0.00906803 0.00906807 atom 2 type 1 force = -0.00906812 -0.00906803 -0.00906807 Total force = 0.022212 Total SCF correction = 0.000012 Entering Dynamics: iteration = 63 time = 0.0610 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126046743 -0.126046743 -0.126046743 Si 0.126046743 0.126046743 0.126046743 kinetic energy (Ekin) = 0.00118586 Ry temperature = 124.82101848 K Ekin + Etot (const) = -14.44793597 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.86 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.23E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.87 secs total energy = -14.44897145 Ry Harris-Foulkes estimate = -14.44897147 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.16E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.87 secs total energy = -14.44897146 Ry Harris-Foulkes estimate = -14.44897147 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.87 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7619 7.3335 7.3335 7.5185 ! total energy = -14.44897146 Ry Harris-Foulkes estimate = -14.44897146 Ry estimated scf accuracy < 7.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01168753 0.01168779 0.01168765 atom 2 type 1 force = -0.01168753 -0.01168779 -0.01168765 Total force = 0.028629 Total SCF correction = 0.000004 Entering Dynamics: iteration = 64 time = 0.0619 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126265978 -0.126265977 -0.126265977 Si 0.126265978 0.126265977 0.126265977 kinetic energy (Ekin) = 0.00103615 Ry temperature = 109.06358096 K Ekin + Etot (const) = -14.44793531 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.90 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.45E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.3208 7.3208 7.5444 ! total energy = -14.44879883 Ry Harris-Foulkes estimate = -14.44879883 Ry estimated scf accuracy < 8.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01409364 0.01409367 0.01409332 atom 2 type 1 force = -0.01409364 -0.01409367 -0.01409332 Total force = 0.034522 Total SCF correction = 0.000028 Entering Dynamics: iteration = 65 time = 0.0629 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126463579 -0.126463578 -0.126463579 Si 0.126463579 0.126463578 0.126463579 kinetic energy (Ekin) = 0.00086426 Ry temperature = 90.97086581 K Ekin + Etot (const) = -14.44793456 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.93 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.33E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.94 secs total energy = -14.44861565 Ry Harris-Foulkes estimate = -14.44861572 Ry estimated scf accuracy < 0.00000012 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.94 secs total energy = -14.44861568 Ry Harris-Foulkes estimate = -14.44861572 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-09, avg # of iterations = 3.0 total cpu time spent up to now is 1.94 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.3092 7.3092 7.5679 ! total energy = -14.44861569 Ry Harris-Foulkes estimate = -14.44861569 Ry estimated scf accuracy < 3.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01625074 0.01625077 0.01625074 atom 2 type 1 force = -0.01625074 -0.01625077 -0.01625074 Total force = 0.039806 Total SCF correction = 0.000004 Entering Dynamics: iteration = 66 time = 0.0639 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126636237 -0.126636235 -0.126636237 Si 0.126636237 0.126636235 0.126636237 kinetic energy (Ekin) = 0.00068191 Ry temperature = 71.77671501 K Ekin + Etot (const) = -14.44793378 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.97 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.97E-11, avg # of iterations = 4.0 total cpu time spent up to now is 1.97 secs total energy = -14.44843441 Ry Harris-Foulkes estimate = -14.44843442 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.00E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.98 secs total energy = -14.44843442 Ry Harris-Foulkes estimate = -14.44843442 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.21E-10, avg # of iterations = 3.0 total cpu time spent up to now is 1.98 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.2992 7.2992 7.5884 ! total energy = -14.44843442 Ry Harris-Foulkes estimate = -14.44843442 Ry estimated scf accuracy < 4.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01812618 0.01812615 0.01812619 atom 2 type 1 force = -0.01812618 -0.01812615 -0.01812619 Total force = 0.044400 Total SCF correction = 0.000003 Entering Dynamics: iteration = 67 time = 0.0648 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126781071 -0.126781070 -0.126781072 Si 0.126781071 0.126781070 0.126781072 kinetic energy (Ekin) = 0.00050140 Ry temperature = 52.77629295 K Ekin + Etot (const) = -14.44793302 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.00 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.84E-12, avg # of iterations = 4.0 total cpu time spent up to now is 2.01 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.2908 7.2908 7.6056 ! total energy = -14.44826713 Ry Harris-Foulkes estimate = -14.44826713 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01969307 0.01969281 0.01969276 atom 2 type 1 force = -0.01969307 -0.01969281 -0.01969276 Total force = 0.048238 Total SCF correction = 0.000010 Entering Dynamics: iteration = 68 time = 0.0658 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126895678 -0.126895677 -0.126895679 Si 0.126895678 0.126895677 0.126895679 kinetic energy (Ekin) = 0.00033481 Ry temperature = 35.24144424 K Ekin + Etot (const) = -14.44793232 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.03 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.12E-10, avg # of iterations = 4.0 total cpu time spent up to now is 2.03 secs total energy = -14.44812493 Ry Harris-Foulkes estimate = -14.44812497 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.26E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.04 secs total energy = -14.44812494 Ry Harris-Foulkes estimate = -14.44812497 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.26E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.2842 7.2842 7.6192 ! total energy = -14.44812495 Ry Harris-Foulkes estimate = -14.44812495 Ry estimated scf accuracy < 1.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02092818 0.02092825 0.02092806 atom 2 type 1 force = -0.02092818 -0.02092825 -0.02092806 Total force = 0.051263 Total SCF correction = 0.000004 Entering Dynamics: iteration = 69 time = 0.0668 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126978162 -0.126978160 -0.126978164 Si 0.126978162 0.126978160 0.126978164 kinetic energy (Ekin) = 0.00019322 Ry temperature = 20.33793708 K Ekin + Etot (const) = -14.44793173 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.07 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.35E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.07 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2794 7.2794 7.6291 ! total energy = -14.44801728 Ry Harris-Foulkes estimate = -14.44801728 Ry estimated scf accuracy < 7.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02181506 0.02181488 0.02181502 atom 2 type 1 force = -0.02181506 -0.02181488 -0.02181502 Total force = 0.053436 Total SCF correction = 0.000028 Entering Dynamics: iteration = 70 time = 0.0677 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127027160 -0.127027159 -0.127027164 Si 0.127027160 0.127027159 0.127027164 kinetic energy (Ekin) = 0.00008599 Ry temperature = 9.05129753 K Ekin + Etot (const) = -14.44793128 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.09 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.65E-10, avg # of iterations = 4.0 total cpu time spent up to now is 2.10 secs total energy = -14.44795119 Ry Harris-Foulkes estimate = -14.44795121 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.83E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.10 secs total energy = -14.44795120 Ry Harris-Foulkes estimate = -14.44795121 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.10 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2766 7.2766 7.6349 ! total energy = -14.44795120 Ry Harris-Foulkes estimate = -14.44795120 Ry estimated scf accuracy < 8.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02234113 0.02234118 0.02234126 atom 2 type 1 force = -0.02234113 -0.02234118 -0.02234126 Total force = 0.054725 Total SCF correction = 0.000003 Entering Dynamics: iteration = 71 time = 0.0687 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127041867 -0.127041866 -0.127041871 Si 0.127041867 0.127041866 0.127041871 kinetic energy (Ekin) = 0.00002019 Ry temperature = 2.12484982 K Ekin + Etot (const) = -14.44793101 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.12 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.32E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.13 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2757 7.2757 7.6367 ! total energy = -14.44793106 Ry Harris-Foulkes estimate = -14.44793106 Ry estimated scf accuracy < 4.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02249889 0.02249884 0.02249889 atom 2 type 1 force = -0.02249889 -0.02249884 -0.02249889 Total force = 0.055111 Total SCF correction = 0.000018 Entering Dynamics: iteration = 72 time = 0.0697 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127022038 -0.127022038 -0.127022043 Si 0.127022038 0.127022038 0.127022043 kinetic energy (Ekin) = 0.00000013 Ry temperature = 0.01373210 K Ekin + Etot (const) = -14.44793093 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.15 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.81E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.16 secs total energy = -14.44795818 Ry Harris-Foulkes estimate = -14.44795818 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.16 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.2769 7.2769 7.6343 ! total energy = -14.44795818 Ry Harris-Foulkes estimate = -14.44795818 Ry estimated scf accuracy < 9.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02228620 0.02228613 0.02228616 atom 2 type 1 force = -0.02228620 -0.02228613 -0.02228616 Total force = 0.054590 Total SCF correction = 0.000010 Entering Dynamics: iteration = 73 time = 0.0706 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126968002 -0.126968002 -0.126968008 Si 0.126968002 0.126968002 0.126968008 kinetic energy (Ekin) = 0.00002714 Ry temperature = 2.85651209 K Ekin + Etot (const) = -14.44793104 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.18 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.02E-09, avg # of iterations = 4.0 total cpu time spent up to now is 2.19 secs total energy = -14.44803039 Ry Harris-Foulkes estimate = -14.44803100 Ry estimated scf accuracy < 0.00000102 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-08, avg # of iterations = 3.0 total cpu time spent up to now is 2.19 secs total energy = -14.44803056 Ry Harris-Foulkes estimate = -14.44803108 Ry estimated scf accuracy < 0.00000146 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-08, avg # of iterations = 3.0 total cpu time spent up to now is 2.20 secs total energy = -14.44803076 Ry Harris-Foulkes estimate = -14.44803076 Ry estimated scf accuracy < 0.00000001 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-10, avg # of iterations = 4.0 total cpu time spent up to now is 2.20 secs total energy = -14.44803078 Ry Harris-Foulkes estimate = -14.44803078 Ry estimated scf accuracy < 0.00000002 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-10, avg # of iterations = 1.0 total cpu time spent up to now is 2.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.2800 7.2800 7.6279 ! total energy = -14.44803078 Ry Harris-Foulkes estimate = -14.44803078 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02170608 0.02170613 0.02170617 atom 2 type 1 force = -0.02170608 -0.02170613 -0.02170617 Total force = 0.053169 Total SCF correction = 0.000012 Entering Dynamics: iteration = 74 time = 0.0716 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126880648 -0.126880648 -0.126880655 Si 0.126880648 0.126880648 0.126880655 kinetic energy (Ekin) = 0.00009944 Ry temperature = 10.46662822 K Ekin + Etot (const) = -14.44793134 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.23 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 4.0 total cpu time spent up to now is 2.23 secs total energy = -14.44814391 Ry Harris-Foulkes estimate = -14.44814418 Ry estimated scf accuracy < 0.00000044 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.24 secs total energy = -14.44814397 Ry Harris-Foulkes estimate = -14.44814425 Ry estimated scf accuracy < 0.00000080 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.24 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7634 7.2850 7.2850 7.6175 ! total energy = -14.44814408 Ry Harris-Foulkes estimate = -14.44814408 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.02076724 0.02076579 0.02076643 atom 2 type 1 force = -0.02076724 -0.02076579 -0.02076643 Total force = 0.050867 Total SCF correction = 0.000014 Entering Dynamics: iteration = 75 time = 0.0726 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126761418 -0.126761420 -0.126761426 Si 0.126761418 0.126761420 0.126761426 kinetic energy (Ekin) = 0.00021228 Ry temperature = 22.34394117 K Ekin + Etot (const) = -14.44793181 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.27 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.11E-10, avg # of iterations = 4.0 total cpu time spent up to now is 2.27 secs total energy = -14.44829062 Ry Harris-Foulkes estimate = -14.44829066 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.98E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.28 secs total energy = -14.44829063 Ry Harris-Foulkes estimate = -14.44829065 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.18E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7632 7.2920 7.2920 7.6033 ! total energy = -14.44829064 Ry Harris-Foulkes estimate = -14.44829064 Ry estimated scf accuracy < 9.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01948056 0.01948057 0.01948055 atom 2 type 1 force = -0.01948056 -0.01948057 -0.01948055 Total force = 0.047717 Total SCF correction = 0.000005 Entering Dynamics: iteration = 76 time = 0.0735 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126612286 -0.126612291 -0.126612296 Si 0.126612286 0.126612291 0.126612296 kinetic energy (Ekin) = 0.00035822 Ry temperature = 37.70564856 K Ekin + Etot (const) = -14.44793242 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.30 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.35E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.31 secs total energy = -14.44846074 Ry Harris-Foulkes estimate = -14.44846074 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.31 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7629 7.3006 7.3006 7.5856 ! total energy = -14.44846074 Ry Harris-Foulkes estimate = -14.44846074 Ry estimated scf accuracy < 6.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01786661 0.01786654 0.01786659 atom 2 type 1 force = -0.01786661 -0.01786654 -0.01786659 Total force = 0.043764 Total SCF correction = 0.000032 Entering Dynamics: iteration = 77 time = 0.0745 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126435729 -0.126435737 -0.126435742 Si 0.126435729 0.126435737 0.126435742 kinetic energy (Ekin) = 0.00052761 Ry temperature = 55.53523733 K Ekin + Etot (const) = -14.44793313 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.33 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.17E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.34 secs total energy = -14.44864306 Ry Harris-Foulkes estimate = -14.44864309 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.90E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.34 secs total energy = -14.44864307 Ry Harris-Foulkes estimate = -14.44864308 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.91E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.34 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7625 7.3109 7.3109 7.5646 ! total energy = -14.44864307 Ry Harris-Foulkes estimate = -14.44864307 Ry estimated scf accuracy < 1.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01594744 0.01594752 0.01594756 atom 2 type 1 force = -0.01594744 -0.01594752 -0.01594756 Total force = 0.039063 Total SCF correction = 0.000003 Entering Dynamics: iteration = 78 time = 0.0755 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126234695 -0.126234705 -0.126234709 Si 0.126234695 0.126234705 0.126234709 kinetic energy (Ekin) = 0.00070917 Ry temperature = 74.64637849 K Ekin + Etot (const) = -14.44793390 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.37 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.65E-11, avg # of iterations = 3.0 total cpu time spent up to now is 2.37 secs total energy = -14.44882542 Ry Harris-Foulkes estimate = -14.44882543 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7622 7.3226 7.3226 7.5407 ! total energy = -14.44882542 Ry Harris-Foulkes estimate = -14.44882543 Ry estimated scf accuracy < 7.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01375131 0.01375163 0.01375157 atom 2 type 1 force = -0.01375131 -0.01375163 -0.01375157 Total force = 0.033684 Total SCF correction = 0.000035 Entering Dynamics: iteration = 79 time = 0.0764 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126012553 -0.126012565 -0.126012569 Si 0.126012553 0.126012565 0.126012569 kinetic energy (Ekin) = 0.00089075 Ry temperature = 93.75856908 K Ekin + Etot (const) = -14.44793467 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.40 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.54E-10, avg # of iterations = 1.0 total cpu time spent up to now is 2.40 secs total energy = -14.44899545 Ry Harris-Foulkes estimate = -14.44899549 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.72E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.41 secs total energy = -14.44899547 Ry Harris-Foulkes estimate = -14.44899548 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.62E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.41 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7619 7.3355 7.3355 7.5144 ! total energy = -14.44899547 Ry Harris-Foulkes estimate = -14.44899547 Ry estimated scf accuracy < 1.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01131086 0.01131107 0.01131125 atom 2 type 1 force = -0.01131086 -0.01131107 -0.01131125 Total force = 0.027706 Total SCF correction = 0.000004 Entering Dynamics: iteration = 80 time = 0.0774 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125773049 -0.125773063 -0.125773066 Si 0.125773049 0.125773063 0.125773066 kinetic energy (Ekin) = 0.00106006 Ry temperature = 111.58007382 K Ekin + Etot (const) = -14.44793541 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.43 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.06E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.44 secs total energy = -14.44914159 Ry Harris-Foulkes estimate = -14.44914160 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.34E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.44 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3495 7.3495 7.4861 ! total energy = -14.44914159 Ry Harris-Foulkes estimate = -14.44914160 Ry estimated scf accuracy < 8.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00866345 0.00866385 0.00866360 atom 2 type 1 force = -0.00866345 -0.00866385 -0.00866360 Total force = 0.021221 Total SCF correction = 0.000033 Entering Dynamics: iteration = 81 time = 0.0784 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125520248 -0.125520263 -0.125520265 Si 0.125520248 0.125520263 0.125520265 kinetic energy (Ekin) = 0.00120554 Ry temperature = 126.89340280 K Ekin + Etot (const) = -14.44793605 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.46 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.76E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.47 secs total energy = -14.44925366 Ry Harris-Foulkes estimate = -14.44925371 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.47 secs total energy = -14.44925367 Ry Harris-Foulkes estimate = -14.44925369 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.76E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.47 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3643 7.3643 7.4562 ! total energy = -14.44925368 Ry Harris-Foulkes estimate = -14.44925368 Ry estimated scf accuracy < 3.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00585045 0.00585080 0.00585054 atom 2 type 1 force = -0.00585045 -0.00585080 -0.00585054 Total force = 0.014331 Total SCF correction = 0.000005 Entering Dynamics: iteration = 82 time = 0.0793 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125258466 -0.125258482 -0.125258484 Si 0.125258466 0.125258482 0.125258484 kinetic energy (Ekin) = 0.00131712 Ry temperature = 138.63803129 K Ekin + Etot (const) = -14.44793656 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.50 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.78E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.50 secs total energy = -14.44932381 Ry Harris-Foulkes estimate = -14.44932382 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.29E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3797 7.3797 7.4253 ! total energy = -14.44932381 Ry Harris-Foulkes estimate = -14.44932382 Ry estimated scf accuracy < 8.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00291729 0.00291752 0.00291727 atom 2 type 1 force = -0.00291729 -0.00291752 -0.00291727 Total force = 0.007146 Total SCF correction = 0.000032 Entering Dynamics: iteration = 83 time = 0.0803 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124992206 -0.124992222 -0.124992225 Si 0.124992206 0.124992222 0.124992225 kinetic energy (Ekin) = 0.00138692 Ry temperature = 145.98469977 K Ekin + Etot (const) = -14.44793689 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.53 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.88E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.53 secs total energy = -14.44934683 Ry Harris-Foulkes estimate = -14.44934688 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.53 secs total energy = -14.44934685 Ry Harris-Foulkes estimate = -14.44934687 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.73E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.54 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7612 7.3940 7.3953 7.3953 ! total energy = -14.44934686 Ry Harris-Foulkes estimate = -14.44934686 Ry estimated scf accuracy < 2.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00008795 -0.00008749 -0.00008775 atom 2 type 1 force = 0.00008795 0.00008749 0.00008775 Total force = 0.000215 Total SCF correction = 0.000004 Entering Dynamics: iteration = 84 time = 0.0813 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124726082 -0.124726097 -0.124726101 Si 0.124726082 0.124726097 0.124726101 kinetic energy (Ekin) = 0.00140983 Ry temperature = 148.39612632 K Ekin + Etot (const) = -14.44793703 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.56 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.19E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.56 secs total energy = -14.44932087 Ry Harris-Foulkes estimate = -14.44932088 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.94E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7613 7.3627 7.4110 7.4110 ! total energy = -14.44932087 Ry Harris-Foulkes estimate = -14.44932088 Ry estimated scf accuracy < 7.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00311352 -0.00311337 -0.00311338 atom 2 type 1 force = 0.00311352 0.00311337 0.00311338 Total force = 0.007626 Total SCF correction = 0.000031 Entering Dynamics: iteration = 85 time = 0.0822 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124464736 -0.124464751 -0.124464756 Si 0.124464736 0.124464751 0.124464756 kinetic energy (Ekin) = 0.00138393 Ry temperature = 145.66954672 K Ekin + Etot (const) = -14.44793695 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.59 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.31E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.59 secs total energy = -14.44924730 Ry Harris-Foulkes estimate = -14.44924734 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.59 secs total energy = -14.44924731 Ry Harris-Foulkes estimate = -14.44924733 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.83E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.60 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7614 7.3320 7.4264 7.4264 ! total energy = -14.44924732 Ry Harris-Foulkes estimate = -14.44924732 Ry estimated scf accuracy < 3.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00610668 -0.00610639 -0.00610654 atom 2 type 1 force = 0.00610668 0.00610639 0.00610654 Total force = 0.014958 Total SCF correction = 0.000003 Entering Dynamics: iteration = 86 time = 0.0832 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124212764 -0.124212778 -0.124212784 Si 0.124212764 0.124212778 0.124212784 kinetic energy (Ekin) = 0.00131066 Ry temperature = 137.95773299 K Ekin + Etot (const) = -14.44793666 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.62 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.61E-11, avg # of iterations = 3.0 total cpu time spent up to now is 2.62 secs total energy = -14.44913100 Ry Harris-Foulkes estimate = -14.44913101 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.76E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.62 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7616 7.3025 7.4413 7.4413 ! total energy = -14.44913100 Ry Harris-Foulkes estimate = -14.44913100 Ry estimated scf accuracy < 6.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00901295 -0.00901289 -0.00901269 atom 2 type 1 force = 0.00901295 0.00901289 0.00901269 Total force = 0.022077 Total SCF correction = 0.000034 Entering Dynamics: iteration = 87 time = 0.0842 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123974627 -0.123974639 -0.123974645 Si 0.123974627 0.123974639 0.123974645 kinetic energy (Ekin) = 0.00119483 Ry temperature = 125.76543723 K Ekin + Etot (const) = -14.44793617 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.65 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.10E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.65 secs total energy = -14.44897980 Ry Harris-Foulkes estimate = -14.44897983 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.76E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.65 secs total energy = -14.44897981 Ry Harris-Foulkes estimate = -14.44897982 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.84E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.66 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7619 7.2746 7.4554 7.4554 ! total energy = -14.44897981 Ry Harris-Foulkes estimate = -14.44897981 Ry estimated scf accuracy < 1.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01177899 -0.01177890 -0.01177889 atom 2 type 1 force = 0.01177899 0.01177890 0.01177889 Total force = 0.028852 Total SCF correction = 0.000002 Entering Dynamics: iteration = 88 time = 0.0851 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123754569 -0.123754580 -0.123754587 Si 0.123754569 0.123754580 0.123754587 kinetic energy (Ekin) = 0.00104429 Ry temperature = 109.91994966 K Ekin + Etot (const) = -14.44793552 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.68 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.39E-11, avg # of iterations = 2.0 total cpu time spent up to now is 2.68 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7623 7.2489 7.4685 7.4685 ! total energy = -14.44880421 Ry Harris-Foulkes estimate = -14.44880422 Ry estimated scf accuracy < 9.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01435241 -0.01435193 -0.01435229 atom 2 type 1 force = 0.01435241 0.01435193 0.01435229 Total force = 0.035156 Total SCF correction = 0.000044 Entering Dynamics: iteration = 89 time = 0.0861 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123556541 -0.123556550 -0.123556559 Si 0.123556541 0.123556550 0.123556559 kinetic energy (Ekin) = 0.00086946 Ry temperature = 91.51782687 K Ekin + Etot (const) = -14.44793475 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.70 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.97E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.71 secs total energy = -14.44861654 Ry Harris-Foulkes estimate = -14.44861657 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.69E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.71 secs total energy = -14.44861655 Ry Harris-Foulkes estimate = -14.44861656 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.35E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7626 7.2258 7.4802 7.4802 ! total energy = -14.44861655 Ry Harris-Foulkes estimate = -14.44861655 Ry estimated scf accuracy < 3.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01668086 -0.01668078 -0.01668072 atom 2 type 1 force = 0.01668086 0.01668078 0.01668072 Total force = 0.040859 Total SCF correction = 0.000002 Entering Dynamics: iteration = 90 time = 0.0871 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123384118 -0.123384125 -0.123384134 Si 0.123384118 0.123384125 0.123384134 kinetic energy (Ekin) = 0.00068263 Ry temperature = 71.85199457 K Ekin + Etot (const) = -14.44793393 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.74 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.55E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.74 secs total energy = -14.44843014 Ry Harris-Foulkes estimate = -14.44843016 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.43E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.75 secs total energy = -14.44843015 Ry Harris-Foulkes estimate = -14.44843015 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.75 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7630 7.2057 7.4905 7.4905 ! total energy = -14.44843015 Ry Harris-Foulkes estimate = -14.44843015 Ry estimated scf accuracy < 7.8E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01871953 -0.01871946 -0.01871935 atom 2 type 1 force = 0.01871953 0.01871946 0.01871935 Total force = 0.045853 Total SCF correction = 0.000002 Entering Dynamics: iteration = 91 time = 0.0880 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123240428 -0.123240432 -0.123240443 Si 0.123240428 0.123240432 0.123240443 kinetic energy (Ekin) = 0.00049706 Ry temperature = 52.31962006 K Ekin + Etot (const) = -14.44793309 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.77 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.23E-13, avg # of iterations = 4.0 total cpu time spent up to now is 2.77 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7633 7.1890 7.4991 7.4991 ! total energy = -14.44825837 Ry Harris-Foulkes estimate = -14.44825837 Ry estimated scf accuracy < 5.0E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02042635 -0.02042625 -0.02042621 atom 2 type 1 force = 0.02042635 0.02042625 0.02042621 Total force = 0.050034 Total SCF correction = 0.000008 Entering Dynamics: iteration = 92 time = 0.0890 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123128092 -0.123128093 -0.123128105 Si 0.123128092 0.123128093 0.123128105 kinetic energy (Ekin) = 0.00032606 Ry temperature = 34.32033799 K Ekin + Etot (const) = -14.44793231 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.80 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.76E-12, avg # of iterations = 4.0 total cpu time spent up to now is 2.80 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7636 7.1759 7.5057 7.5057 ! total energy = -14.44811362 Ry Harris-Foulkes estimate = -14.44811362 Ry estimated scf accuracy < 3.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02176564 -0.02176558 -0.02176535 atom 2 type 1 force = 0.02176564 0.02176558 0.02176535 Total force = 0.053314 Total SCF correction = 0.000021 Entering Dynamics: iteration = 93 time = 0.0900 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123049164 -0.123049163 -0.123049175 Si 0.123049164 0.123049163 0.123049175 kinetic energy (Ekin) = 0.00018197 Ry temperature = 19.15373489 K Ekin + Etot (const) = -14.44793165 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.83 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.85E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.83 secs total energy = -14.44800640 Ry Harris-Foulkes estimate = -14.44800643 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.31E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.84 secs total energy = -14.44800641 Ry Harris-Foulkes estimate = -14.44800643 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.31E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7638 7.1667 7.5104 7.5105 ! total energy = -14.44800642 Ry Harris-Foulkes estimate = -14.44800642 Ry estimated scf accuracy < 7.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02270904 -0.02270907 -0.02270902 atom 2 type 1 force = 0.02270904 0.02270907 0.02270902 Total force = 0.055626 Total SCF correction = 0.000003 Entering Dynamics: iteration = 94 time = 0.0910 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123005093 -0.123005090 -0.123005103 Si 0.123005093 0.123005090 0.123005103 kinetic energy (Ekin) = 0.00007526 Ry temperature = 7.92121025 K Ekin + Etot (const) = -14.44793116 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.86 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.03E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.87 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1616 7.5131 7.5131 ! total energy = -14.44794457 Ry Harris-Foulkes estimate = -14.44794458 Ry estimated scf accuracy < 9.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02323655 -0.02323714 -0.02323677 atom 2 type 1 force = 0.02323655 0.02323714 0.02323677 Total force = 0.056918 Total SCF correction = 0.000028 Entering Dynamics: iteration = 95 time = 0.0919 pico-seconds ATOMIC_POSITIONS (alat) Si -0.122996690 -0.122996685 -0.122996697 Si 0.122996690 0.122996685 0.122996697 kinetic energy (Ekin) = 0.00001370 Ry temperature = 1.44181541 K Ekin + Etot (const) = -14.44793088 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.89 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.03E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.89 secs total energy = -14.44793260 Ry Harris-Foulkes estimate = -14.44793264 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.13E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.90 secs total energy = -14.44793261 Ry Harris-Foulkes estimate = -14.44793264 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.13E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1607 7.5136 7.5136 ! total energy = -14.44793262 Ry Harris-Foulkes estimate = -14.44793262 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02333782 -0.02333786 -0.02333775 atom 2 type 1 force = 0.02333782 0.02333786 0.02333775 Total force = 0.057166 Total SCF correction = 0.000008 Entering Dynamics: iteration = 96 time = 0.0929 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123024108 -0.123024102 -0.123024114 Si 0.123024108 0.123024102 0.123024114 kinetic energy (Ekin) = 0.00000180 Ry temperature = 0.18925604 K Ekin + Etot (const) = -14.44793082 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.92 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.99E-09, avg # of iterations = 2.0 total cpu time spent up to now is 2.93 secs total energy = -14.44797137 Ry Harris-Foulkes estimate = -14.44797149 Ry estimated scf accuracy < 0.00000021 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.57E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.93 secs total energy = -14.44797141 Ry Harris-Foulkes estimate = -14.44797146 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-09, avg # of iterations = 2.0 total cpu time spent up to now is 2.93 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7639 7.1638 7.5119 7.5119 ! total energy = -14.44797143 Ry Harris-Foulkes estimate = -14.44797143 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02300938 -0.02300984 -0.02300940 atom 2 type 1 force = 0.02300938 0.02300984 0.02300940 Total force = 0.056362 Total SCF correction = 0.000010 Entering Dynamics: iteration = 97 time = 0.0939 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123086845 -0.123086837 -0.123086849 Si 0.123086845 0.123086837 0.123086849 kinetic energy (Ekin) = 0.00004043 Ry temperature = 4.25532943 K Ekin + Etot (const) = -14.44793100 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.96 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.68E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.96 secs total energy = -14.44805815 Ry Harris-Foulkes estimate = -14.44805816 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.78E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7637 7.1711 7.5082 7.5082 ! total energy = -14.44805816 Ry Harris-Foulkes estimate = -14.44805816 Ry estimated scf accuracy < 9.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02225847 -0.02225854 -0.02225840 atom 2 type 1 force = 0.02225847 0.02225854 0.02225840 Total force = 0.054522 Total SCF correction = 0.000026 Entering Dynamics: iteration = 98 time = 0.0948 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123183747 -0.123183739 -0.123183749 Si 0.123183747 0.123183739 0.123183749 kinetic energy (Ekin) = 0.00012676 Ry temperature = 13.34255199 K Ekin + Etot (const) = -14.44793140 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.99 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-10, avg # of iterations = 4.0 total cpu time spent up to now is 2.99 secs total energy = -14.44818644 Ry Harris-Foulkes estimate = -14.44818650 Ry estimated scf accuracy < 0.00000011 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-09, avg # of iterations = 3.0 total cpu time spent up to now is 3.00 secs total energy = -14.44818647 Ry Harris-Foulkes estimate = -14.44818649 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.99E-10, avg # of iterations = 2.0 total cpu time spent up to now is 3.00 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7635 7.1824 7.5024 7.5024 ! total energy = -14.44818647 Ry Harris-Foulkes estimate = -14.44818647 Ry estimated scf accuracy < 2.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02110164 -0.02110171 -0.02110165 atom 2 type 1 force = 0.02110164 0.02110171 0.02110165 Total force = 0.051688 Total SCF correction = 0.000004 Entering Dynamics: iteration = 99 time = 0.0958 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123313039 -0.123313030 -0.123313039 Si 0.123313039 0.123313030 0.123313039 kinetic energy (Ekin) = 0.00025449 Ry temperature = 26.78723397 K Ekin + Etot (const) = -14.44793198 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.02 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.41E-10, avg # of iterations = 4.0 total cpu time spent up to now is 3.03 secs total energy = -14.44834701 Ry Harris-Foulkes estimate = -14.44834705 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.37E-10, avg # of iterations = 3.0 total cpu time spent up to now is 3.03 secs total energy = -14.44834702 Ry Harris-Foulkes estimate = -14.44834706 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.37E-10, avg # of iterations = 3.0 total cpu time spent up to now is 3.03 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7631 7.1974 7.4947 7.4947 ! total energy = -14.44834704 Ry Harris-Foulkes estimate = -14.44834704 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01956269 -0.01956275 -0.01956271 atom 2 type 1 force = 0.01956269 0.01956275 0.01956271 Total force = 0.047919 Total SCF correction = 0.000008 Entering Dynamics: iteration = 100 time = 0.0968 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123472358 -0.123472349 -0.123472356 Si 0.123472358 0.123472349 0.123472356 kinetic energy (Ekin) = 0.00041432 Ry temperature = 43.61084997 K Ekin + Etot (const) = -14.44793271 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.04 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.41E-11, avg # of iterations = 4.0 total cpu time spent up to now is 3.04 secs total energy = -14.44852821 Ry Harris-Foulkes estimate = -14.44852822 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.18E-10, avg # of iterations = 3.0 total cpu time spent up to now is 3.05 secs total energy = -14.44852821 Ry Harris-Foulkes estimate = -14.44852822 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-10, avg # of iterations = 2.0 total cpu time spent up to now is 3.05 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -4.7628 7.2160 7.4852 7.4852 ! total energy = -14.44852821 Ry Harris-Foulkes estimate = -14.44852821 Ry estimated scf accuracy < 2.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01767495 -0.01767499 -0.01767490 atom 2 type 1 force = 0.01767495 0.01767499 0.01767490 Total force = 0.043295 Total SCF correction = 0.000002 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000000 cm^2/s atom 2 D = 0.00000000 cm^2/s < D > = 0.00000000 cm^2/s Writing output data file pwscf.save PWSCF : 3.07s CPU time, 3.53s wall time init_run : 0.02s CPU electrons : 0.74s CPU ( 101 calls, 0.007 s avg) update_pot : 0.45s CPU ( 100 calls, 0.004 s avg) forces : 0.07s CPU ( 101 calls, 0.001 s avg) Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.43s CPU ( 295 calls, 0.001 s avg) sum_band : 0.09s CPU ( 295 calls, 0.000 s avg) v_of_rho : 0.14s CPU ( 296 calls, 0.000 s avg) mix_rho : 0.02s CPU ( 295 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.02s CPU ( 591 calls, 0.000 s avg) cegterg : 0.41s CPU ( 295 calls, 0.001 s avg) Called by *egterg: h_psi : 0.30s CPU ( 1022 calls, 0.000 s avg) g_psi : 0.01s CPU ( 726 calls, 0.000 s avg) cdiaghg : 0.07s CPU ( 821 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 1022 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 1222 calls, 0.000 s avg) cft3 : 0.07s CPU ( 1290 calls, 0.000 s avg) cft3s : 0.27s CPU ( 7984 calls, 0.000 s avg) davcio : 0.00s CPU ( 1564 calls, 0.000 s avg) espresso-5.1/PW/examples/example03/reference/si.md2_G3X.out0000644000175000017500000072200112341373025021512 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:39:49 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 10.1800 a.u. unit-cell volume = 263.7445 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 100 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.1230000 0.1230000 0.1230000 ) number of k points= 4 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.5000000 k( 2) = ( 1.0000000 0.0000000 0.0000000), wk = 0.5000000 k( 3) = ( 0.0000000 1.0000000 0.0000000), wk = 0.5000000 k( 4) = ( 0.0000000 0.0000000 1.0000000), wk = 0.5000000 G cutoff = 84.0013 ( 869 G-vectors) FFT grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 4) NL pseudopotentials 0.01 Mb ( 113, 8) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.03 Mb ( 113, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.03 secs per-process dynamical memory: 1.3 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.04 secs total energy = -15.53708617 Ry Harris-Foulkes estimate = -15.57401271 Ry estimated scf accuracy < 0.10879526 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.04 secs total energy = -15.54353143 Ry Harris-Foulkes estimate = -15.54395743 Ry estimated scf accuracy < 0.00413353 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.17E-05, avg # of iterations = 1.8 total cpu time spent up to now is 0.05 secs total energy = -15.54394196 Ry Harris-Foulkes estimate = -15.54395229 Ry estimated scf accuracy < 0.00009356 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.17E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.06 secs total energy = -15.54395076 Ry Harris-Foulkes estimate = -15.54395157 Ry estimated scf accuracy < 0.00000207 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.58E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.07 secs total energy = -15.54395125 Ry Harris-Foulkes estimate = -15.54395128 Ry estimated scf accuracy < 0.00000008 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.07 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.4885 6.8186 6.8186 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0939 -0.9566 3.5685 3.6376 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0939 -0.9566 3.5685 3.6376 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0939 -0.9566 3.5685 3.6376 ! total energy = -15.54395126 Ry Harris-Foulkes estimate = -15.54395126 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01508762 -0.01508762 -0.01508762 atom 2 type 1 force = 0.01508762 0.01508762 0.01508762 Total force = 0.036957 Total SCF correction = 0.000027 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123023159 -0.123023159 -0.123023159 Si 0.123023159 0.123023159 0.123023159 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -15.54395126 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.10 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.09E-10, avg # of iterations = 3.8 total cpu time spent up to now is 0.11 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.4908 6.8173 6.8173 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0932 -0.9574 3.5688 3.6372 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0932 -0.9574 3.5688 3.6372 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0932 -0.9574 3.5688 3.6372 ! total energy = -15.54397247 Ry Harris-Foulkes estimate = -15.54397247 Ry estimated scf accuracy < 5.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01490342 -0.01490342 -0.01490342 atom 2 type 1 force = 0.01490342 0.01490342 0.01490342 Total force = 0.036506 Total SCF correction = 0.000001 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123069193 -0.123069193 -0.123069193 Si 0.123069193 0.123069193 0.123069193 kinetic energy (Ekin) = 0.00002381 Ry temperature = 2.50668296 K Ekin + Etot (const) = -15.54394866 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation first order charge density extrapolation total cpu time spent up to now is 0.14 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.48E-11, avg # of iterations = 3.8 total cpu time spent up to now is 0.15 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2232 6.4960 6.8147 6.8147 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0913 -0.9589 3.5696 3.6364 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0913 -0.9589 3.5696 3.6364 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0913 -0.9589 3.5696 3.6364 ! total energy = -15.54401387 Ry Harris-Foulkes estimate = -15.54401387 Ry estimated scf accuracy < 6.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01454223 -0.01454230 -0.01454231 atom 2 type 1 force = 0.01454223 0.01454230 0.01454231 Total force = 0.035621 Total SCF correction = 0.000038 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123137549 -0.123137549 -0.123137549 Si 0.123137549 0.123137549 0.123137549 kinetic energy (Ekin) = 0.00006509 Ry temperature = 6.85099833 K Ekin + Etot (const) = -15.54394879 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.18 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.85E-11, avg # of iterations = 3.8 total cpu time spent up to now is 0.19 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2231 6.5031 6.8110 6.8110 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0889 -0.9611 3.5705 3.6353 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0889 -0.9611 3.5705 3.6353 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0889 -0.9611 3.5705 3.6353 ! total energy = -15.54407348 Ry Harris-Foulkes estimate = -15.54407348 Ry estimated scf accuracy < 5.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01400781 -0.01400781 -0.01400783 atom 2 type 1 force = 0.01400781 0.01400781 0.01400783 Total force = 0.034312 Total SCF correction = 0.000049 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123227406 -0.123227407 -0.123227407 Si 0.123227406 0.123227407 0.123227407 kinetic energy (Ekin) = 0.00012451 Ry temperature = 13.10567722 K Ekin + Etot (const) = -15.54394897 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.22 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.98E-11, avg # of iterations = 3.8 total cpu time spent up to now is 0.24 secs total energy = -15.54414843 Ry Harris-Foulkes estimate = -15.54414844 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.24 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2229 6.5131 6.8059 6.8059 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0854 -0.9642 3.5720 3.6337 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0854 -0.9642 3.5720 3.6337 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0854 -0.9642 3.5720 3.6337 ! total energy = -15.54414843 Ry Harris-Foulkes estimate = -15.54414843 Ry estimated scf accuracy < 9.8E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01330696 -0.01330694 -0.01330693 atom 2 type 1 force = 0.01330696 0.01330694 0.01330693 Total force = 0.032595 Total SCF correction = 0.000007 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123337689 -0.123337689 -0.123337689 Si 0.123337689 0.123337689 0.123337689 kinetic energy (Ekin) = 0.00019924 Ry temperature = 20.97204027 K Ekin + Etot (const) = -15.54394919 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.27 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.88E-12, avg # of iterations = 3.8 total cpu time spent up to now is 0.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2227 6.5250 6.7998 6.7998 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0813 -0.9678 3.5737 3.6318 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0813 -0.9678 3.5737 3.6318 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0813 -0.9678 3.5737 3.6318 ! total energy = -15.54423518 Ry Harris-Foulkes estimate = -15.54423518 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01244849 -0.01244851 -0.01244852 atom 2 type 1 force = 0.01244849 0.01244851 0.01244852 Total force = 0.030492 Total SCF correction = 0.000026 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123467079 -0.123467080 -0.123467080 Si 0.123467079 0.123467080 0.123467080 kinetic energy (Ekin) = 0.00028573 Ry temperature = 30.07541222 K Ekin + Etot (const) = -15.54394945 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.31 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.29E-12, avg # of iterations = 4.0 total cpu time spent up to now is 0.33 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2225 6.5393 6.7924 6.7924 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0764 -0.9722 3.5758 3.6295 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0764 -0.9722 3.5758 3.6295 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0764 -0.9722 3.5758 3.6295 ! total energy = -15.54432960 Ry Harris-Foulkes estimate = -15.54432960 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01144760 -0.01144756 -0.01144755 atom 2 type 1 force = 0.01144760 0.01144756 0.01144755 Total force = 0.028041 Total SCF correction = 0.000026 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123614041 -0.123614042 -0.123614042 Si 0.123614041 0.123614042 0.123614042 kinetic energy (Ekin) = 0.00037988 Ry temperature = 39.98516208 K Ekin + Etot (const) = -15.54394972 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.35 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.51E-11, avg # of iterations = 3.8 total cpu time spent up to now is 0.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2222 6.5551 6.7844 6.7844 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0711 -0.9769 3.5781 3.6270 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0711 -0.9769 3.5781 3.6270 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0711 -0.9769 3.5781 3.6270 ! total energy = -15.54442728 Ry Harris-Foulkes estimate = -15.54442728 Ry estimated scf accuracy < 5.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01031755 -0.01031755 -0.01031757 atom 2 type 1 force = 0.01031755 0.01031755 0.01031757 Total force = 0.025273 Total SCF correction = 0.000048 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123776840 -0.123776840 -0.123776841 Si 0.123776840 0.123776840 0.123776841 kinetic energy (Ekin) = 0.00047728 Ry temperature = 50.23713447 K Ekin + Etot (const) = -15.54395001 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.40 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.58E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.41 secs total energy = -15.54452368 Ry Harris-Foulkes estimate = -15.54452369 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2220 6.5731 6.7752 6.7752 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0651 -0.9824 3.5808 3.6241 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0651 -0.9824 3.5808 3.6241 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0651 -0.9824 3.5808 3.6241 ! total energy = -15.54452368 Ry Harris-Foulkes estimate = -15.54452368 Ry estimated scf accuracy < 4.6E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00907385 -0.00907383 -0.00907382 atom 2 type 1 force = 0.00907385 0.00907383 0.00907382 Total force = 0.022226 Total SCF correction = 0.000005 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123953566 -0.123953567 -0.123953567 Si 0.123953566 0.123953567 0.123953567 kinetic energy (Ekin) = 0.00057340 Ry temperature = 60.35548577 K Ekin + Etot (const) = -15.54395028 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.45 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.24E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2218 6.5923 6.7654 6.7654 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0588 -0.9883 3.5837 3.6210 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0588 -0.9883 3.5837 3.6210 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0588 -0.9883 3.5837 3.6210 ! total energy = -15.54461438 Ry Harris-Foulkes estimate = -15.54461438 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00773317 -0.00773314 -0.00773312 atom 2 type 1 force = 0.00773317 0.00773314 0.00773312 Total force = 0.018942 Total SCF correction = 0.000025 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124142163 -0.124142163 -0.124142163 Si 0.124142163 0.124142163 0.124142163 kinetic energy (Ekin) = 0.00066385 Ry temperature = 69.87577472 K Ekin + Etot (const) = -15.54395053 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.49 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.96E-12, avg # of iterations = 3.2 total cpu time spent up to now is 0.51 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2216 6.6132 6.7548 6.7548 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0520 -0.9946 3.5869 3.6176 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0520 -0.9946 3.5869 3.6176 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0520 -0.9946 3.5869 3.6176 ! total energy = -15.54469528 Ry Harris-Foulkes estimate = -15.54469528 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00631348 -0.00631344 -0.00631344 atom 2 type 1 force = 0.00631348 0.00631344 0.00631344 Total force = 0.015465 Total SCF correction = 0.000023 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124340450 -0.124340450 -0.124340451 Si 0.124340450 0.124340450 0.124340451 kinetic energy (Ekin) = 0.00074452 Ry temperature = 78.36705552 K Ekin + Etot (const) = -15.54395075 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.53 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.44E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.54 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2214 6.6347 6.7439 6.7439 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0452 -1.0010 3.5903 3.6141 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0452 -1.0010 3.5903 3.6141 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0452 -1.0010 3.5903 3.6141 ! total energy = -15.54476277 Ry Harris-Foulkes estimate = -15.54476277 Ry estimated scf accuracy < 3.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00483386 -0.00483386 -0.00483387 atom 2 type 1 force = 0.00483386 0.00483386 0.00483387 Total force = 0.011840 Total SCF correction = 0.000041 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124546157 -0.124546157 -0.124546158 Si 0.124546157 0.124546157 0.124546158 kinetic energy (Ekin) = 0.00081183 Ry temperature = 85.45213403 K Ekin + Etot (const) = -15.54395093 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.58 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.77E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2213 6.6577 6.7324 6.7324 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0379 -1.0080 3.5939 3.6103 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0379 -1.0080 3.5939 3.6103 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0379 -1.0080 3.5939 3.6103 ! total energy = -15.54481392 Ry Harris-Foulkes estimate = -15.54481392 Ry estimated scf accuracy < 6.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00331079 -0.00331083 -0.00331086 atom 2 type 1 force = 0.00331079 0.00331083 0.00331086 Total force = 0.008110 Total SCF correction = 0.000054 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124756946 -0.124756946 -0.124756946 Si 0.124756946 0.124756946 0.124756946 kinetic energy (Ekin) = 0.00086286 Ry temperature = 90.82261140 K Ekin + Etot (const) = -15.54395106 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.62 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.49E-10, avg # of iterations = 2.8 total cpu time spent up to now is 0.63 secs total energy = -15.54484658 Ry Harris-Foulkes estimate = -15.54484659 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6807 6.7208 6.7208 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0309 -1.0149 3.5977 3.6065 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0309 -1.0149 3.5977 3.6065 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0309 -1.0149 3.5977 3.6065 ! total energy = -15.54484659 Ry Harris-Foulkes estimate = -15.54484659 Ry estimated scf accuracy < 6.4E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00176488 -0.00176488 -0.00176487 atom 2 type 1 force = 0.00176488 0.00176488 0.00176487 Total force = 0.004323 Total SCF correction = 0.000005 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124970444 -0.124970444 -0.124970444 Si 0.124970444 0.124970444 0.124970444 kinetic energy (Ekin) = 0.00089544 Ry temperature = 94.25222199 K Ekin + Etot (const) = -15.54395115 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.67 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.26E-12, avg # of iterations = 3.0 total cpu time spent up to now is 0.68 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.7042 6.7090 6.7090 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0238 -1.0219 3.6016 3.6026 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0238 -1.0219 3.6016 3.6026 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0238 -1.0219 3.6016 3.6026 ! total energy = -15.54485948 Ry Harris-Foulkes estimate = -15.54485948 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00021364 -0.00021358 -0.00021358 atom 2 type 1 force = 0.00021364 0.00021358 0.00021358 Total force = 0.000523 Total SCF correction = 0.000021 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125184269 -0.125184269 -0.125184270 Si 0.125184269 0.125184269 0.125184270 kinetic energy (Ekin) = 0.00090830 Ry temperature = 95.60627586 K Ekin + Etot (const) = -15.54395117 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.71 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.11E-11, avg # of iterations = 2.8 total cpu time spent up to now is 0.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6973 6.6973 6.7276 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0289 -1.0169 3.5987 3.6055 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0289 -1.0169 3.5987 3.6055 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0289 -1.0169 3.5987 3.6055 ! total energy = -15.54485220 Ry Harris-Foulkes estimate = -15.54485220 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00132617 0.00132622 0.00132619 atom 2 type 1 force = -0.00132617 -0.00132622 -0.00132619 Total force = 0.003248 Total SCF correction = 0.000023 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125396060 -0.125396059 -0.125396060 Si 0.125396060 0.125396059 0.125396060 kinetic energy (Ekin) = 0.00090106 Ry temperature = 94.84363431 K Ekin + Etot (const) = -15.54395114 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.75 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.04E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.77 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2213 6.6855 6.6855 6.7513 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0359 -1.0100 3.5947 3.6095 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0359 -1.0100 3.5947 3.6095 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0359 -1.0100 3.5947 3.6095 ! total energy = -15.54482525 Ry Harris-Foulkes estimate = -15.54482525 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00283774 0.00283785 0.00283778 atom 2 type 1 force = -0.00283774 -0.00283785 -0.00283778 Total force = 0.006951 Total SCF correction = 0.000034 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125603494 -0.125603493 -0.125603494 Si 0.125603494 0.125603493 0.125603494 kinetic energy (Ekin) = 0.00087420 Ry temperature = 92.01648571 K Ekin + Etot (const) = -15.54395106 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.80 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.12E-11, avg # of iterations = 2.8 total cpu time spent up to now is 0.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2214 6.6743 6.6743 6.7738 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0425 -1.0036 3.5909 3.6134 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0425 -1.0036 3.5909 3.6134 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0425 -1.0036 3.5909 3.6134 ! total energy = -15.54478000 Ry Harris-Foulkes estimate = -15.54478000 Ry estimated scf accuracy < 5.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00430366 0.00430369 0.00430364 atom 2 type 1 force = -0.00430366 -0.00430369 -0.00430364 Total force = 0.010542 Total SCF correction = 0.000049 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125804322 -0.125804321 -0.125804323 Si 0.125804322 0.125804321 0.125804323 kinetic energy (Ekin) = 0.00082908 Ry temperature = 87.26736926 K Ekin + Etot (const) = -15.54395092 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.84 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.94E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.85 secs total energy = -15.54471855 Ry Harris-Foulkes estimate = -15.54471856 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-10, avg # of iterations = 2.0 total cpu time spent up to now is 0.86 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2215 6.6633 6.6633 6.7962 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0492 -0.9973 3.5871 3.6174 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0492 -0.9973 3.5871 3.6174 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0492 -0.9973 3.5871 3.6174 ! total energy = -15.54471855 Ry Harris-Foulkes estimate = -15.54471855 Ry estimated scf accuracy < 4.2E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00571161 0.00571155 0.00571159 atom 2 type 1 force = -0.00571161 -0.00571155 -0.00571159 Total force = 0.013990 Total SCF correction = 0.000004 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125996384 -0.125996383 -0.125996384 Si 0.125996384 0.125996383 0.125996384 kinetic energy (Ekin) = 0.00076782 Ry temperature = 80.81912119 K Ekin + Etot (const) = -15.54395074 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.89 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.07E-11, avg # of iterations = 3.0 total cpu time spent up to now is 0.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2217 6.6528 6.6528 6.8174 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0554 -0.9915 3.5835 3.6211 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0554 -0.9915 3.5835 3.6211 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0554 -0.9915 3.5835 3.6211 ! total energy = -15.54464371 Ry Harris-Foulkes estimate = -15.54464371 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00704666 0.00704670 0.00704672 atom 2 type 1 force = -0.00704666 -0.00704670 -0.00704672 Total force = 0.017261 Total SCF correction = 0.000022 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126177629 -0.126177627 -0.126177629 Si 0.126177629 0.126177627 0.126177629 kinetic energy (Ekin) = 0.00069318 Ry temperature = 72.96320099 K Ekin + Etot (const) = -15.54395052 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.93 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.70E-12, avg # of iterations = 3.2 total cpu time spent up to now is 0.95 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2219 6.6428 6.6428 6.8377 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0614 -0.9860 3.5800 3.6248 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0614 -0.9860 3.5800 3.6248 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0614 -0.9860 3.5800 3.6248 ! total energy = -15.54455877 Ry Harris-Foulkes estimate = -15.54455877 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00829653 0.00829654 0.00829655 atom 2 type 1 force = -0.00829653 -0.00829654 -0.00829655 Total force = 0.020322 Total SCF correction = 0.000020 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126346140 -0.126346138 -0.126346140 Si 0.126346140 0.126346138 0.126346140 kinetic energy (Ekin) = 0.00060848 Ry temperature = 64.04746065 K Ekin + Etot (const) = -15.54395029 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.98 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.68E-11, avg # of iterations = 3.8 total cpu time spent up to now is 0.99 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2221 6.6338 6.6338 6.8562 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0667 -0.9811 3.5769 3.6282 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0667 -0.9811 3.5769 3.6282 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0667 -0.9811 3.5769 3.6282 ! total energy = -15.54446744 Ry Harris-Foulkes estimate = -15.54446744 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00944904 0.00944902 0.00944902 atom 2 type 1 force = -0.00944904 -0.00944902 -0.00944902 Total force = 0.023145 Total SCF correction = 0.000033 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126500147 -0.126500144 -0.126500146 Si 0.126500147 0.126500144 0.126500146 kinetic energy (Ekin) = 0.00051740 Ry temperature = 54.46007560 K Ekin + Etot (const) = -15.54395004 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.02 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.98E-11, avg # of iterations = 4.0 total cpu time spent up to now is 1.03 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2223 6.6253 6.6253 6.8736 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0719 -0.9765 3.5738 3.6314 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0719 -0.9765 3.5738 3.6314 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0719 -0.9765 3.5738 3.6314 ! total energy = -15.54437362 Ry Harris-Foulkes estimate = -15.54437363 Ry estimated scf accuracy < 4.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01049601 0.01049604 0.01049603 atom 2 type 1 force = -0.01049601 -0.01049604 -0.01049603 Total force = 0.025710 Total SCF correction = 0.000042 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126638043 -0.126638040 -0.126638042 Si 0.126638043 0.126638040 0.126638042 kinetic energy (Ekin) = 0.00042383 Ry temperature = 44.61168503 K Ekin + Etot (const) = -15.54394979 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.06 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.52E-11, avg # of iterations = 3.8 total cpu time spent up to now is 1.08 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2226 6.6180 6.6180 6.8885 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0761 -0.9727 3.5713 3.6341 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0761 -0.9727 3.5713 3.6341 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0761 -0.9727 3.5713 3.6341 ! total energy = -15.54428129 Ry Harris-Foulkes estimate = -15.54428130 Ry estimated scf accuracy < 8.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01142637 0.01142638 0.01142636 atom 2 type 1 force = -0.01142637 -0.01142638 -0.01142636 Total force = 0.027989 Total SCF correction = 0.000059 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126758400 -0.126758397 -0.126758399 Si 0.126758400 0.126758397 0.126758399 kinetic energy (Ekin) = 0.00033175 Ry temperature = 34.91912459 K Ekin + Etot (const) = -15.54394955 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.11 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.58E-11, avg # of iterations = 3.8 total cpu time spent up to now is 1.12 secs total energy = -15.54419432 Ry Harris-Foulkes estimate = -15.54419433 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.13 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2228 6.6114 6.6114 6.9021 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0801 -0.9692 3.5689 3.6367 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0801 -0.9692 3.5689 3.6367 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0801 -0.9692 3.5689 3.6367 ! total energy = -15.54419432 Ry Harris-Foulkes estimate = -15.54419432 Ry estimated scf accuracy < 6.9E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01223428 0.01223426 0.01223430 atom 2 type 1 force = -0.01223428 -0.01223426 -0.01223430 Total force = 0.029968 Total SCF correction = 0.000006 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126859978 -0.126859975 -0.126859978 Si 0.126859978 0.126859975 0.126859978 kinetic energy (Ekin) = 0.00024500 Ry temperature = 25.78844514 K Ekin + Etot (const) = -15.54394932 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.15 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.42E-12, avg # of iterations = 3.8 total cpu time spent up to now is 1.17 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2230 6.6059 6.6059 6.9134 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0834 -0.9663 3.5670 3.6388 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0834 -0.9663 3.5670 3.6388 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0834 -0.9663 3.5670 3.6388 ! total energy = -15.54411630 Ry Harris-Foulkes estimate = -15.54411631 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01291360 0.01291360 0.01291363 atom 2 type 1 force = -0.01291360 -0.01291360 -0.01291363 Total force = 0.031632 Total SCF correction = 0.000023 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126941735 -0.126941731 -0.126941734 Si 0.126941735 0.126941731 0.126941734 kinetic energy (Ekin) = 0.00016719 Ry temperature = 17.59793771 K Ekin + Etot (const) = -15.54394912 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.20 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.70E-12, avg # of iterations = 4.0 total cpu time spent up to now is 1.21 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2231 6.6014 6.6014 6.9227 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0861 -0.9640 3.5653 3.6406 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0861 -0.9640 3.5653 3.6406 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0861 -0.9640 3.5653 3.6406 ! total energy = -15.54405046 Ry Harris-Foulkes estimate = -15.54405046 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01345752 0.01345751 0.01345753 atom 2 type 1 force = -0.01345752 -0.01345751 -0.01345753 Total force = 0.032964 Total SCF correction = 0.000021 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127002835 -0.127002831 -0.127002834 Si 0.127002835 0.127002831 0.127002834 kinetic energy (Ekin) = 0.00010151 Ry temperature = 10.68494933 K Ekin + Etot (const) = -15.54394895 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.24 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.67E-12, avg # of iterations = 3.8 total cpu time spent up to now is 1.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2232 6.5982 6.5982 6.9293 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0880 -0.9624 3.5642 3.6418 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0880 -0.9624 3.5642 3.6418 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0880 -0.9624 3.5642 3.6418 ! total energy = -15.54399948 Ry Harris-Foulkes estimate = -15.54399948 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01386276 0.01386274 0.01386274 atom 2 type 1 force = -0.01386276 -0.01386274 -0.01386274 Total force = 0.033957 Total SCF correction = 0.000029 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127042657 -0.127042652 -0.127042655 Si 0.127042657 0.127042652 0.127042655 kinetic energy (Ekin) = 0.00005066 Ry temperature = 5.33260357 K Ekin + Etot (const) = -15.54394882 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.28 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.56E-12, avg # of iterations = 3.8 total cpu time spent up to now is 1.30 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5959 6.5959 6.9340 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0894 -0.9612 3.5634 3.6428 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0894 -0.9612 3.5634 3.6428 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0894 -0.9612 3.5634 3.6428 ! total energy = -15.54396544 Ry Harris-Foulkes estimate = -15.54396544 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01412647 0.01412642 0.01412643 atom 2 type 1 force = -0.01412647 -0.01412642 -0.01412643 Total force = 0.034603 Total SCF correction = 0.000034 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127060795 -0.127060790 -0.127060793 Si 0.127060795 0.127060790 0.127060793 kinetic energy (Ekin) = 0.00001671 Ry temperature = 1.75882875 K Ekin + Etot (const) = -15.54394873 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.33 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.07E-11, avg # of iterations = 2.8 total cpu time spent up to now is 1.34 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2234 6.5951 6.5951 6.9357 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0898 -0.9608 3.5631 3.6431 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0898 -0.9608 3.5631 3.6431 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0898 -0.9608 3.5631 3.6431 ! total energy = -15.54394972 Ry Harris-Foulkes estimate = -15.54394972 Ry estimated scf accuracy < 2.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01424620 0.01424615 0.01424617 atom 2 type 1 force = -0.01424620 -0.01424615 -0.01424617 Total force = 0.034896 Total SCF correction = 0.000034 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127057066 -0.127057061 -0.127057064 Si 0.127057066 0.127057061 0.127057064 kinetic energy (Ekin) = 0.00000103 Ry temperature = 0.10870672 K Ekin + Etot (const) = -15.54394869 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.36 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.53E-12, avg # of iterations = 2.8 total cpu time spent up to now is 1.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5952 6.5952 6.9355 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0898 -0.9608 3.5631 3.6430 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0898 -0.9608 3.5631 3.6430 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0898 -0.9608 3.5631 3.6430 ! total energy = -15.54395297 Ry Harris-Foulkes estimate = -15.54395297 Ry estimated scf accuracy < 2.7E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01422188 0.01422184 0.01422187 atom 2 type 1 force = -0.01422188 -0.01422184 -0.01422187 Total force = 0.034836 Total SCF correction = 0.000011 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127031508 -0.127031502 -0.127031506 Si 0.127031508 0.127031502 0.127031506 kinetic energy (Ekin) = 0.00000427 Ry temperature = 0.44909559 K Ekin + Etot (const) = -15.54394870 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.40 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.07E-10, avg # of iterations = 2.8 total cpu time spent up to now is 1.41 secs total energy = -15.54397502 Ry Harris-Foulkes estimate = -15.54397507 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.48E-10, avg # of iterations = 2.0 total cpu time spent up to now is 1.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5966 6.5966 6.9326 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0890 -0.9615 3.5636 3.6425 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0890 -0.9615 3.5636 3.6425 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0890 -0.9615 3.5636 3.6425 ! total energy = -15.54397504 Ry Harris-Foulkes estimate = -15.54397504 Ry estimated scf accuracy < 2.8E-10 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01405371 0.01405370 0.01405374 atom 2 type 1 force = -0.01405371 -0.01405370 -0.01405374 Total force = 0.034424 Total SCF correction = 0.000011 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126984378 -0.126984372 -0.126984375 Si 0.126984378 0.126984372 0.126984375 kinetic energy (Ekin) = 0.00002628 Ry temperature = 2.76636584 K Ekin + Etot (const) = -15.54394875 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.45 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.69E-13, avg # of iterations = 4.8 total cpu time spent up to now is 1.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2232 6.5992 6.5992 6.9273 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0874 -0.9628 3.5645 3.6415 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0874 -0.9628 3.5645 3.6415 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0874 -0.9628 3.5645 3.6415 ! total energy = -15.54401504 Ry Harris-Foulkes estimate = -15.54401504 Ry estimated scf accuracy < 1.5E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01374048 0.01374042 0.01374045 atom 2 type 1 force = -0.01374048 -0.01374042 -0.01374045 Total force = 0.033657 Total SCF correction = 0.000004 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126916157 -0.126916151 -0.126916154 Si 0.126916157 0.126916151 0.126916154 kinetic energy (Ekin) = 0.00006619 Ry temperature = 6.96656436 K Ekin + Etot (const) = -15.54394885 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.49 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.89E-12, avg # of iterations = 4.0 total cpu time spent up to now is 1.51 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2231 6.6028 6.6028 6.9198 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0853 -0.9647 3.5658 3.6401 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0853 -0.9647 3.5658 3.6401 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0853 -0.9647 3.5658 3.6401 ! total energy = -15.54407135 Ry Harris-Foulkes estimate = -15.54407135 Ry estimated scf accuracy < 3.9E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01328768 0.01328766 0.01328765 atom 2 type 1 force = -0.01328768 -0.01328766 -0.01328765 Total force = 0.032548 Total SCF correction = 0.000012 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126827540 -0.126827534 -0.126827537 Si 0.126827540 0.126827534 0.126827537 kinetic energy (Ekin) = 0.00012235 Ry temperature = 12.87880441 K Ekin + Etot (const) = -15.54394900 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.53 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.80E-12, avg # of iterations = 3.8 total cpu time spent up to now is 1.55 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2229 6.6076 6.6076 6.9098 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0824 -0.9672 3.5676 3.6381 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0824 -0.9672 3.5676 3.6381 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0824 -0.9672 3.5676 3.6381 ! total energy = -15.54414168 Ry Harris-Foulkes estimate = -15.54414168 Ry estimated scf accuracy < 9.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01269707 0.01269703 0.01269705 atom 2 type 1 force = -0.01269707 -0.01269703 -0.01269705 Total force = 0.031101 Total SCF correction = 0.000016 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126719434 -0.126719428 -0.126719431 Si 0.126719434 0.126719428 0.126719431 kinetic energy (Ekin) = 0.00019250 Ry temperature = 20.26205306 K Ekin + Etot (const) = -15.54394918 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.57 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.49E-11, avg # of iterations = 3.5 total cpu time spent up to now is 1.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2227 6.6134 6.6134 6.8980 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0789 -0.9702 3.5696 3.6359 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0789 -0.9702 3.5696 3.6359 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0789 -0.9702 3.5696 3.6359 ! total energy = -15.54422313 Ry Harris-Foulkes estimate = -15.54422313 Ry estimated scf accuracy < 5.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01197371 0.01197366 0.01197371 atom 2 type 1 force = -0.01197371 -0.01197366 -0.01197371 Total force = 0.029329 Total SCF correction = 0.000026 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126592948 -0.126592943 -0.126592946 Si 0.126592948 0.126592943 0.126592946 kinetic energy (Ekin) = 0.00027374 Ry temperature = 28.81353106 K Ekin + Etot (const) = -15.54394939 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.61 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.31E-10, avg # of iterations = 3.5 total cpu time spent up to now is 1.63 secs total energy = -15.54431234 Ry Harris-Foulkes estimate = -15.54431237 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.12E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.64 secs total energy = -15.54431235 Ry Harris-Foulkes estimate = -15.54431236 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2225 6.6203 6.6203 6.8838 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0748 -0.9739 3.5721 3.6333 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0748 -0.9739 3.5721 3.6333 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0748 -0.9739 3.5721 3.6333 ! total energy = -15.54431235 Ry Harris-Foulkes estimate = -15.54431235 Ry estimated scf accuracy < 7.3E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01112309 0.01112304 0.01112307 atom 2 type 1 force = -0.01112309 -0.01112304 -0.01112307 Total force = 0.027246 Total SCF correction = 0.000000 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126449390 -0.126449385 -0.126449387 Si 0.126449390 0.126449385 0.126449387 kinetic energy (Ekin) = 0.00036273 Ry temperature = 38.18037279 K Ekin + Etot (const) = -15.54394962 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.67 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.93E-11, avg # of iterations = 3.5 total cpu time spent up to now is 1.69 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2223 6.6281 6.6281 6.8679 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0702 -0.9780 3.5748 3.6303 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0702 -0.9780 3.5748 3.6303 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0702 -0.9780 3.5748 3.6303 ! total energy = -15.54440563 Ry Harris-Foulkes estimate = -15.54440563 Ry estimated scf accuracy < 8.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01015170 0.01015164 0.01015170 atom 2 type 1 force = -0.01015170 -0.01015164 -0.01015170 Total force = 0.024866 Total SCF correction = 0.000016 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126290249 -0.126290244 -0.126290247 Si 0.126290249 0.126290244 0.126290247 kinetic energy (Ekin) = 0.00045576 Ry temperature = 47.97276419 K Ekin + Etot (const) = -15.54394986 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.72 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.83E-10, avg # of iterations = 3.5 total cpu time spent up to now is 1.73 secs total energy = -15.54449903 Ry Harris-Foulkes estimate = -15.54449907 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.73E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.74 secs total energy = -15.54449904 Ry Harris-Foulkes estimate = -15.54449905 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.82E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.75 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2220 6.6368 6.6368 6.8501 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0650 -0.9827 3.5779 3.6271 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0650 -0.9827 3.5779 3.6271 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0650 -0.9827 3.5779 3.6271 ! total energy = -15.54449905 Ry Harris-Foulkes estimate = -15.54449905 Ry estimated scf accuracy < 1.6E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00906796 0.00906792 0.00906794 atom 2 type 1 force = -0.00906796 -0.00906792 -0.00906794 Total force = 0.022212 Total SCF correction = 0.000000 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126117190 -0.126117185 -0.126117187 Si 0.126117190 0.126117185 0.126117187 kinetic energy (Ekin) = 0.00054893 Ry temperature = 57.77927468 K Ekin + Etot (const) = -15.54395012 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.78 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.34E-11, avg # of iterations = 2.0 total cpu time spent up to now is 1.79 secs total energy = -15.54458863 Ry Harris-Foulkes estimate = -15.54458864 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.84E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.80 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2218 6.6462 6.6462 6.8309 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0594 -0.9878 3.5812 3.6236 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0594 -0.9878 3.5812 3.6236 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0594 -0.9878 3.5812 3.6236 ! total energy = -15.54458863 Ry Harris-Foulkes estimate = -15.54458863 Ry estimated scf accuracy < 4.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00788084 0.00788080 0.00788081 atom 2 type 1 force = -0.00788084 -0.00788080 -0.00788081 Total force = 0.019304 Total SCF correction = 0.000002 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125932034 -0.125932029 -0.125932031 Si 0.125932034 0.125932029 0.125932031 kinetic energy (Ekin) = 0.00063827 Ry temperature = 67.18329109 K Ekin + Etot (const) = -15.54395036 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.83 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.58E-10, avg # of iterations = 2.8 total cpu time spent up to now is 1.84 secs total energy = -15.54467052 Ry Harris-Foulkes estimate = -15.54467054 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.11E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.85 secs total energy = -15.54467053 Ry Harris-Foulkes estimate = -15.54467053 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.86 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2216 6.6563 6.6563 6.8104 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0533 -0.9934 3.5847 3.6199 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0533 -0.9934 3.5847 3.6199 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0533 -0.9934 3.5847 3.6199 ! total energy = -15.54467053 Ry Harris-Foulkes estimate = -15.54467053 Ry estimated scf accuracy < 2.2E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00660077 0.00660074 0.00660075 atom 2 type 1 force = -0.00660077 -0.00660074 -0.00660075 Total force = 0.016168 Total SCF correction = 0.000000 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125736746 -0.125736742 -0.125736743 Si 0.125736746 0.125736742 0.125736743 kinetic energy (Ekin) = 0.00071994 Ry temperature = 75.77985099 K Ekin + Etot (const) = -15.54395059 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.89 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.11E-11, avg # of iterations = 1.8 total cpu time spent up to now is 1.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2215 6.6669 6.6670 6.7888 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0470 -0.9994 3.5884 3.6160 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0470 -0.9994 3.5884 3.6160 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0470 -0.9994 3.5884 3.6160 ! total energy = -15.54474115 Ry Harris-Foulkes estimate = -15.54474116 Ry estimated scf accuracy < 8.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00523946 0.00523943 0.00523946 atom 2 type 1 force = -0.00523946 -0.00523943 -0.00523946 Total force = 0.012834 Total SCF correction = 0.000003 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125533416 -0.125533412 -0.125533413 Si 0.125533416 0.125533412 0.125533413 kinetic energy (Ekin) = 0.00079037 Ry temperature = 83.19288316 K Ekin + Etot (const) = -15.54395078 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.93 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.96E-10, avg # of iterations = 1.8 total cpu time spent up to now is 1.95 secs total energy = -15.54479735 Ry Harris-Foulkes estimate = -15.54479738 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.65E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.96 secs total energy = -15.54479736 Ry Harris-Foulkes estimate = -15.54479737 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.21E-10, avg # of iterations = 2.2 total cpu time spent up to now is 1.96 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2213 6.6781 6.6781 6.7663 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0403 -1.0057 3.5922 3.6121 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0403 -1.0057 3.5922 3.6121 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0403 -1.0057 3.5922 3.6121 ! total energy = -15.54479737 Ry Harris-Foulkes estimate = -15.54479737 Ry estimated scf accuracy < 5.5E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00381009 0.00381007 0.00381007 atom 2 type 1 force = -0.00381009 -0.00381007 -0.00381007 Total force = 0.009333 Total SCF correction = 0.000000 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125324237 -0.125324234 -0.125324235 Si 0.125324237 0.125324234 0.125324235 kinetic energy (Ekin) = 0.00084641 Ry temperature = 89.09189597 K Ekin + Etot (const) = -15.54395095 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.99 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.22E-11, avg # of iterations = 1.8 total cpu time spent up to now is 2.01 secs total energy = -15.54483658 Ry Harris-Foulkes estimate = -15.54483659 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.01 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6896 6.6896 6.7432 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0335 -1.0123 3.5961 3.6081 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0335 -1.0123 3.5961 3.6081 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0335 -1.0123 3.5961 3.6081 ! total energy = -15.54483658 Ry Harris-Foulkes estimate = -15.54483658 Ry estimated scf accuracy < 4.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00232638 0.00232635 0.00232636 atom 2 type 1 force = -0.00232638 -0.00232635 -0.00232636 Total force = 0.005698 Total SCF correction = 0.000001 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125111488 -0.125111485 -0.125111486 Si 0.125111488 0.125111485 0.125111486 kinetic energy (Ekin) = 0.00088551 Ry temperature = 93.20694006 K Ekin + Etot (const) = -15.54395107 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.04 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.58E-10, avg # of iterations = 1.8 total cpu time spent up to now is 2.05 secs total energy = -15.54485692 Ry Harris-Foulkes estimate = -15.54485694 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.66E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.06 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.7013 6.7013 6.7197 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0265 -1.0192 3.6000 3.6041 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0265 -1.0192 3.6000 3.6041 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0265 -1.0192 3.6000 3.6041 ! total energy = -15.54485693 Ry Harris-Foulkes estimate = -15.54485693 Ry estimated scf accuracy < 9.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00080356 0.00080353 0.00080354 atom 2 type 1 force = -0.00080356 -0.00080353 -0.00080354 Total force = 0.001968 Total SCF correction = 0.000001 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124897505 -0.124897503 -0.124897503 Si 0.124897505 0.124897503 0.124897503 kinetic energy (Ekin) = 0.00090579 Ry temperature = 95.34160267 K Ekin + Etot (const) = -15.54395114 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.09 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.70E-10, avg # of iterations = 1.8 total cpu time spent up to now is 2.10 secs total energy = -15.54485734 Ry Harris-Foulkes estimate = -15.54485736 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.35E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.11 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6961 6.7130 6.7130 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0262 -1.0195 3.6002 3.6040 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0262 -1.0195 3.6002 3.6040 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0262 -1.0195 3.6002 3.6040 ! total energy = -15.54485734 Ry Harris-Foulkes estimate = -15.54485735 Ry estimated scf accuracy < 9.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00074226 -0.00074227 -0.00074228 atom 2 type 1 force = 0.00074226 0.00074227 0.00074228 Total force = 0.001818 Total SCF correction = 0.000001 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124684662 -0.124684660 -0.124684660 Si 0.124684662 0.124684660 0.124684660 kinetic energy (Ekin) = 0.00090619 Ry temperature = 95.38363297 K Ekin + Etot (const) = -15.54395116 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.14 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.49E-11, avg # of iterations = 1.8 total cpu time spent up to now is 2.15 secs total energy = -15.54483762 Ry Harris-Foulkes estimate = -15.54483763 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.82E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.16 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6727 6.7248 6.7248 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0333 -1.0125 3.5964 3.6078 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0333 -1.0125 3.5964 3.6078 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0333 -1.0125 3.5964 3.6078 ! total energy = -15.54483762 Ry Harris-Foulkes estimate = -15.54483763 Ry estimated scf accuracy < 4.7E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00229392 -0.00229393 -0.00229393 atom 2 type 1 force = 0.00229392 0.00229393 0.00229393 Total force = 0.005619 Total SCF correction = 0.000001 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124475339 -0.124475339 -0.124475337 Si 0.124475339 0.124475339 0.124475337 kinetic energy (Ekin) = 0.00088651 Ry temperature = 93.31207201 K Ekin + Etot (const) = -15.54395112 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.19 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.10E-11, avg # of iterations = 2.5 total cpu time spent up to now is 2.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2213 6.6497 6.7364 6.7364 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0405 -1.0056 3.5926 3.6116 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0405 -1.0056 3.5926 3.6116 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0405 -1.0056 3.5926 3.6116 ! total energy = -15.54479847 Ry Harris-Foulkes estimate = -15.54479847 Ry estimated scf accuracy < 2.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00383375 -0.00383375 -0.00383374 atom 2 type 1 force = 0.00383375 0.00383375 0.00383374 Total force = 0.009391 Total SCF correction = 0.000003 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124271901 -0.124271901 -0.124271900 Si 0.124271901 0.124271901 0.124271900 kinetic energy (Ekin) = 0.00084744 Ry temperature = 89.20049959 K Ekin + Etot (const) = -15.54395102 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.23 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.62E-10, avg # of iterations = 1.8 total cpu time spent up to now is 2.25 secs total energy = -15.54474145 Ry Harris-Foulkes estimate = -15.54474148 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.75E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.26 secs total energy = -15.54474146 Ry Harris-Foulkes estimate = -15.54474147 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.92E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2215 6.6273 6.7477 6.7477 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0475 -0.9988 3.5891 3.6153 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0475 -0.9988 3.5891 3.6153 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0475 -0.9988 3.5891 3.6153 ! total energy = -15.54474146 Ry Harris-Foulkes estimate = -15.54474146 Ry estimated scf accuracy < 4.6E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00534376 -0.00534376 -0.00534378 atom 2 type 1 force = 0.00534376 0.00534376 0.00534378 Total force = 0.013090 Total SCF correction = 0.000000 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124076666 -0.124076667 -0.124076665 Si 0.124076666 0.124076667 0.124076665 kinetic energy (Ekin) = 0.00079059 Ry temperature = 83.21579952 K Ekin + Etot (const) = -15.54395087 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.29 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.10E-11, avg # of iterations = 2.5 total cpu time spent up to now is 2.31 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2216 6.6059 6.7585 6.7585 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0544 -0.9924 3.5858 3.6188 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0544 -0.9924 3.5858 3.6188 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0544 -0.9924 3.5858 3.6188 ! total energy = -15.54466903 Ry Harris-Foulkes estimate = -15.54466904 Ry estimated scf accuracy < 4.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00680517 -0.00680515 -0.00680515 atom 2 type 1 force = 0.00680517 0.00680515 0.00680515 Total force = 0.016669 Total SCF correction = 0.000004 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123891876 -0.123891877 -0.123891875 Si 0.123891876 0.123891877 0.123891875 kinetic energy (Ekin) = 0.00071836 Ry temperature = 75.61303240 K Ekin + Etot (const) = -15.54395068 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.33 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.39E-10, avg # of iterations = 1.8 total cpu time spent up to now is 2.35 secs total energy = -15.54458436 Ry Harris-Foulkes estimate = -15.54458437 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.53E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.36 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2218 6.5857 6.7688 6.7688 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0609 -0.9863 3.5827 3.6221 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0609 -0.9863 3.5827 3.6221 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0609 -0.9863 3.5827 3.6221 ! total energy = -15.54458436 Ry Harris-Foulkes estimate = -15.54458437 Ry estimated scf accuracy < 9.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00819973 -0.00819972 -0.00819973 atom 2 type 1 force = 0.00819973 0.00819972 0.00819973 Total force = 0.020085 Total SCF correction = 0.000001 Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123719672 -0.123719674 -0.123719671 Si 0.123719672 0.123719674 0.123719671 kinetic energy (Ekin) = 0.00063392 Ry temperature = 66.72561183 K Ekin + Etot (const) = -15.54395044 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.39 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.14E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.40 secs total energy = -15.54449123 Ry Harris-Foulkes estimate = -15.54449125 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.41 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2221 6.5668 6.7784 6.7784 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0672 -0.9805 3.5798 3.6251 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0672 -0.9805 3.5798 3.6251 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0672 -0.9805 3.5798 3.6251 ! total energy = -15.54449124 Ry Harris-Foulkes estimate = -15.54449124 Ry estimated scf accuracy < 7.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00950929 -0.00950928 -0.00950930 atom 2 type 1 force = 0.00950929 0.00950928 0.00950930 Total force = 0.023293 Total SCF correction = 0.000001 Entering Dynamics: iteration = 52 time = 0.0503 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123562065 -0.123562067 -0.123562064 Si 0.123562065 0.123562067 0.123562064 kinetic energy (Ekin) = 0.00054106 Ry temperature = 56.95116319 K Ekin + Etot (const) = -15.54395018 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.44 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.90E-11, avg # of iterations = 2.0 total cpu time spent up to now is 2.45 secs total energy = -15.54439389 Ry Harris-Foulkes estimate = -15.54439390 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2223 6.5496 6.7872 6.7872 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0729 -0.9753 3.5773 3.6279 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0729 -0.9753 3.5773 3.6279 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0729 -0.9753 3.5773 3.6279 ! total energy = -15.54439389 Ry Harris-Foulkes estimate = -15.54439390 Ry estimated scf accuracy < 3.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01071629 -0.01071628 -0.01071630 atom 2 type 1 force = 0.01071629 0.01071628 0.01071630 Total force = 0.026249 Total SCF correction = 0.000001 Entering Dynamics: iteration = 53 time = 0.0513 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123420906 -0.123420909 -0.123420906 Si 0.123420906 0.123420909 0.123420906 kinetic energy (Ekin) = 0.00044400 Ry temperature = 46.73414472 K Ekin + Etot (const) = -15.54394990 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.49 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.17E-12, avg # of iterations = 3.8 total cpu time spent up to now is 2.51 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2225 6.5342 6.7951 6.7951 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0781 -0.9706 3.5750 3.6304 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0781 -0.9706 3.5750 3.6304 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0781 -0.9706 3.5750 3.6304 ! total energy = -15.54429681 Ry Harris-Foulkes estimate = -15.54429681 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01180431 -0.01180426 -0.01180429 atom 2 type 1 force = 0.01180431 0.01180426 0.01180429 Total force = 0.028914 Total SCF correction = 0.000001 Entering Dynamics: iteration = 54 time = 0.0522 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123297866 -0.123297870 -0.123297866 Si 0.123297866 0.123297870 0.123297866 kinetic energy (Ekin) = 0.00034720 Ry temperature = 36.54530129 K Ekin + Etot (const) = -15.54394962 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.54 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.33E-11, avg # of iterations = 2.5 total cpu time spent up to now is 2.55 secs total energy = -15.54420451 Ry Harris-Foulkes estimate = -15.54420453 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.37E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.56 secs total energy = -15.54420452 Ry Harris-Foulkes estimate = -15.54420452 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.57 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2228 6.5208 6.8020 6.8020 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0827 -0.9665 3.5731 3.6325 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0827 -0.9665 3.5731 3.6325 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0827 -0.9665 3.5731 3.6325 ! total energy = -15.54420452 Ry Harris-Foulkes estimate = -15.54420452 Ry estimated scf accuracy < 2.3E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01275798 -0.01275796 -0.01275798 atom 2 type 1 force = 0.01275798 0.01275796 0.01275798 Total force = 0.031251 Total SCF correction = 0.000000 Entering Dynamics: iteration = 55 time = 0.0532 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123194409 -0.123194413 -0.123194409 Si 0.123194409 0.123194413 0.123194409 kinetic energy (Ekin) = 0.00025518 Ry temperature = 26.85930614 K Ekin + Etot (const) = -15.54394935 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.60 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.54E-12, avg # of iterations = 3.8 total cpu time spent up to now is 2.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2230 6.5095 6.8078 6.8078 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0866 -0.9631 3.5715 3.6343 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0866 -0.9631 3.5715 3.6343 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0866 -0.9631 3.5715 3.6343 ! total energy = -15.54412136 Ry Harris-Foulkes estimate = -15.54412136 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01356378 -0.01356375 -0.01356377 atom 2 type 1 force = 0.01356378 0.01356375 0.01356377 Total force = 0.033224 Total SCF correction = 0.000003 Entering Dynamics: iteration = 56 time = 0.0542 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123111772 -0.123111776 -0.123111772 Si 0.123111772 0.123111776 0.123111772 kinetic energy (Ekin) = 0.00017226 Ry temperature = 18.13163347 K Ekin + Etot (const) = -15.54394910 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.64 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.41E-11, avg # of iterations = 3.5 total cpu time spent up to now is 2.66 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2231 6.5005 6.8124 6.8124 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0898 -0.9603 3.5702 3.6357 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0898 -0.9603 3.5702 3.6357 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0898 -0.9603 3.5702 3.6357 ! total energy = -15.54405126 Ry Harris-Foulkes estimate = -15.54405127 Ry estimated scf accuracy < 8.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01420993 -0.01420991 -0.01420991 atom 2 type 1 force = 0.01420993 0.01420991 0.01420991 Total force = 0.034807 Total SCF correction = 0.000005 Entering Dynamics: iteration = 57 time = 0.0552 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123050946 -0.123050951 -0.123050946 Si 0.123050946 0.123050951 0.123050946 kinetic energy (Ekin) = 0.00010238 Ry temperature = 10.77585412 K Ekin + Etot (const) = -15.54394889 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.68 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.90E-10, avg # of iterations = 3.2 total cpu time spent up to now is 2.70 secs total energy = -15.54399757 Ry Harris-Foulkes estimate = -15.54399760 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.56E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.71 secs total energy = -15.54399758 Ry Harris-Foulkes estimate = -15.54399759 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.90E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.4939 6.8158 6.8158 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0921 -0.9583 3.5692 3.6367 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0921 -0.9583 3.5692 3.6367 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0921 -0.9583 3.5692 3.6367 ! total energy = -15.54399759 Ry Harris-Foulkes estimate = -15.54399759 Ry estimated scf accuracy < 6.4E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01468712 -0.01468709 -0.01468712 atom 2 type 1 force = 0.01468712 0.01468709 0.01468712 Total force = 0.035976 Total SCF correction = 0.000001 Entering Dynamics: iteration = 58 time = 0.0561 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123012664 -0.123012669 -0.123012664 Si 0.123012664 0.123012669 0.123012664 kinetic energy (Ekin) = 0.00004886 Ry temperature = 5.14264289 K Ekin + Etot (const) = -15.54394873 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.75 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.63E-12, avg # of iterations = 3.2 total cpu time spent up to now is 2.76 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2234 6.4897 6.8179 6.8179 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0936 -0.9570 3.5687 3.6374 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0936 -0.9570 3.5687 3.6374 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0936 -0.9570 3.5687 3.6374 ! total energy = -15.54396289 Ry Harris-Foulkes estimate = -15.54396289 Ry estimated scf accuracy < 4.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01498798 -0.01498792 -0.01498794 atom 2 type 1 force = 0.01498798 0.01498792 0.01498794 Total force = 0.036713 Total SCF correction = 0.000005 Entering Dynamics: iteration = 59 time = 0.0571 pico-seconds ATOMIC_POSITIONS (alat) Si -0.122997388 -0.122997393 -0.122997388 Si 0.122997388 0.122997393 0.122997388 kinetic energy (Ekin) = 0.00001427 Ry temperature = 1.50183457 K Ekin + Etot (const) = -15.54394862 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.79 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.66E-11, avg # of iterations = 2.5 total cpu time spent up to now is 2.81 secs total energy = -15.54394885 Ry Harris-Foulkes estimate = -15.54394886 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.84E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.82 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2234 6.4880 6.8188 6.8188 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0941 -0.9565 3.5684 3.6377 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0941 -0.9565 3.5684 3.6377 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0941 -0.9565 3.5684 3.6377 ! total energy = -15.54394885 Ry Harris-Foulkes estimate = -15.54394885 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01510826 -0.01510823 -0.01510825 atom 2 type 1 force = 0.01510826 0.01510823 0.01510825 Total force = 0.037007 Total SCF correction = 0.000003 Entering Dynamics: iteration = 60 time = 0.0581 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123005302 -0.123005307 -0.123005302 Si 0.123005302 0.123005307 0.123005302 kinetic energy (Ekin) = 0.00000027 Ry temperature = 0.02837761 K Ekin + Etot (const) = -15.54394858 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.85 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.99E-11, avg # of iterations = 2.5 total cpu time spent up to now is 2.86 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2234 6.4889 6.8184 6.8184 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0938 -0.9568 3.5686 3.6375 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0938 -0.9568 3.5686 3.6375 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0938 -0.9568 3.5686 3.6375 ! total energy = -15.54395614 Ry Harris-Foulkes estimate = -15.54395614 Ry estimated scf accuracy < 8.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01504578 -0.01504576 -0.01504579 atom 2 type 1 force = 0.01504578 0.01504576 0.01504579 Total force = 0.036854 Total SCF correction = 0.000004 Entering Dynamics: iteration = 61 time = 0.0590 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123036310 -0.123036316 -0.123036311 Si 0.123036310 0.123036316 0.123036311 kinetic energy (Ekin) = 0.00000754 Ry temperature = 0.79318908 K Ekin + Etot (const) = -15.54394860 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.89 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.44E-09, avg # of iterations = 1.8 total cpu time spent up to now is 2.91 secs total energy = -15.54398414 Ry Harris-Foulkes estimate = -15.54398468 Ry estimated scf accuracy < 0.00000083 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-08, avg # of iterations = 2.2 total cpu time spent up to now is 2.92 secs total energy = -15.54398435 Ry Harris-Foulkes estimate = -15.54398449 Ry estimated scf accuracy < 0.00000028 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-09, avg # of iterations = 2.2 total cpu time spent up to now is 2.93 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.4923 6.8166 6.8166 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0927 -0.9578 3.5690 3.6370 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0927 -0.9578 3.5690 3.6370 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0927 -0.9578 3.5690 3.6370 ! total energy = -15.54398440 Ry Harris-Foulkes estimate = -15.54398440 Ry estimated scf accuracy < 8.5E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01480220 -0.01480216 -0.01480220 atom 2 type 1 force = 0.01480220 0.01480216 0.01480220 Total force = 0.036258 Total SCF correction = 0.000003 Entering Dynamics: iteration = 62 time = 0.0600 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123090039 -0.123090045 -0.123090040 Si 0.123090039 0.123090045 0.123090040 kinetic energy (Ekin) = 0.00003572 Ry temperature = 3.75945101 K Ekin + Etot (const) = -15.54394869 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.96 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.61E-10, avg # of iterations = 2.5 total cpu time spent up to now is 2.97 secs total energy = -15.54403228 Ry Harris-Foulkes estimate = -15.54403230 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.37E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.98 secs total energy = -15.54403229 Ry Harris-Foulkes estimate = -15.54403229 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-10, avg # of iterations = 2.2 total cpu time spent up to now is 2.99 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2232 6.4981 6.8136 6.8136 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0906 -0.9596 3.5698 3.6361 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0906 -0.9596 3.5698 3.6361 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0906 -0.9596 3.5698 3.6361 ! total energy = -15.54403229 Ry Harris-Foulkes estimate = -15.54403229 Ry estimated scf accuracy < 7.0E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01438031 -0.01438027 -0.01438030 atom 2 type 1 force = 0.01438031 0.01438027 0.01438030 Total force = 0.035224 Total SCF correction = 0.000000 Entering Dynamics: iteration = 63 time = 0.0610 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123165841 -0.123165847 -0.123165842 Si 0.123165841 0.123165847 0.123165842 kinetic energy (Ekin) = 0.00008346 Ry temperature = 8.78456051 K Ekin + Etot (const) = -15.54394883 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.02 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.24E-12, avg # of iterations = 4.2 total cpu time spent up to now is 3.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2230 6.5064 6.8094 6.8094 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0877 -0.9621 3.5710 3.6348 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0877 -0.9621 3.5710 3.6348 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0877 -0.9621 3.5710 3.6348 ! total energy = -15.54409750 Ry Harris-Foulkes estimate = -15.54409750 Ry estimated scf accuracy < 6.8E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01378694 -0.01378690 -0.01378694 atom 2 type 1 force = 0.01378694 0.01378690 0.01378694 Total force = 0.033771 Total SCF correction = 0.000011 Entering Dynamics: iteration = 64 time = 0.0619 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123262805 -0.123262811 -0.123262806 Si 0.123262805 0.123262811 0.123262806 kinetic energy (Ekin) = 0.00014847 Ry temperature = 15.62750269 K Ekin + Etot (const) = -15.54394903 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.07 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.59E-12, avg # of iterations = 3.5 total cpu time spent up to now is 3.08 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2228 6.5169 6.8039 6.8039 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0841 -0.9653 3.5725 3.6331 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0841 -0.9653 3.5725 3.6331 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0841 -0.9653 3.5725 3.6331 ! total energy = -15.54417691 Ry Harris-Foulkes estimate = -15.54417691 Ry estimated scf accuracy < 3.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01303066 -0.01303067 -0.01303068 atom 2 type 1 force = 0.01303066 0.01303067 0.01303068 Total force = 0.031918 Total SCF correction = 0.000022 Entering Dynamics: iteration = 65 time = 0.0629 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123379771 -0.123379776 -0.123379771 Si 0.123379771 0.123379776 0.123379771 kinetic energy (Ekin) = 0.00022765 Ry temperature = 23.96151391 K Ekin + Etot (const) = -15.54394926 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.11 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.35E-11, avg # of iterations = 3.2 total cpu time spent up to now is 3.13 secs total energy = -15.54426675 Ry Harris-Foulkes estimate = -15.54426676 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.81E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.14 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2226 6.5297 6.7974 6.7974 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0797 -0.9692 3.5744 3.6311 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0797 -0.9692 3.5744 3.6311 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0797 -0.9692 3.5744 3.6311 ! total energy = -15.54426675 Ry Harris-Foulkes estimate = -15.54426676 Ry estimated scf accuracy < 3.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01212258 -0.01212249 -0.01212246 atom 2 type 1 force = 0.01212258 0.01212249 0.01212246 Total force = 0.029694 Total SCF correction = 0.000015 Entering Dynamics: iteration = 66 time = 0.0639 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123515344 -0.123515349 -0.123515344 Si 0.123515344 0.123515349 0.123515344 kinetic energy (Ekin) = 0.00031723 Ry temperature = 33.39081608 K Ekin + Etot (const) = -15.54394953 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.17 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.79E-11, avg # of iterations = 3.5 total cpu time spent up to now is 3.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2224 6.5445 6.7898 6.7898 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0746 -0.9738 3.5765 3.6287 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0746 -0.9738 3.5765 3.6287 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0746 -0.9738 3.5765 3.6287 ! total energy = -15.54436280 Ry Harris-Foulkes estimate = -15.54436280 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01107569 -0.01107563 -0.01107571 atom 2 type 1 force = 0.01107569 0.01107563 0.01107571 Total force = 0.027130 Total SCF correction = 0.000008 Entering Dynamics: iteration = 67 time = 0.0648 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123667917 -0.123667922 -0.123667918 Si 0.123667917 0.123667922 0.123667918 kinetic energy (Ekin) = 0.00041299 Ry temperature = 43.47087087 K Ekin + Etot (const) = -15.54394981 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.21 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.40E-10, avg # of iterations = 2.5 total cpu time spent up to now is 3.23 secs total energy = -15.54446052 Ry Harris-Foulkes estimate = -15.54446059 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.23E-09, avg # of iterations = 2.2 total cpu time spent up to now is 3.24 secs total energy = -15.54446055 Ry Harris-Foulkes estimate = -15.54446057 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.17E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2221 6.5612 6.7813 6.7813 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0690 -0.9788 3.5790 3.6260 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0690 -0.9788 3.5790 3.6260 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0690 -0.9788 3.5790 3.6260 ! total energy = -15.54446056 Ry Harris-Foulkes estimate = -15.54446056 Ry estimated scf accuracy < 2.0E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00990473 -0.00990469 -0.00990473 atom 2 type 1 force = 0.00990473 0.00990469 0.00990473 Total force = 0.024262 Total SCF correction = 0.000000 Entering Dynamics: iteration = 68 time = 0.0658 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123835694 -0.123835698 -0.123835694 Si 0.123835694 0.123835698 0.123835694 kinetic energy (Ekin) = 0.00051046 Ry temperature = 53.73061126 K Ekin + Etot (const) = -15.54395009 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.28 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.81E-11, avg # of iterations = 1.8 total cpu time spent up to now is 3.30 secs total energy = -15.54455549 Ry Harris-Foulkes estimate = -15.54455550 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.30 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2219 6.5795 6.7719 6.7719 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0630 -0.9844 3.5817 3.6231 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0630 -0.9844 3.5817 3.6231 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0630 -0.9844 3.5817 3.6231 ! total energy = -15.54455550 Ry Harris-Foulkes estimate = -15.54455550 Ry estimated scf accuracy < 4.1E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00862594 -0.00862592 -0.00862594 atom 2 type 1 force = 0.00862594 0.00862592 0.00862594 Total force = 0.021129 Total SCF correction = 0.000003 Entering Dynamics: iteration = 69 time = 0.0668 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124016711 -0.124016715 -0.124016711 Si 0.124016711 0.124016715 0.124016711 kinetic energy (Ekin) = 0.00060514 Ry temperature = 63.69555232 K Ekin + Etot (const) = -15.54395036 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.33 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.40E-10, avg # of iterations = 2.5 total cpu time spent up to now is 3.35 secs total energy = -15.54464328 Ry Harris-Foulkes estimate = -15.54464330 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.67E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.35 secs total energy = -15.54464329 Ry Harris-Foulkes estimate = -15.54464329 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.36 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2217 6.5993 6.7618 6.7618 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0565 -0.9904 3.5848 3.6199 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0565 -0.9904 3.5848 3.6199 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0565 -0.9904 3.5848 3.6199 ! total energy = -15.54464329 Ry Harris-Foulkes estimate = -15.54464329 Ry estimated scf accuracy < 1.5E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00725645 -0.00725642 -0.00725645 atom 2 type 1 force = 0.00725645 0.00725642 0.00725645 Total force = 0.017775 Total SCF correction = 0.000000 Entering Dynamics: iteration = 70 time = 0.0677 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124208866 -0.124208870 -0.124208866 Si 0.124208866 0.124208870 0.124208866 kinetic energy (Ekin) = 0.00069268 Ry temperature = 72.91058192 K Ekin + Etot (const) = -15.54395061 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.39 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.36E-11, avg # of iterations = 2.0 total cpu time spent up to now is 3.40 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2215 6.6204 6.7512 6.7512 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0497 -0.9968 3.5880 3.6164 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0497 -0.9968 3.5880 3.6164 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0497 -0.9968 3.5880 3.6164 ! total energy = -15.54471998 Ry Harris-Foulkes estimate = -15.54471998 Ry estimated scf accuracy < 7.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00581431 -0.00581430 -0.00581434 atom 2 type 1 force = 0.00581431 0.00581430 0.00581434 Total force = 0.014242 Total SCF correction = 0.000003 Entering Dynamics: iteration = 71 time = 0.0687 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124409946 -0.124409949 -0.124409946 Si 0.124409946 0.124409949 0.124409946 kinetic energy (Ekin) = 0.00076917 Ry temperature = 80.96112196 K Ekin + Etot (const) = -15.54395081 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.43 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.27E-10, avg # of iterations = 1.8 total cpu time spent up to now is 3.44 secs total energy = -15.54478218 Ry Harris-Foulkes estimate = -15.54478220 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.54E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.45 secs total energy = -15.54478219 Ry Harris-Foulkes estimate = -15.54478219 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.82E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.45 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2214 6.6425 6.7400 6.7400 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0427 -1.0034 3.5915 3.6128 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0427 -1.0034 3.5915 3.6128 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0427 -1.0034 3.5915 3.6128 ! total energy = -15.54478219 Ry Harris-Foulkes estimate = -15.54478219 Ry estimated scf accuracy < 7.0E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00431776 -0.00431774 -0.00431776 atom 2 type 1 force = 0.00431776 0.00431774 0.00431776 Total force = 0.010576 Total SCF correction = 0.000000 Entering Dynamics: iteration = 72 time = 0.0697 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124617653 -0.124617656 -0.124617653 Si 0.124617653 0.124617656 0.124617653 kinetic energy (Ekin) = 0.00083121 Ry temperature = 87.49166177 K Ekin + Etot (const) = -15.54395098 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.48 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.21E-11, avg # of iterations = 1.8 total cpu time spent up to now is 3.49 secs total energy = -15.54482723 Ry Harris-Foulkes estimate = -15.54482724 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.53E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2213 6.6653 6.7285 6.7285 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0356 -1.0103 3.5952 3.6091 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0356 -1.0103 3.5952 3.6091 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0356 -1.0103 3.5952 3.6091 ! total energy = -15.54482723 Ry Harris-Foulkes estimate = -15.54482723 Ry estimated scf accuracy < 4.0E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00278539 -0.00278537 -0.00278539 atom 2 type 1 force = 0.00278539 0.00278537 0.00278539 Total force = 0.006823 Total SCF correction = 0.000001 Entering Dynamics: iteration = 73 time = 0.0706 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124829636 -0.124829638 -0.124829636 Si 0.124829636 0.124829638 0.124829636 kinetic energy (Ekin) = 0.00087614 Ry temperature = 92.22094366 K Ekin + Etot (const) = -15.54395109 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.53 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.35E-10, avg # of iterations = 1.8 total cpu time spent up to now is 3.55 secs total energy = -15.54485324 Ry Harris-Foulkes estimate = -15.54485326 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.15E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.55 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6886 6.7168 6.7168 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0285 -1.0172 3.5990 3.6052 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0285 -1.0172 3.5990 3.6052 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0285 -1.0172 3.5990 3.6052 ! total energy = -15.54485324 Ry Harris-Foulkes estimate = -15.54485325 Ry estimated scf accuracy < 8.3E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00123548 -0.00123545 -0.00123547 atom 2 type 1 force = 0.00123548 0.00123545 0.00123547 Total force = 0.003026 Total SCF correction = 0.000001 Entering Dynamics: iteration = 74 time = 0.0716 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125043515 -0.125043517 -0.125043515 Si 0.125043515 0.125043517 0.125043515 kinetic energy (Ekin) = 0.00090210 Ry temperature = 94.95320802 K Ekin + Etot (const) = -15.54395115 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.58 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.46E-10, avg # of iterations = 1.8 total cpu time spent up to now is 3.60 secs total energy = -15.54485924 Ry Harris-Foulkes estimate = -15.54485926 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.92E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.60 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.7050 6.7050 6.7122 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0243 -1.0214 3.6013 3.6029 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0243 -1.0214 3.6013 3.6029 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0243 -1.0214 3.6013 3.6029 ! total energy = -15.54485925 Ry Harris-Foulkes estimate = -15.54485925 Ry estimated scf accuracy < 8.2E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00031403 0.00031404 0.00031403 atom 2 type 1 force = -0.00031403 -0.00031404 -0.00031403 Total force = 0.000769 Total SCF correction = 0.000001 Entering Dynamics: iteration = 75 time = 0.0726 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125256912 -0.125256914 -0.125256912 Si 0.125256912 0.125256914 0.125256912 kinetic energy (Ekin) = 0.00090810 Ry temperature = 95.58496088 K Ekin + Etot (const) = -15.54395115 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.63 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.99E-11, avg # of iterations = 1.8 total cpu time spent up to now is 3.64 secs total energy = -15.54484516 Ry Harris-Foulkes estimate = -15.54484516 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.65E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.65 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2212 6.6933 6.6933 6.7357 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0313 -1.0145 3.5973 3.6069 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0313 -1.0145 3.5973 3.6069 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0313 -1.0145 3.5973 3.6069 ! total energy = -15.54484516 Ry Harris-Foulkes estimate = -15.54484516 Ry estimated scf accuracy < 4.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00184595 0.00184597 0.00184596 atom 2 type 1 force = -0.00184595 -0.00184597 -0.00184596 Total force = 0.004522 Total SCF correction = 0.000001 Entering Dynamics: iteration = 76 time = 0.0735 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125467476 -0.125467477 -0.125467476 Si 0.125467476 0.125467477 0.125467476 kinetic energy (Ekin) = 0.00089406 Ry temperature = 94.10732387 K Ekin + Etot (const) = -15.54395110 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.68 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.34E-11, avg # of iterations = 2.5 total cpu time spent up to now is 3.69 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2213 6.6817 6.6817 6.7590 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0382 -1.0078 3.5934 3.6108 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0382 -1.0078 3.5934 3.6108 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0382 -1.0078 3.5934 3.6108 ! total energy = -15.54481177 Ry Harris-Foulkes estimate = -15.54481177 Ry estimated scf accuracy < 3.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00334394 0.00334393 0.00334391 atom 2 type 1 force = -0.00334394 -0.00334393 -0.00334391 Total force = 0.008191 Total SCF correction = 0.000003 Entering Dynamics: iteration = 77 time = 0.0745 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125672907 -0.125672907 -0.125672907 Si 0.125672907 0.125672907 0.125672907 kinetic energy (Ekin) = 0.00086078 Ry temperature = 90.60401303 K Ekin + Etot (const) = -15.54395099 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.72 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.82E-10, avg # of iterations = 1.8 total cpu time spent up to now is 3.74 secs total energy = -15.54476070 Ry Harris-Foulkes estimate = -15.54476073 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.75 secs total energy = -15.54476071 Ry Harris-Foulkes estimate = -15.54476072 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.07E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.76 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2214 6.6704 6.6704 6.7817 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0449 -1.0013 3.5896 3.6148 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0449 -1.0013 3.5896 3.6148 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0449 -1.0013 3.5896 3.6148 ! total energy = -15.54476071 Ry Harris-Foulkes estimate = -15.54476071 Ry estimated scf accuracy < 6.1E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00479213 0.00479215 0.00479213 atom 2 type 1 force = -0.00479213 -0.00479215 -0.00479213 Total force = 0.011738 Total SCF correction = 0.000000 Entering Dynamics: iteration = 78 time = 0.0755 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125870982 -0.125870982 -0.125870982 Si 0.125870982 0.125870982 0.125870982 kinetic energy (Ekin) = 0.00080987 Ry temperature = 85.24569628 K Ekin + Etot (const) = -15.54395084 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.78 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.40E-11, avg # of iterations = 2.5 total cpu time spent up to now is 3.79 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2216 6.6596 6.6596 6.8036 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0513 -0.9952 3.5858 3.6187 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0514 -0.9952 3.5858 3.6187 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0513 -0.9952 3.5858 3.6187 ! total energy = -15.54469435 Ry Harris-Foulkes estimate = -15.54469435 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00617657 0.00617655 0.00617655 atom 2 type 1 force = -0.00617657 -0.00617655 -0.00617655 Total force = 0.015129 Total SCF correction = 0.000004 Entering Dynamics: iteration = 79 time = 0.0764 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126059576 -0.126059576 -0.126059577 Si 0.126059576 0.126059576 0.126059577 kinetic energy (Ekin) = 0.00074370 Ry temperature = 78.28033672 K Ekin + Etot (const) = -15.54395065 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.82 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.71E-10, avg # of iterations = 1.8 total cpu time spent up to now is 3.83 secs total energy = -15.54461565 Ry Harris-Foulkes estimate = -15.54461567 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.09E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.84 secs total energy = -15.54461566 Ry Harris-Foulkes estimate = -15.54461567 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.85 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2218 6.6493 6.6493 6.8245 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0575 -0.9895 3.5823 3.6224 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0575 -0.9895 3.5823 3.6224 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0575 -0.9895 3.5823 3.6224 ! total energy = -15.54461566 Ry Harris-Foulkes estimate = -15.54461566 Ry estimated scf accuracy < 3.8E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00748358 0.00748357 0.00748358 atom 2 type 1 force = -0.00748358 -0.00748357 -0.00748358 Total force = 0.018331 Total SCF correction = 0.000000 Entering Dynamics: iteration = 80 time = 0.0774 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126236684 -0.126236683 -0.126236685 Si 0.126236684 0.126236683 0.126236685 kinetic energy (Ekin) = 0.00066523 Ry temperature = 70.02086426 K Ekin + Etot (const) = -15.54395043 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.88 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.58E-11, avg # of iterations = 2.8 total cpu time spent up to now is 3.89 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2220 6.6397 6.6397 6.8442 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0632 -0.9842 3.5789 3.6260 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0632 -0.9842 3.5789 3.6260 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0632 -0.9842 3.5789 3.6260 ! total energy = -15.54452811 Ry Harris-Foulkes estimate = -15.54452812 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00870132 0.00870128 0.00870129 atom 2 type 1 force = -0.00870132 -0.00870128 -0.00870129 Total force = 0.021314 Total SCF correction = 0.000004 Entering Dynamics: iteration = 81 time = 0.0784 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126400436 -0.126400434 -0.126400436 Si 0.126400436 0.126400434 0.126400436 kinetic energy (Ekin) = 0.00057792 Ry temperature = 60.83068467 K Ekin + Etot (const) = -15.54395019 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.92 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.42E-10, avg # of iterations = 2.8 total cpu time spent up to now is 3.93 secs total energy = -15.54443547 Ry Harris-Foulkes estimate = -15.54443550 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.93E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.94 secs total energy = -15.54443548 Ry Harris-Foulkes estimate = -15.54443549 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.22E-10, avg # of iterations = 2.2 total cpu time spent up to now is 3.95 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2222 6.6308 6.6308 6.8624 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0686 -0.9794 3.5758 3.6293 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0686 -0.9794 3.5758 3.6293 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0686 -0.9794 3.5758 3.6293 ! total energy = -15.54443549 Ry Harris-Foulkes estimate = -15.54443549 Ry estimated scf accuracy < 1.1E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00981911 0.00981910 0.00981911 atom 2 type 1 force = -0.00981911 -0.00981910 -0.00981911 Total force = 0.024052 Total SCF correction = 0.000000 Entering Dynamics: iteration = 82 time = 0.0793 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126549116 -0.126549114 -0.126549116 Si 0.126549116 0.126549114 0.126549116 kinetic energy (Ekin) = 0.00048554 Ry temperature = 51.10720315 K Ekin + Etot (const) = -15.54394995 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.98 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.82E-11, avg # of iterations = 2.8 total cpu time spent up to now is 4.00 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2224 6.6227 6.6227 6.8789 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0734 -0.9751 3.5729 3.6324 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0734 -0.9751 3.5729 3.6324 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0734 -0.9751 3.5729 3.6324 ! total energy = -15.54434173 Ry Harris-Foulkes estimate = -15.54434174 Ry estimated scf accuracy < 9.9E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01082712 0.01082709 0.01082710 atom 2 type 1 force = -0.01082712 -0.01082709 -0.01082710 Total force = 0.026521 Total SCF correction = 0.000004 Entering Dynamics: iteration = 83 time = 0.0803 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126681177 -0.126681174 -0.126681177 Si 0.126681177 0.126681174 0.126681177 kinetic energy (Ekin) = 0.00039204 Ry temperature = 41.26514386 K Ekin + Etot (const) = -15.54394969 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.03 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.89E-10, avg # of iterations = 2.5 total cpu time spent up to now is 4.04 secs total energy = -15.54425079 Ry Harris-Foulkes estimate = -15.54425083 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.05 secs total energy = -15.54425080 Ry Harris-Foulkes estimate = -15.54425082 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.76E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.05 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2226 6.6155 6.6155 6.8936 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0777 -0.9713 3.5704 3.6351 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0777 -0.9713 3.5704 3.6351 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0777 -0.9713 3.5704 3.6351 ! total energy = -15.54425081 Ry Harris-Foulkes estimate = -15.54425081 Ry estimated scf accuracy < 1.3E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01171689 0.01171688 0.01171690 atom 2 type 1 force = -0.01171689 -0.01171688 -0.01171690 Total force = 0.028700 Total SCF correction = 0.000000 Entering Dynamics: iteration = 84 time = 0.0813 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126795253 -0.126795250 -0.126795254 Si 0.126795253 0.126795250 0.126795254 kinetic energy (Ekin) = 0.00030135 Ry temperature = 31.71949471 K Ekin + Etot (const) = -15.54394946 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.08 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.02E-11, avg # of iterations = 3.5 total cpu time spent up to now is 4.09 secs total energy = -15.54416650 Ry Harris-Foulkes estimate = -15.54416651 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.46E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.10 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2228 6.6094 6.6094 6.9063 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0813 -0.9681 3.5682 3.6375 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0813 -0.9681 3.5682 3.6375 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0813 -0.9681 3.5682 3.6375 ! total energy = -15.54416650 Ry Harris-Foulkes estimate = -15.54416650 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01248140 0.01248138 0.01248141 atom 2 type 1 force = -0.01248140 -0.01248138 -0.01248141 Total force = 0.030573 Total SCF correction = 0.000001 Entering Dynamics: iteration = 85 time = 0.0822 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126890171 -0.126890168 -0.126890172 Si 0.126890171 0.126890168 0.126890172 kinetic energy (Ekin) = 0.00021726 Ry temperature = 22.86862765 K Ekin + Etot (const) = -15.54394924 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.13 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.05E-11, avg # of iterations = 3.5 total cpu time spent up to now is 4.15 secs total energy = -15.54409230 Ry Harris-Foulkes estimate = -15.54409231 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.15 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2230 6.6042 6.6042 6.9168 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0844 -0.9655 3.5664 3.6395 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0844 -0.9655 3.5664 3.6395 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0844 -0.9655 3.5664 3.6395 ! total energy = -15.54409230 Ry Harris-Foulkes estimate = -15.54409231 Ry estimated scf accuracy < 9.8E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01311465 0.01311464 0.01311466 atom 2 type 1 force = -0.01311465 -0.01311464 -0.01311466 Total force = 0.032124 Total SCF correction = 0.000001 Entering Dynamics: iteration = 86 time = 0.0832 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126964958 -0.126964955 -0.126964959 Si 0.126964958 0.126964955 0.126964959 kinetic energy (Ekin) = 0.00014325 Ry temperature = 15.07871675 K Ekin + Etot (const) = -15.54394905 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.18 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.88E-11, avg # of iterations = 3.5 total cpu time spent up to now is 4.20 secs total energy = -15.54403125 Ry Harris-Foulkes estimate = -15.54403127 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.35E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.21 secs total energy = -15.54403126 Ry Harris-Foulkes estimate = -15.54403126 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.22 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2232 6.6002 6.6002 6.9252 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0868 -0.9634 3.5649 3.6411 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0868 -0.9634 3.5649 3.6411 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0868 -0.9634 3.5649 3.6411 ! total energy = -15.54403126 Ry Harris-Foulkes estimate = -15.54403126 Ry estimated scf accuracy < 8.2E-13 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01361175 0.01361172 0.01361176 atom 2 type 1 force = -0.01361175 -0.01361172 -0.01361176 Total force = 0.033342 Total SCF correction = 0.000000 Entering Dynamics: iteration = 87 time = 0.0842 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127018853 -0.127018849 -0.127018854 Si 0.127018853 0.127018849 0.127018854 kinetic energy (Ekin) = 0.00008237 Ry temperature = 8.66978156 K Ekin + Etot (const) = -15.54394889 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.25 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-11, avg # of iterations = 3.5 total cpu time spent up to now is 4.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5973 6.5973 6.9312 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0885 -0.9619 3.5639 3.6422 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0885 -0.9619 3.5639 3.6422 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0885 -0.9619 3.5639 3.6422 ! total energy = -15.54398586 Ry Harris-Foulkes estimate = -15.54398587 Ry estimated scf accuracy < 8.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01396889 0.01396885 0.01396888 atom 2 type 1 force = -0.01396889 -0.01396885 -0.01396888 Total force = 0.034217 Total SCF correction = 0.000001 Entering Dynamics: iteration = 88 time = 0.0851 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127051306 -0.127051302 -0.127051307 Si 0.127051306 0.127051302 0.127051307 kinetic energy (Ekin) = 0.00003709 Ry temperature = 3.90364386 K Ekin + Etot (const) = -15.54394877 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.29 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.55E-10, avg # of iterations = 2.5 total cpu time spent up to now is 4.30 secs total energy = -15.54395795 Ry Harris-Foulkes estimate = -15.54395797 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.55E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.31 secs total energy = -15.54395796 Ry Harris-Foulkes estimate = -15.54395797 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.32 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5956 6.5956 6.9348 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0896 -0.9610 3.5632 3.6429 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0896 -0.9610 3.5632 3.6429 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0896 -0.9610 3.5632 3.6429 ! total energy = -15.54395796 Ry Harris-Foulkes estimate = -15.54395796 Ry estimated scf accuracy < 7.6E-13 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01418370 0.01418367 0.01418371 atom 2 type 1 force = -0.01418370 -0.01418367 -0.01418371 Total force = 0.034743 Total SCF correction = 0.000000 Entering Dynamics: iteration = 89 time = 0.0861 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127061988 -0.127061984 -0.127061989 Si 0.127061988 0.127061984 0.127061989 kinetic energy (Ekin) = 0.00000925 Ry temperature = 0.97415130 K Ekin + Etot (const) = -15.54394871 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.35 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.28E-12, avg # of iterations = 3.2 total cpu time spent up to now is 4.36 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2234 6.5950 6.5950 6.9360 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0899 -0.9607 3.5630 3.6431 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0899 -0.9607 3.5630 3.6431 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0899 -0.9607 3.5630 3.6431 ! total energy = -15.54394868 Ry Harris-Foulkes estimate = -15.54394868 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01425430 0.01425426 0.01425430 atom 2 type 1 force = -0.01425430 -0.01425426 -0.01425430 Total force = 0.034916 Total SCF correction = 0.000001 Entering Dynamics: iteration = 90 time = 0.0871 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127050790 -0.127050786 -0.127050791 Si 0.127050790 0.127050786 0.127050791 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00013938 K Ekin + Etot (const) = -15.54394868 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.39 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.24E-15, avg # of iterations = 4.8 total cpu time spent up to now is 4.41 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5956 6.5956 6.9347 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0896 -0.9610 3.5632 3.6429 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0896 -0.9610 3.5632 3.6429 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0896 -0.9610 3.5632 3.6429 ! total energy = -15.54395841 Ry Harris-Foulkes estimate = -15.54395841 Ry estimated scf accuracy < 1.2E-12 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01418025 0.01418022 0.01418026 atom 2 type 1 force = -0.01418025 -0.01418022 -0.01418026 Total force = 0.034734 Total SCF correction = 0.000000 Entering Dynamics: iteration = 91 time = 0.0880 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127017826 -0.127017822 -0.127017828 Si 0.127017826 0.127017822 0.127017828 kinetic energy (Ekin) = 0.00000970 Ry temperature = 1.02107436 K Ekin + Etot (const) = -15.54394871 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.43 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.57E-11, avg # of iterations = 3.0 total cpu time spent up to now is 4.45 secs total energy = -15.54398673 Ry Harris-Foulkes estimate = -15.54398675 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2233 6.5974 6.5974 6.9311 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0885 -0.9619 3.5639 3.6422 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0885 -0.9619 3.5639 3.6422 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0885 -0.9619 3.5639 3.6422 ! total energy = -15.54398674 Ry Harris-Foulkes estimate = -15.54398674 Ry estimated scf accuracy < 7.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01396214 0.01396210 0.01396214 atom 2 type 1 force = -0.01396214 -0.01396210 -0.01396214 Total force = 0.034200 Total SCF correction = 0.000002 Entering Dynamics: iteration = 92 time = 0.0890 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126963432 -0.126963427 -0.126963433 Si 0.126963432 0.126963427 0.126963433 kinetic energy (Ekin) = 0.00003796 Ry temperature = 3.99558997 K Ekin + Etot (const) = -15.54394878 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.49 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.70E-10, avg # of iterations = 2.5 total cpu time spent up to now is 4.50 secs total energy = -15.54403250 Ry Harris-Foulkes estimate = -15.54403256 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-09, avg # of iterations = 2.2 total cpu time spent up to now is 4.51 secs total energy = -15.54403252 Ry Harris-Foulkes estimate = -15.54403254 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.52 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2232 6.6003 6.6003 6.9250 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0868 -0.9634 3.5649 3.6410 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0868 -0.9634 3.5649 3.6410 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0868 -0.9634 3.5649 3.6410 ! total energy = -15.54403253 Ry Harris-Foulkes estimate = -15.54403253 Ry estimated scf accuracy < 2.3E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01360157 0.01360154 0.01360158 atom 2 type 1 force = -0.01360157 -0.01360154 -0.01360158 Total force = 0.033317 Total SCF correction = 0.000000 Entering Dynamics: iteration = 93 time = 0.0900 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126888159 -0.126888155 -0.126888161 Si 0.126888159 0.126888155 0.126888161 kinetic energy (Ekin) = 0.00008363 Ry temperature = 8.80301578 K Ekin + Etot (const) = -15.54394890 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.55 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.93E-11, avg # of iterations = 3.2 total cpu time spent up to now is 4.56 secs total energy = -15.54409391 Ry Harris-Foulkes estimate = -15.54409392 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.89E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.57 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2230 6.6044 6.6044 6.9166 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0843 -0.9655 3.5664 3.6394 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0843 -0.9655 3.5664 3.6394 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0843 -0.9655 3.5664 3.6394 ! total energy = -15.54409391 Ry Harris-Foulkes estimate = -15.54409392 Ry estimated scf accuracy < 8.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01310126 0.01310122 0.01310127 atom 2 type 1 force = -0.01310126 -0.01310122 -0.01310127 Total force = 0.032091 Total SCF correction = 0.000002 Entering Dynamics: iteration = 94 time = 0.0910 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126792777 -0.126792773 -0.126792779 Si 0.126792777 0.126792773 0.126792779 kinetic energy (Ekin) = 0.00014486 Ry temperature = 15.24779410 K Ekin + Etot (const) = -15.54394905 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.59 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.08E-10, avg # of iterations = 3.2 total cpu time spent up to now is 4.61 secs total energy = -15.54416836 Ry Harris-Foulkes estimate = -15.54416841 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-09, avg # of iterations = 2.2 total cpu time spent up to now is 4.62 secs total energy = -15.54416838 Ry Harris-Foulkes estimate = -15.54416840 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.85E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.62 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2228 6.6095 6.6095 6.9060 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0813 -0.9682 3.5682 3.6374 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0813 -0.9682 3.5682 3.6374 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0813 -0.9682 3.5682 3.6374 ! total energy = -15.54416839 Ry Harris-Foulkes estimate = -15.54416839 Ry estimated scf accuracy < 2.7E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01246486 0.01246483 0.01246488 atom 2 type 1 force = -0.01246486 -0.01246483 -0.01246488 Total force = 0.030533 Total SCF correction = 0.000000 Entering Dynamics: iteration = 95 time = 0.0919 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126678262 -0.126678259 -0.126678264 Si 0.126678262 0.126678259 0.126678264 kinetic energy (Ekin) = 0.00021914 Ry temperature = 23.06663642 K Ekin + Etot (const) = -15.54394925 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.65 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.64E-11, avg # of iterations = 3.5 total cpu time spent up to now is 4.66 secs total energy = -15.54425289 Ry Harris-Foulkes estimate = -15.54425290 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.53E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.67 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2226 6.6157 6.6157 6.8933 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0776 -0.9714 3.5704 3.6350 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0776 -0.9714 3.5704 3.6350 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0776 -0.9714 3.5704 3.6350 ! total energy = -15.54425289 Ry Harris-Foulkes estimate = -15.54425289 Ry estimated scf accuracy < 7.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01169729 0.01169726 0.01169730 atom 2 type 1 force = -0.01169729 -0.01169726 -0.01169730 Total force = 0.028652 Total SCF correction = 0.000001 Entering Dynamics: iteration = 96 time = 0.0929 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126545793 -0.126545789 -0.126545794 Si 0.126545793 0.126545789 0.126545794 kinetic energy (Ekin) = 0.00030343 Ry temperature = 31.93826770 K Ekin + Etot (const) = -15.54394946 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.70 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.01E-10, avg # of iterations = 2.8 total cpu time spent up to now is 4.71 secs total energy = -15.54434391 Ry Harris-Foulkes estimate = -15.54434395 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.57E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.72 secs total energy = -15.54434393 Ry Harris-Foulkes estimate = -15.54434394 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.73 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2224 6.6229 6.6229 6.8785 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0733 -0.9752 3.5730 3.6323 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0733 -0.9752 3.5730 3.6323 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0733 -0.9752 3.5730 3.6323 ! total energy = -15.54434393 Ry Harris-Foulkes estimate = -15.54434393 Ry estimated scf accuracy < 1.2E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01080456 0.01080453 0.01080457 atom 2 type 1 force = -0.01080456 -0.01080453 -0.01080457 Total force = 0.026466 Total SCF correction = 0.000000 Entering Dynamics: iteration = 97 time = 0.0939 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126396739 -0.126396736 -0.126396741 Si 0.126396739 0.126396736 0.126396741 kinetic energy (Ekin) = 0.00039423 Ry temperature = 41.49554271 K Ekin + Etot (const) = -15.54394970 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.76 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.61E-11, avg # of iterations = 2.8 total cpu time spent up to now is 4.78 secs total energy = -15.54443770 Ry Harris-Foulkes estimate = -15.54443771 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.79 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2222 6.6310 6.6310 6.8620 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0684 -0.9795 3.5759 3.6292 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0684 -0.9795 3.5759 3.6292 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0684 -0.9795 3.5759 3.6292 ! total energy = -15.54443770 Ry Harris-Foulkes estimate = -15.54443770 Ry estimated scf accuracy < 6.0E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00979394 0.00979391 0.00979395 atom 2 type 1 force = -0.00979394 -0.00979391 -0.00979395 Total force = 0.023990 Total SCF correction = 0.000001 Entering Dynamics: iteration = 98 time = 0.0948 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126232652 -0.126232649 -0.126232654 Si 0.126232652 0.126232649 0.126232654 kinetic energy (Ekin) = 0.00048775 Ry temperature = 51.33955163 K Ekin + Etot (const) = -15.54394995 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.82 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.35E-10, avg # of iterations = 2.8 total cpu time spent up to now is 4.83 secs total energy = -15.54453024 Ry Harris-Foulkes estimate = -15.54453027 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.61E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.84 secs total energy = -15.54453025 Ry Harris-Foulkes estimate = -15.54453026 Ry estimated scf accuracy < 0.00000002 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.09E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.85 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2220 6.6399 6.6399 6.8437 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0631 -0.9844 3.5790 3.6259 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0631 -0.9844 3.5790 3.6259 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0631 -0.9844 3.5790 3.6259 ! total energy = -15.54453025 Ry Harris-Foulkes estimate = -15.54453025 Ry estimated scf accuracy < 1.1E-12 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00867377 0.00867375 0.00867379 atom 2 type 1 force = -0.00867377 -0.00867375 -0.00867379 Total force = 0.021246 Total SCF correction = 0.000000 Entering Dynamics: iteration = 99 time = 0.0958 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126055251 -0.126055248 -0.126055253 Si 0.126055251 0.126055248 0.126055253 kinetic energy (Ekin) = 0.00058005 Ry temperature = 61.05522306 K Ekin + Etot (const) = -15.54395020 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.88 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.96E-11, avg # of iterations = 2.0 total cpu time spent up to now is 4.89 secs total energy = -15.54461763 Ry Harris-Foulkes estimate = -15.54461764 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.32E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2218 6.6496 6.6496 6.8241 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0574 -0.9897 3.5824 3.6223 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0574 -0.9897 3.5824 3.6223 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0574 -0.9897 3.5824 3.6223 ! total energy = -15.54461764 Ry Harris-Foulkes estimate = -15.54461764 Ry estimated scf accuracy < 3.4E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00745374 0.00745372 0.00745375 atom 2 type 1 force = -0.00745374 -0.00745372 -0.00745375 Total force = 0.018258 Total SCF correction = 0.000000 Entering Dynamics: iteration = 100 time = 0.0968 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125866409 -0.125866407 -0.125866411 Si 0.125866409 0.125866407 0.125866411 kinetic energy (Ekin) = 0.00066720 Ry temperature = 70.22798110 K Ekin + Etot (const) = -15.54395044 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.91 secs per-process dynamical memory: 1.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.10E-10, avg # of iterations = 2.8 total cpu time spent up to now is 4.92 secs total energy = -15.54469606 Ry Harris-Foulkes estimate = -15.54469608 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.91E-10, avg # of iterations = 2.2 total cpu time spent up to now is 4.93 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev): -5.2216 6.6599 6.6599 6.8031 k = 1.0000 0.0000 0.0000 ( 108 PWs) bands (ev): -1.0512 -0.9954 3.5859 3.6186 k = 0.0000 1.0000 0.0000 ( 108 PWs) bands (ev): -1.0512 -0.9954 3.5859 3.6186 k = 0.0000 0.0000 1.0000 ( 108 PWs) bands (ev): -1.0512 -0.9954 3.5859 3.6186 ! total energy = -15.54469607 Ry Harris-Foulkes estimate = -15.54469607 Ry estimated scf accuracy < 7.9E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00614463 0.00614461 0.00614464 atom 2 type 1 force = -0.00614463 -0.00614461 -0.00614464 Total force = 0.015051 Total SCF correction = 0.000001 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000012 cm^2/s atom 2 D = 0.00000012 cm^2/s < D > = 0.00000012 cm^2/s Writing output data file pwscf.save PWSCF : 4.95s CPU time, 5.73s wall time init_run : 0.02s CPU electrons : 2.08s CPU ( 101 calls, 0.021 s avg) update_pot : 0.46s CPU ( 100 calls, 0.005 s avg) forces : 0.09s CPU ( 101 calls, 0.001 s avg) Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 1.62s CPU ( 279 calls, 0.006 s avg) sum_band : 0.27s CPU ( 279 calls, 0.001 s avg) v_of_rho : 0.14s CPU ( 280 calls, 0.001 s avg) mix_rho : 0.02s CPU ( 279 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.08s CPU ( 2640 calls, 0.000 s avg) cegterg : 1.49s CPU ( 1116 calls, 0.001 s avg) Called by *egterg: h_psi : 1.11s CPU ( 3593 calls, 0.000 s avg) g_psi : 0.04s CPU ( 2473 calls, 0.000 s avg) cdiaghg : 0.21s CPU ( 2789 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.03s CPU ( 3593 calls, 0.000 s avg) General routines calbec : 0.06s CPU ( 4393 calls, 0.000 s avg) cft3 : 0.06s CPU ( 1242 calls, 0.000 s avg) cft3s : 1.00s CPU ( 29564 calls, 0.000 s avg) davcio : 0.02s CPU ( 6408 calls, 0.000 s avg) espresso-5.1/PW/examples/example03/reference/si.md8.out0000644000175000017500000116033612341373025021047 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:39:31 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Found additional translation: -0.5000 -0.5000 0.0000 Found additional translation: -0.5000 0.0000 -0.5000 Found additional translation: 0.0000 -0.5000 -0.5000 bravais-lattice index = 1 lattice parameter (a_0) = 10.1800 a.u. unit-cell volume = 1054.9778 (a.u.)^3 number of atoms/cell = 8 number of atomic types = 1 number of electrons = 32.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 8.0000 Ry charge density cutoff = 32.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 100 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Si read from file Si.vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( -0.1230000 -0.1230000 -0.1230000 ) 2 Si tau( 2) = ( 0.3770000 0.3770000 -0.1230000 ) 3 Si tau( 3) = ( 0.3770000 -0.1230000 0.3770000 ) 4 Si tau( 4) = ( -0.1230000 0.3770000 0.3770000 ) 5 Si tau( 5) = ( 0.1230000 0.1230000 0.1230000 ) 6 Si tau( 6) = ( 0.6230000 0.6230000 0.1230000 ) 7 Si tau( 7) = ( 0.6230000 0.1230000 0.6230000 ) 8 Si tau( 8) = ( 0.1230000 0.6230000 0.6230000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 84.0013 ( 3239 G-vectors) FFT grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.11 Mb ( 437, 16) NL pseudopotentials 0.21 Mb ( 437, 32) Each V/rho on FFT grid 0.12 Mb ( 8000) Each G-vector array 0.02 Mb ( 3239) G-vector shells 0.00 Mb ( 73) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.43 Mb ( 437, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 32, 16) Arrays for rho mixing 0.98 Mb ( 8000, 8) Initial potential from superposition of free atoms starting charge 31.99603, renormalised to 32.00000 Starting wfc are 32 atomic wfcs total cpu time spent up to now is 0.04 secs per-process dynamical memory: 3.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 0.06 secs total energy = -62.14832068 Ry Harris-Foulkes estimate = -62.29615145 Ry estimated scf accuracy < 0.43519475 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-03, avg # of iterations = 1.0 total cpu time spent up to now is 0.09 secs total energy = -62.17410687 Ry Harris-Foulkes estimate = -62.17581399 Ry estimated scf accuracy < 0.01653717 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.17E-05, avg # of iterations = 2.0 total cpu time spent up to now is 0.12 secs total energy = -62.17575000 Ry Harris-Foulkes estimate = -62.17579144 Ry estimated scf accuracy < 0.00037432 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.17E-06, avg # of iterations = 2.0 total cpu time spent up to now is 0.14 secs total energy = -62.17578522 Ry Harris-Foulkes estimate = -62.17578844 Ry estimated scf accuracy < 0.00000826 Ry iteration # 5 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.58E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.17 secs total energy = -62.17578714 Ry Harris-Foulkes estimate = -62.17578728 Ry estimated scf accuracy < 0.00000033 Ry iteration # 6 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 2.0 total cpu time spent up to now is 0.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0940 -1.0940 -1.0940 -0.9566 -0.9566 -0.9566 3.5686 3.5686 3.5686 3.6377 3.6377 3.6377 6.4885 6.8187 6.8187 ! total energy = -62.17578719 Ry Harris-Foulkes estimate = -62.17578719 Ry estimated scf accuracy < 9.0E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01508585 -0.01508585 -0.01508585 atom 2 type 1 force = -0.01508585 -0.01508585 -0.01508585 atom 3 type 1 force = -0.01508585 -0.01508585 -0.01508585 atom 4 type 1 force = -0.01508585 -0.01508585 -0.01508585 atom 5 type 1 force = 0.01508585 0.01508585 0.01508585 atom 6 type 1 force = 0.01508585 0.01508585 0.01508585 atom 7 type 1 force = 0.01508585 0.01508585 0.01508585 atom 8 type 1 force = 0.01508585 0.01508585 0.01508585 Total force = 0.073905 Total SCF correction = 0.000053 Molecular Dynamics Calculation mass Si = 28.09 Time step = 20.00 a.u., 0.9676 femto-seconds Entering Dynamics: iteration = 1 time = 0.0010 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123023156 -0.123023156 -0.123023156 Si 0.376976844 0.376976844 -0.123023156 Si 0.376976844 -0.123023156 0.376976844 Si -0.123023156 0.376976844 0.376976844 Si 0.123023156 0.123023156 0.123023156 Si 0.623023156 0.623023156 0.123023156 Si 0.623023156 0.123023156 0.623023156 Si 0.123023156 0.623023156 0.623023156 kinetic energy (Ekin) = 0.00000000 Ry temperature = 0.00000000 K Ekin + Etot (const) = -62.17578719 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential total cpu time spent up to now is 0.22 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.07E-10, avg # of iterations = 4.0 total cpu time spent up to now is 0.28 secs total energy = -62.17587202 Ry Harris-Foulkes estimate = -62.17587202 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.75E-11, avg # of iterations = 1.0 total cpu time spent up to now is 0.30 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0932 -1.0932 -1.0932 -0.9574 -0.9574 -0.9574 3.5688 3.5688 3.5688 3.6372 3.6372 3.6372 6.4909 6.8174 6.8174 ! total energy = -62.17587202 Ry Harris-Foulkes estimate = -62.17587202 Ry estimated scf accuracy < 1.6E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01490278 -0.01490278 -0.01490278 atom 2 type 1 force = -0.01490278 -0.01490278 -0.01490278 atom 3 type 1 force = -0.01490278 -0.01490278 -0.01490278 atom 4 type 1 force = -0.01490278 -0.01490278 -0.01490278 atom 5 type 1 force = 0.01490278 0.01490278 0.01490278 atom 6 type 1 force = 0.01490278 0.01490278 0.01490278 atom 7 type 1 force = 0.01490278 0.01490278 0.01490278 atom 8 type 1 force = 0.01490278 0.01490278 0.01490278 Total force = 0.073008 Total SCF correction = 0.000005 Entering Dynamics: iteration = 2 time = 0.0019 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123069187 -0.123069187 -0.123069187 Si 0.376930813 0.376930813 -0.123069187 Si 0.376930813 -0.123069187 0.376930813 Si -0.123069187 0.376930813 0.376930813 Si 0.123069187 0.123069187 0.123069187 Si 0.623069187 0.623069187 0.123069187 Si 0.623069187 0.123069187 0.623069187 Si 0.123069187 0.623069187 0.623069187 kinetic energy (Ekin) = 0.00009524 Ry temperature = 1.43212453 K Ekin + Etot (const) = -62.17577678 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save first order wave-functions extrapolation first order charge density extrapolation total cpu time spent up to now is 0.33 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.62E-11, avg # of iterations = 4.0 total cpu time spent up to now is 0.40 secs total energy = -62.17603760 Ry Harris-Foulkes estimate = -62.17603760 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.07E-11, avg # of iterations = 1.0 total cpu time spent up to now is 0.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2232 -1.0914 -1.0914 -1.0914 -0.9589 -0.9589 -0.9589 3.5696 3.5696 3.5696 3.6365 3.6365 3.6365 6.4959 6.8148 6.8148 ! total energy = -62.17603760 Ry Harris-Foulkes estimate = -62.17603760 Ry estimated scf accuracy < 1.5E-09 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01454193 -0.01454193 -0.01454193 atom 2 type 1 force = -0.01454193 -0.01454193 -0.01454193 atom 3 type 1 force = -0.01454193 -0.01454193 -0.01454193 atom 4 type 1 force = -0.01454193 -0.01454193 -0.01454193 atom 5 type 1 force = 0.01454193 0.01454193 0.01454193 atom 6 type 1 force = 0.01454193 0.01454193 0.01454193 atom 7 type 1 force = 0.01454193 0.01454193 0.01454193 atom 8 type 1 force = 0.01454193 0.01454193 0.01454193 Total force = 0.071241 Total SCF correction = 0.000004 Entering Dynamics: iteration = 3 time = 0.0029 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123137539 -0.123137539 -0.123137539 Si 0.376862461 0.376862461 -0.123137539 Si 0.376862461 -0.123137539 0.376862461 Si -0.123137539 0.376862461 0.376862461 Si 0.123137539 0.123137539 0.123137539 Si 0.623137539 0.623137539 0.123137539 Si 0.623137539 0.123137539 0.623137539 Si 0.123137539 0.623137539 0.623137539 kinetic energy (Ekin) = 0.00026031 Ry temperature = 3.91431284 K Ekin + Etot (const) = -62.17577729 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.46 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.50E-14, avg # of iterations = 4.0 total cpu time spent up to now is 0.52 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2231 -1.0888 -1.0888 -1.0888 -0.9612 -0.9612 -0.9612 3.5706 3.5706 3.5706 3.6353 3.6353 3.6353 6.5033 6.8110 6.8110 ! total energy = -62.17627598 Ry Harris-Foulkes estimate = -62.17627598 Ry estimated scf accuracy < 3.4E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01400680 -0.01400680 -0.01400680 atom 2 type 1 force = -0.01400680 -0.01400680 -0.01400680 atom 3 type 1 force = -0.01400680 -0.01400680 -0.01400680 atom 4 type 1 force = -0.01400680 -0.01400680 -0.01400680 atom 5 type 1 force = 0.01400680 0.01400680 0.01400680 atom 6 type 1 force = 0.01400680 0.01400680 0.01400680 atom 7 type 1 force = 0.01400680 0.01400680 0.01400680 atom 8 type 1 force = 0.01400680 0.01400680 0.01400680 Total force = 0.068619 Total SCF correction = 0.000008 Entering Dynamics: iteration = 4 time = 0.0039 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123227390 -0.123227390 -0.123227390 Si 0.376772610 0.376772610 -0.123227390 Si 0.376772610 -0.123227390 0.376772610 Si -0.123227390 0.376772610 0.376772610 Si 0.123227390 0.123227390 0.123227390 Si 0.623227390 0.623227390 0.123227390 Si 0.623227390 0.123227390 0.623227390 Si 0.123227390 0.623227390 0.623227390 kinetic energy (Ekin) = 0.00049798 Ry temperature = 7.48800668 K Ekin + Etot (const) = -62.17577801 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.55 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.68E-13, avg # of iterations = 4.0 total cpu time spent up to now is 0.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2229 -1.0854 -1.0854 -1.0854 -0.9642 -0.9642 -0.9642 3.5720 3.5720 3.5720 3.6337 3.6337 3.6337 6.5131 6.8059 6.8059 ! total energy = -62.17657576 Ry Harris-Foulkes estimate = -62.17657576 Ry estimated scf accuracy < 6.3E-10 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01330527 -0.01330527 -0.01330527 atom 2 type 1 force = -0.01330527 -0.01330527 -0.01330527 atom 3 type 1 force = -0.01330527 -0.01330527 -0.01330527 atom 4 type 1 force = -0.01330527 -0.01330527 -0.01330527 atom 5 type 1 force = 0.01330527 0.01330527 0.01330527 atom 6 type 1 force = 0.01330527 0.01330527 0.01330527 atom 7 type 1 force = 0.01330527 0.01330527 0.01330527 atom 8 type 1 force = 0.01330527 0.01330527 0.01330527 Total force = 0.065182 Total SCF correction = 0.000013 Entering Dynamics: iteration = 5 time = 0.0048 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123337664 -0.123337664 -0.123337664 Si 0.376662336 0.376662336 -0.123337664 Si 0.376662336 -0.123337664 0.376662336 Si -0.123337664 0.376662336 0.376662336 Si 0.123337664 0.123337664 0.123337664 Si 0.623337664 0.623337664 0.123337664 Si 0.623337664 0.123337664 0.623337664 Si 0.123337664 0.623337664 0.623337664 kinetic energy (Ekin) = 0.00079686 Ry temperature = 11.98232490 K Ekin + Etot (const) = -62.17577890 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.65 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.04E-12, avg # of iterations = 4.0 total cpu time spent up to now is 0.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2227 -1.0813 -1.0813 -1.0813 -0.9678 -0.9678 -0.9678 3.5737 3.5737 3.5737 3.6318 3.6318 3.6318 6.5251 6.7998 6.7998 ! total energy = -62.17692267 Ry Harris-Foulkes estimate = -62.17692267 Ry estimated scf accuracy < 1.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01244759 -0.01244759 -0.01244759 atom 2 type 1 force = -0.01244759 -0.01244759 -0.01244759 atom 3 type 1 force = -0.01244759 -0.01244759 -0.01244759 atom 4 type 1 force = -0.01244759 -0.01244759 -0.01244759 atom 5 type 1 force = 0.01244759 0.01244759 0.01244759 atom 6 type 1 force = 0.01244759 0.01244759 0.01244759 atom 7 type 1 force = 0.01244759 0.01244759 0.01244759 atom 8 type 1 force = 0.01244759 0.01244759 0.01244759 Total force = 0.060980 Total SCF correction = 0.000024 Entering Dynamics: iteration = 6 time = 0.0058 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123467045 -0.123467045 -0.123467045 Si 0.376532955 0.376532955 -0.123467045 Si 0.376532955 -0.123467045 0.376532955 Si -0.123467045 0.376532955 0.376532955 Si 0.123467045 0.123467045 0.123467045 Si 0.623467045 0.623467045 0.123467045 Si 0.623467045 0.123467045 0.623467045 Si 0.123467045 0.623467045 0.623467045 kinetic energy (Ekin) = 0.00114275 Ry temperature = 17.18334836 K Ekin + Etot (const) = -62.17577993 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.75 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.63E-12, avg # of iterations = 4.0 total cpu time spent up to now is 0.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2225 -1.0764 -1.0764 -1.0764 -0.9722 -0.9722 -0.9722 3.5758 3.5758 3.5758 3.6296 3.6296 3.6296 6.5393 6.7925 6.7925 ! total energy = -62.17730031 Ry Harris-Foulkes estimate = -62.17730031 Ry estimated scf accuracy < 3.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01144688 -0.01144688 -0.01144688 atom 2 type 1 force = -0.01144688 -0.01144688 -0.01144688 atom 3 type 1 force = -0.01144688 -0.01144688 -0.01144688 atom 4 type 1 force = -0.01144688 -0.01144688 -0.01144688 atom 5 type 1 force = 0.01144688 0.01144688 0.01144688 atom 6 type 1 force = 0.01144688 0.01144688 0.01144688 atom 7 type 1 force = 0.01144688 0.01144688 0.01144688 atom 8 type 1 force = 0.01144688 0.01144688 0.01144688 Total force = 0.056078 Total SCF correction = 0.000036 Entering Dynamics: iteration = 7 time = 0.0068 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123613996 -0.123613996 -0.123613996 Si 0.376386004 0.376386004 -0.123613996 Si 0.376386004 -0.123613996 0.376386004 Si -0.123613996 0.376386004 0.376386004 Si 0.123613996 0.123613996 0.123613996 Si 0.623613996 0.623613996 0.123613996 Si 0.623613996 0.123613996 0.623613996 Si 0.123613996 0.623613996 0.623613996 kinetic energy (Ekin) = 0.00151928 Ry temperature = 22.84525748 K Ekin + Etot (const) = -62.17578103 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.85 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.13E-11, avg # of iterations = 4.0 total cpu time spent up to now is 0.91 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2222 -1.0711 -1.0711 -1.0711 -0.9770 -0.9770 -0.9770 3.5781 3.5781 3.5781 3.6270 3.6270 3.6270 6.5552 6.7844 6.7844 ! total energy = -62.17769098 Ry Harris-Foulkes estimate = -62.17769098 Ry estimated scf accuracy < 8.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01031654 -0.01031654 -0.01031654 atom 2 type 1 force = -0.01031654 -0.01031654 -0.01031654 atom 3 type 1 force = -0.01031654 -0.01031654 -0.01031654 atom 4 type 1 force = -0.01031654 -0.01031654 -0.01031654 atom 5 type 1 force = 0.01031654 0.01031654 0.01031654 atom 6 type 1 force = 0.01031654 0.01031654 0.01031654 atom 7 type 1 force = 0.01031654 0.01031654 0.01031654 atom 8 type 1 force = 0.01031654 0.01031654 0.01031654 Total force = 0.050541 Total SCF correction = 0.000059 Entering Dynamics: iteration = 8 time = 0.0077 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123776782 -0.123776782 -0.123776782 Si 0.376223218 0.376223218 -0.123776782 Si 0.376223218 -0.123776782 0.376223218 Si -0.123776782 0.376223218 0.376223218 Si 0.123776782 0.123776782 0.123776782 Si 0.623776782 0.623776782 0.123776782 Si 0.623776782 0.123776782 0.623776782 Si 0.123776782 0.623776782 0.623776782 kinetic energy (Ekin) = 0.00190881 Ry temperature = 28.70263048 K Ekin + Etot (const) = -62.17578216 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 0.95 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.46E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.00 secs total energy = -62.17807653 Ry Harris-Foulkes estimate = -62.17807654 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.27E-11, avg # of iterations = 2.0 total cpu time spent up to now is 1.03 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2220 -1.0651 -1.0651 -1.0651 -0.9825 -0.9825 -0.9825 3.5808 3.5808 3.5808 3.6241 3.6241 3.6241 6.5731 6.7752 6.7752 ! total energy = -62.17807653 Ry Harris-Foulkes estimate = -62.17807653 Ry estimated scf accuracy < 6.9E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00907315 -0.00907315 -0.00907315 atom 2 type 1 force = -0.00907315 -0.00907315 -0.00907315 atom 3 type 1 force = -0.00907315 -0.00907315 -0.00907315 atom 4 type 1 force = -0.00907315 -0.00907315 -0.00907315 atom 5 type 1 force = 0.00907315 0.00907315 0.00907315 atom 6 type 1 force = 0.00907315 0.00907315 0.00907315 atom 7 type 1 force = 0.00907315 0.00907315 0.00907315 atom 8 type 1 force = 0.00907315 0.00907315 0.00907315 Total force = 0.044449 Total SCF correction = 0.000006 Entering Dynamics: iteration = 9 time = 0.0087 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123953495 -0.123953495 -0.123953495 Si 0.376046505 0.376046505 -0.123953495 Si 0.376046505 -0.123953495 0.376046505 Si -0.123953495 0.376046505 0.376046505 Si 0.123953495 0.123953495 0.123953495 Si 0.623953495 0.623953495 0.123953495 Si 0.623953495 0.123953495 0.623953495 Si 0.123953495 0.623953495 0.623953495 kinetic energy (Ekin) = 0.00229327 Ry temperature = 34.48360323 K Ekin + Etot (const) = -62.17578326 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.06 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.08E-12, avg # of iterations = 3.0 total cpu time spent up to now is 1.12 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2218 -1.0588 -1.0588 -1.0588 -0.9883 -0.9883 -0.9883 3.5837 3.5837 3.5837 3.6210 3.6210 3.6210 6.5924 6.7654 6.7654 ! total energy = -62.17843928 Ry Harris-Foulkes estimate = -62.17843929 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00773260 -0.00773260 -0.00773260 atom 2 type 1 force = -0.00773260 -0.00773260 -0.00773260 atom 3 type 1 force = -0.00773260 -0.00773260 -0.00773260 atom 4 type 1 force = -0.00773260 -0.00773260 -0.00773260 atom 5 type 1 force = 0.00773260 0.00773260 0.00773260 atom 6 type 1 force = 0.00773260 0.00773260 0.00773260 atom 7 type 1 force = 0.00773260 0.00773260 0.00773260 atom 8 type 1 force = 0.00773260 0.00773260 0.00773260 Total force = 0.037882 Total SCF correction = 0.000033 Entering Dynamics: iteration = 10 time = 0.0097 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124142078 -0.124142078 -0.124142078 Si 0.375857922 0.375857922 -0.124142078 Si 0.375857922 -0.124142078 0.375857922 Si -0.124142078 0.375857922 0.375857922 Si 0.124142078 0.124142078 0.124142078 Si 0.624142078 0.624142078 0.124142078 Si 0.624142078 0.124142078 0.624142078 Si 0.124142078 0.624142078 0.624142078 kinetic energy (Ekin) = 0.00265500 Ry temperature = 39.92296100 K Ekin + Etot (const) = -62.17578428 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.15 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.47E-12, avg # of iterations = 3.0 total cpu time spent up to now is 1.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2216 -1.0520 -1.0520 -1.0520 -0.9946 -0.9946 -0.9946 3.5869 3.5869 3.5869 3.6176 3.6176 3.6176 6.6132 6.7549 6.7549 ! total energy = -62.17876283 Ry Harris-Foulkes estimate = -62.17876283 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00631338 -0.00631338 -0.00631338 atom 2 type 1 force = -0.00631338 -0.00631338 -0.00631338 atom 3 type 1 force = -0.00631338 -0.00631338 -0.00631338 atom 4 type 1 force = -0.00631338 -0.00631338 -0.00631338 atom 5 type 1 force = 0.00631338 0.00631338 0.00631338 atom 6 type 1 force = 0.00631338 0.00631338 0.00631338 atom 7 type 1 force = 0.00631338 0.00631338 0.00631338 atom 8 type 1 force = 0.00631338 0.00631338 0.00631338 Total force = 0.030929 Total SCF correction = 0.000031 Entering Dynamics: iteration = 11 time = 0.0106 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124340350 -0.124340350 -0.124340350 Si 0.375659650 0.375659650 -0.124340350 Si 0.375659650 -0.124340350 0.375659650 Si -0.124340350 0.375659650 0.375659650 Si 0.124340350 0.124340350 0.124340350 Si 0.624340350 0.624340350 0.124340350 Si 0.624340350 0.124340350 0.624340350 Si 0.124340350 0.624340350 0.624340350 kinetic energy (Ekin) = 0.00297765 Ry temperature = 44.77454755 K Ekin + Etot (const) = -62.17578518 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.24 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.34E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.29 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2214 -1.0452 -1.0452 -1.0452 -1.0011 -1.0011 -1.0011 3.5903 3.5903 3.5903 3.6141 3.6141 3.6141 6.6347 6.7440 6.7440 ! total energy = -62.17903277 Ry Harris-Foulkes estimate = -62.17903278 Ry estimated scf accuracy < 7.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00483365 -0.00483365 -0.00483365 atom 2 type 1 force = -0.00483365 -0.00483365 -0.00483365 atom 3 type 1 force = -0.00483365 -0.00483365 -0.00483365 atom 4 type 1 force = -0.00483365 -0.00483365 -0.00483365 atom 5 type 1 force = 0.00483365 0.00483365 0.00483365 atom 6 type 1 force = 0.00483365 0.00483365 0.00483365 atom 7 type 1 force = 0.00483365 0.00483365 0.00483365 atom 8 type 1 force = 0.00483365 0.00483365 0.00483365 Total force = 0.023680 Total SCF correction = 0.000057 Entering Dynamics: iteration = 12 time = 0.0116 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124546043 -0.124546043 -0.124546043 Si 0.375453957 0.375453957 -0.124546043 Si 0.375453957 -0.124546043 0.375453957 Si -0.124546043 0.375453957 0.375453957 Si 0.124546043 0.124546043 0.124546043 Si 0.624546043 0.624546043 0.124546043 Si 0.624546043 0.124546043 0.624546043 Si 0.124546043 0.624546043 0.624546043 kinetic energy (Ekin) = 0.00324687 Ry temperature = 48.82276365 K Ekin + Etot (const) = -62.17578590 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.32 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.53E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.36 secs total energy = -62.17923739 Ry Harris-Foulkes estimate = -62.17923740 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.03E-11, avg # of iterations = 2.0 total cpu time spent up to now is 1.39 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0381 -1.0381 -1.0381 -1.0079 -1.0079 -1.0079 3.5939 3.5939 3.5939 3.6104 3.6104 3.6104 6.6575 6.7325 6.7325 ! total energy = -62.17923739 Ry Harris-Foulkes estimate = -62.17923739 Ry estimated scf accuracy < 4.8E-11 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00331177 -0.00331177 -0.00331177 atom 2 type 1 force = -0.00331177 -0.00331177 -0.00331177 atom 3 type 1 force = -0.00331177 -0.00331177 -0.00331177 atom 4 type 1 force = -0.00331177 -0.00331177 -0.00331177 atom 5 type 1 force = 0.00331177 0.00331177 0.00331177 atom 6 type 1 force = 0.00331177 0.00331177 0.00331177 atom 7 type 1 force = 0.00331177 0.00331177 0.00331177 atom 8 type 1 force = 0.00331177 0.00331177 0.00331177 Total force = 0.016224 Total SCF correction = 0.000004 Entering Dynamics: iteration = 13 time = 0.0126 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124756818 -0.124756818 -0.124756818 Si 0.375243182 0.375243182 -0.124756818 Si 0.375243182 -0.124756818 0.375243182 Si -0.124756818 0.375243182 0.375243182 Si 0.124756818 0.124756818 0.124756818 Si 0.624756818 0.624756818 0.124756818 Si 0.624756818 0.124756818 0.624756818 Si 0.124756818 0.624756818 0.624756818 kinetic energy (Ekin) = 0.00345096 Ry temperature = 51.89166686 K Ekin + Etot (const) = -62.17578643 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.42 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.17E-12, avg # of iterations = 3.0 total cpu time spent up to now is 1.47 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0310 -1.0310 -1.0310 -1.0148 -1.0148 -1.0148 3.5977 3.5977 3.5977 3.6066 3.6066 3.6066 6.6806 6.7209 6.7209 ! total energy = -62.17936808 Ry Harris-Foulkes estimate = -62.17936808 Ry estimated scf accuracy < 2.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00176602 -0.00176603 -0.00176602 atom 2 type 1 force = -0.00176602 -0.00176602 -0.00176602 atom 3 type 1 force = -0.00176602 -0.00176603 -0.00176602 atom 4 type 1 force = -0.00176602 -0.00176602 -0.00176602 atom 5 type 1 force = 0.00176602 0.00176603 0.00176602 atom 6 type 1 force = 0.00176603 0.00176602 0.00176602 atom 7 type 1 force = 0.00176602 0.00176603 0.00176602 atom 8 type 1 force = 0.00176602 0.00176602 0.00176602 Total force = 0.008652 Total SCF correction = 0.000033 Entering Dynamics: iteration = 14 time = 0.0135 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124970305 -0.124970305 -0.124970305 Si 0.375029695 0.375029695 -0.124970305 Si 0.375029695 -0.124970305 0.375029695 Si -0.124970305 0.375029695 0.375029695 Si 0.124970305 0.124970305 0.124970305 Si 0.624970305 0.624970305 0.124970305 Si 0.624970305 0.124970305 0.624970305 Si 0.124970305 0.624970305 0.624970305 kinetic energy (Ekin) = 0.00358133 Ry temperature = 53.85212793 K Ekin + Etot (const) = -62.17578674 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.50 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.24E-12, avg # of iterations = 3.0 total cpu time spent up to now is 1.55 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0238 -1.0238 -1.0238 -1.0219 -1.0219 -1.0219 3.6016 3.6016 3.6016 3.6026 3.6026 3.6026 6.7042 6.7090 6.7090 ! total energy = -62.17941967 Ry Harris-Foulkes estimate = -62.17941967 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00021456 -0.00021451 -0.00021455 atom 2 type 1 force = -0.00021453 -0.00021458 -0.00021454 atom 3 type 1 force = -0.00021454 -0.00021452 -0.00021456 atom 4 type 1 force = -0.00021455 -0.00021457 -0.00021454 atom 5 type 1 force = 0.00021456 0.00021451 0.00021455 atom 6 type 1 force = 0.00021453 0.00021458 0.00021454 atom 7 type 1 force = 0.00021454 0.00021451 0.00021455 atom 8 type 1 force = 0.00021455 0.00021458 0.00021454 Total force = 0.001051 Total SCF correction = 0.000029 Entering Dynamics: iteration = 15 time = 0.0145 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125184120 -0.125184120 -0.125184120 Si 0.374815880 0.374815880 -0.125184120 Si 0.374815880 -0.125184120 0.374815880 Si -0.125184120 0.374815880 0.374815880 Si 0.125184120 0.125184120 0.125184120 Si 0.625184120 0.625184120 0.125184120 Si 0.625184120 0.125184120 0.625184120 Si 0.125184120 0.625184120 0.625184120 kinetic energy (Ekin) = 0.00363284 Ry temperature = 54.62665078 K Ekin + Etot (const) = -62.17578683 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.58 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.66E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0289 -1.0289 -1.0289 -1.0169 -1.0169 -1.0169 3.5987 3.5987 3.5987 3.6055 3.6055 3.6055 6.6974 6.6974 6.7276 ! total energy = -62.17939061 Ry Harris-Foulkes estimate = -62.17939061 Ry estimated scf accuracy < 6.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00132502 0.00132481 0.00132496 atom 2 type 1 force = 0.00132496 0.00132516 0.00132498 atom 3 type 1 force = 0.00132493 0.00132480 0.00132499 atom 4 type 1 force = 0.00132505 0.00132517 0.00132503 atom 5 type 1 force = -0.00132502 -0.00132480 -0.00132498 atom 6 type 1 force = -0.00132496 -0.00132517 -0.00132500 atom 7 type 1 force = -0.00132494 -0.00132479 -0.00132498 atom 8 type 1 force = -0.00132505 -0.00132519 -0.00132501 Total force = 0.006491 Total SCF correction = 0.000054 Entering Dynamics: iteration = 16 time = 0.0155 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125395902 -0.125395902 -0.125395902 Si 0.374604098 0.374604098 -0.125395902 Si 0.374604098 -0.125395902 0.374604098 Si -0.125395902 0.374604098 0.374604098 Si 0.125395902 0.125395902 0.125395902 Si 0.625395902 0.625395902 0.125395902 Si 0.625395902 0.125395902 0.625395902 Si 0.125395902 0.625395902 0.625395902 kinetic energy (Ekin) = 0.00360392 Ry temperature = 54.19171876 K Ekin + Etot (const) = -62.17578669 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.67 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.57E-11, avg # of iterations = 3.0 total cpu time spent up to now is 1.72 secs total energy = -62.17928290 Ry Harris-Foulkes estimate = -62.17928291 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-11, avg # of iterations = 2.0 total cpu time spent up to now is 1.75 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0359 -1.0358 -1.0358 -1.0101 -1.0101 -1.0101 3.5948 3.5948 3.5948 3.6095 3.6095 3.6095 6.6857 6.6857 6.7511 ! total energy = -62.17928290 Ry Harris-Foulkes estimate = -62.17928290 Ry estimated scf accuracy < 2.1E-10 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00283594 0.00283608 0.00283604 atom 2 type 1 force = 0.00283597 0.00283565 0.00283590 atom 3 type 1 force = 0.00283610 0.00283611 0.00283598 atom 4 type 1 force = 0.00283573 0.00283548 0.00283584 atom 5 type 1 force = -0.00283594 -0.00283609 -0.00283606 atom 6 type 1 force = -0.00283598 -0.00283564 -0.00283591 atom 7 type 1 force = -0.00283609 -0.00283609 -0.00283597 atom 8 type 1 force = -0.00283572 -0.00283550 -0.00283582 Total force = 0.013893 Total SCF correction = 0.000018 Entering Dynamics: iteration = 17 time = 0.0164 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125603331 -0.125603331 -0.125603331 Si 0.374396669 0.374396669 -0.125603331 Si 0.374396669 -0.125603331 0.374396669 Si -0.125603331 0.374396669 0.374396669 Si 0.125603331 0.125603331 0.125603331 Si 0.625603331 0.625603331 0.125603331 Si 0.625603331 0.125603331 0.625603331 Si 0.125603331 0.625603331 0.625603331 kinetic energy (Ekin) = 0.00349657 Ry temperature = 52.57746607 K Ekin + Etot (const) = -62.17578634 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.78 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.62E-12, avg # of iterations = 4.0 total cpu time spent up to now is 1.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2214 -1.0426 -1.0426 -1.0426 -1.0036 -1.0036 -1.0035 3.5909 3.5909 3.5909 3.6134 3.6135 3.6135 6.6743 6.6743 6.7740 ! total energy = -62.17910196 Ry Harris-Foulkes estimate = -62.17910196 Ry estimated scf accuracy < 4.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00430181 0.00430638 0.00430284 atom 2 type 1 force = 0.00430373 0.00429925 0.00430316 atom 3 type 1 force = 0.00430298 0.00430632 0.00430184 atom 4 type 1 force = 0.00430263 0.00429922 0.00430326 atom 5 type 1 force = -0.00430187 -0.00430661 -0.00430245 atom 6 type 1 force = -0.00430364 -0.00429902 -0.00430298 atom 7 type 1 force = -0.00430288 -0.00430682 -0.00430223 atom 8 type 1 force = -0.00430277 -0.00429873 -0.00430345 Total force = 0.021079 Total SCF correction = 0.000071 Entering Dynamics: iteration = 18 time = 0.0174 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125804157 -0.125804150 -0.125804155 Si 0.374195846 0.374195839 -0.125804155 Si 0.374195845 -0.125804150 0.374195843 Si -0.125804156 0.374195839 0.374195845 Si 0.125804157 0.125804150 0.125804155 Si 0.625804154 0.625804161 0.125804155 Si 0.625804155 0.125804149 0.625804156 Si 0.125804156 0.625804162 0.625804154 kinetic energy (Ekin) = 0.00331617 Ry temperature = 49.86481131 K Ekin + Etot (const) = -62.17578579 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 1.87 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.15E-10, avg # of iterations = 5.0 total cpu time spent up to now is 1.93 secs total energy = -62.17885622 Ry Harris-Foulkes estimate = -62.17885628 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-10, avg # of iterations = 4.0 total cpu time spent up to now is 1.96 secs total energy = -62.17885622 Ry Harris-Foulkes estimate = -62.17885632 Ry estimated scf accuracy < 0.00000026 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-10, avg # of iterations = 3.0 total cpu time spent up to now is 2.00 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2215 -1.0492 -1.0492 -1.0492 -0.9973 -0.9973 -0.9973 3.5871 3.5871 3.5871 3.6174 3.6174 3.6174 6.6633 6.6633 6.7963 ! total energy = -62.17885626 Ry Harris-Foulkes estimate = -62.17885626 Ry estimated scf accuracy < 3.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00570919 0.00571012 0.00571094 atom 2 type 1 force = 0.00571111 0.00570948 0.00571141 atom 3 type 1 force = 0.00571075 0.00571109 0.00570917 atom 4 type 1 force = 0.00570996 0.00571009 0.00570942 atom 5 type 1 force = -0.00571025 -0.00570935 -0.00571006 atom 6 type 1 force = -0.00571151 -0.00571169 -0.00570935 atom 7 type 1 force = -0.00571006 -0.00570873 -0.00571073 atom 8 type 1 force = -0.00570920 -0.00571100 -0.00571079 Total force = 0.027974 Total SCF correction = 0.000016 Entering Dynamics: iteration = 19 time = 0.0184 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125996219 -0.125996204 -0.125996213 Si 0.374003790 0.374003773 -0.125996212 Si 0.374003787 -0.125996203 0.374003781 Si -0.125996216 0.374003773 0.374003785 Si 0.125996217 0.125996205 0.125996216 Si 0.625996210 0.625996224 0.125996216 Si 0.625996214 0.125996205 0.625996216 Si 0.125996217 0.625996227 0.625996212 kinetic energy (Ekin) = 0.00307118 Ry temperature = 46.18098884 K Ekin + Etot (const) = -62.17578508 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.03 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.42E-11, avg # of iterations = 5.0 total cpu time spent up to now is 2.09 secs total energy = -62.17855694 Ry Harris-Foulkes estimate = -62.17855696 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.64E-11, avg # of iterations = 4.0 total cpu time spent up to now is 2.12 secs total energy = -62.17855694 Ry Harris-Foulkes estimate = -62.17855697 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.64E-11, avg # of iterations = 3.0 total cpu time spent up to now is 2.15 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2217 -1.0555 -1.0555 -1.0554 -0.9915 -0.9914 -0.9914 3.5835 3.5835 3.5835 3.6212 3.6212 3.6212 6.6528 6.6528 6.8175 ! total energy = -62.17855696 Ry Harris-Foulkes estimate = -62.17855696 Ry estimated scf accuracy < 1.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00704532 0.00704339 0.00704616 atom 2 type 1 force = 0.00704442 0.00704636 0.00704563 atom 3 type 1 force = 0.00704568 0.00704373 0.00704454 atom 4 type 1 force = 0.00704454 0.00704665 0.00704365 atom 5 type 1 force = -0.00704518 -0.00704712 -0.00704433 atom 6 type 1 force = -0.00704545 -0.00704357 -0.00704436 atom 7 type 1 force = -0.00704458 -0.00704641 -0.00704532 atom 8 type 1 force = -0.00704475 -0.00704305 -0.00704597 Total force = 0.034513 Total SCF correction = 0.000013 Entering Dynamics: iteration = 20 time = 0.0194 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126177468 -0.126177447 -0.126177456 Si 0.373822546 0.373822522 -0.126177454 Si 0.373822544 -0.126177444 0.373822531 Si -0.126177463 0.373822524 0.373822537 Si 0.126177464 0.126177443 0.126177463 Si 0.626177452 0.626177476 0.126177463 Si 0.626177461 0.126177445 0.626177461 Si 0.126177465 0.626177481 0.626177455 kinetic energy (Ekin) = 0.00277271 Ry temperature = 41.69300325 K Ekin + Etot (const) = -62.17578424 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.19 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.45E-13, avg # of iterations = 6.0 total cpu time spent up to now is 2.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2219 -1.0613 -1.0613 -1.0613 -0.9860 -0.9860 -0.9860 3.5801 3.5801 3.5801 3.6248 3.6248 3.6248 6.6429 6.6429 6.8376 ! total energy = -62.17821729 Ry Harris-Foulkes estimate = -62.17821729 Ry estimated scf accuracy < 4.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00829259 0.00829434 0.00829222 atom 2 type 1 force = 0.00829672 0.00829460 0.00829459 atom 3 type 1 force = 0.00829365 0.00829463 0.00829410 atom 4 type 1 force = 0.00829513 0.00829451 0.00829714 atom 5 type 1 force = -0.00829324 -0.00828612 -0.00829569 atom 6 type 1 force = -0.00829507 -0.00830250 -0.00829591 atom 7 type 1 force = -0.00829553 -0.00828649 -0.00829295 atom 8 type 1 force = -0.00829426 -0.00830298 -0.00829350 Total force = 0.040635 Total SCF correction = 0.000074 Entering Dynamics: iteration = 21 time = 0.0203 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126345987 -0.126345959 -0.126345970 Si 0.373654037 0.373654004 -0.126345965 Si 0.373654030 -0.126345953 0.373654013 Si -0.126345978 0.373654006 0.373654024 Si 0.126345981 0.126345962 0.126345977 Si 0.626345961 0.626345984 0.126345977 Si 0.626345974 0.126345965 0.626345977 Si 0.126345982 0.626345991 0.626345967 kinetic energy (Ekin) = 0.00243398 Ry temperature = 36.59950082 K Ekin + Etot (const) = -62.17578331 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.29 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.28E-11, avg # of iterations = 5.0 total cpu time spent up to now is 2.34 secs total energy = -62.17785196 Ry Harris-Foulkes estimate = -62.17785206 Ry estimated scf accuracy < 0.00000014 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.34E-10, avg # of iterations = 5.0 total cpu time spent up to now is 2.39 secs total energy = -62.17785197 Ry Harris-Foulkes estimate = -62.17785212 Ry estimated scf accuracy < 0.00000041 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.34E-10, avg # of iterations = 5.0 total cpu time spent up to now is 2.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2221 -1.0668 -1.0668 -1.0668 -0.9810 -0.9810 -0.9810 3.5768 3.5769 3.5769 3.6282 3.6282 3.6282 6.6338 6.6338 6.8564 ! total energy = -62.17785203 Ry Harris-Foulkes estimate = -62.17785203 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00944732 0.00945009 0.00944740 atom 2 type 1 force = 0.00944824 0.00944505 0.00944971 atom 3 type 1 force = 0.00944590 0.00945044 0.00944657 atom 4 type 1 force = 0.00944820 0.00944299 0.00944600 atom 5 type 1 force = -0.00944530 -0.00944604 -0.00945142 atom 6 type 1 force = -0.00944878 -0.00944711 -0.00945092 atom 7 type 1 force = -0.00944970 -0.00944642 -0.00944365 atom 8 type 1 force = -0.00944589 -0.00944901 -0.00944368 Total force = 0.046282 Total SCF correction = 0.000036 Entering Dynamics: iteration = 22 time = 0.0213 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126500006 -0.126499965 -0.126499984 Si 0.373500030 0.373499982 -0.126499971 Si 0.373500016 -0.126499956 0.373499994 Si -0.126499991 0.373499983 0.373500010 Si 0.126500001 0.126499982 0.126499984 Si 0.626499967 0.626499991 0.126499985 Si 0.626499982 0.126499986 0.626499998 Si 0.126500000 0.626499997 0.626499984 kinetic energy (Ekin) = 0.00206971 Ry temperature = 31.12202125 K Ekin + Etot (const) = -62.17578232 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.46 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.96E-11, avg # of iterations = 6.0 total cpu time spent up to now is 2.51 secs total energy = -62.17747680 Ry Harris-Foulkes estimate = -62.17747685 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-10, avg # of iterations = 6.0 total cpu time spent up to now is 2.56 secs total energy = -62.17747680 Ry Harris-Foulkes estimate = -62.17747688 Ry estimated scf accuracy < 0.00000023 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-10, avg # of iterations = 4.0 total cpu time spent up to now is 2.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2224 -1.0718 -1.0718 -1.0718 -0.9766 -0.9766 -0.9765 3.5739 3.5739 3.5739 3.6314 3.6314 3.6314 6.6254 6.6254 6.8735 ! total energy = -62.17747683 Ry Harris-Foulkes estimate = -62.17747684 Ry estimated scf accuracy < 1.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01049576 0.01048503 0.01049360 atom 2 type 1 force = 0.01049090 0.01050184 0.01049420 atom 3 type 1 force = 0.01049546 0.01048830 0.01049761 atom 4 type 1 force = 0.01049293 0.01049988 0.01048971 atom 5 type 1 force = -0.01049162 -0.01050121 -0.01049254 atom 6 type 1 force = -0.01050064 -0.01048808 -0.01049703 atom 7 type 1 force = -0.01049185 -0.01049733 -0.01048963 atom 8 type 1 force = -0.01049093 -0.01048843 -0.01049593 Total force = 0.051409 Total SCF correction = 0.000042 Entering Dynamics: iteration = 23 time = 0.0223 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126637914 -0.126637877 -0.126637890 Si 0.373362127 0.373362081 -0.126637869 Si 0.373362112 -0.126637861 0.373362089 Si -0.126637897 0.373362076 0.373362098 Si 0.126637916 0.126637884 0.126637885 Si 0.626637855 0.626637900 0.126637880 Si 0.626637886 0.126637894 0.626637918 Si 0.126637915 0.626637903 0.626637890 kinetic energy (Ekin) = 0.00169551 Ry temperature = 25.49524231 K Ekin + Etot (const) = -62.17578132 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.63 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.50E-11, avg # of iterations = 7.0 total cpu time spent up to now is 2.69 secs total energy = -62.17710753 Ry Harris-Foulkes estimate = -62.17710759 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.45E-10, avg # of iterations = 6.0 total cpu time spent up to now is 2.74 secs total energy = -62.17710754 Ry Harris-Foulkes estimate = -62.17710762 Ry estimated scf accuracy < 0.00000022 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.45E-10, avg # of iterations = 6.0 total cpu time spent up to now is 2.78 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2226 -1.0763 -1.0763 -1.0763 -0.9726 -0.9726 -0.9726 3.5713 3.5713 3.5713 3.6342 3.6342 3.6342 6.6179 6.6179 6.8888 ! total energy = -62.17710757 Ry Harris-Foulkes estimate = -62.17710757 Ry estimated scf accuracy < 3.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01142578 0.01142597 0.01142296 atom 2 type 1 force = 0.01142504 0.01142700 0.01142386 atom 3 type 1 force = 0.01142412 0.01142359 0.01142766 atom 4 type 1 force = 0.01142401 0.01142206 0.01142472 atom 5 type 1 force = -0.01142318 -0.01142503 -0.01142567 atom 6 type 1 force = -0.01142343 -0.01142346 -0.01142540 atom 7 type 1 force = -0.01142713 -0.01142516 -0.01142368 atom 8 type 1 force = -0.01142522 -0.01142498 -0.01142444 Total force = 0.055970 Total SCF correction = 0.000016 Entering Dynamics: iteration = 24 time = 0.0232 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126758284 -0.126758251 -0.126758263 Si 0.373241760 0.373241720 -0.126758232 Si 0.373241743 -0.126758230 0.373241724 Si -0.126758268 0.373241701 0.373241721 Si 0.126758297 0.126758248 0.126758248 Si 0.626758209 0.626758274 0.126758238 Si 0.626758250 0.126758265 0.626758303 Si 0.126758292 0.626758274 0.626758261 kinetic energy (Ekin) = 0.00132722 Ry temperature = 19.95723229 K Ekin + Etot (const) = -62.17578035 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 2.82 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.29E-12, avg # of iterations = 6.0 total cpu time spent up to now is 2.89 secs total energy = -62.17675968 Ry Harris-Foulkes estimate = -62.17675970 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.30E-11, avg # of iterations = 6.0 total cpu time spent up to now is 2.93 secs total energy = -62.17675968 Ry Harris-Foulkes estimate = -62.17675971 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.30E-11, avg # of iterations = 6.0 total cpu time spent up to now is 2.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2228 -1.0802 -1.0802 -1.0802 -0.9692 -0.9692 -0.9692 3.5689 3.5689 3.5689 3.6367 3.6367 3.6367 6.6114 6.6114 6.9022 ! total energy = -62.17675969 Ry Harris-Foulkes estimate = -62.17675969 Ry estimated scf accuracy < 1.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01223387 0.01223259 0.01223046 atom 2 type 1 force = 0.01223246 0.01223345 0.01223163 atom 3 type 1 force = 0.01223199 0.01223289 0.01223516 atom 4 type 1 force = 0.01223249 0.01223219 0.01223429 atom 5 type 1 force = -0.01223240 -0.01223269 -0.01223434 atom 6 type 1 force = -0.01223187 -0.01223310 -0.01223242 atom 7 type 1 force = -0.01223373 -0.01223186 -0.01223109 atom 8 type 1 force = -0.01223281 -0.01223350 -0.01223369 Total force = 0.059928 Total SCF correction = 0.000012 Entering Dynamics: iteration = 25 time = 0.0242 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126859876 -0.126859849 -0.126859863 Si 0.373140170 0.373140136 -0.126859820 Si 0.373140149 -0.126859823 0.373140140 Si -0.126859863 0.373140103 0.373140124 Si 0.126859902 0.126859836 0.126859833 Si 0.626859788 0.626859871 0.126859820 Si 0.626859837 0.126859861 0.626859914 Si 0.126859894 0.626859866 0.626859853 kinetic energy (Ekin) = 0.00098025 Ry temperature = 14.73985380 K Ekin + Etot (const) = -62.17577945 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.00 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.60E-12, avg # of iterations = 7.0 total cpu time spent up to now is 3.07 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2230 -1.0835 -1.0834 -1.0834 -0.9663 -0.9663 -0.9663 3.5670 3.5670 3.5670 3.6389 3.6389 3.6389 6.6059 6.6059 6.9135 ! total energy = -62.17644763 Ry Harris-Foulkes estimate = -62.17644763 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01290962 0.01291750 0.01291587 atom 2 type 1 force = 0.01291136 0.01290607 0.01291570 atom 3 type 1 force = 0.01291383 0.01291787 0.01290760 atom 4 type 1 force = 0.01291090 0.01290441 0.01290660 atom 5 type 1 force = -0.01291321 -0.01291637 -0.01291212 atom 6 type 1 force = -0.01291209 -0.01290662 -0.01291148 atom 7 type 1 force = -0.01291078 -0.01291628 -0.01291231 atom 8 type 1 force = -0.01290963 -0.01290659 -0.01290986 Total force = 0.063253 Total SCF correction = 0.000079 Entering Dynamics: iteration = 26 time = 0.0252 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126941653 -0.126941619 -0.126941637 Si 0.373058398 0.373058362 -0.126941584 Si 0.373058377 -0.126941588 0.373058368 Si -0.126941640 0.373058312 0.373058337 Si 0.126941686 0.126941599 0.126941598 Si 0.626941547 0.626941657 0.126941583 Si 0.626941605 0.126941631 0.626941705 Si 0.126941679 0.626941647 0.626941630 kinetic energy (Ekin) = 0.00066899 Ry temperature = 10.05955277 K Ekin + Etot (const) = -62.17577864 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.11 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.07E-10, avg # of iterations = 6.0 total cpu time spent up to now is 3.16 secs total energy = -62.17618416 Ry Harris-Foulkes estimate = -62.17618426 Ry estimated scf accuracy < 0.00000015 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.78E-10, avg # of iterations = 6.0 total cpu time spent up to now is 3.21 secs total energy = -62.17618415 Ry Harris-Foulkes estimate = -62.17618434 Ry estimated scf accuracy < 0.00000055 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.78E-10, avg # of iterations = 5.0 total cpu time spent up to now is 3.24 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2231 -1.0861 -1.0861 -1.0861 -0.9640 -0.9640 -0.9640 3.5654 3.5654 3.5654 3.6406 3.6406 3.6406 6.6015 6.6015 6.9226 ! total energy = -62.17618423 Ry Harris-Foulkes estimate = -62.17618423 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01345099 0.01345615 0.01345710 atom 2 type 1 force = 0.01346014 0.01345540 0.01346058 atom 3 type 1 force = 0.01345830 0.01345602 0.01345174 atom 4 type 1 force = 0.01345302 0.01345533 0.01345285 atom 5 type 1 force = -0.01345661 -0.01345273 -0.01345369 atom 6 type 1 force = -0.01345609 -0.01346080 -0.01345541 atom 7 type 1 force = -0.01345551 -0.01345264 -0.01345903 atom 8 type 1 force = -0.01345424 -0.01345674 -0.01345415 Total force = 0.065919 Total SCF correction = 0.000036 Entering Dynamics: iteration = 27 time = 0.0261 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127002783 -0.127002735 -0.127002756 Si 0.372997286 0.372997241 -0.127002686 Si 0.372997264 -0.127002699 0.372997244 Si -0.127002768 0.372997174 0.372997200 Si 0.127002815 0.127002712 0.127002712 Si 0.627002652 0.627002781 0.127002693 Si 0.627002720 0.127002752 0.627002837 Si 0.127002814 0.627002774 0.627002755 kinetic energy (Ekin) = 0.00040627 Ry temperature = 6.10901298 K Ekin + Etot (const) = -62.17577797 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.28 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.23E-11, avg # of iterations = 7.0 total cpu time spent up to now is 3.34 secs total energy = -62.17598024 Ry Harris-Foulkes estimate = -62.17598029 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.96E-10, avg # of iterations = 6.0 total cpu time spent up to now is 3.38 secs total energy = -62.17598024 Ry Harris-Foulkes estimate = -62.17598032 Ry estimated scf accuracy < 0.00000023 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.96E-10, avg # of iterations = 4.0 total cpu time spent up to now is 3.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0881 -1.0880 -1.0880 -0.9623 -0.9623 -0.9623 3.5642 3.5642 3.5642 3.6419 3.6419 3.6419 6.5982 6.5982 6.9294 ! total energy = -62.17598027 Ry Harris-Foulkes estimate = -62.17598027 Ry estimated scf accuracy < 1.4E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01385767 0.01386478 0.01386252 atom 2 type 1 force = 0.01386084 0.01385462 0.01386136 atom 3 type 1 force = 0.01386375 0.01386606 0.01385852 atom 4 type 1 force = 0.01386146 0.01385879 0.01386144 atom 5 type 1 force = -0.01386381 -0.01385661 -0.01385687 atom 6 type 1 force = -0.01385881 -0.01386870 -0.01385912 atom 7 type 1 force = -0.01385986 -0.01385901 -0.01386716 atom 8 type 1 force = -0.01386124 -0.01385994 -0.01386070 Total force = 0.067905 Total SCF correction = 0.000039 Entering Dynamics: iteration = 28 time = 0.0271 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127042642 -0.127042569 -0.127042596 Si 0.372957450 0.372957387 -0.127042511 Si 0.372957430 -0.127042526 0.372957392 Si -0.127042619 0.372957308 0.372957340 Si 0.127042664 0.127042556 0.127042557 Si 0.627042484 0.627042618 0.127042530 Si 0.627042562 0.127042600 0.627042685 Si 0.127042671 0.627042626 0.627042605 kinetic energy (Ekin) = 0.00020283 Ry temperature = 3.04989100 K Ekin + Etot (const) = -62.17577745 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.45 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.52E-11, avg # of iterations = 7.0 total cpu time spent up to now is 3.51 secs total energy = -62.17584404 Ry Harris-Foulkes estimate = -62.17584406 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.78E-11, avg # of iterations = 6.0 total cpu time spent up to now is 3.56 secs total energy = -62.17584404 Ry Harris-Foulkes estimate = -62.17584407 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.78E-11, avg # of iterations = 5.0 total cpu time spent up to now is 3.60 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0893 -1.0893 -1.0893 -0.9612 -0.9612 -0.9612 3.5634 3.5634 3.5634 3.6427 3.6427 3.6428 6.5961 6.5961 6.9338 ! total energy = -62.17584405 Ry Harris-Foulkes estimate = -62.17584405 Ry estimated scf accuracy < 1.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01412510 0.01412452 0.01412353 atom 2 type 1 force = 0.01412505 0.01412412 0.01412520 atom 3 type 1 force = 0.01412390 0.01412552 0.01412514 atom 4 type 1 force = 0.01412472 0.01412421 0.01412485 atom 5 type 1 force = -0.01412500 -0.01412378 -0.01412408 atom 6 type 1 force = -0.01412468 -0.01412526 -0.01412542 atom 7 type 1 force = -0.01412481 -0.01412414 -0.01412566 atom 8 type 1 force = -0.01412428 -0.01412519 -0.01412355 Total force = 0.069196 Total SCF correction = 0.000014 Entering Dynamics: iteration = 29 time = 0.0281 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127060820 -0.127060723 -0.127060758 Si 0.372939295 0.372939212 -0.127060656 Si 0.372939275 -0.127060671 0.372939221 Si -0.127060790 0.372939122 0.372939160 Si 0.127060832 0.127060721 0.127060722 Si 0.627060636 0.627060774 0.127060685 Si 0.627060722 0.127060768 0.627060850 Si 0.127060849 0.627060796 0.627060776 kinetic energy (Ekin) = 0.00006695 Ry temperature = 1.00677828 K Ekin + Etot (const) = -62.17577710 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.63 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.79E-12, avg # of iterations = 7.0 total cpu time spent up to now is 3.69 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0899 -1.0899 -1.0899 -0.9608 -0.9608 -0.9607 3.5631 3.5631 3.5631 3.6431 3.6431 3.6431 6.5951 6.5951 6.9359 ! total energy = -62.17578110 Ry Harris-Foulkes estimate = -62.17578110 Ry estimated scf accuracy < 4.6E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01424323 0.01425196 0.01424618 atom 2 type 1 force = 0.01424374 0.01423549 0.01424413 atom 3 type 1 force = 0.01424677 0.01425152 0.01424381 atom 4 type 1 force = 0.01424533 0.01424024 0.01424502 atom 5 type 1 force = -0.01424936 -0.01424695 -0.01424267 atom 6 type 1 force = -0.01424103 -0.01424275 -0.01423868 atom 7 type 1 force = -0.01424299 -0.01424698 -0.01424984 atom 8 type 1 force = -0.01424569 -0.01424252 -0.01424796 Total force = 0.069785 Total SCF correction = 0.000083 Entering Dynamics: iteration = 30 time = 0.0290 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127057135 -0.127057000 -0.127057053 Si 0.372943003 0.372942888 -0.127056936 Si 0.372942989 -0.127056941 0.372942914 Si -0.127057095 0.372942795 0.372942845 Si 0.127057128 0.127057017 0.127057026 Si 0.627056929 0.627057067 0.127056985 Si 0.627057020 0.127057069 0.627057142 Si 0.127057161 0.627057105 0.627057077 kinetic energy (Ekin) = 0.00000416 Ry temperature = 0.06259184 K Ekin + Etot (const) = -62.17577694 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.73 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.72E-11, avg # of iterations = 6.0 total cpu time spent up to now is 3.78 secs total energy = -62.17579396 Ry Harris-Foulkes estimate = -62.17579398 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-11, avg # of iterations = 6.0 total cpu time spent up to now is 3.83 secs total energy = -62.17579396 Ry Harris-Foulkes estimate = -62.17579399 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-11, avg # of iterations = 5.0 total cpu time spent up to now is 3.87 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0898 -1.0898 -1.0898 -0.9608 -0.9608 -0.9608 3.5631 3.5631 3.5631 3.6431 3.6431 3.6431 6.5953 6.5953 6.9355 ! total energy = -62.17579397 Ry Harris-Foulkes estimate = -62.17579397 Ry estimated scf accuracy < 3.4E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01422033 0.01421974 0.01422105 atom 2 type 1 force = 0.01422011 0.01421978 0.01422125 atom 3 type 1 force = 0.01421933 0.01422129 0.01421861 atom 4 type 1 force = 0.01422135 0.01422026 0.01422014 atom 5 type 1 force = -0.01422230 -0.01421904 -0.01422207 atom 6 type 1 force = -0.01421997 -0.01422237 -0.01421788 atom 7 type 1 force = -0.01421890 -0.01421747 -0.01421943 atom 8 type 1 force = -0.01421997 -0.01422219 -0.01422167 Total force = 0.069665 Total SCF correction = 0.000020 Entering Dynamics: iteration = 31 time = 0.0300 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127031623 -0.127031452 -0.127031519 Si 0.372968538 0.372968390 -0.127031388 Si 0.372968528 -0.127031382 0.372968431 Si -0.127031571 0.372968294 0.372968358 Si 0.127031593 0.127031489 0.127031499 Si 0.627031395 0.627031530 0.127031461 Si 0.627031493 0.127031546 0.627031608 Si 0.127031646 0.627031584 0.627031549 kinetic energy (Ekin) = 0.00001700 Ry temperature = 0.25558642 K Ekin + Etot (const) = -62.17577697 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 3.90 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.69E-09, avg # of iterations = 6.0 total cpu time spent up to now is 3.96 secs total energy = -62.17588095 Ry Harris-Foulkes estimate = -62.17588259 Ry estimated scf accuracy < 0.00000229 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.14E-09, avg # of iterations = 6.0 total cpu time spent up to now is 4.00 secs total energy = -62.17588089 Ry Harris-Foulkes estimate = -62.17588370 Ry estimated scf accuracy < 0.00000842 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.14E-09, avg # of iterations = 6.0 total cpu time spent up to now is 4.05 secs total energy = -62.17588212 Ry Harris-Foulkes estimate = -62.17588213 Ry estimated scf accuracy < 0.00000003 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.59E-11, avg # of iterations = 5.0 total cpu time spent up to now is 4.08 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0890 -1.0890 -1.0890 -0.9616 -0.9615 -0.9615 3.5636 3.5636 3.5636 3.6425 3.6425 3.6425 6.5966 6.5967 6.9326 ! total energy = -62.17588213 Ry Harris-Foulkes estimate = -62.17588214 Ry estimated scf accuracy < 2.8E-09 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01405340 0.01405725 0.01405024 atom 2 type 1 force = 0.01405261 0.01404702 0.01405037 atom 3 type 1 force = 0.01404905 0.01405659 0.01405355 atom 4 type 1 force = 0.01405116 0.01404594 0.01405185 atom 5 type 1 force = -0.01405061 -0.01405372 -0.01405297 atom 6 type 1 force = -0.01405142 -0.01404986 -0.01404896 atom 7 type 1 force = -0.01405450 -0.01405245 -0.01405253 atom 8 type 1 force = -0.01404969 -0.01405077 -0.01405155 Total force = 0.068838 Total SCF correction = 0.000057 Entering Dynamics: iteration = 32 time = 0.0310 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126984540 -0.126984326 -0.126984419 Si 0.373015644 0.373015454 -0.126984273 Si 0.373015632 -0.126984246 0.373015520 Si -0.126984479 0.373015353 0.373015439 Si 0.126984492 0.126984388 0.126984402 Si 0.626984292 0.626984428 0.126984373 Si 0.626984393 0.126984453 0.626984505 Si 0.126984565 0.626984496 0.626984452 kinetic energy (Ekin) = 0.00010494 Ry temperature = 1.57794977 K Ekin + Etot (const) = -62.17577720 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.11 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.33E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.17 secs total energy = -62.17604192 Ry Harris-Foulkes estimate = -62.17604206 Ry estimated scf accuracy < 0.00000019 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.00E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.21 secs total energy = -62.17604192 Ry Harris-Foulkes estimate = -62.17604216 Ry estimated scf accuracy < 0.00000071 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.00E-10, avg # of iterations = 5.0 total cpu time spent up to now is 4.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2232 -1.0875 -1.0875 -1.0874 -0.9629 -0.9628 -0.9628 3.5645 3.5646 3.5646 3.6415 3.6415 3.6415 6.5992 6.5992 6.9274 ! total energy = -62.17604202 Ry Harris-Foulkes estimate = -62.17604202 Ry estimated scf accuracy < 5.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01373442 0.01374330 0.01373511 atom 2 type 1 force = 0.01373181 0.01372954 0.01374358 atom 3 type 1 force = 0.01373870 0.01375345 0.01373727 atom 4 type 1 force = 0.01375335 0.01373277 0.01374259 atom 5 type 1 force = -0.01374497 -0.01373254 -0.01374314 atom 6 type 1 force = -0.01373901 -0.01375508 -0.01373032 atom 7 type 1 force = -0.01374264 -0.01372156 -0.01374471 atom 8 type 1 force = -0.01373167 -0.01374990 -0.01374037 Total force = 0.067310 Total SCF correction = 0.000082 Entering Dynamics: iteration = 33 time = 0.0319 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126916376 -0.126916105 -0.126916236 Si 0.373083827 0.373083592 -0.126916062 Si 0.373083824 -0.126916001 0.373083694 Si -0.126916276 0.373083492 0.373083615 Si 0.126916293 0.126916209 0.126916211 Si 0.626916102 0.626916212 0.126916210 Si 0.626916199 0.126916299 0.626916304 Si 0.126916407 0.626916303 0.626916265 kinetic energy (Ekin) = 0.00026442 Ry temperature = 3.97609154 K Ekin + Etot (const) = -62.17577760 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.28 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.99E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.34 secs total energy = -62.17626700 Ry Harris-Foulkes estimate = -62.17626721 Ry estimated scf accuracy < 0.00000030 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.50E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.39 secs total energy = -62.17626701 Ry Harris-Foulkes estimate = -62.17626732 Ry estimated scf accuracy < 0.00000089 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.50E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.43 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2231 -1.0853 -1.0853 -1.0852 -0.9648 -0.9647 -0.9647 3.5659 3.5659 3.5659 3.6401 3.6401 3.6401 6.6029 6.6029 6.9198 ! total energy = -62.17626714 Ry Harris-Foulkes estimate = -62.17626715 Ry estimated scf accuracy < 3.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01328249 0.01328497 0.01328510 atom 2 type 1 force = 0.01328626 0.01328485 0.01329054 atom 3 type 1 force = 0.01329035 0.01329227 0.01328981 atom 4 type 1 force = 0.01328841 0.01328497 0.01328181 atom 5 type 1 force = -0.01328360 -0.01328779 -0.01328408 atom 6 type 1 force = -0.01329173 -0.01328418 -0.01328075 atom 7 type 1 force = -0.01329191 -0.01328540 -0.01329083 atom 8 type 1 force = -0.01328025 -0.01328970 -0.01329160 Total force = 0.065092 Total SCF correction = 0.000066 Entering Dynamics: iteration = 34 time = 0.0329 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126827823 -0.126827492 -0.126827661 Si 0.373172403 0.373172121 -0.126827452 Si 0.373172416 -0.126827352 0.373172268 Si -0.126827677 0.373172022 0.373172177 Si 0.126827704 0.126827634 0.126827628 Si 0.626827509 0.626827605 0.126827661 Si 0.626827603 0.126827752 0.626827703 Si 0.126827865 0.626827710 0.626827675 kinetic energy (Ekin) = 0.00048897 Ry temperature = 7.35255124 K Ekin + Etot (const) = -62.17577818 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.46 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.62E-10, avg # of iterations = 7.0 total cpu time spent up to now is 4.52 secs total energy = -62.17654820 Ry Harris-Foulkes estimate = -62.17654837 Ry estimated scf accuracy < 0.00000024 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.66E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.57 secs total energy = -62.17654820 Ry Harris-Foulkes estimate = -62.17654847 Ry estimated scf accuracy < 0.00000078 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.66E-10, avg # of iterations = 5.0 total cpu time spent up to now is 4.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2229 -1.0824 -1.0824 -1.0824 -0.9672 -0.9672 -0.9672 3.5676 3.5676 3.5676 3.6382 3.6382 3.6382 6.6077 6.6077 6.9099 ! total energy = -62.17654831 Ry Harris-Foulkes estimate = -62.17654832 Ry estimated scf accuracy < 8.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01269523 0.01268072 0.01269420 atom 2 type 1 force = 0.01270057 0.01270443 0.01269259 atom 3 type 1 force = 0.01270938 0.01269215 0.01270432 atom 4 type 1 force = 0.01268102 0.01271004 0.01269787 atom 5 type 1 force = -0.01268893 -0.01268926 -0.01268087 atom 6 type 1 force = -0.01270420 -0.01269351 -0.01270410 atom 7 type 1 force = -0.01269732 -0.01270338 -0.01269326 atom 8 type 1 force = -0.01269575 -0.01270119 -0.01271075 Total force = 0.062202 Total SCF correction = 0.000088 Entering Dynamics: iteration = 35 time = 0.0339 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126719784 -0.126719415 -0.126719602 Si 0.373280474 0.373280151 -0.126719358 Si 0.373280516 -0.126719221 0.373280342 Si -0.126719613 0.373280061 0.373280230 Si 0.126719638 0.126719581 0.126719582 Si 0.626719416 0.626719515 0.126719613 Si 0.626719517 0.126719706 0.626719618 Si 0.126719835 0.626719622 0.626719576 kinetic energy (Ekin) = 0.00076942 Ry temperature = 11.56964499 K Ekin + Etot (const) = -62.17577889 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.64 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.87E-10, avg # of iterations = 8.0 total cpu time spent up to now is 4.71 secs total energy = -62.17687385 Ry Harris-Foulkes estimate = -62.17687409 Ry estimated scf accuracy < 0.00000036 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-09, avg # of iterations = 6.0 total cpu time spent up to now is 4.75 secs total energy = -62.17687385 Ry Harris-Foulkes estimate = -62.17687423 Ry estimated scf accuracy < 0.00000107 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-09, avg # of iterations = 5.0 total cpu time spent up to now is 4.78 secs total energy = -62.17687401 Ry Harris-Foulkes estimate = -62.17687402 Ry estimated scf accuracy < 0.00000002 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.76E-11, avg # of iterations = 6.0 total cpu time spent up to now is 4.82 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2227 -1.0789 -1.0789 -1.0789 -0.9703 -0.9703 -0.9702 3.5697 3.5697 3.5697 3.6359 3.6359 3.6359 6.6135 6.6135 6.8979 ! total energy = -62.17687402 Ry Harris-Foulkes estimate = -62.17687402 Ry estimated scf accuracy < 3.6E-09 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01197357 0.01197666 0.01197144 atom 2 type 1 force = 0.01197046 0.01196855 0.01197676 atom 3 type 1 force = 0.01196919 0.01198132 0.01197318 atom 4 type 1 force = 0.01198146 0.01196838 0.01197317 atom 5 type 1 force = -0.01197603 -0.01197357 -0.01197618 atom 6 type 1 force = -0.01197179 -0.01197616 -0.01197163 atom 7 type 1 force = -0.01197380 -0.01196640 -0.01197226 atom 8 type 1 force = -0.01197305 -0.01197877 -0.01197449 Total force = 0.058659 Total SCF correction = 0.000074 Entering Dynamics: iteration = 36 time = 0.0348 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126593366 -0.126592955 -0.126593167 Si 0.373406919 0.373406552 -0.126592882 Si 0.373406988 -0.126592700 0.373406794 Si -0.126593158 0.373406471 0.373406661 Si 0.126593190 0.126593150 0.126593152 Si 0.626592946 0.626593042 0.126593188 Si 0.626593052 0.126593293 0.626593156 Si 0.126593428 0.626593147 0.626593096 kinetic energy (Ekin) = 0.00109428 Ry temperature = 16.45449359 K Ekin + Etot (const) = -62.17577974 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 4.85 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.40E-10, avg # of iterations = 6.0 total cpu time spent up to now is 4.91 secs total energy = -62.17723063 Ry Harris-Foulkes estimate = -62.17723088 Ry estimated scf accuracy < 0.00000034 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.07E-09, avg # of iterations = 6.0 total cpu time spent up to now is 4.96 secs total energy = -62.17723065 Ry Harris-Foulkes estimate = -62.17723101 Ry estimated scf accuracy < 0.00000100 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.07E-09, avg # of iterations = 5.0 total cpu time spent up to now is 5.00 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2225 -1.0749 -1.0748 -1.0748 -0.9739 -0.9739 -0.9739 3.5721 3.5721 3.5721 3.6333 3.6333 3.6333 6.6203 6.6203 6.8838 ! total energy = -62.17723080 Ry Harris-Foulkes estimate = -62.17723081 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01111934 0.01112388 0.01112196 atom 2 type 1 force = 0.01112173 0.01111683 0.01112895 atom 3 type 1 force = 0.01112757 0.01112762 0.01111842 atom 4 type 1 force = 0.01112445 0.01112407 0.01112359 atom 5 type 1 force = -0.01112639 -0.01112892 -0.01111838 atom 6 type 1 force = -0.01112788 -0.01112427 -0.01112116 atom 7 type 1 force = -0.01111980 -0.01112080 -0.01112690 atom 8 type 1 force = -0.01111903 -0.01111841 -0.01112647 Total force = 0.054492 Total SCF correction = 0.000049 Entering Dynamics: iteration = 37 time = 0.0358 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126449881 -0.126449420 -0.126449660 Si 0.373550436 0.373550016 -0.126449323 Si 0.373550541 -0.126449099 0.373550313 Si -0.126449628 0.373549955 0.373550166 Si 0.126449664 0.126449637 0.126449657 Si 0.626449397 0.626449494 0.126449693 Si 0.626449519 0.126449810 0.626449616 Si 0.126449953 0.626449606 0.626449538 kinetic energy (Ekin) = 0.00145013 Ry temperature = 21.80543561 K Ekin + Etot (const) = -62.17578067 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 5.03 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.23E-10, avg # of iterations = 6.0 total cpu time spent up to now is 5.09 secs total energy = -62.17760378 Ry Harris-Foulkes estimate = -62.17760387 Ry estimated scf accuracy < 0.00000012 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.13 secs total energy = -62.17760379 Ry Harris-Foulkes estimate = -62.17760391 Ry estimated scf accuracy < 0.00000033 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.60E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.17 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2223 -1.0702 -1.0702 -1.0702 -0.9780 -0.9780 -0.9780 3.5749 3.5749 3.5749 3.6303 3.6303 3.6303 6.6281 6.6281 6.8679 ! total energy = -62.17760384 Ry Harris-Foulkes estimate = -62.17760384 Ry estimated scf accuracy < 1.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01015400 0.01014899 0.01014805 atom 2 type 1 force = 0.01015075 0.01015750 0.01015317 atom 3 type 1 force = 0.01015058 0.01014739 0.01015410 atom 4 type 1 force = 0.01015330 0.01015566 0.01015391 atom 5 type 1 force = -0.01015500 -0.01015424 -0.01015211 atom 6 type 1 force = -0.01015236 -0.01015282 -0.01015186 atom 7 type 1 force = -0.01014723 -0.01015047 -0.01015079 atom 8 type 1 force = -0.01015404 -0.01015202 -0.01015447 Total force = 0.049736 Total SCF correction = 0.000043 Entering Dynamics: iteration = 38 time = 0.0368 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126290810 -0.126290307 -0.126290577 Si 0.373709533 0.373709072 -0.126290179 Si 0.373709674 -0.126289922 0.373709417 Si -0.126290513 0.373709028 0.373709256 Si 0.126290550 0.126290537 0.126290578 Si 0.626290264 0.626290362 0.126290616 Si 0.626290410 0.126290746 0.626290494 Si 0.126290893 0.626290483 0.626290394 kinetic energy (Ekin) = 0.00182218 Ry temperature = 27.39985160 K Ekin + Etot (const) = -62.17578166 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 5.20 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.76E-11, avg # of iterations = 6.0 total cpu time spent up to now is 5.27 secs total energy = -62.17797741 Ry Harris-Foulkes estimate = -62.17797747 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.77E-10, avg # of iterations = 6.0 total cpu time spent up to now is 5.31 secs total energy = -62.17797741 Ry Harris-Foulkes estimate = -62.17797751 Ry estimated scf accuracy < 0.00000027 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.77E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.35 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2221 -1.0650 -1.0650 -1.0650 -0.9827 -0.9827 -0.9827 3.5779 3.5779 3.5779 3.6271 3.6271 3.6271 6.6368 6.6368 6.8502 ! total energy = -62.17797745 Ry Harris-Foulkes estimate = -62.17797746 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00906794 0.00906943 0.00906285 atom 2 type 1 force = 0.00907322 0.00907070 0.00906460 atom 3 type 1 force = 0.00906778 0.00906638 0.00907528 atom 4 type 1 force = 0.00906735 0.00906935 0.00907304 atom 5 type 1 force = -0.00906968 -0.00906626 -0.00907062 atom 6 type 1 force = -0.00906593 -0.00906952 -0.00906938 atom 7 type 1 force = -0.00906605 -0.00906748 -0.00906700 atom 8 type 1 force = -0.00907462 -0.00907262 -0.00906878 Total force = 0.044429 Total SCF correction = 0.000037 Entering Dynamics: iteration = 39 time = 0.0377 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126117820 -0.126117273 -0.126117582 Si 0.373882557 0.373882051 -0.126117122 Si 0.373882725 -0.126116828 0.373882452 Si -0.126117480 0.373882022 0.373882274 Si 0.126117515 0.126117521 0.126117577 Si 0.626117215 0.626117309 0.126117618 Si 0.626117385 0.126117765 0.626117455 Si 0.126117903 0.626117433 0.626117329 kinetic energy (Ekin) = 0.00219479 Ry temperature = 33.00279449 K Ekin + Etot (const) = -62.17578267 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 5.38 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.71E-11, avg # of iterations = 7.0 total cpu time spent up to now is 5.45 secs total energy = -62.17833576 Ry Harris-Foulkes estimate = -62.17833579 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.49 secs total energy = -62.17833576 Ry Harris-Foulkes estimate = -62.17833581 Ry estimated scf accuracy < 0.00000013 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.53 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2219 -1.0594 -1.0594 -1.0594 -0.9878 -0.9878 -0.9878 3.5812 3.5812 3.5812 3.6236 3.6236 3.6236 6.6462 6.6462 6.8310 ! total energy = -62.17833578 Ry Harris-Foulkes estimate = -62.17833578 Ry estimated scf accuracy < 4.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00788232 0.00788170 0.00788230 atom 2 type 1 force = 0.00788106 0.00788030 0.00788273 atom 3 type 1 force = 0.00788152 0.00788334 0.00788162 atom 4 type 1 force = 0.00788366 0.00788320 0.00788175 atom 5 type 1 force = -0.00788303 -0.00788426 -0.00788258 atom 6 type 1 force = -0.00788039 -0.00787994 -0.00788274 atom 7 type 1 force = -0.00788254 -0.00788439 -0.00788094 atom 8 type 1 force = -0.00788262 -0.00787995 -0.00788213 Total force = 0.038614 Total SCF correction = 0.000022 Entering Dynamics: iteration = 40 time = 0.0387 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125932731 -0.125932141 -0.125932489 Si 0.374067678 0.374067126 -0.125931965 Si 0.374067874 -0.125931634 0.374067584 Si -0.125932346 0.374067117 0.374067389 Si 0.125932380 0.125932404 0.125932477 Si 0.625932070 0.625932161 0.125932520 Si 0.625932261 0.125932681 0.625932319 Si 0.125932814 0.625932288 0.625932166 kinetic energy (Ekin) = 0.00255214 Ry temperature = 38.37620336 K Ekin + Etot (const) = -62.17578364 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 5.56 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.57E-11, avg # of iterations = 6.0 total cpu time spent up to now is 5.62 secs total energy = -62.17866337 Ry Harris-Foulkes estimate = -62.17866339 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.66 secs total energy = -62.17866337 Ry Harris-Foulkes estimate = -62.17866341 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.70 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2217 -1.0534 -1.0534 -1.0534 -0.9934 -0.9934 -0.9934 3.5847 3.5847 3.5847 3.6199 3.6199 3.6199 6.6563 6.6563 6.8105 ! total energy = -62.17866339 Ry Harris-Foulkes estimate = -62.17866339 Ry estimated scf accuracy < 2.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00660162 0.00660134 0.00660364 atom 2 type 1 force = 0.00660103 0.00660190 0.00660129 atom 3 type 1 force = 0.00660375 0.00660307 0.00660280 atom 4 type 1 force = 0.00660433 0.00660382 0.00660228 atom 5 type 1 force = -0.00660164 -0.00660344 -0.00660413 atom 6 type 1 force = -0.00660294 -0.00660239 -0.00660258 atom 7 type 1 force = -0.00660293 -0.00660224 -0.00660217 atom 8 type 1 force = -0.00660323 -0.00660207 -0.00660113 Total force = 0.032346 Total SCF correction = 0.000012 Entering Dynamics: iteration = 41 time = 0.0397 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125737510 -0.125736877 -0.125737260 Si 0.374262931 0.374262334 -0.125736675 Si 0.374263159 -0.125736305 0.374262851 Si -0.125737075 0.374262347 0.374262638 Si 0.125737111 0.125737150 0.125737239 Si 0.625736790 0.625736878 0.125737287 Si 0.625737002 0.125737463 0.625737050 Si 0.125737590 0.625737009 0.625736870 kinetic energy (Ekin) = 0.00287884 Ry temperature = 43.28873287 K Ekin + Etot (const) = -62.17578455 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 5.73 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.14E-12, avg # of iterations = 6.0 total cpu time spent up to now is 5.79 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2215 -1.0470 -1.0470 -1.0470 -0.9994 -0.9994 -0.9993 3.5884 3.5884 3.5884 3.6161 3.6161 3.6161 6.6670 6.6670 6.7888 ! total energy = -62.17894595 Ry Harris-Foulkes estimate = -62.17894595 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00524694 0.00524053 0.00524385 atom 2 type 1 force = 0.00523950 0.00524366 0.00524611 atom 3 type 1 force = 0.00523528 0.00524005 0.00524000 atom 4 type 1 force = 0.00524544 0.00524296 0.00523702 atom 5 type 1 force = -0.00524727 -0.00525017 -0.00524149 atom 6 type 1 force = -0.00523904 -0.00523719 -0.00524068 atom 7 type 1 force = -0.00523768 -0.00524591 -0.00524031 atom 8 type 1 force = -0.00524316 -0.00523391 -0.00524451 Total force = 0.025679 Total SCF correction = 0.000090 Entering Dynamics: iteration = 42 time = 0.0406 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125534234 -0.125533568 -0.125533982 Si 0.374466227 0.374465591 -0.125533334 Si 0.374466481 -0.125532933 0.374466161 Si -0.125533752 0.374465626 0.374465926 Si 0.125533789 0.125533838 0.125533956 Si 0.625533469 0.625533556 0.125534011 Si 0.625533704 0.125534193 0.625533736 Si 0.125534317 0.625533697 0.625533524 kinetic energy (Ekin) = 0.00316060 Ry temperature = 47.52559954 K Ekin + Etot (const) = -62.17578535 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 5.83 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.20E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.89 secs total energy = -62.17917079 Ry Harris-Foulkes estimate = -62.17917091 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 6.0 total cpu time spent up to now is 5.93 secs total energy = -62.17917080 Ry Harris-Foulkes estimate = -62.17917097 Ry estimated scf accuracy < 0.00000045 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 5.0 total cpu time spent up to now is 5.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2214 -1.0404 -1.0404 -1.0404 -1.0057 -1.0057 -1.0057 3.5922 3.5922 3.5922 3.6121 3.6121 3.6122 6.6781 6.6781 6.7664 ! total energy = -62.17917087 Ry Harris-Foulkes estimate = -62.17917087 Ry estimated scf accuracy < 1.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00381225 0.00381325 0.00381177 atom 2 type 1 force = 0.00381536 0.00381593 0.00381189 atom 3 type 1 force = 0.00381408 0.00380782 0.00381444 atom 4 type 1 force = 0.00380907 0.00381333 0.00381288 atom 5 type 1 force = -0.00381560 -0.00381474 -0.00381062 atom 6 type 1 force = -0.00381098 -0.00381496 -0.00381164 atom 7 type 1 force = -0.00381212 -0.00381131 -0.00381246 atom 8 type 1 force = -0.00381205 -0.00380932 -0.00381625 Total force = 0.018678 Total SCF correction = 0.000037 Entering Dynamics: iteration = 43 time = 0.0416 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125325107 -0.125324406 -0.125324852 Si 0.374675379 0.374674705 -0.125324141 Si 0.374675656 -0.125323715 0.374675327 Si -0.125324583 0.374674757 0.374675067 Si 0.125324609 0.125324670 0.125324824 Si 0.625324298 0.625324379 0.125324883 Si 0.625324554 0.125325073 0.625324571 Si 0.125325193 0.625324537 0.625324321 kinetic energy (Ekin) = 0.00338487 Ry temperature = 50.89786838 K Ekin + Etot (const) = -62.17578601 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.00 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.80E-11, avg # of iterations = 5.0 total cpu time spent up to now is 6.06 secs total energy = -62.17932781 Ry Harris-Foulkes estimate = -62.17932788 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 5.0 total cpu time spent up to now is 6.11 secs total energy = -62.17932782 Ry Harris-Foulkes estimate = -62.17932791 Ry estimated scf accuracy < 0.00000024 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 4.0 total cpu time spent up to now is 6.14 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0335 -1.0335 -1.0335 -1.0124 -1.0123 -1.0123 3.5961 3.5961 3.5961 3.6081 3.6082 3.6082 6.6896 6.6896 6.7433 ! total energy = -62.17932786 Ry Harris-Foulkes estimate = -62.17932786 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00232845 0.00232843 0.00232909 atom 2 type 1 force = 0.00233145 0.00232967 0.00232968 atom 3 type 1 force = 0.00232717 0.00232829 0.00232649 atom 4 type 1 force = 0.00233063 0.00233090 0.00233102 atom 5 type 1 force = -0.00233087 -0.00232900 -0.00233122 atom 6 type 1 force = -0.00233157 -0.00233167 -0.00232359 atom 7 type 1 force = -0.00233256 -0.00232789 -0.00233487 atom 8 type 1 force = -0.00232271 -0.00232873 -0.00232659 Total force = 0.011411 Total SCF correction = 0.000030 Entering Dynamics: iteration = 44 time = 0.0426 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125112405 -0.125111671 -0.125112148 Si 0.374888109 0.374887395 -0.125111372 Si 0.374888404 -0.125110924 0.374888063 Si -0.125111836 0.374887467 0.374887785 Si 0.125111852 0.125111927 0.125112114 Si 0.625111548 0.625111623 0.125112190 Si 0.625111824 0.125112380 0.625111822 Si 0.125112504 0.625111803 0.625111546 kinetic energy (Ekin) = 0.00354137 Ry temperature = 53.25118528 K Ekin + Etot (const) = -62.17578649 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.18 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.06E-11, avg # of iterations = 6.0 total cpu time spent up to now is 6.24 secs total energy = -62.17940940 Ry Harris-Foulkes estimate = -62.17940942 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-11, avg # of iterations = 6.0 total cpu time spent up to now is 6.29 secs total energy = -62.17940940 Ry Harris-Foulkes estimate = -62.17940942 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.97E-11, avg # of iterations = 5.0 total cpu time spent up to now is 6.32 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0265 -1.0265 -1.0265 -1.0192 -1.0192 -1.0192 3.6000 3.6000 3.6000 3.6042 3.6042 3.6042 6.7013 6.7013 6.7198 ! total energy = -62.17940941 Ry Harris-Foulkes estimate = -62.17940941 Ry estimated scf accuracy < 4.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00080741 0.00080467 0.00080525 atom 2 type 1 force = 0.00080512 0.00080926 0.00080581 atom 3 type 1 force = 0.00080865 0.00080505 0.00080704 atom 4 type 1 force = 0.00080585 0.00080784 0.00080856 atom 5 type 1 force = -0.00080896 -0.00080877 -0.00080872 atom 6 type 1 force = -0.00080476 -0.00080574 -0.00080491 atom 7 type 1 force = -0.00080584 -0.00080636 -0.00080752 atom 8 type 1 force = -0.00080747 -0.00080595 -0.00080550 Total force = 0.003952 Total SCF correction = 0.000025 Entering Dynamics: iteration = 45 time = 0.0435 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124898465 -0.124897700 -0.124898208 Si 0.375102076 0.375101327 -0.124897366 Si 0.375102393 -0.124896898 0.375102038 Si -0.124897853 0.375101416 0.375101745 Si 0.124897854 0.124897943 0.124898162 Si 0.624897562 0.624897630 0.124898260 Si 0.624897856 0.124898449 0.624897834 Si 0.124898576 0.624897832 0.624897535 kinetic energy (Ekin) = 0.00362264 Ry temperature = 54.47326159 K Ekin + Etot (const) = -62.17578677 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.36 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.42E-11, avg # of iterations = 6.0 total cpu time spent up to now is 6.42 secs total energy = -62.17941124 Ry Harris-Foulkes estimate = -62.17941125 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.41E-11, avg # of iterations = 5.0 total cpu time spent up to now is 6.46 secs total energy = -62.17941124 Ry Harris-Foulkes estimate = -62.17941126 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.41E-11, avg # of iterations = 5.0 total cpu time spent up to now is 6.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0262 -1.0262 -1.0262 -1.0195 -1.0195 -1.0195 3.6002 3.6002 3.6002 3.6040 3.6040 3.6040 6.6962 6.7131 6.7131 ! total energy = -62.17941125 Ry Harris-Foulkes estimate = -62.17941125 Ry estimated scf accuracy < 1.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00073834 -0.00074227 -0.00073839 atom 2 type 1 force = -0.00074044 -0.00073875 -0.00073951 atom 3 type 1 force = -0.00073776 -0.00073808 -0.00073844 atom 4 type 1 force = -0.00073856 -0.00073608 -0.00073924 atom 5 type 1 force = 0.00073687 0.00073612 0.00073591 atom 6 type 1 force = 0.00073859 0.00074117 0.00073843 atom 7 type 1 force = 0.00074119 0.00073937 0.00074039 atom 8 type 1 force = 0.00073844 0.00073852 0.00074083 Total force = 0.003619 Total SCF correction = 0.000011 Entering Dynamics: iteration = 46 time = 0.0445 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124685658 -0.124684868 -0.124685401 Si 0.375314906 0.375314125 -0.124684495 Si 0.375315250 -0.124684004 0.375314879 Si -0.124685003 0.375314236 0.375314569 Si 0.124684986 0.124685089 0.124685340 Si 0.624684711 0.624684774 0.124685464 Si 0.624685027 0.124685653 0.624684981 Si 0.124685781 0.624684995 0.624684661 kinetic energy (Ekin) = 0.00362441 Ry temperature = 54.49987089 K Ekin + Etot (const) = -62.17578684 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.53 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.18E-12, avg # of iterations = 5.0 total cpu time spent up to now is 6.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0334 -1.0333 -1.0333 -1.0125 -1.0125 -1.0125 3.5964 3.5964 3.5964 3.6079 3.6079 3.6079 6.6727 6.7248 6.7248 ! total energy = -62.17933255 Ry Harris-Foulkes estimate = -62.17933255 Ry estimated scf accuracy < 5.8E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00229046 -0.00229250 -0.00229670 atom 2 type 1 force = -0.00228904 -0.00228525 -0.00229331 atom 3 type 1 force = -0.00228936 -0.00229497 -0.00228521 atom 4 type 1 force = -0.00229188 -0.00228795 -0.00228598 atom 5 type 1 force = 0.00228245 0.00229025 0.00229394 atom 6 type 1 force = 0.00229449 0.00228771 0.00229633 atom 7 type 1 force = 0.00229695 0.00229283 0.00228599 atom 8 type 1 force = 0.00228685 0.00228988 0.00228495 Total force = 0.011220 Total SCF correction = 0.000087 Entering Dynamics: iteration = 47 time = 0.0455 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124476366 -0.124475556 -0.124476120 Si 0.375524222 0.375523416 -0.124475145 Si 0.375524592 -0.124474633 0.375524213 Si -0.124475671 0.375523544 0.375523886 Si 0.124475621 0.124475751 0.124476039 Si 0.624475381 0.624475431 0.124476193 Si 0.624475723 0.124476376 0.624475638 Si 0.124476496 0.624475672 0.624475295 kinetic energy (Ekin) = 0.00354588 Ry temperature = 53.31895137 K Ekin + Etot (const) = -62.17578667 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.62 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.65E-10, avg # of iterations = 5.0 total cpu time spent up to now is 6.68 secs total energy = -62.17917603 Ry Harris-Foulkes estimate = -62.17917615 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 5.0 total cpu time spent up to now is 6.73 secs total energy = -62.17917604 Ry Harris-Foulkes estimate = -62.17917621 Ry estimated scf accuracy < 0.00000045 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.16E-10, avg # of iterations = 5.0 total cpu time spent up to now is 6.77 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0405 -1.0405 -1.0404 -1.0056 -1.0056 -1.0056 3.5927 3.5927 3.5927 3.6116 3.6117 3.6117 6.6497 6.7364 6.7364 ! total energy = -62.17917611 Ry Harris-Foulkes estimate = -62.17917611 Ry estimated scf accuracy < 1.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00382883 -0.00383122 -0.00383267 atom 2 type 1 force = -0.00383087 -0.00382716 -0.00383555 atom 3 type 1 force = -0.00382832 -0.00383307 -0.00382806 atom 4 type 1 force = -0.00383116 -0.00382868 -0.00382422 atom 5 type 1 force = 0.00382729 0.00383274 0.00382831 atom 6 type 1 force = 0.00382811 0.00382663 0.00382703 atom 7 type 1 force = 0.00383409 0.00383085 0.00383314 atom 8 type 1 force = 0.00382970 0.00382991 0.00383201 Total force = 0.018763 Total SCF correction = 0.000032 Entering Dynamics: iteration = 48 time = 0.0464 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124272952 -0.124272124 -0.124272721 Si 0.375727658 0.375726832 -0.124271682 Si 0.375728059 -0.124271145 0.375727671 Si -0.124272219 0.375726974 0.375727332 Si 0.124272132 0.124272295 0.124272615 Si 0.624271928 0.624271960 0.124272797 Si 0.624272304 0.124272980 0.624272179 Si 0.124273090 0.624272228 0.624271810 kinetic energy (Ekin) = 0.00338982 Ry temperature = 50.97236259 K Ekin + Etot (const) = -62.17578629 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.81 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.49E-11, avg # of iterations = 6.0 total cpu time spent up to now is 6.86 secs total energy = -62.17894824 Ry Harris-Foulkes estimate = -62.17894829 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.95E-10, avg # of iterations = 5.0 total cpu time spent up to now is 6.91 secs total energy = -62.17894825 Ry Harris-Foulkes estimate = -62.17894831 Ry estimated scf accuracy < 0.00000017 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.95E-10, avg # of iterations = 5.0 total cpu time spent up to now is 6.95 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2215 -1.0475 -1.0475 -1.0475 -0.9989 -0.9989 -0.9989 3.5891 3.5891 3.5891 3.6153 3.6153 3.6153 6.6274 6.7477 6.7477 ! total energy = -62.17894828 Ry Harris-Foulkes estimate = -62.17894828 Ry estimated scf accuracy < 3.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00534074 -0.00534229 -0.00534159 atom 2 type 1 force = -0.00534242 -0.00533849 -0.00534137 atom 3 type 1 force = -0.00534159 -0.00534001 -0.00533825 atom 4 type 1 force = -0.00533457 -0.00533797 -0.00533796 atom 5 type 1 force = 0.00533862 0.00533886 0.00533666 atom 6 type 1 force = 0.00533808 0.00533653 0.00533993 atom 7 type 1 force = 0.00534280 0.00534042 0.00534038 atom 8 type 1 force = 0.00533981 0.00534294 0.00534222 Total force = 0.026159 Total SCF correction = 0.000015 Entering Dynamics: iteration = 49 time = 0.0474 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124077735 -0.124076892 -0.124077521 Si 0.375922894 0.375922054 -0.124076417 Si 0.375923326 -0.124075854 0.375922935 Si -0.124076956 0.375922212 0.375922584 Si 0.124076837 0.124077034 0.124077381 Si 0.624076668 0.624076681 0.124077596 Si 0.624077087 0.124077780 0.624076916 Si 0.124077880 0.624076985 0.624076526 kinetic energy (Ekin) = 0.00316258 Ry temperature = 47.55535273 K Ekin + Etot (const) = -62.17578570 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 6.98 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.16E-12, avg # of iterations = 6.0 total cpu time spent up to now is 7.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2217 -1.0544 -1.0544 -1.0543 -0.9924 -0.9924 -0.9924 3.5858 3.5858 3.5858 3.6188 3.6188 3.6188 6.6060 6.7585 6.7585 ! total energy = -62.17865875 Ry Harris-Foulkes estimate = -62.17865875 Ry estimated scf accuracy < 7.2E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00680403 -0.00680085 -0.00680077 atom 2 type 1 force = -0.00679990 -0.00680186 -0.00680219 atom 3 type 1 force = -0.00679273 -0.00680082 -0.00680199 atom 4 type 1 force = -0.00680734 -0.00680037 -0.00679955 atom 5 type 1 force = 0.00680255 0.00680069 0.00679312 atom 6 type 1 force = 0.00679717 0.00680170 0.00679591 atom 7 type 1 force = 0.00679670 0.00680405 0.00680854 atom 8 type 1 force = 0.00680758 0.00679746 0.00680692 Total force = 0.033318 Total SCF correction = 0.000100 Entering Dynamics: iteration = 50 time = 0.0484 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123892962 -0.123892099 -0.123892761 Si 0.376107692 0.376106835 -0.123891594 Si 0.376108167 -0.123891002 0.376107759 Si -0.123892142 0.376107011 0.376107400 Si 0.123891983 0.123892212 0.123892575 Si 0.623891841 0.623891843 0.123892827 Si 0.623892301 0.123893025 0.623892105 Si 0.123893119 0.623892176 0.623891689 kinetic energy (Ekin) = 0.00287384 Ry temperature = 43.21358699 K Ekin + Etot (const) = -62.17578491 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 7.07 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.02E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.13 secs total energy = -62.17832013 Ry Harris-Foulkes estimate = -62.17832027 Ry estimated scf accuracy < 0.00000019 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.03E-10, avg # of iterations = 6.0 total cpu time spent up to now is 7.18 secs total energy = -62.17832014 Ry Harris-Foulkes estimate = -62.17832034 Ry estimated scf accuracy < 0.00000053 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.03E-10, avg # of iterations = 4.0 total cpu time spent up to now is 7.22 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2219 -1.0609 -1.0609 -1.0609 -0.9863 -0.9863 -0.9863 3.5827 3.5827 3.5827 3.6221 3.6221 3.6221 6.5857 6.7688 6.7688 ! total energy = -62.17832022 Ry Harris-Foulkes estimate = -62.17832023 Ry estimated scf accuracy < 3.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00819674 -0.00819876 -0.00819186 atom 2 type 1 force = -0.00818860 -0.00819578 -0.00819498 atom 3 type 1 force = -0.00818925 -0.00819358 -0.00820001 atom 4 type 1 force = -0.00820959 -0.00819307 -0.00819520 atom 5 type 1 force = 0.00819069 0.00820137 0.00819239 atom 6 type 1 force = 0.00819594 0.00820443 0.00819536 atom 7 type 1 force = 0.00820030 0.00819051 0.00819902 atom 8 type 1 force = 0.00819724 0.00818488 0.00819529 Total force = 0.040150 Total SCF correction = 0.000049 Entering Dynamics: iteration = 51 time = 0.0493 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123720770 -0.123719891 -0.123720574 Si 0.376279922 0.376279036 -0.123719349 Si 0.376280438 -0.123718726 0.376279996 Si -0.123719929 0.376279234 0.376279636 Si 0.123719702 0.123719979 0.123720344 Si 0.623719594 0.623719597 0.123720638 Si 0.623720103 0.123720841 0.623719878 Si 0.123720941 0.623719930 0.623719432 kinetic energy (Ekin) = 0.00253626 Ry temperature = 38.13738844 K Ekin + Etot (const) = -62.17578397 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 7.25 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.41E-11, avg # of iterations = 6.0 total cpu time spent up to now is 7.31 secs total energy = -62.17794780 Ry Harris-Foulkes estimate = -62.17794787 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.35 secs total energy = -62.17794781 Ry Harris-Foulkes estimate = -62.17794791 Ry estimated scf accuracy < 0.00000028 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.98E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.39 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2221 -1.0672 -1.0672 -1.0671 -0.9806 -0.9806 -0.9806 3.5798 3.5798 3.5799 3.6251 3.6251 3.6252 6.5669 6.7784 6.7784 ! total energy = -62.17794785 Ry Harris-Foulkes estimate = -62.17794785 Ry estimated scf accuracy < 9.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00950618 -0.00950688 -0.00950503 atom 2 type 1 force = -0.00950801 -0.00950475 -0.00950381 atom 3 type 1 force = -0.00950266 -0.00950766 -0.00950634 atom 4 type 1 force = -0.00950330 -0.00950112 -0.00950568 atom 5 type 1 force = 0.00950404 0.00949975 0.00950335 atom 6 type 1 force = 0.00950479 0.00951084 0.00950395 atom 7 type 1 force = 0.00950515 0.00950521 0.00950766 atom 8 type 1 force = 0.00950617 0.00950460 0.00950590 Total force = 0.046565 Total SCF correction = 0.000030 Entering Dynamics: iteration = 52 time = 0.0503 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123563170 -0.123562275 -0.123562977 Si 0.376437557 0.376436648 -0.123561692 Si 0.376438122 -0.123561045 0.376437641 Si -0.123562303 0.376436874 0.376437282 Si 0.123562008 0.123562327 0.123562699 Si 0.623561937 0.623561951 0.123563036 Si 0.623562495 0.123563248 0.623562245 Si 0.123563353 0.623562273 0.623561766 kinetic energy (Ekin) = 0.00216493 Ry temperature = 32.55385282 K Ekin + Etot (const) = -62.17578292 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 7.42 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.33E-11, avg # of iterations = 6.0 total cpu time spent up to now is 7.49 secs total energy = -62.17755853 Ry Harris-Foulkes estimate = -62.17755856 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.53 secs total energy = -62.17755853 Ry Harris-Foulkes estimate = -62.17755857 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-10, avg # of iterations = 4.0 total cpu time spent up to now is 7.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2223 -1.0729 -1.0729 -1.0729 -0.9753 -0.9753 -0.9753 3.5773 3.5773 3.5773 3.6279 3.6279 3.6279 6.5497 6.7872 6.7872 ! total energy = -62.17755855 Ry Harris-Foulkes estimate = -62.17755855 Ry estimated scf accuracy < 2.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01071377 -0.01071594 -0.01071445 atom 2 type 1 force = -0.01071463 -0.01071017 -0.01071319 atom 3 type 1 force = -0.01071361 -0.01071378 -0.01071226 atom 4 type 1 force = -0.01070763 -0.01070895 -0.01070929 atom 5 type 1 force = 0.01070967 0.01070766 0.01070860 atom 6 type 1 force = 0.01071423 0.01071472 0.01071241 atom 7 type 1 force = 0.01071394 0.01071302 0.01071411 atom 8 type 1 force = 0.01071180 0.01071344 0.01071408 Total force = 0.052479 Total SCF correction = 0.000017 Entering Dynamics: iteration = 53 time = 0.0513 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123422015 -0.123421108 -0.123421826 Si 0.376578745 0.376577821 -0.123420479 Si 0.376579362 -0.123419808 0.376578843 Si -0.123421112 0.376578076 0.376578490 Si 0.123420754 0.123421110 0.123421492 Si 0.623420726 0.623420750 0.123421877 Si 0.623421332 0.123422098 0.623421057 Si 0.123422208 0.623421061 0.623420545 kinetic energy (Ekin) = 0.00177675 Ry temperature = 26.71682229 K Ekin + Etot (const) = -62.17578180 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 7.59 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.44E-12, avg # of iterations = 7.0 total cpu time spent up to now is 7.66 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2226 -1.0782 -1.0781 -1.0781 -0.9707 -0.9706 -0.9706 3.5750 3.5750 3.5750 3.6304 3.6304 3.6304 6.5343 6.7951 6.7951 ! total energy = -62.17717026 Ry Harris-Foulkes estimate = -62.17717027 Ry estimated scf accuracy < 8.0E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01180419 -0.01180047 -0.01179685 atom 2 type 1 force = -0.01179937 -0.01180249 -0.01179741 atom 3 type 1 force = -0.01179495 -0.01179922 -0.01180387 atom 4 type 1 force = -0.01180287 -0.01179915 -0.01180367 atom 5 type 1 force = 0.01180770 0.01179840 0.01179706 atom 6 type 1 force = 0.01179136 0.01180307 0.01179936 atom 7 type 1 force = 0.01179266 0.01180086 0.01180377 atom 8 type 1 force = 0.01180966 0.01179900 0.01180161 Total force = 0.057810 Total SCF correction = 0.000105 Entering Dynamics: iteration = 54 time = 0.0522 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123298979 -0.123298053 -0.123298782 Si 0.376701823 0.376700877 -0.123297375 Si 0.376702498 -0.123296682 0.376701928 Si -0.123298038 0.376701167 0.376701580 Si 0.123297623 0.123298004 0.123298393 Si 0.623297613 0.623297667 0.123298830 Si 0.623298270 0.123299062 0.623297988 Si 0.123299190 0.623297959 0.623297439 kinetic energy (Ekin) = 0.00138960 Ry temperature = 20.89520068 K Ekin + Etot (const) = -62.17578066 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 7.69 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.40E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.75 secs total energy = -62.17680097 Ry Harris-Foulkes estimate = -62.17680113 Ry estimated scf accuracy < 0.00000022 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.72E-10, avg # of iterations = 6.0 total cpu time spent up to now is 7.79 secs total energy = -62.17680099 Ry Harris-Foulkes estimate = -62.17680121 Ry estimated scf accuracy < 0.00000059 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.72E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.83 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2228 -1.0828 -1.0827 -1.0827 -0.9666 -0.9665 -0.9665 3.5731 3.5731 3.5731 3.6325 3.6325 3.6325 6.5208 6.8020 6.8020 ! total energy = -62.17680108 Ry Harris-Foulkes estimate = -62.17680108 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01274910 -0.01275754 -0.01275202 atom 2 type 1 force = -0.01276190 -0.01275499 -0.01275870 atom 3 type 1 force = -0.01275836 -0.01275367 -0.01275112 atom 4 type 1 force = -0.01274808 -0.01275123 -0.01275529 atom 5 type 1 force = 0.01275907 0.01275344 0.01275162 atom 6 type 1 force = 0.01274769 0.01275314 0.01275046 atom 7 type 1 force = 0.01275270 0.01275717 0.01275766 atom 8 type 1 force = 0.01275797 0.01275368 0.01275739 Total force = 0.062483 Total SCF correction = 0.000039 Entering Dynamics: iteration = 55 time = 0.0532 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123195512 -0.123194581 -0.123195313 Si 0.376805311 0.376804355 -0.123193855 Si 0.376806050 -0.123193133 0.376805440 Si -0.123194532 0.376804686 0.376805091 Si 0.123194077 0.123194473 0.123194866 Si 0.623194068 0.623194159 0.123195354 Si 0.623194782 0.123195607 0.623194501 Si 0.123195755 0.623194434 0.623193915 kinetic energy (Ekin) = 0.00102150 Ry temperature = 15.36018129 K Ekin + Etot (const) = -62.17577958 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 7.86 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.95E-11, avg # of iterations = 6.0 total cpu time spent up to now is 7.92 secs total energy = -62.17646833 Ry Harris-Foulkes estimate = -62.17646838 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.26E-10, avg # of iterations = 6.0 total cpu time spent up to now is 7.96 secs total energy = -62.17646833 Ry Harris-Foulkes estimate = -62.17646841 Ry estimated scf accuracy < 0.00000021 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.26E-10, avg # of iterations = 5.0 total cpu time spent up to now is 7.99 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2230 -1.0867 -1.0866 -1.0866 -0.9631 -0.9631 -0.9631 3.5715 3.5715 3.5715 3.6343 3.6343 3.6343 6.5095 6.8078 6.8078 ! total energy = -62.17646836 Ry Harris-Foulkes estimate = -62.17646836 Ry estimated scf accuracy < 9.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01355655 -0.01356686 -0.01356107 atom 2 type 1 force = -0.01356375 -0.01356276 -0.01355997 atom 3 type 1 force = -0.01356550 -0.01356029 -0.01356361 atom 4 type 1 force = -0.01355567 -0.01355173 -0.01355734 atom 5 type 1 force = 0.01356085 0.01355756 0.01355784 atom 6 type 1 force = 0.01355832 0.01356125 0.01355841 atom 7 type 1 force = 0.01355674 0.01356013 0.01356195 atom 8 type 1 force = 0.01356556 0.01356271 0.01356379 Total force = 0.066432 Total SCF correction = 0.000025 Entering Dynamics: iteration = 56 time = 0.0542 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123112853 -0.123111933 -0.123112658 Si 0.376887981 0.376887015 -0.123111148 Si 0.376888780 -0.123110398 0.376888132 Si -0.123111833 0.376887403 0.376887792 Si 0.123111347 0.123111753 0.123112151 Si 0.623111334 0.623111467 0.123112689 Si 0.623112104 0.123112967 0.623111831 Si 0.123113142 0.623111726 0.623111211 kinetic energy (Ekin) = 0.00068977 Ry temperature = 10.37199272 K Ekin + Etot (const) = -62.17577859 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.03 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.87E-12, avg # of iterations = 8.0 total cpu time spent up to now is 8.10 secs total energy = -62.17618787 Ry Harris-Foulkes estimate = -62.17618788 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.88E-11, avg # of iterations = 5.0 total cpu time spent up to now is 8.14 secs total energy = -62.17618788 Ry Harris-Foulkes estimate = -62.17618789 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.88E-11, avg # of iterations = 5.0 total cpu time spent up to now is 8.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2232 -1.0898 -1.0898 -1.0898 -0.9603 -0.9603 -0.9603 3.5702 3.5702 3.5702 3.6357 3.6357 3.6357 6.5005 6.8124 6.8124 ! total energy = -62.17618788 Ry Harris-Foulkes estimate = -62.17618788 Ry estimated scf accuracy < 4.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01420521 -0.01420990 -0.01420863 atom 2 type 1 force = -0.01420877 -0.01420723 -0.01420667 atom 3 type 1 force = -0.01420763 -0.01420683 -0.01420633 atom 4 type 1 force = -0.01420597 -0.01420391 -0.01420597 atom 5 type 1 force = 0.01420559 0.01420501 0.01420608 atom 6 type 1 force = 0.01420825 0.01420655 0.01420731 atom 7 type 1 force = 0.01420786 0.01420954 0.01420798 atom 8 type 1 force = 0.01420588 0.01420677 0.01420623 Total force = 0.069599 Total SCF correction = 0.000024 Entering Dynamics: iteration = 57 time = 0.0552 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123051999 -0.123051097 -0.123051813 Si 0.376948840 0.376947868 -0.123050248 Si 0.376949702 -0.123049469 0.376949019 Si -0.123050940 0.376948318 0.376948688 Si 0.123050421 0.123050836 0.123051240 Si 0.623050409 0.623050581 0.123051832 Si 0.623051233 0.123052137 0.623050969 Si 0.123052335 0.623050826 0.623050312 kinetic energy (Ekin) = 0.00041012 Ry temperature = 6.16699336 K Ekin + Etot (const) = -62.17577776 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.21 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.41E-12, avg # of iterations = 6.0 total cpu time spent up to now is 8.28 secs total energy = -62.17597300 Ry Harris-Foulkes estimate = -62.17597301 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.71E-11, avg # of iterations = 6.0 total cpu time spent up to now is 8.32 secs total energy = -62.17597300 Ry Harris-Foulkes estimate = -62.17597302 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.71E-11, avg # of iterations = 5.0 total cpu time spent up to now is 8.36 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0921 -1.0921 -1.0921 -0.9583 -0.9583 -0.9583 3.5693 3.5693 3.5693 3.6368 3.6368 3.6368 6.4939 6.8158 6.8158 ! total energy = -62.17597301 Ry Harris-Foulkes estimate = -62.17597301 Ry estimated scf accuracy < 1.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01468378 -0.01468822 -0.01468687 atom 2 type 1 force = -0.01468695 -0.01468512 -0.01468472 atom 3 type 1 force = -0.01468255 -0.01468069 -0.01468463 atom 4 type 1 force = -0.01468414 -0.01468332 -0.01468229 atom 5 type 1 force = 0.01468046 0.01468182 0.01468274 atom 6 type 1 force = 0.01468452 0.01468443 0.01468545 atom 7 type 1 force = 0.01468674 0.01468464 0.01468898 atom 8 type 1 force = 0.01468571 0.01468646 0.01468134 Total force = 0.071939 Total SCF correction = 0.000012 Entering Dynamics: iteration = 58 time = 0.0561 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123013683 -0.123012806 -0.123013512 Si 0.376987156 0.376986180 -0.123011887 Si 0.376988087 -0.123011075 0.376987366 Si -0.123012586 0.376986695 0.376987047 Si 0.123012028 0.123012455 0.123012867 Si 0.623012023 0.623012235 0.123013516 Si 0.623012906 0.123013847 0.623012654 Si 0.123014069 0.623012468 0.623011949 kinetic energy (Ekin) = 0.00019589 Ry temperature = 2.94563881 K Ekin + Etot (const) = -62.17577711 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.39 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.96E-13, avg # of iterations = 6.0 total cpu time spent up to now is 8.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0936 -1.0936 -1.0936 -0.9570 -0.9570 -0.9570 3.5687 3.5687 3.5687 3.6374 3.6374 3.6374 6.4897 6.8180 6.8180 ! total energy = -62.17583403 Ry Harris-Foulkes estimate = -62.17583403 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01498427 -0.01499494 -0.01498604 atom 2 type 1 force = -0.01498706 -0.01498280 -0.01498629 atom 3 type 1 force = -0.01498574 -0.01498586 -0.01498535 atom 4 type 1 force = -0.01498612 -0.01497963 -0.01498584 atom 5 type 1 force = 0.01498269 0.01498553 0.01498317 atom 6 type 1 force = 0.01498862 0.01498250 0.01498281 atom 7 type 1 force = 0.01498708 0.01499371 0.01498776 atom 8 type 1 force = 0.01498480 0.01498150 0.01498979 Total force = 0.073415 Total SCF correction = 0.000059 Entering Dynamics: iteration = 59 time = 0.0571 pico-seconds ATOMIC_POSITIONS (alat) Si -0.122998368 -0.122997531 -0.122998213 Si 0.377002467 0.377001494 -0.122996530 Si 0.377003469 -0.122995683 0.377002711 Si -0.122997234 0.377002080 0.377002404 Si 0.122996634 0.122997076 0.122997492 Si 0.622996645 0.622996886 0.122998198 Si 0.622997584 0.122998572 0.622997344 Si 0.122998804 0.622997106 0.622996594 kinetic energy (Ekin) = 0.00005734 Ry temperature = 0.86220515 K Ekin + Etot (const) = -62.17577669 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.49 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.58E-11, avg # of iterations = 6.0 total cpu time spent up to now is 8.55 secs total energy = -62.17577762 Ry Harris-Foulkes estimate = -62.17577765 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.18E-10, avg # of iterations = 5.0 total cpu time spent up to now is 8.59 secs total energy = -62.17577762 Ry Harris-Foulkes estimate = -62.17577766 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.18E-10, avg # of iterations = 4.0 total cpu time spent up to now is 8.63 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0942 -1.0942 -1.0941 -0.9565 -0.9565 -0.9565 3.5684 3.5685 3.5685 3.6377 3.6377 3.6377 6.4881 6.8188 6.8188 ! total energy = -62.17577764 Ry Harris-Foulkes estimate = -62.17577764 Ry estimated scf accuracy < 5.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01510596 -0.01510836 -0.01510757 atom 2 type 1 force = -0.01510780 -0.01510816 -0.01510616 atom 3 type 1 force = -0.01510597 -0.01510363 -0.01510676 atom 4 type 1 force = -0.01510657 -0.01510604 -0.01510619 atom 5 type 1 force = 0.01510452 0.01510230 0.01510549 atom 6 type 1 force = 0.01510874 0.01510651 0.01510416 atom 7 type 1 force = 0.01510722 0.01511069 0.01510827 atom 8 type 1 force = 0.01510582 0.01510669 0.01510877 Total force = 0.074007 Total SCF correction = 0.000029 Entering Dynamics: iteration = 60 time = 0.0581 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123006239 -0.123005447 -0.123006103 Si 0.376994589 0.376993618 -0.123004361 Si 0.376995665 -0.123003474 0.376994867 Si -0.123005070 0.376994277 0.376994574 Si 0.123004423 0.123004879 0.123005303 Si 0.623004457 0.623004725 0.123006064 Si 0.623005450 0.123006491 0.623005225 Si 0.123006725 0.623004931 0.623004430 kinetic energy (Ekin) = 0.00000112 Ry temperature = 0.01679906 K Ekin + Etot (const) = -62.17577652 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.66 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.30E-12, avg # of iterations = 6.0 total cpu time spent up to now is 8.73 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0939 -1.0939 -1.0938 -0.9568 -0.9568 -0.9568 3.5686 3.5686 3.5686 3.6376 3.6376 3.6376 6.4889 6.8184 6.8184 ! total energy = -62.17580654 Ry Harris-Foulkes estimate = -62.17580655 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01504652 -0.01504580 -0.01504911 atom 2 type 1 force = -0.01504647 -0.01504435 -0.01504232 atom 3 type 1 force = -0.01504479 -0.01504660 -0.01504445 atom 4 type 1 force = -0.01504118 -0.01504251 -0.01504319 atom 5 type 1 force = 0.01504206 0.01503467 0.01504410 atom 6 type 1 force = 0.01504178 0.01505461 0.01504749 atom 7 type 1 force = 0.01504593 0.01503606 0.01504635 atom 8 type 1 force = 0.01504920 0.01505392 0.01504112 Total force = 0.073704 Total SCF correction = 0.000091 Entering Dynamics: iteration = 61 time = 0.0590 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123037205 -0.123036458 -0.123037093 Si 0.376963615 0.376962650 -0.123035280 Si 0.376964768 -0.123034361 0.376963932 Si -0.123035994 0.376963385 0.376963654 Si 0.123035302 0.123035758 0.123036206 Si 0.623035357 0.623035671 0.123037027 Si 0.623036410 0.123037490 0.623036201 Si 0.123037746 0.623035864 0.623035353 kinetic energy (Ekin) = 0.00002993 Ry temperature = 0.45011630 K Ekin + Etot (const) = -62.17577661 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.77 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.41E-09, avg # of iterations = 6.0 total cpu time spent up to now is 8.82 secs total energy = -62.17591868 Ry Harris-Foulkes estimate = -62.17591963 Ry estimated scf accuracy < 0.00000130 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.07E-09, avg # of iterations = 5.0 total cpu time spent up to now is 8.87 secs total energy = -62.17591872 Ry Harris-Foulkes estimate = -62.17592016 Ry estimated scf accuracy < 0.00000409 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.07E-09, avg # of iterations = 6.0 total cpu time spent up to now is 8.91 secs total energy = -62.17591934 Ry Harris-Foulkes estimate = -62.17591935 Ry estimated scf accuracy < 0.00000002 Ry iteration # 4 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.67E-11, avg # of iterations = 6.0 total cpu time spent up to now is 8.94 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0927 -1.0927 -1.0926 -0.9578 -0.9578 -0.9578 3.5690 3.5690 3.5691 3.6370 3.6370 3.6370 6.4923 6.8167 6.8167 ! total energy = -62.17591935 Ry Harris-Foulkes estimate = -62.17591935 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01480475 -0.01480989 -0.01480219 atom 2 type 1 force = -0.01480113 -0.01479673 -0.01479888 atom 3 type 1 force = -0.01480039 -0.01480569 -0.01480215 atom 4 type 1 force = -0.01479965 -0.01479407 -0.01480290 atom 5 type 1 force = 0.01479714 0.01480535 0.01480089 atom 6 type 1 force = 0.01480064 0.01479751 0.01480328 atom 7 type 1 force = 0.01480524 0.01480553 0.01480111 atom 8 type 1 force = 0.01480288 0.01479800 0.01480084 Total force = 0.072512 Total SCF correction = 0.000061 Entering Dynamics: iteration = 62 time = 0.0600 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123090897 -0.123090200 -0.123090804 Si 0.376909923 0.376908970 -0.123088914 Si 0.376911154 -0.123087974 0.376910276 Si -0.123089634 0.376909785 0.376910012 Si 0.123088893 0.123089363 0.123089828 Si 0.623088976 0.623089331 0.123090712 Si 0.623090096 0.123091214 0.623089896 Si 0.123091489 0.623089511 0.623088995 kinetic energy (Ekin) = 0.00014240 Ry temperature = 2.14129631 K Ekin + Etot (const) = -62.17577695 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 8.97 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.13E-10, avg # of iterations = 5.0 total cpu time spent up to now is 9.03 secs total energy = -62.17611042 Ry Harris-Foulkes estimate = -62.17611073 Ry estimated scf accuracy < 0.00000042 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.31E-09, avg # of iterations = 6.0 total cpu time spent up to now is 9.07 secs total energy = -62.17611045 Ry Harris-Foulkes estimate = -62.17611090 Ry estimated scf accuracy < 0.00000121 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.31E-09, avg # of iterations = 6.0 total cpu time spent up to now is 9.11 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2232 -1.0906 -1.0906 -1.0906 -0.9596 -0.9596 -0.9596 3.5699 3.5699 3.5699 3.6361 3.6361 3.6361 6.4981 6.8136 6.8136 ! total energy = -62.17611064 Ry Harris-Foulkes estimate = -62.17611064 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01437639 -0.01438624 -0.01437871 atom 2 type 1 force = -0.01438171 -0.01438576 -0.01438149 atom 3 type 1 force = -0.01437880 -0.01436537 -0.01437870 atom 4 type 1 force = -0.01438383 -0.01438492 -0.01438228 atom 5 type 1 force = 0.01436490 0.01438736 0.01436683 atom 6 type 1 force = 0.01437795 0.01437256 0.01438235 atom 7 type 1 force = 0.01439384 0.01439140 0.01439549 atom 8 type 1 force = 0.01438404 0.01437096 0.01437652 Total force = 0.070449 Total SCF correction = 0.000052 Entering Dynamics: iteration = 63 time = 0.0610 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123166655 -0.123166025 -0.123166585 Si 0.376834155 0.376833208 -0.123164624 Si 0.376835468 -0.123163636 0.376834550 Si -0.123165353 0.376834105 0.376834294 Si 0.123164534 0.123165052 0.123165502 Si 0.623164664 0.623165052 0.123166473 Si 0.623165876 0.123167028 0.623165687 Si 0.123167310 0.623165216 0.623164704 kinetic energy (Ekin) = 0.00033312 Ry temperature = 5.00903352 K Ekin + Etot (const) = -62.17577752 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 9.14 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.77E-11, avg # of iterations = 7.0 total cpu time spent up to now is 9.20 secs total energy = -62.17637113 Ry Harris-Foulkes estimate = -62.17637127 Ry estimated scf accuracy < 0.00000020 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.26E-10, avg # of iterations = 6.0 total cpu time spent up to now is 9.25 secs total energy = -62.17637114 Ry Harris-Foulkes estimate = -62.17637135 Ry estimated scf accuracy < 0.00000062 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.26E-10, avg # of iterations = 5.0 total cpu time spent up to now is 9.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2230 -1.0878 -1.0877 -1.0877 -0.9622 -0.9621 -0.9621 3.5710 3.5710 3.5710 3.6348 3.6348 3.6348 6.5064 6.8094 6.8094 ! total energy = -62.17637123 Ry Harris-Foulkes estimate = -62.17637123 Ry estimated scf accuracy < 2.1E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01378774 -0.01378604 -0.01379221 atom 2 type 1 force = -0.01378949 -0.01379601 -0.01378887 atom 3 type 1 force = -0.01378567 -0.01378389 -0.01378418 atom 4 type 1 force = -0.01378603 -0.01378396 -0.01378463 atom 5 type 1 force = 0.01377848 0.01377637 0.01378815 atom 6 type 1 force = 0.01378629 0.01379559 0.01378186 atom 7 type 1 force = 0.01379228 0.01378439 0.01378620 atom 8 type 1 force = 0.01379187 0.01379355 0.01379368 Total force = 0.067544 Total SCF correction = 0.000051 Entering Dynamics: iteration = 64 time = 0.0619 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123263576 -0.123263011 -0.123263536 Si 0.376737222 0.376736271 -0.123261498 Si 0.376738623 -0.123260457 0.376737666 Si -0.123262232 0.376737267 0.376737417 Si 0.123261323 0.123261886 0.123262340 Si 0.623261514 0.623261949 0.123263388 Si 0.623262826 0.123264000 0.623262639 Si 0.123264302 0.623262094 0.623261585 kinetic energy (Ekin) = 0.00059293 Ry temperature = 8.91579041 K Ekin + Etot (const) = -62.17577830 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 9.32 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.09E-10, avg # of iterations = 7.0 total cpu time spent up to now is 9.38 secs total energy = -62.17668859 Ry Harris-Foulkes estimate = -62.17668872 Ry estimated scf accuracy < 0.00000018 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.53E-10, avg # of iterations = 6.0 total cpu time spent up to now is 9.43 secs total energy = -62.17668859 Ry Harris-Foulkes estimate = -62.17668879 Ry estimated scf accuracy < 0.00000055 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.53E-10, avg # of iterations = 6.0 total cpu time spent up to now is 9.47 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2229 -1.0841 -1.0841 -1.0841 -0.9654 -0.9654 -0.9653 3.5725 3.5725 3.5725 3.6331 3.6331 3.6331 6.5169 6.8040 6.8040 ! total energy = -62.17668868 Ry Harris-Foulkes estimate = -62.17668868 Ry estimated scf accuracy < 1.9E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01303451 -0.01303043 -0.01303315 atom 2 type 1 force = -0.01303274 -0.01303493 -0.01303386 atom 3 type 1 force = -0.01302981 -0.01302763 -0.01302884 atom 4 type 1 force = -0.01303128 -0.01303343 -0.01303103 atom 5 type 1 force = 0.01303239 0.01302601 0.01303421 atom 6 type 1 force = 0.01302470 0.01303362 0.01303625 atom 7 type 1 force = 0.01303178 0.01303418 0.01302778 atom 8 type 1 force = 0.01303947 0.01303260 0.01302863 Total force = 0.063843 Total SCF correction = 0.000047 Entering Dynamics: iteration = 65 time = 0.0629 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123380505 -0.123379997 -0.123380493 Si 0.376620284 0.376619325 -0.123378379 Si 0.376621777 -0.123377274 0.376620783 Si -0.123379114 0.376620424 0.376620538 Si 0.123378117 0.123378715 0.123379184 Si 0.623378355 0.623378851 0.123380314 Si 0.623379779 0.123380979 0.623379588 Si 0.123381308 0.623378976 0.623378465 kinetic energy (Ekin) = 0.00090943 Ry temperature = 13.67500885 K Ekin + Etot (const) = -62.17577925 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 9.50 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.72E-11, avg # of iterations = 7.0 total cpu time spent up to now is 9.57 secs total energy = -62.17704786 Ry Harris-Foulkes estimate = -62.17704793 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.08E-10, avg # of iterations = 5.0 total cpu time spent up to now is 9.61 secs total energy = -62.17704786 Ry Harris-Foulkes estimate = -62.17704797 Ry estimated scf accuracy < 0.00000029 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.08E-10, avg # of iterations = 5.0 total cpu time spent up to now is 9.65 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2226 -1.0797 -1.0797 -1.0797 -0.9693 -0.9692 -0.9692 3.5744 3.5744 3.5744 3.6311 3.6311 3.6311 6.5297 6.7974 6.7974 ! total energy = -62.17704791 Ry Harris-Foulkes estimate = -62.17704791 Ry estimated scf accuracy < 6.1E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01212297 -0.01212554 -0.01212547 atom 2 type 1 force = -0.01212680 -0.01212484 -0.01212211 atom 3 type 1 force = -0.01212436 -0.01212345 -0.01212572 atom 4 type 1 force = -0.01212313 -0.01212377 -0.01212411 atom 5 type 1 force = 0.01212324 0.01211883 0.01212373 atom 6 type 1 force = 0.01212313 0.01212579 0.01212495 atom 7 type 1 force = 0.01212325 0.01212565 0.01212665 atom 8 type 1 force = 0.01212764 0.01212734 0.01212209 Total force = 0.059397 Total SCF correction = 0.000022 Entering Dynamics: iteration = 66 time = 0.0639 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123516042 -0.123515596 -0.123516061 Si 0.376484731 0.376483769 -0.123513867 Si 0.376486321 -0.123512699 0.376485288 Si -0.123514604 0.376484971 0.376485050 Si 0.123513519 0.123514146 0.123514638 Si 0.623513805 0.623514366 0.123515850 Si 0.623515340 0.123516570 0.623515151 Si 0.123516929 0.623514472 0.623513951 kinetic energy (Ekin) = 0.00126760 Ry temperature = 19.06075160 K Ekin + Etot (const) = -62.17578031 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 9.68 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.68E-11, avg # of iterations = 7.0 total cpu time spent up to now is 9.74 secs total energy = -62.17743196 Ry Harris-Foulkes estimate = -62.17743198 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.93E-11, avg # of iterations = 5.0 total cpu time spent up to now is 9.79 secs total energy = -62.17743196 Ry Harris-Foulkes estimate = -62.17743199 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.93E-11, avg # of iterations = 4.0 total cpu time spent up to now is 9.83 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2224 -1.0747 -1.0747 -1.0747 -0.9738 -0.9738 -0.9738 3.5765 3.5765 3.5765 3.6287 3.6287 3.6287 6.5445 6.7899 6.7899 ! total energy = -62.17743198 Ry Harris-Foulkes estimate = -62.17743198 Ry estimated scf accuracy < 3.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01107890 -0.01108449 -0.01107724 atom 2 type 1 force = -0.01107999 -0.01107954 -0.01107572 atom 3 type 1 force = -0.01107826 -0.01107271 -0.01108099 atom 4 type 1 force = -0.01107548 -0.01107592 -0.01107791 atom 5 type 1 force = 0.01107283 0.01107462 0.01107522 atom 6 type 1 force = 0.01107873 0.01107867 0.01107777 atom 7 type 1 force = 0.01108236 0.01107848 0.01108202 atom 8 type 1 force = 0.01107871 0.01108089 0.01107685 Total force = 0.054271 Total SCF correction = 0.000017 Entering Dynamics: iteration = 67 time = 0.0648 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123668584 -0.123668208 -0.123668632 Si 0.376332172 0.376331206 -0.123666355 Si 0.376333861 -0.123665121 0.376332784 Si -0.123667094 0.376332518 0.376332558 Si 0.123665918 0.123666575 0.123667092 Si 0.623666260 0.623666886 0.123668391 Si 0.623667912 0.123669166 0.623667724 Si 0.123669555 0.623666978 0.623666440 kinetic energy (Ekin) = 0.00165055 Ry temperature = 24.81913010 K Ekin + Etot (const) = -62.17578143 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 9.86 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.16E-12, avg # of iterations = 6.0 total cpu time spent up to now is 9.93 secs total energy = -62.17782293 Ry Harris-Foulkes estimate = -62.17782294 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-11, avg # of iterations = 6.0 total cpu time spent up to now is 9.97 secs total energy = -62.17782293 Ry Harris-Foulkes estimate = -62.17782295 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-11, avg # of iterations = 5.0 total cpu time spent up to now is 10.01 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2222 -1.0691 -1.0691 -1.0691 -0.9788 -0.9788 -0.9788 3.5790 3.5790 3.5790 3.6261 3.6261 3.6261 6.5611 6.7813 6.7813 ! total energy = -62.17782294 Ry Harris-Foulkes estimate = -62.17782294 Ry estimated scf accuracy < 2.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00990879 -0.00991291 -0.00990941 atom 2 type 1 force = -0.00990899 -0.00990814 -0.00990494 atom 3 type 1 force = -0.00990662 -0.00990146 -0.00990864 atom 4 type 1 force = -0.00990587 -0.00990833 -0.00990721 atom 5 type 1 force = 0.00990442 0.00990274 0.00990667 atom 6 type 1 force = 0.00990727 0.00991034 0.00990759 atom 7 type 1 force = 0.00990946 0.00990806 0.00991064 atom 8 type 1 force = 0.00990912 0.00990969 0.00990530 Total force = 0.048537 Total SCF correction = 0.000015 Entering Dynamics: iteration = 68 time = 0.0658 pico-seconds ATOMIC_POSITIONS (alat) Si -0.123836336 -0.123836037 -0.123836414 Si 0.376164403 0.376163435 -0.123834046 Si 0.376166195 -0.123832741 0.376165071 Si -0.123834789 0.376164856 0.376164858 Si 0.123833519 0.123834205 0.123834752 Si 0.623833922 0.623834618 0.123836138 Si 0.623835695 0.123836971 0.623835509 Si 0.123837391 0.623834694 0.623834132 kinetic energy (Ekin) = 0.00204038 Ry temperature = 30.68101209 K Ekin + Etot (const) = -62.17578255 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.05 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.99E-12, avg # of iterations = 6.0 total cpu time spent up to now is 10.11 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2219 -1.0630 -1.0630 -1.0630 -0.9844 -0.9844 -0.9844 3.5817 3.5817 3.5818 3.6231 3.6231 3.6231 6.5795 6.7720 6.7720 ! total energy = -62.17820270 Ry Harris-Foulkes estimate = -62.17820271 Ry estimated scf accuracy < 7.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00862805 -0.00863936 -0.00863079 atom 2 type 1 force = -0.00863239 -0.00862725 -0.00862494 atom 3 type 1 force = -0.00862834 -0.00862889 -0.00862845 atom 4 type 1 force = -0.00862824 -0.00862194 -0.00863298 atom 5 type 1 force = 0.00861761 0.00863142 0.00862322 atom 6 type 1 force = 0.00863481 0.00862162 0.00862723 atom 7 type 1 force = 0.00863747 0.00863919 0.00863491 atom 8 type 1 force = 0.00862712 0.00862520 0.00863179 Total force = 0.042275 Total SCF correction = 0.000104 Entering Dynamics: iteration = 69 time = 0.0668 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124017331 -0.124017126 -0.124017443 Si 0.375983384 0.375982421 -0.124014977 Si 0.375985284 -0.124013606 0.375984114 Si -0.124015728 0.375983959 0.375983908 Si 0.124014348 0.124015083 0.124015648 Si 0.624014838 0.624015583 0.124017129 Si 0.624016736 0.124018036 0.624016548 Si 0.124018470 0.624015649 0.624015074 kinetic energy (Ekin) = 0.00241907 Ry temperature = 36.37529761 K Ekin + Etot (const) = -62.17578363 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.14 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.69E-10, avg # of iterations = 5.0 total cpu time spent up to now is 10.20 secs total energy = -62.17855380 Ry Harris-Foulkes estimate = -62.17855399 Ry estimated scf accuracy < 0.00000026 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.13E-10, avg # of iterations = 5.0 total cpu time spent up to now is 10.24 secs total energy = -62.17855382 Ry Harris-Foulkes estimate = -62.17855409 Ry estimated scf accuracy < 0.00000073 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.13E-10, avg # of iterations = 5.0 total cpu time spent up to now is 10.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2217 -1.0565 -1.0565 -1.0565 -0.9904 -0.9904 -0.9904 3.5847 3.5848 3.5848 3.6199 3.6199 3.6199 6.5993 6.7619 6.7619 ! total energy = -62.17855394 Ry Harris-Foulkes estimate = -62.17855394 Ry estimated scf accuracy < 1.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00726270 -0.00726656 -0.00726665 atom 2 type 1 force = -0.00726448 -0.00726357 -0.00726010 atom 3 type 1 force = -0.00725545 -0.00725530 -0.00725568 atom 4 type 1 force = -0.00725813 -0.00725433 -0.00725844 atom 5 type 1 force = 0.00725191 0.00725479 0.00725379 atom 6 type 1 force = 0.00725939 0.00725804 0.00725510 atom 7 type 1 force = 0.00726446 0.00726394 0.00726726 atom 8 type 1 force = 0.00726500 0.00726298 0.00726471 Total force = 0.035567 Total SCF correction = 0.000034 Entering Dynamics: iteration = 70 time = 0.0677 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124209474 -0.124209369 -0.124209627 Si 0.375791214 0.375790258 -0.124207051 Si 0.375793237 -0.124205607 0.375792020 Si -0.124207808 0.375791928 0.375791816 Si 0.124206307 0.124207097 0.124207678 Si 0.624206896 0.624207689 0.124209255 Si 0.624208927 0.124210251 0.624208742 Si 0.124210700 0.624207752 0.624207167 kinetic energy (Ekin) = 0.00276932 Ry temperature = 41.64189211 K Ekin + Etot (const) = -62.17578462 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.32 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.06E-10, avg # of iterations = 6.0 total cpu time spent up to now is 10.38 secs total energy = -62.17886078 Ry Harris-Foulkes estimate = -62.17886085 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.23E-10, avg # of iterations = 5.0 total cpu time spent up to now is 10.42 secs total energy = -62.17886078 Ry Harris-Foulkes estimate = -62.17886089 Ry estimated scf accuracy < 0.00000028 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.23E-10, avg # of iterations = 5.0 total cpu time spent up to now is 10.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2215 -1.0497 -1.0497 -1.0497 -0.9968 -0.9968 -0.9967 3.5880 3.5880 3.5880 3.6165 3.6165 3.6165 6.6204 6.7512 6.7512 ! total energy = -62.17886083 Ry Harris-Foulkes estimate = -62.17886083 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00581624 -0.00582213 -0.00582351 atom 2 type 1 force = -0.00581743 -0.00582172 -0.00581463 atom 3 type 1 force = -0.00581869 -0.00581142 -0.00581753 atom 4 type 1 force = -0.00582145 -0.00581917 -0.00581917 atom 5 type 1 force = 0.00581081 0.00581509 0.00581686 atom 6 type 1 force = 0.00581772 0.00582199 0.00581647 atom 7 type 1 force = 0.00582116 0.00581854 0.00582230 atom 8 type 1 force = 0.00582412 0.00581882 0.00581923 Total force = 0.028505 Total SCF correction = 0.000029 Entering Dynamics: iteration = 71 time = 0.0687 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124410545 -0.124410549 -0.124410749 Si 0.375590115 0.375589159 -0.124408050 Si 0.375592259 -0.124406528 0.375590996 Si -0.124408824 0.375590965 0.375590792 Si 0.124407187 0.124408037 0.124408637 Si 0.624407885 0.624408732 0.124410309 Si 0.624410053 0.124411396 0.624409873 Si 0.124411869 0.624408787 0.624408192 kinetic energy (Ekin) = 0.00307537 Ry temperature = 46.24392589 K Ekin + Etot (const) = -62.17578546 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.50 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.59E-11, avg # of iterations = 6.0 total cpu time spent up to now is 10.56 secs total energy = -62.17910982 Ry Harris-Foulkes estimate = -62.17910984 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.31E-11, avg # of iterations = 5.0 total cpu time spent up to now is 10.61 secs total energy = -62.17910982 Ry Harris-Foulkes estimate = -62.17910985 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.31E-11, avg # of iterations = 5.0 total cpu time spent up to now is 10.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2214 -1.0428 -1.0427 -1.0427 -1.0034 -1.0034 -1.0034 3.5915 3.5915 3.5915 3.6129 3.6129 3.6129 6.6424 6.7401 6.7401 ! total energy = -62.17910983 Ry Harris-Foulkes estimate = -62.17910983 Ry estimated scf accuracy < 5.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00432389 -0.00433132 -0.00432740 atom 2 type 1 force = -0.00432294 -0.00432114 -0.00431931 atom 3 type 1 force = -0.00431983 -0.00431796 -0.00431998 atom 4 type 1 force = -0.00432326 -0.00431957 -0.00432282 atom 5 type 1 force = 0.00431534 0.00431700 0.00432366 atom 6 type 1 force = 0.00432115 0.00432211 0.00432415 atom 7 type 1 force = 0.00432548 0.00432770 0.00432421 atom 8 type 1 force = 0.00432793 0.00432317 0.00431749 Total force = 0.021176 Total SCF correction = 0.000025 Entering Dynamics: iteration = 72 time = 0.0697 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124618252 -0.124618377 -0.124618513 Si 0.375382380 0.375381428 -0.124615680 Si 0.375384650 -0.124614077 0.375383341 Si -0.124616475 0.375383371 0.375383133 Si 0.124614690 0.124615604 0.124616232 Si 0.624615506 0.624616408 0.124618001 Si 0.624617819 0.124619185 0.624617642 Si 0.124619682 0.624616458 0.624615844 kinetic energy (Ekin) = 0.00332371 Ry temperature = 49.97825847 K Ekin + Etot (const) = -62.17578612 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.67 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.81E-11, avg # of iterations = 6.0 total cpu time spent up to now is 10.73 secs total energy = -62.17929021 Ry Harris-Foulkes estimate = -62.17929023 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.29E-11, avg # of iterations = 5.0 total cpu time spent up to now is 10.78 secs total energy = -62.17929022 Ry Harris-Foulkes estimate = -62.17929024 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.29E-11, avg # of iterations = 5.0 total cpu time spent up to now is 10.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0357 -1.0356 -1.0356 -1.0103 -1.0103 -1.0102 3.5952 3.5952 3.5952 3.6091 3.6091 3.6091 6.6653 6.7286 6.7286 ! total energy = -62.17929023 Ry Harris-Foulkes estimate = -62.17929023 Ry estimated scf accuracy < 3.3E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00279143 -0.00279956 -0.00279281 atom 2 type 1 force = -0.00279335 -0.00279147 -0.00278653 atom 3 type 1 force = -0.00278631 -0.00278396 -0.00279000 atom 4 type 1 force = -0.00279042 -0.00278650 -0.00279153 atom 5 type 1 force = 0.00278347 0.00278330 0.00279125 atom 6 type 1 force = 0.00278847 0.00279108 0.00279090 atom 7 type 1 force = 0.00279476 0.00279450 0.00279265 atom 8 type 1 force = 0.00279481 0.00279261 0.00278607 Total force = 0.013670 Total SCF correction = 0.000011 Entering Dynamics: iteration = 73 time = 0.0706 pico-seconds ATOMIC_POSITIONS (alat) Si -0.124830244 -0.124830502 -0.124830564 Si 0.375170358 0.375169411 -0.124827586 Si 0.375172764 -0.124825900 0.375171404 Si -0.124828410 0.375171500 0.375171189 Si 0.124826465 0.124827442 0.124828112 Si 0.624827408 0.624828369 0.124829976 Si 0.624829875 0.124831263 0.624829697 Si 0.124831784 0.624828416 0.624827773 kinetic energy (Ekin) = 0.00350365 Ry temperature = 52.68396859 K Ekin + Etot (const) = -62.17578658 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.85 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.48E-12, avg # of iterations = 6.0 total cpu time spent up to now is 10.91 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0286 -1.0285 -1.0285 -1.0173 -1.0172 -1.0172 3.5990 3.5990 3.5990 3.6052 3.6052 3.6053 6.6886 6.7169 6.7169 ! total energy = -62.17939454 Ry Harris-Foulkes estimate = -62.17939455 Ry estimated scf accuracy < 7.1E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00124358 -0.00125355 -0.00125216 atom 2 type 1 force = -0.00124264 -0.00123623 -0.00124110 atom 3 type 1 force = -0.00124032 -0.00124133 -0.00123246 atom 4 type 1 force = -0.00123635 -0.00123209 -0.00123694 atom 5 type 1 force = 0.00123736 0.00123760 0.00123734 atom 6 type 1 force = 0.00123473 0.00123807 0.00123956 atom 7 type 1 force = 0.00123948 0.00124572 0.00124593 atom 8 type 1 force = 0.00125131 0.00124181 0.00123983 Total force = 0.006078 Total SCF correction = 0.000098 Entering Dynamics: iteration = 74 time = 0.0716 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125044145 -0.125044551 -0.125044538 Si 0.374956428 0.374955497 -0.125041398 Si 0.374958974 -0.125039628 0.374957575 Si -0.125042242 0.374957738 0.374957346 Si 0.125040140 0.125041180 0.125041890 Si 0.625041205 0.625042230 0.125043854 Si 0.625043833 0.125045253 0.625043664 Si 0.125045808 0.625042279 0.625041605 kinetic energy (Ekin) = 0.00360773 Ry temperature = 54.24905198 K Ekin + Etot (const) = -62.17578681 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 10.94 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.07E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.00 secs total energy = -62.17941874 Ry Harris-Foulkes estimate = -62.17941889 Ry estimated scf accuracy < 0.00000021 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.42E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.04 secs total energy = -62.17941875 Ry Harris-Foulkes estimate = -62.17941896 Ry estimated scf accuracy < 0.00000055 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.42E-10, avg # of iterations = 4.0 total cpu time spent up to now is 11.07 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0243 -1.0243 -1.0243 -1.0215 -1.0215 -1.0215 3.6013 3.6013 3.6013 3.6029 3.6029 3.6029 6.7051 6.7051 6.7121 ! total energy = -62.17941884 Ry Harris-Foulkes estimate = -62.17941884 Ry estimated scf accuracy < 2.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00030812 0.00029486 0.00030457 atom 2 type 1 force = 0.00030692 0.00030844 0.00031367 atom 3 type 1 force = 0.00030956 0.00031903 0.00030811 atom 4 type 1 force = 0.00031092 0.00031123 0.00030809 atom 5 type 1 force = -0.00031854 -0.00030355 -0.00031549 atom 6 type 1 force = -0.00031278 -0.00031618 -0.00030630 atom 7 type 1 force = -0.00030485 -0.00030589 -0.00029716 atom 8 type 1 force = -0.00029934 -0.00030795 -0.00031549 Total force = 0.001512 Total SCF correction = 0.000045 Entering Dynamics: iteration = 75 time = 0.0726 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125257574 -0.125258148 -0.125258043 Si 0.374742970 0.374742057 -0.125254728 Si 0.374745659 -0.125252866 0.374744219 Si -0.125255597 0.374744454 0.374743976 Si 0.125253326 0.125254452 0.125255185 Si 0.625254521 0.625255606 0.125257262 Si 0.625257323 0.125258774 0.625257176 Si 0.125259371 0.625255670 0.625254952 kinetic energy (Ekin) = 0.00363202 Ry temperature = 54.61420933 K Ekin + Etot (const) = -62.17578682 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 11.11 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.01E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.17 secs total energy = -62.17936272 Ry Harris-Foulkes estimate = -62.17936279 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.91E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.21 secs total energy = -62.17936272 Ry Harris-Foulkes estimate = -62.17936282 Ry estimated scf accuracy < 0.00000024 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.91E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2212 -1.0313 -1.0313 -1.0313 -1.0145 -1.0145 -1.0145 3.5974 3.5974 3.5974 3.6069 3.6069 3.6069 6.6933 6.6933 6.7357 ! total energy = -62.17936276 Ry Harris-Foulkes estimate = -62.17936276 Ry estimated scf accuracy < 1.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00183913 0.00182918 0.00183505 atom 2 type 1 force = 0.00183899 0.00184189 0.00184597 atom 3 type 1 force = 0.00184082 0.00184659 0.00184158 atom 4 type 1 force = 0.00184120 0.00184341 0.00183839 atom 5 type 1 force = -0.00184679 -0.00183853 -0.00184384 atom 6 type 1 force = -0.00184202 -0.00184571 -0.00183623 atom 7 type 1 force = -0.00183683 -0.00183672 -0.00183421 atom 8 type 1 force = -0.00183449 -0.00184010 -0.00184670 Total force = 0.009015 Total SCF correction = 0.000031 Entering Dynamics: iteration = 76 time = 0.0735 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125468179 -0.125468937 -0.125468732 Si 0.374532334 0.374531444 -0.125465224 Si 0.374535170 -0.125463269 0.374533690 Si -0.125466126 0.374533999 0.374533429 Si 0.125463677 0.125464902 0.125465650 Si 0.625465010 0.625466149 0.125467852 Si 0.625467994 0.125469475 0.625467872 Si 0.125470119 0.625466236 0.625465465 kinetic energy (Ekin) = 0.00357616 Ry temperature = 53.77424717 K Ekin + Etot (const) = -62.17578661 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 11.28 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.33E-11, avg # of iterations = 6.0 total cpu time spent up to now is 11.35 secs total energy = -62.17922950 Ry Harris-Foulkes estimate = -62.17922951 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-11, avg # of iterations = 5.0 total cpu time spent up to now is 11.39 secs total energy = -62.17922950 Ry Harris-Foulkes estimate = -62.17922951 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-11, avg # of iterations = 4.0 total cpu time spent up to now is 11.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2213 -1.0382 -1.0382 -1.0382 -1.0078 -1.0078 -1.0078 3.5935 3.5935 3.5935 3.6108 3.6109 3.6109 6.6818 6.6818 6.7589 ! total energy = -62.17922950 Ry Harris-Foulkes estimate = -62.17922951 Ry estimated scf accuracy < 3.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00333676 0.00332750 0.00333199 atom 2 type 1 force = 0.00333421 0.00333582 0.00334603 atom 3 type 1 force = 0.00334079 0.00334675 0.00334011 atom 4 type 1 force = 0.00334062 0.00334172 0.00333469 atom 5 type 1 force = -0.00334503 -0.00334635 -0.00333926 atom 6 type 1 force = -0.00334083 -0.00333671 -0.00333482 atom 7 type 1 force = -0.00333485 -0.00333156 -0.00333568 atom 8 type 1 force = -0.00333167 -0.00333718 -0.00334307 Total force = 0.016353 Total SCF correction = 0.000015 Entering Dynamics: iteration = 77 time = 0.0745 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125673662 -0.125674618 -0.125674307 Si 0.374326816 0.374325951 -0.125670585 Si 0.374329809 -0.125668536 0.374328287 Si -0.125671527 0.374328674 0.374327999 Si 0.125668893 0.125670216 0.125670988 Si 0.625670372 0.625671570 0.125673323 Si 0.625673546 0.125675063 0.625673448 Si 0.125675753 0.625671680 0.625670846 kinetic energy (Ekin) = 0.00344332 Ry temperature = 51.77682268 K Ekin + Etot (const) = -62.17578618 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 11.46 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.02E-12, avg # of iterations = 6.0 total cpu time spent up to now is 11.52 secs total energy = -62.17902555 Ry Harris-Foulkes estimate = -62.17902556 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.29E-11, avg # of iterations = 5.0 total cpu time spent up to now is 11.56 secs total energy = -62.17902555 Ry Harris-Foulkes estimate = -62.17902556 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.29E-11, avg # of iterations = 5.0 total cpu time spent up to now is 11.60 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2214 -1.0449 -1.0449 -1.0449 -1.0014 -1.0014 -1.0014 3.5896 3.5896 3.5896 3.6148 3.6148 3.6148 6.6705 6.6705 6.7817 ! total energy = -62.17902556 Ry Harris-Foulkes estimate = -62.17902556 Ry estimated scf accuracy < 2.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00478386 0.00477423 0.00478161 atom 2 type 1 force = 0.00478053 0.00478442 0.00479273 atom 3 type 1 force = 0.00478961 0.00479518 0.00478606 atom 4 type 1 force = 0.00479173 0.00479145 0.00478555 atom 5 type 1 force = -0.00479405 -0.00479598 -0.00478681 atom 6 type 1 force = -0.00478892 -0.00478589 -0.00478389 atom 7 type 1 force = -0.00478276 -0.00477962 -0.00478587 atom 8 type 1 force = -0.00478000 -0.00478379 -0.00478938 Total force = 0.023449 Total SCF correction = 0.000015 Entering Dynamics: iteration = 78 time = 0.0755 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125871803 -0.125872971 -0.125872542 Si 0.374128636 0.374127802 -0.125868589 Si 0.374131800 -0.125866442 0.374130231 Si -0.125869573 0.374130703 0.374129915 Si 0.125866751 0.125868168 0.125868980 Si 0.625868382 0.625869645 0.125871450 Si 0.625871756 0.125873314 0.625871677 Si 0.125874050 0.625869782 0.625868876 kinetic energy (Ekin) = 0.00323997 Ry temperature = 48.71912354 K Ekin + Etot (const) = -62.17578558 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 11.63 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.68E-12, avg # of iterations = 5.0 total cpu time spent up to now is 11.70 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2216 -1.0514 -1.0513 -1.0513 -0.9953 -0.9953 -0.9952 3.5859 3.5859 3.5859 3.6187 3.6187 3.6187 6.6597 6.6597 6.8036 ! total energy = -62.17876035 Ry Harris-Foulkes estimate = -62.17876036 Ry estimated scf accuracy < 5.4E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00616733 0.00616675 0.00616906 atom 2 type 1 force = 0.00616767 0.00616092 0.00618437 atom 3 type 1 force = 0.00617312 0.00618574 0.00616766 atom 4 type 1 force = 0.00617480 0.00616960 0.00616243 atom 5 type 1 force = -0.00618097 -0.00617935 -0.00617426 atom 6 type 1 force = -0.00617522 -0.00617258 -0.00616852 atom 7 type 1 force = -0.00616666 -0.00616674 -0.00616566 atom 8 type 1 force = -0.00616007 -0.00616435 -0.00617508 Total force = 0.030231 Total SCF correction = 0.000091 Entering Dynamics: iteration = 79 time = 0.0764 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126060477 -0.126061859 -0.126061308 Si 0.373939923 0.373939109 -0.126057100 Si 0.373943266 -0.126054854 0.373941642 Si -0.126058141 0.373942202 0.373941291 Si 0.126055122 0.126056635 0.126057494 Si 0.626056914 0.626058246 0.126060110 Si 0.626060502 0.126062100 0.626060443 Si 0.126062892 0.626058421 0.626057428 kinetic energy (Ekin) = 0.00297553 Ry temperature = 44.74269930 K Ekin + Etot (const) = -62.17578482 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 11.73 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.96E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.78 secs total energy = -62.17844574 Ry Harris-Foulkes estimate = -62.17844585 Ry estimated scf accuracy < 0.00000016 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.98E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.82 secs total energy = -62.17844575 Ry Harris-Foulkes estimate = -62.17844591 Ry estimated scf accuracy < 0.00000046 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.98E-10, avg # of iterations = 5.0 total cpu time spent up to now is 11.86 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2218 -1.0575 -1.0575 -1.0575 -0.9896 -0.9896 -0.9896 3.5823 3.5823 3.5823 3.6224 3.6224 3.6224 6.6494 6.6494 6.8245 ! total energy = -62.17844582 Ry Harris-Foulkes estimate = -62.17844582 Ry estimated scf accuracy < 2.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00747496 0.00746894 0.00747022 atom 2 type 1 force = 0.00747919 0.00747314 0.00748828 atom 3 type 1 force = 0.00747590 0.00748749 0.00747840 atom 4 type 1 force = 0.00748110 0.00748223 0.00747476 atom 5 type 1 force = -0.00748962 -0.00747878 -0.00748447 atom 6 type 1 force = -0.00748072 -0.00748759 -0.00747585 atom 7 type 1 force = -0.00747364 -0.00746744 -0.00747338 atom 8 type 1 force = -0.00746718 -0.00747800 -0.00747795 Total force = 0.036634 Total SCF correction = 0.000047 Entering Dynamics: iteration = 80 time = 0.0774 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126237677 -0.126239282 -0.126238607 Si 0.373762690 0.373761888 -0.126234117 Si 0.373766207 -0.126231773 0.373764532 Si -0.126235226 0.373765186 0.373764139 Si 0.126231996 0.126233623 0.126234520 Si 0.626233963 0.626235353 0.126237294 Si 0.626237775 0.126239423 0.626237738 Si 0.126240272 0.626235582 0.626234501 kinetic energy (Ekin) = 0.00266187 Ry temperature = 40.02625334 K Ekin + Etot (const) = -62.17578395 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 11.89 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.87E-11, avg # of iterations = 5.0 total cpu time spent up to now is 11.95 secs total energy = -62.17809574 Ry Harris-Foulkes estimate = -62.17809580 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.02E-10, avg # of iterations = 6.0 total cpu time spent up to now is 12.00 secs total energy = -62.17809574 Ry Harris-Foulkes estimate = -62.17809584 Ry estimated scf accuracy < 0.00000028 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.02E-10, avg # of iterations = 5.0 total cpu time spent up to now is 12.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2220 -1.0633 -1.0632 -1.0632 -0.9843 -0.9843 -0.9843 3.5789 3.5789 3.5790 3.6260 3.6260 3.6260 6.6397 6.6397 6.8441 ! total energy = -62.17809578 Ry Harris-Foulkes estimate = -62.17809578 Ry estimated scf accuracy < 1.5E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00869361 0.00868775 0.00869123 atom 2 type 1 force = 0.00869196 0.00868836 0.00870393 atom 3 type 1 force = 0.00869648 0.00871170 0.00869415 atom 4 type 1 force = 0.00870165 0.00869567 0.00869477 atom 5 type 1 force = -0.00870849 -0.00870065 -0.00870078 atom 6 type 1 force = -0.00869959 -0.00870190 -0.00869448 atom 7 type 1 force = -0.00868959 -0.00868776 -0.00868994 atom 8 type 1 force = -0.00868602 -0.00869316 -0.00869887 Total force = 0.042601 Total SCF correction = 0.000040 Entering Dynamics: iteration = 81 time = 0.0784 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126401533 -0.126403370 -0.126402566 Si 0.373598798 0.373598002 -0.126397774 Si 0.373602497 -0.126395319 0.373600767 Si -0.126398955 0.373601517 0.373600333 Si 0.126395504 0.126397256 0.126398191 Si 0.626397659 0.626399104 0.126401133 Si 0.626401711 0.126403412 0.626401694 Si 0.126404319 0.626399399 0.626398222 kinetic energy (Ekin) = 0.00231279 Ry temperature = 34.77721194 K Ekin + Etot (const) = -62.17578299 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 12.07 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.89E-11, avg # of iterations = 7.0 total cpu time spent up to now is 12.14 secs total energy = -62.17772537 Ry Harris-Foulkes estimate = -62.17772539 Ry estimated scf accuracy < 0.00000004 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-10, avg # of iterations = 6.0 total cpu time spent up to now is 12.19 secs total energy = -62.17772537 Ry Harris-Foulkes estimate = -62.17772541 Ry estimated scf accuracy < 0.00000011 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-10, avg # of iterations = 4.0 total cpu time spent up to now is 12.22 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2222 -1.0686 -1.0686 -1.0685 -0.9795 -0.9795 -0.9795 3.5758 3.5758 3.5758 3.6293 3.6293 3.6293 6.6308 6.6308 6.8623 ! total energy = -62.17772539 Ry Harris-Foulkes estimate = -62.17772539 Ry estimated scf accuracy < 1.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00981038 0.00980439 0.00980877 atom 2 type 1 force = 0.00981062 0.00980550 0.00982569 atom 3 type 1 force = 0.00981296 0.00983217 0.00980839 atom 4 type 1 force = 0.00982157 0.00981325 0.00981314 atom 5 type 1 force = -0.00982647 -0.00981638 -0.00981753 atom 6 type 1 force = -0.00981749 -0.00982075 -0.00980812 atom 7 type 1 force = -0.00981089 -0.00980002 -0.00981391 atom 8 type 1 force = -0.00980068 -0.00981814 -0.00981643 Total force = 0.048078 Total SCF correction = 0.000037 Entering Dynamics: iteration = 82 time = 0.0793 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126550331 -0.126552409 -0.126551469 Si 0.373449966 0.373449167 -0.126546350 Si 0.373453849 -0.126543774 0.373452057 Si -0.126547608 0.373452911 0.373451591 Si 0.126543928 0.126545821 0.126546793 Si 0.626546286 0.626547780 0.126549917 Si 0.626550587 0.126552357 0.626550587 Si 0.126553323 0.626548146 0.626546876 kinetic energy (Ekin) = 0.00194339 Ry temperature = 29.22257118 K Ekin + Etot (const) = -62.17578199 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 12.26 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.31E-11, avg # of iterations = 6.0 total cpu time spent up to now is 12.32 secs total energy = -62.17735041 Ry Harris-Foulkes estimate = -62.17735044 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-10, avg # of iterations = 6.0 total cpu time spent up to now is 12.37 secs total energy = -62.17735041 Ry Harris-Foulkes estimate = -62.17735045 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-10, avg # of iterations = 6.0 total cpu time spent up to now is 12.40 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2224 -1.0734 -1.0734 -1.0734 -0.9752 -0.9752 -0.9751 3.5730 3.5730 3.5730 3.6324 3.6324 3.6324 6.6228 6.6228 6.8789 ! total energy = -62.17735043 Ry Harris-Foulkes estimate = -62.17735043 Ry estimated scf accuracy < 2.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01081887 0.01080671 0.01081532 atom 2 type 1 force = 0.01081505 0.01081786 0.01083465 atom 3 type 1 force = 0.01082473 0.01083660 0.01082114 atom 4 type 1 force = 0.01082967 0.01082667 0.01081796 atom 5 type 1 force = -0.01083282 -0.01083476 -0.01082321 atom 6 type 1 force = -0.01082960 -0.01082058 -0.01081668 atom 7 type 1 force = -0.01081747 -0.01081188 -0.01082094 atom 8 type 1 force = -0.01080842 -0.01082061 -0.01082824 Total force = 0.053017 Total SCF correction = 0.000013 Entering Dynamics: iteration = 83 time = 0.0803 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126682522 -0.126684861 -0.126683772 Si 0.373317733 0.373316938 -0.126678295 Si 0.373321816 -0.126675595 0.373319957 Si -0.126679638 0.373320924 0.373319453 Si 0.126675725 0.126677755 0.126678781 Si 0.626678290 0.626679848 0.126682098 Si 0.626682860 0.126684708 0.626682869 Si 0.126685737 0.626680284 0.626678909 kinetic energy (Ekin) = 0.00156943 Ry temperature = 23.59930471 K Ekin + Etot (const) = -62.17578100 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 12.44 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.96E-12, avg # of iterations = 6.0 total cpu time spent up to now is 12.50 secs total energy = -62.17698670 Ry Harris-Foulkes estimate = -62.17698672 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.79E-11, avg # of iterations = 6.0 total cpu time spent up to now is 12.54 secs total energy = -62.17698670 Ry Harris-Foulkes estimate = -62.17698672 Ry estimated scf accuracy < 0.00000005 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.79E-11, avg # of iterations = 6.0 total cpu time spent up to now is 12.58 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2227 -1.0777 -1.0777 -1.0776 -0.9714 -0.9714 -0.9714 3.5704 3.5704 3.5704 3.6351 3.6351 3.6351 6.6156 6.6156 6.8935 ! total energy = -62.17698671 Ry Harris-Foulkes estimate = -62.17698671 Ry estimated scf accuracy < 5.5E-11 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01170753 0.01169462 0.01170581 atom 2 type 1 force = 0.01170375 0.01170842 0.01172346 atom 3 type 1 force = 0.01171630 0.01172788 0.01171109 atom 4 type 1 force = 0.01172131 0.01171785 0.01170892 atom 5 type 1 force = -0.01172411 -0.01172408 -0.01171401 atom 6 type 1 force = -0.01171923 -0.01171259 -0.01170578 atom 7 type 1 force = -0.01170681 -0.01170205 -0.01171054 atom 8 type 1 force = -0.01169874 -0.01171004 -0.01171895 Total force = 0.057378 Total SCF correction = 0.000007 Entering Dynamics: iteration = 84 time = 0.0813 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126796744 -0.126799361 -0.126798106 Si 0.373203466 0.373202680 -0.126792244 Si 0.373207767 -0.126789415 0.373205833 Si -0.126793677 0.373206922 0.373205287 Si 0.126789525 0.126791694 0.126792789 Si 0.626792306 0.626793937 0.126796311 Si 0.626797162 0.126799096 0.626797177 Si 0.126800193 0.626794448 0.626792953 kinetic energy (Ekin) = 0.00120666 Ry temperature = 18.14446891 K Ekin + Etot (const) = -62.17578005 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 12.61 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.94E-13, avg # of iterations = 7.0 total cpu time spent up to now is 12.68 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2229 -1.0814 -1.0813 -1.0813 -0.9682 -0.9681 -0.9681 3.5682 3.5682 3.5682 3.6375 3.6375 3.6375 6.6094 6.6094 6.9062 ! total energy = -62.17664941 Ry Harris-Foulkes estimate = -62.17664941 Ry estimated scf accuracy < 2.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01247246 0.01246332 0.01247208 atom 2 type 1 force = 0.01246949 0.01246878 0.01249082 atom 3 type 1 force = 0.01248170 0.01249891 0.01247529 atom 4 type 1 force = 0.01248503 0.01247753 0.01247084 atom 5 type 1 force = -0.01248977 -0.01249527 -0.01248044 atom 6 type 1 force = -0.01248605 -0.01247388 -0.01247170 atom 7 type 1 force = -0.01247287 -0.01246985 -0.01247459 atom 8 type 1 force = -0.01246000 -0.01246953 -0.01248230 Total force = 0.061126 Total SCF correction = 0.000059 Entering Dynamics: iteration = 85 time = 0.0822 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126891820 -0.126894731 -0.126893297 Si 0.373108338 0.373107560 -0.126887022 Si 0.373112877 -0.126884050 0.373110857 Si -0.126888551 0.373112073 0.373110264 Si 0.126884155 0.126886453 0.126887641 Si 0.626887156 0.626888879 0.126891381 Si 0.626892320 0.126894344 0.626892337 Si 0.126895524 0.626889472 0.626887838 kinetic energy (Ekin) = 0.00087024 Ry temperature = 13.08566885 K Ekin + Etot (const) = -62.17577917 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 12.71 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.05E-11, avg # of iterations = 5.0 total cpu time spent up to now is 12.77 secs total energy = -62.17635243 Ry Harris-Foulkes estimate = -62.17635249 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-10, avg # of iterations = 4.0 total cpu time spent up to now is 12.81 secs total energy = -62.17635243 Ry Harris-Foulkes estimate = -62.17635254 Ry estimated scf accuracy < 0.00000032 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-10, avg # of iterations = 4.0 total cpu time spent up to now is 12.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2230 -1.0844 -1.0844 -1.0844 -0.9655 -0.9655 -0.9655 3.5664 3.5664 3.5664 3.6395 3.6395 3.6395 6.6043 6.6043 6.9168 ! total energy = -62.17635247 Ry Harris-Foulkes estimate = -62.17635247 Ry estimated scf accuracy < 3.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01310782 0.01308980 0.01310479 atom 2 type 1 force = 0.01310053 0.01310811 0.01312487 atom 3 type 1 force = 0.01311537 0.01312943 0.01310994 atom 4 type 1 force = 0.01311987 0.01311649 0.01310335 atom 5 type 1 force = -0.01312412 -0.01312682 -0.01311324 atom 6 type 1 force = -0.01312264 -0.01311169 -0.01310343 atom 7 type 1 force = -0.01310538 -0.01309836 -0.01310770 atom 8 type 1 force = -0.01309145 -0.01310696 -0.01311857 Total force = 0.064230 Total SCF correction = 0.000020 Entering Dynamics: iteration = 86 time = 0.0832 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126966777 -0.126970009 -0.126968372 Si 0.373033319 0.373032561 -0.126961653 Si 0.373038119 -0.126958531 0.373036005 Si -0.126963288 0.373037357 0.373035353 Si 0.126958640 0.126961063 0.126962364 Si 0.626961864 0.626963696 0.126966338 Si 0.626967362 0.126969486 0.626967378 Si 0.126970761 0.626964377 0.626962587 kinetic energy (Ekin) = 0.00057407 Ry temperature = 8.63219276 K Ekin + Etot (const) = -62.17577841 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 12.88 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.45E-11, avg # of iterations = 5.0 total cpu time spent up to now is 12.93 secs total energy = -62.17610809 Ry Harris-Foulkes estimate = -62.17610811 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.04E-11, avg # of iterations = 6.0 total cpu time spent up to now is 12.98 secs total energy = -62.17610809 Ry Harris-Foulkes estimate = -62.17610812 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.04E-11, avg # of iterations = 4.0 total cpu time spent up to now is 13.01 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2232 -1.0868 -1.0868 -1.0868 -0.9634 -0.9634 -0.9634 3.5649 3.5649 3.5649 3.6411 3.6411 3.6411 6.6003 6.6003 6.9252 ! total energy = -62.17610810 Ry Harris-Foulkes estimate = -62.17610810 Ry estimated scf accuracy < 7.0E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01360424 0.01358568 0.01360224 atom 2 type 1 force = 0.01359593 0.01360420 0.01362236 atom 3 type 1 force = 0.01361352 0.01362795 0.01360798 atom 4 type 1 force = 0.01362028 0.01361587 0.01360165 atom 5 type 1 force = -0.01362377 -0.01362792 -0.01360990 atom 6 type 1 force = -0.01361948 -0.01360619 -0.01359934 atom 7 type 1 force = -0.01360142 -0.01359725 -0.01360711 atom 8 type 1 force = -0.01358931 -0.01360235 -0.01361787 Total force = 0.066668 Total SCF correction = 0.000028 Entering Dynamics: iteration = 87 time = 0.0842 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127020852 -0.127024434 -0.127022569 Si 0.372979169 0.372978444 -0.127015375 Si 0.372984256 -0.127012095 0.372982040 Si -0.127017118 0.372983541 0.372981320 Si 0.127012213 0.127014755 0.127016197 Si 0.627015666 0.627017628 0.127020421 Si 0.627021526 0.127023757 0.627021532 Si 0.127025139 0.627018404 0.627016434 kinetic energy (Ekin) = 0.00033032 Ry temperature = 4.96698331 K Ekin + Etot (const) = -62.17577778 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 13.04 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.10E-12, avg # of iterations = 7.0 total cpu time spent up to now is 13.10 secs total energy = -62.17592626 Ry Harris-Foulkes estimate = -62.17592627 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.27E-11, avg # of iterations = 6.0 total cpu time spent up to now is 13.15 secs total energy = -62.17592626 Ry Harris-Foulkes estimate = -62.17592628 Ry estimated scf accuracy < 0.00000004 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.27E-11, avg # of iterations = 5.0 total cpu time spent up to now is 13.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0886 -1.0886 -1.0885 -0.9619 -0.9619 -0.9619 3.5639 3.5639 3.5639 3.6422 3.6422 3.6422 6.5973 6.5973 6.9312 ! total energy = -62.17592627 Ry Harris-Foulkes estimate = -62.17592627 Ry estimated scf accuracy < 1.5E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01395928 0.01394324 0.01395833 atom 2 type 1 force = 0.01395585 0.01396107 0.01398163 atom 3 type 1 force = 0.01397236 0.01398684 0.01396460 atom 4 type 1 force = 0.01397737 0.01397352 0.01396048 atom 5 type 1 force = -0.01398369 -0.01398182 -0.01396793 atom 6 type 1 force = -0.01397629 -0.01396749 -0.01395763 atom 7 type 1 force = -0.01395735 -0.01395192 -0.01396431 atom 8 type 1 force = -0.01394754 -0.01396345 -0.01397518 Total force = 0.068420 Total SCF correction = 0.000013 Entering Dynamics: iteration = 88 time = 0.0851 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127053500 -0.127057457 -0.127055340 Si 0.372946441 0.372945756 -0.127047636 Si 0.372951840 -0.127044189 0.372949510 Si -0.127049494 0.372951173 0.372948716 Si 0.127044322 0.127046985 0.127048590 Si 0.627048016 0.627050121 0.127053079 Si 0.627054267 0.127056614 0.627054252 Si 0.127058108 0.627050997 0.627048829 kinetic energy (Ekin) = 0.00014895 Ry temperature = 2.23975842 K Ekin + Etot (const) = -62.17577732 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 13.22 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.84E-12, avg # of iterations = 7.0 total cpu time spent up to now is 13.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0896 -1.0896 -1.0896 -0.9610 -0.9610 -0.9610 3.5633 3.5633 3.5633 3.6429 3.6429 3.6429 6.5956 6.5956 6.9348 ! total energy = -62.17581437 Ry Harris-Foulkes estimate = -62.17581437 Ry estimated scf accuracy < 5.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01417718 0.01416118 0.01417291 atom 2 type 1 force = 0.01416506 0.01416965 0.01419710 atom 3 type 1 force = 0.01418648 0.01421065 0.01418176 atom 4 type 1 force = 0.01419703 0.01418427 0.01417425 atom 5 type 1 force = -0.01419567 -0.01420648 -0.01418473 atom 6 type 1 force = -0.01419392 -0.01417374 -0.01416880 atom 7 type 1 force = -0.01417772 -0.01417331 -0.01417969 atom 8 type 1 force = -0.01415844 -0.01417223 -0.01419278 Total force = 0.069475 Total SCF correction = 0.000088 Entering Dynamics: iteration = 89 time = 0.0861 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127064387 -0.127068743 -0.127066357 Si 0.372935454 0.372934818 -0.127058105 Si 0.372941199 -0.127054471 0.372938749 Si -0.127060078 0.372940577 0.372937868 Si 0.127054642 0.127057410 0.127059210 Si 0.627058579 0.627060858 0.127063989 Si 0.627065246 0.127067714 0.627065207 Si 0.127069345 0.627061837 0.627059439 kinetic energy (Ekin) = 0.00003734 Ry temperature = 0.56144955 K Ekin + Etot (const) = -62.17577703 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 13.32 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.78E-11, avg # of iterations = 6.0 total cpu time spent up to now is 13.38 secs total energy = -62.17577690 Ry Harris-Foulkes estimate = -62.17577697 Ry estimated scf accuracy < 0.00000009 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-10, avg # of iterations = 6.0 total cpu time spent up to now is 13.43 secs total energy = -62.17577690 Ry Harris-Foulkes estimate = -62.17577701 Ry estimated scf accuracy < 0.00000034 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.88E-10, avg # of iterations = 5.0 total cpu time spent up to now is 13.46 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0900 -1.0899 -1.0899 -0.9607 -0.9607 -0.9607 3.5630 3.5630 3.5631 3.6432 3.6432 3.6432 6.5950 6.5950 6.9360 ! total energy = -62.17577695 Ry Harris-Foulkes estimate = -62.17577695 Ry estimated scf accuracy < 2.3E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01424177 0.01422075 0.01424112 atom 2 type 1 force = 0.01423734 0.01424861 0.01427055 atom 3 type 1 force = 0.01426257 0.01427549 0.01425351 atom 4 type 1 force = 0.01426881 0.01426572 0.01424553 atom 5 type 1 force = -0.01426479 -0.01427355 -0.01425187 atom 6 type 1 force = -0.01426951 -0.01425289 -0.01424048 atom 7 type 1 force = -0.01424918 -0.01423673 -0.01425213 atom 8 type 1 force = -0.01422702 -0.01424740 -0.01426624 Total force = 0.069823 Total SCF correction = 0.000052 Entering Dynamics: iteration = 90 time = 0.0871 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127053414 -0.127058201 -0.127055515 Si 0.372946322 0.372945751 -0.127046669 Si 0.372952451 -0.127042841 0.372949865 Si -0.127048760 0.372951878 0.372948887 Si 0.127043065 0.127045925 0.127047954 Si 0.627047239 0.627049717 0.127053041 Si 0.627054353 0.127056963 0.627054285 Si 0.127058744 0.627050808 0.627048151 kinetic energy (Ekin) = 0.00000001 Ry temperature = 0.00012249 K Ekin + Etot (const) = -62.17577694 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 13.50 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.86E-11, avg # of iterations = 5.0 total cpu time spent up to now is 13.56 secs total energy = -62.17581548 Ry Harris-Foulkes estimate = -62.17581552 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-10, avg # of iterations = 7.0 total cpu time spent up to now is 13.60 secs total energy = -62.17581548 Ry Harris-Foulkes estimate = -62.17581555 Ry estimated scf accuracy < 0.00000020 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.67E-10, avg # of iterations = 5.0 total cpu time spent up to now is 13.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2234 -1.0896 -1.0896 -1.0896 -0.9610 -0.9610 -0.9610 3.5633 3.5633 3.5633 3.6429 3.6429 3.6429 6.5956 6.5956 6.9348 ! total energy = -62.17581551 Ry Harris-Foulkes estimate = -62.17581551 Ry estimated scf accuracy < 2.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01416930 0.01414517 0.01416842 atom 2 type 1 force = 0.01416263 0.01417660 0.01419659 atom 3 type 1 force = 0.01419168 0.01420091 0.01418182 atom 4 type 1 force = 0.01419334 0.01419434 0.01417039 atom 5 type 1 force = -0.01419204 -0.01420610 -0.01417651 atom 6 type 1 force = -0.01419721 -0.01417480 -0.01416897 atom 7 type 1 force = -0.01417348 -0.01416524 -0.01417841 atom 8 type 1 force = -0.01415422 -0.01417088 -0.01419333 Total force = 0.069464 Total SCF correction = 0.000049 Entering Dynamics: iteration = 91 time = 0.0880 pico-seconds ATOMIC_POSITIONS (alat) Si -0.127020692 -0.127025947 -0.127022925 Si 0.372978928 0.372978443 -0.127013443 Si 0.372985486 -0.127009414 0.372982750 Si -0.127015656 0.372984967 0.372981656 Si 0.127009705 0.127012635 0.127014939 Si 0.627014107 0.627016819 0.127020345 Si 0.627021704 0.127024468 0.627021601 Si 0.127026417 0.627018028 0.627015077 kinetic energy (Ekin) = 0.00003847 Ry temperature = 0.57850821 K Ekin + Etot (const) = -62.17577704 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 13.67 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.63E-12, avg # of iterations = 7.0 total cpu time spent up to now is 13.74 secs total energy = -62.17592847 Ry Harris-Foulkes estimate = -62.17592851 Ry estimated scf accuracy < 0.00000007 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-10, avg # of iterations = 6.0 total cpu time spent up to now is 13.78 secs total energy = -62.17592847 Ry Harris-Foulkes estimate = -62.17592854 Ry estimated scf accuracy < 0.00000018 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-10, avg # of iterations = 6.0 total cpu time spent up to now is 13.82 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2233 -1.0885 -1.0885 -1.0885 -0.9619 -0.9619 -0.9619 3.5639 3.5639 3.5639 3.6422 3.6422 3.6422 6.5974 6.5974 6.9311 ! total energy = -62.17592850 Ry Harris-Foulkes estimate = -62.17592850 Ry estimated scf accuracy < 7.8E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01395353 0.01393212 0.01394859 atom 2 type 1 force = 0.01394479 0.01395400 0.01398374 atom 3 type 1 force = 0.01396898 0.01399418 0.01396197 atom 4 type 1 force = 0.01398018 0.01396724 0.01395368 atom 5 type 1 force = -0.01398145 -0.01398458 -0.01396760 atom 6 type 1 force = -0.01397820 -0.01396236 -0.01394584 atom 7 type 1 force = -0.01395203 -0.01394078 -0.01395736 atom 8 type 1 force = -0.01393581 -0.01395982 -0.01397718 Total force = 0.068399 Total SCF correction = 0.000029 Entering Dynamics: iteration = 92 time = 0.0890 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126966552 -0.126972308 -0.126968924 Si 0.373032939 0.373032555 -0.126958752 Si 0.373039963 -0.126954506 0.373037066 Si -0.126961094 0.373039495 0.373035844 Si 0.126954884 0.126957880 0.126960483 Si 0.626959520 0.626962490 0.126966242 Si 0.626967640 0.126970575 0.626967493 Si 0.126972700 0.626963820 0.626960549 kinetic energy (Ekin) = 0.00015117 Ry temperature = 2.27318550 K Ekin + Etot (const) = -62.17577732 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 13.85 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.87E-11, avg # of iterations = 6.0 total cpu time spent up to now is 13.91 secs total energy = -62.17611128 Ry Harris-Foulkes estimate = -62.17611135 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-10, avg # of iterations = 5.0 total cpu time spent up to now is 13.95 secs total energy = -62.17611128 Ry Harris-Foulkes estimate = -62.17611139 Ry estimated scf accuracy < 0.00000031 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-10, avg # of iterations = 5.0 total cpu time spent up to now is 13.99 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2232 -1.0868 -1.0868 -1.0868 -0.9634 -0.9634 -0.9634 3.5649 3.5650 3.5650 3.6411 3.6411 3.6411 6.6003 6.6003 6.9251 ! total energy = -62.17611133 Ry Harris-Foulkes estimate = -62.17611133 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01358969 0.01357464 0.01359408 atom 2 type 1 force = 0.01358996 0.01359056 0.01362239 atom 3 type 1 force = 0.01361287 0.01363192 0.01359739 atom 4 type 1 force = 0.01361554 0.01361103 0.01359413 atom 5 type 1 force = -0.01362421 -0.01361944 -0.01360655 atom 6 type 1 force = -0.01361815 -0.01360641 -0.01359259 atom 7 type 1 force = -0.01359121 -0.01358391 -0.01359902 atom 8 type 1 force = -0.01357449 -0.01359839 -0.01360983 Total force = 0.066636 Total SCF correction = 0.000037 Entering Dynamics: iteration = 93 time = 0.0900 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126891553 -0.126897833 -0.126894058 Si 0.373107809 0.373107527 -0.126883152 Si 0.373115335 -0.126878674 0.373112253 Si -0.126885632 0.373114915 0.373110897 Si 0.126879151 0.126882219 0.126885143 Si 0.626884029 0.626887275 0.126891275 Si 0.626892714 0.126895832 0.626892511 Si 0.126898146 0.626888739 0.626885131 kinetic energy (Ekin) = 0.00033354 Ry temperature = 5.01542212 K Ekin + Etot (const) = -62.17577779 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 14.02 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.16E-11, avg # of iterations = 7.0 total cpu time spent up to now is 14.08 secs total energy = -62.17635654 Ry Harris-Foulkes estimate = -62.17635659 Ry estimated scf accuracy < 0.00000006 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-10, avg # of iterations = 6.0 total cpu time spent up to now is 14.13 secs total energy = -62.17635654 Ry Harris-Foulkes estimate = -62.17635662 Ry estimated scf accuracy < 0.00000022 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-10, avg # of iterations = 6.0 total cpu time spent up to now is 14.17 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2230 -1.0844 -1.0844 -1.0843 -0.9655 -0.9655 -0.9655 3.5664 3.5664 3.5664 3.6395 3.6395 3.6395 6.6044 6.6044 6.9167 ! total energy = -62.17635657 Ry Harris-Foulkes estimate = -62.17635657 Ry estimated scf accuracy < 4.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01308935 0.01307152 0.01309253 atom 2 type 1 force = 0.01308692 0.01309193 0.01312372 atom 3 type 1 force = 0.01311521 0.01313404 0.01309873 atom 4 type 1 force = 0.01311851 0.01311214 0.01309427 atom 5 type 1 force = -0.01312908 -0.01312571 -0.01310474 atom 6 type 1 force = -0.01311683 -0.01310618 -0.01308967 atom 7 type 1 force = -0.01308823 -0.01307964 -0.01309804 atom 8 type 1 force = -0.01307586 -0.01309810 -0.01311680 Total force = 0.064188 Total SCF correction = 0.000020 Entering Dynamics: iteration = 94 time = 0.0910 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126796462 -0.126803294 -0.126799095 Si 0.373202768 0.373202594 -0.126787408 Si 0.373210837 -0.126782682 0.373207545 Si -0.126790034 0.373210461 0.373206050 Si 0.126783266 0.126786411 0.126789687 Si 0.626788405 0.626791943 0.126796217 Si 0.626797699 0.126801012 0.626797424 Si 0.126803522 0.626793553 0.626789579 kinetic energy (Ekin) = 0.00057816 Ry temperature = 8.69367680 K Ekin + Etot (const) = -62.17577842 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 14.20 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-11, avg # of iterations = 7.0 total cpu time spent up to now is 14.27 secs total energy = -62.17665420 Ry Harris-Foulkes estimate = -62.17665422 Ry estimated scf accuracy < 0.00000003 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.72E-11, avg # of iterations = 6.0 total cpu time spent up to now is 14.32 secs total energy = -62.17665420 Ry Harris-Foulkes estimate = -62.17665423 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.72E-11, avg # of iterations = 5.0 total cpu time spent up to now is 14.36 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2229 -1.0813 -1.0813 -1.0813 -0.9682 -0.9682 -0.9682 3.5682 3.5683 3.5683 3.6375 3.6375 3.6375 6.6095 6.6095 6.9061 ! total energy = -62.17665421 Ry Harris-Foulkes estimate = -62.17665421 Ry estimated scf accuracy < 5.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01245141 0.01243454 0.01245578 atom 2 type 1 force = 0.01245480 0.01245466 0.01248472 atom 3 type 1 force = 0.01248026 0.01250040 0.01246727 atom 4 type 1 force = 0.01248010 0.01247707 0.01245970 atom 5 type 1 force = -0.01249312 -0.01248805 -0.01246926 atom 6 type 1 force = -0.01248237 -0.01246931 -0.01245360 atom 7 type 1 force = -0.01245093 -0.01244368 -0.01246227 atom 8 type 1 force = -0.01244016 -0.01246563 -0.01248235 Total force = 0.061074 Total SCF correction = 0.000026 Entering Dynamics: iteration = 95 time = 0.0919 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126682259 -0.126689668 -0.126685013 Si 0.373316843 0.373316779 -0.126672500 Si 0.373325497 -0.126667502 0.373321975 Si -0.126675280 0.373325159 0.373320327 Si 0.126668204 0.126671435 0.126675092 Si 0.626673621 0.626677472 0.126682043 Si 0.626683572 0.126687092 0.626683209 Si 0.126689803 0.626679234 0.626674868 kinetic energy (Ekin) = 0.00087503 Ry temperature = 13.15770483 K Ekin + Etot (const) = -62.17577918 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 14.39 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.67E-12, avg # of iterations = 6.0 total cpu time spent up to now is 14.46 secs total energy = -62.17699201 Ry Harris-Foulkes estimate = -62.17699202 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.97E-11, avg # of iterations = 5.0 total cpu time spent up to now is 14.50 secs total energy = -62.17699201 Ry Harris-Foulkes estimate = -62.17699203 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.97E-11, avg # of iterations = 5.0 total cpu time spent up to now is 14.54 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2227 -1.0776 -1.0776 -1.0776 -0.9714 -0.9714 -0.9714 3.5705 3.5705 3.5705 3.6351 3.6351 3.6351 6.6157 6.6157 6.8933 ! total energy = -62.17699202 Ry Harris-Foulkes estimate = -62.17699202 Ry estimated scf accuracy < 6.7E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01168423 0.01166610 0.01168668 atom 2 type 1 force = 0.01168336 0.01168294 0.01171933 atom 3 type 1 force = 0.01171326 0.01173843 0.01169989 atom 4 type 1 force = 0.01171823 0.01171187 0.01169354 atom 5 type 1 force = -0.01173107 -0.01172440 -0.01170341 atom 6 type 1 force = -0.01171381 -0.01170131 -0.01168432 atom 7 type 1 force = -0.01168282 -0.01167683 -0.01169617 atom 8 type 1 force = -0.01167139 -0.01169679 -0.01171554 Total force = 0.057317 Total SCF correction = 0.000025 Entering Dynamics: iteration = 96 time = 0.0929 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126550121 -0.126558136 -0.126552993 Si 0.373448852 0.373448896 -0.126539604 Si 0.373458135 -0.126534305 0.373454363 Si -0.126542540 0.373457834 0.373452553 Si 0.126535135 0.126538463 0.126542533 Si 0.626540857 0.626545040 0.126549934 Si 0.626551512 0.126555248 0.626551041 Si 0.126558169 0.626546960 0.626542173 kinetic energy (Ekin) = 0.00121196 Ry temperature = 18.22409581 K Ekin + Etot (const) = -62.17578006 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 14.57 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.22E-11, avg # of iterations = 6.0 total cpu time spent up to now is 14.63 secs total energy = -62.17735601 Ry Harris-Foulkes estimate = -62.17735603 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.36E-11, avg # of iterations = 6.0 total cpu time spent up to now is 14.68 secs total energy = -62.17735601 Ry Harris-Foulkes estimate = -62.17735604 Ry estimated scf accuracy < 0.00000007 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.36E-11, avg # of iterations = 4.0 total cpu time spent up to now is 14.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2224 -1.0733 -1.0733 -1.0733 -0.9752 -0.9752 -0.9752 3.5730 3.5730 3.5730 3.6323 3.6323 3.6323 6.6229 6.6229 6.8786 ! total energy = -62.17735602 Ry Harris-Foulkes estimate = -62.17735602 Ry estimated scf accuracy < 6.2E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.01078871 0.01077095 0.01079273 atom 2 type 1 force = 0.01079277 0.01079326 0.01083191 atom 3 type 1 force = 0.01082567 0.01084557 0.01080485 atom 4 type 1 force = 0.01082439 0.01082179 0.01080175 atom 5 type 1 force = -0.01084028 -0.01083312 -0.01081456 atom 6 type 1 force = -0.01082288 -0.01081066 -0.01079045 atom 7 type 1 force = -0.01079314 -0.01078280 -0.01080376 atom 8 type 1 force = -0.01077524 -0.01080498 -0.01082248 Total force = 0.052948 Total SCF correction = 0.000026 Entering Dynamics: iteration = 97 time = 0.0939 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126401423 -0.126410071 -0.126404407 Si 0.373597427 0.373597581 -0.126390081 Si 0.373607390 -0.126384460 0.373603335 Si -0.126393184 0.373607119 0.373601360 Si 0.126385428 0.126388862 0.126393374 Si 0.626391480 0.626396014 0.126401262 Si 0.626402886 0.126406854 0.626402289 Si 0.126409995 0.626398101 0.626392867 kinetic energy (Ekin) = 0.00157501 Ry temperature = 23.68322431 K Ekin + Etot (const) = -62.17578101 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 14.75 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.51E-11, avg # of iterations = 6.0 total cpu time spent up to now is 14.81 secs total energy = -62.17773102 Ry Harris-Foulkes estimate = -62.17773104 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.53E-11, avg # of iterations = 6.0 total cpu time spent up to now is 14.86 secs total energy = -62.17773102 Ry Harris-Foulkes estimate = -62.17773104 Ry estimated scf accuracy < 0.00000006 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.53E-11, avg # of iterations = 5.0 total cpu time spent up to now is 14.89 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2222 -1.0685 -1.0685 -1.0685 -0.9795 -0.9795 -0.9795 3.5759 3.5759 3.5759 3.6293 3.6293 3.6293 6.6310 6.6310 6.8621 ! total energy = -62.17773103 Ry Harris-Foulkes estimate = -62.17773103 Ry estimated scf accuracy < 4.6E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00978060 0.00976118 0.00977940 atom 2 type 1 force = 0.00978139 0.00978576 0.00982299 atom 3 type 1 force = 0.00981454 0.00983507 0.00979564 atom 4 type 1 force = 0.00981475 0.00980992 0.00979379 atom 5 type 1 force = -0.00983225 -0.00982403 -0.00980695 atom 6 type 1 force = -0.00981156 -0.00979974 -0.00978163 atom 7 type 1 force = -0.00978028 -0.00977259 -0.00979160 atom 8 type 1 force = -0.00976718 -0.00979556 -0.00981165 Total force = 0.048000 Total SCF correction = 0.000019 Entering Dynamics: iteration = 98 time = 0.0948 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126237713 -0.126247023 -0.126240810 Si 0.373761017 0.373761286 -0.126225481 Si 0.373771710 -0.126219519 0.373767344 Si -0.126228763 0.373771463 0.373765199 Si 0.126220628 0.126224182 0.126229162 Si 0.626227043 0.626231946 0.126237577 Si 0.626239248 0.126243459 0.626238508 Si 0.126246830 0.626234207 0.626228501 kinetic energy (Ekin) = 0.00194903 Ry temperature = 29.30727282 K Ekin + Etot (const) = -62.17578201 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 14.93 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.42E-12, avg # of iterations = 6.0 total cpu time spent up to now is 15.00 secs total energy = -62.17810124 Ry Harris-Foulkes estimate = -62.17810124 Ry estimated scf accuracy < 0.00000001 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-11, avg # of iterations = 5.0 total cpu time spent up to now is 15.04 secs total energy = -62.17810124 Ry Harris-Foulkes estimate = -62.17810125 Ry estimated scf accuracy < 0.00000003 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-11, avg # of iterations = 5.0 total cpu time spent up to now is 15.08 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2220 -1.0632 -1.0632 -1.0632 -0.9844 -0.9844 -0.9843 3.5790 3.5790 3.5790 3.6259 3.6259 3.6259 6.6399 6.6399 6.8439 ! total energy = -62.17810124 Ry Harris-Foulkes estimate = -62.17810124 Ry estimated scf accuracy < 1.9E-10 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00866157 0.00863860 0.00865891 atom 2 type 1 force = 0.00866035 0.00866607 0.00870417 atom 3 type 1 force = 0.00869509 0.00871833 0.00867785 atom 4 type 1 force = 0.00869650 0.00869057 0.00867265 atom 5 type 1 force = -0.00871168 -0.00870742 -0.00868910 atom 6 type 1 force = -0.00869816 -0.00868121 -0.00866285 atom 7 type 1 force = -0.00866150 -0.00864953 -0.00866877 atom 8 type 1 force = -0.00864217 -0.00867542 -0.00869286 Total force = 0.042515 Total SCF correction = 0.000014 Entering Dynamics: iteration = 99 time = 0.0958 pico-seconds ATOMIC_POSITIONS (alat) Si -0.126060707 -0.126070715 -0.126063922 Si 0.373937899 0.373938293 -0.126047520 Si 0.373949377 -0.126041196 0.373944672 Si -0.126050994 0.373949145 0.373942350 Si 0.126042457 0.126046136 0.126051613 Si 0.626049256 0.626054552 0.126060594 Si 0.626062314 0.126066787 0.626061421 Si 0.126070399 0.626056997 0.626050791 kinetic energy (Ekin) = 0.00231824 Ry temperature = 34.85911295 K Ekin + Etot (const) = -62.17578300 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 Writing output data file pwscf.save second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 15.11 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.72E-12, avg # of iterations = 6.0 total cpu time spent up to now is 15.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2218 -1.0574 -1.0574 -1.0574 -0.9897 -0.9896 -0.9896 3.5824 3.5824 3.5824 3.6224 3.6224 3.6224 6.6495 6.6495 6.8242 ! total energy = -62.17845085 Ry Harris-Foulkes estimate = -62.17845086 Ry estimated scf accuracy < 9.5E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00744328 0.00741706 0.00743779 atom 2 type 1 force = 0.00743585 0.00743966 0.00748025 atom 3 type 1 force = 0.00747487 0.00750485 0.00746182 atom 4 type 1 force = 0.00748202 0.00747475 0.00745577 atom 5 type 1 force = -0.00750526 -0.00748965 -0.00746475 atom 6 type 1 force = -0.00746568 -0.00745930 -0.00743842 atom 7 type 1 force = -0.00743304 -0.00743137 -0.00745268 atom 8 type 1 force = -0.00743204 -0.00745599 -0.00747978 Total force = 0.036542 Total SCF correction = 0.000114 Entering Dynamics: iteration = 100 time = 0.0968 pico-seconds ATOMIC_POSITIONS (alat) Si -0.125872277 -0.125883022 -0.125875617 Si 0.374126195 0.374126719 -0.125858077 Si 0.374138517 -0.125851353 0.374133454 Si -0.125861740 0.374138302 0.374130946 Si 0.125852765 0.125856594 0.125862606 Si 0.625860008 0.625865710 0.125872194 Si 0.625873972 0.125878709 0.625872894 Si 0.125882560 0.625868342 0.625861601 kinetic energy (Ekin) = 0.00266690 Ry temperature = 40.10188575 K Ekin + Etot (const) = -62.17578395 Ry Linear momentum : 0.0000000000 0.0000000000 0.0000000000 second order wave-functions extrapolation second order charge density extrapolation total cpu time spent up to now is 15.19 secs per-process dynamical memory: 4.8 Mb Self-consistent Calculation iteration # 1 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.74E-10, avg # of iterations = 5.0 total cpu time spent up to now is 15.25 secs total energy = -62.17876459 Ry Harris-Foulkes estimate = -62.17876482 Ry estimated scf accuracy < 0.00000032 Ry iteration # 2 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-09, avg # of iterations = 6.0 total cpu time spent up to now is 15.29 secs total energy = -62.17876461 Ry Harris-Foulkes estimate = -62.17876494 Ry estimated scf accuracy < 0.00000093 Ry iteration # 3 ecut= 8.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-09, avg # of iterations = 5.0 total cpu time spent up to now is 15.33 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 437 PWs) bands (ev): -5.2216 -1.0513 -1.0512 -1.0512 -0.9954 -0.9954 -0.9953 3.5859 3.5859 3.5860 3.6186 3.6186 3.6186 6.6598 6.6598 6.8033 ! total energy = -62.17876475 Ry Harris-Foulkes estimate = -62.17876475 Ry estimated scf accuracy < 4.8E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00612307 0.00610908 0.00612900 atom 2 type 1 force = 0.00614540 0.00613530 0.00617058 atom 3 type 1 force = 0.00617774 0.00619006 0.00615068 atom 4 type 1 force = 0.00615669 0.00616693 0.00615027 atom 5 type 1 force = -0.00619320 -0.00617245 -0.00616217 atom 6 type 1 force = -0.00615801 -0.00614179 -0.00613467 atom 7 type 1 force = -0.00612998 -0.00613152 -0.00613951 atom 8 type 1 force = -0.00612171 -0.00615560 -0.00616417 Total force = 0.030131 Total SCF correction = 0.000075 The maximum number of steps has been reached. End of molecular dynamics calculation diffusion coefficients : atom 1 D = 0.00000012 cm^2/s atom 2 D = 0.00000012 cm^2/s atom 3 D = 0.00000012 cm^2/s atom 4 D = 0.00000012 cm^2/s atom 5 D = 0.00000012 cm^2/s atom 6 D = 0.00000012 cm^2/s atom 7 D = 0.00000012 cm^2/s atom 8 D = 0.00000012 cm^2/s < D > = 0.00000012 cm^2/s Writing output data file pwscf.save PWSCF : 15.36s CPU time, 17.15s wall time init_run : 0.03s CPU electrons : 11.92s CPU ( 101 calls, 0.118 s avg) update_pot : 0.94s CPU ( 100 calls, 0.009 s avg) forces : 0.52s CPU ( 101 calls, 0.005 s avg) Called by init_run: wfcinit : 0.01s CPU potinit : 0.00s CPU Called by electrons: c_bands : 10.07s CPU ( 350 calls, 0.029 s avg) sum_band : 1.11s CPU ( 350 calls, 0.003 s avg) v_of_rho : 0.43s CPU ( 351 calls, 0.001 s avg) mix_rho : 0.13s CPU ( 350 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.14s CPU ( 701 calls, 0.000 s avg) cegterg : 9.88s CPU ( 350 calls, 0.028 s avg) Called by *egterg: h_psi : 6.21s CPU ( 1851 calls, 0.003 s avg) g_psi : 0.21s CPU ( 1500 calls, 0.000 s avg) cdiaghg : 1.90s CPU ( 1650 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.37s CPU ( 1851 calls, 0.000 s avg) General routines calbec : 0.49s CPU ( 2051 calls, 0.000 s avg) cft3 : 0.37s CPU ( 1455 calls, 0.000 s avg) cft3s : 5.47s CPU ( 40356 calls, 0.000 s avg) davcio : 0.01s CPU ( 1912 calls, 0.000 s avg) espresso-5.1/PW/examples/example07/0000755000175000017500000000000012341373041015246 5ustar mbambaespresso-5.1/PW/examples/example07/run_xml_example0000755000175000017500000001542312341373025020402 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy" $ECHO "and the band structure of fcc-Pt with a fully relativistic " $ECHO "pseudo-potential including spin-orbit coupling." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Pt.rel-pz-n-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > pt.scf.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Pt.rel-pz-n-rrkjus.UPF 0.0 0.0000000 0.00000000 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 30.0 250.0 0.7 1.0d-8 smearing mp 0.02 true true 4 4 4 1 1 1 EOF $ECHO " running the scf calculation for Pt with spin-orbit coupling...\c" $PW_COMMAND < pt.scf.xml > pt.scf.out check_failure $? $ECHO " done" # a non self-consistent calculation cat > pt.nscf.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Pt.rel-pz-n-rrkjus.UPF 0.0 0.0000000 0.00000000 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true 30.0 250.0 0.7 1.0d-8 smearing mp 0.02 true true 0.0 0.0 0.0 1.0 0.1 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.4 0.2 0.1 1.0 0.4 0.4 0.0 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 0.75 0.75 0.0 1.0 EOF $ECHO " running the non-scf calculation for Pt with spin-orbit coupling...\c" $PW_COMMAND < pt.nscf.xml > pt.nscf.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example07/README0000644000175000017500000000057312341373025016135 0ustar mbambaThis example shows how to use pw.x to calculate the total energy and the band structure of fcc-Pt with a fully relativistic US-PP which includes spin-orbit effects. The calculation proceeds as follows: 1) make a self-consistent calculation for Pt (input=pt.scf.in, output=pt.scf.out). 2) make a band structure calculation for Pt (input=pt.nscf.in, output=pt.nscf.out). espresso-5.1/PW/examples/example07/run_example0000755000175000017500000000742312341373025017523 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy" $ECHO "and the band structure of fcc-Pt with a fully relativistic " $ECHO "pseudo-potential including spin-orbit coupling." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Pt.rel-pz-n-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # self-consistent calculation cat > pt.scf.in << EOF Pt Pt &control calculation = 'scf' restart_mode='from_scratch', prefix='Pt', tprnfor = .true., tstress =.true., pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 2, celldm(1) =7.42, nat= 1, ntyp= 1, lspinorb=.true., noncolin=.true., starting_magnetization=0.0, occupations='smearing', degauss=0.02, smearing='mp', ecutwfc =30.0, ecutrho =250.0, / &electrons mixing_beta = 0.7, conv_thr = 1.0d-8 / ATOMIC_SPECIES Pt 0.0 Pt.rel-pz-n-rrkjus.UPF ATOMIC_POSITIONS Pt 0.0000000 0.00000000 0.0 K_POINTS AUTOMATIC 4 4 4 1 1 1 EOF $ECHO " running the scf calculation for Pt with spin-orbit coupling...\c" $PW_COMMAND < pt.scf.in > pt.scf.out check_failure $? $ECHO " done" # a non self-consistent calculation cat > pt.nscf.in << EOF Pt Pt &control calculation = 'nscf' restart_mode='from_scratch', prefix='Pt', tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 2, celldm(1) =7.42, nat= 1, ntyp= 1, lspinorb=.true., noncolin=.true., starting_magnetization=0.0, occupations='smearing', degauss=0.02, smearing='mp', ecutwfc =30.0, ecutrho =250.0, / &electrons mixing_beta = 0.7, conv_thr = 1.0d-8 / ATOMIC_SPECIES Pt 0.0 Pt.rel-pz-n-rrkjus.UPF ATOMIC_POSITIONS Pt 0.0000000 0.00000000 0.0 K_POINTS 8 0.0 0.0 0.0 1.0 0.1 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.4 0.2 0.1 1.0 0.4 0.4 0.0 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 0.75 0.75 0.0 1.0 EOF $ECHO " running the non-scf calculation for Pt with spin-orbit coupling...\c" $PW_COMMAND < pt.nscf.in > pt.nscf.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/Pt* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example07/reference/0000755000175000017500000000000012341373041017204 5ustar mbambaespresso-5.1/PW/examples/example07/reference/pt.nscf.out0000644000175000017500000001710212341373025021313 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 26Feb2009 at 16:17:49 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Starting configuration read from directory: /home/smogunov/tmp/Pt.save/ Failed to open directory or to read data file! Using input configuration Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 195.07800 Pt( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( 0.1000000 0.0000000 0.0000000), wk = 0.1250000 k( 3) = ( 1.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 4) = ( 0.4000000 0.2000000 0.1000000), wk = 0.1250000 k( 5) = ( 0.4000000 0.4000000 0.0000000), wk = 0.1250000 k( 6) = ( 0.4000000 0.4000000 0.4000000), wk = 0.1250000 k( 7) = ( 0.5000000 0.5000000 0.5000000), wk = 0.1250000 k( 8) = ( 0.7500000 0.7500000 0.0000000), wk = 0.1250000 G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 580, 18) NL pseudopotentials 0.12 Mb ( 290, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 580, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Check: negative/imaginary core charge= -0.000004 0.000000 The potential is recalculated from file : /home/smogunov/tmp/Pt.save/charge-density.dat Starting wfc are 18 atomic wfcs total cpu time spent up to now is 3.24 secs per-process dynamical memory: 8.8 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-10, avg # of iterations = 12.9 total cpu time spent up to now is 9.39 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 7.2727 7.2727 13.2979 13.2979 13.2979 13.2979 14.2915 14.2915 16.1192 16.1192 16.1192 16.1192 38.3611 38.3611 39.6539 39.6539 39.6539 39.6539 k = 0.1000 0.0000 0.0000 band energies (ev): 7.4060 7.4060 13.2659 13.2659 13.3547 13.3547 14.3152 14.3152 16.0336 16.0336 16.1507 16.1507 35.0225 35.0225 38.0754 38.0754 39.1251 39.1251 k = 1.0000 0.0000 0.0000 band energies (ev): 10.4418 10.4418 10.8735 10.8735 17.3745 17.3745 17.6778 17.6778 18.6596 18.6596 19.1027 19.1027 26.2690 26.2690 28.7375 28.7375 30.2807 30.2807 k = 0.4000 0.2000 0.1000 band energies (ev): 9.6596 9.6596 12.6769 12.6769 13.6738 13.6738 14.9439 14.9439 15.7183 15.7183 16.9332 16.9332 32.0504 32.0504 35.7819 35.7819 37.6057 37.6057 k = 0.4000 0.4000 0.0000 band energies (ev): 10.6363 10.6363 12.6777 12.6777 13.5168 13.5168 15.0207 15.0207 15.4549 15.4549 18.0755 18.0755 30.3507 30.3507 32.8954 32.8954 37.6060 37.6060 k = 0.4000 0.4000 0.4000 band energies (ev): 10.1556 10.1556 13.2272 13.2272 14.2768 14.2768 15.3893 15.3893 17.0681 17.0681 17.6323 17.6323 25.3712 25.3712 34.2923 34.2923 37.6882 37.6882 k = 0.5000 0.5000 0.5000 band energies (ev): 10.1742 10.1742 13.1425 13.1425 14.1587 14.1587 16.9032 16.9032 17.2998 17.2998 17.9638 17.9638 23.3579 23.3579 33.8778 33.8778 36.9542 36.9542 k = 0.7500 0.7500 0.0000 band energies (ev): 11.2371 11.2371 11.9864 11.9864 14.5671 14.5671 16.2494 16.2494 17.5338 17.5338 23.3264 23.3264 24.2249 24.2249 27.5537 27.5537 32.6917 32.6917 the Fermi energy is 17.4541 ev Writing output data file Pt.save PWSCF : 9.56s CPU time, 9.74s wall time init_run : 3.09s CPU electrons : 6.15s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.05s CPU Called by electrons: c_bands : 6.15s CPU v_of_rho : 0.01s CPU newd : 0.20s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 8 calls, 0.000 s avg) cegterg : 5.60s CPU ( 8 calls, 0.700 s avg) Called by *egterg: h_psi : 4.38s CPU ( 119 calls, 0.037 s avg) s_psi : 0.20s CPU ( 119 calls, 0.002 s avg) g_psi : 0.04s CPU ( 103 calls, 0.000 s avg) cdiaghg : 0.46s CPU ( 111 calls, 0.004 s avg) Called by h_psi: add_vuspsi : 0.17s CPU ( 119 calls, 0.001 s avg) General routines calbec : 0.13s CPU ( 119 calls, 0.001 s avg) cft3 : 0.04s CPU ( 12 calls, 0.004 s avg) cft3s : 3.45s CPU ( 5532 calls, 0.001 s avg) interpolate : 0.02s CPU ( 4 calls, 0.006 s avg) davcio : 0.00s CPU ( 8 calls, 0.000 s avg) espresso-5.1/PW/examples/example07/reference/bands.pt.re0000644000175000017500000000043112341373025021245 0ustar mbamba# Re(k), E-Ef # k-point 1 -0.0642 0.0000 0.0642 0.0000 -0.0642 0.0000 0.0642 0.0000 -0.1971 0.0000 0.1971 0.0000 -0.1971 0.0000 0.1971 0.0000 -0.3204 0.0000 0.3204 0.0000 -0.3204 0.0000 0.3204 0.0000 espresso-5.1/PW/examples/example07/reference/bands.pt.co0000644000175000017500000000004212341373025021236 0ustar mbamba# Re (Im(k)), E-Ef # k-point 1 espresso-5.1/PW/examples/example07/reference/pt.scf.out0000644000175000017500000002756212341373025021150 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 17:47:46 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 85 531 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 195.07800 Pt( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 10 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0312500 k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.0937500 k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.0937500 k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.0937500 k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.0937500 k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.1875000 k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.0937500 k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0312500 k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.0937500 G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 586, 18) NL pseudopotentials 0.12 Mb ( 293, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 586, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Arrays for rho mixing 2.40 Mb ( 19683, 8) Check: negative/imaginary core charge= -0.000004 0.000000 Initial potential from superposition of free atoms starting charge 9.99989, renormalised to 10.00000 Starting wfc are 18 atomic wfcs total cpu time spent up to now is 2.15 secs per-process dynamical memory: 18.0 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.63E-05, avg # of iterations = 2.2 total cpu time spent up to now is 4.37 secs total energy = -69.48938333 Ry Harris-Foulkes estimate = -69.49382576 Ry estimated scf accuracy < 0.00669665 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.70E-05, avg # of iterations = 2.0 total cpu time spent up to now is 5.47 secs total energy = -69.49113618 Ry Harris-Foulkes estimate = -69.49216661 Ry estimated scf accuracy < 0.00173656 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-05, avg # of iterations = 1.9 total cpu time spent up to now is 6.47 secs total energy = -69.49152610 Ry Harris-Foulkes estimate = -69.49152597 Ry estimated scf accuracy < 0.00002117 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.12E-07, avg # of iterations = 2.1 total cpu time spent up to now is 7.52 secs total energy = -69.49152949 Ry Harris-Foulkes estimate = -69.49152950 Ry estimated scf accuracy < 0.00000005 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.72E-10, avg # of iterations = 2.7 total cpu time spent up to now is 8.65 secs End of self-consistent calculation k =-0.1250 0.1250 0.1250 ( 289 PWs) bands (ev): 7.8772 7.8772 13.2292 13.2292 13.4264 13.4264 14.4376 14.4376 15.9224 15.9224 16.1362 16.1362 35.3889 35.3889 36.0586 36.0586 39.4166 39.4166 k =-0.3750 0.3750-0.1250 ( 290 PWs) bands (ev): 10.2486 10.2486 12.9954 12.9954 13.5532 13.5532 14.7280 14.7280 15.8285 15.8285 17.6679 17.6679 29.6954 29.6954 34.5991 34.5991 37.2964 37.2964 k = 0.3750-0.3750 0.6250 ( 280 PWs) bands (ev): 10.6354 10.6354 13.0659 13.0659 14.2338 14.2338 15.0192 15.0192 17.6452 17.6452 19.5046 19.5046 23.6874 23.6874 34.1690 34.1690 35.7959 35.7959 k = 0.1250-0.1250 0.3750 ( 293 PWs) bands (ev): 9.3017 9.3017 12.6960 12.6960 13.7327 13.7327 14.9244 14.9244 15.6316 15.6316 16.6861 16.6861 33.0450 33.0450 36.5818 36.5818 37.3441 37.3441 k =-0.1250 0.6250 0.1250 ( 287 PWs) bands (ev): 10.8908 10.8908 11.8399 11.8399 14.0057 14.0057 15.7860 15.7860 17.0479 17.0479 17.7783 17.7783 29.8172 29.8172 33.2623 33.2623 34.5894 34.5894 k = 0.6250-0.1250 0.8750 ( 282 PWs) bands (ev): 11.6205 11.6205 12.1714 12.1714 13.7381 13.7381 15.9944 15.9944 17.6842 17.6842 22.8386 22.8386 24.6336 24.6336 28.6991 28.6991 31.3279 31.3279 k = 0.3750 0.1250 0.6250 ( 283 PWs) bands (ev): 11.4017 11.4017 12.7865 12.7865 13.1476 13.1476 15.2398 15.2398 16.8797 16.8797 19.5402 19.5402 26.7746 26.7746 31.9766 31.9766 34.7572 34.7572 k =-0.1250-0.8750 0.1250 ( 282 PWs) bands (ev): 10.7843 10.7843 11.2349 11.2349 15.8006 15.8006 16.9108 16.9108 17.9869 17.9869 20.3557 20.3557 26.3674 26.3674 29.2335 29.2335 31.0472 31.0472 k =-0.3750 0.3750 0.3750 ( 281 PWs) bands (ev): 10.1224 10.1224 13.2697 13.2697 14.3339 14.3339 14.8704 14.8704 16.8997 16.8997 17.4674 17.4674 26.2483 26.2483 34.5190 34.5190 38.0606 38.0606 k = 0.3750-0.3750 1.1250 ( 280 PWs) bands (ev): 11.5839 11.5839 12.6789 12.6789 13.7603 13.7603 15.1964 15.1964 17.0718 17.0718 21.4664 21.4664 24.6727 24.6727 29.9116 29.9116 35.7353 35.7353 the Fermi energy is 17.6821 ev ! total energy = -69.49152951 Ry Harris-Foulkes estimate = -69.49152952 Ry estimated scf accuracy < 2.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 17.06705794 Ry hartree contribution = 3.77086769 Ry xc contribution = -28.53673982 Ry ewald contribution = -61.79059399 Ry smearing contrib. (-TS) = -0.00212133 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -22.17 -0.00015068 0.00000000 0.00000000 -22.17 0.00 0.00 0.00000000 -0.00015068 0.00000000 0.00 -22.17 0.00 0.00000000 0.00000000 -0.00015068 0.00 0.00 -22.17 Writing output data file Pt.save PWSCF : 10.70s CPU time, 11.60s wall time init_run : 2.06s CPU electrons : 6.51s CPU forces : 0.35s CPU stress : 1.56s CPU Called by init_run: wfcinit : 0.27s CPU potinit : 0.02s CPU Called by electrons: c_bands : 4.61s CPU ( 6 calls, 0.768 s avg) sum_band : 1.33s CPU ( 6 calls, 0.222 s avg) v_of_rho : 0.03s CPU ( 6 calls, 0.005 s avg) newd : 0.52s CPU ( 6 calls, 0.086 s avg) mix_rho : 0.05s CPU ( 6 calls, 0.008 s avg) Called by c_bands: init_us_2 : 0.04s CPU ( 150 calls, 0.000 s avg) cegterg : 4.41s CPU ( 60 calls, 0.073 s avg) Called by *egterg: h_psi : 3.91s CPU ( 219 calls, 0.018 s avg) s_psi : 0.10s CPU ( 219 calls, 0.000 s avg) g_psi : 0.06s CPU ( 149 calls, 0.000 s avg) cdiaghg : 0.23s CPU ( 199 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.08s CPU ( 219 calls, 0.000 s avg) General routines calbec : 0.10s CPU ( 299 calls, 0.000 s avg) cft3s : 4.02s CPU ( 13994 calls, 0.000 s avg) interpolate : 0.08s CPU ( 48 calls, 0.002 s avg) davcio : 0.01s CPU ( 210 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example07/reference/pt.scf_ph.out0000644000175000017500000002267212341373025021634 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 17:48:16 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 73 411 Generating pointlists ... new r_m : 0.2917 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 195.07800 Pt( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.2500000 k( 2) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.7500000 G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 578, 18) NL pseudopotentials 0.11 Mb ( 289, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 578, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Arrays for rho mixing 2.40 Mb ( 19683, 8) Check: negative/imaginary core charge= -0.000004 0.000000 Initial potential from superposition of free atoms starting charge 9.99989, renormalised to 10.00000 Starting wfc are 18 atomic wfcs total cpu time spent up to now is 1.97 secs per-process dynamical memory: 17.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.33E-05, avg # of iterations = 2.5 total cpu time spent up to now is 2.66 secs total energy = -69.50302370 Ry Harris-Foulkes estimate = -69.50464124 Ry estimated scf accuracy < 0.00285877 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.86E-05, avg # of iterations = 2.0 total cpu time spent up to now is 3.04 secs total energy = -69.50359634 Ry Harris-Foulkes estimate = -69.50389917 Ry estimated scf accuracy < 0.00052019 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.20E-06, avg # of iterations = 2.0 total cpu time spent up to now is 3.40 secs total energy = -69.50371007 Ry Harris-Foulkes estimate = -69.50371591 Ry estimated scf accuracy < 0.00002197 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.20E-07, avg # of iterations = 1.0 total cpu time spent up to now is 3.75 secs total energy = -69.50371193 Ry Harris-Foulkes estimate = -69.50371194 Ry estimated scf accuracy < 0.00000002 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-10, avg # of iterations = 3.0 total cpu time spent up to now is 4.15 secs End of self-consistent calculation k =-0.2500 0.2500 0.2500 ( 289 PWs) bands (ev): 9.3170 9.3170 13.3105 13.3105 13.5796 13.5796 14.7740 14.7740 16.0687 16.0687 16.6619 16.6619 31.1505 31.1505 35.9702 35.9702 39.8080 39.8080 k = 0.2500-0.2500 0.7500 ( 283 PWs) bands (ev): 11.2908 11.2908 12.4158 12.4158 13.9356 13.9356 15.5885 15.5885 17.8742 17.8742 20.6638 20.6638 25.0086 25.0086 31.6341 31.6341 33.8373 33.8373 the Fermi energy is 17.9290 ev ! total energy = -69.50371199 Ry Harris-Foulkes estimate = -69.50371200 Ry estimated scf accuracy < 4.3E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 17.02512017 Ry hartree contribution = 3.82828747 Ry xc contribution = -28.56279204 Ry ewald contribution = -61.79059399 Ry smearing contrib. (-TS) = -0.00373359 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -23.09 -0.00015694 0.00000000 0.00000000 -23.09 0.00 0.00 0.00000000 -0.00015694 0.00000000 0.00 -23.09 0.00 0.00000000 0.00000000 -0.00015694 0.00 0.00 -23.09 Writing output data file Pt.save PWSCF : 6.05s CPU time, 6.18s wall time init_run : 1.85s CPU electrons : 2.18s CPU forces : 0.32s CPU stress : 1.46s CPU Called by init_run: wfcinit : 0.05s CPU potinit : 0.03s CPU Called by electrons: c_bands : 0.92s CPU ( 6 calls, 0.153 s avg) sum_band : 0.69s CPU ( 6 calls, 0.116 s avg) v_of_rho : 0.03s CPU ( 6 calls, 0.005 s avg) newd : 0.52s CPU ( 6 calls, 0.086 s avg) mix_rho : 0.04s CPU ( 6 calls, 0.007 s avg) Called by c_bands: init_us_2 : 0.01s CPU ( 30 calls, 0.000 s avg) cegterg : 0.88s CPU ( 12 calls, 0.073 s avg) Called by *egterg: h_psi : 0.77s CPU ( 43 calls, 0.018 s avg) s_psi : 0.02s CPU ( 43 calls, 0.000 s avg) g_psi : 0.01s CPU ( 29 calls, 0.000 s avg) cdiaghg : 0.05s CPU ( 39 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 43 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 59 calls, 0.000 s avg) cft3s : 0.94s CPU ( 3010 calls, 0.000 s avg) interpolate : 0.08s CPU ( 48 calls, 0.002 s avg) davcio : 0.00s CPU ( 42 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example07/reference/pt.bands.out0000644000175000017500000003337012341373025021456 0ustar mbamba Program POST-PROC v.4.1CVS starts ... Today is 26Feb2009 at 16:17:59 Check: negative/imaginary core charge= -0.000004 0.000000 ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) double point group O_h (m-3m) there are 16 classes and 6 irreducible representations the character table: E -E 8C3 -8C3 3C2 6C4 -6C4 6C2' i -i 8S6 -8S6 -3C2 -6C2' G_6+ 2.00 -2.00 1.00 -1.00 0.00 1.41 -1.41 0.00 2.00 -2.00 1.00 -1.00 G_7+ 2.00 -2.00 1.00 -1.00 0.00 -1.41 1.41 0.00 2.00 -2.00 1.00 -1.00 G_8+ 4.00 -4.00 -1.00 1.00 0.00 0.00 0.00 0.00 4.00 -4.00 -1.00 1.00 G_6- 2.00 -2.00 1.00 -1.00 0.00 1.41 -1.41 0.00 -2.00 2.00 -1.00 1.00 G_7- 2.00 -2.00 1.00 -1.00 0.00 -1.41 1.41 0.00 -2.00 2.00 -1.00 1.00 G_8- 4.00 -4.00 -1.00 1.00 0.00 0.00 0.00 0.00 -4.00 4.00 1.00 -1.00 3s_h 6S4 -6S4 6s_d -3s_h -6s_d G_6+ 0.00 1.41 -1.41 0.00 G_7+ 0.00 -1.41 1.41 0.00 G_8+ 0.00 0.00 0.00 0.00 G_6- 0.00 -1.41 1.41 0.00 G_7- 0.00 1.41 -1.41 0.00 G_8- 0.00 0.00 0.00 0.00 the symmetry operations in each class: E 1 3C2 -3C2 2 -2 4 -4 3 -3 6C2'-6C2' 5 -5 6 -6 14 -13 -14 13 -10 -9 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h-3s_h 26 -26 28 -28 27 -27 6s_d-6s_d 29 -29 30 -30 38 -37 -38 37 -34 -33 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 -E -1 -6C4 -7 -8 -15 -16 -12 -11 -8C3 -17 -19 -20 -18 -24 -21 -22 -23 -i -25 -6S4 -31 -32 -39 -40 -36 -35 -8S6 -41 -43 -44 -42 -48 -45 -46 -47 Band symmetry, O_h (m-3m) double point group: e( 1 - 2) = 7.27272 eV 2 --> G_6+ e( 3 - 6) = 13.29785 eV 4 --> G_8+ e( 7 - 8) = 14.29146 eV 2 --> G_7+ e( 9 - 12) = 16.11924 eV 4 --> G_8+ e( 13 - 14) = 38.36105 eV 2 --> G_6- e( 15 - 18) = 39.65390 eV 4 --> G_8- ************************************************************************** ************************************************************************** xk=( 0.10000, 0.00000, 0.00000 ) double point group C_4v (4mm) there are 7 classes and 2 irreducible representations the character table: E -E 2C4 -2C4 C2 2s_v 2s_d -C2 -2s_v -2s_d G_6 2.00 -2.00 1.41 -1.41 0.00 0.00 0.00 G_7 2.00 -2.00 -1.41 1.41 0.00 0.00 0.00 the symmetry operations in each class: E 1 C2 -C2 2 -2 2C4 3 4 2s_v-2s_v 5 -5 6 -6 2s_d-2s_d 7 -7 -8 8 -E -1 -2C4 -3 -4 Band symmetry, C_4v (4mm) double point group: e( 1 - 2) = 7.40600 eV 2 --> G_6 D_6 e( 3 - 4) = 13.26585 eV 2 --> G_7 D_7 e( 5 - 6) = 13.35474 eV 2 --> G_6 D_6 e( 7 - 8) = 14.31525 eV 2 --> G_7 D_7 e( 9 - 10) = 16.03365 eV 2 --> G_6 D_6 e( 11 - 12) = 16.15074 eV 2 --> G_7 D_7 e( 13 - 14) = 35.02250 eV 2 --> G_7 D_7 e( 15 - 16) = 38.07544 eV 2 --> G_6 D_6 e( 17 - 18) = 39.12512 eV 2 --> G_6 D_6 ************************************************************************** ************************************************************************** xk=( 1.00000, 0.00000, 0.00000 ) double point group D_4h(4/mmm) there are 14 classes and 4 irreducible representations the character table: E -E 2C4 -2C4 C2 2C2' 2C2'' i -i 2S4 -2S4 s_h -C2 -2C2' -2C2' -s_h G_6+ 2.00 -2.00 1.41 -1.41 0.00 0.00 0.00 2.00 -2.00 1.41 -1.41 0.00 G_7+ 2.00 -2.00 -1.41 1.41 0.00 0.00 0.00 2.00 -2.00 -1.41 1.41 0.00 G_6- 2.00 -2.00 1.41 -1.41 0.00 0.00 0.00 -2.00 2.00 -1.41 1.41 0.00 G_7- 2.00 -2.00 -1.41 1.41 0.00 0.00 0.00 -2.00 2.00 1.41 -1.41 0.00 2s_v 2s_d -2s_v -2s_d G_6+ 0.00 0.00 G_7+ 0.00 0.00 G_6- 0.00 0.00 G_7- 0.00 0.00 the symmetry operations in each class: E 1 2C2'-2C2' 2 -2 3 -3 C2 -C2 4 -4 2C2''-2C2' 5 6 -6 -5 2C4 7 8 i 9 2s_v-2s_v 10 -10 11 -11 s_h -s_h 12 -12 2s_d-2s_d 13 14 -14 -13 2S4 15 16 -E -1 -2C4 -7 -8 -i -9 -2S4 -15 -16 Band symmetry, D_4h(4/mmm) double point group: e( 1 - 2) = 10.44178 eV 2 --> G_6+ M_6+ e( 3 - 4) = 10.87347 eV 2 --> G_7+ M_7+ e( 5 - 6) = 17.37445 eV 2 --> G_7+ M_7+ e( 7 - 8) = 17.67776 eV 2 --> G_6+ M_6+ e( 9 - 10) = 18.65959 eV 2 --> G_7+ M_7+ e( 11 - 12) = 19.10266 eV 2 --> G_6- M_6- e( 13 - 14) = 26.26903 eV 2 --> G_6+ M_6+ e( 15 - 16) = 28.73750 eV 2 --> G_6- M_6- e( 17 - 18) = 30.28069 eV 2 --> G_7- M_7- ************************************************************************** ************************************************************************** xk=( 0.40000, 0.20000, 0.10000 ) double point group C_1 (1) there are 2 classes and 1 irreducible representations the character table: E -E G_2 1.00 -1.00 the symmetry operations in each class: E 1 -E -1 Band symmetry, C_1 (1) double point group: e( 1 - 2) = 9.65964 eV 2 --> 2 G_2 e( 3 - 4) = 12.67691 eV 2 --> 2 G_2 e( 5 - 6) = 13.67379 eV 2 --> 2 G_2 e( 7 - 8) = 14.94391 eV 2 --> 2 G_2 e( 9 - 10) = 15.71832 eV 2 --> 2 G_2 e( 11 - 12) = 16.93321 eV 2 --> 2 G_2 e( 13 - 14) = 32.05038 eV 2 --> 2 G_2 e( 15 - 16) = 35.78192 eV 2 --> 2 G_2 e( 17 - 18) = 37.60570 eV 2 --> 2 G_2 ************************************************************************** ************************************************************************** xk=( 0.40000, 0.40000, 0.00000 ) double point group C_2v (mm2) there are 5 classes and 1 irreducible representations the character table: E -E C2 s_v s_v' -C2 -s_v -s_v' G_5 2.00 -2.00 0.00 0.00 0.00 the symmetry operations in each class: E 1 C2 -C2 2 -2 s_v -s_v 3 -3 s_v'-s_v' 4 -4 -E -1 Band symmetry, C_2v (mm2) double point group: e( 1 - 2) = 10.63627 eV 2 --> G_5 D_5 e( 3 - 4) = 12.67775 eV 2 --> G_5 D_5 e( 5 - 6) = 13.51681 eV 2 --> G_5 D_5 e( 7 - 8) = 15.02072 eV 2 --> G_5 D_5 e( 9 - 10) = 15.45492 eV 2 --> G_5 D_5 e( 11 - 12) = 18.07552 eV 2 --> G_5 D_5 e( 13 - 14) = 30.35066 eV 2 --> G_5 D_5 e( 15 - 16) = 32.89540 eV 2 --> G_5 D_5 e( 17 - 18) = 37.60596 eV 2 --> G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.40000, 0.40000, 0.40000 ) double point group C_3v (3m) there are 6 classes and 3 irreducible representations the character table: E -E 2C3 -2C3 3s_v -3s_v G_4 2.00 -2.00 1.00 -1.00 0.00 0.00 G_5 1.00 -1.00 -1.00 1.00 0.00 0.00 G_6 1.00 -1.00 -1.00 1.00 0.00 0.00 imaginary part E -E 2C3 -2C3 3s_v -3s_v G_4 0.00 0.00 0.00 0.00 0.00 0.00 G_5 0.00 0.00 0.00 0.00 1.00 -1.00 G_6 0.00 0.00 0.00 0.00 -1.00 1.00 the symmetry operations in each class: E 1 2C3 2 3 3s_v 4 5 6 -E -1 -2C3 -2 -3 -3s_v -4 -5 -6 Band symmetry, C_3v (3m) double point group: e( 1 - 2) = 10.15556 eV 2 --> G_4 L_6 e( 3 - 4) = 13.22718 eV 2 --> G_5 L_4 e( 3 - 4) = 13.22718 eV 2 --> G_6 L_5 e( 5 - 6) = 14.27679 eV 2 --> G_4 L_6 e( 7 - 8) = 15.38929 eV 2 --> G_4 L_6 e( 9 - 10) = 17.06807 eV 2 --> G_4 L_6 e( 11 - 12) = 17.63232 eV 2 --> G_5 L_4 e( 11 - 12) = 17.63232 eV 2 --> G_6 L_5 e( 13 - 14) = 25.37118 eV 2 --> G_4 L_6 e( 15 - 16) = 34.29231 eV 2 --> G_4 L_6 e( 17 - 18) = 37.68822 eV 2 --> G_4 L_6 ************************************************************************** ************************************************************************** xk=( 0.50000, 0.50000, 0.50000 ) double point group D_3d (-3m) there are 12 classes and 6 irreducible representations the character table: E -E 2C3 -2C3 3s_v -3s_v i -i 2S6 -2S6 3C2' -3C2' G_4+ 2.00 -2.00 1.00 -1.00 0.00 0.00 2.00 -2.00 1.00 -1.00 0.00 0.00 G_5+ 1.00 -1.00 -1.00 1.00 0.00 0.00 1.00 -1.00 -1.00 1.00 0.00 0.00 G_6+ 1.00 -1.00 -1.00 1.00 0.00 0.00 1.00 -1.00 -1.00 1.00 0.00 0.00 G_4- 2.00 -2.00 1.00 -1.00 0.00 0.00 -2.00 2.00 -1.00 1.00 0.00 0.00 G_5- 1.00 -1.00 -1.00 1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 0.00 0.00 G_6- 1.00 -1.00 -1.00 1.00 0.00 0.00 -1.00 1.00 1.00 -1.00 0.00 0.00 imaginary part E -E 2C3 -2C3 3s_v -3s_v i -i 2S6 -2S6 3C2' -3C2' G_4+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 G_5+ 0.00 0.00 0.00 0.00 1.00 -1.00 0.00 0.00 0.00 0.00 1.00 -1.00 G_6+ 0.00 0.00 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 -1.00 1.00 G_4- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 G_5- 0.00 0.00 0.00 0.00 1.00 -1.00 0.00 0.00 0.00 0.00 -1.00 1.00 G_6- 0.00 0.00 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2' 2 4 3 2C3 5 6 i 7 3s_v 8 10 9 2S6 11 12 -E -1 -3C2' -2 -4 -3 -2C3 -5 -6 -i -7 -3s_v -8 -10 -9 -2S6 -11 -12 Band symmetry, D_3d (-3m) double point group: e( 1 - 2) = 10.17424 eV 2 --> G_4+ L_6+ e( 3 - 4) = 13.14245 eV 2 --> G_5+ L_4+ e( 3 - 4) = 13.14245 eV 2 --> G_6+ L_5+ e( 5 - 6) = 14.15869 eV 2 --> G_4+ L_6+ e( 7 - 8) = 16.90324 eV 2 --> G_4- L_6- e( 9 - 10) = 17.29982 eV 2 --> G_4+ L_6+ e( 11 - 12) = 17.96377 eV 2 --> G_5+ L_4+ e( 11 - 12) = 17.96377 eV 2 --> G_6+ L_5+ e( 13 - 14) = 23.35789 eV 2 --> G_4+ L_6+ e( 15 - 16) = 33.87781 eV 2 --> G_4- L_6- e( 17 - 18) = 36.95416 eV 2 --> G_4- L_6- ************************************************************************** ************************************************************************** xk=( 0.75000, 0.75000, 0.00000 ) double point group C_2v (mm2) there are 5 classes and 1 irreducible representations the character table: E -E C2 s_v s_v' -C2 -s_v -s_v' G_5 2.00 -2.00 0.00 0.00 0.00 the symmetry operations in each class: E 1 C2 -C2 2 -2 s_v -s_v 3 -3 s_v'-s_v' 4 -4 -E -1 Band symmetry, C_2v (mm2) double point group: e( 1 - 2) = 11.23710 eV 2 --> G_5 D_5 e( 3 - 4) = 11.98639 eV 2 --> G_5 D_5 e( 5 - 6) = 14.56710 eV 2 --> G_5 D_5 e( 7 - 8) = 16.24938 eV 2 --> G_5 D_5 e( 9 - 10) = 17.53377 eV 2 --> G_5 D_5 e( 11 - 12) = 23.32636 eV 2 --> G_5 D_5 e( 13 - 14) = 24.22494 eV 2 --> G_5 D_5 e( 15 - 16) = 27.55368 eV 2 --> G_5 D_5 e( 17 - 18) = 32.69172 eV 2 --> G_5 D_5 ************************************************************************** espresso-5.1/PW/examples/example07/reference/pt.ph.out0000644000175000017500000002357612341373025021005 0ustar mbamba Program PHONON v.4.1a starts ... Today is 10Jul2009 at 17:48:22 Parallel version (MPI) Number of processors in use: 1 Ultrasoft (Vanderbilt) Pseudopotentials Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 73 411 Check: negative/imaginary core charge= -0.000004 0.000000 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 kinetic-energy cut-off = 30.0000 Ry charge density cut-off = 250.0000 Ry convergence threshold = 1.0E-16 beta = 0.7000 number of iterations used = 4 Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.42000 celldm(2)= 0.00000 celldm(3)= 0.00000 celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.5000 0.0000 0.5000 ) a(2) = ( 0.0000 0.5000 0.5000 ) a(3) = ( -0.5000 0.5000 0.0000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.0000 -1.0000 1.0000 ) b(2) = ( 1.0000 1.0000 1.0000 ) b(3) = ( -1.0000 1.0000 -1.0000 ) Atoms inside the unit cell: Cartesian axes site n. atom mass positions (a_0 units) 1 Pt 195.0780 tau( 1) = ( 0.00000 0.00000 0.00000 ) Computing dynamical matrix for q = ( 0.0000000 0.0000000 0.0000000 ) 49 Sym.Ops. (with q -> -q+G ) G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) number of k points= 2 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.2500000 k( 2) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.7500000 PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients Atomic displacements: There are 1 irreducible representations Representation 1 3 modes -T_1u G_15 G_4- To be done PHONON : 3.49s CPU time, 3.56s wall time Alpha used in Ewald sum = 2.6000 Representation # 1 modes # 1 2 3 Self-consistent Calculation Pert. # 1: Fermi energy shift (Ry) = -0.4109E-32 0.6269E-37 Pert. # 2: Fermi energy shift (Ry) = -0.2054E-32 -0.7837E-38 Pert. # 3: Fermi energy shift (Ry) = 0.8217E-32 0.3135E-37 iter # 1 total cpu time : 5.9 secs av.it.: 6.3 thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.387E-07 Pert. # 1: Fermi energy shift (Ry) = -0.4109E-32 0.6122E-40 Pert. # 2: Fermi energy shift (Ry) = -0.2054E-32 -0.7653E-41 Pert. # 3: Fermi energy shift (Ry) = 0.1027E-31 0.3061E-40 iter # 2 total cpu time : 8.0 secs av.it.: 14.0 thresh= 0.197E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.114E-08 Pert. # 1: Fermi energy shift (Ry) = 0.4109E-32 0.0000E+00 Pert. # 2: Fermi energy shift (Ry) = -0.1284E-31 0.5740E-40 Pert. # 3: Fermi energy shift (Ry) = 0.6163E-32 -0.3061E-40 iter # 3 total cpu time : 10.0 secs av.it.: 13.2 thresh= 0.337E-05 alpha_mix = 0.700 |ddv_scf|^2 = 0.436E-10 Pert. # 1: Fermi energy shift (Ry) = -0.2054E-32 0.0000E+00 Pert. # 2: Fermi energy shift (Ry) = -0.4622E-32 0.5740E-40 Pert. # 3: Fermi energy shift (Ry) = 0.6163E-32 -0.3061E-40 iter # 4 total cpu time : 12.0 secs av.it.: 12.8 thresh= 0.660E-06 alpha_mix = 0.700 |ddv_scf|^2 = 0.123E-13 Pert. # 1: Fermi energy shift (Ry) = 0.2054E-32 0.0000E+00 Pert. # 2: Fermi energy shift (Ry) = -0.2054E-32 0.5740E-40 Pert. # 3: Fermi energy shift (Ry) = 0.0000E+00 -0.3061E-40 iter # 5 total cpu time : 14.0 secs av.it.: 13.3 thresh= 0.111E-07 alpha_mix = 0.700 |ddv_scf|^2 = 0.185E-15 Pert. # 1: Fermi energy shift (Ry) = -0.2054E-32 0.0000E+00 Pert. # 2: Fermi energy shift (Ry) = -0.4109E-32 0.5740E-40 Pert. # 3: Fermi energy shift (Ry) = -0.2054E-32 -0.3061E-40 iter # 6 total cpu time : 15.8 secs av.it.: 12.2 thresh= 0.136E-08 alpha_mix = 0.700 |ddv_scf|^2 = 0.215E-17 End of self-consistent calculation Convergence has been achieved Number of q in the star = 1 List of q in the star: 1 0.000000000 0.000000000 0.000000000 Diagonalizing the dynamical matrix q = ( 0.000000000 0.000000000 0.000000000 ) ************************************************************************** omega( 1) = 0.153605 [THz] = 5.123754 [cm-1] omega( 2) = 0.153605 [THz] = 5.123754 [cm-1] omega( 3) = 0.153605 [THz] = 5.123754 [cm-1] ************************************************************************** Mode symmetry, O_h (m-3m) point group: omega( 1 - 3) = 5.1 [cm-1] --> T_1u G_15 G_4- I ************************************************************************** PWSCF : 13.91s CPU Called by init_run: Called by electrons: v_of_rho : 0.00s CPU newd : 0.08s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 22 calls, 0.000 s avg) Called by *egterg: s_psi : 0.32s CPU ( 1208 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.15s CPU ( 586 calls, 0.000 s avg) General routines calbec : 0.25s CPU ( 1296 calls, 0.000 s avg) cft3s : 6.71s CPU ( 23656 calls, 0.000 s avg) interpolate : 0.01s CPU ( 4 calls, 0.002 s avg) davcio : 0.00s CPU ( 204 calls, 0.000 s avg) Parallel routines PHONON : 15.88s CPU time, 17.83s wall time INITIALIZATION: phq_setup : 0.02s CPU phq_init : 1.49s CPU phq_init : 1.49s CPU set_drhoc : 1.13s CPU ( 3 calls, 0.377 s avg) init_vloc : 0.00s CPU init_us_1 : 1.37s CPU newd : 0.08s CPU dvanqq : 0.37s CPU drho : 0.60s CPU DYNAMICAL MATRIX: dynmat0 : 0.81s CPU phqscf : 11.58s CPU dynmatrix : 0.00s CPU phqscf : 11.58s CPU solve_linter : 11.56s CPU drhodv : 0.02s CPU dynmat0 : 0.81s CPU dynmat_us : 0.05s CPU d2ionq : 0.00s CPU dynmatcc : 0.76s CPU dynmat_us : 0.05s CPU addusdynmat : 0.02s CPU phqscf : 11.58s CPU solve_linter : 11.56s CPU solve_linter : 11.56s CPU dvqpsi_us : 0.18s CPU ( 6 calls, 0.029 s avg) ortho : 0.06s CPU ( 36 calls, 0.002 s avg) cgsolve : 6.78s CPU ( 36 calls, 0.188 s avg) incdrhoscf : 0.48s CPU ( 36 calls, 0.013 s avg) addusddens : 0.74s CPU ( 7 calls, 0.105 s avg) vpsifft : 0.41s CPU ( 30 calls, 0.014 s avg) dv_of_drho : 0.16s CPU ( 18 calls, 0.009 s avg) mix_pot : 0.17s CPU ( 6 calls, 0.028 s avg) ef_shift : 0.05s CPU ( 7 calls, 0.007 s avg) localdos : 0.21s CPU psymdvscf : 0.67s CPU ( 6 calls, 0.111 s avg) newdq : 1.41s CPU ( 6 calls, 0.235 s avg) adddvscf : 0.02s CPU ( 30 calls, 0.001 s avg) drhodvus : 0.00s CPU dvqpsi_us : 0.18s CPU ( 6 calls, 0.029 s avg) dvqpsi_us_on : 0.04s CPU ( 6 calls, 0.007 s avg) cgsolve : 6.78s CPU ( 36 calls, 0.188 s avg) ch_psi : 6.70s CPU ( 586 calls, 0.011 s avg) ch_psi : 6.70s CPU ( 586 calls, 0.011 s avg) h_psiq : 6.25s CPU ( 586 calls, 0.011 s avg) last : 0.43s CPU ( 586 calls, 0.001 s avg) h_psiq : 6.25s CPU ( 586 calls, 0.011 s avg) firstfft : 2.84s CPU ( 4894 calls, 0.001 s avg) secondfft : 2.81s CPU ( 4894 calls, 0.001 s avg) add_vuspsi : 0.15s CPU ( 586 calls, 0.000 s avg) incdrhoscf : 0.48s CPU ( 36 calls, 0.013 s avg) drhodvus : 0.00s CPU General routines calbec : 0.25s CPU ( 1296 calls, 0.000 s avg) cft3s : 6.71s CPU ( 23656 calls, 0.000 s avg) cinterpolate : 0.27s CPU ( 151 calls, 0.002 s avg) davcio : 0.00s CPU ( 204 calls, 0.000 s avg) write_rec : 0.02s CPU ( 7 calls, 0.003 s avg) espresso-5.1/PW/examples/example07/reference/pt.phX.out0000644000175000017500000004064612341373025021132 0ustar mbamba Program PHONON v.4.1a starts ... Today is 10Jul2009 at 17:48:40 Parallel version (MPI) Number of processors in use: 1 Ultrasoft (Vanderbilt) Pseudopotentials Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 73 411 Check: negative/imaginary core charge= -0.000004 0.000000 Calculation of q = 1.0000000 0.0000000 0.0000000 Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 20 npps= 20 ncplanes= 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6855 20 223 2229 91 609 bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 18 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 250.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Pt 10.00 195.07800 Pt( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pt tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 6 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.2500000 k( 2) = ( 0.7500000 0.2500000 0.2500000), wk = 0.0000000 k( 3) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.5000000 k( 4) = ( 1.2500000 -0.2500000 0.7500000), wk = 0.0000000 k( 5) = ( 0.7500000 0.2500000 -0.2500000), wk = 0.2500000 k( 6) = ( 1.7500000 0.2500000 -0.2500000), wk = 0.0000000 G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.16 Mb ( 578, 18) NL pseudopotentials 0.11 Mb ( 289, 26) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6855) G-vector shells 0.00 Mb ( 119) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 578, 72) Each subspace H/S matrix 0.08 Mb ( 72, 72) Each matrix 0.01 Mb ( 26, 2, 18) Check: negative/imaginary core charge= -0.000004 0.000000 The potential is recalculated from file : /home/dalcorso/tmp/_phPt.save/charge-density.dat Starting wfc are 18 atomic wfcs total cpu time spent up to now is 1.81 secs per-process dynamical memory: 15.6 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-10, avg # of iterations = 13.3 total cpu time spent up to now is 3.69 secs End of band structure calculation k =-0.2500 0.2500 0.2500 band energies (ev): 9.3170 9.3170 13.3107 13.3107 13.5799 13.5799 14.7743 14.7743 16.0691 16.0691 16.6623 16.6623 31.1506 31.1506 35.9701 35.9701 39.8081 39.8081 k = 0.7500 0.2500 0.2500 band energies (ev): 11.2910 11.2910 12.4161 12.4161 13.9359 13.9359 15.5889 15.5889 17.8747 17.8747 20.6641 20.6641 25.0087 25.0087 31.6342 31.6342 33.8373 33.8373 k = 0.2500-0.2500 0.7500 band energies (ev): 11.2910 11.2910 12.4161 12.4161 13.9359 13.9359 15.5889 15.5889 17.8747 17.8747 20.6641 20.6641 25.0087 25.0087 31.6342 31.6342 33.8373 33.8373 k = 1.2500-0.2500 0.7500 band energies (ev): 11.2910 11.2910 12.4161 12.4161 13.9359 13.9359 15.5889 15.5889 17.8747 17.8747 20.6641 20.6641 25.0087 25.0087 31.6342 31.6342 33.8373 33.8373 k = 0.7500 0.2500-0.2500 band energies (ev): 11.2910 11.2910 12.4161 12.4161 13.9359 13.9359 15.5889 15.5889 17.8747 17.8747 20.6641 20.6641 25.0087 25.0087 31.6342 31.6342 33.8373 33.8373 k = 1.7500 0.2500-0.2500 band energies (ev): 9.3170 9.3170 13.3107 13.3107 13.5799 13.5799 14.7743 14.7743 16.0691 16.0691 16.6623 16.6623 31.1506 31.1506 35.9701 35.9701 39.8081 39.8081 the Fermi energy is 17.9295 ev Writing output data file Pt.save bravais-lattice index = 2 lattice parameter (a_0) = 7.4200 a.u. unit-cell volume = 102.1296 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 kinetic-energy cut-off = 30.0000 Ry charge density cut-off = 250.0000 Ry convergence threshold = 1.0E-16 beta = 0.7000 number of iterations used = 4 Exchange-correlation = SLA PZ NOGX NOGC (1100) Non magnetic calculation with spin-orbit celldm(1)= 7.42000 celldm(2)= 0.00000 celldm(3)= 0.00000 celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.5000 0.0000 0.5000 ) a(2) = ( 0.0000 0.5000 0.5000 ) a(3) = ( -0.5000 0.5000 0.0000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.0000 -1.0000 1.0000 ) b(2) = ( 1.0000 1.0000 1.0000 ) b(3) = ( -1.0000 1.0000 -1.0000 ) Atoms inside the unit cell: Cartesian axes site n. atom mass positions (a_0 units) 1 Pt 195.0780 tau( 1) = ( 0.00000 0.00000 0.00000 ) Computing dynamical matrix for q = ( 1.0000000 0.0000000 0.0000000 ) 17 Sym.Ops. (with q -> -q+G ) G cutoff = 348.6487 ( 6855 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 167.3514 ( 2229 G-vectors) smooth grid: ( 20, 20, 20) number of k points= 6 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( -0.2500000 0.2500000 0.2500000), wk = 0.2500000 k( 2) = ( 0.7500000 0.2500000 0.2500000), wk = 0.0000000 k( 3) = ( 0.2500000 -0.2500000 0.7500000), wk = 0.5000000 k( 4) = ( 1.2500000 -0.2500000 0.7500000), wk = 0.0000000 k( 5) = ( 0.7500000 0.2500000 -0.2500000), wk = 0.2500000 k( 6) = ( 1.7500000 0.2500000 -0.2500000), wk = 0.0000000 PseudoPot. # 1 for Pt read from file Pt.rel-pz-n-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1277 points, 6 beta functions with: l(1) = 2 l(2) = 2 l(3) = 2 l(4) = 2 l(5) = 1 l(6) = 1 Q(r) pseudized with 0 coefficients Atomic displacements: There are 2 irreducible representations Representation 1 2 modes -E_u X_5' M_5' To be done Representation 2 1 modes -A_2u X_4' M_4' To be done PHONON : 7.83s CPU time, 7.96s wall time Alpha used in Ewald sum = 2.6000 Representation # 1 modes # 1 2 Self-consistent Calculation iter # 1 total cpu time : 10.2 secs av.it.: 7.5 thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.516E-06 iter # 2 total cpu time : 12.2 secs av.it.: 14.0 thresh= 0.718E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.706E-07 iter # 3 total cpu time : 14.2 secs av.it.: 13.2 thresh= 0.266E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.165E-09 iter # 4 total cpu time : 16.1 secs av.it.: 12.7 thresh= 0.129E-05 alpha_mix = 0.700 |ddv_scf|^2 = 0.315E-12 iter # 5 total cpu time : 18.1 secs av.it.: 13.2 thresh= 0.562E-07 alpha_mix = 0.700 |ddv_scf|^2 = 0.305E-14 iter # 6 total cpu time : 20.0 secs av.it.: 12.8 thresh= 0.553E-08 alpha_mix = 0.700 |ddv_scf|^2 = 0.478E-16 End of self-consistent calculation Convergence has been achieved Representation # 2 mode # 3 Self-consistent Calculation iter # 1 total cpu time : 20.9 secs av.it.: 8.3 thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.325E-04 iter # 2 total cpu time : 22.0 secs av.it.: 12.7 thresh= 0.570E-03 alpha_mix = 0.700 |ddv_scf|^2 = 0.350E-04 iter # 3 total cpu time : 23.0 secs av.it.: 11.3 thresh= 0.592E-03 alpha_mix = 0.700 |ddv_scf|^2 = 0.152E-08 iter # 4 total cpu time : 24.0 secs av.it.: 12.3 thresh= 0.390E-05 alpha_mix = 0.700 |ddv_scf|^2 = 0.127E-10 iter # 5 total cpu time : 25.0 secs av.it.: 11.7 thresh= 0.357E-06 alpha_mix = 0.700 |ddv_scf|^2 = 0.274E-12 iter # 6 total cpu time : 26.0 secs av.it.: 12.0 thresh= 0.523E-07 alpha_mix = 0.700 |ddv_scf|^2 = 0.315E-15 iter # 7 total cpu time : 27.0 secs av.it.: 12.3 thresh= 0.177E-08 alpha_mix = 0.700 |ddv_scf|^2 = 0.803E-18 End of self-consistent calculation Convergence has been achieved Number of q in the star = 3 List of q in the star: 1 1.000000000 0.000000000 0.000000000 2 0.000000000 0.000000000 1.000000000 3 0.000000000 1.000000000 0.000000000 Diagonalizing the dynamical matrix q = ( 1.000000000 0.000000000 0.000000000 ) ************************************************************************** omega( 1) = 3.670213 [THz] = 122.425943 [cm-1] omega( 2) = 3.670213 [THz] = 122.425943 [cm-1] omega( 3) = 5.809423 [THz] = 193.782795 [cm-1] ************************************************************************** Mode symmetry, D_4h(4/mmm) point group: omega( 1 - 2) = 122.4 [cm-1] --> E_u X_5' M_5' omega( 3 - 3) = 193.8 [cm-1] --> A_2u X_4' M_4' ************************************************************************** PWSCF : 25.09s CPU init_run : 1.80s CPU electrons : 1.88s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.02s CPU Called by electrons: c_bands : 1.88s CPU v_of_rho : 0.01s CPU ( 2 calls, 0.005 s avg) newd : 0.17s CPU ( 2 calls, 0.085 s avg) Called by c_bands: init_us_2 : 0.01s CPU ( 63 calls, 0.000 s avg) cegterg : 1.70s CPU ( 6 calls, 0.284 s avg) Called by *egterg: h_psi : 1.43s CPU ( 92 calls, 0.016 s avg) s_psi : 0.57s CPU ( 1935 calls, 0.000 s avg) g_psi : 0.02s CPU ( 80 calls, 0.000 s avg) cdiaghg : 0.15s CPU ( 86 calls, 0.002 s avg) Called by h_psi: add_vuspsi : 0.25s CPU ( 985 calls, 0.000 s avg) General routines calbec : 0.43s CPU ( 2079 calls, 0.000 s avg) cft3s : 11.51s CPU ( 40608 calls, 0.000 s avg) interpolate : 0.01s CPU ( 8 calls, 0.002 s avg) davcio : 0.00s CPU ( 389 calls, 0.000 s avg) Parallel routines PHONON : 27.06s CPU time, 27.84s wall time INITIALIZATION: phq_setup : 0.01s CPU phq_init : 2.04s CPU phq_init : 2.04s CPU set_drhoc : 1.13s CPU ( 3 calls, 0.375 s avg) init_vloc : 0.00s CPU ( 2 calls, 0.002 s avg) init_us_1 : 2.82s CPU ( 2 calls, 1.409 s avg) newd : 0.17s CPU ( 2 calls, 0.085 s avg) dvanqq : 0.50s CPU drho : 1.01s CPU DYNAMICAL MATRIX: dynmat0 : 0.82s CPU phqscf : 18.40s CPU dynmatrix : 0.00s CPU phqscf : 18.40s CPU solve_linter : 18.36s CPU ( 2 calls, 9.179 s avg) drhodv : 0.03s CPU ( 2 calls, 0.017 s avg) dynmat0 : 0.82s CPU dynmat_us : 0.06s CPU d2ionq : 0.00s CPU dynmatcc : 0.76s CPU dynmat_us : 0.06s CPU addusdynmat : 0.02s CPU phqscf : 18.40s CPU solve_linter : 18.36s CPU ( 2 calls, 9.179 s avg) solve_linter : 18.36s CPU ( 2 calls, 9.179 s avg) dvqpsi_us : 0.25s CPU ( 9 calls, 0.028 s avg) ortho : 0.08s CPU ( 57 calls, 0.001 s avg) cgsolve : 10.72s CPU ( 57 calls, 0.188 s avg) incdrhoscf : 0.75s CPU ( 57 calls, 0.013 s avg) addusddens : 2.37s CPU ( 15 calls, 0.158 s avg) vpsifft : 0.66s CPU ( 48 calls, 0.014 s avg) dv_of_drho : 0.17s CPU ( 19 calls, 0.009 s avg) mix_pot : 0.15s CPU ( 13 calls, 0.012 s avg) psymdvscf : 0.28s CPU ( 13 calls, 0.022 s avg) newdq : 2.82s CPU ( 13 calls, 0.217 s avg) adddvscf : 0.04s CPU ( 48 calls, 0.001 s avg) drhodvus : 0.00s CPU ( 2 calls, 0.000 s avg) dvqpsi_us : 0.25s CPU ( 9 calls, 0.028 s avg) dvqpsi_us_on : 0.05s CPU ( 9 calls, 0.006 s avg) cgsolve : 10.72s CPU ( 57 calls, 0.188 s avg) ch_psi : 10.62s CPU ( 893 calls, 0.012 s avg) ch_psi : 10.62s CPU ( 893 calls, 0.012 s avg) h_psiq : 9.93s CPU ( 893 calls, 0.011 s avg) last : 0.66s CPU ( 893 calls, 0.001 s avg) h_psiq : 9.93s CPU ( 893 calls, 0.011 s avg) firstfft : 4.41s CPU ( 7608 calls, 0.001 s avg) secondfft : 4.56s CPU ( 7608 calls, 0.001 s avg) add_vuspsi : 0.25s CPU ( 985 calls, 0.000 s avg) incdrhoscf : 0.75s CPU ( 57 calls, 0.013 s avg) drhodvus : 0.00s CPU ( 2 calls, 0.000 s avg) General routines calbec : 0.43s CPU ( 2079 calls, 0.000 s avg) cft3s : 11.51s CPU ( 40608 calls, 0.000 s avg) cinterpolate : 0.27s CPU ( 155 calls, 0.002 s avg) davcio : 0.00s CPU ( 389 calls, 0.000 s avg) write_rec : 0.05s CPU ( 15 calls, 0.003 s avg) espresso-5.1/PW/examples/example07/reference/bands.pt.im0000644000175000017500000000102512341373025021244 0ustar mbamba# Im(k), E-Ef # k-point 1 -0.1581 0.0000 -0.1581 0.0000 -0.3623 0.0000 -0.3623 0.0000 -0.4880 0.0000 -0.4880 0.0000 -1.0638 0.0000 -1.0638 0.0000 -1.1298 0.0000 -1.1298 0.0000 -1.1420 0.0000 -1.1420 0.0000 -1.0638 0.0000 -1.0638 0.0000 -1.1298 0.0000 -1.1298 0.0000 -1.1420 0.0000 -1.1420 0.0000 -0.4880 0.0000 -0.4880 0.0000 -0.3623 0.0000 -0.3623 0.0000 -0.1581 0.0000 -0.1581 0.0000 espresso-5.1/PW/examples/example01/0000755000175000017500000000000012341373041015240 5ustar mbambaespresso-5.1/PW/examples/example01/run_xml_example0000755000175000017500000006357512341373025020407 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy and" $ECHO "the band structure of four simple systems: Si, Al, Cu, Ni." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pz-vbc.UPF Al.pz-vbc.UPF Cu.pz-d-rrkjus.UPF Ni.pz-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO for diago in david cg ; do # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > si.scf.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pz-vbc.UPF 0.00 0.00 0.00 0.25 0.25 0.25 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 18.0 $diago plain 0.7 1.0d-8 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 EOF $ECHO " running the scf calculation for Si...\c" $PW_COMMAND < si.scf.$diago.xml > si.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > si.band.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pz-vbc.UPF 0.00 0.00 0.00 0.25 0.25 0.25 $PSEUDO_DIR/ $TMP_DIR/ 18.0 $diago 8 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Si...\c" $PW_COMMAND < si.band.$diago.xml > si.band.$diago.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > al.scf.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 26.98 Al.pz-vbc.UPF 0.00 0.00 0.00 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 15.0 $diago 0.7 smearing marzari-vanderbilt 0.05 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Al...\c" $PW_COMMAND < al.scf.$diago.xml > al.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > al.band.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 26.98 Al.pz-vbc.UPF 0.00 0.00 0.00 $PSEUDO_DIR/ $TMP_DIR/ 15.0 $diago 8 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Al...\c" $PW_COMMAND < al.band.$diago.xml > al.band.$diago.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > cu.scf.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 63.55 Cu.pz-d-rrkjus.UPF 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 25.0 300.0 $diago 1.0e-8 0.7 smearing gaussian 0.02 8 8 8 0 0 0 EOF $ECHO " running the scf calculation for Cu...\c" $PW_COMMAND < cu.scf.$diago.xml > cu.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > cu.band.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 63.55 Cu.pz-d-rrkjus.UPF 0.0 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 25.0 300.0 $diago 8 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Cu...\c" $PW_COMMAND < cu.band.$diago.xml > cu.band.$diago.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > ni.scf.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pz-nd-rrkjus.UPF 0.7 0.0 0.0 0.0 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 24.0 288.0 $diago 1.0e-8 0.7 smearing methfessel-paxton 0.02 2 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Ni...\c" $PW_COMMAND < ni.scf.$diago.xml > ni.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > ni.band.$diago.xml << EOF 0.0 0.0 0.0 0.0 0.0 58.69 Ni.pz-nd-rrkjus.UPF 0.7 0.0 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 24.0 288.0 $diago 8 2 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Ni...\c" $PW_COMMAND < ni.band.$diago.xml > ni.band.$diago.out| check_failure $? $ECHO " done" done $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PW/examples/example01/README0000644000175000017500000000604512341373025016127 0ustar mbamba This example shows how to use pw.x to calculate the total energy and the band structure of four simple systems: Si, Al, Cu, Ni . The calculation proceeds as follows (for the meaning of the cited input variables see the appropriate INPUT_* file) 1) make a self-consistent calculation for Si (input=si.scf.{david,cg}.in, output=si.scf.{david,cg}.out). The number of computed bands is internally computed as half the number of electrons in the unit cell (4 in this case). 2) make a band structure calculation for Si (input=si.band.{david,cg}.in, output=si.band.{david,cg}). The variable nbnd is explicitly set = 8 so that the 4 valence bands and the first 4 conduction bands are calculated. The list of k points given in input is the list of point where the bands are computed, the k-point weight is arbitrary and is not used. 3) make a self-consistent calculation for Al (input=al.scf.{david,cg}.in, output=al.scf.{david,cg}.out). Aluminum is a metal : the smearing technique is used for the calculation of the Fermi energy (a value for the broadening degauss is provided). The number of bands is set to a value somehow larger that half the number of electrons in the cell (this is a quantity to keep under control and provide explicitly if the default value is too small). Marzari-Vanderbilt 'cold smearing' is used. 4) make a band structure calculation for Al. (input=al.band.{david,cg}.in, output=al.band.{david,cg}.out). The variable nbnd is explicitly set = 8. The list of k points given in input is the list of point where the bands are computed, the k-point weight is arbitrary and is not used. 5) make a self-consistent calculation for Cu (input=cu.scf.{david,cg}.in, output=cu.scf.{david,cg}.out). Copper is also a metal. Simple Gaussian smearing is used for the calculation of the Fermi energy. K-points are automatically generated. 6) make a band structure calculation for Cu (input=cu.band.{david,cg}.in, output=cu.band.{david,cg}.out). The variable nbnd is explicitly set = 8. The list of k points given in input is the list of point where the bands are computed, the k-point weight is arbitrary and is not used. 7) make a self-consistent calculation for Ni (input=ni.scf.{david,cg}.in, output=ni.scf.{david,cg}.out). Nickel is a magnetic metal. A local-spin-density calculation is performed by specifying nspin=2 and an initial guess for the magnetization of each atomic species. This initial guess is used to build spin-up and spin-down starting charges from superposition of atomic charges. Methfessel-Paxton smearing of order one is used. 8) make a band structure calculation for Ni (input=ni.band.{david,cg}.in, output=ni.band.{david,cg}.out). The above is done both for Davidson diagonalization (suffix 'david') and for Conjugate-gradient style diagonalization ('cg'). The code is tolerant about the presence of unnecessary information in the namelists so that it is not necessary to remove them from the input when editing the scf input to get the one for a nscf run. espresso-5.1/PW/examples/example01/run_example0000755000175000017500000003624012341373025017514 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy and" $ECHO "the band structure of four simple systems: Si, Al, Cu, Ni." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pz-vbc.UPF Al.pz-vbc.UPF Cu.pz-d-rrkjus.UPF Ni.pz-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO for diago in david cg ; do # self-consistent calculation cat > si.scf.$diago.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='silicon', tstress = .true. tprnfor = .true. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =18.0, / &electrons diagonalization='$diago' mixing_mode = 'plain' mixing_beta = 0.7 conv_thr = 1.0d-8 / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 EOF $ECHO " running the scf calculation for Si...\c" $PW_COMMAND < si.scf.$diago.in > si.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > si.band.$diago.in << EOF &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='silicon' / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =18.0, nbnd = 8, / &electrons diagonalization='$diago' / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Si...\c" $PW_COMMAND < si.band.$diago.in > si.band.$diago.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/silicon* $ECHO " done" # self-consistent calculation cat > al.scf.$diago.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='al' tprnfor = .true. tstress = .true. / &system ibrav= 2, celldm(1) =7.50, nat= 1, ntyp= 1, ecutwfc =15.0, occupations='smearing', smearing='marzari-vanderbilt', degauss=0.05 / &electrons diagonalization='$diago' mixing_beta = 0.7 / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.00 0.00 0.00 K_POINTS 60 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Al...\c" $PW_COMMAND < al.scf.$diago.in > al.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > al.band.$diago.in << EOF &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='al' / &system ibrav= 2, celldm(1) =7.50, nat= 1, ntyp= 1, ecutwfc =15.0, nbnd = 8 / &electrons diagonalization='$diago' / ATOMIC_SPECIES Al 26.98 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.00 0.00 0.00 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Al...\c" $PW_COMMAND < al.band.$diago.in > al.band.$diago.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/al* $ECHO " done" # self-consistent calculation cat > cu.scf.$diago.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='cu' tstress = .true. tprnfor = .true. / &system ibrav = 2, celldm(1) =6.73, nat= 1, ntyp= 1, ecutwfc = 25.0, ecutrho = 300.0 occupations='smearing', smearing='gaussian', degauss=0.02 / &electrons diagonalization='$diago' conv_thr = 1.0e-8 mixing_beta = 0.7 / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS (automatic) 8 8 8 0 0 0 EOF $ECHO " running the scf calculation for Cu...\c" $PW_COMMAND < cu.scf.$diago.in > cu.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > cu.band.$diago.in << EOF &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', prefix='cu' / &system ibrav = 2, celldm(1) =6.73, nat= 1, ntyp= 1, ecutwfc = 25.0, ecutrho = 300.0, nbnd = 8 / &electrons diagonalization='$diago' / ATOMIC_SPECIES Cu 63.55 Cu.pz-d-rrkjus.UPF ATOMIC_POSITIONS Cu 0.0 0.0 0.0 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Cu...\c" $PW_COMMAND < cu.band.$diago.in > cu.band.$diago.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cu* $ECHO " done" # self-consistent calculation cat > ni.scf.$diago.in << EOF &control calculation='scf' restart_mode='from_scratch', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='ni' tprnfor = .true., tstress = .true. / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin = 2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, occupations='smearing', smearing='methfessel-paxton', degauss=0.02 / &electrons diagonalization='$diago' conv_thr = 1.0e-8 mixing_beta = 0.7 / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS 60 0.0625000 0.0625000 0.0625000 1.00 0.0625000 0.0625000 0.1875000 3.00 0.0625000 0.0625000 0.3125000 3.00 0.0625000 0.0625000 0.4375000 3.00 0.0625000 0.0625000 0.5625000 3.00 0.0625000 0.0625000 0.6875000 3.00 0.0625000 0.0625000 0.8125000 3.00 0.0625000 0.0625000 0.9375000 3.00 0.0625000 0.1875000 0.1875000 3.00 0.0625000 0.1875000 0.3125000 6.00 0.0625000 0.1875000 0.4375000 6.00 0.0625000 0.1875000 0.5625000 6.00 0.0625000 0.1875000 0.6875000 6.00 0.0625000 0.1875000 0.8125000 6.00 0.0625000 0.1875000 0.9375000 6.00 0.0625000 0.3125000 0.3125000 3.00 0.0625000 0.3125000 0.4375000 6.00 0.0625000 0.3125000 0.5625000 6.00 0.0625000 0.3125000 0.6875000 6.00 0.0625000 0.3125000 0.8125000 6.00 0.0625000 0.3125000 0.9375000 6.00 0.0625000 0.4375000 0.4375000 3.00 0.0625000 0.4375000 0.5625000 6.00 0.0625000 0.4375000 0.6875000 6.00 0.0625000 0.4375000 0.8125000 6.00 0.0625000 0.4375000 0.9375000 6.00 0.0625000 0.5625000 0.5625000 3.00 0.0625000 0.5625000 0.6875000 6.00 0.0625000 0.5625000 0.8125000 6.00 0.0625000 0.6875000 0.6875000 3.00 0.0625000 0.6875000 0.8125000 6.00 0.0625000 0.8125000 0.8125000 3.00 0.1875000 0.1875000 0.1875000 1.00 0.1875000 0.1875000 0.3125000 3.00 0.1875000 0.1875000 0.4375000 3.00 0.1875000 0.1875000 0.5625000 3.00 0.1875000 0.1875000 0.6875000 3.00 0.1875000 0.1875000 0.8125000 3.00 0.1875000 0.3125000 0.3125000 3.00 0.1875000 0.3125000 0.4375000 6.00 0.1875000 0.3125000 0.5625000 6.00 0.1875000 0.3125000 0.6875000 6.00 0.1875000 0.3125000 0.8125000 6.00 0.1875000 0.4375000 0.4375000 3.00 0.1875000 0.4375000 0.5625000 6.00 0.1875000 0.4375000 0.6875000 6.00 0.1875000 0.4375000 0.8125000 6.00 0.1875000 0.5625000 0.5625000 3.00 0.1875000 0.5625000 0.6875000 6.00 0.1875000 0.6875000 0.6875000 3.00 0.3125000 0.3125000 0.3125000 1.00 0.3125000 0.3125000 0.4375000 3.00 0.3125000 0.3125000 0.5625000 3.00 0.3125000 0.3125000 0.6875000 3.00 0.3125000 0.4375000 0.4375000 3.00 0.3125000 0.4375000 0.5625000 6.00 0.3125000 0.4375000 0.6875000 6.00 0.3125000 0.5625000 0.5625000 3.00 0.4375000 0.4375000 0.4375000 1.00 0.4375000 0.4375000 0.5625000 3.00 EOF $ECHO " running the scf calculation for Ni...\c" $PW_COMMAND < ni.scf.$diago.in > ni.scf.$diago.out check_failure $? $ECHO " done" # band structure calculation along delta, sigma and lambda lines cat > ni.band.$diago.in << EOF &control calculation='bands' pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' prefix='ni' / &system ibrav=2, celldm(1) =6.48, nat=1, ntyp=1, nspin = 2, starting_magnetization(1)=0.7, ecutwfc = 24.0, ecutrho = 288.0, nbnd = 8 / &electrons diagonalization='$diago' / ATOMIC_SPECIES Ni 58.69 Ni.pz-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.0 0.0 0.0 K_POINTS 28 0.0 0.0 0.0 1.0 0.0 0.0 0.1 1.0 0.0 0.0 0.2 1.0 0.0 0.0 0.3 1.0 0.0 0.0 0.4 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.6 1.0 0.0 0.0 0.7 1.0 0.0 0.0 0.8 1.0 0.0 0.0 0.9 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.1 0.1 1.0 0.0 0.2 0.2 1.0 0.0 0.3 0.3 1.0 0.0 0.4 0.4 1.0 0.0 0.5 0.5 1.0 0.0 0.6 0.6 1.0 0.0 0.7 0.7 1.0 0.0 0.8 0.8 1.0 0.0 0.9 0.9 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 1.0 0.2 0.2 0.2 1.0 0.3 0.3 0.3 1.0 0.4 0.4 0.4 1.0 0.5 0.5 0.5 1.0 EOF $ECHO " running the band-structure calculation for Ni...\c" $PW_COMMAND < ni.band.$diago.in > ni.band.$diago.out| check_failure $? $ECHO " done" $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/ni* $ECHO " done" done $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PW/examples/example01/reference/0000755000175000017500000000000012341373041017176 5ustar mbambaespresso-5.1/PW/examples/example01/reference/cu.scf.cg.out0000644000175000017500000003727612341373025021521 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 11Jul2009 at 11:22:55 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 307 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 29 gaussian broad. (Ry)= 0.0200 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0039062 k( 2) = ( -0.1250000 0.1250000 -0.1250000), wk = 0.0312500 k( 3) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 4) = ( -0.3750000 0.3750000 -0.3750000), wk = 0.0312500 k( 5) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0156250 k( 6) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0234375 k( 7) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0937500 k( 8) = ( -0.2500000 0.5000000 -0.2500000), wk = 0.0937500 k( 9) = ( 0.6250000 -0.3750000 0.6250000), wk = 0.0937500 k( 10) = ( 0.5000000 -0.2500000 0.5000000), wk = 0.0937500 k( 11) = ( 0.3750000 -0.1250000 0.3750000), wk = 0.0937500 k( 12) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0468750 k( 13) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0234375 k( 14) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0937500 k( 15) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.6250000), wk = 0.0937500 k( 17) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0468750 k( 18) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0234375 k( 19) = ( 0.8750000 -0.1250000 0.8750000), wk = 0.0937500 k( 20) = ( 0.7500000 0.0000000 0.7500000), wk = 0.0468750 k( 21) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0117188 k( 22) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0937500 k( 23) = ( 0.6250000 -0.3750000 0.8750000), wk = 0.1875000 k( 24) = ( 0.5000000 -0.2500000 0.7500000), wk = 0.0937500 k( 25) = ( 0.7500000 -0.2500000 1.0000000), wk = 0.0937500 k( 26) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 27) = ( 0.5000000 0.0000000 0.7500000), wk = 0.0937500 k( 28) = ( -0.2500000 -1.0000000 0.0000000), wk = 0.0468750 k( 29) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0234375 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 10, 10) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 atomic + 4 random wfc total cpu time spent up to now is 0.76 secs per-process dynamical memory: 10.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 4.9 total cpu time spent up to now is 1.23 secs total energy = -87.74274917 Ry Harris-Foulkes estimate = -87.90115645 Ry estimated scf accuracy < 0.21504136 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.95E-03, avg # of iterations = 3.5 total cpu time spent up to now is 1.59 secs total energy = -87.81399720 Ry Harris-Foulkes estimate = -87.89139411 Ry estimated scf accuracy < 0.15242613 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.39E-03, avg # of iterations = 3.0 total cpu time spent up to now is 1.91 secs total energy = -87.84089022 Ry Harris-Foulkes estimate = -87.84098564 Ry estimated scf accuracy < 0.00018824 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.71E-06, avg # of iterations = 5.5 total cpu time spent up to now is 2.42 secs total energy = -87.84116339 Ry Harris-Foulkes estimate = -87.84119245 Ry estimated scf accuracy < 0.00006324 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 5.75E-07, avg # of iterations = 3.0 total cpu time spent up to now is 2.74 secs total energy = -87.84117660 Ry Harris-Foulkes estimate = -87.84117651 Ry estimated scf accuracy < 0.00000002 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.52E-10, avg # of iterations = 4.2 total cpu time spent up to now is 3.15 secs total energy = -87.84117671 Ry Harris-Foulkes estimate = -87.84117679 Ry estimated scf accuracy < 0.00000018 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 CG style diagonalization ethr = 1.52E-10, avg # of iterations = 3.6 total cpu time spent up to now is 3.51 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9902 11.2011 11.2011 11.2011 12.0900 12.0900 38.8602 41.0130 41.0131 41.0131 k =-0.1250 0.1250-0.1250 ( 165 PWs) bands (ev): 5.5709 11.0865 11.3028 11.3028 12.0596 12.0596 34.2711 39.2721 39.7082 39.7082 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1553 10.9526 11.3711 11.3711 12.1822 12.1822 27.5276 38.3732 38.3732 38.4661 k =-0.3750 0.3750-0.3750 ( 159 PWs) bands (ev): 8.7581 11.2414 11.2414 11.7718 12.5305 12.5305 21.8040 37.4538 37.7366 37.7366 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1126 11.1667 11.1667 12.7052 12.7052 13.4643 18.6412 37.0216 37.6108 37.6108 k = 0.0000 0.2500 0.0000 ( 165 PWs) bands (ev): 5.7619 10.9724 11.3942 11.3942 11.8894 12.1759 36.7454 36.7454 36.7670 38.6741 k =-0.1250 0.3750-0.1250 ( 160 PWs) bands (ev): 7.0143 10.7491 11.4315 11.5524 11.9730 12.3079 30.0779 34.8354 36.4458 38.9411 k =-0.2500 0.5000-0.2500 ( 158 PWs) bands (ev): 8.7287 10.8275 11.1807 11.4888 12.5931 12.8057 23.9425 34.0858 34.9379 36.6367 k = 0.6250-0.3750 0.6250 ( 163 PWs) bands (ev): 9.3833 10.9634 11.3698 11.6201 12.7173 14.6390 19.3208 32.8135 34.6288 36.4059 k = 0.5000-0.2500 0.5000 ( 161 PWs) bands (ev): 9.3118 11.0366 11.3690 11.4824 12.4842 14.0535 20.5831 31.5887 36.5314 37.3111 k = 0.3750-0.1250 0.3750 ( 159 PWs) bands (ev): 8.2135 10.8072 11.2557 11.5070 12.0311 12.8219 25.8862 31.4947 39.3197 39.7083 k = 0.2500 0.0000 0.2500 ( 160 PWs) bands (ev): 6.4954 10.8983 11.3915 11.4734 11.8693 12.2784 32.0409 32.7822 41.5266 42.4821 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7943 10.4347 11.6325 11.9192 11.9192 12.3849 32.3393 32.3393 33.7599 34.5441 k =-0.1250 0.6250-0.1250 ( 162 PWs) bands (ev): 9.0227 10.2343 11.4502 12.0191 12.6216 12.9852 26.9779 30.3531 31.0981 35.0365 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7667 10.3288 11.2645 11.8943 12.7489 15.5294 21.6001 27.6744 31.3015 35.1325 k = 0.6250-0.1250 0.6250 ( 162 PWs) bands (ev): 10.0183 10.5263 11.0684 11.7897 12.5062 16.7738 20.0922 26.0416 32.9710 35.8417 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6266 10.6773 10.8945 11.7426 12.0919 14.2038 24.5960 26.0247 35.8985 37.3877 k = 0.0000 0.7500 0.0000 ( 162 PWs) bands (ev): 9.2057 9.9166 12.5532 12.5532 12.5970 13.2865 26.4700 29.2996 29.2996 33.3064 k = 0.8750-0.1250 0.8750 ( 164 PWs) bands (ev): 9.4500 9.8713 12.2018 12.4695 12.7942 15.9126 23.7212 25.2517 29.0129 34.1879 k = 0.7500 0.0000 0.7500 ( 168 PWs) bands (ev): 9.8606 10.1090 11.5076 12.2375 12.6487 19.0055 20.5140 22.9124 30.3242 34.7826 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2584 9.7078 12.6855 12.8599 12.8599 16.0645 22.1077 28.1796 28.1796 32.9217 k =-0.2500 0.5000 0.0000 ( 156 PWs) bands (ev): 8.3838 10.5246 11.2021 11.9283 11.9815 12.8598 28.3780 29.1672 34.7023 39.7245 k = 0.6250-0.3750 0.8750 ( 161 PWs) bands (ev): 9.6521 10.6050 10.9251 11.7990 12.4586 14.3779 22.9148 28.5911 31.6502 39.6656 k = 0.5000-0.2500 0.7500 ( 164 PWs) bands (ev): 9.8897 10.5877 11.1595 11.6868 12.6465 16.6898 19.1411 29.3143 29.7906 39.3669 k = 0.7500-0.2500 1.0000 ( 166 PWs) bands (ev): 9.6141 10.1147 11.4163 12.3918 12.5493 14.7883 25.8700 26.6503 27.2659 37.8987 k = 0.6250-0.1250 0.8750 ( 161 PWs) bands (ev): 9.9928 10.2650 11.1240 12.1236 12.7324 18.0166 21.2248 24.7934 27.1016 39.0184 k = 0.5000 0.0000 0.7500 ( 158 PWs) bands (ev): 10.2723 10.4557 10.7011 12.0025 12.5534 17.1250 21.9644 24.2064 28.8740 40.2128 k =-0.2500-1.0000 0.0000 ( 164 PWs) bands (ev): 9.5931 9.9450 11.8838 12.4221 12.8601 17.7229 22.3900 24.9290 26.0238 37.2947 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0285 10.6778 10.6778 12.0570 12.8605 20.9509 20.9509 23.1324 24.0538 44.6541 the Fermi energy is 14.4956 ev ! total energy = -87.84117675 Ry Harris-Foulkes estimate = -87.84117675 Ry estimated scf accuracy < 4.8E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -10.24225676 Ry hartree contribution = 18.89104059 Ry xc contribution = -14.05625346 Ry ewald contribution = -82.43214130 Ry smearing contrib. (-TS) = -0.00156581 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -10.74 -0.00007300 0.00000000 0.00000000 -10.74 0.00 0.00 0.00000000 -0.00007300 0.00000000 0.00 -10.74 0.00 0.00000000 0.00000000 -0.00007300 0.00 0.00 -10.74 Writing output data file cu.save PWSCF : 3.96s CPU time, 4.10s wall time init_run : 0.72s CPU electrons : 2.75s CPU forces : 0.05s CPU stress : 0.25s CPU Called by init_run: wfcinit : 0.07s CPU potinit : 0.01s CPU Called by electrons: c_bands : 2.06s CPU ( 7 calls, 0.295 s avg) sum_band : 0.44s CPU ( 7 calls, 0.063 s avg) v_of_rho : 0.04s CPU ( 8 calls, 0.005 s avg) newd : 0.18s CPU ( 8 calls, 0.023 s avg) mix_rho : 0.02s CPU ( 7 calls, 0.003 s avg) Called by c_bands: init_us_2 : 0.05s CPU ( 493 calls, 0.000 s avg) ccgdiagg : 1.64s CPU ( 203 calls, 0.008 s avg) wfcrot : 0.47s CPU ( 203 calls, 0.002 s avg) Called by *cgdiagg: h_psi : 1.79s CPU ( 6461 calls, 0.000 s avg) s_psi : 0.08s CPU ( 12719 calls, 0.000 s avg) cdiaghg : 0.01s CPU ( 203 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.06s CPU ( 6461 calls, 0.000 s avg) General routines calbec : 0.07s CPU ( 12980 calls, 0.000 s avg) cft3s : 1.54s CPU ( 18687 calls, 0.000 s avg) interpolate : 0.02s CPU ( 15 calls, 0.002 s avg) davcio : 0.00s CPU ( 696 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example01/reference/si.band.cg.out0000644000175000017500000002463412341373025021650 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:37:21 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 72.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0714286 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0714286 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0714286 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0714286 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0714286 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0714286 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0714286 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0714286 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0714286 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0714286 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0714286 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0714286 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0714286 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0714286 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0714286 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0714286 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0714286 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0714286 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0714286 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0714286 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0714286 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0714286 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0714286 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0714286 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0714286 G cutoff = 189.7462 ( 2733 G-vectors) FFT grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.04 Mb ( 351, 8) NL pseudopotentials 0.04 Mb ( 351, 8) Each V/rho on FFT grid 0.12 Mb ( 8000) Each G-vector array 0.02 Mb ( 2733) G-vector shells 0.00 Mb ( 65) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 8, 8) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.98 Mb ( 8000, 8) The potential is recalculated from file : silicon.save/charge-density.dat Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.07 secs per-process dynamical memory: 1.5 Mb Band Structure Calculation CG style diagonalization ethr = 1.25E-08, avg # of iterations = 8.8 total cpu time spent up to now is 0.89 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 k = 0.0000 0.0000 0.1000 band energies (ev): -5.7668 5.9810 6.0722 6.0722 8.7104 9.0571 9.0571 9.9838 k = 0.0000 0.0000 0.2000 band energies (ev): -5.6337 5.3339 5.6601 5.6601 8.4238 9.6301 9.6301 10.5192 k = 0.0000 0.0000 0.3000 band energies (ev): -5.4133 4.5265 5.1859 5.1859 8.0516 10.3698 10.3698 10.7062 k = 0.0000 0.0000 0.4000 band energies (ev): -5.1063 3.6529 4.7266 4.7266 7.6724 10.1364 11.1866 11.1866 k = 0.0000 0.0000 0.5000 band energies (ev): -4.7129 2.7564 4.3161 4.3161 7.3316 9.3547 12.0595 12.0595 k = 0.0000 0.0000 0.6000 band energies (ev): -4.2358 1.8517 3.9694 3.9694 7.0565 8.6170 12.9618 12.9618 k = 0.0000 0.0000 0.7000 band energies (ev): -3.6801 0.9501 3.6936 3.6936 6.8654 7.9924 13.8856 13.8856 k = 0.0000 0.0000 0.8000 band energies (ev): -3.0530 0.0683 3.4948 3.4948 6.7657 7.4943 14.8291 14.8291 k = 0.0000 0.0000 0.9000 band energies (ev): -2.3563 -0.7867 3.3738 3.3738 6.7691 7.1285 15.7632 15.7632 k = 0.0000 0.0000 1.0000 band energies (ev): -1.5978 -1.5978 3.3334 3.3334 6.8886 6.8886 16.4070 16.4070 k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 k = 0.0000 0.1000 0.1000 band energies (ev): -5.7218 5.5180 5.8909 6.2146 8.9135 8.9856 9.0810 10.3168 k = 0.0000 0.2000 0.2000 band energies (ev): -5.4577 4.2238 5.0583 6.0750 9.1873 9.2787 9.3685 11.4991 k = 0.0000 0.3000 0.3000 band energies (ev): -5.0244 2.9330 4.0923 5.8016 9.3562 9.6416 9.8965 11.9166 k = 0.0000 0.4000 0.4000 band energies (ev): -4.4382 1.7660 3.1712 5.3917 9.1678 10.2713 10.5715 11.9975 k = 0.0000 0.5000 0.5000 band energies (ev): -3.7277 0.7540 2.3987 4.8964 8.6931 11.0753 11.3920 12.4083 k = 0.0000 0.6000 0.6000 band energies (ev): -2.9584 -0.0844 1.8684 4.3957 8.1262 12.0466 12.3047 13.1205 k = 0.0000 0.7000 0.7000 band energies (ev): -2.2636 -0.7459 1.7118 3.9544 7.6098 11.3920 13.1675 14.0222 k = 0.0000 0.8000 0.8000 band energies (ev): -1.8118 -1.2183 2.0701 3.6165 7.2165 9.3814 14.4148 15.0152 k = 0.0000 0.9000 0.9000 band energies (ev): -1.6351 -1.5030 2.8302 3.4052 6.9710 7.6840 15.6697 15.9429 k = 0.0000 1.0000 1.0000 band energies (ev): -1.5978 -1.5978 3.3334 3.3334 6.8886 6.8886 16.4070 16.4070 k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 k = 0.1000 0.1000 0.1000 band energies (ev): -5.6783 5.1038 6.0496 6.0496 8.8476 9.1205 9.1205 10.6116 k = 0.2000 0.2000 0.2000 band energies (ev): -5.2848 3.2219 5.6599 5.6599 8.5038 9.6359 9.6359 12.3332 k = 0.3000 0.3000 0.3000 band energies (ev): -4.6592 1.4043 5.3188 5.3188 8.1385 9.8032 9.8032 13.8447 k = 0.4000 0.4000 0.4000 band energies (ev): -3.8910 -0.1018 5.1024 5.1024 7.9003 9.6788 9.6788 13.9593 k = 0.5000 0.5000 0.5000 band energies (ev): -3.4180 -0.8220 5.0289 5.0289 7.8139 9.5968 9.5968 13.8378 Writing output data file silicon.save PWSCF : 0.98s CPU time, 1.02s wall time init_run : 0.05s CPU electrons : 0.82s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.82s CPU v_of_rho : 0.00s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) ccgdiagg : 0.73s CPU ( 28 calls, 0.026 s avg) wfcrot : 0.08s CPU ( 28 calls, 0.003 s avg) Called by *cgdiagg: h_psi : 0.74s CPU ( 1988 calls, 0.000 s avg) s_psi : 0.01s CPU ( 3920 calls, 0.000 s avg) cdiaghg : 0.00s CPU ( 28 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 1988 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 3948 calls, 0.000 s avg) cft3 : 0.00s CPU ( 3 calls, 0.000 s avg) cft3s : 0.63s CPU ( 4368 calls, 0.000 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.1/PW/examples/example01/reference/cu.band.david.out0000644000175000017500000002624312341373025022340 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:32 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Atomic positions and unit cell read from directory: /home/dalcorso/tmp/cu.save/ Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 331 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0714286 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0714286 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0714286 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0714286 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0714286 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0714286 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0714286 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0714286 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0714286 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0714286 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0714286 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0714286 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0714286 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0714286 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0714286 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0714286 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0714286 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0714286 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0714286 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0714286 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0714286 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0714286 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0714286 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0714286 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0714286 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 170, 8) NL pseudopotentials 0.03 Mb ( 170, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 170, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 13, 8) The potential is recalculated from file : /home/dalcorso/tmp/cu.save/charge-density.dat Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 0.82 secs per-process dynamical memory: 10.0 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 9.09E-09, avg # of iterations = 12.9 total cpu time spent up to now is 1.46 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 4.9902 11.2012 11.2012 11.2012 12.0901 12.0901 38.8601 41.0130 k = 0.0000 0.0000 0.1000 band energies (ev): 5.1157 11.1627 11.2326 11.2326 12.0552 12.1044 38.3442 39.7386 k = 0.0000 0.0000 0.2000 band energies (ev): 5.4878 11.0517 11.3257 11.3257 11.9568 12.1460 37.3080 37.7399 k = 0.0000 0.0000 0.3000 band energies (ev): 6.0904 10.8805 11.4769 11.4769 11.8155 12.2111 35.7804 35.7804 k = 0.0000 0.0000 0.4000 band energies (ev): 6.8872 10.6674 11.6761 11.6787 11.6787 12.2933 33.9667 33.9667 k = 0.0000 0.0000 0.5000 band energies (ev): 7.7943 10.4348 11.6326 11.9192 11.9192 12.3850 32.3393 32.3393 k = 0.0000 0.0000 0.6000 band energies (ev): 8.6197 10.2060 11.8839 12.1805 12.1805 12.4772 30.7560 30.9299 k = 0.0000 0.0000 0.7000 band energies (ev): 9.1027 10.0028 12.4367 12.4367 12.5611 12.6832 27.8377 29.7723 k = 0.0000 0.0000 0.8000 band energies (ev): 9.2513 9.8435 12.6278 12.6565 12.6565 13.9730 25.1907 28.9042 k = 0.0000 0.0000 0.9000 band energies (ev): 9.2642 9.7423 12.6707 12.8064 12.8064 15.3576 23.0558 28.3636 k = 0.0000 0.0000 1.0000 band energies (ev): 9.2585 9.7079 12.6856 12.8600 12.8600 16.0644 22.1077 28.1796 k = 0.0000 0.0000 0.0000 band energies (ev): 4.9902 11.2012 11.2012 11.2012 12.0901 12.0901 38.8601 41.0130 k = 0.0000 0.1000 0.1000 band energies (ev): 5.2404 11.1421 11.2473 11.2594 12.0460 12.0976 37.2038 38.2087 k = 0.0000 0.2000 0.2000 band energies (ev): 5.9705 10.9901 11.3703 11.3797 11.9346 12.1709 33.7486 34.5125 k = 0.0000 0.3000 0.3000 band energies (ev): 7.1061 10.8092 11.3665 11.5818 11.8080 12.4566 30.4007 31.1635 k = 0.0000 0.4000 0.4000 band energies (ev): 8.4619 10.6805 11.1897 11.7278 11.8289 13.0621 27.3469 28.3088 k = 0.0000 0.5000 0.5000 band energies (ev): 9.6266 10.6774 10.8946 11.7427 12.0920 14.2038 24.5960 26.0247 k = 0.0000 0.6000 0.6000 band energies (ev): 10.1517 10.5384 10.8550 11.8731 12.3434 16.1947 22.1393 24.3503 k = 0.0000 0.7000 0.7000 band energies (ev): 10.0403 10.2352 11.2394 12.1022 12.5595 18.9479 19.9738 23.2571 k = 0.0000 0.8000 0.8000 band energies (ev): 9.6756 9.9822 11.8181 12.3733 12.7235 18.1225 22.0028 22.8456 k = 0.0000 0.9000 0.9000 band energies (ev): 9.3740 9.7813 12.4875 12.5978 12.8254 16.6906 22.1916 25.8664 k = 0.0000 1.0000 1.0000 band energies (ev): 9.2585 9.7079 12.6856 12.8600 12.8600 16.0644 22.1077 28.1796 k = 0.0000 0.0000 0.0000 band energies (ev): 4.9902 11.2012 11.2012 11.2012 12.0901 12.0901 38.8601 41.0130 k = 0.1000 0.1000 0.1000 band energies (ev): 5.3641 11.1241 11.2711 11.2711 12.0661 12.0661 35.6738 39.3797 k = 0.2000 0.2000 0.2000 band energies (ev): 6.4305 10.9739 11.3755 11.3755 12.0912 12.0912 30.1316 38.8250 k = 0.3000 0.3000 0.3000 band energies (ev): 7.9084 11.0662 11.3280 11.3280 12.3174 12.3174 25.0854 38.0355 k = 0.4000 0.4000 0.4000 band energies (ev): 8.9121 11.2162 11.2162 12.1712 12.5899 12.5899 20.8495 37.3033 k = 0.5000 0.5000 0.5000 band energies (ev): 9.1126 11.1667 11.1667 12.7053 12.7053 13.4643 18.6413 37.0214 Writing output data file cu.save PWSCF : 1.60s CPU time, 1.64s wall time init_run : 0.64s CPU electrons : 0.64s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.01s CPU Called by electrons: c_bands : 0.63s CPU v_of_rho : 0.00s CPU newd : 0.02s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) cegterg : 0.57s CPU ( 30 calls, 0.019 s avg) Called by *egterg: h_psi : 0.40s CPU ( 419 calls, 0.001 s avg) s_psi : 0.01s CPU ( 419 calls, 0.000 s avg) g_psi : 0.01s CPU ( 361 calls, 0.000 s avg) cdiaghg : 0.15s CPU ( 389 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 419 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 419 calls, 0.000 s avg) cft3s : 0.30s CPU ( 3676 calls, 0.000 s avg) interpolate : 0.00s CPU davcio : 0.00s CPU ( 28 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example01/reference/cu.bands.out0000644000175000017500000006523212341373025021436 0ustar mbamba Program POST-PROC v.4.1a starts ... Today is 10Jul2009 at 21:27:34 Parallel version (MPI) Number of processors in use: 1 file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 331 ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = 4.99015 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 11.20118 eV 3 --> T_2g G_25' G_5+ e( 5 - 6) = 12.09011 eV 2 --> E_g G_12 G_3+ e( 7 - 7) = 38.86010 eV 1 --> A_2u G_2' G_2- e( 8 - 8) = 41.01302 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.10000 ) point group C_4v (4mm) there are 5 classes the character table: E 2C4 C2 2s_v 2s_d A_1 1.00 1.00 1.00 1.00 1.00 A_2 1.00 1.00 1.00 -1.00 -1.00 B_1 1.00 -1.00 1.00 1.00 -1.00 B_2 1.00 -1.00 1.00 -1.00 1.00 E 2.00 0.00 -2.00 0.00 0.00 the symmetry operations in each class: E 1 C2 2 2C4 3 4 2s_v 5 6 2s_d 7 8 Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 5.11572 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 11.16272 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 11.23258 eV 2 --> E G_5 D_5 e( 5 - 5) = 12.05515 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 12.10443 eV 1 --> B_1 G_3 D_2 e( 7 - 7) = 38.34422 eV 1 --> B_2 G_4 D_2' e( 8 - 8) = 39.73857 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.20000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 5.48782 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 11.05169 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 11.32569 eV 2 --> E G_5 D_5 e( 5 - 5) = 11.95684 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 12.14603 eV 1 --> B_1 G_3 D_2 e( 7 - 7) = 37.30805 eV 1 --> B_2 G_4 D_2' e( 8 - 8) = 37.73990 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.30000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 6.09043 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 10.88051 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 11.47692 eV 2 --> E G_5 D_5 e( 5 - 5) = 11.81553 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 12.21105 eV 1 --> B_1 G_3 D_2 e( 7 - 8) = 35.78035 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.40000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 6.88721 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 10.66741 eV 1 --> B_2 G_4 D_2' e( 3 - 3) = 11.67615 eV 1 --> A_1 G_1 D_1 e( 4 - 5) = 11.67873 eV 2 --> E G_5 D_5 e( 6 - 6) = 12.29334 eV 1 --> B_1 G_3 D_2 e( 7 - 8) = 33.96674 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.50000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 7.79426 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 10.43481 eV 1 --> B_2 G_4 D_2' e( 3 - 3) = 11.63256 eV 1 --> A_1 G_1 D_1 e( 4 - 5) = 11.91924 eV 2 --> E G_5 D_5 e( 6 - 6) = 12.38498 eV 1 --> B_1 G_3 D_2 e( 7 - 8) = 32.33930 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.60000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 8.61966 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 10.20600 eV 1 --> B_2 G_4 D_2' e( 3 - 3) = 11.88392 eV 1 --> A_1 G_1 D_1 e( 4 - 5) = 12.18053 eV 2 --> E G_5 D_5 e( 6 - 6) = 12.47720 eV 1 --> B_1 G_3 D_2 e( 7 - 7) = 30.75602 eV 1 --> A_1 G_1 D_1 e( 8 - 8) = 30.92991 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.70000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 9.10267 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 10.00277 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 12.43673 eV 2 --> E G_5 D_5 e( 5 - 5) = 12.56114 eV 1 --> B_1 G_3 D_2 e( 6 - 6) = 12.68325 eV 1 --> A_1 G_1 D_1 e( 7 - 7) = 27.83769 eV 1 --> A_1 G_1 D_1 e( 8 - 8) = 29.77229 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.80000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 9.25125 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 9.84354 eV 1 --> B_2 G_4 D_2' e( 3 - 3) = 12.62779 eV 1 --> B_1 G_3 D_2 e( 4 - 5) = 12.65649 eV 2 --> E G_5 D_5 e( 6 - 6) = 13.97303 eV 1 --> A_1 G_1 D_1 e( 7 - 7) = 25.19066 eV 1 --> A_1 G_1 D_1 e( 8 - 8) = 28.90422 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.90000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = 9.26422 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 9.74231 eV 1 --> B_2 G_4 D_2' e( 3 - 3) = 12.67073 eV 1 --> B_1 G_3 D_2 e( 4 - 5) = 12.80637 eV 2 --> E G_5 D_5 e( 6 - 6) = 15.35755 eV 1 --> A_1 G_1 D_1 e( 7 - 7) = 23.05578 eV 1 --> A_1 G_1 D_1 e( 8 - 8) = 28.36357 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 1.00000 ) point group D_4h(4/mmm) there are 10 classes the character table: E 2C4 C2 2C2' 2C2'' i 2S4 s_h 2s_v 2s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 1.00 -1.00 -1.00 1.00 1.00 1.00 -1.00 -1.00 B_1g 1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00 1.00 1.00 -1.00 B_2g 1.00 -1.00 1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00 1.00 E_g 2.00 0.00 -2.00 0.00 0.00 2.00 0.00 -2.00 0.00 0.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 1.00 1.00 B_1u 1.00 -1.00 1.00 1.00 -1.00 -1.00 1.00 -1.00 -1.00 1.00 B_2u 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 E_u 2.00 0.00 -2.00 0.00 0.00 -2.00 0.00 2.00 0.00 0.00 the symmetry operations in each class: E 1 C2 2 2C2' 3 4 2C2'' 5 6 2C4 7 8 i 9 s_h 10 2s_v 11 12 2s_d 13 14 2S4 15 16 Band symmetry, D_4h(4/mmm) point group: e( 1 - 1) = 9.25850 eV 1 --> A_1g X_1 M_1 e( 2 - 2) = 9.70788 eV 1 --> B_2g X_3 M_3 e( 3 - 3) = 12.68564 eV 1 --> B_1g X_2 M_2 e( 4 - 5) = 12.85999 eV 2 --> E_g X_5 M_5 e( 6 - 6) = 16.06445 eV 1 --> A_2u X_4' M_4' e( 7 - 7) = 22.10773 eV 1 --> A_1g X_1 M_1 e( 8 - 8) = 28.17964 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = 4.99015 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 11.20118 eV 3 --> T_2g G_25' G_5+ e( 5 - 6) = 12.09011 eV 2 --> E_g G_12 G_3+ e( 7 - 7) = 38.86010 eV 1 --> A_2u G_2' G_2- e( 8 - 8) = 41.01302 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.10000, 0.10000 ) point group C_2v (mm2) there are 4 classes the character table: E C2 s_xz s_yz A_1 1.00 1.00 1.00 1.00 A_2 1.00 1.00 -1.00 -1.00 B_1 1.00 -1.00 1.00 -1.00 B_2 1.00 -1.00 -1.00 1.00 the symmetry operations in each class: E 1 C2 2 s_xz 3 s_yz 4 Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 5.24041 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 11.14214 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 11.24727 eV 1 --> A_2 D_2 S_2 e( 4 - 4) = 11.25939 eV 1 --> A_1 D_1 S_1 e( 5 - 5) = 12.04599 eV 1 --> B_1 D_3 S_3 e( 6 - 6) = 12.09755 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 37.20376 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 38.20872 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.20000, 0.20000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 5.97053 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 10.99015 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 11.37028 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 11.37970 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 11.93457 eV 1 --> B_1 D_3 S_3 e( 6 - 6) = 12.17093 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 33.74860 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 34.51249 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.30000, 0.30000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 7.10606 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 10.80924 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 11.36652 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 11.58181 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 11.80804 eV 1 --> B_1 D_3 S_3 e( 6 - 6) = 12.45660 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 30.40070 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 31.16348 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.40000, 0.40000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 8.46188 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 10.68048 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 11.18972 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 11.72783 eV 1 --> B_1 D_3 S_3 e( 5 - 5) = 11.82885 eV 1 --> A_2 D_2 S_2 e( 6 - 6) = 13.06207 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 27.34694 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 28.30879 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.50000, 0.50000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 9.62663 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 10.67739 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 10.89456 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 11.74267 eV 1 --> B_1 D_3 S_3 e( 5 - 5) = 12.09197 eV 1 --> A_2 D_2 S_2 e( 6 - 6) = 14.20383 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 24.59597 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 26.02470 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.60000, 0.60000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 10.15167 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 10.53844 eV 1 --> A_1 D_1 S_1 e( 3 - 3) = 10.85505 eV 1 --> B_2 D_4 S_4 e( 4 - 4) = 11.87307 eV 1 --> B_1 D_3 S_3 e( 5 - 5) = 12.34336 eV 1 --> A_2 D_2 S_2 e( 6 - 6) = 16.19472 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 22.13928 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 24.35028 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.70000, 0.70000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 10.04028 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 10.23520 eV 1 --> A_1 D_1 S_1 e( 3 - 3) = 11.23943 eV 1 --> B_2 D_4 S_4 e( 4 - 4) = 12.10222 eV 1 --> B_1 D_3 S_3 e( 5 - 5) = 12.55949 eV 1 --> A_2 D_2 S_2 e( 6 - 6) = 18.94786 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 19.97382 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 23.25714 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.80000, 0.80000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 9.67555 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 9.98224 eV 1 --> A_1 D_1 S_1 e( 3 - 3) = 11.81809 eV 1 --> B_2 D_4 S_4 e( 4 - 4) = 12.37326 eV 1 --> B_1 D_3 S_3 e( 5 - 5) = 12.72353 eV 1 --> A_2 D_2 S_2 e( 6 - 6) = 18.12250 eV 1 --> B_2 D_4 S_4 e( 7 - 7) = 22.00282 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 22.84556 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.90000, 0.90000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = 9.37403 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 9.78135 eV 1 --> A_1 D_1 S_1 e( 3 - 3) = 12.48747 eV 1 --> B_2 D_4 S_4 e( 4 - 4) = 12.59777 eV 1 --> B_1 D_3 S_3 e( 5 - 5) = 12.82539 eV 1 --> A_2 D_2 S_2 e( 6 - 6) = 16.69060 eV 1 --> B_2 D_4 S_4 e( 7 - 7) = 22.19158 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 25.86637 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 1.00000, 1.00000 ) point group D_4h(4/mmm) there are 10 classes the character table: E 2C4 C2 2C2' 2C2'' i 2S4 s_h 2s_v 2s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 1.00 -1.00 -1.00 1.00 1.00 1.00 -1.00 -1.00 B_1g 1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00 1.00 1.00 -1.00 B_2g 1.00 -1.00 1.00 -1.00 1.00 1.00 -1.00 1.00 -1.00 1.00 E_g 2.00 0.00 -2.00 0.00 0.00 2.00 0.00 -2.00 0.00 0.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 1.00 1.00 B_1u 1.00 -1.00 1.00 1.00 -1.00 -1.00 1.00 -1.00 -1.00 1.00 B_2u 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 E_u 2.00 0.00 -2.00 0.00 0.00 -2.00 0.00 2.00 0.00 0.00 the symmetry operations in each class: E 1 2C2' 2 3 C2 4 2C2'' 5 6 2C4 7 8 i 9 2s_v 10 11 s_h 12 2s_d 13 14 2S4 15 16 Band symmetry, D_4h(4/mmm) point group: e( 1 - 1) = 9.25850 eV 1 --> A_1g X_1 M_1 e( 2 - 2) = 9.70788 eV 1 --> B_2g X_3 M_3 e( 3 - 3) = 12.68564 eV 1 --> B_1g X_2 M_2 e( 4 - 5) = 12.85999 eV 2 --> E_g X_5 M_5 e( 6 - 6) = 16.06445 eV 1 --> A_2u X_4' M_4' e( 7 - 7) = 22.10773 eV 1 --> A_1g X_1 M_1 e( 8 - 8) = 28.17964 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = 4.99015 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 11.20118 eV 3 --> T_2g G_25' G_5+ e( 5 - 6) = 12.09011 eV 2 --> E_g G_12 G_3+ e( 7 - 7) = 38.86010 eV 1 --> A_2u G_2' G_2- e( 8 - 8) = 41.01302 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.10000, 0.10000, 0.10000 ) point group C_3v (3m) there are 3 classes the character table: E 2C3 3s_v A_1 1.00 1.00 1.00 A_2 1.00 1.00 -1.00 E 2.00 -1.00 0.00 the symmetry operations in each class: E 1 2C3 2 3 3s_v 4 5 6 Band symmetry, C_3v (3m) point group: e( 1 - 1) = 5.36412 eV 1 --> A_1 L_1 e( 2 - 2) = 11.12414 eV 1 --> A_1 L_1 e( 3 - 4) = 11.27112 eV 2 --> E L_3 e( 5 - 6) = 12.06610 eV 2 --> E L_3 e( 7 - 7) = 35.67377 eV 1 --> A_1 L_1 e( 8 - 8) = 39.37968 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.20000, 0.20000, 0.20000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = 6.43050 eV 1 --> A_1 L_1 e( 2 - 2) = 10.97388 eV 1 --> A_1 L_1 e( 3 - 4) = 11.37553 eV 2 --> E L_3 e( 5 - 6) = 12.09122 eV 2 --> E L_3 e( 7 - 7) = 30.13159 eV 1 --> A_1 L_1 e( 8 - 8) = 38.82504 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.30000, 0.30000, 0.30000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = 7.90844 eV 1 --> A_1 L_1 e( 2 - 2) = 11.06617 eV 1 --> A_1 L_1 e( 3 - 4) = 11.32800 eV 2 --> E L_3 e( 5 - 6) = 12.31743 eV 2 --> E L_3 e( 7 - 7) = 25.08542 eV 1 --> A_1 L_1 e( 8 - 8) = 38.03552 eV 1 --> ? ************************************************************************** ************************************************************************** xk=( 0.40000, 0.40000, 0.40000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = 8.91212 eV 1 --> A_1 L_1 e( 2 - 3) = 11.21621 eV 2 --> E L_3 e( 4 - 4) = 12.17124 eV 1 --> A_1 L_1 e( 5 - 6) = 12.58992 eV 2 --> E L_3 e( 7 - 7) = 20.84946 eV 1 --> A_1 L_1 e( 8 - 8) = 37.30326 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.50000, 0.50000, 0.50000 ) point group D_3d (-3m) there are 6 classes the character table: E 2C3 3C2' i 2S6 3s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 2.00 -1.00 0.00 A_1u 1.00 1.00 1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 -2.00 1.00 0.00 the symmetry operations in each class: E 1 3C2' 2 4 3 2C3 5 6 i 7 3s_d 8 10 9 2S6 11 12 Band symmetry, D_3d (-3m) point group: e( 1 - 1) = 9.11264 eV 1 --> A_1g L_1 e( 2 - 3) = 11.16674 eV 2 --> E_g L_3 e( 4 - 5) = 12.70530 eV 2 --> E_g L_3 e( 6 - 6) = 13.46427 eV 1 --> A_2u L_2' e( 7 - 7) = 18.64128 eV 1 --> A_1g L_1 e( 8 - 8) = 37.02136 eV 1 --> A_2u L_2' ************************************************************************** espresso-5.1/PW/examples/example01/reference/si.scf.david.out0000644000175000017500000002443012341373025022207 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:20 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 20 npp = 20 ncplane = 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 20 253 2733 20 253 2733 85 531 bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 72.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 189.7462 ( 2733 G-vectors) FFT grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 350, 4) NL pseudopotentials 0.04 Mb ( 350, 8) Each V/rho on FFT grid 0.12 Mb ( 8000) Each G-vector array 0.02 Mb ( 2733) G-vector shells 0.00 Mb ( 65) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 350, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.98 Mb ( 8000, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.12 secs per-process dynamical memory: 8.1 Mb Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.75E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.30 secs total energy = -15.84097415 Ry Harris-Foulkes estimate = -15.86197052 Ry estimated scf accuracy < 0.06141563 Ry iteration # 2 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.68E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.37 secs total energy = -15.84406636 Ry Harris-Foulkes estimate = -15.84437081 Ry estimated scf accuracy < 0.00214295 Ry iteration # 3 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-05, avg # of iterations = 2.5 total cpu time spent up to now is 0.47 secs total energy = -15.84451020 Ry Harris-Foulkes estimate = -15.84454237 Ry estimated scf accuracy < 0.00007086 Ry iteration # 4 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.86E-07, avg # of iterations = 2.1 total cpu time spent up to now is 0.57 secs total energy = -15.84452620 Ry Harris-Foulkes estimate = -15.84452929 Ry estimated scf accuracy < 0.00000682 Ry iteration # 5 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.52E-08, avg # of iterations = 2.0 total cpu time spent up to now is 0.67 secs total energy = -15.84452724 Ry Harris-Foulkes estimate = -15.84452726 Ry estimated scf accuracy < 0.00000006 Ry iteration # 6 ecut= 18.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.18E-10, avg # of iterations = 2.7 total cpu time spent up to now is 0.78 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 335 PWs) bands (ev): -5.6039 4.6467 5.9568 5.9568 k = 0.1250 0.1250 0.3750 ( 338 PWs) bands (ev): -5.0584 3.0175 4.9012 4.9909 k = 0.1250 0.1250 0.6250 ( 337 PWs) bands (ev): -3.9883 1.3106 3.5165 3.9919 k = 0.1250 0.1250 0.8750 ( 343 PWs) bands (ev): -2.4615 -0.5936 2.7226 3.5069 k = 0.1250 0.3750 0.3750 ( 341 PWs) bands (ev): -4.5395 1.5909 3.8905 5.4636 k = 0.1250 0.3750 0.6250 ( 340 PWs) bands (ev): -3.5491 0.3750 2.8565 4.2745 k = 0.1250 0.3750 0.8750 ( 347 PWs) bands (ev): -2.2719 -0.7033 2.0783 3.2106 k = 0.1250 0.6250 0.6250 ( 344 PWs) bands (ev): -2.8220 -0.4390 2.1614 4.3230 k = 0.3750 0.3750 0.3750 ( 350 PWs) bands (ev): -4.0849 0.2304 5.1432 5.1432 k = 0.3750 0.3750 0.6250 ( 343 PWs) bands (ev): -3.3347 -0.5842 3.9340 4.6556 ! total energy = -15.84452726 Ry Harris-Foulkes estimate = -15.84452726 Ry estimated scf accuracy < 8.8E-10 Ry The total energy is the sum of the following terms: one-electron contribution = 4.79352695 Ry hartree contribution = 1.07664132 Ry xc contribution = -4.81493686 Ry ewald contribution = -16.89975867 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -10.23 -0.00006958 0.00000000 0.00000000 -10.23 0.00 0.00 0.00000000 -0.00006958 0.00000000 0.00 -10.23 0.00 0.00000000 0.00000000 -0.00006958 0.00 0.00 -10.23 Writing output data file silicon.save PWSCF : 0.92s CPU time, 1.10s wall time init_run : 0.09s CPU electrons : 0.66s CPU forces : 0.00s CPU stress : 0.03s CPU Called by init_run: wfcinit : 0.05s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.54s CPU ( 7 calls, 0.077 s avg) sum_band : 0.10s CPU ( 7 calls, 0.014 s avg) v_of_rho : 0.01s CPU ( 7 calls, 0.002 s avg) mix_rho : 0.01s CPU ( 7 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.02s CPU ( 170 calls, 0.000 s avg) cegterg : 0.52s CPU ( 70 calls, 0.007 s avg) Called by *egterg: h_psi : 0.51s CPU ( 213 calls, 0.002 s avg) g_psi : 0.01s CPU ( 133 calls, 0.000 s avg) cdiaghg : 0.01s CPU ( 193 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 213 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 233 calls, 0.000 s avg) cft3s : 0.54s CPU ( 1983 calls, 0.000 s avg) davcio : 0.00s CPU ( 240 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example01/reference/ni.band.cg.out0000644000175000017500000004130112341373025021631 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:37:35 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file NiUS.RRKJ3.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 56 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0357143 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0357143 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0357143 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0357143 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0357143 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0357143 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0357143 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0357143 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0357143 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0357143 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0357143 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0357143 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0357143 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0357143 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0357143 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0357143 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0357143 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0357143 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0357143 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0357143 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 k( 29) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 30) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0357143 k( 31) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0357143 k( 32) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0357143 k( 33) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0357143 k( 34) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0357143 k( 35) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0357143 k( 36) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0357143 k( 37) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0357143 k( 38) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0357143 k( 39) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0357143 k( 40) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 41) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0357143 k( 42) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0357143 k( 43) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0357143 k( 44) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0357143 k( 45) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0357143 k( 46) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0357143 k( 47) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0357143 k( 48) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0357143 k( 49) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0357143 k( 50) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0357143 k( 51) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 52) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 53) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 54) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 55) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 56) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 8) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 8, 8) Each matrix 0.00 Mb ( 18, 8) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 The potential is recalculated from file : ni.save/charge-density.dat Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 0.88 secs per-process dynamical memory: 7.3 Mb Band Structure Calculation CG style diagonalization ethr = 1.00E-08, avg # of iterations = 14.6 total cpu time spent up to now is 1.77 secs End of band structure calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): 5.7491 12.6857 12.6857 12.6857 13.9846 13.9846 39.8745 44.2744 k = 0.0000 0.0000 0.1000 band energies (ev): 5.8883 12.6323 12.7270 12.7270 13.9351 14.0037 39.6517 43.2966 k = 0.0000 0.0000 0.2000 band energies (ev): 6.2995 12.4786 12.8496 12.8496 13.7953 14.0593 39.1224 41.4406 k = 0.0000 0.0000 0.3000 band energies (ev): 6.9611 12.2434 13.0487 13.0487 13.5941 14.1463 38.4976 39.4332 k = 0.0000 0.0000 0.4000 band energies (ev): 7.8252 11.9552 13.3164 13.3164 13.3914 14.2569 37.4938 37.4938 k = 0.0000 0.0000 0.5000 band energies (ev): 8.7856 11.6436 13.3078 13.6373 13.6373 14.3808 35.6925 35.6925 k = 0.0000 0.0000 0.6000 band energies (ev): 9.6217 11.3408 13.5737 13.9885 13.9885 14.5059 33.7707 34.0980 k = 0.0000 0.0000 0.7000 band energies (ev): 10.0807 11.0748 14.3365 14.3365 14.4339 14.6200 30.9561 32.7655 k = 0.0000 0.0000 0.8000 band energies (ev): 10.1990 10.8683 14.6382 14.6382 14.7113 15.7859 28.3093 31.7513 k = 0.0000 0.0000 0.9000 band energies (ev): 10.1880 10.7377 14.7703 14.8460 14.8460 17.1895 26.1815 31.1124 k = 0.0000 0.0000 1.0000 band energies (ev): 10.1730 10.6933 14.7907 14.9204 14.9204 17.8715 25.2666 30.8932 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7491 12.6857 12.6857 12.6857 13.9846 13.9846 39.8745 44.2744 k = 0.0000 0.1000 0.1000 band energies (ev): 6.0263 12.6028 12.7461 12.7626 13.9217 13.9927 39.2137 41.5816 k = 0.0000 0.2000 0.2000 band energies (ev): 6.8297 12.3912 12.9145 12.9201 13.7631 14.0789 36.7317 37.7971 k = 0.0000 0.3000 0.3000 band energies (ev): 8.0641 12.1435 12.9237 13.1874 13.5840 14.4301 33.5734 34.3333 k = 0.0000 0.4000 0.4000 band energies (ev): 9.5147 11.9706 12.6921 13.4702 13.5168 15.1742 30.4778 31.3786 k = 0.0000 0.5000 0.5000 band energies (ev): 10.7580 11.9684 12.2943 13.4874 13.8710 16.4672 27.5861 29.0254 k = 0.0000 0.6000 0.6000 band energies (ev): 11.3247 11.8223 12.2026 13.6630 14.2122 18.5744 24.9337 27.3430 k = 0.0000 0.7000 0.7000 band energies (ev): 11.1555 11.4200 12.7040 13.9761 14.5076 21.4543 22.5362 26.3000 k = 0.0000 0.8000 0.8000 band energies (ev): 10.6973 11.0660 13.4599 14.3513 14.7329 20.4189 24.7038 25.9069 k = 0.0000 0.9000 0.9000 band energies (ev): 10.3184 10.7920 14.3669 14.6661 14.8730 18.6967 25.3156 28.6574 k = 0.0000 1.0000 1.0000 band energies (ev): 10.1730 10.6933 14.7907 14.9204 14.9204 17.8715 25.2666 30.8932 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7491 12.6857 12.6857 12.6857 13.9846 13.9846 39.8745 44.2744 k = 0.1000 0.1000 0.1000 band energies (ev): 6.1628 12.5767 12.7782 12.7782 13.9480 13.9480 38.3974 41.3946 k = 0.2000 0.2000 0.2000 band energies (ev): 7.3282 12.3631 12.9274 12.9274 13.9611 13.9611 33.2778 40.5232 k = 0.3000 0.3000 0.3000 band energies (ev): 8.8792 12.4605 12.8860 12.8860 14.2376 14.2376 28.1150 39.5576 k = 0.4000 0.4000 0.4000 band energies (ev): 9.8447 12.7469 12.7469 13.6854 14.5978 14.5978 23.7361 38.6690 k = 0.5000 0.5000 0.5000 band energies (ev): 10.0273 12.6833 12.6833 14.7538 14.7538 14.9657 21.5361 38.3257 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): 5.7794 13.3417 13.3417 13.3417 14.5871 14.5871 39.8447 44.2979 k = 0.0000 0.0000 0.1000 band energies (ev): 5.9185 13.2847 13.3840 13.3840 14.5350 14.6068 39.6408 43.3569 k = 0.0000 0.0000 0.2000 band energies (ev): 6.3298 13.1212 13.5100 13.5100 14.3870 14.6641 39.1532 41.5340 k = 0.0000 0.0000 0.3000 band energies (ev): 6.9930 12.8712 13.7149 13.7149 14.1711 14.7540 38.5744 39.5413 k = 0.0000 0.0000 0.4000 band energies (ev): 7.8640 12.5657 13.9436 13.9914 13.9914 14.8682 37.6041 37.6041 k = 0.0000 0.0000 0.5000 band energies (ev): 8.8496 12.2362 13.8127 14.3241 14.3241 14.9962 35.7973 35.7973 k = 0.0000 0.0000 0.6000 band energies (ev): 9.7569 11.9168 13.9817 14.6901 14.6901 15.1255 33.8938 34.1913 k = 0.0000 0.0000 0.7000 band energies (ev): 10.3265 11.6367 14.7006 15.0551 15.0551 15.2434 31.1187 32.8434 k = 0.0000 0.0000 0.8000 band energies (ev): 10.5246 11.4196 15.3379 15.3735 15.3735 15.9342 28.5125 31.8131 k = 0.0000 0.0000 0.9000 band energies (ev): 10.5493 11.2825 15.3989 15.5940 15.5940 17.2531 26.4336 31.1617 k = 0.0000 0.0000 1.0000 band energies (ev): 10.5439 11.2359 15.4200 15.6732 15.6732 17.8924 25.5515 30.9377 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7794 13.3417 13.3417 13.3417 14.5871 14.5871 39.8447 44.2979 k = 0.0000 0.1000 0.1000 band energies (ev): 6.0565 13.2514 13.4046 13.4198 14.5207 14.5954 39.2344 41.6365 k = 0.0000 0.2000 0.2000 band energies (ev): 6.8617 13.0207 13.5638 13.5859 14.3533 14.6911 36.8475 37.8760 k = 0.0000 0.3000 0.3000 band energies (ev): 8.1076 12.7476 13.5374 13.8646 14.1640 15.0674 33.7408 34.4349 k = 0.0000 0.4000 0.4000 band energies (ev): 9.6041 12.5492 13.2597 14.0425 14.2083 15.8044 30.6766 31.5028 k = 0.0000 0.5000 0.5000 band energies (ev): 10.9732 12.5257 12.8082 14.0574 14.5780 17.0019 27.8060 29.1744 k = 0.0000 0.6000 0.6000 band energies (ev): 11.7309 12.2612 12.7463 14.2379 14.9342 18.9493 25.1657 27.5225 k = 0.0000 0.7000 0.7000 band energies (ev): 11.6355 11.8501 13.2458 14.5632 15.2426 21.7047 22.7686 26.5137 k = 0.0000 0.8000 0.8000 band energies (ev): 11.1011 11.5847 14.0213 14.9561 15.4777 20.6313 24.9047 26.1245 k = 0.0000 0.9000 0.9000 band energies (ev): 10.6951 11.3323 14.9998 15.2880 15.6238 18.8375 25.5935 28.7588 k = 0.0000 1.0000 1.0000 band energies (ev): 10.5439 11.2359 15.4200 15.6732 15.6732 17.8924 25.5515 30.9377 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7794 13.3417 13.3417 13.3417 14.5871 14.5871 39.8447 44.2979 k = 0.1000 0.1000 0.1000 band energies (ev): 6.1932 13.2212 13.4367 13.4367 14.5487 14.5487 38.4599 41.3967 k = 0.2000 0.2000 0.2000 band energies (ev): 7.3656 12.9686 13.5765 13.5765 14.5748 14.5748 33.4238 40.5075 k = 0.3000 0.3000 0.3000 band energies (ev): 8.9824 12.9485 13.5019 13.5019 14.8923 14.8923 28.3213 39.5349 k = 0.4000 0.4000 0.4000 band energies (ev): 10.1536 13.3413 13.3413 13.8800 15.2837 15.2837 24.0318 38.6351 k = 0.5000 0.5000 0.5000 band energies (ev): 10.4257 13.2711 13.2711 14.9680 15.4509 15.4509 21.9345 38.2872 Writing output data file ni.save PWSCF : 1.88s CPU time, 2.53s wall time init_run : 0.81s CPU electrons : 0.89s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.01s CPU Called by electrons: c_bands : 0.89s CPU v_of_rho : 0.01s CPU newd : 0.02s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 56 calls, 0.000 s avg) ccgdiagg : 0.79s CPU ( 99 calls, 0.008 s avg) wfcrot : 0.09s CPU ( 99 calls, 0.001 s avg) Called by *cgdiagg: h_psi : 0.68s CPU ( 6219 calls, 0.000 s avg) s_psi : 0.06s CPU ( 12339 calls, 0.000 s avg) cdiaghg : 0.00s CPU ( 99 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.04s CPU ( 6219 calls, 0.000 s avg) General routines calbec : 0.03s CPU ( 12339 calls, 0.000 s avg) cft3 : 0.00s CPU ( 9 calls, 0.000 s avg) cft3s : 0.53s CPU ( 13826 calls, 0.000 s avg) interpolate : 0.00s CPU ( 2 calls, 0.001 s avg) davcio : 0.00s CPU ( 56 calls, 0.000 s avg) espresso-5.1/PW/examples/example01/reference/al.band.david.out0000644000175000017500000002452212341373025022323 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:37: 3 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file Al.vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0714286 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0714286 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0714286 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0714286 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0714286 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0714286 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0714286 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0714286 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0714286 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0714286 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0714286 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0714286 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0714286 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0714286 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0714286 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0714286 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0714286 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0714286 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0714286 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0714286 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0714286 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0714286 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0714286 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0714286 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0714286 G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 8) NL pseudopotentials 0.01 Mb ( 113, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.06 Mb ( 113, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 4, 8) Arrays for rho mixing 0.41 Mb ( 3375, 8) The potential is recalculated from file : al.save/charge-density.dat Starting wfc are 9 atomic wfcs total cpu time spent up to now is 0.08 secs per-process dynamical memory: 0.7 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 3.33E-08, avg # of iterations = 7.3 total cpu time spent up to now is 0.33 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -3.1911 21.1779 21.1779 21.1779 22.5548 22.5548 22.5548 28.4668 k = 0.0000 0.0000 0.1000 band energies (ev): -3.0960 20.2345 20.2345 20.4975 22.3537 23.6411 23.6411 25.9287 k = 0.0000 0.0000 0.2000 band energies (ev): -2.8098 18.9731 18.9731 19.2306 21.8284 24.6166 25.3242 25.3242 k = 0.0000 0.0000 0.3000 band energies (ev): -2.3374 17.8217 17.8217 17.9494 21.1220 21.9036 27.1376 27.1376 k = 0.0000 0.0000 0.4000 band energies (ev): -1.6744 16.7876 16.8290 16.8290 19.2414 20.3615 28.9855 28.9855 k = 0.0000 0.0000 0.5000 band energies (ev): -0.8359 15.7868 15.9782 15.9782 16.6943 19.6301 30.7665 30.7665 k = 0.0000 0.0000 0.6000 band energies (ev): 0.1793 14.2789 14.9597 15.2838 15.2838 18.9639 31.6188 32.4007 k = 0.0000 0.0000 0.7000 band energies (ev): 1.3651 12.0073 14.3128 14.7456 14.7456 18.4256 32.6725 33.8804 k = 0.0000 0.0000 0.8000 band energies (ev): 2.7094 9.8878 13.8492 14.3624 14.3624 18.0252 33.7772 35.2252 k = 0.0000 0.0000 0.9000 band energies (ev): 4.1819 7.9476 13.5676 14.1319 14.1319 17.7783 34.7373 36.3496 k = 0.0000 0.0000 1.0000 band energies (ev): 5.3310 6.6439 13.4746 14.0553 14.0553 17.6952 35.1698 36.8707 k = 0.0000 0.0000 0.0000 band energies (ev): -3.1911 21.1779 21.1779 21.1779 22.5548 22.5548 22.5548 28.4668 k = 0.0000 0.1000 0.1000 band energies (ev): -3.0011 18.9136 19.5392 21.3627 22.6653 23.4717 23.9539 26.8835 k = 0.0000 0.2000 0.2000 band energies (ev): -2.4299 16.1143 17.2993 21.9193 22.8616 24.0951 24.5795 25.4076 k = 0.0000 0.3000 0.3000 band energies (ev): -1.4870 13.5863 15.0768 21.6459 22.8444 23.7482 24.1181 24.8942 k = 0.0000 0.4000 0.4000 band energies (ev): -0.1882 11.3801 13.0087 19.6780 21.7703 24.1281 24.9937 25.9732 k = 0.0000 0.5000 0.5000 band energies (ev): 1.4594 9.5217 11.1700 17.9574 19.9890 25.7807 26.2524 27.3595 k = 0.0000 0.6000 0.6000 band energies (ev): 3.4333 8.0054 9.6038 16.5473 18.4499 27.7656 27.8169 29.0388 k = 0.0000 0.7000 0.7000 band energies (ev): 5.6963 6.8315 8.3756 15.4530 17.1962 26.1511 29.6916 30.0710 k = 0.0000 0.8000 0.8000 band energies (ev): 5.9965 7.2958 8.4235 14.6759 16.2200 22.4583 31.8163 33.2437 k = 0.0000 0.9000 0.9000 band energies (ev): 5.4971 6.8278 11.0939 14.2121 15.3774 19.2154 33.9822 35.5330 k = 0.0000 1.0000 1.0000 band energies (ev): 5.3310 6.6439 13.4746 14.0553 14.0553 17.6952 35.1698 36.8707 k = 0.0000 0.0000 0.0000 band energies (ev): -3.1911 21.1779 21.1779 21.1779 22.5548 22.5548 22.5548 28.4668 k = 0.1000 0.1000 0.1000 band energies (ev): -2.9062 17.7709 20.4032 20.4032 23.3001 23.7477 23.7477 27.0024 k = 0.2000 0.2000 0.2000 band energies (ev): -2.0533 13.7137 19.6279 19.6279 23.0615 24.2362 24.2362 26.4754 k = 0.3000 0.3000 0.3000 band energies (ev): -0.6503 9.9632 19.2750 19.2750 22.4589 22.4589 22.9269 26.5121 k = 0.4000 0.4000 0.4000 band energies (ev): 1.2756 6.6142 19.3716 19.3716 20.9653 20.9653 23.1546 24.9938 k = 0.5000 0.5000 0.5000 band energies (ev): 3.5956 3.8189 19.8981 19.8981 19.9672 19.9672 23.7149 23.9816 Writing output data file al.save PWSCF : 0.42s CPU time, 0.45s wall time init_run : 0.05s CPU electrons : 0.25s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.25s CPU v_of_rho : 0.00s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) cegterg : 0.22s CPU ( 28 calls, 0.008 s avg) Called by *egterg: h_psi : 0.16s CPU ( 261 calls, 0.001 s avg) g_psi : 0.00s CPU ( 205 calls, 0.000 s avg) cdiaghg : 0.06s CPU ( 233 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.00s CPU ( 261 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 261 calls, 0.000 s avg) cft3 : 0.00s CPU ( 3 calls, 0.000 s avg) cft3s : 0.12s CPU ( 3228 calls, 0.000 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.1/PW/examples/example01/reference/cu.band.cg.out0000644000175000017500000002612412341373025021640 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:28: 5 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Atomic positions and unit cell read from directory: /home/dalcorso/tmp/cu.save/ Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 331 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0714286 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0714286 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0714286 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0714286 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0714286 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0714286 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0714286 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0714286 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0714286 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0714286 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0714286 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0714286 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0714286 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0714286 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0714286 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0714286 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0714286 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0714286 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0714286 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0714286 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0714286 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0714286 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0714286 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0714286 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0714286 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 170, 8) NL pseudopotentials 0.03 Mb ( 170, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 8, 8) Each matrix 0.00 Mb ( 13, 8) The potential is recalculated from file : /home/dalcorso/tmp/cu.save/charge-density.dat Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 0.82 secs per-process dynamical memory: 10.0 Mb Band Structure Calculation CG style diagonalization ethr = 9.09E-09, avg # of iterations = 19.6 total cpu time spent up to now is 2.00 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): 4.9902 11.2013 11.2013 11.2013 12.0902 12.0902 38.8601 41.0130 k = 0.0000 0.0000 0.1000 band energies (ev): 5.1157 11.1628 11.2327 11.2327 12.0553 12.1046 38.3442 39.7386 k = 0.0000 0.0000 0.2000 band energies (ev): 5.4878 11.0518 11.3258 11.3258 11.9570 12.1462 37.3081 37.7399 k = 0.0000 0.0000 0.3000 band energies (ev): 6.0904 10.8806 11.4770 11.4770 11.8157 12.2112 35.7804 35.7804 k = 0.0000 0.0000 0.4000 band energies (ev): 6.8872 10.6675 11.6763 11.6789 11.6789 12.2935 33.9668 33.9668 k = 0.0000 0.0000 0.5000 band energies (ev): 7.7943 10.4349 11.6327 11.9194 11.9194 12.3851 32.3393 32.3393 k = 0.0000 0.0000 0.6000 band energies (ev): 8.6197 10.2061 11.8840 12.1807 12.1807 12.4773 30.7560 30.9299 k = 0.0000 0.0000 0.7000 band energies (ev): 9.1027 10.0029 12.4369 12.4369 12.5613 12.6833 27.8377 29.7723 k = 0.0000 0.0000 0.8000 band energies (ev): 9.2513 9.8437 12.6279 12.6566 12.6566 13.9731 25.1907 28.9042 k = 0.0000 0.0000 0.9000 band energies (ev): 9.2643 9.7424 12.6709 12.8065 12.8065 15.3576 23.0558 28.3636 k = 0.0000 0.0000 1.0000 band energies (ev): 9.2586 9.7080 12.6858 12.8601 12.8601 16.0644 22.1078 28.1796 k = 0.0000 0.0000 0.0000 band energies (ev): 4.9902 11.2013 11.2013 11.2013 12.0902 12.0902 38.8601 41.0130 k = 0.0000 0.1000 0.1000 band energies (ev): 5.2404 11.1423 11.2474 11.2595 12.0461 12.0977 37.2038 38.2087 k = 0.0000 0.2000 0.2000 band energies (ev): 5.9705 10.9903 11.3704 11.3798 11.9347 12.1711 33.7486 34.5125 k = 0.0000 0.3000 0.3000 band energies (ev): 7.1061 10.8094 11.3666 11.5819 11.8082 12.4567 30.4007 31.1635 k = 0.0000 0.4000 0.4000 band energies (ev): 8.4619 10.6806 11.1898 11.7280 11.8290 13.0622 27.3470 28.3088 k = 0.0000 0.5000 0.5000 band energies (ev): 9.6267 10.6775 10.8947 11.7428 12.0921 14.2039 24.5960 26.0247 k = 0.0000 0.6000 0.6000 band energies (ev): 10.1518 10.5385 10.8552 11.8732 12.3435 16.1948 22.1393 24.3503 k = 0.0000 0.7000 0.7000 band energies (ev): 10.0404 10.2353 11.2395 12.1024 12.5596 18.9479 19.9739 23.2572 k = 0.0000 0.8000 0.8000 band energies (ev): 9.6756 9.9823 11.8182 12.3734 12.7237 18.1225 22.0029 22.8456 k = 0.0000 0.9000 0.9000 band energies (ev): 9.3741 9.7815 12.4876 12.5979 12.8255 16.6906 22.1916 25.8664 k = 0.0000 1.0000 1.0000 band energies (ev): 9.2586 9.7080 12.6858 12.8601 12.8601 16.0644 22.1078 28.1796 k = 0.0000 0.0000 0.0000 band energies (ev): 4.9902 11.2013 11.2013 11.2013 12.0902 12.0902 38.8601 41.0130 k = 0.1000 0.1000 0.1000 band energies (ev): 5.3641 11.1243 11.2712 11.2712 12.0662 12.0662 35.6738 39.3797 k = 0.2000 0.2000 0.2000 band energies (ev): 6.4305 10.9740 11.3757 11.3757 12.0914 12.0914 30.1316 38.8251 k = 0.3000 0.3000 0.3000 band energies (ev): 7.9085 11.0663 11.3281 11.3281 12.3176 12.3176 25.0854 38.0372 k = 0.4000 0.4000 0.4000 band energies (ev): 8.9122 11.2163 11.2163 12.1713 12.5901 12.5901 20.8495 37.3032 k = 0.5000 0.5000 0.5000 band energies (ev): 9.1127 11.1669 11.1669 12.7054 12.7054 13.4643 18.6413 37.0213 Writing output data file cu.save PWSCF : 2.14s CPU time, 2.33s wall time init_run : 0.64s CPU electrons : 1.18s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.01s CPU Called by electrons: c_bands : 1.18s CPU v_of_rho : 0.00s CPU newd : 0.02s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) ccgdiagg : 1.05s CPU ( 68 calls, 0.015 s avg) wfcrot : 0.13s CPU ( 68 calls, 0.002 s avg) Called by *cgdiagg: h_psi : 0.99s CPU ( 4069 calls, 0.000 s avg) s_psi : 0.03s CPU ( 8070 calls, 0.000 s avg) cdiaghg : 0.00s CPU ( 68 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.03s CPU ( 4069 calls, 0.000 s avg) General routines calbec : 0.04s CPU ( 8070 calls, 0.000 s avg) cft3s : 0.72s CPU ( 9096 calls, 0.000 s avg) interpolate : 0.00s CPU davcio : 0.00s CPU ( 28 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example01/reference/si.band.david.out0000644000175000017500000002465112341373025022345 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:37: 0 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 72.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0714286 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0714286 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0714286 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0714286 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0714286 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0714286 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0714286 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0714286 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0714286 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0714286 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0714286 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0714286 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0714286 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0714286 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0714286 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0714286 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0714286 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0714286 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0714286 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0714286 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0714286 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0714286 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0714286 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0714286 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0714286 G cutoff = 189.7462 ( 2733 G-vectors) FFT grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.04 Mb ( 351, 8) NL pseudopotentials 0.04 Mb ( 351, 8) Each V/rho on FFT grid 0.12 Mb ( 8000) Each G-vector array 0.02 Mb ( 2733) G-vector shells 0.00 Mb ( 65) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.17 Mb ( 351, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.98 Mb ( 8000, 8) The potential is recalculated from file : silicon.save/charge-density.dat Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.07 secs per-process dynamical memory: 1.5 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-08, avg # of iterations = 10.5 total cpu time spent up to now is 0.99 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 k = 0.0000 0.0000 0.1000 band energies (ev): -5.7668 5.9810 6.0722 6.0722 8.7104 9.0571 9.0571 9.9838 k = 0.0000 0.0000 0.2000 band energies (ev): -5.6337 5.3339 5.6601 5.6601 8.4238 9.6301 9.6301 10.5192 k = 0.0000 0.0000 0.3000 band energies (ev): -5.4133 4.5265 5.1859 5.1859 8.0516 10.3698 10.3698 10.7062 k = 0.0000 0.0000 0.4000 band energies (ev): -5.1063 3.6529 4.7266 4.7266 7.6724 10.1364 11.1866 11.1866 k = 0.0000 0.0000 0.5000 band energies (ev): -4.7129 2.7564 4.3161 4.3161 7.3316 9.3547 12.0595 12.0595 k = 0.0000 0.0000 0.6000 band energies (ev): -4.2358 1.8517 3.9694 3.9694 7.0565 8.6170 12.9618 12.9618 k = 0.0000 0.0000 0.7000 band energies (ev): -3.6801 0.9502 3.6936 3.6936 6.8654 7.9924 13.8856 13.8856 k = 0.0000 0.0000 0.8000 band energies (ev): -3.0530 0.0683 3.4948 3.4948 6.7657 7.4943 14.8291 14.8291 k = 0.0000 0.0000 0.9000 band energies (ev): -2.3563 -0.7867 3.3738 3.3738 6.7691 7.1285 15.7632 15.7632 k = 0.0000 0.0000 1.0000 band energies (ev): -1.5978 -1.5978 3.3334 3.3334 6.8886 6.8886 16.4070 16.4070 k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 k = 0.0000 0.1000 0.1000 band energies (ev): -5.7218 5.5180 5.8909 6.2146 8.9135 8.9856 9.0810 10.3168 k = 0.0000 0.2000 0.2000 band energies (ev): -5.4577 4.2238 5.0583 6.0750 9.1873 9.2787 9.3685 11.4991 k = 0.0000 0.3000 0.3000 band energies (ev): -5.0244 2.9330 4.0923 5.8016 9.3562 9.6416 9.8965 11.9166 k = 0.0000 0.4000 0.4000 band energies (ev): -4.4382 1.7660 3.1712 5.3917 9.1678 10.2713 10.5715 11.9975 k = 0.0000 0.5000 0.5000 band energies (ev): -3.7277 0.7540 2.3987 4.8964 8.6931 11.0753 11.3920 12.4083 k = 0.0000 0.6000 0.6000 band energies (ev): -2.9584 -0.0844 1.8684 4.3957 8.1262 12.0466 12.3047 13.1205 k = 0.0000 0.7000 0.7000 band energies (ev): -2.2636 -0.7459 1.7118 3.9544 7.6098 11.3920 13.1675 13.6967 k = 0.0000 0.8000 0.8000 band energies (ev): -1.8118 -1.2182 2.0701 3.6165 7.2165 9.3814 14.4148 15.0152 k = 0.0000 0.9000 0.9000 band energies (ev): -1.6351 -1.5030 2.8302 3.4052 6.9710 7.6840 15.6697 15.9429 k = 0.0000 1.0000 1.0000 band energies (ev): -1.5978 -1.5978 3.3334 3.3334 6.8886 6.8886 16.4070 16.4070 k = 0.0000 0.0000 0.0000 band energies (ev): -5.8099 6.2549 6.2549 6.2549 8.8221 8.8221 8.8221 9.7232 k = 0.1000 0.1000 0.1000 band energies (ev): -5.6783 5.1038 6.0496 6.0496 8.8476 9.1205 9.1205 10.6116 k = 0.2000 0.2000 0.2000 band energies (ev): -5.2848 3.2219 5.6599 5.6599 8.5038 9.6359 9.6359 12.3332 k = 0.3000 0.3000 0.3000 band energies (ev): -4.6592 1.4043 5.3188 5.3188 8.1385 9.8032 9.8032 13.8447 k = 0.4000 0.4000 0.4000 band energies (ev): -3.8910 -0.1018 5.1024 5.1024 7.9003 9.6788 9.6788 13.9593 k = 0.5000 0.5000 0.5000 band energies (ev): -3.4180 -0.8220 5.0289 5.0289 7.8139 9.5968 9.5968 13.8378 Writing output data file silicon.save PWSCF : 1.08s CPU time, 1.12s wall time init_run : 0.05s CPU electrons : 0.93s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.93s CPU v_of_rho : 0.00s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) cegterg : 0.83s CPU ( 28 calls, 0.030 s avg) Called by *egterg: h_psi : 0.71s CPU ( 351 calls, 0.002 s avg) g_psi : 0.02s CPU ( 295 calls, 0.000 s avg) cdiaghg : 0.06s CPU ( 323 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 351 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 351 calls, 0.000 s avg) cft3 : 0.00s CPU ( 3 calls, 0.000 s avg) cft3s : 0.61s CPU ( 4162 calls, 0.000 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.1/PW/examples/example01/reference/ni.scf.cg.out0000644000175000017500000011316412341373025021507 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:28: 7 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 25 npp = 25 ncplane = 625 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 25 421 5601 15 139 1067 55 259 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file Ni.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 120 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0039062 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0117188 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0117188 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0117188 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0117188 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0117188 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0117188 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0117188 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0117188 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0234375 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0234375 k( 12) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0234375 k( 13) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0234375 k( 14) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0234375 k( 15) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0234375 k( 16) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0117188 k( 17) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0234375 k( 18) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0234375 k( 19) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0234375 k( 20) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0234375 k( 21) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0234375 k( 22) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0117188 k( 23) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0234375 k( 24) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0234375 k( 25) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0234375 k( 26) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0234375 k( 27) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0117188 k( 28) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0234375 k( 29) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0234375 k( 30) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0117188 k( 31) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0234375 k( 32) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0117188 k( 33) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0039062 k( 34) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0117188 k( 35) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0117188 k( 36) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0117188 k( 37) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0117188 k( 38) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0117188 k( 39) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0117188 k( 40) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0234375 k( 41) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0234375 k( 42) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0234375 k( 43) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0234375 k( 44) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0117188 k( 45) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0234375 k( 46) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0234375 k( 47) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0234375 k( 48) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0117188 k( 49) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0234375 k( 50) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0117188 k( 51) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0039062 k( 52) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0117188 k( 53) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0117188 k( 54) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0117188 k( 55) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0117188 k( 56) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0234375 k( 57) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0234375 k( 58) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0117188 k( 59) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0039062 k( 60) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0117188 k( 61) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0039062 k( 62) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0117188 k( 63) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0117188 k( 64) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0117188 k( 65) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0117188 k( 66) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0117188 k( 67) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0117188 k( 68) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0117188 k( 69) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0117188 k( 70) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0234375 k( 71) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0234375 k( 72) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0234375 k( 73) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0234375 k( 74) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0234375 k( 75) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0234375 k( 76) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0117188 k( 77) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0234375 k( 78) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0234375 k( 79) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0234375 k( 80) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0234375 k( 81) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0234375 k( 82) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0117188 k( 83) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0234375 k( 84) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0234375 k( 85) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0234375 k( 86) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0234375 k( 87) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0117188 k( 88) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0234375 k( 89) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0234375 k( 90) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0117188 k( 91) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0234375 k( 92) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0117188 k( 93) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0039062 k( 94) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0117188 k( 95) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0117188 k( 96) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0117188 k( 97) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0117188 k( 98) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0117188 k( 99) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0117188 k( 100) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0234375 k( 101) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0234375 k( 102) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0234375 k( 103) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0234375 k( 104) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0117188 k( 105) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0234375 k( 106) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0234375 k( 107) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0234375 k( 108) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0117188 k( 109) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0234375 k( 110) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0117188 k( 111) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0039062 k( 112) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0117188 k( 113) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0117188 k( 114) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0117188 k( 115) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0117188 k( 116) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0234375 k( 117) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0234375 k( 118) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0117188 k( 119) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0039062 k( 120) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0117188 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 9, 9) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 atomic + 3 random wfc total cpu time spent up to now is 1.50 secs per-process dynamical memory: 11.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 4.4 total cpu time spent up to now is 2.95 secs total energy = -85.36096599 Ry Harris-Foulkes estimate = -85.36514502 Ry estimated scf accuracy < 0.90141751 Ry total magnetization = 1.84 Bohr mag/cell absolute magnetization = 1.85 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 9.01E-03, avg # of iterations = 3.2 total cpu time spent up to now is 4.05 secs total energy = -85.54122001 Ry Harris-Foulkes estimate = -85.82958006 Ry estimated scf accuracy < 0.86841827 Ry total magnetization = 0.68 Bohr mag/cell absolute magnetization = 0.80 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 8.68E-03, avg # of iterations = 3.0 total cpu time spent up to now is 5.08 secs total energy = -85.71078604 Ry Harris-Foulkes estimate = -85.68406274 Ry estimated scf accuracy < 0.04302436 Ry total magnetization = 1.00 Bohr mag/cell absolute magnetization = 1.10 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 4.30E-04, avg # of iterations = 3.0 total cpu time spent up to now is 6.10 secs total energy = -85.72197191 Ry Harris-Foulkes estimate = -85.72140004 Ry estimated scf accuracy < 0.00131660 Ry total magnetization = 0.62 Bohr mag/cell absolute magnetization = 0.74 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 1.32E-05, avg # of iterations = 3.4 total cpu time spent up to now is 7.23 secs total energy = -85.72236901 Ry Harris-Foulkes estimate = -85.72222338 Ry estimated scf accuracy < 0.00023033 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.68 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 2.30E-06, avg # of iterations = 3.4 total cpu time spent up to now is 8.35 secs total energy = -85.72248656 Ry Harris-Foulkes estimate = -85.72248257 Ry estimated scf accuracy < 0.00003069 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 3.07E-07, avg # of iterations = 3.0 total cpu time spent up to now is 9.38 secs total energy = -85.72249034 Ry Harris-Foulkes estimate = -85.72248982 Ry estimated scf accuracy < 0.00000225 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 8 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 2.25E-08, avg # of iterations = 3.2 total cpu time spent up to now is 10.48 secs total energy = -85.72249130 Ry Harris-Foulkes estimate = -85.72249087 Ry estimated scf accuracy < 0.00000101 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 9 ecut= 24.00 Ry beta=0.70 CG style diagonalization ethr = 1.01E-08, avg # of iterations = 3.0 total cpu time spent up to now is 11.50 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0625 0.0625 0.0625 ( 137 PWs) bands (ev): 5.9120 12.6401 12.7235 12.7235 13.9672 13.9672 39.4726 42.4109 44.0014 k = 0.0625 0.0625 0.1875 ( 137 PWs) bands (ev): 6.3390 12.4939 12.8361 12.8409 13.8264 14.0337 38.2933 40.8113 41.8234 k = 0.0625 0.0625 0.3125 ( 136 PWs) bands (ev): 7.1584 12.2109 13.0524 13.0698 13.6128 14.1569 36.6038 39.3135 39.3758 k = 0.0625 0.0625 0.4375 ( 135 PWs) bands (ev): 8.2720 11.8505 13.1516 13.3955 13.6433 14.3188 34.7983 36.9240 37.9143 k = 0.0625 0.0625 0.5625 ( 135 PWs) bands (ev): 9.4203 11.4728 13.1991 13.7874 14.1061 14.4958 33.0561 34.8021 35.0427 k = 0.0625 0.0625 0.6875 ( 131 PWs) bands (ev): 10.1165 11.1346 13.7245 14.1927 14.6627 14.9101 31.2033 31.8423 33.0617 k = 0.0625 0.0625 0.8125 ( 131 PWs) bands (ev): 10.2636 10.8825 14.3316 14.5325 14.7985 16.3746 28.0531 30.5458 31.8084 k = 0.0625 0.0625 0.9375 ( 131 PWs) bands (ev): 10.2377 10.7485 14.6331 14.7176 14.8871 17.9390 25.6718 29.9311 31.1465 k = 0.0625 0.1875 0.1875 ( 140 PWs) bands (ev): 6.7532 12.4198 12.8933 12.8975 13.8046 14.0430 36.2755 39.1047 42.8592 k = 0.0625 0.1875 0.3125 ( 138 PWs) bands (ev): 7.5452 12.2046 12.9777 13.0813 13.6868 14.2125 34.2597 37.1139 41.9176 k = 0.0625 0.1875 0.4375 ( 138 PWs) bands (ev): 8.6157 11.8967 12.9164 13.3632 13.8097 14.4734 32.4181 35.2311 39.3632 k = 0.0625 0.1875 0.5625 ( 138 PWs) bands (ev): 9.7155 11.5622 12.8188 13.7138 14.2261 14.8741 30.7918 33.4967 35.6958 k = 0.0625 0.1875 0.6875 ( 135 PWs) bands (ev): 10.3793 11.2563 13.0672 14.0980 14.5776 15.7747 29.4218 31.5621 32.4411 k = 0.0625 0.1875 0.8125 ( 131 PWs) bands (ev): 10.5002 11.0253 13.5612 14.4139 14.7599 17.3449 28.0922 28.6879 31.1642 k = 0.0625 0.1875 0.9375 ( 129 PWs) bands (ev): 10.4586 10.9026 13.9043 14.5421 14.8703 18.9888 25.7859 27.9626 30.5806 k = 0.0625 0.3125 0.3125 ( 140 PWs) bands (ev): 8.2767 12.1318 12.9064 13.1707 13.6340 14.4851 32.1371 35.0423 43.2095 k = 0.0625 0.3125 0.4375 ( 140 PWs) bands (ev): 9.2452 11.9632 12.7382 13.3504 13.7362 14.9227 30.2767 33.2183 40.3511 k = 0.0625 0.3125 0.5625 ( 138 PWs) bands (ev): 10.2213 11.7372 12.4838 13.6346 14.0802 15.5988 28.6800 31.6638 36.3664 k = 0.0625 0.3125 0.6875 ( 133 PWs) bands (ev): 10.8203 11.4995 12.4573 13.9652 14.4287 16.7886 27.3679 30.3865 32.5389 k = 0.0625 0.3125 0.8125 ( 130 PWs) bands (ev): 10.8988 11.3070 12.7650 14.1826 14.6918 18.5758 26.3889 28.7462 29.8040 k = 0.0625 0.3125 0.9375 ( 131 PWs) bands (ev): 10.8246 11.2090 13.0468 14.2305 14.8632 20.4640 25.6514 26.3854 29.2117 k = 0.0625 0.4375 0.4375 ( 137 PWs) bands (ev): 10.0256 12.0016 12.5665 13.3426 13.7716 15.5598 28.4099 31.4584 41.0969 k = 0.0625 0.4375 0.5625 ( 137 PWs) bands (ev): 10.7528 11.9715 12.2592 13.5022 14.0301 16.4889 26.8150 30.0153 37.3165 k = 0.0625 0.4375 0.6875 ( 133 PWs) bands (ev): 11.2447 11.7946 12.0500 13.7584 14.3640 17.9337 25.5045 28.9110 33.4079 k = 0.0625 0.4375 0.8125 ( 134 PWs) bands (ev): 11.2921 11.6683 12.1313 13.9141 14.6663 19.9277 24.5293 28.1124 29.8822 k = 0.0625 0.4375 0.9375 ( 134 PWs) bands (ev): 11.1512 11.6593 12.2850 13.9463 14.8613 22.1139 23.9544 26.6771 28.0355 k = 0.0625 0.5625 0.5625 ( 135 PWs) bands (ev): 11.1279 12.0204 12.1763 13.5100 14.1528 17.6717 25.2002 28.7034 37.9212 k = 0.0625 0.5625 0.6875 ( 132 PWs) bands (ev): 11.3600 11.6825 12.2746 13.7017 14.3952 19.3046 23.8524 27.7565 34.5389 k = 0.0625 0.5625 0.8125 ( 132 PWs) bands (ev): 11.3383 11.5510 12.2976 13.8723 14.6675 21.3638 22.8886 27.1404 30.9747 k = 0.0625 0.6875 0.6875 ( 133 PWs) bands (ev): 11.1869 11.4832 12.6289 13.8740 14.5151 20.9384 22.5122 26.9683 34.7729 k = 0.0625 0.6875 0.8125 ( 133 PWs) bands (ev): 10.9773 11.2911 12.9101 14.0924 14.6992 21.0783 23.3699 26.5024 32.1959 k = 0.0625 0.8125 0.8125 ( 131 PWs) bands (ev): 10.6500 11.0393 13.5297 14.3478 14.7752 19.8116 25.2620 26.2886 32.4298 k = 0.1875 0.1875 0.1875 ( 138 PWs) bands (ev): 7.1490 12.3848 12.9153 12.9153 13.9463 13.9463 33.9507 40.6190 42.8592 k = 0.1875 0.1875 0.3125 ( 141 PWs) bands (ev): 7.9001 12.2433 12.9542 12.9966 13.8844 14.1745 31.8263 39.5831 40.2797 k = 0.1875 0.1875 0.4375 ( 140 PWs) bands (ev): 8.9010 12.0027 12.8500 13.1653 14.1648 14.4266 29.9623 37.8956 38.1474 k = 0.1875 0.1875 0.5625 ( 136 PWs) bands (ev): 9.9125 11.7107 12.7077 13.4225 14.6481 14.9229 28.3600 35.5625 35.8388 k = 0.1875 0.1875 0.6875 ( 136 PWs) bands (ev): 10.5387 11.4082 12.8532 13.7436 14.7936 16.2050 27.0372 32.0230 34.1889 k = 0.1875 0.1875 0.8125 ( 133 PWs) bands (ev): 10.6804 11.1642 13.2462 14.0803 14.8322 17.9971 26.0368 28.6478 33.0298 k = 0.1875 0.3125 0.3125 ( 141 PWs) bands (ev): 8.5585 12.2709 12.9017 12.9799 13.9472 14.3824 29.6692 37.9511 41.7133 k = 0.1875 0.3125 0.4375 ( 140 PWs) bands (ev): 9.3981 12.2154 12.7535 13.0605 14.1481 14.7913 27.8105 36.2163 40.0119 k = 0.1875 0.3125 0.5625 ( 139 PWs) bands (ev): 10.2094 12.0263 12.5519 13.2667 14.5182 15.5526 26.2409 34.6189 36.6545 k = 0.1875 0.3125 0.6875 ( 136 PWs) bands (ev): 10.7588 11.7054 12.5498 13.5597 14.7181 16.9896 24.9667 32.4881 33.7645 k = 0.1875 0.3125 0.8125 ( 132 PWs) bands (ev): 10.9688 11.4202 12.7354 13.8691 14.7501 18.9805 24.0153 29.1747 32.6896 k = 0.1875 0.4375 0.4375 ( 137 PWs) bands (ev): 9.9714 12.4432 12.6302 13.0291 14.1449 15.4091 25.9848 34.5169 40.6366 k = 0.1875 0.4375 0.5625 ( 135 PWs) bands (ev): 10.4971 12.3265 12.5147 13.1741 14.3788 16.3913 24.4790 33.0804 37.5681 k = 0.1875 0.4375 0.6875 ( 135 PWs) bands (ev): 10.9359 11.9277 12.4597 13.4313 14.5929 17.9593 23.2970 31.9164 33.8121 k = 0.1875 0.4375 0.8125 ( 135 PWs) bands (ev): 11.2736 11.5937 12.3713 13.6971 14.6678 19.9683 22.5287 29.9763 31.4464 k = 0.1875 0.5625 0.5625 ( 131 PWs) bands (ev): 10.7557 12.1783 12.6602 13.2080 14.4331 17.5330 23.0841 31.7385 38.3099 k = 0.1875 0.5625 0.6875 ( 129 PWs) bands (ev): 11.0183 11.8731 12.5732 13.4186 14.5879 18.9956 22.1673 30.7157 34.9244 k = 0.1875 0.6875 0.6875 ( 132 PWs) bands (ev): 11.0170 11.6637 12.6548 13.5830 14.6893 19.4274 22.3000 29.7833 35.2773 k = 0.3125 0.3125 0.3125 ( 144 PWs) bands (ev): 9.0548 12.5366 12.8685 12.8685 14.2844 14.2844 27.5124 39.4294 41.9478 k = 0.3125 0.3125 0.4375 ( 141 PWs) bands (ev): 9.6440 12.7230 12.7665 12.8800 14.5674 14.5757 25.6925 38.4692 39.6464 k = 0.3125 0.3125 0.5625 ( 140 PWs) bands (ev): 10.2054 12.4174 12.7650 13.0184 14.7457 15.6518 24.1998 36.5086 37.7393 k = 0.3125 0.3125 0.6875 ( 134 PWs) bands (ev): 10.6755 12.0088 12.7073 13.2667 14.7870 17.3639 23.0422 33.2019 36.2735 k = 0.3125 0.4375 0.4375 ( 140 PWs) bands (ev): 9.9303 12.6997 12.8051 13.2792 14.4725 15.0933 23.9722 37.4846 40.2945 k = 0.3125 0.4375 0.5625 ( 136 PWs) bands (ev): 10.2527 12.5022 12.8954 13.2314 14.6593 16.1514 22.6703 36.1714 38.2403 k = 0.3125 0.4375 0.6875 ( 134 PWs) bands (ev): 10.6205 12.1882 12.9089 13.1232 14.7084 17.7230 21.8907 34.0190 35.8118 k = 0.3125 0.5625 0.5625 ( 131 PWs) bands (ev): 10.3871 12.4128 12.9283 13.2779 14.6632 16.9658 21.7835 35.0549 39.0775 k = 0.4375 0.4375 0.4375 ( 135 PWs) bands (ev): 9.9676 12.7084 12.7084 14.3519 14.6898 14.6898 22.5007 38.4627 41.4620 k = 0.4375 0.4375 0.5625 ( 135 PWs) bands (ev): 10.1166 12.6118 12.7517 13.9392 14.7571 15.8139 21.6820 37.6851 40.1864 ------ SPIN DOWN ---------- k = 0.0625 0.0625 0.0625 ( 137 PWs) bands (ev): 5.9423 13.2919 13.3810 13.3810 14.5690 14.5690 39.4758 42.4457 44.0457 k = 0.0625 0.0625 0.1875 ( 137 PWs) bands (ev): 6.3696 13.1353 13.4958 13.5007 14.4208 14.6386 38.3636 40.8365 41.9152 k = 0.0625 0.0625 0.3125 ( 136 PWs) bands (ev): 7.1915 12.8346 13.7095 13.7342 14.1981 14.7678 36.7186 39.4224 39.4233 k = 0.0625 0.0625 0.4375 ( 135 PWs) bands (ev): 8.3188 12.4526 13.7351 14.0673 14.2766 14.9387 34.9274 37.0338 37.9863 k = 0.0625 0.0625 0.5625 ( 135 PWs) bands (ev): 9.5245 12.0534 13.7062 14.4681 14.7453 15.1284 33.1823 34.9012 35.1551 k = 0.0625 0.0625 0.6875 ( 131 PWs) bands (ev): 10.3520 11.6971 14.1954 14.8773 15.3164 15.4383 31.3478 31.9672 33.1431 k = 0.0625 0.0625 0.8125 ( 131 PWs) bands (ev): 10.5986 11.4322 14.9361 15.1983 15.4945 16.6428 28.2599 30.6380 31.8708 k = 0.0625 0.0625 0.9375 ( 131 PWs) bands (ev): 10.6073 11.2916 15.3103 15.3494 15.6322 18.0527 25.9391 30.0092 31.1961 k = 0.0625 0.1875 0.1875 ( 140 PWs) bands (ev): 6.7852 13.0500 13.5500 13.5564 14.3989 14.6530 36.3891 39.1679 42.8832 k = 0.0625 0.1875 0.3125 ( 138 PWs) bands (ev): 7.5823 12.8178 13.6113 13.7454 14.2814 14.8367 34.3987 37.2088 41.9619 k = 0.0625 0.1875 0.4375 ( 138 PWs) bands (ev): 8.6713 12.4899 13.5074 14.0219 14.4222 15.1126 32.5720 35.3450 39.4342 k = 0.0625 0.1875 0.5625 ( 138 PWs) bands (ev): 9.8329 12.1351 13.3658 14.3671 14.8446 15.5017 30.9494 33.6153 35.8079 k = 0.0625 0.1875 0.6875 ( 135 PWs) bands (ev): 10.6281 11.8124 13.5765 14.7464 15.2362 16.2800 29.5734 31.7072 32.5544 k = 0.0625 0.1875 0.8125 ( 131 PWs) bands (ev): 10.8468 11.5706 14.1050 15.0469 15.4722 17.6741 28.2748 28.8397 31.2557 k = 0.0625 0.1875 0.9375 ( 129 PWs) bands (ev): 10.8373 11.4425 14.4936 15.1592 15.6179 19.1883 26.0415 28.0868 30.6622 k = 0.0625 0.3125 0.3125 ( 140 PWs) bands (ev): 8.3258 12.7273 13.5158 13.8278 14.2358 15.1253 32.2983 35.1569 43.2293 k = 0.0625 0.3125 0.4375 ( 140 PWs) bands (ev): 9.3257 12.5389 13.3183 13.9798 14.3690 15.5606 30.4551 33.3476 40.4216 k = 0.0625 0.3125 0.5625 ( 138 PWs) bands (ev): 10.3760 12.2923 13.0401 14.2474 14.7348 16.1863 28.8677 31.7999 36.4746 k = 0.0625 0.3125 0.6875 ( 133 PWs) bands (ev): 11.1005 12.0394 12.9846 14.5704 15.1196 17.2531 27.5551 30.5248 32.6754 k = 0.0625 0.3125 0.8125 ( 130 PWs) bands (ev): 11.2676 11.8435 13.2914 14.7820 15.4222 18.9055 26.5694 28.9277 29.9268 k = 0.0625 0.3125 0.9375 ( 131 PWs) bands (ev): 11.2183 11.7441 13.5979 14.8273 15.6124 20.6945 25.8515 26.5878 29.3299 k = 0.0625 0.4375 0.4375 ( 137 PWs) bands (ev): 10.1637 12.5547 13.1188 13.9362 14.4468 16.1656 28.6100 31.6003 41.1338 k = 0.0625 0.4375 0.5625 ( 137 PWs) bands (ev): 10.9899 12.4955 12.7968 14.0851 14.7225 17.0135 27.0302 30.1660 37.4189 k = 0.0625 0.4375 0.6875 ( 133 PWs) bands (ev): 11.5820 12.2943 12.5936 14.3409 15.0767 18.3385 25.7246 29.0676 33.5355 k = 0.0625 0.4375 0.8125 ( 134 PWs) bands (ev): 11.6822 12.1941 12.6583 14.4977 15.4017 20.2284 24.7449 28.2782 30.0313 k = 0.0625 0.4375 0.9375 ( 134 PWs) bands (ev): 11.5559 12.1927 12.8234 14.5271 15.6107 22.3433 24.1635 26.8834 28.1802 k = 0.0625 0.5625 0.5625 ( 135 PWs) bands (ev): 11.4809 12.4758 12.7209 14.0910 14.8611 18.1022 25.4357 28.8675 38.0321 k = 0.0625 0.5625 0.6875 ( 132 PWs) bands (ev): 11.8102 12.1062 12.8156 14.2851 15.1160 19.6344 24.0961 27.9338 34.6538 k = 0.0625 0.5625 0.8125 ( 132 PWs) bands (ev): 11.7575 12.0464 12.8391 14.4557 15.4043 21.6172 23.1292 27.3301 31.1074 k = 0.0625 0.6875 0.6875 ( 133 PWs) bands (ev): 11.6824 11.8911 13.1703 14.4661 15.2417 21.1953 22.7661 27.1663 34.8663 k = 0.0625 0.6875 0.8125 ( 133 PWs) bands (ev): 11.4040 11.7854 13.4554 14.6897 15.4362 21.3197 23.5811 26.7161 32.3000 k = 0.0625 0.8125 0.8125 ( 131 PWs) bands (ev): 11.0468 11.5628 14.0914 14.9627 15.5124 20.0406 25.4558 26.4955 32.4991 k = 0.1875 0.1875 0.1875 ( 138 PWs) bands (ev): 7.1844 12.9977 13.5678 13.5678 14.5565 14.5565 34.0896 40.6035 42.9618 k = 0.1875 0.1875 0.3125 ( 141 PWs) bands (ev): 7.9463 12.8331 13.5845 13.6386 14.5044 14.8055 31.9878 39.5994 40.3950 k = 0.1875 0.1875 0.4375 ( 140 PWs) bands (ev): 8.9768 12.5673 13.4415 13.8015 14.7873 15.0782 30.1403 38.0086 38.1941 k = 0.1875 0.1875 0.5625 ( 136 PWs) bands (ev): 10.0650 12.2490 13.2648 14.0572 15.3194 15.4963 28.5455 35.6611 35.9419 k = 0.1875 0.1875 0.6875 ( 136 PWs) bands (ev): 10.8239 11.9299 13.3721 14.3787 15.4837 16.6689 27.2200 32.1674 34.2788 k = 0.1875 0.1875 0.8125 ( 133 PWs) bands (ev): 11.0536 11.6846 13.7763 14.7123 15.5423 18.3298 26.2107 28.8322 33.1070 k = 0.1875 0.3125 0.3125 ( 141 PWs) bands (ev): 8.6293 12.8206 13.5168 13.6059 14.5849 15.0279 29.8548 38.0246 41.7480 k = 0.1875 0.3125 0.4375 ( 140 PWs) bands (ev): 9.5247 12.7222 13.3432 13.6763 14.7951 15.4317 28.0170 36.3136 40.0637 k = 0.1875 0.3125 0.5625 ( 139 PWs) bands (ev): 10.4383 12.4965 13.1238 13.8794 15.1834 16.1109 26.4611 34.7275 36.7576 k = 0.1875 0.3125 0.6875 ( 136 PWs) bands (ev): 11.1115 12.1663 13.0913 14.1727 15.4121 17.4172 25.1906 32.6212 33.8803 k = 0.1875 0.3125 0.8125 ( 132 PWs) bands (ev): 11.3913 11.8919 13.2688 14.4793 15.4652 19.2984 24.2340 29.3469 32.7973 k = 0.1875 0.4375 0.4375 ( 137 PWs) bands (ev): 10.1882 12.8843 13.2047 13.6288 14.8175 16.0079 26.2194 34.6295 40.6602 k = 0.1875 0.4375 0.5625 ( 135 PWs) bands (ev): 10.8222 12.7639 13.0576 13.7684 15.0616 16.8855 24.7368 33.2043 37.6627 k = 0.1875 0.4375 0.6875 ( 135 PWs) bands (ev): 11.3500 12.3612 12.9964 14.0273 15.2940 18.3276 23.5691 32.0492 33.9358 k = 0.1875 0.4375 0.8125 ( 135 PWs) bands (ev): 11.7398 12.0197 12.9122 14.2900 15.3880 20.2463 22.8049 30.1346 31.5763 k = 0.1875 0.5625 0.5625 ( 131 PWs) bands (ev): 11.1589 12.6382 13.1551 13.8012 15.1298 17.9246 23.3766 31.8742 38.4179 k = 0.1875 0.5625 0.6875 ( 129 PWs) bands (ev): 11.4743 12.2958 13.1025 14.0142 15.2946 19.2903 22.4822 30.8621 35.0370 k = 0.1875 0.6875 0.6875 ( 132 PWs) bands (ev): 11.4871 12.0746 13.1954 14.1883 15.3988 19.7106 22.5884 29.9433 35.3727 k = 0.3125 0.3125 0.3125 ( 144 PWs) bands (ev): 9.1777 12.9970 13.4810 13.4810 14.9442 14.9442 27.7275 39.4053 42.0659 k = 0.3125 0.3125 0.4375 ( 141 PWs) bands (ev): 9.8551 13.1172 13.3540 13.4863 15.2034 15.2450 25.9368 38.4692 39.7586 k = 0.3125 0.3125 0.5625 ( 140 PWs) bands (ev): 10.5225 12.8610 13.2887 13.6232 15.4370 16.1479 24.4682 36.5713 37.8450 k = 0.3125 0.3125 0.6875 ( 134 PWs) bands (ev): 11.0838 12.4356 13.2427 13.8727 15.4880 17.7343 23.3257 33.3242 36.3732 k = 0.3125 0.4375 0.4375 ( 140 PWs) bands (ev): 10.2349 13.2791 13.3996 13.5901 15.1559 15.6915 24.2580 37.5277 40.3444 k = 0.3125 0.4375 0.5625 ( 136 PWs) bands (ev): 10.6313 13.0320 13.4868 13.6404 15.3502 16.5818 22.9945 36.2418 38.3356 k = 0.3125 0.4375 0.6875 ( 134 PWs) bands (ev): 11.0485 12.6516 13.4026 13.7179 15.4094 18.0358 22.2385 34.1265 35.9252 k = 0.3125 0.5625 0.5625 ( 131 PWs) bands (ev): 10.8005 12.9309 13.5205 13.7076 15.3609 17.3009 22.1505 35.1477 39.1819 k = 0.4375 0.4375 0.4375 ( 135 PWs) bands (ev): 10.3330 13.2991 13.2991 14.4427 15.3828 15.3828 22.8438 38.4260 41.5581 k = 0.4375 0.4375 0.5625 ( 135 PWs) bands (ev): 10.5163 13.1822 13.3418 14.2982 15.4549 16.1781 22.0665 37.6872 40.2831 the Fermi energy is 15.2873 ev ! total energy = -85.72249139 Ry Harris-Foulkes estimate = -85.72249139 Ry estimated scf accuracy < 4.9E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 0.28977701 Ry hartree contribution = 14.35011473 Ry xc contribution = -29.60821734 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = -0.00012144 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -22.57 -0.00015342 0.00000000 0.00000000 -22.57 0.00 0.00 0.00000000 -0.00015342 0.00000000 0.00 -22.57 0.00 0.00000000 0.00000000 -0.00015342 0.00 0.00 -22.57 Writing output data file ni.save PWSCF : 12.54s CPU time, 13.13s wall time init_run : 1.43s CPU electrons : 10.00s CPU forces : 0.13s CPU stress : 0.59s CPU Called by init_run: wfcinit : 0.26s CPU potinit : 0.02s CPU Called by electrons: c_bands : 7.86s CPU ( 9 calls, 0.873 s avg) sum_band : 1.65s CPU ( 9 calls, 0.183 s avg) v_of_rho : 0.09s CPU ( 10 calls, 0.009 s avg) newd : 0.32s CPU ( 10 calls, 0.032 s avg) mix_rho : 0.04s CPU ( 9 calls, 0.004 s avg) Called by c_bands: init_us_2 : 0.25s CPU ( 2520 calls, 0.000 s avg) ccgdiagg : 5.81s CPU ( 1080 calls, 0.005 s avg) wfcrot : 2.17s CPU ( 1080 calls, 0.002 s avg) Called by *cgdiagg: h_psi : 6.80s CPU ( 24475 calls, 0.000 s avg) s_psi : 0.35s CPU ( 47870 calls, 0.000 s avg) cdiaghg : 0.07s CPU ( 1080 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.27s CPU ( 24475 calls, 0.000 s avg) General routines calbec : 0.33s CPU ( 49190 calls, 0.000 s avg) cft3s : 5.90s CPU ( 76140 calls, 0.000 s avg) interpolate : 0.05s CPU ( 38 calls, 0.001 s avg) davcio : 0.01s CPU ( 3600 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example01/reference/si.scf.cg.out0000644000175000017500000002417312341373025021515 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:55 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 20 npp = 20 ncplane = 400 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 20 253 2733 20 253 2733 85 531 bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 4 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 72.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 189.7462 ( 2733 G-vectors) FFT grid: ( 20, 20, 20) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 350, 4) NL pseudopotentials 0.04 Mb ( 350, 8) Each V/rho on FFT grid 0.12 Mb ( 8000) Each G-vector array 0.02 Mb ( 2733) G-vector shells 0.00 Mb ( 65) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 4, 4) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 0.98 Mb ( 8000, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.13 secs per-process dynamical memory: 8.1 Mb Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold CG style diagonalization ethr = 7.77E-04, avg # of iterations = 2.0 total cpu time spent up to now is 0.29 secs total energy = -15.84092282 Ry Harris-Foulkes estimate = -15.86197283 Ry estimated scf accuracy < 0.06153381 Ry iteration # 2 ecut= 18.00 Ry beta=0.70 CG style diagonalization ethr = 7.69E-04, avg # of iterations = 3.0 total cpu time spent up to now is 0.39 secs total energy = -15.84402284 Ry Harris-Foulkes estimate = -15.84433371 Ry estimated scf accuracy < 0.00216338 Ry iteration # 3 ecut= 18.00 Ry beta=0.70 CG style diagonalization ethr = 2.70E-05, avg # of iterations = 3.8 total cpu time spent up to now is 0.51 secs total energy = -15.84450634 Ry Harris-Foulkes estimate = -15.84454253 Ry estimated scf accuracy < 0.00007555 Ry iteration # 4 ecut= 18.00 Ry beta=0.70 CG style diagonalization ethr = 9.44E-07, avg # of iterations = 4.0 total cpu time spent up to now is 0.64 secs total energy = -15.84452598 Ry Harris-Foulkes estimate = -15.84452965 Ry estimated scf accuracy < 0.00000816 Ry iteration # 5 ecut= 18.00 Ry beta=0.70 CG style diagonalization ethr = 1.02E-07, avg # of iterations = 3.9 total cpu time spent up to now is 0.76 secs total energy = -15.84452722 Ry Harris-Foulkes estimate = -15.84452726 Ry estimated scf accuracy < 0.00000007 Ry iteration # 6 ecut= 18.00 Ry beta=0.70 CG style diagonalization ethr = 8.22E-10, avg # of iterations = 4.4 total cpu time spent up to now is 0.89 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 335 PWs) bands (ev): -5.6039 4.6467 5.9568 5.9568 k = 0.1250 0.1250 0.3750 ( 338 PWs) bands (ev): -5.0584 3.0175 4.9012 4.9909 k = 0.1250 0.1250 0.6250 ( 337 PWs) bands (ev): -3.9883 1.3106 3.5165 3.9919 k = 0.1250 0.1250 0.8750 ( 343 PWs) bands (ev): -2.4615 -0.5936 2.7226 3.5069 k = 0.1250 0.3750 0.3750 ( 341 PWs) bands (ev): -4.5395 1.5909 3.8905 5.4637 k = 0.1250 0.3750 0.6250 ( 340 PWs) bands (ev): -3.5490 0.3751 2.8565 4.2745 k = 0.1250 0.3750 0.8750 ( 347 PWs) bands (ev): -2.2719 -0.7033 2.0784 3.2106 k = 0.1250 0.6250 0.6250 ( 344 PWs) bands (ev): -2.8220 -0.4390 2.1614 4.3230 k = 0.3750 0.3750 0.3750 ( 350 PWs) bands (ev): -4.0849 0.2304 5.1432 5.1432 k = 0.3750 0.3750 0.6250 ( 343 PWs) bands (ev): -3.3347 -0.5842 3.9340 4.6556 ! total energy = -15.84452726 Ry Harris-Foulkes estimate = -15.84452726 Ry estimated scf accuracy < 1.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 4.79352772 Ry hartree contribution = 1.07664023 Ry xc contribution = -4.81493655 Ry ewald contribution = -16.89975867 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -10.24 -0.00006959 0.00000000 0.00000000 -10.24 0.00 0.00 0.00000000 -0.00006959 0.00000000 0.00 -10.24 0.00 0.00000000 0.00000000 -0.00006959 0.00 0.00 -10.24 Writing output data file silicon.save PWSCF : 1.02s CPU time, 1.06s wall time init_run : 0.10s CPU electrons : 0.76s CPU forces : 0.00s CPU stress : 0.03s CPU Called by init_run: wfcinit : 0.06s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.64s CPU ( 7 calls, 0.091 s avg) sum_band : 0.10s CPU ( 7 calls, 0.014 s avg) v_of_rho : 0.01s CPU ( 7 calls, 0.002 s avg) mix_rho : 0.01s CPU ( 7 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.02s CPU ( 170 calls, 0.000 s avg) ccgdiagg : 0.50s CPU ( 70 calls, 0.007 s avg) wfcrot : 0.18s CPU ( 60 calls, 0.003 s avg) Called by *cgdiagg: h_psi : 0.64s CPU ( 824 calls, 0.001 s avg) cdiaghg : 0.00s CPU ( 60 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 824 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 1608 calls, 0.000 s avg) cft3s : 0.67s CPU ( 2395 calls, 0.000 s avg) davcio : 0.00s CPU ( 240 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example01/reference/al.band.cg.out0000644000175000017500000002450512341373025021626 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:37:23 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file Al.vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 28 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0714286 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0714286 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0714286 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0714286 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0714286 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0714286 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0714286 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0714286 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0714286 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0714286 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0714286 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0714286 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0714286 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0714286 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0714286 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0714286 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0714286 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0714286 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0714286 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0714286 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0714286 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0714286 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0714286 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0714286 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0714286 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0714286 G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 8) NL pseudopotentials 0.01 Mb ( 113, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 8, 8) Each matrix 0.00 Mb ( 4, 8) Arrays for rho mixing 0.41 Mb ( 3375, 8) The potential is recalculated from file : al.save/charge-density.dat Starting wfc are 9 atomic wfcs total cpu time spent up to now is 0.08 secs per-process dynamical memory: 0.7 Mb Band Structure Calculation CG style diagonalization ethr = 3.33E-08, avg # of iterations = 7.5 total cpu time spent up to now is 0.31 secs End of band structure calculation k = 0.0000 0.0000 0.0000 band energies (ev): -3.1911 21.1779 21.1779 21.1779 22.5548 22.5548 22.5548 28.4668 k = 0.0000 0.0000 0.1000 band energies (ev): -3.0960 20.2345 20.2345 20.4975 22.3537 23.6411 23.6411 27.1548 k = 0.0000 0.0000 0.2000 band energies (ev): -2.8098 18.9731 18.9731 19.2306 21.8284 24.6166 25.3242 25.3242 k = 0.0000 0.0000 0.3000 band energies (ev): -2.3374 17.8217 17.8217 17.9494 21.1220 21.9036 27.1376 27.1376 k = 0.0000 0.0000 0.4000 band energies (ev): -1.6744 16.7876 16.8290 16.8290 19.2414 20.3615 28.9855 28.9855 k = 0.0000 0.0000 0.5000 band energies (ev): -0.8358 15.7868 15.9782 15.9782 16.6943 19.6301 30.7665 30.7665 k = 0.0000 0.0000 0.6000 band energies (ev): 0.1793 14.2790 14.9597 15.2838 15.2838 18.9639 31.6188 32.4007 k = 0.0000 0.0000 0.7000 band energies (ev): 1.3651 12.0073 14.3128 14.7456 14.7456 18.4256 32.6725 33.8804 k = 0.0000 0.0000 0.8000 band energies (ev): 2.7094 9.8878 13.8492 14.3624 14.3624 18.0253 33.7772 35.2252 k = 0.0000 0.0000 0.9000 band energies (ev): 4.1819 7.9476 13.5676 14.1319 14.1319 17.7783 34.7373 36.3496 k = 0.0000 0.0000 1.0000 band energies (ev): 5.3310 6.6439 13.4746 14.0553 14.0553 17.6952 35.1698 36.8707 k = 0.0000 0.0000 0.0000 band energies (ev): -3.1911 21.1779 21.1779 21.1779 22.5548 22.5548 22.5548 28.4668 k = 0.0000 0.1000 0.1000 band energies (ev): -3.0010 18.9136 19.5392 21.3627 22.6653 23.4717 23.9539 26.8835 k = 0.0000 0.2000 0.2000 band energies (ev): -2.4299 16.1143 17.2993 21.9193 22.8616 24.0951 24.5795 25.4076 k = 0.0000 0.3000 0.3000 band energies (ev): -1.4870 13.5863 15.0768 21.6459 22.8444 23.7482 24.1181 24.8942 k = 0.0000 0.4000 0.4000 band energies (ev): -0.1882 11.3801 13.0087 19.6780 21.7703 24.1281 24.9937 25.9732 k = 0.0000 0.5000 0.5000 band energies (ev): 1.4594 9.5217 11.1700 17.9574 19.9890 25.7807 26.2524 27.3595 k = 0.0000 0.6000 0.6000 band energies (ev): 3.4334 8.0054 9.6038 16.5473 18.4499 27.7656 27.8169 29.0388 k = 0.0000 0.7000 0.7000 band energies (ev): 5.6963 6.8315 8.3756 15.4530 17.1962 26.1511 29.6916 30.0710 k = 0.0000 0.8000 0.8000 band energies (ev): 5.9965 7.2958 8.4235 14.6760 16.2200 22.4583 31.8163 33.2437 k = 0.0000 0.9000 0.9000 band energies (ev): 5.4971 6.8278 11.0939 14.2121 15.3774 19.2154 33.9822 35.5330 k = 0.0000 1.0000 1.0000 band energies (ev): 5.3310 6.6439 13.4746 14.0553 14.0553 17.6952 35.1698 36.8707 k = 0.0000 0.0000 0.0000 band energies (ev): -3.1911 21.1779 21.1779 21.1779 22.5548 22.5548 22.5548 28.4668 k = 0.1000 0.1000 0.1000 band energies (ev): -2.9062 17.7709 20.4032 20.4032 23.7477 23.7477 27.0024 27.0024 k = 0.2000 0.2000 0.2000 band energies (ev): -2.0533 13.7137 19.6279 19.6279 24.2362 24.2362 26.4754 26.4754 k = 0.3000 0.3000 0.3000 band energies (ev): -0.6503 9.9632 19.2750 19.2750 22.4589 22.4589 29.0821 29.0821 k = 0.4000 0.4000 0.4000 band energies (ev): 1.2756 6.6142 19.3716 19.3716 20.9653 20.9653 32.2096 32.2096 k = 0.5000 0.5000 0.5000 band energies (ev): 3.5956 3.8189 19.8981 19.8981 19.9672 19.9672 34.4315 34.4315 Writing output data file al.save PWSCF : 0.40s CPU time, 0.41s wall time init_run : 0.05s CPU electrons : 0.22s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.22s CPU v_of_rho : 0.00s CPU Called by c_bands: init_us_2 : 0.00s CPU ( 28 calls, 0.000 s avg) ccgdiagg : 0.19s CPU ( 29 calls, 0.006 s avg) wfcrot : 0.03s CPU ( 29 calls, 0.001 s avg) Called by *cgdiagg: h_psi : 0.18s CPU ( 1704 calls, 0.000 s avg) s_psi : 0.00s CPU ( 3350 calls, 0.000 s avg) cdiaghg : 0.01s CPU ( 29 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.00s CPU ( 1704 calls, 0.000 s avg) General routines calbec : 0.00s CPU ( 3379 calls, 0.000 s avg) cft3 : 0.00s CPU ( 3 calls, 0.000 s avg) cft3s : 0.15s CPU ( 3870 calls, 0.000 s avg) davcio : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.1/PW/examples/example01/reference/ni.band.david.out0000644000175000017500000004142012341373025022331 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:37:18 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file NiUS.RRKJ3.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 56 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 2) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0357143 k( 3) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0357143 k( 4) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0357143 k( 5) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0357143 k( 6) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0357143 k( 7) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0357143 k( 8) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0357143 k( 9) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0357143 k( 10) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0357143 k( 11) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0357143 k( 12) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 13) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0357143 k( 14) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0357143 k( 15) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0357143 k( 16) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0357143 k( 17) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0357143 k( 18) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0357143 k( 19) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0357143 k( 20) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0357143 k( 21) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0357143 k( 22) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0357143 k( 23) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 24) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 25) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 26) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 27) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 28) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 k( 29) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 30) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0357143 k( 31) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0357143 k( 32) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0357143 k( 33) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0357143 k( 34) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0357143 k( 35) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0357143 k( 36) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0357143 k( 37) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0357143 k( 38) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0357143 k( 39) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0357143 k( 40) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 41) = ( 0.0000000 0.1000000 0.1000000), wk = 0.0357143 k( 42) = ( 0.0000000 0.2000000 0.2000000), wk = 0.0357143 k( 43) = ( 0.0000000 0.3000000 0.3000000), wk = 0.0357143 k( 44) = ( 0.0000000 0.4000000 0.4000000), wk = 0.0357143 k( 45) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0357143 k( 46) = ( 0.0000000 0.6000000 0.6000000), wk = 0.0357143 k( 47) = ( 0.0000000 0.7000000 0.7000000), wk = 0.0357143 k( 48) = ( 0.0000000 0.8000000 0.8000000), wk = 0.0357143 k( 49) = ( 0.0000000 0.9000000 0.9000000), wk = 0.0357143 k( 50) = ( 0.0000000 1.0000000 1.0000000), wk = 0.0357143 k( 51) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0357143 k( 52) = ( 0.1000000 0.1000000 0.1000000), wk = 0.0357143 k( 53) = ( 0.2000000 0.2000000 0.2000000), wk = 0.0357143 k( 54) = ( 0.3000000 0.3000000 0.3000000), wk = 0.0357143 k( 55) = ( 0.4000000 0.4000000 0.4000000), wk = 0.0357143 k( 56) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0357143 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 8) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.07 Mb ( 144, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 18, 8) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 The potential is recalculated from file : ni.save/charge-density.dat Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 0.90 secs per-process dynamical memory: 7.3 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.00E-08, avg # of iterations = 12.6 total cpu time spent up to now is 1.61 secs End of band structure calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): 5.7491 12.6855 12.6855 12.6855 13.9844 13.9844 39.8745 44.2744 k = 0.0000 0.0000 0.1000 band energies (ev): 5.8883 12.6320 12.7268 12.7268 13.9349 14.0035 39.6517 43.2966 k = 0.0000 0.0000 0.2000 band energies (ev): 6.2995 12.4784 12.8494 12.8494 13.7951 14.0590 39.1224 41.4406 k = 0.0000 0.0000 0.3000 band energies (ev): 6.9611 12.2432 13.0485 13.0485 13.5938 14.1461 38.4976 39.4332 k = 0.0000 0.0000 0.4000 band energies (ev): 7.8252 11.9549 13.3162 13.3162 13.3912 14.2567 37.4937 37.4937 k = 0.0000 0.0000 0.5000 band energies (ev): 8.7855 11.6434 13.3076 13.6371 13.6371 14.3805 35.6924 35.6924 k = 0.0000 0.0000 0.6000 band energies (ev): 9.6217 11.3406 13.5736 13.9882 13.9882 14.5057 33.7707 34.0980 k = 0.0000 0.0000 0.7000 band energies (ev): 10.0806 11.0746 14.3363 14.3363 14.4338 14.6197 30.9560 32.7655 k = 0.0000 0.0000 0.8000 band energies (ev): 10.1989 10.8681 14.6380 14.6380 14.7110 15.7858 28.3092 31.7513 k = 0.0000 0.0000 0.9000 band energies (ev): 10.1879 10.7375 14.7700 14.8457 14.8457 17.1895 26.1814 31.1124 k = 0.0000 0.0000 1.0000 band energies (ev): 10.1729 10.6931 14.7904 14.9202 14.9202 17.8715 25.2664 30.8932 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7491 12.6855 12.6855 12.6855 13.9844 13.9844 39.8745 44.2744 k = 0.0000 0.1000 0.1000 band energies (ev): 6.0262 12.6025 12.7459 12.7624 13.9215 13.9924 39.2137 41.5816 k = 0.0000 0.2000 0.2000 band energies (ev): 6.8297 12.3910 12.9143 12.9199 13.7629 14.0787 36.7316 37.7970 k = 0.0000 0.3000 0.3000 band energies (ev): 8.0641 12.1433 12.9235 13.1871 13.5838 14.4299 33.5733 34.3332 k = 0.0000 0.4000 0.4000 band energies (ev): 9.5147 11.9704 12.6919 13.4700 13.5166 15.1740 30.4777 31.3785 k = 0.0000 0.5000 0.5000 band energies (ev): 10.7579 11.9682 12.2941 13.4872 13.8708 16.4670 27.5861 29.0254 k = 0.0000 0.6000 0.6000 band energies (ev): 11.3246 11.8221 12.2024 13.6628 14.2120 18.5742 24.9336 27.3430 k = 0.0000 0.7000 0.7000 band energies (ev): 11.1553 11.4198 12.7038 13.9758 14.5074 21.4542 22.5361 26.2999 k = 0.0000 0.8000 0.8000 band energies (ev): 10.6971 11.0658 13.4597 14.3510 14.7326 20.4188 24.7037 25.9068 k = 0.0000 0.9000 0.9000 band energies (ev): 10.3183 10.7918 14.3667 14.6659 14.8727 18.6967 25.3155 28.6574 k = 0.0000 1.0000 1.0000 band energies (ev): 10.1729 10.6931 14.7904 14.9202 14.9202 17.8715 25.2664 30.8932 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7491 12.6855 12.6855 12.6855 13.9844 13.9844 39.8745 44.2744 k = 0.1000 0.1000 0.1000 band energies (ev): 6.1628 12.5765 12.7780 12.7780 13.9477 13.9477 38.3974 41.3946 k = 0.2000 0.2000 0.2000 band energies (ev): 7.3282 12.3629 12.9272 12.9272 13.9609 13.9609 33.2778 40.5232 k = 0.3000 0.3000 0.3000 band energies (ev): 8.8791 12.4603 12.8858 12.8858 14.2374 14.2374 28.1150 39.5576 k = 0.4000 0.4000 0.4000 band energies (ev): 9.8446 12.7466 12.7466 13.6854 14.5975 14.5975 23.7360 38.6690 k = 0.5000 0.5000 0.5000 band energies (ev): 10.0271 12.6830 12.6830 14.7536 14.7536 14.9657 21.5360 38.3257 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): 5.7795 13.3414 13.3414 13.3414 14.5869 14.5869 39.8447 44.2979 k = 0.0000 0.0000 0.1000 band energies (ev): 5.9186 13.2845 13.3838 13.3838 14.5348 14.6066 39.6408 43.3569 k = 0.0000 0.0000 0.2000 band energies (ev): 6.3298 13.1210 13.5098 13.5098 14.3868 14.6639 39.1532 41.5340 k = 0.0000 0.0000 0.3000 band energies (ev): 6.9930 12.8710 13.7147 13.7147 14.1709 14.7537 38.5744 39.5413 k = 0.0000 0.0000 0.4000 band energies (ev): 7.8640 12.5655 13.9434 13.9912 13.9912 14.8680 37.6041 37.6041 k = 0.0000 0.0000 0.5000 band energies (ev): 8.8496 12.2360 13.8125 14.3239 14.3239 14.9959 35.7973 35.7973 k = 0.0000 0.0000 0.6000 band energies (ev): 9.7568 11.9166 13.9815 14.6899 14.6899 15.1252 33.8938 34.1913 k = 0.0000 0.0000 0.7000 band energies (ev): 10.3265 11.6365 14.7005 15.0549 15.0549 15.2432 31.1186 32.8434 k = 0.0000 0.0000 0.8000 band energies (ev): 10.5245 11.4194 15.3376 15.3732 15.3732 15.9342 28.5124 31.8131 k = 0.0000 0.0000 0.9000 band energies (ev): 10.5492 11.2823 15.3986 15.5937 15.5937 17.2531 26.4335 31.1617 k = 0.0000 0.0000 1.0000 band energies (ev): 10.5437 11.2357 15.4198 15.6730 15.6730 17.8924 25.5514 30.9377 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7795 13.3414 13.3414 13.3414 14.5869 14.5869 39.8447 44.2979 k = 0.0000 0.1000 0.1000 band energies (ev): 6.0565 13.2512 13.4044 13.4196 14.5205 14.5952 39.2344 41.6365 k = 0.0000 0.2000 0.2000 band energies (ev): 6.8617 13.0205 13.5636 13.5857 14.3530 14.6909 36.8475 37.8760 k = 0.0000 0.3000 0.3000 band energies (ev): 8.1076 12.7474 13.5372 13.8643 14.1637 15.0672 33.7407 34.4349 k = 0.0000 0.4000 0.4000 band energies (ev): 9.6041 12.5490 13.2595 14.0422 14.2081 15.8041 30.6766 31.5027 k = 0.0000 0.5000 0.5000 band energies (ev): 10.9732 12.5255 12.8080 14.0572 14.5778 17.0017 27.8060 29.1744 k = 0.0000 0.6000 0.6000 band energies (ev): 11.7308 12.2610 12.7461 14.2377 14.9340 18.9492 25.1656 27.5224 k = 0.0000 0.7000 0.7000 band energies (ev): 11.6353 11.8499 13.2457 14.5630 15.2423 21.7046 22.7685 26.5137 k = 0.0000 0.8000 0.8000 band energies (ev): 11.1009 11.5845 14.0211 14.9559 15.4774 20.6312 24.9046 26.1244 k = 0.0000 0.9000 0.9000 band energies (ev): 10.6950 11.3321 14.9995 15.2878 15.6235 18.8375 25.5934 28.7587 k = 0.0000 1.0000 1.0000 band energies (ev): 10.5437 11.2357 15.4198 15.6730 15.6730 17.8924 25.5514 30.9377 k = 0.0000 0.0000 0.0000 band energies (ev): 5.7795 13.3414 13.3414 13.3414 14.5869 14.5869 39.8447 44.2979 k = 0.1000 0.1000 0.1000 band energies (ev): 6.1932 13.2210 13.4364 13.4364 14.5485 14.5485 38.4599 41.3967 k = 0.2000 0.2000 0.2000 band energies (ev): 7.3656 12.9684 13.5763 13.5763 14.5746 14.5746 33.4238 40.5076 k = 0.3000 0.3000 0.3000 band energies (ev): 8.9824 12.9483 13.5017 13.5017 14.8921 14.8921 28.3212 39.5349 k = 0.4000 0.4000 0.4000 band energies (ev): 10.1535 13.3411 13.3411 13.8799 15.2834 15.2834 24.0317 38.6351 k = 0.5000 0.5000 0.5000 band energies (ev): 10.4256 13.2709 13.2709 14.9680 15.4507 15.4507 21.9343 38.2872 Writing output data file ni.save PWSCF : 1.74s CPU time, 1.85s wall time init_run : 0.83s CPU electrons : 0.71s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.01s CPU Called by electrons: c_bands : 0.71s CPU v_of_rho : 0.01s CPU newd : 0.02s CPU Called by c_bands: init_us_2 : 0.01s CPU ( 56 calls, 0.000 s avg) cegterg : 0.63s CPU ( 57 calls, 0.011 s avg) Called by *egterg: h_psi : 0.38s CPU ( 821 calls, 0.000 s avg) s_psi : 0.01s CPU ( 821 calls, 0.000 s avg) g_psi : 0.01s CPU ( 708 calls, 0.000 s avg) cdiaghg : 0.20s CPU ( 764 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 821 calls, 0.000 s avg) General routines calbec : 0.03s CPU ( 821 calls, 0.000 s avg) cft3 : 0.00s CPU ( 9 calls, 0.000 s avg) cft3s : 0.27s CPU ( 7520 calls, 0.000 s avg) interpolate : 0.00s CPU ( 2 calls, 0.001 s avg) davcio : 0.00s CPU ( 56 calls, 0.000 s avg) espresso-5.1/PW/examples/example01/reference/si.bands.out0000644000175000017500000005411312341373025021436 0ustar mbamba Program POST-PROC v.4.0 starts ... Today is 28Apr2008 at 15:37: 1 ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = -5.80989 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 6.25489 eV 3 --> T_2g G_25' G_5+ e( 5 - 7) = 8.82205 eV 3 --> T_1u G_15 G_4- e( 8 - 8) = 9.72317 eV 1 --> A_2u G_2' G_2- ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.10000 ) point group C_4v (4mm) there are 5 classes the character table: E 2C4 C2 2s_v 2s_d A_1 1.00 1.00 1.00 1.00 1.00 A_2 1.00 1.00 1.00 -1.00 -1.00 B_1 1.00 -1.00 1.00 1.00 -1.00 B_2 1.00 -1.00 1.00 -1.00 1.00 E 2.00 0.00 -2.00 0.00 0.00 the symmetry operations in each class: E 1 C2 2 2C4 3 4 2s_v 5 6 2s_d 7 8 Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -5.76681 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 5.98100 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 6.07224 eV 2 --> E G_5 D_5 e( 5 - 5) = 8.71044 eV 1 --> A_1 G_1 D_1 e( 6 - 7) = 9.05709 eV 2 --> E G_5 D_5 e( 8 - 8) = 9.98378 eV 1 --> B_2 G_4 D_2' ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.20000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -5.63372 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 5.33389 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 5.66013 eV 2 --> E G_5 D_5 e( 5 - 5) = 8.42383 eV 1 --> A_1 G_1 D_1 e( 6 - 7) = 9.63007 eV 2 --> E G_5 D_5 e( 8 - 8) = 10.51923 eV 1 --> B_2 G_4 D_2' ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.30000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -5.41325 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 4.52654 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 5.18587 eV 2 --> E G_5 D_5 e( 5 - 5) = 8.05161 eV 1 --> A_1 G_1 D_1 e( 6 - 7) = 10.36976 eV 2 --> E G_5 D_5 e( 8 - 8) = 10.70616 eV 1 --> B_2 G_4 D_2' ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.40000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -5.10635 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 3.65285 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 4.72660 eV 2 --> E G_5 D_5 e( 5 - 5) = 7.67236 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 10.13643 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 11.18661 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.50000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -4.71286 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 2.75637 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 4.31609 eV 2 --> E G_5 D_5 e( 5 - 5) = 7.33158 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 9.35468 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 12.05953 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.60000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -4.23578 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 1.85168 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 3.96936 eV 2 --> E G_5 D_5 e( 5 - 5) = 7.05650 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 8.61696 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 12.96178 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.70000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -3.68012 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 0.95015 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 3.69360 eV 2 --> E G_5 D_5 e( 5 - 5) = 6.86544 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 7.99242 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 13.88560 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.80000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -3.05298 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = 0.06829 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 3.49478 eV 2 --> E G_5 D_5 e( 5 - 5) = 6.76567 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 7.49426 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 14.82910 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.90000 ) Band symmetry, C_4v (4mm) point group: e( 1 - 1) = -2.35631 eV 1 --> A_1 G_1 D_1 e( 2 - 2) = -0.78668 eV 1 --> B_2 G_4 D_2' e( 3 - 4) = 3.37380 eV 2 --> E G_5 D_5 e( 5 - 5) = 6.76912 eV 1 --> A_1 G_1 D_1 e( 6 - 6) = 7.12853 eV 1 --> B_2 G_4 D_2' e( 7 - 8) = 15.76318 eV 2 --> E G_5 D_5 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = -5.80989 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 6.25489 eV 3 --> T_2g G_25' G_5+ e( 5 - 7) = 8.82205 eV 3 --> T_1u G_15 G_4- e( 8 - 8) = 9.72317 eV 1 --> A_2u G_2' G_2- ************************************************************************** ************************************************************************** xk=( 0.00000, 0.10000, 0.10000 ) point group C_2v (mm2) there are 4 classes the character table: E C2 s_xz s_yz A_1 1.00 1.00 1.00 1.00 A_2 1.00 1.00 -1.00 -1.00 B_1 1.00 -1.00 1.00 -1.00 B_2 1.00 -1.00 -1.00 1.00 the symmetry operations in each class: E 1 C2 2 s_xz 3 s_yz 4 Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -5.72181 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 5.51805 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 5.89088 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 6.21456 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 8.91345 eV 1 --> B_1 D_3 S_3 e( 6 - 6) = 8.98563 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 9.08099 eV 1 --> B_2 D_4 S_4 e( 8 - 8) = 10.31679 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.20000, 0.20000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -5.45765 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 4.22376 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 5.05826 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 6.07498 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 9.18727 eV 1 --> B_1 D_3 S_3 e( 6 - 6) = 9.27870 eV 1 --> B_2 D_4 S_4 e( 7 - 7) = 9.36851 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 11.49913 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.30000, 0.30000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -5.02436 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 2.93304 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 4.09225 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 5.80158 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 9.35615 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 9.64161 eV 1 --> B_1 D_3 S_3 e( 7 - 7) = 9.89651 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 11.91655 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.40000, 0.40000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -4.43817 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 1.76602 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 3.17121 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 5.39166 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 9.16778 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 10.27129 eV 1 --> B_1 D_3 S_3 e( 7 - 7) = 10.57148 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 11.99749 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.50000, 0.50000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -3.72767 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = 0.75397 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 2.39873 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 4.89637 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 8.69308 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 11.07535 eV 1 --> B_1 D_3 S_3 e( 7 - 7) = 11.39195 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 12.40832 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.60000, 0.60000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -2.95841 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = -0.08443 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 1.86837 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 4.39570 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 8.12616 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 12.04665 eV 1 --> B_1 D_3 S_3 e( 7 - 7) = 12.30467 eV 1 --> A_1 D_1 S_1 e( 8 - 8) = 13.12049 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.70000, 0.70000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -2.26355 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = -0.74585 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 1.71184 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 3.95444 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 7.60984 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 11.39200 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 13.16747 eV 1 --> B_1 D_3 S_3 e( 8 - 8) = 13.69667 eV 1 --> A_1 D_1 S_1 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.80000, 0.80000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -1.81180 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = -1.21825 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 2.07007 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 3.61647 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 7.21653 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 9.38142 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 14.41482 eV 1 --> B_1 D_3 S_3 e( 8 - 8) = 15.01516 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 0.90000, 0.90000 ) Band symmetry, C_2v (mm2) point group: e( 1 - 1) = -1.63507 eV 1 --> A_1 D_1 S_1 e( 2 - 2) = -1.50298 eV 1 --> B_2 D_4 S_4 e( 3 - 3) = 2.83020 eV 1 --> A_1 D_1 S_1 e( 4 - 4) = 3.40517 eV 1 --> A_2 D_2 S_2 e( 5 - 5) = 6.97105 eV 1 --> B_2 D_4 S_4 e( 6 - 6) = 7.68400 eV 1 --> A_1 D_1 S_1 e( 7 - 7) = 15.66969 eV 1 --> B_1 D_3 S_3 e( 8 - 8) = 15.94292 eV 1 --> B_2 D_4 S_4 ************************************************************************** ************************************************************************** xk=( 0.00000, 1.00000, 1.00000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** ************************************************************************** xk=( 0.00000, 0.00000, 0.00000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 6C2' 6C4 3C2 i 6S4 8S6 3s_h 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 -1.00 -1.00 1.00 1.00 -1.00 1.00 1.00 -1.00 E_g 2.00 -1.00 0.00 0.00 2.00 2.00 0.00 -1.00 2.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 1.00 0.00 -1.00 -1.00 T_2g 3.00 0.00 1.00 -1.00 -1.00 3.00 -1.00 0.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 -1.00 -1.00 1.00 -1.00 1.00 -1.00 -1.00 1.00 E_u 2.00 -1.00 0.00 0.00 2.00 -2.00 0.00 1.00 -2.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 -1.00 0.00 1.00 1.00 T_2u 3.00 0.00 1.00 -1.00 -1.00 -3.00 1.00 0.00 1.00 -1.00 the symmetry operations in each class: E 1 3C2 2 4 3 6C2' 5 6 14 13 10 9 6C4 7 8 15 16 12 11 8C3 17 19 20 18 24 21 22 23 i 25 3s_h 26 28 27 6s_d 29 30 38 37 34 33 6S4 31 32 39 40 36 35 8S6 41 43 44 42 48 45 46 47 Band symmetry, O_h (m-3m) point group: e( 1 - 1) = -5.80989 eV 1 --> A_1g G_1 G_1+ e( 2 - 4) = 6.25489 eV 3 --> T_2g G_25' G_5+ e( 5 - 7) = 8.82205 eV 3 --> T_1u G_15 G_4- e( 8 - 8) = 9.72317 eV 1 --> A_2u G_2' G_2- ************************************************************************** ************************************************************************** xk=( 0.10000, 0.10000, 0.10000 ) point group C_3v (3m) there are 3 classes the character table: E 2C3 3s_v A_1 1.00 1.00 1.00 A_2 1.00 1.00 -1.00 E 2.00 -1.00 0.00 the symmetry operations in each class: E 1 2C3 2 3 3s_v 4 5 6 Band symmetry, C_3v (3m) point group: e( 1 - 1) = -5.67829 eV 1 --> A_1 L_1 e( 2 - 2) = 5.10376 eV 1 --> A_1 L_1 e( 3 - 4) = 6.04960 eV 2 --> E L_3 e( 5 - 5) = 8.84762 eV 1 --> A_1 L_1 e( 6 - 7) = 9.12047 eV 2 --> E L_3 e( 8 - 8) = 10.61160 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.20000, 0.20000, 0.20000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = -5.28483 eV 1 --> A_1 L_1 e( 2 - 2) = 3.22191 eV 1 --> A_1 L_1 e( 3 - 4) = 5.65990 eV 2 --> E L_3 e( 5 - 5) = 8.50378 eV 1 --> A_1 L_1 e( 6 - 7) = 9.63593 eV 2 --> E L_3 e( 8 - 8) = 12.33324 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.30000, 0.30000, 0.30000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = -4.65923 eV 1 --> A_1 L_1 e( 2 - 2) = 1.40426 eV 1 --> A_1 L_1 e( 3 - 4) = 5.31880 eV 2 --> E L_3 e( 5 - 5) = 8.13849 eV 1 --> A_1 L_1 e( 6 - 7) = 9.80320 eV 2 --> E L_3 e( 8 - 8) = 13.84469 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.40000, 0.40000, 0.40000 ) Band symmetry, C_3v (3m) point group: e( 1 - 1) = -3.89098 eV 1 --> A_1 L_1 e( 2 - 2) = -0.10176 eV 1 --> A_1 L_1 e( 3 - 4) = 5.10243 eV 2 --> E L_3 e( 5 - 5) = 7.90028 eV 1 --> A_1 L_1 e( 6 - 7) = 9.67884 eV 2 --> E L_3 e( 8 - 8) = 13.95934 eV 1 --> A_1 L_1 ************************************************************************** ************************************************************************** xk=( 0.50000, 0.50000, 0.50000 ) zone border point and non-symmorphic group symmetry decomposition not available ************************************************************************** espresso-5.1/PW/examples/example01/reference/ni.scf.david.out0000644000175000017500000011345312341373025022206 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:40 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Ni.pz-nd-rrkjus.UPF: wavefunction(s) 4S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 25 npp = 25 ncplane = 625 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 25 421 5601 15 139 1067 55 259 bravais-lattice index = 2 lattice parameter (a_0) = 6.4800 a.u. unit-cell volume = 68.0244 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 288.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Ni read from file Ni.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69000 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.700 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 120 gaussian broad. (Ry)= 0.0200 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0039062 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0117188 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0117188 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0117188 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0117188 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0117188 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0117188 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0117188 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0117188 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0234375 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0234375 k( 12) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0234375 k( 13) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0234375 k( 14) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0234375 k( 15) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0234375 k( 16) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0117188 k( 17) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0234375 k( 18) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0234375 k( 19) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0234375 k( 20) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0234375 k( 21) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0234375 k( 22) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0117188 k( 23) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0234375 k( 24) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0234375 k( 25) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0234375 k( 26) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0234375 k( 27) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0117188 k( 28) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0234375 k( 29) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0234375 k( 30) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0117188 k( 31) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0234375 k( 32) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0117188 k( 33) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0039062 k( 34) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0117188 k( 35) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0117188 k( 36) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0117188 k( 37) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0117188 k( 38) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0117188 k( 39) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0117188 k( 40) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0234375 k( 41) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0234375 k( 42) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0234375 k( 43) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0234375 k( 44) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0117188 k( 45) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0234375 k( 46) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0234375 k( 47) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0234375 k( 48) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0117188 k( 49) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0234375 k( 50) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0117188 k( 51) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0039062 k( 52) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0117188 k( 53) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0117188 k( 54) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0117188 k( 55) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0117188 k( 56) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0234375 k( 57) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0234375 k( 58) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0117188 k( 59) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0039062 k( 60) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0117188 k( 61) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0039062 k( 62) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0117188 k( 63) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0117188 k( 64) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0117188 k( 65) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0117188 k( 66) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0117188 k( 67) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0117188 k( 68) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0117188 k( 69) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0117188 k( 70) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0234375 k( 71) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0234375 k( 72) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0234375 k( 73) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0234375 k( 74) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0234375 k( 75) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0234375 k( 76) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0117188 k( 77) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0234375 k( 78) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0234375 k( 79) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0234375 k( 80) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0234375 k( 81) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0234375 k( 82) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0117188 k( 83) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0234375 k( 84) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0234375 k( 85) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0234375 k( 86) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0234375 k( 87) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0117188 k( 88) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0234375 k( 89) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0234375 k( 90) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0117188 k( 91) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0234375 k( 92) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0117188 k( 93) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0039062 k( 94) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0117188 k( 95) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0117188 k( 96) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0117188 k( 97) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0117188 k( 98) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0117188 k( 99) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0117188 k( 100) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0234375 k( 101) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0234375 k( 102) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0234375 k( 103) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0234375 k( 104) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0117188 k( 105) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0234375 k( 106) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0234375 k( 107) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0234375 k( 108) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0117188 k( 109) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0234375 k( 110) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0117188 k( 111) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0039062 k( 112) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0117188 k( 113) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0117188 k( 114) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0117188 k( 115) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0117188 k( 116) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0234375 k( 117) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0234375 k( 118) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0117188 k( 119) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0039062 k( 120) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0117188 G cutoff = 306.3252 ( 5601 G-vectors) FFT grid: ( 25, 25, 25) G cutoff = 102.1084 ( 1067 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 144, 9) NL pseudopotentials 0.04 Mb ( 144, 18) Each V/rho on FFT grid 0.48 Mb ( 15625, 2) Each G-vector array 0.04 Mb ( 5601) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.08 Mb ( 144, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 18, 9) Arrays for rho mixing 1.91 Mb ( 15625, 8) Check: negative/imaginary core charge= -0.000015 0.000000 Initial potential from superposition of free atoms starting charge 9.99966, renormalised to 10.00000 Starting wfc are 6 atomic + 3 random wfc total cpu time spent up to now is 1.50 secs per-process dynamical memory: 11.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 total cpu time spent up to now is 2.88 secs total energy = -85.35005575 Ry Harris-Foulkes estimate = -85.36840648 Ry estimated scf accuracy < 0.91558347 Ry total magnetization = 1.85 Bohr mag/cell absolute magnetization = 1.87 Bohr mag/cell iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.16E-03, avg # of iterations = 2.0 total cpu time spent up to now is 3.82 secs total energy = -85.52910291 Ry Harris-Foulkes estimate = -85.84199986 Ry estimated scf accuracy < 0.93392466 Ry total magnetization = 0.67 Bohr mag/cell absolute magnetization = 0.78 Bohr mag/cell iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.16E-03, avg # of iterations = 1.0 total cpu time spent up to now is 4.65 secs total energy = -85.71067529 Ry Harris-Foulkes estimate = -85.68286109 Ry estimated scf accuracy < 0.04349221 Ry total magnetization = 1.00 Bohr mag/cell absolute magnetization = 1.10 Bohr mag/cell iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.35E-04, avg # of iterations = 1.0 total cpu time spent up to now is 5.49 secs total energy = -85.72195595 Ry Harris-Foulkes estimate = -85.72138903 Ry estimated scf accuracy < 0.00128188 Ry total magnetization = 0.62 Bohr mag/cell absolute magnetization = 0.74 Bohr mag/cell iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-05, avg # of iterations = 2.0 total cpu time spent up to now is 6.41 secs total energy = -85.72234798 Ry Harris-Foulkes estimate = -85.72218992 Ry estimated scf accuracy < 0.00030103 Ry total magnetization = 0.59 Bohr mag/cell absolute magnetization = 0.68 Bohr mag/cell iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-06, avg # of iterations = 1.8 total cpu time spent up to now is 7.33 secs total energy = -85.72248661 Ry Harris-Foulkes estimate = -85.72247858 Ry estimated scf accuracy < 0.00003441 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.44E-07, avg # of iterations = 1.0 total cpu time spent up to now is 8.16 secs total energy = -85.72248975 Ry Harris-Foulkes estimate = -85.72248942 Ry estimated scf accuracy < 0.00000309 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.09E-08, avg # of iterations = 1.5 total cpu time spent up to now is 9.06 secs total energy = -85.72249130 Ry Harris-Foulkes estimate = -85.72249055 Ry estimated scf accuracy < 0.00000164 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell iteration # 9 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.64E-08, avg # of iterations = 1.0 total cpu time spent up to now is 9.89 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0625 0.0625 0.0625 ( 137 PWs) bands (ev): 5.9120 12.6403 12.7237 12.7237 13.9674 13.9674 39.4727 42.4109 44.0014 k = 0.0625 0.0625 0.1875 ( 137 PWs) bands (ev): 6.3391 12.4940 12.8362 12.8411 13.8266 14.0339 38.2933 40.8114 41.8233 k = 0.0625 0.0625 0.3125 ( 136 PWs) bands (ev): 7.1584 12.2111 13.0526 13.0700 13.6130 14.1571 36.6039 39.3136 39.3758 k = 0.0625 0.0625 0.4375 ( 135 PWs) bands (ev): 8.2720 11.8507 13.1518 13.3957 13.6435 14.3190 34.7984 36.9240 37.9143 k = 0.0625 0.0625 0.5625 ( 135 PWs) bands (ev): 9.4204 11.4729 13.1993 13.7876 14.1063 14.4960 33.0562 34.8022 35.0428 k = 0.0625 0.0625 0.6875 ( 131 PWs) bands (ev): 10.1166 11.1348 13.7246 14.1929 14.6629 14.9103 31.2033 31.8424 33.0618 k = 0.0625 0.0625 0.8125 ( 131 PWs) bands (ev): 10.2638 10.8827 14.3318 14.5327 14.7987 16.3747 28.0532 30.5459 31.8085 k = 0.0625 0.0625 0.9375 ( 131 PWs) bands (ev): 10.2378 10.7487 14.6333 14.7178 14.8873 17.9391 25.6719 29.9311 31.1465 k = 0.0625 0.1875 0.1875 ( 140 PWs) bands (ev): 6.7533 12.4200 12.8935 12.8977 13.8048 14.0433 36.2756 39.1047 42.8592 k = 0.0625 0.1875 0.3125 ( 138 PWs) bands (ev): 7.5453 12.2048 12.9779 13.0815 13.6870 14.2127 34.2597 37.1140 41.9174 k = 0.0625 0.1875 0.4375 ( 138 PWs) bands (ev): 8.6158 11.8969 12.9166 13.3634 13.8099 14.4736 32.4182 35.2312 39.3633 k = 0.0625 0.1875 0.5625 ( 138 PWs) bands (ev): 9.7156 11.5624 12.8190 13.7140 14.2263 14.8743 30.7919 33.4967 35.6959 k = 0.0625 0.1875 0.6875 ( 135 PWs) bands (ev): 10.3794 11.2565 13.0674 14.0982 14.5778 15.7748 29.4219 31.5622 32.4412 k = 0.0625 0.1875 0.8125 ( 131 PWs) bands (ev): 10.5003 11.0255 13.5614 14.4141 14.7601 17.3450 28.0923 28.6880 31.1642 k = 0.0625 0.1875 0.9375 ( 129 PWs) bands (ev): 10.4587 10.9028 13.9045 14.5423 14.8705 18.9888 25.7860 27.9627 30.5806 k = 0.0625 0.3125 0.3125 ( 140 PWs) bands (ev): 8.2768 12.1320 12.9066 13.1709 13.6342 14.4853 32.1372 35.0423 43.2095 k = 0.0625 0.3125 0.4375 ( 140 PWs) bands (ev): 9.2452 11.9634 12.7383 13.3506 13.7364 14.9229 30.2768 33.2184 40.3512 k = 0.0625 0.3125 0.5625 ( 138 PWs) bands (ev): 10.2213 11.7374 12.4840 13.6348 14.0804 15.5989 28.6801 31.6638 36.3665 k = 0.0625 0.3125 0.6875 ( 133 PWs) bands (ev): 10.8204 11.4997 12.4575 13.9654 14.4289 16.7887 27.3680 30.3866 32.5390 k = 0.0625 0.3125 0.8125 ( 130 PWs) bands (ev): 10.8990 11.3071 12.7652 14.1828 14.6920 18.5759 26.3890 28.7463 29.8041 k = 0.0625 0.3125 0.9375 ( 131 PWs) bands (ev): 10.8247 11.2092 13.0470 14.2307 14.8634 20.4641 25.6515 26.3855 29.2117 k = 0.0625 0.4375 0.4375 ( 137 PWs) bands (ev): 10.0257 12.0018 12.5667 13.3428 13.7718 15.5600 28.4099 31.4585 41.0969 k = 0.0625 0.4375 0.5625 ( 137 PWs) bands (ev): 10.7529 11.9717 12.2594 13.5024 14.0303 16.4891 26.8151 30.0154 37.3166 k = 0.0625 0.4375 0.6875 ( 133 PWs) bands (ev): 11.2448 11.7948 12.0502 13.7586 14.3642 17.9338 25.5046 28.9111 33.4080 k = 0.0625 0.4375 0.8125 ( 134 PWs) bands (ev): 11.2923 11.6684 12.1314 13.9143 14.6665 19.9278 24.5294 28.1125 29.8823 k = 0.0625 0.4375 0.9375 ( 134 PWs) bands (ev): 11.1514 11.6594 12.2852 13.9465 14.8615 22.1140 23.9545 26.6772 28.0355 k = 0.0625 0.5625 0.5625 ( 135 PWs) bands (ev): 11.1281 12.0206 12.1765 13.5102 14.1530 17.6718 25.2003 28.7035 37.9213 k = 0.0625 0.5625 0.6875 ( 132 PWs) bands (ev): 11.3601 11.6827 12.2748 13.7019 14.3954 19.3047 23.8525 27.7566 34.5390 k = 0.0625 0.5625 0.8125 ( 132 PWs) bands (ev): 11.3384 11.5511 12.2978 13.8725 14.6677 21.3639 22.8887 27.1405 30.9747 k = 0.0625 0.6875 0.6875 ( 133 PWs) bands (ev): 11.1871 11.4834 12.6290 13.8742 14.5153 20.9385 22.5123 26.9684 34.7729 k = 0.0625 0.6875 0.8125 ( 133 PWs) bands (ev): 10.9775 11.2912 12.9103 14.0926 14.6994 21.0784 23.3700 26.5025 32.1960 k = 0.0625 0.8125 0.8125 ( 131 PWs) bands (ev): 10.6502 11.0394 13.5298 14.3480 14.7754 19.8117 25.2621 26.2887 32.4298 k = 0.1875 0.1875 0.1875 ( 138 PWs) bands (ev): 7.1490 12.3850 12.9155 12.9155 13.9465 13.9465 33.9508 40.6191 42.8593 k = 0.1875 0.1875 0.3125 ( 141 PWs) bands (ev): 7.9002 12.2435 12.9544 12.9968 13.8846 14.1748 31.8264 39.5831 40.2798 k = 0.1875 0.1875 0.4375 ( 140 PWs) bands (ev): 8.9011 12.0029 12.8502 13.1655 14.1650 14.4268 29.9624 37.8956 38.1474 k = 0.1875 0.1875 0.5625 ( 136 PWs) bands (ev): 9.9126 11.7109 12.7079 13.4227 14.6483 14.9231 28.3601 35.5626 35.8389 k = 0.1875 0.1875 0.6875 ( 136 PWs) bands (ev): 10.5388 11.4084 12.8534 13.7438 14.7938 16.2052 27.0373 32.0231 34.1889 k = 0.1875 0.1875 0.8125 ( 133 PWs) bands (ev): 10.6806 11.1643 13.2464 14.0805 14.8324 17.9973 26.0368 28.6479 33.0299 k = 0.1875 0.3125 0.3125 ( 141 PWs) bands (ev): 8.5586 12.2711 12.9019 12.9801 13.9475 14.3826 29.6693 37.9512 41.7133 k = 0.1875 0.3125 0.4375 ( 140 PWs) bands (ev): 9.3982 12.2155 12.7537 13.0607 14.1483 14.7915 27.8106 36.2164 40.0119 k = 0.1875 0.3125 0.5625 ( 139 PWs) bands (ev): 10.2096 12.0264 12.5521 13.2669 14.5184 15.5527 26.2409 34.6190 36.6546 k = 0.1875 0.3125 0.6875 ( 136 PWs) bands (ev): 10.7589 11.7056 12.5499 13.5599 14.7184 16.9898 24.9668 32.4882 33.7645 k = 0.1875 0.3125 0.8125 ( 132 PWs) bands (ev): 10.9690 11.4203 12.7355 13.8693 14.7503 18.9806 24.0154 29.1748 32.6897 k = 0.1875 0.4375 0.4375 ( 137 PWs) bands (ev): 9.9715 12.4433 12.6304 13.0293 14.1451 15.4093 25.9849 34.5170 40.6365 k = 0.1875 0.4375 0.5625 ( 135 PWs) bands (ev): 10.4972 12.3267 12.5149 13.1743 14.3790 16.3914 24.4791 33.0805 37.5682 k = 0.1875 0.4375 0.6875 ( 135 PWs) bands (ev): 10.9360 11.9279 12.4598 13.4315 14.5932 17.9594 23.2971 31.9165 33.8122 k = 0.1875 0.4375 0.8125 ( 135 PWs) bands (ev): 11.2737 11.5939 12.3715 13.6973 14.6680 19.9684 22.5288 29.9764 31.4465 k = 0.1875 0.5625 0.5625 ( 131 PWs) bands (ev): 10.7559 12.1785 12.6604 13.2082 14.4333 17.5331 23.0842 31.7385 38.3099 k = 0.1875 0.5625 0.6875 ( 129 PWs) bands (ev): 11.0185 11.8733 12.5734 13.4188 14.5881 18.9957 22.1674 30.7157 34.9245 k = 0.1875 0.6875 0.6875 ( 132 PWs) bands (ev): 11.0171 11.6638 12.6550 13.5832 14.6895 19.4275 22.3001 29.7834 35.2773 k = 0.3125 0.3125 0.3125 ( 144 PWs) bands (ev): 9.0549 12.5367 12.8687 12.8687 14.2846 14.2846 27.5124 39.4295 41.9478 k = 0.3125 0.3125 0.4375 ( 141 PWs) bands (ev): 9.6441 12.7232 12.7667 12.8802 14.5676 14.5759 25.6926 38.4692 39.6465 k = 0.3125 0.3125 0.5625 ( 140 PWs) bands (ev): 10.2055 12.4176 12.7652 13.0186 14.7459 15.6520 24.1999 36.5086 37.7394 k = 0.3125 0.3125 0.6875 ( 134 PWs) bands (ev): 10.6757 12.0090 12.7074 13.2669 14.7872 17.3641 23.0424 33.2020 36.2736 k = 0.3125 0.4375 0.4375 ( 140 PWs) bands (ev): 9.9304 12.6999 12.8053 13.2794 14.4727 15.0935 23.9724 37.4847 40.2945 k = 0.3125 0.4375 0.5625 ( 136 PWs) bands (ev): 10.2529 12.5024 12.8956 13.2316 14.6595 16.1515 22.6704 36.1715 38.2403 k = 0.3125 0.4375 0.6875 ( 134 PWs) bands (ev): 10.6207 12.1883 12.9091 13.1234 14.7086 17.7231 21.8908 34.0191 35.8118 k = 0.3125 0.5625 0.5625 ( 131 PWs) bands (ev): 10.3873 12.4130 12.9285 13.2780 14.6634 16.9659 21.7836 35.0550 39.0775 k = 0.4375 0.4375 0.4375 ( 135 PWs) bands (ev): 9.9677 12.7086 12.7086 14.3520 14.6900 14.6900 22.5008 38.4627 41.4621 k = 0.4375 0.4375 0.5625 ( 135 PWs) bands (ev): 10.1167 12.6120 12.7519 13.9393 14.7573 15.8140 21.6821 37.6852 40.1836 ------ SPIN DOWN ---------- k = 0.0625 0.0625 0.0625 ( 137 PWs) bands (ev): 5.9423 13.2919 13.3810 13.3810 14.5690 14.5690 39.4757 42.4456 44.0456 k = 0.0625 0.0625 0.1875 ( 137 PWs) bands (ev): 6.3696 13.1353 13.4958 13.5007 14.4208 14.6386 38.3635 40.8363 41.9152 k = 0.0625 0.0625 0.3125 ( 136 PWs) bands (ev): 7.1915 12.8346 13.7095 13.7342 14.1981 14.7679 36.7186 39.4223 39.4233 k = 0.0625 0.0625 0.4375 ( 135 PWs) bands (ev): 8.3187 12.4526 13.7352 14.0673 14.2766 14.9387 34.9273 37.0338 37.9863 k = 0.0625 0.0625 0.5625 ( 135 PWs) bands (ev): 9.5245 12.0534 13.7062 14.4681 14.7453 15.1284 33.1822 34.9011 35.1551 k = 0.0625 0.0625 0.6875 ( 131 PWs) bands (ev): 10.3519 11.6971 14.1954 14.8773 15.3164 15.4383 31.3478 31.9671 33.1430 k = 0.0625 0.0625 0.8125 ( 131 PWs) bands (ev): 10.5986 11.4322 14.9361 15.1983 15.4945 16.6428 28.2598 30.6380 31.8707 k = 0.0625 0.0625 0.9375 ( 131 PWs) bands (ev): 10.6073 11.2916 15.3103 15.3494 15.6322 18.0527 25.9390 30.0091 31.1960 k = 0.0625 0.1875 0.1875 ( 140 PWs) bands (ev): 6.7851 13.0500 13.5500 13.5564 14.3989 14.6530 36.3891 39.1678 42.8831 k = 0.0625 0.1875 0.3125 ( 138 PWs) bands (ev): 7.5823 12.8178 13.6113 13.7454 14.2814 14.8368 34.3987 37.2088 41.9618 k = 0.0625 0.1875 0.4375 ( 138 PWs) bands (ev): 8.6713 12.4899 13.5075 14.0219 14.4222 15.1126 32.5719 35.3449 39.4342 k = 0.0625 0.1875 0.5625 ( 138 PWs) bands (ev): 9.8329 12.1351 13.3658 14.3671 14.8446 15.5017 30.9494 33.6152 35.8079 k = 0.0625 0.1875 0.6875 ( 135 PWs) bands (ev): 10.6280 11.8124 13.5765 14.7464 15.2362 16.2800 29.5734 31.7072 32.5544 k = 0.0625 0.1875 0.8125 ( 131 PWs) bands (ev): 10.8468 11.5706 14.1050 15.0469 15.4723 17.6741 28.2748 28.8396 31.2557 k = 0.0625 0.1875 0.9375 ( 129 PWs) bands (ev): 10.8373 11.4425 14.4936 15.1592 15.6179 19.1882 26.0415 28.0867 30.6622 k = 0.0625 0.3125 0.3125 ( 140 PWs) bands (ev): 8.3257 12.7273 13.5158 13.8279 14.2358 15.1253 32.2983 35.1568 43.2292 k = 0.0625 0.3125 0.4375 ( 140 PWs) bands (ev): 9.3257 12.5389 13.3183 13.9798 14.3690 15.5606 30.4550 33.3475 40.4215 k = 0.0625 0.3125 0.5625 ( 138 PWs) bands (ev): 10.3759 12.2923 13.0402 14.2474 14.7348 16.1863 28.8676 31.7998 36.4746 k = 0.0625 0.3125 0.6875 ( 133 PWs) bands (ev): 11.1004 12.0394 12.9846 14.5704 15.1197 17.2531 27.5551 30.5247 32.6753 k = 0.0625 0.3125 0.8125 ( 130 PWs) bands (ev): 11.2676 11.8435 13.2914 14.7820 15.4222 18.9055 26.5693 28.9277 29.9268 k = 0.0625 0.3125 0.9375 ( 131 PWs) bands (ev): 11.2183 11.7441 13.5979 14.8273 15.6124 20.6945 25.8515 26.5878 29.3299 k = 0.0625 0.4375 0.4375 ( 137 PWs) bands (ev): 10.1637 12.5547 13.1188 13.9362 14.4469 16.1656 28.6100 31.6003 41.1331 k = 0.0625 0.4375 0.5625 ( 137 PWs) bands (ev): 10.9899 12.4955 12.7968 14.0851 14.7226 17.0135 27.0301 30.1659 37.4189 k = 0.0625 0.4375 0.6875 ( 133 PWs) bands (ev): 11.5819 12.2943 12.5936 14.3409 15.0767 18.3385 25.7246 29.0676 33.5355 k = 0.0625 0.4375 0.8125 ( 134 PWs) bands (ev): 11.6822 12.1941 12.6583 14.4977 15.4017 20.2284 24.7449 28.2782 30.0312 k = 0.0625 0.4375 0.9375 ( 134 PWs) bands (ev): 11.5559 12.1927 12.8234 14.5271 15.6107 22.3433 24.1634 26.8834 28.1801 k = 0.0625 0.5625 0.5625 ( 135 PWs) bands (ev): 11.4809 12.4758 12.7209 14.0910 14.8612 18.1022 25.4356 28.8675 38.0319 k = 0.0625 0.5625 0.6875 ( 132 PWs) bands (ev): 11.8102 12.1062 12.8156 14.2851 15.1161 19.6344 24.0961 27.9337 34.6538 k = 0.0625 0.5625 0.8125 ( 132 PWs) bands (ev): 11.7575 12.0464 12.8391 14.4557 15.4044 21.6172 23.1291 27.3300 31.1073 k = 0.0625 0.6875 0.6875 ( 133 PWs) bands (ev): 11.6824 11.8911 13.1703 14.4662 15.2418 21.1953 22.7661 27.1663 34.8663 k = 0.0625 0.6875 0.8125 ( 133 PWs) bands (ev): 11.4040 11.7854 13.4554 14.6897 15.4362 21.3197 23.5811 26.7161 32.2999 k = 0.0625 0.8125 0.8125 ( 131 PWs) bands (ev): 11.0468 11.5628 14.0914 14.9627 15.5124 20.0405 25.4557 26.4955 32.4991 k = 0.1875 0.1875 0.1875 ( 138 PWs) bands (ev): 7.1843 12.9978 13.5678 13.5678 14.5565 14.5565 34.0896 40.6034 42.9618 k = 0.1875 0.1875 0.3125 ( 141 PWs) bands (ev): 7.9462 12.8331 13.5845 13.6386 14.5044 14.8055 31.9878 39.5993 40.3950 k = 0.1875 0.1875 0.4375 ( 140 PWs) bands (ev): 8.9768 12.5673 13.4415 13.8015 14.7873 15.0782 30.1403 38.0085 38.1940 k = 0.1875 0.1875 0.5625 ( 136 PWs) bands (ev): 10.0649 12.2490 13.2648 14.0572 15.3194 15.4963 28.5455 35.6610 35.9418 k = 0.1875 0.1875 0.6875 ( 136 PWs) bands (ev): 10.8239 11.9299 13.3721 14.3787 15.4838 16.6689 27.2199 32.1674 34.2787 k = 0.1875 0.1875 0.8125 ( 133 PWs) bands (ev): 11.0536 11.6846 13.7763 14.7123 15.5424 18.3298 26.2106 28.8322 33.1070 k = 0.1875 0.3125 0.3125 ( 141 PWs) bands (ev): 8.6293 12.8206 13.5168 13.6059 14.5849 15.0280 29.8548 38.0246 41.7479 k = 0.1875 0.3125 0.4375 ( 140 PWs) bands (ev): 9.5247 12.7222 13.3432 13.6763 14.7952 15.4318 28.0170 36.3135 40.0636 k = 0.1875 0.3125 0.5625 ( 139 PWs) bands (ev): 10.4383 12.4965 13.1238 13.8794 15.1834 16.1109 26.4611 34.7274 36.7575 k = 0.1875 0.3125 0.6875 ( 136 PWs) bands (ev): 11.1115 12.1663 13.0913 14.1728 15.4121 17.4172 25.1906 32.6211 33.8803 k = 0.1875 0.3125 0.8125 ( 132 PWs) bands (ev): 11.3913 11.8919 13.2688 14.4793 15.4652 19.2983 24.2340 29.3468 32.7973 k = 0.1875 0.4375 0.4375 ( 137 PWs) bands (ev): 10.1882 12.8842 13.2047 13.6288 14.8175 16.0079 26.2194 34.6295 40.6600 k = 0.1875 0.4375 0.5625 ( 135 PWs) bands (ev): 10.8222 12.7639 13.0576 13.7684 15.0617 16.8855 24.7367 33.2043 37.6627 k = 0.1875 0.4375 0.6875 ( 135 PWs) bands (ev): 11.3500 12.3612 12.9964 14.0273 15.2940 18.3275 23.5691 32.0492 33.9357 k = 0.1875 0.4375 0.8125 ( 135 PWs) bands (ev): 11.7398 12.0197 12.9122 14.2901 15.3880 20.2463 22.8048 30.1346 31.5762 k = 0.1875 0.5625 0.5625 ( 131 PWs) bands (ev): 11.1589 12.6382 13.1551 13.8013 15.1298 17.9245 23.3765 31.8742 38.4178 k = 0.1875 0.5625 0.6875 ( 129 PWs) bands (ev): 11.4743 12.2958 13.1025 14.0143 15.2946 19.2903 22.4821 30.8621 35.0369 k = 0.1875 0.6875 0.6875 ( 132 PWs) bands (ev): 11.4871 12.0746 13.1954 14.1883 15.3988 19.7105 22.5884 29.9433 35.3727 k = 0.3125 0.3125 0.3125 ( 144 PWs) bands (ev): 9.1776 12.9970 13.4810 13.4810 14.9443 14.9443 27.7275 39.4052 42.0659 k = 0.3125 0.3125 0.4375 ( 141 PWs) bands (ev): 9.8551 13.1172 13.3540 13.4863 15.2034 15.2450 25.9367 38.4691 39.7586 k = 0.3125 0.3125 0.5625 ( 140 PWs) bands (ev): 10.5224 12.8610 13.2887 13.6232 15.4370 16.1479 24.4681 36.5712 37.8449 k = 0.3125 0.3125 0.6875 ( 134 PWs) bands (ev): 11.0838 12.4356 13.2427 13.8727 15.4880 17.7343 23.3257 33.3242 36.3731 k = 0.3125 0.4375 0.4375 ( 140 PWs) bands (ev): 10.2349 13.2791 13.3996 13.5901 15.1559 15.6915 24.2579 37.5277 40.3441 k = 0.3125 0.4375 0.5625 ( 136 PWs) bands (ev): 10.6313 13.0320 13.4868 13.6404 15.3502 16.5818 22.9945 36.2417 38.3355 k = 0.3125 0.4375 0.6875 ( 134 PWs) bands (ev): 11.0484 12.6516 13.4026 13.7179 15.4095 18.0358 22.2384 34.1264 35.9252 k = 0.3125 0.5625 0.5625 ( 131 PWs) bands (ev): 10.8005 12.9309 13.5206 13.7076 15.3609 17.3009 22.1505 35.1476 39.1811 k = 0.4375 0.4375 0.4375 ( 135 PWs) bands (ev): 10.3330 13.2991 13.2991 14.4427 15.3828 15.3828 22.8438 38.4259 41.5580 k = 0.4375 0.4375 0.5625 ( 135 PWs) bands (ev): 10.5163 13.1822 13.3418 14.2982 15.4549 16.1781 22.0665 37.6872 40.2830 the Fermi energy is 15.2874 ev ! total energy = -85.72249140 Ry Harris-Foulkes estimate = -85.72249140 Ry estimated scf accuracy < 1.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 0.28987181 Ry hartree contribution = 14.34997653 Ry xc contribution = -29.60817437 Ry ewald contribution = -70.75404435 Ry smearing contrib. (-TS) = -0.00012101 Ry total magnetization = 0.58 Bohr mag/cell absolute magnetization = 0.65 Bohr mag/cell convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -23.07 -0.00015682 0.00000000 0.00000000 -23.07 0.00 0.00 0.00000000 -0.00015682 0.00000000 0.00 -23.07 0.00 0.00000000 0.00000000 -0.00015682 0.00 0.00 -23.07 Writing output data file ni.save PWSCF : 10.95s CPU time, 11.52s wall time init_run : 1.43s CPU electrons : 8.39s CPU forces : 0.14s CPU stress : 0.59s CPU Called by init_run: wfcinit : 0.27s CPU potinit : 0.02s CPU Called by electrons: c_bands : 6.26s CPU ( 9 calls, 0.695 s avg) sum_band : 1.64s CPU ( 9 calls, 0.183 s avg) v_of_rho : 0.09s CPU ( 10 calls, 0.009 s avg) newd : 0.32s CPU ( 10 calls, 0.032 s avg) mix_rho : 0.04s CPU ( 9 calls, 0.004 s avg) Called by c_bands: init_us_2 : 0.26s CPU ( 2520 calls, 0.000 s avg) cegterg : 5.72s CPU ( 1080 calls, 0.005 s avg) Called by *egterg: h_psi : 4.52s CPU ( 3065 calls, 0.001 s avg) s_psi : 0.14s CPU ( 3065 calls, 0.000 s avg) g_psi : 0.08s CPU ( 1865 calls, 0.000 s avg) cdiaghg : 0.75s CPU ( 2945 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.14s CPU ( 3065 calls, 0.000 s avg) General routines calbec : 0.19s CPU ( 4385 calls, 0.000 s avg) cft3s : 4.19s CPU ( 55346 calls, 0.000 s avg) interpolate : 0.05s CPU ( 38 calls, 0.001 s avg) davcio : 0.01s CPU ( 3600 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example01/reference/al.scf.cg.out0000644000175000017500000004556612341373025021507 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:58 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 15 npp = 15 ncplane = 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 15 121 869 15 121 869 43 181 bravais-lattice index = 2 lattice parameter (a_0) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file Al.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 60 gaussian broad. (Ry)= 0.0500 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0078125 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0234375 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0234375 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0234375 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0234375 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0234375 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0234375 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0234375 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0234375 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0468750 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0468750 k( 12) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0468750 k( 13) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0468750 k( 14) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0468750 k( 15) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0468750 k( 16) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0234375 k( 17) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0468750 k( 18) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0468750 k( 19) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0468750 k( 20) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0468750 k( 21) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0468750 k( 22) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0234375 k( 23) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0468750 k( 24) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0468750 k( 25) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0468750 k( 26) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0468750 k( 27) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0234375 k( 28) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0468750 k( 29) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0468750 k( 30) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0234375 k( 31) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0468750 k( 32) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0234375 k( 33) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0078125 k( 34) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0234375 k( 35) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0234375 k( 36) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0234375 k( 37) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0234375 k( 38) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0234375 k( 39) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0234375 k( 40) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0468750 k( 41) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0468750 k( 42) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0468750 k( 43) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0468750 k( 44) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0234375 k( 45) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0468750 k( 46) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0468750 k( 47) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0468750 k( 48) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0234375 k( 49) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0468750 k( 50) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0234375 k( 51) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0078125 k( 52) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0234375 k( 53) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0234375 k( 54) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0234375 k( 55) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0234375 k( 56) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0468750 k( 57) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0468750 k( 58) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0234375 k( 59) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0078125 k( 60) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0234375 G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 6) NL pseudopotentials 0.01 Mb ( 113, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Each subspace H/S matrix 0.00 Mb ( 6, 6) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 9 atomic wfcs total cpu time spent up to now is 0.15 secs per-process dynamical memory: 4.6 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 CG style diagonalization ethr = 1.00E-02, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold CG style diagonalization ethr = 1.96E-04, avg # of iterations = 2.4 total cpu time spent up to now is 0.58 secs total energy = -4.18724727 Ry Harris-Foulkes estimate = -4.18805275 Ry estimated scf accuracy < 0.00583676 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 CG style diagonalization ethr = 1.95E-04, avg # of iterations = 3.0 total cpu time spent up to now is 0.81 secs total energy = -4.18725335 Ry Harris-Foulkes estimate = -4.18728429 Ry estimated scf accuracy < 0.00046243 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 CG style diagonalization ethr = 1.54E-05, avg # of iterations = 3.1 total cpu time spent up to now is 1.05 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 113 PWs) bands (ev): -3.0799 19.3075 20.7687 20.7687 23.1345 23.1345 k = 0.0625 0.0625 0.1875 ( 111 PWs) bands (ev): -2.7827 17.6259 19.1893 20.2772 22.4674 25.1255 k = 0.0625 0.0625 0.3125 ( 106 PWs) bands (ev): -2.1902 16.0984 17.7533 18.9161 21.4296 21.8085 k = 0.0625 0.0625 0.4375 ( 103 PWs) bands (ev): -1.3093 14.7950 16.5527 17.6159 18.3710 20.6640 k = 0.0625 0.0625 0.5625 ( 103 PWs) bands (ev): -0.1500 13.7345 15.2344 15.5866 16.6092 19.8030 k = 0.0625 0.0625 0.6875 ( 105 PWs) bands (ev): 1.2792 12.3163 12.9847 14.8645 15.7971 19.0940 k = 0.0625 0.0625 0.8125 ( 105 PWs) bands (ev): 2.9581 9.6947 12.4277 14.3844 15.2584 18.6077 k = 0.0625 0.0625 0.9375 ( 103 PWs) bands (ev): 4.8010 7.3728 12.1587 14.1469 14.9892 18.3586 k = 0.0625 0.1875 0.1875 ( 108 PWs) bands (ev): -2.4860 15.9029 18.1437 21.3076 23.3520 23.7851 k = 0.0625 0.1875 0.3125 ( 104 PWs) bands (ev): -1.8951 14.3532 16.7499 20.7070 21.6904 23.3068 k = 0.0625 0.1875 0.4375 ( 103 PWs) bands (ev): -1.0179 13.0416 15.5182 18.6011 19.5712 22.3327 k = 0.0625 0.1875 0.5625 ( 102 PWs) bands (ev): 0.1388 11.9819 14.4666 15.6002 18.5654 21.5049 k = 0.0625 0.1875 0.6875 ( 102 PWs) bands (ev): 1.5642 11.1705 12.5879 13.8689 17.7882 20.8346 k = 0.0625 0.1875 0.8125 ( 104 PWs) bands (ev): 3.2366 9.9113 10.7193 13.3151 17.2630 20.3726 k = 0.0625 0.1875 0.9375 ( 104 PWs) bands (ev): 5.0686 7.6399 10.4174 13.0518 17.0000 20.1368 k = 0.0625 0.3125 0.3125 ( 104 PWs) bands (ev): -1.3099 12.7878 15.3547 21.4114 22.4618 23.4833 k = 0.0625 0.3125 0.4375 ( 101 PWs) bands (ev): -0.4382 11.4704 14.1065 19.0233 21.9958 23.4259 k = 0.0625 0.3125 0.5625 ( 103 PWs) bands (ev): 0.7106 10.4079 13.0603 16.0836 21.1139 23.5043 k = 0.0625 0.3125 0.6875 ( 104 PWs) bands (ev): 2.1275 9.6064 12.1738 13.3550 20.3732 23.0355 k = 0.0625 0.3125 0.8125 ( 103 PWs) bands (ev): 3.7898 9.0570 10.4577 11.9431 19.8654 22.6356 k = 0.0625 0.3125 0.9375 ( 104 PWs) bands (ev): 5.6027 8.1189 8.8987 11.6128 19.6076 22.4245 k = 0.0625 0.4375 0.4375 ( 98 PWs) bands (ev): 0.4258 10.1489 12.8400 19.0288 21.0999 24.0186 k = 0.0625 0.4375 0.5625 ( 101 PWs) bands (ev): 1.5646 9.0859 11.7852 16.7673 21.3158 23.8782 k = 0.0625 0.4375 0.6875 ( 104 PWs) bands (ev): 2.9671 8.2848 10.9630 14.0393 22.3898 23.2846 k = 0.0625 0.4375 0.8125 ( 105 PWs) bands (ev): 4.6117 7.7492 10.3043 11.5745 22.6889 23.8327 k = 0.0625 0.4375 0.9375 ( 105 PWs) bands (ev): 6.3928 7.4658 8.9446 10.4210 22.4674 24.6842 k = 0.0625 0.5625 0.5625 ( 103 PWs) bands (ev): 2.6902 8.0224 10.7231 17.0674 19.0229 26.0921 k = 0.0625 0.5625 0.6875 ( 103 PWs) bands (ev): 4.0752 7.2232 9.9081 14.9932 19.5277 26.1775 k = 0.0625 0.5625 0.8125 ( 105 PWs) bands (ev): 5.6857 6.6995 9.3429 12.5059 20.9132 25.7075 k = 0.0625 0.6875 0.6875 ( 101 PWs) bands (ev): 5.4261 6.4363 9.0994 15.6025 17.3700 26.6300 k = 0.0625 0.6875 0.8125 ( 104 PWs) bands (ev): 5.8605 7.0397 8.5731 13.7265 18.1484 24.3664 k = 0.0625 0.8125 0.8125 ( 102 PWs) bands (ev): 5.3362 7.8453 8.7942 14.6308 16.1488 22.0436 k = 0.1875 0.1875 0.1875 ( 107 PWs) bands (ev): -2.1900 14.2077 19.7034 19.7034 24.4167 24.4167 k = 0.1875 0.1875 0.3125 ( 103 PWs) bands (ev): -1.6021 12.6561 18.2573 19.7000 21.8873 25.0845 k = 0.1875 0.1875 0.4375 ( 105 PWs) bands (ev): -0.7294 11.3378 17.0420 18.5896 18.9494 24.1620 k = 0.1875 0.1875 0.5625 ( 104 PWs) bands (ev): 0.4235 10.2730 15.7513 16.0744 17.7753 23.3710 k = 0.1875 0.1875 0.6875 ( 105 PWs) bands (ev): 1.8455 9.4651 12.9089 15.3509 16.9731 22.7218 k = 0.1875 0.1875 0.8125 ( 104 PWs) bands (ev): 3.5133 8.8964 10.3142 14.8697 16.4258 22.2720 k = 0.1875 0.3125 0.3125 ( 102 PWs) bands (ev): -1.0183 11.0929 17.3998 20.7074 21.7718 23.2782 k = 0.1875 0.3125 0.4375 ( 103 PWs) bands (ev): -0.1505 9.7666 16.2019 19.2545 20.4577 23.5595 k = 0.1875 0.3125 0.5625 ( 106 PWs) bands (ev): 0.9941 8.6943 15.1663 16.3379 19.6301 24.4260 k = 0.1875 0.3125 0.6875 ( 103 PWs) bands (ev): 2.4085 7.8865 13.3829 14.5389 18.9091 24.8588 k = 0.1875 0.3125 0.8125 ( 104 PWs) bands (ev): 4.0638 7.3414 10.8135 13.9892 18.4047 24.5589 k = 0.1875 0.4375 0.4375 ( 101 PWs) bands (ev): 0.7107 8.4335 14.9984 19.2757 21.2445 22.2834 k = 0.1875 0.4375 0.5625 ( 103 PWs) bands (ev): 1.8458 7.3549 13.9711 17.0143 21.4663 22.2916 k = 0.1875 0.4375 0.6875 ( 101 PWs) bands (ev): 3.2459 6.5440 13.1253 14.3432 21.5715 22.7622 k = 0.1875 0.4375 0.8125 ( 103 PWs) bands (ev): 4.8731 6.0141 11.5321 12.8294 21.1470 24.1586 k = 0.1875 0.5625 0.5625 ( 103 PWs) bands (ev): 2.9683 6.2742 12.9434 17.3100 19.2581 24.3073 k = 0.1875 0.5625 0.6875 ( 103 PWs) bands (ev): 4.3401 5.4702 12.1435 15.2501 19.7668 24.5023 k = 0.1875 0.6875 0.6875 ( 101 PWs) bands (ev): 4.6026 5.7549 11.3580 15.8451 17.6334 26.7365 k = 0.3125 0.3125 0.3125 ( 98 PWs) bands (ev): -0.4380 9.5216 19.2619 19.2619 22.2491 22.2491 k = 0.3125 0.3125 0.4375 ( 103 PWs) bands (ev): 0.4236 8.1830 18.0352 19.5086 19.7046 22.9997 k = 0.3125 0.3125 0.5625 ( 104 PWs) bands (ev): 1.5633 7.1006 16.7598 17.0581 18.8534 24.0151 k = 0.3125 0.3125 0.6875 ( 105 PWs) bands (ev): 2.9662 6.2849 13.9560 16.3264 18.1466 25.2902 k = 0.3125 0.4375 0.4375 ( 103 PWs) bands (ev): 1.2790 6.8356 17.4108 19.7704 20.7820 21.3530 k = 0.3125 0.4375 0.5625 ( 103 PWs) bands (ev): 2.4087 5.7457 16.4379 17.5060 20.7548 21.8481 k = 0.3125 0.4375 0.6875 ( 103 PWs) bands (ev): 3.7926 4.9319 14.6888 15.7813 20.2149 23.0298 k = 0.3125 0.5625 0.5625 ( 105 PWs) bands (ev): 3.5177 4.6554 15.4924 17.7989 19.6747 22.7874 k = 0.4375 0.4375 0.4375 ( 105 PWs) bands (ev): 2.1277 5.4734 19.5273 19.5273 20.5236 20.5236 k = 0.4375 0.4375 0.5625 ( 106 PWs) bands (ev): 3.2420 4.3787 18.1682 18.5361 20.0805 21.5256 the Fermi energy is 8.2613 ev ! total energy = -4.18725737 Ry Harris-Foulkes estimate = -4.18725730 Ry estimated scf accuracy < 0.00000033 Ry The total energy is the sum of the following terms: one-electron contribution = 2.93900564 Ry hartree contribution = 0.00981242 Ry xc contribution = -1.63461777 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = 0.00037687 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -17.49 -0.00011890 0.00000000 0.00000000 -17.49 0.00 0.00 0.00000000 -0.00011890 0.00000000 0.00 -17.49 0.00 0.00000000 0.00000000 -0.00011890 0.00 0.00 -17.49 Writing output data file al.save PWSCF : 1.32s CPU time, 1.40s wall time init_run : 0.13s CPU electrons : 0.91s CPU forces : 0.01s CPU stress : 0.04s CPU Called by init_run: wfcinit : 0.10s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.78s CPU ( 4 calls, 0.194 s avg) sum_band : 0.12s CPU ( 4 calls, 0.031 s avg) v_of_rho : 0.00s CPU ( 4 calls, 0.001 s avg) mix_rho : 0.00s CPU ( 4 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.03s CPU ( 660 calls, 0.000 s avg) ccgdiagg : 0.64s CPU ( 240 calls, 0.003 s avg) wfcrot : 0.22s CPU ( 180 calls, 0.001 s avg) Called by *cgdiagg: h_psi : 0.78s CPU ( 3607 calls, 0.000 s avg) cdiaghg : 0.01s CPU ( 180 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 3607 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 7154 calls, 0.000 s avg) cft3s : 0.72s CPU ( 10832 calls, 0.000 s avg) davcio : 0.00s CPU ( 900 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example01/reference/al.scf.david.out0000644000175000017500000004575412341373025022204 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:26 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 15 npp = 15 ncplane = 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 15 121 869 15 121 869 43 181 bravais-lattice index = 2 lattice parameter (a_0) = 7.5000 a.u. unit-cell volume = 105.4688 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Al read from file Al.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98000 Al( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 60 gaussian broad. (Ry)= 0.0500 ngauss = -1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0625000 0.0625000 0.0625000), wk = 0.0078125 k( 2) = ( 0.0625000 0.0625000 0.1875000), wk = 0.0234375 k( 3) = ( 0.0625000 0.0625000 0.3125000), wk = 0.0234375 k( 4) = ( 0.0625000 0.0625000 0.4375000), wk = 0.0234375 k( 5) = ( 0.0625000 0.0625000 0.5625000), wk = 0.0234375 k( 6) = ( 0.0625000 0.0625000 0.6875000), wk = 0.0234375 k( 7) = ( 0.0625000 0.0625000 0.8125000), wk = 0.0234375 k( 8) = ( 0.0625000 0.0625000 0.9375000), wk = 0.0234375 k( 9) = ( 0.0625000 0.1875000 0.1875000), wk = 0.0234375 k( 10) = ( 0.0625000 0.1875000 0.3125000), wk = 0.0468750 k( 11) = ( 0.0625000 0.1875000 0.4375000), wk = 0.0468750 k( 12) = ( 0.0625000 0.1875000 0.5625000), wk = 0.0468750 k( 13) = ( 0.0625000 0.1875000 0.6875000), wk = 0.0468750 k( 14) = ( 0.0625000 0.1875000 0.8125000), wk = 0.0468750 k( 15) = ( 0.0625000 0.1875000 0.9375000), wk = 0.0468750 k( 16) = ( 0.0625000 0.3125000 0.3125000), wk = 0.0234375 k( 17) = ( 0.0625000 0.3125000 0.4375000), wk = 0.0468750 k( 18) = ( 0.0625000 0.3125000 0.5625000), wk = 0.0468750 k( 19) = ( 0.0625000 0.3125000 0.6875000), wk = 0.0468750 k( 20) = ( 0.0625000 0.3125000 0.8125000), wk = 0.0468750 k( 21) = ( 0.0625000 0.3125000 0.9375000), wk = 0.0468750 k( 22) = ( 0.0625000 0.4375000 0.4375000), wk = 0.0234375 k( 23) = ( 0.0625000 0.4375000 0.5625000), wk = 0.0468750 k( 24) = ( 0.0625000 0.4375000 0.6875000), wk = 0.0468750 k( 25) = ( 0.0625000 0.4375000 0.8125000), wk = 0.0468750 k( 26) = ( 0.0625000 0.4375000 0.9375000), wk = 0.0468750 k( 27) = ( 0.0625000 0.5625000 0.5625000), wk = 0.0234375 k( 28) = ( 0.0625000 0.5625000 0.6875000), wk = 0.0468750 k( 29) = ( 0.0625000 0.5625000 0.8125000), wk = 0.0468750 k( 30) = ( 0.0625000 0.6875000 0.6875000), wk = 0.0234375 k( 31) = ( 0.0625000 0.6875000 0.8125000), wk = 0.0468750 k( 32) = ( 0.0625000 0.8125000 0.8125000), wk = 0.0234375 k( 33) = ( 0.1875000 0.1875000 0.1875000), wk = 0.0078125 k( 34) = ( 0.1875000 0.1875000 0.3125000), wk = 0.0234375 k( 35) = ( 0.1875000 0.1875000 0.4375000), wk = 0.0234375 k( 36) = ( 0.1875000 0.1875000 0.5625000), wk = 0.0234375 k( 37) = ( 0.1875000 0.1875000 0.6875000), wk = 0.0234375 k( 38) = ( 0.1875000 0.1875000 0.8125000), wk = 0.0234375 k( 39) = ( 0.1875000 0.3125000 0.3125000), wk = 0.0234375 k( 40) = ( 0.1875000 0.3125000 0.4375000), wk = 0.0468750 k( 41) = ( 0.1875000 0.3125000 0.5625000), wk = 0.0468750 k( 42) = ( 0.1875000 0.3125000 0.6875000), wk = 0.0468750 k( 43) = ( 0.1875000 0.3125000 0.8125000), wk = 0.0468750 k( 44) = ( 0.1875000 0.4375000 0.4375000), wk = 0.0234375 k( 45) = ( 0.1875000 0.4375000 0.5625000), wk = 0.0468750 k( 46) = ( 0.1875000 0.4375000 0.6875000), wk = 0.0468750 k( 47) = ( 0.1875000 0.4375000 0.8125000), wk = 0.0468750 k( 48) = ( 0.1875000 0.5625000 0.5625000), wk = 0.0234375 k( 49) = ( 0.1875000 0.5625000 0.6875000), wk = 0.0468750 k( 50) = ( 0.1875000 0.6875000 0.6875000), wk = 0.0234375 k( 51) = ( 0.3125000 0.3125000 0.3125000), wk = 0.0078125 k( 52) = ( 0.3125000 0.3125000 0.4375000), wk = 0.0234375 k( 53) = ( 0.3125000 0.3125000 0.5625000), wk = 0.0234375 k( 54) = ( 0.3125000 0.3125000 0.6875000), wk = 0.0234375 k( 55) = ( 0.3125000 0.4375000 0.4375000), wk = 0.0234375 k( 56) = ( 0.3125000 0.4375000 0.5625000), wk = 0.0468750 k( 57) = ( 0.3125000 0.4375000 0.6875000), wk = 0.0468750 k( 58) = ( 0.3125000 0.5625000 0.5625000), wk = 0.0234375 k( 59) = ( 0.4375000 0.4375000 0.4375000), wk = 0.0078125 k( 60) = ( 0.4375000 0.4375000 0.5625000), wk = 0.0234375 G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 113, 6) NL pseudopotentials 0.01 Mb ( 113, 4) Each V/rho on FFT grid 0.05 Mb ( 3375) Each G-vector array 0.01 Mb ( 869) G-vector shells 0.00 Mb ( 31) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.04 Mb ( 113, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 0.41 Mb ( 3375, 8) Initial potential from superposition of free atoms starting charge 2.99794, renormalised to 3.00000 Starting wfc are 9 atomic wfcs total cpu time spent up to now is 0.15 secs per-process dynamical memory: 4.6 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.9 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.99E-04, avg # of iterations = 1.4 total cpu time spent up to now is 0.61 secs total energy = -4.18725207 Ry Harris-Foulkes estimate = -4.18806760 Ry estimated scf accuracy < 0.00588404 Ry iteration # 2 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.96E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.78 secs total energy = -4.18725432 Ry Harris-Foulkes estimate = -4.18728328 Ry estimated scf accuracy < 0.00045440 Ry iteration # 3 ecut= 15.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-05, avg # of iterations = 1.4 total cpu time spent up to now is 0.97 secs End of self-consistent calculation k = 0.0625 0.0625 0.0625 ( 113 PWs) bands (ev): -3.0799 19.3076 20.7685 20.7685 23.1344 23.1344 k = 0.0625 0.0625 0.1875 ( 111 PWs) bands (ev): -2.7827 17.6258 19.1892 20.2770 22.4670 24.4733 k = 0.0625 0.0625 0.3125 ( 106 PWs) bands (ev): -2.1902 16.0983 17.7532 18.9160 21.4294 21.8083 k = 0.0625 0.0625 0.4375 ( 103 PWs) bands (ev): -1.3094 14.7950 16.5526 17.6159 18.3710 20.6640 k = 0.0625 0.0625 0.5625 ( 103 PWs) bands (ev): -0.1500 13.7344 15.2343 15.5866 16.6091 19.8030 k = 0.0625 0.0625 0.6875 ( 105 PWs) bands (ev): 1.2791 12.3162 12.9847 14.8645 15.7970 19.0940 k = 0.0625 0.0625 0.8125 ( 105 PWs) bands (ev): 2.9581 9.6946 12.4277 14.3844 15.2583 18.6076 k = 0.0625 0.0625 0.9375 ( 103 PWs) bands (ev): 4.8009 7.3727 12.1586 14.1469 14.9892 18.3586 k = 0.0625 0.1875 0.1875 ( 108 PWs) bands (ev): -2.4860 15.9029 18.1433 21.3062 23.3521 23.7854 k = 0.0625 0.1875 0.3125 ( 104 PWs) bands (ev): -1.8951 14.3532 16.7498 20.7071 21.6900 23.3063 k = 0.0625 0.1875 0.4375 ( 103 PWs) bands (ev): -1.0179 13.0416 15.5182 18.6011 19.5711 22.3327 k = 0.0625 0.1875 0.5625 ( 102 PWs) bands (ev): 0.1388 11.9819 14.4665 15.6002 18.5654 21.5047 k = 0.0625 0.1875 0.6875 ( 102 PWs) bands (ev): 1.5641 11.1704 12.5879 13.8689 17.7882 20.8342 k = 0.0625 0.1875 0.8125 ( 104 PWs) bands (ev): 3.2366 9.9113 10.7193 13.3151 17.2629 20.3725 k = 0.0625 0.1875 0.9375 ( 104 PWs) bands (ev): 5.0685 7.6399 10.4174 13.0518 17.0000 20.1366 k = 0.0625 0.3125 0.3125 ( 104 PWs) bands (ev): -1.3100 12.7878 15.3547 21.4109 22.4618 23.4833 k = 0.0625 0.3125 0.4375 ( 101 PWs) bands (ev): -0.4382 11.4704 14.1064 19.0232 21.9962 23.4255 k = 0.0625 0.3125 0.5625 ( 103 PWs) bands (ev): 0.7106 10.4079 13.0602 16.0835 21.1128 23.5043 k = 0.0625 0.3125 0.6875 ( 104 PWs) bands (ev): 2.1275 9.6064 12.1737 13.3550 20.3731 23.0362 k = 0.0625 0.3125 0.8125 ( 103 PWs) bands (ev): 3.7898 9.0569 10.4576 11.9430 19.8652 22.6358 k = 0.0625 0.3125 0.9375 ( 104 PWs) bands (ev): 5.6027 8.1189 8.8987 11.6128 19.6076 22.4238 k = 0.0625 0.4375 0.4375 ( 98 PWs) bands (ev): 0.4258 10.1489 12.8399 19.0288 21.0992 24.0186 k = 0.0625 0.4375 0.5625 ( 101 PWs) bands (ev): 1.5646 9.0859 11.7852 16.7673 21.3158 23.8775 k = 0.0625 0.4375 0.6875 ( 104 PWs) bands (ev): 2.9671 8.2848 10.9629 14.0393 22.3899 23.2854 k = 0.0625 0.4375 0.8125 ( 105 PWs) bands (ev): 4.6116 7.7492 10.3043 11.5745 22.6874 23.8326 k = 0.0625 0.4375 0.9375 ( 105 PWs) bands (ev): 6.3928 7.4658 8.9446 10.4210 22.4673 24.6833 k = 0.0625 0.5625 0.5625 ( 103 PWs) bands (ev): 2.6901 8.0223 10.7231 17.0674 19.0228 26.0921 k = 0.0625 0.5625 0.6875 ( 103 PWs) bands (ev): 4.0752 7.2232 9.9080 14.9931 19.5276 26.1781 k = 0.0625 0.5625 0.8125 ( 105 PWs) bands (ev): 5.6857 6.6995 9.3428 12.5059 20.9132 25.7068 k = 0.0625 0.6875 0.6875 ( 101 PWs) bands (ev): 5.4260 6.4363 9.0994 15.6024 17.3699 26.6300 k = 0.0625 0.6875 0.8125 ( 104 PWs) bands (ev): 5.8605 7.0396 8.5731 13.7265 18.1484 24.3657 k = 0.0625 0.8125 0.8125 ( 102 PWs) bands (ev): 5.3361 7.8453 8.7941 14.6307 16.1488 22.0436 k = 0.1875 0.1875 0.1875 ( 107 PWs) bands (ev): -2.1901 14.2077 19.7033 19.7033 24.4167 24.4167 k = 0.1875 0.1875 0.3125 ( 103 PWs) bands (ev): -1.6022 12.6561 18.2573 19.6998 21.8869 24.1377 k = 0.1875 0.1875 0.4375 ( 105 PWs) bands (ev): -0.7295 11.3377 17.0419 18.5894 18.9494 24.1620 k = 0.1875 0.1875 0.5625 ( 104 PWs) bands (ev): 0.4235 10.2730 15.7513 16.0744 17.7753 23.3710 k = 0.1875 0.1875 0.6875 ( 105 PWs) bands (ev): 1.8454 9.4651 12.9088 15.3509 16.9731 22.7216 k = 0.1875 0.1875 0.8125 ( 104 PWs) bands (ev): 3.5133 8.8963 10.3142 14.8697 16.4257 22.2719 k = 0.1875 0.3125 0.3125 ( 102 PWs) bands (ev): -1.0183 11.0929 17.3991 20.7073 21.7722 23.2782 k = 0.1875 0.3125 0.4375 ( 103 PWs) bands (ev): -0.1505 9.7666 16.2018 19.2543 20.4578 23.5600 k = 0.1875 0.3125 0.5625 ( 106 PWs) bands (ev): 0.9941 8.6943 15.1663 16.3379 19.6300 24.4265 k = 0.1875 0.3125 0.6875 ( 103 PWs) bands (ev): 2.4085 7.8865 13.3829 14.5389 18.9091 24.8584 k = 0.1875 0.3125 0.8125 ( 104 PWs) bands (ev): 4.0637 7.3414 10.8134 13.9891 18.4047 24.5585 k = 0.1875 0.4375 0.4375 ( 101 PWs) bands (ev): 0.7106 8.4335 14.9983 19.2757 21.2448 22.2836 k = 0.1875 0.4375 0.5625 ( 103 PWs) bands (ev): 1.8458 7.3549 13.9710 17.0143 21.4660 22.2907 k = 0.1875 0.4375 0.6875 ( 101 PWs) bands (ev): 3.2459 6.5440 13.1252 14.3432 21.5714 22.7620 k = 0.1875 0.4375 0.8125 ( 103 PWs) bands (ev): 4.8731 6.0140 11.5320 12.8293 21.1470 24.1577 k = 0.1875 0.5625 0.5625 ( 103 PWs) bands (ev): 2.9682 6.2742 12.9433 17.3100 19.2578 24.3072 k = 0.1875 0.5625 0.6875 ( 103 PWs) bands (ev): 4.3400 5.4702 12.1435 15.2501 19.7667 24.5021 k = 0.1875 0.6875 0.6875 ( 101 PWs) bands (ev): 4.6026 5.7549 11.3580 15.8451 17.6333 26.7366 k = 0.3125 0.3125 0.3125 ( 98 PWs) bands (ev): -0.4381 9.5216 19.2619 19.2619 22.2491 22.2491 k = 0.3125 0.3125 0.4375 ( 103 PWs) bands (ev): 0.4236 8.1830 18.0352 19.5086 19.7047 22.9992 k = 0.3125 0.3125 0.5625 ( 104 PWs) bands (ev): 1.5633 7.1005 16.7598 17.0580 18.8533 24.0150 k = 0.3125 0.3125 0.6875 ( 105 PWs) bands (ev): 2.9662 6.2849 13.9560 16.3264 18.1466 25.2901 k = 0.3125 0.4375 0.4375 ( 103 PWs) bands (ev): 1.2790 6.8356 17.4108 19.7704 20.7818 21.3526 k = 0.3125 0.4375 0.5625 ( 103 PWs) bands (ev): 2.4087 5.7457 16.4378 17.5059 20.7539 21.8470 k = 0.3125 0.4375 0.6875 ( 103 PWs) bands (ev): 3.7925 4.9319 14.6888 15.7813 20.2147 23.0298 k = 0.3125 0.5625 0.5625 ( 105 PWs) bands (ev): 3.5176 4.6554 15.4923 17.7989 19.6742 22.7871 k = 0.4375 0.4375 0.4375 ( 105 PWs) bands (ev): 2.1276 5.4734 19.5273 19.5273 20.5236 20.5236 k = 0.4375 0.4375 0.5625 ( 106 PWs) bands (ev): 3.2420 4.3786 18.1677 18.5361 20.0803 21.5256 the Fermi energy is 8.2612 ev ! total energy = -4.18725744 Ry Harris-Foulkes estimate = -4.18725736 Ry estimated scf accuracy < 0.00000034 Ry The total energy is the sum of the following terms: one-electron contribution = 2.93900609 Ry hartree contribution = 0.00981079 Ry xc contribution = -1.63461669 Ry ewald contribution = -5.50183453 Ry smearing contrib. (-TS) = 0.00037690 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -17.45 -0.00011862 0.00000000 0.00000000 -17.45 0.00 0.00 0.00000000 -0.00011862 0.00000000 0.00 -17.45 0.00 0.00000000 0.00000000 -0.00011862 0.00 0.00 -17.45 Writing output data file al.save PWSCF : 1.25s CPU time, 1.53s wall time init_run : 0.13s CPU electrons : 0.82s CPU forces : 0.01s CPU stress : 0.04s CPU Called by init_run: wfcinit : 0.11s CPU potinit : 0.00s CPU Called by electrons: c_bands : 0.69s CPU ( 4 calls, 0.171 s avg) sum_band : 0.13s CPU ( 4 calls, 0.032 s avg) v_of_rho : 0.00s CPU ( 4 calls, 0.001 s avg) mix_rho : 0.00s CPU ( 4 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.02s CPU ( 660 calls, 0.000 s avg) cegterg : 0.67s CPU ( 240 calls, 0.003 s avg) Called by *egterg: h_psi : 0.63s CPU ( 705 calls, 0.001 s avg) g_psi : 0.01s CPU ( 405 calls, 0.000 s avg) cdiaghg : 0.08s CPU ( 585 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 705 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 825 calls, 0.000 s avg) cft3s : 0.64s CPU ( 9092 calls, 0.000 s avg) davcio : 0.00s CPU ( 900 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example01/reference/cu.scf.david.out0000644000175000017500000003753312341373025022213 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 21:27:28 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Cu.pz-d-rrkjus.UPF: wavefunction(s) 3D renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 15 npps= 15 ncplanes= 225 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 475 6735 15 151 1243 61 307 bravais-lattice index = 2 lattice parameter (a_0) = 6.7300 a.u. unit-cell volume = 76.2053 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 11.00 number of Kohn-Sham states= 10 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 6.730000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Cu read from file Cu.pz-d-rrkjus.UPF Pseudo is Ultrasoft, Zval = 11.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 3 beta functions with: l(1) = 2 l(2) = 2 l(3) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Cu 11.00 63.55000 Cu( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Cu tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 29 gaussian broad. (Ry)= 0.0200 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0039062 k( 2) = ( -0.1250000 0.1250000 -0.1250000), wk = 0.0312500 k( 3) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500 k( 4) = ( -0.3750000 0.3750000 -0.3750000), wk = 0.0312500 k( 5) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0156250 k( 6) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0234375 k( 7) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0937500 k( 8) = ( -0.2500000 0.5000000 -0.2500000), wk = 0.0937500 k( 9) = ( 0.6250000 -0.3750000 0.6250000), wk = 0.0937500 k( 10) = ( 0.5000000 -0.2500000 0.5000000), wk = 0.0937500 k( 11) = ( 0.3750000 -0.1250000 0.3750000), wk = 0.0937500 k( 12) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0468750 k( 13) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0234375 k( 14) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0937500 k( 15) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0937500 k( 16) = ( 0.6250000 -0.1250000 0.6250000), wk = 0.0937500 k( 17) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0468750 k( 18) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0234375 k( 19) = ( 0.8750000 -0.1250000 0.8750000), wk = 0.0937500 k( 20) = ( 0.7500000 0.0000000 0.7500000), wk = 0.0468750 k( 21) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0117188 k( 22) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0937500 k( 23) = ( 0.6250000 -0.3750000 0.8750000), wk = 0.1875000 k( 24) = ( 0.5000000 -0.2500000 0.7500000), wk = 0.0937500 k( 25) = ( 0.7500000 -0.2500000 1.0000000), wk = 0.0937500 k( 26) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000 k( 27) = ( 0.5000000 0.0000000 0.7500000), wk = 0.0937500 k( 28) = ( -0.2500000 -1.0000000 0.0000000), wk = 0.0468750 k( 29) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0234375 G cutoff = 344.1848 ( 6735 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 114.7283 ( 1243 G-vectors) smooth grid: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.03 Mb ( 169, 10) NL pseudopotentials 0.03 Mb ( 169, 13) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6735) G-vector shells 0.00 Mb ( 118) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.10 Mb ( 169, 40) Each subspace H/S matrix 0.02 Mb ( 40, 40) Each matrix 0.00 Mb ( 13, 10) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 10.99968, renormalised to 11.00000 Starting wfc are 6 atomic + 4 random wfc total cpu time spent up to now is 0.75 secs per-process dynamical memory: 10.0 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.8 total cpu time spent up to now is 1.21 secs total energy = -87.72655606 Ry Harris-Foulkes estimate = -87.90886122 Ry estimated scf accuracy < 0.24742720 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.25E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.53 secs total energy = -87.80830159 Ry Harris-Foulkes estimate = -87.90812723 Ry estimated scf accuracy < 0.20149213 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.83E-03, avg # of iterations = 1.0 total cpu time spent up to now is 1.79 secs total energy = -87.84080215 Ry Harris-Foulkes estimate = -87.84128629 Ry estimated scf accuracy < 0.00093500 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.50E-06, avg # of iterations = 2.5 total cpu time spent up to now is 2.12 secs total energy = -87.84117874 Ry Harris-Foulkes estimate = -87.84118196 Ry estimated scf accuracy < 0.00003302 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.00E-07, avg # of iterations = 1.0 total cpu time spent up to now is 2.39 secs total energy = -87.84117482 Ry Harris-Foulkes estimate = -87.84117964 Ry estimated scf accuracy < 0.00001126 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-07, avg # of iterations = 1.0 total cpu time spent up to now is 2.65 secs total energy = -87.84117674 Ry Harris-Foulkes estimate = -87.84117674 Ry estimated scf accuracy < 0.00000001 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-10, avg # of iterations = 2.1 total cpu time spent up to now is 2.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 169 PWs) bands (ev): 4.9901 11.2011 11.2011 11.2011 12.0900 12.0900 38.8600 41.0130 41.0130 41.0130 k =-0.1250 0.1250-0.1250 ( 165 PWs) bands (ev): 5.5708 11.0865 11.3028 11.3028 12.0597 12.0597 34.2710 39.2720 39.7082 39.7082 k =-0.2500 0.2500-0.2500 ( 156 PWs) bands (ev): 7.1552 10.9526 11.3711 11.3711 12.1822 12.1822 27.5275 38.3732 38.3732 38.4660 k =-0.3750 0.3750-0.3750 ( 159 PWs) bands (ev): 8.7581 11.2414 11.2414 11.7718 12.5305 12.5305 21.8040 37.4538 37.7365 37.7365 k = 0.5000-0.5000 0.5000 ( 156 PWs) bands (ev): 9.1126 11.1667 11.1667 12.7052 12.7052 13.4642 18.6412 37.0213 37.6107 37.6107 k = 0.0000 0.2500 0.0000 ( 165 PWs) bands (ev): 5.7619 10.9725 11.3942 11.3942 11.8894 12.1759 36.7454 36.7454 36.7669 38.6741 k =-0.1250 0.3750-0.1250 ( 160 PWs) bands (ev): 7.0142 10.7491 11.4315 11.5524 11.9730 12.3079 30.0779 34.8354 36.4457 38.9410 k =-0.2500 0.5000-0.2500 ( 158 PWs) bands (ev): 8.7287 10.8275 11.1807 11.4888 12.5931 12.8057 23.9425 34.0858 34.9379 36.6366 k = 0.6250-0.3750 0.6250 ( 163 PWs) bands (ev): 9.3833 10.9634 11.3698 11.6201 12.7173 14.6390 19.3208 32.8134 34.6288 36.4058 k = 0.5000-0.2500 0.5000 ( 161 PWs) bands (ev): 9.3118 11.0366 11.3690 11.4824 12.4842 14.0535 20.5831 31.5886 36.5313 37.3111 k = 0.3750-0.1250 0.3750 ( 159 PWs) bands (ev): 8.2134 10.8072 11.2557 11.5070 12.0311 12.8219 25.8862 31.4946 39.3197 39.7083 k = 0.2500 0.0000 0.2500 ( 160 PWs) bands (ev): 6.4954 10.8983 11.3915 11.4734 11.8693 12.2784 32.0409 32.7822 41.5265 42.4817 k = 0.0000 0.5000 0.0000 ( 165 PWs) bands (ev): 7.7942 10.4347 11.6325 11.9192 11.9192 12.3849 32.3393 32.3393 33.7598 34.5440 k =-0.1250 0.6250-0.1250 ( 162 PWs) bands (ev): 9.0226 10.2342 11.4502 12.0191 12.6216 12.9852 26.9779 30.3531 31.0981 35.0364 k = 0.7500-0.2500 0.7500 ( 158 PWs) bands (ev): 9.7667 10.3288 11.2645 11.8944 12.7490 15.5293 21.6001 27.6743 31.3015 35.1325 k = 0.6250-0.1250 0.6250 ( 162 PWs) bands (ev): 10.0182 10.5263 11.0684 11.7897 12.5062 16.7738 20.0922 26.0416 32.9710 35.8417 k = 0.5000 0.0000 0.5000 ( 164 PWs) bands (ev): 9.6266 10.6773 10.8945 11.7426 12.0919 14.2038 24.5959 26.0247 35.8984 37.3877 k = 0.0000 0.7500 0.0000 ( 162 PWs) bands (ev): 9.2057 9.9166 12.5532 12.5532 12.5970 13.2864 26.4700 29.2996 29.2996 33.3063 k = 0.8750-0.1250 0.8750 ( 164 PWs) bands (ev): 9.4500 9.8713 12.2018 12.4695 12.7942 15.9126 23.7212 25.2517 29.0129 34.1879 k = 0.7500 0.0000 0.7500 ( 168 PWs) bands (ev): 9.8606 10.1090 11.5076 12.2375 12.6487 19.0055 20.5140 22.9124 30.3241 34.7826 k = 0.0000-1.0000 0.0000 ( 150 PWs) bands (ev): 9.2584 9.7078 12.6856 12.8599 12.8599 16.0644 22.1077 28.1796 28.1796 32.9217 k =-0.2500 0.5000 0.0000 ( 156 PWs) bands (ev): 8.3838 10.5246 11.2021 11.9283 11.9816 12.8598 28.3780 29.1671 34.7023 39.7245 k = 0.6250-0.3750 0.8750 ( 161 PWs) bands (ev): 9.6521 10.6050 10.9251 11.7990 12.4586 14.3779 22.9148 28.5911 31.6502 39.6656 k = 0.5000-0.2500 0.7500 ( 164 PWs) bands (ev): 9.8897 10.5877 11.1595 11.6868 12.6465 16.6898 19.1411 29.3143 29.7906 39.3669 k = 0.7500-0.2500 1.0000 ( 166 PWs) bands (ev): 9.6141 10.1146 11.4163 12.3918 12.5494 14.7883 25.8700 26.6503 27.2658 37.8986 k = 0.6250-0.1250 0.8750 ( 161 PWs) bands (ev): 9.9928 10.2650 11.1240 12.1237 12.7324 18.0166 21.2248 24.7934 27.1015 39.0183 k = 0.5000 0.0000 0.7500 ( 158 PWs) bands (ev): 10.2723 10.4557 10.7011 12.0025 12.5534 17.1249 21.9644 24.2064 28.8740 40.2127 k =-0.2500-1.0000 0.0000 ( 164 PWs) bands (ev): 9.5931 9.9450 11.8838 12.4221 12.8601 17.7228 22.3900 24.9289 26.0238 37.2947 k =-0.5000-1.0000 0.0000 ( 156 PWs) bands (ev): 10.0285 10.6778 10.6778 12.0570 12.8606 20.9508 20.9508 23.1324 24.0538 44.6533 the Fermi energy is 14.4956 ev ! total energy = -87.84117675 Ry Harris-Foulkes estimate = -87.84117675 Ry estimated scf accuracy < 1.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -10.24218159 Ry hartree contribution = 18.89094590 Ry xc contribution = -14.05623390 Ry ewald contribution = -82.43214130 Ry smearing contrib. (-TS) = -0.00156585 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -11.03 -0.00007501 0.00000000 0.00000000 -11.03 0.00 0.00 0.00000000 -0.00007501 0.00000000 0.00 -11.03 0.00 0.00000000 0.00000000 -0.00007501 0.00 0.00 -11.03 Writing output data file cu.save PWSCF : 3.41s CPU time, 3.79s wall time init_run : 0.72s CPU electrons : 2.21s CPU forces : 0.05s CPU stress : 0.25s CPU Called by init_run: wfcinit : 0.08s CPU potinit : 0.01s CPU Called by electrons: c_bands : 1.53s CPU ( 7 calls, 0.219 s avg) sum_band : 0.44s CPU ( 7 calls, 0.063 s avg) v_of_rho : 0.04s CPU ( 8 calls, 0.005 s avg) newd : 0.18s CPU ( 8 calls, 0.023 s avg) mix_rho : 0.02s CPU ( 7 calls, 0.003 s avg) Called by c_bands: init_us_2 : 0.05s CPU ( 493 calls, 0.000 s avg) cegterg : 1.46s CPU ( 203 calls, 0.007 s avg) Called by *egterg: h_psi : 1.10s CPU ( 651 calls, 0.002 s avg) s_psi : 0.02s CPU ( 651 calls, 0.000 s avg) g_psi : 0.03s CPU ( 419 calls, 0.000 s avg) cdiaghg : 0.24s CPU ( 622 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 651 calls, 0.000 s avg) General routines calbec : 0.03s CPU ( 912 calls, 0.000 s avg) cft3s : 1.04s CPU ( 12625 calls, 0.000 s avg) interpolate : 0.02s CPU ( 15 calls, 0.001 s avg) davcio : 0.00s CPU ( 696 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example11/0000755000175000017500000000000012341373041015241 5ustar mbambaespresso-5.1/PW/examples/example11/run_xml_example0000644000175000017500000001456712341373025020402 0ustar mbamba#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example tests pw.x with PAW in the noncollinear, spin-orbit case." $ECHO "It calculates the band structure of ferromagnetic bcc-Fe." $ECHO # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Fe.rel-pbe-kjpaw.UPF Au.rel-pz-kjpaw.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.scf_pbe.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Fe.rel-pbe-kjpaw.UPF 0.5 0.0000000 0.00000000 0.0 $PSEUDO_DIR/ $TMP_DIR/ 45.0 300.0 1.0d-10 smearing mp 0.04 true true 8 8 8 1 1 1 EOF $ECHO " running the scf calculation for Fe with PAW spin-orbit...\c" $PW_COMMAND < Fe.scf_pbe.xml > Fe.scf_pbe.out check_failure $? $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.band_pbe.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Fe.rel-pbe-kjpaw.UPF 0.5 0.0000000 0.00000000 0.0 $PSEUDO_DIR/ $TMP_DIR/ 45.0 300.0 1.0d-10 smearing mp 0.04 true true 1.0 0.0 0.0 40.0 0.0 0.0 0.0 40.0 0.0 0.0 1.0 1.0 EOF $ECHO " running the band calculation for Fe with PAW and spin-orbit...\c" $PW_COMMAND < Fe.band_pbe.xml > Fe.band_pbe.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example11/README0000644000175000017500000000046212341373025016125 0ustar mbambaThis example tests pw.x and ph.x for the noncollinear/spin-orbit case and PAW. The calculation proceeds as follows: 1) make a self-consistent calculation for bcc-Fe (input=Fe.scf_pbe.in, output=Fe.scf_pbe.out). 2) make a band calculation for bcc-Fe (input=Fe.band_pbe.in, output=Fe.band_pbe.out). espresso-5.1/PW/examples/example11/run_example0000755000175000017500000000755412341373025017523 0ustar mbamba#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example tests pw.x with PAW in the noncollinear, spin-orbit case." $ECHO "It calculates the band structure of ferromagnetic bcc-Fe." $ECHO # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Fe.rel-pbe-kjpaw.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.scf_pbe.in << EOF &control calculation = 'scf' prefix='Fe', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 3, celldm(1) =5.42, nat= 1, ntyp= 1, nr1=27, nr2=27, nr3=27, noncolin=.true. lspinorb=.true. starting_magnetization(1)=0.5, occupations='smearing', smearing='mp', degauss=0.04, ecutwfc =45.0, ecutrho =300.0 / &electrons conv_thr = 1.0d-10 / ATOMIC_SPECIES Fe 0.0 Fe.rel-pbe-kjpaw.UPF ATOMIC_POSITIONS Fe 0.0000000 0.00000000 0.0 K_POINTS AUTOMATIC 8 8 8 1 1 1 EOF $ECHO " running the scf calculation for Fe with PAW spin-orbit...\c" $PW_COMMAND < Fe.scf_pbe.in > Fe.scf_pbe.out check_failure $? $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic PAW-PP cat > Fe.band_pbe.in << EOF &control calculation = 'bands' prefix='Fe', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 3, celldm(1) =5.42, nat= 1, ntyp= 1, nr1=27, nr2=27, nr3=27, noncolin=.true. lspinorb=.true. starting_magnetization(1)=0.5, occupations='smearing', smearing='mp', degauss=0.04, ecutwfc =45.0, ecutrho =300.0 / &electrons conv_thr = 1.0d-10 / ATOMIC_SPECIES Fe 0.0 Fe.rel-pbe-kjpaw.UPF ATOMIC_POSITIONS Fe 0.0000000 0.00000000 0.0 K_POINTS tpiba_b 3 1.0 0.0 0.0 40 0.0 0.0 0.0 40 0.0 0.0 1.0 1 EOF $ECHO " running the band calculation for Fe with PAW and spin-orbit...\c" $PW_COMMAND < Fe.band_pbe.in > Fe.band_pbe.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/Fe* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example11/reference/0000755000175000017500000000000012341373041017177 5ustar mbambaespresso-5.1/PW/examples/example11/reference/Fe.band_pbe.out0000644000175000017500000007314512341373025022027 0ustar mbamba Program PWSCF v.4.2 starts on 23May2010 at 11: 6:24 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 1 processors Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.rel-pbe-paw_kj.UPF: wavefunction(s) 3D renormalized Atomic positions and unit cell read from directory: /home/dalcorso/tmp/Fe.save/ Fixed quantization axis for GGA: 0.000000 0.000000 1.000000 Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm: we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 24 npps= 24 ncplanes= 576 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 487 6963 24 291 3151 99 675 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.4200 a.u. unit-cell volume = 79.6100 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 45.0000 Ry charge density cutoff = 300.0000 Ry Exchange-correlation = SLA PW PBX PBC (1434) EXX-fraction = 0.00 Noncollinear calculation with spin-orbit celldm(1)= 5.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.rel-pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 8.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: PSQ Using radial grid of 1191 points, 10 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 1 l(6) = 1 l(7) = 2 l(8) = 2 l(9) = 2 l(10) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84500 Fe( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 81 gaussian broad. (Ry)= 0.0400 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 1.0000000 0.0000000 0.0000000), wk = 0.0123457 k( 2) = ( 0.9750000 0.0000000 0.0000000), wk = 0.0082305 k( 3) = ( 0.9500000 0.0000000 0.0000000), wk = 0.0082305 k( 4) = ( 0.9250000 0.0000000 0.0000000), wk = 0.0082305 k( 5) = ( 0.9000000 0.0000000 0.0000000), wk = 0.0082305 k( 6) = ( 0.8750000 0.0000000 0.0000000), wk = 0.0082305 k( 7) = ( 0.8500000 0.0000000 0.0000000), wk = 0.0082305 k( 8) = ( 0.8250000 0.0000000 0.0000000), wk = 0.0082305 k( 9) = ( 0.8000000 0.0000000 0.0000000), wk = 0.0082305 k( 10) = ( 0.7750000 0.0000000 0.0000000), wk = 0.0082305 k( 11) = ( 0.7500000 0.0000000 0.0000000), wk = 0.0082305 k( 12) = ( 0.7250000 0.0000000 0.0000000), wk = 0.0082305 k( 13) = ( 0.7000000 0.0000000 0.0000000), wk = 0.0082305 k( 14) = ( 0.6750000 0.0000000 0.0000000), wk = 0.0082305 k( 15) = ( 0.6500000 0.0000000 0.0000000), wk = 0.0082305 k( 16) = ( 0.6250000 0.0000000 0.0000000), wk = 0.0082305 k( 17) = ( 0.6000000 0.0000000 0.0000000), wk = 0.0082305 k( 18) = ( 0.5750000 0.0000000 0.0000000), wk = 0.0082305 k( 19) = ( 0.5500000 0.0000000 0.0000000), wk = 0.0082305 k( 20) = ( 0.5250000 0.0000000 0.0000000), wk = 0.0082305 k( 21) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0082305 k( 22) = ( 0.4750000 0.0000000 0.0000000), wk = 0.0082305 k( 23) = ( 0.4500000 0.0000000 0.0000000), wk = 0.0082305 k( 24) = ( 0.4250000 0.0000000 0.0000000), wk = 0.0082305 k( 25) = ( 0.4000000 0.0000000 0.0000000), wk = 0.0082305 k( 26) = ( 0.3750000 0.0000000 0.0000000), wk = 0.0082305 k( 27) = ( 0.3500000 0.0000000 0.0000000), wk = 0.0082305 k( 28) = ( 0.3250000 0.0000000 0.0000000), wk = 0.0082305 k( 29) = ( 0.3000000 0.0000000 0.0000000), wk = 0.0082305 k( 30) = ( 0.2750000 0.0000000 0.0000000), wk = 0.0082305 k( 31) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0082305 k( 32) = ( 0.2250000 0.0000000 0.0000000), wk = 0.0082305 k( 33) = ( 0.2000000 0.0000000 0.0000000), wk = 0.0082305 k( 34) = ( 0.1750000 0.0000000 0.0000000), wk = 0.0082305 k( 35) = ( 0.1500000 0.0000000 0.0000000), wk = 0.0082305 k( 36) = ( 0.1250000 0.0000000 0.0000000), wk = 0.0082305 k( 37) = ( 0.1000000 0.0000000 0.0000000), wk = 0.0082305 k( 38) = ( 0.0750000 0.0000000 0.0000000), wk = 0.0082305 k( 39) = ( 0.0500000 0.0000000 0.0000000), wk = 0.0082305 k( 40) = ( 0.0250000 0.0000000 0.0000000), wk = 0.0082305 k( 41) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0123457 k( 42) = ( 0.0000000 0.0000000 0.0250000), wk = 0.0041152 k( 43) = ( 0.0000000 0.0000000 0.0500000), wk = 0.0041152 k( 44) = ( 0.0000000 0.0000000 0.0750000), wk = 0.0041152 k( 45) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0041152 k( 46) = ( 0.0000000 0.0000000 0.1250000), wk = 0.0041152 k( 47) = ( 0.0000000 0.0000000 0.1500000), wk = 0.0041152 k( 48) = ( 0.0000000 0.0000000 0.1750000), wk = 0.0041152 k( 49) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0041152 k( 50) = ( 0.0000000 0.0000000 0.2250000), wk = 0.0041152 k( 51) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0041152 k( 52) = ( 0.0000000 0.0000000 0.2750000), wk = 0.0041152 k( 53) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0041152 k( 54) = ( 0.0000000 0.0000000 0.3250000), wk = 0.0041152 k( 55) = ( 0.0000000 0.0000000 0.3500000), wk = 0.0041152 k( 56) = ( 0.0000000 0.0000000 0.3750000), wk = 0.0041152 k( 57) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0041152 k( 58) = ( 0.0000000 0.0000000 0.4250000), wk = 0.0041152 k( 59) = ( 0.0000000 0.0000000 0.4500000), wk = 0.0041152 k( 60) = ( 0.0000000 0.0000000 0.4750000), wk = 0.0041152 k( 61) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0041152 k( 62) = ( 0.0000000 0.0000000 0.5250000), wk = 0.0041152 k( 63) = ( 0.0000000 0.0000000 0.5500000), wk = 0.0041152 k( 64) = ( 0.0000000 0.0000000 0.5750000), wk = 0.0041152 k( 65) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0041152 k( 66) = ( 0.0000000 0.0000000 0.6250000), wk = 0.0041152 k( 67) = ( 0.0000000 0.0000000 0.6500000), wk = 0.0041152 k( 68) = ( 0.0000000 0.0000000 0.6750000), wk = 0.0041152 k( 69) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0041152 k( 70) = ( 0.0000000 0.0000000 0.7250000), wk = 0.0041152 k( 71) = ( 0.0000000 0.0000000 0.7500000), wk = 0.0041152 k( 72) = ( 0.0000000 0.0000000 0.7750000), wk = 0.0041152 k( 73) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0041152 k( 74) = ( 0.0000000 0.0000000 0.8250000), wk = 0.0041152 k( 75) = ( 0.0000000 0.0000000 0.8500000), wk = 0.0041152 k( 76) = ( 0.0000000 0.0000000 0.8750000), wk = 0.0041152 k( 77) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0041152 k( 78) = ( 0.0000000 0.0000000 0.9250000), wk = 0.0041152 k( 79) = ( 0.0000000 0.0000000 0.9500000), wk = 0.0041152 k( 80) = ( 0.0000000 0.0000000 0.9750000), wk = 0.0041152 k( 81) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0123457 G cutoff = 223.2339 ( 6963 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 133.9403 ( 3151 G-vectors) smooth grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 836, 16) NL pseudopotentials 0.22 Mb ( 418, 34) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6963) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.82 Mb ( 836, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.02 Mb ( 34, 2, 16) The potential is recalculated from file : /home/dalcorso/tmp/Fe.save/charge-density.dat 0.000000 0.000000 1.000000 Starting wfc are 18 atomic wfcs Checking if some PAW data can be deallocated... total cpu time spent up to now is 6.36 secs per-process dynamical memory: 29.0 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 1.25E-12, avg # of iterations = 15.9 total cpu time spent up to now is 48.23 secs End of band structure calculation k = 1.0000 0.0000 0.0000 band energies (ev): 7.9076 7.9079 9.7430 9.7438 12.6190 12.6535 12.6884 14.8161 14.8527 14.8872 22.0440 22.1053 22.2569 22.3940 22.4537 22.4986 k = 0.9750 0.0000 0.0000 band energies (ev): 7.9129 7.9134 9.7477 9.7496 12.6117 12.6428 12.6814 14.8065 14.8382 14.8782 21.9956 22.1145 22.2320 22.3610 22.4768 22.4921 k = 0.9500 0.0000 0.0000 band energies (ev): 7.9289 7.9299 9.7606 9.7687 12.5881 12.6114 12.6625 14.7741 14.7957 14.8555 21.7569 22.0407 22.2612 22.2905 22.5543 22.5569 k = 0.9250 0.0000 0.0000 band energies (ev): 7.9556 7.9566 9.7807 9.8008 12.5451 12.5605 12.6364 14.7141 14.7274 14.8266 21.3464 21.7260 22.3680 22.3735 22.6866 22.6872 k = 0.9000 0.0000 0.0000 band energies (ev): 7.9924 7.9930 9.8071 9.8452 12.4811 12.4911 12.6055 14.6270 14.6356 14.7930 20.8346 21.2951 22.5273 22.5293 22.8692 22.8693 k = 0.8750 0.0000 0.0000 band energies (ev): 8.0380 8.0400 9.8384 9.9023 12.3994 12.4063 12.5702 14.5188 14.5250 14.7542 20.2632 20.8034 22.7310 22.7319 23.0977 23.0977 k = 0.8500 0.0000 0.0000 band energies (ev): 8.0902 8.0970 9.8721 9.9711 12.3031 12.3080 12.5291 14.3943 14.3990 14.7083 19.6587 20.2785 22.9746 22.9752 23.3678 23.3679 k = 0.8250 0.0000 0.0000 band energies (ev): 8.1477 8.1637 9.9052 10.0516 12.1952 12.1989 12.4822 14.2577 14.2615 14.6556 19.0380 19.7389 23.2548 23.2551 23.6754 23.6754 k = 0.8000 0.0000 0.0000 band energies (ev): 8.2092 8.2397 9.9350 10.1437 12.0797 12.0826 12.4295 14.1139 14.1172 14.5963 18.4131 19.1986 23.5684 23.5686 24.0163 24.0164 k = 0.7750 0.0000 0.0000 band energies (ev): 8.2721 8.3246 9.9575 10.2467 11.9587 11.9611 12.3718 13.9660 13.9689 14.5311 17.7924 18.6682 23.9125 23.9126 24.3870 24.3871 k = 0.7500 0.0000 0.0000 band energies (ev): 8.3335 8.4180 9.9677 10.3603 11.8347 11.8366 12.3083 13.8167 13.8193 14.4593 17.1822 18.1563 24.2844 24.2845 24.7842 24.7843 k = 0.7250 0.0000 0.0000 band energies (ev): 8.3902 8.5187 9.9610 10.4832 11.7093 11.7110 12.2397 13.6681 13.6706 14.3819 16.5881 17.6704 24.6816 24.6817 25.2050 25.2051 k = 0.7000 0.0000 0.0000 band energies (ev): 8.4387 8.6274 9.9319 10.6159 11.5854 11.5867 12.1669 13.5231 13.5255 14.2995 16.0148 17.2171 25.1021 25.1022 25.6470 25.6470 k = 0.6750 0.0000 0.0000 band energies (ev): 8.4744 8.7428 9.8750 10.7571 11.4641 11.4650 12.0900 13.3829 13.3853 14.2125 15.4667 16.8016 25.5436 25.5437 26.1078 26.1078 k = 0.6500 0.0000 0.0000 band energies (ev): 8.4937 8.8642 9.7863 10.9057 11.3470 11.3471 12.0098 13.2488 13.2514 14.1216 14.9489 16.4293 26.0045 26.0045 26.5856 26.5856 k = 0.6250 0.0000 0.0000 band energies (ev): 8.4912 8.9910 9.6622 11.0590 11.2342 11.2370 11.9268 13.1219 13.1247 14.0273 14.4658 16.1027 26.4829 26.4830 27.0785 27.0785 k = 0.6000 0.0000 0.0000 band energies (ev): 8.4618 9.1223 9.5011 11.1178 11.1272 11.2329 11.8420 13.0028 13.0062 13.9303 14.0222 15.8227 26.9775 26.9776 27.5850 27.5851 k = 0.5750 0.0000 0.0000 band energies (ev): 8.4009 9.2575 9.3037 11.0227 11.0267 11.3924 11.7575 12.8920 12.8962 13.6225 13.8312 15.5879 27.4867 27.4868 28.1036 28.1037 k = 0.5500 0.0000 0.0000 band energies (ev): 8.3050 9.0732 9.3955 10.9303 10.9333 11.5454 11.6870 12.7895 12.7956 13.2709 13.7305 15.3950 28.0092 28.0093 28.6328 28.6330 k = 0.5250 0.0000 0.0000 band energies (ev): 8.1716 8.8138 9.5356 10.8446 10.8472 11.5523 11.7654 12.6939 12.7041 12.9698 13.6290 15.2383 28.5438 28.5439 29.1709 29.1715 k = 0.5000 0.0000 0.0000 band energies (ev): 8.0015 8.5317 9.6767 10.7664 10.7688 11.4708 11.9343 12.5978 12.6221 12.7264 13.5273 15.1119 29.0891 29.0893 29.6870 29.7177 k = 0.4750 0.0000 0.0000 band energies (ev): 7.7979 8.2330 9.8181 10.6958 10.6981 11.3830 12.1107 12.4624 12.5496 12.5764 13.4260 15.0096 29.6437 29.6442 29.9315 30.2696 k = 0.4500 0.0000 0.0000 band energies (ev): 7.5664 7.9239 9.9587 10.6334 10.6357 11.2947 12.2873 12.3047 12.4880 12.4981 13.3259 14.9260 30.1838 30.2071 30.2119 30.6841 k = 0.4250 0.0000 0.0000 band energies (ev): 7.3134 7.6099 10.0975 10.5778 10.5805 11.2073 12.1693 12.4175 12.4389 12.4804 13.2274 14.8557 30.4655 30.7762 30.7772 30.9178 k = 0.4000 0.0000 0.0000 band energies (ev): 7.0464 7.2960 10.2331 10.5295 10.5332 11.1215 12.0585 12.3809 12.3905 12.6456 13.1310 14.7948 30.7637 31.1685 31.3517 31.3525 k = 0.3750 0.0000 0.0000 band energies (ev): 6.7721 6.9866 10.3625 10.4881 10.4957 11.0381 11.9685 12.3435 12.3510 12.8162 13.0375 14.7410 31.0830 31.4419 31.9293 31.9298 k = 0.3500 0.0000 0.0000 band energies (ev): 6.4967 6.6851 10.4395 10.4531 10.5127 10.9575 11.8934 12.3127 12.3191 12.9474 12.9827 14.6908 31.4241 31.7367 32.5074 32.5079 k = 0.3250 0.0000 0.0000 band energies (ev): 6.2253 6.3947 10.4212 10.4244 10.6264 10.8806 11.8291 12.2888 12.2944 12.8614 13.1434 14.6424 31.7874 32.0535 33.0829 33.0834 k = 0.3000 0.0000 0.0000 band energies (ev): 5.9624 6.1179 10.3995 10.4008 10.7425 10.8073 11.7748 12.2706 12.2756 12.7796 13.2969 14.5970 32.1731 32.3930 33.6517 33.6522 k = 0.2750 0.0000 0.0000 band energies (ev): 5.7113 5.8569 10.3817 10.3821 10.7384 10.8530 11.7272 12.2579 12.2623 12.7027 13.4422 14.5532 32.5811 32.7549 34.2081 34.2086 k = 0.2500 0.0000 0.0000 band energies (ev): 5.4750 5.6136 10.3677 10.3680 10.6741 10.9563 11.6851 12.2497 12.2536 12.6312 13.5783 14.5111 33.0109 33.1390 34.7446 34.7451 k = 0.2250 0.0000 0.0000 band energies (ev): 5.2557 5.3895 10.3568 10.3579 10.6151 11.0518 11.6474 12.2453 12.2487 12.5653 13.7042 14.4709 33.4616 33.5443 35.2513 35.2518 k = 0.2000 0.0000 0.0000 band energies (ev): 5.0554 5.1859 10.3489 10.3508 10.5616 11.1387 11.6139 12.2440 12.2468 12.5057 13.8191 14.4331 33.9316 33.9688 35.7155 35.7160 k = 0.1750 0.0000 0.0000 band energies (ev): 4.8757 5.0038 10.3429 10.3459 10.5140 11.2164 11.5839 12.2447 12.2467 12.4526 13.9220 14.3979 34.4096 34.4180 36.1220 36.1225 k = 0.1500 0.0000 0.0000 band energies (ev): 4.7176 4.8443 10.3386 10.3432 10.4730 11.2847 11.5576 12.2473 12.2481 12.4066 14.0127 14.3660 34.8616 34.9163 36.4279 36.4283 k = 0.1250 0.0000 0.0000 band energies (ev): 4.5824 4.7081 10.3350 10.3419 10.4388 11.3430 11.5350 12.2498 12.2508 12.3680 14.0903 14.3380 35.3168 35.4190 36.6033 36.6034 k = 0.1000 0.0000 0.0000 band energies (ev): 4.4707 4.5959 10.3311 10.3416 10.4122 11.3911 11.5163 12.2508 12.2545 12.3375 14.1544 14.3144 35.7621 35.9139 36.7189 36.7189 k = 0.0750 0.0000 0.0000 band energies (ev): 4.3832 4.5081 10.3272 10.3425 10.3941 11.4290 11.5016 12.2508 12.2587 12.3164 14.2051 14.2955 36.1767 36.3799 36.7910 36.7910 k = 0.0500 0.0000 0.0000 band energies (ev): 4.3204 4.4451 10.3224 10.3434 10.3830 11.4559 11.4914 12.2484 12.2620 12.3037 14.2413 14.2821 36.5282 36.7818 36.8325 36.8325 k = 0.0250 0.0000 0.0000 band energies (ev): 4.2826 4.4071 10.3183 10.3437 10.3773 11.4714 11.4857 12.2451 12.2638 12.2976 14.2630 14.2738 36.7714 36.8533 36.8534 37.0659 k = 0.0000 0.0000 0.0000 band energies (ev): 4.2700 4.3945 10.3167 10.3439 10.3756 11.4757 11.4846 12.2436 12.2645 12.2960 14.2700 14.2712 36.8596 36.8596 36.8596 37.1706 k = 0.0000 0.0000 0.0250 band energies (ev): 4.2826 4.4071 10.3166 10.3472 10.3755 11.4779 11.4792 12.2430 12.2682 12.2953 14.2640 14.2728 36.7714 36.8535 37.0661 37.1581 k = 0.0000 0.0000 0.0500 band energies (ev): 4.3204 4.4451 10.3162 10.3574 10.3751 11.4629 11.4843 12.2413 12.2795 12.2935 14.2422 14.2812 36.5282 36.7820 36.8318 36.8332 k = 0.0000 0.0000 0.0750 band energies (ev): 4.3832 4.5080 10.3153 10.3740 10.3742 11.4358 11.4946 12.2380 12.2901 12.2982 14.2061 14.2946 36.1767 36.3801 36.7928 37.0397 k = 0.0000 0.0000 0.1000 band energies (ev): 4.4707 4.5959 10.3144 10.3734 10.3968 11.3977 11.5093 12.2340 12.2859 12.3237 14.1554 14.3135 35.7621 35.9141 36.7153 36.7226 k = 0.0000 0.0000 0.1250 band energies (ev): 4.5824 4.7081 10.3147 10.3737 10.4266 11.3496 11.5280 12.2304 12.2820 12.3571 14.0914 14.3372 35.3168 35.4193 36.6105 36.7189 k = 0.0000 0.0000 0.1500 band energies (ev): 4.7177 4.8443 10.3159 10.3751 10.4626 11.2914 11.5505 12.2272 12.2785 12.3975 14.0138 14.3652 34.8617 34.9165 36.4213 36.4438 k = 0.0000 0.0000 0.1750 band energies (ev): 4.8757 5.0038 10.3185 10.3778 10.5046 11.2235 11.5767 12.2249 12.2759 12.4447 13.9233 14.3970 34.4097 34.4182 36.1046 36.1507 k = 0.0000 0.0000 0.2000 band energies (ev): 5.0554 5.1858 10.3235 10.3829 10.5521 11.1466 11.6065 12.2245 12.2752 12.4985 13.8206 14.4323 33.9318 33.9689 35.6892 35.7511 k = 0.0000 0.0000 0.2250 band energies (ev): 5.2557 5.3895 10.3305 10.3901 10.6043 11.0614 11.6398 12.2262 12.2765 12.5586 13.7060 14.4701 33.4619 33.5443 35.2178 35.2947 k = 0.0000 0.0000 0.2500 band energies (ev): 5.4750 5.6136 10.3408 10.4005 10.6597 10.9698 11.6772 12.2310 12.2809 12.6244 13.5805 14.5103 33.0112 33.1391 34.7049 34.7953 k = 0.0000 0.0000 0.2750 band energies (ev): 5.7113 5.8569 10.3547 10.4147 10.7104 10.8799 11.7191 12.2397 12.2891 12.6955 13.4452 14.5525 32.5814 32.7550 34.1631 34.2652 k = 0.0000 0.0000 0.3000 band energies (ev): 5.9624 6.1179 10.3729 10.4333 10.7044 10.8440 11.7663 12.2531 12.3021 12.7711 13.3015 14.5962 32.1734 32.3930 33.6022 33.7143 k = 0.0000 0.0000 0.3250 band energies (ev): 6.2253 6.3946 10.3961 10.4568 10.6097 10.8943 11.8202 12.2720 12.3204 12.8485 13.1524 14.6417 31.7877 32.0536 33.0298 33.1502 k = 0.0000 0.0000 0.3500 band energies (ev): 6.4967 6.6850 10.4245 10.4855 10.4916 10.9656 11.8839 12.2971 12.3447 12.9044 13.0216 14.6901 31.4244 31.7367 32.4511 32.5787 k = 0.0000 0.0000 0.3750 band energies (ev): 6.7721 6.9865 10.3650 10.4592 10.5205 11.0440 11.9582 12.3295 12.3760 12.8004 13.0489 14.7403 31.0833 31.4419 31.8703 32.0041 k = 0.0000 0.0000 0.4000 band energies (ev): 7.0463 7.2959 10.2330 10.5003 10.5621 11.1265 12.0470 12.3701 12.4148 12.6354 13.1356 14.7941 30.7641 31.1683 31.2904 31.4300 k = 0.0000 0.0000 0.4250 band energies (ev): 7.3134 7.6098 10.0971 10.5484 10.6106 11.2119 12.1555 12.4205 12.4616 12.4620 13.2299 14.8550 30.4661 30.7139 30.8515 30.9226 k = 0.0000 0.0000 0.4500 band energies (ev): 7.5663 7.9238 9.9584 10.6037 10.6663 11.2995 12.2849 12.2859 12.4844 12.5168 13.3275 14.9254 30.1426 30.1887 30.2882 30.6865 k = 0.0000 0.0000 0.4750 band energies (ev): 7.7979 8.2329 9.8179 10.6659 10.7289 11.3885 12.1061 12.4307 12.5754 12.5805 13.4270 15.0090 29.5783 29.7275 29.9311 30.1895 k = 0.0000 0.0000 0.5000 band energies (ev): 8.0015 8.5315 9.6766 10.7363 10.7997 11.4786 11.9271 12.5557 12.6537 12.7357 13.5280 15.1112 29.0223 29.1745 29.6350 29.6902 k = 0.0000 0.0000 0.5250 band energies (ev): 8.1715 8.8137 9.5355 10.8144 10.8780 11.5690 11.7492 12.6555 12.7363 12.9752 13.6295 15.2377 28.4759 28.6308 29.0870 29.2358 k = 0.0000 0.0000 0.5500 band energies (ev): 8.3049 9.0730 9.3955 10.9001 10.9636 11.5738 11.6593 12.7535 12.8283 13.2738 13.7308 15.3944 27.9406 28.0976 28.5469 28.6990 k = 0.0000 0.0000 0.5750 band energies (ev): 8.4008 9.2575 9.3035 10.9932 11.0553 11.4028 11.7487 12.8570 12.9294 13.6242 13.8313 15.5873 27.4174 27.5764 28.0163 28.1706 k = 0.0000 0.0000 0.6000 band energies (ev): 8.4617 9.1224 9.5008 11.0935 11.1435 11.2468 11.8368 12.9683 13.0397 13.9304 14.0232 15.8222 26.9077 27.0685 27.4964 27.6525 k = 0.0000 0.0000 0.6250 band energies (ev): 8.4911 8.9911 9.6618 11.0598 11.2003 11.2746 11.9229 13.0876 13.1586 14.0273 14.4664 16.1022 26.4128 26.5751 26.9886 27.1464 k = 0.0000 0.0000 0.6500 band energies (ev): 8.4936 8.8643 9.7859 10.9069 11.3131 11.3837 12.0066 13.2146 13.2855 14.1215 14.9493 16.4289 25.9342 26.0978 26.4945 26.6537 k = 0.0000 0.0000 0.6750 band energies (ev): 8.4743 8.7429 9.8745 10.7582 11.4308 11.5007 12.0871 13.3486 13.4197 14.2123 15.4670 16.8012 25.4733 25.6381 26.0156 26.1760 k = 0.0000 0.0000 0.7000 band energies (ev): 8.4386 8.6276 9.9313 10.6169 11.5524 11.6221 12.1641 13.4888 13.5602 14.2991 16.0150 17.2167 25.0318 25.1977 25.5537 25.7151 k = 0.0000 0.0000 0.7250 band energies (ev): 8.3900 8.5189 9.9604 10.4841 11.6766 11.7463 12.2370 13.6337 13.7054 14.3813 16.5883 17.6700 24.6116 24.7784 25.1106 25.2730 k = 0.0000 0.0000 0.7500 band energies (ev): 8.3333 8.4182 9.9671 10.3611 11.8022 11.8719 12.3054 13.7824 13.8543 14.4586 17.1824 18.1559 24.2148 24.3823 24.6886 24.8518 k = 0.0000 0.0000 0.7750 band energies (ev): 8.2719 8.3249 9.9568 10.2475 11.9265 11.9963 12.3687 13.9318 14.0040 14.5301 17.7925 18.6679 23.8435 24.0116 24.2901 24.4540 k = 0.0000 0.0000 0.8000 band energies (ev): 8.2090 8.2399 9.9344 10.1444 12.0480 12.1178 12.4259 14.0801 14.1523 14.5949 18.4132 19.1983 23.5004 23.6688 23.9180 24.0825 k = 0.0000 0.0000 0.8250 band energies (ev): 8.1474 8.1639 9.9046 10.0523 12.1643 12.2342 12.4779 14.2244 14.2967 14.6537 19.0382 19.7385 23.1880 23.3566 23.5757 23.7406 k = 0.0000 0.0000 0.8500 band energies (ev): 8.0900 8.0973 9.8715 9.9718 12.2734 12.3433 12.5237 14.3619 14.4341 14.7056 19.6589 20.2780 22.9096 23.0776 23.2668 23.4317 k = 0.0000 0.0000 0.8750 band energies (ev): 8.0377 8.0402 9.8378 9.9029 12.3716 12.4414 12.5630 14.4880 14.5600 14.7500 20.2636 20.8027 22.6683 22.8349 22.9954 23.1600 k = 0.0000 0.0000 0.9000 band energies (ev): 7.9927 7.9927 9.8065 9.8458 12.4565 12.5262 12.5950 14.5987 14.6705 14.7864 20.8352 21.2937 22.4685 22.6313 22.7664 22.9295 k = 0.0000 0.0000 0.9250 band energies (ev): 7.9559 7.9564 9.7801 9.8014 12.5260 12.5956 12.6205 14.6906 14.7622 14.8153 21.3480 21.7220 22.3184 22.4696 22.5851 22.7446 k = 0.0000 0.0000 0.9500 band energies (ev): 7.9292 7.9296 9.7600 9.7693 12.5768 12.6388 12.6464 14.7590 14.8303 14.8360 21.7629 22.0154 22.2618 22.3521 22.4591 22.6092 k = 0.0000 0.0000 0.9750 band energies (ev): 7.9130 7.9132 9.7472 9.7502 12.6083 12.6498 12.6778 14.8016 14.8485 14.8728 22.0256 22.0556 22.2808 22.3839 22.3995 22.5264 k = 0.0000 0.0000 1.0000 band energies (ev): 7.9076 7.9079 9.7430 9.7438 12.6190 12.6535 12.6884 14.8161 14.8527 14.8872 22.0440 22.1053 22.2569 22.3940 22.4537 22.4986 Writing output data file Fe.save init_run : 4.72s CPU 4.78s WALL ( 1 calls) electrons : 41.42s CPU 41.87s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 2.61s CPU 2.67s WALL ( 1 calls) Called by electrons: c_bands : 41.42s CPU 41.87s WALL ( 1 calls) v_of_rho : 0.07s CPU 0.07s WALL ( 1 calls) newd : 0.25s CPU 0.25s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.04s WALL ( 81 calls) cegterg : 37.47s CPU 37.65s WALL ( 95 calls) Called by *egterg: h_psi : 28.01s CPU 28.17s WALL ( 1463 calls) s_psi : 1.61s CPU 1.64s WALL ( 1463 calls) g_psi : 0.56s CPU 0.56s WALL ( 1287 calls) cdiaghg : 3.03s CPU 3.03s WALL ( 1368 calls) Called by h_psi: add_vuspsi : 1.54s CPU 1.53s WALL ( 1463 calls) General routines calbec : 1.45s CPU 1.44s WALL ( 1463 calls) cft3s : 21.82s CPU 21.93s WALL ( 57383 calls) interpolate : 0.01s CPU 0.01s WALL ( 4 calls) davcio : 0.00s CPU 0.03s WALL ( 81 calls) Parallel routines PAW routines PAW_pot : 2.51s CPU 2.57s WALL ( 1 calls) PWSCF : 48.09s CPU time, 48.80s WALL time This run was terminated on: 11: 7:12 23May2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/example11/reference/Fe.scf_pbe.out0000644000175000017500000010735212341373025021674 0ustar mbamba Program PWSCF v.4.2 starts on 23May2010 at 11: 4:11 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Parallel version (MPI), running on 1 processors Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file Fe.rel-pbe-paw_kj.UPF: wavefunction(s) 3D renormalized Fixed quantization axis for GGA: 0.000000 0.000000 1.000000 Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm: we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Planes per process (smooth): nr3s= 24 npps= 24 ncplanes= 576 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 487 6963 24 291 3151 99 627 Generating pointlists ... new r_m : 0.3572 bravais-lattice index = 3 lattice parameter (a_0) = 5.4200 a.u. unit-cell volume = 79.6100 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 45.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-10 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) EXX-fraction = 0.00 Noncollinear calculation with spin-orbit celldm(1)= 5.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file Fe.rel-pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 8.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: PSQ Using radial grid of 1191 points, 10 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 1 l(6) = 1 l(7) = 2 l(8) = 2 l(9) = 2 l(10) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 8.00 55.84500 Fe( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 56 gaussian broad. (Ry)= 0.0400 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.1250000), wk = 0.0039062 k( 2) = ( 0.0000000 -0.1250000 0.2500000), wk = 0.0156250 k( 3) = ( 0.0000000 -0.2500000 0.3750000), wk = 0.0156250 k( 4) = ( 0.0000000 -0.3750000 0.5000000), wk = 0.0156250 k( 5) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0156250 k( 6) = ( -0.1250000 -0.1250000 0.3750000), wk = 0.0156250 k( 7) = ( -0.1250000 -0.2500000 0.5000000), wk = 0.0312500 k( 8) = ( -0.1250000 0.6250000 -0.3750000), wk = 0.0312500 k( 9) = ( -0.2500000 0.2500000 0.1250000), wk = 0.0156250 k( 10) = ( -0.2500000 0.7500000 -0.3750000), wk = 0.0156250 k( 11) = ( -0.3750000 0.3750000 0.1250000), wk = 0.0156250 k( 12) = ( -0.3750000 0.2500000 0.2500000), wk = 0.0312500 k( 13) = ( 0.5000000 -0.5000000 0.1250000), wk = 0.0078125 k( 14) = ( 0.5000000 -0.6250000 0.2500000), wk = 0.0312500 k( 15) = ( 0.3750000 -0.6250000 0.3750000), wk = 0.0156250 k( 16) = ( 0.0000000 0.0000000 0.3750000), wk = 0.0039062 k( 17) = ( 0.0000000 -0.1250000 0.5000000), wk = 0.0156250 k( 18) = ( 0.0000000 -0.2500000 0.6250000), wk = 0.0156250 k( 19) = ( -0.1250000 -0.1250000 0.6250000), wk = 0.0156250 k( 20) = ( -0.1250000 0.7500000 -0.2500000), wk = 0.0312500 k( 21) = ( 0.6250000 -0.6250000 0.3750000), wk = 0.0156250 k( 22) = ( 0.5000000 -0.5000000 0.3750000), wk = 0.0078125 k( 23) = ( 0.0000000 0.0000000 0.6250000), wk = 0.0039062 k( 24) = ( 0.0000000 -0.1250000 0.7500000), wk = 0.0156250 k( 25) = ( -0.1250000 0.8750000 -0.1250000), wk = 0.0156250 k( 26) = ( 0.0000000 0.0000000 0.8750000), wk = 0.0039062 k( 27) = ( 0.0000000 0.1250000 0.0000000), wk = 0.0078125 k( 28) = ( -0.1250000 0.2500000 0.0000000), wk = 0.0156250 k( 29) = ( 0.2500000 0.0000000 -0.1250000), wk = 0.0156250 k( 30) = ( -0.2500000 0.3750000 0.0000000), wk = 0.0156250 k( 31) = ( 0.3750000 0.0000000 -0.2500000), wk = 0.0156250 k( 32) = ( -0.3750000 0.5000000 0.0000000), wk = 0.0156250 k( 33) = ( 0.5000000 0.0000000 -0.3750000), wk = 0.0156250 k( 34) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0312500 k( 35) = ( -0.2500000 0.5000000 -0.1250000), wk = 0.0312500 k( 36) = ( 0.5000000 -0.1250000 -0.2500000), wk = 0.0312500 k( 37) = ( 0.6250000 -0.3750000 -0.1250000), wk = 0.0156250 k( 38) = ( 0.2500000 0.1250000 -0.2500000), wk = 0.0312500 k( 39) = ( 0.7500000 -0.3750000 -0.2500000), wk = 0.0312500 k( 40) = ( 0.3750000 0.1250000 -0.3750000), wk = 0.0312500 k( 41) = ( 0.2500000 0.2500000 -0.3750000), wk = 0.0156250 k( 42) = ( -0.5000000 0.1250000 0.5000000), wk = 0.0156250 k( 43) = ( -0.6250000 0.2500000 0.5000000), wk = 0.0312500 k( 44) = ( 0.2500000 0.5000000 -0.6250000), wk = 0.0312500 k( 45) = ( 0.0000000 0.3750000 0.0000000), wk = 0.0078125 k( 46) = ( -0.1250000 0.5000000 0.0000000), wk = 0.0156250 k( 47) = ( 0.5000000 0.0000000 -0.1250000), wk = 0.0156250 k( 48) = ( -0.2500000 0.6250000 0.0000000), wk = 0.0156250 k( 49) = ( 0.6250000 0.0000000 -0.2500000), wk = 0.0156250 k( 50) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0312500 k( 51) = ( 0.7500000 -0.2500000 -0.1250000), wk = 0.0156250 k( 52) = ( -0.5000000 0.3750000 0.5000000), wk = 0.0156250 k( 53) = ( 0.0000000 0.6250000 0.0000000), wk = 0.0078125 k( 54) = ( -0.1250000 0.7500000 0.0000000), wk = 0.0156250 k( 55) = ( 0.7500000 0.0000000 -0.1250000), wk = 0.0156250 k( 56) = ( 0.0000000 0.8750000 0.0000000), wk = 0.0078125 G cutoff = 223.2339 ( 6963 G-vectors) FFT grid: ( 27, 27, 27) G cutoff = 133.9403 ( 3151 G-vectors) smooth grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 832, 16) NL pseudopotentials 0.22 Mb ( 416, 34) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.05 Mb ( 6963) G-vector shells 0.00 Mb ( 104) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.81 Mb ( 832, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.02 Mb ( 34, 2, 16) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 7.99946, renormalised to 8.00000 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.589433 magnetization : 0.000000 0.000000 3.294716 magnetization/charge: 0.000000 0.000000 0.500000 polar coord.: r, theta, phi [deg] : 3.294716 0.000000 360.000000 ============================================================================== Starting wfc are 18 atomic wfcs Checking if some PAW data can be deallocated... total cpu time spent up to now is 8.56 secs per-process dynamical memory: 29.0 Mb Self-consistent Calculation iteration # 1 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.3 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.395219 magnetization : 0.000000 0.000000 2.740181 magnetization/charge: 0.000000 0.000000 0.428473 polar coord.: r, theta, phi [deg] : 2.740181 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 19.14 secs total energy = -141.77799319 Ry Harris-Foulkes estimate = -141.80275211 Ry estimated scf accuracy < 0.09508976 Ry total magnetization = 0.00 0.00 2.64 Bohr mag/cell absolute magnetization = 2.64 Bohr mag/cell iteration # 2 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 2.2 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.485986 magnetization : 0.000000 0.000000 2.669744 magnetization/charge: 0.000000 0.000000 0.411617 polar coord.: r, theta, phi [deg] : 2.669744 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 29.63 secs total energy = -141.79047858 Ry Harris-Foulkes estimate = -141.86766618 Ry estimated scf accuracy < 0.18744050 Ry total magnetization = 0.00 0.00 2.52 Bohr mag/cell absolute magnetization = 2.54 Bohr mag/cell iteration # 3 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 2.0 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.453062 magnetization : 0.000000 0.000000 2.314585 magnetization/charge: 0.000000 0.000000 0.358680 polar coord.: r, theta, phi [deg] : 2.314585 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 39.63 secs total energy = -141.83249796 Ry Harris-Foulkes estimate = -141.82866620 Ry estimated scf accuracy < 0.00413691 Ry total magnetization = 0.00 0.00 2.38 Bohr mag/cell absolute magnetization = 2.43 Bohr mag/cell iteration # 4 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.17E-05, avg # of iterations = 2.5 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.461072 magnetization : 0.000000 0.000000 2.274492 magnetization/charge: 0.000000 0.000000 0.352030 polar coord.: r, theta, phi [deg] : 2.274492 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 49.84 secs total energy = -141.83538308 Ry Harris-Foulkes estimate = -141.83540842 Ry estimated scf accuracy < 0.00019826 Ry total magnetization = 0.00 0.00 2.23 Bohr mag/cell absolute magnetization = 2.36 Bohr mag/cell iteration # 5 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-06, avg # of iterations = 3.5 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.457677 magnetization : 0.000000 0.000000 2.253943 magnetization/charge: 0.000000 0.000000 0.349033 polar coord.: r, theta, phi [deg] : 2.253943 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 61.04 secs total energy = -141.83546572 Ry Harris-Foulkes estimate = -141.83552566 Ry estimated scf accuracy < 0.00014478 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.34 Bohr mag/cell iteration # 6 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-06, avg # of iterations = 1.4 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458279 magnetization : 0.000000 0.000000 2.260820 magnetization/charge: 0.000000 0.000000 0.350065 polar coord.: r, theta, phi [deg] : 2.260820 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 70.49 secs total energy = -141.83550085 Ry Harris-Foulkes estimate = -141.83549948 Ry estimated scf accuracy < 0.00000367 Ry total magnetization = 0.00 0.00 2.19 Bohr mag/cell absolute magnetization = 2.34 Bohr mag/cell iteration # 7 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.59E-08, avg # of iterations = 2.1 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458319 magnetization : 0.000000 0.000000 2.259362 magnetization/charge: 0.000000 0.000000 0.349838 polar coord.: r, theta, phi [deg] : 2.259362 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 81.15 secs total energy = -141.83550424 Ry Harris-Foulkes estimate = -141.83550412 Ry estimated scf accuracy < 0.00000029 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.34 Bohr mag/cell iteration # 8 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.61E-09, avg # of iterations = 1.3 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458316 magnetization : 0.000000 0.000000 2.257372 magnetization/charge: 0.000000 0.000000 0.349529 polar coord.: r, theta, phi [deg] : 2.257372 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 90.70 secs total energy = -141.83550435 Ry Harris-Foulkes estimate = -141.83550427 Ry estimated scf accuracy < 0.00000016 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell iteration # 9 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-09, avg # of iterations = 1.2 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458323 magnetization : 0.000000 0.000000 2.256428 magnetization/charge: 0.000000 0.000000 0.349383 polar coord.: r, theta, phi [deg] : 2.256428 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 100.27 secs total energy = -141.83550442 Ry Harris-Foulkes estimate = -141.83550439 Ry estimated scf accuracy < 0.00000002 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell iteration # 10 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.09E-10, avg # of iterations = 2.0 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458327 magnetization : 0.000000 0.000000 2.256301 magnetization/charge: 0.000000 0.000000 0.349363 polar coord.: r, theta, phi [deg] : 2.256301 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 110.67 secs total energy = -141.83550444 Ry Harris-Foulkes estimate = -141.83550443 Ry estimated scf accuracy < 7.9E-10 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell iteration # 11 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.91E-12, avg # of iterations = 2.0 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458329 magnetization : 0.000000 0.000000 2.256189 magnetization/charge: 0.000000 0.000000 0.349346 polar coord.: r, theta, phi [deg] : 2.256189 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 121.28 secs total energy = -141.83550444 Ry Harris-Foulkes estimate = -141.83550444 Ry estimated scf accuracy < 1.5E-10 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell iteration # 12 ecut= 45.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.84E-12, avg # of iterations = 2.0 0.000000 0.000000 1.000000 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 6.458327 magnetization : 0.000000 0.000000 2.256194 magnetization/charge: 0.000000 0.000000 0.349347 polar coord.: r, theta, phi [deg] : 2.256194 0.000000 360.000000 ============================================================================== total cpu time spent up to now is 131.63 secs End of self-consistent calculation k = 0.0000 0.0000 0.1250 ( 401 PWs) bands (ev): 4.5824 4.7081 10.3147 10.3737 10.4266 11.3496 11.5280 12.2304 12.2820 12.3571 14.0914 14.3372 35.3168 35.4193 36.5971 36.7189 k = 0.0000-0.1250 0.2500 ( 402 PWs) bands (ev): 5.7473 5.8967 10.0863 10.2612 11.0110 11.1409 11.6188 11.9454 12.1380 13.0079 13.7399 14.4404 30.9076 31.3262 34.2785 34.3988 k = 0.0000-0.2500 0.3750 ( 407 PWs) bands (ev): 7.3885 7.8279 9.7049 10.2704 11.3361 11.4862 11.7808 11.8795 12.0072 13.7821 14.0993 14.5540 25.1877 25.9717 31.9154 32.0402 k = 0.0000-0.3750 0.5000 ( 406 PWs) bands (ev): 7.8946 9.0784 9.4460 11.0051 11.1687 11.5010 12.3986 12.7835 13.1148 13.9887 14.8960 14.9950 20.5053 21.7052 30.5721 30.6619 k =-0.1250 0.1250 0.1250 ( 393 PWs) bands (ev): 5.1839 5.3159 10.1382 10.1542 10.9188 11.4065 11.4298 12.0161 12.0338 12.8867 14.1654 14.1801 33.4373 33.4643 33.6280 33.6528 k =-0.1250-0.1250 0.3750 ( 399 PWs) bands (ev): 7.1811 7.4598 9.8535 10.0706 11.0255 11.6886 11.7282 11.8456 12.0255 13.4522 13.8435 14.6605 28.1461 28.7476 29.0670 29.6199 k =-0.1250-0.2500 0.5000 ( 405 PWs) bands (ev): 8.2740 9.1905 9.5617 10.0973 11.2752 11.3415 11.6712 12.0714 13.6780 13.7092 14.5232 15.5765 23.0407 23.9391 26.8861 27.4829 k =-0.1250 0.6250-0.3750 ( 404 PWs) bands (ev): 8.3330 9.5713 9.7117 10.2416 11.2750 11.4245 11.7522 12.4290 13.8446 14.7350 15.6502 16.9212 19.7153 20.9799 26.2036 26.7888 k =-0.2500 0.2500 0.1250 ( 400 PWs) bands (ev): 6.7530 6.9673 9.7528 9.9384 11.3501 11.5275 11.5706 11.6981 11.9109 13.9069 14.0156 14.3277 28.0579 28.6448 31.1322 31.4304 k =-0.2500 0.7500-0.3750 ( 406 PWs) bands (ev): 9.0118 9.2466 9.7776 10.3936 10.9130 11.3847 11.6216 12.0554 13.9679 14.4376 16.8509 18.1580 21.1692 22.1470 22.4289 23.2331 k =-0.3750 0.3750 0.1250 ( 406 PWs) bands (ev): 7.9398 8.7852 9.4162 10.6450 11.1210 11.5150 11.6379 11.7897 13.2589 14.1000 14.4641 15.1550 22.6685 23.6053 29.4655 29.7443 k =-0.3750 0.2500 0.2500 ( 402 PWs) bands (ev): 8.2376 8.7421 9.4649 9.6599 11.1528 11.2422 11.4627 11.6684 13.4551 14.0922 14.4513 15.3430 25.6062 26.2781 26.3670 26.9804 k = 0.5000-0.5000 0.1250 ( 406 PWs) bands (ev): 8.0202 9.2862 9.3000 10.9660 11.5680 11.6342 11.6774 12.5121 14.1670 14.5140 14.5993 15.9882 19.6132 20.9413 28.8569 29.1110 k = 0.5000-0.6250 0.2500 ( 410 PWs) bands (ev): 8.6315 9.3121 9.8904 10.2493 10.9175 11.4586 11.5933 11.7668 14.2239 14.5187 15.8285 17.2208 21.0236 22.0339 24.8215 25.4615 k = 0.3750-0.6250 0.3750 ( 408 PWs) bands (ev): 8.9667 9.6171 9.6507 10.4558 11.0247 11.0389 11.7027 11.7415 14.3832 14.4182 19.2580 19.2806 20.2818 20.2862 21.6219 22.5080 k = 0.0000 0.0000 0.3750 ( 398 PWs) bands (ev): 6.7721 6.9865 10.3650 10.4592 10.5206 11.0440 11.9582 12.3295 12.3760 12.8004 13.0489 14.7403 31.0833 31.4419 31.8703 32.0041 k = 0.0000-0.1250 0.5000 ( 408 PWs) bands (ev): 8.0858 8.6891 9.6377 10.3552 10.9797 11.6700 11.8876 12.1811 12.7877 13.0429 13.9712 15.1307 26.0250 26.7657 29.3692 29.9732 k = 0.0000-0.2500 0.6250 ( 416 PWs) bands (ev): 8.4181 9.5570 9.8125 10.1653 11.1660 11.2611 11.9565 12.7061 13.3765 14.9007 15.2180 16.6198 21.0164 22.0718 27.7847 28.3432 k =-0.1250-0.1250 0.6250 ( 414 PWs) bands (ev): 8.7063 9.0369 9.9259 10.4255 10.9694 11.3706 12.2339 12.3061 13.4143 14.4722 15.0973 16.6364 23.9255 24.5052 24.7640 25.1787 k =-0.1250 0.7500-0.2500 ( 410 PWs) bands (ev): 8.6824 9.0359 10.2380 10.3982 10.7474 11.6637 11.9931 12.5152 13.7703 14.7017 18.0470 19.0913 20.1823 21.2279 23.5428 24.2443 k = 0.6250-0.6250 0.3750 ( 408 PWs) bands (ev): 9.2928 9.2950 9.4112 10.2522 10.8421 10.8440 11.6354 11.6651 14.4349 14.4614 15.8141 17.2973 23.9717 24.0199 24.6779 24.7243 k = 0.5000-0.5000 0.3750 ( 408 PWs) bands (ev): 9.1693 9.2600 9.8796 10.5314 10.7535 11.1300 11.6677 11.7073 14.4759 14.5558 18.5827 19.5897 20.3388 21.3443 23.4460 24.1432 k = 0.0000 0.0000 0.6250 ( 414 PWs) bands (ev): 8.4911 8.9911 9.6618 11.0598 11.2004 11.2746 11.9230 13.0876 13.1586 14.0273 14.4664 16.1022 26.4128 26.5751 26.9886 27.1464 k = 0.0000-0.1250 0.7500 ( 410 PWs) bands (ev): 8.4211 8.5479 10.1096 10.4143 11.3663 11.6403 12.5961 13.2979 13.6010 14.7811 17.5242 18.5233 22.1884 22.9276 24.7204 25.2043 k =-0.1250 0.8750-0.1250 ( 415 PWs) bands (ev): 8.2874 8.2904 10.1110 10.1127 11.4702 12.4322 12.4557 13.3800 14.5697 14.5909 20.8303 20.8978 21.5326 21.5993 21.9599 22.5348 k = 0.0000 0.0000 0.8750 ( 398 PWs) bands (ev): 8.0377 8.0402 9.8378 9.9029 12.3716 12.4414 12.5630 14.4880 14.5600 14.7500 20.2636 20.8027 22.6683 22.8349 22.9954 23.1600 k = 0.0000 0.1250 0.0000 ( 401 PWs) bands (ev): 4.5824 4.7081 10.3350 10.3419 10.4388 11.3430 11.5350 12.2498 12.2508 12.3680 14.0903 14.3380 35.3168 35.4190 36.7273 36.7273 k =-0.1250 0.2500 0.0000 ( 402 PWs) bands (ev): 5.7473 5.8967 10.0871 10.2606 11.0224 11.1231 11.6281 11.9466 12.1326 13.0106 13.7373 14.4415 30.9075 31.3262 34.2786 34.3989 k = 0.2500 0.0000-0.1250 ( 402 PWs) bands (ev): 5.7473 5.8967 10.0866 10.2612 11.0206 11.1255 11.6280 11.9416 12.1377 13.0094 13.7381 14.4412 30.9076 31.3261 34.2780 34.3994 k =-0.2500 0.3750 0.0000 ( 407 PWs) bands (ev): 7.3885 7.8280 9.7054 10.2700 11.3228 11.4990 11.8078 11.8464 12.0140 13.7824 14.0971 14.5554 25.1877 25.9718 31.9158 32.0399 k = 0.3750 0.0000-0.2500 ( 407 PWs) bands (ev): 7.3885 7.8280 9.7051 10.2702 11.3338 11.4910 11.7709 11.8807 12.0137 13.7842 14.0946 14.5561 25.1877 25.9717 31.9150 32.0406 k =-0.3750 0.5000 0.0000 ( 406 PWs) bands (ev): 7.8945 9.0785 9.4462 10.9989 11.1715 11.5052 12.3968 12.7838 13.1157 13.9873 14.8992 14.9926 20.5052 21.7053 30.5731 30.6610 k = 0.5000 0.0000-0.3750 ( 406 PWs) bands (ev): 7.8946 9.0784 9.4461 11.0010 11.1747 11.4991 12.3968 12.7836 13.1170 13.9888 14.8884 15.0017 20.5053 21.7051 30.5719 30.6621 k =-0.1250 0.3750-0.1250 ( 399 PWs) bands (ev): 7.1811 7.4599 9.8539 10.0709 11.0224 11.6763 11.7482 11.8408 12.0254 13.4537 13.8405 14.6617 28.1460 28.7471 29.0674 29.6200 k =-0.2500 0.5000-0.1250 ( 405 PWs) bands (ev): 8.2740 9.1908 9.5623 10.0966 11.2708 11.3424 11.6750 12.0713 13.6822 13.7050 14.5226 15.5769 23.0406 23.9392 26.8862 27.4828 k = 0.5000-0.1250-0.2500 ( 405 PWs) bands (ev): 8.2741 9.1907 9.5621 10.0966 11.2844 11.3295 11.6736 12.0717 13.6755 13.7134 14.5211 15.5772 23.0407 23.9390 26.8861 27.4829 k = 0.6250-0.3750-0.1250 ( 404 PWs) bands (ev): 8.3329 9.5715 9.7125 10.2404 11.2678 11.4344 11.7504 12.4285 13.8444 14.7350 15.6504 16.9212 19.7152 20.9801 26.2037 26.7887 k = 0.2500 0.1250-0.2500 ( 400 PWs) bands (ev): 6.7530 6.9673 9.7526 9.9386 11.3627 11.5140 11.5573 11.7145 11.9088 13.9018 14.0227 14.3257 28.0580 28.6447 31.1320 31.4305 k = 0.7500-0.3750-0.2500 ( 406 PWs) bands (ev): 9.0113 9.2475 9.7773 10.3936 10.9130 11.3827 11.6237 12.0553 13.9677 14.4377 16.8509 18.1582 21.1692 22.1462 22.4298 23.2330 k = 0.3750 0.1250-0.3750 ( 406 PWs) bands (ev): 7.9398 8.7851 9.4160 10.6449 11.1252 11.5208 11.6225 11.7949 13.2593 14.1027 14.4611 15.1556 22.6685 23.6052 29.4651 29.7447 k = 0.2500 0.2500-0.3750 ( 402 PWs) bands (ev): 8.2376 8.7421 9.4646 9.6600 11.1509 11.2494 11.4581 11.6676 13.4552 14.0926 14.4512 15.3429 25.6067 26.2729 26.3723 26.9799 k =-0.5000 0.1250 0.5000 ( 406 PWs) bands (ev): 8.0202 9.2867 9.2991 10.9682 11.5733 11.6302 11.6739 12.5117 14.1711 14.5156 14.5941 15.9886 19.6133 20.9411 28.8562 29.1117 k =-0.6250 0.2500 0.5000 ( 410 PWs) bands (ev): 8.6315 9.3120 9.8900 10.2492 10.9190 11.4625 11.5925 11.7625 14.2267 14.5163 15.8285 17.2208 21.0237 22.0338 24.8215 25.4616 k = 0.2500 0.5000-0.6250 ( 410 PWs) bands (ev): 8.6315 9.3121 9.8900 10.2492 10.9196 11.4568 11.5959 11.7640 14.2258 14.5172 15.8284 17.2209 21.0236 22.0338 24.8215 25.4616 k = 0.0000 0.3750 0.0000 ( 398 PWs) bands (ev): 6.7721 6.9866 10.3625 10.4881 10.4957 11.0381 11.9685 12.3435 12.3510 12.8162 13.0375 14.7410 31.0830 31.4419 31.9293 31.9298 k =-0.1250 0.5000 0.0000 ( 408 PWs) bands (ev): 8.0858 8.6893 9.6381 10.3555 10.9778 11.6597 11.8999 12.1806 12.7937 13.0362 13.9706 15.1314 26.0251 26.7656 29.3694 29.9729 k = 0.5000 0.0000-0.1250 ( 408 PWs) bands (ev): 8.0859 8.6892 9.6380 10.3548 10.9795 11.6615 11.8944 12.1837 12.7879 13.0431 13.9690 15.1316 26.0251 26.7654 29.3694 29.9733 k =-0.2500 0.6250 0.0000 ( 416 PWs) bands (ev): 8.4179 9.5583 9.8117 10.1649 11.1732 11.2519 11.9597 12.7052 13.3764 14.9005 15.2180 16.6201 21.0164 22.0719 27.7846 28.3430 k = 0.6250 0.0000-0.2500 ( 416 PWs) bands (ev): 8.4182 9.5573 9.8129 10.1641 11.1673 11.2603 11.9561 12.7064 13.3766 14.9025 15.2159 16.6202 21.0164 22.0717 27.7847 28.3432 k =-0.1250 0.6250-0.1250 ( 414 PWs) bands (ev): 8.7062 9.0372 9.9263 10.4249 10.9697 11.3688 12.2426 12.2992 13.4141 14.4725 15.0966 16.6368 23.9272 24.4952 24.7751 25.1758 k = 0.7500-0.2500-0.1250 ( 410 PWs) bands (ev): 8.6821 9.0363 10.2373 10.3987 10.7483 11.6591 11.9986 12.5138 13.7701 14.7017 18.0471 19.0916 20.1822 21.2278 23.5428 24.2442 k =-0.5000 0.3750 0.5000 ( 408 PWs) bands (ev): 9.1693 9.2600 9.8794 10.5299 10.7549 11.1310 11.6835 11.6903 14.4802 14.5516 18.5826 19.5898 20.3390 21.3441 23.4455 24.1462 k = 0.0000 0.6250 0.0000 ( 414 PWs) bands (ev): 8.4912 8.9910 9.6622 11.0590 11.2343 11.2370 11.9268 13.1219 13.1247 14.0273 14.4658 16.1027 26.4829 26.4830 27.0785 27.0785 k =-0.1250 0.7500 0.0000 ( 410 PWs) bands (ev): 8.4209 8.5481 10.1100 10.4137 11.3693 11.6359 12.5981 13.3001 13.5982 14.7812 17.5241 18.5236 22.1886 22.9271 24.7209 25.2038 k = 0.7500 0.0000-0.1250 ( 410 PWs) bands (ev): 8.4213 8.5477 10.1104 10.4132 11.3673 11.6392 12.5965 13.2989 13.6001 14.7811 17.5241 18.5236 22.1886 22.9270 24.7210 25.2039 k = 0.0000 0.8750 0.0000 ( 398 PWs) bands (ev): 8.0380 8.0400 9.8384 9.9023 12.3995 12.4063 12.5703 14.5188 14.5250 14.7542 20.2632 20.8034 22.7310 22.7319 23.0977 23.0977 the Fermi energy is 12.5628 ev ! total energy = -141.83550444 Ry Harris-Foulkes estimate = -141.83550444 Ry estimated scf accuracy < 2.4E-12 Ry total all-electron energy = -2545.618681 Ry The total energy is the sum of the following terms: one-electron contribution = 4.44316678 Ry hartree contribution = 8.53527956 Ry xc contribution = -30.82722931 Ry ewald contribution = -42.97249830 Ry one-center paw contrib. = -81.01691342 Ry smearing contrib. (-TS) = 0.00269024 Ry total magnetization = 0.00 0.00 2.20 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell convergence has been achieved in 12 iterations Writing output data file Fe.save init_run : 7.05s CPU 7.14s WALL ( 1 calls) electrons : 121.80s CPU 123.07s WALL ( 1 calls) Called by init_run: wfcinit : 2.35s CPU 2.39s WALL ( 1 calls) potinit : 2.52s CPU 2.56s WALL ( 1 calls) Called by electrons: c_bands : 69.35s CPU 70.10s WALL ( 12 calls) sum_band : 16.22s CPU 16.34s WALL ( 12 calls) v_of_rho : 0.94s CPU 0.96s WALL ( 13 calls) newd : 3.27s CPU 3.27s WALL ( 13 calls) mix_rho : 2.88s CPU 2.91s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.62s CPU 0.60s WALL ( 1400 calls) cegterg : 64.24s CPU 64.78s WALL ( 672 calls) Called by *egterg: h_psi : 52.40s CPU 52.87s WALL ( 2160 calls) s_psi : 2.96s CPU 2.97s WALL ( 2160 calls) g_psi : 0.72s CPU 0.72s WALL ( 1432 calls) cdiaghg : 2.27s CPU 2.32s WALL ( 2104 calls) Called by h_psi: add_vuspsi : 2.85s CPU 2.84s WALL ( 2160 calls) General routines calbec : 3.68s CPU 3.76s WALL ( 2832 calls) cft3s : 49.62s CPU 49.99s WALL ( 127311 calls) interpolate : 0.18s CPU 0.18s WALL ( 100 calls) davcio : 0.03s CPU 0.30s WALL ( 2072 calls) Parallel routines PAW routines PAW_pot : 31.52s CPU 31.70s WALL ( 13 calls) PAW_ddot : 2.71s CPU 2.73s WALL ( 256 calls) PAW_symme : 0.17s CPU 0.17s WALL ( 25 calls) PWSCF : 2m10.61s CPU time, 2m12.24s WALL time This run was terminated on: 11: 6:24 23May2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/example04/0000755000175000017500000000000012341373041015243 5ustar mbambaespresso-5.1/PW/examples/example04/run_xml_example0000755000175000017500000001677312341373025020410 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to calculate the polarization via Berry Phase" $ECHO "in PbTiO3 (contributed by the Vanderbilt Group in Rutgers University)." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Pb.pz-d-van.UPF Ti.pz-sp-van_ak.UPF O.pz-van_ak.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > chg.xml << EOF 0.0 0.0 0.0 0.0 0.0 207.2 Pb.pz-d-van.UPF 47.867 Ti.pz-sp-van_ak.UPF 15.9994 O.pz-van_ak.UPF 0.000 0.000 0.010 0.500 0.500 0.500 0.000 0.500 0.500 0.500 0.500 0.000 0.500 0.000 0.500 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 30.0 0.3 1.0e-12 fixed 0.00 25 4 4 4 1 1 1 EOF $ECHO " running self-consistent calculation in PbTiO3...\c" $PW_COMMAND < chg.xml > chg.out check_failure $? $ECHO " done" # Berry Phase calculation cat > BP.xml << EOF 0.0 0.0 0.0 0.0 0.0 207.2 Pb.pz-d-van.UPF 47.867 Ti.pz-sp-van_ak.UPF 15.9994 O.pz-van_ak.UPF 0.000 0.000 0.010 0.500 0.500 0.500 0.000 0.500 0.500 0.500 0.500 0.000 0.500 0.000 0.500 $PSEUDO_DIR/ $TMP_DIR/ 30.0 0.3 1.0e-5 fixed 0.00 22 true 3 7 4 4 7 1 1 1 EOF $ECHO " running Berry Phase calculation for PbTiO3...\c" $PW_COMMAND < BP.xml > BP.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example04/README0000644000175000017500000000224712341373025016132 0ustar mbambaThis is an example in which the Born effective charge for Pb in perovskite PbTiO3 is calculated. 1) make a self-consistent calculation for a cubic structure of PbTiO3 in which the Pb atom has been displaced a small distance 0.01*a0 in the z axis (a0 is the lattice constant, 7.3699 bohr). (input=chg.in, output=chg.out) 2) make a non-self-consistent calculation to compute the polarization (lberry=.true. in the input file 'BP.in'). In the ouput file 'BP.out' we find that the polarization (P) multiplied by the volume of the unit cell (Omega) is: Omega * P = 0.2884752 e.bohr while the distance the Pb atom has been displaced from the perfect cubic cell structure is r - r0 = 0.01 * 7.3699 bohr = 0.073699 bohr. Given that the Born effective charge is defined as dP z* = Omega ---- dr we can use a finite differences approximation to get 0.2884752 e.bohr z* = ------------------ = 3.91 e 0.073699 bohr in good agreement with published results. For example, in Zhong, King-Smith and Vanderbilt, PRL 72, 3618 (1994) the value found is 3.90 e. espresso-5.1/PW/examples/example04/run_example0000755000175000017500000000746312341373025017524 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to calculate the polarization via Berry Phase" $ECHO "in PbTiO3 (contributed by the Vanderbilt Group in Rutgers University)." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Pb.pz-d-van.UPF Ti.pz-sp-van_ak.UPF O.pz-van_ak.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # self-consistent calculation cat > chg.in << EOF &control calculation = 'scf' restart_mode = 'from_scratch' pseudo_dir = '$PSEUDO_DIR/' outdir = '$TMP_DIR/' / &system ibrav=1 celldm(1)=7.3699, nat=5 ntyp=3 nbnd=25 ecutwfc=30.0 occupations = 'fixed' degauss=0.00 / &electrons conv_thr = 1e-12, mixing_beta=0.3, / ATOMIC_SPECIES Pb 207.2 Pb.pz-d-van.UPF Ti 47.867 Ti.pz-sp-van_ak.UPF O 15.9994 O.pz-van_ak.UPF ATOMIC_POSITIONS Pb 0.000 0.000 0.010 Ti 0.500 0.500 0.500 O 0.000 0.500 0.500 O 0.500 0.500 0.000 O 0.500 0.000 0.500 K_POINTS {automatic} 4 4 4 1 1 1 EOF $ECHO " running self-consistent calculation in PbTiO3...\c" $PW_COMMAND < chg.in > chg.out check_failure $? $ECHO " done" # Berry Phase calculation cat > BP.in << EOF &control calculation = 'nscf' pseudo_dir = '$PSEUDO_DIR/' outdir = '$TMP_DIR/' lberry = .true. gdir = 3 nppstr = 7 / &system ibrav = 1 celldm(1) = 7.3699 nat = 5 ntyp = 3 nbnd = 22 ecutwfc = 30.0 occupations = 'fixed' degauss = 0.00 / &electrons conv_thr = 1e-5 mixing_beta = 0.3 / ATOMIC_SPECIES Pb 207.2 Pb.pz-d-van.UPF Ti 47.867 Ti.pz-sp-van_ak.UPF O 15.9994 O.pz-van_ak.UPF ATOMIC_POSITIONS Pb 0.000 0.000 0.010 Ti 0.500 0.500 0.500 O 0.000 0.500 0.500 O 0.500 0.500 0.000 O 0.500 0.000 0.500 K_POINTS {automatic} 4 4 7 1 1 1 EOF $ECHO " running Berry Phase calculation for PbTiO3...\c" $PW_COMMAND < BP.in > BP.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/pwscf* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example04/reference/0000755000175000017500000000000012341373041017201 5ustar mbambaespresso-5.1/PW/examples/example04/reference/BP.out0000644000175000017500000004242212341373025020241 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:52:38 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 1 lattice parameter (a_0) = 7.3699 a.u. unit-cell volume = 400.2993 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 3 number of electrons = 44.00 number of Kohn-Sham states= 22 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-05 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 7.369900 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Pb read from file Pb.vdb.UPF Pseudo is Ultrasoft, Zval = 14.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 2 for Ti read from file Ti.vdb.UPF Pseudo is Ultrasoft, Zval = 12.0 Generated by new atomic code, or converted to UPF format Using radial grid of 851 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 5 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 3 for O read from file O.vdb.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.700 0.700 0.700 atomic species valence mass pseudopotential Pb 14.00 207.20000 Pb( 1.00) Ti 12.00 47.86700 Ti( 1.00) O 6.00 15.99940 O ( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Pb tau( 1) = ( 0.0000000 0.0000000 0.0100000 ) 2 Ti tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) 3 O tau( 3) = ( 0.0000000 0.5000000 0.5000000 ) 4 O tau( 4) = ( 0.5000000 0.5000000 0.0000000 ) 5 O tau( 5) = ( 0.5000000 0.0000000 0.5000000 ) number of k points= 21 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 -0.5000000), wk = 0.0714286 k( 2) = ( 0.1250000 0.1250000 -0.3333333), wk = 0.0714286 k( 3) = ( 0.1250000 0.1250000 -0.1666667), wk = 0.0714286 k( 4) = ( 0.1250000 0.1250000 0.0000000), wk = 0.0714286 k( 5) = ( 0.1250000 0.1250000 0.1666667), wk = 0.0714286 k( 6) = ( 0.1250000 0.1250000 0.3333333), wk = 0.0714286 k( 7) = ( 0.1250000 0.1250000 0.5000000), wk = 0.0714286 k( 8) = ( 0.1250000 0.3750000 -0.5000000), wk = 0.1428571 k( 9) = ( 0.1250000 0.3750000 -0.3333333), wk = 0.1428571 k( 10) = ( 0.1250000 0.3750000 -0.1666667), wk = 0.1428571 k( 11) = ( 0.1250000 0.3750000 0.0000000), wk = 0.1428571 k( 12) = ( 0.1250000 0.3750000 0.1666667), wk = 0.1428571 k( 13) = ( 0.1250000 0.3750000 0.3333333), wk = 0.1428571 k( 14) = ( 0.1250000 0.3750000 0.5000000), wk = 0.1428571 k( 15) = ( 0.3750000 0.3750000 -0.5000000), wk = 0.0714286 k( 16) = ( 0.3750000 0.3750000 -0.3333333), wk = 0.0714286 k( 17) = ( 0.3750000 0.3750000 -0.1666667), wk = 0.0714286 k( 18) = ( 0.3750000 0.3750000 0.0000000), wk = 0.0714286 k( 19) = ( 0.3750000 0.3750000 0.1666667), wk = 0.0714286 k( 20) = ( 0.3750000 0.3750000 0.3333333), wk = 0.0714286 k( 21) = ( 0.3750000 0.3750000 0.5000000), wk = 0.0714286 G cutoff = 165.0991 ( 8925 G-vectors) FFT grid: ( 27, 27, 27) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.38 Mb ( 1121, 22) NL pseudopotentials 1.03 Mb ( 1121, 60) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.07 Mb ( 8925) G-vector shells 0.00 Mb ( 140) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.51 Mb ( 1121, 88) Each subspace H/S matrix 0.12 Mb ( 88, 88) Each matrix 0.02 Mb ( 60, 22) Arrays for rho mixing 2.40 Mb ( 19683, 8) The potential is recalculated from file : pwscf.save/charge-density.dat Starting wfc are 31 atomic wfcs total cpu time spent up to now is 1.37 secs per-process dynamical memory: 11.8 Mb Band Structure Calculation Davidson diagonalization with overlap ethr = 2.27E-08, avg # of iterations = 9.2 total cpu time spent up to now is 8.67 secs End of band structure calculation k = 0.1250 0.1250-0.5000 band energies (ev): -45.0393 -21.6916 -21.6260 -21.6258 -6.1087 -5.4016 -5.3411 -4.3730 -4.2970 -4.2848 -4.2477 -4.1040 3.5390 6.3033 7.1127 7.7144 8.0841 8.3261 9.1196 9.6679 9.8620 10.7347 k = 0.1250 0.1250-0.3333 band energies (ev): -45.0397 -21.6730 -21.6268 -21.6265 -6.2509 -5.4463 -5.4033 -4.3557 -4.3043 -4.2907 -4.2075 -4.1043 3.7312 6.7712 7.1051 7.5467 8.2514 8.5528 9.1323 9.6899 9.8170 10.3877 k = 0.1250 0.1250-0.1667 band energies (ev): -45.0404 -21.6352 -21.6280 -21.6274 -6.5293 -5.5273 -5.5165 -4.3154 -4.3079 -4.2932 -4.1412 -4.1242 4.2253 7.0425 7.0673 7.8160 8.7352 8.7686 9.5703 9.6606 9.7271 9.8312 k = 0.1250 0.1250 0.0000 band energies (ev): -45.0408 -21.6289 -21.6282 -21.6165 -6.6644 -5.5699 -5.5646 -4.3032 -4.2931 -4.2921 -4.1422 -4.1135 4.5355 7.0413 7.1549 7.5673 9.0029 9.2217 9.4761 9.6450 9.8867 9.9502 k = 0.1250 0.1250 0.1667 band energies (ev): -45.0404 -21.6352 -21.6280 -21.6274 -6.5293 -5.5273 -5.5165 -4.3154 -4.3079 -4.2932 -4.1412 -4.1242 4.2253 7.0425 7.0673 7.8160 8.7352 8.7686 9.5703 9.6606 9.7271 9.8312 k = 0.1250 0.1250 0.3333 band energies (ev): -45.0397 -21.6730 -21.6268 -21.6265 -6.2509 -5.4463 -5.4033 -4.3557 -4.3043 -4.2907 -4.2075 -4.1043 3.7312 6.7712 7.1051 7.5467 8.2514 8.5528 9.1323 9.6899 9.8170 10.3877 k = 0.1250 0.1250 0.5000 band energies (ev): -45.0393 -21.6916 -21.6260 -21.6258 -6.1087 -5.4016 -5.3411 -4.3730 -4.2970 -4.2848 -4.2477 -4.1040 3.5390 6.3033 7.1127 7.7144 8.0841 8.3261 9.1196 9.6679 9.8620 10.7347 k = 0.1250 0.3750-0.5000 band energies (ev): -45.0381 -21.6884 -21.6777 -21.6238 -5.9694 -5.2534 -5.2018 -4.3352 -4.2806 -4.2424 -4.1756 -3.9782 3.2267 6.3078 6.6176 6.8798 7.1927 8.4570 8.9953 9.3019 9.4519 10.5719 k = 0.1250 0.3750-0.3333 band energies (ev): -45.0386 -21.6789 -21.6702 -21.6245 -5.9985 -5.3436 -5.2648 -4.3402 -4.3045 -4.2502 -4.1509 -4.0408 3.3556 6.5784 6.7422 6.9451 7.3915 8.3666 9.1352 9.3144 9.8636 10.3596 k = 0.1250 0.3750-0.1667 band energies (ev): -45.0394 -21.6811 -21.6336 -21.6262 -6.1466 -5.4256 -5.3645 -4.3596 -4.3051 -4.2797 -4.1938 -4.1064 3.5996 6.5888 7.0083 7.4755 8.0899 8.5312 8.9541 9.7618 9.8092 10.4447 k = 0.1250 0.3750 0.0000 band energies (ev): -45.0398 -21.6819 -21.6269 -21.6144 -6.2562 -5.4253 -5.4009 -4.3612 -4.3280 -4.2899 -4.2546 -4.0974 3.7060 6.5862 7.4747 7.5730 8.1543 8.4540 9.4632 9.5794 9.8299 10.6648 k = 0.1250 0.3750 0.1667 band energies (ev): -45.0394 -21.6811 -21.6336 -21.6262 -6.1466 -5.4256 -5.3645 -4.3596 -4.3051 -4.2797 -4.1938 -4.1064 3.5996 6.5888 7.0083 7.4755 8.0899 8.5312 8.9541 9.7618 9.8092 10.4447 k = 0.1250 0.3750 0.3333 band energies (ev): -45.0386 -21.6789 -21.6702 -21.6245 -5.9985 -5.3436 -5.2648 -4.3402 -4.3045 -4.2502 -4.1509 -4.0408 3.3556 6.5784 6.7422 6.9451 7.3915 8.3666 9.1352 9.3144 9.8636 10.3596 k = 0.1250 0.3750 0.5000 band energies (ev): -45.0381 -21.6884 -21.6777 -21.6238 -5.9694 -5.2534 -5.2018 -4.3352 -4.2806 -4.2424 -4.1756 -3.9782 3.2267 6.3078 6.6176 6.8798 7.1927 8.4570 8.9953 9.3019 9.4519 10.5719 k = 0.3750 0.3750-0.5000 band energies (ev): -45.0369 -21.6853 -21.6759 -21.6750 -5.5730 -5.4648 -5.3942 -4.2528 -4.2381 -3.9095 -3.8992 -3.8612 4.0523 5.5671 5.7034 6.2329 6.6784 6.7853 7.1796 10.4301 10.4973 10.5739 k = 0.3750 0.3750-0.3333 band energies (ev): -45.0374 -21.6765 -21.6764 -21.6678 -5.6399 -5.4311 -5.4100 -4.2687 -4.2589 -4.0137 -3.9469 -3.9286 3.8087 5.8267 5.8802 6.5086 6.7963 6.9645 7.9866 10.3183 10.3245 10.4562 k = 0.3750 0.3750-0.1667 band energies (ev): -45.0382 -21.6783 -21.6778 -21.6312 -5.9182 -5.3382 -5.2783 -4.3280 -4.2837 -4.1986 -4.1252 -4.0032 3.3764 6.5335 6.5380 6.6723 7.0365 8.1556 9.1897 9.5144 9.6726 10.4469 k = 0.3750 0.3750 0.0000 band energies (ev): -45.0386 -21.6792 -21.6783 -21.6124 -6.0639 -5.2666 -5.1937 -4.3407 -4.3287 -4.3224 -4.1994 -4.0310 3.1945 6.5555 6.6509 7.8810 7.9842 8.0305 8.3887 9.1582 10.0287 10.4483 k = 0.3750 0.3750 0.1667 band energies (ev): -45.0382 -21.6783 -21.6778 -21.6312 -5.9182 -5.3382 -5.2783 -4.3280 -4.2837 -4.1986 -4.1252 -4.0032 3.3764 6.5335 6.5380 6.6723 7.0365 8.1556 9.1897 9.5144 9.6726 10.4469 k = 0.3750 0.3750 0.3333 band energies (ev): -45.0374 -21.6765 -21.6764 -21.6678 -5.6399 -5.4311 -5.4100 -4.2687 -4.2589 -4.0137 -3.9469 -3.9286 3.8087 5.8267 5.8802 6.5086 6.7963 6.9645 7.9866 10.3183 10.3245 10.4562 k = 0.3750 0.3750 0.5000 band energies (ev): -45.0369 -21.6853 -21.6759 -21.6750 -5.5730 -5.4648 -5.3942 -4.2528 -4.2381 -3.9095 -3.8992 -3.8612 4.0523 5.5671 5.7034 6.2329 6.6784 6.7853 7.1796 10.4301 10.4973 10.5739 ================================================== POLARIZATION CALCULATION !!! NOT THOROUGHLY TESTED !!! -------------------------------------------------- K-POINTS STRINGS USED IN CALCULATIONS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ G-vector along string (2 pi/a): 0.00000 0.00000 1.00000 Modulus of the vector (1/bohr): 0.85255 Number of k-points per string: 7 Number of different strings : 3 IONIC POLARIZATION ~~~~~~~~~~~~~~~~~~ Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2,+1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1) ============================================================================ Ion Species Charge Position Phase ---------------------------------------------------------------------------- 1 Pb 14.000 0.0000 0.0000 0.0100 0.14000 (mod 2) 2 Ti 12.000 0.5000 0.5000 0.5000 0.00000 (mod 2) 3 O 6.000 0.0000 0.5000 0.5000 -1.00000 (mod 2) 4 O 6.000 0.5000 0.5000 0.0000 0.00000 (mod 2) 5 O 6.000 0.5000 0.0000 0.5000 -1.00000 (mod 2) ---------------------------------------------------------------------------- IONIC PHASE: 0.14000 (mod 2) ============================================================================ ELECTRONIC POLARIZATION ~~~~~~~~~~~~~~~~~~~~~~~ Note: (mod 1) means that the phases (angles ranging from -pi to pi) have been mapped to the interval [-1/2,+1/2) by dividing by 2*pi; (mod 2) refers to the interval [-1,+1) ============================================================================ Spin String Weight First k-point in string Phase ---------------------------------------------------------------------------- up 1 0.250000 0.1250 0.1250 -0.5000 -0.05427 (mod 1) up 2 0.500000 0.1250 0.3750 -0.5000 -0.04876 (mod 1) up 3 0.250000 0.3750 0.3750 -0.5000 -0.05048 (mod 1) ---------------------------------------------------------------------------- down 1 0.250000 0.1250 0.1250 -0.5000 -0.05427 (mod 1) down 2 0.500000 0.1250 0.3750 -0.5000 -0.04876 (mod 1) down 3 0.250000 0.3750 0.3750 -0.5000 -0.05048 (mod 1) ---------------------------------------------------------------------------- Average phase (up): -0.05057 (mod 1) Average phase (down): -0.05057 (mod 1) ELECTRONIC PHASE: -0.10114 (mod 2) ============================================================================ SUMMARY OF PHASES ~~~~~~~~~~~~~~~~~ Ionic Phase: 0.14000 (mod 2) Electronic Phase: -0.10114 (mod 2) TOTAL PHASE: 0.03886 (mod 2) VALUES OF POLARIZATION ~~~~~~~~~~~~~~~~~~~~~~ The calculation of phases done along the direction of vector 3 of the reciprocal lattice gives the following contribution to the polarization vector (in different units, and being Omega the volume of the unit cell): P = 0.2864184 (mod 14.7398000) (e/Omega).bohr P = 0.0007155 (mod 0.0368220) e/bohr^2 P = 0.0409070 (mod 2.1051744) C/m^2 The polarization direction is: ( 0.00000 , 0.00000 , 1.00000 ) ================================================== Writing output data file pwscf.save PWSCF : 9.38s CPU time, 9.60s wall time init_run : 1.29s CPU electrons : 7.91s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.00s CPU Called by electrons: c_bands : 7.31s CPU v_of_rho : 0.00s CPU newd : 0.07s CPU Called by c_bands: init_us_2 : 0.09s CPU ( 57 calls, 0.002 s avg) cegterg : 6.28s CPU ( 21 calls, 0.299 s avg) Called by *egterg: h_psi : 4.55s CPU ( 235 calls, 0.019 s avg) s_psi : 0.42s CPU ( 235 calls, 0.002 s avg) g_psi : 0.13s CPU ( 193 calls, 0.001 s avg) cdiaghg : 0.49s CPU ( 214 calls, 0.002 s avg) Called by h_psi: add_vuspsi : 0.39s CPU ( 235 calls, 0.002 s avg) General routines calbec : 0.39s CPU ( 271 calls, 0.001 s avg) cft3 : 0.00s CPU ( 4 calls, 0.000 s avg) cft3s : 3.41s CPU ( 8030 calls, 0.000 s avg) davcio : 0.00s CPU ( 57 calls, 0.000 s avg) espresso-5.1/PW/examples/example04/reference/chg.out0000644000175000017500000003760312341373025020506 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:36:33 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 27 npp = 27 ncplane = 729 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 27 517 8925 27 517 8925 161 1503 bravais-lattice index = 1 lattice parameter (a_0) = 7.3699 a.u. unit-cell volume = 400.2993 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 3 number of electrons = 44.00 number of Kohn-Sham states= 25 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-12 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 7.369900 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Pb read from file Pb.pz-d-van.UPF Pseudo is Ultrasoft, Zval = 14.0 Generated by new atomic code, or converted to UPF format Using radial grid of 899 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 2 for Ti read from file Ti.pz-sp-van_ak.UPF Pseudo is Ultrasoft, Zval = 12.0 Generated by new atomic code, or converted to UPF format Using radial grid of 851 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 5 coefficients, rinner = 1.000 1.000 1.000 1.000 1.000 PseudoPot. # 3 for O read from file O.pz-van_ak.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 737 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.700 0.700 0.700 atomic species valence mass pseudopotential Pb 14.00 207.20000 Pb( 1.00) Ti 12.00 47.86700 Ti( 1.00) O 6.00 15.99940 O ( 1.00) 8 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 Pb tau( 1) = ( 0.0000000 0.0000000 0.0100000 ) 2 Ti tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) 3 O tau( 3) = ( 0.0000000 0.5000000 0.5000000 ) 4 O tau( 4) = ( 0.5000000 0.5000000 0.0000000 ) 5 O tau( 5) = ( 0.5000000 0.0000000 0.5000000 ) number of k points= 6 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.2500000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.2500000 k( 3) = ( 0.1250000 0.3750000 0.3750000), wk = 0.5000000 k( 4) = ( 0.3750000 0.3750000 0.3750000), wk = 0.2500000 k( 5) = ( 0.3750000 -0.1250000 0.1250000), wk = 0.5000000 k( 6) = ( 0.3750000 -0.3750000 0.1250000), wk = 0.2500000 G cutoff = 165.0991 ( 8925 G-vectors) FFT grid: ( 27, 27, 27) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.43 Mb ( 1115, 25) NL pseudopotentials 1.02 Mb ( 1115, 60) Each V/rho on FFT grid 0.30 Mb ( 19683) Each G-vector array 0.07 Mb ( 8925) G-vector shells 0.00 Mb ( 140) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.70 Mb ( 1115, 100) Each subspace H/S matrix 0.15 Mb ( 100, 100) Each matrix 0.02 Mb ( 60, 25) Arrays for rho mixing 2.40 Mb ( 19683, 8) Initial potential from superposition of free atoms starting charge 42.99817, renormalised to 44.00000 Starting wfc are 31 atomic wfcs total cpu time spent up to now is 2.44 secs per-process dynamical memory: 20.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 total cpu time spent up to now is 3.62 secs total energy = -333.60310727 Ry Harris-Foulkes estimate = -334.05567223 Ry estimated scf accuracy < 1.00232089 Ry iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.28E-03, avg # of iterations = 2.8 total cpu time spent up to now is 4.93 secs total energy = -333.71642362 Ry Harris-Foulkes estimate = -333.79859205 Ry estimated scf accuracy < 0.21464383 Ry iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.88E-04, avg # of iterations = 2.8 total cpu time spent up to now is 6.15 secs total energy = -333.73363431 Ry Harris-Foulkes estimate = -333.75386069 Ry estimated scf accuracy < 0.04480561 Ry iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.02E-04, avg # of iterations = 3.2 total cpu time spent up to now is 7.54 secs total energy = -333.73785977 Ry Harris-Foulkes estimate = -333.74125294 Ry estimated scf accuracy < 0.00703076 Ry iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.60E-05, avg # of iterations = 3.5 total cpu time spent up to now is 9.13 secs total energy = -333.73878643 Ry Harris-Foulkes estimate = -333.73979108 Ry estimated scf accuracy < 0.00234075 Ry iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.32E-06, avg # of iterations = 2.8 total cpu time spent up to now is 10.44 secs total energy = -333.73904533 Ry Harris-Foulkes estimate = -333.73910870 Ry estimated scf accuracy < 0.00017258 Ry iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.92E-07, avg # of iterations = 3.7 total cpu time spent up to now is 12.01 secs total energy = -333.73909513 Ry Harris-Foulkes estimate = -333.73914541 Ry estimated scf accuracy < 0.00016946 Ry iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.85E-07, avg # of iterations = 2.7 total cpu time spent up to now is 13.19 secs total energy = -333.73910816 Ry Harris-Foulkes estimate = -333.73911359 Ry estimated scf accuracy < 0.00001006 Ry iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.29E-08, avg # of iterations = 3.8 total cpu time spent up to now is 14.71 secs total energy = -333.73911276 Ry Harris-Foulkes estimate = -333.73911337 Ry estimated scf accuracy < 0.00000481 Ry iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.09E-08, avg # of iterations = 1.0 total cpu time spent up to now is 15.82 secs total energy = -333.73911194 Ry Harris-Foulkes estimate = -333.73911285 Ry estimated scf accuracy < 0.00000253 Ry iteration # 11 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.76E-09, avg # of iterations = 3.0 total cpu time spent up to now is 17.12 secs total energy = -333.73911244 Ry Harris-Foulkes estimate = -333.73911249 Ry estimated scf accuracy < 0.00000011 Ry iteration # 12 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.54E-10, avg # of iterations = 2.5 total cpu time spent up to now is 18.46 secs total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 1.5E-09 Ry iteration # 13 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.48E-12, avg # of iterations = 3.8 total cpu time spent up to now is 20.11 secs total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 2.5E-10 Ry iteration # 14 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.80E-13, avg # of iterations = 2.2 total cpu time spent up to now is 21.43 secs total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 6.5E-11 Ry iteration # 15 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.48E-13, avg # of iterations = 3.0 total cpu time spent up to now is 22.75 secs total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 1.7E-11 Ry iteration # 16 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.97E-14, avg # of iterations = 2.8 total cpu time spent up to now is 24.13 secs total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 6.9E-12 Ry iteration # 17 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.56E-14, avg # of iterations = 1.8 total cpu time spent up to now is 25.28 secs total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 2.2E-12 Ry iteration # 18 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.05E-15, avg # of iterations = 2.8 total cpu time spent up to now is 26.47 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 1102 PWs) bands (ev): -45.0406 -21.6284 -21.6276 -21.6271 -6.5856 -5.5430 -5.5388 -4.3063 -4.3063 -4.2932 -4.1309 -4.1293 4.3479 7.0570 7.0579 7.7803 8.8840 8.8845 9.6357 9.6907 9.6921 9.8097 13.2793 13.2953 13.2957 k = 0.1250 0.1250 0.3750 ( 1115 PWs) bands (ev): -45.0395 -21.6807 -21.6264 -21.6262 -6.1922 -5.4281 -5.3782 -4.3632 -4.3013 -4.2892 -4.2234 -4.1032 3.6472 6.5924 7.1095 7.5853 8.1776 8.4885 9.1073 9.6831 9.8347 10.5293 13.2135 14.3810 14.3907 k = 0.1250 0.3750 0.3750 ( 1103 PWs) bands (ev): -45.0383 -21.6785 -21.6774 -21.6240 -5.9830 -5.3082 -5.2414 -4.3384 -4.2973 -4.2447 -4.1609 -4.0142 3.3024 6.5509 6.6067 6.9512 7.2592 8.3894 9.1676 9.2198 9.7172 10.4504 14.1858 14.3216 14.8324 k = 0.3750 0.3750 0.3750 ( 1106 PWs) bands (ev): -45.0373 -21.6765 -21.6760 -21.6754 -5.5987 -5.4334 -5.4300 -4.2562 -4.2560 -3.9763 -3.9115 -3.9110 3.9094 5.7430 5.7462 6.4419 6.7901 6.7917 7.6797 10.4019 10.4046 10.4821 14.3585 14.6751 14.6762 k = 0.3750-0.1250 0.1250 ( 1115 PWs) bands (ev): -45.0395 -21.6814 -21.6263 -21.6256 -6.1900 -5.4257 -5.3830 -4.3637 -4.3013 -4.2891 -4.2230 -4.1025 3.6454 6.5892 7.1081 7.5877 8.1784 8.4867 9.1093 9.6819 9.8375 10.5303 13.2149 14.3793 14.3902 k = 0.3750-0.3750 0.1250 ( 1103 PWs) bands (ev): -45.0383 -21.6787 -21.6779 -21.6233 -5.9786 -5.3104 -5.2454 -4.3385 -4.2966 -4.2430 -4.1597 -4.0154 3.2986 6.5508 6.6055 6.9526 7.2604 8.3923 9.1702 9.2195 9.7176 10.4474 14.1862 14.3219 14.8306 highest occupied, lowest unoccupied level (ev): 10.5303 13.2135 ! total energy = -333.73911247 Ry Harris-Foulkes estimate = -333.73911247 Ry estimated scf accuracy < 7.4E-13 Ry The total energy is the sum of the following terms: one-electron contribution = -80.06099058 Ry hartree contribution = 67.51226530 Ry xc contribution = -49.64774350 Ry ewald contribution = -271.54264368 Ry convergence has been achieved in 18 iterations Writing output data file pwscf.save PWSCF : 26.61s CPU time, 27.74s wall time init_run : 2.32s CPU electrons : 24.04s CPU Called by init_run: wfcinit : 0.41s CPU potinit : 0.02s CPU Called by electrons: c_bands : 17.44s CPU ( 18 calls, 0.969 s avg) sum_band : 4.42s CPU ( 18 calls, 0.246 s avg) v_of_rho : 0.09s CPU ( 19 calls, 0.005 s avg) newd : 1.99s CPU ( 19 calls, 0.105 s avg) mix_rho : 0.12s CPU ( 18 calls, 0.007 s avg) Called by c_bands: init_us_2 : 0.39s CPU ( 222 calls, 0.002 s avg) cegterg : 16.47s CPU ( 108 calls, 0.153 s avg) Called by *egterg: h_psi : 12.37s CPU ( 416 calls, 0.030 s avg) s_psi : 0.63s CPU ( 416 calls, 0.002 s avg) g_psi : 0.26s CPU ( 302 calls, 0.001 s avg) cdiaghg : 1.17s CPU ( 410 calls, 0.003 s avg) Called by h_psi: add_vuspsi : 0.66s CPU ( 416 calls, 0.002 s avg) General routines calbec : 0.97s CPU ( 524 calls, 0.002 s avg) cft3s : 12.22s CPU ( 16488 calls, 0.001 s avg) davcio : 0.00s CPU ( 330 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/README0000644000175000017500000001356312341373025014336 0ustar mbambaThese are instructions on how to run the examples for PW package. These examples try to exercise all the programs and features of the PW package. If you find that any relevant feature isn't being tested, please contact us (or even better, write and send us a new example). To run the examples, you should follow this procedure: 1) Edit the "environment_variables" file from the main ESPRESSO directory, setting the following variables as needed: BIN_DIR = directory where ESPRESSO executables reside PSEUDO_DIR = directory where pseudopotential files reside TMP_DIR = directory to be used as temporary storage area If you have downloaded the full ESPRESSO distribution, you may set BIN_DIR=$TOPDIR/bin and PSEUDO_DIR=$TOPDIR/pseudo, where $TOPDIR is the root of the ESPRESSO source tree. TMP_DIR must be a directory you have read and write access to, with enough available space to host the temporary files produced by the example runs, and possibly offering high I/O performance (i.e., don't use an NFS-mounted directory). 2) If you want to test the parallel version of ESPRESSO, you will usually have to specify a driver program (such as "poe" or "mpirun") and the number of processors. This can be done by editing PARA_PREFIX and PARA_POSTFIX variables (in the "environment_variables" file). Parallel executables will be run by a command like this: $PARA_PREFIX pw.x $PARA_POSTFIX < file.in > file.out For example, if the command line is like this (as for an IBM SP): poe pw.x -procs 4 < file.in > file.out you should set PARA_PREFIX="poe", PARA_POSTFIX="-procs 4". See section "Running on parallel machines" of the user guide for details. Furthermore, if your machine does not support interactive use, you must run the commands specified below through the batch queueing system installed on that machine. Ask your system administrator for instructions. 3) To run a single example, go to the corresponding directory (for instance, "example/example01") and execute: ./run_example This will create a subdirectory "results", containing the input and output files generated by the calculation. Some examples take only a few seconds to run, while others may require several minutes depending on your system. 4) In each example's directory, the "reference" subdirectory contains verified output files, that you can check your results against. The reference results were generated on a Linux PC with Intel compiler. On different architectures the precise numbers could be slightly different, in particular if different FFT dimensions are automatically selected. For this reason, a plain "diff" of your results against the reference data doesn't work, or at least, it requires human inspection of the results. ----------------------------------------------------------------------- LIST AND CONTENT OF THE EXAMPLES example01: This example shows how to use pw.x to calculate the total energy and the band structure of four simple systems: Si, Al, Cu, Ni. example02: This example shows how to use pw.x to compute the equilibrium geometry of a simple molecule, CO, and of an Al (001) slab. In the latter case the relaxation is performed in two ways: 1) using the quasi-Newton BFGS algorithm 2) using a damped dynamics algorithm. example03: This example shows how to use pw.x to perform molecular dynamics for 2- and 8-atom cells of Si starting with compressed bonds along (111). example04: This example shows how to calculate the polarization via Berry Phase in PBTiO3 (contributed by the Vanderbilt Group in Rutgers University). example05: This example shows how to calculate the total energy of an isolated atom in a supercell with fixed occupations. Two examples: LDA energy of Al and sigma-GGA energy of O. example06: This example shows how to use pw.x to calculate the total energy and the band structure of four simple systems in the non-collinear case: Fe, Cu, Ni, O. example07: This example shows how to use pw.x to calculate the total energy and the band structure of fcc-Pt with a fully relativistic US-PP which includes spin-orbit effects. example08: This example shows how to use pw.x to calculate the total energy of FeO using LDA+U approximation. Read file README for more details. example09: This example shows how to use pw.x to perform TPSS metaGGA calculations for C4H6 example10: This example shows how to use pw.x to perform electronic structure calculations in the presence of a finite electric field described through the modern theory of the polarization. The example shows how to calculate the dielectric constant of silicon. example11: This example tests pw.x with PAW in the noncollinear, spin-orbit case. It calculates the band structure of ferromagnetic bcc-Fe. Additional feature-specific examples: EXX_example: Use experimental implementation of Hybrid Functional to compute total energy of Silicon using different values for nq and for calculation of binding energy of o2,co,n2 from calculations in a 12 au cubic box and gamma sampling. ESM_example: This example shows how to use the Effective Screening Medium Method (ESM) in pw.x to calculate the total energy, charge density, force, and potential of a polarized or charged medium. Calculations are for a water molecule and an Al(111) electrode. VCSexample: This example shows how to use pw.x to optimize crystal structures at two pressures for As. cluster_example: This example shows how to use pw.x to calculate propeties of isolated systems decoupling periodic images by using Martyna-Tuckerman approach with truncated coulomb interaction. vdwDF_example: This example shows how to use the vdw-DF functional in pw.x. Read file README for more details. espresso-5.1/PW/examples/example08/0000755000175000017500000000000012341373041015247 5ustar mbambaespresso-5.1/PW/examples/example08/run_xml_example0000755000175000017500000003364012341373025020404 0ustar mbamba#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy of FeO" $ECHO "using LDA+U approximation. Read file README for more details" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="O.pz-rrkjus.UPF Fe.pz-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with standard LDA cat > feo_LDA.xml << EOF 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 1.0 O.pz-rrkjus.UPF 0.0 0.0 1.0 Fe.pz-nd-rrkjus.UPF 0.5 1.d-8 1.0 Fe.pz-nd-rrkjus.UPF -0.5 1.d-8 0.25 0.25 0.25 0.75 0.75 0.75 0.0 0.0 0.0 0.5 0.5 0.5 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 30.0 240.0 plain 0.3 1.0d-6 true 0 smearing gauss 0.01 20 2 2 2 2 0 0 0 EOF $ECHO " running scf for FeO in LDA ...\c" #$PW_COMMAND < feo_LDA.xml > feo_LDA.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with standard ns initial value cat > feo_standard.xml << EOF 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 1.0 O.pz-rrkjus.UPF 0.0 1.0 Fe.pz-nd-rrkjus.UPF 0.5 4.3 1.0 Fe.pz-nd-rrkjus.UPF -0.5 4.3 0.25 0.25 0.25 0.75 0.75 0.75 0.0 0.0 0.0 0.5 0.5 0.5 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 30.0 240.0 plain 0.3 1.0d-6 true 0 smearing gauss 0.01 20 2 2 2 2 0 0 0 EOF $ECHO " running scf for FeO in LDA+U using standard ns initial matrices...\c" $PW_COMMAND < feo_standard.xml > feo_standard.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation with user-defined ns initial value cat > feo_user_ns.xml << EOF 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 1.0 O.pz-rrkjus.UPF 0.0 1.0 Fe.pz-nd-rrkjus.UPF 0.5 4.3 1.d0 1.0 Fe.pz-nd-rrkjus.UPF -0.5 4.3 1.d0 0.25 0.25 0.25 0.75 0.75 0.75 0.0 0.0 0.0 0.5 0.5 0.5 from_scratch $PSEUDO_DIR/ $TMP_DIR/ true true 30.0 240.0 plain 0.3 1.0d-6 true 0 smearing gauss 0.01 20 2 2 2 2 0 0 0 EOF $ECHO " running scf for FeO in LDA+U using user-defined ns initial matrices...\c" $PW_COMMAND < feo_user_ns.xml > feo_user_ns.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PW/examples/example08/README0000644000175000017500000001177012341373025016137 0ustar mbamba A simplified rotational invariant LDA+U method is presently implemented in the pw.x code of the ESPRESSO package. The implemented functional is the one proposed, among others, by S.L.Dudarev et al. in PRB, 57, 1505 (1998). A discussion of the method, more details about the current implementation and a description of a method to compute the crucial U parameter are contained in Matteo Cococcioni's PhD thesis at SISSA and in the paper "Linear-response approach to the calculation of the effective" interaction parameters in the LDA+U method" by Matteo Cococcioni and Stefano de Gironcoli, PRB 71, 035105 (2005). A classical example for LDA+U method is FeO that is incorrectly predicted to be a metal by LDA and GGA while it is an insulating antiferromagnetic material in real world. In this example we use FeO in order to illustrate some of the input variables involved in LDA+U calculations. Computational parameters (as wfc and density cutoff, k-points grid etc.) are set so as to make the example reasonably fast and the results are NOT meant to be converged in any sense. The first run is just plain LDA calculation for FeO in the rhombohedral (antiferromagnetic) cell. There are 2 types of Fe atoms in the input because the desired magnetic structure is antiferromagnetic and opposite starting_magnetization for the two types is suggested. The lda_plus_u flag is enabled in the input and a tiny value is set for the Hubbard_U of the two Iron types in order to force the code to write out the occupation matrices for the localized Fe d-levels without affecting the LDA result. Looking at the output it is clear that the resulting solution is metallic: the "correction for metal" energy term is clearly non zero and the Fermi energy falls in the middle of the bands. Coming to the occupation of the localized d-level one can see that they are completely filled for the majority spin [spin 1(up) for atom 3 and spin 2(down) for atom 4] while minority-spin components only are partially filled and with FRACTIONAL occupations. In the second run of the example a realistic value for the Hubbard_U parameter is adopted and the calculation is repeated. The LDA+U functional is now active and disfavors fractional occupations. In spite of that the system still, painfully, converges to a metallic solution with similar fractional occupations as the LDA solution. This is due to the fact that LDA+U calculations can exhibit---even more than spin polarized calculations do---several solutions and one is not guaranteed to fall in the desired global minimum automatically. Though live! We have to live with that and manage to explore several possibilities by suggesting to the system different starting points. This can be done by setting the starting occupation matrices of the system in a user defined way. This is done by exploiting the starting_ns_eigenvalue input variable as in the third calculation of this example. From literature or simple electron counting, one knows that in the minority spin component one would like to occupy completely a single state leaving the other as empty as possible. So, in the third run, by mean of the starting_ns_eigenvalue variable, one enforces the complete occupation of the third eigenvalue of the minority spin components of each Fe atomic type. Why the third eigenvalue ? Because from the "standard LDA+U" run we know that at the first iteration this is the one that is non-degenerate and if occupied completely could lead to an insulating result. This calculation converges rather easily to the desired insulating solution. In the output we can see that the "correction for metal" energy term is essentially zero and Fermi energy falls in a gap. A comment about energetics: Plain LDA calculation has the lowest energy, as expected, since the +U term is a positive defined penalty function added to it and energy can only go up. Notice however that the "standard LDA+U" calculation, the one with fractional occupation of minority-spin levels, has an higher energy than the "user defined ns" one, where one manages to completely fill the desired level. This shows that this later one is indeed the ground state, or at least, a better solution of the problem (still higher than plain LDA, of course). Looking at the output of these calculation one can notice that even in the insulating solution obtained starting with user-defined ns matrices, many of the minority spin occupations are still fractional while LDA+U functional would like them to be either 0 or 1. This is because the projector on localized d-level used in the calculation are based on atomic orbitals that are somehow different from the crystal wavefunctions. So some "spurious" d-level occupation comes from Oxygen 2s and 2p states that protrude toward Iron sites. This is not wrong in general, the important thing is to be consistent and use the U parameter appropriate for the chosen projector, but for some applications it may be disturbing and one could like to have a "better" projector. See PP/examples/example06 for a calculation using localized wannier functions. espresso-5.1/PW/examples/example08/run_example0000755000175000017500000001406712341373025017526 0ustar mbamba#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy of FeO" $ECHO "using LDA+U approximation. Read file README for more details" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="O.pz-rrkjus.UPF Fe.pz-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # self-consistent calculation with standard LDA cat > feo_LDA.in << EOF FeO FeO Wustite in LDA &control calculation = 'scf' restart_mode='from_scratch', prefix='feo_af', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' tprnfor = .true., tstress=.true. / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true. Hubbard_U(2)=1.d-8, Hubbard_U(3)=1.d-8, / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 EOF $ECHO " running scf for FeO in LDA ...\c" $PW_COMMAND < feo_LDA.in > feo_LDA.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/feo_af* $ECHO " done" # self-consistent calculation with standard ns initial value cat > feo_standard.in << EOF FeO FeO Wustite whithin LDA+U using standard initial ns matrices &control calculation = 'scf' restart_mode='from_scratch', prefix='feo_af', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' tprnfor = .true., tstress=.true. / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true. Hubbard_U(2)=4.3, Hubbard_U(3)=4.3, / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 EOF $ECHO " running scf for FeO in LDA+U using standard ns initial matrices...\c" $PW_COMMAND < feo_standard.in > feo_standard.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/feo_af* $ECHO " done" # self-consistent calculation with user-defined ns initial value cat > feo_user_ns.in << EOF FeO FeO Wustite whithin LDA+U with user-defined ns initial matrices &control calculation = 'scf' restart_mode='from_scratch', prefix='feo_af', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' tprnfor = .true., tstress=.true. / &system ibrav= 0, celldm(1)=8.19, nat= 4, ntyp= 3, ecutwfc = 30.0, ecutrho = 240.0, nbnd=20, starting_magnetization(1)= 0.0, starting_magnetization(2)= 0.5, starting_magnetization(3)=-0.5, occupations='smearing', smearing='gauss', degauss=0.01, nspin=2, lda_plus_u=.true., Hubbard_U(2)=4.3, Hubbard_U(3)=4.3, starting_ns_eigenvalue(3,2,2) = 1.d0 starting_ns_eigenvalue(3,1,3) = 1.d0 / &electrons mixing_mode = 'plain' mixing_beta = 0.3 conv_thr = 1.0d-6 mixing_fixed_ns = 0 / CELL_PARAMETERS 0.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.50 ATOMIC_SPECIES O1 1. O.pz-rrkjus.UPF Fe1 1. Fe.pz-nd-rrkjus.UPF Fe2 1. Fe.pz-nd-rrkjus.UPF ATOMIC_POSITIONS {crystal} O1 0.25 0.25 0.25 O1 0.75 0.75 0.75 Fe1 0.0 0.0 0.0 Fe2 0.5 0.5 0.5 K_POINTS {automatic} 2 2 2 0 0 0 EOF $ECHO " running scf for FeO in LDA+U using user-defined ns initial matrices...\c" $PW_COMMAND < feo_user_ns.in > feo_user_ns.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/feo_af* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PW/examples/example08/reference/0000755000175000017500000000000012341373041017205 5ustar mbambaespresso-5.1/PW/examples/example08/reference/feo_LDA.out0000644000175000017500000005464412341373025021206 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16:17:46 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.000000 0.000000 Fe2 2 0.000000 0.000000 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0100 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 G cutoff = 407.7738 ( 17255 G-vectors) FFT grid: ( 50, 50, 50) G cutoff = 203.8869 ( 6111 G-vectors) smooth grid: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 atomic wfcs total cpu time spent up to now is 2.70 secs per-process dynamical memory: 28.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.2 enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.4251862 atom 3 spin 1 eigenvalues: 0.9871648 0.9871648 0.9966670 0.9966670 0.9980445 eigenvectors 1 -0.9018069 0.1812386 0.0436787 -0.3184358 0.2249173 2 -0.3184358 -0.1550740 0.2344942 0.9018069 0.0794202 3 0.1838967 -0.2796812 0.7712377 -0.2269912 0.4915565 4 0.2269912 0.7290746 -0.1223263 0.1838967 0.6067483 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.001 0.001 0.000 0.002 0.001 0.997 0.001 0.002 -0.001 0.001 0.001 0.997 -0.002 -0.001 0.000 0.002 -0.002 0.988 0.000 0.002 -0.001 -0.001 0.000 0.997 atom 3 spin 2 eigenvalues: 0.2000722 0.2000722 0.3336994 0.3336994 0.3919349 eigenvectors 1 0.9716143 0.0399371 0.0170375 0.2254646 0.0569746 2 -0.2254646 0.0427310 -0.0559520 0.9716143 -0.0132211 3 -0.0591782 -0.0610240 0.7338195 0.0403645 0.6727954 4 -0.0403645 0.8121095 -0.3532064 -0.0591782 0.4589031 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.201 -0.004 -0.004 0.000 -0.008 -0.004 0.353 0.020 -0.007 -0.020 -0.004 0.020 0.353 0.007 -0.020 0.000 -0.007 0.007 0.201 0.000 -0.008 -0.020 -0.020 0.000 0.353 atom 4 Tr[ns(na)]= 6.4251862 atom 4 spin 1 eigenvalues: 0.2000722 0.2000722 0.3336994 0.3336994 0.3919349 eigenvectors 1 0.9746728 0.0393355 0.0178185 0.2118528 0.0571540 2 -0.2118528 0.0432854 -0.0557082 0.9746728 -0.0124229 3 -0.0285067 -0.4849917 0.8090835 0.0657170 0.3240919 4 -0.0657170 0.6542391 0.0928955 -0.0285067 0.7471347 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.201 -0.004 -0.004 0.000 -0.008 -0.004 0.353 0.020 -0.007 -0.020 -0.004 0.020 0.353 0.007 -0.020 0.000 -0.007 0.007 0.201 0.000 -0.008 -0.020 -0.020 0.000 0.353 atom 4 spin 2 eigenvalues: 0.9871648 0.9871648 0.9966670 0.9966670 0.9980445 eigenvectors 1 -0.8988060 0.1826731 0.0414957 -0.3268099 0.2241688 2 -0.3268099 -0.1533815 0.2348903 0.8988060 0.0815088 3 0.2491024 -0.0203584 0.6862100 -0.1526139 0.6658516 4 -0.1526139 -0.7806131 0.3726757 -0.2491024 -0.4079374 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.988 0.001 0.001 0.000 0.002 0.001 0.997 0.001 0.002 -0.001 0.001 0.001 0.997 -0.002 -0.001 0.000 0.002 -0.002 0.988 0.000 0.002 -0.001 -0.001 0.000 0.997 nsum = 12.8503725 exit write_ns total cpu time spent up to now is 4.49 secs total energy = -174.41116749 Ry Harris-Foulkes estimate = -175.24062365 Ry estimated scf accuracy < 1.83907829 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.80 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.57E-03, avg # of iterations = 2.0 total cpu time spent up to now is 6.53 secs total energy = -174.80132266 Ry Harris-Foulkes estimate = -174.82982858 Ry estimated scf accuracy < 0.10915999 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 6.81 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.90E-04, avg # of iterations = 2.0 total cpu time spent up to now is 8.28 secs total energy = -174.82215071 Ry Harris-Foulkes estimate = -174.81940173 Ry estimated scf accuracy < 0.01925761 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.04 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.88E-05, avg # of iterations = 1.8 total cpu time spent up to now is 9.97 secs total energy = -174.82396919 Ry Harris-Foulkes estimate = -174.82416263 Ry estimated scf accuracy < 0.00166244 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.05 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.94E-06, avg # of iterations = 3.0 total cpu time spent up to now is 11.86 secs total energy = -174.82455754 Ry Harris-Foulkes estimate = -174.82440517 Ry estimated scf accuracy < 0.00042492 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.08 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.52E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.64 secs total energy = -174.82463767 Ry Harris-Foulkes estimate = -174.82463510 Ry estimated scf accuracy < 0.00003442 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.08 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.23E-07, avg # of iterations = 3.2 total cpu time spent up to now is 15.65 secs total energy = -174.82465009 Ry Harris-Foulkes estimate = -174.82465934 Ry estimated scf accuracy < 0.00003428 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.22E-07, avg # of iterations = 3.5 total cpu time spent up to now is 17.44 secs total energy = -174.82465720 Ry Harris-Foulkes estimate = -174.82465702 Ry estimated scf accuracy < 0.00000105 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.76E-09, avg # of iterations = 3.8 total cpu time spent up to now is 19.35 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 0.0000 U( 3) = 0.0000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.9389790 atom 3 spin 1 eigenvalues: 0.9856388 0.9856388 0.9995005 0.9995005 0.9999704 eigenvectors 1 -0.9703422 0.0769323 0.0371688 -0.1952354 0.1141011 2 -0.1952354 -0.0873358 0.1102932 0.9703422 0.0229575 3 0.0955956 -0.2481788 0.7901569 -0.1057386 0.5419781 4 -0.1057386 -0.7691085 0.1696251 -0.0955956 -0.5994834 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.986 0.001 0.001 0.000 0.002 0.001 0.999 0.000 0.001 0.000 0.001 0.000 0.999 -0.001 0.000 0.000 0.001 -0.001 0.986 0.000 0.002 0.000 0.000 0.000 0.999 atom 3 spin 2 eigenvalues: 0.3300323 0.3300323 0.4304625 0.4391014 0.4391014 eigenvectors 1 0.9010186 0.2093506 0.0797170 0.2332872 0.2890676 2 0.2332872 -0.2129179 0.2877619 -0.9010186 0.0748439 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 0.3117275 -0.6680169 0.0202509 0.1912290 -0.6477660 5 0.1912290 0.3622960 -0.7596676 -0.3117275 -0.3973716 occupations 0.345 -0.015 -0.015 0.000 -0.030 -0.015 0.426 0.002 -0.026 -0.002 -0.015 0.002 0.426 0.026 -0.002 0.000 -0.026 0.026 0.345 0.000 -0.030 -0.002 -0.002 0.000 0.426 atom 4 Tr[ns(na)]= 6.9389553 atom 4 spin 1 eigenvalues: 0.3300313 0.3300313 0.4304584 0.4390928 0.4390928 eigenvectors 1 0.9075044 0.2029843 0.0881745 0.2066033 0.2911588 2 0.2066033 -0.2190082 0.2852936 -0.9075044 0.0662855 3 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 4 0.3229471 -0.6443763 -0.0266800 0.1716274 -0.6710563 5 0.1716274 0.4028383 -0.7594654 -0.3229471 -0.3566271 occupations 0.345 -0.015 -0.015 0.000 -0.030 -0.015 0.426 0.002 -0.026 -0.002 -0.015 0.002 0.426 0.026 -0.002 0.000 -0.026 0.026 0.345 0.000 -0.030 -0.002 -0.002 0.000 0.426 atom 4 spin 2 eigenvalues: 0.9856386 0.9856386 0.9995005 0.9995005 0.9999704 eigenvectors 1 0.9470929 -0.0849674 -0.0263988 0.2875695 -0.1113662 2 -0.2875695 -0.0795387 0.1133533 0.9470929 0.0338146 3 -0.0945987 0.2553819 -0.7917133 0.1066296 -0.5363314 4 0.1066296 0.7667469 -0.1622062 0.0945987 0.6045407 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.986 0.001 0.001 0.000 0.002 0.001 0.999 0.000 0.001 0.000 0.001 0.000 0.999 -0.001 0.000 0.000 0.001 -0.001 0.986 0.000 0.002 0.000 0.000 0.000 0.999 nsum = 13.8779343 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.9531 -7.7466 2.7539 5.1279 5.1279 7.5763 7.5999 7.5999 7.7781 7.7781 8.0650 8.9386 8.9386 11.0567 11.0567 11.2577 11.5025 12.8933 12.8933 15.3690 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.7707 -7.7513 3.6509 3.9130 4.7745 5.3282 5.3837 6.0705 7.7222 8.2473 8.6477 9.6396 9.8408 10.4291 11.7001 11.8246 12.6014 12.6283 17.2954 17.6038 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.7619 -7.7503 2.7897 4.0522 5.1682 5.1907 6.4321 6.4448 7.1583 8.2356 8.5574 9.3831 9.6067 10.7263 11.7103 11.8183 13.0243 13.0945 15.3293 16.7013 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.4145 -8.3805 4.4377 4.8298 5.5355 5.5355 6.5044 6.5044 7.8486 7.8486 8.2986 9.9326 9.9326 10.9601 10.9723 10.9723 12.4960 12.4960 13.9941 14.2632 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.9531 -7.7466 2.7539 5.1279 5.1279 7.5763 7.5999 7.5999 7.7781 7.7781 8.0650 8.9386 8.9386 11.0567 11.0567 11.2577 11.5025 12.8933 12.8933 15.3690 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -7.7707 -7.7513 3.6509 3.9130 4.7745 5.3282 5.3837 6.0705 7.7223 8.2473 8.6477 9.6396 9.8408 10.4291 11.7001 11.8246 12.6014 12.6283 17.2954 17.6038 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.7619 -7.7503 2.7897 4.0522 5.1682 5.1907 6.4321 6.4448 7.1583 8.2356 8.5574 9.3831 9.6067 10.7263 11.7103 11.8183 13.0243 13.0945 15.3293 16.7013 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.4145 -8.3805 4.4377 4.8298 5.5355 5.5355 6.5044 6.5044 7.8486 7.8486 8.2987 9.9326 9.9326 10.9601 10.9723 10.9723 12.4959 12.4959 13.9941 14.2632 the Fermi energy is 10.9768 ev ! total energy = -174.82465792 Ry Harris-Foulkes estimate = -174.82465763 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 0.56215155 Ry hartree contribution = 27.86074716 Ry xc contribution = -65.73507747 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.00000000 Ry smearing contrib. (-TS) = -0.00318382 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.09 Bohr mag/cell convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000174 -0.00000174 -0.00000174 atom 2 type 1 force = 0.00000174 0.00000174 0.00000174 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 atom 4 type 3 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000004 Total SCF correction = 0.000034 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -236.31 -0.00160642 0.00014872 0.00014872 -236.31 21.88 21.88 0.00014872 -0.00160642 0.00014872 21.88 -236.31 21.88 0.00014872 0.00014872 -0.00160642 21.88 21.88 -236.31 Writing output data file feo_af.save PWSCF : 23.26s CPU time, 24.50s wall time init_run : 2.63s CPU electrons : 16.65s CPU forces : 0.70s CPU stress : 3.11s CPU Called by init_run: wfcinit : 0.39s CPU potinit : 0.12s CPU Called by electrons: c_bands : 8.97s CPU ( 9 calls, 0.997 s avg) sum_band : 4.95s CPU ( 9 calls, 0.550 s avg) v_of_rho : 0.48s CPU ( 10 calls, 0.048 s avg) newd : 1.78s CPU ( 10 calls, 0.178 s avg) mix_rho : 0.25s CPU ( 9 calls, 0.028 s avg) Called by c_bands: init_us_2 : 0.24s CPU ( 256 calls, 0.001 s avg) cegterg : 8.68s CPU ( 72 calls, 0.121 s avg) Called by *egterg: h_psi : 7.86s CPU ( 276 calls, 0.028 s avg) s_psi : 0.31s CPU ( 364 calls, 0.001 s avg) g_psi : 0.06s CPU ( 196 calls, 0.000 s avg) cdiaghg : 0.30s CPU ( 268 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.21s CPU ( 276 calls, 0.001 s avg) General routines calbec : 0.39s CPU ( 452 calls, 0.001 s avg) cft3 : 0.89s CPU ( 152 calls, 0.006 s avg) cft3s : 7.92s CPU ( 8670 calls, 0.001 s avg) interpolate : 0.36s CPU ( 38 calls, 0.009 s avg) davcio : 0.00s CPU ( 720 calls, 0.000 s avg) espresso-5.1/PW/examples/example08/reference/feo_user_ns.out0000644000175000017500000006266312341373025022264 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16:18:45 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.316044 0.000000 Fe2 2 0.316044 0.000000 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0100 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 G cutoff = 407.7738 ( 17255 G-vectors) FFT grid: ( 50, 50, 50) G cutoff = 203.8869 ( 6111 G-vectors) smooth grid: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 atomic wfcs total cpu time spent up to now is 2.68 secs per-process dynamical memory: 28.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.2 enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.1226789 atom 3 spin 1 eigenvalues: 0.9969552 0.9969552 1.0025536 1.0025536 1.0030281 eigenvectors 1 -0.7575564 0.3689494 0.0919674 -0.2628351 0.4609168 2 -0.2628351 -0.3192079 0.4791235 0.7575564 0.1599156 3 0.5705074 0.1440156 0.4811031 -0.1776155 0.6251187 4 -0.1776155 -0.6386774 0.4440599 -0.5705074 -0.1946176 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 atom 3 spin 2 eigenvalues: 0.1553851 0.1553851 0.2567868 0.2765381 0.2765381 eigenvectors 1 -0.9589261 -0.0514059 -0.0177300 -0.2696741 -0.0691359 2 0.2696741 -0.0501521 0.0695948 -0.9589261 0.0194427 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 -0.0397092 -0.4449111 0.8120929 0.0784848 0.3671818 5 -0.0784848 0.6808546 0.0448770 -0.0397092 0.7257316 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.269 -0.006 -0.008 0.006 -0.004 -0.006 0.269 0.008 0.006 0.000 -0.008 0.008 0.156 0.000 -0.009 0.006 0.006 0.000 0.269 atom 4 Tr[ns(na)]= 6.1226789 atom 4 spin 1 eigenvalues: 0.1553851 0.1553851 0.2567868 0.2765381 0.2765381 eigenvectors 1 0.9720789 0.0486252 0.0214590 0.2175454 0.0700842 2 -0.2175454 0.0528525 -0.0685369 0.9720789 -0.0156844 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.0428938 0.4166205 -0.8132501 -0.0767907 -0.3966296 5 -0.0767907 0.6985243 0.0115418 -0.0428938 0.7100661 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.269 -0.006 -0.008 0.006 -0.004 -0.006 0.269 0.008 0.006 0.000 -0.008 0.008 0.156 0.000 -0.009 0.006 0.006 0.000 0.269 atom 4 spin 2 eigenvalues: 0.9969552 0.9969552 1.0025536 1.0025536 1.0030281 eigenvectors 1 0.7497696 -0.3778842 -0.0782949 0.2842877 -0.4561791 2 0.2842877 0.3085787 -0.4815467 -0.7497696 -0.1729680 3 0.5813480 0.1874901 0.4495068 -0.1380598 0.6369969 4 0.1380598 0.6272932 -0.4760178 0.5813480 0.1512754 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 nsum = 12.2453578 exit write_ns Modify starting ns matrices according to input values enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.8658921 atom 3 spin 1 eigenvalues: 0.9969552 0.9969552 1.0025536 1.0025536 1.0030281 eigenvectors 1 -0.7408198 0.3870526 0.0636813 -0.3068550 0.4507339 2 -0.3068550 -0.2969977 0.4836962 0.7408198 0.1866985 3 0.5664638 0.1299364 0.4907515 -0.1901179 0.6206879 4 -0.1901179 -0.6416898 0.4333731 -0.5664638 -0.2083167 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 atom 3 spin 2 eigenvalues: 0.1553851 0.1553851 0.2765381 0.2765381 1.0000000 eigenvectors 1 -0.9616965 -0.0508780 -0.0184576 -0.2596211 -0.0693356 2 0.2596211 -0.0506874 0.0694054 -0.9616965 0.0187180 3 0.0569190 0.2738467 -0.8001636 -0.0670591 -0.5263169 4 0.0670591 -0.7658439 0.1457638 0.0569190 -0.6200801 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.517 0.241 -0.008 -0.241 -0.004 0.241 0.517 0.008 -0.241 0.000 -0.008 0.008 0.156 0.000 -0.009 -0.241 -0.241 0.000 0.517 atom 4 Tr[ns(na)]= 6.8658921 atom 4 spin 1 eigenvalues: 0.1553851 0.1553851 0.2765381 0.2765381 1.0000000 eigenvectors 1 -0.9758457 -0.0476637 -0.0226921 -0.1999711 -0.0703557 2 0.1999711 -0.0537212 0.0681385 -0.9758457 0.0144174 3 -0.0348136 -0.4858896 0.8078033 0.0807756 0.3219137 4 0.0807756 -0.6522424 -0.0946715 0.0348136 -0.7469139 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.517 0.241 -0.008 -0.241 -0.004 0.241 0.517 0.008 -0.241 0.000 -0.008 0.008 0.156 0.000 -0.009 -0.241 -0.241 0.000 0.517 atom 4 spin 2 eigenvalues: 0.9969552 0.9969552 1.0025536 1.0025536 1.0030281 eigenvectors 1 -0.7446021 0.3833053 0.0697298 -0.2975596 0.4530351 2 -0.2975596 -0.3018185 0.4828614 0.7446021 0.1810429 3 0.5496829 0.0788614 0.5234393 -0.2342535 0.6023007 4 -0.2342535 -0.6499463 0.3932692 -0.5496829 -0.2566772 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 nsum = 13.7317842 exit write_ns total cpu time spent up to now is 4.47 secs total energy = -173.97410127 Ry Harris-Foulkes estimate = -174.94035763 Ry estimated scf accuracy < 2.60464524 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 8.54 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.30E-03, avg # of iterations = 2.0 total cpu time spent up to now is 6.21 secs total energy = -174.45336982 Ry Harris-Foulkes estimate = -174.46234756 Ry estimated scf accuracy < 0.25991444 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.21 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.28E-04, avg # of iterations = 1.2 total cpu time spent up to now is 7.87 secs total energy = -174.51122921 Ry Harris-Foulkes estimate = -174.47289444 Ry estimated scf accuracy < 0.10737176 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.36 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.83E-04, avg # of iterations = 1.5 total cpu time spent up to now is 9.52 secs total energy = -174.53386789 Ry Harris-Foulkes estimate = -174.52520132 Ry estimated scf accuracy < 0.01388344 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.33 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.96E-05, avg # of iterations = 2.5 total cpu time spent up to now is 11.26 secs total energy = -174.53663640 Ry Harris-Foulkes estimate = -174.53571104 Ry estimated scf accuracy < 0.00220323 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.87E-06, avg # of iterations = 2.2 total cpu time spent up to now is 13.36 secs total energy = -174.53723792 Ry Harris-Foulkes estimate = -174.53688482 Ry estimated scf accuracy < 0.00057462 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.05E-06, avg # of iterations = 2.5 total cpu time spent up to now is 15.14 secs total energy = -174.53737226 Ry Harris-Foulkes estimate = -174.53737575 Ry estimated scf accuracy < 0.00004425 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.58E-07, avg # of iterations = 3.2 total cpu time spent up to now is 17.13 secs total energy = -174.53740980 Ry Harris-Foulkes estimate = -174.53739184 Ry estimated scf accuracy < 0.00002335 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.34E-08, avg # of iterations = 1.2 total cpu time spent up to now is 18.78 secs total energy = -174.53741463 Ry Harris-Foulkes estimate = -174.53741301 Ry estimated scf accuracy < 0.00000112 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.01E-09, avg # of iterations = 3.5 total cpu time spent up to now is 20.71 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.7659840 atom 3 spin 1 eigenvalues: 0.9940242 0.9940242 1.0012173 1.0012173 1.0019610 eigenvectors 1 -0.8809080 0.1949766 0.0319643 -0.3653236 0.2269409 2 -0.3653236 -0.1494790 0.2435942 0.8809080 0.0941152 3 0.2789208 0.1079086 0.6138757 -0.1128847 0.7217843 4 -0.1128847 -0.7711437 0.4790234 -0.2789208 -0.2921202 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.995 0.001 0.001 0.000 0.002 0.001 1.001 0.000 0.001 0.000 0.001 0.000 1.001 -0.001 0.000 0.000 0.001 -0.001 0.995 0.000 0.002 0.000 0.000 0.000 1.001 atom 3 spin 2 eigenvalues: 0.1021989 0.1021989 0.2925641 0.2925641 0.9840138 eigenvectors 1 0.0076280 0.6678190 -0.7355585 -0.0912391 -0.0677395 2 0.0912391 -0.4637843 -0.3464561 0.0076280 -0.8102404 3 -0.9736383 -0.0501287 -0.0229639 -0.2089155 -0.0730926 4 -0.2089155 0.0554583 -0.0711419 0.9736383 -0.0156836 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.291 0.007 0.007 0.000 0.014 0.007 0.397 0.293 0.012 -0.293 0.007 0.293 0.397 -0.012 -0.293 0.000 0.012 -0.012 0.291 0.000 0.014 -0.293 -0.293 0.000 0.397 atom 4 Tr[ns(na)]= 6.7659840 atom 4 spin 1 eigenvalues: 0.1021989 0.1021989 0.2925641 0.2925641 0.9840138 eigenvectors 1 -0.0904896 0.2945653 0.5090192 0.0139425 0.8035845 2 -0.0139425 0.7578321 -0.6340171 -0.0904896 0.1238150 3 0.9722884 0.0504808 0.0225105 0.2151104 0.0729913 4 -0.2151104 0.0551380 -0.0712867 0.9722884 -0.0161487 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.291 0.007 0.007 0.000 0.014 0.007 0.397 0.293 0.012 -0.293 0.007 0.293 0.397 -0.012 -0.293 0.000 0.012 -0.012 0.291 0.000 0.014 -0.293 -0.293 0.000 0.397 atom 4 spin 2 eigenvalues: 0.9940242 0.9940242 1.0012173 1.0012173 1.0019610 eigenvectors 1 -0.8876310 0.1921273 0.0365456 -0.3486710 0.2286729 2 -0.3486710 -0.1531240 0.2429491 0.8876310 0.0898252 3 0.2755100 0.0853730 0.6275848 -0.1209712 0.7129579 4 -0.1209712 -0.7739627 0.4609166 -0.2755100 -0.3130461 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.995 0.001 0.001 0.000 0.002 0.001 1.001 0.000 0.001 0.000 0.001 0.000 1.001 -0.001 0.000 0.000 0.001 -0.001 0.995 0.000 0.002 0.000 0.000 0.000 1.001 nsum = 13.5319680 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7191 -7.4686 1.4530 3.6647 3.6647 5.4897 5.4897 6.8742 7.8272 7.8796 7.8796 8.4597 8.4597 9.8921 11.5962 12.5866 12.5866 13.4549 13.4549 20.0155 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0115 -7.3315 2.4598 3.6249 4.1636 4.2251 5.5876 5.6550 6.2721 6.5390 7.3470 8.7896 9.2130 9.4785 12.5148 12.7492 13.3329 13.6656 17.3707 17.6640 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.8314 -7.4842 1.8597 4.1301 4.1644 4.2152 5.6548 5.6835 6.6615 6.6845 7.2432 8.6735 8.8898 9.7818 12.5727 12.8525 13.7795 13.8683 15.3275 16.7002 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2031 -8.1501 3.4508 3.7653 3.7653 4.2973 5.5356 5.5356 6.9739 6.9739 7.8700 9.4387 9.4387 9.5136 12.5354 12.5354 13.1778 13.1778 14.1101 14.3870 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7191 -7.4686 1.4530 3.6647 3.6647 5.4897 5.4897 6.8742 7.8272 7.8796 7.8796 8.4597 8.4597 9.8921 11.5962 12.5866 12.5866 13.4549 13.4549 20.0155 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0115 -7.3315 2.4598 3.6249 4.1636 4.2251 5.5876 5.6550 6.2721 6.5390 7.3470 8.7896 9.2130 9.4785 12.5148 12.7492 13.3329 13.6656 17.3707 17.6640 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.8314 -7.4842 1.8597 4.1301 4.1644 4.2152 5.6548 5.6835 6.6615 6.6845 7.2432 8.6735 8.8898 9.7818 12.5727 12.8525 13.7795 13.8683 15.3275 16.7002 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2031 -8.1501 3.4508 3.7653 3.7653 4.2973 5.5356 5.5356 6.9739 6.9739 7.8700 9.4387 9.4387 9.5136 12.5354 12.5354 13.1778 13.1778 14.1101 14.3870 the Fermi energy is 10.6805 ev ! total energy = -174.53741681 Ry Harris-Foulkes estimate = -174.53741512 Ry estimated scf accuracy < 0.00000023 Ry The total energy is the sum of the following terms: one-electron contribution = 0.53991839 Ry hartree contribution = 28.09152366 Ry xc contribution = -65.85571880 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.19615530 Ry smearing contrib. (-TS) = 0.00000000 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 1 force = 0.00000000 0.00000000 0.00000000 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 atom 4 type 3 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -86.46 -0.00058773 -0.00024656 -0.00024656 -86.46 -36.27 -36.27 -0.00024656 -0.00058773 -0.00024656 -36.27 -86.46 -36.27 -0.00024656 -0.00024656 -0.00058773 -36.27 -36.27 -86.46 Writing output data file feo_af.save PWSCF : 24.72s CPU time, 26.28s wall time init_run : 2.62s CPU electrons : 18.03s CPU forces : 0.78s CPU stress : 3.12s CPU Called by init_run: wfcinit : 0.38s CPU potinit : 0.11s CPU Called by electrons: c_bands : 9.19s CPU ( 10 calls, 0.919 s avg) sum_band : 5.65s CPU ( 10 calls, 0.565 s avg) v_of_rho : 0.50s CPU ( 11 calls, 0.046 s avg) newd : 2.09s CPU ( 11 calls, 0.190 s avg) mix_rho : 0.31s CPU ( 10 calls, 0.031 s avg) Called by c_bands: init_us_2 : 0.24s CPU ( 272 calls, 0.001 s avg) cegterg : 8.88s CPU ( 80 calls, 0.111 s avg) Called by *egterg: h_psi : 8.12s CPU ( 274 calls, 0.030 s avg) s_psi : 0.31s CPU ( 362 calls, 0.001 s avg) g_psi : 0.06s CPU ( 186 calls, 0.000 s avg) cdiaghg : 0.27s CPU ( 266 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.21s CPU ( 274 calls, 0.001 s avg) General routines calbec : 0.39s CPU ( 458 calls, 0.001 s avg) cft3 : 0.99s CPU ( 167 calls, 0.006 s avg) cft3s : 8.31s CPU ( 9122 calls, 0.001 s avg) interpolate : 0.39s CPU ( 42 calls, 0.009 s avg) davcio : 0.00s CPU ( 768 calls, 0.000 s avg) espresso-5.1/PW/examples/example08/reference/feo_standard.out0000644000175000017500000006227212341373025022402 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16:18:11 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 8.1900 a.u. unit-cell volume = 274.6766 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 3 number of electrons = 28.00 number of Kohn-Sham states= 20 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 240.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 8.190000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.500000 0.500000 1.000000 ) a(2) = ( 0.500000 1.000000 0.500000 ) a(3) = ( 1.000000 0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -0.500000 -0.500000 1.500000 ) b(2) = ( -0.500000 1.500000 -0.500000 ) b(3) = ( 1.500000 -0.500000 -0.500000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients PseudoPot. # 3 for Fe read from file Fe.pz-nd-rrkjus.UPF Pseudo is Ultrasoft + core correction, Zval = 8.0 Generated by new atomic code, or converted to UPF format Using radial grid of 957 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O1 6.00 1.00000 O ( 1.00) Fe1 8.00 1.00000 Fe( 1.00) Fe2 8.00 1.00000 Fe( 1.00) Starting magnetic structure atomic species magnetization O1 0.000 Fe1 0.500 Fe2 -0.500 LDA+U calculation, Hubbard_lmax = 2 atomic species L Hubbard U Hubbard alpha Fe1 2 0.316044 0.000000 Fe2 2 0.316044 0.000000 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 O1 tau( 1) = ( 0.5000000 0.5000000 0.5000000 ) 2 O1 tau( 2) = ( 1.5000000 1.5000000 1.5000000 ) 3 Fe1 tau( 3) = ( 0.0000000 0.0000000 0.0000000 ) 4 Fe2 tau( 4) = ( 1.0000000 1.0000000 1.0000000 ) number of k points= 8 gaussian broad. (Ry)= 0.0100 ngauss = 0 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 2) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 3) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 4) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 k( 5) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000 k( 6) = ( -0.7500000 0.2500000 0.2500000), wk = 0.3750000 k( 7) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.3750000 k( 8) = ( -0.2500000 -0.2500000 -0.2500000), wk = 0.1250000 G cutoff = 407.7738 ( 17255 G-vectors) FFT grid: ( 50, 50, 50) G cutoff = 203.8869 ( 6111 G-vectors) smooth grid: ( 36, 36, 36) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 780, 20) Atomic wavefunctions 0.24 Mb ( 780, 20) NL pseudopotentials 0.62 Mb ( 780, 52) Each V/rho on FFT grid 3.81 Mb ( 125000, 2) Each G-vector array 0.13 Mb ( 17255) G-vector shells 0.00 Mb ( 342) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.95 Mb ( 780, 80) Each subspace H/S matrix 0.10 Mb ( 80, 80) Each matrix 0.02 Mb ( 52, 20) Arrays for rho mixing 15.26 Mb ( 125000, 8) Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 27.99905, renormalised to 28.00000 Parameters of the lda+U calculation: Number of iteration with fixed ns = 0 Starting ns and Hubbard U : enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.0000000 atom 3 spin 1 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 atom 3 spin 2 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 Tr[ns(na)]= 6.0000000 atom 4 spin 1 eigenvalues: 0.2000000 0.2000000 0.2000000 0.2000000 0.2000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.000 0.200 atom 4 spin 2 eigenvalues: 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 eigenvectors 1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 3 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 4 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 5 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 occupations 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 nsum = 12.0000000 exit write_ns Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 20 atomic wfcs total cpu time spent up to now is 2.95 secs per-process dynamical memory: 28.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.2 enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.1226789 atom 3 spin 1 eigenvalues: 0.9969552 0.9969552 1.0025536 1.0025536 1.0030281 eigenvectors 1 -0.7575564 0.3689494 0.0919674 -0.2628351 0.4609168 2 -0.2628351 -0.3192079 0.4791235 0.7575564 0.1599156 3 0.5705074 0.1440156 0.4811031 -0.1776155 0.6251187 4 -0.1776155 -0.6386774 0.4440599 -0.5705074 -0.1946176 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 atom 3 spin 2 eigenvalues: 0.1553851 0.1553851 0.2567868 0.2765381 0.2765381 eigenvectors 1 -0.9589261 -0.0514059 -0.0177300 -0.2696741 -0.0691359 2 0.2696741 -0.0501521 0.0695948 -0.9589261 0.0194427 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 -0.0397092 -0.4449111 0.8120929 0.0784848 0.3671818 5 -0.0784848 0.6808546 0.0448770 -0.0397092 0.7257316 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.269 -0.006 -0.008 0.006 -0.004 -0.006 0.269 0.008 0.006 0.000 -0.008 0.008 0.156 0.000 -0.009 0.006 0.006 0.000 0.269 atom 4 Tr[ns(na)]= 6.1226789 atom 4 spin 1 eigenvalues: 0.1553851 0.1553851 0.2567868 0.2765381 0.2765381 eigenvectors 1 0.9720789 0.0486252 0.0214590 0.2175454 0.0700842 2 -0.2175454 0.0528525 -0.0685369 0.9720789 -0.0156844 3 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 4 0.0428938 0.4166205 -0.8132501 -0.0767907 -0.3966296 5 -0.0767907 0.6985243 0.0115418 -0.0428938 0.7100661 occupations 0.156 -0.004 -0.004 0.000 -0.009 -0.004 0.269 -0.006 -0.008 0.006 -0.004 -0.006 0.269 0.008 0.006 0.000 -0.008 0.008 0.156 0.000 -0.009 0.006 0.006 0.000 0.269 atom 4 spin 2 eigenvalues: 0.9969552 0.9969552 1.0025536 1.0025536 1.0030281 eigenvectors 1 0.7497696 -0.3778842 -0.0782949 0.2842877 -0.4561791 2 0.2842877 0.3085787 -0.4815467 -0.7497696 -0.1729680 3 0.5813480 0.1874901 0.4495068 -0.1380598 0.6369969 4 0.1380598 0.6272932 -0.4760178 0.5813480 0.1512754 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.999 0.001 0.001 0.000 0.002 0.001 1.001 0.001 0.002 -0.001 0.001 0.001 1.001 -0.002 -0.001 0.000 0.002 -0.002 0.999 0.000 0.002 -0.001 -0.001 0.000 1.001 nsum = 12.2453578 exit write_ns total cpu time spent up to now is 4.84 secs total energy = -173.87146422 Ry Harris-Foulkes estimate = -174.94035763 Ry estimated scf accuracy < 2.40339611 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 8.54 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.58E-03, avg # of iterations = 2.2 total cpu time spent up to now is 6.62 secs total energy = -174.40473744 Ry Harris-Foulkes estimate = -174.41164209 Ry estimated scf accuracy < 0.17789218 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.22 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.35E-04, avg # of iterations = 2.0 total cpu time spent up to now is 8.30 secs total energy = -174.44733058 Ry Harris-Foulkes estimate = -174.42204284 Ry estimated scf accuracy < 0.04586806 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.40 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.64E-04, avg # of iterations = 1.8 total cpu time spent up to now is 9.97 secs total energy = -174.45275292 Ry Harris-Foulkes estimate = -174.45200666 Ry estimated scf accuracy < 0.00422680 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.51E-05, avg # of iterations = 2.2 total cpu time spent up to now is 11.70 secs total energy = -174.45424804 Ry Harris-Foulkes estimate = -174.45343861 Ry estimated scf accuracy < 0.00252776 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.03E-06, avg # of iterations = 1.0 total cpu time spent up to now is 13.36 secs total energy = -174.44861198 Ry Harris-Foulkes estimate = -174.45466713 Ry estimated scf accuracy < 0.00457152 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 7 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.03E-06, avg # of iterations = 1.2 total cpu time spent up to now is 15.01 secs total energy = -174.45108353 Ry Harris-Foulkes estimate = -174.45358872 Ry estimated scf accuracy < 0.00220458 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 8 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.87E-06, avg # of iterations = 1.0 total cpu time spent up to now is 16.67 secs total energy = -174.45110896 Ry Harris-Foulkes estimate = -174.45363299 Ry estimated scf accuracy < 0.00142704 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 9 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.10E-06, avg # of iterations = 1.5 total cpu time spent up to now is 18.32 secs total energy = -174.45319426 Ry Harris-Foulkes estimate = -174.45398204 Ry estimated scf accuracy < 0.00240700 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.33 Bohr mag/cell iteration # 10 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.10E-06, avg # of iterations = 1.0 total cpu time spent up to now is 19.95 secs total energy = -174.45332386 Ry Harris-Foulkes estimate = -174.45347729 Ry estimated scf accuracy < 0.00052580 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.32 Bohr mag/cell iteration # 11 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.88E-06, avg # of iterations = 1.0 total cpu time spent up to now is 21.58 secs total energy = -174.45338185 Ry Harris-Foulkes estimate = -174.45339224 Ry estimated scf accuracy < 0.00008958 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 12 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.20E-07, avg # of iterations = 1.0 total cpu time spent up to now is 23.19 secs total energy = -174.45335503 Ry Harris-Foulkes estimate = -174.45338593 Ry estimated scf accuracy < 0.00004469 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 13 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.60E-07, avg # of iterations = 1.0 total cpu time spent up to now is 25.22 secs total energy = -174.45337527 Ry Harris-Foulkes estimate = -174.45337528 Ry estimated scf accuracy < 0.00000134 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 14 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.79E-09, avg # of iterations = 3.8 total cpu time spent up to now is 27.24 secs total energy = -174.45337564 Ry Harris-Foulkes estimate = -174.45337629 Ry estimated scf accuracy < 0.00000307 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell iteration # 15 ecut= 30.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.79E-09, avg # of iterations = 1.0 total cpu time spent up to now is 28.82 secs End of self-consistent calculation enter write_ns U( 1) = 0.0000 U( 2) = 4.3000 U( 3) = 4.3000 alpha( 1) = 0.0000 alpha( 2) = 0.0000 alpha( 3) = 0.0000 atom 3 Tr[ns(na)]= 6.8578386 atom 3 spin 1 eigenvalues: 0.9937595 0.9937595 1.0015207 1.0015207 1.0027587 eigenvectors 1 -0.8885908 0.1837050 0.0324470 -0.3590048 0.2161520 2 -0.3590048 -0.1435287 0.2308575 0.8885908 0.0873288 3 0.1979790 -0.2170065 0.7595947 -0.2057337 0.5425882 4 -0.2057337 -0.7518157 0.1879747 -0.1979790 -0.5638410 5 0.0000000 -0.5773503 -0.5773503 0.0000000 0.5773503 occupations 0.994 0.001 0.001 0.000 0.002 0.001 1.002 0.001 0.002 -0.001 0.001 0.001 1.002 -0.002 -0.001 0.000 0.002 -0.002 0.994 0.000 0.002 -0.001 -0.001 0.000 1.002 atom 3 spin 2 eigenvalues: 0.2723450 0.2723450 0.4371918 0.4371918 0.4454460 eigenvectors 1 -0.9075095 -0.1974106 -0.1333006 -0.1015705 -0.3307112 2 -0.1015705 0.2678973 -0.3049112 0.9075095 -0.0370139 3 0.3808740 -0.5782215 -0.1185533 0.1450684 -0.6967748 4 -0.1450684 -0.4707299 0.7361195 0.3808740 0.2653896 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.300 -0.025 -0.025 0.000 -0.050 -0.025 0.422 0.012 -0.043 -0.012 -0.025 0.012 0.422 0.043 -0.012 0.000 -0.043 0.043 0.300 0.000 -0.050 -0.012 -0.012 0.000 0.422 atom 4 Tr[ns(na)]= 6.8583190 atom 4 spin 1 eigenvalues: 0.2723627 0.2723627 0.4373691 0.4373691 0.4455346 eigenvectors 1 -0.9105201 -0.1880851 -0.1435575 -0.0705810 -0.3316426 2 -0.0705810 0.2743569 -0.3000649 0.9105201 -0.0257080 3 0.3974664 -0.5054512 -0.2220412 0.0893977 -0.7274924 4 -0.0893977 -0.5482135 0.7118403 0.3974664 0.1636268 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.300 -0.025 -0.025 0.000 -0.050 -0.025 0.422 0.012 -0.043 -0.012 -0.025 0.012 0.422 0.043 -0.012 0.000 -0.043 0.043 0.300 0.000 -0.050 -0.012 -0.012 0.000 0.422 atom 4 spin 2 eigenvalues: 0.9937602 0.9937602 1.0015206 1.0015206 1.0027590 eigenvectors 1 0.9037940 -0.1771007 -0.0427770 0.3187720 -0.2198778 2 -0.3187720 -0.1516438 0.2291956 0.9037940 0.0775518 3 0.2349458 -0.0632537 0.7070740 -0.1622998 0.6438203 4 -0.1622998 -0.7799392 0.3351903 -0.2349458 -0.4447489 5 0.0000000 0.5773503 0.5773503 0.0000000 -0.5773503 occupations 0.994 0.001 0.001 0.000 0.002 0.001 1.002 0.001 0.002 -0.001 0.001 0.001 1.002 -0.002 -0.001 0.000 0.002 -0.002 0.994 0.000 0.002 -0.001 -0.001 0.000 1.002 nsum = 13.7161576 exit write_ns ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7976 -7.5655 1.8228 3.7247 3.7247 5.5504 5.5504 6.5363 7.7486 7.7836 7.7836 8.4001 8.4001 11.1458 11.1458 11.3109 11.5446 13.3097 13.3097 19.8688 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0998 -7.4151 2.5437 3.4618 4.0292 4.0787 5.6303 5.7003 5.9733 6.3430 7.1847 8.6050 9.0764 10.5670 11.8908 11.9319 13.1107 13.1715 17.3131 17.6374 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.9281 -7.5715 1.8790 3.9569 3.9894 4.1598 5.2662 5.9693 6.5842 6.6028 6.8422 8.6643 8.8359 10.7412 11.9114 11.9242 13.4125 13.5649 15.3388 16.6482 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2818 -8.2103 3.1793 3.8389 3.8389 4.9856 5.5915 5.5915 6.9046 6.9046 7.1509 9.3461 9.3461 11.0532 11.0840 11.0840 13.0461 13.0461 14.0474 14.3388 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 731 PWs) bands (ev): -8.7976 -7.5655 1.8227 3.7245 3.7245 5.5501 5.5501 6.5361 7.7486 7.7836 7.7836 8.4000 8.4000 11.1460 11.1460 11.3111 11.5447 13.3099 13.3099 19.8688 k =-0.7500 0.2500 0.2500 ( 764 PWs) bands (ev): -8.0998 -7.4151 2.5436 3.4617 4.0291 4.0787 5.6303 5.7000 5.9730 6.3431 7.1845 8.6048 9.0763 10.5672 11.8910 11.9322 13.1109 13.1717 17.3130 17.6374 k =-0.5000-0.5000 0.5000 ( 780 PWs) bands (ev): -7.9281 -7.5715 1.8790 3.9568 3.9892 4.1598 5.2660 5.9690 6.5842 6.6028 6.8420 8.6642 8.8358 10.7414 11.9116 11.9244 13.4127 13.5651 15.3388 16.6482 k =-0.2500-0.2500-0.2500 ( 748 PWs) bands (ev): -8.2818 -8.2103 3.1792 3.8387 3.8387 4.9856 5.5913 5.5913 6.9046 6.9046 7.1507 9.3460 9.3460 11.0534 11.0842 11.0842 13.0463 13.0463 14.0473 14.3388 the Fermi energy is 11.0760 ev ! total energy = -174.45337599 Ry Harris-Foulkes estimate = -174.45337598 Ry estimated scf accuracy < 0.00000028 Ry The total energy is the sum of the following terms: one-electron contribution = 0.61735184 Ry hartree contribution = 27.81918132 Ry xc contribution = -65.73835428 Ry ewald contribution = -137.50929535 Ry Hubbard energy = 0.36095589 Ry smearing contrib. (-TS) = -0.00321543 Ry total magnetization = 0.00 Bohr mag/cell absolute magnetization = 7.31 Bohr mag/cell convergence has been achieved in 15 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00003706 0.00003706 0.00003706 atom 2 type 1 force = -0.00003706 -0.00003706 -0.00003706 atom 3 type 2 force = 0.00000000 0.00000000 0.00000000 atom 4 type 3 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000091 Total SCF correction = 0.000661 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -173.55 -0.00117975 0.00010106 0.00010106 -173.55 14.87 14.87 0.00010106 -0.00117975 0.00010106 14.87 -173.55 14.87 0.00010106 0.00010106 -0.00117975 14.87 14.87 -173.55 Writing output data file feo_af.save PWSCF : 32.74s CPU time, 33.97s wall time init_run : 2.89s CPU electrons : 25.87s CPU forces : 0.70s CPU stress : 3.12s CPU Called by init_run: wfcinit : 0.53s CPU potinit : 0.12s CPU Called by electrons: c_bands : 12.78s CPU ( 15 calls, 0.852 s avg) sum_band : 8.45s CPU ( 15 calls, 0.563 s avg) v_of_rho : 0.73s CPU ( 16 calls, 0.046 s avg) newd : 2.99s CPU ( 16 calls, 0.187 s avg) mix_rho : 0.51s CPU ( 15 calls, 0.034 s avg) Called by c_bands: init_us_2 : 0.32s CPU ( 352 calls, 0.001 s avg) cegterg : 12.31s CPU ( 120 calls, 0.103 s avg) Called by *egterg: h_psi : 11.36s CPU ( 328 calls, 0.035 s avg) s_psi : 0.40s CPU ( 416 calls, 0.001 s avg) g_psi : 0.08s CPU ( 200 calls, 0.000 s avg) cdiaghg : 0.28s CPU ( 320 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.29s CPU ( 328 calls, 0.001 s avg) General routines calbec : 0.51s CPU ( 552 calls, 0.001 s avg) cft3 : 1.44s CPU ( 242 calls, 0.006 s avg) cft3s : 11.64s CPU ( 12972 calls, 0.001 s avg) interpolate : 0.59s CPU ( 62 calls, 0.009 s avg) davcio : 0.01s CPU ( 1008 calls, 0.000 s avg) espresso-5.1/PW/examples/example05/0000755000175000017500000000000012341373041015244 5ustar mbambaespresso-5.1/PW/examples/example05/run_xml_example0000755000175000017500000002071012341373025020373 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to calculate the total energy of an isolated" $ECHO "atom in a supercell with fixed occupations." $ECHO "Two examples: LDA energy of Al and sigma-GGA energy of O." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST=" Al.pz-vbc.UPF O.pbe-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation for isolated Al atom cat > al.xml << EOF 0.0 0.0 0.0 0.0 0.0 26.98154 Al.pz-vbc.UPF 0.0000000000 0.0000000000 0.000 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 15.0 0.35 1.0E-8 true from_input 6 1 1 1 0 0 0 2.0 0.3333333333333 0.333333333333 0.3333333333333 0.0 0.0 EOF $ECHO " running self-consistent calculation for Al atom...\c" $PW_COMMAND < al.xml > al.out check_failure $? $ECHO " done" # self consistent calculation for the spin polarized O atom cat > O.xml << EOF 0.0 0.0 0.0 0.0 0.0 15.99994 O.pbe-rrkjus.UPF 0.5d0 0.000000000 0.000000000 0.000000000 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 27.0 216.0 0.25 1.0E-8 true from_input 6 2 1 1 1 0 0 0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.33333333333 0.33333333333 0.33333333333 0.0 0.0 EOF $ECHO " running calculation for O atom...\c" $PW_COMMAND < O.xml > O.out check_failure $? $ECHO " done" # cat > O_gamma.xml << EOF 0.0 0.0 0.0 0.0 0.0 15.99994 O.pbe-rrkjus.UPF 0.5d0 0.000000000 0.000000000 0.000000000 from_scratch $PSEUDO_DIR/ $TMP_DIR/ 27.0 216.0 0.25 1.0E-8 true from_input 6 2 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.33333333333 0.33333333333 0.33333333333 0.0 0.0 EOF $ECHO " running calculation for O atom, Gamma-only...\c" $PW_COMMAND < O_gamma.xml > O_gamma.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example05/README0000644000175000017500000000143212341373025016126 0ustar mbambaThis example illustrates the use of the option occupations='from_input'. 1) make an LDA self-consistent calculation for an isolated Al atom by specifying the occupancy of each band in the input file. There are 6 bands (nbnd=6) whose occupancies are: 2.0 0.3333333333333 0.333333333333 0.3333333333333 0.0 0.0 (input=al.in, ouput=al.out) 2) make a sigma-GGA spin-polarized (nspin=2) self-consistent calculation for an isolated O atom by specifying the occupancies of each band in each spin channel (for each k-point: only gamma in this example): 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.33333333333 0.33333333333 0.33333333333 0.0 0.0 (input=O.in, output=O.out) 3) the sama as in point 2), but with the gamma version of the code. (input=O_gamma.in, output=O_gamma.out) espresso-5.1/PW/examples/example05/run_example0000755000175000017500000001374212341373025017522 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to calculate the total energy of an isolated" $ECHO "atom in a supercell with fixed occupations." $ECHO "Three examples: LDA energy of Al, sigma-GGA energy of O," $ECHO "and sigma-GGA energy of Ni in two configurations" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST=" Al.pz-vbc.UPF O.pbe-rrkjus.UPF Ni.pbe-nd-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # self-consistent calculation for isolated Al atom cat > al.in << EOF &control calculation='scf', restart_mode='from_scratch', pseudo_dir='$PSEUDO_DIR/' outdir='$TMP_DIR/' / &system ibrav=1, celldm(1)=20.0, nat=1, ntyp=1, nbnd=6, nosym=.true., ecutwfc=15.0, occupations='from_input', / &electrons mixing_beta=0.35, conv_thr=1.0E-8, / ATOMIC_SPECIES Al 26.98154 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.0000000000 0.0000000000 0.000 K_POINTS AUTOMATIC 1 1 1 0 0 0 OCCUPATIONS 2.0 0.3333333333333 0.333333333333 0.3333333333333 0.0 0.0 EOF $ECHO " running self-consistent calculation for Al atom...\c" $PW_COMMAND < al.in > al.out check_failure $? $ECHO " done" # self consistent calculation for the spin polarized O atom cat > O.in << EOF &control calculation='scf', restart_mode='from_scratch', pseudo_dir='$PSEUDO_DIR/' outdir='$TMP_DIR/' / &system ibrav=1, celldm(1)=14.0, nat=1, ntyp=1, nbnd=6, nosym=.true., ecutwfc=27.0, ecutrho=216.0, occupations='from_input', nspin=2, starting_magnetization(1)=0.5d0, / &electrons mixing_beta=0.25, conv_thr=1.0E-8, / ATOMIC_SPECIES O 15.99994 O.pbe-rrkjus.UPF ATOMIC_POSITIONS O 0.000000000 0.000000000 0.000000000 K_POINTS AUTOMATIC 1 1 1 0 0 0 OCCUPATIONS 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.33333333333 0.33333333333 0.33333333333 0.0 0.0 EOF $ECHO " running calculation for O atom...\c" $PW_COMMAND < O.in > O.out check_failure $? $ECHO " done" # cat > O_gamma.in << EOF &control calculation='scf', restart_mode='from_scratch', pseudo_dir='$PSEUDO_DIR/' outdir='$TMP_DIR/' / &system ibrav=1, celldm(1)=14.0, nat=1, ntyp=1, nbnd=6, nosym=.true., ecutwfc=27.0, ecutrho=216.0, occupations='from_input', nspin=2, starting_magnetization(1)=0.5d0, / &electrons mixing_beta=0.25, conv_thr=1.0E-8, / ATOMIC_SPECIES O 15.99994 O.pbe-rrkjus.UPF ATOMIC_POSITIONS O 0.000000000 0.000000000 0.000000000 K_POINTS (gamma) OCCUPATIONS 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.33333333333 0.33333333333 0.33333333333 0.0 0.0 EOF $ECHO " running calculation for O atom, Gamma-only...\c" $PW_COMMAND < O_gamma.in > O_gamma.out check_failure $? $ECHO " done" cat > Ni_gamma_d8s2.in << EOF &control calculation='scf', restart_mode='from_scratch', pseudo_dir='$PSEUDO_DIR/' outdir='$TMP_DIR/' / &system ibrav=1, celldm(1)=14.0, nat=1, ntyp=1, nbnd=6, nosym=.true., ecutwfc=27.0, ecutrho=300.0, occupations='from_input', nspin=2, starting_magnetization(1)=0.5d0, one_atom_occupations=.true., / &electrons mixing_beta=0.25, conv_thr=1.0E-8, startingwfc='atomic' / ATOMIC_SPECIES Ni 0.0 Ni.pbe-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.000000000 0.000000000 0.000000000 K_POINTS (gamma) OCCUPATIONS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 0.6 0.6 0.6 0.6 EOF $ECHO " running calculation for Ni atom d8 s2, Gamma-only...\c" $PW_COMMAND < Ni_gamma_d8s2.in > Ni_gamma_d8s2.out check_failure $? $ECHO " done" cat > Ni_gamma_d9s1.in << EOF &control calculation='scf', restart_mode='from_scratch', pseudo_dir='$PSEUDO_DIR/' outdir='$TMP_DIR/' / &system ibrav=1, celldm(1)=14.0, nat=1, ntyp=1, nbnd=6, nosym=.true., ecutwfc=27.0, ecutrho=300.0, occupations='from_input', nspin=2, starting_magnetization(1)=0.5d0, one_atom_occupations=.true., / &electrons mixing_beta=0.25, conv_thr=1.0E-8, startingwfc='atomic' / ATOMIC_SPECIES Ni 0.0 Ni.pbe-nd-rrkjus.UPF ATOMIC_POSITIONS Ni 0.000000000 0.000000000 0.000000000 K_POINTS (gamma) OCCUPATIONS 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.8 0.8 0.8 0.8 0.8 EOF $ECHO " running calculation for Ni atom d9 s1, Gamma-only...\c" $PW_COMMAND < Ni_gamma_d9s1.in > Ni_gamma_d9s1.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/pwscf* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example05/reference/0000755000175000017500000000000012341373041017202 5ustar mbambaespresso-5.1/PW/examples/example05/reference/O_gamma.out0000644000175000017500000002731012341373025021300 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:29: 5 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 72 npp = 72 ncplane = 5184 Planes per process (smooth): nr3s= 48 npps= 48 ncplanes= 2304 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 72 3365 146989 48 1685 52035 421 6619 bravais-lattice index = 1 lattice parameter (a_0) = 14.0000 a.u. unit-cell volume = 2744.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 27.0000 Ry charge density cutoff = 216.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) celldm(1)= 14.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) Starting magnetic structure atomic species magnetization O 0.500 No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1072.3834 ( 73495 G-vectors) FFT grid: ( 72, 72, 72) G cutoff = 536.1917 ( 26018 G-vectors) smooth grid: ( 48, 48, 48) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 Spin-down 1.0000 0.3333 0.3333 0.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.30 Mb ( 3310, 6) NL pseudopotentials 0.40 Mb ( 3310, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.56 Mb ( 73495) G-vector shells 0.01 Mb ( 896) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.61 Mb ( 3310, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 45.56 Mb ( 373248, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.232E-04 0.773E-05 Starting wfc are 4 atomic + 2 random wfc total cpu time spent up to now is 2.83 secs per-process dynamical memory: 72.7 Mb Self-consistent Calculation iteration # 1 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.22E-04, avg # of iterations = 1.5 negative rho (up, down): 0.325E-04 0.145E-04 total cpu time spent up to now is 6.04 secs total energy = -31.48807321 Ry Harris-Foulkes estimate = -31.47571463 Ry estimated scf accuracy < 0.01335518 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.23E-04, avg # of iterations = 1.0 negative rho (up, down): 0.991E-03 0.111E-02 total cpu time spent up to now is 8.30 secs total energy = -31.50377476 Ry Harris-Foulkes estimate = -31.48813504 Ry estimated scf accuracy < 0.00756534 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.26E-04, avg # of iterations = 1.0 negative rho (up, down): 0.610E-03 0.925E-03 total cpu time spent up to now is 10.62 secs total energy = -31.50423456 Ry Harris-Foulkes estimate = -31.50426736 Ry estimated scf accuracy < 0.00023636 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 3.94E-06, avg # of iterations = 4.5 negative rho (up, down): 0.418E-03 0.576E-03 total cpu time spent up to now is 13.06 secs total energy = -31.50433578 Ry Harris-Foulkes estimate = -31.50430521 Ry estimated scf accuracy < 0.00001060 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.77E-07, avg # of iterations = 2.0 negative rho (up, down): 0.178E-03 0.319E-03 total cpu time spent up to now is 15.46 secs total energy = -31.50434170 Ry Harris-Foulkes estimate = -31.50433793 Ry estimated scf accuracy < 0.00000631 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.05E-07, avg # of iterations = 2.0 negative rho (up, down): 0.127E-03 0.222E-03 total cpu time spent up to now is 17.88 secs total energy = -31.50434276 Ry Harris-Foulkes estimate = -31.50434438 Ry estimated scf accuracy < 0.00000048 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 7 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 8.00E-09, avg # of iterations = 1.5 negative rho (up, down): 0.104E-03 0.159E-03 total cpu time spent up to now is 20.28 secs total energy = -31.50434199 Ry Harris-Foulkes estimate = -31.50434286 Ry estimated scf accuracy < 0.00000001 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 8 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.07E-10, avg # of iterations = 2.0 negative rho (up, down): 0.904E-04 0.115E-03 total cpu time spent up to now is 22.72 secs total energy = -31.50434186 Ry Harris-Foulkes estimate = -31.50434199 Ry estimated scf accuracy < 0.00000001 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 9 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.98E-10, avg # of iterations = 2.0 negative rho (up, down): 0.802E-04 0.439E-04 total cpu time spent up to now is 24.91 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 3310 PWs) bands (ev): -25.0597 -10.0345 -10.0345 -10.0345 -0.5793 2.1170 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 3310 PWs) bands (ev): -21.6728 -6.8528 -6.8528 -6.8528 -0.4732 2.2733 highest occupied, lowest unoccupied level (ev): -6.8528 -0.5793 ! total energy = -31.50434356 Ry Harris-Foulkes estimate = -31.50434187 Ry estimated scf accuracy < 2.1E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -37.61408024 Ry hartree contribution = 20.01358690 Ry xc contribution = -6.60794237 Ry ewald contribution = -7.29590784 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 9 iterations Writing output data file pwscf.save PWSCF : 25.05s CPU time, 27.10s wall time init_run : 2.76s CPU electrons : 22.08s CPU Called by init_run: wfcinit : 0.09s CPU potinit : 1.50s CPU Called by electrons: c_bands : 2.19s CPU ( 10 calls, 0.219 s avg) sum_band : 4.39s CPU ( 10 calls, 0.439 s avg) v_of_rho : 11.72s CPU ( 10 calls, 1.172 s avg) newd : 1.97s CPU ( 10 calls, 0.197 s avg) mix_rho : 1.41s CPU ( 10 calls, 0.141 s avg) Called by c_bands: init_us_2 : 0.07s CPU ( 42 calls, 0.002 s avg) regterg : 2.13s CPU ( 20 calls, 0.106 s avg) Called by *egterg: h_psi : 1.98s CPU ( 69 calls, 0.029 s avg) s_psi : 0.01s CPU ( 69 calls, 0.000 s avg) g_psi : 0.04s CPU ( 47 calls, 0.001 s avg) rdiaghg : 0.01s CPU ( 65 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.03s CPU ( 69 calls, 0.000 s avg) General routines calbec : 0.04s CPU ( 89 calls, 0.000 s avg) cft3s : 10.72s CPU ( 713 calls, 0.015 s avg) interpolate : 1.79s CPU ( 40 calls, 0.045 s avg) davcio : 0.00s CPU ( 62 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example05/reference/O.out0000644000175000017500000002723012341373025020137 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:28:30 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 72 npp = 72 ncplane = 5184 Planes per process (smooth): nr3s= 48 npps= 48 ncplanes= 2304 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 72 3365 146989 48 1685 52035 421 6619 bravais-lattice index = 1 lattice parameter (a_0) = 14.0000 a.u. unit-cell volume = 2744.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 27.0000 Ry charge density cutoff = 216.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) celldm(1)= 14.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 15.99994 O ( 1.00) Starting magnetic structure atomic species magnetization O 0.500 No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1072.3834 ( 146989 G-vectors) FFT grid: ( 72, 72, 72) G cutoff = 536.1917 ( 52035 G-vectors) smooth grid: ( 48, 48, 48) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 Spin-down 1.0000 0.3333 0.3333 0.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.61 Mb ( 6619, 6) NL pseudopotentials 0.81 Mb ( 6619, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 1.12 Mb ( 146989) G-vector shells 0.01 Mb ( 896) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.42 Mb ( 6619, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 8, 6) Arrays for rho mixing 45.56 Mb ( 373248, 8) Initial potential from superposition of free atoms starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.232E-04 0.773E-05 Starting wfc are 4 atomic + 2 random wfc total cpu time spent up to now is 3.17 secs per-process dynamical memory: 109.6 Mb Self-consistent Calculation iteration # 1 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.5 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.22E-04, avg # of iterations = 2.0 negative rho (up, down): 0.325E-04 0.145E-04 total cpu time spent up to now is 7.50 secs total energy = -31.48807720 Ry Harris-Foulkes estimate = -31.47571399 Ry estimated scf accuracy < 0.01336683 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.23E-04, avg # of iterations = 1.0 negative rho (up, down): 0.992E-03 0.110E-02 total cpu time spent up to now is 10.44 secs total energy = -31.50377441 Ry Harris-Foulkes estimate = -31.48813721 Ry estimated scf accuracy < 0.00756555 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.26E-04, avg # of iterations = 1.0 negative rho (up, down): 0.606E-03 0.928E-03 total cpu time spent up to now is 13.39 secs total energy = -31.50422839 Ry Harris-Foulkes estimate = -31.50426631 Ry estimated scf accuracy < 0.00023974 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.00E-06, avg # of iterations = 8.0 negative rho (up, down): 0.420E-03 0.575E-03 total cpu time spent up to now is 16.69 secs total energy = -31.50433501 Ry Harris-Foulkes estimate = -31.50430298 Ry estimated scf accuracy < 0.00001207 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.01E-07, avg # of iterations = 1.5 negative rho (up, down): 0.189E-03 0.324E-03 total cpu time spent up to now is 19.75 secs total energy = -31.50434159 Ry Harris-Foulkes estimate = -31.50433749 Ry estimated scf accuracy < 0.00000665 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.11E-07, avg # of iterations = 2.0 negative rho (up, down): 0.123E-03 0.221E-03 total cpu time spent up to now is 22.90 secs total energy = -31.50434256 Ry Harris-Foulkes estimate = -31.50434419 Ry estimated scf accuracy < 0.00000094 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 7 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.57E-08, avg # of iterations = 1.5 negative rho (up, down): 0.102E-03 0.159E-03 total cpu time spent up to now is 26.02 secs total energy = -31.50434198 Ry Harris-Foulkes estimate = -31.50434286 Ry estimated scf accuracy < 0.00000006 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 8 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.08E-09, avg # of iterations = 1.5 negative rho (up, down): 0.900E-04 0.115E-03 total cpu time spent up to now is 29.14 secs total energy = -31.50434185 Ry Harris-Foulkes estimate = -31.50434199 Ry estimated scf accuracy < 0.00000003 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 9 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 5.68E-10, avg # of iterations = 2.0 negative rho (up, down): 0.802E-04 0.439E-04 total cpu time spent up to now is 31.99 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 6619 PWs) bands (ev): -25.0598 -10.0346 -10.0346 -10.0346 -0.5794 2.1165 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 6619 PWs) bands (ev): -21.6730 -6.8529 -6.8529 -6.8529 -0.4733 2.2767 highest occupied, lowest unoccupied level (ev): -6.8529 -0.5794 ! total energy = -31.50434356 Ry Harris-Foulkes estimate = -31.50434186 Ry estimated scf accuracy < 1.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -37.61413855 Ry hartree contribution = 20.01366120 Ry xc contribution = -6.60795837 Ry ewald contribution = -7.29590784 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 9 iterations Writing output data file pwscf.save PWSCF : 32.16s CPU time, 35.19s wall time init_run : 3.11s CPU electrons : 28.82s CPU Called by init_run: wfcinit : 0.16s CPU potinit : 1.52s CPU Called by electrons: c_bands : 4.33s CPU ( 10 calls, 0.433 s avg) sum_band : 6.81s CPU ( 10 calls, 0.681 s avg) v_of_rho : 11.95s CPU ( 10 calls, 1.195 s avg) newd : 3.64s CPU ( 10 calls, 0.364 s avg) mix_rho : 1.80s CPU ( 10 calls, 0.180 s avg) Called by c_bands: init_us_2 : 0.14s CPU ( 42 calls, 0.003 s avg) cegterg : 4.20s CPU ( 20 calls, 0.210 s avg) Called by *egterg: h_psi : 3.84s CPU ( 74 calls, 0.052 s avg) s_psi : 0.05s CPU ( 74 calls, 0.001 s avg) g_psi : 0.07s CPU ( 52 calls, 0.001 s avg) cdiaghg : 0.02s CPU ( 70 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.05s CPU ( 74 calls, 0.001 s avg) General routines calbec : 0.10s CPU ( 94 calls, 0.001 s avg) cft3s : 12.39s CPU ( 1083 calls, 0.011 s avg) interpolate : 1.80s CPU ( 40 calls, 0.045 s avg) davcio : 0.00s CPU ( 62 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example05/reference/Ni_gamma_d8s2.out0000644000175000017500000003436212341373025022315 0ustar mbamba Program PWSCF v.5.0.1 starts on 29Aug2012 at 9:29:50 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 4 processors R & G space division: proc/bgrp = 4 Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input file Ni.pbe-nd-rrkjus.UPF: wavefunction(s) 4S renormalized gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 1168 420 104 60164 12984 1648 Max 1173 422 106 60165 13027 1658 Sum 4677 1685 421 240657 52035 6619 Tot 2339 843 211 bravais-lattice index = 1 lattice parameter (alat) = 14.0000 a.u. unit-cell volume = 2744.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 27.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 14.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Ni read from file: /scratch/dalcorso_sissa/espresso_my_best_version_aug_2012/pseudo/Ni.pbe-nd-rrkjus.UPF MD5 check sum: 8081f0a005c9a5470caab1a58e82ecb2 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69340 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.500 No symmetry found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 120329 G-vectors FFT dimensions: ( 80, 80, 80) Smooth grid: 26018 G-vectors FFT dimensions: ( 48, 48, 48) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Spin-down 1.0000 0.6000 0.6000 0.6000 0.6000 0.6000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 828, 6) NL pseudopotentials 0.23 Mb ( 828, 18) Each V/rho on FFT grid 3.91 Mb ( 128000, 2) Each G-vector array 0.23 Mb ( 30083) G-vector shells 0.01 Mb ( 1237) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.15 Mb ( 828, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 18, 6) Arrays for rho mixing 15.63 Mb ( 128000, 8) Check: negative/imaginary core charge= -0.000019 0.000000 Initial potential from superposition of free atoms starting charge 9.99954, renormalised to 10.00000 negative rho (up, down): 0.875E-05 0.292E-05 Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 6 atomic wfcs total cpu time spent up to now is 1.5 secs per-process dynamical memory: 40.7 Mb Self-consistent Calculation iteration # 1 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.304E-05 0.109E-06 total cpu time spent up to now is 2.8 secs total energy = -85.37721426 Ry Harris-Foulkes estimate = -85.46968121 Ry estimated scf accuracy < 0.47018231 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.15 Bohr mag/cell iteration # 2 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 4.70E-03, avg # of iterations = 1.5 negative rho (up, down): 0.111E-02 0.505E-03 total cpu time spent up to now is 4.1 secs total energy = -85.42457500 Ry Harris-Foulkes estimate = -85.41228493 Ry estimated scf accuracy < 0.11346828 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.18 Bohr mag/cell iteration # 3 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.644E-02 0.390E-02 total cpu time spent up to now is 5.4 secs total energy = -85.45594924 Ry Harris-Foulkes estimate = -85.43683488 Ry estimated scf accuracy < 0.02490119 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.12 Bohr mag/cell iteration # 4 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.49E-04, avg # of iterations = 1.5 negative rho (up, down): 0.601E-02 0.392E-02 total cpu time spent up to now is 6.7 secs total energy = -85.45718111 Ry Harris-Foulkes estimate = -85.45663504 Ry estimated scf accuracy < 0.00161096 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.07 Bohr mag/cell iteration # 5 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.61E-05, avg # of iterations = 1.5 negative rho (up, down): 0.382E-02 0.271E-02 total cpu time spent up to now is 8.0 secs total energy = -85.45780081 Ry Harris-Foulkes estimate = -85.45736320 Ry estimated scf accuracy < 0.00002514 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.06 Bohr mag/cell iteration # 6 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.51E-07, avg # of iterations = 3.0 negative rho (up, down): 0.233E-02 0.172E-02 total cpu time spent up to now is 9.3 secs total energy = -85.45819333 Ry Harris-Foulkes estimate = -85.45781485 Ry estimated scf accuracy < 0.00002265 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.06 Bohr mag/cell iteration # 7 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.27E-07, avg # of iterations = 2.5 negative rho (up, down): 0.139E-02 0.962E-03 total cpu time spent up to now is 10.6 secs total energy = -85.45846822 Ry Harris-Foulkes estimate = -85.45819814 Ry estimated scf accuracy < 0.00000040 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell iteration # 8 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 3.98E-09, avg # of iterations = 2.5 negative rho (up, down): 0.800E-03 0.518E-03 total cpu time spent up to now is 12.0 secs total energy = -85.45863826 Ry Harris-Foulkes estimate = -85.45846870 Ry estimated scf accuracy < 0.00000048 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell iteration # 9 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 3.98E-09, avg # of iterations = 2.0 negative rho (up, down): 0.443E-03 0.275E-03 total cpu time spent up to now is 13.3 secs total energy = -85.45874594 Ry Harris-Foulkes estimate = -85.45863849 Ry estimated scf accuracy < 0.00000050 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell iteration # 10 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 3.98E-09, avg # of iterations = 2.5 negative rho (up, down): 0.235E-03 0.139E-03 total cpu time spent up to now is 14.6 secs total energy = -85.45880825 Ry Harris-Foulkes estimate = -85.45874623 Ry estimated scf accuracy < 0.00000002 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell iteration # 11 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.21E-10, avg # of iterations = 2.5 negative rho (up, down): 0.121E-03 0.661E-04 total cpu time spent up to now is 16.0 secs total energy = -85.45884488 Ry Harris-Foulkes estimate = -85.45880832 Ry estimated scf accuracy < 0.00000001 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell iteration # 12 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.43E-10, avg # of iterations = 3.0 total cpu time spent up to now is 17.2 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 3310 PWs) bands (ev): -5.3501 -9.5812 -9.5808 -9.5808 -9.5812 -9.5808 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 3310 PWs) bands (ev): -5.0094 -7.4616 -7.4611 -7.4611 -7.4616 -7.4611 ! total energy = -85.45889608 Ry Harris-Foulkes estimate = -85.45884491 Ry estimated scf accuracy < 3.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -84.30683944 Ry hartree contribution = 48.60496026 Ry xc contribution = -29.49060633 Ry ewald contribution = -20.26641057 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.05 Bohr mag/cell convergence has been achieved in 12 iterations Writing output data file pwscf.save init_run : 1.42s CPU 1.43s WALL ( 1 calls) electrons : 15.34s CPU 15.71s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.03s WALL ( 1 calls) potinit : 0.61s CPU 0.62s WALL ( 1 calls) Called by electrons: c_bands : 0.71s CPU 0.73s WALL ( 12 calls) sum_band : 3.63s CPU 3.69s WALL ( 12 calls) v_of_rho : 6.55s CPU 6.67s WALL ( 13 calls) newd : 3.78s CPU 3.82s WALL ( 13 calls) mix_rho : 0.56s CPU 0.57s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.03s CPU 0.03s WALL ( 52 calls) regterg : 0.67s CPU 0.68s WALL ( 24 calls) Called by *egterg: h_psi : 0.63s CPU 0.63s WALL ( 77 calls) s_psi : 0.01s CPU 0.01s WALL ( 79 calls) g_psi : 0.00s CPU 0.00s WALL ( 51 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 75 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.01s WALL ( 77 calls) General routines calbec : 0.03s CPU 0.03s WALL ( 103 calls) fft : 3.57s CPU 3.61s WALL ( 393 calls) ffts : 0.07s CPU 0.07s WALL ( 50 calls) fftw : 0.47s CPU 0.48s WALL ( 486 calls) interpolate : 0.61s CPU 0.63s WALL ( 50 calls) davcio : 0.00s CPU 0.01s WALL ( 150 calls) Parallel routines fft_scatter : 2.04s CPU 2.05s WALL ( 929 calls) PWSCF : 16.90s CPU 17.31s WALL This run was terminated on: 9:30: 7 29Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/example05/reference/Ni_gamma_d9s1.out0000644000175000017500000004056612341373025022320 0ustar mbamba Program PWSCF v.5.0.1 starts on 29Aug2012 at 9:30: 7 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 4 processors R & G space division: proc/bgrp = 4 Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input file Ni.pbe-nd-rrkjus.UPF: wavefunction(s) 4S renormalized gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 1168 420 104 60164 12984 1648 Max 1173 422 106 60165 13027 1658 Sum 4677 1685 421 240657 52035 6619 Tot 2339 843 211 bravais-lattice index = 1 lattice parameter (alat) = 14.0000 a.u. unit-cell volume = 2744.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 27.0000 Ry charge density cutoff = 300.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.2500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 celldm(1)= 14.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Ni read from file: /scratch/dalcorso_sissa/espresso_my_best_version_aug_2012/pseudo/Ni.pbe-nd-rrkjus.UPF MD5 check sum: 8081f0a005c9a5470caab1a58e82ecb2 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1203 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Ni 10.00 58.69340 Ni( 1.00) Starting magnetic structure atomic species magnetization Ni 0.500 No symmetry found Cartesian axes site n. atom positions (alat units) 1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 120329 G-vectors FFT dimensions: ( 80, 80, 80) Smooth grid: 26018 G-vectors FFT dimensions: ( 48, 48, 48) Occupations read from input Spin-up 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Spin-down 0.0000 0.8000 0.8000 0.8000 0.8000 0.8000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.08 Mb ( 828, 6) NL pseudopotentials 0.23 Mb ( 828, 18) Each V/rho on FFT grid 3.91 Mb ( 128000, 2) Each G-vector array 0.23 Mb ( 30083) G-vector shells 0.01 Mb ( 1237) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.15 Mb ( 828, 24) Each subspace H/S matrix 0.00 Mb ( 24, 24) Each matrix 0.00 Mb ( 18, 6) Arrays for rho mixing 15.63 Mb ( 128000, 8) Check: negative/imaginary core charge= -0.000019 0.000000 Initial potential from superposition of free atoms starting charge 9.99954, renormalised to 10.00000 negative rho (up, down): 0.875E-05 0.292E-05 Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 6 atomic wfcs total cpu time spent up to now is 1.5 secs per-process dynamical memory: 25.9 Mb Self-consistent Calculation iteration # 1 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.304E-05 0.369E-05 total cpu time spent up to now is 2.8 secs total energy = -85.43445501 Ry Harris-Foulkes estimate = -85.35918088 Ry estimated scf accuracy < 0.24439240 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.44E-03, avg # of iterations = 1.0 negative rho (up, down): 0.195E-01 0.380E-01 total cpu time spent up to now is 4.0 secs total energy = -85.53217082 Ry Harris-Foulkes estimate = -85.43632703 Ry estimated scf accuracy < 0.14520811 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.45E-03, avg # of iterations = 1.0 negative rho (up, down): 0.132E-01 0.287E-01 total cpu time spent up to now is 5.2 secs total energy = -85.53994589 Ry Harris-Foulkes estimate = -85.53885002 Ry estimated scf accuracy < 0.00029035 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 4 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.90E-06, avg # of iterations = 3.5 negative rho (up, down): 0.801E-02 0.224E-01 total cpu time spent up to now is 6.5 secs total energy = -85.54142181 Ry Harris-Foulkes estimate = -85.54057770 Ry estimated scf accuracy < 0.00007027 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 5 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 7.03E-07, avg # of iterations = 2.5 negative rho (up, down): 0.462E-02 0.165E-01 total cpu time spent up to now is 7.8 secs total energy = -85.54224626 Ry Harris-Foulkes estimate = -85.54146128 Ry estimated scf accuracy < 0.00001709 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 6 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.71E-07, avg # of iterations = 3.5 negative rho (up, down): 0.276E-02 0.121E-01 total cpu time spent up to now is 9.1 secs total energy = -85.54287042 Ry Harris-Foulkes estimate = -85.54226098 Ry estimated scf accuracy < 0.00000845 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 7 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 8.45E-08, avg # of iterations = 2.0 negative rho (up, down): 0.149E-02 0.845E-02 total cpu time spent up to now is 10.3 secs total energy = -85.54322467 Ry Harris-Foulkes estimate = -85.54287765 Ry estimated scf accuracy < 0.00000292 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 8 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 2.92E-08, avg # of iterations = 3.5 negative rho (up, down): 0.785E-03 0.580E-02 total cpu time spent up to now is 11.6 secs total energy = -85.54339382 Ry Harris-Foulkes estimate = -85.54322700 Ry estimated scf accuracy < 0.00000014 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 9 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 4.0 negative rho (up, down): 0.389E-03 0.398E-02 total cpu time spent up to now is 12.9 secs total energy = -85.54350743 Ry Harris-Foulkes estimate = -85.54339460 Ry estimated scf accuracy < 0.00000046 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 10 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 3.5 negative rho (up, down): 0.183E-03 0.272E-02 total cpu time spent up to now is 14.2 secs total energy = -85.54356721 Ry Harris-Foulkes estimate = -85.54350782 Ry estimated scf accuracy < 0.00000090 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 11 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 3.5 negative rho (up, down): 0.836E-04 0.182E-02 total cpu time spent up to now is 15.5 secs total energy = -85.54360595 Ry Harris-Foulkes estimate = -85.54356741 Ry estimated scf accuracy < 0.00000114 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 12 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 3.5 negative rho (up, down): 0.374E-04 0.125E-02 total cpu time spent up to now is 16.8 secs total energy = -85.54362832 Ry Harris-Foulkes estimate = -85.54360607 Ry estimated scf accuracy < 0.00000215 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 13 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 3.5 negative rho (up, down): 0.145E-04 0.858E-03 total cpu time spent up to now is 18.1 secs total energy = -85.54364560 Ry Harris-Foulkes estimate = -85.54362849 Ry estimated scf accuracy < 0.00000056 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 14 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 1.37E-09, avg # of iterations = 3.5 negative rho (up, down): 0.493E-05 0.580E-03 total cpu time spent up to now is 19.4 secs total energy = -85.54365398 Ry Harris-Foulkes estimate = -85.54364568 Ry estimated scf accuracy < 0.00000008 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 15 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 8.33E-10, avg # of iterations = 2.5 negative rho (up, down): 0.159E-05 0.395E-03 total cpu time spent up to now is 20.6 secs total energy = -85.54365921 Ry Harris-Foulkes estimate = -85.54365400 Ry estimated scf accuracy < 0.00000005 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 16 ecut= 27.00 Ry beta=0.25 Davidson diagonalization with overlap ethr = 5.46E-10, avg # of iterations = 3.0 negative rho (up, down): 0.000E+00 0.162E-04 total cpu time spent up to now is 21.8 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 3310 PWs) bands (ev): -4.5581 -4.7343 -4.7298 -4.7301 -4.7340 -4.7298 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 3310 PWs) bands (ev): -3.5731 -3.5991 -3.5948 -3.5949 -3.5990 -3.5948 ! total energy = -85.54366452 Ry Harris-Foulkes estimate = -85.54365924 Ry estimated scf accuracy < 2.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -86.77835900 Ry hartree contribution = 51.54364869 Ry xc contribution = -30.04254364 Ry ewald contribution = -20.26641057 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell convergence has been achieved in 16 iterations Writing output data file pwscf.save init_run : 1.42s CPU 1.43s WALL ( 1 calls) electrons : 19.79s CPU 20.30s WALL ( 1 calls) Called by init_run: wfcinit : 0.02s CPU 0.02s WALL ( 1 calls) potinit : 0.61s CPU 0.61s WALL ( 1 calls) Called by electrons: c_bands : 1.08s CPU 1.10s WALL ( 16 calls) sum_band : 4.79s CPU 4.87s WALL ( 16 calls) v_of_rho : 7.91s CPU 8.08s WALL ( 17 calls) newd : 4.90s CPU 4.95s WALL ( 17 calls) mix_rho : 0.77s CPU 0.77s WALL ( 16 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.04s WALL ( 68 calls) regterg : 1.02s CPU 1.05s WALL ( 32 calls) Called by *egterg: h_psi : 0.93s CPU 0.95s WALL ( 124 calls) s_psi : 0.02s CPU 0.02s WALL ( 126 calls) g_psi : 0.00s CPU 0.00s WALL ( 90 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 122 calls) Called by h_psi: add_vuspsi : 0.03s CPU 0.02s WALL ( 124 calls) General routines calbec : 0.04s CPU 0.04s WALL ( 158 calls) fft : 4.63s CPU 4.68s WALL ( 517 calls) ffts : 0.09s CPU 0.10s WALL ( 66 calls) fftw : 0.70s CPU 0.71s WALL ( 728 calls) interpolate : 0.81s CPU 0.83s WALL ( 66 calls) davcio : 0.00s CPU 0.01s WALL ( 198 calls) Parallel routines fft_scatter : 2.64s CPU 2.68s WALL ( 1311 calls) PWSCF : 21.36s CPU 21.90s WALL This run was terminated on: 9:30:29 29Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/example05/reference/al.out0000644000175000017500000002232112341373025020331 0ustar mbamba Program PWSCF v.4.1a starts ... Today is 10Jul2009 at 18:28:26 Parallel version (MPI) Number of processors in use: 1 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Subspace diagonalization in iterative solution of the eigenvalue problem: Too few procs for parallel algorithm we need at least 4 procs per pool a serial algorithm will be used Planes per process (thick) : nr3 = 50 npp = 50 ncplane = 2500 Proc/ planes cols G planes cols G columns G Pool (dense grid) (smooth grid) (wavefct grid) 1 50 1901 62669 50 1901 62669 481 7809 bravais-lattice index = 1 lattice parameter (a_0) = 20.0000 a.u. unit-cell volume = 8000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 3.00 number of Kohn-Sham states= 6 kinetic-energy cutoff = 15.0000 Ry charge density cutoff = 60.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.3500 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Al read from file Al.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 26.98154 Al( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 607.9271 ( 62669 G-vectors) FFT grid: ( 50, 50, 50) Occupations read from input 2.0000 0.3333 0.3333 0.3333 0.0000 0.0000 Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.71 Mb ( 7809, 6) NL pseudopotentials 0.48 Mb ( 7809, 4) Each V/rho on FFT grid 1.91 Mb ( 125000) Each G-vector array 0.48 Mb ( 62669) G-vector shells 0.00 Mb ( 508) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.86 Mb ( 7809, 24) Each subspace H/S matrix 0.01 Mb ( 24, 24) Each matrix 0.00 Mb ( 4, 6) Arrays for rho mixing 15.26 Mb ( 125000, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.005717 starting charge 2.99794, renormalised to 3.00000 negative rho (up, down): 0.572E-02 0.000E+00 Starting wfc are 9 atomic wfcs total cpu time spent up to now is 0.30 secs per-process dynamical memory: 66.1 Mb Self-consistent Calculation iteration # 1 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.88E-07, avg # of iterations = 8.0 negative rho (up, down): 0.291E-02 0.000E+00 total cpu time spent up to now is 1.26 secs total energy = -3.87516231 Ry Harris-Foulkes estimate = -3.87508901 Ry estimated scf accuracy < 0.00000733 Ry iteration # 2 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 2.44E-07, avg # of iterations = 3.0 negative rho (up, down): 0.360E-04 0.000E+00 total cpu time spent up to now is 1.58 secs total energy = -3.87524726 Ry Harris-Foulkes estimate = -3.87516251 Ry estimated scf accuracy < 0.00000287 Ry iteration # 3 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 9.57E-08, avg # of iterations = 4.0 negative rho (up, down): 0.355E-04 0.000E+00 total cpu time spent up to now is 2.02 secs total energy = -3.87524789 Ry Harris-Foulkes estimate = -3.87524787 Ry estimated scf accuracy < 0.00000007 Ry iteration # 4 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 2.40E-09, avg # of iterations = 1.0 negative rho (up, down): 0.315E-04 0.000E+00 total cpu time spent up to now is 2.31 secs total energy = -3.87524805 Ry Harris-Foulkes estimate = -3.87524789 Ry estimated scf accuracy < 0.00000007 Ry iteration # 5 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 2.40E-09, avg # of iterations = 1.0 negative rho (up, down): 0.155E-07 0.000E+00 total cpu time spent up to now is 2.60 secs total energy = -3.87524908 Ry Harris-Foulkes estimate = -3.87524806 Ry estimated scf accuracy < 0.00000013 Ry iteration # 6 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 2.40E-09, avg # of iterations = 3.0 total cpu time spent up to now is 2.99 secs total energy = -3.87524912 Ry Harris-Foulkes estimate = -3.87524912 Ry estimated scf accuracy < 0.00000005 Ry iteration # 7 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 1.73E-09, avg # of iterations = 1.0 total cpu time spent up to now is 3.30 secs total energy = -3.87524911 Ry Harris-Foulkes estimate = -3.87524912 Ry estimated scf accuracy < 0.00000002 Ry iteration # 8 ecut= 15.00 Ry beta=0.35 Davidson diagonalization with overlap ethr = 7.75E-10, avg # of iterations = 2.0 total cpu time spent up to now is 3.58 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 7809 PWs) bands (ev): -7.5786 -2.5530 -2.5530 -2.5530 -0.4274 0.7015 highest occupied, lowest unoccupied level (ev): -2.5530 -0.4274 ! total energy = -3.87524912 Ry Harris-Foulkes estimate = -3.87524912 Ry estimated scf accuracy < 1.8E-10 Ry The total energy is the sum of the following terms: one-electron contribution = -3.07453176 Ry hartree contribution = 1.65113128 Ry xc contribution = -1.17506469 Ry ewald contribution = -1.27678394 Ry convergence has been achieved in 8 iterations Writing output data file pwscf.save PWSCF : 3.65s CPU time, 3.78s wall time init_run : 0.27s CPU electrons : 3.28s CPU Called by init_run: wfcinit : 0.11s CPU potinit : 0.06s CPU Called by electrons: c_bands : 2.13s CPU ( 9 calls, 0.236 s avg) sum_band : 0.44s CPU ( 9 calls, 0.049 s avg) v_of_rho : 0.30s CPU ( 9 calls, 0.034 s avg) mix_rho : 0.29s CPU ( 9 calls, 0.033 s avg) Called by c_bands: init_us_2 : 0.05s CPU ( 19 calls, 0.003 s avg) cegterg : 2.09s CPU ( 9 calls, 0.232 s avg) Called by *egterg: h_psi : 1.90s CPU ( 37 calls, 0.051 s avg) g_psi : 0.05s CPU ( 27 calls, 0.002 s avg) cdiaghg : 0.00s CPU ( 35 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 37 calls, 0.001 s avg) General routines calbec : 0.03s CPU ( 37 calls, 0.001 s avg) cft3s : 2.16s CPU ( 440 calls, 0.005 s avg) davcio : 0.00s CPU ( 8 calls, 0.000 s avg) Parallel routines espresso-5.1/PW/examples/example12/0000755000175000017500000000000012341373041015242 5ustar mbambaespresso-5.1/PW/examples/example12/run_xml_example0000755000175000017500000001731012341373025020373 0ustar mbamba#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example tests pw.x with USPS and DFT+U in the noncollinear, spin-orbit case." $ECHO "It calculates the band structure of ferromagnetic bcc-Fe." $ECHO # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Fe.rel-pbe-spn-rrkjus_psl.0.2.1.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # self-consistent calculation for bcc-Fe with fully relativistic US-PP cat > Fe.scf_pbe.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Fe.rel-pbe-spn-rrkjus_psl.0.2.1.UPF 0.5 2.2 1.75 0.0 0.0 90.0 0.0 0.0000000 0.00000000 0.0 $PSEUDO_DIR/ $TMP_DIR/ 60.0 400.0 1.0d-10 true smearing mp 0.01 true true 1 8 8 8 1 1 1 EOF $ECHO " running the scf calculation for Fe with USPS and DFT+U with spin-orbit...\c" $PW_COMMAND < Fe.scf_pbe.xml > Fe.scf_pbe.out check_failure $? $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic US-PP cat > Fe.band_pbe.xml << EOF 0.0 0.0 0.0 0.0 0.0 0.0 Fe.rel-pbe-kjpaw.UPF 0.5 2.2 1.75 0.0 0.0 90.0 0.0 0.0000000 0.00000000 0.0 $PSEUDO_DIR/ $TMP_DIR/ 60.0 400.0 1.0d-10 true smearing mp 0.04 true true 1 1.0 0.0 0.0 40.0 0.0 0.0 0.0 40.0 0.0 0.0 1.0 1.0 EOF $ECHO " running the band calculation for Fe with USPP and DFT+U and spin-orbit...\c" $PW_COMMAND < Fe.band_pbe.xml > Fe.band_pbe.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" #rm -rf $TMP_DIR/Fe* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example12/README0000644000175000017500000000075712341373025016135 0ustar mbambaThis example tests pw.x for the noncollinear/spin-orbit case with DFT+U and Ultrasoft pseudopotentials. The calculation proceeds as follows: 1) make a self-consistent calculation for bcc-Fe (input=Fe.scf_pbe.in, output=Fe.scf_pbe.out). 2) make a band calculation for bcc-Fe (input=Fe.band_pbe.in, output=Fe.band_pbe.out). The values for U and J are set to 2.2 eV and 1.75 eV respectively as obtained by Dr. Matteo Cococcioni [1]. [1] http://www.sissa.it/cm/thesis/2002/cococcioni.pdf espresso-5.1/PW/examples/example12/run_example0000755000175000017500000001027512341373025017516 0ustar mbamba#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example tests pw.x with USPS and DFT+U in the noncollinear, spin-orbit case." $ECHO "It calculates the band structure of ferromagnetic bcc-Fe." $ECHO # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Fe.rel-pbe-spn-rrkjus_psl.0.2.1.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # self-consistent calculation for bcc-Fe with fully relativistic US-PP cat > Fe.scf_pbe.in << EOF &control calculation = 'scf' prefix='Fe', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 3, celldm(1) =5.42, nat= 1, ntyp= 1, noncolin=.true. lspinorb=.true. starting_magnetization(1)=0.5, occupations='smearing', smearing='mp', degauss=0.01, ecutwfc=60.0, ecutrho=400.0, angle1(1)=90.0 angle2(1)=0.0 lda_plus_u=.true. lda_plus_u_kind=1 Hubbard_U(1)=2.2 Hubbard_J(1,1)=1.75 Hubbard_J(2,1)=0.0 / &electrons conv_thr = 1.0d-10 ! diagonalization='cg' / ATOMIC_SPECIES Fe 0.0 Fe.rel-pbe-spn-rrkjus_psl.0.2.1.UPF ATOMIC_POSITIONS Fe 0.0000000 0.00000000 0.0 K_POINTS AUTOMATIC 8 8 8 1 1 1 EOF $ECHO " running the scf calculation for Fe with USPS and DFT+U with spin-orbit...\c" $PW_COMMAND < Fe.scf_pbe.in > Fe.scf_pbe.out check_failure $? $ECHO " done" # self-consistent calculation for bcc-Fe with fully relativistic US-PP cat > Fe.band_pbe.in << EOF &control calculation = 'bands' prefix='Fe', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 3, celldm(1) =5.42, nat= 1, ntyp= 1, noncolin=.true. lspinorb=.true. starting_magnetization(1)=0.5, angle1(1)=90.0 angle2(1)=0.0 occupations='smearing', smearing='mp', degauss=0.04, ecutwfc =60.0, ecutrho =400.0 lda_plus_u=.true. lda_plus_u_kind=1 Hubbard_U(1)=2.2 Hubbard_J(1,1)=1.75 Hubbard_J(2,1)=0.0 / &electrons conv_thr = 1.0d-10 / ATOMIC_SPECIES Fe 0.0 Fe.rel-pbe-spn-rrkjus_psl.0.2.1.UPF ATOMIC_POSITIONS Fe 0.0000000 0.00000000 0.0 K_POINTS tpiba_b 3 1.0 0.0 0.0 40 0.0 0.0 0.0 40 0.0 0.0 1.0 1 EOF $ECHO " running the band calculation for Fe with USPP and DFT+U and spin-orbit...\c" $PW_COMMAND < Fe.band_pbe.in > Fe.band_pbe.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" #rm -rf $TMP_DIR/Fe* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example12/reference/0000755000175000017500000000000012341373041017200 5ustar mbambaespresso-5.1/PW/examples/example12/reference/Fe.band_pbe.out0000644000175000017500000011451312341373025022023 0ustar mbamba Program PWSCF v.5.1rc2 (svn rev. 10934) starts on 7May2014 at 15:14:39 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Waiting for input... Reading input from standard input Message from routine read_cards : DEPRECATED: no units specified in ATOMIC_POSITIONS card Message from routine read_cards : ATOMIC_POSITIONS: units set to alat Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Atomic positions and unit cell read from directory: /home/giannozz/trunk/espresso/tempdir/Fe.save/ Fixed quantization axis for GGA: 1.000000 0.000000 0.000000 Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 328 199 64 5380 2508 478 Max 329 200 65 5381 2509 481 Sum 657 399 129 10761 5017 959 Generating pointlists ... new r_m : 0.3572 (alat units) 1.9362 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.4200 a.u. unit-cell volume = 79.6100 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 24 kinetic-energy cutoff = 60.0000 Ry charge density cutoff = 400.0000 Ry Exchange-correlation = PBE ( 1 4 3 4 0) Noncollinear calculation with spin-orbit celldm(1)= 5.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.rel-pbe-spn-rrkjus_psl.0.2.1.UPF MD5 check sum: 4bc26ffed05d8be640ae93069a5dfa17 Pseudo is Ultrasoft + core correction, Zval = 16.0 Generated using "atomic" code by A. Dal Corso v.5.0.2 svn rev. 9415 Using radial grid of 1191 points, 10 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 1 l(6) = 1 l(7) = 2 l(8) = 2 l(9) = 2 l(10) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 16.00 55.84500 Fe( 1.00) Full LDA+U calculation (l_max = 2) with parameters (eV): U( 1) = 2.2000 J( 1) = 1.7500 B( 1) = 0.2009 LDA+U on averaged j=l+1/2,l-1/2 radial WFs 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 81 Methfessel-Paxton smearing, width (Ry)= 0.0400 cart. coord. in units 2pi/alat k( 1) = ( 1.0000000 0.0000000 0.0000000), wk = 0.0000000 k( 2) = ( 0.9750000 0.0000000 0.0000000), wk = 0.0003086 k( 3) = ( 0.9500000 0.0000000 0.0000000), wk = 0.0006173 k( 4) = ( 0.9250000 0.0000000 0.0000000), wk = 0.0009259 k( 5) = ( 0.9000000 0.0000000 0.0000000), wk = 0.0012346 k( 6) = ( 0.8750000 0.0000000 0.0000000), wk = 0.0015432 k( 7) = ( 0.8500000 0.0000000 0.0000000), wk = 0.0018519 k( 8) = ( 0.8250000 0.0000000 0.0000000), wk = 0.0021605 k( 9) = ( 0.8000000 0.0000000 0.0000000), wk = 0.0024691 k( 10) = ( 0.7750000 0.0000000 0.0000000), wk = 0.0027778 k( 11) = ( 0.7500000 0.0000000 0.0000000), wk = 0.0030864 k( 12) = ( 0.7250000 0.0000000 0.0000000), wk = 0.0033951 k( 13) = ( 0.7000000 0.0000000 0.0000000), wk = 0.0037037 k( 14) = ( 0.6750000 0.0000000 0.0000000), wk = 0.0040123 k( 15) = ( 0.6500000 0.0000000 0.0000000), wk = 0.0043210 k( 16) = ( 0.6250000 0.0000000 0.0000000), wk = 0.0046296 k( 17) = ( 0.6000000 0.0000000 0.0000000), wk = 0.0049383 k( 18) = ( 0.5750000 0.0000000 0.0000000), wk = 0.0052469 k( 19) = ( 0.5500000 0.0000000 0.0000000), wk = 0.0055556 k( 20) = ( 0.5250000 0.0000000 0.0000000), wk = 0.0058642 k( 21) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0061728 k( 22) = ( 0.4750000 0.0000000 0.0000000), wk = 0.0064815 k( 23) = ( 0.4500000 0.0000000 0.0000000), wk = 0.0067901 k( 24) = ( 0.4250000 0.0000000 0.0000000), wk = 0.0070988 k( 25) = ( 0.4000000 0.0000000 0.0000000), wk = 0.0074074 k( 26) = ( 0.3750000 0.0000000 0.0000000), wk = 0.0077160 k( 27) = ( 0.3500000 0.0000000 0.0000000), wk = 0.0080247 k( 28) = ( 0.3250000 0.0000000 0.0000000), wk = 0.0083333 k( 29) = ( 0.3000000 0.0000000 0.0000000), wk = 0.0086420 k( 30) = ( 0.2750000 0.0000000 0.0000000), wk = 0.0089506 k( 31) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0092593 k( 32) = ( 0.2250000 0.0000000 0.0000000), wk = 0.0095679 k( 33) = ( 0.2000000 0.0000000 0.0000000), wk = 0.0098765 k( 34) = ( 0.1750000 0.0000000 0.0000000), wk = 0.0101852 k( 35) = ( 0.1500000 0.0000000 0.0000000), wk = 0.0104938 k( 36) = ( 0.1250000 0.0000000 0.0000000), wk = 0.0108025 k( 37) = ( 0.1000000 0.0000000 0.0000000), wk = 0.0111111 k( 38) = ( 0.0750000 0.0000000 0.0000000), wk = 0.0114198 k( 39) = ( 0.0500000 0.0000000 0.0000000), wk = 0.0117284 k( 40) = ( 0.0250000 0.0000000 0.0000000), wk = 0.0120370 k( 41) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0123457 k( 42) = ( 0.0000000 0.0000000 0.0250000), wk = 0.0126543 k( 43) = ( 0.0000000 0.0000000 0.0500000), wk = 0.0129630 k( 44) = ( 0.0000000 0.0000000 0.0750000), wk = 0.0132716 k( 45) = ( 0.0000000 0.0000000 0.1000000), wk = 0.0135802 k( 46) = ( 0.0000000 0.0000000 0.1250000), wk = 0.0138889 k( 47) = ( 0.0000000 0.0000000 0.1500000), wk = 0.0141975 k( 48) = ( 0.0000000 0.0000000 0.1750000), wk = 0.0145062 k( 49) = ( 0.0000000 0.0000000 0.2000000), wk = 0.0148148 k( 50) = ( 0.0000000 0.0000000 0.2250000), wk = 0.0151235 k( 51) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0154321 k( 52) = ( 0.0000000 0.0000000 0.2750000), wk = 0.0157407 k( 53) = ( 0.0000000 0.0000000 0.3000000), wk = 0.0160494 k( 54) = ( 0.0000000 0.0000000 0.3250000), wk = 0.0163580 k( 55) = ( 0.0000000 0.0000000 0.3500000), wk = 0.0166667 k( 56) = ( 0.0000000 0.0000000 0.3750000), wk = 0.0169753 k( 57) = ( 0.0000000 0.0000000 0.4000000), wk = 0.0172840 k( 58) = ( 0.0000000 0.0000000 0.4250000), wk = 0.0175926 k( 59) = ( 0.0000000 0.0000000 0.4500000), wk = 0.0179012 k( 60) = ( 0.0000000 0.0000000 0.4750000), wk = 0.0182099 k( 61) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0185185 k( 62) = ( 0.0000000 0.0000000 0.5250000), wk = 0.0188272 k( 63) = ( 0.0000000 0.0000000 0.5500000), wk = 0.0191358 k( 64) = ( 0.0000000 0.0000000 0.5750000), wk = 0.0194444 k( 65) = ( 0.0000000 0.0000000 0.6000000), wk = 0.0197531 k( 66) = ( 0.0000000 0.0000000 0.6250000), wk = 0.0200617 k( 67) = ( 0.0000000 0.0000000 0.6500000), wk = 0.0203704 k( 68) = ( 0.0000000 0.0000000 0.6750000), wk = 0.0206790 k( 69) = ( 0.0000000 0.0000000 0.7000000), wk = 0.0209877 k( 70) = ( 0.0000000 0.0000000 0.7250000), wk = 0.0212963 k( 71) = ( 0.0000000 0.0000000 0.7500000), wk = 0.0216049 k( 72) = ( 0.0000000 0.0000000 0.7750000), wk = 0.0219136 k( 73) = ( 0.0000000 0.0000000 0.8000000), wk = 0.0222222 k( 74) = ( 0.0000000 0.0000000 0.8250000), wk = 0.0225309 k( 75) = ( 0.0000000 0.0000000 0.8500000), wk = 0.0228395 k( 76) = ( 0.0000000 0.0000000 0.8750000), wk = 0.0231481 k( 77) = ( 0.0000000 0.0000000 0.9000000), wk = 0.0234568 k( 78) = ( 0.0000000 0.0000000 0.9250000), wk = 0.0237654 k( 79) = ( 0.0000000 0.0000000 0.9500000), wk = 0.0240741 k( 80) = ( 0.0000000 0.0000000 0.9750000), wk = 0.0243827 k( 81) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0246914 Dense grid: 10761 G-vectors FFT dimensions: ( 30, 30, 30) Smooth grid: 5017 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 656, 24) Atomic Hubbard wavefuncts 0.10 Mb ( 656, 10) NL pseudopotentials 0.17 Mb ( 328, 34) Each V/rho on FFT grid 0.21 Mb ( 13500) Each G-vector array 0.04 Mb ( 5380) G-vector shells 0.00 Mb ( 138) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.96 Mb ( 656, 96) Each subspace H/S matrix 0.14 Mb ( 96, 96) Each matrix 0.02 Mb ( 34, 2, 24) Check: negative/imaginary core charge= -0.000051 0.000000 The potential is recalculated from file : /home/giannozz/trunk/espresso/tempdir/Fe.save/charge-density.dat Number of +U iterations with fixed ns = 0 Starting occupations: --- enter write_ns --- LDA+U parameters: U( 1) = 2.2000 J( 1) = 1.7500 B( 1) = 0.2009 atom 1 Tr[ns(na)] (up, down, total) = 3.59348 3.59348 7.18695 eigenvalues: 0.292 0.294 0.659 0.679 0.698 0.862 0.867 0.872 0.982 0.982 eigenvectors: 0.123 0.371 0.000 0.002 0.000 0.002 0.001 0.002 0.125 0.374 0.003 0.001 0.248 0.002 0.250 0.247 0.002 0.247 0.000 0.000 0.000 0.003 0.004 0.493 0.000 0.004 0.495 0.000 0.000 0.001 0.370 0.124 0.000 0.001 0.000 0.001 0.000 0.005 0.375 0.125 0.003 0.001 0.248 0.002 0.250 0.247 0.002 0.247 0.000 0.000 0.123 0.371 0.000 0.002 0.000 0.002 0.001 0.002 0.125 0.374 0.003 0.001 0.248 0.002 0.250 0.247 0.002 0.247 0.000 0.000 0.000 0.003 0.004 0.493 0.000 0.004 0.495 0.000 0.000 0.001 0.370 0.124 0.000 0.001 0.000 0.001 0.000 0.005 0.375 0.125 0.003 0.001 0.248 0.002 0.250 0.247 0.002 0.247 0.000 0.000 occupations, | n_(i1, i2)^(sigma1, sigma2) |: 0.640 0.023 0.011 0.000 0.000 0.341 0.024 0.016 0.000 0.001 0.023 0.770 0.011 0.013 0.008 0.024 0.091 0.001 0.014 0.011 0.011 0.011 0.772 0.006 0.001 0.016 0.001 0.094 0.009 0.011 0.000 0.013 0.006 0.641 0.028 0.000 0.014 0.009 0.341 0.026 0.000 0.008 0.001 0.028 0.770 0.001 0.011 0.011 0.026 0.091 0.341 0.024 0.016 0.000 0.001 0.640 0.023 0.011 0.000 0.000 0.024 0.091 0.001 0.014 0.011 0.023 0.770 0.011 0.013 0.008 0.016 0.001 0.094 0.009 0.011 0.011 0.011 0.772 0.006 0.001 0.000 0.014 0.009 0.341 0.026 0.000 0.013 0.006 0.641 0.028 0.001 0.011 0.011 0.026 0.091 0.000 0.008 0.001 0.028 0.770 atomic mx, my, mz = 1.915961 0.000000 0.000000 N of occupied +U levels = 7.186952 --- exit write_ns --- Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 26 randomized atomic wfcs Band Structure Calculation Davidson diagonalization with overlap ethr = 6.25E-13, avg # of iterations = 25.0 total cpu time spent up to now is 44.8 secs End of band structure calculation k = 1.0000 0.0000 0.0000 ( 610 PWs) bands (ev): -70.4287 -67.9347 -37.3228 -36.8809 -36.1342 -34.4783 -34.0504 -33.7057 11.8759 11.8800 15.3016 15.3232 17.8337 17.8455 17.9006 19.0311 19.1269 19.1783 26.9718 27.0286 27.1936 27.2774 27.3294 27.3661 k = 0.9750 0.0000 0.0000 ( 610 PWs) bands (ev): -70.4289 -67.9348 -37.3224 -36.8809 -36.1338 -34.4779 -34.0502 -33.7052 11.8822 11.8858 15.3048 15.3291 17.8300 17.8346 17.8898 19.0172 19.1227 19.1645 26.9554 26.9782 27.2179 27.2666 27.2730 27.3932 k = 0.9500 0.0000 0.0000 ( 630 PWs) bands (ev): -70.4299 -67.9356 -37.3215 -36.8815 -36.1327 -34.4771 -34.0504 -33.7041 11.9012 11.9030 15.3140 15.3469 17.8026 17.8187 17.8579 18.9759 19.1100 19.1235 26.6916 26.9043 27.1833 27.2902 27.3246 27.4739 k = 0.9250 0.0000 0.0000 ( 634 PWs) bands (ev): -70.4307 -67.9365 -37.3196 -36.8814 -36.1306 -34.4752 -34.0498 -33.7019 11.9317 11.9323 15.3288 15.3764 17.7507 17.8001 17.8062 18.9094 19.0574 19.0889 26.2688 26.6009 27.2574 27.4094 27.4465 27.6061 k = 0.9000 0.0000 0.0000 ( 642 PWs) bands (ev): -70.4321 -67.9378 -37.3170 -36.8812 -36.1278 -34.4726 -34.0488 -33.6988 11.9716 11.9749 15.3476 15.4175 17.6807 17.7365 17.7742 18.8204 18.9690 19.0595 25.7471 26.1782 27.4110 27.5734 27.6235 27.7871 k = 0.8750 0.0000 0.0000 ( 642 PWs) bands (ev): -70.4335 -67.9393 -37.3134 -36.8808 -36.1238 -34.4690 -34.0475 -33.6947 12.0226 12.0279 15.3689 15.4701 17.5951 17.6512 17.7412 18.7124 18.8617 19.0223 25.1666 25.6948 27.6137 27.7796 27.8478 28.0131 k = 0.8500 0.0000 0.0000 ( 642 PWs) bands (ev): -70.4352 -67.9410 -37.3091 -36.8801 -36.1191 -34.4647 -34.0458 -33.6896 12.0843 12.0900 15.3902 15.5337 17.4965 17.5532 17.7013 18.5891 18.7394 18.9773 24.5533 25.1790 27.8579 28.0253 28.1144 28.2802 k = 0.8250 0.0000 0.0000 ( 638 PWs) bands (ev): -70.4372 -67.9430 -37.3040 -36.8790 -36.1135 -34.4596 -34.0436 -33.6837 12.1563 12.1597 15.4085 15.6082 17.3875 17.4452 17.6547 18.4544 18.6057 18.9249 23.9239 24.6502 28.1396 28.3074 28.4186 28.5846 k = 0.8000 0.0000 0.0000 ( 638 PWs) bands (ev): -70.4395 -67.9454 -37.2983 -36.8777 -36.1072 -34.4538 -34.0411 -33.6770 12.2349 12.2384 15.4204 15.6929 17.2709 17.3302 17.6017 18.3118 18.4643 18.8656 23.2898 24.1226 28.4551 28.6229 28.7567 28.9225 k = 0.7750 0.0000 0.0000 ( 638 PWs) bands (ev): -70.4422 -67.9480 -37.2920 -36.8759 -36.1003 -34.4473 -34.0381 -33.6696 12.3136 12.3299 15.4216 15.7871 17.1489 17.2110 17.5427 18.1645 18.3185 18.7996 22.6591 23.6075 28.8015 28.9689 29.1249 29.2902 k = 0.7500 0.0000 0.0000 ( 638 PWs) bands (ev): -70.4452 -67.9508 -37.2850 -36.8735 -36.0927 -34.4401 -34.0346 -33.6614 12.3931 12.4305 15.4074 15.8900 17.0235 17.0905 17.4779 18.0154 18.1709 18.7275 22.0377 23.1142 29.1759 29.3427 29.5200 29.6848 k = 0.7250 0.0000 0.0000 ( 630 PWs) bands (ev): -70.4483 -67.9538 -37.2774 -36.8704 -36.0843 -34.4321 -34.0304 -33.6524 12.4707 12.5393 15.3729 16.0000 16.8965 16.9719 17.4079 17.8668 18.0243 18.6499 21.4305 22.6509 29.5758 29.7419 29.9392 30.1033 k = 0.7000 0.0000 0.0000 ( 622 PWs) bands (ev): -70.4517 -67.9570 -37.2694 -36.8662 -36.0755 -34.4235 -34.0253 -33.6429 12.5433 12.6560 15.3127 16.1138 16.7693 16.8595 17.3330 17.7210 17.8806 18.5671 20.8416 22.2247 29.9989 30.1642 30.3800 30.5432 k = 0.6750 0.0000 0.0000 ( 623 PWs) bands (ev): -70.4556 -67.9605 -37.2610 -36.8617 -36.0664 -34.4145 -34.0200 -33.6329 12.6072 12.7796 15.2218 16.2242 16.6433 16.7616 17.2537 17.5795 17.7414 18.4799 20.2747 21.8413 30.4432 30.6074 30.8402 31.0023 k = 0.6500 0.0000 0.0000 ( 623 PWs) bands (ev): -70.4597 -67.9643 -37.2523 -36.8564 -36.0568 -34.4050 -34.0140 -33.6225 12.6588 12.9096 15.0961 16.3099 16.5197 16.7000 17.1706 17.4437 17.6083 18.3889 19.7337 21.5047 30.9067 31.0697 31.3178 31.4786 k = 0.6250 0.0000 0.0000 ( 627 PWs) bands (ev): -70.4641 -67.9683 -37.2433 -36.8504 -36.0469 -34.3951 -34.0074 -33.6117 12.6939 13.0450 14.9327 16.3285 16.4003 16.7174 17.0845 17.3149 17.4820 18.2947 19.2222 21.2168 31.3877 31.5494 31.8109 31.9703 k = 0.6000 0.0000 0.0000 ( 627 PWs) bands (ev): -70.4686 -67.9725 -37.2339 -36.8433 -36.0367 -34.3847 -33.9998 -33.6005 12.7083 13.1851 14.7312 16.2789 16.2867 16.8147 16.9959 17.1938 17.3634 18.1982 18.7440 20.9770 31.8847 32.0449 32.3181 32.4758 k = 0.5750 0.0000 0.0000 ( 627 PWs) bands (ev): -70.4732 -67.9768 -37.2244 -36.8353 -36.0263 -34.3739 -33.9914 -33.5890 12.6975 13.3289 14.4932 16.1802 16.2031 16.9059 16.9494 17.0812 17.2527 18.1003 18.3030 20.7820 32.3963 32.5547 32.8376 32.9934 k = 0.5500 0.0000 0.0000 ( 615 PWs) bands (ev): -70.4776 -67.9812 -37.2145 -36.8261 -36.0155 -34.3627 -33.9820 -33.5771 12.6577 13.4757 14.2231 16.0819 16.1225 16.8151 16.9776 17.0990 17.1503 17.9025 18.0025 20.6266 32.9210 33.0775 33.3682 33.5217 k = 0.5250 0.0000 0.0000 ( 619 PWs) bands (ev): -70.4824 -67.9860 -37.2048 -36.8167 -36.0048 -34.3515 -33.9723 -33.5653 12.5854 13.6244 13.9266 15.9921 16.0442 16.7244 16.8830 17.0562 17.2538 17.5455 17.9072 20.5042 33.4577 33.6118 33.9084 34.0588 k = 0.5000 0.0000 0.0000 ( 619 PWs) bands (ev): -70.4871 -67.9908 -37.1950 -36.8064 -35.9942 -34.3401 -33.9616 -33.5534 12.4792 13.6105 13.7740 15.9111 15.9710 16.6343 16.7977 16.9705 17.2335 17.4038 17.8214 20.4082 34.0049 34.1563 34.4567 34.5006 k = 0.4750 0.0000 0.0000 ( 619 PWs) bands (ev): -70.4918 -67.9958 -37.1852 -36.7954 -35.9836 -34.3286 -33.9502 -33.5416 12.3390 13.2813 13.9237 15.8387 15.9040 16.5453 16.7215 16.8933 16.9664 17.5162 17.7764 20.3321 34.5613 34.7096 34.7406 35.0115 k = 0.4500 0.0000 0.0000 ( 619 PWs) bands (ev): -70.4964 -68.0009 -37.1755 -36.7839 -35.9732 -34.3172 -33.9381 -33.5299 12.1675 12.9453 14.0724 15.7746 15.8438 16.4577 16.6536 16.7428 16.8247 17.5154 17.8465 20.2704 34.9985 35.1256 35.2699 35.5714 k = 0.4250 0.0000 0.0000 ( 615 PWs) bands (ev): -70.5008 -68.0060 -37.1659 -36.7718 -35.9628 -34.3058 -33.9253 -33.5182 11.9689 12.6077 14.2191 15.7186 15.7905 16.3720 16.5509 16.6013 16.7648 17.4432 17.9893 20.2186 35.2762 35.6963 35.8185 35.8615 k = 0.4000 0.0000 0.0000 ( 615 PWs) bands (ev): -70.5052 -68.0112 -37.1565 -36.7595 -35.9528 -34.2947 -33.9121 -33.5069 11.7493 12.2734 14.3630 15.6701 15.7440 16.2883 16.4001 16.5497 16.7133 17.3559 18.1477 20.1731 35.5745 36.0895 36.2715 36.4101 k = 0.3750 0.0000 0.0000 ( 615 PWs) bands (ev): -70.5094 -68.0164 -37.1474 -36.7471 -35.9431 -34.2838 -33.8985 -33.4960 11.5150 11.9463 14.5030 15.6289 15.7042 16.2070 16.2748 16.5082 16.6699 17.2662 18.3082 20.1314 35.8942 36.3599 36.8492 36.9818 k = 0.3500 0.0000 0.0000 ( 615 PWs) bands (ev): -70.5135 -68.0215 -37.1386 -36.7345 -35.9338 -34.2732 -33.8847 -33.4854 11.2725 11.6297 14.6382 15.5942 15.6706 16.1287 16.1715 16.4745 16.6343 17.1778 18.4664 20.0917 36.2356 36.6514 37.4268 37.5529 k = 0.3250 0.0000 0.0000 ( 615 PWs) bands (ev): -70.5174 -68.0265 -37.1302 -36.7220 -35.9248 -34.2629 -33.8707 -33.4753 11.0278 11.3264 14.7678 15.5658 15.6428 16.0537 16.0857 16.4478 16.6058 17.0922 18.6201 20.0529 36.5993 36.9648 38.0010 38.1195 k = 0.3000 0.0000 0.0000 ( 623 PWs) bands (ev): -70.5213 -68.0315 -37.1223 -36.7099 -35.9165 -34.2533 -33.8571 -33.4658 10.7858 11.0387 14.8908 15.5428 15.6204 15.9825 16.0135 16.4274 16.5837 17.0105 18.7677 20.0147 36.9853 37.3005 38.5673 38.6769 k = 0.2750 0.0000 0.0000 ( 623 PWs) bands (ev): -70.5248 -68.0361 -37.1147 -36.6980 -35.9085 -34.2441 -33.8434 -33.4568 10.5509 10.7687 15.0065 15.5248 15.6028 15.9157 15.9520 16.4126 16.5675 16.9332 18.9078 19.9768 37.3936 37.6586 39.1199 39.2191 k = 0.2500 0.0000 0.0000 ( 631 PWs) bands (ev): -70.5283 -68.0406 -37.1077 -36.6868 -35.9012 -34.2355 -33.8305 -33.4484 10.3268 10.5179 15.1139 15.5112 15.5894 15.8538 15.8991 16.4026 16.5562 16.8611 19.0393 19.9395 37.8237 38.0385 39.6509 39.7380 k = 0.2250 0.0000 0.0000 ( 623 PWs) bands (ev): -70.5313 -68.0445 -37.1009 -36.6759 -35.8941 -34.2273 -33.8177 -33.4405 10.1166 10.2877 15.2123 15.5014 15.5797 15.7973 15.8532 16.3966 16.5492 16.7945 19.1612 19.9033 38.2747 38.4392 40.1500 40.2232 k = 0.2000 0.0000 0.0000 ( 623 PWs) bands (ev): -70.5342 -68.0482 -37.0949 -36.6657 -35.8879 -34.2200 -33.8058 -33.4334 9.9226 10.0793 15.3004 15.4946 15.5730 15.7472 15.8133 16.3939 16.5456 16.7339 19.2726 19.8686 38.7448 38.8588 40.6044 40.6623 k = 0.1750 0.0000 0.0000 ( 623 PWs) bands (ev): -70.5368 -68.0515 -37.0896 -36.6564 -35.8823 -34.2133 -33.7949 -33.4270 9.7470 9.8935 15.3769 15.4903 15.5688 15.7047 15.7786 16.3936 16.5445 16.6796 19.3727 19.8361 39.2314 39.2941 40.9999 41.0040 k = 0.1500 0.0000 0.0000 ( 631 PWs) bands (ev): -70.5393 -68.0546 -37.0851 -36.6482 -35.8777 -34.2077 -33.7852 -33.4217 9.5916 9.7312 15.4393 15.4879 15.5663 15.6720 15.7488 16.3951 16.5454 16.6320 19.4607 19.8063 39.7299 39.7398 41.2484 41.2709 k = 0.1250 0.0000 0.0000 ( 631 PWs) bands (ev): -70.5414 -68.0571 -37.0810 -36.6409 -35.8735 -34.2027 -33.7767 -33.4170 9.4577 9.5930 15.4831 15.4869 15.5653 15.6537 15.7237 16.3976 16.5474 16.5912 19.5361 19.7800 40.1878 40.2328 41.4260 41.4396 k = 0.1000 0.0000 0.0000 ( 623 PWs) bands (ev): -70.5429 -68.0589 -37.0776 -36.6344 -35.8700 -34.1985 -33.7692 -33.4129 9.3466 9.4793 15.4868 15.5034 15.5651 15.6543 15.7032 16.4006 16.5500 16.5576 19.5985 19.7577 40.6249 40.7278 41.5462 41.5537 k = 0.0750 0.0000 0.0000 ( 623 PWs) bands (ev): -70.5443 -68.0605 -37.0750 -36.6296 -35.8673 -34.1952 -33.7635 -33.4099 9.2592 9.3905 15.4871 15.5052 15.5654 15.6689 15.6872 16.4035 16.5313 16.5526 19.6474 19.7398 41.0303 41.1939 41.6220 41.6257 k = 0.0500 0.0000 0.0000 ( 627 PWs) bands (ev): -70.5454 -68.0617 -37.0731 -36.6264 -35.8654 -34.1929 -33.7595 -33.4077 9.1963 9.3269 15.4876 15.4999 15.5658 15.6757 15.6859 16.4059 16.5124 16.5548 19.6826 19.7267 41.3722 41.5959 41.6660 41.6676 k = 0.0250 0.0000 0.0000 ( 627 PWs) bands (ev): -70.5460 -68.0624 -37.0720 -36.6242 -35.8642 -34.1915 -33.7570 -33.4064 9.1583 9.2887 15.4880 15.4949 15.5662 15.6689 15.6980 16.4075 16.5010 16.5562 19.7038 19.7188 41.6074 41.6883 41.6887 41.8802 k = 0.0000 0.0000 0.0000 ( 627 PWs) bands (ev): -70.5462 -68.0626 -37.0716 -36.6235 -35.8638 -34.1910 -33.7562 -33.4059 9.1456 9.2759 15.4882 15.4930 15.5663 15.6666 15.7023 16.4080 16.4972 16.5567 19.7108 19.7161 41.6924 41.6950 41.6952 41.9828 k = 0.0000 0.0000 0.0250 ( 627 PWs) bands (ev): -70.5460 -68.0624 -37.0721 -36.6239 -35.8644 -34.1916 -33.7566 -33.4066 9.1583 9.2887 15.4897 15.4929 15.5680 15.6626 15.7028 16.4096 16.4967 16.5584 19.7070 19.7155 41.6100 41.6859 41.6885 41.8782 k = 0.0000 0.0000 0.0500 ( 627 PWs) bands (ev): -70.5454 -68.0617 -37.0737 -36.6251 -35.8662 -34.1935 -33.7580 -33.4086 9.1963 9.3269 15.4925 15.4939 15.5734 15.6489 15.7062 16.4142 16.4952 16.5638 19.6864 19.7229 41.3745 41.5943 41.6641 41.6669 k = 0.0000 0.0000 0.0750 ( 623 PWs) bands (ev): -70.5443 -68.0605 -37.0762 -36.6270 -35.8689 -34.1964 -33.7601 -33.4117 9.2592 9.3905 15.4915 15.4996 15.5838 15.6240 15.7146 16.4206 16.4930 16.5741 19.6514 19.7360 41.0323 41.1926 41.6212 41.6240 k = 0.0000 0.0000 0.1000 ( 623 PWs) bands (ev): -70.5429 -68.0589 -37.0799 -36.6297 -35.8730 -34.2006 -33.7632 -33.4163 9.3466 9.4793 15.4885 15.5053 15.5896 15.6008 15.7281 16.4276 16.4902 16.5908 19.6026 19.7539 40.6266 40.7267 41.5473 41.5503 k = 0.0000 0.0000 0.1250 ( 631 PWs) bands (ev): -70.5414 -68.0571 -37.0848 -36.6332 -35.8783 -34.2061 -33.7673 -33.4222 9.4577 9.5930 15.4779 15.5102 15.5518 15.6253 15.7464 16.4339 16.4875 16.6155 19.5404 19.7762 40.1892 40.2319 41.4299 41.4331 k = 0.0000 0.0000 0.1500 ( 631 PWs) bands (ev): -70.5393 -68.0546 -37.0904 -36.6373 -35.8843 -34.2124 -33.7721 -33.4290 9.5916 9.7312 15.4438 15.5148 15.5275 15.6573 15.7694 16.4392 16.4852 16.6488 19.4651 19.8025 39.7292 39.7410 41.2552 41.2592 k = 0.0000 0.0000 0.1750 ( 623 PWs) bands (ev): -70.5368 -68.0515 -37.0966 -36.6420 -35.8912 -34.2196 -33.7774 -33.4367 9.7471 9.8935 15.3823 15.5196 15.5215 15.6965 15.7974 16.4438 16.4841 16.6909 19.3773 19.8323 39.2309 39.2951 41.0001 41.0066 k = 0.0000 0.0000 0.2000 ( 623 PWs) bands (ev): -70.5341 -68.0482 -37.1039 -36.6475 -35.8991 -34.2278 -33.7838 -33.4456 9.9227 10.0793 15.3045 15.5234 15.5255 15.7421 15.8304 16.4487 16.4848 16.7411 19.2775 19.8648 38.7444 38.8597 40.6242 40.6289 k = 0.0000 0.0000 0.2250 ( 623 PWs) bands (ev): -70.5313 -68.0445 -37.1119 -36.6536 -35.9078 -34.2369 -33.7909 -33.4553 10.1167 10.2878 15.2150 15.5297 15.5334 15.7936 15.8688 16.4549 16.4880 16.7990 19.1664 19.8995 38.2743 38.4400 40.1782 40.1825 k = 0.0000 0.0000 0.2500 ( 631 PWs) bands (ev): -70.5283 -68.0406 -37.1207 -36.6606 -35.9173 -34.2469 -33.7989 -33.4658 10.3270 10.5180 15.1157 15.5397 15.5440 15.8505 15.9134 16.4635 16.4946 16.8637 19.0448 19.9358 37.8234 38.0391 39.6857 39.6899 k = 0.0000 0.0000 0.2750 ( 623 PWs) bands (ev): -70.5248 -68.0361 -37.1296 -36.6678 -35.9270 -34.2572 -33.8072 -33.4767 10.5512 10.7689 15.0075 15.5537 15.5581 15.9124 15.9651 16.4756 16.5053 16.9348 18.9136 19.9731 37.3933 37.6591 39.1601 39.1643 k = 0.0000 0.0000 0.3000 ( 623 PWs) bands (ev): -70.5213 -68.0315 -37.1394 -36.6756 -35.9374 -34.2681 -33.8163 -33.4882 10.7861 11.0390 14.8912 15.5721 15.5763 15.9787 16.0255 16.4920 16.5210 17.0117 18.7738 20.0110 36.9851 37.3010 38.6121 38.6162 k = 0.0000 0.0000 0.3250 ( 615 PWs) bands (ev): -70.5174 -68.0265 -37.1493 -36.6837 -35.9481 -34.2793 -33.8257 -33.5000 11.0282 11.3268 14.7677 15.5955 15.5993 16.0489 16.0966 16.5136 16.5423 17.0938 18.6265 20.0493 36.5991 36.9652 38.0495 38.0537 k = 0.0000 0.0000 0.3500 ( 615 PWs) bands (ev): -70.5135 -68.0215 -37.1597 -36.6923 -35.9593 -34.2909 -33.8358 -33.5122 11.2731 11.6302 14.6377 15.6244 15.6277 16.1223 16.1815 16.5412 16.5701 17.1806 18.4729 20.0881 36.2355 36.6518 37.4785 37.4827 k = 0.0000 0.0000 0.3750 ( 615 PWs) bands (ev): -70.5094 -68.0164 -37.1703 -36.7014 -35.9707 -34.3027 -33.8463 -33.5245 11.5157 11.9470 14.5022 15.6594 15.6620 16.1984 16.2839 16.5756 16.6050 17.2715 18.3142 20.1279 35.8940 36.3603 36.9036 36.9078 k = 0.0000 0.0000 0.4000 ( 615 PWs) bands (ev): -70.5052 -68.0112 -37.1811 -36.7107 -35.9822 -34.3145 -33.8571 -33.5370 11.7502 12.2744 14.3619 15.7010 15.7027 16.2765 16.4084 16.6174 16.6476 17.3659 18.1520 20.1697 35.5744 36.0901 36.3281 36.3326 k = 0.0000 0.0000 0.4250 ( 615 PWs) bands (ev): -70.5008 -68.0060 -37.1919 -36.7203 -35.9937 -34.3264 -33.8683 -33.5494 11.9700 12.6091 14.2178 15.7494 15.7503 16.3555 16.5605 16.6672 16.6985 17.4632 17.9879 20.2152 35.2760 35.7548 35.7568 35.8432 k = 0.0000 0.0000 0.4500 ( 619 PWs) bands (ev): -70.4964 -68.0009 -37.2027 -36.7302 -36.0053 -34.3381 -33.8798 -33.5617 12.1688 12.9471 14.0709 15.8050 15.8052 16.4345 16.7245 16.7468 16.7579 17.5629 17.8238 20.2672 34.9980 35.1860 35.1891 35.6077 k = 0.0000 0.0000 0.4750 ( 619 PWs) bands (ev): -70.4918 -67.9958 -37.2132 -36.7402 -36.0166 -34.3496 -33.8913 -33.5737 12.3406 13.2838 13.9220 15.8675 15.8681 16.5118 16.7922 16.8261 16.9700 17.6623 17.6643 20.3290 34.6215 34.6262 34.7416 35.0953 k = 0.0000 0.0000 0.5000 ( 619 PWs) bands (ev): -70.4871 -67.9908 -37.2235 -36.7502 -36.0277 -34.3608 -33.9029 -33.5855 12.4809 13.6138 13.7722 15.9373 15.9388 16.5845 16.8683 16.9031 17.2365 17.5073 17.7669 20.4052 34.0667 34.0708 34.4992 34.5436 k = 0.0000 0.0000 0.5250 ( 619 PWs) bands (ev): -70.4823 -67.9860 -37.2335 -36.7602 -36.0384 -34.3717 -33.9146 -33.5969 12.5874 13.6224 13.9312 16.0145 16.0172 16.6469 16.9537 16.9888 17.3656 17.5478 17.8698 20.5015 33.5204 33.5245 33.9951 33.9973 k = 0.0000 0.0000 0.5500 ( 615 PWs) bands (ev): -70.4775 -67.9812 -37.2430 -36.7702 -36.0486 -34.3820 -33.9261 -33.6078 12.6598 13.4736 14.2292 16.0984 16.1031 16.6871 17.0482 17.0832 17.2506 17.9042 17.9728 20.6242 32.9844 32.9885 33.4570 33.4588 k = 0.0000 0.0000 0.5750 ( 627 PWs) bands (ev): -70.4732 -67.9768 -37.2525 -36.7804 -36.0588 -34.3923 -33.9378 -33.6185 12.6998 13.3268 14.5013 16.1871 16.1963 16.6854 17.1518 17.1767 17.1934 18.0745 18.3043 20.7799 32.4602 32.4643 32.9281 32.9298 k = 0.0000 0.0000 0.6000 ( 627 PWs) bands (ev): -70.4686 -67.9724 -37.2611 -36.7901 -36.0681 -34.4019 -33.9490 -33.6285 12.7106 13.1828 14.7415 16.2744 16.2967 16.6357 17.1766 17.2643 17.2990 18.1750 18.7450 20.9753 31.9489 31.9530 32.4101 32.4117 k = 0.0000 0.0000 0.6250 ( 627 PWs) bands (ev): -70.4641 -67.9683 -37.2692 -36.7997 -36.0768 -34.4110 -33.9599 -33.6380 12.6964 13.0426 14.9456 16.3344 16.4036 16.5807 17.2139 17.3852 17.4187 18.2734 19.2229 21.2155 31.4521 31.4562 31.9044 31.9059 k = 0.0000 0.0000 0.6500 ( 623 PWs) bands (ev): -70.4597 -67.9643 -37.2766 -36.8089 -36.0848 -34.4194 -33.9704 -33.6468 12.6614 12.9071 15.1113 16.3041 16.5165 16.6050 17.2716 17.5137 17.5464 18.3690 19.7341 21.5037 30.9711 30.9752 31.4127 31.4140 k = 0.0000 0.0000 0.6750 ( 623 PWs) bands (ev): -70.4556 -67.9605 -37.2835 -36.8179 -36.0923 -34.4274 -33.9805 -33.6550 12.6098 12.7771 15.2389 16.2062 16.6345 16.6973 17.3373 17.6490 17.6811 18.4613 20.2749 21.8406 30.5074 30.5116 30.9365 30.9377 k = 0.0000 0.0000 0.7000 ( 622 PWs) bands (ev): -70.4517 -67.9570 -37.2897 -36.8264 -36.0991 -34.4348 -33.9902 -33.6627 12.5460 12.6533 15.3311 16.0925 16.7564 16.8106 17.4051 17.7899 17.8217 18.5497 20.8416 22.2244 30.0629 30.0671 30.4777 30.4788 k = 0.0000 0.0000 0.7250 ( 630 PWs) bands (ev): -70.4483 -67.9538 -37.2957 -36.8346 -36.1054 -34.4419 -33.9993 -33.6699 12.4734 12.5367 15.3919 15.9786 16.8811 16.9312 17.4719 17.9350 17.9668 18.6336 21.4303 22.6510 29.6393 29.6435 30.0383 30.0392 k = 0.0000 0.0000 0.7500 ( 638 PWs) bands (ev): -70.4452 -67.9508 -37.3009 -36.8424 -36.1111 -34.4484 -34.0080 -33.6764 12.3958 12.4277 15.4266 15.8695 17.0070 17.0544 17.5360 18.0825 18.1146 18.7125 22.0374 23.1146 29.2387 29.2430 29.6206 29.6212 k = 0.0000 0.0000 0.7750 ( 638 PWs) bands (ev): -70.4422 -67.9480 -37.3054 -36.8494 -36.1159 -34.4541 -34.0158 -33.6822 12.3162 12.3273 15.4404 15.7676 17.1322 17.1775 17.5964 18.2303 18.2631 18.7861 22.6587 23.6081 28.8633 28.8677 29.2270 29.2275 k = 0.0000 0.0000 0.8000 ( 638 PWs) bands (ev): -70.4395 -67.9454 -37.3094 -36.8559 -36.1201 -34.4593 -34.0230 -33.6873 12.2347 12.2387 15.4387 15.6743 17.2548 17.2981 17.6523 18.3757 18.4098 18.8539 23.2892 24.1235 28.5157 28.5201 28.8605 28.8607 k = 0.0000 0.0000 0.8250 ( 638 PWs) bands (ev): -70.4371 -67.9430 -37.3128 -36.8617 -36.1238 -34.4638 -34.0294 -33.6918 12.1531 12.1629 15.4261 15.5905 17.3722 17.4137 17.7030 18.5157 18.5519 18.9159 23.9231 24.6513 28.1986 28.2032 28.5241 28.5242 k = 0.0000 0.0000 0.8500 ( 642 PWs) bands (ev): -70.4352 -67.9410 -37.3158 -36.8669 -36.1269 -34.4679 -34.0351 -33.6958 12.0810 12.0933 15.4070 15.5170 17.4820 17.5216 17.7482 18.6466 18.6861 18.9719 24.5522 25.1805 27.9149 27.9197 28.2213 28.2217 k = 0.0000 0.0000 0.8750 ( 642 PWs) bands (ev): -70.4335 -67.9393 -37.3182 -36.8713 -36.1294 -34.4713 -34.0399 -33.6990 12.0193 12.0312 15.3847 15.4544 17.5815 17.6189 17.7876 18.7642 18.8090 19.0223 25.1652 25.6968 27.6680 27.6732 27.9560 27.9566 k = 0.0000 0.0000 0.9000 ( 642 PWs) bands (ev): -70.4321 -67.9378 -37.3202 -36.8750 -36.1315 -34.4740 -34.0439 -33.7017 11.9683 11.9783 15.3620 15.4032 17.6678 17.7023 17.8215 18.8638 18.9167 19.0679 25.7451 26.1811 27.4615 27.4674 27.7322 27.7330 k = 0.0000 0.0000 0.9250 ( 634 PWs) bands (ev): -70.4307 -67.9365 -37.3215 -36.8776 -36.1329 -34.4761 -34.0468 -33.7036 11.9282 11.9358 15.3405 15.3647 17.7383 17.7684 17.8504 18.9407 19.0055 19.1092 26.2656 26.6065 27.3000 27.3084 27.5540 27.5547 k = 0.0000 0.0000 0.9500 ( 630 PWs) bands (ev): -70.4299 -67.9356 -37.3225 -36.8796 -36.1339 -34.4775 -34.0489 -33.7050 11.8993 11.9049 15.3209 15.3400 17.7906 17.8137 17.8750 18.9929 19.0719 19.1445 26.6837 26.9249 27.1923 27.2150 27.4257 27.4262 k = 0.0000 0.0000 0.9750 ( 610 PWs) bands (ev): -70.4289 -67.9348 -37.3226 -36.8805 -36.1340 -34.4780 -34.0499 -33.7054 11.8818 11.8862 15.3067 15.3272 17.8228 17.8381 17.8935 19.0219 19.1130 19.1694 26.9249 27.0312 27.1662 27.2508 27.3504 27.3608 k = 0.0000 0.0000 1.0000 ( 610 PWs) bands (ev): -70.4287 -67.9347 -37.3228 -36.8809 -36.1342 -34.4783 -34.0504 -33.7057 11.8759 11.8800 15.3016 15.3232 17.8337 17.8455 17.9006 19.0311 19.1269 19.1783 26.9718 27.0286 27.1936 27.2774 27.3294 27.3661 Writing output data file Fe.save init_run : 1.10s CPU 1.12s WALL ( 1 calls) electrons : 42.31s CPU 42.79s WALL ( 1 calls) Called by init_run: wfcinit : 0.16s CPU 0.16s WALL ( 1 calls) potinit : 0.05s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 42.30s CPU 42.79s WALL ( 1 calls) v_of_rho : 0.04s CPU 0.04s WALL ( 1 calls) newd : 0.15s CPU 0.15s WALL ( 1 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.04s WALL ( 162 calls) cegterg : 39.98s CPU 40.41s WALL ( 122 calls) Called by *egterg: h_psi : 24.83s CPU 25.10s WALL ( 2224 calls) s_psi : 1.06s CPU 1.18s WALL ( 2305 calls) g_psi : 0.60s CPU 0.67s WALL ( 2021 calls) cdiaghg : 6.12s CPU 6.19s WALL ( 2102 calls) Called by h_psi: add_vuspsi : 1.10s CPU 0.99s WALL ( 2224 calls) vhpsi : 0.61s CPU 0.65s WALL ( 2224 calls) General routines calbec : 0.95s CPU 1.04s WALL ( 2305 calls) fft : 0.02s CPU 0.02s WALL ( 31 calls) ffts : 0.00s CPU 0.00s WALL ( 4 calls) fftw : 18.75s CPU 18.93s WALL ( 121900 calls) interpolate : 0.00s CPU 0.00s WALL ( 4 calls) davcio : 0.01s CPU 0.02s WALL ( 162 calls) Parallel routines fft_scatter : 4.16s CPU 4.14s WALL ( 121935 calls) Hubbard U routines vhpsi : 0.61s CPU 0.65s WALL ( 2224 calls) PWSCF : 44.45s CPU 45.03s WALL This run was terminated on: 15:15:24 7May2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/example12/reference/Fe.scf_pbe.out0000644000175000017500000015176112341373025021700 0ustar mbamba Program PWSCF v.5.1rc2 (svn rev. 10934) starts on 7May2014 at 15:12:50 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Waiting for input... Reading input from standard input Message from routine read_cards : DEPRECATED: no units specified in ATOMIC_POSITIONS card Message from routine read_cards : ATOMIC_POSITIONS: units set to alat Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Fixed quantization axis for GGA: 1.000000 0.000000 0.000000 Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 328 199 64 5380 2508 478 Max 329 200 65 5381 2509 481 Sum 657 399 129 10761 5017 959 Generating pointlists ... new r_m : 0.3572 (alat units) 1.9362 (a.u.) for type 1 bravais-lattice index = 3 lattice parameter (alat) = 5.4200 a.u. unit-cell volume = 79.6100 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 24 kinetic-energy cutoff = 60.0000 Ry charge density cutoff = 400.0000 Ry convergence threshold = 1.0E-10 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE ( 1 4 3 4 0) Noncollinear calculation with spin-orbit celldm(1)= 5.420000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.500000 0.500000 0.500000 ) a(2) = ( -0.500000 0.500000 0.500000 ) a(3) = ( -0.500000 -0.500000 0.500000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 1.000000 ) b(2) = ( -1.000000 1.000000 0.000000 ) b(3) = ( 0.000000 -1.000000 1.000000 ) PseudoPot. # 1 for Fe read from file: /home/giannozz/trunk/espresso/pseudo/Fe.rel-pbe-spn-rrkjus_psl.0.2.1.UPF MD5 check sum: 4bc26ffed05d8be640ae93069a5dfa17 Pseudo is Ultrasoft + core correction, Zval = 16.0 Generated using "atomic" code by A. Dal Corso v.5.0.2 svn rev. 9415 Using radial grid of 1191 points, 10 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 1 l(6) = 1 l(7) = 2 l(8) = 2 l(9) = 2 l(10) = 2 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential Fe 16.00 55.84500 Fe( 1.00) Full LDA+U calculation (l_max = 2) with parameters (eV): U( 1) = 2.2000 J( 1) = 1.7500 B( 1) = 0.2009 LDA+U on averaged j=l+1/2,l-1/2 radial WFs 16 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Fe tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 56 Methfessel-Paxton smearing, width (Ry)= 0.0100 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.1250000), wk = 0.0078125 k( 2) = ( 0.0000000 -0.1250000 0.2500000), wk = 0.0156250 k( 3) = ( 0.0000000 -0.2500000 0.3750000), wk = 0.0156250 k( 4) = ( 0.0000000 -0.3750000 0.5000000), wk = 0.0156250 k( 5) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0156250 k( 6) = ( -0.1250000 -0.1250000 0.3750000), wk = 0.0312500 k( 7) = ( -0.1250000 -0.2500000 0.5000000), wk = 0.0312500 k( 8) = ( -0.1250000 0.6250000 -0.3750000), wk = 0.0156250 k( 9) = ( -0.2500000 0.2500000 0.1250000), wk = 0.0312500 k( 10) = ( -0.2500000 0.7500000 -0.3750000), wk = 0.0312500 k( 11) = ( -0.3750000 0.3750000 0.1250000), wk = 0.0312500 k( 12) = ( -0.3750000 0.2500000 0.2500000), wk = 0.0156250 k( 13) = ( 0.5000000 -0.5000000 0.1250000), wk = 0.0156250 k( 14) = ( 0.5000000 -0.6250000 0.2500000), wk = 0.0312500 k( 15) = ( 0.3750000 -0.6250000 0.3750000), wk = 0.0156250 k( 16) = ( 0.0000000 0.0000000 0.3750000), wk = 0.0078125 k( 17) = ( 0.0000000 -0.1250000 0.5000000), wk = 0.0156250 k( 18) = ( 0.0000000 -0.2500000 0.6250000), wk = 0.0156250 k( 19) = ( -0.1250000 -0.1250000 0.6250000), wk = 0.0312500 k( 20) = ( -0.1250000 0.7500000 -0.2500000), wk = 0.0156250 k( 21) = ( 0.6250000 -0.6250000 0.3750000), wk = 0.0156250 k( 22) = ( 0.5000000 -0.5000000 0.3750000), wk = 0.0156250 k( 23) = ( 0.0000000 0.0000000 0.6250000), wk = 0.0078125 k( 24) = ( 0.0000000 -0.1250000 0.7500000), wk = 0.0156250 k( 25) = ( -0.1250000 0.8750000 -0.1250000), wk = 0.0156250 k( 26) = ( 0.0000000 0.0000000 0.8750000), wk = 0.0078125 k( 27) = ( 0.1250000 0.0000000 0.0000000), wk = 0.0039062 k( 28) = ( -0.1250000 0.2500000 0.0000000), wk = 0.0156250 k( 29) = ( 0.2500000 0.0000000 -0.1250000), wk = 0.0156250 k( 30) = ( -0.2500000 0.3750000 0.0000000), wk = 0.0156250 k( 31) = ( 0.3750000 0.0000000 -0.2500000), wk = 0.0156250 k( 32) = ( -0.3750000 0.5000000 0.0000000), wk = 0.0156250 k( 33) = ( 0.5000000 0.0000000 -0.3750000), wk = 0.0156250 k( 34) = ( 0.3750000 -0.1250000 -0.1250000), wk = 0.0156250 k( 35) = ( -0.2500000 0.5000000 -0.1250000), wk = 0.0312500 k( 36) = ( 0.5000000 -0.1250000 -0.2500000), wk = 0.0312500 k( 37) = ( 0.6250000 -0.3750000 -0.1250000), wk = 0.0312500 k( 38) = ( 0.1250000 -0.2500000 0.2500000), wk = 0.0156250 k( 39) = ( -0.3750000 -0.2500000 0.7500000), wk = 0.0156250 k( 40) = ( 0.1250000 -0.3750000 0.3750000), wk = 0.0156250 k( 41) = ( 0.2500000 0.2500000 -0.3750000), wk = 0.0312500 k( 42) = ( 0.1250000 0.5000000 -0.5000000), wk = 0.0078125 k( 43) = ( -0.6250000 0.2500000 0.5000000), wk = 0.0312500 k( 44) = ( 0.2500000 0.5000000 -0.6250000), wk = 0.0312500 k( 45) = ( 0.3750000 0.0000000 0.0000000), wk = 0.0039062 k( 46) = ( -0.1250000 0.5000000 0.0000000), wk = 0.0156250 k( 47) = ( 0.5000000 0.0000000 -0.1250000), wk = 0.0156250 k( 48) = ( -0.2500000 0.6250000 0.0000000), wk = 0.0156250 k( 49) = ( 0.6250000 0.0000000 -0.2500000), wk = 0.0156250 k( 50) = ( 0.6250000 -0.1250000 -0.1250000), wk = 0.0156250 k( 51) = ( 0.7500000 -0.2500000 -0.1250000), wk = 0.0312500 k( 52) = ( 0.3750000 0.5000000 -0.5000000), wk = 0.0078125 k( 53) = ( 0.6250000 0.0000000 0.0000000), wk = 0.0039062 k( 54) = ( -0.1250000 0.7500000 0.0000000), wk = 0.0156250 k( 55) = ( 0.7500000 0.0000000 -0.1250000), wk = 0.0156250 k( 56) = ( 0.8750000 0.0000000 0.0000000), wk = 0.0039062 Dense grid: 10761 G-vectors FFT dimensions: ( 30, 30, 30) Smooth grid: 5017 G-vectors FFT dimensions: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.24 Mb ( 656, 24) Atomic Hubbard wavefuncts 0.10 Mb ( 656, 10) NL pseudopotentials 0.17 Mb ( 328, 34) Each V/rho on FFT grid 0.21 Mb ( 13500) Each G-vector array 0.04 Mb ( 5380) G-vector shells 0.00 Mb ( 138) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.96 Mb ( 656, 96) Each subspace H/S matrix 0.14 Mb ( 96, 96) Each matrix 0.02 Mb ( 34, 2, 24) Arrays for rho mixing 1.65 Mb ( 13500, 8) Check: negative/imaginary core charge= -0.000051 0.000000 Initial potential from superposition of free atoms starting charge 15.99956, renormalised to 16.00000 Number of +U iterations with fixed ns = 0 Starting occupations: --- enter write_ns --- LDA+U parameters: U( 1) = 2.2000 J( 1) = 1.7500 B( 1) = 0.2009 atom 1 Tr[ns(na)] (up, down, total) = 3.00000 3.00000 6.00000 eigenvalues: 0.200 0.200 0.200 0.200 0.200 1.000 1.000 1.000 1.000 1.000 eigenvectors: 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.500 0.000 occupations, | n_(i1, i2)^(sigma1, sigma2) |: 0.600 0.000 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.000 0.600 0.000 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.000 0.600 0.000 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.000 0.600 0.000 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.000 0.600 0.000 0.000 0.000 0.000 0.400 0.400 0.000 0.000 0.000 0.000 0.600 0.000 0.000 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.600 0.000 0.000 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.600 0.000 0.000 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.600 0.000 0.000 0.000 0.000 0.000 0.400 0.000 0.000 0.000 0.000 0.600 atomic mx, my, mz = 4.000000 0.000000 0.000000 N of occupied +U levels = 6.000000 --- exit write_ns --- ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.480014 magnetization : 7.240007 0.000000 0.000000 magnetization/charge: 0.500000 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 7.240007 90.000000 0.000000 ============================================================================== Atomic wfc used for LDA+U Projector are NOT orthogonalized Starting wfc are 26 randomized atomic wfcs total cpu time spent up to now is 3.2 secs per-process dynamical memory: 35.5 Mb Self-consistent Calculation iteration # 1 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 --- enter write_ns --- LDA+U parameters: U( 1) = 2.2000 J( 1) = 1.7500 B( 1) = 0.2009 atom 1 Tr[ns(na)] (up, down, total) = 3.32826 3.32826 6.65651 eigenvalues: 0.328 0.329 0.333 0.347 0.349 0.992 0.992 0.995 0.995 0.997 eigenvectors: 0.000 0.040 0.000 0.125 0.335 0.119 0.000 0.000 0.125 0.256 0.250 0.000 0.250 0.000 0.000 0.000 0.250 0.250 0.000 0.000 0.000 0.446 0.000 0.000 0.054 0.341 0.000 0.000 0.000 0.159 0.000 0.013 0.000 0.375 0.112 0.040 0.000 0.000 0.375 0.085 0.250 0.000 0.250 0.000 0.000 0.000 0.250 0.250 0.000 0.000 0.000 0.040 0.000 0.125 0.335 0.119 0.000 0.000 0.125 0.256 0.250 0.000 0.250 0.000 0.000 0.000 0.250 0.250 0.000 0.000 0.000 0.446 0.000 0.000 0.054 0.341 0.000 0.000 0.000 0.159 0.000 0.013 0.000 0.375 0.112 0.040 0.000 0.000 0.375 0.085 0.250 0.000 0.250 0.000 0.000 0.000 0.250 0.250 0.000 0.000 occupations, | n_(i1, i2)^(sigma1, sigma2) |: 0.671 0.000 0.002 0.000 0.000 0.324 0.006 0.004 0.000 0.000 0.000 0.662 0.003 0.000 0.001 0.006 0.331 0.000 0.003 0.002 0.002 0.003 0.662 0.001 0.000 0.004 0.000 0.331 0.002 0.003 0.000 0.000 0.001 0.671 0.006 0.000 0.003 0.002 0.324 0.000 0.000 0.001 0.000 0.006 0.662 0.000 0.002 0.003 0.000 0.331 0.324 0.006 0.004 0.000 0.000 0.671 0.000 0.002 0.000 0.000 0.006 0.331 0.000 0.003 0.002 0.000 0.662 0.003 0.000 0.001 0.004 0.000 0.331 0.002 0.003 0.002 0.003 0.662 0.001 0.000 0.000 0.003 0.002 0.324 0.000 0.000 0.000 0.001 0.671 0.006 0.000 0.002 0.003 0.000 0.331 0.000 0.001 0.000 0.006 0.662 atomic mx, my, mz = 3.284628 0.000000 0.000000 N of occupied +U levels = 6.656511 --- exit write_ns --- ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.330353 magnetization : 4.647458 0.000000 0.000000 magnetization/charge: 0.324309 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 4.647458 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 8.9 secs total energy = -254.19781751 Ry Harris-Foulkes estimate = -253.89275827 Ry estimated scf accuracy < 0.53791980 Ry total magnetization = 3.58 0.00 0.00 Bohr mag/cell absolute magnetization = 3.61 Bohr mag/cell iteration # 2 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.36E-03, avg # of iterations = 1.8 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.475992 magnetization : 3.493186 0.000000 0.000000 magnetization/charge: 0.241309 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 3.493186 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 13.3 secs total energy = -254.27354899 Ry Harris-Foulkes estimate = -254.26887261 Ry estimated scf accuracy < 0.16000793 Ry total magnetization = 3.01 0.00 0.00 Bohr mag/cell absolute magnetization = 3.12 Bohr mag/cell iteration # 3 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-03, avg # of iterations = 2.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.406810 magnetization : 2.638056 0.000000 0.000000 magnetization/charge: 0.183112 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.638056 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 18.2 secs total energy = -254.29920687 Ry Harris-Foulkes estimate = -254.35239990 Ry estimated scf accuracy < 0.18098601 Ry total magnetization = 2.70 0.00 0.00 Bohr mag/cell absolute magnetization = 2.85 Bohr mag/cell iteration # 4 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-03, avg # of iterations = 2.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.452233 magnetization : 2.372451 0.000000 0.000000 magnetization/charge: 0.164158 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.372451 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 22.8 secs total energy = -254.33335651 Ry Harris-Foulkes estimate = -254.33275981 Ry estimated scf accuracy < 0.00412269 Ry total magnetization = 2.44 0.00 0.00 Bohr mag/cell absolute magnetization = 2.61 Bohr mag/cell iteration # 5 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 4.2 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.442575 magnetization : 2.266513 0.000000 0.000000 magnetization/charge: 0.156933 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.266513 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 29.6 secs total energy = -254.33959396 Ry Harris-Foulkes estimate = -254.33890635 Ry estimated scf accuracy < 0.00426259 Ry total magnetization = 2.15 0.00 0.00 Bohr mag/cell absolute magnetization = 2.34 Bohr mag/cell iteration # 6 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.58E-05, avg # of iterations = 1.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.414760 magnetization : 2.296300 0.000000 0.000000 magnetization/charge: 0.159302 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.296300 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 33.7 secs total energy = -254.33988126 Ry Harris-Foulkes estimate = -254.33984374 Ry estimated scf accuracy < 0.00143819 Ry total magnetization = 2.14 0.00 0.00 Bohr mag/cell absolute magnetization = 2.33 Bohr mag/cell iteration # 7 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.99E-06, avg # of iterations = 2.2 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.426093 magnetization : 2.049600 0.000000 0.000000 magnetization/charge: 0.142076 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.049600 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 38.2 secs total energy = -254.33752426 Ry Harris-Foulkes estimate = -254.34053566 Ry estimated scf accuracy < 0.00055444 Ry total magnetization = 2.19 0.00 0.00 Bohr mag/cell absolute magnetization = 2.34 Bohr mag/cell iteration # 8 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-06, avg # of iterations = 2.2 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.426691 magnetization : 2.039121 0.000000 0.000000 magnetization/charge: 0.141344 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.039121 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 43.7 secs total energy = -254.34150321 Ry Harris-Foulkes estimate = -254.34109409 Ry estimated scf accuracy < 0.00008475 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.11 Bohr mag/cell iteration # 9 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.30E-07, avg # of iterations = 1.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.425097 magnetization : 2.037909 0.000000 0.000000 magnetization/charge: 0.141275 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.037909 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 47.8 secs total energy = -254.34156282 Ry Harris-Foulkes estimate = -254.34150819 Ry estimated scf accuracy < 0.00007714 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.10 Bohr mag/cell iteration # 10 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.82E-07, avg # of iterations = 1.4 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.424448 magnetization : 2.015132 0.000000 0.000000 magnetization/charge: 0.139703 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.015132 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 52.2 secs total energy = -254.34157400 Ry Harris-Foulkes estimate = -254.34157531 Ry estimated scf accuracy < 0.00002223 Ry total magnetization = 1.97 0.00 0.00 Bohr mag/cell absolute magnetization = 2.10 Bohr mag/cell iteration # 11 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-07, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.425113 magnetization : 1.985317 0.000000 0.000000 magnetization/charge: 0.137629 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 1.985317 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 57.6 secs total energy = -254.34156098 Ry Harris-Foulkes estimate = -254.34160651 Ry estimated scf accuracy < 0.00000433 Ry total magnetization = 1.96 0.00 0.00 Bohr mag/cell absolute magnetization = 2.09 Bohr mag/cell iteration # 12 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.71E-08, avg # of iterations = 3.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.425118 magnetization : 1.998494 0.000000 0.000000 magnetization/charge: 0.138543 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 1.998494 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 63.7 secs total energy = -254.34162244 Ry Harris-Foulkes estimate = -254.34162351 Ry estimated scf accuracy < 0.00000411 Ry total magnetization = 1.94 0.00 0.00 Bohr mag/cell absolute magnetization = 2.07 Bohr mag/cell iteration # 13 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.57E-08, avg # of iterations = 2.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.424699 magnetization : 2.002549 0.000000 0.000000 magnetization/charge: 0.138828 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.002549 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 69.6 secs total energy = -254.34163369 Ry Harris-Foulkes estimate = -254.34163348 Ry estimated scf accuracy < 0.00000101 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 2.08 Bohr mag/cell iteration # 14 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.29E-09, avg # of iterations = 2.0 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.424809 magnetization : 2.002323 0.000000 0.000000 magnetization/charge: 0.138811 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.002323 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 74.5 secs total energy = -254.34163421 Ry Harris-Foulkes estimate = -254.34163432 Ry estimated scf accuracy < 0.00000013 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 2.08 Bohr mag/cell iteration # 15 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.20E-10, avg # of iterations = 2.9 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.424729 magnetization : 2.002479 0.000000 0.000000 magnetization/charge: 0.138823 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.002479 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 80.1 secs total energy = -254.34163487 Ry Harris-Foulkes estimate = -254.34163491 Ry estimated scf accuracy < 0.00000008 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 2.08 Bohr mag/cell iteration # 16 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.79E-10, avg # of iterations = 2.4 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.424712 magnetization : 2.001489 0.000000 0.000000 magnetization/charge: 0.138754 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.001489 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 86.3 secs total energy = -254.34163507 Ry Harris-Foulkes estimate = -254.34163505 Ry estimated scf accuracy < 0.00000002 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 2.08 Bohr mag/cell iteration # 17 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.21E-10, avg # of iterations = 2.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.424690 magnetization : 2.001143 0.000000 0.000000 magnetization/charge: 0.138730 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.001143 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 91.5 secs total energy = -254.34163511 Ry Harris-Foulkes estimate = -254.34163511 Ry estimated scf accuracy < 3.2E-09 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 2.08 Bohr mag/cell iteration # 18 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-11, avg # of iterations = 2.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.424696 magnetization : 2.001075 0.000000 0.000000 magnetization/charge: 0.138726 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.001075 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 97.0 secs total energy = -254.34163512 Ry Harris-Foulkes estimate = -254.34163512 Ry estimated scf accuracy < 7.2E-10 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 2.08 Bohr mag/cell iteration # 19 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.48E-12, avg # of iterations = 2.1 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.424697 magnetization : 2.001074 0.000000 0.000000 magnetization/charge: 0.138726 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.001074 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 101.9 secs total energy = -254.34163512 Ry Harris-Foulkes estimate = -254.34163512 Ry estimated scf accuracy < 2.2E-10 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 2.08 Bohr mag/cell iteration # 20 ecut= 60.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.40E-12, avg # of iterations = 2.5 ============================================================================== atom number 1 relative position : 0.0000 0.0000 0.0000 charge : 14.424698 magnetization : 2.001082 0.000000 0.000000 magnetization/charge: 0.138726 0.000000 0.000000 polar coord.: r, theta, phi [deg] : 2.001082 90.000000 0.000000 ============================================================================== total cpu time spent up to now is 107.3 secs End of self-consistent calculation --- enter write_ns --- LDA+U parameters: U( 1) = 2.2000 J( 1) = 1.7500 B( 1) = 0.2009 atom 1 Tr[ns(na)] (up, down, total) = 3.59348 3.59348 7.18695 eigenvalues: 0.292 0.294 0.659 0.679 0.698 0.862 0.867 0.872 0.982 0.982 eigenvectors: 0.123 0.371 0.000 0.002 0.000 0.002 0.001 0.002 0.125 0.374 0.003 0.001 0.248 0.002 0.250 0.247 0.002 0.247 0.000 0.000 0.000 0.003 0.004 0.493 0.000 0.004 0.495 0.000 0.000 0.001 0.370 0.124 0.000 0.001 0.000 0.001 0.000 0.005 0.375 0.125 0.003 0.001 0.248 0.002 0.250 0.247 0.002 0.247 0.000 0.000 0.123 0.371 0.000 0.002 0.000 0.002 0.001 0.002 0.125 0.374 0.003 0.001 0.248 0.002 0.250 0.247 0.002 0.247 0.000 0.000 0.000 0.003 0.004 0.493 0.000 0.004 0.495 0.000 0.000 0.001 0.370 0.124 0.000 0.001 0.000 0.001 0.000 0.005 0.375 0.125 0.003 0.001 0.248 0.002 0.250 0.247 0.002 0.247 0.000 0.000 occupations, | n_(i1, i2)^(sigma1, sigma2) |: 0.640 0.023 0.011 0.000 0.000 0.341 0.024 0.016 0.000 0.001 0.023 0.770 0.011 0.013 0.008 0.024 0.091 0.001 0.014 0.011 0.011 0.011 0.772 0.006 0.001 0.016 0.001 0.094 0.009 0.011 0.000 0.013 0.006 0.641 0.028 0.000 0.014 0.009 0.341 0.026 0.000 0.008 0.001 0.028 0.770 0.001 0.011 0.011 0.026 0.091 0.341 0.024 0.016 0.000 0.001 0.640 0.023 0.011 0.000 0.000 0.024 0.091 0.001 0.014 0.011 0.023 0.770 0.011 0.013 0.008 0.016 0.001 0.094 0.009 0.011 0.011 0.011 0.772 0.006 0.001 0.000 0.014 0.009 0.341 0.026 0.000 0.013 0.006 0.641 0.028 0.001 0.011 0.011 0.026 0.091 0.000 0.008 0.001 0.028 0.770 atomic mx, my, mz = 1.915961 0.000000 0.000000 N of occupied +U levels = 7.186952 --- exit write_ns --- k = 0.0000 0.0000 0.1250 ( 631 PWs) bands (ev): -70.5414 -68.0571 -37.0848 -36.6332 -35.8783 -34.2061 -33.7673 -33.4222 9.4578 9.5930 15.4779 15.5102 15.5518 15.6253 15.7463 16.4339 16.4874 16.6155 19.5404 19.7762 40.1892 40.2320 41.5799 41.5832 k = 0.0000-0.1250 0.2500 ( 627 PWs) bands (ev): -70.5238 -68.0377 -37.1324 -36.6674 -35.9265 -34.2615 -33.8062 -33.4745 10.6100 10.7868 14.9914 15.2683 15.6848 15.8854 16.1599 16.1702 16.4641 17.2442 19.1522 19.8673 35.8002 36.1953 39.1280 39.2935 k = 0.0000-0.2500 0.3750 ( 621 PWs) bands (ev): -70.4979 -68.0124 -37.2058 -36.7159 -35.9881 -34.3499 -33.8598 -33.5353 12.1789 12.6556 14.7347 14.8875 15.6859 16.0091 16.2780 16.4495 17.1940 18.3443 19.0034 19.9638 30.1118 30.8052 36.7613 36.9542 k = 0.0000-0.3750 0.5000 ( 624 PWs) bands (ev): -70.4792 -67.9953 -37.2615 -36.7507 -36.0270 -34.4189 -33.8970 -33.5704 12.5444 13.7423 14.6312 15.2971 15.3805 16.1034 17.3883 17.9220 17.9668 19.1199 19.2458 20.2201 25.4470 26.4759 35.4189 35.5779 k =-0.1250 0.1250 0.1250 ( 630 PWs) bands (ev): -70.5318 -68.0480 -37.1065 -36.6576 -35.8987 -34.2319 -33.7964 -33.4434 10.0675 10.1946 15.2087 15.2313 15.6737 15.7444 16.0647 16.2232 16.3249 17.1275 19.5934 19.6149 38.3076 38.3339 38.4964 38.5211 k =-0.1250-0.1250 0.3750 ( 614 PWs) bands (ev): -70.5028 -68.0148 -37.1858 -36.7152 -35.9764 -34.3229 -33.8638 -33.5251 11.9766 12.3514 14.3770 15.2350 15.8086 16.0817 16.1269 16.1834 17.0466 18.1174 18.7438 20.0495 33.0464 33.6181 34.0049 34.4626 k =-0.1250-0.2500 0.5000 ( 625 PWs) bands (ev): -70.4807 -67.9939 -37.2456 -36.7575 -36.0269 -34.3946 -33.9103 -33.5753 12.9389 13.9497 14.1528 15.0114 15.7067 16.1020 16.3170 16.8793 18.6169 18.8143 19.1815 20.5796 27.9681 28.7589 31.8122 32.3332 k =-0.1250 0.6250-0.3750 ( 624 PWs) bands (ev): -70.4710 -67.9854 -37.2707 -36.7753 -36.0465 -34.4256 -33.9296 -33.5938 12.9068 14.3566 14.5595 14.7096 15.5561 16.1549 16.7782 17.4602 18.9235 19.4202 20.5563 21.8166 24.6596 25.7407 31.1293 31.6409 k =-0.2500 0.2500 0.1250 ( 623 PWs) bands (ev): -70.5089 -68.0260 -37.1618 -36.7146 -35.9461 -34.2971 -33.8668 -33.4895 11.6437 11.8064 14.7531 14.8687 15.7684 15.7880 15.9256 16.0547 17.0744 18.1870 19.3586 19.7478 32.9732 33.4973 36.0215 36.3046 k =-0.2500 0.7500-0.3750 ( 623 PWs) bands (ev): -70.4675 -67.9807 -37.2643 -36.8000 -36.0493 -34.4139 -33.9673 -33.5965 13.6310 13.7038 14.6366 14.8861 15.7209 16.0608 16.5408 16.9853 18.9108 19.2849 21.7782 22.9809 26.0903 26.9879 27.3644 28.0226 k =-0.3750 0.3750 0.1250 ( 626 PWs) bands (ev): -70.4866 -68.0037 -37.2214 -36.7700 -35.9911 -34.3667 -33.9377 -33.5290 12.7195 13.4671 14.5775 15.3455 15.4443 15.8411 16.2293 16.3903 18.3637 19.3015 19.5334 19.8926 27.6027 28.4076 34.3573 34.6213 k =-0.3750 0.2500 0.2500 ( 628 PWs) bands (ev): -70.4896 -68.0068 -37.2084 -36.7641 -35.9871 -34.3525 -33.9284 -33.5319 13.1599 13.4676 14.2650 14.7872 15.5352 15.5560 15.9514 16.0034 18.5466 19.3754 19.5884 20.0076 30.5271 31.1264 31.2975 31.8102 k = 0.5000-0.5000 0.1250 ( 624 PWs) bands (ev): -70.4774 -67.9942 -37.2469 -36.7922 -36.0090 -34.3966 -33.9668 -33.5436 12.7267 13.8806 14.4679 15.1862 15.8636 16.1514 16.7071 17.1909 19.3221 19.6144 19.9489 20.4765 24.5692 25.6826 33.7483 33.9883 k = 0.5000-0.6250 0.2500 ( 621 PWs) bands (ev): -70.4763 -67.9912 -37.2402 -36.7948 -36.0205 -34.3895 -33.9690 -33.5674 13.4690 14.3528 14.4045 15.0863 15.2361 16.0009 16.1510 16.2519 19.4527 19.8180 20.8369 21.8564 25.9660 26.8130 29.7520 30.2903 k = 0.3750-0.6250 0.3750 ( 619 PWs) bands (ev): -70.4722 -67.9850 -37.2487 -36.7974 -36.0400 -34.4010 -33.9690 -33.5955 14.1326 14.3632 14.4103 14.7138 15.5176 15.6061 16.2713 16.3161 19.6154 19.6810 24.2101 24.2310 25.0500 25.0558 26.5597 27.2792 k = 0.0000 0.0000 0.3750 ( 615 PWs) bands (ev): -70.5094 -68.0164 -37.1703 -36.7014 -35.9707 -34.3027 -33.8463 -33.5246 11.5158 11.9470 14.5022 15.6595 15.6620 16.1984 16.2839 16.5756 16.6050 17.2715 18.3142 20.1279 35.8941 36.3603 36.9036 36.9078 k = 0.0000-0.1250 0.5000 ( 624 PWs) bands (ev): -70.4855 -67.9921 -37.2304 -36.7504 -36.0278 -34.3708 -33.9021 -33.5829 12.6139 13.6979 13.8164 15.5304 15.9657 16.4219 16.5442 17.0960 17.3879 17.9867 18.2177 20.4179 30.9484 31.6121 34.3542 34.7963 k = 0.0000-0.2500 0.6250 ( 619 PWs) bands (ev): -70.4661 -67.9770 -37.2762 -36.7851 -36.0633 -34.4251 -33.9403 -33.6158 12.7849 13.7468 14.7002 15.3439 16.0354 16.2130 16.5511 17.8783 18.3307 19.1558 20.0328 21.6866 25.9458 26.8728 32.7644 33.1742 k =-0.1250-0.1250 0.6250 ( 626 PWs) bands (ev): -70.4646 -67.9728 -37.2702 -36.8000 -36.0669 -34.4147 -33.9617 -33.6217 12.9995 13.1829 15.0081 15.5218 16.1308 16.4515 16.6888 17.4158 18.0413 18.8662 19.9348 21.6439 28.8459 29.4341 29.6364 29.9935 k =-0.1250 0.7500-0.2500 ( 625 PWs) bands (ev): -70.4553 -67.9655 -37.2882 -36.8182 -36.0835 -34.4364 -33.9816 -33.6385 12.8625 13.1820 15.3239 15.5304 16.1031 16.3320 16.7744 17.6757 18.3898 19.0845 22.9219 24.0211 25.1070 26.0345 28.4751 29.0783 k = 0.6250-0.6250 0.3750 ( 625 PWs) bands (ev): -70.4787 -67.9930 -37.2354 -36.7809 -36.0250 -34.3877 -33.9464 -33.5834 14.3250 14.3400 14.4772 14.7946 15.1492 15.1812 15.9370 15.9945 19.8028 19.8325 20.8567 21.8546 28.9087 28.9561 29.4917 29.5389 k = 0.5000-0.5000 0.3750 ( 634 PWs) bands (ev): -70.4750 -67.9862 -37.2402 -36.7955 -36.0391 -34.3930 -33.9664 -33.6045 14.1764 14.4227 14.8823 14.9799 15.0815 15.5385 15.8893 16.0169 19.8401 19.9733 23.5575 24.2912 25.2944 26.0924 28.3898 28.9457 k = 0.0000 0.0000 0.6250 ( 627 PWs) bands (ev): -70.4641 -67.9683 -37.2692 -36.7997 -36.0768 -34.4110 -33.9599 -33.6380 12.6964 13.0426 14.9456 16.3344 16.4036 16.5806 17.2139 17.3852 17.4187 18.2734 19.2229 21.2155 31.4521 31.4562 31.9044 31.9059 k = 0.0000-0.1250 0.7500 ( 633 PWs) bands (ev): -70.4472 -67.9542 -37.2996 -36.8351 -36.1061 -34.4470 -33.9995 -33.6692 12.4855 12.6054 15.5035 15.8685 16.5982 16.7726 17.5617 17.8187 18.0122 19.0354 22.3876 23.4677 27.1147 27.7659 29.6853 30.0345 k =-0.1250 0.8750-0.1250 ( 637 PWs) bands (ev): -70.4398 -67.9469 -37.3061 -36.8619 -36.1136 -34.4577 -34.0285 -33.6795 12.3099 12.3152 15.5869 15.6206 16.6781 17.5768 17.6444 17.7219 18.8559 18.8973 25.7350 25.8017 26.4240 26.4865 26.8966 27.3484 k = 0.0000 0.0000 0.8750 ( 642 PWs) bands (ev): -70.4335 -67.9393 -37.3182 -36.8713 -36.1294 -34.4713 -34.0399 -33.6990 12.0193 12.0312 15.3847 15.4543 17.5815 17.6189 17.7876 18.7642 18.8090 19.0224 25.1653 25.6968 27.6680 27.6732 27.9560 27.9566 k = 0.1250 0.0000 0.0000 ( 631 PWs) bands (ev): -70.5414 -68.0571 -37.0810 -36.6409 -35.8735 -34.2027 -33.7767 -33.4170 9.4577 9.5930 15.4830 15.4869 15.5653 15.6537 15.7238 16.3976 16.5474 16.5912 19.5361 19.7800 40.1878 40.2328 41.5730 41.5902 k =-0.1250 0.2500 0.0000 ( 627 PWs) bands (ev): -70.5238 -68.0377 -37.1291 -36.6744 -35.9222 -34.2573 -33.8168 -33.4687 10.6102 10.7867 14.9924 15.2647 15.7024 15.8699 16.1156 16.2312 16.4441 17.2484 19.1516 19.8675 35.8006 36.1944 39.1296 39.2919 k = 0.2500 0.0000-0.1250 ( 627 PWs) bands (ev): -70.5238 -68.0377 -37.1201 -36.6926 -35.9111 -34.2493 -33.8387 -33.4568 10.6100 10.7865 14.9913 15.2672 15.7101 15.8649 16.1135 16.2242 16.4497 17.2494 19.1470 19.8710 35.8006 36.1944 39.1302 39.2912 k =-0.2500 0.3750 0.0000 ( 621 PWs) bands (ev): -70.4978 -68.0125 -37.1953 -36.7380 -35.9749 -34.3341 -33.8969 -33.5156 12.1803 12.6541 14.7342 14.8857 15.6938 16.0220 16.2529 16.4525 17.1962 18.3472 19.0026 19.9635 30.1128 30.8035 36.7628 36.9530 k = 0.3750 0.0000-0.2500 ( 621 PWs) bands (ev): -70.4978 -68.0125 -37.1865 -36.7557 -35.9641 -34.3264 -33.9170 -33.5051 12.1799 12.6532 14.7296 14.8940 15.6930 16.0177 16.2555 16.4574 17.1923 18.3458 19.0003 19.9664 30.1128 30.8036 36.7633 36.9524 k =-0.3750 0.5000 0.0000 ( 624 PWs) bands (ev): -70.4791 -67.9955 -37.2448 -36.7860 -36.0061 -34.3922 -33.9573 -33.5390 12.5479 13.7379 14.6271 15.2974 15.3867 16.0998 17.3874 17.9138 17.9839 19.0993 19.2614 20.2195 25.4496 26.4727 35.4202 35.5772 k = 0.5000 0.0000-0.3750 ( 624 PWs) bands (ev): -70.4791 -67.9955 -37.2414 -36.7930 -36.0018 -34.3892 -33.9650 -33.5351 12.5478 13.7368 14.6277 15.2996 15.3864 16.0978 17.3959 17.9222 17.9669 19.0884 19.2726 20.2202 25.4495 26.4727 35.4205 35.5770 k = 0.3750-0.1250-0.1250 ( 614 PWs) bands (ev): -70.5028 -68.0148 -37.1682 -36.7509 -35.9548 -34.3060 -33.9079 -33.5016 11.9759 12.3506 14.3779 15.2368 15.8188 16.0712 16.1377 16.1727 17.0484 18.1153 18.7399 20.0530 33.0462 33.6183 34.0057 34.4616 k =-0.2500 0.5000-0.1250 ( 625 PWs) bands (ev): -70.4806 -67.9940 -37.2383 -36.7728 -36.0180 -34.3830 -33.9368 -33.5613 12.9407 13.9538 14.1456 15.0095 15.7160 16.0832 16.3296 16.8801 18.6218 18.8090 19.1812 20.5800 27.9693 28.7569 31.8118 32.3341 k = 0.5000-0.1250-0.2500 ( 625 PWs) bands (ev): -70.4806 -67.9940 -37.2260 -36.7976 -36.0029 -34.3714 -33.9660 -33.5462 12.9399 13.9469 14.1510 15.0141 15.7128 16.0809 16.3409 16.8742 18.6446 18.7708 19.1925 20.5822 27.9692 28.7571 31.8123 32.3333 k = 0.6250-0.3750-0.1250 ( 624 PWs) bands (ev): -70.4709 -67.9855 -37.2558 -36.8064 -36.0282 -34.4039 -33.9790 -33.5682 12.9096 14.3558 14.5560 14.7062 15.5632 16.1393 16.7960 17.4606 18.9131 19.4274 20.5540 21.8173 24.6626 25.7373 31.1291 31.6415 k = 0.1250-0.2500 0.2500 ( 623 PWs) bands (ev): -70.5089 -68.0260 -37.1698 -36.6981 -35.9560 -34.3073 -33.8421 -33.5027 11.6431 11.8073 14.7533 14.8683 15.7530 15.7854 15.9417 16.0576 17.0742 18.1855 19.3612 19.7458 32.9727 33.4983 36.0207 36.3050 k =-0.3750-0.2500 0.7500 ( 623 PWs) bands (ev): -70.4675 -67.9807 -37.2560 -36.8168 -36.0393 -34.4040 -33.9903 -33.5849 13.6366 13.6978 14.6391 14.8830 15.7191 16.0566 16.5543 16.9811 18.9019 19.2916 21.7775 22.9816 26.0906 26.9873 27.3646 28.0225 k = 0.1250-0.3750 0.3750 ( 626 PWs) bands (ev): -70.4868 -68.0036 -37.2357 -36.7398 -36.0090 -34.3891 -33.8868 -33.5554 12.7164 13.4717 14.5804 15.3453 15.4362 15.8365 16.2375 16.3917 18.3586 19.3175 19.5215 19.8919 27.6012 28.4098 34.3565 34.6217 k = 0.2500 0.2500-0.3750 ( 628 PWs) bands (ev): -70.4896 -68.0067 -37.2162 -36.7480 -35.9968 -34.3629 -33.9041 -33.5444 13.1601 13.4690 14.2645 14.7864 15.5200 15.5697 15.9349 16.0213 18.5423 19.3916 19.5802 20.0038 30.5269 31.1295 31.2936 31.8116 k = 0.1250 0.5000-0.5000 ( 624 PWs) bands (ev): -70.4775 -67.9941 -37.2634 -36.7576 -36.0294 -34.4243 -33.9055 -33.5751 12.7227 13.8862 14.4723 15.1804 15.8583 16.1601 16.7051 17.1890 19.3109 19.6146 19.9692 20.4674 24.5657 25.6864 33.7475 33.9886 k =-0.6250 0.2500 0.5000 ( 621 PWs) bands (ev): -70.4763 -67.9911 -37.2433 -36.7884 -36.0244 -34.3940 -33.9590 -33.5724 13.4690 14.3683 14.3892 15.0844 15.2386 15.9996 16.1442 16.2589 19.4522 19.8187 20.8376 21.8555 25.9660 26.8129 29.7516 30.2908 k = 0.2500 0.5000-0.6250 ( 621 PWs) bands (ev): -70.4763 -67.9911 -37.2505 -36.7736 -36.0329 -34.4066 -33.9313 -33.5865 13.4657 14.3526 14.4128 15.0896 15.2290 16.0008 16.1408 16.2605 19.4511 19.8187 20.8407 21.8536 25.9643 26.8153 29.7519 30.2900 k = 0.3750 0.0000 0.0000 ( 615 PWs) bands (ev): -70.5095 -68.0164 -37.1474 -36.7471 -35.9431 -34.2838 -33.8985 -33.4960 11.5150 11.9462 14.5030 15.6288 15.7041 16.2071 16.2749 16.5082 16.6699 17.2661 18.3082 20.1314 35.8942 36.3599 36.8492 36.9818 k =-0.1250 0.5000 0.0000 ( 624 PWs) bands (ev): -70.4854 -67.9921 -37.2272 -36.7571 -36.0238 -34.3660 -33.9137 -33.5765 12.6143 13.6981 13.8167 15.5249 15.9677 16.4175 16.5532 17.0924 17.3927 17.9811 18.2201 20.4180 30.9494 31.6102 34.3518 34.7999 k = 0.5000 0.0000-0.1250 ( 624 PWs) bands (ev): -70.4855 -67.9921 -37.2036 -36.8038 -35.9958 -34.3483 -33.9627 -33.5501 12.6126 13.6948 13.8181 15.5332 15.9660 16.4096 16.5779 17.0883 17.3863 17.9392 18.2502 20.4207 30.9491 31.6108 34.3524 34.7985 k =-0.2500 0.6250 0.0000 ( 619 PWs) bands (ev): -70.4661 -67.9771 -37.2649 -36.8086 -36.0494 -34.4104 -33.9758 -33.5968 12.7873 13.7443 14.7071 15.3347 16.0164 16.2020 16.5899 17.8897 18.3060 19.1631 20.0329 21.6863 25.9476 26.8701 32.7625 33.1770 k = 0.6250 0.0000-0.2500 ( 619 PWs) bands (ev): -70.4661 -67.9771 -37.2554 -36.8275 -36.0379 -34.4036 -33.9945 -33.5869 12.7866 13.7449 14.6993 15.3472 16.0124 16.1994 16.5976 17.8874 18.2969 19.1683 20.0328 21.6869 25.9474 26.8704 32.7628 33.1763 k = 0.6250-0.1250-0.1250 ( 626 PWs) bands (ev): -70.4646 -67.9729 -37.2506 -36.8388 -36.0438 -34.3999 -34.0022 -33.5999 12.9976 13.1846 14.9961 15.5374 16.1186 16.4620 16.7045 17.4084 18.0195 18.8778 19.9343 21.6448 28.8445 29.4460 29.6229 29.9964 k = 0.7500-0.2500-0.1250 ( 625 PWs) bands (ev): -70.4552 -67.9655 -37.2791 -36.8366 -36.0725 -34.4276 -34.0041 -33.6264 12.8648 13.1796 15.3432 15.5130 16.0634 16.3588 16.7980 17.6691 18.3755 19.0932 22.9219 24.0211 25.1084 26.0323 28.4745 29.0796 k = 0.3750 0.5000-0.5000 ( 634 PWs) bands (ev): -70.4750 -67.9862 -37.2432 -36.7895 -36.0425 -34.3989 -33.9537 -33.6110 14.1716 14.4255 14.8793 15.0201 15.0505 15.5333 15.8843 16.0228 19.8369 19.9766 23.5596 24.2887 25.2922 26.0955 28.3903 28.9434 k = 0.6250 0.0000 0.0000 ( 627 PWs) bands (ev): -70.4641 -67.9683 -37.2433 -36.8504 -36.0469 -34.3951 -34.0074 -33.6117 12.6939 13.0450 14.9327 16.3285 16.4003 16.7174 17.0845 17.3149 17.4820 18.2946 19.2222 21.2168 31.3877 31.5494 31.8109 31.9703 k =-0.1250 0.7500 0.0000 ( 633 PWs) bands (ev): -70.4472 -67.9542 -37.2956 -36.8433 -36.1012 -34.4436 -34.0090 -33.6639 12.4885 12.6023 15.5193 15.8427 16.5666 16.8316 17.5473 17.8237 17.9995 19.0405 22.3878 23.4674 27.1161 27.7634 29.6837 30.0371 k = 0.7500 0.0000-0.1250 ( 633 PWs) bands (ev): -70.4472 -67.9542 -37.2845 -36.8649 -36.0884 -34.4375 -34.0278 -33.6534 12.4874 12.6034 15.4933 15.8763 16.5671 16.8360 17.5391 17.8106 18.0020 19.0469 22.3881 23.4671 27.1152 27.7648 29.6834 30.0369 k = 0.8750 0.0000 0.0000 ( 642 PWs) bands (ev): -70.4335 -67.9393 -37.3134 -36.8808 -36.1238 -34.4691 -34.0475 -33.6947 12.0226 12.0279 15.3689 15.4700 17.5951 17.6512 17.7412 18.7124 18.8617 19.0222 25.1666 25.6948 27.6137 27.7797 27.8478 28.0130 the Fermi energy is 17.4649 ev ! total energy = -254.34163512 Ry Harris-Foulkes estimate = -254.34163512 Ry estimated scf accuracy < 3.8E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -114.25797706 Ry hartree contribution = 66.58971412 Ry xc contribution = -34.78936991 Ry ewald contribution = -171.88999319 Ry Hubbard energy = 0.00606035 Ry smearing contrib. (-TS) = -0.00006943 Ry total magnetization = 1.95 0.00 0.00 Bohr mag/cell absolute magnetization = 2.08 Bohr mag/cell convergence has been achieved in 20 iterations Writing output data file Fe.save init_run : 2.43s CPU 2.48s WALL ( 1 calls) electrons : 98.91s CPU 104.18s WALL ( 1 calls) Called by init_run: wfcinit : 1.49s CPU 1.53s WALL ( 1 calls) potinit : 0.04s CPU 0.05s WALL ( 1 calls) Called by electrons: c_bands : 78.32s CPU 82.75s WALL ( 20 calls) sum_band : 16.47s CPU 17.17s WALL ( 20 calls) v_of_rho : 0.75s CPU 0.78s WALL ( 21 calls) newd : 3.12s CPU 3.20s WALL ( 21 calls) mix_rho : 0.27s CPU 0.28s WALL ( 20 calls) Called by c_bands: init_us_2 : 0.57s CPU 0.65s WALL ( 2352 calls) cegterg : 73.47s CPU 77.64s WALL ( 1120 calls) Called by *egterg: h_psi : 53.70s CPU 56.69s WALL ( 3735 calls) s_psi : 2.28s CPU 2.41s WALL ( 3791 calls) g_psi : 0.89s CPU 1.01s WALL ( 2559 calls) cdiaghg : 6.05s CPU 6.25s WALL ( 3679 calls) Called by h_psi: add_vuspsi : 2.00s CPU 2.09s WALL ( 3735 calls) vhpsi : 1.66s CPU 1.80s WALL ( 3735 calls) General routines calbec : 2.69s CPU 2.87s WALL ( 4911 calls) fft : 0.58s CPU 0.63s WALL ( 1007 calls) ffts : 0.04s CPU 0.05s WALL ( 164 calls) fftw : 48.87s CPU 51.56s WALL ( 310972 calls) interpolate : 0.16s CPU 0.16s WALL ( 164 calls) davcio : 0.01s CPU 0.01s WALL ( 112 calls) Parallel routines fft_scatter : 11.80s CPU 12.76s WALL ( 312143 calls) Hubbard U routines new_ns : 0.50s CPU 0.53s WALL ( 20 calls) vhpsi : 1.66s CPU 1.80s WALL ( 3735 calls) PWSCF : 1m42.12s CPU 1m47.50s WALL This run was terminated on: 15:14:38 7May2014 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/0000755000175000017500000000000012341373041015623 5ustar mbambaespresso-5.1/PW/examples/EXX_example/README0000644000175000017500000002450112341373025016507 0ustar mbamba Hybrid Hartree-Fock+DFT functionals are a still evolving feature in PWscf. Only a few functionalities are implemented. WHICH FUNCTIONALS ARE IMPLEMENTED ? The following hybrid functionals are implemented: Hartree-Fock, PBE0, B3LYP, HSE (see Modules/functionals.f90 for updated info and more details). The GAU-PBE functional (free from divergences at q->0) is also implemented. Usually in PWscf the functional to be used is read from pseudopotential files but we do not have so far a pseudopotential generator for hybrid functionals so one needs to use pseudopotentials generated with some other functionals (eg. LDA, PBE, BLYP) and force the usage of a hybrid functional using input variable "input_dft" in system namelist; for instance, input_dft="pbe0" will force the usage of PBE0 irrespective of the functional used in the pseudopotential generation. HOW DOES THE ALGORITHM WORK ? The algorithm is quite standard: see for instance Chawla and Voth, JCP {bf 108}, 4697 (1998); Sorouri, Foulkes and Hine, JCP {\bf 124}, 064105 (2006); Spencer and Alavi, PRB {\bf 77}, 193110 (2008). Basically, one generates auxiliary densities $\rho_{-q}=\phi^{*}_{k+q}*\psi_k$ in real space and transforms them to reciprocal space using FFT; the Poisson equation is solved and the resulting potential is transformed back to real space using FFT, then multiplied by $\phi_{k+q}$ and the results are accumulated. The only tricky point is the treatment of the $q\rightarrow 0$ limit, which is described below, and in the Appendix A.5 of the QE paper (note the reference to the Gygi and Baldereschi paper). See J. Comp. Chem. {\bf 29}, 2098 (2008); JACS {\bf 129}, 10402 (2007) for examples of applications. HOW DOES SELF-CONSISTENCY WORK ? The usage of hybrid functionals is VERY expensive (see later). Moreover self-consistency should be reached on the density-matrix, instead of the charge density as in traditional DFT. This is not feasible with plane waves. The strategy used here is to consider an auxiliary set of wavefunctions psi in addition to the usual set phi and to minimize the auxiliary functional (let us focus on HF for simplicity): E[phi,psi] = T[phi] + E_ext[phi] + E_Hartree[phi] + - 0.5* where Vx[psi] is the fock operator defined with the auxiliary function psi. Taking the functional derivatives w.r.t. phi it can be shown that the scf condition for phi are the HF equation with fixed Fock operator, so Vx does not enter in the scf procedure and one can mix density as usual. The minimum condition w.r.t. psi is simply psi=phi so when both psi and phi are minimized the standard HF energy is obtained. Actually one can show that the functional E[phi,psi] above is E[phi,psi] = E_HF[phi] + dexx[phi,psi] where dexx is a positive definite addition to E_HF . The scf procedure goes as follow. 0) a normal scf (with LDA or similar functionals) is performed 1) hybrid functional is switched on and psi = phi (the current best wfcs) 2) a new scf is performed w.r.t phi, keeping fixed Vx[psi] 3) dexx[phi,psi] is computed and if it exceeds the required tolerance the proceedure is repeated from point 1) HF may require several phi-scf cycles to reach full convergence. B3LYP and PBE0, due to the smaller fraction of HF exchange included, require usually a smaller number of phi-scf cycles HOW EXPENSIVE IS THE CALCULATION ? Very expensive. Applying the Fock operator on a single vawefunction (phi_k,v) requires the calculation of an integral over the whole BZ and all psi bands. For each needed pair psi_k+q,v' and phi_k,v an auxiliary charge density rho(-q+G) is built in real space and then FFT to reciprocal space where the corresponding Poisson equation is solved. This auxiliary potential is FFT back in real space where it is multiplied by psi_k+q,v' and added to Vx[psi]phi... The cost of the operation is therefore roughly NBND * NQS * ( 2 * FFT + ... ) where NQS is the number of q-points chosen to represent the BZ integration, and depends in general on the localization of the Wannier functions of the system. For comparison non-local pseudopotentials in the KB formulation (without exploiting the locality of the KB projetors) cost NKB * (2 * NPW) where NKB is typically of the order of NBND but NPW cost at least an order of magnitude less than an FFT. Therefore even when one can take NQS=1 (for large non-metallic system this should be ok) hybrid functionals will require at least an order of magnitude more resources that a standard calculation. HOW CAN I CHOSE NQS IN INPUT ? In the system namelist there are three variables nqx1,nqx2,nqx3 that define the regular q-grid in the BZ in a way similar to the automatic k-points generation. Their value must be compatible with the k-points used (that is k+q must be equivalent to some other k in the k-points list) Their default value are nqx1=1,nqx2=1,nqx3=1 (BZ integration is approximated by gamma point value only). DIVERGENCE AT q->0 The BZ integral to be performed has a diverging kernel when (q+G)->0 (except GAU-PBE, for which there is no divergent term: set exxdiv_treatment='none', x_gamma_extrapolation=.false.) This is dealt with by adding and subtracting a term with the same divergence that can be integrated analytically and performing numerically the integration for the non divergent residue (variable exxdiv_treatment='gygi-baldereschi', default) [Gygi-Baldereschi, PRB 34, 4405 (1986)] One problem is left: the now non divergent q=0 term is not easily determined since it is a 0/0 (non analytic) limit. Several options have been considered: 1) just discard it ... this is not a good idea in general because it induces an error proportional to 1/(NQS*Omega) in the total energy where Omega is the volume of the Wigner-Seitz cell of the crystal. As one wish to keep NQS as small as possible this may be large. 2) exploit the fact that the term has the above dependence and extract it from a calculation with a given nqx1,nqx2,nqx3 and the one with a grid twice as coarse in each direction. One does not really need to perform two calculations but can do it internally (even when nqx? are not even numbers...). This seems to work and it is set as the default. In order to disable this feature [and get back to option 1)] set x_gamma_extrapolation = .false. 3) perform calculations in q-grids that are shifted away from gamma so that the 0/0 term is not needed. This create some extra complication in the coding and cannot be used with Gamma-only k-point integration. In some tests it didn't seem superior to option 2) ... it was never fully implemented and now it has been removed. 4) use the value at small (q+G) to estimate the (q+G)->0 limit. This again has been tried and found to offer, for low order numerical differentiation, no better results that option 2). It is possible than higher-order formulas yield better results but this has not been explored. This option is currently not implemented but it would be easy to re-implement it. 5) use a spherical cutoff for coulomb potential (exxdiv_treatement='vcut_spheric') In the case of strongly anisotropic supercells, such that one (or two) of the products nki*ai (nki=number of k-points along axis i, ai=cell length along i axis) is much larger than the others (for instance: nkz*az=50 A >> nky*ay=nkx*ax=10 A), it can be shown that the fourier transform of 1/(q+G)**2 does not behave as 1/|r-r'| for small q+G, thus producing instabilities with respect to the k point sampling. In order to avoid this problem you have 2 possibilities: 1) change your supercell to a cubic one (all nki*ai of similar value) 2) use a real-space Wigner-Seitz cutoff. For this you have to turn on exxidv_treatment="vcut_ws" and converge your results with respect to ecutvcut (reciprocal space cutoff for the correction, i.e.: coulomb=1/(q+G)**2 for (q+G)**2> ecutvcut, coulomb=cutoffed_coulomb for (q+G)**2 < ecutvcut). Typical values for ecutvcut range from 0.7 to 2.0. OTHER LIMITATIONS So far only NORM-CONSERVING pseudopotentials are implemented. there is no fundamental problem in defining HF for US pseudopotentials but since some density-like object is required one would need to operate on the dense charge-density FFT grid anyway with no computational gain. Maybe this is not true and one can find ways to perform this integrals more efficently. So far I did not think to much to this point. PARALLEL IMPLEMENTATION ? At present, both plane-wave and k-point parallelization have been implemented. This is what is mostly needed for large systems. An experimental parallelization on the band structure is also available (pw.x -nbgrp N) WHAT PROPERTIES CAN I COMPUTE ? Energy and forces (thanks to Hellmann-Feynman theorem forces do not require extra calculations). In principle also stresses but the corresponding formulas have not yet been coded. So structural optimization is OK if the cell shape is kept fixed. Band structure ? yes and no. Obviously one computes wfc during the scf cycle and their eigenvalues are printed in output. This can be sufficient to draw a band structure or a DOS, but the problem arises when one wishes non-scf calculations in k-points different from those computed during the scf cycle. At present it is not possible because this would require the knowledge of all bands at k+q that we do not have. I do not know how to by-pass this problem. ELECTRIC FIELD I did not dig into this issue but Paolo Umari is using EXX with electric field. For details it would be better to ask him directly. AN EXAMPLE run_example script in this directory performs two series of calculations: 1) total energy of Silicon using different values for nqx, 2) calculation of binding energy of o2,co,n2 from calculations in a 12 au cubic box and gamma sampling. Running it will generate directory "results" to be compared with directory "reference" Please report problems and suggestions to QE developers (in particolar: Stefano de Gironcoli , Paolo Giannozzi , Layla Martin-Samos ), and keep in mind that this feature is still experimental. espresso-5.1/PW/examples/EXX_example/run_example0000755000175000017500000003502512341373025020077 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate the total energy" $ECHO "of silicon and of a few small molecules using hybrid functionals." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pz-vbc.UPF" x_gamma_extrapolation=".TRUE." exxdiv_treatment="gygi-baldereschi" if [ ! -z "$1" ] ; then exxdiv_treatment="$1" ; fi if [ "$exxdiv_treatment" = "vcut_ws" ] ; then x_gamma_extrapolation=.FALSE. ; fi if [ "$exxdiv_treatment" = "vcut_spheric" ] ; then x_gamma_extrapolation=.FALSE. ; fi ecutvcut=0.7 $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO $ECHO $ECHO " running PBE0 calculation for Si with nq=1,2,4 \c" $ECHO for nq in 1 2 4 ; do # self-consistent calculation cat > si.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='silicon', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' tstress = .TRUE. / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='pbe0', nqx1 = $nq, nqx2 = $nq, nqx3 = $nq, exxdiv_treatment='$exxdiv_treatment' ecutvcut=$ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &electrons mixing_beta = 0.7 / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 EOF $ECHO " running the scf calculation for Si with nq = $nq ...\c" $PW_COMMAND < si.in > si.PBE0_nq=${nq}.out $ECHO " done" grep -e ! si.PBE0_nq=${nq}.out | tail -1 # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/silicon* $ECHO " done" done $ECHO $ECHO " running HSE calculation for Si with nq=1,2,4 \c" $ECHO for nq in 1 2 4 ; do # self-consistent calculation cat > si.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='silicon', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='hse', nqx1 = $nq, nqx2 = $nq, nqx3 = $nq, x_gamma_extrapolation = $x_gamma_extrapolation exxdiv_treatment = '$exxdiv_treatment' / &electrons mixing_beta = 0.7 / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 EOF $ECHO " running the scf calculation for Si with nq = $nq ...\c" $PW_COMMAND < si.in > si.hse_nq=${nq}.out $ECHO " done" grep -e ! si.hse_nq=${nq}.out | tail -1 # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/silicon* $ECHO " done" done $ECHO $ECHO " running Gau-PBE calculation for Si with nq=1,2,4 \c" $ECHO for nq in 1 2 4 ; do # self-consistent calculation cat > si.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='silicon', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 2, celldm(1) =10.20, nat= 2, ntyp= 1, ecutwfc =12.0, nbnd = 8, input_dft='gaupbe', nqx1 = $nq, nqx2 = $nq, nqx3 = $nq, x_gamma_extrapolation = .false. exxdiv_treatment = 'none' / &electrons mixing_beta = 0.7 / ATOMIC_SPECIES Si 28.086 Si.pz-vbc.UPF ATOMIC_POSITIONS Si 0.00 0.00 0.00 Si 0.25 0.25 0.25 K_POINTS 10 0.1250000 0.1250000 0.1250000 1.00 0.1250000 0.1250000 0.3750000 3.00 0.1250000 0.1250000 0.6250000 3.00 0.1250000 0.1250000 0.8750000 3.00 0.1250000 0.3750000 0.3750000 3.00 0.1250000 0.3750000 0.6250000 6.00 0.1250000 0.3750000 0.8750000 6.00 0.1250000 0.6250000 0.6250000 3.00 0.3750000 0.3750000 0.3750000 1.00 0.3750000 0.3750000 0.6250000 3.00 EOF $ECHO " running the scf calculation for Si with nq = $nq ...\c" $PW_COMMAND < si.in > si.gaupbe_nq=${nq}.out $ECHO " done" grep -e ! si.gaupbe_nq=${nq}.out | tail -1 # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/silicon* $ECHO " done" done $ECHO $ECHO " running now a few molecules with Gamma sampling ...\c" $ECHO PSEUDO_DIR=$EXAMPLE_DIR/Pseudo $ECHO " pseudo directory changed to: $PSEUDO_DIR" $ECHO for xc in pbe0 hse gaupbe; do $ECHO " Exchange and correlation is: " $xc "...\c" $ECHO if [ "$xc" = "gaupbe" ] ; then x_gamma_extrapolation=.FALSE. ; fi if [ "$xc" = "gaupbe" ] ; then exxdiv_treatment=none ; fi if [ "$xc" = "gaupbe" ] ; then ecutvcut=0.0 ; fi ps=1nlcc ecut=80 cat > o.inp << EOF &CONTROL calculation = 'scf' , restart_mode = 'from_scratch' , outdir = '$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR/', prefix = 'o', disk_io = 'minimal' , iprint = 1 tprnfor = .true. / &SYSTEM ibrav = 1, celldm(1) = 12.0, nat = 1, ntyp = 1, ecutwfc = $ecut , input_dft = '$xc' nspin = 2 starting_magnetization(1) = 0.2, nbnd = 4 tot_magnetization = 2.0 exxdiv_treatment = '$exxdiv_treatment' ecutvcut = $ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &ELECTRONS conv_thr = 0.5d-3 / ATOMIC_SPECIES O 16.0 OPBE$ps.RRKJ3 ATOMIC_POSITIONS angstrom O 0.1 0.2 0.3 K_POINTS gamma #automatic #1 1 1 0 0 0 EOF $ECHO " running oxygen atom..\c" $PW_COMMAND < o.inp > o.$xc.$ps.out-$ecut $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/o.* $ECHO " done" cat > c.inp << EOF &CONTROL calculation = 'scf' , restart_mode = 'from_scratch' , outdir = '$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR/', prefix = 'c', disk_io = 'minimal' , iprint = 1 tprnfor = .true. / &SYSTEM ibrav = 1, celldm(1) = 12.0, nat = 1, ntyp = 1, ecutwfc = $ecut , input_dft='$xc' nspin = 2 starting_magnetization(1) = 0.2, nbnd = 4 tot_magnetization = 2.0 exxdiv_treatment = '$exxdiv_treatment' ecutvcut = $ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &ELECTRONS conv_thr = 0.5d-3 / ATOMIC_SPECIES C 16.0 CPBE$ps.RRKJ3 ATOMIC_POSITIONS angstrom C 0.1 0.2 0.3 K_POINTS gamma #automatic #1 1 1 0 0 0 EOF $ECHO " running carbon atom..\c" $PW_COMMAND < c.inp > c.$xc.$ps.out-$ecut $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/c.* $ECHO " done" cat > n.inp << EOF &CONTROL calculation = 'scf' , restart_mode = 'from_scratch' , outdir = '$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR/', prefix = 'n', disk_io = 'minimal' , iprint = 1 tprnfor = .true. / &SYSTEM ibrav = 1, celldm(1) = 12.0, nat = 1, ntyp = 1, ecutwfc = $ecut , input_dft='$xc' nspin = 2 starting_magnetization(1) = 0.2, nbnd = 4 tot_magnetization = 3.0 exxdiv_treatment = '$exxdiv_treatment' ecutvcut = $ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &ELECTRONS conv_thr = 0.5d-4 / ATOMIC_SPECIES N 16.0 NPBE$ps.RRKJ3 ATOMIC_POSITIONS angstrom N 0.1 0.2 0.3 K_POINTS gamma #automatic #1 1 1 0 0 0 EOF $ECHO " running nitrogen atom..\c" $PW_COMMAND < n.inp > n.$xc.$ps.out-$ecut $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/n.* $ECHO " done" b=0.3169 cat > n2.inp << EOF &CONTROL calculation = 'scf' , restart_mode = 'from_scratch' , outdir = '$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR/', prefix = 'n2', disk_io = 'minimal' , iprint = 1 tprnfor = .true. / &SYSTEM ibrav = 1, celldm(1) = 12.0, nat = 2, ntyp = 1, ecutwfc = $ecut , input_dft='$xc' nbnd = 8 exxdiv_treatment = '$exxdiv_treatment' ecutvcut = $ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &ELECTRONS conv_thr = 1.d-4 / &IONS / ATOMIC_SPECIES N 16.0 NPBE$ps.RRKJ3 ATOMIC_POSITIONS angstrom N $b $b $b N -$b -$b -$b K_POINTS gamma #automatic #1 1 1 0 0 0 EOF $ECHO " running n2 molecule..\c" $PW_COMMAND < n2.inp > n2.$xc.$ps.out-$ecut $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/n2.* $ECHO " done" b=0.3256 cat > co.inp << EOF &CONTROL calculation = 'scf' , restart_mode = 'from_scratch' , outdir = '$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR/', prefix = 'co', disk_io = 'minimal' , iprint = 1 tprnfor = .true. / &SYSTEM ibrav = 1, celldm(1) = 12.0, nat = 2, ntyp = 2, ecutwfc = $ecut , input_dft='$xc' nbnd = 8 exxdiv_treatment = '$exxdiv_treatment' ecutvcut = $ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &ELECTRONS conv_thr = 0.5d-3 / &IONS / ATOMIC_SPECIES C 16.0 CPBE$ps.RRKJ3 O 16.0 OPBE$ps.RRKJ3 ATOMIC_POSITIONS angstrom C $b $b $b O -$b -$b -$b K_POINTS gamma #automatic #1 1 1 0 0 0 EOF $ECHO " running co molecule..\c" $PW_COMMAND < co.inp > co.$xc.$ps.out-$ecut $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/n2.* $ECHO " done" b=0.3478 cat > o2.inp << EOF &CONTROL calculation = 'scf' , restart_mode = 'from_scratch' , outdir = '$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR/', prefix = 'o2', disk_io = 'minimal' , iprint = 1 tprnfor = .true. / &SYSTEM ibrav = 1, celldm(1) = 12.0, nat = 2, ntyp = 1, ecutwfc = $ecut , input_dft='$xc' nspin = 2 starting_magnetization(1) = 0.2, nbnd = 8 tot_magnetization = 2.0 exxdiv_treatment = '$exxdiv_treatment' ecutvcut = $ecutvcut x_gamma_extrapolation = $x_gamma_extrapolation / &ELECTRONS conv_thr = 0.5d-3 / &IONS / ATOMIC_SPECIES O 16.0 OPBE$ps.RRKJ3 ATOMIC_POSITIONS angstrom O $b $b $b O -$b -$b -$b K_POINTS gamma #automatic #1 1 1 0 0 0 EOF $ECHO " running o2 molecule..\c" $PW_COMMAND < o2.inp > o2.$xc.$ps.out-$ecut $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/o2.* $ECHO " done" $ECHO cat > summarize << EOF grep -e ! n.$xc.$ps.out-$ecut | tail -1 | awk '{print \$5}' > N grep -e ! n2.$xc.$ps.out-$ecut | tail -1 | awk '{print \$5}' > N2 paste N2 N | awk '{be= (\$1-\$2*2.0) * 13.6058 * 23.06; print "N2 : ",be}' grep -e ! o.$xc.$ps.out-$ecut | tail -1 | awk '{print \$5}' > O grep -e ! o2.$xc.$ps.out-$ecut | tail -1 | awk '{print \$5}' > O2 paste O2 O | awk '{be= (\$1-\$2*2.0) * 13.6058 * 23.06 ; print "O2 : ",be}' grep -e ! c.$xc.$ps.out-$ecut | tail -1 | awk '{print \$5}' > C grep -e ! co.$xc.$ps.out-$ecut | tail -1 | awk '{print \$5}' > CO paste CO O C | awk '{be= (\$1-\$2-\$3) * 13.6058 * 23.06; print "CO : ",be}' rm C N O CO O2 N2 EOF sh summarize $ECHO done $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PW/examples/EXX_example/README.gaupbe0000644000175000017500000000122012341373025017742 0ustar mbamba HOW TO USE GAU-PBE HYBRID FUNCTIONAL? keyword is input_dft='gaupbe' and it should be used simultaneouly with keyword exxdiv_treatment='none' and x_gamma_extrapolation = .false. for example, input_dft='gaupbe', exxdiv_treatment='none' x_gamma_extrapolation = .false. gau-pbe hybrid functional is free from integrable singularity problem, which enables to decrease k and q grids compared with other hybrid functionals. Please report problems and suggestions to QE developers (in particolar: Jong-Won Song Stefano de Gironcoli , and keep in mind that this feature is still experimental. espresso-5.1/PW/examples/EXX_example/Pseudo/0000755000175000017500000000000012341373041017062 5ustar mbambaespresso-5.1/PW/examples/EXX_example/Pseudo/OPBE1nlcc.RRKJ30000644000175000017500000067153212341373025021325 0ustar mbambaO 2 F T 1 4 3 4 0.60000000000E+01-.31636197285E+02 2 -.70000000000E+010.10000000000E+030.80000000000E+010.12500000000E-01 1095 5 4 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 2S 1 0 2.00 2S 1 0 0.00 2P 2 1 4.00 2P 2 1 0.00 3D 3 2 -2.00 737 2.95721679252E-02 2.99441400946E-02 3.03207911013E-02 3.07021797980E-02 3.10742713349E-02 3.14872198962E-02 3.18734489809E-02 3.23002870935E-02 3.26831550714E-02 3.31065092967E-02 3.35085435940E-02 3.39258133733E-02 3.43665917644E-02 3.47766275303E-02 3.52370206180E-02 3.56878262971E-02 3.60961479322E-02 3.65613190671E-02 3.70586988188E-02 3.74675280525E-02 3.79721221022E-02 3.84464925732E-02 3.89200863039E-02 3.94102586575E-02 3.99271067385E-02 4.04201639499E-02 4.09283495787E-02 4.14519747824E-02 4.19561778119E-02 4.25073314541E-02 4.30260756466E-02 4.35816928286E-02 4.41082869009E-02 4.46688471274E-02 4.52337285518E-02 4.57972993130E-02 4.63804399535E-02 4.69575977566E-02 4.75552232047E-02 4.81560877831E-02 4.87385162200E-02 4.93658277104E-02 4.99983799555E-02 5.06272348016E-02 5.12521220564E-02 5.19045074716E-02 5.25564002056E-02 5.32179945623E-02 5.38849102214E-02 5.45585166877E-02 5.52548447665E-02 5.59452148776E-02 5.66574435719E-02 5.73587703878E-02 5.80805016386E-02 5.88082214778E-02 5.95467082085E-02 6.03049412821E-02 6.10527362145E-02 6.18285961229E-02 6.25964263224E-02 6.33923159141E-02 6.41765255735E-02 6.50116723072E-02 6.57931097199E-02 6.66500843600E-02 6.74819579161E-02 6.83174375866E-02 6.91946319569E-02 7.00602115533E-02 7.09289200521E-02 7.18410615753E-02 7.27416152541E-02 7.36315071523E-02 7.46009816498E-02 7.55018382870E-02 7.64785713125E-02 7.74162718838E-02 7.83948894317E-02 7.93916868676E-02 8.03890708718E-02 8.13963083090E-02 8.24153746654E-02 8.34675018043E-02 8.44945708352E-02 8.55816214916E-02 8.66460169586E-02 8.77372996805E-02 8.88371919088E-02 8.99656317223E-02 9.10888578472E-02 9.22307185276E-02 9.33991414499E-02 9.45689788392E-02 9.57491929964E-02 9.69759720069E-02 9.81818857193E-02 9.94182937215E-02 1.00671224520E-01 1.01936940469E-01 1.03219454580E-01 1.04515526370E-01 1.05828405838E-01 1.07165021229E-01 1.08507614633E-01 1.09874166730E-01 1.11260693739E-01 1.12655407483E-01 1.14068254545E-01 1.15502339279E-01 1.16961942445E-01 1.18432718554E-01 1.19918809723E-01 1.21423081826E-01 1.22957220128E-01 1.24505944135E-01 1.26072735184E-01 1.27647770286E-01 1.29263316683E-01 1.30889111679E-01 1.32534032616E-01 1.34193012632E-01 1.35894166474E-01 1.37592664767E-01 1.39324940529E-01 1.41084449582E-01 1.42849307928E-01 1.44646786197E-01 1.46470705428E-01 1.48317467170E-01 1.50175658230E-01 1.52070295606E-01 1.53978889614E-01 1.55919153737E-01 1.57884495642E-01 1.59861289152E-01 1.61878405491E-01 1.63910039769E-01 1.65970824252E-01 1.68064010079E-01 1.70171830135E-01 1.72315382871E-01 1.74484143837E-01 1.76677848959E-01 1.78899755224E-01 1.81149616754E-01 1.83429100271E-01 1.85735205382E-01 1.88070557357E-01 1.90440668824E-01 1.92831702576E-01 1.95264645892E-01 1.97713231254E-01 2.00202975239E-01 2.02722809078E-01 2.05268008860E-01 2.07856153571E-01 2.10465656385E-01 2.13113151030E-01 2.15796172298E-01 2.18511294601E-01 2.21257711753E-01 2.24040604243E-01 2.26859030278E-01 2.29713013954E-01 2.32604621488E-01 2.35528239325E-01 2.38492249376E-01 2.41490546182E-01 2.44528163758E-01 2.47602027835E-01 2.50719079466E-01 2.53870283336E-01 2.57067354891E-01 2.60299008718E-01 2.63571160133E-01 2.66885487221E-01 2.70249121741E-01 2.73643239655E-01 2.77088324431E-01 2.80568555084E-01 2.84101396994E-01 2.87672284949E-01 2.91293855110E-01 2.94954471490E-01 2.98665306187E-01 3.02425549997E-01 3.06227457984E-01 3.10078236421E-01 3.13980367309E-01 3.17927941884E-01 3.21930015776E-01 3.25978242206E-01 3.30077470354E-01 3.34229093396E-01 3.38432978855E-01 3.42688558009E-01 3.47002086449E-01 3.51365435660E-01 3.55782693513E-01 3.60260709116E-01 3.64789189996E-01 3.69379445191E-01 3.74028268079E-01 3.78728722017E-01 3.83494191491E-01 3.88318593641E-01 3.93202934038E-01 3.98147874019E-01 4.03155324613E-01 4.08228576520E-01 4.13362434175E-01 4.18560341553E-01 4.23825294430E-01 4.29155845177E-01 4.34556623513E-01 4.40021471365E-01 4.45554348814E-01 4.51158661716E-01 4.56834394273E-01 4.62581232258E-01 4.68399150655E-01 4.74291271003E-01 4.80255964449E-01 4.86298087150E-01 4.92414430320E-01 4.98607714477E-01 5.04879409708E-01 5.11229302439E-01 5.17659664738E-01 5.24171328701E-01 5.30763820534E-01 5.37437751439E-01 5.44202545156E-01 5.51042255419E-01 5.57978651497E-01 5.64992894605E-01 5.72100073184E-01 5.79297315951E-01 5.86583498654E-01 5.93959320591E-01 6.01432389022E-01 6.08995669964E-01 6.16657498824E-01 6.24410441848E-01 6.32266348574E-01 6.40220637346E-01 6.48268363226E-01 6.56427060592E-01 6.64681109453E-01 6.73041983831E-01 6.81507804866E-01 6.90077358333E-01 6.98759638593E-01 7.07547478692E-01 7.16446984694E-01 7.25458393171E-01 7.34583704456E-01 7.43821958294E-01 7.53177860661E-01 7.62651106939E-01 7.72244126408E-01 7.81955174370E-01 7.91792353441E-01 8.01750042805E-01 8.11833178255E-01 8.22045835433E-01 8.32384160836E-01 8.42854452949E-01 8.53453497403E-01 8.64188549012E-01 8.75057707888E-01 8.86063679856E-01 8.97207717963E-01 9.08492162166E-01 9.19919158957E-01 9.31488146331E-01 9.43204360275E-01 9.55066443163E-01 9.67078712973E-01 9.79242732169E-01 9.91557472538E-01 1.00402811025E+00 1.01665723012E+00 1.02944113528E+00 1.04239148779E+00 1.05549978529E+00 1.06877475046E+00 1.08221654954E+00 1.09582832862E+00 1.10960863742E+00 1.12356501544E+00 1.13769453810E+00 1.15200422372E+00 1.16649152625E+00 1.18116125995E+00 1.19601632140E+00 1.21105784946E+00 1.22628951141E+00 1.24171026816E+00 1.25732704240E+00 1.27313952904E+00 1.28915050012E+00 1.30536295015E+00 1.32177858959E+00 1.33840163276E+00 1.35523286316E+00 1.37227567230E+00 1.38953358399E+00 1.40700745601E+00 1.42470154420E+00 1.44261784440E+00 1.46075947407E+00 1.47912916164E+00 1.49772896520E+00 1.51656306351E+00 1.53563534017E+00 1.55494445469E+00 1.57449812300E+00 1.59429736352E+00 1.61434484873E+00 1.63464497563E+00 1.65519921022E+00 1.67601360965E+00 1.69708764635E+00 1.71842764005E+00 1.74003516605E+00 1.76191399300E+00 1.78406831708E+00 1.80650074466E+00 1.82921524317E+00 1.85221500046E+00 1.87550400102E+00 1.89908513898E+00 1.92296229807E+00 1.94713993472E+00 1.97162099602E+00 1.99640963774E+00 2.02151035001E+00 2.04692465379E+00 2.07266036583E+00 2.09871781257E+00 2.12510268102E+00 2.15181914970E+00 2.17887129877E+00 2.20626278818E+00 2.23399841492E+00 2.26208235202E+00 2.29051912450E+00 2.31931205083E+00 2.34846759230E+00 2.37798846537E+00 2.40788073451E+00 2.43814709396E+00 2.46879414623E+00 2.49982530546E+00 2.53124684314E+00 2.56306182326E+00 2.59527708800E+00 2.62789541915E+00 2.66092368946E+00 2.69436652269E+00 2.72822872269E+00 2.76251586260E+00 2.79723307572E+00 2.83238616381E+00 2.86797961987E+00 2.90401944961E+00 2.94051199647E+00 2.97746173693E+00 3.01487490810E+00 3.05275711429E+00 3.09111431667E+00 3.12995229096E+00 3.16927736129E+00 3.20909517665E+00 3.24941179407E+00 3.29023469002E+00 3.33156819763E+00 3.37341988613E+00 3.41579573836E+00 3.45870291430E+00 3.50214697596E+00 3.54613565630E+00 3.59067493695E+00 3.63577222012E+00 3.68143379373E+00 3.72766739245E+00 3.77447939777E+00 3.82187769352E+00 3.86986891817E+00 3.91846071787E+00 3.96766039592E+00 4.01747585804E+00 4.06791371499E+00 4.11898308786E+00 4.17069086062E+00 4.22304473538E+00 4.27605361603E+00 4.32972468236E+00 4.38406641042E+00 4.43908724479E+00 4.49479548008E+00 4.55119918758E+00 4.60830765373E+00 4.66612908218E+00 4.72467197301E+00 4.78394572903E+00 4.84395934816E+00 4.90472123634E+00 4.96624124838E+00 5.02852848529E+00 5.09159214874E+00 5.15544204241E+00 5.22008748598E+00 5.28553839109E+00 5.35180463554E+00 5.41889579647E+00 5.48682246878E+00 5.55559466998E+00 5.62522200716E+00 5.69571630393E+00 5.76708655106E+00 5.83934438648E+00 5.91250030526E+00 5.98656473860E+00 6.06154972979E+00 6.13746517480E+00 6.21432332401E+00 6.29213519317E+00 6.37091181664E+00 6.45066536701E+00 6.53140767257E+00 6.61315015625E+00 6.69590505439E+00 6.77968453247E+00 6.86450073683E+00 6.95036622969E+00 7.03729324750E+00 7.12529472816E+00 7.21438313592E+00 7.30457164996E+00 7.39587333723E+00 7.48830116469E+00 7.58186857038E+00 7.67658903178E+00 7.77247604337E+00 7.86954353597E+00 7.96780482826E+00 8.06727475176E+00 8.16796670027E+00 8.26989518160E+00 8.37307474395E+00 8.47751969635E+00 8.58324481996E+00 8.69026502520E+00 8.79859495305E+00 8.90825017172E+00 9.01924531977E+00 9.13159626921E+00 9.24531814505E+00 9.36042666605E+00 9.47693776515E+00 9.59486707007E+00 9.71423091753E+00 9.83504514386E+00 9.95732604017E+00 1.00810903960E+01 1.02063541371E+01 1.03331346717E+01 1.04614479823E+01 1.05913116463E+01 1.07227424692E+01 1.08557573622E+01 1.09903739671E+01 1.11266094255E+01 1.12644813419E+01 1.14040070299E+01 1.15452047289E+01 1.16880918191E+01 1.18326862416E+01 1.19790061547E+01 1.21270695293E+01 1.22768945040E+01 1.24284994957E+01 1.25819027028E+01 1.27371226432E+01 1.28941776093E+01 1.30530862611E+01 1.32138671349E+01 1.33765389898E+01 1.35411202952E+01 1.37076298866E+01 1.38760864691E+01 1.40465089104E+01 1.42189157845E+01 1.43933259667E+01 1.45697582573E+01 1.47482312897E+01 1.49287638864E+01 1.51113747049E+01 1.52960822899E+01 1.54829053052E+01 1.56718622481E+01 1.58629713827E+01 1.60562512119E+01 1.62517197620E+01 1.64493951340E+01 1.66492951675E+01 1.68514378702E+01 1.70558403174E+01 1.72625203175E+01 1.74714947568E+01 1.76827805628E+01 1.78963943824E+01 1.81123526066E+01 1.83306711134E+01 1.85513657150E+01 1.87744517214E+01 1.89999439834E+01 1.92278571682E+01 1.94582052129E+01 1.96910018162E+01 1.99262600657E+01 2.01639923586E+01 2.04042108418E+01 2.06469267354E+01 2.08921507432E+01 2.11398928248E+01 2.13901623352E+01 2.16429675147E+01 2.18983162017E+01 2.21562149581E+01 2.24166696437E+01 2.26796851416E+01 2.29452650730E+01 2.32134121877E+01 2.34841279169E+01 2.37574126204E+01 2.40332651334E+01 2.43116831539E+01 2.45926628829E+01 2.48761988212E+01 2.51622841112E+01 2.54509101034E+01 2.57420664820E+01 2.60357408623E+01 2.63319191443E+01 2.66305850417E+01 2.69317201727E+01 2.72353038896E+01 2.75413131484E+01 2.78497224155E+01 2.81605036274E+01 2.84736259010E+01 2.87890554136E+01 2.91067556239E+01 2.94266864097E+01 2.97488048426E+01 3.00730641704E+01 3.03994140883E+01 3.07278006515E+01 3.10581658956E+01 3.13904475555E+01 3.17245792605E+01 3.20604900046E+01 3.23981039970E+01 3.27373407265E+01 3.30781142250E+01 3.34203332382E+01 3.37639010024E+01 3.41087146139E+01 3.44546653984E+01 3.48016378632E+01 3.51495101854E+01 3.54981534031E+01 3.58474313084E+01 3.61972001440E+01 3.65473084309E+01 3.68975963094E+01 3.72478953965E+01 3.75980285292E+01 3.79478093319E+01 3.82970417780E+01 3.86455198771E+01 3.89930273346E+01 3.93393369676E+01 3.96842107718E+01 4.00273988798E+01 4.03686394775E+01 4.07076585953E+01 4.10441690261E+01 4.13778706714E+01 4.17084494345E+01 4.20355771045E+01 4.23589109082E+01 4.26780928670E+01 4.29927494966E+01 4.33024912211E+01 4.36069120407E+01 4.39055890685E+01 4.41980818797E+01 4.44839323804E+01 4.47626642448E+01 4.50337824517E+01 4.52967729001E+01 4.55511021789E+01 4.57962171679E+01 4.60315446562E+01 4.62564912154E+01 4.64704427033E+01 4.66727645935E+01 4.68628012576E+01 4.70398764236E+01 4.72032927618E+01 4.73523324510E+01 4.74862568669E+01 4.76043072001E+01 4.77057048022E+01 4.77896514990E+01 4.78553305084E+01 4.79019069565E+01 4.79285290689E+01 4.79343290270E+01 4.79184244847E+01 4.78799199104E+01 4.78179083078E+01 4.77314732470E+01 4.76196910264E+01 4.74816330558E+01 4.73163685966E+01 4.71229678912E+01 4.69005055284E+01 4.66480639772E+01 4.63647379413E+01 4.60496384737E+01 4.57018980327E+01 4.53206756378E+01 4.49051625132E+01 4.44545882301E+01 4.39682271795E+01 4.34454057224E+01 4.28855094586E+01 4.22879912795E+01 4.16523796779E+01 4.09782876752E+01 4.02654219946E+01 3.95135927575E+01 3.87227236182E+01 3.78928621568E+01 3.70241905465E+01 3.61170365763E+01 3.51718848487E+01 3.41893878605E+01 3.31703773436E+01 3.21158753416E+01 3.10271049869E+01 2.99055010100E+01 2.87527196357E+01 2.75706475657E+01 2.63614102267E+01 2.51273786558E+01 2.38711749018E+01 2.25956757405E+01 2.13040144266E+01 1.99995797921E+01 1.86860129316E+01 1.73672005173E+01 1.60472647617E+01 1.47305494518E+01 1.34216015788E+01 1.21251484287E+01 1.08460691113E+01 9.58936075394E+00 8.36009875149E+00 7.16339029882E+00 6.00432133576E+00 4.88789648850E+00 3.81897155566E+00 2.80217873011E+00 1.84184416128E+00 9.41898402982E-01 1.05779414551E-01 -6.63670749736E-01 -1.36431540179E+00 -1.99483759724E+00 -2.55485843901E+00 -3.04505695916E+00 -3.46729075190E+00 -3.82471341389E+00 -4.12188692092E+00 -4.36488450252E+00 -4.56137992207E+00 -4.72071832115E+00 -4.85396224016E+00 -4.97390632226E+00 -5.09505287254E+00 -5.23353956897E+00 -5.40700920719E+00 -5.63441086019E+00 -5.93572041606E+00 -6.33156718323E+00 -6.84275325793E+00 -7.48965070108E+00 -8.29146198747E+00 -9.26532915741E+00 -1.04252781130E+01 -1.17809865280E+01 -1.33363669623E+01 -1.50879622296E+01 -1.70231570619E+01 -1.91182210477E+01 -2.13362117020E+01 -2.36247860547E+01 -2.59139939788E+01 -2.81141600122E+01 -3.01140018603E+01 -3.17791884327E+01 -3.29516075115E+01 -3.34496982394E+01 -3.30703120828E+01 -3.15926679212E+01 -2.87854079838E+01 -2.44152292266E+01 -1.82823109269E+01 -1.00505276304E+01 -1.14262216482E+00 1.13284162404E-01 -1.12314480999E-02 1.11353177727E-03 -1.10400310398E-04 1.09451351916E-05 -1.08406377286E-06 1.06917087313E-07 -1.04686176989E-08 8.65702034544E-10 1.96722553728E-10 1.35136377728E+00 737 4.72808830990E-02 4.78756035248E-02 4.84778046176E-02 4.90875804727E-02 4.96851043305E-02 5.03413016671E-02 5.09605664229E-02 5.16381989973E-02 5.22546991758E-02 5.29292000436E-02 5.35747301980E-02 5.42425942215E-02 5.49447203451E-02 5.56044572530E-02 5.63362853850E-02 5.70556020355E-02 5.77159611576E-02 5.84576719725E-02 5.92459378209E-02 5.99102282897E-02 6.07108277286E-02 6.14698926467E-02 6.22289651633E-02 6.30125687154E-02 6.38350302664E-02 6.46250362795E-02 6.54375784812E-02 6.62730606748E-02 6.70824593564E-02 6.79593127680E-02 6.87915852049E-02 6.96772978250E-02 7.05231778666E-02 7.14183862592E-02 7.23209860498E-02 7.32230270134E-02 7.41540849354E-02 7.50779975024E-02 7.60322331772E-02 7.69923885642E-02 7.79279166847E-02 7.89282808667E-02 7.99374465832E-02 8.09429056659E-02 8.19441734102E-02 8.29858110276E-02 8.40282356400E-02 8.50859126416E-02 8.61526711476E-02 8.72304312213E-02 8.83418423624E-02 8.94465132830E-02 9.05836253471E-02 9.17070382604E-02 9.28609056938E-02 9.40249438490E-02 9.52058769703E-02 9.64164681227E-02 9.76140566040E-02 9.88530670046E-02 1.00082519261E-01 1.01353456364E-01 1.02609687591E-01 1.03939837683E-01 1.05195925487E-01 1.06560651107E-01 1.07891859965E-01 1.09230133523E-01 1.10629322469E-01 1.12014117647E-01 1.13405368209E-01 1.14860030415E-01 1.16300417520E-01 1.17727878687E-01 1.19269866331E-01 1.20717107819E-01 1.22273740976E-01 1.23777450238E-01 1.25341219585E-01 1.26932956738E-01 1.28527818205E-01 1.30138941308E-01 1.31769146702E-01 1.33448455821E-01 1.35094792366E-01 1.36828304737E-01 1.38532328539E-01 1.40276812613E-01 1.42036082318E-01 1.43838197867E-01 1.45635598040E-01 1.47461961047E-01 1.49328534305E-01 1.51199822238E-01 1.53088510872E-01 1.55045794983E-01 1.56976388737E-01 1.58952927646E-01 1.60955720052E-01 1.62979478643E-01 1.65029936330E-01 1.67102547229E-01 1.69201943360E-01 1.71337962646E-01 1.73485528893E-01 1.75670097454E-01 1.77886094463E-01 1.80116860096E-01 1.82376567416E-01 1.84669553012E-01 1.87001974723E-01 1.89353558363E-01 1.91730231524E-01 1.94136091547E-01 1.96587653811E-01 1.99063405691E-01 2.01568308387E-01 2.04088510421E-01 2.06669670910E-01 2.09269049900E-01 2.11899277137E-01 2.14553197112E-01 2.17270615305E-01 2.19988234420E-01 2.22757564132E-01 2.25569419154E-01 2.28392938475E-01 2.31266686904E-01 2.34182004136E-01 2.37133853975E-01 2.40106151281E-01 2.43134315238E-01 2.46186605721E-01 2.49288123843E-01 2.52429604513E-01 2.55591851113E-01 2.58815706439E-01 2.62064787263E-01 2.65359812217E-01 2.68705443764E-01 2.72076623449E-01 2.75503245693E-01 2.78970487805E-01 2.82478032805E-01 2.86030564323E-01 2.89627794095E-01 2.93272134772E-01 2.96959414519E-01 3.00693422506E-01 3.04481996840E-01 3.08305671160E-01 3.12194161601E-01 3.16110419306E-01 3.20090571758E-01 3.24119070943E-01 3.28189287982E-01 3.32326137301E-01 3.36499208535E-01 3.40732079289E-01 3.45021333649E-01 3.49362204874E-01 3.53753651669E-01 3.58203055613E-01 3.62709164948E-01 3.67272130576E-01 3.71894903328E-01 3.76569670407E-01 3.81308351016E-01 3.86102400447E-01 3.90959026044E-01 3.95873964306E-01 4.00857113041E-01 4.05895809301E-01 4.11006668695E-01 4.16173877791E-01 4.21405858229E-01 4.26705085533E-01 4.32081731585E-01 4.37509298842E-01 4.43016832703E-01 4.48582064241E-01 4.54229793430E-01 4.59939516307E-01 4.65729215203E-01 4.71582543811E-01 4.77515392878E-01 4.83526724338E-01 4.89605717054E-01 4.95762647945E-01 5.02001146377E-01 5.08312975372E-01 5.14711033137E-01 5.21183661645E-01 5.27737816536E-01 5.34375588923E-01 5.41096914389E-01 5.47901106278E-01 5.54797126992E-01 5.61773625144E-01 5.68836502803E-01 5.75995548319E-01 5.83236370372E-01 5.90575066662E-01 5.98007245930E-01 6.05523237957E-01 6.13142093631E-01 6.20855357229E-01 6.28664582098E-01 6.36570856289E-01 6.44577015004E-01 6.52687859031E-01 6.60896187591E-01 6.69207022781E-01 6.77624741500E-01 6.86147457707E-01 6.94781866897E-01 7.03519419302E-01 7.12365872691E-01 7.21326204244E-01 7.30400549752E-01 7.39588623544E-01 7.48890571702E-01 7.58310962311E-01 7.67847670132E-01 7.77507730903E-01 7.87286776634E-01 7.97188841461E-01 8.07216174545E-01 8.17368658234E-01 8.27649688468E-01 8.38060628359E-01 8.48600991051E-01 8.59271840359E-01 8.70086676986E-01 8.81023175959E-01 8.92112281501E-01 9.03327588419E-01 9.14690615455E-01 9.26197509540E-01 9.37846896041E-01 9.49639968241E-01 9.61587696909E-01 9.73680350258E-01 9.85929934809E-01 9.98326164658E-01 1.01088600675E+00 1.02360321810E+00 1.03647104224E+00 1.04951448827E+00 1.06271171824E+00 1.07607919101E+00 1.08961448793E+00 1.10331614419E+00 1.11719711453E+00 1.13124752357E+00 1.14547625672E+00 1.15988390436E+00 1.17447355306E+00 1.18924411418E+00 1.20420250314E+00 1.21934856124E+00 1.23468599596E+00 1.25021261966E+00 1.26594016525E+00 1.28186097069E+00 1.29798230636E+00 1.31431021794E+00 1.33083955728E+00 1.34757952860E+00 1.36452588584E+00 1.38168919554E+00 1.39906707767E+00 1.41666367536E+00 1.43448107704E+00 1.45252290969E+00 1.47079253733E+00 1.48928949709E+00 1.50802151614E+00 1.52698702608E+00 1.54619246457E+00 1.56564038840E+00 1.58532970284E+00 1.60526807141E+00 1.62545951259E+00 1.64589916574E+00 1.66660388494E+00 1.68756202439E+00 1.70878629618E+00 1.73027731398E+00 1.75203991795E+00 1.77407244872E+00 1.79638596164E+00 1.81897672881E+00 1.84185507387E+00 1.86501781506E+00 1.88847217837E+00 1.91222267482E+00 1.93627134824E+00 1.96062381521E+00 1.98527904903E+00 2.01024727674E+00 2.03552852013E+00 2.06112715388E+00 2.08704787407E+00 2.11329356492E+00 2.13987065792E+00 2.16678073842E+00 2.19402909087E+00 2.22162118337E+00 2.24955872928E+00 2.27784824646E+00 2.30649306899E+00 2.33549811862E+00 2.36486777555E+00 2.39460547850E+00 2.42471767339E+00 2.45521038678E+00 2.48608228170E+00 2.51734481554E+00 2.54899999381E+00 2.58105216448E+00 2.61350812175E+00 2.64637052056E+00 2.67964851735E+00 2.71334196484E+00 2.74746040352E+00 2.78200667558E+00 2.81698672905E+00 2.85240712668E+00 2.88827218874E+00 2.92458817091E+00 2.96136023280E+00 2.99859466695E+00 3.03629623709E+00 3.07447110913E+00 3.11312627058E+00 3.15226658215E+00 3.19189862149E+00 3.23202944888E+00 3.27266193716E+00 3.31380786258E+00 3.35546842975E+00 3.39765242350E+00 3.44036650945E+00 3.48361722180E+00 3.52741050989E+00 3.57175394427E+00 3.61665421489E+00 3.66211852689E+00 3.70815238606E+00 3.75476575046E+00 3.80196329818E+00 3.84975444460E+00 3.89814385833E+00 3.94714173655E+00 3.99675378489E+00 4.04698975575E+00 4.09785487998E+00 4.14935974054E+00 4.20150919063E+00 4.25431387767E+00 4.30778128324E+00 4.36191915199E+00 4.41673633077E+00 4.47224105474E+00 4.52844251512E+00 4.58534806860E+00 4.64296721825E+00 4.70130995963E+00 4.76038365973E+00 4.82019819019E+00 4.88076253769E+00 4.94208620716E+00 5.00417845497E+00 5.06704932600E+00 5.13070792349E+00 5.19516394139E+00 5.26042909262E+00 5.32651066409E+00 5.39342052565E+00 5.46116832446E+00 5.52976538151E+00 5.59922077574E+00 5.66954666861E+00 5.74075276063E+00 5.81285077570E+00 5.88585087823E+00 5.95976528971E+00 6.03460433948E+00 6.11038049096E+00 6.18710446585E+00 6.26478842505E+00 6.34344406078E+00 6.42308393430E+00 6.50371878985E+00 6.58536293988E+00 6.66802754811E+00 6.75172495477E+00 6.83646921349E+00 6.92227195801E+00 7.00914667324E+00 7.09710681603E+00 7.18616564854E+00 7.27633613573E+00 7.36763297824E+00 7.46006936367E+00 7.55365891760E+00 7.64841655955E+00 7.74435665530E+00 7.84149275387E+00 7.93984046874E+00 8.03941437059E+00 8.14022918740E+00 8.24230052141E+00 8.34564330778E+00 8.45027333946E+00 8.55620638059E+00 8.66345779161E+00 8.77204439014E+00 8.88198219938E+00 8.99328668263E+00 9.10597645586E+00 9.22006615401E+00 9.33557417181E+00 9.45251731164E+00 9.57091230702E+00 9.69077818898E+00 9.81213097873E+00 9.93499004317E+00 1.00593730285E+01 1.01852976283E+01 1.03127831665E+01 1.04418485027E+01 1.05725119465E+01 1.07047929786E+01 1.08387110019E+01 1.09742854158E+01 1.11115362287E+01 1.12504830128E+01 1.13911463528E+01 1.15335461876E+01 1.16777034896E+01 1.18236390952E+01 1.19713737222E+01 1.21209287774E+01 1.22723257465E+01 1.24255861620E+01 1.25807321958E+01 1.27377851785E+01 1.28967686009E+01 1.30577039456E+01 1.32206142913E+01 1.33855227984E+01 1.35524523101E+01 1.37214263615E+01 1.38924686913E+01 1.40656026804E+01 1.42408530430E+01 1.44182432014E+01 1.45977983423E+01 1.47795426198E+01 1.49635010474E+01 1.51496989640E+01 1.53381612970E+01 1.55289139980E+01 1.57219823308E+01 1.59173922229E+01 1.61151703258E+01 1.63153420900E+01 1.65179350798E+01 1.67229748643E+01 1.69304892835E+01 1.71405051054E+01 1.73530492643E+01 1.75681497432E+01 1.77858338351E+01 1.80061295022E+01 1.82290643107E+01 1.84546671486E+01 1.86829657041E+01 1.89139884698E+01 1.91477642575E+01 1.93843216247E+01 1.96236893762E+01 1.98658967188E+01 2.01109725585E+01 2.03589462596E+01 2.06098468741E+01 2.08637039770E+01 2.11205469721E+01 2.13804055809E+01 2.16433091148E+01 2.19092874023E+01 2.21783700853E+01 2.24505870310E+01 2.27259676865E+01 2.30045419169E+01 2.32863394720E+01 2.35713898545E+01 2.38597228216E+01 2.41513678815E+01 2.44463543659E+01 2.47447117548E+01 2.50464692710E+01 2.53516557828E+01 2.56603004691E+01 2.59724318051E+01 2.62880783389E+01 2.66072682132E+01 2.69300297699E+01 2.72563899912E+01 2.75863768493E+01 2.79200169657E+01 2.82573369664E+01 2.85983630257E+01 2.89431208958E+01 2.92916355401E+01 2.96439317595E+01 3.00000335744E+01 3.03599642771E+01 3.07237468195E+01 3.10914030340E+01 3.14629543243E+01 3.18384211332E+01 3.22178228245E+01 3.26011782998E+01 3.29885050362E+01 3.33798196606E+01 3.37751376205E+01 3.41744733756E+01 3.45778396697E+01 3.49852485301E+01 3.53967100259E+01 3.58122330703E+01 3.62318250259E+01 3.66554912932E+01 3.70832358535E+01 3.75150606283E+01 3.79509658201E+01 3.83909492618E+01 3.88350069553E+01 3.92831325517E+01 3.97353170554E+01 4.01915492948E+01 4.06518152998E+01 4.11160984674E+01 4.15843789805E+01 4.20566342962E+01 4.25328384670E+01 4.30129622563E+01 4.34969728844E+01 4.39848338301E+01 4.44765046843E+01 4.49719410795E+01 4.54710942636E+01 4.59739109164E+01 4.64803334443E+01 4.69902987470E+01 4.75037392929E+01 4.80205816655E+01 4.85407469283E+01 4.90641504819E+01 4.95907015089E+01 5.01203025580E+01 5.06528497980E+01 5.11882322499E+01 5.17263315542E+01 5.22670220391E+01 5.28101696592E+01 5.33556322123E+01 5.39032590011E+01 5.44528899187E+01 5.50043559447E+01 5.55574776400E+01 5.61120658114E+01 5.66679203412E+01 5.72248300101E+01 5.77825720405E+01 5.83409118240E+01 5.88996019631E+01 5.94583820388E+01 6.00169782192E+01 6.05751026168E+01 6.11324526383E+01 6.16887105114E+01 6.22435427705E+01 6.27965994002E+01 6.33475138950E+01 6.38959017550E+01 6.44413603324E+01 6.49834685028E+01 6.55217851008E+01 6.60558493731E+01 6.65851793794E+01 6.71092717922E+01 6.76276012262E+01 6.81396192944E+01 6.86447541455E+01 6.91424095995E+01 6.96319646407E+01 7.01127727268E+01 7.05841608306E+01 7.10454292195E+01 7.14958506219E+01 7.19346695366E+01 7.23611016540E+01 7.27743334942E+01 7.31735218094E+01 7.35577930102E+01 7.39262429541E+01 7.42779362119E+01 7.46119065036E+01 7.49271556545E+01 7.52226542175E+01 7.54973408611E+01 7.57501231484E+01 7.59798770761E+01 7.61854479314E+01 7.63656507663E+01 7.65192708319E+01 7.66450648683E+01 7.67417618336E+01 7.68080645909E+01 7.68426511286E+01 7.68441767191E+01 7.68112758392E+01 7.67425646317E+01 7.66366438155E+01 7.64921017887E+01 7.63075180559E+01 7.60814671704E+01 7.58125232386E+01 7.54992647724E+01 7.51402797936E+01 7.47341721137E+01 7.42795672940E+01 7.37751199528E+01 7.32195212360E+01 7.26115069982E+01 7.19498667135E+01 7.12334528795E+01 7.04611914052E+01 6.96320921993E+01 6.87452608963E+01 6.77999109819E+01 6.67953768268E+01 6.57311271092E+01 6.46067790167E+01 6.34221131121E+01 6.21770886122E+01 6.08718591013E+01 5.95067887999E+01 5.80824691337E+01 5.65997351919E+01 5.50596826133E+01 5.34636841543E+01 5.18134058969E+01 5.01108231366E+01 4.83582354679E+01 4.65582806374E+01 4.47139474202E+01 4.28285866276E+01 4.09059200751E+01 3.89500472166E+01 3.69654490536E+01 3.49569883336E+01 3.29299063711E+01 3.08898151313E+01 2.88426845863E+01 2.67948245224E+01 2.47528601051E+01 2.27237009991E+01 2.07145025767E+01 1.87326195113E+01 1.67855508760E+01 1.48808756212E+01 1.30261785901E+01 1.12289664491E+01 9.49657286041E+00 7.83605312977E+00 6.25406773001E+00 4.75675542944E+00 3.34959551083E+00 2.03726063941E+00 8.23460560811E-01 -2.89221674614E-01 -1.29949960856E+00 -2.20755612248E+00 -3.01521791165E+00 -3.72612615541E+00 -4.34590077815E+00 -4.88229206298E+00 -5.34531386248E+00 -5.74735158434E+00 -6.10323593552E+00 -6.43027324787E+00 -6.74822130862E+00 -7.07919836669E+00 -7.44751096895E+00 -7.87938555282E+00 -8.40258669473E+00 -9.04590308914E+00 -9.83848231086E+00 -1.08089930548E+01 -1.19845940983E+01 -1.33896891477E+01 -1.50444481166E+01 -1.69630782013E+01 -1.91518324807E+01 -2.16067514181E+01 -2.43111424731E+01 -2.72328184033E+01 -3.03211343828E+01 -3.35038915746E+01 -3.66842097927E+01 -3.97375191778E+01 -4.25088792396E+01 -4.48109107517E+01 -4.64227208577E+01 -4.70903218492E+01 -4.65291971503E+01 -4.44298122386E+01 -4.04674889865E+01 -3.43145061004E+01 -2.56898641776E+01 -1.41207870624E+01 -1.60520172564E+00 1.59146162727E-01 -1.57783915164E-02 1.56433438150E-03 -1.55094814978E-04 1.53761652065E-05 -1.52292825191E-06 1.50197080879E-07 -1.47062284450E-08 1.21488732629E-09 2.78623579728E-10 -9.55816237693E-01 6.77125366118E-01 737 -9.93878423398E-05 -1.01903857916E-04 -1.04483566748E-04 -1.07128581241E-04 -1.09840554614E-04 -1.12621181943E-04 -1.15472201211E-04 -1.18395394399E-04 -1.21392588601E-04 -1.24465657162E-04 -1.27616520852E-04 -1.30847149066E-04 -1.34159561054E-04 -1.37555827183E-04 -1.41038070232E-04 -1.44608466721E-04 -1.48269248265E-04 -1.52022702975E-04 -1.55871176886E-04 -1.59817075421E-04 -1.63862864900E-04 -1.68011074077E-04 -1.72264295719E-04 -1.76625188235E-04 -1.81096477326E-04 -1.85680957700E-04 -1.90381494810E-04 -1.95201026649E-04 -2.00142565586E-04 -2.05209200251E-04 -2.10404097459E-04 -2.15730504196E-04 -2.21191749647E-04 -2.26791247274E-04 -2.32532496951E-04 -2.38419087155E-04 -2.44454697202E-04 -2.50643099554E-04 -2.56988162172E-04 -2.63493850935E-04 -2.70164232119E-04 -2.77003474939E-04 -2.84015854156E-04 -2.91205752744E-04 -2.98577664636E-04 -3.06136197528E-04 -3.13886075762E-04 -3.21832143277E-04 -3.29979366637E-04 -3.38332838136E-04 -3.46897778982E-04 -3.55679542556E-04 -3.64683617764E-04 -3.73915632463E-04 -3.83381356981E-04 -3.93086707723E-04 -4.03037750871E-04 -4.13240706171E-04 -4.23701950824E-04 -4.34428023473E-04 -4.45425628288E-04 -4.56701639155E-04 -4.68263103976E-04 -4.80117249071E-04 -4.92271483697E-04 -5.04733404679E-04 -5.17510801156E-04 -5.30611659452E-04 -5.44044168067E-04 -5.57816722795E-04 -5.71937931972E-04 -5.86416621857E-04 -6.01261842147E-04 -6.16482871636E-04 -6.32089224012E-04 -6.48090653806E-04 -6.64497162489E-04 -6.81319004719E-04 -6.98566694758E-04 -7.16251013037E-04 -7.54930227396E-04 -7.52941875088E-04 -7.72133487755E-04 -7.91566824085E-04 -8.11750894117E-04 -8.32206543332E-04 -8.53446452035E-04 -8.74973561878E-04 -8.97221290506E-04 -9.19633279087E-04 -9.42989133957E-04 -9.66905729958E-04 -9.91368336087E-04 -1.01658365783E-03 -1.04233698464E-03 -1.06861062503E-03 -1.09577052901E-03 -1.12330775482E-03 -1.15173683831E-03 -1.18104233451E-03 -1.21085631537E-03 -1.24161662360E-03 -1.27292611780E-03 -1.30520524362E-03 -1.33834772754E-03 -1.37209105164E-03 -1.40682052862E-03 -1.44244275260E-03 -1.47914734817E-03 -1.51635546624E-03 -1.55485700334E-03 -1.59399787058E-03 -1.63454925341E-03 -1.67586639863E-03 -1.71831734619E-03 -1.76179671111E-03 -1.80627356094E-03 -1.85203707965E-03 -1.89910966585E-03 -1.94709549362E-03 -1.99626340116E-03 -2.04704707834E-03 -2.09854638675E-03 -2.15181828081E-03 -2.20623714218E-03 -2.26218184946E-03 -2.31929858879E-03 -2.37827717511E-03 -2.43828154871E-03 -2.50003364760E-03 -2.56349666504E-03 -2.62812856357E-03 -2.69479578583E-03 -2.76299737014E-03 -2.83287272994E-03 -2.90472108757E-03 -2.97826485204E-03 -3.05355970236E-03 -3.13076234920E-03 -3.21018906161E-03 -3.29147165218E-03 -3.37464845099E-03 -3.46013710156E-03 -3.54784008841E-03 -3.63750039390E-03 -3.72948006896E-03 -3.82409770851E-03 -3.92083854576E-03 -4.01996761202E-03 -4.12178441289E-03 -4.22622806195E-03 -4.33313541165E-03 -4.44274936130E-03 -4.55524362129E-03 -4.67071404854E-03 -4.78894605398E-03 -4.91006958609E-03 -5.03441434073E-03 -5.16180297817E-03 -5.29257372226E-03 -5.42647773507E-03 -5.56372425559E-03 -5.70479512134E-03 -5.84903083141E-03 -5.99717136023E-03 -6.14879609168E-03 -6.30479870872E-03 -6.46411411025E-03 -6.62799729887E-03 -6.79558950273E-03 -6.96771021702E-03 -7.14393620930E-03 -7.32492764555E-03 -7.51022027794E-03 -7.70045634326E-03 -7.89542278727E-03 -8.09519401619E-03 -8.30038130406E-03 -8.51020715191E-03 -8.72575755680E-03 -8.94667166246E-03 -9.17301959122E-03 -9.40535919622E-03 -9.64335597385E-03 -9.88763008708E-03 -1.01377510286E-02 -1.03944537424E-02 -1.06575140047E-02 -1.09274114947E-02 -1.12039640148E-02 -1.14875100828E-02 -1.17783015520E-02 -1.20765226466E-02 -1.23823851306E-02 -1.26957436430E-02 -1.30171127932E-02 -1.33465180742E-02 -1.36846412352E-02 -1.40308047561E-02 -1.43861129682E-02 -1.47503171954E-02 -1.51237531797E-02 -1.55065336916E-02 -1.58990994183E-02 -1.63015986988E-02 -1.67142426434E-02 -1.71373284527E-02 -1.75712889862E-02 -1.80158961352E-02 -1.84720257717E-02 -1.89396385691E-02 -1.94190414825E-02 -1.99105624512E-02 -2.04147227701E-02 -2.09315239806E-02 -2.14612622650E-02 -2.20046775279E-02 -2.25616694685E-02 -2.31328630249E-02 -2.37184145510E-02 -2.43187553265E-02 -2.49343958778E-02 -2.55654706134E-02 -2.62127503238E-02 -2.68763360527E-02 -2.75566101372E-02 -2.82542471814E-02 -2.89694800661E-02 -2.97028710816E-02 -3.04547029335E-02 -3.12255612808E-02 -3.20161746157E-02 -3.28265661095E-02 -3.36574915116E-02 -3.45095014139E-02 -3.53831044860E-02 -3.62788990631E-02 -3.71971718694E-02 -3.81386872334E-02 -3.91040448704E-02 -4.00941023978E-02 -4.11091529650E-02 -4.21495078270E-02 -4.32166604919E-02 -4.43105175210E-02 -4.54323048671E-02 -4.65821864955E-02 -4.77614078101E-02 -4.89705189754E-02 -5.02100129815E-02 -5.14810920555E-02 -5.27842018994E-02 -5.41202647044E-02 -5.54904050582E-02 -5.68948861879E-02 -5.83351896400E-02 -5.98118271729E-02 -6.13259306066E-02 -6.28782367736E-02 -6.44698184852E-02 -6.61019310809E-02 -6.77749459853E-02 -6.94906430310E-02 -7.12494849425E-02 -7.30529940041E-02 -7.49022364815E-02 -7.67982940620E-02 -7.87423462918E-02 -8.07354114877E-02 -8.27790866606E-02 -8.48743054993E-02 -8.70228285218E-02 -8.92255700754E-02 -9.14839742794E-02 -9.37996787603E-02 -9.61738779919E-02 -9.86083258740E-02 -1.01104323016E-01 -1.03663414512E-01 -1.06287252142E-01 -1.08977657539E-01 -1.11735995366E-01 -1.14564172502E-01 -1.17464134824E-01 -1.20437153083E-01 -1.23485671893E-01 -1.26611259238E-01 -1.29815902391E-01 -1.33101650974E-01 -1.36470607270E-01 -1.39924574642E-01 -1.43466325202E-01 -1.47097659485E-01 -1.50820638018E-01 -1.54637968775E-01 -1.58551878686E-01 -1.62564884543E-01 -1.66679343024E-01 -1.70898131854E-01 -1.75223326632E-01 -1.79658177326E-01 -1.84205269110E-01 -1.88867443171E-01 -1.93647433917E-01 -1.98548340813E-01 -2.03573551641E-01 -2.08725713552E-01 -2.14008166484E-01 -2.19424505507E-01 -2.24977712143E-01 -2.30671248061E-01 -2.36509210993E-01 -2.42494688877E-01 -2.48631396664E-01 -2.54923861324E-01 -2.61375182468E-01 -2.67989746633E-01 -2.74771488542E-01 -2.81725108370E-01 -2.88854488336E-01 -2.96164284291E-01 -3.03658860126E-01 -3.11343227863E-01 -3.19221696435E-01 -3.27299793549E-01 -3.35581961755E-01 -3.44073657944E-01 -3.52780205166E-01 -3.61707069350E-01 -3.70859307009E-01 -3.80243422981E-01 -3.89864831939E-01 -3.99729411080E-01 -4.09843516360E-01 -4.20213591044E-01 -4.30845612994E-01 -4.41746873054E-01 -4.52923419900E-01 -4.64382676272E-01 -4.76131902739E-01 -4.88178152173E-01 -5.00528802427E-01 -5.13191766524E-01 -5.26175065902E-01 -5.39486387249E-01 -5.53134464303E-01 -5.67127441878E-01 -5.81474074560E-01 -5.96183427007E-01 -6.11264792594E-01 -6.26727004366E-01 -6.42580412454E-01 -6.58834489032E-01 -6.75499117232E-01 -6.92585042897E-01 -7.10102647236E-01 -7.28063131733E-01 -7.46477406894E-01 -7.65357039956E-01 -7.84713514769E-01 -8.04559184793E-01 -8.24906245768E-01 -8.45767215581E-01 -8.67155421311E-01 -8.89083663057E-01 -9.11565954489E-01 -9.34616139466E-01 -9.58248331215E-01 -9.82477628184E-01 -1.00731854654E+00 -1.03278684235E+00 -1.05889813915E+00 -1.08566899601E+00 -1.11311546574E+00 -1.14125500251E+00 -1.17010485014E+00 -1.19968290403E+00 -1.23000750145E+00 -1.26109730644E+00 -1.29297181740E+00 -1.32565065219E+00 -1.35915400112E+00 -1.39350280355E+00 -1.42871808124E+00 -1.46482166916E+00 -1.50183598690E+00 -1.53978353097E+00 -1.57868853484E+00 -1.61857419864E+00 -1.65946571610E+00 -1.70138814672E+00 -1.74436737902E+00 -1.78842999028E+00 -1.83360302143E+00 -1.87991445593E+00 -1.92739294232E+00 -1.97606724291E+00 -2.02596810199E+00 -2.07712581779E+00 -2.12957178997E+00 -2.18333856758E+00 -2.23845910527E+00 -2.29496711465E+00 -2.35289771459E+00 -2.41228603718E+00 -2.47316914185E+00 -2.53558369283E+00 -2.59956902127E+00 -2.66516295900E+00 -2.73240694741E+00 -2.80134143274E+00 -2.87200888340E+00 -2.94445289318E+00 -3.01871686003E+00 -3.09484729864E+00 -3.17288998540E+00 -3.25289284566E+00 -3.33490461039E+00 -3.41897542249E+00 -3.50515622514E+00 -3.59349989643E+00 -3.68406008788E+00 -3.77689159119E+00 -3.87205132590E+00 -3.96959693552E+00 -4.06958752802E+00 -4.17208366125E+00 -4.27714768026E+00 -4.38484326111E+00 -4.49523539860E+00 -4.60839082811E+00 -4.72437794534E+00 -4.84326680733E+00 -4.96512925954E+00 -5.09003833873E+00 -5.21806944961E+00 -5.34929984090E+00 -5.48380762566E+00 -5.62167444370E+00 -5.76298210727E+00 -5.90781589198E+00 -6.05626206683E+00 -6.20840928226E+00 -6.36434873883E+00 -6.52417287462E+00 -6.68797730959E+00 -6.85585888483E+00 -7.02791806303E+00 -7.20425602811E+00 -7.38497768036E+00 -7.57019014042E+00 -7.76000224146E+00 -7.95452625437E+00 -8.15387649479E+00 -8.35817049704E+00 -8.56752759075E+00 -8.78207088059E+00 -9.00192572665E+00 -9.22722054301E+00 -9.45808667909E+00 -9.69465847958E+00 -9.93707328386E+00 -1.01854713374E+01 -1.04399968183E+01 -1.07007961721E+01 -1.09680198167E+01 -1.12418217262E+01 -1.15223581311E+01 -1.18097902590E+01 -1.21042819246E+01 -1.24060009131E+01 -1.27151185621E+01 -1.30318099085E+01 -1.33562541863E+01 -1.36886340635E+01 -1.40291364750E+01 -1.43779522827E+01 -1.47352763638E+01 -1.51013077125E+01 -1.54762499032E+01 -1.58603102766E+01 -1.62537007449E+01 -1.66566379073E+01 -1.70693425007E+01 -1.74920398654E+01 -1.79249599870E+01 -1.83683375361E+01 -1.88224121050E+01 -1.92874277178E+01 -1.97636333475E+01 -2.02512831485E+01 -2.07506359239E+01 -2.12619556128E+01 -2.17855111971E+01 -2.23215770733E+01 -2.28704320051E+01 -2.34323611390E+01 -2.40076537705E+01 -2.45966053032E+01 -2.51995154491E+01 -2.58166905734E+01 -2.64484415635E+01 -2.70950849809E+01 -2.77569425603E+01 -2.84343417054E+01 -2.91276154988E+01 -2.98371014893E+01 -3.05631437664E+01 -3.13060913426E+01 -3.20662985268E+01 -3.28441251028E+01 -3.36399364373E+01 -3.44541021470E+01 -3.52869988333E+01 -3.61390067665E+01 -3.70105117617E+01 -3.79019046185E+01 -3.88135811553E+01 -3.97459420423E+01 -4.06993919706E+01 -4.16743409385E+01 -4.26712027944E+01 -4.36903962069E+01 -4.47323425924E+01 -4.57974685271E+01 -4.68862032998E+01 -4.79989795960E+01 -4.91362337948E+01 -5.02984043987E+01 -5.14859321313E+01 -5.26992608237E+01 -5.39388352704E+01 -5.52051018179E+01 -5.64985079556E+01 -5.78195013900E+01 -5.91685303586E+01 -6.05460418937E+01 -6.19524830523E+01 -6.33882980267E+01 -6.48539301296E+01 -6.63498191717E+01 -6.78764010633E+01 -6.94341082497E+01 -7.10233680099E+01 -7.26446012841E+01 -7.42982225399E+01 -7.59846387741E+01 -7.77042484137E+01 -7.94574397560E+01 -8.12445911490E+01 -8.30660684632E+01 -8.49222249950E+01 -8.68133994313E+01 -8.87399153942E+01 -9.07020784316E+01 -9.27001770910E+01 -9.47344786810E+01 -9.68052300197E+01 -9.89126541117E+01 -1.01056948871E+02 -1.03238285707E+02 -1.05456807364E+02 -1.07712625786E+02 -1.10005820244E+02 -1.12336434652E+02 -1.14704476096E+02 -1.17109912414E+02 -1.19552668484E+02 -1.22032625649E+02 -1.24549617440E+02 -1.27103427617E+02 -1.29693787177E+02 -1.32320371525E+02 -1.34982797371E+02 -1.37680618961E+02 -1.40413325811E+02 -1.43180339231E+02 -1.45981007820E+02 -1.48814605130E+02 -1.51680324910E+02 -1.54577278710E+02 -1.57504490314E+02 -1.60460893160E+02 -1.63445325508E+02 -1.66456526241E+02 -1.69493131108E+02 -1.72553667937E+02 -1.75636552093E+02 -1.78740082695E+02 -1.81862436449E+02 -1.85001665395E+02 -1.88155689459E+02 -1.91322293910E+02 -1.94499122809E+02 -1.97683676127E+02 -2.00873302339E+02 -2.04065196239E+02 -2.07256391239E+02 -2.10443757862E+02 -2.13623995307E+02 -2.16793630006E+02 -2.19949007828E+02 -2.23086292313E+02 -2.26201458248E+02 -2.29290288189E+02 -2.32348367667E+02 -2.35371082559E+02 -2.38353613333E+02 -2.41290932651E+02 -2.44177802636E+02 -2.47008770850E+02 -2.49778168190E+02 -2.52480106282E+02 -2.55108477110E+02 -2.57656949653E+02 -2.60118971044E+02 -2.62487764895E+02 -2.64756332568E+02 -2.66917454524E+02 -2.68963690668E+02 -2.70887384549E+02 -2.72680666179E+02 -2.74335456557E+02 -2.75843472309E+02 -2.77196232690E+02 -2.78385067602E+02 -2.79401124795E+02 -2.80235381068E+02 -2.80878653468E+02 -2.81321610898E+02 -2.81554790508E+02 -2.81568611002E+02 -2.81353392696E+02 -2.80899375410E+02 -2.80196740480E+02 -2.79235634122E+02 -2.78006192707E+02 -2.76498571278E+02 -2.74702973173E+02 -2.72609682691E+02 -2.70209100954E+02 -2.67491783966E+02 -2.64448483581E+02 -2.61070191389E+02 -2.57348186452E+02 -2.53274085766E+02 -2.48839898238E+02 -2.44038082759E+02 -2.38861609430E+02 -2.33304024456E+02 -2.27359520606E+02 -2.21023010413E+02 -2.14290202808E+02 -2.07157686581E+02 -1.99623016644E+02 -1.91684804503E+02 -1.83342813935E+02 -1.74598061573E+02 -1.65452919771E+02 -1.55911226216E+02 -1.45978397314E+02 -1.35661543064E+02 -1.24969588657E+02 -1.13913397175E+02 -1.02505894983E+02 -9.07622012759E+01 -7.86997551724E+01 -6.63384462406E+01 -5.37007432661E+01 -4.08118199354E+01 -2.76996780730E+01 -1.43952658805E+01 -9.32588705810E-01 1.26511904669E+01 2.63156592423E+01 4.00170816904E+01 5.37083388935E+01 6.73388902986E+01 8.08547604363E+01 9.41985500333E+01 1.07309481774E+02 1.20123479589E+02 1.32573289852E+02 1.44588646129E+02 1.56096484730E+02 1.67021215079E+02 1.77285050441E+02 1.86808404205E+02 1.95510357545E+02 2.03309203591E+02 2.10123074450E+02 2.15870655474E+02 2.20471994183E+02 2.23849407459E+02 2.25928495659E+02 2.26639266587E+02 2.25917377386E+02 2.23705500697E+02 2.19954821210E+02 2.14626669700E+02 2.07694303062E+02 1.99144836525E+02 1.88981339062E+02 1.77225095891E+02 1.63918049942E+02 1.49125424377E+02 1.32938530956E+02 1.15477759860E+02 9.68957421907E+01 7.73806587922E+01 5.71596564625E+01 3.65023013326E+01 1.57239664881E+01 -4.81099893710E+00 -2.46865403176E+01 -4.34329127565E+01 -6.05258626094E+01 -7.53875439811E+01 -8.73899260491E+01 -9.58616851629E+01 -1.00099886103E+02 -9.93880309434E+01 -9.30234616098E+01 -8.03484983562E+01 -6.08694914043E+01 -3.36832165374E+01 -3.84036640466E+00 3.80749386146E-01 -3.77490213511E-02 3.74258379752E-03 -3.71049482130E-04 3.67823761918E-05 -3.64131329392E-06 3.53264571584E-07 -2.78724749339E-08 -1.75889376416E-09 2.87103358410E-09 0.00000000000E+00 0.00000000000E+00 -4.75002042138E-01 737 1.41307990200E-04 1.44885219522E-04 1.48553006861E-04 1.52313644707E-04 1.56169483583E-04 1.60122933515E-04 1.64176465542E-04 1.68332613254E-04 1.72593974382E-04 1.76963212419E-04 1.81443058283E-04 1.86036312027E-04 1.90745844586E-04 1.95574599576E-04 2.00525595129E-04 2.05601925782E-04 2.10806764411E-04 2.16143364213E-04 2.21615060742E-04 2.27225273990E-04 2.32977510528E-04 2.38875365695E-04 2.44922525850E-04 2.51122770669E-04 2.57479975512E-04 2.63998113846E-04 2.70681259726E-04 2.77533590342E-04 2.84559388631E-04 2.91763045953E-04 2.99149064836E-04 3.06722061791E-04 3.14486770195E-04 3.22448043254E-04 3.30610857032E-04 3.38980313562E-04 3.47561644039E-04 3.56360212084E-04 3.65381517101E-04 3.74631197710E-04 3.84115035277E-04 3.93838957521E-04 4.03809042225E-04 4.14031521032E-04 4.24512783339E-04 4.35259380293E-04 4.46278028883E-04 4.57575616143E-04 4.69159203451E-04 4.81036030947E-04 4.93213522056E-04 5.05699288127E-04 5.18501133195E-04 5.31627058855E-04 5.45085269262E-04 5.58884176265E-04 5.73032404657E-04 5.87538797571E-04 6.02412422008E-04 6.17662574499E-04 6.33298786922E-04 6.49330832455E-04 6.65768731687E-04 6.82622758880E-04 6.99903448393E-04 7.17621601264E-04 7.35788291963E-04 7.54414875312E-04 7.73512993584E-04 7.93094583780E-04 8.13171885088E-04 8.33757446536E-04 8.54864134834E-04 8.76505142414E-04 8.98693995684E-04 9.21444563470E-04 9.44771065698E-04 9.68688082271E-04 9.93210562189E-04 1.01835383289E-03 1.07277243206E-03 1.07054190791E-03 1.09782466919E-03 1.12545748757E-03 1.15415088032E-03 1.18323695263E-03 1.21343065566E-03 1.24403975920E-03 1.27566797057E-03 1.30754151354E-03 1.34074638548E-03 1.37474927751E-03 1.40953039963E-03 1.44537729126E-03 1.48199259586E-03 1.51935098047E-03 1.55796341985E-03 1.59712123053E-03 1.63754087318E-03 1.67920305507E-03 1.72159430576E-03 1.76532572025E-03 1.80984453525E-03 1.85573653433E-03 1.90285524139E-03 1.95083460394E-03 2.00021259301E-03 2.05085950401E-03 2.10303965609E-03 2.15594832039E-03 2.21068573387E-03 2.26634176904E-03 2.32399160782E-03 2.38273694285E-03 2.44309237836E-03 2.50491100892E-03 2.56815090628E-03 2.63321588442E-03 2.70013713525E-03 2.76836523693E-03 2.83827459174E-03 2.91047109026E-03 2.98370112979E-03 3.05943760568E-03 3.13681119904E-03 3.21634971759E-03 3.29756161497E-03 3.38140892370E-03 3.46672750393E-03 3.55452483405E-03 3.64475054400E-03 3.73665038118E-03 3.83143293487E-03 3.92840128737E-03 4.02775054644E-03 4.12989964937E-03 4.23446245483E-03 4.34151819586E-03 4.45128659901E-03 4.56420878127E-03 4.67977474860E-03 4.79803811227E-03 4.91958270973E-03 5.04427430865E-03 5.17175576910E-03 5.30253398159E-03 5.43705384871E-03 5.57460016100E-03 5.71554392609E-03 5.86030357126E-03 6.00879696925E-03 6.16079826000E-03 6.31664771267E-03 6.47658978001E-03 6.64075880775E-03 6.80885942495E-03 6.98107379545E-03 7.15786362826E-03 7.33898457004E-03 7.52490885067E-03 7.71529362387E-03 7.91043190669E-03 8.11099769483E-03 8.31607490287E-03 8.52669604847E-03 8.74227930723E-03 8.96407139946E-03 9.19059142029E-03 9.42359112781E-03 9.66187588633E-03 9.90659186607E-03 1.01571516020E-02 1.04144779949E-02 1.06779281724E-02 1.09483988910E-02 1.12255982902E-02 1.15096324966E-02 1.18013569376E-02 1.20996923251E-02 1.24061546736E-02 1.27202460736E-02 1.30420676505E-02 1.33724005783E-02 1.37107833979E-02 1.40580833686E-02 1.44137066144E-02 1.47786802750E-02 1.51526970340E-02 1.55364299332E-02 1.59296294239E-02 1.63327728348E-02 1.67462157760E-02 1.71702200061E-02 1.76050861130E-02 1.80506164645E-02 1.85075345200E-02 1.89758807914E-02 1.94566113960E-02 1.99487883583E-02 2.04539558980E-02 2.09717748579E-02 2.15027188661E-02 2.20469519191E-02 2.26050946856E-02 2.31773605949E-02 2.37640517451E-02 2.43655889413E-02 2.49825829098E-02 2.56147238248E-02 2.62632391822E-02 2.69280833815E-02 2.76096917264E-02 2.83085299498E-02 2.90253331589E-02 2.97601117710E-02 3.05132887988E-02 3.12859037671E-02 3.20778269174E-02 3.28899390093E-02 3.37224672630E-02 3.45760240785E-02 3.54513310007E-02 3.63485860928E-02 3.72688748286E-02 3.82123488210E-02 3.91795540365E-02 4.01714409384E-02 4.11883473783E-02 4.22310693506E-02 4.33000131324E-02 4.43960091350E-02 4.55200854556E-02 4.66722887893E-02 4.78536862718E-02 4.90650594840E-02 5.03071335538E-02 5.15807563600E-02 5.28863440759E-02 5.42249779205E-02 5.55975096268E-02 5.70051521522E-02 5.84483311417E-02 5.99274984935E-02 6.14447529686E-02 6.29999846661E-02 6.45949197678E-02 6.62298077438E-02 6.79064039439E-02 6.96254952837E-02 7.13877914006E-02 7.31949881860E-02 7.50477302643E-02 7.69473250429E-02 7.88953632818E-02 8.08922365446E-02 8.29400333158E-02 8.50394932110E-02 8.71922187927E-02 8.93992634588E-02 9.16621505118E-02 9.39826562354E-02 9.63613282041E-02 9.88006752263E-02 1.01301372755E-01 1.03865573519E-01 1.06494794488E-01 1.09190576397E-01 1.11954596207E-01 1.14788307008E-01 1.17693969969E-01 1.20672921649E-01 1.23727652902E-01 1.26859475740E-01 1.30070441176E-01 1.33362871426E-01 1.36738471561E-01 1.40199728044E-01 1.43748496174E-01 1.47386972649E-01 1.51117505267E-01 1.54942677937E-01 1.58864440369E-01 1.62885498784E-01 1.67008613724E-01 1.71235608600E-01 1.75569940926E-01 1.80013851041E-01 1.84570162488E-01 1.89241788101E-01 1.94031715953E-01 1.98942517846E-01 2.03978118210E-01 2.09141088665E-01 2.14434364188E-01 2.19861784836E-01 2.25426520419E-01 2.31132147908E-01 2.36982021903E-01 2.42980224893E-01 2.49129724526E-01 2.55435124995E-01 2.61900107769E-01 2.68528712321E-01 2.75324830826E-01 2.82292867339E-01 2.89437628853E-01 2.96762893177E-01 3.04273405513E-01 3.11974268360E-01 3.19869732670E-01 3.27964720058E-01 3.36265041056E-01 3.44775102220E-01 3.53500185217E-01 3.62446707473E-01 3.71619098784E-01 3.81023586132E-01 3.90665769009E-01 4.00552316404E-01 4.10688761825E-01 4.21081718003E-01 4.31737395660E-01 4.42662911206E-01 4.53864404212E-01 4.65349717071E-01 4.77125183036E-01 4.89198551611E-01 5.01577391308E-01 5.14269471259E-01 5.27281996453E-01 5.40624191865E-01 5.54303768439E-01 5.68329086250E-01 5.82709175376E-01 5.97453193671E-01 6.12569653869E-01 6.28068902576E-01 6.43959561916E-01 6.60252171395E-01 6.76957051024E-01 6.94084236418E-01 7.11644219947E-01 7.29648247383E-01 7.48107718115E-01 7.67033573576E-01 7.86438218132E-01 8.06333241790E-01 8.26731091304E-01 8.47644650093E-01 8.69087128061E-01 8.91071099458E-01 9.13611258930E-01 9.36721085937E-01 9.60414637828E-01 9.84707183079E-01 1.00961348807E+00 1.03514947010E+00 1.06133064969E+00 1.08817346892E+00 1.11569426336E+00 1.14391058766E+00 1.17283978523E+00 1.20249965834E+00 1.23290914389E+00 1.26408645603E+00 1.29605150739E+00 1.32882398441E+00 1.36242395984E+00 1.39687288702E+00 1.43219142118E+00 1.46840195419E+00 1.50552670399E+00 1.54358920530E+00 1.58261229644E+00 1.62262078215E+00 1.66363918555E+00 1.70569294923E+00 1.74880814594E+00 1.79301131494E+00 1.83833017296E+00 1.88479261619E+00 1.93242735179E+00 1.98126414682E+00 2.03133289591E+00 2.08266464348E+00 2.13529126326E+00 2.18924475147E+00 2.24455954247E+00 2.30126864546E+00 2.35940786619E+00 2.41901284005E+00 2.48012037502E+00 2.54276825839E+00 2.60699494112E+00 2.67284020731E+00 2.74034478759E+00 2.80954959027E+00 2.88049830785E+00 2.95323403065E+00 3.02780140667E+00 3.10424670710E+00 3.18261679087E+00 3.26295959593E+00 3.34532504397E+00 3.42976310015E+00 3.51632643967E+00 3.60506721373E+00 3.69604131481E+00 3.78930257380E+00 3.88490987847E+00 3.98292075848E+00 4.08339558950E+00 4.18639634555E+00 4.29198475777E+00 4.40022693084E+00 4.51118797354E+00 4.62493602007E+00 4.74154036192E+00 4.86107229097E+00 4.98360424991E+00 5.10921141240E+00 5.23797006754E+00 5.36995812932E+00 5.50525651603E+00 5.64394719341E+00 5.78611420783E+00 5.93184366772E+00 6.08122421276E+00 6.23434638140E+00 6.39130259262E+00 6.55218773648E+00 6.71709906265E+00 6.88613618190E+00 7.05940124659E+00 7.23699811727E+00 7.41903400513E+00 7.60561874196E+00 7.79686341698E+00 7.99288408759E+00 8.19379710658E+00 8.39972370883E+00 8.61078657198E+00 8.82711174953E+00 9.04882891039E+00 9.27606950783E+00 9.50896949295E+00 9.74766658256E+00 9.99230360507E+00 1.02430244620E+01 1.04999783013E+01 1.07633174353E+01 1.10331966345E+01 1.13097755325E+01 1.15932166869E+01 1.18836872171E+01 1.21813568213E+01 1.24864005388E+01 1.27989966316E+01 1.31193277011E+01 1.34475805233E+01 1.37839461343E+01 1.41286198317E+01 1.44818010516E+01 1.48436948023E+01 1.52145093454E+01 1.55944585727E+01 1.59837614291E+01 1.63826401024E+01 1.67913238449E+01 1.72100456166E+01 1.76390440158E+01 1.80785626971E+01 1.85288505788E+01 1.89901625390E+01 1.94627583536E+01 1.99469038584E+01 2.04428704795E+01 2.09509353559E+01 2.14713814850E+01 2.20044983694E+01 2.25505808848E+01 2.31099304045E+01 2.36828549615E+01 2.42696684866E+01 2.48706914575E+01 2.54862509606E+01 2.61166807480E+01 2.67623215688E+01 2.74235204893E+01 2.81006316144E+01 2.87940164147E+01 2.95040429849E+01 3.02310867258E+01 3.09755302150E+01 3.17377637279E+01 3.25181837793E+01 3.33171959333E+01 3.41352116933E+01 3.49726512320E+01 3.58299408864E+01 3.67075164252E+01 3.76058200815E+01 3.85253021587E+01 3.94664203333E+01 4.04296403472E+01 4.14154360216E+01 4.24242875688E+01 4.34566844816E+01 4.45131232816E+01 4.55941080382E+01 4.67001506171E+01 4.78317708321E+01 4.89894945848E+01 5.01738576775E+01 5.13854011897E+01 5.26246740913E+01 5.38922324610E+01 5.51886395318E+01 5.65144654562E+01 5.78702861468E+01 5.92566850647E+01 6.06742511864E+01 6.21235803529E+01 6.36052723770E+01 6.51199344003E+01 6.66681774785E+01 6.82506175295E+01 6.98678757405E+01 7.15205763747E+01 7.32093469002E+01 7.49348192173E+01 7.66976266632E+01 7.84984048233E+01 8.03377909517E+01 8.22164226709E+01 8.41349383986E+01 8.60939749160E+01 8.80941690703E+01 9.01361537342E+01 9.22205605582E+01 9.43480163005E+01 9.65191422569E+01 9.87345548495E+01 1.00994863237E+02 1.03300667665E+02 1.05652559253E+02 1.08051118589E+02 1.10496914168E+02 1.12990500199E+02 1.15532416830E+02 1.18123186597E+02 1.20763314261E+02 1.23453283942E+02 1.26193558455E+02 1.28984575080E+02 1.31826747027E+02 1.34720457491E+02 1.37666060658E+02 1.40663877036E+02 1.43714191630E+02 1.46817251933E+02 1.49973264862E+02 1.53182393747E+02 1.56444755661E+02 1.59760417634E+02 1.63129394546E+02 1.66551645703E+02 1.70027069605E+02 1.73555503083E+02 1.77136715277E+02 1.80770404843E+02 1.84456195717E+02 1.88193633100E+02 1.91982179066E+02 1.95821207238E+02 1.99709999547E+02 2.03647741314E+02 2.07633514898E+02 2.11666296346E+02 2.15744948689E+02 2.19868218517E+02 2.24034728121E+02 2.28242971825E+02 2.32491309143E+02 2.36777958844E+02 2.41100993612E+02 2.45458333287E+02 2.49847738429E+02 2.54266804948E+02 2.58712955416E+02 2.63183435814E+02 2.67675305059E+02 2.72185431356E+02 2.76710482969E+02 2.81246924098E+02 2.85791004460E+02 2.90338756145E+02 2.94885982788E+02 2.99428257365E+02 3.03960910352E+02 3.08479027619E+02 3.12977439480E+02 3.17450718147E+02 3.21893168699E+02 3.26298824155E+02 3.30661438739E+02 3.34974484142E+02 3.39231141446E+02 3.43424297750E+02 3.47546542307E+02 3.51590160903E+02 3.55547132895E+02 3.59409127585E+02 3.63167503695E+02 3.66813304703E+02 3.70337260491E+02 3.73729785054E+02 3.76980978333E+02 3.80080628173E+02 3.83018210901E+02 3.85782897289E+02 3.88363556620E+02 3.90748763143E+02 3.92926802720E+02 3.94885682770E+02 3.96613143673E+02 3.98096669043E+02 3.99323501606E+02 4.00280659101E+02 4.00954950775E+02 4.01333000566E+02 4.01401266027E+02 4.01146066670E+02 4.00553609326E+02 3.99610019279E+02 3.98301373298E+02 3.96613735379E+02 3.94533197009E+02 3.92045919015E+02 3.89138177676E+02 3.85796415315E+02 3.82007293968E+02 3.77757753143E+02 3.73035071667E+02 3.67826934908E+02 3.62121505832E+02 3.55907500962E+02 3.49174272076E+02 3.41911892300E+02 3.34111247336E+02 3.25764134454E+02 3.16863365309E+02 3.07402873555E+02 2.97377831976E+02 2.86784773513E+02 2.75621718178E+02 2.63888307196E+02 2.51585944000E+02 2.38717938376E+02 2.25289660018E+02 2.11308697320E+02 1.96785018223E+02 1.81731140421E+02 1.66162303074E+02 1.50096642255E+02 1.33555372143E+02 1.16562962790E+02 9.91473226041E+01 8.13399783691E+01 6.31762509006E+01 4.46954272484E+01 2.59409258717E+01 6.96045133719E+00 -1.21938653846E+01 -3.14653388548E+01 -5.07926258005E+01 -7.01096423027E+01 -8.93455101091E+01 -1.08424538436E+02 -1.27266239927E+02 -1.45785395081E+02 -1.63892163598E+02 -1.81492254346E+02 -1.98487156276E+02 -2.14774440387E+02 -2.30248138372E+02 -2.44799205675E+02 -2.58316076228E+02 -2.70685316985E+02 -2.81792389397E+02 -2.91522526689E+02 -2.99761733025E+02 -3.06397914867E+02 -3.11322149536E+02 -3.14430102954E+02 -3.15623600598E+02 -3.14812362807E+02 -3.11915913155E+02 -3.06865668290E+02 -2.99607218970E+02 -2.90102813946E+02 -2.78334055135E+02 -2.64304819165E+02 -2.48044410535E+02 -2.29610962669E+02 -2.09095089570E+02 -1.86623794562E+02 -1.62364629846E+02 -1.36530094583E+02 -1.09382234799E+02 -8.12373910374E+01 -5.24709962584E+01 -2.35222811479E+01 5.10132518985E+00 3.28204060695E+01 5.89808030025E+01 8.28524818604E+01 1.03630809184E+02 1.20441288595E+02 1.32349138308E+02 1.38375522466E+02 1.37522630548E+02 1.28811753783E+02 1.11326574223E+02 8.43784524746E+01 4.67108939610E+01 5.32750393141E+00 -5.28190187537E-01 5.23668937562E-02 -5.19185609528E-03 5.14734070217E-04 -5.10258914297E-05 5.05133336493E-06 -4.90013323885E-07 3.86199897188E-08 2.47165848033E-09 -4.00296259799E-09 0.00000000000E+00 0.00000000000E+00 -3.40795049774E-01 -2.44684776765E-01 1.00000000000E+00 -2.90083017013E+01 -2.90083017046E+01 -2.90083017044E+01 -2.90083017042E+01 -2.90083017041E+01 -2.90083017039E+01 -2.90083017037E+01 -2.90083017035E+01 -2.90083017034E+01 -2.90083017032E+01 -2.90083017030E+01 -2.90083017028E+01 -2.90083017026E+01 -2.90083017024E+01 -2.90083017021E+01 -2.90083017019E+01 -2.90083017017E+01 -2.90083017015E+01 -2.90083017012E+01 -2.90083017010E+01 -2.90083017007E+01 -2.90083017005E+01 -2.90083017002E+01 -2.90083017000E+01 -2.90083016997E+01 -2.90083016994E+01 -2.90083016991E+01 -2.90083016988E+01 -2.90083016985E+01 -2.90083016982E+01 -2.90083016979E+01 -2.90083016975E+01 -2.90083016972E+01 -2.90083016969E+01 -2.90083016965E+01 -2.90083016961E+01 -2.90083016958E+01 -2.90083016954E+01 -2.90083016950E+01 -2.90083016946E+01 -2.90083016942E+01 -2.90083016938E+01 -2.90083016933E+01 -2.90083016929E+01 -2.90083016924E+01 -2.90083016920E+01 -2.90083016915E+01 -2.90083016910E+01 -2.90083016905E+01 -2.90083016900E+01 -2.90083016895E+01 -2.90083016889E+01 -2.90083016884E+01 -2.90083016878E+01 -2.90083016872E+01 -2.90083016866E+01 -2.90083016860E+01 -2.90083016854E+01 -2.90083016847E+01 -2.90083016841E+01 -2.90083016834E+01 -2.90083016827E+01 -2.90083016820E+01 -2.90083016813E+01 -2.90083016805E+01 -2.90083016797E+01 -2.90083016790E+01 -2.90083016781E+01 -2.90083016773E+01 -2.90083016765E+01 -2.90083016756E+01 -2.90083016747E+01 -2.90083016738E+01 -2.90083016729E+01 -2.90083016719E+01 -2.90083016709E+01 -2.90083016699E+01 -2.90083016689E+01 -2.90083016678E+01 -2.90083016667E+01 -2.90083016656E+01 -2.90083016644E+01 -2.90083016633E+01 -2.90083016621E+01 -2.90083016608E+01 -2.90083016596E+01 -2.90083016583E+01 -2.90083016569E+01 -2.90083016556E+01 -2.90083016542E+01 -2.90083016527E+01 -2.90083016513E+01 -2.90083016498E+01 -2.90083016482E+01 -2.90083016466E+01 -2.90083016450E+01 -2.90083016433E+01 -2.90083016416E+01 -2.90083016399E+01 -2.90083016381E+01 -2.90083016362E+01 -2.90083016343E+01 -2.90083016324E+01 -2.90083016304E+01 -2.90083016284E+01 -2.90083016263E+01 -2.90083016242E+01 -2.90083016220E+01 -2.90083016197E+01 -2.90083016174E+01 -2.90083016150E+01 -2.90083016126E+01 -2.90083016101E+01 -2.90083016076E+01 -2.90083016050E+01 -2.90083016023E+01 -2.90083015995E+01 -2.90083015967E+01 -2.90083015938E+01 -2.90083015909E+01 -2.90083015878E+01 -2.90083015847E+01 -2.90083015815E+01 -2.90083015783E+01 -2.90083015749E+01 -2.90083015715E+01 -2.90083015679E+01 -2.90083015643E+01 -2.90083015606E+01 -2.90083015568E+01 -2.90083015529E+01 -2.90083015489E+01 -2.90083015448E+01 -2.90083015406E+01 -2.90083015363E+01 -2.90083015319E+01 -2.90083015273E+01 -2.90083015227E+01 -2.90083015179E+01 -2.90083015130E+01 -2.90083015080E+01 -2.90083015029E+01 -2.90083014976E+01 -2.90083014922E+01 -2.90083014867E+01 -2.90083014810E+01 -2.90083014752E+01 -2.90083014692E+01 -2.90083014631E+01 -2.90083014568E+01 -2.90083014504E+01 -2.90083014438E+01 -2.90083014371E+01 -2.90083014301E+01 -2.90083014230E+01 -2.90083014157E+01 -2.90083014083E+01 -2.90083014006E+01 -2.90083013927E+01 -2.90083013847E+01 -2.90083013764E+01 -2.90083013680E+01 -2.90083013593E+01 -2.90083013504E+01 -2.90083013412E+01 -2.90083013319E+01 -2.90083013223E+01 -2.90083013124E+01 -2.90083013024E+01 -2.90083012920E+01 -2.90083012814E+01 -2.90083012705E+01 -2.90083012594E+01 -2.90083012480E+01 -2.90083012362E+01 -2.90083012242E+01 -2.90083012119E+01 -2.90083011993E+01 -2.90083011863E+01 -2.90083011730E+01 -2.90083011594E+01 -2.90083011454E+01 -2.90083011311E+01 -2.90083011164E+01 -2.90083011014E+01 -2.90083010859E+01 -2.90083010701E+01 -2.90083010539E+01 -2.90083010373E+01 -2.90083010202E+01 -2.90083010027E+01 -2.90083009848E+01 -2.90083009664E+01 -2.90083009475E+01 -2.90083009282E+01 -2.90083009084E+01 -2.90083008881E+01 -2.90083008672E+01 -2.90083008459E+01 -2.90083008239E+01 -2.90083008015E+01 -2.90083007784E+01 -2.90083007548E+01 -2.90083007306E+01 -2.90083007058E+01 -2.90083006803E+01 -2.90083006542E+01 -2.90083006275E+01 -2.90083006000E+01 -2.90083005719E+01 -2.90083005430E+01 -2.90083005134E+01 -2.90083004831E+01 -2.90083004520E+01 -2.90083004201E+01 -2.90083003874E+01 -2.90083003539E+01 -2.90083003195E+01 -2.90083002843E+01 -2.90083002481E+01 -2.90083002111E+01 -2.90083001731E+01 -2.90083001341E+01 -2.90083000941E+01 -2.90083000532E+01 -2.90083000112E+01 -2.90082999681E+01 -2.90082999239E+01 -2.90082998787E+01 -2.90082998322E+01 -2.90082997846E+01 -2.90082997358E+01 -2.90082996857E+01 -2.90082996344E+01 -2.90082995818E+01 -2.90082995278E+01 -2.90082994725E+01 -2.90082994158E+01 -2.90082993576E+01 -2.90082992979E+01 -2.90082992368E+01 -2.90082991740E+01 -2.90082991097E+01 -2.90082990438E+01 -2.90082989762E+01 -2.90082989068E+01 -2.90082988357E+01 -2.90082987628E+01 -2.90082986881E+01 -2.90082986114E+01 -2.90082985328E+01 -2.90082984522E+01 -2.90082983696E+01 -2.90082982848E+01 -2.90082981979E+01 -2.90082981088E+01 -2.90082980174E+01 -2.90082979237E+01 -2.90082978277E+01 -2.90082977291E+01 -2.90082976281E+01 -2.90082975245E+01 -2.90082974183E+01 -2.90082973093E+01 -2.90082971976E+01 -2.90082970831E+01 -2.90082969656E+01 -2.90082968452E+01 -2.90082967217E+01 -2.90082965950E+01 -2.90082964651E+01 -2.90082963319E+01 -2.90082961953E+01 -2.90082960553E+01 -2.90082959116E+01 -2.90082957644E+01 -2.90082956133E+01 -2.90082954584E+01 -2.90082952996E+01 -2.90082951367E+01 -2.90082949696E+01 -2.90082947983E+01 -2.90082946226E+01 -2.90082944425E+01 -2.90082942577E+01 -2.90082940683E+01 -2.90082938739E+01 -2.90082936747E+01 -2.90082934703E+01 -2.90082932607E+01 -2.90082930458E+01 -2.90082928253E+01 -2.90082925993E+01 -2.90082923674E+01 -2.90082921296E+01 -2.90082918858E+01 -2.90082916357E+01 -2.90082913792E+01 -2.90082911161E+01 -2.90082908463E+01 -2.90082905695E+01 -2.90082902857E+01 -2.90082899946E+01 -2.90082896961E+01 -2.90082893899E+01 -2.90082890758E+01 -2.90082887536E+01 -2.90082884232E+01 -2.90082880843E+01 -2.90082877367E+01 -2.90082873802E+01 -2.90082870145E+01 -2.90082866394E+01 -2.90082862546E+01 -2.90082858599E+01 -2.90082854551E+01 -2.90082850398E+01 -2.90082846138E+01 -2.90082841769E+01 -2.90082837286E+01 -2.90082832688E+01 -2.90082827971E+01 -2.90082823133E+01 -2.90082818169E+01 -2.90082813077E+01 -2.90082807853E+01 -2.90082802493E+01 -2.90082796995E+01 -2.90082791355E+01 -2.90082785568E+01 -2.90082779631E+01 -2.90082773539E+01 -2.90082767290E+01 -2.90082760878E+01 -2.90082754299E+01 -2.90082747549E+01 -2.90082740623E+01 -2.90082733516E+01 -2.90082726224E+01 -2.90082718742E+01 -2.90082711064E+01 -2.90082703185E+01 -2.90082695100E+01 -2.90082686804E+01 -2.90082678290E+01 -2.90082669553E+01 -2.90082660586E+01 -2.90082651383E+01 -2.90082641939E+01 -2.90082632246E+01 -2.90082622298E+01 -2.90082612087E+01 -2.90082601607E+01 -2.90082590849E+01 -2.90082579808E+01 -2.90082568473E+01 -2.90082556839E+01 -2.90082544895E+01 -2.90082532635E+01 -2.90082520048E+01 -2.90082507126E+01 -2.90082493859E+01 -2.90082480239E+01 -2.90082466254E+01 -2.90082451896E+01 -2.90082437152E+01 -2.90082422013E+01 -2.90082406468E+01 -2.90082390504E+01 -2.90082374110E+01 -2.90082357274E+01 -2.90082339983E+01 -2.90082322224E+01 -2.90082303984E+01 -2.90082285249E+01 -2.90082266005E+01 -2.90082246237E+01 -2.90082225930E+01 -2.90082205068E+01 -2.90082183636E+01 -2.90082161616E+01 -2.90082138991E+01 -2.90082115744E+01 -2.90082091856E+01 -2.90082067309E+01 -2.90082042083E+01 -2.90082016158E+01 -2.90081989512E+01 -2.90081962126E+01 -2.90081933975E+01 -2.90081905038E+01 -2.90081875291E+01 -2.90081844709E+01 -2.90081813267E+01 -2.90081780939E+01 -2.90081747697E+01 -2.90081713514E+01 -2.90081678361E+01 -2.90081642207E+01 -2.90081605023E+01 -2.90081566775E+01 -2.90081527431E+01 -2.90081486956E+01 -2.90081445315E+01 -2.90081402471E+01 -2.90081358386E+01 -2.90081313021E+01 -2.90081266334E+01 -2.90081218284E+01 -2.90081168827E+01 -2.90081117916E+01 -2.90081065506E+01 -2.90081011548E+01 -2.90080955990E+01 -2.90080898780E+01 -2.90080839865E+01 -2.90080779187E+01 -2.90080716689E+01 -2.90080652309E+01 -2.90080585985E+01 -2.90080517651E+01 -2.90080447240E+01 -2.90080374681E+01 -2.90080299900E+01 -2.90080222824E+01 -2.90080143371E+01 -2.90080061461E+01 -2.90079977009E+01 -2.90079889926E+01 -2.90079800120E+01 -2.90079707497E+01 -2.90079611956E+01 -2.90079513395E+01 -2.90079411707E+01 -2.90079306780E+01 -2.90079198497E+01 -2.90079086739E+01 -2.90078971380E+01 -2.90078852290E+01 -2.90078729332E+01 -2.90078602364E+01 -2.90078471241E+01 -2.90078335807E+01 -2.90078195905E+01 -2.90078051366E+01 -2.90077902019E+01 -2.90077747682E+01 -2.90077588168E+01 -2.90077423281E+01 -2.90077252816E+01 -2.90077076561E+01 -2.90076894293E+01 -2.90076705783E+01 -2.90076510787E+01 -2.90076309056E+01 -2.90076100326E+01 -2.90075884324E+01 -2.90075660765E+01 -2.90075429350E+01 -2.90075189768E+01 -2.90074941696E+01 -2.90074684795E+01 -2.90074418712E+01 -2.90074143077E+01 -2.90073857505E+01 -2.90073561594E+01 -2.90073254924E+01 -2.90072937055E+01 -2.90072607531E+01 -2.90072265872E+01 -2.90071911577E+01 -2.90071544124E+01 -2.90071162967E+01 -2.90070767535E+01 -2.90070357232E+01 -2.90069931433E+01 -2.90069489487E+01 -2.90069030713E+01 -2.90068554396E+01 -2.90068059794E+01 -2.90067546126E+01 -2.90067012576E+01 -2.90066458294E+01 -2.90065882387E+01 -2.90065283923E+01 -2.90064661925E+01 -2.90064015374E+01 -2.90063343200E+01 -2.90062644286E+01 -2.90061917463E+01 -2.90061161507E+01 -2.90060375136E+01 -2.90059557009E+01 -2.90058705724E+01 -2.90057819810E+01 -2.90056897730E+01 -2.90055937874E+01 -2.90054938556E+01 -2.90053898010E+01 -2.90052814389E+01 -2.90051685757E+01 -2.90050510087E+01 -2.90049285258E+01 -2.90048009046E+01 -2.90046679123E+01 -2.90045293051E+01 -2.90043848278E+01 -2.90042342126E+01 -2.90040771796E+01 -2.90039134350E+01 -2.90037426716E+01 -2.90035645671E+01 -2.90033787842E+01 -2.90031849692E+01 -2.90029827520E+01 -2.90027717443E+01 -2.90025515396E+01 -2.90023217120E+01 -2.90020818152E+01 -2.90018313814E+01 -2.90015699207E+01 -2.90012969197E+01 -2.90010118404E+01 -2.90007141189E+01 -2.90004031648E+01 -2.90000783588E+01 -2.89997390526E+01 -2.89993845663E+01 -2.89990141879E+01 -2.89986271710E+01 -2.89982227336E+01 -2.89978000564E+01 -2.89973582807E+01 -2.89968965067E+01 -2.89964137917E+01 -2.89959091478E+01 -2.89953815399E+01 -2.89948298833E+01 -2.89942530417E+01 -2.89936498244E+01 -2.89930189839E+01 -2.89923592130E+01 -2.89916691423E+01 -2.89909473373E+01 -2.89901922948E+01 -2.89894024403E+01 -2.89885761245E+01 -2.89877116195E+01 -2.89868071155E+01 -2.89858607169E+01 -2.89848704382E+01 -2.89838342000E+01 -2.89827498244E+01 -2.89816150312E+01 -2.89804274320E+01 -2.89791845266E+01 -2.89778836969E+01 -2.89765222019E+01 -2.89750971725E+01 -2.89736056050E+01 -2.89720443560E+01 -2.89704101353E+01 -2.89686994999E+01 -2.89669088473E+01 -2.89650344082E+01 -2.89630722397E+01 -2.89610182172E+01 -2.89588680274E+01 -2.89566171595E+01 -2.89542608974E+01 -2.89517943112E+01 -2.89492122478E+01 -2.89465093225E+01 -2.89436799094E+01 -2.89407181315E+01 -2.89376178516E+01 -2.89343726616E+01 -2.89309758728E+01 -2.89274205052E+01 -2.89236992774E+01 -2.89198045955E+01 -2.89157285428E+01 -2.89114628690E+01 -2.89069989800E+01 -2.89023279267E+01 -2.88974403956E+01 -2.88923266984E+01 -2.88869767627E+01 -2.88813801231E+01 -2.88755259133E+01 -2.88694028586E+01 -2.88629992699E+01 -2.88563030393E+01 -2.88493016367E+01 -2.88419821094E+01 -2.88343310829E+01 -2.88263347654E+01 -2.88179789554E+01 -2.88092490532E+01 -2.88001300769E+01 -2.87906066840E+01 -2.87806631989E+01 -2.87702836483E+01 -2.87594518046E+01 -2.87481512393E+01 -2.87363653883E+01 -2.87240776298E+01 -2.87112713786E+01 -2.86979301979E+01 -2.86840379315E+01 -2.86695788615E+01 -2.86545378924E+01 -2.86389007692E+01 -2.86226543317E+01 -2.86057868138E+01 -2.85882881921E+01 -2.85701505935E+01 -2.85513687702E+01 -2.85319406525E+01 -2.85118679912E+01 -2.84911571039E+01 -2.84698197392E+01 -2.84478740759E+01 -2.84253458762E+01 -2.84022698109E+01 -2.83786909790E+01 -2.83546666375E+01 -2.83302681627E+01 -2.83055832509E+01 -2.82807183623E+01 -2.82558013933E+01 -2.82309845362E+01 -2.82064472472E+01 -2.81823991839E+01 -2.81590828891E+01 -2.81367758795E+01 -2.81157916331E+01 -2.80964787477E+01 -2.80792172600E+01 -2.80673828725E+01 -2.81290460949E+01 -2.82490394483E+01 -2.82818828015E+01 -2.82380773186E+01 -2.81910226576E+01 -2.81404689564E+01 -2.80861070860E+01 -2.80275666819E+01 -2.79644175062E+01 -2.78961748160E+01 -2.78223091678E+01 -2.77422607498E+01 -2.76554579089E+01 -2.75613390902E+01 -2.74593769802E+01 -2.73491033001E+01 -2.72301324746E+01 -2.71021823293E+01 -2.69650900578E+01 -2.68188219514E+01 -2.66634757843E+01 -2.64992753020E+01 -2.63265569367E+01 -2.61457496289E+01 -2.59573493858E+01 -2.57618908299E+01 -2.55599183743E+01 -2.53519596796E+01 -2.51385037022E+01 -2.49199849539E+01 -2.46967747220E+01 -2.44691790953E+01 -2.42374428902E+01 -2.40017580626E+01 -2.37622749895E+01 -2.35191150565E+01 -2.32723832362E+01 -2.30221796878E+01 -2.27686097696E+01 -2.25117921801E+01 -2.22518651885E+01 -2.19889910872E+01 -2.17233590909E+01 -2.14551869471E+01 -2.11847215196E+01 -2.09122385821E+01 -2.06380420190E+01 -2.03624625907E+01 -2.00858563772E+01 -1.98086029806E+01 -1.95311035311E+01 -1.92537785173E+01 -1.89770654408E+01 -1.87014162749E+01 -1.84272946989E+01 -1.81551730669E+01 -1.78855290669E+01 -1.76188420226E+01 -1.73555887894E+01 -1.70962392011E+01 -1.68412510274E+01 -1.65910644115E+01 -1.63460957674E+01 -1.61067311327E+01 -1.58733189896E+01 -1.56461625929E+01 -1.54255118693E+01 -1.52115549942E+01 -1.50044097920E+01 -1.48041151642E+01 -1.46106228155E+01 -1.44237896291E+01 -1.42433711397E+01 -1.40690166708E+01 -1.39002668391E+01 -1.37365542967E+01 -1.35772087738E+01 -1.34214677127E+01 -1.32684940546E+01 -1.31174030513E+01 -1.29673003440E+01 -1.28173339792E+01 -1.26667635399E+01 -1.25150501602E+01 -1.23619718920E+01 -1.22079144375E+01 -1.20545271857E+01 -1.19038727552E+01 -1.17558625033E+01 -1.16098262457E+01 -1.14656044230E+01 -1.13231744397E+01 -1.11825139878E+01 -1.10436010422E+01 -1.09064138566E+01 -1.07709309596E+01 -1.06371311500E+01 -1.05049934939E+01 -1.03744973200E+01 -1.02456222167E+01 -1.01183480280E+01 -9.99265484999E+00 -9.86852302791E+00 -9.74593315237E+00 -9.62486605627E+00 -9.50530281157E+00 -9.38722472618E+00 -9.27061334087E+00 -9.15545042627E+00 -9.04171797991E+00 -8.92939822333E+00 -8.81836991514E+00 -8.70871755502E+00 -8.60064182036E+00 -8.49391051407E+00 -8.38839858200E+00 -8.28419727882E+00 -8.18129032566E+00 -8.07966164587E+00 -7.97929536249E+00 -7.88017579573E+00 -7.78228746054E+00 -7.68561506414E+00 -7.59014350366E+00 -7.49585786372E+00 -7.40274341416E+00 -7.31078560768E+00 -7.21997007759E+00 -7.13028263546E+00 -7.04170926917E+00 -6.95423614052E+00 -6.86784958310E+00 -6.78253610021E+00 -6.69828236273E+00 -6.61507520705E+00 -6.53290163303E+00 -6.45174880198E+00 -6.37160403468E+00 -6.29245480938E+00 -6.21428875987E+00 -6.13709367359E+00 -6.06085748969E+00 -5.98556829720E+00 -5.91121433316E+00 -5.83778398082E+00 -5.76526576778E+00 -5.69364836427E+00 -5.62292058135E+00 -5.55307136920E+00 -5.48408981534E+00 -5.41596514300E+00 -5.34868670937E+00 -5.28224400398E+00 -5.21662664700E+00 -5.15182438769E+00 -5.08782710270E+00 -5.02462479452E+00 -4.96220758992E+00 -4.90056573835E+00 -4.83968961043E+00 -4.77956969641E+00 -4.72019660466E+00 -4.66156106023E+00 -4.60365390331E+00 -4.54646608784E+00 -4.48998868005E+00 -4.43421285704E+00 -4.37912990543E+00 -4.32473121991E+00 -4.27100830195E+00 -4.21795275842E+00 -4.16555630030E+00 -4.11381074133E+00 -4.06270799678E+00 -4.01224008215E+00 -3.96239911190E+00 -3.91317729829E+00 -3.86456695009E+00 -3.81656047143E+00 -3.76915036057E+00 -3.72232920883E+00 -3.67608969933E+00 -3.63042460594E+00 -3.58532679213E+00 -3.54078920990E+00 -3.49680489866E+00 -3.45336698419E+00 -3.41046867755E+00 -3.36810327409E+00 -3.32626415240E+00 -3.28494477327E+00 -3.24413867873E+00 -3.20383949103E+00 -3.16404091168E+00 -3.12473672047E+00 -3.08592077451E+00 -3.04758700731E+00 -3.00972942782E+00 -2.97234211949E+00 -2.93541923939E+00 -2.89895501727E+00 -2.86294375468E+00 -2.82737982406E+00 -2.79225766789E+00 -2.75757179779E+00 -2.72331679367E+00 -2.68948730287E+00 -2.65607803933E+00 -2.62308378276E+00 -2.59049937779E+00 -2.55831973318E+00 -2.52653982101E+00 -2.49515467588E+00 -2.46415939412E+00 -2.43354913306E+00 -2.40331911019E+00 -2.37346460247E+00 -2.34398094554E+00 -2.31486353302E+00 -2.28610781577E+00 -2.25770930116E+00 -2.22966355239E+00 -2.20196618777E+00 -2.17461288003E+00 -2.14759935567E+00 -2.12092139425E+00 -2.09457482776E+00 -2.06855553994E+00 -2.04285946567E+00 -2.01748259029E+00 -1.99242094902E+00 -1.96767062630E+00 -1.94322775518E+00 -1.91908851675E+00 -1.89524913952E+00 -1.87170589883E+00 -1.84845511626E+00 -1.82549315909E+00 -1.80281643968E+00 -1.78042141497E+00 -1.75830458588E+00 -1.73646249678E+00 -1.71489173497E+00 -1.69358893012E+00 -1.67255075375E+00 -1.65177391871E+00 -1.63125517868E+00 -1.61099132767E+00 -1.59097919947E+00 -1.57121566723E+00 -1.55169764291E+00 -1.53242207682E+00 -1.51338595716E+00 -1.49458630953E+00 -1.47602019645E+00 -1.45768471697E+00 -1.43957700612E+00 -1.42169423456E+00 -1.40403360804E+00 -1.38659236705E+00 -1.36936778636E+00 -1.35235717456E+00 -1.33555787369E+00 -1.31896725880E+00 -1.30258273754E+00 -1.28640174976E+00 -1.27042176711E+00 -1.25464029264E+00 -1.23905486044E+00 -1.22366303673E+00 -1.20846241325E+00 -1.19345061651E+00 -1.17862530084E+00 -1.16398414970E+00 -1.14952487533E+00 -1.13524521837E+00 -1.12114294756E+00 -1.10721585933E+00 -1.09346177749E+00 -1.07987855287E+00 -1.06646406301E+00 -1.05321621183E+00 -1.04013302280E+00 -1.02721185476E+00 -1.01445161068E+00 -1.00184989077E+00 -9.89404711918E-01 -9.77114129546E-01 -9.64976223225E-01 -9.52989096382E-01 -9.41150876005E-01 -9.29459712350E-01 -9.17913778648E-01 -9.06511272550E-01 -8.95250408804E-01 -8.84129429751E-01 -8.73146597715E-01 -8.62300196606E-01 -8.51588531653E-01 -8.41009949368E-01 -8.30562755859E-01 -8.20245339475E-01 -8.10056088099E-01 -7.99993409640E-01 -7.90055731783E-01 -7.80241501746E-01 -7.70549186035E-01 -7.60977270206E-01 -7.51524258628E-01 -7.42188674256E-01 -7.32969050244E-01 -7.23863962469E-01 -7.14871979911E-01 -7.05991697554E-01 -6.97221727837E-01 -6.88560700433E-01 -6.80007262039E-01 -6.71560076164E-01 -6.63217822917E-01 -6.54979198804E-01 -6.46842916523E-01 -6.38807704764E-01 -6.30872308009E-01 -6.23035486335E-01 -6.15296015224E-01 -6.07652685343E-01 -6.00104302455E-01 -5.92649687085E-01 -5.85287674435E-01 -5.78017114174E-01 -5.70836870264E-01 -5.63745820776E-01 -5.56742857719E-01 -5.49826886867E-01 -5.42996827584E-01 -5.36251612660E-01 -5.29590188142E-01 -5.23011513168E-01 -5.16514559807E-01 -5.10098312897E-01 -5.03761769887E-01 -4.97503940677E-01 -4.91323847471E-01 -4.85220524615E-01 -4.79193018454E-01 -4.73240387177E-01 -4.67361700673E-01 -4.61556040385E-01 -4.55822499168E-01 -4.50160181144E-01 -4.44568201564E-01 -4.39045686670E-01 -4.33591773558E-01 -4.28205610042E-01 -4.22886354524E-01 -4.17633175860E-01 -4.12445253229E-01 -4.07321776008E-01 -4.02261943643E-01 -3.97264965525E-01 -3.92330060866E-01 -3.87456458578E-01 -3.82643397149E-01 -3.77890124530E-01 -3.73195898012E-01 -3.68559984112E-01 -3.63981658459E-01 -3.59460205681E-01 -3.54994919291E-01 -3.50585101580E-01 -3.46230063504E-01 -3.41929124580E-01 -3.37681612778E-01 -3.33486864414E-01 -3.29344224052E-01 -3.25253044394E-01 -3.21212686187E-01 -3.17222518115E-01 -3.13281916707E-01 -3.09390266236E-01 -3.05546958623E-01 -3.01751393345E-01 -2.98002977335E-01 -2.94301124898E-01 -2.90645257609E-01 -2.87034804233E-01 -2.83469200630E-01 -2.79947889666E-01 -2.76470321129E-01 -2.73035951642E-01 -2.69644244579E-01 -2.66294669977E-01 -2.62986704459E-01 -2.59719831149E-01 -2.56493539590E-01 -2.53307325669E-01 -2.50160691534E-01 -2.47053145515E-01 -2.43984202052E-01 -2.40953381618E-01 -2.37960210640E-01 -2.35004221429E-01 -2.32084952105E-01 -2.29201946528E-01 -2.26354754221E-01 -2.23542930305E-01 -2.20766035426E-01 -2.18023635690E-01 -2.15315302591E-01 -2.12640612945E-01 -2.09999148828E-01 -2.07390497505E-01 -2.04814251369E-01 -2.02270007877E-01 -1.99757369485E-01 -1.97275943588E-01 -1.94825342459E-01 -1.92405183186E-01 -1.90015087615E-01 -1.87654682287E-01 -1.85323598386E-01 -1.83021471673E-01 -1.80747942438E-01 -1.78502655437E-01 -1.76285259839E-01 -1.74095409171E-01 -1.71932761265E-01 -1.69796978203E-01 -1.67687726264E-01 -1.65604675874E-01 -1.63547501551E-01 -1.61515881858E-01 -1.59509499350E-01 -1.57528040526E-01 -1.55571195779E-01 -1.53638659347E-01 -1.51730129269E-01 -1.49845307332E-01 -1.47983899029E-01 -1.46145613512E-01 -1.44330163544E-01 -1.42537265458E-01 -1.40766639109E-01 -1.39018007834E-01 -1.37291098406E-01 -1.35585640991E-01 -1.33901369109E-01 -1.32238019587E-01 -1.30595332526E-01 -1.28973051251E-01 -1.27370922277E-01 -1.25788695269E-01 -1.24226123001E-01 -1.22682961317E-01 -1.21158969096E-01 9.87962088182E-09 1.01297253863E-08 1.03861613529E-08 1.06490890653E-08 1.09186728647E-08 1.11950812528E-08 1.14784869971E-08 1.17690672388E-08 1.20670036035E-08 1.23724823150E-08 1.26856943112E-08 1.30068353641E-08 1.33361062016E-08 1.36737126331E-08 1.40198656786E-08 1.43747817001E-08 1.47386825368E-08 1.51117956442E-08 1.54943542361E-08 1.58865974301E-08 1.62887703975E-08 1.67011245164E-08 1.71239175286E-08 1.75574137010E-08 1.80018839908E-08 1.84576062147E-08 1.89248652227E-08 1.94039530761E-08 1.98951692300E-08 2.03988207206E-08 2.09152223573E-08 2.14446969192E-08 2.19875753567E-08 2.25441969992E-08 2.31149097661E-08 2.37000703855E-08 2.43000446160E-08 2.49152074762E-08 2.55459434790E-08 2.61926468716E-08 2.68557218823E-08 2.75355829731E-08 2.82326550987E-08 2.89473739725E-08 2.96801863384E-08 3.04315502506E-08 3.12019353599E-08 3.19918232071E-08 3.28017075239E-08 3.36320945422E-08 3.44835033098E-08 3.53564660155E-08 3.62515283215E-08 3.71692497045E-08 3.81102038059E-08 3.90749787899E-08 4.00641777113E-08 4.10784188930E-08 4.21183363120E-08 4.31845799962E-08 4.42778164303E-08 4.53987289732E-08 4.65480182845E-08 4.77264027631E-08 4.89346189961E-08 5.01734222195E-08 5.14435867904E-08 5.27459066707E-08 5.40811959243E-08 5.54502892255E-08 5.68540423811E-08 5.82933328655E-08 5.97690603695E-08 6.12821473623E-08 6.28335396691E-08 6.44242070620E-08 6.60551438663E-08 6.77273695827E-08 6.94419295245E-08 7.11998954713E-08 7.30023663391E-08 7.48504688677E-08 7.67453583252E-08 7.86882192305E-08 8.06802660937E-08 8.27227441762E-08 8.48169302690E-08 8.69641334911E-08 8.91656961087E-08 9.14229943742E-08 9.37374393870E-08 9.61104779763E-08 9.85435936055E-08 1.01038307300E-07 1.03596178600E-07 1.06218806534E-07 1.08907830618E-07 1.11664931885E-07 1.14491833934E-07 1.17390304006E-07 1.20362154094E-07 1.23409242071E-07 1.26533472860E-07 1.29736799616E-07 1.33021224955E-07 1.36388802204E-07 1.39841636687E-07 1.43381887039E-07 1.47011766559E-07 1.50733544596E-07 1.54549547965E-07 1.58462162405E-07 1.62473834073E-07 1.66587071072E-07 1.70804445020E-07 1.75128592664E-07 1.79562217524E-07 1.84108091586E-07 1.88769057042E-07 1.93548028059E-07 1.98447992613E-07 2.03472014352E-07 2.08623234516E-07 2.13904873903E-07 2.19320234883E-07 2.24872703469E-07 2.30565751431E-07 2.36402938476E-07 2.42387914470E-07 2.48524421725E-07 2.54816297344E-07 2.61267475621E-07 2.67881990505E-07 2.74663978125E-07 2.81617679381E-07 2.88747442597E-07 2.96057726250E-07 3.03553101753E-07 3.11238256325E-07 3.19117995926E-07 3.27197248263E-07 3.35481065880E-07 3.43974629321E-07 3.52683250378E-07 3.61612375414E-07 3.70767588781E-07 3.80154616314E-07 3.89779328919E-07 3.99647746256E-07 4.09766040505E-07 4.20140540241E-07 4.30777734395E-07 4.41684276321E-07 4.52866987972E-07 4.64332864170E-07 4.76089076995E-07 4.88142980280E-07 5.00502114225E-07 5.13174210119E-07 5.26167195194E-07 5.39489197594E-07 5.53148551476E-07 5.67153802232E-07 5.81513711857E-07 5.96237264441E-07 6.11333671807E-07 6.26812379293E-07 6.42683071678E-07 6.58955679264E-07 6.75640384103E-07 6.92747626395E-07 7.10288111040E-07 7.28272814358E-07 7.46712990986E-07 7.65620180945E-07 7.85006216886E-07 8.04883231527E-07 8.25263665276E-07 8.46160274042E-07 8.67586137262E-07 8.89554666111E-07 9.12079611943E-07 9.35175074928E-07 9.58855512923E-07 9.83135750566E-07 1.00803098860E-06 1.03355681342E-06 1.05972920693E-06 1.08656455652E-06 1.11407966546E-06 1.14229176343E-06 1.17121851740E-06 1.20087804272E-06 1.23128891455E-06 1.26247017959E-06 1.29444136801E-06 1.32722250586E-06 1.36083412759E-06 1.39529728907E-06 1.43063358084E-06 1.46686514174E-06 1.50401467287E-06 1.54210545192E-06 1.58116134787E-06 1.62120683606E-06 1.66226701363E-06 1.70436761541E-06 1.74753503015E-06 1.79179631720E-06 1.83717922368E-06 1.88371220192E-06 1.93142442755E-06 1.98034581795E-06 2.03050705114E-06 2.08193958525E-06 2.13467567845E-06 2.18874840935E-06 2.24419169802E-06 2.30104032744E-06 2.35932996562E-06 2.41909718819E-06 2.48037950166E-06 2.54321536719E-06 2.60764422505E-06 2.67370651970E-06 2.74144372546E-06 2.81089837294E-06 2.88211407608E-06 2.95513555993E-06 3.03000868909E-06 3.10678049703E-06 3.18549921596E-06 3.26621430771E-06 3.34897649519E-06 3.43383779487E-06 3.52085154994E-06 3.61007246444E-06 3.70155663825E-06 3.79536160296E-06 3.89154635874E-06 3.99017141213E-06 4.09129881481E-06 4.19499220343E-06 4.30131684042E-06 4.41033965598E-06 4.52212929099E-06 4.63675614128E-06 4.75429240283E-06 4.87481211834E-06 4.99839122494E-06 5.12510760315E-06 5.25504112719E-06 5.38827371657E-06 5.52488938906E-06 5.66497431504E-06 5.80861687337E-06 5.95590770862E-06 6.10693978993E-06 6.26180847134E-06 6.42061155384E-06 6.58344934893E-06 6.75042474402E-06 6.92164326948E-06 7.09721316750E-06 7.27724546283E-06 7.46185403539E-06 7.65115569483E-06 7.84527025709E-06 8.04432062304E-06 8.24843285922E-06 8.45773628079E-06 8.67236353667E-06 8.89245069703E-06 9.11813734317E-06 9.34956665977E-06 9.58688552970E-06 9.83024463144E-06 1.00797985391E-05 1.03357058251E-05 1.05981291660E-05 1.08672354509E-05 1.11431958926E-05 1.14261861427E-05 1.17163864089E-05 1.20139815760E-05 1.23191613305E-05 1.26321202879E-05 1.29530581244E-05 1.32821797117E-05 1.36196952558E-05 1.39658204394E-05 1.43207765688E-05 1.46847907246E-05 1.50580959165E-05 1.54409312429E-05 1.58335420545E-05 1.62361801229E-05 1.66491038142E-05 1.70725782667E-05 1.75068755747E-05 1.79522749768E-05 1.84090630502E-05 1.88775339097E-05 1.93579894139E-05 1.98507393756E-05 2.03561017798E-05 2.08744030073E-05 2.14059780647E-05 2.19511708220E-05 2.25103342559E-05 2.30838307012E-05 2.36720321095E-05 2.42753203153E-05 2.48940873100E-05 2.55287355243E-05 2.61796781188E-05 2.68473392837E-05 2.75321545468E-05 2.82345710916E-05 2.89550480843E-05 2.96940570114E-05 3.04520820273E-05 3.12296203120E-05 3.20271824408E-05 3.28452927647E-05 3.36844898024E-05 3.45453266454E-05 3.54283713742E-05 3.63342074892E-05 3.72634343535E-05 3.82166676511E-05 3.91945398582E-05 4.01977007305E-05 4.12268178056E-05 4.22825769210E-05 4.33656827498E-05 4.44768593525E-05 4.56168507471E-05 4.67864214980E-05 4.79863573236E-05 4.92174657238E-05 5.04805766288E-05 5.17765430678E-05 5.31062418618E-05 5.44705743376E-05 5.58704670667E-05 5.73068726286E-05 5.87807704001E-05 6.02931673707E-05 6.18450989861E-05 6.34376300202E-05 6.50718554773E-05 6.67489015249E-05 6.84699264589E-05 7.02361217019E-05 7.20487128373E-05 7.39089606778E-05 7.58181623732E-05 7.77776525558E-05 7.97888045277E-05 8.18530314889E-05 8.39717878105E-05 8.61465703526E-05 8.83789198305E-05 9.06704222299E-05 9.30227102730E-05 9.54374649393E-05 9.79164170411E-05 1.00461348858E-04 1.03074095828E-04 1.05756548312E-04 1.08510653407E-04 1.11338416842E-04 1.14241904943E-04 1.17223246660E-04 1.20284635690E-04 1.23428332662E-04 1.26656667422E-04 1.29972041391E-04 1.33376930026E-04 1.36873885368E-04 1.40465538693E-04 1.44154603265E-04 1.47943877200E-04 1.51836246434E-04 1.55834687821E-04 1.59942272340E-04 1.64162168444E-04 1.68497645527E-04 1.72952077544E-04 1.77528946769E-04 1.82231847708E-04 1.87064491165E-04 1.92030708483E-04 1.97134455952E-04 2.02379819394E-04 2.07771018949E-04 2.13312414045E-04 2.19008508582E-04 2.24863956330E-04 2.30883566550E-04 2.37072309853E-04 2.43435324306E-04 2.49977921787E-04 2.56705594621E-04 2.63624022489E-04 2.70739079634E-04 2.78056842370E-04 2.85583596922E-04 2.93325847591E-04 3.01290325282E-04 3.09483996389E-04 3.17914072074E-04 3.26588017945E-04 3.35513564155E-04 3.44698715945E-04 3.54151764644E-04 3.63881299158E-04 3.73896217961E-04 3.84205741612E-04 3.94819425838E-04 4.05747175182E-04 4.16999257267E-04 4.28586317698E-04 4.40519395618E-04 4.52809939976E-04 4.65469826511E-04 4.78511375510E-04 4.91947370360E-04 5.05791076943E-04 5.20056263903E-04 5.34757223837E-04 5.49908795443E-04 5.65526386687E-04 5.81625999013E-04 5.98224252668E-04 6.15338413182E-04 6.32986419066E-04 6.51186910775E-04 6.69959261013E-04 6.89323606421E-04 7.09300880741E-04 7.29912849500E-04 7.51182146308E-04 7.73132310832E-04 7.95787828533E-04 8.19174172250E-04 8.43317845718E-04 8.68246429113E-04 8.93988626717E-04 9.20574316810E-04 9.48034603894E-04 9.76401873359E-04 1.00570984870E-03 1.03599365144E-03 1.06728986382E-03 1.09963659448E-03 1.13307354718E-03 1.16764209279E-03 1.20338534465E-03 1.24034823745E-03 1.27857760990E-03 1.31812229120E-03 1.35903319165E-03 1.40136339753E-03 1.44516827043E-03 1.49050555129E-03 1.53743546936E-03 1.58602085627E-03 1.63632726552E-03 1.68842309762E-03 1.74237973114E-03 1.79827165991E-03 1.85617663680E-03 1.91617582418E-03 1.97835395161E-03 2.04279948085E-03 2.10960477882E-03 2.17886629860E-03 2.25068476902E-03 2.32516539325E-03 2.40241805671E-03 2.48255754478E-03 2.56570377081E-03 2.65198201490E-03 2.74152317383E-03 2.83446402288E-03 2.93094748984E-03 3.03112294204E-03 3.13514648673E-03 3.24318128565E-03 3.35539788427E-03 3.47197455655E-03 3.59309766573E-03 3.71896204206E-03 3.84977137811E-03 3.98573864257E-03 4.12708651324E-03 4.27404783021E-03 4.42686607010E-03 4.58579584223E-03 4.75110340777E-03 4.92306722294E-03 5.10197850716E-03 5.28814183747E-03 5.48187577018E-03 5.68351349110E-03 5.89340349545E-03 6.11191029892E-03 6.33941518099E-03 6.57631696222E-03 6.82303281658E-03 7.07999912068E-03 7.34767234119E-03 7.62652996225E-03 7.91707145442E-03 8.21981928696E-03 8.53531998524E-03 8.86414523510E-03 9.20689303609E-03 9.56418890562E-03 9.93668713599E-03 1.03250721065E-02 1.07300596526E-02 1.11523984948E-02 1.15928717293E-02 1.20522983821E-02 1.25315350309E-02 1.30314774953E-02 1.35530625985E-02 1.40972700043E-02 1.46651241301E-02 1.52576961405E-02 1.58761060230E-02 1.65215247497E-02 1.71951765271E-02 1.78983411381E-02 1.86323563772E-02 1.93986205851E-02 2.01985952824E-02 2.10338079087E-02 2.19058546676E-02 2.28164034831E-02 2.37671970683E-02 2.47600561127E-02 2.57968825876E-02 2.68796631760E-02 2.80104728286E-02 2.91914784485E-02 3.04249427101E-02 3.17132280117E-02 3.30588005679E-02 3.44642346425E-02 3.59322169256E-02 3.74655510567E-02 3.90671622965E-02 4.07401023499E-02 4.24875543404E-02 4.43128379399E-02 4.62194146529E-02 4.82108932573E-02 5.02910354022E-02 5.24637613621E-02 5.47331559481E-02 5.71034745743E-02 5.95791494786E-02 6.21647960958E-02 6.48652195795E-02 6.76854214697E-02 7.06306065027E-02 7.37061895558E-02 7.69178027234E-02 8.02713025148E-02 8.37727771666E-02 8.74285540606E-02 9.12452072349E-02 9.52295649773E-02 9.93887174861E-02 1.03730024585E-01 1.08261123470E-01 1.12989936480E-01 1.17924678856E-01 1.23073866478E-01 1.28446323549E-01 1.34051190198E-01 1.39897929980E-01 1.45996337227E-01 1.52356544231E-01 1.58989028208E-01 1.65904618007E-01 1.73114500527E-01 1.80630226781E-01 1.88463717571E-01 1.96627268709E-01 2.05133555733E-01 2.13995638052E-01 2.23226962466E-01 2.32841365972E-01 2.42853077807E-01 2.53276720629E-01 2.64127310772E-01 2.75420257476E-01 2.87171361019E-01 2.99396809633E-01 3.12113175136E-01 3.25337407146E-01 3.39086825803E-01 3.53379112857E-01 3.68232301042E-01 3.83664761585E-01 3.99695189755E-01 4.16342588318E-01 4.33626248772E-01 4.51565730232E-01 4.70180835852E-01 4.89491586619E-01 5.09518192428E-01 5.30281020278E-01 5.51800559469E-01 5.74097383676E-01 5.97192109771E-01 6.21105353273E-01 6.45857680306E-01 6.71469555971E-01 6.97961289013E-01 7.25352972702E-01 7.53664421847E-01 7.82915105875E-01 8.13124077918E-01 8.44309899875E-01 8.76490563434E-01 9.09683407044E-01 9.43905028881E-01 9.79171195836E-01 1.01549674862E+00 1.05289550307E+00 1.09138014784E+00 1.13096213858E+00 1.17165158885E+00 1.21345715805E+00 1.25638593655E+00 1.30044332848E+00 1.34563293246E+00 1.39195642067E+00 1.43941341686E+00 1.48800137368E+00 1.53771544993E+00 1.58854838838E+00 1.64049039487E+00 1.69352901919E+00 1.74764903883E+00 1.80283234612E+00 1.85905783980E+00 1.91630132185E+00 1.97453540052E+00 2.03372940058E+00 2.09384928171E+00 2.15485756625E+00 2.21671327707E+00 2.27937188693E+00 2.34278528023E+00 2.40690172821E+00 2.47166587874E+00 2.53701876167E+00 2.60289781076E+00 2.66923690308E+00 2.73596641689E+00 2.80301330868E+00 2.87030121021E+00 2.93775054615E+00 3.00527867282E+00 3.07280003855E+00 3.14022636580E+00 3.20746685528E+00 3.27442841191E+00 3.34101589262E+00 3.40713237535E+00 3.47267944896E+00 3.53755752295E+00 3.60166615632E+00 3.66490440414E+00 3.72717118052E+00 3.78836563631E+00 3.84838754955E+00 3.90713772677E+00 3.96451841253E+00 4.02043370484E+00 4.07478997350E+00 4.12749627835E+00 4.17846478431E+00 4.22761116941E+00 4.27485502246E+00 4.32012022623E+00 4.36333532221E+00 4.40443385259E+00 4.44335467513E+00 4.48004224635E+00 4.51444686852E+00 4.54652489559E+00 4.57623889342E+00 4.60355774974E+00 4.62845672889E+00 4.65091746714E+00 4.67092790406E+00 4.68848214595E+00 4.70358025754E+00 4.71622797859E+00 4.72643636256E+00 4.73422133487E+00 4.73960316914E+00 4.74260588006E+00 4.74325653269E+00 4.74158446815E+00 4.73762044674E+00 4.73139570989E+00 4.72294096314E+00 4.71228528242E+00 4.69945494678E+00 4.68447220045E+00 4.66735394768E+00 4.64811038328E+00 4.62674356251E+00 4.60324591310E+00 4.57759869321E+00 4.54977039880E+00 4.51971512555E+00 4.48737089150E+00 4.45268263690E+00 4.41568273939E+00 4.37643007766E+00 4.33498710885E+00 4.29141969268E+00 4.24579690690E+00 4.19819085501E+00 4.14867646669E+00 4.09733129211E+00 4.04423529066E+00 3.98947061501E+00 3.93312139144E+00 3.87527349706E+00 3.81601433501E+00 3.75543260823E+00 3.69361809281E+00 3.63066141156E+00 3.56665380881E+00 3.50168692694E+00 3.43585258560E+00 3.36924256427E+00 3.30194838884E+00 3.23406112283E+00 3.16567116397E+00 3.09686804688E+00 3.02774025184E+00 2.95835102711E+00 2.88881053969E+00 2.81920305152E+00 2.74961107858E+00 2.68011523880E+00 2.61079410870E+00 2.54172408921E+00 2.47297928092E+00 2.40463136883E+00 2.33674951671E+00 2.26940027131E+00 2.20264747620E+00 2.13655219556E+00 2.07117264771E+00 2.00656414833E+00 1.94277906341E+00 1.87986677172E+00 1.81787363662E+00 1.75684298721E+00 1.69681510841E+00 1.63782723993E+00 1.57991358377E+00 1.52310532012E+00 1.46743063126E+00 1.41291473319E+00 1.35957991483E+00 1.30744558421E+00 1.25652832157E+00 1.20684193887E+00 1.15839754533E+00 1.11120361879E+00 1.06526608232E+00 1.02058838580E+00 9.77171592013E-01 9.35014466879E-01 8.94113573357E-01 8.54463368630E-01 8.16056304108E-01 7.78882927821E-01 7.42931988745E-01 7.08190542630E-01 6.74644058861E-01 6.42276527926E-01 6.11070569043E-01 5.81007537510E-01 5.52067631365E-01 5.24229996934E-01 4.97472832888E-01 4.71773492415E-01 4.47108583170E-01 4.23454064659E-01 4.00785342753E-01 3.79077361054E-01 3.58304688863E-01 3.38441605525E-01 3.19462180968E-01 3.01340352266E-01 2.84049996112E-01 2.67564997100E-01 2.51859311748E-01 2.36907028235E-01 2.22682421838E-01 2.09160006104E-01 1.96314579791E-01 1.84121269663E-01 1.72555569228E-01 1.61593373534E-01 1.51211010159E-01 1.41385266548E-01 1.32093413844E-01 1.23313227411E-01 1.15023004204E-01 1.07201577200E-01 9.98283270621E-02 9.28831912449E-02 8.63466707301E-02 8.01998345849E-02 7.44243225331E-02 6.90023457217E-02 6.39166858581E-02 5.91506928872E-02 5.46882813650E-02 5.05139256782E-02 4.66126542462E-02 4.29700428323E-02 3.95722070777E-02 3.64057943618E-02 3.34579750816E-02 3.07164334291E-02 2.81693577397E-02 2.58054304714E-02 2.36138178682E-02 2.15841593509E-02 1.97065566756E-02 1.79715628885E-02 1.63701711062E-02 1.48938031435E-02 1.35342980080E-02 1.22839002791E-02 1.11352483875E-02 1.00813628091E-02 9.11563418921E-03 8.23181141036E-03 7.42398961929E-03 6.68659822924E-03 6.01438891385E-03 5.40242361049E-03 4.84606255172E-03 4.34095234456E-03 3.88301411788E-03 3.46843175920E-03 3.09364026234E-03 2.75531420785E-03 2.45035639807E-03 2.17588666844E-03 1.92923089624E-03 1.70791022739E-03 1.50963054069E-03 1.33227216816E-03 1.17387988861E-03 1.03265321015E-03 9.06936955791E-04 7.95212164724E-04 6.96087319782E-04 6.08289910113E-04 5.30658336002E-04 4.62134161042E-04 4.01754714985E-04 3.48646048793E-04 3.02016241719E-04 2.61149058540E-04 2.25397953540E-04 1.94180416338E-04 1.66972653342E-04 1.43304597348E-04 1.22755236706E-04 1.04948254521E-04 8.95479674720E-05 7.62555531492E-05 6.48055542101E-05 5.49626471918E-05 4.65186634765E-05 3.92898496816E-05 3.31143546206E-05 2.78499299653E-05 2.33718318077E-05 1.95709104783E-05 1.63518762054E-05 1.36317284991E-05 1.13383374958E-05 9.40916590371E-06 7.79012063262E-06 6.43452366875E-06 5.30219225656E-06 4.35861896901E-06 3.57424277901E-06 2.92380278082E-06 2.38576674666E-06 1.94182723521E-06 1.57645848944E-06 1.27652787158E-06 1.03095607479E-06 8.30420825380E-07 6.67099242343E-07 5.34444451685E-07 4.26992459901E-07 3.40195673526E-07 2.70279809490E-07 2.14121273891E-07 1.69142395107E-07 1.33222899972E-07 1.04628764850E-07 8.19339572209E-08 6.39752939512E-08 4.98074859792E-08 3.86646580093E-08 2.99282080747E-08 2.31000471323E-08 1.77803892915E-08 1.36493784606E-08 1.04519385235E-08 7.98532296212E-09 6.08891738406E-09 4.63591584771E-09 3.52655033417E-09 2.68260316928E-09 2.03341950878E-09 1.53911620384E-09 1.16072425447E-09 8.72127405278E-10 6.52835530951E-10 4.86833106121E-10 3.61649721749E-10 2.67612784056E-10 1.97249077914E-10 1.44807468061E-10 1.05879765051E-10 7.71008049553E-11 5.59121787103E-11 4.03768863585E-11 2.90345569428E-11 2.07888431209E-11 1.48202204269E-11 1.05187567726E-11 7.43250925162E-12 5.22809395620E-12 3.66069433047E-12 2.55135372142E-12 1.76986302959E-12 1.22192556712E-12 8.39575909577E-13 5.74062254923E-13 3.90584655947E-13 2.64424410448E-13 1.78111012720E-13 1.19359007839E-13 7.95731985848E-14 5.27712348961E-14 3.48111047361E-14 2.28401726283E-14 1.49043328314E-14 9.67224893496E-15 6.24185919311E-15 4.00535926551E-15 2.55551856145E-15 1.62104590552E-15 1.02225339514E-15 6.40820871456E-16 3.99297907050E-16 2.47290122558E-16 1.52206252569E-16 9.30980152896E-17 5.65843524781E-17 3.41716256599E-17 2.05028020905E-17 1.22209108367E-17 7.23603649318E-18 4.25567375202E-18 2.48581864394E-18 1.44200497333E-18 8.30658428803E-19 4.75114535833E-19 2.69808435350E-19 1.52108977773E-19 8.51248875138E-20 4.72846734613E-20 2.60678751489E-20 1.42616905172E-20 7.74238467252E-21 4.17036956298E-21 2.22857660213E-21 1.18138226263E-21 6.21182573545E-22 3.23943708844E-22 1.67531422848E-22 8.59120039947E-23 4.36813548149E-23 2.20179195009E-23 1.10013771187E-23 5.44829339055E-24 2.67404091195E-24 1.30053064883E-24 6.26712497716E-25 2.99199560389E-25 1.41497040587E-25 6.62789940975E-26 3.07464014695E-26 1.41237343625E-26 6.42374086183E-27 2.89238032205E-27 1.28912996111E-27 5.68664658351E-28 2.48243348307E-28 1.07226900531E-28 4.58222933495E-29 1.93703864777E-29 8.09895282542E-30 3.34879489800E-30 1.36916739601E-30 5.53440995644E-31 2.21141660135E-31 8.73355718726E-32 3.40854664525E-32 1.31443794901E-32 5.00769881830E-33 1.88450477964E-33 7.00406307135E-34 2.57056507688E-34 9.31459635279E-35 3.33185907056E-35 1.17632071172E-35 4.09835808287E-36 1.40885629452E-36 4.77774340518E-37 1.59810034421E-37 5.27151203149E-38 1.71451063278E-38 5.49720483771E-39 1.73725022763E-39 5.41031481550E-40 1.66013110286E-40 5.01811844741E-41 1.49395000938E-41 4.37970429261E-42 1.26410446520E-42 3.59141360221E-43 1.00416694116E-43 2.76259440041E-44 7.47671145143E-45 1.99020063673E-45 5.20936976313E-46 1.34055238019E-46 3.39078076871E-47 8.42827750293E-48 2.05828647941E-48 4.93746676013E-49 1.16315125242E-49 2.69031349788E-50 6.10807105044E-51 1.36093788168E-51 2.97510860129E-52 6.37960243827E-53 1.34154530243E-53 2.76586733811E-54 5.58937981606E-55 1.10686030348E-55 2.14737641867E-56 4.08035168170E-57 7.59184832481E-58 1.38274785323E-58 2.46472002286E-59 4.29836653830E-60 7.33214750839E-61 1.22300990010E-61 1.99423990671E-62 3.17796831696E-63 4.94790069674E-64 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1.22802814186E-06 1.25911581836E-06 1.29099048293E-06 1.32367205827E-06 1.35718097141E-06 1.39153816649E-06 1.42676511786E-06 1.46288384349E-06 1.49991691874E-06 1.53788749047E-06 1.57681929150E-06 1.61673665545E-06 1.65766453195E-06 1.69962850222E-06 1.74265479510E-06 1.78677030338E-06 1.83200260066E-06 1.87837995858E-06 1.92593136445E-06 1.97468653943E-06 2.02467595704E-06 2.07593086227E-06 2.12848329105E-06 2.18236609032E-06 2.23761293855E-06 2.29425836677E-06 2.35233778016E-06 2.41188748021E-06 2.47294468735E-06 2.53554756427E-06 2.59973523975E-06 2.66554783311E-06 2.73302647931E-06 2.80221335462E-06 2.87315170303E-06 2.94588586323E-06 3.02046129636E-06 3.09692461441E-06 3.17532360936E-06 3.25570728304E-06 3.33812587776E-06 3.42263090773E-06 3.50927519124E-06 3.59811288366E-06 3.68919951133E-06 3.78259200624E-06 3.87834874160E-06 3.97652956835E-06 4.07719585255E-06 4.18041051377E-06 4.28623806436E-06 4.39474464982E-06 4.50599809013E-06 4.62006792211E-06 4.73702544293E-06 4.85694375464E-06 4.97989780988E-06 5.10596445870E-06 5.23522249663E-06 5.36775271390E-06 5.50363794593E-06 5.64296312516E-06 5.78581533405E-06 5.93228385959E-06 6.08246024904E-06 6.23643836721E-06 6.39431445507E-06 6.55618718994E-06 6.72215774715E-06 6.89232986330E-06 7.06680990106E-06 7.24570691567E-06 7.42913272312E-06 7.61720197000E-06 7.81003220518E-06 8.00774395327E-06 8.21046078997E-06 8.41830941928E-06 8.63141975271E-06 8.84992499048E-06 9.07396170475E-06 9.30366992501E-06 9.53919322559E-06 9.78067881538E-06 1.00282776299E-05 1.02821444254E-05 1.05424378761E-05 1.08093206728E-05 1.10829596248E-05 1.13635257644E-05 1.16511944532E-05 1.19461454923E-05 1.22485632344E-05 1.25586366992E-05 1.28765596910E-05 1.32025309208E-05 1.35367541294E-05 1.38794382156E-05 1.42307973663E-05 1.45910511906E-05 1.49604248569E-05 1.53391492338E-05 1.57274610340E-05 1.61256029630E-05 1.65338238699E-05 1.69523789036E-05 1.73815296721E-05 1.78215444056E-05 1.82726981250E-05 1.87352728128E-05 1.92095575901E-05 1.96958488970E-05 2.01944506778E-05 2.07056745710E-05 2.12298401044E-05 2.17672748943E-05 2.23183148507E-05 2.28833043869E-05 2.34625966349E-05 2.40565536662E-05 2.46655467181E-05 2.52899564253E-05 2.59301730585E-05 2.65865967677E-05 2.72596378327E-05 2.79497169192E-05 2.86572653420E-05 2.93827253343E-05 3.01265503243E-05 3.08892052186E-05 3.16711666925E-05 3.24729234884E-05 3.32949767205E-05 3.41378401887E-05 3.50020406996E-05 3.58881183954E-05 3.67966270916E-05 3.77281346234E-05 3.86832232002E-05 3.96624897698E-05 4.06665463914E-05 4.16960206178E-05 4.27515558880E-05 4.38338119292E-05 4.49434651690E-05 4.60812091584E-05 4.72477550049E-05 4.84438318172E-05 4.96701871609E-05 5.09275875252E-05 5.22168188027E-05 5.35386867798E-05 5.48940176408E-05 5.62836584842E-05 5.77084778515E-05 5.91693662709E-05 6.06672368130E-05 6.22030256620E-05 6.37776927006E-05 6.53922221096E-05 6.70476229833E-05 6.87449299601E-05 7.04852038686E-05 7.22695323914E-05 7.40990307439E-05 7.59748423720E-05 7.78981396661E-05 7.98701246941E-05 8.18920299524E-05 8.39651191361E-05 8.60906879291E-05 8.82700648131E-05 9.05046118982E-05 9.27957257741E-05 9.51448383828E-05 9.75534179132E-05 1.00022969719E-04 1.02555037258E-04 1.05151203060E-04 1.07813089711E-04 1.10542360870E-04 1.13340722309E-04 1.16209922977E-04 1.19151756095E-04 1.22168060274E-04 1.25260720665E-04 1.28431670139E-04 1.31682890490E-04 1.35016413680E-04 1.38434323100E-04 1.41938754882E-04 1.45531899223E-04 1.49216001762E-04 1.52993364980E-04 1.56866349637E-04 1.60837376249E-04 1.64908926600E-04 1.69083545293E-04 1.73363841339E-04 1.77752489786E-04 1.82252233395E-04 1.86865884345E-04 1.91596326001E-04 1.96446514706E-04 2.01419481633E-04 2.06518334675E-04 2.11746260392E-04 2.17106525997E-04 2.22602481400E-04 2.28237561296E-04 2.34015287318E-04 2.39939270232E-04 2.46013212191E-04 2.52240909054E-04 2.58626252751E-04 2.65173233717E-04 2.71885943385E-04 2.78768576740E-04 2.85825434941E-04 2.93060928004E-04 3.00479577564E-04 3.08086019690E-04 3.15885007787E-04 3.23881415564E-04 3.32080240074E-04 3.40486604840E-04 3.49105763053E-04 3.57943100851E-04 3.67004140685E-04 3.76294544766E-04 3.85820118603E-04 3.95586814626E-04 4.05600735905E-04 4.15868139962E-04 4.26395442674E-04 4.37189222283E-04 4.48256223503E-04 4.59603361731E-04 4.71237727362E-04 4.83166590221E-04 4.95397404097E-04 5.07937811401E-04 5.20795647933E-04 5.33978947775E-04 5.47495948309E-04 5.61355095356E-04 5.75565048447E-04 5.90134686233E-04 6.05073112023E-04 6.20389659467E-04 6.36093898382E-04 6.52195640723E-04 6.68704946709E-04 6.85632131098E-04 7.02987769629E-04 7.20782705614E-04 7.39028056711E-04 7.57735221857E-04 7.76915888382E-04 7.96582039301E-04 8.16745960787E-04 8.37420249839E-04 8.58617822141E-04 8.80351920113E-04 9.02636121179E-04 9.25484346229E-04 9.48910868305E-04 9.72930321500E-04 9.97557710087E-04 1.02280841787E-03 1.04869821779E-03 1.07524328175E-03 1.10246019067E-03 1.13036594490E-03 1.15897797473E-03 1.18831415131E-03 1.21839279779E-03 1.24923270069E-03 1.28085312167E-03 1.31327380951E-03 1.34651501239E-03 1.38059749055E-03 1.41554252918E-03 1.45137195174E-03 1.48810813348E-03 1.52577401543E-03 1.56439311869E-03 1.60398955903E-03 1.64458806196E-03 1.68621397810E-03 1.72889329897E-03 1.77265267316E-03 1.81751942292E-03 1.86352156119E-03 1.91068780900E-03 1.95904761335E-03 2.00863116556E-03 2.05946942001E-03 2.11159411343E-03 2.16503778461E-03 2.21983379466E-03 2.27601634775E-03 2.33362051236E-03 2.39268224310E-03 2.45323840304E-03 2.51532678664E-03 2.57898614323E-03 2.64425620105E-03 2.71117769200E-03 2.77979237685E-03 2.85014307127E-03 2.92227367231E-03 2.99622918577E-03 3.07205575401E-03 3.14980068468E-03 3.22951248003E-03 3.31124086702E-03 3.39503682811E-03 3.48095263296E-03 3.56904187076E-03 3.65935948349E-03 3.75196179996E-03 3.84690657070E-03 3.94425300373E-03 4.04406180127E-03 4.14639519726E-03 4.25131699595E-03 4.35889261134E-03 4.46918910765E-03 4.58227524085E-03 4.69822150113E-03 4.81710015649E-03 4.93898529741E-03 5.06395288266E-03 5.19208078613E-03 5.32344884501E-03 5.45813890904E-03 5.59623489099E-03 5.73782281847E-03 5.88299088696E-03 6.03182951420E-03 6.18443139589E-03 6.34089156279E-03 6.50130743929E-03 6.66577890333E-03 6.83440834788E-03 7.00730074392E-03 7.18456370499E-03 7.36630755332E-03 7.55264538761E-03 7.74369315247E-03 7.93956970958E-03 8.14039691063E-03 8.34629967202E-03 8.55740605144E-03 8.77384732628E-03 8.99575807406E-03 9.22327625472E-03 9.45654329507E-03 9.69570417518E-03 9.94090751698E-03 1.01923056750E-02 1.04500548293E-02 1.07143150808E-02 1.09852505487E-02 1.12630294707E-02 1.15478243051E-02 1.18398118357E-02 1.21391732795E-02 1.24460943967E-02 1.27607656031E-02 1.30833820861E-02 1.34141439224E-02 1.37532561996E-02 1.41009291402E-02 1.44573782284E-02 1.48228243405E-02 1.51974938780E-02 1.55816189043E-02 1.59754372841E-02 1.63791928272E-02 1.67931354340E-02 1.72175212467E-02 1.76526128021E-02 1.80986791894E-02 1.85559962109E-02 1.90248465473E-02 1.95055199261E-02 1.99983132949E-02 2.05035309976E-02 2.10214849562E-02 2.15524948558E-02 2.20968883344E-02 2.26550011767E-02 2.32271775136E-02 2.38137700248E-02 2.44151401472E-02 2.50316582880E-02 2.56637040423E-02 2.63116664163E-02 2.69759440551E-02 2.76569454763E-02 2.83550893087E-02 2.90708045362E-02 2.98045307479E-02 3.05567183933E-02 3.13278290438E-02 3.21183356595E-02 3.29287228627E-02 3.37594872171E-02 3.46111375136E-02 3.54841950618E-02 3.63791939891E-02 3.72966815454E-02 3.82372184148E-02 3.92013790347E-02 4.01897519212E-02 4.12029400018E-02 4.22415609554E-02 4.33062475600E-02 4.43976480467E-02 4.55164264628E-02 4.66632630414E-02 4.78388545794E-02 4.90439148235E-02 5.02791748638E-02 5.15453835362E-02 5.28433078324E-02 5.41737333189E-02 5.55374645642E-02 5.69353255750E-02 5.83681602405E-02 5.98368327862E-02 6.13422282363E-02 6.28852528850E-02 6.44668347777E-02 6.60879242003E-02 6.77494941791E-02 6.94525409887E-02 7.11980846706E-02 7.29871695607E-02 7.48208648266E-02 7.67002650144E-02 7.86264906053E-02 8.06006885822E-02 8.26240330055E-02 8.46977255994E-02 8.68229963471E-02 8.90011040967E-02 9.12333371763E-02 9.35210140191E-02 9.58654837979E-02 9.82681270697E-02 1.00730356429E-01 1.03253617173E-01 1.05839387970E-01 1.08489181547E-01 1.11204545376E-01 1.13987062376E-01 1.16838351621E-01 1.19760069057E-01 1.22753908225E-01 1.25821600997E-01 1.28964918315E-01 1.32185670940E-01 1.35485710202E-01 1.38866928765E-01 1.42331261395E-01 1.45880685725E-01 1.49517223041E-01 1.53242939055E-01 1.57059944696E-01 1.60970396892E-01 1.64976499365E-01 1.69080503417E-01 1.73284708725E-01 1.77591464129E-01 1.82003168423E-01 1.86522271139E-01 1.91151273332E-01 1.95892728356E-01 2.00749242632E-01 2.05723476418E-01 2.10818144554E-01 2.16036017209E-01 2.21379920608E-01 2.26852737749E-01 2.32457409097E-01 2.38196933266E-01 2.44074367675E-01 2.50092829183E-01 2.56255494695E-01 2.62565601746E-01 2.69026449044E-01 2.75641396987E-01 2.82413868137E-01 2.89347347654E-01 2.96445383687E-01 3.03711587716E-01 3.11149634838E-01 3.18763264004E-01 3.26556278183E-01 3.34532544474E-01 3.42695994139E-01 3.51050622557E-01 3.59600489105E-01 3.68349716948E-01 3.77302492732E-01 3.86463066179E-01 3.95835749582E-01 4.05424917174E-01 4.15235004385E-01 4.25270506965E-01 4.35535979973E-01 4.46036036615E-01 4.56775346930E-01 4.67758636310E-01 4.78990683843E-01 4.90476320473E-01 5.02220426962E-01 5.14227931639E-01 5.26503807939E-01 5.39053071694E-01 5.51880778187E-01 5.64992018944E-01 5.78391918247E-01 5.92085629356E-01 6.06078330428E-01 6.20375220105E-01 6.34981512770E-01 6.49902433433E-01 6.65143212249E-01 6.80709078627E-01 6.96605254925E-01 7.12836949707E-01 7.29409350530E-01 7.46327616245E-01 7.63596868794E-01 7.81222184460E-01 7.99208584560E-01 8.17561025549E-01 8.36284388499E-01 8.55383467934E-01 8.74862959988E-01 8.94727449847E-01 9.14981398448E-01 9.35629128410E-01 9.56674809140E-01 9.78122441097E-01 9.99975839170E-01 1.02223861513E+00 1.04491415912E+00 1.06800562015E+00 1.09151588549E+00 1.11544755907E+00 1.13980293867E+00 1.16458399195E+00 1.18979233124E+00 1.21542918711E+00 1.24149538056E+00 1.26799129384E+00 1.29491683993E+00 1.32227143042E+00 1.35005394196E+00 1.37826268114E+00 1.40689534769E+00 1.43594899599E+00 1.46541999497E+00 1.49530398606E+00 1.52559583942E+00 1.55628960824E+00 1.58737848111E+00 1.61885473242E+00 1.65070967065E+00 1.68293358469E+00 1.71551568796E+00 1.74844406035E+00 1.78170558802E+00 1.81528590087E+00 1.84916930780E+00 1.88333872967E+00 1.91777562986E+00 1.95245994255E+00 1.98736999869E+00 2.02248244948E+00 2.05777218763E+00 2.09321226625E+00 2.12877381536E+00 2.16442595626E+00 2.20013571352E+00 2.23586792492E+00 2.27158514928E+00 2.30724757221E+00 2.34281291009E+00 2.37823631218E+00 2.41347026124E+00 2.44846447256E+00 2.48316579187E+00 2.51751809219E+00 2.55146216991E+00 2.58493564036E+00 2.61787283324E+00 2.65020468821E+00 2.68185865111E+00 2.71275857104E+00 2.74282459909E+00 2.77197308891E+00 2.80011649995E+00 2.82716330382E+00 2.85301789458E+00 2.87758050359E+00 2.90074711978E+00 2.92240941626E+00 2.94245468407E+00 2.96076577423E+00 2.97722104913E+00 2.99169434439E+00 3.00405494255E+00 3.01416755985E+00 3.02189234760E+00 3.02708490970E+00 3.02959633786E+00 3.02927326640E+00 3.02595794840E+00 3.01948835514E+00 3.00969830106E+00 2.99641759620E+00 2.97947222868E+00 2.95868457942E+00 2.93387367183E+00 2.90485545895E+00 2.87144315102E+00 2.83344758612E+00 2.79067764710E+00 2.74294072774E+00 2.69004325136E+00 2.63179124521E+00 2.56799097389E+00 2.49844963531E+00 2.42297612255E+00 2.34138185514E+00 2.25377374978E+00 2.16781733363E+00 2.08355838224E+00 2.00103920084E+00 1.92029856777E+00 1.84137168472E+00 1.76429013414E+00 1.68908184369E+00 1.61577105850E+00 1.54437832169E+00 1.47492046415E+00 1.40741060465E+00 1.34185816155E+00 1.27826887746E+00 1.21664485809E+00 1.15698462665E+00 1.09928319445E+00 1.04353214838E+00 9.89719755264E-01 9.37831082480E-01 8.87848133817E-01 8.39749998887E-01 7.93513013966E-01 7.49110931751E-01 7.06515097313E-01 6.65694627462E-01 6.26616590894E-01 5.89246186769E-01 5.53546919828E-01 5.19480770654E-01 4.87008360243E-01 4.56089108537E-01 4.26681386964E-01 3.98742665348E-01 3.72229653652E-01 3.47098439111E-01 3.23304619198E-01 3.00803430795E-01 2.79549875758E-01 2.59498842932E-01 2.40605226531E-01 2.22824040694E-01 2.06110529932E-01 1.90420275154E-01 1.75709294939E-01 1.61934141693E-01 1.49051992396E-01 1.37020733634E-01 1.25799040690E-01 1.15346450474E-01 1.05623428156E-01 9.65914273997E-02 8.82129441367E-02 8.04515638780E-02 7.32720026024E-02 6.66401412967E-02 6.05230542640E-02 5.48890313533E-02 4.97075942899E-02 4.49495073213E-02 4.05867824127E-02 3.65926792516E-02 3.29417003406E-02 2.96095814718E-02 2.65732778913E-02 2.38109464714E-02 2.13019242182E-02 1.90267034432E-02 1.69669039352E-02 1.51052424632E-02 1.34254999429E-02 1.19124865920E-02 1.05520053931E-02 9.33081417419E-03 8.23658660579E-03 7.25787240173E-03 6.38405699566E-03 5.60532095127E-03 4.91259934746E-03 4.29754136276E-03 3.75247026545E-03 3.27034399808E-03 2.84471652606E-03 2.46970010218E-03 2.13992858006E-03 1.85052189173E-03 1.59705178676E-03 1.37550891343E-03 1.18227130581E-03 1.01407432529E-03 8.67982090272E-04 7.41360413912E-04 6.31851257429E-04 5.37348694443E-04 4.55976371587E-04 3.86066441022E-04 3.26139932234E-04 2.74888523207E-04 2.31157664896E-04 1.93931007783E-04 1.62316075116E-04 1.35531124185E-04 1.12893134649E-04 9.38068613320E-05 7.77548881070E-05 6.42886193399E-05 5.30201458019E-05 4.36149229520E-05 3.57852009277E-05 2.92841474136E-05 2.39006067188E-05 1.94544408134E-05 1.57924007077E-05 1.27844793317E-05 1.03206999587E-05 8.30829715164E-06 6.66925016643E-06 5.33813167923E-06 4.26023759166E-06 3.38996647403E-06 2.68941991886E-06 2.12719767156E-06 1.67736387203E-06 1.31856306873E-06 1.03326684887E-06 8.07133961558E-07 6.28468693181E-07 4.87763987288E-07 3.77317387584E-07 2.90909326928E-07 2.23534592969E-07 1.71178979107E-07 1.30634185209E-07 9.93449738883E-08 7.52834233587E-08 5.68458552615E-08 4.27686637228E-08 3.20598383392E-08 2.39434666872E-08 1.78149288133E-08 1.32048640661E-08 9.75030624200E-09 7.17165247554E-09 5.25436028224E-09 3.83446082323E-09 2.78713947795E-09 2.01777138823E-09 1.45491351841E-09 1.04484928538E-09 7.47359869364E-10 5.32460478578E-10 3.77892327926E-10 2.67203821665E-10 1.88289047604E-10 1.32279599598E-10 9.27081357744E-11 6.48799553053E-11 4.54030770626E-11 3.16238587464E-11 2.19216977853E-11 1.51229966367E-11 1.03819786786E-11 7.09210152242E-12 4.82054202555E-12 3.25998917368E-12 2.19335374282E-12 1.46806729674E-12 9.77462645342E-13 6.47355860535E-13 4.26428399332E-13 2.79370347258E-13 1.82018817292E-13 1.17930002987E-13 7.59756142909E-14 4.86670994437E-14 3.09939601461E-14 1.96231018160E-14 1.23502405752E-14 7.72623862169E-15 4.80411161772E-15 2.96877462404E-15 1.82316925832E-15 1.11257263489E-15 6.74600927066E-16 4.06394444810E-16 2.43217876382E-16 1.44595336535E-16 8.53862299271E-17 5.00794287197E-17 2.91696760896E-17 1.68720095967E-17 9.69006639646E-18 5.52551416837E-18 3.12799047747E-18 1.75778277750E-18 9.80464370269E-19 5.42780851416E-19 2.98196168566E-19 1.62563361294E-19 8.79314148389E-20 4.71871135804E-20 2.51198692450E-20 1.32642304856E-20 6.94661194849E-21 3.60782393090E-21 1.85803297363E-21 9.48748702520E-22 4.80277247954E-22 2.41006438325E-22 1.19870766474E-22 5.90877611213E-23 2.88623983776E-23 1.39690973634E-23 6.69815394529E-24 3.18157342394E-24 1.49684692436E-24 6.97444058247E-25 3.21799388960E-25 1.47011580381E-25 6.64896983270E-26 2.97672686815E-26 1.31901601687E-26 5.78404377391E-27 2.50972861203E-27 1.07740306507E-27 4.57538619324E-28 1.92183696302E-28 7.98334607056E-29 3.27923583432E-29 1.33173718471E-29 5.34639099146E-30 2.12146847464E-30 8.31922176319E-31 3.22355329349E-31 1.23403653687E-31 4.66655460503E-32 1.74290288183E-32 6.42822426885E-33 2.34089262164E-33 8.41541213369E-34 2.98608814351E-34 1.04566415546E-34 3.61303623386E-35 1.23160129772E-35 4.14106447154E-36 1.37316668281E-36 4.48981421163E-37 1.44727417064E-37 4.59846722315E-38 1.43991467302E-38 4.44265246318E-39 1.35035944102E-39 4.04274558882E-40 1.19190299975E-40 3.45986645499E-41 9.88660250432E-42 2.78047149265E-42 7.69461144350E-43 2.09490318182E-43 5.60997936199E-44 1.47736742997E-44 3.82520303826E-45 9.73569120184E-46 2.43518443341E-46 5.98487326364E-47 1.44490785138E-47 3.42602310333E-48 7.97640118144E-49 1.82301664938E-49 4.08921875911E-50 9.00023733784E-51 1.94324715988E-51 4.11488621191E-52 8.54352808632E-53 1.73883706523E-53 3.46827855177E-54 6.77785616563E-55 1.29742566994E-55 2.43204406119E-56 4.46318444207E-57 8.01653806240E-58 1.40890021592E-58 2.42217885996E-59 4.07219796859E-60 6.69334601846E-61 1.07529100340E-61 1.68792116334E-62 2.58818438951E-63 3.87549413580E-64 5.66523677949E-65 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -7.02836961173E-05 -7.11677564015E-05 -7.20629368034E-05 -7.29693771972E-05 -7.38872192167E-05 -7.48166062768E-05 -7.57576835968E-05 -7.67105982223E-05 -7.76754990486E-05 -7.86525368441E-05 -7.96418642735E-05 -8.06436359216E-05 -8.16580083181E-05 -8.26851399611E-05 -8.37251913429E-05 -8.47783249741E-05 -8.58447054098E-05 -8.69244992748E-05 -8.80178752898E-05 -8.91250042979E-05 -9.02460592908E-05 -9.13812154367E-05 -9.25306501069E-05 -9.36945429037E-05 -9.48730756886E-05 -9.60664326109E-05 -9.72748001359E-05 -9.84983670746E-05 -9.97373246129E-05 -1.00991866341E-04 -1.02262188286E-04 -1.03548488939E-04 -1.04850969287E-04 -1.06169832849E-04 -1.07505285699E-04 -1.08857536507E-04 -1.10226796567E-04 -1.11613279828E-04 -1.13017202935E-04 -1.14438785253E-04 -1.15878248911E-04 -1.17335818828E-04 -1.18811722755E-04 -1.20306191308E-04 -1.21819458000E-04 -1.23351759287E-04 -1.24903334594E-04 -1.26474426362E-04 -1.28065280077E-04 -1.29676144318E-04 -1.31307270787E-04 -1.32958914354E-04 -1.34631333094E-04 -1.36324788328E-04 -1.38039544666E-04 -1.39775870044E-04 -1.41534035769E-04 -1.43314316563E-04 -1.45116990601E-04 -1.46942339558E-04 -1.48790648651E-04 -1.50662206687E-04 -1.52557306104E-04 -1.54476243020E-04 -1.56419317276E-04 -1.58386832486E-04 -1.60379096082E-04 -1.62396419366E-04 -1.64439117551E-04 -1.66507509820E-04 -1.68601919368E-04 -1.70722673455E-04 -1.72870103460E-04 -1.75044544930E-04 -1.77246337630E-04 -1.79475825601E-04 -1.81733357213E-04 -1.84019285216E-04 -1.86333966798E-04 -1.88677763640E-04 -1.91051041972E-04 -1.93454172632E-04 -1.95887531122E-04 -1.98351497668E-04 -2.00846457279E-04 -2.03372799806E-04 -2.05930920005E-04 -2.08521217597E-04 -2.11144097331E-04 -2.13799969049E-04 -2.16489247747E-04 -2.19212353642E-04 -2.21969712236E-04 -2.24761754385E-04 -2.27588916364E-04 -2.30451639936E-04 -2.33350372420E-04 -2.36285566765E-04 -2.39257681616E-04 -2.42267181386E-04 -2.45314536332E-04 -2.48400222627E-04 -2.51524722432E-04 -2.54688523974E-04 -2.57892121624E-04 -2.61136015969E-04 -2.64420713894E-04 -2.67746728660E-04 -2.71114579987E-04 -2.74524794129E-04 -2.77977903964E-04 -2.81474449071E-04 -2.85014975818E-04 -2.88600037445E-04 -2.92230194152E-04 -2.95906013187E-04 -2.99628068934E-04 -3.03396943002E-04 -3.07213224316E-04 -3.11077509211E-04 -3.14990401523E-04 -3.18952512685E-04 -3.22964461822E-04 -3.27026875846E-04 -3.31140389559E-04 -3.35305645745E-04 -3.39523295276E-04 -3.43793997215E-04 -3.48118418911E-04 -3.52497236113E-04 -3.56931133069E-04 -3.61420802636E-04 -3.65966946388E-04 -3.70570274723E-04 -3.75231506978E-04 -3.79951371541E-04 -3.84730605962E-04 -3.89569957069E-04 -3.94470181089E-04 -3.99432043761E-04 -4.04456320457E-04 -4.09543796306E-04 -4.14695266314E-04 -4.19911535490E-04 -4.25193418968E-04 -4.30541742142E-04 -4.35957340787E-04 -4.41441061196E-04 -4.46993760308E-04 -4.52616305845E-04 -4.58309576445E-04 -4.64074461803E-04 -4.69911862806E-04 -4.75822691677E-04 -4.81807872116E-04 -4.87868339448E-04 -4.94005040763E-04 -5.00218935069E-04 -5.06510993441E-04 -5.12882199174E-04 -5.19333547933E-04 -5.25866047913E-04 -5.32480719994E-04 -5.39178597903E-04 -5.45960728374E-04 -5.52828171312E-04 -5.59781999960E-04 -5.66823301067E-04 -5.73953175055E-04 -5.81172736194E-04 -5.88483112779E-04 -5.95885447300E-04 -6.03380896626E-04 -6.10970632184E-04 -6.18655840144E-04 -6.26437721602E-04 -6.34317492770E-04 -6.42296385167E-04 -6.50375645811E-04 -6.58556537413E-04 -6.66840338576E-04 -6.75228343996E-04 -6.83721864664E-04 -6.92322228070E-04 -7.01030778413E-04 -7.09848876812E-04 -7.18777901515E-04 -7.27819248121E-04 -7.36974329793E-04 -7.46244577484E-04 -7.55631440158E-04 -7.65136385018E-04 -7.74760897738E-04 -7.84506482692E-04 -7.94374663192E-04 -8.04366981729E-04 -8.14485000209E-04 -8.24730300205E-04 -8.35104483197E-04 -8.45609170832E-04 -8.56246005171E-04 -8.67016648948E-04 -8.77922785837E-04 -8.88966120706E-04 -9.00148379892E-04 -9.11471311470E-04 -9.22936685526E-04 -9.34546294435E-04 -9.46301953144E-04 -9.58205499455E-04 -9.70258794316E-04 -9.82463722109E-04 -9.94822190951E-04 -1.00733613299E-03 -1.02000750470E-03 -1.03283828722E-03 -1.04583048663E-03 -1.05898613426E-03 -1.07230728707E-03 -1.08579602790E-03 -1.09945446584E-03 -1.11328473655E-03 -1.12728900259E-03 -1.14146945377E-03 -1.15582830751E-03 -1.17036780914E-03 -1.18509023230E-03 -1.19999787929E-03 -1.21509308139E-03 -1.23037819929E-03 -1.24585562342E-03 -1.26152777436E-03 -1.27739710316E-03 -1.29346609180E-03 -1.30973725353E-03 -1.32621313330E-03 -1.34289630812E-03 -1.35978938750E-03 -1.37689501388E-03 -1.39421586298E-03 -1.41175464427E-03 -1.42951410142E-03 -1.44749701265E-03 -1.46570619128E-03 -1.48414448607E-03 -1.50281478173E-03 -1.52171999937E-03 -1.54086309694E-03 -1.56024706973E-03 -1.57987495080E-03 -1.59974981151E-03 -1.61987476196E-03 -1.64025295151E-03 -1.66088756929E-03 -1.68178184466E-03 -1.70293904777E-03 -1.72436249004E-03 -1.74605552473E-03 -1.76802154742E-03 -1.79026399659E-03 -1.81278635415E-03 -1.83559214597E-03 -1.85868494250E-03 -1.88206835927E-03 -1.90574605753E-03 -1.92972174477E-03 -1.95399917535E-03 -1.97858215110E-03 -2.00347452189E-03 -2.02868018628E-03 -2.05420309214E-03 -2.08004723726E-03 -2.10621666999E-03 -2.13271548991E-03 -2.15954784846E-03 -2.18671794962E-03 -2.21423005057E-03 -2.24208846239E-03 -2.27029755073E-03 -2.29886173652E-03 -2.32778549669E-03 -2.35707336487E-03 -2.38672993213E-03 -2.41675984771E-03 -2.44716781977E-03 -2.47795861616E-03 -2.50913706518E-03 -2.54070805635E-03 -2.57267654120E-03 -2.60504753409E-03 -2.63782611300E-03 -2.67101742037E-03 -2.70462666390E-03 -2.73865911743E-03 -2.77312012178E-03 -2.80801508561E-03 -2.84334948630E-03 -2.87912887088E-03 -2.91535885685E-03 -2.95204513320E-03 -2.98919346124E-03 -3.02680967561E-03 -3.06489968520E-03 -3.10346947413E-03 -3.14252510272E-03 -3.18207270852E-03 -3.22211850724E-03 -3.26266879386E-03 -3.30372994363E-03 -3.34530841309E-03 -3.38741074120E-03 -3.43004355036E-03 -3.47321354755E-03 -3.51692752541E-03 -3.56119236341E-03 -3.60601502893E-03 -3.65140257850E-03 -3.69736215889E-03 -3.74390100838E-03 -3.79102645793E-03 -3.83874593240E-03 -3.88706695184E-03 -3.93599713272E-03 -3.98554418922E-03 -4.03571593453E-03 -4.08652028218E-03 -4.13796524737E-03 -4.19005894834E-03 -4.24280960775E-03 -4.29622555407E-03 -4.35031522302E-03 -4.40508715899E-03 -4.46055001654E-03 -4.51671256183E-03 -4.57358367421E-03 -4.63117234768E-03 -4.68948769249E-03 -4.74853893671E-03 -4.80833542782E-03 -4.86888663436E-03 -4.93020214758E-03 -4.99229168312E-03 -5.05516508271E-03 -5.11883231590E-03 -5.18330348187E-03 -5.24858881114E-03 -5.31469866747E-03 -5.38164354963E-03 -5.44943409336E-03 -5.51808107320E-03 -5.58759540449E-03 -5.65798814529E-03 -5.72927049844E-03 -5.80145381354E-03 -5.87454958906E-03 -5.94856947443E-03 -6.02352527216E-03 -6.09942894007E-03 -6.17629259345E-03 -6.25412850733E-03 -6.33294911880E-03 -6.41276702927E-03 -6.49359500691E-03 -6.57544598901E-03 -6.65833308448E-03 -6.74226957630E-03 -6.82726892408E-03 -6.91334476666E-03 -7.00051092473E-03 -7.08878140349E-03 -7.17817039542E-03 -7.26869228302E-03 -7.36036164168E-03 -7.45319324250E-03 -7.54720205529E-03 -7.64240325154E-03 -7.73881220743E-03 -7.83644450698E-03 -7.93531594520E-03 -8.03544253131E-03 -8.13684049202E-03 -8.23952627489E-03 -8.34351655175E-03 -8.44882822218E-03 -8.55547841703E-03 -8.66348450209E-03 -8.77286408178E-03 -8.88363500288E-03 -8.99581535842E-03 -9.10942349157E-03 -9.22447799968E-03 -9.34099773833E-03 -9.45900182556E-03 -9.57850964607E-03 -9.69954085561E-03 -9.82211538541E-03 -9.94625344674E-03 -1.00719755355E-02 -1.01993024370E-02 -1.03282552309E-02 -1.04588552959E-02 -1.05911243149E-02 -1.07250842804E-02 -1.08607574996E-02 -1.09981665997E-02 -1.11373345335E-02 -1.12782845852E-02 -1.14210403760E-02 -1.15656258703E-02 -1.17120653813E-02 -1.18603835776E-02 -1.20106054892E-02 -1.21627565146E-02 -1.23168624266E-02 -1.24729493797E-02 -1.26310439172E-02 -1.27911729777E-02 -1.29533639030E-02 -1.31176444454E-02 -1.32840427753E-02 -1.34525874893E-02 -1.36233076180E-02 -1.37962326345E-02 -1.39713924629E-02 -1.41488174869E-02 -1.43285385586E-02 -1.45105870079E-02 -1.46949946521E-02 -1.48817938049E-02 -1.50710172869E-02 -1.52626984355E-02 -1.54568711153E-02 -1.56535697291E-02 -1.58528292283E-02 -1.60546851251E-02 -1.62591735031E-02 -1.64663310301E-02 -1.66761949697E-02 -1.68888031944E-02 -1.71041941979E-02 -1.73224071091E-02 -1.75434817053E-02 -1.77674584264E-02 -1.79943783894E-02 -1.82242834031E-02 -1.84572159835E-02 -1.86932193694E-02 -1.89323375388E-02 -1.91746152253E-02 -1.94200979352E-02 -1.96688319654E-02 -1.99208644211E-02 -2.01762432348E-02 -2.04350171855E-02 -2.06972359182E-02 -2.09629499645E-02 -2.12322107636E-02 -2.15050706835E-02 -2.17815830437E-02 -2.20618021381E-02 -2.23457832582E-02 -2.26335827177E-02 -2.29252578776E-02 -2.32208671716E-02 -2.35204701334E-02 -2.38241274236E-02 -2.41319008578E-02 -2.44438534364E-02 -2.47600493740E-02 -2.50805541307E-02 -2.54054344437E-02 -2.57347583607E-02 -2.60685952732E-02 -2.64070159522E-02 -2.67500925835E-02 -2.70978988056E-02 -2.74505097477E-02 -2.78080020694E-02 -2.81704540015E-02 -2.85379453883E-02 -2.89105577306E-02 -2.92883742313E-02 -2.96714798408E-02 -3.00599613052E-02 -3.04539072157E-02 -3.08534080588E-02 -3.12585562694E-02 -3.16694462844E-02 -3.20861745987E-02 -3.25088398227E-02 -3.29375427419E-02 -3.33723863782E-02 -3.38134760529E-02 -3.42609194523E-02 -3.47148266952E-02 -3.51753104019E-02 -3.56424857665E-02 -3.61164706310E-02 -3.65973855610E-02 -3.70853539255E-02 -3.75805019776E-02 -3.80829589387E-02 -3.85928570853E-02 -3.91103318381E-02 -3.96355218542E-02 -4.01685691227E-02 -4.07096190625E-02 -4.12588206236E-02 -4.18163263917E-02 -4.23822926962E-02 -4.29568797206E-02 -4.35402516181E-02 -4.41325766294E-02 -4.47340272044E-02 -4.53447801285E-02 -4.59650166519E-02 -4.65949226236E-02 -4.72346886287E-02 -4.78845101311E-02 -4.85445876193E-02 -4.92151267580E-02 -4.98963385430E-02 -5.05884394618E-02 -5.12916516586E-02 -5.20062031040E-02 -5.27323277707E-02 -5.34702658136E-02 -5.42202637552E-02 -5.49825746773E-02 -5.57574584172E-02 -5.65451817706E-02 -5.73460186997E-02 -5.81602505476E-02 -5.89881662586E-02 -5.98300626050E-02 -6.06862444202E-02 -6.15570248376E-02 -6.24427255376E-02 -6.33436769994E-02 -6.42602187614E-02 -6.51926996872E-02 -6.61414782399E-02 -6.71069227618E-02 -6.80894117634E-02 -6.90893342182E-02 -7.01070898654E-02 -7.11430895203E-02 -7.21977553919E-02 -7.32715214082E-02 -7.43648335494E-02 -7.54781501882E-02 -7.66119424384E-02 -7.77666945106E-02 -7.89429040761E-02 -8.01410826381E-02 -8.13617559106E-02 -8.26054642045E-02 -8.38727628218E-02 -8.51642224560E-02 -8.64804296010E-02 -8.78219869656E-02 -8.91895138954E-02 -9.05836468014E-02 -9.20050395943E-02 -9.34543641250E-02 -9.49323106303E-02 -9.64395881843E-02 -9.79769251536E-02 -9.95450696575E-02 -1.01144790031E-01 -1.02776875293E-01 -1.04442135610E-01 -1.06141402773E-01 -1.07875530663E-01 -1.09645395724E-01 -1.11451897433E-01 -1.13295958763E-01 -1.15178526652E-01 -1.17100572461E-01 -1.19063092422E-01 -1.21067108090E-01 -1.23113666777E-01 -1.25203841975E-01 -1.27338733772E-01 -1.29519469250E-01 -1.31747202866E-01 -1.34023116816E-01 -1.36348421372E-01 -1.38724355207E-01 -1.41152185679E-01 -1.43633209097E-01 -1.46168750946E-01 -1.48760166081E-01 -1.51408838881E-01 -1.54116183358E-01 -1.56883643220E-01 -1.59712691880E-01 -1.62604832417E-01 -1.65561597463E-01 -1.68584549043E-01 -1.71675278324E-01 -1.74835405306E-01 -1.78066578420E-01 -1.81370474042E-01 -1.84748795915E-01 -1.88203274467E-01 -1.91735666021E-01 -1.95347751897E-01 -1.99041337380E-01 -2.02818250572E-01 -2.06680341094E-01 -2.10629478644E-01 -2.14667551407E-01 -2.18796464290E-01 -2.23018136989E-01 -2.27334501872E-01 -2.31747501663E-01 -2.36259086932E-01 -2.40871213362E-01 -2.45585838794E-01 -2.50404920037E-01 -2.55330409427E-01 -2.60364251136E-01 -2.65508377199E-01 -2.70764703272E-01 -2.76135124092E-01 -2.81621508628E-01 -2.87225694932E-01 -2.92949484643E-01 -2.98794637175E-01 -3.04762863542E-01 -3.10855819831E-01 -3.17075100311E-01 -3.23422230161E-01 -3.29898657816E-01 -3.36505746922E-01 -3.43244767893E-01 -3.50116889065E-01 -3.57123167448E-01 -3.64264539060E-01 -3.71541808870E-01 -3.78955640314E-01 -3.86506544428E-01 -3.94194868567E-01 -4.02020784755E-01 -4.09984277643E-01 -4.18085132116E-01 -4.26322920561E-01 -4.34696989805E-01 -4.43206447774E-01 -4.51850149878E-01 -4.60626685180E-01 -4.69534362373E-01 -4.78571195621E-01 -4.87734890314E-01 -4.97022828788E-01 -5.06432056090E-01 -5.15959265837E-01 -5.25600786271E-01 -5.35352566576E-01 -5.45210163560E-01 -5.55168728801E-01 -5.65222996362E-01 -5.75367271202E-01 -5.85595418389E-01 -5.95900853273E-01 -6.06276532735E-01 -6.16714947677E-01 -6.27208116912E-01 -6.37747582597E-01 -6.48324407404E-01 -6.58929173593E-01 -6.69551984165E-01 -6.80182466293E-01 -6.90809777201E-01 -7.01422612706E-01 -7.12009218583E-01 -7.22557404962E-01 -7.33054563930E-01 -7.43487690516E-01 -7.53843407215E-01 -7.64107992222E-01 -7.74267411484E-01 -7.84307354713E-01 -7.94213275423E-01 -8.03970435075E-01 -8.13563951334E-01 -8.22978850439E-01 -8.32200123621E-01 -8.41212787454E-01 -8.50001947987E-01 -8.58552868401E-01 -8.66851039917E-01 -8.74882255556E-01 -8.82632686299E-01 -8.90088959099E-01 -8.97238236093E-01 -9.04068294273E-01 -9.10567604757E-01 -9.16725410707E-01 -9.22531802803E-01 -9.27977791097E-01 -9.33055371930E-01 -9.37757588490E-01 -9.42078583496E-01 -9.46013642348E-01 -9.49559225038E-01 -9.52712985002E-01 -9.55473773036E-01 -9.57841624361E-01 -9.59817726895E-01 -9.61404368806E-01 -9.62604863464E-01 -9.63423449984E-01 -9.63865167716E-01 -9.63935703188E-01 -9.63641208278E-01 -9.62988088690E-01 -9.61982762187E-01 -9.60631386511E-01 -9.58939557422E-01 -9.56911977949E-01 -9.54552100650E-01 -9.51861745456E-01 -9.48840696617E-01 -9.45486283220E-01 -9.41792948827E-01 -9.37754485384E-01 -9.33373048185E-01 -9.28653436597E-01 -9.23600758563E-01 -9.18220423603E-01 -9.12518135357E-01 -9.06499883713E-01 -9.00171936513E-01 -8.93540830882E-01 -8.86613364171E-01 -8.79396584557E-01 -8.71897781310E-01 -8.64124474747E-01 -8.56084405895E-01 -8.47785525889E-01 -8.39235985119E-01 -8.30444122147E-01 -8.21418452426E-01 -8.12167656825E-01 -8.02700570000E-01 -7.93026168611E-01 -7.83153559425E-01 -7.73091967313E-01 -7.62850723163E-01 -7.52439251754E-01 -7.41867059552E-01 -7.31137950620E-01 -7.20267257254E-01 -7.09264656406E-01 -6.98139857618E-01 -6.86902590855E-01 -6.75562594357E-01 -6.64129602582E-01 -6.52613334233E-01 -6.41023480381E-01 -6.29369692700E-01 -6.17661571823E-01 -6.05908655826E-01 -5.94120408874E-01 -5.82306210003E-01 -5.70475342097E-01 -5.58636981024E-01 -5.46800184979E-01 -5.34973884032E-01 -5.23166869886E-01 -5.11387785874E-01 -4.99645117194E-01 -4.87947181409E-01 -4.76302119209E-01 -4.64717885470E-01 -4.53202240611E-01 -4.41762742275E-01 -4.30406737343E-01 -4.19141354311E-01 -4.07973496034E-01 -3.96909832870E-01 -3.85956796237E-01 -3.75120572603E-01 -3.64407097928E-01 -3.53822052579E-01 -3.43370856740E-01 -3.33058666328E-01 -3.22890369434E-01 -3.12870583308E-01 -3.03003651895E-01 -2.93293643936E-01 -2.83744351644E-01 -2.74359289959E-01 -2.65141696383E-01 -2.56094531402E-01 -2.47220479480E-01 -2.38521950634E-01 -2.30001082569E-01 -2.21659743361E-01 -2.13499534681E-01 -2.05521795533E-01 -1.97727606489E-01 -1.90117794393E-01 -1.82692937517E-01 -1.75453371131E-01 -1.68399193464E-01 -1.61530272025E-01 -1.54846250247E-01 -1.48346554431E-01 -1.42030400948E-01 -1.35896803674E-01 -1.29944581622E-01 -1.24172366736E-01 -1.18578611828E-01 -1.13161598611E-01 -1.07919445819E-01 -1.02850117368E-01 -9.79514305481E-02 -9.32210642150E-02 -8.86565669613E-02 -8.42553652483E-02 -8.00147714804E-02 -7.59319920060E-02 -7.20041350316E-02 -6.82282184379E-02 -6.46011774857E-02 -6.11198724054E-02 -5.77810958623E-02 -5.45815802916E-02 -5.15180050993E-02 -4.85870037258E-02 -4.57851705682E-02 -4.31090677605E-02 -4.05552318075E-02 -3.81201800735E-02 -3.58004171201E-02 -3.35924408933E-02 -3.14927487560E-02 -2.94978433616E-02 -2.76042383658E-02 -2.58084639711E-02 -2.41070722983E-02 -2.24966425783E-02 -2.09737861579E-02 -1.95351513127E-02 -1.81774278565E-02 -1.68973515428E-02 -1.56917082466E-02 -1.45573379208E-02 -1.34911383173E-02 -1.24900684668E-02 -1.15511519089E-02 -1.06714796665E-02 -9.84821296018E-03 -9.07858565627E-03 -8.35990644672E-03 -7.68956075809E-03 -7.06501238892E-03 -6.48380487599E-03 -5.94356259136E-03 -5.44199157327E-03 -4.97688009554E-03 -4.54609898126E-03 -4.14760166772E-03 -3.77942403092E-03 -3.43968397889E-03 -3.12658082412E-03 -2.83839444629E-03 -2.57348425718E-03 -2.33028798053E-03 -2.10732025979E-03 -1.90317110763E-03 -1.71650421080E-03 -1.54605510479E-03 -1.39062923214E-03 -1.24909989893E-03 -1.12040614318E-03 -1.00355052924E-03 -8.97596881644E-04 -8.01667971451E-04 -7.14943168047E-04 -6.36656068334E-04 -5.66092115043E-04 -5.02586215116E-04 -4.45520368464E-04 -3.94321316723E-04 -3.48458220881E-04 -3.07440375952E-04 -2.70814970067E-04 -2.38164894663E-04 -2.09106611634E-04 -1.83288082643E-04 -1.60386765004E-04 -1.40107677875E-04 -1.22181541825E-04 -1.06362994159E-04 -9.24288817963E-05 -8.01766328921E-05 -6.94227078403E-05 -6.00011298028E-05 -5.17620944197E-05 -4.45706579335E-05 -3.83055025668E-05 -3.28577776447E-05 -2.81300146424E-05 -2.40351140708E-05 -2.04954018790E-05 -1.74417528633E-05 -1.48127784083E-05 -1.25540757691E-05 -1.06175360025E-05 -8.96070760055E-06 -7.54621284078E-06 -6.34121385814E-06 -5.31692545888E-06 -4.44817172906E-06 -3.71298354359E-06 -3.09223414973E-06 -2.56931008168E-06 -2.12981475588E-06 -1.76130220043E-06 -1.45304240869E-06 -1.19583912414E-06 -9.81762723824E-07 -8.04022363421E-07 -6.56820775592E-07 -5.35221538179E-07 -4.35032159390E-07 -3.52701385761E-07 -2.85229263394E-07 -2.30088603446E-07 -1.85156618980E-07 -1.48655611771E-07 -1.19101694634E-07 -9.52606373371E-08 -7.61100229631E-08 -6.08069971067E-08 -4.84401841655E-08 -3.85008166464E-08 -3.05097845058E-08 -2.41044469586E-08 -1.89857440195E-08 -1.49078105836E-08 -1.16691460143E-08 -9.10513103627E-09 -7.08170748813E-09 -5.49005818407E-09 -4.24214383940E-09 -3.26697183496E-09 -2.50748762554E-09 -1.91799396540E-09 -1.46201589390E-09 -1.11054081840E-09 -8.40573025209E-10 -6.33950778206E-10 -4.76381874462E-10 -3.56660244589E-10 -2.66032010617E-10 -1.97684442381E-10 -1.46335573634E-10 -1.07905934389E-10 -7.92570021757E-11 -5.79836415126E-11 -4.22500505303E-11 -3.06606229566E-11 -2.21587129015E-11 -1.59476038795E-11 -1.14290717056E-11 -8.15582789289E-12 -5.79486607449E-12 -4.09933484685E-12 -2.88704871437E-12 -2.02414370171E-12 -1.41270200914E-12 -9.81424616196E-13 -6.78633589138E-13 -4.67046710384E-13 -3.19893978610E-13 -2.18045179763E-13 -1.47895567657E-13 -9.98171816901E-14 -6.70300928421E-14 -4.47838333777E-14 -2.97667791474E-14 -1.96821899726E-14 -1.29454601270E-14 -8.46905993753E-15 -5.51058043621E-15 -3.56594239689E-15 -2.29475423173E-15 -1.46842773029E-15 -9.34313874767E-16 -5.91052061868E-16 -3.71723395126E-16 -2.32403882684E-16 -1.44432155821E-16 -8.92172300411E-17 -5.47727807732E-17 -3.34178516617E-17 -2.02607721063E-17 -1.22057031454E-17 -7.30573891523E-18 -4.34434966024E-18 -2.56630920486E-18 -1.50584624030E-18 -8.77613133198E-19 -5.07971532189E-19 -2.91979178372E-19 -1.66648971164E-19 -9.44393869175E-20 -5.31330180479E-20 -2.96754396200E-20 -1.64517172456E-20 -9.05245255868E-21 -4.94334886486E-21 -2.67876593921E-21 -1.44033919479E-21 -7.68367104997E-22 -4.06633971297E-22 -2.13464595530E-22 -1.11145324659E-22 -5.73924782725E-23 -2.93881278037E-23 -1.49209398263E-23 -7.51071590270E-24 -3.74783430762E-24 -1.85372678359E-24 -9.08718074936E-25 -4.41450390122E-25 -2.12497841870E-25 -1.01343753271E-25 -4.78804935904E-26 -2.24072273814E-26 -1.03856465964E-26 -4.76696837497E-27 -2.16651173319E-27 -9.74845804097E-28 -4.34222475153E-28 -1.91440957329E-28 -8.35309851951E-29 -3.60656557821E-29 -1.54069306910E-29 -6.51112975321E-30 -2.72179633592E-30 -1.12526378412E-30 -4.60036337222E-31 -1.85955012325E-31 -7.43087073688E-32 -2.93511363406E-32 -1.14577692061E-32 -4.41978252377E-33 -1.68446637197E-33 -6.34188731194E-34 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7.90600996046E-08 8.10615154708E-08 8.31135974167E-08 8.52176280599E-08 8.73749224876E-08 8.95868290788E-08 9.18547303467E-08 9.41800438030E-08 9.65642228440E-08 9.90087576586E-08 1.01515176160E-07 1.04085044942E-07 1.06719970254E-07 1.09421599010E-07 1.12191619817E-07 1.15031764026E-07 1.17943806819E-07 1.20929568317E-07 1.23990914718E-07 1.27129759462E-07 1.30348064428E-07 1.33647841161E-07 1.37031152129E-07 1.40500112008E-07 1.44056889013E-07 1.47703706242E-07 1.51442843075E-07 1.55276636593E-07 1.59207483040E-07 1.63237839321E-07 1.67370224540E-07 1.71607221571E-07 1.75951478673E-07 1.80405711147E-07 1.84972703032E-07 1.89655308844E-07 1.94456455363E-07 1.99379143460E-07 2.04426449974E-07 2.09601529632E-07 2.14907617028E-07 2.20348028635E-07 2.25926164886E-07 2.31645512295E-07 2.37509645638E-07 2.43522230186E-07 2.49687023998E-07 2.56007880268E-07 2.62488749733E-07 2.69133683144E-07 2.75946833798E-07 2.82932460133E-07 2.90094928387E-07 2.97438715334E-07 3.04968411074E-07 3.12688721909E-07 3.20604473278E-07 3.28720612781E-07 3.37042213262E-07 3.45574475989E-07 3.54322733896E-07 3.63292454924E-07 3.72489245435E-07 3.81918853715E-07 3.91587173570E-07 4.01500248007E-07 4.11664273012E-07 4.22085601425E-07 4.32770746905E-07 4.43726388009E-07 4.54959372359E-07 4.66476720925E-07 4.78285632417E-07 4.90393487776E-07 5.02807854796E-07 5.15536492847E-07 5.28587357730E-07 5.41968606648E-07 5.55688603303E-07 5.69755923125E-07 5.84179358630E-07 5.98967924921E-07 6.14130865314E-07 6.29677657124E-07 6.45618017582E-07 6.61961909914E-07 6.78719549563E-07 6.95901410577E-07 7.13518232156E-07 7.31581025364E-07 7.50101080008E-07 7.69089971698E-07 7.88559569083E-07 8.08522041265E-07 8.28989865408E-07 8.49975834535E-07 8.71493065527E-07 8.93555007318E-07 9.16175449300E-07 9.39368529948E-07 9.63148745650E-07 9.87530959771E-07 1.01253041194E-06 1.03816272759E-06 1.06444392768E-06 1.09139043879E-06 1.11901910329E-06 1.14734718994E-06 1.17639240465E-06 1.20617290157E-06 1.23670729441E-06 1.26801466808E-06 1.30011459063E-06 1.33302712549E-06 1.36677284396E-06 1.40137283815E-06 1.43684873407E-06 1.47322270522E-06 1.51051748641E-06 1.54875638798E-06 1.58796331039E-06 1.62816275911E-06 1.66937985998E-06 1.71164037491E-06 1.75497071794E-06 1.79939797182E-06 1.84494990485E-06 1.89165498834E-06 1.93954241429E-06 1.98864211374E-06 2.03898477541E-06 2.09060186491E-06 2.14352564438E-06 2.19778919270E-06 2.25342642612E-06 2.31047211948E-06 2.36896192795E-06 2.42893240929E-06 2.49042104673E-06 2.55346627238E-06 2.61810749124E-06 2.68438510585E-06 2.75234054155E-06 2.82201627233E-06 2.89345584741E-06 2.96670391847E-06 3.04180626750E-06 3.11880983549E-06 3.19776275171E-06 3.27871436383E-06 3.36171526872E-06 3.44681734411E-06 3.53407378102E-06 3.62353911697E-06 3.71526927007E-06 3.80932157401E-06 3.90575481386E-06 4.00462926280E-06 4.10600671983E-06 4.20995054836E-06 4.31652571582E-06 4.42579883429E-06 4.53783820208E-06 4.65271384649E-06 4.77049756750E-06 4.89126298269E-06 5.01508557326E-06 5.14204273114E-06 5.27221380746E-06 5.40568016206E-06 5.54252521437E-06 5.68283449554E-06 5.82669570192E-06 5.97419874984E-06 6.12543583181E-06 6.28050147416E-06 6.43949259610E-06 6.60250857028E-06 6.76965128494E-06 6.94102520755E-06 7.11673745010E-06 7.29689783606E-06 7.48161896903E-06 7.67101630307E-06 7.86520821491E-06 8.06431607787E-06 8.26846433777E-06 8.47778059070E-06 8.69239566270E-06 8.91244369163E-06 9.13806221089E-06 9.36939223545E-06 9.60657834996E-06 9.84976879909E-06 1.00991155802E-05 1.03547745383E-05 1.06169054635E-05 1.08856721908E-05 1.11612427026E-05 1.14437892335E-05 1.17334883781E-05 1.20305212012E-05 1.23350733513E-05 1.26473351760E-05 1.29675018417E-05 1.32957734550E-05 1.36323551879E-05 1.39774574062E-05 1.43312958008E-05 1.46940915224E-05 1.50660713200E-05 1.54474676824E-05 1.58385189832E-05 1.62394696306E-05 1.66505702191E-05 1.70720776869E-05 1.75042554762E-05 1.79473736976E-05 1.84017092991E-05 1.88675462393E-05 1.93451756646E-05 1.98348960912E-05 2.03370135917E-05 2.08518419863E-05 2.13797030389E-05 2.19209266582E-05 2.24758511039E-05 2.30448231978E-05 2.36281985410E-05 2.42263417356E-05 2.48396266128E-05 2.54684364663E-05 2.61131642921E-05 2.67742130338E-05 2.74519958345E-05 2.81469362948E-05 2.88594687375E-05 2.95900384793E-05 3.03391021086E-05 3.11071277710E-05 3.18945954616E-05 3.27019973253E-05 3.35298379639E-05 3.43786347516E-05 3.52489181579E-05 3.61412320796E-05 3.70561341801E-05 3.79941962380E-05 3.89560045043E-05 3.99421600685E-05 4.09532792346E-05 4.19899939055E-05 4.30529519782E-05 4.41428177483E-05 4.52602723252E-05 4.64060140575E-05 4.75807589689E-05 4.87852412063E-05 5.00202134975E-05 5.12864476221E-05 5.25847348929E-05 5.39158866511E-05 5.52807347720E-05 5.66801321857E-05 5.81149534089E-05 5.95860950918E-05 6.10944765777E-05 6.26410404776E-05 6.42267532583E-05 6.58526058468E-05 6.75196142487E-05 6.92288201826E-05 7.09812917310E-05 7.27781240071E-05 7.46204398390E-05 7.65093904705E-05 7.84461562800E-05 8.04319475180E-05 8.24680050625E-05 8.45556011936E-05 8.66960403886E-05 8.88906601359E-05 9.11408317702E-05 9.34479613288E-05 9.58134904294E-05 9.82388971703E-05 1.00725697053E-04 1.03275443927E-04 1.05889730964E-04 1.08570191647E-04 1.11318500792E-04 1.14136375597E-04 1.17025576708E-04 1.19987909322E-04 1.23025224311E-04 1.26139419380E-04 1.29332440248E-04 1.32606281867E-04 1.35962989661E-04 1.39404660807E-04 1.42933445541E-04 1.46551548503E-04 1.50261230106E-04 1.54064807955E-04 1.57964658286E-04 1.61963217452E-04 1.66062983439E-04 1.70266517430E-04 1.74576445398E-04 1.78995459747E-04 1.83526320987E-04 1.88171859459E-04 1.92934977101E-04 1.97818649254E-04 2.02825926520E-04 2.07959936662E-04 2.13223886558E-04 2.18621064196E-04 2.24154840724E-04 2.29828672555E-04 2.35646103518E-04 2.41610767069E-04 2.47726388553E-04 2.53996787528E-04 2.60425880144E-04 2.67017681583E-04 2.73776308561E-04 2.80705981891E-04 2.87811029115E-04 2.95095887199E-04 3.02565105293E-04 3.10223347570E-04 3.18075396125E-04 3.26126153954E-04 3.34380648009E-04 3.42844032326E-04 3.51521591232E-04 3.60418742634E-04 3.69541041394E-04 3.78894182781E-04 3.88484006018E-04 3.98316497913E-04 4.08397796585E-04 4.18734195278E-04 4.29332146279E-04 4.40198264928E-04 4.51339333732E-04 4.62762306579E-04 4.74474313062E-04 4.86482662912E-04 4.98794850537E-04 5.11418559678E-04 5.24361668185E-04 5.37632252910E-04 5.51238594717E-04 5.65189183631E-04 5.79492724106E-04 5.94158140425E-04 6.09194582242E-04 6.24611430259E-04 6.40418302040E-04 6.56625057984E-04 6.73241807434E-04 6.90278914947E-04 7.07747006718E-04 7.25656977165E-04 7.44019995679E-04 7.62847513547E-04 7.82151271035E-04 8.01943304668E-04 8.22235954673E-04 8.43041872619E-04 8.64374029244E-04 8.86245722480E-04 9.08670585675E-04 9.31662596020E-04 9.55236083189E-04 9.79405738194E-04 1.00418662246E-03 1.02959417712E-03 1.05564423255E-03 1.08235301815E-03 1.10973717233E-03 1.13781375281E-03 1.16660024707E-03 1.19611458323E-03 1.22637514098E-03 1.25740076298E-03 1.28921076644E-03 1.32182495498E-03 1.35526363085E-03 1.38954760739E-03 1.42469822182E-03 1.46073734837E-03 1.49768741168E-03 1.53557140061E-03 1.57441288229E-03 1.61423601661E-03 1.65506557101E-03 1.69692693568E-03 1.73984613906E-03 1.78384986380E-03 1.82896546310E-03 1.87522097738E-03 1.92264515143E-03 1.97126745200E-03 2.02111808573E-03 2.07222801760E-03 2.12462898978E-03 2.17835354100E-03 2.23343502632E-03 2.28990763743E-03 2.34780642345E-03 2.40716731218E-03 2.46802713195E-03 2.53042363393E-03 2.59439551500E-03 2.65998244121E-03 2.72722507177E-03 2.79616508360E-03 2.86684519654E-03 2.93930919914E-03 3.01360197500E-03 3.08976952987E-03 3.16785901930E-03 3.24791877700E-03 3.32999834389E-03 3.41414849776E-03 3.50042128380E-03 3.58887004565E-03 3.67954945739E-03 3.77251555613E-03 3.86782577551E-03 3.96553897985E-03 4.06571549924E-03 4.16841716539E-03 4.27370734830E-03 4.38165099386E-03 4.49231466229E-03 4.60576656748E-03 4.72207661727E-03 4.84131645462E-03 4.96355949981E-03 5.08888099356E-03 5.21735804117E-03 5.34906965767E-03 5.48409681402E-03 5.62252248436E-03 5.76443169435E-03 5.90991157058E-03 6.05905139120E-03 6.21194263753E-03 6.36867904705E-03 6.52935666736E-03 6.69407391156E-03 6.86293161470E-03 7.03603309160E-03 7.21348419592E-03 7.39539338048E-03 7.58187175904E-03 7.77303316930E-03 7.96899423736E-03 8.16987444354E-03 8.37579618968E-03 8.58688486781E-03 8.80326893037E-03 9.02507996188E-03 9.25245275218E-03 9.48552537113E-03 9.72443924500E-03 9.96933923433E-03 1.02203737135E-02 1.04776946519E-02 1.07414576967E-02 1.10118222576E-02 1.12889515927E-02 1.15730128968E-02 1.18641773908E-02 1.21626204135E-02 1.24685215147E-02 1.27820645502E-02 1.31034377788E-02 1.34328339610E-02 1.37704504599E-02 1.41164893432E-02 1.44711574878E-02 1.48346666863E-02 1.52072337550E-02 1.55890806439E-02 1.59804345490E-02 1.63815280262E-02 1.67925991073E-02 1.72138914179E-02 1.76456542971E-02 1.80881429195E-02 1.85416184190E-02 1.90063480141E-02 1.94826051361E-02 1.99706695582E-02 2.04708275269E-02 2.09833718957E-02 2.15086022600E-02 2.20468250941E-02 2.25983538903E-02 2.31635092989E-02 2.37426192713E-02 2.43360192034E-02 2.49440520814E-02 2.55670686290E-02 2.62054274561E-02 2.68594952091E-02 2.75296467224E-02 2.82162651709E-02 2.89197422246E-02 2.96404782032E-02 3.03788822325E-02 3.11353724017E-02 3.19103759205E-02 3.27043292781E-02 3.35176784020E-02 3.43508788170E-02 3.52043958050E-02 3.60787045641E-02 3.69742903680E-02 3.78916487245E-02 3.88312855344E-02 3.97937172482E-02 4.07794710227E-02 4.17890848757E-02 4.28231078398E-02 4.38821001132E-02 4.49666332093E-02 4.60772901031E-02 4.72146653750E-02 4.83793653509E-02 4.95720082392E-02 5.07932242635E-02 5.20436557903E-02 5.33239574522E-02 5.46347962655E-02 5.59768517418E-02 5.73508159928E-02 5.87573938282E-02 6.01973028460E-02 6.16712735138E-02 6.31800492418E-02 6.47243864456E-02 6.63050545986E-02 6.79228362731E-02 6.95785271697E-02 7.12729361328E-02 7.30068851539E-02 7.47812093582E-02 7.65967569772E-02 7.84543893034E-02 8.03549806279E-02 8.22994181586E-02 8.42886019188E-02 8.63234446237E-02 8.84048715356E-02 9.05338202940E-02 9.27112407214E-02 9.49380946018E-02 9.72153554314E-02 9.95440081399E-02 1.01925048780E-01 1.04359484185E-01 1.06848331590E-01 1.09392618219E-01 1.11993380833E-01 1.14651665236E-01 1.17368525745E-01 1.20145024605E-01 1.22982231374E-01 1.25881222243E-01 1.28843079318E-01 1.31868889843E-01 1.34959745371E-01 1.38116740878E-01 1.41340973815E-01 1.44633543099E-01 1.47995548043E-01 1.51428087213E-01 1.54932257222E-01 1.58509151446E-01 1.62159858668E-01 1.65885461648E-01 1.69687035605E-01 1.73565646624E-01 1.77522349975E-01 1.81558188342E-01 1.85674189964E-01 1.89871366685E-01 1.94150711901E-01 1.98513198419E-01 2.02959776207E-01 2.07491370044E-01 2.12108877067E-01 2.16813164209E-01 2.21605065532E-01 2.26485379438E-01 2.31454865783E-01 2.36514242868E-01 2.41664184316E-01 2.46905315836E-01 2.52238211868E-01 2.57663392119E-01 2.63181317971E-01 2.68792388783E-01 2.74496938077E-01 2.80295229609E-01 2.86187453329E-01 2.92173721233E-01 2.98254063116E-01 3.04428422211E-01 3.10696650745E-01 3.17058505396E-01 3.23513642665E-01 3.30061614178E-01 3.36701861906E-01 3.43433713333E-01 3.50256376572E-01 3.57168935438E-01 3.64170344498E-01 3.71259424102E-01 3.78434855420E-01 3.85695175496E-01 3.93038772329E-01 4.00463880023E-01 4.07968573994E-01 4.15550766287E-01 4.23208201007E-01 4.30938449899E-01 4.38738908097E-01 4.46606790074E-01 4.54539125832E-01 4.62532757346E-01 4.70584335312E-01 4.78690316227E-01 4.86846959838E-01 4.95050327005E-01 5.03296278009E-01 5.11580471355E-01 5.19898363110E-01 5.28245206820E-01 5.36616054049E-01 5.45005755596E-01 5.53408963424E-01 5.61820133357E-01 5.70233528586E-01 5.78643224047E-01 5.87043111687E-01 5.95426906703E-01 6.03788154756E-01 6.12120240243E-01 6.20416395637E-01 6.28669711940E-01 6.36873150291E-01 6.45019554744E-01 6.53101666254E-01 6.61112137866E-01 6.69043551149E-01 6.76888433847E-01 6.84639278768E-01 6.92288563873E-01 6.99828773561E-01 7.07252421099E-01 7.14552072159E-01 7.21720369391E-01 7.28750057964E-01 7.35634011983E-01 7.42365261668E-01 7.48937021185E-01 7.55342716979E-01 7.61576016455E-01 7.67630856822E-01 7.73501473926E-01 7.79182430826E-01 7.84668645919E-01 7.89955420328E-01 7.95038464310E-01 7.99913922395E-01 8.04578396947E-01 8.09028969852E-01 8.13263222004E-01 8.17279250255E-01 8.21075681503E-01 8.24651683585E-01 8.28006972623E-01 8.31141816533E-01 8.34057034358E-01 8.36753991143E-01 8.39234588094E-01 8.41501247776E-01 8.43556894161E-01 8.45404927373E-01 8.47049193042E-01 8.48493946223E-01 8.49743809910E-01 8.50803728270E-01 8.51678914759E-01 8.52374795403E-01 8.52896947610E-01 8.53251034942E-01 8.53442738411E-01 8.53477684905E-01 8.53361373464E-01 8.53099100189E-01 8.52695882621E-01 8.52156384477E-01 8.51484841665E-01 8.50684990460E-01 8.49759998738E-01 8.48712401049E-01 8.47544038210E-01 8.46256001955E-01 8.44848584931E-01 8.43321236075E-01 8.41672521080E-01 8.39900087239E-01 8.38000631519E-01 8.35969870184E-01 8.33802507701E-01 8.31492202050E-01 8.29031522875E-01 8.26411898213E-01 8.23623544858E-01 8.20657615451E-01 8.17513340141E-01 8.14192186626E-01 8.10695748480E-01 8.07025743089E-01 8.03184009457E-01 7.99172505887E-01 7.94993307537E-01 7.90648603870E-01 7.86140695996E-01 7.81471993924E-01 7.76645013717E-01 7.71662374576E-01 7.66526795842E-01 7.61241093941E-01 7.55808179264E-01 7.50231053001E-01 7.44512803926E-01 7.38656605154E-01 7.32665710853E-01 7.26543452945E-01 7.20293237780E-01 7.13918542794E-01 7.07422913170E-01 7.00809958498E-01 6.94083349415E-01 6.87245520435E-01 6.80301531666E-01 6.73255216443E-01 6.66110455741E-01 6.58871174842E-01 6.51541339999E-01 6.44124955106E-01 6.36626058390E-01 6.29048719104E-01 6.21397034217E-01 6.13675125106E-01 6.05887134248E-01 5.98037221894E-01 5.90129562744E-01 5.82168342588E-01 5.74157754950E-01 5.66101997684E-01 5.58005269560E-01 5.49871766805E-01 5.41705679620E-01 5.33511188649E-01 5.25292461415E-01 5.17053648715E-01 5.08798880971E-01 5.00532264545E-01 4.92257878023E-01 4.83979768458E-01 4.75701947596E-01 4.67428388081E-01 4.59163019654E-01 4.50909725351E-01 4.42672337722E-01 4.34454635077E-01 4.26260337772E-01 4.18093104572E-01 4.09956529075E-01 4.01854136250E-01 3.93789379081E-01 3.85765635360E-01 3.77786204618E-01 3.69854305251E-01 3.61973071819E-01 3.54145552564E-01 3.46374707151E-01 3.38663404637E-01 3.31014421701E-01 3.23430441118E-01 3.15914050508E-01 3.08467741343E-01 3.01093908230E-01 2.93794848459E-01 2.86572761818E-01 2.79429750661E-01 2.72367820227E-01 2.65388879197E-01 2.58494740472E-01 2.51687122155E-01 2.44967648726E-01 2.38337852383E-01 2.31799174530E-01 2.25352967392E-01 2.19000495728E-01 2.12742938624E-01 2.06581391339E-01 2.00516867178E-01 1.94550299372E-01 1.88682542940E-01 1.82914376507E-01 1.77246504068E-01 1.71679556659E-01 1.66214093943E-01 1.60850605675E-01 1.55589513044E-01 1.50431169875E-01 1.45375863695E-01 1.40423816645E-01 1.35575186250E-01 1.30830066039E-01 1.26188486027E-01 1.21650413065E-01 1.17215751074E-01 1.12884341162E-01 1.08655961668E-01 1.04530328121E-01 1.00507093158E-01 9.65858464105E-02 9.27661143864E-02 8.90473603702E-02 8.54289843636E-02 8.19103230896E-02 7.84906500830E-02 7.51691758861E-02 7.19450483691E-02 6.88173531931E-02 6.57851144286E-02 6.28472953433E-02 6.00027993683E-02 5.72504712499E-02 5.45890983918E-02 5.20174123896E-02 4.95340907563E-02 4.71377588369E-02 4.48269919060E-02 4.26003174409E-02 4.04562175619E-02 3.83931316271E-02 3.64094589715E-02 3.45035617740E-02 3.26737680411E-02 3.09183746877E-02 2.92356507035E-02 2.76238403849E-02 2.60811666182E-02 2.46058341967E-02 2.31960331560E-02 2.18499421106E-02 2.05657315778E-02 1.93415672726E-02 1.81756133598E-02 1.70660356502E-02 1.60110047281E-02 1.50086989974E-02 1.40573076365E-02 1.31550334517E-02 1.23000956195E-02 1.14907323108E-02 1.07252031882E-02 1.00017917727E-02 9.31880767212E-03 8.67458866823E-03 8.06750265946E-03 7.49594945578E-03 6.95836242464E-03 6.45320998699E-03 5.97899696324E-03 5.53426576978E-03 5.11759746735E-03 4.72761266328E-03 4.36297227000E-03 4.02237812308E-03 3.70457346227E-03 3.40834327965E-03 3.13251453942E-03 2.87595627411E-03 2.63757956241E-03 2.41633739425E-03 2.21122442853E-03 2.02127664983E-03 1.84557092981E-03 1.68322449980E-03 1.53339434072E-03 1.39527649675E-03 1.26810531913E-03 1.15115264638E-03 1.04372692736E-03 9.45172293290E-04 8.54867584970E-04 7.72225341117E-04 6.96690753773E-04 6.27740596365E-04 5.64882129966E-04 5.07651993036E-04 4.55615079698E-04 4.08363411360E-04 3.65515006266E-04 3.26712751284E-04 2.91623279979E-04 2.59935860733E-04 2.31361298443E-04 2.05630852948E-04 1.82495669337E-04 1.61729639204E-04 1.43118857514E-04 1.26465411326E-04 1.11586987539E-04 9.83159258273E-05 8.64983086089E-05 7.59930890539E-05 6.66712580127E-05 5.84150506698E-05 5.11171936767E-05 4.46801935010E-05 3.90156667687E-05 3.40437134378E-05 2.96923338115E-05 2.58968906159E-05 2.25467005118E-05 1.96157668676E-05 1.70346880862E-05 1.47658918053E-05 1.27753161412E-05 1.10321423762E-05 9.50854154709E-06 8.17943485592E-06 7.02226775359E-06 6.01679748245E-06 5.14489380501E-06 4.39035259430E-06 3.73872191181E-06 3.17714018423E-06 2.69418599339E-06 2.27973905603E-06 1.92485187831E-06 1.62163158338E-06 1.36313139478E-06 1.14325125211E-06 9.56647033775E-07 7.98647864090E-07 6.65180987919E-07 5.52703705396E-07 4.58141871316E-07 3.78834478433E-07 3.12483860534E-07 2.57111069661E-07 2.11016001608E-07 1.72741864736E-07 1.41043608791E-07 1.14859952511E-07 9.32886711624E-08 7.55648274574E-08 6.10416513840E-08 4.91737961895E-08 3.95027188593E-08 3.16439538601E-08 2.52760685260E-08 2.01311071795E-08 1.59863488244E-08 1.26572199886E-08 9.99121998314E-09 7.86273048213E-09 6.16859490807E-09 4.82436563927E-09 3.76112856987E-09 2.92282507427E-09 2.26400099880E-09 1.74792096765E-09 1.34499409786E-09 1.03146422042E-09 7.88323956875E-10 6.00417557480E-10 4.55702323014E-10 3.44642762811E-10 2.59715438196E-10 1.95005754898E-10 1.45880848224E-10 1.08725196552E-10 8.07277448416E-11 5.97111600063E-11 4.39954107621E-11 3.22891992893E-11 2.36039011719E-11 1.71856208982E-11 1.24617672658E-11 8.99921814443E-12 6.47169650958E-12 4.63443642730E-12 3.30459357618E-12 2.34616279811E-12 1.65841619616E-12 1.16707898089E-12 8.17624747662E-13 5.70204053131E-13 3.95825876401E-13 2.73495685702E-13 1.88080461895E-13 1.28723535239E-13 8.76732591351E-14 5.94216592719E-14 4.00741215182E-14 2.68904273025E-14 1.79522280032E-14 1.19233453606E-14 7.87787008503E-15 5.17752113784E-15 3.38460829896E-15 2.20059006165E-15 1.42293295919E-15 9.14985641691E-16 5.85057133109E-16 3.71968075123E-16 2.35128507488E-16 1.47762962099E-16 9.23112485731E-17 5.73244701025E-17 3.53825480226E-17 2.17054415968E-17 1.32325952399E-17 8.01649093569E-18 4.82560782513E-18 2.88611290084E-18 1.71487660760E-18 1.01222009500E-18 5.93476262062E-19 3.45606112691E-19 1.99881236251E-19 1.14798867933E-19 6.54696615383E-20 3.70715687479E-20 2.08401669117E-20 1.16300417191E-20 6.44230374722E-21 3.54193395174E-21 1.93258247520E-21 1.04638715261E-21 5.62162001829E-22 2.99642019843E-22 1.58442966171E-22 8.31052705972E-23 4.32339896708E-23 2.23058324028E-23 1.14120219102E-23 5.78911128799E-24 2.91152055150E-24 1.45157479164E-24 7.17336476036E-25 3.51335550441E-25 1.70525016670E-25 8.20108757709E-26 3.90770746424E-26 1.84454457908E-26 8.62425156360E-27 3.99362067499E-27 1.83135557882E-27 8.31544848176E-28 3.73810774860E-28 1.66347550589E-28 7.32696461482E-29 3.19388152633E-29 1.37766544604E-29 5.87951497410E-30 2.48229733456E-30 1.03662511767E-30 4.28139799259E-31 1.74857792227E-31 7.06087796721E-32 2.81867358742E-32 1.11219385639E-32 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7.90575182627E-08 8.10588687820E-08 8.31108837265E-08 8.52148456722E-08 8.73720696633E-08 8.95839040347E-08 9.18517312546E-08 9.41769687884E-08 9.65610699848E-08 9.90055249841E-08 1.01511861650E-07 1.04081646524E-07 1.06716485805E-07 1.09418026352E-07 1.12187956716E-07 1.15028008192E-07 1.17939955905E-07 1.20925619917E-07 1.23986866363E-07 1.27125608622E-07 1.30343808509E-07 1.33643477503E-07 1.37026678003E-07 1.40495524620E-07 1.44052185494E-07 1.47698883652E-07 1.51437898400E-07 1.55271566742E-07 1.59202284845E-07 1.63232509533E-07 1.67364759827E-07 1.71601618518E-07 1.75945733777E-07 1.80399820817E-07 1.84966663587E-07 1.89649116509E-07 1.94450106268E-07 1.99372633636E-07 2.04419775352E-07 2.09594686041E-07 2.14900600190E-07 2.20340834164E-07 2.25918788285E-07 2.31637948954E-07 2.37501890829E-07 2.43514279062E-07 2.49678871589E-07 2.55999521479E-07 2.62480179339E-07 2.69124895789E-07 2.75937823989E-07 2.82923222238E-07 2.90085456633E-07 2.97429003799E-07 3.04958453690E-07 3.12678512451E-07 3.20594005366E-07 3.28709879870E-07 3.37031208645E-07 3.45563192787E-07 3.54311165057E-07 3.63280593218E-07 3.72477083446E-07 3.81906383843E-07 3.91574388020E-07 4.01487138787E-07 4.11650831929E-07 4.22071820078E-07 4.32756616680E-07 4.43711900073E-07 4.54944517657E-07 4.66461490174E-07 4.78270016095E-07 4.90377476123E-07 5.02791437803E-07 5.15519660254E-07 5.28570099017E-07 5.41950911026E-07 5.55670459712E-07 5.69737320224E-07 5.84160284793E-07 5.98948368224E-07 6.14110813535E-07 6.29657097729E-07 6.45596937722E-07 6.61940296412E-07 6.78697388910E-07 6.95878688923E-07 7.13494935299E-07 7.31557138742E-07 7.50076588691E-07 7.69064860379E-07 7.88533822066E-07 8.08495642458E-07 8.28962798310E-07 8.49948082229E-07 8.71464610667E-07 8.93525832117E-07 9.16145535525E-07 9.39337858901E-07 9.63117298160E-07 9.87498716183E-07 1.01249735210E-06 1.03812883083E-06 1.06440917283E-06 1.09135480411E-06 1.11898256651E-06 1.14730972823E-06 1.17635399459E-06 1.20613351916E-06 1.23666691503E-06 1.26797326649E-06 1.30007214095E-06 1.33298360119E-06 1.36672821784E-06 1.40132708231E-06 1.43680181992E-06 1.47317460343E-06 1.51046816692E-06 1.54870581997E-06 1.58791146224E-06 1.62810959842E-06 1.66932535352E-06 1.71158448861E-06 1.75491341688E-06 1.79933922017E-06 1.84488966591E-06 1.89159322443E-06 1.93947908683E-06 1.98857718314E-06 2.03891820109E-06 2.09053360525E-06 2.14345565673E-06 2.19771743330E-06 2.25335285013E-06 2.31039668091E-06 2.36888457965E-06 2.42885310291E-06 2.49033973271E-06 2.55338289989E-06 2.61802200817E-06 2.68429745878E-06 2.75225067568E-06 2.82192413151E-06 2.89336137404E-06 2.96660705350E-06 3.04170695039E-06 3.11870800417E-06 3.19765834253E-06 3.27860731152E-06 3.36160550638E-06 3.44670480314E-06 3.53395839108E-06 3.62342080592E-06 3.71514796398E-06 3.80919719706E-06 3.90562728831E-06 4.00449850894E-06 4.10587265594E-06 4.20981309064E-06 4.31638477836E-06 4.42565432900E-06 4.53769003865E-06 4.65256193230E-06 4.77034180761E-06 4.89110327975E-06 5.01492182744E-06 5.14187484011E-06 5.27204166628E-06 5.40550366313E-06 5.54234424738E-06 5.68264894739E-06 5.82650545663E-06 5.97400368850E-06 6.12523583252E-06 6.28029641190E-06 6.43928234271E-06 6.60229299435E-06 6.76943025173E-06 6.94079857890E-06 7.11650508437E-06 7.29665958803E-06 7.48137468978E-06 7.67076583993E-06 7.86495141133E-06 8.06405277334E-06 8.26819436774E-06 8.47750378641E-06 8.69211185117E-06 8.91215269546E-06 9.13776384821E-06 9.36908631978E-06 9.60626469009E-06 9.84944719899E-06 1.00987858389E-05 1.03544364496E-05 1.06165588162E-05 1.08853167682E-05 1.11608782826E-05 1.14434155883E-05 1.17331052741E-05 1.20301283991E-05 1.23346706055E-05 1.26469222349E-05 1.29670784471E-05 1.32953393423E-05 1.36319100858E-05 1.39770010365E-05 1.43308278783E-05 1.46936117546E-05 1.50655794071E-05 1.54469633168E-05 1.58380018499E-05 1.62389394062E-05 1.66500265724E-05 1.70715202781E-05 1.75036839568E-05 1.79467877104E-05 1.84011084780E-05 1.88669302088E-05 1.93445440396E-05 1.98342484769E-05 2.03363495835E-05 2.08511611691E-05 2.13790049872E-05 2.19202109358E-05 2.24751172634E-05 2.30440707807E-05 2.36274270770E-05 2.42255507425E-05 2.48388155962E-05 2.54676049195E-05 2.61123116953E-05 2.67733388542E-05 2.74510995258E-05 2.81460172968E-05 2.88585264759E-05 2.95890723652E-05 3.03381115382E-05 3.11061121252E-05 3.18935541057E-05 3.27009296086E-05 3.35287432190E-05 3.43775122944E-05 3.52477672870E-05 3.61400520757E-05 3.70549243058E-05 3.79929557371E-05 3.89547326016E-05 3.99408559692E-05 4.09519421237E-05 4.19886229474E-05 4.30515463162E-05 4.41413765039E-05 4.52587945978E-05 4.64044989236E-05 4.75792054817E-05 4.87836483950E-05 5.00185803668E-05 5.12847731513E-05 5.25830180358E-05 5.39141263346E-05 5.52789298963E-05 5.66782816229E-05 5.81130560026E-05 5.95841496563E-05 6.10924818974E-05 6.26389953060E-05 6.42246563175E-05 6.58504558265E-05 6.75174098053E-05 6.92265599387E-05 7.09789742743E-05 7.27757478896E-05 7.46180035759E-05 7.65068925395E-05 7.84435951203E-05 8.04293215294E-05 8.24653126041E-05 8.45528405832E-05 8.66932099012E-05 8.88877580031E-05 9.11378561786E-05 9.34449104193E-05 9.58103622959E-05 9.82356898583E-05 1.00722408558E-04 1.03272072196E-04 1.05886273889E-04 1.08566647069E-04 1.11314866497E-04 1.14132649313E-04 1.17021756108E-04 1.19983992018E-04 1.23021207857E-04 1.26135301266E-04 1.29328217902E-04 1.32601952651E-04 1.35958550871E-04 1.39400109670E-04 1.42928779214E-04 1.46546764070E-04 1.50256324580E-04 1.54059778272E-04 1.57959501303E-04 1.61957929947E-04 1.66057562111E-04 1.70260958892E-04 1.74570746179E-04 1.78989616286E-04 1.83520329635E-04 1.88165716475E-04 1.92928678647E-04 1.97812191397E-04 2.02819305226E-04 2.07953147798E-04 2.13216925883E-04 2.18613927362E-04 2.24147523276E-04 2.29821169922E-04 2.35638411017E-04 2.41602879895E-04 2.47718301782E-04 2.53988496110E-04 2.60417378903E-04 2.67008965210E-04 2.73767371614E-04 2.80696818791E-04 2.87801634141E-04 2.95086254485E-04 3.02555228827E-04 3.10213221186E-04 3.18065013500E-04 3.26115508609E-04 3.34369733299E-04 3.42832841438E-04 3.51510117181E-04 3.60406978259E-04 3.69528979352E-04 3.78881815544E-04 3.88471325869E-04 3.98303496939E-04 4.08384466672E-04 4.18720528110E-04 4.29318133327E-04 4.40183897450E-04 4.51324602763E-04 4.62747202928E-04 4.74458827308E-04 4.86466785395E-04 4.98778571351E-04 5.11401868670E-04 5.24344554945E-04 5.37614706762E-04 5.51220604720E-04 5.65170738566E-04 5.79473812471E-04 5.94138750428E-04 6.09174701792E-04 6.24591046961E-04 6.40397403187E-04 6.56603630547E-04 6.73219838057E-04 6.90256389936E-04 7.07723912033E-04 7.25633298414E-04 7.43995718106E-04 7.62822622023E-04 7.82125750051E-04 8.01917138324E-04 8.22209126667E-04 8.43014366239E-04 8.64345827357E-04 8.86216807522E-04 9.08640939637E-04 9.31632200442E-04 9.55204919146E-04 9.79373786283E-04 1.00415386279E-03 1.02956058930E-03 1.05560979567E-03 1.08231771079E-03 1.10970097251E-03 1.13777663800E-03 1.16656219420E-03 1.19607556861E-03 1.22633514035E-03 1.25735975147E-03 1.28916871854E-03 1.32178184456E-03 1.35521943110E-03 1.38950229084E-03 1.42465176030E-03 1.46068971301E-03 1.49763857290E-03 1.53552132805E-03 1.57436154486E-03 1.61418338243E-03 1.65501160740E-03 1.69687160913E-03 1.73978941523E-03 1.78379170751E-03 1.82890583824E-03 1.87515984697E-03 1.92258247756E-03 1.97120319580E-03 2.02105220736E-03 2.07216047623E-03 2.12455974355E-03 2.17828254700E-03 2.23336224057E-03 2.28983301486E-03 2.34772991785E-03 2.40708887620E-03 2.46794671705E-03 2.53034119034E-03 2.59431099173E-03 2.65989578600E-03 2.72713623104E-03 2.79607400244E-03 2.86675181868E-03 2.93921346689E-03 3.01350382925E-03 3.08966891003E-03 3.16775586327E-03 3.24781302115E-03 3.32988992299E-03 3.41403734498E-03 3.50030733063E-03 3.58875322188E-03 3.67942969108E-03 3.77239277355E-03 3.86769990110E-03 3.96540993618E-03 4.06558320697E-03 4.16828154320E-03 4.27356831287E-03 4.38150845982E-03 4.49216854214E-03 4.60561677157E-03 4.72192305374E-03 4.84115902935E-03 4.96339811635E-03 5.08871555309E-03 5.21718844245E-03 5.34889579696E-03 5.48391858503E-03 5.62233977819E-03 5.76424439943E-03 5.90971957262E-03 6.05885457309E-03 6.21174087932E-03 6.36847222584E-03 6.52914465726E-03 6.69385658359E-03 6.86270883677E-03 7.03580472837E-03 7.21325010878E-03 7.39515342745E-03 7.58162579468E-03 7.77278104467E-03 7.96873579988E-03 8.16960953697E-03 8.37552465399E-03 8.58660653911E-03 8.80298364083E-03 9.02478753963E-03 9.25215302121E-03 9.48521815123E-03 9.72412435160E-03 9.96901647848E-03 1.02200429017E-02 1.04773555861E-02 1.07411101741E-02 1.10114660705E-02 1.12885865286E-02 1.15726387381E-02 1.18637939148E-02 1.21622273922E-02 1.24681187146E-02 1.27816517325E-02 1.31030146991E-02 1.34324003691E-02 1.37700060997E-02 1.41160339527E-02 1.44706907989E-02 1.48341884248E-02 1.52067436401E-02 1.55885783884E-02 1.59799198592E-02 1.63810006015E-02 1.67920586403E-02 1.72133375942E-02 1.76450867950E-02 1.80875614102E-02 1.85410225660E-02 1.90057374736E-02 1.94819795563E-02 1.99700285794E-02 2.04701707816E-02 2.09826990081E-02 2.15079128459E-02 2.20461187609E-02 2.25976302366E-02 2.31627679147E-02 2.37418597375E-02 2.43352410919E-02 2.49432549546E-02 2.55662520402E-02 2.62045909489E-02 2.68586383173E-02 2.75287689699E-02 2.82153660716E-02 2.89188212821E-02 2.96395349109E-02 3.03779160733E-02 3.11343828477E-02 3.19093624330E-02 3.27032913075E-02 3.35166153876E-02 3.43497901868E-02 3.52032809757E-02 3.60775629407E-02 3.69731213439E-02 3.78904516814E-02 3.88300598420E-02 3.97924622642E-02 4.07781860926E-02 4.17877693328E-02 4.28217610050E-02 4.38807212950E-02 4.49652217037E-02 4.60758451934E-02 4.72131863317E-02 4.83778514320E-02 4.95704586898E-02 5.07916383159E-02 5.20420326638E-02 5.33222963534E-02 5.46330963882E-02 5.59751122668E-02 5.73490360882E-02 5.87555726494E-02 6.01954395356E-02 6.16693672019E-02 6.31780990460E-02 6.47223914711E-02 6.63030139385E-02 6.79207490085E-02 6.95763923698E-02 7.12707528554E-02 7.30046524453E-02 7.47789262540E-02 7.65944225020E-02 7.84520024717E-02 8.03525404443E-02 8.22969236182E-02 8.42860520076E-02 8.63208383193E-02 8.84022078078E-02 9.05310981052E-02 9.27084590273E-02 9.49352523523E-02 9.72124515712E-02 9.95410416094E-02 1.01922018516E-01 1.04356389122E-01 1.06845170661E-01 1.09389390356E-01 1.11990084970E-01 1.14648300308E-01 1.17365090689E-01 1.20141518365E-01 1.22978652899E-01 1.25877570490E-01 1.28839353252E-01 1.31865088441E-01 1.34955867623E-01 1.38112785788E-01 1.41336940404E-01 1.44629430407E-01 1.47991355130E-01 1.51423813165E-01 1.54927901148E-01 1.58504712485E-01 1.62155335990E-01 1.65880854457E-01 1.69682343142E-01 1.73560868170E-01 1.77517484854E-01 1.81553235925E-01 1.85669149674E-01 1.89866237996E-01 1.94145494348E-01 1.98507891596E-01 2.02954379774E-01 2.07485883732E-01 2.12103300682E-01 2.16807497637E-01 2.21599308740E-01 2.26479532484E-01 2.31448928818E-01 2.36508216143E-01 2.41658068185E-01 2.46899110764E-01 2.52231918436E-01 2.57657011029E-01 2.63174850051E-01 2.68785834998E-01 2.74490299529E-01 2.80288507547E-01 2.86180649153E-01 2.92166836506E-01 2.98247099562E-01 3.04421381730E-01 3.10689535415E-01 3.17051317481E-01 3.23506384623E-01 3.30054288666E-01 3.36694471787E-01 3.43426261685E-01 3.50248866693E-01 3.57161370852E-01 3.64162728964E-01 3.71251761618E-01 3.78427150232E-01 3.85687432099E-01 3.93030995479E-01 4.00456074736E-01 4.07960745558E-01 4.15542920262E-01 4.23200343230E-01 4.30930586487E-01 4.38731045452E-01 4.46598934885E-01 4.54531285077E-01 4.62524938291E-01 4.70576545513E-01 4.78682563529E-01 4.86839252374E-01 4.95042673191E-01 5.03288686543E-01 5.11572951210E-01 5.19890923529E-01 5.28237857305E-01 5.36608804356E-01 5.44998615720E-01 5.53401943590E-01 5.61813244000E-01 5.70226780342E-01 5.78636627729E-01 5.87036678268E-01 5.95420647288E-01 6.03782080566E-01 6.12114362581E-01 6.20410725860E-01 6.28664261427E-01 6.36867930410E-01 6.45014576816E-01 6.53096941507E-01 6.61107677401E-01 6.69039365890E-01 6.76884534495E-01 6.84635675751E-01 6.92285267294E-01 6.99825793140E-01 7.07249766120E-01 7.14549751406E-01 7.21718391089E-01 7.28748429713E-01 7.35632740692E-01 7.42364353489E-01 7.48936481445E-01 7.55342550108E-01 7.61576225918E-01 7.67631445050E-01 7.73502442242E-01 7.79183779382E-01 7.84670373626E-01 7.89957524791E-01 7.95040941767E-01 7.99916767658E-01 8.04581603348E-01 8.09032529195E-01 8.13267124523E-01 8.17283484578E-01 8.21080234626E-01 8.24656540853E-01 8.28012117725E-01 8.31147231505E-01 8.34062699598E-01 8.36759885446E-01 8.39240688694E-01 8.41507530410E-01 8.43563333145E-01 8.45411495703E-01 8.47055862507E-01 8.48500687540E-01 8.49750592882E-01 8.50810521962E-01 8.51685687694E-01 8.52381515785E-01 8.52903583557E-01 8.53257554748E-01 8.53449110821E-01 8.53483879404E-01 8.53367360586E-01 8.53104851826E-01 8.52701372344E-01 8.52161587853E-01 8.51489736563E-01 8.50689557347E-01 8.49764220943E-01 8.48716264990E-01 8.47547533569E-01 8.46259121785E-01 8.44851325676E-01 8.43323597487E-01 8.41674506004E-01 8.39901701249E-01 8.38001882379E-01 8.35970767106E-01 8.33803060383E-01 8.31492419476E-01 8.29031411856E-01 8.26411461683E-01 8.23622779944E-01 8.20656512911E-01 8.17511889137E-01 8.14190376092E-01 8.10693567117E-01 8.07023179360E-01 8.03181051581E-01 7.99169141831E-01 7.94989525010E-01 7.90644390317E-01 7.86136038591E-01 7.81466879560E-01 7.76639429001E-01 7.71656305817E-01 7.66520229047E-01 7.61234014801E-01 7.55800573147E-01 7.50222904941E-01 7.44504098614E-01 7.38647326924E-01 7.32655843673E-01 7.26532980403E-01 7.20282143071E-01 7.13906808710E-01 7.07410522076E-01 7.00796892299E-01 6.94069589523E-01 6.87232341552E-01 6.80288930497E-01 6.73243189431E-01 6.66098999049E-01 6.58860284338E-01 6.51531011248E-01 6.44115183380E-01 6.36616838672E-01 6.29040046087E-01 6.21388902315E-01 6.13667528456E-01 6.05880066717E-01 5.98030677084E-01 5.90123533996E-01 5.82162822992E-01 5.74152737348E-01 5.66097474679E-01 5.58001233521E-01 5.49868209875E-01 5.41702593724E-01 5.33508565501E-01 5.25290292525E-01 5.17051925398E-01 5.08797594353E-01 5.00531405575E-01 4.92257437478E-01 4.83979736954E-01 4.75702315595E-01 4.67429145902E-01 4.59164157480E-01 4.50911233239E-01 4.42674205614E-01 4.34456852804E-01 4.26262895071E-01 4.18095991090E-01 4.09959734381E-01 4.01857649843E-01 3.93793190402E-01 3.85769733798E-01 3.77790579525E-01 3.69858945947E-01 3.61977967602E-01 3.54150692723E-01 3.46380080970E-01 3.38669001411E-01 3.31020230740E-01 3.23436451759E-01 3.15920252122E-01 3.08474123345E-01 3.01100460089E-01 2.93801559707E-01 2.86579622055E-01 2.79436749567E-01 2.72374947569E-01 2.65396124838E-01 2.58502094378E-01 2.51694574402E-01 2.44975189511E-01 2.38345472029E-01 2.31806863494E-01 2.25360716272E-01 2.19008295271E-01 2.12750779733E-01 2.06589265079E-01 2.00524764783E-01 1.94558212253E-01 1.88690462688E-01 1.82922294905E-01 1.77254413091E-01 1.71687448483E-01 1.66221960953E-01 1.60858440466E-01 1.55597308428E-01 1.50438918890E-01 1.45383559605E-01 1.40431452948E-01 1.35582756681E-01 1.30837564575E-01 1.26195906891E-01 1.21657750729E-01 1.17223000263E-01 1.12891496858E-01 1.08663019111E-01 1.04537282812E-01 1.00513940861E-01 9.65925831543E-02 9.27727364648E-02 8.90538643432E-02 8.54353670571E-02 8.19165815954E-02 7.84967817574E-02 7.51751783489E-02 7.19509195017E-02 6.88230911359E-02 6.57907175781E-02 6.28527623489E-02 6.00081291282E-02 5.72556629068E-02 5.45941513280E-02 5.20223262217E-02 4.95388653294E-02 4.71423942185E-02 4.48314883793E-02 4.26046754980E-02 4.04604378964E-02 3.83972151265E-02 3.64134067091E-02 3.45073750013E-02 3.26774481784E-02 3.09219233165E-02 2.92390695572E-02 2.76271313398E-02 2.60843316846E-02 2.46088755099E-02 2.31989529669E-02 2.18527427767E-02 2.05684155539E-02 1.93441371019E-02 1.81780716646E-02 1.70683851231E-02 1.60132481232E-02 1.50108391216E-02 1.40593473409E-02 1.31569756236E-02 1.23019431741E-02 1.14924881834E-02 1.07268703267E-02 1.00033731302E-02 9.32030619993E-03 8.67600730930E-03 8.06884434181E-03 7.49721708649E-03 6.95955888408E-03 6.45433812341E-03 5.98005958770E-03 5.53526565143E-03 5.11853732902E-03 4.72849517747E-03 4.36380005518E-03 4.02315374035E-03 3.70529941233E-03 3.40902200016E-03 3.13314840264E-03 2.87654758485E-03 2.63813055638E-03 2.41685023660E-03 2.21170121278E-03 2.02171939702E-03 1.84598158795E-03 1.68360494359E-03 1.53374637148E-03 1.39560184264E-03 1.26840563553E-03 1.15142951651E-03 1.04398186311E-03 9.45406736188E-04 8.55082907348E-04 7.72422847412E-04 6.96871681970E-04 6.27906119560E-04 5.65033358044E-04 5.07789974440E-04 4.55740803280E-04 4.08477808308E-04 3.65618952083E-04 3.26807067815E-04 2.91708737470E-04 2.60013179925E-04 2.31431152660E-04 2.05693870206E-04 1.82552434599E-04 1.61780697829E-04 1.43164715739E-04 1.26506538171E-04 1.11623816868E-04 9.83488583527E-05 8.65277138561E-05 7.60193072688E-05 6.66946020156E-05 5.84358076523E-05 5.11356269401E-05 4.46965441355E-05 3.90301552728E-05 3.40565412794E-05 2.97036849318E-05 2.59069328778E-05 2.25555689475E-05 1.96235936844E-05 1.70415828425E-05 1.47719541195E-05 1.27806364125E-05 1.10368024721E-05 9.51261545721E-06 8.18298931240E-06 7.02536281766E-06 6.01948709763E-06 5.14722631738E-06 4.39237124030E-06 3.74046527446E-06 3.17864261855E-06 2.69547802191E-06 2.28084773571E-06 1.92580113972E-06 1.62244254359E-06 1.36382264507E-06 1.14383912182E-06 9.57145831636E-07 7.99070098316E-07 6.65537566364E-07 5.53004117084E-07 4.58394350617E-07 3.79046153108E-07 3.12660884876E-07 2.57258743872E-07 2.11138878542E-07 1.72843845060E-07 1.41128025579E-07 1.14929646223E-07 9.33460559077E-08 7.56119493758E-08 6.10802399366E-08 4.92053090793E-08 3.95283812544E-08 3.16647925382E-08 2.52929415060E-08 2.01447293553E-08 1.59973140723E-08 1.26660201723E-08 9.99826123933E-09 7.86834713123E-09 6.17306129744E-09 4.82790619312E-09 3.76392628918E-09 2.92502870161E-09 2.26573103737E-09 1.74927472043E-09 1.34604987189E-09 1.03228482229E-09 7.88959588620E-10 6.00908207266E-10 4.56079731601E-10 3.44932035215E-10 2.59936359697E-10 1.95173861654E-10 1.46008294969E-10 1.08821457177E-10 8.08001758687E-11 5.97654520374E-11 4.40359487500E-11 3.23193489101E-11 2.36262355432E-11 1.72020993422E-11 1.24738756824E-11 9.00807878310E-12 6.47815344969E-12 4.63912186115E-12 3.30797898527E-12 2.34859829443E-12 1.66016063265E-12 1.16832289473E-12 8.18507763865E-13 5.70828026088E-13 3.96264767479E-13 2.73802953101E-13 1.88294563294E-13 1.28872005691E-13 8.77757185696E-14 5.94920197596E-14 4.01221992443E-14 2.69231139274E-14 1.79743375515E-14 1.19382233929E-14 7.88782961427E-15 5.18415293611E-15 3.38900062050E-15 2.20348339209E-15 1.42482841405E-15 9.16220480823E-16 5.85857075118E-16 3.72483335892E-16 2.35458485488E-16 1.47973049843E-16 9.24442151138E-17 5.74081223533E-17 3.54348567054E-17 2.17379501544E-17 1.32526730265E-17 8.02881330478E-18 4.83312229663E-18 2.89066585931E-18 1.71761720147E-18 1.01385885633E-18 5.94449615577E-19 3.46180325323E-19 2.00217658761E-19 1.14994603599E-19 6.55827424964E-20 3.71364329505E-20 2.08771052872E-20 1.16509235285E-20 6.45402127834E-21 3.54845986469E-21 1.93618944596E-21 1.04836548220E-21 5.63238633931E-22 3.00223327573E-22 1.58754332663E-22 8.32707031673E-23 4.33211681607E-23 2.23513932831E-23 1.14356334335E-23 5.80124403571E-24 2.91770144320E-24 1.45469621639E-24 7.18898964225E-25 3.52110716100E-25 1.70906115291E-25 8.21965261534E-26 3.91666770880E-26 1.84882867036E-26 8.64454058332E-27 4.00313712383E-27 1.83577583694E-27 8.33577794430E-28 3.74736443900E-28 1.66764787284E-28 7.34557909134E-29 3.20210025582E-29 1.38125621387E-29 5.89503674560E-30 2.48893489331E-30 1.03943268181E-30 4.29314279060E-31 1.75343634795E-31 7.08074891352E-32 2.82670797118E-32 1.11540481649E-32 4.34981096666E-33 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5.70431896057E-08 5.84872447630E-08 5.99678563474E-08 6.14859497892E-08 6.30424739458E-08 6.46384016954E-08 6.62747305444E-08 6.79524832512E-08 6.96727084657E-08 7.14364813843E-08 7.32449044221E-08 7.50991079021E-08 7.70002507613E-08 7.89495212755E-08 8.09481378019E-08 8.29973495404E-08 8.50984373146E-08 8.72527143721E-08 8.94615272059E-08 9.17262563953E-08 9.40483174692E-08 9.64291617907E-08 9.88702774644E-08 1.01373190266E-07 1.03939464598E-07 1.06570704464E-07 1.09268554473E-07 1.12034700869E-07 1.14870872582E-07 1.17778842313E-07 1.20760427634E-07 1.23817492133E-07 1.26951946574E-07 1.30165750092E-07 1.33460911418E-07 1.36839490132E-07 1.40303597957E-07 1.43855400070E-07 1.47497116462E-07 1.51231023324E-07 1.55059454466E-07 1.58984802781E-07 1.63009521738E-07 1.67136126916E-07 1.71367197575E-07 1.75705378270E-07 1.80153380503E-07 1.84713984418E-07 1.89390040539E-07 1.94184471551E-07 1.99100274126E-07 2.04140520798E-07 2.09308361884E-07 2.14607027448E-07 2.20039829326E-07 2.25610163193E-07 2.31321510686E-07 2.37177441578E-07 2.43181616014E-07 2.49337786794E-07 2.55649801720E-07 2.62121606004E-07 2.68757244729E-07 2.75560865380E-07 2.82536720437E-07 2.89689170030E-07 2.97022684667E-07 3.04541848029E-07 3.12251359831E-07 3.20156038761E-07 3.28260825495E-07 3.36570785780E-07 3.45091113606E-07 3.53827134445E-07 3.62784308587E-07 3.71968234549E-07 3.81384652573E-07 3.91039448218E-07 4.00938656035E-07 4.11088463339E-07 4.21495214080E-07 4.32165412804E-07 4.43105728719E-07 4.54322999865E-07 4.65824237388E-07 4.77616629922E-07 4.89707548080E-07 5.02104549063E-07 5.14815381383E-07 5.27847989706E-07 5.41210519818E-07 5.54911323715E-07 5.68958964825E-07 5.83362223359E-07 5.98130101799E-07 6.13271830525E-07 6.28796873586E-07 6.44714934612E-07 6.61035962880E-07 6.77770159536E-07 6.94927983966E-07 7.12520160335E-07 7.30557684293E-07 7.49051829842E-07 7.68014156388E-07 7.87456515962E-07 8.07391060629E-07 8.27830250085E-07 8.48786859442E-07 8.70273987213E-07 8.92305063503E-07 9.14893858396E-07 9.38054490568E-07 9.61801436109E-07 9.86149537569E-07 1.01111401324E-06 1.03671046666E-06 1.06295489637E-06 1.08986370593E-06 1.11745371412E-06 1.14574216553E-06 1.17474674126E-06 1.20448557002E-06 1.23497723945E-06 1.26624080774E-06 1.29829581553E-06 1.33116229811E-06 1.36486079800E-06 1.39941237772E-06 1.43483863301E-06 1.47116170629E-06 1.50840430052E-06 1.54658969336E-06 1.58574175179E-06 1.62588494693E-06 1.66704436941E-06 1.70924574502E-06 1.75251545080E-06 1.79688053150E-06 1.84236871654E-06 1.88900843728E-06 1.93682884482E-06 1.98585982822E-06 2.03613203317E-06 2.08767688115E-06 2.14052658907E-06 2.19471418942E-06 2.25027355088E-06 2.30723939951E-06 2.36564734047E-06 2.42553388023E-06 2.48693644945E-06 2.54989342629E-06 2.61444416048E-06 2.68062899787E-06 2.74848930564E-06 2.81806749819E-06 2.88940706361E-06 2.96255259089E-06 3.03754979776E-06 3.11444555929E-06 3.19328793719E-06 3.27412620980E-06 3.35701090297E-06 3.44199382154E-06 3.52912808182E-06 3.61846814469E-06 3.71006984973E-06 3.80399045004E-06 3.90028864808E-06 3.99902463232E-06 4.10026011487E-06 4.20405837008E-06 4.31048427404E-06 4.41960434512E-06 4.53148678561E-06 4.64620152428E-06 4.76382026010E-06 4.88441650709E-06 5.00806564019E-06 5.13484494245E-06 5.26483365325E-06 5.39811301791E-06 5.53476633837E-06 5.67487902534E-06 5.81853865161E-06 5.96583500684E-06 6.11686015363E-06 6.27170848507E-06 6.43047678373E-06 6.59326428218E-06 6.76017272493E-06 6.93130643211E-06 7.10677236458E-06 7.28668019085E-06 7.47114235555E-06 7.66027414975E-06 7.85419378301E-06 8.05302245721E-06 8.25688444235E-06 8.46590715418E-06 8.68022123383E-06 8.89996062947E-06 9.12526268000E-06 9.35626820088E-06 9.59312157214E-06 9.83597082860E-06 1.00849677524E-05 1.03402679678E-05 1.06020310385E-05 1.08704205673E-05 1.11456042984E-05 1.14277542221E-05 1.17170466825E-05 1.20136624874E-05 1.23177870216E-05 1.26296103626E-05 1.29493273992E-05 1.32771379536E-05 1.36132469061E-05 1.39578643233E-05 1.43112055888E-05 1.46734915388E-05 1.50449485989E-05 1.54258089268E-05 1.58163105562E-05 1.62166975465E-05 1.66272201347E-05 1.70481348920E-05 1.74797048841E-05 1.79221998357E-05 1.83758962985E-05 1.88410778249E-05 1.93180351442E-05 1.98070663450E-05 2.03084770612E-05 2.08225806626E-05 2.13496984515E-05 2.18901598626E-05 2.24443026693E-05 2.30124731949E-05 2.35950265284E-05 2.41923267468E-05 2.48047471426E-05 2.54326704565E-05 2.60764891173E-05 2.67366054864E-05 2.74134321096E-05 2.81073919744E-05 2.88189187748E-05 2.95484571818E-05 3.02964631215E-05 3.10634040595E-05 3.18497592935E-05 3.26560202522E-05 3.34826908027E-05 3.43302875647E-05 3.51993402340E-05 3.60903919126E-05 3.70039994484E-05 3.79407337830E-05 3.89011803081E-05 3.98859392314E-05 4.08956259512E-05 4.19308714411E-05 4.29923226440E-05 4.40806428760E-05 4.51965122407E-05 4.63406280542E-05 4.75137052805E-05 4.87164769776E-05 4.99496947561E-05 5.12141292478E-05 5.25105705875E-05 5.38398289061E-05 5.52027348366E-05 5.66001400327E-05 5.80329177007E-05 5.95019631449E-05 6.10081943261E-05 6.25525524352E-05 6.41360024808E-05 6.57595338915E-05 6.74241611339E-05 6.91309243457E-05 7.08808899850E-05 7.26751514965E-05 7.45148299934E-05 7.64010749580E-05 7.83350649586E-05 8.03180083854E-05 8.23511442049E-05 8.44357427329E-05 8.65731064274E-05 8.87645707017E-05 9.10115047576E-05 9.33153124398E-05 9.56774331123E-05 9.80993425561E-05 1.00582553890E-04 1.03128618516E-04 1.05739127085E-04 1.08415710492E-04 1.11160040889E-04 1.13973832736E-04 1.16858843861E-04 1.19816876563E-04 1.22849778736E-04 1.25959445017E-04 1.29147817972E-04 1.32416889306E-04 1.35768701106E-04 1.39205347112E-04 1.42728974024E-04 1.46341782842E-04 1.50046030234E-04 1.53844029950E-04 1.57738154254E-04 1.61730835414E-04 1.65824567211E-04 1.70021906493E-04 1.74325474772E-04 1.78737959857E-04 1.83262117526E-04 1.87900773246E-04 1.92656823931E-04 1.97533239749E-04 2.02533065971E-04 2.07659424867E-04 2.12915517652E-04 2.18304626478E-04 2.23830116480E-04 2.29495437869E-04 2.35304128080E-04 2.41259813978E-04 2.47366214109E-04 2.53627141019E-04 2.60046503627E-04 2.66628309653E-04 2.73376668116E-04 2.80295791889E-04 2.87390000317E-04 2.94663721907E-04 3.02121497078E-04 3.09767980989E-04 3.17607946429E-04 3.25646286787E-04 3.33888019089E-04 3.42338287123E-04 3.51002364626E-04 3.59885658570E-04 3.68993712512E-04 3.78332210044E-04 3.87906978315E-04 3.97723991658E-04 4.07789375291E-04 4.18109409120E-04 4.28690531641E-04 4.39539343927E-04 4.50662613730E-04 4.62067279673E-04 4.73760455555E-04 4.85749434760E-04 4.98041694779E-04 5.10644901842E-04 5.23566915669E-04 5.36815794337E-04 5.50399799273E-04 5.64327400363E-04 5.78607281201E-04 5.93248344460E-04 6.08259717399E-04 6.23650757507E-04 6.39431058295E-04 6.55610455217E-04 6.72199031757E-04 6.89207125654E-04 7.06645335288E-04 7.24524526224E-04 7.42855837918E-04 7.61650690590E-04 7.80920792272E-04 8.00678146024E-04 8.20935057333E-04 8.41704141700E-04 8.62998332406E-04 8.84830888476E-04 9.07215402845E-04 9.30165810718E-04 9.53696398137E-04 9.77821810773E-04 1.00255706292E-03 1.02791754671E-03 1.05391904158E-03 1.08057772394E-03 1.10791017713E-03 1.13593340151E-03 1.16466482497E-03 1.19412231356E-03 1.22432418241E-03 1.25528920696E-03 1.28703663447E-03 1.31958619570E-03 1.35295811707E-03 1.38717313290E-03 1.42225249815E-03 1.45821800132E-03 1.49509197775E-03 1.53289732324E-03 1.57165750792E-03 1.61139659060E-03 1.65213923334E-03 1.69391071643E-03 1.73673695375E-03 1.78064450847E-03 1.82566060914E-03 1.87181316616E-03 1.91913078871E-03 1.96764280199E-03 2.01737926494E-03 2.06837098839E-03 2.12064955361E-03 2.17424733134E-03 2.22919750126E-03 2.28553407192E-03 2.34329190118E-03 2.40250671710E-03 2.46321513934E-03 2.52545470108E-03 2.58926387148E-03 2.65468207859E-03 2.72174973292E-03 2.79050825150E-03 2.86100008247E-03 2.93326873038E-03 3.00735878192E-03 3.08331593238E-03 3.16118701271E-03 3.24102001713E-03 3.32286413149E-03 3.40676976223E-03 3.49278856602E-03 3.58097348011E-03 3.67137875334E-03 3.76405997791E-03 3.85907412186E-03 3.95647956228E-03 4.05633611930E-03 4.15870509085E-03 4.26364928819E-03 4.37123307231E-03 4.48152239105E-03 4.59458481712E-03 4.71048958700E-03 4.82930764065E-03 4.95111166209E-03 5.07597612098E-03 5.20397731502E-03 5.33519341330E-03 5.46970450067E-03 5.60759262298E-03 5.74894183338E-03 5.89383823957E-03 6.04237005209E-03 6.19462763366E-03 6.35070354953E-03 6.51069261892E-03 6.67469196757E-03 6.84280108133E-03 7.01512186093E-03 7.19175867783E-03 7.37281843125E-03 7.55841060636E-03 7.74864733365E-03 7.94364344950E-03 8.14351655792E-03 8.34838709361E-03 8.55837838612E-03 8.77361672540E-03 8.99423142855E-03 9.22035490784E-03 9.45212274002E-03 9.68967373700E-03 9.93315001773E-03 1.01826970815E-02 1.04384638825E-02 1.07006029059E-02 1.09692702447E-02 1.12446256789E-02 1.15268327552E-02 1.18160588683E-02 1.21124753436E-02 1.24162575215E-02 1.27275848424E-02 1.30466409339E-02 1.33736136985E-02 1.37086954034E-02 1.40520827711E-02 1.44039770714E-02 1.47645842152E-02 1.51341148488E-02 1.55127844500E-02 1.59008134253E-02 1.62984272085E-02 1.67058563600E-02 1.71233366677E-02 1.75511092492E-02 1.79894206542E-02 1.84385229691E-02 1.88986739214E-02 1.93701369863E-02 1.98531814928E-02 2.03480827319E-02 2.08551220646E-02 2.13745870309E-02 2.19067714595E-02 2.24519755780E-02 2.30105061231E-02 2.35826764514E-02 2.41688066505E-02 2.47692236501E-02 2.53842613324E-02 2.60142606434E-02 2.66595697032E-02 2.73205439156E-02 2.79975460776E-02 2.86909464877E-02 2.94011230532E-02 3.01284613964E-02 3.08733549592E-02 3.16362051062E-02 3.24174212258E-02 3.32174208290E-02 3.40366296461E-02 3.48754817204E-02 3.57344194990E-02 3.66138939204E-02 3.75143644980E-02 3.84362994003E-02 3.93801755259E-02 4.03464785746E-02 4.13357031122E-02 4.23483526311E-02 4.33849396033E-02 4.44459855279E-02 4.55320209713E-02 4.66435855995E-02 4.77812282025E-02 4.89455067099E-02 5.01369881973E-02 5.13562488823E-02 5.26038741104E-02 5.38804583292E-02 5.51866050501E-02 5.65229267986E-02 5.78900450490E-02 5.92885901459E-02 6.07192012104E-02 6.21825260289E-02 6.36792209263E-02 6.52099506195E-02 6.67753880525E-02 6.83762142115E-02 7.00131179176E-02 7.16867955982E-02 7.33979510337E-02 7.51472950800E-02 7.69355453643E-02 7.87634259538E-02 8.06316669954E-02 8.25410043248E-02 8.44921790447E-02 8.64859370690E-02 8.85230286329E-02 9.06042077660E-02 9.27302317288E-02 9.49018604078E-02 9.71198556713E-02 9.93849806811E-02 1.01697999159E-01 1.04059674609E-01 1.06470769488E-01 1.08932044329E-01 1.11444256812E-01 1.14008160775E-01 1.16624505183E-01 1.19294033022E-01 1.22017480147E-01 1.24795574057E-01 1.27629032619E-01 1.30518562715E-01 1.33464858827E-01 1.36468601551E-01 1.39530456042E-01 1.42651070384E-01 1.45831073883E-01 1.49071075291E-01 1.52371660944E-01 1.55733392825E-01 1.59156806545E-01 1.62642409242E-01 1.66190677398E-01 1.69802054571E-01 1.73476949042E-01 1.77215731376E-01 1.81018731900E-01 1.84886238097E-01 1.88818491905E-01 1.92815686944E-01 1.96877965653E-01 2.01005416341E-01 2.05198070163E-01 2.09455898018E-01 2.13778807361E-01 2.18166638955E-01 2.22619163546E-01 2.27136078469E-01 2.31717004203E-01 2.36361480863E-01 2.41068964649E-01 2.45838824244E-01 2.50670337187E-01 2.55562686215E-01 2.60514955591E-01 2.65526127420E-01 2.70595077976E-01 2.75720574043E-01 2.80901269289E-01 2.86135700679E-01 2.91422284957E-01 2.96759315191E-01 3.02144957428E-01 3.07577247455E-01 3.13054087687E-01 3.18573244222E-01 3.24132344069E-01 3.29728872571E-01 3.35360171065E-01 3.41023434788E-01 3.46715711066E-01 3.52433897810E-01 3.58174742354E-01 3.63934840659E-01 3.69710636918E-01 3.75498423601E-01 3.81294341954E-01 3.87094383011E-01 3.92894389129E-01 3.98690056101E-01 4.04476935864E-01 4.10250439842E-01 4.16005842963E-01 4.21738288375E-01 4.27442792888E-01 4.33114253185E-01 4.38747452814E-01 4.44337069996E-01 4.49877686265E-01 4.55363795959E-01 4.60789816579E-01 4.66150100021E-01 4.71438944686E-01 4.76650608472E-01 4.81779322626E-01 4.86819306455E-01 4.91764782867E-01 4.96609994706E-01 5.01349221839E-01 5.05976798958E-01 5.10487134011E-01 5.14874727210E-01 5.19134190516E-01 5.23260267513E-01 5.27247853556E-01 5.31092016065E-01 5.34788014837E-01 5.38331322220E-01 5.41717642982E-01 5.44942933707E-01 5.48003421514E-01 5.50895621915E-01 5.53616355583E-01 5.56162763813E-01 5.58532322452E-01 5.60722854049E-01 5.62732537993E-01 5.64559918394E-01 5.66203909468E-01 5.67663798181E-01 5.68939243944E-01 5.70030275128E-01 5.70937282214E-01 5.71661007400E-01 5.72202530527E-01 5.72563251200E-01 5.72744867044E-01 5.72749348064E-01 5.72578907125E-01 5.72235966634E-01 5.71723121568E-01 5.71043099035E-01 5.70198714660E-01 5.69192826120E-01 5.68028284257E-01 5.66707882244E-01 5.65234303369E-01 5.63610068057E-01 5.61837480802E-01 5.59918577750E-01 5.57855075676E-01 5.55648323157E-01 5.53299254699E-01 5.50808348573E-01 5.48175589063E-01 5.45400433713E-01 5.42481786067E-01 5.39417974208E-01 5.36206735205E-01 5.32845205310E-01 5.29329915459E-01 5.25656791273E-01 5.21821156370E-01 5.17817737337E-01 5.13640668283E-01 5.09283492350E-01 5.04739157080E-01 5.00000000000E-01 4.95059072201E-01 4.89914410300E-01 4.84565407533E-01 4.79011523087E-01 4.73252280698E-01 4.67287267182E-01 4.61116130898E-01 4.54738580148E-01 4.48154381530E-01 4.41363358237E-01 4.34365388319E-01 4.27160402914E-01 4.19748384440E-01 4.12129364777E-01 4.04303423423E-01 3.96270685647E-01 3.88031320633E-01 3.79585539620E-01 3.70933594062E-01 3.62075773777E-01 3.53012405131E-01 3.43743849228E-01 3.34270500122E-01 3.24592783065E-01 3.14711152771E-01 3.04626091720E-01 2.94338108491E-01 2.83847736127E-01 2.73155530546E-01 2.62262068979E-01 2.51167948450E-01 2.39873784299E-01 2.28380208737E-01 2.16687869445E-01 2.04797428211E-01 1.92709559610E-01 1.80424949720E-01 1.67944294885E-01 1.55268300517E-01 1.42397679950E-01 1.29333153334E-01 1.16075446590E-01 1.02625290415E-01 8.89834193621E-02 7.51505709799E-02 6.11274850473E-02 4.69149028937E-02 3.25135668316E-02 1.79242197111E-02 3.14760461799E-03 -1.18155352677E-02 -2.69644566269E-02 -4.22984157484E-02 -5.78166680394E-02 -7.35184672723E-02 -8.94030645369E-02 -1.05469706868E-01 -1.21717635516E-01 -1.38146083829E-01 -1.54754274714E-01 -1.71541417646E-01 -1.88506705201E-01 -2.05649309076E-01 -2.22968375577E-01 -2.40463020563E-01 -2.58132323817E-01 -2.75975322834E-01 -2.93991006037E-01 -3.12178305402E-01 -3.30536088516E-01 -3.49063150076E-01 -3.67758202857E-01 -3.86619868178E-01 -4.05646665922E-01 -4.24837004132E-01 -4.44189168276E-01 -4.63701310226E-01 -4.83371437031E-01 -5.03197399585E-01 -5.23176881263E-01 -5.43307386642E-01 -5.63586230400E-01 -5.84010526522E-01 -6.04577177925E-01 -6.25282866610E-01 -6.46124044494E-01 -6.67096925024E-01 -6.88197475704E-01 -7.09421411662E-01 -7.30764190368E-01 -7.52221007623E-01 -7.73786794911E-01 -7.95456218220E-01 -8.17223678398E-01 -8.39083313122E-01 -8.61029000519E-01 -8.83054364481E-01 -9.05152781664E-01 -9.27317390189E-01 -9.49541099972E-01 -9.71816604672E-01 -9.94136395129E-01 -1.01649277423E+00 -1.03887787303E+00 -1.06128366805E+00 -1.08370199949E+00 -1.10612459026E+00 -1.12854306559E+00 -1.15094897298E+00 -1.17333380236E+00 -1.19568900608E+00 -1.21800601872E+00 -1.24027627628E+00 -1.26249123465E+00 -1.28464238710E+00 -1.30672128068E+00 -1.32871953119E+00 -1.35062883667E+00 -1.37244098919E+00 -1.39414788489E+00 -1.41574153200E+00 -1.43721405694E+00 -1.45855770828E+00 -1.47976485853E+00 -1.50082800377E+00 -1.52173976108E+00 -1.54249286380E+00 -1.56308015449E+00 -1.58349457585E+00 -1.60372915948E+00 -1.62377701253E+00 -1.64363130240E+00 -1.66328523949E+00 -1.68273205806E+00 -1.70196499534E+00 -1.72097726895E+00 -1.73976205265E+00 -1.75831245064E+00 -1.77662147041E+00 -1.79468199420E+00 -1.81248674928E+00 -1.83002827700E+00 -1.84729890082E+00 -1.86429069334E+00 -1.88099544242E+00 -1.89740461649E+00 -1.91350932913E+00 -1.92930030306E+00 -1.94476783350E+00 -1.95990175113E+00 -1.97469138463E+00 -1.98912552293E+00 -2.00319237733E+00 -2.01687954339E+00 -2.03017396296E+00 -2.04306188615E+00 -2.05552883364E+00 -2.06755955920E+00 -2.07913801268E+00 -2.09024730353E+00 -2.10086966501E+00 -2.11098641922E+00 -2.12057794306E+00 -2.12962363535E+00 -2.13810188519E+00 -2.14599004182E+00 -2.15326438613E+00 -2.15990010392E+00 -2.16587126139E+00 -2.17115078276E+00 -2.17571043048E+00 -2.17952078824E+00 -2.18255124701E+00 -2.18476999439E+00 -2.18614400763E+00 -2.18663905060E+00 -2.18621967509E+00 -2.18484922667E+00 -2.18248985568E+00 -2.17910253357E+00 -2.17464707508E+00 -2.16908216669E+00 -2.16236540176E+00 -2.15445332282E+00 -2.14530147160E+00 -2.13486444718E+00 -2.12309597277E+00 -2.10994897179E+00 -2.09537565369E+00 -2.07932761013E+00 -2.06175592212E+00 -2.04261127868E+00 -2.02184410759E+00 -1.99940471895E+00 -1.97524346211E+00 -1.94931089628E+00 -1.92156315135E+00 -1.89200354371E+00 -1.86058599432E+00 -1.82726001837E+00 -1.79197656416E+00 -1.75468827574E+00 -1.71534977332E+00 -1.67391795164E+00 -1.63035229688E+00 -1.58461522247E+00 -1.53667242403E+00 -1.48649325366E+00 -1.43405111394E+00 -1.37932387126E+00 -1.32229428862E+00 -1.26295047764E+00 -1.20125508979E+00 -1.13689493215E+00 -1.06986016293E+00 -1.00018273093E+00 -9.27904060630E-01 -8.53075630726E-01 -7.75759558332E-01 -6.96029186027E-01 -6.13969668541E-01 -5.29678555446E-01 -4.43266365855E-01 -3.54857150649E-01 -2.64589037368E-01 -1.72614751991E-01 -7.91021122710E-02 1.57655142273E-02 1.11788794302E-01 2.08752063027E-01 3.06423015508E-01 4.04552465157E-01 5.02874177700E-01 6.01104790706E-01 6.98943828957E-01 7.96073826479E-01 8.92160566535E-01 9.86853451323E-01 1.07978601349E+00 1.17057658183E+00 1.25882911386E+00 1.34413420792E+00 1.42607030762E+00 1.50420511107E+00 1.57809719726E+00 1.64729788136E+00 1.71135330988E+00 1.76980680590E+00 1.82220147322E+00 1.86808306700E+00 1.90700313625E+00 1.93852244201E+00 1.96221465194E+00 1.97767030953E+00 1.98450107268E+00 1.98234421271E+00 1.97086736046E+00 1.94977348184E+00 1.91880605939E+00 1.87775445142E+00 1.82645939369E+00 1.76481860198E+00 1.69279242716E+00 1.61040950642E+00 1.51777234681E+00 1.41506276891E+00 1.30254713019E+00 1.18058123897E+00 1.04961486175E+00 9.10195718136E-01 7.62972849722E-01 6.08699242082E-01 4.48233572270E-01 2.82540948796E-01 1.12692506875E-01 -6.01362807951E-02 -2.34668717943E-01 -4.09531561645E-01 -5.83261395921E-01 -7.54312827786E-01 -9.21068620070E-01 -1.08185185979E+00 -1.23494024093E+00 -1.37858251562E+00 -1.51101713775E+00 -1.63049308768E+00 -1.73529282514E+00 -1.82375727096E+00 -1.89431266467E+00 -1.94549908704E+00 -1.97600037216E+00 -1.98467506500E+00 -1.97058800740E+00 -1.93304205942E+00 -1.87160938510E+00 -1.78616165409E+00 -1.67689843454E+00 -1.54437298121E+00 -1.38951455836E+00 -1.21364638258E+00 -1.01849823028E+00 -8.06212731366E-01 -5.79344368923E-01 -3.40850228935E-01 -9.40715980431E-02 1.57294404272E-01 4.09233846057E-01 6.57466174339E-01 8.97505882876E-01 1.12473570137E+00 1.33449104357E+00 1.52215509710E+00 1.68326353913E+00 1.81361742343E+00 1.90940231440E+00 1.96731125088E+00 1.98466862213E+00 1.95955154532E+00 1.89090486903E+00 1.77864551351E+00 1.62375152264E+00 1.42833097224E+00 1.19566578739E+00 9.30225597466E-01 6.37647034657E-01 3.24674388082E-01 -9.41712267639E-04 -3.30589871091E-01 -6.54988729975E-01 -9.64422356347E-01 -1.24901770205E+00 -1.49905949855E+00 -1.70533565221E+00 -1.85950378441E+00 -1.95446712237E+00 -1.98474560600E+00 -1.94682597381E+00 -1.83947288663E+00 -1.66398201573E+00 -1.42435564342E+00 -1.12738187946E+00 -7.82600252137E-01 -4.02139326928E-01 -4.16232861527E-04 4.06306430360E-01 8.00503919817E-01 1.16410244126E+00 1.47930253275E+00 1.72948372761E+00 1.90015191534E+00 1.97988185039E+00 1.96119962872E+00 1.84134447627E+00 1.62284672312E+00 1.31386019899E+00 9.28193209991E-01 4.84993287404E-01 8.05730504571E-03 -4.75239767863E-01 -9.35377850119E-01 -1.34243690113E+00 -1.66807285219E+00 -1.88761148934E+00 -1.98211919981E+00 -1.94028758537E+00 -1.75995674475E+00 -1.44910278096E+00 -1.02613157422E+00 1.88995457689E-12 1.96217351473E-12 2.03715208235E-12 2.11499573072E-12 2.19581394028E-12 2.27972037495E-12 2.36683304199E-12 2.45727445792E-12 2.55117182088E-12 2.64865718952E-12 2.74986766867E-12 2.85494560225E-12 2.96403877341E-12 3.07730061239E-12 3.19489041230E-12 3.31697355316E-12 3.44372173450E-12 3.57531321683E-12 3.71193307232E-12 3.85377344517E-12 4.00103382174E-12 4.15392131119E-12 4.31265093673E-12 4.47744593804E-12 4.64853808521E-12 4.82616800476E-12 5.01058551801E-12 5.20204999244E-12 5.40083070651E-12 5.60720722832E-12 5.82146980883E-12 6.04391979007E-12 6.27487002895E-12 6.51464533726E-12 6.76358293851E-12 7.02203294218E-12 7.29035883613E-12 7.56893799781E-12 7.85816222504E-12 8.15843828698E-12 8.47018849628E-12 8.79385130297E-12 9.12988191115E-12 9.47875291917E-12 9.84095498429E-12 1.02169975128E-11 1.06074093763E-11 1.10127396559E-11 1.14335584138E-11 1.18704574957E-11 1.23240513629E-11 1.27949779563E-11 1.32838995939E-11 1.37915039023E-11 1.43185047834E-11 1.48656434191E-11 1.54336893129E-11 1.60234413729E-11 1.66357290348E-11 1.72714134290E-11 1.79313885911E-11 1.86165827198E-11 1.93279594820E-11 2.00665193682E-11 2.08333010997E-11 2.16293830894E-11 2.24558849585E-11 2.33139691110E-11 2.42048423690E-11 2.51297576693E-11 2.60900158261E-11 2.70869673604E-11 2.81220143989E-11 2.91966126467E-11 3.03122734342E-11 3.14705658427E-11 3.26731189112E-11 3.39216239274E-11 3.52178368067E-11 3.65635805613E-11 3.79607478645E-11 3.94113037121E-11 4.09172881866E-11 4.24808193259E-11 4.41040961023E-11 4.57894015154E-11 4.75391058025E-11 4.93556697725E-11 5.12416482665E-11 5.31996937514E-11 5.52325600498E-11 5.73431062136E-11 5.95343005444E-11 6.18092247689E-11 6.41710783721E-11 6.66231830982E-11 6.91689876214E-11 7.18120723967E-11 7.45561546953E-11 7.74050938329E-11 8.03628965968E-11 8.34337228819E-11 8.66218915407E-11 8.99318864578E-11 9.33683628555E-11 9.69361538415E-11 1.00640277206E-10 1.04485942479E-10 1.08478558257E-10 1.12623739809E-10 1.16927316974E-10 1.21395342363E-10 1.26034099866E-10 1.30850113495E-10 1.35850156557E-10 1.41041261179E-10 1.46430728201E-10 1.52026137441E-10 1.57835358357E-10 1.63866561116E-10 1.70128228080E-10 1.76629165742E-10 1.83378517105E-10 1.90385774547E-10 1.97660793166E-10 2.05213804643E-10 2.13055431633E-10 2.21196702701E-10 2.29649067836E-10 2.38424414555E-10 2.47535084616E-10 2.56993891383E-10 2.66814137843E-10 2.77009635315E-10 2.87594722876E-10 2.98584287525E-10 3.09993785125E-10 3.21839262134E-10 3.34137378180E-10 3.46905429484E-10 3.60161373191E-10 3.73923852622E-10 3.88212223496E-10 4.03046581150E-10 4.18447788804E-10 4.34437506900E-10 4.51038223567E-10 4.68273286251E-10 4.86166934544E-10 5.04744334284E-10 5.24031612940E-10 5.44055896363E-10 5.64845346933E-10 5.86429203170E-10 6.08837820851E-10 6.32102715707E-10 6.56256607742E-10 6.81333467257E-10 7.07368562617E-10 7.34398509863E-10 7.62461324200E-10 7.91596473467E-10 8.21844933641E-10 8.53249246472E-10 8.85853579305E-10 9.19703787205E-10 9.54847477441E-10 9.91334076448E-10 1.02921489933E-09 1.06854322205E-09 1.10937435633E-09 1.15176572746E-09 1.19577695505E-09 1.24146993690E-09 1.28890893601E-09 1.33816067103E-09 1.38929441001E-09 1.44238206788E-09 1.49749830755E-09 1.55472064497E-09 1.61412955808E-09 1.67580860004E-09 1.73984451673E-09 1.80632736874E-09 1.87535065803E-09 1.94701145945E-09 2.02141055724E-09 2.09865258680E-09 2.17884618180E-09 2.26210412703E-09 2.34854351697E-09 2.43828592047E-09 2.53145755175E-09 2.62818944791E-09 2.72861765316E-09 2.83288341024E-09 2.94113335899E-09 3.05351974260E-09 3.17020062175E-09 3.29134009688E-09 3.41710853897E-09 3.54768282918E-09 3.68324660758E-09 3.82399053143E-09 3.97011254332E-09 4.12181814955E-09 4.27932070915E-09 4.44284173395E-09 4.61261120009E-09 4.78886787147E-09 4.97185963554E-09 5.16184385191E-09 5.35908771433E-09 5.56386862641E-09 5.77647459180E-09 5.99720461918E-09 6.22636914285E-09 6.46429045924E-09 6.71130318021E-09 6.96775470367E-09 7.23400570206E-09 7.51043062968E-09 7.79741824926E-09 8.09537217870E-09 8.40471145872E-09 8.72587114217E-09 9.05930290586E-09 9.40547568581E-09 9.76487633671E-09 1.01380103166E-08 1.05254023978E-08 1.09275974048E-08 1.13451609805E-08 1.17786803818E-08 1.22287653055E-08 1.26960487455E-08 1.31811878832E-08 1.36848650118E-08 1.42077884956E-08 1.47506937663E-08 1.53143443574E-08 1.58995329777E-08 1.65070826264E-08 1.71378477504E-08 1.77927154457E-08 1.84726067052E-08 1.91784777141E-08 1.99113211940E-08 2.06721677995E-08 2.14620875675E-08 2.22821914218E-08 2.31336327356E-08 2.40176089536E-08 2.49353632755E-08 2.58881864049E-08 2.68774183640E-08 2.79044503781E-08 2.89707268324E-08 3.00777473027E-08 3.12270686646E-08 3.24203072828E-08 3.36591412842E-08 3.49453129177E-08 3.62806310043E-08 3.76669734808E-08 3.91062900406E-08 4.06006048757E-08 4.21520195229E-08 4.37627158194E-08 4.54349589706E-08 4.71711007360E-08 4.89735827359E-08 5.08449398852E-08 5.27878039578E-08 5.48049072877E-08 5.68990866112E-08 5.90732870555E-08 6.13305662811E-08 6.36740987804E-08 6.61071803426E-08 6.86332326876E-08 7.12558082777E-08 7.39785953132E-08 7.68054229183E-08 7.97402665259E-08 8.27872534674E-08 8.59506687764E-08 8.92349612140E-08 9.26447495249E-08 9.61848289311E-08 9.98601778754E-08 1.03675965021E-07 1.07637556520E-07 1.11750523559E-07 1.16020650189E-07 1.20453941465E-07 1.25056631884E-07 1.29835194153E-07 1.34796348292E-07 1.39947071077E-07 1.45294605858E-07 1.50846472735E-07 1.56610479137E-07 1.62594730797E-07 1.68807643152E-07 1.75257953167E-07 1.81954731631E-07 1.88907395897E-07 1.96125723135E-07 2.03619864069E-07 2.11400357252E-07 2.19478143884E-07 2.27864583189E-07 2.36571468392E-07 2.45611043294E-07 2.54996019486E-07 2.64739594221E-07 2.74855468966E-07 2.85357868667E-07 2.96261561740E-07 3.07581880842E-07 3.19334744417E-07 3.31536679077E-07 3.44204842835E-07 3.57357049226E-07 3.71011792343E-07 3.85188272838E-07 3.99906424913E-07 4.15186944336E-07 4.31051317538E-07 4.47521851810E-07 4.64621706663E-07 4.82374926374E-07 5.00806473791E-07 5.19942265410E-07 5.39809207810E-07 5.60435235461E-07 5.81849349995E-07 6.04081660959E-07 6.27163428137E-07 6.51127105478E-07 6.76006386711E-07 7.01836252692E-07 7.28653020566E-07 7.56494394806E-07 7.85399520193E-07 8.15409036826E-07 8.46565137231E-07 8.78911625650E-07 9.12493979588E-07 9.47359413721E-07 9.83556946229E-07 1.02113746768E-06 1.06015381251E-06 1.10066083330E-06 1.14271547778E-06 1.18637686887E-06 1.23170638777E-06 1.27876776011E-06 1.32762714556E-06 1.37835323069E-06 1.43101732552E-06 1.48569346364E-06 1.54245850623E-06 1.60139224998E-06 1.66257753923E-06 1.72610038226E-06 1.79205007209E-06 1.86051931195E-06 1.93160434537E-06 2.00540509140E-06 2.08202528488E-06 2.16157262215E-06 2.24415891220E-06 2.32990023371E-06 2.41891709802E-06 2.51133461828E-06 2.60728268513E-06 2.70689614903E-06 2.81031500956E-06 2.91768461192E-06 3.02915585096E-06 3.14488538293E-06 3.26503584537E-06 3.38977608537E-06 3.51928139646E-06 3.65373376462E-06 3.79332212363E-06 3.93824262018E-06 4.08869888900E-06 4.24490233861E-06 4.40707244781E-06 4.57543707361E-06 4.75023277081E-06 4.93170512374E-06 5.12010909070E-06 5.31570936151E-06 5.51878072864E-06 5.72960847248E-06 5.94848876138E-06 6.17572906674E-06 6.41164859411E-06 6.65657873056E-06 6.91086350914E-06 7.17486009101E-06 7.44893926595E-06 7.73348597185E-06 8.02889983409E-06 8.33559572528E-06 8.65400434648E-06 8.98457283037E-06 9.32776536750E-06 9.68406385627E-06 1.00539685777E-05 1.04379988956E-05 1.08366939841E-05 1.12506135818E-05 1.16803387753E-05 1.21264728124E-05 1.25896419460E-05 1.30704963104E-05 1.35697108305E-05 1.40879861656E-05 1.46260496897E-05 1.51846565078E-05 1.57645905123E-05 1.63666654779E-05 1.69917261992E-05 1.76406496715E-05 1.83143463154E-05 1.90137612487E-05 1.97398756068E-05 2.04937079120E-05 2.12763154958E-05 2.20887959749E-05 2.29322887827E-05 2.38079767591E-05 2.47170878010E-05 2.56608965741E-05 2.66407262913E-05 2.76579505563E-05 2.87139952791E-05 2.98103406623E-05 3.09485232637E-05 3.21301381358E-05 3.33568410478E-05 3.46303507896E-05 3.59524515647E-05 3.73249954722E-05 3.87499050833E-05 4.02291761149E-05 4.17648802037E-05 4.33591677856E-05 4.50142710836E-05 4.67325072078E-05 4.85162813729E-05 5.03680902368E-05 5.22905253646E-05 5.42862768236E-05 5.63581369135E-05 5.85090040362E-05 6.07418867122E-05 6.30599077475E-05 6.54663085572E-05 6.79644536511E-05 7.05578352886E-05 7.32500783074E-05 7.60449451339E-05 7.89463409810E-05 8.19583192416E-05 8.50850870827E-05 8.83310112505E-05 9.17006240914E-05 9.51986297989E-05 9.88299108940E-05 1.02599534947E-04 1.06512761552E-04 1.10575049557E-04 1.14792064573E-04 1.19169686750E-04 1.23714018853E-04 1.28431394636E-04 1.33328387524E-04 1.38411819620E-04 1.43688771049E-04 1.49166589641E-04 1.54852900984E-04 1.60755618842E-04 1.66882955955E-04 1.73243435251E-04 1.79845901461E-04 1.86699533166E-04 1.93813855292E-04 2.01198752060E-04 2.08864480417E-04 2.16821683957E-04 2.25081407359E-04 2.33655111350E-04 2.42554688217E-04 2.51792477891E-04 2.61381284614E-04 2.71334394219E-04 2.81665592041E-04 2.92389181477E-04 3.03520003221E-04 3.15073455209E-04 3.27065513270E-04 3.39512752546E-04 3.52432369667E-04 3.65842205745E-04 3.79760770189E-04 3.94207265377E-04 4.09201612224E-04 4.24764476654E-04 4.40917297041E-04 4.57682312614E-04 4.75082592884E-04 4.93142068126E-04 5.11885560935E-04 5.31338818912E-04 5.51528548504E-04 5.72482450043E-04 5.94229254021E-04 6.16798758643E-04 6.40221868700E-04 6.64530635802E-04 6.89758300024E-04 7.15939332997E-04 7.43109482506E-04 7.71305818625E-04 8.00566781462E-04 8.30932230537E-04 8.62443495870E-04 8.95143430812E-04 9.29076466690E-04 9.64288669304E-04 1.00082779735E-03 1.03874336283E-03 1.07808669347E-03 1.11891099724E-03 1.16127142909E-03 1.20522515981E-03 1.25083144726E-03 1.29815170992E-03 1.34724960286E-03 1.39819109618E-03 1.45104455605E-03 1.50588082836E-03 1.56277332503E-03 1.62179811314E-03 1.68303400690E-03 1.74656266250E-03 1.81246867599E-03 1.88083968419E-03 1.95176646881E-03 2.02534306371E-03 2.10166686551E-03 2.18083874754E-03 2.26296317725E-03 2.34814833718E-03 2.43650624948E-03 2.52815290412E-03 2.62320839087E-03 2.72179703510E-03 2.82404753746E-03 2.93009311756E-03 3.04007166167E-03 3.15412587449E-03 3.27240343521E-03 3.39505715763E-03 3.52224515470E-03 3.65413100739E-03 3.79088393788E-03 3.93267898730E-03 4.07969719786E-03 4.23212579957E-03 4.39015840147E-03 4.55399518747E-03 4.72384311672E-03 4.89991612868E-03 5.08243535266E-03 5.27162932206E-03 5.46773419314E-03 5.67099396831E-03 5.88166072393E-03 6.09999484256E-03 6.32626524957E-03 6.56074965407E-03 6.80373479398E-03 7.05551668520E-03 7.31640087476E-03 7.58670269771E-03 7.86674753767E-03 8.15687109078E-03 8.45741963290E-03 8.76875028976E-03 9.09123130986E-03 9.42524233979E-03 9.77117470167E-03 1.01294316724E-02 1.05004287641E-02 1.08845940062E-02 1.12823682270E-02 1.16942053367E-02 1.21205726088E-02 1.25619509613E-02 1.30188352362E-02 1.34917344773E-02 1.39811722042E-02 1.44876866844E-02 1.50118311997E-02 1.55541743094E-02 1.61153001062E-02 1.66958084668E-02 1.72963152947E-02 1.79174527550E-02 1.85598694993E-02 1.92242308819E-02 1.99112191634E-02 2.06215337034E-02 2.13558911394E-02 2.21150255518E-02 2.28996886136E-02 2.37106497239E-02 2.45486961244E-02 2.54146329968E-02 2.63092835416E-02 2.72334890361E-02 2.81881088712E-02 2.91740205664E-02 3.01921197607E-02 3.12433201811E-02 3.23285535854E-02 3.34487696813E-02 3.46049360187E-02 3.57980378580E-02 3.70290780114E-02 3.82990766593E-02 3.96090711420E-02 4.09601157260E-02 4.23532813478E-02 4.37896553345E-02 4.52703411043E-02 4.67964578486E-02 4.83691401969E-02 4.99895378693E-02 5.16588153186E-02 5.33781513668E-02 5.51487388389E-02 5.69717842018E-02 5.88485072114E-02 6.07801405757E-02 6.27679296408E-02 6.48131321081E-02 6.69170177899E-02 6.90808684150E-02 7.13059774926E-02 7.35936502472E-02 7.59452036349E-02 7.83619664554E-02 8.08452795718E-02 8.33964962532E-02 8.60169826556E-02 8.87081184554E-02 9.14712976529E-02 9.43079295627E-02 9.72194400064E-02 1.00207272727E-01 1.03272891040E-01 1.06417779744E-01 1.09643447295E-01 1.12951428278E-01 1.16343286177E-01 1.19820616459E-01 1.23385049999E-01 1.27038256830E-01 1.30781950250E-01 1.34617891279E-01 1.38547893466E-01 1.42573828049E-01 1.46697629461E-01 1.50921301156E-01 1.55246921753E-01 1.59676651468E-01 1.64212738793E-01 1.68857527389E-01 1.73613463142E-01 1.78483101330E-01 1.83469113818E-01 1.88574296218E-01 1.93801574922E-01 1.99154013896E-01 2.04634821154E-01 2.10247354759E-01 2.15995128249E-01 2.21881815338E-01 2.27911253757E-01 2.34087448073E-01 2.40414571366E-01 2.46896965587E-01 2.53539140486E-01 2.60345770982E-01 2.67321692861E-01 2.74471896761E-01 2.81801520389E-01 2.89315839015E-01 2.97020254325E-01 3.04920281820E-01 3.13021537013E-01 3.21329720835E-01 3.29850604743E-01 3.38590016205E-01 3.47553825360E-01 3.56747933834E-01 3.66178266819E-01 3.75850769673E-01 3.85771410361E-01 3.95946189081E-01 4.06381156319E-01 4.17082440286E-01 4.28056284176E-01 4.39309092842E-01 4.50847487118E-01 4.62678362105E-01 4.74808942896E-01 4.87246827333E-01 5.00000000000E-01 5.13076796057E-01 5.26485830386E-01 5.40235974145E-01 5.54336360841E-01 5.68796393864E-01 5.83625754186E-01 5.98834408214E-01 6.14432615805E-01 6.30430938444E-01 6.46840247585E-01 6.63671733161E-01 6.80936912259E-01 6.98647637973E-01 7.16816108422E-01 7.35454875951E-01 7.54576856505E-01 7.74195339191E-01 7.94323996016E-01 8.14976891820E-01 8.36168494396E-01 8.57913684795E-01 8.80227767842E-01 9.03126482834E-01 9.26626014448E-01 9.50743003845E-01 9.75494559982E-01 1.00089827112E+00 1.02697221656E+00 1.05373497854E+00 1.08120565435E+00 1.10940386868E+00 1.13834978611E+00 1.16806412379E+00 1.19856816432E+00 1.22988376874E+00 1.26203338974E+00 1.29504008487E+00 1.32892753001E+00 1.36372003271E+00 1.39944254573E+00 1.43612068047E+00 1.47378072035E+00 1.51244963409E+00 1.55215508877E+00 1.59292546268E+00 1.63478985777E+00 1.67777811168E+00 1.72192080926E+00 1.76724929335E+00 1.81379567489E+00 1.86159284198E+00 1.91067446799E+00 1.96107501837E+00 2.01282975609E+00 2.06597474550E+00 2.12054685441E+00 2.17658375431E+00 2.23412391828E+00 2.29320661673E+00 2.35387191042E+00 2.41616064079E+00 2.48011441733E+00 2.54577560177E+00 2.61318728884E+00 2.68239328357E+00 2.75343807486E+00 2.82636680508E+00 2.90122523575E+00 2.97805970904E+00 3.05691710501E+00 3.13784479458E+00 3.22089058810E+00 3.30610267956E+00 3.39352958642E+00 3.48322008519E+00 3.57522314269E+00 3.66958784330E+00 3.76636331214E+00 3.86559863466E+00 3.96734277258E+00 4.07164447665E+00 4.17855219650E+00 4.28811398788E+00 4.40037741776E+00 4.51538946755E+00 4.63319643516E+00 4.75384383601E+00 4.87737630373E+00 5.00383749103E+00 5.13326997099E+00 5.26571513961E+00 5.40121311972E+00 5.53980266699E+00 5.68152107823E+00 5.82640410236E+00 5.97448585441E+00 6.12579873262E+00 6.28037333874E+00 6.43823840163E+00 6.59942070392E+00 6.76394501151E+00 6.93183400549E+00 7.10310821609E+00 7.27778595774E+00 7.45588326466E+00 7.63741382593E+00 7.82238891895E+00 8.01081733998E+00 8.20270533069E+00 8.39805649897E+00 8.59687173263E+00 8.79914910443E+00 9.00488376659E+00 9.21406783334E+00 9.42669024950E+00 9.64273664364E+00 9.86218916393E+00 1.00850262951E+01 1.03112226548E+01 1.05407487679E+01 1.07735708173E+01 1.10096503694E+01 1.12489440735E+01 1.14914033338E+01 1.17369739522E+01 1.19855957416E+01 1.22372021093E+01 1.24917196077E+01 1.27490674542E+01 1.30091570173E+01 1.32718912709E+01 1.35371642138E+01 1.38048602567E+01 1.40748535750E+01 1.43470074280E+01 1.46211734447E+01 1.48971908766E+01 1.51748858180E+01 1.54540703942E+01 1.57345419190E+01 1.60160820221E+01 1.62984557480E+01 1.65814106280E+01 1.68646757266E+01 1.71479606652E+01 1.74309546252E+01 1.77133253326E+01 1.79947180287E+01 1.82747544292E+01 1.85530316761E+01 1.88291212875E+01 1.91025681095E+01 1.93728892761E+01 1.96395731836E+01 1.99020784862E+01 2.01598331201E+01 2.04122333645E+01 2.06586429491E+01 2.08983922174E+01 2.11307773564E+01 2.13550597057E+01 2.15704651566E+01 2.17761836568E+01 2.19713688342E+01 2.21551377566E+01 2.23265708422E+01 2.24847119415E+01 2.26285686076E+01 2.27571125763E+01 2.28692804768E+01 2.29639747959E+01 2.30400651190E+01 2.30963896733E+01 2.31317571975E+01 2.31449491667E+01 2.31347223979E+01 2.30998120659E+01 2.30389351578E+01 2.29507943950E+01 2.28340826529E+01 2.26874879079E+01 2.25096987394E+01 2.22994104175E+01 2.20553316020E+01 2.17761916817E+01 2.14607487754E+01 2.11077984191E+01 2.07161829578E+01 2.02848016585E+01 1.98126215561E+01 1.92986890391E+01 1.87421421768E+01 1.81422237823E+01 1.74982951995E+01 1.68098507936E+01 1.60765331106E+01 1.52981898688E+01 1.44752184611E+01 1.36077982790E+01 1.26962786803E+01 1.17412427823E+01 1.07435253536E+01 9.70423079956E+00 8.62475109058E+00 7.50678346689E+00 6.35234772836E+00 5.16380289742E+00 3.94386301919E+00 2.69561183945E+00 1.42251607502E+00 1.28436968282E-01 -1.18236020829E+00 -2.50513383796E+00 -3.83410066651E+00 -5.16329731499E+00 -6.48637692791E+00 -7.79658920517E+00 -9.08679612934E+00 -1.03494930612E+01 -1.15768356538E+01 -1.27606730251E+01 -1.38925876109E+01 -1.49639420913E+01 -1.59659337475E+01 -1.68896565561E+01 -1.77261712492E+01 -1.84665835267E+01 -1.91021304800E+01 -1.96242751921E+01 -2.00248093503E+01 -2.02959635642E+01 -2.04305249160E+01 -2.04219610885E+01 -2.02645502159E+01 -1.99535153801E+01 -1.94851624406E+01 -1.88570196312E+01 -1.80679770931E+01 -1.71184242344E+01 -1.60103825280E+01 -1.47476310718E+01 -1.33358219616E+01 -1.17825822565E+01 -1.00975990749E+01 -8.29268413929E+00 -6.38181391769E+00 -4.38114138459E+00 -2.30897536905E+00 -1.85723481456E-01 1.96620527135E+00 4.12254184520E+00 6.25734580102E+00 8.34324404669E+00 1.03517218464E+01 1.22534674517E+01 1.40187707153E+01 1.56179748746E+01 1.70219793251E+01 1.82027896573E+01 1.91341095036E+01 1.97919668527E+01 2.01553654707E+01 2.02069499367E+01 1.99336706272E+01 1.93274327975E+01 1.83857118075E+01 1.71121145806E+01 1.55168656861E+01 1.36171950875E+01 1.14376037316E+01 9.00998288574E+00 6.37356359939E+00 3.57467399743E+00 6.66284444230E-01 -2.29267594612E+00 -5.23824332920E+00 -8.10258963063E+00 -1.08154382452E+01 -1.33057151292E+01 -1.55034157443E+01 -1.73416575152E+01 -1.87588758351E+01 -1.97011095220E+01 -2.01243094092E+01 -1.99965919737E+01 -1.93003491782E+01 -1.80341167512E+01 -1.62140967262E+01 -1.38752270622E+01 -1.10716924220E+01 -7.87677653562E+00 -4.38196877647E+00 -6.95256251007E-01 3.06144175497E+00 6.75570760429E+00 1.02488988001E+01 1.34011872935E+01 1.60772407758E+01 1.81523692199E+01 1.95189065636E+01 2.00925466298E+01 1.98183077810E+01 1.86757664704E+01 1.66831801466E+01 1.39001193077E+01 1.04282510433E+01 6.40996567847E+00 2.02461662313E+00 -2.51774785210E+00 -6.98514449670E+00 -1.11347269803E+01 -1.47258077712E+01 -1.75342757755E+01 -1.93676660255E+01 -2.00799661851E+01 -1.95851085736E+01 -1.78680145746E+01 -1.49920493262E+01 -1.11018252833E+01 -6.42047642080E+00 -1.24081710844E+00 4.08980097655E+00 9.19062680825E+00 1.36737726517E+01 1.71741367601E+01 1.93809463556E+01 2.00683863774E+01 1.91224329302E+01 1.65608806550E+01 1.25437022580E+01 7.37135225139E+00 1.46944599088E+00 -4.64060537879E+00 -1.03840011547E+01 -1.51854057156E+01 -1.85280536567E+01 -2.00134793051E+01 -1.94152107004E+01 -1.67193486092E+01 -1.21453381598E+01 -6.14156382990E+00 6.47311537237E-01 7.44118648414E+00 1.34096914509E+01 1.77738645835E+01 1.99128651028E+01 1.94615754549E+01 1.63838543863E+01 1.10072366766E+01 4.00834321675E+00 -3.65585572442E+00 -1.08679384154E+01 -1.65092077381E+01 -1.96376405892E+01 -1.96573754496E+01 -1.64493314359E+01 -1.04343409978E+01 -2.54770425166E+00 5.88284955425E+00 1.33465571729E+01 1.84183217163E+01 2.00418961773E+01 1.77720763199E+01 1.19196269146E+01 3.55412168511E+00 -5.65627371726E+00 -1.37556212503E+01 -1.89120669131E+01 espresso-5.1/PW/examples/EXX_example/Pseudo/CPBE085nlcc.RRKJ30000644000175000017500000065551412341373025021467 0ustar mbambaC 2 F T 1 4 3 4 0.40000000000E+01-.10792873834E+02 2 -.70000000000E+010.10000000000E+030.60000000000E+010.12500000000E-01 1073 5 4 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 2S 1 0 2.00 2S 1 0 0.00 2P 2 1 2.00 2P 2 1 0.00 3D 3 2 -2.00 701 -6.29644541851E-01 -6.37564496591E-01 -6.45584072151E-01 -6.53704521608E-01 -6.61935585617E-01 -6.70234974012E-01 -6.78668045819E-01 -6.87228497931E-01 -6.95842831005E-01 -7.04622970778E-01 -7.13461385505E-01 -7.22481729018E-01 -7.31531590482E-01 -7.40761549505E-01 -7.50047429194E-01 -7.59493754516E-01 -7.69050803049E-01 -7.78709207239E-01 -7.88503818076E-01 -7.98439469680E-01 -8.08514041021E-01 -8.18624765611E-01 -8.28960350046E-01 -8.39367978082E-01 -8.49913183292E-01 -8.60646314811E-01 -8.71411490444E-01 -8.82408542407E-01 -8.93480430547E-01 -9.04768104790E-01 -9.16127875785E-01 -9.27633084132E-01 -9.39295388285E-01 -9.51167754102E-01 -9.63090004574E-01 -9.75214564441E-01 -9.87489109143E-01 -9.99901918579E-01 -1.01249562726E+00 -1.02521008280E+00 -1.03811445391E+00 -1.05114718436E+00 -1.06438692927E+00 -1.07777733637E+00 -1.09132471115E+00 -1.10507049916E+00 -1.11895285856E+00 -1.13301863121E+00 -1.14728653013E+00 -1.16171240546E+00 -1.17634277540E+00 -1.19113838030E+00 -1.20609974791E+00 -1.22128122000E+00 -1.23663115939E+00 -1.25216769149E+00 -1.26796885035E+00 -1.28389287534E+00 -1.30006412207E+00 -1.31639207018E+00 -1.33296491627E+00 -1.34970738317E+00 -1.36671968902E+00 -1.38388445892E+00 -1.40130287386E+00 -1.41892540018E+00 -1.43676229565E+00 -1.45486852494E+00 -1.47312525529E+00 -1.49166558027E+00 -1.51043589402E+00 -1.52944689146E+00 -1.54866185159E+00 -1.56815429043E+00 -1.58788331171E+00 -1.60784832996E+00 -1.62808459367E+00 -1.64855008923E+00 -1.66928944471E+00 -1.69028557049E+00 -1.71155077442E+00 -1.73308549115E+00 -1.75487199550E+00 -1.77694748534E+00 -1.79928991187E+00 -1.82192703433E+00 -1.84483943185E+00 -1.86804031542E+00 -1.89155079297E+00 -1.91533971930E+00 -1.93943503878E+00 -1.96383699868E+00 -1.98853355385E+00 -2.01355264221E+00 -2.03886100912E+00 -2.06452573009E+00 -2.09048416675E+00 -2.11678118621E+00 -2.14339794911E+00 -2.17036550750E+00 -2.19768524245E+00 -2.22530619050E+00 -2.25330520091E+00 -2.28163935319E+00 -2.31035004495E+00 -2.33940803615E+00 -2.36882667852E+00 -2.39862208740E+00 -2.42880429691E+00 -2.45935784216E+00 -2.49028774561E+00 -2.52161547535E+00 -2.55332104909E+00 -2.58544443004E+00 -2.61796185136E+00 -2.65089830870E+00 -2.68422196985E+00 -2.71800175428E+00 -2.75218203648E+00 -2.78681190156E+00 -2.82185977686E+00 -2.85735369983E+00 -2.89329260081E+00 -2.92968458003E+00 -2.96653817761E+00 -3.00384257615E+00 -3.04163585071E+00 -3.07989256169E+00 -3.11862833736E+00 -3.15786080467E+00 -3.19758020054E+00 -3.23779994254E+00 -3.27852722673E+00 -3.31976006027E+00 -3.36152110018E+00 -3.40380283780E+00 -3.44661869510E+00 -3.48997262940E+00 -3.53386630335E+00 -3.57831484112E+00 -3.62332825624E+00 -3.66889821532E+00 -3.71505202923E+00 -3.76177920267E+00 -3.80909492345E+00 -3.85700427400E+00 -3.90552044163E+00 -3.95464747048E+00 -4.00439058327E+00 -4.05475515984E+00 -4.10576044614E+00 -4.15740087193E+00 -4.20969886319E+00 -4.26264560029E+00 -4.31626257047E+00 -4.37055113964E+00 -4.42551833564E+00 -4.48119169946E+00 -4.53755102955E+00 -4.59462681613E+00 -4.65242164167E+00 -4.71094149073E+00 -4.77020166475E+00 -4.83019473622E+00 -4.89095098719E+00 -4.95247389736E+00 -5.01476013804E+00 -5.07783942680E+00 -5.14170415299E+00 -5.20638227219E+00 -5.27186919403E+00 -5.33817764027E+00 -5.40532392688E+00 -5.47330692050E+00 -5.54215528499E+00 -5.61186317160E+00 -5.68244582528E+00 -5.75392241387E+00 -5.82629274338E+00 -5.89958235622E+00 -5.97377691514E+00 -6.04892161124E+00 -6.12499864060E+00 -6.20204506571E+00 -6.28005245559E+00 -6.35904149120E+00 -6.43902403981E+00 -6.52001277613E+00 -6.60202332328E+00 -6.68505352657E+00 -6.76914658192E+00 -6.85427892119E+00 -6.94049479824E+00 -7.02779010277E+00 -7.11618399625E+00 -7.20568620888E+00 -7.29632215555E+00 -7.38808896572E+00 -7.48101848379E+00 -7.57510970882E+00 -7.67038343091E+00 -7.76686323439E+00 -7.86454966887E+00 -7.96346604224E+00 -8.06363036472E+00 -8.16504947802E+00 -8.26774365240E+00 -8.37172976757E+00 -8.47702306485E+00 -8.58364971532E+00 -8.69160452854E+00 -8.80092137921E+00 -8.91161630983E+00 -9.02369981045E+00 -9.13719064232E+00 -9.25211277723E+00 -9.36847636658E+00 -9.48630748694E+00 -9.60561911183E+00 -9.72642793703E+00 -9.84876079033E+00 -9.97262773274E+00 -1.00980542238E+01 -1.02250577126E+01 -1.03536557924E+01 -1.04838725442E+01 -1.06157276355E+01 -1.07492404727E+01 -1.08844313911E+01 -1.10213234066E+01 -1.11599332323E+01 -1.13002883247E+01 -1.14424073115E+01 -1.15863156144E+01 -1.17320279997E+01 -1.18795769169E+01 -1.20289772529E+01 -1.21802619183E+01 -1.23334419532E+01 -1.24885520476E+01 -1.26456085395E+01 -1.28046421844E+01 -1.29656770897E+01 -1.31287327869E+01 -1.32938389250E+01 -1.34610208635E+01 -1.36303029520E+01 -1.38017172616E+01 -1.39752831091E+01 -1.41510320583E+01 -1.43289876191E+01 -1.45091812488E+01 -1.46916385848E+01 -1.48763941534E+01 -1.50634672383E+01 -1.52528950086E+01 -1.54446981558E+01 -1.56389172068E+01 -1.58355744775E+01 -1.60347041938E+01 -1.62363365363E+01 -1.64405035564E+01 -1.66472333238E+01 -1.68565660200E+01 -1.70685258117E+01 -1.72831506558E+01 -1.75004699534E+01 -1.77205222195E+01 -1.79433399363E+01 -1.81689547345E+01 -1.83974054886E+01 -1.86287252361E+01 -1.88629550470E+01 -1.91001234364E+01 -1.93402731156E+01 -1.95834407882E+01 -1.98296607884E+01 -2.00789740291E+01 -2.03314207130E+01 -2.05870363753E+01 -2.08458635929E+01 -2.11079431509E+01 -2.13733118766E+01 -2.16420136030E+01 -2.19140913241E+01 -2.21895850510E+01 -2.24685357813E+01 -2.27509928563E+01 -2.30369956007E+01 -2.33265881470E+01 -2.36198188398E+01 -2.39167285686E+01 -2.42173669055E+01 -2.45217795464E+01 -2.48300117552E+01 -2.51421145328E+01 -2.54581332645E+01 -2.57781200323E+01 -2.61021221586E+01 -2.64301894208E+01 -2.67623748361E+01 -2.70987254821E+01 -2.74392999031E+01 -2.77841437199E+01 -2.81333162681E+01 -2.84868700854E+01 -2.88448556180E+01 -2.92073348408E+01 -2.95743565689E+01 -2.99459840656E+01 -3.03222697449E+01 -3.07032760909E+01 -3.10890562667E+01 -3.14796757005E+01 -3.18751899002E+01 -3.22756635547E+01 -3.26811562896E+01 -3.30917312991E+01 -3.35074498848E+01 -3.39283790846E+01 -3.43545816056E+01 -3.47861242264E+01 -3.52230724789E+01 -3.56654917399E+01 -3.61134545158E+01 -3.65670254980E+01 -3.70262759074E+01 -3.74912765044E+01 -3.79620972838E+01 -3.84388132484E+01 -3.89214921639E+01 -3.94102130570E+01 -3.99050485948E+01 -4.04060749850E+01 -4.09133672654E+01 -4.14270053513E+01 -4.19470651961E+01 -4.24736287415E+01 -4.30067739423E+01 -4.35465833118E+01 -4.40931384849E+01 -4.46465241785E+01 -4.52068214267E+01 -4.57741182924E+01 -4.63484999860E+01 -4.69300528555E+01 -4.75188668041E+01 -4.81150287473E+01 -4.87186322574E+01 -4.93297644712E+01 -4.99485210718E+01 -5.05749945189E+01 -5.12092791375E+01 -5.18514701553E+01 -5.25016660049E+01 -5.31599615373E+01 -5.38264590863E+01 -5.45012563957E+01 -5.51844555212E+01 -5.58761593573E+01 -5.65764703952E+01 -5.72854941529E+01 -5.80033354021E+01 -5.87301040325E+01 -5.94659049651E+01 -6.02108500753E+01 -6.09650484733E+01 -6.17286133868E+01 -6.25016571909E+01 -6.32842955025E+01 -6.40766424487E+01 -6.48788160139E+01 -6.56909345087E+01 -6.65131161711E+01 -6.73454847327E+01 -6.81881590671E+01 -6.90412644251E+01 -6.99049248587E+01 -7.07792676543E+01 -7.16644185992E+01 -7.25605070485E+01 -7.34676642129E+01 -7.43860193610E+01 -7.53157075300E+01 -7.62568616529E+01 -7.72096173406E+01 -7.81741121198E+01 -7.91504833136E+01 -8.01388719057E+01 -8.11394173991E+01 -8.21522642214E+01 -8.31775544941E+01 -8.42154342944E+01 -8.52660501078E+01 -8.63295498588E+01 -8.74060832984E+01 -8.84958013393E+01 -8.95988555080E+01 -9.07154008165E+01 -9.18455910450E+01 -9.29895833412E+01 -9.41475356501E+01 -9.53196064994E+01 -9.65059575681E+01 -9.77067499311E+01 -9.89221474165E+01 -1.00152314608E+02 -1.01397417520E+02 -1.02657623770E+02 -1.03933101993E+02 -1.05224022707E+02 -1.06530556826E+02 -1.07852877299E+02 -1.09191158049E+02 -1.10545573991E+02 -1.11916301810E+02 -1.13303519744E+02 -1.14707405994E+02 -1.16128140528E+02 -1.17565905187E+02 -1.19020881431E+02 -1.20493253740E+02 -1.21983205449E+02 -1.23490923220E+02 -1.25016592391E+02 -1.26560401519E+02 -1.28122537882E+02 -1.29703191441E+02 -1.31302552179E+02 -1.32920810851E+02 -1.34558158721E+02 -1.36214788667E+02 -1.37890892690E+02 -1.39586665079E+02 -1.41302299297E+02 -1.43037989597E+02 -1.44793931182E+02 -1.46570318708E+02 -1.48367347308E+02 -1.50185212605E+02 -1.52024109742E+02 -1.53884234375E+02 -1.55765781766E+02 -1.57668946834E+02 -1.59593924332E+02 -1.61540908357E+02 -1.63510093071E+02 -1.65501671084E+02 -1.67515834943E+02 -1.69552776142E+02 -1.71612684625E+02 -1.73695750426E+02 -1.75802160292E+02 -1.77932101416E+02 -1.80085758182E+02 -1.82263313704E+02 -1.84464948866E+02 -1.86690842602E+02 -1.88941171119E+02 -1.91216109000E+02 -1.93515826762E+02 -1.95840493478E+02 -1.98190273537E+02 -2.00565329289E+02 -2.02965818474E+02 -2.05391895408E+02 -2.07843710281E+02 -2.10321408975E+02 -2.12825132039E+02 -2.15355015784E+02 -2.17911191352E+02 -2.20493783141E+02 -2.23102911138E+02 -2.25738688139E+02 -2.28401220193E+02 -2.31090607659E+02 -2.33806941763E+02 -2.36550307458E+02 -2.39320780788E+02 -2.42118429895E+02 -2.44943312713E+02 -2.47795479251E+02 -2.50674968755E+02 -2.53581809907E+02 -2.56516021019E+02 -2.59477608844E+02 -2.62466567815E+02 -2.65482880459E+02 -2.68526515648E+02 -2.71597428888E+02 -2.74695561296E+02 -2.77820839179E+02 -2.80973172915E+02 -2.84152456979E+02 -2.87358568682E+02 -2.90591367466E+02 -2.93850694729E+02 -2.97136372354E+02 -3.00448202139E+02 -3.03785965239E+02 -3.07149421073E+02 -3.10538306204E+02 -3.13952334144E+02 -3.17391193781E+02 -3.20854548315E+02 -3.24342035407E+02 -3.27853264512E+02 -3.31387817170E+02 -3.34945245214E+02 -3.38525070127E+02 -3.42126781160E+02 -3.45749835551E+02 -3.49393655367E+02 -3.53057628448E+02 -3.56741105227E+02 -3.60443398709E+02 -3.64163782473E+02 -3.67901489674E+02 -3.71655711655E+02 -3.75425596089E+02 -3.79210246046E+02 -3.83008718274E+02 -3.86820021536E+02 -3.90643115368E+02 -3.94476908389E+02 -3.98320256341E+02 -4.02171960874E+02 -4.06030767896E+02 -4.09895365324E+02 -4.13764381929E+02 -4.17636385425E+02 -4.21509880186E+02 -4.25383306173E+02 -4.29255036400E+02 -4.33123375922E+02 -4.36986558571E+02 -4.40842746633E+02 -4.44690027617E+02 -4.48526413172E+02 -4.52349836637E+02 -4.56158150969E+02 -4.59949127215E+02 -4.63720452282E+02 -4.67469726889E+02 -4.71194463359E+02 -4.74892084409E+02 -4.78559919906E+02 -4.82195206361E+02 -4.85795083534E+02 -4.89356593851E+02 -4.92876679122E+02 -4.96352179746E+02 -4.99779832708E+02 -5.03156269078E+02 -5.06478013003E+02 -5.09741479869E+02 -5.12942974342E+02 -5.16078689513E+02 -5.19144704243E+02 -5.22136983479E+02 -5.25051375318E+02 -5.27883610964E+02 -5.30629303316E+02 -5.33283945910E+02 -5.35842912425E+02 -5.38301456154E+02 -5.40654709197E+02 -5.42897682565E+02 -5.45025266062E+02 -5.47032228202E+02 -5.48913217104E+02 -5.50662760838E+02 -5.52275268065E+02 -5.53745029981E+02 -5.55066221110E+02 -5.56232901393E+02 -5.57239018508E+02 -5.58078410271E+02 -5.58744807453E+02 -5.59231837270E+02 -5.59533027268E+02 -5.59641809471E+02 -5.59551525135E+02 -5.59255429937E+02 -5.58746700267E+02 -5.58018439248E+02 -5.57063683921E+02 -5.55875413386E+02 -5.54446556839E+02 -5.52770003015E+02 -5.50838610329E+02 -5.48645217752E+02 -5.46182656473E+02 -5.43443762898E+02 -5.40421392328E+02 -5.37108433786E+02 -5.33497826062E+02 -5.29582574921E+02 -5.25355771604E+02 -5.20810612674E+02 -5.15940420976E+02 -5.10738668828E+02 -5.05199002136E+02 -4.99315266344E+02 -4.93081534350E+02 -4.86492136107E+02 -4.79541690289E+02 -4.72225137908E+02 -4.64537778185E+02 -4.56475306785E+02 -4.48033856019E+02 -4.39210038175E+02 -4.30000990804E+02 -4.20404425029E+02 -4.10418676557E+02 -4.00042759542E+02 -3.89276423238E+02 -3.78120211833E+02 -3.66575527229E+02 -3.54644694899E+02 -3.42331032618E+02 -3.29638922458E+02 -3.16573885618E+02 -3.03142660061E+02 -2.89353280790E+02 -2.75215162792E+02 -2.60739185815E+02 -2.45937781401E+02 -2.30825020777E+02 -2.15416704229E+02 -1.99730450137E+02 -1.83785783993E+02 -1.67604225539E+02 -1.51209374097E+02 -1.34626989826E+02 -1.17885070641E+02 -1.01013922346E+02 -8.40462212357E+01 -6.70170665641E+01 -4.99640214829E+01 -3.29271395310E+01 -1.59489750335E+01 9.25425824256E-01 1.76485559281E+01 3.41705027932E+01 5.04390325239E+01 6.63997047301E+01 8.19960227792E+01 9.71696214021E+01 1.11860496719E+02 1.26007281023E+02 1.39547565558E+02 1.52418275250E+02 1.64556097264E+02 1.75897965882E+02 1.86381605698E+02 1.95946133812E+02 2.04532721327E+02 2.12085312894E+02 2.18551402266E+02 2.23882860314E+02 2.28036809035E+02 2.30976535563E+02 2.32672435403E+02 2.33102973385E+02 2.32255648124E+02 2.30127941699E+02 2.26728235488E+02 2.22076668428E+02 2.16205912005E+02 2.09161833157E+02 2.01004014899E+02 1.91806101112E+02 1.81655932822E+02 1.70655442398E+02 1.58920274535E+02 1.46579106637E+02 1.33772648378E+02 1.20652310225E+02 1.07378545493E+02 9.41188910733E+01 8.10457593646E+01 6.83340695114E+01 5.61588534378E+01 4.46930322436E+01 3.41056282969E+01 2.45608465483E+01 1.62178792819E+01 9.23826375502E+00 3.74153494450E+00 2.94073462401E-01 -2.91556272168E-02 2.89060628091E-03 -2.86585760695E-04 2.84111881805E-05 -2.81621631317E-06 2.80970503199E-07 -2.71209408549E-08 1.07515870356E-09 -1.83551765814E-09 7.40347429922E-10 8.39948465847E-01 701 -8.40578686627E-01 -8.51151866757E-01 -8.61858041191E-01 -8.72698882794E-01 -8.83687446957E-01 -8.94767078997E-01 -9.06025277127E-01 -9.17453600901E-01 -9.28953655496E-01 -9.40675288654E-01 -9.52474564268E-01 -9.64516863994E-01 -9.76598431164E-01 -9.88920488568E-01 -1.00131713978E+00 -1.01392803943E+00 -1.02668677864E+00 -1.03958077789E+00 -1.05265658630E+00 -1.06592080055E+00 -1.07937050485E+00 -1.09286818116E+00 -1.10666639253E+00 -1.12056050405E+00 -1.13463841923E+00 -1.14896730950E+00 -1.16333868811E+00 -1.17801995641E+00 -1.19280085034E+00 -1.20787013596E+00 -1.22303541722E+00 -1.23839487410E+00 -1.25396411762E+00 -1.26981390059E+00 -1.28573005827E+00 -1.30191645078E+00 -1.31830304237E+00 -1.33487419506E+00 -1.35168687723E+00 -1.36866070675E+00 -1.38588813521E+00 -1.40328679096E+00 -1.42096204141E+00 -1.43883823982E+00 -1.45692407367E+00 -1.47527477603E+00 -1.49380778798E+00 -1.51258562628E+00 -1.53163339224E+00 -1.55089198241E+00 -1.57042366557E+00 -1.59017587142E+00 -1.61014932482E+00 -1.63041668557E+00 -1.65090888028E+00 -1.67165019834E+00 -1.69274495591E+00 -1.71400359304E+00 -1.73559227269E+00 -1.75739012970E+00 -1.77951500623E+00 -1.80186621903E+00 -1.82457785156E+00 -1.84749279063E+00 -1.87074651177E+00 -1.89427266412E+00 -1.91808496250E+00 -1.94225701029E+00 -1.96662969053E+00 -1.99138114370E+00 -2.01643965234E+00 -2.04181943215E+00 -2.06747147314E+00 -2.09349398399E+00 -2.11983235608E+00 -2.14648571628E+00 -2.17350128321E+00 -2.20082280440E+00 -2.22850991930E+00 -2.25653986914E+00 -2.28492902591E+00 -2.31367800331E+00 -2.34276307180E+00 -2.37223395428E+00 -2.40206117097E+00 -2.43228188328E+00 -2.46287002480E+00 -2.49384331408E+00 -2.52522995839E+00 -2.55698827614E+00 -2.58915566748E+00 -2.62173243174E+00 -2.65470244495E+00 -2.68810305617E+00 -2.72188981565E+00 -2.75615237969E+00 -2.79080701781E+00 -2.82591368386E+00 -2.86144714962E+00 -2.89744900061E+00 -2.93392104821E+00 -2.97079508948E+00 -3.00817392934E+00 -3.04600014559E+00 -3.08432909067E+00 -3.12312165719E+00 -3.16239566110E+00 -3.20217270133E+00 -3.24246610934E+00 -3.28325527624E+00 -3.32454682654E+00 -3.36636951808E+00 -3.40869660100E+00 -3.45158147011E+00 -3.49499239043E+00 -3.53896275194E+00 -3.58344994137E+00 -3.62854617101E+00 -3.67417700097E+00 -3.72040806395E+00 -3.76719715422E+00 -3.81458171004E+00 -3.86256032770E+00 -3.91114378684E+00 -3.96034354334E+00 -4.01014506955E+00 -4.06059930619E+00 -4.11167220868E+00 -4.16338463567E+00 -4.21576019773E+00 -4.26878577792E+00 -4.32247934290E+00 -4.37685047059E+00 -4.43189650101E+00 -4.48764769119E+00 -4.54409402495E+00 -4.60125341254E+00 -4.65913113875E+00 -4.71772939690E+00 -4.77706840849E+00 -4.83716155599E+00 -4.89799765598E+00 -4.95961323613E+00 -5.02199425578E+00 -5.08516095437E+00 -5.14912017493E+00 -5.21388950082E+00 -5.27947433237E+00 -5.34588163897E+00 -5.41311857022E+00 -5.48121089305E+00 -5.55015111335E+00 -5.61996919386E+00 -5.69065334526E+00 -5.76223225126E+00 -5.83470775508E+00 -5.90808920903E+00 -5.98241344179E+00 -6.05765341305E+00 -6.13384985293E+00 -6.21100624418E+00 -6.28913051874E+00 -6.36824316060E+00 -6.44833417236E+00 -6.52944406013E+00 -6.61157745382E+00 -6.69472985956E+00 -6.77894102345E+00 -6.86420072565E+00 -6.95054632998E+00 -7.03797169155E+00 -7.12649377274E+00 -7.21613438665E+00 -7.30689199453E+00 -7.39880489309E+00 -7.49186524797E+00 -7.58609341100E+00 -7.68151499158E+00 -7.77812972044E+00 -7.87597170658E+00 -7.97502175662E+00 -8.07534029649E+00 -8.17690346237E+00 -8.27976081425E+00 -8.38390103067E+00 -8.48935175142E+00 -8.59612881721E+00 -8.70424914530E+00 -8.81373360704E+00 -8.92457927459E+00 -9.03684390675E+00 -9.15049593891E+00 -9.26559453089E+00 -9.38213415084E+00 -9.50014038522E+00 -9.61962622432E+00 -9.74062563056E+00 -9.86313470620E+00 -9.98719603579E+00 -1.01128082160E+01 -1.02399990374E+01 -1.03688000037E+01 -1.04992118028E+01 -1.06312655839E+01 -1.07649853816E+01 -1.09003803250E+01 -1.10374774702E+01 -1.11762993644E+01 -1.13168663449E+01 -1.14592133799E+01 -1.16033334846E+01 -1.17492719198E+01 -1.18970501073E+01 -1.20466820273E+01 -1.21981927291E+01 -1.23516142333E+01 -1.25069600789E+01 -1.26642650832E+01 -1.28235465660E+01 -1.29848268004E+01 -1.31481416328E+01 -1.33135044616E+01 -1.34809492920E+01 -1.36504994225E+01 -1.38221783152E+01 -1.39960181531E+01 -1.41720451706E+01 -1.43502852797E+01 -1.45307656323E+01 -1.47135169428E+01 -1.48985615286E+01 -1.50859360499E+01 -1.52756653670E+01 -1.54677834306E+01 -1.56623099214E+01 -1.58592881999E+01 -1.60587381104E+01 -1.62607036130E+01 -1.64651994178E+01 -1.66722718553E+01 -1.68819427258E+01 -1.70942530991E+01 -1.73092351566E+01 -1.75269149561E+01 -1.77473320936E+01 -1.79705204175E+01 -1.81965124380E+01 -1.84253509755E+01 -1.86570618018E+01 -1.88916870677E+01 -1.91292581432E+01 -1.93698170386E+01 -1.96133979673E+01 -1.98600470433E+01 -2.01097899815E+01 -2.03626764211E+01 -2.06187339652E+01 -2.08780167440E+01 -2.11405545240E+01 -2.14063930083E+01 -2.16755724858E+01 -2.19481357443E+01 -2.22241202475E+01 -2.25035796559E+01 -2.27865462106E+01 -2.30730705951E+01 -2.33631920504E+01 -2.36569620013E+01 -2.39544238085E+01 -2.42556196884E+01 -2.45606015496E+01 -2.48694134856E+01 -2.51821103430E+01 -2.54987301582E+01 -2.58193299731E+01 -2.61439587790E+01 -2.64726624027E+01 -2.68054954687E+01 -2.71425116470E+01 -2.74837583702E+01 -2.78292924797E+01 -2.81791684260E+01 -2.85334353614E+01 -2.88921518032E+01 -2.92553751566E+01 -2.96231588223E+01 -2.99955575272E+01 -3.03726371584E+01 -3.07544501931E+01 -3.11410555516E+01 -3.15325177750E+01 -3.19288914391E+01 -3.23302427287E+01 -3.27366326383E+01 -3.31481215933E+01 -3.35647776786E+01 -3.39866614785E+01 -3.44138425217E+01 -3.48463839747E+01 -3.52843522899E+01 -3.57278182386E+01 -3.61768446623E+01 -3.66315097242E+01 -3.70918743085E+01 -3.75580176374E+01 -3.80300098406E+01 -3.85079182452E+01 -3.89918256037E+01 -3.94817970552E+01 -3.99779170718E+01 -4.04802556033E+01 -4.09888960745E+01 -4.15039094338E+01 -4.20253830385E+01 -4.25533909708E+01 -4.30880195933E+01 -4.36293484935E+01 -4.41774620291E+01 -4.47324420227E+01 -4.52943779727E+01 -4.58633535735E+01 -4.64394579741E+01 -4.70227786450E+01 -4.76134028467E+01 -4.82114273823E+01 -4.88169385888E+01 -4.94300315392E+01 -5.00508006908E+01 -5.06793394674E+01 -5.13157479949E+01 -5.19601167111E+01 -5.26125511177E+01 -5.32731482063E+01 -5.39420096984E+01 -5.46192357526E+01 -5.53049330446E+01 -5.59992029470E+01 -5.67021548455E+01 -5.74138927834E+01 -5.81345269002E+01 -5.88641661586E+01 -5.96029236385E+01 -6.03509074925E+01 -6.11082352688E+01 -6.18750207000E+01 -6.26513790336E+01 -6.34374302704E+01 -6.42332904123E+01 -6.50390843595E+01 -6.58549284014E+01 -6.66809502569E+01 -6.75172733252E+01 -6.83640235007E+01 -6.92213278779E+01 -7.00893178377E+01 -7.09681199623E+01 -7.18578708411E+01 -7.27587009193E+01 -7.36707464041E+01 -7.45941446221E+01 -7.55290323539E+01 -7.64755504252E+01 -7.74338386588E+01 -7.84040437182E+01 -7.93863056156E+01 -8.03807736616E+01 -8.13875934607E+01 -8.24069161226E+01 -8.34388916085E+01 -8.44836742129E+01 -8.55414162308E+01 -8.66122751102E+01 -8.76964087317E+01 -8.87939748718E+01 -8.99051386496E+01 -9.10300586798E+01 -9.21689021008E+01 -9.33218344424E+01 -9.44890255524E+01 -9.56706432694E+01 -9.68668601944E+01 -9.80778514061E+01 -9.93037893778E+01 -1.00544854290E+02 -1.01801223506E+02 -1.03073077956E+02 -1.04360601133E+02 -1.05663976246E+02 -1.06983391391E+02 -1.08319032679E+02 -1.09671092797E+02 -1.11039761340E+02 -1.12425233186E+02 -1.13827703749E+02 -1.15247370360E+02 -1.16684432781E+02 -1.18139092323E+02 -1.19611551104E+02 -1.21102015897E+02 -1.22610691815E+02 -1.24137788467E+02 -1.25683516517E+02 -1.27248087397E+02 -1.28831716743E+02 -1.30434619372E+02 -1.32057013771E+02 -1.33699119428E+02 -1.35361157730E+02 -1.37043352195E+02 -1.38745927693E+02 -1.40469111595E+02 -1.42213131789E+02 -1.43978218873E+02 -1.45764604735E+02 -1.47572522569E+02 -1.49402207927E+02 -1.51253898420E+02 -1.53127831595E+02 -1.55024247347E+02 -1.56943388057E+02 -1.58885495581E+02 -1.60850815798E+02 -1.62839593035E+02 -1.64852076053E+02 -1.66888511819E+02 -1.68949151592E+02 -1.71034244896E+02 -1.73144044822E+02 -1.75278804474E+02 -1.77438777964E+02 -1.79624220061E+02 -1.81835387674E+02 -1.84072536510E+02 -1.86335925316E+02 -1.88625811709E+02 -1.90942454335E+02 -1.93286113086E+02 -1.95657047093E+02 -1.98055516100E+02 -2.00481780474E+02 -2.02936099915E+02 -2.05418734775E+02 -2.07929944849E+02 -2.10469989440E+02 -2.13039127599E+02 -2.15637617460E+02 -2.18265717213E+02 -2.20923682936E+02 -2.23611770583E+02 -2.26330234662E+02 -2.29079327569E+02 -2.31859301779E+02 -2.34670405328E+02 -2.37512886809E+02 -2.40386991008E+02 -2.43292960971E+02 -2.46231036710E+02 -2.49201455585E+02 -2.52204451253E+02 -2.55240255152E+02 -2.58309093227E+02 -2.61411189436E+02 -2.64546761414E+02 -2.67716024017E+02 -2.70919185866E+02 -2.74156450947E+02 -2.77428017664E+02 -2.80734078588E+02 -2.84074819095E+02 -2.87450418822E+02 -2.90861050416E+02 -2.94306877437E+02 -2.97788057462E+02 -3.01304738377E+02 -3.04857058959E+02 -3.08445150294E+02 -3.12069131166E+02 -3.15729111877E+02 -3.19425190728E+02 -3.23157455351E+02 -3.26925979632E+02 -3.30730826756E+02 -3.34572045410E+02 -3.38449670045E+02 -3.42363721133E+02 -3.46314203576E+02 -3.50301105680E+02 -3.54324399708E+02 -3.58384039538E+02 -3.62479961042E+02 -3.66612080722E+02 -3.70780295132E+02 -3.74984479386E+02 -3.79224487188E+02 -3.83500149137E+02 -3.87811271783E+02 -3.92157637389E+02 -3.96539001956E+02 -4.00955094460E+02 -4.05405616100E+02 -4.09890238829E+02 -4.14408603855E+02 -4.18960321372E+02 -4.23544968453E+02 -4.28162087622E+02 -4.32811187048E+02 -4.37491736969E+02 -4.42203170084E+02 -4.46944879143E+02 -4.51716216084E+02 -4.56516489513E+02 -4.61344964987E+02 -4.66200860787E+02 -4.71083349175E+02 -4.75991552135E+02 -4.80924541334E+02 -4.85881335456E+02 -4.90860898844E+02 -4.95862139653E+02 -5.00883907354E+02 -5.05924991472E+02 -5.10984119298E+02 -5.16059953640E+02 -5.21151091168E+02 -5.26256060148E+02 -5.31373317804E+02 -5.36501248703E+02 -5.41638162528E+02 -5.46782291072E+02 -5.51931786690E+02 -5.57084719731E+02 -5.62239075485E+02 -5.67392752742E+02 -5.72543560397E+02 -5.77689216097E+02 -5.82827341863E+02 -5.87955463666E+02 -5.93071007091E+02 -5.98171295896E+02 -6.03253548729E+02 -6.08314876354E+02 -6.13352279609E+02 -6.18362646422E+02 -6.23342749077E+02 -6.28289241253E+02 -6.33198656415E+02 -6.38067403483E+02 -6.42891766148E+02 -6.47667898341E+02 -6.52391823468E+02 -6.57059430017E+02 -6.61666470511E+02 -6.66208558836E+02 -6.70681166912E+02 -6.75079623354E+02 -6.79399111035E+02 -6.83634664481E+02 -6.87781168745E+02 -6.91833355884E+02 -6.95785805399E+02 -6.99632940342E+02 -7.03369027280E+02 -7.06988174449E+02 -7.10484330365E+02 -7.13851283207E+02 -7.17082660148E+02 -7.20171926324E+02 -7.23112385023E+02 -7.25897177576E+02 -7.28519283305E+02 -7.30971520783E+02 -7.33246548364E+02 -7.35336865106E+02 -7.37234813449E+02 -7.38932580359E+02 -7.40422200207E+02 -7.41695557969E+02 -7.42744392526E+02 -7.43560300554E+02 -7.44134741288E+02 -7.44459041844E+02 -7.44524402900E+02 -7.44321905179E+02 -7.43842516532E+02 -7.43077100511E+02 -7.42016424574E+02 -7.40651169865E+02 -7.38971942275E+02 -7.36969283381E+02 -7.34633683276E+02 -7.31955594328E+02 -7.28925445948E+02 -7.25533660416E+02 -7.21770670499E+02 -7.17626937994E+02 -7.13092973821E+02 -7.08159359749E+02 -7.02816771692E+02 -6.97056004747E+02 -6.90868000041E+02 -6.84243873078E+02 -6.77174945084E+02 -6.69652775591E+02 -6.61669197498E+02 -6.53216354758E+02 -6.44286742338E+02 -6.34873248950E+02 -6.24969202385E+02 -6.14568417888E+02 -6.03665249695E+02 -5.92254645192E+02 -5.80332203282E+02 -5.67894235354E+02 -5.54937830305E+02 -5.41460923162E+02 -5.27462367523E+02 -5.12942011718E+02 -4.97900779204E+02 -4.82340752904E+02 -4.66265263621E+02 -4.49678982286E+02 -4.32588016534E+02 -4.15000011048E+02 -3.96924251598E+02 -3.78371772591E+02 -3.59355468097E+02 -3.39890205305E+02 -3.19992940890E+02 -2.99682838468E+02 -2.78981387942E+02 -2.57912524283E+02 -2.36502746186E+02 -2.14781232085E+02 -1.92779953612E+02 -1.70533783461E+02 -1.48080597275E+02 -1.25461366305E+02 -1.02720239769E+02 -7.99046134849E+01 -5.70651828361E+01 -3.42559761940E+01 -1.15343665606E+01 1.10389428900E+01 3.33999629785E+01 5.54814959037E+01 7.72132509032E+01 9.85220016102E+01 1.19331790965E+02 1.39564186378E+02 1.59138591912E+02 1.77972620587E+02 1.95982531143E+02 2.13083734480E+02 2.29191372297E+02 2.44220971171E+02 2.58089174722E+02 2.70714554686E+02 2.82018501236E+02 2.91926190747E+02 3.00367628212E+02 3.07278759393E+02 3.12602643954E+02 3.16290681391E+02 3.18303875170E+02 3.18614119550E+02 3.17205489853E+02 3.14075511581E+02 3.09236382667E+02 3.02716116990E+02 2.94559574618E+02 2.84829340124E+02 2.73606408556E+02 2.60990634149E+02 2.47100898204E+02 2.32074951409E+02 2.16068889321E+02 1.99256224918E+02 1.81826531878E+02 1.63983645935E+02 1.45943431715E+02 1.27931150299E+02 1.10178499858E+02 9.29204496947E+01 7.63920519861E+01 6.08254964961E+01 4.64477672526E+01 3.34794887880E+01 2.21347478172E+01 1.26312766983E+01 5.12937073302E+00 4.04964209011E-01 -4.01497823641E-02 3.98061109293E-03 -3.94653030558E-04 3.91247102387E-05 -3.87819990171E-06 3.86853997842E-07 -3.73702745017E-08 1.54617106703E-09 -2.46570522035E-09 9.91554416410E-10 -6.28147305207E-01 4.69236480081E-01 701 -1.64321331997E-03 -1.68481147514E-03 -1.72746269324E-03 -1.77119363272E-03 -1.81603162687E-03 -1.86200470095E-03 -1.90914158970E-03 -1.95747175525E-03 -2.00702540560E-03 -2.05783351344E-03 -2.10992783557E-03 -2.16334093270E-03 -2.21810618983E-03 -2.27425783711E-03 -2.33183097123E-03 -2.39086157734E-03 -2.45138655159E-03 -2.51344372416E-03 -2.57707188289E-03 -2.64231079756E-03 -2.70920124473E-03 -2.77778503320E-03 -2.84810503022E-03 -2.92020518818E-03 -2.99413057217E-03 -3.06992738809E-03 -3.14764301158E-03 -3.22732601758E-03 -3.30902621072E-03 -3.39279465647E-03 -3.47868371299E-03 -3.56674706394E-03 -3.65703975197E-03 -3.74961821317E-03 -3.84454031230E-03 -3.94186537900E-03 -4.04165424484E-03 -4.14396928137E-03 -4.24887443908E-03 -4.35643528740E-03 -4.46671905564E-03 -4.57979467507E-03 -4.69573282196E-03 -4.81460596176E-03 -4.93648839442E-03 -5.06145630081E-03 -5.18958779033E-03 -5.32096294975E-03 -5.45566389328E-03 -5.59377481384E-03 -5.73538203574E-03 -5.88057406863E-03 -6.02944166278E-03 -6.18207786586E-03 -6.33857808106E-03 -6.49904012672E-03 -6.66356429752E-03 -6.83225342710E-03 -7.00521295239E-03 -7.18255097948E-03 -7.36437835123E-03 -7.55080871650E-03 -7.74195860123E-03 -7.93794748124E-03 -8.13889785696E-03 -8.68674796597E-03 -8.55888381906E-03 -8.77185273035E-03 -8.99911792582E-03 -9.22217225967E-03 -9.45844760382E-03 -9.69294766080E-03 -9.94235241153E-03 -1.01920656987E-02 -1.04520000470E-02 -1.07180719024E-02 -1.09868787833E-02 -1.12654135078E-02 -1.15484257925E-02 -1.18424319747E-02 -1.21444787999E-02 -1.24491340208E-02 -1.27647280152E-02 -1.30865218095E-02 -1.34216084678E-02 -1.37573663039E-02 -1.41071891942E-02 -1.44646147485E-02 -1.48307241892E-02 -1.52051283310E-02 -1.55900581508E-02 -1.59837399308E-02 -1.63906729185E-02 -1.68032523631E-02 -1.72291862648E-02 -1.76679774775E-02 -1.81129285614E-02 -1.85730814284E-02 -1.90439121772E-02 -1.95246163439E-02 -2.00206379089E-02 -2.05253993654E-02 -2.10479186727E-02 -2.15783048091E-02 -2.21242220102E-02 -2.26854484233E-02 -2.32605234076E-02 -2.38478896942E-02 -2.44510785699E-02 -2.50705233910E-02 -2.57031231125E-02 -2.63566171829E-02 -2.70226520141E-02 -2.77056738108E-02 -2.84072181753E-02 -2.91278907557E-02 -2.98654656356E-02 -3.06200970999E-02 -3.13962141253E-02 -3.21905002930E-02 -3.30061624493E-02 -3.38386362336E-02 -3.46973107409E-02 -3.55756014972E-02 -3.64760892208E-02 -3.73998956877E-02 -3.83468562770E-02 -3.93180842633E-02 -4.03094491415E-02 -4.13342653225E-02 -4.23810559471E-02 -4.34523514551E-02 -4.45530344178E-02 -4.56800850791E-02 -4.68352730498E-02 -4.80218516152E-02 -4.92387686260E-02 -5.04864696335E-02 -5.17611639351E-02 -5.30725692593E-02 -5.44171907918E-02 -5.57936503798E-02 -5.72067916937E-02 -5.86523863473E-02 -6.01386344251E-02 -6.16613641445E-02 -6.32209233785E-02 -6.48229843848E-02 -6.64643868856E-02 -6.81458842133E-02 -6.98711176973E-02 -7.16392869036E-02 -7.34559157268E-02 -7.53141358578E-02 -7.72213556714E-02 -7.91741592758E-02 -8.11790532381E-02 -8.32343102922E-02 -8.53414409870E-02 -8.74996233231E-02 -8.97158249492E-02 -9.19864098713E-02 -9.43167096938E-02 -9.67031221495E-02 -9.91484653492E-02 -1.01662353316E-01 -1.04235714361E-01 -1.06871303388E-01 -1.09579877829E-01 -1.12350489827E-01 -1.15196970261E-01 -1.18111955598E-01 -1.21104583545E-01 -1.24168238928E-01 -1.27312435578E-01 -1.30535587443E-01 -1.33836963726E-01 -1.37227162737E-01 -1.40699665734E-01 -1.44264013823E-01 -1.47912659755E-01 -1.51656670278E-01 -1.55498731370E-01 -1.59435412871E-01 -1.63470379160E-01 -1.67608550705E-01 -1.71849561535E-01 -1.76201503837E-01 -1.80662419629E-01 -1.85235892259E-01 -1.89925463904E-01 -1.94731487394E-01 -1.99659788734E-01 -2.04715352125E-01 -2.09896498148E-01 -2.15213446059E-01 -2.20657427017E-01 -2.26243979759E-01 -2.31971313433E-01 -2.37843161056E-01 -2.43867167201E-01 -2.50038456427E-01 -2.56368190492E-01 -2.62857511402E-01 -2.69512133931E-01 -2.76333058288E-01 -2.83331630367E-01 -2.90498804711E-01 -2.97853333414E-01 -3.05396005051E-01 -3.13125220039E-01 -3.21050904940E-01 -3.29175763342E-01 -3.37512294078E-01 -3.46056572068E-01 -3.54813013239E-01 -3.63796744473E-01 -3.73006091363E-01 -3.82447161492E-01 -3.92127443199E-01 -4.02055481237E-01 -4.12232818216E-01 -4.22665950325E-01 -4.33365172415E-01 -4.44333459177E-01 -4.55583346732E-01 -4.67113423236E-01 -4.78940835118E-01 -4.91062773675E-01 -5.03490840002E-01 -5.16235467870E-01 -5.29304101205E-01 -5.42703703593E-01 -5.56439687892E-01 -5.70524660104E-01 -5.84969090740E-01 -5.99773424519E-01 -6.14957804880E-01 -6.30519421589E-01 -6.46483971098E-01 -6.62844999090E-01 -6.79622445121E-01 -6.96826994464E-01 -7.14464206399E-01 -7.32550482912E-01 -7.51091256161E-01 -7.70101787947E-01 -7.89596344407E-01 -8.09581255822E-01 -8.30072568738E-01 -8.51083460718E-01 -8.72624081305E-01 -8.94714098335E-01 -9.17356784725E-01 -9.40576425633E-01 -9.64386243646E-01 -9.88795448898E-01 -1.01382034163E+00 -1.03948227180E+00 -1.06579212661E+00 -1.09276806002E+00 -1.12042485921E+00 -1.14878324202E+00 -1.17785911680E+00 -1.20766957124E+00 -1.23823627523E+00 -1.26957832449E+00 -1.30170956586E+00 -1.33465479336E+00 -1.36843243780E+00 -1.40306857182E+00 -1.43857744811E+00 -1.47498506929E+00 -1.51231717487E+00 -1.55058986746E+00 -1.58983192787E+00 -1.63006981024E+00 -1.67132187956E+00 -1.71362165276E+00 -1.75698707519E+00 -1.80145323844E+00 -1.84704127347E+00 -1.89378530799E+00 -1.94171258009E+00 -1.99084776537E+00 -2.04122948058E+00 -2.09288901333E+00 -2.14584776498E+00 -2.20014986071E+00 -2.25582636049E+00 -2.31291134217E+00 -2.37143809588E+00 -2.43144517410E+00 -2.49297480922E+00 -2.55605506186E+00 -2.62073190149E+00 -2.68704814473E+00 -2.75503723576E+00 -2.82474862234E+00 -2.89622208826E+00 -2.96950564299E+00 -3.04463837621E+00 -3.12167402232E+00 -3.20065752873E+00 -3.28163735329E+00 -3.36466344062E+00 -3.44979205562E+00 -3.53707216386E+00 -3.62655707661E+00 -3.71830413886E+00 -3.81237529653E+00 -3.90881882263E+00 -4.00770485129E+00 -4.10909010481E+00 -4.21303879201E+00 -4.31961461582E+00 -4.42888184782E+00 -4.54091587510E+00 -4.65577766137E+00 -4.77354391129E+00 -4.89428697393E+00 -5.01807922175E+00 -5.14500393893E+00 -5.27513116772E+00 -5.40855127584E+00 -5.54534051282E+00 -5.68558862837E+00 -5.82937562548E+00 -5.97679793505E+00 -6.12794126210E+00 -6.28290929071E+00 -6.44178701476E+00 -6.60467828284E+00 -6.77168451822E+00 -6.94290874538E+00 -7.11845708353E+00 -7.29843767543E+00 -7.48296590877E+00 -7.67214981423E+00 -7.86611323796E+00 -8.06497148748E+00 -8.26885156633E+00 -8.47787689323E+00 -8.69217703509E+00 -8.91189035621E+00 -9.13714559925E+00 -9.36808506265E+00 -9.60485605322E+00 -9.84759626597E+00 -1.00964605552E+01 -1.03516067869E+01 -1.06131837653E+01 -1.08813640932E+01 -1.11563027445E+01 -1.14381809032E+01 -1.17271634235E+01 -1.20234324879E+01 -1.23271660552E+01 -1.26385614659E+01 -1.29578045075E+01 -1.32850939696E+01 -1.36206282099E+01 -1.39646206915E+01 -1.43172770450E+01 -1.46788153912E+01 -1.50494621616E+01 -1.54294419328E+01 -1.58189936182E+01 -1.62183460585E+01 -1.66277584761E+01 -1.70474725955E+01 -1.74777498331E+01 -1.79188531643E+01 -1.83710543432E+01 -1.88346318606E+01 -1.93098662240E+01 -1.97970523702E+01 -2.02964889555E+01 -2.08084817706E+01 -2.13333367681E+01 -2.18713834105E+01 -2.24229481741E+01 -2.29883716255E+01 -2.35679889475E+01 -2.41621641929E+01 -2.47712545895E+01 -2.53956304346E+01 -2.60356767387E+01 -2.66917775650E+01 -2.73643374185E+01 -2.80537586991E+01 -2.87604654653E+01 -2.94848867589E+01 -3.02274531912E+01 -3.09886269852E+01 -3.17688624650E+01 -3.25686337972E+01 -3.33884174474E+01 -3.42287211965E+01 -3.50900392290E+01 -3.59729023396E+01 -3.68778308033E+01 -3.78053781915E+01 -3.87560991194E+01 -3.97305621495E+01 -4.07293581099E+01 -4.17530756068E+01 -4.28023360242E+01 -4.38777652460E+01 -4.49800021421E+01 -4.61097089359E+01 -4.72675535013E+01 -4.84542250401E+01 -4.96704363615E+01 -5.09169035350E+01 -5.21943652335E+01 -5.35035783445E+01 -5.48453176432E+01 -5.62203743534E+01 -5.76295583341E+01 -5.90737008332E+01 -6.05536428142E+01 -6.20702656982E+01 -6.36244473497E+01 -6.52171000413E+01 -6.68491500519E+01 -6.85215539004E+01 -7.02352769934E+01 -7.19913212219E+01 -7.37906965470E+01 -7.56344454456E+01 -7.75236342517E+01 -7.94593495949E+01 -8.14426999462E+01 -8.34748251338E+01 -8.55568834185E+01 -8.76900654412E+01 -8.98755866713E+01 -9.21146841404E+01 -9.44086278772E+01 -9.67587086340E+01 -9.91662555549E+01 -1.01632615565E+02 -1.04159173570E+02 -1.06747336865E+02 -1.09398552300E+02 -1.12114281282E+02 -1.14896029916E+02 -1.17745335393E+02 -1.20663755173E+02 -1.23652892462E+02 -1.26714379026E+02 -1.29849870496E+02 -1.33061073357E+02 -1.36349713527E+02 -1.39717555545E+02 -1.43166406591E+02 -1.46698100445E+02 -1.50314503692E+02 -1.54017535549E+02 -1.57809132209E+02 -1.61691277378E+02 -1.65665990450E+02 -1.69735328811E+02 -1.73901387930E+02 -1.78166297848E+02 -1.82532227951E+02 -1.87001390010E+02 -1.91576028916E+02 -1.96258436044E+02 -2.01050934989E+02 -2.05955886816E+02 -2.10975697110E+02 -2.16112809700E+02 -2.21369706429E+02 -2.26748903492E+02 -2.32252963745E+02 -2.37884477823E+02 -2.43646095288E+02 -2.49540471550E+02 -2.55570328038E+02 -2.61738407445E+02 -2.68047495877E+02 -2.74500406910E+02 -2.81100003946E+02 -2.87849162614E+02 -2.94750816354E+02 -3.01807906652E+02 -3.09023419342E+02 -3.16400370500E+02 -3.23941799828E+02 -3.31650774126E+02 -3.39530384663E+02 -3.47583749977E+02 -3.55814004537E+02 -3.64224307302E+02 -3.72817824562E+02 -3.81597746577E+02 -3.90567272160E+02 -3.99729609584E+02 -4.09087965107E+02 -4.18645558990E+02 -4.28405606496E+02 -4.38371312971E+02 -4.48545875398E+02 -4.58932490600E+02 -4.69534320782E+02 -4.80354514866E+02 -4.91396196318E+02 -5.02662446958E+02 -5.14156317634E+02 -5.25880818093E+02 -5.37838890539E+02 -5.50033441615E+02 -5.62467296692E+02 -5.75143217513E+02 -5.88063884565E+02 -6.01231881939E+02 -6.14649709013E+02 -6.28319753749E+02 -6.42244277846E+02 -6.56425437940E+02 -6.70865238745E+02 -6.85565537450E+02 -7.00528034196E+02 -7.15754267423E+02 -7.31245567823E+02 -7.47003092407E+02 -7.63027767348E+02 -7.79320308932E+02 -7.95881176983E+02 -8.12710582412E+02 -8.29808456131E+02 -8.47174444624E+02 -8.64807885785E+02 -8.82707775314E+02 -9.00872781995E+02 -9.19301193280E+02 -9.37990921929E+02 -9.56939453396E+02 -9.76143853214E+02 -9.95600746918E+02 -1.01530624659E+03 -1.03525599919E+03 -1.05544509896E+03 -1.07586809799E+03 -1.09651896527E+03 -1.11739106467E+03 -1.13847712355E+03 -1.15976920376E+03 -1.18125867031E+03 -1.20293617107E+03 -1.22479159203E+03 -1.24681403891E+03 -1.26899178925E+03 -1.29131228705E+03 -1.31376207223E+03 -1.33632678061E+03 -1.35899108687E+03 -1.38173869161E+03 -1.40455226512E+03 -1.42741343352E+03 -1.45030272310E+03 -1.47319954634E+03 -1.49608214715E+03 -1.51892759017E+03 -1.54171170454E+03 -1.56440907049E+03 -1.58699296166E+03 -1.60943534357E+03 -1.63170681939E+03 -1.65377661406E+03 -1.67561253651E+03 -1.69718095980E+03 -1.71844679749E+03 -1.73937346638E+03 -1.75992289496E+03 -1.78005546758E+03 -1.79973004279E+03 -1.81890392922E+03 -1.83753286160E+03 -1.85557102388E+03 -1.87297103136E+03 -1.88968393046E+03 -1.90565922768E+03 -1.92084487136E+03 -1.93518730766E+03 -1.94863148177E+03 -1.96112086551E+03 -1.97259752114E+03 -1.98300213274E+03 -1.99227404343E+03 -2.00035135113E+03 -2.00717097027E+03 -2.01266868428E+03 -2.01677928298E+03 -2.01943663209E+03 -2.02057379111E+03 -2.02012315284E+03 -2.01801657490E+03 -2.01418552003E+03 -2.00856123612E+03 -2.00107492966E+03 -1.99165796304E+03 -1.98024206376E+03 -1.96675955819E+03 -1.95114361340E+03 -1.93332849465E+03 -1.91324987346E+03 -1.89084510263E+03 -1.86605355406E+03 -1.83881697429E+03 -1.80907983763E+03 -1.77678975071E+03 -1.74189784973E+03 -1.70435927077E+03 -1.66413359145E+03 -1.62118533265E+03 -1.57548448474E+03 -1.52700704189E+03 -1.47573558311E+03 -1.42165987778E+03 -1.36477751970E+03 -1.30509456976E+03 -1.24262627373E+03 -1.17739775449E+03 -1.10944476297E+03 -1.03881445269E+03 -9.65566166189E+02 -8.89772273270E+02 -8.11518987025E+02 -7.30907224571E+02 -6.48053506623E+02 -5.63090799708E+02 -4.76169435820E+02 -3.87457981815E+02 -2.97144130009E+02 -2.05435551075E+02 -1.12560743055E+02 -1.87698250718E+01 7.56647077094E+01 1.70447283315E+02 2.65258655430E+02 3.59755389311E+02 4.53569432629E+02 5.46307899391E+02 6.37552943622E+02 7.26861866273E+02 8.13767444077E+02 8.97778502623E+02 9.78380797572E+02 1.05503824771E+03 1.12719453601E+03 1.19427517049E+03 1.25569004822E+03 1.31083658052E+03 1.35910349186E+03 1.39987531721E+03 1.43253774834E+03 1.45648391408E+03 1.47112168902E+03 1.47588222932E+03 1.47022979200E+03 1.45367309615E+03 1.42577833163E+03 1.38618404244E+03 1.33461808669E+03 1.27091690290E+03 1.19504724889E+03 1.10713067444E+03 1.00747087684E+03 8.96584064146E+02 7.75232378459E+02 6.44460301670E+02 5.05633758261E+02 3.60481402350E+02 2.11137172896E+02 6.01827297187E+01 -8.93122815781E+01 -2.33755067088E+02 -3.69003727728E+02 -4.90355958878E+02 -5.92559922125E+02 -6.69856964409E+02 -7.16069065210E+02 -7.24746809747E+02 -6.89405653100E+02 -6.03812795831E+02 -4.62985499110E+02 -2.58852741729E+02 -2.98046576016E+01 2.95495374678E+00 -2.92966058657E-01 2.90458865350E-02 -2.87961970857E-03 2.85424320379E-04 -2.82608916485E-05 2.73074085595E-06 -2.39575641843E-07 7.12850126831E-08 -7.52628817116E-08 0.00000000000E+00 0.00000000000E+00 -6.87895508033E-02 701 2.05074884550E-03 2.10266381454E-03 2.15589301804E-03 2.21046972604E-03 2.26642805082E-03 2.32380296822E-03 2.38263033950E-03 2.44294693375E-03 2.50479045089E-03 2.56819954519E-03 2.63321384949E-03 2.69987399994E-03 2.76822166138E-03 2.83829955343E-03 2.91015147716E-03 2.98382234245E-03 3.05935819610E-03 3.13680625061E-03 3.21621491364E-03 3.29763381833E-03 3.38111385428E-03 3.46670719937E-03 3.55446735238E-03 3.64444916641E-03 3.73670888320E-03 3.83130416824E-03 3.92829414684E-03 4.02773944111E-03 4.12970220778E-03 4.23424617711E-03 4.34143669271E-03 4.45134075238E-03 4.56402704998E-03 4.67956601837E-03 4.79802987344E-03 4.91949265924E-03 5.04403029427E-03 5.17172061893E-03 5.30264344414E-03 5.43688060130E-03 5.57451599336E-03 5.71563564731E-03 5.86032776794E-03 6.00868279295E-03 6.16079344951E-03 6.31675481222E-03 6.47666436248E-03 6.64062204951E-03 6.80873035274E-03 6.98109434591E-03 7.15782176274E-03 7.33902306424E-03 7.52481150780E-03 7.71530321796E-03 7.91061725896E-03 8.11087570923E-03 8.31620373763E-03 8.52672968172E-03 8.74258512798E-03 8.96390499404E-03 9.19082761302E-03 9.42349482000E-03 9.66205204065E-03 9.90664838216E-03 1.01574367264E-02 1.08381950543E-02 1.06816327955E-02 1.09474531142E-02 1.12310359285E-02 1.15094515048E-02 1.18043015774E-02 1.20970024692E-02 1.24082291243E-02 1.27198890622E-02 1.30442745204E-02 1.33763216357E-02 1.37118172273E-02 1.40594287914E-02 1.44126489782E-02 1.47795581715E-02 1.51564963728E-02 1.55367328775E-02 1.59305947558E-02 1.63322076650E-02 1.67503668562E-02 1.71694312367E-02 1.76060007202E-02 1.80520698597E-02 1.85089776504E-02 1.89762477225E-02 1.94566444638E-02 1.99479724824E-02 2.04558101787E-02 2.09707330323E-02 2.15022996366E-02 2.20498929849E-02 2.26052168214E-02 2.31794794859E-02 2.37670739770E-02 2.43670107170E-02 2.49860357421E-02 2.56160014656E-02 2.62680865124E-02 2.69300338363E-02 2.76113479102E-02 2.83117549571E-02 2.90294475151E-02 2.97625002820E-02 3.05152901923E-02 3.12883607092E-02 3.20778695754E-02 3.28934135622E-02 3.37246433164E-02 3.45770699790E-02 3.54526040007E-02 3.63519985719E-02 3.72724980382E-02 3.82142989722E-02 3.91828927958E-02 4.01741752180E-02 4.11921237625E-02 4.22310877152E-02 4.33027059436E-02 4.43988220275E-02 4.55226425089E-02 4.66755596624E-02 4.78573753349E-02 4.90694748844E-02 5.03067433766E-02 5.15856873954E-02 5.28920903838E-02 5.42290925561E-02 5.56027509369E-02 5.70093307925E-02 5.84510270251E-02 5.99318831773E-02 6.14505978599E-02 6.30077326333E-02 6.45985942208E-02 6.62352328358E-02 6.79133264808E-02 6.96311725694E-02 7.13947824868E-02 7.31989241972E-02 7.50537643029E-02 7.69541464104E-02 7.89005054067E-02 8.08998815450E-02 8.29483676923E-02 8.50469021404E-02 8.72000128600E-02 8.94067134110E-02 9.16738588310E-02 9.39929504136E-02 9.63731747205E-02 9.88103134255E-02 1.01312438551E-01 1.03877419816E-01 1.06507143320E-01 1.09200596065E-01 1.11966432346E-01 1.14800151364E-01 1.17708377897E-01 1.20686658013E-01 1.23738495897E-01 1.26875822865E-01 1.30087407851E-01 1.33376679443E-01 1.36756983845E-01 1.40214766911E-01 1.43767186740E-01 1.47405131729E-01 1.51139941700E-01 1.54963436469E-01 1.58887420286E-01 1.62909947759E-01 1.67030129185E-01 1.71261117148E-01 1.75594852408E-01 1.80043175053E-01 1.84596755555E-01 1.89269326380E-01 1.94064236179E-01 1.98977256729E-01 2.04012947966E-01 2.09177433056E-01 2.14470278895E-01 2.19901537754E-01 2.25468807267E-01 2.31176550330E-01 2.37029184715E-01 2.43027172202E-01 2.49177757996E-01 2.55487147922E-01 2.61953284088E-01 2.68588865063E-01 2.75383048795E-01 2.82355123260E-01 2.89502899793E-01 2.96831032995E-01 3.04349033310E-01 3.12050889143E-01 3.19950465899E-01 3.28049215466E-01 3.36354252651E-01 3.44866856981E-01 3.53601122827E-01 3.62545881058E-01 3.71724409222E-01 3.81137721947E-01 3.90783883906E-01 4.00675233264E-01 4.10815167207E-01 4.21219218546E-01 4.31882567281E-01 4.42810734825E-01 4.54022515007E-01 4.65515879907E-01 4.77298451128E-01 4.89379557710E-01 5.01769844668E-01 5.14471275802E-01 5.27491957913E-01 5.40844707706E-01 5.54533265167E-01 5.68573232380E-01 5.82962916185E-01 5.97723630878E-01 6.12851959974E-01 6.28362344842E-01 6.44267786652E-01 6.60577577969E-01 6.77300420086E-01 6.94443095713E-01 7.12021298322E-01 7.30048085661E-01 7.48524084267E-01 7.67474338889E-01 7.86895451229E-01 8.06819347023E-01 8.27238120536E-01 8.48176567424E-01 8.69648022871E-01 8.91659469372E-01 9.14231330938E-01 9.37370435857E-01 9.61095802208E-01 9.85425211303E-01 1.01036661395E+00 1.03594000745E+00 1.06216183140E+00 1.08904478151E+00 1.11661334656E+00 1.14487170431E+00 1.17385007511E+00 1.20356496915E+00 1.23402793402E+00 1.26525930107E+00 1.29728566433E+00 1.33012065897E+00 1.36378692350E+00 1.39830293214E+00 1.43369451070E+00 1.46998152701E+00 1.50718531819E+00 1.54533289965E+00 1.58444810525E+00 1.62454826453E+00 1.66566427872E+00 1.70781917012E+00 1.75104543170E+00 1.79536091799E+00 1.84079804559E+00 1.88738891024E+00 1.93515367369E+00 1.98412820931E+00 2.03434551651E+00 2.08582857411E+00 2.13861914157E+00 2.19273969152E+00 2.24823394644E+00 2.30512833678E+00 2.36346540436E+00 2.42327915790E+00 2.48460044179E+00 2.54747737674E+00 2.61194901397E+00 2.67804215635E+00 2.74581177438E+00 2.81529665861E+00 2.88653934004E+00 2.95958138952E+00 3.03447090070E+00 3.11126053658E+00 3.18998541142E+00 3.27070283248E+00 3.35346621781E+00 3.43831737240E+00 3.52531794599E+00 3.61451762325E+00 3.70597628710E+00 3.79974278216E+00 3.89588410767E+00 3.99445638448E+00 4.09552009697E+00 4.19913757842E+00 4.30537901080E+00 4.41430553779E+00 4.52598370072E+00 4.64048505493E+00 4.75788686465E+00 4.87824946708E+00 5.00166030209E+00 5.12819019990E+00 5.25791928729E+00 5.39092707106E+00 5.52729378424E+00 5.66711344418E+00 5.81046220952E+00 5.95743576601E+00 6.10812440909E+00 6.26261848903E+00 6.42102188731E+00 6.58342209417E+00 6.74993180892E+00 6.92064624966E+00 7.09567738110E+00 7.27512511395E+00 7.45910972976E+00 7.64773824316E+00 7.84113996470E+00 8.03942106699E+00 8.24271110992E+00 8.45113666487E+00 8.66482631656E+00 8.88391250212E+00 9.10853019067E+00 9.33882335695E+00 9.57492687829E+00 9.81699525912E+00 1.00651724500E+01 1.03196169152E+01 1.05804827126E+01 1.08479315395E+01 1.11221360281E+01 1.14032569149E+01 1.16914717627E+01 1.19869643769E+01 1.22899066762E+01 1.26004918823E+01 1.29189169769E+01 1.32453677473E+01 1.35800595104E+01 1.39231857663E+01 1.42749725384E+01 1.46356256441E+01 1.50053724178E+01 1.53844349974E+01 1.57730595758E+01 1.61714780766E+01 1.65799385717E+01 1.69986886433E+01 1.74279946379E+01 1.78681132367E+01 1.83193166507E+01 1.87818874333E+01 1.92561058873E+01 1.97422701358E+01 2.02406658639E+01 2.07516164653E+01 2.12754236994E+01 2.18124137805E+01 2.23629149188E+01 2.29272662507E+01 2.35058153273E+01 2.40989122547E+01 2.47069250817E+01 2.53302265330E+01 2.59691982326E+01 2.66242220773E+01 2.72957091623E+01 2.79840669496E+01 2.86897204396E+01 2.94130880237E+01 3.01546239538E+01 3.09147740933E+01 3.16940005800E+01 3.24927838687E+01 3.33116033155E+01 3.41509636965E+01 3.50113672625E+01 3.58933431892E+01 3.67974269227E+01 3.77241559373E+01 3.86741069832E+01 3.96478471111E+01 4.06459680605E+01 4.16690645233E+01 4.27177700935E+01 4.37927016286E+01 4.48945214545E+01 4.60238789738E+01 4.71814649619E+01 4.83679716018E+01 4.95841084781E+01 5.08306128842E+01 5.21082194866E+01 5.34177036930E+01 5.47598466134E+01 5.61354455856E+01 5.75453270164E+01 5.89903244536E+01 6.04712980131E+01 6.19891372088E+01 6.35447357384E+01 6.51390154601E+01 6.67729209546E+01 6.84474191253E+01 7.01634974149E+01 7.19221665238E+01 7.37244638187E+01 7.55714388777E+01 7.74641915832E+01 7.94038175875E+01 8.13914553594E+01 8.34282609075E+01 8.55154279004E+01 8.76541612066E+01 8.98457111063E+01 9.20913380713E+01 9.43923430706E+01 9.67500568443E+01 9.91658354863E+01 1.01641062375E+02 1.04177159958E+02 1.06775573750E+02 1.09437789614E+02 1.12165324407E+02 1.14959721943E+02 1.17822567159E+02 1.20755470916E+02 1.23760091895E+02 1.26838111058E+02 1.29991256687E+02 1.33221285070E+02 1.36530001765E+02 1.39919230642E+02 1.43390851225E+02 1.46946781837E+02 1.50588966192E+02 1.54319404975E+02 1.58140134551E+02 1.62053221141E+02 1.66060794284E+02 1.70165007892E+02 1.74368064038E+02 1.78672217938E+02 1.83079758079E+02 1.87593013909E+02 1.92214380413E+02 1.96946273924E+02 2.01791169977E+02 2.06751588651E+02 2.11830097429E+02 2.17029311311E+02 2.22351888472E+02 2.27800536168E+02 2.33378014514E+02 2.39087124997E+02 2.44930727043E+02 2.50911720338E+02 2.57033051339E+02 2.63297721998E+02 2.69708782008E+02 2.76269328484E+02 2.82982501456E+02 2.89851499099E+02 2.96879554341E+02 3.04069973457E+02 3.11426070290E+02 3.18951240810E+02 3.26648907649E+02 3.34522547544E+02 3.42575671571E+02 3.50811852846E+02 3.59234679922E+02 3.67847813267E+02 3.76654923586E+02 3.85659736798E+02 3.94866016546E+02 4.04277555974E+02 4.13898182033E+02 4.23731752195E+02 4.33782157914E+02 4.44053310550E+02 4.54549151968E+02 4.65273633246E+02 4.76230735272E+02 4.87424449622E+02 4.98858779652E+02 5.10537726255E+02 5.22465307681E+02 5.34645535961E+02 5.47082410781E+02 5.59779921364E+02 5.72742056611E+02 5.85972762354E+02 5.99475967754E+02 6.13255570175E+02 6.27315415072E+02 6.41659309169E+02 6.56291007862E+02 6.71214182390E+02 6.86432459413E+02 7.01949364309E+02 7.17768342969E+02 7.33892739892E+02 7.50325779350E+02 7.67070579795E+02 7.84130120686E+02 8.01507224016E+02 8.19204580498E+02 8.37224691407E+02 8.55569873935E+02 8.74242249299E+02 8.93243736874E+02 9.12575997021E+02 9.32240473201E+02 9.52238321032E+02 9.72570434129E+02 9.93237386274E+02 1.01423944064E+03 1.03557651113E+03 1.05724815678E+03 1.07925355164E+03 1.10159144300E+03 1.12426017021E+03 1.14725759704E+03 1.17058111976E+03 1.19422760182E+03 1.21819338277E+03 1.24247425327E+03 1.26706536385E+03 1.29196128462E+03 1.31715589657E+03 1.34264240444E+03 1.36841328581E+03 1.39446026361E+03 1.42077426701E+03 1.44734539534E+03 1.47416287897E+03 1.50121505406E+03 1.52848930683E+03 1.55597205062E+03 1.58364866628E+03 1.61150349535E+03 1.63951975244E+03 1.66767952501E+03 1.69596370249E+03 1.72435196001E+03 1.75282268866E+03 1.78135297798E+03 1.80991854690E+03 1.83849372628E+03 1.86705139082E+03 1.89556294571E+03 1.92399825681E+03 1.95232563395E+03 1.98051175929E+03 2.00852168541E+03 2.03631876801E+03 2.06386464622E+03 2.09111919573E+03 2.11804050426E+03 2.14458484224E+03 2.17070661678E+03 2.19635838219E+03 2.22149077095E+03 2.24605251664E+03 2.26999042422E+03 2.29324934062E+03 2.31577218364E+03 2.33749992017E+03 2.35837156635E+03 2.37832422384E+03 2.39729305775E+03 2.41521136660E+03 2.43201058435E+03 2.44762031540E+03 2.46196841428E+03 2.47498102546E+03 2.48658263022E+03 2.49669616639E+03 2.50524310568E+03 2.51214351991E+03 2.51731625233E+03 2.52067900500E+03 2.52214848611E+03 2.52164058426E+03 2.51907053276E+03 2.51435308502E+03 2.50740273908E+03 2.49813395423E+03 2.48646139698E+03 2.47230020208E+03 2.45556626385E+03 2.43617653751E+03 2.41404936012E+03 2.38910483397E+03 2.36126516917E+03 2.33045510401E+03 2.29660234727E+03 2.25963801739E+03 2.21949714546E+03 2.17611916901E+03 2.12944851623E+03 2.07943515463E+03 2.02603521393E+03 1.96921163924E+03 1.90893485403E+03 1.84518348088E+03 1.77794509224E+03 1.70721699643E+03 1.63300703398E+03 1.55533446677E+03 1.47423083522E+03 1.38974088790E+03 1.30192353996E+03 1.21085284598E+03 1.11661903667E+03 1.01932952748E+03 9.19109982344E+02 8.16105424986E+02 7.10481278749E+02 6.02424501908E+02 4.92144660245E+02 3.79875025429E+02 2.65873626230E+02 1.50424294487E+02 3.38376421117E+01 -8.35480102777E+01 -2.01365772248E+02 -3.19219450644E+02 -4.36682920321E+02 -5.53299600266E+02 -6.68582193821E+02 -7.82012540078E+02 -8.93041754115E+02 -1.00109064192E+03 -1.10555041744E+03 -1.20578380079E+03 -1.30112655150E+03 -1.39088945664E+03 -1.47436088712E+03 -1.55080997583E+03 -1.61949048886E+03 -1.67964552909E+03 -1.73051310211E+03 -1.77133273068E+03 -1.80135322240E+03 -1.81984170715E+03 -1.82609418982E+03 -1.81944768764E+03 -1.79929427155E+03 -1.76509714198E+03 -1.71640901982E+03 -1.65289310221E+03 -1.57434686764E+03 -1.48072893584E+03 -1.37218930631E+03 -1.24910316040E+03 -1.11210838257E+03 -9.62146866878E+02 -8.00509514685E+02 -6.28884572965E+02 -4.49408681893E+02 -2.64719502184E+02 -7.80082103538E+01 1.06930671272E+02 2.85655730239E+02 4.53046474937E+02 6.03289236941E+02 7.29890455179E+02 8.25729303841E+02 8.83165592079E+02 8.94222475164E+02 8.50878309177E+02 7.45421161429E+02 5.71682278029E+02 3.19678217478E+02 3.68136086589E+01 -3.64984937222E+00 3.61860819989E-01 -3.58764029697E-02 3.55679913749E-03 -3.52545205179E-04 3.49066101637E-05 -3.37258913910E-06 2.95750578146E-07 -8.82240453364E-08 9.32609548747E-08 0.00000000000E+00 0.00000000000E+00 -5.55050977147E-02 -4.47937649674E-02 8.50000000000E-01 -2.50685245125E+01 -2.50685245151E+01 -2.50685245154E+01 -2.50685245156E+01 -2.50685245159E+01 -2.50685245162E+01 -2.50685245165E+01 -2.50685245168E+01 -2.50685245171E+01 -2.50685245174E+01 -2.50685245178E+01 -2.50685245181E+01 -2.50685245185E+01 -2.50685245188E+01 -2.50685245192E+01 -2.50685245195E+01 -2.50685245199E+01 -2.50685245203E+01 -2.50685245207E+01 -2.50685245211E+01 -2.50685245216E+01 -2.50685245220E+01 -2.50685245224E+01 -2.50685245229E+01 -2.50685245234E+01 -2.50685245238E+01 -2.50685245243E+01 -2.50685245248E+01 -2.50685245254E+01 -2.50685245259E+01 -2.50685245264E+01 -2.50685245270E+01 -2.50685245276E+01 -2.50685245281E+01 -2.50685245287E+01 -2.50685245293E+01 -2.50685245300E+01 -2.50685245306E+01 -2.50685245313E+01 -2.50685245320E+01 -2.50685245327E+01 -2.50685245334E+01 -2.50685245341E+01 -2.50685245349E+01 -2.50685245356E+01 -2.50685245364E+01 -2.50685245372E+01 -2.50685245381E+01 -2.50685245389E+01 -2.50685245398E+01 -2.50685245407E+01 -2.50685245416E+01 -2.50685245425E+01 -2.50685245435E+01 -2.50685245445E+01 -2.50685245455E+01 -2.50685245465E+01 -2.50685245476E+01 -2.50685245487E+01 -2.50685245498E+01 -2.50685245510E+01 -2.50685245522E+01 -2.50685245534E+01 -2.50685245546E+01 -2.50685245559E+01 -2.50685245572E+01 -2.50685245585E+01 -2.50685245599E+01 -2.50685245613E+01 -2.50685245627E+01 -2.50685245642E+01 -2.50685245657E+01 -2.50685245673E+01 -2.50685245688E+01 -2.50685245705E+01 -2.50685245721E+01 -2.50685245739E+01 -2.50685245756E+01 -2.50685245774E+01 -2.50685245793E+01 -2.50685245812E+01 -2.50685245831E+01 -2.50685245851E+01 -2.50685245871E+01 -2.50685245892E+01 -2.50685245914E+01 -2.50685245936E+01 -2.50685245958E+01 -2.50685245981E+01 -2.50685246005E+01 -2.50685246029E+01 -2.50685246054E+01 -2.50685246080E+01 -2.50685246106E+01 -2.50685246133E+01 -2.50685246161E+01 -2.50685246189E+01 -2.50685246218E+01 -2.50685246248E+01 -2.50685246278E+01 -2.50685246309E+01 -2.50685246341E+01 -2.50685246374E+01 -2.50685246408E+01 -2.50685246442E+01 -2.50685246478E+01 -2.50685246514E+01 -2.50685246551E+01 -2.50685246589E+01 -2.50685246628E+01 -2.50685246668E+01 -2.50685246709E+01 -2.50685246752E+01 -2.50685246795E+01 -2.50685246839E+01 -2.50685246884E+01 -2.50685246931E+01 -2.50685246979E+01 -2.50685247028E+01 -2.50685247078E+01 -2.50685247129E+01 -2.50685247182E+01 -2.50685247236E+01 -2.50685247292E+01 -2.50685247349E+01 -2.50685247407E+01 -2.50685247467E+01 -2.50685247528E+01 -2.50685247591E+01 -2.50685247655E+01 -2.50685247721E+01 -2.50685247789E+01 -2.50685247858E+01 -2.50685247930E+01 -2.50685248003E+01 -2.50685248078E+01 -2.50685248154E+01 -2.50685248233E+01 -2.50685248314E+01 -2.50685248396E+01 -2.50685248481E+01 -2.50685248568E+01 -2.50685248657E+01 -2.50685248749E+01 -2.50685248842E+01 -2.50685248938E+01 -2.50685249037E+01 -2.50685249138E+01 -2.50685249241E+01 -2.50685249348E+01 -2.50685249456E+01 -2.50685249568E+01 -2.50685249683E+01 -2.50685249800E+01 -2.50685249920E+01 -2.50685250043E+01 -2.50685250170E+01 -2.50685250300E+01 -2.50685250432E+01 -2.50685250569E+01 -2.50685250708E+01 -2.50685250852E+01 -2.50685250998E+01 -2.50685251149E+01 -2.50685251303E+01 -2.50685251462E+01 -2.50685251624E+01 -2.50685251790E+01 -2.50685251961E+01 -2.50685252136E+01 -2.50685252315E+01 -2.50685252499E+01 -2.50685252687E+01 -2.50685252881E+01 -2.50685253079E+01 -2.50685253282E+01 -2.50685253490E+01 -2.50685253703E+01 -2.50685253922E+01 -2.50685254147E+01 -2.50685254377E+01 -2.50685254613E+01 -2.50685254854E+01 -2.50685255102E+01 -2.50685255356E+01 -2.50685255617E+01 -2.50685255884E+01 -2.50685256158E+01 -2.50685256439E+01 -2.50685256727E+01 -2.50685257022E+01 -2.50685257324E+01 -2.50685257634E+01 -2.50685257952E+01 -2.50685258278E+01 -2.50685258613E+01 -2.50685258955E+01 -2.50685259307E+01 -2.50685259667E+01 -2.50685260036E+01 -2.50685260414E+01 -2.50685260802E+01 -2.50685261200E+01 -2.50685261608E+01 -2.50685262026E+01 -2.50685262455E+01 -2.50685262894E+01 -2.50685263344E+01 -2.50685263806E+01 -2.50685264279E+01 -2.50685264765E+01 -2.50685265262E+01 -2.50685265772E+01 -2.50685266295E+01 -2.50685266831E+01 -2.50685267380E+01 -2.50685267943E+01 -2.50685268521E+01 -2.50685269112E+01 -2.50685269719E+01 -2.50685270341E+01 -2.50685270978E+01 -2.50685271632E+01 -2.50685272301E+01 -2.50685272988E+01 -2.50685273692E+01 -2.50685274413E+01 -2.50685275153E+01 -2.50685275911E+01 -2.50685276688E+01 -2.50685277484E+01 -2.50685278301E+01 -2.50685279138E+01 -2.50685279995E+01 -2.50685280875E+01 -2.50685281776E+01 -2.50685282699E+01 -2.50685283646E+01 -2.50685284617E+01 -2.50685285611E+01 -2.50685286630E+01 -2.50685287675E+01 -2.50685288746E+01 -2.50685289844E+01 -2.50685290969E+01 -2.50685292121E+01 -2.50685293303E+01 -2.50685294514E+01 -2.50685295755E+01 -2.50685297027E+01 -2.50685298330E+01 -2.50685299666E+01 -2.50685301035E+01 -2.50685302438E+01 -2.50685303876E+01 -2.50685305349E+01 -2.50685306859E+01 -2.50685308406E+01 -2.50685309991E+01 -2.50685311616E+01 -2.50685313281E+01 -2.50685314986E+01 -2.50685316734E+01 -2.50685318525E+01 -2.50685320360E+01 -2.50685322241E+01 -2.50685324167E+01 -2.50685326141E+01 -2.50685328163E+01 -2.50685330235E+01 -2.50685332358E+01 -2.50685334533E+01 -2.50685336760E+01 -2.50685339043E+01 -2.50685341381E+01 -2.50685343776E+01 -2.50685346230E+01 -2.50685348743E+01 -2.50685351318E+01 -2.50685353955E+01 -2.50685356656E+01 -2.50685359423E+01 -2.50685362257E+01 -2.50685365159E+01 -2.50685368132E+01 -2.50685371176E+01 -2.50685374294E+01 -2.50685377486E+01 -2.50685380756E+01 -2.50685384104E+01 -2.50685387532E+01 -2.50685391042E+01 -2.50685394636E+01 -2.50685398316E+01 -2.50685402084E+01 -2.50685405941E+01 -2.50685409890E+01 -2.50685413932E+01 -2.50685418070E+01 -2.50685422306E+01 -2.50685426642E+01 -2.50685431079E+01 -2.50685435621E+01 -2.50685440269E+01 -2.50685445025E+01 -2.50685449893E+01 -2.50685454874E+01 -2.50685459970E+01 -2.50685465185E+01 -2.50685470519E+01 -2.50685475977E+01 -2.50685481560E+01 -2.50685487271E+01 -2.50685493112E+01 -2.50685499086E+01 -2.50685505196E+01 -2.50685511443E+01 -2.50685517832E+01 -2.50685524364E+01 -2.50685531043E+01 -2.50685537870E+01 -2.50685544849E+01 -2.50685551983E+01 -2.50685559274E+01 -2.50685566724E+01 -2.50685574338E+01 -2.50685582117E+01 -2.50685590064E+01 -2.50685598183E+01 -2.50685606476E+01 -2.50685614945E+01 -2.50685623594E+01 -2.50685632425E+01 -2.50685641441E+01 -2.50685650645E+01 -2.50685660040E+01 -2.50685669627E+01 -2.50685679410E+01 -2.50685689392E+01 -2.50685699574E+01 -2.50685709959E+01 -2.50685720549E+01 -2.50685731347E+01 -2.50685742355E+01 -2.50685753575E+01 -2.50685765009E+01 -2.50685776658E+01 -2.50685788525E+01 -2.50685800611E+01 -2.50685812916E+01 -2.50685825444E+01 -2.50685838193E+01 -2.50685851166E+01 -2.50685864363E+01 -2.50685877783E+01 -2.50685891428E+01 -2.50685905296E+01 -2.50685919388E+01 -2.50685933702E+01 -2.50685948237E+01 -2.50685962992E+01 -2.50685977964E+01 -2.50685993151E+01 -2.50686008550E+01 -2.50686024157E+01 -2.50686039969E+01 -2.50686055981E+01 -2.50686072187E+01 -2.50686088582E+01 -2.50686105160E+01 -2.50686121912E+01 -2.50686138831E+01 -2.50686155908E+01 -2.50686173134E+01 -2.50686190496E+01 -2.50686207984E+01 -2.50686225584E+01 -2.50686243283E+01 -2.50686261065E+01 -2.50686278914E+01 -2.50686296811E+01 -2.50686314738E+01 -2.50686332673E+01 -2.50686350593E+01 -2.50686368475E+01 -2.50686386292E+01 -2.50686404016E+01 -2.50686421618E+01 -2.50686439063E+01 -2.50686456319E+01 -2.50686473347E+01 -2.50686490108E+01 -2.50686506559E+01 -2.50686522656E+01 -2.50686538349E+01 -2.50686553587E+01 -2.50686568315E+01 -2.50686582475E+01 -2.50686596002E+01 -2.50686608832E+01 -2.50686620892E+01 -2.50686632109E+01 -2.50686642400E+01 -2.50686651683E+01 -2.50686659864E+01 -2.50686666850E+01 -2.50686672537E+01 -2.50686676818E+01 -2.50686679577E+01 -2.50686680693E+01 -2.50686680036E+01 -2.50686677470E+01 -2.50686672850E+01 -2.50686666022E+01 -2.50686656823E+01 -2.50686645082E+01 -2.50686630615E+01 -2.50686613229E+01 -2.50686592722E+01 -2.50686568876E+01 -2.50686541463E+01 -2.50686510241E+01 -2.50686474956E+01 -2.50686435337E+01 -2.50686391099E+01 -2.50686341941E+01 -2.50686287544E+01 -2.50686227571E+01 -2.50686161668E+01 -2.50686089459E+01 -2.50686010549E+01 -2.50685924519E+01 -2.50685830927E+01 -2.50685729309E+01 -2.50685619172E+01 -2.50685499998E+01 -2.50685371240E+01 -2.50685232321E+01 -2.50685082632E+01 -2.50684921530E+01 -2.50684748340E+01 -2.50684562348E+01 -2.50684362800E+01 -2.50684148904E+01 -2.50683919823E+01 -2.50683674677E+01 -2.50683412536E+01 -2.50683132422E+01 -2.50682833303E+01 -2.50682514094E+01 -2.50682173649E+01 -2.50681810764E+01 -2.50681424167E+01 -2.50681012521E+01 -2.50680574418E+01 -2.50680108374E+01 -2.50679612828E+01 -2.50679086134E+01 -2.50678526560E+01 -2.50677932284E+01 -2.50677301388E+01 -2.50676631849E+01 -2.50675921544E+01 -2.50675168234E+01 -2.50674369563E+01 -2.50673523055E+01 -2.50672626101E+01 -2.50671675957E+01 -2.50670669736E+01 -2.50669604402E+01 -2.50668476759E+01 -2.50667283447E+01 -2.50666020929E+01 -2.50664685487E+01 -2.50663273211E+01 -2.50661779987E+01 -2.50660201490E+01 -2.50658533170E+01 -2.50656770246E+01 -2.50654907689E+01 -2.50652940212E+01 -2.50650862255E+01 -2.50648667976E+01 -2.50646351233E+01 -2.50643905568E+01 -2.50641324195E+01 -2.50638599982E+01 -2.50635725432E+01 -2.50632692669E+01 -2.50629493413E+01 -2.50626118968E+01 -2.50622560193E+01 -2.50618807487E+01 -2.50614850762E+01 -2.50610679420E+01 -2.50606282329E+01 -2.50601647796E+01 -2.50596763541E+01 -2.50591616663E+01 -2.50586193617E+01 -2.50580480177E+01 -2.50574461407E+01 -2.50568121622E+01 -2.50561444355E+01 -2.50554412318E+01 -2.50547007364E+01 -2.50539210441E+01 -2.50531001554E+01 -2.50522359716E+01 -2.50513262901E+01 -2.50503687997E+01 -2.50493610751E+01 -2.50483005713E+01 -2.50471846187E+01 -2.50460104163E+01 -2.50447750260E+01 -2.50434753660E+01 -2.50421082041E+01 -2.50406701506E+01 -2.50391576509E+01 -2.50375669779E+01 -2.50358942239E+01 -2.50341352924E+01 -2.50322858892E+01 -2.50303415133E+01 -2.50282974477E+01 -2.50261487492E+01 -2.50238902382E+01 -2.50215164881E+01 -2.50190218140E+01 -2.50164002613E+01 -2.50136455933E+01 -2.50107512789E+01 -2.50077104794E+01 -2.50045160349E+01 -2.50011604505E+01 -2.49976358810E+01 -2.49939341163E+01 -2.49900465652E+01 -2.49859642394E+01 -2.49816777360E+01 -2.49771772204E+01 -2.49724524078E+01 -2.49674925441E+01 -2.49622863869E+01 -2.49568221849E+01 -2.49510876571E+01 -2.49450699712E+01 -2.49387557215E+01 -2.49321309055E+01 -2.49251809009E+01 -2.49178904405E+01 -2.49102435876E+01 -2.49022237098E+01 -2.48938134529E+01 -2.48849947134E+01 -2.48757486104E+01 -2.48660554575E+01 -2.48558947331E+01 -2.48452450507E+01 -2.48340841283E+01 -2.48223887572E+01 -2.48101347706E+01 -2.47972970109E+01 -2.47838492975E+01 -2.47697643936E+01 -2.47550139723E+01 -2.47395685837E+01 -2.47233976199E+01 -2.47064692819E+01 -2.46887505447E+01 -2.46702071236E+01 -2.46508034401E+01 -2.46305025885E+01 -2.46092663025E+01 -2.45870549230E+01 -2.45638273660E+01 -2.45395410917E+01 -2.45141520751E+01 -2.44876147776E+01 -2.44598821200E+01 -2.44309054580E+01 -2.44006345591E+01 -2.43690175825E+01 -2.43360010616E+01 -2.43015298891E+01 -2.42655473063E+01 -2.42279948959E+01 -2.41888125791E+01 -2.41479386173E+01 -2.41053096192E+01 -2.40608605540E+01 -2.40145247702E+01 -2.39662340216E+01 -2.39159185013E+01 -2.38635068834E+01 -2.38089263738E+01 -2.37521027706E+01 -2.36929605356E+01 -2.36314228763E+01 -2.35674118415E+01 -2.35008484287E+01 -2.34316527072E+01 -2.33597439562E+01 -2.32850408192E+01 -2.32074614773E+01 -2.31269238407E+01 -2.30433457614E+01 -2.29566452685E+01 -2.28667408268E+01 -2.27735516209E+01 -2.26769978673E+01 -2.25770011553E+01 -2.24734848198E+01 -2.23663743475E+01 -2.22555978199E+01 -2.21410863948E+01 -2.20227748295E+01 -2.19006020494E+01 -2.17745117640E+01 -2.16444531363E+01 -2.15103815064E+01 -2.13722591775E+01 -2.12300562657E+01 -2.10837516213E+01 -2.09333338263E+01 -2.07788022746E+01 -2.06201683413E+01 -2.04574566496E+01 -2.02907064411E+01 -2.01199730579E+01 -1.99453295439E+01 -1.97668683713E+01 -1.95847032967E+01 -1.93989713479E+01 -1.92098349377E+01 -1.90174840912E+01 -1.88221387623E+01 -1.86240511958E+01 -1.84235082656E+01 -1.82208336815E+01 -1.80163899097E+01 -1.78105795802E+01 -1.76038460682E+01 -1.73966728202E+01 -1.71895808590E+01 -1.69831237314E+01 -1.67778789852E+01 -1.65744350735E+01 -1.63733724356E+01 -1.61756365432E+01 -1.59887945321E+01 -1.57992531114E+01 -1.55859978453E+01 -1.53615086052E+01 -1.51387085561E+01 -1.49181503254E+01 -1.47003484210E+01 -1.44857592167E+01 -1.42747603771E+01 -1.40676316935E+01 -1.38645398593E+01 -1.36655300219E+01 -1.34705268351E+01 -1.32793470478E+01 -1.30917243882E+01 -1.29073457469E+01 -1.27258957195E+01 -1.25471048084E+01 -1.23707953651E+01 -1.21969189247E+01 -1.20255790431E+01 -1.18570350444E+01 -1.16916841307E+01 -1.15300219453E+01 -1.13725846908E+01 -1.12198788924E+01 -1.10723073022E+01 -1.09301006402E+01 -1.07932644403E+01 -1.06615482336E+01 -1.05344412148E+01 -1.04111952862E+01 -1.02908738776E+01 -1.01724237824E+01 -1.00547675464E+01 -9.93691539383E+00 -9.81809778131E+00 -9.69792195132E+00 -9.57666743034E+00 -9.45582043267E+00 -9.33728059180E+00 -9.22091172524E+00 -9.10612320759E+00 -8.99278424080E+00 -8.88087480446E+00 -8.77037527253E+00 -8.66126640032E+00 -8.55352931184E+00 -8.44714548757E+00 -8.34209675266E+00 -8.23836526552E+00 -8.13593350688E+00 -8.03478426922E+00 -7.93490064664E+00 -7.83626602514E+00 -7.73886407335E+00 -7.64267873356E+00 -7.54769421320E+00 -7.45389497674E+00 -7.36126573784E+00 -7.26979145199E+00 -7.17945730937E+00 -7.09024872816E+00 -7.00215134808E+00 -6.91515102428E+00 -6.82923382153E+00 -6.74438600867E+00 -6.66059405335E+00 -6.57784461703E+00 -6.49612455021E+00 -6.41542088789E+00 -6.33572084529E+00 -6.25701181373E+00 -6.17928135678E+00 -6.10251720649E+00 -6.02670725990E+00 -5.95183957566E+00 -5.87790237084E+00 -5.80488401784E+00 -5.73277304152E+00 -5.66155811633E+00 -5.59122806372E+00 -5.52177184950E+00 -5.45317858150E+00 -5.38543750709E+00 -5.31853801095E+00 -5.25246961281E+00 -5.18722196546E+00 -5.12278485273E+00 -5.05914818745E+00 -4.99630200961E+00 -4.93423648449E+00 -4.87294190086E+00 -4.81240866927E+00 -4.75262732034E+00 -4.69358850315E+00 -4.63528298361E+00 -4.57770164290E+00 -4.52083547597E+00 -4.46467559004E+00 -4.40921320316E+00 -4.35443964276E+00 -4.30034634430E+00 -4.24684130927E+00 -4.19399984542E+00 -4.14198782612E+00 -4.09062197478E+00 -4.03980810553E+00 -3.98960018516E+00 -3.94001577926E+00 -3.89109933371E+00 -3.84279037847E+00 -3.79505577404E+00 -3.74791407685E+00 -3.70135792294E+00 -3.65538003977E+00 -3.60997324501E+00 -3.56513044551E+00 -3.52084463611E+00 -3.47710889863E+00 -3.43391640074E+00 -3.39126039497E+00 -3.34913421760E+00 -3.30753128772E+00 -3.26644510612E+00 -3.22586925440E+00 -3.18579739388E+00 -3.14622326473E+00 -3.10714068493E+00 -3.06854354935E+00 -3.03042582883E+00 -2.99278156923E+00 -2.95560489049E+00 -2.91888998579E+00 -2.88263112055E+00 -2.84682263163E+00 -2.81145892637E+00 -2.77653448178E+00 -2.74204384358E+00 -2.70798162543E+00 -2.67434250802E+00 -2.64112123822E+00 -2.60831262826E+00 -2.57591155490E+00 -2.54391295857E+00 -2.51231184260E+00 -2.48110327238E+00 -2.45028237456E+00 -2.41984433631E+00 -2.38978440447E+00 -2.36009788484E+00 -2.33078014140E+00 -2.30182659557E+00 -2.27323272545E+00 -2.24499406515E+00 -2.21710620402E+00 -2.18956478601E+00 -2.16236550892E+00 -2.13550412376E+00 -2.10897643408E+00 -2.08277829531E+00 -2.05690561414E+00 -2.03135434782E+00 -2.00612050365E+00 -1.98120013825E+00 -1.95658935706E+00 -1.93228431367E+00 -1.90828120929E+00 -1.88457629216E+00 -1.86116585697E+00 -1.83804624434E+00 -1.81521384022E+00 -1.79266507539E+00 -1.77039642492E+00 -1.74840440761E+00 -1.72668558549E+00 -1.70523656331E+00 -1.68405398801E+00 -1.66313454821E+00 -1.64247497372E+00 -1.62207203504E+00 -1.60192254286E+00 -1.58202334759E+00 -1.56237133883E+00 -1.54296344494E+00 -1.52379663254E+00 -1.50486790602E+00 -1.48617430710E+00 -1.46771291437E+00 -1.44948084281E+00 -1.43147524333E+00 -1.41369330234E+00 -1.39613224130E+00 -1.37878931627E+00 -1.36166181749E+00 -1.34474706891E+00 -1.32804242783E+00 -1.31154528442E+00 -1.29525306132E+00 -1.27916321325E+00 -1.26327322659E+00 -1.24758061899E+00 -1.23208293893E+00 -1.21677776540E+00 -1.20166270749E+00 -1.18673540397E+00 -1.17199352297E+00 -1.15743476161E+00 -1.14305684558E+00 -1.12885752885E+00 -1.11483459327E+00 -1.10098584824E+00 -1.08730913037E+00 -1.07380230312E+00 -1.06046325649E+00 -1.04728990666E+00 -1.03428019569E+00 -1.02143209121E+00 -1.00874358603E+00 -9.96212697919E-01 -9.83837469240E-01 -9.71615966654E-01 -9.59546280824E-01 -9.47626526116E-01 -9.35854840302E-01 -9.24229384272E-01 -9.12748341747E-01 -9.01409918995E-01 -8.90212344551E-01 -8.79153868943E-01 -8.68232764418E-01 -8.57447324674E-01 -8.46795864591E-01 -8.36276719972E-01 -8.25888247281E-01 -8.15628823390E-01 -8.05496845322E-01 -7.95490730004E-01 -7.85608914019E-01 -7.75849853365E-01 -7.66212023208E-01 -7.56693917652E-01 -7.47294049498E-01 -7.38010950016E-01 -7.28843168714E-01 -7.19789273113E-01 -7.10847848521E-01 -7.02017497818E-01 -6.93296841229E-01 -6.84684516119E-01 -6.76179176774E-01 -6.67779494191E-01 -6.59484155874E-01 -6.51291865211E-01 -6.43201342973E-01 -6.35211324506E-01 -6.27320561310E-01 -6.19527820396E-01 -6.11831884084E-01 -6.04231549821E-01 -5.96725629990E-01 -5.89312951724E-01 -5.81992356725E-01 -5.74762701081E-01 -5.67622855087E-01 -5.60571608216E-01 -5.53607684502E-01 -5.46730659431E-01 -5.39939064577E-01 -5.33231833767E-01 -5.26607921517E-01 -5.20066292828E-01 -5.13605925556E-01 -5.07225810255E-01 -5.00924950020E-01 -4.94702360329E-01 -4.88557068889E-01 -4.82488115486E-01 -4.76494551833E-01 -4.70575441424E-01 -4.64729859387E-01 -4.58956892336E-01 -4.53255636525E-01 -4.47625204581E-01 -4.42064714987E-01 -4.36573298903E-01 -4.31150098286E-01 -4.25794265748E-01 -4.20504964431E-01 -4.15281367870E-01 -4.10122659867E-01 -4.05028034365E-01 -3.99996695317E-01 -3.95027856566E-01 -3.90120741722E-01 -3.85274584037E-01 -3.80488626289E-01 -3.75762120664E-01 -3.71094328634E-01 -3.66484520848E-01 -3.61931977015E-01 -3.57435985793E-01 -3.52995844666E-01 -3.48610859859E-01 -3.44280346207E-01 -3.40003627060E-01 -3.35780034172E-01 -3.31608907597E-01 -3.27489595589E-01 -3.23421454496E-01 -3.19403848663E-01 -3.15436150332E-01 -3.11517739541E-01 -3.07648004031E-01 -3.03826339147E-01 -3.00052147746E-01 -2.96324840097E-01 -2.92643833815E-01 -2.89008553727E-01 -2.85418431814E-01 -2.81872907111E-01 -2.78371425623E-01 -2.74913440237E-01 -2.71498410636E-01 -2.68125803213E-01 -2.64795090993E-01 -2.61505753544E-01 -2.58257276902E-01 -2.55049153484E-01 -2.51880882015E-01 -2.48751967447E-01 -2.45661920880E-01 -2.42610259488E-01 -2.39596506442E-01 -2.36620190838E-01 -2.33680847620E-01 -2.30778017510E-01 -2.27911246935E-01 -2.25080087956E-01 -2.22284098198E-01 -2.19522840783E-01 -2.16795884259E-01 -2.14102802533E-01 -2.11443174805E-01 -2.08816585503E-01 -2.06222624218E-01 -2.03660885637E-01 -2.01130969484E-01 -1.98632480454E-01 -1.96165028153E-01 -1.93728227038E-01 -1.91321696351E-01 -1.88945060069E-01 -1.86597946837E-01 -1.84279989914E-01 -1.81990827115E-01 -1.79730100752E-01 -1.77497457583E-01 -1.75292548753E-01 -1.73115029741E-01 -1.70964560304E-01 -1.68840804427E-01 -1.66743430270E-01 -1.64672110112E-01 -1.62626520307E-01 -1.60606341227E-01 -1.58611257214E-01 -1.56640956533E-01 -1.54695131321E-01 -1.52773477537E-01 -1.50875694919E-01 -1.49001486936E-01 -1.47150560739E-01 -1.45322627116E-01 -1.43517400449E-01 -1.41734598668E-01 -1.39973943207E-01 -1.38235158958E-01 -1.36517974235E-01 -1.34822120723E-01 -1.33147333441E-01 -1.31493350702E-01 -1.29859914066E-01 -1.28246768305E-01 -1.26653661363E-01 -1.25080344314E-01 -1.23526571322E-01 -1.21992099609E-01 -1.20476689409E-01 -1.18980103938E-01 -1.17502109349E-01 -1.16042474705E-01 -1.14600971933E-01 -1.13177375796E-01 -1.11771463854E-01 -1.10383016431E-01 -1.09011816579E-01 -1.07657650045E-01 -1.06320305237E-01 -1.04999573194E-01 -1.03695247548E-01 -1.02407124495E-01 -1.01135002764E-01 -9.98786835822E-02 -9.86379706483E-02 -9.74126700981E-02 -9.62025904757E-02 -9.50075427038E-02 -9.38273400537E-02 -9.26617981164E-02 -9.15107347736E-02 -9.03739701693E-02 -8.92513266817E-02 -8.81426288955E-02 -8.70477035743E-02 -8.59663796340E-02 -8.48984881153E-02 -8.38438621582E-02 -8.28023369751E-02 -8.17737498256E-02 -8.07579399909E-02 -7.97547487486E-02 2.64821146096E-08 2.71525128008E-08 2.78398822169E-08 2.85446524870E-08 2.92672641166E-08 3.00081687627E-08 3.07678295160E-08 3.15467211905E-08 3.23453306202E-08 3.31641569633E-08 3.40037120145E-08 3.48645205246E-08 3.57471205285E-08 3.66520636818E-08 3.75799156051E-08 3.85312562380E-08 3.95066802014E-08 4.05067971691E-08 4.15322322489E-08 4.25836263736E-08 4.36616367011E-08 4.47669370254E-08 4.59002181981E-08 4.70621885596E-08 4.82535743821E-08 4.94751203238E-08 5.07275898938E-08 5.20117659299E-08 5.33284510876E-08 5.46784683419E-08 5.60626615013E-08 5.74818957361E-08 5.89370581182E-08 6.04290581761E-08 6.19588284635E-08 6.35273251416E-08 6.51355285775E-08 6.67844439563E-08 6.84751019099E-08 7.02085591607E-08 7.19858991827E-08 7.38082328782E-08 7.56766992725E-08 7.75924662255E-08 7.95567311622E-08 8.15707218205E-08 8.36356970191E-08 8.57529474443E-08 8.79237964562E-08 9.01496009168E-08 9.24317520371E-08 9.47716762474E-08 9.71708360886E-08 9.96307311264E-08 1.02152898889E-07 1.04738915827E-07 1.07390398300E-07 1.10109003586E-07 1.12896430919E-07 1.15754422548E-07 1.18684764830E-07 1.21689289343E-07 1.24769874032E-07 1.27928444385E-07 1.31166974631E-07 1.34487488982E-07 1.37892062891E-07 1.41382824354E-07 1.44961955237E-07 1.48631692641E-07 1.52394330302E-07 1.56252220022E-07 1.60207773140E-07 1.64263462042E-07 1.68421821699E-07 1.72685451262E-07 1.77057015677E-07 1.81539247357E-07 1.86134947887E-07 1.90846989775E-07 1.95678318252E-07 2.00631953105E-07 2.05710990572E-07 2.10918605274E-07 2.16258052200E-07 2.21732668740E-07 2.27345876775E-07 2.33101184811E-07 2.39002190178E-07 2.45052581272E-07 2.51256139866E-07 2.57616743470E-07 2.64138367759E-07 2.70825089055E-07 2.77681086874E-07 2.84710646542E-07 2.91918161872E-07 2.99308137910E-07 3.06885193754E-07 3.14654065435E-07 3.22619608887E-07 3.30786802972E-07 3.39160752600E-07 3.47746691918E-07 3.56549987579E-07 3.65576142103E-07 3.74830797308E-07 3.84319737846E-07 3.94048894812E-07 4.04024349455E-07 4.14252336979E-07 4.24739250440E-07 4.35491644744E-07 4.46516240743E-07 4.57819929437E-07 4.69409776281E-07 4.81293025605E-07 4.93477105137E-07 5.05969630653E-07 5.18778410733E-07 5.31911451644E-07 5.45376962345E-07 5.59183359619E-07 5.73339273336E-07 5.87853551845E-07 6.02735267509E-07 6.17993722375E-07 6.33638453986E-07 6.49679241353E-07 6.66126111056E-07 6.82989343524E-07 7.00279479454E-07 7.18007326404E-07 7.36183965551E-07 7.54820758617E-07 7.73929354972E-07 7.93521698916E-07 8.13610037153E-07 8.34206926439E-07 8.55325241437E-07 8.76978182769E-07 8.99179285265E-07 9.21942426424E-07 9.45281835097E-07 9.69212100378E-07 9.93748180728E-07 1.01890541333E-06 1.04469952366E-06 1.07114663536E-06 1.09826328028E-06 1.12606640883E-06 1.15457340058E-06 1.18380207512E-06 1.21377070321E-06 1.24449801822E-06 1.27600322778E-06 1.30830602589E-06 1.34142660515E-06 1.37538566943E-06 1.41020444678E-06 1.44590470277E-06 1.48250875403E-06 1.52003948225E-06 1.55852034847E-06 1.59797540775E-06 1.63842932424E-06 1.67990738655E-06 1.72243552365E-06 1.76604032099E-06 1.81074903719E-06 1.85658962108E-06 1.90359072916E-06 1.95178174353E-06 2.00119279028E-06 2.05185475832E-06 2.10379931870E-06 2.15705894442E-06 2.21166693076E-06 2.26765741607E-06 2.32506540317E-06 2.38392678119E-06 2.44427834807E-06 2.50615783355E-06 2.56960392280E-06 2.63465628058E-06 2.70135557607E-06 2.76974350836E-06 2.83986283245E-06 2.91175738608E-06 2.98547211710E-06 3.06105311164E-06 3.13854762289E-06 3.21800410073E-06 3.29947222198E-06 3.38300292156E-06 3.46864842428E-06 3.55646227758E-06 3.64649938503E-06 3.73881604065E-06 3.83346996421E-06 3.93052033729E-06 4.03002784033E-06 4.13205469066E-06 4.23666468138E-06 4.34392322132E-06 4.45389737599E-06 4.56665590955E-06 4.68226932783E-06 4.80080992253E-06 4.92235181644E-06 5.04697100983E-06 5.17474542808E-06 5.30575497044E-06 5.44008156005E-06 5.57780919530E-06 5.71902400233E-06 5.86381428908E-06 6.01227060050E-06 6.16448577533E-06 6.32055500419E-06 6.48057588926E-06 6.64464850537E-06 6.81287546274E-06 6.98536197121E-06 7.16221590621E-06 7.34354787630E-06 7.52947129251E-06 7.72010243941E-06 7.91556054795E-06 8.11596787023E-06 8.32144975606E-06 8.53213473160E-06 8.74815457987E-06 8.96964442341E-06 9.19674280894E-06 9.42959179429E-06 9.66833703741E-06 9.91312788777E-06 1.01641174800E-05 1.04214628299E-05 1.06853249329E-05 1.09558688653E-05 1.12332638875E-05 1.15176835504E-05 1.18093058042E-05 1.21083131101E-05 1.24148925548E-05 1.27292359681E-05 1.30515400432E-05 1.33820064598E-05 1.37208420115E-05 1.40682587350E-05 1.44244740436E-05 1.47897108637E-05 1.51641977748E-05 1.55481691529E-05 1.59418653183E-05 1.63455326861E-05 1.67594239212E-05 1.71837980974E-05 1.76189208600E-05 1.80650645927E-05 1.85225085894E-05 1.89915392294E-05 1.94724501576E-05 1.99655424695E-05 2.04711249006E-05 2.09895140204E-05 2.15210344323E-05 2.20660189771E-05 2.26248089434E-05 2.31977542821E-05 2.37852138272E-05 2.43875555215E-05 2.50051566486E-05 2.56384040709E-05 2.62876944734E-05 2.69534346137E-05 2.76360415788E-05 2.83359430480E-05 2.90535775632E-05 2.97893948051E-05 3.05438558776E-05 3.13174335986E-05 3.21106127992E-05 3.29238906293E-05 3.37577768726E-05 3.46127942682E-05 3.54894788415E-05 3.63883802432E-05 3.73100620972E-05 3.82551023570E-05 3.92240936719E-05 4.02176437624E-05 4.12363758050E-05 4.22809288271E-05 4.33519581123E-05 4.44501356162E-05 4.55761503921E-05 4.67307090287E-05 4.79145360988E-05 4.91283746192E-05 5.03729865233E-05 5.16491531448E-05 5.29576757151E-05 5.42993758728E-05 5.56750961867E-05 5.70857006924E-05 5.85320754427E-05 6.00151290723E-05 6.15357933774E-05 6.30950239098E-05 6.46938005874E-05 6.63331283196E-05 6.80140376494E-05 6.97375854128E-05 7.15048554142E-05 7.33169591206E-05 7.51750363731E-05 7.70802561178E-05 7.90338171549E-05 8.10369489080E-05 8.30909122135E-05 8.51970001310E-05 8.73565387740E-05 8.95708881634E-05 9.18414431032E-05 9.41696340790E-05 9.65569281802E-05 9.90048300469E-05 1.01514882841E-04 1.04088669246E-04 1.06727812485E-04 1.09433977378E-04 1.12208871417E-04 1.15054245873E-04 1.17971896935E-04 1.20963666875E-04 1.24031445245E-04 1.27177170110E-04 1.30402829309E-04 1.33710461751E-04 1.37102158747E-04 1.40580065375E-04 1.44146381886E-04 1.47803365144E-04 1.51553330105E-04 1.55398651340E-04 1.59341764588E-04 1.63385168370E-04 1.67531425626E-04 1.71783165408E-04 1.76143084620E-04 1.80613949799E-04 1.85198598946E-04 1.89899943412E-04 1.94720969829E-04 1.99664742097E-04 2.04734403425E-04 2.09933178428E-04 2.15264375282E-04 2.20731387938E-04 2.26337698395E-04 2.32086879041E-04 2.37982595052E-04 2.44028606863E-04 2.50228772709E-04 2.56587051226E-04 2.63107504139E-04 2.69794299016E-04 2.76651712100E-04 2.83684131226E-04 2.90896058810E-04 2.98292114936E-04 3.05877040517E-04 3.13655700552E-04 3.21633087479E-04 3.29814324613E-04 3.38204669693E-04 3.46809518526E-04 3.55634408731E-04 3.64685023598E-04 3.73967196056E-04 3.83486912753E-04 3.93250318256E-04 4.03263719372E-04 4.13533589599E-04 4.24066573701E-04 4.34869492421E-04 4.45949347329E-04 4.57313325817E-04 4.68968806239E-04 4.80923363202E-04 4.93184773017E-04 5.05761019311E-04 5.18660298806E-04 5.31891027271E-04 5.45461845657E-04 5.59381626409E-04 5.73659479978E-04 5.88304761523E-04 6.03327077821E-04 6.18736294390E-04 6.34542542821E-04 6.50756228348E-04 6.67388037642E-04 6.84448946848E-04 7.01950229876E-04 7.19903466944E-04 7.38320553390E-04 7.57213708767E-04 7.76595486209E-04 7.96478782108E-04 8.16876846093E-04 8.37803291318E-04 8.59272105090E-04 8.81297659833E-04 9.03894724399E-04 9.27078475751E-04 9.50864511022E-04 9.75268859962E-04 1.00030799780E-03 1.02599885851E-03 1.05235884852E-03 1.07940586092E-03 1.10715829000E-03 1.13563504649E-03 1.16485557306E-03 1.19483986055E-03 1.22560846464E-03 1.25718252303E-03 1.28958377337E-03 1.32283457163E-03 1.35695791116E-03 1.39197744245E-03 1.42791749344E-03 1.46480309071E-03 1.50265998121E-03 1.54151465487E-03 1.58139436797E-03 1.62232716728E-03 1.66434191512E-03 1.70746831523E-03 1.75173693957E-03 1.79717925612E-03 1.84382765760E-03 1.89171549122E-03 1.94087708955E-03 1.99134780245E-03 2.04316403011E-03 2.09636325738E-03 2.15098408927E-03 2.20706628776E-03 2.26465080992E-03 2.32377984749E-03 2.38449686785E-03 2.44684665651E-03 2.51087536115E-03 2.57663053736E-03 2.64416119594E-03 2.71351785211E-03 2.78475257641E-03 2.85791904761E-03 2.93307260754E-03 3.01027031798E-03 3.08957101971E-03 3.17103539376E-03 3.25472602502E-03 3.34070746818E-03 3.42904631623E-03 3.51981127153E-03 3.61307321962E-03 3.70890530582E-03 3.80738301471E-03 3.90858425277E-03 4.01258943403E-03 4.11948156914E-03 4.22934635779E-03 4.34227228467E-03 4.45835071921E-03 4.57767601902E-03 4.70034563750E-03 4.82646023541E-03 4.95612379690E-03 5.08944374994E-03 5.22653109145E-03 5.36750051721E-03 5.51247055686E-03 5.66156371406E-03 5.81490661213E-03 5.97263014525E-03 6.13486963555E-03 6.30176499626E-03 6.47346090112E-03 6.65010696038E-03 6.83185790351E-03 7.01887376901E-03 7.21132010146E-03 7.40936815614E-03 7.61319511148E-03 7.82298428967E-03 8.03892538563E-03 8.26121470476E-03 8.49005540959E-03 8.72565777596E-03 8.96823945868E-03 9.21802576734E-03 9.47524995233E-03 9.74015350170E-03 1.00129864489E-02 1.02940076922E-02 1.05834853253E-02 1.08816969812E-02 1.11889301873E-02 1.15054827345E-02 1.18316630590E-02 1.21677906380E-02 1.25141963998E-02 1.28712231484E-02 1.32392260023E-02 1.36185728498E-02 1.40096448193E-02 1.44128367664E-02 1.48285577766E-02 1.52572316866E-02 1.56992976212E-02 1.61552105494E-02 1.66254418582E-02 1.71104799449E-02 1.76108308283E-02 1.81270187796E-02 1.86595869726E-02 1.92090981535E-02 1.97761353322E-02 2.03613024922E-02 2.09652253231E-02 2.15885519729E-02 2.22319538217E-02 2.28961262767E-02 2.35817895885E-02 2.42896896890E-02 2.50205990500E-02 2.57753175637E-02 2.65546734442E-02 2.73595241495E-02 2.81907573247E-02 2.90492917652E-02 2.99360783995E-02 3.08521012920E-02 3.17983786632E-02 3.27759639292E-02 3.37859467569E-02 3.48294541364E-02 3.59076514672E-02 3.70217436587E-02 3.81729762428E-02 3.93626364974E-02 4.05920545781E-02 4.18626046580E-02 4.31757060717E-02 4.45328244628E-02 4.59354729313E-02 4.73852131789E-02 4.88836566492E-02 5.04324656598E-02 5.20333545236E-02 5.36880906540E-02 5.53984956534E-02 5.71664463776E-02 5.89938759753E-02 6.08827748958E-02 6.28351918616E-02 6.48532348014E-02 6.69390717373E-02 6.90949316228E-02 7.13231051245E-02 7.36259453434E-02 7.60058684696E-02 7.84653543646E-02 8.10069470655E-02 8.36332552059E-02 8.63469523462E-02 8.91507772088E-02 9.20475338118E-02 9.50400914955E-02 9.81313848367E-02 1.01324413445E-01 1.04622241638E-01 1.08027997986E-01 1.11544874730E-01 1.15176127064E-01 1.18925072281E-01 1.22795088775E-01 1.26789614915E-01 1.30912147770E-01 1.35166241700E-01 1.39555506810E-01 1.44083607282E-01 1.48754259566E-01 1.53571230476E-01 1.58538335158E-01 1.63659434980E-01 1.68938435331E-01 1.74379283363E-01 1.79985965688E-01 1.85762506050E-01 1.91712963005E-01 1.97841427637E-01 2.04152021327E-01 2.10648893638E-01 2.17336220321E-01 2.24218201516E-01 2.31299060173E-01 2.38583040743E-01 2.46074408203E-01 2.53777447462E-01 2.61696463201E-01 2.69835780222E-01 2.78199744351E-01 2.86792723976E-01 2.95619112270E-01 3.04683330180E-01 3.13989830226E-01 3.23543101189E-01 3.33347673747E-01 3.43408127094E-01 3.53729096618E-01 3.64315282654E-01 3.75171460355E-01 3.86302490700E-01 3.97713332630E-01 4.09409056309E-01 4.21394857475E-01 4.33676072809E-01 4.46258196260E-01 4.59146896186E-01 4.72348033187E-01 4.85867678417E-01 4.99712132178E-01 5.13887942498E-01 5.28401923384E-01 5.43261172380E-01 5.58473086993E-01 5.74045379507E-01 5.89986089634E-01 6.06303594398E-01 6.23006614564E-01 6.40104216893E-01 6.57605811407E-01 6.75521142809E-01 6.93860275149E-01 7.12633568747E-01 7.31851648394E-01 7.51525361755E-01 7.71665726941E-01 7.92283868170E-01 8.13390938472E-01 8.34998028413E-01 8.57116059911E-01 8.79755664251E-01 9.02927043579E-01 9.26639815282E-01 9.50902838872E-01 9.75724025203E-01 1.00111012817E+00 1.02706651929E+00 1.05359694605E+00 1.08070327518E+00 1.10838522252E+00 1.13664007170E+00 1.16546238432E+00 1.19484370479E+00 1.22477226373E+00 1.25523268424E+00 1.28620569601E+00 1.31766786267E+00 1.34959132841E+00 1.38194359000E+00 1.41468730112E+00 1.44778011560E+00 1.48117457645E+00 1.51481805742E+00 1.54865276332E+00 1.58261579494E+00 1.61663928317E+00 1.65065059639E+00 1.68457262317E+00 1.71832413107E+00 1.75182020025E+00 1.78497272851E+00 1.81769100181E+00 1.84988940959E+00 1.88150972096E+00 1.91250085100E+00 1.94281200262E+00 1.97239278509E+00 2.00119333644E+00 2.02916444891E+00 2.05625769711E+00 2.08242556804E+00 2.10762159223E+00 2.13180047531E+00 2.15491822919E+00 2.17693230209E+00 2.19780170667E+00 2.21748714548E+00 2.23595113305E+00 2.25315811395E+00 2.26907457614E+00 2.28366915905E+00 2.29691275574E+00 2.30877860876E+00 2.31924239915E+00 2.32828232813E+00 2.33587919114E+00 2.34201644394E+00 2.34668026031E+00 2.34985958131E+00 2.35154615568E+00 2.35173457136E+00 2.35042227793E+00 2.34760959990E+00 2.34329974080E+00 2.33749877806E+00 2.33021564874E+00 2.32146212610E+00 2.31125278725E+00 2.29960497192E+00 2.28653873254E+00 2.27207677596E+00 2.25624439691E+00 2.23906940360E+00 2.22058203577E+00 2.20081487544E+00 2.17980275087E+00 2.15758263405E+00 2.13419353221E+00 2.10967637365E+00 2.08407388863E+00 2.05743048543E+00 2.02979212248E+00 2.00120617677E+00 1.97172130912E+00 1.94138732699E+00 1.91025504512E+00 1.87837614475E+00 1.84580303170E+00 1.81258869415E+00 1.77878656026E+00 1.74445035653E+00 1.70963396702E+00 1.67439129419E+00 1.63877612171E+00 1.60284197970E+00 1.56664201284E+00 1.53022885174E+00 1.49363990747E+00 1.45694125163E+00 1.42018325416E+00 1.38341529603E+00 1.34668566261E+00 1.31003651340E+00 1.27351861803E+00 1.23717639330E+00 1.20105278943E+00 1.16518921244E+00 1.12962545300E+00 1.09439962181E+00 1.05954809161E+00 1.02510544608E+00 9.91104435577E-01 9.57575939731E-01 9.24548937087E-01 8.92050481651E-01 8.60105686390E-01 8.28737713628E-01 7.97967772263E-01 7.67815121707E-01 7.38297082418E-01 7.09429052870E-01 6.81224532773E-01 6.53695152316E-01 6.26850707204E-01 6.00699199196E-01 5.75246881846E-01 5.50498311109E-01 5.26456400465E-01 5.03122480168E-01 4.80496360224E-01 4.58576396677E-01 4.37359560771E-01 4.16841510548E-01 3.97016664428E-01 3.77878276322E-01 3.59418511835E-01 3.41628525111E-01 3.24498535892E-01 3.08017906377E-01 2.92175217486E-01 2.76958344140E-01 2.62354529225E-01 2.48350455899E-01 2.34932317954E-01 2.22085887961E-01 2.09796582976E-01 1.98049527584E-01 1.86829614128E-01 1.76121559971E-01 1.65909961693E-01 1.56179346124E-01 1.46914218195E-01 1.38099105543E-01 1.29718599903E-01 1.21757395300E-01 1.14200323080E-01 1.07032383855E-01 1.00238776442E-01 9.38049238822E-02 8.77164966656E-02 8.19594332658E-02 7.65199581213E-02 7.13845971947E-02 6.65401912491E-02 6.19739069833E-02 5.76732461693E-02 5.36260529344E-02 4.98205193290E-02 4.62451893181E-02 4.28889613312E-02 3.97410894993E-02 3.67911837036E-02 3.40292085526E-02 3.14454813982E-02 2.90306694953E-02 2.67757864004E-02 2.46721876988E-02 2.27115661415E-02 2.08859462669E-02 1.91876785743E-02 1.76094333104E-02 1.61441939234E-02 1.47852502341E-02 1.35261913659E-02 1.23608984740E-02 1.12835373079E-02 1.02885506354E-02 9.37065055841E-03 8.52481074138E-03 7.74625857611E-03 7.03046730092E-03 6.37314809249E-03 5.77024214629E-03 5.21791276070E-03 4.71253743891E-03 4.25070002203E-03 3.82918286617E-03 3.44495907586E-03 3.09518480585E-03 2.77719164292E-03 2.48847907908E-03 2.22670708735E-03 1.98968881081E-03 1.77538337550E-03 1.58188883732E-03 1.40743527251E-03 1.25037802111E-03 1.10919109210E-03 9.82460738249E-04 8.68879208472E-04 7.67238684259E-04 6.76425406523E-04 5.95413998149E-04 5.23261986837E-04 4.59104532025E-04 4.02149358811E-04 3.51671900977E-04 3.07010654374E-04 2.67562741095E-04 2.32779684047E-04 2.02163390751E-04 1.75262344438E-04 1.51667999776E-04 1.31011379888E-04 1.12959870696E-04 9.72142080273E-05 8.35056523974E-05 7.15933459038E-05 6.12618452603E-05 5.23188246304E-05 4.45929416295E-05 3.79318596198E-05 3.22004192417E-05 2.72789519941E-05 2.30617286053E-05 1.94555349075E-05 1.63783679526E-05 1.37582451732E-05 1.15321194982E-05 9.64489347687E-06 8.04852563871E-06 6.70122251996E-06 5.56671001662E-06 4.61357797012E-06 3.81469215707E-06 3.14666813119E-06 2.58940165224E-06 2.12565072830E-06 1.74066459382E-06 1.42185523977E-06 1.15850740564E-06 9.41523230253E-07 7.63198039726E-07 6.17024023060E-07 4.97518808802E-07 4.00076207508E-07 3.20836624420E-07 2.56574873767E-07 2.04605031501E-07 1.62708125294E-07 1.29027511149E-07 1.02028458193E-07 8.04474584043E-08 6.32472808872E-08 4.95789246974E-08 3.87495072128E-08 3.01952437925E-08 2.34587809230E-08 1.81702402139E-08 1.40314153642E-08 1.08026394278E-08 8.29190619986E-09 6.34588811141E-09 4.84254441530E-09 3.68486614191E-09 2.79471024310E-09 2.11247039568E-09 1.59141106470E-09 1.19486181075E-09 8.94152114148E-10 6.66946963548E-10 4.95910388277E-10 3.67636315498E-10 2.71796564822E-10 2.00464399355E-10 1.47579606296E-10 1.08527147192E-10 7.98066013376E-11 5.84513325787E-11 4.26366628010E-11 3.09729749645E-11 2.24063454955E-11 1.61407869184E-11 1.15776613424E-11 8.26867731412E-12 5.87958426731E-12 4.16225399853E-12 2.93330778167E-12 2.05782855814E-12 1.43700520927E-12 9.98803086091E-13 6.90952601156E-13 4.75704905959E-13 3.25928111035E-13 2.22215483561E-13 1.50753804277E-13 1.01759867669E-13 6.83394621833E-14 4.56589042391E-14 3.03466043445E-14 2.00630446664E-14 1.31934011847E-14 8.62900252232E-15 5.61278829060E-15 3.63062113524E-15 2.33526943828E-15 1.49353725780E-15 9.49701113595E-16 6.00368755556E-16 3.77291914469E-16 2.35685477793E-16 1.46336034114E-16 9.03024807181E-17 5.53789117444E-17 3.37482657247E-17 2.04355510285E-17 1.22945943744E-17 7.34851674902E-18 4.36321918263E-18 2.57335680692E-18 1.50744661922E-18 8.76992129317E-19 5.06668217041E-19 2.90661668728E-19 1.65557721044E-19 9.36202186139E-20 5.25543735379E-20 2.92837740570E-20 1.61951013005E-20 8.88868846518E-21 4.84113882837E-21 2.61620121432E-21 1.40270353711E-21 7.46085566167E-22 3.93636799486E-22 2.05988424286E-22 1.06901848232E-22 5.50145454853E-23 2.80720309318E-23 1.42012842911E-23 7.12183327049E-24 3.54012578360E-24 1.74405434011E-24 8.51465136377E-25 4.11898075781E-25 1.97414279991E-25 9.37308416412E-26 4.40808769112E-26 2.05319240442E-26 9.47039495721E-27 4.32525975357E-27 1.95572563212E-27 8.75387988427E-28 3.87824073347E-28 1.70041283731E-28 7.37738789506E-29 3.16680980895E-29 1.34478924281E-29 5.64859431765E-30 2.34650101263E-30 9.63906365920E-31 3.91490718790E-31 1.57187722100E-31 6.23826079257E-32 2.44676707912E-32 9.48290862557E-33 3.63115818938E-33 1.37352778502E-33 5.13158570818E-34 1.89330212788E-34 6.89721790686E-35 2.48052887674E-35 8.80563539083E-36 3.08497788094E-36 1.06646432340E-36 3.63722863657E-37 1.22363254588E-37 4.05987639456E-38 1.32825133848E-38 4.28426874254E-39 1.36214866687E-39 4.26820301154E-40 1.31782816111E-40 4.00852928301E-41 1.20099800789E-41 3.54362556452E-42 1.02948020709E-42 2.94420525402E-43 8.28728506478E-44 2.29542819112E-44 6.25510229710E-45 1.67662262254E-45 4.41953149850E-46 1.14542280219E-46 2.91817692180E-47 7.30667813259E-48 1.79761250977E-48 4.34454124372E-49 1.03125552359E-49 2.40361403814E-50 5.49970732912E-51 1.23506523470E-51 2.72153225391E-52 5.88310849918E-53 5.09564607337E-07 5.22464295503E-07 5.35690540764E-07 5.49251609949E-07 5.63155979162E-07 5.77412339081E-07 5.92029600389E-07 6.07016899345E-07 6.22383603491E-07 6.38139317511E-07 6.54293889232E-07 6.70857415781E-07 6.87840249891E-07 7.05253006380E-07 7.23106568779E-07 7.41412096135E-07 7.60181029990E-07 7.79425101528E-07 7.99156338910E-07 8.19387074791E-07 8.40129954027E-07 8.61397941580E-07 8.83204330624E-07 9.05562750845E-07 9.28487176972E-07 9.51991937502E-07 9.76091723658E-07 1.00080159858E-06 1.02613700671E-06 1.05211378351E-06 1.07874816527E-06 1.10605679934E-06 1.13405675448E-06 1.16276553154E-06 1.19220107443E-06 1.22238178129E-06 1.25332651603E-06 1.28505462007E-06 1.31758592450E-06 1.35094076240E-06 1.38513998160E-06 1.42020495769E-06 1.45615760740E-06 1.49302040225E-06 1.53081638266E-06 1.56956917231E-06 1.60930299290E-06 1.65004267932E-06 1.69181369516E-06 1.73464214861E-06 1.77855480880E-06 1.82357912251E-06 1.86974323134E-06 1.91707598931E-06 1.96560698087E-06 2.01536653940E-06 2.06638576617E-06 2.11869654979E-06 2.17233158611E-06 2.22732439871E-06 2.28370935979E-06 2.34152171169E-06 2.40079758894E-06 2.46157404077E-06 2.52388905434E-06 2.58778157845E-06 2.65329154790E-06 2.72045990843E-06 2.78932864231E-06 2.85994079462E-06 2.93234050010E-06 3.00657301077E-06 3.08268472423E-06 3.16072321259E-06 3.24073725228E-06 3.32277685450E-06 3.40689329648E-06 3.49313915352E-06 3.58156833189E-06 3.67223610247E-06 3.76519913535E-06 3.86051553518E-06 3.95824487758E-06 4.05844824628E-06 4.16118827136E-06 4.26652916839E-06 4.37453677853E-06 4.48527860973E-06 4.59882387889E-06 4.71524355512E-06 4.83461040412E-06 4.95699903366E-06 5.08248594018E-06 5.21114955664E-06 5.34307030152E-06 5.47833062906E-06 5.61701508087E-06 5.75921033868E-06 5.90500527858E-06 6.05449102656E-06 6.20776101542E-06 6.36491104324E-06 6.52603933318E-06 6.69124659494E-06 6.86063608765E-06 7.03431368443E-06 7.21238793859E-06 7.39497015141E-06 7.58217444177E-06 7.77411781744E-06 7.97092024823E-06 8.17270474097E-06 8.37959741635E-06 8.59172758782E-06 8.80922784236E-06 9.03223412334E-06 9.26088581554E-06 9.49532583222E-06 9.73570070443E-06 9.98216067266E-06 1.02348597807E-05 1.04939559718E-05 1.07596111877E-05 1.10319914695E-05 1.13112670616E-05 1.15976125181E-05 1.18912068120E-05 1.21922334467E-05 1.25008805711E-05 1.28173410970E-05 1.31418128197E-05 1.34744985415E-05 1.38156061987E-05 1.41653489913E-05 1.45239455164E-05 1.48916199050E-05 1.52686019616E-05 1.56551273082E-05 1.60514375314E-05 1.64577803336E-05 1.68744096876E-05 1.73015859951E-05 1.77395762503E-05 1.81886542056E-05 1.86491005438E-05 1.91212030527E-05 1.96052568054E-05 2.01015643445E-05 2.06104358714E-05 2.11321894399E-05 2.16671511552E-05 2.22156553776E-05 2.27780449316E-05 2.33546713198E-05 2.39458949431E-05 2.45520853254E-05 2.51736213451E-05 2.58108914711E-05 2.64642940067E-05 2.71342373373E-05 2.78211401866E-05 2.85254318778E-05 2.92475526018E-05 2.99879536928E-05 3.07470979099E-05 3.15254597264E-05 3.23235256266E-05 3.31417944093E-05 3.39807775001E-05 3.48409992706E-05 3.57229973663E-05 3.66273230424E-05 3.75545415087E-05 3.85052322821E-05 3.94799895497E-05 4.04794225393E-05 4.15041559004E-05 4.25548300948E-05 4.36321017966E-05 4.47366443023E-05 4.58691479523E-05 4.70303205615E-05 4.82208878621E-05 4.94415939568E-05 5.06932017841E-05 5.19764935950E-05 5.32922714415E-05 5.46413576781E-05 5.60245954756E-05 5.74428493481E-05 5.88970056928E-05 6.03879733445E-05 6.19166841428E-05 6.34840935152E-05 6.50911810731E-05 6.67389512249E-05 6.84284338030E-05 7.01606847074E-05 7.19367865655E-05 7.37578494088E-05 7.56250113660E-05 7.75394393745E-05 7.95023299094E-05 8.15149097311E-05 8.35784366517E-05 8.56942003211E-05 8.78635230325E-05 9.00877605488E-05 9.23683029495E-05 9.47065754992E-05 9.71040395380E-05 9.95621933949E-05 1.02082573323E-04 1.04666754461E-04 1.07316351815E-04 1.10033021270E-04 1.12818460620E-04 1.15674410634E-04 1.18602656142E-04 1.21605027147E-04 1.24683399971E-04 1.27839698426E-04 1.31075895017E-04 1.34394012174E-04 1.37796123512E-04 1.41284355131E-04 1.44860886942E-04 1.48527954028E-04 1.52287848041E-04 1.56142918634E-04 1.60095574925E-04 1.64148287009E-04 1.68303587492E-04 1.72564073078E-04 1.76932406193E-04 1.81411316640E-04 1.86003603310E-04 1.90712135932E-04 1.95539856855E-04 2.00489782899E-04 2.05565007227E-04 2.10768701283E-04 2.16104116772E-04 2.21574587689E-04 2.27183532401E-04 2.32934455782E-04 2.38830951402E-04 2.44876703768E-04 2.51075490628E-04 2.57431185327E-04 2.63947759227E-04 2.70629284186E-04 2.77479935098E-04 2.84503992502E-04 2.91705845253E-04 2.99089993260E-04 3.06661050298E-04 3.14423746887E-04 3.22382933243E-04 3.30543582304E-04 3.38910792841E-04 3.47489792630E-04 3.56285941722E-04 3.65304735787E-04 3.74551809539E-04 3.84032940257E-04 3.93754051386E-04 4.03721216238E-04 4.13940661775E-04 4.24418772499E-04 4.35162094432E-04 4.46177339202E-04 4.57471388227E-04 4.69051297011E-04 4.80924299540E-04 4.93097812799E-04 5.05579441394E-04 5.18376982298E-04 5.31498429708E-04 5.44951980035E-04 5.58746037014E-04 5.72889216941E-04 5.87390354045E-04 6.02258506001E-04 6.17502959567E-04 6.33133236382E-04 6.49159098894E-04 6.65590556449E-04 6.82437871524E-04 6.99711566128E-04 7.17422428352E-04 7.35581519097E-04 7.54200178959E-04 7.73290035298E-04 7.92863009479E-04 8.12931324296E-04 8.33507511587E-04 8.54604420037E-04 8.76235223177E-04 8.98413427587E-04 9.21152881307E-04 9.44467782453E-04 9.68372688058E-04 9.92882523130E-04 1.01801258994E-03 1.04377857754E-03 1.07019657154E-03 1.09728306408E-03 1.12505496414E-03 1.15352960800E-03 1.18272477006E-03 1.21265867387E-03 1.24335000349E-03 1.27481791506E-03 1.30708204874E-03 1.34016254089E-03 1.37408003661E-03 1.40885570255E-03 1.44451124004E-03 1.48106889861E-03 1.51855148977E-03 1.55698240117E-03 1.59638561116E-03 1.63678570362E-03 1.67820788325E-03 1.72067799119E-03 1.76422252106E-03 1.80886863538E-03 1.85464418241E-03 1.90157771342E-03 1.94969850041E-03 1.99903655419E-03 2.04962264303E-03 2.10148831169E-03 2.15466590094E-03 2.20918856763E-03 2.26509030514E-03 2.32240596450E-03 2.38117127586E-03 2.44142287067E-03 2.50319830428E-03 2.56653607915E-03 2.63147566868E-03 2.69805754155E-03 2.76632318677E-03 2.83631513921E-03 2.90807700596E-03 2.98165349313E-03 3.05709043352E-03 3.13443481478E-03 3.21373480848E-03 3.29503979969E-03 3.37840041748E-03 3.46386856604E-03 3.55149745663E-03 3.64134164035E-03 3.73345704165E-03 3.82790099272E-03 3.92473226874E-03 4.02401112394E-03 4.12579932860E-03 4.23016020699E-03 4.33715867616E-03 4.44686128575E-03 4.55933625881E-03 4.67465353350E-03 4.79288480597E-03 4.91410357420E-03 5.03838518291E-03 5.16580686964E-03 5.29644781190E-03 5.43038917552E-03 5.56771416412E-03 5.70850806986E-03 5.85285832542E-03 6.00085455718E-03 6.15258863977E-03 6.30815475196E-03 6.46764943383E-03 6.63117164541E-03 6.79882282668E-03 6.97070695910E-03 7.14693062857E-03 7.32760308993E-03 7.51283633303E-03 7.70274515040E-03 7.89744720654E-03 8.09706310885E-03 8.30171648037E-03 8.51153403411E-03 8.72664564934E-03 8.94718444952E-03 9.17328688230E-03 9.40509280123E-03 9.64274554954E-03 9.88639204594E-03 1.01361828723E-02 1.03922723637E-02 1.06548187001E-02 1.09239840008E-02 1.11999344209E-02 1.14828402496E-02 1.17728760114E-02 1.20702205695E-02 1.23750572316E-02 1.26875738579E-02 1.30079629720E-02 1.33364218742E-02 1.36731527577E-02 1.40183628269E-02 1.43722644188E-02 1.47350751274E-02 1.51070179308E-02 1.54883213207E-02 1.58792194356E-02 1.62799521967E-02 1.66907654468E-02 1.71119110925E-02 1.75436472497E-02 1.79862383919E-02 1.84399555021E-02 1.89050762287E-02 1.93818850435E-02 1.98706734045E-02 2.03717399215E-02 2.08853905258E-02 2.14119386430E-02 2.19517053705E-02 2.25050196579E-02 2.30722184915E-02 2.36536470837E-02 2.42496590647E-02 2.48606166799E-02 2.54868909906E-02 2.61288620790E-02 2.67869192576E-02 2.74614612829E-02 2.81528965736E-02 2.88616434331E-02 2.95881302765E-02 3.03327958621E-02 3.10960895279E-02 3.18784714325E-02 3.26804128007E-02 3.35023961739E-02 3.43449156654E-02 3.52084772207E-02 3.60935988824E-02 3.70008110605E-02 3.79306568070E-02 3.88836920967E-02 3.98604861114E-02 4.08616215311E-02 4.18876948286E-02 4.29393165705E-02 4.40171117225E-02 4.51217199603E-02 4.62537959854E-02 4.74140098464E-02 4.86030472649E-02 4.98216099670E-02 5.10704160196E-02 5.23502001717E-02 5.36617142010E-02 5.50057272650E-02 5.63830262575E-02 5.77944161694E-02 5.92407204544E-02 6.07227813996E-02 6.22414604997E-02 6.37976388369E-02 6.53922174635E-02 6.70261177900E-02 6.87002819759E-02 7.04156733248E-02 7.21732766828E-02 7.39740988402E-02 7.58191689357E-02 7.77095388643E-02 7.96462836863E-02 8.16305020392E-02 8.36633165510E-02 8.57458742548E-02 8.78793470044E-02 9.00649318900E-02 9.23038516540E-02 9.45973551063E-02 9.69467175384E-02 9.93532411356E-02 1.01818255387E-01 1.04343117492E-01 1.06929212763E-01 1.09577955026E-01 1.12290787009E-01 1.15069180733E-01 1.17914637891E-01 1.20828690212E-01 1.23812899835E-01 1.26868859646E-01 1.29998193629E-01 1.33202557185E-01 1.36483637447E-01 1.39843153573E-01 1.43282857028E-01 1.46804531840E-01 1.50409994843E-01 1.54101095888E-01 1.57879718035E-01 1.61747777723E-01 1.65707224900E-01 1.69760043131E-01 1.73908249669E-01 1.78153895491E-01 1.82499065293E-01 1.86945877447E-01 1.91496483914E-01 1.96153070101E-01 2.00917854679E-01 2.05793089338E-01 2.10781058487E-01 2.15884078893E-01 2.21104499251E-01 2.26444699683E-01 2.31907091171E-01 2.37494114897E-01 2.43208241512E-01 2.49051970301E-01 2.55027828268E-01 2.61138369109E-01 2.67386172082E-01 2.73773840765E-01 2.80304001695E-01 2.86979302872E-01 2.93802412145E-01 3.00776015440E-01 3.07902814849E-01 3.15185526559E-01 3.22626878614E-01 3.30229608503E-01 3.37996460561E-01 3.45930183177E-01 3.54033525802E-01 3.62309235732E-01 3.70760054672E-01 3.79388715060E-01 3.88197936138E-01 3.97190419766E-01 4.06368845954E-01 4.15735868106E-01 4.25294107965E-01 4.35046150233E-01 4.44994536860E-01 4.55141760989E-01 4.65490260521E-01 4.76042411316E-01 4.86800519978E-01 4.97766816229E-01 5.08943444846E-01 5.20332457138E-01 5.31935801949E-01 5.43755316163E-01 5.55792714690E-01 5.68049579914E-01 5.80527350577E-01 5.93227310076E-01 6.06150574153E-01 6.19298077953E-01 6.32670562418E-01 6.46268560009E-01 6.60092379706E-01 6.74142091285E-01 6.88417508826E-01 7.02918173438E-01 7.17643335166E-01 7.32591934056E-01 7.47762580349E-01 7.63153533786E-01 7.78762681971E-01 7.94587517800E-01 8.10625115896E-01 8.26872108047E-01 8.43324657607E-01 8.59978432835E-01 8.76828579159E-01 8.93869690324E-01 9.11095778414E-01 9.28500242724E-01 9.46075837453E-01 9.63814638223E-01 9.81708007375E-01 9.99746558061E-01 1.01792011711E+00 1.03621768663E+00 1.05462740445E+00 1.07313650321E+00 1.09173126832E+00 1.11039699465E+00 1.12911794201E+00 1.14787728950E+00 1.16665708863E+00 1.18543821538E+00 1.20420032115E+00 1.22292178271E+00 1.24157965121E+00 1.26014960024E+00 1.27860587317E+00 1.29692122974E+00 1.31506689205E+00 1.33301249012E+00 1.35072600712E+00 1.36817372436E+00 1.38532016643E+00 1.40212804636E+00 1.41855821138E+00 1.43456958918E+00 1.45011913523E+00 1.46516178117E+00 1.47965038485E+00 1.49353568211E+00 1.50676624094E+00 1.51928841815E+00 1.53104631922E+00 1.54198176168E+00 1.55203424258E+00 1.56114091061E+00 1.56923654341E+00 1.57625353083E+00 1.58212186469E+00 1.58676913592E+00 1.59012053971E+00 1.59209888967E+00 1.59262464176E+00 1.59161592905E+00 1.58898860819E+00 1.58465631886E+00 1.57853055702E+00 1.57052076348E+00 1.56053442877E+00 1.54847721579E+00 1.53425310151E+00 1.51776453918E+00 1.49891264257E+00 1.47759739375E+00 1.45371787596E+00 1.42717253343E+00 1.39785945951E+00 1.36567671519E+00 1.33052267957E+00 1.29229643418E+00 1.25089818292E+00 1.20622970953E+00 1.15819487430E+00 1.10681325451E+00 1.05683469046E+00 1.00826775874E+00 9.61118623692E-01 9.15391052064E-01 8.71086426344E-01 8.28203756439E-01 7.86739690290E-01 7.46688524808E-01 7.08042219443E-01 6.70790415605E-01 6.34920465782E-01 6.00417476501E-01 5.67264369001E-01 5.35441960731E-01 5.04929069413E-01 4.75702639734E-01 4.47737890800E-01 4.21008480692E-01 3.95486682936E-01 3.71143568801E-01 3.47949189051E-01 3.25872749278E-01 3.04882774070E-01 2.84947256794E-01 2.66033793545E-01 2.48109701363E-01 2.31142122104E-01 2.15098114128E-01 1.99944734259E-01 1.85649112399E-01 1.72178520795E-01 1.59500439494E-01 1.47582618984E-01 1.36393140583E-01 1.25900474779E-01 1.16073537457E-01 1.06881743805E-01 9.82950596027E-02 9.02840495687E-02 8.28199224587E-02 7.58745726448E-02 6.94206179528E-02 6.34314335882E-02 5.78811820406E-02 5.27448389019E-02 4.79982145863E-02 4.36179719782E-02 3.95816400759E-02 3.58676237253E-02 3.24552095709E-02 2.93245683720E-02 2.64567538497E-02 2.38336982496E-02 2.14382048154E-02 1.92539373789E-02 1.72654072804E-02 1.54579578365E-02 1.38177465794E-02 1.23317254872E-02 1.09876194317E-02 9.77390306066E-03 8.67977633519E-03 7.69513893216E-03 6.81056372019E-03 6.01726950798E-03 5.30709325673E-03 4.67246193931E-03 4.10636421888E-03 3.60232210927E-03 3.15436276846E-03 2.75699056480E-03 2.40515954410E-03 2.09424641332E-03 1.82002414489E-03 1.57863629322E-03 1.36657210324E-03 1.18064247897E-03 1.01795686884E-03 8.75901113240E-04 7.52116289535E-04 6.44478579704E-04 5.51080176353E-04 4.70211234270E-04 4.00342866567E-04 3.40111177220E-04 2.88302315180E-04 2.43838529401E-04 2.05765198982E-04 1.73238808198E-04 1.45515832487E-04 1.21942498351E-04 1.01945377768E-04 8.50227758131E-05 7.07368689741E-05 5.87065508682E-05 4.86009417834E-05 4.01335186241E-05 3.30568223534E-05 2.71577008767E-05 2.22530464537E-05 1.81859880984E-05 1.48225010070E-05 1.20483967847E-05 9.76666009755E-06 7.89509931195E-06 6.36428067636E-06 5.11571761426E-06 4.10028871056E-06 3.27685996295E-06 2.61108881590E-06 2.07438938154E-06 1.64304006595E-06 1.29741654981E-06 1.02133471235E-06 8.01489629880E-07 6.26978222320E-07 4.88894461028E-07 3.79987288460E-07 2.94372536569E-07 2.27291168428E-07 1.74907110011E-07 1.34138790513E-07 1.02519274845E-07 7.80805562281E-08 5.92581856582E-08 4.48129540093E-08 3.37668173926E-08 2.53506726956E-08 1.89619534336E-08 1.41303314238E-08 1.04900823260E-08 7.75790748246E-09 5.71520512811E-09 4.19395495887E-09 3.06552497410E-09 2.23183180267E-09 1.61838843673E-09 1.16885915309E-09 8.40812825819E-10 6.02424967277E-10 4.29927558306E-10 3.05645680773E-10 2.16492568085E-10 1.52821164062E-10 1.07551674726E-10 7.55118012375E-11 5.29401081935E-11 3.71139425800E-11 2.58970837734E-11 1.79846156393E-11 1.24297580568E-11 8.54889036532E-12 5.85081504227E-12 3.98433802566E-12 2.69961879240E-12 1.81981850005E-12 1.22040958577E-12 8.14155204108E-13 5.40262257936E-13 3.56590094498E-13 2.34084217896E-13 1.52821269726E-13 9.92143469125E-14 6.40492347248E-14 4.11122818855E-14 2.62371315241E-14 1.66462647752E-14 1.04988333051E-14 6.58198323817E-15 4.10139177560E-15 2.53998599293E-15 1.56323172138E-15 9.56033958247E-16 5.80960633129E-16 3.50758799301E-16 2.10389244321E-16 1.25359061532E-16 7.41940131160E-17 4.36140236559E-17 2.54618745582E-17 1.47612731488E-17 8.49744388969E-18 4.85674372163E-18 2.75584843289E-18 1.55231233933E-18 8.67913459380E-19 4.81622389031E-19 2.65233723587E-19 1.44944267484E-19 7.85925643823E-20 4.22792586040E-20 2.25629358193E-20 1.19438000002E-20 6.27081375877E-21 3.26508886807E-21 1.68581745725E-21 8.63027601979E-22 4.38017060643E-22 2.20375142370E-22 1.09898531168E-22 5.43163722158E-23 2.66029932057E-23 1.29104633395E-23 6.20747278503E-24 2.95664354647E-24 1.39490015024E-24 6.51771712049E-25 3.01580819085E-25 1.38170296015E-25 6.26721661182E-26 2.81403429015E-26 1.25061510236E-26 5.50049549000E-27 2.39390757743E-27 1.03082092651E-27 4.39108150905E-28 1.85017844567E-28 7.70992706309E-29 3.17703061872E-29 1.29439313378E-29 5.21342460643E-30 2.07553348575E-30 8.16625638864E-31 3.17496521274E-31 1.21958730285E-31 4.62784956500E-32 1.73448925566E-32 6.41981961068E-33 2.34619878856E-33 8.46503264184E-34 3.01470295424E-34 1.05959963671E-34 3.67492848592E-35 1.25745753535E-35 4.24425742806E-36 1.41286199164E-36 4.63780133954E-37 1.50093782866E-37 4.78822168574E-38 1.50545792980E-38 4.66408741187E-39 1.42360096562E-39 4.28008347032E-40 1.26729109815E-40 3.69468551609E-41 1.06040369737E-41 2.99552049728E-42 8.32710861560E-43 2.27745342637E-43 6.12702259425E-44 1.62107982309E-44 4.21719188401E-45 1.07848551933E-45 2.71071622349E-46 6.69480880089E-47 1.62435556173E-47 3.87093626755E-48 9.05826285593E-49 2.08098299243E-49 4.69230612416E-50 1.03823711335E-50 2.25369991811E-51 4.79822463174E-52 1.00171530704E-52 2.05012458574E-53 4.11200320881E-54 8.08132463448E-55 1.55580916928E-55 2.93333804413E-56 5.41484276392E-57 9.78390056149E-58 1.72991075940E-58 2.99228140139E-59 5.06207196067E-60 8.37297742399E-61 1.35373699908E-61 2.13878412933E-62 3.30104784249E-63 4.97578088376E-64 7.32261134183E-65 1.05180479952E-65 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1.15069765016E-04 1.16517164333E-04 1.17982769686E-04 1.19466810079E-04 1.20969517396E-04 1.22491126437E-04 1.24031874959E-04 1.25592003703E-04 1.27171756445E-04 1.28771380023E-04 1.30391124380E-04 1.32031242606E-04 1.33691990972E-04 1.35373628971E-04 1.37076419364E-04 1.38800628214E-04 1.40546524933E-04 1.42314382318E-04 1.44104476602E-04 1.45917087490E-04 1.47752498204E-04 1.49610995532E-04 1.51492869867E-04 1.53398415254E-04 1.55327929439E-04 1.57281713912E-04 1.59260073954E-04 1.61263318687E-04 1.63291761123E-04 1.65345718208E-04 1.67425510876E-04 1.69531464099E-04 1.71663906936E-04 1.73823172583E-04 1.76009598430E-04 1.78223526109E-04 1.80465301551E-04 1.82735275035E-04 1.85033801249E-04 1.87361239341E-04 1.89717952977E-04 1.92104310397E-04 1.94520684474E-04 1.96967452768E-04 1.99444997592E-04 2.01953706065E-04 2.04493970176E-04 2.07066186847E-04 2.09670757989E-04 2.12308090570E-04 2.14978596677E-04 2.17682693580E-04 2.20420803799E-04 2.23193355167E-04 2.26000780898E-04 2.28843519657E-04 2.31722015625E-04 2.34636718571E-04 2.37588083921E-04 2.40576572829E-04 2.43602652251E-04 2.46666795015E-04 2.49769479897E-04 2.52911191696E-04 2.56092421306E-04 2.59313665800E-04 2.62575428499E-04 2.65878219059E-04 2.69222553542E-04 2.72608954506E-04 2.76037951079E-04 2.79510079044E-04 2.83025880925E-04 2.86585906069E-04 2.90190710733E-04 2.93840858172E-04 2.97536918723E-04 3.01279469900E-04 3.05069096478E-04 3.08906390590E-04 3.12791951815E-04 3.16726387276E-04 3.20710311729E-04 3.24744347666E-04 3.28829125408E-04 3.32965283202E-04 3.37153467326E-04 3.41394332185E-04 3.45688540416E-04 3.50036762990E-04 3.54439679320E-04 3.58897977361E-04 3.63412353725E-04 3.67983513782E-04 3.72612171779E-04 3.77299050942E-04 3.82044883597E-04 3.86850411280E-04 3.91716384855E-04 3.96643564630E-04 4.01632720476E-04 4.06684631947E-04 4.11800088404E-04 4.16979889134E-04 4.22224843479E-04 4.27535770962E-04 4.32913501411E-04 4.38358875095E-04 4.43872742849E-04 4.49455966211E-04 4.55109417556E-04 4.60833980231E-04 4.66630548693E-04 4.72500028650E-04 4.78443337202E-04 4.84461402985E-04 4.90555166314E-04 4.96725579330E-04 5.02973606154E-04 5.09300223028E-04 5.15706418479E-04 5.22193193462E-04 5.28761561524E-04 5.35412548963E-04 5.42147194980E-04 5.48966551851E-04 5.55871685085E-04 5.62863673595E-04 5.69943609860E-04 5.77112600105E-04 5.84371764464E-04 5.91722237163E-04 5.99165166693E-04 6.06701715988E-04 6.14333062611E-04 6.22060398936E-04 6.29884932334E-04 6.37807885359E-04 6.45830495946E-04 6.53954017596E-04 6.62179719578E-04 6.70508887124E-04 6.78942821632E-04 6.87482840867E-04 6.96130279168E-04 7.04886487656E-04 7.13752834448E-04 7.22730704863E-04 7.31821501649E-04 7.41026645191E-04 7.50347573743E-04 7.59785743646E-04 7.69342629556E-04 7.79019724678E-04 7.88818540996E-04 7.98740609510E-04 8.08787480476E-04 8.18960723646E-04 8.29261928515E-04 8.39692704568E-04 8.50254681533E-04 8.60949509635E-04 8.71778859851E-04 8.82744424176E-04 8.93847915881E-04 9.05091069787E-04 9.16475642531E-04 9.28003412842E-04 9.39676181820E-04 9.51495773216E-04 9.63464033716E-04 9.75582833230E-04 9.87854065184E-04 1.00027964682E-03 1.01286151948E-03 1.02560164893E-03 1.03850202566E-03 1.05156466519E-03 1.06479160836E-03 1.07818492173E-03 1.09174669779E-03 1.10547905538E-03 1.11938413998E-03 1.13346412404E-03 1.14772120733E-03 1.16215761729E-03 1.17677560938E-03 1.19157746739E-03 1.20656550385E-03 1.22174206038E-03 1.23710950803E-03 1.25267024766E-03 1.26842671033E-03 1.28438135767E-03 1.30053668225E-03 1.31689520801E-03 1.33345949059E-03 1.35023211779E-03 1.36721570994E-03 1.38441292033E-03 1.40182643558E-03 1.41945897613E-03 1.43731329659E-03 1.45539218624E-03 1.47369846939E-03 1.49223500589E-03 1.51100469154E-03 1.53001045854E-03 1.54925527596E-03 1.56874215020E-03 1.58847412546E-03 1.60845428420E-03 1.62868574766E-03 1.64917167628E-03 1.66991527026E-03 1.69091977002E-03 1.71218845672E-03 1.73372465278E-03 1.75553172236E-03 1.77761307193E-03 1.79997215078E-03 1.82261245154E-03 1.84553751076E-03 1.86875090944E-03 1.89225627361E-03 1.91605727483E-03 1.94015763086E-03 1.96456110617E-03 1.98927151252E-03 2.01429270962E-03 2.03962860566E-03 2.06528315797E-03 2.09126037359E-03 2.11756430993E-03 2.14419907541E-03 2.17116883004E-03 2.19847778615E-03 2.22613020897E-03 2.25413041735E-03 2.28248278438E-03 2.31119173815E-03 2.34026176233E-03 2.36969739697E-03 2.39950323914E-03 2.42968394368E-03 2.46024422391E-03 2.49118885235E-03 2.52252266150E-03 2.55425054456E-03 2.58637745618E-03 2.61890841328E-03 2.65184849577E-03 2.68520284739E-03 2.71897667648E-03 2.75317525679E-03 2.78780392831E-03 2.82286809810E-03 2.85837324111E-03 2.89432490107E-03 2.93072869130E-03 2.96759029562E-03 3.00491546920E-03 3.04271003950E-03 3.08097990712E-03 3.11973104675E-03 3.15896950810E-03 3.19870141679E-03 3.23893297537E-03 3.27967046423E-03 3.32092024258E-03 3.36268874945E-03 3.40498250470E-03 3.44780810998E-03 3.49117224979E-03 3.53508169252E-03 3.57954329147E-03 3.62456398594E-03 3.67015080226E-03 3.71631085492E-03 3.76305134767E-03 3.81037957459E-03 3.85830292124E-03 3.90682886583E-03 3.95596498032E-03 4.00571893164E-03 4.05609848284E-03 4.10711149430E-03 4.15876592492E-03 4.21106983339E-03 4.26403137940E-03 4.31765882491E-03 4.37196053540E-03 4.42694498119E-03 4.48262073872E-03 4.53899649188E-03 4.59608103334E-03 4.65388326589E-03 4.71241220385E-03 4.77167697441E-03 4.83168681902E-03 4.89245109487E-03 4.95397927628E-03 5.01628095613E-03 5.07936584739E-03 5.14324378458E-03 5.20792472523E-03 5.27341875150E-03 5.33973607161E-03 5.40688702150E-03 5.47488206633E-03 5.54373180212E-03 5.61344695737E-03 5.68403839466E-03 5.75551711234E-03 5.82789424616E-03 5.90118107104E-03 5.97538900270E-03 6.05052959943E-03 6.12661456387E-03 6.20365574475E-03 6.28166513867E-03 6.36065489198E-03 6.44063730256E-03 6.52162482170E-03 6.60363005599E-03 6.68666576919E-03 6.77074488421E-03 6.85588048500E-03 6.94208581856E-03 7.02937429690E-03 7.11775949908E-03 7.20725517325E-03 7.29787523867E-03 7.38963378786E-03 7.48254508864E-03 7.57662358631E-03 7.67188390579E-03 7.76834085381E-03 7.86600942107E-03 7.96490478455E-03 8.06504230968E-03 8.16643755269E-03 8.26910626284E-03 8.37306438483E-03 8.47832806110E-03 8.58491363423E-03 8.69283764932E-03 8.80211685649E-03 8.91276821326E-03 9.02480888708E-03 9.13825625784E-03 9.25312792039E-03 9.36944168713E-03 9.48721559057E-03 9.60646788599E-03 9.72721705406E-03 9.84948180350E-03 9.97328107384E-03 1.00986340381E-02 1.02255601055E-02 1.03540789245E-02 1.04842103851E-02 1.06159746222E-02 1.07493920184E-02 1.08844832065E-02 1.10212690729E-02 1.11597707602E-02 1.13000096704E-02 1.14420074678E-02 1.15857860823E-02 1.17313677118E-02 1.18787748263E-02 1.20280301700E-02 1.21791567653E-02 1.23321779152E-02 1.24871172074E-02 1.26439985167E-02 1.28028460087E-02 1.29636841431E-02 1.31265376769E-02 1.32914316678E-02 1.34583914775E-02 1.36274427753E-02 1.37986115412E-02 1.39719240698E-02 1.41474069733E-02 1.43250871855E-02 1.45049919650E-02 1.46871488988E-02 1.48715859059E-02 1.50583312411E-02 1.52474134985E-02 1.54388616151E-02 1.56327048744E-02 1.58289729104E-02 1.60276957113E-02 1.62289036229E-02 1.64326273527E-02 1.66388979735E-02 1.68477469275E-02 1.70592060298E-02 1.72733074725E-02 1.74900838282E-02 1.77095680544E-02 1.79317934970E-02 1.81567938946E-02 1.83846033817E-02 1.86152564936E-02 1.88487881695E-02 1.90852337571E-02 1.93246290161E-02 1.95670101224E-02 1.98124136721E-02 2.00608766853E-02 2.03124366105E-02 2.05671313280E-02 2.08249991542E-02 2.10860788458E-02 2.13504096033E-02 2.16180310753E-02 2.18889833626E-02 2.21633070215E-02 2.24410430686E-02 2.27222329840E-02 2.30069187157E-02 2.32951426832E-02 2.35869477814E-02 2.38823773846E-02 2.41814753502E-02 2.44842860224E-02 2.47908542361E-02 2.51012253203E-02 2.54154451024E-02 2.57335599110E-02 2.60556165800E-02 2.63816624521E-02 2.67117453821E-02 2.70459137402E-02 2.73842164157E-02 2.77267028200E-02 2.80734228896E-02 2.84244270898E-02 2.87797664173E-02 2.91394924032E-02 2.95036571159E-02 2.98723131639E-02 3.02455136983E-02 3.06233124158E-02 3.10057635603E-02 3.13929219261E-02 3.17848428594E-02 3.21815822610E-02 3.25831965874E-02 3.29897428534E-02 3.34012786330E-02 3.38178620615E-02 3.42395518361E-02 3.46664072178E-02 3.50984880314E-02 3.55358546672E-02 3.59785680807E-02 3.64266897935E-02 3.68802818933E-02 3.73394070334E-02 3.78041284331E-02 3.82745098762E-02 3.87506157110E-02 3.92325108489E-02 3.97202607629E-02 4.02139314859E-02 4.07135896094E-02 4.12193022804E-02 4.17311371995E-02 4.22491626179E-02 4.27734473342E-02 4.33040606906E-02 4.38410725697E-02 4.43845533897E-02 4.49345740999E-02 4.54912061761E-02 4.60545216150E-02 4.66245929281E-02 4.72014931364E-02 4.77852957630E-02 4.83760748264E-02 4.89739048334E-02 4.95788607707E-02 5.01910180969E-02 5.08104527333E-02 5.14372410554E-02 5.20714598825E-02 5.27131864675E-02 5.33624984867E-02 5.40194740281E-02 5.46841915800E-02 5.53567300186E-02 5.60371685955E-02 5.67255869243E-02 5.74220649672E-02 5.81266830206E-02 5.88395217002E-02 5.95606619264E-02 6.02901849081E-02 6.10281721267E-02 6.17747053198E-02 6.25298664638E-02 6.32937377563E-02 6.40664015988E-02 6.48479405780E-02 6.56384374469E-02 6.64379751066E-02 6.72466365862E-02 6.80645050238E-02 6.88916636465E-02 6.97281957506E-02 7.05741846814E-02 7.14297138130E-02 7.22948665286E-02 7.31697262000E-02 7.40543761679E-02 7.49488997221E-02 7.58533800822E-02 7.67679003789E-02 7.76925436351E-02 7.86273927488E-02 7.95725304754E-02 8.05280394122E-02 8.14940019834E-02 8.24705004259E-02 8.34576167775E-02 8.44554328658E-02 8.54640302995E-02 8.64834904614E-02 8.75138945035E-02 8.85553233453E-02 8.96078576744E-02 9.06715779496E-02 9.17465644089E-02 9.28328970796E-02 9.39306557936E-02 9.50399202064E-02 9.61607698215E-02 9.72932840200E-02 9.84375420954E-02 9.95936232953E-02 1.00761606869E-01 1.01941572125E-01 1.03133598490E-01 1.04337765586E-01 1.05554153307E-01 1.06782841912E-01 1.08023912125E-01 1.09277445249E-01 1.10543523288E-01 1.11822229089E-01 1.13113646488E-01 1.14417860483E-01 1.15734957409E-01 1.17065025142E-01 1.18408153315E-01 1.19764433553E-01 1.21133959730E-01 1.22516828246E-01 1.23913138329E-01 1.25322992360E-01 1.26746496222E-01 1.28183759679E-01 1.29634896781E-01 1.31100026304E-01 1.32579272214E-01 1.34072764170E-01 1.35580638065E-01 1.37103036595E-01 1.38640109878E-01 1.40192016102E-01 1.41758922229E-01 1.43341004732E-01 1.44938450386E-01 1.46551457105E-01 1.48180234831E-01 1.49825006475E-01 1.51486008917E-01 1.53163494055E-01 1.54857729921E-01 1.56569001855E-01 1.58297613744E-01 1.60043889323E-01 1.61808173546E-01 1.63590834025E-01 1.65392262540E-01 1.67212876616E-01 1.69053121181E-01 1.70913470297E-01 1.72794428955E-01 1.74696534964E-01 1.76620360900E-01 1.78566516142E-01 1.80535648977E-01 1.82528448781E-01 1.84545648278E-01 1.86588025864E-01 1.88656408002E-01 1.90751671689E-01 1.92874746975E-01 1.95026619544E-01 1.97208333351E-01 1.99420993293E-01 2.01665767933E-01 2.03943892235E-01 2.06256670334E-01 2.08605478303E-01 2.10991766922E-01 2.13417064420E-01 2.15882979191E-01 2.18391202448E-01 2.20943510815E-01 2.23541768816E-01 2.26187931254E-01 2.28884045444E-01 2.31632253278E-01 2.34434793086E-01 2.37294001265E-01 2.40212313643E-01 2.43192266528E-01 2.46236497417E-01 2.49347745310E-01 2.52528850582E-01 2.55782754378E-01 2.59112497457E-01 2.62521218449E-01 2.66012151458E-01 2.69588622948E-01 2.73254047855E-01 2.77011924863E-01 2.80865830758E-01 2.84819413812E-01 2.88876386117E-01 2.93040514787E-01 2.97315611980E-01 3.01705523636E-01 3.06214116884E-01 3.10845266039E-01 3.15602837112E-01 3.20490670785E-01 3.25512563771E-01 3.30672248529E-01 3.35973371252E-01 3.41419468129E-01 3.47013939815E-01 3.52760024121E-01 3.58660766901E-01 3.64718991163E-01 3.70937264432E-01 3.77317864408E-01 3.83862743019E-01 3.90573488940E-01 3.97451288742E-01 4.04496886801E-01 4.11710544198E-01 4.19091996808E-01 4.26640412890E-01 4.34354350465E-01 4.42231714859E-01 4.50269716833E-01 4.58464831730E-01 4.66812760190E-01 4.75308390973E-01 4.83945766522E-01 4.92718051940E-01 5.01617508108E-01 5.10635469728E-01 5.19762329115E-01 5.28987526613E-01 5.38299548556E-01 5.47685933711E-01 5.57133289177E-01 5.66627316718E-01 5.76152850521E-01 5.85693907339E-01 5.95233749950E-01 6.04754964830E-01 6.14239554827E-01 6.23669047559E-01 6.33024620112E-01 6.42287240451E-01 6.51437825796E-01 6.60457417946E-01 6.69327375324E-01 6.78029581170E-01 6.86546667006E-01 6.94862250105E-01 7.02962468241E-01 7.10839583673E-01 7.18487382497E-01 7.25899782025E-01 7.33070838343E-01 7.39994754324E-01 7.46665887993E-01 7.53078761206E-01 7.59228068545E-01 7.65108686345E-01 7.70715681797E-01 7.76044322020E-01 7.81090083063E-01 7.85848658739E-01 7.90315969256E-01 7.94488169575E-01 7.98361657460E-01 8.01933081159E-01 8.05199346709E-01 8.08157624806E-01 8.10805357231E-01 8.13140262813E-01 8.15160342905E-01 8.16863886362E-01 8.18249474015E-01 8.19315982630E-01 8.20062588350E-01 8.20488769608E-01 8.20594309532E-01 8.20379297808E-01 8.19844132033E-01 8.18989518542E-01 8.17816472724E-01 8.16326318814E-01 8.14520689188E-01 8.12401523146E-01 8.09971065204E-01 8.07231862895E-01 8.04186764087E-01 8.00838913826E-01 7.97191750719E-01 7.93249002859E-01 7.89014683304E-01 7.84493085128E-01 7.79688776044E-01 7.74606592618E-01 7.69251634090E-01 7.63629255802E-01 7.57745062264E-01 7.51604899850E-01 7.45214849164E-01 7.38581217062E-01 7.31710528367E-01 7.24609517276E-01 7.17285118488E-01 7.09744458044E-01 7.01994843921E-01 6.94043756375E-01 6.85898838048E-01 6.77567883861E-01 6.69058830699E-01 6.60379746901E-01 6.51538821577E-01 6.42544353740E-01 6.33404741295E-01 6.24122629465E-01 6.14712347362E-01 6.05182521066E-01 5.95541829920E-01 5.85798994886E-01 5.75962766808E-01 5.66041914599E-01 5.56045213350E-01 5.45981432401E-01 5.35859323364E-01 5.25687608129E-01 5.15474966861E-01 5.05230026011E-01 4.94961346363E-01 4.84677411134E-01 4.74386614159E-01 4.64097248179E-01 4.53817493274E-01 4.43555405459E-01 4.33318905483E-01 4.23115767867E-01 4.12953610219E-01 4.02839882858E-01 3.92781858788E-01 3.82786624069E-01 3.72861068616E-01 3.63011877460E-01 3.53245522530E-01 3.43568254955E-01 3.33986097963E-01 3.24504840363E-01 3.15130030669E-01 3.05866971872E-01 2.96720716881E-01 2.87696064647E-01 2.78797556977E-01 2.70029476041E-01 2.61395842576E-01 2.52900414766E-01 2.44546687804E-01 2.36337894110E-01 2.28277004179E-01 2.20366728055E-01 2.12609517381E-01 2.05007568009E-01 1.97562823136E-01 1.90276976923E-01 1.83151478573E-01 1.76187536826E-01 1.69386124829E-01 1.62747985354E-01 1.56273636322E-01 1.49963376599E-01 1.43817292029E-01 1.37835261667E-01 1.32016964199E-01 1.26361884493E-01 1.20869320280E-01 1.15538388920E-01 1.10368034247E-01 1.05357033468E-01 1.00504004086E-01 9.58074108614E-02 9.12655727622E-02 8.68766699250E-02 8.26387505971E-02 7.85497380611E-02 7.46074375355E-02 7.08095430459E-02 6.71536442654E-02 6.36372333203E-02 6.02577115609E-02 5.70123962954E-02 5.38985274866E-02 5.09132744087E-02 4.80537422646E-02 4.53169787599E-02 4.26999806309E-02 4.01997001242E-02 3.78130514207E-02 3.55369170000E-02 3.33681539371E-02 3.13036001232E-02 2.93400804011E-02 2.74744126047E-02 2.57034134913E-02 2.40239045531E-02 2.24327176960E-02 2.09267007717E-02 1.95027229479E-02 1.81576799035E-02 1.68884988346E-02 1.56921432561E-02 1.45656175866E-02 1.35059715037E-02 1.25103040569E-02 1.15757675277E-02 1.06995710276E-02 9.87898382430E-03 9.11133839055E-03 8.39403316876E-03 7.72453504845E-03 7.10038155358E-03 6.51918273934E-03 5.97862279918E-03 5.47646138459E-03 5.01053464172E-03 4.57875597029E-03 4.17911651183E-03 3.80968537529E-03 3.46860960980E-03 3.15411393480E-03 2.86450023933E-03 2.59814686278E-03 2.35350767023E-03 2.12911093619E-03 1.92355805095E-03 1.73552206406E-03 1.56374607979E-03 1.40704151963E-03 1.26428626644E-03 1.13442270548E-03 1.01645567651E-03 9.09450351664E-04 8.12530052706E-04 7.24874021352E-04 6.45715155475E-04 5.74337723569E-04 5.10075069187E-04 4.52307316351E-04 4.00459086230E-04 3.53997234652E-04 3.12428619227E-04 2.75297904089E-04 2.42185409495E-04 2.12705012743E-04 1.86502106085E-04 1.63251616569E-04 1.42656092037E-04 1.24443856730E-04 1.08367239358E-04 9.42008757536E-05 8.17400876994E-05 7.07993388667E-05 6.12107683229E-05 5.28228015333E-05 4.54988383426E-05 3.91160170022E-05 3.35640529391E-05 2.87441506317E-05 2.45679866675E-05 2.09567618084E-05 1.78403196796E-05 1.51563295203E-05 1.28495302981E-05 1.08710333806E-05 9.17768088352E-06 7.73145676579E-06 6.49894772308E-06 5.45085093231E-06 4.56152572562E-06 3.80860208751E-06 3.17273602539E-06 2.63696751247E-06 2.18658192504E-06 1.80885783042E-06 1.49282320007E-06 1.22903766584E-06 1.00939854794E-06 8.26968517989E-07 6.75822894870E-07 5.50914704572E-07 4.47955766009E-07 3.63312193291E-07 2.93912829493E-07 2.37169247559E-07 1.90906070117E-07 1.53296462894E-07 1.22778012264E-07 9.80847942213E-08 7.81681441933E-08 6.21588373172E-08 4.93390138838E-08 3.91182824881E-08 3.10134953007E-08 2.45139338531E-08 1.93174714898E-08 1.51756022504E-08 1.18845618763E-08 9.27779966508E-09 7.21961688213E-09 5.59980901382E-09 4.32916876332E-09 3.33572443726E-09 2.56160435326E-09 1.96043222093E-09 1.49517122367E-09 1.13634587145E-09 8.60580718028E-10 6.49403853969E-10 4.88270807955E-10 3.65771219263E-10 2.72986484332E-10 2.02971624633E-10 1.50338960431E-10 1.10924887437E-10 8.15242164842E-11 5.96792191343E-11 4.35127870850E-11 3.15970167009E-11 2.28501222428E-11 1.64559071484E-11 1.18011214714E-11 8.42693993915E-12 5.99153920808E-12 4.24136093431E-12 2.98914174990E-12 2.09719142545E-12 1.46472282129E-12 1.01829556869E-12 7.04641466897E-13 4.85303102999E-13 3.32646330785E-13 2.26908701504E-13 1.54025251022E-13 1.04034730534E-13 6.99170930232E-14 4.67497811795E-14 3.10984874805E-14 2.05794768280E-14 1.35467878743E-14 8.86985395700E-15 5.77624471974E-15 3.74105546484E-15 2.40952954380E-15 1.54322635794E-15 9.82778434276E-16 6.22270434238E-16 3.91713773965E-16 2.45127939069E-16 1.52482093562E-16 9.42788552746E-17 5.79356824885E-17 3.53818762894E-17 2.14725988060E-17 1.29486073973E-17 7.75820896931E-18 4.61811406686E-18 2.73084457731E-18 1.60406654387E-18 9.35845847542E-19 5.42257795595E-19 3.12024994975E-19 1.78285955310E-19 1.01146449461E-19 5.69706305785E-20 3.18550951847E-20 1.76804946399E-20 9.73995975899E-21 5.32508173903E-21 2.88908527305E-21 1.55531187974E-21 8.30721054519E-22 4.40180262201E-22 2.31366250264E-22 1.20620042603E-22 6.23654913653E-23 3.19763901573E-23 1.62565723054E-23 8.19401311180E-24 4.09435545666E-24 2.02790750797E-24 9.95488735483E-25 4.84285489845E-25 2.33450142161E-25 1.11497329608E-25 5.27547849234E-26 2.47249321561E-26 1.14771054153E-26 5.27595568941E-27 2.40153129865E-27 1.08228059683E-27 4.82838056432E-28 2.13215079430E-28 9.31822626294E-29 4.02986877408E-29 1.72438234578E-29 7.29966979359E-30 3.05661744605E-30 1.26586586460E-30 5.18421223754E-31 2.09925567556E-31 8.40375933716E-32 3.32540876072E-32 1.30051776725E-32 5.02600867366E-33 1.91911468670E-33 7.23908405017E-34 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8.05223154394E-08 8.25607474106E-08 8.46507825252E-08 8.67937271226E-08 8.89909206124E-08 9.12437363113E-08 9.35535823018E-08 9.59219023121E-08 9.83501766186E-08 1.00839922971E-07 1.03392697541E-07 1.06010095895E-07 1.08693753991E-07 1.11445349203E-07 1.14266601364E-07 1.17159273850E-07 1.20125174672E-07 1.23166157616E-07 1.26284123392E-07 1.29481020830E-07 1.32758848092E-07 1.36119653928E-07 1.39565538947E-07 1.43098656939E-07 1.46721216216E-07 1.50435480993E-07 1.54243772806E-07 1.58148471958E-07 1.62152019012E-07 1.66256916313E-07 1.70465729552E-07 1.74781089374E-07 1.79205693015E-07 1.83742305995E-07 1.88393763841E-07 1.93162973863E-07 1.98052916970E-07 2.03066649533E-07 2.08207305293E-07 2.13478097324E-07 2.18882320041E-07 2.24423351252E-07 2.30104654281E-07 2.35929780121E-07 2.41902369661E-07 2.48026155960E-07 2.54304966578E-07 2.60742725971E-07 2.67343457943E-07 2.74111288160E-07 2.81050446731E-07 2.88165270848E-07 2.95460207503E-07 3.02939816260E-07 3.10608772112E-07 3.18471868397E-07 3.26534019799E-07 3.34800265415E-07 3.43275771910E-07 3.51965836742E-07 3.60875891473E-07 3.70011505167E-07 3.79378387870E-07 3.88982394176E-07 3.98829526890E-07 4.08925940776E-07 4.19277946410E-07 4.29892014117E-07 4.40774778020E-07 4.51933040185E-07 4.63373774872E-07 4.75104132896E-07 4.87131446094E-07 4.99463231910E-07 5.12107198089E-07 5.25071247503E-07 5.38363483080E-07 5.51992212878E-07 5.65965955273E-07 5.80293444280E-07 5.94983635022E-07 6.10045709315E-07 6.25489081417E-07 6.41323403907E-07 6.57558573717E-07 6.74204738324E-07 6.91272302083E-07 7.08771932741E-07 7.26714568095E-07 7.45111422833E-07 7.63973995543E-07 7.83314075901E-07 8.03143752035E-07 8.23475418088E-07 8.44321781957E-07 8.65695873241E-07 8.87611051381E-07 9.10081014013E-07 9.33119805529E-07 9.56741825853E-07 9.80961839442E-07 1.00579498452E-06 1.03125678251E-06 1.05736314781E-06 1.08413039763E-06 1.11157526229E-06 1.13971489562E-06 1.16856688570E-06 1.19814926586E-06 1.22848052593E-06 1.25957962381E-06 1.29146599732E-06 1.32415957635E-06 1.35768079531E-06 1.39205060590E-06 1.42729049022E-06 1.46342247417E-06 1.50046914124E-06 1.53845364664E-06 1.57739973171E-06 1.61733173883E-06 1.65827462659E-06 1.70025398540E-06 1.74329605350E-06 1.78742773334E-06 1.83267660838E-06 1.87907096039E-06 1.92663978705E-06 1.97541282013E-06 2.02542054404E-06 2.07669421491E-06 2.12926588011E-06 2.18316839826E-06 2.23843545981E-06 2.29510160806E-06 2.35320226078E-06 2.41277373232E-06 2.47385325632E-06 2.53647900896E-06 2.60069013287E-06 2.66652676153E-06 2.73403004441E-06 2.80324217265E-06 2.87420640545E-06 2.94696709709E-06 3.02156972467E-06 3.09806091652E-06 3.17648848135E-06 3.25690143813E-06 3.33935004670E-06 3.42388583923E-06 3.51056165240E-06 3.59943166040E-06 3.69055140884E-06 3.78397784942E-06 3.87976937555E-06 3.97798585884E-06 4.07868868649E-06 4.18194079970E-06 4.28780673300E-06 4.39635265455E-06 4.50764640751E-06 4.62175755245E-06 4.73875741083E-06 4.85871910955E-06 4.98171762667E-06 5.10782983824E-06 5.23713456639E-06 5.36971262857E-06 5.50564688803E-06 5.64502230568E-06 5.78792599309E-06 5.93444726700E-06 6.08467770514E-06 6.23871120341E-06 6.39664403462E-06 6.55857490860E-06 6.72460503394E-06 6.89483818121E-06 7.06938074782E-06 7.24834182451E-06 7.43183326351E-06 7.61996974848E-06 7.81286886613E-06 8.01065117975E-06 8.21344030453E-06 8.42136298480E-06 8.63454917326E-06 8.85313211218E-06 9.07724841667E-06 9.30703816002E-06 9.54264496130E-06 9.78421607505E-06 1.00319024833E-05 1.02858589900E-05 1.05462443177E-05 1.08132212066E-05 1.10869565165E-05 1.13676213309E-05 1.16553910641E-05 1.19504455704E-05 1.22529692569E-05 1.25631511988E-05 1.28811852569E-05 1.32072701994E-05 1.35416098260E-05 1.38844130949E-05 1.42358942538E-05 1.45962729733E-05 1.49657744846E-05 1.53446297201E-05 1.57330754576E-05 1.61313544681E-05 1.65397156680E-05 1.69584142742E-05 1.73877119637E-05 1.78278770368E-05 1.82791845855E-05 1.87419166645E-05 1.92163624680E-05 1.97028185102E-05 2.02015888104E-05 2.07129850834E-05 2.12373269335E-05 2.17749420551E-05 2.23261664366E-05 2.28913445709E-05 2.34708296702E-05 2.40649838869E-05 2.46741785400E-05 2.52987943464E-05 2.59392216596E-05 2.65958607131E-05 2.72691218702E-05 2.79594258808E-05 2.86672041442E-05 2.93928989781E-05 3.01369638956E-05 3.08998638877E-05 3.16820757145E-05 3.24840882025E-05 3.33064025502E-05 3.41495326408E-05 3.50140053637E-05 3.59003609431E-05 3.68091532758E-05 3.77409502766E-05 3.86963342338E-05 3.96759021720E-05 4.06802662256E-05 4.17100540206E-05 4.27659090672E-05 4.38484911608E-05 4.49584767948E-05 4.60965595825E-05 4.72634506907E-05 4.84598792831E-05 4.96865929765E-05 5.09443583068E-05 5.22339612079E-05 5.35562075028E-05 5.49119234059E-05 5.63019560395E-05 5.77271739626E-05 5.91884677126E-05 6.06867503620E-05 6.22229580877E-05 6.37980507561E-05 6.54130125215E-05 6.70688524409E-05 6.87666051038E-05 7.05073312778E-05 7.22921185706E-05 7.41220821090E-05 7.59983652347E-05 7.79221402178E-05 7.98946089884E-05 8.19170038865E-05 8.39905884312E-05 8.61166581087E-05 8.82965411811E-05 9.05315995147E-05 9.28232294296E-05 9.51728625712E-05 9.75819668028E-05 1.00052047122E-04 1.02584646597E-04 1.05181347334E-04 1.07843771459E-04 1.10573582131E-04 1.13372484580E-04 1.16242227170E-04 1.19184602489E-04 1.22201448466E-04 1.25294649520E-04 1.28466137728E-04 1.31717894039E-04 1.35051949499E-04 1.38470386524E-04 1.41975340197E-04 1.45568999592E-04 1.49253609149E-04 1.53031470064E-04 1.56904941725E-04 1.60876443184E-04 1.64948454661E-04 1.69123519094E-04 1.73404243715E-04 1.77793301681E-04 1.82293433736E-04 1.86907449916E-04 1.91638231302E-04 1.96488731812E-04 2.01461980037E-04 2.06561081134E-04 2.11789218749E-04 2.17149657005E-04 2.22645742531E-04 2.28280906543E-04 2.34058666982E-04 2.39982630698E-04 2.46056495695E-04 2.52284053433E-04 2.58669191182E-04 2.65215894442E-04 2.71928249417E-04 2.78810445558E-04 2.85866778165E-04 2.93101651056E-04 3.00519579303E-04 3.08125192037E-04 3.15923235323E-04 3.23918575109E-04 3.32116200243E-04 3.40521225572E-04 3.49138895120E-04 3.57974585337E-04 3.67033808436E-04 3.76322215817E-04 3.85845601564E-04 3.95609906047E-04 4.05621219595E-04 4.15885786281E-04 4.26410007783E-04 4.37200447356E-04 4.48263833895E-04 4.59607066100E-04 4.71237216753E-04 4.83161537090E-04 4.95387461295E-04 5.07922611090E-04 5.20774800459E-04 5.33952040473E-04 5.47462544247E-04 5.61314732012E-04 5.75517236319E-04 5.90078907371E-04 6.05008818488E-04 6.20316271708E-04 6.36010803525E-04 6.52102190775E-04 6.68600456661E-04 6.85515876936E-04 7.02858986234E-04 7.20640584557E-04 7.38871743931E-04 7.57563815214E-04 7.76728435088E-04 7.96377533212E-04 8.16523339555E-04 8.37178391919E-04 8.58355543632E-04 8.80067971447E-04 9.02329183626E-04 9.25153028227E-04 9.48553701597E-04 9.72545757069E-04 9.97144113879E-04 1.02236406630E-03 1.04822129300E-03 1.07473186664E-03 1.10191226366E-03 1.12977937442E-03 1.15835051342E-03 1.18764342994E-03 1.21767631882E-03 1.24846783157E-03 1.28003708772E-03 1.31240368644E-03 1.34558771849E-03 1.37960977842E-03 1.41449097707E-03 1.45025295438E-03 1.48691789251E-03 1.52450852931E-03 1.56304817206E-03 1.60256071155E-03 1.64307063657E-03 1.68460304867E-03 1.72718367730E-03 1.77083889534E-03 1.81559573497E-03 1.86148190394E-03 1.90852580223E-03 1.95675653907E-03 2.00620395047E-03 2.05689861703E-03 2.10887188227E-03 2.16215587140E-03 2.21678351045E-03 2.27278854594E-03 2.33020556501E-03 2.38907001594E-03 2.44941822928E-03 2.51128743937E-03 2.57471580641E-03 2.63974243908E-03 2.70640741760E-03 2.77475181746E-03 2.84481773353E-03 2.91664830491E-03 2.99028774022E-03 3.06578134355E-03 3.14317554100E-03 3.22251790777E-03 3.30385719595E-03 3.38724336292E-03 3.47272760037E-03 3.56036236402E-03 3.65020140397E-03 3.74229979579E-03 3.83671397229E-03 3.93350175593E-03 4.03272239210E-03 4.13443658303E-03 4.23870652247E-03 4.34559593119E-03 4.45517009318E-03 4.56749589275E-03 4.68264185232E-03 4.80067817114E-03 4.92167676479E-03 5.04571130552E-03 5.17285726354E-03 5.30319194907E-03 5.43679455537E-03 5.57374620268E-03 5.71412998301E-03 5.85803100594E-03 6.00553644536E-03 6.15673558713E-03 6.31171987775E-03 6.47058297403E-03 6.63342079374E-03 6.80033156728E-03 6.97141589041E-03 7.14677677798E-03 7.32651971871E-03 7.51075273112E-03 7.69958642039E-03 7.89313403645E-03 8.09151153308E-03 8.29483762813E-03 8.50323386488E-03 8.71682467451E-03 8.93573743968E-03 9.16010255926E-03 9.39005351422E-03 9.62572693464E-03 9.86726266789E-03 1.01148038479E-02 1.03684969658E-02 1.06284919412E-02 1.08949421953E-02 1.11680047249E-02 1.14478401770E-02 1.17346129254E-02 1.20284911479E-02 1.23296469048E-02 1.26382562184E-02 1.29544991539E-02 1.32785599007E-02 1.36106268555E-02 1.39508927060E-02 1.42995545161E-02 1.46568138110E-02 1.50228766646E-02 1.53979537871E-02 1.57822606132E-02 1.61760173921E-02 1.65794492771E-02 1.69927864171E-02 1.74162640478E-02 1.78501225845E-02 1.82946077145E-02 1.87499704907E-02 1.92164674253E-02 1.96943605843E-02 2.01839176814E-02 2.06854121730E-02 2.11991233528E-02 2.17253364464E-02 2.22643427060E-02 2.28164395046E-02 2.33819304298E-02 2.39611253777E-02 2.45543406449E-02 2.51618990210E-02 2.57841298796E-02 2.64213692678E-02 2.70739599951E-02 2.77422517202E-02 2.84266010363E-02 2.91273715548E-02 2.98449339860E-02 3.05796662186E-02 3.13319533953E-02 3.21021879866E-02 3.28907698604E-02 3.36981063492E-02 3.45246123125E-02 3.53707101959E-02 3.62368300849E-02 3.71234097549E-02 3.80308947152E-02 3.89597382479E-02 3.99104014404E-02 4.08833532119E-02 4.18790703329E-02 4.28980374373E-02 4.39407470266E-02 4.50076994662E-02 4.60994029721E-02 4.72163735893E-02 4.83591351587E-02 4.95282192752E-02 5.07241652331E-02 5.19475199602E-02 5.31988379398E-02 5.44786811189E-02 5.57876188027E-02 5.71262275346E-02 5.84950909604E-02 5.98947996767E-02 6.13259510621E-02 6.27891490902E-02 6.42850041246E-02 6.58141326938E-02 6.73771572455E-02 6.89747058797E-02 7.06074120596E-02 7.22759142981E-02 7.39808558217E-02 7.57228842072E-02 7.75026509933E-02 7.93208112640E-02 8.11780232038E-02 8.30749476238E-02 8.50122474559E-02 8.69905872168E-02 8.90106324383E-02 9.10730490638E-02 9.31785028104E-02 9.53276584942E-02 9.75211793193E-02 9.97597261287E-02 1.02043956615E-01 1.04374524493E-01 1.06752078630E-01 1.09177262133E-01 1.11650711398E-01 1.14173055108E-01 1.16744913196E-01 1.19366895753E-01 1.22039601903E-01 1.24763618618E-01 1.27539519499E-01 1.30367863504E-01 1.33249193629E-01 1.36184035549E-01 1.39172896203E-01 1.42216262345E-01 1.45314599037E-01 1.48468348107E-01 1.51677926561E-01 1.54943724950E-01 1.58266105699E-01 1.61645401397E-01 1.65081913048E-01 1.68575908293E-01 1.72127619591E-01 1.75737242379E-01 1.79404933206E-01 1.83130807839E-01 1.86914939362E-01 1.90757356255E-01 1.94658040466E-01 1.98616925485E-01 2.02633894422E-01 2.06708778090E-01 2.10841353115E-01 2.15031340064E-01 2.19278401611E-01 2.23582140747E-01 2.27942099036E-01 2.32357754942E-01 2.36828522219E-01 2.41353748391E-01 2.45932713326E-01 2.50564627914E-01 2.55248632870E-01 2.59983797667E-01 2.64769119613E-01 2.69603523098E-01 2.74485859007E-01 2.79414904327E-01 2.84389361959E-01 2.89407860754E-01 2.94468955777E-01 2.99571128831E-01 3.04712789239E-01 3.09892274918E-01 3.15107853738E-01 3.20357725201E-01 3.25640022437E-01 3.30952814546E-01 3.36294109274E-01 3.41661856065E-01 3.47053949465E-01 3.52468232915E-01 3.57902502913E-01 3.63354513570E-01 3.68821981541E-01 3.74302591346E-01 3.79794001062E-01 3.85293848392E-01 3.90799757085E-01 3.96309343697E-01 4.01820224680E-01 4.07330023761E-01 4.12836379590E-01 4.18336953629E-01 4.23829438222E-01 4.29311564826E-01 4.34781112336E-01 4.40235915450E-01 4.45673873019E-01 4.51092956306E-01 4.56491217087E-01 4.61866795502E-01 4.67217927589E-01 4.72542952395E-01 4.77840318572E-01 4.83108590356E-01 4.88346452831E-01 4.93552716356E-01 4.98726320053E-01 5.03866334234E-01 5.08971961656E-01 5.14042537478E-01 5.19077527811E-01 5.24076526734E-01 5.29039251671E-01 5.33965537001E-01 5.38855325806E-01 5.43708659639E-01 5.48525666215E-01 5.53306544925E-01 5.58051550085E-01 5.62760971826E-01 5.67435114543E-01 5.72074272826E-01 5.76678704785E-01 5.81248602702E-01 5.85784060911E-01 5.90285040830E-01 5.94751333040E-01 5.99182516296E-01 6.03577913336E-01 6.07936543335E-01 6.12257070796E-01 6.16537750665E-01 6.20776369378E-01 6.24970181528E-01 6.29115841747E-01 6.33209331357E-01 6.37245879284E-01 6.41219876622E-01 6.45124784197E-01 6.48953032412E-01 6.52695912571E-01 6.56344782138E-01 6.59895405928E-01 6.63344787192E-01 6.66689963750E-01 6.69928009952E-01 6.73056039118E-01 6.76071206429E-01 6.78970712164E-01 6.81751805246E-01 6.84411787009E-01 6.86948015129E-01 6.89357907661E-01 6.91638947129E-01 6.93788684611E-01 6.95804743788E-01 6.97684824923E-01 6.99426708720E-01 7.01028260068E-01 7.02487431619E-01 7.03802267214E-01 7.04970905120E-01 7.05991581089E-01 7.06862631223E-01 7.07582494645E-01 7.08149715980E-01 7.08562947636E-01 7.08820951896E-01 7.08922602820E-01 7.08866887959E-01 7.08652909889E-01 7.08279887559E-01 7.07747157476E-01 7.07054174707E-01 7.06200513720E-01 7.05185869068E-01 7.04010055905E-01 7.02673010362E-01 7.01174789761E-01 6.99515572697E-01 6.97695658977E-01 6.95715469418E-01 6.93575545526E-01 6.91276549039E-01 6.88819261359E-01 6.86204582859E-01 6.83433532083E-01 6.80507244838E-01 6.77426973183E-01 6.74194084318E-01 6.70810059379E-01 6.67276492145E-01 6.63595087657E-01 6.59767660750E-01 6.55796134507E-01 6.51682538641E-01 6.47429007790E-01 6.43037779746E-01 6.38511193612E-01 6.33851687882E-01 6.29061798451E-01 6.24144156552E-01 6.19101486622E-01 6.13936604079E-01 6.08652413037E-01 6.03251903913E-01 5.97738150970E-01 5.92114309754E-01 5.86383614433E-01 5.80549375015E-01 5.74614974478E-01 5.68581698570E-01 5.62455207046E-01 5.56239082915E-01 5.49936969285E-01 5.43552565794E-01 5.37089624887E-01 5.30551947922E-01 5.23943381121E-01 5.17267811340E-01 5.10529161680E-01 5.03731386924E-01 4.96878468819E-01 4.89974411193E-01 4.83023234931E-01 4.76028972821E-01 4.68995664281E-01 4.61927349981E-01 4.54828066403E-01 4.47701840338E-01 4.40552683365E-01 4.33384586330E-01 4.26201513869E-01 4.19007398993E-01 4.11806137776E-01 4.04601584181E-01 3.97397545052E-01 3.90197775307E-01 3.83005973361E-01 3.75825776806E-01 3.68660758384E-01 3.61514422254E-01 3.54390200602E-01 3.47291450579E-01 3.40221451600E-01 3.33183403007E-01 3.26180422088E-01 3.19215542466E-01 3.12291712841E-01 3.05411796087E-01 2.98578568674E-01 2.91794720419E-01 2.85062854525E-01 2.78385487906E-01 2.71765051754E-01 2.65203892331E-01 2.58704271954E-01 2.52268370146E-01 2.45898284917E-01 2.39596034140E-01 2.33363557007E-01 2.27202715510E-01 2.21115295941E-01 2.15103010358E-01 2.09167498015E-01 2.03310326703E-01 1.97532994003E-01 1.91836928415E-01 1.86223490347E-01 1.80693972952E-01 1.75249602805E-01 1.69891540393E-01 1.64620880435E-01 1.59438652014E-01 1.54345818532E-01 1.49343277482E-01 1.44431860058E-01 1.39612330603E-01 1.34885385918E-01 1.30251654440E-01 1.25711695322E-01 1.21265997422E-01 1.16914978233E-01 1.12658982783E-01 1.08498282522E-01 1.04433074223E-01 1.00463478941E-01 9.65895410296E-02 9.28112272653E-02 8.91284260898E-02 8.55409470005E-02 8.20485201082E-02 7.86507958825E-02 7.53473451011E-02 7.21376590191E-02 6.90211497683E-02 6.59971509971E-02 6.30649187568E-02 6.02236326377E-02 5.74723971553E-02 5.48102433856E-02 5.22361308440E-02 4.97489496019E-02 4.73475226308E-02 4.50306083638E-02 4.27969034606E-02 4.06450457632E-02 3.85736174245E-02 3.65811481948E-02 3.46661188476E-02 3.28269647257E-02 3.10620793912E-02 2.93698183575E-02 2.77485028862E-02 2.61964238291E-02 2.47118454976E-02 2.32930095398E-02 2.19381388092E-02 2.06454412066E-02 1.94131134806E-02 1.82393449693E-02 1.71223212707E-02 1.60602278266E-02 1.50512534089E-02 1.40935934950E-02 1.31854535246E-02 1.23250520252E-02 1.15106236005E-02 1.07404217739E-02 1.00127216796E-02 9.32582259817E-03 8.67805033066E-03 8.06775940903E-03 7.49333514046E-03 6.95319548391E-03 6.44579275887E-03 5.96961518627E-03 5.52318826295E-03 5.10507597133E-03 4.71388182698E-03 4.34824976713E-03 4.00686488397E-03 3.68845400696E-03 3.39178613894E-03 3.11567275129E-03 2.85896794365E-03 2.62056847421E-03 2.39941366673E-03 2.19448520079E-03 2.00480679193E-03 1.82944376842E-03 1.66750255171E-03 1.51813004738E-03 1.38051295385E-03 1.25387699554E-03 1.13748608779E-03 1.03064144016E-03 9.32680605054E-04 8.42976478248E-04 7.60936257839E-04 6.86000367855E-04 6.17641352644E-04 5.55362747854E-04 4.98697933601E-04 4.47208975125E-04 4.00485455958E-04 3.58143308421E-04 3.19824968226E-04 2.85208689196E-04 2.53981893010E-04 2.25852712971E-04 2.00550385777E-04 1.77824103885E-04 1.57441899808E-04 1.39189563980E-04 1.22869597620E-04 1.08300201869E-04 9.53143042776E-05 8.37586235425E-05 7.34927732377E-05 6.43884051299E-05 5.63283925428E-05 4.92060541247E-05 4.29232986984E-05 3.73810118524E-05 3.24996242626E-05 2.82081446056E-05 2.44423207092E-05 2.11441155581E-05 1.82612144047E-05 1.57465625551E-05 1.35579333534E-05 1.16575258630E-05 1.00115917505E-05 8.59009091367E-06 7.36637546684E-06 6.31690181544E-06 5.40607389253E-06 4.61717583148E-06 3.93528605761E-06 3.34711311221E-06 2.84084311709E-06 2.40599842803E-06 2.03330700234E-06 1.71458198785E-06 1.44261102780E-06 1.21105476855E-06 1.01435405322E-06 8.47645285549E-07 7.06683452366E-07 5.87772301130E-07 4.87701179694E-07 4.03688058866E-07 3.33328273956E-07 2.74548538961E-07 2.25565806000E-07 1.84850562805E-07 1.51094182048E-07 1.23179957919E-07 1.00157487300E-07 8.12200748366E-08 6.56848631206E-08 5.29754106767E-08 4.26064615196E-08 3.41706704206E-08 2.73270676778E-08 2.17910659744E-08 1.73258297793E-08 1.37348446341E-08 1.08555395465E-08 8.55383054737E-09 6.71946726670E-09 5.26207714380E-09 4.10781363503E-09 3.19652553772E-09 2.47937435390E-09 1.91683551050E-09 1.47702728182E-09 1.13431847531E-09 8.68172396242E-10 6.62190353790E-10 5.03323065752E-10 3.81222814589E-10 2.87713156671E-10 2.16356440410E-10 1.62102395938E-10 1.21003665351E-10 8.99863914724E-11 6.66659150735E-11 4.91992826592E-11 3.61676735104E-11 2.64830468140E-11 1.93143154961E-11 1.40291981148E-11 1.01486064138E-11 7.31101389111E-12 5.24473762381E-12 3.74646706457E-12 2.66470301263E-12 1.88703911863E-12 1.33043710554E-12 9.33823950247E-13 6.52481852766E-13 4.53816083772E-13 3.14176924671E-13 2.16484227649E-13 1.48460225163E-13 1.01321083798E-13 6.88127711882E-14 4.65040845172E-14 3.12707981359E-14 2.09211374981E-14 1.39252302198E-14 9.22066385167E-15 6.07346190202E-15 3.97920206131E-15 2.59305731022E-15 1.68056453575E-15 1.08316688756E-15 6.94228480372E-16 4.42431191707E-16 2.80345966709E-16 1.76610599803E-16 1.10606669761E-16 6.88582189196E-17 4.26096127029E-17 2.62061804258E-17 1.60180924398E-17 9.72959949812E-18 5.87248580537E-18 3.52173882957E-18 2.09828923064E-18 1.24196978243E-18 7.30227472574E-19 4.26452144828E-19 2.47349201118E-19 1.42475899621E-19 8.14939058606E-20 4.62831975048E-20 2.60974008943E-20 1.46085642887E-20 8.11735228109E-21 4.47690143012E-21 2.45050811862E-21 1.33109458051E-21 7.17453903428E-22 3.83679896139E-22 2.03559390164E-22 1.07131419087E-22 5.59245129487E-23 2.89536061877E-23 1.48652808559E-23 7.56776982402E-24 3.81980164524E-24 1.91137099128E-24 9.48053930368E-25 4.66076240744E-25 2.27074384683E-25 1.09626959233E-25 5.24390471363E-26 2.48502035676E-26 1.16651880694E-26 5.42360972932E-27 8.05231455759E-08 8.25615985621E-08 8.46516552237E-08 8.67946219136E-08 8.89918380550E-08 9.12446769790E-08 9.35545467825E-08 9.59228912087E-08 9.83511905492E-08 1.00840962569E-07 1.03393763457E-07 1.06011188794E-07 1.08694874557E-07 1.11446498135E-07 1.14267779382E-07 1.17160481689E-07 1.20126413088E-07 1.23167427382E-07 1.26285425302E-07 1.29482355697E-07 1.32760216752E-07 1.36121057235E-07 1.39566977779E-07 1.43100132195E-07 1.46722728818E-07 1.50437031886E-07 1.54245362960E-07 1.58150102366E-07 1.62153690694E-07 1.66258630312E-07 1.70467486942E-07 1.74782891251E-07 1.79207540506E-07 1.83744200255E-07 1.88395706054E-07 1.93164965243E-07 1.98054958761E-07 2.03068743011E-07 2.08209451767E-07 2.13480298136E-07 2.18884576565E-07 2.24425664900E-07 2.30107026498E-07 2.35932212390E-07 2.41904863503E-07 2.48028712933E-07 2.54307588280E-07 2.60745414040E-07 2.67346214060E-07 2.74114114048E-07 2.81053344155E-07 2.88168241620E-07 2.95463253479E-07 3.02942939344E-07 3.10611974256E-07 3.18475151602E-07 3.26537386117E-07 3.34803716951E-07 3.43279310821E-07 3.51969465239E-07 3.60879611824E-07 3.70015319698E-07 3.79382298965E-07 3.88986404279E-07 3.98833638507E-07 4.08930156478E-07 4.19282268831E-07 4.29896445958E-07 4.40779322052E-07 4.51937699248E-07 4.63378551878E-07 4.75109030831E-07 4.87136468020E-07 4.99468380964E-07 5.12112477491E-07 5.25076660551E-07 5.38369033159E-07 5.51997903457E-07 5.65971789907E-07 5.80299426618E-07 5.94989768801E-07 6.10051998371E-07 6.25495529680E-07 6.41330015406E-07 6.57565352586E-07 6.74211688799E-07 6.91279428510E-07 7.08779239573E-07 7.26722059898E-07 7.45119104291E-07 7.63981871457E-07 7.83322151193E-07 8.03152031754E-07 8.23483907407E-07 8.44330486183E-07 8.65704797814E-07 8.87620201880E-07 9.10090396157E-07 9.33129425182E-07 9.56751689028E-07 9.80971952303E-07 1.00580535338E-06 1.03126741387E-06 1.05737404830E-06 1.08414157406E-06 1.11158672166E-06 1.13972664508E-06 1.16857893260E-06 1.19816161773E-06 1.22849319049E-06 1.25959260897E-06 1.29147931120E-06 1.32417322728E-06 1.35769479181E-06 1.39206495672E-06 1.42730520433E-06 1.46343756077E-06 1.50048460976E-06 1.53846950674E-06 1.57741599331E-06 1.61734841210E-06 1.65829172194E-06 1.70027151353E-06 1.74331402536E-06 1.78744616015E-06 1.83269550167E-06 1.87909033197E-06 1.92665964902E-06 1.97543318491E-06 2.02544142436E-06 2.07671562381E-06 2.12928783098E-06 2.18319090482E-06 2.23845853612E-06 2.29512526856E-06 2.35322652025E-06 2.41279860592E-06 2.47387875959E-06 2.53650515786E-06 2.60071694373E-06 2.66655425111E-06 2.73405822989E-06 2.80327107165E-06 2.87423603603E-06 2.94699747778E-06 3.02160087445E-06 3.09809285486E-06 3.17652122822E-06 3.25693501399E-06 3.33938447254E-06 3.42392113657E-06 3.51059784329E-06 3.59946876747E-06 3.69058945529E-06 3.78401685902E-06 3.87980937269E-06 3.97802686850E-06 4.07873073432E-06 4.18198391199E-06 4.28785093668E-06 4.39639797725E-06 4.50769287757E-06 4.62180519891E-06 4.73880626347E-06 4.85876919891E-06 4.98176898405E-06 5.10788249574E-06 5.23718855693E-06 5.36976798589E-06 5.50570364674E-06 5.64508050124E-06 5.78798566189E-06 5.93450844633E-06 6.08474043324E-06 6.23877551949E-06 6.39670997887E-06 6.55864252225E-06 6.72467435925E-06 6.89490926151E-06 7.06945362754E-06 7.24841654919E-06 7.43190987987E-06 7.62004830440E-06 7.81294941072E-06 8.01073376335E-06 8.21352497876E-06 8.42144980258E-06 8.63463818886E-06 8.85322338124E-06 9.07734199623E-06 9.30713410858E-06 9.54274333883E-06 9.78431694304E-06 1.00320059048E-05 1.02859650297E-05 1.05463530417E-05 1.08133326830E-05 1.10870708150E-05 1.13677385230E-05 1.16555112229E-05 1.19505687710E-05 1.22530955765E-05 1.25632807161E-05 1.28813180530E-05 1.32074063574E-05 1.35417494308E-05 1.38845562339E-05 1.42360410164E-05 1.45964234513E-05 1.49659287720E-05 1.53447879134E-05 1.57332376556E-05 1.61315207722E-05 1.65398861822E-05 1.69585891051E-05 1.73878912204E-05 1.78280608316E-05 1.82793730331E-05 1.87421098828E-05 1.92165605777E-05 1.97030216352E-05 2.02017970776E-05 2.07131986229E-05 2.12375458790E-05 2.17751665433E-05 2.23263966078E-05 2.28915805690E-05 2.34710716428E-05 2.40652319852E-05 2.46744329190E-05 2.52990551653E-05 2.59394890813E-05 2.65961349047E-05 2.72694030032E-05 2.79597141309E-05 2.86674996915E-05 2.93932020075E-05 3.01372745964E-05 3.09001824541E-05 3.16824023457E-05 3.24844231027E-05 3.33067459286E-05 3.41498847122E-05 3.50143663481E-05 3.59007310662E-05 3.68095327688E-05 3.77413393769E-05 3.86967331845E-05 3.96763112225E-05 4.06806856316E-05 4.17104840444E-05 4.27663499775E-05 4.38489432332E-05 4.49589403119E-05 4.60970348341E-05 4.72639379738E-05 4.84603789024E-05 4.96871052443E-05 5.09448835433E-05 5.22344997415E-05 5.35567596700E-05 5.49124895519E-05 5.63025365183E-05 5.77277691370E-05 5.91890779547E-05 6.06873760533E-05 6.22235996194E-05 6.37987085291E-05 6.54136869470E-05 6.70695439406E-05 6.87673141100E-05 7.05080582337E-05 7.22928639306E-05 7.41228463391E-05 7.59991488127E-05 7.79229436335E-05 7.98954327440E-05 8.19178484971E-05 8.39914544248E-05 8.61175460267E-05 8.82974515787E-05 9.05325329609E-05 9.28241865080E-05 9.51738438801E-05 9.75829729558E-05 1.00053078748E-04 1.02585704341E-04 1.05182431858E-04 1.07844883440E-04 1.10574722264E-04 1.13373653579E-04 1.16243425765E-04 1.19185831430E-04 1.22202708522E-04 1.25295941477E-04 1.28467462396E-04 1.31719252244E-04 1.35053342091E-04 1.38471814375E-04 1.41976804197E-04 1.45570500659E-04 1.49255148221E-04 1.53033048103E-04 1.56906559717E-04 1.60878102141E-04 1.64950155622E-04 1.69125263121E-04 1.73406031899E-04 1.77795135140E-04 1.82295313616E-04 1.86909377394E-04 1.91640207583E-04 1.96490758130E-04 2.01464057662E-04 2.06563211363E-04 2.11791402915E-04 2.17151896474E-04 2.22648038703E-04 2.28283260856E-04 2.34061080906E-04 2.39985105743E-04 2.46059033410E-04 2.52286655405E-04 2.58671859038E-04 2.65218629851E-04 2.71931054090E-04 2.78813321249E-04 2.85869726672E-04 2.93104674224E-04 3.00522679023E-04 3.08128370248E-04 3.15926494013E-04 3.23921916317E-04 3.32119626058E-04 3.40524738138E-04 3.49142496634E-04 3.57978278052E-04 3.67037594663E-04 3.76326097924E-04 3.85849581981E-04 3.95613987263E-04 4.05625404164E-04 4.15890076822E-04 4.26414406980E-04 4.37204957962E-04 4.48268458731E-04 4.59611808062E-04 4.71242078807E-04 4.83166522281E-04 4.95392572740E-04 5.07927851990E-04 5.20780174093E-04 5.33957550205E-04 5.47468193525E-04 5.61320524372E-04 5.75523175387E-04 5.90084996865E-04 6.05015062220E-04 6.20322673586E-04 6.36017367558E-04 6.52108921071E-04 6.68607357435E-04 6.85522952509E-04 7.02866241035E-04 7.20648023131E-04 7.38879370934E-04 7.57571635423E-04 7.76736453401E-04 7.96385754650E-04 8.16531769269E-04 8.37187035188E-04 8.58364405870E-04 8.80077058206E-04 9.02338500598E-04 9.25162581250E-04 9.48563496656E-04 9.72555800301E-04 9.97154411578E-04 1.02237462492E-03 1.04823211916E-03 1.07474296711E-03 1.10192364542E-03 1.12979104459E-03 1.15836247932E-03 1.18765569907E-03 1.21768889888E-03 1.24848073044E-03 1.28005031349E-03 1.31241724740E-03 1.34560162316E-03 1.37962403551E-03 1.41450559552E-03 1.45026794336E-03 1.48693326143E-03 1.52452428782E-03 1.56306433003E-03 1.60257727913E-03 1.64308762416E-03 1.68462046693E-03 1.72720153717E-03 1.77085720803E-03 1.81561451198E-03 1.86150115707E-03 1.90854554355E-03 1.95677678100E-03 2.00622470572E-03 2.05691989864E-03 2.10889370361E-03 2.16217824618E-03 2.21680645274E-03 2.27281207016E-03 2.33022968595E-03 2.38909474877E-03 2.44944358956E-03 2.51131344304E-03 2.57474246983E-03 2.63976977903E-03 2.70643545129E-03 2.77478056252E-03 2.84484720807E-03 2.91667852747E-03 2.99031872985E-03 3.06581311977E-03 3.14320812382E-03 3.22255131771E-03 3.30389145408E-03 3.38727849083E-03 3.47276362021E-03 3.56039929850E-03 3.65023927639E-03 3.74233863005E-03 3.83675379288E-03 3.93354258799E-03 4.03276426141E-03 4.13447951603E-03 4.23875054628E-03 4.34564107362E-03 4.45521638277E-03 4.56754335875E-03 4.68269052475E-03 4.80072808078E-03 4.92172794322E-03 5.04576378513E-03 5.17291107755E-03 5.30324713156E-03 5.43685114129E-03 5.57380422789E-03 5.71418948428E-03 5.85809202102E-03 6.00559901294E-03 6.15679974691E-03 6.31178567045E-03 6.47065044143E-03 6.63348997870E-03 6.80040251376E-03 6.97148864352E-03 7.14685138398E-03 7.32659622508E-03 7.51083118655E-03 7.69966687483E-03 7.89321654117E-03 8.09159614065E-03 8.29492439251E-03 8.50332284141E-03 8.71691591999E-03 8.93583101237E-03 9.16019851894E-03 9.39015192223E-03 9.62582785391E-03 9.86736616300E-03 1.01149099851E-02 1.03686058131E-02 1.06286035683E-02 1.08950566739E-02 1.11681221284E-02 1.14479605808E-02 1.17347364068E-02 1.20286177863E-02 1.23297767817E-02 1.26383894174E-02 1.29546357608E-02 1.32787000035E-02 1.36107705446E-02 1.39510400742E-02 1.42997056585E-02 1.46569688253E-02 1.50230356512E-02 1.53981168488E-02 1.57824278557E-02 1.61761889238E-02 1.65796252093E-02 1.69929668640E-02 1.74164491268E-02 1.78503124160E-02 1.82948024220E-02 1.87501702011E-02 1.92166722689E-02 1.96945706947E-02 2.01841331959E-02 2.06856332326E-02 2.11993501022E-02 2.17255690342E-02 2.22645812847E-02 2.28166842308E-02 2.33821814644E-02 2.39613828858E-02 2.45546047960E-02 2.51621699893E-02 2.57844078438E-02 2.64216544116E-02 2.70742525070E-02 2.77425517939E-02 2.84269088706E-02 2.91276873539E-02 2.98452579598E-02 3.05799985824E-02 3.13322943704E-02 3.21025378001E-02 3.28911287459E-02 3.36984745464E-02 3.45249900676E-02 3.53710977619E-02 3.62372277216E-02 3.71238177292E-02 3.80313133013E-02 3.89601677273E-02 3.99108421025E-02 4.08838053540E-02 4.18795342602E-02 4.28985134635E-02 4.39412354739E-02 4.50082006656E-02 4.60999172638E-02 4.72169013225E-02 4.83596766926E-02 4.95287749785E-02 5.07247354845E-02 5.19481051491E-02 5.31994384661E-02 5.44792973934E-02 5.57882512475E-02 5.71268765833E-02 5.84957570585E-02 5.98954832820E-02 6.13266526446E-02 6.27898691330E-02 6.42857431240E-02 6.58148911594E-02 6.73779357011E-02 6.89755048632E-02 7.06082321233E-02 7.22767560097E-02 7.39817197641E-02 7.57237709791E-02 7.75035612095E-02 7.93217455559E-02 8.11789822200E-02 8.30759320300E-02 8.50132579358E-02 8.69916244724E-02 8.90116971902E-02 9.10741420518E-02 9.31796247938E-02 9.53288102523E-02 9.75223616520E-02 9.97609398566E-02 1.02045202580E-01 1.04375803560E-01 1.06753391684E-01 1.09178610083E-01 1.11652095176E-01 1.14174475670E-01 1.16746371521E-01 1.19368392846E-01 1.22041138792E-01 1.24765196357E-01 1.27541139169E-01 1.30369526209E-01 1.33250900503E-01 1.36185787750E-01 1.39174694918E-01 1.42218108787E-01 1.45316494448E-01 1.48470293756E-01 1.51679923745E-01 1.54945774995E-01 1.58268209958E-01 1.61647561254E-01 1.65084129914E-01 1.68578183608E-01 1.72129954823E-01 1.75739639025E-01 1.79407392790E-01 1.83133331915E-01 1.86917529511E-01 1.90760014085E-01 1.94660767611E-01 1.98619723607E-01 2.02636765207E-01 2.06711723250E-01 2.10844374384E-01 2.15034439200E-01 2.19281580394E-01 2.23585400976E-01 2.27945442530E-01 2.32361183536E-01 2.36832037766E-01 2.41357352755E-01 2.45936408384E-01 2.50568415553E-01 2.55252514982E-01 2.59987776149E-01 2.64773196365E-01 2.69607700017E-01 2.74490137984E-01 2.79419287245E-01 2.84393850691E-01 2.89412457155E-01 2.94473661681E-01 2.99575946048E-01 3.04717719550E-01 3.09897320067E-01 3.15113015430E-01 3.20363005096E-01 3.25645422144E-01 3.30958335615E-01 3.36299753193E-01 3.41667624249E-01 3.47059843253E-01 3.52474253562E-01 3.57908651583E-01 3.63360791325E-01 3.68828389337E-01 3.74309130024E-01 3.79800671339E-01 3.85300650855E-01 3.90806692179E-01 3.96316411720E-01 4.01827425771E-01 4.07337357893E-01 4.12843846565E-01 4.18344553064E-01 4.23837169543E-01 4.29319427261E-01 4.34789104905E-01 4.40244036959E-01 4.45682122054E-01 4.51101331225E-01 4.56499716012E-01 4.61875416319E-01 4.67226667940E-01 4.72551809676E-01 4.77849289927E-01 4.83117672682E-01 4.88355642774E-01 4.93562010312E-01 4.98735714174E-01 5.03875824430E-01 5.08981543602E-01 5.14052206624E-01 5.19087279392E-01 5.24086355784E-01 5.29049153034E-01 5.33975505355E-01 5.38865355678E-01 5.43718745431E-01 5.48535802229E-01 5.53316725389E-01 5.58061769188E-01 5.62771223745E-01 5.67445393483E-01 5.72084573054E-01 5.76689020670E-01 5.81258928751E-01 5.85794391809E-01 5.90295371475E-01 5.94761658579E-01 5.99192832155E-01 6.03588215243E-01 6.07946827334E-01 6.12267333253E-01 6.16547988256E-01 6.20786579063E-01 6.24980360502E-01 6.29125987363E-01 6.33219441025E-01 6.37255950334E-01 6.41229906127E-01 6.45134768765E-01 6.48962967932E-01 6.52705793924E-01 6.56354603108E-01 6.59905159903E-01 6.63354467362E-01 6.66699563107E-01 6.69937521283E-01 6.73065455007E-01 6.76080519251E-01 6.78979914084E-01 6.81760888216E-01 6.84420742763E-01 6.86956835184E-01 6.89366583312E-01 6.91647469445E-01 6.93797044434E-01 6.95812931732E-01 6.97692831366E-01 6.99434523806E-01 7.01035873702E-01 7.02494833464E-01 7.03809446688E-01 7.04977851394E-01 7.05998283081E-01 7.06869077599E-01 7.07588673812E-01 7.08155616085E-01 7.08568556562E-01 7.08826257256E-01 7.08927591956E-01 7.08871547938E-01 7.08657227496E-01 7.08283849299E-01 7.07750749562E-01 7.07057383061E-01 7.06203323966E-01 7.05188266527E-01 7.04012025592E-01 7.02674536978E-01 7.01175857688E-01 6.99516165994E-01 6.97695761371E-01 6.95715064301E-01 6.93574615943E-01 6.91275077689E-01 6.88817230579E-01 6.86201974623E-01 6.83430327990E-01 6.80503426105E-01 6.77422520635E-01 6.74188978379E-01 6.70804280065E-01 6.67270019050E-01 6.63587899942E-01 6.59759737135E-01 6.55787453256E-01 6.51673077551E-01 6.47418744176E-01 6.43026690429E-01 6.38499254903E-01 6.33838875568E-01 6.29048087775E-01 6.24129522203E-01 6.19085902707E-01 6.13920044112E-01 6.08634849913E-01 6.03233309895E-01 5.97718497662E-01 5.92093568077E-01 5.86361754595E-01 5.80526366494E-01 5.74590785989E-01 5.68558465227E-01 5.62432923149E-01 5.56217742218E-01 5.49916565005E-01 5.43533090616E-01 5.37071070971E-01 5.30534306911E-01 5.23926644150E-01 5.17251969043E-01 5.10514204201E-01 5.03717303929E-01 4.96865249502E-01 4.89962044291E-01 4.83011708735E-01 4.76018275189E-01 4.68985782649E-01 4.61918271378E-01 4.54819777465E-01 4.47694327321E-01 4.40545932160E-01 4.33378582480E-01 4.26196242584E-01 4.19002845162E-01 4.11802285988E-01 4.04598418739E-01 3.97395049991E-01 3.90195934409E-01 3.83004770172E-01 3.75825194655E-01 3.68660780398E-01 3.61515031378E-01 3.54391379613E-01 3.47293182104E-01 3.40223718137E-01 3.33186186936E-01 3.26183705693E-01 3.19219307950E-01 3.12295942346E-01 3.05416471705E-01 2.98583672470E-01 2.91800234443E-01 2.85068760833E-01 2.78391768574E-01 2.71771688894E-01 2.65210868106E-01 2.58711568600E-01 2.52275969981E-01 2.45906170361E-01 2.39604187730E-01 2.33371961412E-01 2.27211353547E-01 2.21124150590E-01 2.15112064779E-01 2.09176735559E-01 2.03319730932E-01 1.97542548703E-01 1.91846617608E-01 1.86233298308E-01 1.80703884226E-01 1.75259602214E-01 1.69901613056E-01 1.64631011779E-01 1.59448827788E-01 1.54356024818E-01 1.49353500711E-01 1.44442087019E-01 1.39622548456E-01 1.34895582204E-01 1.30261817094E-01 1.25721812681E-01 1.21276058235E-01 1.16924971670E-01 1.12668898444E-01 1.08508110440E-01 1.04442804879E-01 1.00473103261E-01 9.65990503942E-02 9.28206135133E-02 8.91376815207E-02 8.55500643768E-02 8.20574926570E-02 7.86596172954E-02 7.53560095340E-02 7.21461610903E-02 6.90294845560E-02 6.60053140359E-02 6.30729060333E-02 6.02314405847E-02 5.74800226458E-02 5.48176837252E-02 5.22433837632E-02 4.97560132469E-02 4.73543955536E-02 4.50372895118E-02 4.28033921656E-02 4.06513417292E-02 3.85797207153E-02 3.65870592209E-02 3.46718383525E-02 3.28324937723E-02 3.10674193466E-02 2.93749708788E-02 2.77534699050E-02 2.62012075365E-02 2.47164483285E-02 2.32974341572E-02 2.19423880884E-02 2.06495182199E-02 1.94170214811E-02 1.82430873756E-02 1.71259016514E-02 1.60636498849E-02 1.50545209675E-02 1.40967104817E-02 1.31884239572E-02 1.23278799979E-02 1.15133132700E-02 1.07429773460E-02 1.00151473963E-02 9.32812272554E-03 8.68022914656E-03 8.06982119197E-03 7.49528415865E-03 6.95503598500E-03 6.44752896019E-03 5.97125126569E-03 5.52472835025E-03 5.10652414027E-03 4.71524208783E-03 4.34952605989E-03 4.00806107210E-03 3.68957387174E-03 3.39283337436E-03 3.11665095953E-03 2.85988063109E-03 2.62141904799E-03 2.40020543181E-03 2.19522135756E-03 2.00549043424E-03 1.83007788214E-03 1.66809001368E-03 1.51867362487E-03 1.38101530431E-03 1.25434066683E-03 1.13791351871E-03 1.03103496136E-03 9.33042440197E-04 8.43308745531E-04 7.61240971718E-04 6.86279441038E-04 6.17896598293E-04 5.55595881984E-04 4.98910577643E-04 4.47402658645E-04 4.00661619492E-04 3.58303306423E-04 3.19970072699E-04 2.85340098142E-04 2.54100727415E-04 2.25960019479E-04 2.00647140053E-04 1.77911213967E-04 1.57520209428E-04 1.39259855842E-04 1.22932596630E-04 1.08356578305E-04 9.53646768900E-05 8.38035625810E-05 7.35328033957E-05 6.44240084028E-05 5.63600109949E-05 4.92340925628E-05 4.29481266005E-05 3.74029600365E-05 3.25189936809E-05 2.82252091514E-05 2.44573292029E-05 2.11572936404E-05 1.82727663389E-05 1.57566729384E-05 1.35667687384E-05 1.16652362912E-05 1.00183122012E-05 8.59594267059E-06 7.37146740649E-06 6.32133162175E-06 5.40991983016E-06 4.62050798453E-06 3.93816704861E-06 3.34959877396E-06 2.84298311863E-06 2.40783685630E-06 2.03488290109E-06 1.71592985555E-06 1.44376127644E-06 1.21203414511E-06 1.01518602589E-06 8.48350396554E-07 7.07279639423E-07 5.88275189503E-07 4.88124346763E-07 4.04043273135E-07 3.33625710345E-07 2.74796972181E-07 2.25772783749E-07 1.85022560427E-07 1.51236740252E-07 1.23297805045E-07 1.00254647551E-07 8.12999637976E-08 6.57503718086E-08 5.30289792777E-08 4.26501438784E-08 3.42061902723E-08 2.73558675265E-08 2.18143494492E-08 1.73445982215E-08 1.37499286031E-08 1.08676258619E-08 8.56348542610E-09 6.72715605383E-09 5.26818108389E-09 4.11264408049E-09 3.20033594562E-09 2.48237038123E-09 1.91918348037E-09 1.47886125896E-09 1.13574615885E-09 8.69280010070E-10 6.63046690749E-10 5.03982819999E-10 3.81729317486E-10 2.88100614743E-10 2.16651759207E-10 1.62326660879E-10 1.21173339494E-10 9.01142806321E-11 6.67619424701E-11 4.92711082528E-11 3.62211872098E-11 2.65227596752E-11 1.93436687554E-11 1.40508063184E-11 1.01644479076E-11 7.32257944399E-12 5.25314589793E-12 3.75255394291E-12 2.66909040519E-12 1.89018772956E-12 1.33268672137E-12 9.35424062679E-13 6.53614829617E-13 4.54614621208E-13 3.14737131283E-13 2.16875387765E-13 1.48732049697E-13 1.01509069372E-13 6.89421418768E-14 4.65926768486E-14 3.13311621742E-14 2.09620593290E-14 1.39528295663E-14 9.23918131609E-15 6.08582066121E-15 3.98740652407E-15 2.59847455282E-15 1.68412191239E-15 1.08549002569E-15 6.95737113549E-16 4.43405340176E-16 2.80971382120E-16 1.77009792507E-16 1.10859969922E-16 6.90179888548E-17 4.27097806639E-17 2.62685975621E-17 1.60567457517E-17 9.75338671670E-18 5.88703170151E-18 3.53057659610E-18 2.10362398847E-18 1.24516883601E-18 7.32133051617E-19 4.27579587963E-19 2.48011703840E-19 1.42862505701E-19 8.17179326049E-20 4.64120945416E-20 2.61710316233E-20 1.46503193476E-20 8.14085689774E-21 4.49003404031E-21 2.45779030808E-21 1.33510181401E-21 7.19641953600E-22 3.84865275944E-22 2.04196482718E-22 1.07471082593E-22 5.61041321039E-23 2.90478101804E-23 1.49142760864E-23 7.59303722093E-24 3.83272107053E-24 1.91791969124E-24 9.51344331303E-25 4.67714853758E-25 2.27883088055E-25 1.10022451678E-25 5.26306815062E-26 2.49421943791E-26 1.17089302331E-26 5.44421076815E-27 6.51182478678E-08 6.67667240378E-08 6.84569315744E-08 7.01899269119E-08 7.19667932282E-08 7.37886411222E-08 7.56566093074E-08 7.75718653243E-08 7.95356062696E-08 8.15490595446E-08 8.36134836226E-08 8.57301688350E-08 8.79004381782E-08 9.01256481405E-08 9.24071895497E-08 9.47464884425E-08 9.71450069561E-08 9.96042442415E-08 1.02125737401E-07 1.04711062449E-07 1.07361835297E-07 1.10079712763E-07 1.12866393607E-07 1.15723619594E-07 1.18653176583E-07 1.21656895640E-07 1.24736654186E-07 1.27894377169E-07 1.31132038266E-07 1.34451661120E-07 1.37855320602E-07 1.41345144106E-07 1.44923312884E-07 1.48592063407E-07 1.52353688760E-07 1.56210540079E-07 1.60165028020E-07 1.64219624263E-07 1.68376863061E-07 1.72639342820E-07 1.77009727725E-07 1.81490749407E-07 1.86085208646E-07 1.90795977125E-07 1.95625999225E-07 2.00578293862E-07 2.05655956377E-07 2.10862160472E-07 2.16200160187E-07 2.21673291942E-07 2.27284976618E-07 2.33038721695E-07 2.38938123445E-07 2.44986869180E-07 2.51188739558E-07 2.57547610942E-07 2.64067457828E-07 2.70752355325E-07 2.77606481704E-07 2.84634121009E-07 2.91839665735E-07 2.99227619574E-07 3.06802600228E-07 3.14569342297E-07 3.22532700238E-07 3.30697651397E-07 3.39069299124E-07 3.47652875960E-07 3.56453746906E-07 3.65477412781E-07 3.74729513657E-07 3.84215832382E-07 3.93942298200E-07 4.03914990453E-07 4.14140142381E-07 4.24624145019E-07 4.35373551193E-07 4.46395079611E-07 4.57695619067E-07 4.69282232745E-07 4.81162162633E-07 4.93342834050E-07 5.05831860287E-07 5.18637047367E-07 5.31766398919E-07 5.45228121189E-07 5.59030628159E-07 5.73182546814E-07 5.87692722530E-07 6.02570224604E-07 6.17824351922E-07 6.33464638772E-07 6.49500860799E-07 6.65943041123E-07 6.82801456595E-07 7.00086644227E-07 7.17809407773E-07 7.35980824484E-07 7.54612252033E-07 7.73715335609E-07 7.93302015200E-07 8.13384533055E-07 8.33975441333E-07 8.55087609951E-07 8.76734234627E-07 8.98928845127E-07 9.21685313722E-07 9.45017863860E-07 9.68941079052E-07 9.93469911990E-07 1.01861969389E-06 1.04440614409E-06 1.07084537983E-06 1.09795392639E-06 1.12574872737E-06 1.15424715528E-06 1.18346702245E-06 1.21342659210E-06 1.24414458977E-06 1.27564021507E-06 1.30793315362E-06 1.34104358937E-06 1.37499221725E-06 1.40980025606E-06 1.44548946175E-06 1.48208214102E-06 1.51960116527E-06 1.55806998487E-06 1.59751264384E-06 1.63795379487E-06 1.67941871470E-06 1.72193331998E-06 1.76552418343E-06 1.81021855042E-06 1.85604435605E-06 1.90303024260E-06 1.95120557741E-06 2.00060047123E-06 2.05124579707E-06 2.10317320949E-06 2.15641516434E-06 2.21100493911E-06 2.26697665369E-06 2.32436529169E-06 2.38320672233E-06 2.44353772283E-06 2.50539600143E-06 2.56882022092E-06 2.63385002283E-06 2.70052605218E-06 2.76888998293E-06 2.83898454397E-06 2.91085354585E-06 2.98454190818E-06 3.06009568768E-06 3.13756210694E-06 3.21698958401E-06 3.29842776258E-06 3.38192754305E-06 3.46754111433E-06 3.55532198645E-06 3.64532502404E-06 3.73760648055E-06 3.83222403348E-06 3.92923682037E-06 4.02870547579E-06 4.13069216922E-06 4.23526064393E-06 4.34247625678E-06 4.45240601909E-06 4.56511863851E-06 4.68068456197E-06 4.79917601969E-06 4.92066707032E-06 5.04523364726E-06 5.17295360606E-06 5.30390677312E-06 5.43817499555E-06 5.57584219234E-06 5.71699440678E-06 5.86171986027E-06 6.01010900739E-06 6.16225459252E-06 6.31825170769E-06 6.47819785212E-06 6.64219299303E-06 6.81033962824E-06 6.98274285010E-06 7.15951041126E-06 7.34075279195E-06 7.52658326905E-06 7.71711798686E-06 7.91247602968E-06 8.11277949625E-06 8.31815357602E-06 8.52872662740E-06 8.74463025795E-06 8.96599940664E-06 9.19297242819E-06 9.42569117946E-06 9.66430110816E-06 9.90895134372E-06 1.01597947904E-05 1.04169882231E-05 1.06806923848E-05 1.09510720876E-05 1.12282963154E-05 1.15125383294E-05 1.18039757766E-05 1.21027908005E-05 1.24091701554E-05 1.27233053225E-05 1.30453926301E-05 1.33756333756E-05 1.37142339521E-05 1.40614059767E-05 1.44173664229E-05 1.47823377564E-05 1.51565480738E-05 1.55402312452E-05 1.59336270603E-05 1.63369813784E-05 1.67505462817E-05 1.71745802332E-05 1.76093482375E-05 1.80551220071E-05 1.85121801319E-05 1.89808082529E-05 1.94612992411E-05 1.99539533803E-05 2.04590785546E-05 2.09769904409E-05 2.15080127059E-05 2.20524772085E-05 2.26107242069E-05 2.31831025715E-05 2.37699700023E-05 2.43716932528E-05 2.49886483589E-05 2.56212208735E-05 2.62698061081E-05 2.69348093789E-05 2.76166462603E-05 2.83157428446E-05 2.90325360079E-05 2.97674736829E-05 3.05210151390E-05 3.12936312689E-05 3.20858048824E-05 3.28980310087E-05 3.37308172048E-05 3.45846838727E-05 3.54601645845E-05 3.63578064155E-05 3.72781702858E-05 3.82218313107E-05 3.91893791594E-05 4.01814184239E-05 4.11985689956E-05 4.22414664533E-05 4.33107624591E-05 4.44071251660E-05 4.55312396346E-05 4.66838082609E-05 4.78655512149E-05 4.90772068899E-05 5.03195323638E-05 5.15933038714E-05 5.28993172890E-05 5.42383886312E-05 5.56113545602E-05 5.70190729079E-05 5.84624232116E-05 5.99423072625E-05 6.14596496686E-05 6.30153984319E-05 6.46105255398E-05 6.62460275715E-05 6.79229263200E-05 6.96422694297E-05 7.14051310497E-05 7.32126125042E-05 7.50658429797E-05 7.69659802290E-05 7.89142112937E-05 8.09117532444E-05 8.29598539402E-05 8.50597928064E-05 8.72128816331E-05 8.94204653927E-05 9.16839230788E-05 9.40046685661E-05 9.63841514921E-05 9.88238581605E-05 1.01325312468E-04 1.03890076856E-04 1.06519753279E-04 1.09215984212E-04 1.11980453665E-04 1.14814888240E-04 1.17721058201E-04 1.20700778581E-04 1.23755910313E-04 1.26888361386E-04 1.30100088037E-04 1.33393095968E-04 1.36769441595E-04 1.40231233331E-04 1.43780632897E-04 1.47419856668E-04 1.51151177054E-04 1.54976923915E-04 1.58899486009E-04 1.62921312482E-04 1.67044914392E-04 1.71272866270E-04 1.75607807721E-04 1.80052445071E-04 1.84609553046E-04 1.89281976501E-04 1.94072632186E-04 1.98984510566E-04 2.04020677672E-04 2.09184277016E-04 2.14478531539E-04 2.19906745616E-04 2.25472307110E-04 2.31178689479E-04 2.37029453929E-04 2.43028251632E-04 2.49178825990E-04 2.55485014961E-04 2.61950753440E-04 2.68580075705E-04 2.75377117920E-04 2.82346120701E-04 2.89491431745E-04 2.96817508533E-04 3.04328921088E-04 3.12030354816E-04 3.19926613402E-04 3.28022621797E-04 3.36323429262E-04 3.44834212502E-04 3.53560278872E-04 3.62507069659E-04 3.71680163459E-04 3.81085279623E-04 3.90728281800E-04 4.00615181566E-04 4.10752142138E-04 4.21145482191E-04 4.31801679759E-04 4.42727376242E-04 4.53929380510E-04 4.65414673104E-04 4.77190410552E-04 4.89263929783E-04 5.01642752659E-04 5.14334590609E-04 5.27347349390E-04 5.40689133958E-04 5.54368253465E-04 5.68393226375E-04 5.82772785714E-04 5.97515884442E-04 6.12631700963E-04 6.28129644774E-04 6.44019362246E-04 6.60310742555E-04 6.77013923758E-04 6.94139299016E-04 7.11697522976E-04 7.29699518305E-04 7.48156482390E-04 7.67079894198E-04 7.86481521313E-04 8.06373427135E-04 8.26767978268E-04 8.47677852079E-04 8.69116044453E-04 8.91095877726E-04 9.13631008825E-04 9.36735437599E-04 9.60423515358E-04 9.84709953620E-04 1.00960983307E-03 1.03513861273E-03 1.06131213939E-03 1.08814665720E-03 1.11565881757E-03 1.14386568926E-03 1.17278476875E-03 1.20243399079E-03 1.23283173934E-03 1.26399685863E-03 1.29594866456E-03 1.32870695642E-03 1.36229202876E-03 1.39672468367E-03 1.43202624331E-03 1.46821856274E-03 1.50532404304E-03 1.54336564478E-03 1.58236690180E-03 1.62235193530E-03 1.66334546830E-03 1.70537284039E-03 1.74846002291E-03 1.79263363441E-03 1.83792095651E-03 1.88434995019E-03 1.93194927234E-03 1.98074829280E-03 2.03077711180E-03 2.08206657772E-03 2.13464830536E-03 2.18855469464E-03 2.24381894960E-03 2.30047509803E-03 2.35855801142E-03 2.41810342545E-03 2.47914796085E-03 2.54172914491E-03 2.60588543327E-03 2.67165623243E-03 2.73908192259E-03 2.80820388111E-03 2.87906450648E-03 2.95170724282E-03 3.02617660496E-03 3.10251820405E-03 3.18077877375E-03 3.26100619703E-03 3.34324953356E-03 3.42755904764E-03 3.51398623688E-03 3.60258386135E-03 3.69340597353E-03 3.78650794875E-03 3.88194651643E-03 3.97977979192E-03 4.08006730901E-03 4.18287005321E-03 4.28825049566E-03 4.39627262777E-03 4.50700199667E-03 4.62050574127E-03 4.73685262915E-03 4.85611309426E-03 4.97835927522E-03 5.10366505461E-03 5.23210609890E-03 5.36375989927E-03 5.49870581320E-03 5.63702510688E-03 5.77880099848E-03 5.92411870225E-03 6.07306547349E-03 6.22573065431E-03 6.38220572033E-03 6.54258432823E-03 6.70696236417E-03 6.87543799312E-03 7.04811170903E-03 7.22508638599E-03 7.40646733020E-03 7.59236233290E-03 7.78288172419E-03 7.97813842775E-03 8.17824801655E-03 8.38332876931E-03 8.59350172807E-03 8.80889075649E-03 9.02962259919E-03 9.25582694191E-03 9.48763647259E-03 9.72518694332E-03 9.96861723323E-03 1.02180694122E-02 1.04736888052E-02 1.07356240581E-02 1.10040272037E-02 1.12790537284E-02 1.15608626406E-02 1.18496165388E-02 1.21454816812E-02 1.24486280555E-02 1.27592294495E-02 1.30774635226E-02 1.34035118775E-02 1.37375601327E-02 1.40797979956E-02 1.44304193354E-02 1.47896222576E-02 1.51576091775E-02 1.55345868952E-02 1.59207666699E-02 1.63163642945E-02 1.67216001712E-02 1.71366993855E-02 1.75618917818E-02 1.79974120373E-02 1.84434997364E-02 1.89003994450E-02 1.93683607834E-02 1.98476384992E-02 2.03384925394E-02 2.08411881214E-02 2.13559958028E-02 2.18831915508E-02 2.24230568092E-02 2.29758785648E-02 2.35419494115E-02 2.41215676125E-02 2.47150371612E-02 2.53226678388E-02 2.59447752698E-02 2.65816809753E-02 2.72337124219E-02 2.79012030692E-02 2.85844924122E-02 2.92839260205E-02 2.99998555739E-02 3.07326388927E-02 3.14826399636E-02 3.22502289611E-02 3.30357822623E-02 3.38396824572E-02 3.46623183515E-02 3.55040849643E-02 3.63653835170E-02 3.72466214166E-02 3.81482122294E-02 3.90705756477E-02 4.00141374464E-02 4.09793294314E-02 4.19665893768E-02 4.29763609529E-02 4.40090936420E-02 4.50652426431E-02 4.61452687647E-02 4.72496383037E-02 4.83788229116E-02 4.95332994462E-02 5.07135498082E-02 5.19200607627E-02 5.31533237436E-02 5.44138346414E-02 5.57020935730E-02 5.70186046331E-02 5.83638756254E-02 5.97384177743E-02 6.11427454153E-02 6.25773756628E-02 6.40428280562E-02 6.55396241816E-02 6.70682872686E-02 6.86293417629E-02 7.02233128712E-02 7.18507260798E-02 7.35121066448E-02 7.52079790535E-02 7.69388664553E-02 7.87052900630E-02 8.05077685218E-02 8.23468172461E-02 8.42229477229E-02 8.61366667820E-02 8.80884758310E-02 9.00788700546E-02 9.21083375792E-02 9.41773585994E-02 9.62864044688E-02 9.84359367523E-02 1.00626406241E-01 1.02858251930E-01 1.05131899953E-01 1.07447762490E-01 1.09806236620E-01 1.12207703150E-01 1.14652525402E-01 1.17141047957E-01 1.19673595370E-01 1.22250470847E-01 1.24871954884E-01 1.27538303876E-01 1.30249748693E-01 1.33006493228E-01 1.35808712911E-01 1.38656553201E-01 1.41550128056E-01 1.44489518378E-01 1.47474770444E-01 1.50505894323E-01 1.53582862275E-01 1.56705607162E-01 1.59874020833E-01 1.63087952538E-01 1.66347207332E-01 1.69651544503E-01 1.73000676018E-01 1.76394265001E-01 1.79831924243E-01 1.83313214750E-01 1.86837644353E-01 1.90404666370E-01 1.94013678332E-01 1.97664020800E-01 2.01354976255E-01 2.05085768096E-01 2.08855559743E-01 2.12663453856E-01 2.16508491692E-01 2.20389652599E-01 2.24305853666E-01 2.28255949537E-01 2.32238732411E-01 2.36252932220E-01 2.40297217025E-01 2.44370193612E-01 2.48470408328E-01 2.52596348144E-01 2.56746441976E-01 2.60919062257E-01 2.65112526790E-01 2.69325100863E-01 2.73554999666E-01 2.77800390988E-01 2.82059398216E-01 2.86330103631E-01 2.90610552013E-01 2.94898754535E-01 2.99192692967E-01 3.03490324164E-01 3.07789584840E-01 3.12088396619E-01 3.16384671338E-01 3.20676316598E-01 3.24961241525E-01 3.29237362731E-01 3.33502610437E-01 3.37754934724E-01 3.41992311879E-01 3.46212750786E-01 3.50414299320E-01 3.54595050694E-01 3.58753149693E-01 3.62886798743E-01 3.66994263746E-01 3.71073879610E-01 3.75124055402E-01 3.79143279042E-01 3.83130121465E-01 3.87083240157E-01 3.91001381984E-01 3.94883385226E-01 3.98728180725E-01 4.02534792051E-01 4.06302334612E-01 4.10030013597E-01 4.13717120689E-01 4.17363029437E-01 4.20967189240E-01 4.24529117825E-01 4.28048392189E-01 4.31524637909E-01 4.34957516768E-01 4.38346712649E-01 4.41691915639E-01 4.44992804302E-01 4.48249026079E-01 4.51460175786E-01 4.54625772161E-01 4.57745232438E-01 4.60817844901E-01 4.63842739361E-01 4.66818855523E-01 4.69744909139E-01 4.72619355877E-01 4.75440352762E-01 4.78205717055E-01 4.80912882370E-01 4.83558851782E-01 4.86140147658E-01 4.88652757855E-01 4.91092077896E-01 4.93452848641E-01 4.95729088961E-01 4.97914022797E-01 5.00000000000E-01 5.01979423023E-01 5.03848065264E-01 5.05602632717E-01 5.07239840591E-01 5.08756414775E-01 5.10149093688E-01 5.11414630473E-01 5.12549795483E-01 5.13551378988E-01 5.14416194074E-01 5.15141079661E-01 5.15722903613E-01 5.16158565883E-01 5.16445001667E-01 5.16579184529E-01 5.16558129468E-01 5.16378895918E-01 5.16038590637E-01 5.15534370506E-01 5.14863445186E-01 5.14023079667E-01 5.13010596669E-01 5.11823378916E-01 5.10458871271E-01 5.08914582730E-01 5.07188088288E-01 5.05277030667E-01 5.03179121921E-01 5.00892144907E-01 4.98413954640E-01 4.95742479532E-01 4.92875722512E-01 4.89811762041E-01 4.86548753024E-01 4.83084927620E-01 4.79418595957E-01 4.75548146758E-01 4.71472047882E-01 4.67188846778E-01 4.62697170869E-01 4.57995727859E-01 4.53083305974E-01 4.47958774137E-01 4.42621082084E-01 4.37069260428E-01 4.31302420665E-01 4.25319755141E-01 4.19120536964E-01 4.12704119890E-01 4.06069938158E-01 3.99217506303E-01 3.92146418927E-01 3.84856350451E-01 3.77347054836E-01 3.69618365276E-01 3.61670193872E-01 3.53502531283E-01 3.45115446350E-01 3.36509085700E-01 3.27683673327E-01 3.18639510148E-01 3.09376973533E-01 2.99896516806E-01 2.90198668725E-01 2.80284032915E-01 2.70153287287E-01 2.59807183407E-01 2.49246545835E-01 2.38472271425E-01 2.27485328590E-01 2.16286756521E-01 2.04877664383E-01 1.93259230470E-01 1.81432701335E-01 1.69399390904E-01 1.57160679578E-01 1.44718013336E-01 1.32072902862E-01 1.19226922702E-01 1.06181710484E-01 9.29389662182E-02 7.95004517126E-02 6.58679901269E-02 5.20434657079E-02 3.80288237393E-02 2.38260707462E-02 9.43727499735E-03 -5.13543265231E-03 -1.98898575353E-02 -3.48237395174E-02 -4.99347508730E-02 -6.52204936494E-02 -8.06784964830E-02 -9.63062108313E-02 -1.12101006595E-01 -1.28060167103E-01 -1.44180883446E-01 -1.60460248153E-01 -1.76895248196E-01 -1.93482757349E-01 -2.10219527905E-01 -2.27102181782E-01 -2.44127201051E-01 -2.61290917938E-01 -2.78589504344E-01 -2.96018960968E-01 -3.13575106077E-01 -3.31253564040E-01 -3.49049753684E-01 -3.66958876598E-01 -3.84975905467E-01 -4.03095572559E-01 -4.21312358475E-01 -4.39620481273E-01 -4.58013886098E-01 -4.76486235427E-01 -4.95030900051E-01 -5.13640950909E-01 -5.32309151900E-01 -5.51027953756E-01 -5.69789489109E-01 -5.88585568816E-01 -6.07407679647E-01 -6.26246983401E-01 -6.45094317505E-01 -6.63940197152E-01 -6.82774819001E-01 -7.01588066457E-01 -7.20369516521E-01 -7.39108448203E-01 -7.57793852441E-01 -7.76414443477E-01 -7.94958671611E-01 -8.13414737239E-01 -8.31770606053E-01 -8.50014025285E-01 -8.68132540841E-01 -8.86113515170E-01 -9.03944145694E-01 -9.21611483633E-01 -9.39102453019E-01 -9.56403869721E-01 -9.73502460295E-01 -9.90384880453E-01 -1.00703773298E+00 -1.02344758489E+00 -1.03960098372E+00 -1.05548447271E+00 -1.07108460474E+00 -1.08638795501E+00 -1.10138113219E+00 -1.11605078797E+00 -1.13038362507E+00 -1.14436640345E+00 -1.15798594479E+00 -1.17122913527E+00 -1.18408292646E+00 -1.19653433449E+00 -1.20857043753E+00 -1.22017837150E+00 -1.23134532416E+00 -1.24205852769E+00 -1.25230524974E+00 -1.26207278312E+00 -1.27134843424E+00 -1.28011951037E+00 -1.28837330591E+00 -1.29609708779E+00 -1.30327808003E+00 -1.30990344784E+00 -1.31596028118E+00 -1.32143557803E+00 -1.32631622764E+00 -1.33058899369E+00 -1.33424049773E+00 -1.33725720306E+00 -1.33962539906E+00 -1.34133118634E+00 -1.34236046284E+00 -1.34269891099E+00 -1.34233198624E+00 -1.34124490707E+00 -1.33942264675E+00 -1.33684992698E+00 -1.33351121370E+00 -1.32939071525E+00 -1.32447238309E+00 -1.31873991533E+00 -1.31217676331E+00 -1.30476614148E+00 -1.29649104072E+00 -1.28733424557E+00 -1.27727835539E+00 -1.26630580990E+00 -1.25439891923E+00 -1.24153989886E+00 -1.22771090970E+00 -1.21289410356E+00 -1.19707167431E+00 -1.18022591509E+00 -1.16233928175E+00 -1.14339446290E+00 -1.12337445682E+00 -1.10226265551E+00 -1.08004293622E+00 -1.05669976068E+00 -1.03221828228E+00 -1.00658446160E+00 -9.79785190246E-01 -9.51808423591E-01 -9.22643322281E-01 -8.92280402891E-01 -8.60711697803E-01 -8.27930924425E-01 -7.93933663837E-01 -7.58717548875E-01 -7.22282461647E-01 -6.84630740405E-01 -6.45767395617E-01 -6.05700335032E-01 -5.64440597450E-01 -5.22002594807E-01 -4.78404362120E-01 -4.33667814689E-01 -3.87819011886E-01 -3.40888426800E-01 -2.92912430472E-01 -2.43943068744E-01 -1.94024223553E-01 -1.43204022597E-01 -9.15366085070E-02 -3.90824132086E-02 1.40915723551E-02 6.79115353442E-02 1.22296587377E-01 1.77158522747E-01 2.32401591370E-01 2.87922289583E-01 3.43609172194E-01 3.99342689411E-01 4.54995052610E-01 5.10430133127E-01 5.65488674850E-01 6.19867991353E-01 6.73374504928E-01 7.25820111100E-01 7.77009172998E-01 8.26738879046E-01 8.74799679860E-01 9.20975810185E-01 9.65045901681E-01 1.00678369234E+00 1.04595883818E+00 1.08233783271E+00 1.11568503926E+00 1.14576384108E+00 1.17233791340E+00 1.19517262124E+00 1.21403654585E+00 1.22870314190E+00 1.23895252644E+00 1.24457339935E+00 1.24536509387E+00 1.24113975388E+00 1.23172463313E+00 1.21696450940E+00 1.19672420442E+00 1.17089119816E+00 1.13937832303E+00 1.10212652101E+00 1.05910764358E+00 1.01032727083E+00 9.55827522831E-01 8.95689832619E-01 8.30037646314E-01 7.59039012008E-01 6.82909015069E-01 6.01912013504E-01 5.16363623100E-01 4.26632398275E-01 3.33141150944E-01 2.36367846464E-01 1.36846012890E-01 3.51645974704E-02 -6.80327972529E-02 -1.72049366110E-01 -2.76137310815E-01 -3.79500872942E-01 -4.81300254095E-01 -5.80656482618E-01 -6.76657279946E-01 -7.68363971576E-01 -8.54819477292E-01 -9.35057402632E-01 -1.00811223841E+00 -1.07303065732E+00 -1.12888387603E+00 -1.17478102791E+00 -1.20988346526E+00 -1.23341988098E+00 -1.24470210820E+00 -1.24314142220E+00 -1.22826513340E+00 -1.19973322244E+00 -1.15735472999E+00 -1.10110357555E+00 -1.03113344145E+00 -9.47791322565E-01 -8.51629309044E-01 -7.43414141648E-01 -6.24134056731E-01 -4.95002424204E-01 -3.57457677491E-01 -2.13159042359E-01 -6.39775932472E-02 8.80177963431E-02 2.40579986811E-01 3.91308890113E-01 5.37682775758E-01 6.77095648182E-01 8.06900634256E-01 9.24459151638E-01 1.02719543754E+00 1.11265580487E+00 1.17857176157E+00 1.22292588288E+00 1.24401907185E+00 1.24053758575E+00 1.21161795652E+00 1.15690769944E+00 1.07661950006E+00 9.71576407597E-01 8.43245457684E-01 6.93757115322E-01 5.25907985331E-01 3.43144398406E-01 1.49524761199E-01 -5.03410288357E-02 -2.51376248861E-01 -4.48146539823E-01 -6.34993214176E-01 -8.06189288418E-01 -9.56115733863E-01 -1.07945422736E+00 -1.17139140902E+00 -1.22782836424E+00 -1.24558780114E+00 -1.22261026329E+00 -1.15812978163E+00 -1.05281871727E+00 -9.08891273009E-01 -7.30155348881E-01 -5.22003175103E-01 -2.91332551208E-01 -4.63926088810E-02 2.03449173786E-01 4.48018458166E-01 6.76719608954E-01 8.78986200714E-01 1.04478225452E+00 1.16513479187E+00 1.23267327643E+00 1.24214704847E+00 1.19088835675E+00 1.07918650451E+00 9.10538397492E-01 6.91742830792E-01 4.32810522456E-01 1.46669419223E-01 -1.51344781075E-01 -4.44209791303E-01 -7.14131020997E-01 -9.43613385407E-01 -1.11663745132E+00 -1.21986993891E+00 -1.24382418430E+00 -1.18387589361E+00 -1.04103519518E+00 -8.22379314926E-01 -5.41062534083E-01 -2.15842269837E-01 1.29907798566E-01 5.92884039743E-12 6.15539322384E-12 6.39060308584E-12 6.63480078602E-12 6.88832976760E-12 7.15154659745E-12 7.42482146757E-12 7.70853871575E-12 8.00309736606E-12 8.30891169011E-12 8.62641178962E-12 8.95604420138E-12 9.29827252523E-12 9.65357807608E-12 1.00224605608E-11 1.04054387812E-11 1.08030513634E-11 1.12158575155E-11 1.16444378141E-11 1.20893950207E-11 1.25513549298E-11 1.30309672484E-11 1.35289065102E-11 1.40458730243E-11 1.45825938600E-11 1.51398238691E-11 1.57183467482E-11 1.63189761400E-11 1.69425567787E-11 1.75899656769E-11 1.82621133600E-11 1.89599451463E-11 1.96844424763E-11 2.04366242938E-11 2.12175484780E-11 2.20283133320E-11 2.28700591273E-11 2.37439697073E-11 2.46512741524E-11 2.55932485087E-11 2.65712175825E-11 2.75865568036E-11 2.86406941597E-11 2.97351122047E-11 3.08713501439E-11 3.20510059987E-11 3.32757388540E-11 3.45472711916E-11 3.58673913128E-11 3.72379558535E-11 3.86608923952E-11 4.01382021762E-11 4.16719629062E-11 4.32643316880E-11 4.49175480518E-11 4.66339371046E-11 4.84159128005E-11 5.02659813353E-11 5.21867446717E-11 5.41809041986E-11 5.62512645299E-11 5.84007374500E-11 6.06323460077E-11 6.29492287690E-11 6.53546442303E-11 6.78519754018E-11 7.04447345653E-11 7.31365682135E-11 7.59312621791E-11 7.88327469587E-11 8.18451032412E-11 8.49725676464E-11 8.82195386840E-11 9.15905829390E-11 9.50904414951E-11 9.87240366018E-11 1.02496478598E-10 1.06413073097E-10 1.10479328453E-10 1.14700963502E-10 1.19083915611E-10 1.23634349023E-10 1.28358663530E-10 1.33263503473E-10 1.38355767085E-10 1.43642616195E-10 1.49131486300E-10 1.54830097020E-10 1.60746462960E-10 1.66888904975E-10 1.73266061879E-10 1.79886902591E-10 1.86760738750E-10 1.93897237810E-10 2.01306436638E-10 2.08998755631E-10 2.16985013368E-10 2.25276441826E-10 2.33884702180E-10 2.42821901200E-10 2.52100608278E-10 2.61733873111E-10 2.71735244045E-10 2.82118787139E-10 2.92899105942E-10 3.04091362031E-10 3.15711296339E-10 3.27775251290E-10 3.40300193782E-10 3.53303739053E-10 3.66804175452E-10 3.80820490162E-10 3.95372395902E-10 4.10480358653E-10 4.26165626440E-10 4.42450259216E-10 4.59357159888E-10 4.76910106525E-10 4.95133785803E-10 5.14053827724E-10 5.33696841661E-10 5.54090453780E-10 5.75263345900E-10 5.97245295822E-10 6.20067219216E-10 6.43761213101E-10 6.68360600979E-10 6.93899979710E-10 7.20415268165E-10 7.47943757743E-10 7.76524164817E-10 8.06196685186E-10 8.37003050608E-10 8.68986587489E-10 9.02192277817E-10 9.36666822428E-10 9.72458706684E-10 1.00961826866E-09 1.04819776996E-09 1.08825146917E-09 1.12983569823E-09 1.17300894160E-09 1.21783191856E-09 1.26436766859E-09 1.31268164000E-09 1.36284178201E-09 1.41491864033E-09 1.46898545632E-09 1.52511827003E-09 1.58339602716E-09 1.64390069005E-09 1.70671735297E-09 1.77193436182E-09 1.83964343832E-09 1.90993980908E-09 1.98292233945E-09 2.05869367265E-09 2.13736037404E-09 2.21903308105E-09 2.30382665876E-09 2.39186036147E-09 2.48325800035E-09 2.57814811766E-09 2.67666416746E-09 2.77894470333E-09 2.88513357323E-09 2.99538012179E-09 3.10983940036E-09 3.22867238508E-09 3.35204620325E-09 3.48013436840E-09 3.61311702431E-09 3.75118119834E-09 3.89452106450E-09 4.04333821652E-09 4.19784195134E-09 4.35824956351E-09 4.52478665076E-09 4.69768743126E-09 4.87719507306E-09 5.06356203606E-09 5.25705042704E-09 5.45793236834E-09 5.66649038049E-09 5.88301777961E-09 6.10781908987E-09 6.34121047180E-09 6.58352016691E-09 6.83508895935E-09 7.09627065511E-09 7.36743257969E-09 7.64895609464E-09 7.94123713390E-09 8.24468676064E-09 8.55973174537E-09 8.88681516611E-09 9.22639703154E-09 9.57895492794E-09 9.94498469083E-09 1.03250011023E-08 1.07195386150E-08 1.11291521038E-08 1.15544176459E-08 1.19959333314E-08 1.24543201041E-08 1.29302226350E-08 1.34243102287E-08 1.39372777647E-08 1.44698466750E-08 1.50227659581E-08 1.55968132328E-08 1.61927958318E-08 1.68115519366E-08 1.74539517568E-08 1.81208987537E-08 1.88133309108E-08 1.95322220530E-08 2.02785832162E-08 2.10534640688E-08 2.18579543883E-08 2.26931855936E-08 2.35603323363E-08 2.44606141526E-08 2.53952971780E-08 2.63656959285E-08 2.73731751488E-08 2.84191517316E-08 2.95050967103E-08 3.06325373274E-08 3.18030591827E-08 3.30183084630E-08 3.42799942567E-08 3.55898909579E-08 3.69498407612E-08 3.83617562526E-08 3.98276230990E-08 4.13495028407E-08 4.29295357904E-08 4.45699440431E-08 4.62730346010E-08 4.80412026175E-08 4.98769347657E-08 5.17828127351E-08 5.37615168621E-08 5.58158298993E-08 5.79486409286E-08 6.01629494240E-08 6.24618694696E-08 6.48486341384E-08 6.73266000392E-08 6.98992520362E-08 7.25702081499E-08 7.53432246444E-08 7.82222013097E-08 8.12111869453E-08 8.43143850540E-08 8.75361597524E-08 9.08810419077E-08 9.43537355089E-08 9.79591242815E-08 1.01702278555E-07 1.05588462390E-07 1.09623140987E-07 1.13811988362E-07 1.18160895332E-07 1.22675977796E-07 1.27363585332E-07 1.32230310131E-07 1.37282996261E-07 1.42528749291E-07 1.47974946287E-07 1.53629246177E-07 1.59499600527E-07 1.65594264717E-07 1.71921809549E-07 1.78491133301E-07 1.85311474235E-07 1.92392423586E-07 1.99743939049E-07 2.07376358781E-07 2.15300415931E-07 2.23527253736E-07 2.32068441187E-07 2.40935989292E-07 2.50142367964E-07 2.59700523553E-07 2.69623897050E-07 2.79926442979E-07 2.90622649019E-07 3.01727556372E-07 3.13256780907E-07 3.25226535115E-07 3.37653650901E-07 3.50555603246E-07 3.63950534774E-07 3.77857281259E-07 3.92295398101E-07 4.07285187815E-07 4.22847728577E-07 4.39004903847E-07 4.55779433139E-07 4.73194903950E-07 4.91275804920E-07 5.10047560256E-07 5.29536565467E-07 5.49770224466E-07 5.70776988091E-07 5.92586394093E-07 6.15229108653E-07 6.38736969488E-07 6.63143030592E-07 6.88481608702E-07 7.14788331522E-07 7.42100187800E-07 7.70455579311E-07 7.99894374827E-07 8.30457966146E-07 8.62189326264E-07 8.95133069765E-07 9.29335515516E-07 9.64844751759E-07 1.00171070368E-06 1.03998520358E-06 1.07972206369E-06 1.12097715178E-06 1.16380846969E-06 1.20827623480E-06 1.25444296465E-06 1.30237356475E-06 1.35213541982E-06 1.40379848843E-06 1.45743540126E-06 1.51312156321E-06 1.57093525923E-06 1.63095776439E-06 1.69327345799E-06 1.75796994208E-06 1.82513816458E-06 1.89487254694E-06 1.96727111681E-06 2.04243564571E-06 2.12047179196E-06 2.20148924907E-06 2.28560189980E-06 2.37292797607E-06 2.46359022499E-06 2.55771608124E-06 2.65543784597E-06 2.75689287261E-06 2.86222375968E-06 2.97157855100E-06 3.08511094355E-06 3.20298050323E-06 3.32535288882E-06 3.45240008456E-06 3.58430064155E-06 3.72123992833E-06 3.86341039108E-06 4.01101182366E-06 4.16425164805E-06 4.32334520537E-06 4.48851605805E-06 4.65999630354E-06 4.83802689995E-06 5.02285800404E-06 5.21474932224E-06 5.41397047489E-06 5.62080137446E-06 5.83553261814E-06 6.05846589541E-06 6.28991441108E-06 6.53020332454E-06 6.77967020569E-06 7.03866550817E-06 7.30755306075E-06 7.58671057735E-06 7.87653018643E-06 8.17741898070E-06 8.48979958757E-06 8.81411076142E-06 9.15080799844E-06 9.50036417478E-06 9.86327020905E-06 1.02400357500E-05 1.06311898904E-05 1.10372819081E-05 1.14588820351E-05 1.18965822561E-05 1.23509971373E-05 1.28227646869E-05 1.33125472479E-05 1.38210324252E-05 1.43489340479E-05 1.48969931682E-05 1.54659790980E-05 1.60566904850E-05 1.66699564302E-05 1.73066376467E-05 1.79676276638E-05 1.86538540761E-05 1.93662798399E-05 2.01059046192E-05 2.08737661829E-05 2.16709418544E-05 2.24985500168E-05 2.33577516748E-05 2.42497520764E-05 2.51758023952E-05 2.61372014774E-05 2.71352976542E-05 2.81714906239E-05 2.92472334039E-05 3.03640343584E-05 3.15234593010E-05 3.27271336785E-05 3.39767448366E-05 3.52740443712E-05 3.66208505694E-05 3.80190509417E-05 3.94706048514E-05 4.09775462423E-05 4.25419864697E-05 4.41661172385E-05 4.58522136528E-05 4.76026373795E-05 4.94198399326E-05 5.13063660804E-05 5.32648573819E-05 5.52980558564E-05 5.74088077914E-05 5.96000676939E-05 6.18749023912E-05 6.42364952851E-05 6.66881507674E-05 6.92332988005E-05 7.18754996712E-05 7.46184489231E-05 7.74659824735E-05 8.04220819241E-05 8.34908800699E-05 8.66766666154E-05 8.99838941052E-05 9.34171840773E-05 9.69813334463E-05 1.00681321127E-04 1.04522314905E-04 1.08509678563E-04 1.12648979281E-04 1.16945995300E-04 1.21406723886E-04 1.26037389582E-04 1.30844452771E-04 1.35834618561E-04 1.41014845996E-04 1.46392357615E-04 1.51974649362E-04 1.57769500872E-04 1.63784986128E-04 1.70029484528E-04 1.76511692349E-04 1.83240634647E-04 1.90225677593E-04 1.97476541265E-04 2.05003312914E-04 2.12816460726E-04 2.20926848083E-04 2.29345748358E-04 2.38084860249E-04 2.47156323686E-04 2.56572736315E-04 2.66347170594E-04 2.76493191512E-04 2.87024874963E-04 2.97956826790E-04 3.09304202527E-04 3.21082727865E-04 3.33308719857E-04 3.45999108910E-04 3.59171461567E-04 3.72844004122E-04 3.87035647092E-04 4.01766010581E-04 4.17055450553E-04 4.32925086070E-04 4.49396827501E-04 4.66493405753E-04 4.84238402559E-04 5.02656281849E-04 5.21772422248E-04 5.41613150743E-04 5.62205777549E-04 5.83578632222E-04 6.05761101059E-04 6.28783665829E-04 6.52677943873E-04 6.77476729639E-04 7.03214037663E-04 7.29925147088E-04 7.57646647736E-04 7.86416487802E-04 8.16274023218E-04 8.47260068739E-04 8.79416950818E-04 9.12788562307E-04 9.47420419061E-04 9.83359718499E-04 1.02065540018E-03 1.05935820846E-03 1.09952075732E-03 1.14119759732E-03 1.18444528500E-03 1.22932245443E-03 1.27588989134E-03 1.32421060969E-03 1.37434993077E-03 1.42637556500E-03 1.48035769644E-03 1.53636907008E-03 1.59448508204E-03 1.65478387272E-03 1.71734642297E-03 1.78225665344E-03 1.84960152716E-03 1.91947115530E-03 1.99195890651E-03 2.06716151959E-03 2.14517921983E-03 2.22611583892E-03 2.31007893874E-03 2.39717993889E-03 2.48753424821E-03 2.58126140038E-03 2.67848519355E-03 2.77933383429E-03 2.88394008582E-03 2.99244142068E-03 3.10498017785E-03 3.22170372455E-03 3.34276462271E-03 3.46832080014E-03 3.59853572672E-03 3.73357859544E-03 3.87362450853E-03 4.01885466867E-03 4.16945657550E-03 4.32562422731E-03 4.48755832815E-03 4.65546650033E-03 4.82956350242E-03 5.01007145279E-03 5.19722005877E-03 5.39124685137E-03 5.59239742579E-03 5.80092568759E-03 6.01709410454E-03 6.24117396433E-03 6.47344563795E-03 6.71419884883E-03 6.96373294775E-03 7.22235719342E-03 7.49039103870E-03 7.76816442249E-03 8.05601806710E-03 8.35430378111E-03 8.66338476755E-03 8.98363593736E-03 9.31544422790E-03 9.65920892651E-03 1.00153419987E-02 1.03842684211E-02 1.07664265186E-02 1.11622683060E-02 1.15722598327E-02 1.19968815324E-02 1.24366285747E-02 1.28920112205E-02 1.33635551799E-02 1.38518019721E-02 1.43573092877E-02 1.48806513519E-02 1.54224192891E-02 1.59832214881E-02 1.65636839667E-02 1.71644507370E-02 1.77861841692E-02 1.84295653532E-02 1.90952944598E-02 1.97840910979E-02 2.04966946694E-02 2.12338647197E-02 2.19963812849E-02 2.27850452337E-02 2.36006786032E-02 2.44441249306E-02 2.53162495767E-02 2.62179400441E-02 2.71501062870E-02 2.81136810147E-02 2.91096199859E-02 3.01389022964E-02 3.12025306576E-02 3.23015316674E-02 3.34369560736E-02 3.46098790285E-02 3.58214003377E-02 3.70726447012E-02 3.83647619496E-02 3.96989272751E-02 4.10763414599E-02 4.24982311021E-02 4.39658488424E-02 4.54804735931E-02 4.70434107720E-02 4.86559925445E-02 5.03195780770E-02 5.20355538056E-02 5.38053337238E-02 5.56303596956E-02 5.75121017963E-02 5.94520586907E-02 6.14517580508E-02 6.35127570241E-02 6.56366427562E-02 6.78250329786E-02 7.00795766683E-02 7.24019547899E-02 7.47938811287E-02 7.72571032252E-02 7.97934034227E-02 8.24046000370E-02 8.50925486614E-02 8.78591436173E-02 9.07063195621E-02 9.36360532672E-02 9.66503655754E-02 9.97513235498E-02 1.02941042825E-01 1.06221690169E-01 1.09595486263E-01 1.13064708712E-01 1.16631695278E-01 1.20298847359E-01 1.24068633689E-01 1.27943594279E-01 1.31926344577E-01 1.36019579844E-01 1.40226079729E-01 1.44548713018E-01 1.48990442535E-01 1.53554330166E-01 1.58243541953E-01 1.63061353225E-01 1.68011153697E-01 1.73096452480E-01 1.78320882931E-01 1.83688207252E-01 1.89202320746E-01 1.94867255643E-01 2.00687184370E-01 2.06666422155E-01 2.12809428843E-01 2.19120809802E-01 2.25605315775E-01 2.32267841568E-01 2.39113423454E-01 2.46147235166E-01 2.53374582420E-01 2.60800895873E-01 2.68431722523E-01 2.76272715538E-01 2.84329622613E-01 2.92608273001E-01 3.01114563442E-01 3.09854443341E-01 3.18833899632E-01 3.28058941907E-01 3.37535588520E-01 3.47269854524E-01 3.57267742405E-01 3.67535236728E-01 3.78078303856E-01 3.88902897930E-01 4.00014974200E-01 4.11420510576E-01 4.23125537797E-01 4.35136177877E-01 4.47458689349E-01 4.60099516110E-01 4.73065334242E-01 4.86363087815E-01 5.00000000000E-01 5.13983540960E-01 5.28321365075E-01 5.43021287181E-01 5.58091283763E-01 5.73539495676E-01 5.89374231298E-01 6.05603970122E-01 6.22237366752E-01 6.39283255298E-01 6.56750654135E-01 6.74648771010E-01 6.92987008458E-01 7.11774969509E-01 7.31022463657E-01 7.50739513059E-01 7.70936358950E-01 7.91623468244E-01 8.12811540305E-01 8.34511513870E-01 8.56734574107E-01 8.79492159794E-01 9.02795970612E-01 9.26657974535E-01 9.51090415316E-01 9.76105820054E-01 1.00171700685E+00 1.02793709250E+00 1.05477950034E+00 1.08225796803E+00 1.11038655552E+00 1.13917965300E+00 1.16865198891E+00 1.19881863802E+00 1.22969502951E+00 1.26129695516E+00 1.29364057750E+00 1.32674243802E+00 1.36061946540E+00 1.39528898376E+00 1.43076872094E+00 1.46707681676E+00 1.50423183127E+00 1.54225275308E+00 1.58115900755E+00 1.62097046511E+00 1.66170744945E+00 1.70339074577E+00 1.74604160892E+00 1.78968177159E+00 1.83433345238E+00 1.88001936395E+00 1.92676272095E+00 1.97458724806E+00 2.02351718788E+00 2.07357730875E+00 2.12479291255E+00 2.17718984235E+00 2.23079449000E+00 2.28563380360E+00 2.34173529481E+00 2.39912704599E+00 2.45783771725E+00 2.51789655311E+00 2.57933338903E+00 2.64217865756E+00 2.70646339411E+00 2.77221924225E+00 2.83947845852E+00 2.90827391649E+00 2.97863911015E+00 3.05060815632E+00 3.12421579603E+00 3.19949739467E+00 3.27648894058E+00 3.35522704211E+00 3.43574892262E+00 3.51809241333E+00 3.60229594360E+00 3.68839852838E+00 3.77643975239E+00 3.86645975075E+00 3.95849918554E+00 4.05259921794E+00 4.14880147543E+00 4.24714801368E+00 4.34768127259E+00 4.45044402599E+00 4.55547932466E+00 4.66283043194E+00 4.77254075184E+00 4.88465374882E+00 4.99921285919E+00 5.11626139346E+00 5.23584242952E+00 5.35799869623E+00 5.48277244719E+00 5.61020532460E+00 5.74033821290E+00 5.87321108228E+00 6.00886282203E+00 6.14733106369E+00 6.28865199430E+00 6.43286015982E+00 6.57998825906E+00 6.73006692849E+00 6.88312451834E+00 7.03918686043E+00 7.19827702836E+00 7.36041509069E+00 7.52561785767E+00 7.69389862243E+00 7.86526689734E+00 8.03972814630E+00 8.21728351401E+00 8.39792955301E+00 8.58165794939E+00 8.76845524825E+00 8.95830257973E+00 9.15117538669E+00 9.34704315476E+00 9.54586914592E+00 9.74761013619E+00 9.95221615849E+00 1.01596302511E+01 1.03697882125E+01 1.05826183633E+01 1.07980413152E+01 1.10159697475E+01 1.12363081916E+01 1.14589528229E+01 1.16837912601E+01 1.19107023716E+01 1.21395560889E+01 1.23702132254E+01 1.26025253001E+01 1.28363343658E+01 1.30714728397E+01 1.33077633358E+01 1.35450184971E+01 1.37830408270E+01 1.40216225169E+01 1.42605452708E+01 1.44995801226E+01 1.47384872465E+01 1.49770157589E+01 1.52149035097E+01 1.54518768624E+01 1.56876504618E+01 1.59219269895E+01 1.61543969054E+01 1.63847381753E+01 1.66126159861E+01 1.68376824470E+01 1.70595762792E+01 1.72779224950E+01 1.74923320669E+01 1.77024015899E+01 1.79077129400E+01 1.81078329296E+01 1.83023129659E+01 1.84906887146E+01 1.86724797733E+01 1.88471893608E+01 1.90143040258E+01 1.91732933830E+01 1.93236098810E+01 1.94646886108E+01 1.95959471614E+01 1.97167855308E+01 1.98265861012E+01 1.99247136882E+01 2.00105156725E+01 2.00833222259E+01 2.01424466423E+01 2.01871857850E+01 2.02168206628E+01 2.02306171482E+01 2.02278268502E+01 2.02076881569E+01 2.01694274618E+01 2.01122605889E+01 2.00353944328E+01 1.99380288291E+01 1.98193586720E+01 1.96785762961E+01 1.95148741384E+01 1.93274476987E+01 1.91154988145E+01 1.88782392682E+01 1.86148947418E+01 1.83247091369E+01 1.80069492738E+01 1.76609099853E+01 1.72859196169E+01 1.68813459469E+01 1.64466025341E+01 1.59811555029E+01 1.54845307679E+01 1.49563217035E+01 1.43961972526E+01 1.38039104730E+01 1.31793075077E+01 1.25223369662E+01 1.18330596935E+01 1.11116589017E+01 1.03584506262E+01 9.57389446720E+00 8.75860456306E+00 7.91336073598E+00 7.03911973933E+00 6.13702652521E+00 5.20842543927E+00 4.25487123739E+00 3.27813980601E+00 2.28023845401E+00 1.26341562989E+00 2.30169903398E-01 -8.16741964420E-01 -1.87429805411E+00 -2.93920563009E+00 -4.00789701411E+00 -5.07652722620E+00 -6.14097364351E+00 -7.19683794035E+00 -8.23945058423E+00 -9.26387817548E+00 -1.02649763009E+01 -1.12377465988E+01 -1.21766017326E+01 -1.30757058488E+01 -1.39290410599E+01 -1.47304380029E+01 -1.54736112731E+01 -1.61521999635E+01 -1.67598135091E+01 -1.72900829912E+01 -1.77367180101E+01 -1.80935691678E+01 -1.83546961359E+01 -1.85144411966E+01 -1.85675080504E+01 -1.85090455775E+01 -1.83342589131E+01 -1.80346590790E+01 -1.76068535377E+01 -1.70488322964E+01 -1.63595893893E+01 -1.55392253822E+01 -1.45890475872E+01 -1.35116662266E+01 -1.23110845855E+01 -1.09927809980E+01 -9.56378032794E+00 -8.03271243097E+00 -6.40985493700E+00 -4.70715756786E+00 -2.93824511967E+00 -1.11839619825E+00 7.35505190228E-01 2.60504801287E+00 4.47040521371E+00 6.31047977357E+00 8.10308791612E+00 9.82518110810E+00 1.14531079428E+01 1.29629163151E+01 1.43306954834E+01 1.55329566725E+01 1.65470497903E+01 1.73516126294E+01 1.79270475927E+01 1.82560195532E+01 1.83239669365E+01 1.81196165380E+01 1.76354909907E+01 1.68683962191E+01 1.58198747211E+01 1.44966091511E+01 1.29107595321E+01 1.10802165566E+01 9.02875295233E+00 6.78605486728E+00 4.38761577290E+00 1.87447658578E+00 -7.07202342195E-01 -3.30674893318E+00 -5.86977468040E+00 -8.33916079459E+00 -1.06562328719E+01 -1.27621152167E+01 -1.45992485304E+01 -1.61130464770E+01 -1.72536578403E+01 -1.79777918208E+01 -1.82505548055E+01 -1.80472380496E+01 -1.73549875979E+01 -1.61742809624E+01 -1.45201301404E+01 -1.24229281235E+01 -9.92885674689E+00 -7.09977819042E+00 -4.01254124192E+00 -7.57647048249E-01 2.56276214475E+00 5.83760369974E+00 8.95022795164E+00 1.17824134950E+01 1.42188958313E+01 1.61523003379E+01 1.74883091010E+01 1.81508509471E+01 1.80870676041E+01 1.72717792925E+01 1.57111534312E+01 1.34452739023E+01 1.05493187252E+01 7.13308398177E+00 3.33864368303E+00 -6.63989713521E-01 -4.68324130027E+00 -8.51430388760E+00 -1.19492028738E+01 -1.47882275786E+01 -1.68522087291E+01 -1.79949770165E+01 -1.81152127806E+01 -1.71668059619E+01 -1.51668031181E+01 -1.22000386202E+01 -8.41964220439E+00 -4.04279333877E+00 6.58642601468E-01 5.37261466178E+00 9.76612541907E+00 1.35083483421E+01 1.62962859537E+01 1.78811824581E+01 1.80935333220E+01 1.68642947815E+01 1.42398418072E+01 1.03884004461E+01 5.59612259495E+00 2.51689595489E-01 -5.18069167024E+00 -1.01988520002E+01 -1.43084317770E+01 -1.70732164046E+01 -1.81652598281E+01 -1.74092291833E+01 -1.48151253667E+01 -1.05939197145E+01 -5.15179475955E+00 9.39394191870E-01 6.99519653499E+00 1.22918324677E+01 1.61530313144E+01 1.80408418618E+01 1.76386178453E+01 1.49134816073E+01 1.01463965161E+01 3.92079256288E+00 -2.93451688877E+00 -9.44596060944E+00 -1.46298626833E+01 -1.76444012203E+01 -1.79363858748E+01 -1.53574108430E+01 -1.02249706360E+01 -3.30985053634E+00 4.25851981040E+00 1.11630254218E+01 1.61247185534E+01 1.81476500470E+01 1.67367931676E+01 1.20408981190E+01 4.87977832125E+00 -3.36634746927E+00 -1.10010604533E+01 -1.63540296996E+01 -1.81570737928E+01 -1.58706843502E+01 espresso-5.1/PW/examples/EXX_example/Pseudo/CPBE1nlcc.RRKJ30000644000175000017500000065760012341373025021311 0ustar mbambaC 2 F T 1 4 3 4 0.40000000000E+01-.10784603940E+02 2 -.70000000000E+010.10000000000E+030.60000000000E+010.12500000000E-01 1073 5 4 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 2S 1 0 2.00 2S 1 0 0.00 2P 2 1 2.00 2P 2 1 0.00 3D 3 2 -2.00 715 5.59476133159E-01 5.66513478043E-01 5.73639341885E-01 5.80854838118E-01 5.88190796048E-01 5.95545976523E-01 6.03081825874E-01 6.10598859928E-01 6.18332768941E-01 6.26093930250E-01 6.33949699340E-01 6.41961458622E-01 6.50035030049E-01 6.58166394925E-01 6.66484267605E-01 6.74850442004E-01 6.83344400239E-01 6.91989493890E-01 7.00619970795E-01 7.09483223164E-01 7.18400221080E-01 7.27410904724E-01 7.36559750901E-01 7.45821869574E-01 7.55214464733E-01 7.64740442280E-01 7.74281459041E-01 7.84088320948E-01 7.93939697604E-01 8.03919803348E-01 8.14053676550E-01 8.24256069333E-01 8.34656791636E-01 8.45152012182E-01 8.55752333028E-01 8.66527429777E-01 8.77437759082E-01 8.88489974746E-01 8.99625392409E-01 9.10992732099E-01 9.22393923905E-01 9.34046070457E-01 9.45772219251E-01 9.57695768782E-01 9.69681800543E-01 9.81918146981E-01 9.94273830057E-01 1.00676809747E+00 1.01941095415E+00 1.03228818934E+00 1.04522459562E+00 1.05838905009E+00 1.07167899201E+00 1.08520991344E+00 1.09879236423E+00 1.11267771179E+00 1.12664145034E+00 1.14080194303E+00 1.15517668274E+00 1.16972359360E+00 1.18439567448E+00 1.19928880193E+00 1.21440352246E+00 1.22964020860E+00 1.24515201658E+00 1.26078117987E+00 1.27666902183E+00 1.29272037029E+00 1.30898091155E+00 1.32543867182E+00 1.34209888421E+00 1.35898499659E+00 1.37609968226E+00 1.39337961663E+00 1.41093174891E+00 1.42867245588E+00 1.44664078175E+00 1.46484099229E+00 1.48326421835E+00 1.50191483907E+00 1.52081755549E+00 1.53993357519E+00 1.55931982195E+00 1.57892533500E+00 1.59879050894E+00 1.61888206734E+00 1.63927159435E+00 1.65988093379E+00 1.68074559228E+00 1.70190881196E+00 1.72330014314E+00 1.74497858548E+00 1.76694068806E+00 1.78915257140E+00 1.81166703923E+00 1.83443535486E+00 1.85753832210E+00 1.88089405026E+00 1.90452244222E+00 1.92851592158E+00 1.95274674466E+00 1.97732300062E+00 2.00219531147E+00 2.02737716234E+00 2.05287591839E+00 2.07870574422E+00 2.10485959445E+00 2.13132743790E+00 2.15812612569E+00 2.18527539901E+00 2.21277567271E+00 2.24058306426E+00 2.26879625398E+00 2.29730626889E+00 2.32622729348E+00 2.35547456868E+00 2.38509615752E+00 2.41512029742E+00 2.44547642788E+00 2.47625500422E+00 2.50738130558E+00 2.53893635243E+00 2.57086606609E+00 2.60320304079E+00 2.63594024077E+00 2.66911181079E+00 2.70266753524E+00 2.73667438566E+00 2.77108774015E+00 2.80595189714E+00 2.84124440229E+00 2.87698066966E+00 2.91317226086E+00 2.94981882769E+00 2.98691262571E+00 3.02448214635E+00 3.06253316894E+00 3.10104943872E+00 3.14005142869E+00 3.17956408062E+00 3.21953775094E+00 3.26004770135E+00 3.30104509563E+00 3.34257578414E+00 3.38461934747E+00 3.42719016127E+00 3.47030183119E+00 3.51394559761E+00 3.55815259888E+00 3.60289176153E+00 3.64822839523E+00 3.69410454006E+00 3.74057518412E+00 3.78762400056E+00 3.83526914431E+00 3.88349938186E+00 3.93236539227E+00 3.98180484360E+00 4.03191508383E+00 4.08261093678E+00 4.13396778777E+00 4.18596521572E+00 4.23861698457E+00 4.29192844532E+00 4.34591895572E+00 4.40058217695E+00 4.45592835466E+00 4.51198380107E+00 4.56872977105E+00 4.62620710232E+00 4.68438063555E+00 4.74330983365E+00 4.80297232709E+00 4.86339294688E+00 4.92455730497E+00 4.98648940439E+00 5.04923126907E+00 5.11272869230E+00 5.17704020172E+00 5.24216203610E+00 5.30808730041E+00 5.37486135620E+00 5.44246754250E+00 5.51092424088E+00 5.58023468836E+00 5.65043045666E+00 5.72149697584E+00 5.79346262726E+00 5.86633655822E+00 5.94012187687E+00 6.01483512933E+00 6.09049134165E+00 6.16709566489E+00 6.24466928235E+00 6.32320837644E+00 6.40274955914E+00 6.48327576083E+00 6.56482494047E+00 6.64739767505E+00 6.73100683817E+00 6.81566910883E+00 6.90140070032E+00 6.98820312974E+00 7.07610349946E+00 7.16509864781E+00 7.25522685646E+00 7.34647341824E+00 7.43889075908E+00 7.53244422647E+00 7.62718788952E+00 7.72312289311E+00 7.82025752064E+00 7.91862572572E+00 8.01821769672E+00 8.11906936155E+00 8.22119309592E+00 8.32459289706E+00 8.42929437477E+00 8.53531927883E+00 8.64267219743E+00 8.75137537352E+00 8.86144723574E+00 8.97290057404E+00 9.08576134638E+00 9.20003357913E+00 9.31575012421E+00 9.43291213503E+00 9.55156181434E+00 9.67169080403E+00 9.79333505296E+00 9.91651136493E+00 1.00412329045E+01 1.01675259074E+01 1.02954028818E+01 1.04248955170E+01 1.05560056807E+01 1.06887747415E+01 1.08232046139E+01 1.09593328000E+01 1.10971644012E+01 1.12367378158E+01 1.13780611938E+01 1.15211616002E+01 1.16660635029E+01 1.18127835336E+01 1.19613551272E+01 1.21117869859E+01 1.22641152740E+01 1.24183589259E+01 1.25745385370E+01 1.27326848373E+01 1.28928179298E+01 1.30549653261E+01 1.32191488787E+01 1.33853996010E+01 1.35537379085E+01 1.37241970571E+01 1.38967945525E+01 1.40715659769E+01 1.42485305966E+01 1.44277193673E+01 1.46091682900E+01 1.47928880856E+01 1.49789237678E+01 1.51672964612E+01 1.53580396055E+01 1.55511760257E+01 1.57467415979E+01 1.59447652576E+01 1.61452813482E+01 1.63483133426E+01 1.65538994606E+01 1.67620705921E+01 1.69728551542E+01 1.71862930990E+01 1.74024096608E+01 1.76212438088E+01 1.78428291215E+01 1.80671997685E+01 1.82943859257E+01 1.85244315725E+01 1.87573673003E+01 1.89932288809E+01 1.92320551058E+01 1.94738827186E+01 1.97187481024E+01 1.99666898157E+01 2.02177491239E+01 2.04719608155E+01 2.07293662520E+01 2.09900079266E+01 2.12539216442E+01 2.15211522637E+01 2.17917377655E+01 2.20657272711E+01 2.23431538572E+01 2.26240667024E+01 2.29085101028E+01 2.31965225128E+01 2.34881555124E+01 2.37834482681E+01 2.40824535992E+01 2.43852109431E+01 2.46917700506E+01 2.50021810405E+01 2.53164893552E+01 2.56347427347E+01 2.59569945398E+01 2.62832892603E+01 2.66136829495E+01 2.69482224565E+01 2.72869644680E+01 2.76299551254E+01 2.79772534356E+01 2.83289102704E+01 2.86849800037E+01 2.90455203484E+01 2.94105835001E+01 2.97802285555E+01 3.01545124879E+01 3.05334907521E+01 3.09172244073E+01 3.13057743524E+01 3.16991959413E+01 3.20975546743E+01 3.25009082505E+01 3.29093216827E+01 3.33228586766E+01 3.37415781253E+01 3.41655497725E+01 3.45948374272E+01 3.50295085989E+01 3.54696253748E+01 3.59152620940E+01 3.63664850485E+01 3.68233599196E+01 3.72859629905E+01 3.77543622120E+01 3.82286296416E+01 3.87088380010E+01 3.91950637385E+01 3.96873789808E+01 4.01858593653E+01 4.06905846672E+01 4.12016268270E+01 4.17190687952E+01 4.22429888636E+01 4.27734655536E+01 4.33105820495E+01 4.38544209866E+01 4.44050622271E+01 4.49625946602E+01 4.55271000652E+01 4.60986668440E+01 4.66773794591E+01 4.72633299074E+01 4.78566043045E+01 4.84572951351E+01 4.90654920955E+01 4.96812911900E+01 5.03047808743E+01 5.09360606648E+01 5.15752246257E+01 5.22223684351E+01 5.28775918939E+01 5.35409953374E+01 5.42126763314E+01 5.48927386670E+01 5.55812839642E+01 5.62784171952E+01 5.69842432059E+01 5.76988693086E+01 5.84224001779E+01 5.91549481176E+01 5.98966222389E+01 6.06475324096E+01 6.14077947943E+01 6.21775188209E+01 6.29568231784E+01 6.37458240129E+01 6.45446376902E+01 6.53533849756E+01 6.61721847624E+01 6.70011609848E+01 6.78404358064E+01 6.86901330392E+01 6.95503810922E+01 7.04213042621E+01 7.13030342792E+01 7.21956998772E+01 7.30994325967E+01 7.40143657583E+01 7.49406349564E+01 7.58783738560E+01 7.68277223032E+01 7.77888171898E+01 7.87618007199E+01 7.97468135038E+01 8.07439988671E+01 8.17535029035E+01 8.27754696392E+01 8.38100494346E+01 8.48573910193E+01 8.59176436337E+01 8.69909621080E+01 8.80774985447E+01 8.91774100599E+01 9.02908522286E+01 9.14179845525E+01 9.25589681032E+01 9.37139623384E+01 9.48831326341E+01 9.60666426750E+01 9.72646601231E+01 9.84773510599E+01 9.97048871355E+01 1.00947437997E+02 1.02205177298E+02 1.03478278382E+02 1.04766918348E+02 1.06071273051E+02 1.07391522477E+02 1.08727846676E+02 1.10080427559E+02 1.11449449078E+02 1.12835095592E+02 1.14237554322E+02 1.15657012427E+02 1.17093660460E+02 1.18547688994E+02 1.20019289483E+02 1.21508657031E+02 1.23015986472E+02 1.24541473478E+02 1.26085318380E+02 1.27647717832E+02 1.29228874195E+02 1.30828989168E+02 1.32448265026E+02 1.34086907424E+02 1.35745121427E+02 1.37423113724E+02 1.39121092201E+02 1.40839266023E+02 1.42577845162E+02 1.44337040366E+02 1.46117063810E+02 1.47918128517E+02 1.49740447306E+02 1.51584235649E+02 1.53449707428E+02 1.55337079861E+02 1.57246567877E+02 1.59178389276E+02 1.61132760788E+02 1.63109900116E+02 1.65110025681E+02 1.67133354532E+02 1.69180105676E+02 1.71250496690E+02 1.73344746113E+02 1.75463071352E+02 1.77605689745E+02 1.79772818763E+02 1.81964674356E+02 1.84181472670E+02 1.86423428288E+02 1.88690755361E+02 1.90983666669E+02 1.93302373608E+02 1.95647086566E+02 1.98018013692E+02 2.00415362027E+02 2.02839336109E+02 2.05290138831E+02 2.07767970271E+02 2.10273028310E+02 2.12805507947E+02 2.15365601038E+02 2.17953496400E+02 2.20569379547E+02 2.23213431897E+02 2.25885831108E+02 2.28586750363E+02 2.31316359266E+02 2.34074820485E+02 2.36862294233E+02 2.39678933342E+02 2.42524885077E+02 2.45400291716E+02 2.48305287702E+02 2.51240001112E+02 2.54204553376E+02 2.57199056849E+02 2.60223617836E+02 2.63278331557E+02 2.66363287214E+02 2.69478561810E+02 2.72624224424E+02 2.75800332985E+02 2.79006934287E+02 2.82244064397E+02 2.85511746426E+02 2.88809991887E+02 2.92138798184E+02 2.95498150128E+02 2.98888016509E+02 3.02308352360E+02 3.05759096650E+02 3.09240171409E+02 3.12751481906E+02 3.16292915458E+02 3.19864340169E+02 3.23465605302E+02 3.27096539316E+02 3.30756949590E+02 3.34446621261E+02 3.38165316806E+02 3.41912774239E+02 3.45688706853E+02 3.49492802592E+02 3.53324721283E+02 3.57184095804E+02 3.61070529356E+02 3.64983595153E+02 3.68922834716E+02 3.72887757395E+02 3.76877838439E+02 3.80892518043E+02 3.84931200175E+02 3.88993250952E+02 3.93077997514E+02 3.97184726525E+02 4.01312682780E+02 4.05461067425E+02 4.09629037213E+02 4.13815701931E+02 4.18020123565E+02 4.22241314474E+02 4.26478235459E+02 4.30729794585E+02 4.34994844825E+02 4.39272182872E+02 4.43560546639E+02 4.47858614248E+02 4.52165001434E+02 4.56478259805E+02 4.60796875127E+02 4.65119264960E+02 4.69443776904E+02 4.73768686195E+02 4.78092194304E+02 4.82412425784E+02 4.86727426856E+02 4.91035163013E+02 4.95333516684E+02 4.99620285346E+02 5.03893178611E+02 5.08149816384E+02 5.12387726940E+02 5.16604343542E+02 5.20797003117E+02 5.24962943086E+02 5.29099300000E+02 5.33203105946E+02 5.37271287531E+02 5.41300662458E+02 5.45287937403E+02 5.49229706580E+02 5.53122447980E+02 5.56962522511E+02 5.60746170571E+02 5.64469510989E+02 5.68128537859E+02 5.71719119175E+02 5.75236994436E+02 5.78677772788E+02 5.82036931275E+02 5.85309812687E+02 5.88491624782E+02 5.91577437400E+02 5.94562182277E+02 5.97440651027E+02 6.00207494388E+02 6.02857221066E+02 6.05384197161E+02 6.07782645310E+02 6.10046644780E+02 6.12170131056E+02 6.14146895908E+02 6.15970588522E+02 6.17634715282E+02 6.19132641937E+02 6.20457594202E+02 6.21602660293E+02 6.22560792662E+02 6.23324811372E+02 6.23887406849E+02 6.24241143941E+02 6.24378466300E+02 6.24291701280E+02 6.23973065819E+02 6.23414672663E+02 6.22608537484E+02 6.21546587282E+02 6.20220668939E+02 6.18622559255E+02 6.16743975924E+02 6.14576589473E+02 6.12112036886E+02 6.09341935429E+02 6.06257899219E+02 6.02851556429E+02 5.99114568177E+02 5.95038649211E+02 5.90615590556E+02 5.85837283524E+02 5.80695746487E+02 5.75183153376E+02 5.69291864685E+02 5.63014460458E+02 5.56343777082E+02 5.49272944995E+02 5.41795431198E+02 5.33905083494E+02 5.25596178279E+02 5.16863471772E+02 5.07702254994E+02 4.98108411566E+02 4.88078479832E+02 4.77609718964E+02 4.66700177932E+02 4.55348770099E+02 4.43555350098E+02 4.31320795930E+02 4.18647094309E+02 4.05537430361E+02 3.91996280293E+02 3.78029508804E+02 3.63644467851E+02 3.48850100117E+02 3.33657043292E+02 3.18077737259E+02 3.02126531190E+02 2.85819791553E+02 2.69176009633E+02 2.52215905718E+02 2.34962531706E+02 2.17441367735E+02 1.99680412913E+02 1.81710267465E+02 1.63564204616E+02 1.45278229463E+02 1.26891122691E+02 1.08444466085E+02 8.99826469633E+01 7.15528382790E+01 5.32049512239E+01 3.49915565869E+01 1.69677712648E+01 -8.08893741158E-01 -1.82787272765E+01 -3.53800585815E+01 -5.20495466292E+01 -6.82225224854E+01 -8.38333877387E+01 -9.88160699172E+01 -1.13104538824E+02 -1.26633383040E+02 -1.39338446274E+02 -1.51157523494E+02 -1.62031111687E+02 -1.71903211904E+02 -1.80722174439E+02 -1.88441577701E+02 -1.95021128372E+02 -2.00427567249E+02 -2.04635561190E+02 -2.07628559166E+02 -2.09399584966E+02 -2.09951935801E+02 -2.09299752214E+02 -2.07468420203E+02 -2.04494763097E+02 -2.00426978264E+02 -1.95324272107E+02 -1.89256146336E+02 -1.82301291900E+02 -1.74546051817E+02 -1.66082424955E+02 -1.57005597985E+02 -1.47411015725E+02 -1.37391033415E+02 -1.27031236611E+02 -1.16406574722E+02 -1.05577530652E+02 -9.45866479186E+01 -8.34558644651E+01 -7.21852657058E+01 -6.07540408534E+01 -4.91249974126E+01 -3.72512056551E+01 -2.51138468255E+01 -1.25282851245E+01 -1.29798716838E+00 1.28687679261E-01 -1.27586215037E-02 1.26494607097E-03 -1.25414228933E-04 1.24328815250E-05 -1.23115357204E-06 1.19321161555E-07 -1.13635362686E-08 3.70718625829E-09 -3.23251887388E-09 7.18959822071E-01 715 8.11662688642E-01 8.21872150541E-01 8.32210031742E-01 8.42677947564E-01 8.53320270898E-01 8.63991349011E-01 8.74923484584E-01 8.85829629097E-01 8.97049068076E-01 9.08308757921E-01 9.19705805270E-01 9.31328455070E-01 9.43041228305E-01 9.54838404299E-01 9.66905108044E-01 9.79042604840E-01 9.91365186628E-01 1.00390650602E+00 1.01642807553E+00 1.02928589098E+00 1.04222235385E+00 1.05529493994E+00 1.06856766043E+00 1.08200480425E+00 1.09563099439E+00 1.10945056226E+00 1.12329311819E+00 1.13751969470E+00 1.15181178966E+00 1.16629051710E+00 1.18099204491E+00 1.19579363545E+00 1.21088214064E+00 1.22610819596E+00 1.24148699944E+00 1.25711888592E+00 1.27294699792E+00 1.28898084598E+00 1.30513610339E+00 1.32162671861E+00 1.33816769227E+00 1.35507157250E+00 1.37208354747E+00 1.38938140879E+00 1.40677090021E+00 1.42452236580E+00 1.44244740306E+00 1.46057364588E+00 1.47891557806E+00 1.49759667311E+00 1.51636474656E+00 1.53546297463E+00 1.55474366880E+00 1.57437314317E+00 1.59407873419E+00 1.61422222541E+00 1.63448054228E+00 1.65502408113E+00 1.67587801801E+00 1.69698181403E+00 1.71826789546E+00 1.73987420735E+00 1.76180163417E+00 1.78390677725E+00 1.80641009454E+00 1.82908453992E+00 1.85213359552E+00 1.87542021643E+00 1.89901029648E+00 1.92288653788E+00 1.94705656907E+00 1.97155412741E+00 1.99638308773E+00 2.02145238284E+00 2.04691592843E+00 2.07265342135E+00 2.09872107559E+00 2.12512506561E+00 2.15185269635E+00 2.17891023049E+00 2.20633331566E+00 2.23406613696E+00 2.26219063059E+00 2.29063351698E+00 2.31945297109E+00 2.34860110544E+00 2.37818101161E+00 2.40808021417E+00 2.43834988709E+00 2.46905227581E+00 2.50008603495E+00 2.53153611647E+00 2.56339758801E+00 2.59562175086E+00 2.62828459674E+00 2.66131607866E+00 2.69483247875E+00 2.72871602201E+00 2.76299538165E+00 2.79780360117E+00 2.83295689346E+00 2.86861086152E+00 2.90469446867E+00 2.94122720088E+00 2.97821966386E+00 3.01569232275E+00 3.05363506505E+00 3.09203350395E+00 3.13091195338E+00 3.17029884844E+00 3.21019484734E+00 3.25053686234E+00 3.29146692739E+00 3.33282829202E+00 3.37478532760E+00 3.41721610040E+00 3.46018983732E+00 3.50374723403E+00 3.54778679140E+00 3.59243874507E+00 3.63759562794E+00 3.68337407094E+00 3.72969632626E+00 3.77660935930E+00 3.82410308669E+00 3.87222672205E+00 3.92090805177E+00 3.97024351518E+00 4.02016897527E+00 4.07074822061E+00 4.12194901663E+00 4.17379359429E+00 4.22629868581E+00 4.27946381778E+00 4.33327795335E+00 4.38778211755E+00 4.44298474354E+00 4.49886246135E+00 4.55544483779E+00 4.61276782776E+00 4.67076005559E+00 4.72952990398E+00 4.78900717904E+00 4.84925791334E+00 4.91025283361E+00 4.97201266320E+00 5.03455709642E+00 5.09787357718E+00 5.16200701796E+00 5.22691276009E+00 5.29268489594E+00 5.35924007957E+00 5.42665753366E+00 5.49491385132E+00 5.56403523685E+00 5.63400561942E+00 5.70489800718E+00 5.77662280430E+00 5.84932017276E+00 5.92286765440E+00 5.99737380068E+00 6.07280933748E+00 6.14919414621E+00 6.22653605032E+00 6.30486298828E+00 6.38416593283E+00 6.46445973443E+00 6.54578236310E+00 6.62810693287E+00 6.71149233254E+00 6.79588805916E+00 6.88137978941E+00 6.96793544827E+00 7.05559086607E+00 7.14432545792E+00 7.23417387588E+00 7.32519670813E+00 7.41731605266E+00 7.51061626377E+00 7.60509204198E+00 7.70073357595E+00 7.79760627714E+00 7.89568628648E+00 7.99500017374E+00 8.09555273098E+00 8.19738951204E+00 8.30048967616E+00 8.40489420804E+00 8.51061639222E+00 8.61766083307E+00 8.72605148655E+00 8.83581010056E+00 8.94694423499E+00 9.05948450675E+00 9.17342557413E+00 9.28882025428E+00 9.40564414026E+00 9.52395199421E+00 9.64374480355E+00 9.76504124259E+00 9.88786546501E+00 1.00122409536E+01 1.01381700559E+01 1.02656919276E+01 1.03948021853E+01 1.05255560661E+01 1.06579325900E+01 1.07920073563E+01 1.09277306647E+01 1.10651805056E+01 1.12043586880E+01 1.13452773144E+01 1.14879854208E+01 1.16324690677E+01 1.17787801402E+01 1.19269366353E+01 1.20769444802E+01 1.22288407323E+01 1.23826568719E+01 1.25383997039E+01 1.26961014202E+01 1.28557887543E+01 1.30174803039E+01 1.31812136284E+01 1.33469947313E+01 1.35148710942E+01 1.36848445883E+01 1.38569761611E+01 1.40312540033E+01 1.42077300644E+01 1.43864287464E+01 1.45673692233E+01 1.47505894745E+01 1.49361077311E+01 1.51239698328E+01 1.53141786970E+01 1.55067941033E+01 1.57018190415E+01 1.58993077300E+01 1.60992677567E+01 1.63017546326E+01 1.65067803368E+01 1.67143840782E+01 1.69246013317E+01 1.71374562895E+01 1.73529973403E+01 1.75712372746E+01 1.77922284100E+01 1.80159982761E+01 1.82425767861E+01 1.84720084553E+01 1.87043224943E+01 1.89395587901E+01 1.91777490867E+01 1.94189383119E+01 1.96631561482E+01 1.99104507628E+01 2.01608476538E+01 2.04143983473E+01 2.06711308821E+01 2.09310901327E+01 2.11943282306E+01 2.14608609352E+01 2.17307533629E+01 2.20040362482E+01 2.22807580598E+01 2.25609519898E+01 2.28446700202E+01 2.31319541479E+01 2.34228541555E+01 2.37174041899E+01 2.40156596182E+01 2.43176652713E+01 2.46234624229E+01 2.49331089480E+01 2.52466415539E+01 2.55641167086E+01 2.58855831392E+01 2.62110904177E+01 2.65406823771E+01 2.68744227255E+01 2.72123559026E+01 2.75545338095E+01 2.79010127032E+01 2.82518458921E+01 2.86070861776E+01 2.89667894918E+01 2.93310156710E+01 2.96998152367E+01 3.00732481710E+01 3.04513760996E+01 3.08342510151E+01 3.12219379594E+01 3.16144920725E+01 3.20119845367E+01 3.24144634530E+01 3.28220000940E+01 3.32346587190E+01 3.36524951860E+01 3.40755842414E+01 3.45039827840E+01 3.49377673608E+01 3.53769952676E+01 3.58217386525E+01 3.62720701956E+01 3.67280558588E+01 3.71897649126E+01 3.76572747280E+01 3.81306499141E+01 3.86099717295E+01 3.90953081931E+01 3.95867414922E+01 4.00843386393E+01 4.05881851771E+01 4.10983549413E+01 4.16149268231E+01 4.21379845192E+01 4.26676037990E+01 4.32038703707E+01 4.37468668942E+01 4.42966738521E+01 4.48533798026E+01 4.54170730792E+01 4.59878340463E+01 4.65657576773E+01 4.71509277287E+01 4.77434384911E+01 4.83433823820E+01 4.89508449034E+01 4.95659271807E+01 5.01887218100E+01 5.08193267189E+01 5.14578320452E+01 5.21043455651E+01 5.27589634857E+01 5.34217811441E+01 5.40929091469E+01 5.47724461163E+01 5.54604965978E+01 5.61571661013E+01 5.68625655109E+01 5.75767995033E+01 5.82999778153E+01 5.90322161525E+01 5.97736189552E+01 6.05243065181E+01 6.12843924466E+01 6.20539906836E+01 6.28332218970E+01 6.36222059751E+01 6.44210588278E+01 6.52299093674E+01 6.60488762860E+01 6.68780878206E+01 6.77176665480E+01 6.85677459033E+01 6.94284508700E+01 7.02999156089E+01 7.11822702821E+01 7.20756541420E+01 7.29801955921E+01 7.38960389658E+01 7.48233207648E+01 7.57621798247E+01 7.67127609321E+01 7.76752096530E+01 7.86496675839E+01 7.96362852947E+01 8.06352102441E+01 8.16465947300E+01 8.26705908845E+01 8.37073544027E+01 8.47570371988E+01 8.58198021839E+01 8.68958076870E+01 8.79852131433E+01 8.90881870656E+01 9.02048882867E+01 9.13354889846E+01 9.24801576933E+01 9.36390632791E+01 9.48123809581E+01 9.60002832663E+01 9.72029500144E+01 9.84205584788E+01 9.96532883281E+01 1.00901325863E+02 1.02164851484E+02 1.03444056306E+02 1.04739127152E+02 1.06050254900E+02 1.07377633009E+02 1.08721458230E+02 1.10081924555E+02 1.11459234889E+02 1.12853587906E+02 1.14265189945E+02 1.15694245068E+02 1.17140961267E+02 1.18605550537E+02 1.20088221915E+02 1.21589193577E+02 1.23108681370E+02 1.24646901898E+02 1.26204079830E+02 1.27780435928E+02 1.29376198193E+02 1.30991592429E+02 1.32626850109E+02 1.34282204992E+02 1.35957888530E+02 1.37654140719E+02 1.39371199141E+02 1.41109307123E+02 1.42868705741E+02 1.44649644106E+02 1.46452368469E+02 1.48277130872E+02 1.50124182932E+02 1.51993781691E+02 1.53886182425E+02 1.55801646383E+02 1.57740434922E+02 1.59702812106E+02 1.61689044957E+02 1.63699401108E+02 1.65734152333E+02 1.67793570342E+02 1.69877931751E+02 1.71987513233E+02 1.74122592747E+02 1.76283453534E+02 1.78470378469E+02 1.80683651656E+02 1.82923563930E+02 1.85190400856E+02 1.87484456242E+02 1.89806022959E+02 1.92155394738E+02 1.94532870199E+02 1.96938747132E+02 1.99373325690E+02 2.01836907777E+02 2.04329797158E+02 2.06852298782E+02 2.09404718745E+02 2.11987365213E+02 2.14600547600E+02 2.17244575053E+02 2.19919760552E+02 2.22626414820E+02 2.25364853401E+02 2.28135388566E+02 2.30938336744E+02 2.33774012842E+02 2.36642733195E+02 2.39544815189E+02 2.42480574256E+02 2.45450328670E+02 2.48454394667E+02 2.51493089884E+02 2.54566730355E+02 2.57675632030E+02 2.60820111069E+02 2.64000481462E+02 2.67217057500E+02 2.70470151241E+02 2.73760074136E+02 2.77087135681E+02 2.80451643392E+02 2.83853903355E+02 2.87294218439E+02 2.90772889938E+02 2.94290215547E+02 2.97846490616E+02 3.01442006443E+02 3.05077051178E+02 3.08751908828E+02 3.12466858887E+02 3.16222176476E+02 3.20018131969E+02 3.23854989845E+02 3.27733009177E+02 3.31652442594E+02 3.35613537569E+02 3.39616531598E+02 3.43661658632E+02 3.47749141990E+02 3.51879196978E+02 3.56052031706E+02 3.60267843000E+02 3.64526818506E+02 3.68829136287E+02 3.73174961326E+02 3.77564449877E+02 3.81997742214E+02 3.86474969924E+02 3.90996247008E+02 3.95561676027E+02 4.00171343463E+02 4.04825319727E+02 4.09523659755E+02 4.14266399789E+02 4.19053559333E+02 4.23885137523E+02 4.28761115326E+02 4.33681450583E+02 4.38646081272E+02 4.43654922188E+02 4.48707863667E+02 4.53804771849E+02 4.58945486950E+02 4.64129821450E+02 4.69357560619E+02 4.74628459689E+02 4.79942243445E+02 4.85298604556E+02 4.90697202960E+02 4.96137663269E+02 5.01619574384E+02 5.07142488589E+02 5.12705917563E+02 5.18309334049E+02 5.23952167923E+02 5.29633805739E+02 5.35353588263E+02 5.41110809787E+02 5.46904715331E+02 5.52734499267E+02 5.58599303625E+02 5.64498215744E+02 5.70430266640E+02 5.76394428843E+02 5.82389614373E+02 5.88414672179E+02 5.94468387052E+02 6.00549475908E+02 6.06656586578E+02 6.12788295168E+02 6.18943103262E+02 6.25119436223E+02 6.31315639783E+02 6.37529978321E+02 6.43760631245E+02 6.50005691536E+02 6.56263161986E+02 6.62530952677E+02 6.68806878507E+02 6.75088655762E+02 6.81373899581E+02 6.87660120474E+02 6.93944722289E+02 7.00224997662E+02 7.06498125953E+02 7.12761169787E+02 7.19011071668E+02 7.25244651240E+02 7.31458601079E+02 7.37649484014E+02 7.43813730344E+02 7.49947632941E+02 7.56047345329E+02 7.62108877087E+02 7.68128091876E+02 7.74100702226E+02 7.80022268060E+02 7.85888191733E+02 7.91693714951E+02 7.97433916682E+02 8.03103707708E+02 8.08697829361E+02 8.14210848565E+02 8.19637156274E+02 8.24970962891E+02 8.30206296268E+02 8.35336998225E+02 8.40356721848E+02 8.45258928934E+02 8.50036886858E+02 8.54683667419E+02 8.59192142654E+02 8.63554984522E+02 8.67764661977E+02 8.71813439835E+02 8.75693377068E+02 8.79396325950E+02 8.82913930769E+02 8.86237627928E+02 8.89358645312E+02 8.92268002331E+02 8.94956511518E+02 8.97414778163E+02 8.99633203385E+02 9.01601984963E+02 9.03311120930E+02 9.04750412029E+02 9.05909466524E+02 9.06777704113E+02 9.07344361731E+02 9.07598499802E+02 9.07529009252E+02 9.07124619926E+02 9.06373909504E+02 9.05265313702E+02 9.03787138322E+02 9.01927571530E+02 8.99674698256E+02 8.97016515958E+02 8.93940951781E+02 8.90435882121E+02 8.86489152517E+02 8.82088601459E+02 8.77222085151E+02 8.71877504682E+02 8.66042835793E+02 8.59706161480E+02 8.52855706570E+02 8.45479876268E+02 8.37567297225E+02 8.29106862197E+02 8.20087777587E+02 8.10499616481E+02 8.00332373016E+02 7.89576523667E+02 7.78223091069E+02 7.66263712950E+02 7.53690716042E+02 7.40497195431E+02 7.26677097973E+02 7.12225311981E+02 6.97137762671E+02 6.81411511771E+02 6.65044865270E+02 6.48037484491E+02 6.30390504715E+02 6.12106658545E+02 5.93190405580E+02 5.73648066413E+02 5.53487963518E+02 5.32720564140E+02 5.11358630024E+02 4.89417368374E+02 4.66914587048E+02 4.43870849703E+02 4.20309632321E+02 3.96257479081E+02 3.71744153526E+02 3.46802787496E+02 3.21470021534E+02 2.95786136858E+02 2.69795175023E+02 2.43545042861E+02 2.17087598738E+02 1.90478717002E+02 1.63778326274E+02 1.37050417377E+02 1.10363016234E+02 8.37881171582E+01 5.74015711071E+01 3.12829236964E+01 5.51519767138E+00 -1.98153851413E+01 -4.46197491262E+01 -6.88063806110E+01 -9.22818201692E+01 -1.14951235926E+02 -1.36719079237E+02 -1.57489828441E+02 -1.77168819677E+02 -1.95663164340E+02 -2.12882753156E+02 -2.28741339513E+02 -2.43157697292E+02 -2.56056841536E+02 -2.67371298422E+02 -2.77042406727E+02 -2.85021628388E+02 -2.91271840025E+02 -2.95768573763E+02 -2.98501167897E+02 -2.99473783093E+02 -2.98706234339E+02 -2.96234582284E+02 -2.92111422796E+02 -2.86405809892E+02 -2.79202744883E+02 -2.70602163770E+02 -2.60717359766E+02 -2.49672784696E+02 -2.37601188453E+02 -2.24640077411E+02 -2.10927505608E+02 -1.96597260275E+02 -1.81773563738E+02 -1.66565500296E+02 -1.51061486389E+02 -1.35324244394E+02 -1.19386924033E+02 -1.03251249914E+02 -8.68888205059E+01 -7.02475015905E+01 -5.32608822438E+01 -3.59023588260E+01 -1.79080050615E+01 -1.85512202317E+00 1.83924274278E-01 -1.82350029397E-02 1.80789875607E-03 -1.79245789966E-04 1.77694368271E-05 -1.75958635288E-06 1.70509235845E-07 -1.62345286497E-08 5.32197546805E-09 -4.64794421638E-09 -4.99421504771E-01 3.47131657270E-01 715 -5.30147021853E-04 -5.43567760294E-04 -5.57328246483E-04 -5.71437081183E-04 -5.85903082887E-04 -6.00735293327E-04 -6.15942983130E-04 -6.31535657610E-04 -6.47523062710E-04 -6.63915191093E-04 -6.80722288387E-04 -6.97954859590E-04 -7.15623675637E-04 -7.33739780131E-04 -7.52314496245E-04 -7.71359433799E-04 -7.90886496521E-04 -8.10907889480E-04 -8.31436126721E-04 -8.52484039085E-04 -8.74064782226E-04 -8.96191844837E-04 -9.18879057078E-04 -9.42140599226E-04 -9.65991010531E-04 -9.90445198307E-04 -1.01551844725E-03 -1.04122642900E-03 -1.06758521190E-03 -1.09461127110E-03 -1.12232149881E-03 -1.15073321486E-03 -1.17986417754E-03 -1.20973259471E-03 -1.24035713513E-03 -1.27175694021E-03 -1.30395163588E-03 -1.33696134496E-03 -1.37080669962E-03 -1.40550885440E-03 -1.44108949933E-03 -1.47757087354E-03 -1.51497577916E-03 -1.55332759553E-03 -1.59265029389E-03 -1.63296845228E-03 -1.67430727095E-03 -1.71669258810E-03 -1.76015089604E-03 -1.80470935773E-03 -1.85039582376E-03 -1.89723884978E-03 -1.94526771433E-03 -1.99451243714E-03 -2.04500379790E-03 -2.09677335549E-03 -2.14985346771E-03 -2.20427731153E-03 -2.26007890379E-03 -2.31729312245E-03 -2.37595572846E-03 -2.43610338805E-03 -2.49777369565E-03 -2.56100519743E-03 -2.62583741535E-03 -2.69231087190E-03 -2.76046711539E-03 -2.83034874595E-03 -2.90199944215E-03 -2.97546398829E-03 -3.14910328435E-03 -3.12881375380E-03 -3.20711288439E-03 -3.28851147932E-03 -3.37266243176E-03 -3.45669359897E-03 -3.54489497346E-03 -3.63457433865E-03 -3.72694141596E-03 -3.82070950726E-03 -3.91739502550E-03 -4.01666143416E-03 -4.11898064211E-03 -4.22329799739E-03 -4.32967392927E-03 -4.43892268479E-03 -4.55232194699E-03 -4.66691018879E-03 -4.78477983338E-03 -4.90608713813E-03 -5.03031627958E-03 -5.15760798740E-03 -5.28899111217E-03 -5.42191330269E-03 -5.55867941081E-03 -5.70044466351E-03 -5.84451599756E-03 -5.99258378845E-03 -6.14390501577E-03 -6.29941089857E-03 -6.45827886953E-03 -6.62230009000E-03 -6.79006595068E-03 -6.96172913041E-03 -7.13813302083E-03 -7.31899990563E-03 -7.50464145856E-03 -7.69327327246E-03 -7.88878382799E-03 -8.08813211613E-03 -8.29411773409E-03 -8.50234450560E-03 -8.71835644440E-03 -8.93941521278E-03 -9.16539989062E-03 -9.39743916382E-03 -9.63532040828E-03 -9.87940102954E-03 -1.01290313018E-02 -1.03859676318E-02 -1.06485973033E-02 -1.09183569436E-02 -1.11944230749E-02 -1.14777336785E-02 -1.17690543863E-02 -1.20664461125E-02 -1.23719450320E-02 -1.26850766649E-02 -1.30061957866E-02 -1.33352532126E-02 -1.36729701499E-02 -1.40191315736E-02 -1.43738865047E-02 -1.47379318583E-02 -1.51107313335E-02 -1.54932920116E-02 -1.58857224589E-02 -1.62877236903E-02 -1.66998958758E-02 -1.71228884764E-02 -1.75558021507E-02 -1.80007262418E-02 -1.84556148469E-02 -1.89236855147E-02 -1.94031920430E-02 -1.98942414123E-02 -2.03970480963E-02 -2.09143110873E-02 -2.14430135991E-02 -2.19861830855E-02 -2.25431856898E-02 -2.31131372532E-02 -2.36981488055E-02 -2.42988521211E-02 -2.49129196306E-02 -2.55435872302E-02 -2.61904852632E-02 -2.68541536426E-02 -2.75336168654E-02 -2.82301896412E-02 -2.89450673431E-02 -2.96782824199E-02 -3.04290081174E-02 -3.11996735074E-02 -3.19893508001E-02 -3.27987450977E-02 -3.36295353233E-02 -3.44798263968E-02 -3.53539901800E-02 -3.62478349345E-02 -3.71660156683E-02 -3.81068418501E-02 -3.90709177778E-02 -4.00606673979E-02 -4.10750104277E-02 -4.21138200936E-02 -4.31811618982E-02 -4.42735092055E-02 -4.53938449009E-02 -4.65436934809E-02 -4.77217423061E-02 -4.89301316911E-02 -5.01688759534E-02 -5.14384508062E-02 -5.27403229650E-02 -5.40753964986E-02 -5.54451261342E-02 -5.68481609879E-02 -5.82864589075E-02 -5.97625756146E-02 -6.12751759223E-02 -6.28260627046E-02 -6.44170667046E-02 -6.60477065356E-02 -6.77196988393E-02 -6.94339448062E-02 -7.11921961143E-02 -7.29940243628E-02 -7.48418699520E-02 -7.67368063999E-02 -7.86787640402E-02 -8.06703035778E-02 -8.27120555529E-02 -8.48064255501E-02 -8.69535933494E-02 -8.91542734867E-02 -9.14115683490E-02 -9.37255027899E-02 -9.60978662563E-02 -9.85304936460E-02 -1.01024713321E-01 -1.03581917040E-01 -1.06203779225E-01 -1.08892490380E-01 -1.11648451801E-01 -1.14475082308E-01 -1.17374057189E-01 -1.20343339835E-01 -1.23391173949E-01 -1.26513711494E-01 -1.29717136851E-01 -1.33000610335E-01 -1.36367662681E-01 -1.39819065515E-01 -1.43358125883E-01 -1.46987834086E-01 -1.50707945988E-01 -1.54523653699E-01 -1.58434750197E-01 -1.62444937385E-01 -1.66557542877E-01 -1.70773375301E-01 -1.75096397863E-01 -1.79528155481E-01 -1.84073490765E-01 -1.88732056087E-01 -1.93509887621E-01 -1.98408366275E-01 -2.03430910343E-01 -2.08579576813E-01 -2.13859690789E-01 -2.19272728248E-01 -2.24823814915E-01 -2.30514391773E-01 -2.36350087124E-01 -2.42331898026E-01 -2.48466491229E-01 -2.54755318821E-01 -2.61204282298E-01 -2.67815489491E-01 -2.74594740490E-01 -2.81545735630E-01 -2.88671489683E-01 -2.95979664927E-01 -3.03471162751E-01 -3.11153038758E-01 -3.19028521285E-01 -3.27103674628E-01 -3.35383451654E-01 -3.43872411377E-01 -3.52576604746E-01 -3.61501520499E-01 -3.70650793680E-01 -3.80032999534E-01 -3.89651687183E-01 -3.99514221621E-01 -4.09626590555E-01 -4.19994660818E-01 -4.30625475286E-01 -4.41524587217E-01 -4.52700109695E-01 -4.64158004016E-01 -4.75906256034E-01 -4.87951287947E-01 -5.00302187350E-01 -5.12964835679E-01 -5.25948123956E-01 -5.39259833451E-01 -5.52908049649E-01 -5.66902249312E-01 -5.81250182847E-01 -5.95961533680E-01 -6.11044758518E-01 -6.26509930977E-01 -6.42367097497E-01 -6.58623978195E-01 -6.75293432245E-01 -6.92383964388E-01 -7.09907349849E-01 -7.27873427963E-01 -7.46293872526E-01 -7.65181240936E-01 -7.84547015227E-01 -8.04400579552E-01 -8.24758517903E-01 -8.45630973990E-01 -8.67031225862E-01 -8.88972308603E-01 -9.11468904687E-01 -9.34534834250E-01 -9.58184733280E-01 -9.82432097727E-01 -1.00729368143E+00 -1.03278308182E+00 -1.05891783846E+00 -1.08571404395E+00 -1.11318762738E+00 -1.14135525170E+00 -1.17023636829E+00 -1.19984765124E+00 -1.23020867640E+00 -1.26133585535E+00 -1.29325158347E+00 -1.32597473722E+00 -1.35952458891E+00 -1.39392243965E+00 -1.42919169741E+00 -1.46535127575E+00 -1.50242623574E+00 -1.54043876593E+00 -1.57941139237E+00 -1.61937039251E+00 -1.66034026895E+00 -1.70234429911E+00 -1.74541055823E+00 -1.78956678896E+00 -1.83483902440E+00 -1.88125504392E+00 -1.92884505653E+00 -1.97763802287E+00 -2.02766446115E+00 -2.07895426905E+00 -2.13154152294E+00 -2.18545802062E+00 -2.24073677324E+00 -2.29741216811E+00 -2.35551956146E+00 -2.41509639811E+00 -2.47617849638E+00 -2.53880327838E+00 -2.60301009319E+00 -2.66884108254E+00 -2.73633295790E+00 -2.80553028889E+00 -2.87647646584E+00 -2.94921526151E+00 -3.02378982719E+00 -3.10024812492E+00 -3.17863814917E+00 -3.25900738269E+00 -3.34140667187E+00 -3.42588534995E+00 -3.51249884591E+00 -3.60129731499E+00 -3.69233915926E+00 -3.78567817869E+00 -3.88137332105E+00 -3.97948544103E+00 -4.08007169291E+00 -4.18319739320E+00 -4.28892552218E+00 -4.39732085101E+00 -4.50845196864E+00 -4.62238571200E+00 -4.73919397593E+00 -4.85894871644E+00 -4.98172369467E+00 -5.10759500024E+00 -5.23664057715E+00 -5.36893955949E+00 -5.50457435080E+00 -5.64362919402E+00 -5.78618789703E+00 -5.93233960686E+00 -6.08217584213E+00 -6.23578636681E+00 -6.39326668192E+00 -6.55471569260E+00 -6.72023027728E+00 -6.88991510487E+00 -7.06387010449E+00 -7.24220732769E+00 -7.42503413542E+00 -7.61246320219E+00 -7.80460829979E+00 -8.00158955822E+00 -8.20352715601E+00 -8.41054396977E+00 -8.62276910918E+00 -8.84033086157E+00 -9.06336303820E+00 -9.29200155123E+00 -9.52638880217E+00 -9.76666540621E+00 -1.00129802430E+01 -1.02654816688E+01 -1.05243257606E+01 -1.07896702767E+01 -1.10616763882E+01 -1.13405098110E+01 -1.16263412149E+01 -1.19193449792E+01 -1.22196983052E+01 -1.25275834417E+01 -1.28431888417E+01 -1.31667050612E+01 -1.34983290296E+01 -1.38382612035E+01 -1.41867082243E+01 -1.45438808191E+01 -1.49099936509E+01 -1.52852700965E+01 -1.56699347790E+01 -1.60642206984E+01 -1.64683656717E+01 -1.68826118848E+01 -1.73072105354E+01 -1.77424141206E+01 -1.81884859097E+01 -1.86456918347E+01 -1.91143075755E+01 -1.95946119718E+01 -2.00868924273E+01 -2.05914433712E+01 -2.11085653347E+01 -2.16385658614E+01 -2.21817604960E+01 -2.27384709103E+01 -2.33090291583E+01 -2.38937717961E+01 -2.44930468609E+01 -2.51072047334E+01 -2.57366107588E+01 -2.63816341608E+01 -2.70426540560E+01 -2.77200604507E+01 -2.84142465889E+01 -2.91256227938E+01 -2.98546018522E+01 -3.06016111514E+01 -3.13670818141E+01 -3.21514628379E+01 -3.29552062521E+01 -3.37787774297E+01 -3.46226528258E+01 -3.54873176832E+01 -3.63732703620E+01 -3.72810181552E+01 -3.82110816685E+01 -3.91639907792E+01 -4.01402896879E+01 -4.11405327649E+01 -4.21652867820E+01 -4.32151318798E+01 -4.42906584175E+01 -4.53924730755E+01 -4.65211932543E+01 -4.76774499670E+01 -4.88618874638E+01 -5.00751632795E+01 -5.13179520493E+01 -5.25909363267E+01 -5.38948207205E+01 -5.52303156993E+01 -5.65981557782E+01 -5.79990824190E+01 -5.94338576189E+01 -6.09032540388E+01 -6.24080644856E+01 -6.39490948717E+01 -6.55271679145E+01 -6.71431207398E+01 -6.87978112181E+01 -7.04921065136E+01 -7.22268969294E+01 -7.40030868662E+01 -7.58215967712E+01 -7.76833660270E+01 -7.95893497496E+01 -8.15405199932E+01 -8.35378696428E+01 -8.55824040123E+01 -8.76751490925E+01 -8.98171475682E+01 -9.20094600229E+01 -9.42531634588E+01 -9.65493546628E+01 -9.88991461007E+01 -1.01303669763E+02 -1.03764072100E+02 -1.06281520454E+02 -1.08857196378E+02 -1.11492301594E+02 -1.14188051825E+02 -1.16945681154E+02 -1.19766440886E+02 -1.22651595667E+02 -1.25602429398E+02 -1.28620238157E+02 -1.31706338433E+02 -1.34862054251E+02 -1.38088729269E+02 -1.41387719060E+02 -1.44760390641E+02 -1.48208125526E+02 -1.51732316758E+02 -1.55334367247E+02 -1.59015689097E+02 -1.62777705512E+02 -1.66621845464E+02 -1.70549547063E+02 -1.74562252258E+02 -1.78661408806E+02 -1.82848467452E+02 -1.87124879918E+02 -1.91492098026E+02 -1.95951572361E+02 -2.00504751828E+02 -2.05153079848E+02 -2.09897988012E+02 -2.14740905759E+02 -2.19683247842E+02 -2.24726413472E+02 -2.29871789078E+02 -2.35120739908E+02 -2.40474608740E+02 -2.45934715106E+02 -2.51502350704E+02 -2.57178774525E+02 -2.62965212079E+02 -2.68862849198E+02 -2.74872829864E+02 -2.80996251678E+02 -2.87234161704E+02 -2.93587551214E+02 -3.00057349951E+02 -3.06644426608E+02 -3.13349575439E+02 -3.20173516911E+02 -3.27116890230E+02 -3.34180246723E+02 -3.41364043504E+02 -3.48668637906E+02 -3.56094281544E+02 -3.63641109797E+02 -3.71309137777E+02 -3.79098249359E+02 -3.87008195301E+02 -3.95038577335E+02 -4.03188842927E+02 -4.11458278393E+02 -4.19845995210E+02 -4.28350924052E+02 -4.36971802662E+02 -4.45707167532E+02 -4.54555338998E+02 -4.63514415395E+02 -4.72582257644E+02 -4.81756481094E+02 -4.91034439565E+02 -5.00413215235E+02 -5.09889605796E+02 -5.19460109647E+02 -5.29120915881E+02 -5.38867885894E+02 -5.48696543479E+02 -5.58602058076E+02 -5.68579229475E+02 -5.78622475841E+02 -5.88725815941E+02 -5.98882854697E+02 -6.09086768062E+02 -6.19330285804E+02 -6.29605677104E+02 -6.39904734258E+02 -6.50218755019E+02 -6.60538530782E+02 -6.70854324515E+02 -6.81155860144E+02 -6.91432304192E+02 -7.01672249595E+02 -7.11863702848E+02 -7.21994066497E+02 -7.32050126759E+02 -7.42018035847E+02 -7.51883303647E+02 -7.61630780977E+02 -7.71244649032E+02 -7.80708406662E+02 -7.90004862896E+02 -7.99116125271E+02 -8.08023593287E+02 -8.16707954302E+02 -8.25149171153E+02 -8.33326488958E+02 -8.41218426450E+02 -8.48802778279E+02 -8.56056621904E+02 -8.62956317287E+02 -8.69477516164E+02 -8.75595175962E+02 -8.81283568238E+02 -8.86516301146E+02 -8.91266333613E+02 -8.95506006015E+02 -8.99207062349E+02 -9.02340684630E+02 -9.04877531854E+02 -9.06787775536E+02 -9.08041152984E+02 -9.08607014348E+02 -9.08454382614E+02 -9.07552014657E+02 -9.05868475310E+02 -9.03372209692E+02 -9.00031626504E+02 -8.95815194158E+02 -8.90691534353E+02 -8.84629528496E+02 -8.77598437235E+02 -8.69568019876E+02 -8.60508670773E+02 -8.50391559509E+02 -8.39188785611E+02 -8.26873540082E+02 -8.13420281019E+02 -7.98804915894E+02 -7.83005000563E+02 -7.65999943683E+02 -7.47771231045E+02 -7.28302653949E+02 -7.07580555469E+02 -6.85594087379E+02 -6.62335480761E+02 -6.37800327093E+02 -6.11987877975E+02 -5.84901347560E+02 -5.56548235955E+02 -5.26940663961E+02 -4.96095714499E+02 -4.64035784064E+02 -4.30788953208E+02 -3.96389354486E+02 -3.60877552298E+02 -3.24300930361E+02 -2.86714077217E+02 -2.48179176996E+02 -2.08766393639E+02 -1.68554252506E+02 -1.27630012103E+02 -8.60900230272E+01 -4.40400626706E+01 -1.59565581602E+00 4.11176510468E+01 8.39640359928E+01 1.26797204937E+02 1.69460251708E+02 2.11785570453E+02 2.53594857198E+02 2.94699183099E+02 3.34899183219E+02 3.73985343181E+02 4.11738419434E+02 4.47930007207E+02 4.82323258295E+02 5.14673790625E+02 5.44730780407E+02 5.72238293727E+02 5.96936841570E+02 6.18565214140E+02 6.36862605974E+02 6.51571058838E+02 6.62438258776E+02 6.69220723693E+02 6.71687403707E+02 6.69623746931E+02 6.62836261811E+02 6.51157633837E+02 6.34452427998E+02 6.12623439776E+02 5.85618743765E+02 5.53439484287E+02 5.16148471216E+02 4.73879606803E+02 4.26848187503E+02 3.75362081613E+02 3.19833765201E+02 2.60793148227E+02 1.98901054026E+02 1.34963127062E+02 6.99438106526E+01 4.97987137063E+00 -5.86072931921E+01 -1.19301613476E+02 -1.75386026843E+02 -2.24941824092E+02 -2.65856256733E+02 -2.95841799449E+02 -3.12471518050E+02 -3.13235937724E+02 -2.95631464844E+02 -2.57262450358E+02 -1.96231795404E+02 -1.09276334359E+02 -1.25186673039E+01 1.24115108493E+00 -1.23052690600E-01 1.21999433123E-02 -1.20961076288E-03 1.19951662386E-04 -1.19069210014E-05 1.15351210901E-06 -6.18870260505E-08 -3.39053905007E-08 2.82506290947E-08 0.00000000000E+00 0.00000000000E+00 -1.14191866299E-01 715 6.85478976676E-04 7.02831963044E-04 7.20624242531E-04 7.38866935904E-04 7.57571445454E-04 7.76749462123E-04 7.96412972812E-04 8.16574267872E-04 8.37245948786E-04 8.58440936045E-04 8.80172477225E-04 9.02454155267E-04 9.25299896966E-04 9.48723981678E-04 9.72741050239E-04 9.97366114126E-04 1.02261456483E-03 1.04850218348E-03 1.07504515071E-03 1.10226005677E-03 1.13016391190E-03 1.15877415694E-03 1.18810867426E-03 1.21818579893E-03 1.24902433016E-03 1.28064354310E-03 1.31306320080E-03 1.34630356667E-03 1.38038541706E-03 1.41533005428E-03 1.45115931992E-03 1.48789560849E-03 1.52556188144E-03 1.56418168145E-03 1.60377914724E-03 1.64437902857E-03 1.68600670175E-03 1.72868818552E-03 1.77245015727E-03 1.81731996974E-03 1.86332566810E-03 1.91049600750E-03 1.95886047104E-03 2.00844928819E-03 2.05929345366E-03 2.11142474683E-03 2.16487575156E-03 2.21967987661E-03 2.27587137646E-03 2.33348537275E-03 2.39255787626E-03 2.45312580937E-03 2.51522702916E-03 2.57890035109E-03 2.64418557322E-03 2.71112350113E-03 2.77975597338E-03 2.85012588772E-03 2.92227722783E-03 2.99625509088E-03 3.07210571566E-03 3.14987651155E-03 3.22961608806E-03 3.31137428530E-03 3.39520220509E-03 3.48115224292E-03 3.56927812065E-03 3.65963492018E-03 3.75227911778E-03 3.84726861945E-03 4.07049392190E-03 4.04557914025E-03 4.14683247695E-03 4.25207675509E-03 4.36087245266E-03 4.46954191110E-03 4.58357697443E-03 4.69953313334E-03 4.81895819348E-03 4.94020789471E-03 5.06522257211E-03 5.19357236747E-03 5.32586271438E-03 5.46074332545E-03 5.59829411889E-03 5.73955734070E-03 5.88616845619E-03 6.03433969535E-03 6.18674764071E-03 6.34359566491E-03 6.50422312932E-03 6.66881152744E-03 6.83867893146E-03 7.01055868335E-03 7.18740410095E-03 7.37069202069E-03 7.55697921076E-03 7.74842894546E-03 7.94409108947E-03 8.14516048617E-03 8.35058434450E-03 8.56265641197E-03 8.77957609869E-03 9.00153836294E-03 9.22962629041E-03 9.46348439234E-03 9.70351354583E-03 9.94743201004E-03 1.02002160286E-02 1.04579781912E-02 1.07243004975E-02 1.09935601488E-02 1.12728532542E-02 1.15586761904E-02 1.18508781958E-02 1.21509042211E-02 1.24584843022E-02 1.27740780038E-02 1.30968549611E-02 1.34290662857E-02 1.37686495019E-02 1.41174457454E-02 1.44744032607E-02 1.48407232429E-02 1.52173906274E-02 1.56019244297E-02 1.59969331859E-02 1.64018127452E-02 1.68170185908E-02 1.72424916592E-02 1.76791571229E-02 1.81267426229E-02 1.85854416107E-02 1.90561494831E-02 1.95381814411E-02 2.00328315826E-02 2.05402401391E-02 2.10600288324E-02 2.15929685926E-02 2.21398934271E-02 2.26996574130E-02 2.32749368341E-02 2.38631170100E-02 2.44683206725E-02 2.50883145642E-02 2.57232424393E-02 2.63733806675E-02 2.70421888606E-02 2.77258098417E-02 2.84281215039E-02 2.91483191606E-02 2.98852749272E-02 3.06416946503E-02 3.14183927307E-02 3.22123936813E-02 3.30278458644E-02 3.38642802612E-02 3.47223929236E-02 3.56009425451E-02 3.65016142105E-02 3.74259473287E-02 3.83739857162E-02 3.93446805057E-02 4.03411441863E-02 4.13621963811E-02 4.24087471726E-02 4.34829504722E-02 4.45823886330E-02 4.57126633921E-02 4.68684170537E-02 4.80556153598E-02 4.92721019793E-02 5.05186576631E-02 5.17983934554E-02 5.31099330085E-02 5.44531249970E-02 5.58331794273E-02 5.72455920858E-02 5.86941898305E-02 6.01809314570E-02 6.17041486815E-02 6.32665894760E-02 6.48682814357E-02 6.65098450049E-02 6.81931656597E-02 6.99194137709E-02 7.16904601295E-02 7.35045882140E-02 7.53643150491E-02 7.72729221141E-02 7.92287147370E-02 8.12340118833E-02 8.32911686023E-02 8.53995837619E-02 8.75614648446E-02 8.97779822013E-02 9.20513897955E-02 9.43811544703E-02 9.67704146913E-02 9.92205577214E-02 1.01731512780E-01 1.04306571362E-01 1.06946557091E-01 1.09654566174E-01 1.12430843822E-01 1.15276325469E-01 1.18194997143E-01 1.21186910515E-01 1.24254374708E-01 1.27399756006E-01 1.30624777302E-01 1.33931238132E-01 1.37321303367E-01 1.40797798082E-01 1.44361257035E-01 1.48016079885E-01 1.51764433139E-01 1.55603734538E-01 1.59544558668E-01 1.63582005304E-01 1.67724016503E-01 1.71969542636E-01 1.76323130339E-01 1.80785795146E-01 1.85361795144E-01 1.90054990821E-01 1.94865096442E-01 1.99798788919E-01 2.04855834610E-01 2.10041002470E-01 2.15358585783E-01 2.20809652344E-01 2.26399309456E-01 2.32129570029E-01 2.38006666926E-01 2.44030195154E-01 2.50207915962E-01 2.56541636968E-01 2.63035773933E-01 2.69692998837E-01 2.76520171609E-01 2.83519223088E-01 2.90696758642E-01 2.98054667234E-01 3.05600200518E-01 3.13334680403E-01 3.21266690679E-01 3.29398138930E-01 3.37736629387E-01 3.46284914530E-01 3.55050469551E-01 3.64038088247E-01 3.73251684734E-01 3.82701124043E-01 3.92387621160E-01 4.02320265807E-01 4.12503255154E-01 4.22944413591E-01 4.33650146104E-01 4.44626357132E-01 4.55880858995E-01 4.67420749178E-01 4.79250753146E-01 4.91381919825E-01 5.03818870484E-01 5.16571108437E-01 5.29646379268E-01 5.43052274322E-01 5.56797891756E-01 5.70890427867E-01 5.85340353486E-01 6.00155392142E-01 6.15345857371E-01 6.30920064675E-01 6.46889745093E-01 6.63262525810E-01 6.80049891378E-01 6.97261906585E-01 7.14909028045E-01 7.33003498511E-01 7.51555350377E-01 7.70577095836E-01 7.90079678849E-01 8.10076114843E-01 8.30579390515E-01 8.51599514791E-01 8.73153080435E-01 8.95251108062E-01 9.17908808220E-01 9.41138918975E-01 9.64956526635E-01 9.89377855413E-01 1.01441775465E+00 1.04008839335E+00 1.06641116113E+00 1.09339920453E+00 1.12106969153E+00 1.14943947912E+00 1.17852753848E+00 1.20835174332E+00 1.23893101223E+00 1.27028281453E+00 1.30242878983E+00 1.33538654497E+00 1.36917873754E+00 1.40382617700E+00 1.43934947089E+00 1.47577017038E+00 1.51311340004E+00 1.55140073876E+00 1.59065748165E+00 1.63090488339E+00 1.67217186112E+00 1.71448283495E+00 1.75786274012E+00 1.80233911224E+00 1.84794219304E+00 1.89469647749E+00 1.94263433539E+00 1.99178447033E+00 2.04217602155E+00 2.09384294139E+00 2.14681691547E+00 2.20112807094E+00 2.25681268476E+00 2.31390661515E+00 2.37244354182E+00 2.43245939003E+00 2.49399320096E+00 2.55708243120E+00 2.62176653745E+00 2.68808419401E+00 2.75607943365E+00 2.82579338137E+00 2.89726872981E+00 2.97054994022E+00 3.04568272652E+00 3.12271548870E+00 3.20169455502E+00 3.28266831958E+00 3.36568765646E+00 3.45080702280E+00 3.53807394455E+00 3.62754601364E+00 3.71927932939E+00 3.81333049349E+00 3.90975532684E+00 4.00861582372E+00 4.10997403215E+00 4.21389136471E+00 4.32043355179E+00 4.42966440498E+00 4.54165555523E+00 4.65647189855E+00 4.77418890681E+00 4.89487617674E+00 5.01860991406E+00 5.14546878367E+00 5.27552673352E+00 5.40886817903E+00 5.54557456517E+00 5.68572964961E+00 5.82942209960E+00 5.97673835953E+00 6.12777137198E+00 6.28261418050E+00 6.44136216048E+00 6.60411369573E+00 6.77096956375E+00 6.94203209505E+00 7.11740782774E+00 7.29720568019E+00 7.48153404643E+00 7.67050817499E+00 7.86424638354E+00 8.06286477198E+00 8.26648681171E+00 8.47524036469E+00 8.68925072732E+00 8.90865320191E+00 9.13357705699E+00 9.36416710810E+00 9.60056220657E+00 9.84290803486E+00 1.00913517216E+01 1.03460485668E+01 1.06071539712E+01 1.08748268311E+01 1.11492340560E+01 1.14305415477E+01 1.17189223194E+01 1.20145521140E+01 1.23176150271E+01 1.26282929113E+01 1.29467782445E+01 1.32732628811E+01 1.36079486052E+01 1.39510394044E+01 1.43027436826E+01 1.46632757153E+01 1.50328561690E+01 1.54117105146E+01 1.58000678892E+01 1.61981639482E+01 1.66062423456E+01 1.70245494868E+01 1.74533399964E+01 1.78928730754E+01 1.83434159038E+01 1.88052409586E+01 1.92786258199E+01 1.97638592892E+01 2.02612318339E+01 2.07710447144E+01 2.12936054293E+01 2.18292271454E+01 2.23782346383E+01 2.29409544279E+01 2.35177268991E+01 2.41088959294E+01 2.47148179536E+01 2.53358535396E+01 2.59723743016E+01 2.66247609377E+01 2.72934020450E+01 2.79786952913E+01 2.86810486807E+01 2.94008781557E+01 3.01386130489E+01 3.08946885554E+01 3.16695546694E+01 3.24636644938E+01 3.32774903888E+01 3.41115097937E+01 3.49662129211E+01 3.58421040371E+01 3.67396916721E+01 3.76595063333E+01 3.86020818071E+01 3.95679706913E+01 4.05577304940E+01 4.15719417308E+01 4.26111889312E+01 4.36760738412E+01 4.47672125264E+01 4.58852324438E+01 4.70307779826E+01 4.82045051110E+01 4.94070869878E+01 5.06392087898E+01 5.19015741815E+01 5.31949000026E+01 5.45199191259E+01 5.58773816993E+01 5.72680511163E+01 5.86927118291E+01 6.01521621849E+01 6.16472181273E+01 6.31787127218E+01 6.47474962195E+01 6.63544409402E+01 6.80004295289E+01 6.96863730461E+01 7.14131902490E+01 7.31818308651E+01 7.49932537145E+01 7.68484441007E+01 7.87484011814E+01 8.06941501061E+01 8.26867330079E+01 8.47272137423E+01 8.68166748214E+01 8.89562255247E+01 9.11469872503E+01 9.33901112319E+01 9.56867669724E+01 9.80381447411E+01 1.00445459270E+02 1.02909945662E+02 1.05432860930E+02 1.08015488983E+02 1.10659129878E+02 1.13365110368E+02 1.16134778815E+02 1.18969506729E+02 1.21870686876E+02 1.24839737581E+02 1.27878097482E+02 1.30987230446E+02 1.34168619088E+02 1.37423773005E+02 1.40754220219E+02 1.44161514808E+02 1.47647229002E+02 1.51212958769E+02 1.54860322351E+02 1.58590955292E+02 1.62406518009E+02 1.66308686728E+02 1.70299164013E+02 1.74379662291E+02 1.78551919323E+02 1.82817688321E+02 1.87178737343E+02 1.91636853186E+02 1.96193837584E+02 2.00851505070E+02 2.05611682108E+02 2.10476209516E+02 2.15446935638E+02 2.20525720639E+02 2.25714429710E+02 2.31014935579E+02 2.36429114878E+02 2.41958845562E+02 2.47606005763E+02 2.53372472060E+02 2.59260118894E+02 2.65270813677E+02 2.71406408647E+02 2.77668753231E+02 2.84059677975E+02 2.90580993425E+02 2.97234493626E+02 3.04021945344E+02 3.10945086381E+02 3.18005624554E+02 3.25205231777E+02 3.32545537793E+02 3.40028129144E+02 3.47654541188E+02 3.55426255283E+02 3.63344692940E+02 3.71411210449E+02 3.79627092106E+02 3.87993542816E+02 3.96511688647E+02 4.05182559636E+02 4.14007090560E+02 4.22986111305E+02 4.32120338330E+02 4.41410366485E+02 4.50856661818E+02 4.60459553891E+02 4.70219222247E+02 4.80135691155E+02 4.90208815502E+02 5.00438278281E+02 5.10823570142E+02 5.21363982592E+02 5.32058599083E+02 5.42906277387E+02 5.53905641860E+02 5.65055067808E+02 5.76352670731E+02 5.87796287119E+02 5.99383466866E+02 6.11111453413E+02 6.22977173180E+02 6.34977215024E+02 6.47107817154E+02 6.59364850565E+02 6.71743799952E+02 6.84239750750E+02 6.96847365462E+02 7.09560870835E+02 7.22374036275E+02 7.35280154133E+02 7.48272024224E+02 7.61341930935E+02 7.74481624591E+02 7.87682301949E+02 8.00934584019E+02 8.14228497485E+02 8.27553453711E+02 8.40898225989E+02 8.54250934290E+02 8.67599016881E+02 8.80929216616E+02 8.94227557311E+02 9.07479322908E+02 9.20669040929E+02 9.33780459953E+02 9.46796533688E+02 9.59699398269E+02 9.72470361532E+02 9.85089881530E+02 9.97537552988E+02 1.00979209099E+03 1.02183132139E+03 1.03363216591E+03 1.04517063375E+03 1.05642181642E+03 1.06735987194E+03 1.07795803365E+03 1.08818859924E+03 1.09802293385E+03 1.10743147903E+03 1.11638375261E+03 1.12484836076E+03 1.13279301610E+03 1.14018454877E+03 1.14698893557E+03 1.15317131845E+03 1.15869604423E+03 1.16352669337E+03 1.16762612456E+03 1.17095652510E+03 1.17347945696E+03 1.17515592561E+03 1.17594644091E+03 1.17581109458E+03 1.17470963915E+03 1.17260158350E+03 1.16944628635E+03 1.16520306367E+03 1.15983131271E+03 1.15329063272E+03 1.14554096210E+03 1.13654273250E+03 1.12625702268E+03 1.11464573416E+03 1.10167177176E+03 1.08729924275E+03 1.07149366474E+03 1.05422219157E+03 1.03545384779E+03 1.01515978451E+03 9.93313542122E+02 9.69891338583E+02 9.44872362744E+02 9.18239090597E+02 8.89977615095E+02 8.60077993427E+02 8.28534607646E+02 7.95346549063E+02 7.60518006010E+02 7.24058678354E+02 6.85984206393E+02 6.46316608206E+02 6.05084729676E+02 5.62324718749E+02 5.18080496263E+02 4.72404241854E+02 4.25356889441E+02 3.77008620005E+02 3.27439360911E+02 2.76739276642E+02 2.25009255990E+02 1.72361386382E+02 1.18919411616E+02 6.48191583815E+01 1.02089444743E+01 -4.47500724121E+01 -9.98835724641E+01 -1.55003824681E+02 -2.09909510683E+02 -2.64385615673E+02 -3.18203433643E+02 -3.71120664458E+02 -4.22881658887E+02 -4.73217788929E+02 -5.21847989161E+02 -5.68479487015E+02 -6.12808724704E+02 -6.54522526368E+02 -6.93299498586E+02 -7.28811736923E+02 -7.60726817860E+02 -7.88710147504E+02 -8.12427681567E+02 -8.31549051015E+02 -8.45751139700E+02 -8.54722160293E+02 -8.58166256723E+02 -8.55808700250E+02 -8.47401718681E+02 -8.32731032441E+02 -8.11623137303E+02 -7.83953413850E+02 -7.49655126189E+02 -7.08729366452E+02 -6.61256025790E+02 -6.07405824789E+02 -5.47453459668E+02 -4.81791865523E+02 -4.10947574700E+02 -3.35597083948E+02 -2.56584056479E+02 -1.74937072600E+02 -9.18874727732E+01 -8.88662655638E+00 7.23783453129E+01 1.49971734459E+02 2.21701146972E+02 2.85116628650E+02 3.37520321975E+02 3.75990986781E+02 3.97429065223E+02 3.98629179162E+02 3.76392890687E+02 3.27658918957E+02 2.50001226547E+02 1.39252798104E+02 1.59559801830E+01 -1.58194012464E+00 1.56839881059E-01 -1.55497425631E-02 1.54173992315E-03 -1.52887553425E-04 1.51763519597E-05 -1.47010644823E-06 7.86035514289E-08 4.34372383202E-08 -3.61487365743E-08 0.00000000000E+00 0.00000000000E+00 -8.92209403343E-02 -6.97330029633E-02 1.00000000000E+00 -1.96192927530E+01 -1.96192927558E+01 -1.96192927562E+01 -1.96192927566E+01 -1.96192927571E+01 -1.96192927575E+01 -1.96192927580E+01 -1.96192927584E+01 -1.96192927589E+01 -1.96192927594E+01 -1.96192927599E+01 -1.96192927605E+01 -1.96192927610E+01 -1.96192927615E+01 -1.96192927621E+01 -1.96192927627E+01 -1.96192927633E+01 -1.96192927639E+01 -1.96192927645E+01 -1.96192927651E+01 -1.96192927658E+01 -1.96192927664E+01 -1.96192927671E+01 -1.96192927678E+01 -1.96192927686E+01 -1.96192927693E+01 -1.96192927701E+01 -1.96192927708E+01 -1.96192927716E+01 -1.96192927724E+01 -1.96192927733E+01 -1.96192927741E+01 -1.96192927750E+01 -1.96192927759E+01 -1.96192927768E+01 -1.96192927778E+01 -1.96192927788E+01 -1.96192927798E+01 -1.96192927808E+01 -1.96192927818E+01 -1.96192927829E+01 -1.96192927840E+01 -1.96192927851E+01 -1.96192927863E+01 -1.96192927875E+01 -1.96192927887E+01 -1.96192927900E+01 -1.96192927912E+01 -1.96192927926E+01 -1.96192927939E+01 -1.96192927953E+01 -1.96192927967E+01 -1.96192927981E+01 -1.96192927996E+01 -1.96192928012E+01 -1.96192928027E+01 -1.96192928043E+01 -1.96192928060E+01 -1.96192928077E+01 -1.96192928094E+01 -1.96192928112E+01 -1.96192928130E+01 -1.96192928148E+01 -1.96192928168E+01 -1.96192928187E+01 -1.96192928207E+01 -1.96192928228E+01 -1.96192928249E+01 -1.96192928271E+01 -1.96192928293E+01 -1.96192928316E+01 -1.96192928339E+01 -1.96192928363E+01 -1.96192928387E+01 -1.96192928413E+01 -1.96192928438E+01 -1.96192928465E+01 -1.96192928492E+01 -1.96192928520E+01 -1.96192928548E+01 -1.96192928577E+01 -1.96192928607E+01 -1.96192928638E+01 -1.96192928670E+01 -1.96192928702E+01 -1.96192928735E+01 -1.96192928769E+01 -1.96192928804E+01 -1.96192928839E+01 -1.96192928876E+01 -1.96192928914E+01 -1.96192928952E+01 -1.96192928992E+01 -1.96192929032E+01 -1.96192929073E+01 -1.96192929116E+01 -1.96192929160E+01 -1.96192929204E+01 -1.96192929250E+01 -1.96192929297E+01 -1.96192929345E+01 -1.96192929395E+01 -1.96192929445E+01 -1.96192929497E+01 -1.96192929551E+01 -1.96192929605E+01 -1.96192929661E+01 -1.96192929719E+01 -1.96192929777E+01 -1.96192929838E+01 -1.96192929900E+01 -1.96192929963E+01 -1.96192930028E+01 -1.96192930095E+01 -1.96192930163E+01 -1.96192930233E+01 -1.96192930305E+01 -1.96192930379E+01 -1.96192930454E+01 -1.96192930532E+01 -1.96192930611E+01 -1.96192930693E+01 -1.96192930776E+01 -1.96192930862E+01 -1.96192930950E+01 -1.96192931040E+01 -1.96192931132E+01 -1.96192931227E+01 -1.96192931324E+01 -1.96192931423E+01 -1.96192931525E+01 -1.96192931630E+01 -1.96192931737E+01 -1.96192931847E+01 -1.96192931960E+01 -1.96192932075E+01 -1.96192932194E+01 -1.96192932315E+01 -1.96192932440E+01 -1.96192932567E+01 -1.96192932698E+01 -1.96192932833E+01 -1.96192932970E+01 -1.96192933111E+01 -1.96192933256E+01 -1.96192933405E+01 -1.96192933557E+01 -1.96192933713E+01 -1.96192933873E+01 -1.96192934037E+01 -1.96192934205E+01 -1.96192934377E+01 -1.96192934554E+01 -1.96192934735E+01 -1.96192934921E+01 -1.96192935111E+01 -1.96192935307E+01 -1.96192935507E+01 -1.96192935712E+01 -1.96192935923E+01 -1.96192936139E+01 -1.96192936360E+01 -1.96192936587E+01 -1.96192936820E+01 -1.96192937058E+01 -1.96192937303E+01 -1.96192937554E+01 -1.96192937811E+01 -1.96192938074E+01 -1.96192938345E+01 -1.96192938622E+01 -1.96192938906E+01 -1.96192939197E+01 -1.96192939496E+01 -1.96192939802E+01 -1.96192940116E+01 -1.96192940438E+01 -1.96192940768E+01 -1.96192941107E+01 -1.96192941454E+01 -1.96192941810E+01 -1.96192942175E+01 -1.96192942549E+01 -1.96192942932E+01 -1.96192943325E+01 -1.96192943728E+01 -1.96192944142E+01 -1.96192944565E+01 -1.96192945000E+01 -1.96192945445E+01 -1.96192945902E+01 -1.96192946370E+01 -1.96192946851E+01 -1.96192947343E+01 -1.96192947848E+01 -1.96192948365E+01 -1.96192948896E+01 -1.96192949440E+01 -1.96192949997E+01 -1.96192950569E+01 -1.96192951156E+01 -1.96192951757E+01 -1.96192952373E+01 -1.96192953005E+01 -1.96192953653E+01 -1.96192954317E+01 -1.96192954998E+01 -1.96192955697E+01 -1.96192956412E+01 -1.96192957146E+01 -1.96192957899E+01 -1.96192958671E+01 -1.96192959462E+01 -1.96192960273E+01 -1.96192961104E+01 -1.96192961957E+01 -1.96192962831E+01 -1.96192963727E+01 -1.96192964646E+01 -1.96192965588E+01 -1.96192966554E+01 -1.96192967544E+01 -1.96192968560E+01 -1.96192969601E+01 -1.96192970668E+01 -1.96192971762E+01 -1.96192972884E+01 -1.96192974034E+01 -1.96192975213E+01 -1.96192976422E+01 -1.96192977661E+01 -1.96192978932E+01 -1.96192980235E+01 -1.96192981571E+01 -1.96192982940E+01 -1.96192984344E+01 -1.96192985784E+01 -1.96192987259E+01 -1.96192988772E+01 -1.96192990323E+01 -1.96192991914E+01 -1.96192993544E+01 -1.96192995216E+01 -1.96192996929E+01 -1.96192998686E+01 -1.96193000487E+01 -1.96193002334E+01 -1.96193004227E+01 -1.96193006168E+01 -1.96193008158E+01 -1.96193010198E+01 -1.96193012289E+01 -1.96193014433E+01 -1.96193016631E+01 -1.96193018885E+01 -1.96193021195E+01 -1.96193023563E+01 -1.96193025991E+01 -1.96193028480E+01 -1.96193031032E+01 -1.96193033648E+01 -1.96193036330E+01 -1.96193039079E+01 -1.96193041898E+01 -1.96193044787E+01 -1.96193047749E+01 -1.96193050786E+01 -1.96193053899E+01 -1.96193057090E+01 -1.96193060361E+01 -1.96193063715E+01 -1.96193067152E+01 -1.96193070677E+01 -1.96193074289E+01 -1.96193077993E+01 -1.96193081789E+01 -1.96193085681E+01 -1.96193089670E+01 -1.96193093759E+01 -1.96193097951E+01 -1.96193102248E+01 -1.96193106653E+01 -1.96193111168E+01 -1.96193115796E+01 -1.96193120540E+01 -1.96193125403E+01 -1.96193130388E+01 -1.96193135498E+01 -1.96193140735E+01 -1.96193146103E+01 -1.96193151606E+01 -1.96193157246E+01 -1.96193163027E+01 -1.96193168953E+01 -1.96193175026E+01 -1.96193181251E+01 -1.96193187632E+01 -1.96193194171E+01 -1.96193200874E+01 -1.96193207744E+01 -1.96193214785E+01 -1.96193222001E+01 -1.96193229397E+01 -1.96193236977E+01 -1.96193244746E+01 -1.96193252707E+01 -1.96193260867E+01 -1.96193269229E+01 -1.96193277799E+01 -1.96193286581E+01 -1.96193295582E+01 -1.96193304805E+01 -1.96193314257E+01 -1.96193323943E+01 -1.96193333868E+01 -1.96193344039E+01 -1.96193354462E+01 -1.96193365142E+01 -1.96193376085E+01 -1.96193387299E+01 -1.96193398789E+01 -1.96193410562E+01 -1.96193422624E+01 -1.96193434984E+01 -1.96193447647E+01 -1.96193460621E+01 -1.96193473914E+01 -1.96193487533E+01 -1.96193501485E+01 -1.96193515779E+01 -1.96193530422E+01 -1.96193545423E+01 -1.96193560791E+01 -1.96193576533E+01 -1.96193592659E+01 -1.96193609177E+01 -1.96193626097E+01 -1.96193643427E+01 -1.96193661178E+01 -1.96193679360E+01 -1.96193697981E+01 -1.96193717052E+01 -1.96193736584E+01 -1.96193756587E+01 -1.96193777071E+01 -1.96193798048E+01 -1.96193819529E+01 -1.96193841525E+01 -1.96193864048E+01 -1.96193887109E+01 -1.96193910720E+01 -1.96193934894E+01 -1.96193959643E+01 -1.96193984980E+01 -1.96194010918E+01 -1.96194037470E+01 -1.96194064648E+01 -1.96194092468E+01 -1.96194120942E+01 -1.96194150084E+01 -1.96194179910E+01 -1.96194210432E+01 -1.96194241667E+01 -1.96194273628E+01 -1.96194306332E+01 -1.96194339792E+01 -1.96194374026E+01 -1.96194409048E+01 -1.96194444875E+01 -1.96194481523E+01 -1.96194519008E+01 -1.96194557347E+01 -1.96194596556E+01 -1.96194636653E+01 -1.96194677654E+01 -1.96194719577E+01 -1.96194762438E+01 -1.96194806257E+01 -1.96194851049E+01 -1.96194896834E+01 -1.96194943628E+01 -1.96194991450E+01 -1.96195040318E+01 -1.96195090250E+01 -1.96195141263E+01 -1.96195193376E+01 -1.96195246608E+01 -1.96195300975E+01 -1.96195356495E+01 -1.96195413188E+01 -1.96195471069E+01 -1.96195530158E+01 -1.96195590471E+01 -1.96195652024E+01 -1.96195714836E+01 -1.96195778923E+01 -1.96195844300E+01 -1.96195910983E+01 -1.96195978988E+01 -1.96196048329E+01 -1.96196119020E+01 -1.96196191076E+01 -1.96196264507E+01 -1.96196339328E+01 -1.96196415548E+01 -1.96196493177E+01 -1.96196572226E+01 -1.96196652701E+01 -1.96196734609E+01 -1.96196817957E+01 -1.96196902748E+01 -1.96196988983E+01 -1.96197076665E+01 -1.96197165792E+01 -1.96197256361E+01 -1.96197348367E+01 -1.96197441802E+01 -1.96197536656E+01 -1.96197632918E+01 -1.96197730572E+01 -1.96197829600E+01 -1.96197929981E+01 -1.96198031689E+01 -1.96198134697E+01 -1.96198238972E+01 -1.96198344478E+01 -1.96198451173E+01 -1.96198559014E+01 -1.96198667948E+01 -1.96198777920E+01 -1.96198888869E+01 -1.96199000727E+01 -1.96199113420E+01 -1.96199226868E+01 -1.96199340982E+01 -1.96199455666E+01 -1.96199570818E+01 -1.96199686323E+01 -1.96199802062E+01 -1.96199917902E+01 -1.96200033701E+01 -1.96200149308E+01 -1.96200264557E+01 -1.96200379273E+01 -1.96200493267E+01 -1.96200606334E+01 -1.96200718257E+01 -1.96200828804E+01 -1.96200937724E+01 -1.96201044753E+01 -1.96201149604E+01 -1.96201251974E+01 -1.96201351539E+01 -1.96201447953E+01 -1.96201540848E+01 -1.96201629832E+01 -1.96201714486E+01 -1.96201794368E+01 -1.96201869003E+01 -1.96201937891E+01 -1.96202000498E+01 -1.96202056256E+01 -1.96202104565E+01 -1.96202144786E+01 -1.96202176240E+01 -1.96202198210E+01 -1.96202209935E+01 -1.96202210606E+01 -1.96202199368E+01 -1.96202175315E+01 -1.96202137488E+01 -1.96202084871E+01 -1.96202016389E+01 -1.96201930905E+01 -1.96201827214E+01 -1.96201704045E+01 -1.96201560051E+01 -1.96201393811E+01 -1.96201203820E+01 -1.96200988490E+01 -1.96200746143E+01 -1.96200475005E+01 -1.96200173205E+01 -1.96199838765E+01 -1.96199469598E+01 -1.96199063501E+01 -1.96198618150E+01 -1.96198131092E+01 -1.96197599738E+01 -1.96197021360E+01 -1.96196393077E+01 -1.96195711854E+01 -1.96194974491E+01 -1.96194177613E+01 -1.96193317663E+01 -1.96192390893E+01 -1.96191393353E+01 -1.96190320882E+01 -1.96189169094E+01 -1.96187933372E+01 -1.96186608851E+01 -1.96185190410E+01 -1.96183672655E+01 -1.96182049908E+01 -1.96180316190E+01 -1.96178465211E+01 -1.96176490347E+01 -1.96174384630E+01 -1.96172140727E+01 -1.96169750925E+01 -1.96167207106E+01 -1.96164500735E+01 -1.96161622833E+01 -1.96158563958E+01 -1.96155314183E+01 -1.96151863067E+01 -1.96148199638E+01 -1.96144312359E+01 -1.96140189106E+01 -1.96135817136E+01 -1.96131183060E+01 -1.96126272808E+01 -1.96121071599E+01 -1.96115563906E+01 -1.96109733420E+01 -1.96103563011E+01 -1.96097034691E+01 -1.96090129574E+01 -1.96082827829E+01 -1.96075108640E+01 -1.96066950154E+01 -1.96058329439E+01 -1.96049222428E+01 -1.96039603869E+01 -1.96029447267E+01 -1.96018724829E+01 -1.96007407401E+01 -1.95995464411E+01 -1.95982863794E+01 -1.95969571936E+01 -1.95955553593E+01 -1.95940771821E+01 -1.95925187903E+01 -1.95908761262E+01 -1.95891449384E+01 -1.95873207729E+01 -1.95853989641E+01 -1.95833746256E+01 -1.95812426405E+01 -1.95789976514E+01 -1.95766340497E+01 -1.95741459653E+01 -1.95715272548E+01 -1.95687714905E+01 -1.95658719478E+01 -1.95628215934E+01 -1.95596130718E+01 -1.95562386925E+01 -1.95526904158E+01 -1.95489598392E+01 -1.95450381821E+01 -1.95409162714E+01 -1.95365845253E+01 -1.95320329378E+01 -1.95272510621E+01 -1.95222279934E+01 -1.95169523521E+01 -1.95114122655E+01 -1.95055953498E+01 -1.94994886912E+01 -1.94930788273E+01 -1.94863517271E+01 -1.94792927712E+01 -1.94718867321E+01 -1.94641177529E+01 -1.94559693269E+01 -1.94474242764E+01 -1.94384647314E+01 -1.94290721079E+01 -1.94192270861E+01 -1.94089095891E+01 -1.93980987609E+01 -1.93867729445E+01 -1.93749096606E+01 -1.93624855860E+01 -1.93494765330E+01 -1.93358574283E+01 -1.93216022930E+01 -1.93066842237E+01 -1.92910753732E+01 -1.92747469335E+01 -1.92576691191E+01 -1.92398111520E+01 -1.92211412478E+01 -1.92016266045E+01 -1.91812333922E+01 -1.91599267461E+01 -1.91376707613E+01 -1.91144284912E+01 -1.90901619487E+01 -1.90648321115E+01 -1.90383989314E+01 -1.90108213479E+01 -1.89820573076E+01 -1.89520637892E+01 -1.89207968342E+01 -1.88882115857E+01 -1.88542623350E+01 -1.88189025759E+01 -1.87820850706E+01 -1.87437619249E+01 -1.87038846766E+01 -1.86624043966E+01 -1.86192718058E+01 -1.85744374081E+01 -1.85278516423E+01 -1.84794650550E+01 -1.84292284969E+01 -1.83770933448E+01 -1.83230117530E+01 -1.82669369381E+01 -1.82088234998E+01 -1.81486277843E+01 -1.80863082931E+01 -1.80218261461E+01 -1.79551456028E+01 -1.78862346514E+01 -1.78150656728E+01 -1.77416161907E+01 -1.76658697162E+01 -1.75878167002E+01 -1.75074556054E+01 -1.74247941098E+01 -1.73398504562E+01 -1.72526549572E+01 -1.71632516666E+01 -1.70717002212E+01 -1.69780778491E+01 -1.68824815289E+01 -1.67850302630E+01 -1.66858674013E+01 -1.65851629068E+01 -1.64831153992E+01 -1.63799537273E+01 -1.62759377163E+01 -1.61713575933E+01 -1.60665314175E+01 -1.59617996335E+01 -1.58575156300E+01 -1.57540309485E+01 -1.56524203667E+01 -1.55748194279E+01 -1.55086522488E+01 -1.54026899845E+01 -1.52673088906E+01 -1.51294480113E+01 -1.49891258814E+01 -1.48463146311E+01 -1.47009357181E+01 -1.45528594618E+01 -1.44019095381E+01 -1.42478732808E+01 -1.40905180726E+01 -1.39296133486E+01 -1.37649568734E+01 -1.35964031486E+01 -1.34238912150E+01 -1.32474688948E+01 -1.30673107232E+01 -1.28837274494E+01 -1.26971659250E+01 -1.25081993018E+01 -1.23175085417E+01 -1.21258571479E+01 -1.19340616315E+01 -1.17429604677E+01 -1.15533841656E+01 -1.13661286264E+01 -1.11819332978E+01 -1.10014648618E+01 -1.08253064548E+01 -1.06539518059E+01 -1.04878032612E+01 -1.03271724724E+01 -1.01722825364E+01 -1.00232705458E+01 -9.88018978535E+00 -9.74301112734E+00 -9.61162349433E+00 -9.48583354343E+00 -9.36536496407E+00 -9.24985797962E+00 -9.13886980654E+00 -9.03187697098E+00 -8.92828052577E+00 -8.82741536498E+00 -8.72856501159E+00 -8.63098346549E+00 -8.53392595457E+00 -8.43669073816E+00 -8.33867448013E+00 -8.23944414655E+00 -8.13882890388E+00 -8.03715525882E+00 -7.93577867952E+00 -7.83637713779E+00 -7.73886184503E+00 -7.64267658295E+00 -7.54769213737E+00 -7.45389297287E+00 -7.36126380326E+00 -7.26978958411E+00 -7.17945550573E+00 -7.09024698642E+00 -7.00214966602E+00 -6.91514939981E+00 -6.82923225270E+00 -6.74438449368E+00 -6.66059259058E+00 -6.57784320502E+00 -6.49612318768E+00 -6.41541957378E+00 -6.33571957875E+00 -6.25701059414E+00 -6.17928018375E+00 -6.10251607989E+00 -6.02670617985E+00 -5.95183854258E+00 -5.87790138541E+00 -5.80488308107E+00 -5.73277215471E+00 -5.66155728111E+00 -5.59122728204E+00 -5.52177112368E+00 -5.45317791420E+00 -5.38543690136E+00 -5.31853747018E+00 -5.25246914082E+00 -5.18722156646E+00 -5.12278453132E+00 -5.05914794868E+00 -4.99630185894E+00 -4.93423642784E+00 -4.87294194458E+00 -4.81240882018E+00 -4.75262758574E+00 -4.69358889079E+00 -4.63528350172E+00 -4.57770230020E+00 -4.52083628167E+00 -4.46467655383E+00 -4.40921433520E+00 -4.35444095370E+00 -4.30034784526E+00 -4.24685380024E+00 -4.19402332114E+00 -4.14199979994E+00 -4.09062257608E+00 -4.03980858453E+00 -3.98960075930E+00 -3.94001645429E+00 -3.89109968093E+00 -3.84279040863E+00 -3.79505571056E+00 -3.74791392653E+00 -3.70135769241E+00 -3.65537973548E+00 -3.60997287327E+00 -3.56513001245E+00 -3.52084414773E+00 -3.47710836076E+00 -3.43391581908E+00 -3.39125977504E+00 -3.34913356478E+00 -3.30753060720E+00 -3.26644440295E+00 -3.22586853340E+00 -3.18579665972E+00 -3.14622252183E+00 -3.10713993751E+00 -3.06854280139E+00 -3.03042508407E+00 -2.99278083114E+00 -2.95560416227E+00 -2.91888927034E+00 -2.88263042049E+00 -2.84682194927E+00 -2.81145826371E+00 -2.77653384048E+00 -2.74204322501E+00 -2.70798103063E+00 -2.67434193772E+00 -2.64112069284E+00 -2.60831210793E+00 -2.57591105947E+00 -2.54391248762E+00 -2.51231139546E+00 -2.48110284815E+00 -2.45028197217E+00 -2.41984395448E+00 -2.38978404179E+00 -2.36009753978E+00 -2.33077981233E+00 -2.30182628079E+00 -2.27323242326E+00 -2.24499377381E+00 -2.21710592184E+00 -2.18956451132E+00 -2.16236524013E+00 -2.13550385937E+00 -2.10897617270E+00 -2.08277803568E+00 -2.05690535511E+00 -2.03135408843E+00 -2.00612024304E+00 -1.98119987576E+00 -1.95658909216E+00 -1.93228404600E+00 -1.90828093863E+00 -1.88457601845E+00 -1.86116558026E+00 -1.83804596482E+00 -1.81521355820E+00 -1.79266479126E+00 -1.77039613915E+00 -1.74840412076E+00 -1.72668529816E+00 -1.70523627615E+00 -1.68405370168E+00 -1.66313426340E+00 -1.64247469112E+00 -1.62207175532E+00 -1.60192226669E+00 -1.58202307558E+00 -1.56237107158E+00 -1.54296318299E+00 -1.52379637637E+00 -1.50486765609E+00 -1.48617406381E+00 -1.46771267804E+00 -1.44948061372E+00 -1.43147502171E+00 -1.41369308836E+00 -1.39613203507E+00 -1.37878911787E+00 -1.36166162693E+00 -1.34474688618E+00 -1.32804225287E+00 -1.31154511713E+00 -1.29525290158E+00 -1.27916306092E+00 -1.26327308149E+00 -1.24758048091E+00 -1.23208280767E+00 -1.21677764075E+00 -1.20166258919E+00 -1.18673529180E+00 -1.17199341668E+00 -1.15743466094E+00 -1.14305675030E+00 -1.12885743870E+00 -1.11483450801E+00 -1.10098576763E+00 -1.08730905417E+00 -1.07380223111E+00 -1.06046318845E+00 -1.04728984237E+00 -1.03428013496E+00 -1.02143203383E+00 -1.00874353182E+00 -9.96212646697E-01 -9.83837420837E-01 -9.71615920909E-01 -9.59546237586E-01 -9.47626485241E-01 -9.35854801655E-01 -9.24229347725E-01 -9.12748307180E-01 -9.01409886295E-01 -8.90212313614E-01 -8.79153839669E-01 -8.68232736715E-01 -8.57447298455E-01 -8.46795839774E-01 -8.36276696482E-01 -8.25888225047E-01 -8.15628802345E-01 -8.05496825404E-01 -7.95490711155E-01 -7.85608896185E-01 -7.75849836493E-01 -7.66212007251E-01 -7.56693902564E-01 -7.47294035237E-01 -7.38010936542E-01 -7.28843155989E-01 -7.19789261101E-01 -7.10847837189E-01 -7.02017487133E-01 -6.93296831161E-01 -6.84684506639E-01 -6.76179167854E-01 -6.67779485805E-01 -6.59484147997E-01 -6.51291857819E-01 -6.43201336043E-01 -6.35211318016E-01 -6.27320555239E-01 -6.19527814723E-01 -6.11831878790E-01 -6.04231544888E-01 -5.96725625399E-01 -5.89312947458E-01 -5.81992352768E-01 -5.74762697416E-01 -5.67622851700E-01 -5.60571605092E-01 -5.53607685288E-01 -5.46730660207E-01 -5.39939065344E-01 -5.33231834525E-01 -5.26607922266E-01 -5.20066293567E-01 -5.13605926285E-01 -5.07225810976E-01 -5.00924950732E-01 -4.94702361032E-01 -4.88557069583E-01 -4.82488116171E-01 -4.76494552510E-01 -4.70575442093E-01 -4.64729860047E-01 -4.58956892988E-01 -4.53255637169E-01 -4.47625205217E-01 -4.42064715615E-01 -4.36573299523E-01 -4.31150098898E-01 -4.25794266353E-01 -4.20504965028E-01 -4.15281368460E-01 -4.10122660450E-01 -4.05028034940E-01 -3.99996695885E-01 -3.95027857127E-01 -3.90120742276E-01 -3.85274584584E-01 -3.80488626830E-01 -3.75762121198E-01 -3.71094329161E-01 -3.66484521369E-01 -3.61931977529E-01 -3.57435986300E-01 -3.52995845168E-01 -3.48610860354E-01 -3.44280346696E-01 -3.40003627543E-01 -3.35780034649E-01 -3.31608908068E-01 -3.27489596054E-01 -3.23421454955E-01 -3.19403849117E-01 -3.15436150780E-01 -3.11517739984E-01 -3.07648004468E-01 -3.03826339578E-01 -3.00052148173E-01 -2.96324840518E-01 -2.92643834231E-01 -2.89008554138E-01 -2.85418432219E-01 -2.81872907511E-01 -2.78371426019E-01 -2.74913440628E-01 -2.71498411021E-01 -2.68125803594E-01 -2.64795091369E-01 -2.61505753916E-01 -2.58257277268E-01 -2.55049153846E-01 -2.51880882373E-01 -2.48751967801E-01 -2.45661921229E-01 -2.42610259832E-01 -2.39596506782E-01 -2.36620191174E-01 -2.33680847952E-01 -2.30778017838E-01 -2.27911247259E-01 -2.25080088276E-01 -2.22284098514E-01 -2.19522841095E-01 -2.16795884567E-01 -2.14102802837E-01 -2.11443175105E-01 -2.08816585800E-01 -2.06222624511E-01 -2.03660885926E-01 -2.01130969770E-01 -1.98632480736E-01 -1.96165028432E-01 -1.93728227313E-01 -1.91321696623E-01 -1.88945060338E-01 -1.86597947103E-01 -1.84279990176E-01 -1.81990827373E-01 -1.79730101007E-01 -1.77497457835E-01 -1.75292549002E-01 -1.73115029986E-01 -1.70964560546E-01 -1.68840804667E-01 -1.66743430506E-01 -1.64672110346E-01 -1.62626520539E-01 -1.60606341455E-01 -1.58611257440E-01 -1.56640956756E-01 -1.54695131540E-01 -1.52773477754E-01 -1.50875695134E-01 -1.49001487148E-01 -1.47150560948E-01 -1.45322627322E-01 -1.43517400653E-01 -1.41734598870E-01 -1.39973943405E-01 -1.38235159155E-01 -1.36517974429E-01 -1.34822120914E-01 -1.33147333631E-01 -1.31493350889E-01 -1.29859914250E-01 -1.28246768487E-01 -1.26653661543E-01 -1.25080344491E-01 -1.23526571498E-01 -1.21992099782E-01 -1.20476689581E-01 -1.18980104107E-01 -1.17502109516E-01 -1.16042474869E-01 -1.14600972095E-01 -1.13177375956E-01 -1.11771464013E-01 -1.10383016588E-01 -1.09011816734E-01 -1.07657650198E-01 -1.06320305388E-01 -1.04999573343E-01 -1.03695247695E-01 -1.02407124640E-01 -1.01135002907E-01 -9.98786837241E-02 -9.86379707885E-02 -9.74126702365E-02 -9.62025906124E-02 -9.50075428387E-02 -9.38273401870E-02 -9.26617982481E-02 -9.15107349036E-02 -9.03739702977E-02 -8.92513268085E-02 -8.81426290207E-02 -8.70477036980E-02 -8.59663797561E-02 -8.48984882359E-02 -8.38438622773E-02 -8.28023370927E-02 -8.17737499418E-02 -8.07579401056E-02 -7.97547488619E-02 3.74975167915E-09 3.84467740674E-09 3.94200620655E-09 4.04179891348E-09 4.14411790247E-09 4.24902712759E-09 4.35659216191E-09 4.46688023858E-09 4.57996029278E-09 4.69590300488E-09 4.81478084457E-09 4.93666811617E-09 5.06164100511E-09 5.18977762551E-09 5.32115806904E-09 5.45586445496E-09 5.59398098148E-09 5.73559397836E-09 5.88079196092E-09 6.02966568533E-09 6.18230820534E-09 6.33881493049E-09 6.49928368571E-09 6.66381477252E-09 6.83251103165E-09 7.00547790742E-09 7.18282351359E-09 7.36465870097E-09 7.55109712671E-09 7.74225532535E-09 7.93825278168E-09 8.13921200540E-09 8.34525860777E-09 8.55652138004E-09 8.77313237407E-09 8.99522698478E-09 9.22294403486E-09 9.45642586153E-09 9.69581840553E-09 9.94127130233E-09 1.01929379757E-08 1.04509757337E-08 1.07155458667E-08 1.09868137488E-08 1.12649489405E-08 1.15501252955E-08 1.18425210686E-08 1.21423190276E-08 1.24497065676E-08 1.27648758279E-08 1.30880238123E-08 1.34193525122E-08 1.37590690328E-08 1.41073857229E-08 1.44645203073E-08 1.48306960231E-08 1.52061417592E-08 1.55910921995E-08 1.59857879696E-08 1.63904757871E-08 1.68054086161E-08 1.72308458252E-08 1.76670533497E-08 1.81143038580E-08 1.85728769217E-08 1.90430591910E-08 1.95251445734E-08 2.00194344177E-08 2.05262377026E-08 2.10458712295E-08 2.15786598210E-08 2.21249365236E-08 2.26850428163E-08 2.32593288240E-08 2.38481535364E-08 2.44518850327E-08 2.50709007113E-08 2.57055875265E-08 2.63563422296E-08 2.70235716180E-08 2.77076927887E-08 2.84091333999E-08 2.91283319377E-08 2.98657379911E-08 3.06218125324E-08 3.13970282063E-08 3.21918696248E-08 3.30068336707E-08 3.38424298081E-08 3.46991804014E-08 3.55776210417E-08 3.64783008820E-08 3.74017829805E-08 3.83486446528E-08 3.93194778334E-08 4.03148894454E-08 4.13355017804E-08 4.23819528881E-08 4.34548969747E-08 4.45550048129E-08 4.56829641611E-08 4.68394801936E-08 4.80252759422E-08 4.92410927480E-08 5.04876907257E-08 5.17658492387E-08 5.30763673873E-08 5.44200645082E-08 5.57977806872E-08 5.72103772851E-08 5.86587374767E-08 6.01437668032E-08 6.16663937389E-08 6.32275702724E-08 6.48282725025E-08 6.64695012486E-08 6.81522826774E-08 6.98776689450E-08 7.16467388559E-08 7.34605985373E-08 7.53203821325E-08 7.72272525102E-08 7.91824019925E-08 8.11870531016E-08 8.32424593249E-08 8.53499058997E-08 8.75107106180E-08 8.97262246518E-08 9.19978333986E-08 9.43269573493E-08 9.67150529777E-08 9.91636136522E-08 1.01674170572E-07 1.04248293724E-07 1.06887592868E-07 1.09593718546E-07 1.12368363113E-07 1.15213261799E-07 1.18130193796E-07 1.21120983371E-07 1.24187501012E-07 1.27331664597E-07 1.30555440599E-07 1.33860845314E-07 1.37249946129E-07 1.40724862813E-07 1.44287768851E-07 1.47940892801E-07 1.51686519695E-07 1.55526992471E-07 1.59464713439E-07 1.63502145790E-07 1.67641815140E-07 1.71886311113E-07 1.76238288966E-07 1.80700471254E-07 1.85275649538E-07 1.89966686136E-07 1.94776515917E-07 1.99708148148E-07 2.04764668375E-07 2.09949240364E-07 2.15265108086E-07 2.20715597752E-07 2.26304119902E-07 2.32034171546E-07 2.37909338360E-07 2.43933296936E-07 2.50109817095E-07 2.56442764251E-07 2.62936101838E-07 2.69593893808E-07 2.76420307175E-07 2.83419614639E-07 2.90596197272E-07 2.97954547268E-07 3.05499270773E-07 3.13235090775E-07 3.21166850079E-07 3.29299514351E-07 3.37638175243E-07 3.46188053595E-07 3.54954502722E-07 3.63943011782E-07 3.73159209234E-07 3.82608866378E-07 3.92297900993E-07 4.02232381063E-07 4.12418528599E-07 4.22862723561E-07 4.33571507877E-07 4.44551589571E-07 4.55809846985E-07 4.67353333126E-07 4.79189280106E-07 4.91325103713E-07 5.03768408083E-07 5.16526990509E-07 5.29608846355E-07 5.43022174112E-07 5.56775380574E-07 5.70877086150E-07 5.85336130316E-07 6.00161577198E-07 6.15362721309E-07 6.30949093427E-07 6.46930466626E-07 6.63316862461E-07 6.80118557316E-07 6.97346088912E-07 7.15010262981E-07 7.33122160120E-07 7.51693142812E-07 7.70734862635E-07 7.90259267655E-07 8.10278610010E-07 8.30805453686E-07 8.51852682505E-07 8.73433508306E-07 8.95561479350E-07 9.18250488932E-07 9.41514784224E-07 9.65368975344E-07 9.89828044661E-07 1.01490735634E-06 1.04062266614E-06 1.06699013145E-06 1.09402632163E-06 1.12174822855E-06 1.15017327746E-06 1.17931933815E-06 1.20920473633E-06 1.23984826541E-06 1.27126919849E-06 1.30348730070E-06 1.33652284193E-06 1.37039660976E-06 1.40512992284E-06 1.44074464455E-06 1.47726319712E-06 1.51470857595E-06 1.55310436449E-06 1.59247474939E-06 1.63284453608E-06 1.67423916480E-06 1.71668472700E-06 1.76020798220E-06 1.80483637526E-06 1.85059805421E-06 1.89752188840E-06 1.94563748724E-06 1.99497521944E-06 2.04556623268E-06 2.09744247387E-06 2.15063670996E-06 2.20518254922E-06 2.26111446321E-06 2.31846780922E-06 2.37727885341E-06 2.43758479447E-06 2.49942378803E-06 2.56283497161E-06 2.62785849035E-06 2.69453552331E-06 2.76290831065E-06 2.83302018132E-06 2.90491558176E-06 2.97864010512E-06 3.05424052148E-06 3.13176480877E-06 3.21126218458E-06 3.29278313883E-06 3.37637946732E-06 3.46210430622E-06 3.55001216751E-06 3.64015897533E-06 3.73260210345E-06 3.82740041365E-06 3.92461429524E-06 4.02430570561E-06 4.12653821202E-06 4.23137703439E-06 4.33888908942E-06 4.44914303586E-06 4.56220932108E-06 4.67816022896E-06 4.79706992907E-06 4.91901452727E-06 5.04407211778E-06 5.17232283662E-06 5.30384891666E-06 5.43873474417E-06 5.57706691704E-06 5.71893430460E-06 5.86442810919E-06 6.01364192950E-06 6.16667182571E-06 6.32361638649E-06 6.48457679805E-06 6.64965691500E-06 6.81896333347E-06 6.99260546623E-06 7.17069562004E-06 7.35334907531E-06 7.54068416802E-06 7.73282237417E-06 7.92988839661E-06 8.13201025451E-06 8.33931937551E-06 8.55195069057E-06 8.77004273170E-06 8.99373773260E-06 9.22318173234E-06 9.45852468222E-06 9.69992055580E-06 9.94752746231E-06 1.02015077636E-05 1.04620281944E-05 1.07292599868E-05 1.10033789980E-05 1.12845658424E-05 1.15730060275E-05 1.18688900946E-05 1.21724137629E-05 1.24837780795E-05 1.28031895725E-05 1.31308604108E-05 1.34670085671E-05 1.38118579877E-05 1.41656387665E-05 1.45285873255E-05 1.49009466007E-05 1.52829662339E-05 1.56749027713E-05 1.60770198678E-05 1.64895884987E-05 1.69128871778E-05 1.73472021835E-05 1.77928277913E-05 1.82500665152E-05 1.87192293563E-05 1.92006360602E-05 1.96946153829E-05 2.02015053659E-05 2.07216536206E-05 2.12554176223E-05 2.18031650143E-05 2.23652739227E-05 2.29421332819E-05 2.35341431713E-05 2.41417151645E-05 2.47652726893E-05 2.54052514020E-05 2.60620995738E-05 2.67362784915E-05 2.74282628722E-05 2.81385412931E-05 2.88676166363E-05 2.96160065506E-05 3.03842439287E-05 3.11728774034E-05 3.19824718604E-05 3.28136089710E-05 3.36668877444E-05 3.45429250997E-05 3.54423564599E-05 3.63658363680E-05 3.73140391264E-05 3.82876594595E-05 3.92874132029E-05 4.03140380171E-05 4.13682941301E-05 4.24509651071E-05 4.35628586509E-05 4.47048074321E-05 4.58776699530E-05 4.70823314438E-05 4.83197047942E-05 4.95907315227E-05 5.08963827821E-05 5.22376604069E-05 5.36155980005E-05 5.50312620675E-05 5.64857531899E-05 5.79802072511E-05 5.95157967099E-05 6.10937319252E-05 6.27152625350E-05 6.43816788915E-05 6.60943135553E-05 6.78545428505E-05 6.96637884846E-05 7.15235192346E-05 7.34352527038E-05 7.54005571518E-05 7.74210534004E-05 7.94984168202E-05 8.16343794005E-05 8.38307319061E-05 8.60893261268E-05 8.84120772211E-05 9.08009661604E-05 9.32580422780E-05 9.57854259268E-05 9.83853112522E-05 1.01059969083E-04 1.03811749950E-04 1.06643087234E-04 1.09556500447E-04 1.12554598667E-04 1.15640084111E-04 1.18815755875E-04 1.22084513827E-04 1.25449362685E-04 1.28913416266E-04 1.32479901925E-04 1.36152165195E-04 1.39933674626E-04 1.43828026850E-04 1.47838951863E-04 1.51970318552E-04 1.56226140461E-04 1.60610581828E-04 1.65127963883E-04 1.69782771440E-04 1.74579659781E-04 1.79523461856E-04 1.84619195811E-04 1.89872072853E-04 1.95287505484E-04 2.00871116099E-04 2.06628745993E-04 2.12566464763E-04 2.18690580159E-04 2.25007648377E-04 2.31524484831E-04 2.38248175422E-04 2.45186088325E-04 2.52345886326E-04 2.59735539725E-04 2.67363339846E-04 2.75237913163E-04 2.83368236093E-04 2.91763650477E-04 3.00433879773E-04 3.09389046018E-04 3.18639687571E-04 3.28196777693E-04 3.38071743994E-04 3.48276488788E-04 3.58823410408E-04 3.69725425514E-04 3.80995992455E-04 3.92649135722E-04 4.04699471557E-04 4.17162234759E-04 4.30053306759E-04 4.43389245012E-04 4.57187313772E-04 4.71465516324E-04 4.86242628727E-04 5.01538235155E-04 5.17372764896E-04 5.33767531111E-04 5.50744771404E-04 5.68327690318E-04 5.86540503834E-04 6.05408485966E-04 6.24958017562E-04 6.45216637397E-04 6.66213095686E-04 6.87977410117E-04 7.10540924526E-04 7.33936370339E-04 7.58197930908E-04 7.83361308882E-04 8.09463796741E-04 8.36544350664E-04 8.64643667856E-04 8.93804267523E-04 9.24070575639E-04 9.55489013705E-04 9.88108091661E-04 1.02197850516E-03 1.05715323738E-03 1.09368766564E-03 1.13163967294E-03 1.17106976476E-03 1.21204119127E-03 1.25462007525E-03 1.29887554595E-03 1.34487987920E-03 1.39270864394E-03 1.44244085563E-03 1.49415913669E-03 1.54794988439E-03 1.60390344642E-03 1.66211430460E-03 1.72268126699E-03 1.78570766879E-03 1.85130158249E-03 1.91957603754E-03 1.99064925003E-03 2.06464486287E-03 2.14169219677E-03 2.22192651262E-03 2.30548928570E-03 2.39252849214E-03 2.48319890834E-03 2.57766242371E-03 2.67608836734E-03 2.77865384920E-03 2.88554411645E-03 2.99695292546E-03 3.11308293022E-03 3.23414608770E-03 3.36036408096E-03 3.49196876062E-03 3.62920260543E-03 3.77231920274E-03 3.92158374949E-03 4.07727357469E-03 4.23967868403E-03 4.40910232759E-03 4.58586159134E-03 4.77028801344E-03 4.96272822621E-03 5.16354462454E-03 5.37311606191E-03 5.59183857468E-03 5.82012613594E-03 6.05841143955E-03 6.30714671571E-03 6.56680457879E-03 6.83787890861E-03 7.12088576616E-03 7.41636434478E-03 7.72487795788E-03 8.04701506422E-03 8.38339033182E-03 8.73464574157E-03 9.10145173156E-03 9.48450838315E-03 9.88454664984E-03 1.03023296299E-02 1.07386538837E-02 1.11943507972E-02 1.16702879909E-02 1.21673707781E-02 1.26865436696E-02 1.32287919288E-02 1.37951431763E-02 1.43866690444E-02 1.50044868832E-02 1.56497615184E-02 1.63237070598E-02 1.70275887631E-02 1.77627249433E-02 1.85304889405E-02 1.93323111374E-02 2.01696810292E-02 2.10441493437E-02 2.19573302132E-02 2.29109033948E-02 2.39066165400E-02 2.49462875110E-02 2.60318067424E-02 2.71651396467E-02 2.83483290607E-02 2.95834977310E-02 3.08728508345E-02 3.22186785322E-02 3.36233585512E-02 3.50893587916E-02 3.66192399529E-02 3.82156581763E-02 3.98813676956E-02 4.16192234920E-02 4.34321839450E-02 4.53233134741E-02 4.72957851604E-02 4.93528833433E-02 5.14980061798E-02 5.37346681595E-02 5.60665025625E-02 5.84972638501E-02 6.10308299768E-02 6.36712046090E-02 6.64225192393E-02 6.92890351798E-02 7.22751454203E-02 7.53853763359E-02 7.86243892252E-02 8.19969816641E-02 8.55080886541E-02 8.91627835476E-02 9.29662787282E-02 9.69239260275E-02 1.01041216854E-01 1.05323782012E-01 1.09777391193E-01 1.14407952099E-01 1.19221509203E-01 1.24224242084E-01 1.29422463346E-01 1.34822616068E-01 1.40431270782E-01 1.46255121932E-01 1.52300983800E-01 1.58575785871E-01 1.65086567605E-01 1.71840472603E-01 1.78844742124E-01 1.86106707942E-01 1.93633784520E-01 2.01433460464E-01 2.09513289256E-01 2.17880879228E-01 2.26543882773E-01 2.35509984767E-01 2.44786890196E-01 2.54382310971E-01 2.64303951926E-01 2.74559495993E-01 2.85156588549E-01 2.96102820944E-01 3.07405713201E-01 3.19072695912E-01 3.31111091335E-01 3.43528093713E-01 3.56330748825E-01 3.69525932823E-01 3.83120330351E-01 3.97120412017E-01 4.11532411231E-01 4.26362300478E-01 4.41615767058E-01 4.57298188376E-01 4.73414606807E-01 4.89969704243E-01 5.06967776364E-01 5.24412706719E-01 5.42307940704E-01 5.60656459501E-01 5.79460754095E-01 5.98722799427E-01 6.18444028798E-01 6.38625308611E-01 6.59266913544E-01 6.80368502258E-01 7.01929093728E-01 7.23947044295E-01 7.46420025537E-01 7.69345003043E-01 7.92718216186E-01 8.16535158971E-01 8.40790562033E-01 8.65478375857E-01 8.90591755280E-01 9.16123045337E-01 9.42063768472E-01 9.68404613151E-01 9.95135423903E-01 1.02224519275E+00 1.04972205203E+00 1.07755326857E+00 1.10572523912E+00 1.13422348692E+00 1.16303265940E+00 1.19213652661E+00 1.22151798051E+00 1.25115903448E+00 1.28104082317E+00 1.31114360192E+00 1.34144674578E+00 1.37192874725E+00 1.40256721255E+00 1.43333885555E+00 1.46421948882E+00 1.49518401103E+00 1.52620638974E+00 1.55725963871E+00 1.58831578866E+00 1.61934585041E+00 1.65031976907E+00 1.68120636799E+00 1.71197328119E+00 1.74258687262E+00 1.77301214088E+00 1.80321260766E+00 1.83315018847E+00 1.86278504397E+00 1.89207541021E+00 1.92097740656E+00 1.94944481961E+00 1.97742886202E+00 2.00487790525E+00 2.03173718528E+00 2.05794848127E+00 2.08344976683E+00 2.10817483495E+00 2.13205289753E+00 2.15500816191E+00 2.17695938734E+00 2.19781942554E+00 2.21750485190E+00 2.23596880140E+00 2.25317571801E+00 2.26909208912E+00 2.28368655364E+00 2.29693000417E+00 2.30879568284E+00 2.31925927033E+00 2.32829896752E+00 2.33589556962E+00 2.34203253216E+00 2.34669602878E+00 2.34987500045E+00 2.35156119587E+00 2.35174920300E+00 2.35043647152E+00 2.34762332610E+00 2.34331297045E+00 2.33751148231E+00 2.33022779905E+00 2.32147369433E+00 2.31126374573E+00 2.29961529347E+00 2.28654839059E+00 2.27208574455E+00 2.25625265079E+00 2.23907691826E+00 2.22058878751E+00 2.20082084140E+00 2.17980790911E+00 2.15758696360E+00 2.13419701307E+00 2.10967898691E+00 2.08407561642E+00 2.05743131104E+00 2.02979203036E+00 2.00120515254E+00 1.97171933966E+00 1.94138440041E+00 1.91025115082E+00 1.87837127342E+00 1.84579717535E+00 1.81258184610E+00 1.77877871519E+00 1.74444151045E+00 1.70962411727E+00 1.67438043947E+00 1.63876426206E+00 1.60282911650E+00 1.56662814901E+00 1.53021399223E+00 1.49362594168E+00 1.45692815341E+00 1.42017099588E+00 1.38340384934E+00 1.34667499886E+00 1.31002664485E+00 1.27350951491E+00 1.23716802533E+00 1.20104512608E+00 1.16518222314E+00 1.12961910718E+00 1.09439388900E+00 1.05954294153E+00 1.02510084873E+00 9.91100361271E-01 9.57572359209E-01 9.24545821567E-01 8.92047802889E-01 8.60103416742E-01 8.28735826105E-01 7.97966240578E-01 7.67813920319E-01 7.38296186574E-01 7.09428438640E-01 6.81224177077E-01 6.53695032955E-01 6.26850802875E-01 6.00699489514E-01 5.75247347351E-01 5.50498933277E-01 5.26457161710E-01 5.03123363842E-01 4.80497350614E-01 4.58577478994E-01 4.37360721142E-01 4.16842736001E-01 3.97017942874E-01 3.77879596537E-01 3.59419863438E-01 3.41629898538E-01 3.24499922372E-01 3.08019297905E-01 2.92176606792E-01 2.76959724661E-01 2.62355895072E-01 2.48351801829E-01 2.34933639332E-01 2.22087180735E-01 2.09797843639E-01 1.98050753143E-01 1.86830802071E-01 1.76122708237E-01 1.65911068638E-01 1.56180410493E-01 1.46915239088E-01 1.38100082387E-01 1.29719532424E-01 1.21758283496E-01 1.14201167192E-01 1.07033184344E-01 1.00239533961E-01 9.38056392571E-02 8.77171708696E-02 8.19600674003E-02 7.65205533956E-02 7.13851549077E-02 6.65407127719E-02 6.19743937437E-02 5.76736996365E-02 5.36264746059E-02 4.98209107178E-02 4.62455519419E-02 4.28892967019E-02 3.97413991146E-02 3.67914690384E-02 3.40294710524E-02 3.14457224730E-02 2.90308905142E-02 2.67759886879E-02 2.46723725306E-02 2.27117347424E-02 2.08860998081E-02 1.91878181724E-02 1.76095600261E-02 1.61443087616E-02 1.47853541435E-02 1.35262852396E-02 1.23609831507E-02 1.12836135724E-02 1.02886192206E-02 9.37071214657E-03 8.52486596623E-03 7.74630802463E-03 7.03051151546E-03 6.37318757298E-03 5.77027735240E-03 5.21794411412E-03 4.71256532559E-03 4.25072479441E-03 3.82920484538E-03 3.44497855386E-03 3.09520204753E-03 2.77720688809E-03 2.48849254443E-03 2.22671896828E-03 1.98969928318E-03 1.77539259731E-03 1.58189695023E-03 1.40744240335E-03 1.25038428321E-03 1.10919658656E-03 9.82465555160E-04 8.68883427941E-04 7.67242377443E-04 6.76428636538E-04 5.95416820902E-04 5.23264451793E-04 4.59106682898E-04 4.02151234188E-04 3.51673534888E-04 3.07012076799E-04 2.67563978424E-04 2.32780759489E-04 2.02164324705E-04 1.75263154816E-04 1.51668702298E-04 1.31011988340E-04 1.12960397161E-04 9.72146630902E-05 8.35060453244E-05 7.15936848026E-05 6.12621372202E-05 5.23190758473E-05 4.45931575147E-05 3.79320448966E-05 3.22005780299E-05 2.72790878847E-05 2.30618447258E-05 1.94556339797E-05 1.63784523428E-05 1.37583169366E-05 1.15321804183E-05 9.64494509946E-06 8.04856930184E-06 6.70125938047E-06 5.56674107330E-06 4.61360408404E-06 3.81471406941E-06 3.14668647892E-06 2.58941698180E-06 2.12566350766E-06 1.74067522297E-06 1.42186405992E-06 1.15851470729E-06 9.41529260195E-07 7.63203007152E-07 6.17028104903E-07 4.97522154356E-07 4.00078942446E-07 3.20838854269E-07 2.56576686915E-07 2.04606501790E-07 1.62709314254E-07 1.29028469909E-07 1.02029229122E-07 8.04480765118E-08 6.32477750208E-08 4.95793185567E-08 3.87498202104E-08 3.01954917817E-08 2.34589768107E-08 1.81703944754E-08 1.40315364745E-08 1.08027342215E-08 8.29198017069E-09 6.34594566095E-09 4.84258905815E-09 3.68490067316E-09 2.79473686393E-09 2.11249084848E-09 1.59142672521E-09 1.19487376130E-09 8.94161203111E-10 6.66953853459E-10 4.95915594608E-10 3.67640237774E-10 2.71799511527E-10 2.00466607751E-10 1.47581258154E-10 1.08528381228E-10 7.98075229903E-11 5.84520181339E-11 4.26371706464E-11 3.09733496033E-11 2.24066207051E-11 1.61409882267E-11 1.15778079594E-11 8.26878363238E-12 5.87966102280E-12 4.16230916372E-12 2.93334725020E-12 2.05785666697E-12 1.43702513506E-12 9.98817144770E-13 6.90962473142E-13 4.75711804702E-13 3.25932908532E-13 2.22218803368E-13 1.50756090073E-13 1.01761433561E-13 6.83405294144E-14 4.56596278415E-14 3.03470923877E-14 2.00633720862E-14 1.31936196646E-14 8.62914751582E-15 5.61288398509E-15 3.63068394059E-15 2.33531042541E-15 1.49356385337E-15 9.49718270950E-16 6.00379759283E-16 3.77298929760E-16 2.35689923450E-16 1.46338834242E-16 9.03042335429E-17 5.53800021408E-17 3.37489397585E-17 2.04359650245E-17 1.22948470091E-17 7.34866990611E-18 4.36331141701E-18 2.57341197961E-18 1.50747939813E-18 8.77011469779E-19 5.06679548970E-19 2.90668261492E-19 1.65561529242E-19 9.36224024540E-20 5.25556167125E-20 2.92844765039E-20 1.61954952355E-20 8.88890770750E-21 4.84125990813E-21 2.61626756175E-21 1.40273960657E-21 7.46105018645E-22 3.93647205553E-22 2.05993945448E-22 1.06904753337E-22 5.50160612630E-23 2.80728150935E-23 1.42016864760E-23 7.12203774967E-24 3.54022882882E-24 1.74410580535E-24 8.51490608120E-25 4.11910567220E-25 1.97420349107E-25 9.37337627440E-26 4.40822695081E-26 2.05325815645E-26 9.47070238678E-27 4.32540207865E-27 1.95579086440E-27 8.75417584534E-28 3.87837363870E-28 1.70047190215E-28 7.37764763501E-29 3.16692281816E-29 1.34483788309E-29 5.64880139215E-30 2.34658819845E-30 9.63942664809E-31 3.91505660764E-31 1.57193802439E-31 6.23850535525E-32 2.44686429375E-32 9.48329047118E-33 3.63130637077E-33 1.37358458958E-33 5.13180078310E-34 1.89338254448E-34 6.89751478801E-35 2.48063707772E-35 8.80602463418E-36 3.08511607254E-36 1.06651273401E-36 3.63739594774E-37 1.22368958347E-37 4.06006816185E-38 1.32831491391E-38 4.28447653454E-39 1.36221561149E-39 4.26841556645E-40 1.31789466021E-40 4.00873424299E-41 1.20106023066E-41 3.54381159076E-42 1.02953496664E-42 2.94436393382E-43 8.28773762241E-44 2.29555519873E-44 6.25545296923E-45 1.67671785817E-45 4.41978584992E-46 1.14548959260E-46 2.91834932561E-47 7.30711549236E-48 1.79772152703E-48 4.34480818770E-49 1.03131972082E-49 2.40376563333E-50 5.50005875021E-51 1.23514518914E-51 2.72171074954E-52 5.88349941150E-53 5.09564607337E-07 5.22464295503E-07 5.35690540764E-07 5.49251609949E-07 5.63155979162E-07 5.77412339081E-07 5.92029600389E-07 6.07016899345E-07 6.22383603491E-07 6.38139317511E-07 6.54293889232E-07 6.70857415781E-07 6.87840249891E-07 7.05253006380E-07 7.23106568779E-07 7.41412096135E-07 7.60181029990E-07 7.79425101528E-07 7.99156338910E-07 8.19387074791E-07 8.40129954027E-07 8.61397941580E-07 8.83204330624E-07 9.05562750845E-07 9.28487176972E-07 9.51991937502E-07 9.76091723658E-07 1.00080159858E-06 1.02613700671E-06 1.05211378351E-06 1.07874816527E-06 1.10605679934E-06 1.13405675448E-06 1.16276553154E-06 1.19220107443E-06 1.22238178129E-06 1.25332651603E-06 1.28505462007E-06 1.31758592450E-06 1.35094076240E-06 1.38513998160E-06 1.42020495769E-06 1.45615760740E-06 1.49302040225E-06 1.53081638266E-06 1.56956917231E-06 1.60930299290E-06 1.65004267932E-06 1.69181369516E-06 1.73464214861E-06 1.77855480880E-06 1.82357912251E-06 1.86974323134E-06 1.91707598931E-06 1.96560698087E-06 2.01536653940E-06 2.06638576617E-06 2.11869654979E-06 2.17233158611E-06 2.22732439871E-06 2.28370935979E-06 2.34152171169E-06 2.40079758894E-06 2.46157404077E-06 2.52388905434E-06 2.58778157845E-06 2.65329154790E-06 2.72045990843E-06 2.78932864231E-06 2.85994079462E-06 2.93234050010E-06 3.00657301077E-06 3.08268472423E-06 3.16072321259E-06 3.24073725228E-06 3.32277685450E-06 3.40689329648E-06 3.49313915352E-06 3.58156833189E-06 3.67223610247E-06 3.76519913535E-06 3.86051553518E-06 3.95824487758E-06 4.05844824628E-06 4.16118827136E-06 4.26652916839E-06 4.37453677853E-06 4.48527860973E-06 4.59882387889E-06 4.71524355512E-06 4.83461040412E-06 4.95699903366E-06 5.08248594018E-06 5.21114955664E-06 5.34307030152E-06 5.47833062906E-06 5.61701508087E-06 5.75921033868E-06 5.90500527858E-06 6.05449102656E-06 6.20776101542E-06 6.36491104324E-06 6.52603933318E-06 6.69124659494E-06 6.86063608765E-06 7.03431368443E-06 7.21238793859E-06 7.39497015141E-06 7.58217444177E-06 7.77411781744E-06 7.97092024823E-06 8.17270474097E-06 8.37959741635E-06 8.59172758782E-06 8.80922784236E-06 9.03223412334E-06 9.26088581554E-06 9.49532583222E-06 9.73570070443E-06 9.98216067266E-06 1.02348597807E-05 1.04939559718E-05 1.07596111877E-05 1.10319914695E-05 1.13112670616E-05 1.15976125181E-05 1.18912068120E-05 1.21922334467E-05 1.25008805711E-05 1.28173410970E-05 1.31418128197E-05 1.34744985415E-05 1.38156061987E-05 1.41653489913E-05 1.45239455164E-05 1.48916199050E-05 1.52686019616E-05 1.56551273082E-05 1.60514375314E-05 1.64577803336E-05 1.68744096876E-05 1.73015859951E-05 1.77395762503E-05 1.81886542056E-05 1.86491005438E-05 1.91212030527E-05 1.96052568054E-05 2.01015643445E-05 2.06104358714E-05 2.11321894399E-05 2.16671511552E-05 2.22156553776E-05 2.27780449316E-05 2.33546713198E-05 2.39458949431E-05 2.45520853254E-05 2.51736213451E-05 2.58108914711E-05 2.64642940067E-05 2.71342373373E-05 2.78211401866E-05 2.85254318778E-05 2.92475526018E-05 2.99879536928E-05 3.07470979099E-05 3.15254597264E-05 3.23235256266E-05 3.31417944093E-05 3.39807775001E-05 3.48409992706E-05 3.57229973663E-05 3.66273230424E-05 3.75545415087E-05 3.85052322821E-05 3.94799895497E-05 4.04794225393E-05 4.15041559004E-05 4.25548300948E-05 4.36321017966E-05 4.47366443023E-05 4.58691479523E-05 4.70303205615E-05 4.82208878621E-05 4.94415939568E-05 5.06932017841E-05 5.19764935950E-05 5.32922714415E-05 5.46413576781E-05 5.60245954756E-05 5.74428493481E-05 5.88970056928E-05 6.03879733445E-05 6.19166841428E-05 6.34840935152E-05 6.50911810731E-05 6.67389512249E-05 6.84284338030E-05 7.01606847074E-05 7.19367865655E-05 7.37578494088E-05 7.56250113660E-05 7.75394393745E-05 7.95023299094E-05 8.15149097311E-05 8.35784366517E-05 8.56942003211E-05 8.78635230325E-05 9.00877605488E-05 9.23683029495E-05 9.47065754992E-05 9.71040395380E-05 9.95621933949E-05 1.02082573323E-04 1.04666754461E-04 1.07316351815E-04 1.10033021270E-04 1.12818460620E-04 1.15674410634E-04 1.18602656142E-04 1.21605027147E-04 1.24683399971E-04 1.27839698426E-04 1.31075895017E-04 1.34394012174E-04 1.37796123512E-04 1.41284355131E-04 1.44860886942E-04 1.48527954028E-04 1.52287848041E-04 1.56142918634E-04 1.60095574925E-04 1.64148287009E-04 1.68303587492E-04 1.72564073078E-04 1.76932406193E-04 1.81411316640E-04 1.86003603310E-04 1.90712135932E-04 1.95539856855E-04 2.00489782899E-04 2.05565007227E-04 2.10768701283E-04 2.16104116772E-04 2.21574587689E-04 2.27183532401E-04 2.32934455782E-04 2.38830951402E-04 2.44876703768E-04 2.51075490628E-04 2.57431185327E-04 2.63947759227E-04 2.70629284186E-04 2.77479935098E-04 2.84503992502E-04 2.91705845253E-04 2.99089993260E-04 3.06661050298E-04 3.14423746887E-04 3.22382933243E-04 3.30543582304E-04 3.38910792841E-04 3.47489792630E-04 3.56285941722E-04 3.65304735787E-04 3.74551809539E-04 3.84032940257E-04 3.93754051386E-04 4.03721216238E-04 4.13940661775E-04 4.24418772499E-04 4.35162094432E-04 4.46177339202E-04 4.57471388227E-04 4.69051297011E-04 4.80924299540E-04 4.93097812799E-04 5.05579441394E-04 5.18376982298E-04 5.31498429708E-04 5.44951980035E-04 5.58746037014E-04 5.72889216941E-04 5.87390354045E-04 6.02258506001E-04 6.17502959567E-04 6.33133236382E-04 6.49159098894E-04 6.65590556449E-04 6.82437871524E-04 6.99711566128E-04 7.17422428352E-04 7.35581519097E-04 7.54200178959E-04 7.73290035298E-04 7.92863009479E-04 8.12931324296E-04 8.33507511587E-04 8.54604420037E-04 8.76235223177E-04 8.98413427587E-04 9.21152881307E-04 9.44467782453E-04 9.68372688058E-04 9.92882523130E-04 1.01801258994E-03 1.04377857754E-03 1.07019657154E-03 1.09728306408E-03 1.12505496414E-03 1.15352960800E-03 1.18272477006E-03 1.21265867387E-03 1.24335000349E-03 1.27481791506E-03 1.30708204874E-03 1.34016254089E-03 1.37408003661E-03 1.40885570255E-03 1.44451124004E-03 1.48106889861E-03 1.51855148977E-03 1.55698240117E-03 1.59638561116E-03 1.63678570362E-03 1.67820788325E-03 1.72067799119E-03 1.76422252106E-03 1.80886863538E-03 1.85464418241E-03 1.90157771342E-03 1.94969850041E-03 1.99903655419E-03 2.04962264303E-03 2.10148831169E-03 2.15466590094E-03 2.20918856763E-03 2.26509030514E-03 2.32240596450E-03 2.38117127586E-03 2.44142287067E-03 2.50319830428E-03 2.56653607915E-03 2.63147566868E-03 2.69805754155E-03 2.76632318677E-03 2.83631513921E-03 2.90807700596E-03 2.98165349313E-03 3.05709043352E-03 3.13443481478E-03 3.21373480848E-03 3.29503979969E-03 3.37840041748E-03 3.46386856604E-03 3.55149745663E-03 3.64134164035E-03 3.73345704165E-03 3.82790099272E-03 3.92473226874E-03 4.02401112394E-03 4.12579932860E-03 4.23016020699E-03 4.33715867616E-03 4.44686128575E-03 4.55933625881E-03 4.67465353350E-03 4.79288480597E-03 4.91410357420E-03 5.03838518291E-03 5.16580686964E-03 5.29644781190E-03 5.43038917552E-03 5.56771416412E-03 5.70850806986E-03 5.85285832542E-03 6.00085455718E-03 6.15258863977E-03 6.30815475196E-03 6.46764943383E-03 6.63117164541E-03 6.79882282668E-03 6.97070695910E-03 7.14693062857E-03 7.32760308993E-03 7.51283633303E-03 7.70274515040E-03 7.89744720654E-03 8.09706310885E-03 8.30171648037E-03 8.51153403411E-03 8.72664564934E-03 8.94718444952E-03 9.17328688230E-03 9.40509280123E-03 9.64274554954E-03 9.88639204594E-03 1.01361828723E-02 1.03922723637E-02 1.06548187001E-02 1.09239840008E-02 1.11999344209E-02 1.14828402496E-02 1.17728760114E-02 1.20702205695E-02 1.23750572316E-02 1.26875738579E-02 1.30079629720E-02 1.33364218742E-02 1.36731527577E-02 1.40183628269E-02 1.43722644188E-02 1.47350751274E-02 1.51070179308E-02 1.54883213207E-02 1.58792194356E-02 1.62799521967E-02 1.66907654468E-02 1.71119110925E-02 1.75436472497E-02 1.79862383919E-02 1.84399555021E-02 1.89050762287E-02 1.93818850435E-02 1.98706734045E-02 2.03717399215E-02 2.08853905258E-02 2.14119386430E-02 2.19517053705E-02 2.25050196579E-02 2.30722184915E-02 2.36536470837E-02 2.42496590647E-02 2.48606166799E-02 2.54868909906E-02 2.61288620790E-02 2.67869192576E-02 2.74614612829E-02 2.81528965736E-02 2.88616434331E-02 2.95881302765E-02 3.03327958621E-02 3.10960895279E-02 3.18784714325E-02 3.26804128007E-02 3.35023961739E-02 3.43449156654E-02 3.52084772207E-02 3.60935988824E-02 3.70008110605E-02 3.79306568070E-02 3.88836920967E-02 3.98604861114E-02 4.08616215311E-02 4.18876948286E-02 4.29393165705E-02 4.40171117225E-02 4.51217199603E-02 4.62537959854E-02 4.74140098464E-02 4.86030472649E-02 4.98216099670E-02 5.10704160196E-02 5.23502001717E-02 5.36617142010E-02 5.50057272650E-02 5.63830262575E-02 5.77944161694E-02 5.92407204544E-02 6.07227813996E-02 6.22414604997E-02 6.37976388369E-02 6.53922174635E-02 6.70261177900E-02 6.87002819759E-02 7.04156733248E-02 7.21732766828E-02 7.39740988402E-02 7.58191689357E-02 7.77095388643E-02 7.96462836863E-02 8.16305020392E-02 8.36633165510E-02 8.57458742548E-02 8.78793470044E-02 9.00649318900E-02 9.23038516540E-02 9.45973551063E-02 9.69467175384E-02 9.93532411356E-02 1.01818255387E-01 1.04343117492E-01 1.06929212763E-01 1.09577955026E-01 1.12290787009E-01 1.15069180733E-01 1.17914637891E-01 1.20828690212E-01 1.23812899835E-01 1.26868859646E-01 1.29998193629E-01 1.33202557185E-01 1.36483637447E-01 1.39843153573E-01 1.43282857028E-01 1.46804531840E-01 1.50409994843E-01 1.54101095888E-01 1.57879718035E-01 1.61747777723E-01 1.65707224900E-01 1.69760043131E-01 1.73908249669E-01 1.78153895491E-01 1.82499065293E-01 1.86945877447E-01 1.91496483914E-01 1.96153070101E-01 2.00917854679E-01 2.05793089338E-01 2.10781058487E-01 2.15884078893E-01 2.21104499251E-01 2.26444699683E-01 2.31907091171E-01 2.37494114897E-01 2.43208241512E-01 2.49051970301E-01 2.55027828268E-01 2.61138369109E-01 2.67386172082E-01 2.73773840765E-01 2.80304001695E-01 2.86979302872E-01 2.93802412145E-01 3.00776015440E-01 3.07902814849E-01 3.15185526559E-01 3.22626878614E-01 3.30229608503E-01 3.37996460561E-01 3.45930183177E-01 3.54033525802E-01 3.62309235732E-01 3.70760054672E-01 3.79388715060E-01 3.88197936138E-01 3.97190419766E-01 4.06368845954E-01 4.15735868106E-01 4.25294107965E-01 4.35046150233E-01 4.44994536860E-01 4.55141760989E-01 4.65490260521E-01 4.76042411316E-01 4.86800519978E-01 4.97766816229E-01 5.08943444846E-01 5.20332457138E-01 5.31935801949E-01 5.43755316163E-01 5.55792714690E-01 5.68049579914E-01 5.80527350577E-01 5.93227310076E-01 6.06150574153E-01 6.19298077953E-01 6.32670562418E-01 6.46268560009E-01 6.60092379706E-01 6.74142091285E-01 6.88417508826E-01 7.02918173438E-01 7.17643335166E-01 7.32591934056E-01 7.47762580349E-01 7.63153533786E-01 7.78762681971E-01 7.94587517800E-01 8.10625115896E-01 8.26872108047E-01 8.43324657607E-01 8.59978432835E-01 8.76828579159E-01 8.93869690324E-01 9.11095778414E-01 9.28500242724E-01 9.46075837453E-01 9.63814638223E-01 9.81708007375E-01 9.99746558061E-01 1.01792011711E+00 1.03621768663E+00 1.05462740445E+00 1.07313650321E+00 1.09173126832E+00 1.11039699465E+00 1.12911794201E+00 1.14787728950E+00 1.16665708863E+00 1.18543821538E+00 1.20420032115E+00 1.22292178271E+00 1.24157965121E+00 1.26014960024E+00 1.27860587317E+00 1.29692122974E+00 1.31506689205E+00 1.33301249012E+00 1.35072600712E+00 1.36817372436E+00 1.38532016643E+00 1.40212804636E+00 1.41855821138E+00 1.43456958918E+00 1.45011913523E+00 1.46516178117E+00 1.47965038485E+00 1.49353568211E+00 1.50676624094E+00 1.51928841815E+00 1.53104631922E+00 1.54198176168E+00 1.55203424258E+00 1.56114091061E+00 1.56923654341E+00 1.57625353083E+00 1.58212186469E+00 1.58676913592E+00 1.59012053971E+00 1.59209888967E+00 1.59262464176E+00 1.59161592905E+00 1.58898860819E+00 1.58465631886E+00 1.57853055702E+00 1.57052076348E+00 1.56053442877E+00 1.54847721579E+00 1.53425310151E+00 1.51776453918E+00 1.49891264257E+00 1.47759739375E+00 1.45371787596E+00 1.42717253343E+00 1.39785945951E+00 1.36567671519E+00 1.33052267957E+00 1.29229643418E+00 1.25089818292E+00 1.20622970953E+00 1.15819487430E+00 1.10681325451E+00 1.05683469046E+00 1.00826775874E+00 9.61118623692E-01 9.15391052064E-01 8.71086426344E-01 8.28203756439E-01 7.86739690290E-01 7.46688524808E-01 7.08042219443E-01 6.70790415605E-01 6.34920465782E-01 6.00417476501E-01 5.67264369001E-01 5.35441960731E-01 5.04929069413E-01 4.75702639734E-01 4.47737890800E-01 4.21008480692E-01 3.95486682936E-01 3.71143568801E-01 3.47949189051E-01 3.25872749278E-01 3.04882774070E-01 2.84947256794E-01 2.66033793545E-01 2.48109701363E-01 2.31142122104E-01 2.15098114128E-01 1.99944734259E-01 1.85649112399E-01 1.72178520795E-01 1.59500439494E-01 1.47582618984E-01 1.36393140583E-01 1.25900474779E-01 1.16073537457E-01 1.06881743805E-01 9.82950596027E-02 9.02840495687E-02 8.28199224587E-02 7.58745726448E-02 6.94206179528E-02 6.34314335882E-02 5.78811820406E-02 5.27448389019E-02 4.79982145863E-02 4.36179719782E-02 3.95816400759E-02 3.58676237253E-02 3.24552095709E-02 2.93245683720E-02 2.64567538497E-02 2.38336982496E-02 2.14382048154E-02 1.92539373789E-02 1.72654072804E-02 1.54579578365E-02 1.38177465794E-02 1.23317254872E-02 1.09876194317E-02 9.77390306066E-03 8.67977633519E-03 7.69513893216E-03 6.81056372019E-03 6.01726950798E-03 5.30709325673E-03 4.67246193931E-03 4.10636421888E-03 3.60232210927E-03 3.15436276846E-03 2.75699056480E-03 2.40515954410E-03 2.09424641332E-03 1.82002414489E-03 1.57863629322E-03 1.36657210324E-03 1.18064247897E-03 1.01795686884E-03 8.75901113240E-04 7.52116289535E-04 6.44478579704E-04 5.51080176353E-04 4.70211234270E-04 4.00342866567E-04 3.40111177220E-04 2.88302315180E-04 2.43838529401E-04 2.05765198982E-04 1.73238808198E-04 1.45515832487E-04 1.21942498351E-04 1.01945377768E-04 8.50227758131E-05 7.07368689741E-05 5.87065508682E-05 4.86009417834E-05 4.01335186241E-05 3.30568223534E-05 2.71577008767E-05 2.22530464537E-05 1.81859880984E-05 1.48225010070E-05 1.20483967847E-05 9.76666009755E-06 7.89509931195E-06 6.36428067636E-06 5.11571761426E-06 4.10028871056E-06 3.27685996295E-06 2.61108881590E-06 2.07438938154E-06 1.64304006595E-06 1.29741654981E-06 1.02133471235E-06 8.01489629880E-07 6.26978222320E-07 4.88894461028E-07 3.79987288460E-07 2.94372536569E-07 2.27291168428E-07 1.74907110011E-07 1.34138790513E-07 1.02519274845E-07 7.80805562281E-08 5.92581856582E-08 4.48129540093E-08 3.37668173926E-08 2.53506726956E-08 1.89619534336E-08 1.41303314238E-08 1.04900823260E-08 7.75790748246E-09 5.71520512811E-09 4.19395495887E-09 3.06552497410E-09 2.23183180267E-09 1.61838843673E-09 1.16885915309E-09 8.40812825819E-10 6.02424967277E-10 4.29927558306E-10 3.05645680773E-10 2.16492568085E-10 1.52821164062E-10 1.07551674726E-10 7.55118012375E-11 5.29401081935E-11 3.71139425800E-11 2.58970837734E-11 1.79846156393E-11 1.24297580568E-11 8.54889036532E-12 5.85081504227E-12 3.98433802566E-12 2.69961879240E-12 1.81981850005E-12 1.22040958577E-12 8.14155204108E-13 5.40262257936E-13 3.56590094498E-13 2.34084217896E-13 1.52821269726E-13 9.92143469125E-14 6.40492347248E-14 4.11122818855E-14 2.62371315241E-14 1.66462647752E-14 1.04988333051E-14 6.58198323817E-15 4.10139177560E-15 2.53998599293E-15 1.56323172138E-15 9.56033958247E-16 5.80960633129E-16 3.50758799301E-16 2.10389244321E-16 1.25359061532E-16 7.41940131160E-17 4.36140236559E-17 2.54618745582E-17 1.47612731488E-17 8.49744388969E-18 4.85674372163E-18 2.75584843289E-18 1.55231233933E-18 8.67913459380E-19 4.81622389031E-19 2.65233723587E-19 1.44944267484E-19 7.85925643823E-20 4.22792586040E-20 2.25629358193E-20 1.19438000002E-20 6.27081375877E-21 3.26508886807E-21 1.68581745725E-21 8.63027601979E-22 4.38017060643E-22 2.20375142370E-22 1.09898531168E-22 5.43163722158E-23 2.66029932057E-23 1.29104633395E-23 6.20747278503E-24 2.95664354647E-24 1.39490015024E-24 6.51771712049E-25 3.01580819085E-25 1.38170296015E-25 6.26721661182E-26 2.81403429015E-26 1.25061510236E-26 5.50049549000E-27 2.39390757743E-27 1.03082092651E-27 4.39108150905E-28 1.85017844567E-28 7.70992706309E-29 3.17703061872E-29 1.29439313378E-29 5.21342460643E-30 2.07553348575E-30 8.16625638864E-31 3.17496521274E-31 1.21958730285E-31 4.62784956500E-32 1.73448925566E-32 6.41981961068E-33 2.34619878856E-33 8.46503264184E-34 3.01470295424E-34 1.05959963671E-34 3.67492848592E-35 1.25745753535E-35 4.24425742806E-36 1.41286199164E-36 4.63780133954E-37 1.50093782866E-37 4.78822168574E-38 1.50545792980E-38 4.66408741187E-39 1.42360096562E-39 4.28008347032E-40 1.26729109815E-40 3.69468551609E-41 1.06040369737E-41 2.99552049728E-42 8.32710861560E-43 2.27745342637E-43 6.12702259425E-44 1.62107982309E-44 4.21719188401E-45 1.07848551933E-45 2.71071622349E-46 6.69480880089E-47 1.62435556173E-47 3.87093626755E-48 9.05826285593E-49 2.08098299243E-49 4.69230612416E-50 1.03823711335E-50 2.25369991811E-51 4.79822463174E-52 1.00171530704E-52 2.05012458574E-53 4.11200320881E-54 8.08132463448E-55 1.55580916928E-55 2.93333804413E-56 5.41484276392E-57 9.78390056149E-58 1.72991075940E-58 2.99228140139E-59 5.06207196067E-60 8.37297742399E-61 1.35373699908E-61 2.13878412933E-62 3.30104784249E-63 4.97578088376E-64 7.32261134183E-65 1.05180479952E-65 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4.32997766215E-05 4.38444210073E-05 4.43959161855E-05 4.49543483288E-05 4.55198046937E-05 4.60923736346E-05 4.66721446169E-05 4.72592082318E-05 4.78536562095E-05 4.84555814344E-05 4.90650779591E-05 4.96822410195E-05 5.03071670490E-05 5.09399536944E-05 5.15806998306E-05 5.22295055761E-05 5.28864723091E-05 5.35517026826E-05 5.42253006411E-05 5.49073714365E-05 5.55980216447E-05 5.62973591821E-05 5.70054933225E-05 5.77225347144E-05 5.84485953979E-05 5.91837888226E-05 5.99282298652E-05 6.06820348471E-05 6.14453215531E-05 6.22182092497E-05 6.30008187033E-05 6.37932721997E-05 6.45956935626E-05 6.54082081737E-05 6.62309429913E-05 6.70640265710E-05 6.79075890856E-05 6.87617623450E-05 6.96266798173E-05 7.05024766494E-05 7.13892896883E-05 7.22872575023E-05 7.31965204027E-05 7.41172204658E-05 7.50495015550E-05 7.59935093435E-05 7.69493913367E-05 7.79172968956E-05 7.88973772600E-05 7.98897855721E-05 8.08946769005E-05 8.19122082642E-05 8.29425386577E-05 8.39858290752E-05 8.50422425361E-05 8.61119441107E-05 8.71951009452E-05 8.82918822888E-05 8.94024595195E-05 9.05270061710E-05 9.16656979602E-05 9.28187128141E-05 9.39862308978E-05 9.51684346430E-05 9.63655087760E-05 9.75776403469E-05 9.88050187588E-05 1.00047835797E-04 1.01306285660E-04 1.02580564989E-04 1.03870872898E-04 1.05177411006E-04 1.06500383469E-04 1.07839997011E-04 1.09196460955E-04 1.10569987260E-04 1.11960790548E-04 1.13369088143E-04 1.14795100102E-04 1.16239049251E-04 1.17701161217E-04 1.19181664469E-04 1.20680790346E-04 1.22198773100E-04 1.23735849928E-04 1.25292261012E-04 1.26868249555E-04 1.28464061819E-04 1.30079947165E-04 1.31716158090E-04 1.33372950267E-04 1.35050582587E-04 1.36749317196E-04 1.38469419538E-04 1.40211158399E-04 1.41974805941E-04 1.43760637756E-04 1.45568932898E-04 1.47399973934E-04 1.49254046985E-04 1.51131441771E-04 1.53032451659E-04 1.54957373704E-04 1.56906508699E-04 1.58880161221E-04 1.60878639679E-04 1.62902256362E-04 1.64951327487E-04 1.67026173251E-04 1.69127117877E-04 1.71254489668E-04 1.73408621057E-04 1.75589848660E-04 1.77798513328E-04 1.80034960198E-04 1.82299538753E-04 1.84592602869E-04 1.86914510876E-04 1.89265625613E-04 1.91646314482E-04 1.94056949509E-04 1.96497907401E-04 1.98969569601E-04 2.01472322356E-04 2.04006556770E-04 2.06572668867E-04 2.09171059655E-04 2.11802135188E-04 2.14466306628E-04 2.17163990310E-04 2.19895607808E-04 2.22661586000E-04 2.25462357136E-04 2.28298358902E-04 2.31170034496E-04 2.34077832687E-04 2.37022207896E-04 2.40003620258E-04 2.43022535699E-04 2.46079426009E-04 2.49174768914E-04 2.52309048150E-04 2.55482753541E-04 2.58696381076E-04 2.61950432984E-04 2.65245417813E-04 2.68581850513E-04 2.71960252512E-04 2.75381151802E-04 2.78845083016E-04 2.82352587519E-04 2.85904213487E-04 2.89500515993E-04 2.93142057100E-04 2.96829405940E-04 3.00563138811E-04 3.04343839262E-04 3.08172098188E-04 3.12048513920E-04 3.15973692319E-04 3.19948246872E-04 3.23972798789E-04 3.28047977097E-04 3.32174418741E-04 3.36352768685E-04 3.40583680008E-04 3.44867814014E-04 3.49205840326E-04 3.53598437001E-04 3.58046290629E-04 3.62550096443E-04 3.67110558431E-04 3.71728389439E-04 3.76404311290E-04 3.81139054895E-04 3.85933360364E-04 3.90787977129E-04 3.95703664054E-04 4.00681189561E-04 4.05721331743E-04 4.10824878495E-04 4.15992627628E-04 4.21225387004E-04 4.26523974654E-04 4.31889218911E-04 4.37321958541E-04 4.42823042871E-04 4.48393331925E-04 4.54033696559E-04 4.59745018595E-04 4.65528190962E-04 4.71384117839E-04 4.77313714789E-04 4.83317908911E-04 4.89397638981E-04 4.95553855601E-04 5.01787521350E-04 5.08099610931E-04 5.14491111329E-04 5.20963021963E-04 5.27516354844E-04 5.34152134735E-04 5.40871399314E-04 5.47675199330E-04 5.54564598779E-04 5.61540675062E-04 5.68604519160E-04 5.75757235805E-04 5.82999943652E-04 5.90333775458E-04 5.97759878257E-04 6.05279413546E-04 6.12893557463E-04 6.20603500974E-04 6.28410450064E-04 6.36315625921E-04 6.44320265135E-04 6.52425619888E-04 6.60632958158E-04 6.68943563911E-04 6.77358737311E-04 6.85879794922E-04 6.94508069915E-04 7.03244912283E-04 7.12091689049E-04 7.21049784489E-04 7.30120600344E-04 7.39305556045E-04 7.48606088940E-04 7.58023654517E-04 7.67559726639E-04 7.77215797774E-04 7.86993379235E-04 7.96894001416E-04 8.06919214039E-04 8.17070586395E-04 8.27349707599E-04 8.37758186837E-04 8.48297653624E-04 8.58969758066E-04 8.69776171117E-04 8.80718584849E-04 8.91798712718E-04 9.03018289841E-04 9.14379073269E-04 9.25882842269E-04 9.37531398608E-04 9.49326566838E-04 9.61270194591E-04 9.73364152871E-04 9.85610336354E-04 9.98010663693E-04 1.01056707782E-03 1.02328154627E-03 1.03615606148E-03 1.04919264111E-03 1.06239332838E-03 1.07576019238E-03 1.08929532843E-03 1.10300085839E-03 1.11687893101E-03 1.13093172227E-03 1.14516143575E-03 1.15957030295E-03 1.17416058371E-03 1.18893456651E-03 1.20389456886E-03 1.21904293770E-03 1.23438204977E-03 1.24991431196E-03 1.26564216174E-03 1.28156806755E-03 1.29769452918E-03 1.31402407821E-03 1.33055927839E-03 1.34730272606E-03 1.36425705061E-03 1.38142491486E-03 1.39880901554E-03 1.41641208368E-03 1.43423688512E-03 1.45228622092E-03 1.47056292781E-03 1.48906987872E-03 1.50780998316E-03 1.52678618780E-03 1.54600147687E-03 1.56545887271E-03 1.58516143624E-03 1.60511226749E-03 1.62531450608E-03 1.64577133178E-03 1.66648596503E-03 1.68746166745E-03 1.70870174242E-03 1.73020953562E-03 1.75198843557E-03 1.77404187423E-03 1.79637332756E-03 1.81898631611E-03 1.84188440562E-03 1.86507120760E-03 1.88855037997E-03 1.91232562767E-03 1.93640070326E-03 1.96077940763E-03 1.98546559057E-03 2.01046315149E-03 2.03577604005E-03 2.06140825684E-03 2.08736385410E-03 2.11364693640E-03 2.14026166133E-03 2.16721224026E-03 2.19450293906E-03 2.22213807880E-03 2.25012203658E-03 2.27845924623E-03 2.30715419915E-03 2.33621144504E-03 2.36563559275E-03 2.39543131105E-03 2.42560332953E-03 2.45615643938E-03 2.48709549425E-03 2.51842541118E-03 2.55015117140E-03 2.58227782130E-03 2.61481047330E-03 2.64775430680E-03 2.68111456913E-03 2.71489657647E-03 2.74910571487E-03 2.78374744124E-03 2.81882728433E-03 2.85435084577E-03 2.89032380112E-03 2.92675190095E-03 2.96364097187E-03 3.00099691768E-03 3.03882572046E-03 3.07713344171E-03 3.11592622353E-03 3.15521028978E-03 3.19499194728E-03 3.23527758703E-03 3.27607368549E-03 3.31738680579E-03 3.35922359906E-03 3.40159080573E-03 3.44449525686E-03 3.48794387555E-03 3.53194367825E-03 3.57650177625E-03 3.62162537707E-03 3.66732178598E-03 3.71359840744E-03 3.76046274667E-03 3.80792241121E-03 3.85598511246E-03 3.90465866738E-03 3.95395100005E-03 4.00387014342E-03 4.05442424102E-03 4.10562154868E-03 4.15747043635E-03 4.20997938993E-03 4.26315701312E-03 4.31701202932E-03 4.37155328358E-03 4.42678974459E-03 4.48273050672E-03 4.53938479203E-03 4.59676195247E-03 4.65487147197E-03 4.71372296869E-03 4.77332619725E-03 4.83369105106E-03 4.89482756467E-03 4.95674591616E-03 5.01945642963E-03 5.08296957774E-03 5.14729598421E-03 5.21244642657E-03 5.27843183876E-03 5.34526331396E-03 5.41295210737E-03 5.48150963914E-03 5.55094749732E-03 5.62127744089E-03 5.69251140288E-03 5.76466149353E-03 5.83774000358E-03 5.91175940759E-03 5.98673236736E-03 6.06267173547E-03 6.13959055882E-03 6.21750208239E-03 6.29641975296E-03 6.37635722299E-03 6.45732835465E-03 6.53934722383E-03 6.62242812438E-03 6.70658557235E-03 6.79183431044E-03 6.87818931252E-03 6.96566578823E-03 7.05427918779E-03 7.14404520688E-03 7.23497979166E-03 7.32709914393E-03 7.42041972646E-03 7.51495826839E-03 7.61073177088E-03 7.70775751283E-03 7.80605305680E-03 7.90563625510E-03 8.00652525604E-03 8.10873851032E-03 8.21229477771E-03 8.31721313378E-03 8.42351297693E-03 8.53121403557E-03 8.64033637553E-03 8.75090040768E-03 8.86292689574E-03 8.97643696440E-03 9.09145210758E-03 9.20799419701E-03 9.32608549101E-03 9.44574864360E-03 9.56700671380E-03 9.68988317526E-03 9.81440192617E-03 9.94058729950E-03 1.00684640735E-02 1.01980574824E-02 1.03293932279E-02 1.04624974904E-02 1.05973969410E-02 1.07341187537E-02 1.08726906179E-02 1.10131407517E-02 1.11554979150E-02 1.12997914235E-02 1.14460511630E-02 1.15943076039E-02 1.17445918166E-02 1.18969354871E-02 1.20513709330E-02 1.22079311204E-02 1.23666496808E-02 1.25275609293E-02 1.26906998825E-02 1.28561022774E-02 1.30238045911E-02 1.31938440610E-02 1.33662587054E-02 1.35410873449E-02 1.37183696247E-02 1.38981460373E-02 1.40804579465E-02 1.42653476112E-02 1.44528582110E-02 1.46430338720E-02 1.48359196937E-02 1.50315617767E-02 1.52300072513E-02 1.54313043069E-02 1.56355022231E-02 1.58426514005E-02 1.60528033936E-02 1.62660109445E-02 1.64823280176E-02 1.67018098354E-02 1.69245129156E-02 1.71504951094E-02 1.73798156409E-02 1.76125351483E-02 1.78487157258E-02 1.80884209671E-02 1.83317160108E-02 1.85786675866E-02 1.88293440633E-02 1.90838154986E-02 1.93421536903E-02 1.96044322292E-02 1.98707265537E-02 2.01411140064E-02 2.04156738923E-02 2.06944875391E-02 2.09776383594E-02 2.12652119150E-02 2.15572959830E-02 2.18539806246E-02 2.21553582555E-02 2.24615237193E-02 2.27725743627E-02 2.30886101132E-02 2.34097335598E-02 2.37360500357E-02 2.40676677039E-02 2.44046976456E-02 2.47472539519E-02 2.50954538168E-02 2.54494176356E-02 2.58092691040E-02 2.61751353224E-02 2.65471469016E-02 2.69254380735E-02 2.73101468045E-02 2.77014149117E-02 2.80993881845E-02 2.85042165082E-02 2.89160539926E-02 2.93350591038E-02 2.97613948003E-02 3.01952286737E-02 3.06367330925E-02 3.10860853514E-02 3.15434678243E-02 3.20090681223E-02 3.24830792557E-02 3.29656998019E-02 3.34571340768E-02 3.39575923119E-02 3.44672908367E-02 3.49864522653E-02 3.55153056896E-02 3.60540868764E-02 3.66030384710E-02 3.71624102063E-02 3.77324591164E-02 3.83134497578E-02 3.89056544344E-02 3.95093534299E-02 4.01248352456E-02 4.07523968438E-02 4.13923438980E-02 4.20449910489E-02 4.27106621664E-02 4.33896906182E-02 4.40824195441E-02 4.47892021373E-02 4.55104019313E-02 4.62463930933E-02 4.69975607239E-02 4.77643011626E-02 4.85470223001E-02 4.93461438962E-02 5.01620979034E-02 5.09953287972E-02 5.18462939114E-02 5.27154637789E-02 5.36033224788E-02 5.45103679874E-02 5.54371125353E-02 5.63840829681E-02 5.73518211123E-02 5.83408841446E-02 5.93518449655E-02 6.03852925748E-02 6.14418324517E-02 6.25220869353E-02 6.36266956079E-02 6.47563156787E-02 6.59116223684E-02 6.70933092927E-02 6.83020888455E-02 6.95386925791E-02 7.08038715823E-02 7.20983968539E-02 7.34230596717E-02 7.47786719543E-02 7.61660666169E-02 7.75860979170E-02 7.90396417903E-02 8.05275961751E-02 8.20508813227E-02 8.36104400935E-02 8.52072382351E-02 8.68422646418E-02 8.85165315939E-02 9.02310749719E-02 9.19869544469E-02 9.37852536414E-02 9.56270802606E-02 9.75135661893E-02 9.94458675522E-02 1.01425164736E-01 1.03452662368E-01 1.05529589246E-01 1.07657198225E-01 1.09836766044E-01 1.12069593099E-01 1.14357003153E-01 1.16700342982E-01 1.19100981950E-01 1.21560311513E-01 1.24079744636E-01 1.26660715134E-01 1.29304676922E-01 1.32013103165E-01 1.34787485340E-01 1.37629332180E-01 1.40540168516E-01 1.43521534000E-01 1.46574981706E-01 1.49702076600E-01 1.52904393883E-01 1.56183517188E-01 1.59541036627E-01 1.62978546698E-01 1.66497644022E-01 1.70099924922E-01 1.73786982827E-01 1.77560405507E-01 1.81421772117E-01 1.85372650061E-01 1.89414591666E-01 1.93549130647E-01 1.97777778385E-01 2.02102019992E-01 2.06523310169E-01 2.11043068851E-01 2.15662676645E-01 2.20383470042E-01 2.25206736425E-01 2.30133708855E-01 2.35165560645E-01 2.40303399725E-01 2.45548262794E-01 2.50901109281E-01 2.56362815095E-01 2.61934166203E-01 2.67615852018E-01 2.73408458632E-01 2.79312461883E-01 2.85328220299E-01 2.91455967913E-01 2.97695806983E-01 3.04047700628E-01 3.10511465421E-01 3.17086763945E-01 3.23773097359E-01 3.30569797995E-01 3.37476022026E-01 3.44490742243E-01 3.51612740967E-01 3.58840603164E-01 3.66172709780E-01 3.73607231362E-01 3.81142121996E-01 3.88775113634E-01 3.96503710843E-01 4.04325186034E-01 4.12236575234E-01 4.20234674434E-01 4.28316036591E-01 4.36476969315E-01 4.44713533310E-01 4.53021541596E-01 4.61396559582E-01 4.69833906004E-01 4.78328654785E-01 4.86875637831E-01 4.95469448791E-01 5.04104447782E-01 5.12774767092E-01 5.21474317846E-01 5.30196797594E-01 5.38935698809E-01 5.47684318207E-01 5.56435766840E-01 5.65182980845E-01 5.73918732749E-01 5.82635643176E-01 5.91326192811E-01 5.99982734415E-01 6.08597504694E-01 6.17162635773E-01 6.25670166023E-01 6.34112049946E-01 6.42480166814E-01 6.50766327729E-01 6.58962280750E-01 6.67059713736E-01 6.75050254527E-01 6.82925468076E-01 6.90676850179E-01 6.98295817428E-01 7.05773693054E-01 7.13101688347E-01 7.20270879398E-01 7.27272178964E-01 7.34096303322E-01 7.40733734079E-01 7.47174675027E-01 7.53409004234E-01 7.59426221743E-01 7.65215393405E-01 7.70765091558E-01 7.76063333513E-01 7.81097518980E-01 7.85854367884E-01 7.90321643790E-01 7.94493803953E-01 7.98367246017E-01 8.01938618114E-01 8.05204826161E-01 8.08163040737E-01 8.10810703506E-01 8.13145533181E-01 8.15165530999E-01 8.16868985699E-01 8.18254477997E-01 8.19320884544E-01 8.20067381368E-01 8.20493446791E-01 8.20598863825E-01 8.20383722044E-01 8.19848418931E-01 8.18993660710E-01 8.17820462656E-01 8.16330148891E-01 8.14524351679E-01 8.12405010206E-01 8.09974368875E-01 8.07234975105E-01 8.04189676648E-01 8.00841618435E-01 7.97194238956E-01 7.93251266185E-01 7.89016713062E-01 7.84494872537E-01 7.79690312200E-01 7.74607868491E-01 7.69252640520E-01 7.63629983499E-01 7.57745501800E-01 7.51605041659E-01 7.45214683535E-01 7.38580734137E-01 7.31709718133E-01 7.24608369561E-01 7.17283622954E-01 7.09742604180E-01 7.01992621036E-01 6.94041153588E-01 6.85895844280E-01 6.77564487825E-01 6.69055020888E-01 6.60375511581E-01 6.51534148773E-01 6.42539231266E-01 6.33399156844E-01 6.24117324637E-01 6.14707318707E-01 6.05177764769E-01 5.95537341931E-01 5.85794771007E-01 5.75958802692E-01 5.66038205673E-01 5.56041754818E-01 5.45978219283E-01 5.35856350523E-01 5.25684870279E-01 5.15472458579E-01 5.05227741745E-01 4.94959280441E-01 4.84675557775E-01 4.74384967480E-01 4.64095802210E-01 4.53816241964E-01 4.43554342685E-01 4.33318025063E-01 4.23115063571E-01 4.12953075775E-01 4.02839511965E-01 3.92781645124E-01 3.82786561304E-01 3.72861150416E-01 3.63012097503E-01 3.53245874509E-01 3.43568732593E-01 3.33986695017E-01 3.24505550636E-01 3.15130848015E-01 3.05867890209E-01 2.96721730193E-01 2.87697166996E-01 2.78798742508E-01 2.70030738990E-01 2.61397177274E-01 2.52901815650E-01 2.44548149420E-01 2.36339411116E-01 2.28278571356E-01 2.20368340308E-01 2.12611169745E-01 2.05009255653E-01 1.97564541366E-01 1.90278721188E-01 1.83153244466E-01 1.76189320088E-01 1.69387921352E-01 1.62749791183E-01 1.56275447657E-01 1.49965189796E-01 1.43819103602E-01 1.37837068290E-01 1.32018762705E-01 1.26363671877E-01 1.20871093694E-01 1.15540145679E-01 1.10369771825E-01 1.05358749496E-01 1.00505696354E-01 9.58090773155E-02 9.12672115025E-02 8.68782792041E-02 8.26403288175E-02 7.85512837729E-02 7.46089494332E-02 7.08110199658E-02 6.71550851819E-02 6.36386373426E-02 6.02590779291E-02 5.70137243767E-02 5.38998167709E-02 5.09145245047E-02 4.80549528949E-02 4.53181497566E-02 4.27011119310E-02 4.02007917647E-02 3.78141035335E-02 3.55379298070E-02 3.33691277452E-02 3.13045353192E-02 2.93409774464E-02 2.74752720304E-02 2.57042358927E-02 2.40246905850E-02 2.24334680674E-02 2.09274162409E-02 1.95034043173E-02 1.81583280151E-02 1.68891145649E-02 1.56927275115E-02 1.45661712993E-02 1.35064956268E-02 1.25107995602E-02 1.15762353941E-02 1.07000122486E-02 9.87939939680E-03 9.11172931288E-03 8.39440043759E-03 7.72487965553E-03 7.10070448284E-03 6.51948496411E-03 5.97890527964E-03 5.47672506547E-03 5.01078045011E-03 4.57898481377E-03 4.17932927666E-03 3.80988292495E-03 3.46879278362E-03 3.15428354678E-03 2.86465707722E-03 2.59829168723E-03 2.35364121418E-03 2.12923390444E-03 1.92367111978E-03 1.73562588107E-03 1.56384126392E-03 1.40712866118E-03 1.26436592731E-03 1.13449541947E-03 1.01652194973E-03 9.09510663050E-04 8.12584854580E-04 7.24923740084E-04 6.45760192190E-04 5.74378454921E-04 5.10111848164E-04 4.52340473127E-04 4.00488929044E-04 3.54024050712E-04 3.12452675625E-04 2.75319448729E-04 2.42204672028E-04 2.12722205496E-04 1.86517424979E-04 1.63265242041E-04 1.42668189927E-04 1.24454579168E-04 1.08376725613E-04 9.42092530713E-05 8.17474721026E-05 7.08058359325E-05 6.12164739268E-05 5.28278025622E-05 4.55032133747E-05 3.91198369535E-05 3.35673816767E-05 2.87470455526E-05 2.45704992440E-05 2.09589381008E-05 1.78422008157E-05 1.51579521435E-05 1.28509269842E-05 1.08722330249E-05 9.17870905898E-06 7.73233605369E-06 6.49969801722E-06 5.45148971816E-06 4.56206833582E-06 3.80906193670E-06 3.17312483824E-06 2.63729549699E-06 2.18685794570E-06 1.80908956630E-06 1.49301728701E-06 1.22919982399E-06 1.00953369572E-06 8.27080873773E-07 6.75916067388E-07 5.50991773060E-07 4.48019351083E-07 3.63364519443E-07 2.93955780033E-07 2.37204412795E-07 1.90934789482E-07 1.53319861078E-07 1.22797025705E-07 9.81002051460E-08 7.81806048522E-08 6.21688902616E-08 4.93471094330E-08 3.91247937489E-08 3.10187310692E-08 2.45181312182E-08 1.93208260672E-08 1.51782749319E-08 1.18866845747E-08 9.27948018724E-09 7.22094304837E-09 5.60085212879E-09 4.32998652993E-09 3.33636339452E-09 2.56210190875E-09 1.96081833916E-09 1.49546982362E-09 1.13657597914E-09 8.60757413573E-10 6.49539046897E-10 4.88373869550E-10 3.65849496343E-10 2.73045715095E-10 2.03016273953E-10 1.50372489135E-10 1.10949967719E-10 8.15429035384E-11 5.96930873584E-11 4.35230377244E-11 3.16045625724E-11 2.28556541410E-11 1.64599456751E-11 1.18040573166E-11 8.42906505137E-12 5.99307081015E-12 4.24245994497E-12 2.98992685171E-12 2.09774975948E-12 1.46511808039E-12 1.01857409398E-12 7.04836818676E-13 4.85439471717E-13 3.32741070301E-13 2.26974201400E-13 1.54070313680E-13 1.04065578968E-13 6.99381047903E-14 4.67640201266E-14 3.11080870410E-14 2.05859148876E-14 1.35510828474E-14 8.87270391843E-15 5.77812560158E-15 3.74228998611E-15 2.41033533098E-15 1.54374935185E-15 9.83115952186E-16 6.22487000075E-16 3.91851921978E-16 2.45215544118E-16 1.52537315452E-16 9.43134538679E-17 5.79572270518E-17 3.53952089128E-17 2.14807977585E-17 1.29536173279E-17 7.76125056123E-18 4.61994862278E-18 2.73194380121E-18 1.60472077402E-18 9.36232595166E-19 5.42484855539E-19 3.12157377837E-19 1.78362596723E-19 1.01190504682E-19 5.69957722745E-20 3.18693386524E-20 1.76885044286E-20 9.74443040425E-21 5.32755814794E-21 2.89044651758E-21 1.55605433401E-21 8.31122827418E-22 4.40395950211E-22 2.31481108549E-22 1.20680708633E-22 6.23972697031E-23 3.19928973790E-23 1.62650744460E-23 8.19835469156E-24 4.09655324373E-24 2.02901030175E-24 9.96037171297E-25 4.84555780753E-25 2.33582138510E-25 1.11561195260E-25 5.27853973102E-26 2.47394666622E-26 1.14839401993E-26 5.27913855486E-27 2.40299896587E-27 1.08295063407E-27 4.83140871759E-28 2.13350538833E-28 9.32422330373E-29 4.03249604478E-29 1.72552116647E-29 7.30455328668E-30 3.05868888333E-30 1.26673486408E-30 5.18781730617E-31 2.10073441918E-31 8.40975580927E-32 3.32781234754E-32 1.30146995275E-32 5.02973616783E-33 1.92055640736E-33 7.24459273950E-34 2.69922662662E-34 9.93197837555E-35 3.60856850855E-35 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7.20007399345E-08 7.38234472391E-08 7.56922965934E-08 7.76084560887E-08 7.95731233867E-08 8.15875264679E-08 8.36529243994E-08 8.57706081215E-08 8.79419012550E-08 9.01681609283E-08 9.24507786256E-08 9.47911810566E-08 9.71908310483E-08 9.96512284596E-08 1.02173911118E-07 1.04760455782E-07 1.07412479125E-07 1.10131638747E-07 1.12919634210E-07 1.15778208103E-07 1.18709147124E-07 1.21714283207E-07 1.24795494657E-07 1.27954707331E-07 1.31193895838E-07 1.34515084776E-07 1.37920349995E-07 1.41411819894E-07 1.44991676754E-07 1.48662158102E-07 1.52425558106E-07 1.56284229012E-07 1.60240582613E-07 1.64297091756E-07 1.68456291891E-07 1.72720782651E-07 1.77093229479E-07 1.81576365294E-07 1.86172992201E-07 1.90885983237E-07 1.95718284174E-07 2.00672915354E-07 2.05752973580E-07 2.10961634050E-07 2.16302152344E-07 2.21777866456E-07 2.27392198882E-07 2.33148658760E-07 2.39050844059E-07 2.45102443835E-07 2.51307240529E-07 2.57669112337E-07 2.64192035631E-07 2.70880087446E-07 2.77737448026E-07 2.84768403440E-07 2.91977348258E-07 2.99368788299E-07 3.06947343447E-07 3.14717750540E-07 3.22684866326E-07 3.30853670507E-07 3.39229268842E-07 3.47816896346E-07 3.56621920555E-07 3.65649844888E-07 3.74906312083E-07 3.84397107721E-07 3.94128163849E-07 4.04105562683E-07 4.14335540411E-07 4.24824491088E-07 4.35578970638E-07 4.46605700947E-07 4.57911574067E-07 4.69503656520E-07 4.81389193721E-07 4.93575614500E-07 5.06070535750E-07 5.18881767185E-07 5.32017316223E-07 5.45485392989E-07 5.59294415448E-07 5.73453014667E-07 5.87970040208E-07 6.02854565659E-07 6.18115894308E-07 6.33763564955E-07 6.49807357874E-07 6.66257300929E-07 6.83123675838E-07 7.00417024600E-07 7.18148156088E-07 7.36328152798E-07 7.54968377781E-07 7.74080481746E-07 7.93676410335E-07 8.13768411598E-07 8.34369043642E-07 8.55491182483E-07 8.77148030094E-07 8.99353122654E-07 9.22120339012E-07 9.45463909358E-07 9.69398424121E-07 9.93938843083E-07 1.01910050474E-06 1.04489913586E-06 1.07135086137E-06 1.09847221437E-06 1.12628014650E-06 1.15479203853E-06 1.18402571123E-06 1.21399943650E-06 1.24473194878E-06 1.27624245679E-06 1.30855065551E-06 1.34167673848E-06 1.37564141046E-06 1.41046590034E-06 1.44617197442E-06 1.48278195001E-06 1.52031870938E-06 1.55880571405E-06 1.59826701950E-06 1.63872729013E-06 1.68021181475E-06 1.72274652232E-06 1.76635799822E-06 1.81107350082E-06 1.85692097852E-06 1.90392908725E-06 1.95212720834E-06 2.00154546693E-06 2.05221475074E-06 2.10416672943E-06 2.15743387436E-06 2.21204947889E-06 2.26804767922E-06 2.32546347568E-06 2.38433275461E-06 2.44469231083E-06 2.50657987061E-06 2.57003411523E-06 2.63509470520E-06 2.70180230500E-06 2.77019860854E-06 2.84032636519E-06 2.91222940650E-06 2.98595267361E-06 3.06154224533E-06 3.13904536694E-06 3.21851047971E-06 3.29998725118E-06 3.38352660621E-06 3.46918075880E-06 3.55700324474E-06 3.64704895503E-06 3.73937417022E-06 3.83403659559E-06 3.93109539718E-06 4.03061123881E-06 4.13264631997E-06 4.23726441467E-06 4.34453091137E-06 4.45451285376E-06 4.56727898274E-06 4.68289977931E-06 4.80144750867E-06 4.92299626539E-06 5.04762201965E-06 5.17540266481E-06 5.30641806601E-06 5.44075011015E-06 5.57848275701E-06 5.71970209178E-06 5.86449637879E-06 6.01295611676E-06 6.16517409526E-06 6.32124545279E-06 6.48126773619E-06 6.64534096160E-06 6.81356767698E-06 6.98605302620E-06 7.16290481475E-06 7.34423357710E-06 7.53015264579E-06 7.72077822225E-06 7.91622944943E-06 8.11662848625E-06 8.32210058395E-06 8.53277416433E-06 8.74878090007E-06 8.97025579696E-06 9.19733727829E-06 9.43016727136E-06 9.66889129616E-06 9.91365855632E-06 1.01646220324E-05 1.04219385773E-05 1.06857690145E-05 1.09562782386E-05 1.12336353181E-05 1.15180136011E-05 1.18095908239E-05 1.21085492219E-05 1.24150756434E-05 1.27293616663E-05 1.30516037181E-05 1.33820031985E-05 1.37207666052E-05 1.40681056628E-05 1.44242374557E-05 1.47893845628E-05 1.51637751974E-05 1.55476433497E-05 1.59412289323E-05 1.63447779310E-05 1.67585425581E-05 1.71827814100E-05 1.76177596286E-05 1.80637490675E-05 1.85210284614E-05 1.89898836004E-05 1.94706075084E-05 1.99635006267E-05 2.04688710011E-05 2.09870344746E-05 2.15183148851E-05 2.20630442670E-05 2.26215630594E-05 2.31942203182E-05 2.37813739345E-05 2.43833908583E-05 2.50006473274E-05 2.56335291027E-05 2.62824317091E-05 2.69477606828E-05 2.76299318242E-05 2.83293714582E-05 2.90465167003E-05 2.97818157295E-05 3.05357280685E-05 3.13087248707E-05 3.21012892144E-05 3.29139164049E-05 3.37471142835E-05 3.46014035449E-05 3.54773180625E-05 3.63754052218E-05 3.72962262623E-05 3.82403566281E-05 3.92083863275E-05 4.02009203009E-05 4.12185787994E-05 4.22619977719E-05 4.33318292619E-05 4.44287418153E-05 4.55534208977E-05 4.67065693225E-05 4.78889076896E-05 4.91011748358E-05 5.03441282959E-05 5.16185447758E-05 5.29252206378E-05 5.42649723974E-05 5.56386372334E-05 5.70470735107E-05 5.84911613163E-05 5.99718030085E-05 6.14899237805E-05 6.30464722382E-05 6.46424209920E-05 6.62787672645E-05 6.79565335127E-05 6.96767680664E-05 7.14405457826E-05 7.32489687165E-05 7.51031668095E-05 7.70042985943E-05 7.89535519179E-05 8.09521446836E-05 8.30013256105E-05 8.51023750129E-05 8.72566055996E-05 8.94653632929E-05 9.17300280687E-05 9.40520148172E-05 9.64327742260E-05 9.88737936855E-05 1.01376598216E-04 1.03942751422E-04 1.06573856461E-04 1.09271557053E-04 1.12037538499E-04 1.14873528732E-04 1.17781299401E-04 1.20762666969E-04 1.23819493850E-04 1.26953689569E-04 1.30167211953E-04 1.33462068353E-04 1.36840316893E-04 1.40304067755E-04 1.43855484496E-04 1.47496785394E-04 1.51230244831E-04 1.55058194714E-04 1.58983025925E-04 1.63007189813E-04 1.67133199718E-04 1.71363632544E-04 1.75701130359E-04 1.80148402043E-04 1.84708224976E-04 1.89383446767E-04 1.94176987029E-04 1.99091839198E-04 2.04131072394E-04 2.09297833338E-04 2.14595348305E-04 2.20026925136E-04 2.25595955299E-04 2.31305915996E-04 2.37160372331E-04 2.43162979527E-04 2.49317485200E-04 2.55627731693E-04 2.62097658464E-04 2.68731304539E-04 2.75532811023E-04 2.82506423677E-04 2.89656495554E-04 2.96987489712E-04 3.04503981982E-04 3.12210663819E-04 3.20112345213E-04 3.28213957677E-04 3.36520557318E-04 3.45037327971E-04 3.53769584422E-04 3.62722775709E-04 3.71902488505E-04 3.81314450586E-04 3.90964534386E-04 4.00858760644E-04 4.11003302139E-04 4.21404487517E-04 4.32068805220E-04 4.43002907509E-04 4.54213614586E-04 4.65707918828E-04 4.77492989114E-04 4.89576175272E-04 5.01965012628E-04 5.14667226681E-04 5.27690737876E-04 5.41043666518E-04 5.54734337790E-04 5.68771286908E-04 5.83163264404E-04 5.97919241531E-04 6.13048415816E-04 6.28560216741E-04 6.44464311573E-04 6.60770611336E-04 6.77489276928E-04 6.94630725400E-04 7.12205636382E-04 7.30224958672E-04 7.48699916992E-04 7.67642018907E-04 7.87063061918E-04 8.06975140733E-04 8.27390654714E-04 8.48322315514E-04 8.69783154898E-04 8.91786532764E-04 9.14346145356E-04 9.37476033683E-04 9.61190592150E-04 9.85504577397E-04 1.01043311736E-03 1.03599172055E-03 1.06219628556E-03 1.08906311084E-03 1.11660890465E-03 1.14485079530E-03 1.17380634166E-03 1.20349354387E-03 1.23393085435E-03 1.26513718911E-03 1.29713193926E-03 1.32993498288E-03 1.36356669712E-03 1.39804797063E-03 1.43340021631E-03 1.46964538432E-03 1.50680597544E-03 1.54490505475E-03 1.58396626566E-03 1.62401384425E-03 1.66507263398E-03 1.70716810074E-03 1.75032634830E-03 1.79457413408E-03 1.83993888537E-03 1.88644871584E-03 1.93413244258E-03 1.98301960346E-03 2.03314047490E-03 2.08452609015E-03 2.13720825790E-03 2.19121958144E-03 2.24659347821E-03 2.30336419983E-03 2.36156685263E-03 2.42123741866E-03 2.48241277717E-03 2.54513072664E-03 2.60943000734E-03 2.67535032436E-03 2.74293237123E-03 2.81221785412E-03 2.88324951655E-03 2.95607116475E-03 3.03072769351E-03 3.10726511277E-03 3.18573057469E-03 3.26617240148E-03 3.34864011377E-03 3.43318445973E-03 3.51985744474E-03 3.60871236190E-03 3.69980382310E-03 3.79318779089E-03 3.88892161104E-03 3.98706404587E-03 4.08767530828E-03 4.19081709663E-03 4.29655263033E-03 4.40494668631E-03 4.51606563623E-03 4.62997748458E-03 4.74675190757E-03 4.86646029298E-03 4.98917578077E-03 5.11497330466E-03 5.24392963461E-03 5.37612342023E-03 5.51163523509E-03 5.65054762204E-03 5.79294513951E-03 5.93891440872E-03 6.08854416201E-03 6.24192529210E-03 6.39915090246E-03 6.56031635865E-03 6.72551934083E-03 6.89485989728E-03 7.06844049905E-03 7.24636609575E-03 7.42874417240E-03 7.61568480751E-03 7.80730073227E-03 8.00370739093E-03 8.20502300237E-03 8.41136862285E-03 8.62286821002E-03 8.83964868811E-03 9.06184001437E-03 9.28957524680E-03 9.52299061306E-03 9.76222558072E-03 1.00074229288E-02 1.02587288204E-02 1.05162928770E-02 1.07802682536E-02 1.10508117158E-02 1.13280837171E-02 1.16122484789E-02 1.19034740707E-02 1.22019324919E-02 1.25077997556E-02 1.28212559723E-02 1.31424854362E-02 1.34716767124E-02 1.38090227246E-02 1.41547208456E-02 1.45089729873E-02 1.48719856936E-02 1.52439702328E-02 1.56251426930E-02 1.60157240771E-02 1.64159403997E-02 1.68260227851E-02 1.72462075662E-02 1.76767363842E-02 1.81178562896E-02 1.85698198444E-02 1.90328852240E-02 1.95073163215E-02 1.99933828513E-02 2.04913604545E-02 2.10015308040E-02 2.15241817109E-02 2.20596072305E-02 2.26081077697E-02 2.31699901933E-02 2.37455679318E-02 2.43351610882E-02 2.49390965452E-02 2.55577080718E-02 2.61913364299E-02 2.68403294802E-02 2.75050422874E-02 2.81858372240E-02 2.88830840744E-02 2.95971601363E-02 3.03284503213E-02 3.10773472542E-02 3.18442513696E-02 3.26295710067E-02 3.34337225024E-02 3.42571302802E-02 3.51002269380E-02 3.59634533309E-02 3.68472586519E-02 3.77521005075E-02 3.86784449901E-02 3.96267667449E-02 4.05975490324E-02 4.15912837850E-02 4.26084716583E-02 4.36496220755E-02 4.47152532658E-02 4.58058922946E-02 4.69220750865E-02 4.80643464403E-02 4.92332600343E-02 5.04293784226E-02 5.16532730216E-02 5.29055240851E-02 5.41867206687E-02 5.54974605815E-02 5.68383503255E-02 5.82100050213E-02 5.96130483192E-02 6.10481122954E-02 6.25158373324E-02 6.40168719819E-02 6.55518728109E-02 6.71215042281E-02 6.87264382912E-02 7.03673544936E-02 7.20449395291E-02 7.37598870341E-02 7.55128973057E-02 7.73046769953E-02 7.91359387759E-02 8.10074009815E-02 8.29197872193E-02 8.48738259510E-02 8.68702500436E-02 8.89097962883E-02 9.09932048848E-02 9.31212188921E-02 9.52945836419E-02 9.75140461150E-02 9.97803542782E-02 1.02094256382E-01 1.04456500215E-01 1.06867832317E-01 1.09328997144E-01 1.11840736195E-01 1.14403787080E-01 1.17018882551E-01 1.19686749476E-01 1.22408107765E-01 1.25183669240E-01 1.28014136456E-01 1.30900201465E-01 1.33842544523E-01 1.36841832746E-01 1.39898718696E-01 1.43013838926E-01 1.46187812451E-01 1.49421239165E-01 1.52714698200E-01 1.56068746225E-01 1.59483915676E-01 1.62960712939E-01 1.66499616465E-01 1.70101074826E-01 1.73765504717E-01 1.77493288898E-01 1.81284774077E-01 1.85140268748E-01 1.89060040970E-01 1.93044316097E-01 1.97093274462E-01 2.01207049021E-01 2.05385722956E-01 2.09629327237E-01 2.13937838160E-01 2.18311174857E-01 2.22749196787E-01 2.27251701213E-01 2.31818420670E-01 2.36449020439E-01 2.41143096027E-01 2.45900170666E-01 2.50719692841E-01 2.55601033852E-01 2.60543485433E-01 2.65546257424E-01 2.70608475522E-01 2.75729179116E-01 2.80907319228E-01 2.86141756561E-01 2.91431259689E-01 2.96774503390E-01 3.02170067144E-01 3.07616433815E-01 3.13111988535E-01 3.18655017808E-01 3.24243708856E-01 3.29876149220E-01 3.35550326652E-01 3.41264129294E-01 3.47015346193E-01 3.52801668151E-01 3.58620688942E-01 3.64469906913E-01 3.70346726989E-01 3.76248463103E-01 3.82172341068E-01 3.88115501913E-01 3.94075005683E-01 4.00047835751E-01 4.06030903611E-01 4.12021054198E-01 4.18015071731E-01 4.24009686071E-01 4.30001579619E-01 4.35987394735E-01 4.41963741676E-01 4.47927207049E-01 4.53874362750E-01 4.59801775388E-01 4.65706016147E-01 4.71583671072E-01 4.77431351724E-01 4.83245706179E-01 4.89023430299E-01 4.94761279229E-01 5.00456079048E-01 5.06104738500E-01 5.11704260720E-01 5.17251754880E-01 5.22744447629E-01 5.28179694257E-01 5.33554989441E-01 5.38867977470E-01 5.44116461822E-01 5.49298413954E-01 5.54411981179E-01 5.59455493484E-01 5.64427469151E-01 5.69326619028E-01 5.74151849317E-01 5.78902262728E-01 5.83577157858E-01 5.88176026664E-01 5.92698549899E-01 5.97144590386E-01 6.01514184021E-01 6.05807528403E-01 6.10024969008E-01 6.14166982829E-01 6.18234159423E-01 6.22227179334E-01 6.26146789852E-01 6.29993778109E-01 6.33768941513E-01 6.37473055542E-01 6.41106838915E-01 6.44670916185E-01 6.48165777786E-01 6.51591737559E-01 6.54948887776E-01 6.58237051659E-01 6.61455733351E-01 6.64604065269E-01 6.67680752687E-01 6.70684015361E-01 6.73611525895E-01 6.76460344469E-01 6.79226849419E-01 6.81906663074E-01 6.84494572053E-01 6.86984441162E-01 6.89369119799E-01 6.91640339709E-01 6.93788602706E-01 6.95804660310E-01 6.97684739823E-01 6.99426621949E-01 7.01028171571E-01 7.02487341341E-01 7.03802175096E-01 7.04970811098E-01 7.05991485098E-01 7.06862533194E-01 7.07582394505E-01 7.08149613654E-01 7.08562843043E-01 7.08820844954E-01 7.08922493440E-01 7.08866776051E-01 7.08652795357E-01 7.08279770305E-01 7.07747037397E-01 7.07054051694E-01 7.06200387663E-01 7.05185739850E-01 7.04009923408E-01 7.02672874461E-01 7.01174650328E-01 6.99515429600E-01 6.97695512080E-01 6.95715318580E-01 6.93575390603E-01 6.91276389883E-01 6.88819097818E-01 6.86204414778E-01 6.83433359304E-01 6.80507067198E-01 6.77426790517E-01 6.74193896458E-01 6.70809866155E-01 6.67276293385E-01 6.63594883185E-01 6.59767450390E-01 6.55795918083E-01 6.51682315973E-01 6.47428778699E-01 6.43037544053E-01 6.38510951138E-01 6.33851438449E-01 6.29061541881E-01 6.24143892671E-01 6.19101215256E-01 6.13936325064E-01 6.08652126251E-01 6.03251609384E-01 5.97737848834E-01 5.92114000029E-01 5.86383296974E-01 5.80549049639E-01 5.74614641036E-01 5.68581375029E-01 5.62454893458E-01 5.56238779269E-01 5.49936675546E-01 5.43552281914E-01 5.37089350807E-01 5.30551683577E-01 5.23943126434E-01 5.17267566226E-01 5.10528926047E-01 5.03731160673E-01 4.96878251843E-01 4.89974203376E-01 4.83023036155E-01 4.76028782962E-01 4.68995483207E-01 4.61927177559E-01 4.54827902494E-01 4.47701684801E-01 4.40552536054E-01 4.33384447100E-01 4.26201382570E-01 4.19007275473E-01 4.11806021884E-01 4.04601475763E-01 3.97397443954E-01 3.90197681375E-01 3.83005886438E-01 3.75825696737E-01 3.68660685011E-01 3.61514355422E-01 3.54390140153E-01 3.47291396354E-01 3.40221403442E-01 3.33183360756E-01 3.26180385583E-01 3.19215511547E-01 3.12291687347E-01 3.05411775854E-01 2.98578553538E-01 2.91794710214E-01 2.85062849087E-01 2.78385487066E-01 2.71765055344E-01 2.65203900181E-01 2.58704283895E-01 2.52268386007E-01 2.45898304525E-01 2.39596057325E-01 2.33363583597E-01 2.27202745333E-01 2.21115328826E-01 2.15103046137E-01 2.09167536517E-01 2.03310367762E-01 1.97533037453E-01 1.91836974092E-01 1.86223538090E-01 1.80694022604E-01 1.75249654209E-01 1.69891593396E-01 1.64620934889E-01 1.59438707773E-01 1.54345875454E-01 1.49343335429E-01 1.44431918896E-01 1.39612390203E-01 1.34885446152E-01 1.30251715188E-01 1.25711756466E-01 1.21266058848E-01 1.16915039833E-01 1.12659044453E-01 1.08498344160E-01 1.04433135734E-01 1.00463540233E-01 9.65896020159E-02 9.28112878622E-02 8.91284862182E-02 8.55410065855E-02 8.20485790791E-02 7.86508541726E-02 7.53474026480E-02 7.21377157641E-02 6.90212056568E-02 6.59972059786E-02 6.30649727847E-02 6.02236856690E-02 5.74724491510E-02 5.48102943102E-02 5.22361806659E-02 4.97489982930E-02 4.73475701665E-02 4.50306547228E-02 4.27969486251E-02 4.06450897185E-02 3.85736601591E-02 3.65811897003E-02 3.46661591184E-02 3.28270037591E-02 3.10621171871E-02 2.93698549185E-02 2.77485382172E-02 2.61964579375E-02 2.47118783928E-02 2.32930412335E-02 2.19381693148E-02 2.06454705396E-02 1.94131416579E-02 1.82393720096E-02 1.71223471940E-02 1.60602526543E-02 1.50512771634E-02 1.40936162001E-02 1.31854752047E-02 1.23250727057E-02 1.15106433076E-02 1.07404405343E-02 1.00127395205E-02 9.32583954732E-03 8.67806641597E-03 8.06777465873E-03 7.49334958286E-03 6.95320914740E-03 6.44580567180E-03 5.96962737690E-03 5.52319975935E-03 5.10508680133E-03 4.71389201812E-03 4.34825934658E-03 4.00687387851E-03 3.68846244288E-03 3.39179404205E-03 3.11568014684E-03 2.85897485633E-03 2.62057492808E-03 2.39941968521E-03 2.19449080666E-03 2.00481200728E-03 1.82944861463E-03 1.66750704944E-03 1.51813421659E-03 1.38051681376E-03 1.25388056463E-03 1.13748938381E-03 1.03064448012E-03 9.32683405233E-04 8.42979054207E-04 7.60938624418E-04 6.86002539188E-04 6.17643342169E-04 5.55364568326E-04 4.98699597110E-04 4.47210493111E-04 4.00486839227E-04 3.58144567165E-04 3.19826112039E-04 2.85209727053E-04 2.53982833331E-04 2.25853563650E-04 2.00551154200E-04 1.77824796948E-04 1.57442523945E-04 1.39190125177E-04 1.22870101441E-04 1.08300653474E-04 9.53147084440E-05 8.37589846876E-05 7.34930954374E-05 6.43886921388E-05 5.63286478139E-05 4.92062808286E-05 4.29234997361E-05 3.73811898266E-05 3.24997815468E-05 2.82082833650E-05 2.44424429155E-05 2.11442230034E-05 1.82613087149E-05 1.57466452028E-05 1.35580056700E-05 1.16575890505E-05 1.00116468923E-05 8.59013898514E-06 7.36641734531E-06 6.31693828948E-06 5.40610559436E-06 4.61720332825E-06 3.93530985696E-06 3.34713366751E-06 2.84086083231E-06 2.40601366232E-06 2.03332007426E-06 1.71459317930E-06 1.44262058767E-06 1.21106291603E-06 1.01436098093E-06 8.47651162315E-07 7.06688425807E-07 5.87776500006E-07 4.87704716033E-07 4.03691029894E-07 3.33330763838E-07 2.74550620364E-07 2.25567541508E-07 1.84852006169E-07 1.51095379313E-07 1.23180948423E-07 1.00158304559E-07 8.12207473271E-08 6.56854149710E-08 5.29758622733E-08 4.26068300381E-08 3.41709702900E-08 2.73273109845E-08 2.17912628128E-08 1.73259885549E-08 1.37349723250E-08 1.08556419282E-08 8.55391238540E-09 6.71953248081E-09 5.26212894801E-09 4.10785465627E-09 3.19655791615E-09 2.47939982740E-09 1.91685548565E-09 1.47704289322E-09 1.13433063512E-09 8.68181835245E-10 6.62197655450E-10 5.03328694277E-10 3.81227137997E-10 2.87716465675E-10 2.16358963824E-10 1.62104313194E-10 1.21005116635E-10 8.99874858951E-11 6.66667372364E-11 4.91998979071E-11 3.61681321176E-11 2.64833873076E-11 1.93145672828E-11 1.40293835494E-11 1.01487424208E-11 7.31111323046E-12 5.24480987563E-12 3.74651939095E-12 2.66474074499E-12 1.88706620839E-12 1.33045646844E-12 9.33837728235E-13 6.52491612253E-13 4.53822965054E-13 3.14181754011E-13 2.16487600966E-13 1.48462570212E-13 1.01322706154E-13 6.88138880851E-14 4.65048496323E-14 3.12713196428E-14 2.09214911578E-14 1.39254688228E-14 9.22082399287E-15 6.07356881702E-15 3.97927306060E-15 2.59310420451E-15 1.68059533978E-15 1.08318701027E-15 6.94241551914E-16 4.42439634732E-16 2.80351388831E-16 1.76614061661E-16 1.10608867044E-16 6.88596052529E-17 4.26104821069E-17 2.62067223207E-17 1.60184281112E-17 9.72980612469E-18 5.87261219050E-18 3.52181563807E-18 2.09833560640E-18 1.24199759914E-18 7.30244046196E-19 4.26461953036E-19 2.47354965937E-19 1.42479264489E-19 8.14958561495E-20 4.62843198856E-20 2.60980421822E-20 1.46089280347E-20 8.11755708391E-21 4.47701588281E-21 2.45057159726E-21 1.33112951863E-21 7.17472984382E-22 3.83690235335E-22 2.03564948142E-22 1.07134382873E-22 5.59260805405E-23 2.89544284883E-23 1.48657086106E-23 7.56799046180E-24 3.81991447915E-24 1.91142819540E-24 9.48082677573E-25 4.66090559210E-25 2.27081452437E-25 1.09630416248E-25 5.24407224884E-26 2.48510079186E-26 1.16655706023E-26 5.42378991642E-27 7.20006003545E-08 7.38233041256E-08 7.56921498570E-08 7.76083056376E-08 7.95729691269E-08 8.15873683029E-08 8.36527622303E-08 8.57704418470E-08 8.79417307713E-08 9.01679861286E-08 9.24505994007E-08 9.47909972945E-08 9.71906426341E-08 9.96510352755E-08 1.02173713043E-07 1.04760252693E-07 1.07412270894E-07 1.10131425244E-07 1.12919415303E-07 1.15777983653E-07 1.18708916993E-07 1.21714047249E-07 1.24795252726E-07 1.27954459275E-07 1.31193641502E-07 1.34514824001E-07 1.37920082618E-07 1.41411545748E-07 1.44991395668E-07 1.48661869900E-07 1.52425262607E-07 1.56283926032E-07 1.60240271962E-07 1.64296773241E-07 1.68455965312E-07 1.72720447804E-07 1.77092886155E-07 1.81576013278E-07 1.86172631273E-07 1.90885613172E-07 1.95717904740E-07 2.00672526313E-07 2.05752574689E-07 2.10961225061E-07 2.16301733000E-07 2.21777436496E-07 2.27391758037E-07 2.33148206753E-07 2.39050380610E-07 2.45101968652E-07 2.51306753316E-07 2.57668612789E-07 2.64191523436E-07 2.70879562284E-07 2.77736909568E-07 2.84767851350E-07 2.91976782191E-07 2.99368207900E-07 3.06946748354E-07 3.14717140380E-07 3.22684240720E-07 3.30853029062E-07 3.39228611157E-07 3.47816222010E-07 3.56621229147E-07 3.65649135976E-07 3.74905585222E-07 3.84396362458E-07 3.94127399719E-07 4.04104779207E-07 4.14334737099E-07 4.24823667438E-07 4.35578126136E-07 4.46604835065E-07 4.57910686263E-07 4.69502746240E-07 4.81388260395E-07 4.93574657545E-07 5.06069554568E-07 5.18880761163E-07 5.32016284732E-07 5.45484335384E-07 5.59293331068E-07 5.73451902835E-07 5.87968900228E-07 6.02853396819E-07 6.18114695878E-07 6.33762336185E-07 6.49806097997E-07 6.66256009156E-07 6.83122351362E-07 7.00415666595E-07 7.18146763703E-07 7.36326725164E-07 7.54966914006E-07 7.74078980913E-07 7.93674871508E-07 8.13766833814E-07 8.34367425916E-07 8.55489523803E-07 8.77146329423E-07 8.99351378930E-07 9.22118551145E-07 9.45462076231E-07 9.69396544587E-07 9.93936915968E-07 1.01909852884E-06 1.04489710994E-06 1.07134878416E-06 1.09847008458E-06 1.12627796279E-06 1.15478979954E-06 1.18402341556E-06 1.21399708271E-06 1.24472953541E-06 1.27623998233E-06 1.30854811840E-06 1.34167413714E-06 1.37563874327E-06 1.41046316563E-06 1.44616917048E-06 1.48277907509E-06 1.52031576168E-06 1.55880269174E-06 1.59826392068E-06 1.63872411286E-06 1.68020855705E-06 1.72274318215E-06 1.76635457350E-06 1.81106998940E-06 1.85691737821E-06 1.90392539579E-06 1.95212342344E-06 2.00154158622E-06 2.05221077179E-06 2.10416264975E-06 2.15742969141E-06 2.21204519006E-06 2.26804328182E-06 2.32545896695E-06 2.38432813175E-06 2.44468757095E-06 2.50657501074E-06 2.57002913234E-06 2.63508959617E-06 2.70179706664E-06 2.77019323757E-06 2.84032085826E-06 2.91222376017E-06 2.98594688435E-06 3.06153630952E-06 3.13903928087E-06 3.21850423958E-06 3.29998085309E-06 3.38352004616E-06 3.46917403269E-06 3.55699634836E-06 3.64704188408E-06 3.73936692028E-06 3.83402916212E-06 3.93108777555E-06 4.03060342425E-06 4.13263830759E-06 4.23725619948E-06 4.34452248822E-06 4.45450421740E-06 4.56727012776E-06 4.68289070018E-06 4.80143819972E-06 4.92298672080E-06 5.04761223346E-06 5.17539263090E-06 5.30640777812E-06 5.44073956184E-06 5.57847194169E-06 5.71969100269E-06 5.86448500901E-06 6.01294445918E-06 6.16516214260E-06 6.32123319758E-06 6.48125517077E-06 6.64532807811E-06 6.81355446738E-06 6.98603948224E-06 7.16289092796E-06 7.34421933881E-06 7.53013804710E-06 7.72076325404E-06 7.91621410235E-06 8.11661275071E-06 8.32208445011E-06 8.53275762212E-06 8.74876393915E-06 8.97023840674E-06 9.19731944790E-06 9.43014898966E-06 9.66887255173E-06 9.91363933745E-06 1.01646023270E-05 1.04219183732E-05 1.06857482991E-05 1.09562569988E-05 1.12336135407E-05 1.15179912725E-05 1.18095679302E-05 1.21085257488E-05 1.24150515761E-05 1.27293369899E-05 1.30515784172E-05 1.33819772572E-05 1.37207400073E-05 1.40680783918E-05 1.44242094944E-05 1.47893558939E-05 1.51637458030E-05 1.55476132113E-05 1.59411980311E-05 1.63447462478E-05 1.67585100731E-05 1.71827481028E-05 1.76177254785E-05 1.80637140532E-05 1.85209925610E-05 1.89898467914E-05 1.94705697679E-05 1.99634619311E-05 2.04688313262E-05 2.09869937957E-05 2.15182731768E-05 2.20630015032E-05 2.26215192134E-05 2.31941753627E-05 2.37813278414E-05 2.43833435989E-05 2.50005988721E-05 2.56334794212E-05 2.62823807705E-05 2.69477084552E-05 2.76298782751E-05 2.83293165541E-05 2.90464604070E-05 2.97817580118E-05 3.05356688904E-05 3.13086641953E-05 3.21012270038E-05 3.29138526203E-05 3.37470488851E-05 3.46013364919E-05 3.54772493130E-05 3.63753347329E-05 3.72961539901E-05 3.82402825276E-05 3.92083103522E-05 4.02008424036E-05 4.12184989315E-05 4.22619158835E-05 4.33317453020E-05 4.44286557315E-05 4.55533326364E-05 4.67064788285E-05 4.78888149066E-05 4.91010797059E-05 5.03440307597E-05 5.16184447727E-05 5.29251181053E-05 5.42648672716E-05 5.56385294488E-05 5.70469630001E-05 5.84910480108E-05 5.99716868375E-05 6.14898046717E-05 6.30463501172E-05 6.46422957829E-05 6.62786388892E-05 6.79564018912E-05 6.96766331167E-05 7.14404074206E-05 7.32488268562E-05 7.51030213625E-05 7.70041494699E-05 7.89533990234E-05 8.09519879238E-05 8.30011648877E-05 8.51022102271E-05 8.72564366483E-05 8.94651900709E-05 9.17298504683E-05 9.40518327278E-05 9.64325875344E-05 9.88736022755E-05 1.01376401969E-04 1.03942550215E-04 1.06573650170E-04 1.09271345549E-04 1.12037321650E-04 1.14873306405E-04 1.17781071456E-04 1.20762433265E-04 1.23819254242E-04 1.26953443908E-04 1.30166960087E-04 1.33461810125E-04 1.36840052142E-04 1.40303796318E-04 1.43855206204E-04 1.47496500074E-04 1.51229952307E-04 1.55057894804E-04 1.58982718443E-04 1.63006874567E-04 1.67132876514E-04 1.71363301181E-04 1.75700790632E-04 1.80148053742E-04 1.84707867884E-04 1.89383080664E-04 1.94176611688E-04 1.99091454386E-04 2.04130677875E-04 2.09297428866E-04 2.14594933630E-04 2.20026500002E-04 2.25595519443E-04 2.31305469149E-04 2.37159914216E-04 2.43162509862E-04 2.49317003694E-04 2.55627238049E-04 2.62097152378E-04 2.68730785699E-04 2.75532279109E-04 2.82505878361E-04 2.89655936500E-04 2.96986916575E-04 3.04503394410E-04 3.12210061450E-04 3.20111727675E-04 3.28213324592E-04 3.36519908296E-04 3.45036662614E-04 3.53768902320E-04 3.62722076444E-04 3.71901771648E-04 3.81313715696E-04 3.90963781014E-04 4.00857988328E-04 4.11002510406E-04 4.21403675882E-04 4.32067973186E-04 4.43002054567E-04 4.54212740216E-04 4.65707022495E-04 4.77492070271E-04 4.89575233358E-04 5.01964047070E-04 5.14666236889E-04 5.27689723249E-04 5.41042626437E-04 5.54733271623E-04 5.68770194008E-04 5.83162144107E-04 5.97918093157E-04 6.13047238668E-04 6.28559010107E-04 6.44463074723E-04 6.60769343520E-04 6.77487977381E-04 6.94629393338E-04 7.12204271000E-04 7.30223559149E-04 7.48698482484E-04 7.67640548551E-04 7.87061554831E-04 8.06973596010E-04 8.27389071429E-04 8.48320692718E-04 8.69781491621E-04 8.91784828012E-04 9.14344398110E-04 9.37474242902E-04 9.61188756768E-04 9.85502696322E-04 1.01043118947E-03 1.03598974471E-03 1.06219426060E-03 1.08906103555E-03 1.11660677782E-03 1.14484861567E-03 1.17380410794E-03 1.20349125475E-03 1.23392850849E-03 1.26513478513E-03 1.29712947576E-03 1.32993245841E-03 1.36356411022E-03 1.39804531979E-03 1.43339750000E-03 1.46964260095E-03 1.50680312341E-03 1.54490213241E-03 1.58396327133E-03 1.62401077620E-03 1.66506949046E-03 1.70716487995E-03 1.75032304841E-03 1.79457075320E-03 1.83993542158E-03 1.88644516718E-03 1.93412880705E-03 1.98301587901E-03 2.03313665945E-03 2.08452218155E-03 2.13720425397E-03 2.19121547995E-03 2.24658927689E-03 2.30335989635E-03 2.36156244463E-03 2.42123290371E-03 2.48240815280E-03 2.54512599034E-03 2.60942515653E-03 2.67534535641E-03 2.74292728347E-03 2.81221264382E-03 2.88324418094E-03 2.95606570098E-03 3.03072209870E-03 3.10725938396E-03 3.18572470888E-03 3.26616639562E-03 3.34863396475E-03 3.43317816437E-03 3.51985099981E-03 3.60870576412E-03 3.69979706912E-03 3.79318087732E-03 3.88891453442E-03 3.98705680267E-03 4.08766789493E-03 4.19080950950E-03 4.29654486573E-03 4.40493874049E-03 4.51605750538E-03 4.62996916484E-03 4.74674339503E-03 4.86645158366E-03 4.98916687064E-03 5.11496418964E-03 5.24392031057E-03 5.37611388298E-03 5.51162548040E-03 5.65053764563E-03 5.79293493705E-03 5.93890397583E-03 6.08853349428E-03 6.24191438508E-03 6.39913975165E-03 6.56030495953E-03 6.72550768883E-03 6.89484798782E-03 7.06842832753E-03 7.24635365753E-03 7.42873146283E-03 7.61567182194E-03 7.80728746603E-03 8.00369383936E-03 8.20500916080E-03 8.41135448665E-03 8.62285377455E-03 8.83963394877E-03 9.06182496659E-03 9.28955988605E-03 9.52297493487E-03 9.76220958067E-03 1.00074066025E-02 1.02587121636E-02 1.05162758856E-02 1.07802509235E-02 1.10507940430E-02 1.13280656979E-02 1.16122301095E-02 1.19034553476E-02 1.22019134119E-02 1.25077803155E-02 1.28212361692E-02 1.31424652674E-02 1.34716561755E-02 1.38090018175E-02 1.41546995664E-02 1.45089513346E-02 1.48719636661E-02 1.52439478299E-02 1.56251199143E-02 1.60157009227E-02 1.64159168702E-02 1.68259988817E-02 1.72461832904E-02 1.76767117383E-02 1.81178312766E-02 1.85697944677E-02 1.90328594881E-02 1.95072902313E-02 1.99933564128E-02 2.04913336745E-02 2.10015036903E-02 2.15241542721E-02 2.20595794766E-02 2.26080797114E-02 2.31699618429E-02 2.37455393028E-02 2.43351321953E-02 2.49390674046E-02 2.55576787013E-02 2.61913068489E-02 2.68402997098E-02 2.75050123505E-02 2.81858071455E-02 2.88830538813E-02 2.95971298575E-02 3.03284199883E-02 3.10773169007E-02 3.18442210318E-02 3.26295407238E-02 3.34336923161E-02 3.42571002355E-02 3.51001970828E-02 3.59634237167E-02 3.68472293335E-02 3.77520715435E-02 3.86784164431E-02 3.96267386815E-02 4.05975215236E-02 4.15912569064E-02 4.26084454902E-02 4.36495967036E-02 4.47152287807E-02 4.58058687927E-02 4.69220526702E-02 4.80643252180E-02 4.92332401210E-02 5.04293599402E-02 5.16532560991E-02 5.29055088591E-02 5.41867072836E-02 5.54974491902E-02 5.68383410895E-02 5.82099981113E-02 5.96130439154E-02 6.10481105881E-02 6.25158385223E-02 6.40168762810E-02 6.55518804426E-02 6.71215154278E-02 6.87264533071E-02 7.03673735871E-02 7.20449629755E-02 7.37599151230E-02 7.55129303421E-02 7.73047152999E-02 7.91359826859E-02 8.10074508515E-02 8.29198434218E-02 8.48738888774E-02 8.68703201049E-02 8.89098739159E-02 9.09932905317E-02 9.31213130334E-02 9.52946867759E-02 9.75141587641E-02 9.97804769900E-02 1.02094389730E-01 1.04456644801E-01 1.06867988769E-01 1.09329166122E-01 1.11840918387E-01 1.14403983208E-01 1.17019093368E-01 1.19686975771E-01 1.22408350361E-01 1.25183928997E-01 1.28014414272E-01 1.30900498278E-01 1.33842861311E-01 1.36842170529E-01 1.39899078539E-01 1.43014221937E-01 1.46188219785E-01 1.49421672025E-01 1.52715157838E-01 1.56069233944E-01 1.59484432831E-01 1.62961260940E-01 1.66500196775E-01 1.70101688967E-01 1.73766154267E-01 1.77493975494E-01 1.81285499419E-01 1.85141034598E-01 1.89060849152E-01 1.93045168500E-01 1.97094173042E-01 2.01207995802E-01 2.05386720028E-01 2.09630376760E-01 2.13938942364E-01 2.18312336044E-01 2.22750417330E-01 2.27252983556E-01 2.31819767330E-01 2.36450434006E-01 2.41144579163E-01 2.45901726106E-01 2.50721323391E-01 2.55602742391E-01 2.60545274909E-01 2.65548130855E-01 2.70610435994E-01 2.75731229782E-01 2.80909463304E-01 2.86143997324E-01 2.91433600477E-01 2.96776947596E-01 3.02172618211E-01 3.07619095236E-01 3.13114763845E-01 3.18657910582E-01 3.24246722699E-01 3.29879287766E-01 3.35553593553E-01 3.41267528215E-01 3.47018880804E-01 3.52805342117E-01 3.58624505914E-01 3.64473870521E-01 3.70350840826E-01 3.76252730719E-01 3.82176765954E-01 3.88120087489E-01 3.94079755289E-01 4.00052752624E-01 4.06035990876E-01 4.12026314853E-01 4.18020508625E-01 4.24015301892E-01 4.30007376875E-01 4.35993375733E-01 4.41969908504E-01 4.47933561557E-01 4.53880906530E-01 4.59808509751E-01 4.65712942104E-01 4.71590789312E-01 4.77438662595E-01 4.83253209665E-01 4.89031125999E-01 4.94769166336E-01 5.00464156327E-01 5.06113004268E-01 5.11712712829E-01 5.17260390693E-01 5.22753264009E-01 5.28188687548E-01 5.33564155454E-01 5.38877311473E-01 5.44125958527E-01 5.49308067512E-01 5.54421785175E-01 5.59465440936E-01 5.64437552513E-01 5.69336830195E-01 5.74162179637E-01 5.78912703015E-01 5.83587698414E-01 5.88186657305E-01 5.92709259986E-01 5.97155368863E-01 6.01525019456E-01 6.05818409042E-01 6.10035882830E-01 6.14177917608E-01 6.18245102801E-01 6.22238118895E-01 6.26157713205E-01 6.30004672977E-01 6.33779795824E-01 6.37483857524E-01 6.41117577195E-01 6.44681579890E-01 6.48176356638E-01 6.51602221967E-01 6.54959268923E-01 6.58247321576E-01 6.61465884974E-01 6.64614092477E-01 6.67690650312E-01 6.70693779163E-01 6.73621152496E-01 6.76469831237E-01 6.79236194295E-01 6.81915864327E-01 6.84503627966E-01 6.86993349627E-01 6.89377877832E-01 6.91648942869E-01 6.93797044434E-01 6.95812931732E-01 6.97692831366E-01 6.99434523806E-01 7.01035873702E-01 7.02494833464E-01 7.03809446688E-01 7.04977851394E-01 7.05998283081E-01 7.06869077599E-01 7.07588673812E-01 7.08155616085E-01 7.08568556562E-01 7.08826257256E-01 7.08927591956E-01 7.08871547938E-01 7.08657227496E-01 7.08283849299E-01 7.07750749562E-01 7.07057383061E-01 7.06203323966E-01 7.05188266527E-01 7.04012025592E-01 7.02674536978E-01 7.01175857688E-01 6.99516165994E-01 6.97695761371E-01 6.95715064301E-01 6.93574615943E-01 6.91275077689E-01 6.88817230579E-01 6.86201974623E-01 6.83430327990E-01 6.80503426105E-01 6.77422520635E-01 6.74188978379E-01 6.70804280065E-01 6.67270019050E-01 6.63587899942E-01 6.59759737135E-01 6.55787453256E-01 6.51673077551E-01 6.47418744176E-01 6.43026690429E-01 6.38499254903E-01 6.33838875568E-01 6.29048087775E-01 6.24129522203E-01 6.19085902707E-01 6.13920044112E-01 6.08634849913E-01 6.03233309895E-01 5.97718497662E-01 5.92093568077E-01 5.86361754595E-01 5.80526366494E-01 5.74590785989E-01 5.68558465227E-01 5.62432923149E-01 5.56217742218E-01 5.49916565005E-01 5.43533090616E-01 5.37071070971E-01 5.30534306911E-01 5.23926644150E-01 5.17251969043E-01 5.10514204201E-01 5.03717303929E-01 4.96865249502E-01 4.89962044291E-01 4.83011708735E-01 4.76018275189E-01 4.68985782649E-01 4.61918271378E-01 4.54819777465E-01 4.47694327321E-01 4.40545932160E-01 4.33378582480E-01 4.26196242584E-01 4.19002845162E-01 4.11802285988E-01 4.04598418739E-01 3.97395049991E-01 3.90195934409E-01 3.83004770172E-01 3.75825194655E-01 3.68660780398E-01 3.61515031378E-01 3.54391379613E-01 3.47293182104E-01 3.40223718137E-01 3.33186186936E-01 3.26183705693E-01 3.19219307950E-01 3.12295942346E-01 3.05416471705E-01 2.98583672470E-01 2.91800234443E-01 2.85068760833E-01 2.78391768574E-01 2.71771688894E-01 2.65210868106E-01 2.58711568600E-01 2.52275969981E-01 2.45906170361E-01 2.39604187730E-01 2.33371961412E-01 2.27211353547E-01 2.21124150590E-01 2.15112064779E-01 2.09176735559E-01 2.03319730932E-01 1.97542548703E-01 1.91846617608E-01 1.86233298308E-01 1.80703884226E-01 1.75259602214E-01 1.69901613056E-01 1.64631011779E-01 1.59448827788E-01 1.54356024818E-01 1.49353500711E-01 1.44442087019E-01 1.39622548456E-01 1.34895582204E-01 1.30261817094E-01 1.25721812681E-01 1.21276058235E-01 1.16924971670E-01 1.12668898444E-01 1.08508110440E-01 1.04442804879E-01 1.00473103261E-01 9.65990503942E-02 9.28206135133E-02 8.91376815207E-02 8.55500643768E-02 8.20574926570E-02 7.86596172954E-02 7.53560095340E-02 7.21461610903E-02 6.90294845560E-02 6.60053140359E-02 6.30729060333E-02 6.02314405847E-02 5.74800226458E-02 5.48176837252E-02 5.22433837632E-02 4.97560132469E-02 4.73543955536E-02 4.50372895118E-02 4.28033921656E-02 4.06513417292E-02 3.85797207153E-02 3.65870592209E-02 3.46718383525E-02 3.28324937723E-02 3.10674193466E-02 2.93749708788E-02 2.77534699050E-02 2.62012075365E-02 2.47164483285E-02 2.32974341572E-02 2.19423880884E-02 2.06495182199E-02 1.94170214811E-02 1.82430873756E-02 1.71259016514E-02 1.60636498849E-02 1.50545209675E-02 1.40967104817E-02 1.31884239572E-02 1.23278799979E-02 1.15133132700E-02 1.07429773460E-02 1.00151473963E-02 9.32812272554E-03 8.68022914656E-03 8.06982119197E-03 7.49528415865E-03 6.95503598500E-03 6.44752896019E-03 5.97125126569E-03 5.52472835025E-03 5.10652414027E-03 4.71524208783E-03 4.34952605989E-03 4.00806107210E-03 3.68957387174E-03 3.39283337436E-03 3.11665095953E-03 2.85988063109E-03 2.62141904799E-03 2.40020543181E-03 2.19522135756E-03 2.00549043424E-03 1.83007788214E-03 1.66809001368E-03 1.51867362487E-03 1.38101530431E-03 1.25434066683E-03 1.13791351871E-03 1.03103496136E-03 9.33042440197E-04 8.43308745531E-04 7.61240971718E-04 6.86279441038E-04 6.17896598293E-04 5.55595881984E-04 4.98910577643E-04 4.47402658645E-04 4.00661619492E-04 3.58303306423E-04 3.19970072699E-04 2.85340098142E-04 2.54100727415E-04 2.25960019479E-04 2.00647140053E-04 1.77911213967E-04 1.57520209428E-04 1.39259855842E-04 1.22932596630E-04 1.08356578305E-04 9.53646768900E-05 8.38035625810E-05 7.35328033957E-05 6.44240084028E-05 5.63600109949E-05 4.92340925628E-05 4.29481266005E-05 3.74029600365E-05 3.25189936809E-05 2.82252091514E-05 2.44573292029E-05 2.11572936404E-05 1.82727663389E-05 1.57566729384E-05 1.35667687384E-05 1.16652362912E-05 1.00183122012E-05 8.59594267059E-06 7.37146740649E-06 6.32133162175E-06 5.40991983016E-06 4.62050798453E-06 3.93816704861E-06 3.34959877396E-06 2.84298311863E-06 2.40783685630E-06 2.03488290109E-06 1.71592985555E-06 1.44376127644E-06 1.21203414511E-06 1.01518602589E-06 8.48350396554E-07 7.07279639423E-07 5.88275189503E-07 4.88124346763E-07 4.04043273135E-07 3.33625710345E-07 2.74796972181E-07 2.25772783749E-07 1.85022560427E-07 1.51236740252E-07 1.23297805045E-07 1.00254647551E-07 8.12999637976E-08 6.57503718086E-08 5.30289792777E-08 4.26501438784E-08 3.42061902723E-08 2.73558675265E-08 2.18143494492E-08 1.73445982215E-08 1.37499286031E-08 1.08676258619E-08 8.56348542610E-09 6.72715605383E-09 5.26818108389E-09 4.11264408049E-09 3.20033594562E-09 2.48237038123E-09 1.91918348037E-09 1.47886125896E-09 1.13574615885E-09 8.69280010070E-10 6.63046690749E-10 5.03982819999E-10 3.81729317486E-10 2.88100614743E-10 2.16651759207E-10 1.62326660879E-10 1.21173339494E-10 9.01142806321E-11 6.67619424701E-11 4.92711082528E-11 3.62211872098E-11 2.65227596752E-11 1.93436687554E-11 1.40508063184E-11 1.01644479076E-11 7.32257944399E-12 5.25314589793E-12 3.75255394291E-12 2.66909040519E-12 1.89018772956E-12 1.33268672137E-12 9.35424062679E-13 6.53614829617E-13 4.54614621208E-13 3.14737131283E-13 2.16875387765E-13 1.48732049697E-13 1.01509069372E-13 6.89421418768E-14 4.65926768486E-14 3.13311621742E-14 2.09620593290E-14 1.39528295663E-14 9.23918131609E-15 6.08582066121E-15 3.98740652407E-15 2.59847455282E-15 1.68412191239E-15 1.08549002569E-15 6.95737113549E-16 4.43405340176E-16 2.80971382120E-16 1.77009792507E-16 1.10859969922E-16 6.90179888548E-17 4.27097806639E-17 2.62685975621E-17 1.60567457517E-17 9.75338671670E-18 5.88703170151E-18 3.53057659610E-18 2.10362398847E-18 1.24516883601E-18 7.32133051617E-19 4.27579587963E-19 2.48011703840E-19 1.42862505701E-19 8.17179326049E-20 4.64120945416E-20 2.61710316233E-20 1.46503193476E-20 8.14085689774E-21 4.49003404031E-21 2.45779030808E-21 1.33510181401E-21 7.19641953600E-22 3.84865275944E-22 2.04196482718E-22 1.07471082593E-22 5.61041321039E-23 2.90478101804E-23 1.49142760864E-23 7.59303722093E-24 3.83272107053E-24 1.91791969124E-24 9.51344331303E-25 4.67714853758E-25 2.27883088055E-25 1.10022451678E-25 5.26306815062E-26 2.49421943791E-26 1.17089302331E-26 5.44421076815E-27 5.64588588176E-08 5.78881215488E-08 5.93535662340E-08 6.08561088235E-08 6.23966884550E-08 6.39762680404E-08 6.55958348682E-08 6.72564012198E-08 6.89590050030E-08 7.07047103999E-08 7.24946085330E-08 7.43298181462E-08 7.62114863048E-08 7.81407891122E-08 8.01189324447E-08 8.21471527059E-08 8.42267175987E-08 8.63589269182E-08 8.85451133640E-08 9.07866433730E-08 9.30849179738E-08 9.54413736619E-08 9.78574832979E-08 1.00334757028E-07 1.02874743229E-07 1.05479029472E-07 1.08149243521E-07 1.10887054346E-07 1.13694173166E-07 1.16572354520E-07 1.19523397365E-07 1.22549146196E-07 1.25651492205E-07 1.28832374456E-07 1.32093781103E-07 1.35437750630E-07 1.38866373125E-07 1.42381791587E-07 1.45986203265E-07 1.49681861031E-07 1.53471074790E-07 1.57356212922E-07 1.61339703761E-07 1.65424037118E-07 1.69611765831E-07 1.73905507363E-07 1.78307945441E-07 1.82821831729E-07 1.87449987548E-07 1.92195305645E-07 1.97060751993E-07 2.02049367652E-07 2.07164270665E-07 2.12408658009E-07 2.17785807592E-07 2.23299080304E-07 2.28951922114E-07 2.34747866229E-07 2.40690535296E-07 2.46783643672E-07 2.53030999742E-07 2.59436508302E-07 2.66004172996E-07 2.72738098821E-07 2.79642494695E-07 2.86721676081E-07 2.93980067691E-07 3.01422206248E-07 3.09052743322E-07 3.16876448238E-07 3.24898211058E-07 3.33123045634E-07 3.41556092745E-07 3.50202623309E-07 3.59068041679E-07 3.68157889016E-07 3.77477846759E-07 3.87033740172E-07 3.96831541985E-07 4.06877376128E-07 4.17177521560E-07 4.27738416189E-07 4.38566660903E-07 4.49669023689E-07 4.61052443865E-07 4.72724036421E-07 4.84691096460E-07 4.96961103763E-07 5.09541727461E-07 5.22440830828E-07 5.35666476200E-07 5.49226930008E-07 5.63130667948E-07 5.77386380281E-07 5.92002977259E-07 6.06989594698E-07 6.22355599689E-07 6.38110596447E-07 6.54264432322E-07 6.70827203946E-07 6.87809263548E-07 7.05221225425E-07 7.23073972573E-07 7.41378663492E-07 7.60146739158E-07 7.79389930175E-07 7.99120264107E-07 8.19350072996E-07 8.40092001069E-07 8.61359012638E-07 8.83164400211E-07 9.05521792791E-07 9.28445164400E-07 9.51948842810E-07 9.76047518502E-07 1.00075625384E-06 1.02609049250E-06 1.05206606911E-06 1.07869921914E-06 1.10600658907E-06 1.13400524678E-06 1.16271269223E-06 1.19214686836E-06 1.22232617239E-06 1.25326946720E-06 1.28499609321E-06 1.31752588046E-06 1.35087916095E-06 1.38507678140E-06 1.42014011626E-06 1.45609108106E-06 1.49295214613E-06 1.53074635062E-06 1.56949731693E-06 1.60922926544E-06 1.64996702967E-06 1.69173607180E-06 1.73456249856E-06 1.77847307760E-06 1.82349525415E-06 1.86965716823E-06 1.91698767222E-06 1.96551634888E-06 2.01527352984E-06 2.06629031459E-06 2.11859858988E-06 2.17223104967E-06 2.22722121555E-06 2.28360345770E-06 2.34141301637E-06 2.40068602390E-06 2.46145952732E-06 2.52377151148E-06 2.58766092281E-06 2.65316769363E-06 2.72033276716E-06 2.78919812306E-06 2.85980680371E-06 2.93220294105E-06 3.00643178423E-06 3.08253972784E-06 3.16057434096E-06 3.24058439680E-06 3.32261990329E-06 3.40673213426E-06 3.49297366151E-06 3.58139838765E-06 3.67206157983E-06 3.76501990423E-06 3.86033146151E-06 3.95805582310E-06 4.05825406845E-06 4.16098882320E-06 4.26632429827E-06 4.37432633009E-06 4.48506242165E-06 4.59860178474E-06 4.71501538317E-06 4.83437597717E-06 4.95675816881E-06 5.08223844865E-06 5.21089524354E-06 5.34280896563E-06 5.47806206262E-06 5.61673906932E-06 5.75892666041E-06 5.90471370467E-06 6.05419132050E-06 6.20745293285E-06 6.36459433163E-06 6.52571373155E-06 6.69091183349E-06 6.86029188748E-06 7.03395975717E-06 7.21202398601E-06 7.39459586509E-06 7.58178950268E-06 7.77372189553E-06 7.97051300199E-06 8.17228581698E-06 8.37916644885E-06 8.59128419817E-06 8.80877163856E-06 9.03176469951E-06 9.26040275132E-06 9.49482869222E-06 9.73518903764E-06 9.98163401177E-06 1.02343176415E-05 1.04933978524E-05 1.07590365679E-05 1.10313998100E-05 1.13106578033E-05 1.15969850811E-05 1.18905605947E-05 1.21915678253E-05 1.25001948982E-05 1.28166347009E-05 1.31410850032E-05 1.34737485809E-05 1.38148333428E-05 1.41645524600E-05 1.45231244998E-05 1.48907735615E-05 1.52677294172E-05 1.56542276547E-05 1.60505098253E-05 1.64568235940E-05 1.68734228950E-05 1.73005680898E-05 1.77385261302E-05 1.81875707247E-05 1.86479825101E-05 1.91200492262E-05 1.96040658960E-05 2.01003350098E-05 2.06091667143E-05 2.11308790061E-05 2.16657979308E-05 2.22142577864E-05 2.27766013319E-05 2.33531800022E-05 2.39443541266E-05 2.45504931548E-05 2.51719758871E-05 2.58091907114E-05 2.64625358455E-05 2.71324195861E-05 2.78192605635E-05 2.85234880036E-05 2.92455419954E-05 2.99858737665E-05 3.07449459644E-05 3.15232329457E-05 3.23212210723E-05 3.31394090154E-05 3.39783080666E-05 3.48384424574E-05 3.57203496864E-05 3.66245808553E-05 3.75517010130E-05 3.85022895080E-05 3.94769403509E-05 4.04762625846E-05 4.15008806652E-05 4.25514348518E-05 4.36285816058E-05 4.47329940014E-05 4.58653621457E-05 4.70263936092E-05 4.82168138681E-05 4.94373667568E-05 5.06888149325E-05 5.19719403514E-05 5.32875447566E-05 5.46364501786E-05 5.60194994487E-05 5.74375567249E-05 5.88915080312E-05 6.03822618110E-05 6.19107494937E-05 6.34779260762E-05 6.50847707187E-05 6.67322873564E-05 6.84215053251E-05 7.01534800042E-05 7.19292934751E-05 7.37500551961E-05 7.56169026951E-05 7.75310022790E-05 7.94935497615E-05 8.15057712088E-05 8.35689237051E-05 8.56842961362E-05 8.78532099935E-05 9.00770201986E-05 9.23571159483E-05 9.46949215806E-05 9.70918974634E-05 9.95495409050E-05 1.02069387088E-04 1.04653010026E-04 1.07302023545E-04 1.10018082291E-04 1.12802882760E-04 1.15658164355E-04 1.18585710471E-04 1.21587349609E-04 1.24664956511E-04 1.27820453331E-04 1.31055810833E-04 1.34373049619E-04 1.37774241385E-04 1.41261510216E-04 1.44837033906E-04 1.48503045317E-04 1.52261833768E-04 1.56115746460E-04 1.60067189941E-04 1.64118631600E-04 1.68272601206E-04 1.72531692485E-04 1.76898564729E-04 1.81375944456E-04 1.85966627104E-04 1.90673478772E-04 1.95499438004E-04 2.00447517616E-04 2.05520806568E-04 2.10722471891E-04 2.16055760652E-04 2.21524001973E-04 2.27130609106E-04 2.32879081549E-04 2.38773007224E-04 2.44816064707E-04 2.51012025514E-04 2.57364756442E-04 2.63878221976E-04 2.70556486747E-04 2.77403718058E-04 2.84424188471E-04 2.91622278460E-04 2.99002479133E-04 3.06569395014E-04 3.14327746901E-04 3.22282374801E-04 3.30438240922E-04 3.38800432761E-04 3.47374166249E-04 3.56164788991E-04 3.65177783578E-04 3.74418770983E-04 3.83893514044E-04 3.93607921035E-04 4.03568049322E-04 4.13780109116E-04 4.24250467313E-04 4.34985651435E-04 4.45992353670E-04 4.57277435010E-04 4.68847929488E-04 4.80711048534E-04 4.92874185425E-04 5.05344919856E-04 5.18131022618E-04 5.31240460397E-04 5.44681400691E-04 5.58462216849E-04 5.72591493236E-04 5.87078030525E-04 6.01930851122E-04 6.17159204724E-04 6.32772574018E-04 6.48780680518E-04 6.65193490548E-04 6.82021221373E-04 6.99274347485E-04 7.16963607036E-04 7.35100008442E-04 7.53694837140E-04 7.72759662518E-04 7.92306345012E-04 8.12347043384E-04 8.32894222171E-04 8.53960659326E-04 8.75559454041E-04 8.97704034765E-04 9.20408167421E-04 9.43685963820E-04 9.67551890287E-04 9.92020776493E-04 1.01710782451E-03 1.04282861808E-03 1.06919913211E-03 1.09623574243E-03 1.12395523573E-03 1.15237481979E-03 1.18151213394E-03 1.21138525976E-03 1.24201273210E-03 1.27341355027E-03 1.30560718962E-03 1.33861361325E-03 1.37245328419E-03 1.40714717769E-03 1.44271679395E-03 1.47918417107E-03 1.51657189836E-03 1.55490312992E-03 1.59420159861E-03 1.63449163033E-03 1.67579815859E-03 1.71814673951E-03 1.76156356716E-03 1.80607548917E-03 1.85171002291E-03 1.89849537180E-03 1.94646044228E-03 1.99563486091E-03 2.04604899212E-03 2.09773395620E-03 2.15072164782E-03 2.20504475490E-03 2.26073677802E-03 2.31783205023E-03 2.37636575729E-03 2.43637395844E-03 2.49789360764E-03 2.56096257531E-03 2.62561967051E-03 2.69190466372E-03 2.75985831010E-03 2.82952237328E-03 2.90093964973E-03 2.97415399362E-03 3.04921034231E-03 3.12615474244E-03 3.20503437647E-03 3.28589759001E-03 3.36879391962E-03 3.45377412132E-03 3.54089019966E-03 3.63019543750E-03 3.72174442643E-03 3.81559309787E-03 3.91179875481E-03 4.01042010431E-03 4.11151729068E-03 4.21515192935E-03 4.32138714152E-03 4.43028758954E-03 4.54191951302E-03 4.65635076575E-03 4.77365085338E-03 4.89389097190E-03 5.01714404690E-03 5.14348477369E-03 5.27298965823E-03 5.40573705888E-03 5.54180722904E-03 5.68128236062E-03 5.82424662842E-03 5.97078623538E-03 6.12098945869E-03 6.27494669688E-03 6.43275051776E-03 6.59449570734E-03 6.76027931964E-03 6.93020072749E-03 7.10436167422E-03 7.28286632638E-03 7.46582132741E-03 7.65333585223E-03 7.84552166288E-03 8.04249316511E-03 8.24436746596E-03 8.45126443234E-03 8.66330675060E-03 8.88061998712E-03 9.10333264982E-03 9.33157625079E-03 9.56548536976E-03 9.80519771872E-03 1.00508542074E-02 1.03025990097E-02 1.05605796314E-02 1.08249469782E-02 1.10958554255E-02 1.13734628884E-02 1.16579308931E-02 1.19494246490E-02 1.22481131215E-02 1.25541691062E-02 1.28677693033E-02 1.31890943930E-02 1.35183291121E-02 1.38556623309E-02 1.42012871303E-02 1.45554008810E-02 1.49182053218E-02 1.52899066393E-02 1.56707155478E-02 1.60608473699E-02 1.64605221170E-02 1.68699645708E-02 1.72894043643E-02 1.77190760635E-02 1.81592192492E-02 1.86100785981E-02 1.90719039647E-02 1.95449504622E-02 2.00294785440E-02 2.05257540835E-02 2.10340484547E-02 2.15546386110E-02 2.20878071638E-02 2.26338424600E-02 2.31930386580E-02 2.37656958031E-02 2.43521199006E-02 2.49526229880E-02 2.55675232045E-02 2.61971448594E-02 2.68418184970E-02 2.75018809604E-02 2.81776754510E-02 2.88695515862E-02 2.95778654532E-02 3.03029796591E-02 3.10452633773E-02 3.18050923900E-02 3.25828491256E-02 3.33789226911E-02 3.41937089001E-02 3.50276102945E-02 3.58810361600E-02 3.67544025355E-02 3.76481322158E-02 3.85626547461E-02 3.94984064100E-02 4.04558302074E-02 4.14353758255E-02 4.24374995988E-02 4.34626644600E-02 4.45113398801E-02 4.55840017975E-02 4.66811325353E-02 4.78032207056E-02 4.89507611018E-02 5.01242545763E-02 5.13242079034E-02 5.25511336278E-02 5.38055498965E-02 5.50879802736E-02 5.63989535379E-02 5.77390034615E-02 5.91086685695E-02 6.05084918787E-02 6.19390206156E-02 6.34008059119E-02 6.48944024769E-02 6.64203682456E-02 6.79792640022E-02 6.95716529764E-02 7.11981004136E-02 7.28591731155E-02 7.45554389528E-02 7.62874663459E-02 7.80558237153E-02 7.98610788987E-02 8.17037985341E-02 8.35845474088E-02 8.55038877717E-02 8.74623786087E-02 8.94605748804E-02 9.14990267197E-02 9.35782785902E-02 9.56988684026E-02 9.78613265888E-02 1.00066175134E-01 1.02313926561E-01 1.04605082879E-01 1.06940134471E-01 1.09319558953E-01 1.11743819972E-01 1.14213365963E-01 1.16728628858E-01 1.19290022747E-01 1.21897942490E-01 1.24552762275E-01 1.27254834144E-01 1.30004486453E-01 1.32802022293E-01 1.35647717871E-01 1.38541820830E-01 1.41484548541E-01 1.44476086340E-01 1.47516585729E-01 1.50606162542E-01 1.53744895061E-01 1.56932822115E-01 1.60169941135E-01 1.63456206185E-01 1.66791525975E-01 1.70175761841E-01 1.73608725728E-01 1.77090178144E-01 1.80619826127E-01 1.84197321203E-01 1.87822257353E-01 1.91494169005E-01 1.95212529036E-01 1.98976746819E-01 2.02786166297E-01 2.06640064124E-01 2.10537647847E-01 2.14478054174E-01 2.18460347318E-01 2.22483517433E-01 2.26546479162E-01 2.30648070297E-01 2.34787050581E-01 2.38962100646E-01 2.43171821125E-01 2.47414731929E-01 2.51689271721E-01 2.55993797601E-01 2.60326585004E-01 2.64685827850E-01 2.69069638940E-01 2.73476050629E-01 2.77903015781E-01 2.82348409037E-01 2.86810028391E-01 2.91285597101E-01 2.95772765957E-01 3.00269115892E-01 3.04772160980E-01 3.09279351802E-01 3.13788079214E-01 3.18295678500E-01 3.22799433939E-01 3.27296583758E-01 3.31784325509E-01 3.36259821823E-01 3.40720206571E-01 3.45162591401E-01 3.49584072638E-01 3.53981738533E-01 3.58352676843E-01 3.62693982696E-01 3.67002766723E-01 3.71276163413E-01 3.75511339650E-01 3.79705503374E-01 3.83855912318E-01 3.87959882757E-01 3.92014798196E-01 3.96018117933E-01 3.99967385412E-01 4.03860236273E-01 4.07694406025E-01 4.11467737236E-01 4.15178186139E-01 4.18823828555E-01 4.22402865031E-01 4.25913625070E-01 4.29354570358E-01 4.32724296875E-01 4.36021535777E-01 4.39245152942E-01 4.42394147095E-01 4.45467646395E-01 4.48464903406E-01 4.51385288376E-01 4.54228280746E-01 4.56993458830E-01 4.59680487643E-01 4.62289104809E-01 4.64819104572E-01 4.67270319887E-01 4.69642602618E-01 4.71935801874E-01 4.74149740523E-01 4.76284189968E-01 4.78338843219E-01 4.80313286378E-01 4.82206968591E-01 4.84019170565E-01 4.85748971704E-01 4.87395215936E-01 4.88956476247E-01 4.90431017921E-01 4.91816760438E-01 4.93111237922E-01 4.94311557951E-01 4.95414358489E-01 4.96415762576E-01 4.97311330323E-01 4.98096007644E-01 4.98764071028E-01 4.99309067540E-01 4.99723749104E-01 5.00000000000E-01 5.00129910117E-01 5.00109525507E-01 4.99935999236E-01 4.99606530193E-01 4.99118365790E-01 4.98468804542E-01 4.97655198527E-01 4.96674955719E-01 4.95525542182E-01 4.94204484140E-01 4.92709369911E-01 4.91037851708E-01 4.89187647316E-01 4.87156541642E-01 4.84942388144E-01 4.82543110139E-01 4.79956702003E-01 4.77181230258E-01 4.74214834551E-01 4.71055728542E-01 4.67702200680E-01 4.64152614905E-01 4.60405411247E-01 4.56459106352E-01 4.52312293922E-01 4.47963645088E-01 4.43411908703E-01 4.38655911580E-01 4.33694558657E-01 4.28526833114E-01 4.23151796432E-01 4.17568588400E-01 4.11776427081E-01 4.05774608730E-01 3.99562507680E-01 3.93139576187E-01 3.86505344242E-01 3.79659419358E-01 3.72601486324E-01 3.65331306933E-01 3.57848719692E-01 3.50153639501E-01 3.42246057317E-01 3.34126039787E-01 3.25793728871E-01 3.17249341430E-01 3.08493168798E-01 2.99525576329E-01 2.90347002912E-01 2.80957960468E-01 2.71359033401E-01 2.61550878036E-01 2.51534222006E-01 2.41309863616E-01 2.30878671161E-01 2.20241582216E-01 2.09399602883E-01 1.98353807009E-01 1.87105335366E-01 1.75655394814E-01 1.64005257440E-01 1.52156259689E-01 1.40109801498E-01 1.27867345444E-01 1.15430415937E-01 1.02800598458E-01 8.99795388842E-02 7.69689429232E-02 6.37705756801E-02 5.03862614024E-02 3.68178834305E-02 2.30673843965E-02 9.13676670980E-03 -4.97190662678E-03 -1.92565108299E-02 -3.37148577341E-02 -4.83446937348E-02 -6.31436972368E-02 -7.81094755710E-02 -9.32395613476E-02 -1.08531408217E-01 -1.23982386013E-01 -1.39589775272E-01 -1.55350761102E-01 -1.71262426420E-01 -1.87321744546E-01 -2.03525571190E-01 -2.19870635836E-01 -2.36353532577E-01 -2.52970710428E-01 -2.69718463191E-01 -2.86592918909E-01 -3.03590029011E-01 -3.20705557194E-01 -3.37935068165E-01 -3.55273916306E-01 -3.72717234385E-01 -3.90259922410E-01 -4.07896636733E-01 -4.25621779525E-01 -4.43429488735E-01 -4.61313628643E-01 -4.79267781131E-01 -4.97285237780E-01 -5.15358992905E-01 -5.33481737627E-01 -5.51645855096E-01 -5.69843416933E-01 -5.88066180993E-01 -6.06305590507E-01 -6.24552774663E-01 -6.42798550677E-01 -6.61033427371E-01 -6.79247610289E-01 -6.97431008331E-01 -7.15573241891E-01 -7.33663652465E-01 -7.51691313664E-01 -7.69645043562E-01 -7.87513418285E-01 -8.05284786732E-01 -8.22947286295E-01 -8.40488859451E-01 -8.57897271064E-01 -8.75160126224E-01 -8.92264888476E-01 -9.09198898224E-01 -9.25949391158E-01 -9.42503516494E-01 -9.58848354864E-01 -9.74970935652E-01 -9.90858253625E-01 -1.00649728468E+00 -1.02187500053E+00 -1.03697838229E+00 -1.05179443262E+00 -1.06631018660E+00 -1.08051272098E+00 -1.09438916189E+00 -1.10792669089E+00 -1.12111254931E+00 -1.13393404089E+00 -1.14637853269E+00 -1.15843345431E+00 -1.17008629537E+00 -1.18132460142E+00 -1.19213596819E+00 -1.20250803443E+00 -1.21242847322E+00 -1.22188498199E+00 -1.23086527136E+00 -1.23935705277E+00 -1.24734802520E+00 -1.25482586103E+00 -1.26177819111E+00 -1.26819258935E+00 -1.27405655677E+00 -1.27935750541E+00 -1.28408274198E+00 -1.28821945163E+00 -1.29175468194E+00 -1.29467532723E+00 -1.29696811348E+00 -1.29861958390E+00 -1.29961608545E+00 -1.29994375650E+00 -1.29958851562E+00 -1.29853605199E+00 -1.29677181735E+00 -1.29428101992E+00 -1.29104862027E+00 -1.28705932961E+00 -1.28229761041E+00 -1.27674767988E+00 -1.27039351633E+00 -1.26321886867E+00 -1.25520726944E+00 -1.24634205134E+00 -1.23660636783E+00 -1.22598321778E+00 -1.21445547462E+00 -1.20200592014E+00 -1.18861728329E+00 -1.17427228421E+00 -1.15895368378E+00 -1.14264433897E+00 -1.12532726428E+00 -1.10698569955E+00 -1.08760318446E+00 -1.06716363984E+00 -1.04565145633E+00 -1.02305159045E+00 -9.99349668360E-01 -9.74532097656E-01 -9.48586187380E-01 -9.21500276427E-01 -8.93263870598E-01 -8.63867788449E-01 -8.33304316069E-01 -8.01567370922E-01 -7.68652674800E-01 -7.34557935913E-01 -6.99283040125E-01 -6.62830251231E-01 -6.25204420153E-01 -5.86413202835E-01 -5.46467286572E-01 -5.05380624385E-01 -4.63170677008E-01 -4.19858661899E-01 -3.75469808628E-01 -3.30033619940E-01 -2.83585308723E-01 -2.36175263539E-01 -1.87845969006E-01 -1.38644020307E-01 -8.86218360246E-02 -3.78379237696E-02 1.36428586874E-02 6.57490489065E-02 1.18402334210E-01 1.71517317600E-01 2.25001297931E-01 2.78754067378E-01 3.32667729462E-01 3.86626541182E-01 4.40506783047E-01 4.94176661096E-01 5.47481990362E-01 6.00129722770E-01 6.51932444649E-01 7.02708041279E-01 7.52267105393E-01 8.00413283483E-01 8.46943698783E-01 8.91649456585E-01 9.34316237513E-01 9.74724984352E-01 1.01265268790E+00 1.04787327713E+00 1.08015861869E+00 1.10927963034E+00 1.13500751253E+00 1.15711510169E+00 1.17537834806E+00 1.18957792014E+00 1.19950093663E+00 1.20494282579E+00 1.20570931062E+00 1.20161851685E+00 1.19250319894E+00 1.17821307735E+00 1.15861727827E+00 1.13360686461E+00 1.10309744440E+00 1.06703184022E+00 1.02538279987E+00 9.78155725747E-01 9.25391396708E-01 8.67168652739E-01 8.03607009104E-01 7.34869162793E-01 6.61163350274E-01 5.82745511681E-01 4.99921212745E-01 4.13047272118E-01 3.22533038240E-01 2.28841256765E-01 1.32488466776E-01 3.40448618506E-02 -6.58664495089E-02 -1.66570850288E-01 -2.67344354117E-01 -3.67416541661E-01 -4.65974355973E-01 -5.62166814224E-01 -6.55110687258E-01 -7.43897190500E-01 -8.27599719749E-01 -9.05282653151E-01 -9.76011225937E-01 -1.03886246731E+00 -1.09293716890E+00 -1.13737283168E+00 -1.17135751276E+00 -1.19414446553E+00 -1.20506743621E+00 -1.20355644665E+00 -1.18915385901E+00 -1.16153048105E+00 -1.12050143409E+00 -1.06604146811E+00 -9.98299371787E-01 -9.17611090731E-01 -8.24511135063E-01 -7.19741830444E-01 -6.04259945121E-01 -4.79240212032E-01 -3.46075261002E-01 -2.06371483576E-01 -6.19403741354E-02 8.52150723300E-02 2.32919271205E-01 3.78848559720E-01 5.20561506087E-01 6.55535096667E-01 7.81206741910E-01 8.95021879052E-01 9.94486764536E-01 1.07722584330E+00 1.14104285816E+00 1.18398462463E+00 1.20440614957E+00 1.20103552338E+00 1.17303677314E+00 1.12006863819E+00 1.04233703161E+00 9.40638794509E-01 8.16394248140E-01 6.71666017758E-01 5.09161656742E-01 3.32217755325E-01 1.44763489545E-01 -4.87380347115E-02 -2.43371751154E-01 -4.33876345376E-01 -6.14773317706E-01 -7.80518047241E-01 -9.25670430323E-01 -1.04508149355E+00 -1.13409114740E+00 -1.18873099776E+00 -1.20592492629E+00 -1.18367905522E+00 -1.12125180599E+00 -1.01929412994E+00 -8.79949723663E-01 -7.06905233397E-01 -5.05381186204E-01 -2.82055737075E-01 -4.49153430967E-02 1.96970803405E-01 4.33752342185E-01 6.55171031542E-01 8.50996909522E-01 1.01151356984E+00 1.12803375781E+00 1.19342163488E+00 1.20259373647E+00 1.15296725973E+00 1.04482229572E+00 8.81544399260E-01 6.69715873480E-01 4.19028668163E-01 1.41999069359E-01 -1.46525555080E-01 -4.30064953547E-01 -6.91391163329E-01 -9.13566190360E-01 -1.08108070338E+00 -1.18102599015E+00 -1.20421746777E+00 -1.14617809233E+00 -1.00788582697E+00 -7.96192539643E-01 -5.23833643792E-01 -2.08969269854E-01 1.25771183908E-01 3.72553716246E-12 3.86789737502E-12 4.01569745545E-12 4.16914527194E-12 4.32845663575E-12 4.49385560473E-12 4.66557479841E-12 4.84385572519E-12 5.02894912198E-12 5.22111530684E-12 5.42062454513E-12 5.62775742955E-12 5.84280527482E-12 6.06607052740E-12 6.29786719080E-12 6.53852126725E-12 6.78837121616E-12 7.04776843016E-12 7.31707772929E-12 7.59667787408E-12 7.88696209827E-12 8.18833866183E-12 8.50123142517E-12 8.82608044524E-12 9.16334259446E-12 9.51349220323E-12 9.87702172707E-12 1.02544424392E-11 1.06462851496E-11 1.10531009517E-11 1.14754619970E-11 1.19139623003E-11 1.23692185748E-11 1.28418710996E-11 1.33325846200E-11 1.38420492827E-11 1.43709816062E-11 1.49201254886E-11 1.54902532539E-11 1.60821667379E-11 1.66966984165E-11 1.73347125758E-11 1.79971065283E-11 1.86848118743E-11 1.93987958127E-11 2.01400625008E-11 2.09096544668E-11 2.17086540760E-11 2.25381850529E-11 2.33994140619E-11 2.42935523478E-11 2.52218574398E-11 2.61856349194E-11 2.71862402571E-11 2.82250807187E-11 2.93036173444E-11 3.04233670036E-11 3.15859045282E-11 3.27928649277E-11 3.40459456886E-11 3.53469091615E-11 3.66975850401E-11 3.80998729343E-11 3.95557450418E-11 4.10672489218E-11 4.26365103751E-11 4.42657364333E-11 4.59572184630E-11 4.77133353887E-11 4.95365570382E-11 5.14294476161E-11 5.33946693108E-11 5.54349860377E-11 5.75532673272E-11 5.97524923599E-11 6.20357541570E-11 6.44062639301E-11 6.68673555974E-11 6.94224904728E-11 7.20752621339E-11 7.48294014759E-11 7.76887819589E-11 8.06574250556E-11 8.37395059070E-11 8.69393591945E-11 9.02614852364E-11 9.37105563167E-11 9.72914232569E-11 1.01009122238E-10 1.04868881883E-10 1.08876130610E-10 1.13036504271E-10 1.17355854071E-10 1.21840254803E-10 1.26496013390E-10 1.31329677754E-10 1.36348046027E-10 1.41558176110E-10 1.46967395600E-10 1.52583312097E-10 1.58413823902E-10 1.64467131125E-10 1.70751747219E-10 1.77276510951E-10 1.84050598838E-10 1.91083538045E-10 1.98385219793E-10 2.05965913263E-10 2.13836280043E-10 2.22007389120E-10 2.30490732450E-10 2.39298241117E-10 2.48442302116E-10 2.57935775774E-10 2.67792013834E-10 2.78024878238E-10 2.88648760617E-10 2.99678602536E-10 3.11129916505E-10 3.23018807797E-10 3.35361997099E-10 3.48176844029E-10 3.61481371547E-10 3.75294291308E-10 3.89635029973E-10 4.04523756535E-10 4.19981410681E-10 4.36029732246E-10 4.52691291784E-10 4.69989522315E-10 4.87948752278E-10 5.06594239749E-10 5.25952207963E-10 5.46049882197E-10 5.66915528055E-10 5.88578491224E-10 6.11069238748E-10 6.34419401873E-10 6.58661820534E-10 6.83830589545E-10 7.09961106545E-10 7.37090121785E-10 7.65255789813E-10 7.94497723134E-10 8.24857047920E-10 8.56376461853E-10 8.89100294173E-10 9.23074568025E-10 9.58347065183E-10 9.94967393252E-10 1.03298705544E-09 1.07245952298E-09 1.11344031034E-09 1.15598705332E-09 1.20015959006E-09 1.24602004526E-09 1.29363291748E-09 1.34306516992E-09 1.39438632455E-09 1.44766855992E-09 1.50298681264E-09 1.56041888278E-09 1.62004554330E-09 1.68195065365E-09 1.74622127769E-09 1.81294780615E-09 1.88222408375E-09 1.95414754120E-09 2.02881933219E-09 2.10634447569E-09 2.18683200363E-09 2.27039511424E-09 2.35715133125E-09 2.44722266918E-09 2.54073580497E-09 2.63782225605E-09 2.73861856542E-09 2.84326649359E-09 2.95191321799E-09 3.06471153996E-09 3.18182009966E-09 3.30340359912E-09 3.42963303395E-09 3.56068593378E-09 3.69674661196E-09 3.83800642474E-09 3.98466404044E-09 4.13692571882E-09 4.29500560115E-09 4.45912601142E-09 4.62951776896E-09 4.80642051310E-09 4.99008304018E-09 5.18076365344E-09 5.37873052630E-09 5.58426207954E-09 5.79764737281E-09 6.01918651119E-09 6.24919106726E-09 6.48798451926E-09 6.73590270605E-09 6.99329429938E-09 7.26052129430E-09 7.53795951823E-09 7.82599915951E-09 8.12504531618E-09 8.43551856564E-09 8.75785555619E-09 9.09250962108E-09 9.43995141607E-09 9.80066958137E-09 1.01751714288E-08 1.05639836552E-08 1.09676530833E-08 1.13867474307E-08 1.18218561082E-08 1.22735910487E-08 1.27425875679E-08 1.32295052578E-08 1.37350289142E-08 1.42598694998E-08 1.48047651440E-08 1.53704821812E-08 1.59578162281E-08 1.65675933030E-08 1.72006709873E-08 1.78579396316E-08 1.85403236076E-08 1.92487826085E-08 1.99843129981E-08 2.07479492126E-08 2.15407652149E-08 2.23638760050E-08 2.32184391884E-08 2.41056566034E-08 2.50267760120E-08 2.59830928541E-08 2.69759520695E-08 2.80067499892E-08 2.90769362993E-08 3.01880160794E-08 3.13415519192E-08 3.25391661162E-08 3.37825429569E-08 3.50734310856E-08 3.64136459630E-08 3.78050724201E-08 3.92496673078E-08 4.07494622495E-08 4.23065664979E-08 4.39231699009E-08 4.56015459814E-08 4.73440551346E-08 4.91531479468E-08 5.10313686419E-08 5.29813586591E-08 5.50058603676E-08 5.71077209225E-08 5.92898962693E-08 6.15554552998E-08 6.39075841683E-08 6.63495907719E-08 6.88849094017E-08 7.15171055726E-08 7.42498810369E-08 7.70870789898E-08 8.00326894734E-08 8.30908549878E-08 8.62658763160E-08 8.95622185717E-08 9.29845174775E-08 9.65375858843E-08 1.00226420538E-07 1.04056209107E-07 1.08032337474E-07 1.12160397313E-07 1.16446193950E-07 1.20895754526E-07 1.25515336469E-07 1.30311436301E-07 1.35290798762E-07 1.40460426301E-07 1.45827588922E-07 1.51399834400E-07 1.57184998901E-07 1.63191217995E-07 1.69426938098E-07 1.75900928345E-07 1.82622292923E-07 1.89600483869E-07 1.96845314362E-07 2.04366972517E-07 2.12176035712E-07 2.20283485460E-07 2.28700722846E-07 2.37439584557E-07 2.46512359525E-07 2.55931806206E-07 2.65711170511E-07 2.75864204436E-07 2.86405185391E-07 2.97348936273E-07 3.08710846306E-07 3.20506892675E-07 3.32753662989E-07 3.45468378597E-07 3.58668918803E-07 3.72373845993E-07 3.86602431737E-07 4.01374683876E-07 4.16711374648E-07 4.32634069890E-07 4.49165159353E-07 4.66327888171E-07 4.84146389540E-07 5.02645718643E-07 5.21851887861E-07 5.41791903343E-07 5.62493802963E-07 5.83986695727E-07 6.06300802693E-07 6.29467499442E-07 6.53519360178E-07 6.78490203513E-07 7.04415139993E-07 7.31330621449E-07 7.59274492221E-07 7.88286042349E-07 8.18406062786E-07 8.49676902724E-07 8.82142529109E-07 9.15848588422E-07 9.50842470829E-07 9.87173376772E-07 1.02489238610E-06 1.06405252987E-06 1.10470886480E-06 1.14691855071E-06 1.19074093078E-06 1.23623761493E-06 1.28347256642E-06 1.33251219166E-06 1.38342543356E-06 1.43628386836E-06 1.49116180616E-06 1.54813639536E-06 1.60728773099E-06 1.66869896726E-06 1.73245643432E-06 1.79864975958E-06 1.86737199352E-06 1.93871974047E-06 2.01279329422E-06 2.08969677892E-06 2.16953829528E-06 2.25243007240E-06 2.33848862537E-06 2.42783491888E-06 2.52059453707E-06 2.61689785988E-06 2.71688024609E-06 2.82068222338E-06 2.92844968562E-06 3.04033409769E-06 3.15649270810E-06 3.27708876973E-06 3.40229176898E-06 3.53227766369E-06 3.66722913005E-06 3.80733581905E-06 3.95279462256E-06 4.10380994969E-06 4.26059401361E-06 4.42336712928E-06 4.59235802263E-06 4.76780415142E-06 4.94995203837E-06 5.13905761701E-06 5.33538659065E-06 5.53921480509E-06 5.75082863550E-06 5.97052538803E-06 6.19861371674E-06 6.43541405640E-06 6.68125907178E-06 6.93649412407E-06 7.20147775500E-06 7.47658218949E-06 7.76219385735E-06 8.05871393490E-06 8.36655890718E-06 8.68616115159E-06 9.01796954371E-06 9.36245008617E-06 9.72008656155E-06 1.00913812099E-05 1.04768554325E-05 1.08770505216E-05 1.12925284187E-05 1.17238725015E-05 1.21716884004E-05 1.26366048461E-05 1.31192745502E-05 1.36203751182E-05 1.41406099979E-05 1.46807094635E-05 1.52414316373E-05 1.58235635504E-05 1.64279222429E-05 1.70553559069E-05 1.77067450724E-05 1.83830038379E-05 1.90850811485E-05 1.98139621219E-05 2.05706694249E-05 2.13562647025E-05 2.21718500602E-05 2.30185696039E-05 2.38976110371E-05 2.48102073193E-05 2.57576383867E-05 2.67412329388E-05 2.77623702921E-05 2.88224823045E-05 2.99230553721E-05 3.10656325023E-05 3.22518154644E-05 3.34832670226E-05 3.47617132531E-05 3.60889459486E-05 3.74668251140E-05 3.88972815566E-05 4.03823195740E-05 4.19240197437E-05 4.35245418181E-05 4.51861277283E-05 4.69111047025E-05 4.87018885012E-05 5.05609867742E-05 5.24910025456E-05 5.44946378285E-05 5.65746973776E-05 5.87340925818E-05 6.09758455044E-05 6.33030930752E-05 6.57190914400E-05 6.82272204745E-05 7.08309884670E-05 7.35340369784E-05 7.63401458838E-05 7.92532386038E-05 8.22773875325E-05 8.54168196690E-05 8.86759224601E-05 9.20592498622E-05 9.55715286305E-05 9.92176648434E-05 1.03002750672E-04 1.06932071400E-04 1.11011112715E-04 1.15245568255E-04 1.19641347459E-04 1.24204583691E-04 1.28941642681E-04 1.33859131271E-04 1.38963906495E-04 1.44263084989E-04 1.49764052759E-04 1.55474475307E-04 1.61402308137E-04 1.67555807647E-04 1.73943542428E-04 1.80574404981E-04 1.87457623870E-04 1.94602776322E-04 2.02019801294E-04 2.09719013025E-04 2.17711115085E-04 2.26007214946E-04 2.34618839085E-04 2.43557948647E-04 2.52836955686E-04 2.62468739997E-04 2.72466666568E-04 2.82844603676E-04 2.93616941641E-04 3.04798612266E-04 3.16405108993E-04 3.28452507784E-04 3.40957488780E-04 3.53937358727E-04 3.67410074238E-04 3.81394265885E-04 3.95909263173E-04 4.10975120414E-04 4.26612643537E-04 4.42843417869E-04 4.59689836911E-04 4.77175132159E-04 4.95323403985E-04 5.14159653636E-04 5.33709816371E-04 5.54000795786E-04 5.75060499364E-04 5.96917875288E-04 6.19602950564E-04 6.43146870496E-04 6.67581939557E-04 6.92941663702E-04 7.19260794175E-04 7.46575372854E-04 7.74922779186E-04 8.04341778764E-04 8.34872573601E-04 8.66556854147E-04 8.99437853126E-04 9.33560401216E-04 9.68970984670E-04 1.00571780491E-03 1.04385084017E-03 1.08342190925E-03 1.12448473740E-03 1.16709502455E-03 1.21131051573E-03 1.25719107393E-03 1.30479875540E-03 1.35419788747E-03 1.40545514895E-03 1.45863965324E-03 1.51382303413E-03 1.57107953450E-03 1.63048609782E-03 1.69212246279E-03 1.75607126090E-03 1.82241811721E-03 1.89125175439E-03 1.96266410006E-03 2.03675039752E-03 2.11360931999E-03 2.19334308849E-03 2.27605759333E-03 2.36186251938E-03 2.45087147525E-03 2.54320212632E-03 2.63897633191E-03 2.73832028654E-03 2.84136466536E-03 2.94824477399E-03 3.05910070270E-03 3.17407748502E-03 3.29332526108E-03 3.41699944547E-03 3.54526089988E-03 3.67827611062E-03 3.81621737098E-03 3.95926296861E-03 4.10759737793E-03 4.26141145766E-03 4.42090265361E-03 4.58627520660E-03 4.75774036578E-03 4.93551660727E-03 5.11982985820E-03 5.31091372617E-03 5.50900973421E-03 5.71436756117E-03 5.92724528766E-03 6.14790964746E-03 6.37663628437E-03 6.61371001467E-03 6.85942509485E-03 7.11408549484E-03 7.37800517653E-03 7.65150837759E-03 7.93492990042E-03 8.22861540620E-03 8.53292171385E-03 8.84821710386E-03 9.17488162670E-03 9.51330741572E-03 9.86389900429E-03 1.02270736471E-02 1.06032616449E-02 1.09929066733E-02 1.13964661144E-02 1.18144113912E-02 1.22472283051E-02 1.26954173750E-02 1.31594941783E-02 1.36399896936E-02 1.41374506439E-02 1.46524398401E-02 1.51855365246E-02 1.57373367144E-02 1.63084535419E-02 1.68995175955E-02 1.75111772561E-02 1.81440990311E-02 1.87989678850E-02 1.94764875645E-02 2.01773809192E-02 2.09023902157E-02 2.16522774452E-02 2.24278246236E-02 2.32298340836E-02 2.40591287572E-02 2.49165524489E-02 2.58029700986E-02 2.67192680327E-02 2.76663542040E-02 2.86451584191E-02 2.96566325524E-02 3.07017507472E-02 3.17815096023E-02 3.28969283450E-02 3.40490489897E-02 3.52389364816E-02 3.64676788265E-02 3.77363872064E-02 3.90461960819E-02 4.03982632808E-02 4.17937700757E-02 4.32339212505E-02 4.47199451569E-02 4.62530937647E-02 4.78346427053E-02 4.94658913135E-02 5.11481626689E-02 5.28828036405E-02 5.46711849390E-02 5.65147011809E-02 5.84147709682E-02 6.03728369908E-02 6.23903661560E-02 6.44688497530E-02 6.66098036580E-02 6.88147685891E-02 7.10853104185E-02 7.34230205510E-02 7.58295163787E-02 7.83064418212E-02 8.08554679636E-02 8.34782938014E-02 8.61766471046E-02 8.89522854142E-02 9.18069971810E-02 9.47426030602E-02 9.77609573744E-02 1.00863949756E-01 1.04053506980E-01 1.07331595004E-01 1.10700221213E-01 1.14161436896E-01 1.17717339941E-01 1.21370077777E-01 1.25121850545E-01 1.28974914515E-01 1.32931585737E-01 1.36994243927E-01 1.41165336575E-01 1.45447383255E-01 1.49842980134E-01 1.54354804631E-01 1.58985620218E-01 1.63738281305E-01 1.68615738172E-01 1.73621041898E-01 1.78757349206E-01 1.84027927178E-01 1.89436157741E-01 1.94985541834E-01 2.00679703177E-01 2.06522391515E-01 2.12517485234E-01 2.18668993235E-01 2.24981055935E-01 2.31457945279E-01 2.38104063637E-01 2.44923941483E-01 2.51922233745E-01 2.59103714744E-01 2.66473271675E-01 2.74035896598E-01 2.81796676966E-01 2.89760784775E-01 2.97933464482E-01 3.06320019916E-01 3.14925800528E-01 3.23756187394E-01 3.32816579543E-01 3.42112381293E-01 3.51648991400E-01 3.61431794969E-01 3.71466159168E-01 3.81757433849E-01 3.92310958200E-01 4.03132074436E-01 4.14226149331E-01 4.25598603917E-01 4.37254950978E-01 4.49200838843E-01 4.61442098339E-01 4.73984787453E-01 4.86835224977E-01 5.00000000000E-01 5.13485939477E-01 5.27300047042E-01 5.41449481787E-01 5.55941561794E-01 5.70783768870E-01 5.85983753373E-01 6.01549339123E-01 6.17488528393E-01 6.33809506960E-01 6.50520649227E-01 6.67630523398E-01 6.85147896710E-01 7.03081740715E-01 7.21441236606E-01 7.40235780589E-01 7.59474989294E-01 7.79168705228E-01 7.99327002254E-01 8.19960191112E-01 8.41078824963E-01 8.62693704960E-01 8.84815885843E-01 9.07456681552E-01 9.30627670858E-01 9.54340703005E-01 9.78607903363E-01 1.00344167908E+00 1.02885472476E+00 1.05486002808E+00 1.08147087549E+00 1.10870085784E+00 1.13656387599E+00 1.16507414646E+00 1.19424620701E+00 1.22409492222E+00 1.25463548904E+00 1.28588344231E+00 1.31785466024E+00 1.35056536990E+00 1.38403215255E+00 1.41827194911E+00 1.45330206538E+00 1.48914017734E+00 1.52580433633E+00 1.56331297411E+00 1.60168490794E+00 1.64093934541E+00 1.68109588928E+00 1.72217454202E+00 1.76419571030E+00 1.80718020917E+00 1.85114926603E+00 1.89612452426E+00 1.94212804646E+00 1.98918231728E+00 2.03731024574E+00 2.08653516682E+00 2.13688084249E+00 2.18837146171E+00 2.24103163956E+00 2.29488641520E+00 2.34996124841E+00 2.40628201473E+00 2.46387499885E+00 2.52276688593E+00 2.58298475090E+00 2.64455604511E+00 2.70750858034E+00 2.77187050974E+00 2.83767030542E+00 2.90493673234E+00 2.97369881825E+00 3.04398581935E+00 3.11582718120E+00 3.18925249480E+00 3.26429144733E+00 3.34097376734E+00 3.41932916410E+00 3.49938726087E+00 3.58117752177E+00 3.66472917222E+00 3.75007111256E+00 3.83723182495E+00 3.92623927326E+00 4.01712079605E+00 4.10990299256E+00 4.20461160177E+00 4.30127137465E+00 4.39990593972E+00 4.50053766210E+00 4.60318749633E+00 4.70787483322E+00 4.81461734104E+00 4.92343080153E+00 5.03432894105E+00 5.14732325736E+00 5.26242284262E+00 5.37963420302E+00 5.49896107575E+00 5.62040424374E+00 5.74396134901E+00 5.86962670508E+00 5.99739110914E+00 6.12724165473E+00 6.25916154540E+00 6.39312991013E+00 6.52912162108E+00 6.66710711421E+00 6.80705221335E+00 6.94891795818E+00 7.09266043660E+00 7.23823062178E+00 7.38557421420E+00 7.53463148888E+00 7.68533714780E+00 7.83762017764E+00 7.99140371257E+00 8.14660490186E+00 8.30313478207E+00 8.46089815319E+00 8.61979345822E+00 8.77971266543E+00 8.94054115266E+00 9.10215759255E+00 9.26443383790E+00 9.42723480618E+00 9.59041836196E+00 9.75383519645E+00 9.91732870289E+00 1.00807348469E+01 1.02438820307E+01 1.04065909504E+01 1.05686744461E+01 1.07299373423E+01 1.08901762812E+01 1.10491795454E+01 1.12067268722E+01 1.13625892582E+01 1.15165287553E+01 1.16682982585E+01 1.18176412860E+01 1.19642917533E+01 1.21079737423E+01 1.22484012669E+01 1.23852780385E+01 1.25182972315E+01 1.26471412534E+01 1.27714815218E+01 1.28909782515E+01 1.30052802555E+01 1.31140247641E+01 1.32168372667E+01 1.33133313807E+01 1.34031087522E+01 1.34857589958E+01 1.35608596773E+01 1.36279763474E+01 1.36866626316E+01 1.37364603855E+01 1.37768999201E+01 1.38075003085E+01 1.38277697800E+01 1.38372062105E+01 1.38352977205E+01 1.38215233878E+01 1.37953540859E+01 1.37562534592E+01 1.37036790447E+01 1.36370835510E+01 1.35559163072E+01 1.34596248915E+01 1.33476569521E+01 1.32194622324E+01 1.30744948103E+01 1.29122155657E+01 1.27320948858E+01 1.25336156191E+01 1.23162762904E+01 1.20795945838E+01 1.18231111055E+01 1.15463934326E+01 1.12490404548E+01 1.09306870153E+01 1.05910088525E+01 1.02297278449E+01 9.84661755849E+00 9.44150909120E+00 9.01429720900E+00 8.56494676204E+00 8.09349936686E+00 7.60008033549E+00 7.08490582790E+00 6.54829019843E+00 5.99065350143E+00 5.41252911463E+00 4.81457143199E+00 4.19756357042E+00 3.56242502673E+00 2.91021921276E+00 2.24216078779E+00 1.55962269792E+00 8.64142822348E-01 1.57430116612E-01 -5.58629867771E-01 -1.28197021794E+00 -2.01033878999E+00 -2.74129538650E+00 -3.47221014304E+00 -4.20026329478E+00 -4.92244650346E+00 -5.63556593255E+00 -6.33624726738E+00 -7.02097186556E+00 -7.68632098020E+00 -8.32847302096E+00 -8.94343641873E+00 -9.52709509787E+00 -1.00752293775E+01 -1.05835402073E+01 -1.10476768954E+01 -1.14632684646E+01 -1.18259587433E+01 -1.21314452646E+01 -1.23755220033E+01 -1.25541259321E+01 -1.26633873219E+01 -1.26996836442E+01 -1.26596968614E+01 -1.25401474131E+01 -1.23352290631E+01 -1.20426214056E+01 -1.16609496588E+01 -1.11895257688E+01 -1.06284185198E+01 -9.97852207865E+00 -9.24162176837E+00 -8.42045572982E+00 -7.51877099850E+00 -6.54137239511E+00 -5.49416251231E+00 -4.38417097672E+00 -3.21957108152E+00 -2.00968182631E+00 -7.64953372740E-01 5.03066066225E-01 1.78178383181E+00 3.05763874297E+00 4.31620099744E+00 5.54229747988E+00 6.72016360410E+00 7.83362243448E+00 8.86629136555E+00 9.80181608354E+00 1.06241308884E+01 1.13177437171E+01 1.18680433858E+01 1.22616256572E+01 1.24866337635E+01 1.25331079737E+01 1.23933377145E+01 1.20622086649E+01 1.15375361618E+01 1.08203752330E+01 9.91529663709E+00 8.83061750761E+00 7.57857460436E+00 6.17542784333E+00 4.64148176332E+00 3.00101295858E+00 1.28209232887E+00 -4.83707667926E-01 -2.26172867291E+00 -4.01477038820E+00 -5.70376507507E+00 -7.28858099555E+00 -8.72894873356E+00 -9.98549925356E+00 -1.10208969478E+01 -1.18010449050E+01 -1.22963333649E+01 -1.24828960208E+01 -1.23438327458E+01 -1.18703517749E+01 -1.10627797137E+01 -9.93138437071E+00 -8.49695374708E+00 -6.79107499462E+00 -4.85606020566E+00 -2.74447191530E+00 -5.18210510562E-01 1.75286141819E+00 3.99276628966E+00 6.12171882302E+00 8.05885870871E+00 9.72534808314E+00 1.10477455488E+01 1.19615401513E+01 1.24147012229E+01 1.23710751060E+01 1.18134394982E+01 1.07460127508E+01 9.19621117732E+00 7.21545455147E+00 4.87884048466E+00 2.28354383689E+00 -4.54151374637E-01 -3.20321298804E+00 -5.82355831105E+00 -8.17293822544E+00 -1.01147559164E+01 -1.15264643475E+01 -1.23080875836E+01 -1.23903256611E+01 -1.17416405209E+01 -1.03736915568E+01 -8.34450323121E+00 -5.75881222738E+00 -2.76516354815E+00 4.50494091641E-01 3.67472610548E+00 6.67977107722E+00 9.23935242325E+00 1.11462278958E+01 1.22302551201E+01 1.23754974857E+01 1.15347308872E+01 9.73967457580E+00 7.10539071135E+00 3.82759961093E+00 1.72149015934E-01 -3.54345586340E+00 -6.97574459557E+00 -9.78658829813E+00 -1.16776277429E+01 -1.24245565158E+01 -1.19074515824E+01 -1.01331532909E+01 -7.24596044662E+00 -3.52369114198E+00 6.42520742228E-01 4.78452912377E+00 8.40728779128E+00 1.10482455174E+01 1.23394579228E+01 1.20643473506E+01 1.02004263540E+01 6.93986643402E+00 2.68171824931E+00 -2.00713181514E+00 -6.46078682876E+00 -1.00064385232E+01 -1.20683030259E+01 -1.22680127948E+01 -1.05040621913E+01 -6.99360905055E+00 -2.26385008730E+00 2.91271474005E+00 7.63521367453E+00 1.10288803389E+01 1.24125118920E+01 1.14475231608E+01 8.23565534410E+00 3.33763910403E+00 -2.30249249280E+00 -7.52443392660E+00 -1.11857230883E+01 -1.24189574845E+01 -1.08551276733E+01 espresso-5.1/PW/examples/EXX_example/Pseudo/OPBE085nlcc.RRKJ30000644000175000017500000066767612341373025021517 0ustar mbambaO 2 F T 1 4 3 4 0.60000000000E+01-.31667579632E+02 2 -.70000000000E+010.10000000000E+030.80000000000E+010.12500000000E-01 1095 5 4 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 2S 1 0 2.00 2S 1 0 0.00 2P 2 1 4.00 2P 2 1 0.00 3D 3 2 -2.00 725 9.92768830589E-02 1.00525632895E-01 1.01790090085E-01 1.03070452204E-01 1.04394638428E-01 1.05667465860E-01 1.06990748009E-01 1.08368824761E-01 1.09716597953E-01 1.11080576050E-01 1.12496880401E-01 1.13922793419E-01 1.15330371157E-01 1.16797617977E-01 1.18248380602E-01 1.19747100757E-01 1.21282261700E-01 1.22753484604E-01 1.24343556397E-01 1.25884425764E-01 1.27485060059E-01 1.29084557875E-01 1.30681239751E-01 1.32376279444E-01 1.33989844666E-01 1.35692496906E-01 1.37403872959E-01 1.39119222586E-01 1.40881809688E-01 1.42654443036E-01 1.44433132108E-01 1.46262136581E-01 1.48123758576E-01 1.49945547588E-01 1.51850916006E-01 1.53766728721E-01 1.55696667479E-01 1.57653675769E-01 1.59644352513E-01 1.61656517841E-01 1.63672775185E-01 1.65746813013E-01 1.67832208027E-01 1.69923019831E-01 1.72087888520E-01 1.74212605863E-01 1.76441768206E-01 1.78638854724E-01 1.80904776073E-01 1.83161066078E-01 1.85473645800E-01 1.87798508564E-01 1.90156086992E-01 1.92577125157E-01 1.94959618495E-01 1.97448500836E-01 1.99904312667E-01 2.02439549665E-01 2.04965811259E-01 2.07581718860E-01 2.10153285667E-01 2.12807395865E-01 2.15502146732E-01 2.18207601270E-01 2.20926937038E-01 2.23737049015E-01 2.26525079671E-01 2.29407390221E-01 2.32247034745E-01 2.35209220870E-01 2.38155772851E-01 2.41154182199E-01 2.44173881851E-01 2.47251525916E-01 2.50372338548E-01 2.53509610126E-01 2.56703673845E-01 2.59929876148E-01 2.63198641185E-01 2.66510873627E-01 2.69871609182E-01 2.73243719421E-01 2.76708514397E-01 2.80172484395E-01 2.83697923741E-01 2.87269489198E-01 2.90877761267E-01 2.94538497072E-01 2.98239497172E-01 3.02003910858E-01 3.05781351536E-01 3.09649750398E-01 3.13525850838E-01 3.17479727252E-01 3.21471963578E-01 3.25514341652E-01 3.29607251377E-01 3.33761229160E-01 3.37947542239E-01 3.42209951152E-01 3.46512908654E-01 3.50867283693E-01 3.55287218937E-01 3.59749407007E-01 3.64270291135E-01 3.68870215029E-01 3.73491743125E-01 3.78196809069E-01 3.82952321640E-01 3.87770517206E-01 3.92644709345E-01 3.97584489583E-01 4.02584321309E-01 4.07654049252E-01 4.12783576969E-01 4.17965585426E-01 4.23233550157E-01 4.28550781830E-01 4.33940717193E-01 4.39404131465E-01 4.44930638169E-01 4.50524069102E-01 4.56185573743E-01 4.61933750671E-01 4.67740828016E-01 4.73621209313E-01 4.79579459069E-01 4.85610559298E-01 4.91725809095E-01 4.97902788904E-01 5.04172895586E-01 5.10502396520E-01 5.16937460081E-01 5.23430780695E-01 5.30021119953E-01 5.36679068937E-01 5.43436372124E-01 5.50262673374E-01 5.57199792219E-01 5.64198815523E-01 5.71300845155E-01 5.78481522377E-01 5.85762508475E-01 5.93123968980E-01 6.00587838610E-01 6.08144835489E-01 6.15789621710E-01 6.23544502711E-01 6.31374356864E-01 6.39325129224E-01 6.47363487475E-01 6.55511826052E-01 6.63746246108E-01 6.72104304897E-01 6.80553668033E-01 6.89113359549E-01 6.97786338297E-01 7.06560108883E-01 7.15445354580E-01 7.24452750924E-01 7.33553754501E-01 7.42789149764E-01 7.52133063419E-01 7.61581345695E-01 7.71172810132E-01 7.80867587713E-01 7.90693889029E-01 8.00630994081E-01 8.10710314043E-01 8.20902420300E-01 8.31229178153E-01 8.41685665769E-01 8.52270293487E-01 8.62996516986E-01 8.73845682337E-01 8.84838472325E-01 8.95970013402E-01 9.07237541729E-01 9.18651876182E-01 9.30206712671E-01 9.41906359114E-01 9.53753567353E-01 9.65750629514E-01 9.77895201125E-01 9.90195060352E-01 1.00265650985E+00 1.01526132779E+00 1.02803511795E+00 1.04096235277E+00 1.05405968755E+00 1.06731610724E+00 1.08074113930E+00 1.09433558855E+00 1.10809996658E+00 1.12203925032E+00 1.13614924655E+00 1.15044065860E+00 1.16491410257E+00 1.17955934208E+00 1.19440436045E+00 1.20942568255E+00 1.22463652278E+00 1.24003995595E+00 1.25564009335E+00 1.27142772866E+00 1.28742530549E+00 1.30361683016E+00 1.32001553717E+00 1.33661602927E+00 1.35342784921E+00 1.37045341930E+00 1.38769141419E+00 1.40514653684E+00 1.42281702081E+00 1.44071530220E+00 1.45883548863E+00 1.47718613201E+00 1.49576613757E+00 1.51457891573E+00 1.53362940365E+00 1.55292057341E+00 1.57245061799E+00 1.59223045940E+00 1.61225678838E+00 1.63253549311E+00 1.65306823330E+00 1.67386374249E+00 1.69491283734E+00 1.71623328491E+00 1.73782050414E+00 1.75967759983E+00 1.78180955187E+00 1.80422314355E+00 1.82691353879E+00 1.84989388155E+00 1.87315929296E+00 1.89672066315E+00 1.92057540382E+00 1.94473427394E+00 1.96919172546E+00 1.99396120802E+00 2.01903998330E+00 2.04443373070E+00 2.07014869206E+00 2.09618453700E+00 2.12255035751E+00 2.14924713321E+00 2.17627829139E+00 2.20364914894E+00 2.23136853058E+00 2.25943111285E+00 2.28784885644E+00 2.31662475497E+00 2.34575784843E+00 2.37526656164E+00 2.40513721258E+00 2.43538841220E+00 2.46601826084E+00 2.49703434728E+00 2.52843870510E+00 2.56023942156E+00 2.59243862852E+00 2.62504463663E+00 2.65806031923E+00 2.69148716635E+00 2.72534140753E+00 2.75961572130E+00 2.79432271838E+00 2.82946598939E+00 2.86505103763E+00 2.90108513632E+00 2.93756911629E+00 2.97451587401E+00 3.01192408047E+00 3.04980212008E+00 3.08815872515E+00 3.12699628093E+00 3.16632135571E+00 3.20614261629E+00 3.24646346106E+00 3.28729170330E+00 3.32863178134E+00 3.37049441454E+00 3.41287989708E+00 3.45580093286E+00 3.49926033331E+00 3.54326484231E+00 3.58782589389E+00 3.63294276684E+00 3.67862994811E+00 3.72489153376E+00 3.77173149900E+00 3.81916316405E+00 3.86718991664E+00 3.91582012056E+00 3.96506132054E+00 4.01492288305E+00 4.06540950015E+00 4.11653123831E+00 4.16829629492E+00 4.22070891682E+00 4.27378414475E+00 4.32752404615E+00 4.38193863624E+00 4.43703907283E+00 4.49283000254E+00 4.54932361331E+00 4.60652565607E+00 4.66444734147E+00 4.72309564579E+00 4.78248235285E+00 4.84261426923E+00 4.90350128337E+00 4.96515371734E+00 5.02758058015E+00 5.09079159102E+00 5.15479647139E+00 5.21960579057E+00 5.28522893584E+00 5.35167562675E+00 5.41895792754E+00 5.48708416532E+00 5.55606749041E+00 5.62591554389E+00 5.69664196272E+00 5.76825552113E+00 5.84076829990E+00 5.91419274501E+00 5.98853811407E+00 6.06381692410E+00 6.14004099504E+00 6.21722200720E+00 6.29537134564E+00 6.37450263428E+00 6.45462576790E+00 6.53575658721E+00 6.61790377103E+00 6.70108242169E+00 6.78530508387E+00 6.87058442634E+00 6.95693419185E+00 7.04436664902E+00 7.13289625228E+00 7.22253670118E+00 7.31330208141E+00 7.40520450416E+00 7.49826095875E+00 7.59248387382E+00 7.68788887582E+00 7.78448932931E+00 7.88230222650E+00 7.98134030517E+00 8.08162079919E+00 8.18315757467E+00 8.28596786336E+00 8.39006627154E+00 8.49546945443E+00 8.60219291962E+00 8.71025429725E+00 8.81966919475E+00 8.93045500737E+00 9.04262828178E+00 9.15620605301E+00 9.27120701684E+00 9.38764800305E+00 9.50554575647E+00 9.62492124181E+00 9.74578915663E+00 9.86817138143E+00 9.99208393888E+00 1.01175477676E+01 1.02445812661E+01 1.03732034012E+01 1.05034345291E+01 1.06352943294E+01 1.07688030698E+01 1.09039803909E+01 1.10408480967E+01 1.11794258601E+01 1.13197355179E+01 1.14617985636E+01 1.16056356093E+01 1.17512695439E+01 1.18987218925E+01 1.20480152442E+01 1.21991723715E+01 1.23522154578E+01 1.25071691031E+01 1.26640547435E+01 1.28228979944E+01 1.29837217305E+01 1.31465504158E+01 1.33114087851E+01 1.34783214686E+01 1.36473136764E+01 1.38184107416E+01 1.39916384242E+01 1.41670223553E+01 1.43445895502E+01 1.45243657118E+01 1.47063784510E+01 1.48906543923E+01 1.50772214660E+01 1.52661066343E+01 1.54573392583E+01 1.56509466015E+01 1.58469584657E+01 1.60454023723E+01 1.62463093729E+01 1.64497075234E+01 1.66556286752E+01 1.68641015233E+01 1.70751573600E+01 1.72888275772E+01 1.75051426102E+01 1.77241350324E+01 1.79458360929E+01 1.81702785604E+01 1.83974948542E+01 1.86275185232E+01 1.88603820073E+01 1.90961198585E+01 1.93347658077E+01 1.95763541364E+01 1.98209198492E+01 2.00684978210E+01 2.03191235948E+01 2.05728331663E+01 2.08296624226E+01 2.10896479199E+01 2.13528265239E+01 2.16192357101E+01 2.18889127920E+01 2.21618957713E+01 2.24382229976E+01 2.27179331938E+01 2.30010652300E+01 2.32876585810E+01 2.35777529973E+01 2.38713880471E+01 2.41686050998E+01 2.44694442980E+01 2.47739468198E+01 2.50821544021E+01 2.53941084912E+01 2.57098517284E+01 2.60294263902E+01 2.63528751362E+01 2.66802417454E+01 2.70115690899E+01 2.73469016103E+01 2.76862829620E+01 2.80297578406E+01 2.83773714940E+01 2.87291682489E+01 2.90851943922E+01 2.94454948765E+01 2.98101163612E+01 3.01791049702E+01 3.05525069345E+01 3.09303697367E+01 3.13127400569E+01 3.16996655327E+01 3.20911933802E+01 3.24873721579E+01 3.28882492107E+01 3.32938733072E+01 3.37042927893E+01 3.41195561583E+01 3.45397124898E+01 3.49648109058E+01 3.53949002065E+01 3.58300298169E+01 3.62702493053E+01 3.67156078144E+01 3.71661551622E+01 3.76219408530E+01 3.80830144191E+01 3.85494258047E+01 3.90212241813E+01 3.94984598668E+01 3.99811816001E+01 4.04694394089E+01 4.09632822671E+01 4.14627599108E+01 4.19679207630E+01 4.24788138833E+01 4.29954880790E+01 4.35179914399E+01 4.40463720131E+01 4.45806774247E+01 4.51209551762E+01 4.56672517961E+01 4.62196139944E+01 4.67780874355E+01 4.73427174474E+01 4.79135489575E+01 4.84906255568E+01 4.90739912121E+01 4.96636879528E+01 5.02597576509E+01 5.08622412696E+01 5.14711785569E+01 5.20866085367E+01 5.27085688292E+01 5.33370961926E+01 5.39722259230E+01 5.46139922428E+01 5.52624278102E+01 5.59175637727E+01 5.65794300374E+01 5.72480542479E+01 5.79234630682E+01 5.86056807471E+01 5.92947298114E+01 5.99906308007E+01 6.06934018685E+01 6.14030591601E+01 6.21196162007E+01 6.28430842662E+01 6.35734716396E+01 6.43107842340E+01 6.50550246686E+01 6.58061927646E+01 6.65642850955E+01 6.73292947248E+01 6.81012114650E+01 6.88800211497E+01 6.96657060550E+01 7.04582440469E+01 7.12576093828E+01 7.20637711342E+01 7.28766944236E+01 7.36963391996E+01 7.45226605334E+01 7.53556081342E+01 7.61951264466E+01 7.70411539049E+01 7.78936232652E+01 7.87524609846E+01 7.96175869576E+01 8.04889143295E+01 8.13663495646E+01 8.22497911622E+01 8.31391308416E+01 8.40342515096E+01 8.49350287028E+01 8.58413284819E+01 8.67530088610E+01 8.76699179517E+01 8.85918945298E+01 8.95187671906E+01 9.04503543002E+01 9.13864631833E+01 9.23268902725E+01 9.32714199488E+01 9.42198248415E+01 9.51718648579E+01 9.61272868531E+01 9.70858244228E+01 9.80471967435E+01 9.90111089311E+01 9.99772507425E+01 1.00945296563E+02 1.01914904404E+02 1.02885715823E+02 1.03857354835E+02 1.04829427778E+02 1.05801522164E+02 1.06773206636E+02 1.07744029769E+02 1.08713519830E+02 1.09681183664E+02 1.10646506521E+02 1.11608950693E+02 1.12567955396E+02 1.13522935636E+02 1.14473281470E+02 1.15418357393E+02 1.16357501433E+02 1.17290024215E+02 1.18215208419E+02 1.19132307779E+02 1.20040545970E+02 1.20939116427E+02 1.21827180573E+02 1.22703867826E+02 1.23568274074E+02 1.24419460983E+02 1.25256455383E+02 1.26078247728E+02 1.26883791828E+02 1.27672003804E+02 1.28441760914E+02 1.29191900953E+02 1.29921221514E+02 1.30628478661E+02 1.31312386864E+02 1.31971617609E+02 1.32604798835E+02 1.33210514477E+02 1.33787303467E+02 1.34333659567E+02 1.34848030420E+02 1.35328817559E+02 1.35774375787E+02 1.36183013083E+02 1.36552990403E+02 1.36882521780E+02 1.37169774507E+02 1.37412869351E+02 1.37609881093E+02 1.37758839431E+02 1.37857729524E+02 1.37904493510E+02 1.37897031762E+02 1.37833204626E+02 1.37710834518E+02 1.37527708317E+02 1.37281579964E+02 1.36970173913E+02 1.36591188469E+02 1.36142300127E+02 1.35621168056E+02 1.35025439380E+02 1.34352754776E+02 1.33600755016E+02 1.32767088191E+02 1.31849417178E+02 1.30845428685E+02 1.29752842231E+02 1.28569420767E+02 1.27292981581E+02 1.25921408789E+02 1.24452665868E+02 1.22884810357E+02 1.21216008711E+02 1.19444552640E+02 1.17568876508E+02 1.15587575636E+02 1.13499426135E+02 1.11303405344E+02 1.08998713896E+02 1.06584798078E+02 1.04061374234E+02 1.01428452921E+02 9.86863648847E+01 9.58357871726E+01 9.28777698043E+01 8.98137633494E+01 8.66456458042E+01 8.33757503811E+01 8.00068919874E+01 7.65423936266E+01 7.29861116821E+01 6.93424592210E+01 6.56164280256E+01 6.18136074687E+01 5.79402009208E+01 5.40030379342E+01 5.00095825065E+01 4.59679360176E+01 4.18868342727E+01 3.77756380662E+01 3.36443161394E+01 2.95034196640E+01 2.53640478344E+01 2.12378027701E+01 1.71367341388E+01 1.30732715355E+01 9.06014482536E+00 5.11029100774E+00 1.23674814294E+00 -2.54746497028E+00 -6.22948234633E+00 -9.79673819490E+00 -1.32371266354E+01 -1.65391730643E+01 -1.96922156233E+01 -2.26865935323E+01 -2.55138406285E+01 -2.81668787223E+01 -3.06402068261E+01 -3.29300800086E+01 -3.50346705215E+01 -3.69542025797E+01 -3.86910513448E+01 -4.02497937697E+01 -4.16371986471E+01 -4.28621412367E+01 -4.39354254258E+01 -4.48694963952E+01 -4.56780244401E+01 -4.63753401011E+01 -4.69757013471E+01 -4.74923733135E+01 -4.79365042914E+01 -4.83157846935E+01 -4.86328829944E+01 -4.88836609481E+01 -4.90551846920E+01 -4.91235660950E+01 -4.90516942108E+01 -4.87869491209E+01 -4.82590339523E+01 -4.73781160692E+01 -4.60335395831E+01 -4.40934600663E+01 -4.14058683671E+01 -3.78015797962E+01 -3.31002273260E+01 -2.71177123836E+01 -1.97010117919E+01 -1.05524743765E+01 -1.17174525202E+00 1.16171546050E-01 -1.15177191578E-02 1.14191624712E-03 -1.13215300399E-04 1.12239660084E-05 -1.11153848741E-06 1.10022631960E-07 -1.10978069621E-08 1.80400825974E-09 -5.32059343951E-10 1.32980917982E+00 725 1.71573654397E-01 1.73731785917E-01 1.75917063415E-01 1.78129828344E-01 1.80415879287E-01 1.82619159338E-01 1.84906575860E-01 1.87285459524E-01 1.89616014360E-01 1.91974730914E-01 1.94420756329E-01 1.96884109769E-01 1.99318960123E-01 2.01853275439E-01 2.04362095310E-01 2.06951329973E-01 2.09601856525E-01 2.12149238929E-01 2.14893211332E-01 2.17558277248E-01 2.20322974735E-01 2.23087669383E-01 2.25849430775E-01 2.28774420043E-01 2.31567504250E-01 2.34508601271E-01 2.37465835509E-01 2.40431496559E-01 2.43476589100E-01 2.46540045794E-01 2.49615403605E-01 2.52775302040E-01 2.55990704661E-01 2.59142794504E-01 2.62434022414E-01 2.65744536585E-01 2.69080249922E-01 2.72462532353E-01 2.75902255654E-01 2.79379370266E-01 2.82865422779E-01 2.86448508439E-01 2.90052491403E-01 2.93667712411E-01 2.97406661106E-01 3.01082167241E-01 3.04931407394E-01 3.08730384838E-01 3.12644822007E-01 3.16545864683E-01 3.20541795787E-01 3.24560409866E-01 3.28635272278E-01 3.32816856856E-01 3.36937825360E-01 3.41236014812E-01 3.45482654515E-01 3.49862331556E-01 3.54230067862E-01 3.58747662935E-01 3.63195373074E-01 3.67781368148E-01 3.72436963690E-01 3.77113070874E-01 3.81814924353E-01 3.86668746960E-01 3.91489411693E-01 3.96467811725E-01 4.01379407755E-01 4.06495207741E-01 4.11588551311E-01 4.16770275363E-01 4.21990175891E-01 4.27308566885E-01 4.32701093409E-01 4.38124076785E-01 4.43643713641E-01 4.49219552636E-01 4.54868852414E-01 4.60592988521E-01 4.66400390926E-01 4.72230151522E-01 4.78215684454E-01 4.84203700875E-01 4.90296349682E-01 4.96468599706E-01 5.02704967003E-01 5.09031401285E-01 5.15427944460E-01 5.21932594503E-01 5.28462749651E-01 5.35146308337E-01 5.41846763277E-01 5.48679102043E-01 5.55578713244E-01 5.62565005652E-01 5.69638653923E-01 5.76816970360E-01 5.84052963293E-01 5.91418371557E-01 5.98855036665E-01 6.06380763313E-01 6.14018876788E-01 6.21731174327E-01 6.29544684215E-01 6.37492855594E-01 6.45481523591E-01 6.53612358313E-01 6.61831141730E-01 6.70157993996E-01 6.78582029842E-01 6.87119049470E-01 6.95760012650E-01 7.04521201701E-01 7.13386045852E-01 7.22342642294E-01 7.31446006010E-01 7.40635974252E-01 7.49951084726E-01 7.59392701119E-01 7.68943834746E-01 7.78610849540E-01 7.88395731659E-01 7.98329043359E-01 8.08365321995E-01 8.18528242817E-01 8.28825435515E-01 8.39248685435E-01 8.49816652638E-01 8.60492628430E-01 8.71328204740E-01 8.82268122709E-01 8.93388216207E-01 9.04610964578E-01 9.16000055212E-01 9.27507327138E-01 9.39184928388E-01 9.50983193816E-01 9.62970769224E-01 9.75067574136E-01 9.87341073099E-01 9.99751420996E-01 1.01233427211E+00 1.02505715347E+00 1.03795617762E+00 1.05101621180E+00 1.06422860007E+00 1.07763002691E+00 1.09116301796E+00 1.10490301667E+00 1.11879545763E+00 1.13287721049E+00 1.14710915752E+00 1.16155302520E+00 1.17615591060E+00 1.19094910546E+00 1.20593759573E+00 1.22110100125E+00 1.23645696411E+00 1.25202313328E+00 1.26775278024E+00 1.28371296944E+00 1.29986135170E+00 1.31619126465E+00 1.33276651632E+00 1.34952180990E+00 1.36650358824E+00 1.38367795973E+00 1.40109662814E+00 1.41871142163E+00 1.43655837778E+00 1.45462953357E+00 1.47292245505E+00 1.49145934036E+00 1.51020974344E+00 1.52920774397E+00 1.54844548920E+00 1.56791860684E+00 1.58764499526E+00 1.60761447005E+00 1.62783425975E+00 1.64830903137E+00 1.66904271110E+00 1.69003162584E+00 1.71128868896E+00 1.73282441277E+00 1.75460907899E+00 1.77668486222E+00 1.79902646007E+00 1.82166138039E+00 1.84457172329E+00 1.86777331042E+00 1.89126763517E+00 1.91505572893E+00 1.93914595094E+00 1.96353160171E+00 1.98823044179E+00 2.01324366903E+00 2.03855470202E+00 2.06420963606E+00 2.09017017053E+00 2.11645818647E+00 2.14307893599E+00 2.17003937964E+00 2.19732462460E+00 2.22497170166E+00 2.25295460079E+00 2.28129525028E+00 2.30998502265E+00 2.33903979952E+00 2.36846378160E+00 2.39825503374E+00 2.42842150550E+00 2.45896053501E+00 2.48989277071E+00 2.52120878853E+00 2.55292286460E+00 2.58503345731E+00 2.61754641806E+00 2.65047009669E+00 2.68380963836E+00 2.71756233789E+00 2.75174637939E+00 2.78635661117E+00 2.82140296011E+00 2.85688843114E+00 2.89282763327E+00 2.92920578262E+00 2.96605231490E+00 3.00336001173E+00 3.04113426128E+00 3.07938352257E+00 3.11811924324E+00 3.15733377962E+00 3.19704902276E+00 3.23725726525E+00 3.27797670955E+00 3.31920341627E+00 3.36095537024E+00 3.40322380662E+00 3.44603110844E+00 3.48937313605E+00 3.53325954749E+00 3.57770092673E+00 3.62269708590E+00 3.66826329977E+00 3.71440153194E+00 3.76111777274E+00 3.80842111665E+00 3.85632641096E+00 3.90482530591E+00 3.95393780475E+00 4.00366921200E+00 4.05401833929E+00 4.10501581996E+00 4.15663960654E+00 4.20892064194E+00 4.26185622304E+00 4.31545922085E+00 4.36973339260E+00 4.42469243870E+00 4.48034028833E+00 4.53669102017E+00 4.59374979075E+00 4.65151949720E+00 4.71002722479E+00 4.76926142246E+00 4.82924324497E+00 4.88997906576E+00 4.95147838611E+00 5.01375363026E+00 5.07680665032E+00 5.14065910444E+00 5.20530931971E+00 5.27077155571E+00 5.33706066539E+00 5.40418108015E+00 5.47214410828E+00 5.54096450690E+00 5.61064839371E+00 5.68120914014E+00 5.75265458533E+00 5.82500287665E+00 5.89825507462E+00 5.97243259676E+00 6.04754064075E+00 6.12359086803E+00 6.20060263536E+00 6.27857536844E+00 6.35753345152E+00 6.43748422881E+00 6.51843485313E+00 6.60040781595E+00 6.68340932639E+00 6.76745375649E+00 6.85255415491E+00 6.93872655262E+00 7.02597933459E+00 7.11432970087E+00 7.20379180066E+00 7.29437330415E+00 7.38609960570E+00 7.47897481996E+00 7.57301611160E+00 7.66824252565E+00 7.76466244158E+00 7.86229661164E+00 7.96115524294E+00 8.06125750911E+00 8.16261564183E+00 8.26524977652E+00 8.36917188676E+00 8.47439901715E+00 8.58094893046E+00 8.68883724912E+00 8.79808076503E+00 8.90869629254E+00 9.02070204040E+00 9.13411429407E+00 9.24894989238E+00 9.36522953078E+00 9.48296779157E+00 9.60218717014E+00 9.72290114648E+00 9.84513304101E+00 9.96889821155E+00 1.00942174528E+01 1.02211121684E+01 1.03495985465E+01 1.04796981321E+01 1.06114313401E+01 1.07448183706E+01 1.08798789490E+01 1.10166364902E+01 1.11551083006E+01 1.12953214582E+01 1.14372913012E+01 1.15810437232E+01 1.17266004333E+01 1.18739833589E+01 1.20232162015E+01 1.21743202634E+01 1.23273204403E+01 1.24822404106E+01 1.26391044965E+01 1.27979337976E+01 1.29587574321E+01 1.31215970487E+01 1.32864795623E+01 1.34534281873E+01 1.36224721092E+01 1.37936335493E+01 1.39669421188E+01 1.41424219232E+01 1.43201026037E+01 1.45000095132E+01 1.46821713811E+01 1.48666150720E+01 1.50533709502E+01 1.52424660777E+01 1.54339304693E+01 1.56277927650E+01 1.58240824214E+01 1.60228316429E+01 1.62240695862E+01 1.64278252914E+01 1.66341347367E+01 1.68430236410E+01 1.70545295252E+01 1.72686803188E+01 1.74855120380E+01 1.77050565494E+01 1.79273466745E+01 1.81524175321E+01 1.83803031538E+01 1.86110385551E+01 1.88446577467E+01 1.90811983039E+01 1.93206943349E+01 1.95631835126E+01 1.98087029734E+01 2.00572884285E+01 2.03089793447E+01 2.05638129775E+01 2.08218283481E+01 2.10830648023E+01 2.13475607440E+01 2.16153585631E+01 2.18864954847E+01 2.21610156124E+01 2.24389585794E+01 2.27203666495E+01 2.30052825556E+01 2.32937488849E+01 2.35858091996E+01 2.38815072905E+01 2.41808876725E+01 2.44839946769E+01 2.47908749306E+01 2.51015729340E+01 2.54161363435E+01 2.57346112258E+01 2.60570458152E+01 2.63834867849E+01 2.67139847719E+01 2.70485869997E+01 2.73873448814E+01 2.77303061208E+01 2.80775242386E+01 2.84290478702E+01 2.87849319068E+01 2.91452260894E+01 2.95099844494E+01 2.98792612114E+01 3.02531090593E+01 3.06315842147E+01 3.10147407557E+01 3.14026352852E+01 3.17953238610E+01 3.21928644254E+01 3.25953131320E+01 3.30027296289E+01 3.34151722501E+01 3.38327002613E+01 3.42553741475E+01 3.46832542109E+01 3.51164018820E+01 3.55548793645E+01 3.59987487164E+01 3.64480731240E+01 3.69029163142E+01 3.73633430451E+01 3.78294178410E+01 3.83012063880E+01 3.87787749737E+01 3.92621905304E+01 3.97515202643E+01 4.02468324052E+01 4.07481956667E+01 4.12556784961E+01 4.17693523264E+01 4.22892866105E+01 4.28155525319E+01 4.33482222210E+01 4.38873673645E+01 4.44330616398E+01 4.49853781569E+01 4.55443906862E+01 4.61101748630E+01 4.66828048677E+01 4.72623574820E+01 4.78489082302E+01 4.84425343729E+01 4.90433141045E+01 4.96513241382E+01 5.02666444307E+01 5.08893527774E+01 5.15195298017E+01 5.21572552737E+01 5.28026091679E+01 5.34556735355E+01 5.41165291371E+01 5.47852583278E+01 5.54619427955E+01 5.61466664522E+01 5.68395112413E+01 5.75405614623E+01 5.82499007353E+01 5.89676129604E+01 5.96937829975E+01 6.04284958002E+01 6.11718358092E+01 6.19238885046E+01 6.26847396150E+01 6.34544741818E+01 6.42331783649E+01 6.50209378176E+01 6.58178382472E+01 6.66239660409E+01 6.74394063222E+01 6.82642460974E+01 6.90985697810E+01 6.99424639005E+01 7.07960132493E+01 7.16593038649E+01 7.25324196208E+01 7.34154454240E+01 7.43084657529E+01 7.52115638914E+01 7.61248230345E+01 7.70483256626E+01 7.79821540272E+01 7.89263887530E+01 7.98811107315E+01 8.08463991015E+01 8.18223324111E+01 8.28089885077E+01 8.38064429988E+01 8.48147720564E+01 8.58340486191E+01 8.68643453060E+01 8.79057331809E+01 8.89582812436E+01 9.00220572314E+01 9.10971264983E+01 9.21835528984E+01 9.32813977956E+01 9.43907206956E+01 9.55115784338E+01 9.66440252574E+01 9.77881132629E+01 9.89438907090E+01 1.00111404118E+02 1.01290695910E+02 1.02481805538E+02 1.03684769037E+02 1.04899618369E+02 1.06126382030E+02 1.07365084038E+02 1.08615744532E+02 1.09878378544E+02 1.11152997010E+02 1.12439605244E+02 1.13738203741E+02 1.15048787428E+02 1.16371345225E+02 1.17705860453E+02 1.19052309632E+02 1.20410663159E+02 1.21780883896E+02 1.23162928471E+02 1.24556744678E+02 1.25962273489E+02 1.27379447035E+02 1.28808189071E+02 1.30248414170E+02 1.31700027866E+02 1.33162925412E+02 1.34636992308E+02 1.36122103268E+02 1.37618121766E+02 1.39124899712E+02 1.40642277544E+02 1.42170082106E+02 1.43708128563E+02 1.45256217054E+02 1.46814135033E+02 1.48381653792E+02 1.49958530784E+02 1.51544506553E+02 1.53139305643E+02 1.54742635184E+02 1.56354184789E+02 1.57973625194E+02 1.59600608478E+02 1.61234766132E+02 1.62875709524E+02 1.64523028277E+02 1.66176289700E+02 1.67835038417E+02 1.69498794432E+02 1.71167053689E+02 1.72839285907E+02 1.74514934530E+02 1.76193415043E+02 1.77874114817E+02 1.79556391274E+02 1.81239571645E+02 1.82922951040E+02 1.84605792344E+02 1.86287324209E+02 1.87966740630E+02 1.89643199071E+02 1.91315820143E+02 1.92983685335E+02 1.94645836766E+02 1.96301275300E+02 1.97948959284E+02 1.99587803495E+02 2.01216677624E+02 2.02834404690E+02 2.04439760111E+02 2.06031470018E+02 2.07608209382E+02 2.09168601674E+02 2.10711215922E+02 2.12234566665E+02 2.13737111414E+02 2.15217249474E+02 2.16673320885E+02 2.18103603862E+02 2.19506314299E+02 2.20879604023E+02 2.22221558816E+02 2.23530197395E+02 2.24803470156E+02 2.26039256949E+02 2.27235366945E+02 2.28389536307E+02 2.29499427232E+02 2.30562627170E+02 2.31576647144E+02 2.32538921450E+02 2.33446806073E+02 2.34297578666E+02 2.35088437525E+02 2.35816501393E+02 2.36478809144E+02 2.37072319911E+02 2.37593913392E+02 2.38040390198E+02 2.38408472738E+02 2.38694806715E+02 2.38895962031E+02 2.39008435308E+02 2.39028651974E+02 2.38952969166E+02 2.38777679218E+02 2.38499013655E+02 2.38113147527E+02 2.37616205173E+02 2.37004265792E+02 2.36273370696E+02 2.35419530793E+02 2.34438735426E+02 2.33326961727E+02 2.32080185565E+02 2.30694393620E+02 2.29165595900E+02 2.27489840860E+02 2.25663230460E+02 2.23681937945E+02 2.21542226129E+02 2.19240468317E+02 2.16773169351E+02 2.14136990241E+02 2.11328773117E+02 2.08345568648E+02 2.05184665282E+02 2.01843619998E+02 1.98320291651E+02 1.94612875373E+02 1.90719939702E+02 1.86640464270E+02 1.82373880925E+02 1.77920114499E+02 1.73279626667E+02 1.68453460088E+02 1.63443283547E+02 1.58251438665E+02 1.52880985528E+02 1.47335749901E+02 1.41620368347E+02 1.35740333299E+02 1.29702036351E+02 1.23512808353E+02 1.17180957462E+02 1.10715802045E+02 1.04127699547E+02 9.74280684253E+01 9.06294036384E+01 8.37452833433E+01 7.67903658568E+01 6.97803758883E+01 6.27320781610E+01 5.56632369635E+01 4.85925609075E+01 4.15396298961E+01 3.45248049328E+01 2.75691174948E+01 2.06941387584E+01 1.39218262549E+01 7.27434878458E+00 7.73887374045E-01 -5.55758611038E+00 -1.16985537465E+01 -1.76282173427E+01 -2.33267841766E+01 -2.87757702015E+01 -3.39583154692E+01 -3.88595091022E+01 -4.34667150215E+01 -4.77698919964E+01 -5.17618977943E+01 -5.54387653854E+01 -5.87999370544E+01 -6.18484409004E+01 -6.45909894290E+01 -6.70379794053E+01 -6.92033688701E+01 -7.11044032228E+01 -7.27611622565E+01 -7.41958961779E+01 -7.54321177768E+01 -7.64934188178E+01 -7.74019782566E+01 -7.81767350514E+01 -7.88312032172E+01 -7.93709185956E+01 -7.97905203292E+01 -8.00704933647E+01 -8.01736272766E+01 -8.00412883787E+01 -7.95896550885E+01 -7.87061376628E+01 -7.72462937645E+01 -7.50316677603E+01 -7.18491269446E+01 -6.74524578285E+01 -6.15671650733E+01 -5.39001701185E+01 -4.41519008960E+01 -3.20729415495E+01 -1.71780607323E+01 -1.90735676591E+00 1.89103035864E-01 -1.87484434829E-02 1.85880141837E-03 -1.84290905012E-04 1.82702677146E-05 -1.80933413219E-06 1.79088013630E-07 -1.80657825976E-08 2.94532058416E-09 -8.70812971247E-10 -8.10121965150E-01 4.94137948517E-01 725 -2.61498521621E-04 -2.68118389377E-04 -2.74905839942E-04 -2.81865115700E-04 -2.89000566428E-04 -2.96316652020E-04 -3.03817945274E-04 -3.11509134747E-04 -3.19395027690E-04 -3.27480553047E-04 -3.35770764542E-04 -3.44270843835E-04 -3.52986103757E-04 -3.61921991638E-04 -3.71084092706E-04 -3.80478133582E-04 -3.90109985855E-04 -3.99985669755E-04 -4.10111357916E-04 -4.20493379233E-04 -4.31138222818E-04 -4.42052542055E-04 -4.53243158762E-04 -4.64717067450E-04 -4.76481439698E-04 -4.88543628637E-04 -5.00911173540E-04 -5.13591804541E-04 -5.26593447463E-04 -5.39924228774E-04 -5.53592480661E-04 -5.67606746247E-04 -5.81975784923E-04 -5.96708577826E-04 -6.11814333453E-04 -6.27302493415E-04 -6.43182738339E-04 -6.59464993921E-04 -6.76159437127E-04 -6.93276502554E-04 -7.10826888954E-04 -7.28821565921E-04 -7.47271780745E-04 -7.66189065445E-04 -7.85585243974E-04 -8.05472439612E-04 -8.25863082544E-04 -8.46769917625E-04 -8.68206012352E-04 -8.90184765025E-04 -9.12719913130E-04 -9.35825541916E-04 -9.59516093207E-04 -9.83806374424E-04 -1.00871156784E-03 -1.03424724007E-03 -1.06042935182E-03 -1.08727426781E-03 -1.11479876706E-03 -1.14302005337E-03 -1.17195576602E-03 -1.20162399086E-03 -1.23204327160E-03 -1.26323262135E-03 -1.29521153457E-03 -1.32799999923E-03 -1.36161850929E-03 -1.39608807752E-03 -1.43143024864E-03 -1.46766711278E-03 -1.50482131930E-03 -1.54291609091E-03 -1.58197523823E-03 -1.67386937072E-03 -1.71558469134E-03 -1.70549916257E-03 -1.74890826385E-03 -1.79282257868E-03 -1.83814283971E-03 -1.88462547702E-03 -1.93242434270E-03 -1.98127434366E-03 -2.03169523854E-03 -2.08304391103E-03 -2.13581637358E-03 -2.18945772964E-03 -2.24549413422E-03 -2.30199237978E-03 -2.36005979899E-03 -2.42033029918E-03 -2.48079552312E-03 -2.54399249867E-03 -2.60833472527E-03 -2.67467568234E-03 -2.74196561086E-03 -2.81165138253E-03 -2.88243193429E-03 -2.95588176431E-03 -3.03050965350E-03 -3.10696922389E-03 -3.18622747040E-03 -3.26643329894E-03 -3.34921614991E-03 -3.43412396113E-03 -3.52112937170E-03 -3.60994845904E-03 -3.70167814982E-03 -3.79454806825E-03 -3.89133390413E-03 -3.98967972707E-03 -4.09082538843E-03 -4.19431476721E-03 -4.30013525084E-03 -4.40946004038E-03 -4.52069602663E-03 -4.63551114217E-03 -4.75250325477E-03 -4.87312787327E-03 -4.99670379528E-03 -5.12271733142E-03 -5.25268218339E-03 -5.38497429792E-03 -5.52192267620E-03 -5.66117882478E-03 -5.80499591961E-03 -5.95216911076E-03 -6.10237682128E-03 -6.25673838319E-03 -6.41557808618E-03 -6.57759183527E-03 -6.74442715050E-03 -6.91456427096E-03 -7.09039028926E-03 -7.26943280760E-03 -7.45367412430E-03 -7.64244291433E-03 -7.83592878466E-03 -8.03419090536E-03 -8.23721564166E-03 -8.44638715052E-03 -8.65942451963E-03 -8.87908548594E-03 -9.10384930802E-03 -9.33455377515E-03 -9.57057790014E-03 -9.81296212756E-03 -1.00612187942E-02 -1.03159406430E-02 -1.05766103632E-02 -1.08448052209E-02 -1.11191295176E-02 -1.14006847505E-02 -1.16892387654E-02 -1.19852417166E-02 -1.22885965120E-02 -1.25996921812E-02 -1.29187174967E-02 -1.32459504520E-02 -1.35809012410E-02 -1.39249309146E-02 -1.42773856811E-02 -1.46390425263E-02 -1.50096200596E-02 -1.53891242344E-02 -1.57787514543E-02 -1.61784684664E-02 -1.65879257632E-02 -1.70080024035E-02 -1.74381788643E-02 -1.78799697451E-02 -1.83323969856E-02 -1.87967034457E-02 -1.92724124985E-02 -1.97600315042E-02 -2.02603946127E-02 -2.07730229786E-02 -2.12993297733E-02 -2.18384985821E-02 -2.23914502373E-02 -2.29575885868E-02 -2.35398981886E-02 -2.41350797662E-02 -2.47460667282E-02 -2.53723246555E-02 -2.60143747714E-02 -2.66737162079E-02 -2.73487113813E-02 -2.80405954832E-02 -2.87505505714E-02 -2.94786493460E-02 -3.02249625176E-02 -3.09896386800E-02 -3.17742304283E-02 -3.25784379747E-02 -3.34036396818E-02 -3.42492415653E-02 -3.51161770845E-02 -3.60048810781E-02 -3.69163396432E-02 -3.78510792692E-02 -3.88090836289E-02 -3.97917015370E-02 -4.07987240544E-02 -4.18315842872E-02 -4.28908654268E-02 -4.39762787971E-02 -4.50893659047E-02 -4.62305263990E-02 -4.74011302771E-02 -4.86013793265E-02 -4.98315495343E-02 -5.10930989682E-02 -5.23864338533E-02 -5.37120692172E-02 -5.50719475060E-02 -5.64661172581E-02 -5.78955952361E-02 -5.93614063192E-02 -6.08635834609E-02 -6.24043706563E-02 -6.39842217888E-02 -6.56039389618E-02 -6.72643870371E-02 -6.89675052061E-02 -7.07131547233E-02 -7.25033900274E-02 -7.43387566526E-02 -7.62203214866E-02 -7.81496895148E-02 -8.01285067850E-02 -8.21564022841E-02 -8.42366326459E-02 -8.63683453555E-02 -8.85551886485E-02 -9.07964369611E-02 -9.30949225328E-02 -9.54512268444E-02 -9.78678456271E-02 -1.00345288778E-01 -1.02885035864E-01 -1.05489608777E-01 -1.08159687627E-01 -1.10897535984E-01 -1.13704927753E-01 -1.16583317628E-01 -1.19534165095E-01 -1.22559853782E-01 -1.25662183719E-01 -1.28843199819E-01 -1.32104631846E-01 -1.35448368790E-01 -1.38877015357E-01 -1.42392707620E-01 -1.45997050169E-01 -1.49692644099E-01 -1.53481874505E-01 -1.57366907653E-01 -1.61350269463E-01 -1.65434290501E-01 -1.69621637458E-01 -1.73915184020E-01 -1.78317541410E-01 -1.82830935316E-01 -1.87459404365E-01 -1.92203871819E-01 -1.97069358442E-01 -2.02057427274E-01 -2.07171867148E-01 -2.12415739256E-01 -2.17792404183E-01 -2.23305248013E-01 -2.28957094000E-01 -2.34752249963E-01 -2.40694719059E-01 -2.46786796607E-01 -2.53033310000E-01 -2.59437857013E-01 -2.66004429081E-01 -2.72737277649E-01 -2.79640324917E-01 -2.86718061488E-01 -2.93975363546E-01 -3.01416017488E-01 -3.09044607883E-01 -3.16867009658E-01 -3.24886674604E-01 -3.33109731726E-01 -3.41540890843E-01 -3.50184953564E-01 -3.59047873774E-01 -3.68135383767E-01 -3.77452561783E-01 -3.87005337381E-01 -3.96800267934E-01 -4.06842902039E-01 -4.17139856342E-01 -4.27696633075E-01 -4.38521087256E-01 -4.49619291882E-01 -4.60998356246E-01 -4.72665135486E-01 -4.84627175118E-01 -4.96891577215E-01 -5.09466904936E-01 -5.22359588348E-01 -5.35579380241E-01 -5.49133097807E-01 -5.63029454820E-01 -5.77277666603E-01 -5.91886500625E-01 -6.06864376598E-01 -6.22221258031E-01 -6.37967104057E-01 -6.54111024639E-01 -6.70663257917E-01 -6.87633698004E-01 -7.05033976839E-01 -7.22874339445E-01 -7.41165575621E-01 -7.59919523739E-01 -7.79148186588E-01 -7.98862580808E-01 -8.19075937399E-01 -8.39800618452E-01 -8.61049113460E-01 -8.82834513864E-01 -9.05171446871E-01 -9.28072952240E-01 -9.51553730912E-01 -9.75628068311E-01 -1.00031152032E+00 -1.02561844832E+00 -1.05156601059E+00 -1.07816888155E+00 -1.10544485003E+00 -1.13340964103E+00 -1.16208216521E+00 -1.19147912314E+00 -1.22161871370E+00 -1.25252128518E+00 -1.28420384888E+00 -1.31668793077E+00 -1.34999280945E+00 -1.38413903222E+00 -1.41914888652E+00 -1.45504252018E+00 -1.49184431537E+00 -1.52957570128E+00 -1.56825968695E+00 -1.60792176552E+00 -1.64858599703E+00 -1.69027708836E+00 -1.73302178329E+00 -1.77684603773E+00 -1.82177744589E+00 -1.86784361147E+00 -1.91507378068E+00 -1.96349609212E+00 -2.01314120442E+00 -2.06404102222E+00 -2.11622449093E+00 -2.16972681749E+00 -2.22457977785E+00 -2.28081716208E+00 -2.33847393606E+00 -2.39758688369E+00 -2.45819137042E+00 -2.52032561023E+00 -2.58402791036E+00 -2.64933780187E+00 -2.71629560510E+00 -2.78494260313E+00 -2.85532158604E+00 -2.92747561649E+00 -3.00145027673E+00 -3.07728979485E+00 -3.15504326994E+00 -3.23475596209E+00 -3.31647960754E+00 -3.40026319172E+00 -3.48615898262E+00 -3.57421959360E+00 -3.66450049883E+00 -3.75705579816E+00 -3.85194374153E+00 -3.94922197516E+00 -4.04895082820E+00 -4.15119201206E+00 -4.25600824881E+00 -4.36346403344E+00 -4.47362522257E+00 -4.58655951603E+00 -4.70233747583E+00 -4.82102867164E+00 -4.94270697889E+00 -5.06744669416E+00 -5.19532399527E+00 -5.32641838806E+00 -5.46080944578E+00 -5.59857997346E+00 -5.73981343874E+00 -5.88459768150E+00 -6.03301991858E+00 -6.18517149216E+00 -6.34114640904E+00 -6.50103761631E+00 -6.66494456404E+00 -6.83296674389E+00 -7.00520639823E+00 -7.18176821157E+00 -7.36276056935E+00 -7.54829288813E+00 -7.73847787579E+00 -7.93343157872E+00 -8.13327245913E+00 -8.33812093950E+00 -8.54810148514E+00 -8.76334206633E+00 -8.98397206696E+00 -9.21012516716E+00 -9.44193830928E+00 -9.67955073299E+00 -9.92310674030E+00 -1.01727522517E+01 -1.04286377855E+01 -1.06909171485E+01 -1.09597486403E+01 -1.12352925193E+01 -1.15177150799E+01 -1.18071842236E+01 -1.21038749343E+01 -1.24079629728E+01 -1.27196298737E+01 -1.30390625907E+01 -1.33664502306E+01 -1.37019883495E+01 -1.40458755352E+01 -1.43983159736E+01 -1.47595187416E+01 -1.51296971528E+01 -1.55090699481E+01 -1.58978612231E+01 -1.62962993144E+01 -1.67046194605E+01 -1.71230602128E+01 -1.75518675122E+01 -1.79912919949E+01 -1.84415909693E+01 -1.89030257084E+01 -1.93758663851E+01 -1.98603866078E+01 -2.03568666098E+01 -2.08655955996E+01 -2.13868655394E+01 -2.19209780512E+01 -2.24682401022E+01 -2.30289647292E+01 -2.36034740899E+01 -2.41920954951E+01 -2.47951648800E+01 -2.54130240607E+01 -2.60460243568E+01 -2.66945230571E+01 -2.73588861037E+01 -2.80394866814E+01 -2.87367066453E+01 -2.94509369590E+01 -3.01825733583E+01 -3.09320252444E+01 -3.16997053048E+01 -3.24860389972E+01 -3.32914578271E+01 -3.41164048373E+01 -3.49613299931E+01 -3.58266934469E+01 -3.67129644104E+01 -3.76206221855E+01 -3.85501546650E+01 -3.95020609788E+01 -4.04768479787E+01 -4.14750341826E+01 -4.24971472446E+01 -4.35437258927E+01 -4.46153181512E+01 -4.57124823164E+01 -4.68357891622E+01 -4.79858158177E+01 -4.91631551879E+01 -5.03684068869E+01 -5.16021827772E+01 -5.28651054904E+01 -5.41578082378E+01 -5.54809348266E+01 -5.68351410040E+01 -5.82210924595E+01 -5.96394659629E+01 -6.10909484076E+01 -6.25762398202E+01 -6.40960483150E+01 -6.56510946869E+01 -6.72421100726E+01 -6.88698342662E+01 -7.05350211258E+01 -7.22384315533E+01 -7.39808386519E+01 -7.57630246984E+01 -7.75857818642E+01 -7.94499118231E+01 -8.13562265827E+01 -8.33055457619E+01 -8.52986989135E+01 -8.73365232763E+01 -8.94198640295E+01 -9.15495748036E+01 -9.37265156042E+01 -9.59515548015E+01 -9.82255637761E+01 -1.00549422502E+02 -1.02924014542E+02 -1.05350227973E+02 -1.07828954810E+02 -1.10361089951E+02 -1.12947528934E+02 -1.15589170026E+02 -1.18286910850E+02 -1.21041649016E+02 -1.23854278745E+02 -1.26725692964E+02 -1.29656778681E+02 -1.32648418629E+02 -1.35701487857E+02 -1.38816852416E+02 -1.41995369859E+02 -1.45237885027E+02 -1.48545229724E+02 -1.51918220463E+02 -1.55357657205E+02 -1.58864319160E+02 -1.62438965452E+02 -1.66082332997E+02 -1.69795128430E+02 -1.73578034736E+02 -1.77431700561E+02 -1.81356741525E+02 -1.85353736702E+02 -1.89423224454E+02 -1.93565702192E+02 -1.97781616774E+02 -2.02071369167E+02 -2.06435304697E+02 -2.10873711317E+02 -2.15386815517E+02 -2.19974778180E+02 -2.24637690656E+02 -2.29375568831E+02 -2.34188350079E+02 -2.39075885895E+02 -2.44037940870E+02 -2.49074182221E+02 -2.54184179705E+02 -2.59367395573E+02 -2.64623178629E+02 -2.69950762773E+02 -2.75349256173E+02 -2.80817635006E+02 -2.86354738405E+02 -2.91959262262E+02 -2.97629747075E+02 -3.03364578023E+02 -3.09161969655E+02 -3.15019963456E+02 -3.20936417667E+02 -3.26908998855E+02 -3.32935174148E+02 -3.39012203211E+02 -3.45137125159E+02 -3.51306757550E+02 -3.57517678904E+02 -3.63766224124E+02 -3.70048475392E+02 -3.76360248316E+02 -3.82697086836E+02 -3.89054251321E+02 -3.95426708469E+02 -4.01809122701E+02 -4.08195844562E+02 -4.14580902260E+02 -4.20957991609E+02 -4.27320464910E+02 -4.33661323340E+02 -4.39973206082E+02 -4.46248379702E+02 -4.52478732768E+02 -4.58655764124E+02 -4.64770574020E+02 -4.70813858757E+02 -4.76775899516E+02 -4.82646558209E+02 -4.88415271005E+02 -4.94071038289E+02 -4.99602424289E+02 -5.04997550409E+02 -5.10244093115E+02 -5.15329278046E+02 -5.20239884729E+02 -5.24962239245E+02 -5.29482221460E+02 -5.33785262674E+02 -5.37856354261E+02 -5.41680048304E+02 -5.45240469725E+02 -5.48521321989E+02 -5.51505901150E+02 -5.54177106720E+02 -5.56517460122E+02 -5.58509121682E+02 -5.60133911959E+02 -5.61373335582E+02 -5.62208608402E+02 -5.62620687616E+02 -5.62590305127E+02 -5.62098005092E+02 -5.61124183392E+02 -5.59649135797E+02 -5.57653103462E+02 -5.55116329653E+02 -5.52019116126E+02 -5.48341888170E+02 -5.44065261541E+02 -5.39170118020E+02 -5.33637684189E+02 -5.27449617709E+02 -5.20588099520E+02 -5.13035931252E+02 -5.04776641329E+02 -4.95794598474E+02 -4.86075128349E+02 -4.75604643970E+02 -4.64370777811E+02 -4.52362526893E+02 -4.39570402839E+02 -4.25986593670E+02 -4.11605127384E+02 -3.96422052727E+02 -3.80435622376E+02 -3.63646489046E+02 -3.46057905450E+02 -3.27675937009E+02 -3.08509680017E+02 -2.88571488677E+02 -2.67877208230E+02 -2.46446414619E+02 -2.24302663203E+02 -2.01473734750E+02 -1.77991889800E+02 -1.53894124521E+02 -1.29222424434E+02 -1.04024013949E+02 -7.83516056559E+01 -5.22636362197E+01 -2.58244958597E+01 8.95262693554E-01 2.78187291947E+01 5.48624701374E+01 8.19363895493E+01 1.08943623441E+02 1.35780481154E+02 1.62336430159E+02 1.88494141014E+02 2.14129591438E+02 2.39112252368E+02 2.63305344839E+02 2.86566200180E+02 3.08746713054E+02 3.29693918162E+02 3.49250683402E+02 3.67256544855E+02 3.83548691955E+02 3.97963109961E+02 4.10335907074E+02 4.20504822782E+02 4.28310945930E+02 4.33600651468E+02 4.36227770308E+02 4.36056012424E+02 4.32961658379E+02 4.26836536036E+02 4.17591306359E+02 4.05159070194E+02 3.89499324860E+02 3.70602283337E+02 3.48493582439E+02 3.23239393283E+02 2.94951949071E+02 2.63795497747E+02 2.29992673576E+02 1.93831264832E+02 1.55671332212E+02 1.15952590821E+02 7.52019164010E+01 3.40407712825E+01 -6.80775671674E+00 -4.65127410514E+01 -8.41306281403E+01 -1.18602707069E+02 -1.48755944008E+02 -1.73308666786E+02 -1.90883030077E+02 -2.00026808767E+02 -1.99247579810E+02 -1.87065184569E+02 -1.62070791662E+02 -1.23163626772E+02 -6.83759263067E+01 -7.81821839133E+00 7.75129642483E-01 -7.68494810245E-02 7.61918145211E-03 -7.55410534338E-04 7.49050883240E-05 -7.42954293784E-06 7.33449101368E-07 -6.22697917429E-08 -7.31573289622E-09 1.55580479486E-08 0.00000000000E+00 0.00000000000E+00 -3.53557466798E-01 725 4.01635447384E-04 4.11802898917E-04 4.22227740803E-04 4.32916488913E-04 4.43875824071E-04 4.55112596225E-04 4.66633828731E-04 4.78446722744E-04 4.90558661715E-04 5.02977216010E-04 5.15710147641E-04 5.28765415112E-04 5.42151178404E-04 5.55875804064E-04 5.69947870443E-04 5.84376173053E-04 5.99169730065E-04 6.14337787950E-04 6.29889827250E-04 6.45835568513E-04 6.62184978362E-04 6.78948275727E-04 6.96135938232E-04 7.13758708746E-04 7.31827602093E-04 7.50353911940E-04 7.69349217857E-04 7.88825392550E-04 8.08794609287E-04 8.29269349503E-04 8.50262410605E-04 8.71786913968E-04 8.93856313135E-04 9.16484402231E-04 9.39685324581E-04 9.63473581551E-04 9.87864041612E-04 1.01287194963E-03 1.03851293641E-03 1.06480302844E-03 1.09175865792E-03 1.11939667305E-03 1.14773434854E-03 1.17678939641E-03 1.20657997706E-03 1.23712471064E-03 1.26844268864E-03 1.30055348590E-03 1.33347717277E-03 1.36723432769E-03 1.40184605007E-03 1.43733397342E-03 1.47372027894E-03 1.51102770934E-03 1.54927958305E-03 1.58849980885E-03 1.62871290075E-03 1.66994399334E-03 1.71221885751E-03 1.75556391654E-03 1.80000626261E-03 1.84557367377E-03 1.89229463126E-03 1.94019833735E-03 1.98931473355E-03 2.03967451936E-03 2.09130917146E-03 2.14425096335E-03 2.19853298555E-03 2.25418916628E-03 2.31125429266E-03 2.36976403246E-03 2.42975495639E-03 2.56984812653E-03 2.63390546755E-03 2.61950283252E-03 2.68616975144E-03 2.75362504456E-03 2.82323299387E-03 2.89462719932E-03 2.96803930092E-03 3.04306938501E-03 3.12050557258E-03 3.19937296468E-03 3.28042555729E-03 3.36282160517E-03 3.44887548667E-03 3.53565823188E-03 3.62484739372E-03 3.71740648091E-03 3.81029125392E-03 3.90734746100E-03 4.00617207600E-03 4.10805796941E-03 4.21141742587E-03 4.31844187383E-03 4.42716193231E-03 4.53996392838E-03 4.65458806697E-03 4.77202798665E-03 4.89374818148E-03 5.01694533112E-03 5.14408973760E-03 5.27449630477E-03 5.40812680327E-03 5.54455016393E-03 5.68543069647E-03 5.82808693845E-03 5.97672490188E-03 6.12777752908E-03 6.28312417164E-03 6.44207476264E-03 6.60461186570E-03 6.77251368198E-03 6.94336916292E-03 7.11970582650E-03 7.29940106986E-03 7.48466216289E-03 7.67445743735E-03 7.86801137520E-03 8.06761824196E-03 8.27081958900E-03 8.48114612059E-03 8.69503955609E-03 8.91591833753E-03 9.14195685469E-03 9.37267027630E-03 9.60975679021E-03 9.85370904316E-03 1.01025540194E-02 1.03587896695E-02 1.06201152204E-02 1.08901502960E-02 1.11651510213E-02 1.14481219929E-02 1.17380506765E-02 1.20352247289E-02 1.23397373917E-02 1.26515705837E-02 1.29728230912E-02 1.33000432915E-02 1.36374113538E-02 1.39826259325E-02 1.43369600231E-02 1.46994742806E-02 1.50717501902E-02 1.54530504361E-02 1.58442770542E-02 1.62446495416E-02 1.66565602789E-02 1.70778992766E-02 1.75103383896E-02 1.79535292066E-02 1.84081586702E-02 1.88740813252E-02 1.93518930495E-02 1.98418827043E-02 2.03444752107E-02 2.08589339097E-02 2.13873233423E-02 2.19286598945E-02 2.24841235756E-02 2.30532935806E-02 2.36361834734E-02 2.42346099076E-02 2.48485297509E-02 2.54774168924E-02 2.61226089718E-02 2.67833248052E-02 2.74618633912E-02 2.81567504489E-02 2.88698739162E-02 2.96005172331E-02 3.03494569591E-02 3.11179607665E-02 3.19053120078E-02 3.27136573322E-02 3.35417666983E-02 3.43910426185E-02 3.52605877537E-02 3.61549336725E-02 3.70690872756E-02 3.80075013234E-02 3.89693746569E-02 3.99555034190E-02 4.09681697837E-02 4.20048992519E-02 4.30675725012E-02 4.41579901444E-02 4.52762701502E-02 4.64225308244E-02 4.75970059376E-02 4.88020578901E-02 5.00372431403E-02 5.13046593871E-02 5.26034190313E-02 5.39349460314E-02 5.52999111450E-02 5.66998197375E-02 5.81354808724E-02 5.96068831043E-02 6.11160814635E-02 6.26627725362E-02 6.42491410424E-02 6.58760829301E-02 6.75431760940E-02 6.92527689320E-02 7.10054818645E-02 7.28034060928E-02 7.46468608531E-02 7.65362818891E-02 7.84738928263E-02 8.04603261750E-02 8.24963791662E-02 8.45850110910E-02 8.67263147310E-02 8.89218474888E-02 9.11731814677E-02 9.34803850943E-02 9.58468773882E-02 9.82733675333E-02 1.00761090088E-01 1.03311376735E-01 1.05927187683E-01 1.08608333353E-01 1.11357951205E-01 1.14176889287E-01 1.17066789027E-01 1.20030106097E-01 1.23069359021E-01 1.26184012414E-01 1.29379026183E-01 1.32653135778E-01 1.36011896695E-01 1.39454236609E-01 1.42984478057E-01 1.46603530364E-01 1.50315205780E-01 1.54120308806E-01 1.58021111640E-01 1.62021470463E-01 1.66122448044E-01 1.70327509385E-01 1.74639376679E-01 1.79060292227E-01 1.83592502368E-01 1.88239658834E-01 1.93004527560E-01 1.97890246260E-01 2.02899478723E-01 2.08035127421E-01 2.13301183766E-01 2.18700928218E-01 2.24236836973E-01 2.29912898601E-01 2.35732773950E-01 2.41699795340E-01 2.47817839725E-01 2.54090489200E-01 2.60521838787E-01 2.67116295066E-01 2.73877871680E-01 2.80809996991E-01 2.87918848390E-01 2.95205885917E-01 3.02678776657E-01 3.10339953474E-01 3.18195220952E-01 3.26249283015E-01 3.34507300683E-01 3.42974472569E-01 3.51655148991E-01 3.60555929814E-01 3.69682955108E-01 3.79039780340E-01 3.88633797737E-01 3.98470540525E-01 4.08556138863E-01 4.18897118530E-01 4.29499511051E-01 4.40370208318E-01 4.51516691726E-01 4.62944790912E-01 4.74661548764E-01 4.86675966861E-01 4.98993374334E-01 5.11623163735E-01 5.24572575895E-01 5.37848995637E-01 5.51461556776E-01 5.65419058311E-01 5.79729313104E-01 5.94401425631E-01 6.09445454620E-01 6.24869935075E-01 6.40685020631E-01 6.56899182752E-01 6.73524459139E-01 6.90570191201E-01 7.08047294899E-01 7.25966303467E-01 7.44338801238E-01 7.63175703523E-01 7.82490143242E-01 8.02292026282E-01 8.22596295842E-01 8.43413453142E-01 8.64756875317E-01 8.86640705087E-01 9.09078411569E-01 9.32082939968E-01 9.55669580858E-01 9.79853623059E-01 1.00464907218E+00 1.03007165058E+00 1.05613656230E+00 1.08286165218E+00 1.11026266804E+00 1.13835618760E+00 1.16716038594E+00 1.19669369036E+00 1.22697304280E+00 1.25801874424E+00 1.28984978642E+00 1.32248536166E+00 1.35594557969E+00 1.39025288417E+00 1.42542732239E+00 1.46149146292E+00 1.49846725551E+00 1.53637857985E+00 1.57524751449E+00 1.61510038485E+00 1.65595975893E+00 1.69785293441E+00 1.74080408890E+00 1.78484223565E+00 1.82999305030E+00 1.87628448485E+00 1.92374776092E+00 1.97240905173E+00 2.02230138054E+00 2.07345437837E+00 2.12589960557E+00 2.17967127379E+00 2.23480036049E+00 2.29132427155E+00 2.34927595132E+00 2.40869074711E+00 2.46960778564E+00 2.53206403244E+00 2.59609744549E+00 2.66174908527E+00 2.72905882823E+00 2.79806904965E+00 2.86882215223E+00 2.94136304172E+00 3.01573496166E+00 3.09198498695E+00 3.17016209906E+00 3.25031080901E+00 3.33248513259E+00 3.41673390485E+00 3.50310902745E+00 3.59166420387E+00 3.68245590905E+00 3.77553848610E+00 3.87097061620E+00 3.96881113792E+00 4.06912076717E+00 4.17196143381E+00 4.27739654808E+00 4.38549182659E+00 4.49631341789E+00 4.60993131403E+00 4.72641347635E+00 4.84583527019E+00 4.96826626987E+00 5.09378588533E+00 5.22246938535E+00 5.35439703800E+00 5.48964966021E+00 5.62831243389E+00 5.77046848277E+00 5.91620725079E+00 6.06561729494E+00 6.21879126678E+00 6.37582394563E+00 6.53681167077E+00 6.70185350264E+00 6.87105059665E+00 7.04450693471E+00 7.22233087218E+00 7.40462929353E+00 7.59151564681E+00 7.78310405380E+00 7.97951152412E+00 8.18086015278E+00 8.38727217239E+00 8.59887475764E+00 8.81579612621E+00 9.03817116524E+00 9.26613386200E+00 9.49982449863E+00 9.73938744233E+00 9.98496550024E+00 1.02367113835E+01 1.04947779138E+01 1.07593221324E+01 1.10305048333E+01 1.13084924710E+01 1.15934531164E+01 1.18855598838E+01 1.21849910027E+01 1.24919284217E+01 1.28065571194E+01 1.31290682606E+01 1.34596583848E+01 1.37985262359E+01 1.41458771338E+01 1.45019214085E+01 1.48668729390E+01 1.52409533448E+01 1.56243867702E+01 1.60174043987E+01 1.64202424722E+01 1.68331441166E+01 1.72563555037E+01 1.76901320328E+01 1.81347316190E+01 1.85904229925E+01 1.90574761482E+01 1.95361699143E+01 2.00267914225E+01 2.05296311565E+01 2.10449894665E+01 2.15731713922E+01 2.21144905522E+01 2.26692680771E+01 2.32378316181E+01 2.38205171545E+01 2.44176688854E+01 2.50296375439E+01 2.56567844337E+01 2.62994759888E+01 2.69580899582E+01 2.76330113217E+01 2.83246352894E+01 2.90333632025E+01 2.97596100118E+01 3.05037960027E+01 3.12663516285E+01 3.20477210750E+01 3.28483528367E+01 3.36687101829E+01 3.45092646234E+01 3.53704970085E+01 3.62529021546E+01 3.71569828365E+01 3.80832550489E+01 3.90322438510E+01 4.00044888624E+01 4.10005389044E+01 4.20209560764E+01 4.30663136173E+01 4.41371980724E+01 4.52342099619E+01 4.63579572106E+01 4.75090686281E+01 4.86881781841E+01 4.98959393825E+01 5.11330150770E+01 5.24000857930E+01 5.36978427371E+01 5.50269927475E+01 5.63882565864E+01 5.77823705076E+01 5.92100839843E+01 6.06721637235E+01 6.21693883417E+01 6.37025543440E+01 6.52724722926E+01 6.68799697470E+01 6.85258885707E+01 7.02110864138E+01 7.19364400563E+01 7.37028361339E+01 7.55111854136E+01 7.73624090582E+01 7.92574470216E+01 8.11972558076E+01 8.31828081848E+01 8.52150932148E+01 8.72951182851E+01 8.94239060879E+01 9.16024963416E+01 9.38319443436E+01 9.61133255302E+01 9.84477278307E+01 1.00836258628E+02 1.03280041211E+02 1.05780212225E+02 1.08337929862E+02 1.10954363217E+02 1.13630700109E+02 1.16368142484E+02 1.19167907506E+02 1.22031226960E+02 1.24959348512E+02 1.27953531570E+02 1.31015050807E+02 1.34145192745E+02 1.37345256135E+02 1.40616552724E+02 1.43960404104E+02 1.47378144714E+02 1.50871113723E+02 1.54440663476E+02 1.58088151900E+02 1.61814943899E+02 1.65622410464E+02 1.69511927063E+02 1.73484870226E+02 1.77542620701E+02 1.81686558316E+02 1.85918062926E+02 1.90238509276E+02 1.94649270154E+02 1.99151709360E+02 2.03747184179E+02 2.08437040188E+02 2.13222609238E+02 2.18105210183E+02 2.23086142473E+02 2.28166685618E+02 2.33348095754E+02 2.38631603685E+02 2.44018408495E+02 2.49509678506E+02 2.55106548035E+02 2.60810105102E+02 2.66621401454E+02 2.72541436301E+02 2.78571158268E+02 2.84711460007E+02 2.90963171827E+02 2.97327061281E+02 3.03803818549E+02 3.10394063446E+02 3.17098330583E+02 3.23917066671E+02 3.30850624254E+02 3.37899255359E+02 3.45063105466E+02 3.52342204446E+02 3.59736461856E+02 3.67245655690E+02 3.74869430739E+02 3.82607282631E+02 3.90458557606E+02 3.98422437197E+02 4.06497929122E+02 4.14683864973E+02 4.22978883698E+02 4.31381422004E+02 4.39889706593E+02 4.48501744640E+02 4.57215305271E+02 4.66027919542E+02 4.74936857111E+02 4.83939122434E+02 4.93031439182E+02 5.02210237360E+02 5.11471641381E+02 5.20811457780E+02 5.30225155240E+02 5.39707862920E+02 5.49254343825E+02 5.58858987727E+02 5.68515797213E+02 5.78218366559E+02 5.87959873859E+02 5.97733062849E+02 6.07530227454E+02 6.17343198608E+02 6.27163326542E+02 6.36981467818E+02 6.46787969970E+02 6.56572654517E+02 6.66324805308E+02 6.76033151941E+02 6.85685853549E+02 6.95270490548E+02 7.04774046773E+02 7.14182895955E+02 7.23482793532E+02 7.32658859665E+02 7.41695572902E+02 7.50576760333E+02 7.59285582358E+02 7.67804532123E+02 7.76115425436E+02 7.84199397601E+02 7.92036894547E+02 7.99607680060E+02 8.06890824777E+02 8.13864717266E+02 8.20507060624E+02 8.26794885755E+02 8.32704552546E+02 8.38211768495E+02 8.43291597630E+02 8.47918482105E+02 8.52066259023E+02 8.55708188769E+02 8.58816981191E+02 8.61364828370E+02 8.63323441244E+02 8.64664091290E+02 8.65357656741E+02 8.65374673763E+02 8.64685394007E+02 8.63259845126E+02 8.61067904485E+02 8.58079368905E+02 8.54264041421E+02 8.49591817590E+02 8.44032784940E+02 8.37557325327E+02 8.30136230403E+02 8.21740821978E+02 8.12343083790E+02 8.01915802264E+02 7.90432715202E+02 7.77868673659E+02 7.64199815040E+02 7.49403740981E+02 7.33459716082E+02 7.16348869222E+02 6.98054414539E+02 6.78561879915E+02 6.57859353260E+02 6.35937731450E+02 6.12790995308E+02 5.88416488191E+02 5.62815214134E+02 5.35992141769E+02 5.07956527521E+02 4.78722247007E+02 4.48308139794E+02 4.16738363342E+02 3.84042756736E+02 3.50257218070E+02 3.15424077587E+02 2.79592483420E+02 2.42818789473E+02 2.05166939963E+02 1.66708847488E+02 1.27524770604E+02 8.77036709545E+01 4.73435605516E+01 6.55181780004E+00 -3.45545177667E+01 -7.58484952489E+01 -1.17193042525E+02 -1.58440807561E+02 -1.99434070969E+02 -2.40004724582E+02 -2.79974341373E+02 -3.19154335153E+02 -3.57346244668E+02 -3.94342125226E+02 -4.29925097039E+02 -4.63870034447E+02 -4.95944442679E+02 -5.25909511222E+02 -5.53521382217E+02 -5.78532646486E+02 -6.00694077967E+02 -6.19756647873E+02 -6.35473813353E+02 -6.47604123732E+02 -6.55914157758E+02 -6.60181813611E+02 -6.60199981993E+02 -6.55780625140E+02 -6.46759286918E+02 -6.33000070017E+02 -6.14401097990E+02 -5.90900505581E+02 -5.62482976433E+02 -5.29186867934E+02 -4.91111943113E+02 -4.48427732190E+02 -4.01382535108E+02 -3.50313056050E+02 -2.95654635512E+02 -2.37952011515E+02 -1.77870478519E+02 -1.16207233850E+02 -5.39026030627E+01 7.94931872964E+00 6.80912717619E+01 1.25095587640E+02 1.77360354839E+02 2.23110665662E+02 2.60407189396E+02 2.87164989490E+02 3.01186436039E+02 3.00212841373E+02 2.82003724281E+02 2.44426088921E+02 1.85811955257E+02 1.03184999242E+02 1.18011392952E+01 -1.17001245352E+00 1.15999756620E-01 -1.15007048711E-02 1.14024771534E-03 -1.13064887949E-04 1.12144899339E-05 -1.10708629247E-06 9.39301362077E-08 1.11293422822E-08 -2.35835527026E-08 0.00000000000E+00 0.00000000000E+00 -2.33262637209E-01 -1.53962804588E-01 8.50000000000E-01 -3.39436687950E+01 -3.39436687985E+01 -3.39436687987E+01 -3.39436687988E+01 -3.39436687990E+01 -3.39436687992E+01 -3.39436687994E+01 -3.39436687996E+01 -3.39436687998E+01 -3.39436688000E+01 -3.39436688002E+01 -3.39436688004E+01 -3.39436688007E+01 -3.39436688009E+01 -3.39436688011E+01 -3.39436688014E+01 -3.39436688016E+01 -3.39436688019E+01 -3.39436688021E+01 -3.39436688024E+01 -3.39436688027E+01 -3.39436688029E+01 -3.39436688032E+01 -3.39436688035E+01 -3.39436688038E+01 -3.39436688041E+01 -3.39436688044E+01 -3.39436688048E+01 -3.39436688051E+01 -3.39436688055E+01 -3.39436688058E+01 -3.39436688062E+01 -3.39436688065E+01 -3.39436688069E+01 -3.39436688073E+01 -3.39436688077E+01 -3.39436688081E+01 -3.39436688085E+01 -3.39436688089E+01 -3.39436688094E+01 -3.39436688098E+01 -3.39436688103E+01 -3.39436688108E+01 -3.39436688112E+01 -3.39436688117E+01 -3.39436688123E+01 -3.39436688128E+01 -3.39436688133E+01 -3.39436688139E+01 -3.39436688144E+01 -3.39436688150E+01 -3.39436688156E+01 -3.39436688162E+01 -3.39436688168E+01 -3.39436688175E+01 -3.39436688181E+01 -3.39436688188E+01 -3.39436688195E+01 -3.39436688202E+01 -3.39436688209E+01 -3.39436688217E+01 -3.39436688224E+01 -3.39436688232E+01 -3.39436688240E+01 -3.39436688248E+01 -3.39436688257E+01 -3.39436688265E+01 -3.39436688274E+01 -3.39436688283E+01 -3.39436688292E+01 -3.39436688302E+01 -3.39436688312E+01 -3.39436688322E+01 -3.39436688332E+01 -3.39436688342E+01 -3.39436688353E+01 -3.39436688364E+01 -3.39436688376E+01 -3.39436688387E+01 -3.39436688399E+01 -3.39436688411E+01 -3.39436688424E+01 -3.39436688437E+01 -3.39436688450E+01 -3.39436688464E+01 -3.39436688477E+01 -3.39436688492E+01 -3.39436688506E+01 -3.39436688521E+01 -3.39436688536E+01 -3.39436688552E+01 -3.39436688568E+01 -3.39436688585E+01 -3.39436688602E+01 -3.39436688619E+01 -3.39436688637E+01 -3.39436688655E+01 -3.39436688674E+01 -3.39436688693E+01 -3.39436688713E+01 -3.39436688733E+01 -3.39436688753E+01 -3.39436688775E+01 -3.39436688796E+01 -3.39436688819E+01 -3.39436688841E+01 -3.39436688865E+01 -3.39436688889E+01 -3.39436688913E+01 -3.39436688939E+01 -3.39436688965E+01 -3.39436688991E+01 -3.39436689018E+01 -3.39436689046E+01 -3.39436689075E+01 -3.39436689104E+01 -3.39436689134E+01 -3.39436689165E+01 -3.39436689197E+01 -3.39436689229E+01 -3.39436689262E+01 -3.39436689296E+01 -3.39436689331E+01 -3.39436689367E+01 -3.39436689404E+01 -3.39436689442E+01 -3.39436689480E+01 -3.39436689520E+01 -3.39436689560E+01 -3.39436689602E+01 -3.39436689645E+01 -3.39436689688E+01 -3.39436689733E+01 -3.39436689779E+01 -3.39436689826E+01 -3.39436689875E+01 -3.39436689924E+01 -3.39436689975E+01 -3.39436690027E+01 -3.39436690081E+01 -3.39436690135E+01 -3.39436690192E+01 -3.39436690249E+01 -3.39436690308E+01 -3.39436690369E+01 -3.39436690431E+01 -3.39436690494E+01 -3.39436690560E+01 -3.39436690627E+01 -3.39436690695E+01 -3.39436690765E+01 -3.39436690838E+01 -3.39436690911E+01 -3.39436690987E+01 -3.39436691065E+01 -3.39436691145E+01 -3.39436691226E+01 -3.39436691310E+01 -3.39436691396E+01 -3.39436691484E+01 -3.39436691574E+01 -3.39436691667E+01 -3.39436691762E+01 -3.39436691859E+01 -3.39436691959E+01 -3.39436692061E+01 -3.39436692166E+01 -3.39436692273E+01 -3.39436692384E+01 -3.39436692497E+01 -3.39436692613E+01 -3.39436692731E+01 -3.39436692853E+01 -3.39436692978E+01 -3.39436693106E+01 -3.39436693237E+01 -3.39436693372E+01 -3.39436693510E+01 -3.39436693652E+01 -3.39436693797E+01 -3.39436693945E+01 -3.39436694098E+01 -3.39436694254E+01 -3.39436694415E+01 -3.39436694579E+01 -3.39436694747E+01 -3.39436694920E+01 -3.39436695097E+01 -3.39436695279E+01 -3.39436695465E+01 -3.39436695656E+01 -3.39436695852E+01 -3.39436696052E+01 -3.39436696258E+01 -3.39436696469E+01 -3.39436696685E+01 -3.39436696907E+01 -3.39436697134E+01 -3.39436697367E+01 -3.39436697606E+01 -3.39436697851E+01 -3.39436698102E+01 -3.39436698360E+01 -3.39436698624E+01 -3.39436698894E+01 -3.39436699172E+01 -3.39436699456E+01 -3.39436699748E+01 -3.39436700047E+01 -3.39436700354E+01 -3.39436700668E+01 -3.39436700990E+01 -3.39436701320E+01 -3.39436701659E+01 -3.39436702006E+01 -3.39436702362E+01 -3.39436702727E+01 -3.39436703101E+01 -3.39436703485E+01 -3.39436703878E+01 -3.39436704281E+01 -3.39436704695E+01 -3.39436705118E+01 -3.39436705553E+01 -3.39436705998E+01 -3.39436706455E+01 -3.39436706923E+01 -3.39436707402E+01 -3.39436707894E+01 -3.39436708399E+01 -3.39436708916E+01 -3.39436709446E+01 -3.39436709989E+01 -3.39436710546E+01 -3.39436711117E+01 -3.39436711702E+01 -3.39436712302E+01 -3.39436712917E+01 -3.39436713548E+01 -3.39436714195E+01 -3.39436714857E+01 -3.39436715537E+01 -3.39436716233E+01 -3.39436716947E+01 -3.39436717679E+01 -3.39436718429E+01 -3.39436719198E+01 -3.39436719986E+01 -3.39436720794E+01 -3.39436721623E+01 -3.39436722472E+01 -3.39436723342E+01 -3.39436724234E+01 -3.39436725149E+01 -3.39436726086E+01 -3.39436727047E+01 -3.39436728032E+01 -3.39436729042E+01 -3.39436730077E+01 -3.39436731138E+01 -3.39436732225E+01 -3.39436733339E+01 -3.39436734482E+01 -3.39436735652E+01 -3.39436736853E+01 -3.39436738083E+01 -3.39436739343E+01 -3.39436740635E+01 -3.39436741960E+01 -3.39436743317E+01 -3.39436744708E+01 -3.39436746134E+01 -3.39436747595E+01 -3.39436749093E+01 -3.39436750628E+01 -3.39436752201E+01 -3.39436753813E+01 -3.39436755465E+01 -3.39436757158E+01 -3.39436758893E+01 -3.39436760671E+01 -3.39436762493E+01 -3.39436764361E+01 -3.39436766274E+01 -3.39436768235E+01 -3.39436770244E+01 -3.39436772303E+01 -3.39436774413E+01 -3.39436776575E+01 -3.39436778790E+01 -3.39436781060E+01 -3.39436783385E+01 -3.39436785768E+01 -3.39436788209E+01 -3.39436790711E+01 -3.39436793274E+01 -3.39436795899E+01 -3.39436798589E+01 -3.39436801345E+01 -3.39436804168E+01 -3.39436807060E+01 -3.39436810023E+01 -3.39436813058E+01 -3.39436816167E+01 -3.39436819352E+01 -3.39436822614E+01 -3.39436825955E+01 -3.39436829378E+01 -3.39436832883E+01 -3.39436836474E+01 -3.39436840151E+01 -3.39436843917E+01 -3.39436847773E+01 -3.39436851723E+01 -3.39436855768E+01 -3.39436859909E+01 -3.39436864150E+01 -3.39436868493E+01 -3.39436872940E+01 -3.39436877492E+01 -3.39436882154E+01 -3.39436886926E+01 -3.39436891811E+01 -3.39436896813E+01 -3.39436901933E+01 -3.39436907173E+01 -3.39436912538E+01 -3.39436918028E+01 -3.39436923648E+01 -3.39436929399E+01 -3.39436935285E+01 -3.39436941308E+01 -3.39436947472E+01 -3.39436953778E+01 -3.39436960231E+01 -3.39436966833E+01 -3.39436973587E+01 -3.39436980496E+01 -3.39436987564E+01 -3.39436994793E+01 -3.39437002187E+01 -3.39437009748E+01 -3.39437017482E+01 -3.39437025389E+01 -3.39437033475E+01 -3.39437041741E+01 -3.39437050193E+01 -3.39437058832E+01 -3.39437067663E+01 -3.39437076688E+01 -3.39437085913E+01 -3.39437095338E+01 -3.39437104970E+01 -3.39437114810E+01 -3.39437124862E+01 -3.39437135131E+01 -3.39437145618E+01 -3.39437156328E+01 -3.39437167265E+01 -3.39437178431E+01 -3.39437189830E+01 -3.39437201466E+01 -3.39437213341E+01 -3.39437225459E+01 -3.39437237824E+01 -3.39437250438E+01 -3.39437263304E+01 -3.39437276425E+01 -3.39437289804E+01 -3.39437303445E+01 -3.39437317349E+01 -3.39437331519E+01 -3.39437345957E+01 -3.39437360666E+01 -3.39437375647E+01 -3.39437390902E+01 -3.39437406433E+01 -3.39437422242E+01 -3.39437438328E+01 -3.39437454694E+01 -3.39437471339E+01 -3.39437488264E+01 -3.39437505468E+01 -3.39437522952E+01 -3.39437540713E+01 -3.39437558751E+01 -3.39437577064E+01 -3.39437595649E+01 -3.39437614504E+01 -3.39437633624E+01 -3.39437653007E+01 -3.39437672647E+01 -3.39437692539E+01 -3.39437712676E+01 -3.39437733052E+01 -3.39437753659E+01 -3.39437774488E+01 -3.39437795530E+01 -3.39437816773E+01 -3.39437838206E+01 -3.39437859815E+01 -3.39437881588E+01 -3.39437903507E+01 -3.39437925556E+01 -3.39437947718E+01 -3.39437969970E+01 -3.39437992293E+01 -3.39438014662E+01 -3.39438037052E+01 -3.39438059436E+01 -3.39438081785E+01 -3.39438104066E+01 -3.39438126246E+01 -3.39438148287E+01 -3.39438170152E+01 -3.39438191797E+01 -3.39438213178E+01 -3.39438234246E+01 -3.39438254950E+01 -3.39438275235E+01 -3.39438295042E+01 -3.39438314309E+01 -3.39438332968E+01 -3.39438350947E+01 -3.39438368172E+01 -3.39438384561E+01 -3.39438400029E+01 -3.39438414482E+01 -3.39438427825E+01 -3.39438439953E+01 -3.39438450757E+01 -3.39438460120E+01 -3.39438467918E+01 -3.39438474019E+01 -3.39438478284E+01 -3.39438480564E+01 -3.39438480704E+01 -3.39438478536E+01 -3.39438473884E+01 -3.39438466561E+01 -3.39438456371E+01 -3.39438443103E+01 -3.39438426536E+01 -3.39438406435E+01 -3.39438382553E+01 -3.39438354627E+01 -3.39438322379E+01 -3.39438285516E+01 -3.39438243728E+01 -3.39438196687E+01 -3.39438144047E+01 -3.39438085441E+01 -3.39438020483E+01 -3.39437948764E+01 -3.39437869854E+01 -3.39437783296E+01 -3.39437688610E+01 -3.39437585289E+01 -3.39437472797E+01 -3.39437350570E+01 -3.39437218010E+01 -3.39437074489E+01 -3.39436919344E+01 -3.39436751874E+01 -3.39436571342E+01 -3.39436376970E+01 -3.39436167937E+01 -3.39435943379E+01 -3.39435702384E+01 -3.39435443992E+01 -3.39435167189E+01 -3.39434870910E+01 -3.39434554030E+01 -3.39434215364E+01 -3.39433853666E+01 -3.39433467622E+01 -3.39433055847E+01 -3.39432616883E+01 -3.39432149197E+01 -3.39431651172E+01 -3.39431121107E+01 -3.39430557209E+01 -3.39429957595E+01 -3.39429320279E+01 -3.39428643172E+01 -3.39427924075E+01 -3.39427160676E+01 -3.39426350540E+01 -3.39425491104E+01 -3.39424579676E+01 -3.39423613419E+01 -3.39422589351E+01 -3.39421504336E+01 -3.39420355074E+01 -3.39419138095E+01 -3.39417849751E+01 -3.39416486204E+01 -3.39415043419E+01 -3.39413517156E+01 -3.39411902953E+01 -3.39410196124E+01 -3.39408391739E+01 -3.39406484620E+01 -3.39404469320E+01 -3.39402340120E+01 -3.39400091005E+01 -3.39397715659E+01 -3.39395207441E+01 -3.39392559378E+01 -3.39389764140E+01 -3.39386814030E+01 -3.39383700962E+01 -3.39380416442E+01 -3.39376951550E+01 -3.39373296917E+01 -3.39369442705E+01 -3.39365378584E+01 -3.39361093706E+01 -3.39356576685E+01 -3.39351815564E+01 -3.39346797794E+01 -3.39341510202E+01 -3.39335938961E+01 -3.39330069560E+01 -3.39323886773E+01 -3.39317374621E+01 -3.39310516337E+01 -3.39303294333E+01 -3.39295690154E+01 -3.39287684445E+01 -3.39279256902E+01 -3.39270386231E+01 -3.39261050101E+01 -3.39251225094E+01 -3.39240886657E+01 -3.39230009048E+01 -3.39218565280E+01 -3.39206527063E+01 -3.39193864750E+01 -3.39180547265E+01 -3.39166542045E+01 -3.39151814970E+01 -3.39136330291E+01 -3.39120050560E+01 -3.39102936546E+01 -3.39084947163E+01 -3.39066039383E+01 -3.39046168147E+01 -3.39025286280E+01 -3.39003344393E+01 -3.38980290787E+01 -3.38956071353E+01 -3.38930629464E+01 -3.38903905865E+01 -3.38875838564E+01 -3.38846362708E+01 -3.38815410465E+01 -3.38782910895E+01 -3.38748789818E+01 -3.38712969678E+01 -3.38675369400E+01 -3.38635904249E+01 -3.38594485669E+01 -3.38551021136E+01 -3.38505413989E+01 -3.38457563266E+01 -3.38407363530E+01 -3.38354704690E+01 -3.38299471821E+01 -3.38241544968E+01 -3.38180798959E+01 -3.38117103198E+01 -3.38050321464E+01 -3.37980311696E+01 -3.37906925782E+01 -3.37830009332E+01 -3.37749401458E+01 -3.37664934536E+01 -3.37576433981E+01 -3.37483718000E+01 -3.37386597354E+01 -3.37284875114E+01 -3.37178346413E+01 -3.37066798199E+01 -3.36950008988E+01 -3.36827748617E+01 -3.36699777995E+01 -3.36565848868E+01 -3.36425703577E+01 -3.36279074832E+01 -3.36125685495E+01 -3.35965248364E+01 -3.35797465990E+01 -3.35622030498E+01 -3.35438623434E+01 -3.35246915643E+01 -3.35046567171E+01 -3.34837227215E+01 -3.34618534105E+01 -3.34390115348E+01 -3.34151587726E+01 -3.33902557468E+01 -3.33642620505E+01 -3.33371362813E+01 -3.33088360876E+01 -3.32793182270E+01 -3.32485386397E+01 -3.32164525387E+01 -3.31830145196E+01 -3.31481786939E+01 -3.31118988472E+01 -3.30741286283E+01 -3.30348217732E+01 -3.29939323691E+01 -3.29514151643E+01 -3.29072259321E+01 -3.28613218958E+01 -3.28136622249E+01 -3.27642086125E+01 -3.27129259472E+01 -3.26597830919E+01 -3.26047537869E+01 -3.25478176934E+01 -3.24889615975E+01 -3.24281807955E+01 -3.23654806822E+01 -3.23008785647E+01 -3.22344057223E+01 -3.21661097300E+01 -3.20960570548E+01 -3.20243359196E+01 -3.19510594108E+01 -3.18763687671E+01 -3.18004367376E+01 -3.17234708197E+01 -3.16457160788E+01 -3.15674570965E+01 -3.14890183874E+01 -3.14107623463E+01 -3.13362861527E+01 -3.13400594947E+01 -3.14068086782E+01 -3.13781017377E+01 -3.12642154594E+01 -3.11448843447E+01 -3.10198566172E+01 -3.08888415899E+01 -3.07515109811E+01 -3.06075028632E+01 -3.04564285372E+01 -3.02978824228E+01 -3.01314548040E+01 -2.99567469869E+01 -2.97733881512E+01 -2.95810529428E+01 -2.93794786823E+01 -2.91684809969E+01 -2.89479667105E+01 -2.87179429735E+01 -2.84785218518E+01 -2.82299199278E+01 -2.79724528548E+01 -2.77065252388E+01 -2.74326166358E+01 -2.71512648190E+01 -2.68630477234E+01 -2.65685655703E+01 -2.62684245998E+01 -2.59632235811E+01 -2.56535438912E+01 -2.53399434977E+01 -2.50229547376E+01 -2.47030854103E+01 -2.43808224491E+01 -2.40566373137E+01 -2.37309922461E+01 -2.34043466280E+01 -2.30771628297E+01 -2.27499111104E+01 -2.24230732977E+01 -2.20971451119E+01 -2.17726371079E+01 -2.14500742782E+01 -2.11299944027E+01 -2.08129452471E+01 -2.04994807144E+01 -2.01901560438E+01 -1.98855221365E+01 -1.95861190748E+01 -1.92924688901E+01 -1.90050676255E+01 -1.87243767396E+01 -1.84508139083E+01 -1.81847432895E+01 -1.79264653507E+01 -1.76762063878E+01 -1.74341079156E+01 -1.72002161742E+01 -1.69744720690E+01 -1.67567019627E+01 -1.65466098491E+01 -1.63437715813E+01 -1.61476319904E+01 -1.59575059286E+01 -1.57725845023E+01 -1.55919480317E+01 -1.54145875941E+01 -1.52394373821E+01 -1.50654205413E+01 -1.48915116678E+01 -1.47168197432E+01 -1.45406959853E+01 -1.43628719245E+01 -1.41838095371E+01 -1.40054928496E+01 -1.38303989105E+01 -1.36584158358E+01 -1.34887343987E+01 -1.33211627512E+01 -1.31556744402E+01 -1.29922433677E+01 -1.28308437838E+01 -1.26714502803E+01 -1.25140377839E+01 -1.23585815503E+01 -1.22050571579E+01 -1.20534405027E+01 -1.19037077924E+01 -1.17558355414E+01 -1.16098005653E+01 -1.14655799767E+01 -1.13231511800E+01 -1.11824918670E+01 -1.10435800125E+01 -1.09063938703E+01 -1.07709119684E+01 -1.06371131060E+01 -1.05049763485E+01 -1.03744810248E+01 -1.02456067228E+01 -1.01183332863E+01 -9.99264081121E+00 -9.86850964236E+00 -9.74592037006E+00 -9.62485382683E+00 -9.50529108424E+00 -9.38721344978E+00 -9.27060246375E+00 -9.15543989628E+00 -9.04170774438E+00 -8.92938822902E+00 -8.81833695289E+00 -8.70866105281E+00 -8.60060983263E+00 -8.49390324223E+00 -8.38839204141E+00 -8.28419143270E+00 -8.18128513879E+00 -8.07965708457E+00 -7.97929139453E+00 -7.88017239031E+00 -7.78228458821E+00 -7.68561269676E+00 -7.59014161431E+00 -7.49585642669E+00 -7.40274240482E+00 -7.31078500248E+00 -7.21996985396E+00 -7.13028277175E+00 -7.04170974460E+00 -6.95423693510E+00 -6.86785067757E+00 -6.78253747598E+00 -6.69828400179E+00 -6.61507709196E+00 -6.53290374683E+00 -6.45175112814E+00 -6.37160655704E+00 -6.29245751210E+00 -6.21429162742E+00 -6.13709669067E+00 -6.06086064125E+00 -5.98557156837E+00 -5.91121770926E+00 -5.83778744733E+00 -5.76526931037E+00 -5.69365196880E+00 -5.62292423387E+00 -5.55307505599E+00 -5.48409352294E+00 -5.41596885825E+00 -5.34869041946E+00 -5.28224769650E+00 -5.21663031004E+00 -5.15182800982E+00 -5.08783067312E+00 -5.02462830310E+00 -4.96221102727E+00 -4.90056909588E+00 -4.83969288043E+00 -4.77957287212E+00 -4.72019968034E+00 -4.66156403116E+00 -4.60365676589E+00 -4.54646883961E+00 -4.48999131970E+00 -4.43421538444E+00 -4.37913232161E+00 -4.32473352707E+00 -4.27101050344E+00 -4.21795485869E+00 -4.16555830483E+00 -4.11381265661E+00 -4.06270983019E+00 -4.01224184190E+00 -3.96240080692E+00 -3.91317893813E+00 -3.86456854479E+00 -3.81656203141E+00 -3.76915189652E+00 -3.72233073152E+00 -3.67609121956E+00 -3.63042613436E+00 -3.58532833913E+00 -3.54079078548E+00 -3.49680651232E+00 -3.45336864483E+00 -3.41047039340E+00 -3.36810505259E+00 -3.32626600012E+00 -3.28494669591E+00 -3.24414068102E+00 -3.20384157675E+00 -3.16404308360E+00 -3.12473898038E+00 -3.08592312324E+00 -3.04758944473E+00 -3.00973195290E+00 -2.97234473033E+00 -2.93542193328E+00 -2.89895779077E+00 -2.86294660367E+00 -2.82738274383E+00 -2.79226065320E+00 -2.75757484296E+00 -2.72331989264E+00 -2.68949044931E+00 -2.65608122670E+00 -2.62308700437E+00 -2.59050262686E+00 -2.55832300295E+00 -2.52654310474E+00 -2.49515796694E+00 -2.46416268604E+00 -2.43355241953E+00 -2.40332238515E+00 -2.37346786010E+00 -2.34398418030E+00 -2.31486673969E+00 -2.28611098942E+00 -2.25771243719E+00 -2.22966664654E+00 -2.20196923612E+00 -2.17461587898E+00 -2.14760230197E+00 -2.12092428496E+00 -2.09457766028E+00 -2.06855831197E+00 -2.04286217521E+00 -2.01748523564E+00 -1.99242352874E+00 -1.96767313922E+00 -1.94323020039E+00 -1.91909089356E+00 -1.89525144747E+00 -1.87170813765E+00 -1.84845728590E+00 -1.82549525965E+00 -1.80281847146E+00 -1.78042337839E+00 -1.75830648151E+00 -1.73646432533E+00 -1.71489349725E+00 -1.69359062705E+00 -1.67255238634E+00 -1.65177548807E+00 -1.63125668598E+00 -1.61099277415E+00 -1.59098058644E+00 -1.57121699603E+00 -1.55169891493E+00 -1.53242329350E+00 -1.51338711994E+00 -1.49458741990E+00 -1.47602125591E+00 -1.45768572702E+00 -1.43957796829E+00 -1.42169515035E+00 -1.40403447898E+00 -1.38659319466E+00 -1.36936857214E+00 -1.35235792001E+00 -1.33555858029E+00 -1.31896792801E+00 -1.30258337081E+00 -1.28640234850E+00 -1.27042233273E+00 -1.25464082652E+00 -1.23905536390E+00 -1.22366351111E+00 -1.20846285983E+00 -1.19345103655E+00 -1.17862569556E+00 -1.16398452029E+00 -1.14952522294E+00 -1.13524554415E+00 -1.12114325258E+00 -1.10721614465E+00 -1.09346204413E+00 -1.07987880182E+00 -1.06646429522E+00 -1.05321642821E+00 -1.04013322424E+00 -1.02721185580E+00 -1.01445161171E+00 -1.00184989178E+00 -9.89404712920E-01 -9.77114130536E-01 -9.64976224202E-01 -9.52989097347E-01 -9.41150876958E-01 -9.29459713291E-01 -9.17913779578E-01 -9.06511273468E-01 -8.95250409711E-01 -8.84129430646E-01 -8.73146598599E-01 -8.62300197479E-01 -8.51588532515E-01 -8.41009950219E-01 -8.30562756700E-01 -8.20245340306E-01 -8.10056088920E-01 -7.99993410450E-01 -7.90055732583E-01 -7.80241502536E-01 -7.70549186815E-01 -7.60977270977E-01 -7.51524259389E-01 -7.42188675008E-01 -7.32969050986E-01 -7.23863963202E-01 -7.14871980635E-01 -7.05991698269E-01 -6.97221728543E-01 -6.88560701130E-01 -6.80007262728E-01 -6.71560076844E-01 -6.63217823588E-01 -6.54979199467E-01 -6.46842917178E-01 -6.38807705411E-01 -6.30872308648E-01 -6.23035486966E-01 -6.15296015847E-01 -6.07652685959E-01 -6.00104303063E-01 -5.92649687685E-01 -5.85287675028E-01 -5.78017114760E-01 -5.70836870842E-01 -5.63745821347E-01 -5.56742858283E-01 -5.49826887423E-01 -5.42996828134E-01 -5.36251613203E-01 -5.29590188678E-01 -5.23011513698E-01 -5.16514560330E-01 -5.10098313414E-01 -5.03761770397E-01 -4.97503941181E-01 -4.91323847969E-01 -4.85220525107E-01 -4.79193018939E-01 -4.73240387656E-01 -4.67361701146E-01 -4.61556040853E-01 -4.55822499630E-01 -4.50160181600E-01 -4.44568202014E-01 -4.39045687114E-01 -4.33591773997E-01 -4.28205610476E-01 -4.22886354953E-01 -4.17633176283E-01 -4.12445253646E-01 -4.07321776420E-01 -4.02261944050E-01 -3.97264965927E-01 -3.92330061264E-01 -3.87456458970E-01 -3.82643397537E-01 -3.77890124913E-01 -3.73195898390E-01 -3.68559984485E-01 -3.63981658828E-01 -3.59460206045E-01 -3.54994919651E-01 -3.50585101935E-01 -3.46230063855E-01 -3.41929124927E-01 -3.37681613120E-01 -3.33486864752E-01 -3.29344224385E-01 -3.25253044724E-01 -3.21212686512E-01 -3.17222518436E-01 -3.13281917024E-01 -3.09390266549E-01 -3.05546958933E-01 -3.01751393650E-01 -2.98002977637E-01 -2.94301125196E-01 -2.90645257903E-01 -2.87034804524E-01 -2.83469200917E-01 -2.79947889949E-01 -2.76470321409E-01 -2.73035951919E-01 -2.69644244852E-01 -2.66294670247E-01 -2.62986704725E-01 -2.59719831412E-01 -2.56493539850E-01 -2.53307325926E-01 -2.50160691787E-01 -2.47053145765E-01 -2.43984202300E-01 -2.40953381862E-01 -2.37960210881E-01 -2.35004221667E-01 -2.32084952341E-01 -2.29201946760E-01 -2.26354754450E-01 -2.23542930531E-01 -2.20766035650E-01 -2.18023635911E-01 -2.15315302809E-01 -2.12640613160E-01 -2.09999149040E-01 -2.07390497715E-01 -2.04814251577E-01 -2.02270008082E-01 -1.99757369687E-01 -1.97275943788E-01 -1.94825342657E-01 -1.92405183381E-01 -1.90015087807E-01 -1.87654682477E-01 -1.85323598573E-01 -1.83021471859E-01 -1.80747942621E-01 -1.78502655618E-01 -1.76285260017E-01 -1.74095409347E-01 -1.71932761439E-01 -1.69796978375E-01 -1.67687726434E-01 -1.65604676042E-01 -1.63547501717E-01 -1.61515882022E-01 -1.59509499512E-01 -1.57528040686E-01 -1.55571195936E-01 -1.53638659503E-01 -1.51730129423E-01 -1.49845307484E-01 -1.47983899179E-01 -1.46145613660E-01 -1.44330163690E-01 -1.42537265602E-01 -1.40766639252E-01 -1.39018007975E-01 -1.37291098545E-01 -1.35585641128E-01 -1.33901369244E-01 -1.32238019721E-01 -1.30595332658E-01 -1.28973051381E-01 -1.27370922406E-01 -1.25788695397E-01 -1.24226123127E-01 -1.22682961441E-01 -1.21158969218E-01 3.73032926838E-09 3.82476387436E-09 3.92158914843E-09 4.02086561293E-09 4.12265532244E-09 4.22702190260E-09 4.33403058986E-09 4.44374827227E-09 4.55624353131E-09 4.67158668476E-09 4.78984983066E-09 4.91110689238E-09 5.03543366486E-09 5.16290786197E-09 5.29360916511E-09 5.42761927303E-09 5.56502195291E-09 5.70590309272E-09 5.85035075495E-09 5.99845523163E-09 6.15030910082E-09 6.30600728448E-09 6.46564710781E-09 6.62932836012E-09 6.79715335720E-09 6.96922700535E-09 7.14565686689E-09 7.32655322751E-09 7.51202916515E-09 7.70220062076E-09 7.89718647077E-09 8.09710860144E-09 8.30209198508E-09 8.51226475817E-09 8.72775830152E-09 8.94870732241E-09 9.17524993883E-09 9.40752776587E-09 9.64568600423E-09 9.88987353111E-09 1.01402429932E-08 1.03969509023E-08 1.06601577330E-08 1.09300280232E-08 1.12067304770E-08 1.14904380701E-08 1.17813281581E-08 1.20795825875E-08 1.23853878091E-08 1.26989349949E-08 1.30204201578E-08 1.33500442738E-08 1.36880134081E-08 1.40345388436E-08 1.43898372135E-08 1.47541306365E-08 1.51276468559E-08 1.55106193819E-08 1.59032876379E-08 1.63058971101E-08 1.67186995011E-08 1.71419528877E-08 1.75759218816E-08 1.80208777959E-08 1.84770988140E-08 1.89448701642E-08 1.94244842980E-08 1.99162410731E-08 2.04204479409E-08 2.09374201392E-08 2.14674808890E-08 2.20109615972E-08 2.25682020638E-08 2.31395506946E-08 2.37253647191E-08 2.43260104143E-08 2.49418633339E-08 2.55733085431E-08 2.62207408600E-08 2.68845651026E-08 2.75651963419E-08 2.82630601622E-08 2.89785929274E-08 2.97122420538E-08 3.04644662907E-08 3.12357360075E-08 3.20265334880E-08 3.28373532326E-08 3.36687022678E-08 3.45211004638E-08 3.53950808601E-08 3.62911899991E-08 3.72099882687E-08 3.81520502530E-08 3.91179650924E-08 4.01083368526E-08 4.11237849030E-08 4.21649443046E-08 4.32324662079E-08 4.43270182611E-08 4.54492850281E-08 4.65999684178E-08 4.77797881235E-08 4.89894820744E-08 5.02298068979E-08 5.15015383937E-08 5.28054720202E-08 5.41424233933E-08 5.55132287977E-08 5.69187457107E-08 5.83598533406E-08 5.98374531776E-08 6.13524695593E-08 6.29058502501E-08 6.44985670362E-08 6.61316163347E-08 6.78060198189E-08 6.95228250592E-08 7.12831061805E-08 7.30879645362E-08 7.49385293994E-08 7.68359586716E-08 7.87814396094E-08 8.07761895704E-08 8.28214567767E-08 8.49185210993E-08 8.70686948616E-08 8.92733236635E-08 9.15337872269E-08 9.38515002624E-08 9.62279133580E-08 9.86645138906E-08 1.01162826961E-07 1.03724416352E-07 1.06350885514E-07 1.09043878566E-07 1.11805081341E-07 1.14636222434E-07 1.17539074298E-07 1.20515454355E-07 1.23567226142E-07 1.26696300481E-07 1.29904636684E-07 1.33194243785E-07 1.36567181806E-07 1.40025563054E-07 1.43571553452E-07 1.47207373903E-07 1.50935301689E-07 1.54757671907E-07 1.58676878942E-07 1.62695377975E-07 1.66815686532E-07 1.71040386074E-07 1.75372123623E-07 1.79813613433E-07 1.84367638705E-07 1.89037053344E-07 1.93824783761E-07 1.98733830723E-07 2.03767271245E-07 2.08928260541E-07 2.14220034016E-07 2.19645909312E-07 2.25209288408E-07 2.30913659770E-07 2.36762600565E-07 2.42759778921E-07 2.48908956253E-07 2.55213989646E-07 2.61678834299E-07 2.68307546035E-07 2.75104283873E-07 2.82073312665E-07 2.89219005807E-07 2.96545848014E-07 3.04058438168E-07 3.11761492246E-07 3.19659846312E-07 3.27758459598E-07 3.36062417656E-07 3.44576935602E-07 3.53307361430E-07 3.62259179427E-07 3.71438013663E-07 3.80849631585E-07 3.90499947694E-07 4.00395027322E-07 4.10541090507E-07 4.20944515969E-07 4.31611845192E-07 4.42549786606E-07 4.53765219885E-07 4.65265200356E-07 4.77056963519E-07 4.89147929690E-07 5.01545708764E-07 5.14258105106E-07 5.27293122561E-07 5.40658969609E-07 5.54364064643E-07 5.68417041396E-07 5.82826754501E-07 5.97602285211E-07 6.12752947254E-07 6.28288292854E-07 6.44218118911E-07 6.60552473334E-07 6.77301661558E-07 6.94476253218E-07 7.12087089013E-07 7.30145287741E-07 7.48662253533E-07 7.67649683272E-07 7.87119574209E-07 8.07084231789E-07 8.27556277683E-07 8.48548658030E-07 8.70074651912E-07 8.92147880043E-07 9.14782313701E-07 9.37992283897E-07 9.61792490792E-07 9.86198013369E-07 1.01122431936E-06 1.03688727547E-06 1.06320315780E-06 1.09018866269E-06 1.11786091771E-06 1.14623749304E-06 1.17533641314E-06 1.20517616873E-06 1.23577572912E-06 1.26715455484E-06 1.29933261065E-06 1.33233037890E-06 1.36616887327E-06 1.40086965285E-06 1.43645483666E-06 1.47294711853E-06 1.51036978244E-06 1.54874671823E-06 1.58810243783E-06 1.62846209181E-06 1.66985148658E-06 1.71229710189E-06 1.75582610895E-06 1.80046638900E-06 1.84624655243E-06 1.89319595842E-06 1.94134473518E-06 1.99072380071E-06 2.04136488419E-06 2.09330054800E-06 2.14656421031E-06 2.20119016840E-06 2.25721362257E-06 2.31467070081E-06 2.37359848416E-06 2.43403503279E-06 2.49601941289E-06 2.55959172427E-06 2.62479312888E-06 2.69166588004E-06 2.76025335265E-06 2.83060007420E-06 2.90275175680E-06 2.97675533005E-06 3.05265897501E-06 3.13051215907E-06 3.21036567198E-06 3.29227166290E-06 3.37628367860E-06 3.46245670276E-06 3.55084719661E-06 3.64151314061E-06 3.73451407764E-06 3.82991115729E-06 3.92776718169E-06 4.02814665272E-06 4.13111582061E-06 4.23674273416E-06 4.34509729248E-06 4.45625129841E-06 4.57027851353E-06 4.68725471503E-06 4.80725775428E-06 4.93036761742E-06 5.05666648769E-06 5.18623880996E-06 5.31917135724E-06 5.45555329939E-06 5.59547627401E-06 5.73903445976E-06 5.88632465198E-06 6.03744634086E-06 6.19250179219E-06 6.35159613079E-06 6.51483742674E-06 6.68233678451E-06 6.85420843502E-06 7.03056983094E-06 7.21154174510E-06 7.39724837235E-06 7.58781743485E-06 7.78338029104E-06 7.98407204828E-06 8.19003167953E-06 8.40140214398E-06 8.61833051195E-06 8.84096809422E-06 9.06947057583E-06 9.30399815470E-06 9.54471568517E-06 9.79179282668E-06 1.00454041977E-05 1.03057295356E-05 1.05729538613E-05 1.08472676516E-05 1.11288670160E-05 1.14179538812E-05 1.17147361820E-05 1.20194280594E-05 1.23322500658E-05 1.26534293781E-05 1.29832000188E-05 1.33218030852E-05 1.36694869878E-05 1.40265076968E-05 1.43931289991E-05 1.47696227646E-05 1.51562692225E-05 1.55533572486E-05 1.59611846641E-05 1.63800585451E-05 1.68102955451E-05 1.72522222297E-05 1.77061754248E-05 1.81725025779E-05 1.86515621350E-05 1.91437239309E-05 1.96493695970E-05 2.01688929838E-05 2.07027006014E-05 2.12512120778E-05 2.18148606358E-05 2.23940935888E-05 2.29893728578E-05 2.36011755091E-05 2.42299943146E-05 2.48763383346E-05 2.55407335261E-05 2.62237233749E-05 2.69258695556E-05 2.76477526186E-05 2.83899727060E-05 2.91531502984E-05 2.99379269929E-05 3.07449663142E-05 3.15749545608E-05 3.24286016871E-05 3.33066422237E-05 3.42098362374E-05 3.51389703325E-05 3.60948586956E-05 3.70783441866E-05 3.80902994763E-05 3.91316282347E-05 4.02032663708E-05 4.13061833279E-05 4.24413834352E-05 4.36099073199E-05 4.48128333820E-05 4.60512793344E-05 4.73264038123E-05 4.86394080543E-05 4.99915376590E-05 5.13840844209E-05 5.28183882492E-05 5.42958391727E-05 5.58178794363E-05 5.73860056927E-05 5.90017712933E-05 6.06667886845E-05 6.23827319132E-05 6.41513392466E-05 6.59744159140E-05 6.78538369725E-05 6.97915503073E-05 7.17895797686E-05 7.38500284554E-05 7.59750821505E-05 7.81670129157E-05 8.04281828544E-05 8.27610480500E-05 8.51681626875E-05 8.76521833690E-05 9.02158736313E-05 9.28621086749E-05 9.55938803170E-05 9.84143021765E-05 1.01326615104E-04 1.04334192870E-04 1.07440548118E-04 1.10649338607E-04 1.13964373741E-04 1.17389621417E-04 1.20929215195E-04 1.24587461809E-04 1.28368849041E-04 1.32278053961E-04 1.36319951575E-04 1.40499623872E-04 1.44822369320E-04 1.49293712802E-04 1.53919416043E-04 1.58705488527E-04 1.63658198946E-04 1.68784087202E-04 1.74089976976E-04 1.79582988920E-04 1.85270554471E-04 1.91160430345E-04 1.97260713718E-04 2.03579858157E-04 2.10126690310E-04 2.16910427413E-04 2.23940695641E-04 2.31227549352E-04 2.38781491263E-04 2.46613493611E-04 2.54735020336E-04 2.63158050346E-04 2.71895101917E-04 2.80959258273E-04 2.90364194418E-04 3.00124205272E-04 3.10254235182E-04 3.20769908861E-04 3.31687563850E-04 3.43024284549E-04 3.54797937922E-04 3.67027210929E-04 3.79731649797E-04 3.92931701203E-04 4.06648755463E-04 4.20905191838E-04 4.35724426043E-04 4.51130960081E-04 4.67150434508E-04 4.83809683247E-04 5.01136791083E-04 5.19161153958E-04 5.37913542214E-04 5.57426166916E-04 5.77732749419E-04 5.98868594316E-04 6.20870665955E-04 6.43777668680E-04 6.67630130981E-04 6.92470493747E-04 7.18343202817E-04 7.45294806029E-04 7.73374055004E-04 8.02632011865E-04 8.33122161151E-04 8.64900527171E-04 8.98025797050E-04 9.32559449742E-04 9.68565891310E-04 1.00611259675E-03 1.04527025869E-03 1.08611294327E-03 1.12871825359E-03 1.17316750099E-03 1.21954588468E-03 1.26794267994E-03 1.31845143549E-03 1.37117018021E-03 1.42620163998E-03 1.48365346476E-03 1.54363846665E-03 1.60627486935E-03 1.67168656954E-03 1.74000341069E-03 1.81136147006E-03 1.88590335926E-03 1.96377853915E-03 2.04514364969E-03 2.13016285544E-03 2.21900820743E-03 2.31186002208E-03 2.40890727807E-03 2.51034803184E-03 2.61638985265E-03 2.72725027805E-03 2.84315729066E-03 2.96434981723E-03 3.09107825095E-03 3.22360499809E-03 3.36220504998E-03 3.50716658144E-03 3.65879157690E-03 3.81739648529E-03 3.98331290507E-03 4.15688830057E-03 4.33848675110E-03 4.52848973417E-03 4.72729694416E-03 4.93532714819E-03 5.15301908046E-03 5.38083237684E-03 5.61924855130E-03 5.86877201589E-03 6.12993114610E-03 6.40327939332E-03 6.68939644639E-03 6.98888944417E-03 7.30239424100E-03 7.63057672738E-03 7.97413420768E-03 8.33379683737E-03 8.71032912168E-03 9.10453147837E-03 9.51724186664E-03 9.94933748474E-03 1.04017365388E-02 1.08754000853E-02 1.13713339497E-02 1.18905907242E-02 1.24342718470E-02 1.30035297653E-02 1.35995701863E-02 1.42236544171E-02 1.48771017976E-02 1.55612922293E-02 1.62776688013E-02 1.70277405186E-02 1.78130851339E-02 1.86353520864E-02 1.94962655503E-02 2.03976275960E-02 2.13413214664E-02 2.23293149715E-02 2.33636640034E-02 2.44465161749E-02 2.55801145837E-02 2.67668017043E-02 2.80090234104E-02 2.93093331300E-02 3.06703961340E-02 3.20949939606E-02 3.35860289775E-02 3.51465290818E-02 3.67796525389E-02 3.84886929617E-02 4.02770844287E-02 4.21484067420E-02 4.41063908241E-02 4.61549242512E-02 4.82980569231E-02 5.05400068660E-02 5.28851661649E-02 5.53381070233E-02 5.79035879439E-02 6.05865600264E-02 6.33921733753E-02 6.63257836109E-02 6.93929584751E-02 7.25994845225E-02 7.59513738868E-02 7.94548711096E-02 8.31164600202E-02 8.69428706492E-02 9.09410861630E-02 9.51183497977E-02 9.94821717764E-02 1.04040336186E-01 1.08800907790E-01 1.13772238757E-01 1.18962975269E-01 1.24382063985E-01 1.30038758329E-01 1.35942624566E-01 1.42103547625E-01 1.48531736639E-01 1.55237730147E-01 1.62232400925E-01 1.69526960387E-01 1.77132962513E-01 1.85062307245E-01 1.93327243293E-01 2.01940370293E-01 2.10914640255E-01 2.20263358220E-01 2.30000182077E-01 2.40139121451E-01 2.50694535580E-01 2.61681130124E-01 2.73113952794E-01 2.85008387734E-01 2.97380148561E-01 3.10245269964E-01 3.23620097783E-01 3.37521277449E-01 3.51965740713E-01 3.66970690534E-01 3.82553584048E-01 3.98732113509E-01 4.15524185087E-01 4.32947895438E-01 4.51021505936E-01 4.69763414463E-01 4.89192124670E-01 5.09326212604E-01 5.30184290618E-01 5.51784968474E-01 5.74146811564E-01 5.97288296170E-01 6.21227761710E-01 6.45983359907E-01 6.71573000838E-01 6.98014295846E-01 7.25324497272E-01 7.53520435038E-01 7.82618450067E-01 8.12634324596E-01 8.43583209420E-01 8.75479548156E-01 9.08336998616E-01 9.42168351418E-01 9.76985445987E-01 1.01279908412E+00 1.04961894133E+00 1.08745347619E+00 1.12630983801E+00 1.16619377303E+00 1.20710952961E+00 1.24905976270E+00 1.29204543803E+00 1.33606573643E+00 1.38111795887E+00 1.42719743258E+00 1.47429741894E+00 1.52240902359E+00 1.57152110961E+00 1.62162021408E+00 1.67269046902E+00 1.72471352722E+00 1.77766849375E+00 1.83153186389E+00 1.88627746819E+00 1.94187642555E+00 1.99829710489E+00 2.05550509638E+00 2.11346319285E+00 2.17213138215E+00 2.23146685126E+00 2.29142400270E+00 2.35195448400E+00 2.41300723071E+00 2.47452852371E+00 2.53646206099E+00 2.59874904454E+00 2.66132828259E+00 2.72413630735E+00 2.78710750841E+00 2.85017428187E+00 2.91326719491E+00 2.97631516557E+00 3.03924565750E+00 3.10198488875E+00 3.16445805424E+00 3.22658956064E+00 3.28830327287E+00 3.34952277056E+00 3.41017161330E+00 3.47017361273E+00 3.52945310954E+00 3.58793525335E+00 3.64554628284E+00 3.70221380366E+00 3.75786706111E+00 3.81243720457E+00 3.86585754015E+00 3.91806376808E+00 3.96899420096E+00 4.01858995872E+00 4.06679513619E+00 4.11355693866E+00 4.15882578090E+00 4.20255534486E+00 4.24470259119E+00 4.28522771965E+00 4.32409407346E+00 4.36126798266E+00 4.39671854164E+00 4.43041731595E+00 4.46233797404E+00 4.49245583929E+00 4.52074735851E+00 4.54718948283E+00 4.57175895779E+00 4.59443151957E+00 4.61518099473E+00 4.63397830156E+00 4.65079035158E+00 4.66557885044E+00 4.67829899839E+00 4.68889809122E+00 4.69731402408E+00 4.70347370177E+00 4.70729136131E+00 4.70866681463E+00 4.70748362278E+00 4.70363212355E+00 4.69709091122E+00 4.68786622120E+00 4.67596908041E+00 4.66141527973E+00 4.64422533198E+00 4.62442441568E+00 4.60204230486E+00 4.57711328505E+00 4.54967605615E+00 4.51977362222E+00 4.48745316897E+00 4.45276592933E+00 4.41576703765E+00 4.37651537328E+00 4.33507339401E+00 4.29150696024E+00 4.24588515045E+00 4.19828006884E+00 4.14876664586E+00 4.09742243241E+00 4.04432738864E+00 3.98956366798E+00 3.93321539746E+00 3.87536845496E+00 3.81611024434E+00 3.75552946928E+00 3.69371590656E+00 3.63076017971E+00 3.56675353369E+00 3.50178761152E+00 3.43595423348E+00 3.36934517961E+00 3.30205197632E+00 3.23416568762E+00 3.16577671169E+00 3.09697458332E+00 3.02784778276E+00 2.95845420008E+00 2.88890941328E+00 2.81929768895E+00 2.74970154733E+00 2.68020161018E+00 2.61087645760E+00 2.54180249387E+00 2.47305382267E+00 2.40470213188E+00 2.33681658793E+00 2.26946373992E+00 2.20270743362E+00 2.13660873511E+00 2.07122586438E+00 2.00661413857E+00 1.94282592488E+00 1.87991060305E+00 1.81791453721E+00 1.75688105698E+00 1.69685044761E+00 1.63785994891E+00 1.57994376278E+00 1.52313306912E+00 1.46745604969E+00 1.41293791985E+00 1.35960096764E+00 1.30746460008E+00 1.25654539624E+00 1.20685716673E+00 1.15841101929E+00 1.11121543016E+00 1.06527632066E+00 1.02059713883E+00 9.77178945489E-01 9.35020504494E-01 8.94118376663E-01 8.54467016953E-01 8.16058874482E-01 7.78884494925E-01 7.42932624854E-01 7.08190317570E-01 6.74643039975E-01 6.42274780050E-01 6.11068154486E-01 5.81004516045E-01 5.52064060226E-01 5.24225930821E-01 4.97468323976E-01 4.71768590375E-01 4.47103335191E-01 4.23448515477E-01 4.00779534685E-01 3.79071334039E-01 3.58298480505E-01 3.38435251143E-01 3.19455713643E-01 3.01333802901E-01 2.84043393489E-01 2.67558367938E-01 2.51852680770E-01 2.36900418229E-01 2.22675853727E-01 2.09153499011E-01 1.96308151112E-01 1.84114935132E-01 1.72549342990E-01 1.61587268215E-01 1.51205036937E-01 1.41379435220E-01 1.32087732902E-01 1.23307704104E-01 1.15017644614E-01 1.07196386303E-01 9.98233087987E-02 9.28783485857E-02 8.63420057384E-02 8.01953484802E-02 7.44200157522E-02 6.89982179785E-02 6.39127362017E-02 5.91469197581E-02 5.46846826496E-02 5.05104987615E-02 4.66093960627E-02 4.29669499142E-02 3.95692756022E-02 3.64030201958E-02 3.34553538240E-02 3.07139604518E-02 2.81670282258E-02 2.58032394518E-02 2.36117602555E-02 2.15822299721E-02 1.97047503016E-02 1.79698742622E-02 1.63685949687E-02 1.48923342575E-02 1.35329311798E-02 1.22826303784E-02 1.11340703654E-02 1.00802717140E-02 9.11462518133E-03 8.23087977376E-03 7.42313077297E-03 6.68580773622E-03 6.01366248882E-03 5.40175712593E-03 4.84545204276E-03 4.34039401242E-03 3.88250433221E-03 3.46796705924E-03 3.09321735706E-03 2.75492997516E-03 2.45000788318E-03 2.17557108141E-03 1.92894560891E-03 1.70765276963E-03 1.50939859618E-03 1.33206356971E-03 1.17369261306E-03 1.03248537299E-03 9.06786805583E-04 7.95078077248E-04 6.95967792117E-04 6.08183554619E-04 5.30563874276E-04 4.62050417897E-04 4.01680612468E-04 3.48580600303E-04 3.01958546236E-04 2.61098295007E-04 2.25353375402E-04 1.94141346277E-04 1.66938478213E-04 1.43274763320E-04 1.22729244644E-04 1.04925655580E-04 8.95283589386E-05 7.62385745122E-05 6.47908834691E-05 5.49499973976E-05 4.65077795018E-05 3.92805052140E-05 3.31063493743E-05 2.78430871018E-05 2.33659955579E-05 1.95659439574E-05 1.63476594106E-05 1.36281564807E-05 1.13353186915E-05 9.40662062624E-06 7.78797970064E-06 6.43272717117E-06 5.30068844051E-06 4.35736324210E-06 3.57319681679E-06 2.92293373070E-06 2.38504652000E-06 1.94123187958E-06 1.57596763381E-06 1.27612423723E-06 1.03062504560E-06 8.30150071361E-07 6.66878390788E-07 5.34264800841E-07 4.26846730390E-07 3.40077793211E-07 2.70184727863E-07 2.14044802424E-07 1.69081070364E-07 1.33173866355E-07 1.04589672923E-07 8.19028822379E-08 6.39506641282E-08 4.97880217274E-08 3.86493208682E-08 2.99161579360E-08 2.30906065265E-08 1.77730136694E-08 1.36436315471E-08 1.04474719457E-08 7.98185946954E-09 6.08623707411E-09 4.63384489787E-09 3.52495181671E-09 2.68136958984E-09 2.03247093591E-09 1.53838778137E-09 1.16016694392E-09 8.71702597299E-10 6.52512942001E-10 4.86589073769E-10 3.61465828477E-10 2.67474750732E-10 1.97145877697E-10 1.44730619727E-10 1.05822771749E-10 7.70587103184E-11 5.58812172744E-11 4.03542094267E-11 2.90180185391E-11 2.07768335940E-11 1.48115376657E-11 1.05125069773E-11 7.42803082216E-12 5.22489937880E-12 3.65842601089E-12 2.54975057453E-12 1.76873532478E-12 1.22113608001E-12 8.39025867010E-13 5.73680905576E-13 3.90321569398E-13 2.64243819344E-13 1.77987676982E-13 1.19275206908E-13 7.95165553324E-14 5.27331494800E-14 3.47856333954E-14 2.28232293084E-14 1.48931237639E-14 9.66487439352E-15 6.23703455182E-15 4.00222071556E-15 2.55348856061E-15 1.61974053049E-15 1.02141891760E-15 6.40290595127E-16 3.98962968130E-16 2.47079855169E-16 1.52075066448E-16 9.30166798491E-17 5.65342437236E-17 3.41409527703E-17 2.04841482573E-17 1.22096409806E-17 7.22927302173E-18 4.25164207597E-18 2.48343176999E-18 1.44060162987E-18 8.29839112919E-19 4.74639579718E-19 2.69535077457E-19 1.51952790154E-19 8.50363028015E-20 4.72348047699E-20 2.60400130704E-20 1.42462424480E-20 7.73388566228E-21 4.16573024956E-21 2.22606420943E-21 1.18003259611E-21 6.20463411570E-22 3.23563656126E-22 1.67332248739E-22 8.58085020974E-23 4.36280282003E-23 2.19906816208E-23 1.09875863364E-23 5.44137280343E-24 2.67059910161E-24 1.29883446937E-24 6.25884273687E-25 2.98798910819E-25 1.41305053775E-25 6.61878735418E-26 3.07035715448E-26 1.41037995879E-26 6.41455426136E-27 2.88818926525E-27 1.28723734498E-27 5.67818763927E-28 2.47869213527E-28 1.07063165635E-28 4.57514012411E-29 1.93400238383E-29 8.08609087299E-30 3.34340674339E-30 1.36693547799E-30 5.52526966665E-31 2.20771642043E-31 8.71875233219E-32 3.40269282049E-32 1.31215095528E-32 4.99887179117E-33 1.88113949439E-33 6.99139180241E-34 2.56585377248E-34 9.29730152586E-35 3.32559184137E-35 1.17407916053E-35 4.09044648860E-36 1.40610111911E-36 4.76827817621E-37 1.59489307494E-37 5.26079469123E-38 1.71097953425E-38 5.48573580381E-39 1.73357858825E-39 5.39873156640E-40 1.65653064289E-40 5.00709387371E-41 1.49062525289E-41 4.36983083964E-42 1.26121774044E-42 3.58310584784E-43 1.00181396429E-43 2.75603717507E-44 7.45873505645E-45 1.98535360763E-45 5.19651841917E-46 1.33720249761E-46 3.38219803171E-47 8.40666808310E-48 2.05294100562E-48 4.92447827178E-49 1.16005195951E-49 2.68305244975E-50 6.09137289452E-51 1.35716937944E-51 2.96676415738E-52 6.36147859177E-53 1.33768499058E-53 2.75780600612E-54 5.57287937148E-55 1.10355067254E-55 2.14087290801E-56 4.06783502309E-57 7.56826051054E-58 1.37839643539E-58 2.45686402643E-59 4.28448999445E-60 7.30817289839E-61 1.21895956317E-61 1.98755065170E-62 3.16717170604E-63 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 1.22802814186E-06 1.25911581836E-06 1.29099048293E-06 1.32367205827E-06 1.35718097141E-06 1.39153816649E-06 1.42676511786E-06 1.46288384349E-06 1.49991691874E-06 1.53788749047E-06 1.57681929150E-06 1.61673665545E-06 1.65766453195E-06 1.69962850222E-06 1.74265479510E-06 1.78677030338E-06 1.83200260066E-06 1.87837995858E-06 1.92593136445E-06 1.97468653943E-06 2.02467595704E-06 2.07593086227E-06 2.12848329105E-06 2.18236609032E-06 2.23761293855E-06 2.29425836677E-06 2.35233778016E-06 2.41188748021E-06 2.47294468735E-06 2.53554756427E-06 2.59973523975E-06 2.66554783311E-06 2.73302647931E-06 2.80221335462E-06 2.87315170303E-06 2.94588586323E-06 3.02046129636E-06 3.09692461441E-06 3.17532360936E-06 3.25570728304E-06 3.33812587776E-06 3.42263090773E-06 3.50927519124E-06 3.59811288366E-06 3.68919951133E-06 3.78259200624E-06 3.87834874160E-06 3.97652956835E-06 4.07719585255E-06 4.18041051377E-06 4.28623806436E-06 4.39474464982E-06 4.50599809013E-06 4.62006792211E-06 4.73702544293E-06 4.85694375464E-06 4.97989780988E-06 5.10596445870E-06 5.23522249663E-06 5.36775271390E-06 5.50363794593E-06 5.64296312516E-06 5.78581533405E-06 5.93228385959E-06 6.08246024904E-06 6.23643836721E-06 6.39431445507E-06 6.55618718994E-06 6.72215774715E-06 6.89232986330E-06 7.06680990106E-06 7.24570691567E-06 7.42913272312E-06 7.61720197000E-06 7.81003220518E-06 8.00774395327E-06 8.21046078997E-06 8.41830941928E-06 8.63141975271E-06 8.84992499048E-06 9.07396170475E-06 9.30366992501E-06 9.53919322559E-06 9.78067881538E-06 1.00282776299E-05 1.02821444254E-05 1.05424378761E-05 1.08093206728E-05 1.10829596248E-05 1.13635257644E-05 1.16511944532E-05 1.19461454923E-05 1.22485632344E-05 1.25586366992E-05 1.28765596910E-05 1.32025309208E-05 1.35367541294E-05 1.38794382156E-05 1.42307973663E-05 1.45910511906E-05 1.49604248569E-05 1.53391492338E-05 1.57274610340E-05 1.61256029630E-05 1.65338238699E-05 1.69523789036E-05 1.73815296721E-05 1.78215444056E-05 1.82726981250E-05 1.87352728128E-05 1.92095575901E-05 1.96958488970E-05 2.01944506778E-05 2.07056745710E-05 2.12298401044E-05 2.17672748943E-05 2.23183148507E-05 2.28833043869E-05 2.34625966349E-05 2.40565536662E-05 2.46655467181E-05 2.52899564253E-05 2.59301730585E-05 2.65865967677E-05 2.72596378327E-05 2.79497169192E-05 2.86572653420E-05 2.93827253343E-05 3.01265503243E-05 3.08892052186E-05 3.16711666925E-05 3.24729234884E-05 3.32949767205E-05 3.41378401887E-05 3.50020406996E-05 3.58881183954E-05 3.67966270916E-05 3.77281346234E-05 3.86832232002E-05 3.96624897698E-05 4.06665463914E-05 4.16960206178E-05 4.27515558880E-05 4.38338119292E-05 4.49434651690E-05 4.60812091584E-05 4.72477550049E-05 4.84438318172E-05 4.96701871609E-05 5.09275875252E-05 5.22168188027E-05 5.35386867798E-05 5.48940176408E-05 5.62836584842E-05 5.77084778515E-05 5.91693662709E-05 6.06672368130E-05 6.22030256620E-05 6.37776927006E-05 6.53922221096E-05 6.70476229833E-05 6.87449299601E-05 7.04852038686E-05 7.22695323914E-05 7.40990307439E-05 7.59748423720E-05 7.78981396661E-05 7.98701246941E-05 8.18920299524E-05 8.39651191361E-05 8.60906879291E-05 8.82700648131E-05 9.05046118982E-05 9.27957257741E-05 9.51448383828E-05 9.75534179132E-05 1.00022969719E-04 1.02555037258E-04 1.05151203060E-04 1.07813089711E-04 1.10542360870E-04 1.13340722309E-04 1.16209922977E-04 1.19151756095E-04 1.22168060274E-04 1.25260720665E-04 1.28431670139E-04 1.31682890490E-04 1.35016413680E-04 1.38434323100E-04 1.41938754882E-04 1.45531899223E-04 1.49216001762E-04 1.52993364980E-04 1.56866349637E-04 1.60837376249E-04 1.64908926600E-04 1.69083545293E-04 1.73363841339E-04 1.77752489786E-04 1.82252233395E-04 1.86865884345E-04 1.91596326001E-04 1.96446514706E-04 2.01419481633E-04 2.06518334675E-04 2.11746260392E-04 2.17106525997E-04 2.22602481400E-04 2.28237561296E-04 2.34015287318E-04 2.39939270232E-04 2.46013212191E-04 2.52240909054E-04 2.58626252751E-04 2.65173233717E-04 2.71885943385E-04 2.78768576740E-04 2.85825434941E-04 2.93060928004E-04 3.00479577564E-04 3.08086019690E-04 3.15885007787E-04 3.23881415564E-04 3.32080240074E-04 3.40486604840E-04 3.49105763053E-04 3.57943100851E-04 3.67004140685E-04 3.76294544766E-04 3.85820118603E-04 3.95586814626E-04 4.05600735905E-04 4.15868139962E-04 4.26395442674E-04 4.37189222283E-04 4.48256223503E-04 4.59603361731E-04 4.71237727362E-04 4.83166590221E-04 4.95397404097E-04 5.07937811401E-04 5.20795647933E-04 5.33978947775E-04 5.47495948309E-04 5.61355095356E-04 5.75565048447E-04 5.90134686233E-04 6.05073112023E-04 6.20389659467E-04 6.36093898382E-04 6.52195640723E-04 6.68704946709E-04 6.85632131098E-04 7.02987769629E-04 7.20782705614E-04 7.39028056711E-04 7.57735221857E-04 7.76915888382E-04 7.96582039301E-04 8.16745960787E-04 8.37420249839E-04 8.58617822141E-04 8.80351920113E-04 9.02636121179E-04 9.25484346229E-04 9.48910868305E-04 9.72930321500E-04 9.97557710087E-04 1.02280841787E-03 1.04869821779E-03 1.07524328175E-03 1.10246019067E-03 1.13036594490E-03 1.15897797473E-03 1.18831415131E-03 1.21839279779E-03 1.24923270069E-03 1.28085312167E-03 1.31327380951E-03 1.34651501239E-03 1.38059749055E-03 1.41554252918E-03 1.45137195174E-03 1.48810813348E-03 1.52577401543E-03 1.56439311869E-03 1.60398955903E-03 1.64458806196E-03 1.68621397810E-03 1.72889329897E-03 1.77265267316E-03 1.81751942292E-03 1.86352156119E-03 1.91068780900E-03 1.95904761335E-03 2.00863116556E-03 2.05946942001E-03 2.11159411343E-03 2.16503778461E-03 2.21983379466E-03 2.27601634775E-03 2.33362051236E-03 2.39268224310E-03 2.45323840304E-03 2.51532678664E-03 2.57898614323E-03 2.64425620105E-03 2.71117769200E-03 2.77979237685E-03 2.85014307127E-03 2.92227367231E-03 2.99622918577E-03 3.07205575401E-03 3.14980068468E-03 3.22951248003E-03 3.31124086702E-03 3.39503682811E-03 3.48095263296E-03 3.56904187076E-03 3.65935948349E-03 3.75196179996E-03 3.84690657070E-03 3.94425300373E-03 4.04406180127E-03 4.14639519726E-03 4.25131699595E-03 4.35889261134E-03 4.46918910765E-03 4.58227524085E-03 4.69822150113E-03 4.81710015649E-03 4.93898529741E-03 5.06395288266E-03 5.19208078613E-03 5.32344884501E-03 5.45813890904E-03 5.59623489099E-03 5.73782281847E-03 5.88299088696E-03 6.03182951420E-03 6.18443139589E-03 6.34089156279E-03 6.50130743929E-03 6.66577890333E-03 6.83440834788E-03 7.00730074392E-03 7.18456370499E-03 7.36630755332E-03 7.55264538761E-03 7.74369315247E-03 7.93956970958E-03 8.14039691063E-03 8.34629967202E-03 8.55740605144E-03 8.77384732628E-03 8.99575807406E-03 9.22327625472E-03 9.45654329507E-03 9.69570417518E-03 9.94090751698E-03 1.01923056750E-02 1.04500548293E-02 1.07143150808E-02 1.09852505487E-02 1.12630294707E-02 1.15478243051E-02 1.18398118357E-02 1.21391732795E-02 1.24460943967E-02 1.27607656031E-02 1.30833820861E-02 1.34141439224E-02 1.37532561996E-02 1.41009291402E-02 1.44573782284E-02 1.48228243405E-02 1.51974938780E-02 1.55816189043E-02 1.59754372841E-02 1.63791928272E-02 1.67931354340E-02 1.72175212467E-02 1.76526128021E-02 1.80986791894E-02 1.85559962109E-02 1.90248465473E-02 1.95055199261E-02 1.99983132949E-02 2.05035309976E-02 2.10214849562E-02 2.15524948558E-02 2.20968883344E-02 2.26550011767E-02 2.32271775136E-02 2.38137700248E-02 2.44151401472E-02 2.50316582880E-02 2.56637040423E-02 2.63116664163E-02 2.69759440551E-02 2.76569454763E-02 2.83550893087E-02 2.90708045362E-02 2.98045307479E-02 3.05567183933E-02 3.13278290438E-02 3.21183356595E-02 3.29287228627E-02 3.37594872171E-02 3.46111375136E-02 3.54841950618E-02 3.63791939891E-02 3.72966815454E-02 3.82372184148E-02 3.92013790347E-02 4.01897519212E-02 4.12029400018E-02 4.22415609554E-02 4.33062475600E-02 4.43976480467E-02 4.55164264628E-02 4.66632630414E-02 4.78388545794E-02 4.90439148235E-02 5.02791748638E-02 5.15453835362E-02 5.28433078324E-02 5.41737333189E-02 5.55374645642E-02 5.69353255750E-02 5.83681602405E-02 5.98368327862E-02 6.13422282363E-02 6.28852528850E-02 6.44668347777E-02 6.60879242003E-02 6.77494941791E-02 6.94525409887E-02 7.11980846706E-02 7.29871695607E-02 7.48208648266E-02 7.67002650144E-02 7.86264906053E-02 8.06006885822E-02 8.26240330055E-02 8.46977255994E-02 8.68229963471E-02 8.90011040967E-02 9.12333371763E-02 9.35210140191E-02 9.58654837979E-02 9.82681270697E-02 1.00730356429E-01 1.03253617173E-01 1.05839387970E-01 1.08489181547E-01 1.11204545376E-01 1.13987062376E-01 1.16838351621E-01 1.19760069057E-01 1.22753908225E-01 1.25821600997E-01 1.28964918315E-01 1.32185670940E-01 1.35485710202E-01 1.38866928765E-01 1.42331261395E-01 1.45880685725E-01 1.49517223041E-01 1.53242939055E-01 1.57059944696E-01 1.60970396892E-01 1.64976499365E-01 1.69080503417E-01 1.73284708725E-01 1.77591464129E-01 1.82003168423E-01 1.86522271139E-01 1.91151273332E-01 1.95892728356E-01 2.00749242632E-01 2.05723476418E-01 2.10818144554E-01 2.16036017209E-01 2.21379920608E-01 2.26852737749E-01 2.32457409097E-01 2.38196933266E-01 2.44074367675E-01 2.50092829183E-01 2.56255494695E-01 2.62565601746E-01 2.69026449044E-01 2.75641396987E-01 2.82413868137E-01 2.89347347654E-01 2.96445383687E-01 3.03711587716E-01 3.11149634838E-01 3.18763264004E-01 3.26556278183E-01 3.34532544474E-01 3.42695994139E-01 3.51050622557E-01 3.59600489105E-01 3.68349716948E-01 3.77302492732E-01 3.86463066179E-01 3.95835749582E-01 4.05424917174E-01 4.15235004385E-01 4.25270506965E-01 4.35535979973E-01 4.46036036615E-01 4.56775346930E-01 4.67758636310E-01 4.78990683843E-01 4.90476320473E-01 5.02220426962E-01 5.14227931639E-01 5.26503807939E-01 5.39053071694E-01 5.51880778187E-01 5.64992018944E-01 5.78391918247E-01 5.92085629356E-01 6.06078330428E-01 6.20375220105E-01 6.34981512770E-01 6.49902433433E-01 6.65143212249E-01 6.80709078627E-01 6.96605254925E-01 7.12836949707E-01 7.29409350530E-01 7.46327616245E-01 7.63596868794E-01 7.81222184460E-01 7.99208584560E-01 8.17561025549E-01 8.36284388499E-01 8.55383467934E-01 8.74862959988E-01 8.94727449847E-01 9.14981398448E-01 9.35629128410E-01 9.56674809140E-01 9.78122441097E-01 9.99975839170E-01 1.02223861513E+00 1.04491415912E+00 1.06800562015E+00 1.09151588549E+00 1.11544755907E+00 1.13980293867E+00 1.16458399195E+00 1.18979233124E+00 1.21542918711E+00 1.24149538056E+00 1.26799129384E+00 1.29491683993E+00 1.32227143042E+00 1.35005394196E+00 1.37826268114E+00 1.40689534769E+00 1.43594899599E+00 1.46541999497E+00 1.49530398606E+00 1.52559583942E+00 1.55628960824E+00 1.58737848111E+00 1.61885473242E+00 1.65070967065E+00 1.68293358469E+00 1.71551568796E+00 1.74844406035E+00 1.78170558802E+00 1.81528590087E+00 1.84916930780E+00 1.88333872967E+00 1.91777562986E+00 1.95245994255E+00 1.98736999869E+00 2.02248244948E+00 2.05777218763E+00 2.09321226625E+00 2.12877381536E+00 2.16442595626E+00 2.20013571352E+00 2.23586792492E+00 2.27158514928E+00 2.30724757221E+00 2.34281291009E+00 2.37823631218E+00 2.41347026124E+00 2.44846447256E+00 2.48316579187E+00 2.51751809219E+00 2.55146216991E+00 2.58493564036E+00 2.61787283324E+00 2.65020468821E+00 2.68185865111E+00 2.71275857104E+00 2.74282459909E+00 2.77197308891E+00 2.80011649995E+00 2.82716330382E+00 2.85301789458E+00 2.87758050359E+00 2.90074711978E+00 2.92240941626E+00 2.94245468407E+00 2.96076577423E+00 2.97722104913E+00 2.99169434439E+00 3.00405494255E+00 3.01416755985E+00 3.02189234760E+00 3.02708490970E+00 3.02959633786E+00 3.02927326640E+00 3.02595794840E+00 3.01948835514E+00 3.00969830106E+00 2.99641759620E+00 2.97947222868E+00 2.95868457942E+00 2.93387367183E+00 2.90485545895E+00 2.87144315102E+00 2.83344758612E+00 2.79067764710E+00 2.74294072774E+00 2.69004325136E+00 2.63179124521E+00 2.56799097389E+00 2.49844963531E+00 2.42297612255E+00 2.34138185514E+00 2.25377374978E+00 2.16781733363E+00 2.08355838224E+00 2.00103920084E+00 1.92029856777E+00 1.84137168472E+00 1.76429013414E+00 1.68908184369E+00 1.61577105850E+00 1.54437832169E+00 1.47492046415E+00 1.40741060465E+00 1.34185816155E+00 1.27826887746E+00 1.21664485809E+00 1.15698462665E+00 1.09928319445E+00 1.04353214838E+00 9.89719755264E-01 9.37831082480E-01 8.87848133817E-01 8.39749998887E-01 7.93513013966E-01 7.49110931751E-01 7.06515097313E-01 6.65694627462E-01 6.26616590894E-01 5.89246186769E-01 5.53546919828E-01 5.19480770654E-01 4.87008360243E-01 4.56089108537E-01 4.26681386964E-01 3.98742665348E-01 3.72229653652E-01 3.47098439111E-01 3.23304619198E-01 3.00803430795E-01 2.79549875758E-01 2.59498842932E-01 2.40605226531E-01 2.22824040694E-01 2.06110529932E-01 1.90420275154E-01 1.75709294939E-01 1.61934141693E-01 1.49051992396E-01 1.37020733634E-01 1.25799040690E-01 1.15346450474E-01 1.05623428156E-01 9.65914273997E-02 8.82129441367E-02 8.04515638780E-02 7.32720026024E-02 6.66401412967E-02 6.05230542640E-02 5.48890313533E-02 4.97075942899E-02 4.49495073213E-02 4.05867824127E-02 3.65926792516E-02 3.29417003406E-02 2.96095814718E-02 2.65732778913E-02 2.38109464714E-02 2.13019242182E-02 1.90267034432E-02 1.69669039352E-02 1.51052424632E-02 1.34254999429E-02 1.19124865920E-02 1.05520053931E-02 9.33081417419E-03 8.23658660579E-03 7.25787240173E-03 6.38405699566E-03 5.60532095127E-03 4.91259934746E-03 4.29754136276E-03 3.75247026545E-03 3.27034399808E-03 2.84471652606E-03 2.46970010218E-03 2.13992858006E-03 1.85052189173E-03 1.59705178676E-03 1.37550891343E-03 1.18227130581E-03 1.01407432529E-03 8.67982090272E-04 7.41360413912E-04 6.31851257429E-04 5.37348694443E-04 4.55976371587E-04 3.86066441022E-04 3.26139932234E-04 2.74888523207E-04 2.31157664896E-04 1.93931007783E-04 1.62316075116E-04 1.35531124185E-04 1.12893134649E-04 9.38068613320E-05 7.77548881070E-05 6.42886193399E-05 5.30201458019E-05 4.36149229520E-05 3.57852009277E-05 2.92841474136E-05 2.39006067188E-05 1.94544408134E-05 1.57924007077E-05 1.27844793317E-05 1.03206999587E-05 8.30829715164E-06 6.66925016643E-06 5.33813167923E-06 4.26023759166E-06 3.38996647403E-06 2.68941991886E-06 2.12719767156E-06 1.67736387203E-06 1.31856306873E-06 1.03326684887E-06 8.07133961558E-07 6.28468693181E-07 4.87763987288E-07 3.77317387584E-07 2.90909326928E-07 2.23534592969E-07 1.71178979107E-07 1.30634185209E-07 9.93449738883E-08 7.52834233587E-08 5.68458552615E-08 4.27686637228E-08 3.20598383392E-08 2.39434666872E-08 1.78149288133E-08 1.32048640661E-08 9.75030624200E-09 7.17165247554E-09 5.25436028224E-09 3.83446082323E-09 2.78713947795E-09 2.01777138823E-09 1.45491351841E-09 1.04484928538E-09 7.47359869364E-10 5.32460478578E-10 3.77892327926E-10 2.67203821665E-10 1.88289047604E-10 1.32279599598E-10 9.27081357744E-11 6.48799553053E-11 4.54030770626E-11 3.16238587464E-11 2.19216977853E-11 1.51229966367E-11 1.03819786786E-11 7.09210152242E-12 4.82054202555E-12 3.25998917368E-12 2.19335374282E-12 1.46806729674E-12 9.77462645342E-13 6.47355860535E-13 4.26428399332E-13 2.79370347258E-13 1.82018817292E-13 1.17930002987E-13 7.59756142909E-14 4.86670994437E-14 3.09939601461E-14 1.96231018160E-14 1.23502405752E-14 7.72623862169E-15 4.80411161772E-15 2.96877462404E-15 1.82316925832E-15 1.11257263489E-15 6.74600927066E-16 4.06394444810E-16 2.43217876382E-16 1.44595336535E-16 8.53862299271E-17 5.00794287197E-17 2.91696760896E-17 1.68720095967E-17 9.69006639646E-18 5.52551416837E-18 3.12799047747E-18 1.75778277750E-18 9.80464370269E-19 5.42780851416E-19 2.98196168566E-19 1.62563361294E-19 8.79314148389E-20 4.71871135804E-20 2.51198692450E-20 1.32642304856E-20 6.94661194849E-21 3.60782393090E-21 1.85803297363E-21 9.48748702520E-22 4.80277247954E-22 2.41006438325E-22 1.19870766474E-22 5.90877611213E-23 2.88623983776E-23 1.39690973634E-23 6.69815394529E-24 3.18157342394E-24 1.49684692436E-24 6.97444058247E-25 3.21799388960E-25 1.47011580381E-25 6.64896983270E-26 2.97672686815E-26 1.31901601687E-26 5.78404377391E-27 2.50972861203E-27 1.07740306507E-27 4.57538619324E-28 1.92183696302E-28 7.98334607056E-29 3.27923583432E-29 1.33173718471E-29 5.34639099146E-30 2.12146847464E-30 8.31922176319E-31 3.22355329349E-31 1.23403653687E-31 4.66655460503E-32 1.74290288183E-32 6.42822426885E-33 2.34089262164E-33 8.41541213369E-34 2.98608814351E-34 1.04566415546E-34 3.61303623386E-35 1.23160129772E-35 4.14106447154E-36 1.37316668281E-36 4.48981421163E-37 1.44727417064E-37 4.59846722315E-38 1.43991467302E-38 4.44265246318E-39 1.35035944102E-39 4.04274558882E-40 1.19190299975E-40 3.45986645499E-41 9.88660250432E-42 2.78047149265E-42 7.69461144350E-43 2.09490318182E-43 5.60997936199E-44 1.47736742997E-44 3.82520303826E-45 9.73569120184E-46 2.43518443341E-46 5.98487326364E-47 1.44490785138E-47 3.42602310333E-48 7.97640118144E-49 1.82301664938E-49 4.08921875911E-50 9.00023733784E-51 1.94324715988E-51 4.11488621191E-52 8.54352808632E-53 1.73883706523E-53 3.46827855177E-54 6.77785616563E-55 1.29742566994E-55 2.43204406119E-56 4.46318444207E-57 8.01653806240E-58 1.40890021592E-58 2.42217885996E-59 4.07219796859E-60 6.69334601846E-61 1.07529100340E-61 1.68792116334E-62 2.58818438951E-63 3.87549413580E-64 5.66523677949E-65 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 -4.31873705302E-05 -4.37306011090E-05 -4.42806647000E-05 -4.48376472523E-05 -4.54016357964E-05 -4.59727184572E-05 -4.65509844682E-05 -4.71365241856E-05 -4.77294291017E-05 -4.83297918601E-05 -4.89377062694E-05 -4.95532673185E-05 -5.01765711908E-05 -5.08077152797E-05 -5.14467982039E-05 -5.20939198222E-05 -5.27491812499E-05 -5.34126848740E-05 -5.40845343693E-05 -5.47648347148E-05 -5.54536922102E-05 -5.61512144920E-05 -5.68575105509E-05 -5.75726907483E-05 -5.82968668341E-05 -5.90301519637E-05 -5.97726607159E-05 -6.05245091108E-05 -6.12858146279E-05 -6.20566962244E-05 -6.28372743539E-05 -6.36276709851E-05 -6.44280096211E-05 -6.52384153183E-05 -6.60590147063E-05 -6.68899360077E-05 -6.77313090577E-05 -6.85832653248E-05 -6.94459379315E-05 -7.03194616744E-05 -7.12039730461E-05 -7.20996102559E-05 -7.30065132516E-05 -7.39248237417E-05 -7.48546852169E-05 -7.57962429732E-05 -7.67496441340E-05 -7.77150376736E-05 -7.86925744401E-05 -7.96824071792E-05 -8.06846905581E-05 -8.16995811895E-05 -8.27272376560E-05 -8.37678205354E-05 -8.48214924251E-05 -8.58884179680E-05 -8.69687638781E-05 -8.80626989664E-05 -8.91703941677E-05 -9.02920225668E-05 -9.14277594258E-05 -9.25777822116E-05 -9.37422706234E-05 -9.49214066210E-05 -9.61153744532E-05 -9.73243606863E-05 -9.85485542337E-05 -9.97881463853E-05 -1.01043330837E-04 -1.02314303722E-04 -1.03601263640E-04 -1.04904411689E-04 -1.06223951498E-04 -1.07560089256E-04 -1.08913033746E-04 -1.10282996379E-04 -1.11670191223E-04 -1.13074835041E-04 -1.14497147322E-04 -1.15937350317E-04 -1.17395669072E-04 -1.18872331463E-04 -1.20367568235E-04 -1.21881613034E-04 -1.23414702446E-04 -1.24967076034E-04 -1.26538976374E-04 -1.28130649092E-04 -1.29742342908E-04 -1.31374309666E-04 -1.33026804383E-04 -1.34700085281E-04 -1.36394413831E-04 -1.38110054796E-04 -1.39847276266E-04 -1.41606349706E-04 -1.43387549997E-04 -1.45191155475E-04 -1.47017447981E-04 -1.48866712900E-04 -1.50739239208E-04 -1.52635319515E-04 -1.54555250116E-04 -1.56499331029E-04 -1.58467866051E-04 -1.60461162798E-04 -1.62479532756E-04 -1.64523291333E-04 -1.66592757903E-04 -1.68688255857E-04 -1.70810112658E-04 -1.72958659887E-04 -1.75134233296E-04 -1.77337172864E-04 -1.79567822844E-04 -1.81826531824E-04 -1.84113652776E-04 -1.86429543113E-04 -1.88774564745E-04 -1.91149084138E-04 -1.93553472364E-04 -1.95988105170E-04 -1.98453363026E-04 -2.00949631193E-04 -2.03477299776E-04 -2.06036763792E-04 -2.08628423226E-04 -2.11252683098E-04 -2.13909953523E-04 -2.16600649778E-04 -2.19325192364E-04 -2.22084007074E-04 -2.24877525061E-04 -2.27706182900E-04 -2.30570422662E-04 -2.33470691981E-04 -2.36407444125E-04 -2.39381138064E-04 -2.42392238545E-04 -2.45441216164E-04 -2.48528547440E-04 -2.51654714887E-04 -2.54820207092E-04 -2.58025518794E-04 -2.61271150955E-04 -2.64557610843E-04 -2.67885412112E-04 -2.71255074879E-04 -2.74667125807E-04 -2.78122098191E-04 -2.81620532035E-04 -2.85162974142E-04 -2.88749978197E-04 -2.92382104853E-04 -2.96059921824E-04 -2.99784003967E-04 -3.03554933376E-04 -3.07373299474E-04 -3.11239699101E-04 -3.15154736615E-04 -3.19119023978E-04 -3.23133180858E-04 -3.27197834725E-04 -3.31313620949E-04 -3.35481182896E-04 -3.39701172037E-04 -3.43974248043E-04 -3.48301078890E-04 -3.52682340968E-04 -3.57118719181E-04 -3.61610907059E-04 -3.66159606865E-04 -3.70765529704E-04 -3.75429395638E-04 -3.80151933796E-04 -3.84933882489E-04 -3.89775989330E-04 -3.94679011343E-04 -3.99643715090E-04 -4.04670876787E-04 -4.09761282429E-04 -4.14915727908E-04 -4.20135019147E-04 -4.25419972215E-04 -4.30771413468E-04 -4.36190179669E-04 -4.41677118124E-04 -4.47233086815E-04 -4.52858954533E-04 -4.58555601018E-04 -4.64323917095E-04 -4.70164804813E-04 -4.76079177591E-04 -4.82067960358E-04 -4.88132089701E-04 -4.94272514012E-04 -5.00490193635E-04 -5.06786101023E-04 -5.13161220884E-04 -5.19616550341E-04 -5.26153099090E-04 -5.32771889553E-04 -5.39473957049E-04 -5.46260349947E-04 -5.53132129840E-04 -5.60090371705E-04 -5.67136164081E-04 -5.74270609233E-04 -5.81494823331E-04 -5.88809936626E-04 -5.96217093626E-04 -6.03717453279E-04 -6.11312189157E-04 -6.19002489639E-04 -6.26789558102E-04 -6.34674613109E-04 -6.42658888603E-04 -6.50743634105E-04 -6.58930114905E-04 -6.67219612272E-04 -6.75613423648E-04 -6.84112862862E-04 -6.92719260331E-04 -7.01433963277E-04 -7.10258335939E-04 -7.19193759787E-04 -7.28241633746E-04 -7.37403374417E-04 -7.46680416300E-04 -7.56074212026E-04 -7.65586232585E-04 -7.75217967563E-04 -7.84970925377E-04 -7.94846633518E-04 -8.04846638792E-04 -8.14972507570E-04 -8.25225826035E-04 -8.35608200438E-04 -8.46121257353E-04 -8.56766643939E-04 -8.67546028202E-04 -8.78461099262E-04 -8.89513567626E-04 -9.00705165460E-04 -9.12037646867E-04 -9.23512788172E-04 -9.35132388203E-04 -9.46898268581E-04 -9.58812274017E-04 -9.70876272604E-04 -9.83092156121E-04 -9.95461840339E-04 -1.00798726533E-03 -1.02067039577E-03 -1.03351322127E-03 -1.04651775671E-03 -1.05968604252E-03 -1.07302014505E-03 -1.08652215692E-03 -1.10019419729E-03 -1.11403841229E-03 -1.12805697530E-03 -1.14225208735E-03 -1.15662597744E-03 -1.17118090296E-03 -1.18591914998E-03 -1.20084303369E-03 -1.21595489877E-03 -1.23125711973E-03 -1.24675210136E-03 -1.26244227908E-03 -1.27833011934E-03 -1.29441812008E-03 -1.31070881108E-03 -1.32720475440E-03 -1.34390854481E-03 -1.36082281023E-03 -1.37795021214E-03 -1.39529344601E-03 -1.41285524182E-03 -1.43063836443E-03 -1.44864561409E-03 -1.46687982689E-03 -1.48534387524E-03 -1.50404066836E-03 -1.52297315276E-03 -1.54214431273E-03 -1.56155717085E-03 -1.58121478849E-03 -1.60112026636E-03 -1.62127674500E-03 -1.64168740531E-03 -1.66235546913E-03 -1.68328419976E-03 -1.70447690253E-03 -1.72593692533E-03 -1.74766765925E-03 -1.76967253912E-03 -1.79195504408E-03 -1.81451869825E-03 -1.83736707127E-03 -1.86050377897E-03 -1.88393248398E-03 -1.90765689634E-03 -1.93168077421E-03 -1.95600792449E-03 -1.98064220348E-03 -2.00558751758E-03 -2.03084782400E-03 -2.05642713142E-03 -2.08232950070E-03 -2.10855904568E-03 -2.13511993381E-03 -2.16201638699E-03 -2.18925268226E-03 -2.21683315262E-03 -2.24476218780E-03 -2.27304423506E-03 -2.30168379999E-03 -2.33068544735E-03 -2.36005380191E-03 -2.38979354930E-03 -2.41990943687E-03 -2.45040627457E-03 -2.48128893589E-03 -2.51256235869E-03 -2.54423154624E-03 -2.57630156806E-03 -2.60877756095E-03 -2.64166472995E-03 -2.67496834932E-03 -2.70869376357E-03 -2.74284638852E-03 -2.77743171228E-03 -2.81245529641E-03 -2.84792277692E-03 -2.88383986546E-03 -2.92021235038E-03 -2.95704609796E-03 -2.99434705351E-03 -3.03212124260E-03 -3.07037477228E-03 -3.10911383231E-03 -3.14834469645E-03 -3.18807372371E-03 -3.22830735969E-03 -3.26905213794E-03 -3.31031468127E-03 -3.35210170322E-03 -3.39442000940E-03 -3.43727649902E-03 -3.48067816631E-03 -3.52463210207E-03 -3.56914549520E-03 -3.61422563425E-03 -3.65987990905E-03 -3.70611581237E-03 -3.75294094156E-03 -3.80036300024E-03 -3.84838980013E-03 -3.89702926274E-03 -3.94628942126E-03 -3.99617842238E-03 -4.04670452822E-03 -4.09787611826E-03 -4.14970169135E-03 -4.20218986770E-03 -4.25534939102E-03 -4.30918913057E-03 -4.36371808343E-03 -4.41894537663E-03 -4.47488026948E-03 -4.53153215590E-03 -4.58891056677E-03 -4.64702517241E-03 -4.70588578506E-03 -4.76550236142E-03 -4.82588500530E-03 -4.88704397028E-03 -4.94898966247E-03 -5.01173264333E-03 -5.07528363254E-03 -5.13965351096E-03 -5.20485332367E-03 -5.27089428307E-03 -5.33778777207E-03 -5.40554534734E-03 -5.47417874268E-03 -5.54369987245E-03 -5.61412083510E-03 -5.68545391676E-03 -5.75771159499E-03 -5.83090654257E-03 -5.90505163141E-03 -5.98015993658E-03 -6.05624474042E-03 -6.13331953676E-03 -6.21139803530E-03 -6.29049416607E-03 -6.37062208401E-03 -6.45179617370E-03 -6.53403105418E-03 -6.61734158396E-03 -6.70174286617E-03 -6.78725025374E-03 -6.87387935490E-03 -6.96164603872E-03 -7.05056644083E-03 -7.14065696933E-03 -7.23193431082E-03 -7.32441543670E-03 -7.41811760954E-03 -7.51305838970E-03 -7.60925564215E-03 -7.70672754345E-03 -7.80549258899E-03 -7.90556960039E-03 -8.00697773317E-03 -8.10973648461E-03 -8.21386570188E-03 -8.31938559038E-03 -8.42631672239E-03 -8.53468004593E-03 -8.64449689389E-03 -8.75578899349E-03 -8.86857847600E-03 -8.98288788676E-03 -9.09874019548E-03 -9.21615880695E-03 -9.33516757201E-03 -9.45579079887E-03 -9.57805326482E-03 -9.70198022826E-03 -9.82759744120E-03 -9.95493116202E-03 -1.00840081688E-02 -1.02148557729E-02 -1.03475018332E-02 -1.04819747705E-02 -1.06183035826E-02 -1.07565178599E-02 -1.08966478013E-02 -1.10387242309E-02 -1.11827786149E-02 -1.13288430792E-02 -1.14769504279E-02 -1.16271341618E-02 -1.17794284980E-02 -1.19338683896E-02 -1.20904895471E-02 -1.22493284592E-02 -1.24104224150E-02 -1.25738095273E-02 -1.27395287556E-02 -1.29076199308E-02 -1.30781237802E-02 -1.32510819538E-02 -1.34265370512E-02 -1.36045326489E-02 -1.37851133298E-02 -1.39683247121E-02 -1.41542134808E-02 -1.43428274185E-02 -1.45342154390E-02 -1.47284276208E-02 -1.49255152422E-02 -1.51255308172E-02 -1.53285281336E-02 -1.55345622911E-02 -1.57436897413E-02 -1.59559683295E-02 -1.61714573369E-02 -1.63902175252E-02 -1.66123111819E-02 -1.68378021678E-02 -1.70667559656E-02 -1.72992397305E-02 -1.75353223422E-02 -1.77750744590E-02 -1.80185685735E-02 -1.82658790701E-02 -1.85170822844E-02 -1.87722565653E-02 -1.90314823383E-02 -1.92948421712E-02 -1.95624208422E-02 -1.98343054105E-02 -2.01105852884E-02 -2.03913523168E-02 -2.06767008426E-02 -2.09667277992E-02 -2.12615327888E-02 -2.15612181688E-02 -2.18658891398E-02 -2.21756538373E-02 -2.24906234262E-02 -2.28109121982E-02 -2.31366376730E-02 -2.34679207024E-02 -2.38048855779E-02 -2.41476601420E-02 -2.44963759030E-02 -2.48511681535E-02 -2.52121760930E-02 -2.55795429547E-02 -2.59534161353E-02 -2.63339473306E-02 -2.67212926743E-02 -2.71156128817E-02 -2.75170733979E-02 -2.79258445512E-02 -2.83421017103E-02 -2.87660254476E-02 -2.91978017073E-02 -2.96376219783E-02 -3.00856834733E-02 -3.05421893128E-02 -3.10073487155E-02 -3.14813771936E-02 -3.19644967550E-02 -3.24569361111E-02 -3.29589308914E-02 -3.34707238640E-02 -3.39925651630E-02 -3.45247125224E-02 -3.50674315175E-02 -3.56209958128E-02 -3.61856874170E-02 -3.67617969458E-02 -3.73496238920E-02 -3.79494769032E-02 -3.85616740672E-02 -3.91865432053E-02 -3.98244221740E-02 -4.04756591745E-02 -4.11406130705E-02 -4.18196537146E-02 -4.25131622831E-02 -4.32215316194E-02 -4.39451665861E-02 -4.46844844263E-02 -4.54399151327E-02 -4.62119018269E-02 -4.70009011469E-02 -4.78073836438E-02 -4.86318341872E-02 -4.94747523802E-02 -5.03366529829E-02 -5.12180663449E-02 -5.21195388468E-02 -5.30416333505E-02 -5.39849296575E-02 -5.49500249768E-02 -5.59375344002E-02 -5.69480913859E-02 -5.79823482502E-02 -5.90409766664E-02 -6.01246681709E-02 -6.12341346762E-02 -6.23701089906E-02 -6.35333453430E-02 -6.47246199135E-02 -6.59447313688E-02 -6.71945014018E-02 -6.84747752734E-02 -6.97864223585E-02 -7.11303366922E-02 -7.25074375173E-02 -7.39186698310E-02 -7.53650049307E-02 -7.68474409561E-02 -7.83670034274E-02 -7.99247457782E-02 -8.15217498807E-02 -8.31591265621E-02 -8.48380161099E-02 -8.65595887652E-02 -8.83250452002E-02 -9.01356169790E-02 -9.19925669986E-02 -9.38971899081E-02 -9.58508125024E-02 -9.78547940882E-02 -9.99105268191E-02 -1.02019435996E-01 -1.04182980331E-01 -1.06402652164E-01 -1.08679977646E-01 -1.11016516855E-01 -1.13413863875E-01 -1.15873646803E-01 -1.18397527699E-01 -1.20987202464E-01 -1.23644400646E-01 -1.26370885161E-01 -1.29168451931E-01 -1.32038929431E-01 -1.34984178130E-01 -1.38006089832E-01 -1.41106586902E-01 -1.44287621366E-01 -1.47551173892E-01 -1.50899252622E-01 -1.54333891871E-01 -1.57857150661E-01 -1.61471111101E-01 -1.65177876587E-01 -1.68979569824E-01 -1.72878330661E-01 -1.76876313714E-01 -1.80975685786E-01 -1.85178623061E-01 -1.89487308069E-01 -1.93903926400E-01 -1.98430663174E-01 -2.03069699240E-01 -2.07823207100E-01 -2.12693346548E-01 -2.17682260012E-01 -2.22792067590E-01 -2.28024861766E-01 -2.33382701799E-01 -2.38867607783E-01 -2.44481554350E-01 -2.50226464028E-01 -2.56104200240E-01 -2.62116559928E-01 -2.68265265813E-01 -2.74551958273E-01 -2.80978186844E-01 -2.87545401344E-01 -2.94254942609E-01 -3.01108032854E-01 -3.08105765669E-01 -3.15249095634E-01 -3.22538827587E-01 -3.29975605543E-01 -3.37559901281E-01 -3.45292002623E-01 -3.53172001422E-01 -3.61199781282E-01 -3.69375005046E-01 -3.77697102089E-01 -3.86165255438E-01 -3.94778388787E-01 -4.03535153438E-01 -4.12433915225E-01 -4.21472741491E-01 -4.30649388176E-01 -4.39961287083E-01 -4.49405533421E-01 -4.58978873688E-01 -4.68677693995E-01 -4.78498008936E-01 -4.88435451097E-01 -4.98485261325E-01 -5.08642279875E-01 -5.18900938551E-01 -5.29255253983E-01 -5.39698822170E-01 -5.50224814430E-01 -5.60825974902E-01 -5.71494619753E-01 -5.82222638237E-01 -5.93001495754E-01 -6.03822239073E-01 -6.14675503852E-01 -6.25551524620E-01 -6.36440147344E-01 -6.47330844720E-01 -6.58212734315E-01 -6.69074599658E-01 -6.79904914374E-01 -6.90691869434E-01 -7.01423403562E-01 -7.12087236829E-01 -7.22670907403E-01 -7.33161811421E-01 -7.43547245880E-01 -7.53814454421E-01 -7.63950675803E-01 -7.73943194833E-01 -7.83779395443E-01 -7.93446815534E-01 -8.02933203157E-01 -8.12226573497E-01 -8.21315266071E-01 -8.30188001450E-01 -8.38833936747E-01 -8.47242719004E-01 -8.55404535533E-01 -8.63310160200E-01 -8.70950994502E-01 -8.78319102266E-01 -8.85407236696E-01 -8.92208858408E-01 -8.98718143098E-01 -9.04929977393E-01 -9.10839941439E-01 -9.16444276797E-01 -9.21739838226E-01 -9.26724027989E-01 -9.31394711446E-01 -9.35750112795E-01 -9.39788690024E-01 -9.43508988365E-01 -9.46909471812E-01 -9.49988332626E-01 -9.52743279122E-01 -9.55171302542E-01 -9.57268424305E-01 -9.59029425572E-01 -9.60447561684E-01 -9.61514264823E-01 -9.62218838966E-01 -9.62550721829E-01 -9.62507980607E-01 -9.62091347252E-01 -9.61301906561E-01 -9.60141095525E-01 -9.58610702105E-01 -9.56712863430E-01 -9.54450063432E-01 -9.51825129918E-01 -9.48841231101E-01 -9.45501871574E-01 -9.41810887768E-01 -9.37772442882E-01 -9.33391021309E-01 -9.28671422572E-01 -9.23618754781E-01 -9.18238427625E-01 -9.12536144924E-01 -9.06517896752E-01 -9.00189951145E-01 -8.93558845429E-01 -8.86631377163E-01 -8.79414594740E-01 -8.71915787651E-01 -8.64142476444E-01 -8.56102402385E-01 -8.47803516851E-01 -8.39253970485E-01 -8.30462102110E-01 -8.21436427445E-01 -8.12185627634E-01 -8.02718537616E-01 -7.93044134341E-01 -7.83171524876E-01 -7.73109934396E-01 -7.62868694104E-01 -7.52457229074E-01 -7.41885046056E-01 -7.31155576922E-01 -7.20284522176E-01 -7.09281559122E-01 -6.98156397631E-01 -6.86918767965E-01 -6.75578408655E-01 -6.64145054449E-01 -6.52628424330E-01 -6.41038209651E-01 -6.29384062358E-01 -6.17675583352E-01 -6.05922310973E-01 -5.94133709642E-01 -5.82319158648E-01 -5.70487941118E-01 -5.58649233157E-01 -5.46812093193E-01 -5.34985451517E-01 -5.23178100049E-01 -5.11398682330E-01 -4.99655683760E-01 -4.87957422093E-01 -4.76312038202E-01 -4.64727487141E-01 -4.53211529494E-01 -4.41771723063E-01 -4.30415414879E-01 -4.19149733577E-01 -4.07981582144E-01 -3.96917631062E-01 -3.85964311861E-01 -3.75127811114E-01 -3.64414064874E-01 -3.53828753595E-01 -3.43377297539E-01 -3.33064852690E-01 -3.22896307197E-01 -3.12876278360E-01 -3.03009110165E-01 -2.93298871386E-01 -2.83749354258E-01 -2.74364073738E-01 -2.65146267334E-01 -2.56098895530E-01 -2.47224642782E-01 -2.38525919091E-01 -2.30004862135E-01 -2.21663339960E-01 -2.13502954199E-01 -2.05525043810E-01 -1.97730689311E-01 -1.90120717491E-01 -1.82695706556E-01 -1.75455991707E-01 -1.68401671096E-01 -1.61532612153E-01 -1.54848458224E-01 -1.48348635521E-01 -1.42032360320E-01 -1.35898646400E-01 -1.29946312671E-01 -1.24173990973E-01 -1.18580134007E-01 -1.13163023379E-01 -1.07920777705E-01 -1.02851360788E-01 -9.79525898006E-02 -9.32221434781E-02 -8.86575702931E-02 -8.42562965854E-02 -8.00156346369E-02 -7.59327906730E-02 -7.20048727774E-02 -6.82288987074E-02 -6.46018036009E-02 -6.11204475660E-02 -5.77816231460E-02 -5.45820626551E-02 -5.15184453797E-02 -4.85874046416E-02 -4.57855347209E-02 -4.31093976359E-02 -4.05555297780E-02 -3.81204483998E-02 -3.58006579534E-02 -3.35926562775E-02 -3.14929406302E-02 -2.94980135622E-02 -2.76043886298E-02 -2.58085959383E-02 -2.41071875141E-02 -2.24967424966E-02 -2.09738721445E-02 -1.95352246474E-02 -1.81774897370E-02 -1.68974030872E-02 -1.56917504967E-02 -1.45573718454E-02 -1.34911648150E-02 -1.24900883693E-02 -1.15511659840E-02 -1.06714886214E-02 -9.84821744427E-03 -9.07858626433E-03 -8.35990372185E-03 -7.68955519460E-03 -7.06500443524E-03 -6.48379493746E-03 -5.94355103292E-03 -5.44197872214E-03 -4.97686624381E-03 -4.54608438833E-03 -4.14758656270E-03 -3.77940861496E-03 -3.43966842736E-03 -3.12656528872E-03 -2.83837905706E-03 -2.57346912442E-03 -2.33027319660E-03 -2.10730590084E-03 -1.90315723517E-03 -1.71649087327E-03 -1.54604233892E-03 -1.39061706432E-03 -1.24908834640E-03 -1.12039521521E-03 -1.00354022817E-03 -8.97587203812E-04 -8.01658908134E-04 -7.14934706243E-04 -6.36648191502E-04 -5.66084803767E-04 -5.02579447702E-04 -4.45514121475E-04 -3.94315565449E-04 -3.48452939766E-04 -3.07435538955E-04 -2.70810550985E-04 -2.38160867402E-04 -2.09102950447E-04 -1.83284762326E-04 -1.60383761056E-04 -1.40104966633E-04 -1.22179100566E-04 -1.06360801180E-04 -9.24269164737E-05 -8.01748757155E-05 -6.94211404357E-05 -5.99997349378E-05 -5.17608559971E-05 -4.45695609735E-05 -3.83045331809E-05 -3.28569230016E-05 -2.81292629285E-05 -2.40344544460E-05 -2.04948244292E-05 -1.74412485502E-05 -1.48123390183E-05 -1.25536938608E-05 -1.06172048553E-05 -8.96042116294E-06 -7.54596568006E-06 -6.34100111170E-06 -5.31674278724E-06 -4.44801527097E-06 -3.71284987336E-06 -3.09212023703E-06 -2.56921325365E-06 -2.12973266188E-06 -1.76123277922E-06 -1.45298385790E-06 -1.19578987098E-06 -9.81721401131E-07 -8.03987786364E-07 -6.56791920330E-07 -5.35197522556E-07 -4.35012225533E-07 -3.52684884458E-07 -2.85215640114E-07 -2.30077385878E-07 -1.85147405966E-07 -1.48648063505E-07 -1.19095524006E-07 -9.52556023179E-08 -7.61059199099E-08 -6.08036548928E-08 -4.84374699470E-08 -3.84986175982E-08 -3.05080083772E-08 -2.41030169159E-08 -1.89845962798E-08 -1.49068923728E-08 -1.16684138133E-08 -9.10454907845E-09 -7.08124647875E-09 -5.48969421139E-09 -4.24185745325E-09 -3.26674726970E-09 -2.50731214727E-09 -1.91785732567E-09 -1.46190987437E-09 -1.11045885271E-09 -8.40509886246E-10 -6.33902320423E-10 -4.76344822462E-10 -3.56632020313E-10 -2.66010592674E-10 -1.97668252004E-10 -1.46323382598E-10 -1.07896790970E-10 -7.92501718626E-11 -5.79785597318E-11 -4.22462851087E-11 -3.06578444437E-11 -2.21566712067E-11 -1.59461099607E-11 -1.14279832800E-11 -8.15503833552E-12 -5.79429583266E-12 -4.09892482987E-12 -2.88675522753E-12 -2.02393458162E-12 -1.41255368931E-12 -9.81319909447E-13 -6.78560019690E-13 -4.66995265439E-13 -3.19858178449E-13 -2.18020388499E-13 -1.47878484906E-13 -9.98054695555E-14 -6.70221035791E-14 -4.47784115868E-14 -2.97631188462E-14 -1.96797318637E-14 -1.29438181481E-14 -8.46796903063E-15 -5.50985960661E-15 -3.56546872989E-15 -2.29444471822E-15 -1.46822662566E-15 -9.34183956524E-16 -5.90968618271E-16 -3.71670115700E-16 -2.32370065448E-16 -1.44410820619E-16 -8.92038516756E-17 -5.47644434967E-17 -3.34126883667E-17 -2.02575946645E-17 -1.22037602829E-17 -7.30455863313E-18 -4.34363734237E-18 -2.56588216276E-18 -1.50559194374E-18 -8.77462733537E-19 -5.07883193083E-19 -2.91927652943E-19 -1.66619130056E-19 -9.44222278097E-20 -5.31232226478E-20 -2.96698887875E-20 -1.64485950307E-20 -9.05070956439E-21 -4.94238322128E-21 -2.67823507408E-21 -1.44004962305E-21 -7.68210397246E-22 -4.06549842592E-22 -2.13419795950E-22 -1.11121663516E-22 -5.73800850289E-23 -2.93816909051E-23 -1.49176249672E-23 -7.50902349903E-24 -3.74697776993E-24 -1.85329710353E-24 -9.08504449928E-25 -4.41345140996E-25 -2.12446461745E-25 -1.01318902940E-25 -4.78685872294E-26 -2.24015769111E-26 -1.03829907863E-26 -4.76573224581E-27 -2.16594205189E-27 -9.74585879402E-28 -4.34105078393E-28 -1.91388476281E-28 -8.35077668732E-29 -3.60554913172E-29 -1.54025281208E-29 -6.50924333452E-30 -2.72099683089E-30 -1.12492866739E-30 -4.59897437121E-31 -1.85898090403E-31 -7.42856470494E-32 -2.93419021831E-32 -1.14541148397E-32 -4.41835347982E-33 -1.68391425281E-33 -6.33978010103E-34 -2.35752555347E-34 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8.84897557982E-08 9.07298845171E-08 9.30267223589E-08 9.53817049213E-08 9.77963041447E-08 1.00272029232E-07 1.02810427590E-07 1.05413085802E-07 1.08081630612E-07 1.10817729947E-07 1.13623093958E-07 1.16499476088E-07 1.19448674168E-07 1.22472531544E-07 1.25572938222E-07 1.28751832058E-07 1.32011199963E-07 1.35353079147E-07 1.38779558392E-07 1.42292779358E-07 1.45894937922E-07 1.49588285549E-07 1.53375130701E-07 1.57257840278E-07 1.61238841097E-07 1.65320621414E-07 1.69505732472E-07 1.73796790100E-07 1.78196476348E-07 1.82707541161E-07 1.87332804100E-07 1.92075156103E-07 1.96937561292E-07 2.01923058826E-07 2.07034764803E-07 2.12275874202E-07 2.17649662885E-07 2.23159489642E-07 2.28808798293E-07 2.34601119836E-07 2.40540074657E-07 2.46629374795E-07 2.52872826256E-07 2.59274331398E-07 2.65837891366E-07 2.72567608596E-07 2.79467689375E-07 2.86542446476E-07 2.93796301846E-07 3.01233789379E-07 3.08859557740E-07 3.16678373278E-07 3.24695123003E-07 3.32914817639E-07 3.41342594755E-07 3.49983721983E-07 3.58843600300E-07 3.67927767413E-07 3.77241901216E-07 3.86791823337E-07 3.96583502780E-07 4.06623059658E-07 4.16916769010E-07 4.27471064731E-07 4.38292543590E-07 4.49387969355E-07 4.60764277016E-07 4.72428577125E-07 4.84388160239E-07 4.96650501474E-07 5.09223265180E-07 5.22114309729E-07 5.35331692431E-07 5.48883674566E-07 5.62778726547E-07 5.77025533218E-07 5.91632999280E-07 6.06610254857E-07 6.21966661202E-07 6.37711816549E-07 6.53855562112E-07 6.70407988235E-07 6.87379440701E-07 7.04780527195E-07 7.22622123937E-07 7.40915382479E-07 7.59671736675E-07 7.78902909827E-07 7.98620922014E-07 8.18838097602E-07 8.39567072949E-07 8.60820804304E-07 8.82612575902E-07 9.04956008269E-07 9.27865066738E-07 9.51354070169E-07 9.75437699909E-07 1.00013100896E-06 1.02544943140E-06 1.05140879200E-06 1.07802531616E-06 1.10531564000E-06 1.13329682082E-06 1.16198634768E-06 1.19140215242E-06 1.22156262079E-06 1.25248660398E-06 1.28419343042E-06 1.31670291782E-06 1.35003538558E-06 1.38421166748E-06 1.41925312471E-06 1.45518165922E-06 1.49201972741E-06 1.52979035414E-06 1.56851714718E-06 1.60822431190E-06 1.64893666644E-06 1.69067965720E-06 1.73347937478E-06 1.77736257022E-06 1.82235667180E-06 1.86848980211E-06 1.91579079570E-06 1.96428921703E-06 2.01401537899E-06 2.06500036184E-06 2.11727603265E-06 2.17087506518E-06 2.22583096031E-06 2.28217806703E-06 2.33995160384E-06 2.39918768080E-06 2.45992332210E-06 2.52219648916E-06 2.58604610442E-06 2.65151207563E-06 2.71863532079E-06 2.78745779373E-06 2.85802251033E-06 2.93037357543E-06 3.00455621034E-06 3.08061678118E-06 3.15860282777E-06 3.23856309344E-06 3.32054755540E-06 3.40460745604E-06 3.49079533496E-06 3.57916506174E-06 3.66977186969E-06 3.76267239031E-06 3.85792468873E-06 3.95558829998E-06 4.05572426617E-06 4.15839517471E-06 4.26366519737E-06 4.37160013040E-06 4.48226743566E-06 4.59573628279E-06 4.71207759243E-06 4.83136408054E-06 4.95367030386E-06 5.07907270649E-06 5.20764966770E-06 5.33948155088E-06 5.47465075377E-06 5.61324175999E-06 5.75534119181E-06 5.90103786430E-06 6.05042284082E-06 6.20358948997E-06 6.36063354391E-06 6.52165315820E-06 6.68674897316E-06 6.85602417675E-06 7.02958456906E-06 7.20753862845E-06 7.38999757932E-06 7.57707546165E-06 7.76888920225E-06 7.96555868786E-06 8.16720684002E-06 8.37395969199E-06 8.58594646740E-06 8.80329966112E-06 9.02615512196E-06 9.25465213766E-06 9.48893352189E-06 9.72914570351E-06 9.97543881808E-06 1.02279668017E-05 1.04868874872E-05 1.07523627028E-05 1.10245583731E-05 1.13036446232E-05 1.15897958843E-05 1.18831910035E-05 1.21840133550E-05 1.24924509549E-05 1.28086965788E-05 1.31329478819E-05 1.34654075231E-05 1.38062832911E-05 1.41557882346E-05 1.45141407952E-05 1.48815649441E-05 1.52582903220E-05 1.56445523826E-05 1.60405925395E-05 1.64466583176E-05 1.68630035072E-05 1.72898883231E-05 1.77275795668E-05 1.81763507934E-05 1.86364824825E-05 1.91082622135E-05 1.95919848454E-05 2.00879527008E-05 2.05964757550E-05 2.11178718296E-05 2.16524667913E-05 2.22005947551E-05 2.27625982936E-05 2.33388286506E-05 2.39296459607E-05 2.45354194747E-05 2.51565277898E-05 2.57933590862E-05 2.64463113700E-05 2.71157927218E-05 2.78022215513E-05 2.85060268592E-05 2.92276485048E-05 2.99675374813E-05 3.07261561972E-05 3.15039787653E-05 3.23014912990E-05 3.31191922159E-05 3.39575925493E-05 3.48172162673E-05 3.56986006005E-05 3.66022963773E-05 3.75288683679E-05 3.84788956375E-05 3.94529719081E-05 4.04517059290E-05 4.14757218571E-05 4.25256596475E-05 4.36021754522E-05 4.47059420311E-05 4.58376491713E-05 4.69980041186E-05 4.81877320189E-05 4.94075763716E-05 5.06582994935E-05 5.19406829953E-05 5.32555282696E-05 5.46036569917E-05 5.59859116326E-05 5.74031559852E-05 5.88562757039E-05 6.03461788576E-05 6.18737964971E-05 6.34400832362E-05 6.50460178480E-05 6.66926038765E-05 6.83808702626E-05 7.01118719874E-05 7.18866907304E-05 7.37064355454E-05 7.55722435527E-05 7.74852806494E-05 7.94467422369E-05 8.14578539682E-05 8.35198725122E-05 8.56340863388E-05 8.78018165235E-05 9.00244175715E-05 9.23032782641E-05 9.46398225253E-05 9.70355103105E-05 9.94918385184E-05 1.02010341925E-04 1.04592594142E-04 1.07240208597E-04 1.09954839546E-04 1.12738183098E-04 1.15591978281E-04 1.18518008122E-04 1.21518100763E-04 1.24594130599E-04 1.27748019451E-04 1.30981737763E-04 1.34297305832E-04 1.37696795068E-04 1.41182329287E-04 1.44756086037E-04 1.48420297954E-04 1.52177254157E-04 1.56029301676E-04 1.59978846912E-04 1.64028357144E-04 1.68180362064E-04 1.72437455355E-04 1.76802296311E-04 1.81277611490E-04 1.85866196422E-04 1.90570917343E-04 1.95394712990E-04 2.00340596429E-04 2.05411656933E-04 2.10611061911E-04 2.15942058878E-04 2.21407977483E-04 2.27012231582E-04 2.32758321366E-04 2.38649835541E-04 2.44690453566E-04 2.50883947946E-04 2.57234186578E-04 2.63745135166E-04 2.70420859687E-04 2.77265528924E-04 2.84283417067E-04 2.91478906365E-04 2.98856489867E-04 3.06420774207E-04 3.14176482480E-04 3.22128457182E-04 3.30281663218E-04 3.38641190996E-04 3.47212259598E-04 3.56000220019E-04 3.65010558502E-04 3.74248899952E-04 3.83721011429E-04 3.93432805738E-04 4.03390345107E-04 4.13599844954E-04 4.24067677751E-04 4.34800376985E-04 4.45804641221E-04 4.57087338263E-04 4.68655509417E-04 4.80516373872E-04 4.92677333181E-04 5.05145975856E-04 5.17930082082E-04 5.31037628548E-04 5.44476793393E-04 5.58255961287E-04 5.72383728634E-04 5.86868908899E-04 6.01720538079E-04 6.16947880308E-04 6.32560433596E-04 6.48567935721E-04 6.64980370261E-04 6.81807972783E-04 6.99061237181E-04 7.16750922177E-04 7.34888057982E-04 7.53483953125E-04 7.72550201451E-04 7.92098689294E-04 8.12141602834E-04 8.32691435627E-04 8.53760996332E-04 8.75363416629E-04 8.97512159332E-04 9.20221026705E-04 9.43504168987E-04 9.67376093124E-04 9.91851671726E-04 1.01694615224E-03 1.04267516636E-03 1.06905473966E-03 1.09610130145E-03 1.12383169496E-03 1.15226318762E-03 1.18141348179E-03 1.21130072559E-03 1.24194352406E-03 1.27336095066E-03 1.30557255893E-03 1.33859839453E-03 1.37245900756E-03 1.40717546515E-03 1.44276936442E-03 1.47926284568E-03 1.51667860606E-03 1.55503991334E-03 1.59437062028E-03 1.63469517916E-03 1.67603865675E-03 1.71842674966E-03 1.76188580001E-03 1.80644281154E-03 1.85212546606E-03 1.89896214038E-03 1.94698192356E-03 1.99621463465E-03 2.04669084087E-03 2.09844187613E-03 2.15149986017E-03 2.20589771800E-03 2.26166919993E-03 2.31884890201E-03 2.37747228702E-03 2.43757570595E-03 2.49919641998E-03 2.56237262302E-03 2.62714346478E-03 2.69354907441E-03 2.76163058466E-03 2.83143015672E-03 2.90299100556E-03 2.97635742592E-03 3.05157481892E-03 3.12868971931E-03 3.20774982335E-03 3.28880401739E-03 3.37190240710E-03 3.45709634740E-03 3.54443847314E-03 3.63398273041E-03 3.72578440872E-03 3.81990017382E-03 3.91638810137E-03 4.01530771138E-03 4.11672000345E-03 4.22068749283E-03 4.32727424735E-03 4.43654592517E-03 4.54856981345E-03 4.66341486790E-03 4.78115175321E-03 4.90185288451E-03 5.02559246964E-03 5.15244655253E-03 5.28249305751E-03 5.41581183460E-03 5.55248470590E-03 5.69259551299E-03 5.83623016542E-03 5.98347669027E-03 6.13442528284E-03 6.28916835850E-03 6.44780060565E-03 6.61041903989E-03 6.77712305935E-03 6.94801450134E-03 7.12319770008E-03 7.30277954588E-03 7.48686954546E-03 7.67557988365E-03 7.86902548641E-03 8.06732408521E-03 8.27059628275E-03 8.47896562015E-03 8.69255864546E-03 8.91150498371E-03 9.13593740834E-03 9.36599191422E-03 9.60180779204E-03 9.84352770432E-03 1.00912977630E-02 1.03452676085E-02 1.06055904903E-02 1.08724233496E-02 1.11459269028E-02 1.14262657274E-02 1.17136083491E-02 1.20081273309E-02 1.23099993634E-02 1.26194053574E-02 1.29365305380E-02 1.32615645400E-02 1.35947015061E-02 1.39361401857E-02 1.42860840362E-02 1.46447413258E-02 1.50123252383E-02 1.53890539796E-02 1.57751508857E-02 1.61708445330E-02 1.65763688502E-02 1.69919632317E-02 1.74178726533E-02 1.78543477896E-02 1.83016451325E-02 1.87600271123E-02 1.92297622205E-02 1.97111251333E-02 2.02043968385E-02 2.07098647621E-02 2.12278228985E-02 2.17585719408E-02 2.23024194134E-02 2.28596798060E-02 2.34306747092E-02 2.40157329509E-02 2.46151907352E-02 2.52293917812E-02 2.58586874644E-02 2.65034369582E-02 2.71640073769E-02 2.78407739197E-02 2.85341200156E-02 2.92444374686E-02 2.99721266040E-02 3.07175964153E-02 3.14812647109E-02 3.22635582617E-02 3.30649129480E-02 3.38857739074E-02 3.47265956809E-02 3.55878423603E-02 3.64699877330E-02 3.73735154280E-02 3.82989190586E-02 3.92467023658E-02 4.02173793580E-02 4.12114744509E-02 4.22295226031E-02 4.32720694509E-02 4.43396714394E-02 4.54328959499E-02 4.65523214252E-02 4.76985374893E-02 4.88721450638E-02 5.00737564788E-02 5.13039955791E-02 5.25634978242E-02 5.38529103819E-02 5.51728922154E-02 5.65241141630E-02 5.79072590094E-02 5.93230215491E-02 6.07721086393E-02 6.22552392443E-02 6.37731444683E-02 6.53265675769E-02 6.69162640062E-02 6.85430013598E-02 7.02075593902E-02 7.19107299671E-02 7.36533170286E-02 7.54361365166E-02 7.72600162937E-02 7.91257960418E-02 8.10343271403E-02 8.29864725236E-02 8.49831065157E-02 8.70251146421E-02 8.91133934160E-02 9.12488500985E-02 9.34324024318E-02 9.56649783424E-02 9.79475156144E-02 1.00280961531E-01 1.02666272480E-01 1.05104413530E-01 1.07596357961E-01 1.10143086763E-01 1.12745588090E-01 1.15404856678E-01 1.18121893208E-01 1.20897703634E-01 1.23733298455E-01 1.26629691941E-01 1.29587901304E-01 1.32608945819E-01 1.35693845883E-01 1.38843622019E-01 1.42059293820E-01 1.45341878825E-01 1.48692391337E-01 1.52111841168E-01 1.55601232315E-01 1.59161561569E-01 1.62793817043E-01 1.66498976631E-01 1.70278006380E-01 1.74131858790E-01 1.78061471027E-01 1.82067763053E-01 1.86151635665E-01 1.90313968456E-01 1.94555617674E-01 1.98877414000E-01 2.03280160224E-01 2.07764628831E-01 2.12331559496E-01 2.16981656475E-01 2.21715585903E-01 2.26533972993E-01 2.31437399144E-01 2.36426398940E-01 2.41501457066E-01 2.46663005118E-01 2.51911418324E-01 2.57247012169E-01 2.62670038938E-01 2.68180684157E-01 2.73779062965E-01 2.79465216398E-01 2.85239107598E-01 2.91100617951E-01 2.97049543166E-01 3.03085589292E-01 3.09208368684E-01 3.15417395931E-01 3.21712083750E-01 3.28091738858E-01 3.34555557837E-01 3.41102622995E-01 3.47731898246E-01 3.54442225025E-01 3.61232318234E-01 3.68100762272E-01 3.75046007124E-01 3.82066364572E-01 3.89160004509E-01 3.96324951409E-01 4.03559080961E-01 4.10860116895E-01 4.18225628022E-01 4.25653025530E-01 4.33139560549E-01 4.40682322016E-01 4.48278234885E-01 4.55924058704E-01 4.63616386587E-01 4.71351644634E-01 4.79126091809E-01 4.86935820341E-01 4.94776756656E-01 5.02644662896E-01 5.10535139058E-01 5.18443625777E-01 5.26365407812E-01 5.34295618252E-01 5.42229243476E-01 5.50161128917E-01 5.58085985644E-01 5.65998397794E-01 5.73892830888E-01 5.81763641041E-01 5.89605085097E-01 5.97411331695E-01 6.05176473272E-01 6.12894539023E-01 6.20559508787E-01 6.28165327881E-01 6.35705922839E-01 6.43175218038E-01 6.50567153183E-01 6.57875701589E-01 6.65094889225E-01 6.72218814427E-01 6.79241668234E-01 6.86157755216E-01 6.92961514730E-01 6.99647542456E-01 7.06210612096E-01 7.12645697092E-01 7.18947992202E-01 7.25112934756E-01 7.31136225426E-01 7.37013848287E-01 7.42742089984E-01 7.48317557768E-01 7.53737196183E-01 7.58998302162E-01 7.64098538287E-01 7.69035943972E-01 7.73808944326E-01 7.78416356430E-01 7.82857392819E-01 7.87131661910E-01 7.91239165171E-01 7.95180290825E-01 7.98955803910E-01 8.02566832526E-01 8.06014850157E-01 8.09301653958E-01 8.12429338960E-01 8.15400268167E-01 8.18217038573E-01 8.20882443179E-01 8.23399429113E-01 8.25771052040E-01 8.28000427059E-01 8.30090676353E-01 8.32044873883E-01 8.33865987460E-01 8.35556818532E-01 8.37119940062E-01 8.38557632835E-01 8.39871820542E-01 8.41064003914E-01 8.42135194130E-01 8.43085845626E-01 8.43915788296E-01 8.44624158918E-01 8.45209331462E-01 8.45668845676E-01 8.45999333121E-01 8.46196439490E-01 8.46254741750E-01 8.46167658261E-01 8.45927349690E-01 8.45524608116E-01 8.44948731383E-01 8.44189602424E-01 8.43244876319E-01 8.42114407353E-01 8.40798187632E-01 8.39296347112E-01 8.37609153424E-01 8.35737011502E-01 8.33680463020E-01 8.31440185636E-01 8.29016992056E-01 8.26411828920E-01 8.23625775509E-01 8.20660042294E-01 8.17515969314E-01 8.14195024407E-01 8.10698801289E-01 8.07029017494E-01 8.03187512177E-01 7.99176243794E-01 7.94997287664E-01 7.90652833410E-01 7.86145182313E-01 7.81476744551E-01 7.76650036366E-01 7.71667677139E-01 7.66532386400E-01 7.61246980767E-01 7.55814370830E-01 7.50237557981E-01 7.44519631209E-01 7.38663763842E-01 7.32673210274E-01 7.26551302659E-01 7.20301447584E-01 7.13927122734E-01 7.07431873541E-01 7.00819309834E-01 6.94093102479E-01 6.87254909905E-01 6.80310559140E-01 6.73263883765E-01 6.66118764977E-01 6.58879128258E-01 6.51548940049E-01 6.44132204436E-01 6.36632959833E-01 6.29055275675E-01 6.21403249112E-01 6.13681001700E-01 6.05892676088E-01 5.98042432701E-01 5.90134446403E-01 5.82172903150E-01 5.74161996623E-01 5.66105924833E-01 5.58008886698E-01 5.49875078596E-01 5.41708690865E-01 5.33513904289E-01 5.25294886523E-01 5.17055788489E-01 5.08800740733E-01 5.00533849733E-01 4.92259194186E-01 4.83980821250E-01 4.75702742773E-01 4.67428931493E-01 4.59163317240E-01 4.50909783132E-01 4.42672161798E-01 4.34454231616E-01 4.26259713012E-01 4.18092264806E-01 4.09955480653E-01 4.01852885566E-01 3.93787932573E-01 3.85763999499E-01 3.77784385908E-01 3.69852310215E-01 3.61970907001E-01 3.54143224518E-01 3.46372222437E-01 3.38660769815E-01 3.31011643326E-01 3.23427525734E-01 3.15911004640E-01 3.08464571496E-01 3.01090620879E-01 2.93791450048E-01 2.86569258752E-01 2.79426149300E-01 2.72364126884E-01 2.65385100131E-01 2.58490881883E-01 2.51683190178E-01 2.44963649429E-01 2.38333791762E-01 2.31795058502E-01 2.25348801791E-01 2.18996286303E-01 2.12738691033E-01 2.06577111142E-01 2.00512559838E-01 1.94545970248E-01 1.88678197282E-01 1.82910019455E-01 1.77242140644E-01 1.71675191767E-01 1.66209732365E-01 1.60846252066E-01 1.55585171928E-01 1.50426845644E-01 1.45371560603E-01 1.40419538809E-01 1.35570937643E-01 1.30825850489E-01 1.26184307215E-01 1.21646274524E-01 1.17211656181E-01 1.12880293143E-01 1.08651963593E-01 1.04526382902E-01 1.00503203549E-01 9.65820150062E-02 9.27623436217E-02 8.90436525192E-02 8.54253415395E-02 8.19067472453E-02 7.84871430111E-02 7.51657392195E-02 7.19416835824E-02 6.88140616036E-02 6.57818971982E-02 6.28441534801E-02 5.99997337290E-02 5.72474825422E-02 5.45861871775E-02 5.20145790871E-02 4.95313356444E-02 4.71350820582E-02 4.48243934708E-02 4.25977972313E-02 4.04537753360E-02 3.83907670236E-02 3.64071715140E-02 3.45013508764E-02 3.26716330119E-02 3.09163147359E-02 2.92336649431E-02 2.76219278406E-02 2.60793262306E-02 2.46040648279E-02 2.31943335948E-02 2.18483110783E-02 2.05641677335E-02 1.93400692186E-02 1.81741796470E-02 1.70646647838E-02 1.60096951725E-02 1.50074491815E-02 1.40561159591E-02 1.31538982860E-02 1.22990153186E-02 1.14897052116E-02 1.07242276169E-02 1.00008660486E-02 9.31793011206E-03 8.67375759069E-03 8.06671638846E-03 7.49520632457E-03 6.95766077922E-03 6.45254818943E-03 5.97837339479E-03 5.53367883377E-03 5.11704559191E-03 4.72709430384E-03 4.36248591157E-03 4.02192228236E-03 3.70414668950E-03 3.40794416035E-03 3.13214169581E-03 2.87560836646E-03 2.63725529015E-03 2.41603549685E-03 2.21094368630E-03 2.02101588447E-03 1.84532900483E-03 1.68300032079E-03 1.53318685543E-03 1.39508469511E-03 1.26792823302E-03 1.15098934939E-03 1.04357653434E-03 9.45033959857E-04 8.54740506879E-04 7.72108753548E-04 6.96583930536E-04 6.27642849025E-04 5.64792806906E-04 5.07570478458E-04 4.55540792567E-04 4.08295804313E-04 3.65453564479E-04 3.26656991308E-04 2.91572748553E-04 2.59890133590E-04 2.31319979088E-04 2.05593571448E-04 1.82462081013E-04 1.61699422615E-04 1.43091714194E-04 1.26441064666E-04 1.11565181594E-04 9.82964241407E-05 8.64808930700E-05 7.59775587810E-05 6.66574282686E-05 5.84027518099E-05 5.11062701303E-05 4.46705027872E-05 3.90070785455E-05 3.40361085856E-05 2.96856035499E-05 2.58909356516E-05 2.25414409673E-05 1.96111245030E-05 1.70305980697E-05 1.47622951755E-05 1.27721593825E-05 1.10293770148E-05 9.50612376542E-06 8.17732512724E-06 7.02043049621E-06 6.01520073343E-06 5.14350891325E-06 4.38915393257E-06 3.73768660742E-06 3.17624786778E-06 2.69341856498E-06 2.27908046851E-06 1.92428793666E-06 1.62114975971E-06 1.36272065813E-06 1.14290191229E-06 9.56350598547E-07 7.98396908872E-07 6.64969037242E-07 5.52525125384E-07 4.57991772429E-07 3.78708627725E-07 3.12378602752E-07 2.57023256469E-07 2.10942928301E-07 1.72681213801E-07 1.40993399731E-07 1.14818497363E-07 9.32545351823E-08 7.55367944692E-08 6.10186933390E-08 4.91550464991E-08 3.94874491067E-08 3.16315535251E-08 2.52660273870E-08 2.01230000873E-08 1.59798225694E-08 1.26519820091E-08 9.98702868833E-09 7.85938698547E-09 6.16593598814E-09 4.82225776595E-09 3.75946285132E-09 2.92151299713E-09 2.26297084918E-09 1.74711483455E-09 1.34436537274E-09 1.03097551813E-09 7.87945393093E-10 6.00125326466E-10 4.55477527689E-10 3.44470455815E-10 2.59583838796E-10 1.94905611870E-10 1.45804923444E-10 1.08667848016E-10 8.06845912650E-11 5.96788120860E-11 4.39712566976E-11 3.22712342867E-11 2.35905924546E-11 1.71758012630E-11 1.24545514930E-11 8.99393762662E-12 6.46784834274E-12 4.63164393324E-12 3.30257582049E-12 2.34471115603E-12 1.65737641593E-12 1.16633751584E-12 8.17098387836E-13 5.69832095746E-13 3.95564240575E-13 2.73312509236E-13 1.87952822388E-13 1.28635020058E-13 8.76121731621E-14 5.93797094720E-14 4.00454562384E-14 2.68709381361E-14 1.79390450204E-14 1.19144740120E-14 7.87193136287E-15 5.17356660426E-15 3.38198910558E-15 2.19886469788E-15 1.42180262985E-15 9.14249247114E-16 5.84580079628E-16 3.71660788443E-16 2.34931714570E-16 1.47637667384E-16 9.22319470206E-17 5.72745789002E-17 3.53513500137E-17 2.16860525130E-17 1.32206200709E-17 8.00914129680E-18 4.82112578291E-18 2.88339723303E-18 1.71324192726E-18 1.01124261290E-18 5.92895673604E-19 3.45263601333E-19 1.99680562082E-19 1.14682111631E-19 6.54022081862E-20 3.70328766227E-20 2.08181326507E-20 1.16175853412E-20 6.43531398396E-21 3.53804108007E-21 1.93043081518E-21 1.04520701773E-21 5.61519754870E-22 2.99295249204E-22 1.58257224503E-22 8.30065837008E-23 4.31819842540E-23 2.22786535030E-23 1.13979366764E-23 5.78187360985E-24 2.90783339950E-24 1.44971273733E-24 7.16404390973E-25 3.50873134900E-25 1.70297677576E-25 8.19001289644E-26 3.90236239172E-26 1.84198899253E-26 8.61214862473E-27 3.98794389121E-27 1.82871880737E-27 8.30332163372E-28 3.73258602429E-28 1.66098665899E-28 7.31586103614E-29 3.18897907766E-29 1.37552358309E-29 5.87025645818E-30 2.47833816621E-30 1.03495048124E-30 4.27439261720E-31 1.74568007032E-31 7.04902591089E-32 2.81388153004E-32 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8.84884569752E-08 9.07285528142E-08 9.30253569436E-08 9.53803049401E-08 9.77948687226E-08 1.00270557471E-07 1.02808918572E-07 1.05411538582E-07 1.08080044224E-07 1.10816103400E-07 1.13621426234E-07 1.16497766145E-07 1.19446920937E-07 1.22470733929E-07 1.25571095100E-07 1.28749942277E-07 1.32009262341E-07 1.35351092473E-07 1.38777521425E-07 1.42290690825E-07 1.45892796517E-07 1.49586089934E-07 1.53372879503E-07 1.57255532090E-07 1.61236474477E-07 1.65318194881E-07 1.69503244511E-07 1.73794239156E-07 1.78193860826E-07 1.82704859426E-07 1.87330054475E-07 1.92072336870E-07 1.96934670689E-07 2.01920095047E-07 2.07031725994E-07 2.12272758464E-07 2.17646468271E-07 2.23156214156E-07 2.28805439886E-07 2.34597676410E-07 2.40536544059E-07 2.46625754818E-07 2.52869114638E-07 2.59270525819E-07 2.65833989448E-07 2.72563607899E-07 2.79463587399E-07 2.86538240656E-07 2.93791989555E-07 3.01229367920E-07 3.08855024350E-07 3.16673725124E-07 3.24690357179E-07 3.32909931165E-07 3.41337584579E-07 3.49978584972E-07 3.58838333244E-07 3.67922367019E-07 3.77236364108E-07 3.86786146055E-07 3.96577681776E-07 4.06617091292E-07 4.16910649552E-07 4.27464790357E-07 4.38286110378E-07 4.49381373283E-07 4.60757513962E-07 4.72421642862E-07 4.84381050432E-07 4.96643211679E-07 5.09215790840E-07 5.22106646174E-07 5.35323834870E-07 5.48875618087E-07 5.62770466115E-07 5.77017063670E-07 5.91624315322E-07 6.06601351061E-07 6.21957532004E-07 6.37702456242E-07 6.53845964845E-07 6.70398148010E-07 6.87369351367E-07 7.04770182446E-07 7.22611517307E-07 7.40904507340E-07 7.59660586228E-07 7.78891477104E-07 7.98609199868E-07 8.18826078707E-07 8.39554749792E-07 8.60808169183E-07 8.82599620920E-07 9.04942725329E-07 9.27851447537E-07 9.51340106196E-07 9.75423382435E-07 1.00011632904E-06 1.02543437985E-06 1.05139335942E-06 1.07800949290E-06 1.10529941617E-06 1.13328018628E-06 1.16196929204E-06 1.19138466501E-06 1.22154469068E-06 1.25246821997E-06 1.28417458102E-06 1.31668359124E-06 1.35001556975E-06 1.38419135000E-06 1.41923229290E-06 1.45516030005E-06 1.49199782752E-06 1.52976789986E-06 1.56849412446E-06 1.60820070636E-06 1.64891246332E-06 1.69065484138E-06 1.73345393074E-06 1.77733648207E-06 1.82232992322E-06 1.86846237639E-06 1.91576267570E-06 1.96426038516E-06 2.01398581724E-06 2.06497005174E-06 2.11724495525E-06 2.17084320105E-06 2.22579828954E-06 2.28214456920E-06 2.33991725802E-06 2.39915246551E-06 2.45988721533E-06 2.52215946834E-06 2.58600814643E-06 2.65147315673E-06 2.71859541666E-06 2.78741687942E-06 2.85798056028E-06 2.93033056341E-06 3.00451210948E-06 3.08057156390E-06 3.15855646582E-06 3.23851555783E-06 3.32049881643E-06 3.40455748325E-06 3.49074409711E-06 3.57911252680E-06 3.66971800483E-06 3.76261716187E-06 3.85786806219E-06 3.95553023994E-06 4.05566473635E-06 4.15833413790E-06 4.26360261541E-06 4.37153596418E-06 4.48220164509E-06 4.59566882674E-06 4.71200842873E-06 4.83129316597E-06 4.95359759410E-06 5.07899815610E-06 5.20757323008E-06 5.33940317825E-06 5.47457039715E-06 5.61315936916E-06 5.75525671527E-06 5.90095124924E-06 6.05033403312E-06 6.20349843413E-06 6.36054018301E-06 6.52155743389E-06 6.68665082561E-06 6.85592354462E-06 7.02948138946E-06 7.20743283688E-06 7.38988910967E-06 7.57696424612E-06 7.76877517133E-06 7.96544177028E-06 8.16708696272E-06 8.37383678003E-06 8.58582044397E-06 8.80317044744E-06 9.02602263729E-06 9.25451629919E-06 9.48879424472E-06 9.72900290060E-06 9.97529240017E-06 1.02278166773E-05 1.04867335624E-05 1.07522048815E-05 1.10243965567E-05 1.13034787104E-05 1.15896257716E-05 1.18830165845E-05 1.21838345206E-05 1.24922675934E-05 1.28085085756E-05 1.31327551195E-05 1.34652098811E-05 1.38060806459E-05 1.41555804596E-05 1.45139277605E-05 1.48813465166E-05 1.52580663652E-05 1.56443227564E-05 1.60403571005E-05 1.64464169186E-05 1.68627559975E-05 1.72896345479E-05 1.77273193674E-05 1.81760840073E-05 1.86362089429E-05 1.91079817496E-05 1.95916972818E-05 2.00876578578E-05 2.05961734483E-05 2.11175618704E-05 2.16521489857E-05 2.22002689047E-05 2.27622641946E-05 2.33384860943E-05 2.39292947330E-05 2.45350593562E-05 2.51561585552E-05 2.57929805049E-05 2.64459232055E-05 2.71153947314E-05 2.78018134864E-05 2.85056084647E-05 2.92272195193E-05 2.99670976367E-05 3.07257052186E-05 3.15035163709E-05 3.23010171998E-05 3.31187061157E-05 3.39570941443E-05 3.48167052461E-05 3.56980766438E-05 3.66017591575E-05 3.75283175494E-05 3.84783308763E-05 3.94523928511E-05 4.04511122143E-05 4.14751131139E-05 4.25250354952E-05 4.36015355010E-05 4.47052858810E-05 4.58369764123E-05 4.69973143303E-05 4.81870247705E-05 4.94068512210E-05 5.06575559876E-05 5.19399206695E-05 5.32547466477E-05 5.46028555853E-05 5.59850899410E-05 5.74023134950E-05 5.88554118886E-05 6.03452931777E-05 6.18728883991E-05 6.34391521527E-05 6.50450631974E-05 6.66916250622E-05 6.83798666732E-05 7.01108429959E-05 7.18856356940E-05 7.37053538049E-05 7.55711344323E-05 7.74841434561E-05 7.94455762604E-05 8.14566584801E-05 8.35186467656E-05 8.56328295681E-05 8.78005279435E-05 9.00230963774E-05 9.23019236305E-05 9.46384336060E-05 9.70340862380E-05 9.94903784031E-05 1.02008844855E-04 1.04591059182E-04 1.07238634789E-04 1.09953225906E-04 1.12736528619E-04 1.15590281929E-04 1.18516268837E-04 1.21516317459E-04 1.24592302163E-04 1.27746144741E-04 1.30979815608E-04 1.34295335031E-04 1.37694774391E-04 1.41180257472E-04 1.44753961791E-04 1.48418119950E-04 1.52175021035E-04 1.56027012040E-04 1.59976499334E-04 1.64025950158E-04 1.68177894167E-04 1.72434925007E-04 1.76799701931E-04 1.81274951459E-04 1.85863469079E-04 1.90568120986E-04 1.95391845873E-04 2.00337656762E-04 2.05408642881E-04 2.10607971593E-04 2.15938890365E-04 2.21404728797E-04 2.27008900695E-04 2.32754906200E-04 2.38646333964E-04 2.44686863394E-04 2.50880266938E-04 2.57230412437E-04 2.63741265537E-04 2.70416892155E-04 2.77261461014E-04 2.84279246240E-04 2.91474630021E-04 2.98852105336E-04 3.06416278755E-04 3.14171873304E-04 3.22123731405E-04 3.30276817893E-04 3.38636223102E-04 3.47207166035E-04 3.55994997612E-04 3.65005203994E-04 3.74243410004E-04 3.83715382618E-04 3.93427034555E-04 4.03384427954E-04 4.13593778142E-04 4.24061457498E-04 4.34793999414E-04 4.45798102358E-04 4.57080634031E-04 4.68648635640E-04 4.80509326266E-04 4.92670107355E-04 5.05138567308E-04 5.17922486197E-04 5.31029840593E-04 5.44468808519E-04 5.58247774521E-04 5.72375334876E-04 5.86860302923E-04 6.01711714526E-04 6.16938833685E-04 6.32551158272E-04 6.48558425921E-04 6.64970620067E-04 6.81797976127E-04 6.99050987843E-04 7.16740413780E-04 7.34877283989E-04 7.53472906833E-04 7.72538875990E-04 7.92087077622E-04 8.12129697730E-04 8.32679229688E-04 8.53748481972E-04 8.75350586069E-04 8.97499004598E-04 9.20207539624E-04 9.43490341178E-04 9.67361915999E-04 9.91837136480E-04 1.01693124985E-03 1.04265988757E-03 1.06903907498E-03 1.09608524116E-03 1.12381522909E-03 1.15224630597E-03 1.18139617387E-03 1.21128298067E-03 1.24192533114E-03 1.27334229846E-03 1.30555343589E-03 1.33857878879E-03 1.37243890698E-03 1.40715485728E-03 1.44274823650E-03 1.47924118463E-03 1.51665639846E-03 1.55501714546E-03 1.59434727802E-03 1.63467124809E-03 1.67601412207E-03 1.71840159620E-03 1.76186001223E-03 1.80641637350E-03 1.85209836144E-03 1.89893435244E-03 1.94695343514E-03 1.99618542819E-03 2.04666089833E-03 2.09841117905E-03 2.15146838963E-03 2.20586545461E-03 2.26163612380E-03 2.31881499278E-03 2.37743752382E-03 2.43754006739E-03 2.49915988414E-03 2.56233516743E-03 2.62710506643E-03 2.69350970969E-03 2.76159022942E-03 2.83138878619E-03 2.90294859435E-03 2.97631394803E-03 3.05153024770E-03 3.12864402746E-03 3.20770298289E-03 3.28875599966E-03 3.37185318273E-03 3.45704588631E-03 3.54438674449E-03 3.63392970263E-03 3.72573004944E-03 3.81984444990E-03 3.91633097884E-03 4.01524915546E-03 4.11665997850E-03 4.22062596234E-03 4.32721117392E-03 4.43648127050E-03 4.54850353830E-03 4.66334693207E-03 4.78108211555E-03 4.90178150284E-03 5.02551930077E-03 5.15237155225E-03 5.28241618051E-03 5.41573303449E-03 5.55240393518E-03 5.69251272301E-03 5.83614530636E-03 5.98338971111E-03 6.13433613136E-03 6.28907698121E-03 6.44770694779E-03 6.61032304539E-03 6.77702467081E-03 6.94791365999E-03 7.12309434578E-03 7.30267361703E-03 7.48676097903E-03 7.67546861511E-03 7.86891144972E-03 8.06720721277E-03 8.27047650538E-03 8.47884286705E-03 8.69243284417E-03 8.91137606008E-03 9.13580528653E-03 9.36585651658E-03 9.60166903916E-03 9.84338551495E-03 1.00911520540E-02 1.03451182948E-02 1.06054374850E-02 1.08722665637E-02 1.11457662454E-02 1.14261011053E-02 1.17134396673E-02 1.20079544920E-02 1.23098222680E-02 1.26192239037E-02 1.29363446220E-02 1.32613740555E-02 1.35945063444E-02 1.39359402357E-02 1.42858791845E-02 1.46445314564E-02 1.50121102328E-02 1.53888337168E-02 1.57749252420E-02 1.61706133820E-02 1.65761320629E-02 1.69917206764E-02 1.74176241954E-02 1.78540932917E-02 1.83013844544E-02 1.87597601108E-02 1.92294887494E-02 1.97108450436E-02 2.02041099779E-02 2.07095709754E-02 2.12275220273E-02 2.17582638236E-02 2.23021038855E-02 2.28593566995E-02 2.34303438528E-02 2.40153941701E-02 2.46148438520E-02 2.52290366145E-02 2.58583238296E-02 2.65030646672E-02 2.71636262381E-02 2.78403837383E-02 2.85337205930E-02 2.92440286029E-02 2.99717080897E-02 3.07171680433E-02 3.14808262687E-02 3.22631095330E-02 3.30644537134E-02 3.38853039434E-02 3.47261147609E-02 3.55873502538E-02 3.64694842064E-02 3.73730002439E-02 3.82983919764E-02 3.92461631411E-02 4.02168277434E-02 4.12109101954E-02 4.22289454527E-02 4.32714791482E-02 4.43390677238E-02 4.54322785579E-02 4.65516900902E-02 4.76978919419E-02 4.88714850319E-02 5.00730816875E-02 5.13033057513E-02 5.25627926801E-02 5.38521896396E-02 5.51721555911E-02 5.65233613710E-02 5.79064897623E-02 5.93222355581E-02 6.07713056145E-02 6.22544188949E-02 6.37723065026E-02 6.53257117030E-02 6.69153899322E-02 6.85421087939E-02 7.02066480414E-02 7.19097995452E-02 7.36523672449E-02 7.54351670843E-02 7.72590269282E-02 7.91247864613E-02 8.10332970662E-02 8.29854216812E-02 8.49820346347E-02 8.70240214571E-02 8.91122786673E-02 9.12477135327E-02 9.34312438025E-02 9.56637974110E-02 9.79463121509E-02 1.00279735314E-01 1.02665023301E-01 1.05103141189E-01 1.07595062270E-01 1.10141767549E-01 1.12744245193E-01 1.15403489954E-01 1.18120502530E-01 1.20896288892E-01 1.23731859557E-01 1.26628228817E-01 1.29586413906E-01 1.32607434121E-01 1.35692309885E-01 1.38842061746E-01 1.42057709326E-01 1.45340270193E-01 1.48690758682E-01 1.52110184637E-01 1.55599552093E-01 1.59159857876E-01 1.62792090139E-01 1.66497226818E-01 1.70276234003E-01 1.74130064240E-01 1.78059654744E-01 1.82065925526E-01 1.86149777439E-01 1.90312090129E-01 1.94553719906E-01 1.98875497509E-01 2.03278225793E-01 2.07762677310E-01 2.12329591806E-01 2.16979673608E-01 2.21713588928E-01 2.26531963058E-01 2.31435377477E-01 2.36424366858E-01 2.41499415972E-01 2.46660956507E-01 2.51909363787E-01 2.57244953396E-01 2.62667977718E-01 2.68178622387E-01 2.73777002649E-01 2.79463159652E-01 2.85237056651E-01 2.91098575154E-01 2.97047510989E-01 3.03083570330E-01 3.09206365658E-01 3.15415411693E-01 3.21710121284E-01 3.28089801285E-01 3.34553648414E-01 3.41100745120E-01 3.47730055459E-01 3.54440421006E-01 3.61230556813E-01 3.68099047420E-01 3.75044342962E-01 3.82064755366E-01 3.89158454670E-01 3.96323465497E-01 4.03557663679E-01 4.10858773088E-01 4.18224362677E-01 4.25651843774E-01 4.33138467639E-01 4.40681323341E-01 4.48277335959E-01 4.55923265160E-01 4.63615704169E-01 4.71351079190E-01 4.79125649284E-01 4.86935506764E-01 4.94776578132E-01 5.02644625593E-01 5.10535249191E-01 5.18443889598E-01 5.26365831593E-01 5.34296208266E-01 5.42230005979E-01 5.50162070132E-01 5.58087111733E-01 5.65999714842E-01 5.73894344872E-01 5.81765357811E-01 5.89607010345E-01 5.97413470925E-01 6.05178831774E-01 6.12897121836E-01 6.20562320671E-01 6.28168373279E-01 6.35709205841E-01 6.43178742347E-01 6.50570922073E-01 6.57879717869E-01 6.65099155195E-01 6.72223331843E-01 6.79246438261E-01 6.86162778390E-01 6.92966790914E-01 6.99653070800E-01 7.06216390996E-01 7.12651724151E-01 7.18954264189E-01 7.25119447571E-01 7.31142974062E-01 7.37020826802E-01 7.42749291467E-01 7.48324974316E-01 7.53744818878E-01 7.59006121055E-01 7.64106542384E-01 7.69044121231E-01 7.73817281655E-01 7.78424839700E-01 7.82866006874E-01 7.87140390597E-01 7.91247991372E-01 7.95189196504E-01 7.98964770162E-01 8.02575839651E-01 8.06023877734E-01 8.09310680935E-01 8.12438343759E-01 8.15409228798E-01 8.18225932762E-01 8.20891248509E-01 8.23408123177E-01 8.25779612603E-01 8.28008832231E-01 8.30098904773E-01 8.32052904906E-01 8.33873801345E-01 8.35564396637E-01 8.37127265029E-01 8.38564688768E-01 8.39878593169E-01 8.41070480724E-01 8.42141364484E-01 8.43091700823E-01 8.43921321584E-01 8.44629365449E-01 8.45214208156E-01 8.45673391005E-01 8.46003546772E-01 8.46200321911E-01 8.46258293550E-01 8.46170879463E-01 8.45930238820E-01 8.45527161129E-01 8.44950940440E-01 8.44191455529E-01 8.43246360325E-01 8.42115508829E-01 8.40798892856E-01 8.39296642067E-01 8.37609023791E-01 8.35736442655E-01 8.33679440016E-01 8.31438693213E-01 8.29015014625E-01 8.26409350556E-01 8.23622779944E-01 8.20656512911E-01 8.17511889137E-01 8.14190376092E-01 8.10693567117E-01 8.07023179360E-01 8.03181051581E-01 7.99169141831E-01 7.94989525010E-01 7.90644390317E-01 7.86136038591E-01 7.81466879560E-01 7.76639429001E-01 7.71656305817E-01 7.66520229047E-01 7.61234014801E-01 7.55800573147E-01 7.50222904941E-01 7.44504098614E-01 7.38647326924E-01 7.32655843673E-01 7.26532980403E-01 7.20282143071E-01 7.13906808710E-01 7.07410522076E-01 7.00796892299E-01 6.94069589523E-01 6.87232341552E-01 6.80288930497E-01 6.73243189431E-01 6.66098999049E-01 6.58860284338E-01 6.51531011248E-01 6.44115183380E-01 6.36616838672E-01 6.29040046087E-01 6.21388902315E-01 6.13667528456E-01 6.05880066717E-01 5.98030677084E-01 5.90123533996E-01 5.82162822992E-01 5.74152737348E-01 5.66097474679E-01 5.58001233521E-01 5.49868209875E-01 5.41702593724E-01 5.33508565501E-01 5.25290292525E-01 5.17051925398E-01 5.08797594353E-01 5.00531405575E-01 4.92257437478E-01 4.83979736954E-01 4.75702315595E-01 4.67429145902E-01 4.59164157480E-01 4.50911233239E-01 4.42674205614E-01 4.34456852804E-01 4.26262895071E-01 4.18095991090E-01 4.09959734381E-01 4.01857649843E-01 3.93793190402E-01 3.85769733798E-01 3.77790579525E-01 3.69858945947E-01 3.61977967602E-01 3.54150692723E-01 3.46380080970E-01 3.38669001411E-01 3.31020230740E-01 3.23436451759E-01 3.15920252122E-01 3.08474123345E-01 3.01100460089E-01 2.93801559707E-01 2.86579622055E-01 2.79436749567E-01 2.72374947569E-01 2.65396124838E-01 2.58502094378E-01 2.51694574402E-01 2.44975189511E-01 2.38345472029E-01 2.31806863494E-01 2.25360716272E-01 2.19008295271E-01 2.12750779733E-01 2.06589265079E-01 2.00524764783E-01 1.94558212253E-01 1.88690462688E-01 1.82922294905E-01 1.77254413091E-01 1.71687448483E-01 1.66221960953E-01 1.60858440466E-01 1.55597308428E-01 1.50438918890E-01 1.45383559605E-01 1.40431452948E-01 1.35582756681E-01 1.30837564575E-01 1.26195906891E-01 1.21657750729E-01 1.17223000263E-01 1.12891496858E-01 1.08663019111E-01 1.04537282812E-01 1.00513940861E-01 9.65925831543E-02 9.27727364648E-02 8.90538643432E-02 8.54353670571E-02 8.19165815954E-02 7.84967817574E-02 7.51751783489E-02 7.19509195017E-02 6.88230911359E-02 6.57907175781E-02 6.28527623489E-02 6.00081291282E-02 5.72556629068E-02 5.45941513280E-02 5.20223262217E-02 4.95388653294E-02 4.71423942185E-02 4.48314883793E-02 4.26046754980E-02 4.04604378964E-02 3.83972151265E-02 3.64134067091E-02 3.45073750013E-02 3.26774481784E-02 3.09219233165E-02 2.92390695572E-02 2.76271313398E-02 2.60843316846E-02 2.46088755099E-02 2.31989529669E-02 2.18527427767E-02 2.05684155539E-02 1.93441371019E-02 1.81780716646E-02 1.70683851231E-02 1.60132481232E-02 1.50108391216E-02 1.40593473409E-02 1.31569756236E-02 1.23019431741E-02 1.14924881834E-02 1.07268703267E-02 1.00033731302E-02 9.32030619993E-03 8.67600730930E-03 8.06884434181E-03 7.49721708649E-03 6.95955888408E-03 6.45433812341E-03 5.98005958770E-03 5.53526565143E-03 5.11853732902E-03 4.72849517747E-03 4.36380005518E-03 4.02315374035E-03 3.70529941233E-03 3.40902200016E-03 3.13314840264E-03 2.87654758485E-03 2.63813055638E-03 2.41685023660E-03 2.21170121278E-03 2.02171939702E-03 1.84598158795E-03 1.68360494359E-03 1.53374637148E-03 1.39560184264E-03 1.26840563553E-03 1.15142951651E-03 1.04398186311E-03 9.45406736188E-04 8.55082907348E-04 7.72422847412E-04 6.96871681970E-04 6.27906119560E-04 5.65033358044E-04 5.07789974440E-04 4.55740803280E-04 4.08477808308E-04 3.65618952083E-04 3.26807067815E-04 2.91708737470E-04 2.60013179925E-04 2.31431152660E-04 2.05693870206E-04 1.82552434599E-04 1.61780697829E-04 1.43164715739E-04 1.26506538171E-04 1.11623816868E-04 9.83488583527E-05 8.65277138561E-05 7.60193072688E-05 6.66946020156E-05 5.84358076523E-05 5.11356269401E-05 4.46965441355E-05 3.90301552728E-05 3.40565412794E-05 2.97036849318E-05 2.59069328778E-05 2.25555689475E-05 1.96235936844E-05 1.70415828425E-05 1.47719541195E-05 1.27806364125E-05 1.10368024721E-05 9.51261545721E-06 8.18298931240E-06 7.02536281766E-06 6.01948709763E-06 5.14722631738E-06 4.39237124030E-06 3.74046527446E-06 3.17864261855E-06 2.69547802191E-06 2.28084773571E-06 1.92580113972E-06 1.62244254359E-06 1.36382264507E-06 1.14383912182E-06 9.57145831636E-07 7.99070098316E-07 6.65537566364E-07 5.53004117084E-07 4.58394350617E-07 3.79046153108E-07 3.12660884876E-07 2.57258743872E-07 2.11138878542E-07 1.72843845060E-07 1.41128025579E-07 1.14929646223E-07 9.33460559077E-08 7.56119493758E-08 6.10802399366E-08 4.92053090793E-08 3.95283812544E-08 3.16647925382E-08 2.52929415060E-08 2.01447293553E-08 1.59973140723E-08 1.26660201723E-08 9.99826123933E-09 7.86834713123E-09 6.17306129744E-09 4.82790619312E-09 3.76392628918E-09 2.92502870161E-09 2.26573103737E-09 1.74927472043E-09 1.34604987189E-09 1.03228482229E-09 7.88959588620E-10 6.00908207266E-10 4.56079731601E-10 3.44932035215E-10 2.59936359697E-10 1.95173861654E-10 1.46008294969E-10 1.08821457177E-10 8.08001758687E-11 5.97654520374E-11 4.40359487500E-11 3.23193489101E-11 2.36262355432E-11 1.72020993422E-11 1.24738756824E-11 9.00807878310E-12 6.47815344969E-12 4.63912186115E-12 3.30797898527E-12 2.34859829443E-12 1.66016063265E-12 1.16832289473E-12 8.18507763865E-13 5.70828026088E-13 3.96264767479E-13 2.73802953101E-13 1.88294563294E-13 1.28872005691E-13 8.77757185696E-14 5.94920197596E-14 4.01221992443E-14 2.69231139274E-14 1.79743375515E-14 1.19382233929E-14 7.88782961427E-15 5.18415293611E-15 3.38900062050E-15 2.20348339209E-15 1.42482841405E-15 9.16220480823E-16 5.85857075118E-16 3.72483335892E-16 2.35458485488E-16 1.47973049843E-16 9.24442151138E-17 5.74081223533E-17 3.54348567054E-17 2.17379501544E-17 1.32526730265E-17 8.02881330478E-18 4.83312229663E-18 2.89066585931E-18 1.71761720147E-18 1.01385885633E-18 5.94449615577E-19 3.46180325323E-19 2.00217658761E-19 1.14994603599E-19 6.55827424964E-20 3.71364329505E-20 2.08771052872E-20 1.16509235285E-20 6.45402127834E-21 3.54845986469E-21 1.93618944596E-21 1.04836548220E-21 5.63238633931E-22 3.00223327573E-22 1.58754332663E-22 8.32707031673E-23 4.33211681607E-23 2.23513932831E-23 1.14356334335E-23 5.80124403571E-24 2.91770144320E-24 1.45469621639E-24 7.18898964225E-25 3.52110716100E-25 1.70906115291E-25 8.21965261534E-26 3.91666770880E-26 1.84882867036E-26 8.64454058332E-27 4.00313712383E-27 1.83577583694E-27 8.33577794430E-28 3.74736443900E-28 1.66764787284E-28 7.34557909134E-29 3.20210025582E-29 1.38125621387E-29 5.89503674560E-30 2.48893489331E-30 1.03943268181E-30 4.29314279060E-31 1.75343634795E-31 7.08074891352E-32 2.82670797118E-32 1.11540481649E-32 4.34981096666E-33 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 5.86303174600E-08 6.01145509350E-08 6.16363579553E-08 6.31966896996E-08 6.47965214255E-08 6.64368530798E-08 6.81187099228E-08 6.98431431693E-08 7.16112306459E-08 7.34240774643E-08 7.52828167126E-08 7.71886101626E-08 7.91426489970E-08 8.11461545530E-08 8.32003790864E-08 8.53066065538E-08 8.74661534153E-08 8.96803694574E-08 9.19506386366E-08 9.42783799444E-08 9.66650482941E-08 9.91121354304E-08 1.01621170862E-07 1.04193722816E-07 1.06831399221E-07 1.09535848709E-07 1.12308761649E-07 1.15151871200E-07 1.18066954398E-07 1.21055833262E-07 1.24120375940E-07 1.27262497867E-07 1.30484162972E-07 1.33787384898E-07 1.37174228266E-07 1.40646809960E-07 1.44207300458E-07 1.47857925178E-07 1.51600965879E-07 1.55438762081E-07 1.59373712530E-07 1.63408276695E-07 1.67544976309E-07 1.71786396942E-07 1.76135189616E-07 1.80594072466E-07 1.85165832438E-07 1.89853327026E-07 1.94659486065E-07 1.99587313557E-07 2.04639889552E-07 2.09820372071E-07 2.15131999081E-07 2.20578090517E-07 2.26162050361E-07 2.31887368765E-07 2.37757624234E-07 2.43776485866E-07 2.49947715640E-07 2.56275170771E-07 2.62762806118E-07 2.69414676659E-07 2.76234940025E-07 2.83227859096E-07 2.90397804666E-07 2.97749258180E-07 3.05286814528E-07 3.13015184920E-07 3.20939199832E-07 3.29063812022E-07 3.37394099630E-07 3.45935269347E-07 3.54692659672E-07 3.63671744249E-07 3.72878135289E-07 3.82317587074E-07 3.91995999556E-07 4.01919422048E-07 4.12094056997E-07 4.22526263869E-07 4.33222563117E-07 4.44189640263E-07 4.55434350071E-07 4.66963720833E-07 4.78784958765E-07 4.90905452506E-07 5.03332777741E-07 5.16074701931E-07 5.29139189175E-07 5.42534405177E-07 5.56268722362E-07 5.70350725100E-07 5.84789215075E-07 5.99593216786E-07 6.14771983187E-07 6.30335001471E-07 6.46291999000E-07 6.62652949382E-07 6.79428078710E-07 6.96627871949E-07 7.14263079489E-07 7.32344723871E-07 7.50884106666E-07 7.69892815549E-07 7.89382731532E-07 8.09366036399E-07 8.29855220313E-07 8.50863089626E-07 8.72402774882E-07 8.94487739026E-07 9.17131785814E-07 9.40349068446E-07 9.64154098409E-07 9.88561754547E-07 1.01358729236E-06 1.03924635355E-06 1.06555497576E-06 1.09252960267E-06 1.12018709419E-06 1.14854473705E-06 1.17762025560E-06 1.20743182287E-06 1.23799807195E-06 1.26933810762E-06 1.30147151829E-06 1.33441838824E-06 1.36819931022E-06 1.40283539823E-06 1.43834830081E-06 1.47476021452E-06 1.51209389780E-06 1.55037268525E-06 1.58962050217E-06 1.62986187950E-06 1.67112196921E-06 1.71342655999E-06 1.75680209333E-06 1.80127568011E-06 1.84687511752E-06 1.89362890641E-06 1.94156626914E-06 1.99071716782E-06 2.04111232304E-06 2.09278323308E-06 2.14576219360E-06 2.20008231780E-06 2.25577755714E-06 2.31288272256E-06 2.37143350621E-06 2.43146650378E-06 2.49301923739E-06 2.55613017900E-06 2.62083877448E-06 2.68718546827E-06 2.75521172862E-06 2.82496007356E-06 2.89647409744E-06 2.96979849818E-06 3.04497910522E-06 3.12206290813E-06 3.20109808603E-06 3.28213403766E-06 3.36522141227E-06 3.45041214126E-06 3.53775947066E-06 3.62731799441E-06 3.71914368843E-06 3.81329394568E-06 3.90982761196E-06 4.00880502274E-06 4.11028804084E-06 4.21434009511E-06 4.32102622004E-06 4.43041309644E-06 4.54256909311E-06 4.65756430954E-06 4.77547061976E-06 4.89636171723E-06 5.02031316090E-06 5.14740242246E-06 5.27770893469E-06 5.41131414121E-06 5.54830154726E-06 5.68875677199E-06 5.83276760189E-06 5.98042404570E-06 6.13181839065E-06 6.28704526013E-06 6.44620167283E-06 6.60938710338E-06 6.77670354448E-06 6.94825557070E-06 7.12415040378E-06 7.30449797965E-06 7.48941101718E-06 7.67900508854E-06 7.87339869149E-06 8.07271332341E-06 8.27707355723E-06 8.48660711928E-06 8.70144496909E-06 8.92172138129E-06 9.14757402943E-06 9.37914407209E-06 9.61657624106E-06 9.86001893178E-06 1.01096242961E-05 1.03655483374E-05 1.06279510078E-05 1.08969963086E-05 1.11728523924E-05 1.14556916682E-05 1.17456909094E-05 1.20430313637E-05 1.23478988673E-05 1.26604839599E-05 1.29809820046E-05 1.33095933097E-05 1.36465232538E-05 1.39919824142E-05 1.43461866985E-05 1.47093574795E-05 1.50817217334E-05 1.54635121819E-05 1.58549674373E-05 1.62563321518E-05 1.66678571703E-05 1.70897996873E-05 1.75224234070E-05 1.79659987091E-05 1.84208028166E-05 1.88871199698E-05 1.93652416037E-05 1.98554665299E-05 2.03581011235E-05 2.08734595142E-05 2.14018637832E-05 2.19436441636E-05 2.24991392475E-05 2.30686961969E-05 2.36526709608E-05 2.42514284980E-05 2.48653430043E-05 2.54947981470E-05 2.61401873040E-05 2.68019138101E-05 2.74803912085E-05 2.81760435092E-05 2.88893054544E-05 2.96206227892E-05 3.03704525407E-05 3.11392633033E-05 3.19275355312E-05 3.27357618389E-05 3.35644473085E-05 3.44141098055E-05 3.52852803019E-05 3.61785032084E-05 3.70943367136E-05 3.80333531336E-05 3.89961392686E-05 3.99832967698E-05 4.09954425151E-05 4.20332089944E-05 4.30972447044E-05 4.41882145536E-05 4.53068002780E-05 4.64537008659E-05 4.76296329952E-05 4.88353314807E-05 5.00715497327E-05 5.13390602276E-05 5.26386549902E-05 5.39711460882E-05 5.53373661395E-05 5.67381688313E-05 5.81744294540E-05 5.96470454468E-05 6.11569369585E-05 6.27050474219E-05 6.42923441423E-05 6.59198189018E-05 6.75884885779E-05 6.92993957789E-05 7.10536094937E-05 7.28522257600E-05 7.46963683475E-05 7.65871894599E-05 7.85258704534E-05 8.05136225742E-05 8.25516877146E-05 8.46413391873E-05 8.67838825203E-05 8.89806562716E-05 9.12330328639E-05 9.35424194412E-05 9.59102587464E-05 9.83380300217E-05 1.00827249931E-04 1.03379473505E-04 1.05996295114E-04 1.08679349459E-04 1.11430312594E-04 1.14250902967E-04 1.17142882498E-04 1.20108057672E-04 1.23148280668E-04 1.26265450513E-04 1.29461514266E-04 1.32738468234E-04 1.36098359210E-04 1.39543285759E-04 1.43075399516E-04 1.46696906531E-04 1.50410068648E-04 1.54217204905E-04 1.58120692987E-04 1.62122970706E-04 1.66226537516E-04 1.70433956074E-04 1.74747853832E-04 1.79170924679E-04 1.83705930615E-04 1.88355703471E-04 1.93123146673E-04 1.98011237049E-04 2.03023026685E-04 2.08161644821E-04 2.13430299799E-04 2.18832281062E-04 2.24370961202E-04 2.30049798052E-04 2.35872336845E-04 2.41842212414E-04 2.47963151454E-04 2.54238974843E-04 2.60673600011E-04 2.67271043384E-04 2.74035422873E-04 2.80970960438E-04 2.88081984714E-04 2.95372933693E-04 3.02848357490E-04 3.10512921163E-04 3.18371407615E-04 3.26428720561E-04 3.34689887576E-04 3.43160063212E-04 3.51844532202E-04 3.60748712736E-04 3.69878159825E-04 3.79238568745E-04 3.88835778572E-04 3.98675775802E-04 4.08764698061E-04 4.19108837911E-04 4.29714646751E-04 4.40588738812E-04 4.51737895253E-04 4.63169068367E-04 4.74889385878E-04 4.86906155359E-04 4.99226868751E-04 5.11859207000E-04 5.24811044808E-04 5.38090455503E-04 5.51705716030E-04 5.65665312066E-04 5.79977943263E-04 5.94652528623E-04 6.09698212004E-04 6.25124367768E-04 6.40940606561E-04 6.57156781247E-04 6.73782992982E-04 6.90829597439E-04 7.08307211198E-04 7.26226718279E-04 7.44599276846E-04 7.63436326080E-04 7.82749593216E-04 8.02551100755E-04 8.22853173860E-04 8.43668447929E-04 8.65009876357E-04 8.86890738493E-04 9.09324647789E-04 9.32325560154E-04 9.55907782508E-04 9.80085981559E-04 1.00487519278E-03 1.03029082962E-03 1.05634869293E-03 1.08306498064E-03 1.11045629767E-03 1.13853966602E-03 1.16733253524E-03 1.19685279302E-03 1.22711877613E-03 1.25814928160E-03 1.28996357814E-03 1.32258141787E-03 1.35602304839E-03 1.39030922502E-03 1.42546122344E-03 1.46150085259E-03 1.49845046792E-03 1.53633298492E-03 1.57517189299E-03 1.61499126967E-03 1.65581579520E-03 1.69767076738E-03 1.74058211691E-03 1.78457642297E-03 1.82968092926E-03 1.87592356038E-03 1.92333293861E-03 1.97193840113E-03 2.02177001761E-03 2.07285860822E-03 2.12523576209E-03 2.17893385622E-03 2.23398607477E-03 2.29042642893E-03 2.34828977713E-03 2.40761184582E-03 2.46842925067E-03 2.53077951837E-03 2.59470110881E-03 2.66023343788E-03 2.72741690079E-03 2.79629289589E-03 2.86690384905E-03 2.93929323871E-03 3.01350562133E-03 3.08958665761E-03 3.16758313916E-03 3.24754301594E-03 3.32951542416E-03 3.41355071498E-03 3.49970048374E-03 3.58801759991E-03 3.67855623776E-03 3.77137190761E-03 3.86652148792E-03 3.96406325797E-03 4.06405693138E-03 4.16656369033E-03 4.27164622051E-03 4.37936874690E-03 4.48979707033E-03 4.60299860480E-03 4.71904241565E-03 4.83799925858E-03 4.95994161945E-03 5.08494375501E-03 5.21308173448E-03 5.34443348197E-03 5.47907881988E-03 5.61709951318E-03 5.75857931458E-03 5.90360401073E-03 6.05226146930E-03 6.20464168710E-03 6.36083683910E-03 6.52094132853E-03 6.68505183795E-03 6.85326738135E-03 7.02568935733E-03 7.20242160321E-03 7.38357045037E-03 7.56924478053E-03 7.75955608315E-03 7.95461851397E-03 8.15454895458E-03 8.35946707318E-03 8.56949538639E-03 8.78475932222E-03 9.00538728422E-03 9.23151071670E-03 9.46326417111E-03 9.70078537366E-03 9.94421529398E-03 1.01936982150E-02 1.04493818039E-02 1.07114171845E-02 1.09799590103E-02 1.12551655393E-02 1.15371987094E-02 1.18262242153E-02 1.21224115862E-02 1.24259342651E-02 1.27369696888E-02 1.30556993692E-02 1.33823089755E-02 1.37169884176E-02 1.40599319304E-02 1.44113381593E-02 1.47714102467E-02 1.51403559189E-02 1.55183875745E-02 1.59057223737E-02 1.63025823279E-02 1.67091943905E-02 1.71257905481E-02 1.75526079131E-02 1.79898888156E-02 1.84378808973E-02 1.88968372047E-02 1.93670162834E-02 1.98486822724E-02 2.03421049989E-02 2.08475600725E-02 2.13653289806E-02 2.18956991823E-02 2.24389642035E-02 2.29954237307E-02 2.35653837044E-02 2.41491564125E-02 2.47470605822E-02 2.53594214717E-02 2.59865709600E-02 2.66288476359E-02 2.72865968858E-02 2.79601709790E-02 2.86499291517E-02 2.93562376889E-02 3.00794700036E-02 3.08200067135E-02 3.15782357147E-02 3.23545522528E-02 3.31493589894E-02 3.39630660657E-02 3.47960911618E-02 3.56488595512E-02 3.65218041505E-02 3.74153655641E-02 3.83299921230E-02 3.92661399175E-02 4.02242728234E-02 4.12048625214E-02 4.22083885084E-02 4.32353381014E-02 4.42862064324E-02 4.53614964342E-02 4.64617188169E-02 4.75873920334E-02 4.87390422341E-02 4.99172032103E-02 5.11224163248E-02 5.23552304294E-02 5.36162017689E-02 5.49058938701E-02 5.62248774151E-02 5.75737300992E-02 5.89530364703E-02 6.03633877514E-02 6.18053816431E-02 6.32796221064E-02 6.47867191246E-02 6.63272884424E-02 6.79019512830E-02 6.95113340394E-02 7.11560679411E-02 7.28367886943E-02 7.45541360935E-02 7.63087536046E-02 7.81012879173E-02 7.99323884657E-02 8.18027069161E-02 8.37128966206E-02 8.56636120338E-02 8.76555080942E-02 8.96892395647E-02 9.17654603349E-02 9.38848226808E-02 9.60479764818E-02 9.82555683930E-02 1.00508240972E-01 1.02806631756E-01 1.05151372295E-01 1.07543087127E-01 1.09982392710E-01 1.12469896292E-01 1.15006194731E-01 1.17591873260E-01 1.20227504193E-01 1.22913645567E-01 1.25650839734E-01 1.28439611885E-01 1.31280468513E-01 1.34173895817E-01 1.37120358034E-01 1.40120295715E-01 1.43174123931E-01 1.46282230416E-01 1.49444973643E-01 1.52662680834E-01 1.55935645907E-01 1.59264127355E-01 1.62648346063E-01 1.66088483062E-01 1.69584677218E-01 1.73137022864E-01 1.76745567375E-01 1.80410308681E-01 1.84131192732E-01 1.87908110913E-01 1.91740897408E-01 1.95629326532E-01 1.99573110009E-01 2.03571894239E-01 2.07625257518E-01 2.11732707256E-01 2.15893677166E-01 2.20107524464E-01 2.24373527061E-01 2.28690880773E-01 2.33058696553E-01 2.37475997755E-01 2.41941717449E-01 2.46454695786E-01 2.51013677439E-01 2.55617309130E-01 2.60264137256E-01 2.64952605627E-01 2.69681053349E-01 2.74447712842E-01 2.79250708043E-01 2.84088052786E-01 2.88957649400E-01 2.93857287530E-01 2.98784643214E-01 3.03737278234E-01 3.08712639762E-01 3.13708060330E-01 3.18720758139E-01 3.23747837743E-01 3.28786291118E-01 3.33832999156E-01 3.38884733592E-01 3.43938159397E-01 3.48989837661E-01 3.54036228981E-01 3.59073697381E-01 3.64098514776E-01 3.69106866007E-01 3.74094854458E-01 3.79058508263E-01 3.83993787124E-01 3.88896589737E-01 3.93762761832E-01 3.98588104838E-01 4.03368385143E-01 4.08099343966E-01 4.12776707807E-01 4.17396199458E-01 4.21953549558E-01 4.26444508635E-01 4.30864859616E-01 4.35210430744E-01 4.39477108842E-01 4.43660852862E-01 4.47757707653E-01 4.51763817841E-01 4.55675441757E-01 4.59488965288E-01 4.63200915552E-01 4.66807974279E-01 4.70306990761E-01 4.73694994245E-01 4.76969205623E-01 4.80127048262E-01 4.83166157834E-01 4.86084390978E-01 4.88879832628E-01 4.91550801858E-01 4.94095856076E-01 4.96513793402E-01 4.98803653090E-01 5.00964713847E-01 5.02996489907E-01 5.04898724750E-01 5.06671382365E-01 5.08314635961E-01 5.09828854086E-01 5.11214584107E-01 5.12472533048E-01 5.13603545823E-01 5.14608580912E-01 5.15488683587E-01 5.16244956816E-01 5.16878530012E-01 5.17390525839E-01 5.17782025301E-01 5.18054031395E-01 5.18207431614E-01 5.18242959605E-01 5.18161156317E-01 5.17962330940E-01 5.17646521951E-01 5.17213458542E-01 5.16662522641E-01 5.15992711712E-01 5.15202602389E-01 5.14290314904E-01 5.13253478156E-01 5.12089195063E-01 5.10794007696E-01 5.09363861461E-01 5.07794067374E-01 5.06079261219E-01 5.04213358143E-01 5.02189500931E-01 5.00000000000E-01 4.97637574948E-01 4.95099577536E-01 4.92384652884E-01 4.89491515172E-01 4.86418947533E-01 4.83165801825E-01 4.79730998285E-01 4.76113525069E-01 4.72312437686E-01 4.68326858317E-01 4.64155975041E-01 4.59799040961E-01 4.55255373233E-01 4.50524352017E-01 4.45605419333E-01 4.40498077849E-01 4.35201889594E-01 4.29716474607E-01 4.24041509517E-01 4.18176726080E-01 4.12121909660E-01 4.05876897665E-01 3.99441577952E-01 3.92815887193E-01 3.85999809221E-01 3.78993373352E-01 3.71796652694E-01 3.64409762443E-01 3.56832858179E-01 3.49066134160E-01 3.41109821619E-01 3.32964187076E-01 3.24629530653E-01 3.16106184422E-01 3.07394510755E-01 2.98494900712E-01 2.89407772447E-01 2.80133569649E-01 2.70672760005E-01 2.61025833700E-01 2.51193301957E-01 2.41175695594E-01 2.30973563635E-01 2.20587471945E-01 2.10018001904E-01 1.99265749117E-01 1.88331322166E-01 1.77215341385E-01 1.65918437693E-01 1.54441251445E-01 1.42784431339E-01 1.30948633352E-01 1.18934519735E-01 1.06742758042E-01 9.43740202227E-02 8.18289817681E-02 6.91083209284E-02 5.62127180021E-02 4.31428547146E-02 2.98994136947E-02 1.64830780663E-02 2.89453116935E-03 -1.08655435690E-02 -2.47964625941E-02 -3.88975419905E-02 -5.31680970321E-02 -6.76074414894E-02 -8.22148866660E-02 -9.69897401366E-02 -1.11931304157E-01 -1.27038873714E-01 -1.42311734196E-01 -1.57749158637E-01 -1.73350404533E-01 -1.89114710174E-01 -2.05041290509E-01 -2.21129332483E-01 -2.37377989864E-01 -2.53786377535E-01 -2.70353565253E-01 -2.87078570865E-01 -3.03960353005E-01 -3.20997803280E-01 -3.38189737958E-01 -3.55534889209E-01 -3.73031895919E-01 -3.90679294129E-01 -4.08475507157E-01 -4.26418835468E-01 -4.44507446349E-01 -4.62739363486E-01 -4.81112456515E-01 -4.99624430649E-01 -5.18272816473E-01 -5.37054960012E-01 -5.55968013193E-01 -5.75008924792E-01 -5.94174432000E-01 -6.13461052708E-01 -6.32865078641E-01 -6.52382569438E-01 -6.72009347799E-01 -6.91740995791E-01 -7.11572852416E-01 -7.31500012528E-01 -7.51517327155E-01 -7.71619405319E-01 -7.91800617356E-01 -8.12055099808E-01 -8.32376761864E-01 -8.52759293350E-01 -8.73196174240E-01 -8.93680685635E-01 -9.14205922129E-01 -9.34764805467E-01 -9.55350099388E-01 -9.75954425511E-01 -9.96570280103E-01 -1.01719005157E+00 -1.03780603848E+00 -1.05841046794E+00 -1.07899551410E+00 -1.09955331656E+00 -1.12007599859E+00 -1.14055568472E+00 -1.16098451782E+00 -1.18135467513E+00 -1.20165838332E+00 -1.22188793230E+00 -1.24203568759E+00 -1.26209410121E+00 -1.28205572086E+00 -1.30191319732E+00 -1.32165929008E+00 -1.34128687091E+00 -1.36078892560E+00 -1.38015855356E+00 -1.39938896548E+00 -1.41847347893E+00 -1.43740551196E+00 -1.45617857469E+00 -1.47478625898E+00 -1.49322222619E+00 -1.51148019308E+00 -1.52955391592E+00 -1.54743717298E+00 -1.56512374522E+00 -1.58260739556E+00 -1.59988184661E+00 -1.61694075703E+00 -1.63377769649E+00 -1.65038611953E+00 -1.66675933814E+00 -1.68289049339E+00 -1.69877252593E+00 -1.71439814574E+00 -1.72975980096E+00 -1.74484964595E+00 -1.75965950881E+00 -1.77418085815E+00 -1.78840476947E+00 -1.80232189110E+00 -1.81592240969E+00 -1.82919601559E+00 -1.84213186791E+00 -1.85471855957E+00 -1.86694408230E+00 -1.87879579175E+00 -1.89026037275E+00 -1.90132380490E+00 -1.91197132851E+00 -1.92218741107E+00 -1.93195571431E+00 -1.94125906208E+00 -1.95007940900E+00 -1.95839781028E+00 -1.96619439257E+00 -1.97344832628E+00 -1.98013779935E+00 -1.98623999271E+00 -1.99173105766E+00 -1.99658609538E+00 -2.00077913868E+00 -2.00428313637E+00 -2.00706994045E+00 -2.00911029628E+00 -2.01037383622E+00 -2.01082907679E+00 -2.01044341987E+00 -2.00918315813E+00 -2.00701348509E+00 -2.00389851018E+00 -1.99980127910E+00 -1.99468380002E+00 -1.98850707587E+00 -1.98123114325E+00 -1.97281511843E+00 -1.96321725079E+00 -1.95239498430E+00 -1.94030502741E+00 -1.92690343203E+00 -1.91214568196E+00 -1.89598679137E+00 -1.87838141399E+00 -1.85928396328E+00 -1.83864874453E+00 -1.81643009909E+00 -1.79258256129E+00 -1.76706578827E+00 -1.73988282979E+00 -1.71099131162E+00 -1.68034480807E+00 -1.64789821125E+00 -1.61360797274E+00 -1.57743236137E+00 -1.53933173762E+00 -1.49926884506E+00 -1.45720911916E+00 -1.41312101367E+00 -1.36697634485E+00 -1.31875065376E+00 -1.26842358636E+00 -1.21597929155E+00 -1.16140683680E+00 -1.10467187647E+00 -1.04548639895E+00 -9.83841353756E-01 -9.19766120933E-01 -8.53298794362E-01 -7.84486713750E-01 -7.13387001874E-01 -6.40067104432E-01 -5.64605329548E-01 -4.87091383623E-01 -4.07626899821E-01 -3.26325955093E-01 -2.43315571261E-01 -1.58736194842E-01 -7.27421507203E-02 1.44979366439E-02 1.02800760820E-01 1.91967996756E-01 2.81786017318E-01 3.72025670995E-01 4.62442129260E-01 5.52774812566E-01 6.42747404480E-01 7.32067963898E-01 8.20429145751E-01 9.07508540974E-01 9.92969146888E-01 1.07645997939E+00 1.15761683857E+00 1.23606323945E+00 1.31141151958E+00 1.38326413495E+00 1.45121515568E+00 1.51485197205E+00 1.57375722126E+00 1.62751094407E+00 1.67569297965E+00 1.71788560528E+00 1.75367642631E+00 1.78266151943E+00 1.80444883024E+00 1.81866182332E+00 1.82494338001E+00 1.82295993571E+00 1.81240584440E+00 1.79300795408E+00 1.76453037179E+00 1.72677939185E+00 1.67960855514E+00 1.62292380132E+00 1.55668866910E+00 1.48092949321E+00 1.39574053892E+00 1.30128900809E+00 1.19781984254E+00 1.08566024291E+00 9.65223813622E-01 8.37014236571E-01 7.01628369162E-01 5.59758655486E-01 4.12194733312E-01 2.59824114577E-01 1.03631813169E-01 -5.53012084730E-02 -2.15800902907E-01 -3.76604438575E-01 -5.36366060948E-01 -6.93664629601E-01 -8.47012936334E-01 -9.94868895188E-01 -1.13564867685E+00 -1.26774183713E+00 -1.38952846163E+00 -1.49939831601E+00 -1.59577195357E+00 -1.67712368826E+00 -1.74200629299E+00 -1.78907722882E+00 -1.81712615212E+00 -1.82510338301E+00 -1.81214895186E+00 -1.77762177011E+00 -1.72112840064E+00 -1.64255083111E+00 -1.54207258398E+00 -1.42020243129E+00 -1.27779492267E+00 -1.11606688555E+00 -9.36609019006E-01 -7.41391681385E-01 -5.32763970433E-01 -3.13445216751E-01 -8.65080611237E-02 1.44647632465E-01 3.76330659892E-01 6.04604632850E-01 8.25344688405E-01 1.03430479365E+00 1.22719540401E+00 1.39977090768E+00 1.54792592195E+00 1.66779910393E+00 1.75588270594E+00 1.80913565285E+00 1.82509745816E+00 1.80199984251E+00 1.73887249065E+00 1.63563900264E+00 1.49319878573E+00 1.31349042242E+00 1.09953196470E+00 8.55433675183E-01 5.86378990013E-01 2.98569944529E-01 -8.65996795042E-04 -3.04009811358E-01 -6.02326379765E-01 -8.86880949059E-01 -1.14859428309E+00 -1.37853223956E+00 -1.56822339481E+00 -1.70999611347E+00 -1.79732421691E+00 -1.82516825238E+00 -1.79029743135E+00 -1.69157573829E+00 -1.53019467002E+00 -1.30983471767E+00 -1.03673821395E+00 -7.19677690776E-01 -3.69806553708E-01 -3.82766941093E-04 3.73638614032E-01 7.36141869234E-01 1.07050637215E+00 1.36036377170E+00 1.59042991862E+00 1.74737605670E+00 1.82069555205E+00 1.80351541684E+00 1.69329684854E+00 1.49236673383E+00 1.20822331890E+00 8.53564695560E-01 4.45998896841E-01 7.40948226549E-03 -4.37029578979E-01 -8.60171676841E-01 -1.23450239938E+00 -1.53395659538E+00 -1.73584390501E+00 -1.82275301429E+00 -1.78428474188E+00 -1.61845284674E+00 -1.33259213788E+00 -9.43628627450E-01 2.78643147105E-12 2.89290658058E-12 3.00345031657E-12 3.11821814936E-12 3.23737149012E-12 3.36107791786E-12 3.48951141511E-12 3.62285261263E-12 3.76128904344E-12 3.90501540657E-12 4.05423384088E-12 4.20915420938E-12 4.36999439434E-12 4.53698060376E-12 4.71034768950E-12 4.89033947755E-12 5.07720911103E-12 5.27121940611E-12 5.47264322172E-12 5.68176384326E-12 5.89887538105E-12 6.12428318392E-12 6.35830426871E-12 6.60126776610E-12 6.85351538351E-12 7.11540188567E-12 7.38729559360E-12 7.66957890257E-12 7.96264881996E-12 8.26691752358E-12 8.58281294138E-12 8.91077935328E-12 9.25127801604E-12 9.60478781194E-12 9.97180592232E-12 1.03528485268E-11 1.07484515292E-11 1.11591713115E-11 1.15855855158E-11 1.20282938573E-11 1.24879189674E-11 1.29651072697E-11 1.34605298887E-11 1.39748835939E-11 1.45088917798E-11 1.50633054834E-11 1.56389044401E-11 1.62364981806E-11 1.68569271693E-11 1.75010639868E-11 1.81698145561E-11 1.88641194180E-11 1.95849550527E-11 2.03333352538E-11 2.11103125542E-11 2.19169797059E-11 2.27544712172E-11 2.36239649483E-11 2.45266837676E-11 2.54638972719E-11 2.64369235717E-11 2.74471311453E-11 2.84959407631E-11 2.95848274859E-11 3.07153227396E-11 3.18890164690E-11 3.31075593738E-11 3.43726652300E-11 3.56861133008E-11 3.70497508380E-11 3.84654956812E-11 3.99353389539E-11 4.14613478647E-11 4.30456686142E-11 4.46905294136E-11 4.63982436186E-11 4.81712129824E-11 5.00119310345E-11 5.19229865866E-11 5.39070673743E-11 5.59669638368E-11 5.81055730415E-11 6.03259027585E-11 6.26310756908E-11 6.50243338658E-11 6.75090431955E-11 7.00886982098E-11 7.27669269716E-11 7.55474961792E-11 7.84343164638E-11 8.14314478897E-11 8.45431056642E-11 8.77736660658E-11 9.11276725995E-11 9.46098423863E-11 9.82250727980E-11 1.01978448344E-10 1.05875247824E-10 1.09920951750E-10 1.14121250055E-10 1.18482050096E-10 1.23009484961E-10 1.27709922098E-10 1.32589972263E-10 1.37656498827E-10 1.42916627420E-10 1.48377755957E-10 1.54047565045E-10 1.59934028777E-10 1.66045425956E-10 1.72390351732E-10 1.78977729692E-10 1.85816824413E-10 1.92917254488E-10 2.00289006055E-10 2.07942446842E-10 2.15888340750E-10 2.24137862986E-10 2.32702615786E-10 2.41594644730E-10 2.50826455681E-10 2.60411032379E-10 2.70361854693E-10 2.80692917588E-10 2.91418750802E-10 3.02554439283E-10 3.14115644403E-10 3.26118625987E-10 3.38580265177E-10 3.51518088179E-10 3.64950290906E-10 3.78895764574E-10 3.93374122269E-10 4.08405726528E-10 4.24011717983E-10 4.40214045088E-10 4.57035494990E-10 4.74499725577E-10 4.92631298749E-10 5.11455714965E-10 5.30999449104E-10 5.51289987700E-10 5.72355867600E-10 5.94226716101E-10 6.16933292610E-10 6.40507531915E-10 6.64982589089E-10 6.90392886123E-10 7.16774160340E-10 7.44163514650E-10 7.72599469739E-10 8.02122018238E-10 8.32772680973E-10 8.64594565357E-10 8.97632426018E-10 9.31932727745E-10 9.67543710830E-10 1.00451545892E-09 1.04289996944E-09 1.08275122675E-09 1.12412527804E-09 1.16708031218E-09 1.21167674152E-09 1.25797728690E-09 1.30604706583E-09 1.35595368408E-09 1.40776733076E-09 1.46156087703E-09 1.51740997859E-09 1.57539318210E-09 1.63559203559E-09 1.69809120323E-09 1.76297858434E-09 1.83034543703E-09 1.90028650656E-09 1.97290015854E-09 2.04828851735E-09 2.12655760969E-09 2.20781751375E-09 2.29218251400E-09 2.37977126189E-09 2.47070694279E-09 2.56511744917E-09 2.66313556051E-09 2.76489913002E-09 2.87055127851E-09 2.98024059569E-09 3.09412134913E-09 3.21235370124E-09 3.33510393450E-09 3.46254468532E-09 3.59485518684E-09 3.73222152100E-09 3.87483688024E-09 4.02290183920E-09 4.17662463680E-09 4.33622146914E-09 4.50191679350E-09 4.67394364403E-09 4.85254395951E-09 5.03796892358E-09 5.23047931800E-09 5.43034588942E-09 5.63784973015E-09 5.85328267346E-09 6.07694770403E-09 6.30915938406E-09 6.55024429563E-09 6.80054150003E-09 7.06040301458E-09 7.33019430772E-09 7.61029481297E-09 7.90109846256E-09 8.20301424144E-09 8.51646676245E-09 8.84189686352E-09 9.17976222758E-09 9.53053802629E-09 9.89471758827E-09 1.02728130929E-08 1.06653562905E-08 1.10728992506E-08 1.14960151376E-08 1.19352990176E-08 1.23913686947E-08 1.28648655803E-08 1.33564555947E-08 1.38668301040E-08 1.43967068920E-08 1.49468311702E-08 1.55179766252E-08 1.61109465071E-08 1.67265747593E-08 1.73657271908E-08 1.80293026942E-08 1.87182345097E-08 1.94334915377E-08 2.01760797012E-08 2.09470433602E-08 2.17474667811E-08 2.25784756609E-08 2.34412387105E-08 2.43369692984E-08 2.52669271566E-08 2.62324201528E-08 2.72348061291E-08 2.82754948120E-08 2.93559497945E-08 3.04776905945E-08 3.16422947916E-08 3.28514002458E-08 3.41067074006E-08 3.54099816744E-08 3.67630559432E-08 3.81678331179E-08 3.96262888204E-08 4.11404741623E-08 4.27125186282E-08 4.43446330716E-08 4.60391128230E-08 4.77983409179E-08 4.96247914481E-08 5.15210330410E-08 5.34897324709E-08 5.55336584102E-08 5.76556853220E-08 5.98587975023E-08 6.21460932769E-08 6.45207893580E-08 6.69862253676E-08 6.95458685338E-08 7.22033185662E-08 7.49623127179E-08 7.78267310406E-08 8.08006018410E-08 8.38881073448E-08 8.70935895779E-08 9.04215564717E-08 9.38766882023E-08 9.74638437712E-08 1.01188067838E-07 1.05054597813E-07 1.09068871223E-07 1.13236533357E-07 1.17563445201E-07 1.22055691684E-07 1.26719590231E-07 1.31561699645E-07 1.36588829333E-07 1.41808048875E-07 1.47226697970E-07 1.52852396751E-07 1.58693056503E-07 1.64756890784E-07 1.71052426974E-07 1.77588518266E-07 1.84374356111E-07 1.91419483144E-07 1.98733806599E-07 2.06327612237E-07 2.14211578810E-07 2.22396793074E-07 2.30894765374E-07 2.39717445830E-07 2.48877241136E-07 2.58387032002E-07 2.68260191263E-07 2.78510602680E-07 2.89152680458E-07 3.00201389512E-07 3.11672266502E-07 3.23581441675E-07 3.35945661544E-07 3.48782312426E-07 3.62109444885E-07 3.75945799106E-07 3.90310831240E-07 4.05224740751E-07 4.20708498812E-07 4.36783877785E-07 4.53473481821E-07 4.70800778639E-07 4.88790132508E-07 5.07466838496E-07 5.26857158022E-07 5.46988355770E-07 5.67888738011E-07 5.89587692384E-07 6.12115729203E-07 6.35504524339E-07 6.59786963734E-07 6.84997189627E-07 7.11170648528E-07 7.38344141042E-07 7.66555873580E-07 7.95845512053E-07 8.26254237616E-07 8.57824804535E-07 8.90601600268E-07 9.24630707836E-07 9.59959970580E-07 9.96639059387E-07 1.03471954248E-06 1.07425495788E-06 1.11530088861E-06 1.15791504083E-06 1.20215732487E-06 1.24808993941E-06 1.29577745888E-06 1.34528692416E-06 1.39668793676E-06 1.45005275662E-06 1.50545640356E-06 1.56297676272E-06 1.62269469392E-06 1.68469414526E-06 1.74906227102E-06 1.81588955404E-06 1.88526993286E-06 1.95730093360E-06 2.03208380693E-06 2.10972367026E-06 2.19032965536E-06 2.27401506160E-06 2.36089751500E-06 2.45109913346E-06 2.54474669814E-06 2.64197183150E-06 2.74291118209E-06 2.84770661633E-06 2.95650541773E-06 3.06946049357E-06 3.18673058955E-06 3.30848051261E-06 3.43488136222E-06 3.56611077051E-06 3.70235315152E-06 3.84379996005E-06 3.99064996023E-06 4.14310950443E-06 4.30139282282E-06 4.46572232385E-06 4.63632890630E-06 4.81345228314E-06 4.99734131782E-06 5.18825437324E-06 5.38645967416E-06 5.59223568332E-06 5.80587149192E-06 6.02766722496E-06 6.25793446206E-06 6.49699667426E-06 6.74518967744E-06 7.00286210308E-06 7.27037588688E-06 7.54810677601E-06 7.83644485563E-06 8.13579509551E-06 8.44657791743E-06 8.76922978415E-06 9.10420381080E-06 9.45197039958E-06 9.81301789854E-06 1.01878532854E-05 1.05770028777E-05 1.09810130691E-05 1.14004510949E-05 1.18359058256E-05 1.22879885915E-05 1.27573340375E-05 1.32446010117E-05 1.37504734870E-05 1.42756615178E-05 1.48209022331E-05 1.53869608674E-05 1.59746318306E-05 1.65847398188E-05 1.72181409670E-05 1.78757240455E-05 1.85584117021E-05 1.92671617511E-05 2.00029685110E-05 2.07668641939E-05 2.15599203464E-05 2.23832493457E-05 2.32380059528E-05 2.41253889237E-05 2.50466426823E-05 2.60030590567E-05 2.69959790807E-05 2.80267948643E-05 2.90969515343E-05 3.02079492490E-05 3.13613452885E-05 3.25587562245E-05 3.38018601724E-05 3.50923991279E-05 3.64321813924E-05 3.78230840901E-05 3.92670557797E-05 4.07661191655E-05 4.23223739105E-05 4.39379995554E-05 4.56152585482E-05 4.73564993880E-05 4.91641598874E-05 5.10407705576E-05 5.29889581213E-05 5.50114491581E-05 5.71110738873E-05 5.92907700920E-05 6.15535871926E-05 6.39026904722E-05 6.63413654614E-05 6.88730224881E-05 7.15012013976E-05 7.42295764507E-05 7.70619614050E-05 8.00023147874E-05 8.30547453642E-05 8.62235178158E-05 8.95130586244E-05 9.29279621826E-05 9.64729971294E-05 1.00153112924E-04 1.03973446667E-04 1.07939330172E-04 1.12056297305E-04 1.16330091597E-04 1.20766674144E-04 1.25372231788E-04 1.30153185623E-04 1.35116199801E-04 1.40268190672E-04 1.45616336267E-04 1.51168086124E-04 1.56931171489E-04 1.62913615888E-04 1.69123746095E-04 1.75570203504E-04 1.82261955919E-04 1.89208309790E-04 1.96418922887E-04 2.03903817454E-04 2.11673393837E-04 2.19738444626E-04 2.28110169305E-04 2.36800189450E-04 2.45820564479E-04 2.55183807984E-04 2.64902904659E-04 2.74991327846E-04 2.85463057727E-04 2.96332600175E-04 3.07615006300E-04 3.19325892693E-04 3.31481462424E-04 3.44098526790E-04 3.57194527855E-04 3.70787561809E-04 3.84896403169E-04 3.99540529858E-04 4.14740149181E-04 4.30516224744E-04 4.46890504336E-04 4.63885548813E-04 4.81524762017E-04 4.99832421763E-04 5.18833711936E-04 5.38554755724E-04 5.59022650041E-04 5.80265501164E-04 6.02312461639E-04 6.25193768484E-04 6.48940782744E-04 6.73586030433E-04 6.99163244919E-04 7.25707410783E-04 7.53254809219E-04 7.81843065010E-04 8.11511195140E-04 8.42299659079E-04 8.74250410822E-04 9.07406952706E-04 9.41814391081E-04 9.77519493887E-04 1.01457075019E-03 1.05301843176E-03 1.09291465669E-03 1.13431345523E-03 1.17727083781E-03 1.22184486527E-03 1.26809572159E-03 1.31608578885E-03 1.36587972486E-03 1.41754454320E-03 1.47114969594E-03 1.52676715912E-03 1.58447152088E-03 1.64434007258E-03 1.70645290275E-03 1.77089299406E-03 1.83774632346E-03 1.90710196536E-03 1.97905219812E-03 2.05369261392E-03 2.13112223193E-03 2.21144361500E-03 2.29476299002E-03 2.38119037179E-03 2.47083969071E-03 2.56382892427E-03 2.66028023247E-03 2.76032009712E-03 2.86407946535E-03 2.97169389710E-03 3.08330371698E-03 3.19905417028E-03 3.31909558344E-03 3.44358352892E-03 3.57267899458E-03 3.70654855762E-03 3.84536456317E-03 3.98930530755E-03 4.13855522627E-03 4.29330508688E-03 4.45375218653E-03 4.62010055453E-03 4.79256115974E-03 4.97135212290E-03 5.15669893390E-03 5.34883467401E-03 5.54800024300E-03 5.75444459130E-03 5.96842495693E-03 6.19020710742E-03 6.42006558648E-03 6.65828396547E-03 6.90515509959E-03 7.16098138855E-03 7.42607504188E-03 7.70075834851E-03 7.98536395059E-03 8.28023512143E-03 8.58572604721E-03 8.90220211245E-03 9.23004018893E-03 9.56962892775E-03 9.92136905434E-03 1.02856736661E-02 1.06629685322E-02 1.10536923957E-02 1.14582972767E-02 1.18772487767E-02 1.23110263841E-02 1.27601237795E-02 1.32250491407E-02 1.37063254466E-02 1.42044907805E-02 1.47200986302E-02 1.52537181864E-02 1.58059346370E-02 1.63773494575E-02 1.69685806966E-02 1.75802632565E-02 1.82130491658E-02 1.88676078459E-02 1.95446263690E-02 2.02448097074E-02 2.09688809717E-02 2.17175816394E-02 2.24916717713E-02 2.32919302145E-02 2.41191547924E-02 2.49741624795E-02 2.58577895613E-02 2.67708917768E-02 2.77143444445E-02 2.86890425696E-02 2.96959009323E-02 3.07358541568E-02 3.18098567601E-02 3.29188831791E-02 3.40639277778E-02 3.52460048320E-02 3.64661484935E-02 3.77254127319E-02 3.90248712556E-02 4.03656174131E-02 4.17487640726E-02 4.31754434847E-02 4.46468071270E-02 4.61640255325E-02 4.77282881053E-02 4.93408029254E-02 5.10027965443E-02 5.27155137778E-02 5.44802174965E-02 5.62981884212E-02 5.81707249274E-02 6.00991428639E-02 6.20847753930E-02 6.41289728588E-02 6.62331026911E-02 6.83985493542E-02 7.06267143489E-02 7.29190162776E-02 7.52768909843E-02 7.77017917798E-02 8.01951897643E-02 8.27585742606E-02 8.53934533717E-02 8.81013546755E-02 9.08838260725E-02 9.37424368001E-02 9.66787786306E-02 9.96944672658E-02 1.02791143946E-01 1.05970477285E-01 1.09234165354E-01 1.12583938010E-01 1.16021559512E-01 1.19548831401E-01 1.23167595686E-01 1.26879738316E-01 1.30687192972E-01 1.34591945152E-01 1.38596036574E-01 1.42701569873E-01 1.46910713594E-01 1.51225707464E-01 1.55648867911E-01 1.60182593828E-01 1.64829372522E-01 1.69591785821E-01 1.74472516285E-01 1.79474353467E-01 1.84600200151E-01 1.89853078486E-01 1.95236135952E-01 2.00752651023E-01 2.06406038468E-01 2.12199854133E-01 2.18137799116E-01 2.24223723189E-01 2.30461627338E-01 2.36855665300E-01 2.43410143954E-01 2.50129522447E-01 2.57018409958E-01 2.64081561983E-01 2.71323875111E-01 2.78750380235E-01 2.86366234240E-01 2.94176710245E-01 3.02187186544E-01 3.10403134502E-01 3.18830105744E-01 3.27473719092E-01 3.36339647852E-01 3.45433608154E-01 3.54761349243E-01 3.64328646684E-01 3.74141299628E-01 3.84205133310E-01 3.94526007984E-01 4.05109835407E-01 4.15962603729E-01 4.27090411192E-01 4.38499508265E-01 4.50196346683E-01 4.62187632075E-01 4.74480374413E-01 4.87081927006E-01 5.00000000000E-01 5.13242629348E-01 5.26818114955E-01 5.40735000948E-01 5.55002082199E-01 5.69628412211E-01 5.84623311186E-01 5.99996374286E-01 6.15757480096E-01 6.31916799270E-01 6.48484803390E-01 6.65472274011E-01 6.82890311922E-01 7.00750346598E-01 7.19064145869E-01 7.37843825791E-01 7.57101860729E-01 7.76851093652E-01 7.97104746643E-01 8.17876431630E-01 8.39180161324E-01 8.61030360399E-01 8.83441876874E-01 9.06429993743E-01 9.30010440823E-01 9.54199406838E-01 9.79013551742E-01 1.00447001929E+00 1.03058644982E+00 1.05738099334E+00 1.08487232281E+00 1.11307964773E+00 1.14202272791E+00 1.17172188762E+00 1.20219802989E+00 1.23347265113E+00 1.26556785608E+00 1.29850637291E+00 1.33231156869E+00 1.36700746514E+00 1.40261875461E+00 1.43917081635E+00 1.47668973310E+00 1.51520230786E+00 1.55473608103E+00 1.59531934769E+00 1.63698117518E+00 1.67975142093E+00 1.72366075035E+00 1.76874065502E+00 1.81502347098E+00 1.86254239702E+00 1.91133151315E+00 1.96142579889E+00 2.01286115165E+00 2.06567440478E+00 2.11990334544E+00 2.17558673215E+00 2.23276431180E+00 2.29147683605E+00 2.35176607708E+00 2.41367484236E+00 2.47724698837E+00 2.54252743306E+00 2.60956216685E+00 2.67839826200E+00 2.74908387997E+00 2.82166827675E+00 2.89620180571E+00 2.97273591780E+00 3.05132315886E+00 3.13201716360E+00 3.21487264626E+00 3.29994538728E+00 3.38729221611E+00 3.47697098955E+00 3.56904056557E+00 3.66356077223E+00 3.76059237160E+00 3.86019701825E+00 3.96243721239E+00 4.06737624725E+00 4.17507815072E+00 4.28560762107E+00 4.39902995675E+00 4.51541098017E+00 4.63481695557E+00 4.75731450093E+00 4.88297049421E+00 5.01185197387E+00 5.14402603408E+00 5.27955971478E+00 5.41851988694E+00 5.56097313339E+00 5.70698562570E+00 5.85662299748E+00 6.00995021477E+00 6.16703144389E+00 6.32792991761E+00 6.49270779999E+00 6.66142605083E+00 6.83414429011E+00 7.01092066334E+00 7.19181170836E+00 7.37687222416E+00 7.56615514249E+00 7.75971140260E+00 7.95758982968E+00 8.15983701738E+00 8.36649721458E+00 8.57761221655E+00 8.79322126063E+00 9.01336092601E+00 9.23806503746E+00 9.46736457240E+00 9.70128757060E+00 9.93985904555E+00 1.01831008965E+01 1.04310318197E+01 1.06836672177E+01 1.09410191041E+01 1.12030960038E+01 1.14699028442E+01 1.17414408381E+01 1.20177073531E+01 1.22986957684E+01 1.25843953136E+01 1.28747908897E+01 1.31698628687E+01 1.34695868688E+01 1.37739335048E+01 1.40828681100E+01 1.43963504280E+01 1.47143342719E+01 1.50367671498E+01 1.53635898543E+01 1.56947360141E+01 1.60301316064E+01 1.63696944291E+01 1.67133335309E+01 1.70609485987E+01 1.74124293010E+01 1.77676545868E+01 1.81264919395E+01 1.84887965850E+01 1.88544106535E+01 1.92231622962E+01 1.95948647553E+01 1.99693153886E+01 2.03462946490E+01 2.07255650193E+01 2.11068699039E+01 2.14899324780E+01 2.18744544957E+01 2.22601150592E+01 2.26465693517E+01 2.30334473347E+01 2.34203524149E+01 2.38068600821E+01 2.41925165231E+01 2.45768372151E+01 2.49593055049E+01 2.53393711768E+01 2.57164490185E+01 2.60899173896E+01 2.64591168012E+01 2.68233485147E+01 2.71818731707E+01 2.75339094553E+01 2.78786328185E+01 2.82151742547E+01 2.85426191599E+01 2.88600062802E+01 2.91663267671E+01 2.94605233582E+01 2.97414896997E+01 3.00080698331E+01 3.02590578666E+01 3.04931978531E+01 3.07091839024E+01 3.09056605496E+01 3.10812234114E+01 3.12344201565E+01 3.13637518227E+01 3.14676745117E+01 3.15446014965E+01 3.15929057758E+01 3.16109231116E+01 3.15969555890E+01 3.15492757341E+01 3.14661312325E+01 3.13457502864E+01 3.11863476506E+01 3.09861313883E+01 3.07433103868E+01 3.04561026713E+01 3.01227445544E+01 2.97415006600E+01 2.93106748507E+01 2.88286220928E+01 2.82937612837E+01 2.77045890636E+01 2.70596946288E+01 2.63577755552E+01 2.55976546344E+01 2.47782977152E+01 2.38988325338E+01 2.29585685036E+01 2.19570174211E+01 2.08939713027E+01 1.97699729000E+01 1.85852672226E+01 1.73403314165E+01 1.60359618919E+01 1.46732987598E+01 1.32538503953E+01 1.17795179250E+01 1.02526194065E+01 8.67591344330E+00 7.05262194264E+00 5.38645169470E+00 3.68161441972E+00 1.94284489237E+00 1.75416722665E-01 -1.61484466289E+00 -3.42146325601E+00 -5.23654040018E+00 -7.05193142795E+00 -8.85896792709E+00 -1.06484304685E+01 -1.24105700863E+01 -1.41351370896E+01 -1.58114178214E+01 -1.74282799649E+01 -1.89742269740E+01 -2.04374621646E+01 -2.18059629538E+01 -2.30675656677E+01 -2.42100612271E+01 -2.52213019694E+01 -2.60893196838E+01 -2.68024548143E+01 -2.73494966067E+01 -2.77198337782E+01 -2.79036150652E+01 -2.78919187555E+01 -2.76769300357E+01 -2.72521246837E+01 -2.66124573138E+01 -2.57545520357E+01 -2.46768930258E+01 -2.33800121301E+01 -2.18666702371E+01 -2.01420287655E+01 -1.82138072381E+01 -1.60924225448E+01 -1.37911051639E+01 -1.13259873171E+01 -8.71615779375E+00 -5.98367801340E+00 -3.15355381998E+00 -2.53657532365E-01 2.68540506211E+00 5.63048777316E+00 8.54616165173E+00 1.13950410590E+01 1.41381811213E+01 1.67355484204E+01 1.91465654131E+01 2.13307274674E+01 2.32482895416E+01 2.48610174139E+01 2.61329960145E+01 2.70314848352E+01 2.75278076263E+01 2.75982606906E+01 2.72250211047E+01 2.63970332235E+01 2.51108489423E+01 2.33713945272E+01 2.11926344969E+01 1.85981012016E+01 1.56212575597E+01 1.23056600465E+01 8.70488966888E+00 4.88222048225E+00 9.09998383897E-01 -3.13129238396E+00 -7.15429124200E+00 -1.10663599205E+01 -1.47715159937E+01 -1.81726879098E+01 -2.11742648270E+01 -2.36848998197E+01 -2.56205091407E+01 -2.69073936533E+01 -2.74853918594E+01 -2.73109578606E+01 -2.63600429410E+01 -2.46306472269E+01 -2.21448991418E+01 -1.89505162729E+01 -1.51215029831E+01 -1.07579487707E+01 -5.98480804919E+00 -9.49567516231E-01 4.18125782997E+00 9.22681454628E+00 1.39977473968E+01 1.83030819420E+01 2.19579839365E+01 2.47921541575E+01 2.66585443832E+01 2.74420108706E+01 2.70674607647E+01 2.55069999808E+01 2.27855641883E+01 1.89845136196E+01 1.42427032155E+01 8.75460692316E+00 2.76518215458E+00 -3.43869123213E+00 -9.54017500834E+00 -1.52075943614E+01 -2.01122229244E+01 -2.39479741073E+01 -2.64519829867E+01 -2.74248287430E+01 -2.67489618057E+01 -2.44037880925E+01 -2.04758504815E+01 -1.51626578612E+01 -8.76896229137E+00 -1.69468396444E+00 5.58577092915E+00 1.25523800157E+01 1.86753737425E+01 2.34561032182E+01 2.64701210043E+01 2.74090132660E+01 2.61170483769E+01 2.26185299124E+01 1.71319454952E+01 1.00676500765E+01 2.00694086213E+00 -6.33804890926E+00 -1.41822675751E+01 -2.07399328915E+01 -2.53052566818E+01 -2.73340222505E+01 -2.65169185824E+01 -2.28349623737E+01 -1.65878675287E+01 -8.38802887897E+00 8.84085555148E-01 1.01630283184E+01 1.83146967553E+01 2.42751998589E+01 2.71966053226E+01 2.65802426658E+01 2.23767508647E+01 1.50334705750E+01 5.47451749915E+00 -4.99309691198E+00 -1.48432197089E+01 -2.25479560437E+01 -2.68207090147E+01 -2.68476625047E+01 -2.24661781503E+01 -1.42510207574E+01 -3.47960510220E+00 8.03468193418E+00 1.82284691817E+01 2.51553869239E+01 2.73728334640E+01 2.42727574832E+01 1.62795954834E+01 4.85415053231E+00 -7.72522904619E+00 -1.87871609725E+01 -2.58297345467E+01 espresso-5.1/PW/examples/EXX_example/Pseudo/NPBE1nlcc.RRKJ30000644000175000017500000066512412341373025021324 0ustar mbambaN 2 F T 1 4 3 4 0.50000000000E+01-.19373650924E+02 2 -.70000000000E+010.10000000000E+030.70000000000E+010.12500000000E-01 1085 5 4 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 1.00000000000E+00 2S 1 0 2.00 2S 1 0 0.00 2P 2 1 3.00 2P 2 1 0.00 3D 3 2 -2.00 727 7.69047737719E-02 7.78721170347E-02 7.88516279891E-02 7.98434596861E-02 8.08370431893E-02 8.18736243041E-02 8.28677426705E-02 8.39715693505E-02 8.49984547393E-02 8.60209716817E-02 8.71640144761E-02 8.82313564100E-02 8.93615417508E-02 9.04718268174E-02 9.16030179426E-02 9.27673005361E-02 9.39133061471E-02 9.51165645404E-02 9.63164948250E-02 9.75098745106E-02 9.87643293989E-02 9.99752267456E-02 1.01259419400E-01 1.02500537459E-01 1.03831767686E-01 1.05085672250E-01 1.06445561542E-01 1.07782510842E-01 1.09138776188E-01 1.10485471218E-01 1.11910708716E-01 1.13281093016E-01 1.14753764653E-01 1.16152660019E-01 1.17632209591E-01 1.19119466853E-01 1.20603435970E-01 1.22139095826E-01 1.23657754098E-01 1.25226976111E-01 1.26789520974E-01 1.28384905440E-01 1.30001667135E-01 1.31636684167E-01 1.33298867676E-01 1.34961998014E-01 1.36671704072E-01 1.38394444809E-01 1.40114835594E-01 1.41892289817E-01 1.43676543463E-01 1.45477252887E-01 1.47312643345E-01 1.49172668326E-01 1.51029812173E-01 1.52950953334E-01 1.54855990339E-01 1.56826520807E-01 1.58778263727E-01 1.60788803926E-01 1.62805772619E-01 1.64853343717E-01 1.66924150315E-01 1.69034027639E-01 1.71149989657E-01 1.73303607654E-01 1.75481723721E-01 1.77697629203E-01 1.79930325280E-01 1.82200407781E-01 1.84476531048E-01 1.86800514386E-01 1.89161153459E-01 1.91537370488E-01 1.93940138539E-01 1.96381164164E-01 1.98849256930E-01 2.01358797944E-01 2.03885776350E-01 2.06458817514E-01 2.09043095975E-01 2.11683979063E-01 2.14331694372E-01 2.17040496890E-01 2.19761877847E-01 2.22532265107E-01 2.25341160193E-01 2.28151859496E-01 2.31045409635E-01 2.33933614078E-01 2.36888550228E-01 2.39859897661E-01 2.42883814591E-01 2.45933837686E-01 2.49031701628E-01 2.52157994777E-01 2.55334569635E-01 2.58537559847E-01 2.61806622302E-01 2.65081552034E-01 2.68425054559E-01 2.71802856201E-01 2.75216178897E-01 2.78674089686E-01 2.82195164339E-01 2.85730747060E-01 2.89328499344E-01 2.92965762524E-01 2.96654547639E-01 3.00386161217E-01 3.04164978528E-01 3.07987387132E-01 3.11866230353E-01 3.15776053254E-01 3.19767344539E-01 3.23766714533E-01 3.27867728333E-01 3.31964389200E-01 3.36161184096E-01 3.40380511585E-01 3.44664619375E-01 3.48999805601E-01 3.53388711575E-01 3.57830265082E-01 3.62329213163E-01 3.66900185312E-01 3.71496183571E-01 3.76185599512E-01 3.80911668575E-01 3.85698804440E-01 3.90559511635E-01 3.95467511579E-01 4.00434490801E-01 4.05479758275E-01 4.10572293869E-01 4.15747890988E-01 4.20969357740E-01 4.26265046583E-01 4.31623395789E-01 4.37063093848E-01 4.42553217156E-01 4.48119466069E-01 4.53759242931E-01 4.59466255971E-01 4.65245264034E-01 4.71093467143E-01 4.77022438760E-01 4.83027015679E-01 4.89093701450E-01 4.95254597594E-01 5.01478105948E-01 5.07790020500E-01 5.14173953880E-01 5.20645371528E-01 5.27190566747E-01 5.33820229377E-01 5.40539130561E-01 5.47336026856E-01 5.54222033364E-01 5.61193149759E-01 5.68252301255E-01 5.75394823250E-01 5.82641703160E-01 5.89962880116E-01 5.97383098262E-01 6.04902750048E-01 6.12505917830E-01 6.20216415208E-01 6.28010417920E-01 6.35913639832E-01 6.43911879724E-01 6.52011515627E-01 6.60212268992E-01 6.68517219732E-01 6.76925690146E-01 6.85442718892E-01 6.94058918642E-01 7.02791103393E-01 7.11634873546E-01 7.20581206854E-01 7.29646744892E-01 7.38825316874E-01 7.48115662695E-01 7.57527209397E-01 7.67058069352E-01 7.76703691629E-01 7.86476068765E-01 7.96364068987E-01 8.06383302007E-01 8.16528735152E-01 8.26796111883E-01 8.37196460989E-01 8.47724851070E-01 8.58389103522E-01 8.69187035855E-01 8.80118910859E-01 8.91189782288E-01 9.02398891622E-01 9.13749234897E-01 9.25245361646E-01 9.36878737106E-01 9.48665725031E-01 9.60597043463E-01 9.72680889783E-01 9.84914552668E-01 9.97301217924E-01 1.00984773346E+00 1.02254797770E+00 1.03541210156E+00 1.04843502824E+00 1.06162153291E+00 1.07497614583E+00 1.08849409610E+00 1.10218747719E+00 1.11605003065E+00 1.13008813144E+00 1.14430300605E+00 1.15869463379E+00 1.17326977179E+00 1.18802762480E+00 1.20296738354E+00 1.21810180213E+00 1.23342033535E+00 1.24893682940E+00 1.26464433632E+00 1.28055210213E+00 1.29665859052E+00 1.31296588699E+00 1.32948109801E+00 1.34620376517E+00 1.36313585088E+00 1.38028107771E+00 1.39764197353E+00 1.41522138448E+00 1.43301980756E+00 1.45104866105E+00 1.46929461107E+00 1.48777755724E+00 1.50648896641E+00 1.52543741642E+00 1.54462540406E+00 1.56405229803E+00 1.58372333990E+00 1.60364391393E+00 1.62381349994E+00 1.64423722494E+00 1.66491836495E+00 1.68585613493E+00 1.70706321088E+00 1.72853125847E+00 1.75027328306E+00 1.77228565255E+00 1.79457793493E+00 1.81714872972E+00 1.84000321325E+00 1.86314558199E+00 1.88657915208E+00 1.91030689448E+00 1.93433340386E+00 1.95866209974E+00 1.98329602833E+00 2.00823979999E+00 2.03349889393E+00 2.05907287046E+00 2.08497136079E+00 2.11119199407E+00 2.13774567892E+00 2.16463087808E+00 2.19185618018E+00 2.21942251823E+00 2.24733544880E+00 2.27559959241E+00 2.30421963021E+00 2.33319777549E+00 2.36254231356E+00 2.39225524993E+00 2.42234073462E+00 2.45280601560E+00 2.48365114208E+00 2.51488908324E+00 2.54651627383E+00 2.57854085638E+00 2.61097060068E+00 2.64380522632E+00 2.67705464231E+00 2.71072092225E+00 2.74481036084E+00 2.77932978212E+00 2.81428133206E+00 2.84967334068E+00 2.88550992058E+00 2.92179701340E+00 2.95853988999E+00 2.99574532416E+00 3.03341782592E+00 3.07156462242E+00 3.11018875147E+00 3.14930152737E+00 3.18890309783E+00 3.22900394226E+00 3.26960800605E+00 3.31072260941E+00 3.35235378985E+00 3.39450981261E+00 3.43719225338E+00 3.48041379654E+00 3.52417781496E+00 3.56849126957E+00 3.61336178175E+00 3.65879668700E+00 3.70480124538E+00 3.75138491518E+00 3.79855330875E+00 3.84631483140E+00 3.89467588756E+00 3.94364428107E+00 3.99322870196E+00 4.04343601841E+00 4.09427273519E+00 4.14574903615E+00 4.19787280531E+00 4.25064923339E+00 4.30409039540E+00 4.35820138668E+00 4.41299260736E+00 4.46847177701E+00 4.52464794726E+00 4.58152932628E+00 4.63912544903E+00 4.69744331588E+00 4.75649559547E+00 4.81628762034E+00 4.87683052797E+00 4.93813479321E+00 5.00020736851E+00 5.06305915316E+00 5.12670078945E+00 5.19114055948E+00 5.25638967108E+00 5.32245641300E+00 5.38935422590E+00 5.45708945405E+00 5.52567650714E+00 5.59512233205E+00 5.66544137274E+00 5.73664125465E+00 5.80873460016E+00 5.88173295853E+00 5.95564632836E+00 6.03048727162E+00 6.10626599806E+00 6.18299577936E+00 6.26068748911E+00 6.33935368071E+00 6.41900535767E+00 6.49965649024E+00 6.58131834443E+00 6.66400342893E+00 6.74772517645E+00 6.83249615714E+00 6.91832931321E+00 7.00523768064E+00 7.09323550043E+00 7.18233554282E+00 7.27255137941E+00 7.36389737074E+00 7.45638721520E+00 7.55003536448E+00 7.64485590900E+00 7.74086343939E+00 7.83807303034E+00 7.93649892752E+00 8.03615709080E+00 8.13706177569E+00 8.23922922508E+00 8.34267447751E+00 8.44741404434E+00 8.55346314377E+00 8.66083820814E+00 8.76955590626E+00 8.87963259159E+00 8.99108515267E+00 9.10393022032E+00 9.21818528823E+00 9.33386762952E+00 9.45099506388E+00 9.56958483516E+00 9.68965549059E+00 9.81122471490E+00 9.93431151538E+00 1.00589338309E+01 1.01851112083E+01 1.03128624218E+01 1.04422063601E+01 1.05731632710E+01 1.07057523551E+01 1.08399935973E+01 1.09759077957E+01 1.11135143361E+01 1.12528350156E+01 1.13938896569E+01 1.15367002484E+01 1.16812874806E+01 1.18276737708E+01 1.19758799217E+01 1.21259290523E+01 1.22778429572E+01 1.24316444661E+01 1.25873559393E+01 1.27450013467E+01 1.29046030644E+01 1.30661856077E+01 1.32297723452E+01 1.33953874963E+01 1.35630551797E+01 1.37328008265E+01 1.39046487930E+01 1.40786240760E+01 1.42547528492E+01 1.44330600227E+01 1.46135725394E+01 1.47963158317E+01 1.49813166999E+01 1.51686023366E+01 1.53581996243E+01 1.55501357705E+01 1.57444387736E+01 1.59411361633E+01 1.61402567272E+01 1.63418284383E+01 1.65458807893E+01 1.67524419709E+01 1.69615421658E+01 1.71732105515E+01 1.73874773101E+01 1.76043724389E+01 1.78239268215E+01 1.80461708260E+01 1.82711362132E+01 1.84988534659E+01 1.87293551357E+01 1.89626725632E+01 1.91988382540E+01 1.94378846821E+01 1.96798447948E+01 1.99247514531E+01 2.01726382607E+01 2.04235386193E+01 2.06774866062E+01 2.09345164731E+01 2.11946627971E+01 2.14579600031E+01 2.17244432647E+01 2.19941481378E+01 2.22671097114E+01 2.25433641635E+01 2.28229473670E+01 2.31058956473E+01 2.33922456949E+01 2.36820340728E+01 2.39752981550E+01 2.42720747903E+01 2.45724018922E+01 2.48763168540E+01 2.51838576979E+01 2.54950625187E+01 2.58099697194E+01 2.61286178829E+01 2.64510452048E+01 2.67772911930E+01 2.71073945025E+01 2.74413943246E+01 2.77793299902E+01 2.81212408647E+01 2.84671666955E+01 2.88171467903E+01 2.91712212487E+01 2.95294296086E+01 2.98918119333E+01 3.02584078634E+01 3.06292576240E+01 3.10044010359E+01 3.13838779137E+01 3.17677283991E+01 3.21559922092E+01 3.25487090237E+01 3.29459188887E+01 3.33476609413E+01 3.37539750340E+01 3.41649000383E+01 3.45804754180E+01 3.50007397275E+01 3.54257317480E+01 3.58554897647E+01 3.62900518342E+01 3.67294555070E+01 3.71737382011E+01 3.76229367662E+01 3.80770875833E+01 3.85362265515E+01 3.90003892337E+01 3.94696101711E+01 3.99439237431E+01 4.04233634103E+01 4.09079618525E+01 4.13977512331E+01 4.18927628381E+01 4.23930265848E+01 4.28985722379E+01 4.34094279844E+01 4.39256211630E+01 4.44471779145E+01 4.49741232986E+01 4.55064810122E+01 4.60442733655E+01 4.65875213708E+01 4.71362445252E+01 4.76904606128E+01 4.82501858530E+01 4.88154348524E+01 4.93862200531E+01 4.99625521954E+01 5.05444399048E+01 5.11318895556E+01 5.17249054712E+01 5.23234893732E+01 5.29276406715E+01 5.35373561098E+01 5.41526296106E+01 5.47734523240E+01 5.53998123974E+01 5.60316947663E+01 5.66690810983E+01 5.73119496917E+01 5.79602751310E+01 5.86140282605E+01 5.92731760234E+01 5.99376812770E+01 6.06075024973E+01 6.12825938246E+01 6.19629045381E+01 6.26483791552E+01 6.33389571028E+01 6.40345724745E+01 6.47351538753E+01 6.54406240414E+01 6.61508998833E+01 6.68658919147E+01 6.75855041364E+01 6.83096339572E+01 6.90381714605E+01 6.97709996191E+01 7.05079937662E+01 7.12490210528E+01 7.19939406180E+01 7.27426030488E+01 7.34948498511E+01 7.42505134665E+01 7.50094164745E+01 7.57713717196E+01 7.65361815378E+01 7.73036376600E+01 7.80735203864E+01 7.88455987228E+01 7.96196295187E+01 8.03953572026E+01 8.11725132405E+01 8.19508158579E+01 8.27299692983E+01 8.35096635565E+01 8.42895736399E+01 8.50693592056E+01 8.58486640726E+01 8.66271153972E+01 8.74043235993E+01 8.81798810255E+01 8.89533621998E+01 8.97243227309E+01 9.04922984983E+01 9.12568056682E+01 9.20173394218E+01 9.27733735844E+01 9.35243599864E+01 9.42697276081E+01 9.50088820314E+01 9.57412045405E+01 9.64660517285E+01 9.71827543835E+01 9.78906169707E+01 9.85889169939E+01 9.92769039116E+01 9.99537988140E+01 1.00618793250E+02 1.01271048862E+02 1.01909696278E+02 1.02533834754E+02 1.03142531094E+02 1.03734819250E+02 1.04309699348E+02 1.04866137206E+02 1.05403063669E+02 1.05919373855E+02 1.06413926774E+02 1.06885544638E+02 1.07333012476E+02 1.07755077772E+02 1.08150449798E+02 1.08517799812E+02 1.08855760503E+02 1.09162926007E+02 1.09437851976E+02 1.09679055777E+02 1.09885016452E+02 1.10054175562E+02 1.10184937598E+02 1.10275670647E+02 1.10324707636E+02 1.10330347248E+02 1.10290855734E+02 1.10204468270E+02 1.10069391248E+02 1.09883804503E+02 1.09645863884E+02 1.09353704567E+02 1.09005444287E+02 1.08599187370E+02 1.08133028814E+02 1.07605059597E+02 1.07013371673E+02 1.06356064043E+02 1.05631249384E+02 1.04837061080E+02 1.03971661374E+02 1.03033249508E+02 1.02020071393E+02 1.00930429592E+02 9.97626942873E+01 9.85153146683E+01 9.71868319474E+01 9.57758925385E+01 9.42812624021E+01 9.27018423299E+01 9.10366839623E+01 8.92850067321E+01 8.74462158042E+01 8.55199204372E+01 8.35059535935E+01 8.14043917715E+01 7.92155757130E+01 7.69401316160E+01 7.45789923949E+01 7.21334194405E+01 6.96050241601E+01 6.69957896289E+01 6.43080912926E+01 6.15447172948E+01 5.87088874638E+01 5.58042712388E+01 5.28350031732E+01 4.98056967555E+01 4.67214549837E+01 4.35878779512E+01 4.04110664006E+01 3.71976208381E+01 3.39546356379E+01 3.06896872473E+01 2.74108160338E+01 2.41265009696E+01 2.08456264506E+01 1.75774405931E+01 1.43315042699E+01 1.11176306988E+01 7.94581418888E+00 4.82614876619E+00 1.76873542418E+00 -1.21642154338E+00 -4.11952894927E+00 -6.93112997673E+00 -9.64223871081E+00 -1.22444834247E+01 -1.47302568660E+01 -1.70928707634E+01 -1.93267125067E+01 -2.14273997555E+01 -2.33919287373E+01 -2.52188108462E+01 -2.69081909994E+01 -2.84619400486E+01 -2.98837127228E+01 -3.11789602877E+01 -3.23548872107E+01 -3.34203379364E+01 -3.43856004933E+01 -3.52621108889E+01 -3.60620421072E+01 -3.67977610728E+01 -3.74811365724E+01 -3.81226822781E+01 -3.87305213070E+01 -3.93091619539E+01 -3.98580805156E+01 -4.03701150941E+01 -4.08296869759E+01 -4.12108821777E+01 -4.14754478975E+01 -4.15707888310E+01 -4.14280854597E+01 -4.09607060269E+01 -4.00631467280E+01 -3.86108129601E+01 -3.64610559767E+01 -3.34559759680E+01 -2.94279141431E+01 -2.42062200299E+01 -1.76486242500E+01 -9.48266713486E+00 -1.05670680183E+00 1.04766166819E-01 -1.03869381123E-02 1.02980187699E-03 -1.02098926402E-04 1.01223596454E-05 -1.00372903823E-06 9.95862426891E-08 -1.01232878387E-08 1.48861150657E-09 -1.07256909619E-09 9.65210585059E-01 727 1.22762541892E-01 1.24306705023E-01 1.25870291353E-01 1.27453545195E-01 1.29040619054E-01 1.30693402571E-01 1.32283719471E-01 1.34039915973E-01 1.35681922757E-01 1.37318539850E-01 1.39137436684E-01 1.40844000232E-01 1.42646078146E-01 1.44419810881E-01 1.46226145668E-01 1.48083544058E-01 1.49914875683E-01 1.51833543638E-01 1.53748690857E-01 1.55655368463E-01 1.57655189679E-01 1.59591128669E-01 1.61638533789E-01 1.63622848591E-01 1.65743885320E-01 1.67750413635E-01 1.69917612498E-01 1.72051954983E-01 1.74216901600E-01 1.76369107622E-01 1.78640826207E-01 1.80831918556E-01 1.83178187681E-01 1.85415465265E-01 1.87775512566E-01 1.90148871674E-01 1.92519102648E-01 1.94968670535E-01 1.97394577071E-01 1.99898214829E-01 2.02393679447E-01 2.04940320754E-01 2.07520972510E-01 2.10130980914E-01 2.12783691584E-01 2.15439835034E-01 2.18167880679E-01 2.20917531717E-01 2.23665718927E-01 2.26501630935E-01 2.29349884010E-01 2.32224961207E-01 2.35154255989E-01 2.38122767050E-01 2.41089085004E-01 2.44153802180E-01 2.47196575390E-01 2.50339981368E-01 2.53457480640E-01 2.56665661566E-01 2.59885830117E-01 2.63154408734E-01 2.66460242942E-01 2.69827307214E-01 2.73205940092E-01 2.76643674595E-01 2.80120770581E-01 2.83657179861E-01 2.87221460775E-01 2.90844512584E-01 2.94479358576E-01 2.98188785983E-01 3.01956013583E-01 3.05749466965E-01 3.09585581732E-01 3.13482038639E-01 3.17422028977E-01 3.21427209251E-01 3.25461550072E-01 3.29568085088E-01 3.33694525123E-01 3.37909089797E-01 3.42137000859E-01 3.46459864995E-01 3.50804779854E-01 3.55226570413E-01 3.59709447045E-01 3.64198392127E-01 3.68815099849E-01 3.73427228989E-01 3.78142979804E-01 3.82886927432E-01 3.87713321116E-01 3.92582538944E-01 3.97527210357E-01 4.02518282880E-01 4.07588559028E-01 4.12702292114E-01 4.17919079046E-01 4.23148532368E-01 4.28484870153E-01 4.33876705213E-01 4.39325873425E-01 4.44846098421E-01 4.50465266867E-01 4.56110407707E-01 4.61853129289E-01 4.67659460828E-01 4.73547487997E-01 4.79504222312E-01 4.85536285493E-01 4.91638288262E-01 4.97829614509E-01 5.04072055050E-01 5.10441509136E-01 5.16827819511E-01 5.23371563259E-01 5.29913589771E-01 5.36610931468E-01 5.43347055100E-01 5.50185486877E-01 5.57105734078E-01 5.64111787264E-01 5.71202162860E-01 5.78383976140E-01 5.85679326749E-01 5.93017674264E-01 6.00501790413E-01 6.08046523139E-01 6.15688586514E-01 6.23446823212E-01 6.31281860406E-01 6.39211311104E-01 6.47264242415E-01 6.55394156365E-01 6.63654861324E-01 6.71990602678E-01 6.80444019975E-01 6.88997832737E-01 6.97680194123E-01 7.06444735740E-01 7.15330131418E-01 7.24332570505E-01 7.33442687438E-01 7.42667706838E-01 7.52003516191E-01 7.61467576082E-01 7.71052218148E-01 7.80737281689E-01 7.90571035240E-01 8.00506142491E-01 8.10581414247E-01 8.20772350305E-01 8.31102245985E-01 8.41550650705E-01 8.52133671651E-01 8.62858602063E-01 8.73708644163E-01 8.84700590681E-01 8.95828543183E-01 9.07096990016E-01 9.18499033100E-01 9.30066290763E-01 9.41753740253E-01 9.53598627498E-01 9.65601678243E-01 9.77739072091E-01 9.90046702010E-01 1.00248889496E+00 1.01510439031E+00 1.02787196813E+00 1.04080133154E+00 1.05389217459E+00 1.06714925072E+00 1.08057166847E+00 1.09416710396E+00 1.10792159961E+00 1.12186052780E+00 1.13597741160E+00 1.15025883129E+00 1.16472991412E+00 1.17938151321E+00 1.19421189387E+00 1.20923532884E+00 1.22444914326E+00 1.23984662647E+00 1.25544593330E+00 1.27123050485E+00 1.28722390626E+00 1.30341875178E+00 1.31980878018E+00 1.33641071571E+00 1.35321730153E+00 1.37024044028E+00 1.38747701586E+00 1.40492757742E+00 1.42259987649E+00 1.44049293849E+00 1.45861142470E+00 1.47696234599E+00 1.49553304585E+00 1.51434826516E+00 1.53339425145E+00 1.55268348124E+00 1.57221207412E+00 1.59198497555E+00 1.61201266997E+00 1.63228614295E+00 1.65282081943E+00 1.67360928110E+00 1.69465887685E+00 1.71597660906E+00 1.73755551706E+00 1.75941394756E+00 1.78154272010E+00 1.80395160219E+00 1.82664264640E+00 1.84961603098E+00 1.87288211859E+00 1.89643992733E+00 1.92028845924E+00 1.94444709209E+00 1.96890020543E+00 1.99366883124E+00 2.01874275053E+00 2.04413609381E+00 2.06984677621E+00 2.09587817941E+00 2.12224120324E+00 2.14893541996E+00 2.17596400499E+00 2.20333281193E+00 2.23104588687E+00 2.25910775594E+00 2.28751943121E+00 2.31629831702E+00 2.34542466278E+00 2.37492861286E+00 2.40479763242E+00 2.43504487909E+00 2.46567437570E+00 2.49668546586E+00 2.52808630176E+00 2.55988526451E+00 2.59208185987E+00 2.62468409533E+00 2.65769717941E+00 2.69112025285E+00 2.72497264571E+00 2.75924216778E+00 2.79394865959E+00 2.82908698811E+00 2.86467185072E+00 2.90070146705E+00 2.93718394918E+00 2.97412593570E+00 3.01153274433E+00 3.04940918578E+00 3.08776251116E+00 3.12659820631E+00 3.16592120873E+00 3.20573880338E+00 3.24605958499E+00 3.28688327165E+00 3.32822469848E+00 3.37008069013E+00 3.41246801378E+00 3.45538475328E+00 3.49884420530E+00 3.54284816625E+00 3.58740539691E+00 3.63252323682E+00 3.67820914203E+00 3.72446685533E+00 3.77130924310E+00 3.81873975413E+00 3.86676505814E+00 3.91539648062E+00 3.96463454930E+00 4.01449919044E+00 4.06498551422E+00 4.11610621167E+00 4.16787342796E+00 4.22028721400E+00 4.27336293914E+00 4.32710420585E+00 4.38152096405E+00 4.43662396121E+00 4.49241693396E+00 4.54891290190E+00 4.60611856557E+00 4.66404337484E+00 4.72269577882E+00 4.78208649405E+00 4.84222283882E+00 4.90311622231E+00 4.96477176918E+00 5.02720703832E+00 5.09042282804E+00 5.15443545859E+00 5.21925144696E+00 5.28488238025E+00 5.35133793537E+00 5.41863113310E+00 5.48676496318E+00 5.55575910104E+00 5.62561924943E+00 5.69635650285E+00 5.76798296282E+00 5.84051030022E+00 5.91394708871E+00 5.98830820429E+00 6.06360276144E+00 6.13984407860E+00 6.21704247328E+00 6.29521037619E+00 6.37436155877E+00 6.45450706228E+00 6.53565739523E+00 6.61782859526E+00 6.70103326162E+00 6.78527995283E+00 6.87058757804E+00 6.95696457492E+00 7.04442735630E+00 7.13298831788E+00 7.22266186850E+00 7.31346115949E+00 7.40540134438E+00 7.49849377905E+00 7.59275834683E+00 7.68820392094E+00 7.78484810332E+00 7.88270751278E+00 7.98179348707E+00 8.08212330705E+00 8.18371387210E+00 8.28657855399E+00 8.39073512806E+00 8.49619699655E+00 8.60298531040E+00 8.71111057868E+00 8.82059542889E+00 8.93145129992E+00 9.04370089676E+00 9.15735669841E+00 9.27243870365E+00 9.38896530817E+00 9.50695259401E+00 9.62642050627E+00 9.74738546962E+00 9.86986852142E+00 9.99388710971E+00 1.01194612205E+01 1.02466085258E+01 1.03753511656E+01 1.05057072354E+01 1.06376967073E+01 1.07713409609E+01 1.09066600897E+01 1.10436747649E+01 1.11824058111E+01 1.13228758777E+01 1.14651054228E+01 1.16091161214E+01 1.17549308490E+01 1.19025715039E+01 1.20520611309E+01 1.22034222472E+01 1.23566781408E+01 1.25118528393E+01 1.26689691450E+01 1.28280524496E+01 1.29891256036E+01 1.31522144585E+01 1.33173430745E+01 1.34845377422E+01 1.36538228269E+01 1.38252245359E+01 1.39987694497E+01 1.41744836937E+01 1.43523942144E+01 1.45325275919E+01 1.47149117196E+01 1.48995741791E+01 1.50865433925E+01 1.52758469363E+01 1.54675143644E+01 1.56615739547E+01 1.58580559927E+01 1.60569891773E+01 1.62584046461E+01 1.64623323931E+01 1.66688026088E+01 1.68778475435E+01 1.70894978971E+01 1.73037855677E+01 1.75207436986E+01 1.77404033316E+01 1.79627991519E+01 1.81879629042E+01 1.84159296057E+01 1.86467323477E+01 1.88804068377E+01 1.91169863814E+01 1.93565077867E+01 1.95990058947E+01 1.98445171257E+01 2.00930772189E+01 2.03447243532E+01 2.05994943402E+01 2.08574262261E+01 2.11185573612E+01 2.13829263977E+01 2.16505718609E+01 2.19215342721E+01 2.21958525638E+01 2.24735666560E+01 2.27547182602E+01 2.30393472180E+01 2.33274964473E+01 2.36192066249E+01 2.39145205076E+01 2.42134814663E+01 2.45161324346E+01 2.48225168578E+01 2.51326793982E+01 2.54466640390E+01 2.57645166793E+01 2.60862820222E+01 2.64120070797E+01 2.67417369350E+01 2.70755196905E+01 2.74134019649E+01 2.77554319139E+01 2.81016574420E+01 2.84521278118E+01 2.88068915397E+01 2.91659992589E+01 2.95294997130E+01 2.98974447769E+01 3.02698845362E+01 3.06468708511E+01 3.10284555626E+01 3.14146912485E+01 3.18056303839E+01 3.22013265866E+01 3.26018331952E+01 3.30072045925E+01 3.34174954460E+01 3.38327609403E+01 3.42530560551E+01 3.46784369214E+01 3.51089602685E+01 3.55446821495E+01 3.59856602780E+01 3.64319519324E+01 3.68836150956E+01 3.73407083216E+01 3.78032899953E+01 3.82714197428E+01 3.87451564233E+01 3.92245605151E+01 3.97096917379E+01 4.02006107744E+01 4.06973784369E+01 4.12000560185E+01 4.17087051007E+01 4.22233867014E+01 4.27441638247E+01 4.32710982095E+01 4.38042524147E+01 4.43436892232E+01 4.48894714811E+01 4.54416626199E+01 4.60003254219E+01 4.65655238662E+01 4.71373210974E+01 4.77157810549E+01 4.83009670485E+01 4.88929432688E+01 4.94917733020E+01 5.00975207242E+01 5.07102496023E+01 5.13300233612E+01 5.19569053656E+01 5.25909595222E+01 5.32322483643E+01 5.38808354875E+01 5.45367830008E+01 5.52001538864E+01 5.58710097428E+01 5.65494124874E+01 5.72354232690E+01 5.79291028669E+01 5.86305112701E+01 5.93397082367E+01 6.00567526349E+01 6.07817025897E+01 6.15146154606E+01 6.22555480550E+01 6.30045555963E+01 6.37616930107E+01 6.45270137869E+01 6.53005701782E+01 6.60824135962E+01 6.68725940625E+01 6.76711594682E+01 6.84781573936E+01 6.92936329635E+01 7.01176299368E+01 7.09501901768E+01 7.17913538198E+01 7.26411588466E+01 7.34996410405E+01 7.43668341138E+01 7.52427693749E+01 7.61274754247E+01 7.70209783711E+01 7.79233017505E+01 7.88344656910E+01 7.97544875990E+01 8.06833815310E+01 8.16211579802E+01 8.25678241683E+01 8.35233832087E+01 8.44878345335E+01 8.54611733502E+01 8.64433903995E+01 8.74344720177E+01 8.84343997801E+01 8.94431501756E+01 9.04606945113E+01 9.14869987469E+01 9.25220229674E+01 9.35657213280E+01 9.46180418012E+01 9.56789258849E+01 9.67483081446E+01 9.78261162682E+01 9.89122702613E+01 1.00006682581E+02 1.01109257627E+02 1.02219891361E+02 1.03338471055E+02 1.04464874705E+02 1.05598971077E+02 1.06740618831E+02 1.07889666329E+02 1.09045951496E+02 1.10209300698E+02 1.11379529047E+02 1.12556439582E+02 1.13739822436E+02 1.14929455067E+02 1.16125101429E+02 1.17326511147E+02 1.18533419525E+02 1.19745546322E+02 1.20962595916E+02 1.22184256120E+02 1.23410198007E+02 1.24640074649E+02 1.25873521291E+02 1.27110154028E+02 1.28349569384E+02 1.29591343463E+02 1.30835031510E+02 1.32080166761E+02 1.33326260015E+02 1.34572798493E+02 1.35819245263E+02 1.37065038471E+02 1.38309590077E+02 1.39552285702E+02 1.40792482596E+02 1.42029509974E+02 1.43262667344E+02 1.44491223247E+02 1.45714415249E+02 1.46931447992E+02 1.48141492605E+02 1.49343685702E+02 1.50537128068E+02 1.51720883795E+02 1.52893978895E+02 1.54055400672E+02 1.55204096014E+02 1.56338970575E+02 1.57458887781E+02 1.58562667166E+02 1.59649083848E+02 1.60716866732E+02 1.61764697926E+02 1.62791211043E+02 1.63794990621E+02 1.64774570482E+02 1.65728433080E+02 1.66655008018E+02 1.67552671290E+02 1.68419744246E+02 1.69254492439E+02 1.70055125024E+02 1.70819793690E+02 1.71546592064E+02 1.72233555148E+02 1.72878658294E+02 1.73479817486E+02 1.74034888498E+02 1.74541666905E+02 1.74997888181E+02 1.75401228003E+02 1.75749302189E+02 1.76039667977E+02 1.76269824653E+02 1.76437214580E+02 1.76539225088E+02 1.76573189893E+02 1.76536391850E+02 1.76426065056E+02 1.76239398354E+02 1.75973538746E+02 1.75625595342E+02 1.75192644442E+02 1.74671734497E+02 1.74059892303E+02 1.73354129267E+02 1.72551449557E+02 1.71648857778E+02 1.70643368312E+02 1.69532015493E+02 1.68311864434E+02 1.66980023548E+02 1.65533657093E+02 1.63970000041E+02 1.62286373447E+02 1.60480201349E+02 1.58549028318E+02 1.56490539510E+02 1.54302581003E+02 1.51983181926E+02 1.49530578060E+02 1.46943236584E+02 1.44219882266E+02 1.41359525214E+02 1.38361489313E+02 1.35225442598E+02 1.31951428029E+02 1.28539895635E+02 1.24991735496E+02 1.21308310842E+02 1.17491491985E+02 1.13543689971E+02 1.09467890468E+02 1.05267686283E+02 1.00947309371E+02 9.65116608774E+01 9.19663396266E+01 8.73176670098E+01 8.25727093614E+01 7.77392954709E+01 7.28260296023E+01 6.78422984326E+01 6.27982712826E+01 5.77048927595E+01 5.25738664489E+01 4.74176289433E+01 4.22493129645E+01 3.70826984934E+01 3.19321508821E+01 2.68125448000E+01 2.17391736922E+01 1.67276426075E+01 1.17937454336E+01 6.95332460472E+00 2.22211391552E+00 -2.38443534350E+00 -6.85134516090E+00 -1.11643161566E+01 -1.53099467952E+01 -1.92759638775E+01 -2.30514601837E+01 -2.66271362408E+01 -2.99955398765E+01 -3.31512972275E+01 -3.60913271300E+01 -3.88150290787E+01 -4.13244331843E+01 -4.36242993086E+01 -4.57221491011E+01 -4.76282147874E+01 -4.93552837594E+01 -5.09184189070E+01 -5.23345304467E+01 -5.36217747534E+01 -5.47987549718E+01 -5.58834975805E+01 -5.68921807513E+01 -5.78375937177E+01 -5.87273111023E+01 -5.95615754989E+01 -6.03308934709E+01 -6.10133691076E+01 -6.15718231633E+01 -6.19507789273E+01 -6.20734411857E+01 -6.18388502358E+01 -6.11194672049E+01 -5.97595410048E+01 -5.75747246059E+01 -5.43535604050E+01 -4.98615996324E+01 -4.38495352393E+01 -3.60632496199E+01 -2.62905367433E+01 -1.41249430842E+01 -1.57394896984E+00 1.56047637853E-01 -1.54711888793E-02 1.53387447382E-03 -1.52074826049E-04 1.50771027771E-05 -1.49504102705E-06 1.48332836249E-07 -1.50815186185E-08 2.22438092267E-09 -1.61134525066E-09 -6.42464480785E-01 4.28231143784E-01 727 -2.11090974047E-04 -2.16434768376E-04 -2.21913841548E-04 -2.27531618165E-04 -2.33291609523E-04 -2.39197415810E-04 -2.45252728350E-04 -2.51461331914E-04 -2.57827107087E-04 -2.64354032690E-04 -2.71046188268E-04 -2.77907756642E-04 -2.84943026520E-04 -2.92156395182E-04 -2.99552371223E-04 -3.07135577375E-04 -3.14910753396E-04 -3.22882759030E-04 -3.31056577048E-04 -3.39437316360E-04 -3.48030215208E-04 -3.56840644443E-04 -3.65874110879E-04 -3.75136260735E-04 -3.84632883166E-04 -3.94369913882E-04 -4.04353438853E-04 -4.14589698119E-04 -4.25085089688E-04 -4.35846173534E-04 -4.46879675697E-04 -4.58192492489E-04 -4.69791694804E-04 -4.81684532536E-04 -4.93878439112E-04 -5.06381036137E-04 -5.19200138160E-04 -5.32343757555E-04 -5.45820109532E-04 -5.59637617270E-04 -5.73804917183E-04 -5.88330864319E-04 -6.03224537890E-04 -6.18495246953E-04 -6.34152536224E-04 -6.50206192048E-04 -6.66666248510E-04 -6.83542993714E-04 -7.00846976207E-04 -7.18589011574E-04 -7.36780189203E-04 -7.55431879208E-04 -7.74555739543E-04 -7.94163723285E-04 -8.14268086106E-04 -8.34881393933E-04 -8.56016530803E-04 -8.77686706916E-04 -8.99905466890E-04 -9.22686698231E-04 -9.46044640009E-04 -9.69993891759E-04 -9.94549422610E-04 -1.01972658064E-03 -1.04554110245E-03 -1.07200912305E-03 -1.09914718589E-03 -1.12697225322E-03 -1.15550171671E-03 -1.18475340829E-03 -1.21474561132E-03 -1.24549707201E-03 -1.27702701112E-03 -1.30935513601E-03 -1.34250165293E-03 -1.41654304720E-03 -1.41154992591E-03 -1.44752956637E-03 -1.48375014135E-03 -1.52161360518E-03 -1.55990567463E-03 -1.59932578595E-03 -1.63990627907E-03 -1.68118686784E-03 -1.72394811463E-03 -1.76754588135E-03 -1.81237069847E-03 -1.85836365713E-03 -1.90489806041E-03 -1.95361601676E-03 -2.00278293392E-03 -2.05333084756E-03 -2.10571006435E-03 -2.15899184778E-03 -2.21364140581E-03 -2.26934346680E-03 -2.32717556404E-03 -2.38616778576E-03 -2.44624988314E-03 -2.50834343884E-03 -2.57157396301E-03 -2.63691650602E-03 -2.70348817916E-03 -2.77220649585E-03 -2.84207199692E-03 -2.91443073514E-03 -2.98808043698E-03 -3.06361704692E-03 -3.14107510337E-03 -3.22061931653E-03 -3.30217619943E-03 -3.38596644518E-03 -3.47153719686E-03 -3.55942254330E-03 -3.64940596150E-03 -3.74185910844E-03 -3.83661278032E-03 -3.93377573411E-03 -4.03310273955E-03 -4.13551331653E-03 -4.24007083754E-03 -4.34722481783E-03 -4.45765462475E-03 -4.57010100728E-03 -4.68585305959E-03 -4.80450114347E-03 -4.92631080391E-03 -5.05104249545E-03 -5.17866288336E-03 -5.30972377718E-03 -5.44443327363E-03 -5.58209266282E-03 -5.72324302320E-03 -5.86840429865E-03 -6.01663766498E-03 -6.16920906826E-03 -6.32553476629E-03 -6.48545467438E-03 -6.64966426696E-03 -6.81787045525E-03 -6.99048362699E-03 -7.16740115702E-03 -7.34911913829E-03 -7.53495330671E-03 -7.72566781486E-03 -7.92120272498E-03 -8.12182337391E-03 -8.32736571606E-03 -8.53837297601E-03 -8.75422762143E-03 -8.97581323980E-03 -9.20326733953E-03 -9.43595123290E-03 -9.67507727310E-03 -9.91999185947E-03 -1.01710133407E-02 -1.04286800171E-02 -1.06926284338E-02 -1.09630618460E-02 -1.12407600672E-02 -1.15253122093E-02 -1.18170309407E-02 -1.21160899904E-02 -1.24229618663E-02 -1.27371308487E-02 -1.30597589651E-02 -1.33904701703E-02 -1.37295049325E-02 -1.40767094894E-02 -1.44333253877E-02 -1.47986477552E-02 -1.51732389722E-02 -1.55575744875E-02 -1.59510005774E-02 -1.63546802789E-02 -1.67690349905E-02 -1.71935382857E-02 -1.76288100801E-02 -1.80750695574E-02 -1.85324932367E-02 -1.90018656830E-02 -1.94825915128E-02 -1.99759617356E-02 -2.04816526323E-02 -2.10000113508E-02 -2.15315513099E-02 -2.20767360174E-02 -2.26356438293E-02 -2.32084428746E-02 -2.37962366800E-02 -2.43984544343E-02 -2.50161346647E-02 -2.56494623202E-02 -2.62988241612E-02 -2.69644549918E-02 -2.76467965566E-02 -2.83473152501E-02 -2.90643346862E-02 -2.98003273930E-02 -3.05546331880E-02 -3.13280295930E-02 -3.21212317612E-02 -3.29343255657E-02 -3.37682517051E-02 -3.46226563526E-02 -3.54992199722E-02 -3.63980848649E-02 -3.73194190408E-02 -3.82642346421E-02 -3.92325962030E-02 -4.02260781841E-02 -4.12443727349E-02 -4.22880729650E-02 -4.33588993893E-02 -4.44559929474E-02 -4.55814974713E-02 -4.67353779888E-02 -4.79183915274E-02 -4.91315741185E-02 -5.03752482386E-02 -5.16508812136E-02 -5.29576705650E-02 -5.42985358223E-02 -5.56729346573E-02 -5.70825991247E-02 -5.85276359319E-02 -6.00089669629E-02 -6.15281845019E-02 -6.30854657913E-02 -6.46824635747E-02 -6.63198965452E-02 -6.79986306209E-02 -6.97197098427E-02 -7.14850728772E-02 -7.32943475128E-02 -7.51497022554E-02 -7.70522029384E-02 -7.90023404168E-02 -8.10025178794E-02 -8.30527833147E-02 -8.51551049931E-02 -8.73106982465E-02 -8.95208266352E-02 -9.17870577004E-02 -9.41106004613E-02 -9.64928249344E-02 -9.89352535395E-02 -1.01439287558E-01 -1.04007155660E-01 -1.06639999039E-01 -1.09339461669E-01 -1.12107143711E-01 -1.14944981127E-01 -1.17854773188E-01 -1.20837659528E-01 -1.23896643720E-01 -1.27032588809E-01 -1.30248002287E-01 -1.33544921895E-01 -1.36925742329E-01 -1.40391397433E-01 -1.43945271682E-01 -1.47588929375E-01 -1.51324317737E-01 -1.55155278388E-01 -1.59082218872E-01 -1.63108896752E-01 -1.67237448389E-01 -1.71470812280E-01 -1.75811029216E-01 -1.80260786106E-01 -1.84823829482E-01 -1.89502183261E-01 -1.94298530189E-01 -1.99216714995E-01 -2.04259156480E-01 -2.09429328131E-01 -2.14729793351E-01 -2.20165089740E-01 -2.25737465122E-01 -2.31451448251E-01 -2.37309339245E-01 -2.43316313827E-01 -2.49474256811E-01 -2.55788831490E-01 -2.62262841716E-01 -2.68900784408E-01 -2.75706926593E-01 -2.82684589571E-01 -2.89839457356E-01 -2.97175288031E-01 -3.04696720566E-01 -3.12408550529E-01 -3.20315172878E-01 -3.28422300811E-01 -3.36734245585E-01 -3.45256743486E-01 -3.53994151833E-01 -3.62954018080E-01 -3.72139338294E-01 -3.81557792165E-01 -3.91214293771E-01 -4.01114746551E-01 -4.11266254547E-01 -4.21674268483E-01 -4.32346004217E-01 -4.43287344598E-01 -4.54505301586E-01 -4.66007582362E-01 -4.77800364770E-01 -4.89891745333E-01 -5.02289022876E-01 -5.14999861936E-01 -5.28031990262E-01 -5.41394220547E-01 -5.55094359260E-01 -5.69140847843E-01 -5.83542751137E-01 -5.98308893156E-01 -6.13448341947E-01 -6.28970993013E-01 -6.44886262015E-01 -6.61203604713E-01 -6.77934420852E-01 -6.95087773860E-01 -7.12674888449E-01 -7.30707265113E-01 -7.49194829059E-01 -7.68150690898E-01 -7.87585425215E-01 -8.07512050160E-01 -8.27942068674E-01 -8.48889034555E-01 -8.70365320161E-01 -8.92384469370E-01 -9.14960408103E-01 -9.38107900524E-01 -9.61839554310E-01 -9.86171614311E-01 -1.01111839569E+00 -1.03669627364E+00 -1.06292015553E+00 -1.08980748362E+00 -1.11737372142E+00 -1.14563736519E+00 -1.17461488240E+00 -1.20432512171E+00 -1.23478542735E+00 -1.26601602394E+00 -1.29803552886E+00 -1.33086464826E+00 -1.36452263311E+00 -1.39903112258E+00 -1.43441137429E+00 -1.47068576220E+00 -1.50787616806E+00 -1.54600605069E+00 -1.58509899391E+00 -1.62517962363E+00 -1.66627226872E+00 -1.70840274981E+00 -1.75159711118E+00 -1.79588203208E+00 -1.84128526343E+00 -1.88783486445E+00 -1.93555920917E+00 -1.98448903492E+00 -2.03465352467E+00 -2.08608441069E+00 -2.13881300366E+00 -2.19287260056E+00 -2.24829607723E+00 -2.30511829335E+00 -2.36337410927E+00 -2.42309980227E+00 -2.48433221381E+00 -2.54710851787E+00 -2.61146883997E+00 -2.67745189094E+00 -2.74509911945E+00 -2.81445202089E+00 -2.88555306027E+00 -2.95844673052E+00 -3.03317757427E+00 -3.10979228974E+00 -3.18833752702E+00 -3.26886200573E+00 -3.35141541728E+00 -3.43604859572E+00 -3.52281345218E+00 -3.61176365130E+00 -3.70295379965E+00 -3.79643996691E+00 -3.89227983177E+00 -3.99053207285E+00 -4.09125735621E+00 -4.19451731551E+00 -4.30037495599E+00 -4.40889622271E+00 -4.52014721762E+00 -4.63419572859E+00 -4.75111188332E+00 -4.87096726976E+00 -4.99383609385E+00 -5.11979186821E+00 -5.24891300899E+00 -5.38127793822E+00 -5.51696747846E+00 -5.65606448174E+00 -5.79865395010E+00 -5.94482233332E+00 -6.09465880611E+00 -6.24825529860E+00 -6.40570428565E+00 -6.56710268773E+00 -6.73254701470E+00 -6.90213898067E+00 -7.07598122561E+00 -7.25417889224E+00 -7.43683953991E+00 -7.62407451389E+00 -7.81599676745E+00 -8.01272190713E+00 -8.21436936287E+00 -8.42106024788E+00 -8.63291906335E+00 -8.85007399484E+00 -9.07265478861E+00 -9.30079586200E+00 -9.53463411444E+00 -9.77430904801E+00 -1.00199653493E+01 -1.02717489456E+01 -1.05298113405E+01 -1.07943056310E+01 -1.10653898338E+01 -1.13432256714E+01 -1.16279782374E+01 -1.19198161674E+01 -1.22189138336E+01 -1.25254469895E+01 -1.28395980275E+01 -1.31615519456E+01 -1.34914987328E+01 -1.38296330654E+01 -1.41761534451E+01 -1.45312628522E+01 -1.48951708184E+01 -1.52680889164E+01 -1.56502362063E+01 -1.60418339330E+01 -1.64431118134E+01 -1.68543018536E+01 -1.72756426349E+01 -1.77073784034E+01 -1.81497579268E+01 -1.86030363736E+01 -1.90674747136E+01 -1.95433387147E+01 -2.00309018175E+01 -2.05304418297E+01 -2.10422434525E+01 -2.15665980286E+01 -2.21038023331E+01 -2.26541600741E+01 -2.32179822926E+01 -2.37955859299E+01 -2.43872943762E+01 -2.49934386097E+01 -2.56143575166E+01 -2.62503949660E+01 -2.69019044398E+01 -2.75692448776E+01 -2.82527839511E+01 -2.89528971106E+01 -2.96699658564E+01 -3.04043812137E+01 -3.11565423439E+01 -3.19268546271E+01 -3.27157333997E+01 -3.35236012156E+01 -3.43508892491E+01 -3.51980375942E+01 -3.60654938092E+01 -3.69537155693E+01 -3.78631673532E+01 -3.87943245615E+01 -3.97476697256E+01 -4.07236952077E+01 -4.17229025550E+01 -4.27458008750E+01 -4.37929105173E+01 -4.48647592209E+01 -4.59618854754E+01 -4.70848350718E+01 -4.82341648740E+01 -4.94104401935E+01 -5.06142355736E+01 -5.18461348042E+01 -5.31067311346E+01 -5.43966268932E+01 -5.57164332606E+01 -5.70667705474E+01 -5.84482692114E+01 -5.98615668743E+01 -6.13073105920E+01 -6.27861570697E+01 -6.42987701052E+01 -6.58458221913E+01 -6.74279953150E+01 -6.90459777150E+01 -7.07004660758E+01 -7.23921642035E+01 -7.41217840087E+01 -7.58900426571E+01 -7.76976656785E+01 -7.95453835637E+01 -8.14339320387E+01 -8.33640537263E+01 -8.53364942519E+01 -8.73520051983E+01 -8.94113404659E+01 -9.15152574189E+01 -9.36645159643E+01 -9.58598781688E+01 -9.81021061619E+01 -1.00391963190E+02 -1.02730210866E+02 -1.05117610053E+02 -1.07554918613E+02 -1.10042890405E+02 -1.12582275667E+02 -1.15173817579E+02 -1.17818252744E+02 -1.20516309557E+02 -1.23268706611E+02 -1.26076149904E+02 -1.28939334443E+02 -1.31858939074E+02 -1.34835627893E+02 -1.37870046093E+02 -1.40962817957E+02 -1.44114547839E+02 -1.47325814466E+02 -1.50597169763E+02 -1.53929138554E+02 -1.57322212904E+02 -1.60776851382E+02 -1.64293476210E+02 -1.67872470159E+02 -1.71514173572E+02 -1.75218881246E+02 -1.78986838381E+02 -1.82818239695E+02 -1.86713222616E+02 -1.90671865858E+02 -1.94694184943E+02 -1.98780126721E+02 -2.02929568311E+02 -2.07142309392E+02 -2.11418070879E+02 -2.15756486863E+02 -2.20157102299E+02 -2.24619367102E+02 -2.29142630862E+02 -2.33726137698E+02 -2.38369019516E+02 -2.43070292804E+02 -2.47828849521E+02 -2.52643453341E+02 -2.57512732146E+02 -2.62435172281E+02 -2.67409110834E+02 -2.72432729645E+02 -2.77504047814E+02 -2.82620915112E+02 -2.87781004017E+02 -2.92981801638E+02 -2.98220604004E+02 -3.03494505931E+02 -3.08800395139E+02 -3.14134941691E+02 -3.19494592586E+02 -3.24875562583E+02 -3.30273823804E+02 -3.35685100124E+02 -3.41104858696E+02 -3.46528298305E+02 -3.51950344571E+02 -3.57365639693E+02 -3.62768535043E+02 -3.68153081210E+02 -3.73513021621E+02 -3.78841784446E+02 -3.84132473604E+02 -3.89377863215E+02 -3.94570387008E+02 -3.99702136555E+02 -4.04764849306E+02 -4.09749906300E+02 -4.14648324761E+02 -4.19450754559E+02 -4.24147471159E+02 -4.28728375409E+02 -4.33182988178E+02 -4.37500448896E+02 -4.41669514858E+02 -4.45678560278E+02 -4.49515578470E+02 -4.53168182750E+02 -4.56623610352E+02 -4.59868727300E+02 -4.62890036241E+02 -4.65673681326E+02 -4.68205460978E+02 -4.70470838327E+02 -4.72454954996E+02 -4.74142646173E+02 -4.75518461349E+02 -4.76566681054E+02 -4.77271343338E+02 -4.77616266895E+02 -4.77585083620E+02 -4.77161266056E+02 -4.76328165801E+02 -4.75069051018E+02 -4.73367148543E+02 -4.71205690275E+02 -4.68567963367E+02 -4.65437363749E+02 -4.61797456719E+02 -4.57632038429E+02 -4.52925205149E+02 -4.47661426591E+02 -4.41825624712E+02 -4.35403257258E+02 -4.28380408539E+02 -4.20743885085E+02 -4.12481318329E+02 -4.03581270709E+02 -3.94033354418E+02 -3.83828350102E+02 -3.72958336233E+02 -3.61416827018E+02 -3.49198911447E+02 -3.36301405750E+02 -3.22723010876E+02 -3.08464475121E+02 -2.93528767296E+02 -2.77921253561E+02 -2.61649883804E+02 -2.44725381474E+02 -2.27161441733E+02 -2.08974932619E+02 -1.90186102378E+02 -1.70818788750E+02 -1.50900631099E+02 -1.30463284667E+02 -1.09542630968E+02 -8.81789892700E+01 -6.64173211831E+01 -4.43074278864E+01 -2.19041396365E+01 7.32510809534E-01 2.35371303680E+01 4.64388274601E+01 6.93611010459E+01 9.22217584717E+01 1.14932868645E+02 1.37400758210E+02 1.59526051949E+02 1.81203772354E+02 2.02323496509E+02 2.22769584040E+02 2.42421485232E+02 2.61154131964E+02 2.78838425651E+02 2.95341833080E+02 3.10529093221E+02 3.24263053419E+02 3.36405639963E+02 3.46818978623E+02 3.55366672257E+02 3.61915251736E+02 3.66335810038E+02 3.68505834469E+02 3.68311247992E+02 3.65648678102E+02 3.60427963147E+02 3.52574916245E+02 3.42034360908E+02 3.28773455116E+02 3.12785319744E+02 2.94092992227E+02 2.72753710750E+02 2.48863549431E+02 2.22562401226E+02 1.94039307580E+02 1.63538115339E+02 1.31363414277E+02 9.78866875521E+01 6.35525570343E+01 2.88849435366E+01 -5.50711086237E+00 -3.89243270254E+01 -7.05732847191E+01 -9.95644248606E+01 -1.24912884893E+02 -1.45543401256E+02 -1.60300896567E+02 -1.67968861106E+02 -1.67298081069E+02 -1.57050617783E+02 -1.36049178454E+02 -1.03375505055E+02 -5.73825451217E+01 -6.56734199713E+00 6.51112741754E-01 -6.45539396636E-02 6.40012369725E-03 -6.34513329055E-04 6.28827974012E-05 -6.22246845013E-06 6.13655482458E-07 -6.74245296848E-08 4.25046185266E-10 5.35431183674E-09 0.00000000000E+00 0.00000000000E+00 -2.54002098709E-01 727 2.96834679255E-04 3.04349086165E-04 3.12053721253E-04 3.19953400174E-04 3.28053060488E-04 3.36357764753E-04 3.44872703684E-04 3.53603199401E-04 3.62554708754E-04 3.71732826735E-04 3.81143289972E-04 3.90791980320E-04 4.00684928530E-04 4.10828318026E-04 4.21228488764E-04 4.31891941198E-04 4.42825340342E-04 4.54035519937E-04 4.65529486720E-04 4.77314424805E-04 4.89397700172E-04 5.01786865274E-04 5.14489663755E-04 5.27514035291E-04 5.40868120551E-04 5.54560266288E-04 5.68599030553E-04 5.82993188047E-04 5.97751735605E-04 6.12883897815E-04 6.28399132791E-04 6.44307138078E-04 6.60617856719E-04 6.77341483465E-04 6.94488471150E-04 7.12069537222E-04 7.30095670445E-04 7.48578137766E-04 7.67528491355E-04 7.86958575830E-04 8.06880535656E-04 8.27306822739E-04 8.48250204206E-04 8.69723770389E-04 8.91740943001E-04 9.14315483533E-04 9.37461501847E-04 9.61193465002E-04 9.85526206292E-04 1.01047493452E-03 1.03605524351E-03 1.06228312183E-03 1.08917496281E-03 1.11674757480E-03 1.14501819164E-03 1.17400448343E-03 1.20372456764E-03 1.23419702034E-03 1.26544088789E-03 1.29747569880E-03 1.33032147595E-03 1.36399874912E-03 1.39852856778E-03 1.43393251429E-03 1.47023271737E-03 1.50745186593E-03 1.54561322328E-03 1.58474064160E-03 1.62485857695E-03 1.66599210445E-03 1.70816693405E-03 1.75140942653E-03 1.79574661000E-03 1.84120619681E-03 1.88781660084E-03 1.99112285506E-03 1.98493591931E-03 2.03552521096E-03 2.08646630424E-03 2.13970379122E-03 2.19355424564E-03 2.24898779468E-03 2.30605025705E-03 2.36410285580E-03 2.42422964447E-03 2.48553723068E-03 2.54856781905E-03 2.61324069729E-03 2.67868700621E-03 2.74718402470E-03 2.81632796431E-03 2.88741121872E-03 2.96105859580E-03 3.03598306249E-03 3.11283117521E-03 3.19116560874E-03 3.27248095735E-03 3.35543391998E-03 3.43992685447E-03 3.52723928552E-03 3.61615890791E-03 3.70803823851E-03 3.80165479953E-03 3.89827972185E-03 3.99653064142E-03 4.09827249059E-03 4.20184064031E-03 4.30806199030E-03 4.41698441266E-03 4.52883855114E-03 4.64352272038E-03 4.76134394457E-03 4.88167573597E-03 5.00525912851E-03 5.13179553901E-03 5.26180125197E-03 5.39504237651E-03 5.53167176111E-03 5.67134937501E-03 5.81535220882E-03 5.96238274828E-03 6.11306566619E-03 6.26834381869E-03 6.42647251945E-03 6.58924137070E-03 6.75608274938E-03 6.92736692967E-03 7.10276334915E-03 7.28222687256E-03 7.46652469204E-03 7.65594608250E-03 7.84952509707E-03 8.04801299453E-03 8.25213231137E-03 8.46058297183E-03 8.67512293988E-03 8.89494358093E-03 9.11982607263E-03 9.35073592343E-03 9.58726848946E-03 9.82999566777E-03 1.00787767732E-02 1.03343016118E-02 1.05956247919E-02 1.08638062457E-02 1.11387671560E-02 1.14208762946E-02 1.17099099531E-02 1.20066228198E-02 1.23101615076E-02 1.26217545686E-02 1.29415940718E-02 1.32687984580E-02 1.36050511281E-02 1.39494475902E-02 1.43024347447E-02 1.46647597435E-02 1.50359230137E-02 1.54162100228E-02 1.58067033949E-02 1.62068387911E-02 1.66170524583E-02 1.70375889976E-02 1.74691072062E-02 1.79108952365E-02 1.83645691305E-02 1.88296107040E-02 1.93063578754E-02 1.97946019889E-02 2.02960667410E-02 2.08097819201E-02 2.13365299677E-02 2.18769751272E-02 2.24302170629E-02 2.29978703507E-02 2.35805265618E-02 2.41774601333E-02 2.47895356354E-02 2.54170632468E-02 2.60602915998E-02 2.67203153446E-02 2.73963148409E-02 2.80900848879E-02 2.88011843594E-02 2.95300986019E-02 3.02775482629E-02 3.10441806322E-02 3.18301121845E-02 3.26355828961E-02 3.34621284126E-02 3.43089663709E-02 3.51775434921E-02 3.60681232444E-02 3.69812505380E-02 3.79172577211E-02 3.88767671586E-02 3.98618185252E-02 4.08700979611E-02 4.19050412999E-02 4.29657419234E-02 4.40532883319E-02 4.51686808500E-02 4.63120483481E-02 4.74847059253E-02 4.86861714856E-02 4.99187875492E-02 5.11827604787E-02 5.24783355366E-02 5.38069271000E-02 5.51686354192E-02 5.65656563532E-02 5.79975751164E-02 5.94652267273E-02 6.09710088618E-02 6.25137443563E-02 6.40964185531E-02 6.57189971499E-02 6.73825439366E-02 6.90885100254E-02 7.08373565558E-02 7.26311344440E-02 7.44687470636E-02 7.63542569795E-02 7.82869298870E-02 8.02691826569E-02 8.23011830470E-02 8.43842251578E-02 8.65205355496E-02 8.87103789544E-02 9.09560648242E-02 9.32586107048E-02 9.56192368506E-02 9.80394113720E-02 1.00521843203E-01 1.03066037926E-01 1.05675025760E-01 1.08350305397E-01 1.11092582559E-01 1.13905211632E-01 1.16788284701E-01 1.19744556254E-01 1.22775736644E-01 1.25883604628E-01 1.29070360208E-01 1.32337708501E-01 1.35687576715E-01 1.39122106110E-01 1.42643269017E-01 1.46254185346E-01 1.49956470586E-01 1.53752435144E-01 1.57644331851E-01 1.61634878523E-01 1.65726604541E-01 1.69921126901E-01 1.74222644974E-01 1.78632394735E-01 1.83153890692E-01 1.87789997018E-01 1.92544075379E-01 1.97417462055E-01 2.02414892105E-01 2.07538578452E-01 2.12791265379E-01 2.18178325003E-01 2.23700370231E-01 2.29362658886E-01 2.35168202636E-01 2.41121125774E-01 2.47224311285E-01 2.53481536852E-01 2.59898051832E-01 2.66476719372E-01 2.73221315745E-01 2.80137231277E-01 2.87227879547E-01 2.94498138862E-01 3.01951627846E-01 3.09594700957E-01 3.17430543914E-01 3.25465502292E-01 3.33702837506E-01 3.42149795953E-01 3.50809066184E-01 3.59688575326E-01 3.68792288453E-01 3.78126520761E-01 3.87697269622E-01 3.97509223936E-01 4.07570350259E-01 4.17885946741E-01 4.28462536538E-01 4.39306860292E-01 4.50425106730E-01 4.61825294570E-01 4.73513500272E-01 4.85497780578E-01 4.97784281200E-01 5.10383572481E-01 5.23299921813E-01 5.36544086854E-01 5.50122998568E-01 5.64044960828E-01 5.78319943359E-01 5.92955630633E-01 6.07962152878E-01 6.23347800115E-01 6.39122427727E-01 6.55296859053E-01 6.71879802477E-01 6.88882627198E-01 7.06315602500E-01 7.24189507257E-01 7.42515212185E-01 7.61305096277E-01 7.80570146571E-01 8.00322236762E-01 8.20574107024E-01 8.41338167993E-01 8.62627175541E-01 8.84455033828E-01 9.06834989487E-01 9.29780348406E-01 9.53307115318E-01 9.77428063638E-01 1.00215896669E+00 1.02751598440E+00 1.05351310172E+00 1.08016872071E+00 1.10749773835E+00 1.13551844065E+00 1.16424702197E+00 1.19370252523E+00 1.22390236148E+00 1.25486557303E+00 1.28661173838E+00 1.31916160316E+00 1.35253293494E+00 1.38674854552E+00 1.42182858258E+00 1.45779605600E+00 1.49467194797E+00 1.53248076385E+00 1.57124427338E+00 1.61098845948E+00 1.65173650060E+00 1.69351488495E+00 1.73634802595E+00 1.78026433570E+00 1.82529001191E+00 1.87145415394E+00 1.91878385680E+00 1.96730953444E+00 2.01706108326E+00 2.06806995741E+00 2.12036694070E+00 2.17398501257E+00 2.22895734011E+00 2.28531854318E+00 2.34310284654E+00 2.40234655097E+00 2.46308628267E+00 2.52535956117E+00 2.58920540268E+00 2.65466326797E+00 2.72177306567E+00 2.79057799490E+00 2.86111911753E+00 2.93344104110E+00 3.00758780690E+00 3.08360622460E+00 3.16154253547E+00 3.24144574996E+00 3.32336489345E+00 3.40735097613E+00 3.49345580614E+00 3.58173167209E+00 3.67223497279E+00 3.76502016457E+00 3.86014551991E+00 3.95766939611E+00 4.05765151468E+00 4.16015443113E+00 4.26524078968E+00 4.37297624692E+00 4.48342641477E+00 4.59665979721E+00 4.71274627017E+00 4.83175731785E+00 4.95376594252E+00 5.07884760425E+00 5.20707909283E+00 5.33853925708E+00 5.47330920004E+00 5.61147144265E+00 5.75311128847E+00 5.89831541217E+00 6.04717242138E+00 6.19977502883E+00 6.35621619827E+00 6.51659126275E+00 6.68099883223E+00 6.84953957624E+00 7.02231782713E+00 7.19943699450E+00 7.38100732031E+00 7.56713909380E+00 7.75794597047E+00 7.95354445802E+00 8.15405408623E+00 8.35959643341E+00 8.57029689682E+00 8.78628473749E+00 9.00769001683E+00 9.23464900319E+00 9.46729744415E+00 9.70577834779E+00 9.95023605577E+00 1.02008184283E+01 1.04576767284E+01 1.07209675175E+01 1.09908496417E+01 1.12674856789E+01 1.15510435637E+01 1.18416936213E+01 1.21396109334E+01 1.24449757472E+01 1.27579705362E+01 1.30787843118E+01 1.34076095901E+01 1.37446425617E+01 1.40900866703E+01 1.44441471486E+01 1.48070370303E+01 1.51789716289E+01 1.55601731513E+01 1.59508690177E+01 1.63512913959E+01 1.67616774450E+01 1.71822723534E+01 1.76133233094E+01 1.80550867846E+01 1.85078229506E+01 1.89717989842E+01 1.94472886478E+01 1.99345710997E+01 2.04339317983E+01 2.09456653780E+01 2.14700694009E+01 2.20074519062E+01 2.25581240629E+01 2.31224088867E+01 2.37006326725E+01 2.42931309363E+01 2.49002471565E+01 2.55223311909E+01 2.61597418844E+01 2.68128462378E+01 2.74820180244E+01 2.81676417711E+01 2.88701081825E+01 2.95898176451E+01 3.03271798773E+01 3.10826122592E+01 3.18565419132E+01 3.26494062607E+01 3.34616510399E+01 3.42937310672E+01 3.51461118197E+01 3.60192698797E+01 3.69136888849E+01 3.78298659462E+01 3.87683058918E+01 3.97295258078E+01 4.07140537195E+01 4.17224261977E+01 4.27551931773E+01 4.38129160340E+01 4.48961649315E+01 4.60055240012E+01 4.71415875506E+01 4.83049620086E+01 4.94962663440E+01 5.07161300491E+01 5.19651968188E+01 5.32441199609E+01 5.45535681049E+01 5.58942199505E+01 5.72667680109E+01 5.86719177202E+01 6.01103851827E+01 6.15829022769E+01 6.30902113186E+01 6.46330697184E+01 6.62122452052E+01 6.78285210512E+01 6.94826924369E+01 7.11755675365E+01 7.29079675408E+01 7.46807269506E+01 7.64946930500E+01 7.83507255934E+01 8.02496971875E+01 8.21924947022E+01 8.41800151337E+01 8.62131687512E+01 8.82928793918E+01 9.04200809159E+01 9.25957194254E+01 9.48207543693E+01 9.70961540455E+01 9.94228986392E+01 1.01801978383E+02 1.04234394915E+02 1.06721157325E+02 1.09263286457E+02 1.11861810186E+02 1.14517763795E+02 1.17232192266E+02 1.20006144877E+02 1.22840679290E+02 1.25736856493E+02 1.28695742383E+02 1.31718406476E+02 1.34805921363E+02 1.37959359796E+02 1.41179796130E+02 1.44468302497E+02 1.47825950022E+02 1.51253805678E+02 1.54752930880E+02 1.58324382004E+02 1.61969205595E+02 1.65688439013E+02 1.69483108154E+02 1.73354225217E+02 1.77302784800E+02 1.81329766105E+02 1.85436125742E+02 1.89622799647E+02 1.93890697306E+02 1.98240698935E+02 2.02673656802E+02 2.07190387296E+02 2.11791669258E+02 2.16478243528E+02 2.21250805059E+02 2.26110001851E+02 2.31056430951E+02 2.36090634106E+02 2.41213093584E+02 2.46424227792E+02 2.51724385617E+02 2.57113845136E+02 2.62592804116E+02 2.68161377980E+02 2.73819593538E+02 2.79567381317E+02 2.85404574027E+02 2.91330895798E+02 2.97345960278E+02 3.03449259366E+02 3.09640159947E+02 3.15917895608E+02 3.22281559229E+02 3.28730095769E+02 3.35262292816E+02 3.41876776062E+02 3.48571996566E+02 3.55346225459E+02 3.62197543426E+02 3.69123832643E+02 3.76122765965E+02 3.83191798522E+02 3.90328157209E+02 3.97528831452E+02 4.04790562046E+02 4.12109829848E+02 4.19482847739E+02 4.26905546464E+02 4.34373566353E+02 4.41882242566E+02 4.49426597475E+02 4.57001327821E+02 4.64600790193E+02 4.72218993119E+02 4.79849585208E+02 4.87485838894E+02 4.95120643665E+02 5.02746491746E+02 5.10355467713E+02 5.17939234604E+02 5.25489024970E+02 5.32995629561E+02 5.40449384779E+02 5.47840164901E+02 5.55157367334E+02 5.62389910095E+02 5.69526215181E+02 5.76554205348E+02 5.83461293823E+02 5.90234379378E+02 5.96859836551E+02 6.03323515367E+02 6.09610733926E+02 6.15706276432E+02 6.21594392282E+02 6.27258794841E+02 6.32682664568E+02 6.37848650390E+02 6.42738875280E+02 6.47334943173E+02 6.51617950033E+02 6.55568490835E+02 6.59166677518E+02 6.62392153726E+02 6.65224114233E+02 6.67641326169E+02 6.69622158141E+02 6.71144603837E+02 6.72186319168E+02 6.72724654788E+02 6.72736701732E+02 6.72199329995E+02 6.71089242346E+02 6.69383026918E+02 6.67057216227E+02 6.64088352135E+02 6.60453056130E+02 6.56128104251E+02 6.51090511837E+02 6.45317619549E+02 6.38787190195E+02 6.31477511206E+02 6.23367504742E+02 6.14436844358E+02 6.04666081749E+02 5.94036780234E+02 5.82531658014E+02 5.70134736167E+02 5.56831504174E+02 5.42609085361E+02 5.27456417147E+02 5.11364443093E+02 4.94326306518E+02 4.76337562678E+02 4.57396397864E+02 4.37503855626E+02 4.16664077528E+02 3.94884548975E+02 3.72176358190E+02 3.48554459925E+02 3.24037950643E+02 2.98650347795E+02 2.72419877573E+02 2.45379765289E+02 2.17568529598E+02 1.89030279585E+02 1.59815006387E+02 1.29978876229E+02 9.95845137809E+01 6.87012752089E+01 3.74055103989E+01 5.78080276351E+00 -2.60818127011E+01 -5.80836587379E+01 -9.01182629929E+01 -1.22071245258E+02 -1.53820253824E+02 -1.85234961578E+02 -2.16177123550E+02 -2.46500716616E+02 -2.76052158782E+02 -3.04670627110E+02 -3.32188486890E+02 -3.58431835717E+02 -3.83221182142E+02 -4.06372273924E+02 -4.27697080166E+02 -4.47004952784E+02 -4.64103974186E+02 -4.78802512715E+02 -4.90910995613E+02 -5.00243921951E+02 -5.06622129055E+02 -5.09875333034E+02 -5.09844958495E+02 -5.06387282820E+02 -4.99376908532E+02 -4.88710591504E+02 -4.74311444311E+02 -4.56133537719E+02 -4.34166922129E+02 -4.08443097680E+02 -3.79040940149E+02 -3.46093110863E+02 -3.09792945991E+02 -2.70401823864E+02 -2.28256983480E+02 -1.83779729820E+02 -1.37483932774E+02 -8.99846568347E+01 -4.20066733915E+01 5.60749310447E+00 5.18904937797E+01 9.57447561105E+01 1.35939715737E+02 1.71112959292E+02 1.99776982772E+02 2.20333800480E+02 2.31100319884E+02 2.30348010937E+02 2.16363645733E+02 1.87517519765E+02 1.42537324953E+02 7.91455647751E+01 9.06051039350E+00 -8.98295500222E-01 8.90606339052E-02 -8.82981071277E-03 8.75394296957E-04 -8.67549027462E-05 8.58461970186E-06 -8.46588525837E-07 9.30600914265E-08 -5.57400861517E-10 -7.41893225654E-09 0.00000000000E+00 0.00000000000E+00 -1.83267299310E-01 -1.32298817855E-01 1.00000000000E+00 -2.39618120216E+01 -2.39618120248E+01 -2.39618120251E+01 -2.39618120254E+01 -2.39618120258E+01 -2.39618120261E+01 -2.39618120264E+01 -2.39618120267E+01 -2.39618120271E+01 -2.39618120274E+01 -2.39618120278E+01 -2.39618120281E+01 -2.39618120285E+01 -2.39618120289E+01 -2.39618120293E+01 -2.39618120297E+01 -2.39618120301E+01 -2.39618120305E+01 -2.39618120309E+01 -2.39618120314E+01 -2.39618120319E+01 -2.39618120323E+01 -2.39618120328E+01 -2.39618120333E+01 -2.39618120338E+01 -2.39618120343E+01 -2.39618120348E+01 -2.39618120354E+01 -2.39618120360E+01 -2.39618120365E+01 -2.39618120371E+01 -2.39618120377E+01 -2.39618120383E+01 -2.39618120390E+01 -2.39618120396E+01 -2.39618120403E+01 -2.39618120410E+01 -2.39618120417E+01 -2.39618120424E+01 -2.39618120431E+01 -2.39618120439E+01 -2.39618120446E+01 -2.39618120454E+01 -2.39618120462E+01 -2.39618120471E+01 -2.39618120479E+01 -2.39618120488E+01 -2.39618120497E+01 -2.39618120506E+01 -2.39618120516E+01 -2.39618120525E+01 -2.39618120535E+01 -2.39618120545E+01 -2.39618120556E+01 -2.39618120567E+01 -2.39618120577E+01 -2.39618120589E+01 -2.39618120600E+01 -2.39618120612E+01 -2.39618120624E+01 -2.39618120637E+01 -2.39618120649E+01 -2.39618120662E+01 -2.39618120676E+01 -2.39618120690E+01 -2.39618120704E+01 -2.39618120718E+01 -2.39618120733E+01 -2.39618120748E+01 -2.39618120764E+01 -2.39618120780E+01 -2.39618120796E+01 -2.39618120813E+01 -2.39618120830E+01 -2.39618120847E+01 -2.39618120866E+01 -2.39618120884E+01 -2.39618120903E+01 -2.39618120923E+01 -2.39618120943E+01 -2.39618120963E+01 -2.39618120984E+01 -2.39618121006E+01 -2.39618121028E+01 -2.39618121050E+01 -2.39618121073E+01 -2.39618121097E+01 -2.39618121122E+01 -2.39618121147E+01 -2.39618121172E+01 -2.39618121199E+01 -2.39618121226E+01 -2.39618121253E+01 -2.39618121282E+01 -2.39618121311E+01 -2.39618121340E+01 -2.39618121371E+01 -2.39618121402E+01 -2.39618121434E+01 -2.39618121467E+01 -2.39618121501E+01 -2.39618121536E+01 -2.39618121571E+01 -2.39618121608E+01 -2.39618121645E+01 -2.39618121683E+01 -2.39618121723E+01 -2.39618121763E+01 -2.39618121804E+01 -2.39618121846E+01 -2.39618121890E+01 -2.39618121934E+01 -2.39618121980E+01 -2.39618122026E+01 -2.39618122074E+01 -2.39618122123E+01 -2.39618122174E+01 -2.39618122225E+01 -2.39618122278E+01 -2.39618122333E+01 -2.39618122388E+01 -2.39618122445E+01 -2.39618122504E+01 -2.39618122564E+01 -2.39618122626E+01 -2.39618122689E+01 -2.39618122753E+01 -2.39618122820E+01 -2.39618122888E+01 -2.39618122957E+01 -2.39618123029E+01 -2.39618123102E+01 -2.39618123177E+01 -2.39618123254E+01 -2.39618123333E+01 -2.39618123414E+01 -2.39618123497E+01 -2.39618123582E+01 -2.39618123670E+01 -2.39618123759E+01 -2.39618123851E+01 -2.39618123945E+01 -2.39618124042E+01 -2.39618124141E+01 -2.39618124242E+01 -2.39618124346E+01 -2.39618124453E+01 -2.39618124562E+01 -2.39618124674E+01 -2.39618124789E+01 -2.39618124907E+01 -2.39618125028E+01 -2.39618125151E+01 -2.39618125279E+01 -2.39618125409E+01 -2.39618125542E+01 -2.39618125679E+01 -2.39618125820E+01 -2.39618125963E+01 -2.39618126111E+01 -2.39618126262E+01 -2.39618126417E+01 -2.39618126576E+01 -2.39618126739E+01 -2.39618126907E+01 -2.39618127078E+01 -2.39618127254E+01 -2.39618127434E+01 -2.39618127619E+01 -2.39618127808E+01 -2.39618128003E+01 -2.39618128202E+01 -2.39618128406E+01 -2.39618128615E+01 -2.39618128830E+01 -2.39618129050E+01 -2.39618129276E+01 -2.39618129507E+01 -2.39618129744E+01 -2.39618129987E+01 -2.39618130237E+01 -2.39618130492E+01 -2.39618130755E+01 -2.39618131023E+01 -2.39618131299E+01 -2.39618131581E+01 -2.39618131871E+01 -2.39618132168E+01 -2.39618132473E+01 -2.39618132785E+01 -2.39618133105E+01 -2.39618133433E+01 -2.39618133770E+01 -2.39618134115E+01 -2.39618134469E+01 -2.39618134831E+01 -2.39618135203E+01 -2.39618135585E+01 -2.39618135976E+01 -2.39618136376E+01 -2.39618136787E+01 -2.39618137209E+01 -2.39618137641E+01 -2.39618138084E+01 -2.39618138538E+01 -2.39618139003E+01 -2.39618139481E+01 -2.39618139970E+01 -2.39618140472E+01 -2.39618140986E+01 -2.39618141514E+01 -2.39618142055E+01 -2.39618142609E+01 -2.39618143178E+01 -2.39618143761E+01 -2.39618144358E+01 -2.39618144971E+01 -2.39618145599E+01 -2.39618146243E+01 -2.39618146904E+01 -2.39618147581E+01 -2.39618148275E+01 -2.39618148987E+01 -2.39618149717E+01 -2.39618150465E+01 -2.39618151232E+01 -2.39618152018E+01 -2.39618152824E+01 -2.39618153651E+01 -2.39618154498E+01 -2.39618155367E+01 -2.39618156258E+01 -2.39618157172E+01 -2.39618158108E+01 -2.39618159068E+01 -2.39618160052E+01 -2.39618161062E+01 -2.39618162096E+01 -2.39618163157E+01 -2.39618164244E+01 -2.39618165359E+01 -2.39618166503E+01 -2.39618167674E+01 -2.39618168876E+01 -2.39618170108E+01 -2.39618171371E+01 -2.39618172665E+01 -2.39618173993E+01 -2.39618175354E+01 -2.39618176749E+01 -2.39618178179E+01 -2.39618179646E+01 -2.39618181149E+01 -2.39618182691E+01 -2.39618184271E+01 -2.39618185891E+01 -2.39618187552E+01 -2.39618189255E+01 -2.39618191000E+01 -2.39618192790E+01 -2.39618194624E+01 -2.39618196505E+01 -2.39618198433E+01 -2.39618200410E+01 -2.39618202437E+01 -2.39618204514E+01 -2.39618206644E+01 -2.39618208828E+01 -2.39618211066E+01 -2.39618213361E+01 -2.39618215713E+01 -2.39618218125E+01 -2.39618220597E+01 -2.39618223131E+01 -2.39618225729E+01 -2.39618228393E+01 -2.39618231123E+01 -2.39618233922E+01 -2.39618236791E+01 -2.39618239732E+01 -2.39618242747E+01 -2.39618245838E+01 -2.39618249006E+01 -2.39618252254E+01 -2.39618255583E+01 -2.39618258996E+01 -2.39618262494E+01 -2.39618266080E+01 -2.39618269756E+01 -2.39618273524E+01 -2.39618277386E+01 -2.39618281345E+01 -2.39618285403E+01 -2.39618289563E+01 -2.39618293826E+01 -2.39618298197E+01 -2.39618302676E+01 -2.39618307268E+01 -2.39618311974E+01 -2.39618316798E+01 -2.39618321742E+01 -2.39618326810E+01 -2.39618332004E+01 -2.39618337328E+01 -2.39618342784E+01 -2.39618348377E+01 -2.39618354109E+01 -2.39618359983E+01 -2.39618366004E+01 -2.39618372174E+01 -2.39618378498E+01 -2.39618384979E+01 -2.39618391621E+01 -2.39618398428E+01 -2.39618405404E+01 -2.39618412553E+01 -2.39618419880E+01 -2.39618427388E+01 -2.39618435081E+01 -2.39618442966E+01 -2.39618451045E+01 -2.39618459324E+01 -2.39618467808E+01 -2.39618476501E+01 -2.39618485409E+01 -2.39618494536E+01 -2.39618503888E+01 -2.39618513471E+01 -2.39618523289E+01 -2.39618533349E+01 -2.39618543656E+01 -2.39618554216E+01 -2.39618565035E+01 -2.39618576119E+01 -2.39618587475E+01 -2.39618599108E+01 -2.39618611026E+01 -2.39618623235E+01 -2.39618635742E+01 -2.39618648554E+01 -2.39618661677E+01 -2.39618675120E+01 -2.39618688890E+01 -2.39618702994E+01 -2.39618717440E+01 -2.39618732235E+01 -2.39618747389E+01 -2.39618762909E+01 -2.39618778803E+01 -2.39618795080E+01 -2.39618811749E+01 -2.39618828818E+01 -2.39618846297E+01 -2.39618864195E+01 -2.39618882521E+01 -2.39618901285E+01 -2.39618920496E+01 -2.39618940165E+01 -2.39618960301E+01 -2.39618980916E+01 -2.39619002018E+01 -2.39619023620E+01 -2.39619045731E+01 -2.39619068363E+01 -2.39619091527E+01 -2.39619115234E+01 -2.39619139497E+01 -2.39619164325E+01 -2.39619189733E+01 -2.39619215731E+01 -2.39619242331E+01 -2.39619269547E+01 -2.39619297391E+01 -2.39619325876E+01 -2.39619355014E+01 -2.39619384819E+01 -2.39619415303E+01 -2.39619446481E+01 -2.39619478366E+01 -2.39619510971E+01 -2.39619544311E+01 -2.39619578399E+01 -2.39619613249E+01 -2.39619648875E+01 -2.39619685292E+01 -2.39619722514E+01 -2.39619760555E+01 -2.39619799430E+01 -2.39619839154E+01 -2.39619879740E+01 -2.39619921203E+01 -2.39619963559E+01 -2.39620006820E+01 -2.39620051003E+01 -2.39620096120E+01 -2.39620142187E+01 -2.39620189218E+01 -2.39620237227E+01 -2.39620286227E+01 -2.39620336232E+01 -2.39620387255E+01 -2.39620439311E+01 -2.39620492411E+01 -2.39620546568E+01 -2.39620601794E+01 -2.39620658100E+01 -2.39620715499E+01 -2.39620774000E+01 -2.39620833613E+01 -2.39620894348E+01 -2.39620956213E+01 -2.39621019216E+01 -2.39621083364E+01 -2.39621148663E+01 -2.39621215118E+01 -2.39621282732E+01 -2.39621351509E+01 -2.39621421449E+01 -2.39621492553E+01 -2.39621564820E+01 -2.39621638245E+01 -2.39621712824E+01 -2.39621788550E+01 -2.39621865414E+01 -2.39621943406E+01 -2.39622022512E+01 -2.39622102716E+01 -2.39622184000E+01 -2.39622266344E+01 -2.39622349721E+01 -2.39622434106E+01 -2.39622519467E+01 -2.39622605770E+01 -2.39622692977E+01 -2.39622781044E+01 -2.39622869925E+01 -2.39622959569E+01 -2.39623049918E+01 -2.39623140912E+01 -2.39623232482E+01 -2.39623324554E+01 -2.39623417050E+01 -2.39623509882E+01 -2.39623602957E+01 -2.39623696174E+01 -2.39623789422E+01 -2.39623882586E+01 -2.39623975537E+01 -2.39624068139E+01 -2.39624160246E+01 -2.39624251702E+01 -2.39624342336E+01 -2.39624431970E+01 -2.39624520410E+01 -2.39624607449E+01 -2.39624692867E+01 -2.39624776429E+01 -2.39624857882E+01 -2.39624936960E+01 -2.39625013375E+01 -2.39625086825E+01 -2.39625156984E+01 -2.39625223508E+01 -2.39625286029E+01 -2.39625344159E+01 -2.39625397482E+01 -2.39625445559E+01 -2.39625487921E+01 -2.39625524073E+01 -2.39625553487E+01 -2.39625575606E+01 -2.39625589838E+01 -2.39625595554E+01 -2.39625592089E+01 -2.39625578740E+01 -2.39625554760E+01 -2.39625519359E+01 -2.39625471700E+01 -2.39625410900E+01 -2.39625336022E+01 -2.39625246076E+01 -2.39625140015E+01 -2.39625016734E+01 -2.39624875062E+01 -2.39624713763E+01 -2.39624531532E+01 -2.39624326989E+01 -2.39624098678E+01 -2.39623845061E+01 -2.39623564515E+01 -2.39623255325E+01 -2.39622915684E+01 -2.39622543682E+01 -2.39622137308E+01 -2.39621694438E+01 -2.39621212832E+01 -2.39620690130E+01 -2.39620123842E+01 -2.39619511343E+01 -2.39618849868E+01 -2.39618136502E+01 -2.39617368174E+01 -2.39616541648E+01 -2.39615653515E+01 -2.39614700186E+01 -2.39613677878E+01 -2.39612582611E+01 -2.39611410193E+01 -2.39610156212E+01 -2.39608816021E+01 -2.39607384732E+01 -2.39605857200E+01 -2.39604228013E+01 -2.39602491473E+01 -2.39600641591E+01 -2.39598672062E+01 -2.39596576259E+01 -2.39594347211E+01 -2.39591977589E+01 -2.39589459686E+01 -2.39586785401E+01 -2.39583946218E+01 -2.39580933186E+01 -2.39577736901E+01 -2.39574347478E+01 -2.39570754533E+01 -2.39566947156E+01 -2.39562913887E+01 -2.39558642689E+01 -2.39554120922E+01 -2.39549335312E+01 -2.39544271921E+01 -2.39538916116E+01 -2.39533252538E+01 -2.39527265066E+01 -2.39520936780E+01 -2.39514249925E+01 -2.39507185872E+01 -2.39499725078E+01 -2.39491847041E+01 -2.39483530260E+01 -2.39474752184E+01 -2.39465489167E+01 -2.39455716417E+01 -2.39445407944E+01 -2.39434536505E+01 -2.39423073549E+01 -2.39410989158E+01 -2.39398251981E+01 -2.39384829179E+01 -2.39370686351E+01 -2.39355787469E+01 -2.39340094805E+01 -2.39323568858E+01 -2.39306168275E+01 -2.39287849774E+01 -2.39268568059E+01 -2.39248275731E+01 -2.39226923206E+01 -2.39204458616E+01 -2.39180827717E+01 -2.39155973788E+01 -2.39129837530E+01 -2.39102356959E+01 -2.39073467299E+01 -2.39043100866E+01 -2.39011186953E+01 -2.38977651712E+01 -2.38942418027E+01 -2.38905405389E+01 -2.38866529766E+01 -2.38825703466E+01 -2.38782835000E+01 -2.38737828943E+01 -2.38690585788E+01 -2.38641001796E+01 -2.38588968848E+01 -2.38534374290E+01 -2.38477100775E+01 -2.38417026106E+01 -2.38354023073E+01 -2.38287959291E+01 -2.38218697034E+01 -2.38146093069E+01 -2.38069998492E+01 -2.37990258560E+01 -2.37906712526E+01 -2.37819193477E+01 -2.37727528171E+01 -2.37631536881E+01 -2.37531033245E+01 -2.37425824115E+01 -2.37315709424E+01 -2.37200482054E+01 -2.37079927724E+01 -2.36953824883E+01 -2.36821944626E+01 -2.36684050629E+01 -2.36539899106E+01 -2.36389238795E+01 -2.36231810971E+01 -2.36067349506E+01 -2.35895580956E+01 -2.35716224716E+01 -2.35528993214E+01 -2.35333592186E+01 -2.35129721018E+01 -2.34917073174E+01 -2.34695336733E+01 -2.34464195033E+01 -2.34223327451E+01 -2.33972410339E+01 -2.33711118127E+01 -2.33439124637E+01 -2.33156104627E+01 -2.32861735599E+01 -2.32555699917E+01 -2.32237687284E+01 -2.31907397617E+01 -2.31564544404E+01 -2.31208858593E+01 -2.30840093106E+01 -2.30458028065E+01 -2.30062476844E+01 -2.29653293057E+01 -2.29230378613E+01 -2.28793692995E+01 -2.28343263923E+01 -2.27879199546E+01 -2.27401702374E+01 -2.26911085075E+01 -2.26407788304E+01 -2.25892400630E+01 -2.25365680570E+01 -2.24828580567E+01 -2.24282272511E+01 -2.23728174051E+01 -2.23167974413E+01 -2.22603657680E+01 -2.22037520437E+01 -2.21472179237E+01 -2.20910561452E+01 -2.20355870632E+01 -2.19811514519E+01 -2.19299889124E+01 -2.19312445974E+01 -2.19715472357E+01 -2.19442245968E+01 -2.18590640011E+01 -2.17701754194E+01 -2.16773386683E+01 -2.15802792463E+01 -2.14786682896E+01 -2.13721264758E+01 -2.12602324982E+01 -2.11425363697E+01 -2.10185773479E+01 -2.08879057244E+01 -2.07501071859E+01 -2.06048280019E+01 -2.04517990058E+01 -2.02908562675E+01 -2.01219565209E+01 -1.99451858121E+01 -1.97607604210E+01 -1.95690198393E+01 -1.93704123738E+01 -1.91654747076E+01 -1.89548073772E+01 -1.87390485322E+01 -1.85188484394E+01 -1.82948469651E+01 -1.80676557467E+01 -1.78378460485E+01 -1.76059425168E+01 -1.73724223508E+01 -1.71377188863E+01 -1.69022283010E+01 -1.66663180921E+01 -1.64303361025E+01 -1.61946191083E+01 -1.59595002698E+01 -1.57253150236E+01 -1.54924052293E+01 -1.52611215607E+01 -1.50318242447E+01 -1.48048823171E+01 -1.45806715840E+01 -1.43595714791E+01 -1.41419609856E+01 -1.39282137664E+01 -1.37186926239E+01 -1.35137433847E+01 -1.33136882916E+01 -1.31188189771E+01 -1.29293890920E+01 -1.27456066728E+01 -1.25676263514E+01 -1.23955415396E+01 -1.22293767624E+01 -1.20690803672E+01 -1.19145179025E+01 -1.17654665430E+01 -1.16216110355E+01 -1.14825417606E+01 -1.13477556438E+01 -1.12166608183E+01 -1.10885861351E+01 -1.09627968434E+01 -1.08385180359E+01 -1.07149677611E+01 -1.05914020727E+01 -1.04671747163E+01 -1.03418146509E+01 -1.02151252004E+01 -1.00874565666E+01 -9.96034615770E+00 -9.83568965246E+00 -9.71336054776E+00 -9.59268892666E+00 -9.47351778255E+00 -9.35582829108E+00 -9.23960188208E+00 -9.12482023437E+00 -9.01146527084E+00 -8.89951915371E+00 -8.78896427997E+00 -8.67978327712E+00 -8.57195899895E+00 -8.46547452160E+00 -8.36031313975E+00 -8.25645836291E+00 -8.15389391191E+00 -8.05260371552E+00 -7.95257190714E+00 -7.85378282164E+00 -7.75622099232E+00 -7.65987114792E+00 -7.56471820976E+00 -7.47074728898E+00 -7.37794368380E+00 -7.28629287691E+00 -7.19578053290E+00 -7.10639249577E+00 -7.01811478650E+00 -6.93093360065E+00 -6.84483530605E+00 -6.75980644056E+00 -6.67583370977E+00 -6.59290398489E+00 -6.51100430056E+00 -6.43012185277E+00 -6.35016880104E+00 -6.27120715841E+00 -6.19338208248E+00 -6.11648951570E+00 -6.04047375603E+00 -5.96547446667E+00 -5.89140728454E+00 -5.81822440961E+00 -5.74595056106E+00 -5.67457444880E+00 -5.60408492290E+00 -5.53447097187E+00 -5.46572172088E+00 -5.39782643011E+00 -5.33077449304E+00 -5.26455543478E+00 -5.19915891048E+00 -5.13457470368E+00 -5.07079272473E+00 -5.00780300922E+00 -4.94559571643E+00 -4.88416112784E+00 -4.82348964555E+00 -4.76357179088E+00 -4.70439820283E+00 -4.64595963669E+00 -4.58824696256E+00 -4.53125116401E+00 -4.47496333662E+00 -4.41937468664E+00 -4.36447652963E+00 -4.31026028910E+00 -4.25671749521E+00 -4.20383978345E+00 -4.15161889332E+00 -4.10004666710E+00 -4.04911504851E+00 -3.99881608152E+00 -3.94914190904E+00 -3.90008477178E+00 -3.85163700691E+00 -3.80379104698E+00 -3.75653941864E+00 -3.70987474147E+00 -3.66378972684E+00 -3.61827717674E+00 -3.57332998262E+00 -3.52894112427E+00 -3.48510366869E+00 -3.44181076901E+00 -3.39905566334E+00 -3.35683167375E+00 -3.31513220519E+00 -3.27395074439E+00 -3.23328085889E+00 -3.19311619597E+00 -3.15345048164E+00 -3.11427751968E+00 -3.07559119061E+00 -3.03738545077E+00 -2.99965433133E+00 -2.96239193739E+00 -2.92559244701E+00 -2.88925011034E+00 -2.85335924872E+00 -2.81791425378E+00 -2.78290958659E+00 -2.74833977680E+00 -2.71419942179E+00 -2.68048318588E+00 -2.64718579945E+00 -2.61430205821E+00 -2.58182682235E+00 -2.54975501578E+00 -2.51808162539E+00 -2.48680170022E+00 -2.45591035078E+00 -2.42540274828E+00 -2.39527412389E+00 -2.36551976803E+00 -2.33613502967E+00 -2.30711531557E+00 -2.27845608963E+00 -2.25015287219E+00 -2.22220123930E+00 -2.19459682211E+00 -2.16733530613E+00 -2.14041243060E+00 -2.11382398780E+00 -2.08756582243E+00 -2.06163383093E+00 -2.03602396085E+00 -2.01073221020E+00 -1.98575462685E+00 -1.96108730786E+00 -1.93672639888E+00 -1.91266809358E+00 -1.88890863298E+00 -1.86544430488E+00 -1.84227144330E+00 -1.81938642785E+00 -1.79678568317E+00 -1.77446567839E+00 -1.75242292651E+00 -1.73065398393E+00 -1.70915544981E+00 -1.68792396560E+00 -1.66695621450E+00 -1.64624892089E+00 -1.62579884986E+00 -1.60560280669E+00 -1.58565763634E+00 -1.56596022294E+00 -1.54650748934E+00 -1.52729639656E+00 -1.50832394341E+00 -1.48958716591E+00 -1.47108313693E+00 -1.45280896563E+00 -1.43476179711E+00 -1.41693881187E+00 -1.39933722545E+00 -1.38195428793E+00 -1.36478728354E+00 -1.34783353024E+00 -1.33109037926E+00 -1.31455521473E+00 -1.29822545325E+00 -1.28209854349E+00 -1.26617196581E+00 -1.25044323185E+00 -1.23490988412E+00 -1.21956949567E+00 -1.20441966968E+00 -1.18945803907E+00 -1.17468226617E+00 -1.16009004234E+00 -1.14567908759E+00 -1.13144715024E+00 -1.11739200660E+00 -1.10351146055E+00 -1.08980334328E+00 -1.07626551290E+00 -1.06289585410E+00 -1.04969227786E+00 -1.03665272110E+00 -1.02377514635E+00 -1.01105754147E+00 -9.98497919269E-01 -9.86094317273E-01 -9.73844797359E-01 -9.61747446631E-01 -9.49800372413E-01 -9.38001709171E-01 -9.26349613293E-01 -9.14842264067E-01 -9.03477863393E-01 -8.92254635505E-01 -8.81170826695E-01 -8.70224705036E-01 -8.59414560111E-01 -8.48738702750E-01 -8.38195464766E-01 -8.27783198690E-01 -8.17500277519E-01 -8.07345084647E-01 -7.97316053108E-01 -7.87411605699E-01 -7.77629745357E-01 -7.67969873783E-01 -7.58429999026E-01 -7.49008630486E-01 -7.39704296057E-01 -7.30515541917E-01 -7.21440932305E-01 -7.12479049296E-01 -7.03628492577E-01 -6.94887880264E-01 -6.86255844472E-01 -6.77731037549E-01 -6.69312127475E-01 -6.60997798781E-01 -6.52786752333E-01 -6.44677705141E-01 -6.36669416283E-01 -6.28760567269E-01 -6.20949977997E-01 -6.13236413426E-01 -6.05618668293E-01 -5.98095552312E-01 -5.90665889980E-01 -5.83328520397E-01 -5.76082297084E-01 -5.68926087805E-01 -5.61858770209E-01 -5.54879248472E-01 -5.47986427746E-01 -5.41179231014E-01 -5.34456594638E-01 -5.27817468192E-01 -5.21260814299E-01 -5.14785608470E-01 -5.08390838938E-01 -5.02075506510E-01 -4.95838624406E-01 -4.89679218090E-01 -4.83596325149E-01 -4.77588995117E-01 -4.71656289337E-01 -4.65797280813E-01 -4.60011054061E-01 -4.54296704972E-01 -4.48653340667E-01 -4.43080079360E-01 -4.37576050217E-01 -4.32140393222E-01 -4.26772259042E-01 -4.21470808896E-01 -4.16235214422E-01 -4.11064657537E-01 -4.05958330351E-01 -4.00915434980E-01 -3.95935183461E-01 -3.91016797621E-01 -3.86159508950E-01 -3.81362558489E-01 -3.76625196703E-01 -3.71946683370E-01 -3.67326287464E-01 -3.62763287037E-01 -3.58256969112E-01 -3.53806629567E-01 -3.49411573028E-01 -3.45071112758E-01 -3.40784570551E-01 -3.36551276627E-01 -3.32370569525E-01 -3.28241796000E-01 -3.24164310924E-01 -3.20137477181E-01 -3.16160665570E-01 -3.12233254706E-01 -3.08354630924E-01 -3.04524188180E-01 -3.00741327959E-01 -2.97005459184E-01 -2.93315998115E-01 -2.89672368268E-01 -2.86074000318E-01 -2.82520332013E-01 -2.79010808084E-01 -2.75544880161E-01 -2.72122006687E-01 -2.68741652830E-01 -2.65403290403E-01 -2.62106397780E-01 -2.58850459815E-01 -2.55634967761E-01 -2.52459419190E-01 -2.49323317918E-01 -2.46226173921E-01 -2.43167503265E-01 -2.40146828026E-01 -2.37163676217E-01 -2.34217581716E-01 -2.31308084188E-01 -2.28434729019E-01 -2.25597067241E-01 -2.22794655463E-01 -2.20027055804E-01 -2.17293835820E-01 -2.14594568440E-01 -2.11928831898E-01 -2.09296209667E-01 -2.06696290395E-01 -2.04128667838E-01 -2.01592940801E-01 -1.99088713072E-01 -1.96615593359E-01 -1.94173195232E-01 -1.91761137062E-01 -1.89379041960E-01 -1.87026537718E-01 -1.84703256754E-01 -1.82408836049E-01 -1.80142917096E-01 -1.77905145840E-01 -1.75695172625E-01 -1.73512652138E-01 -1.71357243357E-01 -1.69228609493E-01 -1.67126417944E-01 -1.65050340237E-01 -1.63000051982E-01 -1.60975232817E-01 -1.58975566359E-01 -1.57000740157E-01 -1.55050445641E-01 -1.53124378071E-01 -1.51222236498E-01 -1.49343723706E-01 -1.47488546175E-01 -1.45656414030E-01 -1.43847040995E-01 -1.42060144354E-01 -1.40295444899E-01 -1.38552666892E-01 -1.36831538022E-01 -1.35131789358E-01 -1.33453155311E-01 -1.31795373591E-01 -1.30158185166E-01 -1.28541334223E-01 -1.26944568124E-01 -1.25367637373E-01 -1.23810295570E-01 -1.22272299377E-01 -1.20753408480E-01 -1.19253385549E-01 -1.17771996202E-01 -1.16309008969E-01 -1.14864195255E-01 -1.13437329305E-01 -1.12028188169E-01 -1.10636551666E-01 -1.09262202348E-01 -1.07904925472E-01 -1.06564508960E-01 -1.05240743370E-01 -1.03933421859E-01 -1.02642340158E-01 -1.01367296530E-01 -1.00108091749E-01 3.27505463927E-09 3.35796354514E-09 3.44297132574E-09 3.53013111566E-09 3.61949739466E-09 3.71112602175E-09 3.80507427008E-09 3.90140086274E-09 4.00016600952E-09 4.10143144448E-09 4.20526046461E-09 4.31171796933E-09 4.42087050114E-09 4.53278628713E-09 4.64753528173E-09 4.76518921035E-09 4.88582161428E-09 5.00950789664E-09 5.13632536955E-09 5.26635330239E-09 5.39967297145E-09 5.53636771068E-09 5.67652296380E-09 5.82022633774E-09 5.96756765738E-09 6.11863902172E-09 6.27353486148E-09 6.43235199809E-09 6.59518970427E-09 6.76214976609E-09 6.93333654656E-09 7.10885705095E-09 7.28882099362E-09 7.47334086669E-09 7.66253201031E-09 7.85651268481E-09 8.05540414461E-09 8.25933071408E-09 8.46841986524E-09 8.68280229746E-09 8.90261201920E-09 9.12798643179E-09 9.35906641533E-09 9.59599641682E-09 9.83892454043E-09 1.00880026401E-08 1.03433864147E-08 1.06052355050E-08 1.08737135937E-08 1.11489885080E-08 1.14312323242E-08 1.17206214754E-08 1.20173368620E-08 1.23215639647E-08 1.26334929603E-08 1.29533188410E-08 1.32812415361E-08 1.36174660372E-08 1.39622025261E-08 1.43156665065E-08 1.46780789389E-08 1.50496663783E-08 1.54306611166E-08 1.58213013270E-08 1.62218312138E-08 1.66325011648E-08 1.70535679077E-08 1.74852946710E-08 1.79279513485E-08 1.83818146681E-08 1.88471683651E-08 1.93243033592E-08 1.98135179372E-08 2.03151179389E-08 2.08294169489E-08 2.13567364925E-08 2.18974062368E-08 2.24517641974E-08 2.30201569492E-08 2.36029398439E-08 2.42004772318E-08 2.48131426898E-08 2.54413192557E-08 2.60853996672E-08 2.67457866079E-08 2.74228929594E-08 2.81171420594E-08 2.88289679668E-08 2.95588157333E-08 3.03071416820E-08 3.10744136926E-08 3.18611114946E-08 3.26677269676E-08 3.34947644488E-08 3.43427410489E-08 3.52121869757E-08 3.61036458662E-08 3.70176751264E-08 3.79548462809E-08 3.89157453302E-08 3.99009731175E-08 4.09111457056E-08 4.19468947615E-08 4.30088679530E-08 4.40977293534E-08 4.52141598578E-08 4.63588576095E-08 4.75325384367E-08 4.87359363017E-08 4.99698037595E-08 5.12349124301E-08 5.25320534813E-08 5.38620381243E-08 5.52256981222E-08 5.66238863107E-08 5.80574771327E-08 5.95273671860E-08 6.10344757851E-08 6.25797455374E-08 6.41641429338E-08 6.57886589543E-08 6.74543096895E-08 6.91621369768E-08 7.09132090544E-08 7.27086212298E-08 7.45494965675E-08 7.64369865927E-08 7.83722720132E-08 8.03565634602E-08 8.23911022470E-08 8.44771611480E-08 8.66160451968E-08 8.88090925050E-08 9.10576751013E-08 9.33631997927E-08 9.57271090471E-08 9.81508818985E-08 1.00636034875E-07 1.03184122951E-07 1.05796740524E-07 1.08475522413E-07 1.11222144887E-07 1.14038326719E-07 1.16925830262E-07 1.19886462558E-07 1.22922076472E-07 1.26034571858E-07 1.29225896750E-07 1.32498048588E-07 1.35853075473E-07 1.39293077455E-07 1.42820207851E-07 1.46436674602E-07 1.50144741658E-07 1.53946730405E-07 1.57845021124E-07 1.61842054488E-07 1.65940333099E-07 1.70142423062E-07 1.74450955600E-07 1.78868628712E-07 1.83398208871E-07 1.88042532767E-07 1.92804509091E-07 1.97687120374E-07 2.02693424857E-07 2.07826558430E-07 2.13089736598E-07 2.18486256518E-07 2.24019499072E-07 2.29692931002E-07 2.35510107099E-07 2.41474672444E-07 2.47590364712E-07 2.53861016530E-07 2.60290557899E-07 2.66883018676E-07 2.73642531123E-07 2.80573332515E-07 2.87679767823E-07 2.94966292463E-07 3.02437475111E-07 3.10098000597E-07 3.17952672871E-07 3.26006418044E-07 3.34264287511E-07 3.42731461148E-07 3.51413250601E-07 3.60315102652E-07 3.69442602671E-07 3.78801478167E-07 3.88397602420E-07 3.98236998211E-07 4.08325841652E-07 4.18670466106E-07 4.29277366223E-07 4.40153202062E-07 4.51304803337E-07 4.62739173762E-07 4.74463495513E-07 4.86485133808E-07 4.98811641599E-07 5.11450764395E-07 5.24410445202E-07 5.37698829598E-07 5.51324270936E-07 5.65295335688E-07 5.79620808917E-07 5.94309699908E-07 6.09371247934E-07 6.24814928174E-07 6.40650457794E-07 6.56887802177E-07 6.73537181322E-07 6.90609076411E-07 7.08114236545E-07 7.26063685660E-07 7.44468729625E-07 7.63340963525E-07 7.82692279135E-07 8.02534872596E-07 8.22881252287E-07 8.43744246911E-07 8.65137013791E-07 8.87073047389E-07 9.09566188045E-07 9.32630630954E-07 9.56280935380E-07 9.80532034113E-07 1.00539924318E-06 1.03089827180E-06 1.05704523266E-06 1.08385665237E-06 1.11134948229E-06 1.13954110958E-06 1.16844936862E-06 1.19809255263E-06 1.22848942572E-06 1.25965923519E-06 1.29162172416E-06 1.32439714461E-06 1.35800627065E-06 1.39247041231E-06 1.42781142957E-06 1.46405174681E-06 1.50121436770E-06 1.53932289043E-06 1.57840152341E-06 1.61847510134E-06 1.65956910180E-06 1.70170966221E-06 1.74492359732E-06 1.78923841714E-06 1.83468234542E-06 1.88128433856E-06 1.92907410514E-06 1.97808212587E-06 2.02833967426E-06 2.07987883768E-06 2.13273253918E-06 2.18693455976E-06 2.24251956145E-06 2.29952311084E-06 2.35798170342E-06 2.41793278855E-06 2.47941479514E-06 2.54246715806E-06 2.60713034532E-06 2.67344588599E-06 2.74145639892E-06 2.81120562238E-06 2.88273844437E-06 2.95610093398E-06 3.03134037354E-06 3.10850529179E-06 3.18764549790E-06 3.26881211660E-06 3.35205762428E-06 3.43743588610E-06 3.52500219433E-06 3.61481330762E-06 3.70692749165E-06 3.80140456078E-06 3.89830592112E-06 3.99769461473E-06 4.09963536523E-06 4.20419462478E-06 4.31144062243E-06 4.42144341396E-06 4.53427493323E-06 4.65000904508E-06 4.76872159983E-06 4.89049048952E-06 5.01539570575E-06 5.14351939946E-06 5.27494594240E-06 5.40976199065E-06 5.54805655001E-06 5.68992104350E-06 5.83544938096E-06 5.98473803084E-06 6.13788609423E-06 6.29499538133E-06 6.45617049025E-06 6.62151888839E-06 6.79115099642E-06 6.96518027499E-06 7.14372331419E-06 7.32689992596E-06 7.51483323954E-06 7.70764979997E-06 7.90547966986E-06 8.10845653461E-06 8.31671781094E-06 8.53040475921E-06 8.74966259937E-06 8.97464063089E-06 9.20549235666E-06 9.44237561114E-06 9.68545269284E-06 9.93489050132E-06 1.01908606789E-05 1.04535397573E-05 1.07231093091E-05 1.09997561050E-05 1.12836722758E-05 1.15750554809E-05 1.18741090820E-05 1.21810423233E-05 1.24960705181E-05 1.28194152421E-05 1.31513045331E-05 1.34919730988E-05 1.38416625311E-05 1.42006215290E-05 1.45691061294E-05 1.49473799455E-05 1.53357144156E-05 1.57343890595E-05 1.61436917454E-05 1.65639189661E-05 1.69953761262E-05 1.74383778393E-05 1.78932482370E-05 1.83603212894E-05 1.88399411378E-05 1.93324624398E-05 1.98382507284E-05 2.03576827839E-05 2.08911470210E-05 2.14390438906E-05 2.20017862974E-05 2.25798000333E-05 2.31735242288E-05 2.37834118213E-05 2.44099300424E-05 2.50535609247E-05 2.57148018282E-05 2.63941659887E-05 2.70921830873E-05 2.78093998441E-05 2.85463806342E-05 2.93037081310E-05 3.00819839737E-05 3.08818294637E-05 3.17038862885E-05 3.25488172765E-05 3.34173071823E-05 3.43100635053E-05 3.52278173418E-05 3.61713242734E-05 3.71413652927E-05 3.81387477673E-05 3.91643064456E-05 4.02189045046E-05 4.13034346431E-05 4.24188202203E-05 4.35660164447E-05 4.47460116133E-05 4.59598284043E-05 4.72085252262E-05 4.84931976247E-05 4.98149797517E-05 5.11750458980E-05 5.25746120930E-05 5.40149377750E-05 5.54973275347E-05 5.70231329362E-05 5.85937544182E-05 6.02106432794E-05 6.18753037534E-05 6.35892951745E-05 6.53542342424E-05 6.71717973864E-05 6.90437232378E-05 7.09718152125E-05 7.29579442106E-05 7.50040514389E-05 7.71121513601E-05 7.92843347781E-05 8.15227720618E-05 8.38297165183E-05 8.62075079188E-05 8.86585761872E-05 9.11854452584E-05 9.37907371137E-05 9.64771760025E-05 9.92475928602E-05 1.02104929929E-04 1.05052245595E-04 1.08092719449E-04 1.11229657584E-04 1.14466498136E-04 1.17806817092E-04 1.21254334360E-04 1.24812920132E-04 1.28486601537E-04 1.32279569616E-04 1.36196186621E-04 1.40240993654E-04 1.44418718674E-04 1.48734284881E-04 1.53192819490E-04 1.57799662930E-04 1.62560378475E-04 1.67480762334E-04 1.72566854216E-04 1.77824948407E-04 1.83261605367E-04 1.88883663883E-04 1.94698253808E-04 2.00712809397E-04 2.06935083292E-04 2.13373161173E-04 2.20035477110E-04 2.26930829652E-04 2.34068398693E-04 2.41457763139E-04 2.49108919437E-04 2.57032300981E-04 2.65238798467E-04 2.73739781217E-04 2.82547119536E-04 2.91673208151E-04 3.01130990772E-04 3.10933985846E-04 3.21096313551E-04 3.31632724100E-04 3.42558627403E-04 3.53890124176E-04 3.65644038542E-04 3.77837952219E-04 3.90490240360E-04 4.03620109124E-04 4.17247635068E-04 4.31393806450E-04 4.46080566530E-04 4.61330858963E-04 4.77168675395E-04 4.93619105370E-04 5.10708388638E-04 5.28463970013E-04 5.46914556879E-04 5.66090179477E-04 5.86022254119E-04 6.06743649453E-04 6.28288755942E-04 6.50693558695E-04 6.73995713828E-04 6.98234628513E-04 7.23451544890E-04 7.49689628042E-04 7.76994058208E-04 8.05412127452E-04 8.34993340988E-04 8.65789523392E-04 8.97854929934E-04 9.31246363257E-04 9.66023295683E-04 1.00224799738E-03 1.03998567072E-03 1.07930459101E-03 1.12027625408E-03 1.16297553083E-03 1.20748082924E-03 1.25387426411E-03 1.30224183490E-03 1.35267361204E-03 1.40526393214E-03 1.46011160247E-03 1.51732011516E-03 1.57699787160E-03 1.63925841740E-03 1.70422068851E-03 1.77200926903E-03 1.84275466105E-03 1.91659356730E-03 1.99366918707E-03 2.07413152599E-03 2.15813772033E-03 2.24585237652E-03 2.33744792639E-03 2.43310499910E-03 2.53301281024E-03 2.63736956903E-03 2.74638290432E-03 2.86027031028E-03 2.97925961263E-03 3.10358945616E-03 3.23350981476E-03 3.36928252457E-03 3.51118184151E-03 3.65949502411E-03 3.81452294270E-03 3.97658071611E-03 4.14599837699E-03 4.32312156697E-03 4.50831226285E-03 4.70194953513E-03 4.90443034014E-03 5.11617034719E-03 5.33760480205E-03 5.56918942829E-03 5.81140136791E-03 6.06474016274E-03 6.32972877837E-03 6.60691467193E-03 6.89687090568E-03 7.20019730790E-03 7.51752168292E-03 7.84950107207E-03 8.19682306733E-03 8.56020717964E-03 8.94040626363E-03 9.33820800088E-03 9.75443644356E-03 1.01899536205E-02 1.06456612078E-02 1.11225022656E-02 1.16214630444E-02 1.21435748605E-02 1.26899160461E-02 1.32616139727E-02 1.38598471527E-02 1.44858474195E-02 1.51409021893E-02 1.58263568056E-02 1.65436169699E-02 1.72941512591E-02 1.80794937326E-02 1.89012466308E-02 1.97610831661E-02 2.06607504088E-02 2.16020722704E-02 2.25869525831E-02 2.36173782803E-02 2.46954226763E-02 2.58232488481E-02 2.70031131197E-02 2.82373686491E-02 2.95284691188E-02 3.08789725293E-02 3.22915450966E-02 3.37689652520E-02 3.53141277431E-02 3.69300478363E-02 3.86198656174E-02 4.03868503886E-02 4.22344051592E-02 4.41660712274E-02 4.61855328478E-02 4.82966219809E-02 5.05033231199E-02 5.28097781874E-02 5.52202914963E-02 5.77393347663E-02 6.03715521883E-02 6.31217655262E-02 6.59949792453E-02 6.89963856570E-02 7.21313700642E-02 7.54055158954E-02 7.88246098105E-02 8.23946467619E-02 8.61218349920E-02 9.00126009467E-02 9.40735940839E-02 9.83116915529E-02 1.02734002719E-01 1.07347873509E-01 1.12160890541E-01 1.17180885017E-01 1.22415936343E-01 1.27874375427E-01 1.33564787645E-01 1.39496015402E-01 1.45677160281E-01 1.52117584698E-01 1.58826913051E-01 1.65815032286E-01 1.73092091849E-01 1.80668502949E-01 1.88554937100E-01 1.96762323854E-01 2.05301847690E-01 2.14184943979E-01 2.23423293960E-01 2.33028818671E-01 2.43013671743E-01 2.53390231010E-01 2.64171088842E-01 2.75369041135E-01 2.86997074882E-01 2.99068354241E-01 3.11596205035E-01 3.24594097595E-01 3.38075627874E-01 3.52054496755E-01 3.66544487479E-01 3.81559441120E-01 3.97113230029E-01 4.13219729199E-01 4.29892785460E-01 4.47146184467E-01 4.64993615421E-01 4.83448633471E-01 5.02524619767E-01 5.22234739117E-01 5.42591895248E-01 5.63608683635E-01 5.85297341916E-01 6.07669697898E-01 6.30737115176E-01 6.54510436413E-01 6.78999924335E-01 7.04215200516E-01 7.30165182042E-01 7.56858016179E-01 7.84301013160E-01 8.12500577269E-01 8.41462136385E-01 8.71190070198E-01 9.01687637325E-01 9.32956901584E-01 9.64998657701E-01 9.97812356777E-01 1.03139603183E+00 1.06574622381E+00 1.10085790846E+00 1.13672442442E+00 1.17333740314E+00 1.21068670094E+00 1.24876033379E+00 1.28754441538E+00 1.32702309900E+00 1.36717852376E+00 1.40799076587E+00 1.44943779549E+00 1.49149543985E+00 1.53413735323E+00 1.57733499453E+00 1.62105761300E+00 1.66527224281E+00 1.70994370715E+00 1.75503463244E+00 1.80050547324E+00 1.84631454849E+00 1.89241808961E+00 1.93877030092E+00 1.98532343283E+00 2.03202786823E+00 2.07883222224E+00 2.12568345565E+00 2.17252700210E+00 2.21930690892E+00 2.26596599154E+00 2.31244600110E+00 2.35868780492E+00 2.40463157894E+00 2.45021701148E+00 2.49538351721E+00 2.54007045989E+00 2.58421738253E+00 2.62776424303E+00 2.67065165321E+00 2.71282111893E+00 2.75421527854E+00 2.79477813679E+00 2.83445529084E+00 2.87319414484E+00 2.91094410918E+00 2.94765678039E+00 2.98328609712E+00 3.01778846775E+00 3.05112286467E+00 3.08325088035E+00 3.11413674011E+00 3.14374726641E+00 3.17205178959E+00 3.19902199998E+00 3.22463173644E+00 3.24885670673E+00 3.27167413525E+00 3.29306233413E+00 3.31300019416E+00 3.33146659249E+00 3.34843971485E+00 3.36389629042E+00 3.37781073891E+00 3.39015422961E+00 3.40089365402E+00 3.40999051446E+00 3.41739973278E+00 3.42306838495E+00 3.42693436950E+00 3.42892502029E+00 3.42895567689E+00 3.42694625783E+00 3.42288040660E+00 3.41676202871E+00 3.40859881493E+00 3.39840222244E+00 3.38618744435E+00 3.37197336767E+00 3.35578251996E+00 3.33764100487E+00 3.31757842688E+00 3.29562780557E+00 3.27182547978E+00 3.24621100203E+00 3.21882702379E+00 3.18971917187E+00 3.15893591675E+00 3.12652843306E+00 3.09255045302E+00 3.05705811347E+00 3.02010979685E+00 2.98176596709E+00 2.94208900087E+00 2.90114301493E+00 2.85899369019E+00 2.81570809326E+00 2.77135449609E+00 2.72600219439E+00 2.67972132546E+00 2.63258268618E+00 2.58465755168E+00 2.53601749548E+00 2.48673421150E+00 2.43687933872E+00 2.38652428898E+00 2.33574007842E+00 2.28459716316E+00 2.23316527963E+00 2.18149811988E+00 2.12967895681E+00 2.07777447805E+00 2.02584266028E+00 1.97395492531E+00 1.92217367176E+00 1.87055962543E+00 1.81917173091E+00 1.76806705077E+00 1.71730067262E+00 1.66692562406E+00 1.61699279568E+00 1.56755087214E+00 1.51864627146E+00 1.47032309240E+00 1.42262307004E+00 1.37558553942E+00 1.32924740731E+00 1.28364313183E+00 1.23880471003E+00 1.19476167308E+00 1.15154108912E+00 1.10916757343E+00 1.06766330579E+00 1.02704805485E+00 9.87339209169E-01 9.48551814805E-01 9.10698619020E-01 8.73790119925E-01 8.37834621692E-01 8.02838294994E-01 7.68805242345E-01 7.35737567940E-01 7.03635451619E-01 6.72497226549E-01 6.42319460207E-01 6.13097038231E-01 5.84823250713E-01 5.57489880471E-01 5.31087292883E-01 5.05604526801E-01 4.81029386137E-01 4.57348531660E-01 4.34547572581E-01 4.12611157529E-01 3.91523064494E-01 3.71266289389E-01 3.51823132841E-01 3.33175284918E-01 3.15303907457E-01 2.98189713731E-01 2.81813045208E-01 2.66153945188E-01 2.51192229129E-01 2.36907551516E-01 2.23279469152E-01 2.10287500779E-01 1.97911182970E-01 1.86130122266E-01 1.74924043550E-01 1.64272834681E-01 1.54156587444E-01 1.44555634865E-01 1.35450585010E-01 1.26822351337E-01 1.18652179764E-01 1.10921672548E-01 1.03612809161E-01 9.67079642804E-02 9.01899230878E-02 8.40418940228E-02 7.82475191704E-02 7.27908824488E-02 6.76565157684E-02 6.28294033280E-02 5.82949842109E-02 5.40391534383E-02 5.00482616299E-02 4.63091134165E-02 4.28089647365E-02 3.95355191461E-02 3.64769232562E-02 3.36217614052E-02 3.09590496641E-02 2.84782292625E-02 2.61691595132E-02 2.40221103058E-02 2.20277542299E-02 2.01771583821E-02 1.84617759026E-02 1.68734372811E-02 1.54043414666E-02 1.40470468106E-02 1.27944618679E-02 1.16398360784E-02 1.05767503466E-02 9.59910753781E-03 8.70112290562E-03 7.87731446415E-03 7.12249332018E-03 6.43175397770E-03 5.80046462853E-03 5.22425744291E-03 4.69901887384E-03 4.22087998994E-03 3.78620685161E-03 3.39159094612E-03 3.03383969722E-03 2.70996706568E-03 2.41718425666E-03 2.15289055055E-03 1.91466427324E-03 1.70025392175E-03 1.50756946073E-03 1.33467380453E-03 1.17977449905E-03 1.04121561659E-03 9.17469875722E-04 8.07130997576E-04 7.08906308151E-04 6.21609595480E-04 5.44154228864E-04 4.75546546155E-04 4.14879513661E-04 3.61326661895E-04 3.14136299001E-04 2.72626002405E-04 2.36177387933E-04 2.04231154422E-04 1.76282400699E-04 1.51876210733E-04 1.30603501733E-04 1.12097129112E-04 9.60282413729E-05 8.21028772900E-05 7.00587971141E-05 5.96625390210E-05 5.07066915847E-05 4.30073727211E-05 3.64019053047E-05 3.07466794955E-05 2.59151917357E-05 2.17962503661E-05 1.82923378822E-05 1.53181199684E-05 1.27990916420E-05 1.06703510630E-05 8.87549185144E-06 7.36560506244E-06 6.09838231960E-06 5.03731197502E-06 4.15096055657E-06 3.41233216436E-06 2.79829889312E-06 2.28909577280E-06 1.86787413654E-06 1.52030773787E-06 1.23424634502E-06 9.99411935438E-07 8.07132997378E-07 6.50112813817E-07 5.22227956799E-07 4.18353555556E-07 3.34212218771E-07 2.66243789476E-07 2.11493389523E-07 1.67516580169E-07 1.32304569259E-07 1.04192644261E-07 8.18146330626E-08 6.40536441133E-08 4.99992873628E-08 3.89117220788E-08 3.01915349839E-08 2.33545817815E-08 1.80110404468E-08 1.38480268366E-08 1.06152133955E-08 8.11297108327E-09 6.18262419279E-09 4.69846843011E-09 3.56125541445E-09 2.69275200018E-09 2.03056423308E-09 1.52737520062E-09 1.14639220512E-09 8.58998042597E-10 6.43016954775E-10 4.81329928241E-10 3.58934949298E-10 2.66636933033E-10 1.97303830471E-10 1.45425342562E-10 1.06760964232E-10 7.80604175205E-11 5.68424966697E-11 4.12208495631E-11 2.97673102860E-11 2.14051449680E-11 1.53260221066E-11 1.09257157535E-11 7.75453407281E-12 5.47927082343E-12 3.85413262960E-12 2.69862569899E-12 1.88081344844E-12 1.30469956109E-12 9.00764723194E-13 6.18902578224E-13 4.23172042561E-13 2.87917956082E-13 1.94917422301E-13 1.31291126244E-13 8.79822836765E-14 5.86546189740E-14 3.88980628126E-14 2.56592392916E-14 1.68352879214E-14 1.09857279818E-14 7.12916784974E-15 4.60066227099E-15 2.95217984890E-15 1.88354178716E-15 1.19477562636E-15 7.53432513984E-16 4.72299117679E-16 2.94287721588E-16 1.82253733526E-16 1.12175146131E-16 6.86118280102E-17 4.17012684233E-17 2.51833111030E-17 1.51096572811E-17 9.00614843429E-18 5.33249344601E-18 3.13611435771E-18 1.83183735681E-18 1.06262017780E-18 6.12107257048E-19 3.50103976234E-19 1.98814402736E-19 1.12083240955E-19 6.27242988309E-20 3.48411921990E-20 1.92075295758E-20 1.05082420199E-20 5.70462234073E-21 3.07269676675E-21 1.64197162379E-21 8.70404960891E-22 4.57659957286E-22 2.38663415394E-22 1.23425568076E-22 6.32929255565E-23 3.21802777938E-23 1.62204254235E-23 8.10448061919E-24 4.01356867545E-24 1.96983675417E-24 9.58020177382E-25 4.61651438936E-25 2.20393336325E-25 1.04226086266E-25 4.88198500495E-26 2.26467652238E-26 1.04028579388E-26 4.73131945787E-27 2.13029956618E-27 9.49451731708E-28 4.18815957813E-28 1.82824873177E-28 7.89681517824E-29 3.37454702281E-29 1.42648520071E-29 5.96414308020E-30 2.46602690317E-30 1.00822105179E-30 4.07530731314E-31 1.62835578241E-31 6.43071808653E-32 2.50972987741E-32 9.67803373953E-33 3.68701082401E-33 1.38746644136E-33 5.15660882244E-34 1.89248086537E-34 6.85733785256E-35 2.45282521146E-35 8.65952453329E-36 3.01693798133E-36 1.03707748989E-36 3.51686106723E-37 1.17631642699E-37 3.88009975421E-38 1.26193006584E-38 4.04598513112E-39 1.27859157050E-39 3.98179531374E-40 1.22175901249E-40 3.69292661401E-41 1.09939123507E-41 3.22290317882E-42 9.30189702561E-43 2.64265154997E-43 7.38866776902E-44 2.03265141792E-44 5.50100170316E-45 1.46424319771E-45 3.83253869270E-46 9.86211293734E-47 2.49442542325E-47 6.20003405992E-48 1.51406775478E-48 3.63184843351E-49 8.55546393644E-50 1.97876354575E-50 4.49240107658E-51 1.00091216804E-51 2.18798077851E-52 4.69155803777E-53 9.86532514273E-54 2.03385398078E-54 4.10992775650E-55 8.13851737287E-56 1.57885538214E-56 2.99994455164E-57 5.58141583801E-58 1.01653149834E-58 1.81186648341E-59 3.15967601440E-60 5.38952590361E-61 8.27445928384E-07 8.48392819416E-07 8.69869983397E-07 8.91890844245E-07 9.14469165705E-07 9.37619059952E-07 9.61354996414E-07 9.85691810812E-07 1.01064471444E-06 1.03622930365E-06 1.06246156964E-06 1.08935790842E-06 1.11693513105E-06 1.14521047419E-06 1.17420161082E-06 1.20392666134E-06 1.23440420485E-06 1.26565329079E-06 1.29769345084E-06 1.33054471112E-06 1.36422760471E-06 1.39876318449E-06 1.43417303631E-06 1.47047929245E-06 1.50770464547E-06 1.54587236241E-06 1.58500629930E-06 1.62513091609E-06 1.66627129195E-06 1.70845314091E-06 1.75170282796E-06 1.79604738554E-06 1.84151453039E-06 1.88813268093E-06 1.93593097495E-06 1.98493928792E-06 2.03518825158E-06 2.08670927310E-06 2.13953455476E-06 2.19369711401E-06 2.24923080417E-06 2.30617033553E-06 2.36455129709E-06 2.42441017879E-06 2.48578439430E-06 2.54871230442E-06 2.61323324108E-06 2.67938753187E-06 2.74721652529E-06 2.81676261657E-06 2.88806927420E-06 2.96118106706E-06 3.03614369228E-06 3.11300400383E-06 3.19181004179E-06 3.27261106238E-06 3.35545756874E-06 3.44040134249E-06 3.52749547611E-06 3.61679440611E-06 3.70835394708E-06 3.80223132653E-06 3.89848522072E-06 3.99717579128E-06 4.09836472282E-06 4.20211526152E-06 4.30849225463E-06 4.41756219100E-06 4.52939324265E-06 4.64405530739E-06 4.76162005248E-06 4.88216095942E-06 5.00575336992E-06 5.13247453296E-06 5.26240365305E-06 5.39562193981E-06 5.53221265862E-06 5.67226118277E-06 5.81585504675E-06 5.96308400099E-06 6.11404006794E-06 6.26881759960E-06 6.42751333649E-06 6.59022646810E-06 6.75705869490E-06 6.92811429192E-06 7.10350017388E-06 7.28332596205E-06 7.46770405275E-06 7.65674968762E-06 7.85058102561E-06 8.04931921687E-06 8.25308847844E-06 8.46201617191E-06 8.67623288302E-06 8.89587250326E-06 9.12107231359E-06 9.35197307020E-06 9.58871909251E-06 9.83145835337E-06 1.00803425715E-05 1.03355273065E-05 1.05971720557E-05 1.08654403543E-05 1.11404998773E-05 1.14225225443E-05 1.17116846270E-05 1.20081668595E-05 1.23121545511E-05 1.26238377021E-05 1.29434111228E-05 1.32710745547E-05 1.36070327962E-05 1.39514958297E-05 1.43046789536E-05 1.46668029162E-05 1.50380940542E-05 1.54187844339E-05 1.58091119963E-05 1.62093207057E-05 1.66196607024E-05 1.70403884589E-05 1.74717669401E-05 1.79140657681E-05 1.83675613899E-05 1.88325372510E-05 1.93092839721E-05 1.97980995310E-05 2.02992894483E-05 2.08131669792E-05 2.13400533085E-05 2.18802777517E-05 2.24341779609E-05 2.30021001356E-05 2.35843992392E-05 2.41814392207E-05 2.47935932425E-05 2.54212439133E-05 2.60647835272E-05 2.67246143091E-05 2.74011486661E-05 2.80948094450E-05 2.88060301967E-05 2.95352554472E-05 3.02829409753E-05 3.10495540977E-05 3.18355739608E-05 3.26414918401E-05 3.34678114475E-05 3.43150492461E-05 3.51837347727E-05 3.60744109688E-05 3.69876345202E-05 3.79239762046E-05 3.88840212486E-05 3.98683696929E-05 4.08776367682E-05 4.19124532786E-05 4.29734659968E-05 4.40613380677E-05 4.51767494231E-05 4.63203972064E-05 4.74929962085E-05 4.86952793144E-05 4.99279979613E-05 5.11919226079E-05 5.24878432164E-05 5.38165697456E-05 5.51789326575E-05 5.65757834361E-05 5.80079951194E-05 5.94764628454E-05 6.09821044110E-05 6.25258608457E-05 6.41086969998E-05 6.57316021472E-05 6.73955906038E-05 6.91017023610E-05 7.08510037358E-05 7.26445880372E-05 7.44835762495E-05 7.63691177323E-05 7.83023909392E-05 8.02846041540E-05 8.23169962457E-05 8.44008374429E-05 8.65374301271E-05 8.87281096469E-05 9.09742451520E-05 9.32772404493E-05 9.56385348794E-05 9.80596042167E-05 1.00541961591E-04 1.03087158432E-04 1.05696785442E-04 1.08372473586E-04 1.11115895113E-04 1.13928764600E-04 1.16812840022E-04 1.19769923855E-04 1.22801864198E-04 1.25910555926E-04 1.29097941881E-04 1.32366014078E-04 1.35716814955E-04 1.39152438647E-04 1.42675032294E-04 1.46286797383E-04 1.49989991123E-04 1.53786927857E-04 1.57679980504E-04 1.61671582045E-04 1.65764227043E-04 1.69960473198E-04 1.74262942947E-04 1.78674325104E-04 1.83197376535E-04 1.87834923886E-04 1.92589865343E-04 1.97465172447E-04 2.02463891947E-04 2.07589147705E-04 2.12844142647E-04 2.18232160761E-04 2.23756569153E-04 2.29420820147E-04 2.35228453441E-04 2.41183098319E-04 2.47288475917E-04 2.53548401549E-04 2.59966787086E-04 2.66547643404E-04 2.73295082883E-04 2.80213321981E-04 2.87306683863E-04 2.94579601104E-04 3.02036618454E-04 3.09682395676E-04 3.17521710460E-04 3.25559461401E-04 3.33800671060E-04 3.42250489101E-04 3.50914195505E-04 3.59797203866E-04 3.68905064773E-04 3.78243469272E-04 3.87818252424E-04 3.97635396942E-04 4.07701036931E-04 4.18021461713E-04 4.28603119755E-04 4.39452622694E-04 4.50576749464E-04 4.61982450527E-04 4.73676852211E-04 4.85667261156E-04 4.97961168879E-04 5.10566256442E-04 5.23490399253E-04 5.36741671974E-04 5.50328353563E-04 5.64258932440E-04 5.78542111781E-04 5.93186814950E-04 6.08202191066E-04 6.23597620709E-04 6.39382721774E-04 6.55567355472E-04 6.72161632474E-04 6.89175919227E-04 7.06620844412E-04 7.24507305577E-04 7.42846475931E-04 7.61649811312E-04 7.80929057333E-04 8.00696256700E-04 8.20963756726E-04 8.41744217026E-04 8.63050617411E-04 8.84896265976E-04 9.07294807399E-04 9.30260231443E-04 9.53806881675E-04 9.77949464407E-04 1.00270305786E-03 1.02808312155E-03 1.05410550593E-03 1.08078646228E-03 1.10814265278E-03 1.13619116096E-03 1.16494950226E-03 1.19443563503E-03 1.22466797161E-03 1.25566538989E-03 1.28744724501E-03 1.32003338141E-03 1.35344414520E-03 1.38770039683E-03 1.42282352404E-03 1.45883545520E-03 1.49575867296E-03 1.53361622818E-03 1.57243175435E-03 1.61222948223E-03 1.65303425495E-03 1.69487154345E-03 1.73776746228E-03 1.78174878593E-03 1.82684296536E-03 1.87307814514E-03 1.92048318090E-03 1.96908765728E-03 2.01892190630E-03 2.07001702620E-03 2.12240490074E-03 2.17611821902E-03 2.23119049576E-03 2.28765609213E-03 2.34555023702E-03 2.40490904895E-03 2.46576955846E-03 2.52816973107E-03 2.59214849084E-03 2.65774574449E-03 2.72500240616E-03 2.79396042271E-03 2.86466279981E-03 2.93715362847E-03 3.01147811243E-03 3.08768259612E-03 3.16581459334E-03 3.24592281670E-03 3.32805720772E-03 3.41226896775E-03 3.49861058962E-03 3.58713589011E-03 3.67790004321E-03 3.77095961419E-03 3.86637259457E-03 3.96419843793E-03 4.06449809660E-03 4.16733405927E-03 4.27277038958E-03 4.38087276560E-03 4.49170852032E-03 4.60534668318E-03 4.72185802258E-03 4.84131508944E-03 4.96379226194E-03 5.08936579120E-03 5.21811384825E-03 5.35011657210E-03 5.48545611896E-03 5.62421671274E-03 5.76648469678E-03 5.91234858682E-03 6.06189912537E-03 6.21522933729E-03 6.37243458686E-03 6.53361263620E-03 6.69886370512E-03 6.86829053245E-03 7.04199843893E-03 7.22009539155E-03 7.40269206953E-03 7.58990193195E-03 7.78184128693E-03 7.97862936260E-03 8.18038837980E-03 8.38724362646E-03 8.59932353393E-03 8.81675975509E-03 9.03968724436E-03 9.26824433970E-03 9.50257284658E-03 9.74281812400E-03 9.98912917254E-03 1.02416587247E-02 1.05005633371E-02 1.07660034855E-02 1.10381436614E-02 1.13171524714E-02 1.16032027389E-02 1.18964716084E-02 1.21971406516E-02 1.25053959773E-02 1.28214283426E-02 1.31454332673E-02 1.34776111518E-02 1.38181673963E-02 1.41673125240E-02 1.45252623070E-02 1.48922378947E-02 1.52684659458E-02 1.56541787633E-02 1.60496144322E-02 1.64550169612E-02 1.68706364273E-02 1.72967291239E-02 1.77335577119E-02 1.81813913753E-02 1.86405059795E-02 1.91111842339E-02 1.95937158578E-02 2.00883977503E-02 2.05955341645E-02 2.11154368852E-02 2.16484254104E-02 2.21948271383E-02 2.27549775569E-02 2.33292204389E-02 2.39179080410E-02 2.45214013073E-02 2.51400700773E-02 2.57742932990E-02 2.64244592466E-02 2.70909657425E-02 2.77742203852E-02 2.84746407811E-02 2.91926547828E-02 2.99287007310E-02 3.06832277031E-02 3.14566957665E-02 3.22495762372E-02 3.30623519446E-02 3.38955175013E-02 3.47495795795E-02 3.56250571919E-02 3.65224819802E-02 3.74423985079E-02 3.83853645610E-02 3.93519514531E-02 4.03427443383E-02 4.13583425293E-02 4.23993598230E-02 4.34664248315E-02 4.45601813209E-02 4.56812885558E-02 4.68304216512E-02 4.80082719308E-02 4.92155472926E-02 5.04529725812E-02 5.17212899672E-02 5.30212593337E-02 5.43536586701E-02 5.57192844725E-02 5.71189521523E-02 5.85534964513E-02 6.00237718640E-02 6.15306530684E-02 6.30750353621E-02 6.46578351079E-02 6.62799901855E-02 6.79424604505E-02 6.96462282012E-02 7.13922986525E-02 7.31817004170E-02 7.50154859934E-02 7.68947322615E-02 7.88205409849E-02 8.07940393206E-02 8.28163803345E-02 8.48887435248E-02 8.70123353512E-02 8.91883897706E-02 9.14181687791E-02 9.37029629595E-02 9.60440920355E-02 9.84429054303E-02 1.00900782831E-01 1.03419134758E-01 1.05999403137E-01 1.08643061881E-01 1.11351617465E-01 1.14126609517E-01 1.16969611403E-01 1.19882230817E-01 1.22866110373E-01 1.25922928196E-01 1.29054398518E-01 1.32262272269E-01 1.35548337670E-01 1.38914420822E-01 1.42362386294E-01 1.45894137706E-01 1.49511618311E-01 1.53216811565E-01 1.57011741697E-01 1.60898474262E-01 1.64879116699E-01 1.68955818864E-01 1.73130773554E-01 1.77406217029E-01 1.81784429500E-01 1.86267735616E-01 1.90858504920E-01 1.95559152295E-01 2.00372138376E-01 2.05299969949E-01 2.10345200305E-01 2.15510429586E-01 2.20798305078E-01 2.26211521482E-01 2.31752821137E-01 2.37424994210E-01 2.43230878835E-01 2.49173361207E-01 2.55255375619E-01 2.61479904450E-01 2.67849978089E-01 2.74368674794E-01 2.81039120483E-01 2.87864488454E-01 2.94847999022E-01 3.01992919075E-01 3.09302561540E-01 3.16780284752E-01 3.24429491723E-01 3.32253629307E-01 3.40256187240E-01 3.48440697066E-01 3.56810730937E-01 3.65369900263E-01 3.74121854231E-01 3.83070278159E-01 3.92218891692E-01 4.01571446828E-01 4.11131725755E-01 4.20903538496E-01 4.30890720361E-01 4.41097129166E-01 4.51526642241E-01 4.62183153189E-01 4.73070568398E-01 4.84192803283E-01 4.95553778251E-01 5.07157414370E-01 5.19007628728E-01 5.31108329465E-01 5.43463410465E-01 5.56076745682E-01 5.68952183096E-01 5.82093538262E-01 5.95504587451E-01 6.09189060348E-01 6.23150632299E-01 6.37392916065E-01 6.51919453089E-01 6.66733704224E-01 6.81839039921E-01 6.97238729829E-01 7.12935931805E-01 7.28933680290E-01 7.45234874026E-01 7.61842263091E-01 7.78758435222E-01 7.95985801384E-01 8.13526580574E-01 8.31382783805E-01 8.49556197259E-01 8.68048364556E-01 8.86860568122E-01 9.05993809603E-01 9.25448789302E-01 9.45225884605E-01 9.65325127336E-01 9.85746180038E-01 1.00648831111E+00 1.02755036877E+00 1.04893075384E+00 1.07062739122E+00 1.09263770016E+00 1.11495856313E+00 1.13758629335E+00 1.16051660096E+00 1.18374455764E+00 1.20726455988E+00 1.23107029061E+00 1.25515467941E+00 1.27950986098E+00 1.30412713212E+00 1.32899690704E+00 1.35410867088E+00 1.37945093174E+00 1.40501117075E+00 1.43077579062E+00 1.45673006226E+00 1.48285806975E+00 1.50914265354E+00 1.53556535176E+00 1.56210634001E+00 1.58874436913E+00 1.61545670152E+00 1.64221904561E+00 1.66900548871E+00 1.69578842840E+00 1.72253850223E+00 1.74922451611E+00 1.77581337127E+00 1.80226999006E+00 1.82855724057E+00 1.85463586027E+00 1.88046437890E+00 1.90599904071E+00 1.93119372619E+00 1.95599987378E+00 1.98036640142E+00 2.00423962867E+00 2.02756319933E+00 2.05027800511E+00 2.07232211070E+00 2.09363068068E+00 2.11413590858E+00 2.13376694881E+00 2.15244985185E+00 2.17010750331E+00 2.18665956755E+00 2.20202243654E+00 2.21610918462E+00 2.22882953009E+00 2.24008980443E+00 2.24979293009E+00 2.25783840783E+00 2.26412231466E+00 2.26853731363E+00 2.27097267655E+00 2.27131432093E+00 2.26944486266E+00 2.26524368569E+00 2.25858703042E+00 2.24934810224E+00 2.23739720211E+00 2.22260188085E+00 2.20482711903E+00 2.18393553457E+00 2.15978761982E+00 2.13224201064E+00 2.10115578929E+00 2.06638482382E+00 2.02778414596E+00 1.98520837031E+00 1.93851215700E+00 1.88755072057E+00 1.83218038756E+00 1.77225920546E+00 1.70764760560E+00 1.63840889150E+00 1.57074345212E+00 1.50467721877E+00 1.44023307483E+00 1.37743084120E+00 1.31628726551E+00 1.25681601513E+00 1.19902767425E+00 1.14292974547E+00 1.08852665714E+00 1.03581977779E+00 9.84807439680E-01 9.35484973368E-01 8.87844755613E-01 8.41876272567E-01 7.97566199840E-01 7.54898500427E-01 7.13854540616E-01 6.74413223119E-01 6.36551135679E-01 6.00242712563E-01 5.65460405625E-01 5.32174861178E-01 5.00355098784E-01 4.69968688209E-01 4.40981921352E-01 4.13359976633E-01 3.87067074236E-01 3.62066621493E-01 3.38321348459E-01 3.15793434386E-01 2.94444626129E-01 2.74236349696E-01 2.55129816120E-01 2.37086122635E-01 2.20066349915E-01 2.04031655847E-01 1.88943366097E-01 1.74763061473E-01 1.61452661989E-01 1.48974507400E-01 1.37291433925E-01 1.26366846880E-01 1.16164788911E-01 1.06650003576E-01 9.77879940638E-02 8.95450768470E-02 8.18884301666E-02 7.47861372498E-02 6.82072242339E-02 6.21216928043E-02 5.65005475965E-02 5.13158184478E-02 4.65405776198E-02 4.21489521380E-02 3.81161314263E-02 3.44183704308E-02 3.10329884515E-02 2.79383639137E-02 2.51139253266E-02 2.25401386862E-02 2.01984915887E-02 1.80714743271E-02 1.61425582462E-02 1.43961716337E-02 1.28176734254E-02 1.13933249977E-02 1.01102603196E-02 8.95645472724E-03 7.92069257853E-03 6.99253403582E-03 6.16228121382E-03 5.42094391884E-03 4.76020519267E-03 4.17238686116E-03 3.65041527317E-03 3.18778740125E-03 2.77853746015E-03 2.41720418395E-03 2.09879888783E-03 1.81877442441E-03 1.57299513053E-03 1.35770784502E-03 1.16951406413E-03 1.00534328769E-03 8.62427595862E-04 7.38277484539E-04 6.30658975487E-04 5.37572007223E-04 4.57230102571E-04 3.88041300213E-04 3.28590329586E-04 2.77622001539E-04 2.34025781069E-04 1.96821503313E-04 1.65146189603E-04 1.38241916919E-04 1.15444691348E-04 9.61742741377E-05 7.99249076242E-05 6.62568876297E-05 5.47889287534E-05 4.51912693770E-05 3.71794640035E-05 3.05088117535E-05 2.49693713725E-05 2.03815149113E-05 1.65919742704E-05 1.34703370060E-05 1.09059501295E-05 8.80519305296E-06 7.08908330740E-06 5.69118114168E-06 4.55576158711E-06 3.63622499968E-06 2.89371946217E-06 2.29595071426E-06 1.81615747025E-06 1.43223206678E-06 1.12596834998E-06 8.82420556401E-07 6.89358661515E-07 5.36807262380E-07 4.16656528213E-07 3.22335096035E-07 2.48536012203E-07 1.90987929096E-07 1.46264765149E-07 1.11627931976E-07 8.48960311815E-08 6.43376324655E-08 4.85833708467E-08 3.65541511879E-08 2.74027295939E-08 2.04663602671E-08 1.52285593989E-08 1.12883506481E-08 8.33562531418E-09 6.13147967607E-09 4.49258692864E-09 3.27882608566E-09 2.38352909672E-09 1.72582380815E-09 1.24464746720E-09 8.94086044490E-10 6.39761215014E-10 4.56041566775E-10 3.23899385581E-10 2.29270827538E-10 1.61806837257E-10 1.13925995441E-10 8.00995981425E-11 5.63145367522E-11 3.94084086199E-11 2.74480016008E-11 1.90265889671E-11 1.31254470929E-11 9.01040874487E-12 6.15497095189E-12 4.18342717502E-12 2.82902195216E-12 1.90331718354E-12 1.27388214046E-12 8.48130477413E-13 5.61672505266E-13 3.69966231541E-13 2.42365274538E-13 1.57898739337E-13 1.02295624396E-13 6.58984721380E-14 4.22087880378E-14 2.68787215481E-14 1.70161397738E-14 1.07084912549E-14 6.69850677105E-15 4.16463955251E-15 2.57331727604E-15 1.58012738380E-15 9.64138917366E-16 5.84522628121E-16 3.52080716181E-16 2.10681732320E-16 1.25233155833E-16 7.39406348635E-17 4.33592302986E-17 2.52509166755E-17 1.46026644977E-17 8.38509784346E-18 4.78042423546E-18 2.70562585000E-18 1.52010034690E-18 8.47695191065E-19 4.69169039081E-19 2.57691354541E-19 1.40446018461E-19 7.59479018218E-20 4.07451627943E-20 2.16843745121E-20 1.14468083263E-20 5.99299834360E-21 3.11158137099E-21 1.60195347368E-21 8.17719362615E-22 4.13806840051E-22 2.07578721780E-22 1.03207674701E-22 5.08553641455E-23 2.48317993330E-23 1.20136974551E-23 5.75827094394E-24 2.73403213862E-24 1.28575977815E-24 5.98837117850E-25 2.76183390072E-25 1.26116826517E-25 5.70139526755E-26 2.55133357869E-26 1.12999358374E-26 4.95280607667E-27 2.14801130882E-27 9.21667493951E-28 3.91206718651E-28 1.64238057624E-28 6.81894451074E-29 2.79947135625E-29 1.13629034217E-29 4.55926832670E-30 1.80813518879E-30 7.08652176611E-31 2.74433806837E-31 1.04997587579E-31 3.96818954460E-32 1.48118803302E-32 5.45965450541E-33 1.98695914658E-33 7.13858760968E-34 2.53142534423E-34 8.85883142802E-35 3.05896387868E-35 1.04204401153E-35 3.50136884591E-36 1.16025942647E-36 3.79107344984E-37 1.22118819260E-37 3.87738373830E-38 1.21325549677E-38 3.74061970630E-39 1.13614081047E-39 3.39888572082E-40 1.00132306755E-40 2.90443422934E-41 8.29304250835E-42 2.33048084858E-42 6.44420999060E-43 1.75306664429E-43 4.69075502128E-44 1.23427667076E-44 3.19312889830E-45 8.12011361037E-46 2.02934497758E-46 4.98313883038E-47 1.20200821082E-47 2.84755434211E-48 6.62366431302E-49 1.51246954380E-49 3.38950325551E-50 7.45322707718E-51 1.60771115939E-51 3.40112240231E-52 7.05473853611E-53 1.43442065186E-53 2.85825022212E-54 5.58009844691E-55 1.06706228874E-55 1.99816324042E-56 3.66294874006E-57 6.57196322700E-58 1.15373583525E-58 1.98127930305E-59 3.32730552112E-60 5.46292697326E-61 8.76638201014E-62 1.37452506640E-62 2.10521101130E-63 3.14862635758E-64 4.59726313162E-65 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4.04662642095E-05 4.09752674405E-05 4.14906731549E-05 4.20125618866E-05 4.25410151822E-05 4.30761156143E-05 4.36179467940E-05 4.41665933842E-05 4.47221411127E-05 4.52846767857E-05 4.58542883012E-05 4.64310646629E-05 4.70150959942E-05 4.76064735519E-05 4.82052897407E-05 4.88116381279E-05 4.94256134574E-05 5.00473116652E-05 5.06768298937E-05 5.13142665076E-05 5.19597211086E-05 5.26132945515E-05 5.32750889595E-05 5.39452077405E-05 5.46237556033E-05 5.53108385734E-05 5.60065640105E-05 5.67110406243E-05 5.74243784922E-05 5.81466890761E-05 5.88780852401E-05 5.96186812679E-05 6.03685928809E-05 6.11279372558E-05 6.18968330437E-05 6.26754003878E-05 6.34637609429E-05 6.42620378938E-05 6.50703559751E-05 6.58888414902E-05 6.67176223314E-05 6.75568279997E-05 6.84065896250E-05 6.92670399869E-05 7.01383135351E-05 7.10205464105E-05 7.19138764666E-05 7.28184432909E-05 7.37343882269E-05 7.46618543959E-05 7.56009867196E-05 7.65519319428E-05 7.75148386560E-05 7.84898573191E-05 7.94771402844E-05 8.04768418208E-05 8.14891181379E-05 8.25141274099E-05 8.35520298012E-05 8.46029874905E-05 8.56671646970E-05 8.67447277053E-05 8.78358448920E-05 8.89406867515E-05 9.00594259232E-05 9.11922372181E-05 9.23392976461E-05 9.35007864438E-05 9.46768851027E-05 9.58677773971E-05 9.70736494133E-05 9.82946895784E-05 9.95310886896E-05 1.00783039945E-04 1.02050738971E-04 1.03334383859E-04 1.04634175187E-04 1.05950316061E-04 1.07283012139E-04 1.08632471667E-04 1.09998905512E-04 1.11382527191E-04 1.12783552908E-04 1.14202201589E-04 1.15638694912E-04 1.17093257343E-04 1.18566116174E-04 1.20057501555E-04 1.21567646530E-04 1.23096787078E-04 1.24645162145E-04 1.26213013681E-04 1.27800586683E-04 1.29408129228E-04 1.31035892516E-04 1.32684130905E-04 1.34353101953E-04 1.36043066461E-04 1.37754288507E-04 1.39487035494E-04 1.41241578189E-04 1.43018190764E-04 1.44817150842E-04 1.46638739537E-04 1.48483241501E-04 1.50350944966E-04 1.52242141792E-04 1.54157127509E-04 1.56096201366E-04 1.58059666377E-04 1.60047829369E-04 1.62061001027E-04 1.64099495947E-04 1.66163632683E-04 1.68253733795E-04 1.70370125904E-04 1.72513139738E-04 1.74683110188E-04 1.76880376358E-04 1.79105281617E-04 1.81358173658E-04 1.83639404544E-04 1.85949330772E-04 1.88288313322E-04 1.90656717717E-04 1.93054914079E-04 1.95483277187E-04 1.97942186536E-04 2.00432026395E-04 2.02953185871E-04 2.05506058964E-04 2.08091044635E-04 2.10708546861E-04 2.13358974707E-04 2.16042742382E-04 2.18760269310E-04 2.21511980191E-04 2.24298305070E-04 2.27119679403E-04 2.29976544129E-04 2.32869345732E-04 2.35798536316E-04 2.38764573677E-04 2.41767921369E-04 2.44809048782E-04 2.47888431212E-04 2.51006549937E-04 2.54163892294E-04 2.57360951752E-04 2.60598227990E-04 2.63876226977E-04 2.67195461050E-04 2.70556448995E-04 2.73959716127E-04 2.77405794375E-04 2.80895222360E-04 2.84428545487E-04 2.88006316022E-04 2.91629093187E-04 2.95297443240E-04 2.99011939570E-04 3.02773162782E-04 3.06581700791E-04 3.10438148914E-04 3.14343109961E-04 3.18297194333E-04 3.22301020114E-04 3.26355213171E-04 3.30460407252E-04 3.34617244081E-04 3.38826373465E-04 3.43088453392E-04 3.47404150135E-04 3.51774138358E-04 3.56199101219E-04 3.60679730479E-04 3.65216726612E-04 3.69810798911E-04 3.74462665604E-04 3.79173053963E-04 3.83942700422E-04 3.88772350687E-04 3.93662759859E-04 3.98614692551E-04 4.03628923003E-04 4.08706235214E-04 4.13847423054E-04 4.19053290397E-04 4.24324651244E-04 4.29662329850E-04 4.35067160857E-04 4.40539989421E-04 4.46081671351E-04 4.51693073235E-04 4.57375072584E-04 4.63128557969E-04 4.68954429156E-04 4.74853597253E-04 4.80826984852E-04 4.86875526171E-04 4.93000167208E-04 4.99201865882E-04 5.05481592191E-04 5.11840328360E-04 5.18279069001E-04 5.24798821263E-04 5.31400604997E-04 5.38085452914E-04 5.44854410748E-04 5.51708537422E-04 5.58648905217E-04 5.65676599936E-04 5.72792721081E-04 5.79998382024E-04 5.87294710184E-04 5.94682847205E-04 6.02163949136E-04 6.09739186615E-04 6.17409745054E-04 6.25176824827E-04 6.33041641458E-04 6.41005425818E-04 6.49069424314E-04 6.57234899093E-04 6.65503128238E-04 6.73875405972E-04 6.82353042863E-04 6.90937366035E-04 6.99629719374E-04 7.08431463744E-04 7.17343977206E-04 7.26368655232E-04 7.35506910932E-04 7.44760175275E-04 7.54129897319E-04 7.63617544442E-04 7.73224602577E-04 7.82952576446E-04 7.92802989802E-04 8.02777385672E-04 8.12877326605E-04 8.23104394921E-04 8.33460192961E-04 8.43946343349E-04 8.54564489248E-04 8.65316294624E-04 8.76203444514E-04 8.87227645294E-04 8.98390624958E-04 9.09694133389E-04 9.21139942645E-04 9.32729847243E-04 9.44465664446E-04 9.56349234561E-04 9.68382421228E-04 9.80567111728E-04 9.92905217285E-04 1.00539867337E-03 1.01804944003E-03 1.03085950219E-03 1.04383086996E-03 1.05696557902E-03 1.07026569086E-03 1.08373329322E-03 1.09737050033E-03 1.11117945333E-03 1.12516232058E-03 1.13932129800E-03 1.15365860949E-03 1.16817650722E-03 1.18287727207E-03 1.19776321392E-03 1.21283667213E-03 1.22810001583E-03 1.24355564436E-03 1.25920598767E-03 1.27505350670E-03 1.29110069377E-03 1.30735007306E-03 1.32380420093E-03 1.34046566645E-03 1.35733709174E-03 1.37442113244E-03 1.39172047819E-03 1.40923785301E-03 1.42697601581E-03 1.44493776080E-03 1.46312591804E-03 1.48154335381E-03 1.50019297118E-03 1.51907771046E-03 1.53820054969E-03 1.55756450517E-03 1.57717263195E-03 1.59702802434E-03 1.61713381649E-03 1.63749318284E-03 1.65810933874E-03 1.67898554096E-03 1.70012508825E-03 1.72153132192E-03 1.74320762642E-03 1.76515742989E-03 1.78738420481E-03 1.80989146854E-03 1.83268278398E-03 1.85576176017E-03 1.87913205293E-03 1.90279736550E-03 1.92676144917E-03 1.95102810397E-03 1.97560117933E-03 2.00048457478E-03 2.02568224059E-03 2.05119817855E-03 2.07703644263E-03 2.10320113972E-03 2.12969643038E-03 2.15652652959E-03 2.18369570752E-03 2.21120829027E-03 2.23906866072E-03 2.26728125926E-03 2.29585058469E-03 2.32478119498E-03 2.35407770814E-03 2.38374480308E-03 2.41378722050E-03 2.44420976374E-03 2.47501729970E-03 2.50621475979E-03 2.53780714082E-03 2.56979950597E-03 2.60219698579E-03 2.63500477911E-03 2.66822815413E-03 2.70187244940E-03 2.73594307486E-03 2.77044551289E-03 2.80538531942E-03 2.84076812504E-03 2.87659963604E-03 2.91288563566E-03 2.94963198516E-03 2.98684462506E-03 3.02452957633E-03 3.06269294162E-03 3.10134090652E-03 3.14047974083E-03 3.18011579985E-03 3.22025552576E-03 3.26090544893E-03 3.30207218931E-03 3.34376245786E-03 3.38598305795E-03 3.42874088689E-03 3.47204293738E-03 3.51589629905E-03 3.56030816002E-03 3.60528580852E-03 3.65083663448E-03 3.69696813123E-03 3.74368789716E-03 3.79100363747E-03 3.83892316597E-03 3.88745440684E-03 3.93660539652E-03 3.98638428559E-03 4.03679934067E-03 4.08785894648E-03 4.13957160775E-03 4.19194595138E-03 4.24499072852E-03 4.29871481670E-03 4.35312722211E-03 4.40823708179E-03 4.46405366601E-03 4.52058638062E-03 4.57784476944E-03 4.63583851680E-03 4.69457745008E-03 4.75407154228E-03 4.81433091472E-03 4.87536583975E-03 4.93718674362E-03 4.99980420926E-03 5.06322897928E-03 5.12747195901E-03 5.19254421952E-03 5.25845700088E-03 5.32522171535E-03 5.39284995076E-03 5.46135347390E-03 5.53074423408E-03 5.60103436669E-03 5.67223619693E-03 5.74436224362E-03 5.81742522307E-03 5.89143805310E-03 5.96641385716E-03 6.04236596857E-03 6.11930793481E-03 6.19725352205E-03 6.27621671967E-03 6.35621174500E-03 6.43725304817E-03 6.51935531707E-03 6.60253348247E-03 6.68680272327E-03 6.77217847194E-03 6.85867642007E-03 6.94631252408E-03 7.03510301113E-03 7.12506438518E-03 7.21621343322E-03 7.30856723169E-03 7.40214315309E-03 7.49695887279E-03 7.59303237601E-03 7.69038196506E-03 7.78902626678E-03 7.88898424014E-03 7.99027518416E-03 8.09291874603E-03 8.19693492947E-03 8.30234410334E-03 8.40916701056E-03 8.51742477720E-03 8.62713892202E-03 8.73833136610E-03 8.85102444296E-03 8.96524090885E-03 9.08100395343E-03 9.19833721082E-03 9.31726477087E-03 9.43781119095E-03 9.56000150798E-03 9.68386125091E-03 9.80941645355E-03 9.93669366792E-03 1.00657199778E-02 1.01965230131E-02 1.03291309641E-02 1.04635725970E-02 1.05998772688E-02 1.07380749440E-02 1.08781962108E-02 1.10202722984E-02 1.11643350944E-02 1.13104171635E-02 1.14585517657E-02 1.16087728764E-02 1.17611152063E-02 1.19156142218E-02 1.20723061670E-02 1.22312280855E-02 1.23924178434E-02 1.25559141532E-02 1.27217565976E-02 1.28899856555E-02 1.30606427276E-02 1.32337701635E-02 1.34094112896E-02 1.35876104379E-02 1.37684129759E-02 1.39518653368E-02 1.41380150520E-02 1.43269107836E-02 1.45186023583E-02 1.47131408028E-02 1.49105783795E-02 1.51109686248E-02 1.53143663872E-02 1.55208278676E-02 1.57304106610E-02 1.59431737987E-02 1.61591777932E-02 1.63784846834E-02 1.66011580823E-02 1.68272632257E-02 1.70568670229E-02 1.72900381085E-02 1.75268468969E-02 1.77673656380E-02 1.80116684746E-02 1.82598315023E-02 1.85119328312E-02 1.87680526493E-02 1.90282732886E-02 1.92926792931E-02 1.95613574892E-02 1.98343970582E-02 2.01118896115E-02 2.03939292684E-02 2.06806127361E-02 2.09720393926E-02 2.12683113726E-02 2.15695336556E-02 2.18758141577E-02 2.21872638256E-02 2.25039967348E-02 2.28261301895E-02 2.31537848277E-02 2.34870847277E-02 2.38261575199E-02 2.41711345009E-02 2.45221507523E-02 2.48793452623E-02 2.52428610525E-02 2.56128453077E-02 2.59894495106E-02 2.63728295800E-02 2.67631460144E-02 2.71605640397E-02 2.75652537610E-02 2.79773903202E-02 2.83971540581E-02 2.88247306812E-02 2.92603114342E-02 2.97040932778E-02 3.01562790715E-02 3.06170777625E-02 3.10867045802E-02 3.15653812362E-02 3.20533361310E-02 3.25508045664E-02 3.30580289640E-02 3.35752590909E-02 3.41027522910E-02 3.46407737238E-02 3.51895966095E-02 3.57495024814E-02 3.63207814456E-02 3.69037324471E-02 3.74986635442E-02 3.81058921898E-02 3.87257455208E-02 3.93585606546E-02 4.00046849937E-02 4.06644765385E-02 4.13383042078E-02 4.20265481672E-02 4.27296001662E-02 4.34478638831E-02 4.41817552784E-02 4.49317029562E-02 4.56981485345E-02 4.64815470231E-02 4.72823672106E-02 4.81010920590E-02 4.89382191073E-02 4.97942608826E-02 5.06697453194E-02 5.15652161874E-02 5.24812335266E-02 5.34183740900E-02 5.43772317944E-02 5.53584181772E-02 5.63625628613E-02 5.73903140257E-02 5.84423388831E-02 5.95193241621E-02 6.06219765961E-02 6.17510234157E-02 6.29072128465E-02 6.40913146091E-02 6.53041204237E-02 6.65464445148E-02 6.78191241188E-02 6.91230199914E-02 7.04590169134E-02 7.18280241964E-02 7.32309761841E-02 7.46688327497E-02 7.61425797884E-02 7.76532297015E-02 7.92018218729E-02 8.07894231338E-02 8.24171282167E-02 8.40860601932E-02 8.57973708963E-02 8.75522413242E-02 8.93518820216E-02 9.11975334379E-02 9.30904662590E-02 9.50319817085E-02 9.70234118169E-02 9.90661196542E-02 1.01161499523E-01 1.03310977109E-01 1.05516009580E-01 1.07778085641E-01 1.10098725526E-01 1.12479480931E-01 1.14921934884E-01 1.17427701543E-01 1.19998425912E-01 1.22635783487E-01 1.25341479804E-01 1.28117249896E-01 1.30964857647E-01 1.33886095050E-01 1.36882781330E-01 1.39956761968E-01 1.43109907577E-01 1.46344112650E-01 1.49661294164E-01 1.53063390022E-01 1.56552357342E-01 1.60130170567E-01 1.63798819395E-01 1.67560306528E-01 1.71416645206E-01 1.75369856547E-01 1.79421966655E-01 1.83575003510E-01 1.87830993609E-01 1.92191958365E-01 1.96659910243E-01 2.01236848625E-01 2.05924755401E-01 2.10725590268E-01 2.15641285727E-01 2.20673741784E-01 2.25824820317E-01 2.31096339138E-01 2.36490065710E-01 2.42007710534E-01 2.47650920182E-01 2.53421269993E-01 2.59320256405E-01 2.65349288941E-01 2.71509681830E-01 2.77802645281E-01 2.84229276393E-01 2.90790549729E-01 2.97487307536E-01 3.04320249638E-01 3.11289923007E-01 3.18396711025E-01 3.25640822457E-01 3.33022280156E-01 3.40540909527E-01 3.48196326770E-01 3.55987926947E-01 3.63914871898E-01 3.71976078057E-01 3.80170204211E-01 3.88495639253E-01 3.96950489988E-01 4.05532569051E-01 4.14239383018E-01 4.23068120763E-01 4.32015642168E-01 4.41078467250E-01 4.50252765816E-01 4.59534347730E-01 4.68918653917E-01 4.78400748197E-01 4.87975310079E-01 4.97636628636E-01 5.07378597586E-01 5.17194711723E-01 5.27078064815E-01 5.37021349135E-01 5.47016856747E-01 5.57056482700E-01 5.67131730272E-01 5.77233718404E-01 5.87353191460E-01 5.97480531453E-01 6.07605772848E-01 6.17718620065E-01 6.27808467788E-01 6.37864424144E-01 6.47875336845E-01 6.57829822311E-01 6.67716297807E-01 6.77523016572E-01 6.87238105892E-01 6.96849608031E-01 7.06345523880E-01 7.15713859159E-01 7.24942672916E-01 7.34020128057E-01 7.42934543522E-01 7.51674447710E-01 7.60228632651E-01 7.68586208342E-01 7.76736656622E-01 7.84669883837E-01 7.92376271489E-01 7.99846723980E-01 8.07072712453E-01 8.14046313697E-01 8.20760242949E-01 8.27207879417E-01 8.33383283240E-01 8.39281202565E-01 8.44897069405E-01 8.50226982887E-01 8.55267678544E-01 8.60016482293E-01 8.64471247825E-01 8.68630276220E-01 8.72492216717E-01 8.76055947751E-01 8.79320437580E-01 8.82284584097E-01 8.84947033741E-01 8.87305979807E-01 8.89358940894E-01 8.91102520726E-01 8.92532151186E-01 8.93641820976E-01 8.94423793079E-01 8.94868314885E-01 8.94965699763E-01 8.94714192347E-01 8.94114498988E-01 8.93167657986E-01 8.91875039151E-01 8.90238342820E-01 8.88259598341E-01 8.85941162008E-01 8.83285714482E-01 8.80296257685E-01 8.76976111181E-01 8.73328908064E-01 8.69358590347E-01 8.65069403880E-01 8.60465892797E-01 8.55552893509E-01 8.50335528268E-01 8.44819198298E-01 8.39009576518E-01 8.32912599883E-01 8.26534461339E-01 8.19881601427E-01 8.12960699540E-01 8.05778664866E-01 7.98342627019E-01 7.90659926386E-01 7.82738104209E-01 7.74584892416E-01 7.66208203217E-01 7.57616118497E-01 7.48816879005E-01 7.39818873372E-01 7.30630626971E-01 7.21260790636E-01 7.11718129253E-01 7.02011510249E-01 6.92149891988E-01 6.82136752305E-01 6.71986686268E-01 6.61708853789E-01 6.51312458501E-01 6.40806735921E-01 6.30200941603E-01 6.19504339306E-01 6.08726189177E-01 5.97875735981E-01 5.86962197378E-01 5.75994752252E-01 5.64982529131E-01 5.53934594678E-01 5.42859942303E-01 5.31767480870E-01 5.20666023554E-01 5.09564276830E-01 4.98470829635E-01 4.87394142703E-01 4.76342538105E-01 4.65324189004E-01 4.54347109656E-01 4.43419145665E-01 4.32547964532E-01 4.21741046512E-01 4.11005675807E-01 4.00348932124E-01 3.89777682616E-01 3.79298574252E-01 3.68918026615E-01 3.58642225183E-01 3.48477115101E-01 3.38428395470E-01 3.28501514186E-01 3.18701663337E-01 3.09033775186E-01 2.99502518750E-01 2.90112296991E-01 2.80867244627E-01 2.71771226569E-01 2.62827836984E-01 2.54040398986E-01 2.45411964945E-01 2.36945317412E-01 2.28642970634E-01 2.20507172661E-01 2.12539908006E-01 2.04742900851E-01 1.97117618759E-01 1.89665276884E-01 1.82386842627E-01 1.75283040720E-01 1.68354358711E-01 1.61601052797E-01 1.55023153990E-01 1.48620474578E-01 1.42392614835E-01 1.36338969968E-01 1.30458737249E-01 1.24750923317E-01 1.19214351609E-01 1.13847669893E-01 1.08649357889E-01 1.03617734934E-01 9.87509676869E-02 9.40470778353E-02 8.95039498029E-02 8.51193384275E-02 8.08908766012E-02 7.68160828592E-02 7.28923689053E-02 6.91170470668E-02 6.54873376695E-02 6.20003763280E-02 5.86532211453E-02 5.54428598189E-02 5.23662166494E-02 4.94201594498E-02 4.66015063526E-02 4.39070325128E-02 4.13334767052E-02 3.88775478120E-02 3.65359311999E-02 3.43052949804E-02 3.21822961513E-02 3.01635866128E-02 2.82458190522E-02 2.64256526909E-02 2.46997588853E-02 2.30648265729E-02 2.15175675545E-02 2.00547216026E-02 1.86730613854E-02 1.73693971963E-02 1.61405814769E-02 1.49835131253E-02 1.38951415765E-02 1.28724706474E-02 1.19125621362E-02 1.10125391683E-02 1.01695892808E-02 9.38096724043E-03 8.64399758867E-03 7.95607691192E-03 7.31467583329E-03 6.71734072586E-03 6.16169514791E-03 5.64544100244E-03 5.16635942439E-03 4.72231140073E-03 4.31123812974E-03 3.93116112707E-03 3.58018208746E-03 3.25648251201E-03 2.95832311195E-03 2.68404300055E-03 2.43205868585E-03 2.20086287726E-03 1.98902311972E-03 1.79518026951E-03 1.61804682596E-03 1.45640513352E-03 1.30910546889E-03 1.17506402727E-03 1.05326082245E-03 9.42737514370E-04 8.42595178016E-04 7.51992026829E-04 6.70141103339E-04 5.96307949221E-04 5.29808266317E-04 4.70005579540E-04 4.16308911850E-04 3.68170480800E-04 3.25083425382E-04 2.86579571154E-04 2.52227240879E-04 2.21629117110E-04 1.94420162445E-04 1.70265602382E-04 1.48858975024E-04 1.29920251153E-04 1.13194027520E-04 9.84477955520E-05 8.54702870872E-05 7.40698981195E-05 6.40731910563E-05 5.53234754496E-05 4.76794667219E-05 4.10140219873E-05 3.52129516890E-05 3.01739054456E-05 2.58053301949E-05 2.20254984795E-05 1.87616044947E-05 1.59489253424E-05 1.35300447917E-05 1.14541367314E-05 9.67630542582E-06 8.15697962725E-06 6.86135758088E-06 5.75889995264E-06 4.82286773536E-06 4.02990222890E-06 3.35964424921E-06 2.79438979153E-06 2.31878715445E-06 1.91961820794E-06 1.58539700830E-06 1.30622518640E-06 1.07360056504E-06 8.80238228797E-07 7.19911847564E-07 5.87313342276E-07 4.77929113491E-07 3.87931182983E-07 3.14081724476E-07 2.53649581908E-07 2.04337491302E-07 1.64218835720E-07 1.31682871350E-07 1.05387466836E-07 8.42162950865E-08 6.72266573022E-08 5.36623833331E-08 4.27097248086E-08 3.38919104292E-08 2.68140041031E-08 2.11498512755E-08 1.66309272048E-08 1.30368410627E-08 1.01872765545E-08 7.93517442770E-09 6.16098480863E-09 4.76783788481E-09 3.67750003238E-09 2.82699935153E-09 2.16581959716E-09 1.65357498227E-09 1.25809030139E-09 9.53821418035E-10 7.20560495360E-10 5.42378534843E-10 4.06764933133E-10 3.03929975910E-10 2.26241557907E-10 1.67772042276E-10 1.23935135934E-10 9.11960391692E-11 6.68409999772E-11 4.87948319084E-11 3.54769977769E-11 2.56885735160E-11 1.85238339041E-11 1.33013866023E-11 9.51075960810E-12 6.77115189331E-12 4.79971545381E-12 3.38727327037E-12 2.37981233837E-12 1.66444152903E-12 1.15878547617E-12 8.03010483045E-13 5.53857123703E-13 3.80195528993E-13 2.59730552222E-13 1.76571076717E-13 1.19445549362E-13 8.03983825725E-14 5.38423859608E-14 3.58734624573E-14 2.37775076770E-14 1.56774371437E-14 1.02818395055E-14 6.70694179202E-15 4.35117752375E-15 2.80729356099E-15 1.80109846762E-15 1.14901352900E-15 7.28819459607E-16 4.59611189727E-16 2.88141181699E-16 1.79569291217E-16 1.11234187263E-16 6.84843064549E-17 4.19041521891E-17 2.54801814955E-17 1.53954807596E-17 9.24261066722E-18 5.51279293011E-18 3.26654636193E-18 1.92269395767E-18 1.12408536854E-18 6.52708665805E-19 3.76385687732E-19 2.15527494020E-19 1.22543380551E-19 6.91760714108E-20 3.87669438173E-20 2.15658781939E-20 1.19078244355E-20 6.52554310725E-21 3.54877633438E-21 1.91503431499E-21 1.02534064839E-21 5.44641405695E-22 2.86985956550E-22 1.49994123590E-22 7.77511818807E-23 3.99681361276E-23 2.03727358567E-23 1.02959688830E-23 5.15846825676E-24 2.56190283876E-24 1.26108680244E-24 6.15204096353E-25 2.97396762588E-25 1.42444696581E-25 6.75925741304E-26 3.17719105285E-26 1.47920261822E-26 6.82024053774E-27 3.11391278809E-27 1.40764875305E-27 6.29954169461E-28 2.79058608520E-28 1.22348326082E-28 5.30836038849E-29 2.27890090568E-29 9.67910832320E-30 4.06660129748E-30 1.68987626291E-30 6.94456852255E-31 2.82190188934E-31 1.13366124262E-31 4.50201694608E-32 1.76705592869E-32 6.85407610912E-33 2.62686839898E-33 9.94610342465E-34 3.71985968545E-34 1.37401639563E-34 5.01165344755E-35 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 7.65095233424E-08 7.84463710536E-08 8.04322502933E-08 8.24684023002E-08 8.45560997354E-08 8.66966474771E-08 8.88913834371E-08 9.11416793963E-08 9.34489418625E-08 9.58146129493E-08 9.82401712776E-08 1.00727132900E-07 1.03277052247E-07 1.05891523102E-07 1.08572179593E-07 1.11320697217E-07 1.14138793887E-07 1.17028231003E-07 1.19990814557E-07 1.23028396259E-07 1.26142874697E-07 1.29336196520E-07 1.32610357656E-07 1.35967404562E-07 1.39409435502E-07 1.42938601854E-07 1.46557109461E-07 1.50267220008E-07 1.54071252434E-07 1.57971584380E-07 1.61970653680E-07 1.66070959881E-07 1.70275065806E-07 1.74585599157E-07 1.79005254155E-07 1.83536793227E-07 1.88183048731E-07 1.92946924726E-07 1.97831398786E-07 2.02839523866E-07 2.07974430203E-07 2.13239327280E-07 2.18637505825E-07 2.24172339874E-07 2.29847288875E-07 2.35665899852E-07 2.41631809624E-07 2.47748747076E-07 2.54020535489E-07 2.60451094931E-07 2.67044444708E-07 2.73804705874E-07 2.80736103807E-07 2.87842970853E-07 2.95129749030E-07 3.02600992808E-07 3.10261371951E-07 3.18115674440E-07 3.26168809464E-07 3.34425810490E-07 3.42891838404E-07 3.51572184744E-07 3.60472275002E-07 3.69597672016E-07 3.78954079449E-07 3.88547345352E-07 3.98383465820E-07 4.08468588739E-07 4.18809017631E-07 4.29411215590E-07 4.40281809325E-07 4.51427593299E-07 4.62855533979E-07 4.74572774188E-07 4.86586637570E-07 4.98904633167E-07 5.11534460114E-07 5.24484012448E-07 5.37761384045E-07 5.51374873680E-07 5.65332990209E-07 5.79644457891E-07 5.94318221841E-07 6.09363453618E-07 6.24789556962E-07 6.40606173667E-07 6.56823189611E-07 6.73450740932E-07 6.90499220366E-07 7.07979283740E-07 7.25901856634E-07 7.44278141211E-07 7.63119623215E-07 7.82438079154E-07 8.02245583656E-07 8.22554517021E-07 8.43377572955E-07 8.64727766505E-07 8.86618442196E-07 9.09063282368E-07 9.32076315730E-07 9.55671926130E-07 9.79864861539E-07 1.00467024328E-06 1.03010357545E-06 1.05618075468E-06 1.08291807996E-06 1.11033226295E-06 1.13844043833E-06 1.16726017454E-06 1.19680948478E-06 1.22710683826E-06 1.25817117173E-06 1.29002190130E-06 1.32267893464E-06 1.35616268335E-06 1.39049407576E-06 1.42569457000E-06 1.46178616742E-06 1.49879142630E-06 1.53673347603E-06 1.57563603148E-06 1.61552340788E-06 1.65642053598E-06 1.69835297767E-06 1.74134694194E-06 1.78542930123E-06 1.83062760827E-06 1.87697011330E-06 1.92448578168E-06 1.97320431205E-06 2.02315615485E-06 2.07437253139E-06 2.12688545332E-06 2.18072774268E-06 2.23593305237E-06 2.29253588725E-06 2.35057162561E-06 2.41007654138E-06 2.47108782675E-06 2.53364361540E-06 2.59778300638E-06 2.66354608852E-06 2.73097396548E-06 2.80010878147E-06 2.87099374755E-06 2.94367316867E-06 3.01819247135E-06 3.09459823206E-06 3.17293820635E-06 3.25326135869E-06 3.33561789308E-06 3.42005928439E-06 3.50663831059E-06 3.59540908570E-06 3.68642709361E-06 3.77974922278E-06 3.87543380176E-06 3.97354063570E-06 4.07413104367E-06 4.17726789702E-06 4.28301565864E-06 4.39144042331E-06 4.50260995895E-06 4.61659374899E-06 4.73346303582E-06 4.85329086527E-06 4.97615213233E-06 5.10212362789E-06 5.23128408676E-06 5.36371423690E-06 5.49949684985E-06 5.63871679246E-06 5.78146107993E-06 5.92781893021E-06 6.07788181975E-06 6.23174354065E-06 6.38950025931E-06 6.55125057652E-06 6.71709558909E-06 6.88713895299E-06 7.06148694821E-06 7.24024854510E-06 7.42353547254E-06 7.61146228772E-06 7.80414644775E-06 8.00170838308E-06 8.20427157275E-06 8.41196262156E-06 8.62491133920E-06 8.84325082135E-06 9.06711753290E-06 9.29665139321E-06 9.53199586354E-06 9.77329803675E-06 1.00207087292E-05 1.02743825749E-05 1.05344781223E-05 1.08011579335E-05 1.10745886854E-05 1.13549412742E-05 1.16423909221E-05 1.19371172870E-05 1.22393045743E-05 1.25491416526E-05 1.28668221712E-05 1.31925446815E-05 1.35265127609E-05 1.38689351399E-05 1.42200258329E-05 1.45800042717E-05 1.49490954424E-05 1.53275300266E-05 1.57155445449E-05 1.61133815052E-05 1.65212895539E-05 1.69395236314E-05 1.73683451315E-05 1.78080220646E-05 1.82588292253E-05 1.87210483639E-05 1.91949683628E-05 1.96808854167E-05 2.01791032176E-05 2.06899331451E-05 2.12136944604E-05 2.17507145061E-05 2.23013289105E-05 2.28658817975E-05 2.34447260017E-05 2.40382232887E-05 2.46467445809E-05 2.52706701899E-05 2.59103900536E-05 2.65663039798E-05 2.72388218965E-05 2.79283641075E-05 2.86353615551E-05 2.93602560898E-05 3.01035007456E-05 3.08655600237E-05 3.16469101822E-05 3.24480395343E-05 3.32694487524E-05 3.41116511818E-05 3.49751731611E-05 3.58605543506E-05 3.67683480701E-05 3.76991216441E-05 3.86534567565E-05 3.96319498136E-05 4.06352123172E-05 4.16638712459E-05 4.27185694475E-05 4.37999660399E-05 4.49087368233E-05 4.60455747020E-05 4.72111901174E-05 4.84063114917E-05 4.96316856826E-05 5.08880784505E-05 5.21762749358E-05 5.34970801503E-05 5.48513194790E-05 5.62398391963E-05 5.76635069944E-05 5.91232125246E-05 6.06198679540E-05 6.21544085339E-05 6.37277931849E-05 6.53410050950E-05 6.69950523340E-05 6.86909684825E-05 7.04298132780E-05 7.22126732758E-05 7.40406625281E-05 7.59149232792E-05 7.78366266787E-05 7.98069735129E-05 8.18271949542E-05 8.38985533302E-05 8.60223429110E-05 8.81998907179E-05 9.04325573514E-05 9.27217378406E-05 9.50688625141E-05 9.74753978926E-05 9.99428476043E-05 1.02472753324E-04 1.05066695733E-04 1.07726295510E-04 1.10453214337E-04 1.13249155942E-04 1.16115867157E-04 1.19055139011E-04 1.22068807847E-04 1.25158756468E-04 1.28326915311E-04 1.31575263651E-04 1.34905830839E-04 1.38320697561E-04 1.41821997146E-04 1.45411916887E-04 1.49092699410E-04 1.52866644075E-04 1.56736108405E-04 1.60703509557E-04 1.64771325835E-04 1.68942098227E-04 1.73218431996E-04 1.77602998302E-04 1.82098535866E-04 1.86707852679E-04 1.91433827754E-04 1.96279412916E-04 2.01247634645E-04 2.06341595964E-04 2.11564478367E-04 2.16919543809E-04 2.22410136730E-04 2.28039686148E-04 2.33811707787E-04 2.39729806272E-04 2.45797677375E-04 2.52019110312E-04 2.58397990108E-04 2.64938300013E-04 2.71644123983E-04 2.78519649226E-04 2.85569168802E-04 2.92797084303E-04 3.00207908587E-04 3.07806268589E-04 3.15596908201E-04 3.23584691220E-04 3.31774604381E-04 3.40171760450E-04 3.48781401414E-04 3.57608901733E-04 3.66659771686E-04 3.75939660797E-04 3.85454361346E-04 3.95209811970E-04 4.05212101357E-04 4.15467472022E-04 4.25982324194E-04 4.36763219788E-04 4.47816886481E-04 4.59150221890E-04 4.70770297856E-04 4.82684364837E-04 4.94899856401E-04 5.07424393848E-04 5.20265790934E-04 5.33432058721E-04 5.46931410545E-04 5.60772267107E-04 5.74963261702E-04 5.89513245563E-04 6.04431293349E-04 6.19726708770E-04 6.35409030351E-04 6.51488037336E-04 6.67973755749E-04 6.84876464595E-04 7.02206702227E-04 7.19975272865E-04 7.38193253280E-04 7.56871999643E-04 7.76023154549E-04 7.95658654212E-04 8.15790735841E-04 8.36431945200E-04 8.57595144355E-04 8.79293519617E-04 9.01540589679E-04 9.24350213958E-04 9.47736601143E-04 9.71714317953E-04 9.96298298123E-04 1.02150385160E-03 1.04734667397E-03 1.07384285612E-03 1.10100889417E-03 1.12886169957E-03 1.15741860955E-03 1.18669739774E-03 1.21671628512E-03 1.24749395119E-03 1.27904954546E-03 1.31140269915E-03 1.34457353731E-03 1.37858269110E-03 1.41345131042E-03 1.44920107694E-03 1.48585421726E-03 1.52343351662E-03 1.56196233276E-03 1.60146461020E-03 1.64196489489E-03 1.68348834919E-03 1.72606076719E-03 1.76970859047E-03 1.81445892419E-03 1.86033955358E-03 1.90737896088E-03 1.95560634263E-03 2.00505162742E-03 2.05574549407E-03 2.10771939019E-03 2.16100555134E-03 2.21563702046E-03 2.27164766791E-03 2.32907221197E-03 2.38794623980E-03 2.44830622889E-03 2.51018956913E-03 2.57363458530E-03 2.63868056011E-03 2.70536775792E-03 2.77373744884E-03 2.84383193354E-03 2.91569456861E-03 2.98936979256E-03 3.06490315232E-03 3.14234133056E-03 3.22173217350E-03 3.30312471943E-03 3.38656922794E-03 3.47211720980E-03 3.55982145753E-03 3.64973607675E-03 3.74191651821E-03 3.83641961058E-03 3.93330359404E-03 4.03262815459E-03 4.13445445927E-03 4.23884519201E-03 4.34586459055E-03 4.45557848400E-03 4.56805433137E-03 4.68336126100E-03 4.80157011082E-03 4.92275346960E-03 5.04698571911E-03 5.17434307719E-03 5.30490364192E-03 5.43874743666E-03 5.57595645614E-03 5.71661471365E-03 5.86080828919E-03 6.00862537874E-03 6.16015634461E-03 6.31549376690E-03 6.47473249615E-03 6.63796970700E-03 6.80530495320E-03 6.97684022365E-03 7.15267999978E-03 7.33293131409E-03 7.51770380996E-03 7.70710980275E-03 7.90126434213E-03 8.10028527586E-03 8.30429331474E-03 8.51341209900E-03 8.72776826610E-03 8.94749151982E-03 9.17271470083E-03 9.40357385871E-03 9.64020832532E-03 9.88276078976E-03 1.01313773747E-02 1.03862077144E-02 1.06474050338E-02 1.09151262298E-02 1.11895319537E-02 1.14707866951E-02 1.17590588673E-02 1.20545208953E-02 1.23573493038E-02 1.26677248079E-02 1.29858324054E-02 1.33118614701E-02 1.36460058473E-02 1.39884639510E-02 1.43394388617E-02 1.46991384277E-02 1.50677753661E-02 1.54455673668E-02 1.58327371978E-02 1.62295128113E-02 1.66361274531E-02 1.70528197717E-02 1.74798339309E-02 1.79174197219E-02 1.83658326793E-02 1.88253341965E-02 1.92961916438E-02 1.97786784880E-02 2.02730744128E-02 2.07796654411E-02 2.12987440585E-02 2.18306093382E-02 2.23755670669E-02 2.29339298725E-02 2.35060173519E-02 2.40921562012E-02 2.46926803455E-02 2.53079310708E-02 2.59382571558E-02 2.65840150052E-02 2.72455687830E-02 2.79232905462E-02 2.86175603799E-02 2.93287665313E-02 3.00573055444E-02 3.08035823954E-02 3.15680106261E-02 3.23510124789E-02 3.31530190295E-02 3.39744703202E-02 3.48158154913E-02 3.56775129119E-02 3.65600303086E-02 3.74638448932E-02 3.83894434880E-02 3.93373226492E-02 4.03079887874E-02 4.13019582851E-02 4.23197576119E-02 4.33619234352E-02 4.44290027272E-02 4.55215528681E-02 4.66401417439E-02 4.77853478394E-02 4.89577603253E-02 5.01579791398E-02 5.13866150625E-02 5.26442897824E-02 5.39316359569E-02 5.52492972636E-02 5.65979284425E-02 5.79781953285E-02 5.93907748745E-02 6.08363551621E-02 6.23156354020E-02 6.38293259209E-02 6.53781481358E-02 6.69628345131E-02 6.85841285139E-02 7.02427845224E-02 7.19395677574E-02 7.36752541664E-02 7.54506303004E-02 7.72664931681E-02 7.91236500697E-02 8.10229184077E-02 8.29651254748E-02 8.49511082157E-02 8.69817129641E-02 8.90577951517E-02 9.11802189874E-02 9.33498571079E-02 9.55675901946E-02 9.78343065590E-02 1.00150901691E-01 1.02518277774E-01 1.04937343157E-01 1.07409011791E-01 1.09934202623E-01 1.12513838943E-01 1.15148847692E-01 1.17840158716E-01 1.20588703980E-01 1.23395416717E-01 1.26261230540E-01 1.29187078489E-01 1.32173892024E-01 1.35222599959E-01 1.38334127338E-01 1.41509394239E-01 1.44749314528E-01 1.48054794532E-01 1.51426731651E-01 1.54866012897E-01 1.58373513361E-01 1.61950094603E-01 1.65596602972E-01 1.69313867838E-01 1.73102699753E-01 1.76963888528E-01 1.80898201224E-01 1.84906380065E-01 1.88989140261E-01 1.93147167745E-01 1.97381116826E-01 2.01691607754E-01 2.06079224193E-01 2.10544510610E-01 2.15087969578E-01 2.19710058982E-01 2.24411189153E-01 2.29191719900E-01 2.34051957477E-01 2.38992151450E-01 2.44012491497E-01 2.49113104125E-01 2.54294049324E-01 2.59555317135E-01 2.64896824173E-01 2.70318410082E-01 2.75819833934E-01 2.81400770592E-01 2.87060807030E-01 2.92799438620E-01 2.98616065405E-01 3.04509988361E-01 3.10480405654E-01 3.16526408920E-01 3.22646979559E-01 3.28840985084E-01 3.35107175512E-01 3.41444179841E-01 3.47850502601E-01 3.54324520530E-01 3.60864479368E-01 3.67468490804E-01 3.74134529599E-01 3.80860430895E-01 3.87643887759E-01 3.94482448961E-01 4.01373517030E-01 4.08314346618E-01 4.15302043183E-01 4.22333562046E-01 4.29405707831E-01 4.36515134331E-01 4.43658344836E-01 4.50831692943E-01 4.58031383890E-01 4.65253476447E-01 4.72493885393E-01 4.79748384618E-01 4.87012610869E-01 4.94282068189E-01 5.01552133063E-01 5.08818060304E-01 5.16074989713E-01 5.23317953516E-01 5.30541884624E-01 5.37741625707E-01 5.44911939117E-01 5.52047517649E-01 5.59142996158E-01 5.66192964019E-01 5.73191978423E-01 5.80134578498E-01 5.87015300225E-01 5.93828692114E-01 6.00569331610E-01 6.07231842166E-01 6.13810910932E-01 6.20301306982E-01 6.26697899999E-01 6.32995679319E-01 6.39189773243E-01 6.45275468476E-01 6.51248229581E-01 6.57103718297E-01 6.62837812565E-01 6.68446625104E-01 6.73926521340E-01 6.79274136523E-01 6.84486391816E-01 6.89560509153E-01 6.94494024659E-01 6.99284800400E-01 7.03931034257E-01 7.08431267686E-01 7.12784391146E-01 7.16989646991E-01 7.21046629594E-01 7.24955282529E-01 7.28715892610E-01 7.32329080631E-01 7.35795788666E-01 7.39117263810E-01 7.42295038274E-01 7.45330905785E-01 7.48226894281E-01 7.50985234907E-01 7.53608327404E-01 7.56098701974E-01 7.58458977792E-01 7.60691818355E-01 7.62799883885E-01 7.64785781083E-01 7.66652010505E-01 7.68400911895E-01 7.70034607789E-01 7.71554945722E-01 7.72963439329E-01 7.74261208615E-01 7.75448919578E-01 7.76526723307E-01 7.77494194547E-01 7.78350269594E-01 7.79093183182E-01 7.79720403853E-01 7.80228567026E-01 7.80613404737E-01 7.80869670708E-01 7.80991059093E-01 7.80970114902E-01 7.80798133757E-01 7.80465048314E-01 7.79961334580E-01 7.79284593847E-01 7.78434444704E-01 7.77410634604E-01 7.76213040242E-01 7.74841667762E-01 7.73296652776E-01 7.71578260209E-01 7.69686883966E-01 7.67623046442E-01 7.65387397860E-01 7.62980715453E-01 7.60403902500E-01 7.57657987205E-01 7.54744121439E-01 7.51663579352E-01 7.48417755844E-01 7.45008164922E-01 7.41436437935E-01 7.37704321699E-01 7.33813676517E-01 7.29766474098E-01 7.25564795392E-01 7.21210828325E-01 7.16706865468E-01 7.12055301623E-01 7.07258631344E-01 7.02319446393E-01 6.97240433141E-01 6.92024369914E-01 6.86674124291E-01 6.81192650357E-01 6.75582985917E-01 6.69848249671E-01 6.63991638353E-01 6.58016423837E-01 6.51925950210E-01 6.45723630817E-01 6.39412945277E-01 6.32997436456E-01 6.26478736826E-01 6.19862452406E-01 6.13152297058E-01 6.06352035426E-01 5.99465479721E-01 5.92496486465E-01 5.85448953175E-01 5.78326814993E-01 5.71134041252E-01 5.63874631981E-01 5.56552614328E-01 5.49172038915E-01 5.41736976115E-01 5.34251512236E-01 5.26719745632E-01 5.19145782720E-01 5.11533733919E-01 5.03887709493E-01 4.96211815330E-01 4.88510148632E-01 4.80786793549E-01 4.73045816746E-01 4.65291262930E-01 4.57527150342E-01 4.49757466230E-01 4.41986162327E-01 4.34217150348E-01 4.26454297522E-01 4.18701422196E-01 4.10962289519E-01 4.03240607237E-01 3.95540021625E-01 3.87864113574E-01 3.80216394858E-01 3.72600304608E-01 3.65019206007E-01 3.57476383230E-01 3.49975038640E-01 3.42518290267E-01 3.35109169567E-01 3.27750619473E-01 3.20445492759E-01 3.13196550697E-01 3.06006462022E-01 2.98877802200E-01 2.91813052979E-01 2.84814602239E-01 2.77884744096E-01 2.71025679275E-01 2.64239515714E-01 2.57528269386E-01 2.50893865323E-01 2.44338138805E-01 2.37862836708E-01 2.31469618961E-01 2.25160060118E-01 2.18935650982E-01 2.12797800288E-01 2.06747836396E-01 2.00787008981E-01 1.94916490686E-01 1.89137378730E-01 1.83450696433E-01 1.77857394643E-01 1.72358353064E-01 1.66954381440E-01 1.61646220614E-01 1.56434543429E-01 1.51319955481E-01 1.46302995707E-01 1.41384136827E-01 1.36563785617E-01 1.31842283052E-01 1.27219904294E-01 1.22696858571E-01 1.18273288937E-01 1.13949271942E-01 1.09724817237E-01 1.05599867122E-01 1.01574296073E-01 9.76479102639E-02 9.38204471164E-02 9.00915748901E-02 8.64608923501E-02 8.29279285275E-02 7.94921425973E-02 7.61529238943E-02 7.29095920855E-02 6.97613975145E-02 6.67075217337E-02 6.37470782337E-02 6.08791133794E-02 5.81026075588E-02 5.54164765479E-02 5.28195730908E-02 5.03106886949E-02 4.78885556346E-02 4.55518491590E-02 4.32991898916E-02 4.11291464142E-02 3.90402380209E-02 3.70309376281E-02 3.50996748264E-02 3.32448390577E-02 3.14647829009E-02 2.97578254485E-02 2.81222557579E-02 2.65563363571E-02 2.50583067905E-02 2.36263871846E-02 2.22587818177E-02 2.09536826776E-02 1.97092729901E-02 1.85237307049E-02 1.73952319225E-02 1.63219542502E-02 1.53020800738E-02 1.43337997337E-02 1.34153145949E-02 1.25448400003E-02 1.17206081003E-02 1.09408705500E-02 1.02039010671E-02 9.50799784633E-03 8.85148582474E-03 8.23271879403E-03 7.65008135814E-03 7.10199073346E-03 6.58689839108E-03 6.10329154068E-03 5.64969445684E-03 5.22466964899E-03 4.82681887696E-03 4.45478401493E-03 4.10724776680E-03 3.78293423689E-03 3.48060936015E-03 3.19908119656E-03 2.93720009489E-03 2.69385873116E-03 2.46799202762E-03 2.25857695821E-03 2.06463224670E-03 1.88521796400E-03 1.71943503101E-03 1.56642463372E-03 1.42536755723E-03 1.29548344529E-03 1.17602999217E-03 1.06630207325E-03 9.65630821096E-04 8.73382653288E-04 7.88958258316E-04 7.11791545714E-04 6.41348566310E-04 5.77126408356E-04 5.18652075013E-04 4.65481348485E-04 4.17197645783E-04 3.73410870869E-04 3.33756267630E-04 2.97893277902E-04 2.65504408183E-04 2.36294891059E-04 2.09997777283E-04 1.86357735994E-04 1.65137539256E-04 1.46117919135E-04 1.29096524255E-04 1.13886911060E-04 1.00317570927E-04 8.82309940800E-05 7.74827711293E-05 6.79407328532E-05 5.94841287496E-05 5.20028447159E-05 4.53966601457E-05 3.95745446356E-05 3.44539944535E-05 2.99596273642E-05 2.60163742941E-05 2.25637573800E-05 1.95481333882E-05 1.69213449552E-05 1.46403041498E-05 1.26666100912E-05 1.09382264882E-05 9.42755877051E-06 8.10973947197E-06 6.96240419749E-06 5.96548093385E-06 5.10099245428E-06 4.35287145157E-06 3.70678807861E-06 3.14998946583E-06 2.67115078192E-06 2.26023737256E-06 1.90837749008E-06 1.60774511189E-06 1.35145233423E-06 1.13345082215E-06 9.48441794777E-07 7.91794027524E-07 6.59469358598E-07 5.47955196610E-07 4.54203537925E-07 3.75576016995E-07 3.09794529390E-07 2.54896985587E-07 2.09197773191E-07 1.71252526006E-07 1.39826819817E-07 1.13868436703E-07 9.24828618356E-08 7.49116988534E-08 6.05137118314E-08 4.87482233468E-08 3.91606191024E-08 3.13697298162E-08 2.50568805312E-08 1.99564160589E-08 1.58475288683E-08 1.25472323315E-08 9.90433779590E-09 7.79430846832E-09 6.11487656234E-09 4.78232258791E-09 3.72832707885E-09 2.89731548747E-09 2.24422646515E-09 1.73264233990E-09 1.33322834327E-09 1.02243408226E-09 7.81416951610E-10 5.95152691275E-10 4.51703168406E-10 3.41615756971E-10 2.57432452458E-10 1.93290145425E-10 1.44596333322E-10 1.07767020619E-10 8.00156850785E-11 5.91840125369E-11 4.36066598153E-11 3.20036287877E-11 2.33949540413E-11 1.70333492586E-11 1.23512476736E-11 8.91933135375E-12 6.41419176710E-12 4.59321693938E-12 3.27517316559E-12 2.32525449671E-12 1.64362207935E-12 1.15665734993E-12 8.10316142866E-13 5.65101813063E-13 3.92280273502E-13 2.71043253820E-13 1.86392137053E-13 1.27566779962E-13 8.68845310816E-14 5.88864951659E-14 3.97128000267E-14 2.66476988761E-14 1.77899946759E-14 1.18154694901E-14 7.80651166605E-15 5.13056695316E-15 3.35387687252E-15 2.18058493736E-15 1.40998145144E-15 9.06647102088E-16 5.79718624792E-16 3.68569636710E-16 2.32977522693E-16 1.46409449678E-16 9.14645628538E-17 5.67979862892E-17 3.50571477448E-17 2.15055530919E-17 1.31105667592E-17 7.94246155245E-18 4.78098241388E-18 2.85938525530E-18 1.69897268305E-18 1.00281902344E-18 5.87956202987E-19 3.42386772877E-19 1.98016533568E-19 1.13726275976E-19 6.48570239280E-20 3.67241298110E-20 2.06445438353E-20 1.15206992174E-20 6.38163775345E-21 3.50852609795E-21 1.91432428032E-21 1.03648495387E-21 5.56833219364E-22 2.96796874982E-22 1.56935950513E-22 8.23134541032E-23 4.28213408756E-23 2.20925567987E-23 1.13027116108E-23 5.73355995793E-24 2.88353106639E-24 1.43759452558E-24 7.10414844717E-25 3.47939095892E-25 1.68873364156E-25 8.12150139187E-26 3.86971190856E-26 1.82657436023E-26 8.54006397031E-27 3.95455772402E-27 1.81340610847E-27 8.23377997596E-28 3.70131857428E-28 1.64706986017E-28 7.25455117412E-29 3.16224843618E-29 1.36399118252E-29 5.82102940020E-30 2.45755059860E-30 1.02626767373E-30 4.23852407630E-31 7.65081586620E-08 7.84449718261E-08 8.04308156442E-08 8.24669313328E-08 8.45545915302E-08 8.66951010915E-08 8.88897979045E-08 9.11400537256E-08 9.34472750377E-08 9.58129039285E-08 9.82384189926E-08 1.00725336255E-07 1.03275210121E-07 1.05889634342E-07 1.08570243018E-07 1.11318711617E-07 1.14136758021E-07 1.17026143598E-07 1.19988674309E-07 1.23026201831E-07 1.26140624716E-07 1.29333889580E-07 1.32607992316E-07 1.35964979343E-07 1.39406948887E-07 1.42936052289E-07 1.46554495354E-07 1.50264539725E-07 1.54068504298E-07 1.57968766674E-07 1.61967764643E-07 1.66067997707E-07 1.70272028644E-07 1.74582485108E-07 1.79002061273E-07 1.83533519517E-07 1.88179692146E-07 1.92943483167E-07 1.97827870103E-07 2.02835905853E-07 2.07970720600E-07 2.13235523767E-07 2.18633606025E-07 2.24168341349E-07 2.29843189125E-07 2.35661696316E-07 2.41627499674E-07 2.47744328018E-07 2.54016004561E-07 2.60446449302E-07 2.67039681473E-07 2.73799822055E-07 2.80731096353E-07 2.87837836634E-07 2.95124484837E-07 3.02595595349E-07 3.10255837853E-07 3.18110000245E-07 3.26162991625E-07 3.34419845370E-07 3.42885722276E-07 3.51565913784E-07 3.60465845290E-07 3.69591079533E-07 3.78947320075E-07 3.88540414862E-07 3.98376359883E-07 4.08461302913E-07 4.18801547362E-07 4.29403556208E-07 4.40273956043E-07 4.51419541208E-07 4.62847278047E-07 4.74564309254E-07 4.86577958344E-07 4.98895734223E-07 5.11525335889E-07 5.24474657241E-07 5.37751792008E-07 5.51365038817E-07 5.65322906374E-07 5.79634118780E-07 5.94307620992E-07 6.09352584406E-07 6.24778412593E-07 6.40594747176E-07 6.56811473855E-07 6.73438728589E-07 6.90486903927E-07 7.07966655507E-07 7.25888908715E-07 7.44264865512E-07 7.63106011440E-07 7.82424122793E-07 8.02231273987E-07 8.22539845100E-07 8.43362529611E-07 8.64712342336E-07 8.86602627562E-07 9.09047067383E-07 9.32059690261E-07 9.55654879784E-07 9.79847383661E-07 1.00465232294E-06 1.03008520147E-06 1.05616191555E-06 1.08289876392E-06 1.11031245792E-06 1.13842013193E-06 1.16723935408E-06 1.19678813725E-06 1.22708495032E-06 1.25814872968E-06 1.28999889114E-06 1.32265534197E-06 1.35613849343E-06 1.39046927347E-06 1.42566913984E-06 1.46176009349E-06 1.49876469231E-06 1.53670606526E-06 1.57560792681E-06 1.61549459173E-06 1.65639099035E-06 1.69832268410E-06 1.74131588148E-06 1.78539745447E-06 1.83059495531E-06 1.87693663373E-06 1.92445145457E-06 1.97316911595E-06 2.02312006776E-06 2.07433553076E-06 2.12684751602E-06 2.18068884499E-06 2.23589316999E-06 2.29249499524E-06 2.35052969842E-06 2.41003355281E-06 2.47104374992E-06 2.53359842276E-06 2.59773666969E-06 2.66349857882E-06 2.73092525308E-06 2.80005883591E-06 2.87094253762E-06 2.94362066236E-06 3.01813863584E-06 3.09454303371E-06 3.17288161066E-06 3.25320333029E-06 3.33555839569E-06 3.41999828083E-06 3.50657576273E-06 3.59534495444E-06 3.68636133887E-06 3.77968180347E-06 3.87536467574E-06 3.97346975976E-06 4.07405837351E-06 4.17719338722E-06 4.28293926264E-06 4.39136209336E-06 4.50252964608E-06 4.61651140301E-06 4.73337860526E-06 4.85320429737E-06 4.97606337298E-06 5.10203262161E-06 5.23119077667E-06 5.36361856469E-06 5.49939875572E-06 5.63861621509E-06 5.78135795647E-06 5.92771319621E-06 6.07777340911E-06 6.23163238562E-06 6.38938629042E-06 6.55113372254E-06 6.71697577698E-06 6.88701610787E-06 7.06136099330E-06 7.24011940169E-06 7.42340305990E-06 7.61132652309E-06 7.80400724629E-06 8.00156565779E-06 8.20412523442E-06 8.41181257873E-06 8.62475749809E-06 8.84309308581E-06 9.06695580436E-06 9.29648557058E-06 9.53182584318E-06 9.77312371240E-06 1.00205299919E-05 1.02741993129E-05 1.05342902212E-05 1.08009652758E-05 1.10743911506E-05 1.13547387389E-05 1.16421832598E-05 1.19369043678E-05 1.22390862653E-05 1.25489178172E-05 1.28665926695E-05 1.31923093702E-05 1.35262714928E-05 1.38686877643E-05 1.42197721951E-05 1.45797442132E-05 1.49488288008E-05 1.53272566352E-05 1.57152642328E-05 1.61130940972E-05 1.65209948704E-05 1.69392214883E-05 1.73680353399E-05 1.78077044309E-05 1.82585035510E-05 1.87207144455E-05 1.91946259916E-05 1.96805343787E-05 2.01787432935E-05 2.06895641100E-05 2.12133160836E-05 2.17503265510E-05 2.23009311348E-05 2.28654739527E-05 2.34443078328E-05 2.40377945343E-05 2.46463049733E-05 2.52702194542E-05 2.59099279081E-05 2.65658301358E-05 2.72383360579E-05 2.79278659706E-05 2.86348508087E-05 2.93597324146E-05 3.01029638145E-05 3.08650095011E-05 3.16463457241E-05 3.24474607879E-05 3.32688553562E-05 3.41110427649E-05 3.49745493433E-05 3.58599147421E-05 3.67676922712E-05 3.76984492451E-05 3.86527673372E-05 3.96312429432E-05 4.06344875540E-05 4.16631281371E-05 4.27178075286E-05 4.37991848350E-05 4.49079358442E-05 4.60447534482E-05 4.72103480758E-05 4.84054481361E-05 4.96308004736E-05 5.08871708350E-05 5.21753443468E-05 5.34961260062E-05 5.48503411838E-05 5.62388361388E-05 5.76624785477E-05 5.91221580464E-05 6.06187867853E-05 6.21532999993E-05 6.37266565918E-05 6.53398397334E-05 6.69938574757E-05 6.86897433812E-05 7.04285571682E-05 7.22113853729E-05 7.40393420275E-05 7.59135693559E-05 7.78352384869E-05 7.98055501855E-05 8.18257356021E-05 8.38970570417E-05 8.60208087514E-05 8.81983177290E-05 9.04309445505E-05 9.27200842204E-05 9.50671670417E-05 9.74736595089E-05 9.99410652236E-05 1.02470925833E-04 1.05064821990E-04 1.07724374345E-04 1.10451244551E-04 1.13247136304E-04 1.16113796405E-04 1.19053015852E-04 1.22066630956E-04 1.25156524485E-04 1.28324626842E-04 1.31572917268E-04 1.34903425075E-04 1.38318230915E-04 1.41819468077E-04 1.45409323816E-04 1.49090040719E-04 1.52863918103E-04 1.56733313450E-04 1.60700643874E-04 1.64768387635E-04 1.68939085676E-04 1.73215343213E-04 1.77599831358E-04 1.82095288785E-04 1.86704523435E-04 1.91430414267E-04 1.96275913056E-04 2.01244046228E-04 2.06337916750E-04 2.11560706060E-04 2.16915676054E-04 2.22406171114E-04 2.28035620195E-04 2.33807538961E-04 2.39725531972E-04 2.45793294933E-04 2.52014616994E-04 2.58393383110E-04 2.64933576461E-04 2.71639280931E-04 2.78514683652E-04 2.85564077609E-04 2.92791864314E-04 3.00202556547E-04 3.07800781160E-04 3.15591281960E-04 3.23578922659E-04 3.31768689902E-04 3.40165696366E-04 3.48775183943E-04 3.57602526999E-04 3.66653235714E-04 3.75932959512E-04 3.85447490572E-04 3.95202767424E-04 4.05204878647E-04 4.15460066648E-04 4.25974731541E-04 4.36755435123E-04 4.47808904954E-04 4.59142038529E-04 4.70761907563E-04 4.82675762383E-04 4.94891036430E-04 5.07415350865E-04 5.20256519309E-04 5.33422552678E-04 5.46921664165E-04 5.60762274324E-04 5.74953016293E-04 5.89502741150E-04 6.04420523395E-04 6.19715666572E-04 6.35397709038E-04 6.51476429863E-04 6.67961854894E-04 6.84864262955E-04 7.02194192213E-04 7.19962446696E-04 7.38180102981E-04 7.56858517037E-04 7.76009331254E-04 7.95644481636E-04 8.15776205175E-04 8.36417047414E-04 8.57579870193E-04 8.79277859590E-04 9.01524534060E-04 9.24333752775E-04 9.47719724175E-04 9.71697014723E-04 9.96280557889E-04 1.02148566335E-03 1.04732802642E-03 1.07382373770E-03 1.10098929302E-03 1.12884160354E-03 1.15739800618E-03 1.18667627426E-03 1.21669462843E-03 1.24747174787E-03 1.27902678175E-03 1.31137936097E-03 1.34454961020E-03 1.37855816023E-03 1.41342616063E-03 1.44917529265E-03 1.48582778254E-03 1.52340641511E-03 1.56193454770E-03 1.60143612441E-03 1.64193569078E-03 1.68345840872E-03 1.72603007186E-03 1.76967712134E-03 1.81442666182E-03 1.86030647808E-03 1.90734505184E-03 1.95557157915E-03 2.00501598807E-03 2.05570895688E-03 2.10768193267E-03 2.16096715042E-03 2.21559765251E-03 2.27160730871E-03 2.32903083670E-03 2.38790382302E-03 2.44826274455E-03 2.51014499051E-03 2.57358888503E-03 2.63863371016E-03 2.70531972955E-03 2.77368821260E-03 2.84378145927E-03 2.91564282540E-03 2.98931674872E-03 3.06484877541E-03 3.14228558734E-03 3.22167502989E-03 3.30306614054E-03 3.38650917802E-03 3.47205565220E-03 3.55975835474E-03 3.64967139032E-03 3.74185020875E-03 3.83635163775E-03 3.93323391650E-03 4.03255673003E-03 4.13438124430E-03 4.23877014223E-03 4.34578766046E-03 4.45549962699E-03 4.56797349972E-03 4.68327840582E-03 4.80148518206E-03 4.92266641598E-03 5.04689648811E-03 5.17425161506E-03 5.30480989358E-03 5.43865134573E-03 5.57585796488E-03 5.71651376295E-03 5.86070481851E-03 6.00851932610E-03 6.16004764655E-03 6.31538235848E-03 6.47461831085E-03 6.63785267675E-03 6.80518500829E-03 6.97671729276E-03 7.15255400988E-03 7.33280219046E-03 7.51757147610E-03 7.70697418037E-03 7.90112535113E-03 8.10014283425E-03 8.30414733863E-03 8.51326250256E-03 8.72761496149E-03 8.94733441720E-03 9.17255370827E-03 9.40340888217E-03 9.64003926861E-03 9.88258755448E-03 1.01311998602E-02 1.03860258178E-02 1.06472186498E-02 1.09149352508E-02 1.11893362697E-02 1.14705861934E-02 1.17588534331E-02 1.20543104109E-02 1.23571336489E-02 1.26675038597E-02 1.29856060383E-02 1.33116295559E-02 1.36457682548E-02 1.39882205462E-02 1.43391895078E-02 1.46988829848E-02 1.50675136914E-02 1.54452993145E-02 1.58324626188E-02 1.62292315537E-02 1.66358393614E-02 1.70525246876E-02 1.74795316924E-02 1.79171101640E-02 1.83655156335E-02 1.88250094907E-02 1.92958591027E-02 1.97783379326E-02 2.02727256607E-02 2.07793083062E-02 2.12983783511E-02 2.18302348648E-02 2.23751836306E-02 2.29335372722E-02 2.35056153832E-02 2.40917446554E-02 2.46922590104E-02 2.53074997302E-02 2.59378155896E-02 2.65835629895E-02 2.72451060897E-02 2.79228169436E-02 2.86170756320E-02 2.93282703982E-02 3.00567977825E-02 3.08030627568E-02 3.15674788591E-02 3.23504683277E-02 3.31524622345E-02 3.39739006178E-02 3.48152326142E-02 3.56769165886E-02 3.65594202640E-02 3.74632208484E-02 3.83888051606E-02 3.93366697529E-02 4.03073210322E-02 4.13012753780E-02 4.23190592561E-02 4.33612093308E-02 4.44282725712E-02 4.55208063543E-02 4.66393785634E-02 4.77845676804E-02 4.89569628735E-02 5.01571640786E-02 5.13857820730E-02 5.26434385438E-02 5.39307661466E-02 5.52484085577E-02 5.65970205157E-02 5.79772678548E-02 5.93898275270E-02 6.08353876139E-02 6.23146473261E-02 6.38283169910E-02 6.53771180262E-02 6.69617828996E-02 6.85830550740E-02 7.02416889358E-02 7.19384497067E-02 7.36741133375E-02 7.54494663831E-02 7.72653058567E-02 7.91224390638E-02 8.10216834128E-02 8.29638662028E-02 8.49498243861E-02 8.69804043048E-02 8.90564613992E-02 9.11788598886E-02 9.33484724203E-02 9.55661796880E-02 9.78328700158E-02 1.00149438908E-01 1.02516788563E-01 1.04935827347E-01 1.07407469228E-01 1.09932633171E-01 1.12512242488E-01 1.15147224142E-01 1.17838508003E-01 1.20587026059E-01 1.23393711571E-01 1.26259498180E-01 1.29185318957E-01 1.32172105393E-01 1.35220786337E-01 1.38332286868E-01 1.41507527104E-01 1.44747420949E-01 1.48052874774E-01 1.51424786024E-01 1.54864041758E-01 1.58371517117E-01 1.61948073714E-01 1.65594557952E-01 1.69311799260E-01 1.73100608250E-01 1.76961774796E-01 1.80896066028E-01 1.84904224237E-01 1.88986964707E-01 1.93144973447E-01 1.97378904846E-01 2.01689379236E-01 2.06076980367E-01 2.10542252796E-01 2.15085699188E-01 2.19707777527E-01 2.24408898241E-01 2.29189421246E-01 2.34049652901E-01 2.38989842885E-01 2.44010180990E-01 2.49110793844E-01 2.54291741556E-01 2.59553014294E-01 2.64894528804E-01 2.70316124861E-01 2.75817561674E-01 2.81398514247E-01 2.87058569694E-01 2.92797223536E-01 2.98613875963E-01 3.04507828104E-01 3.10478278278E-01 3.16524318276E-01 3.22644929659E-01 3.28838980098E-01 3.35105219772E-01 3.41442277839E-01 3.47848658994E-01 3.54322740137E-01 3.60862767169E-01 3.67466851942E-01 3.74132969373E-01 3.80858954766E-01 3.87642501338E-01 3.94481158012E-01 4.01372327463E-01 4.08313264482E-01 4.15301074665E-01 4.22332713459E-01 4.29404985606E-01 4.36514545013E-01 4.43657895069E-01 4.50831389458E-01 4.58031233495E-01 4.65253486013E-01 4.72494061837E-01 4.79748734887E-01 4.87013141922E-01 4.94282786978E-01 5.01553046511E-01 5.08819175284E-01 5.16076313020E-01 5.23319491846E-01 5.30543644543E-01 5.37743613624E-01 5.44914161252E-01 5.52049980002E-01 5.59145704473E-01 5.66195923751E-01 5.73195194699E-01 5.80138056082E-01 5.87019043474E-01 5.93832704939E-01 6.00573617434E-01 6.07236403883E-01 6.13815750862E-01 6.20306426826E-01 6.26703300793E-01 6.33001361395E-01 6.39195736180E-01 6.45281711057E-01 6.51254749753E-01 6.57110513126E-01 6.62844878200E-01 6.68453956736E-01 6.73934113169E-01 6.79281981727E-01 6.84494482524E-01 6.89568836419E-01 6.94502578447E-01 6.99293569571E-01 7.03940006562E-01 7.08440429768E-01 7.12793728550E-01 7.16999144180E-01 7.21056269978E-01 7.24965048501E-01 7.28725765594E-01 7.32339041144E-01 7.35805816387E-01 7.39127337664E-01 7.42305136530E-01 7.45341006170E-01 7.48236974097E-01 7.50995271175E-01 7.53618297012E-01 7.56108581841E-01 7.58468745046E-01 7.60701450513E-01 7.62809359054E-01 7.64795078158E-01 7.66661109375E-01 7.68409793646E-01 7.70043254907E-01 7.71563342278E-01 7.72971571158E-01 7.74269063461E-01 7.75456487209E-01 7.76533995586E-01 7.77501165452E-01 7.78356935157E-01 7.79099541355E-01 7.79726454270E-01 7.80234310650E-01 7.80618843370E-01 7.80874806359E-01 7.80995893180E-01 7.80974647280E-01 7.80802361585E-01 7.80468964745E-01 7.79964928380E-01 7.79287852597E-01 7.78437355724E-01 7.77413184944E-01 7.76215216682E-01 7.74843456805E-01 7.73298040641E-01 7.71579232829E-01 7.69687426980E-01 7.67623145192E-01 7.65387037381E-01 7.62979880472E-01 7.60402577424E-01 7.57656156115E-01 7.54741768088E-01 7.51660687150E-01 7.48414307856E-01 7.45004143855E-01 7.41431826133E-01 7.37699101131E-01 7.33807828769E-01 7.29759980363E-01 7.25557636457E-01 7.21202984563E-01 7.16698316825E-01 7.12046027605E-01 7.07248611005E-01 7.02308658323E-01 6.97228855448E-01 6.92011980213E-01 6.86660899686E-01 6.81178567427E-01 6.75568020696E-01 6.69832377630E-01 6.63974834384E-01 6.57998662229E-01 6.51907204633E-01 6.45703874299E-01 6.39392150176E-01 6.32975574439E-01 6.26457749434E-01 6.19842334587E-01 6.13133043279E-01 6.06333639680E-01 5.99447935532E-01 5.92479786892E-01 5.85433090823E-01 5.78311782016E-01 5.71119829364E-01 5.63861232461E-01 5.56540018029E-01 5.49160236276E-01 5.41725957167E-01 5.34241266612E-01 5.26710262581E-01 5.19137051113E-01 5.11525742262E-01 5.03880445940E-01 4.96205267693E-01 4.88504304393E-01 4.80781639875E-01 4.73041340499E-01 4.65287450681E-01 4.57523988386E-01 4.49754940599E-01 4.41984258805E-01 4.34215854481E-01 4.26453594638E-01 4.18701297417E-01 4.10962727774E-01 4.03241593282E-01 3.95541540054E-01 3.87866148834E-01 3.80218931267E-01 3.72603326367E-01 3.65022697216E-01 3.57480327904E-01 3.49979420726E-01 3.42523093655E-01 3.35114378105E-01 3.27756216987E-01 3.20451463062E-01 3.13202877607E-01 3.06013129375E-01 2.98884793863E-01 2.91820352870E-01 2.84822194332E-01 2.77892612443E-01 2.71033808014E-01 2.64247889086E-01 2.57536871747E-01 2.50902681156E-01 2.44347152737E-01 2.37872033515E-01 2.31478983590E-01 2.25169577692E-01 2.18945306816E-01 2.12807579900E-01 2.06757725519E-01 2.00796993573E-01 1.94926556946E-01 1.89147513106E-01 1.83460885630E-01 1.77867625641E-01 1.72368613123E-01 1.66964658114E-01 1.61656501758E-01 1.56444817212E-01 1.51330210391E-01 1.46313220566E-01 1.41394320795E-01 1.36573918204E-01 1.31852354122E-01 1.27229904076E-01 1.22706777666E-01 1.18283118321E-01 1.13959002977E-01 1.09734441673E-01 1.05609377102E-01 1.01583684139E-01 9.76571693602E-02 9.38295705893E-02 9.01005564930E-02 8.64697262440E-02 8.29366092813E-02 7.95006651879E-02 7.61612837051E-02 7.29177849047E-02 6.97694195327E-02 6.67153695400E-02 6.37547488116E-02 6.08866041017E-02 5.81099161818E-02 5.54236012047E-02 5.28265122839E-02 5.03174412883E-02 4.78951208450E-02 4.55582265462E-02 4.33053793486E-02 4.11351481569E-02 3.90460525764E-02 3.70365658235E-02 3.51051177766E-02 3.32500981531E-02 3.14698597942E-02 2.97627220420E-02 2.81269741897E-02 2.65608789881E-02 2.50626761902E-02 2.36305861172E-02 2.22628132285E-02 2.09575496789E-02 1.97129788475E-02 1.85272788232E-02 1.73986258322E-02 1.63251975939E-02 1.53051765930E-02 1.43367532557E-02 1.34181290197E-02 1.25475192886E-02 1.17231562609E-02 1.09432916281E-02 1.02061991331E-02 9.51017698489E-03 8.85355012390E-03 8.23467233540E-03 7.65192820724E-03 7.10373493061E-03 6.58854394280E-03 6.10484241157E-03 5.65115456204E-03 5.22604284706E-03 4.82810896339E-03 4.45599471610E-03 4.10838273449E-03 3.78399704330E-03 3.48160349341E-03 3.20001005679E-03 2.93806699067E-03 2.69466687658E-03 2.46874453972E-03 2.25927685487E-03 2.06528244504E-03 1.88582127912E-03 1.71999417516E-03 1.56694221588E-03 1.42584608299E-03 1.29592531715E-03 1.17643751010E-03 1.06667743558E-03 9.65976125705E-04 8.73699899002E-04 7.89249346591E-04 7.12058282517E-04 6.41592664199E-04 5.77349488731E-04 5.18855670532E-04 4.65666905604E-04 4.17366527422E-04 3.73564359162E-04 3.33895566770E-04 2.98019517035E-04 2.65618644351E-04 2.36398112513E-04 2.10090909521E-04 1.86441641222E-04 1.65213019081E-04 1.46185717624E-04 1.29157330945E-04 1.13941363916E-04 1.00366259237E-04 8.82744612851E-05 7.75215175697E-05 6.79752184431E-05 5.95147755642E-05 5.20300394926E-05 4.54207566950E-05 3.95958661621E-05 3.44728357845E-05 2.99762566542E-05 2.60310311818E-05 2.25766592499E-05 1.95594775881E-05 1.69313104457E-05 1.46490530790E-05 1.26742892984E-05 1.09449538148E-05 9.43344074432E-06 8.11487219448E-06 6.96687418328E-06 5.96936590282E-06 5.10436207701E-06 4.35578804865E-06 3.70930727489E-06 3.15216080075E-06 2.67301827742E-06 2.26184005981E-06 1.90974989690E-06 1.60891771236E-06 1.35245196234E-06 1.13430105130E-06 9.49163284979E-07 7.92404842144E-07 6.59985252520E-07 5.48389877653E-07 4.54568903337E-07 3.75882366775E-07 3.10050758184E-07 2.55110754791E-07 2.09375664883E-07 1.71400180201E-07 1.39949056522E-07 1.13969364114E-07 9.25659719798E-08 7.49799518810E-08 6.05696100766E-08 4.87938762077E-08 3.91977997032E-08 3.13999243418E-08 2.50813310484E-08 1.99761575680E-08 1.58634212628E-08 1.25599878774E-08 9.91454468305E-09 7.80245093043E-09 6.12135200950E-09 4.78745614699E-09 3.73238389324E-09 2.90051108631E-09 2.24673547557E-09 1.73460578202E-09 1.33475971727E-09 1.02362442997E-09 7.82339050439E-10 5.95864516822E-10 4.52250743037E-10 3.42035484695E-10 2.57753025709E-10 1.93534096449E-10 1.44781291678E-10 1.07906728583E-10 8.01208144269E-11 5.92628189976E-11 4.36655054022E-11 3.20473970312E-11 2.34273787536E-11 1.70572737834E-11 1.23688284802E-11 8.93219726008E-12 6.42356794068E-12 4.60002105715E-12 3.28008966413E-12 2.32879165588E-12 1.64615571568E-12 1.15846411230E-12 8.11598770719E-13 5.66008210473E-13 3.92917846886E-13 2.71489639340E-13 1.86703189024E-13 1.27782491303E-13 8.70334000095E-14 5.89887302054E-14 3.97826607918E-14 2.66951971319E-14 1.78221242742E-14 1.18370911207E-14 7.82098601251E-15 5.14020542881E-15 3.36026079726E-15 2.18479034356E-15 1.41273656395E-15 9.08442050452E-16 5.80881452755E-16 3.69318666577E-16 2.33457225047E-16 1.46714872935E-16 9.16578744890E-17 5.69196069097E-17 3.51332008675E-17 2.15528196932E-17 1.31397602244E-17 7.96037903115E-18 4.79190923239E-18 2.86600591578E-18 1.70295801400E-18 1.00520215073E-18 5.89371715459E-19 3.43221851091E-19 1.98505805747E-19 1.14010948961E-19 6.50214900059E-20 3.68184711993E-20 2.06982699027E-20 1.15510720453E-20 6.39868141173E-21 3.51801852668E-21 1.91957099952E-21 1.03936270178E-21 5.58399357599E-22 2.97642498991E-22 1.57388901586E-22 8.25541166021E-23 4.29481657700E-23 2.21588386781E-23 1.13370621876E-23 5.75121124156E-24 2.89252345656E-24 1.44213586061E-24 7.12688129613E-25 3.49066910939E-25 1.69427845273E-25 8.14851303751E-26 3.88274899847E-26 1.83280775894E-26 8.56958506378E-27 3.96840458306E-27 1.81983785258E-27 8.26336089013E-28 3.71478789818E-28 1.65314109060E-28 7.28163743176E-29 3.17420775991E-29 1.36921626102E-29 5.84361596253E-30 2.46720933665E-30 1.03035316848E-30 4.25561491145E-31 5.54641935624E-08 5.68682762373E-08 5.83079034307E-08 5.97839749563E-08 6.12974134065E-08 6.28491647294E-08 6.44401988196E-08 6.60715101249E-08 6.77441182677E-08 6.94590686822E-08 7.12174332677E-08 7.30203110590E-08 7.48688289130E-08 7.67641422130E-08 7.87074355912E-08 8.06999236685E-08 8.27428518144E-08 8.48374969250E-08 8.69851682211E-08 8.91872080664E-08 9.14449928071E-08 9.37599336312E-08 9.61334774516E-08 9.85671078097E-08 1.01062345803E-07 1.03620751035E-07 1.06243922592E-07 1.08933500041E-07 1.11691164454E-07 1.14518639460E-07 1.17417692322E-07 1.20390135042E-07 1.23437825491E-07 1.26562668574E-07 1.29766617419E-07 1.33051674596E-07 1.36419893372E-07 1.39873378992E-07 1.43414289994E-07 1.47044839563E-07 1.50767296907E-07 1.54583988683E-07 1.58497300444E-07 1.62509678137E-07 1.66623629625E-07 1.70841726260E-07 1.75166604487E-07 1.79600967494E-07 1.84147586900E-07 1.88809304485E-07 1.93589033974E-07 1.98489762850E-07 2.03514554223E-07 2.08666548751E-07 2.13948966592E-07 2.19365109427E-07 2.24918362517E-07 2.30612196822E-07 2.36450171170E-07 2.42435934480E-07 2.48573228045E-07 2.54865887868E-07 2.61317847060E-07 2.67933138301E-07 2.74715896358E-07 2.81670360669E-07 2.88800877994E-07 2.96111905132E-07 3.03608011706E-07 3.11293883019E-07 3.19174322984E-07 3.27254257122E-07 3.35538735649E-07 3.44032936624E-07 3.52742169188E-07 3.61671876887E-07 3.70827641067E-07 3.80215184369E-07 3.89840374300E-07 3.99709226906E-07 4.09827910528E-07 4.20202749659E-07 4.30840228898E-07 4.41746997000E-07 4.52929871034E-07 4.64395840645E-07 4.76152072420E-07 4.88205914368E-07 5.00564900513E-07 5.13236755604E-07 5.26229399942E-07 5.39550954330E-07 5.53209745150E-07 5.67214309567E-07 5.81573400864E-07 5.96295993912E-07 6.11391290784E-07 6.26868726500E-07 6.42737974932E-07 6.59008954843E-07 6.75691836089E-07 6.92797045979E-07 7.10335275786E-07 7.28317487436E-07 7.46754920352E-07 7.65659098487E-07 7.85041837520E-07 8.04915252244E-07 8.25291764139E-07 8.46184109134E-07 8.67605345566E-07 8.89568862346E-07 9.12088387323E-07 9.35177995866E-07 9.58852119664E-07 9.83125555739E-07 1.00801347570E-06 1.03353143523E-06 1.05969538380E-06 1.08652167463E-06 1.11402707494E-06 1.14222877640E-06 1.17114440589E-06 1.20079203649E-06 1.23119019885E-06 1.26235789266E-06 1.29431459864E-06 1.32708029062E-06 1.36067544809E-06 1.39512106896E-06 1.43043868273E-06 1.46665036387E-06 1.50377874570E-06 1.54184703449E-06 1.58087902396E-06 1.62089911017E-06 1.66193230678E-06 1.70400426065E-06 1.74714126787E-06 1.79137029026E-06 1.83671897211E-06 1.88321565757E-06 1.93088940830E-06 1.97977002164E-06 2.02988804926E-06 2.08127481621E-06 2.13396244056E-06 2.18798385342E-06 2.24337281956E-06 2.30016395846E-06 2.35839276603E-06 2.41809563671E-06 2.47930988628E-06 2.54207377514E-06 2.60642653225E-06 2.67240837962E-06 2.74006055750E-06 2.80942535009E-06 2.88054611201E-06 2.95346729540E-06 3.02823447766E-06 3.10489438999E-06 3.18349494655E-06 3.26408527443E-06 3.34671574437E-06 3.43143800219E-06 3.51830500113E-06 3.60737103490E-06 3.69869177161E-06 3.79232428862E-06 3.88832710814E-06 3.98676023384E-06 4.08768518836E-06 4.19116505174E-06 4.29726450087E-06 4.40604984986E-06 4.51758909155E-06 4.63195193996E-06 4.74920987388E-06 4.86943618153E-06 4.99270600635E-06 5.11909639401E-06 5.24868634052E-06 5.38155684160E-06 5.51779094332E-06 5.65747379400E-06 5.80069269739E-06 5.94753716728E-06 6.09809898340E-06 6.25247224882E-06 6.41075344872E-06 6.57304151071E-06 6.73943786665E-06 6.91004651605E-06 7.08497409103E-06 7.26432992300E-06 7.44822611097E-06 7.63677759161E-06 7.83010221104E-06 8.02832079855E-06 8.23155724203E-06 8.43993856546E-06 8.65359500823E-06 8.87266010659E-06 9.09727077704E-06 9.32756740192E-06 9.56369391717E-06 9.80579790222E-06 1.00540306722E-05 1.03085473727E-05 1.05695070762E-05 1.08370728823E-05 1.11114120188E-05 1.13926959467E-05 1.16811004673E-05 1.19768058318E-05 1.22799968542E-05 1.25908630267E-05 1.29095986381E-05 1.32364028951E-05 1.35714800471E-05 1.39150395133E-05 1.42672960142E-05 1.46284697052E-05 1.49987863145E-05 1.53784772840E-05 1.57677799139E-05 1.61669375112E-05 1.65761995414E-05 1.69958217846E-05 1.74260664953E-05 1.78672025660E-05 1.83195056956E-05 1.87832585613E-05 1.92587509957E-05 1.97462801671E-05 2.02461507659E-05 2.07586751948E-05 2.12841737637E-05 2.18229748899E-05 2.23754153036E-05 2.29418402579E-05 2.35226037447E-05 2.41180687157E-05 2.47286073094E-05 2.53546010832E-05 2.59964412522E-05 2.66545289332E-05 2.73292753955E-05 2.80211023178E-05 2.87304420515E-05 2.94577378910E-05 3.02034443503E-05 3.09680274471E-05 3.17519649940E-05 3.25557468966E-05 3.33798754600E-05 3.42248657020E-05 3.50912456753E-05 3.59795567969E-05 3.68903541864E-05 3.78242070128E-05 3.87816988500E-05 3.97634280411E-05 4.07700080721E-05 4.18020679551E-05 4.28602526212E-05 4.39452233230E-05 4.50576580481E-05 4.61982519415E-05 4.73677177406E-05 4.85667862200E-05 4.97962066474E-05 5.10567472521E-05 5.23491957042E-05 5.36743596065E-05 5.50330669987E-05 5.64261668747E-05 5.78545297122E-05 5.93190480163E-05 6.08206368767E-05 6.23602345391E-05 6.39388029906E-05 6.55573285605E-05 6.72168225355E-05 6.89183217916E-05 7.06628894407E-05 7.24516154945E-05 7.42856175443E-05 7.61660414592E-05 7.80940621007E-05 8.00708840558E-05 8.20977423891E-05 8.41759034131E-05 8.63066654786E-05 8.84913597845E-05 9.07313512085E-05 9.30280391590E-05 9.53828584472E-05 9.77972801833E-05 1.00272812693E-04 1.02811002460E-04 1.05413435088E-04 1.08081736293E-04 1.10817572913E-04 1.13622653952E-04 1.16498731644E-04 1.19447602542E-04 1.22471108644E-04 1.25571138539E-04 1.28749628584E-04 1.32008564109E-04 1.35349980661E-04 1.38775965265E-04 1.42288657731E-04 1.45890251984E-04 1.49582997434E-04 1.53369200373E-04 1.57251225419E-04 1.61231496982E-04 1.65312500779E-04 1.69496785381E-04 1.73786963802E-04 1.78185715123E-04 1.82695786164E-04 1.87319993193E-04 1.92061223678E-04 1.96922438089E-04 2.01906671737E-04 2.07017036664E-04 2.12256723583E-04 2.17629003859E-04 2.23137231548E-04 2.28784845486E-04 2.34575371420E-04 2.40512424211E-04 2.46599710078E-04 2.52841028900E-04 2.59240276585E-04 2.65801447488E-04 2.72528636895E-04 2.79426043569E-04 2.86497972361E-04 2.93748836882E-04 3.01183162247E-04 3.08805587884E-04 3.16620870421E-04 3.24633886634E-04 3.32849636478E-04 3.41273246190E-04 3.49909971471E-04 3.58765200751E-04 3.67844458525E-04 3.77153408789E-04 3.86697858546E-04 3.96483761410E-04 4.06517221300E-04 4.16804496218E-04 4.27352002132E-04 4.38166316948E-04 4.49254184589E-04 4.60622519168E-04 4.72278409271E-04 4.84229122344E-04 4.96482109192E-04 5.09045008590E-04 5.21925652003E-04 5.35132068438E-04 5.48672489399E-04 5.62555353979E-04 5.76789314076E-04 5.91383239732E-04 6.06346224619E-04 6.21687591643E-04 6.37416898704E-04 6.53543944593E-04 6.70078775032E-04 6.87031688868E-04 7.04413244424E-04 7.22234266000E-04 7.40505850541E-04 7.59239374468E-04 7.78446500679E-04 7.98139185726E-04 8.18329687163E-04 8.39030571083E-04 8.60254719839E-04 8.82015339950E-04 9.04325970216E-04 9.27200490017E-04 9.50653127830E-04 9.74698469948E-04 9.99351469415E-04 1.02462745519E-03 1.05054214151E-03 1.07711163753E-03 1.10435245715E-03 1.13228152912E-03 1.16091620735E-03 1.19027428153E-03 1.22037398799E-03 1.25123402075E-03 1.28287354301E-03 1.31531219871E-03 1.34857012455E-03 1.38266796221E-03 1.41762687087E-03 1.45346854010E-03 1.49021520296E-03 1.52788964953E-03 1.56651524065E-03 1.60611592212E-03 1.64671623913E-03 1.68834135111E-03 1.73101704692E-03 1.77476976037E-03 1.81962658619E-03 1.86561529629E-03 1.91276435651E-03 1.96110294365E-03 2.01066096306E-03 2.06146906649E-03 2.11355867052E-03 2.16696197527E-03 2.22171198369E-03 2.27784252125E-03 2.33538825606E-03 2.39438471957E-03 2.45486832763E-03 2.51687640217E-03 2.58044719327E-03 2.64561990186E-03 2.71243470285E-03 2.78093276892E-03 2.85115629470E-03 2.92314852169E-03 2.99695376362E-03 3.07261743248E-03 3.15018606510E-03 3.22970735039E-03 3.31123015716E-03 3.39480456258E-03 3.48048188134E-03 3.56831469542E-03 3.65835688456E-03 3.75066365740E-03 3.84529158336E-03 3.94229862520E-03 4.04174417229E-03 4.14368907472E-03 4.24819567806E-03 4.35532785891E-03 4.46515106131E-03 4.57773233386E-03 4.69314036769E-03 4.81144553528E-03 4.93271993005E-03 5.05703740691E-03 5.18447362356E-03 5.31510608277E-03 5.44901417553E-03 5.58627922507E-03 5.72698453188E-03 5.87121541958E-03 6.01905928186E-03 6.17060563026E-03 6.32594614303E-03 6.48517471493E-03 6.64838750807E-03 6.81568300374E-03 6.98716205529E-03 7.16292794208E-03 7.34308642441E-03 7.52774579961E-03 7.71701695919E-03 7.91101344697E-03 8.10985151849E-03 8.31365020141E-03 8.52253135703E-03 8.73661974299E-03 8.95604307706E-03 9.18093210209E-03 9.41142065211E-03 9.64764571953E-03 9.88974752357E-03 1.01378695798E-02 1.03921587708E-02 1.06527654180E-02 1.09198433549E-02 1.11935500007E-02 1.14740464364E-02 1.17614974804E-02 1.20560717666E-02 1.23579418230E-02 1.26672841512E-02 1.29842793078E-02 1.33091119859E-02 1.36419710981E-02 1.39830498608E-02 1.43325458793E-02 1.46906612333E-02 1.50576025643E-02 1.54335811636E-02 1.58188130603E-02 1.62135191116E-02 1.66179250930E-02 1.70322617889E-02 1.74567650847E-02 1.78916760595E-02 1.83372410780E-02 1.87937118849E-02 1.92613456979E-02 1.97404053024E-02 2.02311591453E-02 2.07338814297E-02 2.12488522092E-02 2.17763574824E-02 2.23166892874E-02 2.28701457948E-02 2.34370314022E-02 2.40176568261E-02 2.46123391946E-02 2.52214021381E-02 2.58451758799E-02 2.64839973244E-02 2.71382101452E-02 2.78081648702E-02 2.84942189657E-02 2.91967369183E-02 2.99160903140E-02 3.06526579153E-02 3.14068257350E-02 3.21789871071E-02 3.29695427540E-02 3.37789008503E-02 3.46074770822E-02 3.54556947026E-02 3.63239845812E-02 3.72127852496E-02 3.81225429411E-02 3.90537116236E-02 4.00067530266E-02 4.09821366616E-02 4.19803398342E-02 4.30018476489E-02 4.40471530052E-02 4.51167565847E-02 4.62111668284E-02 4.73308999041E-02 4.84764796623E-02 4.96484375814E-02 5.08473127000E-02 5.20736515360E-02 5.33280079932E-02 5.46109432519E-02 5.59230256450E-02 5.72648305181E-02 5.86369400715E-02 6.00399431857E-02 6.14744352271E-02 6.29410178335E-02 6.44402986798E-02 6.59728912210E-02 6.75394144121E-02 6.91404924048E-02 7.07767542178E-02 7.24488333815E-02 7.41573675548E-02 7.59029981129E-02 7.76863697056E-02 7.95081297831E-02 8.13689280902E-02 8.32694161258E-02 8.52102465666E-02 8.71920726551E-02 8.92155475478E-02 9.12813236250E-02 9.33900517586E-02 9.55423805373E-02 9.77389554481E-02 9.99804180118E-02 1.02267404872E-01 1.04600546833E-01 1.06980467854E-01 1.09407783983E-01 1.11883102244E-01 1.14407019468E-01 1.16980121070E-01 1.19602979767E-01 1.22276154234E-01 1.25000187713E-01 1.27775606546E-01 1.30602918658E-01 1.33482611969E-01 1.36415152755E-01 1.39400983927E-01 1.42440523264E-01 1.45534161567E-01 1.48682260757E-01 1.51885151904E-01 1.55143133189E-01 1.58456467808E-01 1.61825381806E-01 1.65250061853E-01 1.68730652954E-01 1.72267256102E-01 1.75859925875E-01 1.79508667972E-01 1.83213436702E-01 1.86974132418E-01 1.90790598909E-01 1.94662620750E-01 1.98589920613E-01 2.02572156544E-01 2.06608919219E-01 2.10699729179E-01 2.14844034045E-01 2.19041205739E-01 2.23290537703E-01 2.27591242125E-01 2.31942447196E-01 2.36343194400E-01 2.40792435839E-01 2.45289031624E-01 2.49831747335E-01 2.54419251559E-01 2.59050113533E-01 2.63722800901E-01 2.68435677597E-01 2.73187001884E-01 2.77974924556E-01 2.82797487325E-01 2.87652621417E-01 2.92538146396E-01 2.97451769231E-01 3.02391083638E-01 3.07353569714E-01 3.12336593888E-01 3.17337409205E-01 3.22353155983E-01 3.27380862851E-01 3.32417448196E-01 3.37459722050E-01 3.42504388427E-01 3.47548048147E-01 3.52587202154E-01 3.57618255360E-01 3.62637521026E-01 3.67641225704E-01 3.72625514746E-01 3.77586458405E-01 3.82520058524E-01 3.87422255830E-01 3.92288937834E-01 3.97115947333E-01 4.01899091505E-01 4.06634151601E-01 4.11316893204E-01 4.15943077034E-01 4.20508470281E-01 4.25008858426E-01 4.29440057499E-01 4.33797926741E-01 4.38078381600E-01 4.42277406999E-01 4.46391070802E-01 4.50415537394E-01 4.54347081286E-01 4.58182100634E-01 4.61917130574E-01 4.65548856252E-01 4.69074125413E-01 4.72489960424E-01 4.75793569589E-01 4.78982357602E-01 4.82053934989E-01 4.85006126382E-01 4.87836977465E-01 4.90544760432E-01 4.93127977796E-01 4.95585364399E-01 4.97915887468E-01 5.00118744575E-01 5.02193359379E-01 5.04139375023E-01 5.05956645095E-01 5.07645222073E-01 5.09205343195E-01 5.10637413723E-01 5.11941987615E-01 5.13119745619E-01 5.14171470859E-01 5.15098022028E-01 5.15900304305E-01 5.16579238178E-01 5.17135726395E-01 5.17570619261E-01 5.17884678577E-01 5.18078540507E-01 5.18152677691E-01 5.18107360934E-01 5.17942620787E-01 5.17658209344E-01 5.17253562517E-01 5.16727763044E-01 5.16079504377E-01 5.15307055553E-01 5.14408226995E-01 5.13380337095E-01 5.12220179253E-01 5.10923988847E-01 5.09487409441E-01 5.07905457260E-01 5.06172482764E-01 5.04282127839E-01 5.02227276912E-01 5.00000000000E-01 4.97592786214E-01 4.95002728098E-01 4.92228204207E-01 4.89267664614E-01 4.86119631193E-01 4.82782697791E-01 4.79255530291E-01 4.75536866564E-01 4.71625516329E-01 4.67520360901E-01 4.63220352859E-01 4.58724515616E-01 4.54031942910E-01 4.49141798214E-01 4.44053314070E-01 4.38765791355E-01 4.33278598486E-01 4.27591170557E-01 4.21703008433E-01 4.15613677787E-01 4.09322808096E-01 4.02830091599E-01 3.96135282222E-01 3.89238194473E-01 3.82138702313E-01 3.74836738005E-01 3.67332290958E-01 3.59625406543E-01 3.51716184919E-01 3.43604779844E-01 3.35291397486E-01 3.26776295241E-01 3.18059780553E-01 3.09142209736E-01 3.00023986810E-01 2.90705562345E-01 2.81187432310E-01 2.71470136941E-01 2.61554259615E-01 2.51440425732E-01 2.41129301621E-01 2.30621593442E-01 2.19918046108E-01 2.09019442222E-01 1.97926601013E-01 1.86640377302E-01 1.75161660466E-01 1.63491373434E-01 1.51630471689E-01 1.39579942309E-01 1.27340803028E-01 1.14914101342E-01 1.02300913657E-01 8.95023445056E-02 7.65195258256E-02 6.33536163354E-02 5.00058010124E-02 3.64772907003E-02 2.27693218661E-02 8.88315653416E-03 -5.17991757714E-03 -1.94185866846E-02 -3.38315103048E-02 -4.84173203215E-02 -6.31746197211E-02 -7.81019809633E-02 -9.31979439511E-02 -1.08461013569E-01 -1.23889656758E-01 -1.39482299092E-01 -1.55237320838E-01 -1.71153052472E-01 -1.87227769632E-01 -2.03459687496E-01 -2.19846954576E-01 -2.36387645936E-01 -2.53079755822E-01 -2.69921189736E-01 -2.86909755970E-01 -3.04043156623E-01 -3.21318978149E-01 -3.38734681474E-01 -3.56287591753E-01 -3.73974887809E-01 -3.91793591340E-01 -4.09740555978E-01 -4.27812456272E-01 -4.46005776698E-01 -4.64316800802E-01 -4.82741600562E-01 -5.01276026099E-01 -5.19915695842E-01 -5.38655987248E-01 -5.57492028223E-01 -5.76418689327E-01 -5.95430576894E-01 -6.14522027182E-01 -6.33687101633E-01 -6.52919583371E-01 -6.72212975001E-01 -6.91560497809E-01 -7.10955092407E-01 -7.30389420902E-01 -7.49855870596E-01 -7.69346559261E-01 -7.88853341982E-01 -8.08367819547E-01 -8.27881348343E-01 -8.47385051716E-01 -8.66869832696E-01 -8.86326387997E-01 -9.05745223169E-01 -9.25116668769E-01 -9.44430897392E-01 -9.63677941388E-01 -9.82847711090E-01 -1.00193001335E+00 -1.02091457020E+00 -1.03979103742E+00 -1.05854902277E+00 -1.07717810379E+00 -1.09566784484E+00 -1.11400781325E+00 -1.13218759445E+00 -1.15019680577E+00 -1.16802510887E+00 -1.18566222071E+00 -1.20309792270E+00 -1.22032206824E+00 -1.23732458834E+00 -1.25409549532E+00 -1.27062488461E+00 -1.28690293451E+00 -1.30291990399E+00 -1.31866612852E+00 -1.33413201388E+00 -1.34930802814E+00 -1.36418469171E+00 -1.37875256557E+00 -1.39300223781E+00 -1.40692430849E+00 -1.42050937295E+00 -1.43374800364E+00 -1.44663073060E+00 -1.45914802067E+00 -1.47129025556E+00 -1.48304770887E+00 -1.49441052220E+00 -1.50536868047E+00 -1.51591198653E+00 -1.52603003520E+00 -1.53571218687E+00 -1.54494754084E+00 -1.55372490832E+00 -1.56203278554E+00 -1.56985932672E+00 -1.57719231737E+00 -1.58401914783E+00 -1.59032678727E+00 -1.59610175828E+00 -1.60133011218E+00 -1.60599740518E+00 -1.61008867562E+00 -1.61358842226E+00 -1.61648058406E+00 -1.61874852137E+00 -1.62037499875E+00 -1.62134216978E+00 -1.62163156381E+00 -1.62122407500E+00 -1.62009995377E+00 -1.61823880097E+00 -1.61561956491E+00 -1.61222054151E+00 -1.60801937787E+00 -1.60299307939E+00 -1.59711802085E+00 -1.59036996166E+00 -1.58272406554E+00 -1.57415492498E+00 -1.56463659078E+00 -1.55414260700E+00 -1.54264605157E+00 -1.53011958302E+00 -1.51653549365E+00 -1.50186576940E+00 -1.48608215692E+00 -1.46915623812E+00 -1.45105951264E+00 -1.43176348862E+00 -1.41123978200E+00 -1.38946022501E+00 -1.36639698398E+00 -1.34202268701E+00 -1.31631056174E+00 -1.28923458371E+00 -1.26076963552E+00 -1.23089167728E+00 -1.19957792841E+00 -1.16680706137E+00 -1.13255940728E+00 -1.09681717400E+00 -1.05956467603E+00 -1.02079195191E+00 -9.80521934605E-01 -9.38746995773E-01 -8.95459093295E-01 -8.50653781800E-01 -8.04330512369E-01 -7.56492943514E-01 -7.07149262890E-01 -6.56312519158E-01 -6.04000963262E-01 -5.50238398207E-01 -4.95054536349E-01 -4.38485362859E-01 -3.80573503981E-01 -3.21368598434E-01 -2.60927670061E-01 -1.99310309916E-01 -1.36538779657E-01 -7.27067285551E-02 -7.92409543312E-03 5.76893979795E-02 1.24003984179E-01 1.90879615832E-01 2.58165765255E-01 3.25701262521E-01 3.93314177596E-01 4.60821752283E-01 5.28030388084E-01 5.94735696152E-01 6.60722616394E-01 7.25765612507E-01 7.89628950201E-01 8.52067066091E-01 9.12825034871E-01 9.71639142533E-01 1.02823757343E+00 1.08234121897E+00 1.13366461564E+00 1.18191701987E+00 1.22680362683E+00 1.26802694003E+00 1.30528829783E+00 1.33828956224E+00 1.36673497468E+00 1.39033318205E+00 1.40879943522E+00 1.42185796077E+00 1.42924450460E+00 1.43070904449E+00 1.42601866616E+00 1.41496059476E+00 1.39734537131E+00 1.37301015978E+00 1.34182216782E+00 1.30368215985E+00 1.25852803743E+00 1.20633845762E+00 1.14713645520E+00 1.08099302999E+00 1.00803065560E+00 9.28426660513E-01 8.42416427403E-01 7.50296351162E-01 6.52426491012E-01 5.49232846955E-01 4.41209186083E-01 3.28918339918E-01 2.12992890176E-01 9.41351572797E-02 -2.68835961675E-02 -1.49224835730E-01 -2.71985387767E-01 -3.94201120851E-01 -5.14851758730E-01 -6.32866901752E-01 -7.47133325464E-01 -8.56503614290E-01 -9.59806174538E-01 -1.05585665421E+00 -1.14347077701E+00 -1.22147857437E+00 -1.28873997215E+00 -1.34416165775E+00 -1.38671511895E+00 -1.41545570747E+00 -1.42954253910E+00 -1.42825899748E+00 -1.41103356209E+00 -1.37746063184E+00 -1.32732096626E+00 -1.26060131676E+00 -1.17751277195E+00 -1.07850729612E+00 -9.64291899175E-01 -8.35839842414E-01 -6.94398259432E-01 -5.41491557577E-01 -3.78919965197E-01 -2.08752606329E-01 -3.33145199914E-02 1.44832901367E-01 3.22918497881E-01 4.97995287816E-01 6.66981970566E-01 8.26712017895E-01 9.73990186558E-01 1.10565605764E+00 1.21865395141E+00 1.31010828435E+00 1.37740313127E+00 1.41826443709E+00 1.43084299708E+00 1.41379600268E+00 1.36636464333E+00 1.28844497922E+00 1.18064907053E+00 1.04435318477E+00 8.81729824556E-01 6.95760343847E-01 4.90225071786E-01 2.69668159298E-01 3.93348217356E-02 -1.94920715091E-01 -4.26757439337E-01 -6.49499816335E-01 -8.56318773152E-01 -1.04043873778E+00 -1.19536658226E+00 -1.31513674256E+00 -1.39456517543E+00 -1.42950323544E+00 -1.41708110039E+00 -1.35592913897E+00 -1.24636471190E+00 -1.09053144398E+00 -8.92478118225E-01 -6.58165137893E-01 -3.95388078346E-01 -1.13610282904E-01 1.76300212748E-01 4.62429920717E-01 7.32270748088E-01 9.73252147372E-01 1.17333803478E+00 1.32166551653E+00 1.40919622158E+00 1.42934543214E+00 1.37854974533E+00 1.25673124414E+00 1.06761566422E+00 8.18864338657E-01 5.21985220940E-01 1.91997315977E-01 -1.53164534600E-01 -4.93501558096E-01 -8.08037818447E-01 -1.07609917120E+00 -1.27872019540E+00 -1.40009431984E+00 -1.42896472164E+00 -1.35984104884E+00 -1.19392184129E+00 -9.39606779037E-01 -6.12498251935E-01 -2.34819209298E-01 2.58099000863E-12 2.67961478981E-12 2.78200822075E-12 2.88831430907E-12 2.99868256521E-12 3.11326821273E-12 3.23223240654E-12 3.35574245965E-12 3.48397207841E-12 3.61710160684E-12 3.75531828027E-12 3.89881648864E-12 4.04779804995E-12 4.20247249406E-12 4.36305735737E-12 4.52977848879E-12 4.70287036737E-12 4.88257643206E-12 5.06914942411E-12 5.26285174251E-12 5.46395581303E-12 5.67274447140E-12 5.88951136103E-12 6.11456134606E-12 6.34821094008E-12 6.59078875130E-12 6.84263594470E-12 7.10410672186E-12 7.37556881910E-12 7.65740402469E-12 7.95000871578E-12 8.25379441588E-12 8.56918837364E-12 8.89663416372E-12 9.23659231066E-12 9.58954093657E-12 9.95597643353E-12 1.03364141618E-11 1.07313891745E-11 1.11414569702E-11 1.15671942743E-11 1.20091998500E-11 1.24680953402E-11 1.29445261423E-11 1.34391623155E-11 1.39526995233E-11 1.44858600119E-11 1.50393936259E-11 1.56140788631E-11 1.62107239690E-11 1.68301680740E-11 1.74732823733E-11 1.81409713522E-11 1.88341740580E-11 1.95538654211E-11 2.03010576258E-11 2.10768015341E-11 2.18821881633E-11 2.27183502209E-11 2.35864636971E-11 2.44877495194E-11 2.54234752690E-11 2.63949569641E-11 2.74035609106E-11 2.84507056234E-11 2.95378638221E-11 3.06665645014E-11 3.18383950821E-11 3.30550036437E-11 3.43181012416E-11 3.56294643146E-11 3.69909371822E-11 3.84044346395E-11 3.98719446493E-11 4.13955311387E-11 4.29773369013E-11 4.46195866112E-11 4.63245899518E-11 4.80947448639E-11 4.99325409185E-11 5.18405628180E-11 5.38214940313E-11 5.58781205680E-11 5.80133348967E-11 6.02301400128E-11 6.25316536624E-11 6.49211127264E-11 6.74018777737E-11 6.99774377869E-11 7.26514150696E-11 7.54275703409E-11 7.83098080241E-11 8.13021817386E-11 8.44089000003E-11 8.76343321409E-11 9.09830144527E-11 9.44596565690E-11 9.80691480871E-11 1.01816565446E-10 1.05707179064E-10 1.09746460754E-10 1.13940091418E-10 1.18293969035E-10 1.22814216957E-10 1.27507192523E-10 1.32379495997E-10 1.37437979853E-10 1.42689758412E-10 1.48142217845E-10 1.53803026564E-10 1.59680146007E-10 1.65781841834E-10 1.72116695550E-10 1.78693616579E-10 1.85521854789E-10 1.92611013505E-10 1.99971063014E-10 2.07612354586E-10 2.15545635033E-10 2.23782061824E-10 2.32333218779E-10 2.41211132354E-10 2.50428288563E-10 2.59997650532E-10 2.69932676735E-10 2.80247339921E-10 2.90956146762E-10 3.02074158260E-10 3.13617010928E-10 3.25600938778E-10 3.38042796158E-10 3.50960081449E-10 3.64370961682E-10 3.78294298085E-10 3.92749672608E-10 4.07757415469E-10 4.23338633737E-10 4.39515241027E-10 4.56309988314E-10 4.73746495931E-10 4.91849286789E-10 5.10643820868E-10 5.30156531019E-10 5.50414860145E-10 5.71447299796E-10 5.93283430236E-10 6.15953962047E-10 6.39490779322E-10 6.63926984504E-10 6.89296944946E-10 7.15636341238E-10 7.42982217398E-10 7.71373032960E-10 8.00848717074E-10 8.31450724656E-10 8.63222094690E-10 8.96207510765E-10 9.30453363908E-10 9.66007817838E-10 1.00292087670E-09 1.04124445538E-09 1.08103245255E-09 1.12234082642E-09 1.16522767349E-09 1.20975331024E-09 1.25598035792E-09 1.30397383069E-09 1.35380122699E-09 1.40553262453E-09 1.45924077879E-09 1.51500122539E-09 1.57289238628E-09 1.63299568007E-09 1.69539563653E-09 1.76018001545E-09 1.82743993008E-09 1.89726997527E-09 1.96976836053E-09 2.04503704810E-09 2.12318189640E-09 2.20431280887E-09 2.28854388857E-09 2.37599359862E-09 2.46678492886E-09 2.56104556874E-09 2.65890808698E-09 2.76051011796E-09 2.86599455532E-09 2.97550975291E-09 3.08920973343E-09 3.20725440506E-09 3.32980978632E-09 3.45704823961E-09 3.58914871356E-09 3.72629699475E-09 3.86868596896E-09 4.01651589245E-09 4.16999467362E-09 4.32933816539E-09 4.49477046875E-09 4.66652424797E-09 4.84484105780E-09 5.02997168317E-09 5.22217649193E-09 5.42172580096E-09 5.62890025640E-09 5.84399122832E-09 6.06730122046E-09 6.29914429573E-09 6.53984651785E-09 6.78974640992E-09 7.04919543054E-09 7.31855846805E-09 7.59821435371E-09 7.88855639450E-09 8.18999292620E-09 8.50294788771E-09 8.82786141724E-09 9.16519047128E-09 9.51540946730E-09 9.87901095090E-09 1.02565062885E-08 1.06484263865E-08 1.10553224381E-08 1.14777666981E-08 1.19163532880E-08 1.23716990314E-08 1.28444443217E-08 1.33352540222E-08 1.38448184018E-08 1.43738541050E-08 1.49231051605E-08 1.54933440271E-08 1.60853726800E-08 1.67000237389E-08 1.73381616387E-08 1.80006838456E-08 1.86885221185E-08 1.94026438201E-08 2.01440532767E-08 2.09137931912E-08 2.17129461090E-08 2.25426359407E-08 2.34040295422E-08 2.42983383565E-08 2.52268201164E-08 2.61907806139E-08 2.71915755364E-08 2.82306123730E-08 2.93093523940E-08 3.04293127060E-08 3.15920683850E-08 3.27992546919E-08 3.40525693716E-08 3.53537750410E-08 3.67047016675E-08 3.81072491422E-08 3.95633899522E-08 4.10751719539E-08 4.26447212531E-08 4.42742451948E-08 4.59660354673E-08 4.77224713247E-08 4.95460229330E-08 5.14392548436E-08 5.34048295996E-08 5.54455114801E-08 5.75641703871E-08 5.97637858815E-08 6.20474513732E-08 6.44183784703E-08 6.68799014963E-08 6.94354821778E-08 7.20887145133E-08 7.48433298265E-08 7.77032020130E-08 8.06723529885E-08 8.37549583434E-08 8.69553532152E-08 9.02780383835E-08 9.37276865995E-08 9.73091491565E-08 1.01027462711E-07 1.04887856365E-07 1.08895759020E-07 1.13056807008E-07 1.17376852020E-07 1.21861969331E-07 1.26518466346E-07 1.31352891466E-07 1.36372043293E-07 1.41582980198E-07 1.46993030235E-07 1.52609801454E-07 1.58441192590E-07 1.64495404175E-07 1.70780950066E-07 1.77306669414E-07 1.84081739094E-07 1.91115686608E-07 1.98418403478E-07 2.06000159156E-07 2.13871615459E-07 2.22043841563E-07 2.30528329562E-07 2.39337010628E-07 2.48482271783E-07 2.57976973315E-07 2.67834466857E-07 2.78068614159E-07 2.88693806574E-07 2.99724985293E-07 3.11177662346E-07 3.23067942412E-07 3.35412545457E-07 3.48228830240E-07 3.61534818715E-07 3.75349221365E-07 3.89691463503E-07 4.04581712582E-07 4.20040906540E-07 4.36090783236E-07 4.52753911003E-07 4.70053720374E-07 4.88014537012E-07 5.06661615907E-07 5.26021176873E-07 5.46120441399E-07 5.66987670914E-07 5.88652206503E-07 6.11144510153E-07 6.34496207561E-07 6.58740132587E-07 6.83910373392E-07 7.10042320356E-07 7.37172715806E-07 7.65339705654E-07 7.94582893008E-07 8.24943393822E-07 8.56463894676E-07 8.89188712759E-07 9.23163858148E-07 9.58437098457E-07 9.95058025958E-07 1.03307812726E-06 1.07255085567E-06 1.11353170626E-06 1.15607829388E-06 1.20025043408E-06 1.24611022716E-06 1.29372214538E-06 1.34315312361E-06 1.39447265328E-06 1.44775288004E-06 1.50306870511E-06 1.56049789049E-06 1.62012116817E-06 1.68202235355E-06 1.74628846314E-06 1.81300983681E-06 1.88228026466E-06 1.95419711869E-06 2.02886148963E-06 2.10637832886E-06 2.18685659576E-06 2.27040941077E-06 2.35715421421E-06 2.44721293114E-06 2.54071214261E-06 2.63778326333E-06 2.73856272619E-06 2.84319217377E-06 2.95181865720E-06 3.06459484257E-06 3.18167922523E-06 3.30323635222E-06 3.42943705325E-06 3.56045868043E-06 3.69648535718E-06 3.83770823657E-06 3.98432576960E-06 4.13654398360E-06 4.29457677133E-06 4.45864619107E-06 4.62898277808E-06 4.80582586808E-06 4.98942393289E-06 5.18003492897E-06 5.37792665919E-06 5.58337714842E-06 5.79667503337E-06 6.01811996734E-06 6.24802304035E-06 6.48670721530E-06 6.73450778067E-06 6.99177282059E-06 7.25886370263E-06 7.53615558437E-06 7.82403793902E-06 8.12291510129E-06 8.43320683382E-06 8.75534891533E-06 9.08979375106E-06 9.43701100644E-06 9.79748826494E-06 1.01717317108E-05 1.05602668380E-05 1.09636391859E-05 1.13824151028E-05 1.18171825390E-05 1.22685518697E-05 1.27371567489E-05 1.32236549963E-05 1.37287295178E-05 1.42530892603E-05 1.47974702039E-05 1.53626363908E-05 1.59493809938E-05 1.65585274252E-05 1.71909304882E-05 1.78474775710E-05 1.85290898876E-05 1.92367237643E-05 1.99713719764E-05 2.07340651341E-05 2.15258731227E-05 2.23479065954E-05 2.32013185249E-05 2.40873058117E-05 2.50071109551E-05 2.59620237861E-05 2.69533832674E-05 2.79825793600E-05 2.90510549618E-05 3.01603079187E-05 3.13118931125E-05 3.25074246271E-05 3.37485779974E-05 3.50370925427E-05 3.63747737883E-05 3.77634959792E-05 3.92052046881E-05 4.07019195224E-05 4.22557369333E-05 4.38688331309E-05 4.55434671092E-05 4.72819837855E-05 4.90868172584E-05 5.09604941878E-05 5.29056373032E-05 5.49249690439E-05 5.70213153360E-05 5.91976095124E-05 6.14568963789E-05 6.38023364352E-05 6.62372102530E-05 6.87649230196E-05 7.13890092518E-05 7.41131376873E-05 7.69411163589E-05 7.98768978604E-05 8.29245848086E-05 8.60884355113E-05 8.93728698468E-05 9.27824753642E-05 9.63220136115E-05 9.99964267013E-05 1.03810844121E-04 1.07770589797E-04 1.11881189427E-04 1.16148378080E-04 1.20578108080E-04 1.25176557194E-04 1.29950137110E-04 1.34905502239E-04 1.40049558848E-04 1.45389474521E-04 1.50932687984E-04 1.56686919287E-04 1.62660180366E-04 1.68860785996E-04 1.75297365151E-04 1.81978872783E-04 1.88914602037E-04 1.96114196920E-04 2.03587665429E-04 2.11345393175E-04 2.19398157501E-04 2.27757142121E-04 2.36433952299E-04 2.45440630585E-04 2.54789673125E-04 2.64494046576E-04 2.74567205635E-04 2.85023111206E-04 2.95876249241E-04 3.07141650259E-04 3.18834909577E-04 3.30972208285E-04 3.43570334972E-04 3.56646708253E-04 3.70219400099E-04 3.84307160020E-04 3.98929440124E-04 4.14106421070E-04 4.29859038966E-04 4.46209013228E-04 4.63178875445E-04 4.80791999269E-04 4.99072631387E-04 5.18045923589E-04 5.37737965986E-04 5.58175821402E-04 5.79387560997E-04 6.01402301144E-04 6.24250241615E-04 6.47962705111E-04 6.72572178185E-04 6.98112353605E-04 7.24618174193E-04 7.52125878209E-04 7.80673046302E-04 8.10298650109E-04 8.41043102525E-04 8.72948309721E-04 9.06057724950E-04 9.40416404210E-04 9.76071063802E-04 1.01307013986E-03 1.05146384993E-03 1.09130425659E-03 1.13264533325E-03 1.17554303220E-03 1.22005535488E-03 1.26624242452E-03 1.31416656124E-03 1.36389235959E-03 1.41548676866E-03 1.46901917485E-03 1.52456148730E-03 1.58218822616E-03 1.64197661367E-03 1.70400666821E-03 1.76836130132E-03 1.83512641790E-03 1.90439101946E-03 1.97624731074E-03 2.05079080960E-03 2.12812046036E-03 2.20833875063E-03 2.29155183171E-03 2.37786964270E-03 2.46740603830E-03 2.56027892052E-03 2.65661037425E-03 2.75652680682E-03 2.86015909170E-03 2.96764271632E-03 3.07911793409E-03 3.19472992087E-03 3.31462893562E-03 3.43897048576E-03 3.56791549682E-03 3.70163048691E-03 3.84028774569E-03 3.98406551816E-03 4.13314819319E-03 4.28772649691E-03 4.44799769093E-03 4.61416577555E-03 4.78644169786E-03 4.96504356484E-03 5.15019686145E-03 5.34213467372E-03 5.54109791692E-03 5.74733556857E-03 5.96110490659E-03 6.18267175234E-03 6.41231071852E-03 6.65030546197E-03 6.89694894125E-03 7.15254367889E-03 7.41740202825E-03 7.69184644480E-03 7.97620976183E-03 8.27083547024E-03 8.57607800240E-03 8.89230301975E-03 9.21988770406E-03 9.55922105197E-03 9.91070417258E-03 1.02747505879E-02 1.06517865356E-02 1.10422512741E-02 1.14465973890E-02 1.18652911012E-02 1.22988125759E-02 1.27476562314E-02 1.32123310484E-02 1.36933608787E-02 1.41912847519E-02 1.47066571812E-02 1.52400484661E-02 1.57920449924E-02 1.63632495277E-02 1.69542815127E-02 1.75657773475E-02 1.81983906708E-02 1.88527926328E-02 1.95296721597E-02 2.02297362098E-02 2.09537100200E-02 2.17023373407E-02 2.24763806606E-02 2.32766214177E-02 2.41038601974E-02 2.49589169162E-02 2.58426309900E-02 2.67558614856E-02 2.76994872558E-02 2.86744070562E-02 2.96815396427E-02 3.07218238499E-02 3.17962186496E-02 3.29057031878E-02 3.40512768009E-02 3.52339590108E-02 3.64547894971E-02 3.77148280494E-02 3.90151544965E-02 4.03568686158E-02 4.17410900216E-02 4.31689580351E-02 4.46416315346E-02 4.61602887912E-02 4.77261272888E-02 4.93403635320E-02 5.10042328451E-02 5.27189891653E-02 5.44859048324E-02 5.63062703822E-02 5.81813943455E-02 6.01126030599E-02 6.21012405007E-02 6.41486681358E-02 6.62562648144E-02 6.84254266964E-02 7.06575672307E-02 7.29541171937E-02 7.53165247967E-02 7.77462558744E-02 8.02447941656E-02 8.28136416978E-02 8.54543192909E-02 8.81683671906E-02 9.09573458483E-02 9.38228368599E-02 9.67664440790E-02 9.97897949201E-02 1.02894541865E-01 1.06082364188E-01 1.09354969914E-01 1.12714098024E-01 1.16161520915E-01 1.19699047137E-01 1.23328524400E-01 1.27051842880E-01 1.30870938801E-01 1.34787798327E-01 1.38804461734E-01 1.42923027878E-01 1.47145658933E-01 1.51474585395E-01 1.55912111326E-01 1.60460619818E-01 1.65122578623E-01 1.69900545939E-01 1.74797176272E-01 1.79815226333E-01 1.84957560903E-01 1.90227158574E-01 1.95627117300E-01 2.01160659649E-01 2.06831137653E-01 2.12642037154E-01 2.18596981507E-01 2.24699734528E-01 2.30954202559E-01 2.37364435502E-01 2.43934626721E-01 2.50669111657E-01 2.57572365088E-01 2.64648996908E-01 2.71903746389E-01 2.79341474898E-01 2.86967157077E-01 2.94785870593E-01 3.02802784590E-01 3.11023147109E-01 3.19452271794E-01 3.28095524359E-01 3.36958309391E-01 3.46046058217E-01 3.55364218672E-01 3.64918247776E-01 3.74713608408E-01 3.84755771145E-01 3.95050222448E-01 4.05602480276E-01 4.16418117962E-01 4.27502796724E-01 4.38862306431E-01 4.50502613070E-01 4.62429909633E-01 4.74650664696E-01 4.87171659546E-01 5.00000000000E-01 5.13143084187E-01 5.26608539943E-01 5.40404203816E-01 5.54538125962E-01 5.69018576296E-01 5.83854050769E-01 5.99053277746E-01 6.14625224509E-01 6.30579103868E-01 6.46924380887E-01 6.63670779720E-01 6.80828290566E-01 6.98407176722E-01 7.16417981764E-01 7.34871536819E-01 7.53778967965E-01 7.73151703725E-01 7.93001482677E-01 8.13340361168E-01 8.34180721137E-01 8.55535278046E-01 8.77417088910E-01 8.99839560442E-01 9.22816457298E-01 9.46361910430E-01 9.70490425538E-01 9.95216891640E-01 1.02055658973E+00 1.04652520155E+00 1.07313881847E+00 1.10041395044E+00 1.12836753510E+00 1.15701694691E+00 1.18638000646E+00 1.21647498978E+00 1.24732063782E+00 1.27893616593E+00 1.31134127347E+00 1.34455615344E+00 1.37860150217E+00 1.41349852897E+00 1.44926896591E+00 1.48593507742E+00 1.52351966993E+00 1.56204610141E+00 1.60153829068E+00 1.64202072666E+00 1.68351847723E+00 1.72605719784E+00 1.76966313973E+00 1.81436315757E+00 1.86018471660E+00 1.90715589898E+00 1.95530540932E+00 2.00466257926E+00 2.05525737090E+00 2.10712037887E+00 2.16028283102E+00 2.21477658738E+00 2.27063413719E+00 2.32788859395E+00 2.38657368801E+00 2.44672375672E+00 2.50837373169E+00 2.57155912301E+00 2.63631600022E+00 2.70268096963E+00 2.77069114794E+00 2.84038413173E+00 2.91179796270E+00 2.98497108846E+00 3.05994231846E+00 3.13675077520E+00 3.21543584024E+00 3.29603709503E+00 3.37859425642E+00 3.46314710668E+00 3.54973541815E+00 3.63839887218E+00 3.72917697277E+00 3.82210895464E+00 3.91723368587E+00 4.01458956543E+00 4.11421441552E+00 4.21614536902E+00 4.32041875238E+00 4.42706996407E+00 4.53613334909E+00 4.64764206972E+00 4.76162797314E+00 4.87812145609E+00 4.99715132728E+00 5.11874466785E+00 5.24292669055E+00 5.36972059803E+00 5.49914744087E+00 5.63122597587E+00 5.76597252507E+00 5.90340083612E+00 6.04352194433E+00 6.18634403705E+00 6.33187232048E+00 6.48010888959E+00 6.63105260103E+00 6.78469894947E+00 6.94103994727E+00 7.10006400749E+00 7.26175582998E+00 7.42609629033E+00 7.59306233124E+00 7.76262685556E+00 7.93475862050E+00 8.10942213197E+00 8.28657753818E+00 8.46618052119E+00 8.64818218548E+00 8.83252894182E+00 9.01916238537E+00 9.20801916625E+00 9.39903085123E+00 9.59212377486E+00 9.78721887855E+00 9.98423153598E+00 1.01830713634E+01 1.03836420135E+01 1.05858409509E+01 1.07895592092E+01 1.09946811266E+01 1.12010840616E+01 1.14086380853E+01 1.16172056511E+01 1.18266412418E+01 1.20367909916E+01 1.22474922854E+01 1.24585733336E+01 1.26698527237E+01 1.28811389483E+01 1.30922299110E+01 1.33029124109E+01 1.35129616064E+01 1.37221404599E+01 1.39301991653E+01 1.41368745602E+01 1.43418895239E+01 1.45449523654E+01 1.47457562023E+01 1.49439783352E+01 1.51392796200E+01 1.53313038418E+01 1.55196770951E+01 1.57040071745E+01 1.58838829806E+01 1.60588739463E+01 1.62285294906E+01 1.63923785038E+01 1.65499288734E+01 1.67006670569E+01 1.68440577088E+01 1.69795433718E+01 1.71065442407E+01 1.72244580081E+01 1.73326598035E+01 1.74305022370E+01 1.75173155581E+01 1.75924079434E+01 1.76550659268E+01 1.77045549849E+01 1.77401202934E+01 1.77609876698E+01 1.77663647178E+01 1.77554421914E+01 1.77273955949E+01 1.76813870371E+01 1.76165673584E+01 1.75320785490E+01 1.74270564772E+01 1.73006339474E+01 1.71519441068E+01 1.69801242189E+01 1.67843198237E+01 1.65636893015E+01 1.63174088578E+01 1.60446779454E+01 1.57447251382E+01 1.54168144687E+01 1.50602522407E+01 1.46743943245E+01 1.42586539393E+01 1.38125099247E+01 1.33355154973E+01 1.28273074847E+01 1.22876160253E+01 1.17162747125E+01 1.11132311593E+01 1.04785579484E+01 9.81246392728E+00 9.11530579651E+00 8.38759993094E+00 7.63003436239E+00 6.84348084051E+00 6.02900687661E+00 5.18788766234E+00 4.32161773679E+00 3.43193361440E+00 2.52091257081E+00 1.59074663886E+00 6.43876253361E-01 -3.16986477745E-01 -1.28885100244E+00 -2.26844310753E+00 -3.25220150515E+00 -4.23627648765E+00 -5.21653092944E+00 -6.18854392637E+00 -7.14761737432E+00 -8.08878579495E+00 -9.00682972249E+00 -9.89629296561E+00 -1.07515040551E+01 -1.15663010932E+01 -1.23316127046E+01 -1.30407491204E+01 -1.36872541711E+01 -1.42646774894E+01 -1.47666322935E+01 -1.51868589103E+01 -1.55192939867E+01 -1.57581452480E+01 -1.58979715596E+01 -1.59337679315E+01 -1.58610549798E+01 -1.56759722056E+01 -1.53753743215E+01 -1.49569296670E+01 -1.44192195882E+01 -1.37618374697E+01 -1.29854859152E+01 -1.20920703766E+01 -1.10847873350E+01 -9.96820494331E+00 -8.74833385665E+00 -7.43268580638E+00 -6.03031732313E+00 -4.55185589492E+00 -3.00950576035E+00 -1.41703049830E+00 2.10290408913E-01 1.85573378155E+00 3.50123630333E+00 5.12753178082E+00 6.71432410544E+00 8.24049747655E+00 9.68436488291E+00 1.10239551553E+01 1.22373380908E+01 1.33029862064E+01 1.42001706034E+01 1.49093872296E+01 1.54128085064E+01 1.56947538794E+01 1.57421713581E+01 1.55451205716E+01 1.50972463250E+01 1.43962301287E+01 1.34442057596E+01 1.22481236558E+01 1.08200479198E+01 9.17736899017E+00 7.34291472769E+00 5.34494283312E+00 3.21699827631E+00 9.97620846917E-01 -1.27010986732E+00 -3.53920174038E+00 -5.75955535057E+00 -7.87894810586E+00 -9.84419238044E+00 -1.16024561316E+01 -1.31027270031E+01 -1.42973927925E+01 -1.51439025716E+01 -1.56064639595E+01 -1.56577234087E+01 -1.52803682699E+01 -1.44685823434E+01 -1.32292811260E+01 -1.15830496156E+01 -9.56470494638E+00 -7.22340890026E+00 -4.62226205702E+00 -1.83732249603E+00 1.04399207330E+00 3.92513890546E+00 6.70331575185E+00 9.27292097273E+00 1.15295373370E+01 1.33743312044E+01 1.47187199892E+01 1.54891225691E+01 1.56315719937E+01 1.51159402072E+01 1.39395035617E+01 1.21295688274E+01 9.74488535785E+00 6.87559288469E+00 3.64149841314E+00 1.88541274300E-01 -3.31660723429E+00 -6.69375538676E+00 -9.75803451276E+00 -1.23300583209E+01 -1.42469407511E+01 -1.53735792245E+01 -1.56134913672E+01 -1.49184045717E+01 -1.32957528585E+01 -1.08132476800E+01 -7.59977012738E+00 -3.84198967979E+00 2.23647576972E-01 4.32360383977E+00 8.16427046310E+00 1.14525634344E+01 1.39188933522E+01 1.53408956526E+01 1.55659633354E+01 1.45304017466E+01 1.22729727038E+01 8.94075678363E+00 4.78566829153E+00 1.50617505050E-01 -4.55478749260E+00 -8.88802065087E+00 -1.24147295456E+01 -1.47537906490E+01 -1.56219606085E+01 -1.48730564548E+01 -1.25263785153E+01 -8.77948689514E+00 -4.00154156816E+00 1.29477309073E+00 6.50228555781E+00 1.09860297497E+01 1.41613297752E+01 1.55743638292E+01 1.49744181267E+01 1.23664015758E+01 8.03316641110E+00 2.51997701642E+00 -3.42195863998E+00 -8.92999848017E+00 -1.31530343290E+01 -1.53869577176E+01 -1.52018026741E+01 -1.25376350617E+01 -7.74791487012E+00 -1.57501553372E+00 4.94735003673E+00 1.06569575038E+01 1.44691934345E+01 1.55920800546E+01 1.37081076122E+01 9.08056019126E+00 2.55102723402E+00 -4.58694779911E+00 -1.08277970553E+01 -1.47692066867E+01 -1.54402074857E+01 espresso-5.1/PW/examples/EXX_example/Pseudo/NPBE085nlcc.RRKJ30000644000175000017500000066304012341373025021473 0ustar mbambaN 2 F T 1 4 3 4 0.50000000000E+01-.19391341360E+02 2 -.70000000000E+010.10000000000E+030.70000000000E+010.12500000000E-01 1085 5 4 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 8.50000000000E-01 2S 1 0 2.00 2S 1 0 0.00 2P 2 1 3.00 2P 2 1 0.00 3D 3 2 -2.00 713 7.69481897942E-01 7.79160790802E-01 7.88961429227E-01 7.98885344590E-01 8.08941123353E-01 8.19080982023E-01 8.29474351556E-01 8.39796533857E-01 8.50386916874E-01 8.61171749959E-01 8.71912890628E-01 8.82866567901E-01 8.94060809417E-01 9.05189693372E-01 9.16647457471E-01 9.28194843476E-01 9.39826558182E-01 9.51665716995E-01 9.63598596753E-01 9.75740689109E-01 9.88102852013E-01 1.00042142163E+00 1.01305235722E+00 1.02577082353E+00 1.03873912332E+00 1.05169724731E+00 1.06503317503E+00 1.07835838445E+00 1.09196296693E+00 1.10564850768E+00 1.11963003341E+00 1.13364229694E+00 1.14792650529E+00 1.16237576558E+00 1.17699301706E+00 1.19182831092E+00 1.20675144896E+00 1.22201250166E+00 1.23733013801E+00 1.25292182729E+00 1.26864424021E+00 1.28467118162E+00 1.30076446409E+00 1.31713540545E+00 1.33376547377E+00 1.35044302309E+00 1.36749770125E+00 1.38464321834E+00 1.40207465012E+00 1.41971288866E+00 1.43756946326E+00 1.45566967541E+00 1.47397053753E+00 1.49248588461E+00 1.51131051606E+00 1.53033113201E+00 1.54949894455E+00 1.56910186680E+00 1.58874580681E+00 1.60872995092E+00 1.62901221575E+00 1.64948241661E+00 1.67023273105E+00 1.69121751957E+00 1.71251983277E+00 1.73404824223E+00 1.75588375846E+00 1.77796119486E+00 1.80031468415E+00 1.82294750390E+00 1.84588953322E+00 1.86913541539E+00 1.89259521878E+00 1.91642899816E+00 1.94055033251E+00 1.96492709831E+00 1.98963023966E+00 2.01469796849E+00 2.04000715954E+00 2.06569555859E+00 2.09165196703E+00 2.11798188133E+00 2.14463609064E+00 2.17157141665E+00 2.19890290663E+00 2.22657363880E+00 2.25458630401E+00 2.28293312698E+00 2.31164051375E+00 2.34074202170E+00 2.37015067856E+00 2.39999287712E+00 2.43016706933E+00 2.46074192536E+00 2.49169598274E+00 2.52302465853E+00 2.55475896295E+00 2.58691087360E+00 2.61943637183E+00 2.65238002843E+00 2.68576641564E+00 2.71953165661E+00 2.75373472933E+00 2.78836969845E+00 2.82344744769E+00 2.85898412827E+00 2.89489518428E+00 2.93134992007E+00 2.96821117872E+00 3.00553877651E+00 3.04335837661E+00 3.08161579529E+00 3.12042018678E+00 3.15961823608E+00 3.19940383200E+00 3.23963147062E+00 3.28038033223E+00 3.32162428787E+00 3.36342462915E+00 3.40574369170E+00 3.44855826123E+00 3.49194789549E+00 3.53586048631E+00 3.58035035464E+00 3.62538082066E+00 3.67098760331E+00 3.71715849593E+00 3.76390727092E+00 3.81125048687E+00 3.85919608140E+00 3.90773585768E+00 3.95687870828E+00 4.00666741273E+00 4.05705646084E+00 4.10808249679E+00 4.15977423506E+00 4.21207338305E+00 4.26506421463E+00 4.31871834715E+00 4.37303718462E+00 4.42802748352E+00 4.48374202127E+00 4.54013581902E+00 4.59723377378E+00 4.65507294544E+00 4.71362453451E+00 4.77290907133E+00 4.83294985832E+00 4.89373377314E+00 4.95529081874E+00 5.01761824513E+00 5.08072568473E+00 5.14465508702E+00 5.20934969289E+00 5.27487098623E+00 5.34123399017E+00 5.40839715856E+00 5.47643776300E+00 5.54531629675E+00 5.61506922652E+00 5.68569675349E+00 5.75721233175E+00 5.82962647794E+00 5.90296380001E+00 5.97720020006E+00 6.05238110527E+00 6.12851812911E+00 6.20560240360E+00 6.28365909510E+00 6.36268865470E+00 6.44272667959E+00 6.52377114878E+00 6.60581939505E+00 6.68891092223E+00 6.77304518797E+00 6.85822922476E+00 6.94450107740E+00 7.03184571529E+00 7.12029123986E+00 7.20985703730E+00 7.30054302266E+00 7.39237419069E+00 7.48534029240E+00 7.57951018488E+00 7.67483633353E+00 7.77137440277E+00 7.86911508838E+00 7.96810557766E+00 8.06832697706E+00 8.16980477864E+00 8.27256610980E+00 8.37661703768E+00 8.48197722297E+00 8.58866542200E+00 8.69669885723E+00 8.80608015758E+00 8.91684578262E+00 9.02899732049E+00 9.14256255330E+00 9.25756233622E+00 9.37400084856E+00 9.49190425964E+00 9.61129149179E+00 9.73218044695E+00 9.85459443579E+00 9.97854515890E+00 1.01040465077E+01 1.02311397509E+01 1.03598182089E+01 1.04901261749E+01 1.06220690718E+01 1.07556658760E+01 1.08909499296E+01 1.10279278620E+01 1.11666414086E+01 1.13070845498E+01 1.14493096559E+01 1.15933021379E+01 1.17391295533E+01 1.18867754448E+01 1.20362784115E+01 1.21876699199E+01 1.23409611806E+01 1.24961740415E+01 1.26533407862E+01 1.28124968988E+01 1.29736364166E+01 1.31368207285E+01 1.33020394485E+01 1.34693458939E+01 1.36387531972E+01 1.38102886395E+01 1.39839852557E+01 1.41598659956E+01 1.43379535858E+01 1.45182867569E+01 1.47008820694E+01 1.48857751605E+01 1.50729970753E+01 1.52625673932E+01 1.54545246308E+01 1.56488936173E+01 1.58457114233E+01 1.60449981438E+01 1.62467901235E+01 1.64511286940E+01 1.66580198724E+01 1.68675322910E+01 1.70796604110E+01 1.72944666005E+01 1.75119728251E+01 1.77322101949E+01 1.79552169866E+01 1.81810306170E+01 1.84096790290E+01 1.86412084013E+01 1.88756403369E+01 1.91130254480E+01 1.93533903243E+01 1.95967813658E+01 1.98432277822E+01 2.00927761129E+01 2.03454575708E+01 2.06013183259E+01 2.08603931515E+01 2.11227305551E+01 2.13883562291E+01 2.16573296742E+01 2.19296784756E+01 2.22054494581E+01 2.24846914484E+01 2.27674392036E+01 2.30537409980E+01 2.33436448263E+01 2.36371878164E+01 2.39344220871E+01 2.42353923664E+01 2.45401444467E+01 2.48487251926E+01 2.51611849364E+01 2.54775699273E+01 2.57979308344E+01 2.61223177953E+01 2.64507813413E+01 2.67833735904E+01 2.71201430662E+01 2.74611387090E+01 2.78064299866E+01 2.81560477662E+01 2.85100662279E+01 2.88685261982E+01 2.92314959681E+01 2.95990185679E+01 2.99711622917E+01 3.03479770167E+01 3.07295300399E+01 3.11158688435E+01 3.15070661814E+01 3.19031739347E+01 3.23042547041E+01 3.27103775632E+01 3.31215973731E+01 3.35379781471E+01 3.39595914183E+01 3.43864980482E+01 3.48187643172E+01 3.52564565589E+01 3.56996468052E+01 3.61483990085E+01 3.66027824730E+01 3.70628730991E+01 3.75287378454E+01 3.80004501304E+01 3.84780809579E+01 3.89617093024E+01 3.94514028781E+01 3.99472442731E+01 4.04493085856E+01 4.09576678196E+01 4.14724090388E+01 4.19936055807E+01 4.25213429173E+01 4.30556983156E+01 4.35967547924E+01 4.41446006364E+01 4.46993136793E+01 4.52609857727E+01 4.58296982258E+01 4.64055447986E+01 4.69886074185E+01 4.75789796004E+01 4.81767552856E+01 4.87820191898E+01 4.93948731677E+01 5.00154026906E+01 5.06437103579E+01 5.12798913370E+01 5.19240391837E+01 5.25762596060E+01 5.32366460585E+01 5.39053060444E+01 5.45823373317E+01 5.52678471314E+01 5.59619391369E+01 5.66647201157E+01 5.73762978786E+01 5.80967804859E+01 5.88262795563E+01 5.95649058147E+01 6.03127728892E+01 6.10699954390E+01 6.18366867210E+01 6.26129679162E+01 6.33989514867E+01 6.41947651940E+01 6.50005237575E+01 6.58163509744E+01 6.66423738568E+01 6.74787160411E+01 6.83255047997E+01 6.91828692550E+01 7.00509387679E+01 7.09298446972E+01 7.18197228467E+01 7.27207048453E+01 7.36329283416E+01 7.45565303990E+01 7.54916528938E+01 7.64384340794E+01 7.73970177310E+01 7.83675497311E+01 7.93501732327E+01 8.03450384586E+01 8.13522941231E+01 8.23720915256E+01 8.34045824215E+01 8.44499211082E+01 8.55082677249E+01 8.65797762115E+01 8.76646076246E+01 8.87629243048E+01 8.98748898162E+01 9.10006683687E+01 9.21404287808E+01 9.32943365423E+01 9.44625690518E+01 9.56452911701E+01 9.68426842304E+01 9.80549204657E+01 9.92821801963E+01 1.00524643853E+02 1.01782493343E+02 1.03055912275E+02 1.04345089335E+02 1.05650209358E+02 1.06971465277E+02 1.08309048207E+02 1.09663151234E+02 1.11033974201E+02 1.12421711271E+02 1.13826565114E+02 1.15248738240E+02 1.16688433645E+02 1.18145858119E+02 1.19621221950E+02 1.21114733697E+02 1.22626607229E+02 1.24157056736E+02 1.25706299905E+02 1.27274554188E+02 1.28862042530E+02 1.30468987041E+02 1.32095613250E+02 1.33742147180E+02 1.35408821558E+02 1.37095863625E+02 1.38803510796E+02 1.40531996661E+02 1.42281559265E+02 1.44052439693E+02 1.45844877565E+02 1.47659119895E+02 1.49495409115E+02 1.51353996313E+02 1.53235129940E+02 1.55139062608E+02 1.57066047514E+02 1.59016342195E+02 1.60990202305E+02 1.62987889690E+02 1.65009665018E+02 1.67055792321E+02 1.69126536059E+02 1.71222164954E+02 1.73342946421E+02 1.75489151802E+02 1.77661053133E+02 1.79858924652E+02 1.82083041996E+02 1.84333681331E+02 1.86611122786E+02 1.88915645079E+02 1.91247529660E+02 1.93607060046E+02 1.95994519034E+02 1.98410193258E+02 2.00854366761E+02 2.03327329550E+02 2.05829366494E+02 2.08360769295E+02 2.10921826842E+02 2.13512828761E+02 2.16134067157E+02 2.18785833471E+02 2.21468418026E+02 2.24182113778E+02 2.26927213910E+02 2.29704008175E+02 2.32512790045E+02 2.35353851262E+02 2.38227481454E+02 2.41133972545E+02 2.44073613247E+02 2.47046693096E+02 2.50053498793E+02 2.53094317527E+02 2.56169433087E+02 2.59279129155E+02 2.62423686575E+02 2.65603383956E+02 2.68818498193E+02 2.72069302889E+02 2.75356068874E+02 2.78679064176E+02 2.82038552526E+02 2.85434795428E+02 2.88868048294E+02 2.92338564069E+02 2.95846589690E+02 2.99392368315E+02 3.02976136427E+02 3.06598125448E+02 3.10258560893E+02 3.13957661370E+02 3.17695638515E+02 3.21472696680E+02 3.25289033065E+02 3.29144834902E+02 3.33040282997E+02 3.36975546802E+02 3.40950787193E+02 3.44966154335E+02 3.49021787401E+02 3.53117814763E+02 3.57254351668E+02 3.61431501667E+02 3.65649354295E+02 3.69907985768E+02 3.74207456747E+02 3.78547813429E+02 3.82929084809E+02 3.87351284151E+02 3.91814406158E+02 3.96318426459E+02 4.00863303269E+02 4.05448972110E+02 4.10075348916E+02 4.14742327069E+02 4.19449776164E+02 4.24197542979E+02 4.28985447550E+02 4.33813284999E+02 4.38680822327E+02 4.43587798005E+02 4.48533921142E+02 4.53518869605E+02 4.58542289345E+02 4.63603792490E+02 4.68702956675E+02 4.73839323099E+02 4.79012395430E+02 4.84221637931E+02 4.89466474890E+02 4.94746287705E+02 5.00060414638E+02 5.05408148247E+02 5.10788733575E+02 5.16201368011E+02 5.21645197021E+02 5.27119314534E+02 5.32622759782E+02 5.38154516024E+02 5.43713507893E+02 5.49298600139E+02 5.54908594973E+02 5.60542230761E+02 5.66198178103E+02 5.71875039837E+02 5.77571347257E+02 5.83285558092E+02 5.89016054510E+02 5.94761140419E+02 6.00519038856E+02 6.06287889521E+02 6.12065746499E+02 6.17850575408E+02 6.23640250437E+02 6.29432552777E+02 6.35225166083E+02 6.41015674658E+02 6.46801561638E+02 6.52580203989E+02 6.58348870876E+02 6.64104720759E+02 6.69844797948E+02 6.75566029670E+02 6.81265223600E+02 6.86939063627E+02 6.92584107981E+02 6.98196785616E+02 7.03773392625E+02 7.09310090264E+02 7.14802900922E+02 7.20247704909E+02 7.25640238442E+02 7.30976089295E+02 7.36250694601E+02 7.41459337089E+02 7.46597143090E+02 7.51659078416E+02 7.56639946951E+02 7.61534385862E+02 7.66336865122E+02 7.71041682534E+02 7.75642963801E+02 7.80134657072E+02 7.84510533405E+02 7.88764182906E+02 7.92889013209E+02 7.96878247874E+02 8.00724924330E+02 8.04421892876E+02 8.07961814627E+02 8.11337161956E+02 8.14540216371E+02 8.17563069137E+02 8.20397620766E+02 8.23035581229E+02 8.25468471021E+02 8.27687621909E+02 8.29684178468E+02 8.31449100500E+02 8.32973165042E+02 8.34246969758E+02 8.35260936807E+02 8.36005316657E+02 8.36470193910E+02 8.36645492644E+02 8.36520982990E+02 8.36086289132E+02 8.35330897570E+02 8.34244166582E+02 8.32815336710E+02 8.31033543340E+02 8.28887828375E+02 8.26367156394E+02 8.23460428960E+02 8.20156503366E+02 8.16444210870E+02 8.12312378493E+02 8.07749851182E+02 8.02745517074E+02 7.97288335236E+02 7.91367364509E+02 7.84971795576E+02 7.78090986870E+02 7.70714500532E+02 7.62832144905E+02 7.54434016864E+02 7.45510550684E+02 7.36052567733E+02 7.26051332413E+02 7.15498610116E+02 7.04386731251E+02 6.92708657487E+02 6.80458055415E+02 6.67629372022E+02 6.54217917434E+02 6.40219951550E+02 6.25632776399E+02 6.10454833265E+02 5.94685805807E+02 5.78326728513E+02 5.61380099421E+02 5.43850000007E+02 5.25742218128E+02 5.07064376720E+02 4.87826066943E+02 4.68038985015E+02 4.47717071972E+02 4.26876657091E+02 4.05536601362E+02 3.83718442941E+02 3.61446541195E+02 3.38748218209E+02 3.15653897518E+02 2.92197235571E+02 2.68415246281E+02 2.44348413718E+02 2.20040793320E+02 1.95540094339E+02 1.70897744632E+02 1.46168930694E+02 1.21412611114E+02 9.66914974602E+01 7.20720007545E+01 4.76241353240E+01 2.34213786788E+01 -4.59520429210E-01 -2.39387886649E+01 -4.69339355544E+01 -6.93601266584E+01 -9.11306258480E+01 -1.12157312390E+02 -1.32351274343E+02 -1.51623482571E+02 -1.69885545665E+02 -1.87050545939E+02 -2.03033955997E+02 -2.17754630668E+02 -2.31135868703E+02 -2.43106537422E+02 -2.53602244290E+02 -2.62566544385E+02 -2.69952160390E+02 -2.75722193554E+02 -2.79851295448E+02 -2.82326766368E+02 -2.83149542165E+02 -2.82335023920E+02 -2.79913700516E+02 -2.75931510370E+02 -2.70449883796E+02 -2.63545403937E+02 -2.55309028253E+02 -2.45844808405E+02 -2.35268059920E+02 -2.23702939893E+02 -2.11279412050E+02 -1.98129606832E+02 -1.84383622356E+02 -1.70164866554E+02 -1.55585114710E+02 -1.40739548474E+02 -1.25702169059E+02 -1.10522132968E+02 -9.52217632350E+01 -7.97972003367E+01 -6.42233826177E+01 -4.84614664738E+01 -3.25058659388E+01 -1.61339161404E+01 -1.66288570490E+00 1.64865186056E-01 -1.63453927265E-02 1.62053978695E-03 -1.60662523552E-04 1.59266712930E-05 -1.57409592938E-06 1.52578831257E-07 -1.55139881929E-08 4.73975710139E-09 -7.29242781368E-10 1.06097703741E+00 713 1.22525231950E+00 1.24066409975E+00 1.25626973646E+00 1.27207166804E+00 1.28808351612E+00 1.30422960162E+00 1.32077820254E+00 1.33721534595E+00 1.35407826955E+00 1.37125015492E+00 1.38835424393E+00 1.40579606578E+00 1.42361978352E+00 1.44134165099E+00 1.45958516623E+00 1.47797200495E+00 1.49649372791E+00 1.51534511794E+00 1.53434633497E+00 1.55368007243E+00 1.57336355332E+00 1.59297962205E+00 1.61309145566E+00 1.63334347106E+00 1.65399234569E+00 1.67462670326E+00 1.69586056961E+00 1.71707908919E+00 1.73874142332E+00 1.76053347048E+00 1.78279564588E+00 1.80510819110E+00 1.82785280068E+00 1.85086039254E+00 1.87413559117E+00 1.89775765618E+00 1.92152054563E+00 1.94582003254E+00 1.97021097694E+00 1.99503746474E+00 2.02007277699E+00 2.04559188085E+00 2.07121799747E+00 2.09728552690E+00 2.12376506840E+00 2.15032186577E+00 2.17747748023E+00 2.20477898351E+00 2.23253505693E+00 2.26062054211E+00 2.28905371981E+00 2.31787468230E+00 2.34701535415E+00 2.37649776975E+00 2.40647186316E+00 2.43675842045E+00 2.46728030679E+00 2.49849307671E+00 2.52977321513E+00 2.56159412775E+00 2.59388926682E+00 2.62648435531E+00 2.65952520434E+00 2.69293970952E+00 2.72685927439E+00 2.76113924406E+00 2.79590787988E+00 2.83106204923E+00 2.86665578919E+00 2.90269435550E+00 2.93922499715E+00 2.97623933647E+00 3.01359507468E+00 3.05154553875E+00 3.08995397167E+00 3.12876961391E+00 3.16810474685E+00 3.20801989001E+00 3.24832024369E+00 3.28922382485E+00 3.33055467821E+00 3.37247982552E+00 3.41492140179E+00 3.45781116394E+00 3.50133112509E+00 3.54539136658E+00 3.58999608916E+00 3.63513310386E+00 3.68084418390E+00 3.72718250848E+00 3.77401049233E+00 3.82152818924E+00 3.86957492282E+00 3.91825945542E+00 3.96754782689E+00 4.01743287336E+00 4.06796367554E+00 4.11915924899E+00 4.17095001447E+00 4.22340651374E+00 4.27656768895E+00 4.33033253539E+00 4.38479441494E+00 4.43994398197E+00 4.49579853366E+00 4.55238365265E+00 4.60956563071E+00 4.66761238515E+00 4.72630697845E+00 4.78574409297E+00 4.84596441191E+00 4.90688222905E+00 4.96867037248E+00 5.03108626318E+00 5.09443676267E+00 5.15849171740E+00 5.22337647173E+00 5.28904973933E+00 5.35560857629E+00 5.42299343396E+00 5.49116766995E+00 5.56025721695E+00 5.63017969325E+00 5.70102114398E+00 5.77272356266E+00 5.84534356943E+00 5.91886189551E+00 5.99330042457E+00 6.06868542790E+00 6.14502952505E+00 6.22231984193E+00 6.30057050151E+00 6.37984929671E+00 6.46008426755E+00 6.54133349733E+00 6.62364249758E+00 6.70691908853E+00 6.79129673174E+00 6.87673058339E+00 6.96322294997E+00 7.05078460671E+00 7.13949915862E+00 7.22929549671E+00 7.32021314357E+00 7.41231079296E+00 7.50554298638E+00 7.59994229746E+00 7.69554567264E+00 7.79233246899E+00 7.89035024171E+00 7.98959473196E+00 8.09008129026E+00 8.19187638023E+00 8.29489029001E+00 8.39922043010E+00 8.50489064827E+00 8.61183531168E+00 8.72017681442E+00 8.82985272227E+00 8.94092087079E+00 9.05338167270E+00 9.16725652465E+00 9.28256217735E+00 9.39933770180E+00 9.51754506255E+00 9.63725625516E+00 9.75848978507E+00 9.88123173016E+00 1.00055220315E+01 1.01313615369E+01 1.02588066779E+01 1.03878543959E+01 1.05185005934E+01 1.06508078907E+01 1.07847755954E+01 1.09204149206E+01 1.10577862366E+01 1.11968658731E+01 1.13376984413E+01 1.14803147525E+01 1.16247148062E+01 1.17709383036E+01 1.19189691629E+01 1.20689164853E+01 1.22207052121E+01 1.23744235472E+01 1.25300569497E+01 1.26876802061E+01 1.28472636037E+01 1.30088476185E+01 1.31724753368E+01 1.33381565203E+01 1.35059224398E+01 1.36758029373E+01 1.38478254368E+01 1.40219942601E+01 1.41983672670E+01 1.43769471493E+01 1.45577780387E+01 1.47408931153E+01 1.49262991649E+01 1.51140377884E+01 1.53041390954E+01 1.54966316123E+01 1.56915524069E+01 1.58889201861E+01 1.60887571209E+01 1.62911287125E+01 1.64960245825E+01 1.67035150313E+01 1.69136088238E+01 1.71263362081E+01 1.73417501426E+01 1.75598613328E+01 1.77807360276E+01 1.80043649201E+01 1.82308310948E+01 1.84601116948E+01 1.86923138279E+01 1.89274117030E+01 1.91654666061E+01 1.94065285674E+01 1.96506155687E+01 1.98977624079E+01 2.01480204237E+01 2.04014459928E+01 2.06580299409E+01 2.09178696516E+01 2.11809489436E+01 2.14473524447E+01 2.17171011899E+01 2.19902386168E+01 2.22668172579E+01 2.25468737047E+01 2.28304441890E+01 2.31175902727E+01 2.34083384424E+01 2.37027453706E+01 2.40008604704E+01 2.43027150156E+01 2.46083702447E+01 2.49178657464E+01 2.52312604788E+01 2.55485865528E+01 2.58699017770E+01 2.61952718801E+01 2.65247066860E+01 2.68583151291E+01 2.71960887623E+01 2.75381266086E+01 2.78844637566E+01 2.82351497741E+01 2.85902455678E+01 2.89498106922E+01 2.93138897140E+01 2.96825560586E+01 3.00558442686E+01 3.04338347982E+01 3.08165700870E+01 3.12041239305E+01 3.15965429294E+01 3.19939011051E+01 3.23962482355E+01 3.28036577742E+01 3.32161851362E+01 3.36339074846E+01 3.40568658807E+01 3.44851548863E+01 3.49188185713E+01 3.53579314495E+01 3.58025712127E+01 3.62527932918E+01 3.67086745122E+01 3.71702912640E+01 3.76377027468E+01 3.81109918848E+01 3.85902299196E+01 3.90754897745E+01 3.95668460793E+01 4.00643789588E+01 4.05681620776E+01 4.10782761075E+01 4.15948008773E+01 4.21178168508E+01 4.26474070052E+01 4.31836486433E+01 4.37266197220E+01 4.42764306961E+01 4.48331309476E+01 4.53968383927E+01 4.59676181854E+01 4.65455789410E+01 4.71307893162E+01 4.77233579397E+01 4.83233643183E+01 4.89309155203E+01 4.95460872741E+01 5.01689952984E+01 5.07997222975E+01 5.14383679383E+01 5.20850421449E+01 5.27398323555E+01 5.34028404992E+01 5.40741804116E+01 5.47539490523E+01 5.54422519620E+01 5.61391947715E+01 5.68448921416E+01 5.75594459541E+01 5.82829665660E+01 5.90155747871E+01 5.97573772764E+01 6.05084909340E+01 6.12690288436E+01 6.20391167073E+01 6.28188624249E+01 6.36083974376E+01 6.44078413430E+01 6.52173088573E+01 6.60369385308E+01 6.68668472068E+01 6.77071709385E+01 6.85580328062E+01 6.94195649985E+01 7.02919080576E+01 7.11751859849E+01 7.20695449838E+01 7.29751145795E+01 7.38920440158E+01 7.48204638167E+01 7.57605228619E+01 7.67123707080E+01 7.76761423313E+01 7.86519998356E+01 7.96400794142E+01 8.06405443724E+01 8.16535462701E+01 8.26792341265E+01 8.37177762058E+01 8.47693213887E+01 8.58340408042E+01 8.69120901887E+01 8.80036402284E+01 8.91088560622E+01 9.02279077030E+01 9.13609668297E+01 9.25082055264E+01 9.36698015243E+01 9.48459311529E+01 9.60367753481E+01 9.72425166930E+01 9.84633355653E+01 9.96994248952E+01 1.00950963831E+02 1.02218155746E+02 1.03501183389E+02 1.04800243889E+02 1.06115539477E+02 1.07447267059E+02 1.08795629307E+02 1.10160831838E+02 1.11543080663E+02 1.12942584968E+02 1.14359560991E+02 1.15794218377E+02 1.17246776316E+02 1.18717453088E+02 1.20206474603E+02 1.21714061060E+02 1.23240441407E+02 1.24785847949E+02 1.26350508687E+02 1.27934662826E+02 1.29538547205E+02 1.31162402767E+02 1.32806471201E+02 1.34470998232E+02 1.36156238849E+02 1.37862438251E+02 1.39589852918E+02 1.41338741378E+02 1.43109364118E+02 1.44901982664E+02 1.46716865857E+02 1.48554277289E+02 1.50414499416E+02 1.52297794877E+02 1.54204452396E+02 1.56134746318E+02 1.58088963807E+02 1.60067392221E+02 1.62070321279E+02 1.64098043414E+02 1.66150859109E+02 1.68229062783E+02 1.70332961689E+02 1.72462860222E+02 1.74619065928E+02 1.76801897054E+02 1.79011662897E+02 1.81248686228E+02 1.83513289593E+02 1.85805796328E+02 1.88126535804E+02 1.90475842940E+02 1.92854049952E+02 1.95261497481E+02 1.97698526696E+02 2.00165484331E+02 2.02662716770E+02 2.05190579116E+02 2.07749425174E+02 2.10339614186E+02 2.12961506201E+02 2.15615471901E+02 2.18301873318E+02 2.21021088607E+02 2.23773489892E+02 2.26559456381E+02 2.29379372114E+02 2.32233618844E+02 2.35122590045E+02 2.38046671974E+02 2.41006264611E+02 2.44001763787E+02 2.47033571949E+02 2.50102092496E+02 2.53207735722E+02 2.56350908973E+02 2.59532029415E+02 2.62751512382E+02 2.66009778558E+02 2.69307249332E+02 2.72644352871E+02 2.76021515293E+02 2.79439168965E+02 2.82897747376E+02 2.86397687536E+02 2.89939428686E+02 2.93523410940E+02 2.97150080712E+02 3.00819882206E+02 3.04533263982E+02 3.08290677896E+02 3.12092574695E+02 3.15939411224E+02 3.19831640257E+02 3.23769724034E+02 3.27754116689E+02 3.31785283196E+02 3.35863684111E+02 3.39989781173E+02 3.44164040080E+02 3.48386925501E+02 3.52658900358E+02 3.56980431774E+02 3.61351987251E+02 3.65774028888E+02 3.70247024693E+02 3.74771439965E+02 3.79347736676E+02 3.83976380457E+02 3.88657831877E+02 3.93392552835E+02 3.98181000756E+02 4.03023633867E+02 4.07920905031E+02 4.12873266957E+02 4.17881167890E+02 4.22945052544E+02 4.28065362947E+02 4.33242535929E+02 4.38477003946E+02 4.43769195033E+02 4.49119530439E+02 4.54528427898E+02 4.59996295518E+02 4.65523537503E+02 4.71110548566E+02 4.76757717441E+02 4.82465422300E+02 4.88234033316E+02 4.94063911311E+02 4.99955406176E+02 5.05908856765E+02 5.11924590403E+02 5.18002923092E+02 5.24144155048E+02 5.30348576308E+02 5.36616458926E+02 5.42948061375E+02 5.49343625155E+02 5.55803374350E+02 5.62327515934E+02 5.68916236076E+02 5.75569702413E+02 5.82288060369E+02 5.89071434253E+02 5.95919923722E+02 6.02833605495E+02 6.09812529032E+02 6.16856718843E+02 6.23966170013E+02 6.31140847383E+02 6.38380688177E+02 6.45685593638E+02 6.53055433940E+02 6.60490043493E+02 6.67989218984E+02 6.75552720902E+02 6.83180267328E+02 6.90871536822E+02 6.98626163331E+02 7.06443735552E+02 7.14323795597E+02 7.22265836016E+02 7.30269298724E+02 7.38333571975E+02 7.46457989293E+02 7.54641826394E+02 7.62884299441E+02 7.71184562074E+02 7.79541704495E+02 7.87954748851E+02 7.96422648834E+02 8.04944285607E+02 8.13518464928E+02 8.22143916926E+02 8.30819289323E+02 8.39543148047E+02 8.48313972216E+02 8.57130152101E+02 8.65989984926E+02 8.74891672859E+02 8.83833318799E+02 8.92812924301E+02 9.01828383348E+02 9.10877482353E+02 9.19957894154E+02 9.29067174802E+02 9.38202760389E+02 9.47361962760E+02 9.56541965368E+02 9.65739819347E+02 9.74952439900E+02 9.84176601762E+02 9.93408934494E+02 1.00264591999E+03 1.01188388525E+03 1.02111899954E+03 1.03034727143E+03 1.03956454093E+03 1.04876647680E+03 1.05794857202E+03 1.06710613826E+03 1.07623430123E+03 1.08532799676E+03 1.09438196407E+03 1.10339074274E+03 1.11234866703E+03 1.12124986014E+03 1.13008823105E+03 1.13885746812E+03 1.14755103399E+03 1.15616216236E+03 1.16468385107E+03 1.17310885857E+03 1.18142969797E+03 1.18963863383E+03 1.19772767560E+03 1.20568857539E+03 1.21351282029E+03 1.22119163165E+03 1.22871595711E+03 1.23607647071E+03 1.24326356421E+03 1.25026734776E+03 1.25707764377E+03 1.26368398449E+03 1.27007560935E+03 1.27624146174E+03 1.28217018735E+03 1.28785013088E+03 1.29326933666E+03 1.29841554531E+03 1.30327619460E+03 1.30783841865E+03 1.31208904817E+03 1.31601461213E+03 1.31960133887E+03 1.32283515847E+03 1.32570170655E+03 1.32818632735E+03 1.33027407910E+03 1.33194974003E+03 1.33319781436E+03 1.33400254148E+03 1.33434790435E+03 1.33421763982E+03 1.33359525125E+03 1.33246402152E+03 1.33080702797E+03 1.32860715892E+03 1.32584713352E+03 1.32250952019E+03 1.31857676211E+03 1.31403119987E+03 1.30885510101E+03 1.30303068893E+03 1.29654017728E+03 1.28936580504E+03 1.28148987646E+03 1.27289480494E+03 1.26356315869E+03 1.25347771145E+03 1.24262149935E+03 1.23097787784E+03 1.21853058893E+03 1.20526382829E+03 1.19116232262E+03 1.17621140839E+03 1.16039712046E+03 1.14370628395E+03 1.12612661571E+03 1.10764682933E+03 1.08825675194E+03 1.06794744388E+03 1.04671132994E+03 1.02454233681E+03 1.00143603954E+03 9.77389815716E+02 9.52403009071E+02 9.26477101654E+02 8.99615892772E+02 8.71825689352E+02 8.43115501184E+02 8.13497245354E+02 7.82985957776E+02 7.51600010632E+02 7.19361334521E+02 6.86295646483E+02 6.52432678169E+02 6.17806407244E+02 5.82455286620E+02 5.46422469767E+02 5.09756031709E+02 4.72509178590E+02 4.34740446360E+02 3.96513880794E+02 3.57899199356E+02 3.18971923459E+02 2.79813482792E+02 2.40511280510E+02 2.01158716372E+02 1.61855158324E+02 1.22705859595E+02 8.38218082871E+01 4.53195073000E+01 7.32067212587E+00 -3.00481580886E+01 -6.66561058667E+01 -1.02368544973E+02 -1.37047799619E+02 -1.70553962387E+02 -2.02745833298E+02 -2.33481986902E+02 -2.62621967917E+02 -2.90027615724E+02 -3.15564517026E+02 -3.39103578473E+02 -3.60522710467E+02 -3.79708611443E+02 -3.96558627336E+02 -4.10982668827E+02 -4.22905149467E+02 -4.32266910602E+02 -4.39027085396E+02 -4.43164847938E+02 -4.44680986961E+02 -4.43599231977E+02 -4.39967252788E+02 -4.33857247170E+02 -4.25366023989E+02 -4.14614483301E+02 -4.01746401325E+02 -3.86926421533E+02 -3.70337174386E+02 -3.52175459012E+02 -3.32647453299E+02 -3.11962963488E+02 -2.90328784585E+02 -2.67941328858E+02 -2.44978796245E+02 -2.21593305628E+02 -1.97903605836E+02 -1.73989231104E+02 -1.49887289016E+02 -1.25593402905E+02 -1.01069474546E+02 -7.62553053783E+01 -5.11425731832E+01 -2.53811010266E+01 -2.61566492479E+00 2.59327555242E-01 -2.57107690686E-02 2.54905609402E-03 -2.52716855859E-04 2.50521100070E-05 -2.47595166206E-06 2.39963680565E-07 -2.44038464935E-08 7.48645434846E-09 -1.15320400337E-09 -6.70366911328E-01 4.23765183595E-01 713 -6.56893998281E-04 -6.73523352500E-04 -6.90573681005E-04 -7.08055640818E-04 -7.25980158749E-04 -7.44358438218E-04 -7.63201966265E-04 -7.82522520725E-04 -8.02332177591E-04 -8.22643318561E-04 -8.43468638779E-04 -8.64821154768E-04 -8.86714212568E-04 -9.09161496073E-04 -9.32177035591E-04 -9.55775216608E-04 -9.79970788781E-04 -1.00477887516E-03 -1.03021498163E-03 -1.05629500662E-03 -1.08303525102E-03 -1.11045242840E-03 -1.13856367541E-03 -1.16738656253E-03 -1.19693910506E-03 -1.22723977432E-03 -1.25830750927E-03 -1.29016172830E-03 -1.32282234138E-03 -1.35630976250E-03 -1.39064492245E-03 -1.42584928187E-03 -1.46194484470E-03 -1.49895417188E-03 -1.53690039553E-03 -1.57580723334E-03 -1.61569900341E-03 -1.65660063947E-03 -1.69853770646E-03 -1.74153641649E-03 -1.78562364524E-03 -1.83082694876E-03 -1.87717458067E-03 -1.92469550986E-03 -1.97341943855E-03 -2.02337682090E-03 -2.07459888202E-03 -2.12711763749E-03 -2.18096591335E-03 -2.23617736669E-03 -2.29278650658E-03 -2.35082871575E-03 -2.41034027261E-03 -2.47135837399E-03 -2.53392115836E-03 -2.59806772969E-03 -2.66383818185E-03 -2.73127362374E-03 -2.80041620489E-03 -2.87130914191E-03 -2.94399674542E-03 -3.01852444778E-03 -3.09493883150E-03 -3.17328765831E-03 -3.25361989909E-03 -3.33598576438E-03 -3.42043673587E-03 -3.50702559847E-03 -3.71915089120E-03 -3.81134389354E-03 -3.78057114951E-03 -3.87686102754E-03 -3.97482556220E-03 -4.07550979775E-03 -4.17885311373E-03 -4.28403212127E-03 -4.39230746095E-03 -4.50326882127E-03 -4.61787336627E-03 -4.73355007835E-03 -4.85402739233E-03 -4.97813511016E-03 -5.10236457189E-03 -5.23315430335E-03 -5.36438649593E-03 -5.50034903183E-03 -5.64064006557E-03 -5.78246774717E-03 -5.92875562019E-03 -6.07821671228E-03 -6.23377600969E-03 -6.39050294778E-03 -6.55238314140E-03 -6.71878352320E-03 -6.88807265926E-03 -7.06198795039E-03 -7.24174449290E-03 -7.42445384798E-03 -7.61265041116E-03 -7.80606276275E-03 -8.00256699936E-03 -8.20631128877E-03 -8.41311548169E-03 -8.62646165349E-03 -8.84446952780E-03 -9.06802882450E-03 -9.29821913490E-03 -9.53410575310E-03 -9.77424138480E-03 -1.00219310081E-02 -1.02762824543E-02 -1.05363740534E-02 -1.08031297161E-02 -1.10759510906E-02 -1.13559310923E-02 -1.16440645144E-02 -1.19391755356E-02 -1.22405665167E-02 -1.25512902882E-02 -1.28690035185E-02 -1.31943896814E-02 -1.35279475525E-02 -1.38714540698E-02 -1.42226835361E-02 -1.45824967708E-02 -1.49512002058E-02 -1.53290677734E-02 -1.57169279582E-02 -1.61155229439E-02 -1.65240750297E-02 -1.69423695413E-02 -1.73707677898E-02 -1.78101685630E-02 -1.82605037394E-02 -1.87232668483E-02 -1.91974044538E-02 -1.96835799479E-02 -2.01809718815E-02 -2.06928337963E-02 -2.12162480318E-02 -2.17533761132E-02 -2.23039381708E-02 -2.28687521834E-02 -2.34479825628E-02 -2.40413322497E-02 -2.46508079046E-02 -2.52741805670E-02 -2.59133653638E-02 -2.65696990984E-02 -2.72426935060E-02 -2.79313594018E-02 -2.86387544943E-02 -2.93638300577E-02 -3.01076056358E-02 -3.08689935389E-02 -3.16507539561E-02 -3.24519656485E-02 -3.32738792088E-02 -3.41161938723E-02 -3.49794069877E-02 -3.58655403003E-02 -3.67729723288E-02 -3.77043173943E-02 -3.86580957101E-02 -3.96367157992E-02 -4.06411602092E-02 -4.16687785300E-02 -4.27244359609E-02 -4.38052492802E-02 -4.49140244893E-02 -4.60520385779E-02 -4.72173610595E-02 -4.84121834481E-02 -4.96385522056E-02 -5.08947169761E-02 -5.21829775541E-02 -5.35042190953E-02 -5.48587937723E-02 -5.62472147337E-02 -5.76709794523E-02 -5.91303056391E-02 -6.06276583943E-02 -6.21628365972E-02 -6.37358768321E-02 -6.53504521258E-02 -6.70037215224E-02 -6.86998275408E-02 -7.04393592105E-02 -7.22220257847E-02 -7.40502389417E-02 -7.59253248514E-02 -7.78470364272E-02 -7.98176311476E-02 -8.18389536841E-02 -8.39093311656E-02 -8.60337848253E-02 -8.82127667487E-02 -9.04448535748E-02 -9.27351423862E-02 -9.50822218058E-02 -9.74898154755E-02 -9.99567907508E-02 -1.02487437214E-01 -1.05081944143E-01 -1.07741313443E-01 -1.10468980135E-01 -1.13265617164E-01 -1.16132174450E-01 -1.19072685292E-01 -1.22087123470E-01 -1.25177628616E-01 -1.28346438915E-01 -1.31595264273E-01 -1.34925861001E-01 -1.38341728274E-01 -1.41843297934E-01 -1.45434116660E-01 -1.49116338713E-01 -1.52889622406E-01 -1.56761164708E-01 -1.60728083600E-01 -1.64797375151E-01 -1.68969209001E-01 -1.73246780152E-01 -1.77631574887E-01 -1.82128188655E-01 -1.86738594225E-01 -1.91465808308E-01 -1.96312663367E-01 -2.01281408973E-01 -2.06376671894E-01 -2.11601416900E-01 -2.16956732961E-01 -2.22449033452E-01 -2.28080106190E-01 -2.33853234986E-01 -2.39773526646E-01 -2.45842029137E-01 -2.52065451748E-01 -2.58446097391E-01 -2.64988088379E-01 -2.71695891454E-01 -2.78573001886E-01 -2.85623818421E-01 -2.92855243574E-01 -3.00266617682E-01 -3.07867902434E-01 -3.15660355978E-01 -3.23650894376E-01 -3.31843884687E-01 -3.40243453450E-01 -3.48855127494E-01 -3.57684781181E-01 -3.66739837309E-01 -3.76022733720E-01 -3.85538804544E-01 -3.95300340834E-01 -4.05304585868E-01 -4.15564015071E-01 -4.26082368991E-01 -4.36867549297E-01 -4.47924862775E-01 -4.59262103291E-01 -4.70887665268E-01 -4.82805560074E-01 -4.95026133912E-01 -5.07555363472E-01 -5.20403163941E-01 -5.33573374250E-01 -5.47078505662E-01 -5.60926752096E-01 -5.75123492305E-01 -5.89680789592E-01 -6.04603873231E-01 -6.19908217136E-01 -6.35597470338E-01 -6.51684399893E-01 -6.68178493813E-01 -6.85089758572E-01 -7.02429317165E-01 -7.20206944523E-01 -7.38434902476E-01 -7.57123480119E-01 -7.76285473492E-01 -7.95932055811E-01 -8.16076884845E-01 -8.36730408828E-01 -8.57906288751E-01 -8.79617543588E-01 -9.01878708597E-01 -9.24703725289E-01 -9.48105728599E-01 -9.72099592675E-01 -9.96700722827E-01 -1.02192403110E+00 -1.04778480764E+00 -1.07430117047E+00 -1.10148802333E+00 -1.12936254558E+00 -1.15794104205E+00 -1.18724429348E+00 -1.21728745189E+00 -1.24809145245E+00 -1.27967212126E+00 -1.31205614818E+00 -1.34525487217E+00 -1.37929586872E+00 -1.41419807182E+00 -1.44998219672E+00 -1.48667070028E+00 -1.52428741742E+00 -1.56285629494E+00 -1.60239997562E+00 -1.64294366036E+00 -1.68451245493E+00 -1.72713243495E+00 -1.77083041212E+00 -1.81563403948E+00 -1.86156850423E+00 -1.90866689128E+00 -1.95695422055E+00 -2.00646398574E+00 -2.05722320634E+00 -2.10926799384E+00 -2.16262648374E+00 -2.21733606685E+00 -2.27342735772E+00 -2.33093630737E+00 -2.38989959666E+00 -2.45035300550E+00 -2.51233491843E+00 -2.57588282103E+00 -2.64103587174E+00 -2.70783753606E+00 -2.77632503202E+00 -2.84654495194E+00 -2.91853819845E+00 -2.99235191819E+00 -3.06802996775E+00 -3.14561897657E+00 -3.22516886757E+00 -3.30672842940E+00 -3.39034834367E+00 -3.47608064286E+00 -3.56397804590E+00 -3.65409478617E+00 -3.74648860390E+00 -3.84121608933E+00 -3.93833534852E+00 -4.03790600328E+00 -4.13999117234E+00 -4.24465418238E+00 -4.35195772117E+00 -4.46197258589E+00 -4.57476336357E+00 -4.69040170978E+00 -4.80895692992E+00 -4.93050586412E+00 -5.05512032950E+00 -5.18288106263E+00 -5.31386350075E+00 -5.44815162894E+00 -5.58582657805E+00 -5.72697414896E+00 -5.87168217861E+00 -6.02003993099E+00 -6.17213722821E+00 -6.32807007478E+00 -6.48793594686E+00 -6.65182998770E+00 -6.81985635515E+00 -6.99211636558E+00 -7.16871854528E+00 -7.34977058986E+00 -7.53538364805E+00 -7.72567277811E+00 -7.92075570736E+00 -8.12074992165E+00 -8.32578241880E+00 -8.53597606021E+00 -8.75146302980E+00 -8.97237353791E+00 -9.19884385897E+00 -9.43101191721E+00 -9.66902270944E+00 -9.91302113566E+00 -1.01631565617E+01 -1.04195829914E+01 -1.06824561983E+01 -1.09519387341E+01 -1.12281942538E+01 -1.15113933784E+01 -1.18017069884E+01 -1.20993150496E+01 -1.24043961720E+01 -1.27171400576E+01 -1.30377354796E+01 -1.33663767604E+01 -1.37032675295E+01 -1.40486104368E+01 -1.44026153219E+01 -1.47654981685E+01 -1.51374801328E+01 -1.55187846740E+01 -1.59096464399E+01 -1.63103000714E+01 -1.67209897052E+01 -1.71419620701E+01 -1.75734728811E+01 -1.80157821593E+01 -1.84691588327E+01 -1.89338731347E+01 -1.94102081379E+01 -1.98984485344E+01 -2.03988896923E+01 -2.09118312785E+01 -2.14375800178E+01 -2.19764526723E+01 -2.25287728308E+01 -2.30948681099E+01 -2.36750787827E+01 -2.42697530065E+01 -2.48792400402E+01 -2.55039077826E+01 -2.61441243213E+01 -2.68002727910E+01 -2.74727397453E+01 -2.81619253257E+01 -2.88682360734E+01 -2.95920907184E+01 -3.03339134136E+01 -3.10941452643E+01 -3.18732273428E+01 -3.26716229469E+01 -3.34897942157E+01 -3.43282264033E+01 -3.51874033360E+01 -3.60678291020E+01 -3.69700150747E+01 -3.78944854629E+01 -3.88417768006E+01 -3.98124352249E+01 -4.08070239245E+01 -4.18261129517E+01 -4.28702900908E+01 -4.39401551574E+01 -4.50363185203E+01 -4.61594060612E+01 -4.73100592476E+01 -4.84889322948E+01 -4.96966908004E+01 -5.09340187733E+01 -5.22016149524E+01 -5.35001903688E+01 -5.48304734241E+01 -5.61932090876E+01 -5.75891548928E+01 -5.90190877897E+01 -6.04837992431E+01 -6.19840987052E+01 -6.35208097188E+01 -6.50947759669E+01 -6.67068576800E+01 -6.83579314659E+01 -7.00488949957E+01 -7.17806581521E+01 -7.35541539960E+01 -7.53703337307E+01 -7.72301646175E+01 -7.91346354172E+01 -8.10847539145E+01 -8.30815449517E+01 -8.51260555894E+01 -8.72193519998E+01 -8.93625184075E+01 -9.15566605452E+01 -9.38029037331E+01 -9.61023968454E+01 -9.84563032468E+01 -1.00865810507E+02 -1.03332128084E+02 -1.05856481977E+02 -1.08440122887E+02 -1.11084320687E+02 -1.13790364446E+02 -1.16559566730E+02 -1.19393259805E+02 -1.22292793520E+02 -1.25259543253E+02 -1.28294900493E+02 -1.31400281516E+02 -1.34577116233E+02 -1.37826859295E+02 -1.41150984129E+02 -1.44550979023E+02 -1.48028356584E+02 -1.51584643995E+02 -1.55221389070E+02 -1.58940151530E+02 -1.62742514593E+02 -1.66630072066E+02 -1.70604434290E+02 -1.74667229692E+02 -1.78820094309E+02 -1.83064680629E+02 -1.87402652127E+02 -1.91835682398E+02 -1.96365455100E+02 -2.00993659577E+02 -2.05721994178E+02 -2.10552163682E+02 -2.15485870913E+02 -2.20524826528E+02 -2.25670738939E+02 -2.30925313142E+02 -2.36290253401E+02 -2.41767254099E+02 -2.47358004020E+02 -2.53064180024E+02 -2.58887444109E+02 -2.64829444056E+02 -2.70891805353E+02 -2.77076133238E+02 -2.83384006705E+02 -2.89816973542E+02 -2.96376548792E+02 -3.03064211985E+02 -3.09881399534E+02 -3.16829502533E+02 -3.23909861589E+02 -3.31123763529E+02 -3.38472433711E+02 -3.45957030657E+02 -3.53578645466E+02 -3.61338287527E+02 -3.69236886491E+02 -3.77275279846E+02 -3.85454209718E+02 -3.93774316763E+02 -4.02236125523E+02 -4.10840047830E+02 -4.19586362810E+02 -4.28475219944E+02 -4.37506621511E+02 -4.46680418901E+02 -4.55996295673E+02 -4.65453772271E+02 -4.75052178460E+02 -4.84790654678E+02 -4.94668135279E+02 -5.04683342083E+02 -5.14834763791E+02 -5.25120655292E+02 -5.35539014465E+02 -5.46087578005E+02 -5.56763799666E+02 -5.67564840921E+02 -5.78487558617E+02 -5.89528485068E+02 -6.00683816261E+02 -6.11949396618E+02 -6.23320702009E+02 -6.34792818332E+02 -6.46360440949E+02 -6.58017833492E+02 -6.69758835736E+02 -6.81576827319E+02 -6.93464715902E+02 -7.05414924904E+02 -7.17419362521E+02 -7.29469418834E+02 -7.41555930896E+02 -7.53669175421E+02 -7.65798847204E+02 -7.77934034752E+02 -7.90063207411E+02 -8.02174196917E+02 -8.14254171332E+02 -8.26289626835E+02 -8.38266362619E+02 -8.50169462305E+02 -8.61983283188E+02 -8.73691434000E+02 -8.85276761110E+02 -8.96721333203E+02 -9.08006426919E+02 -9.19112513693E+02 -9.30019247067E+02 -9.40705454029E+02 -9.51149123375E+02 -9.61327400958E+02 -9.71216580908E+02 -9.80792103103E+02 -9.90028556072E+02 -9.98899668681E+02 -1.00737832196E+03 -1.01543655308E+03 -1.02304556295E+03 -1.03017572904E+03 -1.03679662580E+03 -1.04287703886E+03 -1.04838499703E+03 -1.05328778893E+03 -1.05755201263E+03 -1.06114359722E+03 -1.06402786134E+03 -1.06616955084E+03 -1.06753290221E+03 -1.06808170084E+03 -1.06777935112E+03 -1.06658895207E+03 -1.06447337861E+03 -1.06139537644E+03 -1.05731766097E+03 -1.05220302084E+03 -1.04601444528E+03 -1.03871524312E+03 -1.03026918224E+03 -1.02064064048E+03 -1.00979476252E+03 -9.97697630478E+02 -9.84316447509E+02 -9.69619731340E+02 -9.53577522605E+02 -9.36161604007E+02 -9.17345738155E+02 -8.97105914412E+02 -8.75420609412E+02 -8.52271067490E+02 -8.27641589186E+02 -8.01519846553E+02 -7.73897192094E+02 -7.44769012595E+02 -7.14135067801E+02 -6.81999866430E+02 -6.48373043463E+02 -6.13269762336E+02 -5.76711114434E+02 -5.38724552505E+02 -4.99344316596E+02 -4.58611876716E+02 -4.16576382508E+02 -3.73295126977E+02 -3.28833988843E+02 -2.83267912965E+02 -2.36681344284E+02 -1.89168687373E+02 -1.40834739993E+02 -9.17951037257E+01 -4.21765789001E+01 7.88247186799E+00 5.82318079844E+01 1.08709029571E+02 1.59139369370E+02 2.09335536803E+02 2.59097651589E+02 3.08213271146E+02 3.56457513032E+02 4.03593313070E+02 4.49371812016E+02 4.93532899820E+02 5.35805936473E+02 5.75910659701E+02 6.13558321356E+02 6.48453048136E+02 6.80293478603E+02 7.08774676305E+02 7.33590372177E+02 7.54435547033E+02 7.71009389930E+02 7.83018675348E+02 7.90181580216E+02 7.92231996324E+02 7.88924364705E+02 7.80039080417E+02 7.65388530746E+02 7.44823785814E+02 7.18242031437E+02 6.85594763117E+02 6.46896822226E+02 6.02236304864E+02 5.51785400039E+02 4.95812174831E+02 4.34693317706E+02 3.68927811773E+02 2.99151454447E+02 2.26152072110E+02 1.50885168949E+02 7.44896116738E+01 -1.69723255915E+00 -7.61257744708E+01 -1.47023042160E+02 -2.12385732948E+02 -2.69979640255E+02 -3.17348344706E+02 -3.51834989420E+02 -3.70622096558E+02 -3.70795468955E+02 -3.49443602352E+02 -3.03770917333E+02 -2.31548783367E+02 -1.28899421883E+02 -1.47839651577E+01 1.46574186073E+00 -1.45319585162E-01 1.44075799759E-02 -1.42844711372E-03 1.41676146851E-04 -1.40933783410E-05 1.45949250468E-06 -2.33665809244E-07 1.04225424188E-07 -2.05110077141E-08 0.00000000000E+00 0.00000000000E+00 -1.74148680379E-01 713 9.47502904751E-04 9.71489059982E-04 9.96082427881E-04 1.02129838012E-03 1.04715267752E-03 1.07366147986E-03 1.10084135605E-03 1.12870929441E-03 1.15728271333E-03 1.18657947216E-03 1.21661788235E-03 1.24741671892E-03 1.27899523217E-03 1.31137315974E-03 1.34457073891E-03 1.37860871929E-03 1.41350837576E-03 1.44929152178E-03 1.48598052303E-03 1.52359831137E-03 1.56216839919E-03 1.60171489408E-03 1.64226251397E-03 1.68383660246E-03 1.72646314479E-03 1.77016878399E-03 1.81498083756E-03 1.86092731456E-03 1.90803693311E-03 1.95633913831E-03 2.00586412070E-03 2.05664283509E-03 2.10870701990E-03 2.16208921703E-03 2.21682279218E-03 2.27294195572E-03 2.33048178405E-03 2.38947824155E-03 2.44996820303E-03 2.51198947681E-03 2.57558082832E-03 2.64078200436E-03 2.70763375793E-03 2.77617787368E-03 2.84645719409E-03 2.91851564615E-03 2.99239826894E-03 3.06815124165E-03 3.14582191256E-03 3.22545882855E-03 3.30711176550E-03 3.39083175935E-03 3.47667113807E-03 3.56468355428E-03 3.65492401887E-03 3.74744893533E-03 3.84231613502E-03 3.93958491331E-03 4.03931606666E-03 4.14157193061E-03 4.24641641874E-03 4.35391506263E-03 4.46413505279E-03 4.57714528070E-03 4.69301638184E-03 4.81182077986E-03 4.93363273182E-03 5.05852837464E-03 5.36288662914E-03 5.49585046387E-03 5.45313310043E-03 5.59201330358E-03 5.73331994298E-03 5.87854455985E-03 6.02760491468E-03 6.17932236499E-03 6.33550102168E-03 6.49555457175E-03 6.66085120795E-03 6.82771962828E-03 7.00148736581E-03 7.18048363722E-03 7.35969585494E-03 7.54832435414E-03 7.73763036051E-03 7.93373992594E-03 8.13608168387E-03 8.34066658734E-03 8.55167211262E-03 8.76726339406E-03 8.99161940724E-03 9.21769614930E-03 9.45119075834E-03 9.69119849258E-03 9.93539160744E-03 1.01862524359E-02 1.04455205696E-02 1.07090684683E-02 1.09805182725E-02 1.12594876562E-02 1.15429391239E-02 1.18368041900E-02 1.21351107553E-02 1.24428351227E-02 1.27572944180E-02 1.30797604266E-02 1.34117783413E-02 1.37520144154E-02 1.40984007530E-02 1.44556649397E-02 1.48225324188E-02 1.51976887225E-02 1.55824561842E-02 1.59759813172E-02 1.63798294713E-02 1.67954245713E-02 1.72210869798E-02 1.76558246476E-02 1.81040000290E-02 1.85622697228E-02 1.90316109650E-02 1.95127402473E-02 2.00082001618E-02 2.05148108364E-02 2.10338080432E-02 2.15656310539E-02 2.21106748832E-02 2.26701266229E-02 2.32450494175E-02 2.38343367915E-02 2.44376839965E-02 2.50556110778E-02 2.56894067059E-02 2.63389767032E-02 2.70064582392E-02 2.76903520386E-02 2.83916078696E-02 2.91090572515E-02 2.98473535500E-02 3.06023300658E-02 3.13770826302E-02 3.21712139093E-02 3.29858982535E-02 3.38213755181E-02 3.46772245169E-02 3.55563198998E-02 3.64554799300E-02 3.73774473416E-02 3.83241381579E-02 3.92948580555E-02 4.02882019022E-02 4.13085434066E-02 4.23543900334E-02 4.34272056440E-02 4.45254393074E-02 4.56530460977E-02 4.68087125520E-02 4.79942343151E-02 4.92091880894E-02 5.04542900359E-02 5.17324394131E-02 5.30413240408E-02 5.43846890771E-02 5.57604267354E-02 5.71719859370E-02 5.86207817773E-02 6.01030324141E-02 6.16257003083E-02 6.31846739724E-02 6.47839704873E-02 6.64254271864E-02 6.81062926691E-02 6.98297083718E-02 7.15986108881E-02 7.34105050890E-02 7.52686922410E-02 7.71744459089E-02 7.91282798332E-02 8.11309410317E-02 8.31845774831E-02 8.52895154517E-02 8.74492887610E-02 8.96636216236E-02 9.19325808272E-02 9.42614255880E-02 9.66461130222E-02 9.90925745974E-02 1.01601666562E-01 1.04172988944E-01 1.06810000812E-01 1.09514614904E-01 1.12286492857E-01 1.15128876340E-01 1.18044418871E-01 1.21030744520E-01 1.24095049386E-01 1.27237995439E-01 1.30457566471E-01 1.33761066266E-01 1.37146495026E-01 1.40619195982E-01 1.44177569461E-01 1.47827765524E-01 1.51570077581E-01 1.55405955656E-01 1.59340335046E-01 1.63374197158E-01 1.67508923879E-01 1.71750303339E-01 1.76098320625E-01 1.80556061006E-01 1.85126747162E-01 1.89812849653E-01 1.94616905739E-01 1.99543942181E-01 2.04594606595E-01 2.09773995403E-01 2.15085217512E-01 2.20527815489E-01 2.26112104134E-01 2.31833999390E-01 2.37703530862E-01 2.43720975385E-01 2.49890933478E-01 2.56215563127E-01 2.62701471492E-01 2.69351511916E-01 2.76170036364E-01 2.83161130666E-01 2.90328049211E-01 2.97677447491E-01 3.05213603307E-01 3.12938116717E-01 3.20860197850E-01 3.28982445776E-01 3.37309603277E-01 3.45849013118E-01 3.54602224540E-01 3.63578875024E-01 3.72782306670E-01 3.82218465831E-01 3.91893788534E-01 4.01813326858E-01 4.11983422255E-01 4.22414000171E-01 4.33104175515E-01 4.44068248145E-01 4.55308078269E-01 4.66833613759E-01 4.78651163637E-01 4.90766691352E-01 5.03188166623E-01 5.15924054998E-01 5.28985037807E-01 5.42374675414E-01 5.56100665567E-01 5.70180655233E-01 5.84610783984E-01 5.99408963409E-01 6.14580626326E-01 6.30137149738E-01 6.46086209053E-01 6.62439034073E-01 6.79207714116E-01 6.96398080391E-01 7.14025015608E-01 7.32097163964E-01 7.50628798974E-01 7.69625512862E-01 7.89105295887E-01 8.09079969183E-01 8.29557335146E-01 8.50554751539E-01 8.72079811013E-01 8.94154753282E-01 9.16784918195E-01 9.39988683054E-01 9.63779740322E-01 9.88172525560E-01 1.01318307770E+00 1.03882550806E+00 1.06511748862E+00 1.09207387415E+00 1.11971310700E+00 1.14805131418E+00 1.17710817594E+00 1.20689879232E+00 1.23744285738E+00 1.26875915105E+00 1.30086862772E+00 1.33379139413E+00 1.36754641295E+00 1.40215513272E+00 1.43763976961E+00 1.47402183836E+00 1.51132339894E+00 1.54957055926E+00 1.58878483736E+00 1.62899100945E+00 1.67021260949E+00 1.71247957091E+00 1.75581379099E+00 1.80024543800E+00 1.84579738239E+00 1.89250803152E+00 1.94039385570E+00 1.98949454017E+00 2.03983742523E+00 2.09145240356E+00 2.14437186650E+00 2.19863017879E+00 2.25426187610E+00 2.31129963681E+00 2.36977980144E+00 2.42973858795E+00 2.49121360184E+00 2.55424351534E+00 2.61886820924E+00 2.68512404766E+00 2.75305869616E+00 2.82270829728E+00 2.89412111953E+00 2.96733618546E+00 3.04240552182E+00 3.11936976877E+00 3.19828280336E+00 3.27918882854E+00 3.36213968814E+00 3.44718827668E+00 3.53438621717E+00 3.62378886382E+00 3.71545030043E+00 3.80942701488E+00 3.90578166135E+00 4.00456798137E+00 4.10585312715E+00 4.20969613118E+00 4.31616496859E+00 4.42532292295E+00 4.53723725863E+00 4.65197996286E+00 4.76962141424E+00 4.89023471860E+00 5.01389492358E+00 5.14067808033E+00 5.27066241871E+00 5.40393119825E+00 5.54056605712E+00 5.68065081388E+00 5.82427147821E+00 5.97151907270E+00 6.12248494036E+00 6.27725953166E+00 6.43594490722E+00 6.59863427626E+00 6.76543097058E+00 6.93643498768E+00 7.11175711770E+00 7.29150099315E+00 7.47578302443E+00 7.66471206839E+00 7.85840922634E+00 8.05699154960E+00 8.26058278597E+00 8.46930962658E+00 8.68330082826E+00 8.90268597333E+00 9.12760351530E+00 9.35819403561E+00 9.59459481810E+00 9.83695606071E+00 1.00854239324E+01 1.03401549440E+01 1.06013044498E+01 1.08690327791E+01 1.11435058825E+01 1.14248935630E+01 1.17133653191E+01 1.20091042800E+01 1.23122877063E+01 1.26231062214E+01 1.29417476714E+01 1.32684086134E+01 1.36032880040E+01 1.39465949565E+01 1.42985384905E+01 1.46593340556E+01 1.50292037804E+01 1.54083723708E+01 1.57970742727E+01 1.61955455611E+01 1.66040323177E+01 1.70227810552E+01 1.74520513220E+01 1.78921007894E+01 1.83432030398E+01 1.88056303870E+01 1.92796631396E+01 1.97655949691E+01 2.02637182132E+01 2.07743355507E+01 2.12977585082E+01 2.18343060765E+01 2.23843006066E+01 2.29480805144E+01 2.35259842787E+01 2.41183640275E+01 2.47255756699E+01 2.53479880379E+01 2.59859761992E+01 2.66399280351E+01 2.73102333764E+01 2.79973004928E+01 2.87015400557E+01 2.94233780873E+01 3.01632468452E+01 3.09215887716E+01 3.16988607493E+01 3.24955295188E+01 3.33120676786E+01 3.41489660196E+01 3.50067267084E+01 3.58858535928E+01 3.67868772738E+01 3.77103287343E+01 3.86567605806E+01 3.96267304214E+01 4.06208154077E+01 4.16396019611E+01 4.26836940489E+01 4.37537035185E+01 4.48502665773E+01 4.59740195191E+01 4.71256305421E+01 4.83057663267E+01 4.95151267327E+01 5.07544097273E+01 5.20243423819E+01 5.33256623344E+01 5.46591257216E+01 5.60255064535E+01 5.74255923263E+01 5.88601956705E+01 6.03301387956E+01 6.18362695218E+01 6.33794530411E+01 6.49605698050E+01 6.65805226162E+01 6.82402367376E+01 6.99406558393E+01 7.16827400484E+01 7.34674760024E+01 7.52958715862E+01 7.71689524556E+01 7.90877692967E+01 8.10533966823E+01 8.30669273553E+01 8.51294820205E+01 8.72422023494E+01 8.94062559415E+01 9.16228307603E+01 9.38931437839E+01 9.62184358706E+01 9.85999715228E+01 1.01039045585E+02 1.03536970597E+02 1.06095092470E+02 1.08714783295E+02 1.11397438364E+02 1.14144483951E+02 1.16957373777E+02 1.19837586204E+02 1.22786631611E+02 1.25806047958E+02 1.28897399274E+02 1.32062280599E+02 1.35302315244E+02 1.38619160453E+02 1.42014494464E+02 1.45490030384E+02 1.49047512884E+02 1.52688710562E+02 1.56415427597E+02 1.60229495858E+02 1.64132774933E+02 1.68127158273E+02 1.72214567772E+02 1.76396950741E+02 1.80676291255E+02 1.85054596703E+02 1.89533910176E+02 1.94116294535E+02 1.98803848275E+02 2.03598696999E+02 2.08502987817E+02 2.13518902870E+02 2.18648645384E+02 2.23894448331E+02 2.29258561954E+02 2.34743270318E+02 2.40350872860E+02 2.46083692875E+02 2.51944079730E+02 2.57934393876E+02 2.64057019473E+02 2.70314356576E+02 2.76708819876E+02 2.83242838610E+02 2.89918850287E+02 2.96739305419E+02 3.03706663818E+02 3.10823382601E+02 3.18091930154E+02 3.25514771714E+02 3.33094367663E+02 3.40833177343E+02 3.48733645967E+02 3.56798210692E+02 3.65029291559E+02 3.73429287274E+02 3.82000576076E+02 3.90745504174E+02 3.99666388630E+02 4.08765508745E+02 4.18045098937E+02 4.27507346491E+02 4.37154387559E+02 4.46988296244E+02 4.57011081402E+02 4.67224679206E+02 4.77630948378E+02 4.88231659145E+02 4.99028485506E+02 5.10023004330E+02 5.21216674862E+02 5.32610841484E+02 5.44206715867E+02 5.56005372339E+02 5.68007739055E+02 5.80214577002E+02 5.92626484770E+02 6.05243869871E+02 6.18066953042E+02 6.31095743028E+02 6.44330031233E+02 6.57769367386E+02 6.71413066171E+02 6.85260167729E+02 6.99309439466E+02 7.13559351977E+02 7.28008069713E+02 7.42653421422E+02 7.57492899031E+02 7.72523624352E+02 7.87742342975E+02 8.03145393031E+02 8.18728691693E+02 8.34487717382E+02 8.50417481162E+02 8.66512509725E+02 8.82766823451E+02 8.99173911971E+02 9.15726703384E+02 9.32417563289E+02 9.49238235734E+02 9.66179854298E+02 9.83232890076E+02 1.00038713458E+03 1.01763168202E+03 1.03495488490E+03 1.05234434967E+03 1.06978688667E+03 1.08726849953E+03 1.10477435415E+03 1.12228874372E+03 1.13979507016E+03 1.15727581760E+03 1.17471251502E+03 1.19208572434E+03 1.20937500445E+03 1.22655888450E+03 1.24361484847E+03 1.26051930325E+03 1.27724755888E+03 1.29377380657E+03 1.31007109811E+03 1.32611132708E+03 1.34186521070E+03 1.35730227743E+03 1.37239085040E+03 1.38709804068E+03 1.40138973484E+03 1.41523059142E+03 1.42858404524E+03 1.44141229571E+03 1.45367632394E+03 1.46533589868E+03 1.47634958742E+03 1.48667477513E+03 1.49626769376E+03 1.50508344293E+03 1.51307603615E+03 1.52019842512E+03 1.52640257112E+03 1.53163947656E+03 1.53585926919E+03 1.53901125665E+03 1.54104401789E+03 1.54190548722E+03 1.54154305531E+03 1.53990367823E+03 1.53693399456E+03 1.53258046191E+03 1.52678949947E+03 1.51950763694E+03 1.51068169779E+03 1.50025897047E+03 1.48818740889E+03 1.47441584945E+03 1.45889423645E+03 1.44157386723E+03 1.42240765587E+03 1.40135041115E+03 1.37835913561E+03 1.35339334014E+03 1.32641538518E+03 1.29739083482E+03 1.26628883044E+03 1.23308249270E+03 1.19774933504E+03 1.16027171549E+03 1.12063727918E+03 1.07883946509E+03 1.03487799087E+03 9.88759391059E+02 9.40497556908E+02 8.90114311713E+02 8.37639982127E+02 7.83114017780E+02 7.26585600061E+02 6.68114274610E+02 6.07770593624E+02 5.45636778074E+02 4.81807349127E+02 4.16389813774E+02 3.49505283800E+02 2.81289131100E+02 2.11891605621E+02 1.41478420298E+02 7.02313132954E+01 -1.65143483672E+00 -7.39545526240E+01 -1.46445378498E+02 -2.18873566460E+02 -2.90970866471E+02 -3.62451033026E+02 -4.33009867862E+02 -5.02325398658E+02 -5.70058251660E+02 -6.35852208080E+02 -6.99334985658E+02 -7.60119272494E+02 -8.17804027732E+02 -8.71976108807E+02 -9.22212218911E+02 -9.68081248819E+02 -1.00914701265E+03 -1.04497145344E+03 -1.07511833367E+03 -1.09915746189E+03 -1.11666951632E+03 -1.12725149545E+03 -1.13052287461E+03 -1.12613250620E+03 -1.11376633253E+03 -1.09315600095E+03 -1.06408840807E+03 -1.02641630114E+03 -9.80069963284E+02 -9.25070098111E+02 -8.61541957155E+02 -7.89730790955E+02 -7.10018649135E+02 -6.22942545704E+02 -5.29213949861E+02 -4.29739483822E+02 -3.25642612708E+02 -2.18285955692E+02 -1.09293651900E+02 -5.72951835244E-01 1.05666203565E+02 2.06895246724E+02 3.00257042440E+02 3.82565023841E+02 4.50315523236E+02 4.99718743667E+02 5.26755439166E+02 5.27267923703E+02 4.97101697576E+02 4.32266831561E+02 3.29580463288E+02 1.83511630148E+02 2.10515180117E+01 -2.08713229871E+00 2.06926750356E-01 -2.05155671952E-02 2.03402684852E-03 -2.01739003893E-04 2.00684413549E-05 -2.07858734246E-06 3.33232288833E-07 -1.48889408811E-07 2.93105038627E-08 0.00000000000E+00 0.00000000000E+00 -1.21838702422E-01 -8.52644894627E-02 8.50000000000E-01 -2.92624683645E+01 -2.92624683677E+01 -2.92624683682E+01 -2.92624683688E+01 -2.92624683693E+01 -2.92624683699E+01 -2.92624683705E+01 -2.92624683710E+01 -2.92624683717E+01 -2.92624683723E+01 -2.92624683729E+01 -2.92624683736E+01 -2.92624683742E+01 -2.92624683749E+01 -2.92624683756E+01 -2.92624683764E+01 -2.92624683771E+01 -2.92624683779E+01 -2.92624683786E+01 -2.92624683794E+01 -2.92624683803E+01 -2.92624683811E+01 -2.92624683820E+01 -2.92624683828E+01 -2.92624683838E+01 -2.92624683847E+01 -2.92624683856E+01 -2.92624683866E+01 -2.92624683876E+01 -2.92624683886E+01 -2.92624683897E+01 -2.92624683908E+01 -2.92624683919E+01 -2.92624683930E+01 -2.92624683942E+01 -2.92624683954E+01 -2.92624683966E+01 -2.92624683978E+01 -2.92624683991E+01 -2.92624684004E+01 -2.92624684018E+01 -2.92624684032E+01 -2.92624684046E+01 -2.92624684061E+01 -2.92624684075E+01 -2.92624684091E+01 -2.92624684106E+01 -2.92624684123E+01 -2.92624684139E+01 -2.92624684156E+01 -2.92624684173E+01 -2.92624684191E+01 -2.92624684209E+01 -2.92624684228E+01 -2.92624684247E+01 -2.92624684267E+01 -2.92624684287E+01 -2.92624684308E+01 -2.92624684329E+01 -2.92624684351E+01 -2.92624684373E+01 -2.92624684396E+01 -2.92624684419E+01 -2.92624684443E+01 -2.92624684468E+01 -2.92624684493E+01 -2.92624684519E+01 -2.92624684545E+01 -2.92624684573E+01 -2.92624684601E+01 -2.92624684629E+01 -2.92624684658E+01 -2.92624684688E+01 -2.92624684719E+01 -2.92624684751E+01 -2.92624684783E+01 -2.92624684817E+01 -2.92624684851E+01 -2.92624684886E+01 -2.92624684921E+01 -2.92624684958E+01 -2.92624684996E+01 -2.92624685034E+01 -2.92624685074E+01 -2.92624685115E+01 -2.92624685156E+01 -2.92624685199E+01 -2.92624685243E+01 -2.92624685287E+01 -2.92624685333E+01 -2.92624685381E+01 -2.92624685429E+01 -2.92624685478E+01 -2.92624685529E+01 -2.92624685581E+01 -2.92624685635E+01 -2.92624685690E+01 -2.92624685746E+01 -2.92624685803E+01 -2.92624685862E+01 -2.92624685923E+01 -2.92624685985E+01 -2.92624686049E+01 -2.92624686114E+01 -2.92624686181E+01 -2.92624686249E+01 -2.92624686320E+01 -2.92624686392E+01 -2.92624686466E+01 -2.92624686542E+01 -2.92624686619E+01 -2.92624686699E+01 -2.92624686781E+01 -2.92624686864E+01 -2.92624686950E+01 -2.92624687038E+01 -2.92624687129E+01 -2.92624687221E+01 -2.92624687316E+01 -2.92624687414E+01 -2.92624687513E+01 -2.92624687616E+01 -2.92624687721E+01 -2.92624687828E+01 -2.92624687939E+01 -2.92624688052E+01 -2.92624688168E+01 -2.92624688287E+01 -2.92624688408E+01 -2.92624688533E+01 -2.92624688662E+01 -2.92624688793E+01 -2.92624688928E+01 -2.92624689066E+01 -2.92624689207E+01 -2.92624689353E+01 -2.92624689501E+01 -2.92624689654E+01 -2.92624689811E+01 -2.92624689971E+01 -2.92624690136E+01 -2.92624690304E+01 -2.92624690477E+01 -2.92624690655E+01 -2.92624690836E+01 -2.92624691023E+01 -2.92624691214E+01 -2.92624691410E+01 -2.92624691611E+01 -2.92624691817E+01 -2.92624692028E+01 -2.92624692245E+01 -2.92624692467E+01 -2.92624692694E+01 -2.92624692928E+01 -2.92624693167E+01 -2.92624693413E+01 -2.92624693664E+01 -2.92624693922E+01 -2.92624694187E+01 -2.92624694458E+01 -2.92624694736E+01 -2.92624695021E+01 -2.92624695313E+01 -2.92624695613E+01 -2.92624695920E+01 -2.92624696235E+01 -2.92624696558E+01 -2.92624696889E+01 -2.92624697229E+01 -2.92624697577E+01 -2.92624697934E+01 -2.92624698300E+01 -2.92624698675E+01 -2.92624699060E+01 -2.92624699455E+01 -2.92624699859E+01 -2.92624700274E+01 -2.92624700699E+01 -2.92624701135E+01 -2.92624701582E+01 -2.92624702040E+01 -2.92624702510E+01 -2.92624702991E+01 -2.92624703485E+01 -2.92624703992E+01 -2.92624704511E+01 -2.92624705043E+01 -2.92624705589E+01 -2.92624706149E+01 -2.92624706722E+01 -2.92624707311E+01 -2.92624707914E+01 -2.92624708532E+01 -2.92624709166E+01 -2.92624709816E+01 -2.92624710482E+01 -2.92624711166E+01 -2.92624711866E+01 -2.92624712584E+01 -2.92624713321E+01 -2.92624714076E+01 -2.92624714850E+01 -2.92624715644E+01 -2.92624716457E+01 -2.92624717292E+01 -2.92624718147E+01 -2.92624719024E+01 -2.92624719923E+01 -2.92624720845E+01 -2.92624721790E+01 -2.92624722759E+01 -2.92624723752E+01 -2.92624724771E+01 -2.92624725815E+01 -2.92624726886E+01 -2.92624727984E+01 -2.92624729109E+01 -2.92624730263E+01 -2.92624731446E+01 -2.92624732659E+01 -2.92624733902E+01 -2.92624735177E+01 -2.92624736484E+01 -2.92624737824E+01 -2.92624739198E+01 -2.92624740606E+01 -2.92624742051E+01 -2.92624743531E+01 -2.92624745049E+01 -2.92624746605E+01 -2.92624748200E+01 -2.92624749836E+01 -2.92624751513E+01 -2.92624753232E+01 -2.92624754994E+01 -2.92624756801E+01 -2.92624758654E+01 -2.92624760553E+01 -2.92624762500E+01 -2.92624764496E+01 -2.92624766543E+01 -2.92624768641E+01 -2.92624770792E+01 -2.92624772997E+01 -2.92624775257E+01 -2.92624777575E+01 -2.92624779951E+01 -2.92624782386E+01 -2.92624784883E+01 -2.92624787443E+01 -2.92624790067E+01 -2.92624792758E+01 -2.92624795516E+01 -2.92624798343E+01 -2.92624801242E+01 -2.92624804213E+01 -2.92624807259E+01 -2.92624810382E+01 -2.92624813583E+01 -2.92624816864E+01 -2.92624820228E+01 -2.92624823677E+01 -2.92624827212E+01 -2.92624830836E+01 -2.92624834551E+01 -2.92624838359E+01 -2.92624842263E+01 -2.92624846264E+01 -2.92624850366E+01 -2.92624854571E+01 -2.92624858881E+01 -2.92624863299E+01 -2.92624867828E+01 -2.92624872471E+01 -2.92624877229E+01 -2.92624882107E+01 -2.92624887107E+01 -2.92624892232E+01 -2.92624897485E+01 -2.92624902870E+01 -2.92624908389E+01 -2.92624914046E+01 -2.92624919845E+01 -2.92624925788E+01 -2.92624931879E+01 -2.92624938123E+01 -2.92624944523E+01 -2.92624951082E+01 -2.92624957804E+01 -2.92624964694E+01 -2.92624971756E+01 -2.92624978993E+01 -2.92624986411E+01 -2.92624994013E+01 -2.92625001804E+01 -2.92625009788E+01 -2.92625017971E+01 -2.92625026358E+01 -2.92625034952E+01 -2.92625043759E+01 -2.92625052785E+01 -2.92625062034E+01 -2.92625071513E+01 -2.92625081226E+01 -2.92625091179E+01 -2.92625101378E+01 -2.92625111830E+01 -2.92625122539E+01 -2.92625133512E+01 -2.92625144756E+01 -2.92625156277E+01 -2.92625168082E+01 -2.92625180177E+01 -2.92625192569E+01 -2.92625205266E+01 -2.92625218274E+01 -2.92625231601E+01 -2.92625245255E+01 -2.92625259243E+01 -2.92625273574E+01 -2.92625288254E+01 -2.92625303293E+01 -2.92625318699E+01 -2.92625334480E+01 -2.92625350645E+01 -2.92625367203E+01 -2.92625384164E+01 -2.92625401536E+01 -2.92625419329E+01 -2.92625437552E+01 -2.92625456217E+01 -2.92625475332E+01 -2.92625494907E+01 -2.92625514955E+01 -2.92625535484E+01 -2.92625556507E+01 -2.92625578034E+01 -2.92625600076E+01 -2.92625622646E+01 -2.92625645754E+01 -2.92625669413E+01 -2.92625693635E+01 -2.92625718432E+01 -2.92625743818E+01 -2.92625769804E+01 -2.92625796404E+01 -2.92625823632E+01 -2.92625851500E+01 -2.92625880023E+01 -2.92625909214E+01 -2.92625939088E+01 -2.92625969659E+01 -2.92626000941E+01 -2.92626032950E+01 -2.92626065701E+01 -2.92626099208E+01 -2.92626133487E+01 -2.92626168554E+01 -2.92626204425E+01 -2.92626241116E+01 -2.92626278642E+01 -2.92626317021E+01 -2.92626356269E+01 -2.92626396403E+01 -2.92626437439E+01 -2.92626479394E+01 -2.92626522287E+01 -2.92626566133E+01 -2.92626610951E+01 -2.92626656758E+01 -2.92626703571E+01 -2.92626751409E+01 -2.92626800289E+01 -2.92626850228E+01 -2.92626901244E+01 -2.92626953356E+01 -2.92627006580E+01 -2.92627060934E+01 -2.92627116436E+01 -2.92627173104E+01 -2.92627230953E+01 -2.92627290002E+01 -2.92627350267E+01 -2.92627411765E+01 -2.92627474511E+01 -2.92627538523E+01 -2.92627603814E+01 -2.92627670401E+01 -2.92627738297E+01 -2.92627807517E+01 -2.92627878074E+01 -2.92627949980E+01 -2.92628023247E+01 -2.92628097886E+01 -2.92628173908E+01 -2.92628251321E+01 -2.92628330133E+01 -2.92628410351E+01 -2.92628491980E+01 -2.92628575025E+01 -2.92628659488E+01 -2.92628745369E+01 -2.92628832669E+01 -2.92628921383E+01 -2.92629011508E+01 -2.92629103036E+01 -2.92629195959E+01 -2.92629290263E+01 -2.92629385935E+01 -2.92629482956E+01 -2.92629581307E+01 -2.92629680963E+01 -2.92629781897E+01 -2.92629884077E+01 -2.92629987469E+01 -2.92630092032E+01 -2.92630197722E+01 -2.92630304491E+01 -2.92630412283E+01 -2.92630521040E+01 -2.92630630695E+01 -2.92630741176E+01 -2.92630852405E+01 -2.92630964296E+01 -2.92631076756E+01 -2.92631189683E+01 -2.92631302968E+01 -2.92631416493E+01 -2.92631530129E+01 -2.92631643738E+01 -2.92631757171E+01 -2.92631870268E+01 -2.92631982858E+01 -2.92632094755E+01 -2.92632205760E+01 -2.92632315663E+01 -2.92632424234E+01 -2.92632531232E+01 -2.92632636394E+01 -2.92632739445E+01 -2.92632840086E+01 -2.92632938002E+01 -2.92633032854E+01 -2.92633124283E+01 -2.92633211906E+01 -2.92633295314E+01 -2.92633374074E+01 -2.92633447723E+01 -2.92633515772E+01 -2.92633577697E+01 -2.92633632946E+01 -2.92633680930E+01 -2.92633721025E+01 -2.92633752568E+01 -2.92633774856E+01 -2.92633787145E+01 -2.92633788645E+01 -2.92633778518E+01 -2.92633755879E+01 -2.92633719788E+01 -2.92633669252E+01 -2.92633603218E+01 -2.92633520573E+01 -2.92633420138E+01 -2.92633300669E+01 -2.92633160846E+01 -2.92632999277E+01 -2.92632814490E+01 -2.92632604928E+01 -2.92632368948E+01 -2.92632104811E+01 -2.92631810683E+01 -2.92631484628E+01 -2.92631124598E+01 -2.92630728436E+01 -2.92630293861E+01 -2.92629818468E+01 -2.92629299720E+01 -2.92628734939E+01 -2.92628121301E+01 -2.92627455827E+01 -2.92626735377E+01 -2.92625956638E+01 -2.92625116119E+01 -2.92624210142E+01 -2.92623234826E+01 -2.92622186084E+01 -2.92621059611E+01 -2.92619850869E+01 -2.92618555079E+01 -2.92617167206E+01 -2.92615681948E+01 -2.92614093722E+01 -2.92612396651E+01 -2.92610584544E+01 -2.92608650887E+01 -2.92606588823E+01 -2.92604391133E+01 -2.92602050223E+01 -2.92599558101E+01 -2.92596906359E+01 -2.92594086151E+01 -2.92591088173E+01 -2.92587902636E+01 -2.92584519249E+01 -2.92580927187E+01 -2.92577115071E+01 -2.92573070935E+01 -2.92568782199E+01 -2.92564235641E+01 -2.92559417365E+01 -2.92554312764E+01 -2.92548906491E+01 -2.92543182419E+01 -2.92537123605E+01 -2.92530712249E+01 -2.92523929656E+01 -2.92516756187E+01 -2.92509171220E+01 -2.92501153100E+01 -2.92492679087E+01 -2.92483725310E+01 -2.92474266708E+01 -2.92464276976E+01 -2.92453728508E+01 -2.92442592332E+01 -2.92430838048E+01 -2.92418433760E+01 -2.92405346008E+01 -2.92391539694E+01 -2.92376978006E+01 -2.92361622340E+01 -2.92345432216E+01 -2.92328365195E+01 -2.92310376783E+01 -2.92291420347E+01 -2.92271447012E+01 -2.92250405558E+01 -2.92228242323E+01 -2.92204901086E+01 -2.92180322956E+01 -2.92154446256E+01 -2.92127206397E+01 -2.92098535754E+01 -2.92068363528E+01 -2.92036615617E+01 -2.92003214466E+01 -2.91968078924E+01 -2.91931124087E+01 -2.91892261145E+01 -2.91851397213E+01 -2.91808435162E+01 -2.91763273447E+01 -2.91715805919E+01 -2.91665921645E+01 -2.91613504706E+01 -2.91558434005E+01 -2.91500583057E+01 -2.91439819776E+01 -2.91376006257E+01 -2.91308998554E+01 -2.91238646446E+01 -2.91164793198E+01 -2.91087275322E+01 -2.91005922324E+01 -2.90920556449E+01 -2.90830992419E+01 -2.90737037166E+01 -2.90638489559E+01 -2.90535140125E+01 -2.90426770767E+01 -2.90313154478E+01 -2.90194055043E+01 -2.90069226749E+01 -2.89938414084E+01 -2.89801351433E+01 -2.89657762780E+01 -2.89507361396E+01 -2.89349849537E+01 -2.89184918141E+01 -2.89012246521E+01 -2.88831502064E+01 -2.88642339940E+01 -2.88444402803E+01 -2.88237320513E+01 -2.88020709857E+01 -2.87794174286E+01 -2.87557303663E+01 -2.87309674027E+01 -2.87050847373E+01 -2.86780371456E+01 -2.86497779617E+01 -2.86202590638E+01 -2.85894308625E+01 -2.85572422933E+01 -2.85236408126E+01 -2.84885723988E+01 -2.84519815581E+01 -2.84138113367E+01 -2.83740033391E+01 -2.83324977542E+01 -2.82892333896E+01 -2.82441477148E+01 -2.81971769159E+01 -2.81482559609E+01 -2.80973186786E+01 -2.80442978527E+01 -2.79891253311E+01 -2.79317321553E+01 -2.78720487091E+01 -2.78100048919E+01 -2.77455303170E+01 -2.76785545398E+01 -2.76090073196E+01 -2.75368189180E+01 -2.74619204395E+01 -2.73842442198E+01 -2.73037242677E+01 -2.72202967674E+01 -2.71339006494E+01 -2.70444782396E+01 -2.69519759952E+01 -2.68563453408E+01 -2.67575436167E+01 -2.66555351532E+01 -2.65502924882E+01 -2.64417977434E+01 -2.63300441784E+01 -2.62150379402E+01 -2.60968000248E+01 -2.59753684668E+01 -2.58508007641E+01 -2.57231765373E+01 -2.55926004061E+01 -2.54592050398E+01 -2.53231542991E+01 -2.51846463323E+01 -2.50439164050E+01 -2.49012391318E+01 -2.47569296236E+01 -2.46113428620E+01 -2.44648703514E+01 -2.43179327886E+01 -2.41728103410E+01 -2.40771234564E+01 -2.40161712370E+01 -2.38860828817E+01 -2.36979848856E+01 -2.35049592242E+01 -2.33070004530E+01 -2.31040835647E+01 -2.28961637037E+01 -2.26831778786E+01 -2.24650490564E+01 -2.22416928772E+01 -2.20130270210E+01 -2.17789829954E+01 -2.15395198293E+01 -2.12946388870E+01 -2.10443988009E+01 -2.07889293931E+01 -2.05284434468E+01 -2.02632452995E+01 -1.99937354536E+01 -1.97204107117E+01 -1.94438597121E+01 -1.91647541114E+01 -1.88838360143E+01 -1.86019025250E+01 -1.83197884791E+01 -1.80383484733E+01 -1.77584392509E+01 -1.74809033303E+01 -1.72065545130E+01 -1.69361656166E+01 -1.66704584844E+01 -1.64100960747E+01 -1.61556762406E+01 -1.59077267059E+01 -1.56667007137E+01 -1.54329728672E+01 -1.52068347807E+01 -1.49884902931E+01 -1.47780501512E+01 -1.45755262335E+01 -1.43808255446E+01 -1.41937443725E+01 -1.40139631539E+01 -1.38410427566E+01 -1.36744230530E+01 -1.35134248454E+01 -1.33572564165E+01 -1.32050262165E+01 -1.30557634847E+01 -1.29084489372E+01 -1.27620580403E+01 -1.26156198551E+01 -1.24682949757E+01 -1.23194767275E+01 -1.21689205411E+01 -1.20170657339E+01 -1.18657505005E+01 -1.17172595108E+01 -1.15714803691E+01 -1.14276694659E+01 -1.12856528212E+01 -1.11454073456E+01 -1.10069103083E+01 -1.08701393277E+01 -1.07350723617E+01 -1.06016876985E+01 -1.04699639480E+01 -1.03398800339E+01 -1.02114151852E+01 -1.00845489290E+01 -9.95926108339E+00 -9.83553175041E+00 -9.71334130959E+00 -9.59267041167E+00 -9.47349997268E+00 -9.35581116826E+00 -9.23958542821E+00 -9.12480443135E+00 -9.01145010051E+00 -8.89950459787E+00 -8.78895032041E+00 -8.67976989554E+00 -8.57194617703E+00 -8.46546224094E+00 -8.36030138189E+00 -8.25644710931E+00 -8.15388314397E+00 -8.05259341452E+00 -7.95256205427E+00 -7.85377339798E+00 -7.75621197884E+00 -7.65986252546E+00 -7.56470995902E+00 -7.47073939051E+00 -7.37793611798E+00 -7.28628562395E+00 -7.19577357282E+00 -7.10638580839E+00 -7.01810835141E+00 -6.93092739724E+00 -6.84482931345E+00 -6.75980063764E+00 -6.67582807513E+00 -6.59289849683E+00 -6.51099893709E+00 -6.43011659158E+00 -6.35016102451E+00 -6.27119681961E+00 -6.19337456850E+00 -6.11647680562E+00 -6.04045302364E+00 -5.96546231071E+00 -5.89140370583E+00 -5.81822113371E+00 -5.74594757398E+00 -5.67457173712E+00 -5.60408247377E+00 -5.53446877296E+00 -5.46571976036E+00 -5.39782469661E+00 -5.33077297564E+00 -5.26455412299E+00 -5.19915779416E+00 -5.13457377305E+00 -5.07079197034E+00 -5.00780242192E+00 -4.94559528733E+00 -4.88416084826E+00 -4.82348950706E+00 -4.76357178519E+00 -4.70439832185E+00 -4.64595987244E+00 -4.58824730720E+00 -4.53125160979E+00 -4.47496387589E+00 -4.41937531182E+00 -4.36447723322E+00 -4.31026106369E+00 -4.25671833347E+00 -4.20384067811E+00 -4.15161983723E+00 -4.10004765321E+00 -4.04911606990E+00 -3.99881713141E+00 -3.94914298085E+00 -3.90008585911E+00 -3.85163810363E+00 -3.80379214720E+00 -3.75654051677E+00 -3.70987583227E+00 -3.66379080543E+00 -3.61827823865E+00 -3.57333102380E+00 -3.52894214114E+00 -3.48510465816E+00 -3.44181172849E+00 -3.39905659078E+00 -3.35683256764E+00 -3.31513306456E+00 -3.27395156883E+00 -3.23328164855E+00 -3.19311695152E+00 -3.15345120429E+00 -3.11427821114E+00 -3.07559185307E+00 -3.03738608686E+00 -2.99965494410E+00 -2.96239253023E+00 -2.92559302365E+00 -2.88925067476E+00 -2.85335980512E+00 -2.81791480651E+00 -2.78291014009E+00 -2.74834033556E+00 -2.71419999027E+00 -2.68048376846E+00 -2.64718640039E+00 -2.61430268157E+00 -2.58182747196E+00 -2.54975569521E+00 -2.51808233785E+00 -2.48680244860E+00 -2.45591113759E+00 -2.42540357561E+00 -2.39527499342E+00 -2.36552068103E+00 -2.33613598694E+00 -2.30711631751E+00 -2.27845713621E+00 -2.25015396297E+00 -2.22220237346E+00 -2.19459799846E+00 -2.16733652313E+00 -2.14041368641E+00 -2.11382528029E+00 -2.08756714923E+00 -2.06163518946E+00 -2.03602534833E+00 -2.01073362373E+00 -1.98575606340E+00 -1.96108876432E+00 -1.93672787210E+00 -1.91266958039E+00 -1.88891013020E+00 -1.86544580938E+00 -1.84227295199E+00 -1.81938793772E+00 -1.79678719131E+00 -1.77446718198E+00 -1.75242442287E+00 -1.73065547048E+00 -1.70915692414E+00 -1.68792542543E+00 -1.66695765769E+00 -1.64625034547E+00 -1.62580025400E+00 -1.60560418872E+00 -1.58565899473E+00 -1.56596155633E+00 -1.54650879649E+00 -1.52729767640E+00 -1.50832519497E+00 -1.48958838839E+00 -1.47108432963E+00 -1.45281012799E+00 -1.43476292866E+00 -1.41693991228E+00 -1.39933829446E+00 -1.38195532539E+00 -1.36478828939E+00 -1.34783450450E+00 -1.33109132202E+00 -1.31455612616E+00 -1.29822633359E+00 -1.28209939303E+00 -1.26617278490E+00 -1.25044402088E+00 -1.23491064353E+00 -1.21957022596E+00 -1.20442037135E+00 -1.18945871268E+00 -1.17468291230E+00 -1.16009066158E+00 -1.14567968057E+00 -1.13144771761E+00 -1.11739254901E+00 -1.10351197868E+00 -1.08980383780E+00 -1.07626598449E+00 -1.06289630346E+00 -1.04969270568E+00 -1.03665312807E+00 -1.02377553317E+00 -1.01105790882E+00 -9.98498267850E-01 -9.86094647756E-01 -9.73845110418E-01 -9.61747742931E-01 -9.49800652609E-01 -9.38001973908E-01 -9.26349863206E-01 -9.14842499778E-01 -9.03478085511E-01 -8.92254844627E-01 -8.81171023403E-01 -8.70224889897E-01 -8.59414733679E-01 -8.48738865564E-01 -8.38195617348E-01 -8.27783341547E-01 -8.17500411142E-01 -8.07345209511E-01 -7.97316169674E-01 -7.87411714405E-01 -7.77629745286E-01 -7.67969873718E-01 -7.58429998962E-01 -7.49008630423E-01 -7.39704295995E-01 -7.30515541855E-01 -7.21440932244E-01 -7.12479049236E-01 -7.03628492518E-01 -6.94887880206E-01 -6.86255844414E-01 -6.77731037492E-01 -6.69312127419E-01 -6.60997798725E-01 -6.52786752278E-01 -6.44677705087E-01 -6.36669416229E-01 -6.28760567216E-01 -6.20949977945E-01 -6.13236413374E-01 -6.05618668242E-01 -5.98095552262E-01 -5.90665889930E-01 -5.83328520348E-01 -5.76082297036E-01 -5.68926087757E-01 -5.61858770162E-01 -5.54879248425E-01 -5.47986427699E-01 -5.41179230968E-01 -5.34456594593E-01 -5.27817468147E-01 -5.21260814255E-01 -5.14785608426E-01 -5.08390838896E-01 -5.02075506468E-01 -4.95838624364E-01 -4.89679218049E-01 -4.83596325108E-01 -4.77588995077E-01 -4.71656289298E-01 -4.65797280773E-01 -4.60011054022E-01 -4.54296704934E-01 -4.48653340630E-01 -4.43080079323E-01 -4.37576050180E-01 -4.32140393185E-01 -4.26772259006E-01 -4.21470808861E-01 -4.16235214387E-01 -4.11064657502E-01 -4.05958330316E-01 -4.00915434946E-01 -3.95935183428E-01 -3.91016797588E-01 -3.86159508918E-01 -3.81362558457E-01 -3.76625196671E-01 -3.71946683339E-01 -3.67326287433E-01 -3.62763287006E-01 -3.58256969082E-01 -3.53806629537E-01 -3.49411572998E-01 -3.45071112729E-01 -3.40784570523E-01 -3.36551276599E-01 -3.32370569497E-01 -3.28241795973E-01 -3.24164310897E-01 -3.20137477154E-01 -3.16160665543E-01 -3.12233254680E-01 -3.08354630898E-01 -3.04524188154E-01 -3.00741327934E-01 -2.97005459159E-01 -2.93315998091E-01 -2.89672368244E-01 -2.86074000294E-01 -2.82520331989E-01 -2.79010808060E-01 -2.75544880138E-01 -2.72122006664E-01 -2.68741652807E-01 -2.65403290380E-01 -2.62106397758E-01 -2.58850459793E-01 -2.55634967739E-01 -2.52459419169E-01 -2.49323317897E-01 -2.46226173900E-01 -2.43167503244E-01 -2.40146828006E-01 -2.37163676197E-01 -2.34217581696E-01 -2.31308084168E-01 -2.28434728999E-01 -2.25597067222E-01 -2.22794655445E-01 -2.20027055786E-01 -2.17293835802E-01 -2.14594568422E-01 -2.11928831880E-01 -2.09296209649E-01 -2.06696290377E-01 -2.04128667821E-01 -2.01592940784E-01 -1.99088713055E-01 -1.96615593342E-01 -1.94173195215E-01 -1.91761137046E-01 -1.89379041944E-01 -1.87026537702E-01 -1.84703256738E-01 -1.82408836033E-01 -1.80142917081E-01 -1.77905145825E-01 -1.75695172610E-01 -1.73512652124E-01 -1.71357243342E-01 -1.69228609479E-01 -1.67126417930E-01 -1.65050340223E-01 -1.63000051968E-01 -1.60975232803E-01 -1.58975566346E-01 -1.57000740144E-01 -1.55050445627E-01 -1.53124378058E-01 -1.51222236485E-01 -1.49343723693E-01 -1.47488546163E-01 -1.45656414017E-01 -1.43847040983E-01 -1.42060144342E-01 -1.40295444887E-01 -1.38552666881E-01 -1.36831538010E-01 -1.35131789347E-01 -1.33453155300E-01 -1.31795373580E-01 -1.30158185155E-01 -1.28541334212E-01 -1.26944568113E-01 -1.25367637362E-01 -1.23810295559E-01 -1.22272299367E-01 -1.20753408470E-01 -1.19253385539E-01 -1.17771996192E-01 -1.16309008959E-01 -1.14864195245E-01 -1.13437329296E-01 -1.12028188160E-01 -1.10636551656E-01 -1.09262202339E-01 -1.07904925463E-01 -1.06564508951E-01 -1.05240743361E-01 -1.03933421851E-01 -1.02642340149E-01 -1.01367296522E-01 -1.00108091741E-01 4.93011752923E-09 5.05492468364E-09 5.18289137875E-09 5.31409760040E-09 5.44862535934E-09 5.58655874254E-09 5.72798396572E-09 5.87298942727E-09 6.02166576350E-09 6.17410590530E-09 6.33040513622E-09 6.49066115208E-09 6.65497412196E-09 6.82344675090E-09 6.99618434407E-09 7.17329487259E-09 7.35488904104E-09 7.54108035667E-09 7.73198520034E-09 7.92772289931E-09 8.12841580180E-09 8.33418935347E-09 8.54517217590E-09 8.76149614694E-09 8.98329648317E-09 9.21071182447E-09 9.44388432062E-09 9.68295972024E-09 9.92808746188E-09 1.01794207674E-08 1.04371167379E-08 1.07013364517E-08 1.09722450653E-08 1.12500119165E-08 1.15348106302E-08 1.18268192273E-08 1.21262202353E-08 1.24332008033E-08 1.27479528183E-08 1.30706730256E-08 1.34015631514E-08 1.37408300295E-08 1.40886857301E-08 1.44453476925E-08 1.48110388613E-08 1.51859878256E-08 1.55704289620E-08 1.59646025809E-08 1.63687550772E-08 1.67831390840E-08 1.72080136307E-08 1.76436443051E-08 1.80903034191E-08 1.85482701793E-08 1.90178308615E-08 1.94992789898E-08 1.99929155199E-08 2.04990490275E-08 2.10179959011E-08 2.15500805403E-08 2.20956355578E-08 2.26550019884E-08 2.32285295014E-08 2.38165766200E-08 2.44195109449E-08 2.50377093846E-08 2.56715583909E-08 2.63214542008E-08 2.69878030842E-08 2.76710215977E-08 2.83715368457E-08 2.90897867471E-08 2.98262203094E-08 3.05812979095E-08 3.13554915814E-08 3.21492853120E-08 3.29631753432E-08 3.37976704830E-08 3.46532924230E-08 3.55305760655E-08 3.64300698573E-08 3.73523361336E-08 3.82979514693E-08 3.92675070398E-08 4.02616089907E-08 4.12808788174E-08 4.23259537535E-08 4.33974871699E-08 4.44961489831E-08 4.56226260748E-08 4.67776227215E-08 4.79618610350E-08 4.91760814146E-08 5.04210430102E-08 5.16975241973E-08 5.30063230643E-08 5.43482579116E-08 5.57241677641E-08 5.71349128960E-08 5.85813753696E-08 6.00644595867E-08 6.15850928554E-08 6.31442259702E-08 6.47428338069E-08 6.63819159333E-08 6.80624972347E-08 6.97856285556E-08 7.15523873573E-08 7.33638783929E-08 7.52212343987E-08 7.71256168034E-08 7.90782164555E-08 8.10802543691E-08 8.31329824879E-08 8.52376844701E-08 8.73956764916E-08 8.96083080707E-08 9.18769629132E-08 9.42030597792E-08 9.65880533718E-08 9.90334352483E-08 1.01540734755E-07 1.04111519984E-07 1.06747398757E-07 1.09450019634E-07 1.12221072943E-07 1.15062291842E-07 1.17975453404E-07 1.20962379729E-07 1.24024939092E-07 1.27165047107E-07 1.30384667932E-07 1.33685815500E-07 1.37070554780E-07 1.40541003073E-07 1.44099331340E-07 1.47747765564E-07 1.51488588143E-07 1.55324139326E-07 1.59256818676E-07 1.63289086582E-07 1.67423465794E-07 1.71662543014E-07 1.76008970516E-07 1.80465467809E-07 1.85034823345E-07 1.89719896272E-07 1.94523618225E-07 1.99448995168E-07 2.04499109283E-07 2.09677120903E-07 2.14986270501E-07 2.20429880720E-07 2.26011358465E-07 2.31734197042E-07 2.37601978352E-07 2.43618375145E-07 2.49787153324E-07 2.56112174318E-07 2.62597397506E-07 2.69246882709E-07 2.76064792741E-07 2.83055396029E-07 2.90223069300E-07 2.97572300333E-07 3.05107690782E-07 3.12833959076E-07 3.20755943389E-07 3.28878604682E-07 3.37207029834E-07 3.45746434843E-07 3.54502168111E-07 3.63479713818E-07 3.72684695374E-07 3.82122878970E-07 3.91800177209E-07 4.01722652838E-07 4.11896522570E-07 4.22328161011E-07 4.33024104680E-07 4.43991056136E-07 4.55235888211E-07 4.66765648351E-07 4.78587563069E-07 4.90709042512E-07 5.03137685142E-07 5.15881282547E-07 5.28947824363E-07 5.42345503332E-07 5.56082720487E-07 5.70168090469E-07 5.84610446987E-07 5.99418848407E-07 6.14602583497E-07 6.30171177316E-07 6.46134397251E-07 6.62502259217E-07 6.79285034009E-07 6.96493253826E-07 7.14137718958E-07 7.32229504651E-07 7.50779968141E-07 7.69800755882E-07 7.89303810951E-07 8.09301380650E-07 8.29806024305E-07 8.50830621266E-07 8.72388379114E-07 8.94492842084E-07 9.17157899706E-07 9.40397795668E-07 9.64227136913E-07 9.88660902974E-07 1.01371445555E-06 1.03940354832E-06 1.06574433705E-06 1.09275338991E-06 1.12044769813E-06 1.14884468685E-06 1.17796222631E-06 1.20781864337E-06 1.23843273320E-06 1.26982377145E-06 1.30201152657E-06 1.33501627259E-06 1.36885880219E-06 1.40356044004E-06 1.43914305661E-06 1.47562908231E-06 1.51304152191E-06 1.55140396950E-06 1.59074062371E-06 1.63107630341E-06 1.67243646378E-06 1.71484721289E-06 1.75833532856E-06 1.80292827587E-06 1.84865422498E-06 1.89554206949E-06 1.94362144531E-06 1.99292274996E-06 2.04347716249E-06 2.09531666382E-06 2.14847405774E-06 2.20298299240E-06 2.25887798236E-06 2.31619443134E-06 2.37496865549E-06 2.43523790728E-06 2.49704040015E-06 2.56041533368E-06 2.62540291957E-06 2.69204440825E-06 2.76038211624E-06 2.83045945427E-06 2.90232095614E-06 2.97601230840E-06 3.05158038084E-06 3.12907325779E-06 3.20854027032E-06 3.29003202930E-06 3.37360045940E-06 3.45929883400E-06 3.54718181111E-06 3.63730547025E-06 3.72972735038E-06 3.82450648890E-06 3.92170346171E-06 4.02138042439E-06 4.12360115462E-06 4.22843109567E-06 4.33593740122E-06 4.44618898141E-06 4.55925655017E-06 4.67521267396E-06 4.79413182186E-06 4.91609041705E-06 5.04116688987E-06 5.16944173232E-06 5.30099755417E-06 5.43591914065E-06 5.57429351185E-06 5.71620998386E-06 5.86176023160E-06 6.01103835362E-06 6.16414093869E-06 6.32116713434E-06 6.48221871755E-06 6.64740016735E-06 6.81681873973E-06 6.99058454464E-06 7.16881062539E-06 7.35161304040E-06 7.53911094734E-06 7.73142668989E-06 7.92868588705E-06 8.13101752523E-06 8.33855405306E-06 8.55143147911E-06 8.76978947268E-06 8.99377146757E-06 9.22352476910E-06 9.45920066449E-06 9.70095453657E-06 9.94894598108E-06 1.02033389277E-05 1.04643017646E-05 1.07320074675E-05 1.10066337321E-05 1.12883631112E-05 1.15773831559E-05 1.18738865618E-05 1.21780713189E-05 1.24901408677E-05 1.28103042591E-05 1.31387763203E-05 1.34757778257E-05 1.38215356734E-05 1.41762830679E-05 1.45402597084E-05 1.49137119835E-05 1.52968931723E-05 1.56900636524E-05 1.60934911147E-05 1.65074507856E-05 1.69322256564E-05 1.73681067211E-05 1.78153932216E-05 1.82743929017E-05 1.87454222697E-05 1.92288068706E-05 1.97248815667E-05 2.02339908289E-05 2.07564890377E-05 2.12927407954E-05 2.18431212482E-05 2.24080164209E-05 2.29878235629E-05 2.35829515067E-05 2.41938210391E-05 2.48208652862E-05 2.54645301121E-05 2.61252745319E-05 2.68035711405E-05 2.74999065559E-05 2.82147818804E-05 2.89487131776E-05 2.97022319678E-05 3.04758857414E-05 3.12702384923E-05 3.20858712707E-05 3.29233827571E-05 3.37833898579E-05 3.46665283241E-05 3.55734533932E-05 3.65048404562E-05 3.74613857501E-05 3.84438070773E-05 3.94528445532E-05 4.04892613825E-05 4.15538446666E-05 4.26474062424E-05 4.37707835546E-05 4.49248405619E-05 4.61104686805E-05 4.73285877643E-05 4.85801471250E-05 4.98661265933E-05 5.11875376230E-05 5.25454244397E-05 5.39408652371E-05 5.53749734211E-05 5.68488989064E-05 5.83638294653E-05 5.99209921329E-05 6.15216546709E-05 6.31671270918E-05 6.48587632472E-05 6.65979624827E-05 6.83861713622E-05 7.02248854655E-05 7.21156512615E-05 7.40600680615E-05 7.60597900557E-05 7.81165284363E-05 8.02320536127E-05 8.24081975210E-05 8.46468560339E-05 8.69499914747E-05 8.93196352405E-05 9.17578905396E-05 9.42669352484E-05 9.68490248937E-05 9.95064957658E-05 1.02241768168E-04 1.05057349812E-04 1.07955839359E-04 1.10939930123E-04 1.14012413936E-04 1.17176185187E-04 1.20434245038E-04 1.23789705836E-04 1.27245795713E-04 1.30805863408E-04 1.34473383286E-04 1.38251960605E-04 1.42145337008E-04 1.46157396268E-04 1.50292170298E-04 1.54553845429E-04 1.58946768978E-04 1.63475456117E-04 1.68144597060E-04 1.72959064567E-04 1.77923921814E-04 1.83044430607E-04 1.88326059986E-04 1.93774495222E-04 1.99395647236E-04 2.05195662449E-04 2.11180933091E-04 2.17358107997E-04 2.23734103895E-04 2.30316117227E-04 2.37111636523E-04 2.44128455353E-04 2.51374685883E-04 2.58858773071E-04 2.66589509527E-04 2.74576051073E-04 2.82827933034E-04 2.91355087298E-04 3.00167860179E-04 3.09277031126E-04 3.18693832311E-04 3.28429969151E-04 3.38497641790E-04 3.48909567611E-04 3.59679004808E-04 3.70819777074E-04 3.82346299470E-04 3.94273605511E-04 4.06617375552E-04 4.19393966509E-04 4.32620443010E-04 4.46314610016E-04 4.60495047000E-04 4.75181143757E-04 4.90393137912E-04 5.06152154230E-04 5.22480245783E-04 5.39400437092E-04 5.56936769324E-04 5.75114347644E-04 5.93959390823E-04 6.13499283220E-04 6.33762629239E-04 6.54779310381E-04 6.76580545025E-04 6.99198951056E-04 7.22668611476E-04 7.47025143153E-04 7.72305768835E-04 7.98549392605E-04 8.25796678925E-04 8.54090135445E-04 8.83474199751E-04 9.13995330244E-04 9.45702101337E-04 9.78645303172E-04 1.01287804608E-03 1.04845586997E-03 1.08543685898E-03 1.12388176145E-03 1.16385411565E-03 1.20542038145E-03 1.24865007819E-03 1.29361592905E-03 1.34039401225E-03 1.38906391937E-03 1.43970892109E-03 1.49241614076E-03 1.54727673607E-03 1.60438608925E-03 1.66384400619E-03 1.72575492484E-03 1.79022813331E-03 1.85737799816E-03 1.92732420331E-03 2.00019200000E-03 2.07611246832E-03 2.15522279092E-03 2.23766653919E-03 2.32359397280E-03 2.41316235282E-03 2.50653626931E-03 2.60388798385E-03 2.70539778766E-03 2.81125437609E-03 2.92165524000E-03 3.03680707493E-03 3.15692620866E-03 3.28223904808E-03 3.41298254602E-03 3.54940468898E-03 3.69176500658E-03 3.84033510367E-03 3.99539921587E-03 4.15725478969E-03 4.32621308809E-03 4.50259982246E-03 4.68675581225E-03 4.87903767298E-03 5.07981853419E-03 5.28948878802E-03 5.50845686992E-03 5.73715007250E-03 5.97601539384E-03 6.22552042147E-03 6.48615425339E-03 6.75842845732E-03 7.04287806966E-03 7.34006263553E-03 7.65056729110E-03 7.97500388997E-03 8.31401217471E-03 8.66826099531E-03 9.03844957579E-03 9.42530883070E-03 9.82960273283E-03 1.02521297338E-02 1.06937242390E-02 1.11552581383E-02 1.16376423944E-02 1.21418286900E-02 1.26688111353E-02 1.32196280376E-02 1.37953637342E-02 1.43971504901E-02 1.50261704621E-02 1.56836577300E-02 1.63709003971E-02 1.70892427603E-02 1.78400875512E-02 1.86248982501E-02 1.94452014721E-02 2.03025894274E-02 2.11987224564E-02 2.21353316393E-02 2.31142214814E-02 2.41372726733E-02 2.52064449277E-02 2.63237798896E-02 2.74914041231E-02 2.87115321701E-02 2.99864696830E-02 3.13186166283E-02 3.27104705593E-02 3.41646299569E-02 3.56837976345E-02 3.72707842054E-02 3.89285116078E-02 4.06600166847E-02 4.24684548136E-02 4.43571035808E-02 4.63293664952E-02 4.83887767341E-02 5.05390009156E-02 5.27838428883E-02 5.51272475303E-02 5.75733045491E-02 6.01262522697E-02 6.27904814028E-02 6.55705387788E-02 6.84711310351E-02 7.14971282432E-02 7.46535674595E-02 7.79456561845E-02 8.13787757115E-02 8.49584843475E-02 8.86905204862E-02 9.25808055111E-02 9.66354465071E-02 1.00860738757E-01 1.05263167995E-01 1.09849412399E-01 1.14626344280E-01 1.19601031458E-01 1.24780738269E-01 1.30172926205E-01 1.35785254116E-01 1.41625577975E-01 1.47701950141E-01 1.54022618108E-01 1.60596022682E-01 1.67430795564E-01 1.74535756285E-01 1.81919908471E-01 1.89592435374E-01 1.97562694650E-01 2.05840212332E-01 2.14434675953E-01 2.23355926795E-01 2.32613951202E-01 2.42218870932E-01 2.52180932511E-01 2.62510495540E-01 2.73218019932E-01 2.84314052041E-01 2.95809209656E-01 3.07714165827E-01 3.20039631510E-01 3.32796336999E-01 3.45995012145E-01 3.59646365334E-01 3.73761061245E-01 3.88349697359E-01 4.03422779259E-01 4.18990694712E-01 4.35063686569E-01 4.51651824516E-01 4.68764975712E-01 4.86412774354E-01 5.04604590260E-01 5.23349496494E-01 5.42656236156E-01 5.62533188396E-01 5.82988333769E-01 6.04029219039E-01 6.25662921550E-01 6.47896013303E-01 6.70734524886E-01 6.94183909390E-01 7.18249006511E-01 7.42934006968E-01 7.68242417455E-01 7.94177026288E-01 8.20739869950E-01 8.47932200737E-01 8.75754455700E-01 9.04206227078E-01 9.33286234440E-01 9.62992298723E-01 9.93321318360E-01 1.02426924769E+00 1.05583107783E+00 1.08800082013E+00 1.12077149249E+00 1.15413510842E+00 1.18808266930E+00 1.22260415955E+00 1.25768854508E+00 1.29332377489E+00 1.32949678580E+00 1.36619351039E+00 1.40339888796E+00 1.44109687846E+00 1.47927047918E+00 1.51790174409E+00 1.55697180543E+00 1.59646089746E+00 1.63634838177E+00 1.67661277407E+00 1.71723177171E+00 1.75818228161E+00 1.79944044811E+00 1.84098167993E+00 1.88278067580E+00 1.92481144801E+00 1.96704734305E+00 2.00946105865E+00 2.05202465632E+00 2.09470956851E+00 2.13748659941E+00 2.18032591840E+00 2.22319704512E+00 2.26606882504E+00 2.30890939427E+00 2.35168613253E+00 2.39436560289E+00 2.43691347698E+00 2.47929444420E+00 2.52147210353E+00 2.56340883639E+00 2.60506565887E+00 2.64640205179E+00 2.68737576678E+00 2.72794260667E+00 2.76805617836E+00 2.80766761636E+00 2.84672527517E+00 2.88517438861E+00 2.92295669441E+00 2.96001002234E+00 2.99626784432E+00 3.03165878512E+00 3.06610609263E+00 3.09952706699E+00 3.13183244833E+00 3.16292576364E+00 3.19270263400E+00 3.22105004454E+00 3.24784558091E+00 3.27297208031E+00 3.29636787075E+00 3.31798831913E+00 3.33779165882E+00 3.35573912031E+00 3.37179505361E+00 3.38592704176E+00 3.39810600507E+00 3.40830629548E+00 3.41650578065E+00 3.42268591743E+00 3.42683181441E+00 3.42893228318E+00 3.42897987821E+00 3.42697092505E+00 3.42290553691E+00 3.41678761931E+00 3.40862486306E+00 3.39842872538E+00 3.38621439947E+00 3.37200077242E+00 3.35581037191E+00 3.33766930170E+00 3.31760716642E+00 3.29565698580E+00 3.27185509883E+00 3.24624105822E+00 3.21885751560E+00 3.18975009800E+00 3.15896727608E+00 3.12656022468E+00 3.09258267625E+00 3.05709076782E+00 3.02014288206E+00 2.98179948311E+00 2.94212294788E+00 2.90117739331E+00 2.85902850054E+00 2.81574333640E+00 2.77139017302E+00 2.72603830632E+00 2.67975787377E+00 2.63261967244E+00 2.58469497762E+00 2.53605536299E+00 2.48677252260E+00 2.43691809557E+00 2.38656349384E+00 2.33577973366E+00 2.28463727122E+00 2.23320584301E+00 2.18153861774E+00 2.12971940082E+00 2.07781488040E+00 2.02588134105E+00 1.97399191226E+00 1.92220899422E+00 1.87059331420E+00 1.81920381814E+00 1.76809756988E+00 1.71732965821E+00 1.66695311177E+00 1.61701882214E+00 1.56757547484E+00 1.51866948867E+00 1.47034496306E+00 1.42264363365E+00 1.37560483597E+00 1.32926547716E+00 1.28366001564E+00 1.23882044863E+00 1.19477630743E+00 1.15155466020E+00 1.10918012213E+00 1.06767487286E+00 1.02705868081E+00 9.87348934241E-01 9.48560678830E-01 9.10706661393E-01 8.73797379529E-01 8.37841136835E-01 8.02844103353E-01 7.68810380912E-01 7.35742072968E-01 7.03639358580E-01 6.72500570089E-01 6.42322274108E-01 6.13099355380E-01 5.84825103064E-01 5.57491299026E-01 5.31088307664E-01 5.05605166834E-01 4.81029679436E-01 4.57348505213E-01 4.34547252345E-01 4.12610568420E-01 3.91522230391E-01 3.71265233129E-01 3.51821876228E-01 3.33173848726E-01 3.15302311441E-01 2.98187976637E-01 2.81811184789E-01 2.66151978216E-01 2.51190171415E-01 2.36905417931E-01 2.23277273646E-01 2.10285256401E-01 1.97908901896E-01 1.86127815820E-01 1.74921722232E-01 1.64270508194E-01 1.54154264716E-01 1.44553324083E-01 1.35448293644E-01 1.26820086172E-01 1.18649946924E-01 1.10919477530E-01 1.03610656859E-01 9.67058590168E-02 9.01878686425E-02 8.40398936607E-02 7.82455756697E-02 7.27889981289E-02 6.76546925176E-02 6.28276426303E-02 5.82932871727E-02 5.40375208141E-02 5.00466938482E-02 4.63076106037E-02 4.28075267419E-02 3.95341455647E-02 3.64756134514E-02 3.36205145308E-02 3.09578646854E-02 2.84771049763E-02 2.61680945676E-02 2.40211032184E-02 2.20268034058E-02 2.01762621305E-02 1.84609324530E-02 1.68726447980E-02 1.54035980639E-02 1.40463505646E-02 1.27938108301E-02 1.16392282865E-02 1.05761838351E-02 9.59858034820E-03 8.70063309464E-03 7.87686011215E-03 7.12207253829E-03 6.43136491422E-03 5.80010547466E-03 5.22392643763E-03 4.69871430822E-03 4.22060021064E-03 3.78595026391E-03 3.39135601619E-03 3.03362495399E-03 2.70977110204E-03 2.41700573028E-03 2.15272818420E-03 1.91451685475E-03 1.70012030354E-03 1.50744855905E-03 1.33456459838E-03 1.17967602887E-03 1.04112698265E-03 9.17390236422E-04 8.07059567466E-04 7.08842355899E-04 6.21552441697E-04 5.44103243849E-04 4.75501147582E-04 4.14839164233E-04 3.61290866974E-04 3.14104604248E-04 2.72597991429E-04 2.36152679980E-04 2.04209402101E-04 1.76263287777E-04 1.51859449979E-04 1.30588832850E-04 1.12084316742E-04 9.60170731903E-05 8.20931621792E-05 7.00503634445E-05 5.96552330128E-05 5.07003757684E-05 4.30019244914E-05 3.63972155668E-05 3.07426514032E-05 2.59117395176E-05 2.17932982390E-05 1.82898190465E-05 1.53159756846E-05 1.27972703825E-05 1.06688077364E-05 8.87418709510E-06 7.36450459940E-06 6.09745637570E-06 5.03653475221E-06 4.15030975841E-06 3.41178856985E-06 2.79784597513E-06 2.28871935738E-06 1.86756209968E-06 1.52004973648E-06 1.23403357881E-06 9.99236937025E-07 8.06989447602E-07 6.49995379893E-07 5.22132150834E-07 4.18275611284E-07 3.34148984470E-07 2.66192635243E-07 2.11452127224E-07 1.67483394335E-07 1.32277956329E-07 1.04171364678E-07 8.17976681658E-08 6.40401592958E-08 4.99886009058E-08 3.89032788652E-08 3.01848844008E-08 2.33493592046E-08 1.80069517762E-08 1.38448356254E-08 1.06127301715E-08 8.11104452058E-09 6.18113383779E-09 4.69731872899E-09 3.56037082656E-09 2.69207304926E-09 2.03004453089E-09 1.52697840474E-09 1.14608991875E-09 8.58768158719E-10 6.42842326480E-10 4.81197304891E-10 3.58834611259E-10 2.66561314039E-10 1.97247063591E-10 1.45382896549E-10 1.06729353456E-10 7.80369715540E-11 5.68251780233E-11 4.12081101224E-11 2.97579787119E-11 2.13983387662E-11 1.53210792613E-11 1.09221418061E-11 7.75196134062E-12 5.47742711465E-12 3.85281735290E-12 2.69769170428E-12 1.88015328830E-12 1.30423514572E-12 9.00439567978E-13 6.18676022056E-13 4.23014957133E-13 2.87809577309E-13 1.94843022112E-13 1.31240310517E-13 8.79477542795E-14 5.86312780142E-14 3.88823678946E-14 2.56487418995E-14 1.68283046833E-14 1.09811078324E-14 7.12612802031E-15 4.59867340111E-15 2.95088595990E-15 1.88270485487E-15 1.19423741230E-15 7.53088433900E-16 4.72080456452E-16 2.94149600708E-16 1.82167019500E-16 1.12121042232E-16 6.85782818134E-17 4.16806003778E-17 2.51706590098E-17 1.51019624830E-17 9.00149933821E-18 5.32970321351E-18 3.13445103500E-18 1.83085257479E-18 1.06204115732E-18 6.11769192026E-19 3.49907992126E-19 1.98701600659E-19 1.12018786966E-19 6.26877410947E-20 3.48206112488E-20 1.91960303788E-20 1.05018660775E-20 5.70111438318E-21 3.07078182697E-21 1.64093456353E-21 8.69847829480E-22 4.57363083243E-22 2.38506522477E-22 1.23343342672E-22 6.32501953763E-23 3.21582615429E-23 1.62091797556E-23 8.09878667625E-24 4.01071122263E-24 1.96841562141E-24 9.57319802162E-25 4.61309445533E-25 2.20227894546E-25 1.04146806531E-25 4.87822215315E-26 2.26290780798E-26 1.03946254516E-26 4.72752557797E-27 2.12856870991E-27 9.48670088793E-28 4.18466600278E-28 1.82670351353E-28 7.89005262839E-29 3.37161900096E-29 1.42523112767E-29 5.95883060639E-30 2.46380135883E-30 1.00729915894E-30 4.07153187041E-31 1.62682738496E-31 6.42460271789E-32 2.50731183982E-32 9.66858676234E-33 3.68336457242E-33 1.38607630294E-33 5.15137450587E-34 1.89053467879E-34 6.85019350326E-35 2.45023625404E-35 8.65026475505E-36 3.01366970891E-36 1.03593932408E-36 3.51295095547E-37 1.17499149081E-37 3.87567236432E-38 1.26047134722E-38 4.04124719506E-39 1.27707478988E-39 3.97701018891E-40 1.22027163667E-40 3.68837228804E-41 1.09801775786E-41 3.21882440416E-42 9.28997184970E-43 2.63921959517E-43 7.37894760053E-44 2.02994263503E-44 5.49357571294E-45 1.46224091771E-45 3.82722991095E-46 9.84827495482E-47 2.49088002034E-47 6.19110760069E-48 1.51185965662E-48 3.62648322549E-49 8.54266169279E-50 1.97576425880E-50 4.48550372798E-51 9.99355567664E-52 2.18453410484E-52 4.68407208162E-53 9.84938056008E-54 2.03052438772E-54 4.10311263971E-55 8.12484794771E-56 1.57616934947E-56 2.99477510202E-57 5.57167411480E-58 1.01473440441E-58 1.80862209466E-59 3.15394535951E-60 5.37962521177E-61 8.27445928384E-07 8.48392819416E-07 8.69869983397E-07 8.91890844245E-07 9.14469165705E-07 9.37619059952E-07 9.61354996414E-07 9.85691810812E-07 1.01064471444E-06 1.03622930365E-06 1.06246156964E-06 1.08935790842E-06 1.11693513105E-06 1.14521047419E-06 1.17420161082E-06 1.20392666134E-06 1.23440420485E-06 1.26565329079E-06 1.29769345084E-06 1.33054471112E-06 1.36422760471E-06 1.39876318449E-06 1.43417303631E-06 1.47047929245E-06 1.50770464547E-06 1.54587236241E-06 1.58500629930E-06 1.62513091609E-06 1.66627129195E-06 1.70845314091E-06 1.75170282796E-06 1.79604738554E-06 1.84151453039E-06 1.88813268093E-06 1.93593097495E-06 1.98493928792E-06 2.03518825158E-06 2.08670927310E-06 2.13953455476E-06 2.19369711401E-06 2.24923080417E-06 2.30617033553E-06 2.36455129709E-06 2.42441017879E-06 2.48578439430E-06 2.54871230442E-06 2.61323324108E-06 2.67938753187E-06 2.74721652529E-06 2.81676261657E-06 2.88806927420E-06 2.96118106706E-06 3.03614369228E-06 3.11300400383E-06 3.19181004179E-06 3.27261106238E-06 3.35545756874E-06 3.44040134249E-06 3.52749547611E-06 3.61679440611E-06 3.70835394708E-06 3.80223132653E-06 3.89848522072E-06 3.99717579128E-06 4.09836472282E-06 4.20211526152E-06 4.30849225463E-06 4.41756219100E-06 4.52939324265E-06 4.64405530739E-06 4.76162005248E-06 4.88216095942E-06 5.00575336992E-06 5.13247453296E-06 5.26240365305E-06 5.39562193981E-06 5.53221265862E-06 5.67226118277E-06 5.81585504675E-06 5.96308400099E-06 6.11404006794E-06 6.26881759960E-06 6.42751333649E-06 6.59022646810E-06 6.75705869490E-06 6.92811429192E-06 7.10350017388E-06 7.28332596205E-06 7.46770405275E-06 7.65674968762E-06 7.85058102561E-06 8.04931921687E-06 8.25308847844E-06 8.46201617191E-06 8.67623288302E-06 8.89587250326E-06 9.12107231359E-06 9.35197307020E-06 9.58871909251E-06 9.83145835337E-06 1.00803425715E-05 1.03355273065E-05 1.05971720557E-05 1.08654403543E-05 1.11404998773E-05 1.14225225443E-05 1.17116846270E-05 1.20081668595E-05 1.23121545511E-05 1.26238377021E-05 1.29434111228E-05 1.32710745547E-05 1.36070327962E-05 1.39514958297E-05 1.43046789536E-05 1.46668029162E-05 1.50380940542E-05 1.54187844339E-05 1.58091119963E-05 1.62093207057E-05 1.66196607024E-05 1.70403884589E-05 1.74717669401E-05 1.79140657681E-05 1.83675613899E-05 1.88325372510E-05 1.93092839721E-05 1.97980995310E-05 2.02992894483E-05 2.08131669792E-05 2.13400533085E-05 2.18802777517E-05 2.24341779609E-05 2.30021001356E-05 2.35843992392E-05 2.41814392207E-05 2.47935932425E-05 2.54212439133E-05 2.60647835272E-05 2.67246143091E-05 2.74011486661E-05 2.80948094450E-05 2.88060301967E-05 2.95352554472E-05 3.02829409753E-05 3.10495540977E-05 3.18355739608E-05 3.26414918401E-05 3.34678114475E-05 3.43150492461E-05 3.51837347727E-05 3.60744109688E-05 3.69876345202E-05 3.79239762046E-05 3.88840212486E-05 3.98683696929E-05 4.08776367682E-05 4.19124532786E-05 4.29734659968E-05 4.40613380677E-05 4.51767494231E-05 4.63203972064E-05 4.74929962085E-05 4.86952793144E-05 4.99279979613E-05 5.11919226079E-05 5.24878432164E-05 5.38165697456E-05 5.51789326575E-05 5.65757834361E-05 5.80079951194E-05 5.94764628454E-05 6.09821044110E-05 6.25258608457E-05 6.41086969998E-05 6.57316021472E-05 6.73955906038E-05 6.91017023610E-05 7.08510037358E-05 7.26445880372E-05 7.44835762495E-05 7.63691177323E-05 7.83023909392E-05 8.02846041540E-05 8.23169962457E-05 8.44008374429E-05 8.65374301271E-05 8.87281096469E-05 9.09742451520E-05 9.32772404493E-05 9.56385348794E-05 9.80596042167E-05 1.00541961591E-04 1.03087158432E-04 1.05696785442E-04 1.08372473586E-04 1.11115895113E-04 1.13928764600E-04 1.16812840022E-04 1.19769923855E-04 1.22801864198E-04 1.25910555926E-04 1.29097941881E-04 1.32366014078E-04 1.35716814955E-04 1.39152438647E-04 1.42675032294E-04 1.46286797383E-04 1.49989991123E-04 1.53786927857E-04 1.57679980504E-04 1.61671582045E-04 1.65764227043E-04 1.69960473198E-04 1.74262942947E-04 1.78674325104E-04 1.83197376535E-04 1.87834923886E-04 1.92589865343E-04 1.97465172447E-04 2.02463891947E-04 2.07589147705E-04 2.12844142647E-04 2.18232160761E-04 2.23756569153E-04 2.29420820147E-04 2.35228453441E-04 2.41183098319E-04 2.47288475917E-04 2.53548401549E-04 2.59966787086E-04 2.66547643404E-04 2.73295082883E-04 2.80213321981E-04 2.87306683863E-04 2.94579601104E-04 3.02036618454E-04 3.09682395676E-04 3.17521710460E-04 3.25559461401E-04 3.33800671060E-04 3.42250489101E-04 3.50914195505E-04 3.59797203866E-04 3.68905064773E-04 3.78243469272E-04 3.87818252424E-04 3.97635396942E-04 4.07701036931E-04 4.18021461713E-04 4.28603119755E-04 4.39452622694E-04 4.50576749464E-04 4.61982450527E-04 4.73676852211E-04 4.85667261156E-04 4.97961168879E-04 5.10566256442E-04 5.23490399253E-04 5.36741671974E-04 5.50328353563E-04 5.64258932440E-04 5.78542111781E-04 5.93186814950E-04 6.08202191066E-04 6.23597620709E-04 6.39382721774E-04 6.55567355472E-04 6.72161632474E-04 6.89175919227E-04 7.06620844412E-04 7.24507305577E-04 7.42846475931E-04 7.61649811312E-04 7.80929057333E-04 8.00696256700E-04 8.20963756726E-04 8.41744217026E-04 8.63050617411E-04 8.84896265976E-04 9.07294807399E-04 9.30260231443E-04 9.53806881675E-04 9.77949464407E-04 1.00270305786E-03 1.02808312155E-03 1.05410550593E-03 1.08078646228E-03 1.10814265278E-03 1.13619116096E-03 1.16494950226E-03 1.19443563503E-03 1.22466797161E-03 1.25566538989E-03 1.28744724501E-03 1.32003338141E-03 1.35344414520E-03 1.38770039683E-03 1.42282352404E-03 1.45883545520E-03 1.49575867296E-03 1.53361622818E-03 1.57243175435E-03 1.61222948223E-03 1.65303425495E-03 1.69487154345E-03 1.73776746228E-03 1.78174878593E-03 1.82684296536E-03 1.87307814514E-03 1.92048318090E-03 1.96908765728E-03 2.01892190630E-03 2.07001702620E-03 2.12240490074E-03 2.17611821902E-03 2.23119049576E-03 2.28765609213E-03 2.34555023702E-03 2.40490904895E-03 2.46576955846E-03 2.52816973107E-03 2.59214849084E-03 2.65774574449E-03 2.72500240616E-03 2.79396042271E-03 2.86466279981E-03 2.93715362847E-03 3.01147811243E-03 3.08768259612E-03 3.16581459334E-03 3.24592281670E-03 3.32805720772E-03 3.41226896775E-03 3.49861058962E-03 3.58713589011E-03 3.67790004321E-03 3.77095961419E-03 3.86637259457E-03 3.96419843793E-03 4.06449809660E-03 4.16733405927E-03 4.27277038958E-03 4.38087276560E-03 4.49170852032E-03 4.60534668318E-03 4.72185802258E-03 4.84131508944E-03 4.96379226194E-03 5.08936579120E-03 5.21811384825E-03 5.35011657210E-03 5.48545611896E-03 5.62421671274E-03 5.76648469678E-03 5.91234858682E-03 6.06189912537E-03 6.21522933729E-03 6.37243458686E-03 6.53361263620E-03 6.69886370512E-03 6.86829053245E-03 7.04199843893E-03 7.22009539155E-03 7.40269206953E-03 7.58990193195E-03 7.78184128693E-03 7.97862936260E-03 8.18038837980E-03 8.38724362646E-03 8.59932353393E-03 8.81675975509E-03 9.03968724436E-03 9.26824433970E-03 9.50257284658E-03 9.74281812400E-03 9.98912917254E-03 1.02416587247E-02 1.05005633371E-02 1.07660034855E-02 1.10381436614E-02 1.13171524714E-02 1.16032027389E-02 1.18964716084E-02 1.21971406516E-02 1.25053959773E-02 1.28214283426E-02 1.31454332673E-02 1.34776111518E-02 1.38181673963E-02 1.41673125240E-02 1.45252623070E-02 1.48922378947E-02 1.52684659458E-02 1.56541787633E-02 1.60496144322E-02 1.64550169612E-02 1.68706364273E-02 1.72967291239E-02 1.77335577119E-02 1.81813913753E-02 1.86405059795E-02 1.91111842339E-02 1.95937158578E-02 2.00883977503E-02 2.05955341645E-02 2.11154368852E-02 2.16484254104E-02 2.21948271383E-02 2.27549775569E-02 2.33292204389E-02 2.39179080410E-02 2.45214013073E-02 2.51400700773E-02 2.57742932990E-02 2.64244592466E-02 2.70909657425E-02 2.77742203852E-02 2.84746407811E-02 2.91926547828E-02 2.99287007310E-02 3.06832277031E-02 3.14566957665E-02 3.22495762372E-02 3.30623519446E-02 3.38955175013E-02 3.47495795795E-02 3.56250571919E-02 3.65224819802E-02 3.74423985079E-02 3.83853645610E-02 3.93519514531E-02 4.03427443383E-02 4.13583425293E-02 4.23993598230E-02 4.34664248315E-02 4.45601813209E-02 4.56812885558E-02 4.68304216512E-02 4.80082719308E-02 4.92155472926E-02 5.04529725812E-02 5.17212899672E-02 5.30212593337E-02 5.43536586701E-02 5.57192844725E-02 5.71189521523E-02 5.85534964513E-02 6.00237718640E-02 6.15306530684E-02 6.30750353621E-02 6.46578351079E-02 6.62799901855E-02 6.79424604505E-02 6.96462282012E-02 7.13922986525E-02 7.31817004170E-02 7.50154859934E-02 7.68947322615E-02 7.88205409849E-02 8.07940393206E-02 8.28163803345E-02 8.48887435248E-02 8.70123353512E-02 8.91883897706E-02 9.14181687791E-02 9.37029629595E-02 9.60440920355E-02 9.84429054303E-02 1.00900782831E-01 1.03419134758E-01 1.05999403137E-01 1.08643061881E-01 1.11351617465E-01 1.14126609517E-01 1.16969611403E-01 1.19882230817E-01 1.22866110373E-01 1.25922928196E-01 1.29054398518E-01 1.32262272269E-01 1.35548337670E-01 1.38914420822E-01 1.42362386294E-01 1.45894137706E-01 1.49511618311E-01 1.53216811565E-01 1.57011741697E-01 1.60898474262E-01 1.64879116699E-01 1.68955818864E-01 1.73130773554E-01 1.77406217029E-01 1.81784429500E-01 1.86267735616E-01 1.90858504920E-01 1.95559152295E-01 2.00372138376E-01 2.05299969949E-01 2.10345200305E-01 2.15510429586E-01 2.20798305078E-01 2.26211521482E-01 2.31752821137E-01 2.37424994210E-01 2.43230878835E-01 2.49173361207E-01 2.55255375619E-01 2.61479904450E-01 2.67849978089E-01 2.74368674794E-01 2.81039120483E-01 2.87864488454E-01 2.94847999022E-01 3.01992919075E-01 3.09302561540E-01 3.16780284752E-01 3.24429491723E-01 3.32253629307E-01 3.40256187240E-01 3.48440697066E-01 3.56810730937E-01 3.65369900263E-01 3.74121854231E-01 3.83070278159E-01 3.92218891692E-01 4.01571446828E-01 4.11131725755E-01 4.20903538496E-01 4.30890720361E-01 4.41097129166E-01 4.51526642241E-01 4.62183153189E-01 4.73070568398E-01 4.84192803283E-01 4.95553778251E-01 5.07157414370E-01 5.19007628728E-01 5.31108329465E-01 5.43463410465E-01 5.56076745682E-01 5.68952183096E-01 5.82093538262E-01 5.95504587451E-01 6.09189060348E-01 6.23150632299E-01 6.37392916065E-01 6.51919453089E-01 6.66733704224E-01 6.81839039921E-01 6.97238729829E-01 7.12935931805E-01 7.28933680290E-01 7.45234874026E-01 7.61842263091E-01 7.78758435222E-01 7.95985801384E-01 8.13526580574E-01 8.31382783805E-01 8.49556197259E-01 8.68048364556E-01 8.86860568122E-01 9.05993809603E-01 9.25448789302E-01 9.45225884605E-01 9.65325127336E-01 9.85746180038E-01 1.00648831111E+00 1.02755036877E+00 1.04893075384E+00 1.07062739122E+00 1.09263770016E+00 1.11495856313E+00 1.13758629335E+00 1.16051660096E+00 1.18374455764E+00 1.20726455988E+00 1.23107029061E+00 1.25515467941E+00 1.27950986098E+00 1.30412713212E+00 1.32899690704E+00 1.35410867088E+00 1.37945093174E+00 1.40501117075E+00 1.43077579062E+00 1.45673006226E+00 1.48285806975E+00 1.50914265354E+00 1.53556535176E+00 1.56210634001E+00 1.58874436913E+00 1.61545670152E+00 1.64221904561E+00 1.66900548871E+00 1.69578842840E+00 1.72253850223E+00 1.74922451611E+00 1.77581337127E+00 1.80226999006E+00 1.82855724057E+00 1.85463586027E+00 1.88046437890E+00 1.90599904071E+00 1.93119372619E+00 1.95599987378E+00 1.98036640142E+00 2.00423962867E+00 2.02756319933E+00 2.05027800511E+00 2.07232211070E+00 2.09363068068E+00 2.11413590858E+00 2.13376694881E+00 2.15244985185E+00 2.17010750331E+00 2.18665956755E+00 2.20202243654E+00 2.21610918462E+00 2.22882953009E+00 2.24008980443E+00 2.24979293009E+00 2.25783840783E+00 2.26412231466E+00 2.26853731363E+00 2.27097267655E+00 2.27131432093E+00 2.26944486266E+00 2.26524368569E+00 2.25858703042E+00 2.24934810224E+00 2.23739720211E+00 2.22260188085E+00 2.20482711903E+00 2.18393553457E+00 2.15978761982E+00 2.13224201064E+00 2.10115578929E+00 2.06638482382E+00 2.02778414596E+00 1.98520837031E+00 1.93851215700E+00 1.88755072057E+00 1.83218038756E+00 1.77225920546E+00 1.70764760560E+00 1.63840889150E+00 1.57074345212E+00 1.50467721877E+00 1.44023307483E+00 1.37743084120E+00 1.31628726551E+00 1.25681601513E+00 1.19902767425E+00 1.14292974547E+00 1.08852665714E+00 1.03581977779E+00 9.84807439680E-01 9.35484973368E-01 8.87844755613E-01 8.41876272567E-01 7.97566199840E-01 7.54898500427E-01 7.13854540616E-01 6.74413223119E-01 6.36551135679E-01 6.00242712563E-01 5.65460405625E-01 5.32174861178E-01 5.00355098784E-01 4.69968688209E-01 4.40981921352E-01 4.13359976633E-01 3.87067074236E-01 3.62066621493E-01 3.38321348459E-01 3.15793434386E-01 2.94444626129E-01 2.74236349696E-01 2.55129816120E-01 2.37086122635E-01 2.20066349915E-01 2.04031655847E-01 1.88943366097E-01 1.74763061473E-01 1.61452661989E-01 1.48974507400E-01 1.37291433925E-01 1.26366846880E-01 1.16164788911E-01 1.06650003576E-01 9.77879940638E-02 8.95450768470E-02 8.18884301666E-02 7.47861372498E-02 6.82072242339E-02 6.21216928043E-02 5.65005475965E-02 5.13158184478E-02 4.65405776198E-02 4.21489521380E-02 3.81161314263E-02 3.44183704308E-02 3.10329884515E-02 2.79383639137E-02 2.51139253266E-02 2.25401386862E-02 2.01984915887E-02 1.80714743271E-02 1.61425582462E-02 1.43961716337E-02 1.28176734254E-02 1.13933249977E-02 1.01102603196E-02 8.95645472724E-03 7.92069257853E-03 6.99253403582E-03 6.16228121382E-03 5.42094391884E-03 4.76020519267E-03 4.17238686116E-03 3.65041527317E-03 3.18778740125E-03 2.77853746015E-03 2.41720418395E-03 2.09879888783E-03 1.81877442441E-03 1.57299513053E-03 1.35770784502E-03 1.16951406413E-03 1.00534328769E-03 8.62427595862E-04 7.38277484539E-04 6.30658975487E-04 5.37572007223E-04 4.57230102571E-04 3.88041300213E-04 3.28590329586E-04 2.77622001539E-04 2.34025781069E-04 1.96821503313E-04 1.65146189603E-04 1.38241916919E-04 1.15444691348E-04 9.61742741377E-05 7.99249076242E-05 6.62568876297E-05 5.47889287534E-05 4.51912693770E-05 3.71794640035E-05 3.05088117535E-05 2.49693713725E-05 2.03815149113E-05 1.65919742704E-05 1.34703370060E-05 1.09059501295E-05 8.80519305296E-06 7.08908330740E-06 5.69118114168E-06 4.55576158711E-06 3.63622499968E-06 2.89371946217E-06 2.29595071426E-06 1.81615747025E-06 1.43223206678E-06 1.12596834998E-06 8.82420556401E-07 6.89358661515E-07 5.36807262380E-07 4.16656528213E-07 3.22335096035E-07 2.48536012203E-07 1.90987929096E-07 1.46264765149E-07 1.11627931976E-07 8.48960311815E-08 6.43376324655E-08 4.85833708467E-08 3.65541511879E-08 2.74027295939E-08 2.04663602671E-08 1.52285593989E-08 1.12883506481E-08 8.33562531418E-09 6.13147967607E-09 4.49258692864E-09 3.27882608566E-09 2.38352909672E-09 1.72582380815E-09 1.24464746720E-09 8.94086044490E-10 6.39761215014E-10 4.56041566775E-10 3.23899385581E-10 2.29270827538E-10 1.61806837257E-10 1.13925995441E-10 8.00995981425E-11 5.63145367522E-11 3.94084086199E-11 2.74480016008E-11 1.90265889671E-11 1.31254470929E-11 9.01040874487E-12 6.15497095189E-12 4.18342717502E-12 2.82902195216E-12 1.90331718354E-12 1.27388214046E-12 8.48130477413E-13 5.61672505266E-13 3.69966231541E-13 2.42365274538E-13 1.57898739337E-13 1.02295624396E-13 6.58984721380E-14 4.22087880378E-14 2.68787215481E-14 1.70161397738E-14 1.07084912549E-14 6.69850677105E-15 4.16463955251E-15 2.57331727604E-15 1.58012738380E-15 9.64138917366E-16 5.84522628121E-16 3.52080716181E-16 2.10681732320E-16 1.25233155833E-16 7.39406348635E-17 4.33592302986E-17 2.52509166755E-17 1.46026644977E-17 8.38509784346E-18 4.78042423546E-18 2.70562585000E-18 1.52010034690E-18 8.47695191065E-19 4.69169039081E-19 2.57691354541E-19 1.40446018461E-19 7.59479018218E-20 4.07451627943E-20 2.16843745121E-20 1.14468083263E-20 5.99299834360E-21 3.11158137099E-21 1.60195347368E-21 8.17719362615E-22 4.13806840051E-22 2.07578721780E-22 1.03207674701E-22 5.08553641455E-23 2.48317993330E-23 1.20136974551E-23 5.75827094394E-24 2.73403213862E-24 1.28575977815E-24 5.98837117850E-25 2.76183390072E-25 1.26116826517E-25 5.70139526755E-26 2.55133357869E-26 1.12999358374E-26 4.95280607667E-27 2.14801130882E-27 9.21667493951E-28 3.91206718651E-28 1.64238057624E-28 6.81894451074E-29 2.79947135625E-29 1.13629034217E-29 4.55926832670E-30 1.80813518879E-30 7.08652176611E-31 2.74433806837E-31 1.04997587579E-31 3.96818954460E-32 1.48118803302E-32 5.45965450541E-33 1.98695914658E-33 7.13858760968E-34 2.53142534423E-34 8.85883142802E-35 3.05896387868E-35 1.04204401153E-35 3.50136884591E-36 1.16025942647E-36 3.79107344984E-37 1.22118819260E-37 3.87738373830E-38 1.21325549677E-38 3.74061970630E-39 1.13614081047E-39 3.39888572082E-40 1.00132306755E-40 2.90443422934E-41 8.29304250835E-42 2.33048084858E-42 6.44420999060E-43 1.75306664429E-43 4.69075502128E-44 1.23427667076E-44 3.19312889830E-45 8.12011361037E-46 2.02934497758E-46 4.98313883038E-47 1.20200821082E-47 2.84755434211E-48 6.62366431302E-49 1.51246954380E-49 3.38950325551E-50 7.45322707718E-51 1.60771115939E-51 3.40112240231E-52 7.05473853611E-53 1.43442065186E-53 2.85825022212E-54 5.58009844691E-55 1.06706228874E-55 1.99816324042E-56 3.66294874006E-57 6.57196322700E-58 1.15373583525E-58 1.98127930305E-59 3.32730552112E-60 5.46292697326E-61 8.76638201014E-62 1.37452506640E-62 2.10521101130E-63 3.14862635758E-64 4.59726313162E-65 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 4.96492459439E-05 5.02737568593E-05 5.09061231657E-05 5.15464436722E-05 5.21948184308E-05 5.28513487519E-05 5.35161372203E-05 5.41892877111E-05 5.48709054063E-05 5.55610968106E-05 5.62599697686E-05 5.69676334812E-05 5.76841985232E-05 5.84097768601E-05 5.91444818657E-05 5.98884283402E-05 6.06417325276E-05 6.14045121340E-05 6.21768863463E-05 6.29589758506E-05 6.37509028508E-05 6.45527910884E-05 6.53647658611E-05 6.61869540428E-05 6.70194841031E-05 6.78624861280E-05 6.87160918394E-05 6.95804346163E-05 7.04556495154E-05 7.13418732923E-05 7.22392444228E-05 7.31479031244E-05 7.40679913786E-05 7.49996529527E-05 7.59430334224E-05 7.68982801947E-05 7.78655425306E-05 7.88449715690E-05 7.98367203494E-05 8.08409438369E-05 8.18577989456E-05 8.28874445633E-05 8.39300415768E-05 8.49857528962E-05 8.60547434813E-05 8.71371803665E-05 8.82332326875E-05 8.93430717077E-05 9.04668708445E-05 9.16048056970E-05 9.27570540728E-05 9.39237960166E-05 9.51052138374E-05 9.63014921377E-05 9.75128178422E-05 9.87393802269E-05 9.99813709485E-05 1.01238984075E-04 1.02512416114E-04 1.03801866048E-04 1.05107535361E-04 1.06429628069E-04 1.07768350759E-04 1.09123912613E-04 1.10496525446E-04 1.11886403737E-04 1.13293764663E-04 1.14718828133E-04 1.16161816823E-04 1.17622956209E-04 1.19102474604E-04 1.20600603191E-04 1.22117576065E-04 1.23653630263E-04 1.25209005804E-04 1.26783945727E-04 1.28378696128E-04 1.29993506198E-04 1.31628628264E-04 1.33284317827E-04 1.34960833602E-04 1.36658437556E-04 1.38377394955E-04 1.40117974401E-04 1.41880447874E-04 1.43665090776E-04 1.45472181972E-04 1.47302003838E-04 1.49154842300E-04 1.51030986882E-04 1.52930730748E-04 1.54854370753E-04 1.56802207485E-04 1.58774545313E-04 1.60771692436E-04 1.62793960928E-04 1.64841666791E-04 1.66915130002E-04 1.69014674563E-04 1.71140628551E-04 1.73293324173E-04 1.75473097813E-04 1.77680290087E-04 1.79915245896E-04 1.82178314481E-04 1.84469849476E-04 1.86790208964E-04 1.89139755533E-04 1.91518856331E-04 1.93927883128E-04 1.96367212368E-04 1.98837225234E-04 2.01338307701E-04 2.03870850604E-04 2.06435249691E-04 2.09031905692E-04 2.11661224378E-04 2.14323616623E-04 2.17019498472E-04 2.19749291205E-04 2.22513421402E-04 2.25312321008E-04 2.28146427404E-04 2.31016183475E-04 2.33922037676E-04 2.36864444106E-04 2.39843862577E-04 2.42860758685E-04 2.45915603887E-04 2.49008875569E-04 2.52141057125E-04 2.55312638030E-04 2.58524113920E-04 2.61775986665E-04 2.65068764451E-04 2.68402961858E-04 2.71779099941E-04 2.75197706311E-04 2.78659315218E-04 2.82164467636E-04 2.85713711343E-04 2.89307601013E-04 2.92946698298E-04 2.96631571919E-04 3.00362797751E-04 3.04140958918E-04 3.07966645882E-04 3.11840456535E-04 3.15762996292E-04 3.19734878188E-04 3.23756722973E-04 3.27829159207E-04 3.31952823364E-04 3.36128359923E-04 3.40356421480E-04 3.44637668838E-04 3.48972771121E-04 3.53362405872E-04 3.57807259163E-04 3.62308025700E-04 3.66865408933E-04 3.71480121167E-04 3.76152883671E-04 3.80884426793E-04 3.85675490074E-04 3.90526822364E-04 3.95439181940E-04 4.00413336622E-04 4.05450063898E-04 4.10550151041E-04 4.15714395236E-04 4.20943603703E-04 4.26238593823E-04 4.31600193269E-04 4.37029240133E-04 4.42526583061E-04 4.48093081379E-04 4.53729605236E-04 4.59437035735E-04 4.65216265074E-04 4.71068196685E-04 4.76993745375E-04 4.82993837471E-04 4.89069410964E-04 4.95221415657E-04 5.01450813314E-04 5.07758577812E-04 5.14145695292E-04 5.20613164315E-04 5.27161996016E-04 5.33793214270E-04 5.40507855845E-04 5.47306970568E-04 5.54191621491E-04 5.61162885058E-04 5.68221851270E-04 5.75369623863E-04 5.82607320476E-04 5.89936072830E-04 5.97357026903E-04 6.04871343115E-04 6.12480196505E-04 6.20184776920E-04 6.27986289200E-04 6.35885953368E-04 6.43885004824E-04 6.51984694537E-04 6.60186289243E-04 6.68491071644E-04 6.76900340611E-04 6.85415411390E-04 6.94037615806E-04 7.02768302474E-04 7.11608837013E-04 7.20560602261E-04 7.29624998492E-04 7.38803443640E-04 7.48097373517E-04 7.57508242046E-04 7.67037521487E-04 7.76686702671E-04 7.86457295233E-04 7.96350827855E-04 8.06368848505E-04 8.16512924681E-04 8.26784643660E-04 8.37185612750E-04 8.47717459544E-04 8.58381832176E-04 8.69180399585E-04 8.80114851777E-04 8.91186900093E-04 9.02398277483E-04 9.13750738777E-04 9.25246060966E-04 9.36886043486E-04 9.48672508497E-04 9.60607301180E-04 9.72692290026E-04 9.84929367133E-04 9.97320448510E-04 1.00986747438E-03 1.02257240949E-03 1.03543724341E-03 1.04846399089E-03 1.06165469213E-03 1.07501141313E-03 1.08853624604E-03 1.10223130946E-03 1.11609874879E-03 1.13014073658E-03 1.14435947287E-03 1.15875718554E-03 1.17333613068E-03 1.18809859294E-03 1.20304688590E-03 1.21818335244E-03 1.23351036512E-03 1.24903032655E-03 1.26474566980E-03 1.28065885874E-03 1.29677238852E-03 1.31308878590E-03 1.32961060967E-03 1.34634045110E-03 1.36328093432E-03 1.38043471676E-03 1.39780448957E-03 1.41539297808E-03 1.43320294221E-03 1.45123717694E-03 1.46949851276E-03 1.48798981610E-03 1.50671398987E-03 1.52567397384E-03 1.54487274519E-03 1.56431331896E-03 1.58399874855E-03 1.60393212625E-03 1.62411658367E-03 1.64455529235E-03 1.66525146419E-03 1.68620835204E-03 1.70742925023E-03 1.72891749507E-03 1.75067646543E-03 1.77270958332E-03 1.79502031439E-03 1.81761216859E-03 1.84048870067E-03 1.86365351082E-03 1.88711024526E-03 1.91086259684E-03 1.93491430565E-03 1.95926915967E-03 1.98393099537E-03 2.00890369838E-03 2.03419120413E-03 2.05979749851E-03 2.08572661855E-03 2.11198265311E-03 2.13856974353E-03 2.16549208438E-03 2.19275392415E-03 2.22035956597E-03 2.24831336835E-03 2.27661974593E-03 2.30528317022E-03 2.33430817037E-03 2.36369933397E-03 2.39346130781E-03 2.42359879870E-03 2.45411657428E-03 2.48501946385E-03 2.51631235922E-03 2.54800021553E-03 2.58008805215E-03 2.61258095355E-03 2.64548407019E-03 2.67880261943E-03 2.71254188644E-03 2.74670722517E-03 2.78130405926E-03 2.81633788304E-03 2.85181426250E-03 2.88773883629E-03 2.92411731672E-03 2.96095549082E-03 2.99825922138E-03 3.03603444800E-03 3.07428718819E-03 3.11302353845E-03 3.15224967543E-03 3.19197185704E-03 3.23219642359E-03 3.27292979903E-03 3.31417849208E-03 3.35594909750E-03 3.39824829730E-03 3.44108286201E-03 3.48445965199E-03 3.52838561869E-03 3.57286780600E-03 3.61791335163E-03 3.66352948845E-03 3.70972354591E-03 3.75650295147E-03 3.80387523205E-03 3.85184801552E-03 3.90042903218E-03 3.94962611635E-03 3.99944720788E-03 4.04990035378E-03 4.10099370983E-03 4.15273554223E-03 4.20513422932E-03 4.25819826327E-03 4.31193625184E-03 4.36635692019E-03 4.42146911265E-03 4.47728179465E-03 4.53380405457E-03 4.59104510569E-03 4.64901428816E-03 4.70772107103E-03 4.76717505428E-03 4.82738597093E-03 4.88836368918E-03 4.95011821463E-03 5.01265969243E-03 5.07599840967E-03 5.14014479759E-03 5.20510943407E-03 5.27090304599E-03 5.33753651170E-03 5.40502086363E-03 5.47336729083E-03 5.54258714161E-03 5.61269192628E-03 5.68369331991E-03 5.75560316517E-03 5.82843347521E-03 5.90219643663E-03 5.97690441252E-03 6.05256994556E-03 6.12920576120E-03 6.20682477087E-03 6.28544007538E-03 6.36506496826E-03 6.44571293928E-03 6.52739767802E-03 6.61013307751E-03 6.69393323800E-03 6.77881247079E-03 6.86478530216E-03 6.95186647742E-03 7.04007096502E-03 7.12941396081E-03 7.21991089237E-03 7.31157742349E-03 7.40442945870E-03 7.49848314800E-03 7.59375489165E-03 7.69026134512E-03 7.78801942411E-03 7.88704630983E-03 7.98735945427E-03 8.08897658571E-03 8.19191571433E-03 8.29619513801E-03 8.40183344826E-03 8.50884953632E-03 8.61726259939E-03 8.72709214712E-03 8.83835800822E-03 8.95108033723E-03 9.06527962151E-03 9.18097668848E-03 9.29819271295E-03 9.41694922478E-03 9.53726811663E-03 9.65917165207E-03 9.78268247380E-03 9.90782361221E-03 1.00346184941E-02 1.01630909517E-02 1.02932652321E-02 1.04251660064E-02 1.05588183800E-02 1.06942479026E-02 1.08314805785E-02 1.09705428773E-02 1.11114617453E-02 1.12542646165E-02 1.13989794245E-02 1.15456346149E-02 1.16942591573E-02 1.18448825581E-02 1.19975348745E-02 1.21522467272E-02 1.23090493150E-02 1.24679744294E-02 1.26290544691E-02 1.27923224560E-02 1.29578120504E-02 1.31255575681E-02 1.32955939970E-02 1.34679570145E-02 1.36426830056E-02 1.38198090813E-02 1.39993730983E-02 1.41814136779E-02 1.43659702272E-02 1.45530829599E-02 1.47427929177E-02 1.49351419931E-02 1.51301729526E-02 1.53279294603E-02 1.55284561026E-02 1.57317984139E-02 1.59380029027E-02 1.61471170787E-02 1.63591894811E-02 1.65742697071E-02 1.67924084420E-02 1.70136574901E-02 1.72380698065E-02 1.74656995299E-02 1.76966020165E-02 1.79308338754E-02 1.81684530045E-02 1.84095186281E-02 1.86540913354E-02 1.89022331205E-02 1.91540074236E-02 1.94094791734E-02 1.96687148313E-02 1.99317824369E-02 2.01987516544E-02 2.04696938215E-02 2.07446819992E-02 2.10237910238E-02 2.13070975598E-02 2.15946801553E-02 2.18866192988E-02 2.21829974782E-02 2.24838992414E-02 2.27894112590E-02 2.30996223890E-02 2.34146237438E-02 2.37345087592E-02 2.40593732657E-02 2.43893155622E-02 2.47244364920E-02 2.50648395211E-02 2.54106308197E-02 2.57619193453E-02 2.61188169295E-02 2.64814383670E-02 2.68499015075E-02 2.72243273507E-02 2.76048401445E-02 2.79915674858E-02 2.83846404251E-02 2.87841935741E-02 2.91903652166E-02 2.96032974232E-02 3.00231361694E-02 3.04500314575E-02 3.08841374423E-02 3.13256125605E-02 3.17746196642E-02 3.22313261589E-02 3.26959041451E-02 3.31685305647E-02 3.36493873513E-02 3.41386615860E-02 3.46365456567E-02 3.51432374229E-02 3.56589403853E-02 3.61838638601E-02 3.67182231590E-02 3.72622397734E-02 3.78161415650E-02 3.83801629612E-02 3.89545451563E-02 3.95395363181E-02 4.01353918007E-02 4.07423743628E-02 4.13607543917E-02 4.19908101343E-02 4.26328279335E-02 4.32871024706E-02 4.39539370150E-02 4.46336436796E-02 4.53265436828E-02 4.60329676169E-02 4.67532557237E-02 4.74877581761E-02 4.82368353668E-02 4.90008582035E-02 4.97802084110E-02 5.05752788402E-02 5.13864737831E-02 5.22142092959E-02 5.30589135272E-02 5.39210270543E-02 5.48010032249E-02 5.56993085061E-02 5.66164228392E-02 5.75528400011E-02 5.85090679718E-02 5.94856293069E-02 6.04830615172E-02 6.15019174524E-02 6.25427656907E-02 6.36061909326E-02 6.46927943996E-02 6.58031942366E-02 6.69380259180E-02 6.80979426569E-02 6.92836158168E-02 7.04957353252E-02 7.17350100882E-02 7.30021684064E-02 7.42979583901E-02 7.56231483730E-02 7.69785273250E-02 7.83649052614E-02 7.97831136480E-02 8.12340058013E-02 8.27184572821E-02 8.42373662820E-02 8.57916539996E-02 8.73822650071E-02 8.90101676042E-02 9.06763541580E-02 9.23818414266E-02 9.41276708660E-02 9.59149089155E-02 9.77446472624E-02 9.96180030811E-02 1.01536119246E-01 1.03500164512E-01 1.05511333671E-01 1.07570847657E-01 1.09679953633E-01 1.11839925016E-01 1.14052061473E-01 1.16317688860E-01 1.18638159106E-01 1.21014850050E-01 1.23449165206E-01 1.25942533471E-01 1.28496408762E-01 1.31112269575E-01 1.33791618469E-01 1.36535981465E-01 1.39346907351E-01 1.42225966901E-01 1.45174751987E-01 1.48194874586E-01 1.51287965675E-01 1.54455674013E-01 1.57699664788E-01 1.61021618147E-01 1.64423227579E-01 1.67906198157E-01 1.71472244634E-01 1.75123089379E-01 1.78860460151E-01 1.82686087703E-01 1.86601703213E-01 1.90609035527E-01 1.94709808218E-01 1.98905736449E-01 2.03198523634E-01 2.07589857895E-01 2.12081408305E-01 2.16674820914E-01 2.21371714561E-01 2.26173676448E-01 2.31082257501E-01 2.36098967489E-01 2.41225269915E-01 2.46462576676E-01 2.51812242486E-01 2.57275559067E-01 2.62853749111E-01 2.68547960020E-01 2.74359257417E-01 2.80288618445E-01 2.86336924867E-01 2.92504955956E-01 2.98793381210E-01 3.05202752894E-01 3.11733498424E-01 3.18385912613E-01 3.25160149807E-01 3.32056215920E-01 3.39073960399E-01 3.46213068157E-01 3.53473051486E-01 3.60853241996E-01 3.68352782618E-01 3.75970619692E-01 3.83705495206E-01 3.91555939211E-01 3.99520262460E-01 4.07596549339E-01 4.15782651107E-01 4.24076179532E-01 4.32474500952E-01 4.40974730835E-01 4.49573728877E-01 4.58268094711E-01 4.67054164273E-01 4.75928006880E-01 4.84885423085E-01 4.93921943344E-01 5.03032827558E-01 5.12213065518E-01 5.21457378311E-01 5.30760220689E-01 5.40115784461E-01 5.49518002878E-01 5.58960556053E-01 5.68436877380E-01 5.77940160938E-01 5.87463369832E-01 5.96999245430E-01 6.06540317396E-01 6.16078914443E-01 6.25607175672E-01 6.35117062365E-01 6.44600370064E-01 6.54048740730E-01 6.63453674789E-01 6.72806542795E-01 6.82098596462E-01 6.91320978749E-01 7.00464732697E-01 7.09520808668E-01 7.18480069623E-01 7.27333294078E-01 7.36071176341E-01 7.44684323652E-01 7.53163249837E-01 7.61498365110E-01 7.69679961679E-01 7.77698194826E-01 7.85543059225E-01 7.93204360267E-01 8.00671680296E-01 8.07934339715E-01 8.14981353052E-01 8.21801380236E-01 8.28382673449E-01 8.34713020129E-01 8.40779682900E-01 8.46569337422E-01 8.52068009388E-01 8.57261012186E-01 8.62134894872E-01 8.66683786734E-01 8.70904007437E-01 8.74792157746E-01 8.78345126492E-01 8.81560097065E-01 8.84434553443E-01 8.86966285713E-01 8.89153395082E-01 8.90994298370E-01 8.92487731968E-01 8.93632755252E-01 8.94428753462E-01 8.94875440017E-01 8.94972858295E-01 8.94721382843E-01 8.94121720047E-01 8.93174908242E-01 8.91882317277E-01 8.90245647534E-01 8.88266928404E-01 8.85948516232E-01 8.83293091730E-01 8.80303656875E-01 8.76983531290E-01 8.73336348130E-01 8.69366049474E-01 8.65076881240E-01 8.60473387633E-01 8.55560405139E-01 8.50343056089E-01 8.44826741787E-01 8.39017135238E-01 8.32920173485E-01 8.26542049565E-01 8.19889204115E-01 8.12968316626E-01 8.05786296388E-01 7.98350273121E-01 7.90667587321E-01 7.82745780344E-01 7.74592584234E-01 7.66215911321E-01 7.57623843614E-01 7.48824621991E-01 7.39826635215E-01 7.30638408797E-01 7.21268593709E-01 7.11725954985E-01 7.02019360201E-01 6.92157767873E-01 6.82144464247E-01 6.71994233896E-01 6.61716236869E-01 6.51319676934E-01 6.40813789743E-01 6.30207830983E-01 6.19511064542E-01 6.08732750698E-01 5.97882134341E-01 5.86968433255E-01 5.76000826446E-01 5.64988442560E-01 5.53940348378E-01 5.42865537422E-01 5.31772918668E-01 5.20671305396E-01 5.09569404187E-01 4.98475804076E-01 4.87398965896E-01 4.76347211811E-01 4.65328715074E-01 4.54351490026E-01 4.43423382352E-01 4.32552059632E-01 4.21745002196E-01 4.11009494314E-01 4.00352615758E-01 3.89781233745E-01 3.79301995298E-01 3.68921320055E-01 3.58645393541E-01 3.48480160946E-01 3.38431321411E-01 3.28504322867E-01 3.18704357433E-01 3.09036357399E-01 2.99504991804E-01 2.90114663630E-01 2.80869507610E-01 2.71773388663E-01 2.62829900963E-01 2.54042367627E-01 2.45413841023E-01 2.36947103696E-01 2.28644669886E-01 2.20508787629E-01 2.12541441423E-01 2.04744355429E-01 1.97118997191E-01 1.89666581834E-01 1.82388076731E-01 1.75284206585E-01 1.68355458908E-01 1.61602089860E-01 1.55024130417E-01 1.48621392824E-01 1.42393477311E-01 1.36339779040E-01 1.30459495237E-01 1.24751632493E-01 1.19215014191E-01 1.13848288052E-01 1.08649933739E-01 1.03618270538E-01 9.87514650512E-02 9.40475389106E-02 8.95043764837E-02 8.51197325510E-02 8.08912399470E-02 7.68164171491E-02 7.28926758030E-02 6.91173281780E-02 6.54875945417E-02 6.20006104508E-02 5.86534339507E-02 5.54430526815E-02 5.23663908872E-02 4.94203163246E-02 4.66016470704E-02 4.39071582251E-02 4.13335885094E-02 3.88776467525E-02 3.65360182691E-02 3.43053711197E-02 3.21823622522E-02 3.01636435182E-02 2.82458675575E-02 2.64256935455E-02 2.46997927938E-02 2.30648541964E-02 2.15175895122E-02 2.00547384731E-02 1.86730737083E-02 1.73694054734E-02 1.61405861741E-02 1.49835146739E-02 1.38951403746E-02 1.28724670617E-02 1.19125565033E-02 1.10125317963E-02 1.01695804506E-02 9.38095720748E-03 8.64398658422E-03 7.95606514452E-03 7.31466349016E-03 6.71732797423E-03 6.16168213638E-03 5.64542786222E-03 5.16634627059E-03 4.72229833354E-03 4.31122523557E-03 3.93114847968E-03 3.58016974903E-03 3.25647053415E-03 2.95831153664E-03 2.68403186109E-03 2.43204800771E-03 2.20085267889E-03 1.98901341334E-03 1.79517106180E-03 1.61803811875E-03 1.45639692443E-03 1.30909775184E-03 1.17505679311E-03 1.05325405937E-03 9.42731208392E-04 8.42589313378E-04 7.51986586368E-04 6.70136068821E-04 5.96303301640E-04 5.29803986161E-04 4.70001647024E-04 4.16305307126E-04 3.68167184132E-04 3.25080417303E-04 2.86576832597E-04 2.52224753285E-04 2.21626862520E-04 1.94418123571E-04 1.70263762665E-04 1.48857318676E-04 1.29918763185E-04 1.13192693758E-04 9.84466026507E-05 8.54692225219E-05 7.40689501816E-05 6.40723488368E-05 5.53227288186E-05 4.76788063040E-05 4.10134391329E-05 3.52124384430E-05 3.01734545137E-05 2.58049349093E-05 2.20251527629E-05 1.87613028242E-05 1.59486627135E-05 1.35298166825E-05 1.14539390681E-05 9.67613454812E-06 8.15683225603E-06 6.86123078662E-06 5.75879112547E-06 4.82277455668E-06 4.02982264460E-06 3.35957644464E-06 2.79433216804E-06 2.31873830747E-06 1.91957690549E-06 1.58536217411E-06 1.30619588304E-06 1.07357597827E-06 8.80217653389E-07 7.19894674414E-07 5.87299046799E-07 4.77917245173E-07 3.87921356018E-07 3.14073609406E-07 2.53642898186E-07 2.04332000691E-07 1.64214336458E-07 1.31679193006E-07 1.05384465790E-07 8.42138506229E-08 6.72246687118E-08 5.36607662164E-08 4.27084137659E-08 3.38908507923E-08 2.68131503210E-08 2.11491655164E-08 1.66303781506E-08 1.30364028728E-08 1.01869279789E-08 7.93489805006E-09 6.16076640305E-09 4.76766587121E-09 3.67736501703E-09 2.82689374090E-09 2.16573727461E-09 1.65351103840E-09 1.25804080994E-09 9.53783250485E-10 7.20531168014E-10 5.42356083263E-10 4.06747809429E-10 3.03916965053E-10 2.26231709818E-10 1.67764616940E-10 1.23929559222E-10 9.11918674225E-11 6.68378917367E-11 4.87925254409E-11 3.54752932853E-11 2.56873191168E-11 1.85229146235E-11 1.33007157762E-11 9.51027219318E-12 6.77079928541E-12 4.79946149306E-12 3.38709117487E-12 2.37968236144E-12 1.66434917755E-12 1.15872016196E-12 8.02964506841E-13 5.53824913358E-13 3.80173071090E-13 2.59714970013E-13 1.76560318285E-13 1.19438158370E-13 8.03933305670E-14 5.38389503397E-14 3.58711381166E-14 2.37759433781E-14 1.56763899255E-14 1.02811421991E-14 6.70647999563E-15 4.35087337316E-15 2.80709435218E-15 1.80096872569E-15 1.14892951071E-15 7.28765364458E-16 4.59576563688E-16 2.88119148587E-16 1.79555354978E-16 1.11225425736E-16 6.84788319377E-17 4.19007527243E-17 2.54780838096E-17 1.53941945800E-17 9.24182712994E-18 5.51231871022E-18 3.26626124260E-18 1.92252367728E-18 1.12398436013E-18 6.52649158716E-19 3.76350873162E-19 2.15507268627E-19 1.22531714109E-19 6.91693903275E-20 3.87631455694E-20 2.15637347697E-20 1.19066238823E-20 6.52487574372E-21 3.54840819664E-21 1.91483281110E-21 1.02523121759E-21 5.44582448584E-22 2.86954447881E-22 1.49977421246E-22 7.77424010821E-23 3.99635583471E-23 2.03703694203E-23 1.02947560314E-23 5.15785202112E-24 2.56159247920E-24 1.26093187982E-24 6.15127457754E-25 2.97359194916E-25 1.42426450676E-25 6.75837950163E-26 3.17677262629E-26 1.47900509437E-26 6.81931711745E-27 3.11348531772E-27 1.40745282986E-27 6.29865272951E-28 2.79018683260E-28 1.22330579308E-28 5.30757976175E-29 2.27856115307E-29 9.67764540562E-30 4.06597819976E-30 1.68961377304E-30 6.94347499656E-31 2.82145144081E-31 1.13347780039E-31 4.50127848212E-32 1.76676211491E-32 6.85292089073E-33 2.62641961175E-33 9.94438101700E-34 3.71920672899E-34 1.37377192976E-34 5.01074965221E-35 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 8.61851441803E-08 8.83669313603E-08 9.06039507388E-08 9.28976005254E-08 9.52493143253E-08 9.76605620356E-08 1.00132850764E-07 1.02667725771E-07 1.05266771435E-07 1.07931612244E-07 1.10663913808E-07 1.13465383906E-07 1.16337773546E-07 1.19282878063E-07 1.22302538245E-07 1.25398641474E-07 1.28573122917E-07 1.31827966725E-07 1.35165207282E-07 1.38586930469E-07 1.42095274975E-07 1.45692433627E-07 1.49380654766E-07 1.53162243648E-07 1.57039563888E-07 1.61015038936E-07 1.65091153591E-07 1.69270455556E-07 1.73555557029E-07 1.77949136337E-07 1.82453939606E-07 1.87072782485E-07 1.91808551897E-07 1.96664207851E-07 2.01642785286E-07 2.06747395974E-07 2.11981230460E-07 2.17347560058E-07 2.22849738895E-07 2.28491206009E-07 2.34275487498E-07 2.40206198723E-07 2.46287046566E-07 2.52521831753E-07 2.58914451223E-07 2.65468900567E-07 2.72189276525E-07 2.79079779546E-07 2.86144716414E-07 2.93388502938E-07 3.00815666717E-07 3.08430849964E-07 3.16238812409E-07 3.24244434278E-07 3.32452719338E-07 3.40868798028E-07 3.49497930663E-07 3.58345510724E-07 3.67417068230E-07 3.76718273190E-07 3.86254939151E-07 3.96033026830E-07 4.06058647841E-07 4.16338068513E-07 4.26877713808E-07 4.37684171335E-07 4.48764195471E-07 4.60124711578E-07 4.71772820335E-07 4.83715802176E-07 4.95961121838E-07 5.08516433029E-07 5.21389583212E-07 5.34588618506E-07 5.48121788722E-07 5.61997552511E-07 5.76224582658E-07 5.90811771499E-07 6.05768236481E-07 6.21103325856E-07 6.36826624533E-07 6.52947960057E-07 6.69477408763E-07 6.86425302065E-07 7.03802232919E-07 7.21619062441E-07 7.39886926697E-07 7.58617243662E-07 7.77821720359E-07 7.97512360171E-07 8.17701470350E-07 8.38401669706E-07 8.59625896492E-07 8.81387416494E-07 9.03699831322E-07 9.26577086911E-07 9.50033482236E-07 9.74083678251E-07 9.98742707051E-07 1.02402598127E-06 1.04994930371E-06 1.07652887723E-06 1.10378131484E-06 1.13172365014E-06 1.16037334791E-06 1.18974831506E-06 1.21986691181E-06 1.25074796318E-06 1.28241077072E-06 1.31487512462E-06 1.34816131606E-06 1.38229014985E-06 1.41728295753E-06 1.45316161061E-06 1.48994853427E-06 1.52766672141E-06 1.56633974698E-06 1.60599178272E-06 1.64664761227E-06 1.68833264670E-06 1.73107294031E-06 1.77489520701E-06 1.81982683693E-06 1.86589591359E-06 1.91313123146E-06 1.96156231391E-06 2.01121943170E-06 2.06213362190E-06 2.11433670726E-06 2.16786131613E-06 2.22274090284E-06 2.27900976860E-06 2.33670308297E-06 2.39585690579E-06 2.45650820978E-06 2.51869490360E-06 2.58245585554E-06 2.64783091787E-06 2.71486095168E-06 2.78358785248E-06 2.85405457631E-06 2.92630516666E-06 3.00038478197E-06 3.07633972384E-06 3.15421746599E-06 3.23406668392E-06 3.31593728533E-06 3.39988044132E-06 3.48594861837E-06 3.57419561113E-06 3.66467657604E-06 3.75744806581E-06 3.85256806474E-06 3.95009602500E-06 4.05009290377E-06 4.15262120130E-06 4.25774500006E-06 4.36553000468E-06 4.47604358312E-06 4.58935480869E-06 4.70553450328E-06 4.82465528159E-06 4.94679159652E-06 5.07201978571E-06 5.20041811922E-06 5.33206684851E-06 5.46704825652E-06 5.60544670916E-06 5.74734870799E-06 5.89284294429E-06 6.04202035453E-06 6.19497417715E-06 6.35180001085E-06 6.51259587434E-06 6.67746226762E-06 6.84650223475E-06 7.01982142826E-06 7.19752817519E-06 7.37973354480E-06 7.56655141793E-06 7.75809855827E-06 7.95449468520E-06 8.15586254875E-06 8.36232800619E-06 8.57402010076E-06 8.79107114230E-06 9.01361678991E-06 9.24179613677E-06 9.47575179703E-06 9.71562999495E-06 9.96158065629E-06 1.02137575020E-05 1.04723181442E-05 1.07374241849E-05 1.10092413166E-05 1.12879394265E-05 1.15736927018E-05 1.18666797392E-05 1.21670836564E-05 1.24750922062E-05 1.27908978942E-05 1.31146980990E-05 1.34466951955E-05 1.37870966812E-05 1.41361153064E-05 1.44939692063E-05 1.48608820381E-05 1.52370831205E-05 1.56228075768E-05 1.60182964819E-05 1.64237970132E-05 1.68395626047E-05 1.72658531058E-05 1.77029349431E-05 1.81510812872E-05 1.86105722236E-05 1.90816949272E-05 1.95647438423E-05 2.00600208660E-05 2.05678355373E-05 2.10885052305E-05 2.16223553529E-05 2.21697195490E-05 2.27309399084E-05 2.33063671795E-05 2.38963609890E-05 2.45012900663E-05 2.51215324742E-05 2.57574758446E-05 2.64095176212E-05 2.70780653074E-05 2.77635367214E-05 2.84663602566E-05 2.91869751496E-05 2.99258317548E-05 3.06833918253E-05 3.14601288016E-05 3.22565281075E-05 3.30730874531E-05 3.39103171458E-05 3.47687404091E-05 3.56488937097E-05 3.65513270921E-05 3.74766045227E-05 3.84253042417E-05 3.93980191245E-05 4.03953570522E-05 4.14179412907E-05 4.24664108809E-05 4.35414210370E-05 4.46436435563E-05 4.57737672384E-05 4.69324983159E-05 4.81205608949E-05 4.93386974078E-05 5.05876690767E-05 5.18682563887E-05 5.31812595834E-05 5.45274991530E-05 5.59078163543E-05 5.73230737339E-05 5.87741556674E-05 6.02619689113E-05 6.17874431690E-05 6.33515316717E-05 6.49552117737E-05 6.65994855619E-05 6.82853804824E-05 7.00139499815E-05 7.17862741634E-05 7.36034604645E-05 7.54666443452E-05 7.73769899982E-05 7.93356910756E-05 8.13439714338E-05 8.34030858977E-05 8.55143210438E-05 8.76789960035E-05 8.98984632860E-05 9.21741096230E-05 9.45073568335E-05 9.68996627120E-05 9.93525219376E-05 1.01867467007E-04 1.04446069191E-04 1.07089939514E-04 1.09800729760E-04 1.12580133506E-04 1.15429887171E-04 1.18351771108E-04 1.21347610709E-04 1.24419277547E-04 1.27568690540E-04 1.30797817153E-04 1.34108674618E-04 1.37503331201E-04 1.40983907483E-04 1.44552577690E-04 1.48211571044E-04 1.51963173156E-04 1.55809727446E-04 1.59753636613E-04 1.63797364124E-04 1.67943435754E-04 1.72194441163E-04 1.76553035503E-04 1.81021941079E-04 1.85603949045E-04 1.90301921141E-04 1.95118791476E-04 2.00057568359E-04 2.05121336173E-04 2.10313257294E-04 2.15636574063E-04 2.21094610804E-04 2.26690775898E-04 2.32428563901E-04 2.38311557724E-04 2.44343430861E-04 2.50527949679E-04 2.56868975760E-04 2.63370468306E-04 2.70036486606E-04 2.76871192555E-04 2.83878853253E-04 2.91063843651E-04 2.98430649282E-04 3.05983869043E-04 3.13728218061E-04 3.21668530623E-04 3.29809763182E-04 3.38156997441E-04 3.46715443509E-04 3.55490443142E-04 3.64487473061E-04 3.73712148357E-04 3.83170225979E-04 3.92867608311E-04 4.02810346835E-04 4.13004645895E-04 4.23456866544E-04 4.34173530496E-04 4.45161324173E-04 4.56427102855E-04 4.67977894934E-04 4.79820906274E-04 4.91963524680E-04 5.04413324481E-04 5.17178071223E-04 5.30265726488E-04 5.43684452824E-04 5.57442618803E-04 5.71548804207E-04 5.86011805343E-04 6.00840640486E-04 6.16044555463E-04 6.31633029379E-04 6.47615780477E-04 6.64002772152E-04 6.80804219113E-04 6.98030593700E-04 7.15692632352E-04 7.33801342246E-04 7.52368008093E-04 7.71404199109E-04 7.90921776159E-04 8.10932899073E-04 8.31450034149E-04 8.52485961846E-04 8.74053784659E-04 8.96166935197E-04 9.18839184457E-04 9.42084650310E-04 9.65917806186E-04 9.90353489988E-04 1.01540691322E-03 1.04109367032E-03 1.06742974829E-03 1.09443153648E-03 1.12211583665E-03 1.15049987333E-03 1.17960130434E-03 1.20943823163E-03 1.24002921240E-03 1.27139327045E-03 1.30354990782E-03 1.33651911676E-03 1.37032139192E-03 1.40497774292E-03 1.44050970715E-03 1.47693936295E-03 1.51428934307E-03 1.55258284847E-03 1.59184366250E-03 1.63209616534E-03 1.67336534886E-03 1.71567683183E-03 1.75905687550E-03 1.80353239954E-03 1.84913099838E-03 1.89588095796E-03 1.94381127288E-03 1.99295166394E-03 2.04333259614E-03 2.09498529709E-03 2.14794177590E-03 2.20223484247E-03 2.25789812731E-03 2.31496610176E-03 2.37347409879E-03 2.43345833420E-03 2.49495592841E-03 2.55800492872E-03 2.62264433212E-03 2.68891410866E-03 2.75685522533E-03 2.82650967058E-03 2.89792047933E-03 2.97113175866E-03 3.04618871404E-03 3.12313767625E-03 3.20202612884E-03 3.28290273633E-03 3.36581737302E-03 3.45082115246E-03 3.53796645768E-03 3.62730697203E-03 3.71889771081E-03 3.81279505362E-03 3.90905677743E-03 4.00774209041E-03 4.10891166661E-03 4.21262768137E-03 4.31895384754E-03 4.42795545255E-03 4.53969939633E-03 4.65425423010E-03 4.77169019595E-03 4.89207926748E-03 5.01549519116E-03 5.14201352878E-03 5.27171170073E-03 5.40466903034E-03 5.54096678912E-03 5.68068824305E-03 5.82391869986E-03 5.97074555736E-03 6.12125835284E-03 6.27554881348E-03 6.43371090795E-03 6.59584089899E-03 6.76203739725E-03 6.93240141616E-03 7.10703642805E-03 7.28604842138E-03 7.46954595922E-03 7.65764023894E-03 7.85044515306E-03 8.04807735151E-03 8.25065630496E-03 8.45830436959E-03 8.67114685311E-03 8.88931208205E-03 9.11293147049E-03 9.34213959001E-03 9.57707424113E-03 9.81787652604E-03 1.00646909227E-02 1.03176653606E-02 1.05769512974E-02 1.08427037975E-02 1.11150816122E-02 1.13942472602E-02 1.16803671113E-02 1.19736114697E-02 1.22741546605E-02 1.25821751162E-02 1.28978554655E-02 1.32213826239E-02 1.35529478845E-02 1.38927470117E-02 1.42409803353E-02 1.45978528469E-02 1.49635742971E-02 1.53383592944E-02 1.57224274059E-02 1.61160032588E-02 1.65193166434E-02 1.69326026182E-02 1.73561016155E-02 1.77900595487E-02 1.82347279208E-02 1.86903639345E-02 1.91572306029E-02 1.96355968620E-02 2.01257376843E-02 2.06279341924E-02 2.11424737757E-02 2.16696502057E-02 2.22097637544E-02 2.27631213115E-02 2.33300365042E-02 2.39108298159E-02 2.45058287073E-02 2.51153677361E-02 2.57397886784E-02 2.63794406500E-02 2.70346802273E-02 2.77058715688E-02 2.83933865361E-02 2.90976048149E-02 2.98189140348E-02 3.05577098894E-02 3.13143962550E-02 3.20893853082E-02 3.28830976424E-02 3.36959623829E-02 3.45284173002E-02 3.53809089216E-02 3.62538926397E-02 3.71478328198E-02 3.80632029032E-02 3.90004855084E-02 3.99601725279E-02 4.09427652222E-02 4.19487743089E-02 4.29787200477E-02 4.40331323202E-02 4.51125507048E-02 4.62175245448E-02 4.73486130115E-02 4.85063851597E-02 4.96914199760E-02 5.09043064196E-02 5.21456434543E-02 5.34160400719E-02 5.47161153055E-02 5.60464982333E-02 5.74078279706E-02 5.88007536507E-02 6.02259343934E-02 6.16840392599E-02 6.31757471945E-02 6.47017469509E-02 6.62627370029E-02 6.78594254390E-02 6.94925298389E-02 7.11627771322E-02 7.28709034371E-02 7.46176538789E-02 7.64037823866E-02 7.82300514675E-02 8.00972319571E-02 8.20061027447E-02 8.39574504724E-02 8.59520692063E-02 8.79907600800E-02 9.00743309066E-02 9.22035957603E-02 9.43793745245E-02 9.66024924061E-02 9.88737794135E-02 1.01194069798E-01 1.03564201455E-01 1.05985015288E-01 1.08457354528E-01 1.10982064008E-01 1.13559989400E-01 1.16191976394E-01 1.18878869840E-01 1.21621512834E-01 1.24420745751E-01 1.27277405230E-01 1.30192323106E-01 1.33166325272E-01 1.36200230506E-01 1.39294849214E-01 1.42450982135E-01 1.45669418967E-01 1.48950936937E-01 1.52296299309E-01 1.55706253819E-01 1.59181531052E-01 1.62722842740E-01 1.66330880004E-01 1.70006311517E-01 1.73749781604E-01 1.77561908267E-01 1.81443281144E-01 1.85394459393E-01 1.89415969517E-01 1.93508303103E-01 1.97671914513E-01 2.01907218489E-01 2.06214587710E-01 2.10594350270E-01 2.15046787111E-01 2.19572129380E-01 2.24170555751E-01 2.28842189677E-01 2.33587096606E-01 2.38405281154E-01 2.43296684235E-01 2.48261180166E-01 2.53298573745E-01 2.58408597309E-01 2.63590907788E-01 2.68845083752E-01 2.74170622473E-01 2.79566936999E-01 2.85033353263E-01 2.90569107230E-01 2.96173342102E-01 3.01845105584E-01 3.07583347242E-01 3.13386915947E-01 3.19254557443E-01 3.25184912041E-01 3.31176512460E-01 3.37227781839E-01 3.43337031939E-01 3.49502461544E-01 3.55722155102E-01 3.61994081610E-01 3.68316093776E-01 3.74685927479E-01 3.81101201548E-01 3.87559417889E-01 3.94057961978E-01 4.00594103754E-01 4.07164998923E-01 4.13767690710E-01 4.20399112077E-01 4.27056088429E-01 4.33735340831E-01 4.40433489760E-01 4.47147059407E-01 4.53872482550E-01 4.60606106014E-01 4.67344196725E-01 4.74082948381E-01 4.80818488730E-01 4.87546887478E-01 4.94264164809E-01 5.00966300519E-01 5.07649243765E-01 5.14308923389E-01 5.20941258821E-01 5.27542171519E-01 5.34107596911E-01 5.40633496811E-01 5.47115872245E-01 5.53550776635E-01 5.59934329282E-01 5.66262729068E-01 5.72532268290E-01 5.78739346549E-01 5.84880484577E-01 5.90952337912E-01 5.96951710275E-01 6.02875566557E-01 6.08721045251E-01 6.14485470206E-01 6.20166361544E-01 6.25761445591E-01 6.31268663655E-01 6.36686179495E-01 6.42012385308E-01 6.47245906067E-01 6.52385602043E-01 6.57430569353E-01 6.62380138356E-01 6.67233869762E-01 6.71991548287E-01 6.76653173737E-01 6.81218949372E-01 6.85689267463E-01 6.90064691916E-01 6.94345937909E-01 6.98533848453E-01 7.02629367842E-01 7.06633511964E-01 7.10547335431E-01 7.14371895560E-01 7.18108213183E-01 7.21757230309E-01 7.25319764655E-01 7.28796461037E-01 7.32187739637E-01 7.35493741088E-01 7.38714268329E-01 7.41848725104E-01 7.44896050939E-01 7.47854652340E-01 7.50722329880E-01 7.53496200714E-01 7.56172615988E-01 7.58747072404E-01 7.61214117137E-01 7.63567245082E-01 7.65798787296E-01 7.67899789317E-01 7.69859877918E-01 7.71668954581E-01 7.73323196422E-01 7.74820568215E-01 7.76159137529E-01 7.77337077860E-01 7.78352671595E-01 7.79204312768E-01 7.79890509643E-01 7.80409887071E-01 7.80761188669E-01 7.80943278778E-01 7.80955144228E-01 7.80795895895E-01 7.80464770060E-01 7.79961129563E-01 7.79284464767E-01 7.78434394323E-01 7.77410665742E-01 7.76213155784E-01 7.74841870655E-01 7.73296946033E-01 7.71578646905E-01 7.69687367248E-01 7.67623629523E-01 7.65388084023E-01 7.62981508055E-01 7.60404804969E-01 7.57659003044E-01 7.54745254230E-01 7.51664832754E-01 7.48419133597E-01 7.45009670849E-01 7.41438075943E-01 7.37706095782E-01 7.33815590757E-01 7.29768532671E-01 7.25567002566E-01 7.21213188466E-01 7.16709383040E-01 7.12057981193E-01 7.07261477585E-01 7.02322464085E-01 6.97243627176E-01 6.92027745300E-01 6.86677686154E-01 6.81196403947E-01 6.75586936609E-01 6.69852402972E-01 6.63995999904E-01 6.58020999419E-01 6.51930745749E-01 6.45728652386E-01 6.39418199107E-01 6.33002928937E-01 6.26484024250E-01 6.19867535851E-01 6.13157177717E-01 6.06356714600E-01 5.99469958824E-01 5.92500767020E-01 5.85453036810E-01 5.78330703445E-01 5.71137736361E-01 5.63878135688E-01 5.56555928676E-01 5.49175166046E-01 5.41739918265E-01 5.34254271736E-01 5.26722324905E-01 5.19148184280E-01 5.11535960362E-01 5.03889763503E-01 4.96213699670E-01 4.88511866146E-01 4.80788347153E-01 4.73047209432E-01 4.65292497758E-01 4.57528230437E-01 4.49758394783E-01 4.41986942588E-01 4.34217785623E-01 4.26454791170E-01 4.18701777628E-01 4.10962510190E-01 4.03240696646E-01 3.95539983312E-01 3.87863951113E-01 3.80216111858E-01 3.72599904704E-01 3.65018692862E-01 3.57475760527E-01 3.49974310083E-01 3.42517459573E-01 3.35108240465E-01 3.27749595700E-01 3.20444378057E-01 3.13195348810E-01 3.06005176691E-01 2.98876437160E-01 2.91811611957E-01 2.84813088950E-01 2.77883162240E-01 2.71024032534E-01 2.64237807746E-01 2.57526503827E-01 2.50892045781E-01 2.44336268856E-01 2.37860919895E-01 2.31467658791E-01 2.25158060057E-01 2.18933614454E-01 2.12795730672E-01 2.06745737023E-01 2.00784883130E-01 1.94914341584E-01 1.89135209548E-01 1.83448510282E-01 1.77855194574E-01 1.72356142062E-01 1.66952162426E-01 1.61643996440E-01 1.56432316876E-01 1.51317729255E-01 1.46300772442E-01 1.41381919076E-01 1.36561575857E-01 1.31840083676E-01 1.27217717614E-01 1.22694686814E-01 1.18271134242E-01 1.13947136362E-01 1.09722702735E-01 1.05597775572E-01 1.01572229257E-01 9.76458698735E-02 9.38184347487E-02 9.00895920497E-02 8.64589404481E-02 8.29260088815E-02 7.94902564311E-02 7.61510723383E-02 7.29077761769E-02 6.97596181981E-02 6.67057798625E-02 6.37453745698E-02 6.08774485952E-02 5.81009822383E-02 5.54148911880E-02 5.28180281032E-02 5.03091844076E-02 4.78870922941E-02 4.55504269323E-02 4.32978088683E-02 4.11278066094E-02 3.90389393770E-02 3.70296800179E-02 3.50984580558E-02 3.32436628683E-02 3.14636469729E-02 2.97567294040E-02 2.81211991635E-02 2.65553187274E-02 2.50573275910E-02 2.36254458348E-02 2.22578776943E-02 2.09528151178E-02 1.97084412948E-02 1.85229341415E-02 1.73944697284E-02 1.63212256356E-02 1.53013842251E-02 1.43331358164E-02 1.34146817560E-02 1.25442373720E-02 1.17200348023E-02 1.09403256921E-02 1.02033837522E-02 9.50750717288E-03 8.85102088891E-03 8.23227869223E-03 7.64966518922E-03 7.10159760080E-03 6.58652740458E-03 6.10294181864E-03 5.64936512773E-03 5.22435985309E-03 4.82652776789E-03 4.45451076103E-03 4.10699155246E-03 3.78269426370E-03 3.48038484793E-03 3.19887138434E-03 2.93700424172E-03 2.69367611683E-03 2.46782195328E-03 2.25841874687E-03 2.06448524365E-03 1.88508153711E-03 1.71930857095E-03 1.56630755412E-03 1.42525929469E-03 1.29538345939E-03 1.17593776532E-03 1.06621711056E-03 9.65552650113E-04 8.73310823707E-04 7.88892341619E-04 7.11731134768E-04 6.41293274920E-04 5.77075870767E-04 5.18605945389E-04 4.65439300345E-04 4.17159371417E-04 3.73376080726E-04 3.33724689692E-04 2.97864657037E-04 2.65478505495E-04 2.36271483144E-04 2.09976654875E-04 1.86338704096E-04 1.65120416535E-04 1.46102537241E-04 1.29082727142E-04 1.13874554326E-04 1.00306521158E-04 8.82211282230E-05 7.74739758678E-05 6.79329040081E-05 5.94771706963E-05 5.19966698211E-05 4.53911882238E-05 3.95697024257E-05 3.44497151163E-05 2.99558500982E-05 2.60130447569E-05 2.25608262687E-05 1.95455559376E-05 1.69190805654E-05 1.46383160301E-05 1.26648649199E-05 1.09366975229E-05 9.42622183315E-06 8.10857274830E-06 6.96138804702E-06 5.96459771055E-06 5.10022633788E-06 4.35220828918E-06 3.70621523659E-06 3.14949569143E-06 2.67072607469E-06 2.25987286485E-06 1.90806533664E-06 1.60747838786E-06 1.35122494135E-06 1.13325740265E-06 9.48277652651E-07 7.91655056603E-07 6.59351977180E-07 5.47856288109E-07 4.54120397187E-07 3.75506301855E-07 3.09736217098E-07 2.54848333717E-07 2.09157284675E-07 1.71218917951E-07 1.39798995777E-07 1.13845462087E-07 9.24639421754E-08 7.48961606431E-08 6.05009856931E-08 4.87378292807E-08 3.91521536043E-08 3.13628546597E-08 2.50513130300E-08 1.99519206401E-08 1.58439098038E-08 1.25443274872E-08 9.90201327417E-09 7.79245403090E-09 6.11340173223E-09 4.78115334090E-09 3.72740304480E-09 2.89658759052E-09 2.24365494098E-09 1.73219507543E-09 1.33287949110E-09 1.02216290857E-09 7.81206881428E-10 5.94990520181E-10 4.51578414019E-10 3.41520127335E-10 2.57359411885E-10 1.93234561234E-10 1.44554189487E-10 1.07735186528E-10 7.99917295282E-11 5.91660546753E-11 4.35932501778E-11 3.19936547197E-11 2.33875648121E-11 1.70278970074E-11 1.23472410311E-11 8.91639917001E-12 6.41205486232E-12 4.59166619636E-12 3.27405261325E-12 2.32444830412E-12 1.64304460035E-12 1.15624553659E-12 8.10023790064E-13 5.64895212159E-13 3.92134945112E-13 2.70941503248E-13 1.86321233833E-13 1.27517608629E-13 8.68505960060E-14 5.88631901152E-14 3.96968746795E-14 2.66368711245E-14 1.77826702981E-14 1.18105404940E-14 7.80321197441E-15 5.12836966569E-15 3.35242151335E-15 2.17962621235E-15 1.40935335129E-15 9.06237893497E-16 5.79453523861E-16 3.68398872166E-16 2.32868159048E-16 1.46339818207E-16 9.14204907706E-17 5.67702585349E-17 3.50398086582E-17 2.14947769077E-17 1.31039110013E-17 7.93837657373E-18 4.77849122048E-18 2.85787581608E-18 1.69806406976E-18 1.00227569542E-18 5.87633481030E-19 3.42196383941E-19 1.97904984847E-19 1.13661373743E-19 6.48195275931E-20 3.67026211374E-20 2.06322949917E-20 1.15137746329E-20 6.37775205088E-21 3.50636197411E-21 1.91312811721E-21 1.03582887972E-21 5.56476170490E-22 2.96604090507E-22 1.56832687925E-22 8.22585889139E-23 4.27924281189E-23 2.20774463930E-23 1.12948807150E-23 5.72953603555E-24 2.88148111240E-24 1.43655926907E-24 7.09896625483E-25 3.47682001523E-25 1.68746967309E-25 8.11534402392E-26 3.86674011194E-26 1.82515348000E-26 8.53333484018E-27 3.95140147358E-27 1.81194007996E-27 8.22703751403E-28 3.69824852226E-28 1.64568607250E-28 7.24837763336E-29 3.15952269708E-29 1.36280031734E-29 5.81588171708E-30 2.45534932658E-30 1.02533658856E-30 4.23462915014E-31 8.61851684727E-08 8.83669562675E-08 9.06039762766E-08 9.28976267097E-08 9.52493411724E-08 9.76605895623E-08 1.00132878988E-07 1.02667754709E-07 1.05266801105E-07 1.07931642665E-07 1.10663945000E-07 1.13465415887E-07 1.16337806336E-07 1.19282911683E-07 1.22302572715E-07 1.25398676818E-07 1.28573159154E-07 1.31828003880E-07 1.35165245377E-07 1.38586969529E-07 1.42095315023E-07 1.45692474689E-07 1.49380696866E-07 1.53162286814E-07 1.57039608146E-07 1.61015084314E-07 1.65091200117E-07 1.69270503260E-07 1.73555605940E-07 1.77949186485E-07 1.82453991024E-07 1.87072835203E-07 1.91808605949E-07 1.96664263270E-07 2.01642842108E-07 2.06747454234E-07 2.11981290194E-07 2.17347621303E-07 2.22849801690E-07 2.28491270394E-07 2.34275553512E-07 2.40206266406E-07 2.46287115962E-07 2.52521902905E-07 2.58914524175E-07 2.65468975365E-07 2.72189353215E-07 2.79079858177E-07 2.86144797034E-07 2.93388585598E-07 3.00815751469E-07 3.08430936859E-07 3.16238901503E-07 3.24244525627E-07 3.32452812998E-07 3.40868894057E-07 3.49498029122E-07 3.58345611674E-07 3.67417171734E-07 3.76718379312E-07 3.86255047958E-07 3.96033138390E-07 4.06058762224E-07 4.16338185790E-07 4.26877834052E-07 4.37684294621E-07 4.48764321876E-07 4.60124841181E-07 4.71772953217E-07 4.83715938420E-07 4.95961261529E-07 5.08516576255E-07 5.21389730061E-07 5.34588769071E-07 5.48121943096E-07 5.61997710791E-07 5.76224744943E-07 5.90811937891E-07 6.05768407083E-07 6.21103500776E-07 6.36826803878E-07 6.52948143941E-07 6.69477597300E-07 6.86425495374E-07 7.03802431120E-07 7.21619265658E-07 7.39887135057E-07 7.58617457295E-07 7.77821939398E-07 7.97512584754E-07 8.17701700618E-07 8.38401905801E-07 8.59626138562E-07 8.81387664691E-07 9.03700085802E-07 9.26577347832E-07 9.50033749761E-07 9.74083952547E-07 9.98742988290E-07 1.02402626963E-06 1.04994959937E-06 1.07652918037E-06 1.10378162565E-06 1.13172396882E-06 1.16037367466E-06 1.18974865008E-06 1.21986725531E-06 1.25074831537E-06 1.28241113183E-06 1.31487549488E-06 1.34816169568E-06 1.38229053909E-06 1.41728335662E-06 1.45316201980E-06 1.48994895382E-06 1.52766715158E-06 1.56634018804E-06 1.60599223494E-06 1.64664807595E-06 1.68833312211E-06 1.73107342776E-06 1.77489570680E-06 1.81982734937E-06 1.86589643901E-06 1.91313177018E-06 1.96156286626E-06 2.01121999804E-06 2.06213420257E-06 2.11433730264E-06 2.16786192658E-06 2.22274152875E-06 2.27901041036E-06 2.33670374097E-06 2.39585758046E-06 2.45650890153E-06 2.51869561285E-06 2.58245658276E-06 2.64783166350E-06 2.71486171619E-06 2.78358863634E-06 2.85405538002E-06 2.92630599072E-06 3.00038562690E-06 3.07634059016E-06 3.15421835425E-06 3.23406759467E-06 3.31593821914E-06 3.39988139878E-06 3.48594960007E-06 3.57419661769E-06 3.66467760809E-06 3.75744912399E-06 3.85256914971E-06 3.95009713745E-06 4.05009404439E-06 4.15262237081E-06 4.25774619918E-06 4.36553123417E-06 4.47604484374E-06 4.58935610124E-06 4.70553582856E-06 4.82465664043E-06 4.94679298977E-06 5.07202121424E-06 5.20041958394E-06 5.33206835032E-06 5.46704979637E-06 5.60544828801E-06 5.74735032682E-06 5.89284460412E-06 6.04202205640E-06 6.19497592212E-06 6.35180180001E-06 6.51259770883E-06 6.67746414858E-06 6.84650416334E-06 7.01982340570E-06 7.19753020272E-06 7.37973562369E-06 7.56655354948E-06 7.75810074381E-06 7.95449692611E-06 8.15586484642E-06 8.36233036206E-06 8.57402251632E-06 8.79107361905E-06 9.01361932941E-06 9.24179874061E-06 9.47575446683E-06 9.71563273239E-06 9.96158346308E-06 1.02137603799E-05 1.04723210950E-05 1.07374272104E-05 1.10092444189E-05 1.12879426074E-05 1.15736959633E-05 1.18666830833E-05 1.21670870852E-05 1.24750957219E-05 1.27909014990E-05 1.31147017952E-05 1.34466989853E-05 1.37871005671E-05 1.41361192907E-05 1.44939732916E-05 1.48608862270E-05 1.52370874156E-05 1.56228119807E-05 1.60183009975E-05 1.64238016432E-05 1.68395673522E-05 1.72658579736E-05 1.77029399342E-05 1.81510864049E-05 1.86105774710E-05 1.90817003077E-05 1.95647493592E-05 2.00600265228E-05 2.05678413376E-05 2.10885111778E-05 2.16223614511E-05 2.21697258019E-05 2.27309463198E-05 2.33063737535E-05 2.38963677298E-05 2.45012969781E-05 2.51215395613E-05 2.57574831115E-05 2.64095250724E-05 2.70780729477E-05 2.77635445556E-05 2.84663682895E-05 2.91869833864E-05 2.99258402006E-05 3.06834004855E-05 3.14601376816E-05 3.22565372129E-05 3.30730967895E-05 3.39103267192E-05 3.47687502256E-05 3.56489037755E-05 3.65513374135E-05 3.74766151061E-05 3.84253150939E-05 3.93980302523E-05 4.03953684626E-05 4.14179529910E-05 4.24664228784E-05 4.35414333392E-05 4.46436561711E-05 4.57737801737E-05 4.69325115799E-05 4.81205744961E-05 4.93387113547E-05 5.05876833781E-05 5.18682710536E-05 5.31812746212E-05 5.45275145732E-05 5.59078321666E-05 5.73230899484E-05 5.87741722943E-05 6.02619859612E-05 6.17874606527E-05 6.33515496003E-05 6.49552301585E-05 6.65995044147E-05 6.82853998151E-05 7.00139698064E-05 7.17862944930E-05 7.36034813119E-05 7.54666657236E-05 7.73770119212E-05 7.93357135571E-05 8.13439944882E-05 8.34031095397E-05 8.55143452885E-05 8.76790208664E-05 8.98984887829E-05 9.21741357701E-05 9.45073836476E-05 9.68996902102E-05 9.93525501376E-05 1.01867495927E-04 1.04446098849E-04 1.07089969929E-04 1.09800760953E-04 1.12580165495E-04 1.15429919978E-04 1.18351804753E-04 1.21347645214E-04 1.24419312934E-04 1.27568726833E-04 1.30797854374E-04 1.34108712792E-04 1.37503370351E-04 1.40983947636E-04 1.44552618872E-04 1.48211613281E-04 1.51963216474E-04 1.55809771875E-04 1.59753682181E-04 1.63797410861E-04 1.67943483691E-04 1.72194490329E-04 1.76553085932E-04 1.81021992804E-04 1.85604002099E-04 1.90301975558E-04 1.95118847292E-04 2.00057625612E-04 2.05121394899E-04 2.10313317532E-04 2.15636635852E-04 2.21094674185E-04 2.26690840912E-04 2.32428630592E-04 2.38311626135E-04 2.44343501038E-04 2.50528021668E-04 2.56869049609E-04 2.63370544065E-04 2.70036564324E-04 2.76871272284E-04 2.83878935046E-04 2.91063927563E-04 2.98430735369E-04 3.05983957362E-04 3.13728308672E-04 3.21668623586E-04 3.29809858561E-04 3.38157095299E-04 3.46715543913E-04 3.55490546159E-04 3.64487578762E-04 3.73712256813E-04 3.83170337265E-04 3.92867722501E-04 4.02810464009E-04 4.13004766132E-04 4.23456989927E-04 4.34173657110E-04 4.45161454105E-04 4.56427236195E-04 4.67978031774E-04 4.79821046709E-04 4.91963668807E-04 5.04413472401E-04 5.17178223040E-04 5.30265882309E-04 5.43684612757E-04 5.57442782961E-04 5.71548972707E-04 5.86011978304E-04 6.00840818031E-04 6.16044737719E-04 6.31633216475E-04 6.47615972547E-04 6.64002969335E-04 6.80804421553E-04 6.98030801541E-04 7.15692845746E-04 7.33801561348E-04 7.52368233063E-04 7.71404430114E-04 7.90922013367E-04 8.10933142659E-04 8.31450284295E-04 8.52486218738E-04 8.74054048489E-04 8.96167206162E-04 9.18839462762E-04 9.42084936164E-04 9.65918099808E-04 9.90353791600E-04 1.01540722305E-03 1.04109398861E-03 1.06743007529E-03 1.09443187243E-03 1.12211618183E-03 1.15050022800E-03 1.17960166878E-03 1.20943860613E-03 1.24002959725E-03 1.27139366596E-03 1.30355031431E-03 1.33651953456E-03 1.37032182136E-03 1.40497818436E-03 1.44051016094E-03 1.47693982947E-03 1.51428982270E-03 1.55258334161E-03 1.59184416957E-03 1.63209668675E-03 1.67336588506E-03 1.71567738328E-03 1.75905744267E-03 1.80353298291E-03 1.84913159847E-03 1.89588157528E-03 1.94381190798E-03 1.99295231737E-03 2.04333326848E-03 2.09498598894E-03 2.14794248789E-03 2.20223557524E-03 2.25789888152E-03 2.31496687812E-03 2.37347489800E-03 2.43345915700E-03 2.49495677558E-03 2.55800580105E-03 2.62264523044E-03 2.68891503382E-03 2.75685617823E-03 2.82651065214E-03 2.89792149051E-03 2.97113280044E-03 3.04618978747E-03 3.12313878238E-03 3.20202726880E-03 3.28290391127E-03 3.36581858413E-03 3.45082240099E-03 3.53796774492E-03 3.62730829932E-03 3.71889907955E-03 3.81279646526E-03 3.90905823347E-03 4.00774359242E-03 4.10891321623E-03 4.21262928028E-03 4.31895549750E-03 4.42795715540E-03 4.53970115398E-03 4.65425604452E-03 4.77169206922E-03 4.89208120173E-03 5.01549718864E-03 5.14201559181E-03 5.27171383174E-03 5.40467123185E-03 5.54096906376E-03 5.68069059355E-03 5.82392112908E-03 5.97074806827E-03 6.12126094853E-03 6.27555149719E-03 6.43371368303E-03 6.59584376896E-03 6.76204036576E-03 6.93240448702E-03 7.10703960523E-03 7.28605170903E-03 7.46954936167E-03 7.65764376069E-03 7.85044879883E-03 8.04808112620E-03 8.25066021370E-03 8.45830841773E-03 8.67115104623E-03 8.88931642598E-03 9.11293597131E-03 9.34214425409E-03 9.57707907509E-03 9.81788153681E-03 1.00646961175E-02 1.03176707470E-02 1.05769568833E-02 1.08427095912E-02 1.11150876222E-02 1.13942534957E-02 1.16803735815E-02 1.19736181846E-02 1.22741616303E-02 1.25821823516E-02 1.28978629779E-02 1.32213904249E-02 1.35529559865E-02 1.38927554274E-02 1.42409890782E-02 1.45978619310E-02 1.49635837371E-02 1.53383691057E-02 1.57224376046E-02 1.61160138616E-02 1.65193276680E-02 1.69326140829E-02 1.73561135396E-02 1.77900719522E-02 1.82347408249E-02 1.86903773612E-02 1.91572445753E-02 1.96356114043E-02 2.01257528215E-02 2.06279499512E-02 2.11424901836E-02 2.16696672919E-02 2.22097815489E-02 2.27631398462E-02 2.33300558122E-02 2.39108499321E-02 2.45058496680E-02 2.51153895794E-02 2.57398114443E-02 2.63794643802E-02 2.70347049654E-02 2.77058973606E-02 2.83934134295E-02 2.90976328600E-02 2.98189432842E-02 3.05577403981E-02 3.13144280805E-02 3.20894185107E-02 3.28831322850E-02 3.36959985316E-02 3.45284550243E-02 3.53809482933E-02 3.62539337349E-02 3.71478757178E-02 3.80632476872E-02 3.90005322652E-02 3.99602213486E-02 4.09428162021E-02 4.19488275477E-02 4.29787756499E-02 4.40331903951E-02 4.51126113668E-02 4.62175879137E-02 4.73486792126E-02 4.85064543242E-02 4.96914922413E-02 5.09043819293E-02 5.21457223588E-02 5.34161225285E-02 5.47162014789E-02 5.60465882958E-02 5.74079221023E-02 5.88008520403E-02 6.02260372380E-02 6.16841467659E-02 6.31758595777E-02 6.47018644370E-02 6.62628598280E-02 6.78595538498E-02 6.94926640936E-02 7.11629175006E-02 7.28710502013E-02 7.46178073337E-02 7.64039428403E-02 7.82302192422E-02 8.00974073894E-02 8.20062861863E-02 8.39576422907E-02 8.59522697852E-02 8.79909698204E-02 9.00745502272E-02 9.22038250984E-02 9.43796143366E-02 9.66027431686E-02 9.88740416238E-02 1.01194343975E-01 1.03564488141E-01 1.05985315047E-01 1.08457667950E-01 1.10982391708E-01 1.13560332018E-01 1.16192334599E-01 1.18879244329E-01 1.21621904331E-01 1.24421155013E-01 1.27277833045E-01 1.30192770293E-01 1.33166792687E-01 1.36200719036E-01 1.39295359786E-01 1.42451515710E-01 1.45669976546E-01 1.48951519562E-01 1.52296908062E-01 1.55706889826E-01 1.59182195480E-01 1.62723536803E-01 1.66331604962E-01 1.70007068679E-01 1.73750572327E-01 1.77562733958E-01 1.81444143262E-01 1.85395359453E-01 1.89416909086E-01 1.93509283804E-01 1.97672938027E-01 2.01908286556E-01 2.06215702127E-01 2.10595512898E-01 2.15047999871E-01 2.19573394257E-01 2.24171874794E-01 2.28843564999E-01 2.33588530387E-01 2.38406775641E-01 2.43298241741E-01 2.48262803073E-01 2.53300264502E-01 2.58410358434E-01 2.63592741867E-01 2.68846993441E-01 2.74172610494E-01 2.79569006144E-01 2.85035506389E-01 2.90571347261E-01 2.96175672027E-01 3.01847528454E-01 3.07585866170E-01 3.13389534107E-01 3.19257278063E-01 3.25187738405E-01 3.31179447902E-01 3.37230829742E-01 3.43340195726E-01 3.49505744680E-01 3.55725561084E-01 3.61997613962E-01 3.68319756046E-01 3.74689723229E-01 3.81105134349E-01 3.87563491312E-01 3.94062179586E-01 4.00598469094E-01 4.07169515513E-01 4.13772362033E-01 4.20403941567E-01 4.27061079459E-01 4.33740496703E-01 4.40438813688E-01 4.47152554506E-01 4.53878151821E-01 4.60611952326E-01 4.67350222802E-01 4.74089156782E-01 4.80824881835E-01 4.87553467467E-01 4.94270933643E-01 5.00973259922E-01 5.07656395203E-01 5.14316268051E-01 5.20948797596E-01 5.27549904974E-01 5.34115525275E-01 5.40641619948E-01 5.47124189635E-01 5.53559287351E-01 5.59943031971E-01 5.66271621929E-01 5.72541349054E-01 5.78748612460E-01 5.84889932377E-01 5.90961963817E-01 5.96961509967E-01 6.02885535168E-01 6.08731177349E-01 6.14495759788E-01 6.20176802031E-01 6.25772029822E-01 6.31279383887E-01 6.36697027409E-01 6.42023352013E-01 6.47256982112E-01 6.52396777438E-01 6.57441833585E-01 6.62391480418E-01 6.67245278185E-01 6.72003011180E-01 6.76664678828E-01 6.81230484063E-01 6.85700818883E-01 6.90076246988E-01 6.94357483418E-01 6.98545371122E-01 7.02640854417E-01 7.06644949296E-01 7.10558710572E-01 7.14383195855E-01 7.18119426369E-01 7.21768344611E-01 7.25330768879E-01 7.28807344664E-01 7.32198492905E-01 7.35504355062E-01 7.38724734956E-01 7.41859037247E-01 7.44906202384E-01 7.47864637770E-01 7.50732144802E-01 7.53505841345E-01 7.56182079075E-01 7.58756354984E-01 7.61223216215E-01 7.63576157234E-01 7.65807508177E-01 7.67908313087E-01 7.69868196582E-01 7.71677057790E-01 7.73331073096E-01 7.74828207013E-01 7.76166526843E-01 7.77344205813E-01 7.78359526032E-01 7.79210881262E-01 7.79896779481E-01 7.80415845256E-01 7.80766821916E-01 7.80948573506E-01 7.80960086559E-01 7.80800471648E-01 7.80468964745E-01 7.79964928380E-01 7.79287852597E-01 7.78437355724E-01 7.77413184944E-01 7.76215216682E-01 7.74843456805E-01 7.73298040641E-01 7.71579232829E-01 7.69687426980E-01 7.67623145192E-01 7.65387037381E-01 7.62979880472E-01 7.60402577424E-01 7.57656156115E-01 7.54741768088E-01 7.51660687150E-01 7.48414307856E-01 7.45004143855E-01 7.41431826133E-01 7.37699101131E-01 7.33807828769E-01 7.29759980363E-01 7.25557636457E-01 7.21202984563E-01 7.16698316825E-01 7.12046027605E-01 7.07248611005E-01 7.02308658323E-01 6.97228855448E-01 6.92011980213E-01 6.86660899686E-01 6.81178567427E-01 6.75568020696E-01 6.69832377630E-01 6.63974834384E-01 6.57998662229E-01 6.51907204633E-01 6.45703874299E-01 6.39392150176E-01 6.32975574439E-01 6.26457749434E-01 6.19842334587E-01 6.13133043279E-01 6.06333639680E-01 5.99447935532E-01 5.92479786892E-01 5.85433090823E-01 5.78311782016E-01 5.71119829364E-01 5.63861232461E-01 5.56540018029E-01 5.49160236276E-01 5.41725957167E-01 5.34241266612E-01 5.26710262581E-01 5.19137051113E-01 5.11525742262E-01 5.03880445940E-01 4.96205267693E-01 4.88504304393E-01 4.80781639875E-01 4.73041340499E-01 4.65287450681E-01 4.57523988386E-01 4.49754940599E-01 4.41984258805E-01 4.34215854481E-01 4.26453594638E-01 4.18701297417E-01 4.10962727774E-01 4.03241593282E-01 3.95541540054E-01 3.87866148834E-01 3.80218931267E-01 3.72603326367E-01 3.65022697216E-01 3.57480327904E-01 3.49979420726E-01 3.42523093655E-01 3.35114378105E-01 3.27756216987E-01 3.20451463062E-01 3.13202877607E-01 3.06013129375E-01 2.98884793863E-01 2.91820352870E-01 2.84822194332E-01 2.77892612443E-01 2.71033808014E-01 2.64247889086E-01 2.57536871747E-01 2.50902681156E-01 2.44347152737E-01 2.37872033515E-01 2.31478983590E-01 2.25169577692E-01 2.18945306816E-01 2.12807579900E-01 2.06757725519E-01 2.00796993573E-01 1.94926556946E-01 1.89147513106E-01 1.83460885630E-01 1.77867625641E-01 1.72368613123E-01 1.66964658114E-01 1.61656501758E-01 1.56444817212E-01 1.51330210391E-01 1.46313220566E-01 1.41394320795E-01 1.36573918204E-01 1.31852354122E-01 1.27229904076E-01 1.22706777666E-01 1.18283118321E-01 1.13959002977E-01 1.09734441673E-01 1.05609377102E-01 1.01583684139E-01 9.76571693602E-02 9.38295705893E-02 9.01005564930E-02 8.64697262440E-02 8.29366092813E-02 7.95006651879E-02 7.61612837051E-02 7.29177849047E-02 6.97694195327E-02 6.67153695400E-02 6.37547488116E-02 6.08866041017E-02 5.81099161818E-02 5.54236012047E-02 5.28265122839E-02 5.03174412883E-02 4.78951208450E-02 4.55582265462E-02 4.33053793486E-02 4.11351481569E-02 3.90460525764E-02 3.70365658235E-02 3.51051177766E-02 3.32500981531E-02 3.14698597942E-02 2.97627220420E-02 2.81269741897E-02 2.65608789881E-02 2.50626761902E-02 2.36305861172E-02 2.22628132285E-02 2.09575496789E-02 1.97129788475E-02 1.85272788232E-02 1.73986258322E-02 1.63251975939E-02 1.53051765930E-02 1.43367532557E-02 1.34181290197E-02 1.25475192886E-02 1.17231562609E-02 1.09432916281E-02 1.02061991331E-02 9.51017698489E-03 8.85355012390E-03 8.23467233540E-03 7.65192820724E-03 7.10373493061E-03 6.58854394280E-03 6.10484241157E-03 5.65115456204E-03 5.22604284706E-03 4.82810896339E-03 4.45599471610E-03 4.10838273449E-03 3.78399704330E-03 3.48160349341E-03 3.20001005679E-03 2.93806699067E-03 2.69466687658E-03 2.46874453972E-03 2.25927685487E-03 2.06528244504E-03 1.88582127912E-03 1.71999417516E-03 1.56694221588E-03 1.42584608299E-03 1.29592531715E-03 1.17643751010E-03 1.06667743558E-03 9.65976125705E-04 8.73699899002E-04 7.89249346591E-04 7.12058282517E-04 6.41592664199E-04 5.77349488731E-04 5.18855670532E-04 4.65666905604E-04 4.17366527422E-04 3.73564359162E-04 3.33895566770E-04 2.98019517035E-04 2.65618644351E-04 2.36398112513E-04 2.10090909521E-04 1.86441641222E-04 1.65213019081E-04 1.46185717624E-04 1.29157330945E-04 1.13941363916E-04 1.00366259237E-04 8.82744612851E-05 7.75215175697E-05 6.79752184431E-05 5.95147755642E-05 5.20300394926E-05 4.54207566950E-05 3.95958661621E-05 3.44728357845E-05 2.99762566542E-05 2.60310311818E-05 2.25766592499E-05 1.95594775881E-05 1.69313104457E-05 1.46490530790E-05 1.26742892984E-05 1.09449538148E-05 9.43344074432E-06 8.11487219448E-06 6.96687418328E-06 5.96936590282E-06 5.10436207701E-06 4.35578804865E-06 3.70930727489E-06 3.15216080075E-06 2.67301827742E-06 2.26184005981E-06 1.90974989690E-06 1.60891771236E-06 1.35245196234E-06 1.13430105130E-06 9.49163284979E-07 7.92404842144E-07 6.59985252520E-07 5.48389877653E-07 4.54568903337E-07 3.75882366775E-07 3.10050758184E-07 2.55110754791E-07 2.09375664883E-07 1.71400180201E-07 1.39949056522E-07 1.13969364114E-07 9.25659719798E-08 7.49799518810E-08 6.05696100766E-08 4.87938762077E-08 3.91977997032E-08 3.13999243418E-08 2.50813310484E-08 1.99761575680E-08 1.58634212628E-08 1.25599878774E-08 9.91454468305E-09 7.80245093043E-09 6.12135200950E-09 4.78745614699E-09 3.73238389324E-09 2.90051108631E-09 2.24673547557E-09 1.73460578202E-09 1.33475971727E-09 1.02362442997E-09 7.82339050439E-10 5.95864516822E-10 4.52250743037E-10 3.42035484695E-10 2.57753025709E-10 1.93534096449E-10 1.44781291678E-10 1.07906728583E-10 8.01208144269E-11 5.92628189976E-11 4.36655054022E-11 3.20473970312E-11 2.34273787536E-11 1.70572737834E-11 1.23688284802E-11 8.93219726008E-12 6.42356794068E-12 4.60002105715E-12 3.28008966413E-12 2.32879165588E-12 1.64615571568E-12 1.15846411230E-12 8.11598770719E-13 5.66008210473E-13 3.92917846886E-13 2.71489639340E-13 1.86703189024E-13 1.27782491303E-13 8.70334000095E-14 5.89887302054E-14 3.97826607918E-14 2.66951971319E-14 1.78221242742E-14 1.18370911207E-14 7.82098601251E-15 5.14020542881E-15 3.36026079726E-15 2.18479034356E-15 1.41273656395E-15 9.08442050452E-16 5.80881452755E-16 3.69318666577E-16 2.33457225047E-16 1.46714872935E-16 9.16578744890E-17 5.69196069097E-17 3.51332008675E-17 2.15528196932E-17 1.31397602244E-17 7.96037903115E-18 4.79190923239E-18 2.86600591578E-18 1.70295801400E-18 1.00520215073E-18 5.89371715459E-19 3.43221851091E-19 1.98505805747E-19 1.14010948961E-19 6.50214900059E-20 3.68184711993E-20 2.06982699027E-20 1.15510720453E-20 6.39868141173E-21 3.51801852668E-21 1.91957099952E-21 1.03936270178E-21 5.58399357599E-22 2.97642498991E-22 1.57388901586E-22 8.25541166021E-23 4.29481657700E-23 2.21588386781E-23 1.13370621876E-23 5.75121124156E-24 2.89252345656E-24 1.44213586061E-24 7.12688129613E-25 3.49066910939E-25 1.69427845273E-25 8.14851303751E-26 3.88274899847E-26 1.83280775894E-26 8.56958506378E-27 3.96840458306E-27 1.81983785258E-27 8.26336089013E-28 3.71478789818E-28 1.65314109060E-28 7.28163743176E-29 3.17420775991E-29 1.36921626102E-29 5.84361596253E-30 2.46720933665E-30 1.03035316848E-30 4.25561491145E-31 6.04985036718E-08 6.20300304885E-08 6.36003280862E-08 6.52103779517E-08 6.68611864182E-08 6.85537852944E-08 7.02892325091E-08 7.20686127729E-08 7.38930382560E-08 7.57636492831E-08 7.76816150466E-08 7.96481343368E-08 8.16644362919E-08 8.37317811654E-08 8.58514611147E-08 8.80248010081E-08 9.02531592529E-08 9.25379286449E-08 9.48805372386E-08 9.72824492397E-08 9.97451659206E-08 1.02270226558E-07 1.04859209397E-07 1.07513732635E-07 1.10235455434E-07 1.13026078957E-07 1.15887347436E-07 1.18821049254E-07 1.21829018068E-07 1.24913133958E-07 1.28075324592E-07 1.31317566443E-07 1.34641886016E-07 1.38050361116E-07 1.41545122149E-07 1.45128353454E-07 1.48802294665E-07 1.52569242112E-07 1.56431550258E-07 1.60391633169E-07 1.64451966024E-07 1.68615086659E-07 1.72883597160E-07 1.77260165480E-07 1.81747527115E-07 1.86348486808E-07 1.91065920307E-07 1.95902776157E-07 2.00862077547E-07 2.05946924197E-07 2.11160494300E-07 2.16506046502E-07 2.21986921942E-07 2.27606546343E-07 2.33368432146E-07 2.39276180714E-07 2.45333484576E-07 2.51544129739E-07 2.57911998052E-07 2.64441069635E-07 2.71135425363E-07 2.77999249419E-07 2.85036831911E-07 2.92252571548E-07 2.99650978395E-07 3.07236676690E-07 3.15014407731E-07 3.22989032845E-07 3.31165536422E-07 3.39549029033E-07 3.48144750624E-07 3.56958073789E-07 3.65994507130E-07 3.75259698700E-07 3.84759439532E-07 3.94499667260E-07 4.04486469830E-07 4.14726089302E-07 4.25224925757E-07 4.35989541293E-07 4.47026664127E-07 4.58343192801E-07 4.69946200496E-07 4.81842939449E-07 4.94040845487E-07 5.06547542677E-07 5.19370848087E-07 5.32518776677E-07 5.45999546303E-07 5.59821582858E-07 5.73993525537E-07 5.88524232234E-07 6.03422785082E-07 6.18698496129E-07 6.34360913156E-07 6.50419825646E-07 6.66885270904E-07 6.83767540328E-07 7.01077185843E-07 7.18825026497E-07 7.37022155219E-07 7.55679945757E-07 7.74810059787E-07 7.94424454196E-07 8.14535388562E-07 8.35155432813E-07 8.56297475082E-07 8.77974729769E-07 9.00200745791E-07 9.22989415058E-07 9.46354981152E-07 9.70312048229E-07 9.94875590152E-07 1.02006095984E-06 1.04588389888E-06 1.07236054734E-06 1.09950745388E-06 1.12734158611E-06 1.15588034113E-06 1.18514155647E-06 1.21514352122E-06 1.24590498746E-06 1.27744518194E-06 1.30978381818E-06 1.34294110871E-06 1.37693777775E-06 1.41179507416E-06 1.44753478470E-06 1.48417924766E-06 1.52175136681E-06 1.56027462575E-06 1.59977310254E-06 1.64027148477E-06 1.68179508502E-06 1.72436985662E-06 1.76802240991E-06 1.81278002888E-06 1.85867068820E-06 1.90572307070E-06 1.95396658531E-06 2.00343138547E-06 2.05414838790E-06 2.10614929200E-06 2.15946659962E-06 2.21413363539E-06 2.27018456752E-06 2.32765442921E-06 2.38657914050E-06 2.44699553071E-06 2.50894136152E-06 2.57245535051E-06 2.63757719537E-06 2.70434759875E-06 2.77280829364E-06 2.84300206951E-06 2.91497279901E-06 2.98876546540E-06 3.06442619069E-06 3.14200226443E-06 3.22154217329E-06 3.30309563134E-06 3.38671361114E-06 3.47244837562E-06 3.56035351067E-06 3.65048395870E-06 3.74289605296E-06 3.83764755273E-06 3.93479767942E-06 4.03440715361E-06 4.13653823297E-06 4.24125475117E-06 4.34862215780E-06 4.45870755925E-06 4.57157976064E-06 4.68730930886E-06 4.80596853664E-06 4.92763160772E-06 5.05237456327E-06 5.18027536934E-06 5.31141396564E-06 5.44587231547E-06 5.58373445695E-06 5.72508655555E-06 5.87001695793E-06 6.01861624713E-06 6.17097729923E-06 6.32719534135E-06 6.48736801118E-06 6.65159541798E-06 6.81998020517E-06 6.99262761445E-06 7.16964555159E-06 7.35114465383E-06 7.53723835908E-06 7.72804297672E-06 7.92367776039E-06 8.12426498243E-06 8.32993001031E-06 8.54080138501E-06 8.75701090131E-06 8.97869369014E-06 9.20598830308E-06 9.43903679887E-06 9.67798483224E-06 9.92298174487E-06 1.01741806588E-05 1.04317385720E-05 1.06958164565E-05 1.09665793592E-05 1.12441965047E-05 1.15288414010E-05 1.18206919483E-05 1.21199305498E-05 1.24267442261E-05 1.27413247313E-05 1.30638686737E-05 1.33945776381E-05 1.37336583118E-05 1.40813226140E-05 1.44377878280E-05 1.48032767371E-05 1.51780177636E-05 1.55622451116E-05 1.59561989136E-05 1.63601253801E-05 1.67742769538E-05 1.71989124671E-05 1.76342973037E-05 1.80807035649E-05 1.85384102390E-05 1.90077033762E-05 1.94888762668E-05 1.99822296245E-05 2.04880717747E-05 2.10067188466E-05 2.15384949710E-05 2.20837324828E-05 2.26427721283E-05 2.32159632785E-05 2.38036641470E-05 2.44062420140E-05 2.50240734556E-05 2.56575445790E-05 2.63070512640E-05 2.69729994098E-05 2.76558051888E-05 2.83558953068E-05 2.90737072691E-05 2.98096896538E-05 3.05643023924E-05 3.13380170566E-05 3.21313171531E-05 3.29446984256E-05 3.37786691642E-05 3.46337505231E-05 3.55104768457E-05 3.64093959989E-05 3.73310697146E-05 3.82760739411E-05 3.92449992023E-05 4.02384509666E-05 4.12570500251E-05 4.23014328790E-05 4.33722521375E-05 4.44701769248E-05 4.55958932980E-05 4.67501046757E-05 4.79335322769E-05 4.91469155716E-05 5.03910127420E-05 5.16666011564E-05 5.29744778539E-05 5.43154600425E-05 5.56903856089E-05 5.71001136416E-05 5.85455249673E-05 6.00275227004E-05 6.15470328071E-05 6.31050046829E-05 6.47024117455E-05 6.63402520418E-05 6.80195488716E-05 6.97413514252E-05 7.15067354389E-05 7.33168038657E-05 7.51726875640E-05 7.70755460028E-05 7.90265679852E-05 8.10269723902E-05 8.30780089331E-05 8.51809589449E-05 8.73371361719E-05 8.95478875948E-05 9.18145942691E-05 9.41386721866E-05 9.65215731582E-05 9.89647857193E-05 1.01469836058E-04 1.04038288968E-04 1.06671748822E-04 1.09371860574E-04 1.12140310783E-04 1.14978828667E-04 1.17889187178E-04 1.20873204109E-04 1.23932743228E-04 1.27069715435E-04 1.30286079958E-04 1.33583845573E-04 1.36965071851E-04 1.40431870448E-04 1.43986406415E-04 1.47630899550E-04 1.51367625779E-04 1.55198918575E-04 1.59127170409E-04 1.63154834244E-04 1.67284425056E-04 1.71518521405E-04 1.75859767040E-04 1.80310872541E-04 1.84874617010E-04 1.89553849800E-04 1.94351492284E-04 1.99270539679E-04 2.04314062905E-04 2.09485210496E-04 2.14787210560E-04 2.20223372786E-04 2.25797090501E-04 2.31511842779E-04 2.37371196608E-04 2.43378809103E-04 2.49538429781E-04 2.55853902890E-04 2.62329169798E-04 2.68968271442E-04 2.75775350836E-04 2.82754655647E-04 2.89910540829E-04 2.97247471330E-04 3.04770024861E-04 3.12482894737E-04 3.20390892792E-04 3.28498952360E-04 3.36812131339E-04 3.45335615325E-04 3.54074720828E-04 3.63034898567E-04 3.72221736849E-04 3.81640965031E-04 3.91298457072E-04 4.01200235166E-04 4.11352473473E-04 4.21761501945E-04 4.32433810238E-04 4.43376051731E-04 4.54595047640E-04 4.66097791237E-04 4.77891452175E-04 4.89983380918E-04 5.02381113280E-04 5.15092375089E-04 5.28125086947E-04 5.41487369129E-04 5.55187546589E-04 5.69234154098E-04 5.83635941509E-04 5.98401879149E-04 6.13541163352E-04 6.29063222118E-04 6.44977720929E-04 6.61294568691E-04 6.78023923838E-04 6.95176200576E-04 7.12762075294E-04 7.30792493118E-04 7.49278674644E-04 7.68232122823E-04 7.87664630025E-04 8.07588285273E-04 8.28015481658E-04 8.48958923939E-04 8.70431636318E-04 8.92446970427E-04 9.15018613491E-04 9.38160596705E-04 9.61887303811E-04 9.86213479888E-04 1.01115424036E-03 1.03672508020E-03 1.06294188343E-03 1.08982093274E-03 1.11737891946E-03 1.14563295369E-03 1.17460057471E-03 1.20429976168E-03 1.23474894450E-03 1.26596701505E-03 1.29797333863E-03 1.33078776569E-03 1.36443064388E-03 1.39892283033E-03 1.43428570427E-03 1.47054117997E-03 1.50771171995E-03 1.54582034850E-03 1.58489066560E-03 1.62494686110E-03 1.66601372927E-03 1.70811668369E-03 1.75128177251E-03 1.79553569406E-03 1.84090581283E-03 1.88742017588E-03 1.93510752952E-03 1.98399733654E-03 2.03411979375E-03 2.08550584993E-03 2.13818722426E-03 2.19219642515E-03 2.24756676951E-03 2.30433240250E-03 2.36252831769E-03 2.42219037776E-03 2.48335533560E-03 2.54606085599E-03 2.61034553774E-03 2.67624893631E-03 2.74381158699E-03 2.81307502863E-03 2.88408182790E-03 2.95687560405E-03 3.03150105434E-03 3.10800397995E-03 3.18643131256E-03 3.26683114147E-03 3.34925274133E-03 3.43374660059E-03 3.52036445045E-03 3.60915929454E-03 3.70018543926E-03 3.79349852475E-03 3.88915555659E-03 3.98721493816E-03 4.08773650372E-03 4.19078155224E-03 4.29641288189E-03 4.40469482540E-03 4.51569328600E-03 4.62947577433E-03 4.74611144598E-03 4.86567113989E-03 4.98822741756E-03 5.11385460307E-03 5.24262882391E-03 5.37462805271E-03 5.50993214976E-03 5.64862290645E-03 5.79078408955E-03 5.93650148645E-03 6.08586295116E-03 6.23895845142E-03 6.39588011654E-03 6.55672228632E-03 6.72158156083E-03 6.89055685115E-03 7.06374943113E-03 7.24126299003E-03 7.42320368620E-03 7.60968020176E-03 7.80080379818E-03 7.99668837295E-03 8.19745051723E-03 8.40320957444E-03 8.61408769995E-03 8.83020992175E-03 9.05170420207E-03 9.27870150013E-03 9.51133583576E-03 9.74974435417E-03 9.99406739163E-03 1.02444485422E-02 1.05010347252E-02 1.07639762545E-02 1.10334269073E-02 1.13095439955E-02 1.15924884368E-02 1.18824248274E-02 1.21795215155E-02 1.24839506750E-02 1.27958883814E-02 1.31155146873E-02 1.34430136993E-02 1.37785736557E-02 1.41223870047E-02 1.44746504831E-02 1.48355651966E-02 1.52053366994E-02 1.55841750755E-02 1.59722950198E-02 1.63699159198E-02 1.67772619379E-02 1.71945620937E-02 1.76220503469E-02 1.80599656798E-02 1.85085521803E-02 1.89680591250E-02 1.94387410618E-02 1.99208578921E-02 2.04146749534E-02 2.09204631009E-02 2.14384987882E-02 2.19690641483E-02 2.25124470728E-02 2.30689412901E-02 2.36388464432E-02 2.42224681653E-02 2.48201181544E-02 2.54321142457E-02 2.60587804825E-02 2.67004471847E-02 2.73574510151E-02 2.80301350426E-02 2.87188488035E-02 2.94239483584E-02 3.01457963467E-02 3.08847620369E-02 3.16412213733E-02 3.24155570175E-02 3.32081583862E-02 3.40194216834E-02 3.48497499271E-02 3.56995529709E-02 3.65692475182E-02 3.74592571310E-02 3.83700122308E-02 3.93019500918E-02 4.02555148272E-02 4.12311573651E-02 4.22293354172E-02 4.32505134363E-02 4.42951625646E-02 4.53637605705E-02 4.64567917745E-02 4.75747469623E-02 4.87181232859E-02 4.98874241503E-02 5.10831590870E-02 5.23058436119E-02 5.35559990673E-02 5.48341524480E-02 5.61408362098E-02 5.74765880591E-02 5.88419507248E-02 6.02374717088E-02 6.16637030164E-02 6.31212008647E-02 6.46105253680E-02 6.61322401994E-02 6.76869122277E-02 6.92751111278E-02 7.08974089653E-02 7.25543797517E-02 7.42465989714E-02 7.59746430778E-02 7.77390889589E-02 7.95405133691E-02 8.13794923287E-02 8.32566004875E-02 8.51724104530E-02 8.71274920818E-02 8.91224117318E-02 9.11577314761E-02 9.32340082759E-02 9.53517931118E-02 9.75116300730E-02 9.97140554025E-02 1.01959596498E-01 1.04248770866E-01 1.06582085033E-01 1.08960033405E-01 1.11383097083E-01 1.13851742626E-01 1.16366420770E-01 1.18927565093E-01 1.21535590632E-01 1.24190892451E-01 1.26893844157E-01 1.29644796367E-01 1.32444075126E-01 1.35291980275E-01 1.38188783770E-01 1.41134727958E-01 1.44130023797E-01 1.47174849044E-01 1.50269346391E-01 1.53413621560E-01 1.56607741363E-01 1.59851731728E-01 1.63145575682E-01 1.66489211316E-01 1.69882529717E-01 1.73325372883E-01 1.76817531616E-01 1.80358743412E-01 1.83948690333E-01 1.87586996895E-01 1.91273227948E-01 1.95006886581E-01 1.98787412046E-01 2.02614177714E-01 2.06486489066E-01 2.10403581744E-01 2.14364619649E-01 2.18368693124E-01 2.22414817209E-01 2.26501929995E-01 2.30628891083E-01 2.34794480170E-01 2.38997395763E-01 2.43236254046E-01 2.47509587910E-01 2.51815846165E-01 2.56153392948E-01 2.60520507335E-01 2.64915383199E-01 2.69336129295E-01 2.73780769617E-01 2.78247244037E-01 2.82733409231E-01 2.87237039924E-01 2.91755830465E-01 2.96287396739E-01 3.00829278444E-01 3.05378941743E-01 3.09933782292E-01 3.14491128675E-01 3.19048246241E-01 3.23602341356E-01 3.28150566076E-01 3.32690023242E-01 3.37217772003E-01 3.41730833756E-01 3.46226198504E-01 3.50700831624E-01 3.55151681023E-01 3.59575684672E-01 3.63969778495E-01 3.68330904581E-01 3.72656019694E-01 3.76942104036E-01 3.81186170225E-01 3.85385272435E-01 3.89536515650E-01 3.93637064957E-01 3.97684154825E-01 4.01675098286E-01 4.05607295949E-01 4.09478244744E-01 4.13285546326E-01 4.17026915024E-01 4.20700185249E-01 4.24303318240E-01 4.27834408057E-01 4.31291686693E-01 4.34673528199E-01 4.37978451717E-01 4.41205123290E-01 4.44352356348E-01 4.47419110774E-01 4.50404490417E-01 4.53307738985E-01 4.56128234217E-01 4.58865480250E-01 4.61519098120E-01 4.64088814341E-01 4.66574447510E-01 4.68975892923E-01 4.71293105174E-01 4.73526078746E-01 4.75674826607E-01 4.77739356846E-01 4.79719647380E-01 4.81615618794E-01 4.83427105365E-01 4.85153824337E-01 4.86795343500E-01 4.88351047124E-01 4.89820100287E-01 4.91201411596E-01 4.92493594280E-01 4.93694925591E-01 4.94803304383E-01 4.95816206673E-01 4.96730638929E-01 4.97543088712E-01 4.98249472219E-01 4.98845078160E-01 4.99324507281E-01 4.99681606737E-01 4.99909398390E-01 5.00000000000E-01 4.99945731379E-01 4.99742997184E-01 4.99389351137E-01 4.98882399508E-01 4.98219803133E-01 4.97399279323E-01 4.96418603641E-01 4.95275611555E-01 4.93968199957E-01 4.92494328556E-01 4.90852021138E-01 4.89039366692E-01 4.87054520420E-01 4.84895704603E-01 4.82561209353E-01 4.80049393243E-01 4.77358683809E-01 4.74487577945E-01 4.71434642177E-01 4.68198512831E-01 4.64777896090E-01 4.61171567955E-01 4.57378374098E-01 4.53397229631E-01 4.49227118772E-01 4.44867094436E-01 4.40316277739E-01 4.35573857423E-01 4.30639089214E-01 4.25511295110E-01 4.20189862604E-01 4.14674243858E-01 4.08963954815E-01 4.03058574266E-01 3.96957742883E-01 3.90661162202E-01 3.84168593582E-01 3.77479857135E-01 3.70594830628E-01 3.63513448372E-01 3.56235700095E-01 3.48761629798E-01 3.41091334614E-01 3.33224963655E-01 3.25162716863E-01 3.16904843857E-01 3.08451642794E-01 2.99803459225E-01 2.90960684964E-01 2.81923756970E-01 2.72693156231E-01 2.63269406662E-01 2.53653074015E-01 2.43844764802E-01 2.33845125220E-01 2.23654840097E-01 2.13274631845E-01 2.02705259424E-01 1.91947517316E-01 1.81002234518E-01 1.69870273542E-01 1.58552529435E-01 1.47049928818E-01 1.35363428949E-01 1.23494016818E-01 1.11442708278E-01 9.92105472186E-02 8.67986048054E-02 7.42079787822E-02 6.14397928642E-02 4.84951962323E-02 3.53753631522E-02 2.20814927392E-02 8.61480889346E-03 -5.02343956671E-03 -1.88319785456E-02 -3.28095080540E-02 -4.69547013045E-02 -6.12662034854E-02 -7.57426301801E-02 -9.03825653994E-02 -1.05184559193E-01 -1.20147124814E-01 -1.35268735396E-01 -1.50547820137E-01 -1.65982759947E-01 -1.81571882554E-01 -1.97313457053E-01 -2.13205687888E-01 -2.29246708271E-01 -2.45434573040E-01 -2.61767250969E-01 -2.78242616557E-01 -2.94858441321E-01 -3.11612384623E-01 -3.28501984094E-01 -3.45524645689E-01 -3.62677633455E-01 -3.79958059063E-01 -3.97362871191E-01 -4.14888844844E-01 -4.32532570698E-01 -4.50290444568E-01 -4.68158657091E-01 -4.86133183752E-01 -5.04209775338E-01 -5.22383948950E-01 -5.40650979672E-01 -5.59005893015E-01 -5.77443458251E-01 -5.95958182729E-01 -6.14544307289E-01 -6.33195802855E-01 -6.51906368313E-01 -6.70669429721E-01 -6.89478140948E-01 -7.08325385766E-01 -7.27203781446E-01 -7.46105683873E-01 -7.65023194178E-01 -7.83948166875E-01 -8.02872219464E-01 -8.21786743444E-01 -8.40682916649E-01 -8.59551716832E-01 -8.78383936358E-01 -8.97170197885E-01 -9.15900970880E-01 -9.34566588800E-01 -9.53157266772E-01 -9.71663119573E-01 -9.90074179717E-01 -1.00838041546E+00 -1.02657174851E+00 -1.04463807124E+00 -1.06256926327E+00 -1.08035520708E+00 -1.09798580271E+00 -1.11545098113E+00 -1.13274071632E+00 -1.14984503586E+00 -1.16675402986E+00 -1.18345785824E+00 -1.19994675617E+00 -1.21621103769E+00 -1.23224109742E+00 -1.24802741037E+00 -1.26356052978E+00 -1.27883108305E+00 -1.29382976580E+00 -1.30854733406E+00 -1.32297459459E+00 -1.33710239351E+00 -1.35092160324E+00 -1.36442310778E+00 -1.37759778658E+00 -1.39043649690E+00 -1.40293005483E+00 -1.41506921521E+00 -1.42684465029E+00 -1.43824692750E+00 -1.44926648626E+00 -1.45989361401E+00 -1.47011842165E+00 -1.47993081832E+00 -1.48932048584E+00 -1.49827685278E+00 -1.50678906836E+00 -1.51484597632E+00 -1.52243608872E+00 -1.52954756005E+00 -1.53616816158E+00 -1.54228525612E+00 -1.54788577340E+00 -1.55295618609E+00 -1.55748248675E+00 -1.56145016567E+00 -1.56484418990E+00 -1.56764898357E+00 -1.56984840969E+00 -1.57142575348E+00 -1.57236370764E+00 -1.57264435948E+00 -1.57224918034E+00 -1.57115901722E+00 -1.56935408722E+00 -1.56681397459E+00 -1.56351763091E+00 -1.55944337850E+00 -1.55456891741E+00 -1.54887133611E+00 -1.54232712627E+00 -1.53491220190E+00 -1.52660192300E+00 -1.51737112427E+00 -1.50719414895E+00 -1.49604488826E+00 -1.48389682667E+00 -1.47072309349E+00 -1.45649652094E+00 -1.44118970915E+00 -1.42477509851E+00 -1.40722504961E+00 -1.38851193128E+00 -1.36860821691E+00 -1.34748658965E+00 -1.32512005663E+00 -1.30148207283E+00 -1.27654667463E+00 -1.25028862373E+00 -1.22268356152E+00 -1.19370817429E+00 -1.16334036965E+00 -1.13155946432E+00 -1.09834638359E+00 -1.06368387282E+00 -1.02755672031E+00 -9.89955265552E-01 -9.50901748718E-01 -9.10388771919E-01 -8.68408535973E-01 -8.24956729798E-01 -7.80032821058E-01 -7.33640357745E-01 -6.85787280177E-01 -6.36486242834E-01 -5.85754945323E-01 -5.33616471596E-01 -4.80099636440E-01 -4.25239337963E-01 -3.69076914733E-01 -3.11660505950E-01 -2.53045412849E-01 -1.93289426323E-01 -1.32414135535E-01 -7.05103607442E-02 -7.68471967677E-03 5.59466825627E-02 1.20257998565E-01 1.85113411627E-01 2.50366941296E-01 3.15862286360E-01 3.81432710552E-01 4.46900976539E-01 5.12079334164E-01 5.76769568877E-01 6.40763117247E-01 7.03841256107E-01 7.65775372366E-01 8.26327320763E-01 8.85249876926E-01 9.42287293277E-01 9.97175965334E-01 1.04964521598E+00 1.09941820517E+00 1.14621297227E+00 1.18974361808E+00 1.22972163308E+00 1.26585737777E+00 1.29786172049E+00 1.32544783711E+00 1.34833317588E+00 1.36624158957E+00 1.37890563546E+00 1.38606904221E+00 1.38748934042E+00 1.38294065181E+00 1.37221662917E+00 1.35513353679E+00 1.33153345771E+00 1.30128761104E+00 1.26429975895E+00 1.22050967894E+00 1.16989667280E+00 1.11248307944E+00 1.04833775389E+00 9.77579470015E-01 9.00380199443E-01 8.16968214270E-01 7.27630955715E-01 6.32717606122E-01 5.32641296631E-01 4.27880878326E-01 3.18982180383E-01 2.06558675115E-01 9.12914668341E-02 -2.60714806118E-02 -1.44716963731E-01 -2.63769092486E-01 -3.82292860501E-01 -4.99298812631E-01 -6.13748884490E-01 -7.24563480567E-01 -8.30629847093E-01 -9.30811782570E-01 -1.02396071261E+00 -1.10892813622E+00 -1.18457942795E+00 -1.24980895369E+00 -1.30355642827E+00 -1.34482440937E+00 -1.37269678522E+00 -1.38635807351E+00 -1.38511330588E+00 -1.36840822662E+00 -1.33584948728E+00 -1.28722447034E+00 -1.22252032743E+00 -1.14194177046E+00 -1.04592711054E+00 -9.35161999787E-01 -8.10590298645E-01 -6.73421466564E-01 -5.25133860695E-01 -3.67473327024E-01 -2.02446484267E-01 -3.23081352895E-02 1.40457703516E-01 3.13163585118E-01 4.82951551949E-01 6.46833385151E-01 8.01738212842E-01 9.44567315575E-01 1.07225574623E+00 1.18184013287E+00 1.27053175929E+00 1.33579372372E+00 1.37542066707E+00 1.38761924649E+00 1.37108721777E+00 1.32508869294E+00 1.24952287208E+00 1.14498332589E+00 1.01280474677E+00 8.55094009095E-01 6.74742404329E-01 4.75416063195E-01 2.61521864224E-01 3.81465722018E-02 -1.89032434972E-01 -4.13865698484E-01 -6.29879342162E-01 -8.30450589745E-01 -1.00900854970E+00 -1.15925624232E+00 -1.27540831487E+00 -1.35243732671E+00 -1.38631995716E+00 -1.37427307731E+00 -1.31496843047E+00 -1.20871379034E+00 -1.05758802584E+00 -8.65517611959E-01 -6.38282896567E-01 -3.83443961682E-01 -1.10178276357E-01 1.70974431765E-01 4.48460564471E-01 7.10149880709E-01 9.43851571513E-01 1.13789314623E+00 1.28173986378E+00 1.36662638957E+00 1.38616692087E+00 1.33690570018E+00 1.21876716424E+00 1.03536449950E+00 7.94127600934E-01 5.06216783000E-01 1.86197347625E-01 -1.48537649850E-01 -4.78593571472E-01 -7.83628134643E-01 -1.04359173168E+00 -1.24009186028E+00 -1.35779944346E+00 -1.38579771111E+00 -1.31876216705E+00 -1.15785514495E+00 -9.11222582342E-01 -5.93995542880E-01 -2.27725651894E-01 4.04780637292E-12 4.20248113521E-12 4.36306632887E-12 4.52978780327E-12 4.70288003795E-12 4.88258647236E-12 5.06915984826E-12 5.26286256519E-12 5.46396704950E-12 5.67275613747E-12 5.88952347314E-12 6.11457392126E-12 6.34822399609E-12 6.59080230651E-12 6.84265001820E-12 7.10412133348E-12 7.37558398943E-12 7.65741977510E-12 7.95002506846E-12 8.25381139387E-12 8.56920600086E-12 8.89665246501E-12 9.23661131182E-12 9.58956066437E-12 9.95599691577E-12 1.03364354273E-11 1.07314112533E-11 1.11414798934E-11 1.15672180743E-11 1.20092245602E-11 1.24681209955E-11 1.29445527789E-11 1.34391899710E-11 1.39527282366E-11 1.44858898235E-11 1.50394245779E-11 1.56141109990E-11 1.62107573343E-11 1.68302027158E-11 1.74733183403E-11 1.81410086952E-11 1.88342128297E-11 1.95539056762E-11 2.03010994212E-11 2.10768449286E-11 2.18822332183E-11 2.27183969998E-11 2.35865122661E-11 2.44877999470E-11 2.54235276265E-11 2.63950113253E-11 2.74036173523E-11 2.84507642254E-11 2.95379246671E-11 3.06666276753E-11 3.18384606743E-11 3.30550717466E-11 3.43181719517E-11 3.56295377317E-11 3.69910134102E-11 3.84045137860E-11 3.98720268262E-11 4.13956164622E-11 4.29774254921E-11 4.46196785947E-11 4.63246854580E-11 4.80948440279E-11 4.99326438807E-11 5.18406697240E-11 5.38216050324E-11 5.58782358214E-11 5.80134545655E-11 6.02302642666E-11 6.25317826770E-11 6.49212466847E-11 6.74020168654E-11 6.99775822092E-11 7.26515650272E-11 7.54277260463E-11 7.83099696982E-11 8.13023496105E-11 8.44090743082E-11 8.76345131321E-11 9.09832023841E-11 9.44598517073E-11 9.80693507094E-11 1.01816775840E-10 1.05707397529E-10 1.09746687600E-10 1.13940326967E-10 1.18294213622E-10 1.22814470930E-10 1.27507456243E-10 1.32379769840E-10 1.37438264208E-10 1.42690053683E-10 1.48142524453E-10 1.53803344947E-10 1.59680476617E-10 1.65782185143E-10 1.72117052048E-10 1.78693986773E-10 1.85522239209E-10 1.92611412699E-10 1.99971477551E-10 2.07612785058E-10 2.15546082056E-10 2.23782526037E-10 2.32333700845E-10 2.41211632964E-10 2.50428808432E-10 2.59998190406E-10 2.69933237386E-10 2.80247922153E-10 2.90956751410E-10 3.02074786191E-10 3.13617663044E-10 3.25601616015E-10 3.38043499487E-10 3.50960811883E-10 3.64371720271E-10 3.78295085921E-10 3.92750490825E-10 4.07758265245E-10 4.23339516298E-10 4.39516157646E-10 4.56310940314E-10 4.73747484686E-10 4.91850313728E-10 5.10644887475E-10 5.30157638839E-10 5.50416010782E-10 5.71448494917E-10 5.93284671574E-10 6.15955251404E-10 6.39492118570E-10 6.63928375590E-10 6.89298389893E-10 7.15637842151E-10 7.42983776462E-10 7.71374652450E-10 8.00850399354E-10 8.31452472182E-10 8.63223910020E-10 8.96209396554E-10 9.30455322920E-10 9.66009852945E-10 1.00292299089E-09 1.04124665176E-09 1.08103473435E-09 1.12234319700E-09 1.16523013635E-09 1.20975586901E-09 1.25598301638E-09 1.30397659278E-09 1.35380409680E-09 1.40553560631E-09 1.45924387697E-09 1.51500444458E-09 1.57289573127E-09 1.63299915585E-09 1.69539924828E-09 1.76018376858E-09 1.82744383020E-09 1.89727402824E-09 1.96977257243E-09 2.04504142527E-09 2.12318644542E-09 2.20431753662E-09 2.28854880218E-09 2.37599870555E-09 2.46679023683E-09 2.56105108582E-09 2.65891382157E-09 2.76051607880E-09 2.86600075152E-09 2.97551619395E-09 3.08921642919E-09 3.20726136582E-09 3.32981702281E-09 3.45705576298E-09 3.58915653545E-09 3.72630512727E-09 3.86869442474E-09 4.01652468465E-09 4.17000381595E-09 4.32934767214E-09 4.49478035482E-09 4.66653452889E-09 4.84485174977E-09 5.02998280307E-09 5.22218805734E-09 5.42173783025E-09 5.62891276871E-09 5.84400424360E-09 6.06731475955E-09 6.29915838034E-09 6.53986117065E-09 6.78976165456E-09 7.04921129169E-09 7.31857497145E-09 7.59823152625E-09 7.88857426421E-09 8.19001152238E-09 8.50296724093E-09 8.82788155943E-09 9.16521143578E-09 9.51543128891E-09 9.87903366599E-09 1.02565299351E-08 1.06484510043E-08 1.10553480684E-08 1.14777933844E-08 1.19163810755E-08 1.23717279676E-08 1.28444744559E-08 1.33352854063E-08 1.38448510897E-08 1.43738881534E-08 1.49231406286E-08 1.54933809767E-08 1.60854111759E-08 1.67000638489E-08 1.73382034337E-08 1.80007273997E-08 1.86885675095E-08 1.94026911292E-08 2.01441025892E-08 2.09138445962E-08 2.17129996998E-08 2.25426918151E-08 2.34040878029E-08 2.42983991106E-08 2.52268834766E-08 2.61908466981E-08 2.71916444681E-08 2.82306842819E-08 2.93094274160E-08 3.04293909836E-08 3.15921500677E-08 3.27993399365E-08 3.40526583426E-08 3.53538679112E-08 3.67047986179E-08 3.81073503631E-08 3.95634956432E-08 4.10752823247E-08 4.26448365239E-08 4.42743655968E-08 4.59661612434E-08 4.77226027302E-08 4.95461602361E-08 5.14393983262E-08 5.34049795580E-08 5.54456682257E-08 5.75643342474E-08 5.97639572011E-08 6.20476305143E-08 6.44185658140E-08 6.68800974435E-08 6.94356871506E-08 7.20889289557E-08 7.48435542059E-08 7.77034368215E-08 8.06725987443E-08 8.37552155923E-08 8.69556225317E-08 9.02783203732E-08 9.37279819003E-08 9.73094584405E-08 1.01027786687E-07 1.04888195779E-07 1.08896114659E-07 1.13057179703E-07 1.17377242646E-07 1.21862378811E-07 1.26518895654E-07 1.31353341628E-07 1.36372515395E-07 1.41583475382E-07 1.46993549709E-07 1.52610346492E-07 1.58441764538E-07 1.64496004453E-07 1.70781580174E-07 1.77307330937E-07 1.84082433706E-07 1.91116416077E-07 1.98419169671E-07 2.06000964048E-07 2.13872461136E-07 2.22044730230E-07 2.30529263551E-07 2.39337992403E-07 2.48483303951E-07 2.57978058631E-07 2.67835608236E-07 2.78069814685E-07 2.88695069509E-07 2.99726314087E-07 3.11179060652E-07 3.23069414094E-07 3.35414094605E-07 3.48230461183E-07 3.61536536036E-07 3.75351029916E-07 3.89693368422E-07 4.04583719309E-07 4.20043020838E-07 4.36093011206E-07 4.52756259111E-07 4.70056195466E-07 4.88017146344E-07 5.06664367167E-07 5.26024078206E-07 5.46123501439E-07 5.66990898810E-07 5.88655611954E-07 6.11148103440E-07 6.34499999584E-07 6.58744134899E-07 6.83914598248E-07 7.10046780748E-07 7.37177425513E-07 7.65344679289E-07 7.94588146072E-07 8.24948942755E-07 8.56469756920E-07 8.89194906817E-07 9.23170403653E-07 9.58444016239E-07 9.95065338120E-07 1.03308585726E-06 1.07255902840E-06 1.11354034814E-06 1.15608743295E-06 1.20026010011E-06 1.24612045174E-06 1.29373296207E-06 1.34316456801E-06 1.39448476320E-06 1.44776569564E-06 1.50308226902E-06 1.56051224798E-06 1.62013636731E-06 1.68203844539E-06 1.74630550192E-06 1.81302788013E-06 1.88229937369E-06 1.95421735842E-06 2.02888292910E-06 2.10640104139E-06 2.18688065927E-06 2.27043490805E-06 2.35718123319E-06 2.44724156527E-06 2.54074249119E-06 2.63781543187E-06 2.73859682681E-06 2.84322832563E-06 2.95185698692E-06 3.06463548474E-06 3.18172232287E-06 3.30328205735E-06 3.42948552746E-06 3.56051009548E-06 3.69653989563E-06 3.83776609249E-06 3.98438714929E-06 4.13660910638E-06 4.29464587036E-06 4.45871951422E-06 4.62906058888E-06 4.80590844672E-06 4.98951157727E-06 5.18012795583E-06 5.37802540533E-06 5.58348197194E-06 5.79678631508E-06 6.01823811216E-06 6.24814847888E-06 6.48684040544E-06 6.73464920938E-06 6.99192300571E-06 7.25902319492E-06 7.53632496953E-06 7.82421783999E-06 8.12310618058E-06 8.43340979609E-06 8.75556451004E-06 9.09002277534E-06 9.43725430817E-06 9.79774674596E-06 1.01720063304E-05 1.05605586166E-05 1.09639492088E-05 1.13827445246E-05 1.18175325879E-05 1.22689238521E-05 1.27375520547E-05 1.32240751041E-05 1.37291760003E-05 1.42535637908E-05 1.47979745624E-05 1.53631724711E-05 1.59499508105E-05 1.65591331218E-05 1.71915743450E-05 1.78481620142E-05 1.85298174983E-05 1.92374972888E-05 1.99721943365E-05 2.07349394387E-05 2.15268026792E-05 2.23488949232E-05 2.32023693684E-05 2.40884231550E-05 2.50082990373E-05 2.59632871179E-05 2.69547266481E-05 2.79840078965E-05 2.90525740878E-05 3.01619234162E-05 3.13136111338E-05 3.25092517189E-05 3.37505211259E-05 3.50391591204E-05 3.63769717030E-05 3.77658336244E-05 3.92076909954E-05 4.07045639960E-05 4.22585496871E-05 4.38718249271E-05 4.55466494006E-05 4.72853687594E-05 4.90904178839E-05 5.09643242661E-05 5.29097115211E-05 5.49293030304E-05 5.70259257233E-05 5.92025139998E-05 6.14621138018E-05 6.38078868380E-05 6.62431149666E-05 6.87712047443E-05 7.13956921451E-05 7.41202474575E-05 7.69486803651E-05 7.98849452182E-05 8.29331465030E-05 8.60975445171E-05 8.93825612561E-05 9.27927865227E-05 9.63329842632E-05 1.00008099142E-04 1.03823263364E-04 1.07783803747E-04 1.11895249063E-04 1.16163337657E-04 1.20594025339E-04 1.25193493582E-04 1.29968158021E-04 1.34924677271E-04 1.40069962065E-04 1.45411184747E-04 1.50955789105E-04 1.56711500579E-04 1.62686336837E-04 1.68888618759E-04 1.75326981812E-04 1.82010387861E-04 1.88948137407E-04 1.96149882283E-04 2.03625638819E-04 2.11385801491E-04 2.19441157078E-04 2.27802899333E-04 2.36482644206E-04 2.45492445618E-04 2.54844811817E-04 2.64552722338E-04 2.74629645582E-04 2.85089557036E-04 2.95946958174E-04 3.07216896028E-04 3.18914983492E-04 3.31057420359E-04 3.43661015120E-04 3.56743207568E-04 3.70322092211E-04 3.84416442545E-04 3.99045736194E-04 4.14230180976E-04 4.29990741896E-04 4.46349169119E-04 4.63328026955E-04 4.80950723873E-04 4.99241543608E-04 5.18225677373E-04 5.37929257223E-04 5.58379390617E-04 5.79604196206E-04 6.01632840895E-04 6.24495578224E-04 6.48223788102E-04 6.72850017952E-04 6.98408025306E-04 7.24932821897E-04 7.52460719297E-04 7.81029376162E-04 8.10677847120E-04 8.41446633363E-04 8.73377735003E-04 9.06514705239E-04 9.40902706396E-04 9.76588567896E-04 1.01362084622E-03 1.05204988694E-03 1.09192788884E-03 1.13330897021E-03 1.17624923750E-03 1.22080685608E-03 1.26704212365E-03 1.31501754584E-03 1.36479791459E-03 1.41645038892E-03 1.47004457856E-03 1.52565263018E-03 1.58334931660E-03 1.64321212879E-03 1.70532137098E-03 1.76976025874E-03 1.83661502028E-03 1.90597500104E-03 1.97793277149E-03 2.05258423850E-03 2.13002876003E-03 2.21036926364E-03 2.29371236848E-03 2.38016851113E-03 2.46985207538E-03 2.56288152579E-03 2.65937954546E-03 2.75947317782E-03 2.86329397266E-03 2.97097813653E-03 3.08266668745E-03 3.19850561417E-03 3.31864603994E-03 3.44324439097E-03 3.57246256963E-03 3.70646813244E-03 3.84543447293E-03 3.98954100953E-03 4.13897337845E-03 4.29392363161E-03 4.45459043984E-03 4.62117930124E-03 4.79390275476E-03 4.97298059921E-03 5.15864011753E-03 5.35111630646E-03 5.55065211167E-03 5.75749866828E-03 5.97191554677E-03 6.19417100441E-03 6.42454224203E-03 6.66331566618E-03 6.91078715667E-03 7.16726233940E-03 7.43305686437E-03 7.70849668889E-03 7.99391836584E-03 8.28966933681E-03 8.59610823009E-03 8.91360516328E-03 9.24254205042E-03 9.58331291334E-03 9.93632419714E-03 1.03019950894E-02 1.06807578433E-02 1.10730581032E-02 1.14793552343E-02 1.19001226543E-02 1.23358481668E-02 1.27870342981E-02 1.32541986336E-02 1.37378741566E-02 1.42386095871E-02 1.47569697203E-02 1.52935357649E-02 1.58489056804E-02 1.64236945125E-02 1.70185347257E-02 1.76340765339E-02 1.82709882264E-02 1.89299564899E-02 1.96116867255E-02 2.03169033595E-02 2.10463501479E-02 2.18007904731E-02 2.25810076331E-02 2.33878051210E-02 2.42220068953E-02 2.50844576395E-02 2.59760230104E-02 2.68975898746E-02 2.78500665322E-02 2.88343829277E-02 2.98514908462E-02 3.09023640960E-02 3.19879986759E-02 3.31094129283E-02 3.42676476756E-02 3.54637663426E-02 3.66988550633E-02 3.79740227718E-02 3.92904012803E-02 4.06491453420E-02 4.20514327019E-02 4.34984641354E-02 4.49914634772E-02 4.65316776419E-02 4.81203766384E-02 4.97588535806E-02 5.14484246981E-02 5.31904293499E-02 5.49862300441E-02 5.68372124707E-02 5.87447855487E-02 6.07103814970E-02 6.27354559321E-02 6.48214880007E-02 6.69699805551E-02 6.91824603778E-02 7.14604784650E-02 7.38056103788E-02 7.62194566755E-02 7.87036434240E-02 8.12598228221E-02 8.38896739239E-02 8.65949034906E-02 8.93772469754E-02 9.22384696568E-02 9.51803679329E-02 9.82047707881E-02 1.01313541447E-01 1.04508579225E-01 1.07791821594E-01 1.11165246462E-01 1.14630874691E-01 1.18190772852E-01 1.21847056225E-01 1.25601892052E-01 1.29457503047E-01 1.33416171151E-01 1.37480241541E-01 1.41652126879E-01 1.45934311780E-01 1.50329357501E-01 1.54839906806E-01 1.59468688985E-01 1.64218524997E-01 1.69092332680E-01 1.74093131987E-01 1.79224050179E-01 1.84488326905E-01 1.89889319108E-01 1.95430505643E-01 2.01115491529E-01 2.06948011738E-01 2.12931934385E-01 2.19071263234E-01 2.25370139372E-01 2.31832841953E-01 2.38463787881E-01 2.45267530313E-01 2.52248755908E-01 2.59412280700E-01 2.66763044575E-01 2.74306104299E-01 2.82046625135E-01 2.89989871114E-01 2.98141194104E-01 3.06506021903E-01 3.15089845667E-01 3.23898207099E-01 3.32936685940E-01 3.42210888422E-01 3.51726437494E-01 3.61488965724E-01 3.71504111903E-01 3.81777522460E-01 3.92314858766E-01 4.03121811355E-01 4.14204121857E-01 4.25567612991E-01 4.37218226291E-01 4.49162066145E-01 4.61405447110E-01 4.73954939227E-01 4.86817402827E-01 5.00000000000E-01 5.13510165324E-01 5.27355548456E-01 5.41543995377E-01 5.56083553709E-01 5.70982479274E-01 5.86249242822E-01 6.01892536937E-01 6.17921283102E-01 6.34344638942E-01 6.51172005625E-01 6.68413035432E-01 6.86077639497E-01 7.04175995705E-01 7.22718556763E-01 7.41716058434E-01 7.61179527933E-01 7.81120292501E-01 8.01549988130E-01 8.22480568465E-01 8.43924313865E-01 8.65893840634E-01 8.88402110415E-01 9.11462439745E-01 9.35088509779E-01 9.59294376171E-01 9.84094479123E-01 1.00950365359E+00 1.03553713964E+00 1.06221059299E+00 1.08954009569E+00 1.11754216695E+00 1.14623377414E+00 1.17563234396E+00 1.20575577372E+00 1.23662244282E+00 1.26825122435E+00 1.30066149688E+00 1.33387315635E+00 1.36790662816E+00 1.40278287939E+00 1.43852343118E+00 1.47515037125E+00 1.51268636656E+00 1.55115467618E+00 1.59057916421E+00 1.63098431293E+00 1.67239523605E+00 1.71483769209E+00 1.75833809791E+00 1.80292354237E+00 1.84862180006E+00 1.89546134517E+00 1.94347136541E+00 1.99268177599E+00 2.04312323369E+00 2.09482715081E+00 2.14782570919E+00 2.20215187411E+00 2.25783940801E+00 2.31492288409E+00 2.37343769949E+00 2.43342008829E+00 2.49490713383E+00 2.55793678060E+00 2.62254784537E+00 2.68878002739E+00 2.75667391766E+00 2.82627100691E+00 2.89761369216E+00 2.97074528174E+00 3.04570999828E+00 3.12255297967E+00 3.20132027757E+00 3.28205885314E+00 3.36481656984E+00 3.44964218281E+00 3.53658532451E+00 3.62569648638E+00 3.71702699603E+00 3.81062898970E+00 3.90655537952E+00 4.00485981535E+00 4.10559664067E+00 4.20882084238E+00 4.31458799406E+00 4.42295419235E+00 4.53397598636E+00 4.64771029964E+00 4.76421434472E+00 4.88354552977E+00 5.00576135760E+00 5.13091931659E+00 5.25907676366E+00 5.39029079936E+00 5.52461813498E+00 5.66211495191E+00 5.80283675346E+00 5.94683820920E+00 6.09417299241E+00 6.24489361067E+00 6.39905123025E+00 6.55669549467E+00 6.71787433796E+00 6.88263379318E+00 7.05101779693E+00 7.22306799036E+00 7.39882351758E+00 7.57832082202E+00 7.76159344166E+00 7.94867180379E+00 8.13958302017E+00 8.33435068331E+00 8.53299466455E+00 8.73553091475E+00 8.94197126819E+00 9.15232325014E+00 9.36658988871E+00 9.58476953127E+00 9.80685566567E+00 1.00328367463E+01 1.02626960248E+01 1.04964113860E+01 1.07339551867E+01 1.09752940989E+01 1.12203889555E+01 1.14691945969E+01 1.17216597188E+01 1.19777267178E+01 1.22373315352E+01 1.25004034954E+01 1.27668651388E+01 1.30366320447E+01 1.33096126450E+01 1.35857080235E+01 1.38648117017E+01 1.41468094053E+01 1.44315788122E+01 1.47189892784E+01 1.50089015399E+01 1.53011673884E+01 1.55956293195E+01 1.58921201518E+01 1.61904626144E+01 1.64904689032E+01 1.67919402036E+01 1.70946661793E+01 1.73984244270E+01 1.77029798969E+01 1.80080842780E+01 1.83134753498E+01 1.86188763003E+01 1.89239950121E+01 1.92285233167E+01 1.95321362195E+01 1.98344910977E+01 2.01352268724E+01 2.04339631586E+01 2.07302993960E+01 2.10238139634E+01 2.13140632818E+01 2.16005809095E+01 2.18828766348E+01 2.21604355717E+01 2.24327172632E+01 2.26991548011E+01 2.29591539670E+01 2.32120924035E+01 2.34573188237E+01 2.36941522683E+01 2.39218814199E+01 2.41397639847E+01 2.43470261547E+01 2.45428621604E+01 2.47264339297E+01 2.48968708652E+01 2.50532697561E+01 2.51946948408E+01 2.53201780370E+01 2.54287193577E+01 2.55192875324E+01 2.55908208537E+01 2.56422282706E+01 2.56723907508E+01 2.56801629356E+01 2.56643751106E+01 2.56238355190E+01 2.55573330421E+01 2.54636402728E+01 2.53415170120E+01 2.51897142116E+01 2.50069783951E+01 2.47920565811E+01 2.45437017383E+01 2.42606787985E+01 2.39417712533E+01 2.35857883596E+01 2.31915729769E+01 2.27580100571E+01 2.22840358054E+01 2.17686475277E+01 2.12109141751E+01 2.06099875928E+01 1.99651144762E+01 1.92756490277E+01 1.85410663050E+01 1.77609762397E+01 1.69351383017E+01 1.60634767688E+01 1.51460965548E+01 1.41832995356E+01 1.31756012994E+01 1.21237482336E+01 1.10287348449E+01 9.89182119259E+00 8.71455029716E+00 7.49876536795E+00 6.24662666723E+00 4.96064421741E+00 3.64382058981E+00 2.29932423003E+00 9.30682633126E-01 -4.58184019419E-01 -1.86295307274E+00 -3.27889185755E+00 -4.70085275620E+00 -6.12327125840E+00 -7.54016740927E+00 -8.94515106986E+00 -1.03314314261E+01 -1.16918311914E+01 -1.30188059561E+01 -1.43044691388E+01 -1.55406229875E+01 -1.67183608663E+01 -1.78245706729E+01 -1.88495827668E+01 -1.97840651612E+01 -2.06186942557E+01 -2.13442383589E+01 -2.19516495069E+01 -2.24321635041E+01 -2.27774079818E+01 -2.29795181220E+01 -2.30312595265E+01 -2.29261575275E+01 -2.26586320166E+01 -2.22241366787E+01 -2.16193012451E+01 -2.08420751409E+01 -1.98918706290E+01 -1.87697032790E+01 -1.74783273018E+01 -1.60223630096E+01 -1.44084133803E+01 -1.26451664379E+01 -1.07434799177E+01 -8.71644446520E+00 -6.57942144595E+00 -4.35005131937E+00 -2.04822847325E+00 3.03961561661E-01 2.68234648068E+00 5.06081689607E+00 7.41152473679E+00 9.70513325424E+00 1.19111208865E+01 1.39981404227E+01 1.59344339193E+01 1.76883026473E+01 1.92286299834E+01 2.05254536086E+01 2.15505816416E+01 2.22782454388E+01 2.26857797450E+01 2.27543187285E+01 2.24694942084E+01 2.18221201502E+01 2.08088453229E+01 1.94327539669E+01 1.77038925032E+01 1.56396988333E+01 1.32653097429E+01 1.06137214689E+01 7.72577874068E+00 4.64996870273E+00 1.44199819736E+00 -1.83586394049E+00 -5.11569354780E+00 -8.32507506113E+00 -1.13885240078E+01 -1.42291610194E+01 -1.67706207007E+01 -1.89391678987E+01 -2.06659821690E+01 -2.18895588206E+01 -2.25581622180E+01 -2.26322545282E+01 -2.20868114056E+01 -2.09134258993E+01 -1.91220939248E+01 -1.67425698022E+01 -1.38251795094E+01 -1.04409833106E+01 -6.68118912566E+00 -2.65573412528E+00 1.50902488897E+00 5.67354144970E+00 9.68922137142E+00 1.34034241248E+01 1.66652211687E+01 1.93317546914E+01 2.12749841359E+01 2.23885526174E+01 2.25944543025E+01 2.18491409814E+01 2.01486757922E+01 1.75325289542E+01 1.40856189633E+01 9.93823713303E+00 5.26355695520E+00 2.72524555304E-01 -4.79394718744E+00 -9.67540246489E+00 -1.41046252398E+01 -1.78223239090E+01 -2.05930569158E+01 -2.22215419789E+01 -2.25683198939E+01 -2.15636156425E+01 -1.92181746340E+01 -1.56298695145E+01 -1.09849897964E+01 -5.55335447295E+00 3.23268508105E-01 6.24949745419E+00 1.18009395322E+01 1.65539602330E+01 2.01188850305E+01 2.21742999310E+01 2.24996211127E+01 2.10027819589E+01 1.77398102394E+01 1.29233016781E+01 6.91738256160E+00 2.17708131746E-01 -6.58365888604E+00 -1.28470749146E+01 -1.79447108396E+01 -2.13256765692E+01 -2.25805616496E+01 -2.14980677914E+01 -1.81060924041E+01 -1.26901961960E+01 -5.78397669394E+00 1.87151307893E+00 9.39864486800E+00 1.58796151305E+01 2.04693116340E+01 2.25117634983E+01 2.16445797138E+01 1.78748557985E+01 1.16114368697E+01 3.64246830477E+00 -4.94622601918E+00 -1.29077512270E+01 -1.90118839746E+01 -2.22408797493E+01 -2.19732497777E+01 -1.81223630341E+01 -1.11991237057E+01 -2.27658590682E+00 7.15108335670E+00 1.54039618933E+01 2.09143091931E+01 2.25373711880E+01 1.98142074989E+01 1.31253787121E+01 3.68734944168E+00 -6.63014458664E+00 -1.56508997214E+01 -2.13479594823E+01 -2.23178489404E+01 espresso-5.1/PW/examples/EXX_example/reference/0000755000175000017500000000000012341373041017561 5ustar mbambaespresso-5.1/PW/examples/EXX_example/reference/co.hse.1nlcc.out-800000644000175000017500000003364612341373025022733 0ustar mbamba Program PWSCF v.4.3.2 starts on 21Nov2011 at 17:56:57 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 1 processors EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from stdin Warning: card &IONS ignored Warning: card / ignored IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/CPBE1nlcc.RRKJ3 MD5 check sum: 6343d94e6269eb5d49eee3a5c5ef8fb6 Pseudo is Norm-conserving + core correction, Zval = 4.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1073 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 PseudoPot. # 2 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/OPBE1nlcc.RRKJ3 MD5 check sum: 98aaa840951d4fb4252d2544928e2f2f Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential C 4.00 16.00000 ( 1.00) O 6.00 16.00000 ( 1.00) 6 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.0512746 0.0512746 0.0512746 ) 2 O tau( 2) = ( -0.0512746 -0.0512746 -0.0512746 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.27 Mb ( 10408, 8) NL pseudopotentials 2.54 Mb ( 10408, 16) Each V/rho on FFT grid 5.70 Mb ( 373248) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.54 Mb ( 10408, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000167 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000103 starting charge 9.99996, renormalised to 10.00000 negative rho (up, down): 0.103E-03 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 1.2 secs per-process dynamical memory: 59.3 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.123E-04 0.000E+00 total cpu time spent up to now is 2.3 secs k = 0.0000 0.0000 0.0000 band energies (ev): -31.3472 -15.4362 -12.9167 -12.9167 -9.8191 -2.5484 -2.5484 -1.5477 highest occupied, lowest unoccupied level (ev): -9.8191 -2.5484 ! total energy = -46.43592510 Ry Harris-Foulkes estimate = -46.53132574 Ry estimated scf accuracy < 0.15604071 Ry The total energy is the sum of the following terms: one-electron contribution = -67.96315882 Ry hartree contribution = 35.36824211 Ry xc contribution = -13.72736374 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.75436899 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-03, avg # of iterations = 2.0 negative rho (up, down): 0.117E-05 0.000E+00 total cpu time spent up to now is 3.2 secs k = 0.0000 0.0000 0.0000 band energies (ev): -27.6263 -12.3993 -10.2152 -10.2152 -8.3870 -1.4941 -1.0373 -1.0373 highest occupied, lowest unoccupied level (ev): -8.3870 -1.4941 ! total energy = -46.43481331 Ry Harris-Foulkes estimate = -46.50818277 Ry estimated scf accuracy < 0.14289898 Ry The total energy is the sum of the following terms: one-electron contribution = -65.36658280 Ry hartree contribution = 34.54934930 Ry xc contribution = -13.58147502 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -1.16809113 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.43E-03, avg # of iterations = 2.0 total cpu time spent up to now is 4.0 secs k = 0.0000 0.0000 0.0000 band energies (ev): -29.0396 -13.8828 -11.4508 -11.4508 -8.1323 -1.5016 -1.3181 -1.3181 highest occupied, lowest unoccupied level (ev): -8.1323 -1.5016 ! total energy = -46.47218791 Ry Harris-Foulkes estimate = -46.48383527 Ry estimated scf accuracy < 0.03091612 Ry The total energy is the sum of the following terms: one-electron contribution = -67.07998479 Ry hartree contribution = 34.60903495 Ry xc contribution = -13.58723955 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.45401513 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.09E-04, avg # of iterations = 1.0 total cpu time spent up to now is 4.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -28.8898 -13.5677 -11.2955 -11.2955 -8.4815 -1.5048 -1.4901 -1.4901 highest occupied, lowest unoccupied level (ev): -8.4815 -1.5048 EXX: now go back to refine exchange calculation -4.0525543195188058 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.09E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.00E-05, avg # of iterations = 3.0 total cpu time spent up to now is 14.2 secs k = 0.0000 0.0000 0.0000 band energies (ev): -31.7059 -15.2433 -12.4077 -12.4077 -9.6263 -1.2261 -0.5751 -0.5751 highest occupied, lowest unoccupied level (ev): -9.6263 -1.2261 ! total energy = -45.64680172 Ry Harris-Foulkes estimate = -45.64735928 Ry estimated scf accuracy < 0.00101034 Ry The total energy is the sum of the following terms: one-electron contribution = -70.71249204 Ry hartree contribution = 34.65168530 Ry xc contribution = -10.72693627 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 4.05246773 Ry + Fock energy = -2.02627716 Ry scf correction = -0.01732222 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-05, avg # of iterations = 2.0 total cpu time spent up to now is 18.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -31.8017 -15.3194 -12.4754 -12.4754 -9.6937 -1.2274 -0.6295 -0.6295 highest occupied, lowest unoccupied level (ev): -9.6937 -1.2274 -4.0525543195188058 -4.0574367671794755 -4.0628617789316941 est. exchange err (dexx) = 0.00027128 Ry ! total energy = -45.64720309 Ry Harris-Foulkes estimate = -45.64722350 Ry estimated scf accuracy < 0.00008116 Ry The total energy is the sum of the following terms: one-electron contribution = -70.80416716 Ry hartree contribution = 34.73644192 Ry xc contribution = -10.73747008 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 4.05743677 Ry + Fock energy = -2.03143089 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00655639 -0.00655639 -0.00655639 atom 2 type 2 force = 0.00655639 0.00655639 0.00655639 Total force = 0.016060 Total SCF correction = 0.008133 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file co.save init_run : 1.06s CPU 1.13s WALL ( 1 calls) electrons : 17.55s CPU 18.22s WALL ( 1 calls) forces : 1.10s CPU 1.10s WALL ( 1 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 0.46s CPU 0.47s WALL ( 1 calls) Called by electrons: c_bands : 9.91s CPU 10.01s WALL ( 7 calls) sum_band : 0.52s CPU 0.52s WALL ( 7 calls) v_of_rho : 4.54s CPU 4.61s WALL ( 8 calls) mix_rho : 0.09s CPU 0.10s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.06s CPU 0.06s WALL ( 15 calls) regterg : 9.84s CPU 9.94s WALL ( 7 calls) Called by *egterg: h_psi : 9.72s CPU 9.82s WALL ( 26 calls) g_psi : 0.01s CPU 0.01s WALL ( 18 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 23 calls) Called by h_psi: add_vuspsi : 0.05s CPU 0.06s WALL ( 26 calls) General routines calbec : 0.07s CPU 0.07s WALL ( 30 calls) fft : 1.15s CPU 1.17s WALL ( 96 calls) ffts : 5.58s CPU 5.58s WALL ( 462 calls) fftw : 3.19s CPU 3.20s WALL ( 352 calls) davcio : 0.00s CPU 0.01s WALL ( 6 calls) Parallel routines EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.16s CPU 0.18s WALL ( 2 calls) vexx : 7.99s CPU 8.08s WALL ( 10 calls) exxen2 : 2.61s CPU 2.62s WALL ( 4 calls) PWSCF : 19.79s CPU 20.72s WALL This run was terminated on: 17:57:18 21Nov2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/o.gaupbe.1nlcc.out-800000644000175000017500000003556112341373025023252 0ustar mbamba Program PWSCF v.5.0.2 starts on 26Apr2013 at 18:31:40 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Waiting for input... Reading input from standard input Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Message from routine setup : BEWARE: nonlinear core correction is not consistent with hybrid XC Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used EXX: grid of k+q point setup nkqs = 1 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 1836 1836 457 83516 83516 10407 Max 1837 1837 460 83521 83521 10408 Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Generating pointlists ... new r_m : 0.4125 (alat units) 4.9500 (a.u.) for type 1 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 (up: 4.00, down: 2.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /home/sjoshua/espresso.20130425/PW/examples/EXX_example/Pseudo/OPBE1nlcc.RRKJ3 MD5 check sum: 98aaa840951d4fb4252d2544928e2f2f Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential O 6.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization O 0.200 No symmetry found (note: 47 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.32 Mb ( 5204, 4) NL pseudopotentials 0.64 Mb ( 5204, 8) Each V/rho on FFT grid 5.70 Mb ( 186624, 2) Each G-vector array 0.32 Mb ( 41761) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 5204, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 22.78 Mb ( 186624, 8) Check: negative/imaginary core charge= -0.000167 0.000000 Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000329 Check: negative starting charge=(component2): -0.000219 starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 3.292E-04 2.194E-04 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 1.3 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 4.734E-05 4.702E-05 Magnetic moment per site: atom: 1 charge: 5.9976 magn: 1.7591 constr: 0.0000 total cpu time spent up to now is 2.2 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -24.3438 -9.3507 -9.3505 -9.3491 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -22.3557 -7.5296 -7.5260 -7.5232 highest occupied level (ev): -7.5296 ! total energy = -33.74775969 Ry Harris-Foulkes estimate = -33.71073017 Ry estimated scf accuracy < 0.08118253 Ry The total energy is the sum of the following terms: one-electron contribution = -35.13471931 Ry hartree contribution = 18.88085993 Ry xc contribution = -8.92934225 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.05266561 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.35E-03, avg # of iterations = 1.5 negative rho (up, down): 1.369E-07 3.687E-07 Magnetic moment per site: atom: 1 charge: 5.9976 magn: 1.9873 constr: 0.0000 total cpu time spent up to now is 3.2 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -24.8886 -10.3748 -10.3738 -8.8947 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -21.8461 -7.4274 -6.8769 -6.8697 highest occupied level (ev): -7.4274 ! total energy = -33.76083178 Ry Harris-Foulkes estimate = -33.75255055 Ry estimated scf accuracy < 0.00677362 Ry The total energy is the sum of the following terms: one-electron contribution = -35.19061288 Ry hartree contribution = 18.94926573 Ry xc contribution = -9.00671235 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00087985 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-04, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 5.9974 magn: 1.9998 constr: 0.0000 total cpu time spent up to now is 4.3 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -24.9722 -10.6471 -10.6464 -8.5830 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -21.3251 -7.2628 -6.2588 -6.2504 highest occupied level (ev): -7.2628 ! total energy = -33.76217883 Ry Harris-Foulkes estimate = -33.76198681 Ry estimated scf accuracy < 0.00017182 Ry The total energy is the sum of the following terms: one-electron contribution = -35.17246610 Ry hartree contribution = 18.93487047 Ry xc contribution = -9.01269076 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell convergence has been achieved in 3 iterations EXX: now go back to refine exchange calculation total cpu time spent up to now is 5.5 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-04, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 5.9982 magn: 1.9998 constr: 0.0000 total cpu time spent up to now is 8.9 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -28.6425 -13.3150 -13.3142 -11.1106 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -24.2637 -9.7754 -5.2435 -5.2393 highest occupied level (ev): -9.7754 ! total energy = -33.62910436 Ry Harris-Foulkes estimate = -33.63093527 Ry estimated scf accuracy < 0.00096663 Ry The total energy is the sum of the following terms: one-electron contribution = -37.48613787 Ry hartree contribution = 19.10731946 Ry xc contribution = -7.85535061 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 2.12564617 Ry + Fock energy = -1.05809951 Ry scf correction = 0.05885759 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.61E-05, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 5.9984 magn: 1.9998 constr: 0.0000 total cpu time spent up to now is 12.3 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -28.2691 -12.9610 -12.9604 -10.7356 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -23.8941 -9.4245 -4.9277 -4.9235 highest occupied level (ev): -9.4245 ! total energy = -33.62925914 Ry Harris-Foulkes estimate = -33.62944699 Ry estimated scf accuracy < 0.00014819 Ry The total energy is the sum of the following terms: one-electron contribution = -37.37668619 Ry hartree contribution = 19.03935922 Ry xc contribution = -7.83813924 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 2.12211950 Ry + Fock energy = -1.05809951 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell convergence has been achieved in 2 iterations est. exchange err (dexx) = 0.00010775 Ry End of self-consistent calculation Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000057 Writing output data file o.save init_run : 1.11s CPU 1.19s WALL ( 1 calls) electrons : 8.91s CPU 9.79s WALL ( 2 calls) forces : 0.73s CPU 0.77s WALL ( 1 calls) Called by init_run: wfcinit : 0.07s CPU 0.09s WALL ( 1 calls) potinit : 0.65s CPU 0.70s WALL ( 1 calls) Called by electrons: c_bands : 4.51s CPU 5.00s WALL ( 5 calls) sum_band : 0.52s CPU 0.57s WALL ( 5 calls) v_of_rho : 4.10s CPU 4.38s WALL ( 7 calls) mix_rho : 0.15s CPU 0.19s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.05s WALL ( 24 calls) regterg : 4.47s CPU 4.96s WALL ( 10 calls) Called by *egterg: h_psi : 4.48s CPU 4.97s WALL ( 29 calls) g_psi : 0.01s CPU 0.01s WALL ( 17 calls) rdiaghg : 0.01s CPU 0.00s WALL ( 25 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 29 calls) General routines calbec : 0.02s CPU 0.02s WALL ( 37 calls) fft : 2.07s CPU 2.26s WALL ( 154 calls) fftw : 1.02s CPU 1.16s WALL ( 134 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 2.33s CPU 2.81s WALL ( 610 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.34s CPU 0.38s WALL ( 2 calls) vexx : 3.50s CPU 3.86s WALL ( 12 calls) exxen2 : 1.24s CPU 1.37s WALL ( 4 calls) PWSCF : 12.53s CPU 13.70s WALL This run was terminated on: 18:31:54 26Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/o2.hse.1nlcc.out-800000644000175000017500000003335012341373025022642 0ustar mbamba Program PWSCF v.4.3.2 starts on 21Nov2011 at 17:57:18 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 1 processors EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from stdin Warning: card &IONS ignored Warning: card / ignored IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 12.00 (up: 7.00, down: 5.00) number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/OPBE1nlcc.RRKJ3 MD5 check sum: 98aaa840951d4fb4252d2544928e2f2f Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential O 6.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization O 0.200 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0547706 0.0547706 0.0547706 ) 2 O tau( 2) = ( -0.0547706 -0.0547706 -0.0547706 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.27 Mb ( 10408, 8) NL pseudopotentials 2.54 Mb ( 10408, 16) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.54 Mb ( 10408, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000243 0.000000 Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000323 Check: negative starting charge=(component2): -0.000215 starting charge 12.00000, renormalised to 12.00000 negative rho (up, down): 0.323E-03 0.215E-03 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 1.5 secs per-process dynamical memory: 85.6 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.65E-04, avg # of iterations = 1.0 negative rho (up, down): 0.531E-04 0.376E-04 total cpu time spent up to now is 4.1 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -32.6923 -20.7800 -14.1740 -13.2354 -13.2354 -6.4847 -6.4847 1.4050 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -30.5093 -18.7553 -12.1687 -11.3460 -11.3460 -4.5458 -4.5458 1.7194 ! total energy = -67.95761579 Ry Harris-Foulkes estimate = -67.95564302 Ry estimated scf accuracy < 0.05515757 Ry The total energy is the sum of the following terms: one-electron contribution = -99.69976452 Ry hartree contribution = 51.93688919 Ry xc contribution = -18.29642990 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.08896017 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.60E-04, avg # of iterations = 2.0 negative rho (up, down): 0.377E-05 0.261E-05 total cpu time spent up to now is 5.8 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -32.7925 -19.9482 -13.1441 -13.0673 -13.0673 -6.1698 -6.1698 1.5074 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -31.2298 -18.0271 -11.8130 -11.1681 -11.1681 -3.9691 -3.9691 1.7669 ! total energy = -67.96920055 Ry Harris-Foulkes estimate = -67.96571078 Ry estimated scf accuracy < 0.00295181 Ry The total energy is the sum of the following terms: one-electron contribution = -99.59380876 Ry hartree contribution = 51.91022629 Ry xc contribution = -18.29021966 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00812770 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-05, avg # of iterations = 2.5 total cpu time spent up to now is 7.4 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -32.6780 -19.9907 -13.0963 -13.0870 -13.0870 -6.2605 -6.2605 1.5082 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -31.3259 -18.1041 -12.0179 -11.1594 -11.1594 -3.9294 -3.9294 1.7559 EXX: now go back to refine exchange calculation -5.5706268677380280 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-05, avg # of iterations = 4.5 total cpu time spent up to now is 23.9 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -35.8987 -22.8317 -15.0702 -15.0702 -14.6190 -7.8903 -7.8903 1.8611 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -34.1754 -20.0983 -13.4413 -12.0378 -12.0378 -2.7073 -2.7073 2.0600 ! total energy = -66.83484483 Ry Harris-Foulkes estimate = -66.83531484 Ry estimated scf accuracy < 0.00104511 Ry The total energy is the sum of the following terms: one-electron contribution = -105.13019037 Ry hartree contribution = 51.88226268 Ry xc contribution = -14.35947289 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 5.57136975 Ry + Fock energy = -2.78531343 Ry scf correction = -0.02548695 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.07 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.71E-06, avg # of iterations = 2.0 total cpu time spent up to now is 34.0 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -35.9926 -22.9264 -15.1575 -15.1575 -14.7079 -8.0036 -8.0036 1.8614 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -34.2595 -20.1700 -13.5288 -12.0956 -12.0956 -2.7715 -2.7715 2.0524 -5.5706268677380280 -5.5782211504891297 -5.5865504388903133 est. exchange err (dexx) = 0.00036750 Ry ! total energy = -66.83539269 Ry Harris-Foulkes estimate = -66.83539822 Ry estimated scf accuracy < 0.00009929 Ry The total energy is the sum of the following terms: one-electron contribution = -105.25562077 Ry hartree contribution = 51.99750502 Ry xc contribution = -14.37495214 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 5.57822115 Ry + Fock energy = -2.79327522 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.08 Bohr mag/cell convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01745547 -0.01745547 -0.01745547 atom 2 type 1 force = 0.01745547 0.01745547 0.01745547 Total force = 0.042757 Total SCF correction = 0.017054 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file o2.save init_run : 1.48s CPU 1.53s WALL ( 1 calls) electrons : 33.40s CPU 34.02s WALL ( 1 calls) forces : 1.68s CPU 1.69s WALL ( 1 calls) Called by init_run: wfcinit : 0.20s CPU 0.20s WALL ( 1 calls) potinit : 0.99s CPU 1.02s WALL ( 1 calls) Called by electrons: c_bands : 18.95s CPU 19.09s WALL ( 6 calls) sum_band : 0.89s CPU 0.89s WALL ( 6 calls) v_of_rho : 8.18s CPU 8.25s WALL ( 7 calls) mix_rho : 0.13s CPU 0.15s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.09s CPU 0.09s WALL ( 28 calls) regterg : 18.85s CPU 18.97s WALL ( 12 calls) Called by *egterg: h_psi : 18.64s CPU 18.77s WALL ( 48 calls) g_psi : 0.02s CPU 0.02s WALL ( 34 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 42 calls) Called by h_psi: add_vuspsi : 0.10s CPU 0.10s WALL ( 48 calls) General routines calbec : 0.13s CPU 0.13s WALL ( 56 calls) fft : 1.89s CPU 1.90s WALL ( 158 calls) ffts : 11.43s CPU 11.45s WALL ( 952 calls) fftw : 5.69s CPU 5.71s WALL ( 630 calls) davcio : 0.00s CPU 0.03s WALL ( 52 calls) Parallel routines EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.29s CPU 0.31s WALL ( 2 calls) vexx : 15.47s CPU 15.59s WALL ( 17 calls) exxen2 : 5.73s CPU 5.74s WALL ( 4 calls) PWSCF : 36.65s CPU 37.52s WALL This run was terminated on: 17:57:55 21Nov2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/n.gaupbe.1nlcc.out-800000644000175000017500000004411112341373025023240 0ustar mbamba Program PWSCF v.5.0.2 starts on 26Apr2013 at 18:32:12 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Waiting for input... Reading input from standard input Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Message from routine setup : BEWARE: nonlinear core correction is not consistent with hybrid XC Message from routine setup: the system is metallic, specify occupations Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used EXX: grid of k+q point setup nkqs = 1 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 1836 1836 457 83516 83516 10407 Max 1837 1837 460 83521 83521 10408 Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Generating pointlists ... new r_m : 0.4125 (alat units) 4.9500 (a.u.) for type 1 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-05 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /home/sjoshua/espresso.20130425/PW/examples/EXX_example/Pseudo/NPBE1nlcc.RRKJ3 MD5 check sum: 8c9de74fd816ad51f11d6d02916f6c56 Pseudo is Norm-conserving + core correction, Zval = 5.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential N 5.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization N 0.200 No symmetry found (note: 47 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 N tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.32 Mb ( 5204, 4) NL pseudopotentials 0.64 Mb ( 5204, 8) Each V/rho on FFT grid 5.70 Mb ( 186624, 2) Each G-vector array 0.32 Mb ( 41761) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 5204, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 22.78 Mb ( 186624, 8) Check: negative/imaginary core charge= -0.000076 0.000000 Initial potential from superposition of free atoms starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 3.083E-05 2.055E-05 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 1.3 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.95E-04, avg # of iterations = 1.0 negative rho (up, down): 2.242E-06 5.816E-06 Magnetic moment per site: atom: 1 charge: 4.9950 magn: 2.3967 constr: 0.0000 total cpu time spent up to now is 2.6 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -18.8118 -7.2740 -7.2729 -7.2724 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -17.2469 -5.8696 -5.8681 -5.8663 highest occupied level (ev): -7.2724 ! total energy = -21.04687440 Ry Harris-Foulkes estimate = -20.95215873 Ry estimated scf accuracy < 0.05056005 Ry The total energy is the sum of the following terms: one-electron contribution = -19.38647481 Ry hartree contribution = 10.60227099 Ry xc contribution = -6.29651661 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.05511755 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-03, avg # of iterations = 1.0 negative rho (up, down): 1.901E-09 4.399E-07 Magnetic moment per site: atom: 1 charge: 4.9962 magn: 3.0265 constr: 0.0000 total cpu time spent up to now is 3.5 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -19.5221 -7.9546 -7.9531 -7.9518 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -15.8542 -4.6030 -4.6000 -4.5969 highest occupied level (ev): -7.9518 ! total energy = -21.05949772 Ry Harris-Foulkes estimate = -21.04866961 Ry estimated scf accuracy < 0.00700145 Ry The total energy is the sum of the following terms: one-electron contribution = -19.48683452 Ry hartree contribution = 10.78239056 Ry xc contribution = -6.44297006 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00104729 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.40E-04, avg # of iterations = 1.5 negative rho (up, down): 3.393E-10 4.277E-08 Magnetic moment per site: atom: 1 charge: 4.9962 magn: 3.0087 constr: 0.0000 total cpu time spent up to now is 4.5 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -19.4380 -7.8711 -7.8696 -7.8681 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -14.7182 -3.6071 -3.6044 -3.6008 highest occupied level (ev): -7.8681 ! total energy = -21.05997180 Ry Harris-Foulkes estimate = -21.06006256 Ry estimated scf accuracy < 0.00014595 Ry The total energy is the sum of the following terms: one-electron contribution = -19.44549827 Ry hartree contribution = 10.74740655 Ry xc contribution = -6.43115483 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.01968883 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.92E-06, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 4.9964 magn: 2.9970 constr: 0.0000 total cpu time spent up to now is 5.6 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -19.5214 -7.9509 -7.9494 -7.9480 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -14.8173 -3.6986 -3.6955 -3.6920 highest occupied level (ev): -7.9480 ! total energy = -21.05998818 Ry Harris-Foulkes estimate = -21.06000694 Ry estimated scf accuracy < 0.00000376 Ry The total energy is the sum of the following terms: one-electron contribution = -19.46809165 Ry hartree contribution = 10.75124530 Ry xc contribution = -6.43210541 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 4 iterations EXX: now go back to refine exchange calculation total cpu time spent up to now is 6.9 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.92E-06, avg # of iterations = 3.5 Magnetic moment per site: atom: 1 charge: 4.9974 magn: 2.9978 constr: 0.0000 total cpu time spent up to now is 12.2 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -22.9122 -10.2106 -10.2093 -10.2081 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -16.9430 -2.8695 -2.8678 -2.8664 highest occupied level (ev): -10.2081 ! total energy = -20.94724489 Ry Harris-Foulkes estimate = -20.94839565 Ry estimated scf accuracy < 0.00054808 Ry The total energy is the sum of the following terms: one-electron contribution = -21.19907126 Ry hartree contribution = 10.85022005 Ry xc contribution = -5.53092291 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 1.63048735 Ry + Fock energy = -0.81149374 Ry scf correction = 0.03207191 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 4.9976 magn: 2.9980 constr: 0.0000 total cpu time spent up to now is 16.4 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -22.6611 -9.9677 -9.9664 -9.9653 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -16.6885 -2.6593 -2.6580 -2.6565 highest occupied level (ev): -9.9653 ! total energy = -20.94722210 Ry Harris-Foulkes estimate = -20.94740050 Ry estimated scf accuracy < 0.00004893 Ry The total energy is the sum of the following terms: one-electron contribution = -21.15143361 Ry hartree contribution = 10.82667896 Ry xc contribution = -5.52292477 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 1.62812241 Ry + Fock energy = -0.81149374 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 2 iterations est. exchange err (dexx) = 0.00008305 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 16.9 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.57E-07, avg # of iterations = 1.0 Magnetic moment per site: atom: 1 charge: 4.9977 magn: 2.9981 constr: 0.0000 total cpu time spent up to now is 22.1 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -22.7164 -10.0436 -10.0425 -10.0413 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -16.7617 -2.7041 -2.7028 -2.7015 highest occupied level (ev): -10.0413 ! total energy = -20.94718992 Ry Harris-Foulkes estimate = -20.94734323 Ry estimated scf accuracy < 0.00003005 Ry The total energy is the sum of the following terms: one-electron contribution = -21.17871227 Ry hartree contribution = 10.85666638 Ry xc contribution = -5.53081933 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 1.63466171 Ry + Fock energy = -0.81671172 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 1 iterations est. exchange err (dexx) = 0.00000454 Ry End of self-consistent calculation Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000083 Writing output data file n.save init_run : 1.14s CPU 1.23s WALL ( 1 calls) electrons : 16.92s CPU 18.99s WALL ( 3 calls) forces : 0.78s CPU 0.85s WALL ( 1 calls) Called by init_run: wfcinit : 0.07s CPU 0.09s WALL ( 1 calls) potinit : 0.67s CPU 0.72s WALL ( 1 calls) Called by electrons: c_bands : 10.01s CPU 11.38s WALL ( 9 calls) sum_band : 0.99s CPU 1.10s WALL ( 9 calls) v_of_rho : 5.53s CPU 5.95s WALL ( 9 calls) mix_rho : 0.23s CPU 0.29s WALL ( 9 calls) Called by c_bands: init_us_2 : 0.06s CPU 0.08s WALL ( 40 calls) regterg : 9.93s CPU 11.29s WALL ( 18 calls) Called by *egterg: h_psi : 9.87s CPU 11.21s WALL ( 48 calls) g_psi : 0.02s CPU 0.02s WALL ( 28 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 38 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 48 calls) General routines calbec : 0.05s CPU 0.05s WALL ( 56 calls) fft : 2.97s CPU 3.27s WALL ( 202 calls) fftw : 1.84s CPU 2.15s WALL ( 228 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 5.59s CPU 6.80s WALL ( 1014 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.50s CPU 0.55s WALL ( 3 calls) vexx : 8.10s CPU 9.18s WALL ( 23 calls) exxen2 : 2.13s CPU 2.40s WALL ( 6 calls) PWSCF : 21.21s CPU 23.70s WALL This run was terminated on: 18:32:36 26Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/n.pbe0.1nlcc.out-800000644000175000017500000005143112341373025022626 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 23: 1:23 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! gamma-point specific algorithms are used tcpu = 0.1 self-consistency for image 0 Message from routine setup: the system is metallic, specify occupations warning: symmetry operation # 2 not allowed. fractional translation: -0.0314954 -0.0629909 0.0000000 in crystal coordinates warning: symmetry operation # 3 not allowed. fractional translation: -0.0314954 0.0000000 -0.0944863 in crystal coordinates warning: symmetry operation # 4 not allowed. fractional translation: 0.0000000 -0.0629909 -0.0944863 in crystal coordinates warning: symmetry operation # 5 not allowed. fractional translation: 0.0157477 -0.0157477 -0.0944863 in crystal coordinates warning: symmetry operation # 6 not allowed. fractional translation: -0.0472432 -0.0472432 -0.0944863 in crystal coordinates warning: symmetry operation # 7 not allowed. fractional translation: 0.0157477 -0.0472432 0.0000000 in crystal coordinates warning: symmetry operation # 8 not allowed. fractional translation: -0.0472432 -0.0157477 0.0000000 in crystal coordinates warning: symmetry operation # 9 not allowed. fractional translation: 0.0314954 -0.0629909 -0.0314954 in crystal coordinates warning: symmetry operation # 10 not allowed. fractional translation: -0.0629909 -0.0629909 -0.0629909 in crystal coordinates warning: symmetry operation # 11 not allowed. fractional translation: 0.0314954 0.0000000 -0.0629909 in crystal coordinates warning: symmetry operation # 12 not allowed. fractional translation: -0.0629909 0.0000000 -0.0314954 in crystal coordinates warning: symmetry operation # 13 not allowed. fractional translation: -0.0314954 0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 14 not allowed. fractional translation: -0.0314954 -0.0787386 -0.0787386 in crystal coordinates warning: symmetry operation # 15 not allowed. fractional translation: 0.0000000 0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 16 not allowed. fractional translation: 0.0000000 -0.0787386 -0.0157477 in crystal coordinates warning: symmetry operation # 17 not allowed. fractional translation: 0.0157477 0.0157477 -0.0314954 in crystal coordinates warning: symmetry operation # 18 not allowed. fractional translation: -0.0472432 0.0157477 -0.0629909 in crystal coordinates warning: symmetry operation # 19 not allowed. fractional translation: 0.0157477 -0.0787386 -0.0629909 in crystal coordinates warning: symmetry operation # 20 not allowed. fractional translation: -0.0472432 -0.0787386 -0.0314954 in crystal coordinates warning: symmetry operation # 21 not allowed. fractional translation: 0.0314954 -0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 22 not allowed. fractional translation: 0.0314954 -0.0472432 -0.0787386 in crystal coordinates warning: symmetry operation # 23 not allowed. fractional translation: -0.0629909 -0.0472432 -0.0157477 in crystal coordinates warning: symmetry operation # 24 not allowed. fractional translation: -0.0629909 -0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 25 not allowed. fractional translation: -0.0314954 -0.0629909 -0.0944863 in crystal coordinates warning: symmetry operation # 26 not allowed. fractional translation: 0.0000000 0.0000000 -0.0944863 in crystal coordinates warning: symmetry operation # 27 not allowed. fractional translation: 0.0000000 -0.0629909 0.0000000 in crystal coordinates warning: symmetry operation # 28 not allowed. fractional translation: -0.0314954 0.0000000 0.0000000 in crystal coordinates warning: symmetry operation # 29 not allowed. fractional translation: -0.0472432 -0.0472432 0.0000000 in crystal coordinates warning: symmetry operation # 30 not allowed. fractional translation: 0.0157477 -0.0157477 0.0000000 in crystal coordinates warning: symmetry operation # 31 not allowed. fractional translation: -0.0472432 -0.0157477 -0.0944863 in crystal coordinates warning: symmetry operation # 32 not allowed. fractional translation: 0.0157477 -0.0472432 -0.0944863 in crystal coordinates warning: symmetry operation # 33 not allowed. fractional translation: -0.0629909 0.0000000 -0.0629909 in crystal coordinates warning: symmetry operation # 34 not allowed. fractional translation: 0.0314954 0.0000000 -0.0314954 in crystal coordinates warning: symmetry operation # 35 not allowed. fractional translation: -0.0629909 -0.0629909 -0.0314954 in crystal coordinates warning: symmetry operation # 36 not allowed. fractional translation: 0.0314954 -0.0629909 -0.0629909 in crystal coordinates warning: symmetry operation # 37 not allowed. fractional translation: 0.0000000 -0.0787386 -0.0787386 in crystal coordinates warning: symmetry operation # 38 not allowed. fractional translation: 0.0000000 0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 39 not allowed. fractional translation: -0.0314954 -0.0787386 -0.0157477 in crystal coordinates warning: symmetry operation # 40 not allowed. fractional translation: -0.0314954 0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 41 not allowed. fractional translation: -0.0472432 -0.0787386 -0.0629909 in crystal coordinates warning: symmetry operation # 42 not allowed. fractional translation: 0.0157477 -0.0787386 -0.0314954 in crystal coordinates warning: symmetry operation # 43 not allowed. fractional translation: -0.0472432 0.0157477 -0.0314954 in crystal coordinates warning: symmetry operation # 44 not allowed. fractional translation: 0.0157477 0.0157477 -0.0629909 in crystal coordinates warning: symmetry operation # 45 not allowed. fractional translation: -0.0629909 -0.0472432 -0.0787386 in crystal coordinates warning: symmetry operation # 46 not allowed. fractional translation: -0.0629909 -0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 47 not allowed. fractional translation: 0.0314954 -0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 48 not allowed. fractional translation: 0.0314954 -0.0472432 -0.0157477 in crystal coordinates EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL EXX GRID CHECK SUCCESSFUL bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-05 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file NPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 5.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential N 5.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization N 0.200 No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1167.2200 ( 83519 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 1.27 Mb ( 10408, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000076 0.000000 Initial potential from superposition of free atoms starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.308E-04 0.206E-04 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 5.24 secs per-process dynamical memory: 54.6 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.242E-05 0.587E-05 total cpu time spent up to now is 10.01 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -18.8118 -7.2739 -7.2728 -7.2723 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -17.2469 -5.8689 -5.8676 -5.8659 ! total energy = -21.04676070 Ry Harris-Foulkes estimate = -20.95213962 Ry estimated scf accuracy < 0.05041183 Ry The total energy is the sum of the following terms: one-electron contribution = -19.37942366 Ry hartree contribution = 10.59558397 Ry xc contribution = -6.29470170 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.05718288 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-03, avg # of iterations = 1.0 negative rho (up, down): 0.134E-08 0.381E-06 total cpu time spent up to now is 14.71 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -19.5389 -7.9707 -7.9692 -7.9678 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -15.8722 -4.6197 -4.6166 -4.6135 ! total energy = -21.05948994 Ry Harris-Foulkes estimate = -21.04869415 Ry estimated scf accuracy < 0.00717570 Ry The total energy is the sum of the following terms: one-electron contribution = -19.49061307 Ry hartree contribution = 10.78764836 Ry xc contribution = -6.44411370 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00137511 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-04, avg # of iterations = 1.5 negative rho (up, down): 0.316E-09 0.442E-07 total cpu time spent up to now is 19.76 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -19.4238 -7.8573 -7.8558 -7.8544 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -14.7066 -3.5974 -3.5945 -3.5908 ! total energy = -21.05997336 Ry Harris-Foulkes estimate = -21.06008118 Ry estimated scf accuracy < 0.00017041 Ry The total energy is the sum of the following terms: one-electron contribution = -19.44501930 Ry hartree contribution = 10.74974305 Ry xc contribution = -6.43185951 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.02180118 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-06, avg # of iterations = 2.0 total cpu time spent up to now is 24.66 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -19.5158 -7.9454 -7.9440 -7.9425 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -14.8107 -3.6930 -3.6899 -3.6864 1.59576912160573 1.59576912160573 EXX divergence ( 1)= -700.4071 0.1250 exx_div : 0.02s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -2.26080342112995 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-06, avg # of iterations = 3.5 total cpu time spent up to now is 56.68 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -22.7510 -9.8645 -9.8631 -9.8618 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -16.4288 -2.0185 -2.0171 -2.0146 ! total energy = -20.66306421 Ry Harris-Foulkes estimate = -20.66311698 Ry estimated scf accuracy < 0.00014449 Ry The total energy is the sum of the following terms: one-electron contribution = -21.73986896 Ry hartree contribution = 10.75697182 Ry xc contribution = -4.90296830 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 2.26283925 Ry + Fock energy = -1.13040171 Ry scf correction = 0.00343594 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.89E-06, avg # of iterations = 1.0 total cpu time spent up to now is 71.86 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -22.7332 -9.8490 -9.8475 -9.8462 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -16.4036 -1.9973 -1.9959 -1.9936 -2.26080342112995 -2.26333278222075 -2.26603983094666 dexx = 0.00008884 Ry ! total energy = -20.66315135 Ry Harris-Foulkes estimate = -20.66315684 Ry estimated scf accuracy < 0.00000976 Ry The total energy is the sum of the following terms: one-electron contribution = -21.74507778 Ry hartree contribution = 10.76736313 Ry xc contribution = -4.90471315 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 2.26333278 Ry + Fock energy = -1.13301992 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.89E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.19E-08, avg # of iterations = 2.0 total cpu time spent up to now is 103.01 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -22.7264 -9.8319 -9.8305 -9.8292 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -16.3713 -1.9739 -1.9727 -1.9702 -2.26603983094666 -2.26636255282187 -2.26668674630826 dexx = 0.00000074 Ry ! total energy = -20.66315677 Ry Harris-Foulkes estimate = -20.66315908 Ry estimated scf accuracy < 0.00000061 Ry The total energy is the sum of the following terms: one-electron contribution = -21.75026089 Ry hartree contribution = 10.77041299 Ry xc contribution = -4.90529163 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 2.26636255 Ry + Fock energy = -1.13334337 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000068 Writing output data file o2.save Writing output data file o2.save PWSCF : 1m49.90s CPU time, 1m52.79s wall time init_run : 5.17s CPU electrons : 100.18s CPU forces : 3.30s CPU Called by init_run: wfcinit : 0.50s CPU potinit : 3.35s CPU Called by electrons: c_bands : 58.48s CPU ( 8 calls, 7.310 s avg) sum_band : 3.61s CPU ( 8 calls, 0.451 s avg) v_of_rho : 25.15s CPU ( 9 calls, 2.794 s avg) mix_rho : 1.19s CPU ( 8 calls, 0.148 s avg) Called by c_bands: init_us_2 : 0.43s CPU ( 36 calls, 0.012 s avg) regterg : 58.09s CPU ( 16 calls, 3.630 s avg) Called by *egterg: h_psi : 58.06s CPU ( 44 calls, 1.319 s avg) g_psi : 0.14s CPU ( 26 calls, 0.005 s avg) rdiaghg : 0.00s CPU ( 36 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.05s CPU ( 44 calls, 0.001 s avg) General routines calbec : 0.10s CPU ( 52 calls, 0.002 s avg) cft3 : 15.71s CPU ( 182 calls, 0.086 s avg) cft3s : 58.12s CPU ( 778 calls, 0.075 s avg) davcio : 0.00s CPU ( 70 calls, 0.000 s avg) EXX routines exx_grid : 0.00s CPU exxinit : 0.97s CPU ( 3 calls, 0.324 s avg) vexx : 47.90s CPU ( 23 calls, 2.083 s avg) exxen2 : 12.58s CPU ( 6 calls, 2.096 s avg) espresso-5.1/PW/examples/EXX_example/reference/si.PBE0_nq=1.out0000644000175000017500000004323712341373025022301 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 22:43:21 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! tcpu = 0.0 self-consistency for image 0 EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 126.4975 ( 1459 G-vectors) FFT grid: ( 16, 16, 16) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.06 Mb ( 4096) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.50 Mb ( 4096, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.20 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.69 secs total energy = -15.82338789 Ry Harris-Foulkes estimate = -15.83973300 Ry estimated scf accuracy < 0.06416663 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.88 secs total energy = -15.82633125 Ry Harris-Foulkes estimate = -15.82633974 Ry estimated scf accuracy < 0.00228008 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 1.08 secs total energy = -15.82643362 Ry Harris-Foulkes estimate = -15.82642126 Ry estimated scf accuracy < 0.00004960 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 2.3 total cpu time spent up to now is 1.31 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4477 4.7282 5.9961 5.9961 8.9448 9.3569 9.3569 11.1861 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1159 4.9391 5.0502 8.5385 10.1245 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8638 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7128 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7929 3.5449 7.2967 8.3740 14.7162 14.7746 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4110 1.6834 3.9583 5.4868 9.1321 10.0723 10.2721 12.7292 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3207 9.2854 9.9750 11.4584 12.3759 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6947 -0.3359 2.2539 4.3556 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9477 0.3457 5.1682 5.1682 8.1195 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6288 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2967 0.618038723237103 0.618038723237103 EXX divergence ( 1)= -203.1095 0.8333 exx_div : 0.01s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -2.27181629748037 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 3.8 total cpu time spent up to now is 5.20 secs total energy = -15.90453707 Ry Harris-Foulkes estimate = -15.90457177 Ry estimated scf accuracy < 0.00010597 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.32E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.09 secs total energy = -15.90454623 Ry Harris-Foulkes estimate = -15.90454535 Ry estimated scf accuracy < 0.00000237 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-08, avg # of iterations = 1.8 total cpu time spent up to now is 9.10 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1427 3.2157 4.4564 4.4564 10.2062 10.5785 10.5785 12.5690 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5702 1.5989 3.4558 3.5084 9.6862 11.3666 12.1130 12.3493 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4781 -0.1371 2.0726 2.5337 8.8554 10.3763 13.6720 13.9135 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.9390 -2.0646 1.3045 2.0417 8.3713 9.4038 15.8895 16.0500 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0429 0.1617 2.4816 3.9194 10.3808 11.2267 11.4611 13.9210 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.0214 -1.0498 1.4559 2.8213 10.4002 11.1151 12.5429 13.5989 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.7209 -2.1279 0.6946 1.8030 9.8619 11.7530 12.8384 15.0141 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.2774 -1.8746 0.7678 2.8485 9.3889 13.0291 13.1099 14.5092 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5910 -1.2168 3.6448 3.6448 9.3670 11.0389 11.0389 15.4337 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.8115 -2.0174 2.5050 3.1736 9.8133 11.1224 11.6750 14.9184 highest occupied, lowest unoccupied level (ev): 4.4564 8.3713 -2.27181629748037 -2.27112474751479 -2.27065355502350 dexx = 0.00011018 Ry ! total energy = -15.90465668 Ry Harris-Foulkes estimate = -15.90465662 Ry estimated scf accuracy < 0.00000012 Ry The total energy is the sum of the following terms: one-electron contribution = 2.55094233 Ry hartree contribution = 1.08386165 Ry xc contribution = -3.77550006 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.27112475 Ry + Fock energy = -1.13532678 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.96E-08, avg # of iterations = 3.0 total cpu time spent up to now is 12.17 secs total energy = -15.90467355 Ry Harris-Foulkes estimate = -15.90467429 Ry estimated scf accuracy < 0.00000195 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 1.0 total cpu time spent up to now is 14.07 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1488 3.2099 4.4367 4.4367 10.2137 10.5802 10.5802 12.5689 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5732 1.5974 3.4455 3.4995 9.6893 11.3665 12.1105 12.3503 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4792 -0.1367 2.0684 2.5269 8.8582 10.3754 13.6705 13.9099 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.9390 -2.0640 1.3022 2.0360 8.3733 9.4022 15.8851 16.0495 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0451 0.1624 2.4777 3.9065 10.3852 11.2260 11.4626 13.9201 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.0214 -1.0474 1.4540 2.8165 10.4003 11.1145 12.5403 13.5977 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.7187 -2.1245 0.6934 1.8009 9.8606 11.7503 12.8364 15.0117 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.2774 -1.8722 0.7667 2.8416 9.3917 13.0251 13.1107 14.5070 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5944 -1.2192 3.6325 3.6325 9.3742 11.0418 11.0418 15.4359 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.8129 -2.0172 2.5019 3.1650 9.8173 11.1225 11.6735 14.9160 highest occupied, lowest unoccupied level (ev): 4.4367 8.3733 -2.27065355502350 -2.27054564346299 -2.27044441006744 dexx = 0.00000334 Ry ! total energy = -15.90467707 Ry Harris-Foulkes estimate = -15.90467705 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 2.55296344 Ry hartree contribution = 1.08151708 Ry xc contribution = -3.77472245 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.27054564 Ry + Fock energy = -1.13522221 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.67E-10, avg # of iterations = 1.2 total cpu time spent up to now is 18.16 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1501 3.2096 4.4326 4.4326 10.2148 10.5803 10.5803 12.5685 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5738 1.5974 3.4434 3.4979 9.6897 11.3665 12.1098 12.3506 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4794 -0.1365 2.0679 2.5258 8.8583 10.3751 13.6703 13.9092 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.9390 -2.0638 1.3020 2.0353 8.3733 9.4018 15.8844 16.0494 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0454 0.1628 2.4771 3.9046 10.3855 11.2258 11.4627 13.9198 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.0214 -1.0468 1.4538 2.8158 10.4002 11.1142 12.5398 13.5975 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.7181 -2.1237 0.6934 1.8008 9.8601 11.7498 12.8359 15.0112 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.2774 -1.8715 0.7668 2.8407 9.3917 13.0245 13.1108 14.5065 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5951 -1.2195 3.6306 3.6306 9.3749 11.0421 11.0421 15.4359 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.8132 -2.0169 2.5016 3.1637 9.8176 11.1224 11.6731 14.9155 highest occupied, lowest unoccupied level (ev): 4.4326 8.3733 -2.27044441006744 -2.27042086752961 -2.27039777638653 dexx = 0.00000023 Ry ! total energy = -15.90467808 Ry Harris-Foulkes estimate = -15.90467810 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 2.55336111 Ry hartree contribution = 1.08107858 Ry xc contribution = -3.77458118 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.27042087 Ry + Fock energy = -1.13519889 Ry convergence has been achieved in 1 iterations Writing output data file silicon.save Writing output data file silicon.save PWSCF : 19.07s CPU time, 19.35s wall time init_run : 0.17s CPU electrons : 18.51s CPU Called by init_run: wfcinit : 0.07s CPU potinit : 0.01s CPU Called by electrons: c_bands : 12.64s CPU ( 12 calls, 1.054 s avg) sum_band : 0.39s CPU ( 12 calls, 0.033 s avg) v_of_rho : 0.14s CPU ( 12 calls, 0.012 s avg) mix_rho : 0.01s CPU ( 12 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.04s CPU ( 250 calls, 0.000 s avg) cegterg : 12.59s CPU ( 120 calls, 0.105 s avg) Called by *egterg: h_psi : 12.28s CPU ( 367 calls, 0.033 s avg) g_psi : 0.03s CPU ( 237 calls, 0.000 s avg) cdiaghg : 0.20s CPU ( 307 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.03s CPU ( 367 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 367 calls, 0.000 s avg) cft3 : 0.07s CPU ( 117 calls, 0.001 s avg) cft3s : 12.43s CPU ( 24172 calls, 0.001 s avg) davcio : 0.01s CPU ( 510 calls, 0.000 s avg) EXX routines exx_grid : 0.01s CPU exxinit : 0.14s CPU ( 4 calls, 0.035 s avg) vexx : 10.49s CPU ( 208 calls, 0.050 s avg) exxen2 : 5.18s CPU ( 10 calls, 0.518 s avg) espresso-5.1/PW/examples/EXX_example/reference/n2.pbe0.1nlcc.out-800000644000175000017500000003227712341373025022717 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 23: 3:16 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! Warning: card &IONS ignored Warning: card / ignored gamma-point specific algorithms are used tcpu = 0.1 self-consistency for image 0 EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 1.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file NPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 5.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential N 5.00 16.00000 ( 1.00) 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0499045 0.0499045 0.0499045 ) 2 N tau( 2) = ( -0.0499045 -0.0499045 -0.0499045 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1167.2200 ( 83519 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.27 Mb ( 10408, 8) NL pseudopotentials 2.54 Mb ( 10408, 16) Each V/rho on FFT grid 5.70 Mb ( 373248) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.54 Mb ( 10408, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000107 0.000000 Initial potential from superposition of free atoms starting charge 9.99999, renormalised to 10.00000 negative rho (up, down): 0.346E-04 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 3.86 secs per-process dynamical memory: 42.2 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.579E-05 0.000E+00 total cpu time spent up to now is 7.97 secs k = 0.0000 0.0000 0.0000 band energies (ev): -30.5765 -14.4414 -12.6941 -12.6941 -11.6513 -2.8011 -2.8011 -1.2775 highest occupied, lowest unoccupied level (ev): -11.6513 -2.8011 ! total energy = -42.85094312 Ry Harris-Foulkes estimate = -42.94419743 Ry estimated scf accuracy < 0.15199183 Ry The total energy is the sum of the following terms: one-electron contribution = -64.27888378 Ry hartree contribution = 33.27455809 Ry xc contribution = -13.26143847 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.70347313 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-03, avg # of iterations = 2.0 negative rho (up, down): 0.157E-07 0.000E+00 total cpu time spent up to now is 11.48 secs k = 0.0000 0.0000 0.0000 band energies (ev): -26.9305 -12.3032 -10.3375 -10.3375 -9.1226 -1.2142 -0.8475 -0.8475 highest occupied, lowest unoccupied level (ev): -9.1226 -1.2142 ! total energy = -42.87826488 Ry Harris-Foulkes estimate = -42.88493920 Ry estimated scf accuracy < 0.01133639 Ry The total energy is the sum of the following terms: one-electron contribution = -62.89713942 Ry hartree contribution = 32.74381068 Ry xc contribution = -13.15436946 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.28191460 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-04, avg # of iterations = 2.0 total cpu time spent up to now is 14.96 secs k = 0.0000 0.0000 0.0000 band energies (ev): -27.8059 -12.8597 -11.0319 -11.0319 -9.6969 -1.4074 -1.4074 -1.2306 highest occupied, lowest unoccupied level (ev): -9.6969 -1.4074 ! total energy = -42.88040140 Ry Harris-Foulkes estimate = -42.88064219 Ry estimated scf accuracy < 0.00051284 Ry The total energy is the sum of the following terms: one-electron contribution = -63.29401226 Ry hartree contribution = 32.82355631 Ry xc contribution = -13.16911475 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.04782139 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.13E-06, avg # of iterations = 2.0 total cpu time spent up to now is 18.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.6571 -12.7775 -10.9499 -10.9499 -9.5902 -1.3431 -1.3431 -1.2269 highest occupied, lowest unoccupied level (ev): -9.5902 -1.3431 1.59576912160573 1.59576912160573 EXX divergence ( 1)= -700.4071 0.1250 exx_div : 0.02s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -4.46351452937178 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.13E-06, avg # of iterations = 5.0 total cpu time spent up to now is 61.50 secs k = 0.0000 0.0000 0.0000 band energies (ev): -30.8728 -14.8865 -12.4152 -12.4152 -11.3908 -0.6106 0.0258 0.0258 highest occupied, lowest unoccupied level (ev): -11.3908 -0.6106 ! total energy = -42.03042318 Ry Harris-Foulkes estimate = -42.03099798 Ry estimated scf accuracy < 0.00092756 Ry The total energy is the sum of the following terms: one-electron contribution = -67.62107980 Ry hartree contribution = 32.73549986 Ry xc contribution = -10.06237382 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 4.46147466 Ry + Fock energy = -2.23175726 Ry scf correction = -0.02557460 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.28E-06, avg # of iterations = 2.0 total cpu time spent up to now is 84.85 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -30.9830 -14.9963 -12.5088 -12.5088 -11.5064 -0.6126 -0.0585 -0.0585 highest occupied, lowest unoccupied level (ev): -11.5064 -0.6126 -4.46351452937178 -4.46614618966420 -4.46928987040768 dexx = 0.00025601 Ry ! total energy = -42.03079797 Ry Harris-Foulkes estimate = -42.03083699 Ry estimated scf accuracy < 0.00005409 Ry The total energy is the sum of the following terms: one-electron contribution = -67.70672931 Ry hartree contribution = 32.80421297 Ry xc contribution = -10.07113080 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 4.46614619 Ry + Fock energy = -2.23464494 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.28E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.65E-07, avg # of iterations = 2.0 total cpu time spent up to now is 126.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -30.8796 -14.9262 -12.4200 -12.4200 -11.4361 -0.6111 0.0158 0.0158 highest occupied, lowest unoccupied level (ev): -11.4361 -0.6111 -4.46928987040768 -4.46760219969705 -4.46592675302079 dexx = 0.00000611 Ry ! total energy = -42.03082602 Ry Harris-Foulkes estimate = -42.03084966 Ry estimated scf accuracy < 0.00002944 Ry The total energy is the sum of the following terms: one-electron contribution = -67.67258250 Ry hartree contribution = 32.75991035 Ry xc contribution = -10.06414060 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 4.46760220 Ry + Fock energy = -2.23296338 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01952757 -0.01952757 -0.01952757 atom 2 type 1 force = 0.01952757 0.01952757 0.01952757 Total force = 0.047833 Total SCF correction = 0.009935 Writing output data file o2.save Writing output data file o2.save PWSCF : 2m13.02s CPU time, 2m15.38s wall time init_run : 3.79s CPU electrons : 126.49s CPU forces : 1.98s CPU Called by init_run: wfcinit : 0.49s CPU potinit : 1.95s CPU Called by electrons: c_bands : 87.11s CPU ( 8 calls, 10.888 s avg) sum_band : 3.51s CPU ( 8 calls, 0.439 s avg) v_of_rho : 13.37s CPU ( 9 calls, 1.485 s avg) mix_rho : 0.62s CPU ( 8 calls, 0.077 s avg) Called by c_bands: init_us_2 : 0.23s CPU ( 17 calls, 0.014 s avg) regterg : 86.79s CPU ( 8 calls, 10.849 s avg) Called by *egterg: h_psi : 86.48s CPU ( 31 calls, 2.790 s avg) g_psi : 0.16s CPU ( 22 calls, 0.007 s avg) rdiaghg : 0.01s CPU ( 27 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.12s CPU ( 31 calls, 0.004 s avg) General routines calbec : 0.16s CPU ( 35 calls, 0.005 s avg) cft3 : 8.68s CPU ( 98 calls, 0.089 s avg) cft3s : 83.34s CPU ( 1174 calls, 0.071 s avg) davcio : 0.00s CPU ( 7 calls, 0.000 s avg) EXX routines exx_grid : 0.00s CPU exxinit : 0.97s CPU ( 3 calls, 0.323 s avg) vexx : 75.72s CPU ( 14 calls, 5.408 s avg) exxen2 : 21.97s CPU ( 6 calls, 3.661 s avg) espresso-5.1/PW/examples/EXX_example/reference/si.gaupbe_nq=2.out0000644000175000017500000005002212341373025023045 0ustar mbamba Program PWSCF v.5.0.2 starts on 26Apr2013 at 18:24:43 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Waiting for input... Reading input from standard input Message from routine read_cards : DEPRECATED: no units specified in ATOMIC_POSITIONS card Message from routine read_cards : ATOMIC_POSITIONS: units set to alat Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used EXX: grid of k+q point setup nkqs = 80 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 30 728 728 153 Max 82 82 31 731 731 154 Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/sjoshua/espresso.20130425/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 99, 8) NL pseudopotentials 0.01 Mb ( 99, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 99, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.82340180 Ry Harris-Foulkes estimate = -15.83974476 Ry estimated scf accuracy < 0.06415505 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.82634547 Ry Harris-Foulkes estimate = -15.82635432 Ry estimated scf accuracy < 0.00228159 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.2 secs total energy = -15.82644721 Ry Harris-Foulkes estimate = -15.82643492 Ry estimated scf accuracy < 0.00004971 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4476 4.7282 5.9961 5.9961 8.9449 9.3568 9.3569 11.1864 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1160 4.9391 5.0502 8.5385 10.1246 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8637 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7127 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7928 3.5449 7.2968 8.3741 14.7162 14.7745 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4109 1.6834 3.9583 5.4867 9.1322 10.0722 10.2721 12.7293 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3206 9.2854 9.9751 11.4585 12.3758 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6946 -0.3359 2.2539 4.3555 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9476 0.3457 5.1681 5.1681 8.1196 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6289 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2968 ! total energy = -15.82645315 Ry Harris-Foulkes estimate = -15.82645294 Ry estimated scf accuracy < 0.00000021 Ry The total energy is the sum of the following terms: one-electron contribution = 4.81288870 Ry hartree contribution = 1.10052850 Ry xc contribution = -4.84011177 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 4 iterations EXX: now go back to refine exchange calculation total cpu time spent up to now is 0.6 secs Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 3.7 total cpu time spent up to now is 3.2 secs total energy = -15.85946369 Ry Harris-Foulkes estimate = -15.85950096 Ry estimated scf accuracy < 0.00013871 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.6 secs total energy = -15.85944851 Ry Harris-Foulkes estimate = -15.85947064 Ry estimated scf accuracy < 0.00000582 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.28E-08, avg # of iterations = 1.4 total cpu time spent up to now is 6.0 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.7182 3.9640 5.2661 5.2661 9.4099 9.7126 9.7126 11.9269 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -7.1425 2.3134 4.1527 4.3424 8.8664 10.6181 11.3174 11.7131 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -6.0032 0.5077 2.8198 3.1958 8.0493 9.7252 12.9623 13.2115 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.2064 -1.7904 1.9654 2.6753 7.5997 8.7185 15.3332 15.4617 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.5923 0.7975 3.1710 4.7716 9.6070 10.4175 10.7155 13.3177 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.4463 -0.6603 2.1421 3.5573 9.6526 10.3993 11.9066 12.9117 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.9272 -2.0378 1.3974 2.4503 9.1471 11.1033 12.1817 14.4703 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5352 -1.6731 1.4740 3.5486 8.6255 12.3807 12.4315 13.9822 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -6.0994 -0.6251 4.4076 4.4076 8.5748 10.2720 10.2720 15.0380 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.1265 -1.7255 3.2154 3.8615 9.0177 10.4198 10.9679 14.3847 highest occupied, lowest unoccupied level (ev): 5.2661 7.5997 ! total energy = -15.85943949 Ry Harris-Foulkes estimate = -15.85944885 Ry estimated scf accuracy < 0.00000011 Ry The total energy is the sum of the following terms: one-electron contribution = 3.03375722 Ry hartree contribution = 1.11436710 Ry xc contribution = -3.99187033 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.77265606 Ry + Fock energy = -0.88406510 Ry convergence has been achieved in 3 iterations est. exchange err (dexx) = 0.00016166 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 6.4 secs Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.28E-08, avg # of iterations = 3.0 total cpu time spent up to now is 8.2 secs total energy = -15.85963460 Ry Harris-Foulkes estimate = -15.85962352 Ry estimated scf accuracy < 0.00000586 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-08, avg # of iterations = 1.0 total cpu time spent up to now is 9.6 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.7110 3.9538 5.2381 5.2381 9.4317 9.7303 9.7303 11.9387 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -7.1360 2.3109 4.1362 4.3291 8.8832 10.6310 11.3242 11.7232 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.9987 0.5054 2.8142 3.1834 8.0679 9.7384 12.9671 13.2136 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.2081 -1.7957 1.9654 2.6637 7.6225 8.7308 15.3374 15.4671 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.5861 0.7958 3.1634 4.7501 9.6268 10.4298 10.7243 13.3286 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.4427 -0.6621 2.1424 3.5462 9.6644 10.4087 11.9144 12.9137 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.9275 -2.0407 1.4019 2.4454 9.1584 11.1080 12.1888 14.4778 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5366 -1.6748 1.4790 3.5341 8.6467 12.3879 12.4349 13.9912 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -6.0965 -0.6241 4.3839 4.3839 8.5961 10.2917 10.2917 15.0547 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.1275 -1.7238 3.2097 3.8437 9.0370 10.4287 10.9773 14.3920 highest occupied, lowest unoccupied level (ev): 5.2381 7.6225 ! total energy = -15.85963598 Ry Harris-Foulkes estimate = -15.85963500 Ry estimated scf accuracy < 0.00000013 Ry The total energy is the sum of the following terms: one-electron contribution = 3.02663174 Ry hartree contribution = 1.11785185 Ry xc contribution = -3.99311362 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.77815744 Ry + Fock energy = -0.88875263 Ry convergence has been achieved in 2 iterations est. exchange err (dexx) = 0.00000314 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 10.0 secs Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-08, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-09, avg # of iterations = 1.8 total cpu time spent up to now is 12.7 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.7104 3.9530 5.2350 5.2350 9.4332 9.7328 9.7328 11.9392 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -7.1355 2.3105 4.1346 4.3275 8.8848 10.6323 11.3251 11.7245 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.9979 0.5039 2.8136 3.1821 8.0698 9.7400 12.9678 13.2143 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.2079 -1.7973 1.9654 2.6626 7.6249 8.7322 15.3391 15.4681 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.5853 0.7949 3.1627 4.7476 9.6285 10.4319 10.7249 13.3301 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.4422 -0.6630 2.1424 3.5448 9.6658 10.4099 11.9157 12.9140 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.9276 -2.0413 1.4021 2.4448 9.1595 11.1086 12.1900 14.4793 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5371 -1.6752 1.4794 3.5326 8.6488 12.3893 12.4350 13.9928 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -6.0957 -0.6249 4.3812 4.3812 8.5975 10.2945 10.2945 15.0565 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.1278 -1.7241 3.2093 3.8420 9.0389 10.4294 10.9789 14.3937 highest occupied, lowest unoccupied level (ev): 5.2350 7.6249 ! total energy = -15.85964280 Ry Harris-Foulkes estimate = -15.85963957 Ry estimated scf accuracy < 0.00000013 Ry The total energy is the sum of the following terms: one-electron contribution = 3.02552604 Ry hartree contribution = 1.11853507 Ry xc contribution = -3.99335329 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.77891845 Ry + Fock energy = -0.88940795 Ry convergence has been achieved in 1 iterations est. exchange err (dexx) = 0.00000009 Ry End of self-consistent calculation Writing output data file silicon.save init_run : 0.05s CPU 0.06s WALL ( 1 calls) electrons : 11.36s CPU 11.49s WALL ( 4 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.01s CPU 0.01s WALL ( 1 calls) Called by electrons: c_bands : 9.61s CPU 9.71s WALL ( 12 calls) sum_band : 0.06s CPU 0.05s WALL ( 12 calls) v_of_rho : 0.03s CPU 0.03s WALL ( 12 calls) mix_rho : 0.00s CPU 0.00s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.01s CPU 0.01s WALL ( 250 calls) cegterg : 9.60s CPU 9.70s WALL ( 120 calls) Called by *egterg: h_psi : 9.49s CPU 9.59s WALL ( 366 calls) g_psi : 0.01s CPU 0.00s WALL ( 236 calls) cdiaghg : 0.06s CPU 0.07s WALL ( 306 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.00s WALL ( 366 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 366 calls) fft : 0.01s CPU 0.01s WALL ( 129 calls) ffts : 7.23s CPU 7.45s WALL ( 114432 calls) fftw : 0.39s CPU 0.41s WALL ( 9722 calls) davcio : 0.00s CPU 0.00s WALL ( 10 calls) Parallel routines fft_scatter : 2.85s CPU 3.26s WALL ( 124283 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.29s CPU 0.30s WALL ( 4 calls) vexx : 9.27s CPU 9.36s WALL ( 207 calls) exxen2 : 2.78s CPU 2.81s WALL ( 10 calls) PWSCF : 12.92s CPU 13.09s WALL This run was terminated on: 18:24:56 26Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/summarize0000644000175000017500000000116412341373025021524 0ustar mbambagrep -e ! n.pbe0.1nlcc.out-80 | tail -1 | awk '{print $5}' > N grep -e ! n2.pbe0.1nlcc.out-80 | tail -1 | awk '{print $5}' > N2 paste N2 N | awk '{be= ($1-$2*2.0) * 13.6058 * 23.06; print "N2 : ",be}' grep -e ! o.pbe0.1nlcc.out-80 | tail -1 | awk '{print $5}' > O grep -e ! o2.pbe0.1nlcc.out-80 | tail -1 | awk '{print $5}' > O2 paste O2 O | awk '{be= ($1-$2*2.0) * 13.6058 * 23.06 ; print "O2 : ",be}' grep -e ! c.pbe0.1nlcc.out-80 | tail -1 | awk '{print $5}' > C grep -e ! co.pbe0.1nlcc.out-80 | tail -1 | awk '{print $5}' > CO paste CO O C | awk '{be= ($1-$2-$3) * 13.6058 * 23.06; print "CO : ",be}' rm C N O CO O2 N2 espresso-5.1/PW/examples/EXX_example/reference/si.hse_nq=1.out0000644000175000017500000004415712341373025022374 0ustar mbamba Program PWSCF v.4.2CVS starts on 2Feb2010 at 15: 0:46 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO !!! EXPERIMENTAL VERSION WITH EXACT EXCHANGE !!! Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... !!! XC functional enforced from input : Exchange-correlation = HSE (14*4) EXX-fraction = 0.2500000000000000 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! tcpu = 0.0 self-consistency for image 0 EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX : grid check successful EXX : q->0 dealt with gygi-baldereschi trick EXX : exx div treatment check successful bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE (14*4) EXX-fraction = 0.2500000000000000 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 126.4975 ( 1459 G-vectors) FFT grid: ( 16, 16, 16) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.06 Mb ( 4096) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.50 Mb ( 4096, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.17 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.36 secs total energy = -15.82338789 Ry Harris-Foulkes estimate = -15.83973300 Ry estimated scf accuracy < 0.06416663 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.43 secs total energy = -15.82633125 Ry Harris-Foulkes estimate = -15.82633974 Ry estimated scf accuracy < 0.00228008 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.51 secs total energy = -15.82643362 Ry Harris-Foulkes estimate = -15.82642126 Ry estimated scf accuracy < 0.00004960 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.60 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4477 4.7282 5.9961 5.9961 8.9448 9.3569 9.3569 11.1861 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1159 4.9391 5.0502 8.5385 10.1245 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8638 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7128 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7929 3.5449 7.2967 8.3740 14.7162 14.7746 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4110 1.6834 3.9583 5.4868 9.1321 10.0723 10.2721 12.7292 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3207 9.2854 9.9750 11.4584 12.3759 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6947 -0.3359 2.2539 4.3556 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9477 0.3457 5.1682 5.1682 8.1195 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6288 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2967 0.500609377992713 0.618038723237103 EXX divergence ( 1)= -140.8010 0.8333 exx_div : 0.01s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -1.80209891650385 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 3.9 total cpu time spent up to now is 2.13 secs total energy = -15.89907915 Ry Harris-Foulkes estimate = -15.89909173 Ry estimated scf accuracy < 0.00006898 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.62E-07, avg # of iterations = 1.0 total cpu time spent up to now is 2.88 secs total energy = -15.89908465 Ry Harris-Foulkes estimate = -15.89908361 Ry estimated scf accuracy < 0.00000256 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.20E-08, avg # of iterations = 1.2 total cpu time spent up to now is 3.63 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -6.7363 3.6169 4.8526 4.8526 9.8240 10.1951 10.1951 12.1840 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.1638 2.0021 3.8571 3.9095 9.3044 10.9827 11.7255 11.9681 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.0722 0.2657 2.4787 2.9371 8.4764 9.9978 13.2835 13.5255 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.5341 -1.6610 1.7126 2.4459 7.9942 9.0239 15.5037 15.6627 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.6368 0.5670 2.8867 4.3174 9.9975 10.8451 11.0751 13.5407 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.6159 -0.6445 1.8636 3.2248 10.0182 10.7318 12.1614 13.2105 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.3167 -1.7237 1.1050 2.2101 9.4812 11.3693 12.4550 14.6312 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -3.8731 -1.4686 1.1773 3.2508 9.0106 12.6460 12.7211 14.1269 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.1857 -0.8091 4.0439 4.0439 8.9846 10.6570 10.6570 15.0673 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.4070 -1.6090 2.9091 3.5747 9.4317 10.7385 11.2918 14.5384 highest occupied, lowest unoccupied level (ev): 4.8526 7.9942 -1.80209891650385 -1.80194113286449 -1.80195279231423 dexx = 0.00008472 Ry ! total energy = -15.89916955 Ry Harris-Foulkes estimate = -15.89916950 Ry estimated scf accuracy < 0.00000011 Ry The total energy is the sum of the following terms: one-electron contribution = 3.01798631 Ry hartree contribution = 1.08772172 Ry xc contribution = -4.00608375 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.80194113 Ry + Fock energy = -0.90097640 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.20E-08, avg # of iterations = 3.0 total cpu time spent up to now is 4.76 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -6.7403 3.6138 4.8341 4.8341 9.8345 10.1998 10.1998 12.1875 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.1646 2.0032 3.8484 3.9027 9.3102 10.9859 11.7256 11.9715 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.0709 0.2689 2.4767 2.9324 8.4814 9.9993 13.2849 13.5247 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.5316 -1.6576 1.7125 2.4425 7.9983 9.0247 15.5023 15.6652 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.6367 0.5705 2.8849 4.3066 10.0047 10.8473 11.0789 13.5426 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.6136 -0.6394 1.8638 3.2221 10.0209 10.7337 12.1614 13.2118 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.3118 -1.7175 1.1060 2.2102 9.4821 11.3688 12.4557 14.6316 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -3.8706 -1.4633 1.1785 3.2461 9.0157 12.6447 12.7244 14.1275 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.1868 -0.8090 4.0335 4.0335 8.9949 10.6624 10.6624 15.0713 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.4060 -1.6061 2.9083 3.5682 9.4384 10.7411 11.2927 14.5386 highest occupied, lowest unoccupied level (ev): 4.8341 7.9983 -1.80195279231423 -1.80191835602807 -1.80188733108243 dexx = 0.00000171 Ry ! total energy = -15.89918166 Ry Harris-Foulkes estimate = -15.89918179 Ry estimated scf accuracy < 0.00000059 Ry The total energy is the sum of the following terms: one-electron contribution = 3.01898610 Ry hartree contribution = 1.08619083 Ry xc contribution = -4.00557470 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.80191836 Ry + Fock energy = -0.90094367 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.20E-08, avg # of iterations = 1.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.30E-10, avg # of iterations = 1.9 total cpu time spent up to now is 6.41 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -6.7435 3.6113 4.8280 4.8280 9.8337 10.1986 10.1986 12.1844 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.1672 2.0010 3.8444 3.8990 9.3090 10.9841 11.7233 11.9706 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.0731 0.2667 2.4744 2.9294 8.4802 9.9980 13.2827 13.5225 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.5337 -1.6597 1.7107 2.4400 7.9972 9.0231 15.5000 15.6631 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.6391 0.5688 2.8824 4.3025 10.0032 10.8459 11.0774 13.5407 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.6157 -0.6410 1.8618 3.2194 10.0194 10.7320 12.1596 13.2099 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.3136 -1.7190 1.1044 2.2083 9.4805 11.3669 12.4537 14.6295 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -3.8729 -1.4647 1.1768 3.2432 9.0145 12.6428 12.7225 14.1256 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.1896 -0.8110 4.0295 4.0295 8.9935 10.6615 10.6615 15.0705 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.4085 -1.6076 2.9059 3.5648 9.4371 10.7394 11.2912 14.5369 highest occupied, lowest unoccupied level (ev): 4.8280 7.9972 -1.80188733108243 -1.80191817524663 -1.80194919695405 dexx = 0.00000009 Ry ! total energy = -15.89918213 Ry Harris-Foulkes estimate = -15.89918214 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = 3.01887901 Ry hartree contribution = 1.08636650 Ry xc contribution = -4.00561264 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.80191818 Ry + Fock energy = -0.90097460 Ry convergence has been achieved in 1 iterations Writing output data file silicon.save Writing output data file silicon.save init_run : 0.09s CPU electrons : 6.40s CPU Called by init_run: wfcinit : 0.02s CPU potinit : 0.01s CPU Called by electrons: c_bands : 4.70s CPU ( 11 calls, 0.427 s avg) sum_band : 0.13s CPU ( 11 calls, 0.012 s avg) v_of_rho : 0.13s CPU ( 11 calls, 0.012 s avg) mix_rho : 0.00s CPU ( 11 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.03s CPU ( 230 calls, 0.000 s avg) cegterg : 4.67s CPU ( 110 calls, 0.042 s avg) Called by *egterg: h_psi : 4.44s CPU ( 346 calls, 0.013 s avg) g_psi : 0.02s CPU ( 226 calls, 0.000 s avg) cdiaghg : 0.12s CPU ( 286 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 346 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 346 calls, 0.000 s avg) cft3 : 0.02s CPU ( 118 calls, 0.000 s avg) cft3s : 2.70s CPU ( 21712 calls, 0.000 s avg) davcio : 0.00s CPU ( 470 calls, 0.000 s avg) EXX routines exx_grid : 0.01s CPU exxinit : 0.06s CPU ( 4 calls, 0.016 s avg) vexx : 3.91s CPU ( 187 calls, 0.021 s avg) exxen2 : 1.37s CPU ( 9 calls, 0.153 s avg) PWSCF : 6.78s CPU time, 8.88s wall time This run was terminated on: 15: 0:55 2Feb2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/si.PBE0_nq=4.out0000644000175000017500000004324312341373025022301 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 22:45:30 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! tcpu = 0.1 self-consistency for image 0 EXX : q-grid dimensions are 4 4 4 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 126.4975 ( 1459 G-vectors) FFT grid: ( 16, 16, 16) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.06 Mb ( 4096) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.50 Mb ( 4096, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.25 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.99 secs total energy = -15.82338789 Ry Harris-Foulkes estimate = -15.83973300 Ry estimated scf accuracy < 0.06416663 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.26 secs total energy = -15.82633125 Ry Harris-Foulkes estimate = -15.82633974 Ry estimated scf accuracy < 0.00228008 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 1.56 secs total energy = -15.82643362 Ry Harris-Foulkes estimate = -15.82642126 Ry estimated scf accuracy < 0.00004960 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 2.3 total cpu time spent up to now is 1.90 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4477 4.7282 5.9961 5.9961 8.9448 9.3569 9.3569 11.1861 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1159 4.9391 5.0502 8.5385 10.1245 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8638 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7128 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7929 3.5449 7.2967 8.3740 14.7162 14.7746 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4110 1.6834 3.9583 5.4868 9.1321 10.0723 10.2721 12.7292 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3207 9.2854 9.9750 11.4584 12.3759 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6947 -0.3359 2.2539 4.3556 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9477 0.3457 5.1682 5.1682 8.1195 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6288 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2967 0.618038723237103 0.618038723237103 EXX divergence ( 4)= -51.1081 0.8333 exx_div : 0.02s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -2.13705926737449 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 3.9 total cpu time spent up to now is 183.95 secs total energy = -15.83782884 Ry Harris-Foulkes estimate = -15.83783755 Ry estimated scf accuracy < 0.00005799 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.25E-07, avg # of iterations = 1.0 total cpu time spent up to now is 273.84 secs total energy = -15.83782977 Ry Harris-Foulkes estimate = -15.83782989 Ry estimated scf accuracy < 0.00000399 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.98E-08, avg # of iterations = 1.0 total cpu time spent up to now is 363.68 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5467 3.9718 5.2848 5.2848 9.6924 10.0963 10.0963 12.0987 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9573 2.0984 4.1223 4.3189 9.1946 10.9642 11.7309 12.0639 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7689 0.1319 2.6426 3.0671 8.3384 10.0323 13.4421 13.7659 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.0816 -2.0123 1.7390 2.5141 7.8630 8.9863 15.9310 15.9958 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.3841 0.4460 3.0933 4.7154 9.8830 10.8924 11.0514 13.7204 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2948 -0.9227 1.9072 3.4734 9.9872 10.7310 12.3754 13.3863 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8800 -2.1221 1.0143 2.2917 9.4407 11.5231 12.6777 15.0164 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4670 -1.8370 1.1079 3.4332 8.9204 12.8160 12.9090 14.5026 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8600 -1.0847 4.3309 4.3309 8.8146 10.6746 10.6746 15.2367 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0425 -1.9910 3.1275 3.8151 9.3277 10.7053 11.3602 14.8972 highest occupied, lowest unoccupied level (ev): 5.2848 7.8630 -2.13705926737449 -2.14016584519746 -2.14369055012551 dexx = 0.00020906 Ry ! total energy = -15.83803896 Ry Harris-Foulkes estimate = -15.83803896 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 2.67236950 Ry hartree contribution = 1.10276686 Ry xc contribution = -3.78173732 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.14016585 Ry + Fock energy = -1.07184528 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.98E-08, avg # of iterations = 3.0 total cpu time spent up to now is 505.22 secs total energy = -15.83807277 Ry Harris-Foulkes estimate = -15.83807479 Ry estimated scf accuracy < 0.00000477 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.96E-08, avg # of iterations = 1.0 total cpu time spent up to now is 595.37 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5406 3.9591 5.2631 5.2631 9.7114 10.1130 10.1130 12.1162 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9513 2.0944 4.1086 4.3056 9.2093 10.9793 11.7393 12.0698 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7640 0.1334 2.6355 3.0574 8.3552 10.0432 13.4478 13.7694 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.0778 -2.0090 1.7345 2.5050 7.8804 8.9979 15.9337 15.9991 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.3786 0.4481 3.0854 4.6961 9.9011 10.9065 11.0568 13.7280 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2898 -0.9195 1.9051 3.4612 9.9980 10.7408 12.3832 13.3897 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8757 -2.1187 1.0159 2.2845 9.4519 11.5265 12.6862 15.0205 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4628 -1.8329 1.1099 3.4210 8.9364 12.8182 12.9160 14.5072 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8556 -1.0799 4.3150 4.3150 8.8385 10.6858 10.6858 15.2440 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0378 -1.9859 3.1192 3.8006 9.3440 10.7152 11.3691 14.9012 highest occupied, lowest unoccupied level (ev): 5.2631 7.8804 -2.14369055012551 -2.14446224183211 -2.14524685786786 dexx = 0.00000646 Ry ! total energy = -15.83807949 Ry Harris-Foulkes estimate = -15.83807953 Ry estimated scf accuracy < 0.00000014 Ry The total energy is the sum of the following terms: one-electron contribution = 2.66699007 Ry hartree contribution = 1.10546468 Ry xc contribution = -3.78261448 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.14446224 Ry + Fock energy = -1.07262343 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.96E-08, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.91E-09, avg # of iterations = 1.1 total cpu time spent up to now is 790.49 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5399 3.9554 5.2590 5.2590 9.7135 10.1159 10.1159 12.1184 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9507 2.0929 4.1060 4.3021 9.2114 10.9815 11.7408 12.0709 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7637 0.1328 2.6337 3.0558 8.3579 10.0453 13.4481 13.7697 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.0777 -2.0092 1.7332 2.5035 7.8831 9.0001 15.9340 15.9991 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.3782 0.4480 3.0832 4.6923 9.9036 10.9093 11.0573 13.7289 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2894 -0.9196 1.9043 3.4582 9.9999 10.7426 12.3844 13.3898 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8756 -2.1189 1.0161 2.2828 9.4540 11.5269 12.6874 15.0209 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4629 -1.8327 1.1101 3.4189 8.9388 12.8179 12.9172 14.5077 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8554 -1.0796 4.3122 4.3122 8.8413 10.6875 10.6875 15.2454 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0375 -1.9855 3.1168 3.7978 9.3461 10.7168 11.3710 14.9018 highest occupied, lowest unoccupied level (ev): 5.2590 7.8831 -2.14524685786786 -2.14542665480239 -2.14560699717851 dexx = 0.00000027 Ry ! total energy = -15.83808086 Ry Harris-Foulkes estimate = -15.83808098 Ry estimated scf accuracy < 0.00000023 Ry The total energy is the sum of the following terms: one-electron contribution = 2.66560445 Ry hartree contribution = 1.10634051 Ry xc contribution = -3.78289040 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.14542665 Ry + Fock energy = -1.07280350 Ry convergence has been achieved in 1 iterations Writing output data file silicon.save Writing output data file silicon.save PWSCF : 13m31.53s CPU time, 13m46.79s wall time init_run : 0.17s CPU electrons : 810.91s CPU Called by init_run: wfcinit : 0.06s CPU potinit : 0.01s CPU Called by electrons: c_bands : 605.86s CPU ( 12 calls, 50.489 s avg) sum_band : 0.40s CPU ( 12 calls, 0.033 s avg) v_of_rho : 0.14s CPU ( 12 calls, 0.012 s avg) mix_rho : 0.01s CPU ( 12 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.05s CPU ( 250 calls, 0.000 s avg) cegterg : 605.83s CPU ( 120 calls, 5.049 s avg) Called by *egterg: h_psi : 605.52s CPU ( 359 calls, 1.687 s avg) g_psi : 0.03s CPU ( 229 calls, 0.000 s avg) cdiaghg : 0.19s CPU ( 299 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 359 calls, 0.000 s avg) General routines calbec : 0.03s CPU ( 359 calls, 0.000 s avg) cft3 : 0.06s CPU ( 117 calls, 0.001 s avg) cft3s : 486.54s CPU ( 922600 calls, 0.001 s avg) davcio : 0.00s CPU ( 510 calls, 0.000 s avg) EXX routines exx_grid : 0.01s CPU exxinit : 0.90s CPU ( 4 calls, 0.226 s avg) vexx : 602.40s CPU ( 200 calls, 3.012 s avg) exxen2 : 203.59s CPU ( 10 calls, 20.359 s avg) espresso-5.1/PW/examples/EXX_example/reference/si.gaupbe_nq=4.out0000644000175000017500000005002112341373025023046 0ustar mbamba Program PWSCF v.5.0.2 starts on 26Apr2013 at 18:24:58 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Waiting for input... Reading input from standard input Message from routine read_cards : DEPRECATED: no units specified in ATOMIC_POSITIONS card Message from routine read_cards : ATOMIC_POSITIONS: units set to alat Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used EXX: grid of k+q point setup nkqs = 256 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 30 728 728 153 Max 82 82 31 731 731 154 Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/sjoshua/espresso.20130425/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 99, 8) NL pseudopotentials 0.01 Mb ( 99, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 99, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.82340180 Ry Harris-Foulkes estimate = -15.83974476 Ry estimated scf accuracy < 0.06415505 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.82634547 Ry Harris-Foulkes estimate = -15.82635432 Ry estimated scf accuracy < 0.00228159 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.2 secs total energy = -15.82644721 Ry Harris-Foulkes estimate = -15.82643492 Ry estimated scf accuracy < 0.00004971 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4476 4.7282 5.9961 5.9961 8.9449 9.3568 9.3569 11.1864 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1160 4.9391 5.0502 8.5385 10.1246 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8637 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7127 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7928 3.5449 7.2968 8.3741 14.7162 14.7745 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4109 1.6834 3.9583 5.4867 9.1322 10.0722 10.2721 12.7293 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3206 9.2854 9.9751 11.4585 12.3758 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6946 -0.3359 2.2539 4.3555 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9476 0.3457 5.1681 5.1681 8.1196 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6289 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2968 ! total energy = -15.82645315 Ry Harris-Foulkes estimate = -15.82645294 Ry estimated scf accuracy < 0.00000021 Ry The total energy is the sum of the following terms: one-electron contribution = 4.81288870 Ry hartree contribution = 1.10052850 Ry xc contribution = -4.84011177 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 4 iterations EXX: now go back to refine exchange calculation total cpu time spent up to now is 2.8 secs Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 3.5 total cpu time spent up to now is 21.9 secs total energy = -15.85191318 Ry Harris-Foulkes estimate = -15.85196830 Ry estimated scf accuracy < 0.00024389 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.05E-06, avg # of iterations = 1.0 total cpu time spent up to now is 32.7 secs total energy = -15.85190408 Ry Harris-Foulkes estimate = -15.85192668 Ry estimated scf accuracy < 0.00000883 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-07, avg # of iterations = 1.5 total cpu time spent up to now is 43.9 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.8241 4.1752 5.4873 5.4873 9.2769 9.6494 9.6495 11.7540 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -7.1842 2.3192 4.3380 4.5263 8.7701 10.5442 11.2813 11.6675 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.9042 0.3351 2.8775 3.2989 7.9231 9.6303 13.0123 13.3129 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1037 -1.8995 1.9922 2.7464 7.4530 8.5725 15.5000 15.5895 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.5669 0.6799 3.3197 4.9185 9.4725 10.4376 10.6263 13.3453 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.4011 -0.7385 2.1595 3.6889 9.5662 10.3144 11.9570 12.9466 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8954 -2.0231 1.3038 2.5282 9.0262 11.0920 12.2464 14.5961 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5191 -1.6823 1.3939 3.6565 8.5072 12.4029 12.4548 14.0790 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -6.0093 -0.8418 4.5503 4.5503 8.4154 10.2214 10.2214 14.9660 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.1436 -1.7953 3.3510 4.0290 8.9117 10.2906 10.9144 14.5019 highest occupied, lowest unoccupied level (ev): 5.4873 7.4530 ! total energy = -15.85189346 Ry Harris-Foulkes estimate = -15.85190469 Ry estimated scf accuracy < 0.00000017 Ry The total energy is the sum of the following terms: one-electron contribution = 3.04544031 Ry hartree contribution = 1.12050813 Ry xc contribution = -3.99417247 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.75807022 Ry + Fock energy = -0.87608915 Ry convergence has been achieved in 3 iterations est. exchange err (dexx) = 0.00024491 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 46.4 secs Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-07, avg # of iterations = 3.0 total cpu time spent up to now is 61.0 secs total energy = -15.85219020 Ry Harris-Foulkes estimate = -15.85217603 Ry estimated scf accuracy < 0.00001072 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-07, avg # of iterations = 1.0 total cpu time spent up to now is 72.0 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.8128 4.1582 5.4605 5.4605 9.2965 9.6670 9.6670 11.7749 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -7.1744 2.3096 4.3205 4.5082 8.7874 10.5614 11.2909 11.6794 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.8982 0.3281 2.8688 3.2862 7.9451 9.6489 13.0202 13.3197 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1017 -1.9029 1.9875 2.7353 7.4775 8.5907 15.5079 15.5965 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.5592 0.6761 3.3092 4.8943 9.4928 10.4561 10.6337 13.3595 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.3964 -0.7409 2.1560 3.6740 9.5814 10.3282 11.9708 12.9522 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8954 -2.0255 1.3058 2.5208 9.0430 11.1000 12.2604 14.6061 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5189 -1.6823 1.3951 3.6411 8.5297 12.4066 12.4675 14.0901 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -6.0042 -0.8407 4.5292 4.5292 8.4405 10.2374 10.2374 14.9850 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.1409 -1.7911 3.3392 4.0107 8.9315 10.3035 10.9279 14.5129 highest occupied, lowest unoccupied level (ev): 5.4605 7.4775 ! total energy = -15.85219219 Ry Harris-Foulkes estimate = -15.85219094 Ry estimated scf accuracy < 0.00000023 Ry The total energy is the sum of the following terms: one-electron contribution = 3.03592731 Ry hartree contribution = 1.12532492 Ry xc contribution = -3.99591182 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.76540575 Ry + Fock energy = -0.88222598 Ry convergence has been achieved in 2 iterations est. exchange err (dexx) = 0.00000533 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 74.5 secs Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-07, avg # of iterations = 1.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.81E-09, avg # of iterations = 2.0 total cpu time spent up to now is 96.1 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.8114 4.1551 5.4567 5.4567 9.2985 9.6698 9.6698 11.7773 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -7.1732 2.3079 4.3181 4.5049 8.7897 10.5638 11.2926 11.6813 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.8976 0.3267 2.8673 3.2847 7.9482 9.6517 13.0209 13.3207 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1016 -1.9038 1.9867 2.7340 7.4808 8.5936 15.5091 15.5972 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.5583 0.6753 3.3074 4.8909 9.4954 10.4593 10.6345 13.3613 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.3959 -0.7415 2.1555 3.6714 9.5838 10.3304 11.9728 12.9527 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8957 -2.0262 1.3062 2.5196 9.0457 11.1011 12.2622 14.6076 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5192 -1.6825 1.3953 3.6391 8.5327 12.4066 12.4695 14.0916 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -6.0038 -0.8407 4.5265 4.5265 8.4431 10.2399 10.2399 14.9876 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.1407 -1.7906 3.3370 4.0082 8.9340 10.3054 10.9304 14.5145 highest occupied, lowest unoccupied level (ev): 5.4567 7.4808 ! total energy = -15.85220246 Ry Harris-Foulkes estimate = -15.85219824 Ry estimated scf accuracy < 0.00000023 Ry The total energy is the sum of the following terms: one-electron contribution = 3.03437242 Ry hartree contribution = 1.12623019 Ry xc contribution = -3.99623160 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.76652218 Ry + Fock energy = -0.88318510 Ry convergence has been achieved in 1 iterations est. exchange err (dexx) = 0.00000013 Ry End of self-consistent calculation Writing output data file silicon.save init_run : 0.03s CPU 0.03s WALL ( 1 calls) electrons : 87.44s CPU 88.45s WALL ( 4 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 73.86s CPU 74.70s WALL ( 12 calls) sum_band : 0.05s CPU 0.05s WALL ( 12 calls) v_of_rho : 0.03s CPU 0.03s WALL ( 12 calls) mix_rho : 0.00s CPU 0.00s WALL ( 12 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 250 calls) cegterg : 73.85s CPU 74.68s WALL ( 120 calls) Called by *egterg: h_psi : 73.70s CPU 74.55s WALL ( 366 calls) g_psi : 0.01s CPU 0.00s WALL ( 236 calls) cdiaghg : 0.10s CPU 0.08s WALL ( 306 calls) Called by h_psi: add_vuspsi : 0.00s CPU 0.00s WALL ( 366 calls) General routines calbec : 0.01s CPU 0.01s WALL ( 366 calls) fft : 0.01s CPU 0.01s WALL ( 129 calls) ffts : 60.58s CPU 60.28s WALL ( 909824 calls) fftw : 0.37s CPU 0.43s WALL ( 9678 calls) davcio : 0.00s CPU 0.00s WALL ( 10 calls) Parallel routines fft_scatter : 25.01s CPU 26.21s WALL ( 919631 calls) EXX routines exx_grid : 0.02s CPU 0.02s WALL ( 1 calls) exxinit : 0.92s CPU 0.97s WALL ( 4 calls) vexx : 73.48s CPU 74.31s WALL ( 207 calls) exxen2 : 22.53s CPU 22.80s WALL ( 10 calls) PWSCF : 1m37.56s CPU 1m38.75s WALL This run was terminated on: 18:26:36 26Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/o.pbe0.1nlcc.out-800000644000175000017500000004231512341373025022630 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 22:59:17 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! gamma-point specific algorithms are used tcpu = 0.1 self-consistency for image 0 warning: symmetry operation # 2 not allowed. fractional translation: -0.0314954 -0.0629909 0.0000000 in crystal coordinates warning: symmetry operation # 3 not allowed. fractional translation: -0.0314954 0.0000000 -0.0944863 in crystal coordinates warning: symmetry operation # 4 not allowed. fractional translation: 0.0000000 -0.0629909 -0.0944863 in crystal coordinates warning: symmetry operation # 5 not allowed. fractional translation: 0.0157477 -0.0157477 -0.0944863 in crystal coordinates warning: symmetry operation # 6 not allowed. fractional translation: -0.0472432 -0.0472432 -0.0944863 in crystal coordinates warning: symmetry operation # 7 not allowed. fractional translation: 0.0157477 -0.0472432 0.0000000 in crystal coordinates warning: symmetry operation # 8 not allowed. fractional translation: -0.0472432 -0.0157477 0.0000000 in crystal coordinates warning: symmetry operation # 9 not allowed. fractional translation: 0.0314954 -0.0629909 -0.0314954 in crystal coordinates warning: symmetry operation # 10 not allowed. fractional translation: -0.0629909 -0.0629909 -0.0629909 in crystal coordinates warning: symmetry operation # 11 not allowed. fractional translation: 0.0314954 0.0000000 -0.0629909 in crystal coordinates warning: symmetry operation # 12 not allowed. fractional translation: -0.0629909 0.0000000 -0.0314954 in crystal coordinates warning: symmetry operation # 13 not allowed. fractional translation: -0.0314954 0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 14 not allowed. fractional translation: -0.0314954 -0.0787386 -0.0787386 in crystal coordinates warning: symmetry operation # 15 not allowed. fractional translation: 0.0000000 0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 16 not allowed. fractional translation: 0.0000000 -0.0787386 -0.0157477 in crystal coordinates warning: symmetry operation # 17 not allowed. fractional translation: 0.0157477 0.0157477 -0.0314954 in crystal coordinates warning: symmetry operation # 18 not allowed. fractional translation: -0.0472432 0.0157477 -0.0629909 in crystal coordinates warning: symmetry operation # 19 not allowed. fractional translation: 0.0157477 -0.0787386 -0.0629909 in crystal coordinates warning: symmetry operation # 20 not allowed. fractional translation: -0.0472432 -0.0787386 -0.0314954 in crystal coordinates warning: symmetry operation # 21 not allowed. fractional translation: 0.0314954 -0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 22 not allowed. fractional translation: 0.0314954 -0.0472432 -0.0787386 in crystal coordinates warning: symmetry operation # 23 not allowed. fractional translation: -0.0629909 -0.0472432 -0.0157477 in crystal coordinates warning: symmetry operation # 24 not allowed. fractional translation: -0.0629909 -0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 25 not allowed. fractional translation: -0.0314954 -0.0629909 -0.0944863 in crystal coordinates warning: symmetry operation # 26 not allowed. fractional translation: 0.0000000 0.0000000 -0.0944863 in crystal coordinates warning: symmetry operation # 27 not allowed. fractional translation: 0.0000000 -0.0629909 0.0000000 in crystal coordinates warning: symmetry operation # 28 not allowed. fractional translation: -0.0314954 0.0000000 0.0000000 in crystal coordinates warning: symmetry operation # 29 not allowed. fractional translation: -0.0472432 -0.0472432 0.0000000 in crystal coordinates warning: symmetry operation # 30 not allowed. fractional translation: 0.0157477 -0.0157477 0.0000000 in crystal coordinates warning: symmetry operation # 31 not allowed. fractional translation: -0.0472432 -0.0157477 -0.0944863 in crystal coordinates warning: symmetry operation # 32 not allowed. fractional translation: 0.0157477 -0.0472432 -0.0944863 in crystal coordinates warning: symmetry operation # 33 not allowed. fractional translation: -0.0629909 0.0000000 -0.0629909 in crystal coordinates warning: symmetry operation # 34 not allowed. fractional translation: 0.0314954 0.0000000 -0.0314954 in crystal coordinates warning: symmetry operation # 35 not allowed. fractional translation: -0.0629909 -0.0629909 -0.0314954 in crystal coordinates warning: symmetry operation # 36 not allowed. fractional translation: 0.0314954 -0.0629909 -0.0629909 in crystal coordinates warning: symmetry operation # 37 not allowed. fractional translation: 0.0000000 -0.0787386 -0.0787386 in crystal coordinates warning: symmetry operation # 38 not allowed. fractional translation: 0.0000000 0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 39 not allowed. fractional translation: -0.0314954 -0.0787386 -0.0157477 in crystal coordinates warning: symmetry operation # 40 not allowed. fractional translation: -0.0314954 0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 41 not allowed. fractional translation: -0.0472432 -0.0787386 -0.0629909 in crystal coordinates warning: symmetry operation # 42 not allowed. fractional translation: 0.0157477 -0.0787386 -0.0314954 in crystal coordinates warning: symmetry operation # 43 not allowed. fractional translation: -0.0472432 0.0157477 -0.0314954 in crystal coordinates warning: symmetry operation # 44 not allowed. fractional translation: 0.0157477 0.0157477 -0.0629909 in crystal coordinates warning: symmetry operation # 45 not allowed. fractional translation: -0.0629909 -0.0472432 -0.0787386 in crystal coordinates warning: symmetry operation # 46 not allowed. fractional translation: -0.0629909 -0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 47 not allowed. fractional translation: 0.0314954 -0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 48 not allowed. fractional translation: 0.0314954 -0.0472432 -0.0157477 in crystal coordinates EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL EXX GRID CHECK SUCCESSFUL bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 (up: 4.00, down: 2.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file OPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential O 6.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization O 0.200 No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1167.2200 ( 83519 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 1.27 Mb ( 10408, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000167 0.000000 Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000329 Check: negative starting charge=(component2): -0.000219 starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.329E-03 0.219E-03 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 6.23 secs per-process dynamical memory: 54.6 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.532E-04 0.426E-04 total cpu time spent up to now is 10.90 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -24.3441 -9.3514 -9.3512 -9.3499 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -22.3562 -7.5362 -7.5323 -7.5290 ! total energy = -33.74873854 Ry Harris-Foulkes estimate = -33.71144360 Ry estimated scf accuracy < 0.08079053 Ry The total energy is the sum of the following terms: one-electron contribution = -35.08684301 Ry hartree contribution = 18.83758725 Ry xc contribution = -8.92021244 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.06737790 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.35E-03, avg # of iterations = 1.0 negative rho (up, down): 0.191E-06 0.417E-06 total cpu time spent up to now is 15.61 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -24.9929 -10.4693 -10.4690 -9.0028 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -21.9270 -7.5043 -6.9550 -6.9482 ! total energy = -33.76095363 Ry Harris-Foulkes estimate = -33.75290383 Ry estimated scf accuracy < 0.00711496 Ry The total energy is the sum of the following terms: one-electron contribution = -35.20872408 Ry hartree contribution = 18.96970121 Ry xc contribution = -9.01197336 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.00193504 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-04, avg # of iterations = 2.0 total cpu time spent up to now is 20.34 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -24.9314 -10.6042 -10.6037 -8.5501 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -21.2771 -7.2153 -6.2178 -6.2098 1.59576912160573 1.59576912160573 EXX divergence ( 1)= -700.4071 0.1250 exx_div : 0.02s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -3.15985796672814 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.94E-06, avg # of iterations = 1.0 total cpu time spent up to now is 51.81 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -28.8089 -13.0294 -13.0288 -10.8006 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -23.7646 -9.2970 -4.2355 -4.2298 -3.15985796672814 -3.16932838530962 -3.17917890986216 dexx = 0.00019005 Ry ! total energy = -33.20114402 Ry Harris-Foulkes estimate = -33.20134902 Ry estimated scf accuracy < 0.00034305 Ry The total energy is the sum of the following terms: one-electron contribution = -38.41841547 Ry hartree contribution = 19.03268094 Ry xc contribution = -6.88325598 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 3.16932839 Ry + Fock energy = -1.58958945 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000253 Writing output data file o.save Writing output data file o.save PWSCF : 0m58.60s CPU time, 1m 0.63s wall time init_run : 6.16s CPU electrons : 47.99s CPU forces : 3.21s CPU Called by init_run: wfcinit : 0.50s CPU potinit : 4.24s CPU Called by electrons: c_bands : 23.69s CPU ( 5 calls, 4.737 s avg) sum_band : 2.23s CPU ( 5 calls, 0.447 s avg) v_of_rho : 17.61s CPU ( 6 calls, 2.936 s avg) mix_rho : 0.61s CPU ( 5 calls, 0.123 s avg) Called by c_bands: init_us_2 : 0.28s CPU ( 24 calls, 0.012 s avg) regterg : 23.44s CPU ( 10 calls, 2.344 s avg) Called by *egterg: h_psi : 23.65s CPU ( 26 calls, 0.910 s avg) g_psi : 0.07s CPU ( 14 calls, 0.005 s avg) rdiaghg : 0.00s CPU ( 20 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.03s CPU ( 26 calls, 0.001 s avg) General routines calbec : 0.06s CPU ( 34 calls, 0.002 s avg) cft3 : 11.95s CPU ( 127 calls, 0.094 s avg) cft3s : 24.39s CPU ( 390 calls, 0.063 s avg) davcio : 0.00s CPU ( 44 calls, 0.000 s avg) EXX routines exx_grid : 0.00s CPU exxinit : 0.65s CPU ( 2 calls, 0.323 s avg) vexx : 17.89s CPU ( 10 calls, 1.789 s avg) exxen2 : 6.34s CPU ( 3 calls, 2.113 s avg) espresso-5.1/PW/examples/EXX_example/reference/co.gaupbe.1nlcc.out-800000644000175000017500000003742312341373025023414 0ustar mbamba Program PWSCF v.5.0.2 starts on 26Apr2013 at 18:33:20 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Waiting for input... Reading input from standard input Warning: card &IONS ignored Warning: card / ignored Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Message from routine setup : BEWARE: nonlinear core correction is not consistent with hybrid XC Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used EXX: grid of k+q point setup nkqs = 1 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 1836 1836 457 83516 83516 10407 Max 1837 1837 460 83521 83521 10408 Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /home/sjoshua/espresso.20130425/PW/examples/EXX_example/Pseudo/CPBE1nlcc.RRKJ3 MD5 check sum: 6343d94e6269eb5d49eee3a5c5ef8fb6 Pseudo is Norm-conserving + core correction, Zval = 4.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1073 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 PseudoPot. # 2 for read from file: /home/sjoshua/espresso.20130425/PW/examples/EXX_example/Pseudo/OPBE1nlcc.RRKJ3 MD5 check sum: 98aaa840951d4fb4252d2544928e2f2f Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential C 4.00 16.00000 ( 1.00) O 6.00 16.00000 ( 1.00) 6 Sym. Ops. (no inversion) found Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.0512746 0.0512746 0.0512746 ) 2 O tau( 2) = ( -0.0512746 -0.0512746 -0.0512746 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 5204, 8) NL pseudopotentials 1.27 Mb ( 5204, 16) Each V/rho on FFT grid 2.85 Mb ( 186624) Each G-vector array 0.32 Mb ( 41761) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 5204, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 22.78 Mb ( 186624, 8) Check: negative/imaginary core charge= -0.000167 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000103 starting charge 9.99996, renormalised to 10.00000 negative rho (up, down): 1.025E-04 0.000E+00 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 1.0 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.0 negative rho (up, down): 1.081E-05 0.000E+00 total cpu time spent up to now is 2.0 secs k = 0.0000 0.0000 0.0000 band energies (ev): -31.3469 -15.4360 -12.9153 -12.9151 -9.8189 -2.5465 -2.5461 -1.5495 highest occupied, lowest unoccupied level (ev): -9.8189 -2.5465 ! total energy = -46.43556977 Ry Harris-Foulkes estimate = -46.53078576 Ry estimated scf accuracy < 0.15602982 Ry The total energy is the sum of the following terms: one-electron contribution = -67.96715236 Ry hartree contribution = 35.37043999 Ry xc contribution = -13.72649092 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.75564717 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-03, avg # of iterations = 2.0 negative rho (up, down): 8.987E-07 0.000E+00 total cpu time spent up to now is 2.8 secs k = 0.0000 0.0000 0.0000 band energies (ev): -27.6219 -12.3972 -10.2125 -10.2122 -8.3878 -1.4952 -1.0630 -1.0629 highest occupied, lowest unoccupied level (ev): -8.3878 -1.4952 ! total energy = -46.43492140 Ry Harris-Foulkes estimate = -46.50801384 Ry estimated scf accuracy < 0.14203786 Ry The total energy is the sum of the following terms: one-electron contribution = -65.36965862 Ry hartree contribution = 34.55068679 Ry xc contribution = -13.58100566 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -1.16693027 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-03, avg # of iterations = 2.0 total cpu time spent up to now is 3.5 secs k = 0.0000 0.0000 0.0000 band energies (ev): -29.0375 -13.8814 -11.4495 -11.4494 -8.1324 -1.5020 -1.3245 -1.3243 highest occupied, lowest unoccupied level (ev): -8.1324 -1.5020 ! total energy = -46.47219451 Ry Harris-Foulkes estimate = -46.48383836 Ry estimated scf accuracy < 0.03095013 Ry The total energy is the sum of the following terms: one-electron contribution = -67.08206835 Ry hartree contribution = 34.61038073 Ry xc contribution = -13.58734192 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.45484869 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.10E-04, avg # of iterations = 1.0 total cpu time spent up to now is 4.2 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -28.8885 -13.5660 -11.2942 -11.2941 -8.4794 -1.5047 -1.4892 -1.4891 highest occupied, lowest unoccupied level (ev): -8.4794 -1.5047 ! total energy = -46.47675364 Ry Harris-Foulkes estimate = -46.47695313 Ry estimated scf accuracy < 0.00030675 Ry The total energy is the sum of the following terms: one-electron contribution = -66.71343201 Ry hartree contribution = 34.70789075 Ry xc contribution = -13.60319873 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 4 iterations EXX: now go back to refine exchange calculation total cpu time spent up to now is 5.6 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.10E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.08E-05, avg # of iterations = 3.0 total cpu time spent up to now is 15.0 secs k = 0.0000 0.0000 0.0000 band energies (ev): -32.1787 -15.9753 -13.2358 -13.2357 -10.3665 -1.4391 -1.0398 -1.0398 highest occupied, lowest unoccupied level (ev): -10.3665 -1.4391 ! total energy = -46.20148783 Ry Harris-Foulkes estimate = -46.20355339 Ry estimated scf accuracy < 0.00111447 Ry The total energy is the sum of the following terms: one-electron contribution = -70.19573559 Ry hartree contribution = 34.91031555 Ry xc contribution = -11.73864290 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 3.24753679 Ry + Fock energy = -1.61701145 Ry scf correction = 0.07357731 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-05, avg # of iterations = 2.0 total cpu time spent up to now is 20.4 secs k = 0.0000 0.0000 0.0000 band energies (ev): -31.8877 -15.6753 -12.9659 -12.9659 -10.1986 -1.4342 -0.8931 -0.8931 highest occupied, lowest unoccupied level (ev): -10.1986 -1.4342 ! total energy = -46.20151593 Ry Harris-Foulkes estimate = -46.20187413 Ry estimated scf accuracy < 0.00054996 Ry The total energy is the sum of the following terms: one-electron contribution = -70.02526890 Ry hartree contribution = 34.85776601 Ry xc contribution = -11.72865711 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 3.24306973 Ry + Fock energy = -1.61701145 Ry scf correction = -0.05435372 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.50E-06, avg # of iterations = 2.0 total cpu time spent up to now is 25.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -31.9816 -15.7789 -13.0489 -13.0489 -10.1693 -1.4343 -0.8993 -0.8993 highest occupied, lowest unoccupied level (ev): -10.1693 -1.4343 ! total energy = -46.20139043 Ry Harris-Foulkes estimate = -46.20171985 Ry estimated scf accuracy < 0.00011857 Ry The total energy is the sum of the following terms: one-electron contribution = -70.12409193 Ry hartree contribution = 34.90948437 Ry xc contribution = -11.73578066 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 3.24520419 Ry + Fock energy = -1.61701145 Ry convergence has been achieved in 3 iterations est. exchange err (dexx) = 0.00036956 Ry End of self-consistent calculation Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00231827 -0.00231827 -0.00231827 atom 2 type 2 force = 0.00231827 0.00231827 0.00231827 Total force = 0.005679 Total SCF correction = 0.024709 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file co.save init_run : 0.83s CPU 0.90s WALL ( 1 calls) electrons : 20.41s CPU 22.86s WALL ( 2 calls) forces : 0.53s CPU 0.57s WALL ( 1 calls) Called by init_run: wfcinit : 0.10s CPU 0.11s WALL ( 1 calls) potinit : 0.40s CPU 0.44s WALL ( 1 calls) Called by electrons: c_bands : 15.20s CPU 17.02s WALL ( 8 calls) sum_band : 0.70s CPU 0.79s WALL ( 8 calls) v_of_rho : 2.90s CPU 3.21s WALL ( 9 calls) mix_rho : 0.16s CPU 0.22s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.05s CPU 0.06s WALL ( 17 calls) regterg : 15.14s CPU 16.95s WALL ( 8 calls) Called by *egterg: h_psi : 15.08s CPU 16.88s WALL ( 30 calls) g_psi : 0.02s CPU 0.02s WALL ( 21 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 27 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 30 calls) General routines calbec : 0.03s CPU 0.04s WALL ( 34 calls) fft : 1.67s CPU 1.88s WALL ( 107 calls) fftw : 1.93s CPU 2.36s WALL ( 220 calls) davcio : 0.00s CPU 0.00s WALL ( 1 calls) Parallel routines fft_scatter : 5.65s CPU 7.18s WALL ( 1159 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.39s CPU 0.46s WALL ( 2 calls) vexx : 13.17s CPU 14.60s WALL ( 13 calls) exxen2 : 3.29s CPU 3.63s WALL ( 5 calls) PWSCF : 24.03s CPU 26.85s WALL This run was terminated on: 18:33:47 26Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/o.hse.1nlcc.out-800000644000175000017500000003007312341373025022557 0ustar mbamba Program PWSCF v.4.3.2 starts on 21Nov2011 at 17:55:21 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 1 processors EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from stdin IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 6.00 (up: 4.00, down: 2.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/OPBE1nlcc.RRKJ3 MD5 check sum: 98aaa840951d4fb4252d2544928e2f2f Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential O 6.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization O 0.200 No symmetry found (note: 47 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 1.27 Mb ( 10408, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000167 0.000000 Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000329 Check: negative starting charge=(component2): -0.000219 starting charge 6.00000, renormalised to 6.00000 negative rho (up, down): 0.329E-03 0.219E-03 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 1.4 secs per-process dynamical memory: 83.7 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.532E-04 0.426E-04 total cpu time spent up to now is 2.9 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -24.3441 -9.3514 -9.3512 -9.3499 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -22.3562 -7.5362 -7.5323 -7.5290 ! total energy = -33.74873854 Ry Harris-Foulkes estimate = -33.71144360 Ry estimated scf accuracy < 0.08079053 Ry The total energy is the sum of the following terms: one-electron contribution = -35.08684301 Ry hartree contribution = 18.83758725 Ry xc contribution = -8.92021244 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.06737790 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.35E-03, avg # of iterations = 1.0 negative rho (up, down): 0.191E-06 0.417E-06 total cpu time spent up to now is 4.3 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -24.9929 -10.4693 -10.4690 -9.0028 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -21.9270 -7.5043 -6.9550 -6.9482 ! total energy = -33.76095363 Ry Harris-Foulkes estimate = -33.75290383 Ry estimated scf accuracy < 0.00711496 Ry The total energy is the sum of the following terms: one-electron contribution = -35.20872408 Ry hartree contribution = 18.96970121 Ry xc contribution = -9.01197336 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.00193504 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-04, avg # of iterations = 2.0 total cpu time spent up to now is 5.5 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -24.9314 -10.6042 -10.6037 -8.5501 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -21.2771 -7.2153 -6.2178 -6.2098 EXX: now go back to refine exchange calculation -2.8021320627752750 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.60E-06, avg # of iterations = 1.0 total cpu time spent up to now is 13.2 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -28.4113 -12.6356 -12.6350 -10.4066 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -23.3589 -8.8895 -4.6379 -4.6324 -2.8021320627752750 -2.8123811852723186 -2.8229343137898226 est. exchange err (dexx) = 0.00015200 Ry ! total energy = -33.22330351 Ry Harris-Foulkes estimate = -33.22346150 Ry estimated scf accuracy < 0.00038453 Ry The total energy is the sum of the following terms: one-electron contribution = -38.06993583 Ry hartree contribution = 19.04408357 Ry xc contribution = -7.08647284 Ry ewald contribution = -8.51189244 Ry - averaged Fock potential = 2.81238119 Ry + Fock energy = -1.41146716 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000358 Writing output data file o.save init_run : 1.36s CPU 1.40s WALL ( 1 calls) electrons : 11.81s CPU 12.29s WALL ( 1 calls) forces : 1.58s CPU 1.59s WALL ( 1 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 0.98s CPU 1.00s WALL ( 1 calls) Called by electrons: c_bands : 4.23s CPU 4.31s WALL ( 5 calls) sum_band : 0.52s CPU 0.52s WALL ( 5 calls) v_of_rho : 6.43s CPU 6.51s WALL ( 6 calls) mix_rho : 0.09s CPU 0.10s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.07s CPU 0.07s WALL ( 24 calls) regterg : 4.18s CPU 4.25s WALL ( 10 calls) Called by *egterg: h_psi : 4.19s CPU 4.27s WALL ( 26 calls) g_psi : 0.00s CPU 0.01s WALL ( 14 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 20 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.02s WALL ( 26 calls) General routines calbec : 0.02s CPU 0.03s WALL ( 34 calls) fft : 1.63s CPU 1.65s WALL ( 137 calls) ffts : 1.88s CPU 1.89s WALL ( 156 calls) fftw : 2.12s CPU 2.12s WALL ( 234 calls) davcio : 0.00s CPU 0.01s WALL ( 44 calls) Parallel routines EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.16s CPU 0.18s WALL ( 2 calls) vexx : 3.13s CPU 3.20s WALL ( 10 calls) exxen2 : 1.15s CPU 1.15s WALL ( 3 calls) PWSCF : 14.83s CPU 15.54s WALL This run was terminated on: 17:55:37 21Nov2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/o2.gaupbe.1nlcc.out-800000644000175000017500000003465512341373025023337 0ustar mbamba Program PWSCF v.5.0.2 starts on 26Apr2013 at 18:33:48 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Waiting for input... Reading input from standard input Warning: card &IONS ignored Warning: card / ignored Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Message from routine setup : BEWARE: nonlinear core correction is not consistent with hybrid XC Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used EXX: grid of k+q point setup nkqs = 1 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 1836 1836 457 83516 83516 10407 Max 1837 1837 460 83521 83521 10408 Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Generating pointlists ... new r_m : 0.0783 (alat units) 0.9392 (a.u.) for type 1 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 12.00 (up: 7.00, down: 5.00) number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /home/sjoshua/espresso.20130425/PW/examples/EXX_example/Pseudo/OPBE1nlcc.RRKJ3 MD5 check sum: 98aaa840951d4fb4252d2544928e2f2f Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential O 6.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization O 0.200 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0547706 0.0547706 0.0547706 ) 2 O tau( 2) = ( -0.0547706 -0.0547706 -0.0547706 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 5204, 8) NL pseudopotentials 1.27 Mb ( 5204, 16) Each V/rho on FFT grid 5.70 Mb ( 186624, 2) Each G-vector array 0.32 Mb ( 41761) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 5204, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 22.78 Mb ( 186624, 8) Check: negative/imaginary core charge= -0.000243 0.000000 Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000323 Check: negative starting charge=(component2): -0.000215 starting charge 12.00000, renormalised to 12.00000 negative rho (up, down): 3.227E-04 2.151E-04 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 1.7 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.63E-04, avg # of iterations = 3.5 negative rho (up, down): 4.913E-05 3.534E-05 Magnetic moment per site: atom: 1 charge: 2.8888 magn: 0.5544 constr: 0.0000 atom: 2 charge: 2.8889 magn: 0.5545 constr: 0.0000 total cpu time spent up to now is 4.2 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -32.6923 -20.7799 -14.1740 -13.2354 -13.2354 -6.4849 -6.4849 1.3975 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -30.5093 -18.7553 -12.1688 -11.3460 -11.3460 -4.5457 -4.5457 -1.6724 highest occupied level (ev): -6.4849 ! total energy = -67.95768530 Ry Harris-Foulkes estimate = -67.95565518 Ry estimated scf accuracy < 0.05496130 Ry The total energy is the sum of the following terms: one-electron contribution = -99.67134637 Ry hartree contribution = 51.91236283 Ry xc contribution = -18.29183467 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.08040364 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.58E-04, avg # of iterations = 2.0 negative rho (up, down): 3.417E-06 2.089E-06 Magnetic moment per site: atom: 1 charge: 2.8845 magn: 0.5536 constr: 0.0000 atom: 2 charge: 2.8844 magn: 0.5538 constr: 0.0000 total cpu time spent up to now is 5.7 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -32.8240 -19.9720 -13.1684 -13.0926 -13.0925 -6.1952 -6.1951 1.4783 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -31.2625 -18.0517 -11.8377 -11.1943 -11.1943 -3.9948 -3.9947 -1.6509 highest occupied level (ev): -6.1951 ! total energy = -67.96920527 Ry Harris-Foulkes estimate = -67.96567598 Ry estimated scf accuracy < 0.00293409 Ry The total energy is the sum of the following terms: one-electron contribution = -99.60031686 Ry hartree contribution = 51.90985370 Ry xc contribution = -18.29036648 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00110490 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.04 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.45E-05, avg # of iterations = 5.0 Magnetic moment per site: atom: 1 charge: 2.8863 magn: 0.5564 constr: 0.0000 atom: 2 charge: 2.8868 magn: 0.5561 constr: 0.0000 total cpu time spent up to now is 7.4 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -32.6789 -19.9901 -13.0947 -13.0880 -13.0879 -6.2611 -6.2610 -1.7576 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -31.3276 -18.1043 -12.0184 -11.1604 -11.1604 -3.9299 -3.9299 -1.6555 highest occupied level (ev): -6.2610 ! total energy = -67.96998271 Ry Harris-Foulkes estimate = -67.96959217 Ry estimated scf accuracy < 0.00026997 Ry The total energy is the sum of the following terms: one-electron contribution = -99.63843878 Ry hartree contribution = 51.95885185 Ry xc contribution = -18.30312505 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.04 Bohr mag/cell convergence has been achieved in 3 iterations EXX: now go back to refine exchange calculation total cpu time spent up to now is 10.1 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.45E-05, avg # of iterations = 3.0 Magnetic moment per site: atom: 1 charge: 2.8902 magn: 0.5631 constr: 0.0000 atom: 2 charge: 2.8890 magn: 0.5634 constr: 0.0000 total cpu time spent up to now is 23.8 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -36.2164 -23.2594 -15.8248 -15.8248 -15.3472 -8.6512 -8.6512 -1.6733 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -34.8140 -20.8528 -14.2863 -12.9608 -12.9608 -3.3866 -3.3866 -1.5852 highest occupied level (ev): -8.6512 ! total energy = -67.64264313 Ry Harris-Foulkes estimate = -67.64453501 Ry estimated scf accuracy < 0.00047354 Ry The total energy is the sum of the following terms: one-electron contribution = -104.02574638 Ry hartree contribution = 52.20211936 Ry xc contribution = -15.92029411 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 4.18789718 Ry + Fock energy = -2.08854873 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.06 Bohr mag/cell convergence has been achieved in 1 iterations est. exchange err (dexx) = 0.00027604 Ry End of self-consistent calculation Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01770948 -0.01770948 -0.01770948 atom 2 type 1 force = 0.01770948 0.01770948 0.01770948 Total force = 0.043379 Total SCF correction = 0.003535 Writing output data file o2.save init_run : 1.51s CPU 1.62s WALL ( 1 calls) electrons : 17.47s CPU 19.31s WALL ( 2 calls) forces : 0.83s CPU 0.89s WALL ( 1 calls) Called by init_run: wfcinit : 0.18s CPU 0.21s WALL ( 1 calls) potinit : 0.75s CPU 0.81s WALL ( 1 calls) Called by electrons: c_bands : 12.22s CPU 13.52s WALL ( 5 calls) sum_band : 0.88s CPU 0.99s WALL ( 5 calls) v_of_rho : 3.94s CPU 4.25s WALL ( 6 calls) mix_rho : 0.14s CPU 0.18s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.06s CPU 0.07s WALL ( 24 calls) regterg : 12.13s CPU 13.44s WALL ( 10 calls) Called by *egterg: h_psi : 12.11s CPU 13.41s WALL ( 49 calls) g_psi : 0.03s CPU 0.02s WALL ( 37 calls) rdiaghg : 0.02s CPU 0.02s WALL ( 43 calls) Called by h_psi: add_vuspsi : 0.03s CPU 0.03s WALL ( 49 calls) General routines calbec : 0.05s CPU 0.05s WALL ( 57 calls) fft : 2.14s CPU 2.37s WALL ( 137 calls) fftw : 2.62s CPU 3.14s WALL ( 298 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 5.32s CPU 6.67s WALL ( 1133 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.61s CPU 0.71s WALL ( 2 calls) vexx : 9.47s CPU 10.33s WALL ( 8 calls) exxen2 : 4.36s CPU 4.73s WALL ( 3 calls) PWSCF : 24.29s CPU 26.73s WALL This run was terminated on: 18:34:15 26Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/n.hse.1nlcc.out-800000644000175000017500000003731212341373025022561 0ustar mbamba Program PWSCF v.4.3.2 starts on 21Nov2011 at 17:55:54 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 1 processors EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from stdin IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Message from routine setup: the system is metallic, specify occupations Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-05 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/NPBE1nlcc.RRKJ3 MD5 check sum: 8c9de74fd816ad51f11d6d02916f6c56 Pseudo is Norm-conserving + core correction, Zval = 5.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential N 5.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization N 0.200 No symmetry found (note: 47 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 N tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 1.27 Mb ( 10408, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000076 0.000000 Initial potential from superposition of free atoms starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.308E-04 0.206E-04 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 1.4 secs per-process dynamical memory: 83.7 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.242E-05 0.587E-05 total cpu time spent up to now is 2.8 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -18.8118 -7.2739 -7.2728 -7.2723 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -17.2469 -5.8689 -5.8676 -5.8659 ! total energy = -21.04676070 Ry Harris-Foulkes estimate = -20.95213962 Ry estimated scf accuracy < 0.05041183 Ry The total energy is the sum of the following terms: one-electron contribution = -19.37942366 Ry hartree contribution = 10.59558397 Ry xc contribution = -6.29470170 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.05718288 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-03, avg # of iterations = 1.0 negative rho (up, down): 0.134E-08 0.381E-06 total cpu time spent up to now is 4.2 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -19.5389 -7.9707 -7.9692 -7.9678 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -15.8722 -4.6197 -4.6166 -4.6135 ! total energy = -21.05948994 Ry Harris-Foulkes estimate = -21.04869415 Ry estimated scf accuracy < 0.00717570 Ry The total energy is the sum of the following terms: one-electron contribution = -19.49061307 Ry hartree contribution = 10.78764836 Ry xc contribution = -6.44411370 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00137511 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-04, avg # of iterations = 1.5 negative rho (up, down): 0.316E-09 0.442E-07 total cpu time spent up to now is 5.7 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -19.4238 -7.8573 -7.8558 -7.8544 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -14.7066 -3.5974 -3.5945 -3.5908 ! total energy = -21.05997336 Ry Harris-Foulkes estimate = -21.06008118 Ry estimated scf accuracy < 0.00017041 Ry The total energy is the sum of the following terms: one-electron contribution = -19.44501930 Ry hartree contribution = 10.74974305 Ry xc contribution = -6.43185951 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.02180118 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-06, avg # of iterations = 2.0 total cpu time spent up to now is 7.0 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -19.5158 -7.9454 -7.9440 -7.9425 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -14.8107 -3.6930 -3.6899 -3.6864 EXX: now go back to refine exchange calculation -1.9627311187737080 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.41E-06, avg # of iterations = 3.5 total cpu time spent up to now is 14.6 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -22.3494 -9.4641 -9.4627 -9.4615 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -16.0184 -2.4095 -2.4065 -2.4049 ! total energy = -20.68288260 Ry Harris-Foulkes estimate = -20.68291332 Ry estimated scf accuracy < 0.00014127 Ry The total energy is the sum of the following terms: one-electron contribution = -21.45007510 Ry hartree contribution = 10.76446039 Ry xc contribution = -5.07350824 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 1.96560286 Ry + Fock energy = -0.98136556 Ry scf correction = 0.00591122 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.83E-06, avg # of iterations = 1.0 total cpu time spent up to now is 18.0 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -22.3119 -9.4300 -9.4286 -9.4272 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -15.9736 -2.3727 -2.3699 -2.3684 -1.9627311187737080 -1.9656916802639135 -1.9687942314903133 est. exchange err (dexx) = 0.00007099 Ry ! total energy = -20.68295809 Ry Harris-Foulkes estimate = -20.68295525 Ry estimated scf accuracy < 0.00001007 Ry The total energy is the sum of the following terms: one-electron contribution = -21.45114463 Ry hartree contribution = 10.77265441 Ry xc contribution = -5.07472603 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 1.96569168 Ry + Fock energy = -0.98439712 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.83E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.09E-09, avg # of iterations = 2.0 total cpu time spent up to now is 24.1 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -22.3121 -9.4197 -9.4184 -9.4170 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -15.9473 -2.3538 -2.3511 -2.3496 -1.9687942314903133 -1.9691183125646821 -1.9694430117356339 est. exchange err (dexx) = 0.00000031 Ry ! total energy = -20.68296107 Ry Harris-Foulkes estimate = -20.68296208 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -21.45683377 Ry hartree contribution = 10.77593808 Ry xc contribution = -5.07542578 Ry ewald contribution = -5.91103642 Ry - averaged Fock potential = 1.96911831 Ry + Fock energy = -0.98472151 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000010 Writing output data file n.save init_run : 1.39s CPU 1.42s WALL ( 1 calls) electrons : 22.27s CPU 23.08s WALL ( 1 calls) forces : 1.60s CPU 1.62s WALL ( 1 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 1.00s CPU 1.03s WALL ( 1 calls) Called by electrons: c_bands : 8.91s CPU 9.08s WALL ( 8 calls) sum_band : 0.84s CPU 0.85s WALL ( 8 calls) v_of_rho : 10.50s CPU 10.62s WALL ( 9 calls) mix_rho : 0.18s CPU 0.20s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.10s CPU 0.10s WALL ( 36 calls) regterg : 8.82s CPU 8.97s WALL ( 16 calls) Called by *egterg: h_psi : 8.77s CPU 8.92s WALL ( 44 calls) g_psi : 0.01s CPU 0.01s WALL ( 26 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 36 calls) Called by h_psi: add_vuspsi : 0.04s CPU 0.03s WALL ( 44 calls) General routines calbec : 0.03s CPU 0.04s WALL ( 52 calls) fft : 2.39s CPU 2.40s WALL ( 198 calls) ffts : 4.07s CPU 4.08s WALL ( 336 calls) fftw : 4.03s CPU 4.04s WALL ( 442 calls) davcio : 0.00s CPU 0.03s WALL ( 70 calls) Parallel routines EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.24s CPU 0.26s WALL ( 3 calls) vexx : 6.93s CPU 7.07s WALL ( 23 calls) exxen2 : 2.31s CPU 2.33s WALL ( 6 calls) PWSCF : 25.34s CPU 26.44s WALL This run was terminated on: 17:56:20 21Nov2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/c.pbe0.1nlcc.out-800000644000175000017500000004203512341373025022613 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 23: 0:18 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! gamma-point specific algorithms are used tcpu = 0.1 self-consistency for image 0 warning: symmetry operation # 2 not allowed. fractional translation: -0.0314954 -0.0629909 0.0000000 in crystal coordinates warning: symmetry operation # 3 not allowed. fractional translation: -0.0314954 0.0000000 -0.0944863 in crystal coordinates warning: symmetry operation # 4 not allowed. fractional translation: 0.0000000 -0.0629909 -0.0944863 in crystal coordinates warning: symmetry operation # 5 not allowed. fractional translation: 0.0157477 -0.0157477 -0.0944863 in crystal coordinates warning: symmetry operation # 6 not allowed. fractional translation: -0.0472432 -0.0472432 -0.0944863 in crystal coordinates warning: symmetry operation # 7 not allowed. fractional translation: 0.0157477 -0.0472432 0.0000000 in crystal coordinates warning: symmetry operation # 8 not allowed. fractional translation: -0.0472432 -0.0157477 0.0000000 in crystal coordinates warning: symmetry operation # 9 not allowed. fractional translation: 0.0314954 -0.0629909 -0.0314954 in crystal coordinates warning: symmetry operation # 10 not allowed. fractional translation: -0.0629909 -0.0629909 -0.0629909 in crystal coordinates warning: symmetry operation # 11 not allowed. fractional translation: 0.0314954 0.0000000 -0.0629909 in crystal coordinates warning: symmetry operation # 12 not allowed. fractional translation: -0.0629909 0.0000000 -0.0314954 in crystal coordinates warning: symmetry operation # 13 not allowed. fractional translation: -0.0314954 0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 14 not allowed. fractional translation: -0.0314954 -0.0787386 -0.0787386 in crystal coordinates warning: symmetry operation # 15 not allowed. fractional translation: 0.0000000 0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 16 not allowed. fractional translation: 0.0000000 -0.0787386 -0.0157477 in crystal coordinates warning: symmetry operation # 17 not allowed. fractional translation: 0.0157477 0.0157477 -0.0314954 in crystal coordinates warning: symmetry operation # 18 not allowed. fractional translation: -0.0472432 0.0157477 -0.0629909 in crystal coordinates warning: symmetry operation # 19 not allowed. fractional translation: 0.0157477 -0.0787386 -0.0629909 in crystal coordinates warning: symmetry operation # 20 not allowed. fractional translation: -0.0472432 -0.0787386 -0.0314954 in crystal coordinates warning: symmetry operation # 21 not allowed. fractional translation: 0.0314954 -0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 22 not allowed. fractional translation: 0.0314954 -0.0472432 -0.0787386 in crystal coordinates warning: symmetry operation # 23 not allowed. fractional translation: -0.0629909 -0.0472432 -0.0157477 in crystal coordinates warning: symmetry operation # 24 not allowed. fractional translation: -0.0629909 -0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 25 not allowed. fractional translation: -0.0314954 -0.0629909 -0.0944863 in crystal coordinates warning: symmetry operation # 26 not allowed. fractional translation: 0.0000000 0.0000000 -0.0944863 in crystal coordinates warning: symmetry operation # 27 not allowed. fractional translation: 0.0000000 -0.0629909 0.0000000 in crystal coordinates warning: symmetry operation # 28 not allowed. fractional translation: -0.0314954 0.0000000 0.0000000 in crystal coordinates warning: symmetry operation # 29 not allowed. fractional translation: -0.0472432 -0.0472432 0.0000000 in crystal coordinates warning: symmetry operation # 30 not allowed. fractional translation: 0.0157477 -0.0157477 0.0000000 in crystal coordinates warning: symmetry operation # 31 not allowed. fractional translation: -0.0472432 -0.0157477 -0.0944863 in crystal coordinates warning: symmetry operation # 32 not allowed. fractional translation: 0.0157477 -0.0472432 -0.0944863 in crystal coordinates warning: symmetry operation # 33 not allowed. fractional translation: -0.0629909 0.0000000 -0.0629909 in crystal coordinates warning: symmetry operation # 34 not allowed. fractional translation: 0.0314954 0.0000000 -0.0314954 in crystal coordinates warning: symmetry operation # 35 not allowed. fractional translation: -0.0629909 -0.0629909 -0.0314954 in crystal coordinates warning: symmetry operation # 36 not allowed. fractional translation: 0.0314954 -0.0629909 -0.0629909 in crystal coordinates warning: symmetry operation # 37 not allowed. fractional translation: 0.0000000 -0.0787386 -0.0787386 in crystal coordinates warning: symmetry operation # 38 not allowed. fractional translation: 0.0000000 0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 39 not allowed. fractional translation: -0.0314954 -0.0787386 -0.0157477 in crystal coordinates warning: symmetry operation # 40 not allowed. fractional translation: -0.0314954 0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 41 not allowed. fractional translation: -0.0472432 -0.0787386 -0.0629909 in crystal coordinates warning: symmetry operation # 42 not allowed. fractional translation: 0.0157477 -0.0787386 -0.0314954 in crystal coordinates warning: symmetry operation # 43 not allowed. fractional translation: -0.0472432 0.0157477 -0.0314954 in crystal coordinates warning: symmetry operation # 44 not allowed. fractional translation: 0.0157477 0.0157477 -0.0629909 in crystal coordinates warning: symmetry operation # 45 not allowed. fractional translation: -0.0629909 -0.0472432 -0.0787386 in crystal coordinates warning: symmetry operation # 46 not allowed. fractional translation: -0.0629909 -0.0157477 -0.0157477 in crystal coordinates warning: symmetry operation # 47 not allowed. fractional translation: 0.0314954 -0.0157477 -0.0787386 in crystal coordinates warning: symmetry operation # 48 not allowed. fractional translation: 0.0314954 -0.0472432 -0.0157477 in crystal coordinates EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL EXX GRID CHECK SUCCESSFUL bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 4.00 (up: 3.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file CPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 4.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1073 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential C 4.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization C 0.200 No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1167.2200 ( 83519 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 1.27 Mb ( 10408, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000030 0.000000 Initial potential from superposition of free atoms starting charge 3.99996, renormalised to 4.00000 negative rho (up, down): 0.532E-06 0.355E-06 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 5.38 secs per-process dynamical memory: 54.6 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.332E-07 0.784E-07 total cpu time spent up to now is 10.07 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -13.7963 -5.2656 -5.2650 -5.2644 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -12.6317 -4.2311 -4.2307 -4.2301 ! total energy = -11.85890076 Ry Harris-Foulkes estimate = -11.82107130 Ry estimated scf accuracy < 0.05337063 Ry The total energy is the sum of the following terms: one-electron contribution = -9.16229708 Ry hartree contribution = 5.16121588 Ry xc contribution = -4.05528154 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.01947472 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-03, avg # of iterations = 1.0 total cpu time spent up to now is 14.72 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -14.0625 -5.6235 -5.6232 -5.3245 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -11.8739 -4.1897 -3.1905 -3.1895 ! total energy = -11.86603994 Ry Harris-Foulkes estimate = -11.86089580 Ry estimated scf accuracy < 0.00501892 Ry The total energy is the sum of the following terms: one-electron contribution = -9.19283788 Ry hartree contribution = 5.24412713 Ry xc contribution = -4.13425359 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00001230 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-04, avg # of iterations = 1.5 total cpu time spent up to now is 19.30 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -13.9616 -5.6022 -5.6019 -5.0954 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -11.3642 -4.0514 -2.5607 -2.5598 1.59576912160573 1.59576912160573 EXX divergence ( 1)= -700.4071 0.1250 exx_div : 0.02s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -1.41432860402800 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.18E-06, avg # of iterations = 2.5 total cpu time spent up to now is 55.26 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -16.2390 -7.1869 -7.1864 -3.5690 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -12.7571 -2.6063 -1.1574 -1.1568 -1.41432860402800 -1.41685777128472 -1.41957357692056 dexx = 0.00009332 Ry ! total energy = -11.60100261 Ry Harris-Foulkes estimate = -11.60102217 Ry estimated scf accuracy < 0.00009101 Ry The total energy is the sum of the following terms: one-electron contribution = -10.60688509 Ry hartree contribution = 5.24409990 Ry xc contribution = -3.16222509 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = 1.41685777 Ry + Fock energy = -0.70978679 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000060 Writing output data file o2.save Writing output data file o2.save PWSCF : 1m 2.89s CPU time, 1m 5.32s wall time init_run : 5.31s CPU electrons : 52.63s CPU forces : 3.70s CPU Called by init_run: wfcinit : 0.50s CPU potinit : 3.49s CPU Called by electrons: c_bands : 27.29s CPU ( 5 calls, 5.458 s avg) sum_band : 2.33s CPU ( 5 calls, 0.465 s avg) v_of_rho : 17.25s CPU ( 6 calls, 2.874 s avg) mix_rho : 0.61s CPU ( 5 calls, 0.122 s avg) Called by c_bands: init_us_2 : 0.28s CPU ( 24 calls, 0.012 s avg) regterg : 27.04s CPU ( 10 calls, 2.704 s avg) Called by *egterg: h_psi : 27.22s CPU ( 28 calls, 0.972 s avg) g_psi : 0.08s CPU ( 16 calls, 0.005 s avg) rdiaghg : 0.00s CPU ( 22 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.03s CPU ( 28 calls, 0.001 s avg) General routines calbec : 0.07s CPU ( 36 calls, 0.002 s avg) cft3 : 11.27s CPU ( 127 calls, 0.089 s avg) cft3s : 27.78s CPU ( 428 calls, 0.065 s avg) davcio : 0.00s CPU ( 44 calls, 0.000 s avg) EXX routines exx_grid : 0.00s CPU exxinit : 1.44s CPU ( 2 calls, 0.719 s avg) vexx : 21.51s CPU ( 13 calls, 1.655 s avg) exxen2 : 6.14s CPU ( 3 calls, 2.045 s avg) espresso-5.1/PW/examples/EXX_example/reference/n2.hse.1nlcc.out-800000644000175000017500000003502312341373025022640 0ustar mbamba Program PWSCF v.4.3.2 starts on 21Nov2011 at 17:56:20 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 1 processors EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from stdin Warning: card &IONS ignored Warning: card / ignored IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 1.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/NPBE1nlcc.RRKJ3 MD5 check sum: 8c9de74fd816ad51f11d6d02916f6c56 Pseudo is Norm-conserving + core correction, Zval = 5.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential N 5.00 16.00000 ( 1.00) 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 N tau( 1) = ( 0.0499045 0.0499045 0.0499045 ) 2 N tau( 2) = ( -0.0499045 -0.0499045 -0.0499045 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.27 Mb ( 10408, 8) NL pseudopotentials 2.54 Mb ( 10408, 16) Each V/rho on FFT grid 5.70 Mb ( 373248) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.54 Mb ( 10408, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000107 0.000000 Initial potential from superposition of free atoms starting charge 9.99999, renormalised to 10.00000 negative rho (up, down): 0.346E-04 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.9 secs per-process dynamical memory: 56.8 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.579E-05 0.000E+00 total cpu time spent up to now is 1.8 secs k = 0.0000 0.0000 0.0000 band energies (ev): -30.5765 -14.4414 -12.6941 -12.6941 -11.6513 -2.8011 -2.8011 -1.2775 highest occupied, lowest unoccupied level (ev): -11.6513 -2.8011 ! total energy = -42.85094312 Ry Harris-Foulkes estimate = -42.94419743 Ry estimated scf accuracy < 0.15199183 Ry The total energy is the sum of the following terms: one-electron contribution = -64.27888378 Ry hartree contribution = 33.27455809 Ry xc contribution = -13.26143847 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.70347313 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-03, avg # of iterations = 2.0 negative rho (up, down): 0.157E-07 0.000E+00 total cpu time spent up to now is 2.7 secs k = 0.0000 0.0000 0.0000 band energies (ev): -26.9305 -12.3032 -10.3375 -10.3375 -9.1226 -1.2142 -0.8475 -0.8475 highest occupied, lowest unoccupied level (ev): -9.1226 -1.2142 ! total energy = -42.87826488 Ry Harris-Foulkes estimate = -42.88493920 Ry estimated scf accuracy < 0.01133639 Ry The total energy is the sum of the following terms: one-electron contribution = -62.89713942 Ry hartree contribution = 32.74381068 Ry xc contribution = -13.15436946 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.28191460 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-04, avg # of iterations = 2.0 total cpu time spent up to now is 3.6 secs k = 0.0000 0.0000 0.0000 band energies (ev): -27.8059 -12.8597 -11.0319 -11.0319 -9.6969 -1.4074 -1.4074 -1.2306 highest occupied, lowest unoccupied level (ev): -9.6969 -1.4074 ! total energy = -42.88040140 Ry Harris-Foulkes estimate = -42.88064219 Ry estimated scf accuracy < 0.00051284 Ry The total energy is the sum of the following terms: one-electron contribution = -63.29401226 Ry hartree contribution = 32.82355631 Ry xc contribution = -13.16911475 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.04782139 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.13E-06, avg # of iterations = 2.0 total cpu time spent up to now is 4.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.6571 -12.7775 -10.9499 -10.9499 -9.5902 -1.3431 -1.3431 -1.2269 highest occupied, lowest unoccupied level (ev): -9.5902 -1.3431 EXX: now go back to refine exchange calculation -3.8673806718052566 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.13E-06, avg # of iterations = 5.0 total cpu time spent up to now is 12.9 secs k = 0.0000 0.0000 0.0000 band energies (ev): -30.4779 -14.4816 -12.0089 -12.0089 -10.9929 -1.0074 -0.3782 -0.3782 highest occupied, lowest unoccupied level (ev): -10.9929 -1.0074 ! total energy = -42.06936396 Ry Harris-Foulkes estimate = -42.06988407 Ry estimated scf accuracy < 0.00090262 Ry The total energy is the sum of the following terms: one-electron contribution = -67.03353759 Ry hartree contribution = 32.74251910 Ry xc contribution = -10.40037054 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 3.86592991 Ry + Fock energy = -1.93369034 Ry scf correction = -0.02301318 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.03E-06, avg # of iterations = 2.0 total cpu time spent up to now is 17.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -30.5761 -14.5831 -12.0935 -12.0935 -11.0995 -1.0092 -0.4558 -0.4558 highest occupied, lowest unoccupied level (ev): -11.0995 -1.0092 -3.8673806718052566 -3.8704837534791134 -3.8740009124941217 est. exchange err (dexx) = 0.00020704 Ry ! total energy = -42.06970580 Ry Harris-Foulkes estimate = -42.06971829 Ry estimated scf accuracy < 0.00005522 Ry The total energy is the sum of the following terms: one-electron contribution = -67.11692706 Ry hartree contribution = 32.81161961 Ry xc contribution = -10.40922956 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 3.87048375 Ry + Fock energy = -1.93700046 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.03E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.89E-07, avg # of iterations = 1.0 total cpu time spent up to now is 24.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -30.4731 -14.5130 -12.0042 -12.0042 -11.0297 -1.0077 -0.3809 -0.3809 highest occupied, lowest unoccupied level (ev): -11.0297 -1.0077 -3.8740009124941217 -3.8721040771666040 -3.8702160724524322 est. exchange err (dexx) = 0.00000442 Ry ! total energy = -42.06972077 Ry Harris-Foulkes estimate = -42.06974974 Ry estimated scf accuracy < 0.00002920 Ry The total energy is the sum of the following terms: one-electron contribution = -67.08097970 Ry hartree contribution = 32.76481254 Ry xc contribution = -10.40189756 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 3.87210408 Ry + Fock energy = -1.93510804 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02200006 -0.02200006 -0.02200006 atom 2 type 1 force = 0.02200006 0.02200006 0.02200006 Total force = 0.053889 Total SCF correction = 0.009336 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file n2.save init_run : 0.82s CPU 0.84s WALL ( 1 calls) electrons : 23.76s CPU 24.24s WALL ( 1 calls) forces : 1.03s CPU 1.03s WALL ( 1 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 0.44s CPU 0.45s WALL ( 1 calls) Called by electrons: c_bands : 13.91s CPU 14.02s WALL ( 8 calls) sum_band : 0.58s CPU 0.58s WALL ( 8 calls) v_of_rho : 5.41s CPU 5.47s WALL ( 9 calls) mix_rho : 0.09s CPU 0.10s WALL ( 8 calls) Called by c_bands: init_us_2 : 0.05s CPU 0.05s WALL ( 17 calls) regterg : 13.84s CPU 13.95s WALL ( 8 calls) Called by *egterg: h_psi : 13.67s CPU 13.76s WALL ( 30 calls) g_psi : 0.01s CPU 0.01s WALL ( 21 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 26 calls) Called by h_psi: add_vuspsi : 0.07s CPU 0.07s WALL ( 30 calls) General routines calbec : 0.08s CPU 0.08s WALL ( 34 calls) fft : 1.27s CPU 1.28s WALL ( 106 calls) ffts : 8.11s CPU 8.12s WALL ( 672 calls) fftw : 4.22s CPU 4.21s WALL ( 466 calls) davcio : 0.00s CPU 0.01s WALL ( 7 calls) Parallel routines EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.24s CPU 0.26s WALL ( 3 calls) vexx : 11.55s CPU 11.65s WALL ( 13 calls) exxen2 : 3.81s CPU 3.81s WALL ( 6 calls) PWSCF : 25.67s CPU 36.40s WALL This run was terminated on: 17:56:57 21Nov2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/si.gaupbe_nq=1.out0000644000175000017500000004724312341373025023057 0ustar mbamba Program PWSCF v.5.0.2 starts on 26Apr2013 at 18:24:41 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Waiting for input... Reading input from standard input Message from routine read_cards : DEPRECATED: no units specified in ATOMIC_POSITIONS card Message from routine read_cards : ATOMIC_POSITIONS: units set to alat Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 Any further DFT definition will be discarded Please, verify this is what you really want Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used EXX: grid of k+q point setup nkqs = 10 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 81 81 30 728 728 153 Max 82 82 31 731 731 154 Sum 163 163 61 1459 1459 307 bravais-lattice index = 2 lattice parameter (alat) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file: /home/sjoshua/espresso.20130425/pseudo/Si.pz-vbc.UPF MD5 check sum: 6dfa03ddd5817404712e03e4d12deb78 Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 24 Sym. Ops. (no inversion) found (note: 24 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/alat k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 Dense grid: 1459 G-vectors FFT dimensions: ( 15, 15, 15) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.01 Mb ( 99, 8) NL pseudopotentials 0.01 Mb ( 99, 8) Each V/rho on FFT grid 0.03 Mb ( 1800) Each G-vector array 0.01 Mb ( 728) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.05 Mb ( 99, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.22 Mb ( 1800, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.1 secs Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.82340180 Ry Harris-Foulkes estimate = -15.83974476 Ry estimated scf accuracy < 0.06415505 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.2 secs total energy = -15.82634547 Ry Harris-Foulkes estimate = -15.82635432 Ry estimated scf accuracy < 0.00228159 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.2 secs total energy = -15.82644721 Ry Harris-Foulkes estimate = -15.82643492 Ry estimated scf accuracy < 0.00004971 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.3 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4476 4.7282 5.9961 5.9961 8.9449 9.3568 9.3569 11.1864 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1160 4.9391 5.0502 8.5385 10.1246 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8637 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7127 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7928 3.5449 7.2968 8.3741 14.7162 14.7745 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4109 1.6834 3.9583 5.4867 9.1322 10.0722 10.2721 12.7293 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3206 9.2854 9.9751 11.4585 12.3758 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6946 -0.3359 2.2539 4.3555 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9476 0.3457 5.1681 5.1681 8.1196 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6289 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2968 ! total energy = -15.82645315 Ry Harris-Foulkes estimate = -15.82645294 Ry estimated scf accuracy < 0.00000021 Ry The total energy is the sum of the following terms: one-electron contribution = 4.81288870 Ry hartree contribution = 1.10052850 Ry xc contribution = -4.84011177 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 4 iterations EXX: now go back to refine exchange calculation total cpu time spent up to now is 0.3 secs Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 3.9 total cpu time spent up to now is 0.7 secs total energy = -16.01129150 Ry Harris-Foulkes estimate = -16.01139234 Ry estimated scf accuracy < 0.00004366 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.46E-07, avg # of iterations = 1.0 total cpu time spent up to now is 0.9 secs total energy = -16.01126947 Ry Harris-Foulkes estimate = -16.01129461 Ry estimated scf accuracy < 0.00000127 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.58E-08, avg # of iterations = 1.4 total cpu time spent up to now is 1.2 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.3815 3.0496 4.3528 4.3528 9.9216 10.2831 10.2832 12.3862 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.8159 1.3978 3.3245 3.3586 9.4060 11.1218 11.8394 12.0827 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7251 -0.3741 1.9178 2.3902 8.5716 10.1060 13.4419 13.6494 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1877 -2.3139 1.1502 1.8919 8.0857 9.1340 15.6256 15.8161 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.2837 -0.0443 2.3229 3.7875 10.1081 10.9298 11.1959 13.6920 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2678 -1.2758 1.2889 2.6579 10.1220 10.8453 12.2738 13.3448 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.9761 -2.3763 0.5356 1.6393 9.5823 11.4808 12.5596 14.7363 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5284 -2.1010 0.6014 2.6958 9.0930 12.7432 12.8808 14.2376 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8336 -1.4056 3.5174 3.5174 9.0874 10.7319 10.7319 15.2572 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0624 -2.2144 2.3302 3.0300 9.5298 10.8710 11.3829 14.6680 highest occupied, lowest unoccupied level (ev): 4.3528 8.0857 ! total energy = -16.01126329 Ry Harris-Foulkes estimate = -16.01126959 Ry estimated scf accuracy < 0.00000006 Ry The total energy is the sum of the following terms: one-electron contribution = 2.74414352 Ry hartree contribution = 1.09067406 Ry xc contribution = -3.98321989 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.07427317 Ry + Fock energy = -1.03689759 Ry convergence has been achieved in 3 iterations est. exchange err (dexx) = 0.00008526 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 1.2 secs Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.58E-08, avg # of iterations = 3.1 total cpu time spent up to now is 1.5 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.3831 3.0434 4.3388 4.3389 9.9312 10.2884 10.2885 12.3901 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.8150 1.3957 3.3158 3.3534 9.4112 11.1238 11.8418 12.0861 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7235 -0.3731 1.9153 2.3852 8.5759 10.1075 13.4430 13.6500 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1860 -2.3120 1.1486 1.8884 8.0897 9.1349 15.6252 15.8175 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.2824 -0.0448 2.3188 3.7809 10.1138 10.9318 11.2005 13.6928 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2656 -1.2737 1.2872 2.6557 10.1242 10.8474 12.2735 13.3460 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.9729 -2.3729 0.5346 1.6381 9.5835 11.4807 12.5598 14.7362 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5261 -2.0989 0.6003 2.6920 9.0978 12.7429 12.8829 14.2374 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8330 -1.4092 3.5089 3.5089 9.0953 10.7381 10.7381 15.2622 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0608 -2.2142 2.3282 3.0244 9.5354 10.8734 11.3847 14.6678 highest occupied, lowest unoccupied level (ev): 4.3389 8.0897 ! total energy = -16.01135237 Ry Harris-Foulkes estimate = -16.01135994 Ry estimated scf accuracy < 0.00000033 Ry The total energy is the sum of the following terms: one-electron contribution = 2.74421145 Ry hartree contribution = 1.08950958 Ry xc contribution = -3.98277566 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.07496333 Ry + Fock energy = -1.03746084 Ry convergence has been achieved in 1 iterations est. exchange err (dexx) = 0.00000205 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 1.5 secs Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.58E-08, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.06E-10, avg # of iterations = 2.0 total cpu time spent up to now is 2.0 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.3849 3.0410 4.3344 4.3344 9.9314 10.2879 10.2879 12.3882 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.8164 1.3937 3.3125 3.3510 9.4107 11.1226 11.8407 12.0857 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.7248 -0.3748 1.9137 2.3829 8.5753 10.1069 13.4416 13.6486 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1874 -2.3136 1.1472 1.8866 8.0892 9.1341 15.6238 15.8160 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.2837 -0.0465 2.3167 3.7784 10.1129 10.9308 11.2000 13.6916 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.2669 -1.2750 1.2856 2.6540 10.1233 10.8464 12.2723 13.3447 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.9742 -2.3741 0.5334 1.6367 9.5826 11.4796 12.5585 14.7348 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.5276 -2.1001 0.5990 2.6900 9.0973 12.7417 12.8817 14.2361 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.8346 -1.4114 3.5060 3.5060 9.0946 10.7379 10.7379 15.2625 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0623 -2.2155 2.3265 3.0220 9.5348 10.8724 11.3838 14.6667 highest occupied, lowest unoccupied level (ev): 4.3344 8.0892 ! total energy = -16.01135551 Ry Harris-Foulkes estimate = -16.01135490 Ry estimated scf accuracy < 7.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 2.74406807 Ry hartree contribution = 1.08962860 Ry xc contribution = -3.98279815 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.07503424 Ry + Fock energy = -1.03750454 Ry convergence has been achieved in 1 iterations est. exchange err (dexx) = 0.00000013 Ry End of self-consistent calculation Writing output data file silicon.save init_run : 0.03s CPU 0.04s WALL ( 1 calls) electrons : 1.70s CPU 1.74s WALL ( 4 calls) Called by init_run: wfcinit : 0.01s CPU 0.01s WALL ( 1 calls) potinit : 0.00s CPU 0.00s WALL ( 1 calls) Called by electrons: c_bands : 1.45s CPU 1.47s WALL ( 11 calls) sum_band : 0.04s CPU 0.05s WALL ( 11 calls) v_of_rho : 0.03s CPU 0.02s WALL ( 11 calls) mix_rho : 0.00s CPU 0.00s WALL ( 11 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.01s WALL ( 230 calls) cegterg : 1.44s CPU 1.46s WALL ( 110 calls) Called by *egterg: h_psi : 1.33s CPU 1.36s WALL ( 353 calls) g_psi : 0.00s CPU 0.00s WALL ( 233 calls) cdiaghg : 0.07s CPU 0.07s WALL ( 293 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.00s WALL ( 353 calls) General routines calbec : 0.00s CPU 0.01s WALL ( 353 calls) fft : 0.01s CPU 0.01s WALL ( 118 calls) ffts : 0.68s CPU 0.83s WALL ( 12944 calls) fftw : 0.38s CPU 0.37s WALL ( 9042 calls) davcio : 0.00s CPU 0.00s WALL ( 10 calls) Parallel routines fft_scatter : 0.40s CPU 0.49s WALL ( 22104 calls) EXX routines exx_grid : 0.01s CPU 0.01s WALL ( 1 calls) exxinit : 0.04s CPU 0.05s WALL ( 4 calls) vexx : 1.13s CPU 1.14s WALL ( 194 calls) exxen2 : 0.33s CPU 0.33s WALL ( 9 calls) PWSCF : 2.05s CPU 2.12s WALL This run was terminated on: 18:24:43 26Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/si.hse_nq=2.out0000644000175000017500000004473512341373025022377 0ustar mbamba Program PWSCF v.4.2CVS starts on 2Feb2010 at 15: 0:55 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO !!! EXPERIMENTAL VERSION WITH EXACT EXCHANGE !!! Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... !!! XC functional enforced from input : Exchange-correlation = HSE (14*4) EXX-fraction = 0.2500000000000000 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! tcpu = 0.0 self-consistency for image 0 EXX : q-grid dimensions are 2 2 2 EXX : q->0 dealt with 8/7 -1/7 trick EXX : grid check successful EXX : q->0 dealt with gygi-baldereschi trick EXX : exx div treatment check successful bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE (14*4) EXX-fraction = 0.2500000000000000 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 126.4975 ( 1459 G-vectors) FFT grid: ( 16, 16, 16) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.06 Mb ( 4096) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.50 Mb ( 4096, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.18 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.37 secs total energy = -15.82338789 Ry Harris-Foulkes estimate = -15.83973300 Ry estimated scf accuracy < 0.06416663 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.44 secs total energy = -15.82633125 Ry Harris-Foulkes estimate = -15.82633974 Ry estimated scf accuracy < 0.00228008 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.53 secs total energy = -15.82643362 Ry Harris-Foulkes estimate = -15.82642126 Ry estimated scf accuracy < 0.00004960 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.62 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4477 4.7282 5.9961 5.9961 8.9448 9.3569 9.3569 11.1861 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1159 4.9391 5.0502 8.5385 10.1245 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8638 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7128 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7929 3.5449 7.2967 8.3740 14.7162 14.7746 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4110 1.6834 3.9583 5.4868 9.1321 10.0723 10.2721 12.7292 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3207 9.2854 9.9750 11.4584 12.3759 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6947 -0.3359 2.2539 4.3556 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9477 0.3457 5.1682 5.1682 8.1195 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6288 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2967 0.500609377992713 0.618038723237103 EXX divergence ( 2)= -40.0582 0.8333 exx_div : 0.01s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -1.69270076037686 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 3.6 total cpu time spent up to now is 10.75 secs total energy = -15.84455604 Ry Harris-Foulkes estimate = -15.84455839 Ry estimated scf accuracy < 0.00004804 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.00E-07, avg # of iterations = 1.0 total cpu time spent up to now is 15.73 secs total energy = -15.84455677 Ry Harris-Foulkes estimate = -15.84455658 Ry estimated scf accuracy < 0.00000374 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.68E-08, avg # of iterations = 1.0 total cpu time spent up to now is 20.70 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1161 4.0843 5.3715 5.3715 9.4936 9.8356 9.8356 11.8912 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5554 2.4505 4.2743 4.4607 8.9755 10.6993 11.4123 11.7544 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4455 0.6832 2.9381 3.3300 8.1494 9.7836 13.0173 13.2879 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.7462 -1.4985 2.0921 2.8179 7.6803 8.7850 15.3807 15.4693 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0197 0.9555 3.2938 4.8920 9.6809 10.5431 10.7803 13.3221 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.9302 -0.4199 2.2615 3.6834 9.7349 10.4697 11.9671 12.9640 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4833 -1.6958 1.5032 2.5819 9.2224 11.1636 12.2485 14.5080 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0596 -1.3662 1.5856 3.6865 8.7033 12.4460 12.4672 14.0157 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5377 -0.4552 4.5240 4.5240 8.6345 10.3738 10.3738 14.9217 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6382 -1.4675 3.3405 3.9955 9.0915 10.4685 11.0540 14.4039 highest occupied, lowest unoccupied level (ev): 5.3715 7.6803 -1.69270076037686 -1.69428158333302 -1.69602463145811 dexx = 0.00008111 Ry ! total energy = -15.84463797 Ry Harris-Foulkes estimate = -15.84463797 Ry estimated scf accuracy < 9.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 3.12018260 Ry hartree contribution = 1.09841565 Ry xc contribution = -4.00974692 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.69428158 Ry + Fock energy = -0.84801232 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.68E-08, avg # of iterations = 3.0 total cpu time spent up to now is 28.26 secs total energy = -15.84464624 Ry Harris-Foulkes estimate = -15.84464662 Ry estimated scf accuracy < 0.00000107 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-08, avg # of iterations = 1.0 total cpu time spent up to now is 33.23 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1134 4.0796 5.3532 5.3532 9.5090 9.8459 9.8459 11.8987 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5519 2.4517 4.2647 4.4553 8.9851 10.7080 11.4159 11.7579 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4427 0.6852 2.9370 3.3225 8.1587 9.7880 13.0203 13.2876 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.7469 -1.5002 2.0918 2.8096 7.6912 8.7889 15.3809 15.4719 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0162 0.9569 3.2906 4.8800 9.6944 10.5493 10.7851 13.3267 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.9269 -0.4197 2.2620 3.6789 9.7397 10.4737 11.9691 12.9651 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4811 -1.6954 1.5048 2.5795 9.2261 11.1637 12.2510 14.5110 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0579 -1.3661 1.5877 3.6778 8.7144 12.4472 12.4695 14.0194 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5368 -0.4537 4.5088 4.5088 8.6490 10.3847 10.3847 14.9288 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6377 -1.4684 3.3385 3.9838 9.1022 10.4728 11.0578 14.4058 highest occupied, lowest unoccupied level (ev): 5.3532 7.6912 -1.69602463145811 -1.69629397195315 -1.69656547354234 dexx = 0.00000108 Ry ! total energy = -15.84464736 Ry Harris-Foulkes estimate = -15.84464737 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = 3.11781846 Ry hartree contribution = 1.09933507 Ry xc contribution = -4.01005355 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.69629397 Ry + Fock energy = -0.84828274 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-08, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.13E-10, avg # of iterations = 1.5 total cpu time spent up to now is 43.83 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1134 4.0791 5.3509 5.3509 9.5100 9.8471 9.8471 11.8989 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5518 2.4517 4.2636 4.4546 8.9857 10.7087 11.4161 11.7583 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.4426 0.6848 2.9369 3.3216 8.1594 9.7883 13.0205 13.2875 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.7471 -1.5011 2.0917 2.8085 7.6922 8.7892 15.3813 15.4722 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.0160 0.9567 3.2901 4.8785 9.6955 10.5500 10.7853 13.3271 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.9266 -0.4201 2.2619 3.6783 9.7401 10.4740 11.9692 12.9650 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4811 -1.6956 1.5048 2.5791 9.2263 11.1636 12.2511 14.5114 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0580 -1.3664 1.5878 3.6767 8.7154 12.4471 12.4698 14.0198 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.5369 -0.4539 4.5068 4.5068 8.6498 10.3860 10.3860 14.9294 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6379 -1.4690 3.3382 3.9823 9.1031 10.4730 11.0583 14.4062 highest occupied, lowest unoccupied level (ev): 5.3509 7.6922 -1.69656547354234 -1.69661186828171 -1.69665831123480 dexx = 0.00000002 Ry ! total energy = -15.84464751 Ry Harris-Foulkes estimate = -15.84464753 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 3.11737091 Ry hartree contribution = 1.09959350 Ry xc contribution = -4.01013606 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.69661187 Ry + Fock energy = -0.84832916 Ry convergence has been achieved in 1 iterations Writing output data file silicon.save Writing output data file silicon.save init_run : 0.09s CPU electrons : 44.81s CPU Called by init_run: wfcinit : 0.03s CPU potinit : 0.01s CPU Called by electrons: c_bands : 33.39s CPU ( 12 calls, 2.782 s avg) sum_band : 0.16s CPU ( 12 calls, 0.013 s avg) v_of_rho : 0.15s CPU ( 12 calls, 0.012 s avg) mix_rho : 0.00s CPU ( 12 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.03s CPU ( 250 calls, 0.000 s avg) cegterg : 33.35s CPU ( 120 calls, 0.278 s avg) Called by *egterg: h_psi : 33.14s CPU ( 358 calls, 0.093 s avg) g_psi : 0.02s CPU ( 228 calls, 0.000 s avg) cdiaghg : 0.12s CPU ( 298 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 358 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 358 calls, 0.000 s avg) cft3 : 0.02s CPU ( 129 calls, 0.000 s avg) cft3s : 17.46s CPU ( 123068 calls, 0.000 s avg) davcio : 0.01s CPU ( 510 calls, 0.000 s avg) EXX routines exx_grid : 0.01s CPU exxinit : 0.24s CPU ( 4 calls, 0.061 s avg) vexx : 32.54s CPU ( 199 calls, 0.164 s avg) exxen2 : 10.86s CPU ( 10 calls, 1.086 s avg) PWSCF : 45.19s CPU time, 49.34s wall time This run was terminated on: 15: 1:44 2Feb2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/o2.pbe0.1nlcc.out-800000644000175000017500000003074112341373025022712 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 23: 7:17 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! Warning: card &IONS ignored Warning: card / ignored gamma-point specific algorithms are used tcpu = 0.1 self-consistency for image 0 EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL EXX GRID CHECK SUCCESSFUL bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 12.00 (up: 7.00, down: 5.00) number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file OPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential O 6.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization O 0.200 12 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0547706 0.0547706 0.0547706 ) 2 O tau( 2) = ( -0.0547706 -0.0547706 -0.0547706 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1167.2200 ( 83519 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.27 Mb ( 10408, 8) NL pseudopotentials 2.54 Mb ( 10408, 16) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.54 Mb ( 10408, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000243 0.000000 Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000323 Check: negative starting charge=(component2): -0.000215 starting charge 12.00000, renormalised to 12.00000 negative rho (up, down): 0.323E-03 0.215E-03 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 6.05 secs per-process dynamical memory: 57.8 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 5.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.65E-04, avg # of iterations = 1.0 negative rho (up, down): 0.531E-04 0.376E-04 total cpu time spent up to now is 16.24 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -32.6923 -20.7800 -14.1740 -13.2354 -13.2354 -6.4847 -6.4847 1.4050 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -30.5093 -18.7553 -12.1687 -11.3460 -11.3460 -4.5458 -4.5458 1.7194 ! total energy = -67.95761579 Ry Harris-Foulkes estimate = -67.95564302 Ry estimated scf accuracy < 0.05515757 Ry The total energy is the sum of the following terms: one-electron contribution = -99.69976452 Ry hartree contribution = 51.93688919 Ry xc contribution = -18.29642990 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.08896017 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.02 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.60E-04, avg # of iterations = 2.0 negative rho (up, down): 0.377E-05 0.261E-05 total cpu time spent up to now is 22.60 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -32.7925 -19.9482 -13.1441 -13.0673 -13.0673 -6.1698 -6.1698 1.5074 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -31.2298 -18.0271 -11.8130 -11.1681 -11.1681 -3.9691 -3.9691 1.7669 ! total energy = -67.96920055 Ry Harris-Foulkes estimate = -67.96571078 Ry estimated scf accuracy < 0.00295181 Ry The total energy is the sum of the following terms: one-electron contribution = -99.59380876 Ry hartree contribution = 51.91022629 Ry xc contribution = -18.29021966 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00812770 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.03 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-05, avg # of iterations = 2.5 total cpu time spent up to now is 28.65 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -32.6780 -19.9907 -13.0963 -13.0870 -13.0870 -6.2605 -6.2605 1.5082 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -31.3259 -18.1041 -12.0179 -11.1594 -11.1594 -3.9294 -3.9294 1.7559 1.59576912160573 1.59576912160573 EXX divergence ( 1)= -700.4071 0.1250 exx_div : 0.02s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -6.28605820299078 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-05, avg # of iterations = 4.5 total cpu time spent up to now is 114.70 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -36.2914 -23.2287 -15.4647 -15.4647 -15.0110 -8.2824 -8.2824 2.2947 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -34.5766 -20.5039 -13.8420 -12.4452 -12.4452 -2.3042 -2.3042 2.4814 ! total energy = -66.79014034 Ry Harris-Foulkes estimate = -66.79067319 Ry estimated scf accuracy < 0.00104269 Ry The total energy is the sum of the following terms: one-electron contribution = -105.84201632 Ry hartree contribution = 51.87926468 Ry xc contribution = -13.95660085 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 6.28636320 Ry + Fock energy = -3.14302910 Ry scf correction = -0.02654622 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.07 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.69E-06, avg # of iterations = 2.0 total cpu time spent up to now is 169.19 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -36.3893 -23.3263 -15.5545 -15.5545 -15.1035 -8.3980 -8.3980 2.2941 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -34.6658 -20.5798 -13.9334 -12.5072 -12.5072 -2.3725 -2.3725 2.4755 -6.28605820299078 -6.29307063243081 -6.30095667530085 dexx = 0.00043681 Ry ! total energy = -66.79071575 Ry Harris-Foulkes estimate = -66.79076102 Ry estimated scf accuracy < 0.00009238 Ry The total energy is the sum of the following terms: one-electron contribution = -105.96536018 Ry hartree contribution = 51.99070924 Ry xc contribution = -13.97138637 Ry ewald contribution = -1.98727073 Ry - averaged Fock potential = 6.29307063 Ry + Fock energy = -3.15047834 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.08 Bohr mag/cell convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.01813690 -0.01813690 -0.01813690 atom 2 type 1 force = 0.01813690 0.01813690 0.01813690 Total force = 0.044426 Total SCF correction = 0.016654 Writing output data file o2.save Writing output data file o2.save PWSCF : 3m 2.32s CPU time, 3m 6.52s wall time init_run : 5.98s CPU electrons : 171.73s CPU forces : 3.35s CPU Called by init_run: wfcinit : 0.99s CPU potinit : 3.61s CPU Called by electrons: c_bands : 114.55s CPU ( 6 calls, 19.092 s avg) sum_band : 5.19s CPU ( 6 calls, 0.864 s avg) v_of_rho : 19.78s CPU ( 7 calls, 2.826 s avg) mix_rho : 0.88s CPU ( 6 calls, 0.147 s avg) Called by c_bands: init_us_2 : 0.37s CPU ( 28 calls, 0.013 s avg) regterg : 114.09s CPU ( 12 calls, 9.508 s avg) Called by *egterg: h_psi : 113.98s CPU ( 48 calls, 2.375 s avg) g_psi : 0.22s CPU ( 34 calls, 0.006 s avg) rdiaghg : 0.02s CPU ( 42 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.17s CPU ( 48 calls, 0.004 s avg) General routines calbec : 0.23s CPU ( 56 calls, 0.004 s avg) cft3 : 12.88s CPU ( 146 calls, 0.088 s avg) cft3s : 112.33s CPU ( 1582 calls, 0.071 s avg) davcio : 0.00s CPU ( 52 calls, 0.000 s avg) EXX routines exx_grid : 0.00s CPU exxinit : 1.15s CPU ( 2 calls, 0.574 s avg) vexx : 98.60s CPU ( 17 calls, 5.800 s avg) exxen2 : 32.32s CPU ( 4 calls, 8.081 s avg) espresso-5.1/PW/examples/EXX_example/reference/c.gaupbe.1nlcc.out-800000644000175000017500000003527712341373025023242 0ustar mbamba Program PWSCF v.5.0.2 starts on 26Apr2013 at 18:31:55 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Waiting for input... Reading input from standard input Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Message from routine setup : BEWARE: nonlinear core correction is not consistent with hybrid XC Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used EXX: grid of k+q point setup nkqs = 1 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 1836 1836 457 83516 83516 10407 Max 1837 1837 460 83521 83521 10408 Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Generating pointlists ... new r_m : 0.4125 (alat units) 4.9500 (a.u.) for type 1 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 4.00 (up: 3.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /home/sjoshua/espresso.20130425/PW/examples/EXX_example/Pseudo/CPBE1nlcc.RRKJ3 MD5 check sum: 6343d94e6269eb5d49eee3a5c5ef8fb6 Pseudo is Norm-conserving + core correction, Zval = 4.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1073 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential C 4.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization C 0.200 No symmetry found (note: 47 additional sym.ops. were found but ignored their fractional translations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.32 Mb ( 5204, 4) NL pseudopotentials 0.64 Mb ( 5204, 8) Each V/rho on FFT grid 5.70 Mb ( 186624, 2) Each G-vector array 0.32 Mb ( 41761) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.64 Mb ( 5204, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 22.78 Mb ( 186624, 8) Check: negative/imaginary core charge= -0.000030 0.000000 Initial potential from superposition of free atoms starting charge 3.99996, renormalised to 4.00000 negative rho (up, down): 5.323E-07 3.549E-07 Starting wfc are 4 randomized atomic wfcs total cpu time spent up to now is 1.5 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 1.047E-08 4.990E-08 Magnetic moment per site: atom: 1 charge: 3.9883 magn: 1.6329 constr: 0.0000 total cpu time spent up to now is 2.6 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -13.7956 -5.2650 -5.2642 -5.2638 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -12.6307 -4.2291 -4.2280 -4.2266 highest occupied level (ev): -5.2642 ! total energy = -11.85868386 Ry Harris-Foulkes estimate = -11.82084744 Ry estimated scf accuracy < 0.05313530 Ry The total energy is the sum of the following terms: one-electron contribution = -9.16204142 Ry hartree contribution = 5.16083519 Ry xc contribution = -4.05492012 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.01949420 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-03, avg # of iterations = 1.5 Magnetic moment per site: atom: 1 charge: 3.9905 magn: 1.9882 constr: 0.0000 total cpu time spent up to now is 3.8 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -14.0609 -5.6252 -5.6224 -5.3192 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -11.8787 -4.1920 -3.1922 -3.1903 highest occupied level (ev): -5.6224 ! total energy = -11.86614306 Ry Harris-Foulkes estimate = -11.86092895 Ry estimated scf accuracy < 0.00495414 Ry The total energy is the sum of the following terms: one-electron contribution = -9.18740368 Ry hartree contribution = 5.23573793 Ry xc contribution = -4.13133397 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00008004 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-04, avg # of iterations = 1.5 Magnetic moment per site: atom: 1 charge: 3.9908 magn: 1.9931 constr: 0.0000 total cpu time spent up to now is 5.0 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -13.9865 -5.6292 -5.6261 -5.1119 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -11.3917 -4.0766 -2.5847 -2.5829 highest occupied level (ev): -5.6261 ! total energy = -11.86681520 Ry Harris-Foulkes estimate = -11.86674766 Ry estimated scf accuracy < 0.00002580 Ry The total energy is the sum of the following terms: one-electron contribution = -9.18119841 Ry hartree contribution = 5.22997488 Ry xc contribution = -4.13252835 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 3 iterations EXX: now go back to refine exchange calculation total cpu time spent up to now is 6.5 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-04, avg # of iterations = 2.5 Magnetic moment per site: atom: 1 charge: 3.9933 magn: 1.9952 constr: 0.0000 total cpu time spent up to now is 10.8 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -16.6533 -7.5213 -7.5153 -4.3569 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -13.0932 -3.3970 -1.9068 -1.9054 highest occupied level (ev): -7.5153 ! total energy = -11.76869184 Ry Harris-Foulkes estimate = -11.77027029 Ry estimated scf accuracy < 0.00111363 Ry The total energy is the sum of the following terms: one-electron contribution = -10.38186773 Ry hartree contribution = 5.32515552 Ry xc contribution = -3.50991476 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = 1.11614182 Ry + Fock energy = -0.55295768 Ry scf correction = 0.02804076 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.78E-05, avg # of iterations = 2.0 Magnetic moment per site: atom: 1 charge: 3.9939 magn: 1.9956 constr: 0.0000 total cpu time spent up to now is 14.8 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -16.3602 -7.2383 -7.2329 -4.0991 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -12.7895 -3.1529 -1.6515 -1.6510 highest occupied level (ev): -7.2329 ! total energy = -11.76890503 Ry Harris-Foulkes estimate = -11.76892642 Ry estimated scf accuracy < 0.00002788 Ry The total energy is the sum of the following terms: one-electron contribution = -10.34637889 Ry hartree contribution = 5.31356531 Ry xc contribution = -3.50598582 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = 1.11313204 Ry + Fock energy = -0.55295768 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 2 iterations est. exchange err (dexx) = 0.00013283 Ry End of self-consistent calculation Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000453 Writing output data file c.save init_run : 1.27s CPU 1.37s WALL ( 1 calls) electrons : 10.64s CPU 11.85s WALL ( 2 calls) forces : 0.85s CPU 0.90s WALL ( 1 calls) Called by init_run: wfcinit : 0.10s CPU 0.11s WALL ( 1 calls) potinit : 0.78s CPU 0.85s WALL ( 1 calls) Called by electrons: c_bands : 5.44s CPU 6.13s WALL ( 5 calls) sum_band : 0.63s CPU 0.70s WALL ( 5 calls) v_of_rho : 4.83s CPU 5.20s WALL ( 7 calls) mix_rho : 0.20s CPU 0.25s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.06s WALL ( 24 calls) regterg : 5.39s CPU 6.08s WALL ( 10 calls) Called by *egterg: h_psi : 5.41s CPU 6.10s WALL ( 29 calls) g_psi : 0.01s CPU 0.01s WALL ( 17 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 25 calls) Called by h_psi: add_vuspsi : 0.01s CPU 0.01s WALL ( 29 calls) General routines calbec : 0.02s CPU 0.02s WALL ( 37 calls) fft : 2.40s CPU 2.66s WALL ( 154 calls) fftw : 1.17s CPU 1.39s WALL ( 132 calls) davcio : 0.00s CPU 0.00s WALL ( 2 calls) Parallel routines fft_scatter : 2.86s CPU 3.54s WALL ( 610 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.38s CPU 0.44s WALL ( 2 calls) vexx : 4.26s CPU 4.76s WALL ( 13 calls) exxen2 : 1.49s CPU 1.65s WALL ( 4 calls) PWSCF : 14.84s CPU 16.42s WALL This run was terminated on: 18:32:12 26Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/si.hse_nq=4.out0000644000175000017500000004473512341373025022401 0ustar mbamba Program PWSCF v.4.2CVS starts on 2Feb2010 at 15: 1:44 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO !!! EXPERIMENTAL VERSION WITH EXACT EXCHANGE !!! Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... !!! XC functional enforced from input : Exchange-correlation = HSE (14*4) EXX-fraction = 0.2500000000000000 !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! tcpu = 0.0 self-consistency for image 0 EXX : q-grid dimensions are 4 4 4 EXX : q->0 dealt with 8/7 -1/7 trick EXX : grid check successful EXX : q->0 dealt with gygi-baldereschi trick EXX : exx div treatment check successful bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE (14*4) EXX-fraction = 0.2500000000000000 celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 126.4975 ( 1459 G-vectors) FFT grid: ( 16, 16, 16) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.06 Mb ( 4096) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.50 Mb ( 4096, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.17 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.37 secs total energy = -15.82338789 Ry Harris-Foulkes estimate = -15.83973300 Ry estimated scf accuracy < 0.06416663 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.45 secs total energy = -15.82633125 Ry Harris-Foulkes estimate = -15.82633974 Ry estimated scf accuracy < 0.00228008 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 0.53 secs total energy = -15.82643362 Ry Harris-Foulkes estimate = -15.82642126 Ry estimated scf accuracy < 0.00004960 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 2.3 total cpu time spent up to now is 0.62 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4477 4.7282 5.9961 5.9961 8.9448 9.3569 9.3569 11.1861 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1159 4.9391 5.0502 8.5385 10.1245 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8638 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7128 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7929 3.5449 7.2967 8.3740 14.7162 14.7746 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4110 1.6834 3.9583 5.4868 9.1321 10.0723 10.2721 12.7292 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3207 9.2854 9.9750 11.4584 12.3759 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6947 -0.3359 2.2539 4.3556 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9477 0.3457 5.1682 5.1682 8.1195 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6288 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2967 0.500609377992713 0.618038723237103 EXX divergence ( 4)= -2.2006 0.8333 exx_div : 0.04s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -1.67522126481740 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 3.7 total cpu time spent up to now is 79.98 secs total energy = -15.83631978 Ry Harris-Foulkes estimate = -15.83634178 Ry estimated scf accuracy < 0.00009493 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-06, avg # of iterations = 1.0 total cpu time spent up to now is 118.79 secs total energy = -15.83632239 Ry Harris-Foulkes estimate = -15.83632278 Ry estimated scf accuracy < 0.00000544 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.80E-08, avg # of iterations = 1.0 total cpu time spent up to now is 157.98 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1290 4.3275 5.6344 5.6344 9.3446 9.7508 9.7508 11.7416 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5400 2.4765 4.4850 4.6722 8.8503 10.6099 11.3710 11.7038 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.3527 0.5286 3.0159 3.4428 7.9967 9.6811 13.0688 13.3904 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.6682 -1.6040 2.1239 2.8952 7.5211 8.6392 15.5485 15.6113 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.9673 0.8437 3.4616 5.0693 9.5318 10.5393 10.6927 13.3541 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.8793 -0.5173 2.2907 3.8368 9.6361 10.3766 12.0111 13.0119 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4675 -1.7138 1.4105 2.6689 9.0922 11.1578 12.3105 14.6378 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0534 -1.4256 1.5036 3.8037 8.5730 12.4428 12.5407 14.1252 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.4440 -0.6715 4.6943 4.6943 8.4674 10.3183 10.3183 14.8747 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6280 -1.5752 3.4954 4.1819 8.9787 10.3505 11.0019 14.5229 highest occupied, lowest unoccupied level (ev): 5.6344 7.5211 -1.67522126481740 -1.67875258769544 -1.68256736910832 dexx = 0.00014173 Ry ! total energy = -15.83646435 Ry Harris-Foulkes estimate = -15.83646433 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 3.13190383 Ry hartree contribution = 1.10631862 Ry xc contribution = -4.01239712 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.67875259 Ry + Fock energy = -0.84128368 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.80E-08, avg # of iterations = 3.0 total cpu time spent up to now is 218.08 secs total energy = -15.83648095 Ry Harris-Foulkes estimate = -15.83648265 Ry estimated scf accuracy < 0.00000393 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.92E-08, avg # of iterations = 1.0 total cpu time spent up to now is 257.06 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1235 4.3139 5.6121 5.6121 9.3625 9.7667 9.7667 11.7579 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5347 2.4711 4.4708 4.6582 8.8640 10.6244 11.3790 11.7099 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.3488 0.5282 3.0086 3.4327 8.0128 9.6920 13.0738 13.3937 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.6656 -1.6024 2.1192 2.8858 7.5378 8.6504 15.5513 15.6143 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.9626 0.8443 3.4532 5.0495 9.5488 10.5536 10.6975 13.3615 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.8753 -0.5156 2.2880 3.8244 9.6464 10.3860 12.0188 13.0148 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4647 -1.7121 1.4117 2.6617 9.1029 11.1607 12.3190 14.6420 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0507 -1.4229 1.5050 3.7914 8.5885 12.4437 12.5480 14.1300 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.4407 -0.6680 4.6778 4.6778 8.4893 10.3296 10.3296 14.8826 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6245 -1.5712 3.4865 4.1668 8.9938 10.3598 11.0111 14.5271 highest occupied, lowest unoccupied level (ev): 5.6121 7.5378 -1.68256736910832 -1.68315254701182 -1.68374248920022 dexx = 0.00000238 Ry ! total energy = -15.83648358 Ry Harris-Foulkes estimate = -15.83648361 Ry estimated scf accuracy < 0.00000010 Ry The total energy is the sum of the following terms: one-electron contribution = 3.12644687 Ry hartree contribution = 1.10875977 Ry xc contribution = -4.01321295 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.68315255 Ry + Fock energy = -0.84187124 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.92E-08, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.11E-09, avg # of iterations = 2.0 total cpu time spent up to now is 339.64 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.1231 4.3114 5.6093 5.6093 9.3637 9.7686 9.7686 11.7593 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.5343 2.4699 4.4690 4.6558 8.8653 10.6259 11.3800 11.7106 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.3487 0.5276 3.0074 3.4317 8.0145 9.6935 13.0740 13.3940 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -3.6656 -1.6027 2.1184 2.8849 7.5394 8.6518 15.5516 15.6143 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -5.9624 0.8439 3.4516 5.0469 9.5503 10.5556 10.6978 13.3622 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -4.8752 -0.5159 2.2874 3.8224 9.6477 10.3872 12.0196 13.0148 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.4648 -1.7124 1.4118 2.6606 9.1043 11.1609 12.3198 14.6424 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.0509 -1.4230 1.5050 3.7900 8.5901 12.4434 12.5489 14.1304 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.4407 -0.6680 4.6759 4.6759 8.4909 10.3309 10.3309 14.8835 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -4.6245 -1.5711 3.4848 4.1649 8.9951 10.3609 11.0125 14.5276 highest occupied, lowest unoccupied level (ev): 5.6093 7.5394 -1.68374248920022 -1.68383977958016 -1.68393717246371 dexx = 0.00000005 Ry ! total energy = -15.83648389 Ry Harris-Foulkes estimate = -15.83648394 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = 3.12548922 Ry hartree contribution = 1.10930037 Ry xc contribution = -4.01338610 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 1.68383978 Ry + Fock energy = -0.84196859 Ry convergence has been achieved in 1 iterations Writing output data file silicon.save Writing output data file silicon.save init_run : 0.09s CPU electrons : 348.26s CPU Called by init_run: wfcinit : 0.02s CPU potinit : 0.01s CPU Called by electrons: c_bands : 260.95s CPU ( 12 calls, 21.745 s avg) sum_band : 0.15s CPU ( 12 calls, 0.012 s avg) v_of_rho : 0.15s CPU ( 12 calls, 0.012 s avg) mix_rho : 0.00s CPU ( 12 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.02s CPU ( 250 calls, 0.000 s avg) cegterg : 260.92s CPU ( 120 calls, 2.174 s avg) Called by *egterg: h_psi : 260.69s CPU ( 364 calls, 0.716 s avg) g_psi : 0.01s CPU ( 234 calls, 0.000 s avg) cdiaghg : 0.12s CPU ( 304 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 364 calls, 0.000 s avg) General routines calbec : 0.01s CPU ( 364 calls, 0.000 s avg) cft3 : 0.02s CPU ( 129 calls, 0.000 s avg) cft3s : 134.71s CPU ( 918472 calls, 0.000 s avg) davcio : 0.00s CPU ( 510 calls, 0.000 s avg) EXX routines exx_grid : 0.01s CPU exxinit : 0.56s CPU ( 4 calls, 0.141 s avg) vexx : 260.09s CPU ( 205 calls, 1.269 s avg) exxen2 : 86.44s CPU ( 10 calls, 8.644 s avg) PWSCF : 5m48.63s CPU time, 7m28.68s wall time This run was terminated on: 15: 9:13 2Feb2010 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/si.PBE0_nq=2.out0000644000175000017500000004247312341373025022303 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 22:43:40 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! tcpu = 0.1 self-consistency for image 0 EXX : q-grid dimensions are 2 2 2 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL bravais-lattice index = 2 lattice parameter (a_0) = 10.2000 a.u. unit-cell volume = 265.3020 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 10.200000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 Si tau( 2) = ( 0.2500000 0.2500000 0.2500000 ) number of k points= 10 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.1250000), wk = 0.0625000 k( 2) = ( 0.1250000 0.1250000 0.3750000), wk = 0.1875000 k( 3) = ( 0.1250000 0.1250000 0.6250000), wk = 0.1875000 k( 4) = ( 0.1250000 0.1250000 0.8750000), wk = 0.1875000 k( 5) = ( 0.1250000 0.3750000 0.3750000), wk = 0.1875000 k( 6) = ( 0.1250000 0.3750000 0.6250000), wk = 0.3750000 k( 7) = ( 0.1250000 0.3750000 0.8750000), wk = 0.3750000 k( 8) = ( 0.1250000 0.6250000 0.6250000), wk = 0.1875000 k( 9) = ( 0.3750000 0.3750000 0.3750000), wk = 0.0625000 k( 10) = ( 0.3750000 0.3750000 0.6250000), wk = 0.1875000 G cutoff = 126.4975 ( 1459 G-vectors) FFT grid: ( 16, 16, 16) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.02 Mb ( 192, 8) NL pseudopotentials 0.02 Mb ( 192, 8) Each V/rho on FFT grid 0.06 Mb ( 4096) Each G-vector array 0.01 Mb ( 1459) G-vector shells 0.00 Mb ( 43) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.09 Mb ( 192, 32) Each subspace H/S matrix 0.02 Mb ( 32, 32) Each matrix 0.00 Mb ( 8, 8) Arrays for rho mixing 0.50 Mb ( 4096, 8) Initial potential from superposition of free atoms starting charge 7.99901, renormalised to 8.00000 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 0.30 secs per-process dynamical memory: 1.2 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.07E-04, avg # of iterations = 1.0 total cpu time spent up to now is 0.84 secs total energy = -15.82338789 Ry Harris-Foulkes estimate = -15.83973300 Ry estimated scf accuracy < 0.06416663 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.02E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.05 secs total energy = -15.82633125 Ry Harris-Foulkes estimate = -15.82633974 Ry estimated scf accuracy < 0.00228008 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-05, avg # of iterations = 1.9 total cpu time spent up to now is 1.28 secs total energy = -15.82643362 Ry Harris-Foulkes estimate = -15.82642126 Ry estimated scf accuracy < 0.00004960 Ry iteration # 4 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 2.3 total cpu time spent up to now is 1.53 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -5.4477 4.7282 5.9961 5.9961 8.9448 9.3569 9.3569 11.1861 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -4.9211 3.1159 4.9391 5.0502 8.5385 10.1245 10.8747 11.2285 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -3.8638 1.4055 3.5835 4.0275 7.7542 9.3314 12.4143 12.7128 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -2.3517 -0.4976 2.7929 3.5449 7.2967 8.3740 14.7162 14.7746 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -4.4110 1.6834 3.9583 5.4868 9.1321 10.0723 10.2721 12.7292 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -3.4332 0.4714 2.9371 4.3207 9.2854 9.9750 11.4584 12.3759 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -2.1680 -0.5990 2.1708 3.2760 8.7959 10.7115 11.7004 13.8811 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -2.6947 -0.3359 2.2539 4.3556 8.2625 11.9049 11.9153 13.4108 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -3.9477 0.3457 5.1682 5.1682 8.1195 9.8727 9.8727 14.3023 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -3.2022 -0.4691 3.9980 4.6816 8.6288 9.9414 10.5367 13.8202 highest occupied, lowest unoccupied level (ev): 5.9961 7.2967 0.618038723237103 0.618038723237103 EXX divergence ( 2)= -102.2162 0.8333 exx_div : 0.01s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -2.16226177528856 Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.20E-07, avg # of iterations = 3.6 total cpu time spent up to now is 28.10 secs total energy = -15.84983983 Ry Harris-Foulkes estimate = -15.84984398 Ry estimated scf accuracy < 0.00004275 Ry iteration # 2 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.34E-07, avg # of iterations = 1.0 total cpu time spent up to now is 41.10 secs total energy = -15.84984168 Ry Harris-Foulkes estimate = -15.84984126 Ry estimated scf accuracy < 0.00000258 Ry iteration # 3 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-08, avg # of iterations = 1.0 total cpu time spent up to now is 54.24 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5247 3.6818 4.9737 4.9737 9.8743 10.2174 10.2174 12.2739 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9638 2.0462 3.8721 4.0587 9.3554 11.0817 11.7980 12.1340 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.8533 0.2794 2.5315 2.9259 8.5269 10.1605 13.4039 13.6743 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1525 -1.9031 1.6836 2.4133 8.0560 9.1634 15.7653 15.8550 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.4278 0.5495 2.8880 4.4926 10.0626 10.9232 11.1647 13.7005 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.3374 -0.8259 1.8533 3.2792 10.1154 10.8515 12.3471 13.3507 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8890 -2.1012 1.0925 2.1744 9.6016 11.5459 12.6304 14.8896 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4656 -1.7729 1.1755 3.2834 9.0802 12.8332 12.8490 14.3963 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.9451 -0.8634 4.1239 4.1239 9.0151 10.7545 10.7545 15.2873 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0445 -1.8762 2.9355 3.5936 9.4717 10.8507 11.4360 14.7823 highest occupied, lowest unoccupied level (ev): 4.9737 8.0560 -2.16226177528856 -2.16309702058491 -2.16412653454740 dexx = 0.00009713 Ry ! total energy = -15.84993889 Ry Harris-Foulkes estimate = -15.84993888 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 2.65385866 Ry hartree contribution = 1.09371982 Ry xc contribution = -3.77879255 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.16309702 Ry + Fock energy = -1.08206327 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-08, avg # of iterations = 3.0 total cpu time spent up to now is 75.45 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5228 3.6776 4.9568 4.9568 9.8881 10.2256 10.2256 12.2801 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9610 2.0475 3.8629 4.0540 9.3635 11.0888 11.8003 12.1363 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.8514 0.2818 2.5305 2.9186 8.5346 10.1636 13.4059 13.6729 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1538 -1.9044 1.6829 2.4051 8.0652 9.1660 15.7640 15.8567 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.4251 0.5510 2.8849 4.4819 10.0744 10.9273 11.1685 13.7036 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.3349 -0.8255 1.8534 3.2751 10.1189 10.8543 12.3477 13.3510 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8871 -2.1007 1.0934 2.1719 9.6042 11.5454 12.6314 14.8913 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4639 -1.7729 1.1768 3.2752 9.0896 12.8342 12.8496 14.3985 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.9449 -0.8619 4.1097 4.1097 9.0282 10.7632 10.7632 15.2934 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0444 -1.8774 2.9335 3.5825 9.4809 10.8540 11.4381 14.7829 highest occupied, lowest unoccupied level (ev): 4.9568 8.0652 -2.16412653454740 -2.16436868627491 -2.16461491529831 dexx = 0.00000204 Ry ! total energy = -15.84995327 Ry Harris-Foulkes estimate = -15.84995344 Ry estimated scf accuracy < 0.00000066 Ry The total energy is the sum of the following terms: one-electron contribution = 2.65256562 Ry hartree contribution = 1.09408965 Ry xc contribution = -3.77891120 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.16436869 Ry + Fock energy = -1.08230746 Ry NOW GO BACK TO REFINE HYBRID CALCULATION Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-08, avg # of iterations = 1.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.22E-10, avg # of iterations = 2.4 total cpu time spent up to now is 104.19 secs End of self-consistent calculation k = 0.1250 0.1250 0.1250 ( 172 PWs) bands (ev): -7.5223 3.6776 4.9549 4.9549 9.8898 10.2271 10.2271 12.2808 k = 0.1250 0.1250 0.3750 ( 180 PWs) bands (ev): -6.9604 2.0482 3.8622 4.0539 9.3646 11.0899 11.8009 12.1367 k = 0.1250 0.1250 0.6250 ( 186 PWs) bands (ev): -5.8507 0.2823 2.5308 2.9181 8.5355 10.1639 13.4065 13.6730 k = 0.1250 0.1250 0.8750 ( 192 PWs) bands (ev): -4.1535 -1.9046 1.6832 2.4043 8.0663 9.1663 15.7643 15.8571 k = 0.1250 0.3750 0.3750 ( 187 PWs) bands (ev): -6.4244 0.5515 2.8848 4.4809 10.0761 10.9280 11.1692 13.7041 k = 0.1250 0.3750 0.6250 ( 188 PWs) bands (ev): -5.3340 -0.8252 1.8538 3.2750 10.1194 10.8547 12.3478 13.3512 k = 0.1250 0.3750 0.8750 ( 189 PWs) bands (ev): -3.8864 -2.1003 1.0937 2.1718 9.6045 11.5454 12.6315 14.8916 k = 0.1250 0.6250 0.6250 ( 184 PWs) bands (ev): -4.4634 -1.7726 1.1773 3.2746 9.0907 12.8345 12.8499 14.3990 k = 0.3750 0.3750 0.3750 ( 183 PWs) bands (ev): -5.9446 -0.8615 4.1081 4.1081 9.0297 10.7649 10.7649 15.2938 k = 0.3750 0.3750 0.6250 ( 182 PWs) bands (ev): -5.0440 -1.8775 2.9338 3.5814 9.4820 10.8545 11.4387 14.7831 highest occupied, lowest unoccupied level (ev): 4.9549 8.0663 -2.16461491529831 -2.16465096802675 -2.16468715554926 dexx = 0.00000007 Ry ! total energy = -15.84995366 Ry Harris-Foulkes estimate = -15.84995367 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 2.65225706 Ry hartree contribution = 1.09417953 Ry xc contribution = -3.77893906 Ry ewald contribution = -16.89975858 Ry - averaged Fock potential = 2.16465097 Ry + Fock energy = -1.08234358 Ry convergence has been achieved in 1 iterations Writing output data file silicon.save Writing output data file silicon.save PWSCF : 1m48.70s CPU time, 1m50.15s wall time init_run : 0.22s CPU electrons : 108.03s CPU Called by init_run: wfcinit : 0.12s CPU potinit : 0.01s CPU Called by electrons: c_bands : 70.62s CPU ( 11 calls, 6.420 s avg) sum_band : 0.66s CPU ( 11 calls, 0.060 s avg) v_of_rho : 0.13s CPU ( 11 calls, 0.012 s avg) mix_rho : 0.00s CPU ( 11 calls, 0.000 s avg) Called by c_bands: init_us_2 : 0.04s CPU ( 230 calls, 0.000 s avg) cegterg : 70.58s CPU ( 110 calls, 0.642 s avg) Called by *egterg: h_psi : 70.35s CPU ( 346 calls, 0.203 s avg) g_psi : 0.03s CPU ( 226 calls, 0.000 s avg) cdiaghg : 0.20s CPU ( 286 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 346 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 346 calls, 0.000 s avg) cft3 : 0.07s CPU ( 107 calls, 0.001 s avg) cft3s : 70.90s CPU ( 111372 calls, 0.001 s avg) davcio : 0.00s CPU ( 470 calls, 0.000 s avg) EXX routines exx_grid : 0.01s CPU exxinit : 0.48s CPU ( 4 calls, 0.120 s avg) vexx : 68.61s CPU ( 187 calls, 0.367 s avg) exxen2 : 36.13s CPU ( 9 calls, 4.015 s avg) espresso-5.1/PW/examples/EXX_example/reference/n2.gaupbe.1nlcc.out-800000644000175000017500000004417112341373025023330 0ustar mbamba Program PWSCF v.5.0.2 starts on 26Apr2013 at 18:32:37 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 2 processors R & G space division: proc/nbgrp/npool/nimage = 2 Waiting for input... Reading input from standard input Warning: card &IONS ignored Warning: card / ignored Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Message from routine setup : BEWARE: nonlinear core correction is not consistent with hybrid XC Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used EXX: grid of k+q point setup nkqs = 1 Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 1836 1836 457 83516 83516 10407 Max 1837 1837 460 83521 83521 10408 Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 1.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = GAUPBE ( 1 420 4 0) EXX-fraction = 0.24 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /home/sjoshua/espresso.20130425/PW/examples/EXX_example/Pseudo/NPBE1nlcc.RRKJ3 MD5 check sum: 8c9de74fd816ad51f11d6d02916f6c56 Pseudo is Norm-conserving + core correction, Zval = 5.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential N 5.00 16.00000 ( 1.00) 12 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 N tau( 1) = ( 0.0499045 0.0499045 0.0499045 ) 2 N tau( 2) = ( -0.0499045 -0.0499045 -0.0499045 ) number of k points= 1 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 5204, 8) NL pseudopotentials 1.27 Mb ( 5204, 16) Each V/rho on FFT grid 2.85 Mb ( 186624) Each G-vector array 0.32 Mb ( 41761) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 5204, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 22.78 Mb ( 186624, 8) Check: negative/imaginary core charge= -0.000107 0.000000 Initial potential from superposition of free atoms starting charge 9.99999, renormalised to 10.00000 negative rho (up, down): 3.460E-05 0.000E+00 Starting wfc are 8 randomized atomic wfcs total cpu time spent up to now is 0.7 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.0 negative rho (up, down): 4.764E-06 0.000E+00 total cpu time spent up to now is 1.6 secs k = 0.0000 0.0000 0.0000 band energies (ev): -30.5763 -14.4396 -12.6923 -12.6922 -11.6512 -2.7990 -2.7985 -1.2766 highest occupied, lowest unoccupied level (ev): -11.6512 -2.7990 ! total energy = -42.85278242 Ry Harris-Foulkes estimate = -42.94333343 Ry estimated scf accuracy < 0.14840725 Ry The total energy is the sum of the following terms: one-electron contribution = -64.24843204 Ry hartree contribution = 33.24332689 Ry xc contribution = -13.25237422 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.69334904 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-03, avg # of iterations = 2.0 negative rho (up, down): 1.919E-08 0.000E+00 total cpu time spent up to now is 2.3 secs k = 0.0000 0.0000 0.0000 band energies (ev): -26.9686 -12.3482 -10.3719 -10.3717 -9.1697 -1.2149 -0.8819 -0.8817 highest occupied, lowest unoccupied level (ev): -9.1697 -1.2149 ! total energy = -42.87862905 Ry Harris-Foulkes estimate = -42.88431248 Ry estimated scf accuracy < 0.00968332 Ry The total energy is the sum of the following terms: one-electron contribution = -62.93071192 Ry hartree contribution = 32.74711007 Ry xc contribution = -13.15420891 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.25216620 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.68E-05, avg # of iterations = 2.0 total cpu time spent up to now is 3.1 secs k = 0.0000 0.0000 0.0000 band energies (ev): -27.7969 -12.8591 -11.0275 -11.0275 -9.6955 -1.4057 -1.4056 -1.2304 highest occupied, lowest unoccupied level (ev): -9.6955 -1.4057 ! total energy = -42.88039900 Ry Harris-Foulkes estimate = -42.88063838 Ry estimated scf accuracy < 0.00049353 Ry The total energy is the sum of the following terms: one-electron contribution = -63.29392199 Ry hartree contribution = 32.82500627 Ry xc contribution = -13.16943209 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.04660090 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.94E-06, avg # of iterations = 2.0 total cpu time spent up to now is 3.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -27.6557 -12.7754 -10.9481 -10.9481 -9.5882 -1.3413 -1.3413 -1.2269 highest occupied, lowest unoccupied level (ev): -9.5882 -1.3413 ! total energy = -42.88043725 Ry Harris-Foulkes estimate = -42.88047977 Ry estimated scf accuracy < 0.00005097 Ry The total energy is the sum of the following terms: one-electron contribution = -63.23894085 Ry hartree contribution = 32.81405048 Ry xc contribution = -13.16689478 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry convergence has been achieved in 4 iterations EXX: now go back to refine exchange calculation total cpu time spent up to now is 5.2 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.94E-06, avg # of iterations = 4.0 total cpu time spent up to now is 12.9 secs k = 0.0000 0.0000 0.0000 band energies (ev): -31.0467 -15.2529 -12.8640 -12.8640 -11.8234 -1.1743 -0.9154 -0.9154 highest occupied, lowest unoccupied level (ev): -11.8234 -1.1743 ! total energy = -42.59640420 Ry Harris-Foulkes estimate = -42.59805369 Ry estimated scf accuracy < 0.00093491 Ry The total energy is the sum of the following terms: one-electron contribution = -66.64657632 Ry hartree contribution = 32.97931380 Ry xc contribution = -11.30366114 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 3.21721181 Ry + Fock energy = -1.60356426 Ry scf correction = 0.05960729 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.35E-06, avg # of iterations = 2.0 total cpu time spent up to now is 18.5 secs k = 0.0000 0.0000 0.0000 band energies (ev): -30.7987 -15.0562 -12.6598 -12.6598 -11.6160 -1.1695 -0.7533 -0.7533 highest occupied, lowest unoccupied level (ev): -11.6160 -1.1695 ! total energy = -42.59641287 Ry Harris-Foulkes estimate = -42.59696094 Ry estimated scf accuracy < 0.00100408 Ry The total energy is the sum of the following terms: one-electron contribution = -66.55828358 Ry hartree contribution = 32.96646331 Ry xc contribution = -11.30066585 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 3.21466527 Ry + Fock energy = -1.60356426 Ry scf correction = -0.01883892 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.35E-06, avg # of iterations = 2.0 total cpu time spent up to now is 23.5 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -30.8224 -15.0662 -12.6748 -12.6748 -11.6315 -1.1694 -0.7645 -0.7645 highest occupied, lowest unoccupied level (ev): -11.6315 -1.1694 ! total energy = -42.59648913 Ry Harris-Foulkes estimate = -42.59668665 Ry estimated scf accuracy < 0.00009018 Ry The total energy is the sum of the following terms: one-electron contribution = -66.57117516 Ry hartree contribution = 32.95737804 Ry xc contribution = -11.29760418 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 3.21497734 Ry + Fock energy = -1.60356426 Ry convergence has been achieved in 3 iterations est. exchange err (dexx) = 0.00018904 Ry EXX: now go back to refine exchange calculation total cpu time spent up to now is 24.5 secs Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.35E-06, avg # of iterations = 2.0 total cpu time spent up to now is 29.7 secs k = 0.0000 0.0000 0.0000 band energies (ev): -30.8382 -15.0850 -12.6943 -12.6943 -11.6702 -1.1687 -0.7620 -0.7620 highest occupied, lowest unoccupied level (ev): -11.6702 -1.1687 ! total energy = -42.59638728 Ry Harris-Foulkes estimate = -42.59684668 Ry estimated scf accuracy < 0.00046764 Ry The total energy is the sum of the following terms: one-electron contribution = -66.60163336 Ry hartree contribution = 32.97663366 Ry xc contribution = -11.30112855 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 3.22416173 Ry + Fock energy = -1.61160212 Ry scf correction = 0.00679093 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.68E-06, avg # of iterations = 2.0 total cpu time spent up to now is 35.0 secs k = 0.0000 0.0000 0.0000 band energies (ev): -30.8117 -15.0616 -12.6720 -12.6720 -11.6434 -1.1683 -0.7430 -0.7430 highest occupied, lowest unoccupied level (ev): -11.6434 -1.1683 ! total energy = -42.59643219 Ry Harris-Foulkes estimate = -42.59693878 Ry estimated scf accuracy < 0.00124665 Ry The total energy is the sum of the following terms: one-electron contribution = -66.59176598 Ry hartree contribution = 32.97553347 Ry xc contribution = -11.30091219 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 3.22387752 Ry + Fock energy = -1.61160212 Ry scf correction = -0.00223752 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.68E-06, avg # of iterations = 2.0 total cpu time spent up to now is 40.1 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -30.8133 -15.0607 -12.6726 -12.6726 -11.6465 -1.1683 -0.7443 -0.7443 highest occupied, lowest unoccupied level (ev): -11.6465 -1.1683 ! total energy = -42.59663935 Ry Harris-Foulkes estimate = -42.59664697 Ry estimated scf accuracy < 0.00000013 Ry The total energy is the sum of the following terms: one-electron contribution = -66.59295984 Ry hartree contribution = 32.97390408 Ry xc contribution = -11.30053363 Ry ewald contribution = 0.71134791 Ry - averaged Fock potential = 3.22391841 Ry + Fock energy = -1.61160212 Ry convergence has been achieved in 3 iterations est. exchange err (dexx) = 0.00000437 Ry End of self-consistent calculation Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.02512558 -0.02512558 -0.02512558 atom 2 type 1 force = 0.02512558 0.02512558 0.02512558 Total force = 0.061545 Total SCF correction = 0.000388 Writing output data file n2.save init_run : 0.59s CPU 0.65s WALL ( 1 calls) electrons : 33.41s CPU 37.06s WALL ( 3 calls) forces : 0.46s CPU 0.50s WALL ( 1 calls) Called by init_run: wfcinit : 0.07s CPU 0.09s WALL ( 1 calls) potinit : 0.32s CPU 0.35s WALL ( 1 calls) Called by electrons: c_bands : 25.00s CPU 27.74s WALL ( 10 calls) sum_band : 0.80s CPU 0.91s WALL ( 10 calls) v_of_rho : 3.93s CPU 4.26s WALL ( 12 calls) mix_rho : 0.19s CPU 0.28s WALL ( 10 calls) Called by c_bands: init_us_2 : 0.04s CPU 0.05s WALL ( 21 calls) regterg : 24.94s CPU 27.67s WALL ( 10 calls) Called by *egterg: h_psi : 24.83s CPU 27.54s WALL ( 38 calls) g_psi : 0.02s CPU 0.02s WALL ( 27 calls) rdiaghg : 0.01s CPU 0.01s WALL ( 35 calls) Called by h_psi: add_vuspsi : 0.03s CPU 0.02s WALL ( 38 calls) General routines calbec : 0.04s CPU 0.04s WALL ( 42 calls) fft : 2.07s CPU 2.30s WALL ( 137 calls) fftw : 2.48s CPU 2.96s WALL ( 296 calls) davcio : 0.00s CPU 0.00s WALL ( 1 calls) Parallel routines fft_scatter : 8.91s CPU 11.20s WALL ( 1837 calls) EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.57s CPU 0.65s WALL ( 3 calls) vexx : 22.39s CPU 24.68s WALL ( 20 calls) exxen2 : 5.93s CPU 6.51s WALL ( 9 calls) PWSCF : 37.55s CPU 41.60s WALL This run was terminated on: 18:33:18 26Apr2013 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/c.hse.1nlcc.out-800000644000175000017500000002761112341373025022547 0ustar mbamba Program PWSCF v.4.3.2 starts on 21Nov2011 at 17:55:37 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI), running on 1 processors EXPERIMENTAL VERSION WITH EXACT EXCHANGE Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from stdin IMPORTANT: XC functional enforced from input : Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 bravais-lattice index = 1 lattice parameter (alat) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 4.00 (up: 3.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = HSE ( 1 412 4 0) EXX-fraction = 0.25 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file: /scratch/dalcorso_sissa/trunk/espresso/examples/EXX_example/Pseudo/CPBE1nlcc.RRKJ3 MD5 check sum: 6343d94e6269eb5d49eee3a5c5ef8fb6 Pseudo is Norm-conserving + core correction, Zval = 4.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1073 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential C 4.00 16.00000 ( 1.00) Starting magnetic structure atomic species magnetization C 0.200 No symmetry found (note: 47 additional sym.ops. were found but ignored their fractional transations are incommensurate with FFT grid) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( 0.0157477 0.0314954 0.0472432 ) number of k points= 2 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 Dense grid: 83519 G-vectors FFT dimensions: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 10408, 4) NL pseudopotentials 1.27 Mb ( 10408, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.27 Mb ( 10408, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000030 0.000000 Initial potential from superposition of free atoms starting charge 3.99996, renormalised to 4.00000 negative rho (up, down): 0.532E-06 0.355E-06 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 1.5 secs per-process dynamical memory: 83.7 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.332E-07 0.784E-07 total cpu time spent up to now is 2.9 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -13.7963 -5.2656 -5.2650 -5.2644 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -12.6317 -4.2311 -4.2307 -4.2301 ! total energy = -11.85890076 Ry Harris-Foulkes estimate = -11.82107130 Ry estimated scf accuracy < 0.05337063 Ry The total energy is the sum of the following terms: one-electron contribution = -9.16229708 Ry hartree contribution = 5.16121588 Ry xc contribution = -4.05528154 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.01947472 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-03, avg # of iterations = 1.0 total cpu time spent up to now is 4.3 secs ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 band energies (ev): -14.0625 -5.6235 -5.6232 -5.3245 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 band energies (ev): -11.8739 -4.1897 -3.1905 -3.1895 ! total energy = -11.86603994 Ry Harris-Foulkes estimate = -11.86089580 Ry estimated scf accuracy < 0.00501892 Ry The total energy is the sum of the following terms: one-electron contribution = -9.19283788 Ry hartree contribution = 5.24412713 Ry xc contribution = -4.13425359 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = -0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -0.00001230 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.00 Bohr mag/cell iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-04, avg # of iterations = 1.5 total cpu time spent up to now is 5.6 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -13.9616 -5.6022 -5.6019 -5.0954 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -11.3642 -4.0514 -2.5607 -2.5598 EXX: now go back to refine exchange calculation -1.1759192261888298 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.25E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.46E-06, avg # of iterations = 2.0 total cpu time spent up to now is 13.9 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -15.8332 -6.7794 -6.7789 -3.9666 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -12.3439 -2.9970 -1.5421 -1.5413 -1.1759192261888298 -1.1791566282264065 -1.1825472598828355 est. exchange err (dexx) = 0.00007661 Ry ! total energy = -11.61677064 Ry Harris-Foulkes estimate = -11.61677758 Ry estimated scf accuracy < 0.00010005 Ry The total energy is the sum of the following terms: one-electron contribution = -10.37386445 Ry hartree contribution = 5.25150455 Ry xc contribution = -3.29923043 Ry ewald contribution = -3.78306331 Ry - averaged Fock potential = 1.17915663 Ry + Fock energy = -0.59127363 Ry total magnetization = 2.00 Bohr mag/cell absolute magnetization = 2.01 Bohr mag/cell convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 Total force = 0.000000 Total SCF correction = 0.000109 Writing output data file c.save init_run : 1.44s CPU 1.48s WALL ( 1 calls) electrons : 12.48s CPU 12.88s WALL ( 1 calls) forces : 1.71s CPU 1.73s WALL ( 1 calls) Called by init_run: wfcinit : 0.10s CPU 0.10s WALL ( 1 calls) potinit : 1.06s CPU 1.08s WALL ( 1 calls) Called by electrons: c_bands : 4.49s CPU 4.59s WALL ( 5 calls) sum_band : 0.52s CPU 0.52s WALL ( 5 calls) v_of_rho : 6.94s CPU 7.00s WALL ( 6 calls) mix_rho : 0.09s CPU 0.10s WALL ( 5 calls) Called by c_bands: init_us_2 : 0.07s CPU 0.07s WALL ( 24 calls) regterg : 4.44s CPU 4.53s WALL ( 10 calls) Called by *egterg: h_psi : 4.45s CPU 4.54s WALL ( 27 calls) g_psi : 0.01s CPU 0.01s WALL ( 15 calls) rdiaghg : 0.00s CPU 0.00s WALL ( 21 calls) Called by h_psi: add_vuspsi : 0.02s CPU 0.02s WALL ( 27 calls) General routines calbec : 0.02s CPU 0.03s WALL ( 35 calls) fft : 1.64s CPU 1.64s WALL ( 137 calls) ffts : 1.97s CPU 1.98s WALL ( 164 calls) fftw : 2.23s CPU 2.23s WALL ( 246 calls) davcio : 0.00s CPU 0.01s WALL ( 44 calls) Parallel routines EXX routines exx_grid : 0.00s CPU 0.00s WALL ( 1 calls) exxinit : 0.17s CPU 0.18s WALL ( 2 calls) vexx : 3.34s CPU 3.43s WALL ( 12 calls) exxen2 : 1.15s CPU 1.15s WALL ( 3 calls) PWSCF : 15.72s CPU 16.36s WALL This run was terminated on: 17:55:53 21Nov2011 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/EXX_example/reference/co.pbe0.1nlcc.out-800000644000175000017500000003075712341373025023002 0ustar mbamba Program PWSCF v.4.1CVS starts ... Today is 6Mar2009 at 23: 5:31 !!! EXPERIMENTAL VERSION WITH EXX STUFF !!! !!! DO NOT USE IT FOR ANY PRODUCTION RUN !!! For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 !!! XC functional enforced from input : Exchange-correlation = PBE0 (6484) !!! Any further DFT definition will be discarded !!! Please, verify this is what you really want ! Warning: card &IONS ignored Warning: card / ignored gamma-point specific algorithms are used tcpu = 0.1 self-consistency for image 0 EXX : q-grid dimensions are 1 1 1 EXX : q->0 dealt with 8/7 -1/7 trick EXX GRID CHECK SUCCESSFUL bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 80.0000 Ry charge density cutoff = 320.0000 Ry convergence threshold = 5.0E-04 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE0 (6484) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for read from file CPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 4.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1073 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 PseudoPot. # 2 for read from file OPBE1nlcc.RRKJ3 Pseudo is Norm-conserving + core correction, Zval = 6.0 RRKJ3 norm-conserving PP, generated by Andrea Dal Corso code Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential C 4.00 16.00000 ( 1.00) O 6.00 16.00000 ( 1.00) 6 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.0512746 0.0512746 0.0512746 ) 2 O tau( 2) = ( -0.0512746 -0.0512746 -0.0512746 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1167.2200 ( 83519 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.27 Mb ( 10408, 8) NL pseudopotentials 2.54 Mb ( 10408, 16) Each V/rho on FFT grid 5.70 Mb ( 373248) Each G-vector array 0.64 Mb ( 83519) G-vector shells 0.01 Mb ( 975) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.54 Mb ( 10408, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) Check: negative/imaginary core charge= -0.000167 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000103 starting charge 9.99996, renormalised to 10.00000 negative rho (up, down): 0.103E-03 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 4.65 secs per-process dynamical memory: 44.7 Mb Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.123E-04 0.000E+00 total cpu time spent up to now is 9.72 secs k = 0.0000 0.0000 0.0000 band energies (ev): -31.3472 -15.4362 -12.9167 -12.9167 -9.8191 -2.5484 -2.5484 -1.5477 highest occupied, lowest unoccupied level (ev): -9.8191 -2.5484 ! total energy = -46.43592510 Ry Harris-Foulkes estimate = -46.53132574 Ry estimated scf accuracy < 0.15604071 Ry The total energy is the sum of the following terms: one-electron contribution = -67.96315881 Ry hartree contribution = 35.36824211 Ry xc contribution = -13.72736374 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.75436899 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-03, avg # of iterations = 2.0 negative rho (up, down): 0.117E-05 0.000E+00 total cpu time spent up to now is 14.05 secs k = 0.0000 0.0000 0.0000 band energies (ev): -27.6263 -12.3993 -10.2152 -10.2152 -8.3870 -1.4941 -1.0373 -1.0373 highest occupied, lowest unoccupied level (ev): -8.3870 -1.4941 ! total energy = -46.43481331 Ry Harris-Foulkes estimate = -46.50818277 Ry estimated scf accuracy < 0.14289898 Ry The total energy is the sum of the following terms: one-electron contribution = -65.36658280 Ry hartree contribution = 34.54934930 Ry xc contribution = -13.58147502 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = -1.16809113 Ry iteration # 3 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.43E-03, avg # of iterations = 2.0 total cpu time spent up to now is 18.41 secs k = 0.0000 0.0000 0.0000 band energies (ev): -29.0396 -13.8828 -11.4508 -11.4508 -8.1323 -1.5016 -1.3181 -1.3181 highest occupied, lowest unoccupied level (ev): -8.1323 -1.5016 ! total energy = -46.47218791 Ry Harris-Foulkes estimate = -46.48383527 Ry estimated scf accuracy < 0.03091612 Ry The total energy is the sum of the following terms: one-electron contribution = -67.07998479 Ry hartree contribution = 34.60903495 Ry xc contribution = -13.58723955 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 0.00000000 Ry + Fock energy = 0.00000000 Ry scf correction = 0.45401513 Ry iteration # 4 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.09E-04, avg # of iterations = 1.0 total cpu time spent up to now is 22.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -28.8898 -13.5677 -11.2955 -11.2955 -8.4815 -1.5048 -1.4901 -1.4901 highest occupied, lowest unoccupied level (ev): -8.4815 -1.5048 1.59576912160573 1.59576912160573 EXX divergence ( 1)= -700.4071 0.1250 exx_div : 0.03s CPU ! EXXALFA SET TO 0.250000000000000 NOW GO BACK TO REFINE HYBRID CALCULATION -4.64868939815069 Self-consistent Calculation iteration # 1 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.09E-04, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.03E-05, avg # of iterations = 3.0 total cpu time spent up to now is 73.72 secs k = 0.0000 0.0000 0.0000 band energies (ev): -32.1042 -15.6411 -12.8080 -12.8080 -10.0317 -0.8059 -0.1679 -0.1679 highest occupied, lowest unoccupied level (ev): -10.0317 -0.8059 ! total energy = -45.60908687 Ry Harris-Foulkes estimate = -45.60972160 Ry estimated scf accuracy < 0.00103620 Ry The total energy is the sum of the following terms: one-electron contribution = -71.29401769 Ry hartree contribution = 34.63989370 Ry xc contribution = -10.38959871 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 4.64764442 Ry + Fock energy = -2.32434470 Ry scf correction = -0.02169522 Ry iteration # 2 ecut= 80.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-05, avg # of iterations = 2.0 total cpu time spent up to now is 97.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10408 PWs) bands (ev): -32.2201 -15.7410 -12.8947 -12.8947 -10.0951 -0.8075 -0.2248 -0.2248 highest occupied, lowest unoccupied level (ev): -10.0951 -0.8075 -4.64868939815069 -4.65359157741610 -4.65918683846216 dexx = 0.00034654 Ry ! total energy = -45.60950686 Ry Harris-Foulkes estimate = -45.60961709 Ry estimated scf accuracy < 0.00013343 Ry The total energy is the sum of the following terms: one-electron contribution = -71.40341330 Ry hartree contribution = 34.74001347 Ry xc contribution = -10.40209154 Ry ewald contribution = -0.86801365 Ry - averaged Fock potential = 4.65359158 Ry + Fock energy = -2.32959342 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00635578 -0.00635578 -0.00635578 atom 2 type 2 force = 0.00635578 0.00635578 0.00635578 Total force = 0.015568 Total SCF correction = 0.013458 Writing output data file o2.save Writing output data file o2.save PWSCF : 1m44.23s CPU time, 1m45.85s wall time init_run : 4.53s CPU electrons : 96.63s CPU forces : 2.21s CPU Called by init_run: wfcinit : 0.45s CPU potinit : 1.84s CPU Called by electrons: c_bands : 61.51s CPU ( 7 calls, 8.787 s avg) sum_band : 3.16s CPU ( 7 calls, 0.451 s avg) v_of_rho : 16.08s CPU ( 8 calls, 2.009 s avg) mix_rho : 1.31s CPU ( 7 calls, 0.187 s avg) Called by c_bands: init_us_2 : 0.29s CPU ( 15 calls, 0.019 s avg) regterg : 61.20s CPU ( 7 calls, 8.743 s avg) Called by *egterg: h_psi : 61.03s CPU ( 26 calls, 2.347 s avg) g_psi : 0.12s CPU ( 18 calls, 0.007 s avg) rdiaghg : 0.01s CPU ( 23 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.10s CPU ( 26 calls, 0.004 s avg) General routines calbec : 0.12s CPU ( 30 calls, 0.004 s avg) cft3 : 12.69s CPU ( 89 calls, 0.143 s avg) cft3s : 59.49s CPU ( 814 calls, 0.073 s avg) davcio : 0.00s CPU ( 6 calls, 0.000 s avg) EXX routines exx_grid : 0.00s CPU exxinit : 0.68s CPU ( 2 calls, 0.339 s avg) vexx : 51.51s CPU ( 10 calls, 5.151 s avg) exxen2 : 14.88s CPU ( 4 calls, 3.720 s avg) espresso-5.1/PW/examples/cluster_example/0000755000175000017500000000000012341373041016640 5ustar mbambaespresso-5.1/PW/examples/cluster_example/README0000644000175000017500000000115712341373025017526 0ustar mbambaThis example shows how to use pw.x to calculate propeties of isolated systems decoupling periodic images by using Martyna-Tuckerman approach with truncated coulomb interaction. Three simple systems are considered: 1) a N atom. 2) a NH4+ ion. 3) a water molecule. The calculations are performed in a SC cell of dimension 16 bohr It is possible to explore convergence of the results w.r.t. box size by editing the script and addind/modifying the variable called BOX_SIZE_LIST. Values for BOX_SIZE_LIST = " 12 16 20 24" are provided in the reference Relevant variables in pw.x input is assume_isolated in namelist SYSTEM espresso-5.1/PW/examples/cluster_example/run_example0000755000175000017500000001325412341373025021114 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether ECHO has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to calculate propeties of " $ECHO "isolated systems decoupling periodic images by using " $ECHO "Martyna-Tuckerman approach with truncated coulomb interaction." $ECHO $ECHO "Three simple systems are considered:" $ECHO "1) a N atom. " $ECHO "2) a NH4+ ion." $ECHO "3) a water molecule." $ECHO $ECHO "The calculations are performed in a SC cell of dimension 16 bohr" $ECHO "It is possible to explore convergence of the results w.r.t. box size" $ECHO "by editing the script and addind/modifying the variable called BOX_SIZE_LIST" #list of BOX dimesions used in the calculation: modify this list if you wish BOX_SIZE_LIST=" 16 " $ECHO # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST=" H.pbe-kjpaw.UPF N.pbe-kjpaw.UPF O.pbe-kjpaw.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO rm -f n.eigenvalues nh4+.eigenvalues h2o.eigenvalues for a in $BOX_SIZE_LIST ; do $ECHO " running tests for a box size = $a bohr " $ECHO # self-consistent calculation cat > n.in << EOF &CONTROL prefix = "N", pseudo_dir = "$PSEUDO_DIR", outdir = "$TMP_DIR", / &SYSTEM ibrav = 1, celldm(1) = $a.0 nat = 1, ntyp = 1, ecutwfc = 30.D0, ecutrho = 120.D0, nspin = 2, tot_magnetization = 3, assume_isolated = 'martyna-tuckerman' / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / ATOMIC_SPECIES N 1.00 N.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} N 0.000 0.0 0.0 0 0 0 K_POINTS Gamma EOF $ECHO " running scf calculation for N atom...\c" $PW_COMMAND < n.in > n.out-$a check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/N.* $ECHO " done" grep -e bands --after=3 n.out-$a| grep -e " -"| tail -2| awk -v a=$a '{print a, $0}' >> n.eigenvalues # self-consistent calculation cat > nh4+.in << EOF &CONTROL calculation = 'relax' prefix = "NH4+", pseudo_dir = "$PSEUDO_DIR", outdir = "$TMP_DIR", / &SYSTEM ibrav = 1, celldm(1) = $a.0 nat = 5, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, tot_charge = +1.0 nbnd = 8 assume_isolated = 'martyna-tuckerman' / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / ATOMIC_SPECIES N 1.00 N.pbe-kjpaw.UPF H 1.00 H.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} N 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 H -1.0 1.0 -1.0 H 1.0 -1.0 -1.0 K_POINTS Gamma EOF $ECHO " running relax calculation for NH4+ ion...\c" $PW_COMMAND < nh4+.in > nh4+.out-$a check_failure $? $ECHO " done" grep -e bands --after=3 nh4+.out-$a| grep -e " -"| tail -1| awk -v a=$a '{print a, $0}' >> nh4+.eigenvalues # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/NH4+* $ECHO " done" # self-consistent calculation cat > h2o.in << EOF &CONTROL calculation = 'relax' prefix = "H2O", pseudo_dir = "$PSEUDO_DIR", outdir = "$TMP_DIR", / &SYSTEM ibrav = 1, celldm(1) = $a.0 nat = 3, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, nbnd = 8 assume_isolated = 'martyna-tuckerman' / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / ATOMIC_SPECIES O 1.00 O.pbe-kjpaw.UPF H 1.00 H.pbe-kjpaw.UPF ATOMIC_POSITIONS {bohr} O 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 K_POINTS Gamma EOF $ECHO " running relax calculation for H2O molecule...\c" $PW_COMMAND < h2o.in > h2o.out-$a check_failure $? $ECHO " done" grep -e bands --after=3 h2o.out-$a| grep -e " -"| tail -1| awk -v a=$a '{print a, $0}' >> h2o.eigenvalues # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/H2O* $ECHO " done" $ECHO done $ECHO " eigenvalues of N atom" cat n.eigenvalues $ECHO $ECHO " to be compared with the reference values" cat ../reference/n.eigenvalues $ECHO $ECHO $ECHO " eigenvalues of NH4+ ions" cat nh4+.eigenvalues $ECHO $ECHO " to be compared with the reference values" cat ../reference/nh4+.eigenvalues $ECHO $ECHO $ECHO " eigenvalues of H2O molecule" cat h2o.eigenvalues $ECHO $ECHO " to be compared with the reference values" cat ../reference/h2o.eigenvalues $ECHO $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/cluster_example/reference/0000755000175000017500000000000012341373041020576 5ustar mbambaespresso-5.1/PW/examples/cluster_example/reference/nh4+.out-240000644000175000017500000006134112341373025022325 0ustar mbamba Program PWSCF v.4.1 starts on 9Sep2009 at 13:21:17 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 24.0000 a.u. unit-cell volume = 13824.0000 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 24.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) H 1.00 1.00000 H( 1.00) 24 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0416667 0.0416667 0.0416667 ) 3 H tau( 3) = ( -0.0416667 -0.0416667 0.0416667 ) 4 H tau( 4) = ( -0.0416667 0.0416667 -0.0416667 ) 5 H tau( 5) = ( 0.0416667 -0.0416667 -0.0416667 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1750.8301 ( 153598 G-vectors) FFT grid: ( 90, 90, 90) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 2.34 Mb ( 19201, 8) NL pseudopotentials 4.69 Mb ( 19201, 16) Each V/rho on FFT grid 11.12 Mb ( 729000) Each G-vector array 1.17 Mb ( 153598) G-vector shells 0.01 Mb ( 1463) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 4.69 Mb ( 19201, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 88.99 Mb ( 729000, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000001 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.013517 starting charge 8.99996, renormalised to 8.00000 negative rho (up, down): 0.120E-01 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 13.99 secs per-process dynamical memory: 85.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.242E-01 0.000E+00 total cpu time spent up to now is 25.00 secs total energy = -31.58658958 Ry Harris-Foulkes estimate = -33.29799156 Ry estimated scf accuracy < 2.27024507 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.317E-01 0.000E+00 total cpu time spent up to now is 36.11 secs total energy = -32.20625908 Ry Harris-Foulkes estimate = -32.59290460 Ry estimated scf accuracy < 0.68378121 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.55E-03, avg # of iterations = 2.0 negative rho (up, down): 0.432E-01 0.000E+00 total cpu time spent up to now is 46.10 secs total energy = -32.34045239 Ry Harris-Foulkes estimate = -32.34810252 Ry estimated scf accuracy < 0.01446679 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-04, avg # of iterations = 5.0 negative rho (up, down): 0.392E-01 0.000E+00 total cpu time spent up to now is 58.52 secs total energy = -32.34493369 Ry Harris-Foulkes estimate = -32.34625240 Ry estimated scf accuracy < 0.00269466 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.37E-05, avg # of iterations = 3.0 negative rho (up, down): 0.395E-01 0.000E+00 total cpu time spent up to now is 69.20 secs total energy = -32.34507132 Ry Harris-Foulkes estimate = -32.34508632 Ry estimated scf accuracy < 0.00004629 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.79E-07, avg # of iterations = 3.0 negative rho (up, down): 0.397E-01 0.000E+00 total cpu time spent up to now is 80.50 secs total energy = -32.34507818 Ry Harris-Foulkes estimate = -32.34511103 Ry estimated scf accuracy < 0.00007321 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.79E-07, avg # of iterations = 2.0 negative rho (up, down): 0.397E-01 0.000E+00 total cpu time spent up to now is 90.74 secs total energy = -32.34508465 Ry Harris-Foulkes estimate = -32.34508499 Ry estimated scf accuracy < 0.00000104 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-08, avg # of iterations = 2.0 negative rho (up, down): 0.397E-01 0.000E+00 total cpu time spent up to now is 101.09 secs total energy = -32.34508482 Ry Harris-Foulkes estimate = -32.34508488 Ry estimated scf accuracy < 0.00000020 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-09, avg # of iterations = 1.0 negative rho (up, down): 0.397E-01 0.000E+00 total cpu time spent up to now is 109.99 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -33.6586 -22.4014 -22.4014 -22.4014 -6.5453 -4.3761 -4.3761 -4.3761 highest occupied, lowest unoccupied level (ev): -22.4014 -6.5453 ! total energy = -32.34508482 Ry Harris-Foulkes estimate = -32.34508483 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -113.643886 Ry The total energy is the sum of the following terms: one-electron contribution = -82.06407715 Ry hartree contribution = 38.91280825 Ry xc contribution = -8.21188522 Ry ewald contribution = 27.33665144 Ry one-center paw contrib. = -8.31858215 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.397E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.15451646 0.15451646 0.15451646 atom 3 type 2 force = -0.15451646 -0.15451646 0.15451646 atom 4 type 2 force = -0.15451646 0.15451646 -0.15451646 atom 5 type 2 force = 0.15451646 -0.15451646 -0.15451646 Total force = 0.535261 Total SCF correction = 0.000070 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -32.3450848239 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.144337567 1.144337567 1.144337567 H -1.144337567 -1.144337567 1.144337567 H -1.144337567 1.144337567 -1.144337567 H 1.144337567 -1.144337567 -1.144337567 Writing output data file NH4+.save Check: negative starting charge= -0.013517 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000001 0.000000 Check: negative starting charge= -0.013280 negative rho (up, down): 0.280E-01 0.000E+00 total cpu time spent up to now is 123.18 secs per-process dynamical memory: 86.8 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 13.0 negative rho (up, down): 0.279E-01 0.000E+00 total cpu time spent up to now is 142.45 secs total energy = -32.41550390 Ry Harris-Foulkes estimate = -32.47340633 Ry estimated scf accuracy < 0.08721285 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-03, avg # of iterations = 2.0 negative rho (up, down): 0.279E-01 0.000E+00 total cpu time spent up to now is 152.38 secs total energy = -32.43890747 Ry Harris-Foulkes estimate = -32.46782239 Ry estimated scf accuracy < 0.05582351 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.98E-04, avg # of iterations = 2.0 negative rho (up, down): 0.294E-01 0.000E+00 total cpu time spent up to now is 162.30 secs total energy = -32.45035267 Ry Harris-Foulkes estimate = -32.45027140 Ry estimated scf accuracy < 0.00033716 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-06, avg # of iterations = 4.0 negative rho (up, down): 0.294E-01 0.000E+00 total cpu time spent up to now is 173.73 secs total energy = -32.45042841 Ry Harris-Foulkes estimate = -32.45043218 Ry estimated scf accuracy < 0.00001656 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.07E-07, avg # of iterations = 1.0 negative rho (up, down): 0.295E-01 0.000E+00 total cpu time spent up to now is 183.19 secs total energy = -32.45042688 Ry Harris-Foulkes estimate = -32.45042949 Ry estimated scf accuracy < 0.00000609 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.61E-08, avg # of iterations = 1.0 negative rho (up, down): 0.295E-01 0.000E+00 total cpu time spent up to now is 192.12 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -31.3910 -20.6959 -20.6959 -20.6959 -7.0968 -4.9716 -4.9716 -4.9716 highest occupied, lowest unoccupied level (ev): -20.6959 -7.0968 ! total energy = -32.45042745 Ry Harris-Foulkes estimate = -32.45042749 Ry estimated scf accuracy < 0.00000008 Ry total all-electron energy = -113.749229 Ry The total energy is the sum of the following terms: one-electron contribution = -76.79128151 Ry hartree contribution = 36.52863066 Ry xc contribution = -7.77342486 Ry ewald contribution = 23.88862537 Ry one-center paw contrib. = -8.30297711 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.295E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.01169506 -0.01169506 -0.01169506 atom 3 type 2 force = 0.01169506 0.01169506 -0.01169506 atom 4 type 2 force = 0.01169506 -0.01169506 0.01169506 atom 5 type 2 force = -0.01169506 0.01169506 0.01169506 Total force = 0.040513 Total SCF correction = 0.000135 number of scf cycles = 2 number of bfgs steps = 1 energy old = -32.3450848239 Ry energy new = -32.4504274520 Ry CASE: energy _new < energy _old new trust radius = 0.0351812428 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.134181617 1.134181617 1.134181617 H -1.134181617 -1.134181617 1.134181617 H -1.134181617 1.134181617 -1.134181617 H 1.134181617 -1.134181617 -1.134181617 Writing output data file NH4+.save Check: negative starting charge= -0.013280 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000001 0.000000 Check: negative starting charge= -0.013463 negative rho (up, down): 0.301E-01 0.000E+00 total cpu time spent up to now is 205.52 secs per-process dynamical memory: 86.8 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.302E-01 0.000E+00 total cpu time spent up to now is 217.93 secs total energy = -32.45126524 Ry Harris-Foulkes estimate = -32.45142936 Ry estimated scf accuracy < 0.00026569 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.32E-06, avg # of iterations = 2.0 negative rho (up, down): 0.303E-01 0.000E+00 total cpu time spent up to now is 228.50 secs total energy = -32.45133362 Ry Harris-Foulkes estimate = -32.45141499 Ry estimated scf accuracy < 0.00015635 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.95E-06, avg # of iterations = 2.0 negative rho (up, down): 0.304E-01 0.000E+00 total cpu time spent up to now is 238.46 secs total energy = -32.45136662 Ry Harris-Foulkes estimate = -32.45136635 Ry estimated scf accuracy < 0.00000143 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-08, avg # of iterations = 2.0 negative rho (up, down): 0.304E-01 0.000E+00 total cpu time spent up to now is 247.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -31.5365 -20.8064 -20.8064 -20.8064 -7.0465 -4.9120 -4.9120 -4.9120 highest occupied, lowest unoccupied level (ev): -20.8064 -7.0465 ! total energy = -32.45136691 Ry Harris-Foulkes estimate = -32.45136692 Ry estimated scf accuracy < 0.00000005 Ry total all-electron energy = -113.750168 Ry The total energy is the sum of the following terms: one-electron contribution = -77.12932859 Ry hartree contribution = 36.68017456 Ry xc contribution = -7.80100063 Ry ewald contribution = 24.10253440 Ry one-center paw contrib. = -8.30374664 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.304E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.00369958 -0.00369958 -0.00369958 atom 3 type 2 force = 0.00369958 0.00369958 -0.00369958 atom 4 type 2 force = 0.00369958 -0.00369958 0.00369958 atom 5 type 2 force = -0.00369958 0.00369958 0.00369958 Total force = 0.012816 Total SCF correction = 0.000024 number of scf cycles = 3 number of bfgs steps = 2 energy old = -32.4504274520 Ry energy new = -32.4513669090 Ry CASE: energy _new < energy _old new trust radius = 0.0162786778 bohr new conv_thr = 0.0000000370 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129482368 1.129482368 1.129482368 H -1.129482368 -1.129482368 1.129482368 H -1.129482368 1.129482368 -1.129482368 H 1.129482368 -1.129482368 -1.129482368 Writing output data file NH4+.save Check: negative starting charge= -0.013463 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000001 0.000000 Check: negative starting charge= -0.013561 negative rho (up, down): 0.307E-01 0.000E+00 total cpu time spent up to now is 261.04 secs per-process dynamical memory: 86.8 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.308E-01 0.000E+00 total cpu time spent up to now is 272.98 secs total energy = -32.45144428 Ry Harris-Foulkes estimate = -32.45148063 Ry estimated scf accuracy < 0.00005836 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.30E-07, avg # of iterations = 2.0 negative rho (up, down): 0.308E-01 0.000E+00 total cpu time spent up to now is 283.55 secs total energy = -32.45145920 Ry Harris-Foulkes estimate = -32.45147661 Ry estimated scf accuracy < 0.00003311 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.14E-07, avg # of iterations = 2.0 negative rho (up, down): 0.308E-01 0.000E+00 total cpu time spent up to now is 293.55 secs total energy = -32.45146623 Ry Harris-Foulkes estimate = -32.45146619 Ry estimated scf accuracy < 0.00000032 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.94E-09, avg # of iterations = 2.0 negative rho (up, down): 0.308E-01 0.000E+00 total cpu time spent up to now is 302.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -31.6055 -20.8589 -20.8589 -20.8589 -7.0239 -4.8854 -4.8854 -4.8854 highest occupied, lowest unoccupied level (ev): -20.8589 -7.0239 ! total energy = -32.45146630 Ry Harris-Foulkes estimate = -32.45146630 Ry estimated scf accuracy < 9.6E-09 Ry total all-electron energy = -113.750268 Ry The total energy is the sum of the following terms: one-electron contribution = -77.28731555 Ry hartree contribution = 36.75106388 Ry xc contribution = -7.81391635 Ry ewald contribution = 24.20281381 Ry one-center paw contrib. = -8.30411209 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.308E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00015247 0.00015247 0.00015247 atom 3 type 2 force = -0.00015247 -0.00015247 0.00015247 atom 4 type 2 force = -0.00015247 0.00015247 -0.00015247 atom 5 type 2 force = 0.00015247 -0.00015247 -0.00015247 Total force = 0.000528 Total SCF correction = 0.000007 bfgs converged in 4 scf cycles and 3 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -32.4514662999 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129482368 1.129482368 1.129482368 H -1.129482368 -1.129482368 1.129482368 H -1.129482368 1.129482368 -1.129482368 H 1.129482368 -1.129482368 -1.129482368 Writing output data file NH4+.save PWSCF : 5m 9.02s CPU time, 5m21.71s wall time init_run : 13.22s CPU electrons : 248.74s CPU ( 4 calls, 62.186 s avg) update_pot : 16.92s CPU ( 3 calls, 5.639 s avg) forces : 23.91s CPU ( 4 calls, 5.976 s avg) Called by init_run: wfcinit : 1.13s CPU potinit : 5.25s CPU Called by electrons: c_bands : 83.72s CPU ( 23 calls, 3.640 s avg) sum_band : 48.35s CPU ( 23 calls, 2.102 s avg) v_of_rho : 84.41s CPU ( 27 calls, 3.126 s avg) newd : 31.14s CPU ( 27 calls, 1.153 s avg) mix_rho : 8.18s CPU ( 23 calls, 0.356 s avg) Called by c_bands: init_us_2 : 1.45s CPU ( 47 calls, 0.031 s avg) regterg : 82.35s CPU ( 23 calls, 3.581 s avg) Called by *egterg: h_psi : 78.10s CPU ( 89 calls, 0.878 s avg) s_psi : 0.72s CPU ( 89 calls, 0.008 s avg) g_psi : 0.91s CPU ( 65 calls, 0.014 s avg) rdiaghg : 0.04s CPU ( 85 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.70s CPU ( 89 calls, 0.008 s avg) General routines calbec : 0.93s CPU ( 128 calls, 0.007 s avg) cft3 : 80.58s CPU ( 375 calls, 0.215 s avg) cft3s : 80.17s CPU ( 686 calls, 0.117 s avg) davcio : 0.00s CPU ( 23 calls, 0.000 s avg) PAW routines PAW_pot : 6.01s CPU ( 27 calls, 0.222 s avg) PAW_ddot : 0.83s CPU ( 179 calls, 0.005 s avg) PAW_symme : 0.00s CPU ( 24 calls, 0.000 s avg) espresso-5.1/PW/examples/cluster_example/reference/h2o.out-160000644000175000017500000014065712341373025022262 0ustar mbamba Program PWSCF v.4.1 starts on 9Sep2009 at 13: 5:39 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 16.0000 a.u. unit-cell volume = 4096.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 16.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) H 1.00 1.00000 H( 1.00) 4 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0625000 0.0625000 0.0625000 ) 3 H tau( 3) = ( -0.0625000 -0.0625000 0.0625000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 778.1467 ( 45524 G-vectors) FFT grid: ( 60, 60, 60) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.69 Mb ( 5682, 8) NL pseudopotentials 1.04 Mb ( 5682, 12) Each V/rho on FFT grid 3.30 Mb ( 216000) Each G-vector array 0.35 Mb ( 45524) G-vector shells 0.00 Mb ( 651) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.39 Mb ( 5682, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 26.37 Mb ( 216000, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.004116 starting charge 7.99999, renormalised to 8.00000 negative rho (up, down): 0.412E-02 0.000E+00 Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 5.81 secs per-process dynamical memory: 27.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 8.0 negative rho (up, down): 0.886E-02 0.000E+00 total cpu time spent up to now is 9.42 secs total energy = -43.77309023 Ry Harris-Foulkes estimate = -44.16101502 Ry estimated scf accuracy < 0.54935519 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.87E-03, avg # of iterations = 2.0 negative rho (up, down): 0.936E-02 0.000E+00 total cpu time spent up to now is 12.35 secs total energy = -43.87895819 Ry Harris-Foulkes estimate = -44.12354519 Ry estimated scf accuracy < 0.52257435 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.53E-03, avg # of iterations = 2.0 negative rho (up, down): 0.127E-01 0.000E+00 total cpu time spent up to now is 15.23 secs total energy = -43.98648950 Ry Harris-Foulkes estimate = -43.98957365 Ry estimated scf accuracy < 0.00667608 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.35E-05, avg # of iterations = 5.0 negative rho (up, down): 0.122E-01 0.000E+00 total cpu time spent up to now is 18.68 secs total energy = -43.98873796 Ry Harris-Foulkes estimate = -43.98902622 Ry estimated scf accuracy < 0.00077548 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.69E-06, avg # of iterations = 10.0 negative rho (up, down): 0.120E-01 0.000E+00 total cpu time spent up to now is 22.17 secs total energy = -43.98875056 Ry Harris-Foulkes estimate = -43.98878479 Ry estimated scf accuracy < 0.00008247 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-06, avg # of iterations = 3.0 negative rho (up, down): 0.121E-01 0.000E+00 total cpu time spent up to now is 25.21 secs total energy = -43.98876250 Ry Harris-Foulkes estimate = -43.98876320 Ry estimated scf accuracy < 0.00000162 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-08, avg # of iterations = 2.0 negative rho (up, down): 0.121E-01 0.000E+00 total cpu time spent up to now is 27.92 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.8195 -13.8698 -9.1084 -7.3272 -1.2194 0.6250 0.7896 1.2202 highest occupied, lowest unoccupied level (ev): -7.3272 -1.2194 ! total energy = -43.98876305 Ry Harris-Foulkes estimate = -43.98876304 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -152.749509 Ry The total energy is the sum of the following terms: one-electron contribution = -83.29490080 Ry hartree contribution = 43.17151695 Ry xc contribution = -8.51475036 Ry ewald contribution = 14.56351319 Ry one-center paw contrib. = -9.91414204 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.121E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.15906429 atom 2 type 2 force = 0.07222201 0.07222201 0.07953214 atom 3 type 2 force = -0.07222201 -0.07222201 0.07953214 Total force = 0.183070 Total SCF correction = 0.000037 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.9887630531 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.197251936 1.197251936 1.217217281 H -1.197251936 -1.197251936 1.217217281 Writing output data file H2O.save Check: negative starting charge= -0.004116 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004063 negative rho (up, down): 0.698E-02 0.000E+00 total cpu time spent up to now is 31.91 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap WARNING: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.00E-06, avg # of iterations = 20.0 negative rho (up, down): 0.692E-02 0.000E+00 total cpu time spent up to now is 37.73 secs total energy = -43.91521124 Ry Harris-Foulkes estimate = -43.97534487 Ry estimated scf accuracy < 0.09056764 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.702E-02 0.000E+00 total cpu time spent up to now is 40.65 secs total energy = -43.92952578 Ry Harris-Foulkes estimate = -43.99279675 Ry estimated scf accuracy < 0.14986831 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.794E-02 0.000E+00 total cpu time spent up to now is 43.51 secs total energy = -43.95564058 Ry Harris-Foulkes estimate = -43.95561488 Ry estimated scf accuracy < 0.00038046 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.76E-06, avg # of iterations = 3.0 negative rho (up, down): 0.794E-02 0.000E+00 total cpu time spent up to now is 46.66 secs total energy = -43.95582967 Ry Harris-Foulkes estimate = -43.95584932 Ry estimated scf accuracy < 0.00005748 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.19E-07, avg # of iterations = 2.0 negative rho (up, down): 0.795E-02 0.000E+00 total cpu time spent up to now is 49.52 secs total energy = -43.95583843 Ry Harris-Foulkes estimate = -43.95583824 Ry estimated scf accuracy < 0.00000073 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.13E-09, avg # of iterations = 3.0 negative rho (up, down): 0.795E-02 0.000E+00 total cpu time spent up to now is 52.56 secs total energy = -43.95583896 Ry Harris-Foulkes estimate = -43.95583920 Ry estimated scf accuracy < 0.00000084 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.13E-09, avg # of iterations = 1.0 negative rho (up, down): 0.795E-02 0.000E+00 total cpu time spent up to now is 55.44 secs total energy = -43.95583897 Ry Harris-Foulkes estimate = -43.95583902 Ry estimated scf accuracy < 0.00000013 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.60E-09, avg # of iterations = 2.0 negative rho (up, down): 0.795E-02 0.000E+00 total cpu time spent up to now is 58.19 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -23.9430 -12.1414 -8.8935 -6.9450 -1.6794 0.2586 0.2640 1.1885 highest occupied, lowest unoccupied level (ev): -6.9450 -1.6794 ! total energy = -43.95583898 Ry Harris-Foulkes estimate = -43.95583899 Ry estimated scf accuracy < 1.1E-09 Ry total all-electron energy = -152.716585 Ry The total energy is the sum of the following terms: one-electron contribution = -79.14804797 Ry hartree contribution = 41.22403225 Ry xc contribution = -8.19737292 Ry ewald contribution = 12.09978821 Ry one-center paw contrib. = -9.93423855 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.795E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.15153331 atom 2 type 2 force = -0.10020665 -0.10020665 -0.07576665 atom 3 type 2 force = 0.10020665 0.10020665 -0.07576665 Total force = 0.227259 Total SCF correction = 0.000006 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.9887630531 Ry energy new = -43.9558389844 Ry CASE: energy _new > energy _old new trust radius = 0.2118924775 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.083592403 1.083592403 1.092053416 H -1.083592403 -1.083592403 1.092053416 Writing output data file H2O.save Check: negative starting charge= -0.004063 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004112 negative rho (up, down): 0.900E-02 0.000E+00 total cpu time spent up to now is 62.17 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 11.0 negative rho (up, down): 0.949E-02 0.000E+00 total cpu time spent up to now is 66.92 secs total energy = -43.99212250 Ry Harris-Foulkes estimate = -44.00397094 Ry estimated scf accuracy < 0.01884682 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-04, avg # of iterations = 2.0 negative rho (up, down): 0.970E-02 0.000E+00 total cpu time spent up to now is 69.76 secs total energy = -43.99528207 Ry Harris-Foulkes estimate = -44.00508077 Ry estimated scf accuracy < 0.02147092 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-04, avg # of iterations = 2.0 negative rho (up, down): 0.101E-01 0.000E+00 total cpu time spent up to now is 72.63 secs total energy = -43.99955574 Ry Harris-Foulkes estimate = -43.99956736 Ry estimated scf accuracy < 0.00014507 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.81E-06, avg # of iterations = 2.0 negative rho (up, down): 0.101E-01 0.000E+00 total cpu time spent up to now is 75.70 secs total energy = -43.99961369 Ry Harris-Foulkes estimate = -43.99961506 Ry estimated scf accuracy < 0.00000505 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.31E-08, avg # of iterations = 2.0 negative rho (up, down): 0.102E-01 0.000E+00 total cpu time spent up to now is 78.66 secs total energy = -43.99961461 Ry Harris-Foulkes estimate = -43.99961453 Ry estimated scf accuracy < 0.00000023 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.87E-09, avg # of iterations = 2.0 negative rho (up, down): 0.102E-01 0.000E+00 total cpu time spent up to now is 81.39 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -24.9188 -13.0711 -9.0056 -7.1457 -1.3518 0.4920 0.6488 1.1996 highest occupied, lowest unoccupied level (ev): -7.1457 -1.3518 ! total energy = -43.99961466 Ry Harris-Foulkes estimate = -43.99961465 Ry estimated scf accuracy < 0.00000001 Ry total all-electron energy = -152.760361 Ry The total energy is the sum of the following terms: one-electron contribution = -81.40272519 Ry hartree contribution = 42.28546099 Ry xc contribution = -8.36643824 Ry ewald contribution = 13.40674653 Ry one-center paw contrib. = -9.92265877 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.102E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.02459931 atom 2 type 2 force = -0.02975283 -0.02975283 -0.01229966 atom 3 type 2 force = 0.02975283 0.02975283 -0.01229966 Total force = 0.061996 Total SCF correction = 0.000013 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.9887630531 Ry energy new = -43.9996146644 Ry CASE: energy _new < energy _old new trust radius = 0.0520714467 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.058891200 1.058891200 1.080416451 H -1.058891200 -1.058891200 1.080416451 Writing output data file H2O.save Check: negative starting charge= -0.004112 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004120 negative rho (up, down): 0.104E-01 0.000E+00 total cpu time spent up to now is 85.35 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 89.15 secs total energy = -44.00139699 Ry Harris-Foulkes estimate = -44.00186213 Ry estimated scf accuracy < 0.00073931 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.24E-06, avg # of iterations = 2.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 92.02 secs total energy = -44.00152915 Ry Harris-Foulkes estimate = -44.00188255 Ry estimated scf accuracy < 0.00075952 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.24E-06, avg # of iterations = 2.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 94.91 secs total energy = -44.00168170 Ry Harris-Foulkes estimate = -44.00168225 Ry estimated scf accuracy < 0.00000558 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.98E-08, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 97.84 secs total energy = -44.00168383 Ry Harris-Foulkes estimate = -44.00168388 Ry estimated scf accuracy < 0.00000022 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.72E-09, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 100.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.1300 -13.2159 -9.0653 -7.1901 -1.3153 0.5258 0.6899 1.2029 highest occupied, lowest unoccupied level (ev): -7.1901 -1.3153 ! total energy = -44.00168387 Ry Harris-Foulkes estimate = -44.00168387 Ry estimated scf accuracy < 6.8E-09 Ry total all-electron energy = -152.762430 Ry The total energy is the sum of the following terms: one-electron contribution = -81.83217407 Ry hartree contribution = 42.48628444 Ry xc contribution = -8.39963803 Ry ewald contribution = 13.66488853 Ry one-center paw contrib. = -9.92104475 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.107E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00703555 atom 2 type 2 force = -0.00953838 -0.00953838 0.00351777 atom 3 type 2 force = 0.00953838 0.00953838 0.00351777 Total force = 0.019715 Total SCF correction = 0.000028 number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.9996146644 Ry energy new = -44.0016838701 Ry CASE: energy _new < energy _old new trust radius = 0.0260314782 bohr new conv_thr = 0.0000000954 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.046340474 1.046340474 1.085292668 H -1.046340474 -1.046340474 1.085292668 Writing output data file H2O.save Check: negative starting charge= -0.004120 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004111 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 104.54 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 107.87 secs total energy = -44.00198842 Ry Harris-Foulkes estimate = -44.00202582 Ry estimated scf accuracy < 0.00007238 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.05E-07, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 110.74 secs total energy = -44.00199957 Ry Harris-Foulkes estimate = -44.00202592 Ry estimated scf accuracy < 0.00005447 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.81E-07, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 113.62 secs total energy = -44.00201184 Ry Harris-Foulkes estimate = -44.00201204 Ry estimated scf accuracy < 0.00000150 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-08, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 116.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.2137 -13.2329 -9.1178 -7.2083 -1.3049 0.5345 0.7048 1.2064 highest occupied, lowest unoccupied level (ev): -7.2083 -1.3049 ! total energy = -44.00201216 Ry Harris-Foulkes estimate = -44.00201216 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.762758 Ry The total energy is the sum of the following terms: one-electron contribution = -81.97835296 Ry hartree contribution = 42.55391490 Ry xc contribution = -8.41095317 Ry ewald contribution = 13.75424240 Ry one-center paw contrib. = -9.92086332 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.108E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01642981 atom 2 type 2 force = -0.00122861 -0.00122861 0.00821491 atom 3 type 2 force = 0.00122861 0.00122861 0.00821491 Total force = 0.011875 Total SCF correction = 0.000049 number of scf cycles = 5 number of bfgs steps = 3 energy old = -44.0016838701 Ry energy new = -44.0020121572 Ry CASE: energy _new < energy _old new trust radius = 0.0240846370 bohr new conv_thr = 0.0000000328 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.038441452 1.038441452 1.098147463 H -1.038441452 -1.038441452 1.098147463 Writing output data file H2O.save Check: negative starting charge= -0.004111 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004098 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 120.33 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 123.67 secs total energy = -44.00220761 Ry Harris-Foulkes estimate = -44.00220406 Ry estimated scf accuracy < 0.00001042 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-07, avg # of iterations = 1.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 126.37 secs total energy = -44.00220860 Ry Harris-Foulkes estimate = -44.00220816 Ry estimated scf accuracy < 0.00000105 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.31E-08, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 129.25 secs total energy = -44.00220868 Ry Harris-Foulkes estimate = -44.00220876 Ry estimated scf accuracy < 0.00000022 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.70E-09, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 131.98 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.2419 -13.1911 -9.1711 -7.2156 -1.3049 0.5331 0.7089 1.2095 highest occupied, lowest unoccupied level (ev): -7.2156 -1.3049 ! total energy = -44.00220873 Ry Harris-Foulkes estimate = -44.00220874 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.762955 Ry The total energy is the sum of the following terms: one-electron contribution = -82.00029297 Ry hartree contribution = 42.56317789 Ry xc contribution = -8.41260049 Ry ewald contribution = 13.76884569 Ry one-center paw contrib. = -9.92133884 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.108E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01454631 atom 2 type 2 force = 0.00140934 0.00140934 0.00727315 atom 3 type 2 force = -0.00140934 -0.00140934 0.00727315 Total force = 0.010665 Total SCF correction = 0.000057 number of scf cycles = 6 number of bfgs steps = 4 energy old = -44.0020121572 Ry energy new = -44.0022087270 Ry CASE: energy _new < energy _old new trust radius = 0.0722539109 bohr new conv_thr = 0.0000000197 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.021827249 1.021827249 1.143515407 H -1.021827249 -1.021827249 1.143515407 Writing output data file H2O.save Check: negative starting charge= -0.004098 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004064 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 135.97 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 139.78 secs total energy = -44.00225386 Ry Harris-Foulkes estimate = -44.00230116 Ry estimated scf accuracy < 0.00020633 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.58E-06, avg # of iterations = 2.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 142.64 secs total energy = -44.00227683 Ry Harris-Foulkes estimate = -44.00234724 Ry estimated scf accuracy < 0.00015248 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.91E-06, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 145.53 secs total energy = -44.00231276 Ry Harris-Foulkes estimate = -44.00231243 Ry estimated scf accuracy < 0.00000714 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.92E-08, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 148.44 secs total energy = -44.00231382 Ry Harris-Foulkes estimate = -44.00231384 Ry estimated scf accuracy < 0.00000006 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.95E-10, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 151.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.2484 -12.9988 -9.3183 -7.2207 -1.3196 0.5141 0.7073 1.2158 highest occupied, lowest unoccupied level (ev): -7.2207 -1.3196 ! total energy = -44.00231383 Ry Harris-Foulkes estimate = -44.00231384 Ry estimated scf accuracy < 3.1E-09 Ry total all-electron energy = -152.763060 Ry The total energy is the sum of the following terms: one-electron contribution = -81.90396205 Ry hartree contribution = 42.51396066 Ry xc contribution = -8.40461155 Ry ewald contribution = 13.71570502 Ry one-center paw contrib. = -9.92340591 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.107E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00544382 atom 2 type 2 force = 0.00182013 0.00182013 -0.00272191 atom 3 type 2 force = -0.00182013 -0.00182013 -0.00272191 Total force = 0.005298 Total SCF correction = 0.000009 number of scf cycles = 7 number of bfgs steps = 5 energy old = -44.0022087270 Ry energy new = -44.0023138345 Ry CASE: energy _new < energy _old new trust radius = 0.1589586039 bohr new conv_thr = 0.0000000105 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.064967131 1.064967131 1.049112970 H -1.064967131 -1.064967131 1.049112970 Writing output data file H2O.save Check: negative starting charge= -0.004064 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004126 negative rho (up, down): 0.101E-01 0.000E+00 total cpu time spent up to now is 155.16 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.104E-01 0.000E+00 total cpu time spent up to now is 159.18 secs total energy = -44.00086241 Ry Harris-Foulkes estimate = -44.00084362 Ry estimated scf accuracy < 0.00062330 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.79E-06, avg # of iterations = 2.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 162.03 secs total energy = -44.00090784 Ry Harris-Foulkes estimate = -44.00103801 Ry estimated scf accuracy < 0.00029607 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.70E-06, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 164.90 secs total energy = -44.00098790 Ry Harris-Foulkes estimate = -44.00099412 Ry estimated scf accuracy < 0.00004310 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.39E-07, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 167.81 secs total energy = -44.00099394 Ry Harris-Foulkes estimate = -44.00099397 Ry estimated scf accuracy < 0.00000018 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.22E-09, avg # of iterations = 3.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 170.90 secs total energy = -44.00099408 Ry Harris-Foulkes estimate = -44.00099409 Ry estimated scf accuracy < 0.00000003 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.49E-10, avg # of iterations = 2.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 173.66 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.1599 -13.3560 -8.9824 -7.1933 -1.3026 0.5406 0.6970 1.1983 highest occupied, lowest unoccupied level (ev): -7.1933 -1.3026 ! total energy = -44.00099408 Ry Harris-Foulkes estimate = -44.00099409 Ry estimated scf accuracy < 4.8E-10 Ry total all-electron energy = -152.761740 Ry The total energy is the sum of the following terms: one-electron contribution = -81.95956972 Ry hartree contribution = 42.54796769 Ry xc contribution = -8.40961999 Ry ewald contribution = 13.73964457 Ry one-center paw contrib. = -9.91941663 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.108E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.02480213 atom 2 type 2 force = -0.00601806 -0.00601806 0.01240107 atom 3 type 2 force = 0.00601806 0.00601806 0.01240107 Total force = 0.021271 Total SCF correction = 0.000008 number of scf cycles = 8 number of bfgs steps = 6 energy old = -44.0023138345 Ry energy new = -44.0009940836 Ry CASE: energy _new > energy _old new trust radius = 0.0634126298 bohr new conv_thr = 0.0000000105 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.039036845 1.039036845 1.105855874 H -1.039036845 -1.039036845 1.105855874 Writing output data file H2O.save Check: negative starting charge= -0.004126 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004095 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 177.64 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 181.44 secs total energy = -44.00225341 Ry Harris-Foulkes estimate = -44.00223259 Ry estimated scf accuracy < 0.00021263 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.66E-06, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 184.35 secs total energy = -44.00226756 Ry Harris-Foulkes estimate = -44.00230546 Ry estimated scf accuracy < 0.00008859 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-06, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 187.25 secs total energy = -44.00229204 Ry Harris-Foulkes estimate = -44.00229523 Ry estimated scf accuracy < 0.00001710 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.14E-07, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 190.17 secs total energy = -44.00229462 Ry Harris-Foulkes estimate = -44.00229461 Ry estimated scf accuracy < 0.00000004 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.23E-10, avg # of iterations = 3.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 193.27 secs total energy = -44.00229467 Ry Harris-Foulkes estimate = -44.00229468 Ry estimated scf accuracy < 0.00000001 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-10, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 196.04 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.2168 -13.1481 -9.1837 -7.2106 -1.3106 0.5274 0.7040 1.2096 highest occupied, lowest unoccupied level (ev): -7.2106 -1.3106 ! total energy = -44.00229467 Ry Harris-Foulkes estimate = -44.00229467 Ry estimated scf accuracy < 4.1E-10 Ry total all-electron energy = -152.763041 Ry The total energy is the sum of the following terms: one-electron contribution = -81.93595882 Ry hartree contribution = 42.53221495 Ry xc contribution = -8.40747955 Ry ewald contribution = 13.73074236 Ry one-center paw contrib. = -9.92181359 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.107E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00754271 atom 2 type 2 force = -0.00113646 -0.00113646 0.00377135 atom 3 type 2 force = 0.00113646 0.00113646 0.00377135 Total force = 0.005798 Total SCF correction = 0.000007 number of scf cycles = 9 number of bfgs steps = 6 energy old = -44.0023138345 Ry energy new = -44.0022946662 Ry CASE: energy _new > energy _old new trust radius = 0.0315900649 bohr new conv_thr = 0.0000000105 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.030400498 1.030400498 1.124754680 H -1.030400498 -1.030400498 1.124754680 Writing output data file H2O.save Check: negative starting charge= -0.004095 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004079 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 200.02 secs per-process dynamical memory: 27.7 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 203.44 secs total energy = -44.00238586 Ry Harris-Foulkes estimate = -44.00238449 Ry estimated scf accuracy < 0.00002502 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.13E-07, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 206.30 secs total energy = -44.00238779 Ry Harris-Foulkes estimate = -44.00239237 Ry estimated scf accuracy < 0.00001060 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.33E-07, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 209.21 secs total energy = -44.00239074 Ry Harris-Foulkes estimate = -44.00239101 Ry estimated scf accuracy < 0.00000184 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.30E-08, avg # of iterations = 2.0 negative rho (up, down): 0.107E-01 0.000E+00 total cpu time spent up to now is 211.95 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -25.2332 -13.0742 -9.2511 -7.2158 -1.3149 0.5215 0.7057 1.2127 highest occupied, lowest unoccupied level (ev): -7.2158 -1.3149 ! total energy = -44.00239103 Ry Harris-Foulkes estimate = -44.00239103 Ry estimated scf accuracy < 3.4E-09 Ry total all-electron energy = -152.763137 Ry The total energy is the sum of the following terms: one-electron contribution = -81.92121859 Ry hartree contribution = 42.52347024 Ry xc contribution = -8.40612890 Ry ewald contribution = 13.72409495 Ry one-center paw contrib. = -9.92260872 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.107E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00111643 atom 2 type 2 force = 0.00038748 0.00038748 0.00055822 atom 3 type 2 force = -0.00038748 -0.00038748 0.00055822 Total force = 0.001106 Total SCF correction = 0.000020 bfgs converged in 10 scf cycles and 6 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -44.0023910262 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.030400498 1.030400498 1.124754680 H -1.030400498 -1.030400498 1.124754680 Writing output data file H2O.save PWSCF : 3m33.86s CPU time, 3m43.45s wall time init_run : 5.03s CPU electrons : 170.38s CPU ( 10 calls, 17.038 s avg) update_pot : 15.13s CPU ( 9 calls, 1.681 s avg) forces : 17.08s CPU ( 10 calls, 1.708 s avg) Called by init_run: wfcinit : 0.30s CPU potinit : 1.60s CPU Called by electrons: c_bands : 51.03s CPU ( 55 calls, 0.928 s avg) sum_band : 30.95s CPU ( 55 calls, 0.563 s avg) v_of_rho : 57.60s CPU ( 65 calls, 0.886 s avg) newd : 20.35s CPU ( 65 calls, 0.313 s avg) mix_rho : 5.70s CPU ( 55 calls, 0.104 s avg) Called by c_bands: init_us_2 : 0.94s CPU ( 111 calls, 0.008 s avg) regterg : 50.14s CPU ( 55 calls, 0.912 s avg) Called by *egterg: h_psi : 47.02s CPU ( 226 calls, 0.208 s avg) s_psi : 0.30s CPU ( 226 calls, 0.001 s avg) g_psi : 0.64s CPU ( 170 calls, 0.004 s avg) rdiaghg : 0.12s CPU ( 216 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.28s CPU ( 226 calls, 0.001 s avg) General routines calbec : 0.62s CPU ( 321 calls, 0.002 s avg) cft3 : 51.92s CPU ( 909 calls, 0.057 s avg) cft3s : 47.87s CPU ( 1606 calls, 0.030 s avg) davcio : 0.00s CPU ( 55 calls, 0.000 s avg) PAW routines PAW_pot : 13.90s CPU ( 65 calls, 0.214 s avg) PAW_ddot : 1.42s CPU ( 325 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 56 calls, 0.000 s avg) espresso-5.1/PW/examples/cluster_example/reference/nh4+.out-160000644000175000017500000007165212341373025022334 0ustar mbamba Program PWSCF v.4.1 starts on 9Sep2009 at 13: 3:43 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 16.0000 a.u. unit-cell volume = 4096.0000 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 16.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) H 1.00 1.00000 H( 1.00) 24 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0625000 0.0625000 0.0625000 ) 3 H tau( 3) = ( -0.0625000 -0.0625000 0.0625000 ) 4 H tau( 4) = ( -0.0625000 0.0625000 -0.0625000 ) 5 H tau( 5) = ( 0.0625000 -0.0625000 -0.0625000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 778.1467 ( 45524 G-vectors) FFT grid: ( 60, 60, 60) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.69 Mb ( 5682, 8) NL pseudopotentials 1.39 Mb ( 5682, 16) Each V/rho on FFT grid 3.30 Mb ( 216000) Each G-vector array 0.35 Mb ( 45524) G-vector shells 0.00 Mb ( 651) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.39 Mb ( 5682, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 26.37 Mb ( 216000, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.004479 starting charge 8.99996, renormalised to 8.00000 negative rho (up, down): 0.398E-02 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 5.62 secs per-process dynamical memory: 27.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.106E-01 0.000E+00 total cpu time spent up to now is 8.87 secs total energy = -31.58547908 Ry Harris-Foulkes estimate = -33.29782484 Ry estimated scf accuracy < 2.27054122 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.150E-01 0.000E+00 total cpu time spent up to now is 12.15 secs total energy = -32.20636983 Ry Harris-Foulkes estimate = -32.59301295 Ry estimated scf accuracy < 0.68344410 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.54E-03, avg # of iterations = 2.0 negative rho (up, down): 0.235E-01 0.000E+00 total cpu time spent up to now is 15.15 secs total energy = -32.34045444 Ry Harris-Foulkes estimate = -32.34776346 Ry estimated scf accuracy < 0.01388353 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-04, avg # of iterations = 5.0 negative rho (up, down): 0.204E-01 0.000E+00 total cpu time spent up to now is 18.79 secs total energy = -32.34495715 Ry Harris-Foulkes estimate = -32.34603996 Ry estimated scf accuracy < 0.00224647 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.81E-05, avg # of iterations = 3.0 negative rho (up, down): 0.208E-01 0.000E+00 total cpu time spent up to now is 21.93 secs total energy = -32.34506389 Ry Harris-Foulkes estimate = -32.34507348 Ry estimated scf accuracy < 0.00003698 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.62E-07, avg # of iterations = 3.0 negative rho (up, down): 0.209E-01 0.000E+00 total cpu time spent up to now is 25.27 secs total energy = -32.34507114 Ry Harris-Foulkes estimate = -32.34509827 Ry estimated scf accuracy < 0.00006265 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.62E-07, avg # of iterations = 2.0 negative rho (up, down): 0.210E-01 0.000E+00 total cpu time spent up to now is 28.35 secs total energy = -32.34507628 Ry Harris-Foulkes estimate = -32.34507646 Ry estimated scf accuracy < 0.00000063 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.82E-09, avg # of iterations = 2.0 negative rho (up, down): 0.210E-01 0.000E+00 total cpu time spent up to now is 31.41 secs total energy = -32.34507632 Ry Harris-Foulkes estimate = -32.34507638 Ry estimated scf accuracy < 0.00000011 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-09, avg # of iterations = 2.0 negative rho (up, down): 0.210E-01 0.000E+00 total cpu time spent up to now is 34.19 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -33.6592 -22.4019 -22.4019 -22.4019 -6.6387 -4.2201 -4.2201 -4.2201 highest occupied, lowest unoccupied level (ev): -22.4019 -6.6387 ! total energy = -32.34507636 Ry Harris-Foulkes estimate = -32.34507636 Ry estimated scf accuracy < 0.00000001 Ry total all-electron energy = -113.643878 Ry The total energy is the sum of the following terms: one-electron contribution = -82.06448164 Ry hartree contribution = 38.91329294 Ry xc contribution = -8.21197988 Ry ewald contribution = 27.33665145 Ry one-center paw contrib. = -8.31855921 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.210E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.15441767 0.15441767 0.15441767 atom 3 type 2 force = -0.15441767 -0.15441767 0.15441767 atom 4 type 2 force = -0.15441767 0.15441767 -0.15441767 atom 5 type 2 force = 0.15441767 -0.15441767 -0.15441767 Total force = 0.534918 Total SCF correction = 0.000006 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -32.3450763577 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.144337567 1.144337567 1.144337567 H -1.144337567 -1.144337567 1.144337567 H -1.144337567 1.144337567 -1.144337567 H 1.144337567 -1.144337567 -1.144337567 Writing output data file NH4+.save Check: negative starting charge= -0.004479 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000003 0.000000 Check: negative starting charge= -0.004284 negative rho (up, down): 0.130E-01 0.000E+00 total cpu time spent up to now is 38.32 secs per-process dynamical memory: 28.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 13.0 negative rho (up, down): 0.137E-01 0.000E+00 total cpu time spent up to now is 43.91 secs total energy = -32.41533186 Ry Harris-Foulkes estimate = -32.47329135 Ry estimated scf accuracy < 0.08729498 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-03, avg # of iterations = 2.0 negative rho (up, down): 0.140E-01 0.000E+00 total cpu time spent up to now is 46.84 secs total energy = -32.43874285 Ry Harris-Foulkes estimate = -32.46767821 Ry estimated scf accuracy < 0.05584261 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.98E-04, avg # of iterations = 2.0 negative rho (up, down): 0.153E-01 0.000E+00 total cpu time spent up to now is 49.82 secs total energy = -32.45021191 Ry Harris-Foulkes estimate = -32.45012888 Ry estimated scf accuracy < 0.00032563 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.07E-06, avg # of iterations = 3.0 negative rho (up, down): 0.152E-01 0.000E+00 total cpu time spent up to now is 53.01 secs total energy = -32.45028690 Ry Harris-Foulkes estimate = -32.45028982 Ry estimated scf accuracy < 0.00001261 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.58E-07, avg # of iterations = 2.0 negative rho (up, down): 0.153E-01 0.000E+00 total cpu time spent up to now is 55.99 secs total energy = -32.45028605 Ry Harris-Foulkes estimate = -32.45028838 Ry estimated scf accuracy < 0.00000532 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.65E-08, avg # of iterations = 2.0 negative rho (up, down): 0.153E-01 0.000E+00 total cpu time spent up to now is 58.98 secs total energy = -32.45028670 Ry Harris-Foulkes estimate = -32.45028685 Ry estimated scf accuracy < 0.00000046 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.70E-09, avg # of iterations = 2.0 negative rho (up, down): 0.153E-01 0.000E+00 total cpu time spent up to now is 61.79 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -31.3897 -20.6946 -20.6946 -20.6946 -7.1570 -4.9201 -4.9201 -4.9201 highest occupied, lowest unoccupied level (ev): -20.6946 -7.1570 ! total energy = -32.45028675 Ry Harris-Foulkes estimate = -32.45028676 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -113.749088 Ry The total energy is the sum of the following terms: one-electron contribution = -76.79088075 Ry hartree contribution = 36.52816205 Ry xc contribution = -7.77329867 Ry ewald contribution = 23.88862537 Ry one-center paw contrib. = -8.30289474 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.153E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.01178044 -0.01178044 -0.01178044 atom 3 type 2 force = 0.01178044 0.01178044 -0.01178044 atom 4 type 2 force = 0.01178044 -0.01178044 0.01178044 atom 5 type 2 force = -0.01178044 0.01178044 0.01178044 Total force = 0.040809 Total SCF correction = 0.000046 number of scf cycles = 2 number of bfgs steps = 1 energy old = -32.3450763577 Ry energy new = -32.4502867481 Ry CASE: energy _new < energy _old new trust radius = 0.0354409466 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.134106647 1.134106647 1.134106647 H -1.134106647 -1.134106647 1.134106647 H -1.134106647 1.134106647 -1.134106647 H 1.134106647 -1.134106647 -1.134106647 Writing output data file NH4+.save Check: negative starting charge= -0.004284 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000003 0.000000 Check: negative starting charge= -0.004351 negative rho (up, down): 0.158E-01 0.000E+00 total cpu time spent up to now is 65.90 secs per-process dynamical memory: 28.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.157E-01 0.000E+00 total cpu time spent up to now is 69.46 secs total energy = -32.45113890 Ry Harris-Foulkes estimate = -32.45130617 Ry estimated scf accuracy < 0.00026995 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.37E-06, avg # of iterations = 2.0 negative rho (up, down): 0.157E-01 0.000E+00 total cpu time spent up to now is 72.51 secs total energy = -32.45120796 Ry Harris-Foulkes estimate = -32.45128931 Ry estimated scf accuracy < 0.00015559 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.94E-06, avg # of iterations = 2.0 negative rho (up, down): 0.157E-01 0.000E+00 total cpu time spent up to now is 75.44 secs total energy = -32.45124117 Ry Harris-Foulkes estimate = -32.45124086 Ry estimated scf accuracy < 0.00000142 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-08, avg # of iterations = 2.0 negative rho (up, down): 0.157E-01 0.000E+00 total cpu time spent up to now is 78.16 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -31.5374 -20.8069 -20.8069 -20.8069 -7.1085 -4.8549 -4.8549 -4.8549 highest occupied, lowest unoccupied level (ev): -20.8069 -7.1085 ! total energy = -32.45124147 Ry Harris-Foulkes estimate = -32.45124148 Ry estimated scf accuracy < 0.00000004 Ry total all-electron energy = -113.750043 Ry The total energy is the sum of the following terms: one-electron contribution = -77.13191100 Ry hartree contribution = 36.68144988 Ry xc contribution = -7.80122829 Ry ewald contribution = 24.10412770 Ry one-center paw contrib. = -8.30367975 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.157E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.00373548 -0.00373548 -0.00373548 atom 3 type 2 force = 0.00373548 0.00373548 -0.00373548 atom 4 type 2 force = 0.00373548 -0.00373548 0.00373548 atom 5 type 2 force = -0.00373548 0.00373548 0.00373548 Total force = 0.012940 Total SCF correction = 0.000031 number of scf cycles = 3 number of bfgs steps = 2 energy old = -32.4502867481 Ry energy new = -32.4512414689 Ry CASE: energy _new < energy _old new trust radius = 0.0164561236 bohr new conv_thr = 0.0000000374 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129356174 1.129356174 1.129356174 H -1.129356174 -1.129356174 1.129356174 H -1.129356174 1.129356174 -1.129356174 H 1.129356174 -1.129356174 -1.129356174 Writing output data file NH4+.save Check: negative starting charge= -0.004351 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000003 0.000000 Check: negative starting charge= -0.004387 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 82.29 secs per-process dynamical memory: 28.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 85.78 secs total energy = -32.45132102 Ry Harris-Foulkes estimate = -32.45135756 Ry estimated scf accuracy < 0.00005880 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.35E-07, avg # of iterations = 2.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 88.67 secs total energy = -32.45133603 Ry Harris-Foulkes estimate = -32.45135323 Ry estimated scf accuracy < 0.00003258 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.07E-07, avg # of iterations = 2.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 91.60 secs total energy = -32.45134303 Ry Harris-Foulkes estimate = -32.45134299 Ry estimated scf accuracy < 0.00000032 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.98E-09, avg # of iterations = 2.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 94.30 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -31.6070 -20.8599 -20.8599 -20.8599 -7.0862 -4.8245 -4.8245 -4.8245 highest occupied, lowest unoccupied level (ev): -20.8599 -7.0862 ! total energy = -32.45134310 Ry Harris-Foulkes estimate = -32.45134310 Ry estimated scf accuracy < 7.0E-09 Ry total all-electron energy = -113.750144 Ry The total energy is the sum of the following terms: one-electron contribution = -77.29164883 Ry hartree contribution = 36.75312744 Ry xc contribution = -7.81428840 Ry ewald contribution = 24.20551823 Ry one-center paw contrib. = -8.30405155 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.159E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00015911 0.00015911 0.00015911 atom 3 type 2 force = -0.00015911 -0.00015911 0.00015911 atom 4 type 2 force = -0.00015911 0.00015911 -0.00015911 atom 5 type 2 force = 0.00015911 -0.00015911 -0.00015911 Total force = 0.000551 Total SCF correction = 0.000009 number of scf cycles = 4 number of bfgs steps = 3 energy old = -32.4512414689 Ry energy new = -32.4513431026 Ry CASE: energy _new < energy _old new trust radius = 0.0006723178 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129550255 1.129550255 1.129550255 H -1.129550255 -1.129550255 1.129550255 H -1.129550255 1.129550255 -1.129550255 H 1.129550255 -1.129550255 -1.129550255 Writing output data file NH4+.save Check: negative starting charge= -0.004387 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000003 0.000000 Check: negative starting charge= -0.004386 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 98.40 secs per-process dynamical memory: 28.0 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.62E-09, avg # of iterations = 1.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 102.78 secs total energy = -32.45134326 Ry Harris-Foulkes estimate = -32.45134335 Ry estimated scf accuracy < 0.00000014 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.73E-09, avg # of iterations = 2.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 105.69 secs total energy = -32.45134330 Ry Harris-Foulkes estimate = -32.45134334 Ry estimated scf accuracy < 0.00000008 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.57E-10, avg # of iterations = 2.0 negative rho (up, down): 0.159E-01 0.000E+00 total cpu time spent up to now is 108.49 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -31.6045 -20.8581 -20.8581 -20.8581 -7.0873 -4.8260 -4.8260 -4.8260 highest occupied, lowest unoccupied level (ev): -20.8581 -7.0873 ! total energy = -32.45134332 Ry Harris-Foulkes estimate = -32.45134331 Ry estimated scf accuracy < 5.6E-10 Ry total all-electron energy = -113.750145 Ry The total energy is the sum of the following terms: one-electron contribution = -77.28492886 Ry hartree contribution = 36.74996583 Ry xc contribution = -7.81370620 Ry ewald contribution = 24.20135919 Ry one-center paw contrib. = -8.30403328 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.159E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000818 0.00000818 0.00000818 atom 3 type 2 force = -0.00000818 -0.00000818 0.00000818 atom 4 type 2 force = -0.00000818 0.00000818 -0.00000818 atom 5 type 2 force = 0.00000818 -0.00000818 -0.00000818 Total force = 0.000028 Total SCF correction = 0.000008 SCF correction compared to forces is too large, reduce conv_thr bfgs converged in 5 scf cycles and 4 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -32.4513433160 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129550255 1.129550255 1.129550255 H -1.129550255 -1.129550255 1.129550255 H -1.129550255 1.129550255 -1.129550255 H 1.129550255 -1.129550255 -1.129550255 Writing output data file NH4+.save PWSCF : 1m50.52s CPU time, 1m56.09s wall time init_run : 4.86s CPU electrons : 86.40s CPU ( 5 calls, 17.281 s avg) update_pot : 6.77s CPU ( 4 calls, 1.692 s avg) forces : 8.97s CPU ( 5 calls, 1.795 s avg) Called by init_run: wfcinit : 0.30s CPU potinit : 1.42s CPU Called by electrons: c_bands : 25.46s CPU ( 28 calls, 0.909 s avg) sum_band : 16.34s CPU ( 28 calls, 0.584 s avg) v_of_rho : 28.72s CPU ( 32 calls, 0.897 s avg) newd : 10.45s CPU ( 32 calls, 0.327 s avg) mix_rho : 3.13s CPU ( 28 calls, 0.112 s avg) Called by c_bands: init_us_2 : 0.50s CPU ( 57 calls, 0.009 s avg) regterg : 24.98s CPU ( 28 calls, 0.892 s avg) Called by *egterg: h_psi : 23.55s CPU ( 105 calls, 0.224 s avg) s_psi : 0.21s CPU ( 105 calls, 0.002 s avg) g_psi : 0.31s CPU ( 76 calls, 0.004 s avg) rdiaghg : 0.04s CPU ( 99 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.19s CPU ( 105 calls, 0.002 s avg) General routines calbec : 0.38s CPU ( 153 calls, 0.003 s avg) cft3 : 25.67s CPU ( 450 calls, 0.057 s avg) cft3s : 23.96s CPU ( 806 calls, 0.030 s avg) davcio : 0.00s CPU ( 27 calls, 0.000 s avg) PAW routines PAW_pot : 7.07s CPU ( 32 calls, 0.221 s avg) PAW_ddot : 0.96s CPU ( 206 calls, 0.005 s avg) PAW_symme : 0.01s CPU ( 29 calls, 0.000 s avg) espresso-5.1/PW/examples/cluster_example/reference/h2o.out-240000644000175000017500000013616012341373025022253 0ustar mbamba Program PWSCF v.4.1 starts on 9Sep2009 at 13:26:38 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 24.0000 a.u. unit-cell volume = 13824.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 24.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) H 1.00 1.00000 H( 1.00) 4 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0416667 0.0416667 0.0416667 ) 3 H tau( 3) = ( -0.0416667 -0.0416667 0.0416667 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1750.8301 ( 153598 G-vectors) FFT grid: ( 90, 90, 90) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 2.34 Mb ( 19201, 8) NL pseudopotentials 3.52 Mb ( 19201, 12) Each V/rho on FFT grid 11.12 Mb ( 729000) Each G-vector array 1.17 Mb ( 153598) G-vector shells 0.01 Mb ( 1463) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 4.69 Mb ( 19201, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 88.99 Mb ( 729000, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.010725 starting charge 7.99999, renormalised to 8.00000 negative rho (up, down): 0.107E-01 0.000E+00 Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 12.02 secs per-process dynamical memory: 84.7 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.0 negative rho (up, down): 0.190E-01 0.000E+00 total cpu time spent up to now is 24.81 secs total energy = -43.77144546 Ry Harris-Foulkes estimate = -44.16200212 Ry estimated scf accuracy < 0.55409225 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.93E-03, avg # of iterations = 2.0 negative rho (up, down): 0.210E-01 0.000E+00 total cpu time spent up to now is 34.82 secs total energy = -43.87793698 Ry Harris-Foulkes estimate = -44.12617416 Ry estimated scf accuracy < 0.53130329 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.64E-03, avg # of iterations = 2.0 negative rho (up, down): 0.259E-01 0.000E+00 total cpu time spent up to now is 44.67 secs total energy = -43.98671595 Ry Harris-Foulkes estimate = -43.98987893 Ry estimated scf accuracy < 0.00674668 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.43E-05, avg # of iterations = 9.0 negative rho (up, down): 0.250E-01 0.000E+00 total cpu time spent up to now is 58.39 secs total energy = -43.98879556 Ry Harris-Foulkes estimate = -43.98911588 Ry estimated scf accuracy < 0.00081763 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-05, avg # of iterations = 7.0 negative rho (up, down): 0.248E-01 0.000E+00 total cpu time spent up to now is 69.73 secs total energy = -43.98882465 Ry Harris-Foulkes estimate = -43.98884940 Ry estimated scf accuracy < 0.00005811 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.26E-07, avg # of iterations = 4.0 negative rho (up, down): 0.248E-01 0.000E+00 total cpu time spent up to now is 80.57 secs total energy = -43.98883513 Ry Harris-Foulkes estimate = -43.98883623 Ry estimated scf accuracy < 0.00000252 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.15E-08, avg # of iterations = 2.0 negative rho (up, down): 0.249E-01 0.000E+00 total cpu time spent up to now is 89.91 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.8229 -13.8729 -9.1115 -7.3308 -1.0511 -0.2415 0.0678 0.2276 highest occupied, lowest unoccupied level (ev): -7.3308 -1.0511 ! total energy = -43.98883568 Ry Harris-Foulkes estimate = -43.98883568 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.749582 Ry The total energy is the sum of the following terms: one-electron contribution = -83.29381169 Ry hartree contribution = 43.17017673 Ry xc contribution = -8.51453545 Ry ewald contribution = 14.56351319 Ry one-center paw contrib. = -9.91417845 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.249E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.15917886 atom 2 type 2 force = 0.07230562 0.07230562 0.07958943 atom 3 type 2 force = -0.07230562 -0.07230562 0.07958943 Total force = 0.183252 Total SCF correction = 0.000016 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.9888356752 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.197284460 1.197284460 1.217158199 H -1.197284460 -1.197284460 1.217158199 Writing output data file H2O.save Check: negative starting charge= -0.010725 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010870 negative rho (up, down): 0.156E-01 0.000E+00 total cpu time spent up to now is 102.25 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 12.0 negative rho (up, down): 0.158E-01 0.000E+00 total cpu time spent up to now is 119.67 secs total energy = -43.91525480 Ry Harris-Foulkes estimate = -43.97553312 Ry estimated scf accuracy < 0.09076132 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.158E-01 0.000E+00 total cpu time spent up to now is 129.34 secs total energy = -43.92958033 Ry Harris-Foulkes estimate = -43.99320443 Ry estimated scf accuracy < 0.15083893 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.172E-01 0.000E+00 total cpu time spent up to now is 139.01 secs total energy = -43.95582652 Ry Harris-Foulkes estimate = -43.95579147 Ry estimated scf accuracy < 0.00037987 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.75E-06, avg # of iterations = 3.0 negative rho (up, down): 0.173E-01 0.000E+00 total cpu time spent up to now is 149.67 secs total energy = -43.95597660 Ry Harris-Foulkes estimate = -43.95599150 Ry estimated scf accuracy < 0.00004401 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.50E-07, avg # of iterations = 2.0 negative rho (up, down): 0.173E-01 0.000E+00 total cpu time spent up to now is 159.22 secs total energy = -43.95598247 Ry Harris-Foulkes estimate = -43.95598232 Ry estimated scf accuracy < 0.00000056 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.94E-09, avg # of iterations = 3.0 negative rho (up, down): 0.173E-01 0.000E+00 total cpu time spent up to now is 169.48 secs total energy = -43.95598278 Ry Harris-Foulkes estimate = -43.95598292 Ry estimated scf accuracy < 0.00000035 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.32E-09, avg # of iterations = 2.0 negative rho (up, down): 0.173E-01 0.000E+00 total cpu time spent up to now is 178.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -23.9466 -12.1447 -8.8966 -6.9488 -1.5707 -0.3444 -0.1110 0.2923 highest occupied, lowest unoccupied level (ev): -6.9488 -1.5707 ! total energy = -43.95598284 Ry Harris-Foulkes estimate = -43.95598284 Ry estimated scf accuracy < 9.7E-10 Ry total all-electron energy = -152.716729 Ry The total energy is the sum of the following terms: one-electron contribution = -79.14614716 Ry hartree contribution = 41.22164457 Ry xc contribution = -8.19697842 Ry ewald contribution = 12.09975638 Ry one-center paw contrib. = -9.93425822 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.173E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.15141918 atom 2 type 2 force = -0.10016814 -0.10016814 -0.07570959 atom 3 type 2 force = 0.10016814 0.10016814 -0.07570959 Total force = 0.227153 Total SCF correction = 0.000013 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.9888356752 Ry energy new = -43.9559828429 Ry CASE: energy _new > energy _old new trust radius = 0.2119943662 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.083646388 1.083646388 1.092072630 H -1.083646388 -1.083646388 1.092072630 Writing output data file H2O.save Check: negative starting charge= -0.010870 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010793 negative rho (up, down): 0.170E-01 0.000E+00 total cpu time spent up to now is 190.87 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 11.0 negative rho (up, down): 0.195E-01 0.000E+00 total cpu time spent up to now is 207.69 secs total energy = -43.99217171 Ry Harris-Foulkes estimate = -44.00408047 Ry estimated scf accuracy < 0.01892832 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.37E-04, avg # of iterations = 2.0 negative rho (up, down): 0.201E-01 0.000E+00 total cpu time spent up to now is 217.45 secs total energy = -43.99531296 Ry Harris-Foulkes estimate = -44.00527840 Ry estimated scf accuracy < 0.02188729 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.37E-04, avg # of iterations = 2.0 negative rho (up, down): 0.212E-01 0.000E+00 total cpu time spent up to now is 227.20 secs total energy = -43.99966666 Ry Harris-Foulkes estimate = -43.99968478 Ry estimated scf accuracy < 0.00015728 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.97E-06, avg # of iterations = 3.0 negative rho (up, down): 0.212E-01 0.000E+00 total cpu time spent up to now is 237.60 secs total energy = -43.99971680 Ry Harris-Foulkes estimate = -43.99971806 Ry estimated scf accuracy < 0.00000465 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.81E-08, avg # of iterations = 2.0 negative rho (up, down): 0.213E-01 0.000E+00 total cpu time spent up to now is 247.25 secs total energy = -43.99971755 Ry Harris-Foulkes estimate = -43.99971748 Ry estimated scf accuracy < 0.00000020 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-09, avg # of iterations = 2.0 negative rho (up, down): 0.213E-01 0.000E+00 total cpu time spent up to now is 256.57 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -24.9212 -13.0734 -9.0082 -7.1488 -1.1960 -0.2850 0.0359 0.2582 highest occupied, lowest unoccupied level (ev): -7.1488 -1.1960 ! total energy = -43.99971759 Ry Harris-Foulkes estimate = -43.99971759 Ry estimated scf accuracy < 7.8E-09 Ry total all-electron energy = -152.760464 Ry The total energy is the sum of the following terms: one-electron contribution = -81.40044182 Ry hartree contribution = 42.28328527 Ry xc contribution = -8.36608789 Ry ewald contribution = 13.40621705 Ry one-center paw contrib. = -9.92269019 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.213E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.02459123 atom 2 type 2 force = -0.02973106 -0.02973106 -0.01229561 atom 3 type 2 force = 0.02973106 0.02973106 -0.01229561 Total force = 0.061952 Total SCF correction = 0.000021 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.9888356752 Ry energy new = -43.9997175873 Ry CASE: energy _new < energy _old new trust radius = 0.0520359931 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.058961581 1.058961581 1.080445384 H -1.058961581 -1.058961581 1.080445384 Writing output data file H2O.save Check: negative starting charge= -0.010793 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010798 negative rho (up, down): 0.214E-01 0.000E+00 total cpu time spent up to now is 268.86 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.220E-01 0.000E+00 total cpu time spent up to now is 281.38 secs total energy = -44.00149020 Ry Harris-Foulkes estimate = -44.00195990 Ry estimated scf accuracy < 0.00074487 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.31E-06, avg # of iterations = 2.0 negative rho (up, down): 0.221E-01 0.000E+00 total cpu time spent up to now is 291.19 secs total energy = -44.00162311 Ry Harris-Foulkes estimate = -44.00198646 Ry estimated scf accuracy < 0.00078376 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.31E-06, avg # of iterations = 2.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 300.98 secs total energy = -44.00177971 Ry Harris-Foulkes estimate = -44.00178036 Ry estimated scf accuracy < 0.00000576 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.21E-08, avg # of iterations = 2.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 310.86 secs total energy = -44.00178147 Ry Harris-Foulkes estimate = -44.00178151 Ry estimated scf accuracy < 0.00000020 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-09, avg # of iterations = 2.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 320.29 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.1320 -13.2178 -9.0676 -7.1929 -1.1554 -0.2752 0.0444 0.2507 highest occupied, lowest unoccupied level (ev): -7.1929 -1.1554 ! total energy = -44.00178150 Ry Harris-Foulkes estimate = -44.00178150 Ry estimated scf accuracy < 5.5E-09 Ry total all-electron energy = -152.762528 Ry The total energy is the sum of the following terms: one-electron contribution = -81.82938542 Ry hartree contribution = 42.48374786 Ry xc contribution = -8.39922170 Ry ewald contribution = 13.66415690 Ry one-center paw contrib. = -9.92107914 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.222E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00702496 atom 2 type 2 force = -0.00949971 -0.00949971 0.00351248 atom 3 type 2 force = 0.00949971 0.00949971 0.00351248 Total force = 0.019638 Total SCF correction = 0.000014 number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.9997175873 Ry energy new = -44.0017815033 Ry CASE: energy _new < energy _old new trust radius = 0.0258949922 bohr new conv_thr = 0.0000000950 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.046479430 1.046479430 1.085310274 H -1.046479430 -1.046479430 1.085310274 Writing output data file H2O.save Check: negative starting charge= -0.010798 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010774 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 332.67 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 344.20 secs total energy = -44.00208186 Ry Harris-Foulkes estimate = -44.00212164 Ry estimated scf accuracy < 0.00007543 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.43E-07, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 354.00 secs total energy = -44.00209371 Ry Harris-Foulkes estimate = -44.00212313 Ry estimated scf accuracy < 0.00006147 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.68E-07, avg # of iterations = 2.0 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 363.77 secs total energy = -44.00210720 Ry Harris-Foulkes estimate = -44.00210739 Ry estimated scf accuracy < 0.00000142 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-08, avg # of iterations = 2.0 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 373.09 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.2152 -13.2346 -9.1198 -7.2110 -1.1446 -0.2724 0.0482 0.2478 highest occupied, lowest unoccupied level (ev): -7.2110 -1.1446 ! total energy = -44.00210750 Ry Harris-Foulkes estimate = -44.00210749 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.762854 Ry The total energy is the sum of the following terms: one-electron contribution = -81.97479278 Ry hartree contribution = 42.55112690 Ry xc contribution = -8.41049232 Ry ewald contribution = 13.75294920 Ry one-center paw contrib. = -9.92089849 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.225E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01634325 atom 2 type 2 force = -0.00125118 -0.00125118 0.00817163 atom 3 type 2 force = 0.00125118 0.00125118 0.00817163 Total force = 0.011824 Total SCF correction = 0.000036 number of scf cycles = 5 number of bfgs steps = 3 energy old = -44.0017815033 Ry energy new = -44.0021074952 Ry CASE: energy _new < energy _old new trust radius = 0.0241229080 bohr new conv_thr = 0.0000000326 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.038547231 1.038547231 1.098160090 H -1.038547231 -1.038547231 1.098160090 Writing output data file H2O.save Check: negative starting charge= -0.010774 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010748 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 385.47 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 397.06 secs total energy = -44.00230274 Ry Harris-Foulkes estimate = -44.00229890 Ry estimated scf accuracy < 0.00001042 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-07, avg # of iterations = 1.0 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 406.26 secs total energy = -44.00230368 Ry Harris-Foulkes estimate = -44.00230322 Ry estimated scf accuracy < 0.00000101 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-08, avg # of iterations = 2.0 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 416.01 secs total energy = -44.00230372 Ry Harris-Foulkes estimate = -44.00230382 Ry estimated scf accuracy < 0.00000020 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.49E-09, avg # of iterations = 2.0 negative rho (up, down): 0.225E-01 0.000E+00 total cpu time spent up to now is 425.49 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.2441 -13.1934 -9.1736 -7.2187 -1.1456 -0.2732 0.0507 0.2466 highest occupied, lowest unoccupied level (ev): -7.2187 -1.1456 ! total energy = -44.00230375 Ry Harris-Foulkes estimate = -44.00230378 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.763050 Ry The total energy is the sum of the following terms: one-electron contribution = -81.99731918 Ry hartree contribution = 42.56071601 Ry xc contribution = -8.41219537 Ry ewald contribution = 13.76786735 Ry one-center paw contrib. = -9.92137257 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.225E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01451664 atom 2 type 2 force = 0.00139934 0.00139934 0.00725832 atom 3 type 2 force = -0.00139934 -0.00139934 0.00725832 Total force = 0.010640 Total SCF correction = 0.000058 number of scf cycles = 6 number of bfgs steps = 4 energy old = -44.0021074952 Ry energy new = -44.0023037544 Ry CASE: energy _new < energy _old new trust radius = 0.0723687241 bohr new conv_thr = 0.0000000196 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.021821327 1.021821327 1.143537446 H -1.021821327 -1.021821327 1.143537446 Writing output data file H2O.save Check: negative starting charge= -0.010748 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010679 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 437.76 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.221E-01 0.000E+00 total cpu time spent up to now is 450.53 secs total energy = -44.00234723 Ry Harris-Foulkes estimate = -44.00239660 Ry estimated scf accuracy < 0.00020863 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.61E-06, avg # of iterations = 2.0 negative rho (up, down): 0.221E-01 0.000E+00 total cpu time spent up to now is 460.28 secs total energy = -44.00237055 Ry Harris-Foulkes estimate = -44.00244438 Ry estimated scf accuracy < 0.00016048 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-06, avg # of iterations = 2.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 470.05 secs total energy = -44.00240790 Ry Harris-Foulkes estimate = -44.00240760 Ry estimated scf accuracy < 0.00000719 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.99E-08, avg # of iterations = 2.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 479.90 secs total energy = -44.00240892 Ry Harris-Foulkes estimate = -44.00240893 Ry estimated scf accuracy < 0.00000005 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.37E-10, avg # of iterations = 3.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 489.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.2513 -13.0013 -9.3212 -7.2240 -1.1630 -0.2791 0.0561 0.2462 highest occupied, lowest unoccupied level (ev): -7.2240 -1.1630 ! total energy = -44.00240893 Ry Harris-Foulkes estimate = -44.00240893 Ry estimated scf accuracy < 3.1E-09 Ry total all-electron energy = -152.763155 Ry The total energy is the sum of the following terms: one-electron contribution = -81.90253794 Ry hartree contribution = 42.51223523 Ry xc contribution = -8.40433226 Ry ewald contribution = 13.71565880 Ry one-center paw contrib. = -9.92343275 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.222E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00536688 atom 2 type 2 force = 0.00189574 0.00189574 -0.00268344 atom 3 type 2 force = -0.00189574 -0.00189574 -0.00268344 Total force = 0.005364 Total SCF correction = 0.000010 number of scf cycles = 7 number of bfgs steps = 5 energy old = -44.0023037544 Ry energy new = -44.0024089305 Ry CASE: energy _new < energy _old new trust radius = 0.1592111930 bohr new conv_thr = 0.0000000105 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.065306960 1.065306960 1.049239506 H -1.065306960 -1.065306960 1.049239506 Writing output data file H2O.save Check: negative starting charge= -0.010679 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010808 negative rho (up, down): 0.210E-01 0.000E+00 total cpu time spent up to now is 501.84 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.218E-01 0.000E+00 total cpu time spent up to now is 515.54 secs total energy = -44.00095832 Ry Harris-Foulkes estimate = -44.00093357 Ry estimated scf accuracy < 0.00061796 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.72E-06, avg # of iterations = 2.0 negative rho (up, down): 0.221E-01 0.000E+00 total cpu time spent up to now is 525.25 secs total energy = -44.00100246 Ry Harris-Foulkes estimate = -44.00113136 Ry estimated scf accuracy < 0.00029449 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.68E-06, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 535.07 secs total energy = -44.00108196 Ry Harris-Foulkes estimate = -44.00108908 Ry estimated scf accuracy < 0.00004502 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.63E-07, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 544.88 secs total energy = -44.00108825 Ry Harris-Foulkes estimate = -44.00108827 Ry estimated scf accuracy < 0.00000011 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.34E-09, avg # of iterations = 3.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 554.54 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.1599 -13.3566 -8.9840 -7.1958 -1.1404 -0.2707 0.0443 0.2499 highest occupied, lowest unoccupied level (ev): -7.1958 -1.1404 ! total energy = -44.00108833 Ry Harris-Foulkes estimate = -44.00108834 Ry estimated scf accuracy < 8.8E-09 Ry total all-electron energy = -152.761835 Ry The total energy is the sum of the following terms: one-electron contribution = -81.95218039 Ry hartree contribution = 42.54329969 Ry xc contribution = -8.40884935 Ry ewald contribution = 13.73610903 Ry one-center paw contrib. = -9.91946731 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.224E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.02443422 atom 2 type 2 force = -0.00622997 -0.00622997 0.01221711 atom 3 type 2 force = 0.00622997 0.00622997 0.01221711 Total force = 0.021302 Total SCF correction = 0.000030 number of scf cycles = 8 number of bfgs steps = 6 energy old = -44.0024089305 Ry energy new = -44.0010883343 Ry CASE: energy _new > energy _old new trust radius = 0.0636056374 bohr new conv_thr = 0.0000000105 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.039194047 1.039194047 1.105864965 H -1.039194047 -1.039194047 1.105864965 Writing output data file H2O.save Check: negative starting charge= -0.010808 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010749 negative rho (up, down): 0.220E-01 0.000E+00 total cpu time spent up to now is 567.01 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.222E-01 0.000E+00 total cpu time spent up to now is 580.17 secs total energy = -44.00234913 Ry Harris-Foulkes estimate = -44.00232572 Ry estimated scf accuracy < 0.00020938 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.62E-06, avg # of iterations = 2.0 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 589.96 secs total energy = -44.00236286 Ry Harris-Foulkes estimate = -44.00239955 Ry estimated scf accuracy < 0.00008673 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-06, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 599.77 secs total energy = -44.00238656 Ry Harris-Foulkes estimate = -44.00239047 Ry estimated scf accuracy < 0.00001856 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-07, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 609.61 secs total energy = -44.00238941 Ry Harris-Foulkes estimate = -44.00238940 Ry estimated scf accuracy < 0.00000002 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.87E-10, avg # of iterations = 3.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 619.55 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.2185 -13.1501 -9.1861 -7.2138 -1.1521 -0.2752 0.0498 0.2471 highest occupied, lowest unoccupied level (ev): -7.2138 -1.1521 ! total energy = -44.00238945 Ry Harris-Foulkes estimate = -44.00238945 Ry estimated scf accuracy < 6.1E-09 Ry total all-electron energy = -152.763136 Ry The total energy is the sum of the following terms: one-electron contribution = -81.93242020 Ry hartree contribution = 42.52958733 Ry xc contribution = -8.40704925 Ry ewald contribution = 13.72934021 Ry one-center paw contrib. = -9.92184754 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.224E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00747119 atom 2 type 2 force = -0.00118401 -0.00118401 0.00373560 atom 3 type 2 force = 0.00118401 0.00118401 0.00373560 Total force = 0.005789 Total SCF correction = 0.000021 number of scf cycles = 9 number of bfgs steps = 6 energy old = -44.0024089305 Ry energy new = -44.0023894454 Ry CASE: energy _new > energy _old new trust radius = 0.0316852176 bohr new conv_thr = 0.0000000105 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.030475566 1.030475566 1.124770858 H -1.030475566 -1.030475566 1.124770858 Writing output data file H2O.save Check: negative starting charge= -0.010749 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.010715 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 631.95 secs per-process dynamical memory: 85.6 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 643.54 secs total energy = -44.00248146 Ry Harris-Foulkes estimate = -44.00248045 Ry estimated scf accuracy < 0.00002564 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.21E-07, avg # of iterations = 2.0 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 653.27 secs total energy = -44.00248336 Ry Harris-Foulkes estimate = -44.00248849 Ry estimated scf accuracy < 0.00001173 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-07, avg # of iterations = 2.0 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 663.04 secs total energy = -44.00248653 Ry Harris-Foulkes estimate = -44.00248686 Ry estimated scf accuracy < 0.00000190 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.38E-08, avg # of iterations = 2.0 negative rho (up, down): 0.223E-01 0.000E+00 total cpu time spent up to now is 672.34 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -25.2357 -13.0766 -9.2538 -7.2191 -1.1574 -0.2771 0.0529 0.2466 highest occupied, lowest unoccupied level (ev): -7.2191 -1.1574 ! total energy = -44.00248682 Ry Harris-Foulkes estimate = -44.00248682 Ry estimated scf accuracy < 3.3E-09 Ry total all-electron energy = -152.763233 Ry The total energy is the sum of the following terms: one-electron contribution = -81.91887239 Ry hartree contribution = 42.52145061 Ry xc contribution = -8.40580305 Ry ewald contribution = 13.72337973 Ry one-center paw contrib. = -9.92264172 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.223E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00114573 atom 2 type 2 force = 0.00038749 0.00038749 0.00057287 atom 3 type 2 force = -0.00038749 -0.00038749 0.00057287 Total force = 0.001121 Total SCF correction = 0.000012 bfgs converged in 10 scf cycles and 6 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -44.0024868234 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.030475566 1.030475566 1.124770858 H -1.030475566 -1.030475566 1.124770858 Writing output data file H2O.save PWSCF : 11m18.22s CPU time, 11m48.13s wall time init_run : 11.26s CPU electrons : 549.35s CPU ( 10 calls, 54.935 s avg) update_pot : 45.52s CPU ( 9 calls, 5.057 s avg) forces : 56.19s CPU ( 10 calls, 5.619 s avg) Called by init_run: wfcinit : 1.11s CPU potinit : 3.89s CPU Called by electrons: c_bands : 181.70s CPU ( 52 calls, 3.494 s avg) sum_band : 105.75s CPU ( 52 calls, 2.034 s avg) v_of_rho : 191.63s CPU ( 62 calls, 3.091 s avg) newd : 68.30s CPU ( 62 calls, 1.102 s avg) mix_rho : 15.62s CPU ( 52 calls, 0.300 s avg) Called by c_bands: init_us_2 : 3.13s CPU ( 105 calls, 0.030 s avg) regterg : 178.74s CPU ( 52 calls, 3.437 s avg) Called by *egterg: h_psi : 167.88s CPU ( 212 calls, 0.792 s avg) s_psi : 1.28s CPU ( 212 calls, 0.006 s avg) g_psi : 1.97s CPU ( 159 calls, 0.012 s avg) rdiaghg : 0.11s CPU ( 202 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 1.24s CPU ( 212 calls, 0.006 s avg) General routines calbec : 1.78s CPU ( 304 calls, 0.006 s avg) cft3 : 181.30s CPU ( 873 calls, 0.208 s avg) cft3s : 173.80s CPU ( 1500 calls, 0.116 s avg) davcio : 0.00s CPU ( 52 calls, 0.000 s avg) PAW routines PAW_pot : 13.34s CPU ( 62 calls, 0.215 s avg) PAW_ddot : 1.14s CPU ( 267 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 53 calls, 0.000 s avg) espresso-5.1/PW/examples/cluster_example/reference/nh4+.out-120000644000175000017500000007101012341373025022314 0ustar mbamba Program PWSCF v.4.1 starts on 9Sep2009 at 13: 0:10 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) H 1.00 1.00000 H( 1.00) 24 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0833333 0.0833333 0.0833333 ) 3 H tau( 3) = ( -0.0833333 -0.0833333 0.0833333 ) 4 H tau( 4) = ( -0.0833333 0.0833333 -0.0833333 ) 5 H tau( 5) = ( 0.0833333 -0.0833333 -0.0833333 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 437.7075 ( 19201 G-vectors) FFT grid: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.29 Mb ( 2401, 8) NL pseudopotentials 0.59 Mb ( 2401, 16) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.59 Mb ( 2401, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 11.12 Mb ( 91125, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000005 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000542 starting charge 8.99996, renormalised to 8.00000 negative rho (up, down): 0.482E-03 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 3.82 secs per-process dynamical memory: 13.9 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.310E-02 0.000E+00 total cpu time spent up to now is 5.35 secs total energy = -31.58206331 Ry Harris-Foulkes estimate = -33.30200371 Ry estimated scf accuracy < 2.27208689 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.580E-02 0.000E+00 total cpu time spent up to now is 6.80 secs total energy = -32.20646497 Ry Harris-Foulkes estimate = -32.59234171 Ry estimated scf accuracy < 0.68171557 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.52E-03, avg # of iterations = 2.0 negative rho (up, down): 0.125E-01 0.000E+00 total cpu time spent up to now is 8.22 secs total energy = -32.33989299 Ry Harris-Foulkes estimate = -32.34663808 Ry estimated scf accuracy < 0.01270933 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-04, avg # of iterations = 5.0 negative rho (up, down): 0.104E-01 0.000E+00 total cpu time spent up to now is 9.94 secs total energy = -32.34426567 Ry Harris-Foulkes estimate = -32.34495066 Ry estimated scf accuracy < 0.00148415 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.86E-05, avg # of iterations = 3.0 negative rho (up, down): 0.108E-01 0.000E+00 total cpu time spent up to now is 11.46 secs total energy = -32.34433067 Ry Harris-Foulkes estimate = -32.34434514 Ry estimated scf accuracy < 0.00003079 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.85E-07, avg # of iterations = 4.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 13.19 secs total energy = -32.34434239 Ry Harris-Foulkes estimate = -32.34435583 Ry estimated scf accuracy < 0.00003060 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.82E-07, avg # of iterations = 1.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 14.66 secs total energy = -32.34434546 Ry Harris-Foulkes estimate = -32.34434556 Ry estimated scf accuracy < 0.00000035 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.34E-09, avg # of iterations = 3.0 negative rho (up, down): 0.109E-01 0.000E+00 total cpu time spent up to now is 16.08 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -33.6495 -22.3917 -22.3917 -22.3917 -7.0409 -3.7176 -3.7176 -3.7176 highest occupied, lowest unoccupied level (ev): -22.3917 -7.0409 ! total energy = -32.34434571 Ry Harris-Foulkes estimate = -32.34434573 Ry estimated scf accuracy < 0.00000005 Ry total all-electron energy = -113.643147 Ry The total energy is the sum of the following terms: one-electron contribution = -82.06710299 Ry hartree contribution = 38.91733313 Ry xc contribution = -8.21270071 Ry ewald contribution = 27.33665144 Ry one-center paw contrib. = -8.31852658 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.109E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.15456333 0.15456333 0.15456333 atom 3 type 2 force = -0.15456333 -0.15456333 0.15456333 atom 4 type 2 force = -0.15456333 0.15456333 -0.15456333 atom 5 type 2 force = 0.15456333 -0.15456333 -0.15456333 Total force = 0.535423 Total SCF correction = 0.000098 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -32.3443457065 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.144337567 1.144337567 1.144337567 H -1.144337567 -1.144337567 1.144337567 H -1.144337567 1.144337567 -1.144337567 H 1.144337567 -1.144337567 -1.144337567 Writing output data file NH4+.save Check: negative starting charge= -0.000542 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000597 negative rho (up, down): 0.481E-02 0.000E+00 total cpu time spent up to now is 18.24 secs per-process dynamical memory: 14.5 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 13.0 negative rho (up, down): 0.593E-02 0.000E+00 total cpu time spent up to now is 20.73 secs total energy = -32.41532573 Ry Harris-Foulkes estimate = -32.47233648 Ry estimated scf accuracy < 0.08622993 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.08E-03, avg # of iterations = 2.0 negative rho (up, down): 0.631E-02 0.000E+00 total cpu time spent up to now is 22.14 secs total energy = -32.43834114 Ry Harris-Foulkes estimate = -32.46666709 Ry estimated scf accuracy < 0.05446391 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.81E-04, avg # of iterations = 1.0 negative rho (up, down): 0.745E-02 0.000E+00 total cpu time spent up to now is 23.51 secs total energy = -32.44942103 Ry Harris-Foulkes estimate = -32.44935352 Ry estimated scf accuracy < 0.00027428 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.43E-06, avg # of iterations = 3.0 negative rho (up, down): 0.745E-02 0.000E+00 total cpu time spent up to now is 25.10 secs total energy = -32.44967080 Ry Harris-Foulkes estimate = -32.44967866 Ry estimated scf accuracy < 0.00004705 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.88E-07, avg # of iterations = 1.0 negative rho (up, down): 0.747E-02 0.000E+00 total cpu time spent up to now is 26.50 secs total energy = -32.44966437 Ry Harris-Foulkes estimate = -32.44967296 Ry estimated scf accuracy < 0.00002045 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.56E-07, avg # of iterations = 2.0 negative rho (up, down): 0.745E-02 0.000E+00 total cpu time spent up to now is 28.02 secs total energy = -32.44966890 Ry Harris-Foulkes estimate = -32.44966997 Ry estimated scf accuracy < 0.00000229 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.86E-08, avg # of iterations = 1.0 negative rho (up, down): 0.745E-02 0.000E+00 total cpu time spent up to now is 29.30 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.3749 -20.6783 -20.6783 -20.6783 -7.4711 -4.6579 -4.6579 -4.6579 highest occupied, lowest unoccupied level (ev): -20.6783 -7.4711 ! total energy = -32.44966920 Ry Harris-Foulkes estimate = -32.44966924 Ry estimated scf accuracy < 0.00000006 Ry total all-electron energy = -113.748470 Ry The total energy is the sum of the following terms: one-electron contribution = -76.79843485 Ry hartree contribution = 36.53847150 Ry xc contribution = -7.77529757 Ry ewald contribution = 23.88862537 Ry one-center paw contrib. = -8.30303365 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.745E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.01178168 -0.01178168 -0.01178168 atom 3 type 2 force = 0.01178168 0.01178168 -0.01178168 atom 4 type 2 force = 0.01178168 -0.01178168 0.01178168 atom 5 type 2 force = -0.01178168 0.01178168 0.01178168 Total force = 0.040813 Total SCF correction = 0.000112 number of scf cycles = 2 number of bfgs steps = 1 energy old = -32.3443457065 Ry energy new = -32.4496691962 Ry CASE: energy _new < energy _old new trust radius = 0.0354133791 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.134114605 1.134114605 1.134114605 H -1.134114605 -1.134114605 1.134114605 H -1.134114605 1.134114605 -1.134114605 H 1.134114605 -1.134114605 -1.134114605 Writing output data file NH4+.save Check: negative starting charge= -0.000597 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000601 negative rho (up, down): 0.800E-02 0.000E+00 total cpu time spent up to now is 31.40 secs per-process dynamical memory: 14.5 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.781E-02 0.000E+00 total cpu time spent up to now is 33.10 secs total energy = -32.45052843 Ry Harris-Foulkes estimate = -32.45068395 Ry estimated scf accuracy < 0.00025416 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.18E-06, avg # of iterations = 2.0 negative rho (up, down): 0.777E-02 0.000E+00 total cpu time spent up to now is 34.51 secs total energy = -32.45059260 Ry Harris-Foulkes estimate = -32.45066669 Ry estimated scf accuracy < 0.00014057 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.76E-06, avg # of iterations = 2.0 negative rho (up, down): 0.773E-02 0.000E+00 total cpu time spent up to now is 35.93 secs total energy = -32.45062307 Ry Harris-Foulkes estimate = -32.45062276 Ry estimated scf accuracy < 0.00000136 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.70E-08, avg # of iterations = 2.0 negative rho (up, down): 0.773E-02 0.000E+00 total cpu time spent up to now is 37.23 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.5229 -20.7909 -20.7909 -20.7909 -7.4308 -4.5818 -4.5818 -4.5818 highest occupied, lowest unoccupied level (ev): -20.7909 -7.4308 ! total energy = -32.45062338 Ry Harris-Foulkes estimate = -32.45062338 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -113.749425 Ry The total energy is the sum of the following terms: one-electron contribution = -77.13837433 Ry hartree contribution = 36.69058617 Ry xc contribution = -7.80300253 Ry ewald contribution = 24.10395855 Ry one-center paw contrib. = -8.30379125 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.773E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.00373688 -0.00373688 -0.00373688 atom 3 type 2 force = 0.00373688 0.00373688 -0.00373688 atom 4 type 2 force = 0.00373688 -0.00373688 0.00373688 atom 5 type 2 force = -0.00373688 0.00373688 0.00373688 Total force = 0.012945 Total SCF correction = 0.000046 number of scf cycles = 3 number of bfgs steps = 2 energy old = -32.4496691962 Ry energy new = -32.4506233782 Ry CASE: energy _new < energy _old new trust radius = 0.0164498045 bohr new conv_thr = 0.0000000374 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129365956 1.129365956 1.129365956 H -1.129365956 -1.129365956 1.129365956 H -1.129365956 1.129365956 -1.129365956 H 1.129365956 -1.129365956 -1.129365956 Writing output data file NH4+.save Check: negative starting charge= -0.000601 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000602 negative rho (up, down): 0.798E-02 0.000E+00 total cpu time spent up to now is 39.35 secs per-process dynamical memory: 14.5 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.791E-02 0.000E+00 total cpu time spent up to now is 41.01 secs total energy = -32.45070342 Ry Harris-Foulkes estimate = -32.45073891 Ry estimated scf accuracy < 0.00005767 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.21E-07, avg # of iterations = 2.0 negative rho (up, down): 0.789E-02 0.000E+00 total cpu time spent up to now is 42.42 secs total energy = -32.45071821 Ry Harris-Foulkes estimate = -32.45073472 Ry estimated scf accuracy < 0.00003120 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.90E-07, avg # of iterations = 2.0 negative rho (up, down): 0.787E-02 0.000E+00 total cpu time spent up to now is 43.84 secs total energy = -32.45072498 Ry Harris-Foulkes estimate = -32.45072490 Ry estimated scf accuracy < 0.00000029 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.68E-09, avg # of iterations = 3.0 negative rho (up, down): 0.787E-02 0.000E+00 total cpu time spent up to now is 45.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.5927 -20.8442 -20.8442 -20.8442 -7.4133 -4.5470 -4.5470 -4.5470 highest occupied, lowest unoccupied level (ev): -20.8442 -7.4133 ! total energy = -32.45072505 Ry Harris-Foulkes estimate = -32.45072505 Ry estimated scf accuracy < 5.8E-09 Ry total all-electron energy = -113.749526 Ry The total energy is the sum of the following terms: one-electron contribution = -77.29790125 Ry hartree contribution = 36.76204844 Ry xc contribution = -7.81601599 Ry ewald contribution = 24.20530856 Ry one-center paw contrib. = -8.30416481 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.787E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00015941 0.00015941 0.00015941 atom 3 type 2 force = -0.00015941 -0.00015941 0.00015941 atom 4 type 2 force = -0.00015941 0.00015941 -0.00015941 atom 5 type 2 force = 0.00015941 -0.00015941 -0.00015941 Total force = 0.000552 Total SCF correction = 0.000026 number of scf cycles = 4 number of bfgs steps = 3 energy old = -32.4506233782 Ry energy new = -32.4507250531 Ry CASE: energy _new < energy _old new trust radius = 0.0006730166 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129560239 1.129560239 1.129560239 H -1.129560239 -1.129560239 1.129560239 H -1.129560239 1.129560239 -1.129560239 H 1.129560239 -1.129560239 -1.129560239 Writing output data file NH4+.save Check: negative starting charge= -0.000602 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000005 0.000000 Check: negative starting charge= -0.000602 negative rho (up, down): 0.786E-02 0.000E+00 total cpu time spent up to now is 47.32 secs per-process dynamical memory: 14.5 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.89E-09, avg # of iterations = 1.0 negative rho (up, down): 0.786E-02 0.000E+00 total cpu time spent up to now is 49.33 secs total energy = -32.45072519 Ry Harris-Foulkes estimate = -32.45072530 Ry estimated scf accuracy < 0.00000016 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-09, avg # of iterations = 2.0 negative rho (up, down): 0.787E-02 0.000E+00 total cpu time spent up to now is 50.74 secs total energy = -32.45072524 Ry Harris-Foulkes estimate = -32.45072528 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-09, avg # of iterations = 2.0 negative rho (up, down): 0.787E-02 0.000E+00 total cpu time spent up to now is 52.09 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -31.5900 -20.8421 -20.8421 -20.8421 -7.4141 -4.5486 -4.5486 -4.5486 highest occupied, lowest unoccupied level (ev): -20.8421 -7.4141 ! total energy = -32.45072526 Ry Harris-Foulkes estimate = -32.45072526 Ry estimated scf accuracy < 5.2E-10 Ry total all-electron energy = -113.749527 Ry The total energy is the sum of the following terms: one-electron contribution = -77.29112160 Ry hartree contribution = 36.75881511 Ry xc contribution = -7.81542154 Ry ewald contribution = 24.20114528 Ry one-center paw contrib. = -8.30414251 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.787E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00000874 0.00000874 0.00000874 atom 3 type 2 force = -0.00000874 -0.00000874 0.00000874 atom 4 type 2 force = -0.00000874 0.00000874 -0.00000874 atom 5 type 2 force = 0.00000874 -0.00000874 -0.00000874 Total force = 0.000030 Total SCF correction = 0.000007 SCF correction compared to forces is too large, reduce conv_thr bfgs converged in 5 scf cycles and 4 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -32.4507252569 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129560239 1.129560239 1.129560239 H -1.129560239 -1.129560239 1.129560239 H -1.129560239 1.129560239 -1.129560239 H 1.129560239 -1.129560239 -1.129560239 Writing output data file NH4+.save PWSCF : 53.10s CPU time, 59.89s wall time init_run : 3.04s CPU electrons : 39.75s CPU ( 5 calls, 7.950 s avg) update_pot : 3.88s CPU ( 4 calls, 0.970 s avg) forces : 4.01s CPU ( 5 calls, 0.802 s avg) Called by init_run: wfcinit : 0.13s CPU potinit : 0.73s CPU Called by electrons: c_bands : 10.02s CPU ( 27 calls, 0.371 s avg) sum_band : 6.93s CPU ( 27 calls, 0.257 s avg) v_of_rho : 12.41s CPU ( 31 calls, 0.400 s avg) newd : 4.59s CPU ( 31 calls, 0.148 s avg) mix_rho : 1.60s CPU ( 27 calls, 0.059 s avg) Called by c_bands: init_us_2 : 0.21s CPU ( 55 calls, 0.004 s avg) regterg : 9.82s CPU ( 27 calls, 0.364 s avg) Called by *egterg: h_psi : 9.22s CPU ( 100 calls, 0.092 s avg) s_psi : 0.09s CPU ( 100 calls, 0.001 s avg) g_psi : 0.13s CPU ( 72 calls, 0.002 s avg) rdiaghg : 0.05s CPU ( 94 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.09s CPU ( 100 calls, 0.001 s avg) General routines calbec : 0.16s CPU ( 147 calls, 0.001 s avg) cft3 : 12.07s CPU ( 438 calls, 0.028 s avg) cft3s : 9.55s CPU ( 780 calls, 0.012 s avg) davcio : 0.00s CPU ( 26 calls, 0.000 s avg) PAW routines PAW_pot : 7.05s CPU ( 31 calls, 0.227 s avg) PAW_ddot : 0.79s CPU ( 170 calls, 0.005 s avg) PAW_symme : 0.00s CPU ( 28 calls, 0.000 s avg) espresso-5.1/PW/examples/cluster_example/reference/h2o.in0000644000175000017500000000114212341373025021616 0ustar mbamba&CONTROL calculation = 'relax' prefix = "H2O", pseudo_dir = "/home/degironc/QE/espresso/pseudo", outdir = "/home/degironc/tmp", / &SYSTEM ibrav = 1, celldm(1) = 24.0 nat = 3, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, do_ee = .true. nelec = 8.0 nbnd = 8 / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / &EE which_compensation='martyna-tuckerman' / ATOMIC_SPECIES O 1.00 O.pbe-paw_kj.UPF H 1.00 H.pbe-paw_kj.UPF ATOMIC_POSITIONS {bohr} O 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 K_POINTS Gamma espresso-5.1/PW/examples/cluster_example/reference/n.out-240000644000175000017500000002405412341373025022016 0ustar mbamba Program PWSCF v.4.1 starts on 9Sep2009 at 13:19:25 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used Message from routine setup: the system is metallic, specify occupations bravais-lattice index = 1 lattice parameter (a_0) = 24.0000 a.u. unit-cell volume = 13824.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) celldm(1)= 24.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) Starting magnetic structure atomic species magnetization N 0.000 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1750.8301 ( 153598 G-vectors) FFT grid: ( 90, 90, 90) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.17 Mb ( 19201, 4) NL pseudopotentials 2.34 Mb ( 19201, 8) Each V/rho on FFT grid 22.25 Mb ( 729000, 2) Each G-vector array 1.17 Mb ( 153598) G-vector shells 0.01 Mb ( 1463) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.34 Mb ( 19201, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 88.99 Mb ( 729000, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000001 0.000000 Initial potential from superposition of free atoms Check: negative starting charge=(component1): -0.000104 Check: negative starting charge=(component2): -0.000104 starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.104E-03 0.104E-03 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 14.68 secs per-process dynamical memory: 107.5 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.991E-03 0.998E-03 total cpu time spent up to now is 29.40 secs total energy = -27.79997740 Ry Harris-Foulkes estimate = -27.59903586 Ry estimated scf accuracy < 0.10983416 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.01 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.20E-03, avg # of iterations = 1.0 negative rho (up, down): 0.162E-02 0.189E-02 total cpu time spent up to now is 44.05 secs total energy = -27.82660772 Ry Harris-Foulkes estimate = -27.80402650 Ry estimated scf accuracy < 0.01614537 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.01 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.23E-04, avg # of iterations = 1.5 negative rho (up, down): 0.160E-02 0.181E-02 total cpu time spent up to now is 59.60 secs total energy = -27.82760583 Ry Harris-Foulkes estimate = -27.82790384 Ry estimated scf accuracy < 0.00051988 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.01 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-05, avg # of iterations = 2.0 negative rho (up, down): 0.165E-02 0.175E-02 total cpu time spent up to now is 75.98 secs total energy = -27.82769904 Ry Harris-Foulkes estimate = -27.82769447 Ry estimated scf accuracy < 0.00000454 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.01 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.08E-08, avg # of iterations = 2.0 negative rho (up, down): 0.165E-02 0.174E-02 total cpu time spent up to now is 92.00 secs total energy = -27.82770091 Ry Harris-Foulkes estimate = -27.82770137 Ry estimated scf accuracy < 0.00000074 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.01 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-08, avg # of iterations = 2.0 negative rho (up, down): 0.165E-02 0.174E-02 total cpu time spent up to now is 106.94 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -19.9137 -8.2856 -8.2856 -8.2856 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 19201 PWs) bands (ev): -15.3296 -4.1277 -4.1277 -4.1277 ! total energy = -27.82770111 Ry Harris-Foulkes estimate = -27.82770111 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -109.126502 Ry The total energy is the sum of the following terms: one-electron contribution = -30.96024177 Ry hartree contribution = 16.56887212 Ry xc contribution = -5.12131221 Ry ewald contribution = -0.00000003 Ry one-center paw contrib. = -8.31501922 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.01 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file N.save PWSCF : 1m47.39s CPU time, 1m51.74s wall time init_run : 14.13s CPU electrons : 92.26s CPU Called by init_run: wfcinit : 1.16s CPU potinit : 7.23s CPU Called by electrons: c_bands : 24.86s CPU ( 6 calls, 4.143 s avg) sum_band : 17.26s CPU ( 6 calls, 2.877 s avg) v_of_rho : 38.74s CPU ( 7 calls, 5.535 s avg) newd : 9.21s CPU ( 7 calls, 1.315 s avg) mix_rho : 3.81s CPU ( 6 calls, 0.635 s avg) Called by c_bands: init_us_2 : 0.58s CPU ( 26 calls, 0.022 s avg) regterg : 24.30s CPU ( 12 calls, 2.025 s avg) Called by *egterg: h_psi : 24.53s CPU ( 33 calls, 0.743 s avg) s_psi : 0.14s CPU ( 33 calls, 0.004 s avg) g_psi : 0.16s CPU ( 19 calls, 0.009 s avg) rdiaghg : 0.01s CPU ( 31 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.12s CPU ( 33 calls, 0.004 s avg) General routines calbec : 0.18s CPU ( 45 calls, 0.004 s avg) cft3 : 32.89s CPU ( 160 calls, 0.206 s avg) cft3s : 25.39s CPU ( 152 calls, 0.167 s avg) davcio : 0.00s CPU ( 38 calls, 0.000 s avg) PAW routines PAW_pot : 3.62s CPU ( 7 calls, 0.518 s avg) PAW_ddot : 0.13s CPU ( 36 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 7 calls, 0.001 s avg) espresso-5.1/PW/examples/cluster_example/reference/nh4+.eigenvalues0000644000175000017500000000047012341373025023576 0ustar mbamba12 -31.5900 -20.8421 -20.8421 -20.8421 -7.4141 -4.5486 -4.5486 -4.5486 16 -31.6045 -20.8581 -20.8581 -20.8581 -7.0873 -4.8260 -4.8260 -4.8260 20 -31.6039 -20.8560 -20.8560 -20.8560 -7.0299 -4.8754 -4.8754 -4.8754 24 -31.6055 -20.8589 -20.8589 -20.8589 -7.0239 -4.8854 -4.8854 -4.8854 espresso-5.1/PW/examples/cluster_example/reference/n.out-120000644000175000017500000002365612341373025022022 0ustar mbamba Program PWSCF v.4.1 starts on 9Sep2009 at 12:59:50 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used Message from routine setup: the system is metallic, specify occupations bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) Starting magnetic structure atomic species magnetization N 0.000 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 437.7075 ( 19201 G-vectors) FFT grid: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.15 Mb ( 2401, 4) NL pseudopotentials 0.29 Mb ( 2401, 8) Each V/rho on FFT grid 2.78 Mb ( 91125, 2) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 2401, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 11.12 Mb ( 91125, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000005 0.000000 Initial potential from superposition of free atoms starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.126E-05 0.126E-05 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 4.00 secs per-process dynamical memory: 15.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.854E-04 0.158E-03 total cpu time spent up to now is 6.16 secs total energy = -27.79894186 Ry Harris-Foulkes estimate = -27.59737527 Ry estimated scf accuracy < 0.11031304 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.21E-03, avg # of iterations = 1.0 negative rho (up, down): 0.200E-03 0.659E-03 total cpu time spent up to now is 8.29 secs total energy = -27.82554173 Ry Harris-Foulkes estimate = -27.80281123 Ry estimated scf accuracy < 0.01571479 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.14E-04, avg # of iterations = 1.5 negative rho (up, down): 0.202E-03 0.578E-03 total cpu time spent up to now is 10.52 secs total energy = -27.82653907 Ry Harris-Foulkes estimate = -27.82678537 Ry estimated scf accuracy < 0.00042203 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.44E-06, avg # of iterations = 2.0 negative rho (up, down): 0.241E-03 0.520E-03 total cpu time spent up to now is 12.81 secs total energy = -27.82662058 Ry Harris-Foulkes estimate = -27.82661478 Ry estimated scf accuracy < 0.00000312 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.24E-08, avg # of iterations = 2.5 negative rho (up, down): 0.241E-03 0.522E-03 total cpu time spent up to now is 15.11 secs total energy = -27.82662305 Ry Harris-Foulkes estimate = -27.82662346 Ry estimated scf accuracy < 0.00000076 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-08, avg # of iterations = 2.0 negative rho (up, down): 0.242E-03 0.521E-03 total cpu time spent up to now is 17.22 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -19.8776 -8.2463 -8.2463 -8.2463 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -15.2899 -4.0718 -4.0718 -4.0718 ! total energy = -27.82662328 Ry Harris-Foulkes estimate = -27.82662328 Ry estimated scf accuracy < 0.00000006 Ry total all-electron energy = -109.125425 Ry The total energy is the sum of the following terms: one-electron contribution = -30.96977215 Ry hartree contribution = 16.58300952 Ry xc contribution = -5.12489959 Ry ewald contribution = -0.00000003 Ry one-center paw contrib. = -8.31496102 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file N.save PWSCF : 17.44s CPU time, 19.64s wall time init_run : 3.44s CPU electrons : 13.22s CPU Called by init_run: wfcinit : 0.12s CPU potinit : 1.49s CPU Called by electrons: c_bands : 1.76s CPU ( 6 calls, 0.293 s avg) sum_band : 2.03s CPU ( 6 calls, 0.339 s avg) v_of_rho : 5.32s CPU ( 7 calls, 0.759 s avg) newd : 1.10s CPU ( 7 calls, 0.157 s avg) mix_rho : 0.50s CPU ( 6 calls, 0.083 s avg) Called by c_bands: init_us_2 : 0.08s CPU ( 26 calls, 0.003 s avg) regterg : 1.69s CPU ( 12 calls, 0.141 s avg) Called by *egterg: h_psi : 1.71s CPU ( 34 calls, 0.050 s avg) s_psi : 0.01s CPU ( 34 calls, 0.000 s avg) g_psi : 0.02s CPU ( 20 calls, 0.001 s avg) rdiaghg : 0.01s CPU ( 32 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.01s CPU ( 34 calls, 0.000 s avg) General routines calbec : 0.02s CPU ( 46 calls, 0.000 s avg) cft3 : 3.90s CPU ( 160 calls, 0.024 s avg) cft3s : 1.88s CPU ( 154 calls, 0.012 s avg) davcio : 0.00s CPU ( 38 calls, 0.000 s avg) PAW routines PAW_pot : 3.65s CPU ( 7 calls, 0.521 s avg) PAW_ddot : 0.13s CPU ( 36 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 7 calls, 0.001 s avg) espresso-5.1/PW/examples/cluster_example/reference/n.out-200000644000175000017500000002365612341373025022021 0ustar mbamba Program PWSCF v.4.1 starts on 9Sep2009 at 13: 9:23 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used Message from routine setup: the system is metallic, specify occupations bravais-lattice index = 1 lattice parameter (a_0) = 20.0000 a.u. unit-cell volume = 8000.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) Starting magnetic structure atomic species magnetization N 0.000 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 1215.8542 ( 88755 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.68 Mb ( 11060, 4) NL pseudopotentials 1.35 Mb ( 11060, 8) Each V/rho on FFT grid 11.39 Mb ( 373248, 2) Each G-vector array 0.68 Mb ( 88755) G-vector shells 0.01 Mb ( 1015) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.35 Mb ( 11060, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 45.56 Mb ( 373248, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000002 0.000000 Initial potential from superposition of free atoms starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.647E-04 0.647E-04 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 8.48 secs per-process dynamical memory: 58.4 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.729E-03 0.781E-03 total cpu time spent up to now is 15.28 secs total energy = -27.79964581 Ry Harris-Foulkes estimate = -27.59875290 Ry estimated scf accuracy < 0.10978686 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.20E-03, avg # of iterations = 1.0 negative rho (up, down): 0.121E-02 0.159E-02 total cpu time spent up to now is 22.08 secs total energy = -27.82629184 Ry Harris-Foulkes estimate = -27.80370108 Ry estimated scf accuracy < 0.01611006 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.22E-04, avg # of iterations = 1.5 negative rho (up, down): 0.120E-02 0.151E-02 total cpu time spent up to now is 29.13 secs total energy = -27.82729422 Ry Harris-Foulkes estimate = -27.82759101 Ry estimated scf accuracy < 0.00051434 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-05, avg # of iterations = 2.0 negative rho (up, down): 0.126E-02 0.145E-02 total cpu time spent up to now is 36.53 secs total energy = -27.82738934 Ry Harris-Foulkes estimate = -27.82738535 Ry estimated scf accuracy < 0.00000384 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.68E-08, avg # of iterations = 2.0 negative rho (up, down): 0.126E-02 0.145E-02 total cpu time spent up to now is 43.80 secs total energy = -27.82739116 Ry Harris-Foulkes estimate = -27.82739139 Ry estimated scf accuracy < 0.00000057 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.14E-08, avg # of iterations = 2.0 negative rho (up, down): 0.126E-02 0.145E-02 total cpu time spent up to now is 50.52 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -19.9158 -8.2866 -8.2866 -8.2866 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -15.3321 -4.1285 -4.1285 -4.1285 ! total energy = -27.82739133 Ry Harris-Foulkes estimate = -27.82739132 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -109.126193 Ry The total energy is the sum of the following terms: one-electron contribution = -30.95952652 Ry hartree contribution = 16.56807538 Ry xc contribution = -5.12102236 Ry ewald contribution = -0.00000003 Ry one-center paw contrib. = -8.31491780 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file N.save PWSCF : 50.84s CPU time, 53.15s wall time init_run : 7.93s CPU electrons : 42.03s CPU Called by init_run: wfcinit : 0.47s CPU potinit : 3.66s CPU Called by electrons: c_bands : 7.59s CPU ( 6 calls, 1.264 s avg) sum_band : 8.65s CPU ( 6 calls, 1.441 s avg) v_of_rho : 18.34s CPU ( 7 calls, 2.620 s avg) newd : 4.83s CPU ( 7 calls, 0.690 s avg) mix_rho : 1.73s CPU ( 6 calls, 0.288 s avg) Called by c_bands: init_us_2 : 0.32s CPU ( 26 calls, 0.012 s avg) regterg : 7.27s CPU ( 12 calls, 0.606 s avg) Called by *egterg: h_psi : 7.27s CPU ( 33 calls, 0.220 s avg) s_psi : 0.05s CPU ( 33 calls, 0.001 s avg) g_psi : 0.10s CPU ( 19 calls, 0.005 s avg) rdiaghg : 0.00s CPU ( 31 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.04s CPU ( 33 calls, 0.001 s avg) General routines calbec : 0.09s CPU ( 45 calls, 0.002 s avg) cft3 : 13.63s CPU ( 160 calls, 0.085 s avg) cft3s : 7.62s CPU ( 152 calls, 0.050 s avg) davcio : 0.00s CPU ( 38 calls, 0.000 s avg) PAW routines PAW_pot : 3.60s CPU ( 7 calls, 0.515 s avg) PAW_ddot : 0.13s CPU ( 36 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 7 calls, 0.001 s avg) espresso-5.1/PW/examples/cluster_example/reference/h2o.out-200000644000175000017500000013702212341373025022245 0ustar mbamba Program PWSCF v.4.1 starts on 9Sep2009 at 13:13:28 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 20.0000 a.u. unit-cell volume = 8000.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) H 1.00 1.00000 H( 1.00) 4 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0500000 0.0500000 0.0500000 ) 3 H tau( 3) = ( -0.0500000 -0.0500000 0.0500000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1215.8542 ( 88755 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.35 Mb ( 11060, 8) NL pseudopotentials 2.03 Mb ( 11060, 12) Each V/rho on FFT grid 5.70 Mb ( 373248) Each G-vector array 0.68 Mb ( 88755) G-vector shells 0.01 Mb ( 1015) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.70 Mb ( 11060, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.007494 starting charge 7.99999, renormalised to 8.00000 negative rho (up, down): 0.749E-02 0.000E+00 Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 7.76 secs per-process dynamical memory: 47.7 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 8.0 negative rho (up, down): 0.140E-01 0.000E+00 total cpu time spent up to now is 14.03 secs total energy = -43.77183796 Ry Harris-Foulkes estimate = -44.16130074 Ry estimated scf accuracy < 0.55218310 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.90E-03, avg # of iterations = 2.0 negative rho (up, down): 0.152E-01 0.000E+00 total cpu time spent up to now is 18.91 secs total energy = -43.87762810 Ry Harris-Foulkes estimate = -44.12512294 Ry estimated scf accuracy < 0.52970858 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.62E-03, avg # of iterations = 2.0 negative rho (up, down): 0.194E-01 0.000E+00 total cpu time spent up to now is 23.71 secs total energy = -43.98633561 Ry Harris-Foulkes estimate = -43.98954781 Ry estimated scf accuracy < 0.00682303 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.53E-05, avg # of iterations = 5.0 negative rho (up, down): 0.186E-01 0.000E+00 total cpu time spent up to now is 29.48 secs total energy = -43.98854397 Ry Harris-Foulkes estimate = -43.98886397 Ry estimated scf accuracy < 0.00083509 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.04E-05, avg # of iterations = 6.0 negative rho (up, down): 0.184E-01 0.000E+00 total cpu time spent up to now is 34.98 secs total energy = -43.98856355 Ry Harris-Foulkes estimate = -43.98859723 Ry estimated scf accuracy < 0.00007672 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.59E-07, avg # of iterations = 3.0 negative rho (up, down): 0.185E-01 0.000E+00 total cpu time spent up to now is 40.18 secs total energy = -43.98857718 Ry Harris-Foulkes estimate = -43.98857907 Ry estimated scf accuracy < 0.00000425 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.31E-08, avg # of iterations = 2.0 negative rho (up, down): 0.185E-01 0.000E+00 total cpu time spent up to now is 44.76 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.8237 -13.8733 -9.1119 -7.3314 -1.1163 0.0196 0.3098 0.5578 highest occupied, lowest unoccupied level (ev): -7.3314 -1.1163 ! total energy = -43.98857803 Ry Harris-Foulkes estimate = -43.98857802 Ry estimated scf accuracy < 0.00000003 Ry total all-electron energy = -152.749324 Ry The total energy is the sum of the following terms: one-electron contribution = -83.29336437 Ry hartree contribution = 43.16999296 Ry xc contribution = -8.51451429 Ry ewald contribution = 14.56351319 Ry one-center paw contrib. = -9.91420551 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.185E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.15930293 atom 2 type 2 force = 0.07235099 0.07235099 0.07965147 atom 3 type 2 force = -0.07235099 -0.07235099 0.07965147 Total force = 0.183378 Total SCF correction = 0.000011 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.9885780254 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.197273161 1.197273161 1.217178728 H -1.197273161 -1.197273161 1.217178728 Writing output data file H2O.save Check: negative starting charge= -0.007494 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007560 negative rho (up, down): 0.114E-01 0.000E+00 total cpu time spent up to now is 51.12 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 12.0 negative rho (up, down): 0.114E-01 0.000E+00 total cpu time spent up to now is 59.58 secs total energy = -43.91509242 Ry Harris-Foulkes estimate = -43.97534353 Ry estimated scf accuracy < 0.09071527 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.115E-01 0.000E+00 total cpu time spent up to now is 64.36 secs total energy = -43.92944085 Ry Harris-Foulkes estimate = -43.99297931 Ry estimated scf accuracy < 0.15060295 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-03, avg # of iterations = 2.0 negative rho (up, down): 0.126E-01 0.000E+00 total cpu time spent up to now is 69.12 secs total energy = -43.95565214 Ry Harris-Foulkes estimate = -43.95561964 Ry estimated scf accuracy < 0.00037693 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.71E-06, avg # of iterations = 3.0 negative rho (up, down): 0.127E-01 0.000E+00 total cpu time spent up to now is 74.35 secs total energy = -43.95580126 Ry Harris-Foulkes estimate = -43.95581600 Ry estimated scf accuracy < 0.00004372 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.46E-07, avg # of iterations = 2.0 negative rho (up, down): 0.127E-01 0.000E+00 total cpu time spent up to now is 79.08 secs total energy = -43.95580726 Ry Harris-Foulkes estimate = -43.95580713 Ry estimated scf accuracy < 0.00000049 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.16E-09, avg # of iterations = 3.0 negative rho (up, down): 0.127E-01 0.000E+00 total cpu time spent up to now is 84.17 secs total energy = -43.95580754 Ry Harris-Foulkes estimate = -43.95580771 Ry estimated scf accuracy < 0.00000040 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.95E-09, avg # of iterations = 2.0 negative rho (up, down): 0.127E-01 0.000E+00 total cpu time spent up to now is 88.68 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -23.9468 -12.1445 -8.8965 -6.9487 -1.6012 -0.1869 0.0133 0.6200 highest occupied, lowest unoccupied level (ev): -6.9487 -1.6012 ! total energy = -43.95580761 Ry Harris-Foulkes estimate = -43.95580761 Ry estimated scf accuracy < 3.4E-09 Ry total all-electron energy = -152.716554 Ry The total energy is the sum of the following terms: one-electron contribution = -79.14576078 Ry hartree contribution = 41.22139527 Ry xc contribution = -8.19692330 Ry ewald contribution = 12.09976742 Ry one-center paw contrib. = -9.93428622 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.127E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.15115905 atom 2 type 2 force = -0.10001412 -0.10001412 -0.07557953 atom 3 type 2 force = 0.10001412 0.10001412 -0.07557953 Total force = 0.226795 Total SCF correction = 0.000023 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.9885780254 Ry energy new = -43.9558076110 Ry CASE: energy _new > energy _old new trust radius = 0.2120972682 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.083682197 1.083682197 1.092126030 H -1.083682197 -1.083682197 1.092126030 Writing output data file H2O.save Check: negative starting charge= -0.007560 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007546 negative rho (up, down): 0.130E-01 0.000E+00 total cpu time spent up to now is 94.99 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 10.0 negative rho (up, down): 0.145E-01 0.000E+00 total cpu time spent up to now is 102.79 secs total energy = -43.99194614 Ry Harris-Foulkes estimate = -44.00383140 Ry estimated scf accuracy < 0.01889484 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-04, avg # of iterations = 2.0 negative rho (up, down): 0.149E-01 0.000E+00 total cpu time spent up to now is 107.55 secs total energy = -43.99508964 Ry Harris-Foulkes estimate = -44.00500768 Ry estimated scf accuracy < 0.02177878 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-04, avg # of iterations = 2.0 negative rho (up, down): 0.157E-01 0.000E+00 total cpu time spent up to now is 112.33 secs total energy = -43.99942091 Ry Harris-Foulkes estimate = -43.99943795 Ry estimated scf accuracy < 0.00015443 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-06, avg # of iterations = 3.0 negative rho (up, down): 0.158E-01 0.000E+00 total cpu time spent up to now is 117.52 secs total energy = -43.99947299 Ry Harris-Foulkes estimate = -43.99947424 Ry estimated scf accuracy < 0.00000452 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.66E-08, avg # of iterations = 2.0 negative rho (up, down): 0.158E-01 0.000E+00 total cpu time spent up to now is 122.40 secs total energy = -43.99947376 Ry Harris-Foulkes estimate = -43.99947370 Ry estimated scf accuracy < 0.00000017 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-09, avg # of iterations = 2.0 negative rho (up, down): 0.158E-01 0.000E+00 total cpu time spent up to now is 126.87 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -24.9214 -13.0727 -9.0083 -7.1490 -1.2495 -0.0620 0.2443 0.5862 highest occupied, lowest unoccupied level (ev): -7.1490 -1.2495 ! total energy = -43.99947379 Ry Harris-Foulkes estimate = -43.99947379 Ry estimated scf accuracy < 4.8E-09 Ry total all-electron energy = -152.760220 Ry The total energy is the sum of the following terms: one-electron contribution = -81.39943459 Ry hartree contribution = 42.28303207 Ry xc contribution = -8.36605004 Ry ewald contribution = 13.40570597 Ry one-center paw contrib. = -9.92272719 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.158E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.02451052 atom 2 type 2 force = -0.02973694 -0.02973694 -0.01225526 atom 3 type 2 force = 0.02973694 0.02973694 -0.01225526 Total force = 0.061948 Total SCF correction = 0.000010 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.9885780254 Ry energy new = -43.9994737936 Ry CASE: energy _new < energy _old new trust radius = 0.0520254293 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.058994413 1.058994413 1.080535114 H -1.058994413 -1.058994413 1.080535114 Writing output data file H2O.save Check: negative starting charge= -0.007546 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007554 negative rho (up, down): 0.160E-01 0.000E+00 total cpu time spent up to now is 133.27 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.163E-01 0.000E+00 total cpu time spent up to now is 139.44 secs total energy = -44.00125126 Ry Harris-Foulkes estimate = -44.00171702 Ry estimated scf accuracy < 0.00073878 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.23E-06, avg # of iterations = 3.0 negative rho (up, down): 0.164E-01 0.000E+00 total cpu time spent up to now is 144.49 secs total energy = -44.00138268 Ry Harris-Foulkes estimate = -44.00174242 Ry estimated scf accuracy < 0.00077579 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.23E-06, avg # of iterations = 2.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 149.28 secs total energy = -44.00153773 Ry Harris-Foulkes estimate = -44.00153841 Ry estimated scf accuracy < 0.00000575 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.18E-08, avg # of iterations = 2.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 154.13 secs total energy = -44.00153960 Ry Harris-Foulkes estimate = -44.00153964 Ry estimated scf accuracy < 0.00000020 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.48E-09, avg # of iterations = 2.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 158.69 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.1318 -13.2167 -9.0675 -7.1928 -1.2121 -0.0431 0.2644 0.5782 highest occupied, lowest unoccupied level (ev): -7.1928 -1.2121 ! total energy = -44.00153964 Ry Harris-Foulkes estimate = -44.00153963 Ry estimated scf accuracy < 6.8E-09 Ry total all-electron energy = -152.762286 Ry The total energy is the sum of the following terms: one-electron contribution = -81.82793047 Ry hartree contribution = 42.48313376 Ry xc contribution = -8.39912787 Ry ewald contribution = 13.66350173 Ry one-center paw contrib. = -9.92111678 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.165E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00704819 atom 2 type 2 force = -0.00952823 -0.00952823 0.00352410 atom 3 type 2 force = 0.00952823 0.00952823 0.00352410 Total force = 0.019697 Total SCF correction = 0.000014 number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.9994737936 Ry energy new = -44.0015396364 Ry CASE: energy _new < energy _old new trust radius = 0.0260107950 bohr new conv_thr = 0.0000000953 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.046456691 1.046456691 1.085423033 H -1.046456691 -1.046456691 1.085423033 Writing output data file H2O.save Check: negative starting charge= -0.007554 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007538 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 165.12 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 170.71 secs total energy = -44.00184198 Ry Harris-Foulkes estimate = -44.00188174 Ry estimated scf accuracy < 0.00007537 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.42E-07, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 175.47 secs total energy = -44.00185379 Ry Harris-Foulkes estimate = -44.00188283 Ry estimated scf accuracy < 0.00006063 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.58E-07, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 180.26 secs total energy = -44.00186716 Ry Harris-Foulkes estimate = -44.00186735 Ry estimated scf accuracy < 0.00000145 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.82E-08, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 184.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.2154 -13.2338 -9.1201 -7.2111 -1.2022 -0.0380 0.2719 0.5750 highest occupied, lowest unoccupied level (ev): -7.2111 -1.2022 ! total energy = -44.00186747 Ry Harris-Foulkes estimate = -44.00186746 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.762614 Ry The total energy is the sum of the following terms: one-electron contribution = -81.97397078 Ry hartree contribution = 42.55081988 Ry xc contribution = -8.41045401 Ry ewald contribution = 13.75267349 Ry one-center paw contrib. = -9.92093605 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.167E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01639525 atom 2 type 2 force = -0.00123582 -0.00123582 0.00819763 atom 3 type 2 force = 0.00123582 0.00123582 0.00819763 Total force = 0.011854 Total SCF correction = 0.000038 number of scf cycles = 5 number of bfgs steps = 3 energy old = -44.0015396364 Ry energy new = -44.0018674736 Ry CASE: energy _new < energy _old new trust radius = 0.0240968495 bohr new conv_thr = 0.0000000328 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.038549376 1.038549376 1.098279075 H -1.038549376 -1.038549376 1.098279075 Writing output data file H2O.save Check: negative starting charge= -0.007538 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007520 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 191.23 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 196.84 secs total energy = -44.00206151 Ry Harris-Foulkes estimate = -44.00205772 Ry estimated scf accuracy < 0.00001036 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-07, avg # of iterations = 1.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 201.38 secs total energy = -44.00206249 Ry Harris-Foulkes estimate = -44.00206200 Ry estimated scf accuracy < 0.00000101 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-08, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 206.16 secs total energy = -44.00206258 Ry Harris-Foulkes estimate = -44.00206264 Ry estimated scf accuracy < 0.00000020 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.50E-09, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 210.73 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.2440 -13.1924 -9.1736 -7.2187 -1.2029 -0.0391 0.2743 0.5743 highest occupied, lowest unoccupied level (ev): -7.2187 -1.2029 ! total energy = -44.00206262 Ry Harris-Foulkes estimate = -44.00206263 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.762809 Ry The total energy is the sum of the following terms: one-electron contribution = -81.99608909 Ry hartree contribution = 42.56022334 Ry xc contribution = -8.41212603 Ry ewald contribution = 13.76734015 Ry one-center paw contrib. = -9.92141099 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.167E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01451053 atom 2 type 2 force = 0.00141961 0.00141961 0.00725527 atom 3 type 2 force = -0.00141961 -0.00141961 0.00725527 Total force = 0.010646 Total SCF correction = 0.000057 number of scf cycles = 6 number of bfgs steps = 4 energy old = -44.0018674736 Ry energy new = -44.0020626173 Ry CASE: energy _new < energy _old new trust radius = 0.0722905484 bohr new conv_thr = 0.0000000195 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.021970129 1.021970129 1.143701744 H -1.021970129 -1.021970129 1.143701744 Writing output data file H2O.save Check: negative starting charge= -0.007520 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007457 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 217.13 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.164E-01 0.000E+00 total cpu time spent up to now is 223.41 secs total energy = -44.00209788 Ry Harris-Foulkes estimate = -44.00214747 Ry estimated scf accuracy < 0.00020913 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.61E-06, avg # of iterations = 2.0 negative rho (up, down): 0.164E-01 0.000E+00 total cpu time spent up to now is 228.21 secs total energy = -44.00212120 Ry Harris-Foulkes estimate = -44.00219479 Ry estimated scf accuracy < 0.00015981 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-06, avg # of iterations = 2.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 232.99 secs total energy = -44.00215843 Ry Harris-Foulkes estimate = -44.00215814 Ry estimated scf accuracy < 0.00000721 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.01E-08, avg # of iterations = 2.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 237.82 secs total energy = -44.00215945 Ry Harris-Foulkes estimate = -44.00215947 Ry estimated scf accuracy < 0.00000006 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-10, avg # of iterations = 3.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 242.55 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.2503 -13.0000 -9.3211 -7.2241 -1.2188 -0.0494 0.2765 0.5737 highest occupied, lowest unoccupied level (ev): -7.2241 -1.2188 ! total energy = -44.00215947 Ry Harris-Foulkes estimate = -44.00215948 Ry estimated scf accuracy < 6.7E-09 Ry total all-electron energy = -152.762906 Ry The total energy is the sum of the following terms: one-electron contribution = -81.89907178 Ry hartree contribution = 42.51082369 Ry xc contribution = -8.40410290 Ry ewald contribution = 13.71367152 Ry one-center paw contrib. = -9.92348000 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.165E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00552444 atom 2 type 2 force = 0.00184515 0.00184515 -0.00276222 atom 3 type 2 force = -0.00184515 -0.00184515 -0.00276222 Total force = 0.005374 Total SCF correction = 0.000028 number of scf cycles = 7 number of bfgs steps = 5 energy old = -44.0020626173 Ry energy new = -44.0021594749 Ry CASE: energy _new < energy _old new trust radius = 0.1590392064 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.065043620 1.065043620 1.049170885 H -1.065043620 -1.065043620 1.049170885 Writing output data file H2O.save Check: negative starting charge= -0.007457 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007564 negative rho (up, down): 0.156E-01 0.000E+00 total cpu time spent up to now is 248.95 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.162E-01 0.000E+00 total cpu time spent up to now is 255.49 secs total energy = -44.00071615 Ry Harris-Foulkes estimate = -44.00069920 Ry estimated scf accuracy < 0.00062511 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.81E-06, avg # of iterations = 2.0 negative rho (up, down): 0.164E-01 0.000E+00 total cpu time spent up to now is 260.27 secs total energy = -44.00076191 Ry Harris-Foulkes estimate = -44.00089520 Ry estimated scf accuracy < 0.00030399 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.80E-06, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 265.05 secs total energy = -44.00084398 Ry Harris-Foulkes estimate = -44.00085033 Ry estimated scf accuracy < 0.00004406 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.51E-07, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 269.88 secs total energy = -44.00085009 Ry Harris-Foulkes estimate = -44.00085011 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-09, avg # of iterations = 3.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 275.03 secs total energy = -44.00085018 Ry Harris-Foulkes estimate = -44.00085019 Ry estimated scf accuracy < 0.00000001 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.59E-10, avg # of iterations = 2.0 negative rho (up, down): 0.167E-01 0.000E+00 total cpu time spent up to now is 279.45 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.1625 -13.3577 -8.9850 -7.1966 -1.1978 -0.0347 0.2665 0.5779 highest occupied, lowest unoccupied level (ev): -7.1966 -1.1978 ! total energy = -44.00085019 Ry Harris-Foulkes estimate = -44.00085019 Ry estimated scf accuracy < 4.5E-10 Ry total all-electron energy = -152.761596 Ry The total energy is the sum of the following terms: one-electron contribution = -81.95632439 Ry hartree contribution = 42.54544732 Ry xc contribution = -8.40921719 Ry ewald contribution = 13.73872881 Ry one-center paw contrib. = -9.91948474 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.167E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.02490111 atom 2 type 2 force = -0.00597669 -0.00597669 0.01245056 atom 3 type 2 force = 0.00597669 0.00597669 0.01245056 Total force = 0.021282 Total SCF correction = 0.000007 number of scf cycles = 8 number of bfgs steps = 6 energy old = -44.0021594749 Ry energy new = -44.0008501867 Ry CASE: energy _new > energy _old new trust radius = 0.0637252952 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.039229212 1.039229212 1.105824248 H -1.039229212 -1.039229212 1.105824248 Writing output data file H2O.save Check: negative starting charge= -0.007564 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007520 negative rho (up, down): 0.164E-01 0.000E+00 total cpu time spent up to now is 285.85 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 292.16 secs total energy = -44.00210384 Ry Harris-Foulkes estimate = -44.00208454 Ry estimated scf accuracy < 0.00021309 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.66E-06, avg # of iterations = 2.0 negative rho (up, down): 0.165E-01 0.000E+00 total cpu time spent up to now is 296.95 secs total energy = -44.00211815 Ry Harris-Foulkes estimate = -44.00215751 Ry estimated scf accuracy < 0.00009177 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-06, avg # of iterations = 2.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 301.77 secs total energy = -44.00214334 Ry Harris-Foulkes estimate = -44.00214656 Ry estimated scf accuracy < 0.00001727 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-07, avg # of iterations = 2.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 306.60 secs total energy = -44.00214592 Ry Harris-Foulkes estimate = -44.00214592 Ry estimated scf accuracy < 0.00000003 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.33E-10, avg # of iterations = 3.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 311.43 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.2188 -13.1500 -9.1859 -7.2139 -1.2088 -0.0428 0.2722 0.5747 highest occupied, lowest unoccupied level (ev): -7.2139 -1.2088 ! total energy = -44.00214596 Ry Harris-Foulkes estimate = -44.00214597 Ry estimated scf accuracy < 7.0E-09 Ry total all-electron energy = -152.762892 Ry The total energy is the sum of the following terms: one-electron contribution = -81.93195248 Ry hartree contribution = 42.52952555 Ry xc contribution = -8.40705077 Ry ewald contribution = 13.72920893 Ry one-center paw contrib. = -9.92187719 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.166E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00755498 atom 2 type 2 force = -0.00115086 -0.00115086 0.00377749 atom 3 type 2 force = 0.00115086 0.00115086 0.00377749 Total force = 0.005817 Total SCF correction = 0.000029 number of scf cycles = 9 number of bfgs steps = 6 energy old = -44.0021594749 Ry energy new = -44.0021459598 Ry CASE: energy _new > energy _old new trust radius = 0.0317813376 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.030577649 1.030577649 1.124811326 H -1.030577649 -1.030577649 1.124811326 Writing output data file H2O.save Check: negative starting charge= -0.007520 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.007492 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 317.84 secs per-process dynamical memory: 47.4 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 323.43 secs total energy = -44.00223509 Ry Harris-Foulkes estimate = -44.00223436 Ry estimated scf accuracy < 0.00002610 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.26E-07, avg # of iterations = 2.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 328.21 secs total energy = -44.00223706 Ry Harris-Foulkes estimate = -44.00224237 Ry estimated scf accuracy < 0.00001203 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-07, avg # of iterations = 2.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 333.02 secs total energy = -44.00224033 Ry Harris-Foulkes estimate = -44.00224061 Ry estimated scf accuracy < 0.00000186 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.32E-08, avg # of iterations = 2.0 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 337.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -25.2351 -13.0758 -9.2534 -7.2189 -1.2138 -0.0461 0.2741 0.5740 highest occupied, lowest unoccupied level (ev): -7.2189 -1.2138 ! total energy = -44.00224062 Ry Harris-Foulkes estimate = -44.00224061 Ry estimated scf accuracy < 3.0E-09 Ry total all-electron energy = -152.762987 Ry The total energy is the sum of the following terms: one-electron contribution = -81.91673979 Ry hartree contribution = 42.52050202 Ry xc contribution = -8.40565075 Ry ewald contribution = 13.72232735 Ry one-center paw contrib. = -9.92267944 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.166E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00109464 atom 2 type 2 force = 0.00039551 0.00039551 0.00054732 atom 3 type 2 force = -0.00039551 -0.00039551 0.00054732 Total force = 0.001107 Total SCF correction = 0.000011 bfgs converged in 10 scf cycles and 6 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -44.0022406163 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.030577649 1.030577649 1.124811326 H -1.030577649 -1.030577649 1.124811326 Writing output data file H2O.save PWSCF : 5m40.63s CPU time, 5m57.02s wall time init_run : 6.99s CPU electrons : 272.30s CPU ( 10 calls, 27.230 s avg) update_pot : 23.48s CPU ( 9 calls, 2.609 s avg) forces : 28.36s CPU ( 10 calls, 2.836 s avg) Called by init_run: wfcinit : 0.76s CPU potinit : 1.98s CPU Called by electrons: c_bands : 83.02s CPU ( 53 calls, 1.566 s avg) sum_band : 54.06s CPU ( 53 calls, 1.020 s avg) v_of_rho : 89.51s CPU ( 63 calls, 1.421 s avg) newd : 37.81s CPU ( 63 calls, 0.600 s avg) mix_rho : 8.06s CPU ( 53 calls, 0.152 s avg) Called by c_bands: init_us_2 : 1.75s CPU ( 107 calls, 0.016 s avg) regterg : 81.37s CPU ( 53 calls, 1.535 s avg) Called by *egterg: h_psi : 75.50s CPU ( 211 calls, 0.358 s avg) s_psi : 0.63s CPU ( 211 calls, 0.003 s avg) g_psi : 1.15s CPU ( 157 calls, 0.007 s avg) rdiaghg : 0.12s CPU ( 201 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.60s CPU ( 211 calls, 0.003 s avg) General routines calbec : 1.08s CPU ( 304 calls, 0.004 s avg) cft3 : 75.26s CPU ( 885 calls, 0.085 s avg) cft3s : 76.76s CPU ( 1524 calls, 0.050 s avg) davcio : 0.00s CPU ( 53 calls, 0.000 s avg) PAW routines PAW_pot : 13.50s CPU ( 63 calls, 0.214 s avg) PAW_ddot : 1.21s CPU ( 282 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 54 calls, 0.000 s avg) espresso-5.1/PW/examples/cluster_example/reference/n.in0000644000175000017500000000102012341373025021356 0ustar mbamba&CONTROL prefix = "N", pseudo_dir = "/home/degironc/QE/espresso/pseudo", outdir = "/home/degironc/tmp", / &SYSTEM ibrav = 1, celldm(1) = 24.0 nat = 1, ntyp = 1, ecutwfc = 30.D0, ecutrho = 120.D0, do_ee = .true. nspin = 2, nelec = 5, nelup = 4, neldw = 1 / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &EE which_compensation='martyna-tuckerman' / ATOMIC_SPECIES N 1.00 N.pbe-paw_kj.UPF ATOMIC_POSITIONS {bohr} N 0.000 0.0 0.0 0 0 0 K_POINTS Gamma espresso-5.1/PW/examples/cluster_example/reference/n.eigenvalues0000644000175000017500000000052012341373025023263 0ustar mbamba12 -19.8776 -8.2463 -8.2463 -8.2463 12 -15.2899 -4.0718 -4.0718 -4.0718 16 -19.9135 -8.2852 -8.2852 -8.2852 16 -15.3289 -4.1256 -4.1256 -4.1256 20 -19.9158 -8.2866 -8.2866 -8.2866 20 -15.3321 -4.1285 -4.1285 -4.1285 24 -19.9137 -8.2856 -8.2856 -8.2856 24 -15.3296 -4.1277 -4.1277 -4.1277 espresso-5.1/PW/examples/cluster_example/reference/h2o.out-120000644000175000017500000014052612341373025022251 0ustar mbamba Program PWSCF v.4.1 starts on 9Sep2009 at 13: 1:10 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 6.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: BESSEL Using radial grid of 1095 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O( 1.00) H 1.00 1.00000 H( 1.00) 4 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0833333 0.0833333 0.0833333 ) 3 H tau( 3) = ( -0.0833333 -0.0833333 0.0833333 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 437.7075 ( 19201 G-vectors) FFT grid: ( 45, 45, 45) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.29 Mb ( 2401, 8) NL pseudopotentials 0.44 Mb ( 2401, 12) Each V/rho on FFT grid 1.39 Mb ( 91125) Each G-vector array 0.15 Mb ( 19201) G-vector shells 0.00 Mb ( 368) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.59 Mb ( 2401, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 11.12 Mb ( 91125, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.000894 starting charge 7.99999, renormalised to 8.00000 negative rho (up, down): 0.894E-03 0.000E+00 Starting wfc are 6 atomic + 2 random wfc total cpu time spent up to now is 3.86 secs per-process dynamical memory: 13.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.0 negative rho (up, down): 0.338E-02 0.000E+00 total cpu time spent up to now is 5.52 secs total energy = -43.77218253 Ry Harris-Foulkes estimate = -44.16045811 Ry estimated scf accuracy < 0.54657832 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.83E-03, avg # of iterations = 2.0 negative rho (up, down): 0.359E-02 0.000E+00 total cpu time spent up to now is 6.91 secs total energy = -43.88191645 Ry Harris-Foulkes estimate = -44.11806658 Ry estimated scf accuracy < 0.50237397 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.28E-03, avg # of iterations = 2.0 negative rho (up, down): 0.633E-02 0.000E+00 total cpu time spent up to now is 8.28 secs total energy = -43.98499459 Ry Harris-Foulkes estimate = -43.98782715 Ry estimated scf accuracy < 0.00620382 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.75E-05, avg # of iterations = 6.0 negative rho (up, down): 0.586E-02 0.000E+00 total cpu time spent up to now is 9.95 secs total energy = -43.98708588 Ry Harris-Foulkes estimate = -43.98733576 Ry estimated scf accuracy < 0.00065672 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.21E-06, avg # of iterations = 19.0 negative rho (up, down): 0.575E-02 0.000E+00 total cpu time spent up to now is 11.97 secs total energy = -43.98709727 Ry Harris-Foulkes estimate = -43.98712857 Ry estimated scf accuracy < 0.00007298 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.12E-07, avg # of iterations = 3.0 negative rho (up, down): 0.576E-02 0.000E+00 total cpu time spent up to now is 13.46 secs total energy = -43.98710728 Ry Harris-Foulkes estimate = -43.98710790 Ry estimated scf accuracy < 0.00000106 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.32E-08, avg # of iterations = 3.0 negative rho (up, down): 0.577E-02 0.000E+00 total cpu time spent up to now is 14.77 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.7672 -13.8205 -9.0550 -7.2703 -1.3179 1.9475 2.1709 2.6837 highest occupied, lowest unoccupied level (ev): -7.2703 -1.3179 ! total energy = -43.98710793 Ry Harris-Foulkes estimate = -43.98710793 Ry estimated scf accuracy < 0.00000010 Ry total all-electron energy = -152.747854 Ry The total energy is the sum of the following terms: one-electron contribution = -83.31896434 Ry hartree contribution = 43.20191025 Ry xc contribution = -8.51957682 Ry ewald contribution = 14.56351319 Ry one-center paw contrib. = -9.91399021 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.577E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.15846254 atom 2 type 2 force = 0.07173599 0.07173599 0.07923127 atom 3 type 2 force = -0.07173599 -0.07173599 0.07923127 Total force = 0.182042 Total SCF correction = 0.000057 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.9871079269 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.197031102 1.197031102 1.217617761 H -1.197031102 -1.197031102 1.217617761 Writing output data file H2O.save Check: negative starting charge= -0.000894 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000881 negative rho (up, down): 0.259E-02 0.000E+00 total cpu time spent up to now is 16.69 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 16.0 negative rho (up, down): 0.264E-02 0.000E+00 total cpu time spent up to now is 19.26 secs total energy = -43.91438547 Ry Harris-Foulkes estimate = -43.97289526 Ry estimated scf accuracy < 0.08852763 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-03, avg # of iterations = 2.0 negative rho (up, down): 0.279E-02 0.000E+00 total cpu time spent up to now is 20.64 secs total energy = -43.92838243 Ry Harris-Foulkes estimate = -43.98898873 Ry estimated scf accuracy < 0.14246404 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-03, avg # of iterations = 2.0 negative rho (up, down): 0.341E-02 0.000E+00 total cpu time spent up to now is 22.01 secs total energy = -43.95349605 Ry Harris-Foulkes estimate = -43.95347814 Ry estimated scf accuracy < 0.00039450 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.93E-06, avg # of iterations = 3.0 negative rho (up, down): 0.340E-02 0.000E+00 total cpu time spent up to now is 23.52 secs total energy = -43.95369745 Ry Harris-Foulkes estimate = -43.95371853 Ry estimated scf accuracy < 0.00005790 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.24E-07, avg # of iterations = 2.0 negative rho (up, down): 0.340E-02 0.000E+00 total cpu time spent up to now is 24.89 secs total energy = -43.95370791 Ry Harris-Foulkes estimate = -43.95370756 Ry estimated scf accuracy < 0.00000061 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.61E-09, avg # of iterations = 3.0 negative rho (up, down): 0.340E-02 0.000E+00 total cpu time spent up to now is 26.37 secs total energy = -43.95370819 Ry Harris-Foulkes estimate = -43.95370841 Ry estimated scf accuracy < 0.00000047 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.87E-09, avg # of iterations = 2.0 negative rho (up, down): 0.340E-02 0.000E+00 total cpu time spent up to now is 27.65 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -23.8796 -12.0801 -8.8297 -6.8742 -1.8143 0.9126 1.5218 2.5163 highest occupied, lowest unoccupied level (ev): -6.8742 -1.8143 ! total energy = -43.95370828 Ry Harris-Foulkes estimate = -43.95370828 Ry estimated scf accuracy < 2.4E-09 Ry total all-electron energy = -152.714454 Ry The total energy is the sum of the following terms: one-electron contribution = -79.17754475 Ry hartree contribution = 41.26150033 Ry xc contribution = -8.20358627 Ry ewald contribution = 12.10000619 Ry one-center paw contrib. = -9.93408378 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.340E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.15227201 atom 2 type 2 force = -0.10069537 -0.10069537 -0.07613600 atom 3 type 2 force = 0.10069537 0.10069537 -0.07613600 Total force = 0.228367 Total SCF correction = 0.000019 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.9871079269 Ry energy new = -43.9537082764 Ry CASE: energy _new > energy _old new trust radius = 0.2112428639 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.083242828 1.083242828 1.091940398 H -1.083242828 -1.083242828 1.091940398 Writing output data file H2O.save Check: negative starting charge= -0.000881 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000867 negative rho (up, down): 0.541E-02 0.000E+00 total cpu time spent up to now is 29.58 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 9.0 negative rho (up, down): 0.462E-02 0.000E+00 total cpu time spent up to now is 31.80 secs total energy = -43.99045027 Ry Harris-Foulkes estimate = -44.00211356 Ry estimated scf accuracy < 0.01865026 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.33E-04, avg # of iterations = 2.0 negative rho (up, down): 0.457E-02 0.000E+00 total cpu time spent up to now is 33.20 secs total energy = -43.99363596 Ry Harris-Foulkes estimate = -44.00308280 Ry estimated scf accuracy < 0.02055556 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.33E-04, avg # of iterations = 2.0 negative rho (up, down): 0.460E-02 0.000E+00 total cpu time spent up to now is 34.57 secs total energy = -43.99774309 Ry Harris-Foulkes estimate = -43.99775106 Ry estimated scf accuracy < 0.00014011 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.75E-06, avg # of iterations = 3.0 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 36.07 secs total energy = -43.99780416 Ry Harris-Foulkes estimate = -43.99780646 Ry estimated scf accuracy < 0.00000687 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.59E-08, avg # of iterations = 2.0 negative rho (up, down): 0.464E-02 0.000E+00 total cpu time spent up to now is 37.47 secs total energy = -43.99780510 Ry Harris-Foulkes estimate = -43.99780507 Ry estimated scf accuracy < 0.00000041 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.11E-09, avg # of iterations = 3.0 negative rho (up, down): 0.464E-02 0.000E+00 total cpu time spent up to now is 38.96 secs total energy = -43.99780529 Ry Harris-Foulkes estimate = -43.99780538 Ry estimated scf accuracy < 0.00000022 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.77E-09, avg # of iterations = 2.0 negative rho (up, down): 0.464E-02 0.000E+00 total cpu time spent up to now is 40.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -24.8656 -13.0201 -8.9482 -7.0836 -1.4732 1.6178 1.9526 2.6002 highest occupied, lowest unoccupied level (ev): -7.0836 -1.4732 ! total energy = -43.99780532 Ry Harris-Foulkes estimate = -43.99780532 Ry estimated scf accuracy < 1.5E-09 Ry total all-electron energy = -152.758552 Ry The total energy is the sum of the following terms: one-electron contribution = -81.43489896 Ry hartree contribution = 42.32176855 Ry xc contribution = -8.37232574 Ry ewald contribution = 13.41013119 Ry one-center paw contrib. = -9.92248036 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.464E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.02471904 atom 2 type 2 force = -0.02999501 -0.02999501 -0.01235952 atom 3 type 2 force = 0.02999501 0.02999501 -0.01235952 Total force = 0.062485 Total SCF correction = 0.000013 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.9871079269 Ry energy new = -43.9978053203 Ry CASE: energy _new < energy _old new trust radius = 0.0524016675 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.058384186 1.058384186 1.080233000 H -1.058384186 -1.058384186 1.080233000 Writing output data file H2O.save Check: negative starting charge= -0.000867 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000866 negative rho (up, down): 0.492E-02 0.000E+00 total cpu time spent up to now is 42.21 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 44.02 secs total energy = -43.99962207 Ry Harris-Foulkes estimate = -44.00007631 Ry estimated scf accuracy < 0.00072762 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.10E-06, avg # of iterations = 2.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 45.42 secs total energy = -43.99975251 Ry Harris-Foulkes estimate = -44.00008799 Ry estimated scf accuracy < 0.00071465 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.93E-06, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 46.80 secs total energy = -43.99989773 Ry Harris-Foulkes estimate = -43.99989830 Ry estimated scf accuracy < 0.00000577 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.21E-08, avg # of iterations = 3.0 negative rho (up, down): 0.494E-02 0.000E+00 total cpu time spent up to now is 48.25 secs total energy = -43.99989997 Ry Harris-Foulkes estimate = -43.99990005 Ry estimated scf accuracy < 0.00000027 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.43E-09, avg # of iterations = 2.0 negative rho (up, down): 0.494E-02 0.000E+00 total cpu time spent up to now is 49.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.0792 -13.1668 -9.0093 -7.1296 -1.4317 1.7099 2.0116 2.6199 highest occupied, lowest unoccupied level (ev): -7.1296 -1.4317 ! total energy = -43.99990003 Ry Harris-Foulkes estimate = -43.99990002 Ry estimated scf accuracy < 5.9E-09 Ry total all-electron energy = -152.760646 Ry The total energy is the sum of the following terms: one-electron contribution = -81.86649040 Ry hartree contribution = 42.52295324 Ry xc contribution = -8.40556219 Ry ewald contribution = 13.67005837 Ry one-center paw contrib. = -9.92085905 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.494E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00719291 atom 2 type 2 force = -0.00957301 -0.00957301 0.00359645 atom 3 type 2 force = 0.00957301 0.00957301 0.00359645 Total force = 0.019810 Total SCF correction = 0.000023 number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.9978053203 Ry energy new = -43.9999000278 Ry CASE: energy _new < energy _old new trust radius = 0.0260997366 bohr new conv_thr = 0.0000000957 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.045817889 1.045817889 1.085210397 H -1.045817889 -1.045817889 1.085210397 Writing output data file H2O.save Check: negative starting charge= -0.000866 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000862 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 51.45 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 53.17 secs total energy = -44.00020963 Ry Harris-Foulkes estimate = -44.00024532 Ry estimated scf accuracy < 0.00007040 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.80E-07, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 54.57 secs total energy = -44.00022061 Ry Harris-Foulkes estimate = -44.00024520 Ry estimated scf accuracy < 0.00005053 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.32E-07, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 55.94 secs total energy = -44.00023210 Ry Harris-Foulkes estimate = -44.00023233 Ry estimated scf accuracy < 0.00000151 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-08, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 57.24 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1637 -13.1841 -9.0630 -7.1487 -1.4193 1.7389 2.0259 2.6321 highest occupied, lowest unoccupied level (ev): -7.1487 -1.4193 ! total energy = -44.00023243 Ry Harris-Foulkes estimate = -44.00023242 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -152.760979 Ry The total energy is the sum of the following terms: one-electron contribution = -82.01198072 Ry hartree contribution = 42.59005175 Ry xc contribution = -8.41679242 Ry ewald contribution = 13.75917544 Ry one-center paw contrib. = -9.92068648 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.502E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01654402 atom 2 type 2 force = -0.00126626 -0.00126626 0.00827201 atom 3 type 2 force = 0.00126626 0.00126626 0.00827201 Total force = 0.011969 Total SCF correction = 0.000051 number of scf cycles = 5 number of bfgs steps = 3 energy old = -43.9999000278 Ry energy new = -44.0002324316 Ry CASE: energy _new < energy _old new trust radius = 0.0246025681 bohr new conv_thr = 0.0000000332 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.037733756 1.037733756 1.098322863 H -1.037733756 -1.037733756 1.098322863 Writing output data file H2O.save Check: negative starting charge= -0.000862 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000857 negative rho (up, down): 0.504E-02 0.000E+00 total cpu time spent up to now is 59.18 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 60.78 secs total energy = -44.00043366 Ry Harris-Foulkes estimate = -44.00042963 Ry estimated scf accuracy < 0.00001091 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.36E-07, avg # of iterations = 1.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 62.07 secs total energy = -44.00043481 Ry Harris-Foulkes estimate = -44.00043431 Ry estimated scf accuracy < 0.00000104 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.30E-08, avg # of iterations = 2.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 63.42 secs total energy = -44.00043494 Ry Harris-Foulkes estimate = -44.00043498 Ry estimated scf accuracy < 0.00000015 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-09, avg # of iterations = 2.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 64.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1927 -13.1415 -9.1175 -7.1562 -1.4184 1.7427 2.0218 2.6413 highest occupied, lowest unoccupied level (ev): -7.1562 -1.4184 ! total energy = -44.00043497 Ry Harris-Foulkes estimate = -44.00043498 Ry estimated scf accuracy < 0.00000001 Ry total all-electron energy = -152.761181 Ry The total energy is the sum of the following terms: one-electron contribution = -82.03439403 Ry hartree contribution = 42.59928336 Ry xc contribution = -8.41843196 Ry ewald contribution = 13.77428188 Ry one-center paw contrib. = -9.92117422 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.501E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.01464789 atom 2 type 2 force = 0.00143989 0.00143989 0.00732394 atom 3 type 2 force = -0.00143989 -0.00143989 0.00732394 Total force = 0.010751 Total SCF correction = 0.000041 number of scf cycles = 6 number of bfgs steps = 4 energy old = -44.0002324316 Ry energy new = -44.0004349672 Ry CASE: energy _new < energy _old new trust radius = 0.0738077042 bohr new conv_thr = 0.0000000203 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.020733627 1.020733627 1.144645425 H -1.020733627 -1.020733627 1.144645425 Writing output data file H2O.save Check: negative starting charge= -0.000857 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000847 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 66.67 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.488E-02 0.000E+00 total cpu time spent up to now is 68.49 secs total energy = -44.00047329 Ry Harris-Foulkes estimate = -44.00052194 Ry estimated scf accuracy < 0.00021511 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-06, avg # of iterations = 2.0 negative rho (up, down): 0.489E-02 0.000E+00 total cpu time spent up to now is 69.89 secs total energy = -44.00049803 Ry Harris-Foulkes estimate = -44.00056979 Ry estimated scf accuracy < 0.00015472 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.93E-06, avg # of iterations = 2.0 negative rho (up, down): 0.490E-02 0.000E+00 total cpu time spent up to now is 71.25 secs total energy = -44.00053468 Ry Harris-Foulkes estimate = -44.00053421 Ry estimated scf accuracy < 0.00000719 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.98E-08, avg # of iterations = 2.0 negative rho (up, down): 0.490E-02 0.000E+00 total cpu time spent up to now is 72.61 secs total energy = -44.00053565 Ry Harris-Foulkes estimate = -44.00053570 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-09, avg # of iterations = 3.0 negative rho (up, down): 0.490E-02 0.000E+00 total cpu time spent up to now is 73.95 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.2000 -12.9452 -9.2688 -7.1622 -1.4310 1.7217 1.9876 2.6627 highest occupied, lowest unoccupied level (ev): -7.1622 -1.4310 ! total energy = -44.00053573 Ry Harris-Foulkes estimate = -44.00053574 Ry estimated scf accuracy < 0.00000001 Ry total all-electron energy = -152.761282 Ry The total energy is the sum of the following terms: one-electron contribution = -81.93646438 Ry hartree contribution = 42.54953424 Ry xc contribution = -8.41037892 Ry ewald contribution = 13.72005664 Ry one-center paw contrib. = -9.92328331 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.490E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00581085 atom 2 type 2 force = 0.00189347 0.00189347 -0.00290542 atom 3 type 2 force = -0.00189347 -0.00189347 -0.00290542 Total force = 0.005588 Total SCF correction = 0.000035 number of scf cycles = 7 number of bfgs steps = 5 energy old = -44.0004349672 Ry energy new = -44.0005357253 Ry CASE: energy _new < energy _old new trust radius = 0.1623769493 bohr new conv_thr = 0.0000000101 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.064698978 1.064698978 1.048119612 H -1.064698978 -1.064698978 1.048119612 Writing output data file H2O.save Check: negative starting charge= -0.000847 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000871 negative rho (up, down): 0.466E-02 0.000E+00 total cpu time spent up to now is 75.90 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 10.0 negative rho (up, down): 0.484E-02 0.000E+00 total cpu time spent up to now is 77.95 secs total energy = -43.99903021 Ry Harris-Foulkes estimate = -43.99901617 Ry estimated scf accuracy < 0.00066353 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.29E-06, avg # of iterations = 2.0 negative rho (up, down): 0.491E-02 0.000E+00 total cpu time spent up to now is 79.32 secs total energy = -43.99908232 Ry Harris-Foulkes estimate = -43.99922567 Ry estimated scf accuracy < 0.00032383 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.05E-06, avg # of iterations = 2.0 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 80.69 secs total energy = -43.99916988 Ry Harris-Foulkes estimate = -43.99917463 Ry estimated scf accuracy < 0.00004252 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.32E-07, avg # of iterations = 3.0 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 82.12 secs total energy = -43.99917539 Ry Harris-Foulkes estimate = -43.99917552 Ry estimated scf accuracy < 0.00000040 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.03E-09, avg # of iterations = 3.0 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 83.58 secs total energy = -43.99917574 Ry Harris-Foulkes estimate = -43.99917577 Ry estimated scf accuracy < 0.00000008 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-09, avg # of iterations = 2.0 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 84.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1094 -13.3105 -8.9239 -7.1329 -1.4184 1.7360 2.0382 2.6102 highest occupied, lowest unoccupied level (ev): -7.1329 -1.4184 ! total energy = -43.99917575 Ry Harris-Foulkes estimate = -43.99917575 Ry estimated scf accuracy < 3.2E-09 Ry total all-electron energy = -152.759922 Ry The total energy is the sum of the following terms: one-electron contribution = -81.99595285 Ry hartree contribution = 42.58557766 Ry xc contribution = -8.41568557 Ry ewald contribution = 13.74607567 Ry one-center paw contrib. = -9.91919066 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.503E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.02539217 atom 2 type 2 force = -0.00600984 -0.00600984 0.01269609 atom 3 type 2 force = 0.00600984 0.00600984 0.01269609 Total force = 0.021607 Total SCF correction = 0.000020 number of scf cycles = 8 number of bfgs steps = 6 energy old = -44.0005357253 Ry energy new = -43.9991757541 Ry CASE: energy _new > energy _old new trust radius = 0.0651047832 bohr new conv_thr = 0.0000000101 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.038361465 1.038361465 1.105943552 H -1.038361465 -1.038361465 1.105943552 Writing output data file H2O.save Check: negative starting charge= -0.000871 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000856 negative rho (up, down): 0.503E-02 0.000E+00 total cpu time spent up to now is 86.80 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 88.64 secs total energy = -44.00047713 Ry Harris-Foulkes estimate = -44.00045727 Ry estimated scf accuracy < 0.00022281 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.79E-06, avg # of iterations = 2.0 negative rho (up, down): 0.495E-02 0.000E+00 total cpu time spent up to now is 90.01 secs total energy = -44.00049319 Ry Harris-Foulkes estimate = -44.00053244 Ry estimated scf accuracy < 0.00009191 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-06, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 91.38 secs total energy = -44.00051881 Ry Harris-Foulkes estimate = -44.00052164 Ry estimated scf accuracy < 0.00001692 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.11E-07, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 92.78 secs total energy = -44.00052128 Ry Harris-Foulkes estimate = -44.00052129 Ry estimated scf accuracy < 0.00000005 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.52E-10, avg # of iterations = 3.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 94.27 secs total energy = -44.00052134 Ry Harris-Foulkes estimate = -44.00052135 Ry estimated scf accuracy < 0.00000002 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.95E-10, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 95.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1676 -13.0988 -9.1299 -7.1513 -1.4245 1.7297 2.0124 2.6411 highest occupied, lowest unoccupied level (ev): -7.1513 -1.4245 ! total energy = -44.00052134 Ry Harris-Foulkes estimate = -44.00052134 Ry estimated scf accuracy < 2.5E-10 Ry total all-electron energy = -152.761268 Ry The total energy is the sum of the following terms: one-electron contribution = -81.97035798 Ry hartree contribution = 42.56861924 Ry xc contribution = -8.41336500 Ry ewald contribution = 13.73622752 Ry one-center paw contrib. = -9.92164512 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.497E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00768545 atom 2 type 2 force = -0.00111697 -0.00111697 0.00384273 atom 3 type 2 force = 0.00111697 0.00111697 0.00384273 Total force = 0.005876 Total SCF correction = 0.000005 number of scf cycles = 9 number of bfgs steps = 6 energy old = -44.0005357253 Ry energy new = -44.0005213407 Ry CASE: energy _new > energy _old new trust radius = 0.0324675536 bohr new conv_thr = 0.0000000101 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.029524575 1.029524575 1.125344921 H -1.029524575 -1.029524575 1.125344921 Writing output data file H2O.save Check: negative starting charge= -0.000856 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000850 negative rho (up, down): 0.496E-02 0.000E+00 total cpu time spent up to now is 97.54 secs per-process dynamical memory: 14.3 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.494E-02 0.000E+00 total cpu time spent up to now is 99.26 secs total energy = -44.00061498 Ry Harris-Foulkes estimate = -44.00061384 Ry estimated scf accuracy < 0.00002692 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.37E-07, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 100.62 secs total energy = -44.00061739 Ry Harris-Foulkes estimate = -44.00062238 Ry estimated scf accuracy < 0.00001147 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.43E-07, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 101.98 secs total energy = -44.00062057 Ry Harris-Foulkes estimate = -44.00062079 Ry estimated scf accuracy < 0.00000179 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-08, avg # of iterations = 2.0 negative rho (up, down): 0.493E-02 0.000E+00 total cpu time spent up to now is 103.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2401 PWs) bands (ev): -25.1842 -13.0227 -9.1992 -7.1566 -1.4272 1.7263 2.0010 2.6525 highest occupied, lowest unoccupied level (ev): -7.1566 -1.4272 ! total energy = -44.00062082 Ry Harris-Foulkes estimate = -44.00062082 Ry estimated scf accuracy < 7.6E-09 Ry total all-electron energy = -152.761367 Ry The total energy is the sum of the following terms: one-electron contribution = -81.95441903 Ry hartree contribution = 42.55908179 Ry xc contribution = -8.41188651 Ry ewald contribution = 13.72906843 Ry one-center paw contrib. = -9.92246550 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.493E-02 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 -0.00101081 atom 2 type 2 force = 0.00044166 0.00044166 0.00050541 atom 3 type 2 force = -0.00044166 -0.00044166 0.00050541 Total force = 0.001136 Total SCF correction = 0.000036 bfgs converged in 10 scf cycles and 6 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -44.0006208221 Ry ATOMIC_POSITIONS (bohr) O 0.000000000 0.000000000 0.000000000 0 0 0 H 1.029524575 1.029524575 1.125344921 H -1.029524575 -1.029524575 1.125344921 Writing output data file H2O.save PWSCF : 1m44.16s CPU time, 1m55.41s wall time init_run : 3.08s CPU electrons : 81.83s CPU ( 10 calls, 8.183 s avg) update_pot : 8.00s CPU ( 9 calls, 0.889 s avg) forces : 7.18s CPU ( 10 calls, 0.718 s avg) Called by init_run: wfcinit : 0.14s CPU potinit : 0.75s CPU Called by electrons: c_bands : 24.40s CPU ( 55 calls, 0.444 s avg) sum_band : 13.01s CPU ( 55 calls, 0.237 s avg) v_of_rho : 23.64s CPU ( 65 calls, 0.364 s avg) newd : 8.29s CPU ( 65 calls, 0.128 s avg) mix_rho : 3.14s CPU ( 55 calls, 0.057 s avg) Called by c_bands: init_us_2 : 0.40s CPU ( 111 calls, 0.004 s avg) regterg : 24.03s CPU ( 55 calls, 0.437 s avg) Called by *egterg: h_psi : 22.55s CPU ( 249 calls, 0.091 s avg) s_psi : 0.13s CPU ( 249 calls, 0.001 s avg) g_psi : 0.28s CPU ( 193 calls, 0.001 s avg) rdiaghg : 0.14s CPU ( 239 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.13s CPU ( 249 calls, 0.001 s avg) General routines calbec : 0.29s CPU ( 344 calls, 0.001 s avg) cft3 : 20.46s CPU ( 909 calls, 0.023 s avg) cft3s : 23.31s CPU ( 1664 calls, 0.014 s avg) davcio : 0.00s CPU ( 55 calls, 0.000 s avg) PAW routines PAW_pot : 14.25s CPU ( 65 calls, 0.219 s avg) PAW_ddot : 1.37s CPU ( 318 calls, 0.004 s avg) PAW_symme : 0.00s CPU ( 56 calls, 0.000 s avg) espresso-5.1/PW/examples/cluster_example/reference/h2o.eigenvalues0000644000175000017500000000047012341373025023522 0ustar mbamba12 -25.1842 -13.0227 -9.1992 -7.1566 -1.4272 1.7263 2.0010 2.6525 16 -25.2332 -13.0742 -9.2511 -7.2158 -1.3149 0.5215 0.7057 1.2127 20 -25.2351 -13.0758 -9.2534 -7.2189 -1.2138 -0.0461 0.2741 0.5740 24 -25.2357 -13.0766 -9.2538 -7.2191 -1.1574 -0.2771 0.0529 0.2466 espresso-5.1/PW/examples/cluster_example/reference/nh4+.in0000644000175000017500000000120512341373025021672 0ustar mbamba&CONTROL calculation = 'relax' prefix = "NH4+", pseudo_dir = "/home/degironc/QE/espresso/pseudo", outdir = "/home/degironc/tmp", / &SYSTEM ibrav = 1, celldm(1) = 24.0 nat = 5, ntyp = 2, ecutwfc = 30.D0, ecutrho = 120.D0, do_ee = .true. nelec = 8.0 nbnd = 8 / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / &EE which_compensation='martyna-tuckerman' / ATOMIC_SPECIES N 1.00 N.pbe-paw_kj.UPF H 1.00 H.pbe-paw_kj.UPF ATOMIC_POSITIONS {bohr} N 0.0 0.0 0.0 0 0 0 H 1.0 1.0 1.0 H -1.0 -1.0 1.0 H -1.0 1.0 -1.0 H 1.0 -1.0 -1.0 K_POINTS Gamma espresso-5.1/PW/examples/cluster_example/reference/n.out-160000644000175000017500000002365612341373025022026 0ustar mbamba Program PWSCF v.4.1 starts on 9Sep2009 at 13: 3: 5 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used Message from routine setup: the system is metallic, specify occupations bravais-lattice index = 1 lattice parameter (a_0) = 16.0000 a.u. unit-cell volume = 4096.0000 (a.u.)^3 number of atoms/cell = 1 number of atomic types = 1 number of electrons = 5.00 (up: 4.00, down: 1.00) number of Kohn-Sham states= 4 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) celldm(1)= 16.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) Starting magnetic structure atomic species magnetization N 0.000 48 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 2 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 k( 2) = ( 0.0000000 0.0000000 0.0000000), wk = 1.0000000 G cutoff = 778.1467 ( 45524 G-vectors) FFT grid: ( 60, 60, 60) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.35 Mb ( 5682, 4) NL pseudopotentials 0.69 Mb ( 5682, 8) Each V/rho on FFT grid 6.59 Mb ( 216000, 2) Each G-vector array 0.35 Mb ( 45524) G-vector shells 0.00 Mb ( 651) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.69 Mb ( 5682, 16) Each subspace H/S matrix 0.00 Mb ( 16, 16) Each matrix 0.00 Mb ( 8, 4) Arrays for rho mixing 26.37 Mb ( 216000, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000003 0.000000 Initial potential from superposition of free atoms starting charge 4.99999, renormalised to 5.00000 negative rho (up, down): 0.266E-04 0.266E-04 Starting wfc are 4 atomic wfcs total cpu time spent up to now is 6.35 secs per-process dynamical memory: 32.8 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 negative rho (up, down): 0.401E-03 0.478E-03 total cpu time spent up to now is 11.10 secs total energy = -27.79981940 Ry Harris-Foulkes estimate = -27.59888052 Ry estimated scf accuracy < 0.10982618 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.20E-03, avg # of iterations = 1.0 negative rho (up, down): 0.702E-03 0.116E-02 total cpu time spent up to now is 15.80 secs total energy = -27.82645854 Ry Harris-Foulkes estimate = -27.80385243 Ry estimated scf accuracy < 0.01603257 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.21E-04, avg # of iterations = 1.5 negative rho (up, down): 0.696E-03 0.108E-02 total cpu time spent up to now is 20.71 secs total energy = -27.82747516 Ry Harris-Foulkes estimate = -27.82775843 Ry estimated scf accuracy < 0.00049466 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.89E-06, avg # of iterations = 2.0 negative rho (up, down): 0.746E-03 0.103E-02 total cpu time spent up to now is 25.80 secs total energy = -27.82757196 Ry Harris-Foulkes estimate = -27.82756621 Ry estimated scf accuracy < 0.00000354 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.09E-08, avg # of iterations = 2.5 negative rho (up, down): 0.745E-03 0.103E-02 total cpu time spent up to now is 30.93 secs total energy = -27.82757449 Ry Harris-Foulkes estimate = -27.82757481 Ry estimated scf accuracy < 0.00000065 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.29E-08, avg # of iterations = 2.0 negative rho (up, down): 0.747E-03 0.103E-02 total cpu time spent up to now is 35.33 secs End of self-consistent calculation ------ SPIN UP ------------ k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -19.9135 -8.2852 -8.2852 -8.2852 ------ SPIN DOWN ---------- k = 0.0000 0.0000 0.0000 ( 5682 PWs) bands (ev): -15.3289 -4.1256 -4.1256 -4.1256 ! total energy = -27.82757465 Ry Harris-Foulkes estimate = -27.82757468 Ry estimated scf accuracy < 0.00000005 Ry total all-electron energy = -109.126376 Ry The total energy is the sum of the following terms: one-electron contribution = -30.96014282 Ry hartree contribution = 16.56878979 Ry xc contribution = -5.12124474 Ry ewald contribution = -0.00000003 Ry one-center paw contrib. = -8.31497685 Ry total magnetization = 3.00 Bohr mag/cell absolute magnetization = 3.00 Bohr mag/cell convergence has been achieved in 6 iterations Writing output data file N.save PWSCF : 35.61s CPU time, 38.26s wall time init_run : 5.80s CPU electrons : 28.98s CPU Called by init_run: wfcinit : 0.32s CPU potinit : 2.68s CPU Called by electrons: c_bands : 5.04s CPU ( 6 calls, 0.840 s avg) sum_band : 4.92s CPU ( 6 calls, 0.820 s avg) v_of_rho : 12.04s CPU ( 7 calls, 1.720 s avg) newd : 2.68s CPU ( 7 calls, 0.384 s avg) mix_rho : 2.75s CPU ( 6 calls, 0.458 s avg) Called by c_bands: init_us_2 : 0.16s CPU ( 26 calls, 0.006 s avg) regterg : 4.88s CPU ( 12 calls, 0.407 s avg) Called by *egterg: h_psi : 4.98s CPU ( 34 calls, 0.146 s avg) s_psi : 0.02s CPU ( 34 calls, 0.001 s avg) g_psi : 0.05s CPU ( 20 calls, 0.002 s avg) rdiaghg : 0.01s CPU ( 32 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 34 calls, 0.000 s avg) General routines calbec : 0.05s CPU ( 46 calls, 0.001 s avg) cft3 : 11.19s CPU ( 160 calls, 0.070 s avg) cft3s : 5.26s CPU ( 154 calls, 0.034 s avg) davcio : 0.00s CPU ( 38 calls, 0.000 s avg) PAW routines PAW_pot : 3.60s CPU ( 7 calls, 0.514 s avg) PAW_ddot : 0.14s CPU ( 36 calls, 0.004 s avg) PAW_symme : 0.01s CPU ( 7 calls, 0.001 s avg) espresso-5.1/PW/examples/cluster_example/reference/nh4+.out-200000644000175000017500000006220312341373025022317 0ustar mbamba Program PWSCF v.4.1 starts on 9Sep2009 at 13:10:16 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please acknowledge "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file N.pbe-paw_kj.UPF: wavefunction(s) 2P renormalized gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 20.0000 a.u. unit-cell volume = 8000.0000 (a.u.)^3 number of atoms/cell = 5 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBX PBC (1434) nstep = 50 celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for N read from file N.pbe-paw_kj.UPF Pseudo is Projector augmented-wave + core cor, Zval = 5.0 Generated using "atomic" code by A. Dal Corso (Quantum ESPRESSO distribution) Shape of augmentation charge: BESSEL Using radial grid of 1085 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for H read from file H.pbe-paw_kj.UPF Pseudo is Projector augmented-wave, Zval = 1.0 Generated using "atomic" code by A. Dal Corso (espresso distribution) Shape of augmentation charge: PSQ Using radial grid of 929 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential N 5.00 1.00000 N( 1.00) H 1.00 1.00000 H( 1.00) 24 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 N tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 H tau( 2) = ( 0.0500000 0.0500000 0.0500000 ) 3 H tau( 3) = ( -0.0500000 -0.0500000 0.0500000 ) 4 H tau( 4) = ( -0.0500000 0.0500000 -0.0500000 ) 5 H tau( 5) = ( 0.0500000 -0.0500000 -0.0500000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 1215.8542 ( 88755 G-vectors) FFT grid: ( 72, 72, 72) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.35 Mb ( 11060, 8) NL pseudopotentials 2.70 Mb ( 11060, 16) Each V/rho on FFT grid 5.70 Mb ( 373248) Each G-vector array 0.68 Mb ( 88755) G-vector shells 0.01 Mb ( 1015) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.70 Mb ( 11060, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 16, 8) Arrays for rho mixing 45.56 Mb ( 373248, 8) alpha, beta MT = 2.00000000000000 0.250000000000000 Check: negative/imaginary core charge= -0.000002 0.000000 Initial potential from superposition of free atoms Check: negative starting charge= -0.009166 starting charge 8.99996, renormalised to 8.00000 negative rho (up, down): 0.815E-02 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 7.62 secs per-process dynamical memory: 48.4 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.176E-01 0.000E+00 total cpu time spent up to now is 14.12 secs total energy = -31.58597287 Ry Harris-Foulkes estimate = -33.29662532 Ry estimated scf accuracy < 2.26924556 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 negative rho (up, down): 0.236E-01 0.000E+00 total cpu time spent up to now is 20.64 secs total energy = -32.20544099 Ry Harris-Foulkes estimate = -32.59163474 Ry estimated scf accuracy < 0.68298022 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.54E-03, avg # of iterations = 2.0 negative rho (up, down): 0.337E-01 0.000E+00 total cpu time spent up to now is 26.39 secs total energy = -32.33949808 Ry Harris-Foulkes estimate = -32.34702446 Ry estimated scf accuracy < 0.01425146 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.78E-04, avg # of iterations = 5.0 negative rho (up, down): 0.301E-01 0.000E+00 total cpu time spent up to now is 34.05 secs total energy = -32.34399961 Ry Harris-Foulkes estimate = -32.34523519 Ry estimated scf accuracy < 0.00252042 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.15E-05, avg # of iterations = 3.0 negative rho (up, down): 0.304E-01 0.000E+00 total cpu time spent up to now is 40.25 secs total energy = -32.34411626 Ry Harris-Foulkes estimate = -32.34412846 Ry estimated scf accuracy < 0.00003984 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.98E-07, avg # of iterations = 3.0 negative rho (up, down): 0.306E-01 0.000E+00 total cpu time spent up to now is 47.30 secs total energy = -32.34412482 Ry Harris-Foulkes estimate = -32.34415344 Ry estimated scf accuracy < 0.00006558 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.98E-07, avg # of iterations = 2.0 negative rho (up, down): 0.306E-01 0.000E+00 total cpu time spent up to now is 53.17 secs total energy = -32.34413037 Ry Harris-Foulkes estimate = -32.34413073 Ry estimated scf accuracy < 0.00000111 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-08, avg # of iterations = 2.0 negative rho (up, down): 0.306E-01 0.000E+00 total cpu time spent up to now is 58.94 secs total energy = -32.34413048 Ry Harris-Foulkes estimate = -32.34413051 Ry estimated scf accuracy < 0.00000018 Ry iteration # 9 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.30E-09, avg # of iterations = 1.0 negative rho (up, down): 0.306E-01 0.000E+00 total cpu time spent up to now is 63.96 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -33.6592 -22.4000 -22.4000 -22.4000 -6.5559 -4.3446 -4.3446 -4.3446 highest occupied, lowest unoccupied level (ev): -22.4000 -6.5559 ! total energy = -32.34413042 Ry Harris-Foulkes estimate = -32.34413049 Ry estimated scf accuracy < 0.00000010 Ry total all-electron energy = -113.642932 Ry The total energy is the sum of the following terms: one-electron contribution = -82.06198095 Ry hartree contribution = 38.91091808 Ry xc contribution = -8.21142029 Ry ewald contribution = 27.33665144 Ry one-center paw contrib. = -8.31829869 Ry convergence has been achieved in 9 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.306E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.15468875 0.15468875 0.15468875 atom 3 type 2 force = -0.15468875 -0.15468875 0.15468875 atom 4 type 2 force = -0.15468875 0.15468875 -0.15468875 atom 5 type 2 force = 0.15468875 -0.15468875 -0.15468875 Total force = 0.535858 Total SCF correction = 0.000204 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -32.3441304189 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.144337567 1.144337567 1.144337567 H -1.144337567 -1.144337567 1.144337567 H -1.144337567 1.144337567 -1.144337567 H 1.144337567 -1.144337567 -1.144337567 Writing output data file NH4+.save Check: negative starting charge= -0.009166 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000002 0.000000 Check: negative starting charge= -0.008918 negative rho (up, down): 0.206E-01 0.000E+00 total cpu time spent up to now is 71.19 secs per-process dynamical memory: 48.1 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 14.0 negative rho (up, down): 0.209E-01 0.000E+00 total cpu time spent up to now is 83.84 secs total energy = -32.41499247 Ry Harris-Foulkes estimate = -32.47269877 Ry estimated scf accuracy < 0.08695611 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-03, avg # of iterations = 2.0 negative rho (up, down): 0.210E-01 0.000E+00 total cpu time spent up to now is 89.53 secs total energy = -32.43829848 Ry Harris-Foulkes estimate = -32.46711671 Ry estimated scf accuracy < 0.05563791 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.95E-04, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 95.21 secs total energy = -32.44971623 Ry Harris-Foulkes estimate = -32.44963197 Ry estimated scf accuracy < 0.00033393 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.17E-06, avg # of iterations = 4.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 101.96 secs total energy = -32.44979302 Ry Harris-Foulkes estimate = -32.44979646 Ry estimated scf accuracy < 0.00001515 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-07, avg # of iterations = 1.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 107.33 secs total energy = -32.44979165 Ry Harris-Foulkes estimate = -32.44979415 Ry estimated scf accuracy < 0.00000583 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.29E-08, avg # of iterations = 1.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 112.76 secs total energy = -32.44979228 Ry Harris-Foulkes estimate = -32.44979231 Ry estimated scf accuracy < 0.00000011 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-09, avg # of iterations = 2.0 negative rho (up, down): 0.224E-01 0.000E+00 total cpu time spent up to now is 118.18 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -31.3916 -20.6946 -20.6946 -20.6946 -7.1017 -4.9631 -4.9631 -4.9631 highest occupied, lowest unoccupied level (ev): -20.6946 -7.1017 ! total energy = -32.44979231 Ry Harris-Foulkes estimate = -32.44979231 Ry estimated scf accuracy < 0.00000002 Ry total all-electron energy = -113.748594 Ry The total energy is the sum of the following terms: one-electron contribution = -76.78996575 Ry hartree contribution = 36.52742817 Ry xc contribution = -7.77307453 Ry ewald contribution = 23.88862537 Ry one-center paw contrib. = -8.30280556 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.224E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.01147641 -0.01147641 -0.01147641 atom 3 type 2 force = 0.01147641 0.01147641 -0.01147641 atom 4 type 2 force = 0.01147641 -0.01147641 0.01147641 atom 5 type 2 force = -0.01147641 0.01147641 0.01147641 Total force = 0.039755 Total SCF correction = 0.000052 number of scf cycles = 2 number of bfgs steps = 1 energy old = -32.3441304189 Ry energy new = -32.4497923064 Ry CASE: energy _new < energy _old new trust radius = 0.0345331430 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.134368708 1.134368708 1.134368708 H -1.134368708 -1.134368708 1.134368708 H -1.134368708 1.134368708 -1.134368708 H 1.134368708 -1.134368708 -1.134368708 Writing output data file NH4+.save Check: negative starting charge= -0.008918 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000002 0.000000 Check: negative starting charge= -0.009057 negative rho (up, down): 0.230E-01 0.000E+00 total cpu time spent up to now is 125.43 secs per-process dynamical memory: 48.1 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.230E-01 0.000E+00 total cpu time spent up to now is 132.75 secs total energy = -32.45060155 Ry Harris-Foulkes estimate = -32.45076275 Ry estimated scf accuracy < 0.00025909 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-06, avg # of iterations = 2.0 negative rho (up, down): 0.231E-01 0.000E+00 total cpu time spent up to now is 138.84 secs total energy = -32.45066795 Ry Harris-Foulkes estimate = -32.45074713 Ry estimated scf accuracy < 0.00015182 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-06, avg # of iterations = 2.0 negative rho (up, down): 0.231E-01 0.000E+00 total cpu time spent up to now is 144.55 secs total energy = -32.45070017 Ry Harris-Foulkes estimate = -32.45069984 Ry estimated scf accuracy < 0.00000139 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-08, avg # of iterations = 2.0 negative rho (up, down): 0.231E-01 0.000E+00 total cpu time spent up to now is 149.73 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -31.5351 -20.8036 -20.8036 -20.8036 -7.0521 -4.9024 -4.9024 -4.9024 highest occupied, lowest unoccupied level (ev): -20.8036 -7.0521 ! total energy = -32.45070046 Ry Harris-Foulkes estimate = -32.45070048 Ry estimated scf accuracy < 0.00000004 Ry total all-electron energy = -113.749502 Ry The total energy is the sum of the following terms: one-electron contribution = -77.12214729 Ry hartree contribution = 36.67672504 Ry xc contribution = -7.80027067 Ry ewald contribution = 24.09855919 Ry one-center paw contrib. = -8.30356672 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.231E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = -0.00366803 -0.00366803 -0.00366803 atom 3 type 2 force = 0.00366803 0.00366803 -0.00366803 atom 4 type 2 force = 0.00366803 -0.00366803 0.00366803 atom 5 type 2 force = -0.00366803 0.00366803 0.00366803 Total force = 0.012706 Total SCF correction = 0.000025 number of scf cycles = 3 number of bfgs steps = 2 energy old = -32.4497923064 Ry energy new = -32.4507004613 Ry CASE: energy _new < energy _old new trust radius = 0.0162221491 bohr new conv_thr = 0.0000000367 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129685777 1.129685777 1.129685777 H -1.129685777 -1.129685777 1.129685777 H -1.129685777 1.129685777 -1.129685777 H 1.129685777 -1.129685777 -1.129685777 Writing output data file NH4+.save Check: negative starting charge= -0.009057 NEW-OLD atomic charge density approx. for the potential Check: negative/imaginary core charge= -0.000002 0.000000 Check: negative starting charge= -0.009127 negative rho (up, down): 0.234E-01 0.000E+00 total cpu time spent up to now is 157.00 secs per-process dynamical memory: 48.1 Mb alpha, beta MT = 2.00000000000000 0.250000000000000 Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.234E-01 0.000E+00 total cpu time spent up to now is 163.92 secs total energy = -32.45077680 Ry Harris-Foulkes estimate = -32.45081258 Ry estimated scf accuracy < 0.00005757 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.20E-07, avg # of iterations = 2.0 negative rho (up, down): 0.234E-01 0.000E+00 total cpu time spent up to now is 169.59 secs total energy = -32.45079152 Ry Harris-Foulkes estimate = -32.45080855 Ry estimated scf accuracy < 0.00003244 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-07, avg # of iterations = 2.0 negative rho (up, down): 0.235E-01 0.000E+00 total cpu time spent up to now is 175.30 secs total energy = -32.45079840 Ry Harris-Foulkes estimate = -32.45079839 Ry estimated scf accuracy < 0.00000032 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-09, avg # of iterations = 2.0 negative rho (up, down): 0.235E-01 0.000E+00 total cpu time spent up to now is 180.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 11060 PWs) bands (ev): -31.6039 -20.8560 -20.8560 -20.8560 -7.0299 -4.8754 -4.8754 -4.8754 highest occupied, lowest unoccupied level (ev): -20.8560 -7.0299 ! total energy = -32.45079847 Ry Harris-Foulkes estimate = -32.45079847 Ry estimated scf accuracy < 9.8E-09 Ry total all-electron energy = -113.749600 Ry The total energy is the sum of the following terms: one-electron contribution = -77.27949226 Ry hartree contribution = 36.74729472 Ry xc contribution = -7.81312805 Ry ewald contribution = 24.19845590 Ry one-center paw contrib. = -8.30392878 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): negative rho (up, down): 0.235E-01 0.000E+00 atom 1 type 1 force = 0.00000000 0.00000000 0.00000000 atom 2 type 2 force = 0.00015775 0.00015775 0.00015775 atom 3 type 2 force = -0.00015775 -0.00015775 0.00015775 atom 4 type 2 force = -0.00015775 0.00015775 -0.00015775 atom 5 type 2 force = 0.00015775 -0.00015775 -0.00015775 Total force = 0.000546 Total SCF correction = 0.000006 bfgs converged in 4 scf cycles and 3 bfgs steps (criteria: energy < 0.10E-03, force < 0.10E-02) End of BFGS Geometry Optimization Final energy = -32.4507984669 Ry ATOMIC_POSITIONS (bohr) N 0.000000000 0.000000000 0.000000000 0 0 0 H 1.129685777 1.129685777 1.129685777 H -1.129685777 -1.129685777 1.129685777 H -1.129685777 1.129685777 -1.129685777 H 1.129685777 -1.129685777 -1.129685777 Writing output data file NH4+.save PWSCF : 3m 4.36s CPU time, 3m11.78s wall time init_run : 6.86s CPU electrons : 151.12s CPU ( 4 calls, 37.781 s avg) update_pot : 7.92s CPU ( 3 calls, 2.639 s avg) forces : 14.49s CPU ( 4 calls, 3.622 s avg) Called by init_run: wfcinit : 0.51s CPU potinit : 2.06s CPU Called by electrons: c_bands : 61.35s CPU ( 24 calls, 2.556 s avg) sum_band : 25.01s CPU ( 24 calls, 1.042 s avg) v_of_rho : 40.87s CPU ( 28 calls, 1.460 s avg) newd : 17.55s CPU ( 28 calls, 0.627 s avg) mix_rho : 5.83s CPU ( 24 calls, 0.243 s avg) Called by c_bands: init_us_2 : 0.85s CPU ( 49 calls, 0.017 s avg) regterg : 60.54s CPU ( 24 calls, 2.523 s avg) Called by *egterg: h_psi : 57.90s CPU ( 93 calls, 0.623 s avg) s_psi : 0.41s CPU ( 93 calls, 0.004 s avg) g_psi : 0.55s CPU ( 68 calls, 0.008 s avg) rdiaghg : 0.04s CPU ( 89 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.40s CPU ( 93 calls, 0.004 s avg) General routines calbec : 0.59s CPU ( 133 calls, 0.004 s avg) cft3 : 37.28s CPU ( 387 calls, 0.096 s avg) cft3s : 57.87s CPU ( 714 calls, 0.081 s avg) davcio : 0.00s CPU ( 24 calls, 0.000 s avg) PAW routines PAW_pot : 6.15s CPU ( 28 calls, 0.220 s avg) PAW_ddot : 0.92s CPU ( 200 calls, 0.005 s avg) PAW_symme : 0.01s CPU ( 25 calls, 0.000 s avg) espresso-5.1/PW/examples/run_all_examples0000755000175000017500000000074212341373025016731 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname echo echo "run_all_examples: starting" # run all examples for dir in example* VCSexample EXX_example vdwDF_example ESM_example cluster_example ; do if test -f $dir/run_example then sh $dir/run_example fi done if test -f vdwDF_example/run_example_delta_scf; then sh vdwDF_example/run_example_delta_scf fi echo echo "run_all_examples: done" espresso-5.1/PW/examples/clean_all0000755000175000017500000000005512341373025015306 0ustar mbamba#!/bin/bash \rm -rf */results* >& /dev/null espresso-5.1/PW/examples/example02/0000755000175000017500000000000012341373041015241 5ustar mbambaespresso-5.1/PW/examples/example02/run_xml_example0000755000175000017500000002444612341373025020402 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether ECHO has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to compute the equilibrium geometry" $ECHO "of a simple molecule, CO, and of an Al (001) slab." $ECHO "In the latter case the relaxation is performed in two ways:" $ECHO "1) using the quasi-Newton BFGS algorithm" $ECHO "2) using a damped dynamics algorithm." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST=" O.pz-rrkjus.UPF C.pz-rrkjus.UPF Al.pz-vbc.UPF " $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > co.rx.xml << EOF 12.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 12.0 1.00 O.pz-rrkjus.UPF 1.00 C.pz-rrkjus.UPF 2.256 0.0 0.0 0.000 0.0 0.0 $PSEUDO_DIR/ $TMP_DIR/ 24.D0 144.D0 1.D-7 0.7D0 EOF $ECHO " running the geometry relaxation for CO...\c" $PW_COMMAND < co.rx.xml > co.rx.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation cat > al001.rx.xml << EOF 0.0 8.D0 0.0 0.0 0.0 1.0 Al.pz-vbc.UPF 0.5000000 0.5000000 -2.121320 0.0000000 0.0000000 -1.414213 0.5000000 0.5000000 -0.707107 0.0000000 0.0000000 0.000000 0.5000000 0.5000000 0.707107 0.0000000 0.0000000 1.414213 0.5000000 0.5000000 2.121320 $PSEUDO_DIR $TMP_DIR 12.D0 1.D-6 0.3D0 smearing methfessel-paxton 0.05D0 3 0.125 0.125 0.0 1.0 0.125 0.375 0.0 2.0 0.375 0.375 0.0 1.0 EOF $ECHO " running the geometry relaxation for Al (001) using BFGS...\c" $PW_COMMAND < al001.rx.xml > al001.rx.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # self-consistent calculation rm -f e eal ave p avec tv cat > al001.mm.xml << EOF 0.0 8.D0 0.0 0.0 0.0 1.D0 Al.pz-vbc.UPF 0.5000000 0.5000000 -2.121320 0.0000000 0.0000000 -1.414213 0.5000000 0.5000000 -0.707107 0.0000000 0.0000000 0.000000 0.5000000 0.5000000 0.707107 0.0000000 0.0000000 1.414213 0.5000000 0.5000000 2.121320 $PSEUDO_DIR/ $TMP_DIR/ 12.D0 1.D-7 0.3D0 smearing methfessel-paxton 0.05D0 damp second_order second_order 30.D0 0.125 0.125 0.0 1.0 0.125 0.375 0.0 2.0 0.375 0.375 0.0 1.0 EOF $ECHO " running the geometry relaxation for Al (001) using damped MD...\c" $PW_COMMAND < al001.mm.xml > al001.mm.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example02/README0000644000175000017500000000475612341373025016137 0ustar mbamba This example illustrates how to use pw.x to compute the equilibrium geometry of a simple molecule, CO, and of an Al (001) slab. The calculation proceeds as follows (for the meaning of the cited input variables see the appropriate INPUT_* file) 1) make a geometry relaxation for CO molecule performing a series of self-consistent calculations and computing the forces on atoms (input=co.rx.in, output=co.rx.out). The molecule is put in a cubic box of side 12 Bohr. Note that ibrav=0 therefore the Bravais lattice fundamental vectors are read after cards 'CELL_PARAMETERS' (where we also specify the type of symmetry, cubic or hexagonal). The cell parameter is not specified in celldm(1), but deduced from Bravais lattice vectors. Calculation is set to 'relax', so specifying that a structural relaxation is performed. While approaching the minimum, the scf threshold (initially conv_thr=1.0d-8) will automatically become smaller (stricter convergence) because of the need to evaluate correctly forces and the tiny energy differences involved in the relaxation. This tightening of the scf threshold is however limited by the upscale=10 statement that specifies that conv_thr ccannot become smaller than its starting value / upscale**2 (=1.0d-10 in the present example). 2) make a geometry relaxation for a Al (001) slab performing a series of self-consistent calculations and computing the forces on atoms (input=al001.rx.in, output=al001.rx.out). This is a 7-atomic-layer slab separated by about 4 vacuum layers. The unit cell in tetragonal (ibrav=6) with celldm(1)=alat_fcc/sqrt(2). Calculation is set to 'relax'. While approaching the minimum, the scf threshold (initially conv_thr=1.0d-6) will automatically become smaller (stricter convergence) because of the need to evaluate correctly forces and the tiny energy differences involved in the relaxation. This tightening of the scf threshold is however limited by the upscale=10 statement that specifies that conv_thr ccannot become smaller than its starting value / upscale**2 (=1.0d-8 in the present example). 3) make a geometry relaxation for the same Al (001) slab used in step 2 performing a series of self-consistent calculations, computing the forces on atoms and evolving the atomic positions according to Newton equation. Whenever a velocity component is opposite to the corresponding force component, the velocity is stopped. (input=al001.mm.in, output=al001.mm.out). espresso-5.1/PW/examples/example02/run_example0000755000175000017500000001242212341373025017511 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether ECHO has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to compute the equilibrium geometry" $ECHO "of a simple molecule, CO, and of an Al (001) slab." $ECHO "In the latter case the relaxation is performed in two ways:" $ECHO "1) using the quasi-Newton BFGS algorithm" $ECHO "2) using a damped dynamics algorithm." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST=" O.pz-rrkjus.UPF C.pz-rrkjus.UPF Al.pz-vbc.UPF " $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # self-consistent calculation cat > co.rx.in << EOF &CONTROL calculation = "relax", prefix = "CO", pseudo_dir = "$PSEUDO_DIR", outdir = "$TMP_DIR", / &SYSTEM ibrav = 0, nat = 2, ntyp = 2, ecutwfc = 24.D0, ecutrho = 144.D0, / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.7D0, / &IONS / CELL_PARAMETERS bohr 12.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 12.0 ATOMIC_SPECIES O 1.00 O.pz-rrkjus.UPF C 1.00 C.pz-rrkjus.UPF ATOMIC_POSITIONS {bohr} C 2.256 0.0 0.0 O 0.000 0.0 0.0 0 0 0 K_POINTS {Gamma} EOF $ECHO " running the geometry relaxation for CO...\c" $PW_COMMAND < co.rx.in > co.rx.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/CO* $ECHO " done" # self-consistent calculation cat > al001.rx.in << EOF &CONTROL calculation = "relax", pseudo_dir = "$PSEUDO_DIR", prefix = "Al" outdir = "$TMP_DIR", / &SYSTEM ibrav = 6, celldm(1) = 5.3033D0, celldm(3) = 8.D0, nat = 7, ntyp = 1, ecutwfc = 12.D0, occupations = "smearing", smearing = "methfessel-paxton", degauss = 0.05D0, / &ELECTRONS conv_thr = 1.D-6, mixing_beta = 0.3D0, / &IONS bfgs_ndim = 3, / ATOMIC_SPECIES Al 1.0 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.5000000 0.5000000 -2.121320 Al 0.0000000 0.0000000 -1.414213 Al 0.5000000 0.5000000 -0.707107 Al 0.0000000 0.0000000 0.000000 Al 0.5000000 0.5000000 0.707107 Al 0.0000000 0.0000000 1.414213 Al 0.5000000 0.5000000 2.121320 K_POINTS 3 0.125 0.125 0.0 1.0 0.125 0.375 0.0 2.0 0.375 0.375 0.0 1.0 EOF $ECHO " running the geometry relaxation for Al (001) using BFGS...\c" $PW_COMMAND < al001.rx.in > al001.rx.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/Al* $ECHO " done" # self-consistent calculation rm -f e eal ave p avec tv cat > al001.mm.in << EOF &CONTROL calculation = "relax", dt = 30.D0, pseudo_dir = "$PSEUDO_DIR", outdir = "$TMP_DIR", prefix = "Al" / &SYSTEM ibrav = 6, celldm(1) = 5.3033D0, celldm(3) = 8.D0, nat = 7, ntyp = 1, ecutwfc = 12.D0, occupations = "smearing", smearing = "methfessel-paxton", degauss = 0.05D0, / &ELECTRONS conv_thr = 1.D-7, mixing_beta = 0.3D0, / &IONS ion_dynamics = "damp", pot_extrapolation = "second_order", wfc_extrapolation = "second_order", / ATOMIC_SPECIES Al 1.D0 Al.pz-vbc.UPF ATOMIC_POSITIONS Al 0.5000000 0.5000000 -2.121320 Al 0.0000000 0.0000000 -1.414213 Al 0.5000000 0.5000000 -0.707107 Al 0.0000000 0.0000000 0.000000 Al 0.5000000 0.5000000 0.707107 Al 0.0000000 0.0000000 1.414213 Al 0.5000000 0.5000000 2.121320 K_POINTS 3 0.125 0.125 0.0 1.0 0.125 0.375 0.0 2.0 0.375 0.375 0.0 1.0 EOF $ECHO " running the geometry relaxation for Al (001) using damped MD...\c" $PW_COMMAND < al001.mm.in > al001.mm.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/Al* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/example02/reference/0000755000175000017500000000000012341373041017177 5ustar mbambaespresso-5.1/PW/examples/example02/reference/co.rx.out0000644000175000017500000006557712341373025021007 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:38:56 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 gamma-point specific algorithms are used bravais-lattice index = 0 lattice parameter (a_0) = 12.0000 a.u. unit-cell volume = 1728.0000 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 10.00 number of Kohn-Sham states= 5 kinetic-energy cutoff = 24.0000 Ry charge density cutoff = 144.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 50 celldm(1)= 12.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for C read from file C.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1425 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential O 6.00 1.00000 O ( 1.00) C 4.00 1.00000 C ( 1.00) 8 Sym.Ops. (no inversion) Cartesian axes site n. atom positions (a_0 units) 1 C tau( 1) = ( 0.1880000 0.0000000 0.0000000 ) 2 O tau( 2) = ( 0.0000000 0.0000000 0.0000000 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 525.2490 ( 25271 G-vectors) FFT grid: ( 48, 48, 48) G cutoff = 350.1660 ( 13805 G-vectors) smooth grid: ( 40, 40, 40) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.13 Mb ( 1704, 5) NL pseudopotentials 0.42 Mb ( 1704, 16) Each V/rho on FFT grid 1.69 Mb ( 110592) Each G-vector array 0.19 Mb ( 25271) G-vector shells 0.00 Mb ( 440) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.26 Mb ( 1704, 20) Each subspace H/S matrix 0.00 Mb ( 20, 20) Each matrix 0.00 Mb ( 16, 5) Arrays for rho mixing 13.50 Mb ( 110592, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.003991 starting charge 9.99996, renormalised to 10.00000 negative rho (up, down): 0.399E-02 0.000E+00 Starting wfc are 8 atomic wfcs total cpu time spent up to now is 1.03 secs per-process dynamical memory: 18.8 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.600E-02 0.000E+00 total cpu time spent up to now is 1.24 secs total energy = -43.00811268 Ry Harris-Foulkes estimate = -43.14060715 Ry estimated scf accuracy < 0.20026192 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-03, avg # of iterations = 4.0 negative rho (up, down): 0.111E-01 0.000E+00 total cpu time spent up to now is 1.47 secs total energy = -42.97497349 Ry Harris-Foulkes estimate = -43.21695642 Ry estimated scf accuracy < 0.66789131 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-03, avg # of iterations = 3.0 negative rho (up, down): 0.522E-02 0.000E+00 total cpu time spent up to now is 1.69 secs total energy = -43.09485892 Ry Harris-Foulkes estimate = -43.09784087 Ry estimated scf accuracy < 0.00901545 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.02E-05, avg # of iterations = 2.0 negative rho (up, down): 0.497E-02 0.000E+00 total cpu time spent up to now is 1.91 secs total energy = -43.09564663 Ry Harris-Foulkes estimate = -43.09615369 Ry estimated scf accuracy < 0.00127296 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.27E-05, avg # of iterations = 4.0 negative rho (up, down): 0.499E-02 0.000E+00 total cpu time spent up to now is 2.14 secs total energy = -43.09623471 Ry Harris-Foulkes estimate = -43.09644052 Ry estimated scf accuracy < 0.00075978 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.60E-06, avg # of iterations = 1.0 negative rho (up, down): 0.501E-02 0.000E+00 total cpu time spent up to now is 2.35 secs total energy = -43.09621832 Ry Harris-Foulkes estimate = -43.09627579 Ry estimated scf accuracy < 0.00017925 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-06, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 2.55 secs total energy = -43.09627392 Ry Harris-Foulkes estimate = -43.09627493 Ry estimated scf accuracy < 0.00000651 Ry iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.51E-08, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 2.79 secs total energy = -43.09627626 Ry Harris-Foulkes estimate = -43.09627629 Ry estimated scf accuracy < 0.00000486 Ry iteration # 9 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.86E-08, avg # of iterations = 1.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 3.01 secs total energy = -43.09627587 Ry Harris-Foulkes estimate = -43.09627649 Ry estimated scf accuracy < 0.00000148 Ry iteration # 10 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-08, avg # of iterations = 3.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 3.24 secs total energy = -43.09627643 Ry Harris-Foulkes estimate = -43.09627656 Ry estimated scf accuracy < 0.00000049 Ry iteration # 11 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.94E-09, avg # of iterations = 2.0 negative rho (up, down): 0.502E-02 0.000E+00 total cpu time spent up to now is 3.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -27.8990 -13.4020 -10.8551 -10.8551 -8.5052 ! total energy = -43.09627640 Ry Harris-Foulkes estimate = -43.09627647 Ry estimated scf accuracy < 0.00000008 Ry The total energy is the sum of the following terms: one-electron contribution = -64.82200681 Ry hartree contribution = 33.55150751 Ry xc contribution = -9.76997738 Ry ewald contribution = -2.05579972 Ry convergence has been achieved in 11 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.21577078 0.00000000 0.00000000 atom 2 type 1 force = 0.21577078 0.00000000 0.00000000 Total force = 0.215771 Total SCF correction = 0.000298 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -43.0962763989 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) C 1.756000000 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file CO.save Check: negative starting charge= -0.003991 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.004101 negative rho (up, down): 0.524E-02 0.000E+00 total cpu time spent up to now is 3.74 secs per-process dynamical memory: 28.3 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.0 negative rho (up, down): 0.715E-02 0.000E+00 total cpu time spent up to now is 4.02 secs total energy = -42.78473741 Ry Harris-Foulkes estimate = -42.89200540 Ry estimated scf accuracy < 0.17132913 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.71E-03, avg # of iterations = 2.0 negative rho (up, down): 0.635E-02 0.000E+00 total cpu time spent up to now is 4.24 secs total energy = -42.81873670 Ry Harris-Foulkes estimate = -42.82551583 Ry estimated scf accuracy < 0.01212104 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.21E-04, avg # of iterations = 2.0 negative rho (up, down): 0.622E-02 0.000E+00 total cpu time spent up to now is 4.46 secs total energy = -42.82122104 Ry Harris-Foulkes estimate = -42.82222045 Ry estimated scf accuracy < 0.00188240 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.88E-05, avg # of iterations = 2.0 negative rho (up, down): 0.606E-02 0.000E+00 total cpu time spent up to now is 4.70 secs total energy = -42.82168258 Ry Harris-Foulkes estimate = -42.82179765 Ry estimated scf accuracy < 0.00027193 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.72E-06, avg # of iterations = 2.0 negative rho (up, down): 0.607E-02 0.000E+00 total cpu time spent up to now is 4.92 secs total energy = -42.82172910 Ry Harris-Foulkes estimate = -42.82173482 Ry estimated scf accuracy < 0.00001091 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-07, avg # of iterations = 3.0 negative rho (up, down): 0.607E-02 0.000E+00 total cpu time spent up to now is 5.14 secs total energy = -42.82173556 Ry Harris-Foulkes estimate = -42.82173886 Ry estimated scf accuracy < 0.00000719 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.19E-08, avg # of iterations = 2.0 negative rho (up, down): 0.607E-02 0.000E+00 total cpu time spent up to now is 5.33 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -32.0594 -13.6139 -13.6139 -13.4515 -7.8455 ! total energy = -42.82173666 Ry Harris-Foulkes estimate = -42.82173673 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = -74.40958890 Ry hartree contribution = 38.06601514 Ry xc contribution = -10.35398822 Ry ewald contribution = 3.87582532 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 1.92934184 0.00000000 0.00000000 atom 2 type 1 force = -1.92934184 0.00000000 0.00000000 Total force = 1.929342 Total SCF correction = 0.000476 number of scf cycles = 2 number of bfgs steps = 1 energy old = -43.0962763989 Ry energy new = -42.8217366607 Ry CASE: energy _new > energy _old new trust radius = 0.1100174131 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) C 2.145982587 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file CO.save first order wave-functions extrapolation Check: negative starting charge= -0.004101 first order charge density extrapolation Check: negative starting charge= -0.004012 negative rho (up, down): 0.862E-02 0.000E+00 total cpu time spent up to now is 5.67 secs per-process dynamical memory: 36.5 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.0 negative rho (up, down): 0.260E-02 0.000E+00 total cpu time spent up to now is 5.96 secs total energy = -42.93671760 Ry Harris-Foulkes estimate = -43.35618211 Ry estimated scf accuracy < 0.64233864 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.42E-03, avg # of iterations = 2.0 negative rho (up, down): 0.437E-02 0.000E+00 total cpu time spent up to now is 6.18 secs total energy = -43.08393547 Ry Harris-Foulkes estimate = -43.14700069 Ry estimated scf accuracy < 0.10547028 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-03, avg # of iterations = 2.0 negative rho (up, down): 0.460E-02 0.000E+00 total cpu time spent up to now is 6.39 secs total energy = -43.10668697 Ry Harris-Foulkes estimate = -43.11281426 Ry estimated scf accuracy < 0.01208475 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.21E-04, avg # of iterations = 2.0 negative rho (up, down): 0.504E-02 0.000E+00 total cpu time spent up to now is 6.62 secs total energy = -43.10950995 Ry Harris-Foulkes estimate = -43.10956591 Ry estimated scf accuracy < 0.00028454 Ry iteration # 5 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-06, avg # of iterations = 4.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 6.84 secs total energy = -43.10951793 Ry Harris-Foulkes estimate = -43.10970137 Ry estimated scf accuracy < 0.00040876 Ry iteration # 6 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.85E-06, avg # of iterations = 3.0 negative rho (up, down): 0.510E-02 0.000E+00 total cpu time spent up to now is 7.05 secs total energy = -43.10960419 Ry Harris-Foulkes estimate = -43.10960718 Ry estimated scf accuracy < 0.00001108 Ry iteration # 7 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.11E-07, avg # of iterations = 2.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 7.28 secs total energy = -43.10960627 Ry Harris-Foulkes estimate = -43.10960721 Ry estimated scf accuracy < 0.00000236 Ry iteration # 8 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.36E-08, avg # of iterations = 3.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 7.47 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.7709 -13.3833 -11.3623 -11.3623 -8.3843 ! total energy = -43.10960691 Ry Harris-Foulkes estimate = -43.10960697 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = -66.64151631 Ry hartree contribution = 34.40190931 Ry xc contribution = -9.87395744 Ry ewald contribution = -0.99604248 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.01332520 0.00000000 0.00000000 atom 2 type 1 force = 0.01332520 0.00000000 0.00000000 Total force = 0.013325 Total SCF correction = 0.000179 number of scf cycles = 3 number of bfgs steps = 1 energy old = -43.0962763989 Ry energy new = -43.1096069078 Ry CASE: energy _new < energy _old new trust radius = 0.0072414737 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (bohr) C 2.138741113 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file CO.save second order wave-functions extrapolation Check: negative starting charge= -0.004012 second order charge density extrapolation Check: negative starting charge= -0.004013 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 7.81 secs per-process dynamical memory: 36.5 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.67E-08, avg # of iterations = 3.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 8.14 secs total energy = -43.10964007 Ry Harris-Foulkes estimate = -43.10964696 Ry estimated scf accuracy < 0.00001184 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.18E-07, avg # of iterations = 4.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 8.37 secs total energy = -43.10964022 Ry Harris-Foulkes estimate = -43.10965167 Ry estimated scf accuracy < 0.00002897 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.18E-07, avg # of iterations = 3.0 negative rho (up, down): 0.512E-02 0.000E+00 total cpu time spent up to now is 8.59 secs total energy = -43.10964551 Ry Harris-Foulkes estimate = -43.10964547 Ry estimated scf accuracy < 0.00000016 Ry iteration # 4 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.64E-09, avg # of iterations = 2.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 8.79 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8303 -13.3829 -11.3978 -11.3978 -8.3771 ! total energy = -43.10964555 Ry Harris-Foulkes estimate = -43.10964556 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = -66.76634220 Ry hartree contribution = 34.46020278 Ry xc contribution = -9.88121864 Ry ewald contribution = -0.92228748 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = 0.00307019 0.00000000 0.00000000 atom 2 type 1 force = -0.00307019 0.00000000 0.00000000 Total force = 0.003070 Total SCF correction = 0.000115 number of scf cycles = 4 number of bfgs steps = 2 energy old = -43.1096069078 Ry energy new = -43.1096455485 Ry CASE: energy _new < energy _old new trust radius = 0.0013560339 bohr new conv_thr = 0.0000000100 Ry ATOMIC_POSITIONS (bohr) C 2.140097147 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file CO.save second order wave-functions extrapolation Check: negative starting charge= -0.004013 second order charge density extrapolation Check: negative starting charge= -0.004013 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 9.14 secs per-process dynamical memory: 36.5 Mb Self-consistent Calculation iteration # 1 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.45E-10, avg # of iterations = 4.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 9.46 secs total energy = -43.10964747 Ry Harris-Foulkes estimate = -43.10964752 Ry estimated scf accuracy < 0.00000005 Ry iteration # 2 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.38E-10, avg # of iterations = 4.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 9.70 secs total energy = -43.10964748 Ry Harris-Foulkes estimate = -43.10964754 Ry estimated scf accuracy < 0.00000017 Ry iteration # 3 ecut= 24.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.38E-10, avg # of iterations = 3.0 negative rho (up, down): 0.511E-02 0.000E+00 total cpu time spent up to now is 9.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1704 PWs) bands (ev): -28.8190 -13.3828 -11.3910 -11.3910 -8.3784 ! total energy = -43.10964750 Ry Harris-Foulkes estimate = -43.10964750 Ry estimated scf accuracy < 5.4E-11 Ry The total energy is the sum of the following terms: one-electron contribution = -66.74312046 Ry hartree contribution = 34.44950552 Ry xc contribution = -9.87989416 Ry ewald contribution = -0.93613840 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.00001610 0.00000000 0.00000000 atom 2 type 1 force = 0.00001610 0.00000000 0.00000000 Total force = 0.000016 Total SCF correction = 0.000001 bfgs converged in 5 scf cycles and 3 bfgs steps End of BFGS Geometry Optimization Final energy = -43.1096475045 Ry CELL_PARAMETERS (alat) 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 ATOMIC_POSITIONS (bohr) C 2.140097147 0.000000000 0.000000000 O 0.000000000 0.000000000 0.000000000 0 0 0 Writing output data file CO.save PWSCF : 10.09s CPU time, 10.65s wall time init_run : 0.99s CPU electrons : 7.52s CPU ( 5 calls, 1.504 s avg) update_pot : 0.43s CPU ( 4 calls, 0.107 s avg) forces : 0.58s CPU ( 5 calls, 0.117 s avg) Called by init_run: wfcinit : 0.01s CPU potinit : 0.06s CPU Called by electrons: c_bands : 1.54s CPU ( 35 calls, 0.044 s avg) sum_band : 2.60s CPU ( 35 calls, 0.074 s avg) v_of_rho : 0.73s CPU ( 38 calls, 0.019 s avg) newd : 1.76s CPU ( 38 calls, 0.046 s avg) mix_rho : 0.51s CPU ( 35 calls, 0.014 s avg) Called by c_bands: init_us_2 : 0.07s CPU ( 74 calls, 0.001 s avg) regterg : 1.46s CPU ( 35 calls, 0.042 s avg) Called by *egterg: h_psi : 1.30s CPU ( 138 calls, 0.009 s avg) s_psi : 0.02s CPU ( 141 calls, 0.000 s avg) g_psi : 0.02s CPU ( 102 calls, 0.000 s avg) rdiaghg : 0.02s CPU ( 131 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.02s CPU ( 138 calls, 0.000 s avg) General routines calbec : 0.06s CPU ( 199 calls, 0.000 s avg) cft3 : 1.47s CPU ( 309 calls, 0.005 s avg) cft3s : 1.30s CPU ( 856 calls, 0.002 s avg) interpolate : 0.69s CPU ( 73 calls, 0.009 s avg) davcio : 0.00s CPU ( 52 calls, 0.000 s avg) espresso-5.1/PW/examples/example02/reference/al001.rx.out0000644000175000017500000020705612341373025021211 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:39: 7 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 6 lattice parameter (a_0) = 5.3033 a.u. unit-cell volume = 1193.2421 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 50 celldm(1)= 5.303300 celldm(2)= 0.000000 celldm(3)= 8.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 8.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.125000 ) PseudoPot. # 1 for Al read from file Al.vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 1.00000 Al( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.5000000 0.5000000 -2.1213200 ) 2 Al tau( 2) = ( 0.0000000 0.0000000 -1.4142130 ) 3 Al tau( 3) = ( 0.5000000 0.5000000 -0.7071070 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.5000000 0.5000000 0.7071070 ) 6 Al tau( 6) = ( 0.0000000 0.0000000 1.4142130 ) 7 Al tau( 7) = ( 0.5000000 0.5000000 2.1213200 ) number of k points= 3 gaussian broad. (Ry)= 0.0500 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.0000000), wk = 0.5000000 k( 2) = ( 0.1250000 0.3750000 0.0000000), wk = 1.0000000 k( 3) = ( 0.3750000 0.3750000 0.0000000), wk = 0.5000000 G cutoff = 34.1959 ( 6689 G-vectors) FFT grid: ( 12, 12, 96) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 860, 15) NL pseudopotentials 0.37 Mb ( 860, 28) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.05 Mb ( 6689) G-vector shells 0.00 Mb ( 351) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.79 Mb ( 860, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 28, 15) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000275 starting charge 20.98560, renormalised to 21.00000 negative rho (up, down): 0.276E-03 0.000E+00 Starting wfc are 63 atomic wfcs total cpu time spent up to now is 0.16 secs per-process dynamical memory: 12.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.186E-03 0.000E+00 total cpu time spent up to now is 0.27 secs total energy = -28.81800044 Ry Harris-Foulkes estimate = -29.29242665 Ry estimated scf accuracy < 0.99707290 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.75E-03, avg # of iterations = 4.3 total cpu time spent up to now is 0.44 secs total energy = -27.55975725 Ry Harris-Foulkes estimate = -30.64244044 Ry estimated scf accuracy < 42.47180210 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.75E-03, avg # of iterations = 3.7 total cpu time spent up to now is 0.59 secs total energy = -29.21236680 Ry Harris-Foulkes estimate = -29.23827251 Ry estimated scf accuracy < 0.25038981 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 2.3 total cpu time spent up to now is 0.70 secs total energy = -29.21649581 Ry Harris-Foulkes estimate = -29.22410750 Ry estimated scf accuracy < 0.04585932 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.18E-04, avg # of iterations = 2.7 total cpu time spent up to now is 0.80 secs total energy = -29.21973500 Ry Harris-Foulkes estimate = -29.22006263 Ry estimated scf accuracy < 0.00336979 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.60E-05, avg # of iterations = 4.7 total cpu time spent up to now is 0.93 secs total energy = -29.21993710 Ry Harris-Foulkes estimate = -29.21994846 Ry estimated scf accuracy < 0.00071042 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.38E-06, avg # of iterations = 3.0 total cpu time spent up to now is 1.04 secs total energy = -29.21995305 Ry Harris-Foulkes estimate = -29.21996870 Ry estimated scf accuracy < 0.00004258 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-07, avg # of iterations = 2.7 total cpu time spent up to now is 1.16 secs total energy = -29.21995565 Ry Harris-Foulkes estimate = -29.21996337 Ry estimated scf accuracy < 0.00004475 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-07, avg # of iterations = 2.3 total cpu time spent up to now is 1.26 secs total energy = -29.21995946 Ry Harris-Foulkes estimate = -29.21996144 Ry estimated scf accuracy < 0.00000791 Ry iteration # 10 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.77E-08, avg # of iterations = 1.7 total cpu time spent up to now is 1.36 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0790 -6.5548 -5.7171 -4.5664 -3.1473 -1.4539 0.5128 1.7883 4.3696 5.5244 5.9957 6.2180 6.7549 7.2249 7.4957 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7555 -4.2388 -3.4158 -2.2857 -0.8948 -0.2551 0.2241 0.8003 1.0426 2.1352 2.7199 3.5255 3.8932 5.1676 6.5171 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4879 -1.9828 -1.1748 -0.0657 1.2960 1.3317 1.7996 2.5507 2.7201 2.8085 3.4483 3.5987 4.1264 4.9118 4.9355 the Fermi energy is 3.4731 ev ! total energy = -29.21996018 Ry Harris-Foulkes estimate = -29.21996051 Ry estimated scf accuracy < 0.00000043 Ry The total energy is the sum of the following terms: one-electron contribution = -182.00588640 Ry hartree contribution = 97.74163219 Ry xc contribution = -11.20672435 Ry ewald contribution = 66.25386160 Ry smearing contrib. (-TS) = -0.00284321 Ry convergence has been achieved in 10 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.01010485 atom 2 type 1 force = 0.00000000 0.00000000 -0.00112292 atom 3 type 1 force = 0.00000000 0.00000000 0.00257324 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00257324 atom 6 type 1 force = 0.00000000 0.00000000 0.00112292 atom 7 type 1 force = 0.00000000 0.00000000 -0.01010485 Total force = 0.014832 Total SCF correction = 0.000908 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 energy new = -29.2199601767 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.057086571 Al 0.000000000 0.000000000 -1.421351051 Al 0.500000000 0.500000000 -0.690749715 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.690749715 Al 0.000000000 0.000000000 1.421351051 Al 0.500000000 0.500000000 2.057086571 Writing output data file pwscf.save Check: negative starting charge= -0.000275 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000305 negative rho (up, down): 0.140E-02 0.000E+00 total cpu time spent up to now is 1.42 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 11.0 negative rho (up, down): 0.765E-03 0.000E+00 total cpu time spent up to now is 1.72 secs total energy = -29.21369832 Ry Harris-Foulkes estimate = -29.22047303 Ry estimated scf accuracy < 0.01694986 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.07E-05, avg # of iterations = 2.7 negative rho (up, down): 0.559E-03 0.000E+00 total cpu time spent up to now is 1.83 secs total energy = -29.21396119 Ry Harris-Foulkes estimate = -29.21716231 Ry estimated scf accuracy < 0.01057540 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.04E-05, avg # of iterations = 3.3 negative rho (up, down): 0.431E-03 0.000E+00 total cpu time spent up to now is 1.95 secs total energy = -29.21219326 Ry Harris-Foulkes estimate = -29.22042943 Ry estimated scf accuracy < 0.10034717 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.04E-05, avg # of iterations = 2.7 negative rho (up, down): 0.278E-03 0.000E+00 total cpu time spent up to now is 2.06 secs total energy = -29.21635983 Ry Harris-Foulkes estimate = -29.21661492 Ry estimated scf accuracy < 0.00157492 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.50E-06, avg # of iterations = 1.7 negative rho (up, down): 0.506E-04 0.000E+00 total cpu time spent up to now is 2.16 secs total energy = -29.21649737 Ry Harris-Foulkes estimate = -29.21649620 Ry estimated scf accuracy < 0.00014654 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.98E-07, avg # of iterations = 3.3 negative rho (up, down): 0.498E-05 0.000E+00 total cpu time spent up to now is 2.27 secs total energy = -29.21651792 Ry Harris-Foulkes estimate = -29.21651291 Ry estimated scf accuracy < 0.00001224 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.83E-08, avg # of iterations = 2.3 negative rho (up, down): 0.127E-07 0.000E+00 total cpu time spent up to now is 2.38 secs total energy = -29.21652020 Ry Harris-Foulkes estimate = -29.21651972 Ry estimated scf accuracy < 0.00000245 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.17E-08, avg # of iterations = 1.3 total cpu time spent up to now is 2.47 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2616 -6.8126 -6.1032 -4.7346 -3.0946 -1.3829 0.6504 1.9425 4.5518 5.3226 5.6887 6.2958 6.3518 7.1137 7.5324 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9382 -4.4979 -3.8042 -2.4593 -0.8534 -0.4430 -0.0460 0.6468 0.8647 1.9498 2.8499 3.5675 4.0162 5.2509 6.6859 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6727 -2.2468 -1.5716 -0.2466 1.1359 1.3246 1.5069 2.1104 2.5324 2.7087 3.3560 3.3909 3.7816 4.9803 5.0434 the Fermi energy is 3.4326 ev ! total energy = -29.21652045 Ry Harris-Foulkes estimate = -29.21652048 Ry estimated scf accuracy < 0.00000014 Ry The total energy is the sum of the following terms: one-electron contribution = -194.42311488 Ry hartree contribution = 103.89820916 Ry xc contribution = -11.30254024 Ry ewald contribution = 72.61641525 Ry smearing contrib. (-TS) = -0.00548974 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.01837281 atom 2 type 1 force = 0.00000000 0.00000000 0.02891919 atom 3 type 1 force = 0.00000000 0.00000000 -0.00768632 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00768632 atom 6 type 1 force = 0.00000000 0.00000000 -0.02891919 atom 7 type 1 force = 0.00000000 0.00000000 0.01837281 Total force = 0.049658 Total SCF correction = 0.000202 number of scf cycles = 2 number of bfgs steps = 1 energy old = -29.2199601767 Ry energy new = -29.2165204483 Ry CASE: energy _new > energy _old new trust radius = 0.2029358442 bohr new conv_thr = 0.0000010000 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.095249470 Al 0.000000000 0.000000000 -1.417110133 Al 0.500000000 0.500000000 -0.700468041 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.700468041 Al 0.000000000 0.000000000 1.417110133 Al 0.500000000 0.500000000 2.095249470 Writing output data file pwscf.save first order wave-functions extrapolation Message from extrapolate_wfcs: the matrix has 1 small (< 0.1) eigenvalues Check: negative starting charge= -0.000305 first order charge density extrapolation Check: negative starting charge= -0.000283 negative rho (up, down): 0.840E-03 0.000E+00 total cpu time spent up to now is 2.54 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 13.0 negative rho (up, down): 0.525E-03 0.000E+00 total cpu time spent up to now is 2.86 secs total energy = -29.21460485 Ry Harris-Foulkes estimate = -29.23118237 Ry estimated scf accuracy < 0.04170169 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.99E-04, avg # of iterations = 2.7 negative rho (up, down): 0.389E-03 0.000E+00 total cpu time spent up to now is 2.97 secs total energy = -29.21866199 Ry Harris-Foulkes estimate = -29.22276709 Ry estimated scf accuracy < 0.01251181 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.96E-05, avg # of iterations = 3.0 negative rho (up, down): 0.337E-03 0.000E+00 total cpu time spent up to now is 3.08 secs total energy = -29.21744002 Ry Harris-Foulkes estimate = -29.22365591 Ry estimated scf accuracy < 0.04964846 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.96E-05, avg # of iterations = 2.7 negative rho (up, down): 0.244E-03 0.000E+00 total cpu time spent up to now is 3.20 secs total energy = -29.22010373 Ry Harris-Foulkes estimate = -29.22247945 Ry estimated scf accuracy < 0.02539194 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.96E-05, avg # of iterations = 2.0 negative rho (up, down): 0.640E-04 0.000E+00 total cpu time spent up to now is 3.30 secs total energy = -29.22128448 Ry Harris-Foulkes estimate = -29.22129622 Ry estimated scf accuracy < 0.00039696 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.89E-06, avg # of iterations = 3.0 negative rho (up, down): 0.132E-05 0.000E+00 total cpu time spent up to now is 3.42 secs total energy = -29.22134427 Ry Harris-Foulkes estimate = -29.22133007 Ry estimated scf accuracy < 0.00002406 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.15E-07, avg # of iterations = 2.7 negative rho (up, down): 0.235E-06 0.000E+00 total cpu time spent up to now is 3.53 secs total energy = -29.22134778 Ry Harris-Foulkes estimate = -29.22134931 Ry estimated scf accuracy < 0.00000655 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.12E-08, avg # of iterations = 1.3 total cpu time spent up to now is 3.63 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1494 -6.6488 -5.8739 -4.6404 -3.1272 -1.4245 0.5674 1.8458 4.4441 5.4498 5.8900 6.2879 6.5717 7.1891 7.5227 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8259 -4.3329 -3.5734 -2.3620 -0.8787 -0.3265 0.1277 0.8270 0.8820 2.0537 2.7711 3.5412 3.9385 5.2017 6.5877 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5587 -2.0782 -1.3353 -0.1451 1.2586 1.3074 1.6978 2.3744 2.6481 2.7847 3.4040 3.5071 3.9853 4.9371 4.9839 the Fermi energy is 3.4573 ev ! total energy = -29.22134809 Ry Harris-Foulkes estimate = -29.22134838 Ry estimated scf accuracy < 0.00000085 Ry The total energy is the sum of the following terms: one-electron contribution = -186.99097444 Ry hartree contribution = 100.21282297 Ry xc contribution = -11.24375692 Ry ewald contribution = 68.80429356 Ry smearing contrib. (-TS) = -0.00373326 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00036240 atom 2 type 1 force = 0.00000000 0.00000000 0.00962076 atom 3 type 1 force = 0.00000000 0.00000000 -0.00181164 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00181164 atom 6 type 1 force = 0.00000000 0.00000000 -0.00962076 atom 7 type 1 force = 0.00000000 0.00000000 -0.00036240 Total force = 0.013854 Total SCF correction = 0.000871 number of scf cycles = 3 number of bfgs steps = 1 energy old = -29.2199601767 Ry energy new = -29.2213480852 Ry CASE: energy _new < energy _old new trust radius = 0.0154940607 bohr new conv_thr = 0.0000009621 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.096191597 Al 0.000000000 0.000000000 -1.415360278 Al 0.500000000 0.500000000 -0.701032173 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.701032173 Al 0.000000000 0.000000000 1.415360278 Al 0.500000000 0.500000000 2.096191597 Writing output data file pwscf.save second order wave-functions extrapolation Message from extrapolate_wfcs: the matrix has 1 small (< 0.1) eigenvalues Check: negative starting charge= -0.000283 second order charge density extrapolation Check: negative starting charge= -0.000284 negative rho (up, down): 0.945E-06 0.000E+00 total cpu time spent up to now is 3.70 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.7 negative rho (up, down): 0.461E-06 0.000E+00 total cpu time spent up to now is 3.83 secs total energy = -29.22144035 Ry Harris-Foulkes estimate = -29.22153047 Ry estimated scf accuracy < 0.00018419 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.77E-07, avg # of iterations = 3.3 negative rho (up, down): 0.416E-06 0.000E+00 total cpu time spent up to now is 3.95 secs total energy = -29.22126784 Ry Harris-Foulkes estimate = -29.22175638 Ry estimated scf accuracy < 0.00611575 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.77E-07, avg # of iterations = 3.0 negative rho (up, down): 0.242E-06 0.000E+00 total cpu time spent up to now is 4.06 secs total energy = -29.22151360 Ry Harris-Foulkes estimate = -29.22151861 Ry estimated scf accuracy < 0.00002676 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.27E-07, avg # of iterations = 1.7 negative rho (up, down): 0.984E-07 0.000E+00 total cpu time spent up to now is 4.15 secs total energy = -29.22151635 Ry Harris-Foulkes estimate = -29.22151659 Ry estimated scf accuracy < 0.00000117 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.57E-09, avg # of iterations = 2.0 total cpu time spent up to now is 4.26 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1499 -6.6473 -5.8607 -4.6363 -3.1327 -1.4267 0.5646 1.8427 4.4428 5.4496 5.8925 6.2865 6.5875 7.1883 7.5253 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8264 -4.3314 -3.5602 -2.3578 -0.8840 -0.3268 0.1294 0.8249 0.8955 2.0582 2.7681 3.5362 3.9364 5.1987 6.5865 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5592 -2.0766 -1.3219 -0.1408 1.2583 1.3023 1.7001 2.3895 2.6476 2.7840 3.4040 3.5123 3.9968 4.9294 4.9813 the Fermi energy is 3.4565 ev ! total energy = -29.22151653 Ry Harris-Foulkes estimate = -29.22151652 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = -187.00879708 Ry hartree contribution = 100.22504438 Ry xc contribution = -11.24228483 Ry ewald contribution = 68.80811139 Ry smearing contrib. (-TS) = -0.00359039 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00122564 atom 2 type 1 force = 0.00000000 0.00000000 0.00824388 atom 3 type 1 force = 0.00000000 0.00000000 -0.00119821 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00119821 atom 6 type 1 force = 0.00000000 0.00000000 -0.00824388 atom 7 type 1 force = 0.00000000 0.00000000 -0.00122564 Total force = 0.011908 Total SCF correction = 0.000201 number of scf cycles = 4 number of bfgs steps = 2 energy old = -29.2213480852 Ry energy new = -29.2215165284 Ry CASE: energy _new < energy _old new trust radius = 0.0464821820 bohr new conv_thr = 0.0000001684 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.091657991 Al 0.000000000 0.000000000 -1.411145469 Al 0.500000000 0.500000000 -0.700728244 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.700728244 Al 0.000000000 0.000000000 1.411145469 Al 0.500000000 0.500000000 2.091657991 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000284 second order charge density extrapolation Check: negative starting charge= -0.000284 negative rho (up, down): 0.117E-04 0.000E+00 total cpu time spent up to now is 4.33 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.7 negative rho (up, down): 0.548E-05 0.000E+00 total cpu time spent up to now is 4.47 secs total energy = -29.22175878 Ry Harris-Foulkes estimate = -29.22193604 Ry estimated scf accuracy < 0.00036000 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.71E-06, avg # of iterations = 3.7 negative rho (up, down): 0.492E-05 0.000E+00 total cpu time spent up to now is 4.60 secs total energy = -29.22143499 Ry Harris-Foulkes estimate = -29.22237311 Ry estimated scf accuracy < 0.01146048 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.71E-06, avg # of iterations = 3.0 negative rho (up, down): 0.333E-05 0.000E+00 total cpu time spent up to now is 4.72 secs total energy = -29.22190459 Ry Harris-Foulkes estimate = -29.22191970 Ry estimated scf accuracy < 0.00008846 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.21E-07, avg # of iterations = 1.3 negative rho (up, down): 0.926E-06 0.000E+00 total cpu time spent up to now is 4.82 secs total energy = -29.22191220 Ry Harris-Foulkes estimate = -29.22191210 Ry estimated scf accuracy < 0.00000020 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.55E-10, avg # of iterations = 3.7 total cpu time spent up to now is 4.95 secs total energy = -29.22191255 Ry Harris-Foulkes estimate = -29.22191246 Ry estimated scf accuracy < 0.00000018 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.45E-10, avg # of iterations = 2.3 total cpu time spent up to now is 5.07 secs total energy = -29.22191261 Ry Harris-Foulkes estimate = -29.22191260 Ry estimated scf accuracy < 0.00000019 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.45E-10, avg # of iterations = 1.3 total cpu time spent up to now is 5.17 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1699 -6.6682 -5.8660 -4.6418 -3.1398 -1.4228 0.5736 1.8518 4.4609 5.4287 5.8701 6.2989 6.5820 7.1742 7.5340 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8463 -4.3524 -3.5657 -2.3637 -0.8919 -0.3469 0.1080 0.8285 0.8902 2.0518 2.7754 3.5293 3.9450 5.2018 6.6035 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5793 -2.0979 -1.3276 -0.1472 1.2379 1.2935 1.6782 2.3838 2.6271 2.7748 3.3953 3.5052 3.9914 4.9176 4.9895 the Fermi energy is 3.4519 ev ! total energy = -29.22191262 Ry Harris-Foulkes estimate = -29.22191263 Ry estimated scf accuracy < 3.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -188.44826678 Ry hartree contribution = 100.94146686 Ry xc contribution = -11.24854286 Ry ewald contribution = 69.53693799 Ry smearing contrib. (-TS) = -0.00350783 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00088006 atom 2 type 1 force = 0.00000000 0.00000000 0.00731434 atom 3 type 1 force = 0.00000000 0.00000000 -0.00044475 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00044475 atom 6 type 1 force = 0.00000000 0.00000000 -0.00731434 atom 7 type 1 force = 0.00000000 0.00000000 -0.00088006 Total force = 0.010438 Total SCF correction = 0.000096 number of scf cycles = 5 number of bfgs steps = 3 energy old = -29.2215165284 Ry energy new = -29.2219126227 Ry CASE: energy _new < energy _old new trust radius = 0.1394465460 bohr new conv_thr = 0.0000003961 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.078348118 Al 0.000000000 0.000000000 -1.398220493 Al 0.500000000 0.500000000 -0.699508709 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.699508709 Al 0.000000000 0.000000000 1.398220493 Al 0.500000000 0.500000000 2.078348118 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000284 second order charge density extrapolation Check: negative starting charge= -0.000293 negative rho (up, down): 0.116E-04 0.000E+00 total cpu time spent up to now is 5.25 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.7 negative rho (up, down): 0.560E-05 0.000E+00 total cpu time spent up to now is 5.41 secs total energy = -29.22274384 Ry Harris-Foulkes estimate = -29.22276902 Ry estimated scf accuracy < 0.00005143 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.45E-07, avg # of iterations = 3.3 negative rho (up, down): 0.510E-05 0.000E+00 total cpu time spent up to now is 5.55 secs total energy = -29.22268829 Ry Harris-Foulkes estimate = -29.22284873 Ry estimated scf accuracy < 0.00202838 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.45E-07, avg # of iterations = 2.7 negative rho (up, down): 0.363E-05 0.000E+00 total cpu time spent up to now is 5.67 secs total energy = -29.22276777 Ry Harris-Foulkes estimate = -29.22276774 Ry estimated scf accuracy < 0.00000068 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.25E-09, avg # of iterations = 2.7 total cpu time spent up to now is 5.79 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2327 -6.7323 -5.8818 -4.6586 -3.1622 -1.4128 0.5983 1.8779 4.5129 5.3627 5.8015 6.3317 6.5658 7.1289 7.5618 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9090 -4.4166 -3.5821 -2.3817 -0.9166 -0.4101 0.0425 0.8375 0.8742 2.0328 2.7950 3.5082 3.9697 5.2090 6.6520 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6424 -2.1630 -1.3447 -0.1664 1.1734 1.2660 1.6112 2.3669 2.5628 2.7424 3.3711 3.4840 3.9745 4.8812 5.0117 the Fermi energy is 3.4379 ev ! total energy = -29.22276813 Ry Harris-Foulkes estimate = -29.22276783 Ry estimated scf accuracy < 0.00000020 Ry The total energy is the sum of the following terms: one-electron contribution = -192.79277743 Ry hartree contribution = 103.10074431 Ry xc contribution = -11.26720066 Ry ewald contribution = 71.73982259 Ry smearing contrib. (-TS) = -0.00335694 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00000804 atom 2 type 1 force = 0.00000000 0.00000000 0.00402009 atom 3 type 1 force = 0.00000000 0.00000000 0.00194294 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00194294 atom 6 type 1 force = 0.00000000 0.00000000 -0.00402009 atom 7 type 1 force = 0.00000000 0.00000000 0.00000804 Total force = 0.006314 Total SCF correction = 0.000559 number of scf cycles = 6 number of bfgs steps = 4 energy old = -29.2219126227 Ry energy new = -29.2227681268 Ry CASE: energy _new < energy _old new trust radius = 0.4183396379 bohr new conv_thr = 0.0000004020 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.038627516 Al 0.000000000 0.000000000 -1.359479803 Al 0.500000000 0.500000000 -0.693791358 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.693791358 Al 0.000000000 0.000000000 1.359479803 Al 0.500000000 0.500000000 2.038627516 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000293 second order charge density extrapolation Check: negative starting charge= -0.000270 negative rho (up, down): 0.231E-03 0.000E+00 total cpu time spent up to now is 5.87 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 negative rho (up, down): 0.136E-03 0.000E+00 total cpu time spent up to now is 6.09 secs total energy = -29.21953644 Ry Harris-Foulkes estimate = -29.22204497 Ry estimated scf accuracy < 0.00504935 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.40E-05, avg # of iterations = 3.3 negative rho (up, down): 0.127E-03 0.000E+00 total cpu time spent up to now is 6.24 secs total energy = -29.21434613 Ry Harris-Foulkes estimate = -29.22943516 Ry estimated scf accuracy < 0.18662122 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.40E-05, avg # of iterations = 3.0 negative rho (up, down): 0.963E-04 0.000E+00 total cpu time spent up to now is 6.36 secs total energy = -29.22181680 Ry Harris-Foulkes estimate = -29.22183420 Ry estimated scf accuracy < 0.00009192 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.38E-07, avg # of iterations = 5.3 negative rho (up, down): 0.190E-04 0.000E+00 total cpu time spent up to now is 6.49 secs total energy = -29.22183625 Ry Harris-Foulkes estimate = -29.22182908 Ry estimated scf accuracy < 0.00000440 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.10E-08, avg # of iterations = 2.3 negative rho (up, down): 0.999E-06 0.000E+00 total cpu time spent up to now is 6.58 secs total energy = -29.22183849 Ry Harris-Foulkes estimate = -29.22183673 Ry estimated scf accuracy < 0.00000083 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.94E-09, avg # of iterations = 1.3 total cpu time spent up to now is 6.67 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.4376 -6.9335 -5.9373 -4.7091 -3.2199 -1.3835 0.6699 1.9617 4.6592 5.1444 5.5819 6.3991 6.5076 6.9815 7.6531 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.1134 -4.6188 -3.6397 -2.4361 -0.9837 -0.6158 -0.1634 0.8177 0.8642 1.9758 2.8492 3.4559 4.0477 5.2292 6.7851 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.8488 -2.3678 -1.4050 -0.2251 0.9608 1.1910 1.3975 2.3068 2.3531 2.6144 3.3228 3.4211 3.9148 4.7817 5.0313 the Fermi energy is 3.4039 ev ! total energy = -29.22183870 Ry Harris-Foulkes estimate = -29.22183853 Ry estimated scf accuracy < 0.00000007 Ry The total energy is the sum of the following terms: one-electron contribution = -206.21164512 Ry hartree contribution = 109.77832264 Ry xc contribution = -11.32535539 Ry ewald contribution = 78.54070364 Ry smearing contrib. (-TS) = -0.00386447 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00300657 atom 2 type 1 force = 0.00000000 0.00000000 -0.00799649 atom 3 type 1 force = 0.00000000 0.00000000 0.01033950 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.01033950 atom 6 type 1 force = 0.00000000 0.00000000 0.00799649 atom 7 type 1 force = 0.00000000 0.00000000 0.00300657 Total force = 0.018968 Total SCF correction = 0.000270 number of scf cycles = 7 number of bfgs steps = 5 energy old = -29.2227681268 Ry energy new = -29.2218387025 Ry CASE: energy _new > energy _old new trust radius = 0.1714327972 bohr new conv_thr = 0.0000004020 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.062070880 Al 0.000000000 0.000000000 -1.382344816 Al 0.500000000 0.500000000 -0.697165777 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.697165777 Al 0.000000000 0.000000000 1.382344816 Al 0.500000000 0.500000000 2.062070880 Writing output data file pwscf.save second order wave-functions extrapolation Message from extrapolate_wfcs: the matrix has 1 small (< 0.1) eigenvalues Check: negative starting charge= -0.000270 second order charge density extrapolation Check: negative starting charge= -0.000299 negative rho (up, down): 0.253E-04 0.000E+00 total cpu time spent up to now is 6.74 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.74E-08, avg # of iterations = 1.3 negative rho (up, down): 0.125E-04 0.000E+00 total cpu time spent up to now is 6.99 secs total energy = -29.22306458 Ry Harris-Foulkes estimate = -29.22306847 Ry estimated scf accuracy < 0.00001045 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.98E-08, avg # of iterations = 3.0 negative rho (up, down): 0.113E-04 0.000E+00 total cpu time spent up to now is 7.11 secs total energy = -29.22305670 Ry Harris-Foulkes estimate = -29.22307985 Ry estimated scf accuracy < 0.00026957 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.98E-08, avg # of iterations = 2.7 negative rho (up, down): 0.784E-05 0.000E+00 total cpu time spent up to now is 7.21 secs total energy = -29.22306875 Ry Harris-Foulkes estimate = -29.22306899 Ry estimated scf accuracy < 0.00000357 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.70E-08, avg # of iterations = 1.3 total cpu time spent up to now is 7.30 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3139 -6.8113 -5.9035 -4.6791 -3.1863 -1.4006 0.6285 1.9116 4.5755 5.2768 5.7160 6.3660 6.5431 7.0699 7.5993 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9900 -4.4959 -3.6047 -2.4037 -0.9442 -0.4917 -0.0383 0.8486 0.8522 2.0095 2.8186 3.4857 4.0012 5.2176 6.7098 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7241 -2.2433 -1.3683 -0.1901 1.0895 1.2351 1.5279 2.3435 2.4797 2.6964 3.3478 3.4583 3.9514 4.8402 5.0391 the Fermi energy is 3.4231 ev ! total energy = -29.22306977 Ry Harris-Foulkes estimate = -29.22306902 Ry estimated scf accuracy < 0.00000019 Ry The total energy is the sum of the following terms: one-electron contribution = -198.24495322 Ry hartree contribution = 105.81579429 Ry xc contribution = -11.29061748 Ry ewald contribution = 74.50013137 Ry smearing contrib. (-TS) = -0.00342473 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00113973 atom 2 type 1 force = 0.00000000 0.00000000 -0.00040661 atom 3 type 1 force = 0.00000000 0.00000000 0.00489238 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00489238 atom 6 type 1 force = 0.00000000 0.00000000 0.00040661 atom 7 type 1 force = 0.00000000 0.00000000 0.00113973 Total force = 0.007127 Total SCF correction = 0.000171 number of scf cycles = 8 number of bfgs steps = 5 energy old = -29.2227681268 Ry energy new = -29.2230697651 Ry CASE: energy _new < energy _old new trust radius = 0.2571491958 bohr new conv_thr = 0.0000003016 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.086040031 Al 0.000000000 0.000000000 -1.404741650 Al 0.500000000 0.500000000 -0.687194308 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.687194308 Al 0.000000000 0.000000000 1.404741650 Al 0.500000000 0.500000000 2.086040031 Writing output data file pwscf.save second order wave-functions extrapolation Message from extrapolate_wfcs: the matrix has 1 small (< 0.1) eigenvalues Check: negative starting charge= -0.000299 second order charge density extrapolation Check: negative starting charge= -0.000287 negative rho (up, down): 0.131E-03 0.000E+00 total cpu time spent up to now is 7.37 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 9.0 negative rho (up, down): 0.742E-04 0.000E+00 total cpu time spent up to now is 7.61 secs total energy = -29.22057202 Ry Harris-Foulkes estimate = -29.22240702 Ry estimated scf accuracy < 0.00389525 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.85E-05, avg # of iterations = 3.7 negative rho (up, down): 0.670E-04 0.000E+00 total cpu time spent up to now is 7.74 secs total energy = -29.21906970 Ry Harris-Foulkes estimate = -29.22393468 Ry estimated scf accuracy < 0.04249448 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.85E-05, avg # of iterations = 3.0 negative rho (up, down): 0.536E-04 0.000E+00 total cpu time spent up to now is 7.86 secs total energy = -29.22146307 Ry Harris-Foulkes estimate = -29.22248285 Ry estimated scf accuracy < 0.01063660 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.85E-05, avg # of iterations = 2.0 negative rho (up, down): 0.242E-04 0.000E+00 total cpu time spent up to now is 7.95 secs total energy = -29.22195795 Ry Harris-Foulkes estimate = -29.22195710 Ry estimated scf accuracy < 0.00002430 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.16E-07, avg # of iterations = 3.7 negative rho (up, down): 0.283E-05 0.000E+00 total cpu time spent up to now is 8.09 secs total energy = -29.22196538 Ry Harris-Foulkes estimate = -29.22196275 Ry estimated scf accuracy < 0.00000653 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.11E-08, avg # of iterations = 1.3 negative rho (up, down): 0.409E-07 0.000E+00 total cpu time spent up to now is 8.19 secs total energy = -29.22196636 Ry Harris-Foulkes estimate = -29.22196579 Ry estimated scf accuracy < 0.00000056 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.67E-09, avg # of iterations = 2.7 total cpu time spent up to now is 8.29 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2283 -6.6524 -5.9019 -4.6596 -3.1266 -1.4306 0.5801 1.8604 4.4898 5.3655 5.8880 6.3159 6.5408 7.1163 7.5616 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9046 -4.3368 -3.6018 -2.3822 -0.8825 -0.4034 0.1231 0.8206 0.8539 2.0336 2.7837 3.5406 3.9492 5.1915 6.6335 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6383 -2.0822 -1.3641 -0.1666 1.1764 1.3021 1.6951 2.3442 2.5712 2.7731 3.4019 3.4830 3.9586 4.9382 4.9984 the Fermi energy is 3.4524 ev ! total energy = -29.22196638 Ry Harris-Foulkes estimate = -29.22196642 Ry estimated scf accuracy < 0.00000012 Ry The total energy is the sum of the following terms: one-electron contribution = -191.26764715 Ry hartree contribution = 102.34617067 Ry xc contribution = -11.25705839 Ry ewald contribution = 70.96058153 Ry smearing contrib. (-TS) = -0.00401304 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00086437 atom 2 type 1 force = 0.00000000 0.00000000 0.00823997 atom 3 type 1 force = 0.00000000 0.00000000 -0.00699724 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00699724 atom 6 type 1 force = 0.00000000 0.00000000 -0.00823997 atom 7 type 1 force = 0.00000000 0.00000000 -0.00086437 Total force = 0.015337 Total SCF correction = 0.000493 number of scf cycles = 9 number of bfgs steps = 6 energy old = -29.2230697651 Ry energy new = -29.2219663841 Ry CASE: energy _new > energy _old new trust radius = 0.0978542293 bohr new conv_thr = 0.0000003016 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.071191977 Al 0.000000000 0.000000000 -1.390867592 Al 0.500000000 0.500000000 -0.693371285 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.693371285 Al 0.000000000 0.000000000 1.390867592 Al 0.500000000 0.500000000 2.071191977 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000287 second order charge density extrapolation Check: negative starting charge= -0.000297 negative rho (up, down): 0.292E-05 0.000E+00 total cpu time spent up to now is 8.37 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.08E-08, avg # of iterations = 1.3 negative rho (up, down): 0.960E-06 0.000E+00 total cpu time spent up to now is 8.58 secs total energy = -29.22310026 Ry Harris-Foulkes estimate = -29.22310499 Ry estimated scf accuracy < 0.00000987 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.70E-08, avg # of iterations = 3.0 negative rho (up, down): 0.840E-06 0.000E+00 total cpu time spent up to now is 8.69 secs total energy = -29.22309008 Ry Harris-Foulkes estimate = -29.22311940 Ry estimated scf accuracy < 0.00036301 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.70E-08, avg # of iterations = 2.7 negative rho (up, down): 0.468E-06 0.000E+00 total cpu time spent up to now is 8.80 secs total energy = -29.22310475 Ry Harris-Foulkes estimate = -29.22310474 Ry estimated scf accuracy < 0.00000034 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.64E-09, avg # of iterations = 2.3 total cpu time spent up to now is 8.90 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2785 -6.7487 -5.9034 -4.6720 -3.1644 -1.4122 0.6103 1.8913 4.5441 5.3146 5.7845 6.3506 6.5413 7.0911 7.5848 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9546 -4.4332 -3.6041 -2.3957 -0.9214 -0.4549 0.0254 0.8378 0.8522 2.0185 2.8060 3.5054 3.9806 5.2074 6.6818 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6885 -2.1798 -1.3672 -0.1813 1.1263 1.2599 1.5943 2.3429 2.5174 2.7299 3.3658 3.4676 3.9540 4.8768 5.0239 the Fermi energy is 3.4334 ev ! total energy = -29.22310489 Ry Harris-Foulkes estimate = -29.22310478 Ry estimated scf accuracy < 0.00000005 Ry The total energy is the sum of the following terms: one-electron contribution = -195.57046556 Ry hartree contribution = 104.48418092 Ry xc contribution = -11.27740951 Ry ewald contribution = 73.14419954 Ry smearing contrib. (-TS) = -0.00361028 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00032581 atom 2 type 1 force = 0.00000000 0.00000000 0.00325952 atom 3 type 1 force = 0.00000000 0.00000000 0.00001332 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00001332 atom 6 type 1 force = 0.00000000 0.00000000 -0.00325952 atom 7 type 1 force = 0.00000000 0.00000000 0.00032581 Total force = 0.004633 Total SCF correction = 0.000283 number of scf cycles = 10 number of bfgs steps = 6 energy old = -29.2230697651 Ry energy new = -29.2231048916 Ry CASE: energy _new < energy _old new trust radius = 0.0931600571 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.063603727 Al 0.000000000 0.000000000 -1.381533453 Al 0.500000000 0.500000000 -0.690275792 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.690275792 Al 0.000000000 0.000000000 1.381533453 Al 0.500000000 0.500000000 2.063603727 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000297 second order charge density extrapolation Check: negative starting charge= -0.000295 negative rho (up, down): 0.822E-05 0.000E+00 total cpu time spent up to now is 8.97 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.7 negative rho (up, down): 0.311E-05 0.000E+00 total cpu time spent up to now is 9.15 secs total energy = -29.22274584 Ry Harris-Foulkes estimate = -29.22336666 Ry estimated scf accuracy < 0.00126829 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.04E-06, avg # of iterations = 3.7 negative rho (up, down): 0.270E-05 0.000E+00 total cpu time spent up to now is 9.28 secs total energy = -29.22169753 Ry Harris-Foulkes estimate = -29.22475463 Ry estimated scf accuracy < 0.03569892 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.04E-06, avg # of iterations = 3.0 negative rho (up, down): 0.170E-05 0.000E+00 total cpu time spent up to now is 9.40 secs total energy = -29.22324752 Ry Harris-Foulkes estimate = -29.22331249 Ry estimated scf accuracy < 0.00042544 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-06, avg # of iterations = 1.3 negative rho (up, down): 0.177E-06 0.000E+00 total cpu time spent up to now is 9.49 secs total energy = -29.22327829 Ry Harris-Foulkes estimate = -29.22327817 Ry estimated scf accuracy < 0.00000484 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.31E-08, avg # of iterations = 3.0 total cpu time spent up to now is 9.61 secs total energy = -29.22327961 Ry Harris-Foulkes estimate = -29.22327952 Ry estimated scf accuracy < 0.00000199 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.46E-09, avg # of iterations = 1.3 total cpu time spent up to now is 9.70 secs total energy = -29.22327971 Ry Harris-Foulkes estimate = -29.22327972 Ry estimated scf accuracy < 0.00000016 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.63E-10, avg # of iterations = 3.0 total cpu time spent up to now is 9.81 secs total energy = -29.22327974 Ry Harris-Foulkes estimate = -29.22327975 Ry estimated scf accuracy < 0.00000014 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.54E-10, avg # of iterations = 1.3 total cpu time spent up to now is 9.90 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3252 -6.7800 -5.9114 -4.6809 -3.1762 -1.4093 0.6228 1.9057 4.5756 5.2653 5.7512 6.3682 6.5334 7.0549 7.6050 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0012 -4.4647 -3.6124 -2.4054 -0.9356 -0.5011 -0.0066 0.8403 0.8442 2.0087 2.8159 3.4943 3.9940 5.2076 6.7108 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7355 -2.2116 -1.3759 -0.1917 1.0782 1.2443 1.5616 2.3346 2.4703 2.7099 3.3560 3.4566 3.9451 4.8574 5.0358 the Fermi energy is 3.4266 ev ! total energy = -29.22327974 Ry Harris-Foulkes estimate = -29.22327974 Ry estimated scf accuracy < 3.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = -198.51580216 Ry hartree contribution = 105.95149663 Ry xc contribution = -11.28830043 Ry ewald contribution = 74.63299575 Ry smearing contrib. (-TS) = -0.00366952 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00021770 atom 2 type 1 force = 0.00000000 0.00000000 0.00051688 atom 3 type 1 force = 0.00000000 0.00000000 0.00051141 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00051141 atom 6 type 1 force = 0.00000000 0.00000000 -0.00051688 atom 7 type 1 force = 0.00000000 0.00000000 0.00021770 Total force = 0.001073 Total SCF correction = 0.000094 number of scf cycles = 11 number of bfgs steps = 7 energy old = -29.2231048916 Ry energy new = -29.2232797404 Ry CASE: energy _new < energy _old new trust radius = 0.0223752438 bohr new conv_thr = 0.0000001000 Ry ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.062338821 Al 0.000000000 0.000000000 -1.379394352 Al 0.500000000 0.500000000 -0.688625115 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.688625115 Al 0.000000000 0.000000000 1.379394352 Al 0.500000000 0.500000000 2.062338821 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000295 second order charge density extrapolation Check: negative starting charge= -0.000293 total cpu time spent up to now is 9.97 secs per-process dynamical memory: 14.3 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.43E-08, avg # of iterations = 1.0 total cpu time spent up to now is 10.18 secs total energy = -29.22328391 Ry Harris-Foulkes estimate = -29.22328872 Ry estimated scf accuracy < 0.00000961 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.58E-08, avg # of iterations = 3.0 total cpu time spent up to now is 10.29 secs total energy = -29.22327388 Ry Harris-Foulkes estimate = -29.22330310 Ry estimated scf accuracy < 0.00036138 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.58E-08, avg # of iterations = 2.7 total cpu time spent up to now is 10.38 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3368 -6.7817 -5.9132 -4.6826 -3.1772 -1.4100 0.6244 1.9078 4.5818 5.2530 5.7497 6.3719 6.5315 7.0449 7.6104 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0128 -4.4664 -3.6143 -2.4072 -0.9374 -0.5123 -0.0084 0.8395 0.8424 2.0070 2.8173 3.4933 3.9956 5.2061 6.7166 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7472 -2.2134 -1.3779 -0.1937 1.0662 1.2424 1.5600 2.3326 2.4589 2.7077 3.3555 3.4547 3.9432 4.8558 5.0376 the Fermi energy is 3.4259 ev ! total energy = -29.22328827 Ry Harris-Foulkes estimate = -29.22328828 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = -199.16115632 Ry hartree contribution = 106.27155632 Ry xc contribution = -11.29012195 Ry ewald contribution = 74.96014591 Ry smearing contrib. (-TS) = -0.00371223 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00001182 atom 2 type 1 force = 0.00000000 0.00000000 -0.00002992 atom 3 type 1 force = 0.00000000 0.00000000 -0.00000357 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00000357 atom 6 type 1 force = 0.00000000 0.00000000 0.00002992 atom 7 type 1 force = 0.00000000 0.00000000 0.00001182 Total force = 0.000046 Total SCF correction = 0.000258 SCF correction compared to forces is too large, reduce conv_thr bfgs converged in 12 scf cycles and 8 bfgs steps End of BFGS Geometry Optimization Final energy = -29.2232882653 Ry CELL_PARAMETERS (alat) 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 0.000000000 0.000000000 0.000000000 8.000000000 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.062338821 Al 0.000000000 0.000000000 -1.379394352 Al 0.500000000 0.500000000 -0.688625115 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.688625115 Al 0.000000000 0.000000000 1.379394352 Al 0.500000000 0.500000000 2.062338821 Writing output data file pwscf.save PWSCF : 10.43s CPU time, 10.99s wall time init_run : 0.16s CPU electrons : 9.41s CPU ( 12 calls, 0.784 s avg) update_pot : 0.28s CPU ( 11 calls, 0.025 s avg) forces : 0.16s CPU ( 12 calls, 0.013 s avg) Called by init_run: wfcinit : 0.14s CPU potinit : 0.01s CPU Called by electrons: c_bands : 7.75s CPU ( 77 calls, 0.101 s avg) sum_band : 1.13s CPU ( 77 calls, 0.015 s avg) v_of_rho : 0.18s CPU ( 86 calls, 0.002 s avg) mix_rho : 0.13s CPU ( 77 calls, 0.002 s avg) Called by c_bands: init_us_2 : 0.19s CPU ( 501 calls, 0.000 s avg) cegterg : 7.52s CPU ( 231 calls, 0.033 s avg) Called by *egterg: h_psi : 5.27s CPU ( 926 calls, 0.006 s avg) g_psi : 0.18s CPU ( 692 calls, 0.000 s avg) cdiaghg : 0.64s CPU ( 881 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.30s CPU ( 926 calls, 0.000 s avg) General routines calbec : 0.40s CPU ( 992 calls, 0.000 s avg) cft3 : 0.07s CPU ( 296 calls, 0.000 s avg) cft3s : 4.62s CPU ( 22083 calls, 0.000 s avg) davcio : 0.01s CPU ( 915 calls, 0.000 s avg) espresso-5.1/PW/examples/example02/reference/al001.mm.out0000644000175000017500000016304512341373025021170 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 15:39:18 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Message from routine setup: Dynamics, you should have no symmetries bravais-lattice index = 6 lattice parameter (a_0) = 5.3033 a.u. unit-cell volume = 1193.2421 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 12.0000 Ry charge density cutoff = 48.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 50 celldm(1)= 5.303300 celldm(2)= 0.000000 celldm(3)= 8.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 8.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.125000 ) PseudoPot. # 1 for Al read from file Al.vbc.UPF Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 171 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential Al 3.00 1.00000 Al( 1.00) 16 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 Al tau( 1) = ( 0.5000000 0.5000000 -2.1213200 ) 2 Al tau( 2) = ( 0.0000000 0.0000000 -1.4142130 ) 3 Al tau( 3) = ( 0.5000000 0.5000000 -0.7071070 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.5000000 0.5000000 0.7071070 ) 6 Al tau( 6) = ( 0.0000000 0.0000000 1.4142130 ) 7 Al tau( 7) = ( 0.5000000 0.5000000 2.1213200 ) number of k points= 3 gaussian broad. (Ry)= 0.0500 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.1250000 0.1250000 0.0000000), wk = 0.5000000 k( 2) = ( 0.1250000 0.3750000 0.0000000), wk = 1.0000000 k( 3) = ( 0.3750000 0.3750000 0.0000000), wk = 0.5000000 G cutoff = 34.1959 ( 6689 G-vectors) FFT grid: ( 12, 12, 96) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.20 Mb ( 860, 15) NL pseudopotentials 0.37 Mb ( 860, 28) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.05 Mb ( 6689) G-vector shells 0.00 Mb ( 351) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.79 Mb ( 860, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 28, 15) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.000275 starting charge 20.98560, renormalised to 21.00000 negative rho (up, down): 0.276E-03 0.000E+00 Starting wfc are 63 atomic wfcs total cpu time spent up to now is 0.16 secs per-process dynamical memory: 12.1 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 negative rho (up, down): 0.186E-03 0.000E+00 total cpu time spent up to now is 0.26 secs total energy = -28.81800044 Ry Harris-Foulkes estimate = -29.29242665 Ry estimated scf accuracy < 0.99707290 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.75E-03, avg # of iterations = 4.3 total cpu time spent up to now is 0.43 secs total energy = -27.55975725 Ry Harris-Foulkes estimate = -30.64244044 Ry estimated scf accuracy < 42.47180210 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.75E-03, avg # of iterations = 3.7 total cpu time spent up to now is 0.59 secs total energy = -29.21236680 Ry Harris-Foulkes estimate = -29.23827251 Ry estimated scf accuracy < 0.25038981 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.19E-03, avg # of iterations = 2.3 total cpu time spent up to now is 0.69 secs total energy = -29.21649581 Ry Harris-Foulkes estimate = -29.22410750 Ry estimated scf accuracy < 0.04585932 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.18E-04, avg # of iterations = 2.7 total cpu time spent up to now is 0.79 secs total energy = -29.21973500 Ry Harris-Foulkes estimate = -29.22006263 Ry estimated scf accuracy < 0.00336979 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.60E-05, avg # of iterations = 4.7 total cpu time spent up to now is 0.93 secs total energy = -29.21993710 Ry Harris-Foulkes estimate = -29.21994846 Ry estimated scf accuracy < 0.00071042 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.38E-06, avg # of iterations = 3.0 total cpu time spent up to now is 1.03 secs total energy = -29.21995305 Ry Harris-Foulkes estimate = -29.21996870 Ry estimated scf accuracy < 0.00004258 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-07, avg # of iterations = 2.7 total cpu time spent up to now is 1.15 secs total energy = -29.21995565 Ry Harris-Foulkes estimate = -29.21996337 Ry estimated scf accuracy < 0.00004475 Ry iteration # 9 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.03E-07, avg # of iterations = 2.3 total cpu time spent up to now is 1.25 secs total energy = -29.21995946 Ry Harris-Foulkes estimate = -29.21996144 Ry estimated scf accuracy < 0.00000791 Ry iteration # 10 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.77E-08, avg # of iterations = 1.7 total cpu time spent up to now is 1.35 secs total energy = -29.21996037 Ry Harris-Foulkes estimate = -29.21996051 Ry estimated scf accuracy < 0.00000043 Ry iteration # 11 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.06E-09, avg # of iterations = 2.3 total cpu time spent up to now is 1.46 secs total energy = -29.21996046 Ry Harris-Foulkes estimate = -29.21996053 Ry estimated scf accuracy < 0.00000028 Ry iteration # 12 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.36E-09, avg # of iterations = 2.0 total cpu time spent up to now is 1.56 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0787 -6.5548 -5.7170 -4.5660 -3.1469 -1.4536 0.5132 1.7886 4.3699 5.5247 5.9957 6.2184 6.7550 7.2259 7.4994 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7552 -4.2388 -3.4157 -2.2854 -0.8944 -0.2548 0.2241 0.8006 1.0427 2.1355 2.7203 3.5259 3.8936 5.1679 6.5174 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4876 -1.9829 -1.1747 -0.0654 1.2964 1.3319 1.7996 2.5508 2.7204 2.8087 3.4484 3.5990 4.1264 4.9123 4.9358 the Fermi energy is 3.4734 ev ! total energy = -29.21996045 Ry Harris-Foulkes estimate = -29.21996051 Ry estimated scf accuracy < 0.00000007 Ry convergence has been achieved in 12 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.01012519 atom 2 type 1 force = 0.00000000 0.00000000 -0.00111751 atom 3 type 1 force = 0.00000000 0.00000000 0.00254857 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00254857 atom 6 type 1 force = 0.00000000 0.00000000 0.00111751 atom 7 type 1 force = 0.00000000 0.00000000 -0.01012519 Total force = 0.014850 Total SCF correction = 0.000424 Damped Dynamics Calculation Entering Dynamics: iteration = 1 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.119434747 Al 0.000000000 0.000000000 -1.414421073 Al 0.500000000 0.500000000 -0.706632472 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.706632472 Al 0.000000000 0.000000000 1.414421073 Al 0.500000000 0.500000000 2.119434747 Writing output data file pwscf.save Check: negative starting charge= -0.000275 NEW-OLD atomic charge density approx. for the potential Check: negative starting charge= -0.000280 negative rho (up, down): 0.169E-05 0.000E+00 total cpu time spent up to now is 1.62 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.271E-06 0.000E+00 total cpu time spent up to now is 1.76 secs total energy = -29.22015925 Ry Harris-Foulkes estimate = -29.22017426 Ry estimated scf accuracy < 0.00003315 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.58E-07, avg # of iterations = 3.0 negative rho (up, down): 0.220E-06 0.000E+00 total cpu time spent up to now is 1.87 secs total energy = -29.22013537 Ry Harris-Foulkes estimate = -29.22020243 Ry estimated scf accuracy < 0.00082005 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.58E-07, avg # of iterations = 2.7 negative rho (up, down): 0.324E-07 0.000E+00 total cpu time spent up to now is 1.98 secs total energy = -29.22016969 Ry Harris-Foulkes estimate = -29.22017109 Ry estimated scf accuracy < 0.00000921 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.38E-08, avg # of iterations = 1.7 total cpu time spent up to now is 2.07 secs total energy = -29.22017041 Ry Harris-Foulkes estimate = -29.22017067 Ry estimated scf accuracy < 0.00000136 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.46E-09, avg # of iterations = 1.7 total cpu time spent up to now is 2.17 secs total energy = -29.22017057 Ry Harris-Foulkes estimate = -29.22017055 Ry estimated scf accuracy < 0.00000011 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.43E-10, avg # of iterations = 2.3 total cpu time spent up to now is 2.28 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.0836 -6.5610 -5.7283 -4.5716 -3.1454 -1.4514 0.5172 1.7927 4.3755 5.5196 5.9890 6.2244 6.7420 7.2243 7.5028 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.7601 -4.2450 -3.4270 -2.2911 -0.8932 -0.2597 0.2179 0.8027 1.0312 2.1294 2.7241 3.5271 3.8968 5.1705 6.5228 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.4925 -1.9891 -1.1862 -0.0713 1.2973 1.3270 1.7931 2.5383 2.7154 2.8078 3.4451 3.5922 4.1163 4.9140 4.9393 the Fermi energy is 3.4724 ev ! total energy = -29.22017058 Ry Harris-Foulkes estimate = -29.22017059 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00948627 atom 2 type 1 force = 0.00000000 0.00000000 -0.00040427 atom 3 type 1 force = 0.00000000 0.00000000 0.00224066 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00224066 atom 6 type 1 force = 0.00000000 0.00000000 0.00040427 atom 7 type 1 force = 0.00000000 0.00000000 -0.00948627 Total force = 0.013797 Total SCF correction = 0.000192 Entering Dynamics: iteration = 2 = 0.99795493 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.092288527 Al 0.000000000 0.000000000 -1.415655076 Al 0.500000000 0.500000000 -0.700202873 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.700202873 Al 0.000000000 0.000000000 1.415655076 Al 0.500000000 0.500000000 2.092288527 Writing output data file pwscf.save first order wave-functions extrapolation Check: negative starting charge= -0.000280 first order charge density extrapolation Check: negative starting charge= -0.000282 negative rho (up, down): 0.330E-03 0.000E+00 total cpu time spent up to now is 2.35 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.3 negative rho (up, down): 0.187E-03 0.000E+00 total cpu time spent up to now is 2.59 secs total energy = -29.22104678 Ry Harris-Foulkes estimate = -29.22197582 Ry estimated scf accuracy < 0.00231061 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 3.0 negative rho (up, down): 0.156E-03 0.000E+00 total cpu time spent up to now is 2.71 secs total energy = -29.22080186 Ry Harris-Foulkes estimate = -29.22174266 Ry estimated scf accuracy < 0.00478112 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 2.7 negative rho (up, down): 0.115E-03 0.000E+00 total cpu time spent up to now is 2.82 secs total energy = -29.22095595 Ry Harris-Foulkes estimate = -29.22196871 Ry estimated scf accuracy < 0.01215569 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 2.3 negative rho (up, down): 0.675E-04 0.000E+00 total cpu time spent up to now is 2.92 secs total energy = -29.22146608 Ry Harris-Foulkes estimate = -29.22150797 Ry estimated scf accuracy < 0.00024306 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.16E-06, avg # of iterations = 2.7 negative rho (up, down): 0.832E-05 0.000E+00 total cpu time spent up to now is 3.02 secs total energy = -29.22148989 Ry Harris-Foulkes estimate = -29.22148823 Ry estimated scf accuracy < 0.00002016 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 9.60E-08, avg # of iterations = 2.0 negative rho (up, down): 0.265E-07 0.000E+00 total cpu time spent up to now is 3.12 secs total energy = -29.22149305 Ry Harris-Foulkes estimate = -29.22149216 Ry estimated scf accuracy < 0.00000187 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.92E-09, avg # of iterations = 2.3 total cpu time spent up to now is 3.23 secs total energy = -29.22149337 Ry Harris-Foulkes estimate = -29.22149332 Ry estimated scf accuracy < 0.00000052 Ry iteration # 8 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.48E-09, avg # of iterations = 1.7 total cpu time spent up to now is 3.32 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1605 -6.6625 -5.8828 -4.6463 -3.1298 -1.4220 0.5732 1.8520 4.4542 5.4382 5.8749 6.2957 6.5613 7.1820 7.5285 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8369 -4.3467 -3.5825 -2.3682 -0.8817 -0.3376 0.1136 0.8292 0.8729 2.0471 2.7761 3.5385 3.9439 5.2041 6.5972 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5698 -2.0921 -1.3446 -0.1516 1.2472 1.3038 1.6832 2.3643 2.6368 2.7789 3.3981 3.4997 3.9770 4.9329 4.9892 the Fermi energy is 3.4542 ev ! total energy = -29.22149342 Ry Harris-Foulkes estimate = -29.22149342 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00036642 atom 2 type 1 force = 0.00000000 0.00000000 0.00988404 atom 3 type 1 force = 0.00000000 0.00000000 -0.00171811 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00171811 atom 6 type 1 force = 0.00000000 0.00000000 -0.00988404 atom 7 type 1 force = 0.00000000 0.00000000 0.00036642 Total force = 0.014197 Total SCF correction = 0.000036 Entering Dynamics: iteration = 3 = -0.70866661 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.093694501 Al 0.000000000 0.000000000 -1.414040610 Al 0.500000000 0.500000000 -0.700786686 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.700786686 Al 0.000000000 0.000000000 1.414040610 Al 0.500000000 0.500000000 2.093694501 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000282 second order charge density extrapolation Check: negative starting charge= -0.000284 negative rho (up, down): 0.905E-04 0.000E+00 total cpu time spent up to now is 3.39 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.3 negative rho (up, down): 0.526E-04 0.000E+00 total cpu time spent up to now is 3.55 secs total energy = -29.22033499 Ry Harris-Foulkes estimate = -29.22177338 Ry estimated scf accuracy < 0.00288144 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.37E-05, avg # of iterations = 3.3 negative rho (up, down): 0.493E-04 0.000E+00 total cpu time spent up to now is 3.69 secs total energy = -29.21694728 Ry Harris-Foulkes estimate = -29.22642825 Ry estimated scf accuracy < 0.12508696 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.37E-05, avg # of iterations = 3.3 negative rho (up, down): 0.362E-04 0.000E+00 total cpu time spent up to now is 3.82 secs total energy = -29.22164759 Ry Harris-Foulkes estimate = -29.22165361 Ry estimated scf accuracy < 0.00002735 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.30E-07, avg # of iterations = 2.7 negative rho (up, down): 0.199E-04 0.000E+00 total cpu time spent up to now is 3.94 secs total energy = -29.22165435 Ry Harris-Foulkes estimate = -29.22165425 Ry estimated scf accuracy < 0.00000268 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.28E-08, avg # of iterations = 1.7 negative rho (up, down): 0.988E-06 0.000E+00 total cpu time spent up to now is 4.03 secs total energy = -29.22165523 Ry Harris-Foulkes estimate = -29.22165457 Ry estimated scf accuracy < 0.00000032 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.53E-09, avg # of iterations = 2.7 total cpu time spent up to now is 4.15 secs total energy = -29.22165535 Ry Harris-Foulkes estimate = -29.22165530 Ry estimated scf accuracy < 0.00000019 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.89E-10, avg # of iterations = 2.0 total cpu time spent up to now is 4.25 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1587 -6.6576 -5.8675 -4.6403 -3.1340 -1.4238 0.5701 1.8483 4.4520 5.4403 5.8811 6.2932 6.5797 7.1825 7.5291 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8352 -4.3418 -3.5671 -2.3620 -0.8857 -0.3357 0.1187 0.8276 0.8886 2.0536 2.7729 3.5348 3.9415 5.2016 6.5951 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5680 -2.0872 -1.3290 -0.1453 1.2492 1.3000 1.6890 2.3818 2.6386 2.7801 3.4000 3.5071 3.9905 4.9266 4.9863 the Fermi energy is 3.4548 ev ! total energy = -29.22165534 Ry Harris-Foulkes estimate = -29.22165540 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00070233 atom 2 type 1 force = 0.00000000 0.00000000 0.00834052 atom 3 type 1 force = 0.00000000 0.00000000 -0.00102362 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00102362 atom 6 type 1 force = 0.00000000 0.00000000 -0.00834052 atom 7 type 1 force = 0.00000000 0.00000000 -0.00070233 Total force = 0.011925 Total SCF correction = 0.000428 Entering Dynamics: iteration = 4 = 0.55176359 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.090634908 Al 0.000000000 0.000000000 -1.402978686 Al 0.500000000 0.500000000 -0.701713079 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.701713079 Al 0.000000000 0.000000000 1.402978686 Al 0.500000000 0.500000000 2.090634908 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000284 second order charge density extrapolation Check: negative starting charge= -0.000289 negative rho (up, down): 0.261E-04 0.000E+00 total cpu time spent up to now is 4.32 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.141E-04 0.000E+00 total cpu time spent up to now is 4.46 secs total energy = -29.22225444 Ry Harris-Foulkes estimate = -29.22237649 Ry estimated scf accuracy < 0.00025188 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.20E-06, avg # of iterations = 3.3 negative rho (up, down): 0.127E-04 0.000E+00 total cpu time spent up to now is 4.60 secs total energy = -29.22211321 Ry Harris-Foulkes estimate = -29.22254445 Ry estimated scf accuracy < 0.00441835 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.20E-06, avg # of iterations = 3.0 negative rho (up, down): 0.946E-05 0.000E+00 total cpu time spent up to now is 4.72 secs total energy = -29.22233264 Ry Harris-Foulkes estimate = -29.22237396 Ry estimated scf accuracy < 0.00037448 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.20E-06, avg # of iterations = 1.7 negative rho (up, down): 0.251E-05 0.000E+00 total cpu time spent up to now is 4.82 secs total energy = -29.22235238 Ry Harris-Foulkes estimate = -29.22235219 Ry estimated scf accuracy < 0.00000044 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.08E-09, avg # of iterations = 4.0 negative rho (up, down): 0.788E-07 0.000E+00 total cpu time spent up to now is 4.95 secs total energy = -29.22235302 Ry Harris-Foulkes estimate = -29.22235289 Ry estimated scf accuracy < 0.00000043 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.07E-09, avg # of iterations = 1.0 total cpu time spent up to now is 5.04 secs total energy = -29.22235305 Ry Harris-Foulkes estimate = -29.22235302 Ry estimated scf accuracy < 0.00000028 Ry iteration # 7 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.35E-09, avg # of iterations = 1.7 total cpu time spent up to now is 5.13 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.1873 -6.6801 -5.8348 -4.6323 -3.1573 -1.4241 0.5740 1.8518 4.4724 5.4107 5.8588 6.3034 6.6199 7.1595 7.5438 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8637 -4.3643 -3.5347 -2.3543 -0.9096 -0.3642 0.0961 0.8273 0.9221 2.0620 2.7739 3.5135 3.9474 5.1978 6.6141 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.5967 -2.1100 -1.2962 -0.1377 1.2203 1.2756 1.6668 2.4195 2.6094 2.7666 3.3898 3.5169 4.0178 4.8909 4.9899 the Fermi energy is 3.4482 ev ! total energy = -29.22235307 Ry Harris-Foulkes estimate = -29.22235307 Ry estimated scf accuracy < 5.5E-09 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00308452 atom 2 type 1 force = 0.00000000 0.00000000 0.00253059 atom 3 type 1 force = 0.00000000 0.00000000 0.00204291 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00204291 atom 6 type 1 force = 0.00000000 0.00000000 -0.00253059 atom 7 type 1 force = 0.00000000 0.00000000 -0.00308452 Total force = 0.006339 Total SCF correction = 0.000104 Entering Dynamics: iteration = 5 = 0.98977444 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.083520427 Al 0.000000000 0.000000000 -1.385112345 Al 0.500000000 0.500000000 -0.701478333 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.701478333 Al 0.000000000 0.000000000 1.385112345 Al 0.500000000 0.500000000 2.083520427 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000289 second order charge density extrapolation Check: negative starting charge= -0.000295 negative rho (up, down): 0.113E-04 0.000E+00 total cpu time spent up to now is 5.20 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 negative rho (up, down): 0.582E-05 0.000E+00 total cpu time spent up to now is 5.36 secs total energy = -29.22229439 Ry Harris-Foulkes estimate = -29.22237029 Ry estimated scf accuracy < 0.00015970 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 3.0 negative rho (up, down): 0.506E-05 0.000E+00 total cpu time spent up to now is 5.48 secs total energy = -29.22224089 Ry Harris-Foulkes estimate = -29.22242761 Ry estimated scf accuracy < 0.00154561 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 3.0 negative rho (up, down): 0.378E-05 0.000E+00 total cpu time spent up to now is 5.60 secs total energy = -29.22233032 Ry Harris-Foulkes estimate = -29.22237652 Ry estimated scf accuracy < 0.00049660 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 7.60E-07, avg # of iterations = 2.0 negative rho (up, down): 0.989E-06 0.000E+00 total cpu time spent up to now is 5.70 secs total energy = -29.22235288 Ry Harris-Foulkes estimate = -29.22235251 Ry estimated scf accuracy < 0.00000034 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.63E-09, avg # of iterations = 4.0 negative rho (up, down): 0.347E-06 0.000E+00 total cpu time spent up to now is 5.83 secs total energy = -29.22235323 Ry Harris-Foulkes estimate = -29.22235313 Ry estimated scf accuracy < 0.00000017 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 8.18E-10, avg # of iterations = 1.0 total cpu time spent up to now is 5.92 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2448 -6.7264 -5.7976 -4.6223 -3.1881 -1.4220 0.5848 1.8647 4.5111 5.3491 5.8077 6.3212 6.6656 7.1136 7.5707 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9210 -4.4109 -3.4981 -2.3449 -0.9419 -0.4220 0.0482 0.8292 0.9601 2.0725 2.7798 3.4855 3.9629 5.1943 6.6496 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6547 -2.1576 -1.2595 -0.1287 1.1603 1.2418 1.6169 2.4618 2.5509 2.7391 3.3719 3.5296 4.0477 4.8421 5.0000 the Fermi energy is 3.4389 ev ! total energy = -29.22235330 Ry Harris-Foulkes estimate = -29.22235323 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00581585 atom 2 type 1 force = 0.00000000 0.00000000 -0.00633688 atom 3 type 1 force = 0.00000000 0.00000000 0.00679919 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00679919 atom 6 type 1 force = 0.00000000 0.00000000 0.00633688 atom 7 type 1 force = 0.00000000 0.00000000 -0.00581585 Total force = 0.015505 Total SCF correction = 0.000249 Entering Dynamics: iteration = 6 = -0.99021369 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.085836359 Al 0.000000000 0.000000000 -1.393266902 Al 0.500000000 0.500000000 -0.700768263 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.700768263 Al 0.000000000 0.000000000 1.393266902 Al 0.500000000 0.500000000 2.085836359 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000295 second order charge density extrapolation Check: negative starting charge= -0.000293 negative rho (up, down): 0.511E-05 0.000E+00 total cpu time spent up to now is 5.99 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.64E-08, avg # of iterations = 1.7 negative rho (up, down): 0.272E-05 0.000E+00 total cpu time spent up to now is 6.21 secs total energy = -29.22261106 Ry Harris-Foulkes estimate = -29.22261569 Ry estimated scf accuracy < 0.00001053 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.01E-08, avg # of iterations = 3.0 negative rho (up, down): 0.248E-05 0.000E+00 total cpu time spent up to now is 6.32 secs total energy = -29.22260496 Ry Harris-Foulkes estimate = -29.22262301 Ry estimated scf accuracy < 0.00018992 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.01E-08, avg # of iterations = 2.7 negative rho (up, down): 0.184E-05 0.000E+00 total cpu time spent up to now is 6.43 secs total energy = -29.22261433 Ry Harris-Foulkes estimate = -29.22261567 Ry estimated scf accuracy < 0.00001231 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.01E-08, avg # of iterations = 1.3 negative rho (up, down): 0.318E-06 0.000E+00 total cpu time spent up to now is 6.52 secs total energy = -29.22261519 Ry Harris-Foulkes estimate = -29.22261502 Ry estimated scf accuracy < 0.00000011 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.37E-10, avg # of iterations = 3.0 total cpu time spent up to now is 6.63 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2219 -6.7056 -5.8213 -4.6307 -3.1731 -1.4228 0.5816 1.8602 4.4968 5.3740 5.8313 6.3161 6.6371 7.1320 7.5605 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.8982 -4.3899 -3.5215 -2.3531 -0.9265 -0.3988 0.0698 0.8284 0.9360 2.0635 2.7789 3.4990 3.9567 5.1961 6.6368 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6316 -2.1361 -1.2830 -0.1369 1.1845 1.2577 1.6399 2.4351 2.5743 2.7515 3.3796 3.5190 4.0281 4.8659 4.9971 the Fermi energy is 3.4424 ev ! total energy = -29.22261525 Ry Harris-Foulkes estimate = -29.22261522 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00429369 atom 2 type 1 force = 0.00000000 0.00000000 -0.00170937 atom 3 type 1 force = 0.00000000 0.00000000 0.00400056 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00400056 atom 6 type 1 force = 0.00000000 0.00000000 0.00170937 atom 7 type 1 force = 0.00000000 0.00000000 -0.00429369 Total force = 0.008644 Total SCF correction = 0.000304 Entering Dynamics: iteration = 7 = 0.16128250 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.083835071 Al 0.000000000 0.000000000 -1.394159219 Al 0.500000000 0.500000000 -0.698809017 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.698809017 Al 0.000000000 0.000000000 1.394159219 Al 0.500000000 0.500000000 2.083835071 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000293 second order charge density extrapolation Check: negative starting charge= -0.000294 negative rho (up, down): 0.232E-05 0.000E+00 total cpu time spent up to now is 6.71 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 negative rho (up, down): 0.100E-05 0.000E+00 total cpu time spent up to now is 6.84 secs total energy = -29.22273247 Ry Harris-Foulkes estimate = -29.22277572 Ry estimated scf accuracy < 0.00008664 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.13E-07, avg # of iterations = 3.3 negative rho (up, down): 0.927E-06 0.000E+00 total cpu time spent up to now is 6.96 secs total energy = -29.22263681 Ry Harris-Foulkes estimate = -29.22290923 Ry estimated scf accuracy < 0.00345620 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.13E-07, avg # of iterations = 3.0 negative rho (up, down): 0.586E-06 0.000E+00 total cpu time spent up to now is 7.08 secs total energy = -29.22277195 Ry Harris-Foulkes estimate = -29.22277197 Ry estimated scf accuracy < 0.00000066 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.15E-09, avg # of iterations = 2.7 negative rho (up, down): 0.357E-07 0.000E+00 total cpu time spent up to now is 7.19 secs total energy = -29.22277212 Ry Harris-Foulkes estimate = -29.22277206 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.78E-10, avg # of iterations = 2.3 negative rho (up, down): 0.161E-07 0.000E+00 total cpu time spent up to now is 7.29 secs total energy = -29.22277214 Ry Harris-Foulkes estimate = -29.22277214 Ry estimated scf accuracy < 0.00000013 Ry iteration # 6 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.78E-10, avg # of iterations = 1.7 total cpu time spent up to now is 7.39 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2287 -6.7070 -5.8399 -4.6392 -3.1681 -1.4218 0.5856 1.8644 4.5026 5.3670 5.8301 6.3213 6.6152 7.1267 7.5634 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9050 -4.3913 -3.5402 -2.3618 -0.9221 -0.4054 0.0683 0.8293 0.9170 2.0544 2.7833 3.5032 3.9593 5.1976 6.6426 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6384 -2.1374 -1.3020 -0.1458 1.1776 1.2617 1.6386 2.4142 2.5676 2.7509 3.3793 3.5085 4.0117 4.8733 5.0010 the Fermi energy is 3.4420 ev ! total energy = -29.22277215 Ry Harris-Foulkes estimate = -29.22277214 Ry estimated scf accuracy < 1.8E-09 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00331654 atom 2 type 1 force = 0.00000000 0.00000000 -0.00003348 atom 3 type 1 force = 0.00000000 0.00000000 0.00253703 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 -0.00253703 atom 6 type 1 force = 0.00000000 0.00000000 0.00003348 atom 7 type 1 force = 0.00000000 0.00000000 -0.00331654 Total force = 0.005905 Total SCF correction = 0.000016 Entering Dynamics: iteration = 8 = 0.77736052 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.072779749 Al 0.000000000 0.000000000 -1.389268229 Al 0.500000000 0.500000000 -0.691239648 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.691239648 Al 0.000000000 0.000000000 1.389268229 Al 0.500000000 0.500000000 2.072779749 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000294 second order charge density extrapolation Check: negative starting charge= -0.000294 negative rho (up, down): 0.387E-05 0.000E+00 total cpu time spent up to now is 7.46 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.3 negative rho (up, down): 0.138E-05 0.000E+00 total cpu time spent up to now is 7.60 secs total energy = -29.22303289 Ry Harris-Foulkes estimate = -29.22314673 Ry estimated scf accuracy < 0.00022758 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.08E-06, avg # of iterations = 3.3 negative rho (up, down): 0.119E-05 0.000E+00 total cpu time spent up to now is 7.73 secs total energy = -29.22279241 Ry Harris-Foulkes estimate = -29.22349330 Ry estimated scf accuracy < 0.00875082 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.08E-06, avg # of iterations = 3.0 negative rho (up, down): 0.602E-06 0.000E+00 total cpu time spent up to now is 7.85 secs total energy = -29.22313701 Ry Harris-Foulkes estimate = -29.22313705 Ry estimated scf accuracy < 0.00000063 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.00E-09, avg # of iterations = 4.0 total cpu time spent up to now is 7.97 secs total energy = -29.22313735 Ry Harris-Foulkes estimate = -29.22313728 Ry estimated scf accuracy < 0.00000013 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.24E-10, avg # of iterations = 2.0 total cpu time spent up to now is 8.06 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.2830 -6.7351 -5.8946 -4.6679 -3.1638 -1.4170 0.6057 1.8866 4.5421 5.3097 5.7999 6.3487 6.5518 7.0840 7.5870 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -4.9592 -4.4196 -3.5953 -2.3915 -0.9212 -0.4588 0.0393 0.8333 0.8613 2.0234 2.8022 3.5059 3.9763 5.2015 6.6803 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.6931 -2.1660 -1.3581 -0.1769 1.1216 1.2606 1.6091 2.3530 2.5136 2.7345 3.3698 3.4729 3.9619 4.8785 5.0204 the Fermi energy is 3.4352 ev ! total energy = -29.22313737 Ry Harris-Foulkes estimate = -29.22313737 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00079513 atom 2 type 1 force = 0.00000000 0.00000000 0.00229518 atom 3 type 1 force = 0.00000000 0.00000000 -0.00095214 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00095214 atom 6 type 1 force = 0.00000000 0.00000000 -0.00229518 atom 7 type 1 force = 0.00000000 0.00000000 -0.00079513 Total force = 0.003690 Total SCF correction = 0.000373 Entering Dynamics: iteration = 9 = 0.92889055 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.057469703 Al 0.000000000 0.000000000 -1.374624577 Al 0.500000000 0.500000000 -0.683705543 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.683705543 Al 0.000000000 0.000000000 1.374624577 Al 0.500000000 0.500000000 2.057469703 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000294 second order charge density extrapolation Check: negative starting charge= -0.000284 negative rho (up, down): 0.147E-04 0.000E+00 total cpu time spent up to now is 8.14 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.47E-09, avg # of iterations = 3.0 negative rho (up, down): 0.670E-05 0.000E+00 total cpu time spent up to now is 8.39 secs total energy = -29.22321960 Ry Harris-Foulkes estimate = -29.22321931 Ry estimated scf accuracy < 0.00000138 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.57E-09, avg # of iterations = 3.0 negative rho (up, down): 0.595E-05 0.000E+00 total cpu time spent up to now is 8.50 secs total energy = -29.22321914 Ry Harris-Foulkes estimate = -29.22322048 Ry estimated scf accuracy < 0.00001478 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.57E-09, avg # of iterations = 2.7 negative rho (up, down): 0.196E-05 0.000E+00 total cpu time spent up to now is 8.60 secs total energy = -29.22322029 Ry Harris-Foulkes estimate = -29.22321997 Ry estimated scf accuracy < 0.00000081 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.86E-09, avg # of iterations = 1.0 negative rho (up, down): 0.429E-06 0.000E+00 total cpu time spent up to now is 8.69 secs total energy = -29.22322055 Ry Harris-Foulkes estimate = -29.22322032 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 5.64E-10, avg # of iterations = 2.0 total cpu time spent up to now is 8.79 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3713 -6.7904 -5.9303 -4.6927 -3.1771 -1.4098 0.6320 1.9171 4.6016 5.2161 5.7407 6.3847 6.5121 7.0160 7.6256 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0473 -4.4752 -3.6316 -2.4178 -0.9402 -0.5454 -0.0175 0.8251 0.8395 1.9963 2.8246 3.4928 4.0030 5.2047 6.7350 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7821 -2.2223 -1.3955 -0.2049 1.0304 1.2392 1.5510 2.3137 2.4251 2.7000 3.3534 3.4422 3.9273 4.8554 5.0456 the Fermi energy is 3.4234 ev ! total energy = -29.22322067 Ry Harris-Foulkes estimate = -29.22322056 Ry estimated scf accuracy < 0.00000004 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00029367 atom 2 type 1 force = 0.00000000 0.00000000 -0.00026748 atom 3 type 1 force = 0.00000000 0.00000000 -0.00202837 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00202837 atom 6 type 1 force = 0.00000000 0.00000000 0.00026748 atom 7 type 1 force = 0.00000000 0.00000000 0.00029367 Total force = 0.002923 Total SCF correction = 0.000163 Entering Dynamics: iteration = 10 = -0.99092751 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.063750500 Al 0.000000000 0.000000000 -1.379517587 Al 0.500000000 0.500000000 -0.687440590 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.687440590 Al 0.000000000 0.000000000 1.379517587 Al 0.500000000 0.500000000 2.063750500 Writing output data file pwscf.save second order wave-functions extrapolation Check: negative starting charge= -0.000284 second order charge density extrapolation Check: negative starting charge= -0.000292 negative rho (up, down): 0.184E-05 0.000E+00 total cpu time spent up to now is 8.86 secs per-process dynamical memory: 14.4 Mb Self-consistent Calculation iteration # 1 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.64E-09, avg # of iterations = 2.3 negative rho (up, down): 0.434E-06 0.000E+00 total cpu time spent up to now is 9.10 secs total energy = -29.22327779 Ry Harris-Foulkes estimate = -29.22327919 Ry estimated scf accuracy < 0.00000313 Ry iteration # 2 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.49E-08, avg # of iterations = 3.0 negative rho (up, down): 0.322E-06 0.000E+00 total cpu time spent up to now is 9.21 secs total energy = -29.22327537 Ry Harris-Foulkes estimate = -29.22328256 Ry estimated scf accuracy < 0.00008284 Ry iteration # 3 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.49E-08, avg # of iterations = 2.7 negative rho (up, down): 0.119E-06 0.000E+00 total cpu time spent up to now is 9.32 secs total energy = -29.22327904 Ry Harris-Foulkes estimate = -29.22327917 Ry estimated scf accuracy < 0.00000103 Ry iteration # 4 ecut= 12.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.91E-09, avg # of iterations = 1.3 total cpu time spent up to now is 9.41 secs End of self-consistent calculation k = 0.1250 0.1250 0.0000 ( 822 PWs) bands (ev): -7.3356 -6.7706 -5.9094 -4.6801 -3.1747 -1.4125 0.6213 1.9045 4.5785 5.2541 5.7619 6.3703 6.5359 7.0438 7.6119 k = 0.1250 0.3750 0.0000 ( 847 PWs) bands (ev): -5.0116 -4.4553 -3.6105 -2.4046 -0.9351 -0.5107 0.0028 0.8372 0.8463 2.0100 2.8151 3.4955 3.9925 5.2032 6.7138 k = 0.3750 0.3750 0.0000 ( 860 PWs) bands (ev): -2.7460 -2.2022 -1.3739 -0.1909 1.0674 1.2451 1.5718 2.3370 2.4606 2.7128 3.3587 3.4579 3.9468 4.8601 5.0352 the Fermi energy is 3.4278 ev ! total energy = -29.22327922 Ry Harris-Foulkes estimate = -29.22327912 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00050780 atom 2 type 1 force = 0.00000000 0.00000000 -0.00007679 atom 3 type 1 force = 0.00000000 0.00000000 -0.00085574 atom 4 type 1 force = 0.00000000 0.00000000 0.00000000 atom 5 type 1 force = 0.00000000 0.00000000 0.00085574 atom 6 type 1 force = 0.00000000 0.00000000 0.00007679 atom 7 type 1 force = 0.00000000 0.00000000 -0.00050780 Total force = 0.001411 Total SCF correction = 0.000087 Damped Dynamics: convergence achieved in 11 steps End of damped dynamics calculation Final energy = -29.2232792188 Ry CELL_PARAMETERS (alat) 1.000000000 0.000000000 0.000000000 0.000000000 1.000000000 0.000000000 0.000000000 0.000000000 8.000000000 ATOMIC_POSITIONS (alat) Al 0.500000000 0.500000000 -2.063750500 Al 0.000000000 0.000000000 -1.379517587 Al 0.500000000 0.500000000 -0.687440590 Al 0.000000000 0.000000000 0.000000000 Al 0.500000000 0.500000000 0.687440590 Al 0.000000000 0.000000000 1.379517587 Al 0.500000000 0.500000000 2.063750500 Writing output data file pwscf.save PWSCF : 9.45s CPU time, 10.08s wall time init_run : 0.16s CPU electrons : 8.54s CPU ( 11 calls, 0.776 s avg) update_pot : 0.23s CPU ( 10 calls, 0.023 s avg) forces : 0.14s CPU ( 11 calls, 0.013 s avg) Called by init_run: wfcinit : 0.14s CPU potinit : 0.00s CPU Called by electrons: c_bands : 6.95s CPU ( 74 calls, 0.094 s avg) sum_band : 1.06s CPU ( 74 calls, 0.014 s avg) v_of_rho : 0.17s CPU ( 82 calls, 0.002 s avg) mix_rho : 0.13s CPU ( 74 calls, 0.002 s avg) Called by c_bands: init_us_2 : 0.18s CPU ( 480 calls, 0.000 s avg) cegterg : 6.75s CPU ( 222 calls, 0.030 s avg) Called by *egterg: h_psi : 4.91s CPU ( 809 calls, 0.006 s avg) g_psi : 0.18s CPU ( 584 calls, 0.000 s avg) cdiaghg : 0.53s CPU ( 767 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.26s CPU ( 809 calls, 0.000 s avg) General routines calbec : 0.34s CPU ( 869 calls, 0.000 s avg) cft3 : 0.06s CPU ( 281 calls, 0.000 s avg) cft3s : 4.46s CPU ( 20378 calls, 0.000 s avg) davcio : 0.01s CPU ( 867 calls, 0.000 s avg) espresso-5.1/PW/examples/VCSexample/0000755000175000017500000000000012341373041015453 5ustar mbambaespresso-5.1/PW/examples/VCSexample/README0000644000175000017500000000251012341373025016333 0ustar mbamba This example shows how to use pw.x to optimize crystal structures at two pressures for As. Arsenic is well known to undergo a phase transition from A7 structure to imple cubic at about 30 GPa. (See da Silva CR, Wentzcovitch RM, COMPUTATIONAL MATERIALS SCIENCE 8 (3): 219-227 JUL 1997). 1) make a vc-relax calculation with external (target) pressure = 0 kbar, using Wentzcovitch dynamics (cell_dynamics = 'damp-w' in CELL namelist), (input=As.vcs00.in, output=As.vcs00.out). In this case, the angle between cell vectors at the end of the calculation is 58 degrees and the internal coordinate is 0.2723, typical of A7 structure. 2) make a vc-relax calculation with external (target) pressure = 500 kbar, also using Wentzcovitch dynamics. (input=As.vcs500.in, output=As.vcs500.out). In this case, the angle between cell vectors at the end of the calculation is 60 degrees and the internal coordinate is 0.25, typical of sc structure. Both calculations start from the same initial structure with an angle of 60 degrees between vectors and internal coordinate 0.290010 . PLEASE NOTE: the structure has "ibrav=-0", that is, it is read from cards "CELL_PARAMETERS". Only the lattice parametr "A" is used; the other cell parameters B, C, COSAB COSAC, COSBC are reported for convenience, but thay are neither read nor used espresso-5.1/PW/examples/VCSexample/run_example0000755000175000017500000002027612341373025017731 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to relax a 2-atom cell of As" $ECHO "at 2 different pressures, 0 kbar and 500 kbar. At those pressures" $ECHO "As relax to different structures, sc and A7." $ECHO "Two strategies are used: Wentzcovitch damped dynamics and bfgs." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="As.pz-bhs.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # VCS-MD calculation cat > As.vcs00.in << EOF &CONTROL calculation = "vc-relax" , restart_mode = 'from_scratch' , outdir='$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR' , disk_io = 'default' , verbosity = 'default' , tstress = .true. , tprnfor = .true. , nstep = 55 , etot_conv_thr = 1.0E-5 , forc_conv_thr = 1.0D-4 , iprint = 1 , max_seconds = 6000 , dt = 150 , / &SYSTEM ibrav = 0 , A = 3.70971016 , ! B = 3.70971016 , ! C = 3.70971016 , ! cosAB = 0.49517470 , ! cosAC = 0.49517470 , ! cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , ecutrho = 100.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 , nspin = 1 , lda_plus_u = .false. , / &ELECTRONS electron_maxstep = 70 , conv_thr = 1.0d-7 , diagonalization = 'david' , / &IONS / &CELL cell_dynamics = 'damp-w' , press = 0.00 , wmass = 0.00700000 , / CELL_PARAMETERS 0.58012956 0.00000000 0.81452422 -0.29006459 0.50240689 0.81452422 -0.29006459 -0.50240689 0.81452422 ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the VCS-MD calculation for As at 0 kbar. \c" $PW_COMMAND < As.vcs00.in > As.vcs00.out $ECHO " done" # VCS-MD calculation cat > As.vcs500.in << EOF &CONTROL calculation = "vc-relax" , restart_mode = 'from_scratch' , outdir='$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR' , disk_io = 'default' , verbosity = 'default' , tstress = .true. , tprnfor = .true. , nstep = 55 , etot_conv_thr = 1.0E-5 , forc_conv_thr = 1.0D-4 , iprint = 1 , max_seconds = 6000 , dt = 150 , / &SYSTEM ibrav = 0 , A = 3.70971016 , ! B = 3.70971016 , ! C = 3.70971016 , ! cosAB = 0.49517470 , ! cosAC = 0.49517470 , ! cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , ecutrho = 100.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 , nspin = 1 , lda_plus_u = .false. , / &ELECTRONS electron_maxstep = 70 , conv_thr = 1.0d-7 , diagonalization = 'david' , / &IONS / &CELL cell_dynamics = 'damp-w' , press = 500.00 , wmass = 0.00700000 , / CELL_PARAMETERS 0.58012956 0.00000000 0.81452422 -0.29006459 0.50240689 0.81452422 -0.29006459 -0.50240689 0.81452422 ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the VCS-MD calculation for As at 500 kbar. \c" $PW_COMMAND < As.vcs500.in > As.vcs500.out $ECHO " done" # bfgs vc-relax calculation cat > As.bfgs00.in << EOF &CONTROL calculation = "vc-relax" , restart_mode = 'from_scratch' , outdir='$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR' , etot_conv_thr = 1.0E-5 , forc_conv_thr = 1.0D-4 , / &SYSTEM ibrav = 0 , A = 3.70971016 , ! B = 3.70971016 , ! C = 3.70971016 , ! cosAB = 0.49517470 , ! cosAC = 0.49517470 , ! cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , ecutrho = 100.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 , / &ELECTRONS conv_thr = 1.0d-7 , / &IONS / &CELL cell_dynamics = 'bfgs' , press = 0.00 , / CELL_PARAMETERS 0.58012956 0.00000000 0.81452422 -0.29006459 0.50240689 0.81452422 -0.29006459 -0.50240689 0.81452422 ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the bfgs vc-relax calculation for As at 0 kbar. \c" $PW_COMMAND < As.bfgs00.in > As.bfgs00.out $ECHO " done" # bfgs vc-relax calculation cat > As.bfgs500.in << EOF &CONTROL calculation = "vc-relax" , restart_mode = 'from_scratch' , outdir='$TMP_DIR/' , pseudo_dir = '$PSEUDO_DIR' , etot_conv_thr = 1.0E-5 , forc_conv_thr = 1.0D-4 , / &SYSTEM ibrav = 0 , A = 3.70971016 , ! B = 3.70971016 , ! C = 3.70971016 , ! cosAB = 0.49517470 , ! cosAC = 0.49517470 , ! cosBC = 0.49517470 , nat = 2 , ntyp = 1 , ecutwfc = 25.0 , ecutrho = 100.0 , nbnd = 9 , occupations = 'smearing' , smearing = 'mp' , degauss = 0.005 , / &ELECTRONS conv_thr = 1.0d-7 , / &IONS / &CELL cell_dynamics = 'bfgs' , press = 500.00 , / CELL_PARAMETERS 0.58012956 0.00000000 0.81452422 -0.29006459 0.50240689 0.81452422 -0.29006459 -0.50240689 0.81452422 ATOMIC_SPECIES As 74.90000 As.pz-bhs.UPF ATOMIC_POSITIONS crystal As 0.290010 0.290010 0.290010 As -0.290010 -0.290010 -0.290010 K_POINTS automatic 4 4 4 1 1 1 EOF $ECHO " running the bfgs vc-relax calculation for As at 500 kbar. \c" $PW_COMMAND < As.bfgs500.in > As.bfgs500.out $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/pwscf* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PW/examples/VCSexample/reference/0000755000175000017500000000000012341373041017411 5ustar mbambaespresso-5.1/PW/examples/VCSexample/reference/As.vcs500.out0000644000175000017500000127520712341373025021544 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 29Apr2008 at 14: 3: 0 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 55 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.580130 0.000000 0.814524 ) a(2) = ( -0.290065 0.502407 0.814524 ) a(3) = ( -0.290065 -0.502407 0.814524 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.149169 0.000000 0.409237 ) b(2) = ( -0.574584 0.995209 0.409237 ) b(3) = ( -0.574584 -0.995209 0.409237 ) PseudoPot. # 1 for As read from file As.gon.UPF Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 0.08218 As( 1.00) cell mass = 0.00700 AMU/(a.u.)^2 4 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.7086605 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.7086605 ) number of k points= 20 gaussian broad. (Ry)= 0.0050 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.1534638), wk = 0.0625000 k( 2) = ( -0.1436461 -0.2488023 0.2557731), wk = 0.1250000 k( 3) = ( 0.2872922 0.4976046 -0.0511547), wk = 0.1250000 k( 4) = ( 0.1436461 0.2488023 0.0511546), wk = 0.1250000 k( 5) = ( -0.2872922 0.0000000 0.3580823), wk = 0.0625000 k( 6) = ( 0.1436461 0.7464070 0.0511546), wk = 0.1250000 k( 7) = ( 0.0000000 0.4976046 0.1534638), wk = 0.1250000 k( 8) = ( 0.5745844 0.0000000 -0.2557731), wk = 0.0625000 k( 9) = ( 0.4309383 -0.2488023 -0.1534639), wk = 0.1250000 k( 10) = ( 0.2872922 0.0000000 -0.0511547), wk = 0.0625000 k( 11) = ( 0.2872922 0.0000000 0.2557730), wk = 0.0625000 k( 12) = ( 0.1436461 -0.2488023 0.3580822), wk = 0.1250000 k( 13) = ( 0.5745844 0.4976046 0.0511545), wk = 0.1250000 k( 14) = ( 0.4309383 0.2488023 0.1534638), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4603915), wk = 0.0625000 k( 16) = ( 0.4309383 0.7464070 0.1534638), wk = 0.1250000 k( 17) = ( 0.2872922 0.4976046 0.2557730), wk = 0.1250000 k( 18) = ( 0.8618766 0.0000000 -0.1534640), wk = 0.0625000 k( 19) = ( 0.7182305 -0.2488023 -0.0511547), wk = 0.1250000 k( 20) = ( 0.5745844 0.0000000 0.0511545), wk = 0.0625000 G cutoff = 124.4853 ( 4159 G-vectors) FFT grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 atomic + 1 random wfc total cpu time spent up to now is 0.24 secs per-process dynamical memory: 4.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.07 secs k = 0.0000 0.0000 0.1535 band energies (ev): -7.1053 4.3672 5.8103 5.8103 8.3763 10.9345 11.7163 11.7165 16.4778 k =-0.1436-0.2488 0.2558 band energies (ev): -6.0372 0.2617 5.2399 5.5079 9.2633 10.3987 11.6102 13.5119 15.6363 k = 0.2873 0.4976-0.0512 band energies (ev): -4.4678 -2.5869 4.6602 6.0474 7.8159 10.7318 12.4772 13.7300 17.6631 k = 0.1436 0.2488 0.0512 band energies (ev): -6.4802 1.1693 4.8513 7.0575 8.4284 10.7697 12.3697 13.8790 15.2983 k =-0.2873 0.0000 0.3581 band energies (ev): -5.6571 0.9853 3.4682 4.1709 7.4349 10.3774 13.6201 13.6880 16.8165 k = 0.1436 0.7464 0.0512 band energies (ev): -3.9622 -1.9357 2.2453 4.1429 7.9252 11.5628 13.2833 15.6249 17.2402 k = 0.0000 0.4976 0.1535 band energies (ev): -4.8284 -1.6008 2.9139 6.5815 7.6487 12.2409 12.9989 13.3681 15.9866 k = 0.5746 0.0000-0.2558 band energies (ev): -4.1784 -1.6215 3.5882 3.6242 5.9359 10.0386 15.7916 17.6328 18.3764 k = 0.4309-0.2488-0.1535 band energies (ev): -4.8284 -1.6008 2.9139 6.5815 7.6487 12.2409 12.9988 13.3681 15.9865 k = 0.2873 0.0000-0.0512 band energies (ev): -6.4802 1.1693 4.8513 7.0575 8.4285 10.7694 12.3698 13.8792 15.2974 k = 0.2873 0.0000 0.2558 band energies (ev): -6.0372 0.2618 5.2399 5.5079 9.2633 10.3987 11.6090 13.5148 15.6552 k = 0.1436-0.2488 0.3581 band energies (ev): -5.6571 0.9853 3.4682 4.1709 7.4349 10.3774 13.6201 13.6879 16.8166 k = 0.5746 0.4976 0.0512 band energies (ev): -3.9622 -1.9357 2.2453 4.1429 7.9252 11.5628 13.2833 15.6249 17.2400 k = 0.4309 0.2488 0.1535 band energies (ev): -4.8284 -1.6008 2.9139 6.5815 7.6487 12.2409 12.9989 13.3681 15.9866 k = 0.0000 0.0000 0.4604 band energies (ev): -5.9719 0.7085 5.7288 5.7288 7.3744 10.0048 10.0050 11.9991 17.4416 k = 0.4309 0.7464 0.1535 band energies (ev): -4.9671 -0.1863 2.3479 4.6529 7.4527 11.5757 11.9681 14.4003 17.7560 k = 0.2873 0.4976 0.2558 band energies (ev): -4.1784 -1.6215 3.5882 3.6242 5.9359 10.0386 15.7915 17.6328 18.3766 k = 0.8619 0.0000-0.1535 band energies (ev): -4.9671 -0.1863 2.3479 4.6529 7.4527 11.5756 11.9686 14.4003 17.7392 k = 0.7182-0.2488-0.0512 band energies (ev): -3.9622 -1.9357 2.2453 4.1429 7.9252 11.5629 13.2833 15.6264 17.2398 k = 0.5746 0.0000 0.0512 band energies (ev): -4.4678 -2.5869 4.6602 6.0474 7.8159 10.7318 12.4771 13.7300 17.6616 the Fermi energy is 9.6597 ev total energy = -25.43995280 Ry Harris-Foulkes estimate = -25.44370948 Ry estimated scf accuracy < 0.01555924 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.36 secs k = 0.0000 0.0000 0.1535 band energies (ev): -7.0137 4.5096 5.9380 5.9381 8.4241 11.0300 11.7524 11.7528 16.5509 k =-0.1436-0.2488 0.2558 band energies (ev): -5.9432 0.3742 5.3357 5.6223 9.2928 10.5195 11.6919 13.5528 15.7069 k = 0.2873 0.4976-0.0512 band energies (ev): -4.3682 -2.4877 4.7630 6.1415 7.8721 10.8059 12.5735 13.8146 17.7136 k = 0.1436 0.2488 0.0512 band energies (ev): -6.3872 1.2851 4.9605 7.1599 8.5304 10.7972 12.4587 13.9539 15.3382 k =-0.2873 0.0000 0.3581 band energies (ev): -5.5614 1.1092 3.5498 4.2737 7.5078 10.4114 13.6941 13.7628 16.8964 k = 0.1436 0.7464 0.0512 band energies (ev): -3.8590 -1.8287 2.3104 4.2331 8.0395 11.6119 13.3112 15.7096 17.3371 k = 0.0000 0.4976 0.1535 band energies (ev): -4.7309 -1.4913 2.9825 6.6809 7.7627 12.2948 13.0567 13.4189 16.0825 k = 0.5746 0.0000-0.2558 band energies (ev): -4.0732 -1.5260 3.6852 3.7197 6.0134 10.0511 15.9001 17.7087 18.4680 k = 0.4309-0.2488-0.1535 band energies (ev): -4.7308 -1.4913 2.9825 6.6810 7.7627 12.2949 13.0567 13.4189 16.0825 k = 0.2873 0.0000-0.0512 band energies (ev): -6.3872 1.2851 4.9605 7.1600 8.5304 10.7971 12.4587 13.9540 15.3373 k = 0.2873 0.0000 0.2558 band energies (ev): -5.9432 0.3742 5.3357 5.6224 9.2928 10.5195 11.6916 13.5551 15.7227 k = 0.1436-0.2488 0.3581 band energies (ev): -5.5614 1.1093 3.5498 4.2736 7.5078 10.4114 13.6942 13.7628 16.8965 k = 0.5746 0.4976 0.0512 band energies (ev): -3.8590 -1.8287 2.3104 4.2331 8.0395 11.6119 13.3112 15.7096 17.3371 k = 0.4309 0.2488 0.1535 band energies (ev): -4.7308 -1.4913 2.9826 6.6809 7.7627 12.2948 13.0568 13.4188 16.0825 k = 0.0000 0.0000 0.4604 band energies (ev): -5.8778 0.8254 5.8543 5.8544 7.4017 10.0552 10.0553 12.1125 17.4008 k = 0.4309 0.7464 0.1535 band energies (ev): -4.8693 -0.0639 2.4169 4.7578 7.5018 11.6692 12.0524 14.4661 17.7785 k = 0.2873 0.4976 0.2558 band energies (ev): -4.0733 -1.5258 3.6852 3.7196 6.0134 10.0510 15.9001 17.7086 18.4681 k = 0.8619 0.0000-0.1535 band energies (ev): -4.8693 -0.0638 2.4168 4.7579 7.5019 11.6692 12.0526 14.4660 17.7666 k = 0.7182-0.2488-0.0512 band energies (ev): -3.8590 -1.8287 2.3104 4.2331 8.0395 11.6119 13.3112 15.7102 17.3371 k = 0.5746 0.0000 0.0512 band energies (ev): -4.3682 -2.4878 4.7631 6.1415 7.8722 10.8059 12.5735 13.8146 17.7129 the Fermi energy is 9.9953 ev total energy = -25.44008125 Ry Harris-Foulkes estimate = -25.44026343 Ry estimated scf accuracy < 0.00088666 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.87E-06, avg # of iterations = 2.0 total cpu time spent up to now is 1.67 secs k = 0.0000 0.0000 0.1535 band energies (ev): -6.9927 4.5235 5.9705 5.9706 8.4388 11.0429 11.7623 11.7624 16.5663 k =-0.1436-0.2488 0.2558 band energies (ev): -5.9214 0.3953 5.3529 5.6540 9.3021 10.5326 11.7025 13.5665 15.7205 k = 0.2873 0.4976-0.0512 band energies (ev): -4.3451 -2.4672 4.7917 6.1569 7.8811 10.8174 12.5862 13.8272 17.7277 k = 0.1436 0.2488 0.0512 band energies (ev): -6.3661 1.3086 4.9893 7.1743 8.5451 10.8073 12.4730 13.9643 15.3517 k =-0.2873 0.0000 0.3581 band energies (ev): -5.5389 1.1307 3.5672 4.3006 7.5166 10.4234 13.7111 13.7777 16.9052 k = 0.1436 0.7464 0.0512 band energies (ev): -3.8351 -1.8061 2.3285 4.2477 8.0558 11.6231 13.3241 15.7232 17.3514 k = 0.0000 0.4976 0.1535 band energies (ev): -4.7088 -1.4682 3.0038 6.6937 7.7801 12.3054 13.0708 13.4312 16.0975 k = 0.5746 0.0000-0.2558 band energies (ev): -4.0501 -1.5020 3.7112 3.7304 6.0251 10.0603 15.9147 17.7183 18.4808 k = 0.4309-0.2488-0.1535 band energies (ev): -4.7088 -1.4681 3.0038 6.6937 7.7801 12.3054 13.0708 13.4312 16.0975 k = 0.2873 0.0000-0.0512 band energies (ev): -6.3661 1.3086 4.9893 7.1743 8.5452 10.8073 12.4730 13.9646 15.3517 k = 0.2873 0.0000 0.2558 band energies (ev): -5.9214 0.3953 5.3530 5.6539 9.3020 10.5326 11.7023 13.5658 15.7172 k = 0.1436-0.2488 0.3581 band energies (ev): -5.5389 1.1306 3.5672 4.3007 7.5166 10.4235 13.7111 13.7777 16.9053 k = 0.5746 0.4976 0.0512 band energies (ev): -3.8350 -1.8061 2.3285 4.2477 8.0558 11.6232 13.3242 15.7233 17.3514 k = 0.4309 0.2488 0.1535 band energies (ev): -4.7088 -1.4681 3.0037 6.6937 7.7801 12.3054 13.0708 13.4312 16.0975 k = 0.0000 0.0000 0.4604 band energies (ev): -5.8546 0.8376 5.8877 5.8878 7.4151 10.0643 10.0644 12.1201 17.3937 k = 0.4309 0.7464 0.1535 band energies (ev): -4.8449 -0.0469 2.4350 4.7862 7.5100 11.6863 12.0666 14.4791 17.7694 k = 0.2873 0.4976 0.2558 band energies (ev): -4.0501 -1.5021 3.7112 3.7304 6.0251 10.0603 15.9147 17.7183 18.4807 k = 0.8619 0.0000-0.1535 band energies (ev): -4.8449 -0.0469 2.4350 4.7862 7.5099 11.6863 12.0667 14.4792 17.7697 k = 0.7182-0.2488-0.0512 band energies (ev): -3.8351 -1.8060 2.3285 4.2477 8.0558 11.6232 13.3241 15.7235 17.3514 k = 0.5746 0.0000 0.0512 band energies (ev): -4.3452 -2.4671 4.7917 6.1569 7.8810 10.8174 12.5862 13.8273 17.7278 the Fermi energy is 10.0046 ev total energy = -25.44011498 Ry Harris-Foulkes estimate = -25.44011638 Ry estimated scf accuracy < 0.00000527 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.27E-08, avg # of iterations = 3.2 total cpu time spent up to now is 2.11 secs k = 0.0000 0.0000 0.1535 band energies (ev): -6.9952 4.5217 5.9677 5.9678 8.4362 11.0416 11.7604 11.7604 16.5651 k =-0.1436-0.2488 0.2558 band energies (ev): -5.9241 0.3929 5.3522 5.6509 9.2998 10.5320 11.7016 13.5634 15.7173 k = 0.2873 0.4976-0.0512 band energies (ev): -4.3481 -2.4695 4.7890 6.1564 7.8802 10.8158 12.5861 13.8270 17.7266 k = 0.1436 0.2488 0.0512 band energies (ev): -6.3686 1.3055 4.9868 7.1733 8.5447 10.8050 12.4713 13.9622 15.3512 k =-0.2873 0.0000 0.3581 band energies (ev): -5.5419 1.1279 3.5665 4.2985 7.5167 10.4218 13.7083 13.7754 16.9056 k = 0.1436 0.7464 0.0512 band energies (ev): -3.8384 -1.8089 2.3274 4.2476 8.0553 11.6208 13.3233 15.7213 17.3501 k = 0.0000 0.4976 0.1535 band energies (ev): -4.7115 -1.4711 3.0019 6.6938 7.7791 12.3039 13.0680 13.4308 16.0973 k = 0.5746 0.0000-0.2558 band energies (ev): -4.0532 -1.5053 3.7091 3.7309 6.0251 10.0591 15.9126 17.7161 18.4788 k = 0.4309-0.2488-0.1535 band energies (ev): -4.7115 -1.4711 3.0019 6.6938 7.7791 12.3039 13.0680 13.4308 16.0973 k = 0.2873 0.0000-0.0512 band energies (ev): -6.3686 1.3055 4.9868 7.1733 8.5447 10.8050 12.4713 13.9621 15.3512 k = 0.2873 0.0000 0.2558 band energies (ev): -5.9241 0.3929 5.3522 5.6509 9.2997 10.5320 11.7016 13.5634 15.7174 k = 0.1436-0.2488 0.3581 band energies (ev): -5.5419 1.1279 3.5665 4.2985 7.5167 10.4218 13.7082 13.7754 16.9055 k = 0.5746 0.4976 0.0512 band energies (ev): -3.8384 -1.8089 2.3274 4.2476 8.0553 11.6208 13.3233 15.7213 17.3501 k = 0.4309 0.2488 0.1535 band energies (ev): -4.7115 -1.4711 3.0019 6.6938 7.7791 12.3039 13.0680 13.4308 16.0973 k = 0.0000 0.0000 0.4604 band energies (ev): -5.8578 0.8377 5.8849 5.8849 7.4114 10.0632 10.0632 12.1209 17.3937 k = 0.4309 0.7464 0.1535 band energies (ev): -4.8484 -0.0483 2.4343 4.7838 7.5093 11.6839 12.0651 14.4767 17.7702 k = 0.2873 0.4976 0.2558 band energies (ev): -4.0532 -1.5053 3.7091 3.7309 6.0251 10.0591 15.9126 17.7161 18.4788 k = 0.8619 0.0000-0.1535 band energies (ev): -4.8484 -0.0483 2.4343 4.7838 7.5093 11.6839 12.0651 14.4767 17.7703 k = 0.7182-0.2488-0.0512 band energies (ev): -3.8384 -1.8089 2.3274 4.2476 8.0553 11.6208 13.3233 15.7212 17.3501 k = 0.5746 0.0000 0.0512 band energies (ev): -4.3481 -2.4695 4.7890 6.1564 7.8802 10.8158 12.5860 13.8271 17.7266 the Fermi energy is 10.0034 ev total energy = -25.44012209 Ry Harris-Foulkes estimate = -25.44012239 Ry estimated scf accuracy < 0.00000065 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.46E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.43 secs End of self-consistent calculation k = 0.0000 0.0000 0.1535 ( 531 PWs) bands (ev): -6.9960 4.5197 5.9668 5.9668 8.4360 11.0403 11.7601 11.7602 16.5645 k =-0.1436-0.2488 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.2873 0.4976-0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1436 0.2488 0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k =-0.2873 0.0000 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1436 0.7464 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.0000 0.4976 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.5746 0.0000-0.2558 ( 510 PWs) bands (ev): -4.0541 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.4309-0.2488-0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.2873 0.0000-0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.2873 0.0000 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1436-0.2488 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.5746 0.4976 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.4309 0.2488 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.0000 0.0000 0.4604 ( 522 PWs) bands (ev): -5.8585 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1192 17.3944 k = 0.4309 0.7464 0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6829 12.0642 14.4761 17.7700 k = 0.2873 0.4976 0.2558 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.8619 0.0000-0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.7182-0.2488-0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.5746 0.0000 0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 the Fermi energy is 10.0033 ev ! total energy = -25.44012217 Ry Harris-Foulkes estimate = -25.44012217 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000070 0.00000000 -0.12659882 atom 2 type 1 force = 0.00000070 0.00000000 0.12659882 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.51 0.00172368 0.00000000 0.00000000 253.56 0.00 0.00 0.00000000 0.00172371 0.00000000 0.00 253.57 0.00 0.00000000 0.00000000 0.00098849 0.00 0.00 145.41 Wentzcovitch Damped Cell-Dynamics Minimization convergence thresholds: EPSE = 0.10E-04 EPSF = 0.10E-03 EPSP = 0.50E+00 Entering Dynamics; it = 1 time = 0.00000 pico-seconds new lattice vectors (alat unit) : 0.570817497 0.000000000 0.795711934 -0.285408580 0.494342547 0.795711948 -0.285408580 -0.494342547 0.795711948 new unit-cell volume = 232.0699 (a.u.)^3 new positions in cryst coord As 0.288386129 0.288386166 0.288386166 As -0.288386129 -0.288386166 -0.288386166 new positions in cart coord (alat unit) As 0.000000076 0.000000000 0.688416920 As -0.000000076 0.000000000 -0.688416920 Ekin = 0.00000000 Ry T = 0.0 K Etot = -24.60612476 CELL_PARAMETERS (alat) 0.570817497 0.000000000 0.795711934 -0.285408580 0.494342547 0.795711948 -0.285408580 -0.494342547 0.795711948 ATOMIC_POSITIONS (crystal) As 0.288386129 0.288386166 0.288386166 As -0.288386129 -0.288386166 -0.288386166 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1570920), wk = 0.0625000 k( 2) = ( -0.1459895 -0.2528611 0.2618201), wk = 0.1250000 k( 3) = ( 0.2919790 0.5057222 -0.0523640), wk = 0.1250000 k( 4) = ( 0.1459895 0.2528611 0.0523640), wk = 0.1250000 k( 5) = ( -0.2919790 0.0000000 0.3665481), wk = 0.0625000 k( 6) = ( 0.1459895 0.7585833 0.0523640), wk = 0.1250000 k( 7) = ( 0.0000000 0.5057222 0.1570920), wk = 0.1250000 k( 8) = ( 0.5839579 0.0000000 -0.2618201), wk = 0.0625000 k( 9) = ( 0.4379684 -0.2528611 -0.1570921), wk = 0.1250000 k( 10) = ( 0.2919790 0.0000000 -0.0523640), wk = 0.0625000 k( 11) = ( 0.2919790 0.0000000 0.2618200), wk = 0.0625000 k( 12) = ( 0.1459895 -0.2528611 0.3665480), wk = 0.1250000 k( 13) = ( 0.5839579 0.5057222 0.0523639), wk = 0.1250000 k( 14) = ( 0.4379684 0.2528611 0.1570920), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4712761), wk = 0.0625000 k( 16) = ( 0.4379684 0.7585833 0.1570920), wk = 0.1250000 k( 17) = ( 0.2919790 0.5057222 0.2618200), wk = 0.1250000 k( 18) = ( 0.8759369 0.0000000 -0.1570921), wk = 0.0625000 k( 19) = ( 0.7299474 -0.2528611 -0.0523641), wk = 0.1250000 k( 20) = ( 0.5839579 0.0000000 0.0523639), wk = 0.0625000 extrapolated charge 9.42690, renormalised to 10.00000 total cpu time spent up to now is 2.72 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 3.39 secs k = 0.0000 0.0000 0.1571 band energies (ev): -6.6558 5.5284 6.6402 6.6402 9.4213 12.0609 12.7037 12.7037 17.5234 k =-0.1460-0.2529 0.2618 band energies (ev): -5.5327 1.0317 6.1147 6.3538 10.2918 11.5499 12.5320 14.6236 16.8122 k = 0.2920 0.5057-0.0524 band energies (ev): -3.8918 -1.9560 5.4519 6.9294 8.7842 11.8906 13.4426 14.9083 18.9511 k = 0.1460 0.2529 0.0524 band energies (ev): -6.0108 2.0290 5.6297 8.0781 9.3945 11.8371 13.5275 14.9819 16.4535 k =-0.2920 0.0000 0.3665 band energies (ev): -5.1172 1.8754 4.2084 4.8897 8.2877 11.3820 14.7640 14.8374 17.9807 k = 0.1460 0.7586 0.0524 band energies (ev): -3.3227 -1.2472 2.8707 4.9167 8.8918 12.6023 14.3193 16.8804 18.5095 k = 0.0000 0.5057 0.1571 band energies (ev): -4.2796 -0.8790 3.6017 7.4644 8.6524 13.2929 14.1681 14.4688 17.1778 k = 0.5840 0.0000-0.2618 band energies (ev): -3.5617 -0.9081 4.2835 4.3923 6.7504 11.0211 16.9882 18.9473 19.6794 k = 0.4380-0.2529-0.1571 band energies (ev): -4.2796 -0.8790 3.6017 7.4644 8.6524 13.2929 14.1681 14.4688 17.1778 k = 0.2920 0.0000-0.0524 band energies (ev): -6.0108 2.0290 5.6297 8.0781 9.3945 11.8371 13.5275 14.9820 16.4535 k = 0.2920 0.0000 0.2618 band energies (ev): -5.5327 1.0317 6.1147 6.3538 10.2918 11.5499 12.5320 14.6237 16.8122 k = 0.1460-0.2529 0.3665 band energies (ev): -5.1172 1.8754 4.2084 4.8897 8.2877 11.3820 14.7640 14.8374 17.9807 k = 0.5840 0.5057 0.0524 band energies (ev): -3.3227 -1.2472 2.8707 4.9167 8.8918 12.6023 14.3193 16.8804 18.5095 k = 0.4380 0.2529 0.1571 band energies (ev): -4.2796 -0.8790 3.6017 7.4644 8.6524 13.2929 14.1680 14.4688 17.1778 k = 0.0000 0.0000 0.4713 band energies (ev): -5.4239 1.4627 6.5532 6.5532 8.4553 10.8648 10.8648 13.1788 18.6554 k = 0.4380 0.7586 0.1571 band energies (ev): -4.3554 0.5760 2.9882 5.4130 8.3313 12.7616 12.9279 15.6086 18.9036 k = 0.2920 0.5057 0.2618 band energies (ev): -3.5617 -0.9081 4.2836 4.3923 6.7504 11.0211 16.9882 18.9473 19.6794 k = 0.8759 0.0000-0.1571 band energies (ev): -4.3554 0.5760 2.9882 5.4130 8.3313 12.7616 12.9279 15.6086 18.9036 k = 0.7299-0.2529-0.0524 band energies (ev): -3.3227 -1.2472 2.8707 4.9167 8.8918 12.6023 14.3193 16.8804 18.5095 k = 0.5840 0.0000 0.0524 band energies (ev): -3.8918 -1.9560 5.4518 6.9294 8.7842 11.8906 13.4426 14.9083 18.9511 the Fermi energy is 10.8076 ev total energy = -25.42251788 Ry Harris-Foulkes estimate = -25.06268604 Ry estimated scf accuracy < 0.00179453 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.79E-05, avg # of iterations = 3.1 total cpu time spent up to now is 3.89 secs k = 0.0000 0.0000 0.1571 band energies (ev): -6.5676 5.5397 6.8118 6.8119 9.4993 12.0441 12.7151 12.7151 17.2952 k =-0.1460-0.2529 0.2618 band energies (ev): -5.4252 1.1215 6.0502 6.5420 10.3083 11.4784 12.4325 14.6632 16.6494 k = 0.2920 0.5057-0.0524 band energies (ev): -3.7603 -1.8754 5.5977 6.8341 8.7043 11.8809 13.3033 14.7839 18.8576 k = 0.1460 0.2529 0.0524 band energies (ev): -5.9237 2.1895 5.7607 8.0324 9.3093 11.8588 13.5326 14.9970 16.3297 k =-0.2920 0.0000 0.3665 band energies (ev): -4.9873 1.9978 4.1385 4.9781 8.1261 11.3336 14.8203 14.9509 17.7921 k = 0.1460 0.7586 0.0524 band energies (ev): -3.1518 -1.1234 2.8361 4.7809 8.8242 12.6314 14.2258 16.8961 18.4931 k = 0.0000 0.5057 0.1571 band energies (ev): -4.1709 -0.7349 3.6465 7.2997 8.6320 13.2472 14.2410 14.3494 17.0655 k = 0.5840 0.0000-0.2618 band energies (ev): -3.4155 -0.7422 4.1998 4.3623 6.6166 10.9345 17.0253 18.9202 19.7287 k = 0.4380-0.2529-0.1571 band energies (ev): -4.1709 -0.7349 3.6465 7.2997 8.6320 13.2472 14.2410 14.3494 17.0655 k = 0.2920 0.0000-0.0524 band energies (ev): -5.9237 2.1895 5.7607 8.0324 9.3093 11.8588 13.5326 14.9970 16.3297 k = 0.2920 0.0000 0.2618 band energies (ev): -5.4252 1.1215 6.0502 6.5420 10.3083 11.4784 12.4325 14.6632 16.6494 k = 0.1460-0.2529 0.3665 band energies (ev): -4.9873 1.9978 4.1385 4.9781 8.1261 11.3336 14.8203 14.9509 17.7921 k = 0.5840 0.5057 0.0524 band energies (ev): -3.1518 -1.1234 2.8361 4.7809 8.8242 12.6314 14.2258 16.8961 18.4931 k = 0.4380 0.2529 0.1571 band energies (ev): -4.1709 -0.7349 3.6465 7.2997 8.6320 13.2472 14.2410 14.3494 17.0655 k = 0.0000 0.0000 0.4713 band energies (ev): -5.2671 1.3133 6.7219 6.7219 8.5847 10.8032 10.8032 12.9836 18.4646 k = 0.4380 0.7586 0.1571 band energies (ev): -4.1631 0.5574 2.9170 5.5267 8.2249 12.8344 12.9158 15.6643 18.6672 k = 0.2920 0.5057 0.2618 band energies (ev): -3.4155 -0.7422 4.1998 4.3623 6.6166 10.9345 17.0253 18.9202 19.7287 k = 0.8759 0.0000-0.1571 band energies (ev): -4.1631 0.5574 2.9170 5.5267 8.2249 12.8344 12.9158 15.6643 18.6673 k = 0.7299-0.2529-0.0524 band energies (ev): -3.1518 -1.1234 2.8361 4.7809 8.8242 12.6314 14.2258 16.8961 18.4931 k = 0.5840 0.0000 0.0524 band energies (ev): -3.7603 -1.8755 5.5977 6.8341 8.7043 11.8809 13.3033 14.7839 18.8576 the Fermi energy is 10.7461 ev total energy = -25.42512921 Ry Harris-Foulkes estimate = -25.42560308 Ry estimated scf accuracy < 0.00109859 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-05, avg # of iterations = 1.0 total cpu time spent up to now is 4.18 secs k = 0.0000 0.0000 0.1571 band energies (ev): -6.6070 5.5252 6.7615 6.7615 9.4566 12.0250 12.6837 12.6837 17.2982 k =-0.1460-0.2529 0.2618 band energies (ev): -5.4673 1.0861 6.0349 6.4872 10.2753 11.4717 12.4250 14.6243 16.6440 k = 0.2920 0.5057-0.0524 band energies (ev): -3.8058 -1.9116 5.5486 6.8236 8.6900 11.8575 13.3015 14.7773 18.8375 k = 0.1460 0.2529 0.0524 band energies (ev): -5.9628 2.1431 5.7150 8.0183 9.3005 11.8235 13.5090 14.9717 16.3098 k =-0.2920 0.0000 0.3665 band energies (ev): -5.0326 1.9607 4.1197 4.9381 8.1270 11.3066 14.7863 14.9059 17.7969 k = 0.1460 0.7586 0.0524 band energies (ev): -3.2026 -1.1657 2.8118 4.7760 8.8143 12.5981 14.2041 16.8689 18.4730 k = 0.0000 0.5057 0.1571 band energies (ev): -4.2128 -0.7798 3.6094 7.3021 8.6148 13.2273 14.2031 14.3311 17.0588 k = 0.5840 0.0000-0.2618 band energies (ev): -3.4618 -0.7941 4.2071 4.3232 6.6117 10.9109 16.9999 18.9014 19.6971 k = 0.4380-0.2529-0.1571 band energies (ev): -4.2128 -0.7798 3.6094 7.3021 8.6148 13.2273 14.2031 14.3311 17.0588 k = 0.2920 0.0000-0.0524 band energies (ev): -5.9628 2.1431 5.7150 8.0183 9.3005 11.8235 13.5090 14.9717 16.3098 k = 0.2920 0.0000 0.2618 band energies (ev): -5.4673 1.0861 6.0349 6.4872 10.2753 11.4717 12.4250 14.6243 16.6440 k = 0.1460-0.2529 0.3665 band energies (ev): -5.0326 1.9607 4.1197 4.9381 8.1270 11.3066 14.7863 14.9059 17.7969 k = 0.5840 0.5057 0.0524 band energies (ev): -3.2026 -1.1657 2.8118 4.7760 8.8143 12.5982 14.2041 16.8689 18.4730 k = 0.4380 0.2529 0.1571 band energies (ev): -4.2128 -0.7798 3.6094 7.3021 8.6148 13.2273 14.2031 14.3311 17.0588 k = 0.0000 0.0000 0.4713 band energies (ev): -5.3171 1.3169 6.6706 6.6706 8.5293 10.7855 10.7855 12.9982 18.4512 k = 0.4380 0.7586 0.1571 band energies (ev): -4.2184 0.5436 2.8947 5.4826 8.2133 12.7994 12.8939 15.6293 18.6700 k = 0.2920 0.5057 0.2618 band energies (ev): -3.4618 -0.7941 4.2071 4.3232 6.6117 10.9109 16.9999 18.9014 19.6971 k = 0.8759 0.0000-0.1571 band energies (ev): -4.2184 0.5436 2.8947 5.4826 8.2133 12.7994 12.8939 15.6293 18.6701 k = 0.7299-0.2529-0.0524 band energies (ev): -3.2026 -1.1657 2.8118 4.7760 8.8143 12.5981 14.2041 16.8689 18.4730 k = 0.5840 0.0000 0.0524 band energies (ev): -3.8058 -1.9116 5.5486 6.8236 8.6899 11.8575 13.3015 14.7773 18.8375 the Fermi energy is 10.7284 ev total energy = -25.42510288 Ry Harris-Foulkes estimate = -25.42518715 Ry estimated scf accuracy < 0.00020011 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.47 secs k = 0.0000 0.0000 0.1571 band energies (ev): -6.6247 5.5136 6.7391 6.7391 9.4394 12.0145 12.6703 12.6703 17.2976 k =-0.1460-0.2529 0.2618 band energies (ev): -5.4861 1.0688 6.0262 6.4636 10.2615 11.4645 12.4187 14.6087 16.6397 k = 0.2920 0.5057-0.0524 band energies (ev): -3.8259 -1.9286 5.5275 6.8167 8.6820 11.8459 13.2971 14.7717 18.8288 k = 0.1460 0.2529 0.0524 band energies (ev): -5.9804 2.1217 5.6948 8.0092 9.2935 11.8095 13.4964 14.9587 16.3022 k =-0.2920 0.0000 0.3665 band energies (ev): -5.0527 1.9420 4.1106 4.9203 8.1242 11.2960 14.7706 14.8865 17.7951 k = 0.1460 0.7586 0.0524 band energies (ev): -3.2248 -1.1852 2.8009 4.7712 8.8063 12.5839 14.1954 16.8556 18.4615 k = 0.0000 0.5057 0.1571 band energies (ev): -4.2316 -0.8004 3.5938 7.2993 8.6042 13.2175 14.1868 14.3231 17.0527 k = 0.5840 0.0000-0.2618 band energies (ev): -3.4825 -0.8164 4.2060 4.3059 6.6070 10.9021 16.9857 18.8910 19.6813 k = 0.4380-0.2529-0.1571 band energies (ev): -4.2315 -0.8004 3.5938 7.2994 8.6042 13.2175 14.1868 14.3231 17.0527 k = 0.2920 0.0000-0.0524 band energies (ev): -5.9804 2.1217 5.6948 8.0092 9.2935 11.8095 13.4964 14.9587 16.3022 k = 0.2920 0.0000 0.2618 band energies (ev): -5.4861 1.0688 6.0262 6.4636 10.2615 11.4645 12.4186 14.6087 16.6397 k = 0.1460-0.2529 0.3665 band energies (ev): -5.0527 1.9420 4.1106 4.9203 8.1242 11.2960 14.7706 14.8865 17.7951 k = 0.5840 0.5057 0.0524 band energies (ev): -3.2248 -1.1852 2.8009 4.7712 8.8063 12.5839 14.1954 16.8556 18.4615 k = 0.4380 0.2529 0.1571 band energies (ev): -4.2315 -0.8004 3.5938 7.2993 8.6042 13.2175 14.1868 14.3231 17.0527 k = 0.0000 0.0000 0.4713 band energies (ev): -5.3387 1.3136 6.6481 6.6481 8.5083 10.7766 10.7766 12.9984 18.4470 k = 0.4380 0.7586 0.1571 band energies (ev): -4.2420 0.5334 2.8851 5.4634 8.2067 12.7831 12.8822 15.6138 18.6696 k = 0.2920 0.5057 0.2618 band energies (ev): -3.4825 -0.8164 4.2060 4.3059 6.6070 10.9021 16.9857 18.8910 19.6813 k = 0.8759 0.0000-0.1571 band energies (ev): -4.2420 0.5334 2.8851 5.4634 8.2067 12.7831 12.8822 15.6138 18.6696 k = 0.7299-0.2529-0.0524 band energies (ev): -3.2248 -1.1852 2.8009 4.7712 8.8063 12.5839 14.1954 16.8556 18.4615 k = 0.5840 0.0000 0.0524 band energies (ev): -3.8259 -1.9286 5.5275 6.8167 8.6820 11.8459 13.2971 14.7717 18.8288 the Fermi energy is 10.7195 ev total energy = -25.42509438 Ry Harris-Foulkes estimate = -25.42511586 Ry estimated scf accuracy < 0.00003627 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.63E-07, avg # of iterations = 3.0 total cpu time spent up to now is 4.89 secs k = 0.0000 0.0000 0.1571 band energies (ev): -6.6379 5.5046 6.7225 6.7225 9.4268 12.0066 12.6603 12.6603 17.2971 k =-0.1460-0.2529 0.2618 band energies (ev): -5.5000 1.0559 6.0197 6.4461 10.2513 11.4589 12.4137 14.5971 16.6364 k = 0.2920 0.5057-0.0524 band energies (ev): -3.8408 -1.9412 5.5119 6.8116 8.6761 11.8373 13.2937 14.7674 18.8221 k = 0.1460 0.2529 0.0524 band energies (ev): -5.9935 2.1058 5.6798 8.0022 9.2882 11.7992 13.4869 14.9488 16.2966 k =-0.2920 0.0000 0.3665 band energies (ev): -5.0675 1.9279 4.1039 4.9071 8.1219 11.2883 14.7588 14.8721 17.7936 k = 0.1460 0.7586 0.0524 band energies (ev): -3.2414 -1.1996 2.7928 4.7675 8.8002 12.5733 14.1891 16.8456 18.4528 k = 0.0000 0.5057 0.1571 band energies (ev): -4.2455 -0.8156 3.5823 7.2972 8.5963 13.2101 14.1745 14.3174 17.0479 k = 0.5840 0.0000-0.2618 band energies (ev): -3.4979 -0.8328 4.2050 4.2931 6.6034 10.8958 16.9750 18.8831 19.6695 k = 0.4380-0.2529-0.1571 band energies (ev): -4.2455 -0.8156 3.5823 7.2972 8.5963 13.2101 14.1745 14.3174 17.0479 k = 0.2920 0.0000-0.0524 band energies (ev): -5.9935 2.1058 5.6798 8.0022 9.2882 11.7992 13.4869 14.9488 16.2966 k = 0.2920 0.0000 0.2618 band energies (ev): -5.5000 1.0559 6.0197 6.4461 10.2513 11.4589 12.4137 14.5971 16.6364 k = 0.1460-0.2529 0.3665 band energies (ev): -5.0675 1.9279 4.1039 4.9071 8.1219 11.2883 14.7588 14.8721 17.7936 k = 0.5840 0.5057 0.0524 band energies (ev): -3.2414 -1.1996 2.7928 4.7675 8.8002 12.5733 14.1891 16.8456 18.4527 k = 0.4380 0.2529 0.1571 band energies (ev): -4.2455 -0.8156 3.5823 7.2972 8.5963 13.2101 14.1745 14.3174 17.0479 k = 0.0000 0.0000 0.4713 band energies (ev): -5.3548 1.3110 6.6314 6.6314 8.4931 10.7698 10.7698 12.9982 18.4441 k = 0.4380 0.7586 0.1571 band energies (ev): -4.2596 0.5255 2.8781 5.4490 8.2018 12.7710 12.8735 15.6023 18.6692 k = 0.2920 0.5057 0.2618 band energies (ev): -3.4979 -0.8328 4.2050 4.2931 6.6034 10.8958 16.9750 18.8831 19.6695 k = 0.8759 0.0000-0.1571 band energies (ev): -4.2596 0.5255 2.8781 5.4490 8.2018 12.7710 12.8735 15.6023 18.6692 k = 0.7299-0.2529-0.0524 band energies (ev): -3.2414 -1.1996 2.7928 4.7675 8.8002 12.5733 14.1891 16.8456 18.4528 k = 0.5840 0.0000 0.0524 band energies (ev): -3.8408 -1.9412 5.5119 6.8116 8.6761 11.8373 13.2937 14.7674 18.8221 the Fermi energy is 10.7128 ev total energy = -25.42510747 Ry Harris-Foulkes estimate = -25.42510767 Ry estimated scf accuracy < 0.00000105 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.05E-08, avg # of iterations = 1.1 total cpu time spent up to now is 5.18 secs k = 0.0000 0.0000 0.1571 band energies (ev): -6.6375 5.5047 6.7230 6.7230 9.4272 12.0067 12.6607 12.6607 17.2970 k =-0.1460-0.2529 0.2618 band energies (ev): -5.4996 1.0563 6.0198 6.4468 10.2517 11.4589 12.4138 14.5975 16.6363 k = 0.2920 0.5057-0.0524 band energies (ev): -3.8403 -1.9408 5.5124 6.8116 8.6762 11.8374 13.2937 14.7674 18.8223 k = 0.1460 0.2529 0.0524 band energies (ev): -5.9931 2.1063 5.6804 8.0023 9.2882 11.7996 13.4871 14.9491 16.2968 k =-0.2920 0.0000 0.3665 band energies (ev): -5.0670 1.9283 4.1040 4.9075 8.1218 11.2885 14.7592 14.8726 17.7934 k = 0.1460 0.7586 0.0524 band energies (ev): -3.2408 -1.1992 2.7930 4.7675 8.8002 12.5736 14.1893 16.8459 18.4529 k = 0.0000 0.5057 0.1571 band energies (ev): -4.2451 -0.8152 3.5827 7.2970 8.5963 13.2103 14.1750 14.3176 17.0479 k = 0.5840 0.0000-0.2618 band energies (ev): -3.4975 -0.8322 4.2048 4.2936 6.6034 10.8960 16.9753 18.8832 19.6698 k = 0.4380-0.2529-0.1571 band energies (ev): -4.2451 -0.8152 3.5827 7.2970 8.5963 13.2103 14.1750 14.3176 17.0479 k = 0.2920 0.0000-0.0524 band energies (ev): -5.9931 2.1063 5.6804 8.0023 9.2882 11.7996 13.4871 14.9491 16.2968 k = 0.2920 0.0000 0.2618 band energies (ev): -5.4996 1.0563 6.0198 6.4468 10.2517 11.4589 12.4138 14.5975 16.6364 k = 0.1460-0.2529 0.3665 band energies (ev): -5.0670 1.9283 4.1040 4.9075 8.1218 11.2885 14.7592 14.8726 17.7934 k = 0.5840 0.5057 0.0524 band energies (ev): -3.2408 -1.1992 2.7930 4.7675 8.8002 12.5737 14.1893 16.8459 18.4529 k = 0.4380 0.2529 0.1571 band energies (ev): -4.2451 -0.8152 3.5827 7.2970 8.5963 13.2103 14.1750 14.3176 17.0479 k = 0.0000 0.0000 0.4713 band energies (ev): -5.3542 1.3108 6.6320 6.6320 8.4937 10.7700 10.7700 12.9979 18.4442 k = 0.4380 0.7586 0.1571 band energies (ev): -4.2590 0.5255 2.8783 5.4495 8.2019 12.7713 12.8737 15.6026 18.6691 k = 0.2920 0.5057 0.2618 band energies (ev): -3.4975 -0.8322 4.2048 4.2936 6.6034 10.8960 16.9753 18.8832 19.6698 k = 0.8759 0.0000-0.1571 band energies (ev): -4.2590 0.5255 2.8783 5.4495 8.2018 12.7713 12.8737 15.6026 18.6691 k = 0.7299-0.2529-0.0524 band energies (ev): -3.2408 -1.1992 2.7930 4.7675 8.8002 12.5736 14.1893 16.8459 18.4529 k = 0.5840 0.0000 0.0524 band energies (ev): -3.8403 -1.9408 5.5124 6.8116 8.6762 11.8374 13.2937 14.7674 18.8223 the Fermi energy is 10.7130 ev total energy = -25.42510719 Ry Harris-Foulkes estimate = -25.42510748 Ry estimated scf accuracy < 0.00000055 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.47E-09, avg # of iterations = 2.0 total cpu time spent up to now is 5.52 secs End of self-consistent calculation k = 0.0000 0.0000 0.1571 ( 531 PWs) bands (ev): -6.6362 5.5053 6.7247 6.7247 9.4284 12.0072 12.6618 12.6618 17.2969 k =-0.1460-0.2529 0.2618 ( 522 PWs) bands (ev): -5.4982 1.0575 6.0202 6.4486 10.2527 11.4591 12.4142 14.5987 16.6365 k = 0.2920 0.5057-0.0524 ( 520 PWs) bands (ev): -3.8388 -1.9396 5.5141 6.8119 8.6766 11.8382 13.2939 14.7676 18.8229 k = 0.1460 0.2529 0.0524 ( 525 PWs) bands (ev): -5.9918 2.1079 5.6819 8.0028 9.2885 11.8007 13.4880 14.9501 16.2973 k =-0.2920 0.0000 0.3665 ( 519 PWs) bands (ev): -5.0655 1.9296 4.1046 4.9089 8.1218 11.2893 14.7604 14.8740 17.7933 k = 0.1460 0.7586 0.0524 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7677 8.8006 12.5747 14.1899 16.8468 18.4537 k = 0.0000 0.5057 0.1571 ( 521 PWs) bands (ev): -4.2437 -0.8136 3.5839 7.2970 8.5969 13.2110 14.1763 14.3181 17.0482 k = 0.5840 0.0000-0.2618 ( 510 PWs) bands (ev): -3.4959 -0.8306 4.2046 4.2949 6.6035 10.8967 16.9763 18.8839 19.6708 k = 0.4380-0.2529-0.1571 ( 521 PWs) bands (ev): -4.2437 -0.8136 3.5839 7.2970 8.5969 13.2110 14.1763 14.3181 17.0482 k = 0.2920 0.0000-0.0524 ( 525 PWs) bands (ev): -5.9918 2.1079 5.6819 8.0028 9.2885 11.8007 13.4880 14.9501 16.2973 k = 0.2920 0.0000 0.2618 ( 522 PWs) bands (ev): -5.4982 1.0575 6.0202 6.4486 10.2527 11.4591 12.4142 14.5987 16.6365 k = 0.1460-0.2529 0.3665 ( 519 PWs) bands (ev): -5.0655 1.9296 4.1046 4.9089 8.1218 11.2893 14.7604 14.8740 17.7933 k = 0.5840 0.5057 0.0524 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7677 8.8006 12.5747 14.1899 16.8468 18.4537 k = 0.4380 0.2529 0.1571 ( 521 PWs) bands (ev): -4.2437 -0.8136 3.5839 7.2970 8.5969 13.2110 14.1763 14.3181 17.0482 k = 0.0000 0.0000 0.4713 ( 522 PWs) bands (ev): -5.3526 1.3108 6.6337 6.6337 8.4953 10.7707 10.7707 12.9974 18.4444 k = 0.4380 0.7586 0.1571 ( 520 PWs) bands (ev): -4.2571 0.5261 2.8789 5.4510 8.2022 12.7724 12.8746 15.6037 18.6690 k = 0.2920 0.5057 0.2618 ( 510 PWs) bands (ev): -3.4959 -0.8305 4.2046 4.2949 6.6035 10.8967 16.9763 18.8839 19.6708 k = 0.8759 0.0000-0.1571 ( 520 PWs) bands (ev): -4.2571 0.5261 2.8789 5.4510 8.2022 12.7724 12.8746 15.6037 18.6690 k = 0.7299-0.2529-0.0524 ( 510 PWs) bands (ev): -3.2392 -1.1978 2.7938 4.7677 8.8006 12.5747 14.1899 16.8468 18.4537 k = 0.5840 0.0000 0.0524 ( 520 PWs) bands (ev): -3.8388 -1.9396 5.5141 6.8119 8.6766 11.8382 13.2939 14.7676 18.8229 the Fermi energy is 10.7136 ev ! total energy = -25.42510726 Ry Harris-Foulkes estimate = -25.42510726 Ry estimated scf accuracy < 4.2E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000014 0.00000000 -0.13714979 atom 2 type 1 force = -0.00000014 0.00000000 0.13714979 Total force = 0.193959 Total SCF correction = 0.000003 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 299.80 0.00234213 0.00000000 0.00000000 344.54 0.00 0.00 0.00000000 0.00234213 0.00000000 0.00 344.54 0.00 0.00000000 0.00000000 0.00142965 0.00 0.00 210.31 Entering Dynamics; it = 2 time = 0.00726 pico-seconds new lattice vectors (alat unit) : 0.551670563 0.000000000 0.751638469 -0.275835161 0.477760959 0.751638512 -0.275835161 -0.477760959 0.751638512 new unit-cell volume = 204.7563 (a.u.)^3 new positions in cryst coord As 0.283819437 0.283819500 0.283819500 As -0.283819437 -0.283819500 -0.283819500 new positions in cart coord (alat unit) As 0.000000034 0.000000000 0.639988941 As -0.000000034 0.000000000 -0.639988941 Ekin = 0.03043283 Ry T = 1067.8 K Etot = -24.60588466 CELL_PARAMETERS (alat) 0.551670563 0.000000000 0.751638469 -0.275835161 0.477760959 0.751638512 -0.275835161 -0.477760959 0.751638512 ATOMIC_POSITIONS (crystal) As 0.283819437 0.283819500 0.283819500 As -0.283819437 -0.283819500 -0.283819500 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1663033), wk = 0.0625000 k( 2) = ( -0.1510563 -0.2616371 0.2771723), wk = 0.1250000 k( 3) = ( 0.3021127 0.5232742 -0.0554345), wk = 0.1250000 k( 4) = ( 0.1510564 0.2616371 0.0554344), wk = 0.1250000 k( 5) = ( -0.3021127 0.0000000 0.3880412), wk = 0.0625000 k( 6) = ( 0.1510564 0.7849114 0.0554344), wk = 0.1250000 k( 7) = ( 0.0000000 0.5232742 0.1663033), wk = 0.1250000 k( 8) = ( 0.6042254 0.0000000 -0.2771723), wk = 0.0625000 k( 9) = ( 0.4531691 -0.2616371 -0.1663034), wk = 0.1250000 k( 10) = ( 0.3021127 0.0000000 -0.0554345), wk = 0.0625000 k( 11) = ( 0.3021127 0.0000000 0.2771722), wk = 0.0625000 k( 12) = ( 0.1510564 -0.2616371 0.3880411), wk = 0.1250000 k( 13) = ( 0.6042254 0.5232742 0.0554344), wk = 0.1250000 k( 14) = ( 0.4531691 0.2616371 0.1663033), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4989100), wk = 0.0625000 k( 16) = ( 0.4531691 0.7849114 0.1663033), wk = 0.1250000 k( 17) = ( 0.3021127 0.5232742 0.2771722), wk = 0.1250000 k( 18) = ( 0.9063381 0.0000000 -0.1663034), wk = 0.0625000 k( 19) = ( 0.7552818 -0.2616371 -0.0554345), wk = 0.1250000 k( 20) = ( 0.6042254 0.0000000 0.0554344), wk = 0.0625000 extrapolated charge 8.66609, renormalised to 10.00000 total cpu time spent up to now is 5.81 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.3 total cpu time spent up to now is 6.53 secs k = 0.0000 0.0000 0.1663 band energies (ev): -5.6692 8.0158 8.5086 8.5086 11.9857 14.6678 15.0647 15.0647 19.5487 k =-0.1511-0.2616 0.2772 band energies (ev): -4.3983 2.6793 8.0236 8.3741 12.6928 14.0795 14.3839 17.2351 19.3730 k = 0.3021 0.5233-0.0554 band energies (ev): -2.5945 -0.5776 7.3161 8.7949 10.9074 14.6171 15.3460 17.5415 21.8793 k = 0.1511 0.2616 0.0554 band energies (ev): -4.9904 3.9869 7.3934 10.2297 11.5242 14.4895 16.1566 17.5094 19.0453 k =-0.3021 0.0000 0.3880 band energies (ev): -3.8646 3.8773 5.7795 6.4531 9.9797 13.7037 17.2297 17.7018 20.3542 k = 0.1511 0.7849 0.0554 band energies (ev): -1.7969 0.2786 4.2086 6.4696 10.9275 14.9611 16.6326 19.8116 21.3477 k = 0.0000 0.5233 0.1663 band energies (ev): -3.0641 0.7552 5.2052 9.1719 10.9000 15.6127 16.8861 17.0181 19.7275 k = 0.6042 0.0000-0.2772 band energies (ev): -2.1456 0.8032 5.8043 5.8198 8.4109 13.3675 19.6481 21.8298 22.6389 k = 0.4532-0.2616-0.1663 band energies (ev): -3.0641 0.7552 5.2052 9.1719 10.9000 15.6127 16.8861 17.0181 19.7275 k = 0.3021 0.0000-0.0554 band energies (ev): -4.9904 3.9869 7.3934 10.2297 11.5242 14.4895 16.1566 17.5094 19.0453 k = 0.3021 0.0000 0.2772 band energies (ev): -4.3983 2.6793 8.0236 8.3741 12.6928 14.0795 14.3838 17.2351 19.3730 k = 0.1511-0.2616 0.3880 band energies (ev): -3.8646 3.8773 5.7795 6.4531 9.9797 13.7037 17.2297 17.7018 20.3542 k = 0.6042 0.5233 0.0554 band energies (ev): -1.7969 0.2786 4.2086 6.4696 10.9275 14.9611 16.6326 19.8116 21.3477 k = 0.4532 0.2616 0.1663 band energies (ev): -3.0641 0.7552 5.2052 9.1719 10.9000 15.6127 16.8861 17.0181 19.7275 k = 0.0000 0.0000 0.4989 band energies (ev): -4.0945 2.8646 8.4070 8.4070 11.0901 12.7219 12.7219 15.5476 21.5981 k = 0.4532 0.7849 0.1663 band energies (ev): -2.8254 2.0724 4.3125 7.1161 10.1920 14.9717 15.4814 18.5000 21.3795 k = 0.3021 0.5233 0.2772 band energies (ev): -2.1456 0.8032 5.8043 5.8198 8.4109 13.3675 19.6481 21.8298 22.6389 k = 0.9063 0.0000-0.1663 band energies (ev): -2.8254 2.0724 4.3125 7.1161 10.1919 14.9717 15.4814 18.5000 21.3795 k = 0.7553-0.2616-0.0554 band energies (ev): -1.7969 0.2786 4.2086 6.4696 10.9275 14.9611 16.6326 19.8116 21.3477 k = 0.6042 0.0000 0.0554 band energies (ev): -2.5945 -0.5776 7.3161 8.7949 10.9074 14.6170 15.3460 17.5415 21.8794 the Fermi energy is 12.7130 ev total energy = -25.36408969 Ry Harris-Foulkes estimate = -24.44605457 Ry estimated scf accuracy < 0.00992653 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.93E-05, avg # of iterations = 2.9 total cpu time spent up to now is 7.00 secs k = 0.0000 0.0000 0.1663 band energies (ev): -5.6431 7.8744 8.7329 8.7329 12.0608 14.5192 14.9599 14.9601 18.9781 k =-0.1511-0.2616 0.2772 band energies (ev): -4.3349 2.7123 7.7937 8.6577 12.5321 13.8481 14.0302 17.1367 19.0155 k = 0.3021 0.5233-0.0554 band energies (ev): -2.4800 -0.5693 7.4889 8.5088 10.5910 14.4696 14.9589 17.2291 21.5804 k = 0.1511 0.2616 0.0554 band energies (ev): -4.9665 4.1807 7.5276 9.9707 11.2529 14.3817 16.0654 17.3806 18.7532 k =-0.3021 0.0000 0.3880 band energies (ev): -3.7537 3.9723 5.5781 6.4929 9.5057 13.4201 17.2203 17.8409 19.8717 k = 0.1511 0.7849 0.0554 band energies (ev): -1.5813 0.3765 3.9832 6.0863 10.7016 14.8685 16.2760 19.7487 21.2656 k = 0.0000 0.5233 0.1663 band energies (ev): -2.9973 0.8979 5.1815 8.6912 10.7821 15.3701 16.5157 17.0744 19.4104 k = 0.6042 0.0000-0.2772 band energies (ev): -1.9975 1.0212 5.2893 5.8248 8.0407 13.0252 19.6108 21.5899 22.7689 k = 0.4532-0.2616-0.1663 band energies (ev): -2.9973 0.8979 5.1815 8.6912 10.7821 15.3701 16.5157 17.0744 19.4104 k = 0.3021 0.0000-0.0554 band energies (ev): -4.9665 4.1807 7.5276 9.9707 11.2529 14.3816 16.0654 17.3806 18.7532 k = 0.3021 0.0000 0.2772 band energies (ev): -4.3349 2.7123 7.7937 8.6577 12.5321 13.8481 14.0302 17.1367 19.0155 k = 0.1511-0.2616 0.3880 band energies (ev): -3.7537 3.9723 5.5781 6.4929 9.5057 13.4201 17.2203 17.8409 19.8717 k = 0.6042 0.5233 0.0554 band energies (ev): -1.5813 0.3765 3.9832 6.0863 10.7016 14.8685 16.2760 19.7487 21.2656 k = 0.4532 0.2616 0.1663 band energies (ev): -2.9973 0.8979 5.1815 8.6912 10.7821 15.3701 16.5157 17.0744 19.4104 k = 0.0000 0.0000 0.4989 band energies (ev): -3.9204 2.4446 8.6257 8.6257 11.2151 12.4608 12.4608 14.9430 21.1677 k = 0.4532 0.7849 0.1663 band energies (ev): -2.5501 1.8049 4.1127 7.2079 9.8382 14.8350 15.5011 18.4784 20.7898 k = 0.3021 0.5233 0.2772 band energies (ev): -1.9975 1.0212 5.2893 5.8248 8.0407 13.0252 19.6108 21.5899 22.7689 k = 0.9063 0.0000-0.1663 band energies (ev): -2.5501 1.8049 4.1127 7.2079 9.8382 14.8350 15.5011 18.4784 20.7898 k = 0.7553-0.2616-0.0554 band energies (ev): -1.5813 0.3765 3.9832 6.0863 10.7016 14.8685 16.2760 19.7487 21.2656 k = 0.6042 0.0000 0.0554 band energies (ev): -2.4800 -0.5693 7.4889 8.5089 10.5910 14.4696 14.9589 17.2291 21.5804 the Fermi energy is 12.5184 ev total energy = -25.37482416 Ry Harris-Foulkes estimate = -25.37663921 Ry estimated scf accuracy < 0.00396947 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.97E-05, avg # of iterations = 1.0 total cpu time spent up to now is 7.31 secs k = 0.0000 0.0000 0.1663 band energies (ev): -5.7110 7.8596 8.6415 8.6415 11.9754 14.4786 14.9061 14.9062 18.9892 k =-0.1511-0.2616 0.2772 band energies (ev): -4.4081 2.6526 7.7648 8.5512 12.4885 13.8304 14.0332 17.0689 19.0004 k = 0.3021 0.5233-0.0554 band energies (ev): -2.5614 -0.6287 7.3987 8.4860 10.5776 14.4275 14.9636 17.2161 21.5423 k = 0.1511 0.2616 0.0554 band energies (ev): -5.0338 4.0959 7.4462 9.9537 11.2396 14.3191 16.0300 17.3484 18.7027 k =-0.3021 0.0000 0.3880 band energies (ev): -3.8338 3.9157 5.5292 6.4238 9.5232 13.3741 17.1621 17.7480 19.8929 k = 0.1511 0.7849 0.0554 band energies (ev): -1.6762 0.3032 3.9480 6.0811 10.6847 14.8118 16.2449 19.6954 21.2274 k = 0.0000 0.5233 0.1663 band energies (ev): -3.0704 0.8190 5.1128 8.7066 10.7481 15.3445 16.4876 16.9943 19.4055 k = 0.6042 0.0000-0.2772 band energies (ev): -2.0796 0.9188 5.3182 5.7575 8.0346 12.9863 19.5701 21.5650 22.6959 k = 0.4532-0.2616-0.1663 band energies (ev): -3.0704 0.8190 5.1128 8.7066 10.7481 15.3445 16.4876 16.9943 19.4055 k = 0.3021 0.0000-0.0554 band energies (ev): -5.0338 4.0959 7.4462 9.9537 11.2396 14.3191 16.0300 17.3484 18.7027 k = 0.3021 0.0000 0.2772 band energies (ev): -4.4081 2.6526 7.7648 8.5512 12.4885 13.8304 14.0332 17.0689 19.0004 k = 0.1511-0.2616 0.3880 band energies (ev): -3.8338 3.9157 5.5292 6.4238 9.5232 13.3741 17.1621 17.7480 19.8929 k = 0.6042 0.5233 0.0554 band energies (ev): -1.6762 0.3032 3.9480 6.0811 10.6847 14.8118 16.2449 19.6954 21.2274 k = 0.4532 0.2616 0.1663 band energies (ev): -3.0704 0.8190 5.1128 8.7066 10.7481 15.3445 16.4876 16.9943 19.4055 k = 0.0000 0.0000 0.4989 band energies (ev): -4.0116 2.4582 8.5301 8.5301 11.1005 12.4391 12.4392 14.9948 21.1382 k = 0.4532 0.7849 0.1663 band energies (ev): -2.6581 1.8080 4.0580 7.1301 9.8259 14.8010 15.4334 18.4156 20.8043 k = 0.3021 0.5233 0.2772 band energies (ev): -2.0796 0.9188 5.3182 5.7575 8.0346 12.9863 19.5701 21.5650 22.6959 k = 0.9063 0.0000-0.1663 band energies (ev): -2.6581 1.8080 4.0580 7.1301 9.8259 14.8010 15.4334 18.4156 20.8043 k = 0.7553-0.2616-0.0554 band energies (ev): -1.6762 0.3032 3.9480 6.0811 10.6847 14.8118 16.2449 19.6954 21.2274 k = 0.6042 0.0000 0.0554 band energies (ev): -2.5614 -0.6287 7.3987 8.4860 10.5775 14.4274 14.9636 17.2161 21.5423 the Fermi energy is 12.4795 ev total energy = -25.37481229 Ry Harris-Foulkes estimate = -25.37508178 Ry estimated scf accuracy < 0.00054793 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.48E-06, avg # of iterations = 1.6 total cpu time spent up to now is 7.65 secs k = 0.0000 0.0000 0.1663 band energies (ev): -5.7438 7.8404 8.5978 8.5978 11.9380 14.4567 14.8817 14.8817 18.9898 k =-0.1511-0.2616 0.2772 band energies (ev): -4.4431 2.6208 7.7472 8.5031 12.4673 13.8144 14.0258 17.0415 18.9883 k = 0.3021 0.5233-0.0554 band energies (ev): -2.5995 -0.6593 7.3575 8.4712 10.5661 14.4054 14.9570 17.2036 21.5253 k = 0.1511 0.2616 0.0554 band energies (ev): -5.0664 4.0543 7.4077 9.9393 11.2257 14.2937 16.0062 17.3274 18.6832 k =-0.3021 0.0000 0.3880 band energies (ev): -3.8715 3.8820 5.5072 6.3907 9.5221 13.3569 17.1326 17.7071 19.8915 k = 0.1511 0.7849 0.0554 band energies (ev): -1.7202 0.2669 3.9303 6.0727 10.6685 14.7860 16.2321 19.6684 21.2023 k = 0.0000 0.5233 0.1663 band energies (ev): -3.1054 0.7803 5.0825 8.7048 10.7254 15.3287 16.4759 16.9585 19.3942 k = 0.6042 0.0000-0.2772 band energies (ev): -2.1191 0.8739 5.3201 5.7255 8.0258 12.9724 19.5435 21.5479 22.6579 k = 0.4532-0.2616-0.1663 band energies (ev): -3.1054 0.7803 5.0825 8.7048 10.7254 15.3287 16.4759 16.9585 19.3942 k = 0.3021 0.0000-0.0554 band energies (ev): -5.0664 4.0542 7.4077 9.9393 11.2257 14.2937 16.0062 17.3274 18.6832 k = 0.3021 0.0000 0.2772 band energies (ev): -4.4431 2.6208 7.7472 8.5031 12.4673 13.8144 14.0258 17.0415 18.9883 k = 0.1511-0.2616 0.3880 band energies (ev): -3.8715 3.8820 5.5072 6.3907 9.5221 13.3569 17.1326 17.7071 19.8915 k = 0.6042 0.5233 0.0554 band energies (ev): -1.7202 0.2669 3.9303 6.0727 10.6685 14.7860 16.2321 19.6684 21.2023 k = 0.4532 0.2616 0.1663 band energies (ev): -3.1054 0.7803 5.0825 8.7048 10.7254 15.3287 16.4759 16.9585 19.3942 k = 0.0000 0.0000 0.4989 band energies (ev): -4.0532 2.4536 8.4858 8.4858 11.0572 12.4250 12.4250 15.0033 21.1280 k = 0.4532 0.7849 0.1663 band energies (ev): -2.7061 1.7969 4.0350 7.0938 9.8160 14.7796 15.4007 18.3859 20.8065 k = 0.3021 0.5233 0.2772 band energies (ev): -2.1191 0.8739 5.3201 5.7255 8.0258 12.9724 19.5435 21.5479 22.6579 k = 0.9063 0.0000-0.1663 band energies (ev): -2.7061 1.7969 4.0350 7.0938 9.8160 14.7796 15.4007 18.3859 20.8065 k = 0.7553-0.2616-0.0554 band energies (ev): -1.7202 0.2669 3.9303 6.0727 10.6685 14.7860 16.2321 19.6684 21.2023 k = 0.6042 0.0000 0.0554 band energies (ev): -2.5995 -0.6593 7.3575 8.4712 10.5660 14.4054 14.9570 17.2036 21.5253 the Fermi energy is 12.4603 ev total energy = -25.37485514 Ry Harris-Foulkes estimate = -25.37487202 Ry estimated scf accuracy < 0.00003006 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.01E-07, avg # of iterations = 3.0 total cpu time spent up to now is 8.09 secs k = 0.0000 0.0000 0.1663 band energies (ev): -5.7544 7.8329 8.5835 8.5835 11.9263 14.4492 14.8739 14.8739 18.9895 k =-0.1511-0.2616 0.2772 band energies (ev): -4.4544 2.6101 7.7411 8.4877 12.4604 13.8084 14.0226 17.0331 18.9839 k = 0.3021 0.5233-0.0554 band energies (ev): -2.6119 -0.6695 7.3443 8.4660 10.5619 14.3980 14.9540 17.1989 21.5198 k = 0.1511 0.2616 0.0554 band energies (ev): -5.0771 4.0406 7.3952 9.9340 11.2204 14.2859 15.9977 17.3200 18.6771 k =-0.3021 0.0000 0.3880 band energies (ev): -3.8837 3.8704 5.5001 6.3799 9.5209 13.3518 17.1228 17.6941 19.8900 k = 0.1511 0.7849 0.0554 band energies (ev): -1.7343 0.2549 3.9245 6.0693 10.6623 14.7777 16.2281 19.6593 21.1935 k = 0.0000 0.5233 0.1663 band energies (ev): -3.1168 0.7676 5.0729 8.7033 10.7174 15.3233 16.4723 16.9471 19.3897 k = 0.6042 0.0000-0.2772 band energies (ev): -2.1320 0.8596 5.3196 5.7151 8.0224 12.9684 19.5341 21.5418 22.6452 k = 0.4532-0.2616-0.1663 band energies (ev): -3.1168 0.7676 5.0729 8.7033 10.7174 15.3233 16.4723 16.9471 19.3897 k = 0.3021 0.0000-0.0554 band energies (ev): -5.0771 4.0406 7.3952 9.9340 11.2204 14.2859 15.9977 17.3200 18.6771 k = 0.3021 0.0000 0.2772 band energies (ev): -4.4544 2.6101 7.7411 8.4877 12.4604 13.8084 14.0226 17.0331 18.9839 k = 0.1511-0.2616 0.3880 band energies (ev): -3.8837 3.8704 5.5001 6.3800 9.5209 13.3518 17.1228 17.6941 19.8900 k = 0.6042 0.5233 0.0554 band energies (ev): -1.7343 0.2549 3.9245 6.0693 10.6623 14.7777 16.2281 19.6593 21.1934 k = 0.4532 0.2616 0.1663 band energies (ev): -3.1168 0.7676 5.0729 8.7033 10.7174 15.3233 16.4723 16.9471 19.3897 k = 0.0000 0.0000 0.4989 band energies (ev): -4.0666 2.4509 8.4715 8.4715 11.0442 12.4201 12.4201 15.0045 21.1253 k = 0.4532 0.7849 0.1663 band energies (ev): -2.7214 1.7922 4.0278 7.0820 9.8124 14.7722 15.3900 18.3762 20.8069 k = 0.3021 0.5233 0.2772 band energies (ev): -2.1320 0.8596 5.3196 5.7151 8.0224 12.9684 19.5341 21.5418 22.6452 k = 0.9063 0.0000-0.1663 band energies (ev): -2.7214 1.7922 4.0278 7.0820 9.8124 14.7722 15.3900 18.3762 20.8069 k = 0.7553-0.2616-0.0554 band energies (ev): -1.7343 0.2549 3.9245 6.0693 10.6623 14.7777 16.2281 19.6593 21.1935 k = 0.6042 0.0000 0.0554 band energies (ev): -2.6119 -0.6695 7.3443 8.4660 10.5619 14.3980 14.9540 17.1989 21.5198 the Fermi energy is 12.4540 ev total energy = -25.37487527 Ry Harris-Foulkes estimate = -25.37487571 Ry estimated scf accuracy < 0.00000244 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-08, avg # of iterations = 1.1 total cpu time spent up to now is 8.40 secs k = 0.0000 0.0000 0.1663 band energies (ev): -5.7540 7.8330 8.5842 8.5842 11.9268 14.4493 14.8744 14.8744 18.9893 k =-0.1511-0.2616 0.2772 band energies (ev): -4.4539 2.6106 7.7412 8.4885 12.4607 13.8084 14.0225 17.0335 18.9840 k = 0.3021 0.5233-0.0554 band energies (ev): -2.6113 -0.6691 7.3450 8.4660 10.5619 14.3982 14.9539 17.1989 21.5200 k = 0.1511 0.2616 0.0554 band energies (ev): -5.0766 4.0412 7.3958 9.9340 11.2204 14.2863 15.9980 17.3203 18.6774 k =-0.3021 0.0000 0.3880 band energies (ev): -3.8831 3.8708 5.5003 6.3805 9.5207 13.3521 17.1233 17.6947 19.8897 k = 0.1511 0.7849 0.0554 band energies (ev): -1.7336 0.2555 3.9247 6.0693 10.6624 14.7781 16.2283 19.6597 21.1937 k = 0.0000 0.5233 0.1663 band energies (ev): -3.1163 0.7681 5.0734 8.7031 10.7175 15.3235 16.4725 16.9477 19.3896 k = 0.6042 0.0000-0.2772 band energies (ev): -2.1314 0.8604 5.3193 5.7156 8.0223 12.9686 19.5345 21.5418 22.6457 k = 0.4532-0.2616-0.1663 band energies (ev): -3.1163 0.7681 5.0734 8.7031 10.7175 15.3235 16.4725 16.9477 19.3896 k = 0.3021 0.0000-0.0554 band energies (ev): -5.0766 4.0412 7.3958 9.9340 11.2204 14.2863 15.9980 17.3203 18.6774 k = 0.3021 0.0000 0.2772 band energies (ev): -4.4539 2.6106 7.7412 8.4885 12.4607 13.8084 14.0225 17.0335 18.9840 k = 0.1511-0.2616 0.3880 band energies (ev): -3.8831 3.8708 5.5003 6.3805 9.5207 13.3521 17.1233 17.6947 19.8898 k = 0.6042 0.5233 0.0554 band energies (ev): -1.7336 0.2555 3.9247 6.0693 10.6624 14.7781 16.2283 19.6597 21.1937 k = 0.4532 0.2616 0.1663 band energies (ev): -3.1163 0.7681 5.0734 8.7031 10.7175 15.3235 16.4725 16.9477 19.3896 k = 0.0000 0.0000 0.4989 band energies (ev): -4.0659 2.4507 8.4722 8.4722 11.0450 12.4203 12.4203 15.0039 21.1254 k = 0.4532 0.7849 0.1663 band energies (ev): -2.7206 1.7921 4.0281 7.0826 9.8124 14.7724 15.3904 18.3766 20.8067 k = 0.3021 0.5233 0.2772 band energies (ev): -2.1314 0.8604 5.3193 5.7156 8.0223 12.9686 19.5345 21.5418 22.6457 k = 0.9063 0.0000-0.1663 band energies (ev): -2.7206 1.7921 4.0281 7.0826 9.8124 14.7724 15.3904 18.3766 20.8067 k = 0.7553-0.2616-0.0554 band energies (ev): -1.7336 0.2555 3.9247 6.0693 10.6624 14.7781 16.2283 19.6597 21.1937 k = 0.6042 0.0000 0.0554 band energies (ev): -2.6113 -0.6691 7.3450 8.4660 10.5619 14.3982 14.9539 17.1990 21.5200 the Fermi energy is 12.4543 ev total energy = -25.37487451 Ry Harris-Foulkes estimate = -25.37487530 Ry estimated scf accuracy < 0.00000142 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-08, avg # of iterations = 1.9 total cpu time spent up to now is 8.72 secs End of self-consistent calculation k = 0.0000 0.0000 0.1663 ( 531 PWs) bands (ev): -5.7521 7.8338 8.5868 8.5868 11.9288 14.4502 14.8759 14.8759 18.9892 k =-0.1511-0.2616 0.2772 ( 522 PWs) bands (ev): -4.4519 2.6123 7.7420 8.4914 12.4618 13.8090 14.0228 17.0351 18.9846 k = 0.3021 0.5233-0.0554 ( 520 PWs) bands (ev): -2.6091 -0.6674 7.3475 8.4666 10.5624 14.3994 14.9542 17.1995 21.5210 k = 0.1511 0.2616 0.0554 ( 525 PWs) bands (ev): -5.0747 4.0436 7.3981 9.9345 11.2209 14.2878 15.9992 17.3216 18.6785 k =-0.3021 0.0000 0.3880 ( 519 PWs) bands (ev): -3.8809 3.8726 5.5015 6.3824 9.5204 13.3531 17.1251 17.6971 19.8894 k = 0.1511 0.7849 0.0554 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2291 19.6612 21.1951 k = 0.0000 0.5233 0.1663 ( 521 PWs) bands (ev): -3.1143 0.7704 5.0752 8.7028 10.7186 15.3243 16.4731 16.9499 19.3900 k = 0.6042 0.0000-0.2772 ( 510 PWs) bands (ev): -2.1291 0.8631 5.3188 5.7175 8.0225 12.9694 19.5360 21.5426 22.6478 k = 0.4532-0.2616-0.1663 ( 521 PWs) bands (ev): -3.1143 0.7704 5.0752 8.7028 10.7186 15.3243 16.4731 16.9499 19.3900 k = 0.3021 0.0000-0.0554 ( 525 PWs) bands (ev): -5.0747 4.0436 7.3981 9.9345 11.2209 14.2878 15.9992 17.3216 18.6785 k = 0.3021 0.0000 0.2772 ( 522 PWs) bands (ev): -4.4519 2.6123 7.7420 8.4914 12.4618 13.8090 14.0228 17.0351 18.9846 k = 0.1511-0.2616 0.3880 ( 519 PWs) bands (ev): -3.8809 3.8726 5.5015 6.3824 9.5204 13.3531 17.1251 17.6971 19.8894 k = 0.6042 0.5233 0.0554 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2291 19.6612 21.1951 k = 0.4532 0.2616 0.1663 ( 521 PWs) bands (ev): -3.1143 0.7704 5.0752 8.7028 10.7186 15.3243 16.4731 16.9499 19.3900 k = 0.0000 0.0000 0.4989 ( 522 PWs) bands (ev): -4.0635 2.4507 8.4749 8.4749 11.0475 12.4211 12.4211 15.0027 21.1259 k = 0.4532 0.7849 0.1663 ( 520 PWs) bands (ev): -2.7177 1.7925 4.0294 7.0848 9.8128 14.7736 15.3922 18.3782 20.8064 k = 0.3021 0.5233 0.2772 ( 510 PWs) bands (ev): -2.1291 0.8631 5.3188 5.7175 8.0225 12.9694 19.5360 21.5426 22.6478 k = 0.9063 0.0000-0.1663 ( 520 PWs) bands (ev): -2.7177 1.7925 4.0294 7.0848 9.8128 14.7737 15.3922 18.3782 20.8064 k = 0.7553-0.2616-0.0554 ( 510 PWs) bands (ev): -1.7311 0.2575 3.9257 6.0695 10.6630 14.7796 16.2291 19.6612 21.1951 k = 0.6042 0.0000 0.0554 ( 520 PWs) bands (ev): -2.6091 -0.6673 7.3475 8.4666 10.5623 14.3994 14.9541 17.1995 21.5210 the Fermi energy is 12.4553 ev ! total energy = -25.37487470 Ry Harris-Foulkes estimate = -25.37487470 Ry estimated scf accuracy < 6.5E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000178 0.00000000 -0.15968947 atom 2 type 1 force = -0.00000178 0.00000000 0.15968947 Total force = 0.225835 Total SCF correction = 0.000011 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 521.23 0.00397352 0.00000000 0.00000001 584.53 0.00 0.00 0.00000000 0.00397359 0.00000000 0.00 584.53 0.00 0.00000001 0.00000000 0.00268273 0.00 0.00 394.64 Entering Dynamics; it = 3 time = 0.01452 pico-seconds new lattice vectors (alat unit) : 0.557921988 0.000000000 0.696904420 -0.278960715 0.483175236 0.696904369 -0.278960715 -0.483175236 0.696904369 new unit-cell volume = 194.1731 (a.u.)^3 new positions in cryst coord As 0.275031746 0.275031680 0.275031680 As -0.275031746 -0.275031680 -0.275031680 new positions in cart coord (alat unit) As 0.000000190 0.000000000 0.575012399 As -0.000000190 0.000000000 -0.575012399 Ekin = 0.07434760 Ry T = 1838.2 K Etot = -24.60457455 CELL_PARAMETERS (alat) 0.557921988 0.000000000 0.696904420 -0.278960715 0.483175236 0.696904369 -0.278960715 -0.483175236 0.696904369 ATOMIC_POSITIONS (crystal) As 0.275031746 0.275031680 0.275031680 As -0.275031746 -0.275031680 -0.275031680 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1793646), wk = 0.0625000 k( 2) = ( -0.1493638 -0.2587053 0.2989411), wk = 0.1250000 k( 3) = ( 0.2987276 0.5174106 -0.0597883), wk = 0.1250000 k( 4) = ( 0.1493638 0.2587053 0.0597882), wk = 0.1250000 k( 5) = ( -0.2987277 0.0000000 0.4185176), wk = 0.0625000 k( 6) = ( 0.1493638 0.7761159 0.0597882), wk = 0.1250000 k( 7) = ( 0.0000000 0.5174106 0.1793646), wk = 0.1250000 k( 8) = ( 0.5974553 0.0000000 -0.2989412), wk = 0.0625000 k( 9) = ( 0.4480915 -0.2587053 -0.1793648), wk = 0.1250000 k( 10) = ( 0.2987276 0.0000000 -0.0597883), wk = 0.0625000 k( 11) = ( 0.2987276 0.0000000 0.2989410), wk = 0.0625000 k( 12) = ( 0.1493638 -0.2587053 0.4185174), wk = 0.1250000 k( 13) = ( 0.5974553 0.5174106 0.0597881), wk = 0.1250000 k( 14) = ( 0.4480915 0.2587053 0.1793645), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.5380939), wk = 0.0625000 k( 16) = ( 0.4480915 0.7761159 0.1793645), wk = 0.1250000 k( 17) = ( 0.2987276 0.5174106 0.2989410), wk = 0.1250000 k( 18) = ( 0.8961829 0.0000000 -0.1793649), wk = 0.0625000 k( 19) = ( 0.7468191 -0.2587053 -0.0597884), wk = 0.1250000 k( 20) = ( 0.5974553 0.0000000 0.0597881), wk = 0.0625000 extrapolated charge 9.45498, renormalised to 10.00000 total cpu time spent up to now is 8.99 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.4 total cpu time spent up to now is 9.79 secs k = 0.0000 0.0000 0.1794 band energies (ev): -4.9749 9.2320 9.4682 9.4682 13.0720 16.1687 16.2684 16.2685 19.2932 k =-0.1494-0.2587 0.2989 band energies (ev): -3.5639 3.2409 9.5445 10.0992 13.2754 14.0796 14.8467 18.0759 19.4516 k = 0.2987 0.5174-0.0598 band energies (ev): -1.7975 0.1438 8.6895 9.9489 11.3051 15.4529 16.1406 19.3052 22.9594 k = 0.1494 0.2587 0.0598 band energies (ev): -4.3617 5.1020 8.3401 10.8007 12.6710 16.4341 17.1965 18.6266 20.2164 k =-0.2987 0.0000 0.4185 band energies (ev): -2.8051 4.9500 6.7915 6.9658 9.8945 14.8355 18.0298 18.4468 20.0066 k = 0.1494 0.7761 0.0598 band energies (ev): -0.4491 0.9900 4.6351 7.1669 11.7482 15.2521 17.3187 21.4544 22.3646 k = 0.0000 0.5174 0.1794 band energies (ev): -2.3422 1.6634 6.3836 9.3530 12.4738 16.2263 18.1234 18.4167 20.3671 k = 0.5975 0.0000-0.2989 band energies (ev): -1.1654 2.4039 5.6827 6.3630 8.6806 15.0629 20.5963 22.0607 23.5963 k = 0.4481-0.2587-0.1794 band energies (ev): -2.3422 1.6634 6.3837 9.3530 12.4738 16.2263 18.1234 18.4167 20.3671 k = 0.2987 0.0000-0.0598 band energies (ev): -4.3617 5.1020 8.3401 10.8007 12.6710 16.4341 17.1965 18.6266 20.2164 k = 0.2987 0.0000 0.2989 band energies (ev): -3.5639 3.2409 9.5445 10.0992 13.2754 14.0795 14.8467 18.0759 19.4516 k = 0.1494-0.2587 0.4185 band energies (ev): -2.8051 4.9500 6.7914 6.9658 9.8945 14.8355 18.0298 18.4467 20.0066 k = 0.5975 0.5174 0.0598 band energies (ev): -0.4491 0.9900 4.6351 7.1669 11.7482 15.2522 17.3187 21.4543 22.3645 k = 0.4481 0.2587 0.1794 band energies (ev): -2.3422 1.6634 6.3837 9.3529 12.4738 16.2263 18.1234 18.4167 20.3671 k = 0.0000 0.0000 0.5381 band energies (ev): -2.6885 3.3809 9.3588 9.3588 11.6950 12.7267 12.7267 15.0622 23.0584 k = 0.4481 0.7761 0.1794 band energies (ev): -1.0169 2.2445 4.8905 7.9242 10.0718 15.0606 16.1294 19.7449 22.0683 k = 0.2987 0.5174 0.2989 band energies (ev): -1.1654 2.4039 5.6827 6.3630 8.6807 15.0628 20.5963 22.0607 23.5963 k = 0.8962 0.0000-0.1794 band energies (ev): -1.0169 2.2445 4.8905 7.9242 10.0718 15.0606 16.1294 19.7449 22.0683 k = 0.7468-0.2587-0.0598 band energies (ev): -0.4491 0.9900 4.6351 7.1669 11.7482 15.2521 17.3187 21.4543 22.3646 k = 0.5975 0.0000 0.0598 band energies (ev): -1.7975 0.1438 8.6895 9.9489 11.3051 15.4528 16.1406 19.3052 22.9594 the Fermi energy is 13.2617 ev total energy = -25.37635614 Ry Harris-Foulkes estimate = -24.96966413 Ry estimated scf accuracy < 0.00119038 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.19E-05, avg # of iterations = 2.5 total cpu time spent up to now is 10.23 secs k = 0.0000 0.0000 0.1794 band energies (ev): -5.0550 9.1493 9.4407 9.4407 13.0156 16.0521 16.1699 16.1699 19.0572 k =-0.1494-0.2587 0.2989 band energies (ev): -3.6348 3.1662 9.4335 10.1139 13.1443 13.8981 14.7244 17.9258 19.2440 k = 0.2987 0.5174-0.0598 band energies (ev): -1.8555 0.0615 8.6507 9.8274 11.1256 15.2969 16.0288 19.1951 22.8355 k = 0.1494 0.2587 0.0598 band energies (ev): -4.4419 5.0742 8.2879 10.6498 12.5259 16.3899 17.0910 18.5188 20.0569 k =-0.2987 0.0000 0.4185 band energies (ev): -2.8636 4.9021 6.6883 6.8858 9.6825 14.6806 17.9484 18.4094 19.7795 k = 0.1494 0.7761 0.0598 band energies (ev): -0.4687 0.9252 4.4814 7.0051 11.6336 15.1534 17.1121 21.4052 22.2945 k = 0.0000 0.5174 0.1794 band energies (ev): -2.4114 1.6124 6.3060 9.1486 12.3904 16.1071 18.0730 18.2320 20.1968 k = 0.5975 0.0000-0.2989 band energies (ev): -1.2141 2.4100 5.4531 6.2782 8.5085 14.8907 20.5294 21.9317 23.5972 k = 0.4481-0.2587-0.1794 band energies (ev): -2.4114 1.6124 6.3060 9.1487 12.3904 16.1071 18.0730 18.2320 20.1968 k = 0.2987 0.0000-0.0598 band energies (ev): -4.4419 5.0742 8.2879 10.6498 12.5259 16.3899 17.0910 18.5188 20.0569 k = 0.2987 0.0000 0.2989 band energies (ev): -3.6348 3.1662 9.4335 10.1139 13.1443 13.8981 14.7244 17.9257 19.2440 k = 0.1494-0.2587 0.4185 band energies (ev): -2.8637 4.9021 6.6883 6.8858 9.6825 14.6806 17.9484 18.4094 19.7795 k = 0.5975 0.5174 0.0598 band energies (ev): -0.4687 0.9253 4.4814 7.0051 11.6337 15.1534 17.1121 21.4052 22.2945 k = 0.4481 0.2587 0.1794 band energies (ev): -2.4114 1.6124 6.3060 9.1486 12.3904 16.1072 18.0729 18.2320 20.1968 k = 0.0000 0.0000 0.5381 band energies (ev): -2.7282 3.2203 9.3291 9.3291 11.6627 12.5771 12.5771 14.7756 22.8778 k = 0.4481 0.7761 0.1794 band energies (ev): -1.0049 2.0819 4.7638 7.8566 9.8939 14.9540 16.0532 19.6445 21.8508 k = 0.2987 0.5174 0.2989 band energies (ev): -1.2141 2.4100 5.4531 6.2782 8.5086 14.8907 20.5294 21.9317 23.5972 k = 0.8962 0.0000-0.1794 band energies (ev): -1.0049 2.0819 4.7638 7.8565 9.8939 14.9540 16.0532 19.6445 21.8508 k = 0.7468-0.2587-0.0598 band energies (ev): -0.4687 0.9253 4.4814 7.0051 11.6336 15.1533 17.1121 21.4052 22.2945 k = 0.5975 0.0000 0.0598 band energies (ev): -1.8555 0.0615 8.6507 9.8274 11.1256 15.2969 16.0288 19.1951 22.8355 the Fermi energy is 13.1300 ev total energy = -25.37727051 Ry Harris-Foulkes estimate = -25.37745388 Ry estimated scf accuracy < 0.00043015 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.30E-06, avg # of iterations = 1.0 total cpu time spent up to now is 10.53 secs k = 0.0000 0.0000 0.1794 band energies (ev): -5.0745 9.1340 9.4140 9.4140 12.9939 16.0375 16.1540 16.1540 19.0578 k =-0.1494-0.2587 0.2989 band energies (ev): -3.6555 3.1470 9.4195 10.0800 13.1332 13.8962 14.7126 17.9130 19.2400 k = 0.2987 0.5174-0.0598 band energies (ev): -1.8784 0.0434 8.6252 9.8133 11.1229 15.2900 16.0145 19.1810 22.8183 k = 0.1494 0.2587 0.0598 band energies (ev): -4.4613 5.0484 8.2647 10.6418 12.5172 16.3658 17.0770 18.5051 20.0457 k =-0.2987 0.0000 0.4185 band energies (ev): -2.8861 4.8802 6.6707 6.8663 9.6849 14.6683 17.9300 18.3827 19.7839 k = 0.1494 0.7761 0.0598 band energies (ev): -0.4966 0.9043 4.4723 6.9981 11.6210 15.1369 17.1077 21.3825 22.2747 k = 0.0000 0.5174 0.1794 band energies (ev): -2.4323 1.5897 6.2858 9.1481 12.3734 16.0948 18.0499 18.2241 20.1914 k = 0.5975 0.0000-0.2989 band energies (ev): -1.2376 2.3771 5.4576 6.2594 8.5033 14.8815 20.5097 21.9206 23.5671 k = 0.4481-0.2587-0.1794 band energies (ev): -2.4323 1.5896 6.2858 9.1481 12.3734 16.0948 18.0498 18.2241 20.1914 k = 0.2987 0.0000-0.0598 band energies (ev): -4.4613 5.0484 8.2647 10.6418 12.5172 16.3658 17.0770 18.5051 20.0457 k = 0.2987 0.0000 0.2989 band energies (ev): -3.6555 3.1471 9.4195 10.0800 13.1332 13.8962 14.7126 17.9130 19.2400 k = 0.1494-0.2587 0.4185 band energies (ev): -2.8861 4.8803 6.6707 6.8664 9.6848 14.6683 17.9300 18.3827 19.7839 k = 0.5975 0.5174 0.0598 band energies (ev): -0.4966 0.9043 4.4723 6.9981 11.6210 15.1369 17.1077 21.3825 22.2747 k = 0.4481 0.2587 0.1794 band energies (ev): -2.4323 1.5897 6.2858 9.1481 12.3734 16.0948 18.0498 18.2241 20.1914 k = 0.0000 0.0000 0.5381 band energies (ev): -2.7535 3.2147 9.3014 9.3014 11.6320 12.5697 12.5697 14.7897 22.8707 k = 0.4481 0.7761 0.1794 band energies (ev): -1.0380 2.0777 4.7488 7.8350 9.8894 14.9401 16.0326 19.6299 21.8494 k = 0.2987 0.5174 0.2989 band energies (ev): -1.2376 2.3771 5.4576 6.2594 8.5033 14.8815 20.5097 21.9206 23.5671 k = 0.8962 0.0000-0.1794 band energies (ev): -1.0380 2.0777 4.7488 7.8350 9.8894 14.9401 16.0326 19.6300 21.8494 k = 0.7468-0.2587-0.0598 band energies (ev): -0.4966 0.9043 4.4723 6.9981 11.6210 15.1369 17.1077 21.3825 22.2747 k = 0.5975 0.0000 0.0598 band energies (ev): -1.8783 0.0434 8.6252 9.8133 11.1229 15.2900 16.0145 19.1810 22.8183 the Fermi energy is 13.1192 ev total energy = -25.37726208 Ry Harris-Foulkes estimate = -25.37729307 Ry estimated scf accuracy < 0.00006045 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.05E-07, avg # of iterations = 2.1 total cpu time spent up to now is 10.90 secs k = 0.0000 0.0000 0.1794 band energies (ev): -5.0882 9.1192 9.3953 9.3953 12.9801 16.0271 16.1436 16.1436 19.0561 k =-0.1494-0.2587 0.2989 band energies (ev): -3.6700 3.1325 9.4083 10.0580 13.1252 13.8906 14.7020 17.9066 19.2382 k = 0.2987 0.5174-0.0598 band energies (ev): -1.8940 0.0298 8.6081 9.8032 11.1182 15.2816 16.0040 19.1685 22.8080 k = 0.1494 0.2587 0.0598 band energies (ev): -4.4751 5.0299 8.2485 10.6349 12.5084 16.3513 17.0643 18.4934 20.0381 k =-0.2987 0.0000 0.4185 band energies (ev): -2.9015 4.8629 6.6592 6.8526 9.6826 14.6622 17.9165 18.3659 19.7818 k = 0.1494 0.7761 0.0598 band energies (ev): -0.5155 0.8891 4.4655 6.9911 11.6094 15.1260 17.1054 21.3661 22.2585 k = 0.0000 0.5174 0.1794 band energies (ev): -2.4470 1.5733 6.2729 9.1441 12.3595 16.0854 18.0348 18.2186 20.1839 k = 0.5975 0.0000-0.2989 band energies (ev): -1.2541 2.3566 5.4555 6.2462 8.4980 14.8769 20.4934 21.9105 23.5461 k = 0.4481-0.2587-0.1794 band energies (ev): -2.4470 1.5733 6.2729 9.1441 12.3595 16.0854 18.0348 18.2186 20.1839 k = 0.2987 0.0000-0.0598 band energies (ev): -4.4751 5.0299 8.2485 10.6349 12.5084 16.3513 17.0643 18.4934 20.0381 k = 0.2987 0.0000 0.2989 band energies (ev): -3.6700 3.1326 9.4083 10.0580 13.1252 13.8906 14.7020 17.9066 19.2382 k = 0.1494-0.2587 0.4185 band energies (ev): -2.9015 4.8629 6.6592 6.8526 9.6826 14.6622 17.9165 18.3659 19.7818 k = 0.5975 0.5174 0.0598 band energies (ev): -0.5155 0.8891 4.4655 6.9911 11.6094 15.1260 17.1054 21.3660 22.2585 k = 0.4481 0.2587 0.1794 band energies (ev): -2.4470 1.5733 6.2729 9.1441 12.3595 16.0855 18.0348 18.2186 20.1838 k = 0.0000 0.0000 0.5381 band energies (ev): -2.7703 3.2066 9.2828 9.2828 11.6165 12.5627 12.5627 14.7928 22.8670 k = 0.4481 0.7761 0.1794 band energies (ev): -1.0591 2.0697 4.7394 7.8202 9.8848 14.9284 16.0190 19.6178 21.8485 k = 0.2987 0.5174 0.2989 band energies (ev): -1.2541 2.3567 5.4554 6.2462 8.4980 14.8769 20.4934 21.9105 23.5461 k = 0.8962 0.0000-0.1794 band energies (ev): -1.0591 2.0697 4.7394 7.8202 9.8847 14.9284 16.0190 19.6178 21.8485 k = 0.7468-0.2587-0.0598 band energies (ev): -0.5155 0.8891 4.4655 6.9911 11.6094 15.1260 17.1054 21.3660 22.2586 k = 0.5975 0.0000 0.0598 band energies (ev): -1.8939 0.0298 8.6081 9.8032 11.1182 15.2816 16.0040 19.1686 22.8080 the Fermi energy is 13.1112 ev total energy = -25.37727257 Ry Harris-Foulkes estimate = -25.37727440 Ry estimated scf accuracy < 0.00000362 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.62E-08, avg # of iterations = 1.3 total cpu time spent up to now is 11.20 secs k = 0.0000 0.0000 0.1794 band energies (ev): -5.0860 9.1211 9.3983 9.3983 12.9824 16.0287 16.1454 16.1455 19.0561 k =-0.1494-0.2587 0.2989 band energies (ev): -3.6677 3.1348 9.4099 10.0617 13.1265 13.8911 14.7034 17.9079 19.2385 k = 0.2987 0.5174-0.0598 band energies (ev): -1.8914 0.0319 8.6110 9.8047 11.1186 15.2826 16.0057 19.1703 22.8098 k = 0.1494 0.2587 0.0598 band energies (ev): -4.4729 5.0329 8.2511 10.6358 12.5094 16.3539 17.0660 18.4951 20.0393 k =-0.2987 0.0000 0.4185 band energies (ev): -2.8990 4.8655 6.6611 6.8548 9.6825 14.6634 17.9186 18.3688 19.7815 k = 0.1494 0.7761 0.0598 band energies (ev): -0.5123 0.8915 4.4665 6.9919 11.6109 15.1278 17.1058 21.3687 22.2609 k = 0.0000 0.5174 0.1794 band energies (ev): -2.4447 1.5759 6.2751 9.1443 12.3615 16.0869 18.0374 18.2194 20.1846 k = 0.5975 0.0000-0.2989 band energies (ev): -1.2514 2.3602 5.4552 6.2483 8.4987 14.8778 20.4958 21.9118 23.5496 k = 0.4481-0.2587-0.1794 band energies (ev): -2.4447 1.5759 6.2751 9.1443 12.3615 16.0869 18.0374 18.2194 20.1846 k = 0.2987 0.0000-0.0598 band energies (ev): -4.4729 5.0329 8.2511 10.6358 12.5095 16.3539 17.0660 18.4951 20.0393 k = 0.2987 0.0000 0.2989 band energies (ev): -3.6677 3.1348 9.4099 10.0617 13.1265 13.8911 14.7034 17.9079 19.2385 k = 0.1494-0.2587 0.4185 band energies (ev): -2.8990 4.8655 6.6611 6.8548 9.6825 14.6634 17.9186 18.3688 19.7815 k = 0.5975 0.5174 0.0598 band energies (ev): -0.5123 0.8915 4.4665 6.9919 11.6109 15.1279 17.1058 21.3686 22.2609 k = 0.4481 0.2587 0.1794 band energies (ev): -2.4447 1.5759 6.2751 9.1443 12.3615 16.0869 18.0374 18.2194 20.1846 k = 0.0000 0.0000 0.5381 band energies (ev): -2.7675 3.2074 9.2859 9.2859 11.6196 12.5636 12.5637 14.7915 22.8677 k = 0.4481 0.7761 0.1794 band energies (ev): -1.0555 2.0704 4.7410 7.8226 9.8853 14.9301 16.0212 19.6195 21.8486 k = 0.2987 0.5174 0.2989 band energies (ev): -1.2515 2.3602 5.4552 6.2483 8.4987 14.8778 20.4958 21.9118 23.5495 k = 0.8962 0.0000-0.1794 band energies (ev): -1.0555 2.0704 4.7410 7.8226 9.8853 14.9301 16.0212 19.6196 21.8486 k = 0.7468-0.2587-0.0598 band energies (ev): -0.5123 0.8915 4.4665 6.9919 11.6109 15.1278 17.1058 21.3686 22.2609 k = 0.5975 0.0000 0.0598 band energies (ev): -1.8914 0.0319 8.6109 9.8047 11.1186 15.2826 16.0056 19.1703 22.8098 the Fermi energy is 13.1125 ev total energy = -25.37727276 Ry Harris-Foulkes estimate = -25.37727288 Ry estimated scf accuracy < 0.00000020 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.03E-09, avg # of iterations = 2.9 total cpu time spent up to now is 11.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.1794 ( 531 PWs) bands (ev): -5.0852 9.1217 9.3993 9.3993 12.9832 16.0292 16.1461 16.1461 19.0560 k =-0.1494-0.2587 0.2989 ( 522 PWs) bands (ev): -3.6669 3.1355 9.4105 10.0630 13.1269 13.8912 14.7039 17.9083 19.2387 k = 0.2987 0.5174-0.0598 ( 520 PWs) bands (ev): -1.8905 0.0326 8.6120 9.8052 11.1187 15.2829 16.0062 19.1708 22.8104 k = 0.1494 0.2587 0.0598 ( 525 PWs) bands (ev): -4.4721 5.0339 8.2520 10.6361 12.5098 16.3549 17.0666 18.4957 20.0397 k =-0.2987 0.0000 0.4185 ( 519 PWs) bands (ev): -2.8981 4.8664 6.6617 6.8556 9.6824 14.6638 17.9194 18.3699 19.7813 k = 0.1494 0.7761 0.0598 ( 510 PWs) bands (ev): -0.5112 0.8923 4.4668 6.9922 11.6114 15.1285 17.1060 21.3696 22.2617 k = 0.0000 0.5174 0.1794 ( 521 PWs) bands (ev): -2.4438 1.5768 6.2759 9.1443 12.3621 16.0874 18.0383 18.2197 20.1849 k = 0.5975 0.0000-0.2989 ( 510 PWs) bands (ev): -1.2505 2.3615 5.4550 6.2490 8.4988 14.8781 20.4966 21.9122 23.5508 k = 0.4481-0.2587-0.1794 ( 521 PWs) bands (ev): -2.4438 1.5768 6.2759 9.1443 12.3621 16.0874 18.0383 18.2197 20.1848 k = 0.2987 0.0000-0.0598 ( 525 PWs) bands (ev): -4.4721 5.0339 8.2520 10.6361 12.5098 16.3548 17.0666 18.4957 20.0397 k = 0.2987 0.0000 0.2989 ( 522 PWs) bands (ev): -3.6669 3.1355 9.4105 10.0630 13.1269 13.8912 14.7038 17.9083 19.2387 k = 0.1494-0.2587 0.4185 ( 519 PWs) bands (ev): -2.8981 4.8664 6.6617 6.8556 9.6824 14.6638 17.9194 18.3698 19.7813 k = 0.5975 0.5174 0.0598 ( 510 PWs) bands (ev): -0.5112 0.8923 4.4668 6.9922 11.6114 15.1285 17.1060 21.3695 22.2617 k = 0.4481 0.2587 0.1794 ( 521 PWs) bands (ev): -2.4438 1.5768 6.2759 9.1443 12.3621 16.0874 18.0383 18.2197 20.1848 k = 0.0000 0.0000 0.5381 ( 522 PWs) bands (ev): -2.7665 3.2077 9.2870 9.2870 11.6207 12.5640 12.5640 14.7909 22.8680 k = 0.4481 0.7761 0.1794 ( 520 PWs) bands (ev): -1.0541 2.0706 4.7416 7.8235 9.8855 14.9307 16.0220 19.6201 21.8487 k = 0.2987 0.5174 0.2989 ( 510 PWs) bands (ev): -1.2505 2.3615 5.4550 6.2491 8.4988 14.8781 20.4966 21.9122 23.5508 k = 0.8962 0.0000-0.1794 ( 520 PWs) bands (ev): -1.0541 2.0706 4.7416 7.8235 9.8855 14.9307 16.0220 19.6201 21.8487 k = 0.7468-0.2587-0.0598 ( 510 PWs) bands (ev): -0.5112 0.8923 4.4668 6.9922 11.6114 15.1285 17.1060 21.3695 22.2617 k = 0.5975 0.0000 0.0598 ( 520 PWs) bands (ev): -1.8905 0.0326 8.6120 9.8052 11.1187 15.2829 16.0062 19.1708 22.8104 the Fermi energy is 13.1129 ev ! total energy = -25.37727282 Ry Harris-Foulkes estimate = -25.37727283 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000226 0.00000000 -0.09622747 atom 2 type 1 force = -0.00000226 0.00000000 0.09622747 Total force = 0.136086 Total SCF correction = 0.000088 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 558.35 0.00376439 0.00000000 0.00000001 553.76 0.00 0.00 0.00000000 0.00376451 0.00000000 0.00 553.78 0.00 0.00000001 0.00000000 0.00385785 0.00 0.00 567.51 Entering Dynamics; it = 4 time = 0.02178 pico-seconds new lattice vectors (alat unit) : 0.564948185 0.000000000 0.730143337 -0.282473626 0.489261090 0.730143088 -0.282473626 -0.489261090 0.730143088 new unit-cell volume = 208.5907 (a.u.)^3 new positions in cryst coord As 0.262508384 0.262507986 0.262507986 As -0.262508384 -0.262507986 -0.262507986 new positions in cart coord (alat unit) As 0.000000470 0.000000000 0.575005530 As -0.000000470 0.000000000 -0.575005530 Ekin = 0.10396637 Ry T = 2441.4 K Etot = -24.61332549 CELL_PARAMETERS (alat) 0.564948185 0.000000000 0.730143337 -0.282473626 0.489261090 0.730143088 -0.282473626 -0.489261090 0.730143088 ATOMIC_POSITIONS (crystal) As 0.262508384 0.262507986 0.262507986 As -0.262508384 -0.262507986 -0.262507986 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1711993), wk = 0.0625000 k( 2) = ( -0.1475063 -0.2554873 0.2853322), wk = 0.1250000 k( 3) = ( 0.2950125 0.5109746 -0.0570666), wk = 0.1250000 k( 4) = ( 0.1475062 0.2554873 0.0570664), wk = 0.1250000 k( 5) = ( -0.2950126 0.0000000 0.3994652), wk = 0.0625000 k( 6) = ( 0.1475062 0.7664619 0.0570664), wk = 0.1250000 k( 7) = ( -0.0000001 0.5109746 0.1711993), wk = 0.1250000 k( 8) = ( 0.5900250 0.0000000 -0.2853324), wk = 0.0625000 k( 9) = ( 0.4425188 -0.2554873 -0.1711995), wk = 0.1250000 k( 10) = ( 0.2950125 0.0000000 -0.0570666), wk = 0.0625000 k( 11) = ( 0.2950124 0.0000000 0.2853320), wk = 0.0625000 k( 12) = ( 0.1475061 -0.2554873 0.3994650), wk = 0.1250000 k( 13) = ( 0.5900249 0.5109746 0.0570662), wk = 0.1250000 k( 14) = ( 0.4425187 0.2554873 0.1711991), wk = 0.1250000 k( 15) = ( -0.0000002 0.0000000 0.5135979), wk = 0.0625000 k( 16) = ( 0.4425187 0.7664619 0.1711991), wk = 0.1250000 k( 17) = ( 0.2950124 0.5109746 0.2853320), wk = 0.1250000 k( 18) = ( 0.8850375 0.0000000 -0.1711997), wk = 0.0625000 k( 19) = ( 0.7375312 -0.2554873 -0.0570667), wk = 0.1250000 k( 20) = ( 0.5900249 0.0000000 0.0570662), wk = 0.0625000 extrapolated charge 10.69116, renormalised to 10.00000 total cpu time spent up to now is 11.89 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.6 total cpu time spent up to now is 12.74 secs k = 0.0000 0.0000 0.1712 band energies (ev): -5.5091 7.1463 8.7498 8.7498 11.2924 15.1113 15.1113 15.2148 17.2730 k =-0.1475-0.2555 0.2853 band energies (ev): -4.1419 2.2663 7.8820 9.8725 11.7151 11.7670 13.1224 17.1116 18.0370 k = 0.2950 0.5110-0.0571 band energies (ev): -2.3252 -0.7470 8.1141 8.4993 9.5743 13.2217 14.5193 16.5088 21.7425 k = 0.1475 0.2555 0.0571 band energies (ev): -4.8995 4.1022 7.6362 9.1469 11.0837 14.5131 15.7537 16.4644 17.5244 k =-0.2950 0.0000 0.3995 band energies (ev): -3.4218 3.4477 6.0453 6.3171 7.8838 14.0453 16.6193 17.0489 17.5001 k = 0.1475 0.7665 0.0571 band energies (ev): -1.0796 0.1596 3.7206 5.6368 10.1902 13.8823 15.9376 19.8119 20.0477 k = 0.0000 0.5110 0.1712 band energies (ev): -2.9326 0.8339 5.6646 7.5387 11.0529 13.8859 16.4869 16.8671 18.1221 k = 0.5900 0.0000-0.2853 band energies (ev): -1.8526 1.9785 3.7123 5.7247 7.1162 13.8893 18.5317 19.2647 21.6786 k = 0.4425-0.2555-0.1712 band energies (ev): -2.9326 0.8339 5.6646 7.5387 11.0528 13.8859 16.4869 16.8671 18.1221 k = 0.2950 0.0000-0.0571 band energies (ev): -4.8995 4.1022 7.6362 9.1469 11.0837 14.5131 15.7537 16.4644 17.5243 k = 0.2950 0.0000 0.2853 band energies (ev): -4.1419 2.2664 7.8820 9.8724 11.7151 11.7669 13.1224 17.1116 18.0371 k = 0.1475-0.2555 0.3995 band energies (ev): -3.4218 3.4477 6.0453 6.3171 7.8838 14.0453 16.6193 17.0489 17.5001 k = 0.5900 0.5110 0.0571 band energies (ev): -1.0797 0.1596 3.7206 5.6368 10.1903 13.8823 15.9376 19.8119 20.0477 k = 0.4425 0.2555 0.1712 band energies (ev): -2.9326 0.8339 5.6646 7.5387 11.0529 13.8859 16.4868 16.8671 18.1220 k = 0.0000 0.0000 0.5136 band energies (ev): -3.2692 1.5255 8.9001 8.9001 11.0812 11.2468 11.2469 12.9309 21.1286 k = 0.4425 0.7665 0.1712 band energies (ev): -1.4173 0.3799 4.2188 7.3006 8.6454 13.5734 15.0451 18.3092 20.0819 k = 0.2950 0.5110 0.2853 band energies (ev): -1.8527 1.9785 3.7123 5.7247 7.1163 13.8893 18.5317 19.2647 21.6785 k = 0.8850 0.0000-0.1712 band energies (ev): -1.4173 0.3799 4.2189 7.3006 8.6453 13.5734 15.0451 18.3093 20.0819 k = 0.7375-0.2555-0.0571 band energies (ev): -1.0797 0.1596 3.7205 5.6368 10.1903 13.8822 15.9376 19.8119 20.0477 k = 0.5900 0.0000 0.0571 band energies (ev): -2.3252 -0.7470 8.1140 8.4993 9.5743 13.2217 14.5192 16.5088 21.7425 the Fermi energy is 11.7029 ev total energy = -25.43947922 Ry Harris-Foulkes estimate = -25.95110680 Ry estimated scf accuracy < 0.00169029 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-05, avg # of iterations = 3.0 total cpu time spent up to now is 13.18 secs k = 0.0000 0.0000 0.1712 band energies (ev): -5.4292 7.1378 8.7810 8.7810 11.3314 15.2090 15.2092 15.2937 17.5421 k =-0.1475-0.2555 0.2853 band energies (ev): -4.0702 2.3110 7.9755 9.8662 11.8633 11.9019 13.1933 17.3160 18.1758 k = 0.2950 0.5110-0.0571 band energies (ev): -2.2665 -0.6827 8.1829 8.6096 9.7277 13.3196 14.6279 16.5710 21.9248 k = 0.1475 0.2555 0.0571 band energies (ev): -4.8210 4.1062 7.7018 9.2574 11.1996 14.5183 15.8912 16.5444 17.7188 k =-0.2950 0.0000 0.3995 band energies (ev): -3.3610 3.4565 6.1431 6.4118 8.0532 14.3138 16.6851 17.0634 17.6410 k = 0.1475 0.7665 0.0571 band energies (ev): -1.0618 0.2066 3.8954 5.7828 10.2592 13.9622 16.2344 19.8260 20.0424 k = 0.0000 0.5110 0.1712 band energies (ev): -2.8666 0.8669 5.7794 7.7022 11.0951 13.9844 16.5571 17.0845 18.2405 k = 0.5900 0.0000-0.2853 band energies (ev): -1.8148 1.9640 3.9135 5.8271 7.2562 14.1735 18.5472 19.3099 21.6204 k = 0.4425-0.2555-0.1712 band energies (ev): -2.8666 0.8668 5.7794 7.7022 11.0950 13.9844 16.5571 17.0845 18.2405 k = 0.2950 0.0000-0.0571 band energies (ev): -4.8210 4.1062 7.7018 9.2574 11.1997 14.5182 15.8912 16.5444 17.7188 k = 0.2950 0.0000 0.2853 band energies (ev): -4.0702 2.3110 7.9755 9.8662 11.8633 11.9018 13.1933 17.3160 18.1758 k = 0.1475-0.2555 0.3995 band energies (ev): -3.3610 3.4566 6.1431 6.4118 8.0532 14.3138 16.6851 17.0633 17.6410 k = 0.5900 0.5110 0.0571 band energies (ev): -1.0618 0.2066 3.8954 5.7828 10.2592 13.9622 16.2344 19.8259 20.0423 k = 0.4425 0.2555 0.1712 band energies (ev): -2.8666 0.8668 5.7794 7.7022 11.0950 13.9844 16.5571 17.0845 18.2404 k = 0.0000 0.0000 0.5136 band energies (ev): -3.2168 1.6052 8.9496 8.9496 11.1644 11.3761 11.3761 13.1536 21.3567 k = 0.4425 0.7665 0.1712 band energies (ev): -1.4195 0.4790 4.3709 7.3928 8.8064 13.6385 15.1183 18.3752 20.3272 k = 0.2950 0.5110 0.2853 band energies (ev): -1.8148 1.9640 3.9135 5.8271 7.2562 14.1735 18.5472 19.3100 21.6204 k = 0.8850 0.0000-0.1712 band energies (ev): -1.4195 0.4790 4.3709 7.3928 8.8063 13.6385 15.1183 18.3753 20.3272 k = 0.7375-0.2555-0.0571 band energies (ev): -1.0618 0.2067 3.8954 5.7828 10.2592 13.9621 16.2344 19.8260 20.0424 k = 0.5900 0.0000 0.0571 band energies (ev): -2.2665 -0.6827 8.1829 8.6096 9.7276 13.3196 14.6278 16.5710 21.9248 the Fermi energy is 11.8484 ev total energy = -25.44104355 Ry Harris-Foulkes estimate = -25.44125369 Ry estimated scf accuracy < 0.00052919 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.29E-06, avg # of iterations = 1.0 total cpu time spent up to now is 13.47 secs k = 0.0000 0.0000 0.1712 band energies (ev): -5.4088 7.1612 8.8059 8.8059 11.3538 15.2296 15.2298 15.3138 17.5405 k =-0.1475-0.2555 0.2853 band energies (ev): -4.0488 2.3328 7.9916 9.9005 11.8683 11.9159 13.2107 17.3319 18.1853 k = 0.2950 0.5110-0.0571 band energies (ev): -2.2434 -0.6622 8.2062 8.6245 9.7372 13.3330 14.6451 16.5900 21.9377 k = 0.1475 0.2555 0.0571 band energies (ev): -4.8006 4.1333 7.7237 9.2709 11.2120 14.5445 15.9097 16.5625 17.7246 k =-0.2950 0.0000 0.3995 band energies (ev): -3.3381 3.4795 6.1656 6.4305 8.0562 14.3218 16.7065 17.0959 17.6429 k = 0.1475 0.7665 0.0571 band energies (ev): -1.0338 0.2287 3.9057 5.7932 10.2762 13.9821 16.2367 19.8518 20.0695 k = 0.0000 0.5110 0.1712 band energies (ev): -2.8448 0.8912 5.7990 7.7073 11.1153 14.0002 16.5806 17.0962 18.2506 k = 0.5900 0.0000-0.2853 band energies (ev): -1.7903 1.9991 3.9123 5.8451 7.2668 14.1783 18.5716 19.3287 21.6539 k = 0.4425-0.2555-0.1712 band energies (ev): -2.8448 0.8912 5.7990 7.7073 11.1152 14.0002 16.5806 17.0961 18.2505 k = 0.2950 0.0000-0.0571 band energies (ev): -4.8006 4.1333 7.7237 9.2709 11.2120 14.5445 15.9096 16.5625 17.7246 k = 0.2950 0.0000 0.2853 band energies (ev): -4.0488 2.3329 7.9916 9.9004 11.8683 11.9158 13.2106 17.3319 18.1853 k = 0.1475-0.2555 0.3995 band energies (ev): -3.3381 3.4796 6.1656 6.4305 8.0561 14.3218 16.7065 17.0958 17.6429 k = 0.5900 0.5110 0.0571 band energies (ev): -1.0338 0.2287 3.9057 5.7932 10.2762 13.9821 16.2368 19.8517 20.0695 k = 0.4425 0.2555 0.1712 band energies (ev): -2.8448 0.8912 5.7990 7.7073 11.1153 14.0003 16.5805 17.0962 18.2505 k = 0.0000 0.0000 0.5136 band energies (ev): -3.1918 1.6186 8.9743 8.9744 11.1948 11.3889 11.3889 13.1469 21.3663 k = 0.4425 0.7665 0.1712 band energies (ev): -1.3850 0.4870 4.3853 7.4125 8.8162 13.6575 15.1399 18.3938 20.3346 k = 0.2950 0.5110 0.2853 band energies (ev): -1.7903 1.9991 3.9123 5.8452 7.2669 14.1783 18.5716 19.3288 21.6538 k = 0.8850 0.0000-0.1712 band energies (ev): -1.3850 0.4871 4.3853 7.4125 8.8161 13.6575 15.1399 18.3939 20.3346 k = 0.7375-0.2555-0.0571 band energies (ev): -1.0338 0.2287 3.9057 5.7932 10.2762 13.9820 16.2367 19.8518 20.0695 k = 0.5900 0.0000 0.0571 band energies (ev): -2.2434 -0.6622 8.2061 8.6245 9.7372 13.3329 14.6450 16.5900 21.9377 the Fermi energy is 11.8554 ev total energy = -25.44103753 Ry Harris-Foulkes estimate = -25.44107132 Ry estimated scf accuracy < 0.00007798 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.80E-07, avg # of iterations = 2.0 total cpu time spent up to now is 13.80 secs k = 0.0000 0.0000 0.1712 band energies (ev): -5.3952 7.1804 8.8223 8.8223 11.3682 15.2431 15.2432 15.3249 17.5419 k =-0.1475-0.2555 0.2853 band energies (ev): -4.0348 2.3487 8.0035 9.9181 11.8795 11.9255 13.2245 17.3391 18.1948 k = 0.2950 0.5110-0.0571 band energies (ev): -2.2287 -0.6476 8.2200 8.6351 9.7461 13.3464 14.6570 16.6054 21.9448 k = 0.1475 0.2555 0.0571 band energies (ev): -4.7869 4.1515 7.7380 9.2816 11.2228 14.5631 15.9200 16.5774 17.7308 k =-0.2950 0.0000 0.3995 band energies (ev): -3.3235 3.4978 6.1768 6.4429 8.0645 14.3235 16.7218 17.1130 17.6532 k = 0.1475 0.7665 0.0571 band energies (ev): -1.0167 0.2443 3.9132 5.8023 10.2901 13.9957 16.2373 19.8698 20.0892 k = 0.0000 0.5110 0.1712 band energies (ev): -2.8305 0.9076 5.8099 7.7155 11.1302 14.0133 16.5964 17.1007 18.2622 k = 0.5900 0.0000-0.2853 band energies (ev): -1.7742 2.0177 3.9189 5.8571 7.2760 14.1794 18.5905 19.3442 21.6772 k = 0.4425-0.2555-0.1712 band energies (ev): -2.8305 0.9076 5.8099 7.7155 11.1301 14.0133 16.5964 17.1007 18.2622 k = 0.2950 0.0000-0.0571 band energies (ev): -4.7869 4.1515 7.7380 9.2816 11.2228 14.5631 15.9200 16.5773 17.7308 k = 0.2950 0.0000 0.2853 band energies (ev): -4.0348 2.3487 8.0034 9.9181 11.8795 11.9255 13.2244 17.3391 18.1949 k = 0.1475-0.2555 0.3995 band energies (ev): -3.3235 3.4978 6.1768 6.4430 8.0645 14.3235 16.7218 17.1129 17.6532 k = 0.5900 0.5110 0.0571 band energies (ev): -1.0167 0.2443 3.9132 5.8023 10.2901 13.9957 16.2373 19.8698 20.0891 k = 0.4425 0.2555 0.1712 band energies (ev): -2.8305 0.9076 5.8099 7.7155 11.1302 14.0133 16.5963 17.1007 18.2622 k = 0.0000 0.0000 0.5136 band energies (ev): -3.1768 1.6325 8.9891 8.9891 11.2062 11.4004 11.4004 13.1518 21.3721 k = 0.4425 0.7665 0.1712 band energies (ev): -1.3671 0.5003 4.3937 7.4251 8.8247 13.6728 15.1530 18.4086 20.3390 k = 0.2950 0.5110 0.2853 band energies (ev): -1.7743 2.0177 3.9189 5.8571 7.2760 14.1794 18.5905 19.3442 21.6772 k = 0.8850 0.0000-0.1712 band energies (ev): -1.3671 0.5003 4.3937 7.4250 8.8246 13.6728 15.1529 18.4087 20.3390 k = 0.7375-0.2555-0.0571 band energies (ev): -1.0167 0.2444 3.9132 5.8023 10.2901 13.9956 16.2373 19.8698 20.0892 k = 0.5900 0.0000 0.0571 band energies (ev): -2.2287 -0.6476 8.2200 8.6351 9.7460 13.3463 14.6570 16.6054 21.9448 the Fermi energy is 11.8663 ev total energy = -25.44104683 Ry Harris-Foulkes estimate = -25.44104707 Ry estimated scf accuracy < 0.00000065 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.51E-09, avg # of iterations = 2.8 total cpu time spent up to now is 14.20 secs k = 0.0000 0.0000 0.1712 band energies (ev): -5.3957 7.1795 8.8217 8.8217 11.3679 15.2426 15.2427 15.3249 17.5417 k =-0.1475-0.2555 0.2853 band energies (ev): -4.0352 2.3480 8.0030 9.9178 11.8786 11.9253 13.2238 17.3392 18.1943 k = 0.2950 0.5110-0.0571 band energies (ev): -2.2292 -0.6482 8.2196 8.6347 9.7457 13.3456 14.6566 16.6046 21.9447 k = 0.1475 0.2555 0.0571 band energies (ev): -4.7874 4.1508 7.7375 9.2812 11.2222 14.5624 15.9198 16.5766 17.7305 k =-0.2950 0.0000 0.3995 band energies (ev): -3.3240 3.4969 6.1767 6.4425 8.0638 14.3239 16.7212 17.1128 17.6522 k = 0.1475 0.7665 0.0571 band energies (ev): -1.0172 0.2437 3.9129 5.8019 10.2894 13.9952 16.2374 19.8691 20.0883 k = 0.0000 0.5110 0.1712 band energies (ev): -2.8310 0.9070 5.8097 7.7149 11.1296 14.0127 16.5958 17.1009 18.2615 k = 0.5900 0.0000-0.2853 band energies (ev): -1.7748 2.0174 3.9182 5.8567 7.2756 14.1796 18.5896 19.3435 21.6763 k = 0.4425-0.2555-0.1712 band energies (ev): -2.8310 0.9070 5.8097 7.7150 11.1295 14.0127 16.5958 17.1009 18.2614 k = 0.2950 0.0000-0.0571 band energies (ev): -4.7874 4.1508 7.7375 9.2812 11.2223 14.5624 15.9198 16.5766 17.7305 k = 0.2950 0.0000 0.2853 band energies (ev): -4.0352 2.3480 8.0030 9.9177 11.8786 11.9252 13.2238 17.3392 18.1943 k = 0.1475-0.2555 0.3995 band energies (ev): -3.3240 3.4969 6.1767 6.4425 8.0638 14.3239 16.7212 17.1127 17.6522 k = 0.5900 0.5110 0.0571 band energies (ev): -1.0172 0.2437 3.9129 5.8019 10.2894 13.9953 16.2375 19.8691 20.0883 k = 0.4425 0.2555 0.1712 band energies (ev): -2.8310 0.9070 5.8097 7.7149 11.1295 14.0127 16.5957 17.1009 18.2614 k = 0.0000 0.0000 0.5136 band energies (ev): -3.1772 1.6317 8.9887 8.9887 11.2067 11.3998 11.3998 13.1510 21.3722 k = 0.4425 0.7665 0.1712 band energies (ev): -1.3674 0.4992 4.3936 7.4246 8.8243 13.6720 15.1527 18.4079 20.3390 k = 0.2950 0.5110 0.2853 band energies (ev): -1.7748 2.0174 3.9182 5.8567 7.2756 14.1796 18.5896 19.3435 21.6762 k = 0.8850 0.0000-0.1712 band energies (ev): -1.3674 0.4993 4.3936 7.4246 8.8243 13.6720 15.1526 18.4080 20.3390 k = 0.7375-0.2555-0.0571 band energies (ev): -1.0172 0.2437 3.9129 5.8019 10.2894 13.9952 16.2374 19.8691 20.0883 k = 0.5900 0.0000 0.0571 band energies (ev): -2.2292 -0.6482 8.2196 8.6348 9.7456 13.3455 14.6566 16.6046 21.9447 the Fermi energy is 11.8655 ev total energy = -25.44104733 Ry Harris-Foulkes estimate = -25.44104744 Ry estimated scf accuracy < 0.00000021 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-09, avg # of iterations = 2.0 total cpu time spent up to now is 14.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.1712 ( 531 PWs) bands (ev): -5.3964 7.1786 8.8207 8.8207 11.3672 15.2418 15.2419 15.3242 17.5418 k =-0.1475-0.2555 0.2853 ( 522 PWs) bands (ev): -4.0360 2.3472 8.0024 9.9165 11.8784 11.9249 13.2232 17.3388 18.1939 k = 0.2950 0.5110-0.0571 ( 520 PWs) bands (ev): -2.2300 -0.6489 8.2187 8.6342 9.7454 13.3450 14.6560 16.6038 21.9442 k = 0.1475 0.2555 0.0571 ( 525 PWs) bands (ev): -4.7882 4.1498 7.7366 9.2808 11.2218 14.5614 15.9192 16.5758 17.7303 k =-0.2950 0.0000 0.3995 ( 519 PWs) bands (ev): -3.3248 3.4960 6.1760 6.4418 8.0637 14.3237 16.7203 17.1116 17.6521 k = 0.1475 0.7665 0.0571 ( 510 PWs) bands (ev): -1.0182 0.2429 3.9126 5.8016 10.2888 13.9945 16.2375 19.8681 20.0872 k = 0.0000 0.5110 0.1712 ( 521 PWs) bands (ev): -2.8318 0.9061 5.8090 7.7148 11.1288 14.0121 16.5949 17.1006 18.2610 k = 0.5900 0.0000-0.2853 ( 510 PWs) bands (ev): -1.7757 2.0161 3.9183 5.8560 7.2753 14.1796 18.5886 19.3428 21.6750 k = 0.4425-0.2555-0.1712 ( 521 PWs) bands (ev): -2.8318 0.9061 5.8091 7.7148 11.1288 14.0121 16.5949 17.1005 18.2610 k = 0.2950 0.0000-0.0571 ( 525 PWs) bands (ev): -4.7882 4.1498 7.7366 9.2808 11.2219 14.5614 15.9192 16.5758 17.7303 k = 0.2950 0.0000 0.2853 ( 522 PWs) bands (ev): -4.0360 2.3472 8.0024 9.9164 11.8784 11.9248 13.2232 17.3388 18.1940 k = 0.1475-0.2555 0.3995 ( 519 PWs) bands (ev): -3.3248 3.4960 6.1759 6.4418 8.0637 14.3237 16.7203 17.1116 17.6521 k = 0.5900 0.5110 0.0571 ( 510 PWs) bands (ev): -1.0183 0.2429 3.9126 5.8016 10.2888 13.9946 16.2375 19.8681 20.0872 k = 0.4425 0.2555 0.1712 ( 521 PWs) bands (ev): -2.8318 0.9061 5.8090 7.7148 11.1288 14.0121 16.5948 17.1006 18.2610 k = 0.0000 0.0000 0.5136 ( 522 PWs) bands (ev): -3.1781 1.6312 8.9877 8.9877 11.2057 11.3993 11.3993 13.1514 21.3720 k = 0.4425 0.7665 0.1712 ( 520 PWs) bands (ev): -1.3686 0.4989 4.3931 7.4239 8.8241 13.6713 15.1519 18.4072 20.3389 k = 0.2950 0.5110 0.2853 ( 510 PWs) bands (ev): -1.7757 2.0161 3.9183 5.8560 7.2753 14.1796 18.5886 19.3428 21.6749 k = 0.8850 0.0000-0.1712 ( 520 PWs) bands (ev): -1.3686 0.4989 4.3931 7.4238 8.8240 13.6713 15.1519 18.4073 20.3389 k = 0.7375-0.2555-0.0571 ( 510 PWs) bands (ev): -1.0183 0.2429 3.9126 5.8016 10.2888 13.9945 16.2375 19.8681 20.0872 k = 0.5900 0.0000 0.0571 ( 520 PWs) bands (ev): -2.2300 -0.6489 8.2187 8.6343 9.7454 13.3450 14.6560 16.6039 21.9442 the Fermi energy is 11.8653 ev ! total energy = -25.44104735 Ry Harris-Foulkes estimate = -25.44104737 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000339 0.00000000 -0.02044824 atom 2 type 1 force = 0.00000339 0.00000000 0.02044824 Total force = 0.028918 Total SCF correction = 0.000106 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 325.27 0.00204475 0.00000000 0.00000006 300.79 0.00 0.01 0.00000000 0.00204490 0.00000000 0.00 300.81 0.00 0.00000006 0.00000000 0.00254381 0.01 0.00 374.21 Entering Dynamics; it = 5 time = 0.02904 pico-seconds new lattice vectors (alat unit) : 0.560390401 0.000000000 0.734538215 -0.280194694 0.485313584 0.734537277 -0.280194694 -0.485313584 0.734537277 new unit-cell volume = 206.4737 (a.u.)^3 new positions in cryst coord As 0.249599228 0.249598744 0.249598744 As -0.249599228 -0.249598744 -0.249598744 new positions in cart coord (alat unit) As 0.000000524 0.000000000 0.550019335 As -0.000000524 0.000000000 -0.550019335 Ekin = 0.12667691 Ry T = 2942.2 K Etot = -24.60538504 CELL_PARAMETERS (alat) 0.560390401 0.000000000 0.734538215 -0.280194694 0.485313584 0.734537277 -0.280194694 -0.485313584 0.734537277 ATOMIC_POSITIONS (crystal) As 0.249599228 0.249598744 0.249598744 As -0.249599228 -0.249598744 -0.249598744 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000002 0.0000000 0.1701751), wk = 0.0625000 k( 2) = ( -0.1487063 -0.2575654 0.2836252), wk = 0.1250000 k( 3) = ( 0.2974120 0.5151309 -0.0567252), wk = 0.1250000 k( 4) = ( 0.1487059 0.2575654 0.0567250), wk = 0.1250000 k( 5) = ( -0.2974123 0.0000000 0.3970753), wk = 0.0625000 k( 6) = ( 0.1487059 0.7726963 0.0567250), wk = 0.1250000 k( 7) = ( -0.0000002 0.5151309 0.1701751), wk = 0.1250000 k( 8) = ( 0.5948241 0.0000000 -0.2836254), wk = 0.0625000 k( 9) = ( 0.4461180 -0.2575654 -0.1701753), wk = 0.1250000 k( 10) = ( 0.2974120 0.0000000 -0.0567252), wk = 0.0625000 k( 11) = ( 0.2974116 0.0000000 0.2836250), wk = 0.0625000 k( 12) = ( 0.1487055 -0.2575654 0.3970751), wk = 0.1250000 k( 13) = ( 0.5948237 0.5151309 0.0567248), wk = 0.1250000 k( 14) = ( 0.4461176 0.2575654 0.1701749), wk = 0.1250000 k( 15) = ( -0.0000006 0.0000000 0.5105253), wk = 0.0625000 k( 16) = ( 0.4461176 0.7726963 0.1701749), wk = 0.1250000 k( 17) = ( 0.2974116 0.5151309 0.2836250), wk = 0.1250000 k( 18) = ( 0.8922359 0.0000000 -0.1701755), wk = 0.0625000 k( 19) = ( 0.7435298 -0.2575654 -0.0567254), wk = 0.1250000 k( 20) = ( 0.5948237 0.0000000 0.0567248), wk = 0.0625000 extrapolated charge 9.89747, renormalised to 10.00000 total cpu time spent up to now is 14.89 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.0 total cpu time spent up to now is 15.77 secs k = 0.0000 0.0000 0.1702 band energies (ev): -5.2677 7.2290 9.1695 9.1696 11.5323 15.6075 15.6076 16.0659 17.6032 k =-0.1487-0.2576 0.2836 band energies (ev): -3.8857 2.5366 8.0229 10.9776 11.2056 12.1610 13.5417 17.9711 18.0259 k = 0.2974 0.5151-0.0567 band energies (ev): -2.0069 -0.5158 8.6211 8.7222 9.8619 13.2467 14.9977 16.4982 22.0713 k = 0.1487 0.2576 0.0567 band energies (ev): -4.6451 4.4210 8.0597 9.3348 11.4004 14.6283 16.6119 16.8959 17.0607 k =-0.2974 0.0000 0.3971 band energies (ev): -3.1623 3.5485 6.6380 6.7435 7.8490 14.8504 17.0339 17.5288 17.6572 k = 0.1487 0.7727 0.0567 band energies (ev): -0.7633 0.4138 4.0608 5.8038 10.4553 14.2374 16.5682 20.0559 20.5332 k = 0.0000 0.5151 0.1702 band energies (ev): -2.6524 1.1275 6.1194 7.6355 11.3956 13.8223 16.8778 17.5644 18.3284 k = 0.5948 0.0000-0.2836 band energies (ev): -1.5802 2.5383 3.6190 6.1451 7.3093 14.5364 18.7210 19.2819 21.9673 k = 0.4461-0.2576-0.1702 band energies (ev): -2.6524 1.1274 6.1195 7.6355 11.3956 13.8223 16.8778 17.5644 18.3284 k = 0.2974 0.0000-0.0567 band energies (ev): -4.6451 4.4210 8.0597 9.3348 11.4004 14.6283 16.6119 16.8959 17.0607 k = 0.2974 0.0000 0.2836 band energies (ev): -3.8857 2.5367 8.0229 10.9776 11.2055 12.1609 13.5417 17.9712 18.0259 k = 0.1487-0.2576 0.3971 band energies (ev): -3.1623 3.5486 6.6379 6.7435 7.8490 14.8504 17.0339 17.5289 17.6571 k = 0.5948 0.5151 0.0567 band energies (ev): -0.7633 0.4139 4.0608 5.8038 10.4553 14.2374 16.5683 20.0559 20.5331 k = 0.4461 0.2576 0.1702 band energies (ev): -2.6524 1.1275 6.1195 7.6354 11.3956 13.8223 16.8778 17.5645 18.3283 k = 0.0000 0.0000 0.5105 band energies (ev): -2.9891 1.4843 9.4554 9.4554 11.5171 11.5172 11.8828 13.2517 21.7069 k = 0.4461 0.7727 0.1702 band energies (ev): -0.9131 0.1767 4.6477 7.7635 9.0070 13.8661 15.7018 18.8043 20.7538 k = 0.2974 0.5151 0.2836 band energies (ev): -1.5803 2.5384 3.6190 6.1452 7.3093 14.5364 18.7210 19.2819 21.9672 k = 0.8922 0.0000-0.1702 band energies (ev): -0.9132 0.1768 4.6477 7.7635 9.0069 13.8661 15.7018 18.8044 20.7538 k = 0.7435-0.2576-0.0567 band energies (ev): -0.7633 0.4139 4.0608 5.8038 10.4553 14.2373 16.5682 20.0560 20.5331 k = 0.5948 0.0000 0.0567 band energies (ev): -2.0069 -0.5158 8.6210 8.7222 9.8618 13.2467 14.9977 16.4982 22.0713 the Fermi energy is 11.5341 ev total energy = -25.44089318 Ry Harris-Foulkes estimate = -25.36551848 Ry estimated scf accuracy < 0.00214388 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.14E-05, avg # of iterations = 1.0 total cpu time spent up to now is 16.08 secs k = 0.0000 0.0000 0.1702 band energies (ev): -5.2836 7.2237 9.1647 9.1647 11.5131 15.5976 15.5977 16.0351 17.5665 k =-0.1487-0.2576 0.2836 band energies (ev): -3.9008 2.5268 8.0047 10.9833 11.1835 12.1330 13.5241 17.9590 17.9817 k = 0.2974 0.5151-0.0567 band energies (ev): -2.0207 -0.5286 8.6094 8.7015 9.8339 13.2389 14.9750 16.4879 22.0436 k = 0.1487 0.2576 0.0567 band energies (ev): -4.6607 4.4148 8.0503 9.3119 11.3797 14.6241 16.6043 16.8616 17.0380 k =-0.2974 0.0000 0.3971 band energies (ev): -3.1765 3.5426 6.6168 6.7307 7.8269 14.8035 17.0267 17.5094 17.6448 k = 0.1487 0.7727 0.0567 band energies (ev): -0.7731 0.4033 4.0348 5.7813 10.4438 14.2228 16.5233 20.0515 20.5282 k = 0.0000 0.5151 0.1702 band energies (ev): -2.6666 1.1178 6.0981 7.6133 11.3839 13.8075 16.8660 17.5240 18.3163 k = 0.5948 0.0000-0.2836 band energies (ev): -1.5911 2.5334 3.5910 6.1313 7.2852 14.4903 18.7214 19.2677 21.9689 k = 0.4461-0.2576-0.1702 band energies (ev): -2.6666 1.1177 6.0981 7.6133 11.3839 13.8075 16.8660 17.5239 18.3163 k = 0.2974 0.0000-0.0567 band energies (ev): -4.6607 4.4148 8.0503 9.3119 11.3798 14.6241 16.6043 16.8616 17.0380 k = 0.2974 0.0000 0.2836 band energies (ev): -3.9008 2.5269 8.0047 10.9833 11.1835 12.1330 13.5241 17.9590 17.9817 k = 0.1487-0.2576 0.3971 band energies (ev): -3.1765 3.5426 6.6167 6.7307 7.8269 14.8035 17.0268 17.5095 17.6447 k = 0.5948 0.5151 0.0567 band energies (ev): -0.7732 0.4033 4.0348 5.7814 10.4439 14.2228 16.5234 20.0515 20.5281 k = 0.4461 0.2576 0.1702 band energies (ev): -2.6666 1.1178 6.0981 7.6133 11.3839 13.8075 16.8660 17.5240 18.3162 k = 0.0000 0.0000 0.5105 band energies (ev): -3.0035 1.4727 9.4459 9.4459 11.5045 11.5046 11.8492 13.2144 21.6677 k = 0.4461 0.7727 0.1702 band energies (ev): -0.9244 0.1657 4.6230 7.7500 8.9801 13.8610 15.6784 18.7898 20.7198 k = 0.2974 0.5151 0.2836 band energies (ev): -1.5911 2.5334 3.5910 6.1313 7.2852 14.4903 18.7214 19.2677 21.9689 k = 0.8922 0.0000-0.1702 band energies (ev): -0.9245 0.1658 4.6230 7.7500 8.9801 13.8610 15.6784 18.7899 20.7198 k = 0.7435-0.2576-0.0567 band energies (ev): -0.7732 0.4033 4.0348 5.7813 10.4439 14.2227 16.5233 20.0516 20.5281 k = 0.5948 0.0000 0.0567 band energies (ev): -2.0207 -0.5286 8.6094 8.7015 9.8338 13.2389 14.9750 16.4880 22.0436 the Fermi energy is 11.5192 ev total energy = -25.44092767 Ry Harris-Foulkes estimate = -25.44095364 Ry estimated scf accuracy < 0.00014660 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.47E-06, avg # of iterations = 1.0 total cpu time spent up to now is 16.39 secs k = 0.0000 0.0000 0.1702 band energies (ev): -5.2866 7.2176 9.1623 9.1623 11.5065 15.5955 15.5955 16.0287 17.5680 k =-0.1487-0.2576 0.2836 band energies (ev): -3.9039 2.5229 8.0017 10.9803 11.1823 12.1294 13.5192 17.9537 17.9838 k = 0.2974 0.5151-0.0567 band energies (ev): -2.0240 -0.5321 8.6079 8.6987 9.8303 13.2367 14.9714 16.4843 22.0432 k = 0.1487 0.2576 0.0567 band energies (ev): -4.6638 4.4102 8.0485 9.3077 11.3771 14.6188 16.6019 16.8619 17.0341 k =-0.2974 0.0000 0.3971 band energies (ev): -3.1798 3.5374 6.6150 6.7293 7.8239 14.8053 17.0242 17.5036 17.6398 k = 0.1487 0.7727 0.0567 band energies (ev): -0.7772 0.3994 4.0337 5.7794 10.4406 14.2190 16.5248 20.0461 20.5221 k = 0.0000 0.5151 0.1702 band energies (ev): -2.6698 1.1138 6.0962 7.6112 11.3799 13.8041 16.8630 17.5241 18.3126 k = 0.5948 0.0000-0.2836 band energies (ev): -1.5949 2.5284 3.5901 6.1300 7.2820 14.4921 18.7177 19.2608 21.9618 k = 0.4461-0.2576-0.1702 band energies (ev): -2.6698 1.1138 6.0963 7.6113 11.3799 13.8041 16.8630 17.5240 18.3126 k = 0.2974 0.0000-0.0567 band energies (ev): -4.6638 4.4102 8.0485 9.3077 11.3771 14.6188 16.6018 16.8620 17.0340 k = 0.2974 0.0000 0.2836 band energies (ev): -3.9039 2.5229 8.0017 10.9803 11.1823 12.1293 13.5192 17.9538 17.9838 k = 0.1487-0.2576 0.3971 band energies (ev): -3.1798 3.5375 6.6149 6.7294 7.8239 14.8053 17.0242 17.5037 17.6397 k = 0.5948 0.5151 0.0567 band energies (ev): -0.7772 0.3995 4.0337 5.7794 10.4406 14.2190 16.5248 20.0460 20.5220 k = 0.4461 0.2576 0.1702 band energies (ev): -2.6698 1.1138 6.0963 7.6112 11.3799 13.8042 16.8629 17.5241 18.3125 k = 0.0000 0.0000 0.5105 band energies (ev): -3.0068 1.4687 9.4441 9.4442 11.5029 11.5029 11.8445 13.2102 21.6656 k = 0.4461 0.7727 0.1702 band energies (ev): -0.9282 0.1617 4.6219 7.7487 8.9772 13.8584 15.6734 18.7858 20.7186 k = 0.2974 0.5151 0.2836 band energies (ev): -1.5950 2.5284 3.5901 6.1301 7.2820 14.4921 18.7177 19.2608 21.9618 k = 0.8922 0.0000-0.1702 band energies (ev): -0.9283 0.1617 4.6219 7.7487 8.9771 13.8584 15.6734 18.7859 20.7186 k = 0.7435-0.2576-0.0567 band energies (ev): -0.7772 0.3995 4.0337 5.7794 10.4406 14.2189 16.5248 20.0461 20.5220 k = 0.5948 0.0000 0.0567 band energies (ev): -2.0240 -0.5321 8.6078 8.6988 9.8302 13.2367 14.9714 16.4843 22.0432 the Fermi energy is 11.5159 ev total energy = -25.44093227 Ry Harris-Foulkes estimate = -25.44093253 Ry estimated scf accuracy < 0.00000110 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.10E-08, avg # of iterations = 3.0 total cpu time spent up to now is 16.84 secs End of self-consistent calculation k = 0.0000 0.0000 0.1702 ( 531 PWs) bands (ev): -5.2862 7.2183 9.1627 9.1627 11.5072 15.5958 15.5958 16.0294 17.5680 k =-0.1487-0.2576 0.2836 ( 522 PWs) bands (ev): -3.9035 2.5234 8.0021 10.9810 11.1823 12.1298 13.5198 17.9542 17.9838 k = 0.2974 0.5151-0.0567 ( 520 PWs) bands (ev): -2.0236 -0.5316 8.6082 8.6991 9.8308 13.2370 14.9719 16.4847 22.0434 k = 0.1487 0.2576 0.0567 ( 525 PWs) bands (ev): -4.6634 4.4108 8.0488 9.3082 11.3774 14.6194 16.6022 16.8621 17.0345 k =-0.2974 0.0000 0.3971 ( 519 PWs) bands (ev): -3.1794 3.5380 6.6153 6.7296 7.8243 14.8054 17.0245 17.5043 17.6403 k = 0.1487 0.7727 0.0567 ( 510 PWs) bands (ev): -0.7767 0.3999 4.0340 5.7797 10.4410 14.2194 16.5248 20.0466 20.5227 k = 0.0000 0.5151 0.1702 ( 521 PWs) bands (ev): -2.6694 1.1143 6.0966 7.6116 11.3804 13.8046 16.8634 17.5242 18.3130 k = 0.5948 0.0000-0.2836 ( 510 PWs) bands (ev): -1.5944 2.5290 3.5903 6.1303 7.2824 14.4921 18.7182 19.2615 21.9625 k = 0.4461-0.2576-0.1702 ( 521 PWs) bands (ev): -2.6694 1.1143 6.0966 7.6116 11.3804 13.8046 16.8634 17.5242 18.3130 k = 0.2974 0.0000-0.0567 ( 525 PWs) bands (ev): -4.6634 4.4107 8.0488 9.3082 11.3775 14.6194 16.6021 16.8622 17.0344 k = 0.2974 0.0000 0.2836 ( 522 PWs) bands (ev): -3.9035 2.5234 8.0021 10.9810 11.1823 12.1298 13.5198 17.9543 17.9838 k = 0.1487-0.2576 0.3971 ( 519 PWs) bands (ev): -3.1794 3.5380 6.6153 6.7296 7.8243 14.8053 17.0245 17.5043 17.6402 k = 0.5948 0.5151 0.0567 ( 510 PWs) bands (ev): -0.7767 0.3999 4.0340 5.7798 10.4411 14.2195 16.5249 20.0466 20.5226 k = 0.4461 0.2576 0.1702 ( 521 PWs) bands (ev): -2.6694 1.1143 6.0966 7.6116 11.3804 13.8046 16.8633 17.5242 18.3129 k = 0.0000 0.0000 0.5105 ( 522 PWs) bands (ev): -3.0064 1.4691 9.4445 9.4445 11.5032 11.5032 11.8450 13.2107 21.6660 k = 0.4461 0.7727 0.1702 ( 520 PWs) bands (ev): -0.9277 0.1621 4.6222 7.7490 8.9776 13.8587 15.6740 18.7863 20.7189 k = 0.2974 0.5151 0.2836 ( 510 PWs) bands (ev): -1.5945 2.5290 3.5903 6.1303 7.2825 14.4921 18.7182 19.2615 21.9625 k = 0.8922 0.0000-0.1702 ( 520 PWs) bands (ev): -0.9278 0.1622 4.6222 7.7490 8.9776 13.8587 15.6740 18.7864 20.7189 k = 0.7435-0.2576-0.0567 ( 510 PWs) bands (ev): -0.7767 0.4000 4.0340 5.7797 10.4411 14.2194 16.5249 20.0467 20.5226 k = 0.5948 0.0000 0.0567 ( 520 PWs) bands (ev): -2.0235 -0.5316 8.6081 8.6991 9.8307 13.2370 14.9718 16.4848 22.0434 the Fermi energy is 11.5163 ev ! total energy = -25.44093308 Ry Harris-Foulkes estimate = -25.44093311 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000003 0.00000000 0.00123362 atom 2 type 1 force = 0.00000003 0.00000000 -0.00123362 Total force = 0.001745 Total SCF correction = 0.000128 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 312.45 0.00189639 0.00000000 -0.00000001 278.97 0.00 0.00 0.00000000 0.00189637 0.00000000 0.00 278.97 0.00 -0.00000001 0.00000000 0.00257925 0.00 0.00 379.42 Entering Dynamics; it = 6 time = 0.03630 pico-seconds new lattice vectors (alat unit) : 0.546101163 0.000000000 0.743594908 -0.273050333 0.472938684 0.743593460 -0.273050333 -0.472938684 0.743593460 new unit-cell volume = 198.4959 (a.u.)^3 new positions in cryst coord As 0.254805571 0.254806644 0.254806644 As -0.254805571 -0.254806644 -0.254806644 new positions in cart coord (alat unit) As -0.000000459 0.000000000 0.568417233 As 0.000000459 0.000000000 -0.568417233 Ekin = 0.12161431 Ry T = 3207.1 K Etot = -24.61752888 CELL_PARAMETERS (alat) 0.546101163 0.000000000 0.743594908 -0.273050333 0.472938684 0.743593460 -0.273050333 -0.472938684 0.743593460 ATOMIC_POSITIONS (crystal) As 0.254805571 0.254806644 0.254806644 As -0.254805571 -0.254806644 -0.254806644 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000003 0.0000000 0.1681025), wk = 0.0625000 k( 2) = ( -0.1525974 -0.2643049 0.2801709), wk = 0.1250000 k( 3) = ( 0.3051940 0.5286098 -0.0560342), wk = 0.1250000 k( 4) = ( 0.1525968 0.2643049 0.0560341), wk = 0.1250000 k( 5) = ( -0.3051945 0.0000000 0.3922392), wk = 0.0625000 k( 6) = ( 0.1525968 0.7929146 0.0560341), wk = 0.1250000 k( 7) = ( -0.0000003 0.5286098 0.1681025), wk = 0.1250000 k( 8) = ( 0.6103882 0.0000000 -0.2801710), wk = 0.0625000 k( 9) = ( 0.4577911 -0.2643049 -0.1681026), wk = 0.1250000 k( 10) = ( 0.3051940 0.0000000 -0.0560342), wk = 0.0625000 k( 11) = ( 0.3051934 0.0000000 0.2801708), wk = 0.0625000 k( 12) = ( 0.1525962 -0.2643049 0.3922391), wk = 0.1250000 k( 13) = ( 0.6103876 0.5286098 0.0560340), wk = 0.1250000 k( 14) = ( 0.4577905 0.2643049 0.1681024), wk = 0.1250000 k( 15) = ( -0.0000009 0.0000000 0.5043075), wk = 0.0625000 k( 16) = ( 0.4577905 0.7929146 0.1681024), wk = 0.1250000 k( 17) = ( 0.3051934 0.5286098 0.2801708), wk = 0.1250000 k( 18) = ( 0.9155819 0.0000000 -0.1681027), wk = 0.0625000 k( 19) = ( 0.7629847 -0.2643049 -0.0560343), wk = 0.1250000 k( 20) = ( 0.6103876 0.0000000 0.0560340), wk = 0.0625000 extrapolated charge 9.59810, renormalised to 10.00000 total cpu time spent up to now is 17.13 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.5 total cpu time spent up to now is 17.92 secs k = 0.0000 0.0000 0.1681 band energies (ev): -5.0086 7.7616 10.0023 10.0023 12.4799 16.4052 16.4053 17.0287 18.5646 k =-0.1526-0.2643 0.2802 band energies (ev): -3.5892 3.2041 8.2308 11.4155 12.2723 13.0747 14.6363 18.6041 19.0911 k = 0.3052 0.5286-0.0560 band energies (ev): -1.5593 -0.0594 9.0014 9.2656 10.6768 13.9544 15.8517 16.9547 22.2724 k = 0.1526 0.2643 0.0560 band energies (ev): -4.3336 5.1692 8.7933 9.8631 11.9494 15.5364 17.0915 17.2985 18.1193 k =-0.3052 0.0000 0.3922 band energies (ev): -2.8769 4.0377 7.1751 7.5039 8.4969 15.4519 18.0827 18.8194 19.0661 k = 0.1526 0.7929 0.0560 band energies (ev): -0.3665 0.9988 4.5466 6.1117 11.1111 15.2528 17.4559 20.9750 21.6435 k = 0.0000 0.5286 0.1681 band energies (ev): -2.2489 1.7231 6.5780 8.1514 11.8687 14.3666 17.7895 18.4600 19.3948 k = 0.6104 0.0000-0.2802 band energies (ev): -1.1397 2.9945 4.0797 6.8515 7.8386 14.9319 19.5964 20.4417 23.1215 k = 0.4578-0.2643-0.1681 band energies (ev): -2.2488 1.7230 6.5781 8.1515 11.8686 14.3666 17.7895 18.4600 19.3947 k = 0.3052 0.0000-0.0560 band energies (ev): -4.3336 5.1691 8.7933 9.8631 11.9495 15.5364 17.0915 17.2984 18.1193 k = 0.3052 0.0000 0.2802 band energies (ev): -3.5892 3.2042 8.2307 11.4155 12.2722 13.0747 14.6363 18.6042 19.0910 k = 0.1526-0.2643 0.3922 band energies (ev): -2.8769 4.0378 7.1751 7.5039 8.4969 15.4519 18.0827 18.8195 19.0661 k = 0.6104 0.5286 0.0560 band energies (ev): -0.3666 0.9988 4.5466 6.1117 11.1111 15.2528 17.4559 20.9749 21.6434 k = 0.4578 0.2643 0.1681 band energies (ev): -2.2489 1.7230 6.5781 8.1514 11.8687 14.3667 17.7895 18.4600 19.3947 k = 0.0000 0.0000 0.5043 band energies (ev): -2.7834 1.7349 10.3143 10.3143 12.4342 12.4343 13.1076 14.5782 22.5590 k = 0.4578 0.7929 0.1681 band energies (ev): -0.7198 0.6181 5.1775 8.5037 9.9351 14.8782 17.0690 20.0716 21.2042 k = 0.3052 0.5286 0.2802 band energies (ev): -1.1397 2.9946 4.0797 6.8515 7.8387 14.9319 19.5964 20.4417 23.1214 k = 0.9156 0.0000-0.1681 band energies (ev): -0.7199 0.6181 5.1775 8.5037 9.9351 14.8782 17.0690 20.0717 21.2042 k = 0.7630-0.2643-0.0560 band energies (ev): -0.3666 0.9988 4.5466 6.1117 11.1111 15.2527 17.4559 20.9750 21.6434 k = 0.6104 0.0000 0.0560 band energies (ev): -1.5593 -0.0594 9.0014 9.2655 10.6767 13.9543 15.8517 16.9548 22.2724 the Fermi energy is 12.4648 ev total energy = -25.42247156 Ry Harris-Foulkes estimate = -25.12116838 Ry estimated scf accuracy < 0.00062568 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.26E-06, avg # of iterations = 2.5 total cpu time spent up to now is 18.35 secs k = 0.0000 0.0000 0.1681 band energies (ev): -5.0721 7.7496 9.9672 9.9672 12.4555 16.3456 16.3457 16.9524 18.4022 k =-0.1526-0.2643 0.2802 band energies (ev): -3.6499 3.1681 8.1586 11.3734 12.2151 12.9890 14.5850 18.5498 18.9233 k = 0.3052 0.5286-0.0560 band energies (ev): -1.6148 -0.1100 8.9220 9.2007 10.5947 13.9051 15.7711 16.8985 22.1399 k = 0.1526 0.2643 0.0560 band energies (ev): -4.3959 5.1461 8.7381 9.8056 11.8730 15.5167 16.9433 17.2480 18.0378 k =-0.3052 0.0000 0.3922 band energies (ev): -2.9339 4.0182 7.0854 7.4357 8.4283 15.2530 18.0399 18.7636 19.0525 k = 0.1526 0.7929 0.0560 band energies (ev): -0.4056 0.9597 4.4392 6.0199 11.0635 15.2063 17.2721 20.9564 21.6181 k = 0.0000 0.5286 0.1681 band energies (ev): -2.3054 1.6861 6.4887 8.0652 11.8283 14.3046 17.6940 18.3421 19.3477 k = 0.6104 0.0000-0.2802 band energies (ev): -1.1812 2.9637 3.9781 6.7785 7.7663 14.7323 19.5812 20.4201 23.1425 k = 0.4578-0.2643-0.1681 band energies (ev): -2.3054 1.6861 6.4887 8.0652 11.8282 14.3046 17.6940 18.3420 19.3476 k = 0.3052 0.0000-0.0560 band energies (ev): -4.3959 5.1461 8.7381 9.8055 11.8730 15.5167 16.9433 17.2480 18.0378 k = 0.3052 0.0000 0.2802 band energies (ev): -3.6499 3.1682 8.1585 11.3734 12.2151 12.9889 14.5850 18.5499 18.9233 k = 0.1526-0.2643 0.3922 band energies (ev): -2.9340 4.0183 7.0853 7.4357 8.4283 15.2530 18.0399 18.7636 19.0524 k = 0.6104 0.5286 0.0560 band energies (ev): -0.4056 0.9597 4.4392 6.0199 11.0636 15.2063 17.2722 20.9564 21.6180 k = 0.4578 0.2643 0.1681 band energies (ev): -2.3054 1.6861 6.4887 8.0652 11.8283 14.3047 17.6940 18.3420 19.3476 k = 0.0000 0.0000 0.5043 band energies (ev): -2.8418 1.6902 10.2601 10.2601 12.3689 12.3690 13.0082 14.4802 22.4268 k = 0.4578 0.7929 0.1681 band energies (ev): -0.7685 0.5794 5.0737 8.4326 9.8477 14.8457 17.0088 20.0112 21.0787 k = 0.3052 0.5286 0.2802 band energies (ev): -1.1813 2.9638 3.9781 6.7786 7.7663 14.7323 19.5812 20.4201 23.1424 k = 0.9156 0.0000-0.1681 band energies (ev): -0.7685 0.5794 5.0737 8.4325 9.8476 14.8457 17.0088 20.0113 21.0787 k = 0.7630-0.2643-0.0560 band energies (ev): -0.4056 0.9597 4.4392 6.0199 11.0636 15.2062 17.2722 20.9564 21.6181 k = 0.6104 0.0000 0.0560 band energies (ev): -1.6148 -0.1100 8.9220 9.2007 10.5947 13.9051 15.7711 16.8986 22.1399 the Fermi energy is 12.4158 ev total energy = -25.42289405 Ry Harris-Foulkes estimate = -25.42293811 Ry estimated scf accuracy < 0.00012125 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.21E-06, avg # of iterations = 1.0 total cpu time spent up to now is 18.64 secs k = 0.0000 0.0000 0.1681 band energies (ev): -5.0817 7.7357 9.9565 9.9565 12.4410 16.3365 16.3366 16.9409 18.4026 k =-0.1526-0.2643 0.2802 band energies (ev): -3.6597 3.1565 8.1503 11.3616 12.2081 12.9808 14.5738 18.5391 18.9223 k = 0.3052 0.5286-0.0560 band energies (ev): -1.6250 -0.1203 8.9143 9.1923 10.5865 13.8960 15.7623 16.8887 22.1366 k = 0.1526 0.2643 0.0560 band energies (ev): -4.4055 5.1331 8.7291 9.7954 11.8652 15.5032 16.9404 17.2385 18.0296 k =-0.3052 0.0000 0.3922 band energies (ev): -2.9441 4.0052 7.0774 7.4279 8.4208 15.2546 18.0294 18.7505 19.0399 k = 0.1526 0.7929 0.0560 band energies (ev): -0.4175 0.9483 4.4342 6.0136 11.0535 15.1953 17.2728 20.9427 21.6039 k = 0.0000 0.5286 0.1681 band energies (ev): -2.3155 1.6744 6.4815 8.0589 11.8173 14.2954 17.6880 18.3354 19.3373 k = 0.6104 0.0000-0.2802 band energies (ev): -1.1927 2.9498 3.9743 6.7711 7.7578 14.7341 19.5684 20.4058 23.1244 k = 0.4578-0.2643-0.1681 band energies (ev): -2.3155 1.6743 6.4815 8.0589 11.8172 14.2955 17.6881 18.3354 19.3373 k = 0.3052 0.0000-0.0560 band energies (ev): -4.4055 5.1331 8.7291 9.7954 11.8653 15.5032 16.9404 17.2385 18.0296 k = 0.3052 0.0000 0.2802 band energies (ev): -3.6597 3.1566 8.1503 11.3616 12.2081 12.9807 14.5738 18.5392 18.9223 k = 0.1526-0.2643 0.3922 band energies (ev): -2.9441 4.0053 7.0773 7.4279 8.4209 15.2546 18.0295 18.7505 19.0399 k = 0.6104 0.5286 0.0560 band energies (ev): -0.4176 0.9483 4.4342 6.0137 11.0536 15.1953 17.2729 20.9427 21.6039 k = 0.4578 0.2643 0.1681 band energies (ev): -2.3155 1.6744 6.4816 8.0589 11.8173 14.2955 17.6880 18.3354 19.3372 k = 0.0000 0.0000 0.5043 band energies (ev): -2.8520 1.6798 10.2508 10.2508 12.3610 12.3611 12.9979 14.4741 22.4213 k = 0.4578 0.7929 0.1681 band energies (ev): -0.7805 0.5694 5.0681 8.4249 9.8401 14.8348 16.9974 20.0018 21.0732 k = 0.3052 0.5286 0.2802 band energies (ev): -1.1927 2.9498 3.9742 6.7712 7.7578 14.7341 19.5684 20.4058 23.1243 k = 0.9156 0.0000-0.1681 band energies (ev): -0.7805 0.5694 5.0681 8.4249 9.8401 14.8348 16.9974 20.0019 21.0732 k = 0.7630-0.2643-0.0560 band energies (ev): -0.4176 0.9484 4.4342 6.0136 11.0536 15.1952 17.2728 20.9427 21.6039 k = 0.6104 0.0000 0.0560 band energies (ev): -1.6250 -0.1203 8.9143 9.1923 10.5865 13.8960 15.7623 16.8887 22.1365 the Fermi energy is 12.4053 ev total energy = -25.42289323 Ry Harris-Foulkes estimate = -25.42289872 Ry estimated scf accuracy < 0.00001403 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.40E-07, avg # of iterations = 1.9 total cpu time spent up to now is 18.95 secs k = 0.0000 0.0000 0.1681 band energies (ev): -5.0864 7.7286 9.9512 9.9512 12.4337 16.3319 16.3320 16.9356 18.4026 k =-0.1526-0.2643 0.2802 band energies (ev): -3.6645 3.1507 8.1462 11.3568 12.2034 12.9766 14.5681 18.5337 18.9219 k = 0.3052 0.5286-0.0560 band energies (ev): -1.6301 -0.1256 8.9104 9.1883 10.5823 13.8911 15.7579 16.8836 22.1348 k = 0.1526 0.2643 0.0560 band energies (ev): -4.4103 5.1266 8.7247 9.7903 11.8612 15.4964 16.9393 17.2335 18.0252 k =-0.3052 0.0000 0.3922 band energies (ev): -2.9491 3.9985 7.0739 7.4240 8.4164 15.2556 18.0241 18.7445 19.0329 k = 0.1526 0.7929 0.0560 band energies (ev): -0.4234 0.9425 4.4316 6.0104 11.0483 15.1897 17.2733 20.9357 21.5971 k = 0.0000 0.5286 0.1681 band energies (ev): -2.3205 1.6685 6.4782 8.0553 11.8117 14.2906 17.6850 18.3324 19.3318 k = 0.6104 0.0000-0.2802 band energies (ev): -1.1984 2.9436 3.9714 6.7674 7.7534 14.7352 19.5617 20.3984 23.1152 k = 0.4578-0.2643-0.1681 band energies (ev): -2.3205 1.6685 6.4782 8.0554 11.8117 14.2907 17.6850 18.3324 19.3318 k = 0.3052 0.0000-0.0560 band energies (ev): -4.4103 5.1266 8.7247 9.7902 11.8613 15.4964 16.9394 17.2335 18.0252 k = 0.3052 0.0000 0.2802 band energies (ev): -3.6645 3.1507 8.1461 11.3568 12.2033 12.9766 14.5681 18.5338 18.9219 k = 0.1526-0.2643 0.3922 band energies (ev): -2.9491 3.9985 7.0739 7.4240 8.4165 15.2556 18.0241 18.7445 19.0328 k = 0.6104 0.5286 0.0560 band energies (ev): -0.4234 0.9426 4.4316 6.0104 11.0484 15.1897 17.2733 20.9356 21.5970 k = 0.4578 0.2643 0.1681 band energies (ev): -2.3205 1.6685 6.4782 8.0553 11.8117 14.2907 17.6850 18.3324 19.3317 k = 0.0000 0.0000 0.5043 band energies (ev): -2.8569 1.6743 10.2463 10.2463 12.3568 12.3569 12.9935 14.4703 22.4187 k = 0.4578 0.7929 0.1681 band energies (ev): -0.7859 0.5636 5.0654 8.4211 9.8362 14.8292 16.9918 19.9968 21.0707 k = 0.3052 0.5286 0.2802 band energies (ev): -1.1984 2.9436 3.9714 6.7675 7.7534 14.7352 19.5617 20.3984 23.1152 k = 0.9156 0.0000-0.1681 band energies (ev): -0.7859 0.5637 5.0654 8.4211 9.8362 14.8292 16.9918 19.9969 21.0707 k = 0.7630-0.2643-0.0560 band energies (ev): -0.4234 0.9426 4.4316 6.0104 11.0484 15.1897 17.2733 20.9357 21.5970 k = 0.6104 0.0000 0.0560 band energies (ev): -1.6301 -0.1256 8.9104 9.1883 10.5823 13.8911 15.7579 16.8836 22.1348 the Fermi energy is 12.3999 ev total energy = -25.42289479 Ry Harris-Foulkes estimate = -25.42289483 Ry estimated scf accuracy < 0.00000012 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.20E-09, avg # of iterations = 3.0 total cpu time spent up to now is 19.35 secs End of self-consistent calculation k = 0.0000 0.0000 0.1681 ( 531 PWs) bands (ev): -5.0861 7.7290 9.9515 9.9515 12.4342 16.3322 16.3322 16.9360 18.4025 k =-0.1526-0.2643 0.2802 ( 522 PWs) bands (ev): -3.6642 3.1510 8.1464 11.3571 12.2037 12.9769 14.5685 18.5340 18.9219 k = 0.3052 0.5286-0.0560 ( 520 PWs) bands (ev): -1.6298 -0.1252 8.9106 9.1885 10.5826 13.8914 15.7582 16.8839 22.1350 k = 0.1526 0.2643 0.0560 ( 525 PWs) bands (ev): -4.4100 5.1271 8.7250 9.7906 11.8615 15.4968 16.9394 17.2338 18.0255 k =-0.3052 0.0000 0.3922 ( 519 PWs) bands (ev): -2.9488 3.9989 7.0741 7.4242 8.4167 15.2555 18.0244 18.7448 19.0334 k = 0.1526 0.7929 0.0560 ( 510 PWs) bands (ev): -0.4230 0.9429 4.4318 6.0106 11.0487 15.1901 17.2732 20.9361 21.5975 k = 0.0000 0.5286 0.1681 ( 521 PWs) bands (ev): -2.3202 1.6689 6.4784 8.0556 11.8121 14.2909 17.6852 18.3326 19.3322 k = 0.6104 0.0000-0.2802 ( 510 PWs) bands (ev): -1.1980 2.9439 3.9716 6.7677 7.7537 14.7351 19.5622 20.3989 23.1158 k = 0.4578-0.2643-0.1681 ( 521 PWs) bands (ev): -2.3202 1.6689 6.4784 8.0556 11.8120 14.2910 17.6852 18.3326 19.3321 k = 0.3052 0.0000-0.0560 ( 525 PWs) bands (ev): -4.4100 5.1270 8.7249 9.7906 11.8615 15.4968 16.9394 17.2338 18.0255 k = 0.3052 0.0000 0.2802 ( 522 PWs) bands (ev): -3.6642 3.1511 8.1464 11.3571 12.2036 12.9768 14.5685 18.5341 18.9219 k = 0.1526-0.2643 0.3922 ( 519 PWs) bands (ev): -2.9488 3.9990 7.0741 7.4242 8.4168 15.2555 18.0245 18.7449 19.0333 k = 0.6104 0.5286 0.0560 ( 510 PWs) bands (ev): -0.4230 0.9429 4.4318 6.0106 11.0487 15.1901 17.2733 20.9361 21.5974 k = 0.4578 0.2643 0.1681 ( 521 PWs) bands (ev): -2.3202 1.6689 6.4784 8.0556 11.8121 14.2910 17.6852 18.3326 19.3321 k = 0.0000 0.0000 0.5043 ( 522 PWs) bands (ev): -2.8566 1.6746 10.2466 10.2466 12.3571 12.3571 12.9937 14.4706 22.4189 k = 0.4578 0.7929 0.1681 ( 520 PWs) bands (ev): -0.7856 0.5640 5.0655 8.4213 9.8365 14.8296 16.9922 19.9972 21.0709 k = 0.3052 0.5286 0.2802 ( 510 PWs) bands (ev): -1.1981 2.9440 3.9716 6.7677 7.7537 14.7351 19.5622 20.3989 23.1157 k = 0.9156 0.0000-0.1681 ( 520 PWs) bands (ev): -0.7856 0.5641 5.0655 8.4213 9.8364 14.8296 16.9922 19.9972 21.0709 k = 0.7630-0.2643-0.0560 ( 510 PWs) bands (ev): -0.4230 0.9430 4.4318 6.0106 11.0487 15.1900 17.2733 20.9362 21.5975 k = 0.6104 0.0000 0.0560 ( 520 PWs) bands (ev): -1.6298 -0.1252 8.9107 9.1885 10.5826 13.8914 15.7582 16.8840 22.1349 the Fermi energy is 12.4002 ev ! total energy = -25.42289492 Ry Harris-Foulkes estimate = -25.42289493 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000028 0.00000000 -0.01856199 atom 2 type 1 force = 0.00000028 0.00000000 0.01856199 Total force = 0.026251 Total SCF correction = 0.000033 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 400.46 0.00262567 0.00000000 -0.00000001 386.25 0.00 0.00 0.00000000 0.00262567 0.00000000 0.00 386.25 0.00 -0.00000001 0.00000000 0.00291550 0.00 0.00 428.88 Entering Dynamics; it = 7 time = 0.04356 pico-seconds new lattice vectors (alat unit) : 0.524159274 0.000000000 0.739831978 -0.262079892 0.453936495 0.739830942 -0.262079892 -0.453936495 0.739830942 new unit-cell volume = 181.9403 (a.u.)^3 new positions in cryst coord As 0.254417392 0.254418489 0.254418489 As -0.254417392 -0.254418489 -0.254418489 new positions in cart coord (alat unit) As -0.000000705 0.000000000 0.564679463 As 0.000000705 0.000000000 -0.564679463 Ekin = 0.01462353 Ry T = 2758.1 K Etot = -24.73359756 CELL_PARAMETERS (alat) 0.524159274 0.000000000 0.739831978 -0.262079892 0.453936495 0.739830942 -0.262079892 -0.453936495 0.739830942 ATOMIC_POSITIONS (crystal) As 0.254417392 0.254418489 0.254418489 As -0.254417392 -0.254418489 -0.254418489 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000002 0.0000000 0.1689574), wk = 0.0625000 k( 2) = ( -0.1589851 -0.2753689 0.2815957), wk = 0.1250000 k( 3) = ( 0.3179695 0.5507378 -0.0563191), wk = 0.1250000 k( 4) = ( 0.1589846 0.2753689 0.0563192), wk = 0.1250000 k( 5) = ( -0.3179699 0.0000000 0.3942340), wk = 0.0625000 k( 6) = ( 0.1589846 0.8261067 0.0563192), wk = 0.1250000 k( 7) = ( -0.0000002 0.5507378 0.1689574), wk = 0.1250000 k( 8) = ( 0.6359392 0.0000000 -0.2815956), wk = 0.0625000 k( 9) = ( 0.4769543 -0.2753689 -0.1689573), wk = 0.1250000 k( 10) = ( 0.3179695 0.0000000 -0.0563191), wk = 0.0625000 k( 11) = ( 0.3179690 0.0000000 0.2815958), wk = 0.0625000 k( 12) = ( 0.1589842 -0.2753689 0.3942341), wk = 0.1250000 k( 13) = ( 0.6359387 0.5507378 0.0563193), wk = 0.1250000 k( 14) = ( 0.4769539 0.2753689 0.1689575), wk = 0.1250000 k( 15) = ( -0.0000007 0.0000000 0.5068723), wk = 0.0625000 k( 16) = ( 0.4769539 0.8261067 0.1689575), wk = 0.1250000 k( 17) = ( 0.3179690 0.5507378 0.2815958), wk = 0.1250000 k( 18) = ( 0.9539084 0.0000000 -0.1689572), wk = 0.0625000 k( 19) = ( 0.7949236 -0.2753689 -0.0563190), wk = 0.1250000 k( 20) = ( 0.6359387 0.0000000 0.0563193), wk = 0.0625000 extrapolated charge 9.09009, renormalised to 10.00000 total cpu time spent up to now is 19.62 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.5 total cpu time spent up to now is 20.35 secs k = 0.0000 0.0000 0.1690 band energies (ev): -4.3530 9.1097 11.7412 11.7412 14.9519 18.3243 18.3244 19.2050 20.3598 k =-0.1590-0.2754 0.2816 band energies (ev): -2.8384 4.6414 9.1828 13.0697 13.9584 15.0062 16.9989 20.4664 21.2913 k = 0.3180 0.5507-0.0563 band energies (ev): -0.5605 0.9979 10.0796 10.7488 12.3966 15.6015 17.9309 18.5530 23.5985 k = 0.1590 0.2754 0.0563 band energies (ev): -3.5989 6.8181 10.3474 11.2201 13.4331 17.6178 18.4945 19.0905 20.1610 k =-0.3180 0.0000 0.3942 band energies (ev): -2.0992 5.2930 8.5199 9.0074 9.9900 16.9486 20.3118 21.3740 21.9000 k = 0.1590 0.8261 0.0563 band energies (ev): 0.6824 2.2730 5.6166 7.0568 12.7144 17.3481 19.3360 23.1224 23.8784 k = 0.0000 0.5507 0.1690 band energies (ev): -1.3284 3.0503 7.7427 9.3964 13.2982 15.8780 19.7171 20.7447 21.7159 k = 0.6359 0.0000-0.2816 band energies (ev): -0.0851 4.2617 5.0686 8.2666 9.1896 16.2069 21.6677 22.8653 25.6668 k = 0.4770-0.2754-0.1690 band energies (ev): -1.3284 3.0503 7.7427 9.3964 13.2982 15.8780 19.7171 20.7447 21.7158 k = 0.3180 0.0000-0.0563 band energies (ev): -3.5989 6.8181 10.3473 11.2201 13.4332 17.6178 18.4945 19.0904 20.1610 k = 0.3180 0.0000 0.2816 band energies (ev): -2.8384 4.6415 9.1828 13.0697 13.9583 15.0061 16.9988 20.4665 21.2913 k = 0.1590-0.2754 0.3942 band energies (ev): -2.0992 5.2931 8.5199 9.0074 9.9900 16.9486 20.3118 21.3741 21.8999 k = 0.6359 0.5507 0.0563 band energies (ev): 0.6823 2.2730 5.6166 7.0569 12.7144 17.3481 19.3361 23.1224 23.8784 k = 0.4770 0.2754 0.1690 band energies (ev): -1.3284 3.0503 7.7427 9.3964 13.2982 15.8780 19.7171 20.7447 21.7158 k = 0.0000 0.0000 0.5069 band energies (ev): -2.0811 2.6053 12.0742 12.0742 14.2491 14.2491 15.6214 17.0583 24.7195 k = 0.4770 0.8261 0.1690 band energies (ev): 0.1282 1.6099 6.3573 10.0282 11.7870 16.9252 19.7910 22.2814 23.2227 k = 0.3180 0.5507 0.2816 band energies (ev): -0.0851 4.2617 5.0686 8.2666 9.1897 16.2069 21.6677 22.8654 25.6667 k = 0.9539 0.0000-0.1690 band energies (ev): 0.1282 1.6099 6.3573 10.0282 11.7870 16.9252 19.7910 22.2814 23.2228 k = 0.7949-0.2754-0.0563 band energies (ev): 0.6823 2.2730 5.6166 7.0568 12.7144 17.3480 19.3361 23.1224 23.8784 k = 0.6359 0.0000 0.0563 band energies (ev): -0.5604 0.9979 10.0796 10.7488 12.3966 15.6015 17.9309 18.5530 23.5985 the Fermi energy is 14.3064 ev total energy = -25.36345709 Ry Harris-Foulkes estimate = -24.65535387 Ry estimated scf accuracy < 0.00144093 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.44E-05, avg # of iterations = 3.2 total cpu time spent up to now is 20.84 secs k = 0.0000 0.0000 0.1690 band energies (ev): -4.5364 9.0051 11.6270 11.6271 14.8821 18.1519 18.1519 18.9856 19.9910 k =-0.1590-0.2754 0.2816 band energies (ev): -3.0167 4.5125 8.9756 12.9530 13.7712 14.7855 16.8241 20.2987 20.9228 k = 0.3180 0.5507-0.0563 band energies (ev): -0.7268 0.8356 9.8632 10.5699 12.1901 15.4400 17.7051 18.3500 23.2660 k = 0.1590 0.2754 0.0563 band energies (ev): -3.7803 6.7121 10.1874 11.0729 13.2212 17.4406 18.1597 18.9258 19.9636 k =-0.3180 0.0000 0.3942 band energies (ev): -2.2706 5.1771 8.3046 8.8205 9.8029 16.4889 20.1766 21.2223 21.8318 k = 0.1590 0.8261 0.0563 band energies (ev): 0.5491 2.1374 5.3494 6.8113 12.5593 17.2168 18.9227 22.9742 23.6262 k = 0.0000 0.5507 0.1690 band energies (ev): -1.4987 2.9197 7.5174 9.1605 13.1583 15.6875 19.3808 20.5584 21.5639 k = 0.6359 0.0000-0.2816 band energies (ev): -0.2233 4.1365 4.8037 8.0696 9.0112 15.7395 21.5765 22.7655 25.6516 k = 0.4770-0.2754-0.1690 band energies (ev): -1.4987 2.9196 7.5174 9.1605 13.1583 15.6875 19.3808 20.5584 21.5638 k = 0.3180 0.0000-0.0563 band energies (ev): -3.7803 6.7121 10.1874 11.0728 13.2212 17.4406 18.1597 18.9257 19.9635 k = 0.3180 0.0000 0.2816 band energies (ev): -3.0167 4.5125 8.9755 12.9530 13.7711 14.7854 16.8240 20.2988 20.9227 k = 0.1590-0.2754 0.3942 band energies (ev): -2.2706 5.1771 8.3046 8.8205 9.8030 16.4889 20.1766 21.2223 21.8317 k = 0.6359 0.5507 0.0563 band energies (ev): 0.5491 2.1374 5.3494 6.8113 12.5593 17.2169 18.9228 22.9742 23.6262 k = 0.4770 0.2754 0.1690 band energies (ev): -1.4987 2.9196 7.5174 9.1605 13.1583 15.6875 19.3808 20.5583 21.5638 k = 0.0000 0.0000 0.5069 band energies (ev): -2.2534 2.4422 11.9215 11.9215 14.0637 14.0638 15.3870 16.7876 24.4308 k = 0.4770 0.8261 0.1690 band energies (ev): -0.0158 1.4497 6.1031 9.8358 11.5648 16.8147 19.6290 21.9700 23.0508 k = 0.3180 0.5507 0.2816 band energies (ev): -0.2234 4.1365 4.8037 8.0696 9.0112 15.7395 21.5765 22.7655 25.6515 k = 0.9539 0.0000-0.1690 band energies (ev): -0.0158 1.4497 6.1031 9.8357 11.5647 16.8147 19.6290 21.9700 23.0509 k = 0.7949-0.2754-0.0563 band energies (ev): 0.5491 2.1374 5.3494 6.8113 12.5593 17.2168 18.9227 22.9742 23.6262 k = 0.6359 0.0000 0.0563 band energies (ev): -0.7268 0.8356 9.8632 10.5698 12.1901 15.4400 17.7051 18.3500 23.2660 the Fermi energy is 14.1210 ev total energy = -25.36524880 Ry Harris-Foulkes estimate = -25.36537593 Ry estimated scf accuracy < 0.00033556 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.36E-06, avg # of iterations = 1.0 total cpu time spent up to now is 21.14 secs k = 0.0000 0.0000 0.1690 band energies (ev): -4.5507 8.9872 11.6088 11.6088 14.8605 18.1365 18.1366 18.9715 19.9911 k =-0.1590-0.2754 0.2816 band energies (ev): -3.0313 4.4953 8.9640 12.9297 13.7637 14.7745 16.8093 20.2834 20.9192 k = 0.3180 0.5507-0.0563 band energies (ev): -0.7423 0.8205 9.8522 10.5553 12.1786 15.4263 17.6931 18.3373 23.2614 k = 0.1590 0.2754 0.0563 band energies (ev): -3.7947 6.6929 10.1721 11.0579 13.2102 17.4273 18.1526 18.9112 19.9507 k =-0.3180 0.0000 0.3942 band energies (ev): -2.2857 5.1598 8.2905 8.8072 9.7924 16.4914 20.1593 21.2056 21.8106 k = 0.1590 0.8261 0.0563 band energies (ev): 0.5311 2.1206 5.3412 6.8025 12.5444 17.2000 18.9225 22.9584 23.6145 k = 0.0000 0.5507 0.1690 band energies (ev): -1.5137 2.9021 7.5054 9.1522 13.1421 15.6749 19.3764 20.5425 21.5481 k = 0.6359 0.0000-0.2816 band energies (ev): -0.2406 4.1134 4.8013 8.0569 8.9980 15.7425 21.5567 22.7462 25.6255 k = 0.4770-0.2754-0.1690 band energies (ev): -1.5137 2.9021 7.5054 9.1522 13.1421 15.6749 19.3764 20.5425 21.5480 k = 0.3180 0.0000-0.0563 band energies (ev): -3.7947 6.6929 10.1721 11.0579 13.2102 17.4273 18.1526 18.9112 19.9507 k = 0.3180 0.0000 0.2816 band energies (ev): -3.0313 4.4954 8.9640 12.9297 13.7636 14.7744 16.8093 20.2834 20.9192 k = 0.1590-0.2754 0.3942 band energies (ev): -2.2858 5.1599 8.2905 8.8072 9.7924 16.4914 20.1594 21.2056 21.8105 k = 0.6359 0.5507 0.0563 band energies (ev): 0.5310 2.1206 5.3412 6.8025 12.5444 17.2000 18.9225 22.9584 23.6145 k = 0.4770 0.2754 0.1690 band energies (ev): -1.5137 2.9021 7.5054 9.1522 13.1421 15.6750 19.3764 20.5424 21.5480 k = 0.0000 0.0000 0.5069 band energies (ev): -2.2689 2.4284 11.9051 11.9051 14.0511 14.0511 15.3732 16.7818 24.4216 k = 0.4770 0.8261 0.1690 band energies (ev): -0.0351 1.4377 6.0936 9.8225 11.5539 16.7968 19.6127 21.9651 23.0337 k = 0.3180 0.5507 0.2816 band energies (ev): -0.2406 4.1134 4.8013 8.0569 8.9981 15.7425 21.5567 22.7462 25.6255 k = 0.9539 0.0000-0.1690 band energies (ev): -0.0351 1.4377 6.0936 9.8225 11.5538 16.7969 19.6127 21.9651 23.0338 k = 0.7949-0.2754-0.0563 band energies (ev): 0.5310 2.1206 5.3412 6.8025 12.5444 17.2000 18.9225 22.9584 23.6145 k = 0.6359 0.0000 0.0563 band energies (ev): -0.7423 0.8205 9.8522 10.5553 12.1786 15.4263 17.6930 18.3373 23.2614 the Fermi energy is 14.1084 ev total energy = -25.36523540 Ry Harris-Foulkes estimate = -25.36526122 Ry estimated scf accuracy < 0.00005716 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.72E-07, avg # of iterations = 1.1 total cpu time spent up to now is 21.43 secs k = 0.0000 0.0000 0.1690 band energies (ev): -4.5597 8.9753 11.5973 11.5973 14.8466 18.1271 18.1271 18.9644 19.9895 k =-0.1590-0.2754 0.2816 band energies (ev): -3.0405 4.4842 8.9565 12.9179 13.7555 14.7672 16.7998 20.2734 20.9173 k = 0.3180 0.5507-0.0563 band energies (ev): -0.7519 0.8107 9.8449 10.5464 12.1709 15.4167 17.6855 18.3288 23.2582 k = 0.1590 0.2754 0.0563 band energies (ev): -3.8037 6.6808 10.1625 11.0479 13.2027 17.4188 18.1486 18.9014 19.9421 k =-0.3180 0.0000 0.3942 band energies (ev): -2.2952 5.1482 8.2829 8.7987 9.7840 16.4934 20.1483 21.1952 21.7965 k = 0.1590 0.8261 0.0563 band energies (ev): 0.5200 2.1097 5.3360 6.7965 12.5344 17.1891 18.9225 22.9481 23.6079 k = 0.0000 0.5507 0.1690 band energies (ev): -1.5232 2.8911 7.4984 9.1458 13.1317 15.6664 19.3738 20.5329 21.5375 k = 0.6359 0.0000-0.2816 band energies (ev): -0.2514 4.1020 4.7960 8.0489 8.9892 15.7447 21.5437 22.7335 25.6087 k = 0.4770-0.2754-0.1690 band energies (ev): -1.5232 2.8910 7.4984 9.1458 13.1316 15.6664 19.3738 20.5329 21.5374 k = 0.3180 0.0000-0.0563 band energies (ev): -3.8037 6.6808 10.1625 11.0479 13.2027 17.4188 18.1487 18.9014 19.9420 k = 0.3180 0.0000 0.2816 band energies (ev): -3.0405 4.4843 8.9564 12.9179 13.7554 14.7672 16.7997 20.2735 20.9172 k = 0.1590-0.2754 0.3942 band energies (ev): -2.2952 5.1483 8.2829 8.7987 9.7840 16.4934 20.1483 21.1953 21.7964 k = 0.6359 0.5507 0.0563 band energies (ev): 0.5200 2.1097 5.3360 6.7965 12.5344 17.1891 18.9226 22.9481 23.6079 k = 0.4770 0.2754 0.1690 band energies (ev): -1.5232 2.8910 7.4984 9.1458 13.1316 15.6665 19.3738 20.5328 21.5374 k = 0.0000 0.0000 0.5069 band energies (ev): -2.2783 2.4188 11.8952 11.8952 14.0425 14.0426 15.3661 16.7763 24.4160 k = 0.4770 0.8261 0.1690 band energies (ev): -0.0457 1.4279 6.0877 9.8142 11.5466 16.7851 19.6027 21.9613 23.0237 k = 0.3180 0.5507 0.2816 band energies (ev): -0.2514 4.1020 4.7960 8.0489 8.9892 15.7447 21.5437 22.7335 25.6087 k = 0.9539 0.0000-0.1690 band energies (ev): -0.0457 1.4280 6.0877 9.8142 11.5466 16.7851 19.6027 21.9613 23.0237 k = 0.7949-0.2754-0.0563 band energies (ev): 0.5200 2.1097 5.3360 6.7965 12.5344 17.1890 18.9226 22.9481 23.6079 k = 0.6359 0.0000 0.0563 band energies (ev): -0.7519 0.8107 9.8450 10.5464 12.1709 15.4167 17.6855 18.3288 23.2582 the Fermi energy is 14.0998 ev total energy = -25.36523961 Ry Harris-Foulkes estimate = -25.36523996 Ry estimated scf accuracy < 0.00000082 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.16E-09, avg # of iterations = 3.0 total cpu time spent up to now is 21.86 secs k = 0.0000 0.0000 0.1690 band energies (ev): -4.5613 8.9733 11.5953 11.5953 14.8443 18.1254 18.1255 18.9631 19.9894 k =-0.1590-0.2754 0.2816 band energies (ev): -3.0421 4.4824 8.9552 12.9158 13.7543 14.7660 16.7982 20.2718 20.9169 k = 0.3180 0.5507-0.0563 band energies (ev): -0.7536 0.8091 9.8437 10.5449 12.1696 15.4151 17.6843 18.3274 23.2577 k = 0.1590 0.2754 0.0563 band energies (ev): -3.8053 6.6788 10.1609 11.0463 13.2014 17.4173 18.1480 18.8998 19.9407 k =-0.3180 0.0000 0.3942 band energies (ev): -2.2968 5.1463 8.2816 8.7973 9.7827 16.4937 20.1464 21.1935 21.7942 k = 0.1590 0.8261 0.0563 band energies (ev): 0.5181 2.1079 5.3351 6.7955 12.5327 17.1873 18.9225 22.9463 23.6067 k = 0.0000 0.5507 0.1690 band energies (ev): -1.5248 2.8892 7.4972 9.1447 13.1299 15.6650 19.3733 20.5312 21.5357 k = 0.6359 0.0000-0.2816 band energies (ev): -0.2532 4.0999 4.7953 8.0475 8.9877 15.7450 21.5416 22.7314 25.6060 k = 0.4770-0.2754-0.1690 band energies (ev): -1.5248 2.8892 7.4972 9.1448 13.1299 15.6650 19.3733 20.5312 21.5357 k = 0.3180 0.0000-0.0563 band energies (ev): -3.8053 6.6788 10.1609 11.0463 13.2015 17.4173 18.1480 18.8998 19.9406 k = 0.3180 0.0000 0.2816 band energies (ev): -3.0421 4.4824 8.9552 12.9158 13.7542 14.7660 16.7982 20.2718 20.9169 k = 0.1590-0.2754 0.3942 band energies (ev): -2.2968 5.1463 8.2815 8.7973 9.7827 16.4937 20.1464 21.1935 21.7941 k = 0.6359 0.5507 0.0563 band energies (ev): 0.5181 2.1079 5.3351 6.7955 12.5328 17.1873 18.9226 22.9463 23.6067 k = 0.4770 0.2754 0.1690 band energies (ev): -1.5248 2.8892 7.4972 9.1447 13.1299 15.6650 19.3733 20.5312 21.5357 k = 0.0000 0.0000 0.5069 band energies (ev): -2.2799 2.4172 11.8934 11.8935 14.0411 14.0411 15.3648 16.7755 24.4151 k = 0.4770 0.8261 0.1690 band energies (ev): -0.0476 1.4264 6.0867 9.8128 11.5454 16.7831 19.6010 21.9607 23.0220 k = 0.3180 0.5507 0.2816 band energies (ev): -0.2533 4.0999 4.7953 8.0475 8.9878 15.7450 21.5416 22.7315 25.6059 k = 0.9539 0.0000-0.1690 band energies (ev): -0.0476 1.4265 6.0867 9.8128 11.5454 16.7831 19.6010 21.9607 23.0220 k = 0.7949-0.2754-0.0563 band energies (ev): 0.5181 2.1079 5.3351 6.7955 12.5328 17.1872 18.9225 22.9464 23.6067 k = 0.6359 0.0000 0.0563 band energies (ev): -0.7535 0.8091 9.8437 10.5449 12.1696 15.4151 17.6842 18.3274 23.2577 the Fermi energy is 14.0984 ev total energy = -25.36524052 Ry Harris-Foulkes estimate = -25.36524055 Ry estimated scf accuracy < 0.00000022 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.15E-09, avg # of iterations = 1.0 total cpu time spent up to now is 22.14 secs k = 0.0000 0.0000 0.1690 band energies (ev): -4.5612 8.9734 11.5954 11.5954 14.8444 18.1255 18.1256 18.9632 19.9893 k =-0.1590-0.2754 0.2816 band energies (ev): -3.0420 4.4825 8.9552 12.9159 13.7543 14.7661 16.7983 20.2719 20.9169 k = 0.3180 0.5507-0.0563 band energies (ev): -0.7535 0.8092 9.8438 10.5450 12.1697 15.4152 17.6843 18.3274 23.2577 k = 0.1590 0.2754 0.0563 band energies (ev): -3.8052 6.6789 10.1610 11.0464 13.2015 17.4174 18.1480 18.8999 19.9408 k =-0.3180 0.0000 0.3942 band energies (ev): -2.2967 5.1464 8.2816 8.7973 9.7827 16.4937 20.1465 21.1936 21.7943 k = 0.1590 0.8261 0.0563 band energies (ev): 0.5182 2.1080 5.3351 6.7955 12.5328 17.1874 18.9225 22.9464 23.6067 k = 0.0000 0.5507 0.1690 band energies (ev): -1.5247 2.8893 7.4973 9.1448 13.1300 15.6651 19.3733 20.5313 21.5358 k = 0.6359 0.0000-0.2816 band energies (ev): -0.2531 4.1000 4.7953 8.0475 8.9878 15.7450 21.5417 22.7316 25.6061 k = 0.4770-0.2754-0.1690 band energies (ev): -1.5247 2.8893 7.4973 9.1448 13.1300 15.6651 19.3733 20.5313 21.5358 k = 0.3180 0.0000-0.0563 band energies (ev): -3.8052 6.6789 10.1610 11.0464 13.2015 17.4174 18.1480 18.8999 19.9407 k = 0.3180 0.0000 0.2816 band energies (ev): -3.0420 4.4825 8.9552 12.9159 13.7543 14.7660 16.7982 20.2719 20.9169 k = 0.1590-0.2754 0.3942 band energies (ev): -2.2967 5.1464 8.2816 8.7974 9.7827 16.4937 20.1465 21.1936 21.7942 k = 0.6359 0.5507 0.0563 band energies (ev): 0.5182 2.1080 5.3351 6.7955 12.5329 17.1874 18.9225 22.9464 23.6067 k = 0.4770 0.2754 0.1690 band energies (ev): -1.5247 2.8893 7.4973 9.1448 13.1300 15.6651 19.3733 20.5313 21.5358 k = 0.0000 0.0000 0.5069 band energies (ev): -2.2798 2.4173 11.8935 11.8935 14.0412 14.0412 15.3649 16.7756 24.4152 k = 0.4770 0.8261 0.1690 band energies (ev): -0.0475 1.4265 6.0868 9.8129 11.5455 16.7832 19.6011 21.9607 23.0221 k = 0.3180 0.5507 0.2816 band energies (ev): -0.2532 4.1000 4.7953 8.0476 8.9878 15.7450 21.5417 22.7316 25.6061 k = 0.9539 0.0000-0.1690 band energies (ev): -0.0475 1.4265 6.0868 9.8129 11.5454 16.7832 19.6010 21.9607 23.0221 k = 0.7949-0.2754-0.0563 band energies (ev): 0.5182 2.1080 5.3351 6.7955 12.5329 17.1873 18.9225 22.9465 23.6067 k = 0.6359 0.0000 0.0563 band energies (ev): -0.7535 0.8092 9.8438 10.5449 12.1697 15.4152 17.6843 18.3275 23.2577 the Fermi energy is 14.0985 ev total energy = -25.36524045 Ry Harris-Foulkes estimate = -25.36524052 Ry estimated scf accuracy < 0.00000015 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.51E-09, avg # of iterations = 1.0 total cpu time spent up to now is 22.45 secs End of self-consistent calculation k = 0.0000 0.0000 0.1690 ( 531 PWs) bands (ev): -4.5607 8.9740 11.5960 11.5960 14.8452 18.1260 18.1261 18.9636 19.9893 k =-0.1590-0.2754 0.2816 ( 522 PWs) bands (ev): -3.0415 4.4830 8.9556 12.9166 13.7547 14.7664 16.7988 20.2724 20.9170 k = 0.3180 0.5507-0.0563 ( 520 PWs) bands (ev): -0.7530 0.8097 9.8441 10.5454 12.1701 15.4157 17.6847 18.3279 23.2578 k = 0.1590 0.2754 0.0563 ( 525 PWs) bands (ev): -3.8047 6.6795 10.1615 11.0469 13.2018 17.4179 18.1482 18.9004 19.9412 k =-0.3180 0.0000 0.3942 ( 519 PWs) bands (ev): -2.2962 5.1470 8.2820 8.7978 9.7831 16.4935 20.1471 21.1941 21.7950 k = 0.1590 0.8261 0.0563 ( 510 PWs) bands (ev): 0.5188 2.1085 5.3353 6.7958 12.5333 17.1879 18.9224 22.9470 23.6070 k = 0.0000 0.5507 0.1690 ( 521 PWs) bands (ev): -1.5243 2.8899 7.4976 9.1450 13.1305 15.6655 19.3734 20.5319 21.5364 k = 0.6359 0.0000-0.2816 ( 510 PWs) bands (ev): -0.2526 4.1007 4.7955 8.0479 8.9882 15.7448 21.5424 22.7322 25.6071 k = 0.4770-0.2754-0.1690 ( 521 PWs) bands (ev): -1.5242 2.8898 7.4976 9.1451 13.1305 15.6655 19.3734 20.5318 21.5363 k = 0.3180 0.0000-0.0563 ( 525 PWs) bands (ev): -3.8047 6.6795 10.1614 11.0468 13.2019 17.4179 18.1482 18.9004 19.9411 k = 0.3180 0.0000 0.2816 ( 522 PWs) bands (ev): -3.0415 4.4831 8.9556 12.9166 13.7546 14.7664 16.7987 20.2725 20.9169 k = 0.1590-0.2754 0.3942 ( 519 PWs) bands (ev): -2.2963 5.1470 8.2820 8.7978 9.7831 16.4935 20.1471 21.1942 21.7950 k = 0.6359 0.5507 0.0563 ( 510 PWs) bands (ev): 0.5188 2.1086 5.3353 6.7958 12.5334 17.1880 18.9225 22.9470 23.6071 k = 0.4770 0.2754 0.1690 ( 521 PWs) bands (ev): -1.5243 2.8899 7.4976 9.1450 13.1305 15.6655 19.3734 20.5318 21.5363 k = 0.0000 0.0000 0.5069 ( 522 PWs) bands (ev): -2.2794 2.4178 11.8941 11.8941 14.0416 14.0416 15.3652 16.7758 24.4154 k = 0.4770 0.8261 0.1690 ( 520 PWs) bands (ev): -0.0469 1.4270 6.0870 9.8133 11.5458 16.7838 19.6016 21.9609 23.0226 k = 0.3180 0.5507 0.2816 ( 510 PWs) bands (ev): -0.2526 4.1007 4.7954 8.0480 8.9883 15.7448 21.5424 22.7323 25.6070 k = 0.9539 0.0000-0.1690 ( 520 PWs) bands (ev): -0.0469 1.4270 6.0870 9.8133 11.5458 16.7838 19.6016 21.9609 23.0227 k = 0.7949-0.2754-0.0563 ( 510 PWs) bands (ev): 0.5188 2.1086 5.3353 6.7958 12.5334 17.1879 18.9224 22.9470 23.6071 k = 0.6359 0.0000 0.0563 ( 520 PWs) bands (ev): -0.7530 0.8097 9.8441 10.5454 12.1700 15.4157 17.6847 18.3279 23.2578 the Fermi energy is 14.0989 ev ! total energy = -25.36524046 Ry Harris-Foulkes estimate = -25.36524046 Ry estimated scf accuracy < 5.6E-11 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000120 0.00000000 -0.02489591 atom 2 type 1 force = -0.00000120 0.00000000 0.02489591 Total force = 0.035208 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 657.98 0.00450974 0.00000000 -0.00000003 663.41 0.00 0.00 0.00000000 0.00450970 0.00000000 0.00 663.40 0.00 -0.00000003 0.00000000 0.00439909 0.00 0.00 647.13 Entering Dynamics; it = 8 time = 0.05082 pico-seconds new lattice vectors (alat unit) : 0.537046064 0.000000000 0.757148462 -0.268523455 0.465096832 0.757147856 -0.268523455 -0.465096832 0.757147856 new unit-cell volume = 195.4671 (a.u.)^3 new positions in cryst coord As 0.253511684 0.253512700 0.253512700 As -0.253511684 -0.253512700 -0.253512700 new positions in cart coord (alat unit) As -0.000000760 0.000000000 0.575839176 As 0.000000760 0.000000000 -0.575839176 Ekin = 0.01367989 Ry T = 2432.7 K Etot = -24.73315780 CELL_PARAMETERS (alat) 0.537046064 0.000000000 0.757148462 -0.268523455 0.465096832 0.757147856 -0.268523455 -0.465096832 0.757147856 ATOMIC_POSITIONS (crystal) As 0.253511684 0.253512700 0.253512700 As -0.253511684 -0.253512700 -0.253512700 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1650932), wk = 0.0625000 k( 2) = ( -0.1551699 -0.2687612 0.2751553), wk = 0.1250000 k( 3) = ( 0.3103395 0.5375225 -0.0550310), wk = 0.1250000 k( 4) = ( 0.1551697 0.2687612 0.0550311), wk = 0.1250000 k( 5) = ( -0.3103397 0.0000000 0.3852174), wk = 0.0625000 k( 6) = ( 0.1551697 0.8062837 0.0550311), wk = 0.1250000 k( 7) = ( -0.0000001 0.5375225 0.1650932), wk = 0.1250000 k( 8) = ( 0.6206791 0.0000000 -0.2751551), wk = 0.0625000 k( 9) = ( 0.4655093 -0.2687612 -0.1650930), wk = 0.1250000 k( 10) = ( 0.3103395 0.0000000 -0.0550310), wk = 0.0625000 k( 11) = ( 0.3103392 0.0000000 0.2751555), wk = 0.0625000 k( 12) = ( 0.1551694 -0.2687612 0.3852175), wk = 0.1250000 k( 13) = ( 0.6206789 0.5375225 0.0550313), wk = 0.1250000 k( 14) = ( 0.4655090 0.2687612 0.1650934), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.4952796), wk = 0.0625000 k( 16) = ( 0.4655090 0.8062837 0.1650934), wk = 0.1250000 k( 17) = ( 0.3103392 0.5375225 0.2751555), wk = 0.1250000 k( 18) = ( 0.9310185 0.0000000 -0.1650929), wk = 0.0625000 k( 19) = ( 0.7758487 -0.2687612 -0.0550308), wk = 0.1250000 k( 20) = ( 0.6206789 0.0000000 0.0550313), wk = 0.0625000 extrapolated charge 10.69200, renormalised to 10.00000 total cpu time spent up to now is 22.73 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.7 total cpu time spent up to now is 23.44 secs k = 0.0000 0.0000 0.1651 band energies (ev): -5.1456 7.5782 10.3313 10.3313 12.8251 16.5415 16.5415 17.3351 18.2884 k =-0.1552-0.2688 0.2752 band energies (ev): -3.7023 3.3511 7.8567 11.6919 12.3000 13.2365 14.9000 18.4617 19.2354 k = 0.3103 0.5375-0.0550 band energies (ev): -1.5417 -0.0725 8.6736 9.3860 10.7635 13.9607 15.8997 16.5607 21.4991 k = 0.1552 0.2688 0.0550 band energies (ev): -4.4285 5.3989 9.0008 9.7267 11.8427 15.5536 16.6484 17.2556 18.0948 k =-0.3103 0.0000 0.3852 band energies (ev): -3.0008 3.9343 7.2012 7.7185 8.4851 15.1600 18.4247 19.2771 19.6793 k = 0.1552 0.8063 0.0550 band energies (ev): -0.3803 1.1049 4.4338 5.8110 11.1158 15.5366 17.4350 20.9996 21.8176 k = 0.0000 0.5375 0.1651 band energies (ev): -2.2734 1.8493 6.4885 7.9833 11.7220 14.1182 17.7609 18.6552 19.6451 k = 0.6207 0.0000-0.2752 band energies (ev): -1.1189 3.0673 3.8011 7.0151 7.7521 14.4499 19.7183 20.7015 23.3996 k = 0.4655-0.2688-0.1651 band energies (ev): -2.2734 1.8493 6.4885 7.9833 11.7220 14.1182 17.7609 18.6552 19.6451 k = 0.3103 0.0000-0.0550 band energies (ev): -4.4285 5.3989 9.0008 9.7266 11.8427 15.5536 16.6484 17.2556 18.0947 k = 0.3103 0.0000 0.2752 band energies (ev): -3.7023 3.3511 7.8567 11.6919 12.3000 13.2365 14.8999 18.4617 19.2354 k = 0.1552-0.2688 0.3852 band energies (ev): -3.0008 3.9343 7.2012 7.7185 8.4851 15.1600 18.4247 19.2771 19.6792 k = 0.6207 0.5375 0.0550 band energies (ev): -0.3803 1.1049 4.4338 5.8110 11.1158 15.5366 17.4351 20.9996 21.8176 k = 0.4655 0.2688 0.1651 band energies (ev): -2.2734 1.8493 6.4885 7.9833 11.7220 14.1182 17.7609 18.6552 19.6451 k = 0.0000 0.0000 0.4953 band energies (ev): -2.9717 1.4409 10.6453 10.6453 12.6685 12.6686 13.5807 14.9690 22.4194 k = 0.4655 0.8063 0.1651 band energies (ev): -0.8506 0.4417 5.1470 8.6872 10.1376 15.2337 17.6570 20.2329 21.1339 k = 0.3103 0.5375 0.2752 band energies (ev): -1.1190 3.0673 3.8011 7.0151 7.7521 14.4499 19.7183 20.7015 23.3995 k = 0.9310 0.0000-0.1651 band energies (ev): -0.8506 0.4417 5.1470 8.6872 10.1376 15.2337 17.6570 20.2329 21.1340 k = 0.7758-0.2688-0.0550 band energies (ev): -0.3803 1.1049 4.4338 5.8110 11.1158 15.5366 17.4350 20.9996 21.8176 k = 0.6207 0.0000 0.0550 band energies (ev): -1.5417 -0.0725 8.6736 9.3859 10.7635 13.9606 15.8996 16.5607 21.4991 the Fermi energy is 12.7319 ev total energy = -25.41437059 Ry Harris-Foulkes estimate = -25.94627852 Ry estimated scf accuracy < 0.00038581 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.86E-06, avg # of iterations = 3.3 total cpu time spent up to now is 23.97 secs k = 0.0000 0.0000 0.1651 band energies (ev): -5.0287 7.6256 10.4006 10.4006 12.8576 16.6509 16.6509 17.4646 18.5738 k =-0.1552-0.2688 0.2752 band energies (ev): -3.5899 3.4219 7.9945 11.7642 12.4203 13.3836 15.0018 18.5654 19.5082 k = 0.3103 0.5375-0.0550 band energies (ev): -1.4391 0.0253 8.8184 9.5044 10.9001 14.0614 16.0464 16.6857 21.7377 k = 0.1552 0.2688 0.0550 band energies (ev): -4.3136 5.4514 9.1041 9.8202 11.9832 15.6178 16.9325 17.3584 18.2221 k =-0.3103 0.0000 0.3852 band energies (ev): -2.8940 3.9917 7.3508 7.8419 8.6066 15.4948 18.5062 19.3669 19.7085 k = 0.1552 0.8063 0.0550 band energies (ev): -0.3030 1.1813 4.6187 5.9779 11.2138 15.6160 17.7349 21.0645 21.9742 k = 0.0000 0.5375 0.1651 band energies (ev): -2.1680 1.9227 6.6428 8.1409 11.8091 14.2406 17.9539 18.8210 19.7356 k = 0.6207 0.0000-0.2752 band energies (ev): -1.0384 3.1230 3.9941 7.1462 7.8712 14.7901 19.7662 20.7531 23.3890 k = 0.4655-0.2688-0.1651 band energies (ev): -2.1680 1.9226 6.6429 8.1409 11.8091 14.2406 17.9539 18.8209 19.7356 k = 0.3103 0.0000-0.0550 band energies (ev): -4.3136 5.4514 9.1041 9.8202 11.9832 15.6178 16.9326 17.3584 18.2220 k = 0.3103 0.0000 0.2752 band energies (ev): -3.5899 3.4219 7.9945 11.7642 12.4202 13.3835 15.0018 18.5655 19.5082 k = 0.1552-0.2688 0.3852 band energies (ev): -2.8940 3.9917 7.3508 7.8419 8.6066 15.4948 18.5062 19.3670 19.7085 k = 0.6207 0.5375 0.0550 band energies (ev): -0.3031 1.1814 4.6187 5.9779 11.2138 15.6160 17.7349 21.0645 21.9742 k = 0.4655 0.2688 0.1651 band energies (ev): -2.1680 1.9227 6.6429 8.1409 11.8091 14.2407 17.9538 18.8209 19.7355 k = 0.0000 0.0000 0.4953 band energies (ev): -2.8634 1.5364 10.7441 10.7441 12.7882 12.7882 13.7337 15.1466 22.6318 k = 0.4655 0.8063 0.1651 band energies (ev): -0.7621 0.5324 5.3229 8.8152 10.2857 15.2979 17.7545 20.4287 21.2598 k = 0.3103 0.5375 0.2752 band energies (ev): -1.0384 3.1230 3.9941 7.1463 7.8712 14.7901 19.7662 20.7531 23.3890 k = 0.9310 0.0000-0.1651 band energies (ev): -0.7621 0.5324 5.3229 8.8152 10.2856 15.2979 17.7545 20.4287 21.2598 k = 0.7758-0.2688-0.0550 band energies (ev): -0.3030 1.1814 4.6187 5.9779 11.2138 15.6159 17.7349 21.0646 21.9742 k = 0.6207 0.0000 0.0550 band energies (ev): -1.4391 0.0253 8.8184 9.5044 10.9000 14.0614 16.0464 16.6857 21.7378 the Fermi energy is 12.8283 ev total energy = -25.41545382 Ry Harris-Foulkes estimate = -25.41555974 Ry estimated scf accuracy < 0.00032448 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.24E-06, avg # of iterations = 1.0 total cpu time spent up to now is 24.26 secs k = 0.0000 0.0000 0.1651 band energies (ev): -5.0173 7.6412 10.4142 10.4142 12.8753 16.6624 16.6625 17.4774 18.5727 k =-0.1552-0.2688 0.2752 band energies (ev): -3.5782 3.4360 8.0037 11.7803 12.4276 13.3930 15.0147 18.5779 19.5100 k = 0.3103 0.5375-0.0550 band energies (ev): -1.4268 0.0376 8.8272 9.5150 10.9099 14.0725 16.0565 16.6965 21.7409 k = 0.1552 0.2688 0.0550 band energies (ev): -4.3021 5.4670 9.1155 9.8324 11.9923 15.6331 16.9335 17.3700 18.2325 k =-0.3103 0.0000 0.3852 band energies (ev): -2.8819 4.0065 7.3607 7.8518 8.6158 15.4923 18.5196 19.3816 19.7253 k = 0.1552 0.8063 0.0550 band energies (ev): -0.2888 1.1951 4.6249 5.9850 11.2257 15.6294 17.7344 21.0801 21.9863 k = 0.0000 0.5375 0.1651 band energies (ev): -2.1559 1.9368 6.6515 8.1482 11.8218 14.2510 17.9613 18.8290 19.7486 k = 0.6207 0.0000-0.2752 band energies (ev): -1.0246 3.1401 3.9979 7.1556 7.8816 14.7872 19.7817 20.7694 23.4099 k = 0.4655-0.2688-0.1651 band energies (ev): -2.1559 1.9368 6.6516 8.1482 11.8218 14.2510 17.9613 18.8290 19.7486 k = 0.3103 0.0000-0.0550 band energies (ev): -4.3021 5.4670 9.1154 9.8323 11.9923 15.6331 16.9335 17.3700 18.2325 k = 0.3103 0.0000 0.2752 band energies (ev): -3.5782 3.4360 8.0037 11.7803 12.4276 13.3929 15.0147 18.5779 19.5100 k = 0.1552-0.2688 0.3852 band energies (ev): -2.8819 4.0066 7.3606 7.8518 8.6158 15.4922 18.5196 19.3816 19.7252 k = 0.6207 0.5375 0.0550 band energies (ev): -0.2888 1.1952 4.6249 5.9850 11.2257 15.6294 17.7344 21.0801 21.9863 k = 0.4655 0.2688 0.1651 band energies (ev): -2.1559 1.9368 6.6515 8.1482 11.8218 14.2511 17.9613 18.8290 19.7485 k = 0.0000 0.0000 0.4953 band energies (ev): -2.8512 1.5483 10.7561 10.7561 12.7981 12.7981 13.7452 15.1535 22.6383 k = 0.4655 0.8063 0.1651 band energies (ev): -0.7477 0.5438 5.3300 8.8249 10.2948 15.3117 17.7682 20.4352 21.2711 k = 0.3103 0.5375 0.2752 band energies (ev): -1.0246 3.1402 3.9979 7.1557 7.8817 14.7872 19.7817 20.7694 23.4099 k = 0.9310 0.0000-0.1651 band energies (ev): -0.7477 0.5438 5.3300 8.8249 10.2947 15.3117 17.7682 20.4352 21.2711 k = 0.7758-0.2688-0.0550 band energies (ev): -0.2888 1.1952 4.6249 5.9850 11.2257 15.6294 17.7344 21.0801 21.9863 k = 0.6207 0.0000 0.0550 band energies (ev): -1.4268 0.0376 8.8272 9.5149 10.9098 14.0725 16.0565 16.6966 21.7409 the Fermi energy is 12.8413 ev total energy = -25.41541953 Ry Harris-Foulkes estimate = -25.41546050 Ry estimated scf accuracy < 0.00009407 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.41E-07, avg # of iterations = 1.0 total cpu time spent up to now is 24.56 secs k = 0.0000 0.0000 0.1651 band energies (ev): -5.0077 7.6546 10.4258 10.4258 12.8902 16.6724 16.6724 17.4870 18.5727 k =-0.1552-0.2688 0.2752 band energies (ev): -3.5683 3.4482 8.0116 11.7923 12.4360 13.4010 15.0258 18.5887 19.5114 k = 0.3103 0.5375-0.0550 band energies (ev): -1.4164 0.0483 8.8348 9.5239 10.9183 14.0825 16.0651 16.7061 21.7438 k = 0.1552 0.2688 0.0550 band energies (ev): -4.2924 5.4803 9.1252 9.8428 12.0002 15.6463 16.9338 17.3803 18.2419 k =-0.3103 0.0000 0.3852 band energies (ev): -2.8716 4.0195 7.3683 7.8604 8.6245 15.4899 18.5312 19.3935 19.7402 k = 0.1552 0.8063 0.0550 band energies (ev): -0.2768 1.2070 4.6303 5.9913 11.2360 15.6410 17.7339 21.0935 21.9958 k = 0.0000 0.5375 0.1651 band energies (ev): -2.1457 1.9489 6.6586 8.1551 11.8327 14.2602 17.9677 18.8356 19.7601 k = 0.6207 0.0000-0.2752 band energies (ev): -1.0129 3.1535 4.0025 7.1638 7.8907 14.7846 19.7953 20.7834 23.4279 k = 0.4655-0.2688-0.1651 band energies (ev): -2.1456 1.9489 6.6586 8.1551 11.8327 14.2602 17.9677 18.8355 19.7601 k = 0.3103 0.0000-0.0550 band energies (ev): -4.2924 5.4803 9.1252 9.8428 12.0003 15.6463 16.9339 17.3802 18.2418 k = 0.3103 0.0000 0.2752 band energies (ev): -3.5683 3.4482 8.0116 11.7923 12.4360 13.4009 15.0257 18.5887 19.5114 k = 0.1552-0.2688 0.3852 band energies (ev): -2.8717 4.0195 7.3683 7.8604 8.6245 15.4899 18.5312 19.3935 19.7402 k = 0.6207 0.5375 0.0550 band energies (ev): -0.2769 1.2070 4.6303 5.9913 11.2360 15.6410 17.7340 21.0935 21.9958 k = 0.4655 0.2688 0.1651 band energies (ev): -2.1456 1.9489 6.6586 8.1550 11.8327 14.2602 17.9677 18.8356 19.7601 k = 0.0000 0.0000 0.4953 band energies (ev): -2.8411 1.5590 10.7661 10.7661 12.8070 12.8070 13.7538 15.1603 22.6438 k = 0.4655 0.8063 0.1651 band energies (ev): -0.7363 0.5546 5.3359 8.8333 10.3027 15.3239 17.7795 20.4411 21.2803 k = 0.3103 0.5375 0.2752 band energies (ev): -1.0129 3.1536 4.0025 7.1638 7.8908 14.7846 19.7953 20.7834 23.4279 k = 0.9310 0.0000-0.1651 band energies (ev): -0.7363 0.5547 5.3359 8.8333 10.3026 15.3239 17.7795 20.4412 21.2804 k = 0.7758-0.2688-0.0550 band energies (ev): -0.2769 1.2070 4.6303 5.9913 11.2360 15.6410 17.7339 21.0935 21.9958 k = 0.6207 0.0000 0.0550 band energies (ev): -1.4163 0.0483 8.8348 9.5239 10.9182 14.0824 16.0650 16.7061 21.7439 the Fermi energy is 12.8526 ev total energy = -25.41542151 Ry Harris-Foulkes estimate = -25.41542509 Ry estimated scf accuracy < 0.00000693 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.93E-08, avg # of iterations = 2.0 total cpu time spent up to now is 24.89 secs End of self-consistent calculation k = 0.0000 0.0000 0.1651 ( 531 PWs) bands (ev): -5.0038 7.6599 10.4305 10.4305 12.8961 16.6764 16.6764 17.4910 18.5726 k =-0.1552-0.2688 0.2752 ( 522 PWs) bands (ev): -3.5643 3.4530 8.0148 11.7973 12.4392 13.4041 15.0302 18.5930 19.5121 k = 0.3103 0.5375-0.0550 ( 520 PWs) bands (ev): -1.4122 0.0525 8.8379 9.5276 10.9216 14.0864 16.0685 16.7099 21.7451 k = 0.1552 0.2688 0.0550 ( 525 PWs) bands (ev): -4.2885 5.4856 9.1291 9.8469 12.0034 15.6515 16.9341 17.3844 18.2455 k =-0.3103 0.0000 0.3852 ( 519 PWs) bands (ev): -2.8675 4.0246 7.3715 7.8638 8.6279 15.4892 18.5358 19.3982 19.7461 k = 0.1552 0.8063 0.0550 ( 510 PWs) bands (ev): -0.2721 1.2117 4.6325 5.9938 11.2401 15.6456 17.7339 21.0988 21.9996 k = 0.0000 0.5375 0.1651 ( 521 PWs) bands (ev): -2.1415 1.9537 6.6615 8.1578 11.8371 14.2638 17.9703 18.8383 19.7647 k = 0.6207 0.0000-0.2752 ( 510 PWs) bands (ev): -1.0082 3.1590 4.0043 7.1670 7.8944 14.7837 19.8007 20.7889 23.4350 k = 0.4655-0.2688-0.1651 ( 521 PWs) bands (ev): -2.1415 1.9537 6.6616 8.1578 11.8371 14.2638 17.9703 18.8383 19.7647 k = 0.3103 0.0000-0.0550 ( 525 PWs) bands (ev): -4.2885 5.4856 9.1291 9.8469 12.0034 15.6515 16.9341 17.3843 18.2455 k = 0.3103 0.0000 0.2752 ( 522 PWs) bands (ev): -3.5643 3.4531 8.0147 11.7973 12.4392 13.4041 15.0301 18.5930 19.5120 k = 0.1552-0.2688 0.3852 ( 519 PWs) bands (ev): -2.8675 4.0247 7.3715 7.8639 8.6280 15.4891 18.5358 19.3983 19.7461 k = 0.6207 0.5375 0.0550 ( 510 PWs) bands (ev): -0.2721 1.2118 4.6325 5.9938 11.2401 15.6456 17.7339 21.0988 21.9996 k = 0.4655 0.2688 0.1651 ( 521 PWs) bands (ev): -2.1415 1.9537 6.6616 8.1577 11.8371 14.2639 17.9703 18.8383 19.7646 k = 0.0000 0.0000 0.4953 ( 522 PWs) bands (ev): -2.8370 1.5632 10.7702 10.7702 12.8106 12.8106 13.7573 15.1628 22.6460 k = 0.4655 0.8063 0.1651 ( 520 PWs) bands (ev): -0.7316 0.5589 5.3383 8.8367 10.3058 15.3287 17.7841 20.4435 21.2841 k = 0.3103 0.5375 0.2752 ( 510 PWs) bands (ev): -1.0082 3.1591 4.0043 7.1671 7.8944 14.7837 19.8007 20.7889 23.4350 k = 0.9310 0.0000-0.1651 ( 520 PWs) bands (ev): -0.7316 0.5589 5.3383 8.8367 10.3058 15.3287 17.7841 20.4435 21.2842 k = 0.7758-0.2688-0.0550 ( 510 PWs) bands (ev): -0.2721 1.2118 4.6325 5.9938 11.2401 15.6456 17.7339 21.0988 21.9996 k = 0.6207 0.0000 0.0550 ( 520 PWs) bands (ev): -1.4122 0.0525 8.8379 9.5275 10.9216 14.0864 16.0685 16.7099 21.7451 the Fermi energy is 12.8571 ev ! total energy = -25.41542254 Ry Harris-Foulkes estimate = -25.41542257 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000055 0.00000000 -0.01403576 atom 2 type 1 force = -0.00000055 0.00000000 0.01403576 Total force = 0.019850 Total SCF correction = 0.000057 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 436.67 0.00300248 0.00000000 0.00000000 441.68 0.00 0.00 0.00000000 0.00300247 0.00000000 0.00 441.68 0.00 0.00000000 0.00000000 0.00290030 0.00 0.00 426.65 Entering Dynamics; it = 9 time = 0.05808 pico-seconds new lattice vectors (alat unit) : 0.533561923 0.000000000 0.752409243 -0.266781461 0.462079435 0.752408633 -0.266781461 -0.462079435 0.752408633 new unit-cell volume = 191.7315 (a.u.)^3 new positions in cryst coord As 0.252366535 0.252367425 0.252367425 As -0.252366535 -0.252367425 -0.252367425 new positions in cart coord (alat unit) As -0.000000727 0.000000000 0.569649773 As 0.000000727 0.000000000 -0.569649773 Ekin = 0.00400561 Ry T = 2146.2 K Etot = -24.74703752 CELL_PARAMETERS (alat) 0.533561923 0.000000000 0.752409243 -0.266781461 0.462079435 0.752408633 -0.266781461 -0.462079435 0.752408633 ATOMIC_POSITIONS (crystal) As 0.252366535 0.252367425 0.252367425 As -0.252366535 -0.252367425 -0.252367425 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1661331), wk = 0.0625000 k( 2) = ( -0.1561832 -0.2705163 0.2768884), wk = 0.1250000 k( 3) = ( 0.3123660 0.5410325 -0.0553776), wk = 0.1250000 k( 4) = ( 0.1561829 0.2705163 0.0553778), wk = 0.1250000 k( 5) = ( -0.3123662 0.0000000 0.3876437), wk = 0.0625000 k( 6) = ( 0.1561829 0.8115488 0.0553778), wk = 0.1250000 k( 7) = ( -0.0000001 0.5410325 0.1661331), wk = 0.1250000 k( 8) = ( 0.6247321 0.0000000 -0.2768882), wk = 0.0625000 k( 9) = ( 0.4685490 -0.2705163 -0.1661329), wk = 0.1250000 k( 10) = ( 0.3123660 0.0000000 -0.0553776), wk = 0.0625000 k( 11) = ( 0.3123657 0.0000000 0.2768886), wk = 0.0625000 k( 12) = ( 0.1561827 -0.2705163 0.3876439), wk = 0.1250000 k( 13) = ( 0.6247318 0.5410325 0.0553780), wk = 0.1250000 k( 14) = ( 0.4685488 0.2705163 0.1661333), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.4983993), wk = 0.0625000 k( 16) = ( 0.4685488 0.8115488 0.1661333), wk = 0.1250000 k( 17) = ( 0.3123657 0.5410325 0.2768886), wk = 0.1250000 k( 18) = ( 0.9370979 0.0000000 -0.1661327), wk = 0.0625000 k( 19) = ( 0.7809149 -0.2705163 -0.0553773), wk = 0.1250000 k( 20) = ( 0.6247318 0.0000000 0.0553780), wk = 0.0625000 extrapolated charge 9.80517, renormalised to 10.00000 total cpu time spent up to now is 25.17 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.5 total cpu time spent up to now is 25.74 secs k = 0.0000 0.0000 0.1661 band energies (ev): -4.8411 8.0294 10.7738 10.7738 13.4145 17.1097 17.1098 18.0357 18.9113 k =-0.1562-0.2705 0.2769 band energies (ev): -3.3803 3.7558 8.3090 12.2527 12.6939 13.8094 15.5363 19.0665 19.9667 k = 0.3124 0.5410-0.0554 band energies (ev): -1.1922 0.2908 9.1515 9.8540 11.2879 14.4530 16.5547 17.1711 22.2056 k = 0.1562 0.2705 0.0554 band energies (ev): -4.1156 5.8352 9.4466 10.1877 12.3680 16.1468 17.3697 17.8129 18.6854 k =-0.3124 0.0000 0.3876 band energies (ev): -2.6702 4.3421 7.6956 8.1572 8.9334 15.8657 18.9949 19.8937 20.2989 k = 0.1562 0.8115 0.0554 band energies (ev): -0.0180 1.4802 4.8759 6.2523 11.6160 16.0741 18.1397 21.6165 22.5713 k = 0.0000 0.5410 0.1661 band energies (ev): -1.9345 2.2374 6.9481 8.4489 12.2247 14.6497 18.4259 19.3253 20.2612 k = 0.6247 0.0000-0.2769 band energies (ev): -0.7695 3.5084 4.1987 7.4488 8.2117 15.1485 20.2772 21.3052 24.0123 k = 0.4685-0.2705-0.1661 band energies (ev): -1.9345 2.2373 6.9481 8.4489 12.2247 14.6496 18.4259 19.3252 20.2612 k = 0.3124 0.0000-0.0554 band energies (ev): -4.1156 5.8352 9.4466 10.1877 12.3680 16.1468 17.3697 17.8128 18.6853 k = 0.3124 0.0000 0.2769 band energies (ev): -3.3803 3.7558 8.3090 12.2527 12.6939 13.8093 15.5363 19.0666 19.9667 k = 0.1562-0.2705 0.3876 band energies (ev): -2.6702 4.3421 7.6956 8.1572 8.9334 15.8657 18.9949 19.8937 20.2988 k = 0.6247 0.5410 0.0554 band energies (ev): -0.0180 1.4803 4.8759 6.2523 11.6160 16.0741 18.1397 21.6165 22.5713 k = 0.4685 0.2705 0.1661 band energies (ev): -1.9345 2.2374 6.9481 8.4489 12.2247 14.6497 18.4259 19.3252 20.2612 k = 0.0000 0.0000 0.4984 band energies (ev): -2.6383 1.8125 11.1190 11.1190 13.1642 13.1643 14.2504 15.6245 23.1804 k = 0.4685 0.8115 0.1661 band energies (ev): -0.4763 0.7833 5.5982 9.1460 10.6737 15.7317 18.3160 20.8936 21.8262 k = 0.3124 0.5410 0.2769 band energies (ev): -0.7695 3.5084 4.1987 7.4488 8.2117 15.1485 20.2772 21.3053 24.0123 k = 0.9371 0.0000-0.1661 band energies (ev): -0.4763 0.7833 5.5982 9.1460 10.6736 15.7317 18.3160 20.8937 21.8263 k = 0.7809-0.2705-0.0554 band energies (ev): -0.0180 1.4803 4.8759 6.2522 11.6160 16.0741 18.1397 21.6166 22.5713 k = 0.6247 0.0000 0.0554 band energies (ev): -1.1922 0.2908 9.1515 9.8540 11.2878 14.4530 16.5547 17.1711 22.2057 the Fermi energy is 13.2216 ev total energy = -25.40411190 Ry Harris-Foulkes estimate = -25.25475144 Ry estimated scf accuracy < 0.00005683 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-07, avg # of iterations = 3.3 total cpu time spent up to now is 26.21 secs k = 0.0000 0.0000 0.1661 band energies (ev): -4.8765 8.0134 10.7521 10.7521 13.4034 17.0770 17.0770 17.9975 18.8281 k =-0.1562-0.2705 0.2769 band energies (ev): -3.4146 3.7333 8.2680 12.2273 12.6613 13.7657 15.5051 19.0353 19.8877 k = 0.3124 0.5410-0.0554 band energies (ev): -1.2238 0.2608 9.1086 9.8181 11.2474 14.4235 16.5108 17.1338 22.1368 k = 0.1562 0.2705 0.0554 band energies (ev): -4.1505 5.8175 9.4152 10.1595 12.3263 16.1262 17.2861 17.7822 18.6497 k =-0.3124 0.0000 0.3876 band energies (ev): -2.7029 4.3236 7.6498 8.1202 8.8990 15.7687 18.9700 19.8656 20.2893 k = 0.1562 0.8115 0.0554 band energies (ev): -0.0427 1.4563 4.8217 6.2034 11.5865 16.0499 18.0528 21.5961 22.5164 k = 0.0000 0.5410 0.1661 band energies (ev): -1.9668 2.2140 6.9018 8.4033 12.1980 14.6137 18.3676 19.2775 20.2343 k = 0.6247 0.0000-0.2769 band energies (ev): -0.7948 3.4893 4.1431 7.4097 8.1765 15.0501 20.2621 21.2888 24.0136 k = 0.4685-0.2705-0.1661 band energies (ev): -1.9668 2.2140 6.9019 8.4033 12.1979 14.6137 18.3676 19.2775 20.2343 k = 0.3124 0.0000-0.0554 band energies (ev): -4.1505 5.8175 9.4152 10.1595 12.3264 16.1262 17.2861 17.7822 18.6496 k = 0.3124 0.0000 0.2769 band energies (ev): -3.4146 3.7334 8.2680 12.2273 12.6613 13.7657 15.5051 19.0354 19.8877 k = 0.1562-0.2705 0.3876 band energies (ev): -2.7029 4.3236 7.6498 8.1203 8.8990 15.7687 18.9700 19.8656 20.2893 k = 0.6247 0.5410 0.0554 band energies (ev): -0.0427 1.4563 4.8217 6.2034 11.5865 16.0500 18.0529 21.5961 22.5164 k = 0.4685 0.2705 0.1661 band energies (ev): -1.9668 2.2140 6.9018 8.4033 12.1980 14.6137 18.3675 19.2775 20.2342 k = 0.0000 0.0000 0.4984 band energies (ev): -2.6717 1.7838 11.0886 11.0886 13.1292 13.1292 14.2034 15.5728 23.1189 k = 0.4685 0.8115 0.1661 band energies (ev): -0.5055 0.7571 5.5463 9.1076 10.6300 15.7121 18.2857 20.8356 21.7902 k = 0.3124 0.5410 0.2769 band energies (ev): -0.7949 3.4894 4.1431 7.4097 8.1765 15.0501 20.2621 21.2888 24.0136 k = 0.9371 0.0000-0.1661 band energies (ev): -0.5055 0.7572 5.5463 9.1076 10.6300 15.7121 18.2857 20.8356 21.7903 k = 0.7809-0.2705-0.0554 band energies (ev): -0.0427 1.4563 4.8217 6.2034 11.5865 16.0499 18.0528 21.5961 22.5164 k = 0.6247 0.0000 0.0554 band energies (ev): -1.2238 0.2608 9.1086 9.8180 11.2474 14.4235 16.5108 17.1338 22.1368 the Fermi energy is 13.1865 ev total energy = -25.40419417 Ry Harris-Foulkes estimate = -25.40420144 Ry estimated scf accuracy < 0.00002069 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.07E-07, avg # of iterations = 1.0 total cpu time spent up to now is 26.50 secs k = 0.0000 0.0000 0.1661 band energies (ev): -4.8799 8.0087 10.7479 10.7479 13.3981 17.0735 17.0735 17.9940 18.8282 k =-0.1562-0.2705 0.2769 band energies (ev): -3.4180 3.7291 8.2652 12.2227 12.6587 13.7629 15.5013 19.0315 19.8871 k = 0.3124 0.5410-0.0554 band energies (ev): -1.2275 0.2571 9.1059 9.8149 11.2445 14.4199 16.5078 17.1305 22.1357 k = 0.1562 0.2705 0.0554 band energies (ev): -4.1539 5.8129 9.4118 10.1558 12.3235 16.1217 17.2859 17.7786 18.6462 k =-0.3124 0.0000 0.3876 band energies (ev): -2.7065 4.3191 7.6471 8.1172 8.8958 15.7695 18.9659 19.8615 20.2840 k = 0.1562 0.8115 0.0554 band energies (ev): -0.0469 1.4521 4.8198 6.2012 11.5829 16.0458 18.0529 21.5915 22.5141 k = 0.0000 0.5410 0.1661 band energies (ev): -1.9704 2.2098 6.8993 8.4009 12.1941 14.6104 18.3657 19.2748 20.2302 k = 0.6247 0.0000-0.2769 band energies (ev): -0.7990 3.4844 4.1416 7.4068 8.1732 15.0510 20.2573 21.2839 24.0072 k = 0.4685-0.2705-0.1661 band energies (ev): -1.9704 2.2098 6.8993 8.4009 12.1941 14.6104 18.3657 19.2747 20.2302 k = 0.3124 0.0000-0.0554 band energies (ev): -4.1539 5.8129 9.4118 10.1557 12.3236 16.1217 17.2860 17.7785 18.6462 k = 0.3124 0.0000 0.2769 band energies (ev): -3.4180 3.7291 8.2652 12.2227 12.6586 13.7629 15.5012 19.0316 19.8871 k = 0.1562-0.2705 0.3876 band energies (ev): -2.7065 4.3191 7.6470 8.1172 8.8958 15.7695 18.9659 19.8615 20.2839 k = 0.6247 0.5410 0.0554 band energies (ev): -0.0469 1.4521 4.8198 6.2012 11.5829 16.0459 18.0530 21.5915 22.5141 k = 0.4685 0.2705 0.1661 band energies (ev): -1.9704 2.2098 6.8993 8.4009 12.1941 14.6105 18.3657 19.2747 20.2301 k = 0.0000 0.0000 0.4984 band energies (ev): -2.6753 1.7801 11.0850 11.0850 13.1260 13.1260 14.2004 15.5704 23.1169 k = 0.4685 0.8115 0.1661 band energies (ev): -0.5095 0.7534 5.5442 9.1047 10.6273 15.7078 18.2817 20.8338 21.7866 k = 0.3124 0.5410 0.2769 band energies (ev): -0.7990 3.4845 4.1416 7.4068 8.1732 15.0510 20.2573 21.2839 24.0072 k = 0.9371 0.0000-0.1661 band energies (ev): -0.5095 0.7534 5.5442 9.1046 10.6272 15.7078 18.2817 20.8338 21.7866 k = 0.7809-0.2705-0.0554 band energies (ev): -0.0469 1.4521 4.8198 6.2012 11.5829 16.0458 18.0530 21.5915 22.5141 k = 0.6247 0.0000 0.0554 band energies (ev): -1.2275 0.2571 9.1059 9.8149 11.2444 14.4199 16.5078 17.1305 22.1358 the Fermi energy is 13.1833 ev total energy = -25.40419268 Ry Harris-Foulkes estimate = -25.40419471 Ry estimated scf accuracy < 0.00000427 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.27E-08, avg # of iterations = 2.0 total cpu time spent up to now is 26.83 secs End of self-consistent calculation k = 0.0000 0.0000 0.1661 ( 531 PWs) bands (ev): -4.8829 8.0045 10.7443 10.7443 13.3934 17.0704 17.0704 17.9912 18.8281 k =-0.1562-0.2705 0.2769 ( 522 PWs) bands (ev): -3.4211 3.7253 8.2628 12.2192 12.6559 13.7605 15.4979 19.0282 19.8866 k = 0.3124 0.5410-0.0554 ( 520 PWs) bands (ev): -1.2307 0.2538 9.1035 9.8121 11.2418 14.4168 16.5052 17.1276 22.1348 k = 0.1562 0.2705 0.0554 ( 525 PWs) bands (ev): -4.1569 5.8088 9.4088 10.1525 12.3210 16.1177 17.2859 17.7754 18.6432 k =-0.3124 0.0000 0.3876 ( 519 PWs) bands (ev): -2.7096 4.3151 7.6448 8.1145 8.8929 15.7703 18.9623 19.8579 20.2792 k = 0.1562 0.8115 0.0554 ( 510 PWs) bands (ev): -0.0505 1.4484 4.8181 6.1992 11.5796 16.0423 18.0531 21.5874 22.5123 k = 0.0000 0.5410 0.1661 ( 521 PWs) bands (ev): -1.9736 2.2061 6.8971 8.3987 12.1907 14.6076 18.3641 19.2724 20.2266 k = 0.6247 0.0000-0.2769 ( 510 PWs) bands (ev): -0.8026 3.4804 4.1400 7.4043 8.1703 15.0518 20.2531 21.2795 24.0016 k = 0.4685-0.2705-0.1661 ( 521 PWs) bands (ev): -1.9735 2.2061 6.8972 8.3987 12.1906 14.6076 18.3641 19.2724 20.2265 k = 0.3124 0.0000-0.0554 ( 525 PWs) bands (ev): -4.1569 5.8088 9.4087 10.1525 12.3211 16.1177 17.2859 17.7753 18.6431 k = 0.3124 0.0000 0.2769 ( 522 PWs) bands (ev): -3.4211 3.7253 8.2628 12.2192 12.6558 13.7604 15.4978 19.0283 19.8866 k = 0.1562-0.2705 0.3876 ( 519 PWs) bands (ev): -2.7097 4.3151 7.6448 8.1145 8.8929 15.7703 18.9623 19.8579 20.2792 k = 0.6247 0.5410 0.0554 ( 510 PWs) bands (ev): -0.0505 1.4484 4.8181 6.1992 11.5796 16.0423 18.0531 21.5874 22.5123 k = 0.4685 0.2705 0.1661 ( 521 PWs) bands (ev): -1.9735 2.2061 6.8971 8.3987 12.1906 14.6076 18.3641 19.2724 20.2265 k = 0.0000 0.0000 0.4984 ( 522 PWs) bands (ev): -2.6784 1.7767 11.0819 11.0819 13.1232 13.1232 14.1980 15.5682 23.1152 k = 0.4685 0.8115 0.1661 ( 520 PWs) bands (ev): -0.5128 0.7498 5.5424 9.1021 10.6248 15.7040 18.2783 20.8321 21.7835 k = 0.3124 0.5410 0.2769 ( 510 PWs) bands (ev): -0.8026 3.4805 4.1400 7.4043 8.1703 15.0518 20.2531 21.2796 24.0016 k = 0.9371 0.0000-0.1661 ( 520 PWs) bands (ev): -0.5128 0.7498 5.5424 9.1020 10.6247 15.7040 18.2782 20.8322 21.7835 k = 0.7809-0.2705-0.0554 ( 510 PWs) bands (ev): -0.0505 1.4485 4.8181 6.1992 11.5796 16.0422 18.0531 21.5874 22.5123 k = 0.6247 0.0000 0.0554 ( 520 PWs) bands (ev): -1.2306 0.2538 9.1035 9.8121 11.2418 14.4167 16.5052 17.1276 22.1348 the Fermi energy is 13.1805 ev ! total energy = -25.40419314 Ry Harris-Foulkes estimate = -25.40419317 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000084 0.00000000 -0.01026056 atom 2 type 1 force = -0.00000084 0.00000000 0.01026056 Total force = 0.014511 Total SCF correction = 0.000006 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 486.54 0.00334332 0.00000000 -0.00000001 491.82 0.00 0.00 0.00000000 0.00334329 0.00000000 0.00 491.82 0.00 -0.00000001 0.00000000 0.00323574 0.00 0.00 475.99 Entering Dynamics; it = 10 time = 0.06534 pico-seconds new lattice vectors (alat unit) : 0.529490649 0.000000000 0.750398501 -0.264746144 0.458553470 0.750398063 -0.264746144 -0.458553470 0.750398063 new unit-cell volume = 188.3121 (a.u.)^3 new positions in cryst coord As 0.251005485 0.251006174 0.251006174 As -0.251005485 -0.251006174 -0.251006174 new positions in cart coord (alat unit) As -0.000000776 0.000000000 0.565063234 As 0.000000776 0.000000000 -0.565063234 Ekin = 0.00186943 Ry T = 1915.0 K Etot = -24.75064155 CELL_PARAMETERS (alat) 0.529490649 0.000000000 0.750398501 -0.264746144 0.458553470 0.750398063 -0.264746144 -0.458553470 0.750398063 ATOMIC_POSITIONS (crystal) As 0.251005485 0.251006174 0.251006174 As -0.251005485 -0.251006174 -0.251006174 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1665782), wk = 0.0625000 k( 2) = ( -0.1573839 -0.2725963 0.2776303), wk = 0.1250000 k( 3) = ( 0.3147676 0.5451927 -0.0555258), wk = 0.1250000 k( 4) = ( 0.1573838 0.2725963 0.0555262), wk = 0.1250000 k( 5) = ( -0.3147678 0.0000000 0.3886823), wk = 0.0625000 k( 6) = ( 0.1573838 0.8177890 0.0555262), wk = 0.1250000 k( 7) = ( -0.0000001 0.5451927 0.1665782), wk = 0.1250000 k( 8) = ( 0.6295353 0.0000000 -0.2776299), wk = 0.0625000 k( 9) = ( 0.4721515 -0.2725963 -0.1665779), wk = 0.1250000 k( 10) = ( 0.3147676 0.0000000 -0.0555258), wk = 0.0625000 k( 11) = ( 0.3147674 0.0000000 0.2776306), wk = 0.0625000 k( 12) = ( 0.1573836 -0.2725963 0.3886826), wk = 0.1250000 k( 13) = ( 0.6295351 0.5451927 0.0555265), wk = 0.1250000 k( 14) = ( 0.4721513 0.2725963 0.1665786), wk = 0.1250000 k( 15) = ( -0.0000003 0.0000000 0.4997347), wk = 0.0625000 k( 16) = ( 0.4721513 0.8177890 0.1665786), wk = 0.1250000 k( 17) = ( 0.3147674 0.5451927 0.2776306), wk = 0.1250000 k( 18) = ( 0.9443029 0.0000000 -0.1665775), wk = 0.0625000 k( 19) = ( 0.7869190 -0.2725963 -0.0555255), wk = 0.1250000 k( 20) = ( 0.6295351 0.0000000 0.0555265), wk = 0.0625000 extrapolated charge 9.81843, renormalised to 10.00000 total cpu time spent up to now is 27.12 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.4 total cpu time spent up to now is 27.75 secs k = 0.0000 0.0000 0.1666 band energies (ev): -4.7303 8.2971 11.1049 11.1049 13.9117 17.4862 17.4862 18.5394 19.1042 k =-0.1574-0.2726 0.2776 band energies (ev): -3.2486 4.0254 8.4964 12.6941 12.8847 14.1670 15.9887 19.4349 20.3686 k = 0.3148 0.5452-0.0555 band energies (ev): -1.0120 0.4833 9.3616 10.1365 11.6035 14.7622 16.9600 17.4949 22.4734 k = 0.1574 0.2726 0.0555 band energies (ev): -3.9903 6.1543 9.7370 10.4495 12.6519 16.5518 17.6381 18.1633 19.0693 k =-0.3148 0.0000 0.3887 band energies (ev): -2.5293 4.5840 7.9582 8.4285 9.1995 16.1230 19.4241 20.3711 20.8523 k = 0.1574 0.8178 0.0555 band energies (ev): 0.1852 1.7163 5.0583 6.4210 11.9253 16.4697 18.4693 22.0408 22.9844 k = 0.0000 0.5452 0.1666 band energies (ev): -1.7706 2.4878 7.1661 8.6680 12.5165 14.9376 18.7861 19.7622 20.7127 k = 0.6295 0.0000-0.2776 band energies (ev): -0.5719 3.8058 4.3142 7.7027 8.4663 15.3712 20.6880 21.7724 24.5205 k = 0.4722-0.2726-0.1666 band energies (ev): -1.7706 2.4878 7.1661 8.6680 12.5165 14.9376 18.7861 19.7622 20.7127 k = 0.3148 0.0000-0.0555 band energies (ev): -3.9903 6.1543 9.7370 10.4495 12.6519 16.5518 17.6381 18.1633 19.0692 k = 0.3148 0.0000 0.2776 band energies (ev): -3.2486 4.0254 8.4964 12.6941 12.8847 14.1670 15.9887 19.4349 20.3686 k = 0.1574-0.2726 0.3887 band energies (ev): -2.5293 4.5840 7.9582 8.4285 9.1995 16.1230 19.4241 20.3711 20.8522 k = 0.6295 0.5452 0.0555 band energies (ev): 0.1852 1.7163 5.0583 6.4210 11.9253 16.4697 18.4693 22.0408 22.9844 k = 0.4722 0.2726 0.1666 band energies (ev): -1.7706 2.4878 7.1661 8.6680 12.5165 14.9376 18.7861 19.7622 20.7126 k = 0.0000 0.0000 0.4997 band energies (ev): -2.5068 1.9764 11.4512 11.4512 13.4935 13.4935 14.7232 16.0658 23.5990 k = 0.4722 0.8178 0.1666 band energies (ev): -0.2959 0.9492 5.8061 9.4250 11.0086 16.1188 18.8399 21.2417 22.3061 k = 0.3148 0.5452 0.2776 band energies (ev): -0.5719 3.8058 4.3142 7.7028 8.4663 15.3712 20.6880 21.7724 24.5205 k = 0.9443 0.0000-0.1666 band energies (ev): -0.2959 0.9492 5.8061 9.4250 11.0086 16.1188 18.8399 21.2417 22.3061 k = 0.7869-0.2726-0.0555 band energies (ev): 0.1852 1.7163 5.0583 6.4210 11.9253 16.4697 18.4693 22.0408 22.9844 k = 0.6295 0.0000 0.0555 band energies (ev): -1.0120 0.4833 9.3616 10.1365 11.6035 14.7622 16.9600 17.4949 22.4734 the Fermi energy is 13.5507 ev total energy = -25.39245498 Ry Harris-Foulkes estimate = -25.25189566 Ry estimated scf accuracy < 0.00005863 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.86E-07, avg # of iterations = 3.0 total cpu time spent up to now is 28.15 secs k = 0.0000 0.0000 0.1666 band energies (ev): -4.7648 8.2800 11.0831 11.0831 13.9009 17.4541 17.4542 18.5043 19.0263 k =-0.1574-0.2726 0.2776 band energies (ev): -3.2821 4.0028 8.4569 12.6654 12.8566 14.1257 15.9577 19.4038 20.2957 k = 0.3148 0.5452-0.0555 band energies (ev): -1.0432 0.4537 9.3206 10.1014 11.5655 14.7335 16.9174 17.4580 22.4087 k = 0.1574 0.2726 0.0555 band energies (ev): -4.0243 6.1357 9.7063 10.4229 12.6121 16.5283 17.5594 18.1331 19.0363 k =-0.3148 0.0000 0.3887 band energies (ev): -2.5615 4.5648 7.9135 8.3927 9.1681 16.0319 19.3995 20.3439 20.8427 k = 0.1574 0.8178 0.0555 band energies (ev): 0.1602 1.6923 5.0070 6.3746 11.8965 16.4463 18.3882 22.0181 22.9196 k = 0.0000 0.5452 0.1666 band energies (ev): -1.8024 2.4642 7.1217 8.6249 12.4901 14.9028 18.7273 19.7201 20.6865 k = 0.6295 0.0000-0.2776 band energies (ev): -0.5973 3.7861 4.2614 7.6649 8.4334 15.2787 20.6721 21.7559 24.5196 k = 0.4722-0.2726-0.1666 band energies (ev): -1.8024 2.4642 7.1218 8.6249 12.4901 14.9028 18.7272 19.7201 20.6865 k = 0.3148 0.0000-0.0555 band energies (ev): -4.0243 6.1357 9.7063 10.4229 12.6121 16.5283 17.5595 18.1331 19.0362 k = 0.3148 0.0000 0.2776 band energies (ev): -3.2821 4.0028 8.4569 12.6654 12.8565 14.1257 15.9576 19.4039 20.2957 k = 0.1574-0.2726 0.3887 band energies (ev): -2.5615 4.5648 7.9135 8.3927 9.1681 16.0319 19.3995 20.3439 20.8427 k = 0.6295 0.5452 0.0555 band energies (ev): 0.1602 1.6923 5.0070 6.3746 11.8965 16.4463 18.3882 22.0181 22.9196 k = 0.4722 0.2726 0.1666 band energies (ev): -1.8024 2.4642 7.1217 8.6249 12.4901 14.9028 18.7272 19.7201 20.6864 k = 0.0000 0.0000 0.4997 band energies (ev): -2.5398 1.9482 11.4212 11.4212 13.4598 13.4598 14.6775 16.0176 23.5424 k = 0.4722 0.8178 0.1666 band energies (ev): -0.3258 0.9242 5.7567 9.3879 10.9674 16.0994 18.8104 21.1828 22.2759 k = 0.3148 0.5452 0.2776 band energies (ev): -0.5973 3.7861 4.2614 7.6650 8.4334 15.2787 20.6722 21.7559 24.5196 k = 0.9443 0.0000-0.1666 band energies (ev): -0.3258 0.9242 5.7567 9.3879 10.9674 16.0994 18.8104 21.1828 22.2759 k = 0.7869-0.2726-0.0555 band energies (ev): 0.1602 1.6923 5.0070 6.3745 11.8965 16.4463 18.3882 22.0181 22.9196 k = 0.6295 0.0000 0.0555 band energies (ev): -1.0432 0.4537 9.3206 10.1013 11.5655 14.7335 16.9174 17.4580 22.4087 the Fermi energy is 13.5170 ev total energy = -25.39252374 Ry Harris-Foulkes estimate = -25.39252979 Ry estimated scf accuracy < 0.00001738 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-07, avg # of iterations = 1.0 total cpu time spent up to now is 28.45 secs k = 0.0000 0.0000 0.1666 band energies (ev): -4.7680 8.2756 11.0792 11.0792 13.8957 17.4508 17.4508 18.5011 19.0264 k =-0.1574-0.2726 0.2776 band energies (ev): -3.2854 3.9988 8.4543 12.6616 12.8534 14.1230 15.9540 19.4003 20.2952 k = 0.3148 0.5452-0.0555 band energies (ev): -1.0466 0.4502 9.3181 10.0984 11.5627 14.7301 16.9147 17.4548 22.4076 k = 0.1574 0.2726 0.0555 band energies (ev): -4.0275 6.1313 9.7030 10.4193 12.6094 16.5242 17.5594 18.1296 19.0329 k =-0.3148 0.0000 0.3887 band energies (ev): -2.5649 4.5605 7.9112 8.3898 9.1649 16.0328 19.3955 20.3400 20.8374 k = 0.1574 0.8178 0.0555 band energies (ev): 0.1563 1.6884 5.0051 6.3724 11.8930 16.4424 18.3884 22.0139 22.9184 k = 0.0000 0.5452 0.1666 band energies (ev): -1.8058 2.4602 7.1194 8.6225 12.4864 14.8996 18.7258 19.7173 20.6825 k = 0.6295 0.0000-0.2776 band energies (ev): -0.6012 3.7817 4.2598 7.6622 8.4302 15.2796 20.6675 21.7512 24.5136 k = 0.4722-0.2726-0.1666 band energies (ev): -1.8057 2.4602 7.1194 8.6225 12.4864 14.8996 18.7258 19.7173 20.6825 k = 0.3148 0.0000-0.0555 band energies (ev): -4.0275 6.1313 9.7030 10.4193 12.6094 16.5242 17.5594 18.1296 19.0328 k = 0.3148 0.0000 0.2776 band energies (ev): -3.2854 3.9988 8.4543 12.6616 12.8534 14.1230 15.9540 19.4003 20.2951 k = 0.1574-0.2726 0.3887 band energies (ev): -2.5649 4.5605 7.9111 8.3898 9.1649 16.0327 19.3955 20.3400 20.8374 k = 0.6295 0.5452 0.0555 band energies (ev): 0.1563 1.6884 5.0051 6.3724 11.8930 16.4424 18.3884 22.0139 22.9184 k = 0.4722 0.2726 0.1666 band energies (ev): -1.8057 2.4602 7.1194 8.6225 12.4864 14.8996 18.7258 19.7173 20.6825 k = 0.0000 0.0000 0.4997 band energies (ev): -2.5431 1.9446 11.4178 11.4179 13.4567 13.4567 14.6750 16.0153 23.5405 k = 0.4722 0.8178 0.1666 band energies (ev): -0.3294 0.9203 5.7547 9.3851 10.9647 16.0952 18.8067 21.1813 22.2721 k = 0.3148 0.5452 0.2776 band energies (ev): -0.6012 3.7818 4.2598 7.6622 8.4302 15.2796 20.6675 21.7512 24.5135 k = 0.9443 0.0000-0.1666 band energies (ev): -0.3294 0.9203 5.7547 9.3850 10.9647 16.0952 18.8067 21.1813 22.2722 k = 0.7869-0.2726-0.0555 band energies (ev): 0.1563 1.6884 5.0051 6.3724 11.8930 16.4424 18.3884 22.0139 22.9184 k = 0.6295 0.0000 0.0555 band energies (ev): -1.0466 0.4502 9.3181 10.0984 11.5626 14.7300 16.9146 17.4548 22.4076 the Fermi energy is 13.5139 ev total energy = -25.39252281 Ry Harris-Foulkes estimate = -25.39252421 Ry estimated scf accuracy < 0.00000316 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.16E-08, avg # of iterations = 2.0 total cpu time spent up to now is 28.78 secs End of self-consistent calculation k = 0.0000 0.0000 0.1666 ( 531 PWs) bands (ev): -4.7705 8.2722 11.0761 11.0761 13.8918 17.4482 17.4482 18.4988 19.0263 k =-0.1574-0.2726 0.2776 ( 522 PWs) bands (ev): -3.2879 3.9956 8.4522 12.6587 12.8508 14.1210 15.9513 19.3975 20.2947 k = 0.3148 0.5452-0.0555 ( 520 PWs) bands (ev): -1.0493 0.4474 9.3160 10.0960 11.5605 14.7273 16.9125 17.4524 22.4068 k = 0.1574 0.2726 0.0555 ( 525 PWs) bands (ev): -4.0300 6.1280 9.7004 10.4165 12.6073 16.5210 17.5593 18.1269 19.0302 k =-0.3148 0.0000 0.3887 ( 519 PWs) bands (ev): -2.5675 4.5571 7.9093 8.3875 9.1623 16.0334 19.3924 20.3370 20.8334 k = 0.1574 0.8178 0.0555 ( 510 PWs) bands (ev): 0.1533 1.6853 5.0037 6.3707 11.8902 16.4393 18.3884 22.0106 22.9175 k = 0.0000 0.5452 0.1666 ( 521 PWs) bands (ev): -1.8084 2.4571 7.1176 8.6206 12.4835 14.8972 18.7246 19.7151 20.6794 k = 0.6295 0.0000-0.2776 ( 510 PWs) bands (ev): -0.6042 3.7784 4.2584 7.6600 8.4277 15.2803 20.6639 21.7476 24.5089 k = 0.4722-0.2726-0.1666 ( 521 PWs) bands (ev): -1.8084 2.4571 7.1176 8.6206 12.4835 14.8972 18.7246 19.7151 20.6794 k = 0.3148 0.0000-0.0555 ( 525 PWs) bands (ev): -4.0300 6.1280 9.7004 10.4165 12.6073 16.5210 17.5593 18.1269 19.0302 k = 0.3148 0.0000 0.2776 ( 522 PWs) bands (ev): -3.2879 3.9956 8.4522 12.6587 12.8508 14.1210 15.9512 19.3975 20.2947 k = 0.1574-0.2726 0.3887 ( 519 PWs) bands (ev): -2.5675 4.5571 7.9093 8.3876 9.1623 16.0334 19.3924 20.3371 20.8334 k = 0.6295 0.5452 0.0555 ( 510 PWs) bands (ev): 0.1532 1.6853 5.0037 6.3707 11.8902 16.4393 18.3885 22.0106 22.9175 k = 0.4722 0.2726 0.1666 ( 521 PWs) bands (ev): -1.8084 2.4571 7.1176 8.6206 12.4835 14.8972 18.7246 19.7151 20.6794 k = 0.0000 0.0000 0.4997 ( 522 PWs) bands (ev): -2.5456 1.9417 11.4152 11.4152 13.4542 13.4542 14.6731 16.0135 23.5390 k = 0.4722 0.8178 0.1666 ( 520 PWs) bands (ev): -0.3321 0.9173 5.7532 9.3829 10.9626 16.0919 18.8039 21.1801 22.2692 k = 0.3148 0.5452 0.2776 ( 510 PWs) bands (ev): -0.6042 3.7784 4.2584 7.6600 8.4278 15.2803 20.6639 21.7476 24.5089 k = 0.9443 0.0000-0.1666 ( 520 PWs) bands (ev): -0.3321 0.9173 5.7532 9.3828 10.9626 16.0919 18.8039 21.1801 22.2693 k = 0.7869-0.2726-0.0555 ( 510 PWs) bands (ev): 0.1533 1.6853 5.0037 6.3707 11.8902 16.4393 18.3885 22.0106 22.9175 k = 0.6295 0.0000 0.0555 ( 520 PWs) bands (ev): -1.0492 0.4474 9.3160 10.0960 11.5604 14.7273 16.9125 17.4524 22.4068 the Fermi energy is 13.5115 ev ! total energy = -25.39252314 Ry Harris-Foulkes estimate = -25.39252316 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000080 0.00000000 -0.00469933 atom 2 type 1 force = -0.00000080 0.00000000 0.00469933 Total force = 0.006646 Total SCF correction = 0.000005 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 539.16 0.00372031 0.00000000 0.00000000 547.28 0.00 0.00 0.00000000 0.00372029 0.00000000 0.00 547.27 0.00 0.00000000 0.00000000 0.00355483 0.00 0.00 522.93 Entering Dynamics; it = 11 time = 0.07260 pico-seconds new lattice vectors (alat unit) : 0.532923634 0.000000000 0.751500417 -0.266462605 0.461526534 0.751499941 -0.266462605 -0.461526534 0.751499941 new unit-cell volume = 191.0420 (a.u.)^3 new positions in cryst coord As 0.249540489 0.249540908 0.249540908 As -0.249540489 -0.249540908 -0.249540908 new positions in cart coord (alat unit) As -0.000000617 0.000000000 0.562589737 As 0.000000617 0.000000000 -0.562589737 Ekin = 0.00191859 Ry T = 1730.2 K Etot = -24.75054449 CELL_PARAMETERS (alat) 0.532923634 0.000000000 0.751500417 -0.266462605 0.461526534 0.751499941 -0.266462605 -0.461526534 0.751499941 ATOMIC_POSITIONS (crystal) As 0.249540489 0.249540908 0.249540908 As -0.249540489 -0.249540908 -0.249540908 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1663340), wk = 0.0625000 k( 2) = ( -0.1563701 -0.2708403 0.2772232), wk = 0.1250000 k( 3) = ( 0.3127400 0.5416807 -0.0554444), wk = 0.1250000 k( 4) = ( 0.1563699 0.2708403 0.0554448), wk = 0.1250000 k( 5) = ( -0.3127402 0.0000000 0.3881124), wk = 0.0625000 k( 6) = ( 0.1563699 0.8125210 0.0554448), wk = 0.1250000 k( 7) = ( -0.0000001 0.5416807 0.1663340), wk = 0.1250000 k( 8) = ( 0.6254800 0.0000000 -0.2772229), wk = 0.0625000 k( 9) = ( 0.4691100 -0.2708403 -0.1663336), wk = 0.1250000 k( 10) = ( 0.3127400 0.0000000 -0.0554444), wk = 0.0625000 k( 11) = ( 0.3127398 0.0000000 0.2772235), wk = 0.0625000 k( 12) = ( 0.1563697 -0.2708403 0.3881127), wk = 0.1250000 k( 13) = ( 0.6254798 0.5416807 0.0554451), wk = 0.1250000 k( 14) = ( 0.4691098 0.2708403 0.1663343), wk = 0.1250000 k( 15) = ( -0.0000003 0.0000000 0.4990019), wk = 0.0625000 k( 16) = ( 0.4691098 0.8125210 0.1663343), wk = 0.1250000 k( 17) = ( 0.3127398 0.5416807 0.2772235), wk = 0.1250000 k( 18) = ( 0.9382199 0.0000000 -0.1663333), wk = 0.0625000 k( 19) = ( 0.7818499 -0.2708403 -0.0554441), wk = 0.1250000 k( 20) = ( 0.6254798 0.0000000 0.0554451), wk = 0.0625000 extrapolated charge 10.14289, renormalised to 10.00000 total cpu time spent up to now is 29.05 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.5 total cpu time spent up to now is 29.69 secs k = 0.0000 0.0000 0.1663 band energies (ev): -4.8878 8.0489 10.7866 10.7866 13.4719 17.1219 17.1220 18.1256 18.7439 k =-0.1564-0.2708 0.2772 band energies (ev): -3.4206 3.7548 8.2773 12.4250 12.5189 13.7918 15.5599 19.0797 19.9034 k = 0.3127 0.5417-0.0554 band energies (ev): -1.2205 0.2657 9.1203 9.8438 11.2660 14.4441 16.5574 17.1708 22.1537 k = 0.1564 0.2708 0.0554 band energies (ev): -4.1596 5.8537 9.4385 10.1822 12.3487 16.1784 17.3159 17.8181 18.6654 k =-0.3127 0.0000 0.3881 band energies (ev): -2.7047 4.3473 7.6767 8.1337 8.8974 15.7610 19.0201 19.9127 20.3657 k = 0.1564 0.8125 0.0554 band energies (ev): -0.0259 1.4702 4.8122 6.1977 11.6185 16.0906 18.0530 21.6553 22.6190 k = 0.0000 0.5417 0.1663 band energies (ev): -1.9674 2.2335 6.9129 8.3996 12.2407 14.6304 18.3935 19.3226 20.2871 k = 0.6255 0.0000-0.2772 band energies (ev): -0.7843 3.5600 4.0844 7.4197 8.1900 15.0385 20.3183 21.3451 24.0998 k = 0.4691-0.2708-0.1663 band energies (ev): -1.9674 2.2335 6.9129 8.3996 12.2407 14.6304 18.3935 19.3226 20.2871 k = 0.3127 0.0000-0.0554 band energies (ev): -4.1596 5.8537 9.4385 10.1822 12.3487 16.1784 17.3160 17.8181 18.6654 k = 0.3127 0.0000 0.2772 band energies (ev): -3.4206 3.7548 8.2773 12.4250 12.5189 13.7918 15.5599 19.0797 19.9034 k = 0.1564-0.2708 0.3881 band energies (ev): -2.7047 4.3473 7.6767 8.1337 8.8974 15.7610 19.0201 19.9128 20.3657 k = 0.6255 0.5417 0.0554 band energies (ev): -0.0259 1.4702 4.8122 6.1977 11.6185 16.0906 18.0530 21.6553 22.6191 k = 0.4691 0.2708 0.1663 band energies (ev): -1.9674 2.2335 6.9129 8.3995 12.2407 14.6304 18.3935 19.3226 20.2871 k = 0.0000 0.0000 0.4990 band energies (ev): -2.6717 1.7857 11.1218 11.1218 13.1473 13.1474 14.2516 15.5959 23.1616 k = 0.4691 0.8125 0.1663 band energies (ev): -0.4791 0.7434 5.5443 9.1246 10.6471 15.7519 18.3524 20.8501 21.8758 k = 0.3127 0.5417 0.2772 band energies (ev): -0.7843 3.5600 4.0844 7.4197 8.1900 15.0385 20.3183 21.3451 24.0998 k = 0.9382 0.0000-0.1663 band energies (ev): -0.4791 0.7434 5.5443 9.1246 10.6471 15.7519 18.3524 20.8501 21.8758 k = 0.7818-0.2708-0.0554 band energies (ev): -0.0259 1.4702 4.8122 6.1977 11.6185 16.0905 18.0530 21.6553 22.6191 k = 0.6255 0.0000 0.0554 band energies (ev): -1.2205 0.2657 9.1203 9.8438 11.2660 14.4441 16.5574 17.1708 22.1537 the Fermi energy is 13.2046 ev total energy = -25.40221829 Ry Harris-Foulkes estimate = -25.51255467 Ry estimated scf accuracy < 0.00004890 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.89E-07, avg # of iterations = 2.8 total cpu time spent up to now is 30.06 secs k = 0.0000 0.0000 0.1663 band energies (ev): -4.8618 8.0604 10.8027 10.8027 13.4798 17.1460 17.1461 18.1518 18.8056 k =-0.1564-0.2708 0.2772 band energies (ev): -3.3954 3.7712 8.3071 12.4503 12.5360 13.8235 15.5829 19.1026 19.9609 k = 0.3127 0.5417-0.0554 band energies (ev): -1.1971 0.2877 9.1514 9.8705 11.2952 14.4654 16.5897 17.1981 22.2036 k = 0.1564 0.2708 0.0554 band energies (ev): -4.1340 5.8669 9.4616 10.2024 12.3789 16.1943 17.3777 17.8404 18.6899 k =-0.3127 0.0000 0.3881 band energies (ev): -2.6805 4.3606 7.7113 8.1609 8.9212 15.8321 19.0385 19.9332 20.3722 k = 0.1564 0.8125 0.0554 band energies (ev): -0.0074 1.4877 4.8517 6.2331 11.6398 16.1081 18.1164 21.6708 22.6714 k = 0.0000 0.5417 0.1663 band energies (ev): -1.9437 2.2508 6.9470 8.4323 12.2601 14.6565 18.4378 19.3563 20.3065 k = 0.6255 0.0000-0.2772 band energies (ev): -0.7656 3.5741 4.1249 7.4485 8.2153 15.1106 20.3293 21.3566 24.0988 k = 0.4691-0.2708-0.1663 band energies (ev): -1.9437 2.2508 6.9470 8.4323 12.2601 14.6564 18.4378 19.3563 20.3065 k = 0.3127 0.0000-0.0554 band energies (ev): -4.1340 5.8669 9.4616 10.2024 12.3789 16.1942 17.3777 17.8404 18.6899 k = 0.3127 0.0000 0.2772 band energies (ev): -3.3954 3.7712 8.3071 12.4503 12.5360 13.8234 15.5829 19.1026 19.9609 k = 0.1564-0.2708 0.3881 band energies (ev): -2.6805 4.3606 7.7113 8.1609 8.9212 15.8321 19.0385 19.9333 20.3722 k = 0.6255 0.5417 0.0554 band energies (ev): -0.0074 1.4877 4.8517 6.2331 11.6398 16.1081 18.1165 21.6708 22.6714 k = 0.4691 0.2708 0.1663 band energies (ev): -1.9437 2.2508 6.9470 8.4323 12.2601 14.6565 18.4378 19.3563 20.3064 k = 0.0000 0.0000 0.4990 band energies (ev): -2.6469 1.8063 11.1445 11.1445 13.1728 13.1728 14.2868 15.6326 23.2060 k = 0.4691 0.8125 0.1663 band energies (ev): -0.4565 0.7613 5.5824 9.1529 10.6787 15.7661 18.3747 20.8930 21.9006 k = 0.3127 0.5417 0.2772 band energies (ev): -0.7656 3.5741 4.1249 7.4485 8.2153 15.1105 20.3293 21.3566 24.0988 k = 0.9382 0.0000-0.1663 band energies (ev): -0.4565 0.7613 5.5824 9.1529 10.6787 15.7661 18.3747 20.8931 21.9006 k = 0.7818-0.2708-0.0554 band energies (ev): -0.0074 1.4877 4.8517 6.2331 11.6398 16.1081 18.1165 21.6708 22.6714 k = 0.6255 0.0000 0.0554 band energies (ev): -1.1971 0.2877 9.1514 9.8705 11.2952 14.4654 16.5897 17.1981 22.2036 the Fermi energy is 13.2301 ev total energy = -25.40226181 Ry Harris-Foulkes estimate = -25.40226612 Ry estimated scf accuracy < 0.00001236 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.24E-07, avg # of iterations = 1.0 total cpu time spent up to now is 30.33 secs k = 0.0000 0.0000 0.1663 band energies (ev): -4.8590 8.0643 10.8061 10.8061 13.4843 17.1490 17.1490 18.1546 18.8055 k =-0.1564-0.2708 0.2772 band energies (ev): -3.3925 3.7748 8.3095 12.4532 12.5393 13.8258 15.5861 19.1058 19.9613 k = 0.3127 0.5417-0.0554 band energies (ev): -1.1941 0.2909 9.1537 9.8731 11.2977 14.4685 16.5922 17.2009 22.2045 k = 0.1564 0.2708 0.0554 band energies (ev): -4.1312 5.8708 9.4645 10.2056 12.3813 16.1981 17.3776 17.8435 18.6930 k =-0.3127 0.0000 0.3881 band energies (ev): -2.6776 4.3645 7.7133 8.1634 8.9241 15.8313 19.0419 19.9366 20.3768 k = 0.1564 0.8125 0.0554 band energies (ev): -0.0040 1.4912 4.8533 6.2350 11.6430 16.1116 18.1163 21.6747 22.6722 k = 0.0000 0.5417 0.1663 band energies (ev): -1.9407 2.2543 6.9490 8.4345 12.2634 14.6592 18.4393 19.3586 20.3100 k = 0.6255 0.0000-0.2772 band energies (ev): -0.7622 3.5779 4.1264 7.4509 8.2181 15.1097 20.3334 21.3608 24.1042 k = 0.4691-0.2708-0.1663 band energies (ev): -1.9407 2.2543 6.9490 8.4345 12.2634 14.6592 18.4393 19.3586 20.3100 k = 0.3127 0.0000-0.0554 band energies (ev): -4.1312 5.8708 9.4645 10.2056 12.3813 16.1981 17.3776 17.8435 18.6930 k = 0.3127 0.0000 0.2772 band energies (ev): -3.3925 3.7748 8.3095 12.4532 12.5393 13.8258 15.5861 19.1058 19.9613 k = 0.1564-0.2708 0.3881 band energies (ev): -2.6776 4.3645 7.7133 8.1634 8.9241 15.8313 19.0419 19.9366 20.3768 k = 0.6255 0.5417 0.0554 band energies (ev): -0.0040 1.4912 4.8533 6.2350 11.6430 16.1116 18.1163 21.6747 22.6722 k = 0.4691 0.2708 0.1663 band energies (ev): -1.9407 2.2543 6.9490 8.4344 12.2634 14.6592 18.4393 19.3586 20.3099 k = 0.0000 0.0000 0.4990 band energies (ev): -2.6440 1.8095 11.1474 11.1474 13.1755 13.1755 14.2890 15.6347 23.2076 k = 0.4691 0.8125 0.1663 band energies (ev): -0.4535 0.7648 5.5841 9.1554 10.6811 15.7698 18.3780 20.8946 21.9036 k = 0.3127 0.5417 0.2772 band energies (ev): -0.7622 3.5779 4.1264 7.4509 8.2181 15.1097 20.3334 21.3608 24.1042 k = 0.9382 0.0000-0.1663 band energies (ev): -0.4535 0.7648 5.5841 9.1553 10.6810 15.7698 18.3779 20.8946 21.9036 k = 0.7818-0.2708-0.0554 band energies (ev): -0.0040 1.4913 4.8533 6.2350 11.6430 16.1115 18.1163 21.6747 22.6722 k = 0.6255 0.0000 0.0554 band energies (ev): -1.1941 0.2909 9.1537 9.8731 11.2977 14.4685 16.5921 17.2009 22.2045 the Fermi energy is 13.2328 ev total energy = -25.40226141 Ry Harris-Foulkes estimate = -25.40226218 Ry estimated scf accuracy < 0.00000185 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.85E-08, avg # of iterations = 2.0 total cpu time spent up to now is 30.63 secs End of self-consistent calculation k = 0.0000 0.0000 0.1663 ( 531 PWs) bands (ev): -4.8571 8.0669 10.8084 10.8084 13.4872 17.1509 17.1509 18.1564 18.8055 k =-0.1564-0.2708 0.2772 ( 522 PWs) bands (ev): -3.3906 3.7771 8.3110 12.4552 12.5413 13.8273 15.5882 19.1079 19.9616 k = 0.3127 0.5417-0.0554 ( 520 PWs) bands (ev): -1.1921 0.2929 9.1552 9.8748 11.2993 14.4705 16.5938 17.2028 22.2051 k = 0.1564 0.2708 0.0554 ( 525 PWs) bands (ev): -4.1293 5.8733 9.4664 10.2076 12.3829 16.2005 17.3776 17.8455 18.6950 k =-0.3127 0.0000 0.3881 ( 519 PWs) bands (ev): -2.6756 4.3670 7.7147 8.1651 8.9259 15.8309 19.0442 19.9388 20.3798 k = 0.1564 0.8125 0.0554 ( 510 PWs) bands (ev): -0.0017 1.4935 4.8544 6.2363 11.6450 16.1138 18.1162 21.6772 22.6727 k = 0.0000 0.5417 0.1663 ( 521 PWs) bands (ev): -1.9387 2.2566 6.9503 8.4359 12.2655 14.6610 18.4403 19.3600 20.3123 k = 0.6255 0.0000-0.2772 ( 510 PWs) bands (ev): -0.7599 3.5804 4.1274 7.4525 8.2199 15.1092 20.3361 21.3635 24.1077 k = 0.4691-0.2708-0.1663 ( 521 PWs) bands (ev): -1.9387 2.2566 6.9503 8.4359 12.2655 14.6610 18.4403 19.3600 20.3123 k = 0.3127 0.0000-0.0554 ( 525 PWs) bands (ev): -4.1293 5.8733 9.4664 10.2076 12.3829 16.2005 17.3776 17.8455 18.6949 k = 0.3127 0.0000 0.2772 ( 522 PWs) bands (ev): -3.3906 3.7771 8.3110 12.4552 12.5413 13.8273 15.5882 19.1079 19.9616 k = 0.1564-0.2708 0.3881 ( 519 PWs) bands (ev): -2.6756 4.3670 7.7147 8.1651 8.9259 15.8308 19.0442 19.9388 20.3798 k = 0.6255 0.5417 0.0554 ( 510 PWs) bands (ev): -0.0018 1.4935 4.8544 6.2363 11.6450 16.1138 18.1162 21.6772 22.6727 k = 0.4691 0.2708 0.1663 ( 521 PWs) bands (ev): -1.9387 2.2566 6.9503 8.4359 12.2655 14.6610 18.4403 19.3600 20.3122 k = 0.0000 0.0000 0.4990 ( 522 PWs) bands (ev): -2.6421 1.8116 11.1493 11.1494 13.1773 13.1773 14.2905 15.6360 23.2087 k = 0.4691 0.8125 0.1663 ( 520 PWs) bands (ev): -0.4514 0.7671 5.5853 9.1570 10.6826 15.7722 18.3801 20.8956 21.9056 k = 0.3127 0.5417 0.2772 ( 510 PWs) bands (ev): -0.7599 3.5804 4.1274 7.4525 8.2199 15.1092 20.3361 21.3635 24.1077 k = 0.9382 0.0000-0.1663 ( 520 PWs) bands (ev): -0.4514 0.7671 5.5853 9.1570 10.6826 15.7722 18.3801 20.8956 21.9056 k = 0.7818-0.2708-0.0554 ( 510 PWs) bands (ev): -0.0018 1.4935 4.8544 6.2363 11.6450 16.1138 18.1162 21.6772 22.6727 k = 0.6255 0.0000 0.0554 ( 520 PWs) bands (ev): -1.1921 0.2929 9.1552 9.8748 11.2993 14.4705 16.5937 17.2028 22.2051 the Fermi energy is 13.2346 ev ! total energy = -25.40226160 Ry Harris-Foulkes estimate = -25.40226161 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000048 0.00000000 0.00199339 atom 2 type 1 force = -0.00000048 0.00000000 -0.00199339 Total force = 0.002819 Total SCF correction = 0.000006 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 495.66 0.00340392 0.00000000 0.00000000 500.73 0.00 0.00 0.00000000 0.00340390 0.00000000 0.00 500.73 0.00 0.00000000 0.00000000 0.00330052 0.00 0.00 485.52 Entering Dynamics; it = 12 time = 0.07986 pico-seconds new lattice vectors (alat unit) : 0.532972813 0.000000000 0.750372794 -0.266487316 0.461569025 0.750372405 -0.266487316 -0.461569025 0.750372405 new unit-cell volume = 190.7906 (a.u.)^3 new positions in cryst coord As 0.249948525 0.249948513 0.249948513 As -0.249948525 -0.249948513 -0.249948513 new positions in cart coord (alat unit) As -0.000000449 0.000000000 0.562663507 As 0.000000449 0.000000000 -0.562663507 Ekin = 0.00163712 Ry T = 1578.1 K Etot = -24.75128570 CELL_PARAMETERS (alat) 0.532972813 0.000000000 0.750372794 -0.266487316 0.461569025 0.750372405 -0.266487316 -0.461569025 0.750372405 ATOMIC_POSITIONS (crystal) As 0.249948525 0.249948513 0.249948513 As -0.249948525 -0.249948513 -0.249948513 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1665839), wk = 0.0625000 k( 2) = ( -0.1563556 -0.2708154 0.2776397), wk = 0.1250000 k( 3) = ( 0.3127111 0.5416308 -0.0555277), wk = 0.1250000 k( 4) = ( 0.1563555 0.2708154 0.0555281), wk = 0.1250000 k( 5) = ( -0.3127112 0.0000000 0.3886956), wk = 0.0625000 k( 6) = ( 0.1563555 0.8124462 0.0555281), wk = 0.1250000 k( 7) = ( -0.0000001 0.5416308 0.1665839), wk = 0.1250000 k( 8) = ( 0.6254222 0.0000000 -0.2776394), wk = 0.0625000 k( 9) = ( 0.4690666 -0.2708154 -0.1665835), wk = 0.1250000 k( 10) = ( 0.3127111 0.0000000 -0.0555277), wk = 0.0625000 k( 11) = ( 0.3127109 0.0000000 0.2776401), wk = 0.0625000 k( 12) = ( 0.1563553 -0.2708154 0.3886959), wk = 0.1250000 k( 13) = ( 0.6254220 0.5416308 0.0555285), wk = 0.1250000 k( 14) = ( 0.4690665 0.2708154 0.1665843), wk = 0.1250000 k( 15) = ( -0.0000002 0.0000000 0.4997518), wk = 0.0625000 k( 16) = ( 0.4690665 0.8124462 0.1665843), wk = 0.1250000 k( 17) = ( 0.3127109 0.5416308 0.2776401), wk = 0.1250000 k( 18) = ( 0.9381332 0.0000000 -0.1665832), wk = 0.0625000 k( 19) = ( 0.7817776 -0.2708154 -0.0555273), wk = 0.1250000 k( 20) = ( 0.6254220 0.0000000 0.0555285), wk = 0.0625000 extrapolated charge 9.98682, renormalised to 10.00000 total cpu time spent up to now is 30.89 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.6 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.45E-08, avg # of iterations = 1.1 total cpu time spent up to now is 31.61 secs k = 0.0000 0.0000 0.1666 band energies (ev): -4.8457 8.1106 10.8199 10.8199 13.5176 17.1785 17.1785 18.1825 18.8443 k =-0.1564-0.2708 0.2776 band energies (ev): -3.3779 3.7934 8.3465 12.5102 12.5256 13.8477 15.6193 19.1552 19.9756 k = 0.3127 0.5416-0.0555 band energies (ev): -1.1812 0.3078 9.1899 9.8909 11.3202 14.4984 16.6285 17.2588 22.2703 k = 0.1564 0.2708 0.0555 band energies (ev): -4.1187 5.8916 9.4786 10.2407 12.4124 16.2470 17.4233 17.8819 18.7279 k =-0.3127 0.0000 0.3887 band energies (ev): -2.6605 4.3995 7.7319 8.1729 8.9456 15.8558 19.0667 19.9593 20.4030 k = 0.1564 0.8124 0.0555 band energies (ev): 0.0163 1.5075 4.8680 6.2623 11.6747 16.1369 18.1326 21.7252 22.7252 k = 0.0000 0.5416 0.1666 band energies (ev): -1.9272 2.2713 6.9696 8.4598 12.3050 14.7019 18.4713 19.3863 20.3422 k = 0.6254 0.0000-0.2776 band energies (ev): -0.7455 3.6062 4.1440 7.4610 8.2449 15.1412 20.3749 21.3998 24.1570 k = 0.4691-0.2708-0.1666 band energies (ev): -1.9272 2.2713 6.9696 8.4598 12.3050 14.7019 18.4713 19.3862 20.3422 k = 0.3127 0.0000-0.0555 band energies (ev): -4.1187 5.8916 9.4786 10.2407 12.4124 16.2470 17.4233 17.8819 18.7279 k = 0.3127 0.0000 0.2776 band energies (ev): -3.3778 3.7934 8.3465 12.5102 12.5256 13.8477 15.6193 19.1552 19.9755 k = 0.1564-0.2708 0.3887 band energies (ev): -2.6605 4.3995 7.7319 8.1729 8.9456 15.8558 19.0667 19.9593 20.4030 k = 0.6254 0.5416 0.0555 band energies (ev): 0.0162 1.5075 4.8680 6.2623 11.6747 16.1369 18.1326 21.7252 22.7252 k = 0.4691 0.2708 0.1666 band energies (ev): -1.9272 2.2713 6.9696 8.4598 12.3050 14.7019 18.4713 19.3862 20.3422 k = 0.0000 0.0000 0.4998 band energies (ev): -2.6239 1.8421 11.1591 11.1591 13.1911 13.1911 14.3036 15.6493 23.2529 k = 0.4691 0.8124 0.1666 band energies (ev): -0.4290 0.7903 5.5968 9.1676 10.6969 15.7898 18.3965 20.9300 21.9413 k = 0.3127 0.5416 0.2776 band energies (ev): -0.7455 3.6062 4.1440 7.4610 8.2449 15.1412 20.3749 21.3998 24.1570 k = 0.9381 0.0000-0.1666 band energies (ev): -0.4290 0.7903 5.5968 9.1676 10.6969 15.7898 18.3965 20.9300 21.9413 k = 0.7818-0.2708-0.0555 band energies (ev): 0.0163 1.5075 4.8680 6.2623 11.6747 16.1369 18.1326 21.7252 22.7252 k = 0.6254 0.0000 0.0555 band energies (ev): -1.1812 0.3079 9.1899 9.8908 11.3202 14.4983 16.6284 17.2588 22.2703 the Fermi energy is 13.2483 ev total energy = -25.40144357 Ry Harris-Foulkes estimate = -25.39128436 Ry estimated scf accuracy < 0.00000243 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.43E-08, avg # of iterations = 2.0 total cpu time spent up to now is 31.97 secs k = 0.0000 0.0000 0.1666 band energies (ev): -4.8481 8.1097 10.8185 10.8186 13.5170 17.1763 17.1763 18.1802 18.8385 k =-0.1564-0.2708 0.2776 band energies (ev): -3.3801 3.7920 8.3438 12.5075 12.5245 13.8449 15.6173 19.1532 19.9702 k = 0.3127 0.5416-0.0555 band energies (ev): -1.1833 0.3059 9.1871 9.8885 11.3176 14.4965 16.6256 17.2564 22.2657 k = 0.1564 0.2708 0.0555 band energies (ev): -4.1210 5.8905 9.4765 10.2390 12.4097 16.2457 17.4176 17.8799 18.7258 k =-0.3127 0.0000 0.3887 band energies (ev): -2.6627 4.3984 7.7288 8.1705 8.9434 15.8492 19.0651 19.9575 20.4025 k = 0.1564 0.8124 0.0555 band energies (ev): 0.0147 1.5060 4.8644 6.2591 11.6728 16.1354 18.1267 21.7240 22.7203 k = 0.0000 0.5416 0.1666 band energies (ev): -1.9293 2.2698 6.9665 8.4568 12.3033 14.6996 18.4672 19.3832 20.3405 k = 0.6254 0.0000-0.2776 band energies (ev): -0.7472 3.6051 4.1402 7.4584 8.2427 15.1345 20.3740 21.3989 24.1572 k = 0.4691-0.2708-0.1666 band energies (ev): -1.9293 2.2698 6.9665 8.4568 12.3033 14.6996 18.4672 19.3832 20.3405 k = 0.3127 0.0000-0.0555 band energies (ev): -4.1210 5.8905 9.4765 10.2390 12.4097 16.2457 17.4176 17.8799 18.7257 k = 0.3127 0.0000 0.2776 band energies (ev): -3.3801 3.7920 8.3438 12.5075 12.5245 13.8449 15.6173 19.1532 19.9702 k = 0.1564-0.2708 0.3887 band energies (ev): -2.6627 4.3984 7.7288 8.1705 8.9434 15.8492 19.0651 19.9575 20.4025 k = 0.6254 0.5416 0.0555 band energies (ev): 0.0147 1.5060 4.8644 6.2591 11.6728 16.1354 18.1267 21.7240 22.7203 k = 0.4691 0.2708 0.1666 band energies (ev): -1.9293 2.2698 6.9665 8.4568 12.3033 14.6996 18.4672 19.3832 20.3405 k = 0.0000 0.0000 0.4998 band energies (ev): -2.6261 1.8403 11.1571 11.1571 13.1888 13.1888 14.3005 15.6459 23.2488 k = 0.4691 0.8124 0.1666 band energies (ev): -0.4310 0.7887 5.5934 9.1651 10.6941 15.7886 18.3946 20.9261 21.9390 k = 0.3127 0.5416 0.2776 band energies (ev): -0.7472 3.6051 4.1402 7.4584 8.2427 15.1345 20.3740 21.3989 24.1572 k = 0.9381 0.0000-0.1666 band energies (ev): -0.4310 0.7887 5.5934 9.1651 10.6941 15.7886 18.3945 20.9262 21.9391 k = 0.7818-0.2708-0.0555 band energies (ev): 0.0147 1.5060 4.8644 6.2591 11.6728 16.1354 18.1267 21.7240 22.7203 k = 0.6254 0.0000 0.0555 band energies (ev): -1.1832 0.3059 9.1871 9.8885 11.3176 14.4965 16.6255 17.2564 22.2657 the Fermi energy is 13.2461 ev total energy = -25.40144396 Ry Harris-Foulkes estimate = -25.40144402 Ry estimated scf accuracy < 0.00000024 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.40E-09, avg # of iterations = 1.0 total cpu time spent up to now is 32.24 secs End of self-consistent calculation k = 0.0000 0.0000 0.1666 ( 531 PWs) bands (ev): -4.8484 8.1091 10.8181 10.8181 13.5165 17.1759 17.1759 18.1798 18.8385 k =-0.1564-0.2708 0.2776 ( 522 PWs) bands (ev): -3.3805 3.7915 8.3435 12.5072 12.5240 13.8446 15.6169 19.1528 19.9702 k = 0.3127 0.5416-0.0555 ( 520 PWs) bands (ev): -1.1836 0.3055 9.1868 9.8881 11.3173 14.4961 16.6252 17.2561 22.2656 k = 0.1564 0.2708 0.0555 ( 525 PWs) bands (ev): -4.1214 5.8900 9.4762 10.2386 12.4094 16.2452 17.4175 17.8795 18.7254 k =-0.3127 0.0000 0.3887 ( 519 PWs) bands (ev): -2.6630 4.3979 7.7285 8.1702 8.9431 15.8493 19.0646 19.9571 20.4020 k = 0.1564 0.8124 0.0555 ( 510 PWs) bands (ev): 0.0142 1.5055 4.8642 6.2588 11.6724 16.1349 18.1267 21.7235 22.7202 k = 0.0000 0.5416 0.1666 ( 521 PWs) bands (ev): -1.9297 2.2693 6.9662 8.4566 12.3029 14.6992 18.4670 19.3829 20.3401 k = 0.6254 0.0000-0.2776 ( 510 PWs) bands (ev): -0.7476 3.6046 4.1400 7.4581 8.2423 15.1346 20.3735 21.3984 24.1565 k = 0.4691-0.2708-0.1666 ( 521 PWs) bands (ev): -1.9297 2.2693 6.9663 8.4565 12.3029 14.6992 18.4670 19.3829 20.3401 k = 0.3127 0.0000-0.0555 ( 525 PWs) bands (ev): -4.1214 5.8900 9.4762 10.2386 12.4094 16.2452 17.4176 17.8795 18.7253 k = 0.3127 0.0000 0.2776 ( 522 PWs) bands (ev): -3.3805 3.7915 8.3435 12.5072 12.5240 13.8446 15.6169 19.1528 19.9702 k = 0.1564-0.2708 0.3887 ( 519 PWs) bands (ev): -2.6630 4.3979 7.7285 8.1702 8.9431 15.8493 19.0646 19.9571 20.4019 k = 0.6254 0.5416 0.0555 ( 510 PWs) bands (ev): 0.0142 1.5055 4.8642 6.2588 11.6724 16.1349 18.1268 21.7235 22.7202 k = 0.4691 0.2708 0.1666 ( 521 PWs) bands (ev): -1.9297 2.2693 6.9662 8.4565 12.3029 14.6992 18.4670 19.3829 20.3400 k = 0.0000 0.0000 0.4998 ( 522 PWs) bands (ev): -2.6265 1.8399 11.1567 11.1567 13.1884 13.1884 14.3002 15.6457 23.2486 k = 0.4691 0.8124 0.1666 ( 520 PWs) bands (ev): -0.4314 0.7883 5.5931 9.1648 10.6938 15.7881 18.3941 20.9259 21.9387 k = 0.3127 0.5416 0.2776 ( 510 PWs) bands (ev): -0.7476 3.6046 4.1400 7.4581 8.2423 15.1346 20.3735 21.3984 24.1565 k = 0.9381 0.0000-0.1666 ( 520 PWs) bands (ev): -0.4314 0.7883 5.5931 9.1647 10.6938 15.7881 18.3941 20.9260 21.9387 k = 0.7818-0.2708-0.0555 ( 510 PWs) bands (ev): 0.0142 1.5055 4.8642 6.2588 11.6724 16.1349 18.1268 21.7235 22.7202 k = 0.6254 0.0000 0.0555 ( 520 PWs) bands (ev): -1.1836 0.3055 9.1868 9.8881 11.3173 14.4961 16.6252 17.2561 22.2656 the Fermi energy is 13.2457 ev ! total energy = -25.40144397 Ry Harris-Foulkes estimate = -25.40144397 Ry estimated scf accuracy < 6.7E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00022991 atom 2 type 1 force = 0.00000000 0.00000000 -0.00022991 Total force = 0.000325 Total SCF correction = 0.000011 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.65 0.00342362 0.00000000 0.00000000 503.63 0.00 0.00 0.00000000 0.00342361 0.00000000 0.00 503.63 0.00 0.00000000 0.00000000 0.00334242 0.00 0.00 491.69 Entering Dynamics; it = 13 time = 0.08712 pico-seconds new lattice vectors (alat unit) : 0.533268088 0.000000000 0.748463070 -0.266635081 0.461824536 0.748462772 -0.266635081 -0.461824536 0.748462772 new unit-cell volume = 190.5159 (a.u.)^3 new positions in cryst coord As 0.249953333 0.249953322 0.249953322 As -0.249953333 -0.249953322 -0.249953322 new positions in cart coord (alat unit) As -0.000000512 0.000000000 0.561242351 As 0.000000512 0.000000000 -0.561242351 Ekin = 0.00002348 Ry T = 1446.7 K Etot = -24.75293637 CELL_PARAMETERS (alat) 0.533268088 0.000000000 0.748463070 -0.266635081 0.461824536 0.748462772 -0.266635081 -0.461824536 0.748462772 ATOMIC_POSITIONS (crystal) As 0.249953333 0.249953322 0.249953322 As -0.249953333 -0.249953322 -0.249953322 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1670090), wk = 0.0625000 k( 2) = ( -0.1562690 -0.2706656 0.2783481), wk = 0.1250000 k( 3) = ( 0.3125379 0.5413311 -0.0556694), wk = 0.1250000 k( 4) = ( 0.1562689 0.2706656 0.0556698), wk = 0.1250000 k( 5) = ( -0.3125380 0.0000000 0.3896873), wk = 0.0625000 k( 6) = ( 0.1562689 0.8119967 0.0556698), wk = 0.1250000 k( 7) = ( -0.0000001 0.5413311 0.1670090), wk = 0.1250000 k( 8) = ( 0.6250758 0.0000000 -0.2783477), wk = 0.0625000 k( 9) = ( 0.4688068 -0.2706656 -0.1670085), wk = 0.1250000 k( 10) = ( 0.3125379 0.0000000 -0.0556694), wk = 0.0625000 k( 11) = ( 0.3125377 0.0000000 0.2783485), wk = 0.0625000 k( 12) = ( 0.1562688 -0.2706656 0.3896877), wk = 0.1250000 k( 13) = ( 0.6250756 0.5413311 0.0556702), wk = 0.1250000 k( 14) = ( 0.4688067 0.2706656 0.1670094), wk = 0.1250000 k( 15) = ( -0.0000002 0.0000000 0.5010269), wk = 0.0625000 k( 16) = ( 0.4688067 0.8119967 0.1670094), wk = 0.1250000 k( 17) = ( 0.3125377 0.5413311 0.2783485), wk = 0.1250000 k( 18) = ( 0.9376136 0.0000000 -0.1670081), wk = 0.0625000 k( 19) = ( 0.7813446 -0.2706656 -0.0556689), wk = 0.1250000 k( 20) = ( 0.6250756 0.0000000 0.0556702), wk = 0.0625000 extrapolated charge 9.98558, renormalised to 10.00000 total cpu time spent up to now is 32.52 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.38E-09, avg # of iterations = 2.0 total cpu time spent up to now is 33.25 secs k = 0.0000 0.0000 0.1670 band energies (ev): -4.8353 8.1731 10.8211 10.8211 13.5454 17.2043 17.2043 18.1958 18.8976 k =-0.1563-0.2707 0.2783 band energies (ev): -3.3658 3.8059 8.3958 12.5268 12.5403 13.8610 15.6482 19.2177 19.9710 k = 0.3125 0.5413-0.0557 band energies (ev): -1.1747 0.3213 9.2364 9.9008 11.3368 14.5295 16.6647 17.3385 22.3657 k = 0.1563 0.2707 0.0557 band energies (ev): -4.1104 5.9060 9.4818 10.2831 12.4461 16.3065 17.4813 17.9258 18.7643 k =-0.3125 0.0000 0.3897 band energies (ev): -2.6446 4.4432 7.7434 8.1687 8.9640 15.8760 19.0821 19.9684 20.4149 k = 0.1563 0.8120 0.0557 band energies (ev): 0.0350 1.5175 4.8766 6.2947 11.7086 16.1551 18.1352 21.7869 22.7872 k = 0.0000 0.5413 0.1670 band energies (ev): -1.9189 2.2819 6.9873 8.4866 12.3572 14.7566 18.5012 19.4054 20.3697 k = 0.6251 0.0000-0.2783 band energies (ev): -0.7329 3.6334 4.1629 7.4586 8.2727 15.1757 20.4218 21.4393 24.2185 k = 0.4688-0.2707-0.1670 band energies (ev): -1.9189 2.2819 6.9873 8.4866 12.3572 14.7566 18.5012 19.4054 20.3698 k = 0.3125 0.0000-0.0557 band energies (ev): -4.1104 5.9060 9.4818 10.2831 12.4460 16.3065 17.4813 17.9258 18.7643 k = 0.3125 0.0000 0.2783 band energies (ev): -3.3658 3.8059 8.3958 12.5268 12.5403 13.8610 15.6481 19.2177 19.9710 k = 0.1563-0.2707 0.3897 band energies (ev): -2.6446 4.4432 7.7434 8.1688 8.9640 15.8759 19.0821 19.9684 20.4149 k = 0.6251 0.5413 0.0557 band energies (ev): 0.0350 1.5176 4.8766 6.2947 11.7086 16.1551 18.1352 21.7869 22.7871 k = 0.4688 0.2707 0.1670 band energies (ev): -1.9189 2.2819 6.9873 8.4866 12.3572 14.7566 18.5012 19.4054 20.3697 k = 0.0000 0.0000 0.5010 band energies (ev): -2.6023 1.8852 11.1558 11.1558 13.1951 13.1951 14.2973 15.6449 23.3032 k = 0.4688 0.8120 0.1670 band energies (ev): -0.4024 0.8212 5.6008 9.1678 10.7005 15.7993 18.3952 20.9661 21.9770 k = 0.3125 0.5413 0.2783 band energies (ev): -0.7329 3.6334 4.1629 7.4586 8.2727 15.1757 20.4218 21.4393 24.2185 k = 0.9376 0.0000-0.1670 band energies (ev): -0.4023 0.8212 5.6008 9.1678 10.7005 15.7993 18.3952 20.9661 21.9770 k = 0.7813-0.2707-0.0557 band energies (ev): 0.0350 1.5176 4.8766 6.2947 11.7086 16.1551 18.1352 21.7869 22.7872 k = 0.6251 0.0000 0.0557 band energies (ev): -1.1747 0.3213 9.2364 9.9008 11.3368 14.5295 16.6647 17.3385 22.3657 the Fermi energy is 13.2524 ev total energy = -25.40053013 Ry Harris-Foulkes estimate = -25.38940776 Ry estimated scf accuracy < 0.00000041 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.13E-09, avg # of iterations = 2.9 total cpu time spent up to now is 33.65 secs End of self-consistent calculation k = 0.0000 0.0000 0.1670 ( 531 PWs) bands (ev): -4.8378 8.1721 10.8196 10.8196 13.5448 17.2019 17.2019 18.1933 18.8912 k =-0.1563-0.2707 0.2783 ( 522 PWs) bands (ev): -3.3682 3.8044 8.3929 12.5243 12.5387 13.8579 15.6460 19.2155 19.9652 k = 0.3125 0.5413-0.0557 ( 520 PWs) bands (ev): -1.1769 0.3192 9.2333 9.8982 11.3340 14.5275 16.6615 17.3359 22.3606 k = 0.1563 0.2707 0.0557 ( 525 PWs) bands (ev): -4.1128 5.9049 9.4796 10.2812 12.4431 16.3051 17.4752 17.9237 18.7620 k =-0.3125 0.0000 0.3897 ( 519 PWs) bands (ev): -2.6470 4.4420 7.7400 8.1661 8.9617 15.8687 19.0803 19.9665 20.4145 k = 0.1563 0.8120 0.0557 ( 510 PWs) bands (ev): 0.0333 1.5159 4.8727 6.2912 11.7066 16.1535 18.1287 21.7856 22.7818 k = 0.0000 0.5413 0.1670 ( 521 PWs) bands (ev): -1.9212 2.2803 6.9840 8.4833 12.3554 14.7541 18.4967 19.4022 20.3679 k = 0.6251 0.0000-0.2783 ( 510 PWs) bands (ev): -0.7347 3.6322 4.1588 7.4557 8.2703 15.1684 20.4208 21.4384 24.2189 k = 0.4688-0.2707-0.1670 ( 521 PWs) bands (ev): -1.9212 2.2803 6.9840 8.4833 12.3554 14.7541 18.4967 19.4022 20.3679 k = 0.3125 0.0000-0.0557 ( 525 PWs) bands (ev): -4.1128 5.9049 9.4796 10.2812 12.4431 16.3050 17.4752 17.9237 18.7619 k = 0.3125 0.0000 0.2783 ( 522 PWs) bands (ev): -3.3682 3.8044 8.3929 12.5243 12.5387 13.8579 15.6460 19.2155 19.9652 k = 0.1563-0.2707 0.3897 ( 519 PWs) bands (ev): -2.6469 4.4420 7.7400 8.1661 8.9617 15.8687 19.0803 19.9665 20.4144 k = 0.6251 0.5413 0.0557 ( 510 PWs) bands (ev): 0.0333 1.5159 4.8727 6.2912 11.7065 16.1535 18.1287 21.7856 22.7818 k = 0.4688 0.2707 0.1670 ( 521 PWs) bands (ev): -1.9212 2.2803 6.9840 8.4833 12.3554 14.7541 18.4967 19.4022 20.3679 k = 0.0000 0.0000 0.5010 ( 522 PWs) bands (ev): -2.6047 1.8833 11.1536 11.1536 13.1926 13.1926 14.2939 15.6413 23.2987 k = 0.4688 0.8120 0.1670 ( 520 PWs) bands (ev): -0.4045 0.8195 5.5970 9.1651 10.6974 15.7980 18.3931 20.9619 21.9745 k = 0.3125 0.5413 0.2783 ( 510 PWs) bands (ev): -0.7347 3.6322 4.1588 7.4557 8.2703 15.1684 20.4208 21.4384 24.2189 k = 0.9376 0.0000-0.1670 ( 520 PWs) bands (ev): -0.4045 0.8195 5.5970 9.1650 10.6974 15.7980 18.3931 20.9619 21.9745 k = 0.7813-0.2707-0.0557 ( 510 PWs) bands (ev): 0.0333 1.5159 4.8727 6.2912 11.7065 16.1535 18.1287 21.7856 22.7818 k = 0.6251 0.0000 0.0557 ( 520 PWs) bands (ev): -1.1769 0.3192 9.2333 9.8982 11.3340 14.5275 16.6615 17.3359 22.3607 the Fermi energy is 13.2499 ev ! total energy = -25.40053062 Ry Harris-Foulkes estimate = -25.40053067 Ry estimated scf accuracy < 0.00000010 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000001 0.00000000 0.00020484 atom 2 type 1 force = 0.00000001 0.00000000 -0.00020484 Total force = 0.000290 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 503.89 0.00343856 0.00000000 0.00000001 505.83 0.00 0.00 0.00000000 0.00343856 0.00000000 0.00 505.83 0.00 0.00000001 0.00000000 0.00339898 0.00 0.00 500.01 Entering Dynamics; it = 14 time = 0.09438 pico-seconds new lattice vectors (alat unit) : 0.533960731 0.000000000 0.748484898 -0.266981416 0.462424094 0.748484406 -0.266981416 -0.462424094 0.748484406 new unit-cell volume = 191.0165 (a.u.)^3 new positions in cryst coord As 0.249962468 0.249962458 0.249962458 As -0.249962468 -0.249962458 -0.249962458 new positions in cart coord (alat unit) As -0.000000520 0.000000000 0.561279136 As 0.000000520 0.000000000 -0.561279136 Ekin = 0.00004610 Ry T = 1335.5 K Etot = -24.75293403 CELL_PARAMETERS (alat) 0.533960731 0.000000000 0.748484898 -0.266981416 0.462424094 0.748484406 -0.266981416 -0.462424094 0.748484406 ATOMIC_POSITIONS (crystal) As 0.249962468 0.249962458 0.249962458 As -0.249962468 -0.249962458 -0.249962458 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1670041), wk = 0.0625000 k( 2) = ( -0.1560664 -0.2703146 0.2783400), wk = 0.1250000 k( 3) = ( 0.3121324 0.5406293 -0.0556677), wk = 0.1250000 k( 4) = ( 0.1560662 0.2703146 0.0556682), wk = 0.1250000 k( 5) = ( -0.3121326 0.0000000 0.3896760), wk = 0.0625000 k( 6) = ( 0.1560662 0.8109439 0.0556682), wk = 0.1250000 k( 7) = ( -0.0000001 0.5406293 0.1670041), wk = 0.1250000 k( 8) = ( 0.6242650 0.0000000 -0.2783396), wk = 0.0625000 k( 9) = ( 0.4681987 -0.2703146 -0.1670037), wk = 0.1250000 k( 10) = ( 0.3121324 0.0000000 -0.0556677), wk = 0.0625000 k( 11) = ( 0.3121322 0.0000000 0.2783405), wk = 0.0625000 k( 12) = ( 0.1560660 -0.2703146 0.3896764), wk = 0.1250000 k( 13) = ( 0.6242648 0.5406293 0.0556686), wk = 0.1250000 k( 14) = ( 0.4681985 0.2703146 0.1670045), wk = 0.1250000 k( 15) = ( -0.0000003 0.0000000 0.5010123), wk = 0.0625000 k( 16) = ( 0.4681985 0.8109439 0.1670045), wk = 0.1250000 k( 17) = ( 0.3121322 0.5406293 0.2783405), wk = 0.1250000 k( 18) = ( 0.9363973 0.0000000 -0.1670032), wk = 0.0625000 k( 19) = ( 0.7803311 -0.2703146 -0.0556673), wk = 0.1250000 k( 20) = ( 0.6242648 0.0000000 0.0556686), wk = 0.0625000 extrapolated charge 10.02621, renormalised to 10.00000 total cpu time spent up to now is 33.94 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.19E-09, avg # of iterations = 2.2 total cpu time spent up to now is 34.66 secs k = 0.0000 0.0000 0.1670 band energies (ev): -4.8597 8.1340 10.7639 10.7639 13.4674 17.1416 17.1417 18.1192 18.8463 k =-0.1561-0.2703 0.2783 band energies (ev): -3.3929 3.7590 8.3640 12.4734 12.4840 13.7961 15.5731 19.1604 19.8908 k = 0.3121 0.5406-0.0557 band energies (ev): -1.2095 0.2853 9.2002 9.8505 11.2791 14.4763 16.5967 17.2895 22.3218 k = 0.1561 0.2703 0.0557 band energies (ev): -4.1372 5.8531 9.4295 10.2399 12.3967 16.2441 17.4337 17.8687 18.6962 k =-0.3121 0.0000 0.3897 band energies (ev): -2.6722 4.4051 7.6959 8.1170 8.9137 15.8190 19.0102 19.8860 20.3255 k = 0.1561 0.8109 0.0557 band energies (ev): 0.0001 1.4753 4.8370 6.2613 11.6573 16.0880 18.0656 21.7224 22.7299 k = 0.0000 0.5406 0.1670 band energies (ev): -1.9513 2.2380 6.9461 8.4439 12.3130 14.7085 18.4362 19.3289 20.2952 k = 0.6243 0.0000-0.2783 band energies (ev): -0.7685 3.5905 4.1291 7.4094 8.2275 15.1261 20.3584 21.3645 24.1445 k = 0.4682-0.2703-0.1670 band energies (ev): -1.9513 2.2380 6.9461 8.4439 12.3130 14.7084 18.4362 19.3289 20.2952 k = 0.3121 0.0000-0.0557 band energies (ev): -4.1372 5.8531 9.4295 10.2399 12.3967 16.2441 17.4337 17.8687 18.6962 k = 0.3121 0.0000 0.2783 band energies (ev): -3.3929 3.7590 8.3640 12.4734 12.4840 13.7961 15.5731 19.1604 19.8908 k = 0.1561-0.2703 0.3897 band energies (ev): -2.6722 4.4051 7.6960 8.1170 8.9137 15.8190 19.0102 19.8860 20.3255 k = 0.6243 0.5406 0.0557 band energies (ev): 0.0001 1.4753 4.8370 6.2613 11.6573 16.0880 18.0656 21.7224 22.7299 k = 0.4682 0.2703 0.1670 band energies (ev): -1.9513 2.2380 6.9461 8.4439 12.3130 14.7084 18.4362 19.3289 20.2952 k = 0.0000 0.0000 0.5010 band energies (ev): -2.6273 1.8572 11.0967 11.0967 13.1344 13.1344 14.2125 15.5613 23.2311 k = 0.4682 0.8109 0.1670 band energies (ev): -0.4312 0.7893 5.5575 9.1154 10.6375 15.7335 18.3060 20.8998 21.9041 k = 0.3121 0.5406 0.2783 band energies (ev): -0.7685 3.5905 4.1291 7.4094 8.2275 15.1261 20.3584 21.3645 24.1445 k = 0.9364 0.0000-0.1670 band energies (ev): -0.4312 0.7893 5.5575 9.1154 10.6375 15.7335 18.3060 20.8998 21.9041 k = 0.7803-0.2703-0.0557 band energies (ev): 0.0001 1.4753 4.8370 6.2613 11.6573 16.0880 18.0656 21.7224 22.7299 k = 0.6243 0.0000 0.0557 band energies (ev): -1.2095 0.2853 9.2002 9.8505 11.2791 14.4763 16.5967 17.2895 22.3218 the Fermi energy is 13.1916 ev total energy = -25.40223699 Ry Harris-Foulkes estimate = -25.42244061 Ry estimated scf accuracy < 0.00000060 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.04E-09, avg # of iterations = 3.0 total cpu time spent up to now is 35.11 secs k = 0.0000 0.0000 0.1670 band energies (ev): -4.8548 8.1362 10.7670 10.7670 13.4691 17.1462 17.1462 18.1240 18.8577 k =-0.1561-0.2703 0.2783 band energies (ev): -3.3882 3.7622 8.3695 12.4781 12.4872 13.8021 15.5774 19.1647 19.9015 k = 0.3121 0.5406-0.0557 band energies (ev): -1.2051 0.2894 9.2060 9.8554 11.2846 14.4803 16.6027 17.2945 22.3309 k = 0.1561 0.2703 0.0557 band energies (ev): -4.1325 5.8556 9.4338 10.2438 12.4023 16.2471 17.4448 17.8729 18.7008 k =-0.3121 0.0000 0.3897 band energies (ev): -2.6677 4.4077 7.7023 8.1220 8.9183 15.8321 19.0137 19.8899 20.3269 k = 0.1561 0.8109 0.0557 band energies (ev): 0.0036 1.4786 4.8443 6.2678 11.6613 16.0914 18.0773 21.7252 22.7396 k = 0.0000 0.5406 0.1670 band energies (ev): -1.9468 2.2413 6.9524 8.4500 12.3166 14.7133 18.4445 19.3351 20.2989 k = 0.6243 0.0000-0.2783 band energies (ev): -0.7649 3.5931 4.1367 7.4147 8.2323 15.1393 20.3605 21.3667 24.1444 k = 0.4682-0.2703-0.1670 band energies (ev): -1.9468 2.2413 6.9524 8.4500 12.3166 14.7133 18.4445 19.3351 20.2989 k = 0.3121 0.0000-0.0557 band energies (ev): -4.1325 5.8556 9.4338 10.2438 12.4023 16.2471 17.4448 17.8729 18.7008 k = 0.3121 0.0000 0.2783 band energies (ev): -3.3882 3.7622 8.3695 12.4781 12.4872 13.8021 15.5774 19.1646 19.9015 k = 0.1561-0.2703 0.3897 band energies (ev): -2.6677 4.4077 7.7023 8.1220 8.9183 15.8321 19.0137 19.8899 20.3269 k = 0.6243 0.5406 0.0557 band energies (ev): 0.0036 1.4786 4.8443 6.2678 11.6613 16.0914 18.0773 21.7252 22.7396 k = 0.4682 0.2703 0.1670 band energies (ev): -1.9468 2.2413 6.9524 8.4500 12.3166 14.7133 18.4445 19.3351 20.2989 k = 0.0000 0.0000 0.5010 band energies (ev): -2.6227 1.8611 11.1010 11.1010 13.1391 13.1391 14.2191 15.5682 23.2394 k = 0.4682 0.8109 0.1670 band energies (ev): -0.4270 0.7927 5.5646 9.1207 10.6434 15.7362 18.3103 20.9074 21.9091 k = 0.3121 0.5406 0.2783 band energies (ev): -0.7649 3.5931 4.1367 7.4147 8.2323 15.1393 20.3605 21.3667 24.1444 k = 0.9364 0.0000-0.1670 band energies (ev): -0.4270 0.7927 5.5646 9.1207 10.6434 15.7362 18.3103 20.9074 21.9091 k = 0.7803-0.2703-0.0557 band energies (ev): 0.0036 1.4786 4.8443 6.2678 11.6613 16.0914 18.0773 21.7252 22.7396 k = 0.6243 0.0000 0.0557 band energies (ev): -1.2051 0.2894 9.2060 9.8554 11.2846 14.4803 16.6027 17.2945 22.3309 the Fermi energy is 13.1964 ev total energy = -25.40223846 Ry Harris-Foulkes estimate = -25.40223858 Ry estimated scf accuracy < 0.00000036 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.58E-09, avg # of iterations = 1.0 total cpu time spent up to now is 35.41 secs End of self-consistent calculation k = 0.0000 0.0000 0.1670 ( 531 PWs) bands (ev): -4.8544 8.1368 10.7675 10.7675 13.4697 17.1466 17.1466 18.1244 18.8577 k =-0.1561-0.2703 0.2783 ( 522 PWs) bands (ev): -3.3878 3.7627 8.3698 12.4785 12.4877 13.8024 15.5779 19.1651 19.9016 k = 0.3121 0.5406-0.0557 ( 520 PWs) bands (ev): -1.2047 0.2899 9.2063 9.8558 11.2850 14.4808 16.6030 17.2949 22.3310 k = 0.1561 0.2703 0.0557 ( 525 PWs) bands (ev): -4.1321 5.8561 9.4342 10.2442 12.4027 16.2476 17.4448 17.8733 18.7012 k =-0.3121 0.0000 0.3897 ( 519 PWs) bands (ev): -2.6672 4.4082 7.7026 8.1224 8.9187 15.8320 19.0142 19.8904 20.3275 k = 0.1561 0.8109 0.0557 ( 510 PWs) bands (ev): 0.0041 1.4791 4.8445 6.2681 11.6617 16.0919 18.0773 21.7258 22.7397 k = 0.0000 0.5406 0.1670 ( 521 PWs) bands (ev): -1.9464 2.2418 6.9527 8.4503 12.3171 14.7137 18.4447 19.3354 20.2993 k = 0.6243 0.0000-0.2783 ( 510 PWs) bands (ev): -0.7644 3.5936 4.1369 7.4151 8.2327 15.1392 20.3611 21.3673 24.1451 k = 0.4682-0.2703-0.1670 ( 521 PWs) bands (ev): -1.9464 2.2418 6.9527 8.4503 12.3171 14.7137 18.4447 19.3354 20.2994 k = 0.3121 0.0000-0.0557 ( 525 PWs) bands (ev): -4.1321 5.8561 9.4342 10.2442 12.4027 16.2476 17.4448 17.8733 18.7012 k = 0.3121 0.0000 0.2783 ( 522 PWs) bands (ev): -3.3878 3.7627 8.3698 12.4785 12.4877 13.8024 15.5779 19.1651 19.9016 k = 0.1561-0.2703 0.3897 ( 519 PWs) bands (ev): -2.6672 4.4082 7.7026 8.1224 8.9187 15.8320 19.0142 19.8904 20.3275 k = 0.6243 0.5406 0.0557 ( 510 PWs) bands (ev): 0.0041 1.4791 4.8445 6.2681 11.6617 16.0919 18.0773 21.7258 22.7397 k = 0.4682 0.2703 0.1670 ( 521 PWs) bands (ev): -1.9464 2.2418 6.9527 8.4503 12.3171 14.7137 18.4447 19.3354 20.2994 k = 0.0000 0.0000 0.5010 ( 522 PWs) bands (ev): -2.6223 1.8615 11.1014 11.1014 13.1395 13.1395 14.2194 15.5684 23.2396 k = 0.4682 0.8109 0.1670 ( 520 PWs) bands (ev): -0.4265 0.7932 5.5648 9.1211 10.6437 15.7368 18.3108 20.9076 21.9096 k = 0.3121 0.5406 0.2783 ( 510 PWs) bands (ev): -0.7644 3.5936 4.1369 7.4151 8.2327 15.1392 20.3611 21.3673 24.1451 k = 0.9364 0.0000-0.1670 ( 520 PWs) bands (ev): -0.4265 0.7932 5.5648 9.1211 10.6437 15.7368 18.3108 20.9076 21.9096 k = 0.7803-0.2703-0.0557 ( 510 PWs) bands (ev): 0.0041 1.4791 4.8445 6.2681 11.6617 16.0919 18.0773 21.7258 22.7397 k = 0.6243 0.0000 0.0557 ( 520 PWs) bands (ev): -1.2047 0.2899 9.2063 9.8558 11.2850 14.4808 16.6030 17.2949 22.3310 the Fermi energy is 13.1968 ev ! total energy = -25.40223841 Ry Harris-Foulkes estimate = -25.40223846 Ry estimated scf accuracy < 0.00000010 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000001 0.00000000 0.00016293 atom 2 type 1 force = 0.00000001 0.00000000 -0.00016293 Total force = 0.000230 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 496.67 0.00338455 0.00000000 0.00000000 497.88 0.00 0.00 0.00000000 0.00338455 0.00000000 0.00 497.88 0.00 0.00000000 0.00000000 0.00335980 0.00 0.00 494.24 Entering Dynamics; it = 15 time = 0.10164 pico-seconds new lattice vectors (alat unit) : 0.533778091 0.000000000 0.747947824 -0.266889957 0.462265952 0.747947259 -0.266889957 -0.462265952 0.747947259 new unit-cell volume = 190.7489 (a.u.)^3 new positions in cryst coord As 0.249975019 0.249975011 0.249975011 As -0.249975019 -0.249975011 -0.249975011 new positions in cart coord (alat unit) As -0.000000452 0.000000000 0.560904521 As 0.000000452 0.000000000 -0.560904521 Ekin = 0.00001874 Ry T = 1240.2 K Etot = -24.75296751 CELL_PARAMETERS (alat) 0.533778091 0.000000000 0.747947824 -0.266889957 0.462265952 0.747947259 -0.266889957 -0.462265952 0.747947259 ATOMIC_POSITIONS (crystal) As 0.249975019 0.249975011 0.249975011 As -0.249975019 -0.249975011 -0.249975011 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1671240), wk = 0.0625000 k( 2) = ( -0.1561198 -0.2704071 0.2785399), wk = 0.1250000 k( 3) = ( 0.3122393 0.5408142 -0.0557078), wk = 0.1250000 k( 4) = ( 0.1561196 0.2704071 0.0557081), wk = 0.1250000 k( 5) = ( -0.3122395 0.0000000 0.3899558), wk = 0.0625000 k( 6) = ( 0.1561196 0.8112213 0.0557081), wk = 0.1250000 k( 7) = ( -0.0000001 0.5408142 0.1671240), wk = 0.1250000 k( 8) = ( 0.6244787 0.0000000 -0.2785396), wk = 0.0625000 k( 9) = ( 0.4683590 -0.2704071 -0.1671237), wk = 0.1250000 k( 10) = ( 0.3122393 0.0000000 -0.0557078), wk = 0.0625000 k( 11) = ( 0.3122391 0.0000000 0.2785403), wk = 0.0625000 k( 12) = ( 0.1561194 -0.2704071 0.3899562), wk = 0.1250000 k( 13) = ( 0.6244785 0.5408142 0.0557085), wk = 0.1250000 k( 14) = ( 0.4683588 0.2704071 0.1671244), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5013721), wk = 0.0625000 k( 16) = ( 0.4683588 0.8112213 0.1671244), wk = 0.1250000 k( 17) = ( 0.3122391 0.5408142 0.2785403), wk = 0.1250000 k( 18) = ( 0.9367179 0.0000000 -0.1671233), wk = 0.0625000 k( 19) = ( 0.7805982 -0.2704071 -0.0557074), wk = 0.1250000 k( 20) = ( 0.6244785 0.0000000 0.0557085), wk = 0.0625000 extrapolated charge 9.98597, renormalised to 10.00000 total cpu time spent up to now is 35.70 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.37E-09, avg # of iterations = 3.1 total cpu time spent up to now is 36.46 secs k = 0.0000 0.0000 0.1671 band energies (ev): -4.8421 8.1695 10.7900 10.7900 13.5077 17.1779 17.1779 18.1576 18.8912 k =-0.1561-0.2704 0.2785 band energies (ev): -3.3739 3.7844 8.3958 12.5047 12.5126 13.8308 15.6147 19.2046 19.9303 k = 0.3122 0.5408-0.0557 band energies (ev): -1.1894 0.3076 9.2330 9.8778 11.3116 14.5099 16.6390 17.3359 22.3738 k = 0.1561 0.2704 0.0557 band energies (ev): -4.1193 5.8808 9.4553 10.2727 12.4309 16.2881 17.4785 17.9076 18.7375 k =-0.3122 0.0000 0.3900 band energies (ev): -2.6521 4.4353 7.7238 8.1411 8.9432 15.8583 19.0462 19.9246 20.3655 k = 0.1561 0.8112 0.0557 band energies (ev): 0.0229 1.4984 4.8618 6.2898 11.6909 16.1228 18.1038 21.7679 22.7784 k = 0.0000 0.5408 0.1671 band energies (ev): -1.9316 2.2619 6.9733 8.4740 12.3487 14.7474 18.4775 19.3699 20.3358 k = 0.6245 0.0000-0.2785 band energies (ev): -0.7470 3.6180 4.1548 7.4332 8.2577 15.1668 20.3988 21.4073 24.1911 k = 0.4684-0.2704-0.1671 band energies (ev): -1.9316 2.2619 6.9733 8.4740 12.3487 14.7474 18.4775 19.3699 20.3358 k = 0.3122 0.0000-0.0557 band energies (ev): -4.1193 5.8808 9.4553 10.2727 12.4309 16.2881 17.4785 17.9076 18.7375 k = 0.3122 0.0000 0.2785 band energies (ev): -3.3739 3.7844 8.3958 12.5047 12.5126 13.8308 15.6147 19.2046 19.9303 k = 0.1561-0.2704 0.3900 band energies (ev): -2.6521 4.4353 7.7238 8.1411 8.9432 15.8583 19.0462 19.9246 20.3655 k = 0.6245 0.5408 0.0557 band energies (ev): 0.0229 1.4984 4.8618 6.2898 11.6909 16.1228 18.1038 21.7679 22.7784 k = 0.4684 0.2704 0.1671 band energies (ev): -1.9316 2.2619 6.9733 8.4740 12.3487 14.7474 18.4775 19.3699 20.3358 k = 0.0000 0.0000 0.5014 band energies (ev): -2.6065 1.8845 11.1232 11.1232 13.1640 13.1640 14.2499 15.5990 23.2807 k = 0.4684 0.8112 0.1671 band energies (ev): -0.4079 0.8143 5.5822 9.1412 10.6687 15.7649 18.3446 20.9423 21.9478 k = 0.3122 0.5408 0.2785 band energies (ev): -0.7470 3.6180 4.1548 7.4332 8.2577 15.1668 20.3988 21.4073 24.1911 k = 0.9367 0.0000-0.1671 band energies (ev): -0.4079 0.8143 5.5822 9.1412 10.6687 15.7649 18.3446 20.9423 21.9478 k = 0.7806-0.2704-0.0557 band energies (ev): 0.0229 1.4984 4.8618 6.2898 11.6909 16.1228 18.1038 21.7679 22.7784 k = 0.6245 0.0000 0.0557 band energies (ev): -1.1894 0.3076 9.2330 9.8778 11.3116 14.5099 16.6390 17.3359 22.3738 the Fermi energy is 13.2212 ev total energy = -25.40133211 Ry Harris-Foulkes estimate = -25.39051448 Ry estimated scf accuracy < 0.00000017 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-09, avg # of iterations = 3.0 total cpu time spent up to now is 36.90 secs k = 0.0000 0.0000 0.1671 band energies (ev): -4.8447 8.1683 10.7884 10.7884 13.5068 17.1754 17.1754 18.1549 18.8850 k =-0.1561-0.2704 0.2785 band energies (ev): -3.3765 3.7827 8.3928 12.5020 12.5110 13.8277 15.6124 19.2023 19.9246 k = 0.3122 0.5408-0.0557 band energies (ev): -1.1917 0.3053 9.2299 9.8752 11.3087 14.5078 16.6358 17.3332 22.3689 k = 0.1561 0.2704 0.0557 band energies (ev): -4.1219 5.8795 9.4530 10.2706 12.4279 16.2865 17.4726 17.9053 18.7350 k =-0.3122 0.0000 0.3900 band energies (ev): -2.6546 4.4340 7.7204 8.1383 8.9407 15.8513 19.0443 19.9225 20.3648 k = 0.1561 0.8112 0.0557 band energies (ev): 0.0210 1.4966 4.8579 6.2863 11.6888 16.1210 18.0975 21.7664 22.7731 k = 0.0000 0.5408 0.1671 band energies (ev): -1.9340 2.2601 6.9699 8.4707 12.3467 14.7448 18.4730 19.3665 20.3338 k = 0.6245 0.0000-0.2785 band energies (ev): -0.7490 3.6166 4.1507 7.4303 8.2552 15.1597 20.3976 21.4060 24.1912 k = 0.4684-0.2704-0.1671 band energies (ev): -1.9340 2.2601 6.9699 8.4707 12.3467 14.7448 18.4730 19.3665 20.3338 k = 0.3122 0.0000-0.0557 band energies (ev): -4.1219 5.8795 9.4530 10.2706 12.4279 16.2865 17.4726 17.9053 18.7350 k = 0.3122 0.0000 0.2785 band energies (ev): -3.3765 3.7827 8.3928 12.5020 12.5110 13.8277 15.6124 19.2023 19.9246 k = 0.1561-0.2704 0.3900 band energies (ev): -2.6546 4.4340 7.7204 8.1383 8.9407 15.8513 19.0443 19.9225 20.3648 k = 0.6245 0.5408 0.0557 band energies (ev): 0.0210 1.4966 4.8579 6.2863 11.6888 16.1210 18.0975 21.7664 22.7731 k = 0.4684 0.2704 0.1671 band energies (ev): -1.9340 2.2601 6.9699 8.4707 12.3467 14.7448 18.4730 19.3665 20.3338 k = 0.0000 0.0000 0.5014 band energies (ev): -2.6090 1.8824 11.1209 11.1209 13.1614 13.1614 14.2464 15.5953 23.2763 k = 0.4684 0.8112 0.1671 band energies (ev): -0.4101 0.8124 5.5784 9.1383 10.6656 15.7634 18.3423 20.9382 21.9450 k = 0.3122 0.5408 0.2785 band energies (ev): -0.7490 3.6166 4.1507 7.4303 8.2552 15.1597 20.3976 21.4061 24.1912 k = 0.9367 0.0000-0.1671 band energies (ev): -0.4101 0.8124 5.5784 9.1383 10.6656 15.7634 18.3423 20.9382 21.9450 k = 0.7806-0.2704-0.0557 band energies (ev): 0.0210 1.4966 4.8579 6.2863 11.6888 16.1210 18.0975 21.7664 22.7731 k = 0.6245 0.0000 0.0557 band energies (ev): -1.1917 0.3053 9.2299 9.8752 11.3087 14.5078 16.6358 17.3332 22.3689 the Fermi energy is 13.2187 ev total energy = -25.40133252 Ry Harris-Foulkes estimate = -25.40133255 Ry estimated scf accuracy < 0.00000010 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.01E-09, avg # of iterations = 1.0 total cpu time spent up to now is 37.21 secs End of self-consistent calculation k = 0.0000 0.0000 0.1671 ( 531 PWs) bands (ev): -4.8449 8.1680 10.7881 10.7881 13.5065 17.1752 17.1752 18.1547 18.8850 k =-0.1561-0.2704 0.2785 ( 522 PWs) bands (ev): -3.3767 3.7824 8.3926 12.5018 12.5107 13.8275 15.6121 19.2020 19.9245 k = 0.3122 0.5408-0.0557 ( 520 PWs) bands (ev): -1.1920 0.3051 9.2297 9.8750 11.3085 14.5076 16.6356 17.3329 22.3689 k = 0.1561 0.2704 0.0557 ( 525 PWs) bands (ev): -4.1221 5.8792 9.4528 10.2703 12.4277 16.2862 17.4726 17.9051 18.7348 k =-0.3122 0.0000 0.3900 ( 519 PWs) bands (ev): -2.6548 4.4337 7.7202 8.1381 8.9405 15.8514 19.0441 19.9223 20.3644 k = 0.1561 0.8112 0.0557 ( 510 PWs) bands (ev): 0.0208 1.4963 4.8578 6.2861 11.6885 16.1207 18.0975 21.7661 22.7731 k = 0.0000 0.5408 0.1671 ( 521 PWs) bands (ev): -1.9342 2.2598 6.9697 8.4705 12.3465 14.7446 18.4729 19.3664 20.3335 k = 0.6245 0.0000-0.2785 ( 510 PWs) bands (ev): -0.7492 3.6163 4.1506 7.4301 8.2549 15.1598 20.3973 21.4057 24.1907 k = 0.4684-0.2704-0.1671 ( 521 PWs) bands (ev): -1.9342 2.2598 6.9697 8.4705 12.3465 14.7446 18.4729 19.3664 20.3335 k = 0.3122 0.0000-0.0557 ( 525 PWs) bands (ev): -4.1221 5.8792 9.4528 10.2703 12.4277 16.2862 17.4726 17.9051 18.7348 k = 0.3122 0.0000 0.2785 ( 522 PWs) bands (ev): -3.3767 3.7824 8.3926 12.5018 12.5107 13.8275 15.6121 19.2020 19.9245 k = 0.1561-0.2704 0.3900 ( 519 PWs) bands (ev): -2.6548 4.4337 7.7202 8.1381 8.9405 15.8514 19.0441 19.9223 20.3644 k = 0.6245 0.5408 0.0557 ( 510 PWs) bands (ev): 0.0208 1.4963 4.8578 6.2861 11.6885 16.1207 18.0975 21.7661 22.7731 k = 0.4684 0.2704 0.1671 ( 521 PWs) bands (ev): -1.9342 2.2598 6.9697 8.4705 12.3465 14.7446 18.4729 19.3664 20.3335 k = 0.0000 0.0000 0.5014 ( 522 PWs) bands (ev): -2.6093 1.8821 11.1207 11.1207 13.1612 13.1612 14.2462 15.5952 23.2761 k = 0.4684 0.8112 0.1671 ( 520 PWs) bands (ev): -0.4104 0.8122 5.5783 9.1381 10.6654 15.7631 18.3421 20.9381 21.9448 k = 0.3122 0.5408 0.2785 ( 510 PWs) bands (ev): -0.7492 3.6163 4.1506 7.4301 8.2549 15.1598 20.3973 21.4057 24.1907 k = 0.9367 0.0000-0.1671 ( 520 PWs) bands (ev): -0.4104 0.8122 5.5783 9.1381 10.6654 15.7631 18.3421 20.9381 21.9448 k = 0.7806-0.2704-0.0557 ( 510 PWs) bands (ev): 0.0208 1.4963 4.8578 6.2861 11.6885 16.1207 18.0975 21.7661 22.7731 k = 0.6245 0.0000 0.0557 ( 520 PWs) bands (ev): -1.1920 0.3051 9.2297 9.8750 11.3085 14.5076 16.6356 17.3329 22.3689 the Fermi energy is 13.2184 ev ! total energy = -25.40133251 Ry Harris-Foulkes estimate = -25.40133252 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000001 0.00000000 0.00010942 atom 2 type 1 force = 0.00000001 0.00000000 -0.00010942 Total force = 0.000155 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.46 0.00340839 0.00000000 0.00000000 501.39 0.00 0.00 0.00000000 0.00340839 0.00000000 0.00 501.39 0.00 0.00000000 0.00000000 0.00338931 0.00 0.00 498.58 Entering Dynamics; it = 16 time = 0.10890 pico-seconds new lattice vectors (alat unit) : 0.533871889 0.000000000 0.747277900 -0.266936833 0.462347168 0.747277245 -0.266936833 -0.462347168 0.747277245 new unit-cell volume = 190.6450 (a.u.)^3 new positions in cryst coord As 0.249989887 0.249989882 0.249989882 As -0.249989887 -0.249989882 -0.249989882 new positions in cart coord (alat unit) As -0.000000442 0.000000000 0.560435419 As 0.000000442 0.000000000 -0.560435419 Ekin = 0.00000433 Ry T = 1157.5 K Etot = -24.75298575 CELL_PARAMETERS (alat) 0.533871889 0.000000000 0.747277900 -0.266936833 0.462347168 0.747277245 -0.266936833 -0.462347168 0.747277245 ATOMIC_POSITIONS (crystal) As 0.249989887 0.249989882 0.249989882 As -0.249989887 -0.249989882 -0.249989882 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1672739), wk = 0.0625000 k( 2) = ( -0.1560924 -0.2703596 0.2787897), wk = 0.1250000 k( 3) = ( 0.3121845 0.5407192 -0.0557577), wk = 0.1250000 k( 4) = ( 0.1560922 0.2703596 0.0557581), wk = 0.1250000 k( 5) = ( -0.3121847 0.0000000 0.3903055), wk = 0.0625000 k( 6) = ( 0.1560922 0.8110788 0.0557581), wk = 0.1250000 k( 7) = ( -0.0000001 0.5407192 0.1672739), wk = 0.1250000 k( 8) = ( 0.6243691 0.0000000 -0.2787893), wk = 0.0625000 k( 9) = ( 0.4682768 -0.2703596 -0.1672735), wk = 0.1250000 k( 10) = ( 0.3121845 0.0000000 -0.0557577), wk = 0.0625000 k( 11) = ( 0.3121842 0.0000000 0.2787900), wk = 0.0625000 k( 12) = ( 0.1560919 -0.2703596 0.3903058), wk = 0.1250000 k( 13) = ( 0.6243688 0.5407192 0.0557585), wk = 0.1250000 k( 14) = ( 0.4682765 0.2703596 0.1672743), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5018216), wk = 0.0625000 k( 16) = ( 0.4682765 0.8110788 0.1672743), wk = 0.1250000 k( 17) = ( 0.3121842 0.5407192 0.2787900), wk = 0.1250000 k( 18) = ( 0.9365534 0.0000000 -0.1672731), wk = 0.0625000 k( 19) = ( 0.7804611 -0.2703596 -0.0557573), wk = 0.1250000 k( 20) = ( 0.6243688 0.0000000 0.0557585), wk = 0.0625000 extrapolated charge 9.99455, renormalised to 10.00000 total cpu time spent up to now is 37.50 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.9 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.09E-09, avg # of iterations = 3.4 total cpu time spent up to now is 38.27 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8402 8.1906 10.7897 10.7897 13.5172 17.1858 17.1858 18.1612 18.9064 k =-0.1561-0.2704 0.2788 ( 522 PWs) bands (ev): -3.3714 3.7878 8.4114 12.5098 12.5163 13.8340 15.6237 19.2253 19.9260 k = 0.3122 0.5407-0.0558 ( 520 PWs) bands (ev): -1.1886 0.3109 9.2475 9.8799 11.3159 14.5198 16.6502 17.3624 22.4047 k = 0.1561 0.2704 0.0558 ( 525 PWs) bands (ev): -4.1182 5.8852 9.4552 10.2861 12.4411 16.3079 17.4959 17.9219 18.7492 k =-0.3122 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6482 4.4497 7.7259 8.1382 8.9484 15.8616 19.0508 19.9271 20.3696 k = 0.1561 0.8111 0.0558 ( 510 PWs) bands (ev): 0.0283 1.5008 4.8626 6.2991 11.7016 16.1283 18.1016 21.7887 22.7975 k = 0.0000 0.5407 0.1673 ( 521 PWs) bands (ev): -1.9302 2.2645 6.9775 8.4815 12.3658 14.7652 18.4857 19.3751 20.3447 k = 0.6244 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7439 3.6267 4.1590 7.4308 8.2660 15.1751 20.4147 21.4206 24.2126 k = 0.4683-0.2704-0.1673 ( 521 PWs) bands (ev): -1.9302 2.2645 6.9775 8.4815 12.3658 14.7652 18.4857 19.3751 20.3447 k = 0.3122 0.0000-0.0558 ( 525 PWs) bands (ev): -4.1182 5.8852 9.4552 10.2861 12.4411 16.3079 17.4959 17.9219 18.7492 k = 0.3122 0.0000 0.2788 ( 522 PWs) bands (ev): -3.3714 3.7878 8.4114 12.5098 12.5163 13.8340 15.6237 19.2253 19.9260 k = 0.1561-0.2704 0.3903 ( 519 PWs) bands (ev): -2.6482 4.4497 7.7259 8.1382 8.9484 15.8616 19.0508 19.9271 20.3696 k = 0.6244 0.5407 0.0558 ( 510 PWs) bands (ev): 0.0283 1.5008 4.8626 6.2991 11.7016 16.1283 18.1016 21.7887 22.7975 k = 0.4683 0.2704 0.1673 ( 521 PWs) bands (ev): -1.9302 2.2645 6.9775 8.4815 12.3658 14.7652 18.4857 19.3751 20.3447 k = 0.0000 0.0000 0.5018 ( 522 PWs) bands (ev): -2.6007 1.8982 11.1209 11.1209 13.1641 13.1641 14.2462 15.5959 23.2961 k = 0.4683 0.8111 0.1673 ( 520 PWs) bands (ev): -0.4000 0.8239 5.5814 9.1397 10.6684 15.7676 18.3433 20.9522 21.9598 k = 0.3122 0.5407 0.2788 ( 510 PWs) bands (ev): -0.7439 3.6267 4.1590 7.4308 8.2660 15.1751 20.4147 21.4206 24.2126 k = 0.9366 0.0000-0.1673 ( 520 PWs) bands (ev): -0.4000 0.8239 5.5815 9.1397 10.6684 15.7676 18.3433 20.9522 21.9598 k = 0.7805-0.2704-0.0558 ( 510 PWs) bands (ev): 0.0283 1.5008 4.8626 6.2991 11.7016 16.1283 18.1016 21.7887 22.7975 k = 0.6244 0.0000 0.0558 ( 520 PWs) bands (ev): -1.1886 0.3109 9.2475 9.8799 11.3159 14.5198 16.6502 17.3624 22.4047 the Fermi energy is 13.4600 ev ! total energy = -25.40098904 Ry Harris-Foulkes estimate = -25.39678604 Ry estimated scf accuracy < 0.00000008 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000001 0.00000000 0.00004548 atom 2 type 1 force = 0.00000001 0.00000000 -0.00004548 Total force = 0.000064 Total SCF correction = 0.000010 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 502.87 0.00342020 0.00000000 0.00000000 503.13 0.00 0.00 0.00000000 0.00342020 0.00000000 0.00 503.13 0.00 0.00000000 0.00000000 0.00341496 0.00 0.00 502.36 Entering Dynamics; it = 17 time = 0.11616 pico-seconds new lattice vectors (alat unit) : 0.534176344 0.000000000 0.747697447 -0.267089055 0.462610812 0.747696838 -0.267089055 -0.462610812 0.747696838 new unit-cell volume = 190.9697 (a.u.)^3 new positions in cryst coord As 0.250005735 0.250005733 0.250005733 As -0.250005735 -0.250005733 -0.250005733 new positions in cart coord (alat unit) As -0.000000441 0.000000000 0.560785641 As 0.000000441 0.000000000 -0.560785641 Ekin = 0.00000487 Ry T = 1085.2 K Etot = -24.75299487 CELL_PARAMETERS (alat) 0.534176344 0.000000000 0.747697447 -0.267089055 0.462610812 0.747696838 -0.267089055 -0.462610812 0.747696838 ATOMIC_POSITIONS (crystal) As 0.250005735 0.250005733 0.250005733 As -0.250005735 -0.250005733 -0.250005733 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1671800), wk = 0.0625000 k( 2) = ( -0.1560035 -0.2702055 0.2786332), wk = 0.1250000 k( 3) = ( 0.3120065 0.5404111 -0.0557264), wk = 0.1250000 k( 4) = ( 0.1560032 0.2702055 0.0557268), wk = 0.1250000 k( 5) = ( -0.3120068 0.0000000 0.3900864), wk = 0.0625000 k( 6) = ( 0.1560032 0.8106166 0.0557268), wk = 0.1250000 k( 7) = ( -0.0000001 0.5404111 0.1671800), wk = 0.1250000 k( 8) = ( 0.6240132 0.0000000 -0.2786329), wk = 0.0625000 k( 9) = ( 0.4680099 -0.2702055 -0.1671796), wk = 0.1250000 k( 10) = ( 0.3120065 0.0000000 -0.0557264), wk = 0.0625000 k( 11) = ( 0.3120063 0.0000000 0.2786336), wk = 0.0625000 k( 12) = ( 0.1560029 -0.2702055 0.3900868), wk = 0.1250000 k( 13) = ( 0.6240129 0.5404111 0.0557272), wk = 0.1250000 k( 14) = ( 0.4680096 0.2702055 0.1671804), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5015400), wk = 0.0625000 k( 16) = ( 0.4680096 0.8106166 0.1671804), wk = 0.1250000 k( 17) = ( 0.3120063 0.5404111 0.2786336), wk = 0.1250000 k( 18) = ( 0.9360196 0.0000000 -0.1671793), wk = 0.0625000 k( 19) = ( 0.7800163 -0.2702055 -0.0557261), wk = 0.1250000 k( 20) = ( 0.6240129 0.0000000 0.0557272), wk = 0.0625000 extrapolated charge 10.01700, renormalised to 10.00000 total cpu time spent up to now is 38.56 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.96E-09, avg # of iterations = 2.6 total cpu time spent up to now is 39.26 secs k = 0.0000 0.0000 0.1672 band energies (ev): -4.8552 8.1569 10.7594 10.7594 13.4706 17.1473 17.1473 18.1179 18.8675 k =-0.1560-0.2702 0.2786 band energies (ev): -3.3881 3.7606 8.3840 12.4779 12.4839 13.7968 15.5781 19.1818 19.8842 k = 0.3120 0.5404-0.0557 band energies (ev): -1.2082 0.2892 9.2184 9.8513 11.2819 14.4852 16.6065 17.3194 22.3607 k = 0.1560 0.2702 0.0557 band energies (ev): -4.1340 5.8544 9.4270 10.2545 12.4078 16.2626 17.4577 17.8825 18.7056 k =-0.3120 0.0000 0.3901 band energies (ev): -2.6660 4.4206 7.6984 8.1118 8.9180 15.8267 19.0098 19.8817 20.3203 k = 0.1560 0.8106 0.0557 band energies (ev): 0.0061 1.4766 4.8397 6.2744 11.6675 16.0892 18.0638 21.7417 22.7537 k = 0.0000 0.5404 0.1672 band energies (ev): -1.9489 2.2393 6.9520 8.4532 12.3315 14.7281 18.4448 19.3305 20.2996 k = 0.6240 0.0000-0.2786 band energies (ev): -0.7651 3.5985 4.1370 7.4054 8.2363 15.1409 20.3716 21.3730 24.1610 k = 0.4680-0.2702-0.1672 band energies (ev): -1.9489 2.2393 6.9520 8.4532 12.3315 14.7281 18.4448 19.3305 20.2996 k = 0.3120 0.0000-0.0557 band energies (ev): -4.1340 5.8544 9.4270 10.2545 12.4078 16.2626 17.4577 17.8825 18.7056 k = 0.3120 0.0000 0.2786 band energies (ev): -3.3881 3.7606 8.3840 12.4779 12.4839 13.7968 15.5781 19.1818 19.8842 k = 0.1560-0.2702 0.3901 band energies (ev): -2.6660 4.4206 7.6984 8.1118 8.9180 15.8267 19.0098 19.8817 20.3203 k = 0.6240 0.5404 0.0557 band energies (ev): 0.0061 1.4766 4.8397 6.2744 11.6675 16.0892 18.0638 21.7417 22.7537 k = 0.4680 0.2702 0.1672 band energies (ev): -1.9489 2.2393 6.9520 8.4532 12.3315 14.7281 18.4448 19.3305 20.2996 k = 0.0000 0.0000 0.5015 band energies (ev): -2.6183 1.8744 11.0906 11.0906 13.1313 13.1313 14.2027 15.5526 23.2471 k = 0.4680 0.8106 0.1672 band energies (ev): -0.4208 0.8007 5.5577 9.1121 10.6344 15.7311 18.2967 20.9095 21.9135 k = 0.3120 0.5404 0.2786 band energies (ev): -0.7651 3.5985 4.1370 7.4054 8.2363 15.1409 20.3716 21.3730 24.1610 k = 0.9360 0.0000-0.1672 band energies (ev): -0.4208 0.8007 5.5577 9.1121 10.6344 15.7311 18.2967 20.9095 21.9135 k = 0.7800-0.2702-0.0557 band energies (ev): 0.0061 1.4766 4.8397 6.2744 11.6675 16.0892 18.0638 21.7417 22.7537 k = 0.6240 0.0000 0.0557 band energies (ev): -1.2082 0.2892 9.2184 9.8513 11.2819 14.4852 16.6065 17.3194 22.3607 the Fermi energy is 13.4133 ev total energy = -25.40209133 Ry Harris-Foulkes estimate = -25.41519579 Ry estimated scf accuracy < 0.00000060 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.96E-09, avg # of iterations = 3.0 total cpu time spent up to now is 39.67 secs k = 0.0000 0.0000 0.1672 band energies (ev): -4.8523 8.1578 10.7611 10.7611 13.4712 17.1499 17.1499 18.1208 18.8749 k =-0.1560-0.2702 0.2786 band energies (ev): -3.3854 3.7622 8.3873 12.4809 12.4854 13.8004 15.5805 19.1842 19.8911 k = 0.3120 0.5404-0.0557 band energies (ev): -1.2057 0.2915 9.2219 9.8542 11.2852 14.4874 16.6101 17.3224 22.3666 k = 0.1560 0.2702 0.0557 band energies (ev): -4.1312 5.8556 9.4295 10.2566 12.4112 16.2641 17.4649 17.8849 18.7082 k =-0.3120 0.0000 0.3901 band energies (ev): -2.6634 4.4218 7.7023 8.1148 8.9206 15.8352 19.0117 19.8839 20.3207 k = 0.1560 0.8106 0.0557 band energies (ev): 0.0079 1.4784 4.8443 6.2785 11.6697 16.0910 18.0714 21.7431 22.7599 k = 0.0000 0.5404 0.1672 band energies (ev): -1.9464 2.2411 6.9558 8.4569 12.3334 14.7309 18.4501 19.3343 20.3016 k = 0.6240 0.0000-0.2786 band energies (ev): -0.7632 3.5998 4.1417 7.4086 8.2391 15.1495 20.3725 21.3739 24.1603 k = 0.4680-0.2702-0.1672 band energies (ev): -1.9464 2.2411 6.9558 8.4569 12.3334 14.7309 18.4501 19.3343 20.3016 k = 0.3120 0.0000-0.0557 band energies (ev): -4.1312 5.8556 9.4295 10.2566 12.4112 16.2641 17.4649 17.8849 18.7082 k = 0.3120 0.0000 0.2786 band energies (ev): -3.3854 3.7622 8.3873 12.4809 12.4854 13.8004 15.5805 19.1842 19.8911 k = 0.1560-0.2702 0.3901 band energies (ev): -2.6634 4.4218 7.7023 8.1148 8.9206 15.8352 19.0117 19.8839 20.3207 k = 0.6240 0.5404 0.0557 band energies (ev): 0.0079 1.4784 4.8443 6.2785 11.6697 16.0910 18.0714 21.7431 22.7599 k = 0.4680 0.2702 0.1672 band energies (ev): -1.9464 2.2411 6.9558 8.4569 12.3334 14.7309 18.4501 19.3343 20.3016 k = 0.0000 0.0000 0.5015 band energies (ev): -2.6157 1.8765 11.0930 11.0930 13.1341 13.1341 14.2068 15.5568 23.2523 k = 0.4680 0.8106 0.1672 band energies (ev): -0.4184 0.8025 5.5621 9.1152 10.6379 15.7325 18.2991 20.9142 21.9166 k = 0.3120 0.5404 0.2786 band energies (ev): -0.7632 3.5998 4.1417 7.4086 8.2391 15.1495 20.3725 21.3739 24.1603 k = 0.9360 0.0000-0.1672 band energies (ev): -0.4184 0.8025 5.5621 9.1152 10.6379 15.7325 18.2991 20.9142 21.9166 k = 0.7800-0.2702-0.0557 band energies (ev): 0.0079 1.4784 4.8443 6.2785 11.6697 16.0910 18.0714 21.7431 22.7599 k = 0.6240 0.0000 0.0557 band energies (ev): -1.2057 0.2915 9.2219 9.8542 11.2852 14.4874 16.6101 17.3224 22.3666 the Fermi energy is 13.4139 ev total energy = -25.40209206 Ry Harris-Foulkes estimate = -25.40209211 Ry estimated scf accuracy < 0.00000012 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.23E-09, avg # of iterations = 1.0 total cpu time spent up to now is 39.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.1672 ( 531 PWs) bands (ev): -4.8520 8.1582 10.7614 10.7614 13.4716 17.1502 17.1502 18.1211 18.8749 k =-0.1560-0.2702 0.2786 ( 522 PWs) bands (ev): -3.3851 3.7626 8.3875 12.4812 12.4857 13.8007 15.5808 19.1845 19.8912 k = 0.3120 0.5404-0.0557 ( 520 PWs) bands (ev): -1.2054 0.2918 9.2222 9.8545 11.2855 14.4878 16.6104 17.3227 22.3667 k = 0.1560 0.2702 0.0557 ( 525 PWs) bands (ev): -4.1309 5.8560 9.4298 10.2569 12.4114 16.2645 17.4649 17.8852 18.7085 k =-0.3120 0.0000 0.3901 ( 519 PWs) bands (ev): -2.6631 4.4222 7.7025 8.1150 8.9209 15.8352 19.0121 19.8842 20.3212 k = 0.1560 0.8106 0.0557 ( 510 PWs) bands (ev): 0.0083 1.4787 4.8444 6.2786 11.6700 16.0914 18.0714 21.7435 22.7600 k = 0.0000 0.5404 0.1672 ( 521 PWs) bands (ev): -1.9461 2.2414 6.9560 8.4571 12.3338 14.7312 18.4502 19.3345 20.3019 k = 0.6240 0.0000-0.2786 ( 510 PWs) bands (ev): -0.7628 3.6002 4.1419 7.4088 8.2393 15.1495 20.3729 21.3744 24.1608 k = 0.4680-0.2702-0.1672 ( 521 PWs) bands (ev): -1.9461 2.2414 6.9560 8.4571 12.3338 14.7312 18.4502 19.3345 20.3019 k = 0.3120 0.0000-0.0557 ( 525 PWs) bands (ev): -4.1309 5.8560 9.4298 10.2569 12.4114 16.2645 17.4649 17.8852 18.7085 k = 0.3120 0.0000 0.2786 ( 522 PWs) bands (ev): -3.3851 3.7626 8.3875 12.4812 12.4857 13.8007 15.5808 19.1845 19.8912 k = 0.1560-0.2702 0.3901 ( 519 PWs) bands (ev): -2.6631 4.4222 7.7025 8.1150 8.9209 15.8352 19.0121 19.8842 20.3212 k = 0.6240 0.5404 0.0557 ( 510 PWs) bands (ev): 0.0083 1.4787 4.8444 6.2786 11.6700 16.0914 18.0714 21.7435 22.7600 k = 0.4680 0.2702 0.1672 ( 521 PWs) bands (ev): -1.9461 2.2414 6.9560 8.4571 12.3338 14.7312 18.4502 19.3345 20.3019 k = 0.0000 0.0000 0.5015 ( 522 PWs) bands (ev): -2.6154 1.8768 11.0933 11.0933 13.1344 13.1344 14.2070 15.5570 23.2524 k = 0.4680 0.8106 0.1672 ( 520 PWs) bands (ev): -0.4181 0.8028 5.5623 9.1155 10.6382 15.7328 18.2994 20.9143 21.9169 k = 0.3120 0.5404 0.2786 ( 510 PWs) bands (ev): -0.7628 3.6001 4.1419 7.4088 8.2393 15.1495 20.3729 21.3744 24.1608 k = 0.9360 0.0000-0.1672 ( 520 PWs) bands (ev): -0.4181 0.8028 5.5623 9.1155 10.6382 15.7328 18.2994 20.9143 21.9169 k = 0.7800-0.2702-0.0557 ( 510 PWs) bands (ev): 0.0083 1.4787 4.8444 6.2786 11.6700 16.0914 18.0714 21.7435 22.7600 k = 0.6240 0.0000 0.0557 ( 520 PWs) bands (ev): -1.2054 0.2918 9.2222 9.8545 11.2855 14.4878 16.6104 17.3226 22.3667 the Fermi energy is 13.4143 ev ! total energy = -25.40209206 Ry Harris-Foulkes estimate = -25.40209207 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00002475 atom 2 type 1 force = 0.00000000 0.00000000 0.00002475 Total force = 0.000035 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 497.35 0.00338292 0.00000000 0.00000000 497.64 0.00 0.00 0.00000000 0.00338292 0.00000000 0.00 497.64 0.00 0.00000000 0.00000000 0.00337690 0.00 0.00 496.76 Entering Dynamics; it = 18 time = 0.12342 pico-seconds new lattice vectors (alat unit) : 0.534045845 0.000000000 0.747393861 -0.267023813 0.462497801 0.747393250 -0.267023813 -0.462497801 0.747393250 new unit-cell volume = 190.7989 (a.u.)^3 new positions in cryst coord As 0.250000276 0.250000276 0.250000276 As -0.250000276 -0.250000276 -0.250000276 new positions in cart coord (alat unit) As -0.000000445 0.000000000 0.560545709 As 0.000000445 0.000000000 -0.560545709 Ekin = 0.00000327 Ry T = 1021.4 K Etot = -24.75299601 CELL_PARAMETERS (alat) 0.534045845 0.000000000 0.747393861 -0.267023813 0.462497801 0.747393250 -0.267023813 -0.462497801 0.747393250 ATOMIC_POSITIONS (crystal) As 0.250000276 0.250000276 0.250000276 As -0.250000276 -0.250000276 -0.250000276 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1672479), wk = 0.0625000 k( 2) = ( -0.1560416 -0.2702716 0.2787464), wk = 0.1250000 k( 3) = ( 0.3120828 0.5405431 -0.0557491), wk = 0.1250000 k( 4) = ( 0.1560413 0.2702716 0.0557494), wk = 0.1250000 k( 5) = ( -0.3120830 0.0000000 0.3902449), wk = 0.0625000 k( 6) = ( 0.1560413 0.8108147 0.0557494), wk = 0.1250000 k( 7) = ( -0.0000001 0.5405431 0.1672479), wk = 0.1250000 k( 8) = ( 0.6241657 0.0000000 -0.2787460), wk = 0.0625000 k( 9) = ( 0.4681242 -0.2702716 -0.1672475), wk = 0.1250000 k( 10) = ( 0.3120828 0.0000000 -0.0557491), wk = 0.0625000 k( 11) = ( 0.3120825 0.0000000 0.2787468), wk = 0.0625000 k( 12) = ( 0.1560411 -0.2702716 0.3902453), wk = 0.1250000 k( 13) = ( 0.6241654 0.5405431 0.0557498), wk = 0.1250000 k( 14) = ( 0.4681240 0.2702716 0.1672483), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5017438), wk = 0.0625000 k( 16) = ( 0.4681240 0.8108147 0.1672483), wk = 0.1250000 k( 17) = ( 0.3120825 0.5405431 0.2787468), wk = 0.1250000 k( 18) = ( 0.9362483 0.0000000 -0.1672472), wk = 0.0625000 k( 19) = ( 0.7802068 -0.2702716 -0.0557487), wk = 0.1250000 k( 20) = ( 0.6241654 0.0000000 0.0557498), wk = 0.0625000 extrapolated charge 9.99105, renormalised to 10.00000 total cpu time spent up to now is 40.26 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.64E-09, avg # of iterations = 3.0 total cpu time spent up to now is 41.01 secs End of self-consistent calculation k = 0.0000 0.0000 0.1672 ( 531 PWs) bands (ev): -4.8443 8.1782 10.7762 10.7762 13.4960 17.1702 17.1702 18.1426 18.8956 k =-0.1560-0.2703 0.2787 ( 522 PWs) bands (ev): -3.3764 3.7766 8.4032 12.4975 12.5023 13.8191 15.6044 19.2089 19.9103 k = 0.3121 0.5405-0.0557 ( 520 PWs) bands (ev): -1.1956 0.3031 9.2385 9.8688 11.3026 14.5062 16.6332 17.3476 22.3924 k = 0.1560 0.2703 0.0557 ( 525 PWs) bands (ev): -4.1228 5.8719 9.4436 10.2745 12.4291 16.2896 17.4856 17.9066 18.7315 k =-0.3121 0.0000 0.3902 ( 519 PWs) bands (ev): -2.6536 4.4388 7.7162 8.1275 8.9366 15.8520 19.0328 19.9067 20.3460 k = 0.1560 0.8108 0.0557 ( 510 PWs) bands (ev): 0.0202 1.4911 4.8556 6.2920 11.6883 16.1113 18.0888 21.7697 22.7838 k = 0.0000 0.5405 0.1672 ( 521 PWs) bands (ev): -1.9366 2.2543 6.9691 8.4720 12.3532 14.7520 18.4710 19.3568 20.3253 k = 0.6242 0.0000-0.2787 ( 510 PWs) bands (ev): -0.7518 3.6155 4.1531 7.4208 8.2551 15.1667 20.3965 21.3997 24.1896 k = 0.4681-0.2703-0.1672 ( 521 PWs) bands (ev): -1.9366 2.2543 6.9691 8.4720 12.3532 14.7520 18.4710 19.3568 20.3253 k = 0.3121 0.0000-0.0557 ( 525 PWs) bands (ev): -4.1228 5.8719 9.4436 10.2745 12.4291 16.2896 17.4856 17.9066 18.7315 k = 0.3121 0.0000 0.2787 ( 522 PWs) bands (ev): -3.3764 3.7766 8.4032 12.4975 12.5023 13.8191 15.6044 19.2089 19.9103 k = 0.1560-0.2703 0.3902 ( 519 PWs) bands (ev): -2.6536 4.4388 7.7162 8.1275 8.9366 15.8520 19.0328 19.9067 20.3460 k = 0.6242 0.5405 0.0557 ( 510 PWs) bands (ev): 0.0202 1.4911 4.8556 6.2920 11.6883 16.1113 18.0888 21.7697 22.7838 k = 0.4681 0.2703 0.1672 ( 521 PWs) bands (ev): -1.9366 2.2543 6.9691 8.4720 12.3532 14.7520 18.4710 19.3568 20.3253 k = 0.0000 0.0000 0.5017 ( 522 PWs) bands (ev): -2.6057 1.8907 11.1078 11.1078 13.1504 13.1504 14.2273 15.5774 23.2782 k = 0.4681 0.8108 0.1672 ( 520 PWs) bands (ev): -0.4066 0.8158 5.5736 9.1287 10.6546 15.7512 18.3219 20.9363 21.9411 k = 0.3121 0.5405 0.2787 ( 510 PWs) bands (ev): -0.7518 3.6155 4.1531 7.4209 8.2551 15.1667 20.3965 21.3997 24.1896 k = 0.9362 0.0000-0.1672 ( 520 PWs) bands (ev): -0.4066 0.8158 5.5736 9.1287 10.6546 15.7512 18.3219 20.9363 21.9411 k = 0.7802-0.2703-0.0557 ( 510 PWs) bands (ev): 0.0202 1.4911 4.8556 6.2920 11.6883 16.1113 18.0888 21.7697 22.7838 k = 0.6242 0.0000 0.0557 ( 520 PWs) bands (ev): -1.1956 0.3031 9.2385 9.8688 11.3026 14.5062 16.6332 17.3476 22.3924 the Fermi energy is 13.4387 ev ! total energy = -25.40151314 Ry Harris-Foulkes estimate = -25.39461251 Ry estimated scf accuracy < 0.00000007 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00000146 atom 2 type 1 force = 0.00000000 0.00000000 0.00000146 Total force = 0.000002 Total SCF correction = 0.000004 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.76 0.00340530 0.00000000 0.00000000 500.94 0.00 0.00 0.00000000 0.00340530 0.00000000 0.00 500.94 0.00 0.00000000 0.00000000 0.00340174 0.00 0.00 500.41 Entering Dynamics; it = 19 time = 0.13068 pico-seconds new lattice vectors (alat unit) : 0.534108852 0.000000000 0.747428295 -0.267055312 0.462552361 0.747427682 -0.267055312 -0.462552361 0.747427682 new unit-cell volume = 190.8527 (a.u.)^3 new positions in cryst coord As 0.250000245 0.250000246 0.250000246 As -0.250000245 -0.250000246 -0.250000246 new positions in cart coord (alat unit) As -0.000000443 0.000000000 0.560571465 As 0.000000443 0.000000000 -0.560571465 Ekin = 0.00000109 Ry T = 964.6 K Etot = -24.75299979 CELL_PARAMETERS (alat) 0.534108852 0.000000000 0.747428295 -0.267055312 0.462552361 0.747427682 -0.267055312 -0.462552361 0.747427682 ATOMIC_POSITIONS (crystal) As 0.250000245 0.250000246 0.250000246 As -0.250000245 -0.250000246 -0.250000246 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1672402), wk = 0.0625000 k( 2) = ( -0.1560232 -0.2702397 0.2787336), wk = 0.1250000 k( 3) = ( 0.3120460 0.5404794 -0.0557465), wk = 0.1250000 k( 4) = ( 0.1560229 0.2702397 0.0557469), wk = 0.1250000 k( 5) = ( -0.3120462 0.0000000 0.3902269), wk = 0.0625000 k( 6) = ( 0.1560229 0.8107190 0.0557469), wk = 0.1250000 k( 7) = ( -0.0000001 0.5404794 0.1672402), wk = 0.1250000 k( 8) = ( 0.6240920 0.0000000 -0.2787332), wk = 0.0625000 k( 9) = ( 0.4680690 -0.2702397 -0.1672398), wk = 0.1250000 k( 10) = ( 0.3120460 0.0000000 -0.0557465), wk = 0.0625000 k( 11) = ( 0.3120457 0.0000000 0.2787339), wk = 0.0625000 k( 12) = ( 0.1560227 -0.2702397 0.3902273), wk = 0.1250000 k( 13) = ( 0.6240918 0.5404794 0.0557472), wk = 0.1250000 k( 14) = ( 0.4680687 0.2702397 0.1672406), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5017206), wk = 0.0625000 k( 16) = ( 0.4680687 0.8107190 0.1672406), wk = 0.1250000 k( 17) = ( 0.3120457 0.5404794 0.2787339), wk = 0.1250000 k( 18) = ( 0.9361379 0.0000000 -0.1672395), wk = 0.0625000 k( 19) = ( 0.7801148 -0.2702397 -0.0557461), wk = 0.1250000 k( 20) = ( 0.6240918 0.0000000 0.0557472), wk = 0.0625000 extrapolated charge 10.00282, renormalised to 10.00000 total cpu time spent up to now is 41.31 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.51E-09, avg # of iterations = 2.2 total cpu time spent up to now is 41.97 secs k = 0.0000 0.0000 0.1672 band energies (ev): -4.8481 8.1728 10.7699 10.7699 13.4876 17.1624 17.1624 18.1336 18.8862 k =-0.1560-0.2702 0.2787 band energies (ev): -3.3805 3.7710 8.3978 12.4906 12.4959 13.8109 15.5954 19.2012 19.8994 k = 0.3120 0.5405-0.0557 band energies (ev): -1.2002 0.2983 9.2326 9.8623 11.2952 14.4994 16.6243 17.3401 22.3838 k = 0.1560 0.2702 0.0557 band energies (ev): -4.1269 5.8659 9.4373 10.2686 12.4222 16.2818 17.4766 17.8992 18.7230 k =-0.3120 0.0000 0.3902 band energies (ev): -2.6578 4.4338 7.7096 8.1211 8.9301 15.8422 19.0246 19.8975 20.3368 k = 0.1560 0.8107 0.0557 band energies (ev): 0.0156 1.4860 4.8494 6.2864 11.6817 16.1036 18.0785 21.7617 22.7743 k = 0.0000 0.5405 0.1672 band energies (ev): -1.9410 2.2491 6.9630 8.4657 12.3471 14.7450 18.4617 19.3472 20.3166 k = 0.6241 0.0000-0.2787 band energies (ev): -0.7563 3.6102 4.1473 7.4146 8.2489 15.1573 20.3891 21.3913 24.1816 k = 0.4681-0.2702-0.1672 band energies (ev): -1.9410 2.2491 6.9630 8.4657 12.3471 14.7450 18.4617 19.3472 20.3166 k = 0.3120 0.0000-0.0557 band energies (ev): -4.1269 5.8660 9.4373 10.2686 12.4222 16.2818 17.4766 17.8992 18.7230 k = 0.3120 0.0000 0.2787 band energies (ev): -3.3805 3.7710 8.3978 12.4906 12.4959 13.8109 15.5954 19.2012 19.8994 k = 0.1560-0.2702 0.3902 band energies (ev): -2.6578 4.4338 7.7096 8.1211 8.9301 15.8422 19.0246 19.8975 20.3368 k = 0.6241 0.5405 0.0557 band energies (ev): 0.0156 1.4860 4.8494 6.2864 11.6817 16.1036 18.0785 21.7617 22.7743 k = 0.4681 0.2702 0.1672 band energies (ev): -1.9410 2.2491 6.9630 8.4657 12.3471 14.7450 18.4617 19.3472 20.3166 k = 0.0000 0.0000 0.5017 band energies (ev): -2.6097 1.8863 11.1010 11.1010 13.1431 13.1431 14.2173 15.5673 23.2680 k = 0.4681 0.8107 0.1672 band energies (ev): -0.4109 0.8114 5.5673 9.1222 10.6467 15.7439 18.3121 20.9271 21.9320 k = 0.3120 0.5405 0.2787 band energies (ev): -0.7563 3.6102 4.1473 7.4146 8.2489 15.1573 20.3891 21.3913 24.1816 k = 0.9361 0.0000-0.1672 band energies (ev): -0.4109 0.8114 5.5673 9.1222 10.6467 15.7439 18.3121 20.9271 21.9320 k = 0.7801-0.2702-0.0557 band energies (ev): 0.0156 1.4860 4.8494 6.2864 11.6817 16.1036 18.0785 21.7617 22.7743 k = 0.6241 0.0000 0.0557 band energies (ev): -1.2002 0.2983 9.2326 9.8623 11.2952 14.4994 16.6243 17.3401 22.3838 the Fermi energy is 13.4303 ev total energy = -25.40169601 Ry Harris-Foulkes estimate = -25.40386970 Ry estimated scf accuracy < 0.00000015 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-09, avg # of iterations = 2.0 total cpu time spent up to now is 42.34 secs End of self-consistent calculation k = 0.0000 0.0000 0.1672 ( 531 PWs) bands (ev): -4.8480 8.1725 10.7698 10.7698 13.4872 17.1625 17.1625 18.1337 18.8875 k =-0.1560-0.2702 0.2787 ( 522 PWs) bands (ev): -3.3804 3.7709 8.3981 12.4908 12.4957 13.8112 15.5955 19.2012 19.9005 k = 0.3120 0.5405-0.0557 ( 520 PWs) bands (ev): -1.2001 0.2983 9.2329 9.8625 11.2954 14.4995 16.6246 17.3402 22.3846 k = 0.1560 0.2702 0.0557 ( 525 PWs) bands (ev): -4.1267 5.8657 9.4374 10.2686 12.4225 16.2817 17.4778 17.8992 18.7231 k =-0.3120 0.0000 0.3902 ( 519 PWs) bands (ev): -2.6576 4.4336 7.7100 8.1213 8.9303 15.8437 19.0246 19.8974 20.3364 k = 0.1560 0.8107 0.0557 ( 510 PWs) bands (ev): 0.0155 1.4859 4.8500 6.2868 11.6818 16.1035 18.0798 21.7615 22.7752 k = 0.0000 0.5405 0.1672 ( 521 PWs) bands (ev): -1.9409 2.2490 6.9634 8.4661 12.3471 14.7452 18.4625 19.3476 20.3166 k = 0.6241 0.0000-0.2787 ( 510 PWs) bands (ev): -0.7564 3.6100 4.1480 7.4149 8.2491 15.1588 20.3888 21.3910 24.1809 k = 0.4681-0.2702-0.1672 ( 521 PWs) bands (ev): -1.9409 2.2490 6.9634 8.4661 12.3471 14.7452 18.4625 19.3476 20.3166 k = 0.3120 0.0000-0.0557 ( 525 PWs) bands (ev): -4.1267 5.8657 9.4374 10.2686 12.4225 16.2817 17.4778 17.8992 18.7231 k = 0.3120 0.0000 0.2787 ( 522 PWs) bands (ev): -3.3804 3.7709 8.3981 12.4908 12.4957 13.8112 15.5955 19.2012 19.9005 k = 0.1560-0.2702 0.3902 ( 519 PWs) bands (ev): -2.6576 4.4336 7.7100 8.1213 8.9303 15.8437 19.0246 19.8974 20.3364 k = 0.6241 0.5405 0.0557 ( 510 PWs) bands (ev): 0.0155 1.4859 4.8500 6.2868 11.6818 16.1035 18.0798 21.7615 22.7752 k = 0.4681 0.2702 0.1672 ( 521 PWs) bands (ev): -1.9409 2.2490 6.9634 8.4661 12.3471 14.7452 18.4625 19.3476 20.3166 k = 0.0000 0.0000 0.5017 ( 522 PWs) bands (ev): -2.6096 1.8863 11.1010 11.1010 13.1432 13.1432 14.2177 15.5678 23.2686 k = 0.4681 0.8107 0.1672 ( 520 PWs) bands (ev): -0.4109 0.8113 5.5678 9.1224 10.6471 15.7438 18.3121 20.9277 21.9322 k = 0.3120 0.5405 0.2787 ( 510 PWs) bands (ev): -0.7564 3.6100 4.1480 7.4149 8.2491 15.1588 20.3888 21.3910 24.1809 k = 0.9361 0.0000-0.1672 ( 520 PWs) bands (ev): -0.4109 0.8113 5.5678 9.1224 10.6471 15.7438 18.3121 20.9277 21.9322 k = 0.7801-0.2702-0.0557 ( 510 PWs) bands (ev): 0.0155 1.4859 4.8500 6.2868 11.6818 16.1035 18.0798 21.7615 22.7752 k = 0.6241 0.0000 0.0557 ( 520 PWs) bands (ev): -1.2001 0.2983 9.2329 9.8625 11.2954 14.4995 16.6246 17.3402 22.3846 the Fermi energy is 13.4299 ev ! total energy = -25.40169605 Ry Harris-Foulkes estimate = -25.40169605 Ry estimated scf accuracy < 4.3E-10 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00000106 atom 2 type 1 force = 0.00000000 0.00000000 0.00000106 Total force = 0.000001 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.07 0.00339349 0.00000000 0.00000000 499.20 0.00 0.00 0.00000000 0.00339349 0.00000000 0.00 499.20 0.00 0.00000000 0.00000000 0.00339080 0.00 0.00 498.80 Entering Dynamics; it = 20 time = 0.13794 pico-seconds new lattice vectors (alat unit) : 0.534079870 0.000000000 0.747316087 -0.267040821 0.462527262 0.747315471 -0.267040821 -0.462527262 0.747315471 new unit-cell volume = 190.8033 (a.u.)^3 new positions in cryst coord As 0.250000193 0.250000193 0.250000193 As -0.250000193 -0.250000193 -0.250000193 new positions in cart coord (alat unit) As -0.000000443 0.000000000 0.560487189 As 0.000000443 0.000000000 -0.560487189 Ekin = 0.00000012 Ry T = 913.9 K Etot = -24.75300076 CELL_PARAMETERS (alat) 0.534079870 0.000000000 0.747316087 -0.267040821 0.462527262 0.747315471 -0.267040821 -0.462527262 0.747315471 ATOMIC_POSITIONS (crystal) As 0.250000193 0.250000193 0.250000193 As -0.250000193 -0.250000193 -0.250000193 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1672653), wk = 0.0625000 k( 2) = ( -0.1560316 -0.2702543 0.2787754), wk = 0.1250000 k( 3) = ( 0.3120629 0.5405087 -0.0557549), wk = 0.1250000 k( 4) = ( 0.1560314 0.2702543 0.0557552), wk = 0.1250000 k( 5) = ( -0.3120631 0.0000000 0.3902855), wk = 0.0625000 k( 6) = ( 0.1560314 0.8107630 0.0557552), wk = 0.1250000 k( 7) = ( -0.0000001 0.5405087 0.1672653), wk = 0.1250000 k( 8) = ( 0.6241259 0.0000000 -0.2787750), wk = 0.0625000 k( 9) = ( 0.4680944 -0.2702543 -0.1672650), wk = 0.1250000 k( 10) = ( 0.3120629 0.0000000 -0.0557549), wk = 0.0625000 k( 11) = ( 0.3120626 0.0000000 0.2787758), wk = 0.0625000 k( 12) = ( 0.1560311 -0.2702543 0.3902859), wk = 0.1250000 k( 13) = ( 0.6241256 0.5405087 0.0557556), wk = 0.1250000 k( 14) = ( 0.4680941 0.2702543 0.1672657), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5017960), wk = 0.0625000 k( 16) = ( 0.4680941 0.8107630 0.1672657), wk = 0.1250000 k( 17) = ( 0.3120626 0.5405087 0.2787758), wk = 0.1250000 k( 18) = ( 0.9361887 0.0000000 -0.1672646), wk = 0.0625000 k( 19) = ( 0.7801571 -0.2702543 -0.0557545), wk = 0.1250000 k( 20) = ( 0.6241256 0.0000000 0.0557556), wk = 0.0625000 extrapolated charge 9.99741, renormalised to 10.00000 total cpu time spent up to now is 42.63 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.60E-10, avg # of iterations = 3.0 total cpu time spent up to now is 43.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8457 8.1788 10.7737 10.7737 13.4940 17.1682 17.1682 18.1396 18.8939 k =-0.1560-0.2703 0.2788 ( 522 PWs) bands (ev): -3.3779 3.7747 8.4031 12.4953 12.5003 13.8163 15.6021 19.2087 19.9055 k = 0.3121 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1974 0.3015 9.2380 9.8664 11.3002 14.5048 16.6312 17.3481 22.3931 k = 0.1560 0.2703 0.0558 ( 525 PWs) bands (ev): -4.1245 5.8701 9.4411 10.2739 12.4277 16.2892 17.4843 17.9056 18.7298 k =-0.3121 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6549 4.4387 7.7138 8.1245 8.9347 15.8485 19.0302 19.9035 20.3431 k = 0.1560 0.8108 0.0558 ( 510 PWs) bands (ev): 0.0190 1.4893 4.8531 6.2909 11.6871 16.1090 18.0845 21.7693 22.7826 k = 0.0000 0.5405 0.1673 ( 521 PWs) bands (ev): -1.9383 2.2525 6.9672 8.4705 12.3530 14.7516 18.4685 19.3538 20.3231 k = 0.6241 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7533 3.6145 4.1513 7.4180 8.2537 15.1641 20.3957 21.3983 24.1894 k = 0.4681-0.2703-0.1673 ( 521 PWs) bands (ev): -1.9383 2.2525 6.9672 8.4705 12.3530 14.7516 18.4685 19.3538 20.3231 k = 0.3121 0.0000-0.0558 ( 525 PWs) bands (ev): -4.1245 5.8701 9.4411 10.2739 12.4277 16.2892 17.4843 17.9056 18.7298 k = 0.3121 0.0000 0.2788 ( 522 PWs) bands (ev): -3.3779 3.7747 8.4031 12.4953 12.5003 13.8163 15.6021 19.2087 19.9055 k = 0.1560-0.2703 0.3903 ( 519 PWs) bands (ev): -2.6549 4.4387 7.7138 8.1245 8.9347 15.8485 19.0302 19.9035 20.3431 k = 0.6241 0.5405 0.0558 ( 510 PWs) bands (ev): 0.0190 1.4893 4.8531 6.2909 11.6871 16.1090 18.0845 21.7693 22.7826 k = 0.4681 0.2703 0.1673 ( 521 PWs) bands (ev): -1.9383 2.2525 6.9672 8.4705 12.3530 14.7516 18.4685 19.3538 20.3231 k = 0.0000 0.0000 0.5018 ( 522 PWs) bands (ev): -2.6066 1.8907 11.1048 11.1048 13.1475 13.1475 14.2230 15.5731 23.2763 k = 0.4681 0.8108 0.1673 ( 520 PWs) bands (ev): -0.4074 0.8152 5.5709 9.1259 10.6514 15.7487 18.3179 20.9340 21.9392 k = 0.3121 0.5405 0.2788 ( 510 PWs) bands (ev): -0.7533 3.6145 4.1513 7.4180 8.2537 15.1641 20.3957 21.3983 24.1894 k = 0.9362 0.0000-0.1673 ( 520 PWs) bands (ev): -0.4074 0.8152 5.5709 9.1259 10.6514 15.7487 18.3179 20.9340 21.9392 k = 0.7802-0.2703-0.0558 ( 510 PWs) bands (ev): 0.0190 1.4893 4.8531 6.2909 11.6871 16.1090 18.0845 21.7693 22.7826 k = 0.6241 0.0000 0.0558 ( 520 PWs) bands (ev): -1.1974 0.3015 9.2380 9.8664 11.3002 14.5048 16.6312 17.3481 22.3931 the Fermi energy is 13.4368 ev ! total energy = -25.40152848 Ry Harris-Foulkes estimate = -25.39953401 Ry estimated scf accuracy < 7.3E-09 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00000085 atom 2 type 1 force = 0.00000000 0.00000000 0.00000085 Total force = 0.000001 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.09 0.00339999 0.00000000 0.00000000 500.16 0.00 0.00 0.00000000 0.00339999 0.00000000 0.00 500.16 0.00 0.00000000 0.00000000 0.00339861 0.00 0.00 499.95 Wentzcovitch Damped Dynamics: convergence achieved, Efinal= -25.40152848 ------------------------------------------------------------------------ Final estimate of lattice vectors (input alat units) 0.534079870 0.000000000 0.747316087 -0.267040821 0.462527262 0.747315471 -0.267040821 -0.462527262 0.747315471 final unit-cell volume = 190.8033 (a.u.)^3 input alat = 7.0103 (a.u.) CELL_PARAMETERS (alat) 0.534079870 0.000000000 0.747316087 -0.267040821 0.462527262 0.747315471 -0.267040821 -0.462527262 0.747315471 ATOMIC_POSITIONS (crystal) As 0.250000193 0.250000193 0.250000193 As -0.250000193 -0.250000193 -0.250000193 Writing output data file pwscf.save PWSCF : 43.56s CPU time, 50.21s wall time init_run : 0.22s CPU electrons : 37.45s CPU ( 21 calls, 1.783 s avg) update_pot : 1.75s CPU ( 20 calls, 0.088 s avg) forces : 0.83s CPU ( 21 calls, 0.039 s avg) stress : 2.16s CPU ( 21 calls, 0.103 s avg) Called by init_run: wfcinit : 0.11s CPU potinit : 0.03s CPU Called by electrons: c_bands : 31.81s CPU ( 93 calls, 0.342 s avg) sum_band : 5.23s CPU ( 93 calls, 0.056 s avg) v_of_rho : 0.21s CPU ( 104 calls, 0.002 s avg) mix_rho : 0.08s CPU ( 93 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.64s CPU ( 4580 calls, 0.000 s avg) cegterg : 31.29s CPU ( 1860 calls, 0.017 s avg) Called by *egterg: h_psi : 26.03s CPU ( 6486 calls, 0.004 s avg) g_psi : 0.63s CPU ( 4606 calls, 0.000 s avg) cdiaghg : 1.60s CPU ( 5866 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.39s CPU ( 6486 calls, 0.000 s avg) General routines calbec : 0.71s CPU ( 7326 calls, 0.000 s avg) cft3 : 0.18s CPU ( 447 calls, 0.000 s avg) cft3s : 26.03s CPU ( 108988 calls, 0.000 s avg) davcio : 0.06s CPU ( 6440 calls, 0.000 s avg) espresso-5.1/PW/examples/VCSexample/reference/As.bfgs00.out0000644000175000017500000027653612341373025021612 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 29Apr2008 at 14: 3:50 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 50 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.580130 0.000000 0.814524 ) a(2) = ( -0.290065 0.502407 0.814524 ) a(3) = ( -0.290065 -0.502407 0.814524 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.149169 0.000000 0.409237 ) b(2) = ( -0.574584 0.995209 0.409237 ) b(3) = ( -0.574584 -0.995209 0.409237 ) PseudoPot. # 1 for As read from file As.gon.UPF Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) 4 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.7086605 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.7086605 ) number of k points= 20 gaussian broad. (Ry)= 0.0050 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.1534638), wk = 0.0625000 k( 2) = ( -0.1436461 -0.2488023 0.2557731), wk = 0.1250000 k( 3) = ( 0.2872922 0.4976046 -0.0511547), wk = 0.1250000 k( 4) = ( 0.1436461 0.2488023 0.0511546), wk = 0.1250000 k( 5) = ( -0.2872922 0.0000000 0.3580823), wk = 0.0625000 k( 6) = ( 0.1436461 0.7464070 0.0511546), wk = 0.1250000 k( 7) = ( 0.0000000 0.4976046 0.1534638), wk = 0.1250000 k( 8) = ( 0.5745844 0.0000000 -0.2557731), wk = 0.0625000 k( 9) = ( 0.4309383 -0.2488023 -0.1534639), wk = 0.1250000 k( 10) = ( 0.2872922 0.0000000 -0.0511547), wk = 0.0625000 k( 11) = ( 0.2872922 0.0000000 0.2557730), wk = 0.0625000 k( 12) = ( 0.1436461 -0.2488023 0.3580822), wk = 0.1250000 k( 13) = ( 0.5745844 0.4976046 0.0511545), wk = 0.1250000 k( 14) = ( 0.4309383 0.2488023 0.1534638), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4603915), wk = 0.0625000 k( 16) = ( 0.4309383 0.7464070 0.1534638), wk = 0.1250000 k( 17) = ( 0.2872922 0.4976046 0.2557730), wk = 0.1250000 k( 18) = ( 0.8618766 0.0000000 -0.1534640), wk = 0.0625000 k( 19) = ( 0.7182305 -0.2488023 -0.0511547), wk = 0.1250000 k( 20) = ( 0.5745844 0.0000000 0.0511545), wk = 0.0625000 G cutoff = 124.4853 ( 4159 G-vectors) FFT grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 atomic + 1 random wfc total cpu time spent up to now is 0.24 secs per-process dynamical memory: 4.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.06 secs total energy = -25.43995280 Ry Harris-Foulkes estimate = -25.44370948 Ry estimated scf accuracy < 0.01555924 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.36 secs total energy = -25.44008125 Ry Harris-Foulkes estimate = -25.44026343 Ry estimated scf accuracy < 0.00088666 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.87E-06, avg # of iterations = 2.0 total cpu time spent up to now is 1.68 secs total energy = -25.44011498 Ry Harris-Foulkes estimate = -25.44011638 Ry estimated scf accuracy < 0.00000527 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.27E-08, avg # of iterations = 3.2 total cpu time spent up to now is 2.12 secs total energy = -25.44012209 Ry Harris-Foulkes estimate = -25.44012239 Ry estimated scf accuracy < 0.00000065 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.46E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.1535 ( 531 PWs) bands (ev): -6.9960 4.5197 5.9668 5.9668 8.4360 11.0403 11.7601 11.7602 16.5645 k =-0.1436-0.2488 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.2873 0.4976-0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1436 0.2488 0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k =-0.2873 0.0000 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1436 0.7464 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.0000 0.4976 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.5746 0.0000-0.2558 ( 510 PWs) bands (ev): -4.0541 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.4309-0.2488-0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.2873 0.0000-0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.2873 0.0000 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1436-0.2488 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.5746 0.4976 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.4309 0.2488 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.0000 0.0000 0.4604 ( 522 PWs) bands (ev): -5.8585 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1192 17.3944 k = 0.4309 0.7464 0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6829 12.0642 14.4761 17.7700 k = 0.2873 0.4976 0.2558 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.8619 0.0000-0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.7182-0.2488-0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.5746 0.0000 0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 the Fermi energy is 10.0033 ev ! total energy = -25.44012217 Ry Harris-Foulkes estimate = -25.44012217 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 7.72810616 Ry hartree contribution = 1.22165533 Ry xc contribution = -6.50439941 Ry ewald contribution = -27.88552965 Ry smearing contrib. (-TS) = 0.00004540 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000070 0.00000000 -0.12659882 atom 2 type 1 force = 0.00000070 0.00000000 0.12659882 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.51 0.00172368 0.00000000 0.00000000 253.56 0.00 0.00 0.00000000 0.00172371 0.00000000 0.00 253.57 0.00 0.00000000 0.00000000 0.00098849 0.00 0.00 145.41 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -25.4401221654 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.625315125 0.000000000 0.850906851 -0.312657446 0.541539390 0.850906914 -0.312657446 -0.541539390 0.850906914 ATOMIC_POSITIONS (crystal) As 0.276399692 0.276399998 0.276399998 As -0.276399692 -0.276399998 -0.276399998 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1469021), wk = 0.0625000 k( 2) = ( -0.1332661 -0.2308235 0.2448368), wk = 0.1250000 k( 3) = ( 0.2665323 0.4616469 -0.0489674), wk = 0.1250000 k( 4) = ( 0.1332662 0.2308235 0.0489674), wk = 0.1250000 k( 5) = ( -0.2665323 0.0000000 0.3427716), wk = 0.0625000 k( 6) = ( 0.1332662 0.6924704 0.0489674), wk = 0.1250000 k( 7) = ( 0.0000000 0.4616469 0.1469021), wk = 0.1250000 k( 8) = ( 0.5330646 0.0000000 -0.2448369), wk = 0.0625000 k( 9) = ( 0.3997985 -0.2308235 -0.1469021), wk = 0.1250000 k( 10) = ( 0.2665323 0.0000000 -0.0489674), wk = 0.0625000 k( 11) = ( 0.2665323 0.0000000 0.2448368), wk = 0.0625000 k( 12) = ( 0.1332662 -0.2308235 0.3427715), wk = 0.1250000 k( 13) = ( 0.5330646 0.4616469 0.0489673), wk = 0.1250000 k( 14) = ( 0.3997985 0.2308235 0.1469021), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4407063), wk = 0.0625000 k( 16) = ( 0.3997985 0.6924704 0.1469021), wk = 0.1250000 k( 17) = ( 0.2665323 0.4616469 0.2448368), wk = 0.1250000 k( 18) = ( 0.7995969 0.0000000 -0.1469022), wk = 0.0625000 k( 19) = ( 0.6663308 -0.2308235 -0.0489674), wk = 0.1250000 k( 20) = ( 0.5330646 0.0000000 0.0489673), wk = 0.0625000 extrapolated charge 11.76095, renormalised to 10.00000 total cpu time spent up to now is 2.70 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.1 total cpu time spent up to now is 3.56 secs total energy = -25.46196647 Ry Harris-Foulkes estimate = -26.46821635 Ry estimated scf accuracy < 0.01522401 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.52E-04, avg # of iterations = 3.1 total cpu time spent up to now is 4.06 secs total energy = -25.49056485 Ry Harris-Foulkes estimate = -25.49591690 Ry estimated scf accuracy < 0.01382368 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-04, avg # of iterations = 1.0 total cpu time spent up to now is 4.37 secs total energy = -25.48980889 Ry Harris-Foulkes estimate = -25.49113726 Ry estimated scf accuracy < 0.00318754 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.19E-05, avg # of iterations = 1.0 total cpu time spent up to now is 4.68 secs total energy = -25.48972170 Ry Harris-Foulkes estimate = -25.49000380 Ry estimated scf accuracy < 0.00052281 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.23E-06, avg # of iterations = 3.1 total cpu time spent up to now is 5.10 secs total energy = -25.48986242 Ry Harris-Foulkes estimate = -25.48986211 Ry estimated scf accuracy < 0.00000334 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.34E-08, avg # of iterations = 1.6 total cpu time spent up to now is 5.42 secs total energy = -25.48986182 Ry Harris-Foulkes estimate = -25.48986279 Ry estimated scf accuracy < 0.00000299 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.99E-08, avg # of iterations = 1.0 total cpu time spent up to now is 5.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.1469 ( 531 PWs) bands (ev): -7.4955 0.6241 4.3725 4.3725 5.8117 8.5689 9.3234 9.3234 13.3295 k =-0.1333-0.2308 0.2448 ( 522 PWs) bands (ev): -6.5664 -1.8567 3.6162 4.5287 6.5671 7.1564 8.0760 10.6598 12.7808 k = 0.2665 0.4616-0.0490 ( 520 PWs) bands (ev): -5.2806 -3.9253 3.7342 4.1891 5.1988 8.0649 8.8216 9.9623 15.0333 k = 0.1333 0.2308 0.0490 ( 525 PWs) bands (ev): -7.0003 -1.0345 3.6445 4.6922 6.0085 8.4050 9.0253 10.4520 12.6753 k =-0.2665 0.0000 0.3428 ( 519 PWs) bands (ev): -6.2078 -1.5318 2.3114 2.9561 4.6886 8.6414 10.2325 10.5854 12.5739 k = 0.1333 0.6925 0.0490 ( 510 PWs) bands (ev): -4.8405 -3.4559 1.2770 2.4552 5.3994 8.4367 11.0607 12.2351 13.0275 k = 0.0000 0.4616 0.1469 ( 521 PWs) bands (ev): -5.6321 -3.1342 2.1205 4.1730 5.5127 8.6893 9.6872 10.8490 12.7112 k = 0.5331 0.0000-0.2448 ( 510 PWs) bands (ev): -5.1554 -2.8292 1.4598 2.5062 3.6710 8.7422 11.7708 13.1685 13.4193 k = 0.3998-0.2308-0.1469 ( 521 PWs) bands (ev): -5.6320 -3.1342 2.1205 4.1730 5.5127 8.6893 9.6872 10.8490 12.7112 k = 0.2665 0.0000-0.0490 ( 525 PWs) bands (ev): -7.0003 -1.0345 3.6445 4.6922 6.0085 8.4051 9.0253 10.4520 12.6753 k = 0.2665 0.0000 0.2448 ( 522 PWs) bands (ev): -6.5664 -1.8567 3.6162 4.5287 6.5671 7.1564 8.0760 10.6598 12.7808 k = 0.1333-0.2308 0.3428 ( 519 PWs) bands (ev): -6.2078 -1.5317 2.3114 2.9561 4.6886 8.6414 10.2325 10.5854 12.5739 k = 0.5331 0.4616 0.0490 ( 510 PWs) bands (ev): -4.8405 -3.4558 1.2770 2.4552 5.3994 8.4367 11.0607 12.2351 13.0275 k = 0.3998 0.2308 0.1469 ( 521 PWs) bands (ev): -5.6320 -3.1342 2.1205 4.1729 5.5127 8.6893 9.6872 10.8490 12.7112 k = 0.0000 0.0000 0.4407 ( 522 PWs) bands (ev): -6.3297 -1.9333 4.4767 4.4767 5.0697 7.2953 7.2953 8.1469 14.5535 k = 0.3998 0.6925 0.1469 ( 520 PWs) bands (ev): -5.4499 -2.6738 1.4537 3.5278 4.8205 8.5296 8.7393 11.4165 14.3377 k = 0.2665 0.4616 0.2448 ( 510 PWs) bands (ev): -5.1554 -2.8292 1.4598 2.5062 3.6710 8.7422 11.7708 13.1685 13.4193 k = 0.7996 0.0000-0.1469 ( 520 PWs) bands (ev): -5.4499 -2.6738 1.4537 3.5278 4.8205 8.5296 8.7393 11.4165 14.3377 k = 0.6663-0.2308-0.0490 ( 510 PWs) bands (ev): -4.8405 -3.4558 1.2770 2.4552 5.3994 8.4367 11.0607 12.2351 13.0275 k = 0.5331 0.0000 0.0490 ( 520 PWs) bands (ev): -5.2806 -3.9253 3.7342 4.1891 5.1988 8.0649 8.8216 9.9623 15.0333 the Fermi energy is 7.0992 ev ! total energy = -25.48986189 Ry Harris-Foulkes estimate = -25.48986194 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = 5.91105620 Ry hartree contribution = 1.32276591 Ry xc contribution = -6.21965663 Ry ewald contribution = -26.50405479 Ry smearing contrib. (-TS) = 0.00002742 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000014 0.00000000 -0.00790915 atom 2 type 1 force = -0.00000014 0.00000000 0.00790915 Total force = 0.011185 Total SCF correction = 0.000180 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -56.77 -0.00057759 0.00000000 0.00000000 -84.97 0.00 0.00 0.00000000 -0.00057759 0.00000000 0.00 -84.97 0.00 0.00000000 0.00000000 -0.00000258 0.00 0.00 -0.38 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -25.4401221654 Ry enthalpy new = -25.4898618853 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0713269446 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.615391616 0.000000000 0.849318738 -0.307695729 0.532945331 0.849318824 -0.307695729 -0.532945331 0.849318824 ATOMIC_POSITIONS (crystal) As 0.276556773 0.276557033 0.276557033 As -0.276556773 -0.276557033 -0.276557033 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1471768), wk = 0.0625000 k( 2) = ( -0.1354151 -0.2345456 0.2452946), wk = 0.1250000 k( 3) = ( 0.2708303 0.4690913 -0.0490589), wk = 0.1250000 k( 4) = ( 0.1354151 0.2345456 0.0490589), wk = 0.1250000 k( 5) = ( -0.2708302 0.0000000 0.3434125), wk = 0.0625000 k( 6) = ( 0.1354151 0.7036369 0.0490589), wk = 0.1250000 k( 7) = ( 0.0000000 0.4690913 0.1471768), wk = 0.1250000 k( 8) = ( 0.5416605 0.0000000 -0.2452947), wk = 0.0625000 k( 9) = ( 0.4062454 -0.2345456 -0.1471768), wk = 0.1250000 k( 10) = ( 0.2708303 0.0000000 -0.0490589), wk = 0.0625000 k( 11) = ( 0.2708303 0.0000000 0.2452946), wk = 0.0625000 k( 12) = ( 0.1354152 -0.2345456 0.3434125), wk = 0.1250000 k( 13) = ( 0.5416606 0.4690913 0.0490589), wk = 0.1250000 k( 14) = ( 0.4062454 0.2345456 0.1471767), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4415303), wk = 0.0625000 k( 16) = ( 0.4062454 0.7036369 0.1471767), wk = 0.1250000 k( 17) = ( 0.2708303 0.4690913 0.2452946), wk = 0.1250000 k( 18) = ( 0.8124908 0.0000000 -0.1471768), wk = 0.0625000 k( 19) = ( 0.6770757 -0.2345456 -0.0490590), wk = 0.1250000 k( 20) = ( 0.5416606 0.0000000 0.0490589), wk = 0.0625000 extrapolated charge 9.65560, renormalised to 10.00000 total cpu time spent up to now is 6.00 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.1 total cpu time spent up to now is 6.64 secs total energy = -25.49315765 Ry Harris-Foulkes estimate = -25.30171129 Ry estimated scf accuracy < 0.00073252 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.33E-06, avg # of iterations = 3.1 total cpu time spent up to now is 7.14 secs total energy = -25.49420847 Ry Harris-Foulkes estimate = -25.49438634 Ry estimated scf accuracy < 0.00042298 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.23E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.45 secs total energy = -25.49420151 Ry Harris-Foulkes estimate = -25.49423098 Ry estimated scf accuracy < 0.00007488 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.49E-07, avg # of iterations = 1.0 total cpu time spent up to now is 7.75 secs total energy = -25.49419746 Ry Harris-Foulkes estimate = -25.49420596 Ry estimated scf accuracy < 0.00001501 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.50E-07, avg # of iterations = 3.0 total cpu time spent up to now is 8.16 secs total energy = -25.49420212 Ry Harris-Foulkes estimate = -25.49420216 Ry estimated scf accuracy < 0.00000029 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.92E-09, avg # of iterations = 1.1 total cpu time spent up to now is 8.46 secs total energy = -25.49420204 Ry Harris-Foulkes estimate = -25.49420213 Ry estimated scf accuracy < 0.00000019 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-09, avg # of iterations = 1.3 total cpu time spent up to now is 8.76 secs End of self-consistent calculation k = 0.0000 0.0000 0.1472 ( 531 PWs) bands (ev): -7.3635 1.2015 4.7472 4.7472 6.1794 9.0451 9.7877 9.7877 13.8015 k =-0.1354-0.2345 0.2453 ( 522 PWs) bands (ev): -6.4023 -1.4523 3.8535 4.8563 7.0830 7.6497 8.5525 11.2013 13.1925 k = 0.2708 0.4691-0.0491 ( 520 PWs) bands (ev): -5.0485 -3.6423 4.0323 4.4478 5.6217 8.5565 9.2849 10.4138 15.4932 k = 0.1354 0.2345 0.0491 ( 525 PWs) bands (ev): -6.8430 -0.5753 3.9729 5.0347 6.3599 8.9536 9.4341 10.9578 13.0763 k =-0.2708 0.0000 0.3434 ( 519 PWs) bands (ev): -6.0351 -1.0991 2.5374 3.2774 5.0374 9.1167 10.8445 11.1453 13.1335 k = 0.1354 0.7036 0.0491 ( 510 PWs) bands (ev): -4.5971 -3.1246 1.4882 2.6845 5.7729 8.9987 11.5440 12.8511 13.5753 k = 0.0000 0.4691 0.1472 ( 521 PWs) bands (ev): -5.4159 -2.7937 2.3454 4.5000 5.8371 9.1627 10.2878 11.3424 13.1458 k = 0.5417 0.0000-0.2453 ( 510 PWs) bands (ev): -4.9110 -2.4972 1.7066 2.8023 3.9554 9.0851 12.3600 13.7886 14.1365 k = 0.4062-0.2345-0.1472 ( 521 PWs) bands (ev): -5.4159 -2.7937 2.3454 4.5001 5.8371 9.1627 10.2878 11.3424 13.1458 k = 0.2708 0.0000-0.0491 ( 525 PWs) bands (ev): -6.8430 -0.5753 3.9729 5.0347 6.3599 8.9536 9.4340 10.9578 13.0763 k = 0.2708 0.0000 0.2453 ( 522 PWs) bands (ev): -6.4023 -1.4523 3.8535 4.8563 7.0830 7.6497 8.5525 11.2013 13.1925 k = 0.1354-0.2345 0.3434 ( 519 PWs) bands (ev): -6.0351 -1.0991 2.5374 3.2774 5.0374 9.1167 10.8445 11.1453 13.1335 k = 0.5417 0.4691 0.0491 ( 510 PWs) bands (ev): -4.5971 -3.1246 1.4882 2.6845 5.7729 8.9987 11.5440 12.8510 13.5753 k = 0.4062 0.2345 0.1472 ( 521 PWs) bands (ev): -5.4159 -2.7937 2.3454 4.5000 5.8371 9.1627 10.2877 11.3424 13.1458 k = 0.0000 0.0000 0.4415 ( 522 PWs) bands (ev): -6.1822 -1.6031 4.8484 4.8484 5.6096 7.7504 7.7505 8.7338 15.0379 k = 0.4062 0.7036 0.1472 ( 520 PWs) bands (ev): -5.2637 -2.3185 1.6629 3.8500 5.2486 9.1449 9.2620 12.0386 14.7866 k = 0.2708 0.4691 0.2453 ( 510 PWs) bands (ev): -4.9110 -2.4972 1.7066 2.8023 3.9554 9.0851 12.3600 13.7886 14.1365 k = 0.8125 0.0000-0.1472 ( 520 PWs) bands (ev): -5.2637 -2.3185 1.6629 3.8500 5.2486 9.1449 9.2620 12.0386 14.7866 k = 0.6771-0.2345-0.0491 ( 510 PWs) bands (ev): -4.5971 -3.1246 1.4882 2.6845 5.7729 8.9987 11.5440 12.8511 13.5753 k = 0.5417 0.0000 0.0491 ( 520 PWs) bands (ev): -5.0485 -3.6424 4.0323 4.4478 5.6217 8.5565 9.2849 10.4138 15.4932 the Fermi energy is 7.1403 ev ! total energy = -25.49420205 Ry Harris-Foulkes estimate = -25.49420205 Ry estimated scf accuracy < 1.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.27097793 Ry hartree contribution = 1.28115576 Ry xc contribution = -6.26181564 Ry ewald contribution = -26.78454728 Ry smearing contrib. (-TS) = 0.00002718 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000030 0.00000000 -0.01445710 atom 2 type 1 force = -0.00000030 0.00000000 0.01445710 Total force = 0.020445 Total SCF correction = 0.000018 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -30.63 -0.00036214 0.00000000 0.00000000 -53.27 0.00 0.00 0.00000000 -0.00036215 0.00000000 0.00 -53.27 0.00 0.00000000 0.00000000 0.00009958 0.00 0.00 14.65 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -25.4898618853 Ry enthalpy new = -25.4942020532 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.2173987989 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.587519842 0.000000000 0.856188287 -0.293760157 0.508807607 0.856188582 -0.293760157 -0.508807607 0.856188582 ATOMIC_POSITIONS (crystal) As 0.273599184 0.273599113 0.273599113 As -0.273599184 -0.273599113 -0.273599113 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1459959), wk = 0.0625000 k( 2) = ( -0.1418391 -0.2456724 0.2433265), wk = 0.1250000 k( 3) = ( 0.2836783 0.4913449 -0.0486652), wk = 0.1250000 k( 4) = ( 0.1418392 0.2456724 0.0486653), wk = 0.1250000 k( 5) = ( -0.2836782 0.0000000 0.3406570), wk = 0.0625000 k( 6) = ( 0.1418392 0.7370173 0.0486653), wk = 0.1250000 k( 7) = ( 0.0000000 0.4913449 0.1459959), wk = 0.1250000 k( 8) = ( 0.5673565 0.0000000 -0.2433264), wk = 0.0625000 k( 9) = ( 0.4255174 -0.2456724 -0.1459958), wk = 0.1250000 k( 10) = ( 0.2836783 0.0000000 -0.0486652), wk = 0.0625000 k( 11) = ( 0.2836784 0.0000000 0.2433265), wk = 0.0625000 k( 12) = ( 0.1418393 -0.2456724 0.3406571), wk = 0.1250000 k( 13) = ( 0.5673566 0.4913449 0.0486654), wk = 0.1250000 k( 14) = ( 0.4255175 0.2456724 0.1459960), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4379877), wk = 0.0625000 k( 16) = ( 0.4255175 0.7370173 0.1459960), wk = 0.1250000 k( 17) = ( 0.2836784 0.4913449 0.2433265), wk = 0.1250000 k( 18) = ( 0.8510348 0.0000000 -0.1459957), wk = 0.0625000 k( 19) = ( 0.7091957 -0.2456724 -0.0486652), wk = 0.1250000 k( 20) = ( 0.5673566 0.0000000 0.0486654), wk = 0.0625000 extrapolated charge 9.11677, renormalised to 10.00000 total cpu time spent up to now is 9.05 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.0 total cpu time spent up to now is 9.87 secs total energy = -25.49086580 Ry Harris-Foulkes estimate = -24.97256972 Ry estimated scf accuracy < 0.00603130 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.03E-05, avg # of iterations = 3.0 total cpu time spent up to now is 10.38 secs total energy = -25.49760972 Ry Harris-Foulkes estimate = -25.49910418 Ry estimated scf accuracy < 0.00329934 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.30E-05, avg # of iterations = 1.0 total cpu time spent up to now is 10.67 secs total energy = -25.49775861 Ry Harris-Foulkes estimate = -25.49788890 Ry estimated scf accuracy < 0.00038953 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.90E-06, avg # of iterations = 1.0 total cpu time spent up to now is 10.97 secs total energy = -25.49771541 Ry Harris-Foulkes estimate = -25.49777917 Ry estimated scf accuracy < 0.00011396 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.14E-06, avg # of iterations = 2.6 total cpu time spent up to now is 11.35 secs total energy = -25.49774648 Ry Harris-Foulkes estimate = -25.49774679 Ry estimated scf accuracy < 0.00000201 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.01E-08, avg # of iterations = 1.8 total cpu time spent up to now is 11.68 secs total energy = -25.49774601 Ry Harris-Foulkes estimate = -25.49774663 Ry estimated scf accuracy < 0.00000112 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.12E-08, avg # of iterations = 2.0 total cpu time spent up to now is 12.03 secs End of self-consistent calculation k = 0.0000 0.0000 0.1460 ( 531 PWs) bands (ev): -6.9643 2.4692 5.9705 5.9705 7.1314 10.4645 11.0880 11.0880 15.0380 k =-0.1418-0.2457 0.2433 ( 522 PWs) bands (ev): -5.9094 -0.3954 4.3635 5.9947 8.5642 8.9402 9.6448 12.5858 14.3888 k = 0.2837 0.4913-0.0487 ( 520 PWs) bands (ev): -4.3319 -2.8810 5.0075 5.0504 6.7404 9.8922 10.2773 11.1501 16.3034 k = 0.1418 0.2457 0.0487 ( 525 PWs) bands (ev): -6.3675 0.6838 5.0520 5.8079 7.2036 10.1325 10.6881 12.1424 14.0597 k =-0.2837 0.0000 0.3407 ( 519 PWs) bands (ev): -5.5201 -0.0822 3.2325 4.3358 5.8300 10.5712 12.6625 12.6813 14.4768 k = 0.1418 0.7370 0.0487 ( 510 PWs) bands (ev): -3.8703 -2.2002 2.1079 3.1973 6.6946 10.5325 12.9706 14.4311 14.7763 k = 0.0000 0.4913 0.1460 ( 521 PWs) bands (ev): -4.7694 -1.8244 3.0642 5.2372 6.5978 10.0804 11.8712 12.7616 14.2756 k = 0.5674 0.0000-0.2433 ( 510 PWs) bands (ev): -4.1919 -1.5490 2.2314 3.7831 4.5769 10.1376 13.7299 15.1294 15.8373 k = 0.4255-0.2457-0.1460 ( 521 PWs) bands (ev): -4.7694 -1.8244 3.0642 5.2372 6.5978 10.0804 11.8712 12.7616 14.2756 k = 0.2837 0.0000-0.0487 ( 525 PWs) bands (ev): -6.3675 0.6838 5.0520 5.8079 7.2036 10.1325 10.6881 12.1424 14.0597 k = 0.2837 0.0000 0.2433 ( 522 PWs) bands (ev): -5.9094 -0.3954 4.3635 5.9947 8.5642 8.9401 9.6448 12.5858 14.3888 k = 0.1418-0.2457 0.3407 ( 519 PWs) bands (ev): -5.5201 -0.0822 3.2325 4.3358 5.8299 10.5712 12.6625 12.6813 14.4768 k = 0.5674 0.4913 0.0487 ( 510 PWs) bands (ev): -3.8703 -2.2002 2.1079 3.1973 6.6946 10.5325 12.9706 14.4311 14.7763 k = 0.4255 0.2457 0.1460 ( 521 PWs) bands (ev): -4.7694 -1.8244 3.0642 5.2372 6.5978 10.0804 11.8712 12.7616 14.2756 k = 0.0000 0.0000 0.4380 ( 522 PWs) bands (ev): -5.7294 -1.0713 6.1171 6.1171 7.4940 8.9838 8.9838 10.2767 16.3146 k = 0.4255 0.7370 0.1460 ( 520 PWs) bands (ev): -4.6810 -1.6006 2.3471 4.9278 6.4193 10.6430 10.9980 13.8384 15.8566 k = 0.2837 0.4913 0.2433 ( 510 PWs) bands (ev): -4.1919 -1.5490 2.2314 3.7831 4.5769 10.1376 13.7299 15.1294 15.8373 k = 0.8510 0.0000-0.1460 ( 520 PWs) bands (ev): -4.6810 -1.6006 2.3471 4.9278 6.4193 10.6430 10.9980 13.8384 15.8566 k = 0.7092-0.2457-0.0487 ( 510 PWs) bands (ev): -3.8703 -2.2002 2.1079 3.1973 6.6946 10.5325 12.9706 14.4311 14.7763 k = 0.5674 0.0000 0.0487 ( 520 PWs) bands (ev): -4.3319 -2.8810 5.0075 5.0504 6.7404 9.8922 10.2773 11.1501 16.3034 the Fermi energy is 8.6214 ev ! total energy = -25.49774618 Ry Harris-Foulkes estimate = -25.49774624 Ry estimated scf accuracy < 0.00000010 Ry The total energy is the sum of the following terms: one-electron contribution = 7.26866617 Ry hartree contribution = 1.15258399 Ry xc contribution = -6.36495139 Ry ewald contribution = -27.55407213 Ry smearing contrib. (-TS) = 0.00002718 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000001 0.00000000 -0.01671982 atom 2 type 1 force = -0.00000001 0.00000000 0.01671982 Total force = 0.023645 Total SCF correction = 0.000264 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 40.67 0.00028243 0.00000000 0.00000000 41.55 0.00 0.00 0.00000000 0.00028243 0.00000000 0.00 41.55 0.00 0.00000000 0.00000000 0.00026452 0.00 0.00 38.91 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -25.4942020532 Ry enthalpy new = -25.4977461757 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0620916378 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.595132569 0.000000000 0.859724605 -0.297566428 0.515400451 0.859724837 -0.297566428 -0.515400451 0.859724837 ATOMIC_POSITIONS (crystal) As 0.272889114 0.272889111 0.272889111 As -0.272889114 -0.272889111 -0.272889111 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1453954), wk = 0.0625000 k( 2) = ( -0.1400247 -0.2425299 0.2423256), wk = 0.1250000 k( 3) = ( 0.2800496 0.4850597 -0.0484651), wk = 0.1250000 k( 4) = ( 0.1400248 0.2425299 0.0484651), wk = 0.1250000 k( 5) = ( -0.2800495 0.0000000 0.3392558), wk = 0.0625000 k( 6) = ( 0.1400248 0.7275896 0.0484651), wk = 0.1250000 k( 7) = ( 0.0000000 0.4850597 0.1453954), wk = 0.1250000 k( 8) = ( 0.5600991 0.0000000 -0.2423256), wk = 0.0625000 k( 9) = ( 0.4200744 -0.2425299 -0.1453953), wk = 0.1250000 k( 10) = ( 0.2800496 0.0000000 -0.0484651), wk = 0.0625000 k( 11) = ( 0.2800497 0.0000000 0.2423256), wk = 0.0625000 k( 12) = ( 0.1400249 -0.2425299 0.3392559), wk = 0.1250000 k( 13) = ( 0.5600992 0.4850597 0.0484652), wk = 0.1250000 k( 14) = ( 0.4200744 0.2425299 0.1453954), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4361861), wk = 0.0625000 k( 16) = ( 0.4200744 0.7275896 0.1453954), wk = 0.1250000 k( 17) = ( 0.2800497 0.4850597 0.2423256), wk = 0.1250000 k( 18) = ( 0.8401488 0.0000000 -0.1453953), wk = 0.0625000 k( 19) = ( 0.7001240 -0.2425299 -0.0484650), wk = 0.1250000 k( 20) = ( 0.5600992 0.0000000 0.0484652), wk = 0.0625000 extrapolated charge 10.29427, renormalised to 10.00000 total cpu time spent up to now is 12.32 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 12.95 secs total energy = -25.49860714 Ry Harris-Foulkes estimate = -25.67287047 Ry estimated scf accuracy < 0.00037342 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.73E-06, avg # of iterations = 3.0 total cpu time spent up to now is 13.46 secs total energy = -25.49926228 Ry Harris-Foulkes estimate = -25.49939095 Ry estimated scf accuracy < 0.00031723 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.17E-06, avg # of iterations = 1.0 total cpu time spent up to now is 13.76 secs total energy = -25.49925827 Ry Harris-Foulkes estimate = -25.49928000 Ry estimated scf accuracy < 0.00006024 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.02E-07, avg # of iterations = 1.0 total cpu time spent up to now is 14.06 secs total energy = -25.49925378 Ry Harris-Foulkes estimate = -25.49926107 Ry estimated scf accuracy < 0.00001531 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.53E-07, avg # of iterations = 2.4 total cpu time spent up to now is 14.40 secs total energy = -25.49925606 Ry Harris-Foulkes estimate = -25.49925634 Ry estimated scf accuracy < 0.00000062 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.17E-09, avg # of iterations = 2.4 total cpu time spent up to now is 14.77 secs End of self-consistent calculation k = 0.0000 0.0000 0.1454 ( 531 PWs) bands (ev): -7.0800 1.9608 5.6241 5.6241 6.7008 10.0623 10.6487 10.6487 14.5804 k =-0.1400-0.2425 0.2423 ( 522 PWs) bands (ev): -6.0528 -0.7722 4.1344 5.7090 8.1010 8.4362 9.1543 12.0674 13.9786 k = 0.2800 0.4851-0.0485 ( 520 PWs) bands (ev): -4.5357 -3.1397 4.7436 4.7854 6.3292 9.4363 9.8007 10.7088 15.9217 k = 0.1400 0.2425 0.0485 ( 525 PWs) bands (ev): -6.5065 0.2635 4.7516 5.4764 6.8589 9.6203 10.3188 11.6421 13.6140 k =-0.2800 0.0000 0.3393 ( 519 PWs) bands (ev): -5.6697 -0.4852 3.0233 4.0420 5.4459 10.2181 12.0459 12.1482 13.8864 k = 0.1400 0.7276 0.0485 ( 510 PWs) bands (ev): -4.0834 -2.5085 1.9050 2.9671 6.3238 10.0018 12.5503 13.8879 14.2305 k = 0.0000 0.4851 0.1454 ( 521 PWs) bands (ev): -4.9619 -2.1358 2.8628 4.8997 6.2859 9.6194 11.3171 12.2903 13.8293 k = 0.5601 0.0000-0.2423 ( 510 PWs) bands (ev): -4.4139 -1.8310 1.9616 3.5133 4.2717 9.8639 13.1647 14.5054 15.1735 k = 0.4201-0.2425-0.1454 ( 521 PWs) bands (ev): -4.9619 -2.1358 2.8628 4.8997 6.2859 9.6194 11.3171 12.2903 13.8293 k = 0.2800 0.0000-0.0485 ( 525 PWs) bands (ev): -6.5065 0.2635 4.7516 5.4764 6.8589 9.6203 10.3188 11.6421 13.6140 k = 0.2800 0.0000 0.2423 ( 522 PWs) bands (ev): -6.0528 -0.7722 4.1344 5.7090 8.1010 8.4362 9.1543 12.0674 13.9786 k = 0.1400-0.2425 0.3393 ( 519 PWs) bands (ev): -5.6697 -0.4852 3.0233 4.0420 5.4459 10.2181 12.0458 12.1482 13.8864 k = 0.5601 0.4851 0.0485 ( 510 PWs) bands (ev): -4.0834 -2.5085 1.9050 2.9671 6.3238 10.0018 12.5503 13.8879 14.2305 k = 0.4201 0.2425 0.1454 ( 521 PWs) bands (ev): -4.9619 -2.1358 2.8628 4.8997 6.2859 9.6194 11.3171 12.2903 13.8293 k = 0.0000 0.0000 0.4362 ( 522 PWs) bands (ev): -5.8507 -1.3896 5.7845 5.7845 6.9823 8.5411 8.5411 9.6922 15.8638 k = 0.4201 0.7276 0.1454 ( 520 PWs) bands (ev): -4.8308 -1.9495 2.1473 4.6371 5.9957 10.1344 10.4358 13.2714 15.3980 k = 0.2800 0.4851 0.2423 ( 510 PWs) bands (ev): -4.4139 -1.8310 1.9616 3.5133 4.2717 9.8639 13.1647 14.5054 15.1735 k = 0.8401 0.0000-0.1454 ( 520 PWs) bands (ev): -4.8308 -1.9495 2.1473 4.6371 5.9957 10.1344 10.4358 13.2714 15.3980 k = 0.7001-0.2425-0.0485 ( 510 PWs) bands (ev): -4.0834 -2.5085 1.9050 2.9671 6.3238 10.0018 12.5503 13.8879 14.2305 k = 0.5601 0.0000 0.0485 ( 520 PWs) bands (ev): -4.5357 -3.1397 4.7436 4.7853 6.3292 9.4363 9.8007 10.7087 15.9217 the Fermi energy is 8.1583 ev ! total energy = -25.49925629 Ry Harris-Foulkes estimate = -25.49925630 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 6.94775514 Ry hartree contribution = 1.18242484 Ry xc contribution = -6.32414144 Ry ewald contribution = -27.30532201 Ry smearing contrib. (-TS) = 0.00002718 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000007 0.00000000 -0.00569172 atom 2 type 1 force = -0.00000007 0.00000000 0.00569172 Total force = 0.008049 Total SCF correction = 0.000050 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 7.57 0.00001908 0.00000000 0.00000000 2.81 0.00 0.00 0.00000000 0.00001908 0.00000000 0.00 2.81 0.00 0.00000000 0.00000000 0.00011624 0.00 0.00 17.10 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -25.4977461757 Ry enthalpy new = -25.4992562892 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0266745220 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.594665487 0.000000000 0.863742521 -0.297332851 0.514995958 0.863742724 -0.297332851 -0.514995958 0.863742724 ATOMIC_POSITIONS (crystal) As 0.272031606 0.272031578 0.272031578 As -0.272031606 -0.272031578 -0.272031578 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1447190), wk = 0.0625000 k( 2) = ( -0.1401347 -0.2427204 0.2411984), wk = 0.1250000 k( 3) = ( 0.2802696 0.4854407 -0.0482397), wk = 0.1250000 k( 4) = ( 0.1401348 0.2427204 0.0482397), wk = 0.1250000 k( 5) = ( -0.2802695 0.0000000 0.3376777), wk = 0.0625000 k( 6) = ( 0.1401348 0.7281611 0.0482397), wk = 0.1250000 k( 7) = ( 0.0000000 0.4854407 0.1447190), wk = 0.1250000 k( 8) = ( 0.5605391 0.0000000 -0.2411983), wk = 0.0625000 k( 9) = ( 0.4204043 -0.2427204 -0.1447190), wk = 0.1250000 k( 10) = ( 0.2802696 0.0000000 -0.0482397), wk = 0.0625000 k( 11) = ( 0.2802696 0.0000000 0.2411984), wk = 0.0625000 k( 12) = ( 0.1401349 -0.2427204 0.3376778), wk = 0.1250000 k( 13) = ( 0.5605392 0.4854407 0.0482397), wk = 0.1250000 k( 14) = ( 0.4204044 0.2427204 0.1447191), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4341571), wk = 0.0625000 k( 16) = ( 0.4204044 0.7281611 0.1447191), wk = 0.1250000 k( 17) = ( 0.2802696 0.4854407 0.2411984), wk = 0.1250000 k( 18) = ( 0.8408087 0.0000000 -0.1447190), wk = 0.0625000 k( 19) = ( 0.7006739 -0.2427204 -0.0482396), wk = 0.1250000 k( 20) = ( 0.5605392 0.0000000 0.0482397), wk = 0.0625000 extrapolated charge 10.03087, renormalised to 10.00000 total cpu time spent up to now is 15.05 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.94E-08, avg # of iterations = 1.0 total cpu time spent up to now is 15.93 secs total energy = -25.49944612 Ry Harris-Foulkes estimate = -25.51762267 Ry estimated scf accuracy < 0.00000993 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.93E-08, avg # of iterations = 2.9 total cpu time spent up to now is 16.34 secs total energy = -25.49945309 Ry Harris-Foulkes estimate = -25.49945396 Ry estimated scf accuracy < 0.00000200 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-08, avg # of iterations = 1.1 total cpu time spent up to now is 16.64 secs total energy = -25.49945317 Ry Harris-Foulkes estimate = -25.49945324 Ry estimated scf accuracy < 0.00000019 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.90E-09, avg # of iterations = 1.9 total cpu time spent up to now is 16.97 secs End of self-consistent calculation k = 0.0000 0.0000 0.1447 ( 531 PWs) bands (ev): -7.0804 1.8676 5.6432 5.6432 6.6221 10.0756 10.6195 10.6195 14.5405 k =-0.1401-0.2427 0.2412 ( 522 PWs) bands (ev): -6.0533 -0.8083 4.0832 5.7426 8.0871 8.3764 9.0680 11.9881 13.9735 k = 0.2803 0.4854-0.0482 ( 520 PWs) bands (ev): -4.5303 -3.1582 4.6818 4.8101 6.2870 9.4009 9.7025 10.5648 15.7993 k = 0.1401 0.2427 0.0482 ( 525 PWs) bands (ev): -6.5061 0.2378 4.7702 5.4071 6.8039 9.5066 10.3265 11.5552 13.5295 k =-0.2803 0.0000 0.3377 ( 519 PWs) bands (ev): -5.6714 -0.5511 3.0265 4.0629 5.3697 10.2539 12.0135 12.1083 13.7921 k = 0.1401 0.7282 0.0482 ( 510 PWs) bands (ev): -4.0845 -2.5267 1.8965 2.9213 6.2701 9.9576 12.5547 13.8331 14.1234 k = 0.0000 0.4854 0.1447 ( 521 PWs) bands (ev): -4.9621 -2.1478 2.8691 4.8343 6.2288 9.4987 11.2552 12.2754 13.7779 k = 0.5605 0.0000-0.2412 ( 510 PWs) bands (ev): -4.4190 -1.8365 1.9009 3.5334 4.2037 9.8778 13.0689 14.3774 15.0638 k = 0.4204-0.2427-0.1447 ( 521 PWs) bands (ev): -4.9621 -2.1478 2.8691 4.8343 6.2288 9.4987 11.2552 12.2754 13.7779 k = 0.2803 0.0000-0.0482 ( 525 PWs) bands (ev): -6.5061 0.2378 4.7702 5.4071 6.8039 9.5066 10.3265 11.5552 13.5295 k = 0.2803 0.0000 0.2412 ( 522 PWs) bands (ev): -6.0533 -0.8083 4.0832 5.7426 8.0871 8.3764 9.0680 11.9881 13.9735 k = 0.1401-0.2427 0.3377 ( 519 PWs) bands (ev): -5.6714 -0.5511 3.0265 4.0629 5.3697 10.2539 12.0135 12.1083 13.7921 k = 0.5605 0.4854 0.0482 ( 510 PWs) bands (ev): -4.0845 -2.5267 1.8965 2.9213 6.2701 9.9576 12.5547 13.8331 14.1234 k = 0.4204 0.2427 0.1447 ( 521 PWs) bands (ev): -4.9621 -2.1478 2.8691 4.8343 6.2287 9.4987 11.2552 12.2754 13.7779 k = 0.0000 0.0000 0.4342 ( 522 PWs) bands (ev): -5.8498 -1.4882 5.8189 5.8189 7.0246 8.5080 8.5080 9.6380 15.8149 k = 0.4204 0.7282 0.1447 ( 520 PWs) bands (ev): -4.8246 -2.0312 2.1556 4.6609 5.9623 10.0871 10.4360 13.2576 15.3160 k = 0.2803 0.4854 0.2412 ( 510 PWs) bands (ev): -4.4190 -1.8365 1.9009 3.5334 4.2037 9.8778 13.0689 14.3774 15.0638 k = 0.8408 0.0000-0.1447 ( 520 PWs) bands (ev): -4.8246 -2.0312 2.1556 4.6609 5.9623 10.0871 10.4360 13.2576 15.3161 k = 0.7007-0.2427-0.0482 ( 510 PWs) bands (ev): -4.0845 -2.5267 1.8965 2.9212 6.2701 9.9576 12.5547 13.8331 14.1234 k = 0.5605 0.0000 0.0482 ( 520 PWs) bands (ev): -4.5303 -3.1582 4.6818 4.8101 6.2870 9.4009 9.7025 10.5648 15.7993 the Fermi energy is 8.1444 ev ! total energy = -25.49945319 Ry Harris-Foulkes estimate = -25.49945320 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = 6.93059469 Ry hartree contribution = 1.17922906 Ry xc contribution = -6.31839497 Ry ewald contribution = -27.29090918 Ry smearing contrib. (-TS) = 0.00002721 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000008 0.00000000 -0.00018740 atom 2 type 1 force = -0.00000008 0.00000000 0.00018740 Total force = 0.000265 Total SCF correction = 0.000080 SCF correction compared to forces is too large, reduce conv_thr entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 2.09 -0.00000612 0.00000000 0.00000000 -0.90 0.00 0.00 0.00000000 -0.00000611 0.00000000 0.00 -0.90 0.00 0.00000000 0.00000000 0.00005479 0.00 0.00 8.06 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -25.4992562892 Ry enthalpy new = -25.4994531908 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0112933333 bohr new conv_thr = 0.0000000187 Ry CELL_PARAMETERS (alat) 0.594069466 0.000000000 0.866031920 -0.297034790 0.514479798 0.866032085 -0.297034790 -0.514479798 0.866032085 ATOMIC_POSITIONS (crystal) As 0.271794229 0.271794169 0.271794169 As -0.271794229 -0.271794169 -0.271794169 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1443365), wk = 0.0625000 k( 2) = ( -0.1402753 -0.2429639 0.2405608), wk = 0.1250000 k( 3) = ( 0.2805508 0.4859277 -0.0481121), wk = 0.1250000 k( 4) = ( 0.1402754 0.2429639 0.0481122), wk = 0.1250000 k( 5) = ( -0.2805507 0.0000000 0.3367851), wk = 0.0625000 k( 6) = ( 0.1402754 0.7288916 0.0481122), wk = 0.1250000 k( 7) = ( 0.0000000 0.4859277 0.1443365), wk = 0.1250000 k( 8) = ( 0.5611015 0.0000000 -0.2405607), wk = 0.0625000 k( 9) = ( 0.4208262 -0.2429639 -0.1443364), wk = 0.1250000 k( 10) = ( 0.2805508 0.0000000 -0.0481121), wk = 0.0625000 k( 11) = ( 0.2805508 0.0000000 0.2405608), wk = 0.0625000 k( 12) = ( 0.1402755 -0.2429639 0.3367851), wk = 0.1250000 k( 13) = ( 0.5611016 0.4859277 0.0481122), wk = 0.1250000 k( 14) = ( 0.4208262 0.2429639 0.1443365), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4330094), wk = 0.0625000 k( 16) = ( 0.4208262 0.7288916 0.1443365), wk = 0.1250000 k( 17) = ( 0.2805508 0.4859277 0.2405608), wk = 0.1250000 k( 18) = ( 0.8416523 0.0000000 -0.1443364), wk = 0.0625000 k( 19) = ( 0.7013770 -0.2429639 -0.0481121), wk = 0.1250000 k( 20) = ( 0.5611016 0.0000000 0.0481122), wk = 0.0625000 extrapolated charge 10.00641, renormalised to 10.00000 total cpu time spent up to now is 17.25 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.27E-09, avg # of iterations = 1.9 total cpu time spent up to now is 18.04 secs total energy = -25.49948152 Ry Harris-Foulkes estimate = -25.50325318 Ry estimated scf accuracy < 0.00000051 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.14E-09, avg # of iterations = 2.1 total cpu time spent up to now is 18.43 secs total energy = -25.49948179 Ry Harris-Foulkes estimate = -25.49948182 Ry estimated scf accuracy < 0.00000009 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.02E-10, avg # of iterations = 1.0 total cpu time spent up to now is 18.73 secs End of self-consistent calculation k = 0.0000 0.0000 0.1443 ( 531 PWs) bands (ev): -7.0816 1.8395 5.6595 5.6595 6.5967 10.0832 10.6158 10.6158 14.5427 k =-0.1403-0.2430 0.2406 ( 522 PWs) bands (ev): -6.0545 -0.8132 4.0604 5.7559 8.0944 8.3642 9.0543 11.9636 13.9825 k = 0.2806 0.4859-0.0481 ( 520 PWs) bands (ev): -4.5266 -3.1602 4.6560 4.8211 6.2812 9.3930 9.6803 10.5097 15.7463 k = 0.1403 0.2430 0.0481 ( 525 PWs) bands (ev): -6.5055 0.2366 4.7838 5.3817 6.7832 9.4736 10.3294 11.5311 13.5069 k =-0.2806 0.0000 0.3368 ( 519 PWs) bands (ev): -5.6743 -0.5692 3.0274 4.0800 5.3533 10.2715 12.0170 12.1058 13.7781 k = 0.1403 0.7289 0.0481 ( 510 PWs) bands (ev): -4.0859 -2.5271 1.8972 2.9056 6.2552 9.9560 12.5652 13.8171 14.0939 k = 0.0000 0.4859 0.1443 ( 521 PWs) bands (ev): -4.9602 -2.1468 2.8713 4.8179 6.2030 9.4611 11.2417 12.2778 13.7683 k = 0.5611 0.0000-0.2406 ( 510 PWs) bands (ev): -4.4194 -1.8379 1.8856 3.5487 4.1828 9.8806 13.0425 14.3464 15.0314 k = 0.4208-0.2430-0.1443 ( 521 PWs) bands (ev): -4.9602 -2.1468 2.8713 4.8179 6.2030 9.4611 11.2417 12.2778 13.7682 k = 0.2806 0.0000-0.0481 ( 525 PWs) bands (ev): -6.5055 0.2366 4.7838 5.3817 6.7832 9.4736 10.3294 11.5311 13.5069 k = 0.2806 0.0000 0.2406 ( 522 PWs) bands (ev): -6.0545 -0.8132 4.0604 5.7558 8.0943 8.3642 9.0543 11.9636 13.9825 k = 0.1403-0.2430 0.3368 ( 519 PWs) bands (ev): -5.6743 -0.5692 3.0274 4.0800 5.3533 10.2715 12.0170 12.1058 13.7781 k = 0.5611 0.4859 0.0481 ( 510 PWs) bands (ev): -4.0859 -2.5271 1.8972 2.9056 6.2552 9.9560 12.5652 13.8171 14.0939 k = 0.4208 0.2430 0.1443 ( 521 PWs) bands (ev): -4.9602 -2.1468 2.8713 4.8179 6.2030 9.4611 11.2417 12.2778 13.7682 k = 0.0000 0.0000 0.4330 ( 522 PWs) bands (ev): -5.8557 -1.5195 5.8399 5.8399 7.0558 8.5121 8.5121 9.6392 15.8000 k = 0.4208 0.7289 0.1443 ( 520 PWs) bands (ev): -4.8293 -2.0521 2.1618 4.6767 5.9647 10.0864 10.4506 13.2649 15.2923 k = 0.2806 0.4859 0.2406 ( 510 PWs) bands (ev): -4.4194 -1.8379 1.8856 3.5487 4.1828 9.8806 13.0425 14.3464 15.0314 k = 0.8417 0.0000-0.1443 ( 520 PWs) bands (ev): -4.8293 -2.0521 2.1618 4.6766 5.9647 10.0864 10.4506 13.2649 15.2923 k = 0.7014-0.2430-0.0481 ( 510 PWs) bands (ev): -4.0859 -2.5271 1.8972 2.9056 6.2552 9.9560 12.5652 13.8171 14.0939 k = 0.5611 0.0000 0.0481 ( 520 PWs) bands (ev): -4.5266 -3.1602 4.6560 4.8211 6.2811 9.3930 9.6803 10.5097 15.7463 the Fermi energy is 8.1516 ev ! total energy = -25.49948180 Ry Harris-Foulkes estimate = -25.49948180 Ry estimated scf accuracy < 8.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.92562926 Ry hartree contribution = 1.17936343 Ry xc contribution = -6.31735336 Ry ewald contribution = -27.28714849 Ry smearing contrib. (-TS) = 0.00002736 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000005 0.00000000 0.00131752 atom 2 type 1 force = -0.00000005 0.00000000 -0.00131752 Total force = 0.001863 Total SCF correction = 0.000008 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.99 -0.00000482 0.00000000 0.00000000 -0.71 0.00 0.00 0.00000000 -0.00000481 0.00000000 0.00 -0.71 0.00 0.00000000 0.00000000 0.00002988 0.00 0.00 4.40 number of scf cycles = 7 number of bfgs steps = 6 enthalpy old = -25.4994531908 Ry enthalpy new = -25.4994817987 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0067682406 bohr new conv_thr = 0.0000000286 Ry CELL_PARAMETERS (alat) 0.593745507 0.000000000 0.867754769 -0.296872752 0.514199269 0.867754890 -0.296872752 -0.514199269 0.867754890 ATOMIC_POSITIONS (crystal) As 0.271815057 0.271814967 0.271814967 As -0.271815057 -0.271814967 -0.271814967 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1440499), wk = 0.0625000 k( 2) = ( -0.1403519 -0.2430964 0.2400832), wk = 0.1250000 k( 3) = ( 0.2807039 0.4861928 -0.0480166), wk = 0.1250000 k( 4) = ( 0.1403519 0.2430964 0.0480166), wk = 0.1250000 k( 5) = ( -0.2807038 0.0000000 0.3361164), wk = 0.0625000 k( 6) = ( 0.1403519 0.7292893 0.0480166), wk = 0.1250000 k( 7) = ( 0.0000000 0.4861928 0.1440499), wk = 0.1250000 k( 8) = ( 0.5614077 0.0000000 -0.2400832), wk = 0.0625000 k( 9) = ( 0.4210558 -0.2430964 -0.1440499), wk = 0.1250000 k( 10) = ( 0.2807039 0.0000000 -0.0480166), wk = 0.0625000 k( 11) = ( 0.2807039 0.0000000 0.2400832), wk = 0.0625000 k( 12) = ( 0.1403520 -0.2430964 0.3361164), wk = 0.1250000 k( 13) = ( 0.5614078 0.4861928 0.0480166), wk = 0.1250000 k( 14) = ( 0.4210558 0.2430964 0.1440499), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4321497), wk = 0.0625000 k( 16) = ( 0.4210558 0.7292893 0.1440499), wk = 0.1250000 k( 17) = ( 0.2807039 0.4861928 0.2400832), wk = 0.1250000 k( 18) = ( 0.8421116 0.0000000 -0.1440499), wk = 0.0625000 k( 19) = ( 0.7017597 -0.2430964 -0.0480166), wk = 0.1250000 k( 20) = ( 0.5614078 0.0000000 0.0480166), wk = 0.0625000 extrapolated charge 10.00896, renormalised to 10.00000 total cpu time spent up to now is 19.02 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.70E-09, avg # of iterations = 2.4 total cpu time spent up to now is 19.78 secs total energy = -25.49949591 Ry Harris-Foulkes estimate = -25.50475957 Ry estimated scf accuracy < 0.00000023 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.28E-09, avg # of iterations = 3.0 total cpu time spent up to now is 20.23 secs total energy = -25.49949641 Ry Harris-Foulkes estimate = -25.49949653 Ry estimated scf accuracy < 0.00000033 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.28E-09, avg # of iterations = 1.0 total cpu time spent up to now is 20.53 secs total energy = -25.49949639 Ry Harris-Foulkes estimate = -25.49949643 Ry estimated scf accuracy < 0.00000009 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.76E-10, avg # of iterations = 1.1 total cpu time spent up to now is 20.83 secs End of self-consistent calculation k = 0.0000 0.0000 0.1440 ( 531 PWs) bands (ev): -7.0890 1.8180 5.6587 5.6587 6.5769 10.0681 10.6037 10.6037 14.5439 k =-0.1404-0.2431 0.2401 ( 522 PWs) bands (ev): -6.0630 -0.8207 4.0394 5.7459 8.0910 8.3509 9.0529 11.9419 13.9779 k = 0.2807 0.4862-0.0480 ( 520 PWs) bands (ev): -4.5333 -3.1665 4.6340 4.8132 6.2738 9.3767 9.6718 10.4746 15.7078 k = 0.1404 0.2431 0.0480 ( 525 PWs) bands (ev): -6.5114 0.2275 4.7814 5.3613 6.7617 9.4549 10.3123 11.5133 13.4935 k =-0.2807 0.0000 0.3361 ( 519 PWs) bands (ev): -5.6853 -0.5834 3.0167 4.0821 5.3476 10.2644 12.0100 12.0967 13.7751 k = 0.1404 0.7293 0.0480 ( 510 PWs) bands (ev): -4.0978 -2.5332 1.8931 2.8930 6.2409 9.9513 12.5592 13.7950 14.0734 k = 0.0000 0.4862 0.1440 ( 521 PWs) bands (ev): -4.9663 -2.1542 2.8619 4.8089 6.1765 9.4411 11.2264 12.2659 13.7567 k = 0.5614 0.0000-0.2401 ( 510 PWs) bands (ev): -4.4282 -1.8509 1.8793 3.5496 4.1697 9.8650 13.0223 14.3323 15.0045 k = 0.4211-0.2431-0.1440 ( 521 PWs) bands (ev): -4.9663 -2.1542 2.8619 4.8089 6.1765 9.4411 11.2264 12.2659 13.7567 k = 0.2807 0.0000-0.0480 ( 525 PWs) bands (ev): -6.5114 0.2275 4.7814 5.3613 6.7617 9.4549 10.3123 11.5133 13.4935 k = 0.2807 0.0000 0.2401 ( 522 PWs) bands (ev): -6.0630 -0.8207 4.0394 5.7459 8.0910 8.3509 9.0529 11.9419 13.9779 k = 0.1404-0.2431 0.3361 ( 519 PWs) bands (ev): -5.6853 -0.5834 3.0167 4.0822 5.3476 10.2644 12.0100 12.0967 13.7751 k = 0.5614 0.4862 0.0480 ( 510 PWs) bands (ev): -4.0979 -2.5332 1.8931 2.8930 6.2409 9.9513 12.5592 13.7950 14.0734 k = 0.4211 0.2431 0.1440 ( 521 PWs) bands (ev): -4.9663 -2.1542 2.8619 4.8089 6.1765 9.4411 11.2263 12.2659 13.7567 k = 0.0000 0.0000 0.4321 ( 522 PWs) bands (ev): -5.8711 -1.5343 5.8394 5.8394 7.0596 8.5140 8.5140 9.6400 15.7804 k = 0.4211 0.7293 0.1440 ( 520 PWs) bands (ev): -4.8471 -2.0602 2.1575 4.6755 5.9652 10.0848 10.4467 13.2562 15.2749 k = 0.2807 0.4862 0.2401 ( 510 PWs) bands (ev): -4.4282 -1.8509 1.8793 3.5496 4.1697 9.8650 13.0223 14.3324 15.0045 k = 0.8421 0.0000-0.1440 ( 520 PWs) bands (ev): -4.8471 -2.0601 2.1575 4.6755 5.9652 10.0848 10.4467 13.2562 15.2749 k = 0.7018-0.2431-0.0480 ( 510 PWs) bands (ev): -4.0979 -2.5332 1.8931 2.8930 6.2409 9.9513 12.5592 13.7949 14.0734 k = 0.5614 0.0000 0.0480 ( 520 PWs) bands (ev): -4.5333 -3.1664 4.6340 4.8132 6.2738 9.3767 9.6718 10.4746 15.7078 the Fermi energy is 8.2936 ev ! total energy = -25.49949639 Ry Harris-Foulkes estimate = -25.49949639 Ry estimated scf accuracy < 4.4E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.91082761 Ry hartree contribution = 1.18278603 Ry xc contribution = -6.31667870 Ry ewald contribution = -27.27645893 Ry smearing contrib. (-TS) = 0.00002761 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000010 0.00000000 0.00149899 atom 2 type 1 force = 0.00000010 0.00000000 -0.00149899 Total force = 0.002120 Total SCF correction = 0.000053 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.67 -0.00000169 0.00000000 0.00000000 -0.25 0.00 0.00 0.00000000 -0.00000169 0.00000000 0.00 -0.25 0.00 0.00000000 0.00000000 0.00001704 0.00 0.00 2.51 number of scf cycles = 8 number of bfgs steps = 7 enthalpy old = -25.4994817987 Ry enthalpy new = -25.4994963920 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0074329186 bohr new conv_thr = 0.0000000146 Ry CELL_PARAMETERS (alat) 0.593581549 0.000000000 0.869490284 -0.296790765 0.514057193 0.869490399 -0.296790765 -0.514057193 0.869490399 ATOMIC_POSITIONS (crystal) As 0.271958575 0.271958501 0.271958501 As -0.271958575 -0.271958501 -0.271958501 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1437624), wk = 0.0625000 k( 2) = ( -0.1403907 -0.2431636 0.2396040), wk = 0.1250000 k( 3) = ( 0.2807814 0.4863272 -0.0479208), wk = 0.1250000 k( 4) = ( 0.1403907 0.2431636 0.0479208), wk = 0.1250000 k( 5) = ( -0.2807814 0.0000000 0.3354455), wk = 0.0625000 k( 6) = ( 0.1403907 0.7294908 0.0479208), wk = 0.1250000 k( 7) = ( 0.0000000 0.4863272 0.1437624), wk = 0.1250000 k( 8) = ( 0.5615628 0.0000000 -0.2396040), wk = 0.0625000 k( 9) = ( 0.4211721 -0.2431636 -0.1437624), wk = 0.1250000 k( 10) = ( 0.2807814 0.0000000 -0.0479208), wk = 0.0625000 k( 11) = ( 0.2807814 0.0000000 0.2396040), wk = 0.0625000 k( 12) = ( 0.1403908 -0.2431636 0.3354455), wk = 0.1250000 k( 13) = ( 0.5615628 0.4863272 0.0479208), wk = 0.1250000 k( 14) = ( 0.4211721 0.2431636 0.1437624), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4312871), wk = 0.0625000 k( 16) = ( 0.4211721 0.7294908 0.1437624), wk = 0.1250000 k( 17) = ( 0.2807814 0.4863272 0.2396040), wk = 0.1250000 k( 18) = ( 0.8423442 0.0000000 -0.1437624), wk = 0.0625000 k( 19) = ( 0.7019535 -0.2431636 -0.0479208), wk = 0.1250000 k( 20) = ( 0.5615628 0.0000000 0.0479208), wk = 0.0625000 extrapolated charge 10.01444, renormalised to 10.00000 total cpu time spent up to now is 21.12 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 8.39E-09, avg # of iterations = 1.8 total cpu time spent up to now is 21.86 secs total energy = -25.49950783 Ry Harris-Foulkes estimate = -25.50797575 Ry estimated scf accuracy < 0.00000083 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.26E-09, avg # of iterations = 3.0 total cpu time spent up to now is 22.29 secs total energy = -25.49950933 Ry Harris-Foulkes estimate = -25.49950973 Ry estimated scf accuracy < 0.00000104 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.26E-09, avg # of iterations = 1.0 total cpu time spent up to now is 22.59 secs total energy = -25.49950928 Ry Harris-Foulkes estimate = -25.49950939 Ry estimated scf accuracy < 0.00000023 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.26E-09, avg # of iterations = 1.4 total cpu time spent up to now is 22.90 secs End of self-consistent calculation k = 0.0000 0.0000 0.1438 ( 531 PWs) bands (ev): -7.1017 1.7916 5.6459 5.6459 6.5527 10.0357 10.5815 10.5815 14.5404 k =-0.1404-0.2432 0.2396 ( 522 PWs) bands (ev): -6.0779 -0.8342 4.0138 5.7202 8.0775 8.3300 9.0525 11.9136 13.9616 k = 0.2808 0.4863-0.0479 ( 520 PWs) bands (ev): -4.5483 -3.1784 4.6081 4.7922 6.2605 9.3494 9.6642 10.4398 15.6672 k = 0.1404 0.2432 0.0479 ( 525 PWs) bands (ev): -6.5231 0.2089 4.7677 5.3372 6.7330 9.4357 10.2795 11.4910 13.4782 k =-0.2808 0.0000 0.3354 ( 519 PWs) bands (ev): -5.7035 -0.6017 2.9965 4.0743 5.3425 10.2407 11.9909 12.0779 13.7711 k = 0.1404 0.7295 0.0479 ( 510 PWs) bands (ev): -4.1190 -2.5461 1.8839 2.8777 6.2212 9.9394 12.5402 13.7614 14.0487 k = 0.0000 0.4863 0.1438 ( 521 PWs) bands (ev): -4.9794 -2.1700 2.8436 4.7989 6.1426 9.4223 11.2028 12.2406 13.7380 k = 0.5616 0.0000-0.2396 ( 510 PWs) bands (ev): -4.4447 -1.8744 1.8738 3.5408 4.1556 9.8354 12.9966 14.3184 14.9702 k = 0.4212-0.2432-0.1438 ( 521 PWs) bands (ev): -4.9793 -2.1700 2.8436 4.7989 6.1426 9.4223 11.2028 12.2406 13.7380 k = 0.2808 0.0000-0.0479 ( 525 PWs) bands (ev): -6.5231 0.2089 4.7677 5.3372 6.7330 9.4357 10.2795 11.4910 13.4782 k = 0.2808 0.0000 0.2396 ( 522 PWs) bands (ev): -6.0779 -0.8342 4.0137 5.7202 8.0775 8.3300 9.0525 11.9136 13.9616 k = 0.1404-0.2432 0.3354 ( 519 PWs) bands (ev): -5.7035 -0.6017 2.9965 4.0743 5.3425 10.2407 11.9909 12.0779 13.7711 k = 0.5616 0.4863 0.0479 ( 510 PWs) bands (ev): -4.1190 -2.5461 1.8839 2.8777 6.2212 9.9394 12.5402 13.7614 14.0487 k = 0.4212 0.2432 0.1438 ( 521 PWs) bands (ev): -4.9793 -2.1700 2.8436 4.7989 6.1426 9.4223 11.2028 12.2406 13.7380 k = 0.0000 0.0000 0.4313 ( 522 PWs) bands (ev): -5.8949 -1.5464 5.8250 5.8250 7.0460 8.5107 8.5107 9.6345 15.7514 k = 0.4212 0.7295 0.1438 ( 520 PWs) bands (ev): -4.8755 -2.0667 2.1455 4.6628 5.9607 10.0775 10.4276 13.2328 15.2539 k = 0.2808 0.4863 0.2396 ( 510 PWs) bands (ev): -4.4447 -1.8744 1.8738 3.5408 4.1556 9.8354 12.9966 14.3184 14.9702 k = 0.8423 0.0000-0.1438 ( 520 PWs) bands (ev): -4.8755 -2.0667 2.1455 4.6628 5.9607 10.0775 10.4276 13.2328 15.2540 k = 0.7020-0.2432-0.0479 ( 510 PWs) bands (ev): -4.1190 -2.5461 1.8839 2.8777 6.2212 9.9394 12.5402 13.7614 14.0487 k = 0.5616 0.0000 0.0479 ( 520 PWs) bands (ev): -4.5483 -3.1784 4.6081 4.7922 6.2605 9.3494 9.6642 10.4398 15.6672 the Fermi energy is 8.2727 ev ! total energy = -25.49950930 Ry Harris-Foulkes estimate = -25.49950930 Ry estimated scf accuracy < 9.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.88576031 Ry hartree contribution = 1.18869511 Ry xc contribution = -6.31571244 Ry ewald contribution = -27.25828015 Ry smearing contrib. (-TS) = 0.00002788 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000008 0.00000000 0.00111996 atom 2 type 1 force = 0.00000008 0.00000000 -0.00111996 Total force = 0.001584 Total SCF correction = 0.000077 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.38 0.00000056 0.00000000 0.00000000 0.08 0.00 0.00 0.00000000 0.00000055 0.00000000 0.00 0.08 0.00 0.00000000 0.00000000 0.00000665 0.00 0.00 0.98 number of scf cycles = 9 number of bfgs steps = 8 enthalpy old = -25.4994963920 Ry enthalpy new = -25.4995092972 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0081685310 bohr new conv_thr = 0.0000000129 Ry CELL_PARAMETERS (alat) 0.593590322 0.000000000 0.871049361 -0.296795146 0.514064675 0.871049471 -0.296795146 -0.514064675 0.871049471 ATOMIC_POSITIONS (crystal) As 0.272185912 0.272185864 0.272185864 As -0.272185912 -0.272185864 -0.272185864 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1435051), wk = 0.0625000 k( 2) = ( -0.1403886 -0.2431601 0.2391751), wk = 0.1250000 k( 3) = ( 0.2807773 0.4863201 -0.0478350), wk = 0.1250000 k( 4) = ( 0.1403886 0.2431601 0.0478350), wk = 0.1250000 k( 5) = ( -0.2807772 0.0000000 0.3348451), wk = 0.0625000 k( 6) = ( 0.1403886 0.7294802 0.0478350), wk = 0.1250000 k( 7) = ( 0.0000000 0.4863201 0.1435051), wk = 0.1250000 k( 8) = ( 0.5615545 0.0000000 -0.2391751), wk = 0.0625000 k( 9) = ( 0.4211659 -0.2431601 -0.1435051), wk = 0.1250000 k( 10) = ( 0.2807773 0.0000000 -0.0478350), wk = 0.0625000 k( 11) = ( 0.2807773 0.0000000 0.2391751), wk = 0.0625000 k( 12) = ( 0.1403887 -0.2431601 0.3348451), wk = 0.1250000 k( 13) = ( 0.5615545 0.4863201 0.0478350), wk = 0.1250000 k( 14) = ( 0.4211659 0.2431601 0.1435051), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4305152), wk = 0.0625000 k( 16) = ( 0.4211659 0.7294802 0.1435051), wk = 0.1250000 k( 17) = ( 0.2807773 0.4863201 0.2391751), wk = 0.1250000 k( 18) = ( 0.8423318 0.0000000 -0.1435051), wk = 0.0625000 k( 19) = ( 0.7019432 -0.2431601 -0.0478350), wk = 0.1250000 k( 20) = ( 0.5615545 0.0000000 0.0478350), wk = 0.0625000 extrapolated charge 10.01819, renormalised to 10.00000 total cpu time spent up to now is 23.19 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.9 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.55E-08, avg # of iterations = 1.4 total cpu time spent up to now is 23.92 secs total energy = -25.49951344 Ry Harris-Foulkes estimate = -25.51014945 Ry estimated scf accuracy < 0.00000155 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-08, avg # of iterations = 3.0 total cpu time spent up to now is 24.35 secs total energy = -25.49951599 Ry Harris-Foulkes estimate = -25.49951668 Ry estimated scf accuracy < 0.00000177 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-08, avg # of iterations = 1.0 total cpu time spent up to now is 24.66 secs total energy = -25.49951593 Ry Harris-Foulkes estimate = -25.49951609 Ry estimated scf accuracy < 0.00000035 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.47E-09, avg # of iterations = 1.4 total cpu time spent up to now is 25.00 secs total energy = -25.49951595 Ry Harris-Foulkes estimate = -25.49951596 Ry estimated scf accuracy < 0.00000002 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.09E-10, avg # of iterations = 3.0 total cpu time spent up to now is 25.44 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1174 1.7632 5.6239 5.6239 6.5270 9.9916 10.5525 10.5525 14.5321 k =-0.1404-0.2432 0.2392 ( 522 PWs) bands (ev): -6.0965 -0.8520 3.9868 5.6841 8.0561 8.3044 9.0517 11.8821 13.9363 k = 0.2808 0.4863-0.0478 ( 520 PWs) bands (ev): -4.5686 -3.1941 4.5814 4.7622 6.2431 9.3150 9.6571 10.4085 15.6287 k = 0.1404 0.2432 0.0478 ( 525 PWs) bands (ev): -6.5381 0.1839 4.7456 5.3122 6.7011 9.4172 10.2367 11.4666 13.4620 k =-0.2808 0.0000 0.3348 ( 519 PWs) bands (ev): -5.7256 -0.6220 2.9706 4.0585 5.3375 10.2052 11.9629 12.0519 13.7653 k = 0.1404 0.7295 0.0478 ( 510 PWs) bands (ev): -4.1455 -2.5637 1.8711 2.8615 6.1984 9.9218 12.5115 13.7212 14.0221 k = 0.0000 0.4863 0.1435 ( 521 PWs) bands (ev): -4.9968 -2.1914 2.8195 4.7885 6.1059 9.4058 11.1741 12.2059 13.7144 k = 0.5616 0.0000-0.2392 ( 510 PWs) bands (ev): -4.4661 -1.9043 1.8690 3.5245 4.1417 9.7971 12.9684 14.3048 14.9326 k = 0.4212-0.2432-0.1435 ( 521 PWs) bands (ev): -4.9968 -2.1914 2.8195 4.7885 6.1059 9.4058 11.1741 12.2059 13.7144 k = 0.2808 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5381 0.1839 4.7456 5.3122 6.7011 9.4172 10.2367 11.4666 13.4620 k = 0.2808 0.0000 0.2392 ( 522 PWs) bands (ev): -6.0965 -0.8520 3.9868 5.6841 8.0561 8.3044 9.0517 11.8821 13.9363 k = 0.1404-0.2432 0.3348 ( 519 PWs) bands (ev): -5.7256 -0.6220 2.9706 4.0585 5.3375 10.2052 11.9629 12.0519 13.7653 k = 0.5616 0.4863 0.0478 ( 510 PWs) bands (ev): -4.1455 -2.5637 1.8711 2.8615 6.1984 9.9218 12.5115 13.7212 14.0221 k = 0.4212 0.2432 0.1435 ( 521 PWs) bands (ev): -4.9968 -2.1914 2.8195 4.7885 6.1059 9.4058 11.1741 12.2059 13.7144 k = 0.0000 0.0000 0.4305 ( 522 PWs) bands (ev): -5.9228 -1.5555 5.8001 5.8001 7.0182 8.5024 8.5024 9.6230 15.7169 k = 0.4212 0.7295 0.1435 ( 520 PWs) bands (ev): -4.9095 -2.0719 2.1280 4.6416 5.9516 10.0653 10.3968 13.1985 15.2314 k = 0.2808 0.4863 0.2392 ( 510 PWs) bands (ev): -4.4661 -1.9043 1.8690 3.5245 4.1417 9.7971 12.9684 14.3048 14.9326 k = 0.8423 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9095 -2.0719 2.1280 4.6416 5.9515 10.0653 10.3968 13.1985 15.2314 k = 0.7019-0.2432-0.0478 ( 510 PWs) bands (ev): -4.1455 -2.5637 1.8711 2.8615 6.1984 9.9218 12.5115 13.7212 14.0221 k = 0.5616 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5686 -3.1941 4.5814 4.7622 6.2431 9.3150 9.6571 10.4085 15.6287 the Fermi energy is 8.2470 ev ! total energy = -25.49951596 Ry Harris-Foulkes estimate = -25.49951596 Ry estimated scf accuracy < 2.6E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.85408479 Ry hartree contribution = 1.19601663 Ry xc contribution = -6.31447050 Ry ewald contribution = -27.23517501 Ry smearing contrib. (-TS) = 0.00002813 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000006 0.00000000 0.00029788 atom 2 type 1 force = 0.00000006 0.00000000 -0.00029788 Total force = 0.000421 Total SCF correction = 0.000043 SCF correction compared to forces is too large, reduce conv_thr entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.07 0.00000045 0.00000000 0.00000000 0.07 0.00 0.00 0.00000000 0.00000045 0.00000000 0.00 0.07 0.00 0.00000000 0.00000000 -0.00000234 0.00 0.00 -0.34 number of scf cycles = 10 number of bfgs steps = 9 enthalpy old = -25.4995092972 Ry enthalpy new = -25.4995159573 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0013570163 bohr new conv_thr = 0.0000000100 Ry CELL_PARAMETERS (alat) 0.593650311 0.000000000 0.870999790 -0.296825151 0.514116577 0.870999909 -0.296825151 -0.514116577 0.870999909 ATOMIC_POSITIONS (crystal) As 0.272234803 0.272234771 0.272234771 As -0.272234803 -0.272234771 -0.272234771 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1435132), wk = 0.0625000 k( 2) = ( -0.1403744 -0.2431355 0.2391887), wk = 0.1250000 k( 3) = ( 0.2807489 0.4862710 -0.0478377), wk = 0.1250000 k( 4) = ( 0.1403745 0.2431355 0.0478377), wk = 0.1250000 k( 5) = ( -0.2807488 0.0000000 0.3348642), wk = 0.0625000 k( 6) = ( 0.1403745 0.7294066 0.0478377), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862710 0.1435132), wk = 0.1250000 k( 8) = ( 0.5614978 0.0000000 -0.2391887), wk = 0.0625000 k( 9) = ( 0.4211233 -0.2431355 -0.1435132), wk = 0.1250000 k( 10) = ( 0.2807489 0.0000000 -0.0478377), wk = 0.0625000 k( 11) = ( 0.2807489 0.0000000 0.2391887), wk = 0.0625000 k( 12) = ( 0.1403745 -0.2431355 0.3348642), wk = 0.1250000 k( 13) = ( 0.5614978 0.4862710 0.0478377), wk = 0.1250000 k( 14) = ( 0.4211234 0.2431355 0.1435132), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4305397), wk = 0.0625000 k( 16) = ( 0.4211234 0.7294066 0.1435132), wk = 0.1250000 k( 17) = ( 0.2807489 0.4862710 0.2391887), wk = 0.1250000 k( 18) = ( 0.8422467 0.0000000 -0.1435132), wk = 0.0625000 k( 19) = ( 0.7018722 -0.2431355 -0.0478377), wk = 0.1250000 k( 20) = ( 0.5614978 0.0000000 0.0478377), wk = 0.0625000 extrapolated charge 10.00145, renormalised to 10.00000 total cpu time spent up to now is 25.72 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.84E-10, avg # of iterations = 4.0 total cpu time spent up to now is 26.52 secs total energy = -25.49951631 Ry Harris-Foulkes estimate = -25.50036413 Ry estimated scf accuracy < 0.00000002 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-10, avg # of iterations = 2.3 total cpu time spent up to now is 26.93 secs total energy = -25.49951632 Ry Harris-Foulkes estimate = -25.49951633 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-10, avg # of iterations = 1.0 total cpu time spent up to now is 27.22 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1193 1.7626 5.6196 5.6196 6.5265 9.9857 10.5494 10.5494 14.5309 k =-0.1404-0.2431 0.2392 ( 522 PWs) bands (ev): -6.0987 -0.8537 3.9858 5.6785 8.0528 8.3026 9.0528 11.8808 13.9323 k = 0.2807 0.4863-0.0478 ( 520 PWs) bands (ev): -4.5715 -3.1959 4.5808 4.7575 6.2416 9.3116 9.6584 10.4102 15.6295 k = 0.1404 0.2431 0.0478 ( 525 PWs) bands (ev): -6.5401 0.1810 4.7415 5.3117 6.6994 9.4183 10.2313 11.4660 13.4623 k =-0.2807 0.0000 0.3349 ( 519 PWs) bands (ev): -5.7281 -0.6227 2.9674 4.0548 5.3385 10.1992 11.9592 12.0490 13.7660 k = 0.1404 0.7294 0.0478 ( 510 PWs) bands (ev): -4.1486 -2.5659 1.8695 2.8611 6.1972 9.9199 12.5071 13.7180 14.0218 k = 0.0000 0.4863 0.1435 ( 521 PWs) bands (ev): -4.9992 -2.1942 2.8163 4.7888 6.1041 9.4075 11.1721 12.2015 13.7125 k = 0.5615 0.0000-0.2392 ( 510 PWs) bands (ev): -4.4687 -1.9078 1.8699 3.5209 4.1421 9.7923 12.9676 14.3062 14.9315 k = 0.4211-0.2431-0.1435 ( 521 PWs) bands (ev): -4.9992 -2.1942 2.8163 4.7888 6.1041 9.4075 11.1721 12.2015 13.7125 k = 0.2807 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5401 0.1810 4.7415 5.3117 6.6994 9.4183 10.2312 11.4660 13.4623 k = 0.2807 0.0000 0.2392 ( 522 PWs) bands (ev): -6.0987 -0.8537 3.9858 5.6785 8.0528 8.3026 9.0528 11.8808 13.9323 k = 0.1404-0.2431 0.3349 ( 519 PWs) bands (ev): -5.7281 -0.6227 2.9674 4.0548 5.3385 10.1992 11.9592 12.0490 13.7660 k = 0.5615 0.4863 0.0478 ( 510 PWs) bands (ev): -4.1486 -2.5659 1.8695 2.8611 6.1972 9.9199 12.5071 13.7180 14.0218 k = 0.4211 0.2431 0.1435 ( 521 PWs) bands (ev): -4.9992 -2.1942 2.8163 4.7888 6.1041 9.4075 11.1721 12.2015 13.7125 k = 0.0000 0.0000 0.4305 ( 522 PWs) bands (ev): -5.9257 -1.5536 5.7949 5.7949 7.0118 8.5009 8.5009 9.6215 15.7144 k = 0.4211 0.7294 0.1435 ( 520 PWs) bands (ev): -4.9132 -2.0706 2.1253 4.6374 5.9502 10.0639 10.3918 13.1937 15.2311 k = 0.2807 0.4863 0.2392 ( 510 PWs) bands (ev): -4.4687 -1.9078 1.8699 3.5209 4.1421 9.7923 12.9676 14.3062 14.9315 k = 0.8422 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9132 -2.0706 2.1253 4.6374 5.9502 10.0639 10.3918 13.1937 15.2311 k = 0.7019-0.2431-0.0478 ( 510 PWs) bands (ev): -4.1486 -2.5659 1.8695 2.8611 6.1972 9.9199 12.5071 13.7180 14.0218 k = 0.5615 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5715 -3.1959 4.5808 4.7575 6.2415 9.3116 9.6583 10.4102 15.6295 the Fermi energy is 8.2452 ev ! total energy = -25.49951632 Ry Harris-Foulkes estimate = -25.49951633 Ry estimated scf accuracy < 2.0E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 6.85089395 Ry hartree contribution = 1.19690446 Ry xc contribution = -6.31445103 Ry ewald contribution = -27.23289173 Ry smearing contrib. (-TS) = 0.00002803 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000005 0.00000000 0.00005459 atom 2 type 1 force = 0.00000005 0.00000000 -0.00005459 Total force = 0.000077 Total SCF correction = 0.000033 SCF correction compared to forces is too large, reduce conv_thr entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.05 0.00000060 0.00000000 0.00000000 0.09 0.00 0.00 0.00000000 0.00000060 0.00000000 0.00 0.09 0.00 0.00000000 0.00000000 -0.00000026 0.00 0.00 -0.04 bfgs converged in 11 scf cycles and 10 bfgs steps End of BFGS Geometry Optimization Final enthalpy = -25.4995163242 Ry CELL_PARAMETERS (alat) 0.593650311 0.000000000 0.870999790 -0.296825151 0.514116577 0.870999909 -0.296825151 -0.514116577 0.870999909 ATOMIC_POSITIONS (crystal) As 0.272234803 0.272234771 0.272234771 As -0.272234803 -0.272234771 -0.272234771 Writing output data file pwscf.save PWSCF : 27.42s CPU time, 30.22s wall time init_run : 0.22s CPU electrons : 24.14s CPU ( 11 calls, 2.195 s avg) update_pot : 0.86s CPU ( 10 calls, 0.086 s avg) forces : 0.45s CPU ( 11 calls, 0.041 s avg) stress : 1.13s CPU ( 11 calls, 0.103 s avg) Called by init_run: wfcinit : 0.12s CPU potinit : 0.03s CPU Called by electrons: c_bands : 20.34s CPU ( 62 calls, 0.328 s avg) sum_band : 3.53s CPU ( 62 calls, 0.057 s avg) v_of_rho : 0.14s CPU ( 66 calls, 0.002 s avg) mix_rho : 0.06s CPU ( 62 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.44s CPU ( 2940 calls, 0.000 s avg) cegterg : 19.99s CPU ( 1240 calls, 0.016 s avg) Called by *egterg: h_psi : 16.74s CPU ( 3962 calls, 0.004 s avg) g_psi : 0.37s CPU ( 2702 calls, 0.000 s avg) cdiaghg : 1.01s CPU ( 3602 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.22s CPU ( 3962 calls, 0.000 s avg) General routines calbec : 0.45s CPU ( 4402 calls, 0.000 s avg) cft3 : 0.11s CPU ( 270 calls, 0.000 s avg) cft3s : 16.98s CPU ( 69536 calls, 0.000 s avg) davcio : 0.03s CPU ( 4180 calls, 0.000 s avg) espresso-5.1/PW/examples/VCSexample/reference/As.vcs00.out0000644000175000017500000161213112341373025021446 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 29Apr2008 at 14: 1:54 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 55 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.580130 0.000000 0.814524 ) a(2) = ( -0.290065 0.502407 0.814524 ) a(3) = ( -0.290065 -0.502407 0.814524 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.149169 0.000000 0.409237 ) b(2) = ( -0.574584 0.995209 0.409237 ) b(3) = ( -0.574584 -0.995209 0.409237 ) PseudoPot. # 1 for As read from file As.gon.UPF Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 0.08218 As( 1.00) cell mass = 0.00700 AMU/(a.u.)^2 4 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.7086605 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.7086605 ) number of k points= 20 gaussian broad. (Ry)= 0.0050 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.1534638), wk = 0.0625000 k( 2) = ( -0.1436461 -0.2488023 0.2557731), wk = 0.1250000 k( 3) = ( 0.2872922 0.4976046 -0.0511547), wk = 0.1250000 k( 4) = ( 0.1436461 0.2488023 0.0511546), wk = 0.1250000 k( 5) = ( -0.2872922 0.0000000 0.3580823), wk = 0.0625000 k( 6) = ( 0.1436461 0.7464070 0.0511546), wk = 0.1250000 k( 7) = ( 0.0000000 0.4976046 0.1534638), wk = 0.1250000 k( 8) = ( 0.5745844 0.0000000 -0.2557731), wk = 0.0625000 k( 9) = ( 0.4309383 -0.2488023 -0.1534639), wk = 0.1250000 k( 10) = ( 0.2872922 0.0000000 -0.0511547), wk = 0.0625000 k( 11) = ( 0.2872922 0.0000000 0.2557730), wk = 0.0625000 k( 12) = ( 0.1436461 -0.2488023 0.3580822), wk = 0.1250000 k( 13) = ( 0.5745844 0.4976046 0.0511545), wk = 0.1250000 k( 14) = ( 0.4309383 0.2488023 0.1534638), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4603915), wk = 0.0625000 k( 16) = ( 0.4309383 0.7464070 0.1534638), wk = 0.1250000 k( 17) = ( 0.2872922 0.4976046 0.2557730), wk = 0.1250000 k( 18) = ( 0.8618766 0.0000000 -0.1534640), wk = 0.0625000 k( 19) = ( 0.7182305 -0.2488023 -0.0511547), wk = 0.1250000 k( 20) = ( 0.5745844 0.0000000 0.0511545), wk = 0.0625000 G cutoff = 124.4853 ( 4159 G-vectors) FFT grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 atomic + 1 random wfc total cpu time spent up to now is 0.22 secs per-process dynamical memory: 4.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.02 secs k = 0.0000 0.0000 0.1535 band energies (ev): -7.1053 4.3672 5.8103 5.8103 8.3763 10.9345 11.7163 11.7165 16.4778 k =-0.1436-0.2488 0.2558 band energies (ev): -6.0372 0.2617 5.2399 5.5079 9.2633 10.3987 11.6102 13.5119 15.6363 k = 0.2873 0.4976-0.0512 band energies (ev): -4.4678 -2.5869 4.6602 6.0474 7.8159 10.7318 12.4772 13.7300 17.6631 k = 0.1436 0.2488 0.0512 band energies (ev): -6.4802 1.1693 4.8513 7.0575 8.4284 10.7697 12.3697 13.8790 15.2983 k =-0.2873 0.0000 0.3581 band energies (ev): -5.6571 0.9853 3.4682 4.1709 7.4349 10.3774 13.6201 13.6880 16.8165 k = 0.1436 0.7464 0.0512 band energies (ev): -3.9622 -1.9357 2.2453 4.1429 7.9252 11.5628 13.2833 15.6249 17.2402 k = 0.0000 0.4976 0.1535 band energies (ev): -4.8284 -1.6008 2.9139 6.5815 7.6487 12.2409 12.9989 13.3681 15.9866 k = 0.5746 0.0000-0.2558 band energies (ev): -4.1784 -1.6215 3.5882 3.6242 5.9359 10.0386 15.7916 17.6328 18.3764 k = 0.4309-0.2488-0.1535 band energies (ev): -4.8284 -1.6008 2.9139 6.5815 7.6487 12.2409 12.9988 13.3681 15.9865 k = 0.2873 0.0000-0.0512 band energies (ev): -6.4802 1.1693 4.8513 7.0575 8.4285 10.7694 12.3698 13.8792 15.2974 k = 0.2873 0.0000 0.2558 band energies (ev): -6.0372 0.2618 5.2399 5.5079 9.2633 10.3987 11.6090 13.5148 15.6552 k = 0.1436-0.2488 0.3581 band energies (ev): -5.6571 0.9853 3.4682 4.1709 7.4349 10.3774 13.6201 13.6879 16.8166 k = 0.5746 0.4976 0.0512 band energies (ev): -3.9622 -1.9357 2.2453 4.1429 7.9252 11.5628 13.2833 15.6249 17.2400 k = 0.4309 0.2488 0.1535 band energies (ev): -4.8284 -1.6008 2.9139 6.5815 7.6487 12.2409 12.9989 13.3681 15.9866 k = 0.0000 0.0000 0.4604 band energies (ev): -5.9719 0.7085 5.7288 5.7288 7.3744 10.0048 10.0050 11.9991 17.4416 k = 0.4309 0.7464 0.1535 band energies (ev): -4.9671 -0.1863 2.3479 4.6529 7.4527 11.5757 11.9681 14.4003 17.7560 k = 0.2873 0.4976 0.2558 band energies (ev): -4.1784 -1.6215 3.5882 3.6242 5.9359 10.0386 15.7915 17.6328 18.3766 k = 0.8619 0.0000-0.1535 band energies (ev): -4.9671 -0.1863 2.3479 4.6529 7.4527 11.5756 11.9686 14.4003 17.7392 k = 0.7182-0.2488-0.0512 band energies (ev): -3.9622 -1.9357 2.2453 4.1429 7.9252 11.5629 13.2833 15.6264 17.2398 k = 0.5746 0.0000 0.0512 band energies (ev): -4.4678 -2.5869 4.6602 6.0474 7.8159 10.7318 12.4771 13.7300 17.6616 the Fermi energy is 9.6597 ev total energy = -25.43995280 Ry Harris-Foulkes estimate = -25.44370948 Ry estimated scf accuracy < 0.01555924 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.33 secs k = 0.0000 0.0000 0.1535 band energies (ev): -7.0137 4.5096 5.9380 5.9381 8.4241 11.0300 11.7524 11.7528 16.5509 k =-0.1436-0.2488 0.2558 band energies (ev): -5.9432 0.3742 5.3357 5.6223 9.2928 10.5195 11.6919 13.5528 15.7069 k = 0.2873 0.4976-0.0512 band energies (ev): -4.3682 -2.4877 4.7630 6.1415 7.8721 10.8059 12.5735 13.8146 17.7136 k = 0.1436 0.2488 0.0512 band energies (ev): -6.3872 1.2851 4.9605 7.1599 8.5304 10.7972 12.4587 13.9539 15.3382 k =-0.2873 0.0000 0.3581 band energies (ev): -5.5614 1.1092 3.5498 4.2737 7.5078 10.4114 13.6941 13.7628 16.8964 k = 0.1436 0.7464 0.0512 band energies (ev): -3.8590 -1.8287 2.3104 4.2331 8.0395 11.6119 13.3112 15.7096 17.3371 k = 0.0000 0.4976 0.1535 band energies (ev): -4.7309 -1.4913 2.9825 6.6809 7.7627 12.2948 13.0567 13.4189 16.0825 k = 0.5746 0.0000-0.2558 band energies (ev): -4.0732 -1.5260 3.6852 3.7197 6.0134 10.0511 15.9001 17.7087 18.4680 k = 0.4309-0.2488-0.1535 band energies (ev): -4.7308 -1.4913 2.9825 6.6810 7.7627 12.2949 13.0567 13.4189 16.0825 k = 0.2873 0.0000-0.0512 band energies (ev): -6.3872 1.2851 4.9605 7.1600 8.5304 10.7971 12.4587 13.9540 15.3373 k = 0.2873 0.0000 0.2558 band energies (ev): -5.9432 0.3742 5.3357 5.6224 9.2928 10.5195 11.6916 13.5551 15.7227 k = 0.1436-0.2488 0.3581 band energies (ev): -5.5614 1.1093 3.5498 4.2736 7.5078 10.4114 13.6942 13.7628 16.8965 k = 0.5746 0.4976 0.0512 band energies (ev): -3.8590 -1.8287 2.3104 4.2331 8.0395 11.6119 13.3112 15.7096 17.3371 k = 0.4309 0.2488 0.1535 band energies (ev): -4.7308 -1.4913 2.9826 6.6809 7.7627 12.2948 13.0568 13.4188 16.0825 k = 0.0000 0.0000 0.4604 band energies (ev): -5.8778 0.8254 5.8543 5.8544 7.4017 10.0552 10.0553 12.1125 17.4008 k = 0.4309 0.7464 0.1535 band energies (ev): -4.8693 -0.0639 2.4169 4.7578 7.5018 11.6692 12.0524 14.4661 17.7785 k = 0.2873 0.4976 0.2558 band energies (ev): -4.0733 -1.5258 3.6852 3.7196 6.0134 10.0510 15.9001 17.7086 18.4681 k = 0.8619 0.0000-0.1535 band energies (ev): -4.8693 -0.0638 2.4168 4.7579 7.5019 11.6692 12.0526 14.4660 17.7666 k = 0.7182-0.2488-0.0512 band energies (ev): -3.8590 -1.8287 2.3104 4.2331 8.0395 11.6119 13.3112 15.7102 17.3371 k = 0.5746 0.0000 0.0512 band energies (ev): -4.3682 -2.4878 4.7631 6.1415 7.8722 10.8059 12.5735 13.8146 17.7129 the Fermi energy is 9.9953 ev total energy = -25.44008125 Ry Harris-Foulkes estimate = -25.44026343 Ry estimated scf accuracy < 0.00088666 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.87E-06, avg # of iterations = 2.0 total cpu time spent up to now is 1.70 secs k = 0.0000 0.0000 0.1535 band energies (ev): -6.9927 4.5235 5.9705 5.9706 8.4388 11.0429 11.7623 11.7624 16.5663 k =-0.1436-0.2488 0.2558 band energies (ev): -5.9214 0.3953 5.3529 5.6540 9.3021 10.5326 11.7025 13.5665 15.7205 k = 0.2873 0.4976-0.0512 band energies (ev): -4.3451 -2.4672 4.7917 6.1569 7.8811 10.8174 12.5862 13.8272 17.7277 k = 0.1436 0.2488 0.0512 band energies (ev): -6.3661 1.3086 4.9893 7.1743 8.5451 10.8073 12.4730 13.9643 15.3517 k =-0.2873 0.0000 0.3581 band energies (ev): -5.5389 1.1307 3.5672 4.3006 7.5166 10.4234 13.7111 13.7777 16.9052 k = 0.1436 0.7464 0.0512 band energies (ev): -3.8351 -1.8061 2.3285 4.2477 8.0558 11.6231 13.3241 15.7232 17.3514 k = 0.0000 0.4976 0.1535 band energies (ev): -4.7088 -1.4682 3.0038 6.6937 7.7801 12.3054 13.0708 13.4312 16.0975 k = 0.5746 0.0000-0.2558 band energies (ev): -4.0501 -1.5020 3.7112 3.7304 6.0251 10.0603 15.9147 17.7183 18.4808 k = 0.4309-0.2488-0.1535 band energies (ev): -4.7088 -1.4681 3.0038 6.6937 7.7801 12.3054 13.0708 13.4312 16.0975 k = 0.2873 0.0000-0.0512 band energies (ev): -6.3661 1.3086 4.9893 7.1743 8.5452 10.8073 12.4730 13.9646 15.3517 k = 0.2873 0.0000 0.2558 band energies (ev): -5.9214 0.3953 5.3530 5.6539 9.3020 10.5326 11.7023 13.5658 15.7172 k = 0.1436-0.2488 0.3581 band energies (ev): -5.5389 1.1306 3.5672 4.3007 7.5166 10.4235 13.7111 13.7777 16.9053 k = 0.5746 0.4976 0.0512 band energies (ev): -3.8350 -1.8061 2.3285 4.2477 8.0558 11.6232 13.3242 15.7233 17.3514 k = 0.4309 0.2488 0.1535 band energies (ev): -4.7088 -1.4681 3.0037 6.6937 7.7801 12.3054 13.0708 13.4312 16.0975 k = 0.0000 0.0000 0.4604 band energies (ev): -5.8546 0.8376 5.8877 5.8878 7.4151 10.0643 10.0644 12.1201 17.3937 k = 0.4309 0.7464 0.1535 band energies (ev): -4.8449 -0.0469 2.4350 4.7862 7.5100 11.6863 12.0666 14.4791 17.7694 k = 0.2873 0.4976 0.2558 band energies (ev): -4.0501 -1.5021 3.7112 3.7304 6.0251 10.0603 15.9147 17.7183 18.4807 k = 0.8619 0.0000-0.1535 band energies (ev): -4.8449 -0.0469 2.4350 4.7862 7.5099 11.6863 12.0667 14.4792 17.7697 k = 0.7182-0.2488-0.0512 band energies (ev): -3.8351 -1.8060 2.3285 4.2477 8.0558 11.6232 13.3241 15.7235 17.3514 k = 0.5746 0.0000 0.0512 band energies (ev): -4.3452 -2.4671 4.7917 6.1569 7.8810 10.8174 12.5862 13.8273 17.7278 the Fermi energy is 10.0046 ev total energy = -25.44011498 Ry Harris-Foulkes estimate = -25.44011638 Ry estimated scf accuracy < 0.00000527 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.27E-08, avg # of iterations = 3.2 total cpu time spent up to now is 2.22 secs k = 0.0000 0.0000 0.1535 band energies (ev): -6.9952 4.5217 5.9677 5.9678 8.4362 11.0416 11.7604 11.7604 16.5651 k =-0.1436-0.2488 0.2558 band energies (ev): -5.9241 0.3929 5.3522 5.6509 9.2998 10.5320 11.7016 13.5634 15.7173 k = 0.2873 0.4976-0.0512 band energies (ev): -4.3481 -2.4695 4.7890 6.1564 7.8802 10.8158 12.5861 13.8270 17.7266 k = 0.1436 0.2488 0.0512 band energies (ev): -6.3686 1.3055 4.9868 7.1733 8.5447 10.8050 12.4713 13.9622 15.3512 k =-0.2873 0.0000 0.3581 band energies (ev): -5.5419 1.1279 3.5665 4.2985 7.5167 10.4218 13.7083 13.7754 16.9056 k = 0.1436 0.7464 0.0512 band energies (ev): -3.8384 -1.8089 2.3274 4.2476 8.0553 11.6208 13.3233 15.7213 17.3501 k = 0.0000 0.4976 0.1535 band energies (ev): -4.7115 -1.4711 3.0019 6.6938 7.7791 12.3039 13.0680 13.4308 16.0973 k = 0.5746 0.0000-0.2558 band energies (ev): -4.0532 -1.5053 3.7091 3.7309 6.0251 10.0591 15.9126 17.7161 18.4788 k = 0.4309-0.2488-0.1535 band energies (ev): -4.7115 -1.4711 3.0019 6.6938 7.7791 12.3039 13.0680 13.4308 16.0973 k = 0.2873 0.0000-0.0512 band energies (ev): -6.3686 1.3055 4.9868 7.1733 8.5447 10.8050 12.4713 13.9621 15.3512 k = 0.2873 0.0000 0.2558 band energies (ev): -5.9241 0.3929 5.3522 5.6509 9.2997 10.5320 11.7016 13.5634 15.7174 k = 0.1436-0.2488 0.3581 band energies (ev): -5.5419 1.1279 3.5665 4.2985 7.5167 10.4218 13.7082 13.7754 16.9055 k = 0.5746 0.4976 0.0512 band energies (ev): -3.8384 -1.8089 2.3274 4.2476 8.0553 11.6208 13.3233 15.7213 17.3501 k = 0.4309 0.2488 0.1535 band energies (ev): -4.7115 -1.4711 3.0019 6.6938 7.7791 12.3039 13.0680 13.4308 16.0973 k = 0.0000 0.0000 0.4604 band energies (ev): -5.8578 0.8377 5.8849 5.8849 7.4114 10.0632 10.0632 12.1209 17.3937 k = 0.4309 0.7464 0.1535 band energies (ev): -4.8484 -0.0483 2.4343 4.7838 7.5093 11.6839 12.0651 14.4767 17.7702 k = 0.2873 0.4976 0.2558 band energies (ev): -4.0532 -1.5053 3.7091 3.7309 6.0251 10.0591 15.9126 17.7161 18.4788 k = 0.8619 0.0000-0.1535 band energies (ev): -4.8484 -0.0483 2.4343 4.7838 7.5093 11.6839 12.0651 14.4767 17.7703 k = 0.7182-0.2488-0.0512 band energies (ev): -3.8384 -1.8089 2.3274 4.2476 8.0553 11.6208 13.3233 15.7212 17.3501 k = 0.5746 0.0000 0.0512 band energies (ev): -4.3481 -2.4695 4.7890 6.1564 7.8802 10.8158 12.5860 13.8271 17.7266 the Fermi energy is 10.0034 ev total energy = -25.44012209 Ry Harris-Foulkes estimate = -25.44012239 Ry estimated scf accuracy < 0.00000065 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.46E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.56 secs End of self-consistent calculation k = 0.0000 0.0000 0.1535 ( 531 PWs) bands (ev): -6.9960 4.5197 5.9668 5.9668 8.4360 11.0403 11.7601 11.7602 16.5645 k =-0.1436-0.2488 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.2873 0.4976-0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1436 0.2488 0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k =-0.2873 0.0000 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1436 0.7464 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.0000 0.4976 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.5746 0.0000-0.2558 ( 510 PWs) bands (ev): -4.0541 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.4309-0.2488-0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.2873 0.0000-0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.2873 0.0000 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1436-0.2488 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.5746 0.4976 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.4309 0.2488 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.0000 0.0000 0.4604 ( 522 PWs) bands (ev): -5.8585 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1192 17.3944 k = 0.4309 0.7464 0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6829 12.0642 14.4761 17.7700 k = 0.2873 0.4976 0.2558 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.8619 0.0000-0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.7182-0.2488-0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.5746 0.0000 0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 the Fermi energy is 10.0033 ev ! total energy = -25.44012217 Ry Harris-Foulkes estimate = -25.44012217 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000070 0.00000000 -0.12659882 atom 2 type 1 force = 0.00000070 0.00000000 0.12659882 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.51 0.00172368 0.00000000 0.00000000 253.56 0.00 0.00 0.00000000 0.00172371 0.00000000 0.00 253.57 0.00 0.00000000 0.00000000 0.00098849 0.00 0.00 145.41 Wentzcovitch Damped Cell-Dynamics Minimization convergence thresholds: EPSE = 0.10E-04 EPSF = 0.10E-03 EPSP = 0.50E+00 Entering Dynamics; it = 1 time = 0.00000 pico-seconds new lattice vectors (alat unit) : 0.589710814 0.000000000 0.822238879 -0.294855233 0.510704638 0.822238893 -0.294855233 -0.510704638 0.822238893 new unit-cell volume = 255.9438 (a.u.)^3 new positions in cryst coord As 0.288386129 0.288386166 0.288386166 As -0.288386129 -0.288386166 -0.288386166 new positions in cart coord (alat unit) As 0.000000079 0.000000000 0.711366931 As -0.000000079 0.000000000 -0.711366931 Ekin = 0.00000000 Ry T = 0.0 K Etot = -25.44012217 CELL_PARAMETERS (alat) 0.589710814 0.000000000 0.822238879 -0.294855233 0.510704638 0.822238893 -0.294855233 -0.510704638 0.822238893 ATOMIC_POSITIONS (crystal) As 0.288386129 0.288386166 0.288386166 As -0.288386129 -0.288386166 -0.288386166 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1520239), wk = 0.0625000 k( 2) = ( -0.1413122 -0.2447599 0.2533733), wk = 0.1250000 k( 3) = ( 0.2826245 0.4895197 -0.0506747), wk = 0.1250000 k( 4) = ( 0.1413122 0.2447599 0.0506746), wk = 0.1250000 k( 5) = ( -0.2826245 0.0000000 0.3547226), wk = 0.0625000 k( 6) = ( 0.1413122 0.7342796 0.0506746), wk = 0.1250000 k( 7) = ( 0.0000000 0.4895197 0.1520239), wk = 0.1250000 k( 8) = ( 0.5652489 0.0000000 -0.2533733), wk = 0.0625000 k( 9) = ( 0.4239367 -0.2447599 -0.1520240), wk = 0.1250000 k( 10) = ( 0.2826245 0.0000000 -0.0506747), wk = 0.0625000 k( 11) = ( 0.2826245 0.0000000 0.2533732), wk = 0.0625000 k( 12) = ( 0.1413122 -0.2447599 0.3547225), wk = 0.1250000 k( 13) = ( 0.5652489 0.4895197 0.0506746), wk = 0.1250000 k( 14) = ( 0.4239367 0.2447599 0.1520239), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4560718), wk = 0.0625000 k( 16) = ( 0.4239367 0.7342796 0.1520239), wk = 0.1250000 k( 17) = ( 0.2826245 0.4895197 0.2533732), wk = 0.1250000 k( 18) = ( 0.8478734 0.0000000 -0.1520241), wk = 0.0625000 k( 19) = ( 0.7065611 -0.2447599 -0.0506747), wk = 0.1250000 k( 20) = ( 0.5652489 0.0000000 0.0506746), wk = 0.0625000 extrapolated charge 10.41310, renormalised to 10.00000 total cpu time spent up to now is 2.84 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.3 total cpu time spent up to now is 3.50 secs k = 0.0000 0.0000 0.1520 band energies (ev): -7.1074 3.7290 5.6123 5.6123 7.8024 10.3848 11.1709 11.1709 15.7010 k =-0.1413-0.2448 0.2534 band energies (ev): -6.0616 -0.0513 4.9040 5.3703 8.6078 9.7382 10.8932 12.8693 14.9058 k = 0.2826 0.4895-0.0507 band energies (ev): -4.5429 -2.7625 4.5170 5.6485 7.2005 10.1476 11.7431 12.9851 16.9590 k = 0.1413 0.2448 0.0507 band energies (ev): -6.5079 0.8623 4.6665 6.5580 7.9221 10.2873 11.5764 13.1929 14.6512 k =-0.2826 0.0000 0.3547 band energies (ev): -5.6784 0.6199 3.1807 3.9660 6.8314 9.8695 12.8906 13.0616 15.8797 k = 0.1413 0.7343 0.0507 band energies (ev): -4.0322 -2.1313 2.0215 3.7617 7.4206 10.8688 12.6735 14.9544 16.3809 k = 0.0000 0.4895 0.1520 band energies (ev): -4.9043 -1.7968 2.7384 6.0653 7.2303 11.4931 12.3021 12.7664 15.2355 k = 0.5652 0.0000-0.2534 band energies (ev): -4.2696 -1.7523 3.1341 3.4018 5.4251 9.5831 15.0253 16.7250 17.3694 k = 0.4239-0.2448-0.1520 band energies (ev): -4.9043 -1.7968 2.7384 6.0653 7.2303 11.4931 12.3021 12.7664 15.2354 k = 0.2826 0.0000-0.0507 band energies (ev): -6.5079 0.8623 4.6665 6.5580 7.9221 10.2873 11.5764 13.1929 14.6512 k = 0.2826 0.0000 0.2534 band energies (ev): -6.0616 -0.0513 4.9040 5.3703 8.6078 9.7382 10.8932 12.8693 14.9058 k = 0.1413-0.2448 0.3547 band energies (ev): -5.6784 0.6199 3.1807 3.9660 6.8314 9.8695 12.8906 13.0616 15.8797 k = 0.5652 0.4895 0.0507 band energies (ev): -4.0322 -2.1313 2.0215 3.7617 7.4206 10.8688 12.6735 14.9544 16.3809 k = 0.4239 0.2448 0.1520 band energies (ev): -4.9043 -1.7968 2.7384 6.0653 7.2303 11.4931 12.3021 12.7664 15.2354 k = 0.0000 0.0000 0.4561 band energies (ev): -5.9543 0.2669 5.5496 5.5496 6.7375 9.4075 9.4075 11.1725 16.5449 k = 0.4239 0.7343 0.1520 band energies (ev): -4.9662 -0.5764 2.1104 4.4677 6.8257 10.9280 11.3177 13.7715 16.8231 k = 0.2826 0.4895 0.2534 band energies (ev): -4.2696 -1.7523 3.1341 3.4018 5.4251 9.5831 15.0253 16.7250 17.3694 k = 0.8479 0.0000-0.1520 band energies (ev): -4.9662 -0.5763 2.1104 4.4676 6.8257 10.9280 11.3177 13.7715 16.8231 k = 0.7066-0.2448-0.0507 band energies (ev): -4.0322 -2.1313 2.0215 3.7617 7.4206 10.8688 12.6735 14.9544 16.3809 k = 0.5652 0.0000 0.0507 band energies (ev): -4.5429 -2.7625 4.5170 5.6485 7.2005 10.1476 11.7431 12.9851 16.9591 the Fermi energy is 8.9980 ev total energy = -25.45860839 Ry Harris-Foulkes estimate = -25.70449290 Ry estimated scf accuracy < 0.00082333 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.23E-06, avg # of iterations = 3.1 total cpu time spent up to now is 4.00 secs k = 0.0000 0.0000 0.1520 band energies (ev): -7.1969 3.6547 5.4706 5.4706 7.7506 10.3660 11.1431 11.1432 15.8495 k =-0.1413-0.2448 0.2534 band energies (ev): -6.1653 -0.1478 4.9210 5.2190 8.5708 9.7594 10.9342 12.8213 15.0177 k = 0.2826 0.4895-0.0507 band energies (ev): -4.6641 -2.8501 4.3955 5.6892 7.2325 10.1291 11.8101 13.0441 17.0035 k = 0.1413 0.2448 0.0507 band energies (ev): -6.5971 0.7190 4.5542 6.5513 7.9547 10.2456 11.5508 13.1533 14.7498 k =-0.2826 0.0000 0.3547 band energies (ev): -5.7978 0.5020 3.2061 3.8838 6.9185 9.8721 12.8007 12.9978 15.9980 k = 0.1413 0.7343 0.0507 band energies (ev): -4.1796 -2.2485 2.0299 3.8296 7.4380 10.8237 12.7231 14.9100 16.3760 k = 0.0000 0.4895 0.1520 band energies (ev): -5.0096 -1.9285 2.6931 6.1475 7.2164 11.4983 12.2213 12.8394 15.2997 k = 0.5652 0.0000-0.2534 band energies (ev): -4.4012 -1.8968 3.2386 3.3270 5.4982 9.6258 14.9636 16.6941 17.3373 k = 0.4239-0.2448-0.1520 band energies (ev): -5.0096 -1.9286 2.6931 6.1475 7.2164 11.4983 12.2213 12.8394 15.2997 k = 0.2826 0.0000-0.0507 band energies (ev): -6.5971 0.7190 4.5542 6.5513 7.9547 10.2456 11.5508 13.1533 14.7498 k = 0.2826 0.0000 0.2534 band energies (ev): -6.1653 -0.1478 4.9210 5.2190 8.5708 9.7594 10.9342 12.8213 15.0177 k = 0.1413-0.2448 0.3547 band energies (ev): -5.7978 0.5021 3.2061 3.8838 6.9185 9.8721 12.8007 12.9979 15.9980 k = 0.5652 0.4895 0.0507 band energies (ev): -4.1797 -2.2485 2.0299 3.8296 7.4380 10.8237 12.7231 14.9100 16.3760 k = 0.4239 0.2448 0.1520 band energies (ev): -5.0096 -1.9286 2.6931 6.1475 7.2164 11.4983 12.2213 12.8394 15.2997 k = 0.0000 0.0000 0.4561 band energies (ev): -6.0914 0.3257 5.4103 5.4103 6.6355 9.4299 9.4299 11.2676 16.6907 k = 0.4239 0.7343 0.1520 band energies (ev): -5.1269 -0.6092 2.1473 4.3679 6.8793 10.8491 11.3014 13.7066 16.9810 k = 0.2826 0.4895 0.2534 band energies (ev): -4.4012 -1.8967 3.2386 3.3270 5.4982 9.6258 14.9636 16.6941 17.3373 k = 0.8479 0.0000-0.1520 band energies (ev): -5.1269 -0.6092 2.1473 4.3679 6.8793 10.8490 11.3014 13.7066 16.9810 k = 0.7066-0.2448-0.0507 band energies (ev): -4.1796 -2.2485 2.0299 3.8296 7.4380 10.8237 12.7231 14.9100 16.3760 k = 0.5652 0.0000 0.0507 band energies (ev): -4.6641 -2.8501 4.3955 5.6892 7.2325 10.1291 11.8101 13.0441 17.0035 the Fermi energy is 8.9462 ev total energy = -25.46012328 Ry Harris-Foulkes estimate = -25.46039781 Ry estimated scf accuracy < 0.00067883 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.79E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.32 secs k = 0.0000 0.0000 0.1520 band energies (ev): -7.1659 3.6732 5.5080 5.5080 7.7796 10.3826 11.1673 11.1673 15.8488 k =-0.1413-0.2448 0.2534 band energies (ev): -6.1324 -0.1193 4.9345 5.2590 8.5989 9.7662 10.9433 12.8509 15.0216 k = 0.2826 0.4895-0.0507 band energies (ev): -4.6290 -2.8210 4.4318 5.6988 7.2464 10.1481 11.8149 13.0517 17.0219 k = 0.1413 0.2448 0.0507 band energies (ev): -6.5663 0.7545 4.5885 6.5662 7.9635 10.2744 11.5707 13.1749 14.7609 k =-0.2826 0.0000 0.3547 band energies (ev): -5.7627 0.5320 3.2209 3.9142 6.9215 9.8958 12.8322 13.0241 15.9968 k = 0.1413 0.7343 0.0507 band energies (ev): -4.1412 -2.2154 2.0496 3.8359 7.4479 10.8503 12.7413 14.9325 16.3917 k = 0.0000 0.4895 0.1520 band energies (ev): -4.9769 -1.8937 2.7207 6.1498 7.2309 11.5174 12.2523 12.8504 15.3065 k = 0.5652 0.0000-0.2534 band energies (ev): -4.3656 -1.8580 3.2377 3.3567 5.5040 9.6453 14.9855 16.7169 17.3555 k = 0.4239-0.2448-0.1520 band energies (ev): -4.9769 -1.8937 2.7207 6.1498 7.2309 11.5174 12.2523 12.8504 15.3065 k = 0.2826 0.0000-0.0507 band energies (ev): -6.5663 0.7545 4.5885 6.5662 7.9635 10.2744 11.5707 13.1749 14.7609 k = 0.2826 0.0000 0.2534 band energies (ev): -6.1324 -0.1193 4.9345 5.2590 8.5989 9.7662 10.9433 12.8509 15.0216 k = 0.1413-0.2448 0.3547 band energies (ev): -5.7627 0.5320 3.2208 3.9142 6.9215 9.8958 12.8322 13.0241 15.9968 k = 0.5652 0.4895 0.0507 band energies (ev): -4.1413 -2.2154 2.0496 3.8359 7.4479 10.8503 12.7413 14.9325 16.3917 k = 0.4239 0.2448 0.1520 band energies (ev): -4.9769 -1.8937 2.7208 6.1498 7.2309 11.5174 12.2523 12.8504 15.3065 k = 0.0000 0.0000 0.4561 band energies (ev): -6.0534 0.3278 5.4483 5.4483 6.6761 9.4450 9.4450 11.2633 16.6991 k = 0.4239 0.7343 0.1520 band energies (ev): -5.0857 -0.5923 2.1625 4.4010 6.8908 10.8765 11.3194 13.7337 16.9809 k = 0.2826 0.4895 0.2534 band energies (ev): -4.3656 -1.8580 3.2377 3.3567 5.5040 9.6453 14.9855 16.7169 17.3555 k = 0.8479 0.0000-0.1520 band energies (ev): -5.0857 -0.5923 2.1625 4.4010 6.8908 10.8765 11.3194 13.7337 16.9809 k = 0.7066-0.2448-0.0507 band energies (ev): -4.1412 -2.2154 2.0496 3.8359 7.4479 10.8503 12.7413 14.9325 16.3917 k = 0.5652 0.0000 0.0507 band energies (ev): -4.6290 -2.8210 4.4318 5.6988 7.2464 10.1481 11.8149 13.0517 17.0219 the Fermi energy is 8.9688 ev total energy = -25.46010206 Ry Harris-Foulkes estimate = -25.46015303 Ry estimated scf accuracy < 0.00014946 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.49E-06, avg # of iterations = 1.0 total cpu time spent up to now is 4.62 secs k = 0.0000 0.0000 0.1520 band energies (ev): -7.1535 3.6834 5.5228 5.5228 7.7902 10.3904 11.1767 11.1767 15.8496 k =-0.1413-0.2448 0.2534 band energies (ev): -6.1193 -0.1070 4.9411 5.2745 8.6092 9.7717 10.9486 12.8620 15.0242 k = 0.2826 0.4895-0.0507 band energies (ev): -4.6151 -2.8089 4.4459 5.7040 7.2527 10.1565 11.8189 13.0564 17.0288 k = 0.1413 0.2448 0.0507 band energies (ev): -6.5539 0.7691 4.6019 6.5738 7.9688 10.2849 11.5796 13.1844 14.7649 k =-0.2826 0.0000 0.3547 band energies (ev): -5.7488 0.5451 3.2273 3.9262 6.9246 9.9043 12.8446 13.0350 15.9986 k = 0.1413 0.7343 0.0507 band energies (ev): -4.1261 -2.2020 2.0574 3.8400 7.4539 10.8606 12.7479 14.9423 16.3994 k = 0.0000 0.4895 0.1520 band energies (ev): -4.9638 -1.8795 2.7313 6.1529 7.2385 11.5253 12.2644 12.8552 15.3109 k = 0.5652 0.0000-0.2534 band energies (ev): -4.3513 -1.8429 3.2397 3.3684 5.5078 9.6521 14.9957 16.7268 17.3642 k = 0.4239-0.2448-0.1520 band energies (ev): -4.9638 -1.8795 2.7313 6.1529 7.2385 11.5253 12.2644 12.8552 15.3109 k = 0.2826 0.0000-0.0507 band energies (ev): -6.5539 0.7691 4.6019 6.5738 7.9688 10.2849 11.5796 13.1844 14.7649 k = 0.2826 0.0000 0.2534 band energies (ev): -6.1193 -0.1070 4.9411 5.2745 8.6092 9.7717 10.9486 12.8620 15.0242 k = 0.1413-0.2448 0.3547 band energies (ev): -5.7488 0.5451 3.2273 3.9262 6.9246 9.9043 12.8446 13.0350 15.9986 k = 0.5652 0.4895 0.0507 band energies (ev): -4.1261 -2.2019 2.0574 3.8400 7.4539 10.8606 12.7479 14.9423 16.3994 k = 0.4239 0.2448 0.1520 band energies (ev): -4.9638 -1.8795 2.7313 6.1529 7.2385 11.5253 12.2644 12.8552 15.3109 k = 0.0000 0.0000 0.4561 band energies (ev): -6.0385 0.3316 5.4631 5.4631 6.6900 9.4516 9.4516 11.2652 16.7016 k = 0.4239 0.7343 0.1520 band energies (ev): -5.0698 -0.5836 2.1687 4.4140 6.8961 10.8880 11.3277 13.7446 16.9818 k = 0.2826 0.4895 0.2534 band energies (ev): -4.3513 -1.8429 3.2396 3.3684 5.5078 9.6521 14.9957 16.7268 17.3642 k = 0.8479 0.0000-0.1520 band energies (ev): -5.0698 -0.5835 2.1687 4.4140 6.8961 10.8880 11.3277 13.7447 16.9818 k = 0.7066-0.2448-0.0507 band energies (ev): -4.1261 -2.2019 2.0574 3.8400 7.4539 10.8606 12.7479 14.9423 16.3994 k = 0.5652 0.0000 0.0507 band energies (ev): -4.6151 -2.8090 4.4459 5.7040 7.2527 10.1565 11.8189 13.0564 17.0288 the Fermi energy is 8.9788 ev total energy = -25.46008395 Ry Harris-Foulkes estimate = -25.46010817 Ry estimated scf accuracy < 0.00004700 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.70E-07, avg # of iterations = 2.5 total cpu time spent up to now is 4.97 secs k = 0.0000 0.0000 0.1520 band energies (ev): -7.1413 3.6937 5.5373 5.5373 7.8005 10.3982 11.1861 11.1861 15.8503 k =-0.1413-0.2448 0.2534 band energies (ev): -6.1064 -0.0949 4.9476 5.2897 8.6194 9.7773 10.9539 12.8728 15.0268 k = 0.2826 0.4895-0.0507 band energies (ev): -4.6014 -2.7970 4.4597 5.7093 7.2590 10.1649 11.8229 13.0612 17.0355 k = 0.1413 0.2448 0.0507 band energies (ev): -6.5418 0.7835 4.6152 6.5814 7.9741 10.2951 11.5885 13.1940 14.7689 k =-0.2826 0.0000 0.3547 band energies (ev): -5.7351 0.5582 3.2337 3.9380 6.9278 9.9126 12.8569 13.0458 16.0004 k = 0.1413 0.7343 0.0507 band energies (ev): -4.1112 -2.1886 2.0651 3.8441 7.4600 10.8707 12.7543 14.9521 16.4072 k = 0.0000 0.4895 0.1520 band energies (ev): -4.9509 -1.8655 2.7417 6.1561 7.2460 11.5330 12.2763 12.8600 15.3154 k = 0.5652 0.0000-0.2534 band energies (ev): -4.3372 -1.8281 3.2418 3.3799 5.5116 9.6586 15.0061 16.7365 17.3729 k = 0.4239-0.2448-0.1520 band energies (ev): -4.9509 -1.8655 2.7417 6.1561 7.2460 11.5330 12.2763 12.8600 15.3154 k = 0.2826 0.0000-0.0507 band energies (ev): -6.5418 0.7835 4.6152 6.5814 7.9741 10.2951 11.5885 13.1940 14.7689 k = 0.2826 0.0000 0.2534 band energies (ev): -6.1064 -0.0949 4.9476 5.2897 8.6194 9.7773 10.9539 12.8728 15.0268 k = 0.1413-0.2448 0.3547 band energies (ev): -5.7351 0.5582 3.2337 3.9380 6.9278 9.9126 12.8569 13.0458 16.0004 k = 0.5652 0.4895 0.0507 band energies (ev): -4.1112 -2.1886 2.0651 3.8441 7.4600 10.8707 12.7543 14.9521 16.4072 k = 0.4239 0.2448 0.1520 band energies (ev): -4.9509 -1.8655 2.7417 6.1561 7.2460 11.5330 12.2763 12.8600 15.3154 k = 0.0000 0.0000 0.4561 band energies (ev): -6.0240 0.3356 5.4777 5.4777 6.7035 9.4583 9.4583 11.2673 16.7041 k = 0.4239 0.7343 0.1520 band energies (ev): -5.0541 -0.5748 2.1748 4.4267 6.9014 10.8993 11.3359 13.7555 16.9828 k = 0.2826 0.4895 0.2534 band energies (ev): -4.3372 -1.8280 3.2418 3.3799 5.5116 9.6586 15.0061 16.7365 17.3729 k = 0.8479 0.0000-0.1520 band energies (ev): -5.0541 -0.5748 2.1748 4.4267 6.9014 10.8993 11.3359 13.7555 16.9828 k = 0.7066-0.2448-0.0507 band energies (ev): -4.1112 -2.1886 2.0651 3.8441 7.4600 10.8707 12.7543 14.9521 16.4072 k = 0.5652 0.0000 0.0507 band energies (ev): -4.6014 -2.7970 4.4596 5.7093 7.2590 10.1649 11.8229 13.0612 17.0355 the Fermi energy is 8.9887 ev total energy = -25.46009172 Ry Harris-Foulkes estimate = -25.46009232 Ry estimated scf accuracy < 0.00000113 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.13E-08, avg # of iterations = 2.2 total cpu time spent up to now is 5.35 secs k = 0.0000 0.0000 0.1520 band energies (ev): -7.1384 3.6962 5.5408 5.5408 7.8031 10.4002 11.1882 11.1882 15.8506 k =-0.1413-0.2448 0.2534 band energies (ev): -6.1033 -0.0920 4.9492 5.2932 8.6218 9.7787 10.9552 12.8753 15.0275 k = 0.2826 0.4895-0.0507 band energies (ev): -4.5981 -2.7942 4.4629 5.7106 7.2605 10.1669 11.8239 13.0624 17.0371 k = 0.1413 0.2448 0.0507 band energies (ev): -6.5388 0.7869 4.6183 6.5832 7.9755 10.2975 11.5906 13.1962 14.7698 k =-0.2826 0.0000 0.3547 band energies (ev): -5.7319 0.5612 3.2353 3.9408 6.9285 9.9147 12.8598 13.0483 16.0010 k = 0.1413 0.7343 0.0507 band energies (ev): -4.1076 -2.1855 2.0670 3.8451 7.4615 10.8731 12.7559 14.9544 16.4091 k = 0.0000 0.4895 0.1520 band energies (ev): -4.9478 -1.8621 2.7441 6.1569 7.2479 11.5349 12.2792 12.8611 15.3165 k = 0.5652 0.0000-0.2534 band energies (ev): -4.3338 -1.8245 3.2424 3.3826 5.5126 9.6602 15.0085 16.7388 17.3751 k = 0.4239-0.2448-0.1520 band energies (ev): -4.9478 -1.8621 2.7441 6.1569 7.2479 11.5349 12.2792 12.8611 15.3165 k = 0.2826 0.0000-0.0507 band energies (ev): -6.5388 0.7869 4.6183 6.5832 7.9755 10.2975 11.5906 13.1962 14.7698 k = 0.2826 0.0000 0.2534 band energies (ev): -6.1033 -0.0920 4.9492 5.2932 8.6218 9.7787 10.9552 12.8753 15.0275 k = 0.1413-0.2448 0.3547 band energies (ev): -5.7319 0.5612 3.2353 3.9408 6.9285 9.9147 12.8598 13.0483 16.0010 k = 0.5652 0.4895 0.0507 band energies (ev): -4.1077 -2.1855 2.0670 3.8451 7.4615 10.8731 12.7559 14.9544 16.4091 k = 0.4239 0.2448 0.1520 band energies (ev): -4.9478 -1.8621 2.7441 6.1569 7.2479 11.5349 12.2792 12.8611 15.3165 k = 0.0000 0.0000 0.4561 band energies (ev): -6.0205 0.3366 5.4811 5.4811 6.7068 9.4598 9.4598 11.2680 16.7048 k = 0.4239 0.7343 0.1520 band energies (ev): -5.0504 -0.5727 2.1763 4.4297 6.9027 10.9020 11.3379 13.7581 16.9831 k = 0.2826 0.4895 0.2534 band energies (ev): -4.3338 -1.8245 3.2424 3.3826 5.5126 9.6602 15.0085 16.7388 17.3751 k = 0.8479 0.0000-0.1520 band energies (ev): -5.0504 -0.5727 2.1763 4.4297 6.9027 10.9020 11.3379 13.7581 16.9831 k = 0.7066-0.2448-0.0507 band energies (ev): -4.1076 -2.1855 2.0670 3.8451 7.4615 10.8731 12.7559 14.9544 16.4091 k = 0.5652 0.0000 0.0507 band energies (ev): -4.5981 -2.7942 4.4629 5.7106 7.2605 10.1669 11.8239 13.0624 17.0371 the Fermi energy is 8.9911 ev total energy = -25.46009209 Ry Harris-Foulkes estimate = -25.46009217 Ry estimated scf accuracy < 0.00000020 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.02E-09, avg # of iterations = 1.1 total cpu time spent up to now is 5.65 secs End of self-consistent calculation k = 0.0000 0.0000 0.1520 ( 531 PWs) bands (ev): -7.1390 3.6957 5.5400 5.5400 7.8027 10.3999 11.1877 11.1877 15.8506 k =-0.1413-0.2448 0.2534 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0275 k = 0.2826 0.4895-0.0507 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4622 5.7105 7.2602 10.1666 11.8237 13.0622 17.0368 k = 0.1413 0.2448 0.0507 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7697 k =-0.2826 0.0000 0.3547 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.1413 0.7343 0.0507 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4088 k = 0.0000 0.4895 0.1520 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.5652 0.0000-0.2534 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.4239-0.2448-0.1520 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.2826 0.0000-0.0507 ( 525 PWs) bands (ev): -6.5395 0.7862 4.6176 6.5829 7.9753 10.2970 11.5902 13.1956 14.7697 k = 0.2826 0.0000 0.2534 ( 522 PWs) bands (ev): -6.1040 -0.0926 4.9489 5.2924 8.6213 9.7786 10.9549 12.8748 15.0275 k = 0.1413-0.2448 0.3547 ( 519 PWs) bands (ev): -5.7326 0.5606 3.2350 3.9402 6.9285 9.9142 12.8592 13.0477 16.0010 k = 0.5652 0.4895 0.0507 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4088 k = 0.4239 0.2448 0.1520 ( 521 PWs) bands (ev): -4.9484 -1.8629 2.7436 6.1569 7.2476 11.5345 12.2785 12.8609 15.3163 k = 0.0000 0.0000 0.4561 ( 522 PWs) bands (ev): -6.0213 0.3365 5.4803 5.4803 6.7061 9.4595 9.4595 11.2681 16.7047 k = 0.4239 0.7343 0.1520 ( 520 PWs) bands (ev): -5.0512 -0.5730 2.1761 4.4290 6.9025 10.9015 11.3374 13.7576 16.9831 k = 0.2826 0.4895 0.2534 ( 510 PWs) bands (ev): -4.3346 -1.8253 3.2424 3.3820 5.5125 9.6599 15.0079 16.7383 17.3747 k = 0.8479 0.0000-0.1520 ( 520 PWs) bands (ev): -5.0512 -0.5730 2.1761 4.4290 6.9025 10.9015 11.3374 13.7576 16.9831 k = 0.7066-0.2448-0.0507 ( 510 PWs) bands (ev): -4.1084 -2.1861 2.0666 3.8450 7.4613 10.8726 12.7556 14.9539 16.4088 k = 0.5652 0.0000 0.0507 ( 520 PWs) bands (ev): -4.5988 -2.7948 4.4621 5.7105 7.2602 10.1666 11.8237 13.0622 17.0368 the Fermi energy is 8.9906 ev ! total energy = -25.46009210 Ry Harris-Foulkes estimate = -25.46009210 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000023 0.00000000 -0.10461274 atom 2 type 1 force = -0.00000023 0.00000000 0.10461274 Total force = 0.147945 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 143.05 0.00107864 0.00000000 0.00000000 158.67 0.00 0.00 0.00000000 0.00107863 0.00000000 0.00 158.67 0.00 0.00000000 0.00000000 0.00076010 0.00 0.00 111.81 Entering Dynamics; it = 2 time = 0.00726 pico-seconds new lattice vectors (alat unit) : 0.607379908 0.000000000 0.838897948 -0.303689825 0.526006625 0.838897997 -0.303689825 -0.526006625 0.838897997 new unit-cell volume = 277.0120 (a.u.)^3 new positions in cryst coord As 0.284850305 0.284850357 0.284850357 As -0.284850305 -0.284850357 -0.284850357 new positions in cart coord (alat unit) As 0.000000042 0.000000000 0.716881124 As -0.000000042 0.000000000 -0.716881124 Ekin = 0.02014296 Ry T = 706.7 K Etot = -25.43994914 CELL_PARAMETERS (alat) 0.607379908 0.000000000 0.838897948 -0.303689825 0.526006625 0.838897997 -0.303689825 -0.526006625 0.838897997 ATOMIC_POSITIONS (crystal) As 0.284850305 0.284850357 0.284850357 As -0.284850305 -0.284850357 -0.284850357 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1490050), wk = 0.0625000 k( 2) = ( -0.1372013 -0.2376396 0.2483417), wk = 0.1250000 k( 3) = ( 0.2744027 0.4752792 -0.0496684), wk = 0.1250000 k( 4) = ( 0.1372014 0.2376396 0.0496683), wk = 0.1250000 k( 5) = ( -0.2744027 0.0000000 0.3476784), wk = 0.0625000 k( 6) = ( 0.1372014 0.7129188 0.0496683), wk = 0.1250000 k( 7) = ( 0.0000000 0.4752792 0.1490050), wk = 0.1250000 k( 8) = ( 0.5488054 0.0000000 -0.2483417), wk = 0.0625000 k( 9) = ( 0.4116041 -0.2376396 -0.1490050), wk = 0.1250000 k( 10) = ( 0.2744027 0.0000000 -0.0496684), wk = 0.0625000 k( 11) = ( 0.2744027 0.0000000 0.2483417), wk = 0.0625000 k( 12) = ( 0.1372014 -0.2376396 0.3476783), wk = 0.1250000 k( 13) = ( 0.5488054 0.4752792 0.0496683), wk = 0.1250000 k( 14) = ( 0.4116041 0.2376396 0.1490050), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4470150), wk = 0.0625000 k( 16) = ( 0.4116041 0.7129188 0.1490050), wk = 0.1250000 k( 17) = ( 0.2744027 0.4752792 0.2483417), wk = 0.1250000 k( 18) = ( 0.8232081 0.0000000 -0.1490051), wk = 0.0625000 k( 19) = ( 0.6860068 -0.2376396 -0.0496684), wk = 0.1250000 k( 20) = ( 0.5488054 0.0000000 0.0496683), wk = 0.0625000 extrapolated charge 10.76052, renormalised to 10.00000 total cpu time spent up to now is 5.93 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.8 total cpu time spent up to now is 6.61 secs k = 0.0000 0.0000 0.1490 band energies (ev): -7.3267 2.2625 4.9400 4.9400 6.7276 9.2851 10.1417 10.1417 14.3205 k =-0.1372-0.2376 0.2483 band energies (ev): -6.3374 -0.8968 4.1526 4.8315 7.4397 8.3889 9.5103 11.6733 13.5739 k = 0.2744 0.4753-0.0497 band energies (ev): -4.9281 -3.3234 4.0080 4.8079 6.0790 8.9824 10.3086 11.4885 15.6964 k = 0.1372 0.2376 0.0497 band energies (ev): -6.7744 -0.0246 4.0756 5.5231 6.8767 9.3957 10.0303 11.8103 13.4689 k =-0.2744 0.0000 0.3477 band energies (ev): -5.9665 -0.3759 2.5882 3.3791 5.7117 8.9934 11.4661 11.7857 14.1575 k = 0.1372 0.7129 0.0497 band energies (ev): -4.4452 -2.7612 1.5243 2.9954 6.3478 9.5801 11.6238 13.5661 14.6664 k = 0.0000 0.4753 0.1490 band energies (ev): -5.2790 -2.4409 2.2870 5.0437 6.2803 10.0770 10.9353 11.6735 13.7758 k = 0.5488 0.0000-0.2483 band energies (ev): -4.7102 -2.2769 2.1990 2.8628 4.4627 8.8387 13.4273 14.9499 15.4219 k = 0.4116-0.2376-0.1490 band energies (ev): -5.2790 -2.4409 2.2870 5.0437 6.2803 10.0770 10.9353 11.6735 13.7758 k = 0.2744 0.0000-0.0497 band energies (ev): -6.7744 -0.0246 4.0756 5.5231 6.8767 9.3957 10.0303 11.8103 13.4689 k = 0.2744 0.0000 0.2483 band energies (ev): -6.3374 -0.8968 4.1526 4.8315 7.4397 8.3889 9.5103 11.6733 13.5739 k = 0.1372-0.2376 0.3477 band energies (ev): -5.9665 -0.3759 2.5882 3.3791 5.7117 8.9934 11.4661 11.7857 14.1575 k = 0.5488 0.4753 0.0497 band energies (ev): -4.4452 -2.7612 1.5243 2.9954 6.3478 9.5801 11.6238 13.5661 14.6664 k = 0.4116 0.2376 0.1490 band energies (ev): -5.2790 -2.4409 2.2870 5.0437 6.2803 10.0770 10.9353 11.6735 13.7758 k = 0.0000 0.0000 0.4470 band energies (ev): -6.1828 -0.7378 4.9268 4.9268 5.6546 8.2988 8.2988 9.6018 15.1957 k = 0.4116 0.7129 0.1490 band energies (ev): -5.2490 -1.5368 1.6268 3.8985 5.7169 9.6202 10.0226 12.5171 15.3063 k = 0.2744 0.4753 0.2483 band energies (ev): -4.7102 -2.2769 2.1990 2.8629 4.4627 8.8387 13.4273 14.9499 15.4219 k = 0.8232 0.0000-0.1490 band energies (ev): -5.2490 -1.5368 1.6268 3.8985 5.7169 9.6202 10.0226 12.5171 15.3063 k = 0.6860-0.2376-0.0497 band energies (ev): -4.4452 -2.7612 1.5243 2.9954 6.3478 9.5801 11.6238 13.5661 14.6664 k = 0.5488 0.0000 0.0497 band energies (ev): -4.9281 -3.3234 4.0080 4.8079 6.0790 8.9824 10.3086 11.4885 15.6964 the Fermi energy is 7.8247 ev total energy = -25.47744714 Ry Harris-Foulkes estimate = -25.91217864 Ry estimated scf accuracy < 0.00269229 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-05, avg # of iterations = 3.1 total cpu time spent up to now is 7.13 secs k = 0.0000 0.0000 0.1490 band energies (ev): -7.5059 2.0433 4.6877 4.6877 6.6490 9.2062 10.0698 10.0699 14.5823 k =-0.1372-0.2376 0.2483 band energies (ev): -6.5427 -1.1021 4.1431 4.5563 7.3566 8.3921 9.5578 11.5636 13.7836 k = 0.2744 0.4753-0.0497 band energies (ev): -5.1659 -3.5070 3.7895 4.8426 6.1148 8.9224 10.3807 11.5253 15.7762 k = 0.1372 0.2376 0.0497 band energies (ev): -6.9540 -0.3084 3.8742 5.4741 6.8886 9.2807 9.9805 11.7160 13.6748 k =-0.2744 0.0000 0.3477 band energies (ev): -6.1998 -0.6115 2.5939 3.2316 5.8387 8.9532 11.3105 11.6491 14.3642 k = 0.1372 0.7129 0.0497 band energies (ev): -4.7289 -2.9934 1.5420 3.0769 6.3377 9.4796 11.6973 13.4240 14.6507 k = 0.0000 0.4753 0.1490 band energies (ev): -5.4889 -2.6997 2.2052 5.1532 6.2132 10.0715 10.7659 11.7387 13.8997 k = 0.5488 0.0000-0.2483 band energies (ev): -4.9652 -2.5643 2.3522 2.7289 4.5622 8.8985 13.2754 14.8492 15.3538 k = 0.4116-0.2376-0.1490 band energies (ev): -5.4889 -2.6998 2.2052 5.1532 6.2132 10.0715 10.7659 11.7387 13.8997 k = 0.2744 0.0000-0.0497 band energies (ev): -6.9540 -0.3084 3.8742 5.4741 6.8886 9.2807 9.9805 11.7160 13.6748 k = 0.2744 0.0000 0.2483 band energies (ev): -6.5427 -1.1021 4.1431 4.5563 7.3566 8.3921 9.5578 11.5636 13.7836 k = 0.1372-0.2376 0.3477 band energies (ev): -6.1998 -0.6115 2.5939 3.2316 5.8387 8.9532 11.3105 11.6491 14.3642 k = 0.5488 0.4753 0.0497 band energies (ev): -4.7289 -2.9934 1.5420 3.0769 6.3377 9.4796 11.6973 13.4240 14.6507 k = 0.4116 0.2376 0.1490 band energies (ev): -5.4889 -2.6997 2.2052 5.1532 6.2132 10.0715 10.7659 11.7387 13.8997 k = 0.0000 0.0000 0.4470 band energies (ev): -6.4473 -0.7154 4.6773 4.6773 5.4813 8.3205 8.3205 9.7290 15.4679 k = 0.4116 0.7129 0.1490 band energies (ev): -5.5576 -1.6344 1.6674 3.7205 5.7951 9.4531 9.9676 12.3691 15.5869 k = 0.2744 0.4753 0.2483 band energies (ev): -4.9652 -2.5643 2.3522 2.7289 4.5622 8.8985 13.2754 14.8492 15.3538 k = 0.8232 0.0000-0.1490 band energies (ev): -5.5576 -1.6344 1.6674 3.7205 5.7951 9.4531 9.9676 12.3691 15.5869 k = 0.6860-0.2376-0.0497 band energies (ev): -4.7289 -2.9934 1.5420 3.0769 6.3377 9.4796 11.6973 13.4240 14.6507 k = 0.5488 0.0000 0.0497 band energies (ev): -5.1659 -3.5070 3.7895 4.8426 6.1148 8.9224 10.3807 11.5253 15.7762 the Fermi energy is 7.8155 ev total energy = -25.48275700 Ry Harris-Foulkes estimate = -25.48371124 Ry estimated scf accuracy < 0.00243508 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.44E-05, avg # of iterations = 1.0 total cpu time spent up to now is 7.43 secs k = 0.0000 0.0000 0.1490 band energies (ev): -7.4482 2.0886 4.7540 4.7540 6.6954 9.2434 10.1151 10.1151 14.5830 k =-0.1372-0.2376 0.2483 band energies (ev): -6.4816 -1.0482 4.1728 4.6283 7.4102 8.4083 9.5770 11.6179 13.7917 k = 0.2744 0.4753-0.0497 band energies (ev): -5.1009 -3.4524 3.8547 4.8645 6.1427 8.9601 10.3953 11.5475 15.8111 k = 0.1372 0.2376 0.0497 band energies (ev): -6.8966 -0.2431 3.9355 5.5073 6.9094 9.3382 10.0159 11.7572 13.6907 k =-0.2744 0.0000 0.3477 band energies (ev): -6.1348 -0.5563 2.6265 3.2861 5.8471 9.0037 11.3643 11.6981 14.3637 k = 0.1372 0.7129 0.0497 band energies (ev): -4.6583 -2.9326 1.5771 3.0940 6.3609 9.5290 11.7333 13.4716 14.6791 k = 0.0000 0.4753 0.1490 band energies (ev): -5.4281 -2.6353 2.2550 5.1626 6.2446 10.1066 10.8238 11.7661 13.9132 k = 0.5488 0.0000-0.2483 band energies (ev): -4.8995 -2.4929 2.3563 2.7821 4.5763 8.9370 13.3197 14.9002 15.3818 k = 0.4116-0.2376-0.1490 band energies (ev): -5.4281 -2.6353 2.2550 5.1626 6.2446 10.1066 10.8238 11.7661 13.9132 k = 0.2744 0.0000-0.0497 band energies (ev): -6.8966 -0.2431 3.9355 5.5073 6.9094 9.3382 10.0159 11.7572 13.6907 k = 0.2744 0.0000 0.2483 band energies (ev): -6.4816 -1.0482 4.1728 4.6283 7.4102 8.4083 9.5770 11.6179 13.7917 k = 0.1372-0.2376 0.3477 band energies (ev): -6.1348 -0.5563 2.6265 3.2861 5.8471 9.0037 11.3643 11.6981 14.3637 k = 0.5488 0.4753 0.0497 band energies (ev): -4.6583 -2.9325 1.5771 3.0940 6.3609 9.5290 11.7333 13.4716 14.6791 k = 0.4116 0.2376 0.1490 band energies (ev): -5.4281 -2.6353 2.2550 5.1626 6.2446 10.1066 10.8238 11.7661 13.9132 k = 0.0000 0.0000 0.4470 band energies (ev): -6.3769 -0.7017 4.7451 4.7451 5.5533 8.3493 8.3493 9.7274 15.4817 k = 0.4116 0.7129 0.1490 band energies (ev): -5.4816 -1.5997 1.6981 3.7799 5.8178 9.5059 10.0025 12.4201 15.5891 k = 0.2744 0.4753 0.2483 band energies (ev): -4.8995 -2.4929 2.3563 2.7821 4.5763 8.9370 13.3197 14.9002 15.3818 k = 0.8232 0.0000-0.1490 band energies (ev): -5.4816 -1.5997 1.6981 3.7799 5.8178 9.5059 10.0025 12.4201 15.5891 k = 0.6860-0.2376-0.0497 band energies (ev): -4.6583 -2.9326 1.5771 3.0940 6.3609 9.5290 11.7333 13.4716 14.6791 k = 0.5488 0.0000 0.0497 band energies (ev): -5.1009 -3.4524 3.8547 4.8646 6.1427 8.9601 10.3953 11.5475 15.8111 the Fermi energy is 7.8582 ev total energy = -25.48267034 Ry Harris-Foulkes estimate = -25.48285633 Ry estimated scf accuracy < 0.00056796 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.68E-06, avg # of iterations = 1.0 total cpu time spent up to now is 7.74 secs k = 0.0000 0.0000 0.1490 band energies (ev): -7.4247 2.1117 4.7807 4.7807 6.7136 9.2603 10.1334 10.1334 14.5850 k =-0.1372-0.2376 0.2483 band energies (ev): -6.4568 -1.0244 4.1869 4.6565 7.4302 8.4201 9.5881 11.6390 13.7966 k = 0.2744 0.4753-0.0497 band energies (ev): -5.0746 -3.4292 3.8802 4.8761 6.1554 8.9769 10.4050 11.5596 15.8242 k = 0.1372 0.2376 0.0497 band energies (ev): -6.8731 -0.2154 3.9599 5.5233 6.9214 9.3594 10.0323 11.7758 13.6968 k =-0.2744 0.0000 0.3477 band energies (ev): -6.1086 -0.5315 2.6405 3.3079 5.8542 9.0220 11.3863 11.7190 14.3674 k = 0.1372 0.7129 0.0497 band energies (ev): -4.6299 -2.9070 1.5914 3.1036 6.3740 9.5487 11.7466 13.4925 14.6934 k = 0.0000 0.4753 0.1490 band energies (ev): -5.4032 -2.6085 2.2743 5.1704 6.2604 10.1216 10.8469 11.7783 13.9213 k = 0.5488 0.0000-0.2483 band energies (ev): -4.8726 -2.4643 2.3621 2.8033 4.5849 8.9507 13.3405 14.9220 15.3963 k = 0.4116-0.2376-0.1490 band energies (ev): -5.4032 -2.6085 2.2743 5.1704 6.2604 10.1216 10.8469 11.7783 13.9213 k = 0.2744 0.0000-0.0497 band energies (ev): -6.8731 -0.2154 3.9599 5.5233 6.9214 9.3594 10.0323 11.7758 13.6968 k = 0.2744 0.0000 0.2483 band energies (ev): -6.4568 -1.0244 4.1869 4.6565 7.4302 8.4201 9.5881 11.6390 13.7966 k = 0.1372-0.2376 0.3477 band energies (ev): -6.1086 -0.5315 2.6405 3.3079 5.8542 9.0220 11.3863 11.7190 14.3674 k = 0.5488 0.4753 0.0497 band energies (ev): -4.6299 -2.9070 1.5914 3.1036 6.3740 9.5487 11.7466 13.4925 14.6934 k = 0.4116 0.2376 0.1490 band energies (ev): -5.4032 -2.6085 2.2743 5.1704 6.2604 10.1216 10.8469 11.7783 13.9213 k = 0.0000 0.0000 0.4470 band energies (ev): -6.3491 -0.6905 4.7720 4.7720 5.5781 8.3624 8.3624 9.7334 15.4862 k = 0.4116 0.7129 0.1490 band energies (ev): -5.4517 -1.5818 1.7108 3.8034 5.8285 9.5281 10.0187 12.4415 15.5916 k = 0.2744 0.4753 0.2483 band energies (ev): -4.8727 -2.4643 2.3621 2.8033 4.5849 8.9506 13.3405 14.9220 15.3963 k = 0.8232 0.0000-0.1490 band energies (ev): -5.4517 -1.5818 1.7108 3.8034 5.8285 9.5281 10.0187 12.4415 15.5916 k = 0.6860-0.2376-0.0497 band energies (ev): -4.6299 -2.9070 1.5914 3.1036 6.3740 9.5487 11.7466 13.4925 14.6934 k = 0.5488 0.0000 0.0497 band energies (ev): -5.0746 -3.4292 3.8802 4.8761 6.1554 8.9769 10.4050 11.5596 15.8242 the Fermi energy is 7.8749 ev total energy = -25.48259694 Ry Harris-Foulkes estimate = -25.48269150 Ry estimated scf accuracy < 0.00018863 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.89E-06, avg # of iterations = 2.1 total cpu time spent up to now is 8.07 secs k = 0.0000 0.0000 0.1490 band energies (ev): -7.4006 2.1359 4.8081 4.8081 6.7320 9.2777 10.1523 10.1523 14.5872 k =-0.1372-0.2376 0.2483 band energies (ev): -6.4314 -0.9999 4.2015 4.6853 7.4505 8.4326 9.5998 11.6606 13.8018 k = 0.2744 0.4753-0.0497 band energies (ev): -5.0477 -3.4053 3.9063 4.8883 6.1686 8.9943 10.4153 11.5723 15.8376 k = 0.1372 0.2376 0.0497 band energies (ev): -6.8491 -0.1869 3.9850 5.5400 6.9339 9.3808 10.0494 11.7951 13.7031 k =-0.2744 0.0000 0.3477 band energies (ev): -6.0819 -0.5057 2.6549 3.3303 5.8618 9.0406 11.4090 11.7406 14.3718 k = 0.1372 0.7129 0.0497 band energies (ev): -4.6008 -2.8808 1.6061 3.1137 6.3878 9.5688 11.7602 13.5141 14.7085 k = 0.0000 0.4753 0.1490 band energies (ev): -5.3778 -2.5809 2.2941 5.1786 6.2769 10.1371 10.8707 11.7909 13.9298 k = 0.5488 0.0000-0.2483 band energies (ev): -4.8451 -2.4349 2.3684 2.8251 4.5939 8.9645 13.3622 14.9442 15.4119 k = 0.4116-0.2376-0.1490 band energies (ev): -5.3778 -2.5809 2.2941 5.1786 6.2769 10.1371 10.8707 11.7908 13.9298 k = 0.2744 0.0000-0.0497 band energies (ev): -6.8491 -0.1869 3.9850 5.5400 6.9339 9.3808 10.0494 11.7951 13.7031 k = 0.2744 0.0000 0.2483 band energies (ev): -6.4314 -0.9999 4.2015 4.6853 7.4505 8.4326 9.5998 11.6606 13.8018 k = 0.1372-0.2376 0.3477 band energies (ev): -6.0819 -0.5057 2.6549 3.3303 5.8618 9.0406 11.4090 11.7406 14.3718 k = 0.5488 0.4753 0.0497 band energies (ev): -4.6008 -2.8808 1.6061 3.1137 6.3878 9.5689 11.7602 13.5141 14.7085 k = 0.4116 0.2376 0.1490 band energies (ev): -5.3778 -2.5809 2.2941 5.1786 6.2769 10.1371 10.8707 11.7908 13.9298 k = 0.0000 0.0000 0.4470 band energies (ev): -6.3206 -0.6785 4.7995 4.7995 5.6032 8.3760 8.3760 9.7402 15.4908 k = 0.4116 0.7129 0.1490 band energies (ev): -5.4212 -1.5631 1.7238 3.8275 5.8397 9.5509 10.0357 12.4635 15.5944 k = 0.2744 0.4753 0.2483 band energies (ev): -4.8451 -2.4349 2.3684 2.8251 4.5939 8.9645 13.3622 14.9442 15.4119 k = 0.8232 0.0000-0.1490 band energies (ev): -5.4211 -1.5631 1.7238 3.8275 5.8397 9.5509 10.0357 12.4635 15.5944 k = 0.6860-0.2376-0.0497 band energies (ev): -4.6008 -2.8808 1.6061 3.1137 6.3878 9.5688 11.7602 13.5141 14.7085 k = 0.5488 0.0000 0.0497 band energies (ev): -5.0477 -3.4053 3.9063 4.8883 6.1686 8.9943 10.4152 11.5723 15.8376 the Fermi energy is 7.8920 ev total energy = -25.48262212 Ry Harris-Foulkes estimate = -25.48262557 Ry estimated scf accuracy < 0.00000652 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.52E-08, avg # of iterations = 2.5 total cpu time spent up to now is 8.48 secs k = 0.0000 0.0000 0.1490 band energies (ev): -7.3948 2.1415 4.8146 4.8146 6.7366 9.2820 10.1568 10.1568 14.5877 k =-0.1372-0.2376 0.2483 band energies (ev): -6.4253 -0.9941 4.2050 4.6923 7.4555 8.4356 9.6024 11.6658 13.8031 k = 0.2744 0.4753-0.0497 band energies (ev): -5.0412 -3.3996 3.9125 4.8912 6.1718 8.9985 10.4176 11.5752 15.8404 k = 0.1372 0.2376 0.0497 band energies (ev): -6.8433 -0.1801 3.9909 5.5440 6.9370 9.3861 10.0535 11.7996 13.7047 k =-0.2744 0.0000 0.3477 band energies (ev): -6.0754 -0.4996 2.6584 3.3357 5.8636 9.0452 11.4145 11.7457 14.3728 k = 0.1372 0.7129 0.0497 band energies (ev): -4.5938 -2.8745 1.6097 3.1162 6.3911 9.5737 11.7635 13.5192 14.7121 k = 0.0000 0.4753 0.1490 band energies (ev): -5.3716 -2.5743 2.2989 5.1806 6.2809 10.1408 10.8765 11.7938 13.9319 k = 0.5488 0.0000-0.2483 band energies (ev): -4.8385 -2.4279 2.3699 2.8303 4.5961 8.9679 13.3673 14.9495 15.4157 k = 0.4116-0.2376-0.1490 band energies (ev): -5.3716 -2.5743 2.2989 5.1806 6.2809 10.1408 10.8765 11.7938 13.9319 k = 0.2744 0.0000-0.0497 band energies (ev): -6.8433 -0.1801 3.9909 5.5440 6.9370 9.3861 10.0535 11.7996 13.7047 k = 0.2744 0.0000 0.2483 band energies (ev): -6.4253 -0.9941 4.2050 4.6923 7.4555 8.4356 9.6024 11.6658 13.8031 k = 0.1372-0.2376 0.3477 band energies (ev): -6.0754 -0.4996 2.6584 3.3357 5.8636 9.0452 11.4145 11.7457 14.3728 k = 0.5488 0.4753 0.0497 band energies (ev): -4.5938 -2.8745 1.6097 3.1162 6.3911 9.5737 11.7635 13.5192 14.7121 k = 0.4116 0.2376 0.1490 band energies (ev): -5.3716 -2.5743 2.2989 5.1806 6.2809 10.1408 10.8764 11.7938 13.9319 k = 0.0000 0.0000 0.4470 band energies (ev): -6.3137 -0.6757 4.8061 4.8061 5.6095 8.3791 8.3792 9.7418 15.4921 k = 0.4116 0.7129 0.1490 band energies (ev): -5.4138 -1.5588 1.7270 3.8332 5.8424 9.5564 10.0396 12.4689 15.5951 k = 0.2744 0.4753 0.2483 band energies (ev): -4.8385 -2.4279 2.3699 2.8303 4.5961 8.9679 13.3673 14.9495 15.4157 k = 0.8232 0.0000-0.1490 band energies (ev): -5.4138 -1.5588 1.7270 3.8332 5.8424 9.5564 10.0396 12.4689 15.5951 k = 0.6860-0.2376-0.0497 band energies (ev): -4.5938 -2.8745 1.6097 3.1162 6.3911 9.5737 11.7635 13.5192 14.7121 k = 0.5488 0.0000 0.0497 band energies (ev): -5.0412 -3.3996 3.9125 4.8912 6.1718 8.9985 10.4176 11.5752 15.8404 the Fermi energy is 7.8958 ev total energy = -25.48262551 Ry Harris-Foulkes estimate = -25.48262563 Ry estimated scf accuracy < 0.00000043 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.28E-09, avg # of iterations = 1.8 total cpu time spent up to now is 8.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.1490 ( 531 PWs) bands (ev): -7.3958 2.1407 4.8134 4.8134 6.7360 9.2815 10.1559 10.1559 14.5878 k =-0.1372-0.2376 0.2483 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4355 9.6020 11.6648 13.8031 k = 0.2744 0.4753-0.0497 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1715 8.9980 10.4173 11.5749 15.8398 k = 0.1372 0.2376 0.0497 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9367 9.3852 10.0528 11.7987 13.7045 k =-0.2744 0.0000 0.3477 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0444 11.4136 11.7447 14.3729 k = 0.1372 0.7129 0.0497 ( 510 PWs) bands (ev): -4.5951 -2.8756 1.6091 3.1159 6.3908 9.5729 11.7629 13.5183 14.7116 k = 0.0000 0.4753 0.1490 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.5488 0.0000-0.2483 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8294 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.4116-0.2376-0.1490 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.2744 0.0000-0.0497 ( 525 PWs) bands (ev): -6.8443 -0.1813 3.9898 5.5434 6.9368 9.3852 10.0528 11.7987 13.7045 k = 0.2744 0.0000 0.2483 ( 522 PWs) bands (ev): -6.4264 -0.9951 4.2045 4.6909 7.4546 8.4354 9.6020 11.6648 13.8031 k = 0.1372-0.2376 0.3477 ( 519 PWs) bands (ev): -6.0766 -0.5006 2.6579 3.3347 5.8636 9.0444 11.4135 11.7447 14.3730 k = 0.5488 0.4753 0.0497 ( 510 PWs) bands (ev): -4.5951 -2.8756 1.6091 3.1159 6.3908 9.5729 11.7629 13.5183 14.7116 k = 0.4116 0.2376 0.1490 ( 521 PWs) bands (ev): -5.3727 -2.5755 2.2980 5.1805 6.2804 10.1402 10.8754 11.7933 13.9317 k = 0.0000 0.0000 0.4470 ( 522 PWs) bands (ev): -6.3150 -0.6759 4.8048 4.8048 5.6084 8.3786 8.3786 9.7421 15.4921 k = 0.4116 0.7129 0.1490 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5556 10.0389 12.4680 15.5952 k = 0.2744 0.4753 0.2483 ( 510 PWs) bands (ev): -4.8397 -2.4292 2.3699 2.8294 4.5960 8.9673 13.3663 14.9486 15.4152 k = 0.8232 0.0000-0.1490 ( 520 PWs) bands (ev): -5.4152 -1.5594 1.7265 3.8321 5.8421 9.5556 10.0389 12.4680 15.5952 k = 0.6860-0.2376-0.0497 ( 510 PWs) bands (ev): -4.5951 -2.8756 1.6091 3.1159 6.3908 9.5729 11.7629 13.5183 14.7116 k = 0.5488 0.0000 0.0497 ( 520 PWs) bands (ev): -5.0424 -3.4006 3.9113 4.8909 6.1715 8.9979 10.4173 11.5749 15.8398 the Fermi energy is 7.8951 ev ! total energy = -25.48262553 Ry Harris-Foulkes estimate = -25.48262556 Ry estimated scf accuracy < 0.00000009 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000015 0.00000000 -0.06498882 atom 2 type 1 force = -0.00000015 0.00000000 0.06498882 Total force = 0.091908 Total SCF correction = 0.000170 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 33.17 0.00014883 0.00000000 0.00000000 21.89 0.00 0.00 0.00000000 0.00014882 0.00000000 0.00 21.89 0.00 0.00000000 0.00000000 0.00037872 0.00 0.00 55.71 Entering Dynamics; it = 3 time = 0.01452 pico-seconds new lattice vectors (alat unit) : 0.607374985 0.000000000 0.860065832 -0.303687414 0.526002287 0.860065935 -0.303687414 -0.526002287 0.860065935 new unit-cell volume = 283.9972 (a.u.)^3 new positions in cryst coord As 0.280296918 0.280296974 0.280296974 As -0.280296918 -0.280296974 -0.280296974 new positions in cart coord (alat unit) As 0.000000010 0.000000000 0.723221560 As -0.000000010 0.000000000 -0.723221560 Ekin = 0.04390974 Ry T = 1123.7 K Etot = -25.43871579 CELL_PARAMETERS (alat) 0.607374985 0.000000000 0.860065832 -0.303687414 0.526002287 0.860065935 -0.303687414 -0.526002287 0.860065935 ATOMIC_POSITIONS (crystal) As 0.280296918 0.280296974 0.280296974 As -0.280296918 -0.280296974 -0.280296974 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1453377), wk = 0.0625000 k( 2) = ( -0.1372024 -0.2376416 0.2422295), wk = 0.1250000 k( 3) = ( 0.2744049 0.4752831 -0.0484459), wk = 0.1250000 k( 4) = ( 0.1372025 0.2376416 0.0484459), wk = 0.1250000 k( 5) = ( -0.2744049 0.0000000 0.3391213), wk = 0.0625000 k( 6) = ( 0.1372025 0.7129247 0.0484459), wk = 0.1250000 k( 7) = ( 0.0000000 0.4752831 0.1453377), wk = 0.1250000 k( 8) = ( 0.5488098 0.0000000 -0.2422295), wk = 0.0625000 k( 9) = ( 0.4116074 -0.2376416 -0.1453377), wk = 0.1250000 k( 10) = ( 0.2744049 0.0000000 -0.0484459), wk = 0.0625000 k( 11) = ( 0.2744049 0.0000000 0.2422295), wk = 0.0625000 k( 12) = ( 0.1372025 -0.2376416 0.3391213), wk = 0.1250000 k( 13) = ( 0.5488098 0.4752831 0.0484459), wk = 0.1250000 k( 14) = ( 0.4116074 0.2376416 0.1453377), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4360131), wk = 0.0625000 k( 16) = ( 0.4116074 0.7129247 0.1453377), wk = 0.1250000 k( 17) = ( 0.2744049 0.4752831 0.2422295), wk = 0.1250000 k( 18) = ( 0.8232147 0.0000000 -0.1453378), wk = 0.0625000 k( 19) = ( 0.6860123 -0.2376416 -0.0484459), wk = 0.1250000 k( 20) = ( 0.5488098 0.0000000 0.0484459), wk = 0.0625000 extrapolated charge 10.24595, renormalised to 10.00000 total cpu time spent up to now is 9.09 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.1 total cpu time spent up to now is 9.81 secs k = 0.0000 0.0000 0.1453 band energies (ev): -7.4205 1.5969 4.8322 4.8322 6.3223 9.0423 9.9030 9.9030 14.1295 k =-0.1372-0.2376 0.2422 band energies (ev): -6.4572 -1.2081 3.8142 4.7495 7.2800 7.9703 9.0520 11.3962 13.2605 k = 0.2744 0.4753-0.0484 band energies (ev): -5.0544 -3.5339 3.9444 4.4582 5.8433 8.6701 9.7507 10.6666 15.4576 k = 0.1372 0.2376 0.0484 band energies (ev): -6.8681 -0.3613 4.0012 5.1338 6.4732 9.2483 9.4258 11.2520 13.1877 k =-0.2744 0.0000 0.3391 band energies (ev): -6.1159 -0.8260 2.4702 3.3575 5.3605 9.0643 11.1660 11.4349 13.6724 k = 0.1372 0.7129 0.0484 band energies (ev): -4.6439 -2.9845 1.4955 2.7486 5.9619 9.3468 11.5977 13.0710 13.9509 k = 0.0000 0.4753 0.1453 band energies (ev): -5.4064 -2.6821 2.2434 4.7360 5.8452 9.5204 10.5800 11.4255 13.3260 k = 0.5488 0.0000-0.2422 band energies (ev): -4.9012 -2.4934 1.9266 2.8493 4.1383 8.8654 12.7512 14.2969 14.6563 k = 0.4116-0.2376-0.1453 band energies (ev): -5.4064 -2.6821 2.2434 4.7360 5.8452 9.5204 10.5800 11.4255 13.3260 k = 0.2744 0.0000-0.0484 band energies (ev): -6.8681 -0.3613 4.0012 5.1338 6.4732 9.2483 9.4258 11.2520 13.1877 k = 0.2744 0.0000 0.2422 band energies (ev): -6.4572 -1.2081 3.8142 4.7495 7.2800 7.9703 9.0520 11.3962 13.2605 k = 0.1372-0.2376 0.3391 band energies (ev): -6.1159 -0.8259 2.4702 3.3575 5.3605 9.0643 11.1660 11.4350 13.6724 k = 0.5488 0.4753 0.0484 band energies (ev): -4.6439 -2.9845 1.4955 2.7486 5.9619 9.3468 11.5977 13.0710 13.9509 k = 0.4116 0.2376 0.1453 band energies (ev): -5.4064 -2.6821 2.2434 4.7360 5.8452 9.5204 10.5800 11.4255 13.3260 k = 0.0000 0.0000 0.4360 band energies (ev): -6.3466 -1.2691 4.8878 4.8878 5.7265 8.0832 8.0832 9.2485 15.0418 k = 0.4116 0.7129 0.1453 band energies (ev): -5.4409 -1.9693 1.6274 3.8698 5.5538 9.4143 9.6777 12.2605 14.9631 k = 0.2744 0.4753 0.2422 band energies (ev): -4.9012 -2.4934 1.9266 2.8493 4.1383 8.8654 12.7512 14.2969 14.6563 k = 0.8232 0.0000-0.1453 band energies (ev): -5.4409 -1.9693 1.6274 3.8698 5.5538 9.4143 9.6777 12.2605 14.9631 k = 0.6860-0.2376-0.0484 band energies (ev): -4.6439 -2.9845 1.4955 2.7486 5.9619 9.3468 11.5977 13.0710 13.9509 k = 0.5488 0.0000 0.0484 band energies (ev): -5.0544 -3.5339 3.9444 4.4582 5.8433 8.6701 9.7507 10.6666 15.4576 the Fermi energy is 7.6358 ev total energy = -25.49247908 Ry Harris-Foulkes estimate = -25.62955985 Ry estimated scf accuracy < 0.00037076 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.71E-06, avg # of iterations = 3.0 total cpu time spent up to now is 10.33 secs k = 0.0000 0.0000 0.1453 band energies (ev): -7.4689 1.5072 4.7683 4.7683 6.3008 9.0081 9.8868 9.8868 14.2062 k =-0.1372-0.2376 0.2422 band energies (ev): -6.5126 -1.2778 3.8059 4.6845 7.2724 7.9400 9.0525 11.3645 13.3327 k = 0.2744 0.4753-0.0484 band energies (ev): -5.1203 -3.5899 3.8957 4.4557 5.8495 8.6479 9.7526 10.6647 15.5213 k = 0.1372 0.2376 0.0484 band energies (ev): -6.9176 -0.4498 3.9537 5.1114 6.4534 9.2299 9.4123 11.2208 13.2643 k =-0.2744 0.0000 0.3391 band energies (ev): -6.1783 -0.9051 2.4703 3.3241 5.3792 9.0694 11.1195 11.3929 13.7183 k = 0.1372 0.7129 0.0484 band energies (ev): -4.7214 -3.0549 1.5102 2.7622 5.9407 9.3213 11.6304 13.0203 13.9464 k = 0.0000 0.4753 0.1453 band energies (ev): -5.4653 -2.7589 2.2355 4.7478 5.8116 9.5239 10.5361 11.4272 13.3688 k = 0.5488 0.0000-0.2422 band energies (ev): -4.9734 -2.5731 1.9543 2.8207 4.1520 8.9055 12.6958 14.2829 14.6045 k = 0.4116-0.2376-0.1453 band energies (ev): -5.4653 -2.7589 2.2355 4.7478 5.8116 9.5239 10.5361 11.4272 13.3688 k = 0.2744 0.0000-0.0484 band energies (ev): -6.9176 -0.4498 3.9537 5.1114 6.4534 9.2299 9.4123 11.2208 13.2643 k = 0.2744 0.0000 0.2422 band energies (ev): -6.5126 -1.2778 3.8059 4.6845 7.2724 7.9400 9.0525 11.3645 13.3327 k = 0.1372-0.2376 0.3391 band energies (ev): -6.1783 -0.9051 2.4703 3.3241 5.3792 9.0694 11.1195 11.3929 13.7183 k = 0.5488 0.4753 0.0484 band energies (ev): -4.7214 -3.0549 1.5102 2.7622 5.9407 9.3213 11.6304 13.0203 13.9464 k = 0.4116 0.2376 0.1453 band energies (ev): -5.4653 -2.7589 2.2355 4.7478 5.8116 9.5239 10.5361 11.4272 13.3688 k = 0.0000 0.0000 0.4360 band energies (ev): -6.4146 -1.2954 4.8263 4.8263 5.6994 8.0868 8.0868 9.2454 15.1451 k = 0.4116 0.7129 0.1453 band energies (ev): -5.5208 -2.0159 1.6399 3.8300 5.5712 9.3617 9.6525 12.2124 15.0511 k = 0.2744 0.4753 0.2422 band energies (ev): -4.9734 -2.5731 1.9543 2.8207 4.1520 8.9055 12.6958 14.2829 14.6045 k = 0.8232 0.0000-0.1453 band energies (ev): -5.5208 -2.0159 1.6399 3.8300 5.5712 9.3617 9.6525 12.2124 15.0511 k = 0.6860-0.2376-0.0484 band energies (ev): -4.7214 -3.0549 1.5102 2.7622 5.9407 9.3213 11.6304 13.0203 13.9464 k = 0.5488 0.0000 0.0484 band energies (ev): -5.1203 -3.5899 3.8957 4.4557 5.8495 8.6479 9.7526 10.6647 15.5213 the Fermi energy is 7.8827 ev total energy = -25.49293773 Ry Harris-Foulkes estimate = -25.49302300 Ry estimated scf accuracy < 0.00020601 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.06E-06, avg # of iterations = 1.0 total cpu time spent up to now is 10.65 secs k = 0.0000 0.0000 0.1453 band energies (ev): -7.4497 1.5240 4.7899 4.7899 6.3151 9.0233 9.9025 9.9025 14.2070 k =-0.1372-0.2376 0.2422 band energies (ev): -6.4923 -1.2594 3.8170 4.7081 7.2898 7.9477 9.0598 11.3823 13.3365 k = 0.2744 0.4753-0.0484 band energies (ev): -5.0987 -3.5715 3.9169 4.4644 5.8595 8.6616 9.7591 10.6735 15.5272 k = 0.1372 0.2376 0.0484 band energies (ev): -6.8985 -0.4278 3.9736 5.1236 6.4625 9.2487 9.4239 11.2347 13.2683 k =-0.2744 0.0000 0.3391 band energies (ev): -6.1567 -0.8870 2.4832 3.3418 5.3834 9.0856 11.1381 11.4100 13.7203 k = 0.1372 0.7129 0.0484 band energies (ev): -4.6980 -3.0347 1.5214 2.7695 5.9504 9.3372 11.6427 13.0377 13.9560 k = 0.0000 0.4753 0.1453 band energies (ev): -5.4450 -2.7374 2.2517 4.7525 5.8237 9.5335 10.5557 11.4396 13.3742 k = 0.5488 0.0000-0.2422 band energies (ev): -4.9515 -2.5495 1.9575 2.8381 4.1583 8.9176 12.7115 14.2951 14.6192 k = 0.4116-0.2376-0.1453 band energies (ev): -5.4450 -2.7374 2.2517 4.7525 5.8237 9.5335 10.5557 11.4396 13.3742 k = 0.2744 0.0000-0.0484 band energies (ev): -6.8985 -0.4278 3.9736 5.1236 6.4625 9.2487 9.4239 11.2347 13.2683 k = 0.2744 0.0000 0.2422 band energies (ev): -6.4923 -1.2594 3.8170 4.7081 7.2898 7.9477 9.0598 11.3823 13.3365 k = 0.1372-0.2376 0.3391 band energies (ev): -6.1567 -0.8870 2.4832 3.3418 5.3834 9.0856 11.1381 11.4100 13.7203 k = 0.5488 0.4753 0.0484 band energies (ev): -4.6980 -3.0347 1.5214 2.7695 5.9504 9.3372 11.6427 13.0377 13.9560 k = 0.4116 0.2376 0.1453 band energies (ev): -5.4450 -2.7374 2.2517 4.7525 5.8237 9.5335 10.5557 11.4396 13.3742 k = 0.0000 0.0000 0.4360 band energies (ev): -6.3914 -1.2882 4.8484 4.8484 5.7220 8.0973 8.0973 9.2480 15.1506 k = 0.4116 0.7129 0.1453 band energies (ev): -5.4956 -2.0043 1.6515 3.8493 5.5794 9.3800 9.6652 12.2306 15.0533 k = 0.2744 0.4753 0.2422 band energies (ev): -4.9515 -2.5495 1.9575 2.8381 4.1583 8.9176 12.7115 14.2951 14.6192 k = 0.8232 0.0000-0.1453 band energies (ev): -5.4956 -2.0043 1.6515 3.8493 5.5794 9.3800 9.6652 12.2306 15.0533 k = 0.6860-0.2376-0.0484 band energies (ev): -4.6980 -3.0347 1.5214 2.7695 5.9504 9.3372 11.6427 13.0377 13.9560 k = 0.5488 0.0000 0.0484 band energies (ev): -5.0987 -3.5715 3.9169 4.4644 5.8595 8.6615 9.7591 10.6735 15.5272 the Fermi energy is 7.8904 ev total energy = -25.49293129 Ry Harris-Foulkes estimate = -25.49294817 Ry estimated scf accuracy < 0.00003613 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.61E-07, avg # of iterations = 1.4 total cpu time spent up to now is 10.97 secs k = 0.0000 0.0000 0.1453 band energies (ev): -7.4391 1.5362 4.8015 4.8015 6.3232 9.0320 9.9112 9.9112 14.2084 k =-0.1372-0.2376 0.2422 band energies (ev): -6.4812 -1.2480 3.8241 4.7203 7.2983 7.9552 9.0660 11.3920 13.3391 k = 0.2744 0.4753-0.0484 band energies (ev): -5.0868 -3.5606 3.9279 4.4708 5.8662 8.6699 9.7650 10.6802 15.5304 k = 0.1372 0.2376 0.0484 band energies (ev): -6.8878 -0.4148 3.9843 5.1317 6.4697 9.2577 9.4317 11.2436 13.2706 k =-0.2744 0.0000 0.3391 band energies (ev): -6.1450 -0.8751 2.4903 3.3514 5.3883 9.0931 11.1486 11.4200 13.7239 k = 0.1372 0.7129 0.0484 band energies (ev): -4.6853 -3.0229 1.5279 2.7750 5.9579 9.3461 11.6487 13.0481 13.9631 k = 0.0000 0.4753 0.1453 band energies (ev): -5.4337 -2.7250 2.2601 4.7575 5.8321 9.5401 10.5663 11.4467 13.3784 k = 0.5488 0.0000-0.2422 band energies (ev): -4.9393 -2.5366 1.9618 2.8474 4.1636 8.9231 12.7219 14.3033 14.6291 k = 0.4116-0.2376-0.1453 band energies (ev): -5.4337 -2.7250 2.2601 4.7575 5.8321 9.5401 10.5663 11.4467 13.3784 k = 0.2744 0.0000-0.0484 band energies (ev): -6.8878 -0.4148 3.9843 5.1317 6.4697 9.2577 9.4317 11.2436 13.2706 k = 0.2744 0.0000 0.2422 band energies (ev): -6.4812 -1.2480 3.8241 4.7203 7.2983 7.9552 9.0660 11.3920 13.3391 k = 0.1372-0.2376 0.3391 band energies (ev): -6.1450 -0.8751 2.4903 3.3514 5.3883 9.0930 11.1486 11.4201 13.7239 k = 0.5488 0.4753 0.0484 band energies (ev): -4.6853 -3.0229 1.5279 2.7750 5.9579 9.3461 11.6487 13.0481 13.9631 k = 0.4116 0.2376 0.1453 band energies (ev): -5.4337 -2.7250 2.2601 4.7575 5.8321 9.5401 10.5663 11.4467 13.3784 k = 0.0000 0.0000 0.4360 band energies (ev): -6.3791 -1.2807 4.8600 4.8600 5.7318 8.1040 8.1040 9.2538 15.1532 k = 0.4116 0.7129 0.1453 band energies (ev): -5.4824 -1.9950 1.6578 3.8595 5.5851 9.3904 9.6736 12.2410 15.0555 k = 0.2744 0.4753 0.2422 band energies (ev): -4.9394 -2.5366 1.9618 2.8474 4.1636 8.9231 12.7219 14.3033 14.6291 k = 0.8232 0.0000-0.1453 band energies (ev): -5.4824 -1.9950 1.6578 3.8595 5.5851 9.3904 9.6736 12.2410 15.0555 k = 0.6860-0.2376-0.0484 band energies (ev): -4.6853 -3.0229 1.5279 2.7750 5.9579 9.3461 11.6487 13.0481 13.9631 k = 0.5488 0.0000 0.0484 band energies (ev): -5.0868 -3.5606 3.9279 4.4708 5.8662 8.6699 9.7650 10.6802 15.5304 the Fermi energy is 7.8979 ev total energy = -25.49293373 Ry Harris-Foulkes estimate = -25.49293479 Ry estimated scf accuracy < 0.00000196 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.96E-08, avg # of iterations = 3.0 total cpu time spent up to now is 11.41 secs k = 0.0000 0.0000 0.1453 band energies (ev): -7.4356 1.5398 4.8053 4.8053 6.3258 9.0348 9.9141 9.9141 14.2088 k =-0.1372-0.2376 0.2422 band energies (ev): -6.4776 -1.2444 3.8263 4.7243 7.3012 7.9573 9.0678 11.3952 13.3400 k = 0.2744 0.4753-0.0484 band energies (ev): -5.0830 -3.5572 3.9315 4.4727 5.8682 8.6726 9.7667 10.6822 15.5315 k = 0.1372 0.2376 0.0484 band energies (ev): -6.8843 -0.4107 3.9878 5.1343 6.4718 9.2607 9.4342 11.2464 13.2714 k =-0.2744 0.0000 0.3391 band energies (ev): -6.1412 -0.8715 2.4926 3.3546 5.3896 9.0956 11.1520 11.4232 13.7249 k = 0.1372 0.7129 0.0484 band energies (ev): -4.6811 -3.0191 1.5300 2.7767 5.9601 9.3489 11.6508 13.0514 13.9652 k = 0.0000 0.4753 0.1453 band energies (ev): -5.4301 -2.7211 2.2629 4.7589 5.8347 9.5421 10.5698 11.4491 13.3797 k = 0.5488 0.0000-0.2422 band energies (ev): -4.9354 -2.5324 1.9629 2.8504 4.1652 8.9250 12.7251 14.3058 14.6321 k = 0.4116-0.2376-0.1453 band energies (ev): -5.4301 -2.7211 2.2629 4.7589 5.8347 9.5421 10.5698 11.4491 13.3797 k = 0.2744 0.0000-0.0484 band energies (ev): -6.8843 -0.4107 3.9878 5.1343 6.4718 9.2607 9.4342 11.2464 13.2714 k = 0.2744 0.0000 0.2422 band energies (ev): -6.4776 -1.2444 3.8263 4.7243 7.3012 7.9573 9.0678 11.3952 13.3400 k = 0.1372-0.2376 0.3391 band energies (ev): -6.1412 -0.8715 2.4926 3.3546 5.3896 9.0956 11.1520 11.4232 13.7249 k = 0.5488 0.4753 0.0484 band energies (ev): -4.6811 -3.0191 1.5300 2.7767 5.9601 9.3490 11.6508 13.0514 13.9652 k = 0.4116 0.2376 0.1453 band energies (ev): -5.4301 -2.7211 2.2629 4.7589 5.8347 9.5422 10.5698 11.4491 13.3797 k = 0.0000 0.0000 0.4360 band energies (ev): -6.3751 -1.2787 4.8638 4.8638 5.7353 8.1061 8.1061 9.2553 15.1542 k = 0.4116 0.7129 0.1453 band energies (ev): -5.4781 -1.9923 1.6599 3.8628 5.5869 9.3938 9.6762 12.2443 15.0562 k = 0.2744 0.4753 0.2422 band energies (ev): -4.9354 -2.5324 1.9629 2.8504 4.1652 8.9250 12.7251 14.3058 14.6321 k = 0.8232 0.0000-0.1453 band energies (ev): -5.4781 -1.9923 1.6599 3.8628 5.5869 9.3938 9.6762 12.2443 15.0563 k = 0.6860-0.2376-0.0484 band energies (ev): -4.6811 -3.0191 1.5300 2.7767 5.9601 9.3489 11.6508 13.0514 13.9652 k = 0.5488 0.0000 0.0484 band energies (ev): -5.0830 -3.5572 3.9315 4.4727 5.8682 8.6726 9.7667 10.6822 15.5315 the Fermi energy is 7.9001 ev total energy = -25.49293517 Ry Harris-Foulkes estimate = -25.49293521 Ry estimated scf accuracy < 0.00000020 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.00E-09, avg # of iterations = 1.0 total cpu time spent up to now is 11.72 secs k = 0.0000 0.0000 0.1453 band energies (ev): -7.4358 1.5396 4.8051 4.8051 6.3257 9.0347 9.9139 9.9139 14.2088 k =-0.1372-0.2376 0.2422 band energies (ev): -6.4777 -1.2446 3.8262 4.7240 7.3011 7.9572 9.0677 11.3950 13.3400 k = 0.2744 0.4753-0.0484 band energies (ev): -5.0832 -3.5574 3.9313 4.4727 5.8682 8.6724 9.7666 10.6821 15.5314 k = 0.1372 0.2376 0.0484 band energies (ev): -6.8845 -0.4109 3.9876 5.1341 6.4717 9.2606 9.4340 11.2463 13.2713 k =-0.2744 0.0000 0.3391 band energies (ev): -6.1414 -0.8716 2.4925 3.3544 5.3896 9.0955 11.1518 11.4231 13.7249 k = 0.1372 0.7129 0.0484 band energies (ev): -4.6814 -3.0193 1.5299 2.7766 5.9600 9.3488 11.6507 13.0512 13.9651 k = 0.0000 0.4753 0.1453 band energies (ev): -5.4303 -2.7213 2.2628 4.7589 5.8346 9.5421 10.5696 11.4489 13.3797 k = 0.5488 0.0000-0.2422 band energies (ev): -4.9356 -2.5326 1.9629 2.8503 4.1651 8.9249 12.7249 14.3057 14.6320 k = 0.4116-0.2376-0.1453 band energies (ev): -5.4303 -2.7213 2.2628 4.7589 5.8346 9.5421 10.5696 11.4489 13.3797 k = 0.2744 0.0000-0.0484 band energies (ev): -6.8845 -0.4109 3.9876 5.1341 6.4717 9.2606 9.4340 11.2463 13.2713 k = 0.2744 0.0000 0.2422 band energies (ev): -6.4777 -1.2446 3.8262 4.7240 7.3011 7.9572 9.0677 11.3950 13.3400 k = 0.1372-0.2376 0.3391 band energies (ev): -6.1414 -0.8716 2.4925 3.3544 5.3896 9.0955 11.1518 11.4231 13.7249 k = 0.5488 0.4753 0.0484 band energies (ev): -4.6814 -3.0193 1.5299 2.7766 5.9600 9.3488 11.6507 13.0512 13.9651 k = 0.4116 0.2376 0.1453 band energies (ev): -5.4303 -2.7213 2.2628 4.7589 5.8346 9.5421 10.5696 11.4489 13.3797 k = 0.0000 0.0000 0.4360 band energies (ev): -6.3753 -1.2787 4.8636 4.8636 5.7351 8.1060 8.1060 9.2553 15.1542 k = 0.4116 0.7129 0.1453 band energies (ev): -5.4784 -1.9925 1.6598 3.8626 5.5868 9.3936 9.6760 12.2441 15.0563 k = 0.2744 0.4753 0.2422 band energies (ev): -4.9356 -2.5326 1.9629 2.8503 4.1651 8.9249 12.7249 14.3057 14.6320 k = 0.8232 0.0000-0.1453 band energies (ev): -5.4784 -1.9925 1.6598 3.8626 5.5868 9.3936 9.6760 12.2441 15.0563 k = 0.6860-0.2376-0.0484 band energies (ev): -4.6814 -3.0193 1.5299 2.7766 5.9600 9.3488 11.6507 13.0512 13.9651 k = 0.5488 0.0000 0.0484 band energies (ev): -5.0832 -3.5574 3.9313 4.4727 5.8682 8.6724 9.7666 10.6821 15.5314 the Fermi energy is 7.9000 ev total energy = -25.49293512 Ry Harris-Foulkes estimate = -25.49293518 Ry estimated scf accuracy < 0.00000012 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.16E-09, avg # of iterations = 1.5 total cpu time spent up to now is 12.03 secs End of self-consistent calculation k = 0.0000 0.0000 0.1453 ( 531 PWs) bands (ev): -7.4364 1.5390 4.8044 4.8044 6.3253 9.0342 9.9134 9.9134 14.2088 k =-0.1372-0.2376 0.2422 ( 522 PWs) bands (ev): -6.4784 -1.2452 3.8259 4.7233 7.3006 7.9569 9.0674 11.3944 13.3399 k = 0.2744 0.4753-0.0484 ( 520 PWs) bands (ev): -5.0839 -3.5580 3.9306 4.4724 5.8678 8.6720 9.7663 10.6818 15.5313 k = 0.1372 0.2376 0.0484 ( 525 PWs) bands (ev): -6.8851 -0.4117 3.9870 5.1337 6.4714 9.2600 9.4336 11.2458 13.2712 k =-0.2744 0.0000 0.3391 ( 519 PWs) bands (ev): -6.1421 -0.8723 2.4922 3.3538 5.3894 9.0951 11.1512 11.4225 13.7248 k = 0.1372 0.7129 0.0484 ( 510 PWs) bands (ev): -4.6821 -3.0200 1.5295 2.7764 5.9597 9.3483 11.6504 13.0506 13.9648 k = 0.0000 0.4753 0.1453 ( 521 PWs) bands (ev): -5.4309 -2.7220 2.2623 4.7587 5.8342 9.5417 10.5690 11.4485 13.3795 k = 0.5488 0.0000-0.2422 ( 510 PWs) bands (ev): -4.9363 -2.5334 1.9628 2.8497 4.1649 8.9246 12.7243 14.3053 14.6315 k = 0.4116-0.2376-0.1453 ( 521 PWs) bands (ev): -5.4309 -2.7220 2.2623 4.7587 5.8342 9.5417 10.5690 11.4485 13.3795 k = 0.2744 0.0000-0.0484 ( 525 PWs) bands (ev): -6.8851 -0.4117 3.9870 5.1337 6.4714 9.2600 9.4336 11.2457 13.2712 k = 0.2744 0.0000 0.2422 ( 522 PWs) bands (ev): -6.4784 -1.2452 3.8259 4.7233 7.3006 7.9569 9.0674 11.3944 13.3399 k = 0.1372-0.2376 0.3391 ( 519 PWs) bands (ev): -6.1421 -0.8723 2.4922 3.3538 5.3894 9.0951 11.1512 11.4225 13.7248 k = 0.5488 0.4753 0.0484 ( 510 PWs) bands (ev): -4.6821 -3.0200 1.5295 2.7764 5.9597 9.3483 11.6504 13.0506 13.9648 k = 0.4116 0.2376 0.1453 ( 521 PWs) bands (ev): -5.4309 -2.7220 2.2623 4.7587 5.8342 9.5417 10.5690 11.4485 13.3795 k = 0.0000 0.0000 0.4360 ( 522 PWs) bands (ev): -6.3760 -1.2791 4.8629 4.8629 5.7345 8.1056 8.1056 9.2551 15.1541 k = 0.4116 0.7129 0.1453 ( 520 PWs) bands (ev): -5.4791 -1.9929 1.6594 3.8620 5.5866 9.3930 9.6756 12.2435 15.0562 k = 0.2744 0.4753 0.2422 ( 510 PWs) bands (ev): -4.9363 -2.5334 1.9628 2.8497 4.1649 8.9246 12.7243 14.3053 14.6315 k = 0.8232 0.0000-0.1453 ( 520 PWs) bands (ev): -5.4791 -1.9929 1.6594 3.8620 5.5866 9.3930 9.6756 12.2435 15.0562 k = 0.6860-0.2376-0.0484 ( 510 PWs) bands (ev): -4.6821 -3.0200 1.5295 2.7764 5.9597 9.3483 11.6504 13.0506 13.9648 k = 0.5488 0.0000 0.0484 ( 520 PWs) bands (ev): -5.0839 -3.5580 3.9306 4.4724 5.8678 8.6720 9.7663 10.6818 15.5313 the Fermi energy is 7.8997 ev ! total energy = -25.49293513 Ry Harris-Foulkes estimate = -25.49293513 Ry estimated scf accuracy < 1.0E-09 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000007 0.00000000 -0.03788553 atom 2 type 1 force = -0.00000007 0.00000000 0.03788553 Total force = 0.053578 Total SCF correction = 0.000014 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -1.09 -0.00009200 0.00000000 0.00000000 -13.53 0.00 0.00 0.00000000 -0.00009201 0.00000000 0.00 -13.53 0.00 0.00000000 0.00000000 0.00016187 0.00 0.00 23.81 Entering Dynamics; it = 4 time = 0.02178 pico-seconds new lattice vectors (alat unit) : 0.607123293 0.000000000 0.884743141 -0.303561572 0.525784306 0.884743298 -0.303561572 -0.525784306 0.884743298 new unit-cell volume = 291.9037 (a.u.)^3 new positions in cryst coord As 0.275314475 0.275314531 0.275314531 As -0.275314475 -0.275314531 -0.275314531 new positions in cart coord (alat unit) As 0.000000007 0.000000000 0.730747965 As -0.000000007 0.000000000 -0.730747965 Ekin = 0.03174661 Ry T = 1120.4 K Etot = -25.46118852 CELL_PARAMETERS (alat) 0.607123293 0.000000000 0.884743141 -0.303561572 0.525784306 0.884743298 -0.303561572 -0.525784306 0.884743298 ATOMIC_POSITIONS (crystal) As 0.275314475 0.275314531 0.275314531 As -0.275314475 -0.275314531 -0.275314531 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1412839), wk = 0.0625000 k( 2) = ( -0.1372593 -0.2377401 0.2354732), wk = 0.1250000 k( 3) = ( 0.2745187 0.4754801 -0.0470947), wk = 0.1250000 k( 4) = ( 0.1372593 0.2377401 0.0470946), wk = 0.1250000 k( 5) = ( -0.2745186 0.0000000 0.3296625), wk = 0.0625000 k( 6) = ( 0.1372593 0.7132202 0.0470946), wk = 0.1250000 k( 7) = ( 0.0000000 0.4754801 0.1412839), wk = 0.1250000 k( 8) = ( 0.5490373 0.0000000 -0.2354732), wk = 0.0625000 k( 9) = ( 0.4117780 -0.2377401 -0.1412840), wk = 0.1250000 k( 10) = ( 0.2745187 0.0000000 -0.0470947), wk = 0.0625000 k( 11) = ( 0.2745187 0.0000000 0.2354732), wk = 0.0625000 k( 12) = ( 0.1372594 -0.2377401 0.3296625), wk = 0.1250000 k( 13) = ( 0.5490374 0.4754801 0.0470946), wk = 0.1250000 k( 14) = ( 0.4117780 0.2377401 0.1412839), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4238518), wk = 0.0625000 k( 16) = ( 0.4117780 0.7132202 0.1412839), wk = 0.1250000 k( 17) = ( 0.2745187 0.4754801 0.2354732), wk = 0.1250000 k( 18) = ( 0.8235560 0.0000000 -0.1412840), wk = 0.0625000 k( 19) = ( 0.6862967 -0.2377401 -0.0470947), wk = 0.1250000 k( 20) = ( 0.5490374 0.0000000 0.0470946), wk = 0.0625000 extrapolated charge 10.27085, renormalised to 10.00000 total cpu time spent up to now is 12.31 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.2 total cpu time spent up to now is 13.02 secs k = 0.0000 0.0000 0.1413 band energies (ev): -7.4502 0.9452 4.8445 4.8445 5.8139 8.8984 9.6269 9.6269 13.7404 k =-0.1373-0.2377 0.2355 band energies (ev): -6.4972 -1.5019 3.4479 4.8255 7.1068 7.4645 8.4571 10.9373 12.9591 k = 0.2745 0.4755-0.0471 band energies (ev): -5.0834 -3.7011 3.9960 4.0200 5.5087 8.3355 9.0551 9.7169 14.7964 k = 0.1373 0.2377 0.0471 band energies (ev): -6.8998 -0.6192 4.0206 4.6925 5.9971 8.6956 9.1661 10.6354 12.6781 k =-0.2745 0.0000 0.3297 band energies (ev): -6.1661 -1.2674 2.3641 3.3938 4.8395 9.1433 10.8484 11.0693 12.9733 k = 0.1373 0.7132 0.0471 band energies (ev): -4.7141 -3.1525 1.4029 2.4103 5.5280 9.0253 11.4767 12.6055 13.1566 k = 0.0000 0.4755 0.1413 band energies (ev): -5.4579 -2.8331 2.2193 4.2804 5.3988 8.7640 10.1806 11.1393 12.8312 k = 0.5490 0.0000-0.2355 band energies (ev): -4.9890 -2.6043 1.5061 2.8875 3.6688 8.8452 12.0507 13.4694 13.8446 k = 0.4118-0.2377-0.1413 band energies (ev): -5.4579 -2.8331 2.2193 4.2804 5.3988 8.7640 10.1806 11.1393 12.8312 k = 0.2745 0.0000-0.0471 band energies (ev): -6.8998 -0.6192 4.0206 4.6925 5.9971 8.6956 9.1661 10.6354 12.6781 k = 0.2745 0.0000 0.2355 band energies (ev): -6.4972 -1.5019 3.4479 4.8255 7.1068 7.4645 8.4571 10.9373 12.9591 k = 0.1373-0.2377 0.3297 band energies (ev): -6.1661 -1.2674 2.3641 3.3938 4.8395 9.1433 10.8484 11.0693 12.9733 k = 0.5490 0.4755 0.0471 band energies (ev): -4.7141 -3.1525 1.4029 2.4103 5.5280 9.0253 11.4767 12.6055 13.1566 k = 0.4118 0.2377 0.1413 band energies (ev): -5.4579 -2.8331 2.2193 4.2804 5.3988 8.7640 10.1806 11.1393 12.8312 k = 0.0000 0.0000 0.4239 band energies (ev): -6.3825 -1.9172 4.9767 4.9767 5.8530 7.7839 7.7839 8.7438 14.6576 k = 0.4118 0.7132 0.1413 band energies (ev): -5.4713 -2.4770 1.5916 3.9207 5.2594 9.2511 9.2743 12.0256 14.3704 k = 0.2745 0.4755 0.2355 band energies (ev): -4.9890 -2.6043 1.5061 2.8875 3.6688 8.8452 12.0507 13.4694 13.8446 k = 0.8236 0.0000-0.1413 band energies (ev): -5.4713 -2.4770 1.5916 3.9207 5.2594 9.2511 9.2743 12.0256 14.3704 k = 0.6863-0.2377-0.0471 band energies (ev): -4.7141 -3.1525 1.4029 2.4103 5.5280 9.0253 11.4768 12.6055 13.1566 k = 0.5490 0.0000 0.0471 band energies (ev): -5.0834 -3.7011 3.9960 4.0200 5.5087 8.3355 9.0551 9.7169 14.7964 the Fermi energy is 7.1641 ev total energy = -25.49641333 Ry Harris-Foulkes estimate = -25.64584864 Ry estimated scf accuracy < 0.00052271 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.23E-06, avg # of iterations = 3.0 total cpu time spent up to now is 13.51 secs k = 0.0000 0.0000 0.1413 band energies (ev): -7.5043 0.8395 4.7777 4.7777 5.7796 8.8589 9.6006 9.6007 13.8264 k =-0.1373-0.2377 0.2355 band energies (ev): -6.5588 -1.5857 3.4378 4.7580 7.0978 7.4190 8.4503 10.8951 13.0419 k = 0.2745 0.4755-0.0471 band energies (ev): -5.1576 -3.7666 3.9468 4.0129 5.5055 8.3085 9.0473 9.7081 14.8896 k = 0.1373 0.2377 0.0471 band energies (ev): -6.9557 -0.7223 3.9716 4.6661 5.9631 8.6745 9.1535 10.5975 12.7705 k =-0.2745 0.0000 0.3297 band energies (ev): -6.2347 -1.3576 2.3583 3.3593 4.8485 9.1549 10.7847 11.0150 13.0158 k = 0.1373 0.7132 0.0471 band energies (ev): -4.7999 -3.2340 1.4198 2.4211 5.4973 8.9913 11.4992 12.5425 13.1630 k = 0.0000 0.4755 0.1413 band energies (ev): -5.5246 -2.9210 2.2134 4.2863 5.3570 8.7660 10.1296 11.1136 12.8939 k = 0.5490 0.0000-0.2355 band energies (ev): -5.0697 -2.6959 1.5317 2.8585 3.6726 8.8979 11.9852 13.4745 13.7554 k = 0.4118-0.2377-0.1413 band energies (ev): -5.5246 -2.9210 2.2134 4.2863 5.3570 8.7660 10.1296 11.1136 12.8939 k = 0.2745 0.0000-0.0471 band energies (ev): -6.9557 -0.7223 3.9716 4.6661 5.9631 8.6745 9.1535 10.5975 12.7705 k = 0.2745 0.0000 0.2355 band energies (ev): -6.5588 -1.5857 3.4378 4.7580 7.0978 7.4190 8.4503 10.8951 13.0419 k = 0.1373-0.2377 0.3297 band energies (ev): -6.2347 -1.3576 2.3583 3.3593 4.8485 9.1549 10.7847 11.0150 13.0158 k = 0.5490 0.4755 0.0471 band energies (ev): -4.7999 -3.2340 1.4198 2.4211 5.4973 8.9913 11.4992 12.5425 13.1630 k = 0.4118 0.2377 0.1413 band energies (ev): -5.5246 -2.9210 2.2134 4.2863 5.3570 8.7660 10.1296 11.1136 12.8939 k = 0.0000 0.0000 0.4239 band energies (ev): -6.4559 -1.9592 4.9124 4.9124 5.8233 7.7795 7.7795 8.7236 14.7667 k = 0.4118 0.7132 0.1413 band energies (ev): -5.5582 -2.5335 1.6002 3.8808 5.2678 9.1898 9.2370 11.9617 14.4660 k = 0.2745 0.4755 0.2355 band energies (ev): -5.0697 -2.6959 1.5317 2.8585 3.6726 8.8979 11.9852 13.4745 13.7554 k = 0.8236 0.0000-0.1413 band energies (ev): -5.5582 -2.5335 1.6002 3.8808 5.2678 9.1898 9.2370 11.9617 14.4660 k = 0.6863-0.2377-0.0471 band energies (ev): -4.7999 -3.2340 1.4198 2.4211 5.4973 8.9913 11.4992 12.5425 13.1630 k = 0.5490 0.0000 0.0471 band energies (ev): -5.1576 -3.7666 3.9468 4.0129 5.5055 8.3085 9.0473 9.7081 14.8896 the Fermi energy is 7.1551 ev total energy = -25.49700723 Ry Harris-Foulkes estimate = -25.49711060 Ry estimated scf accuracy < 0.00024129 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.41E-06, avg # of iterations = 1.0 total cpu time spent up to now is 13.79 secs k = 0.0000 0.0000 0.1413 band energies (ev): -7.4829 0.8588 4.8011 4.8011 5.7949 8.8788 9.6186 9.6186 13.8274 k =-0.1373-0.2377 0.2355 band energies (ev): -6.5361 -1.5653 3.4508 4.7843 7.1177 7.4282 8.4582 10.9138 13.0478 k = 0.2745 0.4755-0.0471 band energies (ev): -5.1333 -3.7462 3.9702 4.0232 5.5170 8.3246 9.0550 9.7184 14.8922 k = 0.1373 0.2377 0.0471 band energies (ev): -6.9343 -0.6978 3.9933 4.6797 5.9749 8.6872 9.1745 10.6125 12.7728 k =-0.2745 0.0000 0.3297 band energies (ev): -6.2106 -1.3382 2.3748 3.3786 4.8532 9.1735 10.8060 11.0344 13.0185 k = 0.1373 0.7132 0.0471 band energies (ev): -4.7736 -3.2117 1.4317 2.4301 5.5091 9.0086 11.5145 12.5634 13.1720 k = 0.0000 0.4755 0.1413 band energies (ev): -5.5019 -2.8969 2.2313 4.2919 5.3715 8.7758 10.1501 11.1314 12.8997 k = 0.5490 0.0000-0.2355 band energies (ev): -5.0453 -2.6694 1.5359 2.8774 3.6803 8.9116 12.0029 13.4830 13.7761 k = 0.4118-0.2377-0.1413 band energies (ev): -5.5019 -2.8969 2.2313 4.2919 5.3715 8.7758 10.1501 11.1314 12.8997 k = 0.2745 0.0000-0.0471 band energies (ev): -6.9343 -0.6978 3.9933 4.6797 5.9749 8.6872 9.1745 10.6125 12.7728 k = 0.2745 0.0000 0.2355 band energies (ev): -6.5361 -1.5653 3.4508 4.7843 7.1177 7.4282 8.4582 10.9138 13.0478 k = 0.1373-0.2377 0.3297 band energies (ev): -6.2106 -1.3382 2.3748 3.3786 4.8532 9.1735 10.8060 11.0344 13.0185 k = 0.5490 0.4755 0.0471 band energies (ev): -4.7736 -3.2117 1.4317 2.4301 5.5091 9.0086 11.5145 12.5634 13.1720 k = 0.4118 0.2377 0.1413 band energies (ev): -5.5019 -2.8969 2.2313 4.2918 5.3715 8.7758 10.1501 11.1314 12.8997 k = 0.0000 0.0000 0.4239 band energies (ev): -6.4297 -1.9504 4.9367 4.9367 5.8493 7.7913 7.7913 8.7275 14.7732 k = 0.4118 0.7132 0.1413 band energies (ev): -5.5295 -2.5215 1.6144 3.9018 5.2771 9.2109 9.2515 11.9832 14.4686 k = 0.2745 0.4755 0.2355 band energies (ev): -5.0453 -2.6694 1.5359 2.8774 3.6803 8.9116 12.0029 13.4830 13.7761 k = 0.8236 0.0000-0.1413 band energies (ev): -5.5295 -2.5215 1.6144 3.9018 5.2771 9.2109 9.2515 11.9832 14.4686 k = 0.6863-0.2377-0.0471 band energies (ev): -4.7736 -3.2117 1.4317 2.4301 5.5091 9.0086 11.5145 12.5634 13.1720 k = 0.5490 0.0000 0.0471 band energies (ev): -5.1333 -3.7462 3.9702 4.0232 5.5170 8.3246 9.0550 9.7184 14.8922 the Fermi energy is 7.1750 ev total energy = -25.49700579 Ry Harris-Foulkes estimate = -25.49702159 Ry estimated scf accuracy < 0.00003566 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.57E-07, avg # of iterations = 1.2 total cpu time spent up to now is 14.09 secs k = 0.0000 0.0000 0.1413 band energies (ev): -7.4729 0.8710 4.8115 4.8115 5.8030 8.8873 9.6270 9.6270 13.8289 k =-0.1373-0.2377 0.2355 band energies (ev): -6.5257 -1.5540 3.4577 4.7951 7.1256 7.4364 8.4646 10.9230 13.0504 k = 0.2745 0.4755-0.0471 band energies (ev): -5.1222 -3.7358 3.9799 4.0298 5.5238 8.3328 9.0615 9.7253 14.8939 k = 0.1373 0.2377 0.0471 band energies (ev): -6.9243 -0.6853 4.0028 4.6875 5.9827 8.6949 9.1824 10.6212 12.7745 k =-0.2745 0.0000 0.3297 band energies (ev): -6.1998 -1.3268 2.3818 3.3873 4.8587 9.1801 10.8164 11.0442 13.0227 k = 0.1373 0.7132 0.0471 band energies (ev): -4.7618 -3.2005 1.4376 2.4358 5.5168 9.0171 11.5208 12.5737 13.1782 k = 0.0000 0.4755 0.1413 band energies (ev): -5.4913 -2.8852 2.2387 4.2974 5.3800 8.7821 10.1598 11.1397 12.9032 k = 0.5490 0.0000-0.2355 band energies (ev): -5.0339 -2.6573 1.5405 2.8857 3.6862 8.9161 12.0130 13.4894 13.7876 k = 0.4118-0.2377-0.1413 band energies (ev): -5.4913 -2.8852 2.2387 4.2974 5.3800 8.7821 10.1598 11.1397 12.9032 k = 0.2745 0.0000-0.0471 band energies (ev): -6.9243 -0.6853 4.0028 4.6875 5.9827 8.6949 9.1824 10.6212 12.7745 k = 0.2745 0.0000 0.2355 band energies (ev): -6.5257 -1.5540 3.4577 4.7951 7.1256 7.4364 8.4646 10.9230 13.0504 k = 0.1373-0.2377 0.3297 band energies (ev): -6.1998 -1.3268 2.3818 3.3873 4.8587 9.1801 10.8164 11.0442 13.0227 k = 0.5490 0.4755 0.0471 band energies (ev): -4.7618 -3.2005 1.4376 2.4358 5.5168 9.0171 11.5208 12.5737 13.1782 k = 0.4118 0.2377 0.1413 band energies (ev): -5.4913 -2.8852 2.2387 4.2974 5.3800 8.7821 10.1598 11.1397 12.9032 k = 0.0000 0.0000 0.4239 band energies (ev): -6.4185 -1.9421 4.9471 4.9471 5.8582 7.7981 7.7981 8.7345 14.7757 k = 0.4118 0.7132 0.1413 band energies (ev): -5.5175 -2.5122 1.6206 3.9108 5.2831 9.2209 9.2600 11.9936 14.4708 k = 0.2745 0.4755 0.2355 band energies (ev): -5.0339 -2.6572 1.5405 2.8857 3.6862 8.9161 12.0130 13.4894 13.7876 k = 0.8236 0.0000-0.1413 band energies (ev): -5.5175 -2.5122 1.6206 3.9108 5.2831 9.2209 9.2600 11.9936 14.4708 k = 0.6863-0.2377-0.0471 band energies (ev): -4.7618 -3.2005 1.4376 2.4358 5.5168 9.0171 11.5208 12.5737 13.1782 k = 0.5490 0.0000 0.0471 band energies (ev): -5.1222 -3.7358 3.9799 4.0297 5.5237 8.3328 9.0615 9.7253 14.8939 the Fermi energy is 7.1828 ev total energy = -25.49700764 Ry Harris-Foulkes estimate = -25.49700906 Ry estimated scf accuracy < 0.00000264 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.64E-08, avg # of iterations = 3.0 total cpu time spent up to now is 14.55 secs k = 0.0000 0.0000 0.1413 band energies (ev): -7.4689 0.8753 4.8158 4.8158 5.8061 8.8909 9.6304 9.6304 13.8293 k =-0.1373-0.2377 0.2355 band energies (ev): -6.5215 -1.5498 3.4603 4.7997 7.1290 7.4390 8.4667 10.9266 13.0516 k = 0.2745 0.4755-0.0471 band energies (ev): -5.1177 -3.7318 3.9840 4.0321 5.5263 8.3360 9.0635 9.7277 14.8945 k = 0.1373 0.2377 0.0471 band energies (ev): -6.9203 -0.6805 4.0068 4.6904 5.9855 8.6977 9.1859 10.6244 12.7751 k =-0.2745 0.0000 0.3297 band energies (ev): -6.1954 -1.3226 2.3848 3.3908 4.8604 9.1832 10.8205 11.0480 13.0239 k = 0.1373 0.7132 0.0471 band energies (ev): -4.7570 -3.1961 1.4399 2.4379 5.5196 9.0204 11.5235 12.5778 13.1803 k = 0.0000 0.4755 0.1413 band energies (ev): -5.4871 -2.8806 2.2419 4.2991 5.3831 8.7844 10.1638 11.1430 12.9045 k = 0.5490 0.0000-0.2355 band energies (ev): -5.0293 -2.6523 1.5420 2.8892 3.6881 8.9183 12.0167 13.4915 13.7919 k = 0.4118-0.2377-0.1413 band energies (ev): -5.4871 -2.8806 2.2419 4.2991 5.3831 8.7844 10.1638 11.1430 12.9045 k = 0.2745 0.0000-0.0471 band energies (ev): -6.9203 -0.6805 4.0068 4.6904 5.9855 8.6977 9.1859 10.6244 12.7751 k = 0.2745 0.0000 0.2355 band energies (ev): -6.5215 -1.5498 3.4603 4.7997 7.1290 7.4390 8.4667 10.9266 13.0516 k = 0.1373-0.2377 0.3297 band energies (ev): -6.1954 -1.3226 2.3848 3.3908 4.8604 9.1832 10.8205 11.0480 13.0239 k = 0.5490 0.4755 0.0471 band energies (ev): -4.7570 -3.1961 1.4399 2.4379 5.5196 9.0204 11.5235 12.5778 13.1803 k = 0.4118 0.2377 0.1413 band energies (ev): -5.4871 -2.8806 2.2419 4.2991 5.3831 8.7844 10.1638 11.1430 12.9045 k = 0.0000 0.0000 0.4239 band energies (ev): -6.4138 -1.9395 4.9515 4.9515 5.8624 7.8006 7.8006 8.7364 14.7770 k = 0.4118 0.7132 0.1413 band energies (ev): -5.5124 -2.5091 1.6232 3.9146 5.2853 9.2249 9.2631 11.9977 14.4716 k = 0.2745 0.4755 0.2355 band energies (ev): -5.0293 -2.6523 1.5420 2.8892 3.6881 8.9183 12.0167 13.4915 13.7919 k = 0.8236 0.0000-0.1413 band energies (ev): -5.5124 -2.5091 1.6232 3.9146 5.2853 9.2249 9.2631 11.9977 14.4716 k = 0.6863-0.2377-0.0471 band energies (ev): -4.7570 -3.1961 1.4399 2.4379 5.5196 9.0204 11.5235 12.5778 13.1803 k = 0.5490 0.0000 0.0471 band energies (ev): -5.1177 -3.7318 3.9840 4.0321 5.5263 8.3360 9.0635 9.7277 14.8945 the Fermi energy is 7.1863 ev total energy = -25.49700936 Ry Harris-Foulkes estimate = -25.49700942 Ry estimated scf accuracy < 0.00000028 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 14.87 secs k = 0.0000 0.0000 0.1413 band energies (ev): -7.4692 0.8750 4.8155 4.8155 5.8060 8.8907 9.6302 9.6302 13.8293 k =-0.1373-0.2377 0.2355 band energies (ev): -6.5218 -1.5501 3.4602 4.7994 7.1288 7.4389 8.4665 10.9263 13.0515 k = 0.2745 0.4755-0.0471 band energies (ev): -5.1180 -3.7321 3.9837 4.0319 5.5261 8.3358 9.0634 9.7276 14.8945 k = 0.1373 0.2377 0.0471 band energies (ev): -6.9206 -0.6808 4.0065 4.6902 5.9853 8.6975 9.1857 10.6242 12.7751 k =-0.2745 0.0000 0.3297 band energies (ev): -6.1957 -1.3229 2.3846 3.3906 4.8603 9.1830 10.8202 11.0477 13.0239 k = 0.1373 0.7132 0.0471 band energies (ev): -4.7574 -3.1964 1.4397 2.4377 5.5194 9.0202 11.5233 12.5775 13.1802 k = 0.0000 0.4755 0.1413 band energies (ev): -5.4874 -2.8809 2.2417 4.2990 5.3829 8.7842 10.1635 11.1428 12.9044 k = 0.5490 0.0000-0.2355 band energies (ev): -5.0296 -2.6527 1.5419 2.8889 3.6880 8.9182 12.0165 13.4914 13.7916 k = 0.4118-0.2377-0.1413 band energies (ev): -5.4874 -2.8809 2.2417 4.2990 5.3829 8.7842 10.1635 11.1428 12.9044 k = 0.2745 0.0000-0.0471 band energies (ev): -6.9206 -0.6808 4.0065 4.6902 5.9853 8.6975 9.1857 10.6242 12.7751 k = 0.2745 0.0000 0.2355 band energies (ev): -6.5218 -1.5501 3.4602 4.7994 7.1288 7.4389 8.4665 10.9263 13.0515 k = 0.1373-0.2377 0.3297 band energies (ev): -6.1957 -1.3229 2.3846 3.3906 4.8603 9.1830 10.8202 11.0477 13.0239 k = 0.5490 0.4755 0.0471 band energies (ev): -4.7574 -3.1964 1.4397 2.4377 5.5194 9.0202 11.5233 12.5775 13.1802 k = 0.4118 0.2377 0.1413 band energies (ev): -5.4874 -2.8809 2.2417 4.2990 5.3829 8.7842 10.1635 11.1428 12.9044 k = 0.0000 0.0000 0.4239 band energies (ev): -6.4142 -1.9397 4.9512 4.9512 5.8621 7.8004 7.8004 8.7364 14.7770 k = 0.4118 0.7132 0.1413 band energies (ev): -5.5128 -2.5094 1.6230 3.9143 5.2852 9.2246 9.2629 11.9974 14.4716 k = 0.2745 0.4755 0.2355 band energies (ev): -5.0296 -2.6527 1.5419 2.8889 3.6880 8.9182 12.0165 13.4914 13.7916 k = 0.8236 0.0000-0.1413 band energies (ev): -5.5128 -2.5094 1.6230 3.9143 5.2852 9.2246 9.2629 11.9974 14.4716 k = 0.6863-0.2377-0.0471 band energies (ev): -4.7574 -3.1964 1.4397 2.4377 5.5194 9.0202 11.5233 12.5775 13.1802 k = 0.5490 0.0000 0.0471 band energies (ev): -5.1180 -3.7321 3.9837 4.0319 5.5261 8.3357 9.0634 9.7276 14.8945 the Fermi energy is 7.1860 ev total energy = -25.49700929 Ry Harris-Foulkes estimate = -25.49700937 Ry estimated scf accuracy < 0.00000014 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.45E-09, avg # of iterations = 2.0 total cpu time spent up to now is 15.22 secs End of self-consistent calculation k = 0.0000 0.0000 0.1413 ( 531 PWs) bands (ev): -7.4699 0.8743 4.8147 4.8147 5.8055 8.8901 9.6296 9.6296 13.8293 k =-0.1373-0.2377 0.2355 ( 522 PWs) bands (ev): -6.5225 -1.5509 3.4597 4.7985 7.1282 7.4385 8.4662 10.9257 13.0514 k = 0.2745 0.4755-0.0471 ( 520 PWs) bands (ev): -5.1188 -3.7328 3.9829 4.0316 5.5257 8.3352 9.0630 9.7272 14.8945 k = 0.1373 0.2377 0.0471 ( 525 PWs) bands (ev): -6.9213 -0.6817 4.0058 4.6898 5.9849 8.6971 9.1851 10.6236 12.7751 k =-0.2745 0.0000 0.3297 ( 519 PWs) bands (ev): -6.1965 -1.3236 2.3841 3.3899 4.8601 9.1824 10.8195 11.0470 13.0238 k = 0.1373 0.7132 0.0471 ( 510 PWs) bands (ev): -4.7582 -3.1972 1.4394 2.4374 5.5190 9.0196 11.5229 12.5767 13.1799 k = 0.0000 0.4755 0.1413 ( 521 PWs) bands (ev): -5.4881 -2.8817 2.2411 4.2987 5.3824 8.7839 10.1628 11.1422 12.9043 k = 0.5490 0.0000-0.2355 ( 510 PWs) bands (ev): -5.0304 -2.6536 1.5417 2.8883 3.6878 8.9178 12.0158 13.4911 13.7908 k = 0.4118-0.2377-0.1413 ( 521 PWs) bands (ev): -5.4881 -2.8817 2.2411 4.2987 5.3824 8.7839 10.1628 11.1422 12.9043 k = 0.2745 0.0000-0.0471 ( 525 PWs) bands (ev): -6.9213 -0.6817 4.0058 4.6898 5.9849 8.6971 9.1851 10.6236 12.7751 k = 0.2745 0.0000 0.2355 ( 522 PWs) bands (ev): -6.5225 -1.5509 3.4597 4.7985 7.1282 7.4385 8.4662 10.9257 13.0514 k = 0.1373-0.2377 0.3297 ( 519 PWs) bands (ev): -6.1965 -1.3236 2.3841 3.3899 4.8601 9.1824 10.8195 11.0470 13.0238 k = 0.5490 0.4755 0.0471 ( 510 PWs) bands (ev): -4.7582 -3.1972 1.4394 2.4374 5.5190 9.0196 11.5229 12.5767 13.1799 k = 0.4118 0.2377 0.1413 ( 521 PWs) bands (ev): -5.4881 -2.8817 2.2411 4.2987 5.3824 8.7839 10.1628 11.1422 12.9043 k = 0.0000 0.0000 0.4239 ( 522 PWs) bands (ev): -6.4150 -1.9401 4.9504 4.9504 5.8614 7.8000 7.8000 8.7361 14.7769 k = 0.4118 0.7132 0.1413 ( 520 PWs) bands (ev): -5.5137 -2.5099 1.6226 3.9136 5.2849 9.2240 9.2623 11.9967 14.4716 k = 0.2745 0.4755 0.2355 ( 510 PWs) bands (ev): -5.0304 -2.6536 1.5417 2.8883 3.6878 8.9178 12.0158 13.4911 13.7908 k = 0.8236 0.0000-0.1413 ( 520 PWs) bands (ev): -5.5137 -2.5099 1.6226 3.9136 5.2849 9.2240 9.2623 11.9967 14.4716 k = 0.6863-0.2377-0.0471 ( 510 PWs) bands (ev): -4.7582 -3.1972 1.4394 2.4374 5.5190 9.0196 11.5229 12.5767 13.1799 k = 0.5490 0.0000 0.0471 ( 520 PWs) bands (ev): -5.1188 -3.7328 3.9829 4.0316 5.5257 8.3352 9.0630 9.7272 14.8945 the Fermi energy is 7.1855 ev ! total energy = -25.49700931 Ry Harris-Foulkes estimate = -25.49700931 Ry estimated scf accuracy < 3.5E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000006 0.00000000 -0.00454326 atom 2 type 1 force = -0.00000006 0.00000000 0.00454326 Total force = 0.006425 Total SCF correction = 0.000004 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -35.67 -0.00029479 0.00000000 0.00000000 -43.37 0.00 0.00 0.00000000 -0.00029479 0.00000000 0.00 -43.37 0.00 0.00000000 0.00000000 -0.00013779 0.00 0.00 -20.27 Entering Dynamics; it = 5 time = 0.02904 pico-seconds new lattice vectors (alat unit) : 0.605258663 0.000000000 0.910002226 -0.302629258 0.524169475 0.910002438 -0.302629258 -0.524169475 0.910002438 new unit-cell volume = 298.3960 (a.u.)^3 new positions in cryst coord As 0.276932786 0.276932813 0.276932813 As -0.276932786 -0.276932813 -0.276932813 new positions in cart coord (alat unit) As 0.000000024 0.000000000 0.756028522 As -0.000000024 0.000000000 -0.756028522 Ekin = 0.03615244 Ry T = 1157.4 K Etot = -25.46085687 CELL_PARAMETERS (alat) 0.605258663 0.000000000 0.910002226 -0.302629258 0.524169475 0.910002438 -0.302629258 -0.524169475 0.910002438 ATOMIC_POSITIONS (crystal) As 0.276932786 0.276932813 0.276932813 As -0.276932786 -0.276932813 -0.276932813 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1373623), wk = 0.0625000 k( 2) = ( -0.1376821 -0.2384725 0.2289371), wk = 0.1250000 k( 3) = ( 0.2753644 0.4769450 -0.0457874), wk = 0.1250000 k( 4) = ( 0.1376822 0.2384725 0.0457874), wk = 0.1250000 k( 5) = ( -0.2753643 0.0000000 0.3205120), wk = 0.0625000 k( 6) = ( 0.1376822 0.7154175 0.0457874), wk = 0.1250000 k( 7) = ( 0.0000000 0.4769450 0.1373623), wk = 0.1250000 k( 8) = ( 0.5507287 0.0000000 -0.2289372), wk = 0.0625000 k( 9) = ( 0.4130465 -0.2384725 -0.1373623), wk = 0.1250000 k( 10) = ( 0.2753644 0.0000000 -0.0457874), wk = 0.0625000 k( 11) = ( 0.2753644 0.0000000 0.2289371), wk = 0.0625000 k( 12) = ( 0.1376823 -0.2384725 0.3205120), wk = 0.1250000 k( 13) = ( 0.5507288 0.4769450 0.0457874), wk = 0.1250000 k( 14) = ( 0.4130466 0.2384725 0.1373623), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4120868), wk = 0.0625000 k( 16) = ( 0.4130466 0.7154175 0.1373623), wk = 0.1250000 k( 17) = ( 0.2753644 0.4769450 0.2289371), wk = 0.1250000 k( 18) = ( 0.8260931 0.0000000 -0.1373623), wk = 0.0625000 k( 19) = ( 0.6884110 -0.2384725 -0.0457875), wk = 0.1250000 k( 20) = ( 0.5507288 0.0000000 0.0457874), wk = 0.0625000 extrapolated charge 10.21757, renormalised to 10.00000 total cpu time spent up to now is 15.51 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.5 total cpu time spent up to now is 16.22 secs k = 0.0000 0.0000 0.1374 band energies (ev): -7.6408 0.5462 4.6422 4.6422 5.4720 8.4652 9.3171 9.3171 13.6722 k =-0.1377-0.2385 0.2289 band energies (ev): -6.7176 -1.7314 3.1009 4.4942 6.9101 7.1392 8.3797 10.5569 12.7261 k = 0.2754 0.4769-0.0458 band energies (ev): -5.3101 -3.8956 3.6575 3.7090 5.3012 7.9532 8.9059 9.2561 14.2844 k = 0.1377 0.2385 0.0458 band energies (ev): -7.0782 -0.9132 3.8134 4.3313 5.6057 8.3910 8.7929 10.3050 12.4417 k =-0.2754 0.0000 0.3205 band energies (ev): -6.4274 -1.5558 2.1122 3.2623 4.7121 8.8537 10.5541 10.7778 12.8564 k = 0.1377 0.7154 0.0458 band energies (ev): -5.0117 -3.3685 1.2679 2.1931 5.2348 8.8380 11.2031 12.1440 12.8090 k = 0.0000 0.4769 0.1374 band energies (ev): -5.6595 -3.0816 1.9825 4.0957 4.9418 8.4891 9.8589 10.7826 12.5509 k = 0.5507 0.0000-0.2289 band energies (ev): -5.2379 -2.9271 1.3927 2.7462 3.4593 8.4854 11.6675 13.2032 13.3765 k = 0.4130-0.2385-0.1374 band energies (ev): -5.6595 -3.0816 1.9825 4.0957 4.9418 8.4891 9.8589 10.7826 12.5509 k = 0.2754 0.0000-0.0458 band energies (ev): -7.0782 -0.9132 3.8134 4.3313 5.6057 8.3910 8.7929 10.3050 12.4417 k = 0.2754 0.0000 0.2289 band energies (ev): -6.7176 -1.7314 3.1009 4.4942 6.9101 7.1392 8.3797 10.5569 12.7261 k = 0.1377-0.2385 0.3205 band energies (ev): -6.4274 -1.5558 2.1122 3.2623 4.7121 8.8537 10.5541 10.7778 12.8564 k = 0.5507 0.4769 0.0458 band energies (ev): -5.0117 -3.3685 1.2679 2.1931 5.2348 8.8380 11.2031 12.1440 12.8090 k = 0.4130 0.2385 0.1374 band energies (ev): -5.6595 -3.0816 1.9825 4.0957 4.9418 8.4891 9.8589 10.7826 12.5509 k = 0.0000 0.0000 0.4121 band energies (ev): -6.7058 -2.1246 4.7631 4.7631 5.6760 7.6958 7.6958 8.5673 14.3197 k = 0.4130 0.7154 0.1374 band energies (ev): -5.8393 -2.6367 1.4295 3.7302 5.1649 8.9597 9.1314 11.6790 14.1047 k = 0.2754 0.4769 0.2289 band energies (ev): -5.2379 -2.9271 1.3927 2.7462 3.4593 8.4854 11.6675 13.2032 13.3765 k = 0.8261 0.0000-0.1374 band energies (ev): -5.8393 -2.6367 1.4295 3.7302 5.1649 8.9597 9.1314 11.6790 14.1047 k = 0.6884-0.2385-0.0458 band energies (ev): -5.0117 -3.3685 1.2679 2.1931 5.2348 8.8380 11.2031 12.1440 12.8090 k = 0.5507 0.0000 0.0458 band energies (ev): -5.3101 -3.8956 3.6575 3.7090 5.3012 7.9532 8.9059 9.2561 14.2844 the Fermi energy is 6.9677 ev total energy = -25.49508706 Ry Harris-Foulkes estimate = -25.61046311 Ry estimated scf accuracy < 0.00016872 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-06, avg # of iterations = 3.1 total cpu time spent up to now is 16.79 secs k = 0.0000 0.0000 0.1374 band energies (ev): -7.6927 0.4913 4.5777 4.5777 5.4527 8.4224 9.2895 9.2895 13.7503 k =-0.1377-0.2385 0.2289 band energies (ev): -6.7769 -1.7877 3.0991 4.4217 6.8819 7.1366 8.3951 10.5246 12.7849 k = 0.2754 0.4769-0.0458 band energies (ev): -5.3803 -3.9471 3.6518 3.6663 5.3061 7.9328 8.9258 9.2741 14.3716 k = 0.1377 0.2385 0.0458 band energies (ev): -7.1305 -0.9919 3.7615 4.3193 5.5991 8.3969 8.7567 10.2858 12.5202 k =-0.2754 0.0000 0.3205 band energies (ev): -6.4941 -1.6087 2.0991 3.2239 4.7450 8.8388 10.4989 10.7350 12.9145 k = 0.1377 0.7154 0.0458 band energies (ev): -5.0918 -3.4328 1.2769 2.2135 5.2305 8.8118 11.1969 12.0986 12.8415 k = 0.0000 0.4769 0.1374 band energies (ev): -5.7205 -3.1549 1.9629 4.1244 4.9251 8.5101 9.8196 10.7513 12.6057 k = 0.5507 0.0000-0.2289 band energies (ev): -5.3102 -3.0083 1.4354 2.7114 3.4816 8.5017 11.6317 13.1978 13.3605 k = 0.4130-0.2385-0.1374 band energies (ev): -5.7205 -3.1549 1.9629 4.1244 4.9251 8.5101 9.8196 10.7513 12.6057 k = 0.2754 0.0000-0.0458 band energies (ev): -7.1305 -0.9919 3.7615 4.3193 5.5991 8.3969 8.7567 10.2858 12.5202 k = 0.2754 0.0000 0.2289 band energies (ev): -6.7769 -1.7877 3.0991 4.4217 6.8819 7.1366 8.3951 10.5246 12.7849 k = 0.1377-0.2385 0.3205 band energies (ev): -6.4941 -1.6087 2.0991 3.2239 4.7450 8.8388 10.4989 10.7350 12.9145 k = 0.5507 0.4769 0.0458 band energies (ev): -5.0918 -3.4328 1.2769 2.2135 5.2305 8.8118 11.1969 12.0986 12.8415 k = 0.4130 0.2385 0.1374 band energies (ev): -5.7205 -3.1549 1.9629 4.1244 4.9251 8.5101 9.8196 10.7513 12.6057 k = 0.0000 0.0000 0.4121 band energies (ev): -6.7810 -2.1201 4.6965 4.6965 5.6172 7.6966 7.6966 8.5869 14.3948 k = 0.4130 0.7154 0.1374 band energies (ev): -5.9267 -2.6532 1.4281 3.6838 5.1817 8.9078 9.1132 11.6233 14.1841 k = 0.2754 0.4769 0.2289 band energies (ev): -5.3102 -3.0083 1.4354 2.7114 3.4816 8.5017 11.6317 13.1978 13.3605 k = 0.8261 0.0000-0.1374 band energies (ev): -5.9267 -2.6532 1.4281 3.6838 5.1817 8.9078 9.1132 11.6233 14.1841 k = 0.6884-0.2385-0.0458 band energies (ev): -5.0918 -3.4328 1.2769 2.2135 5.2305 8.8118 11.1969 12.0985 12.8415 k = 0.5507 0.0000 0.0458 band energies (ev): -5.3803 -3.9471 3.6518 3.6663 5.3061 7.9328 8.9258 9.2741 14.3716 the Fermi energy is 7.0793 ev total energy = -25.49551376 Ry Harris-Foulkes estimate = -25.49560614 Ry estimated scf accuracy < 0.00026293 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.69E-06, avg # of iterations = 1.0 total cpu time spent up to now is 17.11 secs k = 0.0000 0.0000 0.1374 band energies (ev): -7.6760 0.5031 4.5962 4.5962 5.4630 8.4383 9.3029 9.3029 13.7508 k =-0.1377-0.2385 0.2289 band energies (ev): -6.7592 -1.7734 3.1084 4.4424 6.8977 7.1411 8.3999 10.5378 12.7902 k = 0.2754 0.4769-0.0458 band energies (ev): -5.3614 -3.9319 3.6705 3.6730 5.3138 7.9446 8.9298 9.2794 14.3724 k = 0.1377 0.2385 0.0458 band energies (ev): -7.1140 -0.9741 3.7788 4.3288 5.6062 8.4045 8.7737 10.2961 12.5223 k =-0.2754 0.0000 0.3205 band energies (ev): -6.4753 -1.5958 2.1118 3.2393 4.7468 8.8541 10.5148 10.7492 12.9151 k = 0.1377 0.7154 0.0458 band energies (ev): -5.0715 -3.4162 1.2862 2.2195 5.2377 8.8242 11.2097 12.1135 12.8462 k = 0.0000 0.4769 0.1374 band energies (ev): -5.7030 -3.1368 1.9770 4.1272 4.9344 8.5156 9.8340 10.7654 12.6102 k = 0.5507 0.0000-0.2289 band energies (ev): -5.2914 -2.9883 1.4371 2.7266 3.4857 8.5136 11.6434 13.2076 13.3681 k = 0.4130-0.2385-0.1374 band energies (ev): -5.7030 -3.1368 1.9770 4.1272 4.9344 8.5156 9.8340 10.7654 12.6102 k = 0.2754 0.0000-0.0458 band energies (ev): -7.1140 -0.9741 3.7788 4.3288 5.6062 8.4045 8.7737 10.2961 12.5223 k = 0.2754 0.0000 0.2289 band energies (ev): -6.7592 -1.7734 3.1084 4.4424 6.8977 7.1411 8.3999 10.5378 12.7902 k = 0.1377-0.2385 0.3205 band energies (ev): -6.4753 -1.5958 2.1118 3.2393 4.7468 8.8541 10.5148 10.7492 12.9151 k = 0.5507 0.4769 0.0458 band energies (ev): -5.0715 -3.4162 1.2862 2.2195 5.2377 8.8242 11.2097 12.1135 12.8462 k = 0.4130 0.2385 0.1374 band energies (ev): -5.7030 -3.1368 1.9770 4.1272 4.9344 8.5156 9.8340 10.7654 12.6102 k = 0.0000 0.0000 0.4121 band energies (ev): -6.7605 -2.1162 4.7159 4.7159 5.6386 7.7052 7.7052 8.5876 14.3994 k = 0.4130 0.7154 0.1374 band energies (ev): -5.9045 -2.6459 1.4394 3.7007 5.1877 8.9234 9.1231 11.6397 14.1852 k = 0.2754 0.4769 0.2289 band energies (ev): -5.2914 -2.9883 1.4371 2.7266 3.4857 8.5136 11.6434 13.2076 13.3681 k = 0.8261 0.0000-0.1374 band energies (ev): -5.9045 -2.6459 1.4394 3.7007 5.1877 8.9234 9.1231 11.6397 14.1852 k = 0.6884-0.2385-0.0458 band energies (ev): -5.0715 -3.4162 1.2862 2.2195 5.2377 8.8242 11.2097 12.1135 12.8462 k = 0.5507 0.0000 0.0458 band energies (ev): -5.3614 -3.9319 3.6705 3.6730 5.3138 7.9446 8.9298 9.2794 14.3724 the Fermi energy is 7.0838 ev total energy = -25.49548208 Ry Harris-Foulkes estimate = -25.49552309 Ry estimated scf accuracy < 0.00007531 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.53E-07, avg # of iterations = 2.0 total cpu time spent up to now is 17.47 secs k = 0.0000 0.0000 0.1374 band energies (ev): -7.6577 0.5198 4.6162 4.6162 5.4755 8.4549 9.3179 9.3179 13.7524 k =-0.1377-0.2385 0.2289 band energies (ev): -6.7400 -1.7558 3.1196 4.4640 6.9135 7.1504 8.4079 10.5530 12.7957 k = 0.2754 0.4769-0.0458 band energies (ev): -5.3408 -3.9143 3.6823 3.6900 5.3239 7.9583 8.9372 9.2876 14.3740 k = 0.1377 0.2385 0.0458 band energies (ev): -7.0957 -0.9532 3.7973 4.3409 5.6167 8.4146 8.7904 10.3093 12.5250 k =-0.2754 0.0000 0.3205 band energies (ev): -6.4550 -1.5789 2.1252 3.2560 4.7522 8.8687 10.5328 10.7658 12.9185 k = 0.1377 0.7154 0.0458 band energies (ev): -5.0496 -3.3970 1.2968 2.2277 5.2482 8.8384 11.2230 12.1305 12.8533 k = 0.0000 0.4769 0.1374 band energies (ev): -5.6837 -3.1162 1.9917 4.1335 4.9468 8.5235 9.8502 10.7808 12.6157 k = 0.5507 0.0000-0.2289 band energies (ev): -5.2707 -2.9663 1.4420 2.7429 3.4928 8.5247 11.6585 13.2200 13.3794 k = 0.4130-0.2385-0.1374 band energies (ev): -5.6837 -3.1162 1.9917 4.1335 4.9468 8.5235 9.8502 10.7808 12.6157 k = 0.2754 0.0000-0.0458 band energies (ev): -7.0957 -0.9532 3.7973 4.3409 5.6167 8.4146 8.7904 10.3093 12.5250 k = 0.2754 0.0000 0.2289 band energies (ev): -6.7400 -1.7558 3.1196 4.4640 6.9135 7.1504 8.4079 10.5530 12.7957 k = 0.1377-0.2385 0.3205 band energies (ev): -6.4550 -1.5789 2.1252 3.2560 4.7522 8.8687 10.5328 10.7658 12.9185 k = 0.5507 0.4769 0.0458 band energies (ev): -5.0496 -3.3970 1.2968 2.2277 5.2482 8.8384 11.2230 12.1305 12.8533 k = 0.4130 0.2385 0.1374 band energies (ev): -5.6837 -3.1162 1.9917 4.1335 4.9468 8.5235 9.8502 10.7808 12.6157 k = 0.0000 0.0000 0.4121 band energies (ev): -6.7389 -2.1075 4.7365 4.7365 5.6588 7.7158 7.7158 8.5938 14.4034 k = 0.4130 0.7154 0.1374 band energies (ev): -5.8813 -2.6342 1.4514 3.7186 5.1961 8.9410 9.1359 11.6580 14.1874 k = 0.2754 0.4769 0.2289 band energies (ev): -5.2707 -2.9663 1.4420 2.7429 3.4928 8.5247 11.6585 13.2200 13.3794 k = 0.8261 0.0000-0.1374 band energies (ev): -5.8813 -2.6342 1.4514 3.7186 5.1961 8.9410 9.1359 11.6580 14.1875 k = 0.6884-0.2385-0.0458 band energies (ev): -5.0496 -3.3970 1.2968 2.2277 5.2482 8.8384 11.2230 12.1305 12.8533 k = 0.5507 0.0000 0.0458 band energies (ev): -5.3408 -3.9143 3.6823 3.6900 5.3238 7.9583 8.9372 9.2876 14.3740 the Fermi energy is 7.0930 ev total energy = -25.49549228 Ry Harris-Foulkes estimate = -25.49549248 Ry estimated scf accuracy < 0.00000039 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.93E-09, avg # of iterations = 2.9 total cpu time spent up to now is 17.88 secs k = 0.0000 0.0000 0.1374 band energies (ev): -7.6558 0.5218 4.6184 4.6184 5.4770 8.4567 9.3196 9.3196 13.7527 k =-0.1377-0.2385 0.2289 band energies (ev): -6.7379 -1.7538 3.1209 4.4663 6.9152 7.1516 8.4088 10.5547 12.7964 k = 0.2754 0.4769-0.0458 band energies (ev): -5.3386 -3.9123 3.6834 3.6921 5.3250 7.9598 8.9381 9.2886 14.3742 k = 0.1377 0.2385 0.0458 band energies (ev): -7.0937 -0.9509 3.7993 4.3423 5.6180 8.4158 8.7922 10.3108 12.5253 k =-0.2754 0.0000 0.3205 band energies (ev): -6.4528 -1.5770 2.1267 3.2579 4.7529 8.8703 10.5348 10.7676 12.9190 k = 0.1377 0.7154 0.0458 band energies (ev): -5.0472 -3.3949 1.2979 2.2286 5.2495 8.8400 11.2244 12.1324 12.8541 k = 0.0000 0.4769 0.1374 band energies (ev): -5.6816 -3.1140 1.9933 4.1343 4.9482 8.5244 9.8520 10.7825 12.6164 k = 0.5507 0.0000-0.2289 band energies (ev): -5.2685 -2.9640 1.4426 2.7446 3.4937 8.5259 11.6602 13.2215 13.3807 k = 0.4130-0.2385-0.1374 band energies (ev): -5.6816 -3.1140 1.9933 4.1343 4.9482 8.5244 9.8520 10.7825 12.6164 k = 0.2754 0.0000-0.0458 band energies (ev): -7.0937 -0.9509 3.7993 4.3423 5.6180 8.4158 8.7922 10.3108 12.5253 k = 0.2754 0.0000 0.2289 band energies (ev): -6.7379 -1.7538 3.1209 4.4663 6.9152 7.1516 8.4088 10.5547 12.7964 k = 0.1377-0.2385 0.3205 band energies (ev): -6.4528 -1.5770 2.1267 3.2579 4.7529 8.8703 10.5348 10.7676 12.9190 k = 0.5507 0.4769 0.0458 band energies (ev): -5.0472 -3.3949 1.2979 2.2286 5.2495 8.8400 11.2244 12.1324 12.8541 k = 0.4130 0.2385 0.1374 band energies (ev): -5.6816 -3.1140 1.9933 4.1343 4.9482 8.5244 9.8520 10.7825 12.6164 k = 0.0000 0.0000 0.4121 band energies (ev): -6.7366 -2.1064 4.7387 4.7387 5.6609 7.7170 7.7170 8.5947 14.4040 k = 0.4130 0.7154 0.1374 band energies (ev): -5.8788 -2.6328 1.4527 3.7206 5.1971 8.9429 9.1373 11.6600 14.1878 k = 0.2754 0.4769 0.2289 band energies (ev): -5.2685 -2.9640 1.4426 2.7446 3.4937 8.5259 11.6602 13.2215 13.3807 k = 0.8261 0.0000-0.1374 band energies (ev): -5.8788 -2.6328 1.4527 3.7206 5.1971 8.9429 9.1373 11.6600 14.1878 k = 0.6884-0.2385-0.0458 band energies (ev): -5.0472 -3.3949 1.2979 2.2286 5.2495 8.8400 11.2244 12.1324 12.8541 k = 0.5507 0.0000 0.0458 band energies (ev): -5.3385 -3.9123 3.6834 3.6921 5.3250 7.9598 8.9381 9.2886 14.3742 the Fermi energy is 7.0942 ev total energy = -25.49549274 Ry Harris-Foulkes estimate = -25.49549282 Ry estimated scf accuracy < 0.00000014 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-09, avg # of iterations = 2.0 total cpu time spent up to now is 18.21 secs End of self-consistent calculation k = 0.0000 0.0000 0.1374 ( 531 PWs) bands (ev): -7.6565 0.5212 4.6175 4.6175 5.4765 8.4560 9.3189 9.3189 13.7527 k =-0.1377-0.2385 0.2289 ( 522 PWs) bands (ev): -6.7387 -1.7544 3.1205 4.4654 6.9145 7.1515 8.4086 10.5541 12.7962 k = 0.2754 0.4769-0.0458 ( 520 PWs) bands (ev): -5.3394 -3.9130 3.6831 3.6912 5.3247 7.9593 8.9379 9.2884 14.3742 k = 0.1377 0.2385 0.0458 ( 525 PWs) bands (ev): -7.0945 -0.9517 3.7985 4.3419 5.6177 8.4154 8.7914 10.3103 12.5252 k =-0.2754 0.0000 0.3205 ( 519 PWs) bands (ev): -6.4537 -1.5776 2.1261 3.2572 4.7529 8.8696 10.5341 10.7670 12.9190 k = 0.1377 0.7154 0.0458 ( 510 PWs) bands (ev): -5.0482 -3.3956 1.2975 2.2284 5.2492 8.8394 11.2238 12.1317 12.8539 k = 0.0000 0.4769 0.1374 ( 521 PWs) bands (ev): -5.6824 -3.1148 1.9927 4.1342 4.9478 8.5242 9.8513 10.7818 12.6162 k = 0.5507 0.0000-0.2289 ( 510 PWs) bands (ev): -5.2693 -2.9649 1.4426 2.7440 3.4936 8.5254 11.6597 13.2211 13.3803 k = 0.4130-0.2385-0.1374 ( 521 PWs) bands (ev): -5.6824 -3.1148 1.9927 4.1342 4.9478 8.5242 9.8513 10.7818 12.6162 k = 0.2754 0.0000-0.0458 ( 525 PWs) bands (ev): -7.0945 -0.9517 3.7985 4.3419 5.6177 8.4154 8.7914 10.3103 12.5252 k = 0.2754 0.0000 0.2289 ( 522 PWs) bands (ev): -6.7387 -1.7544 3.1205 4.4654 6.9145 7.1515 8.4086 10.5541 12.7962 k = 0.1377-0.2385 0.3205 ( 519 PWs) bands (ev): -6.4537 -1.5776 2.1261 3.2572 4.7529 8.8696 10.5341 10.7670 12.9190 k = 0.5507 0.4769 0.0458 ( 510 PWs) bands (ev): -5.0482 -3.3956 1.2975 2.2284 5.2492 8.8394 11.2238 12.1317 12.8539 k = 0.4130 0.2385 0.1374 ( 521 PWs) bands (ev): -5.6824 -3.1148 1.9927 4.1342 4.9478 8.5242 9.8513 10.7818 12.6162 k = 0.0000 0.0000 0.4121 ( 522 PWs) bands (ev): -6.7375 -2.1066 4.7378 4.7378 5.6600 7.7166 7.7166 8.5948 14.4038 k = 0.4130 0.7154 0.1374 ( 520 PWs) bands (ev): -5.8798 -2.6331 1.4522 3.7198 5.1969 8.9422 9.1369 11.6593 14.1878 k = 0.2754 0.4769 0.2289 ( 510 PWs) bands (ev): -5.2693 -2.9649 1.4426 2.7440 3.4936 8.5254 11.6597 13.2211 13.3803 k = 0.8261 0.0000-0.1374 ( 520 PWs) bands (ev): -5.8798 -2.6331 1.4522 3.7198 5.1969 8.9422 9.1369 11.6593 14.1878 k = 0.6884-0.2385-0.0458 ( 510 PWs) bands (ev): -5.0482 -3.3956 1.2975 2.2284 5.2492 8.8394 11.2238 12.1317 12.8539 k = 0.5507 0.0000 0.0458 ( 520 PWs) bands (ev): -5.3394 -3.9130 3.6831 3.6912 5.3247 7.9593 8.9379 9.2884 14.3742 the Fermi energy is 7.0940 ev ! total energy = -25.49549276 Ry Harris-Foulkes estimate = -25.49549276 Ry estimated scf accuracy < 8.6E-10 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00851334 atom 2 type 1 force = 0.00000000 0.00000000 0.00851334 Total force = 0.012040 Total SCF correction = 0.000026 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -38.88 -0.00027107 0.00000000 0.00000000 -39.88 0.00 0.00 0.00000000 -0.00027107 0.00000000 0.00 -39.88 0.00 0.00000000 0.00000000 -0.00025081 0.00 0.00 -36.90 Entering Dynamics; it = 6 time = 0.03630 pico-seconds new lattice vectors (alat unit) : 0.602026574 0.000000000 0.889945751 -0.301013209 0.521370380 0.889945899 -0.301013209 -0.521370380 0.889945899 new unit-cell volume = 288.7110 (a.u.)^3 new positions in cryst coord As 0.276788771 0.276788798 0.276788798 As -0.276788771 -0.276788798 -0.276788798 new positions in cart coord (alat unit) As 0.000000027 0.000000000 0.738981102 As -0.000000027 0.000000000 -0.738981102 Ekin = 0.00969643 Ry T = 994.0 K Etot = -25.48579633 CELL_PARAMETERS (alat) 0.602026574 0.000000000 0.889945751 -0.301013209 0.521370380 0.889945899 -0.301013209 -0.521370380 0.889945899 ATOMIC_POSITIONS (crystal) As 0.276788771 0.276788798 0.276788798 As -0.276788771 -0.276788798 -0.276788798 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1404580), wk = 0.0625000 k( 2) = ( -0.1384213 -0.2397528 0.2340966), wk = 0.1250000 k( 3) = ( 0.2768427 0.4795056 -0.0468193), wk = 0.1250000 k( 4) = ( 0.1384214 0.2397528 0.0468193), wk = 0.1250000 k( 5) = ( -0.2768427 0.0000000 0.3277353), wk = 0.0625000 k( 6) = ( 0.1384214 0.7192584 0.0468193), wk = 0.1250000 k( 7) = ( 0.0000000 0.4795056 0.1404580), wk = 0.1250000 k( 8) = ( 0.5536854 0.0000000 -0.2340967), wk = 0.0625000 k( 9) = ( 0.4152641 -0.2397528 -0.1404580), wk = 0.1250000 k( 10) = ( 0.2768427 0.0000000 -0.0468193), wk = 0.0625000 k( 11) = ( 0.2768428 0.0000000 0.2340966), wk = 0.0625000 k( 12) = ( 0.1384214 -0.2397528 0.3277353), wk = 0.1250000 k( 13) = ( 0.5536855 0.4795056 0.0468193), wk = 0.1250000 k( 14) = ( 0.4152641 0.2397528 0.1404580), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4213740), wk = 0.0625000 k( 16) = ( 0.4152641 0.7192584 0.1404580), wk = 0.1250000 k( 17) = ( 0.2768428 0.4795056 0.2340966), wk = 0.1250000 k( 18) = ( 0.8305282 0.0000000 -0.1404580), wk = 0.0625000 k( 19) = ( 0.6921068 -0.2397528 -0.0468194), wk = 0.1250000 k( 20) = ( 0.5536855 0.0000000 0.0468193), wk = 0.0625000 extrapolated charge 9.66456, renormalised to 10.00000 total cpu time spent up to now is 18.49 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.2 total cpu time spent up to now is 19.13 secs k = 0.0000 0.0000 0.1405 band energies (ev): -7.5146 1.0202 4.8621 4.8621 5.9361 8.9220 9.7615 9.7615 14.1994 k =-0.1384-0.2398 0.2341 band energies (ev): -6.5713 -1.4454 3.4973 4.7486 7.3141 7.6319 8.7954 11.0906 13.2885 k = 0.2768 0.4795-0.0468 band energies (ev): -5.1500 -3.6863 3.9592 4.1039 5.7239 8.4556 9.3727 9.9118 15.0943 k = 0.1384 0.2398 0.0468 band energies (ev): -6.9483 -0.6094 4.0415 4.7719 6.0731 8.9447 9.2312 10.8211 13.0746 k =-0.2768 0.0000 0.3277 band energies (ev): -6.2662 -1.2129 2.4124 3.4676 5.1227 9.2752 11.0172 11.2283 13.4393 k = 0.1384 0.7193 0.0468 band energies (ev): -4.8228 -3.1481 1.5354 2.5525 5.6565 9.2587 11.6961 12.7020 13.4450 k = 0.0000 0.4795 0.1405 band energies (ev): -5.5031 -2.8563 2.2550 4.5067 5.4093 9.0442 10.3532 11.2758 13.1481 k = 0.5537 0.0000-0.2341 band energies (ev): -5.0605 -2.6835 1.7500 2.9533 3.8592 8.9774 12.2164 13.8294 14.0245 k = 0.4153-0.2398-0.1405 band energies (ev): -5.5031 -2.8563 2.2551 4.5067 5.4093 9.0442 10.3532 11.2757 13.1481 k = 0.2768 0.0000-0.0468 band energies (ev): -6.9483 -0.6094 4.0415 4.7719 6.0731 8.9447 9.2312 10.8211 13.0746 k = 0.2768 0.0000 0.2341 band energies (ev): -6.5713 -1.4454 3.4973 4.7486 7.3141 7.6319 8.7954 11.0906 13.2885 k = 0.1384-0.2398 0.3277 band energies (ev): -6.2662 -1.2129 2.4124 3.4676 5.1227 9.2752 11.0172 11.2283 13.4393 k = 0.5537 0.4795 0.0468 band energies (ev): -4.8228 -3.1481 1.5354 2.5525 5.6565 9.2587 11.6961 12.7020 13.4450 k = 0.4153 0.2398 0.1405 band energies (ev): -5.5031 -2.8563 2.2551 4.5067 5.4093 9.0442 10.3532 11.2757 13.1481 k = 0.0000 0.0000 0.4214 band energies (ev): -6.5361 -1.7518 4.9786 4.9786 6.0085 8.0550 8.0550 9.0681 15.0334 k = 0.4153 0.7193 0.1405 band energies (ev): -5.6518 -2.3267 1.6899 3.9556 5.5444 9.3868 9.5197 12.1470 14.7863 k = 0.2768 0.4795 0.2341 band energies (ev): -5.0605 -2.6835 1.7500 2.9533 3.8592 8.9774 12.2164 13.8294 14.0245 k = 0.8305 0.0000-0.1405 band energies (ev): -5.6518 -2.3267 1.6899 3.9556 5.5444 9.3868 9.5197 12.1470 14.7863 k = 0.6921-0.2398-0.0468 band energies (ev): -4.8228 -3.1481 1.5354 2.5525 5.6565 9.2587 11.6961 12.7020 13.4450 k = 0.5537 0.0000 0.0468 band energies (ev): -5.1500 -3.6863 3.9592 4.1039 5.7239 8.4556 9.3727 9.9118 15.0943 the Fermi energy is 7.5747 ev total energy = -25.49633773 Ry Harris-Foulkes estimate = -25.31446264 Ry estimated scf accuracy < 0.00058788 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.88E-06, avg # of iterations = 3.0 total cpu time spent up to now is 19.62 secs k = 0.0000 0.0000 0.1405 band energies (ev): -7.4315 1.1185 4.9678 4.9678 5.9735 8.9849 9.8081 9.8081 14.0800 k =-0.1384-0.2398 0.2341 band energies (ev): -6.4769 -1.3500 3.5049 4.8662 7.3547 7.6488 8.7788 11.1489 13.1937 k = 0.2768 0.4795-0.0468 band energies (ev): -5.0386 -3.6015 4.0516 4.0962 5.7204 8.4908 9.3510 9.8959 14.9663 k = 0.1384 0.2398 0.0468 band energies (ev): -6.8645 -0.4794 4.1262 4.7962 6.0912 8.9486 9.2847 10.8596 12.9561 k =-0.2768 0.0000 0.3277 band energies (ev): -6.1601 -1.1195 2.4339 3.5306 5.0785 9.2929 11.1082 11.3011 13.3564 k = 0.1384 0.7193 0.0468 band energies (ev): -4.6945 -3.0426 1.5239 2.5254 5.6720 9.3051 11.6948 12.7801 13.4135 k = 0.0000 0.4795 0.1405 band energies (ev): -5.4055 -2.7374 2.2882 4.4676 5.4450 9.0220 10.4240 11.3192 13.0682 k = 0.5537 0.0000-0.2341 band energies (ev): -4.9442 -2.5520 1.6894 3.0102 3.8311 8.9457 12.2839 13.8193 14.0953 k = 0.4153-0.2398-0.1405 band energies (ev): -5.4055 -2.7374 2.2882 4.4676 5.4450 9.0220 10.4240 11.3192 13.0682 k = 0.2768 0.0000-0.0468 band energies (ev): -6.8645 -0.4794 4.1262 4.7962 6.0912 8.9486 9.2847 10.8596 12.9561 k = 0.2768 0.0000 0.2341 band energies (ev): -6.4769 -1.3500 3.5049 4.8662 7.3547 7.6488 8.7788 11.1489 13.1937 k = 0.1384-0.2398 0.3277 band energies (ev): -6.1601 -1.1195 2.4339 3.5306 5.0785 9.2929 11.1082 11.3011 13.3564 k = 0.5537 0.4795 0.0468 band energies (ev): -4.6945 -3.0426 1.5239 2.5254 5.6720 9.3051 11.6948 12.7801 13.4135 k = 0.4153 0.2398 0.1405 band energies (ev): -5.4055 -2.7374 2.2882 4.4676 5.4450 9.0220 10.4240 11.3192 13.0682 k = 0.0000 0.0000 0.4214 band energies (ev): -6.4170 -1.7483 5.0864 5.0864 6.0941 8.0576 8.0576 9.0442 14.9157 k = 0.4153 0.7193 0.1405 band energies (ev): -5.5127 -2.2914 1.6921 4.0307 5.5223 9.4713 9.5557 12.2357 14.6655 k = 0.2768 0.4795 0.2341 band energies (ev): -4.9442 -2.5520 1.6894 3.0102 3.8311 8.9457 12.2839 13.8193 14.0953 k = 0.8305 0.0000-0.1405 band energies (ev): -5.5127 -2.2914 1.6921 4.0307 5.5223 9.4713 9.5557 12.2357 14.6655 k = 0.6921-0.2398-0.0468 band energies (ev): -4.6945 -3.0426 1.5239 2.5254 5.6720 9.3051 11.6948 12.7801 13.4135 k = 0.5537 0.0000 0.0468 band energies (ev): -5.0386 -3.6015 4.0516 4.0962 5.7204 8.4908 9.3510 9.8959 14.9663 the Fermi energy is 7.4120 ev total energy = -25.49738573 Ry Harris-Foulkes estimate = -25.49759923 Ry estimated scf accuracy < 0.00053273 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.33E-06, avg # of iterations = 1.0 total cpu time spent up to now is 19.92 secs k = 0.0000 0.0000 0.1405 band energies (ev): -7.4580 1.1006 4.9380 4.9380 5.9561 8.9596 9.7865 9.7865 14.0798 k =-0.1384-0.2398 0.2341 band energies (ev): -6.5050 -1.3724 3.4903 4.8322 7.3296 7.6420 8.7726 11.1271 13.1857 k = 0.2768 0.4795-0.0468 band energies (ev): -5.0689 -3.6254 4.0213 4.0862 5.7084 8.4722 9.3455 9.8873 14.9643 k = 0.1384 0.2398 0.0468 band energies (ev): -6.8907 -0.5079 4.0984 4.7818 6.0803 8.9366 9.2567 10.8436 12.9525 k =-0.2768 0.0000 0.3277 band energies (ev): -6.1902 -1.1394 2.4129 3.5060 5.0771 9.2689 11.0820 11.2785 13.3562 k = 0.1384 0.7193 0.0468 band energies (ev): -4.7273 -3.0688 1.5094 2.5165 5.6610 9.2850 11.6756 12.7562 13.4047 k = 0.0000 0.4795 0.1405 band energies (ev): -5.4333 -2.7663 2.2652 4.4645 5.4301 9.0134 10.4003 11.2971 13.0613 k = 0.5537 0.0000-0.2341 band energies (ev): -4.9742 -2.5847 1.6881 2.9861 3.8249 8.9270 12.2654 13.8115 14.0742 k = 0.4153-0.2398-0.1405 band energies (ev): -5.4333 -2.7663 2.2652 4.4645 5.4301 9.0134 10.4003 11.2971 13.0613 k = 0.2768 0.0000-0.0468 band energies (ev): -6.8907 -0.5079 4.0984 4.7818 6.0803 8.9366 9.2567 10.8436 12.9525 k = 0.2768 0.0000 0.2341 band energies (ev): -6.5050 -1.3724 3.4903 4.8322 7.3296 7.6420 8.7726 11.1271 13.1856 k = 0.1384-0.2398 0.3277 band energies (ev): -6.1902 -1.1394 2.4129 3.5060 5.0771 9.2689 11.0820 11.2785 13.3562 k = 0.5537 0.4795 0.0468 band energies (ev): -4.7273 -3.0688 1.5094 2.5165 5.6610 9.2850 11.6756 12.7562 13.4047 k = 0.4153 0.2398 0.1405 band energies (ev): -5.4333 -2.7663 2.2652 4.4645 5.4301 9.0134 10.4003 11.2971 13.0613 k = 0.0000 0.0000 0.4214 band energies (ev): -6.4501 -1.7529 5.0550 5.0550 6.0581 8.0446 8.0446 9.0458 14.9075 k = 0.4153 0.7193 0.1405 band energies (ev): -5.5490 -2.3012 1.6738 4.0037 5.5134 9.4461 9.5402 12.2095 14.6641 k = 0.2768 0.4795 0.2341 band energies (ev): -4.9742 -2.5847 1.6881 2.9861 3.8249 8.9270 12.2654 13.8115 14.0742 k = 0.8305 0.0000-0.1405 band energies (ev): -5.5490 -2.3012 1.6738 4.0037 5.5134 9.4461 9.5402 12.2095 14.6641 k = 0.6921-0.2398-0.0468 band energies (ev): -4.7273 -3.0688 1.5094 2.5165 5.6610 9.2850 11.6756 12.7562 13.4047 k = 0.5537 0.0000 0.0468 band energies (ev): -5.0689 -3.6254 4.0213 4.0862 5.7084 8.4722 9.3455 9.8873 14.9643 the Fermi energy is 7.3869 ev total energy = -25.49737134 Ry Harris-Foulkes estimate = -25.49741284 Ry estimated scf accuracy < 0.00010919 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.09E-06, avg # of iterations = 1.0 total cpu time spent up to now is 20.22 secs k = 0.0000 0.0000 0.1405 band energies (ev): -7.4706 1.0884 4.9241 4.9241 5.9467 8.9482 9.7761 9.7761 14.0786 k =-0.1384-0.2398 0.2341 band energies (ev): -6.5183 -1.3850 3.4823 4.8172 7.3189 7.6348 8.7668 11.1162 13.1821 k = 0.2768 0.4795-0.0468 band energies (ev): -5.0832 -3.6377 4.0079 4.0795 5.7012 8.4626 9.3400 9.8810 14.9628 k = 0.1384 0.2398 0.0468 band energies (ev): -6.9034 -0.5227 4.0856 4.7733 6.0725 8.9290 9.2452 10.8342 12.9504 k =-0.2768 0.0000 0.3277 band energies (ev): -6.2042 -1.1516 2.4035 3.4945 5.0730 9.2592 11.0691 11.2668 13.3534 k = 0.1384 0.7193 0.0468 band energies (ev): -4.7426 -3.0823 1.5022 2.5107 5.6533 9.2749 11.6672 12.7441 13.3986 k = 0.0000 0.4795 0.1405 band energies (ev): -5.4467 -2.7807 2.2551 4.4600 5.4210 9.0074 10.3886 11.2868 13.0573 k = 0.5537 0.0000-0.2341 band energies (ev): -4.9886 -2.6001 1.6846 2.9749 3.8196 8.9200 12.2544 13.8053 14.0622 k = 0.4153-0.2398-0.1405 band energies (ev): -5.4467 -2.7807 2.2551 4.4600 5.4210 9.0074 10.3886 11.2868 13.0573 k = 0.2768 0.0000-0.0468 band energies (ev): -6.9034 -0.5227 4.0856 4.7733 6.0725 8.9290 9.2452 10.8342 12.9504 k = 0.2768 0.0000 0.2341 band energies (ev): -6.5183 -1.3850 3.4823 4.8172 7.3189 7.6348 8.7668 11.1162 13.1821 k = 0.1384-0.2398 0.3277 band energies (ev): -6.2042 -1.1516 2.4035 3.4945 5.0730 9.2592 11.0691 11.2668 13.3534 k = 0.5537 0.4795 0.0468 band energies (ev): -4.7426 -3.0823 1.5022 2.5107 5.6533 9.2749 11.6672 12.7441 13.3986 k = 0.4153 0.2398 0.1405 band energies (ev): -5.4467 -2.7807 2.2551 4.4600 5.4210 9.0074 10.3886 11.2868 13.0573 k = 0.0000 0.0000 0.4214 band energies (ev): -6.4650 -1.7594 5.0407 5.0407 6.0441 8.0372 8.0372 9.0413 14.9046 k = 0.4153 0.7193 0.1405 band energies (ev): -5.5652 -2.3096 1.6655 3.9914 5.5073 9.4337 9.5311 12.1967 14.6625 k = 0.2768 0.4795 0.2341 band energies (ev): -4.9886 -2.6001 1.6846 2.9749 3.8196 8.9200 12.2544 13.8053 14.0622 k = 0.8305 0.0000-0.1405 band energies (ev): -5.5652 -2.3096 1.6655 3.9913 5.5073 9.4337 9.5311 12.1967 14.6625 k = 0.6921-0.2398-0.0468 band energies (ev): -4.7426 -3.0823 1.5022 2.5107 5.6533 9.2749 11.6672 12.7441 13.3986 k = 0.5537 0.0000 0.0468 band energies (ev): -5.0832 -3.6377 4.0079 4.0795 5.7012 8.4626 9.3400 9.8810 14.9628 the Fermi energy is 7.3762 ev total energy = -25.49736260 Ry Harris-Foulkes estimate = -25.49737708 Ry estimated scf accuracy < 0.00002461 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.46E-07, avg # of iterations = 3.0 total cpu time spent up to now is 20.63 secs k = 0.0000 0.0000 0.1405 band energies (ev): -7.4827 1.0769 4.9108 4.9108 5.9379 8.9374 9.7661 9.7661 14.0775 k =-0.1384-0.2398 0.2341 band energies (ev): -6.5310 -1.3969 3.4748 4.8029 7.3088 7.6281 8.7613 11.1058 13.1786 k = 0.2768 0.4795-0.0468 band energies (ev): -5.0968 -3.6494 3.9950 4.0731 5.6944 8.4535 9.3348 9.8751 14.9614 k = 0.1384 0.2398 0.0468 band energies (ev): -6.9154 -0.5368 4.0734 4.7652 6.0653 8.9219 9.2343 10.8252 12.9484 k =-0.2768 0.0000 0.3277 band energies (ev): -6.2176 -1.1632 2.3946 3.4835 5.0693 9.2501 11.0568 11.2557 13.3507 k = 0.1384 0.7193 0.0468 band energies (ev): -4.7571 -3.0951 1.4953 2.5052 5.6460 9.2652 11.6593 12.7326 13.3928 k = 0.0000 0.4795 0.1405 band energies (ev): -5.4594 -2.7944 2.2454 4.4558 5.4125 9.0017 10.3774 11.2769 13.0535 k = 0.5537 0.0000-0.2341 band energies (ev): -5.0024 -2.6148 1.6814 2.9642 3.8147 8.9132 12.2440 13.7994 14.0509 k = 0.4153-0.2398-0.1405 band energies (ev): -5.4594 -2.7944 2.2454 4.4558 5.4125 9.0017 10.3774 11.2769 13.0535 k = 0.2768 0.0000-0.0468 band energies (ev): -6.9154 -0.5368 4.0734 4.7652 6.0653 8.9219 9.2343 10.8252 12.9484 k = 0.2768 0.0000 0.2341 band energies (ev): -6.5310 -1.3969 3.4748 4.8029 7.3088 7.6281 8.7613 11.1058 13.1786 k = 0.1384-0.2398 0.3277 band energies (ev): -6.2176 -1.1632 2.3946 3.4835 5.0693 9.2501 11.0568 11.2557 13.3507 k = 0.5537 0.4795 0.0468 band energies (ev): -4.7571 -3.0951 1.4953 2.5052 5.6460 9.2652 11.6593 12.7326 13.3928 k = 0.4153 0.2398 0.1405 band energies (ev): -5.4594 -2.7944 2.2454 4.4558 5.4125 9.0017 10.3774 11.2769 13.0535 k = 0.0000 0.0000 0.4214 band energies (ev): -6.4793 -1.7655 5.0271 5.0271 6.0309 8.0301 8.0301 9.0371 14.9018 k = 0.4153 0.7193 0.1405 band energies (ev): -5.5806 -2.3176 1.6576 3.9796 5.5016 9.4219 9.5223 12.1846 14.6609 k = 0.2768 0.4795 0.2341 band energies (ev): -5.0024 -2.6148 1.6814 2.9642 3.8147 8.9132 12.2440 13.7994 14.0509 k = 0.8305 0.0000-0.1405 band energies (ev): -5.5806 -2.3176 1.6576 3.9796 5.5016 9.4219 9.5223 12.1846 14.6609 k = 0.6921-0.2398-0.0468 band energies (ev): -4.7571 -3.0951 1.4953 2.5052 5.6460 9.2652 11.6593 12.7326 13.3928 k = 0.5537 0.0000 0.0468 band energies (ev): -5.0968 -3.6494 3.9950 4.0731 5.6944 8.4535 9.3348 9.8751 14.9614 the Fermi energy is 7.3660 ev total energy = -25.49737009 Ry Harris-Foulkes estimate = -25.49737028 Ry estimated scf accuracy < 0.00000089 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.94E-09, avg # of iterations = 1.0 total cpu time spent up to now is 20.93 secs k = 0.0000 0.0000 0.1405 band energies (ev): -7.4822 1.0774 4.9113 4.9113 5.9382 8.9378 9.7666 9.7666 14.0776 k =-0.1384-0.2398 0.2341 band energies (ev): -6.5305 -1.3965 3.4751 4.8035 7.3092 7.6282 8.7616 11.1062 13.1787 k = 0.2768 0.4795-0.0468 band energies (ev): -5.0962 -3.6490 3.9955 4.0734 5.6946 8.4538 9.3350 9.8753 14.9614 k = 0.1384 0.2398 0.0468 band energies (ev): -6.9149 -0.5363 4.0739 4.7655 6.0655 8.9222 9.2347 10.8256 12.9485 k =-0.2768 0.0000 0.3277 band energies (ev): -6.2170 -1.1627 2.3949 3.4839 5.0693 9.2504 11.0573 11.2562 13.3508 k = 0.1384 0.7193 0.0468 band energies (ev): -4.7565 -3.0946 1.4956 2.5054 5.6462 9.2656 11.6596 12.7331 13.3930 k = 0.0000 0.4795 0.1405 band energies (ev): -5.4589 -2.7939 2.2458 4.4559 5.4128 9.0019 10.3779 11.2773 13.0536 k = 0.5537 0.0000-0.2341 band energies (ev): -5.0018 -2.6142 1.6814 2.9646 3.8148 8.9134 12.2445 13.7996 14.0513 k = 0.4153-0.2398-0.1405 band energies (ev): -5.4589 -2.7939 2.2458 4.4559 5.4128 9.0019 10.3779 11.2773 13.0536 k = 0.2768 0.0000-0.0468 band energies (ev): -6.9149 -0.5363 4.0739 4.7655 6.0655 8.9222 9.2347 10.8256 12.9485 k = 0.2768 0.0000 0.2341 band energies (ev): -6.5305 -1.3965 3.4751 4.8035 7.3092 7.6282 8.7616 11.1062 13.1787 k = 0.1384-0.2398 0.3277 band energies (ev): -6.2170 -1.1627 2.3949 3.4839 5.0693 9.2504 11.0573 11.2562 13.3508 k = 0.5537 0.4795 0.0468 band energies (ev): -4.7565 -3.0946 1.4956 2.5054 5.6462 9.2656 11.6596 12.7331 13.3930 k = 0.4153 0.2398 0.1405 band energies (ev): -5.4589 -2.7939 2.2458 4.4559 5.4128 9.0019 10.3778 11.2773 13.0536 k = 0.0000 0.0000 0.4214 band energies (ev): -6.4787 -1.7653 5.0276 5.0276 6.0314 8.0304 8.0304 9.0372 14.9019 k = 0.4153 0.7193 0.1405 band energies (ev): -5.5800 -2.3173 1.6579 3.9801 5.5018 9.4223 9.5227 12.1851 14.6609 k = 0.2768 0.4795 0.2341 band energies (ev): -5.0018 -2.6142 1.6814 2.9646 3.8148 8.9134 12.2445 13.7996 14.0513 k = 0.8305 0.0000-0.1405 band energies (ev): -5.5800 -2.3173 1.6579 3.9801 5.5018 9.4223 9.5227 12.1851 14.6609 k = 0.6921-0.2398-0.0468 band energies (ev): -4.7565 -3.0946 1.4956 2.5054 5.6462 9.2656 11.6596 12.7331 13.3930 k = 0.5537 0.0000 0.0468 band energies (ev): -5.0962 -3.6490 3.9955 4.0734 5.6946 8.4538 9.3350 9.8753 14.9615 the Fermi energy is 7.3664 ev total energy = -25.49736985 Ry Harris-Foulkes estimate = -25.49737011 Ry estimated scf accuracy < 0.00000047 Ry iteration # 7 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.68E-09, avg # of iterations = 2.0 total cpu time spent up to now is 21.26 secs End of self-consistent calculation k = 0.0000 0.0000 0.1405 ( 531 PWs) bands (ev): -7.4808 1.0787 4.9129 4.9129 5.9391 8.9390 9.7678 9.7678 14.0776 k =-0.1384-0.2398 0.2341 ( 522 PWs) bands (ev): -6.5290 -1.3951 3.4759 4.8052 7.3103 7.6288 8.7622 11.1074 13.1790 k = 0.2768 0.4795-0.0468 ( 520 PWs) bands (ev): -5.0946 -3.6476 3.9971 4.0740 5.6953 8.4548 9.3356 9.8759 14.9616 k = 0.1384 0.2398 0.0468 ( 525 PWs) bands (ev): -6.9135 -0.5346 4.0754 4.7663 6.0662 8.9230 9.2360 10.8267 12.9486 k =-0.2768 0.0000 0.3277 ( 519 PWs) bands (ev): -6.2154 -1.1614 2.3959 3.4852 5.0696 9.2515 11.0587 11.2575 13.3509 k = 0.1384 0.7193 0.0468 ( 510 PWs) bands (ev): -4.7548 -3.0931 1.4963 2.5060 5.6470 9.2667 11.6605 12.7344 13.3936 k = 0.0000 0.4795 0.1405 ( 521 PWs) bands (ev): -5.4574 -2.7923 2.2469 4.4563 5.4137 9.0025 10.3792 11.2785 13.0540 k = 0.5537 0.0000-0.2341 ( 510 PWs) bands (ev): -5.0002 -2.6125 1.6817 2.9659 3.8152 8.9142 12.2457 13.8002 14.0526 k = 0.4153-0.2398-0.1405 ( 521 PWs) bands (ev): -5.4574 -2.7923 2.2469 4.4563 5.4137 9.0025 10.3791 11.2785 13.0540 k = 0.2768 0.0000-0.0468 ( 525 PWs) bands (ev): -6.9135 -0.5346 4.0754 4.7663 6.0662 8.9230 9.2360 10.8267 12.9486 k = 0.2768 0.0000 0.2341 ( 522 PWs) bands (ev): -6.5290 -1.3951 3.4759 4.8052 7.3103 7.6288 8.7622 11.1074 13.1790 k = 0.1384-0.2398 0.3277 ( 519 PWs) bands (ev): -6.2154 -1.1614 2.3959 3.4852 5.0696 9.2515 11.0587 11.2575 13.3509 k = 0.5537 0.4795 0.0468 ( 510 PWs) bands (ev): -4.7548 -3.0931 1.4963 2.5060 5.6470 9.2667 11.6605 12.7344 13.3936 k = 0.4153 0.2398 0.1405 ( 521 PWs) bands (ev): -5.4574 -2.7923 2.2469 4.4563 5.4137 9.0025 10.3791 11.2785 13.0540 k = 0.0000 0.0000 0.4214 ( 522 PWs) bands (ev): -6.4770 -1.7647 5.0293 5.0293 6.0329 8.0312 8.0312 9.0374 14.9021 k = 0.4153 0.7193 0.1405 ( 520 PWs) bands (ev): -5.5782 -2.3164 1.6588 3.9815 5.5024 9.4237 9.5237 12.1865 14.6610 k = 0.2768 0.4795 0.2341 ( 510 PWs) bands (ev): -5.0002 -2.6125 1.6817 2.9659 3.8152 8.9142 12.2457 13.8002 14.0526 k = 0.8305 0.0000-0.1405 ( 520 PWs) bands (ev): -5.5782 -2.3164 1.6588 3.9815 5.5023 9.4237 9.5237 12.1865 14.6610 k = 0.6921-0.2398-0.0468 ( 510 PWs) bands (ev): -4.7548 -3.0931 1.4963 2.5060 5.6470 9.2667 11.6605 12.7344 13.3936 k = 0.5537 0.0000 0.0468 ( 520 PWs) bands (ev): -5.0946 -3.6476 3.9971 4.0740 5.6953 8.4548 9.3356 9.8759 14.9616 the Fermi energy is 7.3676 ev ! total energy = -25.49736992 Ry Harris-Foulkes estimate = -25.49736992 Ry estimated scf accuracy < 9.2E-10 Ry convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000004 0.00000000 -0.01500236 atom 2 type 1 force = -0.00000004 0.00000000 0.01500236 Total force = 0.021217 Total SCF correction = 0.000027 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -19.22 -0.00014846 0.00000000 0.00000000 -21.84 0.00 0.00 0.00000000 -0.00014846 0.00000000 0.00 -21.84 0.00 0.00000000 0.00000000 -0.00009506 0.00 0.00 -13.98 Entering Dynamics; it = 7 time = 0.04356 pico-seconds new lattice vectors (alat unit) : 0.597675664 0.000000000 0.888981575 -0.298837749 0.517602356 0.888981723 -0.298837749 -0.517602356 0.888981723 new unit-cell volume = 284.2447 (a.u.)^3 new positions in cryst coord As 0.276380389 0.276380413 0.276380413 As -0.276380389 -0.276380413 -0.276380413 new positions in cart coord (alat unit) As 0.000000032 0.000000000 0.737091344 As -0.000000032 0.000000000 -0.737091344 Ekin = 0.00102937 Ry T = 834.3 K Etot = -25.49634055 CELL_PARAMETERS (alat) 0.597675664 0.000000000 0.888981575 -0.298837749 0.517602356 0.888981723 -0.298837749 -0.517602356 0.888981723 ATOMIC_POSITIONS (crystal) As 0.276380389 0.276380413 0.276380413 As -0.276380389 -0.276380413 -0.276380413 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1406103), wk = 0.0625000 k( 2) = ( -0.1394290 -0.2414981 0.2343505), wk = 0.1250000 k( 3) = ( 0.2788581 0.4829963 -0.0468701), wk = 0.1250000 k( 4) = ( 0.1394290 0.2414981 0.0468701), wk = 0.1250000 k( 5) = ( -0.2788580 0.0000000 0.3280908), wk = 0.0625000 k( 6) = ( 0.1394290 0.7244944 0.0468701), wk = 0.1250000 k( 7) = ( 0.0000000 0.4829963 0.1406103), wk = 0.1250000 k( 8) = ( 0.5577161 0.0000000 -0.2343506), wk = 0.0625000 k( 9) = ( 0.4182871 -0.2414981 -0.1406103), wk = 0.1250000 k( 10) = ( 0.2788581 0.0000000 -0.0468701), wk = 0.0625000 k( 11) = ( 0.2788581 0.0000000 0.2343505), wk = 0.0625000 k( 12) = ( 0.1394291 -0.2414981 0.3280907), wk = 0.1250000 k( 13) = ( 0.5577161 0.4829963 0.0468701), wk = 0.1250000 k( 14) = ( 0.4182871 0.2414981 0.1406103), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4218310), wk = 0.0625000 k( 16) = ( 0.4182871 0.7244944 0.1406103), wk = 0.1250000 k( 17) = ( 0.2788581 0.4829963 0.2343505), wk = 0.1250000 k( 18) = ( 0.8365742 0.0000000 -0.1406104), wk = 0.0625000 k( 19) = ( 0.6971452 -0.2414981 -0.0468702), wk = 0.1250000 k( 20) = ( 0.5577161 0.0000000 0.0468701), wk = 0.0625000 extrapolated charge 9.84288, renormalised to 10.00000 total cpu time spent up to now is 21.54 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.3 total cpu time spent up to now is 22.07 secs k = 0.0000 0.0000 0.1406 band energies (ev): -7.4241 1.2800 5.0924 5.0924 6.1162 9.1727 9.9941 9.9941 14.3480 k =-0.1394-0.2415 0.2344 band energies (ev): -6.4596 -1.2321 3.5948 4.9703 7.5617 7.8511 8.9761 11.3448 13.4505 k = 0.2789 0.4830-0.0469 band energies (ev): -4.9962 -3.5295 4.1522 4.2076 5.9022 8.6889 9.5401 10.0496 15.1846 k = 0.1394 0.2415 0.0469 band energies (ev): -6.8455 -0.3504 4.2400 4.9166 6.2264 9.1248 9.4776 11.0480 13.2017 k =-0.2789 0.0000 0.3281 band energies (ev): -6.1446 -0.9993 2.5250 3.6504 5.2471 9.5068 11.3413 11.5084 13.6235 k = 0.1394 0.7245 0.0469 band energies (ev): -4.6573 -2.9568 1.6232 2.6305 5.8210 9.5191 11.9282 12.9928 13.6301 k = 0.0000 0.4830 0.1406 band energies (ev): -5.3653 -2.6527 2.3756 4.6223 5.5601 9.1969 10.6325 11.5340 13.3034 k = 0.5577 0.0000-0.2344 band energies (ev): -4.9010 -2.4802 1.8170 3.1213 3.9564 9.1361 12.4808 14.0673 14.3107 k = 0.4183-0.2415-0.1406 band energies (ev): -5.3653 -2.6528 2.3756 4.6223 5.5601 9.1969 10.6325 11.5340 13.3034 k = 0.2789 0.0000-0.0469 band energies (ev): -6.8455 -0.3504 4.2400 4.9166 6.2264 9.1248 9.4776 11.0480 13.2017 k = 0.2789 0.0000 0.2344 band energies (ev): -6.4596 -1.2321 3.5948 4.9703 7.5617 7.8511 8.9761 11.3448 13.4505 k = 0.1394-0.2415 0.3281 band energies (ev): -6.1446 -0.9993 2.5250 3.6504 5.2471 9.5068 11.3413 11.5084 13.6235 k = 0.5577 0.4830 0.0469 band energies (ev): -4.6573 -2.9568 1.6232 2.6305 5.8210 9.5191 11.9282 12.9928 13.6301 k = 0.4183 0.2415 0.1406 band energies (ev): -5.3653 -2.6527 2.3756 4.6223 5.5601 9.1969 10.6325 11.5340 13.3034 k = 0.0000 0.0000 0.4218 band energies (ev): -6.4183 -1.6435 5.2131 5.2131 6.3237 8.2526 8.2526 9.3161 15.1865 k = 0.4183 0.7245 0.1406 band energies (ev): -5.5055 -2.1798 1.7899 4.1480 5.7197 9.7080 9.7570 12.4711 14.9234 k = 0.2789 0.4830 0.2344 band energies (ev): -4.9010 -2.4802 1.8170 3.1213 3.9564 9.1361 12.4808 14.0673 14.3107 k = 0.8366 0.0000-0.1406 band energies (ev): -5.5055 -2.1798 1.7899 4.1480 5.7197 9.7080 9.7570 12.4711 14.9234 k = 0.6971-0.2415-0.0469 band energies (ev): -4.6573 -2.9568 1.6232 2.6305 5.8210 9.5191 11.9282 12.9928 13.6301 k = 0.5577 0.0000 0.0469 band energies (ev): -4.9962 -3.5295 4.1522 4.2076 5.9022 8.6889 9.5401 10.0496 15.1846 the Fermi energy is 7.6190 ev total energy = -25.49778899 Ry Harris-Foulkes estimate = -25.41100722 Ry estimated scf accuracy < 0.00016428 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.64E-06, avg # of iterations = 3.0 total cpu time spent up to now is 22.56 secs k = 0.0000 0.0000 0.1406 band energies (ev): -7.3832 1.3221 5.1454 5.1454 6.1352 9.2052 10.0181 10.0181 14.2908 k =-0.1394-0.2415 0.2344 band energies (ev): -6.4131 -1.1879 3.5981 5.0304 7.5832 7.8568 8.9654 11.3722 13.4089 k = 0.2789 0.4830-0.0469 band energies (ev): -4.9413 -3.4891 4.1996 4.2023 5.9004 8.7062 9.5267 10.0397 15.1224 k = 0.1394 0.2415 0.0469 band energies (ev): -6.8044 -0.2883 4.2830 4.9268 6.2336 9.1247 9.5057 11.0648 13.1462 k =-0.2789 0.0000 0.3281 band energies (ev): -6.0922 -0.9579 2.5386 3.6825 5.2229 9.5152 11.3883 11.5440 13.5845 k = 0.1394 0.7245 0.0469 band energies (ev): -4.5940 -2.9063 1.6186 2.6164 5.8265 9.5416 11.9281 13.0298 13.6164 k = 0.0000 0.4830 0.1406 band energies (ev): -5.3176 -2.5952 2.3943 4.6001 5.5762 9.1837 10.6659 11.5577 13.2672 k = 0.5577 0.0000-0.2344 band energies (ev): -4.8440 -2.4156 1.7851 3.1507 3.9414 9.1224 12.5114 14.0532 14.3517 k = 0.4183-0.2415-0.1406 band energies (ev): -5.3176 -2.5952 2.3943 4.6001 5.5762 9.1837 10.6659 11.5577 13.2672 k = 0.2789 0.0000-0.0469 band energies (ev): -6.8044 -0.2883 4.2830 4.9268 6.2336 9.1247 9.5057 11.0648 13.1462 k = 0.2789 0.0000 0.2344 band energies (ev): -6.4131 -1.1879 3.5981 5.0304 7.5832 7.8568 8.9654 11.3722 13.4089 k = 0.1394-0.2415 0.3281 band energies (ev): -6.0922 -0.9579 2.5386 3.6825 5.2229 9.5152 11.3883 11.5440 13.5845 k = 0.5577 0.4830 0.0469 band energies (ev): -4.5940 -2.9063 1.6186 2.6164 5.8265 9.5416 11.9281 13.0298 13.6164 k = 0.4183 0.2415 0.1406 band energies (ev): -5.3176 -2.5952 2.3943 4.6001 5.5762 9.1837 10.6659 11.5577 13.2672 k = 0.0000 0.0000 0.4218 band energies (ev): -6.3589 -1.6476 5.2676 5.2676 6.3707 8.2539 8.2539 9.2995 15.1354 k = 0.4183 0.7245 0.1406 band energies (ev): -5.4358 -2.1684 1.7937 4.1863 5.7087 9.7493 9.7738 12.5151 14.8666 k = 0.2789 0.4830 0.2344 band energies (ev): -4.8440 -2.4156 1.7851 3.1507 3.9414 9.1224 12.5114 14.0532 14.3517 k = 0.8366 0.0000-0.1406 band energies (ev): -5.4358 -2.1684 1.7937 4.1863 5.7087 9.7493 9.7738 12.5151 14.8666 k = 0.6971-0.2415-0.0469 band energies (ev): -4.5940 -2.9063 1.6186 2.6164 5.8265 9.5416 11.9281 13.0298 13.6164 k = 0.5577 0.0000 0.0469 band energies (ev): -4.9413 -3.4891 4.1996 4.2023 5.9004 8.7062 9.5267 10.0397 15.1224 the Fermi energy is 7.7996 ev total energy = -25.49803642 Ry Harris-Foulkes estimate = -25.49809029 Ry estimated scf accuracy < 0.00012801 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.28E-06, avg # of iterations = 1.0 total cpu time spent up to now is 22.86 secs k = 0.0000 0.0000 0.1406 band energies (ev): -7.3964 1.3143 5.1304 5.1304 6.1268 9.1922 10.0074 10.0074 14.2911 k =-0.1394-0.2415 0.2344 band energies (ev): -6.4271 -1.1986 3.5911 5.0131 7.5706 7.8542 8.9631 11.3618 13.4046 k = 0.2789 0.4830-0.0469 band energies (ev): -4.9564 -3.5008 4.1842 4.1978 5.8949 8.6971 9.5248 10.0360 15.1219 k = 0.1394 0.2415 0.0469 band energies (ev): -6.8174 -0.3023 4.2690 4.9202 6.2287 9.1193 9.4914 11.0574 13.1446 k =-0.2789 0.0000 0.3281 band energies (ev): -6.1072 -0.9670 2.5279 3.6702 5.2231 9.5031 11.3750 11.5329 13.5850 k = 0.1394 0.7245 0.0469 band energies (ev): -4.6104 -2.9191 1.6115 2.6124 5.8217 9.5319 11.9184 13.0181 13.6123 k = 0.0000 0.4830 0.1406 band energies (ev): -5.3314 -2.6095 2.3826 4.5995 5.5693 9.1801 10.6546 11.5463 13.2639 k = 0.5577 0.0000-0.2344 band energies (ev): -4.8590 -2.4320 1.7854 3.1386 3.9390 9.1129 12.5027 14.0504 14.3414 k = 0.4183-0.2415-0.1406 band energies (ev): -5.3314 -2.6095 2.3826 4.5995 5.5693 9.1801 10.6546 11.5463 13.2639 k = 0.2789 0.0000-0.0469 band energies (ev): -6.8174 -0.3023 4.2690 4.9202 6.2287 9.1193 9.4914 11.0574 13.1446 k = 0.2789 0.0000 0.2344 band energies (ev): -6.4271 -1.1986 3.5911 5.0131 7.5706 7.8542 8.9631 11.3618 13.4046 k = 0.1394-0.2415 0.3281 band energies (ev): -6.1072 -0.9670 2.5279 3.6702 5.2231 9.5031 11.3750 11.5329 13.5850 k = 0.5577 0.4830 0.0469 band energies (ev): -4.6104 -2.9191 1.6115 2.6124 5.8217 9.5319 11.9184 13.0181 13.6123 k = 0.4183 0.2415 0.1406 band energies (ev): -5.3314 -2.6095 2.3826 4.5995 5.5693 9.1801 10.6546 11.5463 13.2639 k = 0.0000 0.0000 0.4218 band energies (ev): -6.3756 -1.6486 5.2517 5.2517 6.3520 8.2477 8.2477 9.3016 15.1311 k = 0.4183 0.7245 0.1406 band energies (ev): -5.4543 -2.1721 1.7843 4.1727 5.7047 9.7369 9.7665 12.5020 14.8663 k = 0.2789 0.4830 0.2344 band energies (ev): -4.8590 -2.4320 1.7854 3.1386 3.9390 9.1129 12.5027 14.0504 14.3414 k = 0.8366 0.0000-0.1406 band energies (ev): -5.4543 -2.1721 1.7843 4.1727 5.7047 9.7369 9.7665 12.5020 14.8663 k = 0.6971-0.2415-0.0469 band energies (ev): -4.6104 -2.9191 1.6115 2.6124 5.8217 9.5318 11.9184 13.0181 13.6123 k = 0.5577 0.0000 0.0469 band energies (ev): -4.9564 -3.5008 4.1842 4.1978 5.8949 8.6971 9.5248 10.0360 15.1219 the Fermi energy is 7.7969 ev total energy = -25.49803674 Ry Harris-Foulkes estimate = -25.49804410 Ry estimated scf accuracy < 0.00002237 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.24E-07, avg # of iterations = 1.0 total cpu time spent up to now is 23.16 secs k = 0.0000 0.0000 0.1406 band energies (ev): -7.4010 1.3100 5.1252 5.1252 6.1233 9.1879 10.0035 10.0035 14.2907 k =-0.1394-0.2415 0.2344 band energies (ev): -6.4320 -1.2031 3.5883 5.0075 7.5667 7.8516 8.9611 11.3578 13.4032 k = 0.2789 0.4830-0.0469 band energies (ev): -4.9617 -3.5053 4.1792 4.1955 5.8923 8.6936 9.5229 10.0338 15.1215 k = 0.1394 0.2415 0.0469 band energies (ev): -6.8221 -0.3077 4.2643 4.9172 6.2260 9.1166 9.4872 11.0540 13.1439 k =-0.2789 0.0000 0.3281 band energies (ev): -6.1124 -0.9713 2.5243 3.6659 5.2218 9.4996 11.3702 11.5286 13.5840 k = 0.1394 0.7245 0.0469 band energies (ev): -4.6161 -2.9241 1.6089 2.6104 5.8189 9.5281 11.9154 13.0137 13.6101 k = 0.0000 0.4830 0.1406 band energies (ev): -5.3363 -2.6148 2.3789 4.5980 5.5660 9.1780 10.6504 11.5424 13.2624 k = 0.5577 0.0000-0.2344 band energies (ev): -4.8643 -2.4377 1.7842 3.1344 3.9371 9.1103 12.4988 14.0483 14.3369 k = 0.4183-0.2415-0.1406 band energies (ev): -5.3363 -2.6148 2.3789 4.5980 5.5660 9.1780 10.6504 11.5424 13.2624 k = 0.2789 0.0000-0.0469 band energies (ev): -6.8221 -0.3077 4.2643 4.9172 6.2260 9.1166 9.4872 11.0540 13.1439 k = 0.2789 0.0000 0.2344 band energies (ev): -6.4320 -1.2031 3.5883 5.0075 7.5667 7.8516 8.9611 11.3578 13.4032 k = 0.1394-0.2415 0.3281 band energies (ev): -6.1124 -0.9713 2.5243 3.6659 5.2218 9.4996 11.3702 11.5286 13.5840 k = 0.5577 0.4830 0.0469 band energies (ev): -4.6161 -2.9241 1.6089 2.6104 5.8189 9.5281 11.9154 13.0137 13.6101 k = 0.4183 0.2415 0.1406 band energies (ev): -5.3363 -2.6148 2.3789 4.5980 5.5660 9.1780 10.6504 11.5424 13.2624 k = 0.0000 0.0000 0.4218 band energies (ev): -6.3812 -1.6508 5.2464 5.2464 6.3466 8.2450 8.2450 9.3001 15.1301 k = 0.4183 0.7245 0.1406 band energies (ev): -5.4603 -2.1750 1.7812 4.1681 5.7025 9.7323 9.7632 12.4973 14.8658 k = 0.2789 0.4830 0.2344 band energies (ev): -4.8643 -2.4377 1.7842 3.1344 3.9371 9.1103 12.4988 14.0483 14.3369 k = 0.8366 0.0000-0.1406 band energies (ev): -5.4603 -2.1750 1.7812 4.1681 5.7025 9.7323 9.7632 12.4973 14.8658 k = 0.6971-0.2415-0.0469 band energies (ev): -4.6161 -2.9241 1.6089 2.6104 5.8189 9.5281 11.9154 13.0137 13.6101 k = 0.5577 0.0000 0.0469 band energies (ev): -4.9617 -3.5053 4.1792 4.1955 5.8923 8.6936 9.5229 10.0338 15.1215 the Fermi energy is 7.7944 ev total energy = -25.49803371 Ry Harris-Foulkes estimate = -25.49803773 Ry estimated scf accuracy < 0.00000713 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.13E-08, avg # of iterations = 2.6 total cpu time spent up to now is 23.52 secs End of self-consistent calculation k = 0.0000 0.0000 0.1406 ( 531 PWs) bands (ev): -7.4068 1.3047 5.1189 5.1189 6.1191 9.1827 9.9988 9.9988 14.2903 k =-0.1394-0.2415 0.2344 ( 522 PWs) bands (ev): -6.4380 -1.2088 3.5848 5.0006 7.5619 7.8484 8.9586 11.3530 13.4016 k = 0.2789 0.4830-0.0469 ( 520 PWs) bands (ev): -4.9682 -3.5108 4.1731 4.1926 5.8891 8.6893 9.5205 10.0311 15.1210 k = 0.1394 0.2415 0.0469 ( 525 PWs) bands (ev): -6.8278 -0.3144 4.2584 4.9135 6.2225 9.1133 9.4820 11.0498 13.1430 k =-0.2789 0.0000 0.3281 ( 519 PWs) bands (ev): -6.1188 -0.9767 2.5200 3.6607 5.2201 9.4954 11.3642 11.5233 13.5827 k = 0.1394 0.7245 0.0469 ( 510 PWs) bands (ev): -4.6231 -2.9302 1.6057 2.6079 5.8155 9.5236 11.9117 13.0083 13.6074 k = 0.0000 0.4830 0.1406 ( 521 PWs) bands (ev): -5.3424 -2.6213 2.3743 4.5961 5.5620 9.1754 10.6452 11.5376 13.2606 k = 0.5577 0.0000-0.2344 ( 510 PWs) bands (ev): -4.8709 -2.4447 1.7828 3.1293 3.9349 9.1071 12.4939 14.0458 14.3314 k = 0.4183-0.2415-0.1406 ( 521 PWs) bands (ev): -5.3424 -2.6213 2.3743 4.5961 5.5620 9.1754 10.6452 11.5376 13.2606 k = 0.2789 0.0000-0.0469 ( 525 PWs) bands (ev): -6.8278 -0.3144 4.2584 4.9135 6.2225 9.1133 9.4820 11.0498 13.1430 k = 0.2789 0.0000 0.2344 ( 522 PWs) bands (ev): -6.4380 -1.2088 3.5848 5.0006 7.5619 7.8484 8.9586 11.3530 13.4016 k = 0.1394-0.2415 0.3281 ( 519 PWs) bands (ev): -6.1188 -0.9767 2.5200 3.6607 5.2201 9.4954 11.3642 11.5233 13.5827 k = 0.5577 0.4830 0.0469 ( 510 PWs) bands (ev): -4.6231 -2.9302 1.6057 2.6079 5.8155 9.5236 11.9117 13.0083 13.6074 k = 0.4183 0.2415 0.1406 ( 521 PWs) bands (ev): -5.3424 -2.6213 2.3743 4.5961 5.5620 9.1754 10.6452 11.5376 13.2606 k = 0.0000 0.0000 0.4218 ( 522 PWs) bands (ev): -6.3880 -1.6535 5.2398 5.2398 6.3402 8.2417 8.2417 9.2983 15.1289 k = 0.4183 0.7245 0.1406 ( 520 PWs) bands (ev): -5.4677 -2.1786 1.7774 4.1625 5.6999 9.7267 9.7590 12.4914 14.8652 k = 0.2789 0.4830 0.2344 ( 510 PWs) bands (ev): -4.8709 -2.4447 1.7828 3.1293 3.9349 9.1071 12.4939 14.0458 14.3314 k = 0.8366 0.0000-0.1406 ( 520 PWs) bands (ev): -5.4677 -2.1786 1.7774 4.1625 5.6999 9.7267 9.7590 12.4914 14.8652 k = 0.6971-0.2415-0.0469 ( 510 PWs) bands (ev): -4.6231 -2.9302 1.6057 2.6079 5.8155 9.5236 11.9117 13.0083 13.6074 k = 0.5577 0.0000 0.0469 ( 520 PWs) bands (ev): -4.9682 -3.5108 4.1731 4.1926 5.8891 8.6893 9.5205 10.0311 15.1210 the Fermi energy is 7.7912 ev ! total energy = -25.49803542 Ry Harris-Foulkes estimate = -25.49803544 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.01599817 atom 2 type 1 force = 0.00000000 0.00000000 0.01599817 Total force = 0.022625 Total SCF correction = 0.000100 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -7.38 -0.00004459 0.00000000 0.00000000 -6.56 0.00 0.00 0.00000000 -0.00004459 0.00000000 0.00 -6.56 0.00 0.00000000 0.00000000 -0.00006139 0.00 0.00 -9.03 Entering Dynamics; it = 8 time = 0.05082 pico-seconds new lattice vectors (alat unit) : 0.592945156 0.000000000 0.887432032 -0.296472485 0.513505583 0.887432176 -0.296472485 -0.513505583 0.887432176 new unit-cell volume = 279.2753 (a.u.)^3 new positions in cryst coord As 0.275688358 0.275688378 0.275688378 As -0.275688358 -0.275688378 -0.275688378 new positions in cart coord (alat unit) As 0.000000040 0.000000000 0.733964153 As -0.000000040 0.000000000 -0.733964153 Ekin = 0.00173767 Ry T = 723.9 K Etot = -25.49629775 CELL_PARAMETERS (alat) 0.592945156 0.000000000 0.887432032 -0.296472485 0.513505583 0.887432176 -0.296472485 -0.513505583 0.887432176 ATOMIC_POSITIONS (crystal) As 0.275688358 0.275688378 0.275688378 As -0.275688358 -0.275688378 -0.275688378 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1408558), wk = 0.0625000 k( 2) = ( -0.1405414 -0.2434248 0.2347597), wk = 0.1250000 k( 3) = ( 0.2810828 0.4868496 -0.0469520), wk = 0.1250000 k( 4) = ( 0.1405414 0.2434248 0.0469519), wk = 0.1250000 k( 5) = ( -0.2810827 0.0000000 0.3286637), wk = 0.0625000 k( 6) = ( 0.1405414 0.7302744 0.0469519), wk = 0.1250000 k( 7) = ( 0.0000000 0.4868496 0.1408558), wk = 0.1250000 k( 8) = ( 0.5621656 0.0000000 -0.2347598), wk = 0.0625000 k( 9) = ( 0.4216242 -0.2434248 -0.1408559), wk = 0.1250000 k( 10) = ( 0.2810828 0.0000000 -0.0469520), wk = 0.0625000 k( 11) = ( 0.2810828 0.0000000 0.2347597), wk = 0.0625000 k( 12) = ( 0.1405415 -0.2434248 0.3286636), wk = 0.1250000 k( 13) = ( 0.5621656 0.4868496 0.0469519), wk = 0.1250000 k( 14) = ( 0.4216242 0.2434248 0.1408558), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4225675), wk = 0.0625000 k( 16) = ( 0.4216242 0.7302744 0.1408558), wk = 0.1250000 k( 17) = ( 0.2810828 0.4868496 0.2347597), wk = 0.1250000 k( 18) = ( 0.8432484 0.0000000 -0.1408559), wk = 0.0625000 k( 19) = ( 0.7027070 -0.2434248 -0.0469520), wk = 0.1250000 k( 20) = ( 0.5621656 0.0000000 0.0469519), wk = 0.0625000 extrapolated charge 9.82207, renormalised to 10.00000 total cpu time spent up to now is 23.79 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.8 total cpu time spent up to now is 24.38 secs k = 0.0000 0.0000 0.1409 band energies (ev): -7.3304 1.5292 5.3382 5.3382 6.3243 9.4710 10.2653 10.2653 14.5900 k =-0.1405-0.2434 0.2348 band energies (ev): -6.3460 -1.0208 3.7289 5.2125 7.8523 8.1041 9.1875 11.6226 13.7229 k = 0.2811 0.4868-0.0470 band energies (ev): -4.8426 -3.3698 4.3510 4.3705 6.1247 8.9668 9.7391 10.2223 15.3739 k = 0.1405 0.2434 0.0470 band energies (ev): -6.7393 -0.0968 4.4613 5.0884 6.4121 9.3351 9.7740 11.2994 13.4285 k =-0.2811 0.0000 0.3287 band energies (ev): -6.0232 -0.7928 2.6808 3.8603 5.4137 9.8025 11.6914 11.8129 13.8778 k = 0.1405 0.7303 0.0470 band energies (ev): -4.4959 -2.7675 1.7568 2.7519 6.0168 9.8065 12.2268 13.3115 13.8714 k = 0.0000 0.4868 0.1409 band energies (ev): -5.2262 -2.4523 2.5356 4.7808 5.7400 9.3837 10.9309 11.8438 13.5487 k = 0.5622 0.0000-0.2348 band energies (ev): -4.7449 -2.2792 1.9308 3.3185 4.0922 9.3791 12.7581 14.3338 14.6194 k = 0.4216-0.2434-0.1409 band energies (ev): -5.2262 -2.4523 2.5356 4.7808 5.7400 9.3837 10.9309 11.8438 13.5487 k = 0.2811 0.0000-0.0470 band energies (ev): -6.7393 -0.0968 4.4613 5.0884 6.4121 9.3351 9.7740 11.2994 13.4285 k = 0.2811 0.0000 0.2348 band energies (ev): -6.3460 -1.0208 3.7289 5.2125 7.8523 8.1041 9.1875 11.6226 13.7229 k = 0.1405-0.2434 0.3287 band energies (ev): -6.0232 -0.7928 2.6808 3.8603 5.4137 9.8025 11.6914 11.8129 13.8778 k = 0.5622 0.4868 0.0470 band energies (ev): -4.4959 -2.7675 1.7568 2.7519 6.0168 9.8065 12.2268 13.3115 13.8714 k = 0.4216 0.2434 0.1409 band energies (ev): -5.2262 -2.4523 2.5356 4.7808 5.7400 9.3837 10.9309 11.8438 13.5487 k = 0.0000 0.0000 0.4226 band energies (ev): -6.3023 -1.5271 5.4670 5.4670 6.6867 8.4901 8.4901 9.6107 15.4558 k = 0.4216 0.7303 0.1409 band energies (ev): -5.3637 -2.0324 1.9378 4.3674 5.9435 10.0194 10.0610 12.8273 15.1576 k = 0.2811 0.4868 0.2348 band energies (ev): -4.7449 -2.2792 1.9308 3.3185 4.0922 9.3791 12.7581 14.3338 14.6194 k = 0.8432 0.0000-0.1409 band energies (ev): -5.3637 -2.0324 1.9378 4.3674 5.9435 10.0194 10.0610 12.8273 15.1576 k = 0.7027-0.2434-0.0470 band energies (ev): -4.4959 -2.7675 1.7568 2.7519 6.0168 9.8065 12.2268 13.3115 13.8714 k = 0.5622 0.0000 0.0470 band energies (ev): -4.8426 -3.3698 4.3510 4.3705 6.1247 8.9668 9.7391 10.2223 15.3739 the Fermi energy is 8.0468 ev total energy = -25.49811374 Ry Harris-Foulkes estimate = -25.39819944 Ry estimated scf accuracy < 0.00020498 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.05E-06, avg # of iterations = 3.0 total cpu time spent up to now is 24.88 secs k = 0.0000 0.0000 0.1409 band energies (ev): -7.2875 1.5699 5.3954 5.3954 6.3445 9.5069 10.2900 10.2900 14.5240 k =-0.1405-0.2434 0.2348 band energies (ev): -6.2968 -0.9755 3.7298 5.2782 7.8729 8.1092 9.1715 11.6490 13.6773 k = 0.2811 0.4868-0.0470 band energies (ev): -4.7838 -3.3283 4.3418 4.4217 6.1205 8.9839 9.7204 10.2077 15.3011 k = 0.1405 0.2434 0.0470 band energies (ev): -6.6962 -0.0306 4.5072 5.0959 6.4177 9.3309 9.8028 11.3143 13.3646 k =-0.2811 0.0000 0.3287 band energies (ev): -5.9673 -0.7521 2.6963 3.8940 5.3828 9.8070 11.7442 11.8503 13.8337 k = 0.1405 0.7303 0.0470 band energies (ev): -4.4274 -2.7145 1.7490 2.7332 6.0199 9.8287 12.2236 13.3492 13.8552 k = 0.0000 0.4868 0.1409 band energies (ev): -5.1756 -2.3909 2.5547 4.7518 5.7552 9.3647 10.9638 11.8713 13.5072 k = 0.5622 0.0000-0.2348 band energies (ev): -4.6838 -2.2094 1.8911 3.3492 4.0730 9.3604 12.7884 14.3119 14.6656 k = 0.4216-0.2434-0.1409 band energies (ev): -5.1756 -2.3909 2.5547 4.7518 5.7552 9.3647 10.9638 11.8713 13.5072 k = 0.2811 0.0000-0.0470 band energies (ev): -6.6962 -0.0306 4.5072 5.0959 6.4177 9.3309 9.8028 11.3143 13.3646 k = 0.2811 0.0000 0.2348 band energies (ev): -6.2968 -0.9755 3.7298 5.2782 7.8729 8.1092 9.1715 11.6490 13.6773 k = 0.1405-0.2434 0.3287 band energies (ev): -5.9673 -0.7521 2.6963 3.8940 5.3828 9.8070 11.7442 11.8503 13.8337 k = 0.5622 0.4868 0.0470 band energies (ev): -4.4274 -2.7145 1.7490 2.7332 6.0199 9.8287 12.2236 13.3492 13.8552 k = 0.4216 0.2434 0.1409 band energies (ev): -5.1756 -2.3909 2.5547 4.7518 5.7552 9.3647 10.9638 11.8713 13.5072 k = 0.0000 0.0000 0.4226 band energies (ev): -6.2382 -1.5373 5.5261 5.5261 6.7400 8.4890 8.4890 9.5878 15.3990 k = 0.4216 0.7303 0.1409 band energies (ev): -5.2876 -2.0263 1.9414 4.4081 5.9289 10.0354 10.1049 12.8751 15.0923 k = 0.2811 0.4868 0.2348 band energies (ev): -4.6838 -2.2094 1.8911 3.3492 4.0730 9.3604 12.7884 14.3119 14.6656 k = 0.8432 0.0000-0.1409 band energies (ev): -5.2876 -2.0263 1.9414 4.4081 5.9289 10.0354 10.1049 12.8751 15.0923 k = 0.7027-0.2434-0.0470 band energies (ev): -4.4274 -2.7145 1.7490 2.7332 6.0199 9.8287 12.2236 13.3492 13.8552 k = 0.5622 0.0000 0.0470 band energies (ev): -4.7838 -3.3283 4.3418 4.4217 6.1205 8.9839 9.7203 10.2077 15.3011 the Fermi energy is 8.0517 ev total energy = -25.49842258 Ry Harris-Foulkes estimate = -25.49849572 Ry estimated scf accuracy < 0.00017416 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.74E-06, avg # of iterations = 1.0 total cpu time spent up to now is 25.17 secs k = 0.0000 0.0000 0.1409 band energies (ev): -7.3021 1.5623 5.3786 5.3786 6.3355 9.4917 10.2779 10.2779 14.5247 k =-0.1405-0.2434 0.2348 band energies (ev): -6.3124 -0.9868 3.7222 5.2585 7.8592 8.1066 9.1697 11.6379 13.6720 k = 0.2811 0.4868-0.0470 band energies (ev): -4.8007 -3.3409 4.3373 4.4043 6.1147 8.9738 9.7190 10.2042 15.3011 k = 0.1405 0.2434 0.0470 band energies (ev): -6.7106 -0.0459 4.4915 5.0893 6.4128 9.3256 9.7865 11.3065 13.3634 k =-0.2811 0.0000 0.3287 band energies (ev): -5.9841 -0.7612 2.6838 3.8802 5.3840 9.7937 11.7292 11.8381 13.8347 k = 0.1405 0.7303 0.0470 band energies (ev): -4.4459 -2.7285 1.7413 2.7292 6.0151 9.8183 12.2128 13.3363 13.8510 k = 0.0000 0.4868 0.1409 band energies (ev): -5.1910 -2.4067 2.5414 4.7521 5.7478 9.3615 10.9519 11.8577 13.5035 k = 0.5622 0.0000-0.2348 band energies (ev): -4.7005 -2.2279 1.8923 3.3356 4.0708 9.3496 12.7793 14.3097 14.6544 k = 0.4216-0.2434-0.1409 band energies (ev): -5.1910 -2.4067 2.5414 4.7521 5.7478 9.3615 10.9519 11.8577 13.5035 k = 0.2811 0.0000-0.0470 band energies (ev): -6.7106 -0.0459 4.4915 5.0893 6.4128 9.3256 9.7865 11.3065 13.3634 k = 0.2811 0.0000 0.2348 band energies (ev): -6.3124 -0.9868 3.7222 5.2585 7.8592 8.1066 9.1697 11.6379 13.6720 k = 0.1405-0.2434 0.3287 band energies (ev): -5.9841 -0.7612 2.6838 3.8802 5.3840 9.7937 11.7292 11.8381 13.8347 k = 0.5622 0.4868 0.0470 band energies (ev): -4.4459 -2.7285 1.7413 2.7292 6.0151 9.8183 12.2128 13.3363 13.8510 k = 0.4216 0.2434 0.1409 band energies (ev): -5.1910 -2.4067 2.5414 4.7521 5.7478 9.3615 10.9519 11.8577 13.5035 k = 0.0000 0.0000 0.4226 band energies (ev): -6.2570 -1.5373 5.5082 5.5082 6.7183 8.4824 8.4824 9.5914 15.3939 k = 0.4216 0.7303 0.1409 band energies (ev): -5.3086 -2.0290 1.9307 4.3928 5.9249 10.0277 10.0911 12.8602 15.0923 k = 0.2811 0.4868 0.2348 band energies (ev): -4.7005 -2.2279 1.8923 3.3356 4.0708 9.3496 12.7793 14.3097 14.6544 k = 0.8432 0.0000-0.1409 band energies (ev): -5.3086 -2.0290 1.9307 4.3928 5.9249 10.0277 10.0911 12.8602 15.0923 k = 0.7027-0.2434-0.0470 band energies (ev): -4.4459 -2.7285 1.7413 2.7292 6.0151 9.8183 12.2128 13.3363 13.8510 k = 0.5622 0.0000 0.0470 band energies (ev): -4.8007 -3.3409 4.3373 4.4043 6.1147 8.9738 9.7190 10.2042 15.3011 the Fermi energy is 8.0492 ev total energy = -25.49842484 Ry Harris-Foulkes estimate = -25.49843378 Ry estimated scf accuracy < 0.00002935 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.93E-07, avg # of iterations = 1.0 total cpu time spent up to now is 25.47 secs k = 0.0000 0.0000 0.1409 band energies (ev): -7.3069 1.5580 5.3732 5.3732 6.3318 9.4871 10.2740 10.2740 14.5243 k =-0.1405-0.2434 0.2348 band energies (ev): -6.3175 -0.9915 3.7193 5.2526 7.8553 8.1038 9.1677 11.6339 13.6705 k = 0.2811 0.4868-0.0470 band energies (ev): -4.8062 -3.3455 4.3349 4.3991 6.1120 8.9701 9.7171 10.2019 15.3007 k = 0.1405 0.2434 0.0470 band energies (ev): -6.7154 -0.0516 4.4866 5.0862 6.4098 9.3229 9.7822 11.3031 13.3626 k =-0.2811 0.0000 0.3287 band energies (ev): -5.9895 -0.7656 2.6800 3.8758 5.3827 9.7902 11.7240 11.8336 13.8336 k = 0.1405 0.7303 0.0470 band energies (ev): -4.4518 -2.7336 1.7386 2.7271 6.0123 9.8145 12.2097 13.3318 13.8486 k = 0.0000 0.4868 0.1409 band energies (ev): -5.1961 -2.4122 2.5376 4.7506 5.7444 9.3594 10.9476 11.8535 13.5020 k = 0.5622 0.0000-0.2348 band energies (ev): -4.7060 -2.2338 1.8912 3.3313 4.0689 9.3471 12.7752 14.3077 14.6496 k = 0.4216-0.2434-0.1409 band energies (ev): -5.1961 -2.4122 2.5376 4.7506 5.7444 9.3594 10.9476 11.8535 13.5020 k = 0.2811 0.0000-0.0470 band energies (ev): -6.7154 -0.0516 4.4865 5.0862 6.4098 9.3229 9.7822 11.3031 13.3626 k = 0.2811 0.0000 0.2348 band energies (ev): -6.3175 -0.9915 3.7193 5.2526 7.8553 8.1038 9.1677 11.6339 13.6705 k = 0.1405-0.2434 0.3287 band energies (ev): -5.9895 -0.7656 2.6800 3.8758 5.3827 9.7902 11.7240 11.8336 13.8336 k = 0.5622 0.4868 0.0470 band energies (ev): -4.4518 -2.7336 1.7386 2.7271 6.0123 9.8145 12.2097 13.3318 13.8486 k = 0.4216 0.2434 0.1409 band energies (ev): -5.1961 -2.4122 2.5376 4.7506 5.7444 9.3594 10.9476 11.8535 13.5020 k = 0.0000 0.0000 0.4226 band energies (ev): -6.2628 -1.5395 5.5027 5.5027 6.7127 8.4796 8.4796 9.5900 15.3928 k = 0.4216 0.7303 0.1409 band energies (ev): -5.3149 -2.0318 1.9274 4.3881 5.9227 10.0242 10.0864 12.8553 15.0918 k = 0.2811 0.4868 0.2348 band energies (ev): -4.7060 -2.2338 1.8912 3.3313 4.0689 9.3471 12.7752 14.3077 14.6496 k = 0.8432 0.0000-0.1409 band energies (ev): -5.3149 -2.0318 1.9274 4.3881 5.9227 10.0242 10.0864 12.8553 15.0918 k = 0.7027-0.2434-0.0470 band energies (ev): -4.4518 -2.7336 1.7386 2.7271 6.0123 9.8145 12.2097 13.3318 13.8486 k = 0.5622 0.0000 0.0470 band energies (ev): -4.8062 -3.3455 4.3349 4.3991 6.1120 8.9701 9.7171 10.2019 15.3007 the Fermi energy is 8.0464 ev total energy = -25.49842000 Ry Harris-Foulkes estimate = -25.49842599 Ry estimated scf accuracy < 0.00001061 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.06E-07, avg # of iterations = 2.4 total cpu time spent up to now is 25.85 secs End of self-consistent calculation k = 0.0000 0.0000 0.1409 ( 531 PWs) bands (ev): -7.3138 1.5518 5.3655 5.3655 6.3267 9.4808 10.2682 10.2682 14.5238 k =-0.1405-0.2434 0.2348 ( 522 PWs) bands (ev): -6.3248 -0.9982 3.7151 5.2442 7.8496 8.0999 9.1648 11.6282 13.6684 k = 0.2811 0.4868-0.0470 ( 520 PWs) bands (ev): -4.8141 -3.3522 4.3315 4.3915 6.1082 8.9650 9.7143 10.1988 15.3003 k = 0.1405 0.2434 0.0470 ( 525 PWs) bands (ev): -6.7223 -0.0596 4.4795 5.0818 6.4057 9.3190 9.7759 11.2981 13.3617 k =-0.2811 0.0000 0.3287 ( 519 PWs) bands (ev): -5.9972 -0.7719 2.6746 3.8695 5.3808 9.7853 11.7166 11.8272 13.8321 k = 0.1405 0.7303 0.0470 ( 510 PWs) bands (ev): -4.4602 -2.7409 1.7348 2.7241 6.0082 9.8090 12.2053 13.3253 13.8452 k = 0.0000 0.4868 0.1409 ( 521 PWs) bands (ev): -5.2034 -2.4200 2.5320 4.7485 5.7396 9.3565 10.9414 11.8475 13.4998 k = 0.5622 0.0000-0.2348 ( 510 PWs) bands (ev): -4.7139 -2.2423 1.8897 3.3251 4.0662 9.3434 12.7694 14.3049 14.6428 k = 0.4216-0.2434-0.1409 ( 521 PWs) bands (ev): -5.2034 -2.4200 2.5320 4.7485 5.7396 9.3565 10.9414 11.8475 13.4998 k = 0.2811 0.0000-0.0470 ( 525 PWs) bands (ev): -6.7223 -0.0596 4.4795 5.0818 6.4057 9.3190 9.7759 11.2981 13.3617 k = 0.2811 0.0000 0.2348 ( 522 PWs) bands (ev): -6.3248 -0.9982 3.7151 5.2442 7.8496 8.0999 9.1648 11.6282 13.6684 k = 0.1405-0.2434 0.3287 ( 519 PWs) bands (ev): -5.9972 -0.7719 2.6746 3.8695 5.3808 9.7853 11.7166 11.8271 13.8321 k = 0.5622 0.4868 0.0470 ( 510 PWs) bands (ev): -4.4602 -2.7409 1.7348 2.7241 6.0082 9.8090 12.2053 13.3253 13.8452 k = 0.4216 0.2434 0.1409 ( 521 PWs) bands (ev): -5.2034 -2.4200 2.5320 4.7485 5.7396 9.3565 10.9414 11.8475 13.4998 k = 0.0000 0.0000 0.4226 ( 522 PWs) bands (ev): -6.2711 -1.5425 5.4947 5.4947 6.7047 8.4756 8.4756 9.5879 15.3912 k = 0.4216 0.7303 0.1409 ( 520 PWs) bands (ev): -5.3239 -2.0359 1.9228 4.3812 5.9195 10.0193 10.0796 12.8482 15.0911 k = 0.2811 0.4868 0.2348 ( 510 PWs) bands (ev): -4.7139 -2.2423 1.8897 3.3251 4.0662 9.3434 12.7694 14.3049 14.6428 k = 0.8432 0.0000-0.1409 ( 520 PWs) bands (ev): -5.3239 -2.0359 1.9228 4.3812 5.9195 10.0193 10.0796 12.8482 15.0911 k = 0.7027-0.2434-0.0470 ( 510 PWs) bands (ev): -4.4602 -2.7409 1.7348 2.7241 6.0082 9.8090 12.2053 13.3253 13.8452 k = 0.5622 0.0000 0.0470 ( 520 PWs) bands (ev): -4.8141 -3.3522 4.3315 4.3915 6.1082 8.9650 9.7143 10.1988 15.3003 the Fermi energy is 8.0425 ev ! total energy = -25.49842244 Ry Harris-Foulkes estimate = -25.49842248 Ry estimated scf accuracy < 0.00000009 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.01590016 atom 2 type 1 force = 0.00000000 0.00000000 0.01590016 Total force = 0.022486 Total SCF correction = 0.000131 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 5.37 0.00006817 0.00000000 0.00000000 10.03 0.00 0.00 0.00000000 0.00006817 0.00000000 0.00 10.03 0.00 0.00000000 0.00000000 -0.00002686 0.00 0.00 -3.95 Entering Dynamics; it = 9 time = 0.05808 pico-seconds new lattice vectors (alat unit) : 0.595532912 0.000000000 0.885695658 -0.297766326 0.515746623 0.885695790 -0.297766326 -0.515746623 0.885695790 new unit-cell volume = 281.1671 (a.u.)^3 new positions in cryst coord As 0.274712327 0.274712343 0.274712343 As -0.274712327 -0.274712343 -0.274712343 new positions in cart coord (alat unit) As 0.000000062 0.000000000 0.729934647 As -0.000000062 0.000000000 -0.729934647 Ekin = 0.00213098 Ry T = 642.7 K Etot = -25.49629146 CELL_PARAMETERS (alat) 0.595532912 0.000000000 0.885695658 -0.297766326 0.515746623 0.885695790 -0.297766326 -0.515746623 0.885695790 ATOMIC_POSITIONS (crystal) As 0.274712327 0.274712343 0.274712343 As -0.274712327 -0.274712343 -0.274712343 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1411320), wk = 0.0625000 k( 2) = ( -0.1399307 -0.2423671 0.2352200), wk = 0.1250000 k( 3) = ( 0.2798614 0.4847341 -0.0470440), wk = 0.1250000 k( 4) = ( 0.1399307 0.2423671 0.0470440), wk = 0.1250000 k( 5) = ( -0.2798614 0.0000000 0.3293080), wk = 0.0625000 k( 6) = ( 0.1399307 0.7271012 0.0470440), wk = 0.1250000 k( 7) = ( 0.0000000 0.4847341 0.1411320), wk = 0.1250000 k( 8) = ( 0.5597228 0.0000000 -0.2352200), wk = 0.0625000 k( 9) = ( 0.4197921 -0.2423671 -0.1411320), wk = 0.1250000 k( 10) = ( 0.2798614 0.0000000 -0.0470440), wk = 0.0625000 k( 11) = ( 0.2798615 0.0000000 0.2352199), wk = 0.0625000 k( 12) = ( 0.1399308 -0.2423671 0.3293080), wk = 0.1250000 k( 13) = ( 0.5597229 0.4847341 0.0470439), wk = 0.1250000 k( 14) = ( 0.4197922 0.2423671 0.1411319), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4233960), wk = 0.0625000 k( 16) = ( 0.4197922 0.7271012 0.1411319), wk = 0.1250000 k( 17) = ( 0.2798615 0.4847341 0.2352199), wk = 0.1250000 k( 18) = ( 0.8395843 0.0000000 -0.1411321), wk = 0.0625000 k( 19) = ( 0.6996536 -0.2423671 -0.0470441), wk = 0.1250000 k( 20) = ( 0.5597229 0.0000000 0.0470439), wk = 0.0625000 extrapolated charge 10.06728, renormalised to 10.00000 total cpu time spent up to now is 26.14 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 26.74 secs k = 0.0000 0.0000 0.1411 band energies (ev): -7.3000 1.4417 5.3245 5.3245 6.2303 9.4622 10.1859 10.1859 14.3526 k =-0.1399-0.2424 0.2352 band energies (ev): -6.3118 -1.0790 3.6923 5.2573 7.7422 7.9862 8.9776 11.5111 13.5713 k = 0.2799 0.4847-0.0470 band energies (ev): -4.8144 -3.3929 4.2892 4.3948 5.9999 8.8929 9.5381 10.0851 15.2075 k = 0.1399 0.2424 0.0470 band energies (ev): -6.7183 -0.1281 4.4507 5.0241 6.3519 9.1816 9.7344 11.1682 13.2147 k =-0.2799 0.0000 0.3293 band energies (ev): -5.9759 -0.8611 2.6661 3.8239 5.2381 9.7473 11.5820 11.7083 13.6178 k = 0.1399 0.7271 0.0470 band energies (ev): -4.4472 -2.7895 1.6926 2.6683 5.9267 9.6630 12.1175 13.2399 13.7013 k = 0.0000 0.4847 0.1411 band energies (ev): -5.2101 -2.4573 2.5271 4.6384 5.7140 9.2046 10.8155 11.7670 13.3870 k = 0.5597 0.0000-0.2352 band energies (ev): -4.7183 -2.2479 1.7856 3.2882 3.9734 9.3290 12.6310 14.0968 14.4993 k = 0.4198-0.2424-0.1411 band energies (ev): -5.2101 -2.4573 2.5271 4.6384 5.7140 9.2046 10.8155 11.7670 13.3870 k = 0.2799 0.0000-0.0470 band energies (ev): -6.7183 -0.1281 4.4507 5.0241 6.3519 9.1816 9.7344 11.1682 13.2147 k = 0.2799 0.0000 0.2352 band energies (ev): -6.3118 -1.0790 3.6923 5.2573 7.7422 7.9862 8.9776 11.5111 13.5713 k = 0.1399-0.2424 0.3293 band energies (ev): -5.9759 -0.8611 2.6661 3.8239 5.2381 9.7473 11.5820 11.7083 13.6178 k = 0.5597 0.4847 0.0470 band energies (ev): -4.4472 -2.7895 1.6926 2.6683 5.9267 9.6630 12.1175 13.2399 13.7013 k = 0.4198 0.2424 0.1411 band energies (ev): -5.2101 -2.4573 2.5271 4.6384 5.7140 9.2046 10.8155 11.7670 13.3870 k = 0.0000 0.0000 0.4234 band energies (ev): -6.2243 -1.6547 5.4671 5.4671 6.6122 8.3366 8.3366 9.4085 15.2829 k = 0.4198 0.7271 0.1411 band energies (ev): -5.2713 -2.1540 1.8977 4.3524 5.7836 9.8671 9.9780 12.7495 14.9375 k = 0.2799 0.4847 0.2352 band energies (ev): -4.7183 -2.2479 1.7856 3.2882 3.9734 9.3290 12.6310 14.0968 14.4993 k = 0.8396 0.0000-0.1411 band energies (ev): -5.2713 -2.1540 1.8977 4.3524 5.7836 9.8671 9.9780 12.7495 14.9375 k = 0.6997-0.2424-0.0470 band energies (ev): -4.4472 -2.7895 1.6926 2.6683 5.9267 9.6630 12.1175 13.2399 13.7013 k = 0.5597 0.0000 0.0470 band energies (ev): -4.8144 -3.3929 4.2892 4.3948 5.9999 8.8929 9.5381 10.0851 15.2075 the Fermi energy is 7.9288 ev total energy = -25.49889744 Ry Harris-Foulkes estimate = -25.53695571 Ry estimated scf accuracy < 0.00004241 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.24E-07, avg # of iterations = 2.9 total cpu time spent up to now is 27.16 secs k = 0.0000 0.0000 0.1411 band energies (ev): -7.3162 1.4173 5.3036 5.3036 6.2197 9.4506 10.1762 10.1762 14.3750 k =-0.1399-0.2424 0.2352 band energies (ev): -6.3301 -1.1007 3.6895 5.2351 7.7370 7.9756 8.9771 11.4992 13.5897 k = 0.2799 0.4847-0.0470 band energies (ev): -4.8361 -3.4108 4.2881 4.3778 5.9981 8.8849 9.5379 10.0847 15.2329 k = 0.1399 0.2424 0.0470 band energies (ev): -6.7348 -0.1560 4.4345 5.0173 6.3436 9.1779 9.7281 11.1583 13.2380 k =-0.2799 0.0000 0.3293 band energies (ev): -5.9963 -0.8830 2.6614 3.8118 5.2421 9.7500 11.5611 11.6919 13.6282 k = 0.1399 0.7271 0.0470 band energies (ev): -4.4723 -2.8118 1.6952 2.6715 5.9195 9.6527 12.1211 13.2236 13.7024 k = 0.0000 0.4847 0.1411 band energies (ev): -5.2294 -2.4819 2.5220 4.6422 5.7034 9.2068 10.8010 11.7573 13.4016 k = 0.5597 0.0000-0.2352 band energies (ev): -4.7416 -2.2741 1.7939 3.2775 3.9749 9.3409 12.6142 14.0995 14.4756 k = 0.4198-0.2424-0.1411 band energies (ev): -5.2294 -2.4819 2.5220 4.6422 5.7034 9.2068 10.8010 11.7573 13.4016 k = 0.2799 0.0000-0.0470 band energies (ev): -6.7348 -0.1560 4.4345 5.0173 6.3436 9.1779 9.7281 11.1583 13.2380 k = 0.2799 0.0000 0.2352 band energies (ev): -6.3301 -1.1007 3.6895 5.2351 7.7370 7.9756 8.9771 11.4992 13.5897 k = 0.1399-0.2424 0.3293 band energies (ev): -5.9963 -0.8830 2.6614 3.8118 5.2421 9.7500 11.5611 11.6919 13.6282 k = 0.5597 0.4847 0.0470 band energies (ev): -4.4723 -2.8118 1.6952 2.6715 5.9195 9.6527 12.1211 13.2236 13.7024 k = 0.4198 0.2424 0.1411 band energies (ev): -5.2294 -2.4819 2.5220 4.6422 5.7034 9.2068 10.8010 11.7573 13.4016 k = 0.0000 0.0000 0.4234 band energies (ev): -6.2466 -1.6613 5.4464 5.4464 6.5991 8.3342 8.3342 9.4061 15.3070 k = 0.4198 0.7271 0.1411 band energies (ev): -5.2976 -2.1652 1.8973 4.3385 5.7851 9.8565 9.9604 12.7308 14.9605 k = 0.2799 0.4847 0.2352 band energies (ev): -4.7416 -2.2741 1.7939 3.2775 3.9749 9.3409 12.6142 14.0995 14.4756 k = 0.8396 0.0000-0.1411 band energies (ev): -5.2976 -2.1652 1.8973 4.3385 5.7851 9.8565 9.9604 12.7308 14.9605 k = 0.6997-0.2424-0.0470 band energies (ev): -4.4723 -2.8118 1.6952 2.6715 5.9195 9.6527 12.1211 13.2236 13.7024 k = 0.5597 0.0000 0.0470 band energies (ev): -4.8361 -3.4108 4.2881 4.3778 5.9981 8.8849 9.5379 10.0847 15.2329 the Fermi energy is 7.7945 ev total energy = -25.49893902 Ry Harris-Foulkes estimate = -25.49894683 Ry estimated scf accuracy < 0.00001681 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-07, avg # of iterations = 1.0 total cpu time spent up to now is 27.46 secs k = 0.0000 0.0000 0.1411 band energies (ev): -7.3106 1.4210 5.3099 5.3099 6.2234 9.4563 10.1808 10.1808 14.3749 k =-0.1399-0.2424 0.2352 band energies (ev): -6.3242 -1.0960 3.6926 5.2423 7.7423 7.9772 8.9782 11.5037 13.5916 k = 0.2799 0.4847-0.0470 band energies (ev): -4.8297 -3.4058 4.2902 4.3842 6.0006 8.8890 9.5389 10.0865 15.2330 k = 0.1399 0.2424 0.0470 band energies (ev): -6.7293 -0.1499 4.4403 5.0202 6.3460 9.1803 9.7342 11.1616 13.2384 k =-0.2799 0.0000 0.3293 band energies (ev): -5.9899 -0.8790 2.6661 3.8170 5.2423 9.7549 11.5669 11.6967 13.6283 k = 0.1399 0.7271 0.0470 band energies (ev): -4.4653 -2.8063 1.6982 2.6733 5.9219 9.6569 12.1252 13.2287 13.7043 k = 0.0000 0.4847 0.1411 band energies (ev): -5.2235 -2.4757 2.5269 4.6427 5.7067 9.2085 10.8058 11.7623 13.4030 k = 0.5597 0.0000-0.2352 band energies (ev): -4.7352 -2.2670 1.7940 3.2825 3.9762 9.3448 12.6180 14.1007 14.4805 k = 0.4198-0.2424-0.1411 band energies (ev): -5.2235 -2.4757 2.5269 4.6427 5.7067 9.2085 10.8058 11.7623 13.4030 k = 0.2799 0.0000-0.0470 band energies (ev): -6.7293 -0.1499 4.4403 5.0202 6.3460 9.1803 9.7342 11.1616 13.2384 k = 0.2799 0.0000 0.2352 band energies (ev): -6.3242 -1.0960 3.6926 5.2423 7.7422 7.9772 8.9782 11.5037 13.5916 k = 0.1399-0.2424 0.3293 band energies (ev): -5.9899 -0.8790 2.6661 3.8170 5.2422 9.7549 11.5669 11.6967 13.6283 k = 0.5597 0.4847 0.0470 band energies (ev): -4.4653 -2.8063 1.6982 2.6733 5.9219 9.6569 12.1252 13.2287 13.7043 k = 0.4198 0.2424 0.1411 band energies (ev): -5.2235 -2.4757 2.5269 4.6427 5.7067 9.2085 10.8058 11.7623 13.4030 k = 0.0000 0.0000 0.4234 band energies (ev): -6.2395 -1.6604 5.4530 5.4530 6.6069 8.3368 8.3368 9.4057 15.3089 k = 0.4198 0.7271 0.1411 band energies (ev): -5.2898 -2.1635 1.9013 4.3442 5.7870 9.8598 9.9658 12.7365 14.9607 k = 0.2799 0.4847 0.2352 band energies (ev): -4.7352 -2.2670 1.7940 3.2825 3.9762 9.3448 12.6180 14.1007 14.4805 k = 0.8396 0.0000-0.1411 band energies (ev): -5.2898 -2.1635 1.9013 4.3442 5.7870 9.8598 9.9658 12.7365 14.9607 k = 0.6997-0.2424-0.0470 band energies (ev): -4.4653 -2.8063 1.6982 2.6733 5.9219 9.6569 12.1252 13.2287 13.7043 k = 0.5597 0.0000 0.0470 band energies (ev): -4.8297 -3.4058 4.2902 4.3842 6.0006 8.8889 9.5389 10.0865 15.2330 the Fermi energy is 7.7997 ev total energy = -25.49893969 Ry Harris-Foulkes estimate = -25.49894043 Ry estimated scf accuracy < 0.00000177 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.77E-08, avg # of iterations = 1.4 total cpu time spent up to now is 27.78 secs k = 0.0000 0.0000 0.1411 band energies (ev): -7.3087 1.4233 5.3119 5.3119 6.2251 9.4580 10.1824 10.1824 14.3752 k =-0.1399-0.2424 0.2352 band energies (ev): -6.3222 -1.0938 3.6939 5.2444 7.7437 7.9788 8.9794 11.5054 13.5922 k = 0.2799 0.4847-0.0470 band energies (ev): -4.8276 -3.4038 4.2914 4.3861 6.0019 8.8905 9.5401 10.0878 15.2333 k = 0.1399 0.2424 0.0470 band energies (ev): -6.7274 -0.1475 4.4421 5.0217 6.3476 9.1817 9.7357 11.1632 13.2387 k =-0.2799 0.0000 0.3293 band energies (ev): -5.9878 -0.8768 2.6675 3.8186 5.2433 9.7560 11.5690 11.6986 13.6291 k = 0.1399 0.7271 0.0470 band energies (ev): -4.4630 -2.8041 1.6993 2.6744 5.9233 9.6586 12.1263 13.2306 13.7056 k = 0.0000 0.4847 0.1411 band energies (ev): -5.2215 -2.4735 2.5283 4.6437 5.7083 9.2097 10.8077 11.7640 13.4037 k = 0.5597 0.0000-0.2352 band energies (ev): -4.7330 -2.2647 1.7948 3.2841 3.9774 9.3456 12.6199 14.1020 14.4828 k = 0.4198-0.2424-0.1411 band energies (ev): -5.2215 -2.4735 2.5283 4.6437 5.7083 9.2097 10.8077 11.7640 13.4037 k = 0.2799 0.0000-0.0470 band energies (ev): -6.7274 -0.1475 4.4421 5.0217 6.3476 9.1817 9.7356 11.1632 13.2387 k = 0.2799 0.0000 0.2352 band energies (ev): -6.3222 -1.0938 3.6939 5.2444 7.7437 7.9788 8.9794 11.5054 13.5922 k = 0.1399-0.2424 0.3293 band energies (ev): -5.9878 -0.8768 2.6675 3.8186 5.2433 9.7560 11.5690 11.6986 13.6291 k = 0.5597 0.4847 0.0470 band energies (ev): -4.4630 -2.8041 1.6993 2.6744 5.9233 9.6586 12.1263 13.2306 13.7056 k = 0.4198 0.2424 0.1411 band energies (ev): -5.2215 -2.4735 2.5283 4.6437 5.7083 9.2097 10.8077 11.7640 13.4037 k = 0.0000 0.0000 0.4234 band energies (ev): -6.2374 -1.6589 5.4550 5.4550 6.6088 8.3381 8.3381 9.4070 15.3092 k = 0.4198 0.7271 0.1411 band energies (ev): -5.2874 -2.1618 1.9025 4.3459 5.7882 9.8614 9.9678 12.7385 14.9611 k = 0.2799 0.4847 0.2352 band energies (ev): -4.7330 -2.2647 1.7948 3.2841 3.9774 9.3456 12.6199 14.1020 14.4828 k = 0.8396 0.0000-0.1411 band energies (ev): -5.2874 -2.1618 1.9025 4.3459 5.7882 9.8614 9.9678 12.7385 14.9611 k = 0.6997-0.2424-0.0470 band energies (ev): -4.4630 -2.8041 1.6993 2.6744 5.9233 9.6585 12.1263 13.2306 13.7056 k = 0.5597 0.0000 0.0470 band energies (ev): -4.8276 -3.4038 4.2914 4.3861 6.0019 8.8905 9.5401 10.0878 15.2333 the Fermi energy is 7.8012 ev total energy = -25.49893973 Ry Harris-Foulkes estimate = -25.49893985 Ry estimated scf accuracy < 0.00000022 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.25E-09, avg # of iterations = 2.9 total cpu time spent up to now is 28.19 secs End of self-consistent calculation k = 0.0000 0.0000 0.1411 ( 531 PWs) bands (ev): -7.3077 1.4244 5.3130 5.3130 6.2259 9.4590 10.1833 10.1833 14.3753 k =-0.1399-0.2424 0.2352 ( 522 PWs) bands (ev): -6.3211 -1.0928 3.6946 5.2456 7.7446 7.9795 8.9799 11.5063 13.5925 k = 0.2799 0.4847-0.0470 ( 520 PWs) bands (ev): -4.8264 -3.4028 4.2920 4.3872 6.0026 8.8914 9.5406 10.0883 15.2334 k = 0.1399 0.2424 0.0470 ( 525 PWs) bands (ev): -6.7263 -0.1462 4.4432 5.0224 6.3483 9.1824 9.7366 11.1640 13.2389 k =-0.2799 0.0000 0.3293 ( 519 PWs) bands (ev): -5.9867 -0.8758 2.6683 3.8195 5.2436 9.7568 11.5701 11.6996 13.6294 k = 0.1399 0.7271 0.0470 ( 510 PWs) bands (ev): -4.4617 -2.8030 1.6998 2.6749 5.9240 9.6594 12.1270 13.2317 13.7061 k = 0.0000 0.4847 0.1411 ( 521 PWs) bands (ev): -5.2204 -2.4723 2.5291 4.6441 5.7091 9.2102 10.8087 11.7649 13.4041 k = 0.5597 0.0000-0.2352 ( 510 PWs) bands (ev): -4.7318 -2.2634 1.7951 3.2850 3.9779 9.3461 12.6209 14.1025 14.4839 k = 0.4198-0.2424-0.1411 ( 521 PWs) bands (ev): -5.2204 -2.4723 2.5291 4.6441 5.7091 9.2102 10.8087 11.7649 13.4041 k = 0.2799 0.0000-0.0470 ( 525 PWs) bands (ev): -6.7263 -0.1462 4.4432 5.0224 6.3483 9.1824 9.7366 11.1640 13.2389 k = 0.2799 0.0000 0.2352 ( 522 PWs) bands (ev): -6.3211 -1.0928 3.6946 5.2456 7.7446 7.9795 8.9799 11.5063 13.5925 k = 0.1399-0.2424 0.3293 ( 519 PWs) bands (ev): -5.9867 -0.8758 2.6683 3.8195 5.2436 9.7568 11.5701 11.6996 13.6294 k = 0.5597 0.4847 0.0470 ( 510 PWs) bands (ev): -4.4617 -2.8030 1.6998 2.6749 5.9240 9.6594 12.1270 13.2317 13.7061 k = 0.4198 0.2424 0.1411 ( 521 PWs) bands (ev): -5.2204 -2.4723 2.5291 4.6441 5.7091 9.2102 10.8087 11.7649 13.4041 k = 0.0000 0.0000 0.4234 ( 522 PWs) bands (ev): -6.2361 -1.6583 5.4562 5.4562 6.6100 8.3387 8.3387 9.4075 15.3095 k = 0.4198 0.7271 0.1411 ( 520 PWs) bands (ev): -5.2861 -2.1611 1.9032 4.3469 5.7887 9.8622 9.9689 12.7396 14.9612 k = 0.2799 0.4847 0.2352 ( 510 PWs) bands (ev): -4.7318 -2.2634 1.7951 3.2850 3.9778 9.3461 12.6209 14.1025 14.4839 k = 0.8396 0.0000-0.1411 ( 520 PWs) bands (ev): -5.2861 -2.1611 1.9032 4.3469 5.7887 9.8622 9.9689 12.7396 14.9612 k = 0.6997-0.2424-0.0470 ( 510 PWs) bands (ev): -4.4617 -2.8030 1.6998 2.6749 5.9240 9.6594 12.1270 13.2317 13.7061 k = 0.5597 0.0000 0.0470 ( 520 PWs) bands (ev): -4.8264 -3.4028 4.2920 4.3872 6.0026 8.8914 9.5406 10.0883 15.2334 the Fermi energy is 7.8021 ev ! total energy = -25.49893983 Ry Harris-Foulkes estimate = -25.49893983 Ry estimated scf accuracy < 8.2E-09 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000003 0.00000000 -0.00848406 atom 2 type 1 force = -0.00000003 0.00000000 0.00848406 Total force = 0.011998 Total SCF correction = 0.000065 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -6.16 -0.00002765 0.00000000 0.00000000 -4.07 0.00 0.00 0.00000000 -0.00002765 0.00000000 0.00 -4.07 0.00 0.00000000 0.00000000 -0.00007039 0.00 0.00 -10.35 Entering Dynamics; it = 10 time = 0.06534 pico-seconds new lattice vectors (alat unit) : 0.595329124 0.000000000 0.883272615 -0.297664431 0.515570137 0.883272736 -0.297664431 -0.515570137 0.883272736 new unit-cell volume = 280.2060 (a.u.)^3 new positions in cryst coord As 0.273581335 0.273581344 0.273581344 As -0.273581335 -0.273581344 -0.273581344 new positions in cart coord (alat unit) As 0.000000066 0.000000000 0.724940786 As -0.000000066 0.000000000 -0.724940786 Ekin = 0.00127385 Ry T = 576.3 K Etot = -25.49766597 CELL_PARAMETERS (alat) 0.595329124 0.000000000 0.883272615 -0.297664431 0.515570137 0.883272736 -0.297664431 -0.515570137 0.883272736 ATOMIC_POSITIONS (crystal) As 0.273581335 0.273581344 0.273581344 As -0.273581335 -0.273581344 -0.273581344 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1415191), wk = 0.0625000 k( 2) = ( -0.1399786 -0.2424500 0.2358653), wk = 0.1250000 k( 3) = ( 0.2799572 0.4849001 -0.0471731), wk = 0.1250000 k( 4) = ( 0.1399786 0.2424500 0.0471730), wk = 0.1250000 k( 5) = ( -0.2799572 0.0000000 0.3302114), wk = 0.0625000 k( 6) = ( 0.1399786 0.7273501 0.0471730), wk = 0.1250000 k( 7) = ( 0.0000000 0.4849001 0.1415191), wk = 0.1250000 k( 8) = ( 0.5599144 0.0000000 -0.2358653), wk = 0.0625000 k( 9) = ( 0.4199358 -0.2424500 -0.1415192), wk = 0.1250000 k( 10) = ( 0.2799572 0.0000000 -0.0471731), wk = 0.0625000 k( 11) = ( 0.2799573 0.0000000 0.2358652), wk = 0.0625000 k( 12) = ( 0.1399787 -0.2424500 0.3302113), wk = 0.1250000 k( 13) = ( 0.5599145 0.4849001 0.0471730), wk = 0.1250000 k( 14) = ( 0.4199359 0.2424500 0.1415191), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4245574), wk = 0.0625000 k( 16) = ( 0.4199359 0.7273501 0.1415191), wk = 0.1250000 k( 17) = ( 0.2799573 0.4849001 0.2358652), wk = 0.1250000 k( 18) = ( 0.8398717 0.0000000 -0.1415192), wk = 0.0625000 k( 19) = ( 0.6998931 -0.2424500 -0.0471731), wk = 0.1250000 k( 20) = ( 0.5599145 0.0000000 0.0471730), wk = 0.0625000 extrapolated charge 9.96570, renormalised to 10.00000 total cpu time spent up to now is 28.46 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 29.05 secs k = 0.0000 0.0000 0.1415 band energies (ev): -7.2587 1.4503 5.3878 5.3878 6.2538 9.5917 10.2504 10.2504 14.3872 k =-0.1400-0.2425 0.2359 band energies (ev): -6.2649 -1.0640 3.7506 5.3635 7.8009 8.0195 8.9418 11.5478 13.6764 k = 0.2800 0.4849-0.0472 band energies (ev): -4.7641 -3.3659 4.3406 4.4884 6.0333 8.9731 9.5093 10.0987 15.2881 k = 0.1400 0.2425 0.0472 band energies (ev): -6.6794 -0.0927 4.5198 5.0636 6.4072 9.1775 9.8569 11.1862 13.2590 k =-0.2800 0.0000 0.3302 band energies (ev): -5.9215 -0.8552 2.7447 3.8804 5.2253 9.8801 11.6255 11.7490 13.6035 k = 0.1400 0.7274 0.0472 band energies (ev): -4.3871 -2.7619 1.7403 2.7037 5.9619 9.6818 12.2139 13.3151 13.7267 k = 0.0000 0.4849 0.1415 band energies (ev): -5.1683 -2.4183 2.6059 4.6480 5.7830 9.1939 10.8501 11.8543 13.4589 k = 0.5599 0.0000-0.2359 band energies (ev): -4.6726 -2.1847 1.7862 3.3478 3.9842 9.4720 12.6449 14.0768 14.5191 k = 0.4199-0.2425-0.1415 band energies (ev): -5.1683 -2.4183 2.6059 4.6480 5.7830 9.1939 10.8501 11.8543 13.4589 k = 0.2800 0.0000-0.0472 band energies (ev): -6.6794 -0.0927 4.5198 5.0636 6.4072 9.1775 9.8569 11.1862 13.2590 k = 0.2800 0.0000 0.2359 band energies (ev): -6.2649 -1.0640 3.7506 5.3635 7.8009 8.0195 8.9418 11.5478 13.6764 k = 0.1400-0.2425 0.3302 band energies (ev): -5.9215 -0.8552 2.7447 3.8804 5.2253 9.8801 11.6255 11.7490 13.6035 k = 0.5599 0.4849 0.0472 band energies (ev): -4.3871 -2.7619 1.7403 2.7037 5.9619 9.6818 12.2139 13.3151 13.7267 k = 0.4199 0.2425 0.1415 band energies (ev): -5.1683 -2.4183 2.6059 4.6480 5.7830 9.1939 10.8501 11.8543 13.4589 k = 0.0000 0.0000 0.4246 band energies (ev): -6.1543 -1.6835 5.5463 5.5463 6.7062 8.3487 8.3487 9.4196 15.3874 k = 0.4199 0.7274 0.1415 band energies (ev): -5.1892 -2.1844 1.9633 4.4245 5.8002 9.8694 10.0537 12.8272 14.9870 k = 0.2800 0.4849 0.2359 band energies (ev): -4.6726 -2.1847 1.7862 3.3478 3.9842 9.4720 12.6449 14.0768 14.5191 k = 0.8399 0.0000-0.1415 band energies (ev): -5.1892 -2.1844 1.9633 4.4245 5.8002 9.8694 10.0537 12.8272 14.9870 k = 0.6999-0.2425-0.0472 band energies (ev): -4.3871 -2.7619 1.7403 2.7037 5.9619 9.6818 12.2139 13.3151 13.7267 k = 0.5599 0.0000 0.0472 band energies (ev): -4.7641 -3.3659 4.3406 4.4884 6.0333 8.9731 9.5093 10.0987 15.2881 the Fermi energy is 7.9616 ev total energy = -25.49922722 Ry Harris-Foulkes estimate = -25.47971009 Ry estimated scf accuracy < 0.00002123 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.12E-07, avg # of iterations = 2.0 total cpu time spent up to now is 29.41 secs k = 0.0000 0.0000 0.1415 band energies (ev): -7.2522 1.4520 5.3969 5.3969 6.2549 9.5991 10.2538 10.2538 14.3726 k =-0.1400-0.2425 0.2359 band energies (ev): -6.2571 -1.0597 3.7487 5.3762 7.8053 8.0141 8.9333 11.5505 13.6679 k = 0.2800 0.4849-0.0472 band energies (ev): -4.7545 -3.3611 4.3354 4.4978 6.0295 8.9744 9.5008 10.0928 15.2733 k = 0.1400 0.2425 0.0472 band energies (ev): -6.6731 -0.0836 4.5272 5.0615 6.4042 9.1736 9.8645 11.1852 13.2445 k =-0.2800 0.0000 0.3302 band energies (ev): -5.9123 -0.8530 2.7483 3.8852 5.2135 9.8829 11.6333 11.7533 13.5904 k = 0.1400 0.7274 0.0472 band energies (ev): -4.3753 -2.7553 1.7371 2.6974 5.9582 9.6839 12.2138 13.3204 13.7206 k = 0.0000 0.4849 0.1415 band energies (ev): -5.1606 -2.4093 2.6096 4.6370 5.7826 9.1872 10.8543 11.8592 13.4491 k = 0.5599 0.0000-0.2359 band energies (ev): -4.6630 -2.1727 1.7738 3.3523 3.9768 9.4704 12.6464 14.0682 14.5247 k = 0.4199-0.2425-0.1415 band energies (ev): -5.1606 -2.4093 2.6096 4.6370 5.7826 9.1872 10.8543 11.8592 13.4491 k = 0.2800 0.0000-0.0472 band energies (ev): -6.6731 -0.0836 4.5272 5.0615 6.4042 9.1736 9.8645 11.1852 13.2445 k = 0.2800 0.0000 0.2359 band energies (ev): -6.2571 -1.0597 3.7487 5.3762 7.8053 8.0141 8.9333 11.5505 13.6679 k = 0.1400-0.2425 0.3302 band energies (ev): -5.9123 -0.8530 2.7483 3.8852 5.2135 9.8829 11.6333 11.7533 13.5904 k = 0.5599 0.4849 0.0472 band energies (ev): -4.3753 -2.7553 1.7371 2.6974 5.9582 9.6839 12.2138 13.3204 13.7206 k = 0.4199 0.2425 0.1415 band energies (ev): -5.1606 -2.4093 2.6096 4.6370 5.7826 9.1872 10.8543 11.8592 13.4491 k = 0.0000 0.0000 0.4246 band energies (ev): -6.1426 -1.6921 5.5565 5.5565 6.7198 8.3455 8.3456 9.4063 15.3787 k = 0.4199 0.7274 0.1415 band energies (ev): -5.1744 -2.1905 1.9638 4.4311 5.7941 9.8687 10.0603 12.8346 14.9733 k = 0.2800 0.4849 0.2359 band energies (ev): -4.6630 -2.1727 1.7738 3.3523 3.9768 9.4704 12.6464 14.0682 14.5247 k = 0.8399 0.0000-0.1415 band energies (ev): -5.1744 -2.1905 1.9638 4.4311 5.7941 9.8687 10.0603 12.8346 14.9733 k = 0.6999-0.2425-0.0472 band energies (ev): -4.3753 -2.7553 1.7371 2.6974 5.9582 9.6839 12.2138 13.3204 13.7206 k = 0.5599 0.0000 0.0472 band energies (ev): -4.7545 -3.3611 4.3354 4.4978 6.0295 8.9744 9.5008 10.0928 15.2733 the Fermi energy is 7.9556 ev total energy = -25.49924082 Ry Harris-Foulkes estimate = -25.49924583 Ry estimated scf accuracy < 0.00001070 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.07E-07, avg # of iterations = 1.1 total cpu time spent up to now is 29.70 secs k = 0.0000 0.0000 0.1415 band energies (ev): -7.2560 1.4502 5.3925 5.3925 6.2527 9.5949 10.2506 10.2506 14.3729 k =-0.1400-0.2425 0.2359 band energies (ev): -6.2612 -1.0624 3.7467 5.3707 7.8017 8.0138 8.9333 11.5477 13.6664 k = 0.2800 0.4849-0.0472 band energies (ev): -4.7590 -3.3643 4.3343 4.4930 6.0282 8.9719 9.5007 10.0919 15.2733 k = 0.1400 0.2425 0.0472 band energies (ev): -6.6768 -0.0875 4.5231 5.0599 6.4030 9.1724 9.8599 11.1834 13.2445 k =-0.2800 0.0000 0.3302 band energies (ev): -5.9167 -0.8551 2.7447 3.8816 5.2144 9.8791 11.6295 11.7502 13.5911 k = 0.1400 0.7274 0.0472 band energies (ev): -4.3802 -2.7587 1.7352 2.6964 5.9571 9.6813 12.2108 13.3170 13.7196 k = 0.0000 0.4849 0.1415 band energies (ev): -5.1646 -2.4133 2.6061 4.6375 5.7807 9.1865 10.8512 11.8556 13.4483 k = 0.5599 0.0000-0.2359 band energies (ev): -4.6673 -2.1776 1.7744 3.3487 3.9764 9.4673 12.6441 14.0680 14.5217 k = 0.4199-0.2425-0.1415 band energies (ev): -5.1646 -2.4133 2.6061 4.6375 5.7807 9.1865 10.8512 11.8556 13.4483 k = 0.2800 0.0000-0.0472 band energies (ev): -6.6768 -0.0875 4.5231 5.0599 6.4030 9.1724 9.8599 11.1834 13.2445 k = 0.2800 0.0000 0.2359 band energies (ev): -6.2612 -1.0624 3.7467 5.3707 7.8017 8.0138 8.9333 11.5477 13.6664 k = 0.1400-0.2425 0.3302 band energies (ev): -5.9167 -0.8551 2.7447 3.8816 5.2144 9.8791 11.6295 11.7502 13.5911 k = 0.5599 0.4849 0.0472 band energies (ev): -4.3802 -2.7587 1.7352 2.6964 5.9571 9.6813 12.2108 13.3170 13.7196 k = 0.4199 0.2425 0.1415 band energies (ev): -5.1646 -2.4133 2.6061 4.6375 5.7807 9.1865 10.8512 11.8556 13.4483 k = 0.0000 0.0000 0.4246 band energies (ev): -6.1477 -1.6917 5.5517 5.5517 6.7138 8.3440 8.3440 9.4080 15.3773 k = 0.4199 0.7274 0.1415 band energies (ev): -5.1801 -2.1906 1.9609 4.4271 5.7933 9.8669 10.0567 12.8308 14.9733 k = 0.2800 0.4849 0.2359 band energies (ev): -4.6673 -2.1776 1.7744 3.3487 3.9764 9.4673 12.6441 14.0680 14.5217 k = 0.8399 0.0000-0.1415 band energies (ev): -5.1801 -2.1906 1.9609 4.4271 5.7933 9.8669 10.0567 12.8308 14.9733 k = 0.6999-0.2425-0.0472 band energies (ev): -4.3802 -2.7587 1.7352 2.6964 5.9571 9.6813 12.2108 13.3170 13.7196 k = 0.5599 0.0000 0.0472 band energies (ev): -4.7590 -3.3643 4.3343 4.4930 6.0282 8.9719 9.5007 10.0919 15.2733 the Fermi energy is 7.9555 ev total energy = -25.49924128 Ry Harris-Foulkes estimate = -25.49924185 Ry estimated scf accuracy < 0.00000098 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.81E-09, avg # of iterations = 2.4 total cpu time spent up to now is 30.10 secs k = 0.0000 0.0000 0.1415 band energies (ev): -7.2588 1.4477 5.3893 5.3893 6.2507 9.5922 10.2483 10.2483 14.3727 k =-0.1400-0.2425 0.2359 band energies (ev): -6.2641 -1.0651 3.7450 5.3672 7.7994 8.0122 8.9322 11.5454 13.6655 k = 0.2800 0.4849-0.0472 band energies (ev): -4.7622 -3.3669 4.3329 4.4899 6.0267 8.9698 9.4996 10.0906 15.2731 k = 0.1400 0.2425 0.0472 band energies (ev): -6.6796 -0.0908 4.5202 5.0582 6.4012 9.1708 9.8573 11.1814 13.2443 k =-0.2800 0.0000 0.3302 band energies (ev): -5.9198 -0.8576 2.7424 3.8790 5.2137 9.8770 11.6265 11.7476 13.5907 k = 0.1400 0.7274 0.0472 band energies (ev): -4.3837 -2.7617 1.7337 2.6952 5.9554 9.6791 12.2090 13.3143 13.7183 k = 0.0000 0.4849 0.1415 band energies (ev): -5.1676 -2.4165 2.6038 4.6367 5.7787 9.1853 10.8487 11.8531 13.4475 k = 0.5599 0.0000-0.2359 band energies (ev): -4.6705 -2.1811 1.7738 3.3462 3.9754 9.4658 12.6417 14.0670 14.5189 k = 0.4199-0.2425-0.1415 band energies (ev): -5.1676 -2.4165 2.6038 4.6367 5.7787 9.1853 10.8487 11.8531 13.4475 k = 0.2800 0.0000-0.0472 band energies (ev): -6.6796 -0.0908 4.5202 5.0582 6.4012 9.1708 9.8573 11.1814 13.2443 k = 0.2800 0.0000 0.2359 band energies (ev): -6.2641 -1.0651 3.7450 5.3672 7.7994 8.0122 8.9322 11.5454 13.6655 k = 0.1400-0.2425 0.3302 band energies (ev): -5.9198 -0.8576 2.7424 3.8790 5.2137 9.8770 11.6265 11.7476 13.5907 k = 0.5599 0.4849 0.0472 band energies (ev): -4.3837 -2.7617 1.7337 2.6952 5.9554 9.6791 12.2090 13.3143 13.7183 k = 0.4199 0.2425 0.1415 band energies (ev): -5.1676 -2.4165 2.6038 4.6367 5.7787 9.1853 10.8487 11.8531 13.4475 k = 0.0000 0.0000 0.4246 band energies (ev): -6.1510 -1.6929 5.5484 5.5484 6.7104 8.3424 8.3424 9.4074 15.3768 k = 0.4199 0.7274 0.1415 band energies (ev): -5.1839 -2.1921 1.9589 4.4243 5.7921 9.8648 10.0539 12.8279 14.9731 k = 0.2800 0.4849 0.2359 band energies (ev): -4.6705 -2.1811 1.7738 3.3462 3.9754 9.4658 12.6417 14.0670 14.5189 k = 0.8399 0.0000-0.1415 band energies (ev): -5.1839 -2.1921 1.9589 4.4243 5.7921 9.8648 10.0539 12.8279 14.9731 k = 0.6999-0.2425-0.0472 band energies (ev): -4.3837 -2.7617 1.7337 2.6952 5.9554 9.6791 12.2090 13.3143 13.7183 k = 0.5599 0.0000 0.0472 band energies (ev): -4.7622 -3.3669 4.3329 4.4899 6.0267 8.9698 9.4996 10.0906 15.2731 the Fermi energy is 7.9540 ev total energy = -25.49924152 Ry Harris-Foulkes estimate = -25.49924163 Ry estimated scf accuracy < 0.00000021 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.08E-09, avg # of iterations = 1.4 total cpu time spent up to now is 30.42 secs End of self-consistent calculation k = 0.0000 0.0000 0.1415 ( 531 PWs) bands (ev): -7.2581 1.4483 5.3901 5.3901 6.2512 9.5930 10.2489 10.2489 14.3728 k =-0.1400-0.2425 0.2359 ( 522 PWs) bands (ev): -6.2634 -1.0645 3.7454 5.3681 7.8000 8.0126 8.9324 11.5460 13.6658 k = 0.2800 0.4849-0.0472 ( 520 PWs) bands (ev): -4.7613 -3.3662 4.3333 4.4908 6.0270 8.9703 9.4998 10.0909 15.2732 k = 0.1400 0.2425 0.0472 ( 525 PWs) bands (ev): -6.6789 -0.0899 4.5209 5.0586 6.4016 9.1711 9.8581 11.1819 13.2443 k =-0.2800 0.0000 0.3302 ( 519 PWs) bands (ev): -5.9190 -0.8570 2.7430 3.8797 5.2138 9.8776 11.6273 11.7482 13.5907 k = 0.1400 0.7274 0.0472 ( 510 PWs) bands (ev): -4.3827 -2.7609 1.7341 2.6955 5.9558 9.6796 12.2095 13.3150 13.7186 k = 0.0000 0.4849 0.1415 ( 521 PWs) bands (ev): -5.1668 -2.4157 2.6044 4.6368 5.7791 9.1856 10.8493 11.8537 13.4477 k = 0.5599 0.0000-0.2359 ( 510 PWs) bands (ev): -4.6697 -2.1802 1.7739 3.3469 3.9756 9.4663 12.6423 14.0672 14.5196 k = 0.4199-0.2425-0.1415 ( 521 PWs) bands (ev): -5.1668 -2.4157 2.6044 4.6368 5.7791 9.1856 10.8493 11.8537 13.4477 k = 0.2800 0.0000-0.0472 ( 525 PWs) bands (ev): -6.6789 -0.0899 4.5209 5.0586 6.4016 9.1711 9.8581 11.1819 13.2443 k = 0.2800 0.0000 0.2359 ( 522 PWs) bands (ev): -6.2634 -1.0645 3.7454 5.3681 7.8000 8.0126 8.9324 11.5460 13.6658 k = 0.1400-0.2425 0.3302 ( 519 PWs) bands (ev): -5.9190 -0.8570 2.7430 3.8797 5.2138 9.8776 11.6273 11.7482 13.5907 k = 0.5599 0.4849 0.0472 ( 510 PWs) bands (ev): -4.3827 -2.7609 1.7341 2.6955 5.9558 9.6796 12.2095 13.3150 13.7186 k = 0.4199 0.2425 0.1415 ( 521 PWs) bands (ev): -5.1668 -2.4157 2.6044 4.6368 5.7791 9.1856 10.8493 11.8537 13.4477 k = 0.0000 0.0000 0.4246 ( 522 PWs) bands (ev): -6.1501 -1.6927 5.5493 5.5493 6.7114 8.3428 8.3428 9.4074 15.3769 k = 0.4199 0.7274 0.1415 ( 520 PWs) bands (ev): -5.1829 -2.1918 1.9595 4.4250 5.7923 9.8653 10.0547 12.8286 14.9732 k = 0.2800 0.4849 0.2359 ( 510 PWs) bands (ev): -4.6697 -2.1802 1.7739 3.3469 3.9756 9.4663 12.6423 14.0672 14.5196 k = 0.8399 0.0000-0.1415 ( 520 PWs) bands (ev): -5.1829 -2.1918 1.9595 4.4250 5.7923 9.8653 10.0547 12.8286 14.9732 k = 0.6999-0.2425-0.0472 ( 510 PWs) bands (ev): -4.3827 -2.7609 1.7341 2.6955 5.9558 9.6796 12.2095 13.3150 13.7186 k = 0.5599 0.0000 0.0472 ( 520 PWs) bands (ev): -4.7613 -3.3662 4.3333 4.4908 6.0270 8.9703 9.4998 10.0909 15.2732 the Fermi energy is 7.9543 ev ! total energy = -25.49924154 Ry Harris-Foulkes estimate = -25.49924154 Ry estimated scf accuracy < 8.0E-09 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00271483 atom 2 type 1 force = 0.00000000 0.00000000 0.00271483 Total force = 0.003839 Total SCF correction = 0.000083 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -8.75 -0.00004661 0.00000000 0.00000000 -6.86 0.00 0.00 0.00000000 -0.00004661 0.00000000 0.00 -6.86 0.00 0.00000000 0.00000000 -0.00008514 0.00 0.00 -12.52 Entering Dynamics; it = 11 time = 0.07260 pico-seconds new lattice vectors (alat unit) : 0.594779713 0.000000000 0.880011813 -0.297389726 0.515094328 0.880011923 -0.297389726 -0.515094328 0.880011923 new unit-cell volume = 278.6565 (a.u.)^3 new positions in cryst coord As 0.272394679 0.272394680 0.272394680 As -0.272394679 -0.272394680 -0.272394680 new positions in cart coord (alat unit) As 0.000000070 0.000000000 0.719131668 As -0.000000070 0.000000000 -0.719131668 Ekin = 0.00156746 Ry T = 524.1 K Etot = -25.49767408 CELL_PARAMETERS (alat) 0.594779713 0.000000000 0.880011813 -0.297389726 0.515094328 0.880011923 -0.297389726 -0.515094328 0.880011923 ATOMIC_POSITIONS (crystal) As 0.272394679 0.272394680 0.272394680 As -0.272394679 -0.272394680 -0.272394680 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1420435), wk = 0.0625000 k( 2) = ( -0.1401079 -0.2426740 0.2367392), wk = 0.1250000 k( 3) = ( 0.2802158 0.4853480 -0.0473479), wk = 0.1250000 k( 4) = ( 0.1401079 0.2426740 0.0473478), wk = 0.1250000 k( 5) = ( -0.2802158 0.0000000 0.3314349), wk = 0.0625000 k( 6) = ( 0.1401079 0.7280220 0.0473478), wk = 0.1250000 k( 7) = ( 0.0000000 0.4853480 0.1420435), wk = 0.1250000 k( 8) = ( 0.5604316 0.0000000 -0.2367393), wk = 0.0625000 k( 9) = ( 0.4203237 -0.2426740 -0.1420436), wk = 0.1250000 k( 10) = ( 0.2802158 0.0000000 -0.0473479), wk = 0.0625000 k( 11) = ( 0.2802159 0.0000000 0.2367392), wk = 0.0625000 k( 12) = ( 0.1401080 -0.2426740 0.3314349), wk = 0.1250000 k( 13) = ( 0.5604317 0.4853480 0.0473478), wk = 0.1250000 k( 14) = ( 0.4203238 0.2426740 0.1420435), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.4261306), wk = 0.0625000 k( 16) = ( 0.4203238 0.7280220 0.1420435), wk = 0.1250000 k( 17) = ( 0.2802159 0.4853480 0.2367392), wk = 0.1250000 k( 18) = ( 0.8406475 0.0000000 -0.1420436), wk = 0.0625000 k( 19) = ( 0.7005396 -0.2426740 -0.0473479), wk = 0.1250000 k( 20) = ( 0.5604317 0.0000000 0.0473478), wk = 0.0625000 extrapolated charge 9.94440, renormalised to 10.00000 total cpu time spent up to now is 30.69 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.0 total cpu time spent up to now is 31.29 secs k = 0.0000 0.0000 0.1420 band energies (ev): -7.1991 1.5078 5.4860 5.4860 6.3091 9.7625 10.3480 10.3480 14.4172 k =-0.1401-0.2427 0.2367 band energies (ev): -6.1952 -1.0131 3.8247 5.5118 7.8858 8.0873 8.9189 11.6238 13.7856 k = 0.2802 0.4853-0.0473 band energies (ev): -4.6843 -3.3131 4.4080 4.6143 6.0854 9.0868 9.4972 10.1391 15.3692 k = 0.1401 0.2427 0.0473 band energies (ev): -6.6212 -0.0105 4.6178 5.1244 6.4940 9.1959 10.0171 11.2383 13.2946 k =-0.2802 0.0000 0.3314 band energies (ev): -5.8407 -0.8117 2.8423 3.9588 5.2182 10.0354 11.7194 11.8318 13.5977 k = 0.1401 0.7280 0.0473 band energies (ev): -4.2910 -2.7018 1.7911 2.7452 6.0220 9.7331 12.3320 13.4370 13.7793 k = 0.0000 0.4853 0.1420 band energies (ev): -5.1011 -2.3421 2.7009 4.6636 5.8844 9.2008 10.9269 11.9795 13.5379 k = 0.5604 0.0000-0.2367 band energies (ev): -4.5949 -2.0797 1.7841 3.4274 4.0055 9.6258 12.7044 14.0771 14.6005 k = 0.4203-0.2427-0.1420 band energies (ev): -5.1011 -2.3421 2.7009 4.6636 5.8844 9.2008 10.9269 11.9795 13.5379 k = 0.2802 0.0000-0.0473 band energies (ev): -6.6212 -0.0105 4.6178 5.1244 6.4940 9.1959 10.0171 11.2383 13.2946 k = 0.2802 0.0000 0.2367 band energies (ev): -6.1952 -1.0131 3.8247 5.5118 7.8858 8.0873 8.9189 11.6238 13.7856 k = 0.1401-0.2427 0.3314 band energies (ev): -5.8407 -0.8117 2.8422 3.9588 5.2182 10.0354 11.7194 11.8318 13.5977 k = 0.5604 0.4853 0.0473 band energies (ev): -4.2910 -2.7018 1.7911 2.7452 6.0220 9.7331 12.3320 13.4370 13.7793 k = 0.4203 0.2427 0.1420 band energies (ev): -5.1011 -2.3421 2.7009 4.6636 5.8844 9.2008 10.9269 11.9795 13.5379 k = 0.0000 0.0000 0.4261 band energies (ev): -6.0541 -1.6966 5.6618 5.6618 6.8399 8.3776 8.3776 9.4531 15.4972 k = 0.4203 0.7280 0.1420 band energies (ev): -5.0679 -2.1974 2.0379 4.5226 5.8296 9.9015 10.1755 12.9533 15.0387 k = 0.2802 0.4853 0.2367 band energies (ev): -4.5949 -2.0797 1.7841 3.4274 4.0055 9.6258 12.7044 14.0771 14.6005 k = 0.8406 0.0000-0.1420 band energies (ev): -5.0679 -2.1974 2.0379 4.5226 5.8296 9.9015 10.1755 12.9533 15.0387 k = 0.7005-0.2427-0.0473 band energies (ev): -4.2910 -2.7018 1.7911 2.7452 6.0220 9.7331 12.3320 13.4370 13.7793 k = 0.5604 0.0000 0.0473 band energies (ev): -4.6843 -3.3131 4.4080 4.6143 6.0854 9.0868 9.4972 10.1391 15.3692 the Fermi energy is 8.0281 ev total energy = -25.49933242 Ry Harris-Foulkes estimate = -25.46735417 Ry estimated scf accuracy < 0.00002623 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.62E-07, avg # of iterations = 2.5 total cpu time spent up to now is 31.71 secs k = 0.0000 0.0000 0.1420 band energies (ev): -7.1901 1.5145 5.4988 5.4988 6.3121 9.7723 10.3525 10.3525 14.3949 k =-0.1401-0.2427 0.2367 band energies (ev): -6.1844 -1.0046 3.8222 5.5290 7.8897 8.0839 8.9086 11.6280 13.7708 k = 0.2802 0.4853-0.0473 band energies (ev): -4.6705 -3.3052 4.4017 4.6264 6.0807 9.0889 9.4874 10.1325 15.3462 k = 0.1401 0.2427 0.0473 band energies (ev): -6.6122 0.0044 4.6276 5.1226 6.4920 9.1920 10.0252 11.2383 13.2717 k =-0.2802 0.0000 0.3314 band energies (ev): -5.8277 -0.8054 2.8465 3.9650 5.2035 10.0358 11.7318 11.8389 13.5805 k = 0.1401 0.7280 0.0473 band energies (ev): -4.2740 -2.6910 1.7854 2.7366 6.0189 9.7365 12.3293 13.4449 13.7727 k = 0.0000 0.4853 0.1420 band energies (ev): -5.0901 -2.3282 2.7044 4.6498 5.8856 9.1923 10.9335 11.9862 13.5222 k = 0.5604 0.0000-0.2367 band energies (ev): -4.5808 -2.0620 1.7677 3.4327 3.9965 9.6190 12.7089 14.0668 14.6116 k = 0.4203-0.2427-0.1420 band energies (ev): -5.0901 -2.3282 2.7044 4.6498 5.8856 9.1923 10.9335 11.9862 13.5222 k = 0.2802 0.0000-0.0473 band energies (ev): -6.6122 0.0044 4.6276 5.1226 6.4920 9.1920 10.0252 11.2383 13.2717 k = 0.2802 0.0000 0.2367 band energies (ev): -6.1844 -1.0046 3.8222 5.5290 7.8897 8.0839 8.9086 11.6280 13.7708 k = 0.1401-0.2427 0.3314 band energies (ev): -5.8277 -0.8054 2.8465 3.9650 5.2035 10.0358 11.7318 11.8389 13.5805 k = 0.5604 0.4853 0.0473 band energies (ev): -4.2740 -2.6910 1.7854 2.7366 6.0189 9.7365 12.3293 13.4449 13.7727 k = 0.4203 0.2427 0.1420 band energies (ev): -5.0901 -2.3282 2.7044 4.6498 5.8856 9.1923 10.9335 11.9862 13.5222 k = 0.0000 0.0000 0.4261 band energies (ev): -6.0380 -1.7049 5.6757 5.6757 6.8564 8.3734 8.3734 9.4382 15.4811 k = 0.4203 0.7280 0.1420 band energies (ev): -5.0472 -2.2028 2.0373 4.5310 5.8217 9.9022 10.1855 12.9645 15.0172 k = 0.2802 0.4853 0.2367 band energies (ev): -4.5808 -2.0620 1.7677 3.4327 3.9965 9.6190 12.7089 14.0668 14.6116 k = 0.8406 0.0000-0.1420 band energies (ev): -5.0472 -2.2028 2.0373 4.5310 5.8217 9.9022 10.1855 12.9645 15.0172 k = 0.7005-0.2427-0.0473 band energies (ev): -4.2740 -2.6910 1.7854 2.7366 6.0189 9.7365 12.3293 13.4449 13.7727 k = 0.5604 0.0000 0.0473 band energies (ev): -4.6705 -3.3052 4.4017 4.6264 6.0807 9.0889 9.4874 10.1325 15.3462 the Fermi energy is 8.0236 ev total energy = -25.49936052 Ry Harris-Foulkes estimate = -25.49936996 Ry estimated scf accuracy < 0.00002228 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.23E-07, avg # of iterations = 1.0 total cpu time spent up to now is 32.01 secs k = 0.0000 0.0000 0.1420 band energies (ev): -7.1948 1.5122 5.4933 5.4933 6.3094 9.7670 10.3485 10.3485 14.3953 k =-0.1401-0.2427 0.2367 band energies (ev): -6.1894 -1.0081 3.8197 5.5222 7.8854 8.0831 8.9086 11.6246 13.7690 k = 0.2802 0.4853-0.0473 band energies (ev): -4.6760 -3.3092 4.4004 4.6205 6.0790 9.0857 9.4872 10.1313 15.3462 k = 0.1401 0.2427 0.0473 band energies (ev): -6.6169 -0.0005 4.6225 5.1206 6.4903 9.1903 10.0195 11.2359 13.2719 k =-0.2802 0.0000 0.3314 band energies (ev): -5.8332 -0.8081 2.8419 3.9605 5.2045 10.0312 11.7269 11.8349 13.5813 k = 0.1401 0.7280 0.0473 band energies (ev): -4.2801 -2.6953 1.7830 2.7354 6.0174 9.7332 12.3256 13.4408 13.7711 k = 0.0000 0.4853 0.1420 band energies (ev): -5.0950 -2.3333 2.6999 4.6503 5.8831 9.1914 10.9297 11.9816 13.5212 k = 0.5604 0.0000-0.2367 band energies (ev): -4.5862 -2.0682 1.7684 3.4284 3.9960 9.6153 12.7060 14.0664 14.6078 k = 0.4203-0.2427-0.1420 band energies (ev): -5.0950 -2.3333 2.6999 4.6503 5.8831 9.1914 10.9297 11.9816 13.5212 k = 0.2802 0.0000-0.0473 band energies (ev): -6.6169 -0.0005 4.6225 5.1206 6.4903 9.1903 10.0195 11.2359 13.2719 k = 0.2802 0.0000 0.2367 band energies (ev): -6.1894 -1.0081 3.8197 5.5222 7.8854 8.0831 8.9086 11.6246 13.7690 k = 0.1401-0.2427 0.3314 band energies (ev): -5.8332 -0.8081 2.8419 3.9605 5.2045 10.0312 11.7269 11.8349 13.5813 k = 0.5604 0.4853 0.0473 band energies (ev): -4.2801 -2.6953 1.7830 2.7354 6.0174 9.7332 12.3256 13.4408 13.7711 k = 0.4203 0.2427 0.1420 band energies (ev): -5.0950 -2.3333 2.6999 4.6503 5.8831 9.1914 10.9297 11.9816 13.5212 k = 0.0000 0.0000 0.4261 band energies (ev): -6.0443 -1.7045 5.6698 5.6698 6.8489 8.3715 8.3715 9.4402 15.4793 k = 0.4203 0.7280 0.1420 band energies (ev): -5.0545 -2.2029 2.0337 4.5260 5.8206 9.8998 10.1810 12.9597 15.0171 k = 0.2802 0.4853 0.2367 band energies (ev): -4.5862 -2.0682 1.7684 3.4284 3.9960 9.6153 12.7060 14.0664 14.6078 k = 0.8406 0.0000-0.1420 band energies (ev): -5.0545 -2.2029 2.0337 4.5260 5.8206 9.8998 10.1810 12.9597 15.0171 k = 0.7005-0.2427-0.0473 band energies (ev): -4.2801 -2.6953 1.7830 2.7354 6.0174 9.7332 12.3256 13.4408 13.7711 k = 0.5604 0.0000 0.0473 band energies (ev): -4.6760 -3.3092 4.4004 4.6205 6.0790 9.0857 9.4872 10.1313 15.3462 the Fermi energy is 8.0235 ev total energy = -25.49936028 Ry Harris-Foulkes estimate = -25.49936221 Ry estimated scf accuracy < 0.00000319 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.19E-08, avg # of iterations = 2.1 total cpu time spent up to now is 32.39 secs k = 0.0000 0.0000 0.1420 band energies (ev): -7.1994 1.5079 5.4882 5.4882 6.3059 9.7625 10.3446 10.3446 14.3951 k =-0.1401-0.2427 0.2367 band energies (ev): -6.1943 -1.0126 3.8168 5.5163 7.8816 8.0804 8.9068 11.6208 13.7675 k = 0.2802 0.4853-0.0473 band energies (ev): -4.6813 -3.3136 4.3980 4.6154 6.0765 9.0822 9.4854 10.1290 15.3459 k = 0.1401 0.2427 0.0473 band energies (ev): -6.6215 -0.0059 4.6178 5.1177 6.4874 9.1876 10.0152 11.2326 13.2716 k =-0.2802 0.0000 0.3314 band energies (ev): -5.8383 -0.8123 2.8380 3.9563 5.2034 10.0277 11.7219 11.8306 13.5805 k = 0.1401 0.7280 0.0473 band energies (ev): -4.2859 -2.7001 1.7806 2.7333 6.0146 9.7296 12.3226 13.4363 13.7687 k = 0.0000 0.4853 0.1420 band energies (ev): -5.0999 -2.3386 2.6961 4.6491 5.8797 9.1894 10.9255 11.9774 13.5199 k = 0.5604 0.0000-0.2367 band energies (ev): -4.5915 -2.0740 1.7675 3.4243 3.9941 9.6129 12.7020 14.0646 14.6029 k = 0.4203-0.2427-0.1420 band energies (ev): -5.0999 -2.3386 2.6961 4.6491 5.8797 9.1894 10.9255 11.9774 13.5199 k = 0.2802 0.0000-0.0473 band energies (ev): -6.6215 -0.0059 4.6178 5.1177 6.4874 9.1876 10.0152 11.2326 13.2716 k = 0.2802 0.0000 0.2367 band energies (ev): -6.1943 -1.0126 3.8168 5.5163 7.8816 8.0804 8.9068 11.6208 13.7675 k = 0.1401-0.2427 0.3314 band energies (ev): -5.8383 -0.8123 2.8380 3.9563 5.2034 10.0277 11.7219 11.8306 13.5805 k = 0.5604 0.4853 0.0473 band energies (ev): -4.2859 -2.7001 1.7806 2.7333 6.0146 9.7296 12.3226 13.4363 13.7687 k = 0.4203 0.2427 0.1420 band energies (ev): -5.0999 -2.3386 2.6961 4.6491 5.8797 9.1894 10.9255 11.9774 13.5199 k = 0.0000 0.0000 0.4261 band energies (ev): -6.0499 -1.7066 5.6644 5.6644 6.8433 8.3689 8.3689 9.4392 15.4782 k = 0.4203 0.7280 0.1420 band energies (ev): -5.0608 -2.2054 2.0304 4.5215 5.8186 9.8965 10.1763 12.9549 15.0168 k = 0.2802 0.4853 0.2367 band energies (ev): -4.5915 -2.0740 1.7675 3.4243 3.9941 9.6129 12.7020 14.0646 14.6029 k = 0.8406 0.0000-0.1420 band energies (ev): -5.0608 -2.2054 2.0304 4.5214 5.8186 9.8965 10.1763 12.9549 15.0168 k = 0.7005-0.2427-0.0473 band energies (ev): -4.2859 -2.7001 1.7806 2.7333 6.0146 9.7296 12.3226 13.4363 13.7687 k = 0.5604 0.0000 0.0473 band energies (ev): -4.6813 -3.3136 4.3980 4.6154 6.0765 9.0822 9.4854 10.1290 15.3459 the Fermi energy is 8.0209 ev total energy = -25.49936102 Ry Harris-Foulkes estimate = -25.49936121 Ry estimated scf accuracy < 0.00000037 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.68E-09, avg # of iterations = 1.6 total cpu time spent up to now is 32.71 secs End of self-consistent calculation k = 0.0000 0.0000 0.1420 ( 531 PWs) bands (ev): -7.1984 1.5088 5.4893 5.4893 6.3067 9.7635 10.3454 10.3454 14.3951 k =-0.1401-0.2427 0.2367 ( 522 PWs) bands (ev): -6.1932 -1.0117 3.8174 5.5176 7.8825 8.0809 8.9071 11.6216 13.7678 k = 0.2802 0.4853-0.0473 ( 520 PWs) bands (ev): -4.6802 -3.3126 4.3985 4.6166 6.0770 9.0829 9.4857 10.1294 15.3459 k = 0.1401 0.2427 0.0473 ( 525 PWs) bands (ev): -6.6205 -0.0048 4.6188 5.1183 6.4879 9.1882 10.0161 11.2333 13.2717 k =-0.2802 0.0000 0.3314 ( 519 PWs) bands (ev): -5.8372 -0.8114 2.8388 3.9572 5.2036 10.0285 11.7230 11.8315 13.5806 k = 0.1401 0.7280 0.0473 ( 510 PWs) bands (ev): -4.2846 -2.6991 1.7811 2.7337 6.0151 9.7303 12.3233 13.4373 13.7692 k = 0.0000 0.4853 0.1420 ( 521 PWs) bands (ev): -5.0988 -2.3374 2.6970 4.6493 5.8804 9.1898 10.9264 11.9783 13.5202 k = 0.5604 0.0000-0.2367 ( 510 PWs) bands (ev): -4.5904 -2.0727 1.7676 3.4252 3.9945 9.6134 12.7028 14.0650 14.6039 k = 0.4203-0.2427-0.1420 ( 521 PWs) bands (ev): -5.0988 -2.3374 2.6970 4.6493 5.8804 9.1898 10.9264 11.9783 13.5201 k = 0.2802 0.0000-0.0473 ( 525 PWs) bands (ev): -6.6205 -0.0048 4.6188 5.1183 6.4879 9.1882 10.0161 11.2333 13.2717 k = 0.2802 0.0000 0.2367 ( 522 PWs) bands (ev): -6.1932 -1.0117 3.8174 5.5176 7.8825 8.0809 8.9071 11.6216 13.7678 k = 0.1401-0.2427 0.3314 ( 519 PWs) bands (ev): -5.8372 -0.8114 2.8388 3.9572 5.2036 10.0285 11.7230 11.8315 13.5806 k = 0.5604 0.4853 0.0473 ( 510 PWs) bands (ev): -4.2846 -2.6991 1.7811 2.7337 6.0151 9.7303 12.3233 13.4373 13.7692 k = 0.4203 0.2427 0.1420 ( 521 PWs) bands (ev): -5.0988 -2.3374 2.6970 4.6493 5.8804 9.1898 10.9264 11.9783 13.5201 k = 0.0000 0.0000 0.4261 ( 522 PWs) bands (ev): -6.0487 -1.7062 5.6656 5.6656 6.8446 8.3694 8.3694 9.4393 15.4785 k = 0.4203 0.7280 0.1420 ( 520 PWs) bands (ev): -5.0594 -2.2050 2.0311 4.5224 5.8190 9.8971 10.1773 12.9559 15.0168 k = 0.2802 0.4853 0.2367 ( 510 PWs) bands (ev): -4.5904 -2.0727 1.7676 3.4252 3.9945 9.6134 12.7028 14.0650 14.6039 k = 0.8406 0.0000-0.1420 ( 520 PWs) bands (ev): -5.0594 -2.2050 2.0311 4.5224 5.8190 9.8971 10.1773 12.9559 15.0168 k = 0.7005-0.2427-0.0473 ( 510 PWs) bands (ev): -4.2846 -2.6991 1.7811 2.7337 6.0151 9.7303 12.3233 13.4373 13.7692 k = 0.5604 0.0000 0.0473 ( 520 PWs) bands (ev): -4.6802 -3.3126 4.3985 4.6166 6.0770 9.0829 9.4857 10.1294 15.3459 the Fermi energy is 8.0214 ev ! total energy = -25.49936105 Ry Harris-Foulkes estimate = -25.49936106 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000001 0.00000000 0.00263554 atom 2 type 1 force = 0.00000001 0.00000000 -0.00263554 Total force = 0.003727 Total SCF correction = 0.000096 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -9.89 -0.00005457 0.00000000 0.00000000 -8.03 0.00 0.00 0.00000000 -0.00005457 0.00000000 0.00 -8.03 0.00 0.00000000 0.00000000 -0.00009260 0.00 0.00 -13.62 Entering Dynamics; it = 12 time = 0.07986 pico-seconds new lattice vectors (alat unit) : 0.593822912 0.000000000 0.875820278 -0.296911328 0.514265705 0.875820379 -0.296911328 -0.514265705 0.875820379 new unit-cell volume = 276.4377 (a.u.)^3 new positions in cryst coord As 0.272868133 0.272868139 0.272868139 As -0.272868133 -0.272868139 -0.272868139 new positions in cart coord (alat unit) As 0.000000067 0.000000000 0.716950398 As -0.000000067 0.000000000 -0.716950398 Ekin = 0.00168605 Ry T = 481.9 K Etot = -25.49767500 CELL_PARAMETERS (alat) 0.593822912 0.000000000 0.875820278 -0.296911328 0.514265705 0.875820379 -0.296911328 -0.514265705 0.875820379 ATOMIC_POSITIONS (crystal) As 0.272868133 0.272868139 0.272868139 As -0.272868133 -0.272868139 -0.272868139 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1427233), wk = 0.0625000 k( 2) = ( -0.1403336 -0.2430650 0.2378722), wk = 0.1250000 k( 3) = ( 0.2806673 0.4861300 -0.0475745), wk = 0.1250000 k( 4) = ( 0.1403337 0.2430650 0.0475744), wk = 0.1250000 k( 5) = ( -0.2806673 0.0000000 0.3330211), wk = 0.0625000 k( 6) = ( 0.1403337 0.7291950 0.0475744), wk = 0.1250000 k( 7) = ( 0.0000000 0.4861300 0.1427233), wk = 0.1250000 k( 8) = ( 0.5613346 0.0000000 -0.2378723), wk = 0.0625000 k( 9) = ( 0.4210010 -0.2430650 -0.1427234), wk = 0.1250000 k( 10) = ( 0.2806673 0.0000000 -0.0475745), wk = 0.0625000 k( 11) = ( 0.2806674 0.0000000 0.2378722), wk = 0.0625000 k( 12) = ( 0.1403337 -0.2430650 0.3330211), wk = 0.1250000 k( 13) = ( 0.5613347 0.4861300 0.0475744), wk = 0.1250000 k( 14) = ( 0.4210010 0.2430650 0.1427233), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4281700), wk = 0.0625000 k( 16) = ( 0.4210010 0.7291950 0.1427233), wk = 0.1250000 k( 17) = ( 0.2806674 0.4861300 0.2378722), wk = 0.1250000 k( 18) = ( 0.8420020 0.0000000 -0.1427234), wk = 0.0625000 k( 19) = ( 0.7016683 -0.2430650 -0.0475745), wk = 0.1250000 k( 20) = ( 0.5613347 0.0000000 0.0475744), wk = 0.0625000 extrapolated charge 9.91974, renormalised to 10.00000 total cpu time spent up to now is 33.00 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.4 total cpu time spent up to now is 33.57 secs k = 0.0000 0.0000 0.1427 band energies (ev): -7.1732 1.6522 5.5391 5.5391 6.4380 9.8466 10.4547 10.4547 14.5251 k =-0.1403-0.2431 0.2379 band energies (ev): -6.1632 -0.9256 3.9066 5.5581 7.9849 8.2121 9.0449 11.7744 13.8753 k = 0.2807 0.4861-0.0476 band energies (ev): -4.6455 -3.2551 4.5023 4.6593 6.1868 9.2014 9.6325 10.3129 15.5373 k = 0.1403 0.2431 0.0476 band energies (ev): -6.5927 0.0818 4.6659 5.2309 6.5978 9.3537 10.1039 11.3817 13.4323 k =-0.2807 0.0000 0.3330 band energies (ev): -5.8050 -0.7037 2.8920 4.0015 5.3245 10.1019 11.8528 11.9549 13.7502 k = 0.1403 0.7292 0.0476 band energies (ev): -4.2439 -2.6358 1.8389 2.8186 6.1225 9.8554 12.4276 13.5806 13.9382 k = 0.0000 0.4861 0.1427 band energies (ev): -5.0627 -2.2770 2.7467 4.7599 5.9869 9.3561 11.0705 12.0896 13.6544 k = 0.5613 0.0000-0.2379 band energies (ev): -4.5478 -2.0156 1.8637 3.4675 4.1019 9.6962 12.8639 14.2590 14.7903 k = 0.4210-0.2431-0.1427 band energies (ev): -5.0627 -2.2770 2.7467 4.7599 5.9869 9.3561 11.0705 12.0896 13.6544 k = 0.2807 0.0000-0.0476 band energies (ev): -6.5927 0.0818 4.6659 5.2309 6.5978 9.3537 10.1039 11.3817 13.4323 k = 0.2807 0.0000 0.2379 band energies (ev): -6.1632 -0.9256 3.9066 5.5581 7.9849 8.2121 9.0449 11.7744 13.8753 k = 0.1403-0.2431 0.3330 band energies (ev): -5.8050 -0.7037 2.8920 4.0015 5.3245 10.1019 11.8528 11.9549 13.7502 k = 0.5613 0.4861 0.0476 band energies (ev): -4.2439 -2.6358 1.8389 2.8186 6.1225 9.8554 12.4276 13.5806 13.9382 k = 0.4210 0.2431 0.1427 band energies (ev): -5.0627 -2.2770 2.7467 4.7599 5.9869 9.3561 11.0705 12.0896 13.6544 k = 0.0000 0.0000 0.4282 band energies (ev): -6.0203 -1.5882 5.7070 5.7070 6.9193 8.4723 8.4723 9.5781 15.6338 k = 0.4210 0.7292 0.1427 band energies (ev): -5.0291 -2.0980 2.0785 4.5668 5.9229 10.0150 10.2823 13.0721 15.1845 k = 0.2807 0.4861 0.2379 band energies (ev): -4.5478 -2.0156 1.8637 3.4675 4.1019 9.6962 12.8639 14.2590 14.7903 k = 0.8420 0.0000-0.1427 band energies (ev): -5.0291 -2.0980 2.0785 4.5668 5.9229 10.0150 10.2823 13.0721 15.1845 k = 0.7017-0.2431-0.0476 band energies (ev): -4.2439 -2.6358 1.8389 2.8186 6.1225 9.8554 12.4276 13.5806 13.9382 k = 0.5613 0.0000 0.0476 band energies (ev): -4.6455 -3.2551 4.5023 4.6593 6.1868 9.2014 9.6325 10.3129 15.5373 the Fermi energy is 8.1545 ev total energy = -25.49942539 Ry Harris-Foulkes estimate = -25.45302994 Ry estimated scf accuracy < 0.00002989 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.99E-07, avg # of iterations = 3.0 total cpu time spent up to now is 33.99 secs k = 0.0000 0.0000 0.1427 band energies (ev): -7.1601 1.6741 5.5571 5.5571 6.4471 9.8565 10.4613 10.4613 14.4967 k =-0.1403-0.2431 0.2379 band energies (ev): -6.1479 -0.9066 3.9060 5.5782 7.9867 8.2199 9.0408 11.7835 13.8516 k = 0.2807 0.4861-0.0476 band energies (ev): -4.6263 -3.2402 4.4995 4.6733 6.1851 9.2064 9.6289 10.3108 15.5066 k = 0.1403 0.2431 0.0476 band energies (ev): -6.5793 0.1076 4.6789 5.2342 6.6029 9.3553 10.1075 11.3880 13.4032 k =-0.2807 0.0000 0.3330 band energies (ev): -5.7874 -0.6848 2.8945 4.0099 5.3155 10.0949 11.8722 11.9684 13.7356 k = 0.1403 0.7292 0.0476 band energies (ev): -4.2208 -2.6163 1.8317 2.8113 6.1264 9.8632 12.4186 13.5948 13.9354 k = 0.0000 0.4861 0.1427 band energies (ev): -5.0462 -2.2548 2.7484 4.7512 5.9948 9.3507 11.0828 12.0969 13.6343 k = 0.5613 0.0000-0.2379 band energies (ev): -4.5269 -1.9910 1.8502 3.4745 4.0968 9.6788 12.8780 14.2534 14.8134 k = 0.4210-0.2431-0.1427 band energies (ev): -5.0462 -2.2548 2.7484 4.7512 5.9948 9.3507 11.0828 12.0969 13.6343 k = 0.2807 0.0000-0.0476 band energies (ev): -6.5793 0.1076 4.6789 5.2342 6.6029 9.3553 10.1075 11.3880 13.4032 k = 0.2807 0.0000 0.2379 band energies (ev): -6.1479 -0.9066 3.9060 5.5782 7.9867 8.2199 9.0408 11.7835 13.8516 k = 0.1403-0.2431 0.3330 band energies (ev): -5.7874 -0.6848 2.8945 4.0099 5.3155 10.0949 11.8722 11.9684 13.7356 k = 0.5613 0.4861 0.0476 band energies (ev): -4.2208 -2.6163 1.8317 2.8113 6.1264 9.8632 12.4186 13.5948 13.9354 k = 0.4210 0.2431 0.1427 band energies (ev): -5.0462 -2.2548 2.7484 4.7512 5.9948 9.3507 11.0827 12.0969 13.6343 k = 0.0000 0.0000 0.4282 band energies (ev): -6.0004 -1.5854 5.7249 5.7249 6.9316 8.4708 8.4708 9.5746 15.6055 k = 0.4210 0.7292 0.1427 band energies (ev): -5.0042 -2.0913 2.0757 4.5771 5.9175 10.0225 10.2978 13.0891 15.1552 k = 0.2807 0.4861 0.2379 band energies (ev): -4.5269 -1.9910 1.8502 3.4745 4.0968 9.6788 12.8780 14.2534 14.8134 k = 0.8420 0.0000-0.1427 band energies (ev): -5.0042 -2.0913 2.0757 4.5771 5.9175 10.0225 10.2978 13.0891 15.1552 k = 0.7017-0.2431-0.0476 band energies (ev): -4.2208 -2.6163 1.8317 2.8113 6.1264 9.8632 12.4186 13.5948 13.9354 k = 0.5613 0.0000 0.0476 band energies (ev): -4.6263 -3.2402 4.4995 4.6733 6.1851 9.2064 9.6289 10.3108 15.5066 the Fermi energy is 8.0442 ev total energy = -25.49947293 Ry Harris-Foulkes estimate = -25.49948249 Ry estimated scf accuracy < 0.00002309 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.31E-07, avg # of iterations = 1.0 total cpu time spent up to now is 34.29 secs k = 0.0000 0.0000 0.1427 band energies (ev): -7.1654 1.6704 5.5511 5.5512 6.4434 9.8509 10.4568 10.4568 14.4968 k =-0.1403-0.2431 0.2379 band energies (ev): -6.1536 -0.9111 3.9030 5.5710 7.9820 8.2180 9.0399 11.7793 13.8497 k = 0.2807 0.4861-0.0476 band energies (ev): -4.6324 -3.2450 4.4974 4.6671 6.1826 9.2025 9.6279 10.3088 15.5064 k = 0.1403 0.2431 0.0476 band energies (ev): -6.5845 0.1017 4.6733 5.2315 6.6004 9.3528 10.1017 11.3849 13.4031 k =-0.2807 0.0000 0.3330 band energies (ev): -5.7934 -0.6886 2.8897 4.0050 5.3156 10.0902 11.8665 11.9637 13.7355 k = 0.1403 0.7292 0.0476 band energies (ev): -4.2276 -2.6215 1.8290 2.8095 6.1241 9.8592 12.4149 13.5899 13.9332 k = 0.0000 0.4861 0.1427 band energies (ev): -5.0518 -2.2606 2.7437 4.7509 5.9915 9.3490 11.0781 12.0920 13.6330 k = 0.5613 0.0000-0.2379 band energies (ev): -4.5330 -1.9979 1.8502 3.4697 4.0955 9.6752 12.8741 14.2521 14.8085 k = 0.4210-0.2431-0.1427 band energies (ev): -5.0518 -2.2606 2.7437 4.7509 5.9915 9.3490 11.0781 12.0920 13.6330 k = 0.2807 0.0000-0.0476 band energies (ev): -6.5845 0.1017 4.6733 5.2315 6.6004 9.3528 10.1017 11.3849 13.4031 k = 0.2807 0.0000 0.2379 band energies (ev): -6.1536 -0.9111 3.9030 5.5710 7.9820 8.2180 9.0399 11.7793 13.8497 k = 0.1403-0.2431 0.3330 band energies (ev): -5.7934 -0.6886 2.8897 4.0050 5.3156 10.0902 11.8665 11.9637 13.7355 k = 0.5613 0.4861 0.0476 band energies (ev): -4.2276 -2.6215 1.8290 2.8095 6.1241 9.8592 12.4149 13.5899 13.9332 k = 0.4210 0.2431 0.1427 band energies (ev): -5.0518 -2.2606 2.7437 4.7509 5.9915 9.3490 11.0781 12.0920 13.6330 k = 0.0000 0.0000 0.4282 band energies (ev): -6.0072 -1.5862 5.7185 5.7185 6.9239 8.4683 8.4683 9.5754 15.6036 k = 0.4210 0.7292 0.1427 band energies (ev): -5.0119 -2.0927 2.0718 4.5717 5.9157 10.0193 10.2925 13.0836 15.1549 k = 0.2807 0.4861 0.2379 band energies (ev): -4.5330 -1.9979 1.8502 3.4697 4.0955 9.6752 12.8741 14.2521 14.8085 k = 0.8420 0.0000-0.1427 band energies (ev): -5.0119 -2.0927 2.0718 4.5717 5.9157 10.0193 10.2925 13.0836 15.1549 k = 0.7017-0.2431-0.0476 band energies (ev): -4.2276 -2.6215 1.8290 2.8095 6.1241 9.8592 12.4149 13.5899 13.9332 k = 0.5613 0.0000 0.0476 band energies (ev): -4.6324 -3.2450 4.4974 4.6671 6.1826 9.2025 9.6279 10.3088 15.5064 the Fermi energy is 8.0395 ev total energy = -25.49947292 Ry Harris-Foulkes estimate = -25.49947441 Ry estimated scf accuracy < 0.00000393 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.93E-08, avg # of iterations = 1.0 total cpu time spent up to now is 34.60 secs k = 0.0000 0.0000 0.1427 band energies (ev): -7.1678 1.6677 5.5486 5.5486 6.4413 9.8487 10.4548 10.4548 14.4965 k =-0.1403-0.2431 0.2379 band energies (ev): -6.1560 -0.9138 3.9014 5.5683 7.9801 8.2160 9.0385 11.7771 13.8490 k = 0.2807 0.4861-0.0476 band energies (ev): -4.6351 -3.2474 4.4959 4.6647 6.1810 9.2005 9.6264 10.3072 15.5060 k = 0.1403 0.2431 0.0476 band energies (ev): -6.5869 0.0987 4.6710 5.2297 6.5985 9.3511 10.0998 11.3829 13.4027 k =-0.2807 0.0000 0.3330 band energies (ev): -5.7960 -0.6912 2.8878 4.0029 5.3144 10.0888 11.8638 11.9614 13.7345 k = 0.1403 0.7292 0.0476 band energies (ev): -4.2304 -2.6241 1.8276 2.8082 6.1222 9.8571 12.4135 13.5874 13.9316 k = 0.0000 0.4861 0.1427 band energies (ev): -5.0543 -2.2635 2.7419 4.7497 5.9895 9.3476 11.0758 12.0899 13.6322 k = 0.5613 0.0000-0.2379 band energies (ev): -4.5358 -2.0009 1.8492 3.4677 4.0941 9.6743 12.8718 14.2506 14.8056 k = 0.4210-0.2431-0.1427 band energies (ev): -5.0543 -2.2635 2.7419 4.7497 5.9895 9.3476 11.0758 12.0899 13.6322 k = 0.2807 0.0000-0.0476 band energies (ev): -6.5869 0.0987 4.6710 5.2297 6.5985 9.3511 10.0998 11.3829 13.4027 k = 0.2807 0.0000 0.2379 band energies (ev): -6.1560 -0.9138 3.9014 5.5683 7.9801 8.2160 9.0385 11.7771 13.8490 k = 0.1403-0.2431 0.3330 band energies (ev): -5.7960 -0.6912 2.8878 4.0029 5.3144 10.0888 11.8638 11.9614 13.7345 k = 0.5613 0.4861 0.0476 band energies (ev): -4.2304 -2.6241 1.8276 2.8082 6.1222 9.8571 12.4135 13.5874 13.9316 k = 0.4210 0.2431 0.1427 band energies (ev): -5.0543 -2.2635 2.7419 4.7497 5.9895 9.3476 11.0758 12.0899 13.6322 k = 0.0000 0.0000 0.4282 band energies (ev): -6.0099 -1.5880 5.7159 5.7159 6.9215 8.4668 8.4668 9.5739 15.6030 k = 0.4210 0.7292 0.1427 band energies (ev): -5.0149 -2.0947 2.0702 4.5695 5.9143 10.0173 10.2901 13.0811 15.1545 k = 0.2807 0.4861 0.2379 band energies (ev): -4.5358 -2.0009 1.8492 3.4677 4.0941 9.6743 12.8718 14.2506 14.8056 k = 0.8420 0.0000-0.1427 band energies (ev): -5.0149 -2.0947 2.0702 4.5695 5.9143 10.0173 10.2901 13.0811 15.1545 k = 0.7017-0.2431-0.0476 band energies (ev): -4.2304 -2.6241 1.8276 2.8082 6.1222 9.8571 12.4135 13.5874 13.9316 k = 0.5613 0.0000 0.0476 band energies (ev): -4.6351 -3.2474 4.4959 4.6647 6.1810 9.2005 9.6264 10.3072 15.5060 the Fermi energy is 8.0376 ev total energy = -25.49947264 Ry Harris-Foulkes estimate = -25.49947313 Ry estimated scf accuracy < 0.00000083 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.26E-09, avg # of iterations = 3.0 total cpu time spent up to now is 35.05 secs End of self-consistent calculation k = 0.0000 0.0000 0.1427 ( 531 PWs) bands (ev): -7.1700 1.6655 5.5461 5.5461 6.4396 9.8465 10.4529 10.4529 14.4963 k =-0.1403-0.2431 0.2379 ( 522 PWs) bands (ev): -6.1584 -0.9160 3.9000 5.5655 7.9783 8.2145 9.0376 11.7752 13.8483 k = 0.2807 0.4861-0.0476 ( 520 PWs) bands (ev): -4.6377 -3.2496 4.4947 4.6623 6.1797 9.1988 9.6254 10.3060 15.5058 k = 0.1403 0.2431 0.0476 ( 525 PWs) bands (ev): -6.5891 0.0961 4.6687 5.2282 6.5970 9.3496 10.0977 11.3812 13.4024 k =-0.2807 0.0000 0.3330 ( 519 PWs) bands (ev): -5.7985 -0.6934 2.8860 4.0009 5.3137 10.0872 11.8614 11.9592 13.7339 k = 0.1403 0.7292 0.0476 ( 510 PWs) bands (ev): -4.2332 -2.6265 1.8264 2.8071 6.1208 9.8553 12.4121 13.5852 13.9303 k = 0.0000 0.4861 0.1427 ( 521 PWs) bands (ev): -5.0567 -2.2660 2.7401 4.7490 5.9878 9.3465 11.0737 12.0879 13.6315 k = 0.5613 0.0000-0.2379 ( 510 PWs) bands (ev): -4.5384 -2.0037 1.8486 3.4658 4.0931 9.6731 12.8698 14.2495 14.8031 k = 0.4210-0.2431-0.1427 ( 521 PWs) bands (ev): -5.0567 -2.2660 2.7401 4.7490 5.9878 9.3465 11.0737 12.0879 13.6315 k = 0.2807 0.0000-0.0476 ( 525 PWs) bands (ev): -6.5891 0.0961 4.6687 5.2282 6.5970 9.3496 10.0977 11.3812 13.4024 k = 0.2807 0.0000 0.2379 ( 522 PWs) bands (ev): -6.1584 -0.9160 3.9000 5.5655 7.9783 8.2145 9.0376 11.7752 13.8483 k = 0.1403-0.2431 0.3330 ( 519 PWs) bands (ev): -5.7985 -0.6934 2.8860 4.0009 5.3137 10.0872 11.8614 11.9592 13.7339 k = 0.5613 0.4861 0.0476 ( 510 PWs) bands (ev): -4.2332 -2.6265 1.8264 2.8071 6.1208 9.8553 12.4121 13.5852 13.9303 k = 0.4210 0.2431 0.1427 ( 521 PWs) bands (ev): -5.0567 -2.2660 2.7401 4.7490 5.9878 9.3465 11.0737 12.0879 13.6315 k = 0.0000 0.0000 0.4282 ( 522 PWs) bands (ev): -6.0126 -1.5892 5.7134 5.7134 6.9189 8.4654 8.4654 9.5731 15.6024 k = 0.4210 0.7292 0.1427 ( 520 PWs) bands (ev): -5.0179 -2.0961 2.0687 4.5674 5.9132 10.0156 10.2878 13.0787 15.1542 k = 0.2807 0.4861 0.2379 ( 510 PWs) bands (ev): -4.5384 -2.0037 1.8486 3.4658 4.0931 9.6731 12.8698 14.2495 14.8031 k = 0.8420 0.0000-0.1427 ( 520 PWs) bands (ev): -5.0179 -2.0961 2.0687 4.5674 5.9132 10.0156 10.2878 13.0787 15.1542 k = 0.7017-0.2431-0.0476 ( 510 PWs) bands (ev): -4.2332 -2.6265 1.8264 2.8071 6.1208 9.8553 12.4121 13.5852 13.9303 k = 0.5613 0.0000 0.0476 ( 520 PWs) bands (ev): -4.6377 -3.2496 4.4947 4.6623 6.1797 9.1988 9.6254 10.3060 15.5058 the Fermi energy is 8.0358 ev ! total energy = -25.49947289 Ry Harris-Foulkes estimate = -25.49947293 Ry estimated scf accuracy < 0.00000007 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 -0.00194002 atom 2 type 1 force = 0.00000000 0.00000000 0.00194002 Total force = 0.002744 Total SCF correction = 0.000191 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -1.48 -0.00000229 0.00000000 0.00000000 -0.34 0.00 0.00 0.00000000 -0.00000229 0.00000000 0.00 -0.34 0.00 0.00000000 0.00000000 -0.00002554 0.00 0.00 -3.76 Entering Dynamics; it = 13 time = 0.08712 pico-seconds new lattice vectors (alat unit) : 0.592851832 0.000000000 0.871317786 -0.296425787 0.513424716 0.871317875 -0.296425787 -0.513424716 0.871317875 new unit-cell volume = 274.1178 (a.u.)^3 new positions in cryst coord As 0.272833301 0.272833307 0.272833307 As -0.272833301 -0.272833307 -0.272833307 new positions in cart coord (alat unit) As 0.000000067 0.000000000 0.713173583 As -0.000000067 0.000000000 -0.713173583 Ekin = 0.00034501 Ry T = 442.7 K Etot = -25.49912788 CELL_PARAMETERS (alat) 0.592851832 0.000000000 0.871317786 -0.296425787 0.513424716 0.871317875 -0.296425787 -0.513424716 0.871317875 ATOMIC_POSITIONS (crystal) As 0.272833301 0.272833307 0.272833307 As -0.272833301 -0.272833307 -0.272833307 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1434609), wk = 0.0625000 k( 2) = ( -0.1405635 -0.2434632 0.2391014), wk = 0.1250000 k( 3) = ( 0.2811271 0.4869263 -0.0478203), wk = 0.1250000 k( 4) = ( 0.1405635 0.2434632 0.0478203), wk = 0.1250000 k( 5) = ( -0.2811270 0.0000000 0.3347420), wk = 0.0625000 k( 6) = ( 0.1405635 0.7303895 0.0478203), wk = 0.1250000 k( 7) = ( 0.0000000 0.4869263 0.1434609), wk = 0.1250000 k( 8) = ( 0.5622541 0.0000000 -0.2391015), wk = 0.0625000 k( 9) = ( 0.4216906 -0.2434632 -0.1434609), wk = 0.1250000 k( 10) = ( 0.2811271 0.0000000 -0.0478203), wk = 0.0625000 k( 11) = ( 0.2811271 0.0000000 0.2391014), wk = 0.0625000 k( 12) = ( 0.1405636 -0.2434632 0.3347420), wk = 0.1250000 k( 13) = ( 0.5622541 0.4869263 0.0478202), wk = 0.1250000 k( 14) = ( 0.4216906 0.2434632 0.1434608), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4303826), wk = 0.0625000 k( 16) = ( 0.4216906 0.7303895 0.1434608), wk = 0.1250000 k( 17) = ( 0.2811271 0.4869263 0.2391014), wk = 0.1250000 k( 18) = ( 0.8433812 0.0000000 -0.1434609), wk = 0.0625000 k( 19) = ( 0.7028176 -0.2434632 -0.0478204), wk = 0.1250000 k( 20) = ( 0.5622541 0.0000000 0.0478202), wk = 0.0625000 extrapolated charge 9.91537, renormalised to 10.00000 total cpu time spent up to now is 35.34 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 35.82 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1277 1.8050 5.6217 5.6217 6.5685 9.9758 10.5781 10.5781 14.6184 k =-0.1406-0.2435 0.2391 band energies (ev): -6.1090 -0.8269 4.0021 5.6509 8.0929 8.3493 9.1456 11.9285 13.9792 k = 0.2811 0.4869-0.0478 band energies (ev): -4.5812 -3.1830 4.6068 4.7420 6.2907 9.3379 9.7451 10.4744 15.6965 k = 0.1406 0.2435 0.0478 band energies (ev): -6.5452 0.1956 4.7423 5.3442 6.7208 9.4944 10.2275 11.5234 13.5512 k =-0.2811 0.0000 0.3347 band energies (ev): -5.7436 -0.5883 2.9657 4.0657 5.4143 10.2038 12.0008 12.0903 13.8751 k = 0.1406 0.7304 0.0478 band energies (ev): -4.1663 -2.5532 1.8942 2.8949 6.2330 9.9769 12.5403 13.7464 14.0918 k = 0.0000 0.4869 0.1435 band energies (ev): -5.0031 -2.1897 2.8157 4.8493 6.1134 9.4885 11.2197 12.2241 13.7737 k = 0.5623 0.0000-0.2391 band energies (ev): -4.4761 -1.9204 1.9313 3.5296 4.1922 9.7978 13.0243 14.4120 14.9851 k = 0.4217-0.2435-0.1435 band energies (ev): -5.0031 -2.1897 2.8157 4.8493 6.1134 9.4885 11.2197 12.2241 13.7737 k = 0.2811 0.0000-0.0478 band energies (ev): -6.5452 0.1956 4.7423 5.3442 6.7208 9.4944 10.2275 11.5234 13.5512 k = 0.2811 0.0000 0.2391 band energies (ev): -6.1090 -0.8269 4.0021 5.6509 8.0929 8.3493 9.1456 11.9285 13.9792 k = 0.1406-0.2435 0.3347 band energies (ev): -5.7436 -0.5883 2.9657 4.0657 5.4143 10.2038 12.0008 12.0903 13.8751 k = 0.5623 0.4869 0.0478 band energies (ev): -4.1663 -2.5532 1.8942 2.8949 6.2330 9.9769 12.5403 13.7464 14.0918 k = 0.4217 0.2435 0.1435 band energies (ev): -5.0031 -2.1897 2.8157 4.8493 6.1134 9.4885 11.2197 12.2241 13.7737 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9542 -1.4933 5.7881 5.7881 7.0265 8.5623 8.5623 9.7030 15.7724 k = 0.4217 0.7304 0.1435 band energies (ev): -4.9509 -2.0102 2.1358 4.6389 6.0118 10.1253 10.4172 13.2186 15.3146 k = 0.2811 0.4869 0.2391 band energies (ev): -4.4761 -1.9204 1.9313 3.5296 4.1922 9.7978 13.0243 14.4120 14.9851 k = 0.8434 0.0000-0.1435 band energies (ev): -4.9509 -2.0102 2.1358 4.6389 6.0118 10.1253 10.4172 13.2186 15.3146 k = 0.7028-0.2435-0.0478 band energies (ev): -4.1663 -2.5532 1.8942 2.8949 6.2330 9.9769 12.5403 13.7464 14.0918 k = 0.5623 0.0000 0.0478 band energies (ev): -4.5812 -3.1830 4.6068 4.7420 6.2907 9.3379 9.7451 10.4744 15.6965 the Fermi energy is 8.1502 ev total energy = -25.49941083 Ry Harris-Foulkes estimate = -25.45011155 Ry estimated scf accuracy < 0.00002685 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-07, avg # of iterations = 3.0 total cpu time spent up to now is 36.25 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1148 1.8241 5.6401 5.6401 6.5764 9.9864 10.5843 10.5843 14.5873 k =-0.1406-0.2435 0.2391 band energies (ev): -6.0936 -0.8095 4.0001 5.6726 8.0949 8.3537 9.1380 11.9368 13.9543 k = 0.2811 0.4869-0.0478 band energies (ev): -4.5618 -3.1691 4.6017 4.7569 6.2869 9.3419 9.7381 10.4699 15.6636 k = 0.1406 0.2435 0.0478 band energies (ev): -6.5321 0.2208 4.7556 5.3456 6.7233 9.4942 10.2323 11.5278 13.5198 k =-0.2811 0.0000 0.3347 band energies (ev): -5.7256 -0.5717 2.9687 4.0741 5.4013 10.1972 12.0201 12.1028 13.8571 k = 0.1406 0.7304 0.0478 band energies (ev): -4.1425 -2.5345 1.8859 2.8854 6.2344 9.9837 12.5302 13.7602 14.0878 k = 0.0000 0.4869 0.1435 band energies (ev): -4.9868 -2.1678 2.8178 4.8366 6.1196 9.4808 11.2314 12.2310 13.7521 k = 0.5623 0.0000-0.2391 band energies (ev): -4.4552 -1.8951 1.9140 3.5364 4.1843 9.7806 13.0366 14.4037 15.0071 k = 0.4217-0.2435-0.1435 band energies (ev): -4.9868 -2.1678 2.8178 4.8366 6.1196 9.4808 11.2314 12.2310 13.7521 k = 0.2811 0.0000-0.0478 band energies (ev): -6.5321 0.2208 4.7556 5.3456 6.7233 9.4942 10.2323 11.5278 13.5198 k = 0.2811 0.0000 0.2391 band energies (ev): -6.0936 -0.8095 4.0001 5.6726 8.0949 8.3537 9.1380 11.9368 13.9543 k = 0.1406-0.2435 0.3347 band energies (ev): -5.7256 -0.5717 2.9687 4.0741 5.4013 10.1972 12.0201 12.1028 13.8571 k = 0.5623 0.4869 0.0478 band energies (ev): -4.1425 -2.5345 1.8859 2.8854 6.2344 9.9837 12.5302 13.7602 14.0878 k = 0.4217 0.2435 0.1435 band energies (ev): -4.9868 -2.1678 2.8178 4.8366 6.1196 9.4808 11.2314 12.2310 13.7521 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9333 -1.4948 5.8067 5.8067 7.0416 8.5589 8.5589 9.6937 15.7438 k = 0.4217 0.7304 0.1435 band energies (ev): -4.9244 -2.0076 2.1327 4.6496 6.0039 10.1310 10.4324 13.2353 15.2832 k = 0.2811 0.4869 0.2391 band energies (ev): -4.4552 -1.8951 1.9140 3.5364 4.1843 9.7806 13.0366 14.4037 15.0071 k = 0.8434 0.0000-0.1435 band energies (ev): -4.9244 -2.0076 2.1327 4.6496 6.0039 10.1310 10.4324 13.2353 15.2832 k = 0.7028-0.2435-0.0478 band energies (ev): -4.1425 -2.5345 1.8859 2.8854 6.2344 9.9837 12.5302 13.7602 14.0878 k = 0.5623 0.0000 0.0478 band energies (ev): -4.5618 -3.1691 4.6017 4.7569 6.2869 9.3419 9.7381 10.4699 15.6636 the Fermi energy is 8.2964 ev total energy = -25.49946381 Ry Harris-Foulkes estimate = -25.49947519 Ry estimated scf accuracy < 0.00002908 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.68E-07, avg # of iterations = 1.0 total cpu time spent up to now is 36.55 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1201 1.8207 5.6341 5.6341 6.5729 9.9808 10.5798 10.5798 14.5875 k =-0.1406-0.2435 0.2391 band energies (ev): -6.0993 -0.8139 3.9972 5.6652 8.0902 8.3521 9.1373 11.9326 13.9524 k = 0.2811 0.4869-0.0478 band energies (ev): -4.5680 -3.1738 4.5998 4.7506 6.2846 9.3381 9.7373 10.4681 15.6635 k = 0.1406 0.2435 0.0478 band energies (ev): -6.5373 0.2150 4.7500 5.3430 6.7210 9.4918 10.2264 11.5248 13.5197 k =-0.2811 0.0000 0.3347 band energies (ev): -5.7317 -0.5753 2.9637 4.0691 5.4016 10.1924 12.0144 12.0982 13.8573 k = 0.1406 0.7304 0.0478 band energies (ev): -4.1494 -2.5396 1.8831 2.8837 6.2322 9.9798 12.5264 13.7553 14.0856 k = 0.0000 0.4869 0.1435 band energies (ev): -4.9924 -2.1737 2.8129 4.8366 6.1164 9.4792 11.2268 12.2260 13.7508 k = 0.5623 0.0000-0.2391 band energies (ev): -4.4613 -1.9021 1.9142 3.5316 4.1832 9.7769 13.0329 14.4026 15.0023 k = 0.4217-0.2435-0.1435 band energies (ev): -4.9924 -2.1737 2.8129 4.8366 6.1164 9.4792 11.2268 12.2260 13.7508 k = 0.2811 0.0000-0.0478 band energies (ev): -6.5373 0.2150 4.7500 5.3430 6.7210 9.4918 10.2264 11.5248 13.5197 k = 0.2811 0.0000 0.2391 band energies (ev): -6.0993 -0.8139 3.9972 5.6652 8.0902 8.3521 9.1373 11.9326 13.9524 k = 0.1406-0.2435 0.3347 band energies (ev): -5.7317 -0.5753 2.9637 4.0691 5.4016 10.1924 12.0144 12.0982 13.8573 k = 0.5623 0.4869 0.0478 band energies (ev): -4.1494 -2.5396 1.8831 2.8837 6.2322 9.9798 12.5264 13.7553 14.0856 k = 0.4217 0.2435 0.1435 band energies (ev): -4.9924 -2.1737 2.8129 4.8366 6.1164 9.4792 11.2268 12.2260 13.7508 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9402 -1.4953 5.8002 5.8002 7.0336 8.5565 8.5565 9.6949 15.7418 k = 0.4217 0.7304 0.1435 band energies (ev): -4.9323 -2.0087 2.1287 4.6441 6.0023 10.1279 10.4272 13.2299 15.2830 k = 0.2811 0.4869 0.2391 band energies (ev): -4.4613 -1.9021 1.9142 3.5316 4.1832 9.7769 13.0329 14.4026 15.0023 k = 0.8434 0.0000-0.1435 band energies (ev): -4.9323 -2.0087 2.1287 4.6441 6.0023 10.1279 10.4272 13.2299 15.2830 k = 0.7028-0.2435-0.0478 band energies (ev): -4.1494 -2.5396 1.8831 2.8837 6.2322 9.9798 12.5264 13.7553 14.0856 k = 0.5623 0.0000 0.0478 band energies (ev): -4.5680 -3.1738 4.5998 4.7506 6.2846 9.3381 9.7373 10.4681 15.6635 the Fermi energy is 8.2948 ev total energy = -25.49946341 Ry Harris-Foulkes estimate = -25.49946543 Ry estimated scf accuracy < 0.00000593 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.93E-08, avg # of iterations = 1.0 total cpu time spent up to now is 36.85 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1226 1.8181 5.6314 5.6314 6.5708 9.9784 10.5777 10.5777 14.5873 k =-0.1406-0.2435 0.2391 band energies (ev): -6.1019 -0.8165 3.9956 5.6622 8.0883 8.3503 9.1361 11.9304 13.9517 k = 0.2811 0.4869-0.0478 band energies (ev): -4.5708 -3.1762 4.5983 4.7480 6.2831 9.3361 9.7360 10.4666 15.6632 k = 0.1406 0.2435 0.0478 band energies (ev): -6.5398 0.2120 4.7475 5.3412 6.7192 9.4901 10.2243 11.5229 13.5193 k =-0.2811 0.0000 0.3347 band energies (ev): -5.7344 -0.5778 2.9617 4.0669 5.4007 10.1908 12.0117 12.0958 13.8565 k = 0.1406 0.7304 0.0478 band energies (ev): -4.1524 -2.5423 1.8818 2.8824 6.2305 9.9777 12.5250 13.7528 14.0840 k = 0.0000 0.4869 0.1435 band energies (ev): -4.9950 -2.1766 2.8110 4.8356 6.1144 9.4779 11.2244 12.2238 13.7500 k = 0.5623 0.0000-0.2391 band energies (ev): -4.4642 -1.9052 1.9134 3.5295 4.1820 9.7758 13.0306 14.4013 14.9995 k = 0.4217-0.2435-0.1435 band energies (ev): -4.9950 -2.1766 2.8110 4.8356 6.1144 9.4779 11.2244 12.2238 13.7500 k = 0.2811 0.0000-0.0478 band energies (ev): -6.5398 0.2120 4.7475 5.3412 6.7192 9.4901 10.2243 11.5229 13.5193 k = 0.2811 0.0000 0.2391 band energies (ev): -6.1019 -0.8165 3.9955 5.6622 8.0883 8.3503 9.1361 11.9304 13.9517 k = 0.1406-0.2435 0.3347 band energies (ev): -5.7344 -0.5778 2.9617 4.0669 5.4007 10.1908 12.0117 12.0958 13.8565 k = 0.5623 0.4869 0.0478 band energies (ev): -4.1524 -2.5423 1.8818 2.8824 6.2305 9.9777 12.5250 13.7528 14.0840 k = 0.4217 0.2435 0.1435 band energies (ev): -4.9950 -2.1766 2.8110 4.8356 6.1144 9.4779 11.2244 12.2238 13.7500 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9431 -1.4968 5.7974 5.7974 7.0309 8.5550 8.5550 9.6939 15.7412 k = 0.4217 0.7304 0.1435 band energies (ev): -4.9355 -2.0104 2.1271 4.6418 6.0010 10.1259 10.4247 13.2272 15.2827 k = 0.2811 0.4869 0.2391 band energies (ev): -4.4642 -1.9052 1.9134 3.5295 4.1820 9.7758 13.0306 14.4013 14.9995 k = 0.8434 0.0000-0.1435 band energies (ev): -4.9355 -2.0104 2.1271 4.6418 6.0010 10.1259 10.4247 13.2272 15.2827 k = 0.7028-0.2435-0.0478 band energies (ev): -4.1524 -2.5423 1.8818 2.8824 6.2305 9.9777 12.5250 13.7528 14.0840 k = 0.5623 0.0000 0.0478 band energies (ev): -4.5708 -3.1762 4.5983 4.7480 6.2831 9.3361 9.7360 10.4666 15.6632 the Fermi energy is 8.2930 ev total energy = -25.49946266 Ry Harris-Foulkes estimate = -25.49946365 Ry estimated scf accuracy < 0.00000168 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.68E-08, avg # of iterations = 2.6 total cpu time spent up to now is 37.21 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1255 1.8152 5.6281 5.6281 6.5685 9.9756 10.5752 10.5752 14.5871 k =-0.1406-0.2435 0.2391 ( 522 PWs) bands (ev): -6.1050 -0.8195 3.9937 5.6586 8.0859 8.3484 9.1349 11.9279 13.9508 k = 0.2811 0.4869-0.0478 ( 520 PWs) bands (ev): -4.5741 -3.1791 4.5968 4.7448 6.2814 9.3338 9.7347 10.4650 15.6629 k = 0.1406 0.2435 0.0478 ( 525 PWs) bands (ev): -6.5427 0.2084 4.7445 5.3393 6.7173 9.4882 10.2216 11.5207 13.5190 k =-0.2811 0.0000 0.3347 ( 519 PWs) bands (ev): -5.7377 -0.5806 2.9593 4.0643 5.3999 10.1888 12.0084 12.0930 13.8557 k = 0.1406 0.7304 0.0478 ( 510 PWs) bands (ev): -4.1560 -2.5454 1.8802 2.8811 6.2286 9.9753 12.5232 13.7499 14.0823 k = 0.0000 0.4869 0.1435 ( 521 PWs) bands (ev): -4.9981 -2.1799 2.8086 4.8347 6.1122 9.4765 11.2217 12.2212 13.7491 k = 0.5623 0.0000-0.2391 ( 510 PWs) bands (ev): -4.4675 -1.9089 1.9127 3.5269 4.1807 9.7743 13.0280 14.3999 14.9962 k = 0.4217-0.2435-0.1435 ( 521 PWs) bands (ev): -4.9981 -2.1800 2.8086 4.8347 6.1122 9.4765 11.2217 12.2212 13.7491 k = 0.2811 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5427 0.2084 4.7445 5.3393 6.7173 9.4882 10.2216 11.5207 13.5190 k = 0.2811 0.0000 0.2391 ( 522 PWs) bands (ev): -6.1050 -0.8195 3.9937 5.6586 8.0859 8.3484 9.1349 11.9279 13.9508 k = 0.1406-0.2435 0.3347 ( 519 PWs) bands (ev): -5.7377 -0.5806 2.9593 4.0643 5.3999 10.1888 12.0084 12.0930 13.8557 k = 0.5623 0.4869 0.0478 ( 510 PWs) bands (ev): -4.1560 -2.5454 1.8802 2.8811 6.2286 9.9753 12.5233 13.7499 14.0823 k = 0.4217 0.2435 0.1435 ( 521 PWs) bands (ev): -4.9981 -2.1799 2.8086 4.8347 6.1122 9.4765 11.2217 12.2212 13.7491 k = 0.0000 0.0000 0.4304 ( 522 PWs) bands (ev): -5.9467 -1.4983 5.7941 5.7941 7.0275 8.5532 8.5532 9.6930 15.7404 k = 0.4217 0.7304 0.1435 ( 520 PWs) bands (ev): -4.9394 -2.0121 2.1250 4.6389 5.9996 10.1237 10.4217 13.2241 15.2823 k = 0.2811 0.4869 0.2391 ( 510 PWs) bands (ev): -4.4675 -1.9089 1.9127 3.5269 4.1807 9.7743 13.0280 14.3999 14.9962 k = 0.8434 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9394 -2.0121 2.1250 4.6389 5.9996 10.1237 10.4217 13.2241 15.2823 k = 0.7028-0.2435-0.0478 ( 510 PWs) bands (ev): -4.1560 -2.5454 1.8802 2.8811 6.2286 9.9753 12.5233 13.7499 14.0823 k = 0.5623 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5741 -3.1791 4.5968 4.7448 6.2814 9.3338 9.7347 10.4650 15.6629 the Fermi energy is 8.2911 ev ! total energy = -25.49946308 Ry Harris-Foulkes estimate = -25.49946312 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000002 0.00000000 -0.00374700 atom 2 type 1 force = 0.00000002 0.00000000 0.00374700 Total force = 0.005299 Total SCF correction = 0.000162 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 5.08 0.00003874 0.00000000 0.00000000 5.70 0.00 0.00 0.00000000 0.00003874 0.00000000 0.00 5.70 0.00 0.00000000 0.00000000 0.00002616 0.00 0.00 3.85 Entering Dynamics; it = 14 time = 0.09438 pico-seconds new lattice vectors (alat unit) : 0.593778898 0.000000000 0.873414827 -0.296889313 0.514227590 0.873414929 -0.296889313 -0.514227590 0.873414929 new unit-cell volume = 275.6376 (a.u.)^3 new positions in cryst coord As 0.272730426 0.272730434 0.272730434 As -0.272730426 -0.272730434 -0.272730434 new positions in cart coord (alat unit) As 0.000000069 0.000000000 0.714620463 As -0.000000069 0.000000000 -0.714620463 Ekin = 0.00032993 Ry T = 409.6 K Etot = -25.49913315 CELL_PARAMETERS (alat) 0.593778898 0.000000000 0.873414827 -0.296889313 0.514227590 0.873414929 -0.296889313 -0.514227590 0.873414929 ATOMIC_POSITIONS (crystal) As 0.272730426 0.272730434 0.272730434 As -0.272730426 -0.272730434 -0.272730434 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1431164), wk = 0.0625000 k( 2) = ( -0.1403440 -0.2430830 0.2385274), wk = 0.1250000 k( 3) = ( 0.2806881 0.4861661 -0.0477055), wk = 0.1250000 k( 4) = ( 0.1403441 0.2430830 0.0477055), wk = 0.1250000 k( 5) = ( -0.2806881 0.0000000 0.3339383), wk = 0.0625000 k( 6) = ( 0.1403441 0.7292491 0.0477055), wk = 0.1250000 k( 7) = ( 0.0000000 0.4861661 0.1431164), wk = 0.1250000 k( 8) = ( 0.5613762 0.0000000 -0.2385274), wk = 0.0625000 k( 9) = ( 0.4210322 -0.2430830 -0.1431164), wk = 0.1250000 k( 10) = ( 0.2806881 0.0000000 -0.0477055), wk = 0.0625000 k( 11) = ( 0.2806882 0.0000000 0.2385273), wk = 0.0625000 k( 12) = ( 0.1403441 -0.2430830 0.3339383), wk = 0.1250000 k( 13) = ( 0.5613763 0.4861661 0.0477054), wk = 0.1250000 k( 14) = ( 0.4210322 0.2430830 0.1431164), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4293492), wk = 0.0625000 k( 16) = ( 0.4210322 0.7292491 0.1431164), wk = 0.1250000 k( 17) = ( 0.2806882 0.4861661 0.2385273), wk = 0.1250000 k( 18) = ( 0.8420644 0.0000000 -0.1431165), wk = 0.0625000 k( 19) = ( 0.7017203 -0.2430830 -0.0477055), wk = 0.1250000 k( 20) = ( 0.5613763 0.0000000 0.0477054), wk = 0.0625000 extrapolated charge 10.05513, renormalised to 10.00000 total cpu time spent up to now is 37.51 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.0 total cpu time spent up to now is 37.95 secs k = 0.0000 0.0000 0.1431 band energies (ev): -7.1469 1.7257 5.5795 5.5795 6.4863 9.9017 10.4955 10.4955 14.4966 k =-0.1403-0.2431 0.2385 band energies (ev): -6.1304 -0.8789 3.9359 5.6132 8.0077 8.2593 9.0504 11.8297 13.8646 k = 0.2807 0.4862-0.0477 band energies (ev): -4.6054 -3.2212 4.5313 4.7006 6.2059 9.2476 9.6467 10.3609 15.5490 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5664 0.1445 4.6989 5.2688 6.6441 9.3900 10.1470 11.4266 13.4172 k =-0.2807 0.0000 0.3339 band energies (ev): -5.7649 -0.6492 2.9149 4.0210 5.3258 10.1190 11.9133 12.0051 13.7487 k = 0.1403 0.7292 0.0477 band energies (ev): -4.1908 -2.5925 1.8368 2.8264 6.1571 9.8889 12.4407 13.6502 13.9755 k = 0.0000 0.4862 0.1431 band energies (ev): -5.0286 -2.2271 2.7662 4.7653 6.0419 9.3803 11.1254 12.1355 13.6552 k = 0.5614 0.0000-0.2385 band energies (ev): -4.5024 -1.9551 1.8541 3.4854 4.1152 9.7040 12.9263 14.2833 14.8794 k = 0.4210-0.2431-0.1431 band energies (ev): -5.0286 -2.2271 2.7662 4.7653 6.0419 9.3803 11.1254 12.1355 13.6552 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5664 0.1445 4.6989 5.2688 6.6441 9.3900 10.1470 11.4266 13.4172 k = 0.2807 0.0000 0.2385 band energies (ev): -6.1304 -0.8789 3.9359 5.6131 8.0077 8.2593 9.0504 11.8297 13.8646 k = 0.1403-0.2431 0.3339 band energies (ev): -5.7649 -0.6492 2.9149 4.0210 5.3258 10.1190 11.9133 12.0051 13.7487 k = 0.5614 0.4862 0.0477 band energies (ev): -4.1908 -2.5925 1.8368 2.8264 6.1571 9.8889 12.4407 13.6502 13.9755 k = 0.4210 0.2431 0.1431 band energies (ev): -5.0286 -2.2271 2.7662 4.7653 6.0419 9.3803 11.1254 12.1355 13.6552 k = 0.0000 0.0000 0.4293 band energies (ev): -5.9719 -1.5638 5.7478 5.7478 6.9541 8.4805 8.4805 9.5959 15.6335 k = 0.4210 0.7292 0.1431 band energies (ev): -4.9681 -2.0744 2.0844 4.5943 5.9266 10.0430 10.3354 13.1330 15.1755 k = 0.2807 0.4862 0.2385 band energies (ev): -4.5024 -1.9551 1.8541 3.4854 4.1152 9.7040 12.9263 14.2833 14.8794 k = 0.8421 0.0000-0.1431 band energies (ev): -4.9681 -2.0744 2.0844 4.5943 5.9266 10.0430 10.3354 13.1330 15.1755 k = 0.7017-0.2431-0.0477 band energies (ev): -4.1908 -2.5925 1.8368 2.8264 6.1571 9.8889 12.4407 13.6502 13.9755 k = 0.5614 0.0000 0.0477 band energies (ev): -4.6054 -3.2212 4.5313 4.7006 6.2059 9.2476 9.6467 10.3609 15.5490 the Fermi energy is 8.0650 ev total energy = -25.49947214 Ry Harris-Foulkes estimate = -25.53155393 Ry estimated scf accuracy < 0.00001365 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.37E-07, avg # of iterations = 3.0 total cpu time spent up to now is 38.41 secs k = 0.0000 0.0000 0.1431 band energies (ev): -7.1562 1.7118 5.5666 5.5666 6.4803 9.8940 10.4906 10.4906 14.5165 k =-0.1403-0.2431 0.2385 band energies (ev): -6.1413 -0.8914 3.9365 5.5981 8.0057 8.2554 9.0545 11.8235 13.8806 k = 0.2807 0.4862-0.0477 band energies (ev): -4.6190 -3.2313 4.5339 4.6902 6.2076 9.2442 9.6504 10.3631 15.5702 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5759 0.1269 4.6894 5.2670 6.6415 9.3894 10.1433 11.4228 13.4375 k =-0.2807 0.0000 0.3339 band energies (ev): -5.7776 -0.6613 2.9124 4.0148 5.3335 10.1229 11.8997 11.9958 13.7598 k = 0.1403 0.7292 0.0477 band energies (ev): -4.2074 -2.6058 1.8417 2.8320 6.1552 9.8836 12.4467 13.6403 13.9774 k = 0.0000 0.4862 0.1431 band energies (ev): -5.0402 -2.2424 2.7643 4.7728 6.0369 9.3846 11.1169 12.1301 13.6690 k = 0.5614 0.0000-0.2385 band energies (ev): -4.5171 -1.9727 1.8647 3.4802 4.1196 9.7150 12.9171 14.2879 14.8638 k = 0.4210-0.2431-0.1431 band energies (ev): -5.0402 -2.2424 2.7643 4.7728 6.0369 9.3846 11.1169 12.1301 13.6690 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5759 0.1269 4.6894 5.2670 6.6415 9.3894 10.1433 11.4228 13.4375 k = 0.2807 0.0000 0.2385 band energies (ev): -6.1413 -0.8914 3.9365 5.5981 8.0057 8.2554 9.0545 11.8235 13.8806 k = 0.1403-0.2431 0.3339 band energies (ev): -5.7776 -0.6613 2.9124 4.0148 5.3335 10.1229 11.8997 11.9958 13.7598 k = 0.5614 0.4862 0.0477 band energies (ev): -4.2074 -2.6058 1.8417 2.8320 6.1552 9.8836 12.4467 13.6403 13.9774 k = 0.4210 0.2431 0.1431 band energies (ev): -5.0402 -2.2424 2.7643 4.7728 6.0369 9.3846 11.1169 12.1301 13.6690 k = 0.0000 0.0000 0.4293 band energies (ev): -5.9864 -1.5640 5.7348 5.7348 6.9438 8.4819 8.4819 9.6009 15.6520 k = 0.4210 0.7292 0.1431 band energies (ev): -4.9864 -2.0772 2.0859 4.5866 5.9311 10.0383 10.3246 13.1211 15.1957 k = 0.2807 0.4862 0.2385 band energies (ev): -4.5171 -1.9727 1.8647 3.4802 4.1196 9.7150 12.9171 14.2879 14.8638 k = 0.8421 0.0000-0.1431 band energies (ev): -4.9864 -2.0772 2.0859 4.5866 5.9311 10.0383 10.3246 13.1211 15.1957 k = 0.7017-0.2431-0.0477 band energies (ev): -4.2074 -2.6058 1.8417 2.8320 6.1552 9.8836 12.4467 13.6403 13.9774 k = 0.5614 0.0000 0.0477 band energies (ev): -4.6190 -3.2313 4.5339 4.6902 6.2076 9.2442 9.6504 10.3631 15.5702 the Fermi energy is 8.0630 ev total energy = -25.49949642 Ry Harris-Foulkes estimate = -25.49950141 Ry estimated scf accuracy < 0.00001231 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.23E-07, avg # of iterations = 1.0 total cpu time spent up to now is 38.70 secs k = 0.0000 0.0000 0.1431 band energies (ev): -7.1525 1.7142 5.5708 5.5708 6.4828 9.8979 10.4937 10.4937 14.5164 k =-0.1403-0.2431 0.2385 band energies (ev): -6.1374 -0.8883 3.9385 5.6032 8.0090 8.2565 9.0550 11.8264 13.8819 k = 0.2807 0.4862-0.0477 band energies (ev): -4.6148 -3.2280 4.5352 4.6945 6.2092 9.2468 9.6510 10.3644 15.5703 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5722 0.1309 4.6933 5.2689 6.6432 9.3911 10.1474 11.4249 13.4375 k =-0.2807 0.0000 0.3339 band energies (ev): -5.7734 -0.6587 2.9158 4.0181 5.3334 10.1262 11.9036 11.9990 13.7597 k = 0.1403 0.7292 0.0477 band energies (ev): -4.2027 -2.6022 1.8436 2.8332 6.1568 9.8864 12.4493 13.6437 13.9789 k = 0.0000 0.4862 0.1431 band energies (ev): -5.0364 -2.2384 2.7676 4.7729 6.0391 9.3857 11.1201 12.1335 13.6698 k = 0.5614 0.0000-0.2385 band energies (ev): -4.5129 -1.9679 1.8646 3.4835 4.1205 9.7175 12.9197 14.2887 14.8672 k = 0.4210-0.2431-0.1431 band energies (ev): -5.0364 -2.2384 2.7676 4.7729 6.0391 9.3857 11.1201 12.1335 13.6698 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5722 0.1309 4.6933 5.2689 6.6432 9.3911 10.1474 11.4249 13.4375 k = 0.2807 0.0000 0.2385 band energies (ev): -6.1374 -0.8883 3.9385 5.6032 8.0090 8.2565 9.0550 11.8264 13.8819 k = 0.1403-0.2431 0.3339 band energies (ev): -5.7734 -0.6587 2.9158 4.0181 5.3334 10.1262 11.9036 11.9990 13.7597 k = 0.5614 0.4862 0.0477 band energies (ev): -4.2027 -2.6022 1.8436 2.8332 6.1568 9.8864 12.4493 13.6437 13.9789 k = 0.4210 0.2431 0.1431 band energies (ev): -5.0364 -2.2384 2.7676 4.7729 6.0391 9.3857 11.1201 12.1335 13.6698 k = 0.0000 0.0000 0.4293 band energies (ev): -5.9817 -1.5635 5.7392 5.7392 6.9492 8.4836 8.4836 9.6002 15.6533 k = 0.4210 0.7292 0.1431 band energies (ev): -4.9810 -2.0764 2.0886 4.5903 5.9322 10.0405 10.3282 13.1249 15.1959 k = 0.2807 0.4862 0.2385 band energies (ev): -4.5129 -1.9679 1.8646 3.4835 4.1205 9.7175 12.9197 14.2887 14.8672 k = 0.8421 0.0000-0.1431 band energies (ev): -4.9810 -2.0764 2.0886 4.5903 5.9322 10.0405 10.3282 13.1249 15.1959 k = 0.7017-0.2431-0.0477 band energies (ev): -4.2027 -2.6022 1.8436 2.8332 6.1568 9.8864 12.4493 13.6437 13.9789 k = 0.5614 0.0000 0.0477 band energies (ev): -4.6148 -3.2280 4.5352 4.6945 6.2092 9.2468 9.6510 10.3644 15.5703 the Fermi energy is 8.0663 ev total energy = -25.49949637 Ry Harris-Foulkes estimate = -25.49949716 Ry estimated scf accuracy < 0.00000228 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.28E-08, avg # of iterations = 1.0 total cpu time spent up to now is 39.00 secs k = 0.0000 0.0000 0.1431 band energies (ev): -7.1509 1.7160 5.5725 5.5725 6.4841 9.8994 10.4950 10.4950 14.5166 k =-0.1403-0.2431 0.2385 band energies (ev): -6.1357 -0.8867 3.9395 5.6050 8.0102 8.2578 9.0558 11.8278 13.8823 k = 0.2807 0.4862-0.0477 band energies (ev): -4.6130 -3.2265 4.5362 4.6961 6.2102 9.2481 9.6518 10.3653 15.5705 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5707 0.1328 4.6948 5.2700 6.6443 9.3922 10.1487 11.4262 13.4377 k =-0.2807 0.0000 0.3339 band energies (ev): -5.7716 -0.6571 2.9170 4.0195 5.3340 10.1272 11.9053 12.0006 13.7603 k = 0.1403 0.7292 0.0477 band energies (ev): -4.2008 -2.6005 1.8444 2.8340 6.1579 9.8877 12.4502 13.6453 13.9799 k = 0.0000 0.4862 0.1431 band energies (ev): -5.0347 -2.2366 2.7688 4.7735 6.0404 9.3866 11.1216 12.1349 13.6703 k = 0.5614 0.0000-0.2385 band energies (ev): -4.5111 -1.9660 1.8652 3.4848 4.1213 9.7182 12.9212 14.2896 14.8690 k = 0.4210-0.2431-0.1431 band energies (ev): -5.0347 -2.2366 2.7688 4.7735 6.0404 9.3866 11.1216 12.1349 13.6703 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5707 0.1328 4.6948 5.2700 6.6443 9.3922 10.1487 11.4262 13.4377 k = 0.2807 0.0000 0.2385 band energies (ev): -6.1357 -0.8867 3.9395 5.6050 8.0102 8.2578 9.0558 11.8278 13.8823 k = 0.1403-0.2431 0.3339 band energies (ev): -5.7716 -0.6571 2.9170 4.0195 5.3340 10.1272 11.9053 12.0006 13.7603 k = 0.5614 0.4862 0.0477 band energies (ev): -4.2008 -2.6005 1.8444 2.8340 6.1579 9.8877 12.4502 13.6453 13.9799 k = 0.4210 0.2431 0.1431 band energies (ev): -5.0347 -2.2366 2.7688 4.7735 6.0404 9.3866 11.1216 12.1349 13.6703 k = 0.0000 0.0000 0.4293 band energies (ev): -5.9798 -1.5625 5.7409 5.7409 6.9509 8.4846 8.4846 9.6010 15.6537 k = 0.4210 0.7292 0.1431 band energies (ev): -4.9790 -2.0752 2.0896 4.5918 5.9331 10.0417 10.3298 13.1266 15.1961 k = 0.2807 0.4862 0.2385 band energies (ev): -4.5111 -1.9660 1.8652 3.4848 4.1213 9.7182 12.9212 14.2896 14.8690 k = 0.8421 0.0000-0.1431 band energies (ev): -4.9790 -2.0752 2.0896 4.5918 5.9331 10.0417 10.3298 13.1266 15.1961 k = 0.7017-0.2431-0.0477 band energies (ev): -4.2008 -2.6005 1.8444 2.8340 6.1579 9.8877 12.4502 13.6453 13.9799 k = 0.5614 0.0000 0.0477 band energies (ev): -4.6130 -3.2265 4.5362 4.6961 6.2102 9.2481 9.6518 10.3653 15.5705 the Fermi energy is 8.0676 ev total energy = -25.49949611 Ry Harris-Foulkes estimate = -25.49949647 Ry estimated scf accuracy < 0.00000063 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.25E-09, avg # of iterations = 2.6 total cpu time spent up to now is 39.37 secs End of self-consistent calculation k = 0.0000 0.0000 0.1431 ( 531 PWs) bands (ev): -7.1492 1.7177 5.5744 5.5744 6.4855 9.9010 10.4965 10.4965 14.5167 k =-0.1403-0.2431 0.2385 ( 522 PWs) bands (ev): -6.1339 -0.8849 3.9406 5.6071 8.0116 8.2589 9.0566 11.8293 13.8828 k = 0.2807 0.4862-0.0477 ( 520 PWs) bands (ev): -4.6111 -3.2248 4.5371 4.6979 6.2112 9.2494 9.6526 10.3663 15.5706 k = 0.1403 0.2431 0.0477 ( 525 PWs) bands (ev): -6.5690 0.1349 4.6965 5.2711 6.6455 9.3933 10.1503 11.4275 13.4379 k =-0.2807 0.0000 0.3339 ( 519 PWs) bands (ev): -5.7697 -0.6554 2.9184 4.0211 5.3345 10.1283 11.9072 12.0022 13.7607 k = 0.1403 0.7292 0.0477 ( 510 PWs) bands (ev): -4.1986 -2.5987 1.8454 2.8348 6.1590 9.8891 12.4512 13.6470 13.9809 k = 0.0000 0.4862 0.1431 ( 521 PWs) bands (ev): -5.0329 -2.2346 2.7702 4.7741 6.0417 9.3875 11.1232 12.1364 13.6709 k = 0.5614 0.0000-0.2385 ( 510 PWs) bands (ev): -4.5091 -1.9638 1.8656 3.4863 4.1221 9.7190 12.9228 14.2904 14.8709 k = 0.4210-0.2431-0.1431 ( 521 PWs) bands (ev): -5.0329 -2.2346 2.7702 4.7741 6.0417 9.3875 11.1232 12.1364 13.6709 k = 0.2807 0.0000-0.0477 ( 525 PWs) bands (ev): -6.5690 0.1349 4.6965 5.2711 6.6455 9.3933 10.1503 11.4275 13.4379 k = 0.2807 0.0000 0.2385 ( 522 PWs) bands (ev): -6.1339 -0.8849 3.9406 5.6071 8.0116 8.2589 9.0566 11.8293 13.8828 k = 0.1403-0.2431 0.3339 ( 519 PWs) bands (ev): -5.7697 -0.6554 2.9184 4.0211 5.3345 10.1283 11.9072 12.0022 13.7607 k = 0.5614 0.4862 0.0477 ( 510 PWs) bands (ev): -4.1986 -2.5987 1.8454 2.8348 6.1590 9.8891 12.4512 13.6470 13.9809 k = 0.4210 0.2431 0.1431 ( 521 PWs) bands (ev): -5.0329 -2.2346 2.7702 4.7741 6.0417 9.3875 11.1232 12.1364 13.6709 k = 0.0000 0.0000 0.4293 ( 522 PWs) bands (ev): -5.9778 -1.5616 5.7429 5.7429 6.9529 8.4856 8.4856 9.6016 15.6541 k = 0.4210 0.7292 0.1431 ( 520 PWs) bands (ev): -4.9767 -2.0742 2.0908 4.5934 5.9339 10.0430 10.3316 13.1284 15.1963 k = 0.2807 0.4862 0.2385 ( 510 PWs) bands (ev): -4.5091 -1.9638 1.8656 3.4863 4.1221 9.7190 12.9228 14.2904 14.8709 k = 0.8421 0.0000-0.1431 ( 520 PWs) bands (ev): -4.9767 -2.0742 2.0908 4.5934 5.9339 10.0430 10.3316 13.1284 15.1963 k = 0.7017-0.2431-0.0477 ( 510 PWs) bands (ev): -4.1986 -2.5987 1.8454 2.8348 6.1590 9.8891 12.4512 13.6470 13.9809 k = 0.5614 0.0000 0.0477 ( 520 PWs) bands (ev): -4.6111 -3.2248 4.5371 4.6979 6.2112 9.2494 9.6526 10.3663 15.5706 the Fermi energy is 8.0689 ev ! total energy = -25.49949626 Ry Harris-Foulkes estimate = -25.49949627 Ry estimated scf accuracy < 0.00000001 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000002 0.00000000 -0.00190669 atom 2 type 1 force = -0.00000002 0.00000000 0.00190669 Total force = 0.002696 Total SCF correction = 0.000074 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.25 0.00000205 0.00000000 0.00000000 0.30 0.00 0.00 0.00000000 0.00000205 0.00000000 0.00 0.30 0.00 0.00000000 0.00000000 -0.00000922 0.00 0.00 -1.36 Entering Dynamics; it = 15 time = 0.10164 pico-seconds new lattice vectors (alat unit) : 0.593794437 0.000000000 0.873313149 -0.296897083 0.514241047 0.873313251 -0.296897083 -0.514241047 0.873313251 new unit-cell volume = 275.6199 (a.u.)^3 new positions in cryst coord As 0.272593331 0.272593339 0.272593339 As -0.272593331 -0.272593339 -0.272593339 new positions in cart coord (alat unit) As 0.000000069 0.000000000 0.714178090 As -0.000000069 0.000000000 -0.714178090 Ekin = 0.00001617 Ry T = 380.3 K Etot = -25.49948009 CELL_PARAMETERS (alat) 0.593794437 0.000000000 0.873313149 -0.296897083 0.514241047 0.873313251 -0.296897083 -0.514241047 0.873313251 ATOMIC_POSITIONS (crystal) As 0.272593331 0.272593339 0.272593339 As -0.272593331 -0.272593339 -0.272593339 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1431331), wk = 0.0625000 k( 2) = ( -0.1403404 -0.2430767 0.2385551), wk = 0.1250000 k( 3) = ( 0.2806808 0.4861533 -0.0477111), wk = 0.1250000 k( 4) = ( 0.1403404 0.2430767 0.0477110), wk = 0.1250000 k( 5) = ( -0.2806808 0.0000000 0.3339772), wk = 0.0625000 k( 6) = ( 0.1403404 0.7292300 0.0477110), wk = 0.1250000 k( 7) = ( 0.0000000 0.4861533 0.1431331), wk = 0.1250000 k( 8) = ( 0.5613616 0.0000000 -0.2385552), wk = 0.0625000 k( 9) = ( 0.4210212 -0.2430767 -0.1431331), wk = 0.1250000 k( 10) = ( 0.2806808 0.0000000 -0.0477111), wk = 0.0625000 k( 11) = ( 0.2806808 0.0000000 0.2385551), wk = 0.0625000 k( 12) = ( 0.1403404 -0.2430767 0.3339771), wk = 0.1250000 k( 13) = ( 0.5613616 0.4861533 0.0477110), wk = 0.1250000 k( 14) = ( 0.4210212 0.2430767 0.1431330), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4293992), wk = 0.0625000 k( 16) = ( 0.4210212 0.7292300 0.1431330), wk = 0.1250000 k( 17) = ( 0.2806808 0.4861533 0.2385551), wk = 0.1250000 k( 18) = ( 0.8420424 0.0000000 -0.1431332), wk = 0.0625000 k( 19) = ( 0.7017020 -0.2430767 -0.0477111), wk = 0.1250000 k( 20) = ( 0.5613616 0.0000000 0.0477110), wk = 0.0625000 extrapolated charge 9.99936, renormalised to 10.00000 total cpu time spent up to now is 39.65 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.55E-09, avg # of iterations = 2.8 total cpu time spent up to now is 40.39 secs k = 0.0000 0.0000 0.1431 band energies (ev): -7.1454 1.7152 5.5799 5.5799 6.4837 9.9119 10.4994 10.4994 14.5132 k =-0.1403-0.2431 0.2386 band energies (ev): -6.1296 -0.8852 3.9431 5.6179 8.0133 8.2585 9.0472 11.8281 13.8875 k = 0.2807 0.4862-0.0477 band energies (ev): -4.6062 -3.2234 4.5385 4.7066 6.2103 9.2535 9.6441 10.3611 15.5696 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5655 0.1371 4.7023 5.2709 6.6482 9.3863 10.1602 11.4244 13.4335 k =-0.2807 0.0000 0.3340 band energies (ev): -5.7645 -0.6573 2.9246 4.0253 5.3280 10.1386 11.9081 12.0027 13.7516 k = 0.1403 0.7292 0.0477 band energies (ev): -4.1927 -2.5971 1.8472 2.8347 6.1591 9.8867 12.4565 13.6502 13.9771 k = 0.0000 0.4862 0.1431 band energies (ev): -5.0292 -2.2315 2.7761 4.7703 6.0458 9.3797 11.1223 12.1418 13.6713 k = 0.5614 0.0000-0.2386 band energies (ev): -4.5049 -1.9578 1.8610 3.4909 4.1189 9.7291 12.9195 14.2804 14.8681 k = 0.4210-0.2431-0.1431 band energies (ev): -5.0292 -2.2315 2.7761 4.7703 6.0458 9.3797 11.1223 12.1418 13.6713 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5655 0.1371 4.7023 5.2709 6.6482 9.3863 10.1602 11.4244 13.4335 k = 0.2807 0.0000 0.2386 band energies (ev): -6.1296 -0.8852 3.9431 5.6179 8.0133 8.2585 9.0472 11.8281 13.8875 k = 0.1403-0.2431 0.3340 band energies (ev): -5.7645 -0.6573 2.9246 4.0253 5.3280 10.1386 11.9081 12.0027 13.7516 k = 0.5614 0.4862 0.0477 band energies (ev): -4.1927 -2.5971 1.8472 2.8347 6.1591 9.8867 12.4565 13.6502 13.9771 k = 0.4210 0.2431 0.1431 band energies (ev): -5.0292 -2.2315 2.7761 4.7703 6.0458 9.3797 11.1223 12.1418 13.6713 k = 0.0000 0.0000 0.4294 band energies (ev): -5.9706 -1.5684 5.7504 5.7504 6.9599 8.4826 8.4826 9.5975 15.6568 k = 0.4210 0.7292 0.1431 band energies (ev): -4.9678 -2.0809 2.0952 4.5995 5.9312 10.0394 10.3364 13.1331 15.1932 k = 0.2807 0.4862 0.2386 band energies (ev): -4.5049 -1.9578 1.8610 3.4909 4.1189 9.7291 12.9195 14.2804 14.8681 k = 0.8420 0.0000-0.1431 band energies (ev): -4.9678 -2.0809 2.0952 4.5995 5.9312 10.0394 10.3364 13.1331 15.1932 k = 0.7017-0.2431-0.0477 band energies (ev): -4.1927 -2.5971 1.8472 2.8347 6.1591 9.8867 12.4565 13.6502 13.9771 k = 0.5614 0.0000 0.0477 band energies (ev): -4.6062 -3.2234 4.5385 4.7066 6.2103 9.2535 9.6441 10.3611 15.5696 the Fermi energy is 8.0707 ev total energy = -25.49950426 Ry Harris-Foulkes estimate = -25.49913170 Ry estimated scf accuracy < 0.00000021 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.13E-09, avg # of iterations = 2.0 total cpu time spent up to now is 40.75 secs End of self-consistent calculation k = 0.0000 0.0000 0.1431 ( 531 PWs) bands (ev): -7.1453 1.7146 5.5801 5.5801 6.4835 9.9123 10.4995 10.4995 14.5127 k =-0.1403-0.2431 0.2386 ( 522 PWs) bands (ev): -6.1294 -0.8854 3.9430 5.6184 8.0135 8.2578 9.0465 11.8280 13.8874 k = 0.2807 0.4862-0.0477 ( 520 PWs) bands (ev): -4.6060 -3.2234 4.5381 4.7070 6.2100 9.2534 9.6434 10.3607 15.5692 k = 0.1403 0.2431 0.0477 ( 525 PWs) bands (ev): -6.5654 0.1371 4.7026 5.2706 6.6477 9.3859 10.1607 11.4240 13.4330 k =-0.2807 0.0000 0.3340 ( 519 PWs) bands (ev): -5.7642 -0.6577 2.9248 4.0255 5.3272 10.1390 11.9082 12.0027 13.7508 k = 0.1403 0.7292 0.0477 ( 510 PWs) bands (ev): -4.1923 -2.5971 1.8471 2.8343 6.1587 9.8867 12.4567 13.6502 13.9767 k = 0.0000 0.4862 0.1431 ( 521 PWs) bands (ev): -5.0290 -2.2314 2.7764 4.7695 6.0455 9.3793 11.1223 12.1419 13.6710 k = 0.5614 0.0000-0.2386 ( 510 PWs) bands (ev): -4.5047 -1.9575 1.8603 3.4910 4.1184 9.7295 12.9192 14.2798 14.8679 k = 0.4210-0.2431-0.1431 ( 521 PWs) bands (ev): -5.0290 -2.2314 2.7764 4.7695 6.0455 9.3793 11.1223 12.1419 13.6710 k = 0.2807 0.0000-0.0477 ( 525 PWs) bands (ev): -6.5654 0.1371 4.7026 5.2706 6.6477 9.3859 10.1607 11.4240 13.4330 k = 0.2807 0.0000 0.2386 ( 522 PWs) bands (ev): -6.1294 -0.8854 3.9430 5.6184 8.0135 8.2578 9.0465 11.8280 13.8874 k = 0.1403-0.2431 0.3340 ( 519 PWs) bands (ev): -5.7642 -0.6577 2.9248 4.0255 5.3272 10.1390 11.9082 12.0027 13.7508 k = 0.5614 0.4862 0.0477 ( 510 PWs) bands (ev): -4.1923 -2.5971 1.8471 2.8343 6.1587 9.8867 12.4567 13.6502 13.9767 k = 0.4210 0.2431 0.1431 ( 521 PWs) bands (ev): -5.0290 -2.2314 2.7764 4.7695 6.0455 9.3793 11.1223 12.1419 13.6710 k = 0.0000 0.0000 0.4294 ( 522 PWs) bands (ev): -5.9702 -1.5693 5.7507 5.7507 6.9608 8.4823 8.4823 9.5963 15.6569 k = 0.4210 0.7292 0.1431 ( 520 PWs) bands (ev): -4.9672 -2.0817 2.0953 4.5997 5.9308 10.0391 10.3365 13.1332 15.1928 k = 0.2807 0.4862 0.2386 ( 510 PWs) bands (ev): -4.5047 -1.9575 1.8603 3.4910 4.1184 9.7295 12.9192 14.2798 14.8679 k = 0.8420 0.0000-0.1431 ( 520 PWs) bands (ev): -4.9672 -2.0817 2.0953 4.5997 5.9308 10.0391 10.3365 13.1332 15.1928 k = 0.7017-0.2431-0.0477 ( 510 PWs) bands (ev): -4.1923 -2.5971 1.8471 2.8343 6.1587 9.8867 12.4567 13.6502 13.9767 k = 0.5614 0.0000 0.0477 ( 520 PWs) bands (ev): -4.6060 -3.2234 4.5381 4.7070 6.2100 9.2534 9.6434 10.3607 15.5692 the Fermi energy is 8.0709 ev ! total energy = -25.49950430 Ry Harris-Foulkes estimate = -25.49950432 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000002 0.00000000 -0.00115401 atom 2 type 1 force = -0.00000002 0.00000000 0.00115401 Total force = 0.001632 Total SCF correction = 0.000197 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.81 -0.00000164 0.00000000 0.00000000 -0.24 0.00 0.00 0.00000000 -0.00000164 0.00000000 0.00 -0.24 0.00 0.00000000 0.00000000 -0.00001317 0.00 0.00 -1.94 Entering Dynamics; it = 16 time = 0.10890 pico-seconds new lattice vectors (alat unit) : 0.593787525 0.000000000 0.873066206 -0.296893627 0.514235062 0.873066308 -0.296893627 -0.514235062 0.873066308 new unit-cell volume = 275.5356 (a.u.)^3 new positions in cryst coord As 0.272435471 0.272435478 0.272435478 As -0.272435471 -0.272435478 -0.272435478 new positions in cart coord (alat unit) As 0.000000070 0.000000000 0.713562676 As -0.000000070 0.000000000 -0.713562676 Ekin = 0.00002335 Ry T = 355.0 K Etot = -25.49948095 CELL_PARAMETERS (alat) 0.593787525 0.000000000 0.873066206 -0.296893627 0.514235062 0.873066308 -0.296893627 -0.514235062 0.873066308 ATOMIC_POSITIONS (crystal) As 0.272435471 0.272435478 0.272435478 As -0.272435471 -0.272435478 -0.272435478 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1431736), wk = 0.0625000 k( 2) = ( -0.1403420 -0.2430795 0.2386226), wk = 0.1250000 k( 3) = ( 0.2806841 0.4861590 -0.0477245), wk = 0.1250000 k( 4) = ( 0.1403420 0.2430795 0.0477245), wk = 0.1250000 k( 5) = ( -0.2806840 0.0000000 0.3340717), wk = 0.0625000 k( 6) = ( 0.1403420 0.7292385 0.0477245), wk = 0.1250000 k( 7) = ( 0.0000000 0.4861590 0.1431736), wk = 0.1250000 k( 8) = ( 0.5613681 0.0000000 -0.2386226), wk = 0.0625000 k( 9) = ( 0.4210261 -0.2430795 -0.1431736), wk = 0.1250000 k( 10) = ( 0.2806841 0.0000000 -0.0477245), wk = 0.0625000 k( 11) = ( 0.2806841 0.0000000 0.2386226), wk = 0.0625000 k( 12) = ( 0.1403421 -0.2430795 0.3340716), wk = 0.1250000 k( 13) = ( 0.5613681 0.4861590 0.0477245), wk = 0.1250000 k( 14) = ( 0.4210261 0.2430795 0.1431735), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4295207), wk = 0.0625000 k( 16) = ( 0.4210261 0.7292385 0.1431735), wk = 0.1250000 k( 17) = ( 0.2806841 0.4861590 0.2386226), wk = 0.1250000 k( 18) = ( 0.8420522 0.0000000 -0.1431736), wk = 0.0625000 k( 19) = ( 0.7017101 -0.2430795 -0.0477246), wk = 0.1250000 k( 20) = ( 0.5613681 0.0000000 0.0477245), wk = 0.0625000 extrapolated charge 9.99694, renormalised to 10.00000 total cpu time spent up to now is 41.03 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.1 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.87E-09, avg # of iterations = 2.0 total cpu time spent up to now is 41.71 secs k = 0.0000 0.0000 0.1432 band energies (ev): -7.1399 1.7160 5.5883 5.5883 6.4851 9.9281 10.5062 10.5062 14.5121 k =-0.1403-0.2431 0.2386 band energies (ev): -6.1231 -0.8832 3.9487 5.6328 8.0185 8.2613 9.0389 11.8309 13.8963 k = 0.2807 0.4862-0.0477 band energies (ev): -4.5990 -3.2200 4.5429 4.7189 6.2120 9.2619 9.6371 10.3597 15.5735 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5602 0.1424 4.7111 5.2737 6.6544 9.3820 10.1755 11.4246 13.4321 k =-0.2807 0.0000 0.3341 band energies (ev): -5.7568 -0.6569 2.9340 4.0320 5.3227 10.1537 11.9130 12.0069 13.7444 k = 0.1403 0.7292 0.0477 band energies (ev): -4.1837 -2.5933 1.8510 2.8367 6.1621 9.8873 12.4662 13.6584 13.9769 k = 0.0000 0.4862 0.1432 band energies (ev): -5.0233 -2.2258 2.7852 4.7682 6.0539 9.3745 11.1253 12.1517 13.6755 k = 0.5614 0.0000-0.2386 band energies (ev): -4.4982 -1.9485 1.8576 3.4978 4.1178 9.7443 12.9199 14.2730 14.8699 k = 0.4210-0.2431-0.1432 band energies (ev): -5.0233 -2.2258 2.7852 4.7682 6.0539 9.3745 11.1253 12.1517 13.6755 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5602 0.1424 4.7111 5.2737 6.6544 9.3820 10.1755 11.4246 13.4321 k = 0.2807 0.0000 0.2386 band energies (ev): -6.1231 -0.8832 3.9487 5.6328 8.0185 8.2613 9.0389 11.8309 13.8963 k = 0.1403-0.2431 0.3341 band energies (ev): -5.7568 -0.6569 2.9340 4.0320 5.3227 10.1537 11.9130 12.0069 13.7444 k = 0.5614 0.4862 0.0477 band energies (ev): -4.1837 -2.5933 1.8510 2.8367 6.1621 9.8873 12.4662 13.6584 13.9769 k = 0.4210 0.2431 0.1432 band energies (ev): -5.0233 -2.2258 2.7852 4.7682 6.0539 9.3745 11.1253 12.1517 13.6755 k = 0.0000 0.0000 0.4295 band energies (ev): -5.9605 -1.5740 5.7612 5.7612 6.9713 8.4815 8.4815 9.5956 15.6647 k = 0.4210 0.7292 0.1432 band energies (ev): -4.9553 -2.0867 2.1020 4.6084 5.9305 10.0380 10.3454 13.1423 15.1938 k = 0.2807 0.4862 0.2386 band energies (ev): -4.4982 -1.9485 1.8576 3.4978 4.1178 9.7443 12.9199 14.2730 14.8699 k = 0.8421 0.0000-0.1432 band energies (ev): -4.9553 -2.0867 2.1020 4.6084 5.9305 10.0380 10.3454 13.1423 15.1938 k = 0.7017-0.2431-0.0477 band energies (ev): -4.1837 -2.5933 1.8510 2.8367 6.1621 9.8873 12.4662 13.6584 13.9769 k = 0.5614 0.0000 0.0477 band energies (ev): -4.5990 -3.2200 4.5429 4.7189 6.2120 9.2619 9.6371 10.3597 15.5735 the Fermi energy is 8.0759 ev total energy = -25.49950960 Ry Harris-Foulkes estimate = -25.49772794 Ry estimated scf accuracy < 0.00000042 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.21E-09, avg # of iterations = 2.1 total cpu time spent up to now is 42.08 secs k = 0.0000 0.0000 0.1432 band energies (ev): -7.1393 1.7158 5.5891 5.5891 6.4851 9.9289 10.5065 10.5065 14.5106 k =-0.1403-0.2431 0.2386 band energies (ev): -6.1224 -0.8830 3.9485 5.6342 8.0189 8.2605 9.0378 11.8311 13.8956 k = 0.2807 0.4862-0.0477 band energies (ev): -4.5981 -3.2196 4.5422 4.7199 6.2115 9.2620 9.6360 10.3590 15.5721 k = 0.1403 0.2431 0.0477 band energies (ev): -6.5597 0.1431 4.7118 5.2733 6.6539 9.3815 10.1764 11.4243 13.4307 k =-0.2807 0.0000 0.3341 band energies (ev): -5.7560 -0.6569 2.9345 4.0324 5.3213 10.1541 11.9138 12.0072 13.7429 k = 0.1403 0.7292 0.0477 band energies (ev): -4.1826 -2.5928 1.8507 2.8360 6.1615 9.8874 12.4662 13.6588 13.9763 k = 0.0000 0.4862 0.1432 band energies (ev): -5.0227 -2.2251 2.7857 4.7668 6.0537 9.3738 11.1256 12.1522 13.6746 k = 0.5614 0.0000-0.2386 band energies (ev): -4.4973 -1.9473 1.8561 3.4983 4.1169 9.7443 12.9198 14.2720 14.8703 k = 0.4210-0.2431-0.1432 band energies (ev): -5.0227 -2.2251 2.7857 4.7668 6.0537 9.3738 11.1256 12.1522 13.6746 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5597 0.1431 4.7118 5.2733 6.6539 9.3815 10.1764 11.4243 13.4306 k = 0.2807 0.0000 0.2386 band energies (ev): -6.1224 -0.8830 3.9485 5.6342 8.0189 8.2605 9.0378 11.8311 13.8956 k = 0.1403-0.2431 0.3341 band energies (ev): -5.7560 -0.6569 2.9345 4.0324 5.3213 10.1541 11.9137 12.0072 13.7429 k = 0.5614 0.4862 0.0477 band energies (ev): -4.1826 -2.5928 1.8507 2.8360 6.1615 9.8874 12.4662 13.6588 13.9763 k = 0.4210 0.2431 0.1432 band energies (ev): -5.0227 -2.2251 2.7857 4.7668 6.0537 9.3738 11.1256 12.1522 13.6746 k = 0.0000 0.0000 0.4295 band energies (ev): -5.9593 -1.5752 5.7622 5.7622 6.9730 8.4811 8.4811 9.5938 15.6641 k = 0.4210 0.7292 0.1432 band energies (ev): -4.9538 -2.0877 2.1022 4.6090 5.9298 10.0378 10.3460 13.1430 15.1925 k = 0.2807 0.4862 0.2386 band energies (ev): -4.4973 -1.9473 1.8561 3.4983 4.1169 9.7443 12.9198 14.2720 14.8703 k = 0.8421 0.0000-0.1432 band energies (ev): -4.9538 -2.0877 2.1022 4.6090 5.9298 10.0378 10.3460 13.1430 15.1925 k = 0.7017-0.2431-0.0477 band energies (ev): -4.1826 -2.5928 1.8507 2.8360 6.1615 9.8874 12.4662 13.6588 13.9763 k = 0.5614 0.0000 0.0477 band energies (ev): -4.5981 -3.2196 4.5422 4.7199 6.2115 9.2620 9.6360 10.3590 15.5721 the Fermi energy is 8.0763 ev total energy = -25.49950977 Ry Harris-Foulkes estimate = -25.49950984 Ry estimated scf accuracy < 0.00000014 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-09, avg # of iterations = 1.5 total cpu time spent up to now is 42.41 secs End of self-consistent calculation k = 0.0000 0.0000 0.1432 ( 531 PWs) bands (ev): -7.1397 1.7156 5.5886 5.5886 6.4849 9.9285 10.5061 10.5061 14.5107 k =-0.1403-0.2431 0.2386 ( 522 PWs) bands (ev): -6.1228 -0.8833 3.9483 5.6335 8.0185 8.2605 9.0379 11.8308 13.8954 k = 0.2807 0.4862-0.0477 ( 520 PWs) bands (ev): -4.5986 -3.2200 4.5422 4.7193 6.2114 9.2617 9.6361 10.3590 15.5721 k = 0.1403 0.2431 0.0477 ( 525 PWs) bands (ev): -6.5601 0.1427 4.7113 5.2732 6.6539 9.3814 10.1759 11.4241 13.4307 k =-0.2807 0.0000 0.3341 ( 519 PWs) bands (ev): -5.7565 -0.6571 2.9341 4.0320 5.3215 10.1537 11.9133 12.0069 13.7430 k = 0.1403 0.7292 0.0477 ( 510 PWs) bands (ev): -4.1832 -2.5932 1.8505 2.8359 6.1614 9.8872 12.4659 13.6585 13.9762 k = 0.0000 0.4862 0.1432 ( 521 PWs) bands (ev): -5.0231 -2.2255 2.7852 4.7670 6.0535 9.3737 11.1253 12.1518 13.6745 k = 0.5614 0.0000-0.2386 ( 510 PWs) bands (ev): -4.4978 -1.9479 1.8563 3.4979 4.1169 9.7440 12.9196 14.2720 14.8700 k = 0.4210-0.2431-0.1432 ( 521 PWs) bands (ev): -5.0231 -2.2255 2.7852 4.7670 6.0535 9.3737 11.1253 12.1518 13.6745 k = 0.2807 0.0000-0.0477 ( 525 PWs) bands (ev): -6.5601 0.1427 4.7113 5.2732 6.6539 9.3814 10.1759 11.4241 13.4307 k = 0.2807 0.0000 0.2386 ( 522 PWs) bands (ev): -6.1228 -0.8833 3.9483 5.6335 8.0185 8.2605 9.0379 11.8308 13.8954 k = 0.1403-0.2431 0.3341 ( 519 PWs) bands (ev): -5.7565 -0.6571 2.9341 4.0320 5.3215 10.1537 11.9133 12.0069 13.7430 k = 0.5614 0.4862 0.0477 ( 510 PWs) bands (ev): -4.1832 -2.5932 1.8505 2.8359 6.1614 9.8872 12.4659 13.6585 13.9762 k = 0.4210 0.2431 0.1432 ( 521 PWs) bands (ev): -5.0231 -2.2255 2.7852 4.7670 6.0535 9.3737 11.1253 12.1518 13.6745 k = 0.0000 0.0000 0.4295 ( 522 PWs) bands (ev): -5.9599 -1.5751 5.7616 5.7616 6.9722 8.4809 8.4809 9.5941 15.6639 k = 0.4210 0.7292 0.1432 ( 520 PWs) bands (ev): -4.9544 -2.0876 2.1018 4.6086 5.9298 10.0376 10.3456 13.1426 15.1926 k = 0.2807 0.4862 0.2386 ( 510 PWs) bands (ev): -4.4978 -1.9479 1.8563 3.4979 4.1169 9.7440 12.9196 14.2720 14.8700 k = 0.8421 0.0000-0.1432 ( 520 PWs) bands (ev): -4.9544 -2.0876 2.1018 4.6086 5.9298 10.0376 10.3456 13.1426 15.1926 k = 0.7017-0.2431-0.0477 ( 510 PWs) bands (ev): -4.1832 -2.5932 1.8505 2.8359 6.1614 9.8871 12.4659 13.6585 13.9762 k = 0.5614 0.0000 0.0477 ( 520 PWs) bands (ev): -4.5986 -3.2200 4.5422 4.7193 6.2114 9.2617 9.6361 10.3590 15.5721 the Fermi energy is 8.0759 ev ! total energy = -25.49950978 Ry Harris-Foulkes estimate = -25.49950979 Ry estimated scf accuracy < 6.2E-09 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000002 0.00000000 -0.00034745 atom 2 type 1 force = -0.00000002 0.00000000 0.00034745 Total force = 0.000491 Total SCF correction = 0.000053 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -1.25 -0.00000499 0.00000000 0.00000000 -0.73 0.00 0.00 0.00000000 -0.00000499 0.00000000 0.00 -0.73 0.00 0.00000000 0.00000000 -0.00001560 0.00 0.00 -2.30 Entering Dynamics; it = 17 time = 0.11616 pico-seconds new lattice vectors (alat unit) : 0.593749652 0.000000000 0.872647096 -0.296874689 0.514202263 0.872647198 -0.296874689 -0.514202263 0.872647198 new unit-cell volume = 275.3682 (a.u.)^3 new positions in cryst coord As 0.272271252 0.272271256 0.272271256 As -0.272271252 -0.272271256 -0.272271256 new positions in cart coord (alat unit) As 0.000000072 0.000000000 0.712790215 As -0.000000072 0.000000000 -0.712790215 Ekin = 0.00002886 Ry T = 332.9 K Etot = -25.49948092 CELL_PARAMETERS (alat) 0.593749652 0.000000000 0.872647096 -0.296874689 0.514202263 0.872647198 -0.296874689 -0.514202263 0.872647198 ATOMIC_POSITIONS (crystal) As 0.272271252 0.272271256 0.272271256 As -0.272271252 -0.272271256 -0.272271256 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1432423), wk = 0.0625000 k( 2) = ( -0.1403510 -0.2430950 0.2387372), wk = 0.1250000 k( 3) = ( 0.2807020 0.4861900 -0.0477475), wk = 0.1250000 k( 4) = ( 0.1403510 0.2430950 0.0477474), wk = 0.1250000 k( 5) = ( -0.2807019 0.0000000 0.3342321), wk = 0.0625000 k( 6) = ( 0.1403510 0.7292850 0.0477474), wk = 0.1250000 k( 7) = ( 0.0000000 0.4861900 0.1432423), wk = 0.1250000 k( 8) = ( 0.5614039 0.0000000 -0.2387373), wk = 0.0625000 k( 9) = ( 0.4210529 -0.2430950 -0.1432424), wk = 0.1250000 k( 10) = ( 0.2807020 0.0000000 -0.0477475), wk = 0.0625000 k( 11) = ( 0.2807020 0.0000000 0.2387372), wk = 0.0625000 k( 12) = ( 0.1403510 -0.2430950 0.3342321), wk = 0.1250000 k( 13) = ( 0.5614039 0.4861900 0.0477474), wk = 0.1250000 k( 14) = ( 0.4210530 0.2430950 0.1432423), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4297269), wk = 0.0625000 k( 16) = ( 0.4210530 0.7292850 0.1432423), wk = 0.1250000 k( 17) = ( 0.2807020 0.4861900 0.2387372), wk = 0.1250000 k( 18) = ( 0.8421059 0.0000000 -0.1432424), wk = 0.0625000 k( 19) = ( 0.7017549 -0.2430950 -0.0477475), wk = 0.1250000 k( 20) = ( 0.5614039 0.0000000 0.0477474), wk = 0.0625000 extrapolated charge 9.99392, renormalised to 10.00000 total cpu time spent up to now is 42.70 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 4.52E-09, avg # of iterations = 1.9 total cpu time spent up to now is 43.46 secs k = 0.0000 0.0000 0.1432 band energies (ev): -7.1325 1.7217 5.5998 5.5998 6.4911 9.9495 10.5175 10.5175 14.5141 k =-0.1404-0.2431 0.2387 band energies (ev): -6.1145 -0.8780 3.9578 5.6518 8.0277 8.2686 9.0335 11.8393 13.9091 k = 0.2807 0.4862-0.0477 band energies (ev): -4.5893 -3.2141 4.5510 4.7346 6.2173 9.2754 9.6336 10.3639 15.5832 k = 0.1404 0.2431 0.0477 band energies (ev): -6.5531 0.1516 4.7228 5.2804 6.6651 9.3824 10.1960 11.4296 13.4347 k =-0.2807 0.0000 0.3342 band energies (ev): -5.7467 -0.6526 2.9465 4.0411 5.3200 10.1731 11.9232 12.0158 13.7410 k = 0.1404 0.7293 0.0477 band energies (ev): -4.1717 -2.5867 1.8569 2.8414 6.1688 9.8920 12.4802 13.6726 13.9821 k = 0.0000 0.4862 0.1432 band energies (ev): -5.0153 -2.2170 2.7972 4.7688 6.0666 9.3737 11.1335 12.1667 13.6840 k = 0.5614 0.0000-0.2387 band energies (ev): -4.4888 -1.9354 1.8561 3.5072 4.1196 9.7639 12.9257 14.2704 14.8785 k = 0.4211-0.2431-0.1432 band energies (ev): -5.0153 -2.2170 2.7972 4.7688 6.0666 9.3737 11.1335 12.1667 13.6840 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5531 0.1516 4.7228 5.2804 6.6651 9.3824 10.1960 11.4296 13.4347 k = 0.2807 0.0000 0.2387 band energies (ev): -6.1145 -0.8780 3.9578 5.6518 8.0277 8.2686 9.0335 11.8393 13.9091 k = 0.1404-0.2431 0.3342 band energies (ev): -5.7467 -0.6526 2.9465 4.0411 5.3200 10.1731 11.9232 12.0158 13.7410 k = 0.5614 0.4862 0.0477 band energies (ev): -4.1717 -2.5867 1.8569 2.8414 6.1688 9.8920 12.4802 13.6726 13.9821 k = 0.4211 0.2431 0.1432 band energies (ev): -5.0153 -2.2170 2.7972 4.7688 6.0666 9.3737 11.1335 12.1667 13.6840 k = 0.0000 0.0000 0.4297 band energies (ev): -5.9476 -1.5769 5.7752 5.7752 6.9872 8.4834 8.4834 9.5973 15.6779 k = 0.4211 0.7293 0.1432 band energies (ev): -4.9394 -2.0901 2.1112 4.6202 5.9327 10.0402 10.3594 13.1569 15.1992 k = 0.2807 0.4862 0.2387 band energies (ev): -4.4888 -1.9354 1.8561 3.5072 4.1196 9.7639 12.9257 14.2704 14.8785 k = 0.8421 0.0000-0.1432 band energies (ev): -4.9394 -2.0901 2.1112 4.6202 5.9327 10.0402 10.3594 13.1569 15.1992 k = 0.7018-0.2431-0.0477 band energies (ev): -4.1717 -2.5867 1.8569 2.8414 6.1688 9.8920 12.4802 13.6726 13.9821 k = 0.5614 0.0000 0.0477 band energies (ev): -4.5893 -3.2141 4.5510 4.7346 6.2173 9.2754 9.6336 10.3639 15.5832 the Fermi energy is 8.2112 ev total energy = -25.49951158 Ry Harris-Foulkes estimate = -25.49596894 Ry estimated scf accuracy < 0.00000040 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.02E-09, avg # of iterations = 2.5 total cpu time spent up to now is 43.86 secs k = 0.0000 0.0000 0.1432 band energies (ev): -7.1316 1.7223 5.6012 5.6012 6.4913 9.9506 10.5180 10.5180 14.5116 k =-0.1404-0.2431 0.2387 band energies (ev): -6.1134 -0.8772 3.9575 5.6536 8.0280 8.2681 9.0322 11.8397 13.9075 k = 0.2807 0.4862-0.0477 band energies (ev): -4.5878 -3.2133 4.5502 4.7359 6.2167 9.2755 9.6324 10.3631 15.5807 k = 0.1404 0.2431 0.0477 band energies (ev): -6.5522 0.1531 4.7238 5.2801 6.6647 9.3819 10.1969 11.4294 13.4322 k =-0.2807 0.0000 0.3342 band energies (ev): -5.7454 -0.6521 2.9470 4.0417 5.3182 10.1731 11.9244 12.0165 13.7390 k = 0.1404 0.7293 0.0477 band energies (ev): -4.1699 -2.5856 1.8562 2.8404 6.1683 9.8923 12.4798 13.6734 13.9814 k = 0.0000 0.4862 0.1432 band energies (ev): -5.0142 -2.2156 2.7975 4.7671 6.0666 9.3727 11.1342 12.1673 13.6823 k = 0.5614 0.0000-0.2387 band energies (ev): -4.4873 -1.9335 1.8541 3.5077 4.1185 9.7631 12.9261 14.2692 14.8796 k = 0.4211-0.2431-0.1432 band energies (ev): -5.0142 -2.2156 2.7975 4.7671 6.0666 9.3727 11.1342 12.1673 13.6823 k = 0.2807 0.0000-0.0477 band energies (ev): -6.5522 0.1531 4.7238 5.2801 6.6647 9.3819 10.1969 11.4294 13.4322 k = 0.2807 0.0000 0.2387 band energies (ev): -6.1134 -0.8772 3.9575 5.6536 8.0280 8.2681 9.0322 11.8397 13.9075 k = 0.1404-0.2431 0.3342 band energies (ev): -5.7454 -0.6521 2.9470 4.0417 5.3182 10.1731 11.9244 12.0165 13.7390 k = 0.5614 0.4862 0.0477 band energies (ev): -4.1699 -2.5856 1.8562 2.8404 6.1683 9.8923 12.4798 13.6734 13.9814 k = 0.4211 0.2431 0.1432 band energies (ev): -5.0142 -2.2156 2.7975 4.7671 6.0666 9.3727 11.1342 12.1673 13.6823 k = 0.0000 0.0000 0.4297 band energies (ev): -5.9459 -1.5780 5.7766 5.7766 6.9891 8.4828 8.4828 9.5954 15.6762 k = 0.4211 0.7293 0.1432 band energies (ev): -4.9372 -2.0909 2.1111 4.6210 5.9317 10.0402 10.3604 13.1580 15.1968 k = 0.2807 0.4862 0.2387 band energies (ev): -4.4873 -1.9335 1.8541 3.5077 4.1185 9.7631 12.9261 14.2692 14.8796 k = 0.8421 0.0000-0.1432 band energies (ev): -4.9372 -2.0909 2.1111 4.6210 5.9317 10.0402 10.3604 13.1580 15.1968 k = 0.7018-0.2431-0.0477 band energies (ev): -4.1699 -2.5856 1.8562 2.8404 6.1683 9.8923 12.4798 13.6734 13.9814 k = 0.5614 0.0000 0.0477 band energies (ev): -4.5878 -3.2133 4.5502 4.7359 6.2167 9.2755 9.6324 10.3631 15.5807 the Fermi energy is 8.2107 ev total energy = -25.49951193 Ry Harris-Foulkes estimate = -25.49951205 Ry estimated scf accuracy < 0.00000028 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.83E-09, avg # of iterations = 1.0 total cpu time spent up to now is 44.16 secs End of self-consistent calculation k = 0.0000 0.0000 0.1432 ( 531 PWs) bands (ev): -7.1321 1.7220 5.6005 5.6005 6.4910 9.9500 10.5175 10.5175 14.5117 k =-0.1404-0.2431 0.2387 ( 522 PWs) bands (ev): -6.1140 -0.8776 3.9572 5.6528 8.0275 8.2680 9.0322 11.8393 13.9073 k = 0.2807 0.4862-0.0477 ( 520 PWs) bands (ev): -4.5885 -3.2138 4.5501 4.7352 6.2165 9.2751 9.6324 10.3629 15.5807 k = 0.1404 0.2431 0.0477 ( 525 PWs) bands (ev): -6.5528 0.1526 4.7232 5.2799 6.6645 9.3817 10.1962 11.4292 13.4322 k =-0.2807 0.0000 0.3342 ( 519 PWs) bands (ev): -5.7460 -0.6524 2.9464 4.0412 5.3184 10.1726 11.9239 12.0160 13.7391 k = 0.1404 0.7293 0.0477 ( 510 PWs) bands (ev): -4.1707 -2.5861 1.8559 2.8402 6.1681 9.8919 12.4794 13.6729 13.9812 k = 0.0000 0.4862 0.1432 ( 521 PWs) bands (ev): -5.0147 -2.2162 2.7970 4.7672 6.0663 9.3726 11.1337 12.1668 13.6822 k = 0.5614 0.0000-0.2387 ( 510 PWs) bands (ev): -4.4880 -1.9342 1.8542 3.5072 4.1184 9.7627 12.9257 14.2691 14.8791 k = 0.4211-0.2431-0.1432 ( 521 PWs) bands (ev): -5.0147 -2.2162 2.7970 4.7672 6.0663 9.3726 11.1337 12.1668 13.6822 k = 0.2807 0.0000-0.0477 ( 525 PWs) bands (ev): -6.5528 0.1526 4.7232 5.2799 6.6645 9.3817 10.1962 11.4292 13.4322 k = 0.2807 0.0000 0.2387 ( 522 PWs) bands (ev): -6.1140 -0.8776 3.9572 5.6528 8.0275 8.2680 9.0322 11.8393 13.9073 k = 0.1404-0.2431 0.3342 ( 519 PWs) bands (ev): -5.7460 -0.6524 2.9464 4.0412 5.3184 10.1726 11.9239 12.0160 13.7391 k = 0.5614 0.4862 0.0477 ( 510 PWs) bands (ev): -4.1707 -2.5861 1.8559 2.8402 6.1681 9.8919 12.4794 13.6729 13.9812 k = 0.4211 0.2431 0.1432 ( 521 PWs) bands (ev): -5.0147 -2.2162 2.7970 4.7672 6.0663 9.3726 11.1337 12.1668 13.6822 k = 0.0000 0.0000 0.4297 ( 522 PWs) bands (ev): -5.9466 -1.5780 5.7760 5.7760 6.9882 8.4826 8.4826 9.5957 15.6760 k = 0.4211 0.7293 0.1432 ( 520 PWs) bands (ev): -4.9380 -2.0909 2.1107 4.6204 5.9316 10.0399 10.3599 13.1575 15.1968 k = 0.2807 0.4862 0.2387 ( 510 PWs) bands (ev): -4.4880 -1.9342 1.8542 3.5072 4.1184 9.7627 12.9257 14.2691 14.8791 k = 0.8421 0.0000-0.1432 ( 520 PWs) bands (ev): -4.9380 -2.0909 2.1107 4.6204 5.9316 10.0399 10.3599 13.1575 15.1968 k = 0.7018-0.2431-0.0477 ( 510 PWs) bands (ev): -4.1707 -2.5861 1.8559 2.8402 6.1681 9.8919 12.4794 13.6729 13.9812 k = 0.5614 0.0000 0.0477 ( 520 PWs) bands (ev): -4.5885 -3.2138 4.5501 4.7352 6.2165 9.2751 9.6324 10.3629 15.5807 the Fermi energy is 8.2106 ev ! total energy = -25.49951193 Ry Harris-Foulkes estimate = -25.49951195 Ry estimated scf accuracy < 0.00000003 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000000 0.00000000 0.00041160 atom 2 type 1 force = 0.00000000 0.00000000 -0.00041160 Total force = 0.000582 Total SCF correction = 0.000142 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -1.57 -0.00000734 0.00000000 0.00000000 -1.08 0.00 0.00 0.00000000 -0.00000734 0.00000000 0.00 -1.08 0.00 0.00000000 0.00000000 -0.00001740 0.00 0.00 -2.56 Entering Dynamics; it = 18 time = 0.12342 pico-seconds new lattice vectors (alat unit) : 0.593656092 0.000000000 0.872035570 -0.296827907 0.514121234 0.872035671 -0.296827907 -0.514121234 0.872035671 new unit-cell volume = 275.0885 (a.u.)^3 new positions in cryst coord As 0.272358459 0.272358456 0.272358456 As -0.272358459 -0.272358456 -0.272358456 new positions in cart coord (alat unit) As 0.000000078 0.000000000 0.712518841 As -0.000000078 0.000000000 -0.712518841 Ekin = 0.00003105 Ry T = 313.4 K Etot = -25.49948088 CELL_PARAMETERS (alat) 0.593656092 0.000000000 0.872035570 -0.296827907 0.514121234 0.872035671 -0.296827907 -0.514121234 0.872035671 ATOMIC_POSITIONS (crystal) As 0.272358459 0.272358456 0.272358456 As -0.272358459 -0.272358456 -0.272358456 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1433428), wk = 0.0625000 k( 2) = ( -0.1403731 -0.2431333 0.2389046), wk = 0.1250000 k( 3) = ( 0.2807462 0.4862666 -0.0477810), wk = 0.1250000 k( 4) = ( 0.1403731 0.2431333 0.0477809), wk = 0.1250000 k( 5) = ( -0.2807462 0.0000000 0.3344665), wk = 0.0625000 k( 6) = ( 0.1403731 0.7293999 0.0477809), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862666 0.1433428), wk = 0.1250000 k( 8) = ( 0.5614924 0.0000000 -0.2389047), wk = 0.0625000 k( 9) = ( 0.4211193 -0.2431333 -0.1433428), wk = 0.1250000 k( 10) = ( 0.2807462 0.0000000 -0.0477810), wk = 0.0625000 k( 11) = ( 0.2807462 0.0000000 0.2389046), wk = 0.0625000 k( 12) = ( 0.1403731 -0.2431333 0.3344664), wk = 0.1250000 k( 13) = ( 0.5614924 0.4862666 0.0477809), wk = 0.1250000 k( 14) = ( 0.4211193 0.2431333 0.1433427), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4300283), wk = 0.0625000 k( 16) = ( 0.4211193 0.7293999 0.1433427), wk = 0.1250000 k( 17) = ( 0.2807462 0.4862666 0.2389046), wk = 0.1250000 k( 18) = ( 0.8422386 0.0000000 -0.1433429), wk = 0.0625000 k( 19) = ( 0.7018655 -0.2431333 -0.0477810), wk = 0.1250000 k( 20) = ( 0.5614924 0.0000000 0.0477809), wk = 0.0625000 extrapolated charge 9.98983, renormalised to 10.00000 total cpu time spent up to now is 44.46 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.03E-09, avg # of iterations = 2.1 total cpu time spent up to now is 45.17 secs k = 0.0000 0.0000 0.1433 band energies (ev): -7.1298 1.7411 5.6048 5.6048 6.5085 9.9582 10.5306 10.5306 14.5284 k =-0.1404-0.2431 0.2389 band energies (ev): -6.1112 -0.8671 3.9689 5.6553 8.0394 8.2848 9.0512 11.8593 13.9197 k = 0.2807 0.4863-0.0478 band energies (ev): -4.5855 -3.2071 4.5639 4.7385 6.2304 9.2895 9.6527 10.3889 15.6073 k = 0.1404 0.2431 0.0478 band energies (ev): -6.5502 0.1625 4.7273 5.2950 6.6786 9.4047 10.2054 11.4489 13.4541 k =-0.2807 0.0000 0.3345 band energies (ev): -5.7430 -0.6383 2.9518 4.0450 5.3351 10.1794 11.9393 12.0310 13.7621 k = 0.1404 0.7294 0.0478 band energies (ev): -4.1669 -2.5789 1.8627 2.8515 6.1820 9.9075 12.4908 13.6908 14.0040 k = 0.0000 0.4863 0.1433 band energies (ev): -5.0113 -2.2096 2.8020 4.7823 6.0800 9.3959 11.1520 12.1794 13.6994 k = 0.5615 0.0000-0.2389 band energies (ev): -4.4837 -1.9285 1.8676 3.5108 4.1331 9.7715 12.9471 14.2960 14.9037 k = 0.4211-0.2431-0.1433 band energies (ev): -5.0113 -2.2096 2.8020 4.7823 6.0800 9.3959 11.1520 12.1794 13.6994 k = 0.2807 0.0000-0.0478 band energies (ev): -6.5502 0.1625 4.7273 5.2950 6.6786 9.4047 10.2053 11.4489 13.4541 k = 0.2807 0.0000 0.2389 band energies (ev): -6.1112 -0.8671 3.9689 5.6553 8.0394 8.2848 9.0512 11.8593 13.9197 k = 0.1404-0.2431 0.3345 band energies (ev): -5.7430 -0.6383 2.9518 4.0450 5.3351 10.1794 11.9393 12.0310 13.7621 k = 0.5615 0.4863 0.0478 band energies (ev): -4.1669 -2.5789 1.8627 2.8515 6.1820 9.9075 12.4908 13.6908 14.0040 k = 0.4211 0.2431 0.1433 band energies (ev): -5.0113 -2.2096 2.8020 4.7823 6.0800 9.3959 11.1520 12.1794 13.6994 k = 0.0000 0.0000 0.4300 band energies (ev): -5.9443 -1.5611 5.7787 5.7787 6.9945 8.4954 8.4954 9.6136 15.6958 k = 0.4211 0.7294 0.1433 band energies (ev): -4.9359 -2.0759 2.1155 4.6240 5.9447 10.0547 10.3713 13.1706 15.2193 k = 0.2807 0.4863 0.2389 band energies (ev): -4.4837 -1.9285 1.8676 3.5108 4.1331 9.7715 12.9471 14.2960 14.9037 k = 0.8422 0.0000-0.1433 band energies (ev): -4.9359 -2.0759 2.1155 4.6240 5.9447 10.0547 10.3713 13.1706 15.2193 k = 0.7019-0.2431-0.0478 band energies (ev): -4.1669 -2.5789 1.8627 2.8515 6.1820 9.9075 12.4908 13.6908 14.0040 k = 0.5615 0.0000 0.0478 band energies (ev): -4.5855 -3.2071 4.5639 4.7385 6.2304 9.2895 9.6527 10.3889 15.6073 the Fermi energy is 8.2275 ev total energy = -25.49951375 Ry Harris-Foulkes estimate = -25.49358557 Ry estimated scf accuracy < 0.00000059 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.87E-09, avg # of iterations = 3.0 total cpu time spent up to now is 45.62 secs k = 0.0000 0.0000 0.1433 band energies (ev): -7.1281 1.7440 5.6072 5.6072 6.5097 9.9596 10.5315 10.5315 14.5247 k =-0.1404-0.2431 0.2389 band energies (ev): -6.1091 -0.8646 3.9689 5.6580 8.0398 8.2858 9.0506 11.8605 13.9167 k = 0.2807 0.4863-0.0478 band energies (ev): -4.5829 -3.2051 4.5636 4.7404 6.2302 9.2902 9.6522 10.3887 15.6034 k = 0.1404 0.2431 0.0478 band energies (ev): -6.5484 0.1659 4.7290 5.2954 6.6793 9.4050 10.2059 11.4498 13.4504 k =-0.2807 0.0000 0.3345 band energies (ev): -5.7407 -0.6358 2.9523 4.0461 5.3339 10.1785 11.9419 12.0328 13.7603 k = 0.1404 0.7294 0.0478 band energies (ev): -4.1638 -2.5763 1.8618 2.8506 6.1825 9.9086 12.4897 13.6927 14.0039 k = 0.0000 0.4863 0.1433 band energies (ev): -5.0091 -2.2067 2.8024 4.7811 6.0811 9.3953 11.1537 12.1805 13.6969 k = 0.5615 0.0000-0.2389 band energies (ev): -4.4809 -1.9252 1.8658 3.5118 4.1324 9.7693 12.9489 14.2953 14.9068 k = 0.4211-0.2431-0.1433 band energies (ev): -5.0091 -2.2067 2.8024 4.7811 6.0811 9.3953 11.1537 12.1805 13.6969 k = 0.2807 0.0000-0.0478 band energies (ev): -6.5484 0.1659 4.7290 5.2954 6.6793 9.4050 10.2059 11.4498 13.4504 k = 0.2807 0.0000 0.2389 band energies (ev): -6.1091 -0.8646 3.9689 5.6580 8.0398 8.2858 9.0506 11.8605 13.9167 k = 0.1404-0.2431 0.3345 band energies (ev): -5.7407 -0.6358 2.9523 4.0461 5.3339 10.1785 11.9419 12.0328 13.7603 k = 0.5615 0.4863 0.0478 band energies (ev): -4.1638 -2.5763 1.8618 2.8506 6.1825 9.9086 12.4897 13.6927 14.0039 k = 0.4211 0.2431 0.1433 band energies (ev): -5.0091 -2.2067 2.8024 4.7811 6.0811 9.3953 11.1537 12.1805 13.6969 k = 0.0000 0.0000 0.4300 band energies (ev): -5.9416 -1.5607 5.7811 5.7811 6.9963 8.4953 8.4953 9.6129 15.6923 k = 0.4211 0.7294 0.1433 band energies (ev): -4.9325 -2.0751 2.1152 4.6255 5.9440 10.0558 10.3733 13.1729 15.2156 k = 0.2807 0.4863 0.2389 band energies (ev): -4.4809 -1.9252 1.8658 3.5118 4.1324 9.7693 12.9489 14.2953 14.9068 k = 0.8422 0.0000-0.1433 band energies (ev): -4.9325 -2.0751 2.1152 4.6255 5.9440 10.0558 10.3733 13.1729 15.2156 k = 0.7019-0.2431-0.0478 band energies (ev): -4.1638 -2.5763 1.8618 2.8506 6.1825 9.9086 12.4897 13.6927 14.0039 k = 0.5615 0.0000 0.0478 band energies (ev): -4.5829 -3.2051 4.5636 4.7404 6.2302 9.2902 9.6522 10.3887 15.6034 the Fermi energy is 8.0972 ev total energy = -25.49951457 Ry Harris-Foulkes estimate = -25.49951473 Ry estimated scf accuracy < 0.00000038 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.75E-09, avg # of iterations = 1.0 total cpu time spent up to now is 45.93 secs End of self-consistent calculation k = 0.0000 0.0000 0.1433 ( 531 PWs) bands (ev): -7.1288 1.7435 5.6064 5.6064 6.5093 9.9589 10.5309 10.5309 14.5248 k =-0.1404-0.2431 0.2389 ( 522 PWs) bands (ev): -6.1099 -0.8652 3.9685 5.6571 8.0392 8.2856 9.0505 11.8600 13.9164 k = 0.2807 0.4863-0.0478 ( 520 PWs) bands (ev): -4.5837 -3.2058 4.5633 4.7396 6.2299 9.2897 9.6521 10.3884 15.6034 k = 0.1404 0.2431 0.0478 ( 525 PWs) bands (ev): -6.5491 0.1652 4.7283 5.2951 6.6790 9.4046 10.2052 11.4494 13.4503 k =-0.2807 0.0000 0.3345 ( 519 PWs) bands (ev): -5.7415 -0.6363 2.9517 4.0455 5.3339 10.1779 11.9411 12.0322 13.7603 k = 0.1404 0.7294 0.0478 ( 510 PWs) bands (ev): -4.1647 -2.5770 1.8615 2.8503 6.1822 9.9081 12.4892 13.6921 14.0036 k = 0.0000 0.4863 0.1433 ( 521 PWs) bands (ev): -5.0098 -2.2075 2.8017 4.7811 6.0807 9.3951 11.1531 12.1798 13.6967 k = 0.5615 0.0000-0.2389 ( 510 PWs) bands (ev): -4.4817 -1.9261 1.8658 3.5112 4.1323 9.7689 12.9484 14.2952 14.9062 k = 0.4211-0.2431-0.1433 ( 521 PWs) bands (ev): -5.0098 -2.2075 2.8017 4.7811 6.0807 9.3951 11.1531 12.1798 13.6967 k = 0.2807 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5491 0.1652 4.7283 5.2951 6.6790 9.4046 10.2052 11.4494 13.4503 k = 0.2807 0.0000 0.2389 ( 522 PWs) bands (ev): -6.1099 -0.8652 3.9685 5.6571 8.0392 8.2856 9.0505 11.8600 13.9164 k = 0.1404-0.2431 0.3345 ( 519 PWs) bands (ev): -5.7415 -0.6363 2.9517 4.0455 5.3339 10.1779 11.9411 12.0322 13.7603 k = 0.5615 0.4863 0.0478 ( 510 PWs) bands (ev): -4.1647 -2.5770 1.8615 2.8503 6.1822 9.9081 12.4892 13.6921 14.0036 k = 0.4211 0.2431 0.1433 ( 521 PWs) bands (ev): -5.0098 -2.2075 2.8017 4.7811 6.0807 9.3951 11.1531 12.1798 13.6967 k = 0.0000 0.0000 0.4300 ( 522 PWs) bands (ev): -5.9425 -1.5608 5.7802 5.7802 6.9953 8.4949 8.4949 9.6131 15.6920 k = 0.4211 0.7294 0.1433 ( 520 PWs) bands (ev): -4.9335 -2.0753 2.1147 4.6248 5.9438 10.0554 10.3726 13.1721 15.2155 k = 0.2807 0.4863 0.2389 ( 510 PWs) bands (ev): -4.4817 -1.9261 1.8658 3.5112 4.1323 9.7689 12.9484 14.2952 14.9062 k = 0.8422 0.0000-0.1433 ( 520 PWs) bands (ev): -4.9335 -2.0753 2.1147 4.6248 5.9438 10.0554 10.3726 13.1721 15.2155 k = 0.7019-0.2431-0.0478 ( 510 PWs) bands (ev): -4.1647 -2.5770 1.8615 2.8503 6.1822 9.9081 12.4892 13.6921 14.0036 k = 0.5615 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5837 -3.2058 4.5633 4.7396 6.2299 9.2897 9.6521 10.3884 15.6034 the Fermi energy is 8.0965 ev ! total energy = -25.49951456 Ry Harris-Foulkes estimate = -25.49951459 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000002 0.00000000 -0.00031937 atom 2 type 1 force = -0.00000002 0.00000000 0.00031937 Total force = 0.000452 Total SCF correction = 0.000129 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.45 -0.00000063 0.00000000 0.00000000 -0.09 0.00 0.00 0.00000000 -0.00000063 0.00000000 0.00 -0.09 0.00 0.00000000 0.00000000 -0.00000794 0.00 0.00 -1.17 Entering Dynamics; it = 19 time = 0.13068 pico-seconds new lattice vectors (alat unit) : 0.593557928 0.000000000 0.871334818 -0.296778822 0.514036218 0.871334916 -0.296778822 -0.514036218 0.871334916 new unit-cell volume = 274.7765 (a.u.)^3 new positions in cryst coord As 0.272352718 0.272352713 0.272352713 As -0.272352718 -0.272352713 -0.272352713 new positions in cart coord (alat unit) As 0.000000081 0.000000000 0.711931262 As -0.000000081 0.000000000 -0.711931262 Ekin = 0.00000706 Ry T = 296.0 K Etot = -25.49950749 CELL_PARAMETERS (alat) 0.593557928 0.000000000 0.871334818 -0.296778822 0.514036218 0.871334916 -0.296778822 -0.514036218 0.871334916 ATOMIC_POSITIONS (crystal) As 0.272352718 0.272352713 0.272352713 As -0.272352718 -0.272352713 -0.272352713 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1434580), wk = 0.0625000 k( 2) = ( -0.1403963 -0.2431735 0.2390968), wk = 0.1250000 k( 3) = ( 0.2807926 0.4863471 -0.0478194), wk = 0.1250000 k( 4) = ( 0.1403963 0.2431735 0.0478193), wk = 0.1250000 k( 5) = ( -0.2807926 0.0000000 0.3347355), wk = 0.0625000 k( 6) = ( 0.1403963 0.7295206 0.0478193), wk = 0.1250000 k( 7) = ( 0.0000000 0.4863471 0.1434580), wk = 0.1250000 k( 8) = ( 0.5615852 0.0000000 -0.2390968), wk = 0.0625000 k( 9) = ( 0.4211889 -0.2431735 -0.1434581), wk = 0.1250000 k( 10) = ( 0.2807926 0.0000000 -0.0478194), wk = 0.0625000 k( 11) = ( 0.2807927 0.0000000 0.2390967), wk = 0.0625000 k( 12) = ( 0.1403964 -0.2431735 0.3347354), wk = 0.1250000 k( 13) = ( 0.5615853 0.4863471 0.0478193), wk = 0.1250000 k( 14) = ( 0.4211890 0.2431735 0.1434580), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4303741), wk = 0.0625000 k( 16) = ( 0.4211890 0.7295206 0.1434580), wk = 0.1250000 k( 17) = ( 0.2807927 0.4863471 0.2390967), wk = 0.1250000 k( 18) = ( 0.8423779 0.0000000 -0.1434581), wk = 0.0625000 k( 19) = ( 0.7019816 -0.2431735 -0.0478194), wk = 0.1250000 k( 20) = ( 0.5615853 0.0000000 0.0478193), wk = 0.0625000 extrapolated charge 9.98865, renormalised to 10.00000 total cpu time spent up to now is 46.22 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 9.54E-09, avg # of iterations = 3.0 total cpu time spent up to now is 46.95 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1236 1.7621 5.6152 5.6152 6.5265 9.9757 10.5471 10.5471 14.5403 k =-0.1404-0.2432 0.2391 band energies (ev): -6.1038 -0.8541 3.9826 5.6677 8.0534 8.3032 9.0641 11.8804 13.9333 k = 0.2808 0.4863-0.0478 band energies (ev): -4.5770 -3.1976 4.5789 4.7495 6.2441 9.3081 9.6677 10.4122 15.6307 k = 0.1404 0.2432 0.0478 band energies (ev): -6.5438 0.1775 4.7371 5.3109 6.6958 9.4240 10.2223 11.4682 13.4704 k =-0.2808 0.0000 0.3347 band energies (ev): -5.7345 -0.6227 2.9620 4.0529 5.3470 10.1928 11.9584 12.0488 13.7784 k = 0.1404 0.7295 0.0478 band energies (ev): -4.1563 -2.5680 1.8701 2.8622 6.1971 9.9232 12.5055 13.7135 14.0252 k = 0.0000 0.4863 0.1435 band energies (ev): -5.0034 -2.1981 2.8115 4.7943 6.0981 9.4143 11.1721 12.1973 13.7156 k = 0.5616 0.0000-0.2391 band energies (ev): -4.4741 -1.9155 1.8767 3.5186 4.1456 9.7856 12.9689 14.3165 14.9304 k = 0.4212-0.2432-0.1435 band energies (ev): -5.0034 -2.1981 2.8115 4.7943 6.0981 9.4143 11.1721 12.1973 13.7156 k = 0.2808 0.0000-0.0478 band energies (ev): -6.5438 0.1775 4.7371 5.3109 6.6958 9.4240 10.2223 11.4682 13.4704 k = 0.2808 0.0000 0.2391 band energies (ev): -6.1038 -0.8541 3.9826 5.6677 8.0534 8.3032 9.0641 11.8804 13.9333 k = 0.1404-0.2432 0.3347 band energies (ev): -5.7345 -0.6227 2.9620 4.0529 5.3470 10.1928 11.9584 12.0488 13.7784 k = 0.5616 0.4863 0.0478 band energies (ev): -4.1563 -2.5680 1.8701 2.8622 6.1971 9.9232 12.5055 13.7135 14.0252 k = 0.4212 0.2432 0.1435 band energies (ev): -5.0034 -2.1981 2.8115 4.7943 6.0981 9.4143 11.1721 12.1973 13.7156 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9349 -1.5479 5.7889 5.7889 7.0077 8.5067 8.5067 9.6293 15.7150 k = 0.4212 0.7295 0.1435 band energies (ev): -4.9248 -2.0642 2.1231 4.6332 5.9559 10.0688 10.3885 13.1897 15.2373 k = 0.2808 0.4863 0.2391 band energies (ev): -4.4741 -1.9155 1.8767 3.5186 4.1456 9.7856 12.9689 14.3165 14.9304 k = 0.8424 0.0000-0.1435 band energies (ev): -4.9248 -2.0642 2.1231 4.6332 5.9559 10.0688 10.3885 13.1897 15.2373 k = 0.7020-0.2432-0.0478 band energies (ev): -4.1563 -2.5680 1.8701 2.8622 6.1971 9.9232 12.5055 13.7135 14.0252 k = 0.5616 0.0000 0.0478 band energies (ev): -4.5770 -3.1976 4.5789 4.7495 6.2441 9.3081 9.6677 10.4122 15.6307 the Fermi energy is 8.1107 ev total energy = -25.49951399 Ry Harris-Foulkes estimate = -25.49288747 Ry estimated scf accuracy < 0.00000064 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.40E-09, avg # of iterations = 3.0 total cpu time spent up to now is 47.39 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1217 1.7647 5.6179 5.6179 6.5277 9.9773 10.5481 10.5481 14.5361 k =-0.1404-0.2432 0.2391 band energies (ev): -6.1015 -0.8516 3.9825 5.6709 8.0538 8.3038 9.0630 11.8817 13.9300 k = 0.2808 0.4863-0.0478 band energies (ev): -4.5741 -3.1956 4.5782 4.7517 6.2437 9.3087 9.6667 10.4116 15.6263 k = 0.1404 0.2432 0.0478 band energies (ev): -6.5419 0.1811 4.7391 5.3111 6.6962 9.4241 10.2232 11.4689 13.4661 k =-0.2808 0.0000 0.3347 band energies (ev): -5.7319 -0.6203 2.9626 4.0542 5.3452 10.1921 11.9612 12.0506 13.7759 k = 0.1404 0.7295 0.0478 band energies (ev): -4.1528 -2.5654 1.8691 2.8609 6.1974 9.9243 12.5043 13.7155 14.0248 k = 0.0000 0.4863 0.1435 band energies (ev): -5.0010 -2.1950 2.8120 4.7926 6.0990 9.4134 11.1739 12.1985 13.7127 k = 0.5616 0.0000-0.2391 band energies (ev): -4.4710 -1.9118 1.8743 3.5197 4.1446 9.7835 12.9707 14.3155 14.9336 k = 0.4212-0.2432-0.1435 band energies (ev): -5.0010 -2.1950 2.8120 4.7926 6.0990 9.4134 11.1739 12.1985 13.7127 k = 0.2808 0.0000-0.0478 band energies (ev): -6.5419 0.1811 4.7391 5.3111 6.6962 9.4241 10.2232 11.4689 13.4661 k = 0.2808 0.0000 0.2391 band energies (ev): -6.1015 -0.8516 3.9825 5.6709 8.0538 8.3038 9.0630 11.8817 13.9300 k = 0.1404-0.2432 0.3347 band energies (ev): -5.7319 -0.6203 2.9626 4.0542 5.3452 10.1921 11.9612 12.0506 13.7759 k = 0.5616 0.4863 0.0478 band energies (ev): -4.1528 -2.5654 1.8691 2.8609 6.1974 9.9243 12.5043 13.7155 14.0248 k = 0.4212 0.2432 0.1435 band energies (ev): -5.0010 -2.1950 2.8120 4.7926 6.0990 9.4134 11.1739 12.1985 13.7127 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9318 -1.5481 5.7916 5.7916 7.0101 8.5063 8.5063 9.6279 15.7113 k = 0.4212 0.7295 0.1435 band energies (ev): -4.9209 -2.0639 2.1229 4.6348 5.9549 10.0697 10.3908 13.1922 15.2331 k = 0.2808 0.4863 0.2391 band energies (ev): -4.4711 -1.9118 1.8743 3.5197 4.1446 9.7835 12.9707 14.3155 14.9336 k = 0.8424 0.0000-0.1435 band energies (ev): -4.9209 -2.0639 2.1229 4.6348 5.9549 10.0697 10.3908 13.1922 15.2331 k = 0.7020-0.2432-0.0478 band energies (ev): -4.1528 -2.5654 1.8691 2.8609 6.1974 9.9243 12.5043 13.7155 14.0248 k = 0.5616 0.0000 0.0478 band energies (ev): -4.5741 -3.1956 4.5782 4.7517 6.2437 9.3087 9.6667 10.4116 15.6263 the Fermi energy is 8.1112 ev total energy = -25.49951503 Ry Harris-Foulkes estimate = -25.49951527 Ry estimated scf accuracy < 0.00000057 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.72E-09, avg # of iterations = 1.0 total cpu time spent up to now is 47.70 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1224 1.7643 5.6170 5.6170 6.5272 9.9765 10.5475 10.5475 14.5361 k =-0.1404-0.2432 0.2391 ( 522 PWs) bands (ev): -6.1023 -0.8523 3.9821 5.6698 8.0531 8.3036 9.0630 11.8811 13.9298 k = 0.2808 0.4863-0.0478 ( 520 PWs) bands (ev): -4.5750 -3.1962 4.5780 4.7508 6.2434 9.3082 9.6666 10.4114 15.6263 k = 0.1404 0.2432 0.0478 ( 525 PWs) bands (ev): -6.5426 0.1803 4.7382 5.3108 6.6959 9.4237 10.2223 11.4685 13.4661 k =-0.2808 0.0000 0.3347 ( 519 PWs) bands (ev): -5.7328 -0.6208 2.9619 4.0535 5.3452 10.1914 11.9604 12.0500 13.7760 k = 0.1404 0.7295 0.0478 ( 510 PWs) bands (ev): -4.1538 -2.5661 1.8687 2.8607 6.1971 9.9238 12.5038 13.7148 14.0245 k = 0.0000 0.4863 0.1435 ( 521 PWs) bands (ev): -5.0018 -2.1958 2.8112 4.7926 6.0986 9.4132 11.1732 12.1978 13.7125 k = 0.5616 0.0000-0.2391 ( 510 PWs) bands (ev): -4.4719 -1.9129 1.8744 3.5190 4.1444 9.7829 12.9702 14.3153 14.9329 k = 0.4212-0.2432-0.1435 ( 521 PWs) bands (ev): -5.0018 -2.1958 2.8112 4.7926 6.0986 9.4132 11.1732 12.1978 13.7125 k = 0.2808 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5426 0.1803 4.7382 5.3108 6.6959 9.4237 10.2223 11.4685 13.4661 k = 0.2808 0.0000 0.2391 ( 522 PWs) bands (ev): -6.1023 -0.8523 3.9821 5.6698 8.0531 8.3036 9.0630 11.8811 13.9298 k = 0.1404-0.2432 0.3347 ( 519 PWs) bands (ev): -5.7328 -0.6208 2.9619 4.0535 5.3452 10.1914 11.9604 12.0500 13.7760 k = 0.5616 0.4863 0.0478 ( 510 PWs) bands (ev): -4.1538 -2.5661 1.8687 2.8607 6.1971 9.9238 12.5038 13.7148 14.0245 k = 0.4212 0.2432 0.1435 ( 521 PWs) bands (ev): -5.0018 -2.1958 2.8112 4.7926 6.0986 9.4132 11.1732 12.1978 13.7125 k = 0.0000 0.0000 0.4304 ( 522 PWs) bands (ev): -5.9328 -1.5481 5.7906 5.7906 7.0089 8.5060 8.5060 9.6281 15.7110 k = 0.4212 0.7295 0.1435 ( 520 PWs) bands (ev): -4.9220 -2.0640 2.1223 4.6340 5.9547 10.0693 10.3900 13.1914 15.2331 k = 0.2808 0.4863 0.2391 ( 510 PWs) bands (ev): -4.4719 -1.9129 1.8744 3.5190 4.1444 9.7829 12.9702 14.3153 14.9329 k = 0.8424 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9220 -2.0640 2.1223 4.6340 5.9547 10.0693 10.3900 13.1914 15.2331 k = 0.7020-0.2432-0.0478 ( 510 PWs) bands (ev): -4.1538 -2.5661 1.8687 2.8607 6.1971 9.9238 12.5038 13.7148 14.0245 k = 0.5616 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5750 -3.1962 4.5780 4.7508 6.2434 9.3082 9.6666 10.4114 15.6263 the Fermi energy is 8.1105 ev ! total energy = -25.49951501 Ry Harris-Foulkes estimate = -25.49951507 Ry estimated scf accuracy < 0.00000010 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000003 0.00000000 -0.00055393 atom 2 type 1 force = -0.00000003 0.00000000 0.00055393 Total force = 0.000783 Total SCF correction = 0.000214 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.37 0.00000416 0.00000000 0.00000000 0.61 0.00 0.00 0.00000000 0.00000416 0.00000000 0.00 0.61 0.00 0.00000000 0.00000000 -0.00000080 0.00 0.00 -0.12 Entering Dynamics; it = 20 time = 0.13794 pico-seconds new lattice vectors (alat unit) : 0.593643729 0.000000000 0.870624761 -0.296821722 0.514110528 0.870624858 -0.296821722 -0.514110528 0.870624858 new unit-cell volume = 274.6320 (a.u.)^3 new positions in cryst coord As 0.272336999 0.272336989 0.272336989 As -0.272336999 -0.272336989 -0.272336989 new positions in cart coord (alat unit) As 0.000000083 0.000000000 0.711310040 As -0.000000083 0.000000000 -0.711310040 Ekin = 0.00000786 Ry T = 280.4 K Etot = -25.49950715 CELL_PARAMETERS (alat) 0.593643729 0.000000000 0.870624761 -0.296821722 0.514110528 0.870624858 -0.296821722 -0.514110528 0.870624858 ATOMIC_POSITIONS (crystal) As 0.272336999 0.272336989 0.272336989 As -0.272336999 -0.272336989 -0.272336989 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1435750), wk = 0.0625000 k( 2) = ( -0.1403760 -0.2431384 0.2392918), wk = 0.1250000 k( 3) = ( 0.2807520 0.4862768 -0.0478584), wk = 0.1250000 k( 4) = ( 0.1403760 0.2431384 0.0478583), wk = 0.1250000 k( 5) = ( -0.2807520 0.0000000 0.3350085), wk = 0.0625000 k( 6) = ( 0.1403760 0.7294151 0.0478583), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862768 0.1435750), wk = 0.1250000 k( 8) = ( 0.5615041 0.0000000 -0.2392918), wk = 0.0625000 k( 9) = ( 0.4211281 -0.2431384 -0.1435751), wk = 0.1250000 k( 10) = ( 0.2807520 0.0000000 -0.0478584), wk = 0.0625000 k( 11) = ( 0.2807521 0.0000000 0.2392917), wk = 0.0625000 k( 12) = ( 0.1403761 -0.2431384 0.3350084), wk = 0.1250000 k( 13) = ( 0.5615041 0.4862768 0.0478583), wk = 0.1250000 k( 14) = ( 0.4211281 0.2431384 0.1435750), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4307251), wk = 0.0625000 k( 16) = ( 0.4211281 0.7294151 0.1435750), wk = 0.1250000 k( 17) = ( 0.2807521 0.4862768 0.2392917), wk = 0.1250000 k( 18) = ( 0.8422561 0.0000000 -0.1435751), wk = 0.0625000 k( 19) = ( 0.7018801 -0.2431384 -0.0478584), wk = 0.1250000 k( 20) = ( 0.5615041 0.0000000 0.0478583), wk = 0.0625000 extrapolated charge 9.99474, renormalised to 10.00000 total cpu time spent up to now is 47.99 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.4 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.66E-09, avg # of iterations = 3.3 total cpu time spent up to now is 48.73 secs k = 0.0000 0.0000 0.1436 band energies (ev): -7.1194 1.7741 5.6185 5.6185 6.5366 9.9848 10.5544 10.5544 14.5398 k =-0.1404-0.2431 0.2393 band energies (ev): -6.0988 -0.8484 3.9918 5.6747 8.0569 8.3114 9.0659 11.8917 13.9357 k = 0.2808 0.4863-0.0479 band energies (ev): -4.5721 -3.1931 4.5884 4.7551 6.2487 9.3172 9.6722 10.4273 15.6452 k = 0.1404 0.2431 0.0479 band energies (ev): -6.5401 0.1848 4.7405 5.3205 6.7064 9.4333 10.2312 11.4776 13.4753 k =-0.2808 0.0000 0.3350 band energies (ev): -5.7284 -0.6143 2.9675 4.0540 5.3499 10.1973 11.9654 12.0557 13.7808 k = 0.1404 0.7294 0.0479 band energies (ev): -4.1490 -2.5631 1.8721 2.8674 6.2046 9.9278 12.5096 13.7258 14.0354 k = 0.0000 0.4863 0.1436 band energies (ev): -4.9990 -2.1924 2.8163 4.7984 6.1106 9.4233 11.1814 12.2049 13.7209 k = 0.5615 0.0000-0.2393 band energies (ev): -4.4682 -1.9073 1.8790 3.5200 4.1514 9.7923 12.9801 14.3240 14.9455 k = 0.4211-0.2431-0.1436 band energies (ev): -4.9990 -2.1924 2.8163 4.7984 6.1106 9.4233 11.1814 12.2049 13.7209 k = 0.2808 0.0000-0.0479 band energies (ev): -6.5401 0.1848 4.7405 5.3205 6.7064 9.4333 10.2312 11.4776 13.4753 k = 0.2808 0.0000 0.2393 band energies (ev): -6.0988 -0.8484 3.9918 5.6747 8.0569 8.3114 9.0659 11.8917 13.9357 k = 0.1404-0.2431 0.3350 band energies (ev): -5.7284 -0.6143 2.9675 4.0540 5.3499 10.1973 11.9654 12.0557 13.7808 k = 0.5615 0.4863 0.0479 band energies (ev): -4.1490 -2.5631 1.8721 2.8674 6.2046 9.9278 12.5096 13.7258 14.0354 k = 0.4211 0.2431 0.1436 band energies (ev): -4.9990 -2.1924 2.8163 4.7984 6.1106 9.4233 11.1814 12.2049 13.7209 k = 0.0000 0.0000 0.4307 band energies (ev): -5.9268 -1.5411 5.7921 5.7921 7.0096 8.5076 8.5076 9.6316 15.7231 k = 0.4211 0.7294 0.1436 band energies (ev): -4.9152 -2.0596 2.1256 4.6359 5.9571 10.0720 10.3942 13.1973 15.2439 k = 0.2808 0.4863 0.2393 band energies (ev): -4.4682 -1.9073 1.8790 3.5200 4.1514 9.7923 12.9801 14.3240 14.9455 k = 0.8423 0.0000-0.1436 band energies (ev): -4.9152 -2.0596 2.1256 4.6359 5.9571 10.0720 10.3942 13.1973 15.2439 k = 0.7019-0.2431-0.0479 band energies (ev): -4.1490 -2.5631 1.8721 2.8674 6.2046 9.9278 12.5096 13.7258 14.0354 k = 0.5615 0.0000 0.0479 band energies (ev): -4.5721 -3.1931 4.5884 4.7551 6.2487 9.3172 9.6722 10.4273 15.6452 the Fermi energy is 8.2541 ev total energy = -25.49951464 Ry Harris-Foulkes estimate = -25.49644029 Ry estimated scf accuracy < 0.00000021 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.07E-09, avg # of iterations = 3.0 total cpu time spent up to now is 49.15 secs k = 0.0000 0.0000 0.1436 band energies (ev): -7.1185 1.7752 5.6199 5.6199 6.5371 9.9858 10.5549 10.5549 14.5378 k =-0.1404-0.2431 0.2393 band energies (ev): -6.0977 -0.8473 3.9917 5.6764 8.0573 8.3115 9.0652 11.8923 13.9343 k = 0.2808 0.4863-0.0479 band energies (ev): -4.5707 -3.1922 4.5880 4.7563 6.2484 9.3175 9.6716 10.4270 15.6431 k = 0.1404 0.2431 0.0479 band energies (ev): -6.5391 0.1864 4.7415 5.3205 6.7065 9.4333 10.2318 11.4778 13.4733 k =-0.2808 0.0000 0.3350 band energies (ev): -5.7270 -0.6133 2.9679 4.0547 5.3488 10.1972 11.9668 12.0566 13.7795 k = 0.1404 0.7294 0.0479 band energies (ev): -4.1473 -2.5618 1.8716 2.8668 6.2046 9.9283 12.5091 13.7268 14.0351 k = 0.0000 0.4863 0.1436 band energies (ev): -4.9979 -2.1909 2.8166 4.7974 6.1110 9.4228 11.1823 12.2056 13.7195 k = 0.5615 0.0000-0.2393 band energies (ev): -4.4668 -1.9055 1.8777 3.5206 4.1508 9.7915 12.9809 14.3233 14.9470 k = 0.4211-0.2431-0.1436 band energies (ev): -4.9979 -2.1909 2.8166 4.7974 6.1110 9.4228 11.1823 12.2056 13.7195 k = 0.2808 0.0000-0.0479 band energies (ev): -6.5391 0.1864 4.7415 5.3205 6.7065 9.4333 10.2318 11.4778 13.4733 k = 0.2808 0.0000 0.2393 band energies (ev): -6.0977 -0.8473 3.9917 5.6764 8.0573 8.3115 9.0652 11.8923 13.9343 k = 0.1404-0.2431 0.3350 band energies (ev): -5.7270 -0.6133 2.9679 4.0547 5.3488 10.1972 11.9668 12.0566 13.7795 k = 0.5615 0.4863 0.0479 band energies (ev): -4.1473 -2.5618 1.8716 2.8668 6.2046 9.9283 12.5091 13.7268 14.0351 k = 0.4211 0.2431 0.1436 band energies (ev): -4.9979 -2.1909 2.8166 4.7974 6.1110 9.4228 11.1823 12.2056 13.7195 k = 0.0000 0.0000 0.4307 band energies (ev): -5.9253 -1.5414 5.7935 5.7935 7.0111 8.5074 8.5074 9.6306 15.7215 k = 0.4211 0.7294 0.1436 band energies (ev): -4.9132 -2.0597 2.1255 4.6368 5.9565 10.0724 10.3953 13.1985 15.2419 k = 0.2808 0.4863 0.2393 band energies (ev): -4.4668 -1.9055 1.8777 3.5206 4.1508 9.7915 12.9809 14.3233 14.9470 k = 0.8423 0.0000-0.1436 band energies (ev): -4.9132 -2.0597 2.1255 4.6368 5.9565 10.0724 10.3953 13.1985 15.2419 k = 0.7019-0.2431-0.0479 band energies (ev): -4.1473 -2.5618 1.8716 2.8668 6.2046 9.9283 12.5091 13.7268 14.0351 k = 0.5615 0.0000 0.0479 band energies (ev): -4.5707 -3.1922 4.5880 4.7563 6.2484 9.3175 9.6716 10.4270 15.6431 the Fermi energy is 8.1146 ev total energy = -25.49951489 Ry Harris-Foulkes estimate = -25.49951496 Ry estimated scf accuracy < 0.00000015 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-09, avg # of iterations = 1.0 total cpu time spent up to now is 49.45 secs End of self-consistent calculation k = 0.0000 0.0000 0.1436 ( 531 PWs) bands (ev): -7.1189 1.7750 5.6194 5.6194 6.5369 9.9853 10.5546 10.5546 14.5378 k =-0.1404-0.2431 0.2393 ( 522 PWs) bands (ev): -6.0981 -0.8476 3.9915 5.6758 8.0569 8.3114 9.0652 11.8920 13.9341 k = 0.2808 0.4863-0.0479 ( 520 PWs) bands (ev): -4.5711 -3.1925 4.5879 4.7558 6.2483 9.3172 9.6716 10.4269 15.6431 k = 0.1404 0.2431 0.0479 ( 525 PWs) bands (ev): -6.5395 0.1860 4.7410 5.3203 6.7063 9.4331 10.2314 11.4776 13.4733 k =-0.2808 0.0000 0.3350 ( 519 PWs) bands (ev): -5.7275 -0.6136 2.9675 4.0543 5.3488 10.1968 11.9664 12.0562 13.7796 k = 0.1404 0.7294 0.0479 ( 510 PWs) bands (ev): -4.1478 -2.5622 1.8714 2.8667 6.2045 9.9281 12.5088 13.7265 14.0350 k = 0.0000 0.4863 0.1436 ( 521 PWs) bands (ev): -4.9983 -2.1913 2.8163 4.7975 6.1107 9.4227 11.1819 12.2052 13.7194 k = 0.5615 0.0000-0.2393 ( 510 PWs) bands (ev): -4.4672 -1.9061 1.8778 3.5202 4.1507 9.7912 12.9806 14.3233 14.9466 k = 0.4211-0.2431-0.1436 ( 521 PWs) bands (ev): -4.9983 -2.1913 2.8163 4.7975 6.1107 9.4227 11.1819 12.2052 13.7194 k = 0.2808 0.0000-0.0479 ( 525 PWs) bands (ev): -6.5395 0.1860 4.7410 5.3203 6.7063 9.4331 10.2314 11.4776 13.4733 k = 0.2808 0.0000 0.2393 ( 522 PWs) bands (ev): -6.0981 -0.8476 3.9915 5.6758 8.0569 8.3114 9.0652 11.8920 13.9341 k = 0.1404-0.2431 0.3350 ( 519 PWs) bands (ev): -5.7275 -0.6136 2.9675 4.0543 5.3488 10.1968 11.9664 12.0562 13.7796 k = 0.5615 0.4863 0.0479 ( 510 PWs) bands (ev): -4.1478 -2.5622 1.8714 2.8667 6.2045 9.9281 12.5088 13.7265 14.0350 k = 0.4211 0.2431 0.1436 ( 521 PWs) bands (ev): -4.9983 -2.1913 2.8163 4.7975 6.1107 9.4227 11.1819 12.2052 13.7194 k = 0.0000 0.0000 0.4307 ( 522 PWs) bands (ev): -5.9258 -1.5414 5.7930 5.7930 7.0104 8.5072 8.5072 9.6308 15.7213 k = 0.4211 0.7294 0.1436 ( 520 PWs) bands (ev): -4.9138 -2.0597 2.1252 4.6363 5.9564 10.0722 10.3949 13.1981 15.2419 k = 0.2808 0.4863 0.2393 ( 510 PWs) bands (ev): -4.4672 -1.9061 1.8778 3.5202 4.1507 9.7912 12.9806 14.3233 14.9466 k = 0.8423 0.0000-0.1436 ( 520 PWs) bands (ev): -4.9138 -2.0597 2.1252 4.6363 5.9564 10.0722 10.3949 13.1981 15.2419 k = 0.7019-0.2431-0.0479 ( 510 PWs) bands (ev): -4.1478 -2.5622 1.8714 2.8667 6.2045 9.9281 12.5088 13.7265 14.0350 k = 0.5615 0.0000 0.0479 ( 520 PWs) bands (ev): -4.5711 -3.1925 4.5879 4.7558 6.2483 9.3172 9.6716 10.4269 15.6431 the Fermi energy is 8.1142 ev ! total energy = -25.49951489 Ry Harris-Foulkes estimate = -25.49951490 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000002 0.00000000 -0.00061380 atom 2 type 1 force = -0.00000002 0.00000000 0.00061380 Total force = 0.000868 Total SCF correction = 0.000105 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.72 0.00000442 0.00000000 0.00000000 0.65 0.00 0.00 0.00000000 0.00000442 0.00000000 0.00 0.65 0.00 0.00000000 0.00000000 0.00000575 0.00 0.00 0.85 Entering Dynamics; it = 21 time = 0.14520 pico-seconds new lattice vectors (alat unit) : 0.593677832 0.000000000 0.871245160 -0.296838771 0.514140063 0.871245258 -0.296838771 -0.514140063 0.871245258 new unit-cell volume = 274.8593 (a.u.)^3 new positions in cryst coord As 0.272310200 0.272310184 0.272310184 As -0.272310200 -0.272310184 -0.272310184 new positions in cart coord (alat unit) As 0.000000088 0.000000000 0.711746856 As -0.000000088 0.000000000 -0.711746856 Ekin = 0.00000718 Ry T = 266.4 K Etot = -25.49950771 CELL_PARAMETERS (alat) 0.593677832 0.000000000 0.871245160 -0.296838771 0.514140063 0.871245258 -0.296838771 -0.514140063 0.871245258 ATOMIC_POSITIONS (crystal) As 0.272310200 0.272310184 0.272310184 As -0.272310200 -0.272310184 -0.272310184 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1434728), wk = 0.0625000 k( 2) = ( -0.1403679 -0.2431244 0.2391214), wk = 0.1250000 k( 3) = ( 0.2807359 0.4862488 -0.0478243), wk = 0.1250000 k( 4) = ( 0.1403680 0.2431244 0.0478243), wk = 0.1250000 k( 5) = ( -0.2807359 0.0000000 0.3347699), wk = 0.0625000 k( 6) = ( 0.1403680 0.7293732 0.0478243), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862488 0.1434728), wk = 0.1250000 k( 8) = ( 0.5614718 0.0000000 -0.2391214), wk = 0.0625000 k( 9) = ( 0.4211039 -0.2431244 -0.1434729), wk = 0.1250000 k( 10) = ( 0.2807359 0.0000000 -0.0478243), wk = 0.0625000 k( 11) = ( 0.2807359 0.0000000 0.2391213), wk = 0.0625000 k( 12) = ( 0.1403680 -0.2431244 0.3347699), wk = 0.1250000 k( 13) = ( 0.5614719 0.4862488 0.0478242), wk = 0.1250000 k( 14) = ( 0.4211039 0.2431244 0.1434728), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4304184), wk = 0.0625000 k( 16) = ( 0.4211039 0.7293732 0.1434728), wk = 0.1250000 k( 17) = ( 0.2807359 0.4862488 0.2391213), wk = 0.1250000 k( 18) = ( 0.8422078 0.0000000 -0.1434729), wk = 0.0625000 k( 19) = ( 0.7018398 -0.2431244 -0.0478243), wk = 0.1250000 k( 20) = ( 0.5614719 0.0000000 0.0478242), wk = 0.0625000 extrapolated charge 10.00827, renormalised to 10.00000 total cpu time spent up to now is 49.73 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.3 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 3.63E-09, avg # of iterations = 3.1 total cpu time spent up to now is 50.47 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1230 1.7592 5.6139 5.6139 6.5223 9.9744 10.5425 10.5425 14.5265 k =-0.1404-0.2431 0.2391 band energies (ev): -6.1029 -0.8565 3.9799 5.6693 8.0468 8.2977 9.0534 11.8752 13.9230 k = 0.2807 0.4862-0.0478 band energies (ev): -4.5761 -3.1991 4.5751 4.7495 6.2373 9.3036 9.6580 10.4058 15.6204 k = 0.1404 0.2431 0.0478 band energies (ev): -6.5436 0.1765 4.7355 5.3071 6.6930 9.4161 10.2198 11.4619 13.4571 k =-0.2807 0.0000 0.3348 band energies (ev): -5.7329 -0.6252 2.9602 4.0499 5.3377 10.1879 11.9535 12.0437 13.7647 k = 0.1404 0.7294 0.0478 band energies (ev): -4.1542 -2.5692 1.8651 2.8570 6.1926 9.9163 12.4980 13.7099 14.0170 k = 0.0000 0.4862 0.1435 band energies (ev): -5.0032 -2.1984 2.8094 4.7865 6.0968 9.4055 11.1668 12.1929 13.7053 k = 0.5615 0.0000-0.2391 band energies (ev): -4.4731 -1.9140 1.8685 3.5157 4.1393 9.7802 12.9635 14.3048 14.9263 k = 0.4211-0.2431-0.1435 band energies (ev): -5.0032 -2.1984 2.8094 4.7865 6.0968 9.4055 11.1668 12.1929 13.7053 k = 0.2807 0.0000-0.0478 band energies (ev): -6.5436 0.1765 4.7355 5.3071 6.6930 9.4161 10.2198 11.4619 13.4571 k = 0.2807 0.0000 0.2391 band energies (ev): -6.1029 -0.8565 3.9799 5.6693 8.0468 8.2977 9.0534 11.8752 13.9230 k = 0.1404-0.2431 0.3348 band energies (ev): -5.7329 -0.6252 2.9602 4.0499 5.3377 10.1879 11.9535 12.0437 13.7647 k = 0.5615 0.4862 0.0478 band energies (ev): -4.1542 -2.5692 1.8651 2.8570 6.1926 9.9163 12.4980 13.7099 14.0170 k = 0.4211 0.2431 0.1435 band energies (ev): -5.0032 -2.1984 2.8094 4.7865 6.0968 9.4055 11.1668 12.1929 13.7053 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9318 -1.5536 5.7881 5.7881 7.0033 8.4984 8.4984 9.6188 15.7041 k = 0.4211 0.7294 0.1435 band energies (ev): -4.9205 -2.0700 2.1195 4.6312 5.9473 10.0616 10.3843 13.1858 15.2245 k = 0.2807 0.4862 0.2391 band energies (ev): -4.4731 -1.9140 1.8685 3.5157 4.1393 9.7802 12.9635 14.3048 14.9263 k = 0.8422 0.0000-0.1435 band energies (ev): -4.9205 -2.0700 2.1195 4.6312 5.9473 10.0616 10.3843 13.1858 15.2245 k = 0.7018-0.2431-0.0478 band energies (ev): -4.1542 -2.5692 1.8651 2.8570 6.1926 9.9163 12.4980 13.7099 14.0170 k = 0.5615 0.0000 0.0478 band energies (ev): -4.5761 -3.1991 4.5751 4.7495 6.2373 9.3036 9.6580 10.4058 15.6204 the Fermi energy is 8.1041 ev total energy = -25.49951556 Ry Harris-Foulkes estimate = -25.50434406 Ry estimated scf accuracy < 0.00000020 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-09, avg # of iterations = 3.0 total cpu time spent up to now is 50.92 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1241 1.7572 5.6124 5.6124 6.5216 9.9736 10.5421 10.5421 14.5295 k =-0.1404-0.2431 0.2391 band energies (ev): -6.1042 -0.8582 3.9802 5.6676 8.0468 8.2972 9.0540 11.8745 13.9255 k = 0.2807 0.4862-0.0478 band energies (ev): -4.5777 -3.2003 4.5756 4.7484 6.2377 9.3034 9.6585 10.4061 15.6236 k = 0.1404 0.2431 0.0478 band energies (ev): -6.5447 0.1743 4.7345 5.3069 6.6927 9.4161 10.2197 11.4615 13.4602 k =-0.2807 0.0000 0.3348 band energies (ev): -5.7344 -0.6269 2.9602 4.0493 5.3388 10.1889 11.9518 12.0426 13.7663 k = 0.1404 0.7294 0.0478 band energies (ev): -4.1562 -2.5709 1.8660 2.8579 6.1924 9.9157 12.4992 13.7087 14.0173 k = 0.0000 0.4862 0.1435 band energies (ev): -5.0045 -2.2003 2.8095 4.7875 6.0962 9.4062 11.1658 12.1924 13.7074 k = 0.5615 0.0000-0.2391 band energies (ev): -4.4749 -1.9161 1.8700 3.5153 4.1400 9.7821 12.9623 14.3054 14.9242 k = 0.4211-0.2431-0.1435 band energies (ev): -5.0045 -2.2003 2.8095 4.7875 6.0962 9.4062 11.1658 12.1924 13.7074 k = 0.2807 0.0000-0.0478 band energies (ev): -6.5447 0.1743 4.7345 5.3069 6.6927 9.4161 10.2197 11.4615 13.4602 k = 0.2807 0.0000 0.2391 band energies (ev): -6.1042 -0.8582 3.9802 5.6676 8.0468 8.2972 9.0540 11.8745 13.9255 k = 0.1404-0.2431 0.3348 band energies (ev): -5.7344 -0.6269 2.9602 4.0493 5.3388 10.1889 11.9518 12.0426 13.7663 k = 0.5615 0.4862 0.0478 band energies (ev): -4.1562 -2.5709 1.8660 2.8579 6.1924 9.9157 12.4992 13.7087 14.0173 k = 0.4211 0.2431 0.1435 band energies (ev): -5.0045 -2.2003 2.8095 4.7875 6.0962 9.4062 11.1658 12.1924 13.7074 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9334 -1.5537 5.7866 5.7866 7.0023 8.4987 8.4987 9.6193 15.7070 k = 0.4211 0.7294 0.1435 band energies (ev): -4.9226 -2.0704 2.1200 4.6304 5.9480 10.0610 10.3830 13.1844 15.2276 k = 0.2807 0.4862 0.2391 band energies (ev): -4.4749 -1.9161 1.8700 3.5153 4.1400 9.7821 12.9623 14.3054 14.9242 k = 0.8422 0.0000-0.1435 band energies (ev): -4.9226 -2.0704 2.1200 4.6304 5.9480 10.0610 10.3830 13.1844 15.2276 k = 0.7018-0.2431-0.0478 band energies (ev): -4.1562 -2.5709 1.8660 2.8579 6.1924 9.9157 12.4992 13.7087 14.0173 k = 0.5615 0.0000 0.0478 band energies (ev): -4.5777 -3.2003 4.5756 4.7484 6.2377 9.3034 9.6585 10.4061 15.6236 the Fermi energy is 8.2398 ev total energy = -25.49951601 Ry Harris-Foulkes estimate = -25.49951610 Ry estimated scf accuracy < 0.00000023 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.98E-09, avg # of iterations = 1.0 total cpu time spent up to now is 51.22 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1236 1.7576 5.6129 5.6129 6.5219 9.9741 10.5425 10.5425 14.5294 k =-0.1404-0.2431 0.2391 ( 522 PWs) bands (ev): -6.1037 -0.8577 3.9804 5.6682 8.0472 8.2974 9.0541 11.8749 13.9257 k = 0.2807 0.4862-0.0478 ( 520 PWs) bands (ev): -4.5772 -3.1998 4.5758 4.7490 6.2379 9.3037 9.6586 10.4063 15.6236 k = 0.1404 0.2431 0.0478 ( 525 PWs) bands (ev): -6.5442 0.1748 4.7350 5.3072 6.6929 9.4163 10.2202 11.4618 13.4602 k =-0.2807 0.0000 0.3348 ( 519 PWs) bands (ev): -5.7339 -0.6265 2.9606 4.0497 5.3388 10.1893 11.9524 12.0430 13.7663 k = 0.1404 0.7294 0.0478 ( 510 PWs) bands (ev): -4.1556 -2.5704 1.8662 2.8581 6.1926 9.9161 12.4995 13.7092 14.0176 k = 0.0000 0.4862 0.1435 ( 521 PWs) bands (ev): -5.0040 -2.1998 2.8099 4.7876 6.0965 9.4063 11.1662 12.1928 13.7076 k = 0.5615 0.0000-0.2391 ( 510 PWs) bands (ev): -4.4744 -1.9155 1.8700 3.5157 4.1402 9.7824 12.9627 14.3056 14.9247 k = 0.4211-0.2431-0.1435 ( 521 PWs) bands (ev): -5.0040 -2.1998 2.8099 4.7876 6.0965 9.4063 11.1662 12.1928 13.7076 k = 0.2807 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5442 0.1748 4.7350 5.3072 6.6929 9.4163 10.2202 11.4618 13.4602 k = 0.2807 0.0000 0.2391 ( 522 PWs) bands (ev): -6.1037 -0.8577 3.9804 5.6682 8.0472 8.2974 9.0541 11.8749 13.9257 k = 0.1404-0.2431 0.3348 ( 519 PWs) bands (ev): -5.7339 -0.6265 2.9606 4.0497 5.3388 10.1893 11.9523 12.0430 13.7663 k = 0.5615 0.4862 0.0478 ( 510 PWs) bands (ev): -4.1556 -2.5704 1.8662 2.8581 6.1926 9.9161 12.4995 13.7092 14.0176 k = 0.4211 0.2431 0.1435 ( 521 PWs) bands (ev): -5.0040 -2.1998 2.8099 4.7876 6.0965 9.4063 11.1662 12.1928 13.7076 k = 0.0000 0.0000 0.4304 ( 522 PWs) bands (ev): -5.9328 -1.5536 5.7871 5.7871 7.0030 8.4989 8.4989 9.6193 15.7072 k = 0.4211 0.7294 0.1435 ( 520 PWs) bands (ev): -4.9220 -2.0703 2.1204 4.6309 5.9482 10.0613 10.3834 13.1849 15.2276 k = 0.2807 0.4862 0.2391 ( 510 PWs) bands (ev): -4.4744 -1.9155 1.8700 3.5157 4.1402 9.7824 12.9627 14.3056 14.9247 k = 0.8422 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9220 -2.0703 2.1204 4.6309 5.9482 10.0613 10.3834 13.1849 15.2276 k = 0.7018-0.2431-0.0478 ( 510 PWs) bands (ev): -4.1556 -2.5704 1.8662 2.8581 6.1926 9.9161 12.4995 13.7092 14.0176 k = 0.5615 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5772 -3.1998 4.5758 4.7490 6.2379 9.3037 9.6586 10.4063 15.6236 the Fermi energy is 8.2400 ev ! total energy = -25.49951599 Ry Harris-Foulkes estimate = -25.49951602 Ry estimated scf accuracy < 0.00000005 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000002 0.00000000 -0.00026879 atom 2 type 1 force = 0.00000002 0.00000000 0.00026879 Total force = 0.000380 Total SCF correction = 0.000141 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.21 0.00000172 0.00000000 0.00000000 0.25 0.00 0.00 0.00000000 0.00000172 0.00000000 0.00 0.25 0.00 0.00000000 0.00000000 0.00000078 0.00 0.00 0.12 Entering Dynamics; it = 22 time = 0.15246 pico-seconds new lattice vectors (alat unit) : 0.593725020 0.000000000 0.871254012 -0.296862363 0.514180926 0.871254112 -0.296862363 -0.514180926 0.871254112 new unit-cell volume = 274.9058 (a.u.)^3 new positions in cryst coord As 0.272278564 0.272278544 0.272278544 As -0.272278564 -0.272278544 -0.272278544 new positions in cart coord (alat unit) As 0.000000092 0.000000000 0.711671393 As -0.000000092 0.000000000 -0.711671393 Ekin = 0.00000105 Ry T = 253.7 K Etot = -25.49951494 CELL_PARAMETERS (alat) 0.593725020 0.000000000 0.871254012 -0.296862363 0.514180926 0.871254112 -0.296862363 -0.514180926 0.871254112 ATOMIC_POSITIONS (crystal) As 0.272278564 0.272278544 0.272278544 As -0.272278564 -0.272278544 -0.272278544 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1434714), wk = 0.0625000 k( 2) = ( -0.1403568 -0.2431051 0.2391189), wk = 0.1250000 k( 3) = ( 0.2807136 0.4862102 -0.0478238), wk = 0.1250000 k( 4) = ( 0.1403568 0.2431051 0.0478238), wk = 0.1250000 k( 5) = ( -0.2807136 0.0000000 0.3347665), wk = 0.0625000 k( 6) = ( 0.1403568 0.7293153 0.0478238), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862102 0.1434714), wk = 0.1250000 k( 8) = ( 0.5614272 0.0000000 -0.2391190), wk = 0.0625000 k( 9) = ( 0.4210704 -0.2431051 -0.1434714), wk = 0.1250000 k( 10) = ( 0.2807136 0.0000000 -0.0478238), wk = 0.0625000 k( 11) = ( 0.2807136 0.0000000 0.2391189), wk = 0.0625000 k( 12) = ( 0.1403568 -0.2431051 0.3347665), wk = 0.1250000 k( 13) = ( 0.5614272 0.4862102 0.0478237), wk = 0.1250000 k( 14) = ( 0.4210704 0.2431051 0.1434713), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4304141), wk = 0.0625000 k( 16) = ( 0.4210704 0.7293153 0.1434713), wk = 0.1250000 k( 17) = ( 0.2807136 0.4862102 0.2391189), wk = 0.1250000 k( 18) = ( 0.8421408 0.0000000 -0.1434714), wk = 0.0625000 k( 19) = ( 0.7017840 -0.2431051 -0.0478239), wk = 0.1250000 k( 20) = ( 0.5614272 0.0000000 0.0478237), wk = 0.0625000 extrapolated charge 10.00169, renormalised to 10.00000 total cpu time spent up to now is 51.51 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 5.84E-10, avg # of iterations = 3.6 total cpu time spent up to now is 52.24 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1227 1.7550 5.6130 5.6130 6.5196 9.9747 10.5411 10.5411 14.5255 k =-0.1404-0.2431 0.2391 ( 522 PWs) bands (ev): -6.1028 -0.8591 3.9798 5.6698 8.0453 8.2948 9.0494 11.8722 13.9238 k = 0.2807 0.4862-0.0478 ( 520 PWs) bands (ev): -4.5764 -3.2003 4.5746 4.7500 6.2355 9.3023 9.6542 10.4028 15.6204 k = 0.1404 0.2431 0.0478 ( 525 PWs) bands (ev): -6.5435 0.1739 4.7352 5.3056 6.6918 9.4122 10.2206 11.4587 13.4560 k =-0.2807 0.0000 0.3348 ( 519 PWs) bands (ev): -5.7327 -0.6284 2.9612 4.0495 5.3351 10.1895 11.9500 12.0408 13.7607 k = 0.1404 0.7293 0.0478 ( 510 PWs) bands (ev): -4.1545 -2.5709 1.8655 2.8567 6.1909 9.9131 12.4981 13.7074 14.0139 k = 0.0000 0.4862 0.1435 ( 521 PWs) bands (ev): -5.0035 -2.1999 2.8104 4.7847 6.0960 9.4022 11.1635 12.1917 13.7047 k = 0.5614 0.0000-0.2391 ( 510 PWs) bands (ev): -4.4738 -1.9148 1.8673 3.5157 4.1378 9.7827 12.9595 14.3000 14.9213 k = 0.4211-0.2431-0.1435 ( 521 PWs) bands (ev): -5.0035 -2.1999 2.8104 4.7847 6.0960 9.4022 11.1635 12.1917 13.7047 k = 0.2807 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5435 0.1739 4.7352 5.3056 6.6918 9.4122 10.2206 11.4587 13.4560 k = 0.2807 0.0000 0.2391 ( 522 PWs) bands (ev): -6.1028 -0.8591 3.9798 5.6698 8.0453 8.2948 9.0494 11.8722 13.9238 k = 0.1404-0.2431 0.3348 ( 519 PWs) bands (ev): -5.7327 -0.6284 2.9612 4.0495 5.3351 10.1895 11.9500 12.0408 13.7607 k = 0.5614 0.4862 0.0478 ( 510 PWs) bands (ev): -4.1545 -2.5709 1.8655 2.8567 6.1909 9.9131 12.4981 13.7074 14.0139 k = 0.4211 0.2431 0.1435 ( 521 PWs) bands (ev): -5.0035 -2.1999 2.8104 4.7847 6.0960 9.4022 11.1635 12.1917 13.7047 k = 0.0000 0.0000 0.4304 ( 522 PWs) bands (ev): -5.9311 -1.5566 5.7877 5.7877 7.0024 8.4960 8.4960 9.6150 15.7046 k = 0.4211 0.7293 0.1435 ( 520 PWs) bands (ev): -4.9198 -2.0733 2.1204 4.6312 5.9453 10.0582 10.3820 13.1834 15.2237 k = 0.2807 0.4862 0.2391 ( 510 PWs) bands (ev): -4.4738 -1.9148 1.8673 3.5157 4.1378 9.7827 12.9595 14.3000 14.9213 k = 0.8421 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9198 -2.0733 2.1204 4.6312 5.9453 10.0582 10.3820 13.1834 15.2237 k = 0.7018-0.2431-0.0478 ( 510 PWs) bands (ev): -4.1545 -2.5709 1.8655 2.8567 6.1909 9.9131 12.4981 13.7074 14.0139 k = 0.5614 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5764 -3.2003 4.5746 4.7500 6.2355 9.3023 9.6542 10.4028 15.6204 the Fermi energy is 8.2374 ev ! total energy = -25.49951614 Ry Harris-Foulkes estimate = -25.50050348 Ry estimated scf accuracy < 0.00000006 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000002 0.00000000 -0.00006639 atom 2 type 1 force = 0.00000002 0.00000000 0.00006639 Total force = 0.000094 Total SCF correction = 0.000210 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.55 -0.00000305 0.00000000 0.00000000 -0.45 0.00 0.00 0.00000000 -0.00000305 0.00000000 0.00 -0.45 0.00 0.00000000 0.00000000 -0.00000511 0.00 0.00 -0.75 Entering Dynamics; it = 23 time = 0.15972 pico-seconds new lattice vectors (alat unit) : 0.593694833 0.000000000 0.871246351 -0.296847273 0.514154781 0.871246449 -0.296847273 -0.514154781 0.871246449 new unit-cell volume = 274.8754 (a.u.)^3 new positions in cryst coord As 0.272245733 0.272245710 0.272245710 As -0.272245733 -0.272245710 -0.272245710 new positions in cart coord (alat unit) As 0.000000092 0.000000000 0.711579317 As -0.000000092 0.000000000 -0.711579317 Ekin = 0.00000121 Ry T = 242.2 K Etot = -25.49951493 CELL_PARAMETERS (alat) 0.593694833 0.000000000 0.871246351 -0.296847273 0.514154781 0.871246449 -0.296847273 -0.514154781 0.871246449 ATOMIC_POSITIONS (crystal) As 0.272245733 0.272245710 0.272245710 As -0.272245733 -0.272245710 -0.272245710 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1434726), wk = 0.0625000 k( 2) = ( -0.1403639 -0.2431175 0.2391210), wk = 0.1250000 k( 3) = ( 0.2807279 0.4862349 -0.0478242), wk = 0.1250000 k( 4) = ( 0.1403639 0.2431175 0.0478242), wk = 0.1250000 k( 5) = ( -0.2807278 0.0000000 0.3347695), wk = 0.0625000 k( 6) = ( 0.1403639 0.7293524 0.0478242), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862349 0.1434726), wk = 0.1250000 k( 8) = ( 0.5614557 0.0000000 -0.2391211), wk = 0.0625000 k( 9) = ( 0.4210918 -0.2431175 -0.1434727), wk = 0.1250000 k( 10) = ( 0.2807279 0.0000000 -0.0478242), wk = 0.0625000 k( 11) = ( 0.2807279 0.0000000 0.2391210), wk = 0.0625000 k( 12) = ( 0.1403640 -0.2431175 0.3347694), wk = 0.1250000 k( 13) = ( 0.5614558 0.4862349 0.0478241), wk = 0.1250000 k( 14) = ( 0.4210918 0.2431175 0.1434726), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4304178), wk = 0.0625000 k( 16) = ( 0.4210918 0.7293524 0.1434726), wk = 0.1250000 k( 17) = ( 0.2807279 0.4862349 0.2391210), wk = 0.1250000 k( 18) = ( 0.8421836 0.0000000 -0.1434727), wk = 0.0625000 k( 19) = ( 0.7018197 -0.2431175 -0.0478243), wk = 0.1250000 k( 20) = ( 0.5614558 0.0000000 0.0478241), wk = 0.0625000 extrapolated charge 9.99890, renormalised to 10.00000 total cpu time spent up to now is 52.52 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-09, avg # of iterations = 3.1 total cpu time spent up to now is 53.21 secs k = 0.0000 0.0000 0.1435 band energies (ev): -7.1222 1.7548 5.6147 5.6147 6.5198 9.9780 10.5427 10.5427 14.5271 k =-0.1404-0.2431 0.2391 band energies (ev): -6.1021 -0.8589 3.9808 5.6724 8.0471 8.2958 9.0488 11.8729 13.9271 k = 0.2807 0.4862-0.0478 band energies (ev): -4.5755 -3.1999 4.5755 4.7523 6.2365 9.3043 9.6536 10.4023 15.6217 k = 0.1404 0.2431 0.0478 band energies (ev): -6.5430 0.1746 4.7370 5.3060 6.6930 9.4116 10.2239 11.4590 13.4571 k =-0.2807 0.0000 0.3348 band energies (ev): -5.7320 -0.6286 2.9630 4.0512 5.3349 10.1933 11.9513 12.0420 13.7608 k = 0.1404 0.7294 0.0478 band energies (ev): -4.1535 -2.5705 1.8667 2.8574 6.1916 9.9138 12.5011 13.7090 14.0143 k = 0.0000 0.4862 0.1435 band energies (ev): -5.0028 -2.1992 2.8122 4.7850 6.0972 9.4015 11.1643 12.1941 13.7068 k = 0.5615 0.0000-0.2391 band energies (ev): -4.4731 -1.9137 1.8673 3.5173 4.1379 9.7865 12.9596 14.2994 14.9214 k = 0.4211-0.2431-0.1435 band energies (ev): -5.0028 -2.1992 2.8122 4.7850 6.0972 9.4015 11.1643 12.1941 13.7068 k = 0.2807 0.0000-0.0478 band energies (ev): -6.5430 0.1746 4.7370 5.3060 6.6930 9.4116 10.2239 11.4590 13.4571 k = 0.2807 0.0000 0.2391 band energies (ev): -6.1021 -0.8589 3.9808 5.6724 8.0471 8.2958 9.0488 11.8729 13.9271 k = 0.1404-0.2431 0.3348 band energies (ev): -5.7320 -0.6286 2.9630 4.0512 5.3349 10.1933 11.9513 12.0420 13.7608 k = 0.5615 0.4862 0.0478 band energies (ev): -4.1535 -2.5705 1.8667 2.8574 6.1916 9.9138 12.5011 13.7090 14.0143 k = 0.4211 0.2431 0.1435 band energies (ev): -5.0028 -2.1992 2.8122 4.7850 6.0972 9.4015 11.1643 12.1941 13.7068 k = 0.0000 0.0000 0.4304 band energies (ev): -5.9301 -1.5577 5.7899 5.7899 7.0053 8.4967 8.4967 9.6162 15.7074 k = 0.4211 0.7294 0.1435 band energies (ev): -4.9185 -2.0743 2.1220 4.6331 5.9462 10.0586 10.3844 13.1856 15.2252 k = 0.2807 0.4862 0.2391 band energies (ev): -4.4731 -1.9137 1.8673 3.5173 4.1379 9.7865 12.9596 14.2994 14.9214 k = 0.8422 0.0000-0.1435 band energies (ev): -4.9185 -2.0743 2.1220 4.6331 5.9462 10.0586 10.3844 13.1856 15.2252 k = 0.7018-0.2431-0.0478 band energies (ev): -4.1535 -2.5705 1.8667 2.8574 6.1916 9.9138 12.5011 13.7090 14.0143 k = 0.5615 0.0000 0.0478 band energies (ev): -4.5755 -3.1999 4.5755 4.7523 6.2365 9.3043 9.6536 10.4023 15.6217 the Fermi energy is 8.2385 ev total energy = -25.49951615 Ry Harris-Foulkes estimate = -25.49887099 Ry estimated scf accuracy < 0.00000010 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.02E-09, avg # of iterations = 2.0 total cpu time spent up to now is 53.59 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1216 1.7552 5.6154 5.6154 6.5201 9.9787 10.5432 10.5432 14.5267 k =-0.1404-0.2431 0.2391 ( 522 PWs) bands (ev): -6.1014 -0.8584 3.9809 5.6734 8.0475 8.2959 9.0486 11.8733 13.9270 k = 0.2807 0.4862-0.0478 ( 520 PWs) bands (ev): -4.5747 -3.1993 4.5755 4.7530 6.2366 9.3047 9.6534 10.4024 15.6213 k = 0.1404 0.2431 0.0478 ( 525 PWs) bands (ev): -6.5424 0.1754 4.7376 5.3062 6.6932 9.4117 10.2245 11.4592 13.4566 k =-0.2807 0.0000 0.3348 ( 519 PWs) bands (ev): -5.7312 -0.6282 2.9635 4.0517 5.3345 10.1937 11.9520 12.0425 13.7604 k = 0.1404 0.7294 0.0478 ( 510 PWs) bands (ev): -4.1526 -2.5699 1.8668 2.8573 6.1918 9.9142 12.5013 13.7096 14.0144 k = 0.0000 0.4862 0.1435 ( 521 PWs) bands (ev): -5.0022 -2.1985 2.8127 4.7847 6.0975 9.4014 11.1648 12.1946 13.7066 k = 0.5615 0.0000-0.2391 ( 510 PWs) bands (ev): -4.4723 -1.9127 1.8670 3.5178 4.1378 9.7866 12.9599 14.2993 14.9220 k = 0.4211-0.2431-0.1435 ( 521 PWs) bands (ev): -5.0022 -2.1985 2.8127 4.7847 6.0975 9.4014 11.1648 12.1946 13.7066 k = 0.2807 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5424 0.1754 4.7376 5.3062 6.6932 9.4117 10.2245 11.4592 13.4566 k = 0.2807 0.0000 0.2391 ( 522 PWs) bands (ev): -6.1014 -0.8584 3.9809 5.6734 8.0475 8.2959 9.0486 11.8733 13.9270 k = 0.1404-0.2431 0.3348 ( 519 PWs) bands (ev): -5.7312 -0.6282 2.9635 4.0517 5.3345 10.1937 11.9520 12.0425 13.7604 k = 0.5615 0.4862 0.0478 ( 510 PWs) bands (ev): -4.1526 -2.5699 1.8668 2.8573 6.1918 9.9142 12.5013 13.7096 14.0144 k = 0.4211 0.2431 0.1435 ( 521 PWs) bands (ev): -5.0022 -2.1985 2.8127 4.7847 6.0975 9.4014 11.1648 12.1946 13.7066 k = 0.0000 0.0000 0.4304 ( 522 PWs) bands (ev): -5.9292 -1.5578 5.7907 5.7907 7.0063 8.4968 8.4968 9.6158 15.7072 k = 0.4211 0.7294 0.1435 ( 520 PWs) bands (ev): -4.9174 -2.0744 2.1223 4.6337 5.9461 10.0588 10.3850 13.1863 15.2248 k = 0.2807 0.4862 0.2391 ( 510 PWs) bands (ev): -4.4723 -1.9127 1.8670 3.5178 4.1378 9.7866 12.9599 14.2993 14.9220 k = 0.8422 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9174 -2.0744 2.1223 4.6337 5.9461 10.0588 10.3850 13.1863 15.2248 k = 0.7018-0.2431-0.0478 ( 510 PWs) bands (ev): -4.1526 -2.5699 1.8668 2.8573 6.1918 9.9142 12.5013 13.7096 14.0144 k = 0.5615 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5747 -3.1993 4.5755 4.7530 6.2366 9.3047 9.6534 10.4024 15.6213 the Fermi energy is 8.2385 ev ! total energy = -25.49951619 Ry Harris-Foulkes estimate = -25.49951621 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000002 0.00000000 0.00010236 atom 2 type 1 force = 0.00000002 0.00000000 -0.00010236 Total force = 0.000145 Total SCF correction = 0.000169 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= -0.32 -0.00000141 0.00000000 0.00000000 -0.21 0.00 0.00 0.00000000 -0.00000141 0.00000000 0.00 -0.21 0.00 0.00000000 0.00000000 -0.00000374 0.00 0.00 -0.55 Entering Dynamics; it = 24 time = 0.16698 pico-seconds new lattice vectors (alat unit) : 0.593684122 0.000000000 0.871204609 -0.296841919 0.514145501 0.871204709 -0.296841919 -0.514145501 0.871204709 new unit-cell volume = 274.8523 (a.u.)^3 new positions in cryst coord As 0.272265630 0.272265624 0.272265624 As -0.272265630 -0.272265624 -0.272265624 new positions in cart coord (alat unit) As 0.000000081 0.000000000 0.711597258 As -0.000000081 0.000000000 -0.711597258 Ekin = 0.00000107 Ry T = 231.7 K Etot = -25.49951512 CELL_PARAMETERS (alat) 0.593684122 0.000000000 0.871204609 -0.296841919 0.514145501 0.871204709 -0.296841919 -0.514145501 0.871204709 ATOMIC_POSITIONS (crystal) As 0.272265630 0.272265624 0.272265624 As -0.272265630 -0.272265624 -0.272265624 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1434795), wk = 0.0625000 k( 2) = ( -0.1403664 -0.2431218 0.2391325), wk = 0.1250000 k( 3) = ( 0.2807329 0.4862437 -0.0478265), wk = 0.1250000 k( 4) = ( 0.1403665 0.2431218 0.0478265), wk = 0.1250000 k( 5) = ( -0.2807329 0.0000000 0.3347855), wk = 0.0625000 k( 6) = ( 0.1403665 0.7293655 0.0478265), wk = 0.1250000 k( 7) = ( 0.0000000 0.4862437 0.1434795), wk = 0.1250000 k( 8) = ( 0.5614659 0.0000000 -0.2391325), wk = 0.0625000 k( 9) = ( 0.4210994 -0.2431218 -0.1434795), wk = 0.1250000 k( 10) = ( 0.2807329 0.0000000 -0.0478265), wk = 0.0625000 k( 11) = ( 0.2807330 0.0000000 0.2391324), wk = 0.0625000 k( 12) = ( 0.1403665 -0.2431218 0.3347855), wk = 0.1250000 k( 13) = ( 0.5614659 0.4862437 0.0478264), wk = 0.1250000 k( 14) = ( 0.4210994 0.2431218 0.1434794), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4304385), wk = 0.0625000 k( 16) = ( 0.4210994 0.7293655 0.1434794), wk = 0.1250000 k( 17) = ( 0.2807330 0.4862437 0.2391324), wk = 0.1250000 k( 18) = ( 0.8421988 0.0000000 -0.1434796), wk = 0.0625000 k( 19) = ( 0.7018324 -0.2431218 -0.0478266), wk = 0.1250000 k( 20) = ( 0.5614659 0.0000000 0.0478264), wk = 0.0625000 extrapolated charge 9.99916, renormalised to 10.00000 total cpu time spent up to now is 53.88 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.52E-10, avg # of iterations = 4.0 total cpu time spent up to now is 54.61 secs End of self-consistent calculation k = 0.0000 0.0000 0.1435 ( 531 PWs) bands (ev): -7.1220 1.7571 5.6150 5.6150 6.5217 9.9781 10.5438 10.5438 14.5286 k =-0.1404-0.2431 0.2391 ( 522 PWs) bands (ev): -6.1019 -0.8575 3.9816 5.6721 8.0482 8.2975 9.0513 11.8749 13.9276 k = 0.2807 0.4862-0.0478 ( 520 PWs) bands (ev): -4.5753 -3.1991 4.5765 4.7521 6.2379 9.3054 9.6561 10.4051 15.6237 k = 0.1404 0.2431 0.0478 ( 525 PWs) bands (ev): -6.5428 0.1758 4.7372 5.3075 6.6941 9.4144 10.2240 11.4612 13.4590 k =-0.2807 0.0000 0.3348 ( 519 PWs) bands (ev): -5.7318 -0.6269 2.9631 4.0514 5.3368 10.1930 11.9530 12.0435 13.7635 k = 0.1404 0.7294 0.0478 ( 510 PWs) bands (ev): -4.1532 -2.5696 1.8671 2.8583 6.1930 9.9156 12.5016 13.7106 14.0167 k = 0.0000 0.4862 0.1435 ( 521 PWs) bands (ev): -5.0025 -2.1985 2.8123 4.7865 6.0982 9.4042 11.1663 12.1950 13.7080 k = 0.5615 0.0000-0.2391 ( 510 PWs) bands (ev): -4.4726 -1.9132 1.8687 3.5175 4.1394 9.7862 12.9620 14.3026 14.9242 k = 0.4211-0.2431-0.1435 ( 521 PWs) bands (ev): -5.0025 -2.1985 2.8123 4.7865 6.0982 9.4042 11.1663 12.1950 13.7080 k = 0.2807 0.0000-0.0478 ( 525 PWs) bands (ev): -6.5428 0.1758 4.7372 5.3075 6.6941 9.4144 10.2240 11.4612 13.4590 k = 0.2807 0.0000 0.2391 ( 522 PWs) bands (ev): -6.1019 -0.8575 3.9816 5.6721 8.0482 8.2975 9.0513 11.8749 13.9276 k = 0.1404-0.2431 0.3348 ( 519 PWs) bands (ev): -5.7318 -0.6269 2.9631 4.0514 5.3368 10.1930 11.9530 12.0435 13.7635 k = 0.5615 0.4862 0.0478 ( 510 PWs) bands (ev): -4.1532 -2.5696 1.8671 2.8583 6.1930 9.9156 12.5016 13.7106 14.0167 k = 0.4211 0.2431 0.1435 ( 521 PWs) bands (ev): -5.0025 -2.1985 2.8123 4.7865 6.0982 9.4042 11.1663 12.1950 13.7080 k = 0.0000 0.0000 0.4304 ( 522 PWs) bands (ev): -5.9301 -1.5555 5.7899 5.7899 7.0057 8.4982 8.4982 9.6181 15.7086 k = 0.4211 0.7294 0.1435 ( 520 PWs) bands (ev): -4.9186 -2.0723 2.1221 4.6332 5.9476 10.0604 10.3853 13.1868 15.2270 k = 0.2807 0.4862 0.2391 ( 510 PWs) bands (ev): -4.4726 -1.9132 1.8687 3.5175 4.1394 9.7862 12.9620 14.3026 14.9242 k = 0.8422 0.0000-0.1435 ( 520 PWs) bands (ev): -4.9186 -2.0723 2.1221 4.6332 5.9476 10.0604 10.3853 13.1868 15.2270 k = 0.7018-0.2431-0.0478 ( 510 PWs) bands (ev): -4.1532 -2.5696 1.8671 2.8583 6.1930 9.9156 12.5016 13.7106 14.0167 k = 0.5615 0.0000 0.0478 ( 520 PWs) bands (ev): -4.5753 -3.1991 4.5765 4.7521 6.2379 9.3054 9.6561 10.4051 15.6237 the Fermi energy is 8.2401 ev ! total energy = -25.49951625 Ry Harris-Foulkes estimate = -25.49902573 Ry estimated scf accuracy < 0.00000002 Ry convergence has been achieved in 1 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000001 0.00000000 -0.00003029 atom 2 type 1 force = 0.00000001 0.00000000 0.00003029 Total force = 0.000043 Total SCF correction = 0.000183 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 0.04 0.00000053 0.00000000 0.00000000 0.08 0.00 0.00 0.00000000 0.00000053 0.00000000 0.00 0.08 0.00 0.00000000 0.00000000 -0.00000026 0.00 0.00 -0.04 Wentzcovitch Damped Dynamics: convergence achieved, Efinal= -25.49951625 ------------------------------------------------------------------------ Final estimate of lattice vectors (input alat units) 0.593684122 0.000000000 0.871204609 -0.296841919 0.514145501 0.871204709 -0.296841919 -0.514145501 0.871204709 final unit-cell volume = 274.8523 (a.u.)^3 input alat = 7.0103 (a.u.) CELL_PARAMETERS (alat) 0.593684122 0.000000000 0.871204609 -0.296841919 0.514145501 0.871204709 -0.296841919 -0.514145501 0.871204709 ATOMIC_POSITIONS (crystal) As 0.272265630 0.272265624 0.272265624 As -0.272265630 -0.272265624 -0.272265624 Writing output data file pwscf.save PWSCF : 0m54.81s CPU time, 1m 5.76s wall time init_run : 0.21s CPU electrons : 47.59s CPU ( 25 calls, 1.904 s avg) update_pot : 2.09s CPU ( 24 calls, 0.087 s avg) forces : 0.99s CPU ( 25 calls, 0.040 s avg) stress : 2.57s CPU ( 25 calls, 0.103 s avg) Called by init_run: wfcinit : 0.11s CPU potinit : 0.03s CPU Called by electrons: c_bands : 40.34s CPU ( 121 calls, 0.333 s avg) sum_band : 6.70s CPU ( 121 calls, 0.055 s avg) v_of_rho : 0.28s CPU ( 135 calls, 0.002 s avg) mix_rho : 0.12s CPU ( 121 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.87s CPU ( 5860 calls, 0.000 s avg) cegterg : 39.62s CPU ( 2420 calls, 0.016 s avg) Called by *egterg: h_psi : 33.11s CPU ( 7813 calls, 0.004 s avg) g_psi : 0.78s CPU ( 5373 calls, 0.000 s avg) cdiaghg : 1.95s CPU ( 7093 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.50s CPU ( 7813 calls, 0.000 s avg) General routines calbec : 0.93s CPU ( 8813 calls, 0.000 s avg) cft3 : 0.23s CPU ( 565 calls, 0.000 s avg) cft3s : 33.24s CPU ( 136840 calls, 0.000 s avg) davcio : 0.07s CPU ( 8280 calls, 0.000 s avg) espresso-5.1/PW/examples/VCSexample/reference/As.bfgs500.out0000644000175000017500000034400712341373025021664 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 29Apr2008 at 14: 4:20 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 bravais-lattice index = 0 lattice parameter (a_0) = 7.0103 a.u. unit-cell volume = 245.3705 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 1 number of electrons = 10.00 number of Kohn-Sham states= 9 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 100.0000 Ry convergence threshold = 1.0E-07 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) nstep = 50 celldm(1)= 7.010336 celldm(2)= 1.000000 celldm(3)= 1.000000 celldm(4)= 0.495175 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 0.580130 0.000000 0.814524 ) a(2) = ( -0.290065 0.502407 0.814524 ) a(3) = ( -0.290065 -0.502407 0.814524 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.149169 0.000000 0.409237 ) b(2) = ( -0.574584 0.995209 0.409237 ) b(3) = ( -0.574584 -0.995209 0.409237 ) PseudoPot. # 1 for As read from file As.gon.UPF Pseudo is Norm-conserving, Zval = 5.0 Generated by new atomic code, or converted to UPF format Using radial grid of 525 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential As 5.00 74.90000 As( 1.00) 4 Sym.Ops. (with inversion) Cartesian axes site n. atom positions (a_0 units) 1 As tau( 1) = ( 0.0000001 0.0000000 0.7086605 ) 2 As tau( 2) = ( -0.0000001 0.0000000 -0.7086605 ) number of k points= 20 gaussian broad. (Ry)= 0.0050 ngauss = 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.1534638), wk = 0.0625000 k( 2) = ( -0.1436461 -0.2488023 0.2557731), wk = 0.1250000 k( 3) = ( 0.2872922 0.4976046 -0.0511547), wk = 0.1250000 k( 4) = ( 0.1436461 0.2488023 0.0511546), wk = 0.1250000 k( 5) = ( -0.2872922 0.0000000 0.3580823), wk = 0.0625000 k( 6) = ( 0.1436461 0.7464070 0.0511546), wk = 0.1250000 k( 7) = ( 0.0000000 0.4976046 0.1534638), wk = 0.1250000 k( 8) = ( 0.5745844 0.0000000 -0.2557731), wk = 0.0625000 k( 9) = ( 0.4309383 -0.2488023 -0.1534639), wk = 0.1250000 k( 10) = ( 0.2872922 0.0000000 -0.0511547), wk = 0.0625000 k( 11) = ( 0.2872922 0.0000000 0.2557730), wk = 0.0625000 k( 12) = ( 0.1436461 -0.2488023 0.3580822), wk = 0.1250000 k( 13) = ( 0.5745844 0.4976046 0.0511545), wk = 0.1250000 k( 14) = ( 0.4309383 0.2488023 0.1534638), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.4603915), wk = 0.0625000 k( 16) = ( 0.4309383 0.7464070 0.1534638), wk = 0.1250000 k( 17) = ( 0.2872922 0.4976046 0.2557730), wk = 0.1250000 k( 18) = ( 0.8618766 0.0000000 -0.1534640), wk = 0.0625000 k( 19) = ( 0.7182305 -0.2488023 -0.0511547), wk = 0.1250000 k( 20) = ( 0.5745844 0.0000000 0.0511545), wk = 0.0625000 G cutoff = 124.4853 ( 4159 G-vectors) FFT grid: ( 24, 24, 24) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.07 Mb ( 531, 9) NL pseudopotentials 0.06 Mb ( 531, 8) Each V/rho on FFT grid 0.21 Mb ( 13824) Each G-vector array 0.03 Mb ( 4159) G-vector shells 0.03 Mb ( 4159) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.29 Mb ( 531, 36) Each subspace H/S matrix 0.02 Mb ( 36, 36) Each matrix 0.00 Mb ( 8, 9) Arrays for rho mixing 1.69 Mb ( 13824, 8) Initial potential from superposition of free atoms starting charge 9.99960, renormalised to 10.00000 Starting wfc are 8 atomic + 1 random wfc total cpu time spent up to now is 0.24 secs per-process dynamical memory: 4.7 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.2 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 1.5 total cpu time spent up to now is 1.10 secs total energy = -25.43995280 Ry Harris-Foulkes estimate = -25.44370948 Ry estimated scf accuracy < 0.01555924 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.56E-04, avg # of iterations = 1.0 total cpu time spent up to now is 1.41 secs total energy = -25.44008125 Ry Harris-Foulkes estimate = -25.44026343 Ry estimated scf accuracy < 0.00088666 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.87E-06, avg # of iterations = 2.0 total cpu time spent up to now is 1.74 secs total energy = -25.44011498 Ry Harris-Foulkes estimate = -25.44011638 Ry estimated scf accuracy < 0.00000527 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.27E-08, avg # of iterations = 3.2 total cpu time spent up to now is 2.18 secs total energy = -25.44012209 Ry Harris-Foulkes estimate = -25.44012239 Ry estimated scf accuracy < 0.00000065 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.46E-09, avg # of iterations = 1.4 total cpu time spent up to now is 2.50 secs End of self-consistent calculation k = 0.0000 0.0000 0.1535 ( 531 PWs) bands (ev): -6.9960 4.5197 5.9668 5.9668 8.4360 11.0403 11.7601 11.7602 16.5645 k =-0.1436-0.2488 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.2873 0.4976-0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 k = 0.1436 0.2488 0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k =-0.2873 0.0000 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.1436 0.7464 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.0000 0.4976 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.5746 0.0000-0.2558 ( 510 PWs) bands (ev): -4.0541 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.4309-0.2488-0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.2873 0.0000-0.0512 ( 525 PWs) bands (ev): -6.3694 1.3043 4.9860 7.1721 8.5435 10.8049 12.4702 13.9612 15.3511 k = 0.2873 0.0000 0.2558 ( 522 PWs) bands (ev): -5.9249 0.3917 5.3512 5.6502 9.2996 10.5303 11.7005 13.5632 15.7167 k = 0.1436-0.2488 0.3581 ( 519 PWs) bands (ev): -5.5427 1.1265 3.5658 4.2978 7.5159 10.4217 13.7076 13.7746 16.9045 k = 0.5746 0.4976 0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.4309 0.2488 0.1535 ( 521 PWs) bands (ev): -4.7124 -1.4722 3.0016 6.6926 7.7777 12.3034 13.0675 13.4304 16.0962 k = 0.0000 0.0000 0.4604 ( 522 PWs) bands (ev): -5.8585 0.8361 5.8840 5.8840 7.4114 10.0627 10.0627 12.1192 17.3944 k = 0.4309 0.7464 0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6829 12.0642 14.4761 17.7700 k = 0.2873 0.4976 0.2558 ( 510 PWs) bands (ev): -4.0542 -1.5061 3.7084 3.7296 6.0243 10.0593 15.9112 17.7151 18.4776 k = 0.8619 0.0000-0.1535 ( 520 PWs) bands (ev): -4.8492 -0.0498 2.4338 4.7831 7.5088 11.6828 12.0642 14.4760 17.7701 k = 0.7182-0.2488-0.0512 ( 510 PWs) bands (ev): -3.8393 -1.8099 2.3271 4.2466 8.0539 11.6204 13.3234 15.7203 17.3490 k = 0.5746 0.0000 0.0512 ( 520 PWs) bands (ev): -4.3489 -2.4704 4.7884 6.1554 7.8796 10.8149 12.5849 13.8261 17.7263 the Fermi energy is 10.0033 ev ! total energy = -25.44012217 Ry Harris-Foulkes estimate = -25.44012217 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 7.72810616 Ry hartree contribution = 1.22165533 Ry xc contribution = -6.50439941 Ry ewald contribution = -27.88552965 Ry smearing contrib. (-TS) = 0.00004540 Ry convergence has been achieved in 5 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000070 0.00000000 -0.12659882 atom 2 type 1 force = 0.00000070 0.00000000 0.12659882 Total force = 0.179038 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 217.51 0.00172368 0.00000000 0.00000000 253.56 0.00 0.00 0.00000000 0.00172371 0.00000000 0.00 253.57 0.00 0.00000000 0.00000000 0.00098849 0.00 0.00 145.41 BFGS Geometry Optimization number of scf cycles = 1 number of bfgs steps = 0 enthalpy new = -24.6061247590 Ry new trust radius = 0.5000000000 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.542580008 0.000000000 0.738666394 -0.271289902 0.469888589 0.738666448 -0.271289902 -0.469888589 0.738666448 ATOMIC_POSITIONS (crystal) As 0.278372774 0.278373036 0.278373036 As -0.278372774 -0.278373036 -0.278373036 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1692239), wk = 0.0625000 k( 2) = ( -0.1535872 -0.2660205 0.2820398), wk = 0.1250000 k( 3) = ( 0.3071744 0.5320410 -0.0564080), wk = 0.1250000 k( 4) = ( 0.1535872 0.2660205 0.0564079), wk = 0.1250000 k( 5) = ( -0.3071744 0.0000000 0.3948558), wk = 0.0625000 k( 6) = ( 0.1535872 0.7980615 0.0564079), wk = 0.1250000 k( 7) = ( 0.0000000 0.5320410 0.1692239), wk = 0.1250000 k( 8) = ( 0.6143488 0.0000000 -0.2820399), wk = 0.0625000 k( 9) = ( 0.4607616 -0.2660205 -0.1692239), wk = 0.1250000 k( 10) = ( 0.3071744 0.0000000 -0.0564080), wk = 0.0625000 k( 11) = ( 0.3071744 0.0000000 0.2820398), wk = 0.0625000 k( 12) = ( 0.1535872 -0.2660205 0.3948557), wk = 0.1250000 k( 13) = ( 0.6143488 0.5320410 0.0564079), wk = 0.1250000 k( 14) = ( 0.4607616 0.2660205 0.1692238), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.5076716), wk = 0.0625000 k( 16) = ( 0.4607616 0.7980615 0.1692238), wk = 0.1250000 k( 17) = ( 0.3071744 0.5320410 0.2820398), wk = 0.1250000 k( 18) = ( 0.9215232 0.0000000 -0.1692240), wk = 0.0625000 k( 19) = ( 0.7679360 -0.2660205 -0.0564080), wk = 0.1250000 k( 20) = ( 0.6143488 0.0000000 0.0564079), wk = 0.0625000 extrapolated charge 7.39410, renormalised to 10.00000 total cpu time spent up to now is 2.78 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 5.8 total cpu time spent up to now is 3.58 secs total energy = -25.32239145 Ry Harris-Foulkes estimate = -23.50736702 Ry estimated scf accuracy < 0.07308315 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.31E-04, avg # of iterations = 2.0 total cpu time spent up to now is 4.03 secs total energy = -25.36132626 Ry Harris-Foulkes estimate = -25.36545193 Ry estimated scf accuracy < 0.00822318 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.22E-05, avg # of iterations = 1.6 total cpu time spent up to now is 4.34 secs total energy = -25.36186114 Ry Harris-Foulkes estimate = -25.36211872 Ry estimated scf accuracy < 0.00054232 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.42E-06, avg # of iterations = 2.5 total cpu time spent up to now is 4.73 secs total energy = -25.36196152 Ry Harris-Foulkes estimate = -25.36196697 Ry estimated scf accuracy < 0.00001148 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-07, avg # of iterations = 1.9 total cpu time spent up to now is 5.06 secs total energy = -25.36196244 Ry Harris-Foulkes estimate = -25.36196308 Ry estimated scf accuracy < 0.00000115 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.15E-08, avg # of iterations = 2.1 total cpu time spent up to now is 5.40 secs End of self-consistent calculation k = 0.0000 0.0000 0.1692 ( 531 PWs) bands (ev): -5.3096 8.6338 9.5863 9.5863 13.1031 15.6793 15.9890 15.9890 19.5890 k =-0.1536-0.2660 0.2820 ( 522 PWs) bands (ev): -3.9293 3.3318 8.4131 9.6761 13.4121 14.4735 14.9162 18.3070 19.8271 k = 0.3072 0.5320-0.0564 ( 520 PWs) bands (ev): -1.9704 -0.0804 8.3700 9.1423 11.3157 15.4333 15.6195 18.0217 22.7124 k = 0.1536 0.2660 0.0564 ( 525 PWs) bands (ev): -4.6125 4.9942 8.3193 10.6100 12.0715 15.5274 16.9344 18.2066 19.6915 k =-0.3072 0.0000 0.3949 ( 519 PWs) bands (ev): -3.2904 4.6802 6.2159 7.1755 9.9447 14.4415 18.2397 19.0978 20.6172 k = 0.1536 0.7981 0.0564 ( 510 PWs) bands (ev): -0.9509 0.9684 4.4624 6.5368 11.4409 15.8139 17.1801 20.9560 22.2141 k = 0.0000 0.5320 0.1692 ( 521 PWs) bands (ev): -2.5439 1.5428 5.8752 9.1542 11.6523 16.0026 17.5048 18.2796 20.2842 k = 0.6143 0.0000-0.2820 ( 510 PWs) bands (ev): -1.4491 1.7892 5.5881 6.4847 8.5424 14.0124 20.5199 22.3817 23.9669 k = 0.4608-0.2660-0.1692 ( 521 PWs) bands (ev): -2.5439 1.5427 5.8752 9.1542 11.6523 16.0026 17.5048 18.2796 20.2842 k = 0.3072 0.0000-0.0564 ( 525 PWs) bands (ev): -4.6125 4.9942 8.3193 10.6100 12.0715 15.5274 16.9344 18.2066 19.6915 k = 0.3072 0.0000 0.2820 ( 522 PWs) bands (ev): -3.9293 3.3318 8.4131 9.6761 13.4121 14.4735 14.9161 18.3070 19.8271 k = 0.1536-0.2660 0.3949 ( 519 PWs) bands (ev): -3.2904 4.6802 6.2159 7.1755 9.9447 14.4415 18.2397 19.0978 20.6172 k = 0.6143 0.5320 0.0564 ( 510 PWs) bands (ev): -0.9509 0.9685 4.4624 6.5368 11.4409 15.8139 17.1801 20.9560 22.2141 k = 0.4608 0.2660 0.1692 ( 521 PWs) bands (ev): -2.5439 1.5427 5.8752 9.1542 11.6523 16.0026 17.5048 18.2795 20.2842 k = 0.0000 0.0000 0.5077 ( 522 PWs) bands (ev): -3.4093 2.7346 9.5225 9.5225 12.4409 13.1169 13.1169 15.7667 22.4011 k = 0.4608 0.7981 0.1692 ( 520 PWs) bands (ev): -1.8910 2.1041 4.6836 7.9789 10.4987 15.5814 16.7366 19.8027 21.5815 k = 0.3072 0.5320 0.2820 ( 510 PWs) bands (ev): -1.4491 1.7892 5.5881 6.4847 8.5424 14.0124 20.5199 22.3817 23.9669 k = 0.9215 0.0000-0.1692 ( 520 PWs) bands (ev): -1.8910 2.1041 4.6836 7.9788 10.4986 15.5814 16.7366 19.8027 21.5815 k = 0.7679-0.2660-0.0564 ( 510 PWs) bands (ev): -0.9509 0.9684 4.4624 6.5368 11.4409 15.8139 17.1801 20.9560 22.2141 k = 0.6143 0.0000 0.0564 ( 520 PWs) bands (ev): -1.9704 -0.0804 8.3699 9.1423 11.3157 15.4333 15.6195 18.0217 22.7124 the Fermi energy is 13.3984 ev ! total energy = -25.36196264 Ry Harris-Foulkes estimate = -25.36196264 Ry estimated scf accuracy < 1.5E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.18972841 Ry hartree contribution = 0.74734969 Ry xc contribution = -6.80210095 Ry ewald contribution = -30.49682311 Ry smearing contrib. (-TS) = -0.00011667 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000251 0.00000000 -0.14407081 atom 2 type 1 force = -0.00000251 0.00000000 0.14407081 Total force = 0.203747 Total SCF correction = 0.000020 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 625.27 0.00462341 0.00000000 0.00000000 680.13 0.00 0.00 0.00000000 0.00462344 0.00000000 0.00 680.13 0.00 0.00000000 0.00000000 0.00350466 0.00 0.00 515.55 number of scf cycles = 2 number of bfgs steps = 1 enthalpy old = -24.6061247590 Ry enthalpy new = -24.7003752735 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.3169523405 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.543842814 0.000000000 0.709842886 -0.271921438 0.470982808 0.709843034 -0.271921438 -0.470982808 0.709843034 ATOMIC_POSITIONS (crystal) As 0.265092998 0.265092713 0.265092713 As -0.265092998 -0.265092713 -0.265092713 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1760953), wk = 0.0625000 k( 2) = ( -0.1532305 -0.2654025 0.2934921), wk = 0.1250000 k( 3) = ( 0.3064611 0.5308049 -0.0586984), wk = 0.1250000 k( 4) = ( 0.1532306 0.2654025 0.0586984), wk = 0.1250000 k( 5) = ( -0.3064610 0.0000000 0.4108890), wk = 0.0625000 k( 6) = ( 0.1532306 0.7962074 0.0586984), wk = 0.1250000 k( 7) = ( 0.0000000 0.5308049 0.1760953), wk = 0.1250000 k( 8) = ( 0.6129221 0.0000000 -0.2934921), wk = 0.0625000 k( 9) = ( 0.4596916 -0.2654025 -0.1760953), wk = 0.1250000 k( 10) = ( 0.3064611 0.0000000 -0.0586984), wk = 0.0625000 k( 11) = ( 0.3064611 0.0000000 0.2934921), wk = 0.0625000 k( 12) = ( 0.1532306 -0.2654025 0.4108890), wk = 0.1250000 k( 13) = ( 0.6129222 0.5308049 0.0586984), wk = 0.1250000 k( 14) = ( 0.4596917 0.2654025 0.1760953), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.5282858), wk = 0.0625000 k( 16) = ( 0.4596917 0.7962074 0.1760953), wk = 0.1250000 k( 17) = ( 0.3064611 0.5308049 0.2934921), wk = 0.1250000 k( 18) = ( 0.9193832 0.0000000 -0.1760953), wk = 0.0625000 k( 19) = ( 0.7661527 -0.2654025 -0.0586984), wk = 0.1250000 k( 20) = ( 0.6129222 0.0000000 0.0586984), wk = 0.0625000 extrapolated charge 9.64225, renormalised to 10.00000 total cpu time spent up to now is 5.68 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.7 total cpu time spent up to now is 6.51 secs total energy = -25.37320769 Ry Harris-Foulkes estimate = -25.09906244 Ry estimated scf accuracy < 0.00141917 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.42E-05, avg # of iterations = 2.0 total cpu time spent up to now is 6.91 secs total energy = -25.37353897 Ry Harris-Foulkes estimate = -25.37365167 Ry estimated scf accuracy < 0.00026902 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.69E-06, avg # of iterations = 1.2 total cpu time spent up to now is 7.23 secs total energy = -25.37356065 Ry Harris-Foulkes estimate = -25.37356463 Ry estimated scf accuracy < 0.00001544 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.54E-07, avg # of iterations = 2.0 total cpu time spent up to now is 7.56 secs total energy = -25.37356242 Ry Harris-Foulkes estimate = -25.37356282 Ry estimated scf accuracy < 0.00000093 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.25E-09, avg # of iterations = 1.2 total cpu time spent up to now is 7.87 secs total energy = -25.37356241 Ry Harris-Foulkes estimate = -25.37356248 Ry estimated scf accuracy < 0.00000013 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.26E-09, avg # of iterations = 2.1 total cpu time spent up to now is 8.28 secs End of self-consistent calculation k = 0.0000 0.0000 0.1761 ( 531 PWs) bands (ev): -4.8003 9.3466 10.3721 10.3721 13.7137 17.1285 17.1286 17.3485 19.3747 k =-0.1532-0.2654 0.2935 ( 522 PWs) bands (ev): -3.3285 3.7568 9.3692 11.3391 13.8267 13.8573 15.7045 19.2302 20.5071 k = 0.3065 0.5308-0.0587 ( 520 PWs) bands (ev): -1.3418 0.4089 9.5421 10.0228 11.5263 15.2874 16.8830 18.9837 24.1398 k = 0.1532 0.2654 0.0587 ( 525 PWs) bands (ev): -4.1337 5.8066 9.1123 10.9621 12.9053 17.0834 17.8066 18.7455 20.0206 k =-0.3065 0.0000 0.4109 ( 519 PWs) bands (ev): -2.5515 5.2340 7.3216 7.6951 9.6374 15.7067 18.9153 19.7667 20.2958 k = 0.1532 0.7962 0.0587 ( 510 PWs) bands (ev): 0.0463 1.4655 4.8588 6.9740 12.0990 16.1410 17.8476 22.4447 22.8795 k = 0.0000 0.5308 0.1761 ( 521 PWs) bands (ev): -1.9931 2.1876 6.9063 9.1588 12.9030 16.1193 18.6757 19.2201 20.7051 k = 0.6129 0.0000-0.2935 ( 510 PWs) bands (ev): -0.7559 3.2214 5.2005 7.0349 8.7309 15.4881 21.0888 22.2197 24.7791 k = 0.4597-0.2654-0.1761 ( 521 PWs) bands (ev): -1.9930 2.1876 6.9063 9.1589 12.9030 16.1193 18.6757 19.2201 20.7051 k = 0.3065 0.0000-0.0587 ( 525 PWs) bands (ev): -4.1337 5.8066 9.1123 10.9621 12.9053 17.0834 17.8067 18.7454 20.0206 k = 0.3065 0.0000 0.2935 ( 522 PWs) bands (ev): -3.3285 3.7568 9.3692 11.3391 13.8267 13.8573 15.7045 19.2302 20.5071 k = 0.1532-0.2654 0.4109 ( 519 PWs) bands (ev): -2.5515 5.2340 7.3215 7.6952 9.6374 15.7067 18.9153 19.7666 20.2957 k = 0.6129 0.5308 0.0587 ( 510 PWs) bands (ev): 0.0463 1.4656 4.8588 6.9740 12.0990 16.1411 17.8477 22.4447 22.8795 k = 0.4597 0.2654 0.1761 ( 521 PWs) bands (ev): -1.9930 2.1876 6.9063 9.1588 12.9030 16.1193 18.6757 19.2201 20.7051 k = 0.0000 0.0000 0.5283 ( 522 PWs) bands (ev): -2.4335 2.9198 10.4561 10.4562 13.1368 13.1369 13.3392 15.4636 23.7474 k = 0.4597 0.7962 0.1761 ( 520 PWs) bands (ev): -0.4700 1.8454 5.3459 8.7220 10.5442 15.6975 17.5831 20.9383 22.2546 k = 0.3065 0.5308 0.2935 ( 510 PWs) bands (ev): -0.7559 3.2214 5.2005 7.0349 8.7309 15.4881 21.0888 22.2197 24.7791 k = 0.9194 0.0000-0.1761 ( 520 PWs) bands (ev): -0.4700 1.8454 5.3459 8.7220 10.5441 15.6975 17.5831 20.9383 22.2546 k = 0.7662-0.2654-0.0587 ( 510 PWs) bands (ev): 0.0463 1.4656 4.8588 6.9740 12.0990 16.1410 17.8476 22.4447 22.8795 k = 0.6129 0.0000 0.0587 ( 520 PWs) bands (ev): -1.3418 0.4089 9.5420 10.0228 11.5263 15.2873 16.8830 18.9837 24.1398 the Fermi energy is 13.8089 ev ! total energy = -25.37356243 Ry Harris-Foulkes estimate = -25.37356244 Ry estimated scf accuracy < 4.7E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.98983773 Ry hartree contribution = 0.59410414 Ry xc contribution = -6.82630188 Ry ewald contribution = -31.13111498 Ry smearing contrib. (-TS) = -0.00008743 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000154 0.00000000 -0.05324824 atom 2 type 1 force = 0.00000154 0.00000000 0.05324824 Total force = 0.075304 Total SCF correction = 0.000052 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 626.99 0.00423057 0.00000000 0.00000003 622.34 0.00 0.01 0.00000000 0.00423073 0.00000000 0.00 622.36 0.00 0.00000003 0.00000000 0.00432525 0.01 0.00 636.27 number of scf cycles = 3 number of bfgs steps = 2 enthalpy old = -24.7003752735 Ry enthalpy new = -24.7348270574 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.1338241529 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.551231525 0.000000000 0.720727362 -0.275614604 0.477383106 0.720726724 -0.275614604 -0.477383106 0.720726724 ATOMIC_POSITIONS (crystal) As 0.259933113 0.259933336 0.259933336 As -0.259933113 -0.259933336 -0.259933336 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( -0.0000001 0.0000000 0.1734360), wk = 0.0625000 k( 2) = ( -0.1511771 -0.2618442 0.2890602), wk = 0.1250000 k( 3) = ( 0.3023538 0.5236884 -0.0578123), wk = 0.1250000 k( 4) = ( 0.1511768 0.2618442 0.0578118), wk = 0.1250000 k( 5) = ( -0.3023540 0.0000000 0.4046843), wk = 0.0625000 k( 6) = ( 0.1511768 0.7855326 0.0578118), wk = 0.1250000 k( 7) = ( -0.0000001 0.5236884 0.1734360), wk = 0.1250000 k( 8) = ( 0.6047077 0.0000000 -0.2890607), wk = 0.0625000 k( 9) = ( 0.4535307 -0.2618442 -0.1734365), wk = 0.1250000 k( 10) = ( 0.3023538 0.0000000 -0.0578123), wk = 0.0625000 k( 11) = ( 0.3023535 0.0000000 0.2890597), wk = 0.0625000 k( 12) = ( 0.1511765 -0.2618442 0.4046838), wk = 0.1250000 k( 13) = ( 0.6047074 0.5236884 0.0578114), wk = 0.1250000 k( 14) = ( 0.4535304 0.2618442 0.1734355), wk = 0.1250000 k( 15) = ( -0.0000004 0.0000000 0.5203080), wk = 0.0625000 k( 16) = ( 0.4535304 0.7855326 0.1734355), wk = 0.1250000 k( 17) = ( 0.3023535 0.5236884 0.2890597), wk = 0.1250000 k( 18) = ( 0.9070613 0.0000000 -0.1734370), wk = 0.0625000 k( 19) = ( 0.7558843 -0.2618442 -0.0578128), wk = 0.1250000 k( 20) = ( 0.6047074 0.0000000 0.0578114), wk = 0.0625000 extrapolated charge 10.41327, renormalised to 10.00000 total cpu time spent up to now is 8.56 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 6.3 total cpu time spent up to now is 9.29 secs total energy = -25.40851601 Ry Harris-Foulkes estimate = -25.72432234 Ry estimated scf accuracy < 0.00091462 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 9.15E-06, avg # of iterations = 2.0 total cpu time spent up to now is 9.72 secs total energy = -25.40915098 Ry Harris-Foulkes estimate = -25.40932670 Ry estimated scf accuracy < 0.00040596 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.06E-06, avg # of iterations = 1.0 total cpu time spent up to now is 10.04 secs total energy = -25.40918660 Ry Harris-Foulkes estimate = -25.40919715 Ry estimated scf accuracy < 0.00002890 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.89E-07, avg # of iterations = 1.1 total cpu time spent up to now is 10.34 secs total energy = -25.40918611 Ry Harris-Foulkes estimate = -25.40918838 Ry estimated scf accuracy < 0.00000478 Ry iteration # 5 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.78E-08, avg # of iterations = 2.4 total cpu time spent up to now is 10.72 secs total energy = -25.40918734 Ry Harris-Foulkes estimate = -25.40918739 Ry estimated scf accuracy < 0.00000015 Ry iteration # 6 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.48E-09, avg # of iterations = 1.6 total cpu time spent up to now is 11.03 secs End of self-consistent calculation k = 0.0000 0.0000 0.1734 ( 531 PWs) bands (ev): -5.0150 8.3679 9.8319 9.8319 12.6842 16.4655 16.4656 16.7868 18.5032 k =-0.1512-0.2618 0.2891 ( 522 PWs) bands (ev): -3.5816 3.2024 8.7387 11.0829 12.7019 13.0597 14.7070 18.6281 19.3662 k = 0.3024 0.5237-0.0578 ( 520 PWs) bands (ev): -1.6401 -0.0143 9.1401 9.4204 10.7317 14.3146 16.0288 17.8228 23.2168 k = 0.1512 0.2618 0.0578 ( 525 PWs) bands (ev): -4.3682 5.1890 8.6398 10.1889 12.1993 16.0006 17.2009 17.7474 18.7593 k =-0.3024 0.0000 0.4047 ( 519 PWs) bands (ev): -2.8261 4.4508 7.0112 7.2622 8.7846 15.3081 18.0585 18.7288 19.0673 k = 0.1512 0.7855 0.0578 ( 510 PWs) bands (ev): -0.3089 0.9891 4.4826 6.4128 11.3356 15.2584 17.2433 21.4396 21.7361 k = 0.0000 0.5237 0.1734 ( 521 PWs) bands (ev): -2.2917 1.7093 6.5543 8.4263 12.2170 15.0233 17.9719 18.3305 19.6129 k = 0.6047 0.0000-0.2891 ( 510 PWs) bands (ev): -1.1265 2.9596 4.4087 6.6306 8.0493 15.0509 19.9904 20.8235 23.4921 k = 0.4535-0.2618-0.1734 ( 521 PWs) bands (ev): -2.2916 1.7093 6.5544 8.4264 12.2170 15.0233 17.9719 18.3304 19.6128 k = 0.3024 0.0000-0.0578 ( 525 PWs) bands (ev): -4.3681 5.1890 8.6397 10.1889 12.1994 16.0006 17.2009 17.7473 18.7592 k = 0.3024 0.0000 0.2891 ( 522 PWs) bands (ev): -3.5816 3.2025 8.7387 11.0829 12.7018 13.0596 14.7070 18.6281 19.3664 k = 0.1512-0.2618 0.4047 ( 519 PWs) bands (ev): -2.8262 4.4509 7.0111 7.2623 8.7846 15.3080 18.0585 18.7288 19.0673 k = 0.6047 0.5237 0.0578 ( 510 PWs) bands (ev): -0.3090 0.9891 4.4826 6.4128 11.3357 15.2585 17.2434 21.4395 21.7360 k = 0.4535 0.2618 0.1734 ( 521 PWs) bands (ev): -2.2916 1.7093 6.5543 8.4263 12.2170 15.0234 17.9718 18.3304 19.6128 k = 0.0000 0.0000 0.5203 ( 522 PWs) bands (ev): -2.6794 2.2428 10.0157 10.0157 12.3757 12.3758 12.6670 14.4148 22.8070 k = 0.4535 0.7855 0.1734 ( 520 PWs) bands (ev): -0.6695 1.0677 5.0283 8.2917 9.8150 14.8439 16.7302 19.9631 21.5308 k = 0.3024 0.5237 0.2891 ( 510 PWs) bands (ev): -1.1265 2.9597 4.4088 6.6306 8.0493 15.0509 19.9904 20.8235 23.4919 k = 0.9071 0.0000-0.1734 ( 520 PWs) bands (ev): -0.6695 1.0677 5.0283 8.2916 9.8149 14.8439 16.7302 19.9633 21.5308 k = 0.7559-0.2618-0.0578 ( 510 PWs) bands (ev): -0.3090 0.9892 4.4825 6.4128 11.3357 15.2583 17.2434 21.4396 21.7360 k = 0.6047 0.0000 0.0578 ( 520 PWs) bands (ev): -1.6401 -0.0143 9.1401 9.4205 10.7316 14.3145 16.0287 17.8228 23.2169 the Fermi energy is 12.7003 ev ! total energy = -25.40918734 Ry Harris-Foulkes estimate = -25.40918736 Ry estimated scf accuracy < 0.00000003 Ry The total energy is the sum of the following terms: one-electron contribution = 11.47484681 Ry hartree contribution = 0.61189611 Ry xc contribution = -6.75098457 Ry ewald contribution = -30.74475857 Ry smearing contrib. (-TS) = -0.00018711 Ry convergence has been achieved in 6 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000296 0.00000000 -0.02162663 atom 2 type 1 force = 0.00000296 0.00000000 0.02162663 Total force = 0.030585 Total SCF correction = 0.000087 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 468.69 0.00307625 0.00000000 -0.00000007 452.53 0.00 -0.01 0.00000000 0.00307623 0.00000000 0.00 452.53 0.00 -0.00000007 0.00000000 0.00340582 -0.01 0.00 501.01 number of scf cycles = 4 number of bfgs steps = 3 enthalpy old = -24.7348270574 Ry enthalpy new = -24.7429155134 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.1044697269 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.548158990 0.000000000 0.719738657 -0.274080057 0.474723890 0.719739165 -0.274080057 -0.474723890 0.719739165 ATOMIC_POSITIONS (crystal) As 0.255203879 0.255205062 0.255205062 As -0.255203879 -0.255205062 -0.255205062 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000001 0.0000000 0.1736741), wk = 0.0625000 k( 2) = ( -0.1520237 -0.2633110 0.2894567), wk = 0.1250000 k( 3) = ( 0.3040478 0.5266219 -0.0578912), wk = 0.1250000 k( 4) = ( 0.1520240 0.2633110 0.0578914), wk = 0.1250000 k( 5) = ( -0.3040476 0.0000000 0.4052393), wk = 0.0625000 k( 6) = ( 0.1520240 0.7899329 0.0578914), wk = 0.1250000 k( 7) = ( 0.0000001 0.5266219 0.1736741), wk = 0.1250000 k( 8) = ( 0.6080955 0.0000000 -0.2894565), wk = 0.0625000 k( 9) = ( 0.4560716 -0.2633110 -0.1736738), wk = 0.1250000 k( 10) = ( 0.3040478 0.0000000 -0.0578912), wk = 0.0625000 k( 11) = ( 0.3040480 0.0000000 0.2894569), wk = 0.0625000 k( 12) = ( 0.1520242 -0.2633110 0.4052396), wk = 0.1250000 k( 13) = ( 0.6080957 0.5266219 0.0578917), wk = 0.1250000 k( 14) = ( 0.4560719 0.2633110 0.1736743), wk = 0.1250000 k( 15) = ( 0.0000003 0.0000000 0.5210222), wk = 0.0625000 k( 16) = ( 0.4560719 0.7899329 0.1736743), wk = 0.1250000 k( 17) = ( 0.3040480 0.5266219 0.2894569), wk = 0.1250000 k( 18) = ( 0.9121434 0.0000000 -0.1736736), wk = 0.0625000 k( 19) = ( 0.7601195 -0.2633110 -0.0578910), wk = 0.1250000 k( 20) = ( 0.6080957 0.0000000 0.0578917), wk = 0.0625000 extrapolated charge 9.87376, renormalised to 10.00000 total cpu time spent up to now is 11.31 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.2 total cpu time spent up to now is 12.05 secs total energy = -25.40610167 Ry Harris-Foulkes estimate = -25.30988025 Ry estimated scf accuracy < 0.00069007 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.90E-06, avg # of iterations = 1.2 total cpu time spent up to now is 12.35 secs total energy = -25.40616864 Ry Harris-Foulkes estimate = -25.40618102 Ry estimated scf accuracy < 0.00004245 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 4.24E-07, avg # of iterations = 1.6 total cpu time spent up to now is 12.66 secs total energy = -25.40617242 Ry Harris-Foulkes estimate = -25.40617272 Ry estimated scf accuracy < 0.00000157 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.57E-08, avg # of iterations = 2.2 total cpu time spent up to now is 13.02 secs End of self-consistent calculation k = 0.0000 0.0000 0.1737 ( 531 PWs) bands (ev): -4.9132 8.5481 10.1081 10.1082 12.9486 16.8052 16.8052 17.3097 18.6275 k =-0.1520-0.2633 0.2895 ( 522 PWs) bands (ev): -3.4606 3.3909 8.8701 11.6658 12.5560 13.2881 15.0366 19.0114 19.5063 k = 0.3040 0.5266-0.0579 ( 520 PWs) bands (ev): -1.4768 0.1252 9.4317 9.5833 10.8959 14.4208 16.3633 17.9858 23.4355 k = 0.1520 0.2633 0.0579 ( 525 PWs) bands (ev): -4.2572 5.4388 8.8912 10.3327 12.4092 16.2372 17.7305 17.9420 18.6971 k =-0.3040 0.0000 0.4052 ( 519 PWs) bands (ev): -2.6914 4.6054 7.3225 7.4857 8.7958 15.6222 18.3677 19.0237 19.3357 k = 0.1520 0.7899 0.0579 ( 510 PWs) bands (ev): -0.1044 1.1546 4.6151 6.5063 11.5600 15.5100 17.4921 21.7416 22.1897 k = 0.0000 0.5266 0.1737 ( 521 PWs) bands (ev): -2.1506 1.9045 6.7855 8.4931 12.5007 15.0903 18.2539 18.6852 19.8567 k = 0.6081 0.0000-0.2895 ( 510 PWs) bands (ev): -0.9595 3.3541 4.3052 6.8443 8.1724 15.3110 20.2502 20.9951 23.8595 k = 0.4561-0.2633-0.1737 ( 521 PWs) bands (ev): -2.1505 1.9044 6.7856 8.4931 12.5006 15.0903 18.2539 18.6851 19.8567 k = 0.3040 0.0000-0.0579 ( 525 PWs) bands (ev): -4.2572 5.4388 8.8912 10.3326 12.4093 16.2372 17.7306 17.9419 18.6970 k = 0.3040 0.0000 0.2895 ( 522 PWs) bands (ev): -3.4606 3.3910 8.8701 11.6658 12.5559 13.2880 15.0365 19.0113 19.5064 k = 0.1520-0.2633 0.4052 ( 519 PWs) bands (ev): -2.6914 4.6055 7.3225 7.4857 8.7958 15.6221 18.3677 19.0237 19.3356 k = 0.6081 0.5266 0.0579 ( 510 PWs) bands (ev): -0.1045 1.1547 4.6151 6.5063 11.5600 15.5100 17.4922 21.7415 22.1897 k = 0.4561 0.2633 0.1737 ( 521 PWs) bands (ev): -2.1505 1.9045 6.7856 8.4930 12.5007 15.0903 18.2538 18.6851 19.8565 k = 0.0000 0.0000 0.5210 ( 522 PWs) bands (ev): -2.5306 2.2896 10.3366 10.3366 12.5485 12.5485 13.0849 14.5993 23.1466 k = 0.4561 0.7899 0.1737 ( 520 PWs) bands (ev): -0.3814 1.0223 5.2119 8.5398 10.0045 15.0781 17.1385 20.2972 21.9261 k = 0.3040 0.5266 0.2895 ( 510 PWs) bands (ev): -0.9595 3.3541 4.3052 6.8444 8.1724 15.3110 20.2502 20.9952 23.8594 k = 0.9121 0.0000-0.1737 ( 520 PWs) bands (ev): -0.3814 1.0223 5.2119 8.5397 10.0044 15.0781 17.1385 20.2974 21.9263 k = 0.7601-0.2633-0.0579 ( 510 PWs) bands (ev): -0.1044 1.1547 4.6151 6.5063 11.5600 15.5098 17.4921 21.7416 22.1896 k = 0.6081 0.0000 0.0579 ( 520 PWs) bands (ev): -1.4768 0.1253 9.4316 9.5833 10.8958 14.4207 16.3632 17.9858 23.4356 the Fermi energy is 12.6021 ev ! total energy = -25.40617294 Ry Harris-Foulkes estimate = -25.40617295 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 11.67336189 Ry hartree contribution = 0.58940487 Ry xc contribution = -6.76885446 Ry ewald contribution = -30.90018954 Ry smearing contrib. (-TS) = 0.00010430 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000367 0.00000000 -0.02064349 atom 2 type 1 force = 0.00000367 0.00000000 0.02064349 Total force = 0.029194 Total SCF correction = 0.000046 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 465.88 0.00296057 0.00000000 -0.00000003 435.52 0.00 0.00 0.00000000 0.00296058 0.00000000 0.00 435.52 0.00 -0.00000003 0.00000000 0.00357978 0.00 0.00 526.60 number of scf cycles = 5 number of bfgs steps = 4 enthalpy old = -24.7429155134 Ry enthalpy new = -24.7482073682 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.3131057647 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.539891749 0.000000000 0.713964666 -0.269952506 0.467569597 0.713969224 -0.269952506 -0.467569597 0.713969224 ATOMIC_POSITIONS (crystal) As 0.240967695 0.240971625 0.240971625 As -0.240967695 -0.240971625 -0.240971625 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000010 0.0000000 0.1750779), wk = 0.0625000 k( 2) = ( -0.1543490 -0.2673399 0.2917956), wk = 0.1250000 k( 3) = ( 0.3087010 0.5346798 -0.0583574), wk = 0.1250000 k( 4) = ( 0.1543510 0.2673399 0.0583603), wk = 0.1250000 k( 5) = ( -0.3086990 0.0000000 0.4085133), wk = 0.0625000 k( 6) = ( 0.1543510 0.8020196 0.0583603), wk = 0.1250000 k( 7) = ( 0.0000010 0.5346798 0.1750779), wk = 0.1250000 k( 8) = ( 0.6174010 0.0000000 -0.2917928), wk = 0.0625000 k( 9) = ( 0.4630510 -0.2673399 -0.1750751), wk = 0.1250000 k( 10) = ( 0.3087010 0.0000000 -0.0583574), wk = 0.0625000 k( 11) = ( 0.3087030 0.0000000 0.2917985), wk = 0.0625000 k( 12) = ( 0.1543530 -0.2673399 0.4085162), wk = 0.1250000 k( 13) = ( 0.6174030 0.5346798 0.0583631), wk = 0.1250000 k( 14) = ( 0.4630530 0.2673399 0.1750808), wk = 0.1250000 k( 15) = ( 0.0000030 0.0000000 0.5252338), wk = 0.0625000 k( 16) = ( 0.4630530 0.8020196 0.1750808), wk = 0.1250000 k( 17) = ( 0.3087030 0.5346798 0.2917985), wk = 0.1250000 k( 18) = ( 0.9261030 0.0000000 -0.1750722), wk = 0.0625000 k( 19) = ( 0.7717530 -0.2673399 -0.0583545), wk = 0.1250000 k( 20) = ( 0.6174030 0.0000000 0.0583631), wk = 0.0625000 extrapolated charge 9.60829, renormalised to 10.00000 total cpu time spent up to now is 13.31 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 8.0 total cpu time spent up to now is 14.22 secs total energy = -25.37627333 Ry Harris-Foulkes estimate = -25.07329992 Ry estimated scf accuracy < 0.00265924 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.66E-05, avg # of iterations = 2.0 total cpu time spent up to now is 14.60 secs total energy = -25.37661541 Ry Harris-Foulkes estimate = -25.37666313 Ry estimated scf accuracy < 0.00021641 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.16E-06, avg # of iterations = 2.0 total cpu time spent up to now is 14.98 secs total energy = -25.37662833 Ry Harris-Foulkes estimate = -25.37662908 Ry estimated scf accuracy < 0.00000523 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.23E-08, avg # of iterations = 3.0 total cpu time spent up to now is 15.38 secs End of self-consistent calculation k = 0.0000 0.0000 0.1751 ( 531 PWs) bands (ev): -4.7027 9.3154 10.7038 10.7041 13.9183 17.4907 17.4909 17.9518 19.3888 k =-0.1543-0.2673 0.2918 ( 522 PWs) bands (ev): -3.2124 3.9356 9.3414 11.9774 13.5517 14.0425 16.0021 19.6760 20.4355 k = 0.3087 0.5347-0.0584 ( 520 PWs) bands (ev): -1.1563 0.5223 9.8982 10.0666 11.6125 15.2098 17.1768 18.8600 24.1759 k = 0.1544 0.2673 0.0584 ( 525 PWs) bands (ev): -4.0208 6.0549 9.4122 10.9845 13.0253 17.2087 18.2063 18.7682 19.7838 k =-0.3087 0.0000 0.4085 ( 519 PWs) bands (ev): -2.4277 5.2481 7.6787 7.9757 9.5075 16.0604 19.2213 20.0584 20.4850 k = 0.1544 0.8020 0.0584 ( 510 PWs) bands (ev): 0.2543 1.6278 4.9820 6.9410 12.2483 16.3657 18.1024 22.7470 23.1276 k = 0.0000 0.5347 0.1751 ( 521 PWs) bands (ev): -1.8447 2.3836 7.1559 9.0840 13.1171 15.9234 18.9088 19.5771 20.8476 k = 0.6174 0.0000-0.2918 ( 510 PWs) bands (ev): -0.5895 3.6420 4.9417 7.3014 8.7573 15.7182 21.2091 22.1743 25.0540 k = 0.4631-0.2673-0.1751 ( 521 PWs) bands (ev): -1.8447 2.3836 7.1561 9.0838 13.1171 15.9232 18.9086 19.5768 20.8478 k = 0.3087 0.0000-0.0584 ( 525 PWs) bands (ev): -4.0208 6.0552 9.4120 10.9844 13.0252 17.2085 18.2063 18.7682 19.7839 k = 0.3087 0.0000 0.2918 ( 522 PWs) bands (ev): -3.2123 3.9358 9.3413 11.9772 13.5516 14.0423 16.0018 19.6759 20.4353 k = 0.1544-0.2673 0.4085 ( 519 PWs) bands (ev): -2.4277 5.2481 7.6787 7.9759 9.5075 16.0602 19.2211 20.0582 20.4848 k = 0.6174 0.5347 0.0584 ( 510 PWs) bands (ev): 0.2543 1.6278 4.9821 6.9409 12.2482 16.3656 18.1025 22.7469 23.1277 k = 0.4631 0.2673 0.1751 ( 521 PWs) bands (ev): -1.8446 2.3838 7.1558 9.0838 13.1170 15.9231 18.9086 19.5767 20.8475 k = 0.0000 0.0000 0.5252 ( 522 PWs) bands (ev): -2.2994 2.7787 10.8797 10.8799 13.2697 13.2697 13.8656 15.6065 24.0243 k = 0.4631 0.8020 0.1751 ( 520 PWs) bands (ev): -0.1757 1.6251 5.5655 9.0319 10.7108 15.8995 18.0833 21.2949 22.5144 k = 0.3087 0.5347 0.2918 ( 510 PWs) bands (ev): -0.5895 3.6419 4.9418 7.3016 8.7573 15.7181 21.2091 22.1744 25.0540 k = 0.9261 0.0000-0.1751 ( 520 PWs) bands (ev): -0.1757 1.6251 5.5657 9.0317 10.7106 15.8995 18.0833 21.2951 22.5147 k = 0.7718-0.2673-0.0584 ( 510 PWs) bands (ev): 0.2544 1.6279 4.9820 6.9409 12.2482 16.3655 18.1025 22.7468 23.1276 k = 0.6174 0.0000 0.0584 ( 520 PWs) bands (ev): -1.1562 0.5225 9.8980 10.0665 11.6123 15.2096 17.1765 18.8597 24.1762 the Fermi energy is 13.6089 ev ! total energy = -25.37663034 Ry Harris-Foulkes estimate = -25.37663034 Ry estimated scf accuracy < 0.00000004 Ry The total energy is the sum of the following terms: one-electron contribution = 12.16644566 Ry hartree contribution = 0.56553068 Ry xc contribution = -6.83572484 Ry ewald contribution = -31.27290902 Ry smearing contrib. (-TS) = 0.00002718 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000500 0.00000000 0.04839807 atom 2 type 1 force = -0.00000500 0.00000000 -0.04839807 Total force = 0.068445 Total SCF correction = 0.000080 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 590.09 0.00384843 0.00000000 0.00000002 566.12 0.00 0.00 0.00000000 0.00384835 0.00000000 0.00 566.11 0.00 0.00000002 0.00000000 0.00433726 0.00 0.00 638.03 number of scf cycles = 6 number of bfgs steps = 5 enthalpy old = -24.7482073682 Ry enthalpy new = -24.7434676926 Ry CASE: enthalpy_new > enthalpy_old new trust radius = 0.1373648328 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.544507107 0.000000000 0.717188116 -0.272256796 0.471563629 0.717190413 -0.272256796 -0.471563629 0.717190413 ATOMIC_POSITIONS (crystal) As 0.248915339 0.248917735 0.248917735 As -0.248915339 -0.248917735 -0.248917735 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000005 0.0000000 0.1742914), wk = 0.0625000 k( 2) = ( -0.1530422 -0.2650756 0.2904852), wk = 0.1250000 k( 3) = ( 0.3060858 0.5301511 -0.0580962), wk = 0.1250000 k( 4) = ( 0.1530432 0.2650756 0.0580976), wk = 0.1250000 k( 5) = ( -0.3060849 0.0000000 0.4066791), wk = 0.0625000 k( 6) = ( 0.1530432 0.7952267 0.0580976), wk = 0.1250000 k( 7) = ( 0.0000005 0.5301511 0.1742914), wk = 0.1250000 k( 8) = ( 0.6121712 0.0000000 -0.2904839), wk = 0.0625000 k( 9) = ( 0.4591285 -0.2650756 -0.1742900), wk = 0.1250000 k( 10) = ( 0.3060858 0.0000000 -0.0580962), wk = 0.0625000 k( 11) = ( 0.3060868 0.0000000 0.2904866), wk = 0.0625000 k( 12) = ( 0.1530441 -0.2650756 0.4066804), wk = 0.1250000 k( 13) = ( 0.6121722 0.5301511 0.0580990), wk = 0.1250000 k( 14) = ( 0.4591295 0.2650756 0.1742928), wk = 0.1250000 k( 15) = ( 0.0000015 0.0000000 0.5228743), wk = 0.0625000 k( 16) = ( 0.4591295 0.7952267 0.1742928), wk = 0.1250000 k( 17) = ( 0.3060868 0.5301511 0.2904866), wk = 0.1250000 k( 18) = ( 0.9182575 0.0000000 -0.1742886), wk = 0.0625000 k( 19) = ( 0.7652148 -0.2650756 -0.0580948), wk = 0.1250000 k( 20) = ( 0.6121722 0.0000000 0.0580990), wk = 0.0625000 extrapolated charge 10.21286, renormalised to 10.00000 total cpu time spent up to now is 15.67 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 7.2 total cpu time spent up to now is 16.43 secs total energy = -25.39727484 Ry Harris-Foulkes estimate = -25.56240487 Ry estimated scf accuracy < 0.00076467 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.65E-06, avg # of iterations = 2.0 total cpu time spent up to now is 16.77 secs total energy = -25.39738327 Ry Harris-Foulkes estimate = -25.39739840 Ry estimated scf accuracy < 0.00006676 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.68E-07, avg # of iterations = 1.4 total cpu time spent up to now is 17.08 secs total energy = -25.39738643 Ry Harris-Foulkes estimate = -25.39738666 Ry estimated scf accuracy < 0.00000166 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.66E-08, avg # of iterations = 3.0 total cpu time spent up to now is 17.45 secs End of self-consistent calculation k = 0.0000 0.0000 0.1743 ( 531 PWs) bands (ev): -4.7998 8.8494 10.4101 10.4103 13.3521 17.1789 17.1789 17.8298 18.8725 k =-0.1530-0.2651 0.2905 ( 522 PWs) bands (ev): -3.3261 3.6327 9.0763 12.2924 12.4982 13.6073 15.4683 19.4010 19.8229 k = 0.3061 0.5302-0.0581 ( 520 PWs) bands (ev): -1.3014 0.3049 9.7168 9.8097 11.1660 14.6733 16.7679 18.3129 23.7528 k = 0.1530 0.2651 0.0581 ( 525 PWs) bands (ev): -4.1331 5.7379 9.1615 10.5829 12.6844 16.6311 18.2185 18.2602 18.8781 k =-0.3061 0.0000 0.4067 ( 519 PWs) bands (ev): -2.5434 4.8556 7.6172 7.7289 8.9577 15.9139 18.7523 19.4331 19.7880 k = 0.1530 0.7952 0.0581 ( 510 PWs) bands (ev): 0.1114 1.3649 4.7818 6.6720 11.8621 15.8622 17.7854 22.1712 22.7465 k = 0.0000 0.5302 0.1743 ( 521 PWs) bands (ev): -1.9919 2.1365 7.0213 8.6714 12.8310 15.3373 18.5917 19.1068 20.2429 k = 0.6122 0.0000-0.2905 ( 510 PWs) bands (ev): -0.7684 3.7507 4.3110 7.0747 8.3911 15.5710 20.6369 21.3924 24.3706 k = 0.4591-0.2651-0.1743 ( 521 PWs) bands (ev): -1.9919 2.1365 7.0214 8.6713 12.8309 15.3372 18.5916 19.1066 20.2430 k = 0.3061 0.0000-0.0581 ( 525 PWs) bands (ev): -4.1331 5.7380 9.1614 10.5828 12.6844 16.6310 18.2186 18.2602 18.8780 k = 0.3061 0.0000 0.2905 ( 522 PWs) bands (ev): -3.3261 3.6328 9.0763 12.2922 12.4981 13.6071 15.4681 19.4009 19.8229 k = 0.1530-0.2651 0.4067 ( 519 PWs) bands (ev): -2.5434 4.8556 7.6172 7.7291 8.9576 15.9138 18.7522 19.4331 19.7878 k = 0.6122 0.5302 0.0581 ( 510 PWs) bands (ev): 0.1114 1.3649 4.7818 6.6720 11.8621 15.8622 17.7855 22.1712 22.7465 k = 0.4591 0.2651 0.1743 ( 521 PWs) bands (ev): -1.9919 2.1366 7.0212 8.6713 12.8309 15.3372 18.5916 19.1066 20.2428 k = 0.0000 0.0000 0.5229 ( 522 PWs) bands (ev): -2.3787 2.4433 10.6539 10.6540 12.8143 12.8144 13.5366 14.9318 23.5746 k = 0.4591 0.7952 0.1743 ( 520 PWs) bands (ev): -0.1320 1.1229 5.4074 8.8000 10.2840 15.4071 17.6100 20.7137 22.3729 k = 0.3061 0.5302 0.2905 ( 510 PWs) bands (ev): -0.7684 3.7507 4.3110 7.0748 8.3912 15.5709 20.6369 21.3924 24.3706 k = 0.9183 0.0000-0.1743 ( 520 PWs) bands (ev): -0.1319 1.1229 5.4075 8.7999 10.2838 15.4070 17.6099 20.7139 22.3732 k = 0.7652-0.2651-0.0581 ( 510 PWs) bands (ev): 0.1115 1.3650 4.7817 6.6720 11.8620 15.8620 17.7854 22.1712 22.7464 k = 0.6122 0.0000 0.0581 ( 520 PWs) bands (ev): -1.3014 0.3050 9.7167 9.8096 11.1658 14.6732 16.7677 18.3128 23.7530 the Fermi energy is 12.8854 ev ! total energy = -25.39738718 Ry Harris-Foulkes estimate = -25.39738719 Ry estimated scf accuracy < 0.00000002 Ry The total energy is the sum of the following terms: one-electron contribution = 11.91278932 Ry hartree contribution = 0.56917624 Ry xc contribution = -6.79509071 Ry ewald contribution = -31.08433669 Ry smearing contrib. (-TS) = 0.00007466 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000296 0.00000000 0.00487096 atom 2 type 1 force = -0.00000296 0.00000000 -0.00487096 Total force = 0.006889 Total SCF correction = 0.000023 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 508.50 0.00327944 0.00000000 0.00000004 482.42 0.00 0.01 0.00000000 0.00327947 0.00000000 0.00 482.43 0.00 0.00000004 0.00000000 0.00381127 0.01 0.00 560.66 number of scf cycles = 7 number of bfgs steps = 5 enthalpy old = -24.7482073682 Ry enthalpy new = -24.7504534451 Ry CASE: enthalpy_new < enthalpy_old uphill step: resetting bfgs history new trust radius = 0.0276914854 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.543269290 0.000000000 0.722817178 -0.271637056 0.470491431 0.722818867 -0.271637056 -0.470491431 0.722818867 ATOMIC_POSITIONS (crystal) As 0.249238798 0.249240415 0.249240415 As -0.249238798 -0.249240415 -0.249240415 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000004 0.0000000 0.1729342), wk = 0.0625000 k( 2) = ( -0.1533913 -0.2656797 0.2882233), wk = 0.1250000 k( 3) = ( 0.3067836 0.5313593 -0.0576440), wk = 0.1250000 k( 4) = ( 0.1533920 0.2656797 0.0576451), wk = 0.1250000 k( 5) = ( -0.3067829 0.0000000 0.4035124), wk = 0.0625000 k( 6) = ( 0.1533920 0.7970390 0.0576451), wk = 0.1250000 k( 7) = ( 0.0000004 0.5313593 0.1729342), wk = 0.1250000 k( 8) = ( 0.6135668 0.0000000 -0.2882223), wk = 0.0625000 k( 9) = ( 0.4601752 -0.2656797 -0.1729332), wk = 0.1250000 k( 10) = ( 0.3067836 0.0000000 -0.0576440), wk = 0.0625000 k( 11) = ( 0.3067843 0.0000000 0.2882243), wk = 0.0625000 k( 12) = ( 0.1533927 -0.2656797 0.4035135), wk = 0.1250000 k( 13) = ( 0.6135676 0.5313593 0.0576461), wk = 0.1250000 k( 14) = ( 0.4601759 0.2656797 0.1729352), wk = 0.1250000 k( 15) = ( 0.0000011 0.0000000 0.5188026), wk = 0.0625000 k( 16) = ( 0.4601759 0.7970390 0.1729352), wk = 0.1250000 k( 17) = ( 0.3067843 0.5313593 0.2882243), wk = 0.1250000 k( 18) = ( 0.9203508 0.0000000 -0.1729321), wk = 0.0625000 k( 19) = ( 0.7669592 -0.2656797 -0.0576430), wk = 0.1250000 k( 20) = ( 0.6135676 0.0000000 0.0576461), wk = 0.0625000 extrapolated charge 10.03259, renormalised to 10.00000 total cpu time spent up to now is 17.74 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.5 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 2.53E-08, avg # of iterations = 1.4 total cpu time spent up to now is 18.65 secs total energy = -25.40028206 Ry Harris-Foulkes estimate = -25.42542970 Ry estimated scf accuracy < 0.00000255 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 2.55E-08, avg # of iterations = 2.5 total cpu time spent up to now is 19.05 secs total energy = -25.40028416 Ry Harris-Foulkes estimate = -25.40028438 Ry estimated scf accuracy < 0.00000072 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.20E-09, avg # of iterations = 1.0 total cpu time spent up to now is 19.35 secs total energy = -25.40028414 Ry Harris-Foulkes estimate = -25.40028418 Ry estimated scf accuracy < 0.00000010 Ry iteration # 4 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.03E-09, avg # of iterations = 1.8 total cpu time spent up to now is 19.67 secs End of self-consistent calculation k = 0.0000 0.0000 0.1729 ( 531 PWs) bands (ev): -4.8258 8.6909 10.4230 10.4231 13.3019 17.1167 17.1168 17.8153 18.8690 k =-0.1534-0.2657 0.2882 ( 522 PWs) bands (ev): -3.3567 3.6188 8.9179 12.2862 12.4376 13.5870 15.4276 19.4224 19.6534 k = 0.3068 0.5314-0.0576 ( 520 PWs) bands (ev): -1.3106 0.2725 9.6689 9.6990 11.1415 14.5888 16.6784 18.0863 23.4571 k = 0.1534 0.2657 0.0576 ( 525 PWs) bands (ev): -4.1515 5.7112 9.1653 10.4951 12.5897 16.5206 18.0454 18.1357 18.7791 k =-0.3068 0.0000 0.4035 ( 519 PWs) bands (ev): -2.5864 4.7433 7.5957 7.7572 8.9021 15.8574 18.7372 19.4443 19.8091 k = 0.1534 0.7970 0.0576 ( 510 PWs) bands (ev): 0.0623 1.3513 4.7646 6.5703 11.7842 15.8504 17.7793 22.0463 22.7019 k = 0.0000 0.5314 0.1729 ( 521 PWs) bands (ev): -2.0082 2.1181 6.9767 8.5949 12.7082 15.1810 18.5056 19.0855 20.1844 k = 0.6136 0.0000-0.2882 ( 510 PWs) bands (ev): -0.7969 3.6868 4.2521 7.0961 8.3284 15.4518 20.5345 21.3280 24.2812 k = 0.4602-0.2657-0.1729 ( 521 PWs) bands (ev): -2.0082 2.1180 6.9768 8.5948 12.7081 15.1809 18.5055 19.0853 20.1845 k = 0.3068 0.0000-0.0576 ( 525 PWs) bands (ev): -4.1515 5.7113 9.1651 10.4950 12.5897 16.5205 18.0455 18.1356 18.7790 k = 0.3068 0.0000 0.2882 ( 522 PWs) bands (ev): -3.3567 3.6190 8.9178 12.2861 12.4376 13.5868 15.4274 19.4223 19.6534 k = 0.1534-0.2657 0.4035 ( 519 PWs) bands (ev): -2.5865 4.7434 7.5956 7.7573 8.9021 15.8573 18.7372 19.4443 19.8089 k = 0.6136 0.5314 0.0576 ( 510 PWs) bands (ev): 0.0622 1.3513 4.7646 6.5703 11.7842 15.8504 17.7794 22.0462 22.7019 k = 0.4602 0.2657 0.1729 ( 521 PWs) bands (ev): -2.0082 2.1181 6.9767 8.5948 12.7081 15.1809 18.5055 19.0853 20.1842 k = 0.0000 0.0000 0.5188 ( 522 PWs) bands (ev): -2.4413 2.3125 10.6845 10.6847 12.8201 12.8202 13.5899 14.9759 23.4584 k = 0.4602 0.7970 0.1729 ( 520 PWs) bands (ev): -0.2080 1.0348 5.4023 8.8146 10.2981 15.4102 17.6629 20.7171 22.2035 k = 0.3068 0.5314 0.2882 ( 510 PWs) bands (ev): -0.7969 3.6868 4.2521 7.0963 8.3285 15.4518 20.5345 21.3281 24.2811 k = 0.9204 0.0000-0.1729 ( 520 PWs) bands (ev): -0.2080 1.0348 5.4023 8.8145 10.2979 15.4102 17.6628 20.7174 22.2038 k = 0.7670-0.2657-0.0576 ( 510 PWs) bands (ev): 0.0623 1.3514 4.7645 6.5703 11.7842 15.8502 17.7794 22.0463 22.7018 k = 0.6136 0.0000 0.0576 ( 520 PWs) bands (ev): -1.3106 0.2726 9.6688 9.6989 11.1413 14.5887 16.6782 18.0863 23.4572 the Fermi energy is 12.8762 ev ! total energy = -25.40028415 Ry Harris-Foulkes estimate = -25.40028415 Ry estimated scf accuracy < 1.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.86368503 Ry hartree contribution = 0.57397476 Ry xc contribution = -6.79037813 Ry ewald contribution = -31.04758849 Ry smearing contrib. (-TS) = 0.00002267 Ry convergence has been achieved in 4 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000178 0.00000000 0.00332673 atom 2 type 1 force = -0.00000178 0.00000000 -0.00332673 Total force = 0.004705 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.48 0.00323107 0.00000000 0.00000001 475.31 0.00 0.00 0.00000000 0.00323094 0.00000000 0.00 475.29 0.00 0.00000001 0.00000000 0.00372415 0.00 0.00 547.84 number of scf cycles = 8 number of bfgs steps = 6 enthalpy old = -24.7504534451 Ry enthalpy new = -24.7512351147 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0826216887 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.537966424 0.000000000 0.738341290 -0.268984361 0.465895587 0.738342105 -0.268984361 -0.465895587 0.738342105 ATOMIC_POSITIONS (crystal) As 0.250054671 0.250054486 0.250054486 As -0.250054671 -0.250054486 -0.250054486 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000002 0.0000000 0.1692983), wk = 0.0625000 k( 2) = ( -0.1549038 -0.2683005 0.2821636), wk = 0.1250000 k( 3) = ( 0.3098082 0.5366009 -0.0564324), wk = 0.1250000 k( 4) = ( 0.1549042 0.2683005 0.0564329), wk = 0.1250000 k( 5) = ( -0.3098078 0.0000000 0.3950290), wk = 0.0625000 k( 6) = ( 0.1549042 0.8049014 0.0564329), wk = 0.1250000 k( 7) = ( 0.0000002 0.5366009 0.1692983), wk = 0.1250000 k( 8) = ( 0.6196162 0.0000000 -0.2821632), wk = 0.0625000 k( 9) = ( 0.4647122 -0.2683005 -0.1692978), wk = 0.1250000 k( 10) = ( 0.3098082 0.0000000 -0.0564324), wk = 0.0625000 k( 11) = ( 0.3098085 0.0000000 0.2821641), wk = 0.0625000 k( 12) = ( 0.1549045 -0.2683005 0.3950295), wk = 0.1250000 k( 13) = ( 0.6196165 0.5366009 0.0564334), wk = 0.1250000 k( 14) = ( 0.4647125 0.2683005 0.1692988), wk = 0.1250000 k( 15) = ( 0.0000005 0.0000000 0.5078948), wk = 0.0625000 k( 16) = ( 0.4647125 0.8049014 0.1692988), wk = 0.1250000 k( 17) = ( 0.3098085 0.5366009 0.2821641), wk = 0.1250000 k( 18) = ( 0.9294245 0.0000000 -0.1692973), wk = 0.0625000 k( 19) = ( 0.7745205 -0.2683005 -0.0564320), wk = 0.1250000 k( 20) = ( 0.6196165 0.0000000 0.0564334), wk = 0.0625000 extrapolated charge 10.01621, renormalised to 10.00000 total cpu time spent up to now is 19.95 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.3 total cpu time spent up to now is 20.62 secs total energy = -25.40280625 Ry Harris-Foulkes estimate = -25.41529220 Ry estimated scf accuracy < 0.00001553 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.55E-07, avg # of iterations = 1.0 total cpu time spent up to now is 20.94 secs total energy = -25.40280711 Ry Harris-Foulkes estimate = -25.40280704 Ry estimated scf accuracy < 0.00000138 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.38E-08, avg # of iterations = 1.1 total cpu time spent up to now is 21.25 secs End of self-consistent calculation k = 0.0000 0.0000 0.1693 ( 531 PWs) bands (ev): -4.8525 8.3463 10.6011 10.6012 13.3633 17.1014 17.1014 17.9638 19.0056 k =-0.1549-0.2683 0.2822 ( 522 PWs) bands (ev): -3.3869 3.6871 8.5644 12.3923 12.4204 13.6857 15.4917 19.3298 19.6670 k = 0.3098 0.5366-0.0564 ( 520 PWs) bands (ev): -1.2617 0.2656 9.3683 9.7683 11.2047 14.4936 16.5991 17.5840 22.7484 k = 0.1549 0.2683 0.0564 ( 525 PWs) bands (ev): -4.1504 5.7715 9.3011 10.3362 12.4496 16.3481 17.6597 17.9435 18.6933 k =-0.3098 0.0000 0.3950 ( 519 PWs) bands (ev): -2.6477 4.5265 7.6388 7.9535 8.8795 15.8152 18.8714 19.6773 20.0872 k = 0.1549 0.8049 0.0564 ( 510 PWs) bands (ev): 0.0094 1.4099 4.7961 6.3683 11.6894 15.9727 17.9206 21.8398 22.7801 k = 0.0000 0.5366 0.1693 ( 521 PWs) bands (ev): -1.9850 2.1714 6.9433 8.4848 12.4608 14.8727 18.4309 19.2055 20.2156 k = 0.6196 0.0000-0.2822 ( 510 PWs) bands (ev): -0.7943 3.6111 4.1655 7.2659 8.2527 15.2318 20.4054 21.3273 24.1948 k = 0.4647-0.2683-0.1693 ( 521 PWs) bands (ev): -1.9850 2.1713 6.9433 8.4848 12.4608 14.8727 18.4309 19.2054 20.2156 k = 0.3098 0.0000-0.0564 ( 525 PWs) bands (ev): -4.1503 5.7716 9.3011 10.3362 12.4497 16.3481 17.6598 17.9435 18.6932 k = 0.3098 0.0000 0.2822 ( 522 PWs) bands (ev): -3.3869 3.6872 8.5644 12.3922 12.4204 13.6856 15.4916 19.3298 19.6670 k = 0.1549-0.2683 0.3950 ( 519 PWs) bands (ev): -2.6477 4.5265 7.6388 7.9535 8.8795 15.8151 18.8714 19.6773 20.0871 k = 0.6196 0.5366 0.0564 ( 510 PWs) bands (ev): 0.0094 1.4099 4.7961 6.3683 11.6894 15.9727 17.9206 21.8398 22.7801 k = 0.4647 0.2683 0.1693 ( 521 PWs) bands (ev): -1.9850 2.1714 6.9433 8.4848 12.4608 14.8727 18.4309 19.2054 20.2155 k = 0.0000 0.0000 0.5079 ( 522 PWs) bands (ev): -2.5623 2.0236 10.9082 10.9083 12.9829 12.9829 13.9315 15.2955 23.2993 k = 0.4647 0.8049 0.1693 ( 520 PWs) bands (ev): -0.3542 0.8724 5.4795 8.9749 10.4795 15.5786 18.0180 20.8556 21.9380 k = 0.3098 0.5366 0.2822 ( 510 PWs) bands (ev): -0.7943 3.6111 4.1656 7.2660 8.2527 15.2318 20.4054 21.3274 24.1948 k = 0.9294 0.0000-0.1693 ( 520 PWs) bands (ev): -0.3542 0.8724 5.4795 8.9748 10.4794 15.5786 18.0179 20.8557 21.9381 k = 0.7745-0.2683-0.0564 ( 510 PWs) bands (ev): 0.0094 1.4100 4.7961 6.3683 11.6894 15.9726 17.9206 21.8398 22.7801 k = 0.6196 0.0000 0.0564 ( 520 PWs) bands (ev): -1.2617 0.2656 9.3683 9.7682 11.2046 14.4936 16.5990 17.5840 22.7484 the Fermi energy is 13.0402 ev ! total energy = -25.40280717 Ry Harris-Foulkes estimate = -25.40280716 Ry estimated scf accuracy < 5.8E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.83164725 Ry hartree contribution = 0.57864485 Ry xc contribution = -6.78882922 Ry ewald contribution = -31.02428816 Ry smearing contrib. (-TS) = 0.00001812 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000025 0.00000000 -0.00020164 atom 2 type 1 force = 0.00000025 0.00000000 0.00020164 Total force = 0.000285 Total SCF correction = 0.000003 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 493.60 0.00328225 0.00000000 0.00000000 482.84 0.00 0.00 0.00000000 0.00328219 0.00000000 0.00 482.83 0.00 0.00000000 0.00000000 0.00350182 0.00 0.00 515.13 number of scf cycles = 9 number of bfgs steps = 7 enthalpy old = -24.7512351147 Ry enthalpy new = -24.7527043124 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0604954210 bohr new conv_thr = 0.0000000202 Ry CELL_PARAMETERS (alat) 0.533460765 0.000000000 0.749195756 -0.266730401 0.461991457 0.749195777 -0.266730401 -0.461991457 0.749195777 ATOMIC_POSITIONS (crystal) As 0.250498591 0.250497438 0.250497438 As -0.250498591 -0.250497438 -0.250497438 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1668456), wk = 0.0625000 k( 2) = ( -0.1562127 -0.2705678 0.2780760), wk = 0.1250000 k( 3) = ( 0.3124253 0.5411355 -0.0556152), wk = 0.1250000 k( 4) = ( 0.1562127 0.2705678 0.0556152), wk = 0.1250000 k( 5) = ( -0.3124253 0.0000000 0.3893063), wk = 0.0625000 k( 6) = ( 0.1562127 0.8117033 0.0556152), wk = 0.1250000 k( 7) = ( 0.0000000 0.5411355 0.1668456), wk = 0.1250000 k( 8) = ( 0.6248507 0.0000000 -0.2780760), wk = 0.0625000 k( 9) = ( 0.4686380 -0.2705678 -0.1668456), wk = 0.1250000 k( 10) = ( 0.3124253 0.0000000 -0.0556152), wk = 0.0625000 k( 11) = ( 0.3124254 0.0000000 0.2780760), wk = 0.0625000 k( 12) = ( 0.1562127 -0.2705678 0.3893063), wk = 0.1250000 k( 13) = ( 0.6248507 0.5411355 0.0556152), wk = 0.1250000 k( 14) = ( 0.4686380 0.2705678 0.1668456), wk = 0.1250000 k( 15) = ( 0.0000000 0.0000000 0.5005367), wk = 0.0625000 k( 16) = ( 0.4686380 0.8117033 0.1668456), wk = 0.1250000 k( 17) = ( 0.3124254 0.5411355 0.2780760), wk = 0.1250000 k( 18) = ( 0.9372760 0.0000000 -0.1668456), wk = 0.0625000 k( 19) = ( 0.7810634 -0.2705678 -0.0556152), wk = 0.1250000 k( 20) = ( 0.6248507 0.0000000 0.0556152), wk = 0.0625000 extrapolated charge 9.97764, renormalised to 10.00000 total cpu time spent up to now is 21.55 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 4.8 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 6.09E-08, avg # of iterations = 1.0 total cpu time spent up to now is 22.54 secs total energy = -25.40161465 Ry Harris-Foulkes estimate = -25.38438059 Ry estimated scf accuracy < 0.00000611 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.11E-08, avg # of iterations = 2.0 total cpu time spent up to now is 22.88 secs total energy = -25.40161552 Ry Harris-Foulkes estimate = -25.40161560 Ry estimated scf accuracy < 0.00000083 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 8.28E-09, avg # of iterations = 1.0 total cpu time spent up to now is 23.20 secs End of self-consistent calculation k = 0.0000 0.0000 0.1668 ( 531 PWs) bands (ev): -4.8492 8.1331 10.7959 10.7959 13.5013 17.1674 17.1674 18.1539 18.8605 k =-0.1562-0.2706 0.2781 ( 522 PWs) bands (ev): -3.3816 3.7813 8.3640 12.4581 12.5504 13.8285 15.6051 19.1699 19.9387 k = 0.3124 0.5411-0.0556 ( 520 PWs) bands (ev): -1.1918 0.3011 9.2038 9.8753 11.3064 14.4956 16.6218 17.2880 22.3118 k = 0.1562 0.2706 0.0556 ( 525 PWs) bands (ev): -4.1246 5.8777 9.4581 10.2492 12.4125 16.2578 17.4384 17.8851 18.7229 k =-0.3124 0.0000 0.3893 ( 519 PWs) bands (ev): -2.6621 4.4108 7.7182 8.1483 8.9368 15.8447 19.0453 19.9299 20.3718 k = 0.1562 0.8117 0.0556 ( 510 PWs) bands (ev): 0.0129 1.4959 4.8570 6.2689 11.6740 16.1197 18.1051 21.7362 22.7352 k = 0.0000 0.5411 0.1668 ( 521 PWs) bands (ev): -1.9356 2.2592 6.9631 8.4592 12.3184 14.7163 18.4624 19.3654 20.3274 k = 0.6249 0.0000-0.2781 ( 510 PWs) bands (ev): -0.7528 3.6025 4.1444 7.4386 8.2434 15.1422 20.3770 21.3927 24.1634 k = 0.4686-0.2706-0.1668 ( 521 PWs) bands (ev): -1.9356 2.2591 6.9631 8.4592 12.3184 14.7163 18.4624 19.3654 20.3274 k = 0.3124 0.0000-0.0556 ( 525 PWs) bands (ev): -4.1246 5.8777 9.4581 10.2492 12.4125 16.2578 17.4384 17.8851 18.7229 k = 0.3124 0.0000 0.2781 ( 522 PWs) bands (ev): -3.3815 3.7813 8.3640 12.4581 12.5504 13.8285 15.6051 19.1699 19.9387 k = 0.1562-0.2706 0.3893 ( 519 PWs) bands (ev): -2.6621 4.4108 7.7182 8.1483 8.9368 15.8446 19.0453 19.9299 20.3717 k = 0.6249 0.5411 0.0556 ( 510 PWs) bands (ev): 0.0129 1.4959 4.8570 6.2689 11.6740 16.1197 18.1051 21.7362 22.7352 k = 0.4686 0.2706 0.1668 ( 521 PWs) bands (ev): -1.9356 2.2592 6.9631 8.4592 12.3184 14.7163 18.4624 19.3654 20.3274 k = 0.0000 0.0000 0.5005 ( 522 PWs) bands (ev): -2.6209 1.8577 11.1314 11.1314 13.1680 13.1680 14.2630 15.6115 23.2536 k = 0.4686 0.8117 0.1668 ( 520 PWs) bands (ev): -0.4255 0.7974 5.5811 9.1454 10.6726 15.7676 18.3569 20.9254 21.9305 k = 0.3124 0.5411 0.2781 ( 510 PWs) bands (ev): -0.7528 3.6025 4.1444 7.4386 8.2434 15.1422 20.3770 21.3927 24.1634 k = 0.9373 0.0000-0.1668 ( 520 PWs) bands (ev): -0.4255 0.7974 5.5811 9.1453 10.6726 15.7676 18.3569 20.9254 21.9305 k = 0.7811-0.2706-0.0556 ( 510 PWs) bands (ev): 0.0129 1.4959 4.8570 6.2689 11.6740 16.1197 18.1051 21.7362 22.7352 k = 0.6249 0.0000 0.0556 ( 520 PWs) bands (ev): -1.1918 0.3012 9.2038 9.8752 11.3064 14.4956 16.6217 17.2880 22.3118 the Fermi energy is 13.2253 ev ! total energy = -25.40161556 Ry Harris-Foulkes estimate = -25.40161556 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 11.85910167 Ry hartree contribution = 0.57721582 Ry xc contribution = -6.79272717 Ry ewald contribution = -31.04522400 Ry smearing contrib. (-TS) = 0.00001812 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000132 0.00000000 -0.00216290 atom 2 type 1 force = 0.00000132 0.00000000 0.00216290 Total force = 0.003059 Total SCF correction = 0.000021 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.11 0.00340909 0.00000000 -0.00000001 501.49 0.00 0.00 0.00000000 0.00340906 0.00000000 0.00 501.49 0.00 -0.00000001 0.00000000 0.00336050 0.00 0.00 494.35 number of scf cycles = 10 number of bfgs steps = 8 enthalpy old = -24.7527043124 Ry enthalpy new = -24.7529632574 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0126565280 bohr new conv_thr = 0.0000001000 Ry CELL_PARAMETERS (alat) 0.534272633 0.000000000 0.746915246 -0.267136636 0.462694851 0.746915489 -0.267136636 -0.462694851 0.746915489 ATOMIC_POSITIONS (crystal) As 0.250291699 0.250291009 0.250291009 As -0.250291699 -0.250291009 -0.250291009 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000001 0.0000000 0.1673550), wk = 0.0625000 k( 2) = ( -0.1559752 -0.2701565 0.2789249), wk = 0.1250000 k( 3) = ( 0.3119505 0.5403129 -0.0557849), wk = 0.1250000 k( 4) = ( 0.1559753 0.2701565 0.0557850), wk = 0.1250000 k( 5) = ( -0.3119504 0.0000000 0.3904948), wk = 0.0625000 k( 6) = ( 0.1559753 0.8104694 0.0557850), wk = 0.1250000 k( 7) = ( 0.0000001 0.5403129 0.1673550), wk = 0.1250000 k( 8) = ( 0.6239009 0.0000000 -0.2789248), wk = 0.0625000 k( 9) = ( 0.4679257 -0.2701565 -0.1673548), wk = 0.1250000 k( 10) = ( 0.3119505 0.0000000 -0.0557849), wk = 0.0625000 k( 11) = ( 0.3119506 0.0000000 0.2789250), wk = 0.0625000 k( 12) = ( 0.1559754 -0.2701565 0.3904950), wk = 0.1250000 k( 13) = ( 0.6239010 0.5403129 0.0557852), wk = 0.1250000 k( 14) = ( 0.4679258 0.2701565 0.1673551), wk = 0.1250000 k( 15) = ( 0.0000002 0.0000000 0.5020649), wk = 0.0625000 k( 16) = ( 0.4679258 0.8104694 0.1673551), wk = 0.1250000 k( 17) = ( 0.3119506 0.5403129 0.2789250), wk = 0.1250000 k( 18) = ( 0.9358514 0.0000000 -0.1673547), wk = 0.0625000 k( 19) = ( 0.7798762 -0.2701565 -0.0557848), wk = 0.1250000 k( 20) = ( 0.6239010 0.0000000 0.0557852), wk = 0.0625000 extrapolated charge 9.99994, renormalised to 10.00000 total cpu time spent up to now is 23.49 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 3.5 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.14E-09, avg # of iterations = 1.6 total cpu time spent up to now is 24.33 secs total energy = -25.40164316 Ry Harris-Foulkes estimate = -25.40159762 Ry estimated scf accuracy < 0.00000072 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.21E-09, avg # of iterations = 1.0 total cpu time spent up to now is 24.64 secs End of self-consistent calculation k = 0.0000 0.0000 0.1674 ( 531 PWs) bands (ev): -4.8471 8.1853 10.7638 10.7639 13.4857 17.1629 17.1629 18.1278 18.8989 k =-0.1560-0.2702 0.2789 ( 522 PWs) bands (ev): -3.3795 3.7693 8.4088 12.4650 12.5185 13.8082 15.5949 19.2121 19.8915 k = 0.3120 0.5403-0.0558 ( 520 PWs) bands (ev): -1.2017 0.2985 9.2423 9.8600 11.2941 14.5026 16.6273 17.3570 22.4070 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1268 5.8638 9.4328 10.2755 12.4268 16.2906 17.4894 17.9053 18.7263 k =-0.3120 0.0000 0.3905 ( 519 PWs) bands (ev): -2.6558 4.4415 7.7083 8.1149 8.9306 15.8444 19.0208 19.8908 20.3291 k = 0.1560 0.8105 0.0558 ( 510 PWs) bands (ev): 0.0171 1.4843 4.8489 6.2929 11.6855 16.1010 18.0742 21.7709 22.7837 k = 0.0000 0.5403 0.1674 ( 521 PWs) bands (ev): -1.9417 2.2473 6.9643 8.4696 12.3564 14.7555 18.4642 19.3446 20.3159 k = 0.6239 0.0000-0.2789 ( 510 PWs) bands (ev): -0.7565 3.6120 4.1512 7.4093 8.2521 15.1645 20.3943 21.3932 24.1883 k = 0.4679-0.2702-0.1674 ( 521 PWs) bands (ev): -1.9417 2.2473 6.9643 8.4696 12.3564 14.7554 18.4642 19.3445 20.3159 k = 0.3120 0.0000-0.0558 ( 525 PWs) bands (ev): -4.1268 5.8638 9.4328 10.2755 12.4268 16.2905 17.4894 17.9053 18.7262 k = 0.3120 0.0000 0.2789 ( 522 PWs) bands (ev): -3.3795 3.7693 8.4088 12.4650 12.5185 13.8081 15.5949 19.2121 19.8915 k = 0.1560-0.2702 0.3905 ( 519 PWs) bands (ev): -2.6558 4.4415 7.7082 8.1149 8.9306 15.8444 19.0208 19.8908 20.3291 k = 0.6239 0.5403 0.0558 ( 510 PWs) bands (ev): 0.0171 1.4843 4.8489 6.2929 11.6855 16.1010 18.0742 21.7708 22.7838 k = 0.4679 0.2702 0.1674 ( 521 PWs) bands (ev): -1.9417 2.2473 6.9643 8.4695 12.3564 14.7555 18.4642 19.3445 20.3158 k = 0.0000 0.0000 0.5021 ( 522 PWs) bands (ev): -2.6059 1.8956 11.0938 11.0938 13.1381 13.1381 14.2068 15.5580 23.2748 k = 0.4679 0.8105 0.1674 ( 520 PWs) bands (ev): -0.4066 0.8170 5.5650 9.1172 10.6416 15.7391 18.3016 20.9301 21.9344 k = 0.3120 0.5403 0.2789 ( 510 PWs) bands (ev): -0.7565 3.6120 4.1512 7.4093 8.2521 15.1645 20.3943 21.3932 24.1883 k = 0.9359 0.0000-0.1674 ( 520 PWs) bands (ev): -0.4066 0.8170 5.5650 9.1171 10.6416 15.7391 18.3016 20.9301 21.9344 k = 0.7799-0.2702-0.0558 ( 510 PWs) bands (ev): 0.0171 1.4843 4.8489 6.2929 11.6855 16.1010 18.0742 21.7709 22.7838 k = 0.6239 0.0000 0.0558 ( 520 PWs) bands (ev): -1.2017 0.2985 9.2423 9.8600 11.2940 14.5025 16.6272 17.3570 22.4070 the Fermi energy is 13.4284 ev ! total energy = -25.40164317 Ry Harris-Foulkes estimate = -25.40164317 Ry estimated scf accuracy < 0.00000006 Ry The total energy is the sum of the following terms: one-electron contribution = 11.85945783 Ry hartree contribution = 0.57720005 Ry xc contribution = -6.79273368 Ry ewald contribution = -31.04557643 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000082 0.00000000 -0.00127492 atom 2 type 1 force = 0.00000082 0.00000000 0.00127492 Total force = 0.001803 Total SCF correction = 0.000000 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.37 0.00339142 0.00000000 -0.00000001 498.90 0.00 0.00 0.00000000 0.00339139 0.00000000 0.00 498.89 0.00 -0.00000001 0.00000000 0.00340115 0.00 0.00 500.33 number of scf cycles = 11 number of bfgs steps = 9 enthalpy old = -24.7529632574 Ry enthalpy new = -24.7529946975 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0023787842 bohr new conv_thr = 0.0000000314 Ry CELL_PARAMETERS (alat) 0.534236597 0.000000000 0.746906599 -0.267118730 0.462663388 0.746906933 -0.267118730 -0.462663388 0.746906933 ATOMIC_POSITIONS (crystal) As 0.250185334 0.250184895 0.250184895 As -0.250185334 -0.250184895 -0.250184895 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000001 0.0000000 0.1673569), wk = 0.0625000 k( 2) = ( -0.1559856 -0.2701748 0.2789281), wk = 0.1250000 k( 3) = ( 0.3119714 0.5403497 -0.0557855), wk = 0.1250000 k( 4) = ( 0.1559858 0.2701748 0.0557857), wk = 0.1250000 k( 5) = ( -0.3119713 0.0000000 0.3904993), wk = 0.0625000 k( 6) = ( 0.1559858 0.8105245 0.0557857), wk = 0.1250000 k( 7) = ( 0.0000001 0.5403497 0.1673569), wk = 0.1250000 k( 8) = ( 0.6239428 0.0000000 -0.2789279), wk = 0.0625000 k( 9) = ( 0.4679571 -0.2701748 -0.1673567), wk = 0.1250000 k( 10) = ( 0.3119714 0.0000000 -0.0557855), wk = 0.0625000 k( 11) = ( 0.3119716 0.0000000 0.2789283), wk = 0.0625000 k( 12) = ( 0.1559859 -0.2701748 0.3904995), wk = 0.1250000 k( 13) = ( 0.6239430 0.5403497 0.0557859), wk = 0.1250000 k( 14) = ( 0.4679573 0.2701748 0.1673571), wk = 0.1250000 k( 15) = ( 0.0000002 0.0000000 0.5020707), wk = 0.0625000 k( 16) = ( 0.4679573 0.8105245 0.1673571), wk = 0.1250000 k( 17) = ( 0.3119716 0.5403497 0.2789283), wk = 0.1250000 k( 18) = ( 0.9359143 0.0000000 -0.1673565), wk = 0.0625000 k( 19) = ( 0.7799287 -0.2701748 -0.0557853), wk = 0.1250000 k( 20) = ( 0.6239430 0.0000000 0.0557859), wk = 0.0625000 extrapolated charge 9.99853, renormalised to 10.00000 total cpu time spent up to now is 24.92 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.42E-09, avg # of iterations = 2.8 total cpu time spent up to now is 25.65 secs total energy = -25.40155156 Ry Harris-Foulkes estimate = -25.40041966 Ry estimated scf accuracy < 0.00000014 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.39E-09, avg # of iterations = 1.0 total cpu time spent up to now is 25.94 secs End of self-consistent calculation k = 0.0000 0.0000 0.1674 ( 531 PWs) bands (ev): -4.8462 8.1874 10.7667 10.7667 13.4899 17.1660 17.1660 18.1324 18.9001 k =-0.1560-0.2702 0.2789 ( 522 PWs) bands (ev): -3.3783 3.7716 8.4103 12.4774 12.5115 13.8112 15.5988 19.2151 19.8949 k = 0.3120 0.5403-0.0558 ( 520 PWs) bands (ev): -1.2001 0.3001 9.2439 9.8624 11.2967 14.5051 16.6306 17.3595 22.4089 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1257 5.8665 9.4353 10.2777 12.4291 16.2939 17.4916 17.9081 18.7294 k =-0.3120 0.0000 0.3905 ( 519 PWs) bands (ev): -2.6546 4.4435 7.7105 8.1173 8.9328 15.8465 19.0244 19.8949 20.3339 k = 0.1560 0.8105 0.0558 ( 510 PWs) bands (ev): 0.0188 1.4863 4.8505 6.2943 11.6881 16.1044 18.0770 21.7743 22.7886 k = 0.0000 0.5403 0.1674 ( 521 PWs) bands (ev): -1.9403 2.2494 6.9662 8.4714 12.3587 14.7577 18.4671 19.3483 20.3197 k = 0.6239 0.0000-0.2789 ( 510 PWs) bands (ev): -0.7548 3.6147 4.1520 7.4115 8.2542 15.1663 20.3977 21.3971 24.1925 k = 0.4680-0.2702-0.1674 ( 521 PWs) bands (ev): -1.9403 2.2494 6.9662 8.4713 12.3587 14.7577 18.4671 19.3483 20.3197 k = 0.3120 0.0000-0.0558 ( 525 PWs) bands (ev): -4.1257 5.8666 9.4353 10.2777 12.4291 16.2938 17.4916 17.9081 18.7294 k = 0.3120 0.0000 0.2789 ( 522 PWs) bands (ev): -3.3783 3.7716 8.4102 12.4774 12.5115 13.8112 15.5987 19.2151 19.8949 k = 0.1560-0.2702 0.3905 ( 519 PWs) bands (ev): -2.6546 4.4435 7.7105 8.1173 8.9327 15.8465 19.0244 19.8949 20.3338 k = 0.6239 0.5403 0.0558 ( 510 PWs) bands (ev): 0.0188 1.4863 4.8505 6.2943 11.6881 16.1044 18.0770 21.7743 22.7886 k = 0.4680 0.2702 0.1674 ( 521 PWs) bands (ev): -1.9403 2.2494 6.9662 8.4713 12.3587 14.7577 18.4671 19.3483 20.3196 k = 0.0000 0.0000 0.5021 ( 522 PWs) bands (ev): -2.6047 1.8969 11.0967 11.0967 13.1409 13.1409 14.2109 15.5618 23.2783 k = 0.4680 0.8105 0.1674 ( 520 PWs) bands (ev): -0.4051 0.8183 5.5668 9.1196 10.6445 15.7424 18.3061 20.9331 21.9384 k = 0.3120 0.5403 0.2789 ( 510 PWs) bands (ev): -0.7548 3.6147 4.1520 7.4115 8.2542 15.1663 20.3977 21.3971 24.1925 k = 0.9359 0.0000-0.1674 ( 520 PWs) bands (ev): -0.4051 0.8183 5.5668 9.1196 10.6445 15.7424 18.3061 20.9331 21.9384 k = 0.7799-0.2702-0.0558 ( 510 PWs) bands (ev): 0.0188 1.4863 4.8505 6.2943 11.6881 16.1044 18.0770 21.7743 22.7886 k = 0.6239 0.0000 0.0558 ( 520 PWs) bands (ev): -1.2001 0.3002 9.2439 9.8624 11.2967 14.5051 16.6306 17.3595 22.4089 the Fermi energy is 13.4326 ev ! total energy = -25.40155156 Ry Harris-Foulkes estimate = -25.40155156 Ry estimated scf accuracy < 0.00000001 Ry The total energy is the sum of the following terms: one-electron contribution = 11.86148274 Ry hartree contribution = 0.57704287 Ry xc contribution = -6.79296702 Ry ewald contribution = -31.04711921 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000051 0.00000000 -0.00080815 atom 2 type 1 force = 0.00000051 0.00000000 0.00080815 Total force = 0.001143 Total SCF correction = 0.000001 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 499.76 0.00339423 0.00000000 0.00000000 499.31 0.00 0.00 0.00000000 0.00339421 0.00000000 0.00 499.31 0.00 0.00000000 0.00000000 0.00340341 0.00 0.00 500.66 number of scf cycles = 12 number of bfgs steps = 10 enthalpy old = -24.7529946975 Ry enthalpy new = -24.7529983135 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0026166359 bohr new conv_thr = 0.0000000100 Ry CELL_PARAMETERS (alat) 0.534148581 0.000000000 0.747084300 -0.267074642 0.462586802 0.747084572 -0.267074642 -0.462586802 0.747084572 ATOMIC_POSITIONS (crystal) As 0.250077362 0.250077175 0.250077175 As -0.250077362 -0.250077175 -0.250077175 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000001 0.0000000 0.1673171), wk = 0.0625000 k( 2) = ( -0.1560114 -0.2702196 0.2788618), wk = 0.1250000 k( 3) = ( 0.3120229 0.5404391 -0.0557723), wk = 0.1250000 k( 4) = ( 0.1560115 0.2702196 0.0557724), wk = 0.1250000 k( 5) = ( -0.3120228 0.0000000 0.3904064), wk = 0.0625000 k( 6) = ( 0.1560115 0.8106587 0.0557724), wk = 0.1250000 k( 7) = ( 0.0000001 0.5404391 0.1673171), wk = 0.1250000 k( 8) = ( 0.6240457 0.0000000 -0.2788616), wk = 0.0625000 k( 9) = ( 0.4680343 -0.2702196 -0.1673169), wk = 0.1250000 k( 10) = ( 0.3120229 0.0000000 -0.0557723), wk = 0.0625000 k( 11) = ( 0.3120230 0.0000000 0.2788619), wk = 0.0625000 k( 12) = ( 0.1560116 -0.2702196 0.3904066), wk = 0.1250000 k( 13) = ( 0.6240458 0.5404391 0.0557726), wk = 0.1250000 k( 14) = ( 0.4680344 0.2702196 0.1673172), wk = 0.1250000 k( 15) = ( 0.0000002 0.0000000 0.5019513), wk = 0.0625000 k( 16) = ( 0.4680344 0.8106587 0.1673172), wk = 0.1250000 k( 17) = ( 0.3120230 0.5404391 0.2788619), wk = 0.1250000 k( 18) = ( 0.9360687 0.0000000 -0.1673168), wk = 0.0625000 k( 19) = ( 0.7800573 -0.2702196 -0.0557721), wk = 0.1250000 k( 20) = ( 0.6240458 0.0000000 0.0557726), wk = 0.0625000 extrapolated charge 9.99907, renormalised to 10.00000 total cpu time spent up to now is 26.23 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 1.50E-09, avg # of iterations = 2.6 total cpu time spent up to now is 26.96 secs total energy = -25.40149382 Ry Harris-Foulkes estimate = -25.40078004 Ry estimated scf accuracy < 0.00000015 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.45E-09, avg # of iterations = 1.0 total cpu time spent up to now is 27.25 secs total energy = -25.40149382 Ry Harris-Foulkes estimate = -25.40149382 Ry estimated scf accuracy < 0.00000001 Ry iteration # 3 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.17E-10, avg # of iterations = 1.2 total cpu time spent up to now is 27.54 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8458 8.1845 10.7710 10.7710 13.4936 17.1683 17.1683 18.1374 18.8977 k =-0.1560-0.2702 0.2789 ( 522 PWs) bands (ev): -3.3778 3.7739 8.4075 12.4896 12.5045 13.8147 15.6019 19.2134 19.9009 k = 0.3120 0.5404-0.0558 ( 520 PWs) bands (ev): -1.1984 0.3013 9.2418 9.8651 11.2993 14.5060 16.6323 17.3554 22.4024 k = 0.1560 0.2702 0.0558 ( 525 PWs) bands (ev): -4.1249 5.8693 9.4389 10.2769 12.4293 16.2932 17.4889 17.9082 18.7309 k =-0.3120 0.0000 0.3904 ( 519 PWs) bands (ev): -2.6544 4.4421 7.7127 8.1214 8.9345 15.8479 19.0286 19.9005 20.3402 k = 0.1560 0.8107 0.0558 ( 510 PWs) bands (ev): 0.0195 1.4884 4.8521 6.2931 11.6887 16.1079 18.0812 21.7736 22.7886 k = 0.0000 0.5404 0.1673 ( 521 PWs) bands (ev): -1.9390 2.2516 6.9672 8.4716 12.3571 14.7559 18.4688 19.3523 20.3229 k = 0.6240 0.0000-0.2789 ( 510 PWs) bands (ev): -0.7535 3.6156 4.1518 7.4152 8.2548 15.1656 20.3983 21.3994 24.1931 k = 0.4680-0.2702-0.1673 ( 521 PWs) bands (ev): -1.9390 2.2516 6.9672 8.4715 12.3571 14.7559 18.4688 19.3523 20.3229 k = 0.3120 0.0000-0.0558 ( 525 PWs) bands (ev): -4.1249 5.8693 9.4389 10.2769 12.4293 16.2932 17.4889 17.9082 18.7309 k = 0.3120 0.0000 0.2789 ( 522 PWs) bands (ev): -3.3778 3.7739 8.4075 12.4896 12.5045 13.8147 15.6019 19.2134 19.9009 k = 0.1560-0.2702 0.3904 ( 519 PWs) bands (ev): -2.6544 4.4421 7.7127 8.1214 8.9345 15.8479 19.0286 19.9005 20.3401 k = 0.6240 0.5404 0.0558 ( 510 PWs) bands (ev): 0.0195 1.4884 4.8521 6.2931 11.6887 16.1079 18.0812 21.7736 22.7886 k = 0.4680 0.2702 0.1673 ( 521 PWs) bands (ev): -1.9390 2.2517 6.9672 8.4715 12.3571 14.7559 18.4688 19.3523 20.3229 k = 0.0000 0.0000 0.5020 ( 522 PWs) bands (ev): -2.6053 1.8945 11.1015 11.1015 13.1450 13.1450 14.2180 15.5684 23.2787 k = 0.4680 0.8107 0.1673 ( 520 PWs) bands (ev): -0.4057 0.8174 5.5691 9.1233 10.6487 15.7467 18.3134 20.9347 21.9404 k = 0.3120 0.5404 0.2789 ( 510 PWs) bands (ev): -0.7535 3.6156 4.1518 7.4152 8.2548 15.1656 20.3983 21.3994 24.1931 k = 0.9361 0.0000-0.1673 ( 520 PWs) bands (ev): -0.4057 0.8174 5.5692 9.1233 10.6487 15.7467 18.3134 20.9347 21.9404 k = 0.7801-0.2702-0.0558 ( 510 PWs) bands (ev): 0.0195 1.4884 4.8521 6.2931 11.6887 16.1079 18.0812 21.7736 22.7886 k = 0.6240 0.0000 0.0558 ( 520 PWs) bands (ev): -1.1984 0.3013 9.2418 9.8651 11.2993 14.5060 16.6323 17.3554 22.4024 the Fermi energy is 13.4364 ev ! total energy = -25.40149382 Ry Harris-Foulkes estimate = -25.40149382 Ry estimated scf accuracy < 1.3E-11 Ry The total energy is the sum of the following terms: one-electron contribution = 11.86273039 Ry hartree contribution = 0.57695731 Ry xc contribution = -6.79312027 Ry ewald contribution = -31.04807031 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 3 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000016 0.00000000 -0.00033963 atom 2 type 1 force = 0.00000016 0.00000000 0.00033963 Total force = 0.000480 Total SCF correction = 0.000002 entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.02 0.00339767 0.00000000 0.00000000 499.81 0.00 0.00 0.00000000 0.00339766 0.00000000 0.00 499.81 0.00 0.00000000 0.00000000 0.00340187 0.00 0.00 500.43 number of scf cycles = 13 number of bfgs steps = 11 enthalpy old = -24.7529983135 Ry enthalpy new = -24.7530006085 Ry CASE: enthalpy_new < enthalpy_old new trust radius = 0.0019362713 bohr new conv_thr = 0.0000000100 Ry CELL_PARAMETERS (alat) 0.534088400 0.000000001 0.747246856 -0.267044370 0.462534354 0.747246986 -0.267044371 -0.462534354 0.747246985 ATOMIC_POSITIONS (crystal) As 0.249999043 0.249999015 0.249999015 As -0.249999043 -0.249999015 -0.249999015 Writing output data file pwscf.save NEW-OLD atomic charge density approx. for the potential NEW k-points: k( 1) = ( 0.0000000 0.0000000 0.1672807), wk = 0.0625000 k( 2) = ( -0.1560290 -0.2702502 0.2788012), wk = 0.1250000 k( 3) = ( 0.3120581 0.5405004 -0.0557602), wk = 0.1250000 k( 4) = ( 0.1560291 0.2702502 0.0557603), wk = 0.1250000 k( 5) = ( -0.3120581 0.0000000 0.3903216), wk = 0.0625000 k( 6) = ( 0.1560291 0.8107506 0.0557603), wk = 0.1250000 k( 7) = ( 0.0000000 0.5405004 0.1672807), wk = 0.1250000 k( 8) = ( 0.6241162 0.0000000 -0.2788011), wk = 0.0625000 k( 9) = ( 0.4680872 -0.2702502 -0.1672806), wk = 0.1250000 k( 10) = ( 0.3120581 0.0000000 -0.0557602), wk = 0.0625000 k( 11) = ( 0.3120582 0.0000000 0.2788012), wk = 0.0625000 k( 12) = ( 0.1560291 -0.2702502 0.3903217), wk = 0.1250000 k( 13) = ( 0.6241163 0.5405004 0.0557603), wk = 0.1250000 k( 14) = ( 0.4680872 0.2702502 0.1672808), wk = 0.1250000 k( 15) = ( 0.0000001 0.0000000 0.5018421), wk = 0.0625000 k( 16) = ( 0.4680872 0.8107506 0.1672808), wk = 0.1250000 k( 17) = ( 0.3120582 0.5405004 0.2788012), wk = 0.1250000 k( 18) = ( 0.9361744 0.0000000 -0.1672806), wk = 0.0625000 k( 19) = ( 0.7801453 -0.2702502 -0.0557601), wk = 0.1250000 k( 20) = ( 0.6241163 0.0000000 0.0557603), wk = 0.0625000 extrapolated charge 9.99991, renormalised to 10.00000 total cpu time spent up to now is 27.81 secs per-process dynamical memory: 5.2 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-06, avg # of iterations = 2.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.59E-10, avg # of iterations = 3.3 total cpu time spent up to now is 28.53 secs total energy = -25.40148858 Ry Harris-Foulkes estimate = -25.40142035 Ry estimated scf accuracy < 0.00000008 Ry iteration # 2 ecut= 25.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 7.77E-10, avg # of iterations = 1.0 total cpu time spent up to now is 28.81 secs End of self-consistent calculation k = 0.0000 0.0000 0.1673 ( 531 PWs) bands (ev): -4.8459 8.1809 10.7735 10.7735 13.4950 17.1689 17.1689 18.1398 18.8948 k =-0.1560-0.2703 0.2788 ( 522 PWs) bands (ev): -3.3779 3.7749 8.4044 12.4955 12.5006 13.8163 15.6029 19.2106 19.9045 k = 0.3121 0.5405-0.0558 ( 520 PWs) bands (ev): -1.1976 0.3016 9.2392 9.8664 11.3004 14.5056 16.6321 17.3506 22.3957 k = 0.1560 0.2703 0.0558 ( 525 PWs) bands (ev): -4.1246 5.8705 9.4409 10.2751 12.4285 16.2911 17.4854 17.9069 18.7308 k =-0.3121 0.0000 0.3903 ( 519 PWs) bands (ev): -2.6548 4.4401 7.7137 8.1239 8.9350 15.8481 19.0306 19.9036 20.3435 k = 0.1560 0.8108 0.0558 ( 510 PWs) bands (ev): 0.0193 1.4894 4.8528 6.2915 11.6881 16.1095 18.0836 21.7714 22.7868 k = 0.0000 0.5405 0.1673 ( 521 PWs) bands (ev): -1.9384 2.2526 6.9672 8.4709 12.3546 14.7532 18.4689 19.3540 20.3239 k = 0.6241 0.0000-0.2788 ( 510 PWs) bands (ev): -0.7531 3.6153 4.1512 7.4175 8.2543 15.1641 20.3973 21.3996 24.1917 k = 0.4681-0.2703-0.1673 ( 521 PWs) bands (ev): -1.9384 2.2526 6.9672 8.4709 12.3546 14.7532 18.4689 19.3540 20.3239 k = 0.3121 0.0000-0.0558 ( 525 PWs) bands (ev): -4.1246 5.8705 9.4409 10.2751 12.4285 16.2911 17.4854 17.9069 18.7308 k = 0.3121 0.0000 0.2788 ( 522 PWs) bands (ev): -3.3779 3.7749 8.4043 12.4955 12.5006 13.8163 15.6029 19.2106 19.9045 k = 0.1560-0.2703 0.3903 ( 519 PWs) bands (ev): -2.6548 4.4400 7.7137 8.1239 8.9350 15.8481 19.0306 19.9036 20.3435 k = 0.6241 0.5405 0.0558 ( 510 PWs) bands (ev): 0.0193 1.4894 4.8528 6.2915 11.6880 16.1095 18.0836 21.7714 22.7868 k = 0.4681 0.2703 0.1673 ( 521 PWs) bands (ev): -1.9384 2.2526 6.9672 8.4709 12.3546 14.7532 18.4689 19.3540 20.3239 k = 0.0000 0.0000 0.5018 ( 522 PWs) bands (ev): -2.6063 1.8919 11.1044 11.1044 13.1473 13.1473 14.2223 15.5724 23.2774 k = 0.4681 0.8108 0.1673 ( 520 PWs) bands (ev): -0.4069 0.8160 5.5704 9.1255 10.6511 15.7489 18.3177 20.9347 21.9403 k = 0.3121 0.5405 0.2788 ( 510 PWs) bands (ev): -0.7531 3.6153 4.1512 7.4175 8.2543 15.1641 20.3973 21.3996 24.1917 k = 0.9362 0.0000-0.1673 ( 520 PWs) bands (ev): -0.4069 0.8160 5.5704 9.1255 10.6511 15.7489 18.3177 20.9347 21.9403 k = 0.7801-0.2703-0.0558 ( 510 PWs) bands (ev): 0.0193 1.4894 4.8528 6.2915 11.6880 16.1095 18.0836 21.7714 22.7868 k = 0.6241 0.0000 0.0558 ( 520 PWs) bands (ev): -1.1976 0.3016 9.2391 9.8664 11.3004 14.5056 16.6321 17.3506 22.3957 the Fermi energy is 13.4377 ev ! total energy = -25.40148858 Ry Harris-Foulkes estimate = -25.40148858 Ry estimated scf accuracy < 6.1E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 11.86283824 Ry hartree contribution = 0.57694553 Ry xc contribution = -6.79313371 Ry ewald contribution = -31.04814770 Ry smearing contrib. (-TS) = 0.00000906 Ry convergence has been achieved in 2 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000007 0.00000000 0.00000426 atom 2 type 1 force = 0.00000007 0.00000000 -0.00000426 Total force = 0.000006 Total SCF correction = 0.000001 SCF correction compared to forces is too large, reduce conv_thr entering subroutine stress ... total stress (Ry/bohr**3) (kbar) P= 500.02 0.00339902 0.00000000 0.00000000 500.01 0.00 0.00 0.00000000 0.00339902 0.00000000 0.00 500.01 0.00 0.00000000 0.00000000 0.00339907 0.00 0.00 500.02 bfgs converged in 14 scf cycles and 12 bfgs steps End of BFGS Geometry Optimization Final enthalpy = -24.7530011065 Ry CELL_PARAMETERS (alat) 0.534088400 0.000000001 0.747246856 -0.267044370 0.462534354 0.747246986 -0.267044371 -0.462534354 0.747246985 ATOMIC_POSITIONS (crystal) As 0.249999043 0.249999015 0.249999015 As -0.249999043 -0.249999015 -0.249999015 Writing output data file pwscf.save PWSCF : 29.01s CPU time, 33.44s wall time init_run : 0.22s CPU electrons : 24.87s CPU ( 14 calls, 1.776 s avg) update_pot : 1.13s CPU ( 13 calls, 0.087 s avg) forces : 0.56s CPU ( 14 calls, 0.040 s avg) stress : 1.44s CPU ( 14 calls, 0.103 s avg) Called by init_run: wfcinit : 0.11s CPU potinit : 0.04s CPU Called by electrons: c_bands : 21.09s CPU ( 61 calls, 0.346 s avg) sum_band : 3.52s CPU ( 61 calls, 0.058 s avg) v_of_rho : 0.15s CPU ( 68 calls, 0.002 s avg) mix_rho : 0.05s CPU ( 61 calls, 0.001 s avg) Called by c_bands: init_us_2 : 0.48s CPU ( 3020 calls, 0.000 s avg) cegterg : 20.73s CPU ( 1220 calls, 0.017 s avg) Called by *egterg: h_psi : 17.34s CPU ( 4245 calls, 0.004 s avg) g_psi : 0.41s CPU ( 3005 calls, 0.000 s avg) cdiaghg : 1.05s CPU ( 3825 calls, 0.000 s avg) Called by h_psi: add_vuspsi : 0.25s CPU ( 4245 calls, 0.000 s avg) General routines calbec : 0.49s CPU ( 4805 calls, 0.000 s avg) cft3 : 0.13s CPU ( 294 calls, 0.000 s avg) cft3s : 17.43s CPU ( 70680 calls, 0.000 s avg) davcio : 0.04s CPU ( 4240 calls, 0.000 s avg) espresso-5.1/PW/examples/example10/0000755000175000017500000000000012341373041015240 5ustar mbambaespresso-5.1/PW/examples/example10/run_xml_example0000755000175000017500000001756712341373025020407 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to perform electronic structure" $ECHO "calculations in the presence of a finite homogeneous electric field " $ECHO "described through the modern theory of the polarization. The example" $ECHO "shows how to calculate high-frequency dielectric constant of bulk Silicon" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pbe-rrkj.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" cat > si.scf.efield.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pbe-rrkj.UPF -0.125 -0.125 -0.125 0.375 0.375 -0.125 0.375 -0.125 0.375 -0.125 0.375 0.375 0.125 0.125 0.125 0.625 0.625 0.125 0.625 0.125 0.625 0.125 0.625 0.625 from_scratch $PSEUDO_DIR/ $TMP_DIR/ random 20.0 david 0.5 1.0d-8 true 1 0.d0 0.d0 0.d0 3 3 7 0 0 0 EOF $ECHO " running the PW calculation for bulk Si E_field=0.0 a.u. ...\c" $PW_COMMAND < si.scf.efield.xml > si.scf.efield.out check_failure $? $ECHO " done" cat > si.scf.efield2.xml << EOF 0.0 0.0 0.0 0.0 0.0 28.086 Si.pbe-rrkj.UPF -0.125 -0.125 -0.125 0.375 0.375 -0.125 0.375 -0.125 0.375 -0.125 0.375 0.375 0.125 0.125 0.125 0.625 0.625 0.125 0.625 0.125 0.625 0.125 0.625 0.625 from_scratch $PSEUDO_DIR/ $TMP_DIR/ random 20.0 david 0.5 1.0d-8 true 3 0.d0 0.d0 0.001d0 3 3 7 0 0 0 EOF $ECHO " running the PW calculation for bulk Si E_field=0.001 a.u. ...\c" $PW_COMMAND < si.scf.efield2.xml > si.scf.efield2.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PW/examples/example10/README0000644000175000017500000001241712341373025016127 0ustar mbambaThis example shows how to perform electronic structure calculations using pw.x for a system undergoing the presence of a static homogeneous finite electric field. The method is explained in: P. Umari and A. Pasquarello, PRL 89,157602 (2002) I. Souza, J.Iniguez, and D.Vanderbilt, PRL 89, 117602 (2002) T The concerned parameters are: In namelist &CONTROL lelfield LOGICAL ( default = .FALSE. ) If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. gdir INTEGER For Berry phase calculation: direction of the k-point strings in reciprocal space. Allowed values: 1, 2, 3 1=first, 2=second, 3=third reciprocal lattice vector For calculations with finite electric fields (lelfield==.true.), gdir is the direction of the field This is NOT USED if K_POINTS {automatic} IS PRESENT nppstr INTEGER For Berry phase calculation: number of k-points to be calculated along each symmetry-reduced string The same for calculation with finite electric fields (lelfield==.true.) This is NOT USED if K_POINTS {automatic} IS PRESENT nberrycyc INTEGER ( default = 1 ) In the case of a finite electric field (lelfield==.true.) it defines the number of iterations for converging the wavefunctions in the electric field Hamiltonian, for each external iteration on the charge density In namelist &ELECTRONS efield REAL ( default = 0.D0 ) For finite electric field calculations (lelfield == .true.), it defines the intensity of the field in a.u. This is NOT USED if K_POINTS {automatic} IS PRESENT in the case of K_POINTS {automatic} the electric field is given in Cartesian coordinates through: efield_cart(1) 1st component of the electric field in (Rydberg-type) atomic units efield_cart(2) 2st component of the electric field in (Rydberg-type) atomic units efield_cart(3) 3rd component of the electric field in (Rydberg-type) atomic units To perform a calculations with an electric field, an estimate of the optimized wavefunctions is needed to build the electric field operator (See: I. Souza, J.Iniguez and D. Vanderbilt, PRB 69, 085106, 2004). Therefore when lelfield ==.true. a copy of the wavefunctions is read from disk (i.e. startingwfc should be 'file'). When K_POINTS {automatic} IS NOT present The parameters GDIR defines the direction of the electric field. The k_points must be given as a series of k-points-strings. A k-points-string is a series of NPPSTR uniform spaced k-points along the direction gdir. All the k-points in a string must have the same weight. PAY ATTENTION: in pw.x the default units for k-points coordinates is 2pi/alat and NOT crystalline units. Example of k-strings: nppstr=4 gdir=1 0.0 KY KZ 1. 0.25 KY KZ 1. 0.50 KY KZ 1. 0.75 KY KZ 1. nppstr=4 gdir=3 KX KY 0.0 1. KX KY 0.25 1. KX KY 0.50 1. KX KY 0.75 1. When K_POINTS {automatic} IS present the string are calculated directly by pw.x and the electric field must be given in Cartesian coordinates, also the Polarization (electronic and ionic) is then reported in Cartesian coordinates For every usual iteration of pw.x when the Hartree and exchange-correlation potentials are kept fixed, when lelfield==.true. there are NBERRYCYC iterations. During each of these iterations, the electric field operator (which depends on the wave-functions) is kept fixed; then the new electric field operator is built from the eigen-wavefunctions, and a new iteration starts. This has been introduced because the electric field Hamiltonian depends self consistently on the wavefunctions. For every iteration on the charge (usual pw.x iterations), the code reports the Electronic and Ionic Dipole in a.u. per unit cell and the expectations values of the operator e^{+iGz}. The letter is given for the corresponding supercell containing N_kx*N_ky*N_kz unit cells (N_kx,N_ky,N_kz are the number of k-points along x,y,z) Example: With this example, we show how to calculate the dielectric constant of bulk silicon. The system is described by a 8-atom cubic unit cell. We use a regular mesh of 3X3X7 k-points, where we have 7 k-points along the directions of the electric field: gdir=3,nppstr=7 The first calculation just calculates the electronic structure without electric field. The second calculation turns on the field but with 0 a.u. intensity. The third calculation applies a field of 0.001 a.u.. The electronic dipole D[0.a.u.] at 0 field is a small number in the order of 1.0d-4. After the third calculation the electronic dipole D[0.001 a.u.] at 0.001 a.u. field is 0.9265. The high-frequency dielectric constant eps_inf is then given by eps_inf=4*pi*(D[0.001 a.u.]-D[0.0 a.u.])/(0.001 a.u. * Omega) + 1 where Omega is the volume of the unit cell (1054.9778 (a.u.)^3). We obtain: eps_inf=12.04 (Compare: other DFT calculations, 12.7-13.1 , exp. 11.4 ) The result 12.14 is not fully converged with respect to the k-points grid P.Umari and A. Pasquarello, PRB 68, 085114 (2003). espresso-5.1/PW/examples/example10/run_example0000755000175000017500000000775512341373025017525 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use pw.x to perform electronic structure" $ECHO "calculations in the presence of a finite homogeneous electric field " $ECHO "described through the modern theory of the polarization. The example" $ECHO "shows how to calculate high-frequency dielectric constant of bulk Silicon" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Si.pbe-rrkj.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO cat > si.scf.efield.in << EOF &control calculation='scf' restart_mode='from_scratch', prefix='silicon', lelfield=.true., nberrycyc=1 pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 1, celldm(1)=10.18, nat= 8, ntyp= 1, ecutwfc = 20.0 / &electrons diagonalization='david', conv_thr = 1.0d-8, mixing_beta = 0.5, startingwfc='random', efield_cart(1)=0.d0,efield_cart(2)=0.d0,efield_cart(3)=0.d0 / ATOMIC_SPECIES Si 28.086 Si.pbe-rrkj.UPF ATOMIC_POSITIONS Si -0.125 -0.125 -0.125 Si 0.375 0.375 -0.125 Si 0.375 -0.125 0.375 Si -0.125 0.375 0.375 Si 0.125 0.125 0.125 Si 0.625 0.625 0.125 Si 0.625 0.125 0.625 Si 0.125 0.625 0.625 K_POINTS {automatic} 3 3 7 0 0 0 EOF $ECHO " running the PW calculation for bulk Si E_field=0.0 a.u. ...\c" $PW_COMMAND < si.scf.efield.in > si.scf.efield.out check_failure $? $ECHO " done" cat > si.scf.efield2.in << EOF &control calculation='scf' restart_mode='from_scratch', prefix='silicon', lelfield=.true., nberrycyc=3 pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/' / &system ibrav= 1, celldm(1)=10.18, nat= 8, ntyp= 1, ecutwfc = 20.0 / &electrons diagonalization='david', conv_thr = 1.0d-8, mixing_beta = 0.5, startingwfc='random', efield_cart(1)=0.d0,efield_cart(2)=0.d0,efield_cart(3)=0.001d0 / ATOMIC_SPECIES Si 28.086 Si.pbe-rrkj.UPF ATOMIC_POSITIONS Si -0.125 -0.125 -0.125 Si 0.375 0.375 -0.125 Si 0.375 -0.125 0.375 Si -0.125 0.375 0.375 Si 0.125 0.125 0.125 Si 0.625 0.625 0.125 Si 0.625 0.125 0.625 Si 0.125 0.625 0.625 K_POINTS {automatic} 3 3 7 0 0 0 EOF $ECHO " running the PW calculation for bulk Si E_field=0.001 a.u. ...\c" $PW_COMMAND < si.scf.efield2.in > si.scf.efield2.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/silicon* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/PW/examples/example10/reference/0000755000175000017500000000000012341373041017176 5ustar mbambaespresso-5.1/PW/examples/example10/reference/si.scf.efield2.out0000644000175000017500000010551512341373025022436 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 18Jun2008 at 15: 1: 2 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Fractionary translation: -0.5000 -0.5000 0.0000is a symmetry operation: This is a supercell, fractionary translation are disabled: Fractionary translation: -0.5000 0.0000 -0.5000is a symmetry operation: This is a supercell, fractionary translation are disabled: Fractionary translation: 0.0000 -0.5000 -0.5000is a symmetry operation: This is a supercell, fractionary translation are disabled: bravais-lattice index = 1 lattice parameter (a_0) = 10.1800 a.u. unit-cell volume = 1054.9778 (a.u.)^3 number of atoms/cell = 8 number of atomic types = 1 number of electrons = 32.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) Using Berry phase electric field In a.u. carthesian system of reference 0.0000000000 0.0000000000 0.0010000000 In a.u. crystal system of reference 0.0000000000 0.0000000000 0.0010000000 Number of iterative cycles: 3 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Si read from file Si.pbe-rrkj.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 883 points, 3 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( -0.1250000 -0.1250000 -0.1250000 ) 2 Si tau( 2) = ( 0.3750000 0.3750000 -0.1250000 ) 3 Si tau( 3) = ( 0.3750000 -0.1250000 0.3750000 ) 4 Si tau( 4) = ( -0.1250000 0.3750000 0.3750000 ) 5 Si tau( 5) = ( 0.1250000 0.1250000 0.1250000 ) 6 Si tau( 6) = ( 0.6250000 0.6250000 0.1250000 ) 7 Si tau( 7) = ( 0.6250000 0.1250000 0.6250000 ) 8 Si tau( 8) = ( 0.1250000 0.6250000 0.6250000 ) number of k points= 63 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0317460 k( 2) = ( 0.0000000 0.0000000 0.1428571), wk = 0.0317460 k( 3) = ( 0.0000000 0.0000000 0.2857143), wk = 0.0317460 k( 4) = ( 0.0000000 0.0000000 0.4285714), wk = 0.0317460 k( 5) = ( 0.0000000 0.0000000 0.5714286), wk = 0.0317460 k( 6) = ( 0.0000000 0.0000000 0.7142857), wk = 0.0317460 k( 7) = ( 0.0000000 0.0000000 0.8571429), wk = 0.0317460 k( 8) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0317460 k( 9) = ( 0.0000000 0.3333333 0.1428571), wk = 0.0317460 k( 10) = ( 0.0000000 0.3333333 0.2857143), wk = 0.0317460 k( 11) = ( 0.0000000 0.3333333 0.4285714), wk = 0.0317460 k( 12) = ( 0.0000000 0.3333333 0.5714286), wk = 0.0317460 k( 13) = ( 0.0000000 0.3333333 0.7142857), wk = 0.0317460 k( 14) = ( 0.0000000 0.3333333 0.8571429), wk = 0.0317460 k( 15) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0317460 k( 16) = ( 0.0000000 0.6666667 0.1428571), wk = 0.0317460 k( 17) = ( 0.0000000 0.6666667 0.2857143), wk = 0.0317460 k( 18) = ( 0.0000000 0.6666667 0.4285714), wk = 0.0317460 k( 19) = ( 0.0000000 0.6666667 0.5714286), wk = 0.0317460 k( 20) = ( 0.0000000 0.6666667 0.7142857), wk = 0.0317460 k( 21) = ( 0.0000000 0.6666667 0.8571429), wk = 0.0317460 k( 22) = ( 0.3333333 0.0000000 0.0000000), wk = 0.0317460 k( 23) = ( 0.3333333 0.0000000 0.1428571), wk = 0.0317460 k( 24) = ( 0.3333333 0.0000000 0.2857143), wk = 0.0317460 k( 25) = ( 0.3333333 0.0000000 0.4285714), wk = 0.0317460 k( 26) = ( 0.3333333 0.0000000 0.5714286), wk = 0.0317460 k( 27) = ( 0.3333333 0.0000000 0.7142857), wk = 0.0317460 k( 28) = ( 0.3333333 0.0000000 0.8571429), wk = 0.0317460 k( 29) = ( 0.3333333 0.3333333 0.0000000), wk = 0.0317460 k( 30) = ( 0.3333333 0.3333333 0.1428571), wk = 0.0317460 k( 31) = ( 0.3333333 0.3333333 0.2857143), wk = 0.0317460 k( 32) = ( 0.3333333 0.3333333 0.4285714), wk = 0.0317460 k( 33) = ( 0.3333333 0.3333333 0.5714286), wk = 0.0317460 k( 34) = ( 0.3333333 0.3333333 0.7142857), wk = 0.0317460 k( 35) = ( 0.3333333 0.3333333 0.8571429), wk = 0.0317460 k( 36) = ( 0.3333333 0.6666667 0.0000000), wk = 0.0317460 k( 37) = ( 0.3333333 0.6666667 0.1428571), wk = 0.0317460 k( 38) = ( 0.3333333 0.6666667 0.2857143), wk = 0.0317460 k( 39) = ( 0.3333333 0.6666667 0.4285714), wk = 0.0317460 k( 40) = ( 0.3333333 0.6666667 0.5714286), wk = 0.0317460 k( 41) = ( 0.3333333 0.6666667 0.7142857), wk = 0.0317460 k( 42) = ( 0.3333333 0.6666667 0.8571429), wk = 0.0317460 k( 43) = ( 0.6666667 0.0000000 0.0000000), wk = 0.0317460 k( 44) = ( 0.6666667 0.0000000 0.1428571), wk = 0.0317460 k( 45) = ( 0.6666667 0.0000000 0.2857143), wk = 0.0317460 k( 46) = ( 0.6666667 0.0000000 0.4285714), wk = 0.0317460 k( 47) = ( 0.6666667 0.0000000 0.5714286), wk = 0.0317460 k( 48) = ( 0.6666667 0.0000000 0.7142857), wk = 0.0317460 k( 49) = ( 0.6666667 0.0000000 0.8571429), wk = 0.0317460 k( 50) = ( 0.6666667 0.3333333 0.0000000), wk = 0.0317460 k( 51) = ( 0.6666667 0.3333333 0.1428571), wk = 0.0317460 k( 52) = ( 0.6666667 0.3333333 0.2857143), wk = 0.0317460 k( 53) = ( 0.6666667 0.3333333 0.4285714), wk = 0.0317460 k( 54) = ( 0.6666667 0.3333333 0.5714286), wk = 0.0317460 k( 55) = ( 0.6666667 0.3333333 0.7142857), wk = 0.0317460 k( 56) = ( 0.6666667 0.3333333 0.8571429), wk = 0.0317460 k( 57) = ( 0.6666667 0.6666667 0.0000000), wk = 0.0317460 k( 58) = ( 0.6666667 0.6666667 0.1428571), wk = 0.0317460 k( 59) = ( 0.6666667 0.6666667 0.2857143), wk = 0.0317460 k( 60) = ( 0.6666667 0.6666667 0.4285714), wk = 0.0317460 k( 61) = ( 0.6666667 0.6666667 0.5714286), wk = 0.0317460 k( 62) = ( 0.6666667 0.6666667 0.7142857), wk = 0.0317460 k( 63) = ( 0.6666667 0.6666667 0.8571429), wk = 0.0317460 G cutoff = 210.0031 ( 12893 G-vectors) FFT grid: ( 30, 30, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.39 Mb ( 1602, 16) NL pseudopotentials 0.98 Mb ( 1602, 40) Each V/rho on FFT grid 0.41 Mb ( 27000) Each G-vector array 0.10 Mb ( 12893) G-vector shells 0.00 Mb ( 178) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.56 Mb ( 1602, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 40, 16) Arrays for rho mixing 3.30 Mb ( 27000, 8) Initial potential from superposition of free atoms starting charge 31.99557, renormalised to 32.00000 Starting wfc are random total cpu time spent up to now is 4.34 secs per-process dynamical memory: 8.5 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.7 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.61E-04, avg # of iterations = 1.5 Davidson diagonalization with overlap ethr = 7.61E-04, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 7.61E-04, avg # of iterations = 1.0 Expectation value of exp(iGx): (9.846580054630472E-002,-2.758280299918536E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.283703569008579E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.866406775570338E-002,5.958192561892954E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 2.767343961196250E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.345104629130683,5.909234794026798E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.777144660112236 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -1.283703569008579E-002 2 2.767343961196250E-002 3 0.777144660112236 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 138.60 secs total energy = -63.06626373 Ry Harris-Foulkes estimate = -63.00070328 Ry estimated scf accuracy < 0.24732935 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.73E-04, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 7.73E-04, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 7.73E-04, avg # of iterations = 1.0 Expectation value of exp(iGx): (9.349178551733472E-002,-7.493240220955030E-005) 1.00000000000000 Electronic Dipole per cell (a.u.) -3.672899217304521E-003 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.354845826647028E-002,2.848944924513999E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 1.395593633627084E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.337134129241638,6.347466078728202E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.852817418355932 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -3.672899217304521E-003 2 1.395593633627084E-002 3 0.852817418355932 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 194.51 secs total energy = -63.06658720 Ry Harris-Foulkes estimate = -62.95690874 Ry estimated scf accuracy < 0.04209916 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.32E-04, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 1.32E-04, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 1.32E-04, avg # of iterations = 1.0 Expectation value of exp(iGx): (9.003732100867866E-002,-4.541463420692502E-005) 1.00000000000000 Electronic Dipole per cell (a.u.) -2.311458616472792E-003 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.004820086355478E-002,1.502882460642592E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 7.648257051537932E-003 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.330565885164325,6.512999603927223E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.891473869186882 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -2.311458616472792E-003 2 7.648257051537932E-003 3 0.891473869186882 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 250.35 secs total energy = -63.06898945 Ry Harris-Foulkes estimate = -62.95290653 Ry estimated scf accuracy < 0.00068128 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.13E-06, avg # of iterations = 3.4 Davidson diagonalization with overlap ethr = 2.13E-06, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 2.13E-06, avg # of iterations = 1.0 Expectation value of exp(iGx): (8.966059258821137E-002,-5.889410125019951E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) -3.010115057810071E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.966393254224050E-002,-1.150534967425624E-005) 1.00000000000000 Electronic Dipole per cell (a.u.) -5.880238491999361E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.329302623191886,6.717211656984547E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.922123600349487 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -3.010115057810071E-004 2 -5.880238491999361E-004 3 0.922123600349487 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 308.49 secs total energy = -63.06909581 Ry Harris-Foulkes estimate = -62.95300099 Ry estimated scf accuracy < 0.00000465 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.45E-08, avg # of iterations = 4.0 Davidson diagonalization with overlap ethr = 1.45E-08, avg # of iterations = 1.1 Davidson diagonalization with overlap ethr = 1.45E-08, avg # of iterations = 1.0 Expectation value of exp(iGx): (8.962889414088730E-002,-1.951518499691881E-008) 1.00000000000000 Electronic Dipole per cell (a.u.) -9.977863024737818E-007 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.962847405004415E-002,-2.910604378864389E-007) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.488161548800962E-005 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.329111459445600,6.749672356229089E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.926983152796620 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -9.977863024737818E-007 2 -1.488161548800962E-005 3 0.926983152796620 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 372.03 secs total energy = -63.06909802 Ry Harris-Foulkes estimate = -62.95299706 Ry estimated scf accuracy < 0.00000044 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.38E-09, avg # of iterations = 2.2 Davidson diagonalization with overlap ethr = 1.38E-09, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 1.38E-09, avg # of iterations = 1.0 Expectation value of exp(iGx): (8.964263034703646E-002,-1.825690700752899E-007) 1.00000000000000 Electronic Dipole per cell (a.u.) -9.333091320137365E-006 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.964254287090781E-002,1.890386063266431E-008) 1.00000000000000 Electronic Dipole per cell (a.u.) 9.663829129593618E-007 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.329142548643606,6.746596736482731E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.926487021997254 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -9.333091320137365E-006 2 9.663829129593618E-007 3 0.926487021997254 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 430.64 secs total energy = -63.06909802 Ry Harris-Foulkes estimate = -62.95299792 Ry estimated scf accuracy < 0.00000005 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.70E-10, avg # of iterations = 2.1 Davidson diagonalization with overlap ethr = 1.70E-10, avg # of iterations = 1.0 Davidson diagonalization with overlap ethr = 1.70E-10, avg # of iterations = 1.0 Expectation value of exp(iGx): (8.964538342142926E-002,-2.363345217613312E-007) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.208125742863772E-005 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.964534073840011E-002,-9.417603414440097E-008) 1.00000000000000 Electronic Dipole per cell (a.u.) -4.814216075399945E-006 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.329149677364304,6.746060422482718E-002) 1.00000000000000 Electronic Dipole per cell (a.u.) 0.926395840102385 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -1.208125742863772E-005 2 -4.814216075399945E-006 3 0.926395840102385 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 490.06 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1575 PWs) bands (ev): -5.5816 -1.3524 -1.3524 -1.3523 -1.3523 -1.3523 -1.3523 3.5784 3.5784 3.5796 3.5796 3.5796 3.5796 6.4873 6.4889 6.4889 k = 0.0000 0.0000 0.1429 ( 1599 PWs) bands (ev): -5.4905 -2.4220 -1.3216 -1.3216 -1.3216 -1.3215 -0.1753 3.3336 3.3336 3.3336 3.3336 3.6603 3.6604 5.9839 6.1476 6.1476 k = 0.0000 0.0000 0.2857 ( 1582 PWs) bands (ev): -5.2182 -3.3590 -1.2481 -1.2481 -1.2481 -1.2481 1.0776 2.8850 2.8850 2.8850 2.8850 3.9043 3.9044 4.9086 5.4913 5.4913 k = 0.0000 0.0000 0.4286 ( 1602 PWs) bands (ev): -4.7679 -4.1454 -1.1842 -1.1842 -1.1841 -1.1841 2.3696 2.5820 2.5820 2.5821 2.5821 3.6630 4.3031 4.3031 4.8436 4.8437 k = 0.0000 0.0000 0.5714 ( 1602 PWs) bands (ev): -4.7679 -4.1454 -1.1842 -1.1842 -1.1841 -1.1841 2.3696 2.5820 2.5820 2.5821 2.5821 3.6630 4.3031 4.3031 4.8436 4.8437 k = 0.0000 0.0000 0.7143 ( 1582 PWs) bands (ev): -5.2182 -3.3590 -1.2481 -1.2481 -1.2481 -1.2481 1.0776 2.8850 2.8850 2.8850 2.8850 3.9043 3.9044 4.9086 5.4913 5.4913 k = 0.0000 0.0000 0.8571 ( 1599 PWs) bands (ev): -5.4905 -2.4220 -1.3216 -1.3216 -1.3216 -1.3215 -0.1753 3.3336 3.3336 3.3336 3.3336 3.6603 3.6604 5.9839 6.1476 6.1476 k = 0.0000 0.3333 0.0000 ( 1594 PWs) bands (ev): -5.0877 -3.6386 -1.2226 -1.2226 -1.2225 -1.2225 1.5056 2.7567 2.7567 2.7567 2.7567 4.0209 4.0221 4.5034 5.2673 5.2692 k = 0.0000 0.3333 0.1429 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3720 2.1957 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6975 k = 0.0000 0.3333 0.2857 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0087 1.9682 2.7516 3.0507 3.0709 3.8603 4.0920 4.2025 4.2507 5.9698 k = 0.0000 0.3333 0.4286 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9975 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2234 2.4673 3.0860 3.6012 4.2731 4.4205 4.7474 5.5854 k = 0.0000 0.3333 0.5714 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9976 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2233 2.4673 3.0860 3.6013 4.2731 4.4205 4.7474 5.5854 k = 0.0000 0.3333 0.7143 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0088 1.9682 2.7515 3.0506 3.0709 3.8604 4.0920 4.2025 4.2507 5.9697 k = 0.0000 0.3333 0.8571 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3721 2.1958 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6974 k = 0.0000 0.6667 0.0000 ( 1594 PWs) bands (ev): -5.0877 -3.6386 -1.2226 -1.2226 -1.2225 -1.2225 1.5056 2.7567 2.7567 2.7567 2.7567 4.0209 4.0221 4.5034 5.2673 5.2692 k = 0.0000 0.6667 0.1429 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3721 2.1958 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6974 k = 0.0000 0.6667 0.2857 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0088 1.9682 2.7515 3.0506 3.0709 3.8604 4.0920 4.2025 4.2507 5.9697 k = 0.0000 0.6667 0.4286 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9976 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2233 2.4673 3.0860 3.6013 4.2731 4.4205 4.7474 5.5854 k = 0.0000 0.6667 0.5714 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9975 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2234 2.4673 3.0860 3.6012 4.2731 4.4205 4.7474 5.5854 k = 0.0000 0.6667 0.7143 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0087 1.9682 2.7516 3.0507 3.0709 3.8603 4.0920 4.2025 4.2507 5.9697 k = 0.0000 0.6667 0.8571 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3720 2.1957 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6975 k = 0.3333 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0877 -3.6386 -1.2226 -1.2226 -1.2225 -1.2225 1.5056 2.7567 2.7567 2.7567 2.7567 4.0209 4.0221 4.5034 5.2673 5.2692 k = 0.3333 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3720 2.1957 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6975 k = 0.3333 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0087 1.9682 2.7516 3.0507 3.0709 3.8603 4.0920 4.2025 4.2507 5.9698 k = 0.3333 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9975 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2234 2.4673 3.0860 3.6012 4.2731 4.4205 4.7474 5.5854 k = 0.3333 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9976 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2233 2.4673 3.0860 3.6013 4.2731 4.4205 4.7474 5.5854 k = 0.3333 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0088 1.9682 2.7515 3.0506 3.0709 3.8604 4.0920 4.2025 4.2507 5.9697 k = 0.3333 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3721 2.1958 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6974 k = 0.3333 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6121 -3.2418 -3.2418 -2.2369 -0.2949 0.8540 0.8540 1.9698 2.7853 2.8409 2.8409 4.0238 4.1432 4.1432 4.3342 5.9167 k = 0.3333 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3445 0.5321 0.5322 2.2091 2.3851 3.1357 3.1357 4.2717 4.2717 4.3997 4.6292 5.8277 k = 0.3333 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0171 1.3736 3.3211 3.5701 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.3333 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3885 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8826 5.2359 5.2934 k = 0.3333 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3885 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8826 5.2360 5.2934 k = 0.3333 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0171 1.3736 3.3211 3.5701 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.3333 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3444 0.5322 0.5322 2.2091 2.3851 3.1357 3.1357 4.2717 4.2717 4.3997 4.6292 5.8277 k = 0.3333 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6121 -3.2418 -3.2418 -2.2369 -0.2950 0.8541 0.8541 1.9699 2.7853 2.8409 2.8409 4.0238 4.1432 4.1433 4.3342 5.9167 k = 0.3333 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3445 0.5322 0.5322 2.2090 2.3851 3.1357 3.1357 4.2717 4.2717 4.3996 4.6293 5.8277 k = 0.3333 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0170 1.3736 3.3211 3.5700 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.3333 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3884 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8825 5.2359 5.2934 k = 0.3333 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3884 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8825 5.2359 5.2934 k = 0.3333 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0170 1.3736 3.3211 3.5700 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.3333 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3445 0.5322 0.5322 2.2090 2.3851 3.1357 3.1357 4.2717 4.2717 4.3996 4.6292 5.8277 k = 0.6667 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0877 -3.6386 -1.2226 -1.2226 -1.2225 -1.2225 1.5056 2.7567 2.7567 2.7567 2.7567 4.0209 4.0221 4.5034 5.2673 5.2692 k = 0.6667 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3721 2.1958 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6974 k = 0.6667 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0088 1.9682 2.7515 3.0506 3.0709 3.8604 4.0920 4.2025 4.2507 5.9697 k = 0.6667 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9976 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2233 2.4673 3.0860 3.6013 4.2731 4.4205 4.7474 5.5854 k = 0.6667 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3062 -3.7158 -2.9975 -2.5566 0.0181 0.5215 1.4021 2.0789 2.2234 2.4673 3.0860 3.6012 4.2731 4.4205 4.7474 5.5854 k = 0.6667 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7375 -3.3445 -2.9833 -2.0767 -0.4418 0.5745 1.0087 1.9682 2.7516 3.0507 3.0709 3.8603 4.0920 4.2025 4.2507 5.9698 k = 0.6667 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9998 -3.5638 -2.1372 -1.6222 -0.8462 -0.3010 1.3720 2.1957 2.6303 3.1657 3.5246 3.6882 3.9253 4.0207 4.9214 5.6975 k = 0.6667 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6121 -3.2418 -3.2418 -2.2369 -0.2950 0.8541 0.8541 1.9699 2.7853 2.8409 2.8409 4.0238 4.1432 4.1433 4.3342 5.9167 k = 0.6667 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3445 0.5322 0.5322 2.2090 2.3851 3.1357 3.1357 4.2717 4.2717 4.3996 4.6292 5.8277 k = 0.6667 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0170 1.3736 3.3211 3.5700 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.6667 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3884 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8825 5.2359 5.2934 k = 0.6667 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3884 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8825 5.2359 5.2934 k = 0.6667 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0170 1.3736 3.3211 3.5700 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.6667 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3445 0.5322 0.5322 2.2090 2.3851 3.1357 3.1357 4.2717 4.2717 4.3996 4.6293 5.8277 k = 0.6667 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6121 -3.2418 -3.2418 -2.2369 -0.2949 0.8540 0.8540 1.9698 2.7853 2.8409 2.8409 4.0238 4.1432 4.1432 4.3342 5.9167 k = 0.6667 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3444 0.5322 0.5322 2.2091 2.3851 3.1357 3.1357 4.2717 4.2717 4.3997 4.6292 5.8277 k = 0.6667 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0171 1.3736 3.3211 3.5701 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.6667 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3885 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8826 5.2360 5.2934 k = 0.6667 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8991 -3.3950 -2.9572 -2.9571 -0.3885 -0.3885 0.0830 0.6428 3.8273 3.8273 4.4023 4.7883 4.7883 4.8826 5.2359 5.2934 k = 0.6667 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2880 -3.0721 -3.0721 -2.8472 -0.2600 -0.0171 -0.0171 1.3736 3.3211 3.5701 3.5701 4.5843 4.5843 4.5896 5.3752 5.5797 k = 0.6667 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5302 -3.1935 -3.1935 -2.4033 -0.3445 0.5321 0.5322 2.2091 2.3851 3.1357 3.1357 4.2717 4.2717 4.3997 4.6292 5.8277 ! total energy = -63.06909807 Ry Harris-Foulkes estimate = -62.95299811 Ry estimated scf accuracy < 3.9E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 19.83196098 Ry hartree contribution = 4.30330495 Ry xc contribution = -19.35642184 Ry ewald contribution = -67.73184220 Ry convergence has been achieved in 7 iterations Writing output data file silicon.save PWSCF : 8m10.34s CPU time, 9m 4.03s wall time init_run : 4.29s CPU electrons : 485.72s CPU Called by init_run: wfcinit : 4.01s CPU potinit : 0.06s CPU Called by electrons: c_bands : 286.38s CPU ( 24 calls, 11.932 s avg) sum_band : 13.16s CPU ( 8 calls, 1.645 s avg) v_of_rho : 0.35s CPU ( 8 calls, 0.044 s avg) mix_rho : 0.04s CPU ( 8 calls, 0.005 s avg) Called by c_bands: init_us_2 : 2.86s CPU ( 2079 calls, 0.001 s avg) cegterg : 278.07s CPU ( 1512 calls, 0.184 s avg) Called by *egterg: h_psi : 250.45s CPU ( 4096 calls, 0.061 s avg) g_psi : 2.76s CPU ( 2521 calls, 0.001 s avg) cdiaghg : 4.94s CPU ( 3718 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 7.93s CPU ( 4096 calls, 0.002 s avg) General routines calbec : 9.18s CPU ( 4096 calls, 0.002 s avg) cft3 : 0.17s CPU ( 81 calls, 0.002 s avg) cft3s : 172.67s CPU ( 122112 calls, 0.001 s avg) davcio : 0.18s CPU ( 16821 calls, 0.000 s avg) espresso-5.1/PW/examples/example10/reference/si.scf.efield.out0000644000175000017500000010255312341373025022353 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 18Jun2008 at 14:57:55 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Fractionary translation: -0.5000 -0.5000 0.0000is a symmetry operation: This is a supercell, fractionary translation are disabled: Fractionary translation: -0.5000 0.0000 -0.5000is a symmetry operation: This is a supercell, fractionary translation are disabled: Fractionary translation: 0.0000 -0.5000 -0.5000is a symmetry operation: This is a supercell, fractionary translation are disabled: bravais-lattice index = 1 lattice parameter (a_0) = 10.1800 a.u. unit-cell volume = 1054.9778 (a.u.)^3 number of atoms/cell = 8 number of atomic types = 1 number of electrons = 32.00 number of Kohn-Sham states= 16 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-08 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE (1434) Using Berry phase electric field In a.u. carthesian system of reference 0.0000000000 0.0000000000 0.0000000000 In a.u. crystal system of reference 0.0000000000 0.0000000000 0.0000000000 Number of iterative cycles: 1 celldm(1)= 10.180000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for Si read from file Si.pbe-rrkj.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 883 points, 3 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 atomic species valence mass pseudopotential Si 4.00 28.08600 Si( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 Si tau( 1) = ( -0.1250000 -0.1250000 -0.1250000 ) 2 Si tau( 2) = ( 0.3750000 0.3750000 -0.1250000 ) 3 Si tau( 3) = ( 0.3750000 -0.1250000 0.3750000 ) 4 Si tau( 4) = ( -0.1250000 0.3750000 0.3750000 ) 5 Si tau( 5) = ( 0.1250000 0.1250000 0.1250000 ) 6 Si tau( 6) = ( 0.6250000 0.6250000 0.1250000 ) 7 Si tau( 7) = ( 0.6250000 0.1250000 0.6250000 ) 8 Si tau( 8) = ( 0.1250000 0.6250000 0.6250000 ) number of k points= 63 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0317460 k( 2) = ( 0.0000000 0.0000000 0.1428571), wk = 0.0317460 k( 3) = ( 0.0000000 0.0000000 0.2857143), wk = 0.0317460 k( 4) = ( 0.0000000 0.0000000 0.4285714), wk = 0.0317460 k( 5) = ( 0.0000000 0.0000000 0.5714286), wk = 0.0317460 k( 6) = ( 0.0000000 0.0000000 0.7142857), wk = 0.0317460 k( 7) = ( 0.0000000 0.0000000 0.8571429), wk = 0.0317460 k( 8) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0317460 k( 9) = ( 0.0000000 0.3333333 0.1428571), wk = 0.0317460 k( 10) = ( 0.0000000 0.3333333 0.2857143), wk = 0.0317460 k( 11) = ( 0.0000000 0.3333333 0.4285714), wk = 0.0317460 k( 12) = ( 0.0000000 0.3333333 0.5714286), wk = 0.0317460 k( 13) = ( 0.0000000 0.3333333 0.7142857), wk = 0.0317460 k( 14) = ( 0.0000000 0.3333333 0.8571429), wk = 0.0317460 k( 15) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0317460 k( 16) = ( 0.0000000 0.6666667 0.1428571), wk = 0.0317460 k( 17) = ( 0.0000000 0.6666667 0.2857143), wk = 0.0317460 k( 18) = ( 0.0000000 0.6666667 0.4285714), wk = 0.0317460 k( 19) = ( 0.0000000 0.6666667 0.5714286), wk = 0.0317460 k( 20) = ( 0.0000000 0.6666667 0.7142857), wk = 0.0317460 k( 21) = ( 0.0000000 0.6666667 0.8571429), wk = 0.0317460 k( 22) = ( 0.3333333 0.0000000 0.0000000), wk = 0.0317460 k( 23) = ( 0.3333333 0.0000000 0.1428571), wk = 0.0317460 k( 24) = ( 0.3333333 0.0000000 0.2857143), wk = 0.0317460 k( 25) = ( 0.3333333 0.0000000 0.4285714), wk = 0.0317460 k( 26) = ( 0.3333333 0.0000000 0.5714286), wk = 0.0317460 k( 27) = ( 0.3333333 0.0000000 0.7142857), wk = 0.0317460 k( 28) = ( 0.3333333 0.0000000 0.8571429), wk = 0.0317460 k( 29) = ( 0.3333333 0.3333333 0.0000000), wk = 0.0317460 k( 30) = ( 0.3333333 0.3333333 0.1428571), wk = 0.0317460 k( 31) = ( 0.3333333 0.3333333 0.2857143), wk = 0.0317460 k( 32) = ( 0.3333333 0.3333333 0.4285714), wk = 0.0317460 k( 33) = ( 0.3333333 0.3333333 0.5714286), wk = 0.0317460 k( 34) = ( 0.3333333 0.3333333 0.7142857), wk = 0.0317460 k( 35) = ( 0.3333333 0.3333333 0.8571429), wk = 0.0317460 k( 36) = ( 0.3333333 0.6666667 0.0000000), wk = 0.0317460 k( 37) = ( 0.3333333 0.6666667 0.1428571), wk = 0.0317460 k( 38) = ( 0.3333333 0.6666667 0.2857143), wk = 0.0317460 k( 39) = ( 0.3333333 0.6666667 0.4285714), wk = 0.0317460 k( 40) = ( 0.3333333 0.6666667 0.5714286), wk = 0.0317460 k( 41) = ( 0.3333333 0.6666667 0.7142857), wk = 0.0317460 k( 42) = ( 0.3333333 0.6666667 0.8571429), wk = 0.0317460 k( 43) = ( 0.6666667 0.0000000 0.0000000), wk = 0.0317460 k( 44) = ( 0.6666667 0.0000000 0.1428571), wk = 0.0317460 k( 45) = ( 0.6666667 0.0000000 0.2857143), wk = 0.0317460 k( 46) = ( 0.6666667 0.0000000 0.4285714), wk = 0.0317460 k( 47) = ( 0.6666667 0.0000000 0.5714286), wk = 0.0317460 k( 48) = ( 0.6666667 0.0000000 0.7142857), wk = 0.0317460 k( 49) = ( 0.6666667 0.0000000 0.8571429), wk = 0.0317460 k( 50) = ( 0.6666667 0.3333333 0.0000000), wk = 0.0317460 k( 51) = ( 0.6666667 0.3333333 0.1428571), wk = 0.0317460 k( 52) = ( 0.6666667 0.3333333 0.2857143), wk = 0.0317460 k( 53) = ( 0.6666667 0.3333333 0.4285714), wk = 0.0317460 k( 54) = ( 0.6666667 0.3333333 0.5714286), wk = 0.0317460 k( 55) = ( 0.6666667 0.3333333 0.7142857), wk = 0.0317460 k( 56) = ( 0.6666667 0.3333333 0.8571429), wk = 0.0317460 k( 57) = ( 0.6666667 0.6666667 0.0000000), wk = 0.0317460 k( 58) = ( 0.6666667 0.6666667 0.1428571), wk = 0.0317460 k( 59) = ( 0.6666667 0.6666667 0.2857143), wk = 0.0317460 k( 60) = ( 0.6666667 0.6666667 0.4285714), wk = 0.0317460 k( 61) = ( 0.6666667 0.6666667 0.5714286), wk = 0.0317460 k( 62) = ( 0.6666667 0.6666667 0.7142857), wk = 0.0317460 k( 63) = ( 0.6666667 0.6666667 0.8571429), wk = 0.0317460 G cutoff = 210.0031 ( 12893 G-vectors) FFT grid: ( 30, 30, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.39 Mb ( 1602, 16) NL pseudopotentials 0.98 Mb ( 1602, 40) Each V/rho on FFT grid 0.41 Mb ( 27000) Each G-vector array 0.10 Mb ( 12893) G-vector shells 0.00 Mb ( 178) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.56 Mb ( 1602, 64) Each subspace H/S matrix 0.06 Mb ( 64, 64) Each matrix 0.01 Mb ( 40, 16) Arrays for rho mixing 3.30 Mb ( 27000, 8) Initial potential from superposition of free atoms starting charge 31.99557, renormalised to 32.00000 Starting wfc are random total cpu time spent up to now is 4.34 secs per-process dynamical memory: 8.5 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 7.7 Threshold (ethr) on eigenvalues was too large: Diagonalizing with lowered threshold Davidson diagonalization with overlap ethr = 7.62E-04, avg # of iterations = 1.8 Expectation value of exp(iGx): (9.813085135077290E-002,2.612627128835834E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 1.220067173793751E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.822638798543799E-002,-5.572348576373509E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) -2.599670737805116E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.348308055440632,1.578067866756662E-003) 1.00000000000000 Electronic Dipole per cell (a.u.) 2.076213877591985E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 1.220067173793751E-002 2 -2.599670737805116E-002 3 2.076213877591985E-002 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 52.70 secs total energy = -62.94986939 Ry Harris-Foulkes estimate = -62.99987099 Ry estimated scf accuracy < 0.24597310 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.69E-04, avg # of iterations = 1.0 Expectation value of exp(iGx): (9.538754115044600E-002,1.791635188824983E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 8.607367027990340E-003 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.544783276207391E-002,-3.669308285322549E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.761687583841131E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.345509857141989,1.218550004030006E-003) 1.00000000000000 Electronic Dipole per cell (a.u.) 1.616195956803134E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 8.607367027990340E-003 2 -1.761687583841131E-002 3 1.616195956803134E-002 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 69.89 secs total energy = -62.94855087 Ry Harris-Foulkes estimate = -62.95600793 Ry estimated scf accuracy < 0.04560732 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.43E-04, avg # of iterations = 2.0 Expectation value of exp(iGx): (9.099961263797272E-002,1.239650095653754E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 6.242696322699717E-003 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.104442976244238E-002,-2.149447895032605E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.081896305929122E-002 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.338840014129039,5.267881893640398E-004) 1.00000000000000 Electronic Dipole per cell (a.u.) 7.124491809651888E-003 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 6.242696322699717E-003 2 -1.081896305929122E-002 3 7.124491809651888E-003 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 87.90 secs total energy = -62.95265044 Ry Harris-Foulkes estimate = -62.95284167 Ry estimated scf accuracy < 0.00084774 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.65E-06, avg # of iterations = 4.0 Expectation value of exp(iGx): (9.005734040960452E-002,5.128626073085807E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) 2.609725453695711E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (9.006107054735606E-002,-7.360284812698424E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) -3.745160352619726E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.337065365230539,2.785959294960712E-005) 1.00000000000000 Electronic Dipole per cell (a.u.) 3.787682256839025E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 2.609725453695711E-004 2 -3.745160352619726E-004 3 3.787682256839025E-004 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 113.33 secs total energy = -62.95344586 Ry Harris-Foulkes estimate = -62.95348638 Ry estimated scf accuracy < 0.00010239 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.20E-07, avg # of iterations = 2.1 Expectation value of exp(iGx): (8.976051455598838E-002,1.089492413025846E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) 5.562266331643198E-005 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.976267394647724E-002,-2.880840509741451E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.470741465827657E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.336520826513676,-7.958655330616569E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) -1.083778804050826E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 5.562266331643198E-005 2 -1.470741465827657E-004 3 -1.083778804050826E-004 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 133.33 secs total energy = -62.95346048 Ry Harris-Foulkes estimate = -62.95346069 Ry estimated scf accuracy < 0.00000233 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.27E-09, avg # of iterations = 3.3 Expectation value of exp(iGx): (8.975141406435735E-002,6.590427645621681E-007) 1.00000000000000 Electronic Dipole per cell (a.u.) 3.365001016631759E-005 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.975072337910603E-002,9.921591562749453E-007) 1.00000000000000 Electronic Dipole per cell (a.u.) 5.065896238630178E-005 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.336464147922662,9.249917080633773E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) 1.259830006239190E-004 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 3.365001016631759E-005 2 5.065896238630178E-005 3 1.259830006239190E-004 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 156.24 secs total energy = -62.95346153 Ry Harris-Foulkes estimate = -62.95346145 Ry estimated scf accuracy < 0.00000014 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.46E-10, avg # of iterations = 2.7 Expectation value of exp(iGx): (8.975056548664458E-002,-5.535376693102096E-009) 1.00000000000000 Electronic Dipole per cell (a.u.) -2.826330143169000E-007 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (8.975052129986164E-002,-9.153459249787021E-008) 1.00000000000000 Electronic Dipole per cell (a.u.) -4.673703699527140E-006 Ionic Dipole per cell (a.u.) 115.173552519665 Expectation value of exp(iGx): (0.336457197004045,4.583088194854452E-006) 1.00000000000000 Electronic Dipole per cell (a.u.) 6.242251972615764E-005 Ionic Dipole per cell (a.u.) 115.173552519665 Electronic Dipole on Carthesian axes 1 -2.826330143169000E-007 2 -4.673703699527140E-006 3 6.242251972615764E-005 Ionic Dipole on Carthesian axes 1 115.173552519665 2 115.173552519665 3 115.173552519665 total cpu time spent up to now is 175.60 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1575 PWs) bands (ev): -5.5814 -1.3521 -1.3521 -1.3521 -1.3521 -1.3521 -1.3520 3.5785 3.5785 3.5785 3.5786 3.5786 3.5786 6.4862 6.4865 6.4865 k = 0.0000 0.0000 0.1429 ( 1599 PWs) bands (ev): -5.4903 -2.4217 -1.3214 -1.3214 -1.3213 -1.3213 -0.1751 3.3331 3.3331 3.3331 3.3331 3.6605 3.6606 5.9836 6.1467 6.1467 k = 0.0000 0.0000 0.2857 ( 1582 PWs) bands (ev): -5.2180 -3.3588 -1.2479 -1.2479 -1.2478 -1.2478 1.0778 2.8850 2.8850 2.8850 2.8850 3.9045 3.9046 4.9087 5.4913 5.4913 k = 0.0000 0.0000 0.4286 ( 1602 PWs) bands (ev): -4.7677 -4.1452 -1.1839 -1.1839 -1.1839 -1.1838 2.3698 2.5822 2.5822 2.5822 2.5822 3.6632 4.3033 4.3033 4.8438 4.8438 k = 0.0000 0.0000 0.5714 ( 1602 PWs) bands (ev): -4.7677 -4.1452 -1.1839 -1.1839 -1.1839 -1.1838 2.3698 2.5822 2.5822 2.5822 2.5822 3.6632 4.3033 4.3033 4.8438 4.8438 k = 0.0000 0.0000 0.7143 ( 1582 PWs) bands (ev): -5.2180 -3.3588 -1.2479 -1.2479 -1.2478 -1.2478 1.0778 2.8850 2.8850 2.8850 2.8850 3.9045 3.9046 4.9087 5.4913 5.4913 k = 0.0000 0.0000 0.8571 ( 1599 PWs) bands (ev): -5.4903 -2.4217 -1.3214 -1.3214 -1.3213 -1.3213 -0.1751 3.3331 3.3331 3.3331 3.3331 3.6605 3.6606 5.9836 6.1467 6.1467 k = 0.0000 0.3333 0.0000 ( 1594 PWs) bands (ev): -5.0875 -3.6384 -1.2223 -1.2223 -1.2223 -1.2222 1.5059 2.7568 2.7568 2.7568 2.7569 4.0205 4.0205 4.5036 5.2672 5.2673 k = 0.0000 0.3333 0.1429 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1369 -1.6220 -0.8459 -0.3008 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9256 4.0204 4.9207 5.6970 k = 0.0000 0.3333 0.2857 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0765 -0.4415 0.5747 1.0090 1.9684 2.7518 3.0507 3.0712 3.8605 4.0920 4.2016 4.2507 5.9687 k = 0.0000 0.3333 0.4286 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5564 0.0184 0.5217 1.4023 2.0790 2.2236 2.4675 3.0862 3.6014 4.2730 4.4198 4.7474 5.5848 k = 0.0000 0.3333 0.5714 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5563 0.0183 0.5218 1.4024 2.0791 2.2235 2.4674 3.0862 3.6015 4.2730 4.4198 4.7474 5.5848 k = 0.0000 0.3333 0.7143 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0764 -0.4416 0.5748 1.0090 1.9684 2.7517 3.0507 3.0711 3.8605 4.0920 4.2016 4.2508 5.9687 k = 0.0000 0.3333 0.8571 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1370 -1.6219 -0.8460 -0.3007 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9255 4.0204 4.9207 5.6971 k = 0.0000 0.6667 0.0000 ( 1594 PWs) bands (ev): -5.0875 -3.6384 -1.2223 -1.2223 -1.2223 -1.2222 1.5059 2.7568 2.7568 2.7568 2.7569 4.0205 4.0205 4.5036 5.2672 5.2673 k = 0.0000 0.6667 0.1429 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1370 -1.6219 -0.8460 -0.3007 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9255 4.0204 4.9207 5.6971 k = 0.0000 0.6667 0.2857 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0764 -0.4416 0.5748 1.0090 1.9684 2.7517 3.0507 3.0711 3.8605 4.0920 4.2016 4.2508 5.9687 k = 0.0000 0.6667 0.4286 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5563 0.0183 0.5218 1.4024 2.0791 2.2235 2.4674 3.0862 3.6015 4.2730 4.4198 4.7474 5.5848 k = 0.0000 0.6667 0.5714 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5564 0.0184 0.5217 1.4023 2.0790 2.2236 2.4675 3.0862 3.6014 4.2730 4.4198 4.7474 5.5848 k = 0.0000 0.6667 0.7143 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0765 -0.4415 0.5747 1.0090 1.9684 2.7518 3.0507 3.0712 3.8605 4.0920 4.2016 4.2507 5.9687 k = 0.0000 0.6667 0.8571 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1369 -1.6220 -0.8459 -0.3008 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9256 4.0204 4.9207 5.6970 k = 0.3333 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0875 -3.6384 -1.2223 -1.2223 -1.2223 -1.2223 1.5059 2.7568 2.7568 2.7568 2.7569 4.0205 4.0205 4.5036 5.2672 5.2673 k = 0.3333 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1369 -1.6220 -0.8459 -0.3008 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9255 4.0204 4.9207 5.6971 k = 0.3333 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0765 -0.4415 0.5747 1.0090 1.9684 2.7518 3.0507 3.0711 3.8605 4.0920 4.2016 4.2508 5.9688 k = 0.3333 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5564 0.0184 0.5217 1.4023 2.0790 2.2236 2.4675 3.0862 3.6014 4.2730 4.4198 4.7474 5.5848 k = 0.3333 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5563 0.0183 0.5218 1.4024 2.0791 2.2236 2.4674 3.0862 3.6015 4.2730 4.4198 4.7474 5.5848 k = 0.3333 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0765 -0.4416 0.5747 1.0090 1.9684 2.7517 3.0507 3.0711 3.8605 4.0920 4.2016 4.2508 5.9687 k = 0.3333 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1369 -1.6220 -0.8460 -0.3007 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9255 4.0204 4.9207 5.6970 k = 0.3333 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6119 -3.2416 -3.2416 -2.2366 -0.2947 0.8543 0.8543 1.9700 2.7855 2.8410 2.8410 4.0239 4.1432 4.1432 4.3344 5.9165 k = 0.3333 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5300 -3.1932 -3.1932 -2.4031 -0.3442 0.5324 0.5324 2.2093 2.3853 3.1358 3.1358 4.2715 4.2715 4.3999 4.6291 5.8275 k = 0.3333 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2878 -3.0719 -3.0719 -2.8469 -0.2598 -0.0169 -0.0168 1.3739 3.3212 3.5702 3.5702 4.5836 4.5836 4.5898 5.3736 5.5796 k = 0.3333 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3883 0.0832 0.6431 3.8274 3.8274 4.4022 4.7876 4.7876 4.8827 5.2360 5.2920 k = 0.3333 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3883 0.0832 0.6430 3.8274 3.8274 4.4021 4.7875 4.7876 4.8827 5.2360 5.2920 k = 0.3333 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2877 -3.0719 -3.0719 -2.8470 -0.2598 -0.0169 -0.0168 1.3738 3.3212 3.5702 3.5702 4.5835 4.5836 4.5898 5.3736 5.5796 k = 0.3333 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5299 -3.1932 -3.1932 -2.4031 -0.3442 0.5324 0.5324 2.2093 2.3852 3.1358 3.1358 4.2715 4.2715 4.3999 4.6291 5.8275 k = 0.3333 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6119 -3.2416 -3.2416 -2.2366 -0.2947 0.8543 0.8543 1.9700 2.7855 2.8410 2.8410 4.0239 4.1432 4.1433 4.3344 5.9164 k = 0.3333 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5299 -3.1933 -3.1932 -2.4031 -0.3442 0.5324 0.5324 2.2093 2.3853 3.1358 3.1358 4.2715 4.2715 4.3998 4.6291 5.8275 k = 0.3333 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2877 -3.0719 -3.0719 -2.8470 -0.2598 -0.0168 -0.0168 1.3738 3.3212 3.5702 3.5702 4.5836 4.5836 4.5898 5.3736 5.5796 k = 0.3333 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3882 0.0832 0.6430 3.8274 3.8274 4.4022 4.7875 4.7876 4.8827 5.2360 5.2920 k = 0.3333 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3882 0.0832 0.6430 3.8274 3.8274 4.4022 4.7875 4.7876 4.8827 5.2360 5.2920 k = 0.3333 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2877 -3.0719 -3.0719 -2.8469 -0.2598 -0.0169 -0.0168 1.3739 3.3212 3.5702 3.5703 4.5835 4.5836 4.5898 5.3736 5.5796 k = 0.3333 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5299 -3.1933 -3.1932 -2.4031 -0.3443 0.5324 0.5324 2.2093 2.3853 3.1358 3.1358 4.2715 4.2715 4.3998 4.6291 5.8275 k = 0.6667 0.0000 0.0000 ( 1594 PWs) bands (ev): -5.0875 -3.6384 -1.2223 -1.2223 -1.2223 -1.2223 1.5059 2.7568 2.7568 2.7568 2.7569 4.0205 4.0205 4.5036 5.2672 5.2673 k = 0.6667 0.0000 0.1429 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1369 -1.6220 -0.8460 -0.3007 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9255 4.0204 4.9207 5.6970 k = 0.6667 0.0000 0.2857 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0765 -0.4416 0.5747 1.0090 1.9684 2.7517 3.0507 3.0711 3.8605 4.0920 4.2016 4.2508 5.9687 k = 0.6667 0.0000 0.4286 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5563 0.0183 0.5218 1.4024 2.0791 2.2236 2.4674 3.0862 3.6015 4.2730 4.4198 4.7474 5.5848 k = 0.6667 0.0000 0.5714 ( 1598 PWs) bands (ev): -4.3060 -3.7156 -2.9973 -2.5564 0.0184 0.5217 1.4023 2.0790 2.2236 2.4675 3.0862 3.6014 4.2730 4.4198 4.7474 5.5848 k = 0.6667 0.0000 0.7143 ( 1602 PWs) bands (ev): -4.7373 -3.3443 -2.9831 -2.0765 -0.4415 0.5747 1.0090 1.9684 2.7518 3.0507 3.0711 3.8605 4.0920 4.2016 4.2508 5.9688 k = 0.6667 0.0000 0.8571 ( 1586 PWs) bands (ev): -4.9995 -3.5636 -2.1369 -1.6220 -0.8459 -0.3008 1.3723 2.1959 2.6305 3.1659 3.5243 3.6876 3.9255 4.0204 4.9207 5.6971 k = 0.6667 0.3333 0.0000 ( 1602 PWs) bands (ev): -4.6119 -3.2416 -3.2416 -2.2366 -0.2947 0.8543 0.8543 1.9700 2.7855 2.8410 2.8410 4.0239 4.1432 4.1433 4.3344 5.9164 k = 0.6667 0.3333 0.1429 ( 1596 PWs) bands (ev): -4.5299 -3.1933 -3.1932 -2.4031 -0.3443 0.5324 0.5324 2.2093 2.3853 3.1358 3.1358 4.2715 4.2715 4.3998 4.6291 5.8275 k = 0.6667 0.3333 0.2857 ( 1598 PWs) bands (ev): -4.2877 -3.0719 -3.0719 -2.8469 -0.2598 -0.0169 -0.0168 1.3739 3.3212 3.5702 3.5703 4.5835 4.5836 4.5898 5.3736 5.5796 k = 0.6667 0.3333 0.4286 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3882 0.0832 0.6430 3.8274 3.8274 4.4022 4.7875 4.7876 4.8827 5.2360 5.2920 k = 0.6667 0.3333 0.5714 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3882 0.0832 0.6430 3.8274 3.8274 4.4022 4.7875 4.7876 4.8827 5.2360 5.2920 k = 0.6667 0.3333 0.7143 ( 1598 PWs) bands (ev): -4.2877 -3.0719 -3.0719 -2.8470 -0.2598 -0.0168 -0.0168 1.3738 3.3212 3.5702 3.5702 4.5836 4.5836 4.5898 5.3736 5.5796 k = 0.6667 0.3333 0.8571 ( 1596 PWs) bands (ev): -4.5299 -3.1933 -3.1932 -2.4031 -0.3442 0.5324 0.5324 2.2093 2.3853 3.1358 3.1358 4.2715 4.2715 4.3998 4.6291 5.8275 k = 0.6667 0.6667 0.0000 ( 1602 PWs) bands (ev): -4.6119 -3.2416 -3.2416 -2.2366 -0.2947 0.8543 0.8543 1.9700 2.7855 2.8410 2.8410 4.0239 4.1432 4.1432 4.3344 5.9165 k = 0.6667 0.6667 0.1429 ( 1596 PWs) bands (ev): -4.5299 -3.1932 -3.1932 -2.4031 -0.3442 0.5324 0.5324 2.2093 2.3852 3.1358 3.1358 4.2715 4.2715 4.3999 4.6291 5.8275 k = 0.6667 0.6667 0.2857 ( 1598 PWs) bands (ev): -4.2877 -3.0719 -3.0719 -2.8470 -0.2598 -0.0169 -0.0168 1.3738 3.3212 3.5702 3.5702 4.5835 4.5836 4.5898 5.3736 5.5796 k = 0.6667 0.6667 0.4286 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3883 0.0832 0.6430 3.8274 3.8274 4.4021 4.7875 4.7876 4.8827 5.2360 5.2920 k = 0.6667 0.6667 0.5714 ( 1592 PWs) bands (ev): -3.8989 -3.3948 -2.9569 -2.9569 -0.3883 -0.3883 0.0832 0.6431 3.8274 3.8274 4.4022 4.7876 4.7876 4.8827 5.2360 5.2920 k = 0.6667 0.6667 0.7143 ( 1598 PWs) bands (ev): -4.2878 -3.0719 -3.0719 -2.8469 -0.2598 -0.0169 -0.0168 1.3739 3.3212 3.5702 3.5702 4.5836 4.5836 4.5898 5.3736 5.5796 k = 0.6667 0.6667 0.8571 ( 1596 PWs) bands (ev): -4.5300 -3.1932 -3.1932 -2.4031 -0.3442 0.5324 0.5324 2.2093 2.3853 3.1358 3.1358 4.2715 4.2715 4.3999 4.6291 5.8275 ! total energy = -62.95346155 Ry Harris-Foulkes estimate = -62.95346155 Ry estimated scf accuracy < 4.2E-09 Ry The total energy is the sum of the following terms: one-electron contribution = 19.83118141 Ry hartree contribution = 4.30387411 Ry xc contribution = -19.35667486 Ry ewald contribution = -67.73184220 Ry convergence has been achieved in 7 iterations Writing output data file silicon.save PWSCF : 2m55.87s CPU time, 3m 6.93s wall time init_run : 4.33s CPU electrons : 171.26s CPU Called by init_run: wfcinit : 4.05s CPU potinit : 0.06s CPU Called by electrons: c_bands : 107.03s CPU ( 8 calls, 13.379 s avg) sum_band : 13.33s CPU ( 8 calls, 1.666 s avg) v_of_rho : 0.36s CPU ( 8 calls, 0.045 s avg) mix_rho : 0.04s CPU ( 8 calls, 0.005 s avg) Called by c_bands: init_us_2 : 1.49s CPU ( 1071 calls, 0.001 s avg) cegterg : 104.31s CPU ( 504 calls, 0.207 s avg) Called by *egterg: h_psi : 89.11s CPU ( 2118 calls, 0.042 s avg) g_psi : 1.52s CPU ( 1551 calls, 0.001 s avg) cdiaghg : 3.66s CPU ( 1992 calls, 0.002 s avg) Called by h_psi: add_vuspsi : 3.73s CPU ( 2118 calls, 0.002 s avg) General routines calbec : 4.44s CPU ( 2118 calls, 0.002 s avg) cft3 : 0.17s CPU ( 81 calls, 0.002 s avg) cft3s : 86.14s CPU ( 61062 calls, 0.001 s avg) davcio : 0.05s CPU ( 4221 calls, 0.000 s avg) espresso-5.1/PW/examples/ESM_example/0000755000175000017500000000000012341373041015603 5ustar mbambaespresso-5.1/PW/examples/ESM_example/README0000644000175000017500000000547212341373025016475 0ustar mbambaThis example shows how to use the Effective Screening Medium Method (ESM) to calculate the total energy, charge density, force, and potential of a polarized or charged medium. ESM screens the electronic charge of a polarized/charged medium along one perpendicular direction by introducing a classical charge model and a local relative permittivity into the first-principles calculation framework. This permits calculations using open boundary conditions (OBC). The method is described in detail in M. Otani and O. Sugino, "First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach," PRB 73, 115407 (2006). In addition to 'pbc' (ordinary periodic boundary conditions with ESM disabled), the code allows three different sets of boundary conditions perpendicular to the polarized medium: 1) 'bc1' : Immerse the medium between two semi-infinite vacuum regions; 2) 'bc2' : Immerse the medium between two semi-infinite metallic electrodes, with optional fixed field applied between them; 3) 'bc3' : Immerse the medium between one semi-infinite vacuum region and one semi-infinite metallic electrode. The example calculation proceeds as follows: esm_bc = 'bc1': 1) make a self-consistent calculation for H2O with esm_bc = 'pbc' (ESM off) (input=H2O.noesm.in, output=H2O.noesm.out). Using 'pbc' causes the code to print out the density and potential (hartree + local) along z, even though ESM is disabled. Note that the molecule has a z-oriented dipole. 2) make a self-consistent calculation for H2O with esm_bc = 'bc1' (input=H2O.bc1.in, output=H2O.bc1.out). This simulates the water molecule in an infinite vacuum along the z-direction, preventing dipole-dipole interaction between periodic images. esm_bc = 'bc2': 3) make a self-consistent calculation for Al(111) with esm_bc = 'bc2', without an applied field (input=Al111.bc2.in, output=Al111.bc2.out). This simulates the slab sandwiched between two uncharged semi-infinite metal electrodes. 4) make a self-consistent calculation for Al(111) with esm_bc = 'bc2', this time with an applied field (input=Al111.bc2_efield.in, output=Al111.bc2_efield.out). The slab polarizes in response. esm_bc = 'bc3': 5) make a self-consistent calculation for Al(111) with esm_bc = 'bc3' to simulate a semi-infinite system in contact with vacuum (input=Al111.bc3.in, output=Al111.bc3.out). 6) make a self-consistent calculation for Al(111) with esm_bc = 'bc3' to simulate a semi-infinite system in contact with vacuum with a weakly negative (-0.005e) overall charge (input=Al111.bc3_m005.in, output=Al111.bc3_m005.out). Note that the charge migrates to the surface/ vacuum interface. 7) Repeat #6 but with a weakly positive (+0.005e) overall charge (input=Al111.bc3_p005.in, output=Al111.bc3_p005.out). espresso-5.1/PW/examples/ESM_example/run_example0000755000175000017500000002412612341373025020057 0ustar mbamba#!/bin/sh ############################################################################### ## ## ESM EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use ESM to calculate Al(111) and H2O" $ECHO "using the three available sets of boundary conditions." $ECHO # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x" PSEUDO_LIST="Al.pbe-rrkj.UPF H.pbe-rrkjus.UPF O.pbe-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running pw.x as: $PW_COMMAND" $ECHO # scf calculation for H2O with no ESM cat > H2O.noesm.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='H2O', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 6, celldm(1) =20.0, celldm(3) = 1.200 nat= 3, ntyp= 2, ecutwfc = 25.0, ecutrho = 200.0, occupations='smearing', smearing='gaussian', degauss=0.05, assume_isolated = 'esm', esm_bc='pbc' / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES H 1.00794 H.pbe-rrkjus.UPF O 55.847 O.pbe-rrkjus.UPF ATOMIC_POSITIONS O 0.000000000 0.500000000 0.000000000 0 0 0 H 0.043138813 0.431028632 0.043078297 0 0 0 H 0.036635422 0.576406407 0.035949164 K_POINTS gamma EOF $ECHO " running the scf calculation for H2O without ESM...\c" $PW_COMMAND < H2O.noesm.in > H2O.noesm.out check_failure $? $ECHO " done" # scf calculation for H2O with ESM bc1 (vacuum-slab-vacuum) cat > H2O.bc1.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='H2O', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 6, celldm(1) =20.0, celldm(3) = 1.200 nat= 3, ntyp= 2, ecutwfc = 25.0, ecutrho = 200.0, occupations='smearing', smearing='gaussian', degauss=0.05, assume_isolated = 'esm', esm_bc='bc1' / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES H 1.00794 H.pbe-rrkjus.UPF O 55.847 O.pbe-rrkjus.UPF ATOMIC_POSITIONS O 0.000000000 0.500000000 0.000000000 0 0 0 H 0.043138813 0.431028632 0.043078297 0 0 0 H 0.036635422 0.576406407 0.035949164 K_POINTS gamma EOF $ECHO " running the scf calculation for H2O with ESM bc1 (vacuum-slab-vacuum)...\c" $PW_COMMAND < H2O.bc1.in > H2O.bc1.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/H2O* $ECHO " done" # scf calculation for Al(111) with ESM bc2 (metal-slab-metal), no field cat > Al111.bc2.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Al111', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 0, celldm(1) = 7.653393855, nat= 7, ntyp= 1, ecutwfc = 20.0, nosym=.TRUE. occupations='smearing', smearing='mp', degauss=0.05 assume_isolated='esm', esm_bc='bc2' / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES Al 26.981538 Al.pbe-rrkj.UPF CELL_PARAMETERS hexagonal 0.707106781 0.000000000 0.000000000 0.353553390 0.612372436 0.000000000 0.000000000 0.000000000 10.000000000 ATOMIC_POSITIONS angstrom Al 0.00000 0.00000 -7.01481 Al 0.00000 1.65341 -4.67654 Al 1.43189 0.82670 -2.33827 Al 0.00000 0.00000 0.00000 Al 0.00000 1.65341 2.33827 Al 1.43189 0.82670 4.67654 Al 0.00000 0.00000 7.01481 K_POINTS automatic 8 8 1 0 0 0 EOF $ECHO " running the scf calculation for Al(111) with ESM bc2 (metal-slab-metal)" $ECHO " (no applied field)...\c" $PW_COMMAND < Al111.bc2.in > Al111.bc2.out check_failure $? $ECHO " done" # scf calculation for Al(111) with ESM bc2 (metal-slab-metal), with field cat > Al111.bc2_efield.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Al111', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 0, celldm(1) = 7.653393855, nat= 7, ntyp= 1, ecutwfc = 20.0, nosym=.TRUE. occupations='smearing', smearing='mp', degauss=0.05 assume_isolated='esm', esm_bc='bc2', esm_efield=0.00192148511256006 / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES Al 26.981538 Al.pbe-rrkj.UPF CELL_PARAMETERS hexagonal 0.707106781 0.000000000 0.000000000 0.353553390 0.612372436 0.000000000 0.000000000 0.000000000 10.000000000 ATOMIC_POSITIONS angstrom Al 0.00000 0.00000 -7.01481 Al 0.00000 1.65341 -4.67654 Al 1.43189 0.82670 -2.33827 Al 0.00000 0.00000 0.00000 Al 0.00000 1.65341 2.33827 Al 1.43189 0.82670 4.67654 Al 0.00000 0.00000 7.01481 K_POINTS automatic 8 8 1 0 0 0 EOF $ECHO " running the scf calculation for Al(111) with ESM bc2 (metal-slab-metal)" $ECHO " with applied electric field...\c" $PW_COMMAND < Al111.bc2_efield.in > Al111.bc2_efield.out check_failure $? $ECHO " done" # scf calculation for Al(111) with ESM bc3 (vacuum-slab-metal), uncharged cat > Al111.bc3.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Al111', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 0, celldm(1) = 7.653393855, nat= 7, ntyp= 1, ecutwfc = 20.0, nosym=.TRUE. occupations='smearing', smearing='mp', degauss=0.05 assume_isolated='esm', esm_bc='bc3' / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES Al 26.981538 Al.pbe-rrkj.UPF CELL_PARAMETERS hexagonal 0.707106781 0.000000000 0.000000000 0.353553390 0.612372436 0.000000000 0.000000000 0.000000000 10.000000000 ATOMIC_POSITIONS angstrom Al 0.00000 0.00000 -7.01481 Al 0.00000 1.65341 -4.67654 Al 1.43189 0.82670 -2.33827 Al 0.00000 0.00000 0.00000 Al 0.00000 1.65341 2.33827 Al 1.43189 0.82670 4.67654 Al 0.00000 0.00000 7.01481 K_POINTS automatic 8 8 1 0 0 0 EOF $ECHO " running the scf calculation for Al(111) with ESM bc3 (metal-slab-metal)" $ECHO " (neutrally charged)...\c" $PW_COMMAND < Al111.bc3.in > Al111.bc3.out check_failure $? $ECHO " done" # scf calculation for Al(111) with ESM bc3 (vacuum-slab-metal), - charged cat > Al111.bc3_m005.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Al111', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 0, celldm(1) = 7.653393855, tot_charge = -0.005, nat= 7, ntyp= 1, ecutwfc = 20.0, nosym=.TRUE. occupations='smearing', smearing='mp', degauss=0.05 assume_isolated='esm', esm_bc='bc3' / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES Al 26.981538 Al.pbe-rrkj.UPF CELL_PARAMETERS hexagonal 0.707106781 0.000000000 0.000000000 0.353553390 0.612372436 0.000000000 0.000000000 0.000000000 10.000000000 ATOMIC_POSITIONS angstrom Al 0.00000 0.00000 -7.01481 Al 0.00000 1.65341 -4.67654 Al 1.43189 0.82670 -2.33827 Al 0.00000 0.00000 0.00000 Al 0.00000 1.65341 2.33827 Al 1.43189 0.82670 4.67654 Al 0.00000 0.00000 7.01481 K_POINTS automatic 8 8 1 0 0 0 EOF $ECHO " running the scf calculation for Al(111) with ESM bc3 (vacuum-slab-metal)" $ECHO " (-0.005e charged)...\c" $PW_COMMAND < Al111.bc3_m005.in > Al111.bc3_m005.out check_failure $? $ECHO " done" # scf calculation for Al(111) with ESM bc3 (vacuum-slab-metal), + charged cat > Al111.bc3_p005.in << EOF &control calculation='scf', restart_mode='from_scratch', prefix='Al111', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor = .TRUE. / &system ibrav = 0, celldm(1) = 7.653393855, tot_charge = 0.005, nat= 7, ntyp= 1, ecutwfc = 20.0, nosym=.TRUE. occupations='smearing', smearing='mp', degauss=0.05 assume_isolated='esm', esm_bc='bc3' / &electrons mixing_beta = 0.5 / ATOMIC_SPECIES Al 26.981538 Al.pbe-rrkj.UPF CELL_PARAMETERS hexagonal 0.707106781 0.000000000 0.000000000 0.353553390 0.612372436 0.000000000 0.000000000 0.000000000 10.000000000 ATOMIC_POSITIONS angstrom Al 0.00000 0.00000 -7.01481 Al 0.00000 1.65341 -4.67654 Al 1.43189 0.82670 -2.33827 Al 0.00000 0.00000 0.00000 Al 0.00000 1.65341 2.33827 Al 1.43189 0.82670 4.67654 Al 0.00000 0.00000 7.01481 K_POINTS automatic 8 8 1 0 0 0 EOF $ECHO " running the scf calculation for Al(111) with ESM bc3 (vacuum-slab-metal)" $ECHO " (+0.005e charged)...\c" $PW_COMMAND < Al111.bc3_p005.in > Al111.bc3_p005.out check_failure $? $ECHO " done" # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/Al111* $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/PW/examples/ESM_example/reference/0000755000175000017500000000000012341373041017541 5ustar mbambaespresso-5.1/PW/examples/ESM_example/reference/Al111.bc2.out0000644000175000017500000013054412341373025021527 0ustar mbamba Program PWSCF v.4.99 starts on 23Apr2012 at 22:24:40 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 23647 23647 5473 bravais-lattice index = 0 lattice parameter (alat) = 7.6534 a.u. unit-cell volume = 1941.1667 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Boundary Conditions: Metal-Slab-Metal celldm(1)= 7.653394 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.707107 0.000000 0.000000 ) a(2) = ( 0.353553 0.612372 0.000000 ) a(3) = ( 0.000000 0.000000 10.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.414214 -0.816497 0.000000 ) b(2) = ( 0.000000 1.632993 0.000000 ) b(3) = ( 0.000000 0.000000 0.100000 ) PseudoPot. # 1 for Al read from file: /home/Brandon/src/espresso/pseudo/Al.pbe-rrkj.UPF MD5 check sum: b5320f8fdc07ab0d74f109f4aa58256b Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 879 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential Al 3.00 26.98154 Al( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 -1.7320512 ) 2 Al tau( 2) = ( 0.0000000 0.4082492 -1.1547008 ) 3 Al tau( 3) = ( 0.3535529 0.2041234 -0.5773504 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.0000000 0.4082492 0.5773504 ) 6 Al tau( 6) = ( 0.3535529 0.2041234 1.1547008 ) 7 Al tau( 7) = ( 0.0000000 0.0000000 1.7320512 ) number of k points= 34 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( 0.0000000 0.2041241 0.0000000), wk = 0.0625000 k( 3) = ( 0.0000000 0.4082483 0.0000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.6123724 0.0000000), wk = 0.0625000 k( 5) = ( 0.0000000 -0.8164966 0.0000000), wk = 0.0312500 k( 6) = ( 0.1767767 -0.1020621 0.0000000), wk = 0.0625000 k( 7) = ( 0.1767767 0.1020621 0.0000000), wk = 0.0625000 k( 8) = ( 0.1767767 0.3061862 0.0000000), wk = 0.0625000 k( 9) = ( 0.1767767 0.5103104 0.0000000), wk = 0.0625000 k( 10) = ( 0.1767767 -0.9185587 0.0000000), wk = 0.0625000 k( 11) = ( 0.1767767 -0.7144345 0.0000000), wk = 0.0625000 k( 12) = ( 0.1767767 -0.5103104 0.0000000), wk = 0.0625000 k( 13) = ( 0.1767767 -0.3061862 0.0000000), wk = 0.0625000 k( 14) = ( 0.3535534 -0.2041241 0.0000000), wk = 0.0625000 k( 15) = ( 0.3535534 0.0000000 0.0000000), wk = 0.0625000 k( 16) = ( 0.3535534 0.2041241 0.0000000), wk = 0.0625000 k( 17) = ( 0.3535534 0.4082483 0.0000000), wk = 0.0625000 k( 18) = ( 0.3535534 -1.0206207 0.0000000), wk = 0.0625000 k( 19) = ( 0.3535534 -0.8164966 0.0000000), wk = 0.0625000 k( 20) = ( 0.3535534 -0.6123724 0.0000000), wk = 0.0625000 k( 21) = ( 0.3535534 -0.4082483 0.0000000), wk = 0.0625000 k( 22) = ( 0.5303301 -0.3061862 0.0000000), wk = 0.0625000 k( 23) = ( 0.5303301 -0.1020621 0.0000000), wk = 0.0625000 k( 24) = ( 0.5303301 0.1020621 0.0000000), wk = 0.0625000 k( 25) = ( 0.5303301 0.3061862 0.0000000), wk = 0.0625000 k( 26) = ( 0.5303301 -1.1226828 0.0000000), wk = 0.0625000 k( 27) = ( 0.5303301 -0.9185587 0.0000000), wk = 0.0625000 k( 28) = ( 0.5303301 -0.7144345 0.0000000), wk = 0.0625000 k( 29) = ( 0.5303301 -0.5103104 0.0000000), wk = 0.0625000 k( 30) = ( -0.7071068 0.4082483 0.0000000), wk = 0.0312500 k( 31) = ( -0.7071068 0.6123724 0.0000000), wk = 0.0625000 k( 32) = ( -0.7071068 0.8164966 0.0000000), wk = 0.0625000 k( 33) = ( -0.7071068 1.0206207 0.0000000), wk = 0.0625000 k( 34) = ( -0.7071068 -0.4082483 0.0000000), wk = 0.0312500 Dense grid: 23647 G-vectors FFT dimensions: ( 15, 15, 225) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.68 Mb ( 2982, 15) NL pseudopotentials 2.55 Mb ( 2982, 56) Each V/rho on FFT grid 0.77 Mb ( 50625) Each G-vector array 0.18 Mb ( 23647) G-vector shells 0.04 Mb ( 4718) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.73 Mb ( 2982, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 56, 15) Arrays for rho mixing 6.18 Mb ( 50625, 8) Initial potential from superposition of free atoms starting charge 20.98187, renormalised to 21.00000 negative rho (up, down): 0.215E-04 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 5.6 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.6 total cpu time spent up to now is 15.2 secs total energy = -28.48060626 Ry Harris-Foulkes estimate = -28.88692770 Ry estimated scf accuracy < 0.58153689 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.77E-03, avg # of iterations = 18.3 total cpu time spent up to now is 42.3 secs total energy = -24.35177368 Ry Harris-Foulkes estimate = -32.98881117 Ry estimated scf accuracy < 169.26464931 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.77E-03, avg # of iterations = 14.7 total cpu time spent up to now is 64.2 secs total energy = -28.83078925 Ry Harris-Foulkes estimate = -28.86027314 Ry estimated scf accuracy < 0.52419078 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.50E-03, avg # of iterations = 2.6 total cpu time spent up to now is 70.2 secs total energy = -28.83455273 Ry Harris-Foulkes estimate = -28.88712822 Ry estimated scf accuracy < 1.18067500 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.50E-03, avg # of iterations = 2.0 total cpu time spent up to now is 76.1 secs total energy = -28.87933946 Ry Harris-Foulkes estimate = -28.91371232 Ry estimated scf accuracy < 1.18166134 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.50E-03, avg # of iterations = 1.4 total cpu time spent up to now is 81.6 secs total energy = -28.89609349 Ry Harris-Foulkes estimate = -28.90078109 Ry estimated scf accuracy < 0.02367959 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged ethr = 1.13E-04, avg # of iterations = 13.2 total cpu time spent up to now is 97.4 secs total energy = -28.93104447 Ry Harris-Foulkes estimate = -28.93447985 Ry estimated scf accuracy < 0.12338315 Ry iteration # 8 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.13E-04, avg # of iterations = 2.4 total cpu time spent up to now is 103.5 secs total energy = -28.93106351 Ry Harris-Foulkes estimate = -28.93272988 Ry estimated scf accuracy < 0.08590576 Ry iteration # 9 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.13E-04, avg # of iterations = 1.0 total cpu time spent up to now is 109.0 secs total energy = -28.92711377 Ry Harris-Foulkes estimate = -28.93158288 Ry estimated scf accuracy < 0.05654667 Ry iteration # 10 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.13E-04, avg # of iterations = 1.5 total cpu time spent up to now is 114.6 secs total energy = -28.92899988 Ry Harris-Foulkes estimate = -28.92987407 Ry estimated scf accuracy < 0.00363297 Ry iteration # 11 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.73E-05, avg # of iterations = 11.9 total cpu time spent up to now is 126.2 secs total energy = -28.92742735 Ry Harris-Foulkes estimate = -28.93067612 Ry estimated scf accuracy < 0.00843423 Ry iteration # 12 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.73E-05, avg # of iterations = 9.8 total cpu time spent up to now is 136.7 secs total energy = -28.92751930 Ry Harris-Foulkes estimate = -28.92962424 Ry estimated scf accuracy < 0.00771612 Ry iteration # 13 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.73E-05, avg # of iterations = 4.1 total cpu time spent up to now is 144.2 secs total energy = -28.92765068 Ry Harris-Foulkes estimate = -28.92924408 Ry estimated scf accuracy < 0.00440814 Ry iteration # 14 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.73E-05, avg # of iterations = 2.8 total cpu time spent up to now is 150.4 secs total energy = -28.92852293 Ry Harris-Foulkes estimate = -28.92915816 Ry estimated scf accuracy < 0.01220624 Ry iteration # 15 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.73E-05, avg # of iterations = 1.0 total cpu time spent up to now is 155.8 secs total energy = -28.92844407 Ry Harris-Foulkes estimate = -28.92873368 Ry estimated scf accuracy < 0.00497028 Ry iteration # 16 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.73E-05, avg # of iterations = 1.0 total cpu time spent up to now is 161.3 secs total energy = -28.92849573 Ry Harris-Foulkes estimate = -28.92854366 Ry estimated scf accuracy < 0.00042784 Ry iteration # 17 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.04E-06, avg # of iterations = 9.6 total cpu time spent up to now is 170.3 secs total energy = -28.92856241 Ry Harris-Foulkes estimate = -28.92856672 Ry estimated scf accuracy < 0.00001824 Ry iteration # 18 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 8.69E-08, avg # of iterations = 10.8 total cpu time spent up to now is 184.4 secs total energy = -28.92860542 Ry Harris-Foulkes estimate = -28.92860770 Ry estimated scf accuracy < 0.00001862 Ry iteration # 19 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.69E-08, avg # of iterations = 1.0 total cpu time spent up to now is 189.9 secs total energy = -28.92860804 Ry Harris-Foulkes estimate = -28.92860588 Ry estimated scf accuracy < 0.00002067 Ry iteration # 20 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.69E-08, avg # of iterations = 1.0 total cpu time spent up to now is 195.4 secs total energy = -28.92861193 Ry Harris-Foulkes estimate = -28.92860905 Ry estimated scf accuracy < 0.00002180 Ry iteration # 21 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.69E-08, avg # of iterations = 1.0 total cpu time spent up to now is 200.9 secs total energy = -28.92860620 Ry Harris-Foulkes estimate = -28.92861240 Ry estimated scf accuracy < 0.00003316 Ry iteration # 22 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.69E-08, avg # of iterations = 1.0 total cpu time spent up to now is 206.3 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2893 PWs) bands (ev): -14.9129 -14.5521 -13.9582 -13.1239 -12.0502 -10.7936 -9.2991 -7.8242 -6.0049 -4.1608 -2.3728 -0.9620 -0.3147 -0.0143 0.0646 k = 0.0000 0.2041 0.0000 ( 2891 PWs) bands (ev): -14.5389 -14.1788 -13.5861 -12.7535 -11.6819 -10.4275 -8.9333 -7.4725 -5.6542 -3.8167 -2.0356 -0.6163 0.0561 0.3568 0.4332 k = 0.0000 0.4082 0.0000 ( 2909 PWs) bands (ev): -13.4222 -13.0644 -12.4756 -11.6484 -10.5834 -9.3371 -7.8493 -6.4238 -4.6348 -2.9243 -1.9422 -1.4734 -1.0620 -0.7131 -0.2225 k = 0.0000 0.6124 0.0000 ( 2936 PWs) bands (ev): -11.5791 -11.2256 -10.6440 -9.8278 -8.7794 -7.5648 -6.2234 -5.8471 -5.4568 -4.8554 -4.4791 -4.0119 -3.0225 -2.7277 -1.8366 k = 0.0000-0.8165 0.0000 ( 2982 PWs) bands (ev): -9.0467 -9.0361 -8.7290 -8.6643 -8.1616 -8.1013 -7.3870 -7.3417 -6.4954 -5.9345 -4.9648 -4.8602 -3.5442 -3.4069 -2.2673 k = 0.1768-0.1021 0.0000 ( 2891 PWs) bands (ev): -14.5389 -14.1788 -13.5861 -12.7535 -11.6819 -10.4275 -8.9333 -7.4725 -5.6542 -3.8167 -2.0357 -0.6159 0.0561 0.3568 0.4332 k = 0.1768 0.1021 0.0000 ( 2891 PWs) bands (ev): -14.5389 -14.1788 -13.5861 -12.7535 -11.6819 -10.4275 -8.9333 -7.4725 -5.6542 -3.8167 -2.0357 -0.6163 0.0561 0.3568 0.4332 k = 0.1768 0.3062 0.0000 ( 2894 PWs) bands (ev): -13.7935 -13.4349 -12.8448 -12.0158 -10.9484 -9.6991 -8.2079 -6.7715 -4.9634 -3.1551 -1.4369 -0.1248 0.5204 0.7476 0.7893 k = 0.1768 0.5103 0.0000 ( 2934 PWs) bands (ev): -12.3136 -11.9582 -11.3736 -10.5523 -9.4955 -8.2612 -6.7948 -5.4026 -3.9838 -3.5757 -3.1156 -2.6678 -2.0176 -1.7041 -1.0407 k = 0.1768-0.9186 0.0000 ( 2943 PWs) bands (ev): -10.1216 -9.7723 -9.1986 -8.3977 -7.4162 -7.2265 -6.9213 -6.5094 -6.0870 -5.3864 -4.4987 -4.3622 -3.2996 -3.1787 -1.9934 k = 0.1768-0.7144 0.0000 ( 2943 PWs) bands (ev): -10.1216 -9.7723 -9.1986 -8.3977 -7.4162 -7.2265 -6.9213 -6.5094 -6.0870 -5.3864 -4.4987 -4.3622 -3.2996 -3.1787 -1.9936 k = 0.1768-0.5103 0.0000 ( 2934 PWs) bands (ev): -12.3136 -11.9582 -11.3736 -10.5523 -9.4955 -8.2612 -6.7948 -5.4026 -3.9838 -3.5757 -3.1156 -2.6677 -2.0177 -1.7039 -1.0401 k = 0.1768-0.3062 0.0000 ( 2894 PWs) bands (ev): -13.7935 -13.4349 -12.8448 -12.0158 -10.9484 -9.6991 -8.2079 -6.7715 -4.9634 -3.1549 -1.4369 -0.1253 0.5213 0.7373 0.7950 k = 0.3536-0.2041 0.0000 ( 2909 PWs) bands (ev): -13.4222 -13.0644 -12.4756 -11.6484 -10.5834 -9.3371 -7.8493 -6.4238 -4.6348 -2.9244 -1.9423 -1.4733 -1.0621 -0.7128 -0.2225 k = 0.3536 0.0000 0.0000 ( 2894 PWs) bands (ev): -13.7935 -13.4349 -12.8448 -12.0158 -10.9484 -9.6991 -8.2079 -6.7715 -4.9634 -3.1551 -1.4368 -0.1254 0.5218 0.7406 0.8010 k = 0.3536 0.2041 0.0000 ( 2909 PWs) bands (ev): -13.4222 -13.0644 -12.4756 -11.6484 -10.5834 -9.3371 -7.8493 -6.4238 -4.6348 -2.9244 -1.9421 -1.4734 -1.0617 -0.7128 -0.2222 k = 0.3536 0.4082 0.0000 ( 2934 PWs) bands (ev): -12.3136 -11.9582 -11.3736 -10.5523 -9.4955 -8.2612 -6.7948 -5.4026 -3.9838 -3.5757 -3.1155 -2.6677 -2.0176 -1.7039 -1.0392 k = 0.3536-1.0206 0.0000 ( 2964 PWs) bands (ev): -10.4843 -10.1337 -9.5572 -8.7493 -7.7150 -6.5294 -5.2712 -4.8255 -4.8148 -4.5861 -4.3355 -3.9119 -3.6164 -3.3581 -3.1032 k = 0.3536-0.8165 0.0000 ( 2968 PWs) bands (ev): -7.9736 -7.9621 -7.6653 -7.5907 -7.1072 -7.0316 -6.3390 -6.3044 -5.4886 -5.2050 -4.8897 -4.8479 -4.4304 -4.1910 -3.6185 k = 0.3536-0.6124 0.0000 ( 2964 PWs) bands (ev): -10.4843 -10.1337 -9.5572 -8.7493 -7.7150 -6.5294 -5.2712 -4.8255 -4.8148 -4.5861 -4.3356 -3.9118 -3.6164 -3.3580 -3.1000 k = 0.3536-0.4082 0.0000 ( 2934 PWs) bands (ev): -12.3136 -11.9582 -11.3736 -10.5523 -9.4955 -8.2612 -6.7948 -5.4026 -3.9838 -3.5757 -3.1155 -2.6678 -2.0176 -1.7040 -1.0407 k = 0.5303-0.3062 0.0000 ( 2936 PWs) bands (ev): -11.5791 -11.2256 -10.6440 -9.8278 -8.7794 -7.5648 -6.2234 -5.8471 -5.4568 -4.8554 -4.4791 -4.0119 -3.0225 -2.7277 -1.8365 k = 0.5303-0.1021 0.0000 ( 2934 PWs) bands (ev): -12.3136 -11.9582 -11.3736 -10.5523 -9.4955 -8.2612 -6.7948 -5.4026 -3.9838 -3.5757 -3.1155 -2.6679 -2.0176 -1.7040 -1.0406 k = 0.5303 0.1021 0.0000 ( 2934 PWs) bands (ev): -12.3136 -11.9582 -11.3736 -10.5523 -9.4955 -8.2612 -6.7948 -5.4026 -3.9838 -3.5757 -3.1156 -2.6679 -2.0178 -1.7040 -1.0405 k = 0.5303 0.3062 0.0000 ( 2936 PWs) bands (ev): -11.5791 -11.2256 -10.6440 -9.8278 -8.7794 -7.5648 -6.2234 -5.8471 -5.4568 -4.8554 -4.4791 -4.0119 -3.0225 -2.7278 -1.8365 k = 0.5303-1.1227 0.0000 ( 2943 PWs) bands (ev): -10.1216 -9.7723 -9.1986 -8.3977 -7.4162 -7.2265 -6.9213 -6.5094 -6.0870 -5.3864 -4.4987 -4.3622 -3.2996 -3.1787 -1.9937 k = 0.5303-0.9186 0.0000 ( 2968 PWs) bands (ev): -7.9736 -7.9621 -7.6653 -7.5907 -7.1072 -7.0316 -6.3390 -6.3044 -5.4886 -5.2051 -4.8897 -4.8479 -4.4304 -4.1910 -3.6185 k = 0.5303-0.7144 0.0000 ( 2968 PWs) bands (ev): -7.9736 -7.9621 -7.6653 -7.5907 -7.1072 -7.0316 -6.3390 -6.3044 -5.4886 -5.2050 -4.8897 -4.8479 -4.4304 -4.1910 -3.6185 k = 0.5303-0.5103 0.0000 ( 2943 PWs) bands (ev): -10.1216 -9.7723 -9.1986 -8.3977 -7.4162 -7.2265 -6.9213 -6.5094 -6.0870 -5.3864 -4.4987 -4.3622 -3.2994 -3.1787 -1.9935 k =-0.7071 0.4082 0.0000 ( 2982 PWs) bands (ev): -9.0467 -9.0361 -8.7290 -8.6644 -8.1616 -8.1012 -7.3869 -7.3417 -6.4954 -5.9345 -4.9648 -4.8602 -3.5442 -3.4069 -2.2669 k =-0.7071 0.6124 0.0000 ( 2943 PWs) bands (ev): -10.1216 -9.7723 -9.1986 -8.3977 -7.4162 -7.2265 -6.9213 -6.5094 -6.0870 -5.3864 -4.4987 -4.3622 -3.2996 -3.1788 -1.9939 k =-0.7071 0.8165 0.0000 ( 2964 PWs) bands (ev): -10.4843 -10.1337 -9.5572 -8.7493 -7.7150 -6.5294 -5.2712 -4.8255 -4.8148 -4.5861 -4.3355 -3.9119 -3.6165 -3.3581 -3.1048 k =-0.7071 1.0206 0.0000 ( 2943 PWs) bands (ev): -10.1216 -9.7723 -9.1986 -8.3977 -7.4162 -7.2265 -6.9213 -6.5094 -6.0870 -5.3864 -4.4987 -4.3622 -3.2997 -3.1787 -1.9939 k =-0.7071-0.4082 0.0000 ( 2982 PWs) bands (ev): -9.0467 -9.0361 -8.7290 -8.6644 -8.1616 -8.1012 -7.3869 -7.3417 -6.4954 -5.9345 -4.9648 -4.8602 -3.5442 -3.4069 -2.2672 the Fermi energy is -4.0188 ev ! total energy = -28.92859628 Ry Harris-Foulkes estimate = -28.92861115 Ry estimated scf accuracy < 0.00000081 Ry The total energy is the sum of the following terms: one-electron contribution = -6093.38218200 Ry hartree contribution = 3047.55073864 Ry xc contribution = -11.06497083 Ry ewald contribution = 3027.96511646 Ry smearing contrib. (-TS) = 0.00270145 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -20.16 0.0000 93.4829112 -93.4829666 -0.0000554 -19.98 0.0000 103.8265142 -103.8266985 -0.0001843 -19.80 0.0000 128.4677428 -128.4680198 -0.0002770 -19.62 0.0000 168.5305080 -168.5309378 -0.0004299 -19.44 0.0000 216.6828754 -216.6833746 -0.0004992 -19.26 0.0000 264.8341353 -264.8348101 -0.0006748 -19.08 0.0000 312.9859988 -312.9867211 -0.0007223 -18.90 0.0000 361.1377666 -361.1386854 -0.0009188 -18.72 0.0000 409.2891218 -409.2900684 -0.0009466 -18.54 0.0000 457.4413944 -457.4425559 -0.0011615 -18.36 0.0000 505.5922519 -505.5934245 -0.0011725 -18.18 0.0000 553.7450113 -553.7464139 -0.0014026 -18.00 0.0000 601.8953964 -601.8967967 -0.0014003 -17.82 0.0000 650.0486103 -650.0502521 -0.0016417 -17.64 0.0000 698.1985618 -698.2001922 -0.0016304 -17.46 0.0000 746.3521852 -746.3540638 -0.0018787 -17.28 0.0000 794.5017543 -794.5036171 -0.0018628 -17.10 0.0000 842.6557302 -842.6578433 -0.0021131 -16.92 0.0000 890.8049788 -890.8070768 -0.0020980 -16.74 0.0000 938.9592409 -938.9615859 -0.0023450 -16.56 0.0000 987.1082394 -987.1105754 -0.0023360 -16.38 0.0000 1035.2627138 -1035.2652878 -0.0025741 -16.20 0.0000 1083.4115389 -1083.4141158 -0.0025769 -16.02 0.0000 1131.5661467 -1131.5689470 -0.0028003 -15.84 0.0000 1179.7148787 -1179.7176997 -0.0028210 -15.66 0.0000 1227.8695389 -1227.8725625 -0.0030236 -15.48 0.0000 1276.0182589 -1276.0213270 -0.0030681 -15.30 0.0000 1324.1728909 -1324.1761350 -0.0032441 -15.12 0.0000 1372.3216785 -1372.3249967 -0.0033183 -14.94 0.0000 1420.4762043 -1420.4796662 -0.0034620 -14.76 0.0000 1468.6251347 -1468.6287061 -0.0035714 -14.58 0.0000 1516.7794821 -1516.7831596 -0.0036775 -14.40 0.0000 1564.9286240 -1564.9324514 -0.0038274 -14.22 0.0000 1613.0827282 -1613.0866194 -0.0038912 -14.04 0.0000 1661.2321413 -1661.2362275 -0.0040863 -13.86 0.0000 1709.3859472 -1709.3900512 -0.0041040 -13.68 0.0000 1757.5356802 -1757.5400286 -0.0043484 -13.50 0.0000 1805.6891436 -1805.6934614 -0.0043178 -13.32 0.0000 1853.8392327 -1853.8438479 -0.0046153 -13.14 0.0000 1901.9923209 -1901.9968568 -0.0045359 -12.96 0.0000 1950.1427879 -1950.1476782 -0.0048903 -12.78 0.0000 1998.2954792 -1998.3002451 -0.0047660 -12.60 0.0000 2046.4463288 -2046.4515118 -0.0051830 -12.42 0.0000 2094.5986096 -2094.6036340 -0.0050244 -12.24 0.0000 2142.7498250 -2142.7553408 -0.0055158 -12.06 0.0000 2190.9016818 -2190.9070299 -0.0053481 -11.88 0.0000 2239.0532128 -2239.0591556 -0.0059428 -11.70 0.0000 2287.2046135 -2287.2104413 -0.0058278 -11.52 0.0000 2335.3563483 -2335.3629508 -0.0066025 -11.34 0.0001 2383.5071943 -2383.5138771 -0.0066828 -11.16 0.0001 2431.6588890 -2431.6667190 -0.0078300 -10.98 0.0002 2479.8089006 -2479.8173450 -0.0084444 -10.80 0.0003 2527.9599992 -2527.9704521 -0.0104529 -10.62 0.0004 2576.1084272 -2576.1208533 -0.0124261 -10.44 0.0007 2624.2576196 -2624.2741408 -0.0165213 -10.26 0.0011 2672.4025455 -2672.4244121 -0.0218665 -10.08 0.0017 2720.5466540 -2720.5777730 -0.0311190 -9.90 0.0026 2768.6832186 -2768.7280364 -0.0448179 -9.72 0.0042 2816.8144288 -2816.8813272 -0.0668984 -9.54 0.0066 2864.9304606 -2865.0317547 -0.1012941 -9.36 0.0104 2913.0293740 -2913.1847636 -0.1553895 -9.18 0.0163 2961.0944350 -2961.3356347 -0.2411997 -9.00 0.0256 3009.1131322 -3009.4879447 -0.3748125 -8.82 0.0396 3057.0526937 -3057.6396789 -0.5869852 -8.64 0.0604 3104.8762613 -3105.7901054 -0.9138442 -8.46 0.0900 3152.5172302 -3153.9365807 -1.4193505 -8.28 0.1302 3199.8925221 -3201.9347325 -2.0422104 -8.10 0.1808 3246.8794478 -3250.0019605 -3.1225126 -7.92 0.2373 3293.3338398 -3298.5769063 -5.2430664 -7.74 0.2904 3339.0878913 -3347.4607633 -8.3728721 -7.56 0.3304 3383.9907544 -3395.9669537 -11.9761992 -7.38 0.3537 3427.9225496 -3443.3520433 -15.4294936 -7.20 0.3630 3470.8161374 -3488.8179406 -18.0018031 -7.02 0.3635 3512.6411859 -3531.6365841 -18.9953982 -6.84 0.3610 3553.3959669 -3571.5303639 -18.1343970 -6.66 0.3599 3593.0858746 -3608.7458356 -15.6599611 -6.48 0.3604 3631.7143800 -3643.9954562 -12.2810762 -6.30 0.3587 3669.2812251 -3678.0778850 -8.7966600 -6.12 0.3532 3705.7913360 -3711.7358237 -5.9444877 -5.94 0.3489 3741.2606942 -3745.5208752 -4.2601809 -5.76 0.3515 3775.6990160 -3779.8977738 -4.1987577 -5.58 0.3604 3809.1006561 -3814.8820740 -5.7814179 -5.40 0.3681 3841.4389480 -3850.0177718 -8.5788238 -5.22 0.3682 3872.6955761 -3884.7598475 -12.0642714 -5.04 0.3619 3902.8668711 -3918.3727506 -15.5058795 -4.86 0.3550 3931.9732315 -3950.0585821 -18.0853506 -4.68 0.3519 3960.0302194 -3979.0919455 -19.0617261 -4.50 0.3536 3987.0505497 -4005.2002360 -18.1496862 -4.32 0.3595 4013.0254155 -4028.6352353 -15.6098199 -4.14 0.3659 4037.9423147 -4050.1123730 -12.1700583 -3.96 0.3669 4061.7800161 -4070.4294772 -8.6494612 -3.78 0.3610 4084.5400285 -4090.3289898 -5.7889613 -3.60 0.3541 4106.2341833 -4110.3595659 -4.1253826 -3.42 0.3533 4126.8848477 -4130.9863216 -4.1014738 -3.24 0.3591 4146.4904227 -4152.2161313 -5.7257086 -3.06 0.3647 4165.0393012 -4173.5939983 -8.5546972 -2.88 0.3646 4182.5128853 -4194.5704422 -12.0575569 -2.70 0.3599 4198.9143240 -4214.4119158 -15.4975919 -2.52 0.3559 4214.2532076 -4232.3166651 -18.0634575 -2.34 0.3552 4228.5433726 -4247.5656278 -19.0222552 -2.16 0.3578 4241.7847372 -4259.8875143 -18.1027771 -1.98 0.3626 4253.9716929 -4269.5431191 -15.5714262 -1.80 0.3664 4265.0894483 -4277.2467692 -12.1573209 -1.62 0.3644 4275.1290558 -4283.7997748 -8.6707190 -1.44 0.3562 4284.0958363 -4289.9396888 -5.8438526 -1.26 0.3482 4292.0125195 -4296.2171094 -4.2045899 -1.08 0.3477 4298.9010037 -4303.0924164 -4.1914127 -0.90 0.3550 4304.7620093 -4310.5690099 -5.8070006 -0.72 0.3632 4309.5769186 -4318.1876826 -8.6107640 -0.54 0.3660 4313.3218480 -4325.3997123 -12.0778643 -0.36 0.3639 4315.9901566 -4331.4684423 -15.4782857 -0.18 0.3612 4317.5847367 -4335.5932085 -18.0084718 0.00 0.3602 4318.1154872 -4337.0566629 -18.9411757 0.18 0.3612 4317.5825339 -4335.5931436 -18.0106097 0.36 0.3638 4315.9860911 -4331.4685713 -15.4824803 0.54 0.3659 4313.3155649 -4325.3995205 -12.0839556 0.72 0.3631 4309.5694130 -4318.1879349 -8.6185219 0.90 0.3549 4304.7525577 -4310.5686997 -5.8161421 1.08 0.3476 4298.8911595 -4303.0927808 -4.2016213 1.26 0.3481 4292.0011671 -4296.2166948 -4.2155277 1.44 0.3561 4284.0849874 -4289.9401491 -5.8551617 1.62 0.3643 4275.1172538 -4283.7992742 -8.6820204 1.80 0.3663 4265.0790864 -4277.2473047 -12.1682183 1.98 0.3625 4253.9610328 -4269.5425549 -15.5815220 2.16 0.3577 4241.7764038 -4259.8881010 -18.1116972 2.34 0.3551 4228.5353478 -4247.5650254 -19.0296776 2.52 0.3558 4214.2481354 -4232.3172764 -18.0691410 2.70 0.3599 4198.9099048 -4214.4113027 -15.5013979 2.88 0.3646 4182.5115903 -4194.5710503 -12.0594600 3.06 0.3648 4165.0386265 -4173.5934025 -8.5547760 3.24 0.3591 4146.4925874 -4152.2167080 -5.7241206 3.42 0.3534 4126.8873466 -4130.9857707 -4.0984242 3.60 0.3542 4106.2389849 -4110.3600844 -4.1210994 3.78 0.3611 4084.5448315 -4090.3285100 -5.7836785 3.96 0.3670 4061.7865085 -4070.4299126 -8.6434041 4.14 0.3659 4037.9485595 -4050.1119875 -12.1634280 4.32 0.3596 4013.0327929 -4028.6355662 -15.6027733 4.50 0.3536 3987.0576443 -4005.1999641 -18.1423198 4.68 0.3519 3960.0380863 -3979.0921547 -19.0540684 4.86 0.3550 3931.9810719 -3950.0584387 -18.0773668 5.04 0.3618 3902.8753412 -3918.3728259 -15.4974847 5.22 0.3682 3872.7044911 -3884.7598419 -12.0553509 5.40 0.3681 3841.4484503 -3850.0177068 -8.5692565 5.58 0.3604 3809.1111107 -3814.8822097 -5.7710990 5.76 0.3515 3775.7099558 -3779.8975680 -4.1876122 5.94 0.3489 3741.2729814 -3745.5211496 -4.2481682 6.12 0.3532 3705.8038806 -3711.7354828 -5.9316022 6.30 0.3587 3669.2953576 -3678.0782893 -8.7829317 6.48 0.3605 3631.7284190 -3643.9949920 -12.2665730 6.66 0.3600 3593.1015663 -3608.7463552 -15.6447889 6.84 0.3611 3553.4110988 -3571.5297940 -18.1186952 7.02 0.3636 3512.6578705 -3531.6371987 -18.9793283 7.20 0.3630 3470.8317561 -3488.8172874 -17.9855313 7.38 0.3538 3427.9395565 -3443.3527282 -15.4131717 7.56 0.3305 3384.0062947 -3395.9662441 -11.9599494 7.74 0.2904 3339.1047093 -3347.4614899 -8.3567807 7.92 0.2373 3293.3489848 -3298.5761704 -5.2271856 8.10 0.1808 3246.8958295 -3250.0026975 -3.1068680 8.28 0.1302 3199.9071926 -3201.9340025 -2.0268099 8.46 0.0900 3152.5331030 -3153.9372952 -1.4041922 8.64 0.0604 3104.8904925 -3105.7894145 -0.8989220 8.82 0.0396 3057.0680455 -3057.6403380 -0.5722925 9.00 0.0256 3009.1269814 -3009.4873254 -0.3603440 9.18 0.0163 2961.1092542 -2961.3362063 -0.2269521 9.36 0.0104 2913.0428856 -2913.1842469 -0.1413613 9.54 0.0066 2864.9447245 -2865.0322094 -0.0874849 9.72 0.0042 2816.8276325 -2816.8809410 -0.0533085 9.90 0.0026 2768.6968998 -2768.7283481 -0.0314483 10.08 0.0017 2720.5595699 -2720.5775410 -0.0179711 10.26 0.0011 2672.4156176 -2672.4245596 -0.0089420 10.44 0.0007 2624.2702599 -2624.2740816 -0.0038217 10.62 0.0004 2576.1208682 -2576.1208211 0.0000471 10.80 0.0003 2527.9723704 -2527.9705779 0.0017925 10.98 0.0002 2479.8206960 -2479.8171241 0.0035720 11.16 0.0001 2431.6709919 -2431.6670355 0.0039564 11.34 0.0001 2383.5183380 -2383.5134652 0.0048728 11.52 0.0000 2335.3681783 -2335.3634567 0.0047216 11.70 0.0000 2287.2151080 -2287.2098436 0.0052643 11.88 0.0000 2239.0647590 -2239.0598421 0.0049169 12.06 0.0000 2190.9115375 -2190.9062586 0.0052789 12.24 0.0000 2142.7610703 -2142.7561921 0.0048782 12.42 0.0000 2094.6078447 -2094.6027083 0.0051365 12.60 0.0000 2046.4572501 -2046.4525056 0.0047446 12.78 0.0000 1998.3041187 -1998.2991905 0.0049282 12.96 0.0000 1950.1533563 -1950.1487859 0.0045704 13.14 0.0000 1902.0003957 -1901.9957044 0.0046913 13.32 0.0000 1853.8494145 -1853.8450360 0.0043784 13.50 0.0000 1805.6966892 -1805.6922469 0.0044423 13.68 0.0000 1757.5454377 -1757.5412596 0.0041781 13.86 0.0000 1709.3930027 -1709.3888138 0.0041889 14.04 0.0000 1661.2414342 -1661.2374611 0.0039731 14.22 0.0000 1613.0893348 -1613.0854001 0.0039346 14.40 0.0000 1564.9374107 -1564.9336459 0.0037648 14.58 0.0000 1516.7856813 -1516.7820002 0.0036811 14.76 0.0000 1468.6333737 -1468.6298201 0.0035536 14.94 0.0000 1420.4820371 -1420.4786077 0.0034294 15.12 0.0000 1372.3293298 -1372.3259902 0.0033395 15.30 0.0000 1324.1783958 -1324.1752157 0.0031801 15.48 0.0000 1276.0252858 -1276.0221633 0.0031225 15.66 0.0000 1227.8747509 -1227.8718175 0.0029334 15.84 0.0000 1179.7212486 -1179.7183461 0.0029024 16.02 0.0000 1131.5710955 -1131.5684059 0.0026896 16.20 0.0000 1083.4172249 -1083.4145456 0.0026793 16.38 0.0000 1035.2674230 -1035.2649744 0.0024486 16.56 0.0000 987.1132214 -987.1107683 0.0024531 16.74 0.0000 938.9637272 -938.9615167 0.0022105 16.92 0.0000 890.8092438 -890.8070199 0.0022239 17.10 0.0000 842.6600026 -842.6580275 0.0019751 17.28 0.0000 794.5052974 -794.5033055 0.0019919 17.46 0.0000 746.3562445 -746.3545020 0.0017424 17.64 0.0000 698.2013863 -698.1996292 0.0017571 17.82 0.0000 650.0524491 -650.0509369 0.0015122 18.00 0.0000 601.8975138 -601.8959938 0.0015199 18.18 0.0000 553.7486140 -553.7473299 0.0012841 18.36 0.0000 505.5936816 -505.5924010 0.0012805 18.54 0.0000 457.4447380 -457.4436800 0.0010579 18.72 0.0000 409.2898903 -409.2888511 0.0010392 18.90 0.0000 361.1408211 -361.1399877 0.0008334 19.08 0.0000 312.9861392 -312.9853429 0.0007963 19.26 0.0000 264.8368648 -264.8362546 0.0006101 19.44 0.0000 216.6824261 -216.6818740 0.0005521 19.62 0.0000 172.4828246 -172.4824367 0.0003878 19.80 0.0000 136.9309308 -136.9306238 0.0003070 19.98 0.0000 111.1640949 -111.1639288 0.0001661 20.16 0.0000 96.3028075 -96.3027461 0.0000614 convergence has been achieved in 22 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000396 -0.00000037 -0.00167028 atom 2 type 1 force = 0.00000022 -0.00000023 0.00666591 atom 3 type 1 force = -0.00000126 0.00000218 -0.00521981 atom 4 type 1 force = 0.00000393 0.00000131 -0.00005125 atom 5 type 1 force = 0.00000287 -0.00000257 0.00560645 atom 6 type 1 force = 0.00000031 0.00000163 -0.00714762 atom 7 type 1 force = -0.00000211 -0.00000195 0.00181660 Total force = 0.012661 Total SCF correction = 0.001344 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file Al111.save init_run : 5.07s CPU 5.33s WALL ( 1 calls) electrons : 198.28s CPU 200.77s WALL ( 1 calls) forces : 1.67s CPU 1.72s WALL ( 1 calls) Called by init_run: wfcinit : 4.32s CPU 4.40s WALL ( 1 calls) potinit : 0.28s CPU 0.30s WALL ( 1 calls) Called by electrons: c_bands : 179.35s CPU 181.40s WALL ( 22 calls) sum_band : 16.52s CPU 16.74s WALL ( 22 calls) v_of_rho : 1.92s CPU 1.98s WALL ( 23 calls) mix_rho : 0.25s CPU 0.25s WALL ( 22 calls) Called by c_bands: init_us_2 : 2.83s CPU 2.65s WALL ( 1564 calls) cegterg : 173.39s CPU 175.07s WALL ( 748 calls) Called by *egterg: h_psi : 133.21s CPU 133.35s WALL ( 4745 calls) g_psi : 2.61s CPU 2.38s WALL ( 3963 calls) cdiaghg : 5.69s CPU 5.68s WALL ( 4711 calls) Called by h_psi: add_vuspsi : 15.76s CPU 15.80s WALL ( 4745 calls) General routines calbec : 18.52s CPU 18.24s WALL ( 4779 calls) fft : 0.36s CPU 0.41s WALL ( 256 calls) fftw : 104.44s CPU 105.12s WALL ( 87444 calls) davcio : 0.05s CPU 0.73s WALL ( 2312 calls) EXX routines PWSCF : 3m25.33s CPU 3m28.42s WALL This run was terminated on: 22:28: 8 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/ESM_example/reference/H2O.noesm.out0000644000175000017500000005147312341373025022016 0ustar mbamba Program PWSCF v.4.99 starts on 23Apr2012 at 22:23:35 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input file H.pbe-rrkjus.UPF: wavefunction(s) 1S renormalized file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 6369 3181 793 458581 162113 20303 Tot 3185 1591 397 bravais-lattice index = 6 lattice parameter (alat) = 20.0000 a.u. unit-cell volume = 9600.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Ordinary Periodic Boundary Conditions celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 1.200000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.200000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.833333 ) PseudoPot. # 1 for H read from file: /home/Brandon/src/espresso/pseudo/H.pbe-rrkjus.UPF MD5 check sum: 7cc9d459525c9a0585f487a71c3c9563 Pseudo is Ultrasoft, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1061 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for O read from file: /home/Brandon/src/espresso/pseudo/O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential H 1.00 1.00794 H ( 1.00) O 6.00 55.84700 O ( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.5000000 0.0000000 ) 2 H tau( 2) = ( 0.0431388 0.4310286 0.0430783 ) 3 H tau( 3) = ( 0.0366354 0.5764064 0.0359492 ) number of k points= 1 gaussian smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 229291 G-vectors FFT dimensions: ( 96, 96, 120) Smooth grid: 81057 G-vectors FFT dimensions: ( 64, 64, 80) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.24 Mb ( 10152, 8) NL pseudopotentials 1.86 Mb ( 10152, 12) Each V/rho on FFT grid 16.88 Mb (1105920) Each G-vector array 1.75 Mb ( 229291) G-vector shells 0.10 Mb ( 12605) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.48 Mb ( 10152, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 135.00 Mb (1105920, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001104 starting charge 7.80759, renormalised to 8.00000 negative rho (up, down): 0.113E-02 0.000E+00 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 6.3 secs per-process dynamical memory: 113.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.623E-03 0.000E+00 total cpu time spent up to now is 9.8 secs total energy = -34.15546573 Ry Harris-Foulkes estimate = -34.57481875 Ry estimated scf accuracy < 0.66685302 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.34E-03, avg # of iterations = 2.0 negative rho (up, down): 0.151E-02 0.000E+00 total cpu time spent up to now is 13.1 secs total energy = -34.24877020 Ry Harris-Foulkes estimate = -34.29902946 Ry estimated scf accuracy < 0.12012437 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.50E-03, avg # of iterations = 4.0 negative rho (up, down): 0.125E-02 0.000E+00 total cpu time spent up to now is 16.2 secs total energy = -34.25176542 Ry Harris-Foulkes estimate = -34.26168810 Ry estimated scf accuracy < 0.01755051 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.19E-04, avg # of iterations = 4.0 negative rho (up, down): 0.586E-03 0.000E+00 total cpu time spent up to now is 19.3 secs total energy = -34.25343391 Ry Harris-Foulkes estimate = -34.25348823 Ry estimated scf accuracy < 0.00041277 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.16E-06, avg # of iterations = 10.0 negative rho (up, down): 0.518E-03 0.000E+00 total cpu time spent up to now is 22.7 secs total energy = -34.25355956 Ry Harris-Foulkes estimate = -34.25352984 Ry estimated scf accuracy < 0.00002954 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.69E-07, avg # of iterations = 4.0 negative rho (up, down): 0.391E-03 0.000E+00 total cpu time spent up to now is 25.8 secs total energy = -34.25356927 Ry Harris-Foulkes estimate = -34.25356651 Ry estimated scf accuracy < 0.00000356 Ry iteration # 7 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.45E-08, avg # of iterations = 2.0 negative rho (up, down): 0.290E-03 0.000E+00 total cpu time spent up to now is 28.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10152 PWs) bands (ev): -25.2553 -13.0540 -9.1754 -7.1530 -0.9890 0.2072 0.6285 0.6582 the Fermi energy is -4.0773 ev ! total energy = -34.25356999 Ry Harris-Foulkes estimate = -34.25357021 Ry estimated scf accuracy < 0.00000074 Ry The total energy is the sum of the following terms: one-electron contribution = -65.18261814 Ry hartree contribution = 34.02195223 Ry xc contribution = -8.39476070 Ry ewald contribution = 5.30185662 Ry smearing contrib. (-TS) = -0.00000000 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -6.24 0.0000 -6.7256510 6.8221255 0.0964745 -6.14 0.0000 -6.7161669 6.8162384 0.1000716 -6.03 0.0000 -6.6952846 6.7990479 0.1037632 -5.93 0.0000 -6.6630042 6.7703759 0.1073717 -5.82 0.0000 -6.6193256 6.7303702 0.1110447 -5.72 0.0000 -6.5642489 6.6789256 0.1146768 -5.61 0.0000 -6.4977740 6.6160961 0.1183221 -5.50 0.0000 -6.4199009 6.5418835 0.1219826 -5.40 0.0000 -6.3306297 6.4562299 0.1256002 -5.29 0.0000 -6.2299604 6.3592448 0.1292845 -5.19 0.0000 -6.1178929 6.2507760 0.1328831 -5.08 0.0000 -5.9944272 6.1310063 0.1365790 -4.97 0.0000 -5.8595635 5.9997370 0.1401735 -4.87 0.0000 -5.7133016 5.8571662 0.1438646 -4.76 0.0000 -5.5556416 5.7031129 0.1474713 -4.66 0.0000 -5.3865835 5.5377254 0.1511419 -4.55 0.0000 -5.2061273 5.3609011 0.1547738 -4.45 0.0000 -5.0142730 5.1726877 0.1584147 -4.34 0.0000 -4.8110207 4.9730977 0.1620769 -4.23 0.0000 -4.5963705 4.7620580 0.1656875 -4.13 0.0000 -4.3703223 4.5396975 0.1693752 -4.02 0.0000 -4.1328763 4.3058410 0.1729647 -3.92 0.0000 -3.8840324 4.0606965 0.1766641 -3.81 0.0000 -3.6237909 3.8040398 0.1802489 -3.70 0.0000 -3.3521521 3.5360928 0.1839407 -3.60 0.0000 -3.0691161 3.2566549 0.1875388 -3.49 0.0000 -2.7746835 2.9658875 0.1912041 -3.39 0.0000 -2.4688546 2.6636836 0.1948291 -3.28 0.0001 -2.1516300 2.3500845 0.1984545 -3.18 0.0001 -1.8230109 2.0251210 0.2021101 -3.07 0.0001 -1.4829989 1.6886896 0.2056907 -2.96 0.0002 -1.1315963 1.3409611 0.2093648 -2.86 0.0002 -0.7688060 0.9817087 0.2129027 -2.75 0.0003 -0.3946317 0.6111985 0.2165668 -2.65 0.0004 -0.0090787 0.2291461 0.2200674 -2.54 0.0006 0.3878450 -0.1641697 0.2236752 -2.43 0.0009 0.7961269 -0.5689971 0.2271298 -2.33 0.0012 1.2157494 -0.9851427 0.2306067 -2.22 0.0017 1.6466889 -1.4127236 0.2339653 -2.12 0.0024 2.0889140 -1.8517156 0.2371984 -2.01 0.0034 2.5423798 -2.3020398 0.2403399 -1.91 0.0050 3.0070196 -2.7638805 0.2431390 -1.80 0.0072 3.4827327 -3.2369546 0.2457780 -1.69 0.0103 3.9693737 -3.7216279 0.2477458 -1.59 0.0147 4.4667394 -4.2174772 0.2492621 -1.48 0.0210 4.9745452 -4.7249490 0.2495961 -1.38 0.0304 5.4923780 -5.2436154 0.2487626 -1.27 0.0449 6.0196157 -5.7738373 0.2457785 -1.16 0.0664 6.5553135 -6.3153744 0.2399391 -1.06 0.0978 7.0980653 -6.8682879 0.2297774 -0.95 0.1437 7.6458182 -7.4327607 0.2130575 -0.85 0.2127 8.1955600 -8.0082823 0.1872778 -0.74 0.3186 8.7427557 -8.5958326 0.1469231 -0.64 0.4781 9.2804749 -9.1924498 0.0880251 -0.53 0.7126 9.7982958 -9.8019441 -0.0036483 -0.42 1.0399 10.2809526 -10.4368885 -0.1559359 -0.32 1.4253 10.7074652 -11.0749342 -0.3674690 -0.21 1.7462 11.0536271 -11.6421275 -0.5885003 -0.11 1.9058 11.2992781 -12.0703373 -0.7710592 0.00 1.9720 11.4336875 -12.3244386 -0.8907511 0.11 2.0303 11.4520462 -12.3964478 -0.9444016 0.21 1.9997 11.3510854 -12.2838945 -0.9328091 0.32 1.7897 11.1333243 -11.9808999 -0.8475756 0.42 1.4559 10.8119902 -11.5292176 -0.7172274 0.53 1.1031 10.4080631 -10.9967589 -0.5886958 0.64 0.7929 9.9440146 -10.4133819 -0.4693673 0.74 0.5488 9.4397698 -9.7947695 -0.3549998 0.85 0.3733 8.9110890 -9.1782351 -0.2671462 0.95 0.2541 8.3693781 -8.5809489 -0.2115708 1.06 0.1735 7.8224396 -7.9942374 -0.1717978 1.16 0.1186 7.2755485 -7.4188539 -0.1433054 1.27 0.0808 6.7323028 -6.8547468 -0.1224440 1.38 0.0550 6.1951716 -6.3020401 -0.1068685 1.48 0.0378 5.6658367 -5.7608402 -0.0950034 1.59 0.0263 5.1454257 -5.2308440 -0.0854183 1.69 0.0185 4.6346912 -4.7124985 -0.0778074 1.80 0.0130 4.1341446 -4.2052675 -0.0711229 1.91 0.0091 3.6441448 -3.7097243 -0.0655795 2.01 0.0064 3.1649475 -3.2253063 -0.0603589 2.12 0.0045 2.6967330 -2.7525247 -0.0557916 2.22 0.0032 2.2396249 -2.2909522 -0.0513274 2.33 0.0023 1.7937067 -1.8409091 -0.0472024 2.43 0.0017 1.3590364 -1.4021953 -0.0431589 2.54 0.0012 0.9356565 -0.9748873 -0.0392309 2.65 0.0008 0.5235984 -0.5590262 -0.0354278 2.75 0.0006 0.1228852 -0.1544674 -0.0315822 2.86 0.0004 -0.2664676 0.2385615 -0.0279061 2.96 0.0003 -0.6444494 0.6203463 -0.0241032 3.07 0.0002 -1.0110531 0.9905702 -0.0204829 3.18 0.0002 -1.3662732 1.3495533 -0.0167199 3.28 0.0001 -1.7101055 1.6969982 -0.0131073 3.39 0.0001 -2.0425469 2.0331573 -0.0093896 3.49 0.0001 -2.3635952 2.3578406 -0.0057545 3.60 0.0000 -2.6732490 2.6711639 -0.0020851 3.70 0.0000 -2.9715075 2.9730910 0.0015835 3.81 0.0000 -3.2583699 3.2635797 0.0052098 3.92 0.0000 -3.5338356 3.5427432 0.0089075 4.02 0.0000 -3.7979043 3.8104097 0.0125055 4.13 0.0000 -4.0505755 4.0667932 0.0162177 4.23 0.0000 -4.2918491 4.3116567 0.0198077 4.34 0.0000 -4.5217249 4.5452399 0.0235150 4.45 0.0000 -4.7402030 4.7673200 0.0271171 4.55 0.0000 -4.9472831 4.9780855 0.0308023 4.66 0.0000 -5.1429653 5.1773963 0.0344311 4.76 0.0000 -5.3272494 5.3653341 0.0380847 4.87 0.0000 -5.5001354 5.5418806 0.0417452 4.97 0.0000 -5.6616234 5.7069911 0.0453677 5.08 0.0000 -5.8117133 5.8607679 0.0490547 5.19 0.0000 -5.9504050 6.0030608 0.0526558 5.29 0.0000 -6.0776987 6.1340546 0.0563559 5.40 0.0000 -6.1935942 6.2535458 0.0599516 5.50 0.0000 -6.2980915 6.3617396 0.0636480 5.61 0.0000 -6.3911907 6.4584459 0.0672552 5.72 0.0000 -6.4728918 6.5438242 0.0709324 5.82 0.0000 -6.5431947 6.6177581 0.0745634 5.93 0.0000 -6.6020995 6.6803119 0.0782124 6.03 0.0000 -6.6496061 6.7314783 0.0818721 6.14 0.0000 -6.6857146 6.7712077 0.0854931 6.24 0.0000 -6.7104249 6.7996019 0.0891770 6.35 0.0000 -6.7237370 6.8165157 0.0927787 convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.00043393 -0.00019692 -0.00016191 atom 2 type 1 force = 0.00017205 0.00016310 0.00004065 atom 3 type 1 force = 0.00026188 0.00003382 0.00012127 Total force = 0.000291 Total SCF correction = 0.000118 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file H2O.save init_run : 5.74s CPU 5.85s WALL ( 1 calls) electrons : 21.01s CPU 22.31s WALL ( 1 calls) forces : 1.86s CPU 1.87s WALL ( 1 calls) Called by init_run: wfcinit : 0.14s CPU 0.14s WALL ( 1 calls) potinit : 2.70s CPU 2.71s WALL ( 1 calls) Called by electrons: c_bands : 3.74s CPU 3.78s WALL ( 7 calls) sum_band : 4.43s CPU 4.62s WALL ( 7 calls) v_of_rho : 9.52s CPU 9.99s WALL ( 8 calls) newd : 2.71s CPU 3.12s WALL ( 8 calls) mix_rho : 0.89s CPU 0.91s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.08s CPU 0.07s WALL ( 15 calls) regterg : 3.68s CPU 3.72s WALL ( 7 calls) Called by *egterg: h_psi : 3.26s CPU 3.30s WALL ( 40 calls) s_psi : 0.06s CPU 0.06s WALL ( 40 calls) g_psi : 0.03s CPU 0.05s WALL ( 32 calls) rdiaghg : 0.00s CPU 0.01s WALL ( 39 calls) Called by h_psi: add_vuspsi : 0.03s CPU 0.05s WALL ( 40 calls) General routines calbec : 0.11s CPU 0.09s WALL ( 51 calls) fft : 7.33s CPU 7.40s WALL ( 127 calls) ffts : 0.26s CPU 0.33s WALL ( 15 calls) fftw : 3.11s CPU 3.11s WALL ( 242 calls) interpolate : 1.33s CPU 1.44s WALL ( 15 calls) davcio : 0.00s CPU 0.00s WALL ( 7 calls) EXX routines PWSCF : 28.92s CPU 30.62s WALL This run was terminated on: 22:24: 5 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/ESM_example/reference/esm_data.sh0000755000175000017500000000077512341373025021670 0ustar mbamba#!/bin/sh # Prints the ESM summary data (charge and potentials) to stdout # Usage: esm_data.sh {pw output filename} # # Original version by Brandon Wood and Minoru Otani # echo '# z (A) Tot chg (e) Avg v_hartree Avg v_local Avg v_hart+v_loc' echo '# (eV) (eV) (eV)' ngrid=`grep 'Dense grid:' $1 | awk -F ',' '{print $3}' | sed 's/)//'` let ngrid="$ngrid+5" grep -A${ngrid} 'ESM Charge and Potential' $1 | tail -n${ngrid} | tail -n+6 espresso-5.1/PW/examples/ESM_example/reference/Al111.bc2_efield.out0000644000175000017500000014017112341373025023034 0ustar mbamba Program PWSCF v.4.99 starts on 23Apr2012 at 22:28: 8 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 23647 23647 5473 bravais-lattice index = 0 lattice parameter (alat) = 7.6534 a.u. unit-cell volume = 1941.1667 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Boundary Conditions: Metal-Slab-Metal celldm(1)= 7.653394 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.707107 0.000000 0.000000 ) a(2) = ( 0.353553 0.612372 0.000000 ) a(3) = ( 0.000000 0.000000 10.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.414214 -0.816497 0.000000 ) b(2) = ( 0.000000 1.632993 0.000000 ) b(3) = ( 0.000000 0.000000 0.100000 ) PseudoPot. # 1 for Al read from file: /home/Brandon/src/espresso/pseudo/Al.pbe-rrkj.UPF MD5 check sum: b5320f8fdc07ab0d74f109f4aa58256b Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 879 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential Al 3.00 26.98154 Al( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 -1.7320512 ) 2 Al tau( 2) = ( 0.0000000 0.4082492 -1.1547008 ) 3 Al tau( 3) = ( 0.3535529 0.2041234 -0.5773504 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.0000000 0.4082492 0.5773504 ) 6 Al tau( 6) = ( 0.3535529 0.2041234 1.1547008 ) 7 Al tau( 7) = ( 0.0000000 0.0000000 1.7320512 ) number of k points= 34 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( 0.0000000 0.2041241 0.0000000), wk = 0.0625000 k( 3) = ( 0.0000000 0.4082483 0.0000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.6123724 0.0000000), wk = 0.0625000 k( 5) = ( 0.0000000 -0.8164966 0.0000000), wk = 0.0312500 k( 6) = ( 0.1767767 -0.1020621 0.0000000), wk = 0.0625000 k( 7) = ( 0.1767767 0.1020621 0.0000000), wk = 0.0625000 k( 8) = ( 0.1767767 0.3061862 0.0000000), wk = 0.0625000 k( 9) = ( 0.1767767 0.5103104 0.0000000), wk = 0.0625000 k( 10) = ( 0.1767767 -0.9185587 0.0000000), wk = 0.0625000 k( 11) = ( 0.1767767 -0.7144345 0.0000000), wk = 0.0625000 k( 12) = ( 0.1767767 -0.5103104 0.0000000), wk = 0.0625000 k( 13) = ( 0.1767767 -0.3061862 0.0000000), wk = 0.0625000 k( 14) = ( 0.3535534 -0.2041241 0.0000000), wk = 0.0625000 k( 15) = ( 0.3535534 0.0000000 0.0000000), wk = 0.0625000 k( 16) = ( 0.3535534 0.2041241 0.0000000), wk = 0.0625000 k( 17) = ( 0.3535534 0.4082483 0.0000000), wk = 0.0625000 k( 18) = ( 0.3535534 -1.0206207 0.0000000), wk = 0.0625000 k( 19) = ( 0.3535534 -0.8164966 0.0000000), wk = 0.0625000 k( 20) = ( 0.3535534 -0.6123724 0.0000000), wk = 0.0625000 k( 21) = ( 0.3535534 -0.4082483 0.0000000), wk = 0.0625000 k( 22) = ( 0.5303301 -0.3061862 0.0000000), wk = 0.0625000 k( 23) = ( 0.5303301 -0.1020621 0.0000000), wk = 0.0625000 k( 24) = ( 0.5303301 0.1020621 0.0000000), wk = 0.0625000 k( 25) = ( 0.5303301 0.3061862 0.0000000), wk = 0.0625000 k( 26) = ( 0.5303301 -1.1226828 0.0000000), wk = 0.0625000 k( 27) = ( 0.5303301 -0.9185587 0.0000000), wk = 0.0625000 k( 28) = ( 0.5303301 -0.7144345 0.0000000), wk = 0.0625000 k( 29) = ( 0.5303301 -0.5103104 0.0000000), wk = 0.0625000 k( 30) = ( -0.7071068 0.4082483 0.0000000), wk = 0.0312500 k( 31) = ( -0.7071068 0.6123724 0.0000000), wk = 0.0625000 k( 32) = ( -0.7071068 0.8164966 0.0000000), wk = 0.0625000 k( 33) = ( -0.7071068 1.0206207 0.0000000), wk = 0.0625000 k( 34) = ( -0.7071068 -0.4082483 0.0000000), wk = 0.0312500 Dense grid: 23647 G-vectors FFT dimensions: ( 15, 15, 225) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.68 Mb ( 2982, 15) NL pseudopotentials 2.55 Mb ( 2982, 56) Each V/rho on FFT grid 0.77 Mb ( 50625) Each G-vector array 0.18 Mb ( 23647) G-vector shells 0.04 Mb ( 4718) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.73 Mb ( 2982, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 56, 15) Arrays for rho mixing 6.18 Mb ( 50625, 8) Initial potential from superposition of free atoms starting charge 20.98187, renormalised to 21.00000 negative rho (up, down): 0.215E-04 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 5.7 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.6 total cpu time spent up to now is 15.3 secs total energy = -26.56120197 Ry Harris-Foulkes estimate = -27.35123149 Ry estimated scf accuracy < 1.09567205 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged ethr = 5.22E-03, avg # of iterations = 19.0 total cpu time spent up to now is 49.2 secs total energy = -15.80018310 Ry Harris-Foulkes estimate = -43.19081142 Ry estimated scf accuracy < 885.27998542 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged ethr = 5.22E-03, avg # of iterations = 19.4 total cpu time spent up to now is 84.6 secs total energy = -26.54181106 Ry Harris-Foulkes estimate = -27.91551599 Ry estimated scf accuracy < 24.56505053 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.22E-03, avg # of iterations = 4.1 total cpu time spent up to now is 91.7 secs total energy = -27.26851512 Ry Harris-Foulkes estimate = -27.37585091 Ry estimated scf accuracy < 3.69602816 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.22E-03, avg # of iterations = 1.1 total cpu time spent up to now is 97.3 secs total energy = -27.28377820 Ry Harris-Foulkes estimate = -27.30859416 Ry estimated scf accuracy < 0.76811728 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.66E-03, avg # of iterations = 1.0 negative rho (up, down): 0.717E-03 0.000E+00 total cpu time spent up to now is 102.8 secs total energy = -27.24629021 Ry Harris-Foulkes estimate = -27.29769215 Ry estimated scf accuracy < 0.48464928 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.31E-03, avg # of iterations = 3.9 negative rho (up, down): 0.193E-03 0.000E+00 total cpu time spent up to now is 109.9 secs total energy = -27.39421367 Ry Harris-Foulkes estimate = -27.40710801 Ry estimated scf accuracy < 0.70038918 Ry iteration # 8 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.31E-03, avg # of iterations = 1.1 total cpu time spent up to now is 115.5 secs total energy = -27.36003879 Ry Harris-Foulkes estimate = -27.40322954 Ry estimated scf accuracy < 0.67809876 Ry iteration # 9 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.31E-03, avg # of iterations = 1.0 negative rho (up, down): 0.105E-06 0.000E+00 total cpu time spent up to now is 121.1 secs total energy = -27.31199255 Ry Harris-Foulkes estimate = -27.37026091 Ry estimated scf accuracy < 0.27726912 Ry iteration # 10 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.32E-03, avg # of iterations = 2.5 total cpu time spent up to now is 128.1 secs total energy = -27.35669019 Ry Harris-Foulkes estimate = -27.44291477 Ry estimated scf accuracy < 0.98286831 Ry iteration # 11 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.32E-03, avg # of iterations = 1.0 total cpu time spent up to now is 133.6 secs total energy = -27.32339147 Ry Harris-Foulkes estimate = -27.37636312 Ry estimated scf accuracy < 0.25105150 Ry iteration # 12 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.20E-03, avg # of iterations = 3.6 total cpu time spent up to now is 140.3 secs total energy = -27.37252199 Ry Harris-Foulkes estimate = -27.37346642 Ry estimated scf accuracy < 0.09761236 Ry iteration # 13 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 4.65E-04, avg # of iterations = 4.2 total cpu time spent up to now is 147.8 secs total energy = -27.37729354 Ry Harris-Foulkes estimate = -27.39414491 Ry estimated scf accuracy < 0.26897569 Ry iteration # 14 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.65E-04, avg # of iterations = 1.0 total cpu time spent up to now is 153.4 secs total energy = -27.38432614 Ry Harris-Foulkes estimate = -27.38262154 Ry estimated scf accuracy < 0.03131032 Ry iteration # 15 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 1.49E-04, avg # of iterations = 5.2 total cpu time spent up to now is 160.9 secs total energy = -27.38531593 Ry Harris-Foulkes estimate = -27.38623364 Ry estimated scf accuracy < 0.06710375 Ry iteration # 16 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.49E-04, avg # of iterations = 1.0 total cpu time spent up to now is 166.4 secs total energy = -27.38535510 Ry Harris-Foulkes estimate = -27.38576955 Ry estimated scf accuracy < 0.05495381 Ry iteration # 17 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.49E-04, avg # of iterations = 1.0 total cpu time spent up to now is 171.8 secs total energy = -27.38049782 Ry Harris-Foulkes estimate = -27.38567902 Ry estimated scf accuracy < 0.05393250 Ry iteration # 18 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.49E-04, avg # of iterations = 1.1 total cpu time spent up to now is 177.3 secs total energy = -27.38141450 Ry Harris-Foulkes estimate = -27.38221925 Ry estimated scf accuracy < 0.01658138 Ry iteration # 19 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged ethr = 7.90E-05, avg # of iterations = 4.5 total cpu time spent up to now is 184.2 secs total energy = -27.38245068 Ry Harris-Foulkes estimate = -27.38289161 Ry estimated scf accuracy < 0.00274831 Ry iteration # 20 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.31E-05, avg # of iterations = 13.6 total cpu time spent up to now is 198.4 secs total energy = -27.38438088 Ry Harris-Foulkes estimate = -27.38519463 Ry estimated scf accuracy < 0.00625512 Ry iteration # 21 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.31E-05, avg # of iterations = 3.6 total cpu time spent up to now is 204.6 secs total energy = -27.38444950 Ry Harris-Foulkes estimate = -27.38456813 Ry estimated scf accuracy < 0.00156876 Ry iteration # 22 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged ethr = 7.47E-06, avg # of iterations = 2.6 total cpu time spent up to now is 210.6 secs total energy = -27.38434240 Ry Harris-Foulkes estimate = -27.38448810 Ry estimated scf accuracy < 0.00085405 Ry iteration # 23 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 4.07E-06, avg # of iterations = 7.0 total cpu time spent up to now is 218.4 secs total energy = -27.38451828 Ry Harris-Foulkes estimate = -27.38453679 Ry estimated scf accuracy < 0.00002966 Ry iteration # 24 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.41E-07, avg # of iterations = 11.9 total cpu time spent up to now is 233.9 secs total energy = -27.38459156 Ry Harris-Foulkes estimate = -27.38459459 Ry estimated scf accuracy < 0.00001989 Ry iteration # 25 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 9.47E-08, avg # of iterations = 5.2 negative rho (up, down): 0.147E-07 0.000E+00 total cpu time spent up to now is 241.3 secs total energy = -27.38458851 Ry Harris-Foulkes estimate = -27.38459553 Ry estimated scf accuracy < 0.00004506 Ry iteration # 26 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.47E-08, avg # of iterations = 1.2 total cpu time spent up to now is 246.8 secs total energy = -27.38458189 Ry Harris-Foulkes estimate = -27.38458914 Ry estimated scf accuracy < 0.00002166 Ry iteration # 27 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.47E-08, avg # of iterations = 3.1 negative rho (up, down): 0.993E-07 0.000E+00 total cpu time spent up to now is 253.4 secs total energy = -27.38458704 Ry Harris-Foulkes estimate = -27.38458849 Ry estimated scf accuracy < 0.00000911 Ry iteration # 28 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.34E-08, avg # of iterations = 2.8 total cpu time spent up to now is 259.4 secs total energy = -27.38458716 Ry Harris-Foulkes estimate = -27.38458768 Ry estimated scf accuracy < 0.00000233 Ry iteration # 29 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 1.11E-08, avg # of iterations = 4.3 total cpu time spent up to now is 266.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2893 PWs) bands (ev): -13.9019 -13.5418 -12.9471 -12.1135 -11.0390 -9.7825 -8.2879 -6.8129 -4.9937 -3.1497 -1.3626 0.0301 0.5208 0.8956 1.3571 k = 0.0000 0.2041 0.0000 ( 2891 PWs) bands (ev): -13.5279 -13.1685 -12.5750 -11.7431 -10.6707 -9.4164 -7.9221 -6.4613 -4.6430 -2.8056 -1.0254 0.3778 0.8952 1.2585 1.7171 k = 0.0000 0.4082 0.0000 ( 2909 PWs) bands (ev): -12.4111 -12.0540 -11.4645 -10.6380 -9.5722 -8.3260 -6.8380 -5.4126 -3.6236 -1.9134 -0.9313 -0.4630 -0.0508 0.2973 0.7882 k = 0.0000 0.6124 0.0000 ( 2936 PWs) bands (ev): -10.5681 -10.2152 -9.6329 -8.8174 -7.7682 -6.5537 -5.2123 -4.8361 -4.4462 -3.8444 -3.4678 -3.0015 -2.0113 -1.7166 -0.8250 k = 0.0000-0.8165 0.0000 ( 2982 PWs) bands (ev): -8.0358 -8.0249 -7.7186 -7.6540 -7.1505 -7.0902 -6.3765 -6.3312 -5.4843 -4.9233 -3.9535 -3.8492 -2.5328 -2.3959 -1.2561 k = 0.1768-0.1021 0.0000 ( 2891 PWs) bands (ev): -13.5279 -13.1685 -12.5750 -11.7431 -10.6707 -9.4164 -7.9221 -6.4613 -4.6430 -2.8056 -1.0253 0.3781 0.8962 1.2597 1.7199 k = 0.1768 0.1021 0.0000 ( 2891 PWs) bands (ev): -13.5279 -13.1685 -12.5750 -11.7431 -10.6707 -9.4164 -7.9221 -6.4613 -4.6430 -2.8056 -1.0253 0.3781 0.8959 1.2588 1.7171 k = 0.1768 0.3062 0.0000 ( 2894 PWs) bands (ev): -12.7825 -12.4246 -11.8337 -11.0054 -9.9372 -8.6880 -7.1966 -5.7603 -3.9522 -2.1440 -0.4262 0.8814 1.4969 1.6884 1.8183 k = 0.1768 0.5103 0.0000 ( 2934 PWs) bands (ev): -11.3025 -10.9479 -10.3625 -9.5419 -8.4844 -7.2501 -5.7836 -4.3914 -2.9727 -2.5649 -2.1049 -1.6566 -1.0072 -0.6929 -0.0271 k = 0.1768-0.9186 0.0000 ( 2943 PWs) bands (ev): -9.1106 -8.7619 -8.1875 -7.3873 -6.4050 -6.2156 -5.9109 -5.4982 -5.0760 -4.3758 -3.4875 -3.3509 -2.2885 -2.1677 -0.9823 k = 0.1768-0.7144 0.0000 ( 2943 PWs) bands (ev): -9.1106 -8.7619 -8.1875 -7.3873 -6.4050 -6.2156 -5.9109 -5.4982 -5.0760 -4.3758 -3.4875 -3.3509 -2.2884 -2.1677 -0.9811 k = 0.1768-0.5103 0.0000 ( 2934 PWs) bands (ev): -11.3025 -10.9479 -10.3625 -9.5419 -8.4844 -7.2501 -5.7836 -4.3914 -2.9727 -2.5649 -2.1049 -1.6567 -1.0072 -0.6931 -0.0284 k = 0.1768-0.3062 0.0000 ( 2894 PWs) bands (ev): -12.7825 -12.4246 -11.8337 -11.0054 -9.9372 -8.6880 -7.1966 -5.7603 -3.9522 -2.1440 -0.4262 0.8805 1.4963 1.6928 1.7749 k = 0.3536-0.2041 0.0000 ( 2909 PWs) bands (ev): -12.4111 -12.0540 -11.4645 -10.6380 -9.5722 -8.3260 -6.8380 -5.4126 -3.6236 -1.9134 -0.9313 -0.4629 -0.0506 0.2974 0.7885 k = 0.3536 0.0000 0.0000 ( 2894 PWs) bands (ev): -12.7825 -12.4246 -11.8337 -11.0054 -9.9372 -8.6880 -7.1966 -5.7603 -3.9522 -2.1440 -0.4262 0.8805 1.4982 1.6890 1.8024 k = 0.3536 0.2041 0.0000 ( 2909 PWs) bands (ev): -12.4111 -12.0540 -11.4645 -10.6380 -9.5722 -8.3260 -6.8380 -5.4126 -3.6236 -1.9134 -0.9313 -0.4628 -0.0507 0.2976 0.7886 k = 0.3536 0.4082 0.0000 ( 2934 PWs) bands (ev): -11.3025 -10.9479 -10.3625 -9.5419 -8.4844 -7.2501 -5.7836 -4.3914 -2.9727 -2.5649 -2.1049 -1.6567 -1.0072 -0.6929 -0.0281 k = 0.3536-1.0206 0.0000 ( 2964 PWs) bands (ev): -9.4733 -9.1233 -8.5461 -7.7389 -6.7039 -5.5183 -4.2601 -3.8143 -3.8040 -3.5756 -3.3250 -2.9008 -2.6055 -2.3469 -2.0938 k = 0.3536-0.8165 0.0000 ( 2968 PWs) bands (ev): -6.9627 -6.9509 -6.6549 -6.5803 -6.0961 -6.0206 -5.3286 -5.2939 -4.4776 -4.1939 -3.8787 -3.8375 -3.4192 -3.1801 -2.6075 k = 0.3536-0.6124 0.0000 ( 2964 PWs) bands (ev): -9.4733 -9.1233 -8.5461 -7.7389 -6.7039 -5.5183 -4.2601 -3.8143 -3.8040 -3.5756 -3.3250 -2.9008 -2.6055 -2.3468 -2.0914 k = 0.3536-0.4082 0.0000 ( 2934 PWs) bands (ev): -11.3025 -10.9479 -10.3625 -9.5419 -8.4844 -7.2501 -5.7836 -4.3914 -2.9727 -2.5649 -2.1049 -1.6567 -1.0073 -0.6931 -0.0286 k = 0.5303-0.3062 0.0000 ( 2936 PWs) bands (ev): -10.5681 -10.2152 -9.6329 -8.8174 -7.7682 -6.5537 -5.2123 -4.8361 -4.4462 -3.8444 -3.4678 -3.0015 -2.0112 -1.7166 -0.8253 k = 0.5303-0.1021 0.0000 ( 2934 PWs) bands (ev): -11.3025 -10.9479 -10.3625 -9.5419 -8.4844 -7.2501 -5.7836 -4.3914 -2.9727 -2.5649 -2.1049 -1.6567 -1.0069 -0.6927 -0.0283 k = 0.5303 0.1021 0.0000 ( 2934 PWs) bands (ev): -11.3025 -10.9479 -10.3625 -9.5419 -8.4844 -7.2501 -5.7836 -4.3914 -2.9727 -2.5649 -2.1049 -1.6567 -1.0070 -0.6930 -0.0260 k = 0.5303 0.3062 0.0000 ( 2936 PWs) bands (ev): -10.5681 -10.2152 -9.6329 -8.8174 -7.7682 -6.5537 -5.2123 -4.8361 -4.4462 -3.8444 -3.4678 -3.0015 -2.0113 -1.7166 -0.8251 k = 0.5303-1.1227 0.0000 ( 2943 PWs) bands (ev): -9.1106 -8.7619 -8.1875 -7.3873 -6.4050 -6.2156 -5.9109 -5.4982 -5.0760 -4.3758 -3.4875 -3.3509 -2.2884 -2.1677 -0.9824 k = 0.5303-0.9186 0.0000 ( 2968 PWs) bands (ev): -6.9627 -6.9509 -6.6549 -6.5804 -6.0961 -6.0206 -5.3286 -5.2939 -4.4776 -4.1939 -3.8787 -3.8375 -3.4192 -3.1801 -2.6075 k = 0.5303-0.7144 0.0000 ( 2968 PWs) bands (ev): -6.9627 -6.9509 -6.6549 -6.5803 -6.0961 -6.0206 -5.3286 -5.2939 -4.4776 -4.1939 -3.8787 -3.8375 -3.4192 -3.1801 -2.6075 k = 0.5303-0.5103 0.0000 ( 2943 PWs) bands (ev): -9.1106 -8.7619 -8.1875 -7.3873 -6.4050 -6.2156 -5.9109 -5.4982 -5.0760 -4.3758 -3.4875 -3.3509 -2.2883 -2.1677 -0.9777 k =-0.7071 0.4082 0.0000 ( 2982 PWs) bands (ev): -8.0358 -8.0249 -7.7186 -7.6540 -7.1505 -7.0902 -6.3765 -6.3312 -5.4843 -4.9233 -3.9535 -3.8492 -2.5328 -2.3959 -1.2560 k =-0.7071 0.6124 0.0000 ( 2943 PWs) bands (ev): -9.1106 -8.7619 -8.1875 -7.3873 -6.4050 -6.2156 -5.9109 -5.4982 -5.0760 -4.3758 -3.4875 -3.3509 -2.2885 -2.1677 -0.9818 k =-0.7071 0.8165 0.0000 ( 2964 PWs) bands (ev): -9.4733 -9.1233 -8.5461 -7.7389 -6.7039 -5.5183 -4.2601 -3.8143 -3.8040 -3.5756 -3.3250 -2.9008 -2.6055 -2.3468 -2.0944 k =-0.7071 1.0206 0.0000 ( 2943 PWs) bands (ev): -9.1106 -8.7619 -8.1875 -7.3873 -6.4050 -6.2156 -5.9109 -5.4982 -5.0760 -4.3758 -3.4875 -3.3509 -2.2884 -2.1676 -0.9812 k =-0.7071-0.4082 0.0000 ( 2982 PWs) bands (ev): -8.0358 -8.0249 -7.7186 -7.6540 -7.1505 -7.0902 -6.3765 -6.3312 -5.4843 -4.9233 -3.9535 -3.8492 -2.5328 -2.3959 -1.2560 the Fermi energy is -3.0078 ev ! total energy = -27.38458727 Ry Harris-Foulkes estimate = -27.38458770 Ry estimated scf accuracy < 0.00000038 Ry The total energy is the sum of the following terms: one-electron contribution = -6091.81405155 Ry hartree contribution = 3047.52656039 Ry xc contribution = -11.06491295 Ry ewald contribution = 3027.96511646 Ry smearing contrib. (-TS) = 0.00270039 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -20.16 0.0000 93.4795043 -92.1196488 1.3598554 -19.98 0.0000 103.8162934 -102.1518398 1.6644536 -19.80 0.0000 128.4507082 -126.5753749 1.8753333 -19.62 0.0000 168.5066595 -166.5612420 1.9454175 -19.44 0.0000 216.6522131 -214.7225332 1.9296799 -19.26 0.0000 264.7966591 -262.8829074 1.9137517 -19.08 0.0000 312.9417088 -311.0436573 1.8980515 -18.90 0.0000 361.0866627 -359.2045751 1.8820876 -18.72 0.0000 409.2312041 -407.3647831 1.8664210 -18.54 0.0000 457.3766628 -455.5262371 1.8504256 -18.36 0.0000 505.5207065 -503.6859185 1.8347880 -18.18 0.0000 553.6666520 -551.8478856 1.8187664 -18.00 0.0000 601.8102232 -600.0070714 1.8031518 -17.82 0.0000 649.9566233 -648.1695130 1.7871103 -17.64 0.0000 698.0997609 -696.3282486 1.7715123 -17.46 0.0000 746.2465704 -744.4911127 1.7554577 -17.28 0.0000 794.3893256 -792.6494567 1.7398689 -17.10 0.0000 842.5364877 -840.8126788 1.7238089 -16.92 0.0000 890.6789224 -888.9707009 1.7082215 -16.74 0.0000 938.8263706 -937.1342066 1.6921641 -16.56 0.0000 986.9685553 -985.2919854 1.6765699 -16.38 0.0000 1035.1162158 -1033.4556924 1.6605233 -16.20 0.0000 1083.2582270 -1081.6133131 1.6449140 -16.02 0.0000 1131.4060210 -1129.7771343 1.6288868 -15.84 0.0000 1179.5479391 -1177.9346853 1.6132538 -15.66 0.0000 1227.6957855 -1226.0985313 1.5972542 -15.48 0.0000 1275.8376916 -1274.2561021 1.5815896 -15.30 0.0000 1323.9855097 -1322.4198843 1.5656254 -15.12 0.0000 1372.1274835 -1370.5775621 1.5499214 -14.94 0.0000 1420.2751955 -1418.7411953 1.5340002 -14.76 0.0000 1468.4173122 -1466.8990625 1.5182497 -14.58 0.0000 1516.5648458 -1515.0624678 1.5023780 -14.40 0.0000 1564.7071740 -1563.2205992 1.4865747 -14.22 0.0000 1612.8544645 -1611.3837064 1.4707581 -14.04 0.0000 1660.9970640 -1659.5421672 1.4548968 -13.86 0.0000 1709.1440565 -1707.7049168 1.4391397 -13.68 0.0000 1757.2869762 -1755.8637601 1.4232161 -13.50 0.0000 1805.4336266 -1804.0261056 1.4075210 -13.32 0.0000 1853.5769030 -1852.1853710 1.3915320 -13.14 0.0000 1901.7231791 -1900.3472800 1.3758991 -12.96 0.0000 1949.8668346 -1948.5069926 1.3598420 -12.78 0.0000 1998.0127154 -1996.6684477 1.3442677 -12.60 0.0000 2046.1567560 -2044.8286170 1.3281390 -12.42 0.0000 2094.3022296 -2092.9896166 1.3126130 -12.24 0.0000 2142.4466407 -2141.1502359 1.2964048 -12.06 0.0000 2190.5916972 -2189.3107934 1.2809038 -11.88 0.0000 2238.7364335 -2237.4718399 1.2645936 -11.70 0.0000 2286.8810477 -2285.6319865 1.2490611 -11.52 0.0000 2335.0260074 -2333.7934234 1.2325840 -11.34 0.0001 2383.1700946 -2381.9532050 1.2168896 -11.16 0.0001 2431.3150538 -2430.1149787 1.2000751 -10.98 0.0002 2479.4583627 -2478.2744566 1.1839061 -10.80 0.0003 2527.6028049 -2526.4364980 1.1663068 -10.62 0.0004 2575.7446408 -2574.5957497 1.1488911 -10.44 0.0006 2623.8873306 -2622.7579720 1.1293586 -10.26 0.0010 2672.0258775 -2670.9170942 1.1087833 -10.08 0.0016 2720.1637764 -2719.0793884 1.0843880 -9.90 0.0025 2768.2943620 -2767.2385052 1.0558568 -9.72 0.0040 2816.4199046 -2815.4007260 1.0191786 -9.54 0.0064 2864.5306858 -2863.5600109 0.9706749 -9.36 0.0102 2912.6249016 -2911.7219451 0.9029565 -9.18 0.0160 2960.6859885 -2959.8816789 0.8043096 -9.00 0.0252 3008.7016412 -3008.0429082 0.6587329 -8.82 0.0392 3056.6393224 -3056.2035117 0.4358107 -8.64 0.0599 3104.4624165 -3104.3628507 0.0995658 -8.46 0.0894 3152.1045325 -3152.5182024 -0.4136699 -8.28 0.1296 3199.4827309 -3200.5252591 -1.0425282 -8.10 0.1802 3246.4743416 -3248.6013713 -2.1270297 -7.92 0.2368 3292.9350577 -3297.1852143 -4.2501566 -7.74 0.2901 3338.6967533 -3346.0779632 -7.3812099 -7.56 0.3303 3383.6080993 -3394.5930430 -10.9849438 -7.38 0.3538 3427.5486587 -3441.9870321 -14.4383734 -7.20 0.3631 3470.4508030 -3487.4618116 -17.0110086 -7.02 0.3637 3512.2839122 -3530.2893615 -18.0054493 -6.84 0.3611 3553.0462212 -3570.1920171 -17.1457959 -6.66 0.3600 3592.7432918 -3607.4164012 -14.6731094 -6.48 0.3604 3631.3788606 -3642.6748919 -11.2960313 -6.30 0.3586 3668.9529214 -3676.7662381 -7.8133167 -6.12 0.3531 3705.4705631 -3710.4330426 -4.9624795 -5.94 0.3487 3740.9478170 -3744.2270151 -3.2791981 -5.76 0.3514 3775.3943526 -3778.6127766 -3.2184240 -5.58 0.3604 3808.8044182 -3813.6060000 -4.8015818 -5.40 0.3681 3841.1512193 -3848.7505594 -7.5993401 -5.22 0.3682 3872.4163226 -3883.5015590 -11.0852364 -5.04 0.3619 3902.5959796 -3917.1233236 -14.5273440 -4.86 0.3551 3931.7105673 -3948.8180782 -17.1075109 -4.68 0.3519 3959.7756832 -3977.8603046 -18.0846215 -4.50 0.3536 3986.8041034 -4003.9775160 -17.1734127 -4.32 0.3595 4012.7870644 -4027.4213812 -14.6343168 -4.14 0.3659 4037.7120601 -4048.9074365 -11.1953764 -3.96 0.3669 4061.5578079 -4069.2334105 -7.6756026 -3.78 0.3611 4084.3257449 -4089.1418360 -4.8160911 -3.60 0.3542 4106.0276389 -4109.1812870 -3.1536481 -3.42 0.3534 4126.6858210 -4129.8169502 -3.1311292 -3.24 0.3591 4146.2986929 -4151.0556406 -4.7569477 -3.06 0.3648 4164.8546901 -4172.4424091 -7.5877189 -2.88 0.3646 4182.3352988 -4193.4277399 -11.0924411 -2.70 0.3599 4198.7437869 -4213.2781086 -14.5343217 -2.52 0.3558 4214.0898791 -4231.1917513 -17.1018721 -2.34 0.3551 4228.3875290 -4246.4496026 -18.0620735 -2.16 0.3577 4241.6367256 -4258.7803889 -17.1436632 -1.98 0.3625 4253.8318759 -4268.4448761 -14.6130002 -1.80 0.3663 4264.9581615 -4276.1574319 -11.1992704 -1.62 0.3644 4275.0065900 -4282.7193143 -7.7127243 -1.44 0.3561 4283.9824432 -4288.8681392 -4.8856960 -1.26 0.3481 4291.9084355 -4295.1544317 -3.2459963 -1.08 0.3476 4298.8064806 -4302.0386541 -3.2321735 -0.90 0.3549 4304.6773418 -4309.5241156 -4.8467738 -0.72 0.3631 4309.5024550 -4317.1517070 -7.6492520 -0.54 0.3659 4313.2579763 -4324.3726021 -11.1146258 -0.36 0.3638 4315.9372657 -4330.4502527 -14.5129870 -0.18 0.3611 4317.5431637 -4334.5838830 -17.0407193 0.00 0.3602 4318.0854675 -4336.0562587 -17.9707912 0.18 0.3612 4317.5641710 -4334.6016035 -17.0374325 0.36 0.3639 4315.9793563 -4330.4859519 -14.5065956 0.54 0.3660 4313.3203250 -4324.4257665 -11.1054415 0.72 0.3632 4309.5854747 -4317.2230995 -7.6376248 0.90 0.3550 4304.7797154 -4309.6127324 -4.8330170 1.08 0.3477 4298.9292306 -4302.1457288 -3.2164982 1.26 0.3481 4292.0500086 -4295.2785147 -3.2285061 1.44 0.3561 4284.1444927 -4289.0108800 -4.8663873 1.62 0.3643 4275.1873347 -4282.8788819 -7.6915472 1.80 0.3663 4265.1596458 -4276.3358181 -11.1761723 1.98 0.3625 4254.0519362 -4268.6399507 -14.5880145 2.16 0.3577 4241.8774614 -4258.9943966 -17.1169352 2.34 0.3552 4228.6463202 -4246.6802096 -18.0338894 2.52 0.3559 4214.3687659 -4231.4413540 -17.0725881 2.70 0.3600 4199.0399673 -4213.5442753 -14.5043080 2.88 0.3647 4182.6509349 -4193.7129098 -11.0619749 3.06 0.3648 4165.1872011 -4172.7441635 -7.5569624 3.24 0.3591 4146.6504268 -4151.3763497 -4.7259229 3.42 0.3534 4127.0545356 -4130.1543199 -3.0997843 3.60 0.3542 4106.4156107 -4109.5375085 -3.1218978 3.78 0.3611 4084.7309384 -4089.5148470 -4.7839086 3.96 0.3670 4061.9820645 -4069.6251196 -7.6430550 4.14 0.3660 4038.1534404 -4049.3161119 -11.1626715 4.32 0.3597 4013.2467923 -4027.8485565 -14.6017642 4.50 0.3537 3987.2805109 -4004.4218753 -17.1413644 4.68 0.3520 3960.2695805 -3978.3229289 -18.0533484 4.86 0.3550 3932.2210211 -3949.2981360 -17.0771149 5.04 0.3618 3903.1236718 -3917.6213848 -14.4977130 5.22 0.3681 3872.9612238 -3884.0173247 -11.0561010 5.40 0.3680 3841.7136643 -3849.2840511 -7.5703868 5.58 0.3604 3809.3848947 -3814.1574772 -4.7725825 5.76 0.3515 3775.9923669 -3779.1816984 -3.1893315 5.94 0.3489 3741.5640285 -3744.8142010 -3.2501724 6.12 0.3532 3706.1035386 -3711.0374001 -4.9338615 6.30 0.3587 3669.6036105 -3677.3891240 -7.7855135 6.48 0.3604 3632.0453248 -3643.3146969 -11.2693720 6.66 0.3598 3593.4273244 -3608.0749724 -14.6476480 6.84 0.3609 3553.7460884 -3570.8672870 -17.1211986 7.02 0.3634 3513.0026215 -3530.9835980 -17.9809765 7.20 0.3629 3471.1868268 -3488.1725689 -16.9857421 7.38 0.3538 3428.3053287 -3442.7169092 -14.4115805 7.56 0.3307 3384.3827471 -3395.3393145 -10.9565674 7.74 0.2908 3339.4912633 -3346.8434523 -7.3521890 7.92 0.2379 3293.7444881 -3297.9670299 -4.2225418 8.10 0.1814 3247.2986694 -3249.4024412 -2.1037718 8.28 0.1308 3200.3154740 -3201.3426511 -1.0271771 8.46 0.0906 3152.9448316 -3153.3548203 -0.4099887 8.64 0.0610 3105.3037338 -3105.2158520 0.0878817 8.82 0.0401 3057.4810452 -3057.0756448 0.4054005 9.00 0.0260 3009.5382379 -3008.9315515 0.6066864 9.18 0.0167 2961.5175409 -2960.7892952 0.7282457 9.36 0.0107 2913.4472358 -2912.6462611 0.8009747 9.54 0.0068 2865.3443956 -2864.5030809 0.8413147 9.72 0.0043 2817.2220637 -2816.3607426 0.8613210 9.90 0.0028 2769.0856719 -2768.2170030 0.8686688 10.08 0.0018 2720.9423718 -2720.0751292 0.8672425 10.26 0.0011 2672.7922193 -2671.9309988 0.8612205 10.44 0.0007 2624.6404923 -2623.7894555 0.8510368 10.62 0.0005 2576.4846074 -2575.6450455 0.8395619 10.80 0.0003 2528.3295261 -2527.5037366 0.8257896 10.98 0.0002 2480.1712028 -2479.3591346 0.8120682 11.16 0.0001 2432.0148025 -2431.2179779 0.7968246 11.34 0.0001 2383.8554187 -2383.0732630 0.7821556 11.52 0.0001 2335.6985047 -2334.9321818 0.7663229 11.70 0.0000 2287.5386630 -2286.7874297 0.7512333 11.88 0.0000 2239.3815303 -2238.6463489 0.7351813 12.06 0.0000 2191.2215164 -2190.5016338 0.7198826 12.24 0.0000 2143.0642506 -2142.3604798 0.7037708 12.42 0.0000 2094.9042219 -2094.2158735 0.6883485 12.60 0.0000 2046.7468212 -2046.0745733 0.6722479 12.78 0.0000 1998.5868814 -1997.9301464 0.6567350 12.96 0.0000 1950.4293090 -1949.7886331 0.6406760 13.14 0.0000 1902.2695374 -1901.6444516 0.6250857 13.32 0.0000 1854.1117443 -1853.5026621 0.6090821 13.50 0.0000 1805.9522066 -1805.3587858 0.5934208 13.68 0.0000 1757.7941422 -1757.2166643 0.5774778 13.86 0.0000 1709.6348940 -1709.0731445 0.5617496 14.04 0.0000 1661.4765121 -1660.9306444 0.5458677 14.22 0.0000 1613.3175992 -1612.7875226 0.5300765 14.40 0.0000 1565.1588615 -1564.6446080 0.5142535 14.58 0.0000 1517.0003184 -1516.5019142 0.4984042 14.76 0.0000 1468.8411970 -1468.3585614 0.4826356 14.94 0.0000 1420.6830466 -1420.2163127 0.4667339 15.12 0.0000 1372.5235254 -1372.0725113 0.4510141 15.30 0.0000 1324.3657776 -1323.9307111 0.4350665 15.48 0.0000 1276.2058536 -1275.7864648 0.4193888 15.66 0.0000 1228.0485049 -1227.6451022 0.4034027 15.84 0.0000 1179.8881886 -1179.5004292 0.3877594 16.02 0.0000 1131.7312216 -1131.3594790 0.3717426 16.20 0.0000 1083.5705372 -1083.2144114 0.3561258 16.38 0.0000 1035.4139214 -1035.0738347 0.3400867 16.56 0.0000 987.2529058 -986.9284179 0.3244879 16.74 0.0000 939.0965978 -938.7881629 0.3084349 16.92 0.0000 890.9353005 -890.6424547 0.2928457 17.10 0.0000 842.7792454 -842.5024582 0.2767872 17.28 0.0000 794.6177262 -794.3565270 0.2611993 17.46 0.0000 746.4618594 -746.2167159 0.2451435 17.64 0.0000 698.3001874 -698.0706386 0.2295488 17.82 0.0000 650.1444363 -649.9309326 0.2135037 18.00 0.0000 601.9826871 -601.7847925 0.1978946 18.18 0.0000 553.8269734 -553.6451062 0.1818672 18.36 0.0000 505.6652271 -505.4989901 0.1662370 18.54 0.0000 457.5094696 -457.3592357 0.1502339 18.72 0.0000 409.3478081 -409.2132317 0.1345764 18.90 0.0000 361.1919250 -361.0733218 0.1186032 19.08 0.0000 313.0304292 -312.9275159 0.1029133 19.26 0.0000 264.8743410 -264.7873664 0.0869746 19.44 0.0000 216.7130884 -216.6418402 0.0712483 19.62 0.0000 172.5066731 -172.3653520 0.1413210 19.80 0.0000 136.9479654 -136.5957528 0.3522126 19.98 0.0000 111.1743157 -110.5175169 0.6567988 20.16 0.0000 96.3062145 -95.2978813 1.0083332 convergence has been achieved in 29 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000120 0.00000161 -0.00202782 atom 2 type 1 force = 0.00000089 -0.00000258 0.00702296 atom 3 type 1 force = -0.00000119 0.00000132 -0.00543694 atom 4 type 1 force = 0.00000113 0.00000056 0.00001106 atom 5 type 1 force = 0.00000030 0.00000022 0.00541229 atom 6 type 1 force = -0.00000136 0.00000189 -0.00697072 atom 7 type 1 force = 0.00000142 -0.00000303 0.00198918 Total force = 0.012839 Total SCF correction = 0.001031 Writing output data file Al111.save init_run : 5.10s CPU 5.40s WALL ( 1 calls) electrons : 257.42s CPU 261.10s WALL ( 1 calls) forces : 1.56s CPU 1.59s WALL ( 1 calls) Called by init_run: wfcinit : 4.29s CPU 4.37s WALL ( 1 calls) potinit : 0.30s CPU 0.40s WALL ( 1 calls) Called by electrons: c_bands : 232.52s CPU 235.54s WALL ( 29 calls) sum_band : 21.67s CPU 22.07s WALL ( 29 calls) v_of_rho : 2.54s CPU 2.69s WALL ( 30 calls) mix_rho : 0.33s CPU 0.35s WALL ( 29 calls) Called by c_bands: init_us_2 : 3.15s CPU 3.45s WALL ( 2040 calls) cegterg : 224.81s CPU 227.25s WALL ( 988 calls) Called by *egterg: h_psi : 172.91s CPU 173.82s WALL ( 5629 calls) g_psi : 2.90s CPU 3.09s WALL ( 4607 calls) cdiaghg : 6.63s CPU 6.13s WALL ( 5595 calls) Called by h_psi: add_vuspsi : 19.64s CPU 20.68s WALL ( 5629 calls) General routines calbec : 24.38s CPU 23.77s WALL ( 5663 calls) fft : 0.56s CPU 0.54s WALL ( 333 calls) fftw : 136.91s CPU 137.10s WALL ( 113818 calls) davcio : 0.03s CPU 0.93s WALL ( 3026 calls) EXX routines PWSCF : 4m24.28s CPU 4m28.62s WALL This run was terminated on: 22:32:37 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/ESM_example/reference/H2O.bc1.out0000644000175000017500000005147512341373025021344 0ustar mbamba Program PWSCF v.4.99 starts on 23Apr2012 at 22:24: 6 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input file H.pbe-rrkjus.UPF: wavefunction(s) 1S renormalized file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized gamma-point specific algorithms are used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 6369 3181 793 458581 162113 20303 Tot 3185 1591 397 bravais-lattice index = 6 lattice parameter (alat) = 20.0000 a.u. unit-cell volume = 9600.0000 (a.u.)^3 number of atoms/cell = 3 number of atomic types = 2 number of electrons = 8.00 number of Kohn-Sham states= 8 kinetic-energy cutoff = 25.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Boundary Conditions: Vacuum-Slab-Vacuum celldm(1)= 20.000000 celldm(2)= 0.000000 celldm(3)= 1.200000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.200000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 0.833333 ) PseudoPot. # 1 for H read from file: /home/Brandon/src/espresso/pseudo/H.pbe-rrkjus.UPF MD5 check sum: 7cc9d459525c9a0585f487a71c3c9563 Pseudo is Ultrasoft, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1061 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for O read from file: /home/Brandon/src/espresso/pseudo/O.pbe-rrkjus.UPF MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9 Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients atomic species valence mass pseudopotential H 1.00 1.00794 H ( 1.00) O 6.00 55.84700 O ( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 O tau( 1) = ( 0.0000000 0.5000000 0.0000000 ) 2 H tau( 2) = ( 0.0431388 0.4310286 0.0430783 ) 3 H tau( 3) = ( 0.0366354 0.5764064 0.0359492 ) number of k points= 1 gaussian smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 229291 G-vectors FFT dimensions: ( 96, 96, 120) Smooth grid: 81057 G-vectors FFT dimensions: ( 64, 64, 80) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 1.24 Mb ( 10152, 8) NL pseudopotentials 1.86 Mb ( 10152, 12) Each V/rho on FFT grid 16.88 Mb (1105920) Each G-vector array 1.75 Mb ( 229291) G-vector shells 0.10 Mb ( 12605) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.48 Mb ( 10152, 32) Each subspace H/S matrix 0.01 Mb ( 32, 32) Each matrix 0.00 Mb ( 12, 8) Arrays for rho mixing 135.00 Mb (1105920, 8) Initial potential from superposition of free atoms Check: negative starting charge= -0.001104 starting charge 7.80759, renormalised to 8.00000 negative rho (up, down): 0.113E-02 0.000E+00 Starting wfc are 6 randomized atomic wfcs total cpu time spent up to now is 7.2 secs per-process dynamical memory: 113.3 Mb Self-consistent Calculation iteration # 1 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 6.0 negative rho (up, down): 0.622E-03 0.000E+00 total cpu time spent up to now is 10.9 secs total energy = -34.15653230 Ry Harris-Foulkes estimate = -34.57455082 Ry estimated scf accuracy < 0.66442710 Ry iteration # 2 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.31E-03, avg # of iterations = 2.0 negative rho (up, down): 0.143E-02 0.000E+00 total cpu time spent up to now is 14.1 secs total energy = -34.24783112 Ry Harris-Foulkes estimate = -34.29751187 Ry estimated scf accuracy < 0.11911412 Ry iteration # 3 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.49E-03, avg # of iterations = 6.0 negative rho (up, down): 0.117E-02 0.000E+00 total cpu time spent up to now is 17.4 secs total energy = -34.25154693 Ry Harris-Foulkes estimate = -34.26064573 Ry estimated scf accuracy < 0.01647268 Ry iteration # 4 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.06E-04, avg # of iterations = 6.0 negative rho (up, down): 0.663E-03 0.000E+00 total cpu time spent up to now is 20.7 secs total energy = -34.25308656 Ry Harris-Foulkes estimate = -34.25310132 Ry estimated scf accuracy < 0.00034304 Ry iteration # 5 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.29E-06, avg # of iterations = 12.0 negative rho (up, down): 0.367E-03 0.000E+00 total cpu time spent up to now is 24.5 secs total energy = -34.25321501 Ry Harris-Foulkes estimate = -34.25321341 Ry estimated scf accuracy < 0.00003631 Ry iteration # 6 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.54E-07, avg # of iterations = 2.0 negative rho (up, down): 0.369E-03 0.000E+00 total cpu time spent up to now is 27.5 secs total energy = -34.25323034 Ry Harris-Foulkes estimate = -34.25322191 Ry estimated scf accuracy < 0.00000146 Ry iteration # 7 ecut= 25.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.83E-08, avg # of iterations = 3.0 negative rho (up, down): 0.290E-03 0.000E+00 total cpu time spent up to now is 30.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 10152 PWs) bands (ev): -25.3492 -13.1481 -9.2655 -7.2448 -1.1068 0.1064 0.5162 0.5489 the Fermi energy is -4.1833 ev ! total energy = -34.25323095 Ry Harris-Foulkes estimate = -34.25323057 Ry estimated scf accuracy < 0.00000009 Ry The total energy is the sum of the following terms: one-electron contribution = -57.03053523 Ry hartree contribution = 29.91405571 Ry xc contribution = -8.39370510 Ry ewald contribution = 1.25695368 Ry smearing contrib. (-TS) = -0.00000000 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -6.24 0.0000 -39.7492650 39.8284615 0.0791965 -6.14 0.0000 -39.6404315 39.7885970 0.1481655 -6.03 0.0000 -39.3170125 39.5141236 0.1971111 -5.93 0.0000 -38.7582461 38.9737689 0.2155229 -5.82 0.0000 -38.0743344 38.2899763 0.2156419 -5.72 0.0000 -37.3903580 37.6058808 0.2155228 -5.61 0.0000 -36.7066338 36.9222674 0.2156336 -5.50 0.0000 -36.0224844 36.2380169 0.2155326 -5.40 0.0000 -35.3389113 35.5545279 0.2156166 -5.29 0.0000 -34.6546409 34.8701883 0.2155474 -5.19 0.0000 -33.9711543 34.1867506 0.2155963 -5.08 0.0000 -33.2868363 33.5023980 0.2155617 -4.97 0.0000 -32.6033583 32.8189364 0.2155782 -4.87 0.0000 -31.9190710 32.1346417 0.2155707 -4.76 0.0000 -31.2355274 31.4510929 0.2155656 -4.66 0.0000 -30.5513366 30.7669081 0.2155715 -4.55 0.0000 -29.8676734 30.0832330 0.2155596 -4.45 0.0000 -29.1836191 29.3991834 0.2155643 -4.34 0.0000 -28.4998125 28.7153713 0.2155588 -4.23 0.0000 -27.8159018 28.0314535 0.2155517 -4.13 0.0000 -27.1319617 27.3475210 0.2155593 -4.02 0.0000 -26.4481699 26.6637071 0.2155372 -3.92 0.0000 -25.7641344 25.9796909 0.2155565 -3.81 0.0000 -25.0804137 25.2959380 0.2155243 -3.70 0.0000 -24.3963383 24.6118844 0.2155462 -3.60 0.0000 -23.7126318 23.9281456 0.2155139 -3.49 0.0000 -23.0285747 23.2440995 0.2155247 -3.39 0.0000 -22.3448312 22.5603345 0.2155033 -3.28 0.0001 -21.6608396 21.8763298 0.2154902 -3.18 0.0001 -20.9770264 21.1925120 0.2154855 -3.07 0.0001 -20.2931277 20.5085671 0.2154394 -2.96 0.0002 -19.6092412 19.8246867 0.2154455 -2.86 0.0002 -18.9254419 19.1408033 0.2153614 -2.75 0.0003 -18.2415082 18.4568660 0.2153578 -2.65 0.0004 -17.5577983 17.7730322 0.2152339 -2.54 0.0006 -16.8738727 17.0890545 0.2151818 -2.43 0.0009 -16.1902466 16.4052506 0.2150040 -2.33 0.0012 -15.5064200 15.7212540 0.2148340 -2.22 0.0017 -14.8229074 15.0374582 0.2145507 -2.12 0.0024 -14.1393120 14.3534638 0.2141517 -2.01 0.0034 -13.4560119 13.6696566 0.2136447 -1.91 0.0049 -12.7728562 12.9856818 0.2128256 -1.80 0.0071 -12.0900321 12.3018482 0.2118161 -1.69 0.0102 -11.4077290 11.6179062 0.2101772 -1.59 0.0146 -10.7259794 10.9340344 0.2080550 -1.48 0.0208 -10.0453442 10.2501364 0.2047923 -1.38 0.0303 -9.3658735 9.5662151 0.2003416 -1.27 0.0447 -8.6886017 8.8823739 0.1937722 -1.16 0.0662 -8.0140382 8.1983870 0.1843488 -1.06 0.0975 -7.3440039 7.5146242 0.1706203 -0.95 0.1434 -6.6801795 6.8305403 0.1503607 -0.85 0.2124 -6.0258671 6.1469119 0.1210448 -0.74 0.3182 -5.3854049 5.4626085 0.0772037 -0.64 0.4776 -4.7658026 4.7806170 0.0148144 -0.53 0.7122 -4.1775160 4.0972278 -0.0802882 -0.42 1.0395 -3.6356627 3.3996513 -0.2360114 -0.32 1.4249 -3.1614731 2.7105501 -0.4509230 -0.21 1.7459 -2.7788300 2.1034932 -0.6753367 -0.11 1.9056 -2.5082770 1.6470359 -0.8612411 0.00 1.9717 -2.3601454 1.3758735 -0.9842718 0.11 2.0300 -2.3396337 1.2983904 -1.0412432 0.21 1.9994 -2.4496576 1.4167172 -1.0329404 0.32 1.7896 -2.6879808 1.7369845 -0.9509963 0.42 1.4560 -3.0411995 2.2172949 -0.8239046 0.53 1.1035 -3.4884327 2.7897613 -0.6986714 0.64 0.7934 -4.0072551 3.4246230 -0.5826322 0.74 0.5494 -4.5776081 4.1059858 -0.4716224 0.85 0.3739 -5.1839783 4.7968447 -0.3871335 0.95 0.2547 -5.8146354 5.4796485 -0.3349868 1.06 0.1741 -6.4621552 6.1634943 -0.2986609 1.16 0.1190 -7.1208531 6.8471963 -0.2736568 1.27 0.0811 -7.7875265 7.5312125 -0.2563140 1.38 0.0554 -8.4593416 8.2150717 -0.2442698 1.48 0.0381 -9.1349048 8.8989269 -0.2359779 1.59 0.0266 -9.8128856 9.5829317 -0.2299539 1.69 0.0187 -10.4926175 10.2666649 -0.2259526 1.80 0.0132 -11.1736165 10.9507647 -0.2228518 1.91 0.0092 -11.8553726 11.6344341 -0.2209385 2.01 0.0064 -12.5378867 12.3185653 -0.2193215 2.12 0.0045 -13.2206273 13.0022361 -0.2183913 2.22 0.0032 -13.9038846 13.6863347 -0.2175500 2.33 0.0024 -14.5871257 14.3700660 -0.2170597 2.43 0.0017 -15.2707383 15.0540808 -0.2166575 2.54 0.0012 -15.9542708 15.7379133 -0.2163575 2.65 0.0008 -16.6380278 16.4218168 -0.2162109 2.75 0.0006 -17.3217506 17.1057633 -0.2159873 2.86 0.0004 -18.0055348 17.7895580 -0.2159768 2.96 0.0003 -18.6893955 18.4736011 -0.2157944 3.07 0.0002 -19.3731589 19.1573180 -0.2158409 3.18 0.0002 -20.0571188 19.8414151 -0.2157037 3.28 0.0001 -20.7408567 20.5251060 -0.2157507 3.39 0.0001 -21.4248705 21.2091995 -0.2156711 3.49 0.0001 -22.1086058 21.8929238 -0.2156820 3.60 0.0000 -22.7926228 22.5769561 -0.2156667 3.70 0.0000 -23.4763938 23.2607657 -0.2156281 3.81 0.0000 -24.1603659 23.9446943 -0.2156717 3.92 0.0000 -24.8442101 24.6286193 -0.2155908 4.02 0.0000 -25.5281013 25.3124285 -0.2156728 4.13 0.0000 -26.2120408 25.9964686 -0.2155721 4.23 0.0000 -26.8958372 26.6801751 -0.2156621 4.34 0.0000 -27.5798706 27.3642981 -0.2155725 4.45 0.0000 -28.2635862 28.0479481 -0.2156382 4.55 0.0000 -28.9476850 28.7320960 -0.2155890 4.66 0.0000 -29.6313598 29.4157558 -0.2156041 4.76 0.0000 -30.3154731 30.0998580 -0.2156151 4.87 0.0000 -30.9991648 30.7835984 -0.2155665 4.97 0.0000 -31.6832306 31.4675881 -0.2156425 5.08 0.0000 -32.3670013 32.1514677 -0.2155335 5.19 0.0000 -33.0509611 32.8352982 -0.2156629 5.29 0.0000 -33.7348614 33.5193489 -0.2155125 5.40 0.0000 -34.4186757 34.2030055 -0.2156702 5.50 0.0000 -35.1027309 34.8872235 -0.2155075 5.61 0.0000 -35.7863904 35.5707286 -0.2156618 5.72 0.0000 -36.4705927 36.2550735 -0.2155192 5.82 0.0000 -37.1541227 36.9384833 -0.2156394 5.93 0.0000 -37.8384300 37.6228857 -0.2155443 6.03 0.0000 -38.4759313 38.2788500 -0.1970813 6.14 0.0000 -39.0080326 38.8598262 -0.1482064 6.24 0.0000 -39.4114016 39.3322509 -0.0791507 6.35 0.0000 -39.6661980 39.6661739 -0.0000241 convergence has been achieved in 7 iterations Forces acting on atoms (Ry/au): atom 1 type 2 force = -0.00057421 -0.00018708 0.00055654 atom 2 type 1 force = 0.00025608 -0.00010262 -0.00030345 atom 3 type 1 force = 0.00031814 0.00028970 -0.00025309 Total force = 0.000499 Total SCF correction = 0.000053 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file H2O.save init_run : 6.24s CPU 6.77s WALL ( 1 calls) electrons : 22.60s CPU 23.48s WALL ( 1 calls) forces : 2.67s CPU 2.78s WALL ( 1 calls) Called by init_run: wfcinit : 0.14s CPU 0.17s WALL ( 1 calls) potinit : 2.79s CPU 2.91s WALL ( 1 calls) Called by electrons: c_bands : 4.01s CPU 4.03s WALL ( 7 calls) sum_band : 4.45s CPU 4.54s WALL ( 7 calls) v_of_rho : 10.86s CPU 11.17s WALL ( 8 calls) newd : 2.75s CPU 3.10s WALL ( 8 calls) mix_rho : 0.86s CPU 0.90s WALL ( 7 calls) Called by c_bands: init_us_2 : 0.08s CPU 0.06s WALL ( 15 calls) regterg : 3.96s CPU 3.97s WALL ( 7 calls) Called by *egterg: h_psi : 3.43s CPU 3.53s WALL ( 45 calls) s_psi : 0.11s CPU 0.06s WALL ( 45 calls) g_psi : 0.05s CPU 0.05s WALL ( 37 calls) rdiaghg : 0.02s CPU 0.03s WALL ( 44 calls) Called by h_psi: add_vuspsi : 0.06s CPU 0.06s WALL ( 45 calls) General routines calbec : 0.05s CPU 0.09s WALL ( 56 calls) fft : 7.32s CPU 7.38s WALL ( 128 calls) ffts : 0.34s CPU 0.33s WALL ( 15 calls) fftw : 3.19s CPU 3.29s WALL ( 262 calls) interpolate : 1.30s CPU 1.42s WALL ( 15 calls) davcio : 0.00s CPU 0.00s WALL ( 7 calls) EXX routines PWSCF : 31.89s CPU 33.70s WALL This run was terminated on: 22:24:39 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/ESM_example/reference/Al111.bc3_p005.out0000644000175000017500000015013412341373025022271 0ustar mbamba Program PWSCF v.4.99 starts on 23Apr2012 at 22:41:22 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 23647 23647 5473 bravais-lattice index = 0 lattice parameter (alat) = 7.6534 a.u. unit-cell volume = 1941.1667 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 14 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Boundary Conditions: Vacuum-Slab-Metal celldm(1)= 7.653394 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.707107 0.000000 0.000000 ) a(2) = ( 0.353553 0.612372 0.000000 ) a(3) = ( 0.000000 0.000000 10.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.414214 -0.816497 0.000000 ) b(2) = ( 0.000000 1.632993 0.000000 ) b(3) = ( 0.000000 0.000000 0.100000 ) PseudoPot. # 1 for Al read from file: /home/Brandon/src/espresso/pseudo/Al.pbe-rrkj.UPF MD5 check sum: b5320f8fdc07ab0d74f109f4aa58256b Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 879 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential Al 3.00 26.98154 Al( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 -1.7320512 ) 2 Al tau( 2) = ( 0.0000000 0.4082492 -1.1547008 ) 3 Al tau( 3) = ( 0.3535529 0.2041234 -0.5773504 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.0000000 0.4082492 0.5773504 ) 6 Al tau( 6) = ( 0.3535529 0.2041234 1.1547008 ) 7 Al tau( 7) = ( 0.0000000 0.0000000 1.7320512 ) number of k points= 34 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( 0.0000000 0.2041241 0.0000000), wk = 0.0625000 k( 3) = ( 0.0000000 0.4082483 0.0000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.6123724 0.0000000), wk = 0.0625000 k( 5) = ( 0.0000000 -0.8164966 0.0000000), wk = 0.0312500 k( 6) = ( 0.1767767 -0.1020621 0.0000000), wk = 0.0625000 k( 7) = ( 0.1767767 0.1020621 0.0000000), wk = 0.0625000 k( 8) = ( 0.1767767 0.3061862 0.0000000), wk = 0.0625000 k( 9) = ( 0.1767767 0.5103104 0.0000000), wk = 0.0625000 k( 10) = ( 0.1767767 -0.9185587 0.0000000), wk = 0.0625000 k( 11) = ( 0.1767767 -0.7144345 0.0000000), wk = 0.0625000 k( 12) = ( 0.1767767 -0.5103104 0.0000000), wk = 0.0625000 k( 13) = ( 0.1767767 -0.3061862 0.0000000), wk = 0.0625000 k( 14) = ( 0.3535534 -0.2041241 0.0000000), wk = 0.0625000 k( 15) = ( 0.3535534 0.0000000 0.0000000), wk = 0.0625000 k( 16) = ( 0.3535534 0.2041241 0.0000000), wk = 0.0625000 k( 17) = ( 0.3535534 0.4082483 0.0000000), wk = 0.0625000 k( 18) = ( 0.3535534 -1.0206207 0.0000000), wk = 0.0625000 k( 19) = ( 0.3535534 -0.8164966 0.0000000), wk = 0.0625000 k( 20) = ( 0.3535534 -0.6123724 0.0000000), wk = 0.0625000 k( 21) = ( 0.3535534 -0.4082483 0.0000000), wk = 0.0625000 k( 22) = ( 0.5303301 -0.3061862 0.0000000), wk = 0.0625000 k( 23) = ( 0.5303301 -0.1020621 0.0000000), wk = 0.0625000 k( 24) = ( 0.5303301 0.1020621 0.0000000), wk = 0.0625000 k( 25) = ( 0.5303301 0.3061862 0.0000000), wk = 0.0625000 k( 26) = ( 0.5303301 -1.1226828 0.0000000), wk = 0.0625000 k( 27) = ( 0.5303301 -0.9185587 0.0000000), wk = 0.0625000 k( 28) = ( 0.5303301 -0.7144345 0.0000000), wk = 0.0625000 k( 29) = ( 0.5303301 -0.5103104 0.0000000), wk = 0.0625000 k( 30) = ( -0.7071068 0.4082483 0.0000000), wk = 0.0312500 k( 31) = ( -0.7071068 0.6123724 0.0000000), wk = 0.0625000 k( 32) = ( -0.7071068 0.8164966 0.0000000), wk = 0.0625000 k( 33) = ( -0.7071068 1.0206207 0.0000000), wk = 0.0625000 k( 34) = ( -0.7071068 -0.4082483 0.0000000), wk = 0.0312500 Dense grid: 23647 G-vectors FFT dimensions: ( 15, 15, 225) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.64 Mb ( 2982, 14) NL pseudopotentials 2.55 Mb ( 2982, 56) Each V/rho on FFT grid 0.77 Mb ( 50625) Each G-vector array 0.18 Mb ( 23647) G-vector shells 0.04 Mb ( 4718) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.55 Mb ( 2982, 56) Each subspace H/S matrix 0.05 Mb ( 56, 56) Each matrix 0.01 Mb ( 56, 14) Arrays for rho mixing 6.18 Mb ( 50625, 8) Initial potential from superposition of free atoms starting charge 20.98187, renormalised to 20.99500 negative rho (up, down): 0.215E-04 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 5.7 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.0 total cpu time spent up to now is 14.2 secs total energy = -27.49216588 Ry Harris-Foulkes estimate = -28.90401343 Ry estimated scf accuracy < 1.49565211 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 7.12E-03, avg # of iterations = 17.7 total cpu time spent up to now is 48.9 secs total energy = -1.60851931 Ry Harris-Foulkes estimate = -67.89358949 Ry estimated scf accuracy < 1119.20290748 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 4 eigenvalues not converged ethr = 7.12E-03, avg # of iterations = 23.0 total cpu time spent up to now is 96.3 secs total energy = -28.18231371 Ry Harris-Foulkes estimate = -29.60144693 Ry estimated scf accuracy < 29.03587727 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 3.8 total cpu time spent up to now is 102.7 secs total energy = -28.20262025 Ry Harris-Foulkes estimate = -29.28069212 Ry estimated scf accuracy < 20.53089622 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 5.5 negative rho (up, down): 0.140E-01 0.000E+00 total cpu time spent up to now is 110.2 secs total energy = -29.04926948 Ry Harris-Foulkes estimate = -29.09698538 Ry estimated scf accuracy < 12.16711349 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 1.6 negative rho (up, down): 0.208E-01 0.000E+00 total cpu time spent up to now is 115.8 secs total energy = -29.29244884 Ry Harris-Foulkes estimate = -29.21580478 Ry estimated scf accuracy < 23.60131319 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 1.0 negative rho (up, down): 0.268E-01 0.000E+00 total cpu time spent up to now is 121.4 secs total energy = -28.96713216 Ry Harris-Foulkes estimate = -29.31871531 Ry estimated scf accuracy < 28.61493174 Ry iteration # 8 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 1.0 negative rho (up, down): 0.218E-01 0.000E+00 total cpu time spent up to now is 126.9 secs total energy = -28.64131855 Ry Harris-Foulkes estimate = -29.07913882 Ry estimated scf accuracy < 7.55753540 Ry iteration # 9 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 1.0 negative rho (up, down): 0.235E-01 0.000E+00 total cpu time spent up to now is 132.4 secs total energy = -29.05904687 Ry Harris-Foulkes estimate = -29.05197217 Ry estimated scf accuracy < 5.88681568 Ry iteration # 10 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 1.0 negative rho (up, down): 0.233E-01 0.000E+00 total cpu time spent up to now is 138.0 secs total energy = -28.96640283 Ry Harris-Foulkes estimate = -29.07005905 Ry estimated scf accuracy < 5.80417696 Ry iteration # 11 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.12E-03, avg # of iterations = 1.0 negative rho (up, down): 0.734E-02 0.000E+00 total cpu time spent up to now is 143.4 secs total energy = -29.00326850 Ry Harris-Foulkes estimate = -29.01273884 Ry estimated scf accuracy < 0.54041538 Ry iteration # 12 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 8.8 negative rho (up, down): 0.166E-01 0.000E+00 total cpu time spent up to now is 155.1 secs total energy = -29.66501001 Ry Harris-Foulkes estimate = -29.94362885 Ry estimated scf accuracy < 66.61036421 Ry iteration # 13 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 1.3 negative rho (up, down): 0.452E-01 0.000E+00 total cpu time spent up to now is 161.1 secs total energy = -28.82954246 Ry Harris-Foulkes estimate = -29.68849341 Ry estimated scf accuracy < 50.51039858 Ry iteration # 14 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 3.1 negative rho (up, down): 0.432E-01 0.000E+00 total cpu time spent up to now is 167.2 secs total energy = -29.09788624 Ry Harris-Foulkes estimate = -29.06555885 Ry estimated scf accuracy < 17.00114150 Ry iteration # 15 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 1.0 negative rho (up, down): 0.481E-01 0.000E+00 total cpu time spent up to now is 172.7 secs total energy = -29.16382609 Ry Harris-Foulkes estimate = -29.10953420 Ry estimated scf accuracy < 19.27341750 Ry iteration # 16 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 1.3 negative rho (up, down): 0.255E-01 0.000E+00 total cpu time spent up to now is 178.1 secs total energy = -28.86326852 Ry Harris-Foulkes estimate = -29.18410612 Ry estimated scf accuracy < 21.17152236 Ry iteration # 17 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 1.0 negative rho (up, down): 0.221E-01 0.000E+00 total cpu time spent up to now is 183.4 secs total energy = -28.77437047 Ry Harris-Foulkes estimate = -28.92489473 Ry estimated scf accuracy < 9.61228036 Ry iteration # 18 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 1.3 negative rho (up, down): 0.150E-01 0.000E+00 total cpu time spent up to now is 188.9 secs total energy = -28.64607115 Ry Harris-Foulkes estimate = -28.80606568 Ry estimated scf accuracy < 5.14121874 Ry iteration # 19 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.57E-03, avg # of iterations = 5.0 negative rho (up, down): 0.912E-02 0.000E+00 total cpu time spent up to now is 196.7 secs total energy = -28.78648288 Ry Harris-Foulkes estimate = -28.82958936 Ry estimated scf accuracy < 0.36752211 Ry iteration # 20 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.75E-03, avg # of iterations = 7.3 negative rho (up, down): 0.463E-02 0.000E+00 total cpu time spent up to now is 207.2 secs total energy = -28.99413675 Ry Harris-Foulkes estimate = -29.00737229 Ry estimated scf accuracy < 2.58848909 Ry iteration # 21 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.75E-03, avg # of iterations = 2.2 negative rho (up, down): 0.627E-02 0.000E+00 total cpu time spent up to now is 212.7 secs total energy = -28.83237472 Ry Harris-Foulkes estimate = -29.01506116 Ry estimated scf accuracy < 5.28398533 Ry iteration # 22 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.75E-03, avg # of iterations = 2.1 negative rho (up, down): 0.661E-02 0.000E+00 total cpu time spent up to now is 218.1 secs total energy = -28.90865117 Ry Harris-Foulkes estimate = -28.91351335 Ry estimated scf accuracy < 0.03577617 Ry iteration # 23 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.70E-04, avg # of iterations = 11.3 negative rho (up, down): 0.423E-02 0.000E+00 total cpu time spent up to now is 231.5 secs total energy = -28.92073603 Ry Harris-Foulkes estimate = -28.93019237 Ry estimated scf accuracy < 0.19472857 Ry iteration # 24 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.70E-04, avg # of iterations = 2.9 negative rho (up, down): 0.153E-03 0.000E+00 total cpu time spent up to now is 238.0 secs total energy = -28.91982804 Ry Harris-Foulkes estimate = -28.93136041 Ry estimated scf accuracy < 0.20733058 Ry iteration # 25 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.70E-04, avg # of iterations = 2.3 negative rho (up, down): 0.133E-03 0.000E+00 total cpu time spent up to now is 244.2 secs total energy = -28.92708390 Ry Harris-Foulkes estimate = -28.93023785 Ry estimated scf accuracy < 0.08767423 Ry iteration # 26 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.70E-04, avg # of iterations = 1.0 negative rho (up, down): 0.454E-03 0.000E+00 total cpu time spent up to now is 250.0 secs total energy = -28.92454862 Ry Harris-Foulkes estimate = -28.92797503 Ry estimated scf accuracy < 0.03694698 Ry iteration # 27 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.70E-04, avg # of iterations = 1.0 negative rho (up, down): 0.671E-04 0.000E+00 total cpu time spent up to now is 255.9 secs total energy = -28.92571761 Ry Harris-Foulkes estimate = -28.92570187 Ry estimated scf accuracy < 0.00170422 Ry iteration # 28 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 8.12E-06, avg # of iterations = 13.6 negative rho (up, down): 0.110E-03 0.000E+00 total cpu time spent up to now is 271.9 secs total energy = -28.92762867 Ry Harris-Foulkes estimate = -28.92756927 Ry estimated scf accuracy < 0.00394924 Ry iteration # 29 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged ethr = 8.12E-06, avg # of iterations = 5.1 negative rho (up, down): 0.155E-03 0.000E+00 total cpu time spent up to now is 279.1 secs total energy = -28.92738512 Ry Harris-Foulkes estimate = -28.92765906 Ry estimated scf accuracy < 0.00358619 Ry iteration # 30 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.12E-06, avg # of iterations = 1.0 negative rho (up, down): 0.552E-04 0.000E+00 total cpu time spent up to now is 284.3 secs total energy = -28.92732316 Ry Harris-Foulkes estimate = -28.92740419 Ry estimated scf accuracy < 0.00293579 Ry iteration # 31 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.12E-06, avg # of iterations = 1.0 negative rho (up, down): 0.205E-03 0.000E+00 total cpu time spent up to now is 289.8 secs total energy = -28.92663783 Ry Harris-Foulkes estimate = -28.92734950 Ry estimated scf accuracy < 0.00258469 Ry iteration # 32 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 8.12E-06, avg # of iterations = 2.3 negative rho (up, down): 0.775E-04 0.000E+00 total cpu time spent up to now is 296.7 secs total energy = -28.92694270 Ry Harris-Foulkes estimate = -28.92691556 Ry estimated scf accuracy < 0.00012820 Ry iteration # 33 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged ethr = 6.11E-07, avg # of iterations = 11.4 negative rho (up, down): 0.694E-04 0.000E+00 total cpu time spent up to now is 311.9 secs total energy = -28.92721464 Ry Harris-Foulkes estimate = -28.92722078 Ry estimated scf accuracy < 0.00028020 Ry iteration # 34 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 6.11E-07, avg # of iterations = 3.1 negative rho (up, down): 0.271E-04 0.000E+00 total cpu time spent up to now is 318.1 secs total energy = -28.92719528 Ry Harris-Foulkes estimate = -28.92721652 Ry estimated scf accuracy < 0.00024612 Ry iteration # 35 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 6.11E-07, avg # of iterations = 4.5 negative rho (up, down): 0.729E-06 0.000E+00 total cpu time spent up to now is 327.7 secs total energy = -28.92721963 Ry Harris-Foulkes estimate = -28.92725162 Ry estimated scf accuracy < 0.00022579 Ry iteration # 36 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 6.11E-07, avg # of iterations = 2.6 negative rho (up, down): 0.203E-04 0.000E+00 total cpu time spent up to now is 333.6 secs total energy = -28.92715966 Ry Harris-Foulkes estimate = -28.92722483 Ry estimated scf accuracy < 0.00002954 Ry iteration # 37 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 1.41E-07, avg # of iterations = 4.8 negative rho (up, down): 0.614E-05 0.000E+00 total cpu time spent up to now is 340.7 secs total energy = -28.92717360 Ry Harris-Foulkes estimate = -28.92717218 Ry estimated scf accuracy < 0.00001717 Ry iteration # 38 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 8.18E-08, avg # of iterations = 2.3 total cpu time spent up to now is 346.4 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2893 PWs) bands (ev): -16.3717 -16.0109 -15.4170 -14.5821 -13.5079 -12.2516 -10.7554 -9.2796 -7.4586 -5.6105 -3.8109 -2.3561 -1.5902 -1.2307 k = 0.0000 0.2041 0.0000 ( 2891 PWs) bands (ev): -15.9976 -15.6376 -15.0449 -14.2118 -13.1396 -11.8854 -10.3896 -8.9279 -7.1080 -5.2666 -3.4744 -2.0137 -1.2271 -0.8646 k = 0.0000 0.4082 0.0000 ( 2909 PWs) bands (ev): -14.8809 -14.5231 -13.9344 -13.1066 -12.0411 -10.7951 -9.3056 -7.8793 -6.0889 -4.3762 -3.3970 -2.9308 -2.5171 -2.1571 k = 0.0000 0.6124 0.0000 ( 2936 PWs) bands (ev): -13.0379 -12.6843 -12.1029 -11.2860 -10.2372 -9.0228 -7.6805 -7.3058 -6.9150 -6.3131 -5.9351 -5.4700 -4.4797 -4.1821 k = 0.0000-0.8165 0.0000 ( 2982 PWs) bands (ev): -10.5053 -10.4949 -10.1877 -10.1232 -9.6204 -9.5600 -8.8453 -8.8000 -7.9533 -7.3920 -6.4221 -6.3188 -4.9999 -4.8639 k = 0.1768-0.1021 0.0000 ( 2891 PWs) bands (ev): -15.9976 -15.6376 -15.0449 -14.2118 -13.1396 -11.8854 -10.3896 -8.9279 -7.1080 -5.2666 -3.4744 -2.0137 -1.2269 -0.8630 k = 0.1768 0.1021 0.0000 ( 2891 PWs) bands (ev): -15.9976 -15.6376 -15.0449 -14.2118 -13.1396 -11.8854 -10.3896 -8.9279 -7.1080 -5.2666 -3.4744 -2.0137 -1.2271 -0.8646 k = 0.1768 0.3062 0.0000 ( 2894 PWs) bands (ev): -15.2522 -14.8937 -14.3036 -13.4740 -12.4061 -11.1570 -9.6642 -8.2270 -6.4174 -4.6054 -2.8785 -1.5496 -0.8962 -0.6634 k = 0.1768 0.5103 0.0000 ( 2934 PWs) bands (ev): -13.7723 -13.4170 -12.8324 -12.0106 -10.9533 -9.7192 -8.2512 -6.8583 -5.4407 -5.0327 -4.5723 -4.1265 -3.4742 -3.1578 k = 0.1768-0.9186 0.0000 ( 2943 PWs) bands (ev): -11.5804 -11.2310 -10.6574 -9.8560 -8.8742 -8.6851 -8.3800 -7.9681 -7.5452 -6.8444 -5.9550 -5.8199 -4.7561 -4.6357 k = 0.1768-0.7144 0.0000 ( 2943 PWs) bands (ev): -11.5804 -11.2310 -10.6574 -9.8560 -8.8742 -8.6851 -8.3800 -7.9681 -7.5452 -6.8444 -5.9550 -5.8199 -4.7560 -4.6357 k = 0.1768-0.5103 0.0000 ( 2934 PWs) bands (ev): -13.7723 -13.4170 -12.8324 -12.0106 -10.9533 -9.7192 -8.2512 -6.8583 -5.4407 -5.0327 -4.5723 -4.1266 -3.4745 -3.1578 k = 0.1768-0.3062 0.0000 ( 2894 PWs) bands (ev): -15.2522 -14.8937 -14.3036 -13.4740 -12.4061 -11.1570 -9.6642 -8.2270 -6.4174 -4.6054 -2.8786 -1.5495 -0.8973 -0.7028 k = 0.3536-0.2041 0.0000 ( 2909 PWs) bands (ev): -14.8809 -14.5231 -13.9344 -13.1066 -12.0411 -10.7951 -9.3056 -7.8793 -6.0889 -4.3762 -3.3971 -2.9309 -2.5171 -2.1571 k = 0.3536 0.0000 0.0000 ( 2894 PWs) bands (ev): -15.2522 -14.8937 -14.3036 -13.4740 -12.4061 -11.1570 -9.6642 -8.2270 -6.4174 -4.6054 -2.8785 -1.5496 -0.8969 -0.6665 k = 0.3536 0.2041 0.0000 ( 2909 PWs) bands (ev): -14.8809 -14.5231 -13.9344 -13.1066 -12.0411 -10.7951 -9.3056 -7.8793 -6.0889 -4.3762 -3.3971 -2.9308 -2.5171 -2.1569 k = 0.3536 0.4082 0.0000 ( 2934 PWs) bands (ev): -13.7723 -13.4170 -12.8324 -12.0106 -10.9533 -9.7192 -8.2512 -6.8583 -5.4407 -5.0327 -4.5722 -4.1266 -3.4741 -3.1571 k = 0.3536-1.0206 0.0000 ( 2964 PWs) bands (ev): -11.9431 -11.5924 -11.0160 -10.2076 -9.1728 -7.9875 -6.7285 -6.2844 -6.2734 -6.0447 -5.7940 -5.3701 -5.0741 -4.8135 k = 0.3536-0.8165 0.0000 ( 2968 PWs) bands (ev): -9.4323 -9.4209 -9.1240 -9.0495 -8.5660 -8.4904 -7.7974 -7.7627 -6.9466 -6.6636 -6.3475 -6.3066 -5.8892 -5.6488 k = 0.3536-0.6124 0.0000 ( 2964 PWs) bands (ev): -11.9431 -11.5924 -11.0160 -10.2076 -9.1728 -7.9875 -6.7285 -6.2844 -6.2734 -6.0447 -5.7940 -5.3701 -5.0741 -4.8138 k = 0.3536-0.4082 0.0000 ( 2934 PWs) bands (ev): -13.7723 -13.4170 -12.8324 -12.0106 -10.9533 -9.7192 -8.2512 -6.8583 -5.4407 -5.0327 -4.5723 -4.1266 -3.4741 -3.1571 k = 0.5303-0.3062 0.0000 ( 2936 PWs) bands (ev): -13.0379 -12.6843 -12.1029 -11.2860 -10.2372 -9.0228 -7.6805 -7.3058 -6.9150 -6.3130 -5.9351 -5.4700 -4.4796 -4.1822 k = 0.5303-0.1021 0.0000 ( 2934 PWs) bands (ev): -13.7723 -13.4170 -12.8324 -12.0106 -10.9533 -9.7192 -8.2512 -6.8583 -5.4407 -5.0327 -4.5723 -4.1264 -3.4741 -3.1572 k = 0.5303 0.1021 0.0000 ( 2934 PWs) bands (ev): -13.7723 -13.4170 -12.8324 -12.0106 -10.9533 -9.7192 -8.2512 -6.8583 -5.4407 -5.0327 -4.5723 -4.1265 -3.4743 -3.1572 k = 0.5303 0.3062 0.0000 ( 2936 PWs) bands (ev): -13.0379 -12.6843 -12.1029 -11.2860 -10.2372 -9.0228 -7.6805 -7.3058 -6.9150 -6.3131 -5.9351 -5.4700 -4.4800 -4.1821 k = 0.5303-1.1227 0.0000 ( 2943 PWs) bands (ev): -11.5804 -11.2310 -10.6574 -9.8560 -8.8742 -8.6851 -8.3800 -7.9681 -7.5452 -6.8444 -5.9550 -5.8199 -4.7559 -4.6356 k = 0.5303-0.9186 0.0000 ( 2968 PWs) bands (ev): -9.4322 -9.4210 -9.1240 -9.0495 -8.5660 -8.4904 -7.7974 -7.7627 -6.9466 -6.6636 -6.3475 -6.3066 -5.8892 -5.6488 k = 0.5303-0.7144 0.0000 ( 2968 PWs) bands (ev): -9.4323 -9.4209 -9.1240 -9.0495 -8.5660 -8.4904 -7.7974 -7.7627 -6.9466 -6.6636 -6.3475 -6.3066 -5.8892 -5.6488 k = 0.5303-0.5103 0.0000 ( 2943 PWs) bands (ev): -11.5804 -11.2310 -10.6574 -9.8560 -8.8742 -8.6851 -8.3800 -7.9681 -7.5452 -6.8444 -5.9550 -5.8199 -4.7562 -4.6356 k =-0.7071 0.4082 0.0000 ( 2982 PWs) bands (ev): -10.5053 -10.4949 -10.1877 -10.1232 -9.6204 -9.5600 -8.8453 -8.8000 -7.9533 -7.3920 -6.4221 -6.3188 -4.9999 -4.8639 k =-0.7071 0.6124 0.0000 ( 2943 PWs) bands (ev): -11.5804 -11.2310 -10.6574 -9.8560 -8.8742 -8.6851 -8.3800 -7.9681 -7.5452 -6.8444 -5.9550 -5.8199 -4.7558 -4.6356 k =-0.7071 0.8165 0.0000 ( 2964 PWs) bands (ev): -11.9431 -11.5924 -11.0160 -10.2076 -9.1728 -7.9875 -6.7285 -6.2844 -6.2734 -6.0447 -5.7940 -5.3701 -5.0741 -4.8137 k =-0.7071 1.0206 0.0000 ( 2943 PWs) bands (ev): -11.5804 -11.2310 -10.6574 -9.8560 -8.8742 -8.6851 -8.3800 -7.9681 -7.5452 -6.8444 -5.9550 -5.8199 -4.7560 -4.6355 k =-0.7071-0.4082 0.0000 ( 2982 PWs) bands (ev): -10.5053 -10.4950 -10.1877 -10.1232 -9.6205 -9.5600 -8.8453 -8.8000 -7.9533 -7.3920 -6.4221 -6.3188 -4.9999 -4.8639 the Fermi energy is -5.4739 ev ! total energy = -28.92718028 Ry Harris-Foulkes estimate = -28.92717495 Ry estimated scf accuracy < 0.00000077 Ry The total energy is the sum of the following terms: one-electron contribution = -14452.25888607 Ry hartree contribution = 7225.87385266 Ry xc contribution = -11.06298470 Ry ewald contribution = 7208.51839567 Ry smearing contrib. (-TS) = 0.00244216 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -20.16 0.0000 7474.6169723 -7475.5920509 -0.9750786 -19.98 0.0000 9171.6807384 -9172.8713934 -1.1906550 -19.80 0.0000 10375.4405653 -10376.7844596 -1.3438943 -19.62 0.0000 10832.6611445 -10834.0633797 -1.4022353 -19.44 0.0000 10832.8685273 -10834.2707421 -1.4022147 -19.26 0.0000 10832.6184834 -10834.0207246 -1.4022411 -19.08 0.0000 10832.9094109 -10834.3116203 -1.4022095 -18.90 0.0000 10832.5796619 -10833.9819084 -1.4022465 -18.72 0.0000 10832.9459015 -10834.3481064 -1.4022049 -18.54 0.0000 10832.5457499 -10833.9480011 -1.4022513 -18.36 0.0000 10832.9770065 -10834.3792077 -1.4022012 -18.18 0.0000 10832.5176545 -10833.9199097 -1.4022551 -18.00 0.0000 10833.0019116 -10834.4041103 -1.4021987 -17.82 0.0000 10832.4960907 -10833.8983486 -1.4022580 -17.64 0.0000 10833.0200071 -10834.4222045 -1.4021974 -17.46 0.0000 10832.4815586 -10833.8838180 -1.4022595 -17.28 0.0000 10833.0309061 -10834.4331038 -1.4021977 -17.10 0.0000 10832.4743286 -10833.8765881 -1.4022595 -16.92 0.0000 10833.0344562 -10834.4366560 -1.4021998 -16.74 0.0000 10832.4744347 -10833.8766926 -1.4022578 -16.56 0.0000 10833.0307416 -10834.4329453 -1.4022038 -16.38 0.0000 10832.4816760 -10833.8839303 -1.4022543 -16.20 0.0000 10833.0200776 -10834.4222875 -1.4022098 -16.02 0.0000 10832.4956259 -10833.8978747 -1.4022488 -15.84 0.0000 10833.0029973 -10834.4052154 -1.4022181 -15.66 0.0000 10832.5156504 -10833.9178916 -1.4022412 -15.48 0.0000 10832.9802297 -10834.3824585 -1.4022288 -15.30 0.0000 10832.5409322 -10833.9431636 -1.4022315 -15.12 0.0000 10832.9526725 -10834.3549144 -1.4022419 -14.94 0.0000 10832.5705013 -10833.9727210 -1.4022197 -14.76 0.0000 10832.9213585 -10834.3236159 -1.4022574 -14.58 0.0000 10832.6032716 -10834.0054775 -1.4022059 -14.40 0.0000 10832.8874172 -10834.2896928 -1.4022755 -14.22 0.0000 10832.6380795 -10834.0402701 -1.4021906 -14.04 0.0000 10832.8520346 -10834.2543310 -1.4022964 -13.86 0.0000 10832.6737259 -10834.0759004 -1.4021746 -13.68 0.0000 10832.8164100 -10834.2187305 -1.4023205 -13.50 0.0000 10832.7090181 -10834.1111775 -1.4021594 -13.32 0.0000 10832.7817137 -10834.1840630 -1.4023493 -13.14 0.0000 10832.7428109 -10834.1449592 -1.4021483 -12.96 0.0000 10832.7490449 -10834.1514313 -1.4023864 -12.78 0.0000 10832.7740431 -10834.1761914 -1.4021483 -12.60 0.0000 10832.7193910 -10834.1218317 -1.4024407 -12.42 0.0000 10832.8017686 -10834.2039437 -1.4021750 -12.24 0.0000 10832.6935871 -10834.0961210 -1.4025339 -12.06 0.0000 10832.8251743 -10834.2274382 -1.4022639 -11.88 0.0000 10832.6722693 -10834.0749875 -1.4027182 -11.70 0.0000 10832.8435746 -10834.2460777 -1.4025031 -11.52 0.0000 10832.6558056 -10834.0589350 -1.4031294 -11.34 0.0001 10832.8563523 -10834.2594613 -1.4031089 -11.16 0.0001 10832.6441644 -10834.0482638 -1.4040994 -10.98 0.0002 10832.8627834 -10834.2673930 -1.4046096 -10.80 0.0003 10832.6366115 -10834.0430649 -1.4064535 -10.62 0.0004 10832.8615687 -10834.2698859 -1.4083172 -10.44 0.0007 10832.6309803 -10834.0432218 -1.4122416 -10.26 0.0011 10832.8496858 -10834.2671578 -1.4174720 -10.08 0.0017 10832.6218658 -10834.0484175 -1.4265517 -9.90 0.0026 10832.8194872 -10834.2596214 -1.4401343 -9.72 0.0042 10832.5960954 -10834.0581449 -1.4620495 -9.54 0.0066 10832.7515329 -10834.2478729 -1.4963400 -9.36 0.0104 10832.5214199 -10834.0717208 -1.5503009 -9.18 0.0164 10832.5966414 -10834.2326919 -1.6360505 -9.00 0.0256 10832.3186234 -10834.0882350 -1.7696116 -8.82 0.0397 10832.2330690 -10834.2149064 -1.9818374 -8.64 0.0605 10831.7972381 -10834.1060530 -2.3088149 -8.46 0.0900 10831.3735299 -10834.1881138 -2.8145839 -8.28 0.1302 10830.5299075 -10833.9677320 -3.4378246 -8.10 0.1808 10829.4102136 -10833.9288803 -4.5186667 -7.92 0.2373 10827.6875109 -10834.3274001 -6.6398892 -7.74 0.2904 10825.2926273 -10835.0631004 -9.7704731 -7.56 0.3304 10822.0598243 -10835.4344468 -13.3746225 -7.38 0.3537 10817.8020648 -10834.6307440 -16.8286792 -7.20 0.3629 10812.5994350 -10832.0010525 -19.4016175 -7.02 0.3634 10806.1978092 -10826.5934416 -20.3956324 -6.84 0.3610 10798.8920032 -10818.4269143 -19.5349110 -6.66 0.3599 10790.3227229 -10807.3833886 -17.0606658 -6.48 0.3605 10780.9205088 -10794.6025803 -13.6820715 -6.30 0.3588 10770.2011763 -10780.3992888 -10.1981125 -6.12 0.3533 10758.7033862 -10766.0501133 -7.3467270 -5.94 0.3490 10745.8662428 -10751.5297510 -5.6635082 -5.76 0.3516 10732.3118846 -10737.9154364 -5.6035518 -5.58 0.3605 10717.3944098 -10724.5823423 -7.1879325 -5.40 0.3681 10701.7474787 -10711.7348029 -9.9873242 -5.22 0.3682 10684.6806978 -10698.1555530 -13.4748552 -5.04 0.3619 10666.8664402 -10683.7851101 -16.9186699 -4.86 0.3551 10647.6533616 -10667.1537160 -19.5003544 -4.68 0.3519 10627.7167103 -10648.1957335 -20.4790232 -4.50 0.3536 10606.4293057 -10625.9985653 -19.5692596 -4.32 0.3595 10584.3951624 -10601.4268578 -17.0316954 -4.14 0.3658 10561.0231507 -10574.6172809 -13.5941303 -3.96 0.3668 10536.8301592 -10546.9057970 -10.0756378 -3.78 0.3610 10511.3262588 -10518.5433353 -7.2170765 -3.60 0.3541 10484.9626554 -10490.5180312 -5.5553759 -3.42 0.3534 10457.3789963 -10462.9123233 -5.5333270 -3.24 0.3591 10428.8953396 -10436.0548787 -7.1595391 -3.06 0.3648 10399.2424851 -10409.2331468 -9.9906616 -2.88 0.3647 10368.5924930 -10382.0883683 -13.4958753 -2.70 0.3600 10336.8264412 -10353.7649176 -16.9384763 -2.52 0.3559 10304.0063642 -10323.5134654 -19.5071012 -2.34 0.3552 10270.1635966 -10290.6323839 -20.4687873 -2.16 0.3577 10235.2114978 -10254.7636880 -19.5521903 -1.98 0.3624 10199.2991906 -10216.3227377 -17.0235471 -1.80 0.3662 10162.1918617 -10175.8035891 -13.6117274 -1.62 0.3642 10124.1637873 -10134.2906179 -10.1268306 -1.44 0.3560 10084.8782115 -10092.1791386 -7.3009271 -1.26 0.3480 10044.7549555 -10050.4168708 -5.6619154 -1.08 0.3475 10003.3688217 -10009.0170980 -5.6482763 -0.90 0.3549 9961.2119594 -9968.4748217 -7.2628623 -0.72 0.3631 9917.7355356 -9927.8006973 -10.0651617 -0.54 0.3660 9873.4776850 -9887.0082748 -13.5305898 -0.36 0.3640 9827.8439803 -9844.7732512 -16.9292709 -0.18 0.3613 9781.4429819 -9800.9009382 -19.4579563 0.00 0.3604 9733.6674204 -9754.0569318 -20.3895114 0.18 0.3613 9685.1380129 -9704.5963333 -19.4583204 0.36 0.3640 9635.2380250 -9652.1680075 -16.9299824 0.54 0.3660 9584.5628680 -9598.0945044 -13.5316364 0.72 0.3631 9532.5235501 -9542.5901217 -10.0665717 0.90 0.3549 9479.6872957 -9486.9520168 -7.2647211 1.08 0.3476 9425.5502751 -9431.2010180 -5.6507429 1.26 0.3481 9370.6200365 -9376.2852436 -5.6652072 1.44 0.3561 9314.4519854 -9321.7573046 -7.3053192 1.62 0.3643 9257.4178344 -9267.5504529 -10.1326185 1.80 0.3663 9199.1564780 -9212.7756848 -13.6192068 1.98 0.3625 9139.9414218 -9156.9743798 -17.0329580 2.16 0.3577 9079.5656344 -9099.1293436 -19.5637091 2.34 0.3552 9018.1937150 -9038.6762237 -20.4825087 2.52 0.3559 8955.7491912 -8975.2722733 -19.5230821 2.70 0.3600 8892.2446223 -8909.2013752 -16.9567529 2.88 0.3647 8827.7233814 -8841.2399005 -13.5165190 3.06 0.3649 8762.0488739 -8772.0626537 -10.0137798 3.24 0.3592 8695.4134103 -8702.5987049 -7.1852946 3.42 0.3534 8627.5734063 -8633.1353040 -5.5618977 3.60 0.3541 8558.8667992 -8564.4537374 -5.5869383 3.78 0.3610 8488.9084451 -8496.1601889 -7.2517437 3.96 0.3668 8418.1195717 -8428.2330034 -10.1134317 4.14 0.3658 8345.9934295 -8359.6283636 -13.6349341 4.32 0.3594 8273.0699647 -8290.1452355 -17.0752709 4.50 0.3535 8198.7888901 -8218.4041748 -19.6152847 4.68 0.3518 8123.7778296 -8144.3050194 -20.5271898 4.86 0.3550 8047.4036327 -8066.9540778 -19.5504451 5.04 0.3619 7970.3145137 -7987.2851191 -16.9706055 5.22 0.3683 7891.8221480 -7905.3508096 -13.5286615 5.40 0.3681 7812.5823836 -7822.6254371 -10.0430535 5.58 0.3604 7731.9269755 -7739.1725457 -7.2455702 5.76 0.3515 7650.5337450 -7656.1966908 -5.6629458 5.94 0.3488 7567.7905098 -7573.5148586 -5.7243488 6.12 0.3531 7484.3135134 -7491.7220777 -7.4085643 6.30 0.3586 7399.5187211 -7409.7791639 -10.2604428 6.48 0.3604 7313.9209855 -7327.6654377 -13.7444522 6.66 0.3600 7227.0349256 -7244.1578035 -17.1228778 6.84 0.3612 7139.2838777 -7158.8809351 -19.5970574 7.02 0.3637 7050.3039245 -7070.7620854 -20.4581610 7.20 0.3631 6960.3814366 -6979.8465853 -19.4651487 7.38 0.3537 6869.2995056 -6886.1932337 -16.8937281 7.56 0.3302 6777.2306834 -6790.6719056 -13.4412222 7.74 0.2899 6684.1810640 -6694.0189947 -9.8379307 7.92 0.2366 6590.2505563 -6596.9572492 -6.7066929 8.10 0.1799 6495.6950551 -6500.2776965 -4.5826415 8.28 0.1293 6400.4941185 -6403.9904680 -3.4963495 8.46 0.0891 6305.0644694 -6307.9293462 -2.8648769 8.64 0.0596 6209.1740477 -6211.5221856 -2.3481379 8.82 0.0389 6113.3403487 -6115.3480463 -2.0076976 9.00 0.0250 6017.1184174 -6018.8982668 -1.7798495 9.18 0.0159 5921.1283456 -5922.7572477 -1.6289021 9.36 0.0100 5824.7517665 -5826.2761274 -1.5243609 9.54 0.0063 5728.7128581 -5730.1633902 -1.4505321 9.72 0.0040 5632.2618028 -5633.6573547 -1.3955518 9.90 0.0025 5536.2133641 -5537.5657022 -1.3523382 10.08 0.0016 5439.7257926 -5441.0427939 -1.3170013 10.26 0.0010 5343.6776414 -5344.9634772 -1.2858358 10.44 0.0006 5247.1747726 -5248.4330476 -1.2582750 10.62 0.0004 5151.1243622 -5152.3562069 -1.2318447 10.80 0.0002 5054.6211795 -5055.8285285 -1.2073490 10.98 0.0002 4958.5607958 -4959.7435779 -1.1827821 11.16 0.0001 4862.0699629 -4863.2294499 -1.1594870 11.34 0.0001 4765.9898151 -4767.1254796 -1.1356645 11.52 0.0000 4669.5229931 -4670.6358189 -1.1128257 11.70 0.0000 4573.4126957 -4574.5020104 -1.0893147 11.88 0.0000 4476.9807967 -4478.0474324 -1.0666357 12.06 0.0000 4380.8302056 -4381.8734770 -1.0432714 12.24 0.0000 4284.4432499 -4285.4638811 -1.0206312 12.42 0.0000 4188.2430368 -4189.2403870 -0.9973502 12.60 0.0000 4091.9098596 -4092.8845580 -0.9746983 12.78 0.0000 3995.6519584 -3996.6034361 -0.9514776 12.96 0.0000 3899.3798874 -3900.3086822 -0.9287948 13.14 0.0000 3803.0578628 -3803.9634880 -0.9056252 13.32 0.0000 3706.8524148 -3707.7353185 -0.8829037 13.50 0.0000 3610.4617629 -3611.3215436 -0.8597807 13.68 0.0000 3514.3263905 -3515.1634090 -0.8370185 13.86 0.0000 3417.8647703 -3418.6787090 -0.8139386 14.04 0.0000 3321.8006723 -3322.5918090 -0.7911367 14.22 0.0000 3225.2680607 -3226.0361574 -0.7680967 14.40 0.0000 3129.2740690 -3130.0193266 -0.7452575 14.58 0.0000 3032.6728354 -3033.3950891 -0.7222537 14.76 0.0000 2936.7453833 -2937.4447640 -0.6993807 14.94 0.0000 2840.0802796 -2840.7566886 -0.6764090 15.12 0.0000 2744.2134541 -2744.8669602 -0.6535062 15.30 0.0000 2647.4915206 -2648.1220829 -0.6305624 15.48 0.0000 2551.6771988 -2552.2848328 -0.6076340 15.66 0.0000 2454.9075867 -2455.4923003 -0.5847137 15.84 0.0000 2359.1356529 -2359.6974170 -0.5617641 16.02 0.0000 2262.3293700 -2262.8682329 -0.5388629 16.20 0.0000 2166.5880053 -2167.1039018 -0.5158965 16.38 0.0000 2069.7575930 -2070.2506031 -0.4930100 16.56 0.0000 1974.0336291 -1974.5036602 -0.4700311 16.74 0.0000 1877.1927809 -1877.6399361 -0.4471552 16.92 0.0000 1781.4721060 -1781.8962738 -0.4241677 17.10 0.0000 1684.6352408 -1685.0365393 -0.4012986 17.28 0.0000 1588.9032436 -1589.2815499 -0.3783063 17.46 0.0000 1492.0850481 -1492.4404883 -0.3554402 17.64 0.0000 1396.3270846 -1396.6595312 -0.3324466 17.82 0.0000 1299.5420416 -1299.8516220 -0.3095804 18.00 0.0000 1203.7439082 -1204.0304967 -0.2865885 18.18 0.0000 1107.0058261 -1107.2695453 -0.2637192 18.36 0.0000 1011.1542227 -1011.3949544 -0.2407317 18.54 0.0000 914.4757838 -914.6936407 -0.2178569 18.72 0.0000 818.5587505 -818.7536267 -0.1948762 18.90 0.0000 721.9510934 -722.1230871 -0.1719937 19.08 0.0000 625.9584055 -626.1074270 -0.1490215 19.26 0.0000 529.4307561 -529.5568858 -0.1261297 19.44 0.0000 433.3542630 -433.4574307 -0.1031677 19.62 0.0000 806.3325380 -806.4739956 -0.1414576 19.80 0.0000 1949.9135742 -1950.1939275 -0.2803532 19.98 0.0000 3610.8754991 -3611.3628430 -0.4873439 20.16 0.0000 5536.7269737 -5537.4567454 -0.7297717 convergence has been achieved in 38 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000042 0.00000096 -0.00178028 atom 2 type 1 force = 0.00000179 -0.00000210 0.00696713 atom 3 type 1 force = 0.00000035 0.00000225 -0.00555063 atom 4 type 1 force = -0.00000154 0.00000069 -0.00002841 atom 5 type 1 force = 0.00000040 -0.00000188 0.00552890 atom 6 type 1 force = -0.00000221 -0.00000144 -0.00694243 atom 7 type 1 force = 0.00000163 0.00000152 0.00180573 Total force = 0.012828 Total SCF correction = 0.001609 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file Al111.save init_run : 5.05s CPU 5.32s WALL ( 1 calls) electrons : 333.61s CPU 340.75s WALL ( 1 calls) forces : 1.50s CPU 1.58s WALL ( 1 calls) Called by init_run: wfcinit : 4.37s CPU 4.47s WALL ( 1 calls) potinit : 0.26s CPU 0.30s WALL ( 1 calls) Called by electrons: c_bands : 300.39s CPU 306.52s WALL ( 38 calls) sum_band : 28.85s CPU 29.50s WALL ( 38 calls) v_of_rho : 3.42s CPU 3.57s WALL ( 39 calls) mix_rho : 0.45s CPU 0.49s WALL ( 38 calls) Called by c_bands: init_us_2 : 5.09s CPU 4.73s WALL ( 2652 calls) cegterg : 289.68s CPU 295.04s WALL ( 1309 calls) Called by *egterg: h_psi : 228.02s CPU 229.88s WALL ( 6958 calls) g_psi : 3.70s CPU 3.83s WALL ( 5615 calls) cdiaghg : 6.92s CPU 6.81s WALL ( 6924 calls) Called by h_psi: add_vuspsi : 27.16s CPU 27.21s WALL ( 6958 calls) General routines calbec : 30.91s CPU 30.85s WALL ( 6992 calls) fft : 0.77s CPU 0.73s WALL ( 432 calls) fftw : 178.83s CPU 182.05s WALL ( 138438 calls) davcio : 0.11s CPU 1.18s WALL ( 3944 calls) EXX routines PWSCF : 5m40.43s CPU 5m48.26s WALL This run was terminated on: 22:47:10 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/ESM_example/reference/Al111.bc3.out0000644000175000017500000012746312341373025021536 0ustar mbamba Program PWSCF v.4.99 starts on 23Apr2012 at 22:32:37 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 23647 23647 5473 bravais-lattice index = 0 lattice parameter (alat) = 7.6534 a.u. unit-cell volume = 1941.1667 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Boundary Conditions: Vacuum-Slab-Metal celldm(1)= 7.653394 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.707107 0.000000 0.000000 ) a(2) = ( 0.353553 0.612372 0.000000 ) a(3) = ( 0.000000 0.000000 10.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.414214 -0.816497 0.000000 ) b(2) = ( 0.000000 1.632993 0.000000 ) b(3) = ( 0.000000 0.000000 0.100000 ) PseudoPot. # 1 for Al read from file: /home/Brandon/src/espresso/pseudo/Al.pbe-rrkj.UPF MD5 check sum: b5320f8fdc07ab0d74f109f4aa58256b Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 879 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential Al 3.00 26.98154 Al( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 -1.7320512 ) 2 Al tau( 2) = ( 0.0000000 0.4082492 -1.1547008 ) 3 Al tau( 3) = ( 0.3535529 0.2041234 -0.5773504 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.0000000 0.4082492 0.5773504 ) 6 Al tau( 6) = ( 0.3535529 0.2041234 1.1547008 ) 7 Al tau( 7) = ( 0.0000000 0.0000000 1.7320512 ) number of k points= 34 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( 0.0000000 0.2041241 0.0000000), wk = 0.0625000 k( 3) = ( 0.0000000 0.4082483 0.0000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.6123724 0.0000000), wk = 0.0625000 k( 5) = ( 0.0000000 -0.8164966 0.0000000), wk = 0.0312500 k( 6) = ( 0.1767767 -0.1020621 0.0000000), wk = 0.0625000 k( 7) = ( 0.1767767 0.1020621 0.0000000), wk = 0.0625000 k( 8) = ( 0.1767767 0.3061862 0.0000000), wk = 0.0625000 k( 9) = ( 0.1767767 0.5103104 0.0000000), wk = 0.0625000 k( 10) = ( 0.1767767 -0.9185587 0.0000000), wk = 0.0625000 k( 11) = ( 0.1767767 -0.7144345 0.0000000), wk = 0.0625000 k( 12) = ( 0.1767767 -0.5103104 0.0000000), wk = 0.0625000 k( 13) = ( 0.1767767 -0.3061862 0.0000000), wk = 0.0625000 k( 14) = ( 0.3535534 -0.2041241 0.0000000), wk = 0.0625000 k( 15) = ( 0.3535534 0.0000000 0.0000000), wk = 0.0625000 k( 16) = ( 0.3535534 0.2041241 0.0000000), wk = 0.0625000 k( 17) = ( 0.3535534 0.4082483 0.0000000), wk = 0.0625000 k( 18) = ( 0.3535534 -1.0206207 0.0000000), wk = 0.0625000 k( 19) = ( 0.3535534 -0.8164966 0.0000000), wk = 0.0625000 k( 20) = ( 0.3535534 -0.6123724 0.0000000), wk = 0.0625000 k( 21) = ( 0.3535534 -0.4082483 0.0000000), wk = 0.0625000 k( 22) = ( 0.5303301 -0.3061862 0.0000000), wk = 0.0625000 k( 23) = ( 0.5303301 -0.1020621 0.0000000), wk = 0.0625000 k( 24) = ( 0.5303301 0.1020621 0.0000000), wk = 0.0625000 k( 25) = ( 0.5303301 0.3061862 0.0000000), wk = 0.0625000 k( 26) = ( 0.5303301 -1.1226828 0.0000000), wk = 0.0625000 k( 27) = ( 0.5303301 -0.9185587 0.0000000), wk = 0.0625000 k( 28) = ( 0.5303301 -0.7144345 0.0000000), wk = 0.0625000 k( 29) = ( 0.5303301 -0.5103104 0.0000000), wk = 0.0625000 k( 30) = ( -0.7071068 0.4082483 0.0000000), wk = 0.0312500 k( 31) = ( -0.7071068 0.6123724 0.0000000), wk = 0.0625000 k( 32) = ( -0.7071068 0.8164966 0.0000000), wk = 0.0625000 k( 33) = ( -0.7071068 1.0206207 0.0000000), wk = 0.0625000 k( 34) = ( -0.7071068 -0.4082483 0.0000000), wk = 0.0312500 Dense grid: 23647 G-vectors FFT dimensions: ( 15, 15, 225) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.68 Mb ( 2982, 15) NL pseudopotentials 2.55 Mb ( 2982, 56) Each V/rho on FFT grid 0.77 Mb ( 50625) Each G-vector array 0.18 Mb ( 23647) G-vector shells 0.04 Mb ( 4718) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.73 Mb ( 2982, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 56, 15) Arrays for rho mixing 6.18 Mb ( 50625, 8) Initial potential from superposition of free atoms starting charge 20.98187, renormalised to 21.00000 negative rho (up, down): 0.215E-04 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 5.7 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.6 total cpu time spent up to now is 15.2 secs total energy = -28.48254217 Ry Harris-Foulkes estimate = -28.88691878 Ry estimated scf accuracy < 0.58153184 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.77E-03, avg # of iterations = 17.9 total cpu time spent up to now is 42.3 secs total energy = -24.43478038 Ry Harris-Foulkes estimate = -32.98671470 Ry estimated scf accuracy < 167.90410339 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 2.77E-03, avg # of iterations = 14.4 total cpu time spent up to now is 64.0 secs total energy = -28.86949767 Ry Harris-Foulkes estimate = -28.91768492 Ry estimated scf accuracy < 0.80038049 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.77E-03, avg # of iterations = 3.5 total cpu time spent up to now is 70.5 secs total energy = -28.84499433 Ry Harris-Foulkes estimate = -29.01572684 Ry estimated scf accuracy < 4.86576073 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.77E-03, avg # of iterations = 2.0 total cpu time spent up to now is 76.3 secs total energy = -28.93455479 Ry Harris-Foulkes estimate = -28.96624252 Ry estimated scf accuracy < 0.92137491 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.77E-03, avg # of iterations = 1.0 total cpu time spent up to now is 82.1 secs total energy = -28.95167066 Ry Harris-Foulkes estimate = -28.95399405 Ry estimated scf accuracy < 0.03241399 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged ethr = 1.54E-04, avg # of iterations = 13.1 total cpu time spent up to now is 96.2 secs total energy = -28.96574887 Ry Harris-Foulkes estimate = -28.97969911 Ry estimated scf accuracy < 0.19887284 Ry iteration # 8 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.54E-04, avg # of iterations = 2.3 total cpu time spent up to now is 102.2 secs total energy = -28.96540156 Ry Harris-Foulkes estimate = -28.97273479 Ry estimated scf accuracy < 0.01463730 Ry iteration # 9 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.97E-05, avg # of iterations = 3.9 total cpu time spent up to now is 108.6 secs total energy = -28.95461168 Ry Harris-Foulkes estimate = -28.96628200 Ry estimated scf accuracy < 0.00914707 Ry iteration # 10 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.36E-05, avg # of iterations = 3.0 total cpu time spent up to now is 114.6 secs total energy = -28.94810310 Ry Harris-Foulkes estimate = -28.95578015 Ry estimated scf accuracy < 0.01232349 Ry iteration # 11 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 4.36E-05, avg # of iterations = 1.4 total cpu time spent up to now is 120.2 secs total energy = -28.93084739 Ry Harris-Foulkes estimate = -28.94843646 Ry estimated scf accuracy < 0.01237341 Ry iteration # 12 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged ethr = 4.36E-05, avg # of iterations = 3.7 total cpu time spent up to now is 126.8 secs total energy = -28.92831466 Ry Harris-Foulkes estimate = -28.93135743 Ry estimated scf accuracy < 0.00560032 Ry iteration # 13 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.67E-05, avg # of iterations = 6.0 total cpu time spent up to now is 134.1 secs total energy = -28.92984578 Ry Harris-Foulkes estimate = -28.92889237 Ry estimated scf accuracy < 0.00310054 Ry iteration # 14 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.48E-05, avg # of iterations = 8.5 total cpu time spent up to now is 142.2 secs total energy = -28.92906440 Ry Harris-Foulkes estimate = -28.93042572 Ry estimated scf accuracy < 0.00124823 Ry iteration # 15 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 5.94E-06, avg # of iterations = 10.5 total cpu time spent up to now is 150.8 secs total energy = -28.92869913 Ry Harris-Foulkes estimate = -28.92920705 Ry estimated scf accuracy < 0.00017785 Ry iteration # 16 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 8.47E-07, avg # of iterations = 10.5 total cpu time spent up to now is 163.1 secs total energy = -28.92883011 Ry Harris-Foulkes estimate = -28.92879744 Ry estimated scf accuracy < 0.00002112 Ry iteration # 17 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.01E-07, avg # of iterations = 8.1 total cpu time spent up to now is 173.5 secs total energy = -28.92882326 Ry Harris-Foulkes estimate = -28.92884184 Ry estimated scf accuracy < 0.00002424 Ry iteration # 18 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 1.01E-07, avg # of iterations = 2.8 total cpu time spent up to now is 179.4 secs total energy = -28.92860473 Ry Harris-Foulkes estimate = -28.92882463 Ry estimated scf accuracy < 0.00000812 Ry iteration # 19 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.87E-08, avg # of iterations = 2.1 total cpu time spent up to now is 185.2 secs total energy = -28.92861941 Ry Harris-Foulkes estimate = -28.92860537 Ry estimated scf accuracy < 0.00004797 Ry iteration # 20 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 3.87E-08, avg # of iterations = 1.0 total cpu time spent up to now is 190.7 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2893 PWs) bands (ev): -14.9050 -14.5449 -13.9506 -13.1165 -12.0421 -10.7855 -9.2909 -7.8159 -5.9966 -4.1523 -2.3635 -0.9472 -0.2425 0.0966 0.1700 k = 0.0000 0.2041 0.0000 ( 2891 PWs) bands (ev): -14.5310 -14.1716 -13.5786 -12.7462 -11.6738 -10.4194 -8.9251 -7.4642 -5.6459 -3.8083 -2.0266 -0.6022 0.1232 0.4690 0.5361 k = 0.0000 0.4082 0.0000 ( 2909 PWs) bands (ev): -13.4142 -13.0572 -12.4680 -11.6410 -10.5753 -9.3290 -7.8411 -6.4155 -4.6265 -2.9159 -1.9339 -1.4657 -1.0539 -0.7046 -0.2152 k = 0.0000 0.6124 0.0000 ( 2936 PWs) bands (ev): -11.5712 -11.2184 -10.6365 -9.8204 -8.7714 -7.5568 -6.2153 -5.8392 -5.4494 -4.8477 -4.4709 -4.0045 -3.0144 -2.7195 -1.8282 k = 0.0000-0.8165 0.0000 ( 2982 PWs) bands (ev): -9.0388 -9.0280 -8.7218 -8.6572 -8.1540 -8.0938 -7.3795 -7.3343 -6.4875 -5.9264 -4.9565 -4.8522 -3.5358 -3.3989 -2.2582 k = 0.1768-0.1021 0.0000 ( 2891 PWs) bands (ev): -14.5310 -14.1716 -13.5786 -12.7462 -11.6738 -10.4194 -8.9251 -7.4642 -5.6459 -3.8083 -2.0265 -0.6019 0.1246 0.4704 0.5396 k = 0.1768 0.1021 0.0000 ( 2891 PWs) bands (ev): -14.5310 -14.1716 -13.5786 -12.7462 -11.6738 -10.4194 -8.9251 -7.4642 -5.6459 -3.8083 -2.0265 -0.6022 0.1249 0.4699 0.5361 k = 0.1768 0.3062 0.0000 ( 2894 PWs) bands (ev): -13.7855 -13.4277 -12.8372 -12.0084 -10.9404 -9.6910 -8.1996 -6.7633 -4.9551 -3.1467 -1.4280 -0.1142 0.5398 0.7495 0.8184 k = 0.1768 0.5103 0.0000 ( 2934 PWs) bands (ev): -12.3056 -11.9510 -11.3660 -10.5450 -9.4875 -8.2531 -6.7866 -5.3943 -3.9757 -3.5679 -3.1080 -2.6601 -2.0100 -1.6961 -1.0247 k = 0.1768-0.9186 0.0000 ( 2943 PWs) bands (ev): -10.1137 -9.7651 -9.1910 -8.3904 -7.4082 -7.2186 -6.9140 -6.5016 -6.0792 -5.3788 -4.4905 -4.3541 -3.2912 -3.1705 -1.9846 k = 0.1768-0.7144 0.0000 ( 2943 PWs) bands (ev): -10.1137 -9.7651 -9.1910 -8.3904 -7.4082 -7.2186 -6.9140 -6.5016 -6.0792 -5.3788 -4.4905 -4.3541 -3.2913 -3.1707 -1.9858 k = 0.1768-0.5103 0.0000 ( 2934 PWs) bands (ev): -12.3056 -11.9510 -11.3660 -10.5450 -9.4875 -8.2531 -6.7866 -5.3943 -3.9757 -3.5679 -3.1080 -2.6602 -2.0100 -1.6960 -1.0314 k = 0.1768-0.3062 0.0000 ( 2894 PWs) bands (ev): -13.7855 -13.4277 -12.8372 -12.0084 -10.9404 -9.6910 -8.1996 -6.7633 -4.9551 -3.1467 -1.4276 -0.1140 0.5400 0.7503 0.8162 k = 0.3536-0.2041 0.0000 ( 2909 PWs) bands (ev): -13.4142 -13.0572 -12.4680 -11.6410 -10.5753 -9.3290 -7.8411 -6.4155 -4.6265 -2.9161 -1.9342 -1.4659 -1.0536 -0.7045 -0.2142 k = 0.3536 0.0000 0.0000 ( 2894 PWs) bands (ev): -13.7855 -13.4277 -12.8372 -12.0084 -10.9404 -9.6910 -8.1996 -6.7633 -4.9551 -3.1467 -1.4280 -0.1143 0.5404 0.7502 0.8226 k = 0.3536 0.2041 0.0000 ( 2909 PWs) bands (ev): -13.4142 -13.0572 -12.4680 -11.6410 -10.5753 -9.3290 -7.8411 -6.4155 -4.6265 -2.9159 -1.9342 -1.4660 -1.0537 -0.7045 -0.2148 k = 0.3536 0.4082 0.0000 ( 2934 PWs) bands (ev): -12.3056 -11.9510 -11.3660 -10.5450 -9.4875 -8.2531 -6.7866 -5.3943 -3.9757 -3.5679 -3.1079 -2.6602 -2.0101 -1.6961 -1.0251 k = 0.3536-1.0206 0.0000 ( 2964 PWs) bands (ev): -10.4764 -10.1265 -9.5496 -8.7419 -7.7070 -6.5214 -5.2631 -4.8174 -4.8070 -4.5788 -4.3282 -3.9043 -3.6089 -3.3497 -3.0959 k = 0.3536-0.8165 0.0000 ( 2968 PWs) bands (ev): -7.9658 -7.9540 -7.6581 -7.5835 -7.0996 -7.0242 -6.3316 -6.2970 -5.4807 -5.1971 -4.8818 -4.8406 -4.4226 -4.1831 -3.6106 k = 0.3536-0.6124 0.0000 ( 2964 PWs) bands (ev): -10.4764 -10.1265 -9.5496 -8.7419 -7.7070 -6.5214 -5.2631 -4.8174 -4.8070 -4.5788 -4.3282 -3.9043 -3.6089 -3.3493 -3.0931 k = 0.3536-0.4082 0.0000 ( 2934 PWs) bands (ev): -12.3056 -11.9510 -11.3660 -10.5450 -9.4875 -8.2531 -6.7866 -5.3943 -3.9757 -3.5679 -3.1079 -2.6601 -2.0100 -1.6960 -1.0305 k = 0.5303-0.3062 0.0000 ( 2936 PWs) bands (ev): -11.5712 -11.2184 -10.6365 -9.8204 -8.7714 -7.5568 -6.2153 -5.8392 -5.4494 -4.8477 -4.4709 -4.0045 -3.0143 -2.7195 -1.8284 k = 0.5303-0.1021 0.0000 ( 2934 PWs) bands (ev): -12.3056 -11.9510 -11.3660 -10.5450 -9.4875 -8.2531 -6.7866 -5.3943 -3.9757 -3.5679 -3.1079 -2.6601 -2.0101 -1.6961 -1.0323 k = 0.5303 0.1021 0.0000 ( 2934 PWs) bands (ev): -12.3056 -11.9510 -11.3660 -10.5450 -9.4875 -8.2531 -6.7866 -5.3943 -3.9757 -3.5679 -3.1080 -2.6602 -2.0101 -1.6961 -1.0324 k = 0.5303 0.3062 0.0000 ( 2936 PWs) bands (ev): -11.5712 -11.2184 -10.6365 -9.8204 -8.7714 -7.5568 -6.2153 -5.8392 -5.4494 -4.8477 -4.4709 -4.0045 -3.0143 -2.7193 -1.8281 k = 0.5303-1.1227 0.0000 ( 2943 PWs) bands (ev): -10.1137 -9.7651 -9.1910 -8.3904 -7.4082 -7.2186 -6.9140 -6.5016 -6.0792 -5.3788 -4.4905 -4.3541 -3.2911 -3.1705 -1.9851 k = 0.5303-0.9186 0.0000 ( 2968 PWs) bands (ev): -7.9658 -7.9540 -7.6581 -7.5835 -7.0996 -7.0241 -6.3316 -6.2970 -5.4807 -5.1971 -4.8818 -4.8406 -4.4226 -4.1831 -3.6106 k = 0.5303-0.7144 0.0000 ( 2968 PWs) bands (ev): -7.9658 -7.9540 -7.6581 -7.5835 -7.0996 -7.0242 -6.3316 -6.2970 -5.4807 -5.1971 -4.8818 -4.8406 -4.4226 -4.1831 -3.6106 k = 0.5303-0.5103 0.0000 ( 2943 PWs) bands (ev): -10.1137 -9.7651 -9.1910 -8.3904 -7.4082 -7.2186 -6.9140 -6.5016 -6.0792 -5.3788 -4.4905 -4.3541 -3.2914 -3.1706 -1.9817 k =-0.7071 0.4082 0.0000 ( 2982 PWs) bands (ev): -9.0388 -9.0280 -8.7218 -8.6571 -8.1540 -8.0938 -7.3795 -7.3343 -6.4875 -5.9264 -4.9565 -4.8522 -3.5358 -3.3988 -2.2583 k =-0.7071 0.6124 0.0000 ( 2943 PWs) bands (ev): -10.1137 -9.7651 -9.1910 -8.3904 -7.4082 -7.2186 -6.9140 -6.5016 -6.0792 -5.3788 -4.4905 -4.3541 -3.2911 -3.1705 -1.9826 k =-0.7071 0.8165 0.0000 ( 2964 PWs) bands (ev): -10.4764 -10.1265 -9.5496 -8.7419 -7.7070 -6.5214 -5.2631 -4.8174 -4.8070 -4.5788 -4.3282 -3.9043 -3.6089 -3.3499 -3.0880 k =-0.7071 1.0206 0.0000 ( 2943 PWs) bands (ev): -10.1137 -9.7651 -9.1910 -8.3904 -7.4082 -7.2186 -6.9140 -6.5016 -6.0792 -5.3788 -4.4905 -4.3541 -3.2912 -3.1707 -1.9846 k =-0.7071-0.4082 0.0000 ( 2982 PWs) bands (ev): -9.0388 -9.0280 -8.7218 -8.6572 -8.1540 -8.0938 -7.3795 -7.3343 -6.4875 -5.9264 -4.9565 -4.8522 -3.5358 -3.3988 -2.2582 the Fermi energy is -4.0109 ev ! total energy = -28.92859874 Ry Harris-Foulkes estimate = -28.92862008 Ry estimated scf accuracy < 0.00000054 Ry The total energy is the sum of the following terms: one-electron contribution = -14454.44204843 Ry hartree contribution = 7228.05733278 Ry xc contribution = -11.06497892 Ry ewald contribution = 7208.51839567 Ry smearing contrib. (-TS) = 0.00270016 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -20.16 0.0000 7475.5558562 -7475.5920509 -0.0361948 -19.98 0.0000 9172.8267062 -9172.8713934 -0.0446872 -19.80 0.0000 10376.7337975 -10376.7844596 -0.0506621 -19.62 0.0000 10834.0104071 -10834.0633797 -0.0529726 -19.44 0.0000 10834.2178159 -10834.2707421 -0.0529262 -19.26 0.0000 10833.9677408 -10834.0207246 -0.0529838 -19.08 0.0000 10834.2587045 -10834.3116203 -0.0529159 -18.90 0.0000 10833.9289144 -10833.9819084 -0.0529940 -18.72 0.0000 10834.2951996 -10834.3481064 -0.0529068 -18.54 0.0000 10833.8949982 -10833.9480011 -0.0530030 -18.36 0.0000 10834.3263084 -10834.3792077 -0.0528993 -18.18 0.0000 10833.8668993 -10833.9199097 -0.0530103 -18.00 0.0000 10834.3512166 -10834.4041103 -0.0528937 -17.82 0.0000 10833.8453328 -10833.8983486 -0.0530158 -17.64 0.0000 10834.3693143 -10834.4222045 -0.0528902 -17.46 0.0000 10833.8307989 -10833.8838180 -0.0530191 -17.28 0.0000 10834.3802146 -10834.4331038 -0.0528892 -17.10 0.0000 10833.8235680 -10833.8765881 -0.0530201 -16.92 0.0000 10834.3837651 -10834.4366560 -0.0528909 -16.74 0.0000 10833.8236742 -10833.8766926 -0.0530184 -16.56 0.0000 10834.3800500 -10834.4329453 -0.0528953 -16.38 0.0000 10833.8309163 -10833.8839303 -0.0530140 -16.20 0.0000 10834.3693847 -10834.4222875 -0.0529028 -16.02 0.0000 10833.8448679 -10833.8978747 -0.0530068 -15.84 0.0000 10834.3523022 -10834.4052154 -0.0529132 -15.66 0.0000 10833.8648949 -10833.9178916 -0.0529967 -15.48 0.0000 10834.3295317 -10834.3824585 -0.0529267 -15.30 0.0000 10833.8901798 -10833.9431636 -0.0529838 -15.12 0.0000 10834.3019711 -10834.3549144 -0.0529433 -14.94 0.0000 10833.9197526 -10833.9727210 -0.0529684 -14.76 0.0000 10834.2706532 -10834.3236159 -0.0529628 -14.58 0.0000 10833.9525270 -10834.0054775 -0.0529506 -14.40 0.0000 10834.2367077 -10834.2896928 -0.0529851 -14.22 0.0000 10833.9873391 -10834.0402701 -0.0529310 -14.04 0.0000 10834.2013206 -10834.2543310 -0.0530104 -13.86 0.0000 10834.0229899 -10834.0759004 -0.0529106 -13.68 0.0000 10834.1656915 -10834.2187305 -0.0530390 -13.50 0.0000 10834.0582864 -10834.1111775 -0.0528911 -13.32 0.0000 10834.1309908 -10834.1840630 -0.0530723 -13.14 0.0000 10834.0920831 -10834.1449592 -0.0528761 -12.96 0.0000 10834.0983174 -10834.1514313 -0.0531139 -12.78 0.0000 10834.1233183 -10834.1761914 -0.0528730 -12.60 0.0000 10834.0686585 -10834.1218317 -0.0531732 -12.42 0.0000 10834.1510452 -10834.2039437 -0.0528985 -12.24 0.0000 10834.0428482 -10834.0961210 -0.0532728 -12.06 0.0000 10834.1744489 -10834.2274382 -0.0529893 -11.88 0.0000 10834.0215206 -10834.0749875 -0.0534668 -11.70 0.0000 10834.1928416 -10834.2460777 -0.0532361 -11.52 0.0000 10834.0050417 -10834.0589350 -0.0538933 -11.34 0.0001 10834.2056036 -10834.2594613 -0.0538577 -11.16 0.0001 10833.9933772 -10834.0482638 -0.0548865 -10.98 0.0002 10834.2120091 -10834.2673930 -0.0553839 -10.80 0.0003 10833.9857931 -10834.0430649 -0.0572718 -10.62 0.0004 10834.2107611 -10834.2698859 -0.0591248 -10.44 0.0007 10833.9801271 -10834.0432218 -0.0630947 -10.26 0.0011 10834.1988451 -10834.2671578 -0.0683127 -10.08 0.0017 10833.9709877 -10834.0484175 -0.0774298 -9.90 0.0026 10834.1686341 -10834.2596214 -0.0909873 -9.72 0.0042 10833.9452314 -10834.0581449 -0.1129135 -9.54 0.0066 10834.1007298 -10834.2478729 -0.1471431 -9.36 0.0104 10833.8706665 -10834.0717208 -0.2010543 -9.18 0.0163 10833.9460277 -10834.2326919 -0.2866642 -9.00 0.0256 10833.6681774 -10834.0882350 -0.4200576 -8.82 0.0396 10833.5829100 -10834.2149064 -0.6319965 -8.64 0.0604 10833.1474445 -10834.1060530 -0.9586086 -8.46 0.0900 10832.7242510 -10834.1881138 -1.4638628 -8.28 0.1302 10831.8812625 -10833.9677320 -2.0864695 -8.10 0.1808 10830.7623569 -10833.9288803 -3.1665234 -7.92 0.2373 10829.0405636 -10834.3274001 -5.2868365 -7.74 0.2904 10826.6466862 -10835.0631004 -8.4164142 -7.56 0.3304 10823.4149167 -10835.4344468 -12.0195301 -7.38 0.3537 10819.1581176 -10834.6307440 -15.4726264 -7.20 0.3629 10813.9563159 -10832.0010525 -18.0447366 -7.02 0.3635 10807.5553380 -10826.5934416 -19.0381037 -6.84 0.3610 10800.2500996 -10818.4269143 -18.1768147 -6.66 0.3599 10791.6813931 -10807.3833886 -15.7019955 -6.48 0.3604 10782.2799749 -10794.6025803 -12.3226053 -6.30 0.3586 10771.5617461 -10780.3992888 -8.8375427 -6.12 0.3532 10760.0655266 -10766.0501133 -5.9845867 -5.94 0.3488 10747.2303749 -10751.5297510 -4.2993760 -5.76 0.3515 10733.6784697 -10737.9154364 -4.2369668 -5.58 0.3604 10718.7637438 -10724.5823423 -5.8185986 -5.40 0.3681 10703.1198196 -10711.7348029 -8.6149833 -5.22 0.3682 10686.0560908 -10698.1555530 -12.0994622 -5.04 0.3619 10668.2449009 -10683.7851101 -15.5402091 -4.86 0.3551 10649.0347409 -10667.1537160 -18.1189751 -4.68 0.3520 10629.1008822 -10648.1957335 -19.0948512 -4.50 0.3537 10607.8160105 -10625.9985653 -18.1825548 -4.32 0.3596 10585.7841447 -10601.4268578 -15.6427131 -4.14 0.3660 10562.4139961 -10574.6172809 -12.2032848 -3.96 0.3670 10538.2224471 -10546.9057970 -8.6833498 -3.78 0.3611 10512.7195011 -10518.5433353 -5.8238343 -3.60 0.3542 10486.3564951 -10490.5180312 -4.1615361 -3.42 0.3534 10458.7731663 -10462.9123233 -4.1391571 -3.24 0.3591 10430.2897620 -10436.0548787 -5.7651167 -3.06 0.3648 10400.6371850 -10409.2331468 -8.5959618 -2.88 0.3646 10369.9876282 -10382.0883683 -12.1007401 -2.70 0.3599 10338.2222444 -10353.7649176 -15.5426732 -2.52 0.3558 10305.4031389 -10323.5134654 -18.1103266 -2.34 0.3551 10271.5616686 -10290.6323839 -19.0707153 -2.16 0.3577 10236.6111236 -10254.7636880 -18.1525645 -1.98 0.3625 10200.7004976 -10216.3227377 -15.6222401 -1.80 0.3663 10163.5947389 -10175.8035891 -12.2088502 -1.62 0.3643 10125.5679523 -10134.2906179 -8.7226656 -1.44 0.3561 10086.2832028 -10092.1791386 -5.8959358 -1.26 0.3481 10046.1603248 -10050.4168708 -4.2565460 -1.08 0.3476 10004.7741198 -10009.0170980 -4.2429781 -0.90 0.3549 9962.6169166 -9968.4748217 -5.8579051 -0.72 0.3631 9919.1399735 -9927.8006973 -8.6607239 -0.54 0.3659 9874.8816738 -9887.0082748 -12.1266010 -0.36 0.3638 9829.2477075 -9844.7732512 -15.5255437 -0.18 0.3611 9782.8468933 -9800.9009382 -18.0540449 0.00 0.3602 9735.0720197 -9754.0569318 -18.9849121 0.18 0.3611 9686.5439131 -9704.5963333 -18.0524202 0.36 0.3638 9636.6456793 -9652.1680075 -15.5223282 0.54 0.3659 9585.9726483 -9598.0945044 -12.1218561 0.72 0.3631 9533.9355962 -9542.5901217 -8.6545255 0.90 0.3549 9481.1016896 -9486.9520168 -5.8503272 1.08 0.3477 9426.9669409 -9431.2010180 -4.2340771 1.26 0.3481 9372.0388930 -9376.2852436 -4.2463506 1.44 0.3561 9315.8728576 -9321.7573046 -5.8844470 1.62 0.3643 9258.8405874 -9267.5504529 -8.7098655 1.80 0.3663 9200.5809647 -9212.7756848 -12.1947201 1.98 0.3625 9141.3675986 -9156.9743798 -15.6067812 2.16 0.3577 9080.9935307 -9099.1293436 -18.1358128 2.34 0.3551 9019.6234817 -9038.6762237 -19.0527421 2.52 0.3558 8957.1810463 -8975.2722733 -18.0912270 2.70 0.3599 8893.6788271 -8909.2013752 -15.5225482 2.88 0.3646 8829.1602209 -8841.2399005 -12.0796796 3.06 0.3648 8763.4886215 -8772.0626537 -8.5740322 3.24 0.3591 8696.8563472 -8702.5987049 -5.7423577 3.42 0.3534 8629.0197217 -8633.1353040 -4.1155823 3.60 0.3542 8560.3166005 -8564.4537374 -4.1371369 3.78 0.3611 8490.3616083 -8496.1601889 -5.7985806 3.96 0.3670 8419.5758099 -8428.2330034 -8.6571935 4.14 0.3660 8347.4522004 -8359.6283636 -12.1761632 4.32 0.3596 8274.5306813 -8290.1452355 -15.6145543 4.50 0.3537 8200.2508926 -8218.4041748 -18.1532822 4.68 0.3520 8125.2406326 -8144.3050194 -19.0643868 4.86 0.3551 8048.8668372 -8066.9540778 -18.0872406 5.04 0.3619 7971.7779900 -7987.2851191 -15.5071292 5.22 0.3682 7893.2858415 -7905.3508096 -12.0649681 5.40 0.3681 7814.0464188 -7822.6254371 -8.5790183 5.58 0.3604 7733.3914237 -7739.1725457 -5.7811220 5.76 0.3515 7651.9987339 -7656.1966908 -4.1979569 5.94 0.3488 7569.2560257 -7573.5148586 -4.2588329 6.12 0.3532 7485.7795454 -7491.7220777 -5.9425322 6.30 0.3587 7400.9851433 -7409.7791639 -8.7940205 6.48 0.3604 7315.3877593 -7327.6654377 -12.2776784 6.66 0.3599 7228.5020580 -7244.1578035 -15.6557455 6.84 0.3610 7140.7515939 -7158.8809351 -18.1293413 7.02 0.3635 7051.7725590 -7070.7620854 -18.9895265 7.20 0.3630 6961.8513930 -6979.8465853 -17.9951922 7.38 0.3538 6870.7709711 -6886.1932337 -15.4222625 7.56 0.3305 6778.7034114 -6790.6719056 -11.9684943 7.74 0.2904 6685.6541498 -6694.0189947 -8.3648449 7.92 0.2373 6591.7223936 -6596.9572492 -5.2348556 8.10 0.1808 6497.1634628 -6500.2776965 -3.1142337 8.28 0.1302 6401.9565138 -6403.9904680 -2.0339542 8.46 0.0900 6306.5181589 -6307.9293462 -1.4111873 8.64 0.0604 6210.6163633 -6211.5221856 -0.9058223 8.82 0.0396 6114.7689104 -6115.3480463 -0.5791359 9.00 0.0256 6018.5311183 -6018.8982668 -0.3671485 9.18 0.0163 5922.5235228 -5922.7572477 -0.2337249 9.36 0.0104 5826.1280305 -5826.2761274 -0.1480969 9.54 0.0066 5730.0692144 -5730.1633902 -0.0941759 9.72 0.0042 5633.5974132 -5633.6573547 -0.0599415 9.90 0.0026 5537.5276884 -5537.5657022 -0.0380139 10.08 0.0017 5441.0183371 -5441.0427939 -0.0244568 10.26 0.0011 5344.9481360 -5344.9634772 -0.0153412 10.44 0.0007 5248.4229225 -5248.4330476 -0.0101251 10.62 0.0004 5152.3500496 -5152.3562069 -0.0061573 10.80 0.0003 5055.8242221 -5055.8285285 -0.0043064 10.98 0.0002 4959.7411576 -4959.7435779 -0.0024203 11.16 0.0001 4863.2275252 -4863.2294499 -0.0019248 11.34 0.0001 4767.1245822 -4767.1254796 -0.0008974 11.52 0.0000 4670.6348843 -4670.6358189 -0.0009345 11.70 0.0000 4574.5017320 -4574.5020104 -0.0002784 11.88 0.0000 4478.0469221 -4478.0474324 -0.0005102 12.06 0.0000 4381.8734435 -4381.8734770 -0.0000335 12.24 0.0000 4285.4635632 -4285.4638811 -0.0003178 12.42 0.0000 4189.2404431 -4189.2403870 0.0000561 12.60 0.0000 4092.8843387 -4092.8845580 -0.0002193 12.78 0.0000 3996.6035166 -3996.6034361 0.0000806 12.96 0.0000 3900.3085215 -3900.3086822 -0.0001607 13.14 0.0000 3803.9635649 -3803.9634880 0.0000769 13.32 0.0000 3707.7351989 -3707.7353185 -0.0001196 13.50 0.0000 3611.3216052 -3611.3215436 0.0000615 13.68 0.0000 3515.1633223 -3515.1634090 -0.0000866 13.86 0.0000 3418.6787508 -3418.6787090 0.0000418 14.04 0.0000 3322.5917508 -3322.5918090 -0.0000582 14.22 0.0000 3226.0361787 -3226.0361574 0.0000213 14.40 0.0000 3130.0192935 -3130.0193266 -0.0000331 14.58 0.0000 3033.3950907 -3033.3950891 0.0000016 14.76 0.0000 2937.4447532 -2937.4447640 -0.0000108 14.94 0.0000 2840.7566724 -2840.7566886 -0.0000162 15.12 0.0000 2744.8669689 -2744.8669602 0.0000087 15.30 0.0000 2648.1220512 -2648.1220829 -0.0000317 15.48 0.0000 2552.2848580 -2552.2848328 0.0000252 15.66 0.0000 2455.4922557 -2455.4923003 -0.0000446 15.84 0.0000 2359.6974558 -2359.6974170 0.0000387 16.02 0.0000 2262.8681782 -2262.8682329 -0.0000547 16.20 0.0000 2167.1039510 -2167.1039018 0.0000492 16.38 0.0000 2070.2505411 -2070.2506031 -0.0000619 16.56 0.0000 1974.5037169 -1974.5036602 0.0000567 16.74 0.0000 1877.6398698 -1877.6399361 -0.0000663 16.92 0.0000 1781.8963349 -1781.8962738 0.0000612 17.10 0.0000 1685.0364713 -1685.0365393 -0.0000680 17.28 0.0000 1589.2816128 -1589.2815499 0.0000629 17.46 0.0000 1492.4404212 -1492.4404883 -0.0000671 17.64 0.0000 1396.6595931 -1396.6595312 0.0000619 17.82 0.0000 1299.8515582 -1299.8516220 -0.0000638 18.00 0.0000 1204.0305551 -1204.0304967 0.0000585 18.18 0.0000 1107.2694870 -1107.2695453 -0.0000583 18.36 0.0000 1011.3950073 -1011.3949544 0.0000529 18.54 0.0000 914.6935898 -914.6936407 -0.0000509 18.72 0.0000 818.7536720 -818.7536267 0.0000454 18.90 0.0000 722.1230450 -722.1230871 -0.0000420 19.08 0.0000 626.1074633 -626.1074270 0.0000363 19.26 0.0000 529.5568540 -529.5568858 -0.0000318 19.44 0.0000 433.4574567 -433.4574307 0.0000260 19.62 0.0000 806.4716996 -806.4739956 -0.0022959 19.80 0.0000 1950.1856685 -1950.1939275 -0.0082590 19.98 0.0000 3611.3460797 -3611.3628430 -0.0167633 20.16 0.0000 5537.4302724 -5537.4567454 -0.0264730 convergence has been achieved in 20 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = -0.00000094 -0.00000008 -0.00197771 atom 2 type 1 force = 0.00000305 -0.00000396 0.00704751 atom 3 type 1 force = -0.00000240 0.00000350 -0.00549540 atom 4 type 1 force = -0.00000033 0.00000404 -0.00003569 atom 5 type 1 force = -0.00000102 0.00000014 0.00545367 atom 6 type 1 force = 0.00000148 -0.00000116 -0.00699069 atom 7 type 1 force = 0.00000015 -0.00000247 0.00199832 Total force = 0.012899 Total SCF correction = 0.001350 SCF correction compared to forces is large: reduce conv_thr to get better values Writing output data file Al111.save init_run : 5.07s CPU 5.39s WALL ( 1 calls) electrons : 182.18s CPU 185.11s WALL ( 1 calls) forces : 1.50s CPU 1.58s WALL ( 1 calls) Called by init_run: wfcinit : 4.32s CPU 4.43s WALL ( 1 calls) potinit : 0.28s CPU 0.33s WALL ( 1 calls) Called by electrons: c_bands : 165.06s CPU 167.47s WALL ( 20 calls) sum_band : 15.01s CPU 15.25s WALL ( 20 calls) v_of_rho : 1.78s CPU 1.87s WALL ( 21 calls) mix_rho : 0.13s CPU 0.24s WALL ( 20 calls) Called by c_bands: init_us_2 : 2.08s CPU 2.42s WALL ( 1428 calls) cegterg : 160.18s CPU 161.69s WALL ( 680 calls) Called by *egterg: h_psi : 122.79s CPU 123.09s WALL ( 4805 calls) g_psi : 2.17s CPU 2.19s WALL ( 4091 calls) cdiaghg : 5.65s CPU 5.67s WALL ( 4771 calls) Called by h_psi: add_vuspsi : 14.68s CPU 14.60s WALL ( 4805 calls) General routines calbec : 16.92s CPU 16.84s WALL ( 4839 calls) fft : 0.45s CPU 0.42s WALL ( 234 calls) fftw : 96.28s CPU 96.88s WALL ( 80144 calls) davcio : 0.02s CPU 0.65s WALL ( 2108 calls) EXX routines PWSCF : 3m 8.98s CPU 3m12.59s WALL This run was terminated on: 22:35:50 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/examples/ESM_example/reference/Al111.bc3_m005.out0000644000175000017500000014702412341373025022272 0ustar mbamba Program PWSCF v.4.99 starts on 23Apr2012 at 22:35:50 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Serial version Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... Reading input from standard input G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 163 163 61 23647 23647 5473 bravais-lattice index = 0 lattice parameter (alat) = 7.6534 a.u. unit-cell volume = 1941.1667 (a.u.)^3 number of atoms/cell = 7 number of atomic types = 1 number of electrons = 21.00 number of Kohn-Sham states= 15 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 80.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Effective Screening Medium Method ================================= field strength (Ry/a.u.) = 0.00 ESM offset from cell edge (a.u.) = 0.00 grid points for fit at edges = 4 Boundary Conditions: Vacuum-Slab-Metal celldm(1)= 7.653394 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 0.707107 0.000000 0.000000 ) a(2) = ( 0.353553 0.612372 0.000000 ) a(3) = ( 0.000000 0.000000 10.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.414214 -0.816497 0.000000 ) b(2) = ( 0.000000 1.632993 0.000000 ) b(3) = ( 0.000000 0.000000 0.100000 ) PseudoPot. # 1 for Al read from file: /home/Brandon/src/espresso/pseudo/Al.pbe-rrkj.UPF MD5 check sum: b5320f8fdc07ab0d74f109f4aa58256b Pseudo is Norm-conserving, Zval = 3.0 Generated by new atomic code, or converted to UPF format Using radial grid of 879 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential Al 3.00 26.98154 Al( 1.00) No symmetry found Cartesian axes site n. atom positions (alat units) 1 Al tau( 1) = ( 0.0000000 0.0000000 -1.7320512 ) 2 Al tau( 2) = ( 0.0000000 0.4082492 -1.1547008 ) 3 Al tau( 3) = ( 0.3535529 0.2041234 -0.5773504 ) 4 Al tau( 4) = ( 0.0000000 0.0000000 0.0000000 ) 5 Al tau( 5) = ( 0.0000000 0.4082492 0.5773504 ) 6 Al tau( 6) = ( 0.3535529 0.2041234 1.1547008 ) 7 Al tau( 7) = ( 0.0000000 0.0000000 1.7320512 ) number of k points= 34 Methfessel-Paxton smearing, width (Ry)= 0.0500 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 k( 2) = ( 0.0000000 0.2041241 0.0000000), wk = 0.0625000 k( 3) = ( 0.0000000 0.4082483 0.0000000), wk = 0.0625000 k( 4) = ( 0.0000000 0.6123724 0.0000000), wk = 0.0625000 k( 5) = ( 0.0000000 -0.8164966 0.0000000), wk = 0.0312500 k( 6) = ( 0.1767767 -0.1020621 0.0000000), wk = 0.0625000 k( 7) = ( 0.1767767 0.1020621 0.0000000), wk = 0.0625000 k( 8) = ( 0.1767767 0.3061862 0.0000000), wk = 0.0625000 k( 9) = ( 0.1767767 0.5103104 0.0000000), wk = 0.0625000 k( 10) = ( 0.1767767 -0.9185587 0.0000000), wk = 0.0625000 k( 11) = ( 0.1767767 -0.7144345 0.0000000), wk = 0.0625000 k( 12) = ( 0.1767767 -0.5103104 0.0000000), wk = 0.0625000 k( 13) = ( 0.1767767 -0.3061862 0.0000000), wk = 0.0625000 k( 14) = ( 0.3535534 -0.2041241 0.0000000), wk = 0.0625000 k( 15) = ( 0.3535534 0.0000000 0.0000000), wk = 0.0625000 k( 16) = ( 0.3535534 0.2041241 0.0000000), wk = 0.0625000 k( 17) = ( 0.3535534 0.4082483 0.0000000), wk = 0.0625000 k( 18) = ( 0.3535534 -1.0206207 0.0000000), wk = 0.0625000 k( 19) = ( 0.3535534 -0.8164966 0.0000000), wk = 0.0625000 k( 20) = ( 0.3535534 -0.6123724 0.0000000), wk = 0.0625000 k( 21) = ( 0.3535534 -0.4082483 0.0000000), wk = 0.0625000 k( 22) = ( 0.5303301 -0.3061862 0.0000000), wk = 0.0625000 k( 23) = ( 0.5303301 -0.1020621 0.0000000), wk = 0.0625000 k( 24) = ( 0.5303301 0.1020621 0.0000000), wk = 0.0625000 k( 25) = ( 0.5303301 0.3061862 0.0000000), wk = 0.0625000 k( 26) = ( 0.5303301 -1.1226828 0.0000000), wk = 0.0625000 k( 27) = ( 0.5303301 -0.9185587 0.0000000), wk = 0.0625000 k( 28) = ( 0.5303301 -0.7144345 0.0000000), wk = 0.0625000 k( 29) = ( 0.5303301 -0.5103104 0.0000000), wk = 0.0625000 k( 30) = ( -0.7071068 0.4082483 0.0000000), wk = 0.0312500 k( 31) = ( -0.7071068 0.6123724 0.0000000), wk = 0.0625000 k( 32) = ( -0.7071068 0.8164966 0.0000000), wk = 0.0625000 k( 33) = ( -0.7071068 1.0206207 0.0000000), wk = 0.0625000 k( 34) = ( -0.7071068 -0.4082483 0.0000000), wk = 0.0312500 Dense grid: 23647 G-vectors FFT dimensions: ( 15, 15, 225) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.68 Mb ( 2982, 15) NL pseudopotentials 2.55 Mb ( 2982, 56) Each V/rho on FFT grid 0.77 Mb ( 50625) Each G-vector array 0.18 Mb ( 23647) G-vector shells 0.04 Mb ( 4718) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 2.73 Mb ( 2982, 60) Each subspace H/S matrix 0.05 Mb ( 60, 60) Each matrix 0.01 Mb ( 56, 15) Arrays for rho mixing 6.18 Mb ( 50625, 8) Initial potential from superposition of free atoms starting charge 20.98187, renormalised to 21.00500 negative rho (up, down): 0.215E-04 0.000E+00 Starting wfc are 28 randomized atomic wfcs total cpu time spent up to now is 5.5 secs per-process dynamical memory: 12.0 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 4.6 total cpu time spent up to now is 15.1 secs total energy = -27.60816143 Ry Harris-Foulkes estimate = -28.88915061 Ry estimated scf accuracy < 1.26196498 Ry iteration # 2 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged ethr = 6.01E-03, avg # of iterations = 17.8 total cpu time spent up to now is 49.9 secs total energy = -6.61026087 Ry Harris-Foulkes estimate = -66.92315758 Ry estimated scf accuracy < 1085.24523245 Ry iteration # 3 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 5 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 5 eigenvalues not converged ethr = 6.01E-03, avg # of iterations = 20.3 total cpu time spent up to now is 90.5 secs total energy = -26.21246507 Ry Harris-Foulkes estimate = -29.02756166 Ry estimated scf accuracy < 76.00007923 Ry iteration # 4 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 6.01E-03, avg # of iterations = 15.0 total cpu time spent up to now is 113.6 secs total energy = -28.00946779 Ry Harris-Foulkes estimate = -30.10985831 Ry estimated scf accuracy < 82.59285343 Ry iteration # 5 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.01E-03, avg # of iterations = 2.5 negative rho (up, down): 0.686E-03 0.000E+00 total cpu time spent up to now is 119.6 secs total energy = -28.87174984 Ry Harris-Foulkes estimate = -29.05205339 Ry estimated scf accuracy < 4.99071537 Ry iteration # 6 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.01E-03, avg # of iterations = 1.1 negative rho (up, down): 0.161E-01 0.000E+00 total cpu time spent up to now is 125.1 secs total energy = -29.11598856 Ry Harris-Foulkes estimate = -28.99713906 Ry estimated scf accuracy < 8.90885069 Ry iteration # 7 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.01E-03, avg # of iterations = 1.0 negative rho (up, down): 0.122E-01 0.000E+00 total cpu time spent up to now is 130.6 secs total energy = -28.54292906 Ry Harris-Foulkes estimate = -29.21683017 Ry estimated scf accuracy < 25.27830858 Ry iteration # 8 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.01E-03, avg # of iterations = 1.0 negative rho (up, down): 0.309E-02 0.000E+00 total cpu time spent up to now is 136.2 secs total energy = -28.89422930 Ry Harris-Foulkes estimate = -28.90577942 Ry estimated scf accuracy < 0.16784591 Ry iteration # 9 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 7.99E-04, avg # of iterations = 3.2 negative rho (up, down): 0.240E-02 0.000E+00 total cpu time spent up to now is 142.8 secs total energy = -28.92645840 Ry Harris-Foulkes estimate = -28.92759950 Ry estimated scf accuracy < 0.13931214 Ry iteration # 10 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 2.3 total cpu time spent up to now is 148.6 secs total energy = -28.93755020 Ry Harris-Foulkes estimate = -28.93254967 Ry estimated scf accuracy < 0.45334899 Ry iteration # 11 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 1.5 negative rho (up, down): 0.327E-04 0.000E+00 total cpu time spent up to now is 154.2 secs total energy = -29.01242349 Ry Harris-Foulkes estimate = -28.94194273 Ry estimated scf accuracy < 1.13494302 Ry iteration # 12 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 6.63E-04, avg # of iterations = 11.5 total cpu time spent up to now is 165.7 secs total energy = -29.17522310 Ry Harris-Foulkes estimate = -29.10937348 Ry estimated scf accuracy < 13.83905088 Ry iteration # 13 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 3 eigenvalues not converged ethr = 6.63E-04, avg # of iterations = 2.9 total cpu time spent up to now is 172.1 secs total energy = -29.12349053 Ry Harris-Foulkes estimate = -29.18656784 Ry estimated scf accuracy < 19.01932501 Ry iteration # 14 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 1.2 total cpu time spent up to now is 177.6 secs total energy = -28.92934097 Ry Harris-Foulkes estimate = -29.12844963 Ry estimated scf accuracy < 14.89945447 Ry iteration # 15 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 1.0 total cpu time spent up to now is 183.1 secs total energy = -28.92120413 Ry Harris-Foulkes estimate = -28.97995258 Ry estimated scf accuracy < 3.39546376 Ry iteration # 16 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 2.1 negative rho (up, down): 0.193E-03 0.000E+00 total cpu time spent up to now is 189.0 secs total energy = -28.91540211 Ry Harris-Foulkes estimate = -28.94288347 Ry estimated scf accuracy < 0.40092013 Ry iteration # 17 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 2.9 negative rho (up, down): 0.139E-04 0.000E+00 total cpu time spent up to now is 195.3 secs total energy = -28.91949129 Ry Harris-Foulkes estimate = -28.94007075 Ry estimated scf accuracy < 0.59023480 Ry iteration # 18 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 4.5 negative rho (up, down): 0.301E-03 0.000E+00 total cpu time spent up to now is 201.8 secs total energy = -28.93283811 Ry Harris-Foulkes estimate = -28.93687611 Ry estimated scf accuracy < 0.14497748 Ry iteration # 19 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 1.0 total cpu time spent up to now is 207.3 secs total energy = -28.92919325 Ry Harris-Foulkes estimate = -28.93471460 Ry estimated scf accuracy < 0.16914210 Ry iteration # 20 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.63E-04, avg # of iterations = 1.0 total cpu time spent up to now is 212.7 secs total energy = -28.92772025 Ry Harris-Foulkes estimate = -28.93051939 Ry estimated scf accuracy < 0.03536494 Ry iteration # 21 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 1.68E-04, avg # of iterations = 3.9 total cpu time spent up to now is 219.4 secs total energy = -28.92847937 Ry Harris-Foulkes estimate = -28.92880699 Ry estimated scf accuracy < 0.00046904 Ry iteration # 22 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 5 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged ethr = 2.23E-06, avg # of iterations = 19.5 total cpu time spent up to now is 241.6 secs total energy = -28.93019050 Ry Harris-Foulkes estimate = -28.93012672 Ry estimated scf accuracy < 0.00154715 Ry iteration # 23 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 4 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.23E-06, avg # of iterations = 12.3 total cpu time spent up to now is 251.3 secs total energy = -28.92997124 Ry Harris-Foulkes estimate = -28.93021492 Ry estimated scf accuracy < 0.00129452 Ry iteration # 24 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 3 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.23E-06, avg # of iterations = 5.6 total cpu time spent up to now is 259.8 secs total energy = -28.92970622 Ry Harris-Foulkes estimate = -28.93014608 Ry estimated scf accuracy < 0.00173007 Ry iteration # 25 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 2 eigenvalues not converged c_bands: 2 eigenvalues not converged c_bands: 1 eigenvalues not converged ethr = 2.23E-06, avg # of iterations = 3.7 total cpu time spent up to now is 266.5 secs total energy = -28.92981216 Ry Harris-Foulkes estimate = -28.92980828 Ry estimated scf accuracy < 0.00019916 Ry iteration # 26 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 9.48E-07, avg # of iterations = 4.9 negative rho (up, down): 0.121E-04 0.000E+00 total cpu time spent up to now is 273.5 secs total energy = -28.92988798 Ry Harris-Foulkes estimate = -28.92983910 Ry estimated scf accuracy < 0.00013038 Ry iteration # 27 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.21E-07, avg # of iterations = 2.6 negative rho (up, down): 0.259E-05 0.000E+00 total cpu time spent up to now is 279.3 secs total energy = -28.92981562 Ry Harris-Foulkes estimate = -28.92990492 Ry estimated scf accuracy < 0.00004932 Ry iteration # 28 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.35E-07, avg # of iterations = 2.1 negative rho (up, down): 0.703E-05 0.000E+00 total cpu time spent up to now is 285.4 secs total energy = -28.92982153 Ry Harris-Foulkes estimate = -28.92982106 Ry estimated scf accuracy < 0.00002429 Ry iteration # 29 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap c_bands: 1 eigenvalues not converged ethr = 1.16E-07, avg # of iterations = 5.8 negative rho (up, down): 0.201E-05 0.000E+00 total cpu time spent up to now is 293.8 secs total energy = -28.92981003 Ry Harris-Foulkes estimate = -28.92982573 Ry estimated scf accuracy < 0.00001275 Ry iteration # 30 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 6.07E-08, avg # of iterations = 3.5 negative rho (up, down): 0.248E-06 0.000E+00 total cpu time spent up to now is 300.7 secs total energy = -28.92980796 Ry Harris-Foulkes estimate = -28.92981214 Ry estimated scf accuracy < 0.00000421 Ry iteration # 31 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 2.00E-08, avg # of iterations = 4.8 negative rho (up, down): 0.539E-05 0.000E+00 total cpu time spent up to now is 308.6 secs total energy = -28.92981564 Ry Harris-Foulkes estimate = -28.92980921 Ry estimated scf accuracy < 0.00000111 Ry iteration # 32 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.28E-09, avg # of iterations = 5.6 negative rho (up, down): 0.688E-06 0.000E+00 total cpu time spent up to now is 317.6 secs total energy = -28.92980897 Ry Harris-Foulkes estimate = -28.92981602 Ry estimated scf accuracy < 0.00000413 Ry iteration # 33 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.28E-09, avg # of iterations = 3.0 total cpu time spent up to now is 324.2 secs total energy = -28.92980534 Ry Harris-Foulkes estimate = -28.92980911 Ry estimated scf accuracy < 0.00000141 Ry iteration # 34 ecut= 20.00 Ry beta=0.50 Davidson diagonalization with overlap ethr = 5.28E-09, avg # of iterations = 1.0 total cpu time spent up to now is 329.8 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 2893 PWs) bands (ev): -13.4379 -13.0776 -12.4831 -11.6498 -10.5755 -9.3194 -7.8256 -6.3517 -4.5341 -2.6941 -0.9192 0.4106 0.6339 1.1402 1.4275 k = 0.0000 0.2041 0.0000 ( 2891 PWs) bands (ev): -13.0639 -12.7043 -12.1110 -11.2794 -10.2071 -8.9533 -7.4598 -6.0000 -4.1834 -2.3499 -0.5812 0.7650 1.0092 1.5036 1.7975 k = 0.0000 0.4082 0.0000 ( 2909 PWs) bands (ev): -11.9471 -11.5898 -11.0005 -10.1742 -9.1086 -7.8628 -6.3757 -4.9512 -3.1637 -1.4559 -0.4709 0.0002 0.4093 0.7474 1.2516 k = 0.0000 0.6124 0.0000 ( 2936 PWs) bands (ev): -10.1041 -9.7511 -9.1690 -8.3536 -7.3047 -6.0905 -4.7494 -4.3721 -3.9825 -3.3813 -3.0061 -2.5378 -1.5479 -1.2563 -0.3623 k = 0.0000-0.8165 0.0000 ( 2982 PWs) bands (ev): -7.5718 -7.5609 -7.2545 -7.1898 -6.6865 -6.6262 -5.9127 -5.8675 -5.0206 -4.4599 -3.4907 -3.3857 -2.0709 -1.9331 -0.7949 k = 0.1768-0.1021 0.0000 ( 2891 PWs) bands (ev): -13.0639 -12.7043 -12.1110 -11.2794 -10.2071 -8.9533 -7.4598 -6.0000 -4.1834 -2.3499 -0.5812 0.7650 1.0092 1.5051 1.8001 k = 0.1768 0.1021 0.0000 ( 2891 PWs) bands (ev): -13.0639 -12.7043 -12.1110 -11.2794 -10.2071 -8.9533 -7.4598 -6.0000 -4.1834 -2.3499 -0.5812 0.7650 1.0092 1.5051 1.7999 k = 0.1768 0.3062 0.0000 ( 2894 PWs) bands (ev): -12.3185 -11.9604 -11.3697 -10.5416 -9.4737 -8.2248 -6.7343 -5.2990 -3.4924 -1.6879 0.0208 1.3043 1.7338 1.9777 2.1928 k = 0.1768 0.5103 0.0000 ( 2934 PWs) bands (ev): -10.8385 -10.4837 -9.8985 -9.0782 -8.0208 -6.7869 -5.3212 -3.9298 -2.5102 -2.1024 -1.6427 -1.1929 -0.5448 -0.2336 0.4352 k = 0.1768-0.9186 0.0000 ( 2943 PWs) bands (ev): -8.6466 -8.2978 -7.7235 -6.9236 -5.9414 -5.7516 -5.4467 -5.0344 -4.6125 -3.9124 -3.0252 -2.8874 -1.8264 -1.7050 -0.5200 k = 0.1768-0.7144 0.0000 ( 2943 PWs) bands (ev): -8.6466 -8.2978 -7.7235 -6.9236 -5.9414 -5.7516 -5.4467 -5.0344 -4.6125 -3.9124 -3.0252 -2.8874 -1.8265 -1.7050 -0.5197 k = 0.1768-0.5103 0.0000 ( 2934 PWs) bands (ev): -10.8385 -10.4837 -9.8985 -9.0782 -8.0208 -6.7869 -5.3212 -3.9298 -2.5102 -2.1024 -1.6426 -1.1928 -0.5448 -0.2338 0.4365 k = 0.1768-0.3062 0.0000 ( 2894 PWs) bands (ev): -12.3185 -11.9604 -11.3697 -10.5416 -9.4737 -8.2248 -6.7343 -5.2990 -3.4924 -1.6879 0.0208 1.3043 1.7337 1.9777 2.1938 k = 0.3536-0.2041 0.0000 ( 2909 PWs) bands (ev): -11.9471 -11.5898 -11.0005 -10.1742 -9.1086 -7.8628 -6.3757 -4.9512 -3.1637 -1.4559 -0.4709 0.0002 0.4093 0.7474 1.2511 k = 0.3536 0.0000 0.0000 ( 2894 PWs) bands (ev): -12.3185 -11.9604 -11.3697 -10.5416 -9.4737 -8.2248 -6.7343 -5.2990 -3.4924 -1.6879 0.0208 1.3043 1.7338 1.9799 2.1936 k = 0.3536 0.2041 0.0000 ( 2909 PWs) bands (ev): -11.9471 -11.5898 -11.0005 -10.1742 -9.1086 -7.8628 -6.3757 -4.9512 -3.1637 -1.4559 -0.4709 0.0002 0.4093 0.7475 1.2513 k = 0.3536 0.4082 0.0000 ( 2934 PWs) bands (ev): -10.8385 -10.4837 -9.8985 -9.0782 -8.0208 -6.7869 -5.3212 -3.9298 -2.5102 -2.1024 -1.6427 -1.1929 -0.5449 -0.2337 0.4349 k = 0.3536-1.0206 0.0000 ( 2964 PWs) bands (ev): -9.0093 -8.6591 -8.0821 -7.2752 -6.2403 -5.0551 -3.7970 -3.3504 -3.3400 -3.1115 -2.8611 -2.4372 -2.1424 -1.8851 -1.6307 k = 0.3536-0.8165 0.0000 ( 2968 PWs) bands (ev): -6.4987 -6.4869 -6.1907 -6.1162 -5.6321 -5.5566 -4.8648 -4.8302 -4.0138 -3.7300 -3.4151 -3.3733 -2.9554 -2.7168 -2.1440 k = 0.3536-0.6124 0.0000 ( 2964 PWs) bands (ev): -9.0093 -8.6591 -8.0821 -7.2752 -6.2403 -5.0551 -3.7970 -3.3504 -3.3400 -3.1115 -2.8611 -2.4372 -2.1424 -1.8851 -1.6303 k = 0.3536-0.4082 0.0000 ( 2934 PWs) bands (ev): -10.8385 -10.4837 -9.8985 -9.0782 -8.0208 -6.7869 -5.3212 -3.9298 -2.5102 -2.1024 -1.6427 -1.1928 -0.5449 -0.2336 0.4353 k = 0.5303-0.3062 0.0000 ( 2936 PWs) bands (ev): -10.1041 -9.7511 -9.1690 -8.3536 -7.3047 -6.0905 -4.7494 -4.3721 -3.9825 -3.3813 -3.0061 -2.5378 -1.5479 -1.2563 -0.3623 k = 0.5303-0.1021 0.0000 ( 2934 PWs) bands (ev): -10.8385 -10.4837 -9.8985 -9.0782 -8.0208 -6.7869 -5.3212 -3.9298 -2.5102 -2.1024 -1.6427 -1.1928 -0.5448 -0.2335 0.4348 k = 0.5303 0.1021 0.0000 ( 2934 PWs) bands (ev): -10.8385 -10.4837 -9.8985 -9.0782 -8.0208 -6.7869 -5.3212 -3.9298 -2.5102 -2.1024 -1.6427 -1.1928 -0.5447 -0.2328 0.4351 k = 0.5303 0.3062 0.0000 ( 2936 PWs) bands (ev): -10.1041 -9.7511 -9.1690 -8.3536 -7.3047 -6.0905 -4.7494 -4.3721 -3.9825 -3.3813 -3.0061 -2.5378 -1.5479 -1.2563 -0.3623 k = 0.5303-1.1227 0.0000 ( 2943 PWs) bands (ev): -8.6466 -8.2978 -7.7235 -6.9236 -5.9414 -5.7516 -5.4467 -5.0344 -4.6125 -3.9124 -3.0252 -2.8874 -1.8265 -1.7049 -0.5200 k = 0.5303-0.9186 0.0000 ( 2968 PWs) bands (ev): -6.4987 -6.4869 -6.1907 -6.1162 -5.6321 -5.5566 -4.8648 -4.8302 -4.0139 -3.7300 -3.4151 -3.3733 -2.9554 -2.7168 -2.1440 k = 0.5303-0.7144 0.0000 ( 2968 PWs) bands (ev): -6.4987 -6.4869 -6.1907 -6.1162 -5.6321 -5.5566 -4.8648 -4.8302 -4.0139 -3.7300 -3.4152 -3.3733 -2.9554 -2.7168 -2.1440 k = 0.5303-0.5103 0.0000 ( 2943 PWs) bands (ev): -8.6466 -8.2978 -7.7235 -6.9236 -5.9414 -5.7516 -5.4467 -5.0344 -4.6125 -3.9124 -3.0252 -2.8874 -1.8265 -1.7050 -0.5198 k =-0.7071 0.4082 0.0000 ( 2982 PWs) bands (ev): -7.5718 -7.5609 -7.2544 -7.1898 -6.6865 -6.6262 -5.9127 -5.8675 -5.0206 -4.4599 -3.4907 -3.3857 -2.0709 -1.9331 -0.7949 k =-0.7071 0.6124 0.0000 ( 2943 PWs) bands (ev): -8.6466 -8.2978 -7.7235 -6.9236 -5.9414 -5.7516 -5.4467 -5.0344 -4.6125 -3.9124 -3.0252 -2.8874 -1.8264 -1.7050 -0.5201 k =-0.7071 0.8165 0.0000 ( 2964 PWs) bands (ev): -9.0093 -8.6591 -8.0821 -7.2752 -6.2403 -5.0551 -3.7970 -3.3504 -3.3400 -3.1115 -2.8611 -2.4372 -2.1424 -1.8851 -1.6310 k =-0.7071 1.0206 0.0000 ( 2943 PWs) bands (ev): -8.6466 -8.2978 -7.7235 -6.9236 -5.9414 -5.7516 -5.4467 -5.0344 -4.6125 -3.9124 -3.0252 -2.8874 -1.8265 -1.7050 -0.5206 k =-0.7071-0.4082 0.0000 ( 2982 PWs) bands (ev): -7.5718 -7.5609 -7.2544 -7.1898 -6.6865 -6.6262 -5.9127 -5.8675 -5.0206 -4.4599 -3.4907 -3.3857 -2.0709 -1.9332 -0.7950 the Fermi energy is -2.5436 ev ! total energy = -28.92980047 Ry Harris-Foulkes estimate = -28.92980537 Ry estimated scf accuracy < 0.00000045 Ry The total energy is the sum of the following terms: one-electron contribution = -14456.70551195 Ry hartree contribution = 7230.32148403 Ry xc contribution = -11.06685796 Ry ewald contribution = 7208.51839567 Ry smearing contrib. (-TS) = 0.00268974 Ry ESM Charge and Potential ======================== z (A) Tot chg (e/A) Avg v_hartree Avg v_local Avg v_hart+v_loc (eV) (eV) (eV) ========================================================================== -20.16 0.0000 7476.5890220 -7475.5920509 0.9969710 -19.98 0.0000 9174.0890440 -9172.8713934 1.2176506 -19.80 0.0000 10378.1590248 -10376.7844596 1.3745653 -19.62 0.0000 10835.4975892 -10834.0633797 1.4342094 -19.44 0.0000 10835.7050265 -10834.2707421 1.4342844 -19.26 0.0000 10835.4549170 -10834.0207246 1.4341925 -19.08 0.0000 10835.7459207 -10834.3116203 1.4343003 -18.90 0.0000 10835.4160854 -10833.9819084 1.4341770 -18.72 0.0000 10835.7824208 -10834.3481064 1.4343144 -18.54 0.0000 10835.3821646 -10833.9480011 1.4341634 -18.36 0.0000 10835.8135339 -10834.3792077 1.4343262 -18.18 0.0000 10835.3540619 -10833.9199097 1.4341523 -18.00 0.0000 10835.8384456 -10834.4041103 1.4343353 -17.82 0.0000 10835.3324925 -10833.8983486 1.4341439 -17.64 0.0000 10835.8565457 -10834.4222045 1.4343412 -17.46 0.0000 10835.3179567 -10833.8838180 1.4341386 -17.28 0.0000 10835.8674476 -10834.4331038 1.4343438 -17.10 0.0000 10835.3107249 -10833.8765881 1.4341368 -16.92 0.0000 10835.8709986 -10834.4366560 1.4343427 -16.74 0.0000 10835.3108311 -10833.8766926 1.4341385 -16.56 0.0000 10835.8672831 -10834.4329453 1.4343377 -16.38 0.0000 10835.3180743 -10833.8839303 1.4341440 -16.20 0.0000 10835.8566163 -10834.4222875 1.4343289 -16.02 0.0000 10835.3320279 -10833.8978747 1.4341532 -15.84 0.0000 10835.8395315 -10834.4052154 1.4343161 -15.66 0.0000 10835.3520578 -10833.9178916 1.4341661 -15.48 0.0000 10835.8167580 -10834.3824585 1.4342996 -15.30 0.0000 10835.3773462 -10833.9431636 1.4341825 -15.12 0.0000 10835.7891938 -10834.3549144 1.4342794 -14.94 0.0000 10835.4069232 -10833.9727210 1.4342022 -14.76 0.0000 10835.7578716 -10834.3236159 1.4342557 -14.58 0.0000 10835.4397021 -10834.0054775 1.4342246 -14.40 0.0000 10835.7239216 -10834.2896928 1.4342288 -14.22 0.0000 10835.4745192 -10834.0402701 1.4342491 -14.04 0.0000 10835.6885299 -10834.2543310 1.4341989 -13.86 0.0000 10835.5101751 -10834.0759004 1.4342746 -13.68 0.0000 10835.6528963 -10834.2187305 1.4341657 -13.50 0.0000 10835.5454768 -10834.1111775 1.4342993 -13.32 0.0000 10835.6181912 -10834.1840630 1.4341282 -13.14 0.0000 10835.5792787 -10834.1449592 1.4343195 -12.96 0.0000 10835.5855142 -10834.1514313 1.4340829 -12.78 0.0000 10835.6105192 -10834.1761914 1.4343278 -12.60 0.0000 10835.5558525 -10834.1218317 1.4340208 -12.42 0.0000 10835.6382515 -10834.2039437 1.4343078 -12.24 0.0000 10835.5300408 -10834.0961210 1.4339198 -12.06 0.0000 10835.6616610 -10834.2274382 1.4342228 -11.88 0.0000 10835.5087135 -10834.0749875 1.4337260 -11.70 0.0000 10835.6800601 -10834.2460777 1.4339823 -11.52 0.0000 10835.4922368 -10834.0589350 1.4333018 -11.34 0.0001 10835.6928288 -10834.2594613 1.4333676 -11.16 0.0001 10835.4805762 -10834.0482638 1.4323125 -10.98 0.0002 10835.6992408 -10834.2673930 1.4318478 -10.80 0.0003 10835.4729960 -10834.0430649 1.4299311 -10.62 0.0004 10835.6979959 -10834.2698859 1.4281100 -10.44 0.0007 10835.4673296 -10834.0432218 1.4241078 -10.26 0.0011 10835.6860736 -10834.2671578 1.4189158 -10.08 0.0017 10835.4581763 -10834.0484175 1.4097588 -9.90 0.0026 10835.6558338 -10834.2596214 1.3962124 -9.72 0.0042 10835.4323740 -10834.0581449 1.3742291 -9.54 0.0066 10835.5878520 -10834.2478729 1.3399792 -9.36 0.0104 10835.3576950 -10834.0717208 1.2859741 -9.18 0.0164 10835.4329759 -10834.2326919 1.2002840 -9.00 0.0256 10835.1549608 -10834.0882350 1.0667258 -8.82 0.0396 10835.0695096 -10834.2149064 0.8546031 -8.64 0.0604 10834.6337597 -10834.1060530 0.5277067 -8.46 0.0900 10834.2102263 -10834.1881138 0.0221125 -8.28 0.1302 10833.3667850 -10833.9677320 -0.6009471 -8.10 0.1808 10832.2473419 -10833.9288803 -1.6815384 -7.92 0.2373 10830.5248984 -10834.3274001 -3.8025017 -7.74 0.2904 10828.1302694 -10835.0631004 -6.9328311 -7.56 0.3305 10824.8976451 -10835.4344468 -10.5368017 -7.38 0.3538 10820.6398766 -10834.6307440 -13.9908674 -7.20 0.3630 10815.4370074 -10832.0010525 -16.5640451 -7.02 0.3635 10809.0348282 -10826.5934416 -17.5586134 -6.84 0.3610 10801.7282944 -10818.4269143 -16.6986199 -6.66 0.3599 10793.1581532 -10807.3833886 -14.2252354 -6.48 0.3604 10783.7552347 -10794.6025803 -10.8473456 -6.30 0.3586 10773.0353984 -10780.3992888 -7.3638903 -6.12 0.3532 10761.5375732 -10766.0501133 -4.5125401 -5.94 0.3488 10748.7007823 -10751.5297510 -2.8289687 -5.76 0.3514 10735.1473353 -10737.9154364 -2.7681011 -5.58 0.3604 10720.2311233 -10724.5823423 -4.3512191 -5.40 0.3681 10704.5858959 -10711.7348029 -7.1489070 -5.22 0.3682 10687.5209797 -10698.1555530 -10.6345733 -5.04 0.3619 10669.7088214 -10683.7851101 -14.0762886 -4.86 0.3551 10650.4978236 -10667.1537160 -16.6558924 -4.68 0.3519 10630.5633520 -10648.1957335 -17.6323814 -4.50 0.3536 10609.2780221 -10625.9985653 -16.7205432 -4.32 0.3595 10587.2459685 -10601.4268578 -14.1808893 -4.14 0.3659 10563.8758665 -10574.6172809 -10.7414145 -3.96 0.3669 10539.6847070 -10546.9057970 -7.2210899 -3.78 0.3610 10514.1824389 -10518.5433353 -4.3608964 -3.60 0.3541 10487.8204388 -10490.5180312 -2.6975924 -3.42 0.3533 10460.2383459 -10462.9123233 -2.6739774 -3.24 0.3591 10431.7563902 -10436.0548787 -4.2984885 -3.06 0.3647 10402.1053748 -10409.2331468 -7.1277720 -2.88 0.3646 10371.4574558 -10382.0883683 -10.6309124 -2.70 0.3599 10339.6937167 -10353.7649176 -14.0712008 -2.52 0.3558 10306.8762313 -10323.5134654 -16.6372341 -2.34 0.3551 10273.0363389 -10290.6323839 -17.5960449 -2.16 0.3577 10238.0873104 -10254.7636880 -16.6763777 -1.98 0.3625 10202.1781575 -10216.3227377 -14.1445802 -1.80 0.3663 10165.0737866 -10175.8035891 -10.7298025 -1.62 0.3644 10127.0483162 -10134.2906179 -7.2423018 -1.44 0.3562 10087.7647253 -10092.1791386 -4.4144133 -1.26 0.3482 10047.6428579 -10050.4168708 -2.7740129 -1.08 0.3477 10006.2574116 -10009.0170980 -2.7596863 -0.90 0.3550 9964.1007505 -9968.4748217 -4.3740712 -0.72 0.3632 9920.6240488 -9927.8006973 -7.1766486 -0.54 0.3660 9876.3657819 -9887.0082748 -10.6424929 -0.36 0.3639 9830.7315970 -9844.7732512 -14.0416542 -0.18 0.3612 9784.3304349 -9800.9009382 -16.5705033 0.00 0.3602 9736.5550183 -9754.0569318 -17.5019134 0.18 0.3612 9688.0262461 -9704.5963333 -16.5700872 0.36 0.3639 9638.1271045 -9652.1680075 -14.0409030 0.54 0.3660 9587.4529670 -9598.0945044 -10.6415374 0.72 0.3632 9535.4145087 -9542.5901217 -7.1756130 0.90 0.3550 9482.5789849 -9486.9520168 -4.3730318 1.08 0.3477 9428.4423857 -9431.2010180 -2.7586323 1.26 0.3481 9373.5123971 -9376.2852436 -2.7728465 1.44 0.3561 9317.3443572 -9321.7573046 -4.4129475 1.62 0.3643 9260.3101502 -9267.5504529 -7.2403027 1.80 0.3662 9202.0486635 -9212.7756848 -10.7270213 1.98 0.3625 9142.8335560 -9156.9743798 -14.1408238 2.16 0.3577 9082.4578113 -9099.1293436 -16.6715322 2.34 0.3551 9021.0861185 -9038.6762237 -17.5901052 2.52 0.3558 8958.6420159 -8975.2722733 -16.6302574 2.70 0.3599 8895.1380975 -8909.2013752 -14.0632778 2.88 0.3646 8830.6178042 -8841.2399005 -10.6220962 3.06 0.3647 8764.9445844 -8772.0626537 -7.1180693 3.24 0.3590 8698.3108659 -8702.5987049 -4.2878390 3.42 0.3533 8630.4730049 -8633.1353040 -2.6622991 3.60 0.3541 8561.7689360 -8564.4537374 -2.6848014 3.78 0.3610 8491.8132222 -8496.1601889 -4.3469666 3.96 0.3669 8421.0269351 -8428.2330034 -7.2060683 4.14 0.3660 8348.9029146 -8359.6283636 -10.7254490 4.32 0.3596 8275.9810411 -8290.1452355 -14.1641944 4.50 0.3537 8201.7008176 -8218.4041748 -16.7033572 4.68 0.3519 8126.6901426 -8144.3050194 -17.6148768 4.86 0.3550 8050.3159612 -8066.9540778 -16.6381167 5.04 0.3618 7973.2269859 -7987.2851191 -14.0581332 5.22 0.3681 7894.7349929 -7905.3508096 -10.6158166 5.40 0.3680 7815.4961402 -7822.6254371 -7.1292969 5.58 0.3603 7734.8419783 -7739.1725457 -4.3305674 5.76 0.3515 7653.4503360 -7656.1966908 -2.7463548 5.94 0.3489 7570.7086283 -7573.5148586 -2.8062303 6.12 0.3533 7487.2330256 -7491.7220777 -4.4890520 6.30 0.3587 7402.4392097 -7409.7791639 -7.3399542 6.48 0.3604 7316.8422163 -7327.6654377 -10.8232214 6.66 0.3599 7229.9568044 -7244.1578035 -14.2009991 6.84 0.3609 7142.2068536 -7158.8809351 -16.6740816 7.02 0.3633 7053.2287874 -7070.7620854 -17.5332980 7.20 0.3628 6963.3092319 -6979.8465853 -16.5373534 7.38 0.3538 6872.2309014 -6886.1932337 -13.9623323 7.56 0.3307 6780.1654641 -6790.6719056 -10.5064415 7.74 0.2909 6687.1176174 -6694.0189947 -6.9013773 7.92 0.2381 6593.1857643 -6596.9572492 -3.7714849 8.10 0.1817 6498.6245638 -6500.2776965 -1.6531327 8.28 0.1311 6403.4127094 -6403.9904680 -0.5777586 8.46 0.0909 6307.9666709 -6307.9293462 0.0373247 8.64 0.0613 6212.0544138 -6211.5221856 0.5322282 8.82 0.0404 6116.1940049 -6115.3480463 0.8459586 9.00 0.0262 6019.9410278 -6018.8982668 1.0427610 9.18 0.0168 5923.9164754 -5922.7572477 1.1592278 9.36 0.0108 5827.5025308 -5826.2761274 1.2264033 9.54 0.0069 5731.4241844 -5730.1633902 1.2607941 9.72 0.0044 5634.9319357 -5633.6573547 1.2745811 9.90 0.0028 5538.8411675 -5537.5657022 1.2754653 10.08 0.0018 5442.3102239 -5441.0427939 1.2674300 10.26 0.0012 5346.2181256 -5344.9634772 1.2546484 10.44 0.0007 5249.6706817 -5248.4330476 1.2376341 10.62 0.0005 5153.5754405 -5152.3562069 1.2192336 10.80 0.0003 5057.0270360 -5055.8285285 1.1985075 10.98 0.0002 4960.9213478 -4959.7435779 1.1777699 11.16 0.0001 4864.3849549 -4863.2294499 1.1555050 11.34 0.0001 4768.2592515 -4767.1254796 1.1337718 11.52 0.0001 4671.7466999 -4670.6358189 1.1108810 11.70 0.0000 4575.5907135 -4574.5020104 1.0887031 11.88 0.0000 4479.1130051 -4478.0474324 1.0655727 12.06 0.0000 4382.9166514 -4381.8734770 1.0431744 12.24 0.0000 4286.4838534 -4285.4638811 1.0199723 12.42 0.0000 4190.2378333 -4189.2403870 0.9974463 12.60 0.0000 4093.8588056 -4092.8845580 0.9742476 12.78 0.0000 3997.5550665 -3996.6034361 0.9516305 12.96 0.0000 3901.2371499 -3900.3086822 0.9284677 13.14 0.0000 3804.8692629 -3803.9634880 0.9057750 13.32 0.0000 3708.6179813 -3707.7353185 0.8826628 13.50 0.0000 3612.1814454 -3611.3215436 0.8599017 13.68 0.0000 3516.0002548 -3515.1634090 0.8368459 13.86 0.0000 3419.4927302 -3418.6787090 0.8140212 14.04 0.0000 3323.3828313 -3322.5918090 0.7910223 14.22 0.0000 3226.8042958 -3226.0361574 0.7681384 14.40 0.0000 3130.7645209 -3130.0193266 0.7451944 14.58 0.0000 3034.1173450 -3033.3950891 0.7222559 14.76 0.0000 2938.1441267 -2937.4447640 0.6993627 14.94 0.0000 2841.4330639 -2840.7566886 0.6763752 15.12 0.0000 2745.5204877 -2744.8669602 0.6535275 15.30 0.0000 2648.7525801 -2648.1220829 0.6304972 15.48 0.0000 2552.8925214 -2552.2848328 0.6076886 15.66 0.0000 2456.0769227 -2455.4923003 0.5846224 15.84 0.0000 2360.2592630 -2359.6974170 0.5618460 16.02 0.0000 2263.4069839 -2262.8682329 0.5387511 16.20 0.0000 2167.6199012 -2167.1039018 0.5159994 16.38 0.0000 2070.7434865 -2070.2506031 0.4928835 16.56 0.0000 1974.9738090 -1974.5036602 0.4701488 16.74 0.0000 1878.0869558 -1877.6399361 0.4470196 16.92 0.0000 1782.3205681 -1781.8962738 0.4242943 17.10 0.0000 1685.4376989 -1685.0365393 0.4011596 17.28 0.0000 1589.6599859 -1589.2815499 0.3784360 17.46 0.0000 1492.7957914 -1492.4404883 0.3553031 17.64 0.0000 1396.9921053 -1396.6595312 0.3325740 17.82 0.0000 1300.1610720 -1299.8516220 0.3094500 18.00 0.0000 1204.3172054 -1204.0304967 0.2867087 18.18 0.0000 1107.5331453 -1107.2695453 0.2636000 18.36 0.0000 1011.6357947 -1011.3949544 0.2408403 18.54 0.0000 914.9113935 -914.6936407 0.2177527 18.72 0.0000 818.9485959 -818.7536267 0.1949692 18.90 0.0000 722.2949948 -722.1230871 0.1719078 19.08 0.0000 626.2565229 -626.1074270 0.1490959 19.26 0.0000 529.6829505 -529.5568858 0.1260647 19.44 0.0000 433.5606515 -433.4574307 0.1032208 19.62 0.0000 806.6167867 -806.4739956 0.1427911 19.80 0.0000 1950.4793135 -1950.1939275 0.2853860 19.98 0.0000 3611.8602989 -3611.3628430 0.4974559 20.16 0.0000 5538.2025314 -5537.4567454 0.7457860 convergence has been achieved in 34 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.00000051 0.00000013 -0.00201264 atom 2 type 1 force = 0.00000046 0.00000061 0.00690728 atom 3 type 1 force = 0.00000010 -0.00000098 -0.00525461 atom 4 type 1 force = -0.00000055 -0.00000151 -0.00005377 atom 5 type 1 force = 0.00000054 0.00000017 0.00531732 atom 6 type 1 force = -0.00000069 -0.00000039 -0.00688406 atom 7 type 1 force = -0.00000036 0.00000197 0.00198047 Total force = 0.012608 Total SCF correction = 0.001165 Writing output data file Al111.save init_run : 5.01s CPU 5.20s WALL ( 1 calls) electrons : 320.11s CPU 324.42s WALL ( 1 calls) forces : 1.54s CPU 1.58s WALL ( 1 calls) Called by init_run: wfcinit : 4.34s CPU 4.38s WALL ( 1 calls) potinit : 0.23s CPU 0.24s WALL ( 1 calls) Called by electrons: c_bands : 290.19s CPU 293.75s WALL ( 34 calls) sum_band : 26.12s CPU 26.63s WALL ( 34 calls) v_of_rho : 2.85s CPU 2.97s WALL ( 35 calls) mix_rho : 0.45s CPU 0.41s WALL ( 34 calls) Called by c_bands: init_us_2 : 4.04s CPU 4.08s WALL ( 2380 calls) cegterg : 280.99s CPU 283.92s WALL ( 1158 calls) Called by *egterg: h_psi : 214.27s CPU 215.18s WALL ( 7207 calls) g_psi : 4.24s CPU 3.91s WALL ( 6015 calls) cdiaghg : 7.92s CPU 7.96s WALL ( 7173 calls) Called by h_psi: add_vuspsi : 25.30s CPU 25.46s WALL ( 7207 calls) General routines calbec : 29.71s CPU 29.29s WALL ( 7241 calls) fft : 0.57s CPU 0.61s WALL ( 388 calls) fftw : 167.88s CPU 169.46s WALL ( 139350 calls) davcio : 0.05s CPU 1.07s WALL ( 3536 calls) EXX routines PWSCF : 5m26.93s CPU 5m31.75s WALL This run was terminated on: 22:41:22 23Apr2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/PW/Makefile0000644000175000017500000000066712341373025013301 0ustar mbamba# Makefile for PW sinclude ../make.sys default: all all: pw pwtools pw: ( cd src ; $(MAKE) all || exit 1 ) pwtools: pw ( cd tools ; $(MAKE) all || exit 1 ) doc: ( cd Doc ; $(MAKE) all || exit 1 ) doc_clean: ( cd Doc ; $(MAKE) clean ) clean : examples_clean ( cd src ; $(MAKE) clean ) ( cd tools ; $(MAKE) clean ) examples_clean: if test -d examples ; then \ ( cd examples ; ./clean_all ) ; fi distclean: clean doc_clean espresso-5.1/PW/Doc/0000755000175000017500000000000012341373166012343 5ustar mbambaespresso-5.1/PW/Doc/INPUT_PW.def0000644000175000017500000025642012341373024014332 0ustar mbambainput_description -distribution {Quantum Espresso} -package PWscf -program pw.x { toc {} intro { Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied by e); potentials are in energy units (i.e. they are multiplied by e) BEWARE: TABS, DOS CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE Comment lines in namelists can be introduced by a "!", exactly as in fortran code. Comments lines in ``cards'' can be introduced by either a "!" or a "#" character in the first position of a line. Do not start any line in ``cards'' with a "/" character. Structure of the input data: =============================================================================== &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / [ &IONS ... / ] [ &CELL ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } if (gamma) nothing to read if (automatic) nk1, nk2, nk3, k1, k2, k3 if (not automatic) nks xk_x, xk_y, xk_z, wk [ CELL_PARAMETERS { alat | bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ] [ ATOMIC_FORCES label_1 Fx(1) Fy(1) Fz(1) ..... label_n Fx(n) Fy(n) Fz(n) ] } # # namelist CONTROL # namelist CONTROL { var calculation -type CHARACTER { default { 'scf' } info { a string describing the task to be performed: 'scf', 'nscf', 'bands', 'relax', 'md', 'vc-relax', 'vc-md' (vc = variable-cell). } } var title -type CHARACTER { default {' '} info { reprinted on output. } } var verbosity -type CHARACTER { default { 'low' } info { Currently two verbosity levels are implemented: 'high' and 'low'. 'debug' and 'medium' have the same effect as 'high'; 'default' and 'minimal', as 'low' } } var restart_mode -type CHARACTER { default { 'from_scratch' } info { 'from_scratch' : from scratch. This is the normal way to perform a PWscf calculation 'restart' : from previous interrupted run. Use this switch only if you want to continue an interrupted calculation, not to start a new one, or to perform non-scf calculations. Works only if the calculation was cleanly stopped using variable "max_seconds", or by user request with an "exit file" (i.e.: create a file "prefix".EXIT, in directory "outdir"; see variables "prefix", "outdir") } } var wf_collect -type LOGICAL { default { .FALSE. } info { This flag controls the way wavefunctions are stored to disk : .TRUE. collect wavefunctions from all processors, store them into the output data directory "outdir"/"prefix".save, one wavefunction per k-point in subdirs K000001/, K000001/, etc.. Use this if you want wavefunctions to be readable on a different number of processors. .FALSE. do not collect wavefunctions, leave them in temporary local files (one per processor). The resulting format will be readable only by jobs running on the same number of processors and pools. Requires less I/O than the previous case. Note that this flag has no effect on reading, only on writing. } } var nstep -type INTEGER { info { number of ionic + electronic steps } default { 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases } } var iprint -type INTEGER { default { write only at convergence } info { band energies are written every "iprint" iterations } } var tstress -type LOGICAL { default { .false. } info { calculate stress. It is set to .TRUE. automatically if calculation='vc-md' or 'vc-relax' } } var tprnfor -type LOGICAL { info { calculate forces. It is set to .TRUE. automatically if calculation='relax','md','vc-md' } } var dt -type REAL { default { 20.D0 } info { time step for molecular dynamics, in Rydberg atomic units (1 a.u.=4.8378 * 10^-17 s : beware, the CP code uses Hartree atomic units, half that much!!!) } } var outdir -type CHARACTER { default { value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise } info { input, temporary, output files are found in this directory, see also "wfcdir" } } var wfcdir -type CHARACTER { default { same as "outdir" } info { this directory specifies where to store files generated by each processor (*.wfc{N}, *.igk{N}, etc.). Useful for machines without a parallel file system: set "wfcdir" to a local file system, while "outdir" should be a parallel or networkfile system, visible to all processors. Beware: in order to restart from interrupted runs, or to perform further calculations using the produced data files, you may need to copy files to "outdir". Works only for pw.x. } } var prefix -type CHARACTER { default { 'pwscf' } info { prepended to input/output filenames: prefix.wfc, prefix.rho, etc. } } var lkpoint_dir -type LOGICAL { default { .true. } info { If .false. a subdirectory for each k_point is not opened in the "prefix".save directory; Kohn-Sham eigenvalues are stored instead in a single file for all k-points. Currently doesn't work together with "wf_collect" } } var max_seconds -type REAL { default { 1.D+7, or 150 days, i.e. no time limit } info { jobs stops after "max_seconds" CPU time. Use this option in conjunction with option "restart_mode" if you need to split a job too long to complete into shorter jobs that fit into your batch queues. } } var etot_conv_thr -type REAL { default { 1.0D-4 } info { convergence threshold on total energy (a.u) for ionic minimization: the convergence criterion is satisfied when the total energy changes less than "etot_conv_thr" between two consecutive scf steps. Note that "etot_conv_thr" is extensive, like the total energy. See also "forc_conv_thr" - both criteria must be satisfied } } var forc_conv_thr -type REAL { default { 1.0D-3 } info { convergence threshold on forces (a.u) for ionic minimization: the convergence criterion is satisfied when all components of all forces are smaller than "forc_conv_thr". See also "etot_conv_thr" - both criteria must be satisfied } } var disk_io -type CHARACTER { default { 'low' } info { Specifies the amount of disk I/O activity 'high': save all data to disk at each SCF step 'medium': save wavefunctions at each SCF step unless there is a single k-point per process (in which case the behavior is the same as 'low') 'low' : store wfc in memory, save only at the end 'none': do not save anything, not even at the end ('scf', 'nscf', 'bands' calculations; some data may be written anyway for other calculations) Note that the amount of needed RAM increases as the amount of I/O decreases! IMPORTANT: default has been changed to 'low'. It is no longer needed to specify 'high' in order to be able to restart from an interrupted calculation (see "restart_mode") but you cannot restart from disk_io='none' } } var pseudo_dir -type CHARACTER { default { value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise } info { directory containing pseudopotential files } } var tefield -type LOGICAL { default { .FALSE. } info { If .TRUE. a saw-like potential simulating an electric field is added to the bare ionic potential. See variables "edir", "eamp", "emaxpos", "eopreg" for the form and size of the added potential. } } var dipfield -type LOGICAL { default { .FALSE. } info { If .TRUE. and tefield=.TRUE. a dipole correction is also added to the bare ionic potential - implements the recipe of L. Bengtsson, PRB 59, 12301 (1999). See variables "edir", "emaxpos", "eopreg" for the form of the correction. Must be used ONLY in a slab geometry, for surface calculations, with the discontinuity FALLING IN THE EMPTY SPACE. } } var lelfield -type LOGICAL { default { .FALSE. } info { If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. This is different from "tefield=.true." ! } } var nberrycyc -type INTEGER { default { 1 } info { In the case of a finite electric field ( lelfield == .TRUE. ) it defines the number of iterations for converging the wavefunctions in the electric field Hamiltonian, for each external iteration on the charge density } } var lorbm -type LOGICAL { default { .FALSE. } info { If .TRUE. perform orbital magnetization calculation. If finite electric field is applied (lelfield=.true.) only Kubo terms are computed [for details see New J. Phys. 12, 053032 (2010)]. The type of calculation is 'nscf' and should be performed on an automatically generated uniform grid of k points. Works ONLY with norm-conserving pseudopotentials. } } var lberry -type LOGICAL { default { .FALSE. } info { If .TRUE. perform a Berry phase calculation See the header of PW/src/bp_c_phase.f90 for documentation } } var gdir -type INTEGER { info { For Berry phase calculation: direction of the k-point strings in reciprocal space. Allowed values: 1, 2, 3 1=first, 2=second, 3=third reciprocal lattice vector For calculations with finite electric fields (lelfield==.true.) "gdir" is the direction of the field } } var nppstr -type INTEGER { info { For Berry phase calculation: number of k-points to be calculated along each symmetry-reduced string The same for calculation with finite electric fields (lelfield=.true.) } } } # # NAMELIST &SYSTEM # namelist SYSTEM { var ibrav -type INTEGER { status { REQUIRED } info { Bravais-lattice index. If ibrav /= 0, specify EITHER [ celldm(1)-celldm(6) ] OR [ A,B,C,cosAB,cosAC,cosBC ] but NOT both. The lattice parameter "alat" is set to alat = celldm(1) (in a.u.) or alat = A (in Angstrom); see below for the other parameters. For ibrav=0 specify the lattice vectors in CELL_PARAMETER, optionally the lattice parameter alat = celldm(1) (in a.u.) or = A (in Angstrom), or else it is taken from CELL_PARAMETERS ibrav structure celldm(2)-celldm(6) or: b,c,cosab,cosac,cosbc 0 free crystal axis provided in input: see card CELL_PARAMETERS 1 cubic P (sc) v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1) 2 cubic F (fcc) v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0) 3 cubic I (bcc) v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1) 4 Hexagonal and Trigonal P celldm(3)=c/a v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a) 5 Trigonal R, 3fold axis c celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around the z-axis, the primitive cell is a simple rhombohedron: v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz) where c=cos(alpha) is the cosine of the angle alpha between any pair of crystallographic vectors, tx, ty, tz are: tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3) -5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around <111>. Defining a' = a/sqrt(3) : v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u) where u and v are defined as u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty and tx, ty, tz as for case ibrav=5 Note: if you prefer x,y,z as axis in the cubic limit, set u = tz + 2*sqrt(2)*ty, v = tz - sqrt(2)*ty See also the note in flib/latgen.f90 6 Tetragonal P (st) celldm(3)=c/a v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a) 7 Tetragonal I (bct) celldm(3)=c/a v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a) 8 Orthorhombic P celldm(2)=b/a celldm(3)=c/a v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c) 9 Orthorhombic base-centered(bco) celldm(2)=b/a celldm(3)=c/a v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c) -9 as 9, alternate description v1 = (a/2,-b/2,0), v2 = (a/2,-b/2,0), v3 = (0,0,c) 10 Orthorhombic face-centered celldm(2)=b/a celldm(3)=c/a v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2) 11 Orthorhombic body-centered celldm(2)=b/a celldm(3)=c/a v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2) 12 Monoclinic P, unique axis c celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c) where gamma is the angle between axis a and b. -12 Monoclinic P, unique axis b celldm(2)=b/a celldm(3)=c/a, celldm(5)=cos(ac) v1 = (a,0,0), v2 = (0,b,0), v3 = (c*cos(beta),0,c*sin(beta)) where beta is the angle between axis a and c 13 Monoclinic base-centered celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1 = ( a/2, 0, -c/2), v2 = (b*cos(gamma), b*sin(gamma), 0), v3 = ( a/2, 0, c/2), where gamma is the angle between axis a and b 14 Triclinic celldm(2)= b/a, celldm(3)= c/a, celldm(4)= cos(bc), celldm(5)= cos(ac), celldm(6)= cos(ab) v1 = (a, 0, 0), v2 = (b*cos(gamma), b*sin(gamma), 0) v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma), c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma) - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) ) where alpha is the angle between axis b and c beta is the angle between axis a and c gamma is the angle between axis a and b } } group { label { Either: } dimension celldm -start 1 -end 6 -type REAL { see { ibrav } info { Crystallographic constants - see the "ibrav" variable. Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both. Only needed values (depending on "ibrav") must be specified alat = celldm(1) is the lattice parameter "a" (in BOHR) If ibrav=0, only celldm(1) is used if present; cell vectors are read from card CELL_PARAMETERS } } label { Or: } vargroup -type REAL { var A var B var C var cosAB var cosAC var cosBC info { Traditional crystallographic constants: a,b,c in ANGSTROM cosAB = cosine of the angle between axis a and b (gamma) cosAC = cosine of the angle between axis a and c (beta) cosBC = cosine of the angle between axis b and c (alpha) The axis are chosen according to the value of "ibrav". Specify either these OR "celldm" but NOT both. Only needed values (depending on "ibrav") must be specified The lattice parameter alat = A (in ANGSTROM ) If ibrav = 0, only A is used if present; cell vectors are read from card CELL_PARAMETERS } } } var nat -type INTEGER { status { REQUIRED } info { number of atoms in the unit cell } } var ntyp -type INTEGER { status { REQUIRED } info { number of types of atoms in the unit cell } } var nbnd -type INTEGER { default { for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more) } info { number of electronic states (bands) to be calculated. Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled } } var tot_charge -type REAL { default { 0.0 } info { total charge of the system. Useful for simulations with charged cells. By default the unit cell is assumed to be neutral (tot_charge=0). tot_charge=+1 means one electron missing from the system, tot_charge=-1 means one additional electron, and so on. In a periodic calculation a compensating jellium background is inserted to remove divergences if the cell is not neutral. } } var tot_magnetization -type REAL { default { -1 [unspecified] } info { total majority spin charge - minority spin charge. Used to impose a specific total electronic magnetization. If unspecified then tot_magnetization variable is ignored and the amount of electronic magnetization is determined during the self-consistent cycle. } } dimension starting_magnetization -start 1 -end ntyp -type REAL { info { starting spin polarization on atomic type 'i' in a spin polarized calculation. Values range between -1 (all spins down for the valence electrons of atom type 'i') to 1 (all spins up). Breaks the symmetry and provides a starting point for self-consistency. The default value is zero, BUT a value MUST be specified for AT LEAST one atomic type in spin polarized calculations, unless you constrain the magnetization (see "tot_magnetization" and "constrained_magnetization"). Note that if you start from zero initial magnetization, you will invariably end up in a nonmagnetic (zero magnetization) state. If you want to start from an antiferromagnetic state, you may need to define two different atomic species corresponding to sublattices of the same atomic type. starting_magnetization is ignored if you are performing a non-scf calculation, if you are restarting from a previous run, or restarting from an interrupted run. If you fix the magnetization with "tot_magnetization", you should not specify starting_magnetization. } } var ecutwfc -type REAL { status { REQUIRED } info { kinetic energy cutoff (Ry) for wavefunctions } } var ecutrho -type REAL { default { 4 * ecutwfc } info { kinetic energy cutoff (Ry) for charge density and potential For norm-conserving pseudopotential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on forces and stress. If there are ultrasoft PP, a larger value than the default is often desirable (ecutrho = 8 to 12 times ecutwfc, typically). PAW datasets can often be used at 4*ecutwfc, but it depends on the shape of augmentation charge: testing is mandatory. The use of gradient-corrected functional, especially in cells with vacuum, or for pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately converged. } } var ecutfock -type REAL { default { ecutrho } info { kinetic energy cutoff (Ry) for the exact exchange operator in EXX type calculations. By default this is the same as ecutrho but in some EXX calculations significant speed-up can be found by reducing ecutfock, at the expense of some loss in accuracy. Currently only implemented for the optimized gamma point only calculations. } } vargroup -type INTEGER { var nr1 var nr2 var nr3 info { three-dimensional FFT mesh (hard grid) for charge density (and scf potential). If not specified the grid is calculated based on the cutoff for charge density (see also "ecutrho") Note: you must specify all three dimensions for this setting to be used. } } vargroup -type INTEGER { var nr1s var nr2s var nr3s info { three-dimensional mesh for wavefunction FFT and for the smooth part of charge density ( smooth grid ). Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default ) Note: you must specify all three dimensions for this setting to be used. } } var nosym -type LOGICAL { default { .FALSE. } info { if (.TRUE.) symmetry is not used. Note that - if the k-point grid is provided in input, it is used "as is" and symmetry-inequivalent k-points are not generated; - if the k-point grid is automatically generated, it will contain only points in the irreducible BZ for the bravais lattice, irrespective of the actual crystal symmetry. A careful usage of this option can be advantageous - in low-symmetry large cells, if you cannot afford a k-point grid with the correct symmetry - in MD simulations - in calculations for isolated atoms } } var nosym_evc -type LOGICAL { default { .FALSE. } info { if(.TRUE.) symmetry is not used but the k-points are forced to have the symmetry of the Bravais lattice; an automatically generated k-point grid will contain all the k-points of the grid and the points rotated by the symmetries of the Bravais lattice which are not in the original grid. If available, time reversal is used to reduce the k-points (and the q => -q symmetry is used in the phonon code). To disable also this symmetry set noinv=.TRUE.. } } var noinv -type LOGICAL { default { .FALSE. } info { if (.TRUE.) disable the usage of k => -k symmetry (time reversal) in k-point generation } } var no_t_rev -type LOGICAL { default { .FALSE. } info { if (.TRUE.) disable the usage of magnetic symmetry operations that consist in a rotation + time reversal. } } var force_symmorphic -type LOGICAL { default { .FALSE. } info { if (.TRUE.) force the symmetry group to be symmorphic by disabling symmetry operations having an associated fractionary translation } } var use_all_frac -type LOGICAL { default { .FALSE. } info { if (.TRUE.) do not discard symmetry operations with an associated fractionary translation that does not send the real-space FFT grid into itself. These operations are incompatible with real-space symmetrization but not with the new G-space symmetrization. BEWARE: do not use for phonons! The phonon code still uses real-space symmetrization. } } var occupations -type CHARACTER { info { 'smearing': gaussian smearing for metals see variables 'smearing' and 'degauss' 'tetrahedra' : especially suited for calculation of DOS (see P.E. Bloechl, PRB49, 16223 (1994)) Requires uniform grid of k-points, automatically generated (see below) Not suitable (because not variational) for force/optimization/dynamics calculations 'fixed' : for insulators with a gap 'from_input' : The occupation are read from input file, card OCCUPATIONS. Option valid only for a single k-point, requires "nbnd" to be set in input. Occupations should be consistent with the value of "tot_charge". } } var one_atom_occupations -type LOGICAL { default { .FALSE. } info { This flag is used for isolated atoms (nat=1) together with occupations='from_input'. If it is .TRUE., the wavefunctions are ordered as the atomic starting wavefunctions, independently from their eigenvalue. The occupations indicate which atomic states are filled. The order of the states is written inside the UPF pseudopotential file. In the scalar relativistic case: S -> l=0, m=0 P -> l=1, z, x, y D -> l=2, r^2-3z^2, xz, yz, xy, x^2-y^2 In the noncollinear magnetic case (with or without spin-orbit), each group of states is doubled. For instance: P -> l=1, z, x, y for spin up, l=1, z, x, y for spin down. Up and down is relative to the direction of the starting magnetization. In the case with spin-orbit and time-reversal (starting_magnetization=0.0) the atomic wavefunctions are radial functions multiplied by spin-angle functions. For instance: P -> l=1, j=1/2, m_j=-1/2,1/2. l=1, j=3/2, m_j=-3/2, -1/2, 1/2, 3/2. In the magnetic case with spin-orbit the atomic wavefunctions can be forced to be spin-angle functions by setting starting_spin_angle to .TRUE.. } } var starting_spin_angle -type LOGICAL { default { .FALSE. } info { In the spin-orbit case when domag=.TRUE., by default, the starting wavefunctions are initialized as in scalar relativistic noncollinear case without spin-orbit. By setting starting_spin_angle=.TRUE. this behaviour can be changed and the initial wavefunctions are radial functions multiplied by spin-angle functions. When domag=.FALSE. the initial wavefunctions are always radial functions multiplied by spin-angle functions independently from this flag. When lspinorb is .FALSE. this flag is not used. } } var degauss -type REAL { default { 0.D0 Ry } info { value of the gaussian spreading (Ry) for brillouin-zone integration in metals. } } var smearing -type CHARACTER { default { 'gaussian' } info { 'gaussian', 'gauss': ordinary Gaussian spreading (Default) 'methfessel-paxton', 'm-p', 'mp': Methfessel-Paxton first-order spreading (see PRB 40, 3616 (1989)). 'marzari-vanderbilt', 'cold', 'm-v', 'mv': Marzari-Vanderbilt cold smearing (see PRL 82, 3296 (1999)) 'fermi-dirac', 'f-d', 'fd': smearing with Fermi-Dirac function } } var nspin -type INTEGER { default { 1 } info { nspin = 1 : non-polarized calculation (default) nspin = 2 : spin-polarized calculation, LSDA (magnetization along z axis) nspin = 4 : spin-polarized calculation, noncollinear (magnetization in generic direction) DO NOT specify nspin in this case; specify "noncolin=.TRUE." instead } } var noncolin -type LOGICAL { default { .false. } info { if .true. the program will perform a noncollinear calculation. } } var ecfixed -type REAL { default { 0.0 }; see { q2sigma } } var qcutz -type REAL { default { 0.0 }; see { q2sigma } } var q2sigma -type REAL { default { 0.1 } info { ecfixed, qcutz, q2sigma: parameters for modified functional to be used in variable-cell molecular dynamics (or in stress calculation). "ecfixed" is the value (in Rydberg) of the constant-cutoff; "qcutz" and "q2sigma" are the height and the width (in Rydberg) of the energy step for reciprocal vectors whose square modulus is greater than "ecfixed". In the kinetic energy, G^2 is replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) ) See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995) } } var input_dft -type CHARACTER { default { read from pseudopotential files } info { Exchange-correlation functional: eg 'PBE', 'BLYP' etc See Modules/functionals.f90 for allowed values. Overrides the value read from pseudopotential files. Use with care and if you know what you are doing! } } var exx_fraction -type REAL { default { it depends on the specified functional } info { Fraction of EXX for hybrid functional calculations. In the case of input_dft='PBE0', the default value is 0.25, while for input_dft='B3LYP' the exx_fraction default value is 0.20. } } var screening_parameter -type REAL { default {0.106} info { screening_parameter for HSE like hybrid functionals. See J. Chem. Phys. 118, 8207 (2003) and J. Chem. Phys. 124, 219906 (2006) for more informations. } } var exxdiv_treatment -type CHARACTER { default {gygi-baldereschi} info { Specific for EXX. It selects the kind of approach to be used for treating the Coulomb potential divergencies at small q vectors. gygi-baldereschi : appropriate for cubic and quasi-cubic supercells vcut_spherical : appropriate for cubic and quasi-cubic supercells vcut_ws : appropriate for strongly anisotropic supercells, see also ecutvcut. none : sets Coulomb potential at G,q=0 to 0.0 (required for GAU-PBE) } } var x_gamma_extrapolation -type LOGICAL { default {.true.} info { Specific for EXX. If true, extrapolate the G=0 term of the potential (see README in examples/EXX_example for more) Set this to .false. for GAU-PBE. } } var ecutvcut -type REAL { default { 0.0 Ry }; see { exxdiv_treatment } info { Reciprocal space cutoff for correcting Coulomb potential divergencies at small q vectors. } } vargroup -type INTEGER { var nqx1 var nqx2 var nqx3 info { three-dimensional mesh for q (k1-k2) sampling of the Fock operator (EXX). Can be smaller than the number of k-points. Currently this defaults to the size of the k-point mesh used. In QE =< 5.0.2 it defaulted to nqx1=nqx2=nqx3=1. } } var lda_plus_u -type LOGICAL { default { .FALSE. } status { DFT+U (formerly known as LDA+U) currently works only for a few selected elements. Modify flib/set_hubbard_l.f90 and PW/src/tabd.f90 if you plan to use DFT+U with an element that is not configured there. } info { Specify lda_plus_u = .TRUE. to enable DFT+U calculations See: Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991); Anisimov et al., PRB 48, 16929 (1993); Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994). You must specify, for each species with a U term, the value of U and (optionally) alpha, J of the Hubbard model (all in eV): see lda_plus_u_kind, Hubbard_U, Hubbard_alpha, Hubbard_J } } var lda_plus_u_kind -type INTEGER { default { 0 } info { Specifies the type of DFT+U calculation: 0 simplified version of Cococcioni and de Gironcoli, PRB 71, 035105 (2005), using Hubbard_U 1 rotationally invariant scheme of Liechtenstein et al., using Hubbard_U and Hubbard_J } } dimension Hubbard_U -start 1 -end ntyp -type REAL { default { 0.D0 for all species } info { Hubbard_U(i): U parameter (eV) for species i, DFT+U calculation } } dimension Hubbard_J0 -start 1 -end ntype -type REAL { default { 0.D0 for all species } info { Hubbard_J0(i): J0 parameter (eV) for species i, DFT+U+J calculation, see PRB 84, 115108 (2011) for details. } } dimension Hubbard_alpha -start 1 -end ntyp -type REAL { default { 0.D0 for all species } info { Hubbard_alpha(i) is the perturbation (on atom i, in eV) used to compute U with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0) } } dimension Hubbard_beta -start 1 -end ntyp -type REAL { default { 0.D0 for all species } info { Hubbard_beta(i) is the perturbation (on atom i, in eV) used to compute J0 with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0). See also PRB 84, 115108 (2011). } } var Hubbard_J(i,ityp) { default { 0.D0 for all species } info { Hubbard_J(i,ityp): J parameters (eV) for species ityp, used in DFT+U calculations (only for lda_plus_u_kind=1) For p orbitals: J = Hubbard_J(1,ityp); For d orbitals: J = Hubbard_J(1,ityp), B = Hubbard_J(2,ityp); For f orbitals: J = Hubbard_J(1,ityp), E2 = Hubbard_J(2,ityp), E3= Hubbard_J(3,ityp). If B or E2 or E3 are not specified or set to 0 they will be calculated from J using atomic ratios. } } var starting_ns_eigenvalue(m,ispin,I) -type REAL { default { -1.d0 that means NOT SET } info { In the first iteration of an DFT+U run it overwrites the m-th eigenvalue of the ns occupation matrix for the ispin component of atomic species I. Leave unchanged eigenvalues that are not set. This is useful to suggest the desired orbital occupations when the default choice takes another path. } } var U_projection_type -type CHARACTER { default { 'atomic' } info { Only active when lda_plus_U is .true., specifies the type of projector on localized orbital to be used in the DFT+U scheme. Currently available choices: 'atomic': use atomic wfc's (as they are) to build the projector 'ortho-atomic': use Lowdin orthogonalized atomic wfc's 'norm-atomic': Lowdin normalization of atomic wfc. Keep in mind: atomic wfc are not orthogonalized in this case. This is a "quick and dirty" trick to be used when atomic wfc from the pseudopotential are not normalized (and thus produce occupation whose value exceeds unity). If orthogonalized wfc are not needed always try 'atomic' first. 'file': use the information from file "prefix".atwfc that must have been generated previously, for instance by pmw.x (see PP/src/poormanwannier.f90 for details). 'pseudo': use the pseudopotential projectors. The charge density outside the atomic core radii is excluded. N.B.: for atoms with +U, a pseudopotential with the all-electron atomic wavefunctions is required (i.e., as generated by ld1.x with lsave_wfc flag). NB: forces and stress currently implemented only for the 'atomic' and 'pseudo' choice. } } var edir -type INTEGER { info { The direction of the electric field or dipole correction is parallel to the bg(:,edir) reciprocal lattice vector, so the potential is constant in planes defined by FFT grid points; edir = 1, 2 or 3. Used only if tefield is .TRUE. } } var emaxpos -type REAL { default { 0.5D0 } info { Position of the maximum of the saw-like potential along crystal axis "edir", within the unit cell (see below), 0 < emaxpos < 1 Used only if tefield is .TRUE. } } var eopreg -type REAL { default { 0.1D0 } info { Zone in the unit cell where the saw-like potential decreases. ( see below, 0 < eopreg < 1 ). Used only if tefield is .TRUE. } } var eamp -type REAL { default { 0.001 a.u. } info { Amplitude of the electric field, in ***Hartree*** a.u.; 1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE. The saw-like potential increases with slope "eamp" in the region from (emaxpos+eopreg-1) to (emaxpos), then decreases to 0 until (emaxpos+eopreg), in units of the crystal vector "edir". Important: the change of slope of this potential must be located in the empty region, or else unphysical forces will result. } } dimension angle1 -start 1 -end ntyp -type REAL { info { The angle expressed in degrees between the initial magnetization and the z-axis. For noncollinear calculations only; index i runs over the atom types. } } dimension angle2 -start 1 -end ntyp -type REAL { info { The angle expressed in degrees between the projection of the initial magnetization on x-y plane and the x-axis. For noncollinear calculations only. } } var constrained_magnetization -type CHARACTER { see { lambda, fixed_magnetization } default { 'none' } info { Used to perform constrained calculations in magnetic systems. Currently available choices: 'none': no constraint 'total': total magnetization is constrained by adding a penalty functional to the total energy: LAMBDA * SUM_{i} ( magnetization(i) - fixed_magnetization(i) )**2 where the sum over i runs over the three components of the magnetization. Lambda is a real number (see below). Noncolinear case only. Use "tot_magnetization" for LSDA 'atomic': atomic magnetization are constrained to the defined starting magnetization adding a penalty: LAMBDA * SUM_{i,itype} ( magnetic_moment(i,itype) - mcons(i,itype) )**2 where i runs over the cartesian components (or just z in the collinear case) and itype over the types (1-ntype). mcons(:,:) array is defined from starting_magnetization, (and angle1, angle2 in the non-collinear case). lambda is a real number 'total direction': the angle theta of the total magnetization with the z axis (theta = fixed_magnetization(3)) is constrained: LAMBDA * ( arccos(magnetization(3)/mag_tot) - theta )**2 where mag_tot is the modulus of the total magnetization. 'atomic direction': not all the components of the atomic magnetic moment are constrained but only the cosine of angle1, and the penalty functional is: LAMBDA * SUM_{itype} ( mag_mom(3,itype)/mag_mom_tot - cos(angle1(ityp)) )**2 N.B.: symmetrization may prevent to reach the desired orientation of the magnetization. Try not to start with very highly symmetric configurations or use the nosym flag (only as a last remedy) } } dimension fixed_magnetization -start 1 -end 3 -type REAL { see { constrained_magnetization } default { 0.d0 } info { total magnetization vector (x,y,z components) to be kept fixed when constrained_magnetization='total' } } var lambda -type REAL { see { constrained_magnetization } default { 1.d0 } info { parameter used for constrained_magnetization calculations N.B.: if the scf calculation does not converge, try to reduce lambda to obtain convergence, then restart the run with a larger lambda } } var report -type INTEGER { default { 1 } info { It is the number of iterations after which the program write all the atomic magnetic moments. } } var lspinorb -type LOGICAL { info { if .TRUE. the noncollinear code can use a pseudopotential with spin-orbit. } } var assume_isolated -type CHARACTER { default { 'none' } info { Used to perform calculation assuming the system to be isolated (a molecule or a cluster in a 3D supercell). Currently available choices: 'none' (default): regular periodic calculation w/o any correction. 'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the total energy is computed. An estimate of the vacuum level is also calculated so that eigenvalues can be properly aligned. ONLY FOR CUBIC SYSTEMS (ibrav=1,2,3) Theory: G.Makov, and M.C.Payne, "Periodic boundary conditions in ab initio calculations" , Phys.Rev.B 51, 4014 (1995) 'martyna-tuckerman', 'm-t', 'mt' : Martyna-Tuckerman correction to both total energy and scf potential. Adapted from: G.J. Martyna, and M.E. Tuckerman, "A reciprocal space based method for treating long range interactions in ab-initio and force-field-based calculation in clusters", J.Chem.Phys. 110, 2810 (1999) 'esm' : Effective Screening Medium Method. For polarized or charged slab calculation, embeds the simulation cell within an effective semi- infinite medium in the perpendicular direction (along z). Embedding regions can be vacuum or semi-infinite metal electrodes (use 'esm_bc' to choose boundary conditions). If between two electrodes, an optional electric field ('esm_efield') may be applied. Method described in M. Otani and O. Sugino, "First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach," PRB 73, 115407 (2006). NB: Requires cell with a_3 lattice vector along z, normal to the xy plane, with the slab centered around z=0. Also requires symmetry checking to be disabled along z, either by setting 'nosym' = .TRUE. or by very slight displacement (i.e., 5e-4 a.u.) of the slab along z. See 'esm_bc', 'esm_efield', 'esm_w', 'esm_nfit'. } } var esm_bc -type CHARACTER { see { assume_isolated } default { 'pbc' } info { If assume_isolated = 'esm', determines the boundary conditions used for either side of the slab. Currently available choices: 'pbc' (default): regular periodic calculation (no ESM). 'bc1' : Vacuum-slab-vacuum (open boundary conditions) 'bc2' : Metal-slab-metal (dual electrode configuration). See also 'esm_efield'. 'bc3' : Vacuum-slab-metal } } var esm_w -type REAL { see { assume_isolated } default { 0.d0 } info { If assume_isolated = 'esm', determines the position offset [in a.u.] of the start of the effective screening region, measured relative to the cell edge. (ESM region begins at z = +/- [L_z/2 + esm_w] ). } } var esm_efield -type REAL { see { assume_isolated, esm_bc } default { 0.d0 } info { If assume_isolated = 'esm' and esm_bc = 'bc2', gives the magnitude of the electric field [Ry/a.u.] to be applied between semi-infinite ESM electrodes. } } var esm_nfit -type INTEGER { see { assume_isolated } default { 4 } info { If assume_isolated = 'esm', gives the number of z-grid points for the polynomial fit along the cell edge. } } var vdw_corr -type CHARACTER { default { 'none' } info { Type of Van der Waals correction. Allowed values: 'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d': semiempirical Grimme's DFT-D2. Optional variables: "london_s6", "london_rcut" S. Grimme, J. Comp. Chem. 27, 1787 (2006), V. Barone et al., J. Comp. Chem. 30, 934 (2009). 'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler': Tkatchenko-Scheffler dispersion corrections with first-principle derived C6 coefficients (implemented in CP only). Optional variables: "ts_vdw_econv_thr", "ts_vdw_isolated" See A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009) 'XDM', 'xdm': Exchange-hole dipole-moment model. Optional variables: "xdm_a1", "xdm_a2" A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007) A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 136, 174109 (2012) Note that non-local functionals (eg vdw-DF) are NOT specified here but in "input_dft" } } var london -type LOGICAL { default { .FALSE. } info { OBSOLESCENT, same as vdw_corr='DFT-D' } } var london_s6 -type REAL { default { 0.75 } info { global scaling parameter for DFT-D. Default is good for PBE. } } var london_rcut -type REAL { default { 200 } info { cutoff radius (a.u.) for dispersion interactions } } var xdm -type LOGICAL { default { .FALSE. } info { OBSOLESCENT, same as vdw_corr='xdm' } } var xdm_a1 -type REAL { default { 0.6836 } info { Damping function parameter a1 (adimensional). This value should change with the exchange-correlation functional. The default corresponds to PW86PBE. For other functionals, see: http://gatsby.ucmerced.edu/wiki/XDM_damping_function_parameters A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013) } } var xdm_a2 -type REAL { default { 1.5045 } info { Damping function parameter a2 (angstrom). This value should change with the exchange-correlation functional. The default corresponds to PW86PBE. For other functionals, see: http://gatsby.ucmerced.edu/wiki/XDM_damping_function_parameters A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013) } } } # # namelist ELECTRONS # namelist ELECTRONS { var electron_maxstep -type INTEGER { default { 100 } info { maximum number of iterations in a scf step } } var scf_must_converge -type LOGICAL { default { .TRUE. } info { If .false. do not stop molecular dynamics or ionic relaxation when electron_maxstep is reached. Use with care. } } var conv_thr -type REAL { default { 1.D-6 } info { Convergence threshold for selfconsistency: estimated energy error < conv_thr (note that conv_thr is extensive, like the total energy). For non-self-consistent calculations, conv_thr is used to set the default value of the threshold (ethr) for iterative diagonalizazion: see diago_thr_init } } var adaptive_thr -type LOGICAL { default { .FALSE } info { If .TRUE. this turns on the use of an adaptive conv_thr for the inner scf loops when using EXX. } } var conv_thr_init -type REAL { default { 1.D-3 } info { When adaptive_thr = .TRUE. this is the convergence threshold used for the first scf cycle. } } var conv_thr_multi -type REAL { default { 1.D-1 } info { When adaptive_thr = .TRUE. the convergence threshold for each scf cycle is given by: max( conv_thr, conv_thr_multi * dexx ) } } var mixing_mode -type CHARACTER { default { 'plain' } info { 'plain' : charge density Broyden mixing 'TF' : as above, with simple Thomas-Fermi screening (for highly homogeneous systems) 'local-TF': as above, with local-density-dependent TF screening (for highly inhomogeneous systems) } } var mixing_beta -type REAL { default { 0.7D0 } info { mixing factor for self-consistency } } var mixing_ndim -type INTEGER { default { 8 } info { number of iterations used in mixing scheme. If you are tight with memory, you may reduce it to 4 or so. } } var mixing_fixed_ns -type INTEGER { default { 0 } info { For DFT+U : number of iterations with fixed ns ( ns is the atomic density appearing in the Hubbard term ). } } var diagonalization -type CHARACTER { default { 'david' } info { 'david': Davidson iterative diagonalization with overlap matrix (default). Fast, may in some rare cases fail. 'cg' : conjugate-gradient-like band-by-band diagonalization Typically slower than 'david' but it uses less memory and is more robust (it seldom fails) 'cg-serial', 'david-serial': obsolete, use "-ndiag 1 instead" The subspace diagonalization in Davidson is performed by a fully distributed-memory parallel algorithm on 4 or more processors, by default. The allocated memory scales down with the number of procs. Procs involved in diagonalization can be changed with command-line option "-ndiag N". On multicore CPUs it is often convenient to let just one core per CPU to work on linear algebra. } } var ortho_para -type INTEGER { default { 0 } status { OBSOLETE: use command-line option " -ndiag XX" instead } info { } } var diago_thr_init -type REAL { info { Convergence threshold (ethr) for iterative diagonalization (the check is on eigenvalue convergence). For scf calculations: default is 1.D-2 if starting from a superposition of atomic orbitals; 1.D-5 if starting from a charge density. During self consistency the threshold is automatically reduced (but never below 1.D-13) when approaching convergence. For non-scf calculations: default is (conv_thr/N elec)/10. } } var diago_cg_maxiter -type INTEGER { info { For conjugate gradient diagonalization: max number of iterations } } var diago_david_ndim -type INTEGER { default { 4 } info { For Davidson diagonalization: dimension of workspace (number of wavefunction packets, at least 2 needed). A larger value may yield a somewhat faster algorithm but uses more memory. The opposite holds for smaller values. Try diago_david_ndim=2 if you are tight on memory or if your job is large: the speed penalty is often negligible } } var diago_full_acc -type LOGICAL { default { .FALSE. } info { If .TRUE. all the empty states are diagonalized at the same level of accuracy of the occupied ones. Otherwise the empty states are diagonalized using a larger threshold (this should not affect total energy, forces, and other ground-state properties). } } var efield -type REAL { default { 0.D0 } info { Amplitude of the finite electric field (in Ry a.u.; 1 a.u. = 36.3609*10^10 V/m). Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are not automatic. } } dimension efield_cart -start 1 -end 3 -type REAL { default { (0.D0, 0.D0, 0.D0) } info { Finite electric field (in Ry a.u.=36.3609*10^10 V/m) in cartesian axis. Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are automatic. } } var startingpot -type CHARACTER { info { 'atomic': starting potential from atomic charge superposition ( default for scf, *relax, *md ) 'file' : start from existing "charge-density.xml" file in the directory specified by variables "prefix" and "outdir" For nscf and bands calculation this is the default and the only sensible possibility. } } var startingwfc -type CHARACTER { default { 'atomic+random' } info { 'atomic': start from superposition of atomic orbitals If not enough atomic orbitals are available, fill with random numbers the remaining wfcs The scf typically starts better with this option, but in some high-symmetry cases one can "loose" valence states, ending up in the wrong ground state. 'atomic+random': as above, plus a superimposed "randomization" of atomic orbitals. Prevents the "loss" of states mentioned above. 'random': start from random wfcs. Slower start of scf but safe. It may also reduce memory usage in conjunction with diagonalization='cg' 'file': start from an existing wavefunction file in the directory specified by variables "prefix" and "outdir" } } var tqr -type LOGICAL { default { .FALSE. } info { If .true., use the real-space algorithm for augmentation charges in ultrasoft pseudopotentials. Must faster execution of ultrasoft-related calculations, but numerically less accurate than the default algorithm. Use with care and after testing! } } } # # NAMELIST IONS # namelist IONS { label { input this namelist only if calculation = 'relax', 'md', 'vc-relax', 'vc-md' } var ion_dynamics -type CHARACTER { info { Specify the type of ionic dynamics. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm, based on the trust radius procedure, for structural relaxation 'damp' : use damped (quick-min Verlet) dynamics for structural relaxation Can be used for constrained optimisation: see CONSTRAINTS card CASE ( calculation = 'md' ) 'verlet' : (default) use Verlet algorithm to integrate Newton's equation. For constrained dynamics, see CONSTRAINTS card 'langevin' ion dynamics is over-damped Langevin 'langevin-smc' over-damped Langevin with Smart Monte Carlo: see R.J.Rossky, JCP, 69, 4628(1978) CASE ( calculation = 'vc-relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm; cell_dynamics must be 'bfgs' too 'damp' : use damped (Beeman) dynamics for structural relaxation CASE ( calculation = 'vc-md' ) 'beeman' : (default) use Beeman algorithm to integrate Newton's equation } } var ion_positions -type CHARACTER { default { 'default' } info { 'default ' : if restarting, use atomic positions read from the restart file; in all other cases, use atomic positions from standard input. 'from_input' : restart the simulation with atomic positions read from standard input, even if restarting. } } var phase_space -type CHARACTER { default { 'full' } info { 'full' : the full phase-space is used for the ionic dynamics. 'coarse-grained' : a coarse-grained phase-space, defined by a set of constraints, is used for the ionic dynamics (used for calculation of free-energy barriers) } } var pot_extrapolation -type CHARACTER { default { 'atomic' } info { Used to extrapolate the potential from preceding ionic steps. 'none' : no extrapolation 'atomic' : extrapolate the potential as if it was a sum of atomic-like orbitals 'first_order' : extrapolate the potential with first-order formula 'second_order': as above, with second order formula Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations } } var wfc_extrapolation -type CHARACTER { default { 'none' } info { Used to extrapolate the wavefunctions from preceding ionic steps. 'none' : no extrapolation 'first_order' : extrapolate the wave-functions with first-order formula. 'second_order': as above, with second order formula. Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations } } var remove_rigid_rot -type LOGICAL { default { .FALSE. } info { This keyword is useful when simulating the dynamics and/or the thermodynamics of an isolated system. If set to true the total torque of the internal forces is set to zero by adding new forces that compensate the spurious interaction with the periodic images. This allows for the use of smaller supercells. BEWARE: since the potential energy is no longer consistent with the forces (it still contains the spurious interaction with the repeated images), the total energy is not conserved anymore. However the dynamical and thermodynamical properties should be in closer agreement with those of an isolated system. Also the final energy of a structural relaxation will be higher, but the relaxation itself should be faster. } } group { label { keywords used for molecular dynamics } var ion_temperature -type CHARACTER { default { 'not_controlled' } info { 'rescaling' control ionic temperature via velocity rescaling (first method) see parameters "tempw", "tolp", and "nraise" (for VC-MD only). This rescaling method is the only one currently implemented in VC-MD 'rescale-v' control ionic temperature via velocity rescaling (second method) see parameters "tempw" and "nraise" 'rescale-T' control ionic temperature via velocity rescaling (third method) see parameter "delta_t" 'reduce-T' reduce ionic temperature every "nraise" steps by the (negative) value "delta_t" 'berendsen' control ionic temperature using "soft" velocity rescaling - see parameters "tempw" and "nraise" 'andersen' control ionic temperature using Andersen thermostat see parameters "tempw" and "nraise" 'initial' initialize ion velocities to temperature "tempw" and leave uncontrolled further on 'not_controlled' (default) ionic temperature is not controlled } } var tempw -type REAL { default { 300.D0 } info { Starting temperature (Kelvin) in MD runs target temperature for most thermostats. } } var tolp -type REAL { default { 100.D0 } info { Tolerance for velocity rescaling. Velocities are rescaled if the run-averaged and target temperature differ more than tolp. } } var delta_t -type REAL { default { 1.D0 } info { if ion_temperature='rescale-T': at each step the instantaneous temperature is multiplied by delta_t; this is done rescaling all the velocities. if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (i.e. delta_t < 0 is added to T) The instantaneous temperature is calculated at the end of every ionic move and BEFORE rescaling. This is the temperature reported in the main output. For delta_t < 0, the actual average rate of heating or cooling should be roughly C*delta_t/(nraise*dt) (C=1 for an ideal gas, C=0.5 for a harmonic solid, theorem of energy equipartition between all quadratic degrees of freedom). } } var nraise -type INTEGER { default { 1 } info { if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (.e. delta_t is added to the temperature) if ion_temperature='rescale-v': every 'nraise' steps the average temperature, computed from the last nraise steps, is rescaled to tempw if ion_temperature='rescaling' and calculation='vc-md': every 'nraise' steps the instantaneous temperature is rescaled to tempw if ion_temperature='berendsen': the "rise time" parameter is given in units of the time step: tau = nraise*dt, so dt/tau = 1/nraise if ion_temperature='andersen': the "collision frequency" parameter is given as nu=1/tau defined above, so nu*dt = 1/nraise } } var refold_pos -type LOGICAL { default { .FALSE. } info { This keyword applies only in the case of molecular dynamics or damped dynamics. If true the ions are refolded at each step into the supercell. } } } group { label { keywords used only in BFGS calculations } var upscale -type REAL { default { 100.D0 } info { Max reduction factor for conv_thr during structural optimization conv_thr is automatically reduced when the relaxation approaches convergence so that forces are still accurate, but conv_thr will not be reduced to less that conv_thr / upscale. } } var bfgs_ndim -type INTEGER { default { 1 } info { Number of old forces and displacements vectors used in the PULAY mixing of the residual vectors obtained on the basis of the inverse hessian matrix given by the BFGS algorithm. When bfgs_ndim = 1, the standard quasi-Newton BFGS method is used. (bfgs only) } } var trust_radius_max -type REAL { default { 0.8D0 } info { Maximum ionic displacement in the structural relaxation. (bfgs only) } } var trust_radius_min -type REAL { default { 1.D-3 } info { Minimum ionic displacement in the structural relaxation BFGS is reset when trust_radius < trust_radius_min. (bfgs only) } } var trust_radius_ini -type REAL { default { 0.5D0 } info { Initial ionic displacement in the structural relaxation. (bfgs only) } } var w_1 -type REAL { default { 0.01D0 }; see { w_2 } } var w_2 -type REAL { default { 0.5D0 } info { Parameters used in line search based on the Wolfe conditions. (bfgs only) } } } } # # namelist CELL # namelist CELL { label { input this namelist only if calculation = 'vc-relax', 'vc-md' } var cell_dynamics -type CHARACTER { info { Specify the type of dynamics for the cell. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'vc-relax' ) 'none': no dynamics 'sd': steepest descent ( not implemented ) 'damp-pr': damped (Beeman) dynamics of the Parrinello-Rahman extended lagrangian 'damp-w': damped (Beeman) dynamics of the new Wentzcovitch extended lagrangian 'bfgs': BFGS quasi-newton algorithm (default) ion_dynamics must be 'bfgs' too CASE ( calculation = 'vc-md' ) 'none': no dynamics 'pr': (Beeman) molecular dynamics of the Parrinello-Rahman extended lagrangian 'w': (Beeman) molecular dynamics of the new Wentzcovitch extended lagrangian } } var press -type REAL { default { 0.D0 } info { Target pressure [KBar] in a variable-cell md or relaxation run. } } var wmass -type REAL { default { 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD } info { Fictitious cell mass [amu] for variable-cell simulations (both 'vc-md' and 'vc-relax') } } var cell_factor -type REAL { default { 1.2D0 } info { Used in the construction of the pseudopotential tables. It should exceed the maximum linear contraction of the cell during a simulation. } } var press_conv_thr -type REAL { default { 0.5D0 Kbar } info { Convergence threshold on the pressure for variable cell relaxation ('vc-relax' : note that the other convergence thresholds for ionic relaxation apply as well). } } var cell_dofree -type CHARACTER { default { 'all' } info { Select which of the cell parameters should be moved: all = all axis and angles are moved x = only the x component of axis 1 (v1_x) is moved y = only the y component of axis 2 (v2_y) is moved z = only the z component of axis 3 (v3_z) is moved xy = only v1_x and v2_y are moved xz = only v1_x and v3_z are moved yz = only v2_y and v3_z are moved xyz = only v1_x, v2_y, v3_z are moved shape = all axis and angles, keeping the volume fixed volume = the volume changes, keeping all angles fixed (i.e. only celldm(1) changes) 2Dxy = only x and y components are allowed to change 2Dshape = as above, keeping the area in xy plane fixed BEWARE: if axis are not orthogonal, some of these options do not work (symmetry is broken). If you are not happy with them, edit subroutine init_dofree in file Modules/cell_base.f90 } } } # # card ATOMIC_SPECIES # card ATOMIC_SPECIES { syntax { table atomic_species { rows -start 1 -end ntyp { col X -type CHARACTER { info { label of the atom. Acceptable syntax: chemical symbol X (1 or 2 characters, case-insensitive) or "Xn", n=0,..., 9; "X_*", "X-*" (e.g. C1, As_h) } } col Mass_X -type REAL { info { mass of the atomic species [amu: mass of C = 12] Used only when performing Molecular Dynamics run or structural optimization runs using Damped MD. Not actually used in all other cases (but stored in data files, so phonon calculations will use these values unless other values are provided) } } col PseudoPot_X -type CHARACTER { info { File containing PP for this species. The pseudopotential file is assumed to be in the new UPF format. If it doesn't work, the pseudopotential format is determined by the file name: *.vdb or *.van Vanderbilt US pseudopotential code *.RRKJ3 Andrea Dal Corso's code (old format) none of the above old PWscf norm-conserving format } } } } } } # # card ATOMIC_POSITIONS # card ATOMIC_POSITIONS { flag atompos_unit -use optional { enum { alat | bohr | angstrom | crystal } default { alat (DEPRECATED) } info { alat : atomic positions are in cartesian coordinates, in units of the lattice parameter (either celldm(1) or A). If no option is specified, 'alat' is assumed; not specifying units is DEPRECATED and will no longer be allowed in the future bohr : atomic positions are in cartesian coordinate, in atomic units (i.e. Bohr radii) angstrom: atomic positions are in cartesian coordinates, in Angstrom crystal : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice vectors as defined either in card CELL_PARAMETERS or via the ibrav + celldm / a,b,c... variables } } choose { when -test "calculation == 'bands' OR calculation == 'nscf'" { message { Specified atomic positions will be IGNORED and those from the previous scf calculation will be used instead !!! } } elsewhen { syntax { table atomic_coordinates { rows -start 1 -end nat { col X -type CHARACTER { info { label of the atom as specified in ATOMIC_SPECIES } } colgroup -type REAL { info { atomic positions NOTE: each atomic coordinate can also be specified as a simple algebraic expression. To be interpreted correctly expression must NOT contain any blank space and must NOT start with a "+" sign. The available expressions are: + (plus), - (minus), / (division), * (multiplication), ^ (power) All numerical constants included are considered as double-precision numbers; i.e. 1/2 is 0.5, not zero. Other functions, such as sin, sqrt or exp are not available, although sqrt can be replaced with ^(1/2). Example: C 1/3 1/2*3^(-1/2) 0 is equivalent to C 0.333333 0.288675 0.000000 Please note that this feature is NOT supported by XCrysDen (which will display a wrong structure, or nothing at all). } col x col y col z } optional { colgroup -type INTEGER { info { component i of the force for this atom is multiplied by if_pos(i), which must be either 0 or 1. Used to keep selected atoms and/or selected components fixed in MD dynamics or structural optimization run. } default { 1 } col if_pos(1) col if_pos(2) col if_pos(3) } } } } } } } } # # K_POINTS # card K_POINTS { flag kpoint_type -use optional { enum { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } default { tbipa } info { tpiba : read k-points in cartesian coordinates, in units of 2 pi/a (default) automatic: automatically generated uniform grid of k-points, i.e, generates ( nk1, nk2, nk3 ) grid with ( sk1, sk2, sk3 ) offset. nk1, nk2, nk3 as in Monkhorst-Pack grids k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ) BEWARE: only grids having the full symmetry of the crystal work with tetrahedra. Some grids with offset may not work. crystal : read k-points in crystal coordinates, i.e. in relative coordinates of the reciprocal lattice vectors gamma : use k = 0 (no need to list k-point specifications after card) In this case wavefunctions can be chosen as real, and specialized subroutines optimized for calculations at the gamma point are used (memory and cpu requirements are reduced by approximately one half). tpiba_b : Used for band-structure plots. k-points are in units of 2 pi/a. nks points specify nks-1 lines in reciprocal space. Every couple of points identifies the initial and final point of a line. pw.x generates N intermediate points of the line where N is the weight of the first point. crystal_b: as tpiba_b, but k-points are in crystal coordinates. tpiba_c : Used for band-structure contour plots. k-points are in units of 2 pi/a. nks must be 3. 3 k-points k_0, k_1, and k_2 specify a rectangle in reciprocal space of vertices k_0, k_1, k_2, k_1 + k_2 - k_0: k_0 + \alpha (k_1-k_0)+ \beta (k_2-k_0) with 0<\alpha,\beta < 1. The code produces a uniform mesh n1 x n2 k points in this rectangle. n1 and n2 are the weights of k_1 and k_2. The weight of k_0 is not used. crystal_c: as tpiba_c, but k-points are in crystal coordinates. } } choose { when -test "tpiba OR crystal OR tpiba_b OR crystal_b OR tpiba_c OR crystal_c" { syntax -flag {tpiba | crystal | tpiba_b | crystal_b | tpiba_c | crystal_c } { line { var nks -type INTEGER { info {Number of supplied special k-points.} } } table kpoints { rows -start 1 -end nks { colgroup -type REAL { col xk_x col xk_y col xk_z col wk info { Special k-points (xk_x/y/z) in the irreducible Brillouin Zone (IBZ) of the lattice (with all symmetries) and weights (wk) See the literature for lists of special points and the corresponding weights. If the symmetry is lower than the full symmetry of the lattice, additional points with appropriate weights are generated. Notice that such procedure assumes that ONLY k-points in the IBZ are provided in input In a non-scf calculation, weights do not affect the results. If you just need eigenvalues and eigenvectors (for instance, for a band-structure plot), weights can be set to any value (for instance all equal to 1). } } } } } } elsewhen -test "automatic" { syntax -flag {automatic} { line { vargroup -type INTEGER { var nk1 var nk2 var nk3 info { These parameters specify the k-point grid (nk1 x nk2 x nk3) as in Monkhorst-Pack grids. } } vargroup -type INTEGER { var sk1 var sk2 var sk3 info { The grid offsets; sk1, sk2, sk3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ). } } } } } elsewhen -test "gamma" { syntax -flag {gamma} {} } } } # # CELL_PARAMETERS # card CELL_PARAMETERS { flag lattice_type -use optional { enum { alat | bohr | angstrom } info { 'bohr'/'angstrom': lattice vectors in bohr radii / angstrom. In this case the lattice parameter alat = sqrt(v1*v1). 'alat' / nothing specified: lattice vectors in units of the lattice parameter (either celldm(1) or a). Not specifying units is DEPRECATED and will not be allowed in the future. If nothing specified and no lattice parameter specified, 'bohr' is assumed - DEPRECATED, will no longer be allowed } } label { Optional card, needed only if ibrav = 0 is specified, ignored otherwise ! } syntax { table lattice { cols -start 1 -end 3 { rowgroup -type REAL { info { Crystal lattice vectors (in cartesian axis): v1(1) v1(2) v1(3) ... 1st lattice vector v2(1) v2(2) v2(3) ... 2nd lattice vector v3(1) v3(2) v3(3) ... 3rd lattice vector } row v1 row v2 row v3 } } } } } # # CONSTRAINTS # card CONSTRAINTS { label { Optional card, used for constrained dynamics or constrained optimisations (only if ion_dynamics='damp' or 'verlet', variable-cell excepted) } message { When this card is present the SHAKE algorithm is automatically used. } syntax { line { var nconstr -type INTEGER { info { Number of constraints. } } optional { var constr_tol -type REAL { info { Tolerance for keeping the constraints satisfied. } } } } table constraints_table { rows -start 1 -end nconstr { col constr_type -type CHARACTER { info { Type of constrain : 'type_coord' : constraint on global coordination-number, i.e. the average number of atoms of type B surrounding the atoms of type A. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'atom_coord' : constraint on local coordination-number, i.e. the average number of atoms of type A surrounding a specific atom. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'distance' : constraint on interatomic distance (two atom indexes must be specified). 'planar_angle' : constraint on planar angle (three atom indexes must be specified). 'torsional_angle' : constraint on torsional angle (four atom indexes must be specified). 'bennett_proj' : constraint on the projection onto a given direction of the vector defined by the position of one atom minus the center of mass of the others. G.Roma,J.P.Crocombette: J.Nucl.Mater.403,32(2010) } } colgroup { col constr(1) col constr(2) conditional { col constr(3) col constr(4) } info { These variables have different meanings for different constraint types: 'type_coord' : constr(1) is the first index of the atomic type involved constr(2) is the second index of the atomic type involved constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'atom_coord' : constr(1) is the atom index of the atom with constrained coordination constr(2) is the index of the atomic type involved in the coordination constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'distance' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD 'planar_angle', 'torsional_angle' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD (beware the order) 'bennett_proj' : constr(1) is the index of the atom whose position is constrained. constr(2:4) are the three coordinates of the vector that specifies the constraint direction. } } optional { col constr_target -type REAL { info { Target for the constrain ( angles are specified in degrees ). This variable is optional. } } } } } } } # # card OCCUPATIONS # card OCCUPATIONS { label { Optional card, used only if occupations = 'from_input', ignored otherwise ! } syntax { table occupations_table { cols -start 1 -end nbnd { row f_inp1 -type REAL { info { Occupations of individual states (MAX 10 PER ROW). For spin-polarized calculations, these are majority spin states. } } conditional { row f_inp2 -type REAL { info { Occupations of minority spin states (MAX 10 PER ROW) To be specified only for spin-polarized calculations. } } } } } } } # # card ATOMIC_FORCES # card ATOMIC_FORCES { label { Optional card used to specify external forces acting on atoms } syntax { table atomic_forces { rows -start 1 -end nat { col X -type CHARACTER { info { label of the atom as specified in ATOMIC_SPECIES } } colgroup -type REAL { info { external force on atom X (cartesian components, Ry/a.u. units) } col fx col fy col fz } } } } } } espresso-5.1/PW/Doc/user_guide.log0000644000175000017500000004200112341373154015173 0ustar mbambaThis is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=pdflatex 2013.10.8) 28 MAY 2014 16:45 entering extended mode restricted \write18 enabled. %&-line parsing enabled. **user_guide.tex (./user_guide.tex LaTeX2e <2011/06/27> Babel and hyphenation patterns for english, dumylang, nohyphenation, it alian, loaded. (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo File: size12.clo 2007/10/19 v1.4h Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf/tex/latex/html/html.sty (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty Package: hyperref 2012/05/13 v6.82q Hypertext links for LaTeX (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty Package: hobsub-hyperref 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty Package: hobsub-generic 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO) Package: hobsub 2012/05/28 v1.13 Construct package bundles (HO) Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO) Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO) Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO) Package ifluatex Info: LuaTeX not detected. Package: ifvtex 2010/03/01 v1.5 Detect VTeX and its facilities (HO) Package ifvtex Info: VTeX not detected. Package: intcalc 2007/09/27 v1.1 Expandable calculations with integers (HO) Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO) Package ifpdf Info: pdfTeX in PDF mode is detected. Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO) Package etexcmds Info: Could not find \expanded. (etexcmds) That can mean that you are not using pdfTeX 1.50 or (etexcmds) that some package has redefined \expanded. (etexcmds) In the latter case, load this package earlier. Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO) Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO) Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO ) Package pdftexcmds Info: LuaTeX not detected. Package pdftexcmds Info: \pdf@primitive is available. Package pdftexcmds Info: \pdf@ifprimitive is available. Package pdftexcmds Info: \pdfdraftmode found. Package: pdfescape 2011/11/25 v1.13 Implements pdfTeX's escape features (HO) Package: bigintcalc 2012/04/08 v1.3 Expandable calculations on big integers (HO ) Package: bitset 2011/01/30 v1.1 Handle bit-vector datatype (HO) Package: uniquecounter 2011/01/30 v1.2 Provide unlimited unique counter (HO) ) Package hobsub Info: Skipping package `hobsub' (already loaded). Package: letltxmacro 2010/09/02 v1.4 Let assignment for LaTeX macros (HO) Package: hopatch 2012/05/28 v1.2 Wrapper for package hooks (HO) Package: xcolor-patch 2011/01/30 xcolor patch Package: atveryend 2011/06/30 v1.8 Hooks at the very end of document (HO) Package atveryend Info: \enddocument detected (standard20110627). Package: atbegshi 2011/10/05 v1.16 At begin shipout hook (HO) Package: refcount 2011/10/16 v3.4 Data extraction from label references (HO) Package: hycolor 2011/01/30 v1.7 Color options for hyperref/bookmark (HO) ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) (/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO) ) \@linkdim=\dimen103 \Hy@linkcounter=\count87 \Hy@pagecounter=\count88 (/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2012/05/13 v6.82q Hyperref: PDFDocEncoding definition (HO) ) \Hy@SavedSpaceFactor=\count89 (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive ) Package hyperref Info: Hyper figures OFF on input line 4062. Package hyperref Info: Link nesting OFF on input line 4067. Package hyperref Info: Hyper index ON on input line 4070. Package hyperref Info: Plain pages OFF on input line 4077. Package hyperref Info: Backreferencing OFF on input line 4082. Package hyperref Info: Implicit mode ON; LaTeX internals redefined. Package hyperref Info: Bookmarks ON on input line 4300. \c@Hy@tempcnt=\count90 (/usr/share/texlive/texmf-dist/tex/latex/url/url.sty \Urlmuskip=\muskip10 Package: url 2006/04/12 ver 3.3 Verb mode for urls, etc. ) LaTeX Info: Redefining \url on input line 4653. \Fld@menulength=\count91 \Field@Width=\dimen104 \Fld@charsize=\dimen105 Package hyperref Info: Hyper figures OFF on input line 5773. Package hyperref Info: Link nesting OFF on input line 5778. Package hyperref Info: Hyper index ON on input line 5781. Package hyperref Info: backreferencing OFF on input line 5788. Package hyperref Info: Link coloring OFF on input line 5793. Package hyperref Info: Link coloring with OCG OFF on input line 5798. Package hyperref Info: PDF/A mode OFF on input line 5803. LaTeX Info: Redefining \ref on input line 5843. LaTeX Info: Redefining \pageref on input line 5847. \Hy@abspage=\count92 \c@Item=\count93 \c@Hfootnote=\count94 ) Package hyperref Message: Driver: hpdftex. (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def File: hpdftex.def 2012/05/13 v6.82q Hyperref driver for pdfTeX \Fld@listcount=\count95 \c@bookmark@seq@number=\count96 (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty Package: rerunfilecheck 2011/04/15 v1.7 Rerun checks for auxiliary files (HO) Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 82. ) \Hy@SectionHShift=\skip43 ) Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count97 \c@lchapter=\count98 \c@chapter=\count99 \c@lsection=\count100 \c@lsubsection=\count101 \c@lsubsubsection=\count102 \c@lparagraph=\count103 \c@lsubparagraph=\count104 \c@lsubsubparagraph=\count105 \ptrfile=\write3 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live ) Package graphics Info: Driver file: pdftex.def on input line 91. (/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX \Gread@gobject=\count106 )) \Gin@req@height=\dimen106 \Gin@req@width=\dimen107 ) (./user_guide.aux) \openout1 = `user_guide.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. \AtBeginShipoutBox=\box26 Package hyperref Info: Link coloring OFF on input line 28. (/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty Package: nameref 2010/04/30 v2.40 Cross-referencing by name of section (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/gettitlestring.sty Package: gettitlestring 2010/12/03 v1.4 Cleanup title references (HO) ) \c@section@level=\count107 ) LaTeX Info: Redefining \ref on input line 28. LaTeX Info: Redefining \pageref on input line 28. LaTeX Info: Redefining \nameref on input line 28. (./user_guide.out) (./user_guide.out) \@outlinefile=\write4 \openout4 = `user_guide.out'. (/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii [Loading MPS to PDF converter (version 2006.09.02).] \scratchcounter=\count108 \scratchdimen=\dimen108 \scratchbox=\box27 \nofMPsegments=\count109 \nofMParguments=\count110 \everyMPshowfont=\toks15 \MPscratchCnt=\count111 \MPscratchDim=\dimen109 \MPnumerator=\count112 \makeMPintoPDFobject=\count113 \everyMPtoPDFconversion=\toks16 ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO) ) Package grfext Info: Graphics extension search list: (grfext) [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE G,.JBIG2,.JB2,.eps] (grfext) \AppendGraphicsExtensions on input line 452. (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv e )) <../../Doc/quantum_espresso.pdf, id=88, 532.99126pt x 181.67876pt> File: ../../Doc/quantum_espresso.pdf Graphic file (type pdf) Package pdftex.def Info: ../../Doc/quantum_espresso.pdf used on input line 61. (pdftex.def) Requested size: 142.26378pt x 48.49115pt. <../../Doc/democritos.pdf, id=89, 262.9825pt x 76.285pt> File: ../../Doc/democritos.pdf Graphic file (type pdf) Package pdftex.def Info: ../../Doc/democritos.pdf used on input line 61. (pdftex.def) Requested size: 170.71652pt x 49.52296pt. LaTeX Font Info: External font `cmex10' loaded for size (Font) <14.4> on input line 61. LaTeX Font Info: External font `cmex10' loaded for size (Font) <7> on input line 61. (./user_guide.toc LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 2. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 2. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 2. LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <12> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 6. ) \tf@toc=\write5 \openout5 = `user_guide.toc'. [1 {/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map} <../../Doc/quantum_espresso .pdf> <../../Doc/democritos.pdf>] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <14.4> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 86. LaTeX Font Info: Try loading font information for OMS+cmr on input line 94. (/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 94. [2] Overfull \hbox (0.12177pt too wide) in paragraph at lines 171--175 []\OT1/cmr/m/n/12 Minoru Otani (AIST), Yoshio Miura (To-hoku U.), Nicephore Bon et (MIT), Nicola Marzari [] [3] [4] [5] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <17.28> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 269. Overfull \hbox (17.24237pt too wide) in paragraph at lines 271--276 \OT1/cmr/m/n/12 by An-ton Kokalj, in-cluded in the \OT1/cmr/m/sc/12 Quan-tum ES PRESSO \OT1/cmr/m/n/12 dis-tri-bu-tion. See \OT1/cmtt/m/n/12 PWgui-x.y.z/INSTAL L [] Underfull \hbox (badness 10000) in paragraph at lines 333--338 [] [6] Overfull \hbox (11.05257pt too wide) in paragraph at lines 357--366 \OT1/cmtt/m/n/12 prefix='pwscf'\OT1/cmr/m/n/12 ). \OT1/cmtt/m/n/12 outdir \OT1/ cmr/m/n/12 can be spec-i-fied as well in en-vi-ron-ment vari-able ESPRESSO[]TMP DIR. [] [7] Overfull \hbox (3.88734pt too wide) in paragraph at lines 460--463 []\OT1/cmr/bx/n/12 Dispersion in-ter-ac-tion with non-local func-tional (vd-wD F)[] \OT1/cmr/m/n/12 See ex-am-ple \OT1/cmtt/m/n/12 vdwDF[]example [] Overfull \hbox (12.57196pt too wide) in paragraph at lines 482--487 \OT1/cmr/m/n/12 137205 (2005)] for in-su-la-tors. The cal-cu-la-tion is per-for med by set-ting in-put vari-able \OT1/cmtt/m/n/12 lorbm=.true. [] [8] Overfull \hbox (4.4081pt too wide) in paragraph at lines 518--533 []\OT1/cmr/bx/n/12 Variable-cell op-ti-miza-tion[] \OT1/cmr/m/n/12 Since v.4.2 the newer BFGS al-go-rithm cov-ers the case of variable- [] [9] [10] [11] [12] LaTeX Warning: Reference `SubSec:para' on page 13 undefined on input line 773. [13] Overfull \hbox (21.37143pt too wide) in paragraph at lines 826--834 \OT1/cmr/m/n/12 on the avail-able com-mu-ni-ca-tion hard-ware. For PC clus-ters , Open-MPI (\OT1/cmtt/m/n/12 http://www.openmpi.org/\OT1/cmr/m/n/12 ) [] [14] [15] [16] LaTeX Warning: Reference `SubSec:para' on page 17 undefined on input line 1029. [17] [18] Overfull \hbox (55.83171pt too wide) in paragraph at lines 1127--1131 []\OT1/cmr/m/n/12 Reduce the work space for David-son di-ag-o-nal-iza-tion to t he min-i-mum by set-ting \OT1/cmtt/m/n/12 diago[]david[]ndim=2\OT1/cmr/m/n/12 ; [] [19] [20] [21] [22] [23] Overfull \hbox (29.32014pt too wide) in paragraph at lines 1439--1441 []\OT1/cmr/m/n/12 use a symmetry-conserving al-go-rithm: the Wentz-cov-itch al- go-rithm (\OT1/cmtt/m/n/12 cell dynamics='damp-w'\OT1/cmr/m/n/12 ) [] Overfull \hbox (96.75345pt too wide) in paragraph at lines 1454--1454 []\OT1/cmtt/m/n/12 #define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (typeof(pt r)) calloc(nelem, sizeof(*(ptr))))[] [] Overfull \hbox (22.65341pt too wide) in paragraph at lines 1454--1454 []\OT1/cmtt/m/n/12 #define srenew(ptr,nelem) (ptr)= (typeof(ptr)) realloc(ptr,( nelem)*sizeof(*(ptr)))[] [] Overfull \hbox (59.70343pt too wide) in paragraph at lines 1459--1459 []\OT1/cmtt/m/n/12 #define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (void*) ca lloc(nelem, sizeof(*(ptr))))[] [] [24] Overfull \hbox (41.17842pt too wide) in paragraph at lines 1472--1472 []\OT1/cmtt/m/n/12 void meta_force_calculation_(real *cell, int *istep, real *x xx, real *yyy, real *zzz,[] [] Overfull \hbox (35.00342pt too wide) in paragraph at lines 1476--1476 []\OT1/cmtt/m/n/12 void meta_force_calculation(real *cell, int *istep, real *xx x, real *yyy, real *zzz,[] [] Package atveryend Info: Empty hook `BeforeClearDocument' on input line 1483. [25] Package atveryend Info: Empty hook `AfterLastShipout' on input line 1483. (./user_guide.aux) Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 1483. Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 1483. Package rerunfilecheck Info: File `user_guide.out' has not changed. (rerunfilecheck) Checksum: D946E5E88DC0038D90D101FCA5AD2262;1366. LaTeX Warning: There were undefined references. Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 1483. ) Here is how much of TeX's memory you used: 5397 strings out of 495048 78838 string characters out of 3181554 161043 words of memory out of 3000000 8464 multiletter control sequences out of 15000+200000 10790 words of font info for 39 fonts, out of 3000000 for 9000 14 hyphenation exceptions out of 8191 36i,6n,28p,362b,441s stack positions out of 5000i,500n,10000p,200000b,50000s Output written on user_guide.pdf (25 pages, 295370 bytes). PDF statistics: 362 PDF objects out of 1000 (max. 8388607) 312 compressed objects within 4 object streams 99 named destinations out of 1000 (max. 500000) 179 words of extra memory for PDF output out of 10000 (max. 10000000) espresso-5.1/PW/Doc/user_guide.toc0000644000175000017500000001406612341373154015211 0ustar mbamba\contentsline {section}{\numberline {1}Introduction}{1}{section.1} \contentsline {subsection}{\numberline {1.1}What can \texttt {PWscf}\ do}{2}{subsection.1.1} \contentsline {subsection}{\numberline {1.2}People}{2}{subsection.1.2} \contentsline {subsection}{\numberline {1.3}Terms of use}{4}{subsection.1.3} \contentsline {section}{\numberline {2}Compilation}{4}{section.2} \contentsline {section}{\numberline {3}Using \texttt {PWscf}}{6}{section.3} \contentsline {subsection}{\numberline {3.1}Input data}{6}{subsection.3.1} \contentsline {subsection}{\numberline {3.2}Data files}{7}{subsection.3.2} \contentsline {subsection}{\numberline {3.3}Electronic structure calculations}{7}{subsection.3.3} \contentsline {paragraph}{Single-point (fixed-ion) SCF calculation}{7}{section*.2} \contentsline {paragraph}{Band structure calculation}{7}{section*.3} \contentsline {paragraph}{Noncollinear magnetization, spin-orbit interactions}{7}{section*.4} \contentsline {paragraph}{DFT+U}{8}{section*.5} \contentsline {paragraph}{Dispersion Interactions (DFT-D)}{8}{section*.6} \contentsline {paragraph}{Hartree-Fock and Hybrid functionals}{8}{section*.7} \contentsline {paragraph}{Dispersion interaction with non-local functional (vdwDF)}{8}{section*.8} \contentsline {paragraph}{Polarization via Berry Phase}{8}{section*.9} \contentsline {paragraph}{Finite electric fields}{8}{section*.10} \contentsline {paragraph}{Orbital magnetization}{9}{section*.11} \contentsline {subsection}{\numberline {3.4}Optimization and dynamics}{9}{subsection.3.4} \contentsline {paragraph}{Structural optimization}{9}{section*.12} \contentsline {paragraph}{Molecular Dynamics}{9}{section*.13} \contentsline {paragraph}{Free-energy surface calculations}{9}{section*.14} \contentsline {paragraph}{Variable-cell optimization}{9}{section*.15} \contentsline {paragraph}{Variable-cell molecular dynamics}{9}{section*.16} \contentsline {subsection}{\numberline {3.5}Direct interface with \texttt {CASINO}}{10}{subsection.3.5} \contentsline {paragraph}{Practicalities}{10}{section*.17} \contentsline {paragraph}{How to generate \texttt {xwfn.data} files with \texttt {PWscf}}{10}{section*.18} \contentsline {section}{\numberline {4}Performances}{12}{section.4} \contentsline {subsection}{\numberline {4.1}Execution time}{12}{subsection.4.1} \contentsline {subsection}{\numberline {4.2}Memory requirements}{13}{subsection.4.2} \contentsline {subsection}{\numberline {4.3}File space requirements}{13}{subsection.4.3} \contentsline {subsection}{\numberline {4.4}Parallelization issues}{13}{subsection.4.4} \contentsline {subsection}{\numberline {4.5}Understanding the time report}{15}{subsection.4.5} \contentsline {subsubsection}{\numberline {4.5.1}Serial execution}{15}{subsubsection.4.5.1} \contentsline {subsubsection}{\numberline {4.5.2}Parallel execution}{15}{subsubsection.4.5.2} \contentsline {paragraph}{ Quick estimate of parallelization parameters}{16}{section*.19} \contentsline {paragraph}{Typical symptoms of bad/inadequate parallelization}{17}{section*.20} \contentsline {section}{\numberline {5}Troubleshooting}{17}{section.5} \contentsline {paragraph}{pw.x says 'error while loading shared libraries' or 'cannot open shared object file' and does not start}{17}{section*.21} \contentsline {paragraph}{errors in examples with parallel execution}{17}{section*.22} \contentsline {paragraph}{pw.x prints the first few lines and then nothing happens (parallel execution)}{18}{section*.23} \contentsline {paragraph}{pw.x stops with error while reading data}{18}{section*.24} \contentsline {paragraph}{pw.x mumbles something like {\em cannot recover} or {\em error reading recover file}}{18}{section*.25} \contentsline {paragraph}{pw.x stops with {\em inconsistent DFT} error}{18}{section*.26} \contentsline {paragraph}{pw.x stops with error in cdiaghg or rdiaghg}{18}{section*.27} \contentsline {paragraph}{pw.x crashes with no error message at all}{19}{section*.28} \contentsline {paragraph}{pw.x crashes with {\em segmentation fault} or similarly obscure messages}{19}{section*.29} \contentsline {paragraph}{pw.x works for simple systems, but not for large systems or whenever more RAM is needed}{19}{section*.30} \contentsline {paragraph}{pw.x crashes with {\em error in davcio}}{20}{section*.31} \contentsline {paragraph}{pw.x crashes in parallel execution with an obscure message related to MPI errors}{20}{section*.32} \contentsline {paragraph}{pw.x stops with error message {\em the system is metallic, specify occupations}}{20}{section*.33} \contentsline {paragraph}{pw.x stops with {\em internal error: cannot bracket Ef}}{20}{section*.34} \contentsline {paragraph}{pw.x yields {\em internal error: cannot bracket Ef} message but does not stop}{21}{section*.35} \contentsline {paragraph}{pw.x runs but nothing happens}{21}{section*.36} \contentsline {paragraph}{pw.x yields weird results}{21}{section*.37} \contentsline {paragraph}{FFT grid is machine-dependent}{21}{section*.38} \contentsline {paragraph}{pw.x does not find all the symmetries you expected}{22}{section*.39} \contentsline {paragraph}{{\em Warning: symmetry operation \# N not allowed}}{22}{section*.40} \contentsline {paragraph}{Self-consistency is slow or does not converge at all}{22}{section*.41} \contentsline {paragraph}{I do not get the same results in different machines!}{23}{section*.42} \contentsline {paragraph}{Execution time is time-dependent!}{23}{section*.43} \contentsline {paragraph}{{\em Warning : N eigenvectors not converged}}{23}{section*.44} \contentsline {paragraph}{{\em Warning : negative or imaginary charge...}, or {\em ...core charge ...}, or {\em npt with rhoup$<0$...} or {\em rho dw$<0$...}}{23}{section*.45} \contentsline {paragraph}{Structural optimization is slow or does not converge or ends with a mysterious bfgs error}{24}{section*.46} \contentsline {paragraph}{pw.x stops during variable-cell optimization in checkallsym with {\em non orthogonal operation} error}{24}{section*.47} \contentsline {subsection}{\numberline {5.1}Compilation problems with \texttt {PLUMED}}{24}{subsection.5.1} \contentsline {paragraph}{xlc compiler}{24}{section*.48} \contentsline {paragraph}{Calling C from fortran}{25}{section*.49} espresso-5.1/PW/Doc/user_guide.tex0000644000175000017500000021213212341373024015212 0ustar mbamba\documentclass[12pt,a4paper]{article} \def\version{5.1.0} \def\PWscf{\texttt{PWscf}} \def\qe{{\sc Quantum ESPRESSO}} \usepackage{html} % BEWARE: don't revert from graphicx for epsfig, because latex2html % doesn't handle epsfig commands !!! \usepackage{graphicx} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm \def\pwx{\texttt{pw.x}} \def\cpx{\texttt{cp.x}} \def\phx{\texttt{ph.x}} \def\nebx{\texttt{neb.x}} \def\configure{\texttt{configure}} \def\PHonon{\texttt{PHonon}} \def\CP{\texttt{CP}} \def\PostProc{\texttt{PostProc}} \def\make{\texttt{make}} \begin{document} \author{} \date{} \def\qeImage{../../Doc/quantum_espresso.pdf} \def\democritosImage{../../Doc/democritos.pdf} \begin{htmlonly} \def\qeImage{../../Doc/quantum_espresso.png} \def\democritosImage{../../Doc/democritos.png} \end{htmlonly} \title{ \includegraphics[width=5cm]{\qeImage} \hskip 2cm \includegraphics[width=6cm]{\democritosImage}\\ \vskip 1cm % title \Huge User's Guide for \PWscf\smallskip \Large (version \version) } %\endhtmlonly %\latexonly %\title{ % \epsfig{figure=quantum_espresso.png,width=5cm}\hskip 2cm % \epsfig{figure=democritos.png,width=6cm}\vskip 1cm % % title % \Huge User's Guide for \qe \smallskip % \Large (version \version) %} %\endlatexonly \maketitle \tableofcontents \section{Introduction} This guide covers the usage of the \PWscf\ (Plane-Wave Self-Consistent Field) package, a core component of the \qe\ distribution. Further documentation, beyond what is provided in this guide, can be found in the directory \texttt{PW/Doc/}, containing a copy of this guide. This guide assumes that you know the physics that \PWscf\ describes and the methods it implements. It also assumes that you have already installed, or know how to install, \qe. If not, please read the general User's Guide for \qe, found in directory \texttt{Doc/} two levels above the one containing this guide; or consult the web site:\\ \texttt{http://www.quantum-espresso.org}. People who want to modify or contribute to \PWscf\ should read the Developer Manual: \texttt{Doc/developer\_man.pdf}. \subsection{What can \PWscf\ do} \PWscf\ performs many different kinds of self-consistent calculations of electronic-structure properties within Density-Functional Theory (DFT), using a Plane-Wave (PW) basis set and pseudopotentials (PP). In particular: \begin{itemize} \item ground-state energy and one-electron (Kohn-Sham) orbitals; \item atomic forces, stresses, and structural optimization; \item molecular dynamics on the ground-state Born-Oppenheimer surface, also with variable cell; \item macroscopic polarization and finite electric fields via the modern theory of polarization (Berry Phases). \item the modern theory of polarization (Berry Phases). \item modern theory of orbital magnetization. \item free-energy surface calculation at fixed cell through meta-dynamics, if patched with PLUMED. \end{itemize} All of the above works for both insulators and metals, in any crystal structure, for many exchange-correlation (XC) functionals (including spin polarization, DFT+U, nonlocal VdW functional, hybrid functionals), for norm-conserving (Hamann-Schluter-Chiang) PPs (NCPPs) in separable form or Ultrasoft (Vanderbilt) PPs (USPPs) or Projector Augmented Waves (PAW) method. Noncollinear magnetism and spin-orbit interactions are also implemented. An implementation of finite electric fields with a sawtooth potential in a supercell is also available. Please note that NEB calculations are no longer performed by \pwx, but are instead carried out by \texttt{neb.x} (see main user guide), a dedicated code for path optimization which can use \PWscf\ as computational engine. \subsection{People} The \PWscf\ package (which included \PHonon\ and \PostProc\ in earlier releases) was originally developed by Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso (SISSA), Paolo Giannozzi (Univ. Udine), and many others. We quote in particular: \begin{itemize} \item David Vanderbilt's group at Rutgers for Berry's phase calculations; \item Paolo Umari (Univ. Padua) for finite electric fields; \item Ralph Gebauer (ICTP, Trieste) and Adriano Mosca Conte (SISSA, Trieste) for noncollinear magnetism; \item Andrea Dal Corso for spin-orbit interactions; \item Carlo Sbraccia (Princeton) for improvements to structural optimization and to many other parts; \item Dario Alf\`e (University College London) for implementation of Born-Oppenheimer molecular dynamics; \item Renata Wentzcovitch and collaborators (Univ. Minnesota) for variable-cell molecular dynamics; \item Lorenzo Paulatto (Univ.Paris VI) for PAW implementation, built upon previous work by Guido Fratesi (Univ.Milano Bicocca) and Riccardo Mazzarello (ETHZ-USI Lugano); \item Dario Alf\`e, Mike Towler (University College London), Norbert Nemec (U.Cambridge) for interface with \texttt{CASINO}; \item Matteo Cococcioni (Univ. Minnesota) for DFT+U implementation; \item Gabriele Sclauzero (IRRMA Lausanne) for DFT+U with on-site occupations obtained from pseudopotential projectors; \item Alexander Smogunov (CEA) for extended and noncollinear DFT+U implementation; \item Burak Himmetoglou (Univ. Minnesota) for DFT+U+J implementation; \item Andrei Malashevich (Univ. Berkeley) for calculation of orbital magnetization. \item J.-W. Song for Gau-PBE implementation \end{itemize} % \texttt{PWgui} was written by Anton Kokalj (IJS Ljubljana) and is % based on his GUIB concept (\texttt{http://www-k3.ijs.si/kokalj/guib/}). % \texttt{iotk} (\texttt{http://www.s3.infm.it/iotk}) was written by Giovanni Bussi (SISSA) . Other relevant contributions to \PWscf: \begin{itemize} \item Axel Kohlmeyer contributed libraries and utilities to call \PWscf from external codes (see the \texttt{COUPLE} sub-directory), made the parallelization more modular and usable by external codes. \item Ikutaro Hamada (NIMS, Japan) contributed OPTB86B-vdW and REV-vdW-DF2 functionals. \item Alberto Otero de la Roza (Merced Univ.) contributed XDM (exchange-hole dipole moment) model of dispersions, PW86 (unrevised) and B86B functionals. \item Xiaochuan Ge (SISSA) contributed Smart MonteCarlo Langevin dynamics \item Yves Ferro (Univ. Provence) contributed SOGGA and M06L functionals \item Minoru Otani (AIST), Yoshio Miura (Tohoku U.), Nicephore Bonet (MIT), Nicola Marzari (Univ. Oxford), Brandon Wood (LLNL), Tadashi Ogitsu (LLNL), contributed Effective Screening Method (PRB 73, 115407 [2006]) \item Brian Kolb and Timo Thonhauser (Wake Forest University) implemented the vdW-DF and vdW-DF2 functionals, with support from Riccardo Sabatini and Stefano de Gironcoli (SISSA and DEMOCRITOS); \item Hannu-Pekka Komsa (CSEA/Lausanne) contributed the HSE functional; \item Dispersions interaction in the framework of DFT-D were contributed by Daniel Forrer (Padua Univ.) and Michele Pavone (Naples Univ. Federico II); \item Filippo Spiga (ICHEC) contributed the mixed MPI-OpenMP parallelization; \item The initial BlueGene porting was done by Costas Bekas and Alessandro Curioni (IBM Zurich). \end{itemize} This guide was mostly written by Paolo Giannozzi. Mike Towler wrote the \PWscf\ to \texttt{CASINO} subsection. \subsection{Terms of use} \qe\ is free software, released under the GNU General Public License. See \texttt{http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt}, or the file License in the distribution). We shall greatly appreciate if scientific work done using this code will contain an explicit acknowledgment and the following reference: \begin{quote} P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009), http://arxiv.org/abs/0906.2569 \end{quote} \begin{quote} References for all exchange-correlation functionals can be found in the header of file \texttt{Modules/funct.f90}. \end{quote} Note the form \qe\ for textual citations of the code. Pseudopotentials should be cited as (for instance) \begin{quote} [ ] We used the pseudopotentials C.pbe-rrjkus.UPF and O.pbe-vbc.UPF from\\ \texttt{http://www.quantum-espresso.org}. \end{quote} \section{Compilation} \PWscf\ is included in the core \qe\ distribution. Instruction on how to install it can be found in the general documentation (User's Guide) for \qe. Typing \texttt{make pw} from the main \qe\ directory or \texttt{make} from the \texttt{PW/} subdirectory produces the \pwx\ executable in \texttt{PW/src} and a link to the \texttt{bin/} directory. In addition, several utility programs, and related links in \texttt{bin/}, are produced in \texttt{PW/tools}: \begin{itemize} \item \texttt{PW/tools/dist.x} reads input data for \PWscf, calculates distances and angles between atoms in a cell, taking into account periodicity \item \texttt{PW/tools/ev.x} fits energy-vs-volume data to an equation of state \item \texttt{PW/tools/kpoints.x} produces lists of k-points \item \texttt{PW/tools/pwi2xsf.sh}, \texttt{pwo2xsf.sh} process respectively input and output files (not data files!) for \pwx and produce an XSF-formatted file suitable for plotting with XCrySDen: \texttt{http://www.xcrysden.org/}, powerful crystalline and molecular structure visualization program. BEWARE: the \texttt{pwi2xsf.sh} shell script requires the \texttt{pwi2xsf.x} executables to be located somewhere in your PATH. \item \texttt{PW/tools/band\_plot.x}: undocumented and possibly obsolete \item \texttt{PW/tools/bs.awk}, \texttt{PW/tools/mv.awk} are scripts that process the output of \pwx\ (not data files!). Usage: \begin{verbatim} awk -f bs.awk < my-pw-file > myfile.bs awk -f mv.awk < my-pw-file > myfile.mv \end{verbatim} The files so produced are suitable for use with \texttt{xbs}, a very simple X-windows utility to display molecules, available at:\\ \texttt{http://www.ccl.net/cca/software/X-WINDOW/xbsa/README.shtml} \item \texttt{PW/tools/kvecs\_FS.x}, \texttt{PW/tools/bands\_FS.x}: utilities for Fermi Surface plotting using XCrySDen (contributed by the late Prof. Eyvaz) \item \texttt{PW/tools/cif2qe.sh}: script converting from CIF (Crystallographic Information File) to a format suitable for \qe. Courtesy of Carlo Nervi (Univ. Torino, Italy). \end{itemize} Documentation for the auxiliary codes can be found in the codes themselves, e.g. in the header of files. \newpage\section{Using \PWscf} Input files for \texttt{pw.x} may be either written by hand or produced via the \texttt{PWgui} graphical interface by Anton Kokalj, included in the \qe\ distribution. See \texttt{PWgui-x.y.z/INSTALL} (where x.y.z is the version number) for more info on \texttt{PWgui}, or \texttt{GUI/README} if you are using SVN sources. You may take the tests and examples distributed with \qe\ as templates for writing your own input files. In the following, whenever we mention "Example N", we refer to those. Input files are those in the \texttt{results/} subdirectories, with names ending with \texttt{.in} (they will appear after you have run the examples). \subsection{Input data} Input data is organized as several namelists, followed by other fields (``cards'') introduced by keywords. The namelists are \begin{tabular}{ll} \&CONTROL:& general variables controlling the run\\ \&SYSTEM: &structural information on the system under investigation\\ \&ELECTRONS: &electronic variables: self-consistency, smearing\\ \&IONS (optional): &ionic variables: relaxation, dynamics\\ \&CELL (optional): &variable-cell optimization or dynamics\\ \end{tabular} \\ Optional namelist may be omitted if the calculation to be performed does not require them. This depends on the value of variable \texttt{calculation} in namelist \&CONTROL. Most variables in namelists have default values. Only the following variables in \&SYSTEM must always be specified: \begin{tabular}{lll} \texttt{ibrav} & (integer)& Bravais-lattice index\\ \texttt{celldm} &(real, dimension 6)& crystallographic constants\\ \texttt{nat} &(integer)& number of atoms in the unit cell\\ \texttt{ntyp} &(integer)& number of types of atoms in the unit cell\\ \texttt{ecutwfc} &(real)& kinetic energy cutoff (Ry) for wavefunctions. \end{tabular} \\ For metallic systems, you have to specify how metallicity is treated in variable \texttt{occupations}. If you choose \texttt{occupations='smearing'}, you have to specify the smearing type \texttt{smearing} and the smearing width \texttt{degauss}. Spin-polarized systems are as a rule treated as metallic system, unless the total magnetization, \texttt{tot\_magnetization} is set to a fixed value, or if occupation numbers are fixed (\texttt{occupations='from input'} and card OCCUPATIONS). Explanations for the meaning of variables \texttt{ibrav} and \texttt{celldm}, as well as on alternative ways to input structural data, are in files \texttt{PW/Doc/INPUT\_PW.txt} and \texttt{PW/Doc/INPUT\_PW.html}. These files are the reference for input data and describe a large number of other variables as well. Almost all variables have default values, which may or may not fit your needs. Comment lines in namelists can be introduced by a "!", exactly as in fortran code. After the namelists, you have several fields (``cards'') introduced by keywords with self-explanatory names: \begin{quote} ATOMIC\_SPECIES\\ ATOMIC\_POSITIONS\\ K\_POINTS\\ CELL\_PARAMETERS (optional)\\ OCCUPATIONS (optional)\\ \end{quote} The keywords may be followed on the same line by an option. Unknown fields are ignored. See the files mentioned above for details on the available ``cards''. Comments lines in ``cards'' can be introduced by either a ``!'' or a ``\#'' character in the first position of a line. Note about k points: The k-point grid can be either automatically generated or manually provided as a list of k-points and a weight in the Irreducible Brillouin Zone only of the Bravais lattice of the crystal. The code will generate (unless instructed not to do so: see variable \texttt{nosym}) all required k-points and weights if the symmetry of the system is lower than the symmetry of the Bravais lattice. The automatic generation of k-points follows the convention of Monkhorst and Pack. \subsection{Data files} The output data files are written in the directory \texttt{outdir/prefix.save}, as specified by variables \texttt{outdir} and \texttt{prefix} (a string that is prepended to all file names, whose default value is: \texttt{prefix='pwscf'}). \texttt{outdir} can be specified as well in environment variable ESPRESSO\_TMPDIR. The \texttt{iotk} toolkit is used to write the file in a XML format, whose definition can be found in the Developer Manual. In order to use the data directory on a different machine, you need to convert the binary files to formatted and back, using the \texttt{bin/iotk} script. The execution stops if you create a file \texttt{prefix.EXIT} either in the working directory (i.e. where the program is executed), or in the \texttt{outdir} directory. Note that with some versions of MPI, the working directory is the directory where the executable is! The advantage of this procedure is that all files are properly closed, whereas just killing the process may leave data and output files in an unusable state. \subsection{Electronic structure calculations} \paragraph{Single-point (fixed-ion) SCF calculation} Set \texttt{calculation='scf'} (this is actually the default). Namelists \&IONS and \&CELL will be ignored. See Example 01. \paragraph{Band structure calculation} First perform a SCF calculation as above; then do a non-SCF calculation with the desired k-point grid and number \texttt{nbnd} of bands. Use \texttt{calculation='bands'} if you are interested in calculating only the Kohn-Sham states for the given set of k-points (e.g. along symmetry lines: see for instance \texttt{http://www.cryst.ehu.es/cryst/get\_kvec.html}). Specify instead \texttt{calculation='nscf'} if you are interested in further processing of the results of non-SCF calculations (for instance, in DOS calculations). In the latter case, you should specify a uniform grid of points. For DOS calculations you should choose \texttt{occupations='tetrahedra'}, together with an automatically generated uniform k-point grid (card K\_POINTS with option ``automatic''). Specify \texttt{nosym=.true.} to avoid generation of additional k-points in low symmetry cases. Variables \texttt{prefix} and \texttt{outdir}, which determine the names of input or output files, should be the same in the two runs. See Examples 01, 06, 07, NOTA BENE: Since v.4.1, both atomic positions and the scf potential are read from the data file so that consistency is guaranteed. \paragraph{Noncollinear magnetization, spin-orbit interactions} The following input variables are relevant for noncollinear and spin-orbit calculations: \begin{quote} \texttt{noncolin}\\ \texttt{lspinorb}\\ \texttt{starting\_magnetization} (one for each type of atoms) \end{quote} To make a spin-orbit calculation \texttt{noncolin} must be true. If \texttt{starting\_magnetization} is set to zero (or not given) the code makes a spin-orbit calculation without spin magnetization (it assumes that time reversal symmetry holds and it does not calculate the magnetization). The states are still two-component spinors but the total magnetization is zero. If \texttt{starting\_magnetization} is different from zero, it makes a noncollinear spin polarized calculation with spin-orbit interaction. The final spin magnetization might be zero or different from zero depending on the system. Furthermore to make a spin-orbit calculation you must use fully relativistic pseudopotentials at least for the atoms in which you think that spin-orbit interaction is large. If all the pseudopotentials are scalar relativistic the calculation becomes equivalent to a noncollinear calculation without spin orbit. (Andrea Dal Corso, 2007-07-27) See Example 06 for noncollinear magnetism, Example 07 for spin-orbit interactions. \paragraph{DFT+U} DFT+U (formerly known as LDA+U) calculation can be performed within a simplified rotationally invariant form of the $U$ Hubbard correction. Note that for all atoms having a $U$ value there should be an item in function \texttt{flib/set\_hubbard\_l.f90} and one in subroutine \texttt{PW/src/tabd.f90}, defining respectively the angular momentum and the occupancy of the orbitals with the Hubbard correction. If your Hubbard-corrected atoms are not there, you need to edit these files and to recompile. See Example 08 and its README. \paragraph{Dispersion Interactions (DFT-D)} For DFT-D (DFT + semiempirical dispersion interactions), see the description of input variables \texttt{london*}, sample files \texttt{PW/tests/vdw.*}, and the comments in source file \texttt{Modules/mm\_dispersion.f90}. \paragraph{Hartree-Fock and Hybrid functionals} Since v.5.0, calculations in the Hartree-Fock approximation, or using hybrid XC functionals that include some Hartree-Fock exchange, no longer require a special preprocessing before compilation. See \texttt{EXX\_example/} and its README file. \paragraph{Dispersion interaction with non-local functional (vdwDF)} See example \texttt{vdwDF\_example} and references quoted in file \texttt{README} therein. \paragraph{Polarization via Berry Phase} See Example 04, its file README, the documentation in the header of \texttt{PW/src/bp\_c\_phase.f90}. \paragraph{Finite electric fields} There are two different implementations of macroscopic electric fields in \pwx: via an external sawtooth potential (input variable \texttt{tefield=.true.}) and via the modern theory of polarizability (\texttt{lelfield=.true.}). The former is useful for surfaces, especially in conjunction with dipolar corrections (\texttt{dipfield=.true.}): see \texttt{examples/dipole\_example} for an example of application. Electric fields via modern theory of polarization are documented in example 10. The exact meaning of the related variables, for both cases, is explained in the general input documentation. \paragraph{Orbital magnetization} Modern theory of orbital magnetization [Phys. Rev. Lett. 95, 137205 (2005)] for insulators. The calculation is performed by setting input variable \texttt{lorbm=.true.} in nscf run. If finite electric field is present (\texttt{lelfield=.true.}) only Kubo terms are computed [see New J. Phys. 12, 053032 (2010) for details]. \subsection{Optimization and dynamics} \paragraph{Structural optimization} For fixed-cell optimization, specify \texttt{calculation='relax'} and add namelist \&IONS. All options for a single SCF calculation apply, plus a few others. You may follow a structural optimization with a non-SCF band-structure calculation (since v.4.1, you do not need any longer to update the atomic positions in the input file for non scf calculation).\\ See Example 02. \paragraph{Molecular Dynamics} Specify \texttt{calculation='md'}, the time step \texttt{dt}, and possibly the number of MD stops \texttt{nstep}. Use variable \texttt{ion\_dynamics} in namelist \&IONS for a fine-grained control of the kind of dynamics. Other options for setting the initial temperature and for thermalization using velocity rescaling are available. Remember: this is MD on the electronic ground state, not Car-Parrinello MD. See Example 03. \paragraph{Free-energy surface calculations} Once \PWscf\ is patched with the \texttt{PLUMED} plug-in, it is possible to use most PLUMED functionalities by running \PWscf\ as: \texttt{./pw.x -plumed} plus the other usual \PWscf\ arguments. The input file for \texttt{PLUMED} must be found in the specified \texttt{outdir} with fixed name \texttt{plumed.dat}. \paragraph{Variable-cell optimization} Since v.4.2 the newer BFGS algorithm covers the case of variable-cell optimization as well. Note however that variable-cell calculations (both optimization and dynamics) are performed with plane waves and G-vectors {\em calculated for the starting cell}. This means that if you re-run a self-consistent calculation for the final cell and atomic positions using the same cutoff \texttt{ecutwfc} (and/or \texttt{ecutrho} if applicable), you may not find exactly the same results, unless your final and initial cells are very similar, or unless your cutoff(s) are very high. In order to provide a further check, a last step is performed in which a scf calculation is performed for the converged structure, with plane waves and G-vectors {\em calculated for the final cell}. Small differences between the two last steps are thus to be expected and give an estimate of the reliability of the variable-cell optimization. If you get a large difference, you are likely quite far from convergence in the plane-wave basis set and you need to increase the cutoff(s). \paragraph{Variable-cell molecular dynamics} "A common mistake many new users make is to set the time step \texttt{dt} improperly to the same order of magnitude as for CP algorithm, or not setting \texttt{dt} at all. This will produce a ``not evolving dynamics''. Good values for the original RMW (RM Wentzcovitch) dynamics are \texttt{dt} $ = 50 \div 70$. The choice of the cell mass is a delicate matter. An off-optimal mass will make convergence slower. Too small masses, as well as too long time steps, can make the algorithm unstable. A good cell mass will make the oscillation times for internal degrees of freedom comparable to cell degrees of freedom in non-damped Variable-Cell MD. Test calculations are advisable before extensive calculation. I have tested the damping algorithm that I have developed and it has worked well so far. It allows for a much longer time step (dt=$100 \div 150$) than the RMW one and is much more stable with very small cell masses, which is useful when the cell shape, not the internal degrees of freedom, is far out of equilibrium. It also converges in a smaller number of steps than RMW." (Info from Cesar Da Silva: the new damping algorithm is the default since v. 3.1). \subsection{Direct interface with \texttt{CASINO}} \label{pw2casino_info} \texttt{PWscf} now supports the Cambridge quantum Monte Carlo program CASINO directly. For more information on the \texttt{CASINO} code see \texttt{http://www.tcm.phy.cam.ac.uk/\~{}mdt26/casino.html}. \texttt{CASINO} may take the output of \texttt{PWSCF} and 'improve it' giving considerably more accurate total energies and other quantities than DFT is capable of. \texttt{PWscf} users wishing to learn how to use CASINO may like to attend one of the annual \texttt{CASINO} summer schools in Mike Towler's "Apuan Alps Centre for Physics" in Tuscany, Italy. More information can be found at \texttt{http://www.vallico.net/tti/tti.html} \paragraph{Practicalities} The interface between \texttt{PWscf} and \texttt{CASINO} is provided through a file with a standard format containing geometry, basis set, and orbital coefficients, which \texttt{PWscf} will produce on demand. For SCF calculations, the name of this file may be \texttt{pwfn.data}, \texttt{bwfn.data} or \texttt{bwfn.data.b1} depending on user requests (see below). If the files are produced from an MD run, the files have a suffix \texttt{.0001}, \texttt{.0002}, \texttt{.0003} etc. corresponding to the sequence of timesteps. \texttt{CASINO} support is implemented by three routines in the \texttt{PW} directory of the espresso distribution: \begin{itemize} \item \texttt{pw2casino.f90} : the main routine \item \texttt{pw2casino\_write.f90} : writes the \texttt{CASINO} \texttt{xwfn.data} file in various formats \item \texttt{pw2blip.f90} : does the plane-wave to blip conversion, if requested \end{itemize} Relevant behavior of \texttt{PWscf} may be modified through an optional auxiliary input file, named \texttt{pw2casino.dat} (see below). Note that in versions prior to 4.3, this functionality was provided through separate post-processing utilities available in the PP directory: these are no longer supported. For QMC-MD runs, PWSCF etc previously needed to be 'patched' using the patch script PP/pw2casino-MDloop.sh - this is no longer necessary. \paragraph{How to generate \texttt{xwfn.data} files with \texttt{PWscf}} Use the '-pw2casino' option when invoking \pwx, e.g.: \begin{verbatim} pw.x -pw2casino < input_file > output_file \end{verbatim} The \texttt{xfwn.data} file will then be generated automatically. \texttt{PWscf} is capable of doing the plane wave to blip conversion directly (the 'blip' utility provided in the \texttt{CASINO} distribution is not required) and so by default, \texttt{PWscf} produces the 'binary blip wave function' file \texttt{bwfn.data.b1} Various options may be modified by providing a file \texttt{pw2casino.dat} in \texttt{outdir} with the following format: \begin{verbatim} &inputpp blip_convert=.true. blip_binary=.true. blip_single_prec=.false. blip_multiplicity=1.d0 n_points_for_test=0 / \end{verbatim} Some or all of the 5 keywords may be provided, in any order. The default values are as given above (and these are used if the \texttt{pw2casino.dat} file is not present. The meanings of the keywords are as follows: \begin{description} \item [blip\_convert]: reexpand the converged plane-wave orbitals in localized blip functions prior to writing the \texttt{CASINO} wave function file. This is almost always done, since wave functions expanded in blips are considerably more efficient in quantum Monte Carlo calculations. If \texttt{blip\_convert=.false.} a pwfn.data file is produced (orbitals expanded in plane waves); if \texttt{blip\_convert=.true.}, either a \texttt{bwfn.data file} or a \texttt{bwfn.data.b1} file is produced, depending on the value of \texttt{blip\_binary} (see below). \item [blip\_binary]: if true, and if \texttt{blip\_convert} is also true, write the blip wave function as an unformatted binary \texttt{bwfn.data.b1} file. This is much smaller than the formatted \texttt{bwfn.data} file, but is not generally portable across all machines. \item [blip\_single\_prec]: if \texttt{.false.} the orbital coefficients in \texttt{bwfn.data(.b1)} are written out in double precision; if the user runs into hardware limits \texttt{blip\_single\_prec} can be set to \texttt{.true.} in which case the coefficients are written in single precision, reducing the memory and disk requirements at the cost of a small amount of accuracy.. \item [blip\_multiplicity]: the quality of the blip expansion (i.e., the fineness of the blip grid) can be improved by increasing the grid multiplicity parameter given by this keyword. Increasing the grid multiplicity results in a greater number of blip coefficients and therefore larger memory requirements and file size, but the CPU time should be unchanged. For very accurate work, one may want to experiment with grid multiplicity larger that 1.0. Note, however, that it might be more efficient to keep the grid multiplicity to 1.0 and increase the plane wave cutoff instead. \item [n\_points\_for\_test]: if this is set to a positive integer greater than zero, \texttt{PWscf} will sample the wave function, the Laplacian and the gradient at a large number of random points in the simulation cell and compute the overlap of the blip orbitals with the original plane-wave orbitals: $$ \alpha = { \over \sqrt{}} $$ The closer $\alpha$ is to 1, the better the blip representation. By increasing \texttt{blip\_multiplicity}, or by increasing the plane-wave cutoff, one ought to be able to make $\alpha$ as close to 1 as desired. The number of random points used is given by \texttt{n\_points\_for\_test}. \end{description} Finally, note that DFT trial wave functions produced by \texttt{PWSCF} must be generated using the same pseudopotential as in the subsequent QMC calculation. This requires the use of tools to switch between the different file formats used by the two codes. \texttt{CASINO} uses the `\texttt{CASINO} tabulated format', \texttt{PWSCF} officially supports the UPFv2 format (though it will read other `deprecated' formats). This can be done through the `casino2upf' and `upf2casino' tools included in the upftools directory (see the upftools/README file for instructions). An alternative converter `casinogon' is included in the \texttt{CASINO} distribution which produces the deprecated GON format but which can be useful when using non-standard grids. \section{Performances} \subsection{Execution time} The following is a rough estimate of the complexity of a plain scf calculation with \pwx, for NCPP. USPP and PAW give raise additional terms to be calculated, that may add from a few percent up to 30-40\% to execution time. For phonon calculations, each of the $3N_{at}$ modes requires a time of the same order of magnitude of self-consistent calculation in the same system (possibly times a small multiple). For \cpx, each time step takes something in the order of $T_h + T_{orth} + T_{sub}$ defined below. The time required for the self-consistent solution at fixed ionic positions, $T_{scf}$ , is: $$T_{scf} = N_{iter} T_{iter} + T_{init}$$ where $N_{iter}$ = number of self-consistency iterations (\texttt{niter}), $T_{iter}$ = time for a single iteration, $T_{init}$ = initialization time (usually much smaller than the first term). The time required for a single self-consistency iteration $T_{iter}$ is: $$T_{iter} = N_k T_{diag} +T_{rho} + T_{scf}$$ where $N_k$ = number of k-points, $T_{diag}$ = time per Hamiltonian iterative diagonalization, $T_{rho}$ = time for charge density calculation, $T_{scf}$ = time for Hartree and XC potential calculation. The time for a Hamiltonian iterative diagonalization $T_{diag}$ is: $$T_{diag} = N_h T_h + T_{orth} + T_{sub}$$ where $N_h$ = number of $H\psi$ products needed by iterative diagonalization, $T_h$ = time per $H\psi$ product, $T_{orth}$ = CPU time for orthonormalization, $T_{sub}$ = CPU time for subspace diagonalization. The time $T_h$ required for a $H\psi$ product is $$T_h = a_1 M N + a_2 M N_1 N_2 N_3 log(N_1 N_2 N_3 ) + a_3 M P N. $$ The first term comes from the kinetic term and is usually much smaller than the others. The second and third terms come respectively from local and nonlocal potential. $a_1, a_2, a_3$ are prefactors (i.e. small numbers ${\cal O}(1)$), $M$ = number of valence bands (\texttt{nbnd}), $N$ = number of PW (basis set dimension: \texttt{npw}), $N_1, N_2, N_3$ = dimensions of the FFT grid for wavefunctions (\texttt{nr1s}, \texttt{nr2s}, \texttt{nr3s}; $N_1 N_2 N_3 \sim 8N$ ), P = number of pseudopotential projectors, summed on all atoms, on all values of the angular momentum $l$, and $m = 1, . . . , 2l + 1$. The time $T_{orth}$ required by orthonormalization is $$T_{orth} = b_1 N M_x^2$$ and the time $T_{sub}$ required by subspace diagonalization is $$T_{sub} = b_2 M_x^3$$ where $b_1$ and $b_2$ are prefactors, $M_x$ = number of trial wavefunctions (this will vary between $M$ and $2\div4 M$, depending on the algorithm). The time $T_{rho}$ for the calculation of charge density from wavefunctions is $$T_{rho} = c_1 M N_{r1} N_{r2}N_{r3} log(N_{r1} N_{r2} N_{r3}) + c_2 M N_{r1} N_{r2} N_{r3} + T_{us}$$ where $c_1, c_2, c_3$ are prefactors, $N_{r1}, N_{r2}, N_{r3}$ = dimensions of the FFT grid for charge density (\texttt{nr1}, \texttt{nr2}, \texttt{nr3}; $N_{r1} N_{r2} N_{r3} \sim 8N_g$, where $N_g$ = number of G-vectors for the charge density, \texttt{ngm}), and $T_{us}$ = time required by PAW/USPPs contribution (if any). Note that for NCPPs the FFT grids for charge and wavefunctions are the same. The time $T_{scf}$ for calculation of potential from charge density is $$T_{scf} = d_2 N_{r1} N_{r2} N_{r3} + d_3 N_{r1} N_{r2} N_{r3} log(N_{r1} N_{r2} N_{r3} )$$ where $d_1, d_2$ are prefactors. The above estimates are for serial execution. In parallel execution, each contribution may scale in a different manner with the number of processors (see below). \subsection{Memory requirements} A typical self-consistency or molecular-dynamics run requires a maximum memory in the order of $O$ double precision complex numbers, where $$ O = m M N + P N + p N_1 N_2 N_3 + q N_{r1} N_{r2} N_{r3}$$ with $m, p, q$ = small factors; all other variables have the same meaning as above. Note that if the $\Gamma-$point only ($k=0$) is used to sample the Brillouin Zone, the value of N will be cut into half. The memory required by the phonon code follows the same patterns, with somewhat larger factors $m, p, q$. \subsection{File space requirements} A typical \pwx\ run will require an amount of temporary disk space in the order of O double precision complex numbers: $$O = N_k M N + q N_{r1} N_{r2}N_{r3}$$ where $q = 2\times$ \texttt{mixing\_ndim} (number of iterations used in self-consistency, default value = 8) if \texttt{disk\_io} is set to 'high'; q = 0 otherwise. \subsection{Parallelization issues} \label{SubSec:badpara} \pwx\ can run in principle on any number of processors. The effectiveness of parallelization is ultimately judged by the ''scaling'', i.e. how the time needed to perform a job scales with the number of processors, and depends upon: \begin{itemize} \item the size and type of the system under study; \item the judicious choice of the various levels of parallelization (detailed in Sec.\ref{SubSec:para}); \item the availability of fast interprocess communications (or lack of it). \end{itemize} Ideally one would like to have linear scaling, i.e. $T \sim T_0/N_p$ for $N_p$ processors, where $T_0$ is the estimated time for serial execution. In addition, one would like to have linear scaling of the RAM per processor: $O_N \sim O_0/N_p$, so that large-memory systems fit into the RAM of each processor. Parallelization on k-points: \begin{itemize} \item guarantees (almost) linear scaling if the number of k-points is a multiple of the number of pools; \item requires little communications (suitable for ethernet communications); \item does not reduce the required memory per processor (unsuitable for large-memory jobs). \end{itemize} Parallelization on PWs: \begin{itemize} \item yields good to very good scaling, especially if the number of processors in a pool is a divisor of $N_3$ and $N_{r3}$ (the dimensions along the z-axis of the FFT grids, \texttt{nr3} and \texttt{nr3s}, which coincide for NCPPs); \item requires heavy communications (suitable for Gigabit ethernet up to 4, 8 CPUs at most, specialized communication hardware needed for 8 or more processors ); \item yields almost linear reduction of memory per processor with the number of processors in the pool. \end{itemize} A note on scaling: optimal serial performances are achieved when the data are as much as possible kept into the cache. As a side effect, PW parallelization may yield superlinear (better than linear) scaling, thanks to the increase in serial speed coming from the reduction of data size (making it easier for the machine to keep data in the cache). VERY IMPORTANT: For each system there is an optimal range of number of processors on which to run the job. A too large number of processors will yield performance degradation. If the size of pools is especially delicate: $N_p$ should not exceed $N_3$ and $N_{r3}$, and should ideally be no larger than $1/2\div1/4 N_3$ and/or $N_{r3}$. In order to increase scalability, it is often convenient to further subdivide a pool of processors into ''task groups''. When the number of processors exceeds the number of FFT planes, data can be redistributed to "task groups" so that each group can process several wavefunctions at the same time. The optimal number of processors for "linear-algebra" parallelization, taking care of multiplication and diagonalization of $M\times M$ matrices, should be determined by observing the performances of \texttt{cdiagh/rdiagh} (\pwx) or \texttt{ortho} (\cpx) for different numbers of processors in the linear-algebra group (must be a square integer). Actual parallel performances will also depend on the available software (MPI libraries) and on the available communication hardware. For PC clusters, OpenMPI (\texttt{http://www.openmpi.org/}) seems to yield better performances than other implementations (info by Kostantin Kudin). Note however that you need a decent communication hardware (at least Gigabit ethernet) in order to have acceptable performances with PW parallelization. Do not expect good scaling with cheap hardware: PW calculations are by no means an "embarrassing parallel" problem. Also note that multiprocessor motherboards for Intel Pentium CPUs typically have just one memory bus for all processors. This dramatically slows down any code doing massive access to memory (as most codes in the \qe\ distribution do) that runs on processors of the same motherboard. \subsection{Understanding the time report} The time report printed at the end of a \pwx\ run contains a lot of useful information that can be used to understand bottlenecks and improve performances. \subsubsection{Serial execution} The following applies to calculations taking a sizable amount of time (at least minutes): for short calculations (seconds), the time spent in the various initializations dominates. Any discrepancy with the following picture signals some anomaly. \begin{itemize} \item For a typical job with norm-conserving PPs, the total (wall) time is mostly spent in routine "electrons", calculating the self-consistent solution. \item Most of the time spent in "electrons" is used by routine "c\_bands", calculating Kohn-Sham states. "sum\_band" (calculating the charge density), "v\_of\_rho" (calculating the potential), "mix\_rho" (charge density mixing) should take a small fraction of the time. \item Most of the time spent in "c\_bands" is used by routines "cegterg" (k-points) or "regterg" (Gamma-point only), performing iterative diagonalization of the Kohn-Sham Hamiltonian in the PW basis set. \item Most of the time spent in "*egterg" is used by routine "h\_psi", calculating $H\psi$ products. "cdiaghg" (k-points) or "rdiaghg" (Gamma-only), performing subspace diagonalization, should take only a small fraction. \item Among the "general routines", most of the time is spent in FFT on Kohn-Sham states: "fftw", and to a smaller extent in other FFTs, "fft" and "ffts", and in "calbec", calculating $\langle\psi|\beta\rangle$ products. \item Forces and stresses typically take a fraction of the order of 10 to 20\% of the total time. \end{itemize} For PAW and Ultrasoft PP, you will see a larger contribution by "sum\_band" and a nonnegligible "newd" contribution to the time spent in "electrons", but the overall picture is unchanged. You may drastically reduce the overhead of Ultrasoft PPs by using input option "tqr=.true.". \subsubsection{Parallel execution} The various parallelization levels should be used wisely in order to achieve good results. Let us summarize the effects of them on CPU: \begin{itemize} \item Parallelization on FFT speeds up (with varying efficiency) almost all routines, with the notable exception of "cdiaghg" and "rdiaghg". \item Parallelization on k-points speeds up (almost linearly) "c\_bands" and called routines; speeds up partially "sum\_band"; does not speed up at all "v\_of\_rho", "newd", "mix\_rho". \item Linear-algebra parallelization speeds up (not always) "cdiaghg" and "rdiaghg" \item "task-group" parallelization speeds up "fftw" \item OpenMP parallelization speeds up "fftw", plus selected parts of the calculation, plus (depending on the availability of OpenMP-aware libraries) some linear algebra operations \end{itemize} and on RAM: \begin{itemize} \item Parallelization on FFT distributes most arrays across processors (i.e. all G-space and R-spaces arrays) but not all of them (in particular, not subspace Hamiltonian and overlap matrices) \item Linear-algebra parallelization also distributes subspace Hamiltonian and overlap matrices. \item All other parallelization levels do not distribute any memory \end{itemize} In an ideally parallelized run, you should observe the following: \begin{itemize} \item CPU and wall time do not differ by much \item Time usage is still dominated by the same routines as for the serial run \item Routine "fft\_scatter" (called by parallel FFT) takes a sizable part of the time spent in FFTs but does not dominate it. \end{itemize} \paragraph{ Quick estimate of parallelization parameters} You need to know \begin{itemize} \item the number of k-points, $N_k$ \item the third dimension of the (smooth) FFT grid, $N_3$ \item the number of Kohn-Sham states, $M$ \end{itemize} These data allow to set bounds on parallelization: \begin{itemize} \item k-point parallelization is limited to $N_k$ processor pools: \texttt{-nk Nk} \item FFT parallelization shouldn't exceed $N_3$ processors, i.e. if you run with \texttt{-nk Nk}, use $N=N_k\times N_3$ MPI processes at most (\texttt{mpirun -np N ...}) \item Unless $M$ is a few hundreds or more, don't bother using linear-algebra parallelization \end{itemize} You will need to experiment a bit to find the best compromise. In order to have good load balancing among MPI processes, the number of k-point pools should be an integer divisor of $N_k$; the number of processors for FFT parallelization should be an integer divisor of $N_3$. \paragraph{Typical symptoms of bad/inadequate parallelization} \begin{itemize} \item {\em a large fraction of time is spent in "v\_of\_rho", "newd", "mix\_rho"}, or\\ {\em the time doesn't scale well or doesn't scale at all by increasing the number of processors for k-point parallelization.} Solution: \begin{itemize} \item use (also) FFT parallelization if possible \end{itemize} \item {\em a disproportionate time is spent in "cdiaghg"/"rdiaghg".} Solutions: \begin{itemize} \item use (also) k-point parallelization if possible \item use linear-algebra parallelization, with scalapack if possible. \end{itemize} \item {\em a disproportionate time is spent in "fft\_scatter"}, or {\em in "fft\_scatter" the difference between CPU and wall time is large.} Solutions: \begin{itemize} \item if you do not have fast (better than Gigabit ethernet) communication hardware, do not try FFT parallelization on more than 4 or 8 procs. \item use (also) k-point parallelization if possible \end{itemize} \item {\em the time doesn't scale well or doesn't scale at all by increasing the number of processors for FFT parallelization.} Solutions: \begin{itemize} \item use "task groups": try command-line option \texttt{-ntg 4} or \texttt{-ntg 8}. This may improve your scaling. \end{itemize} \end{itemize} \section{Troubleshooting} \paragraph{pw.x says 'error while loading shared libraries' or 'cannot open shared object file' and does not start} Possible reasons: \begin{itemize} \item If you are running on the same machines on which the code was compiled, this is a library configuration problem. The solution is machine-dependent. On Linux, find the path to the missing libraries; then either add it to file \texttt{/etc/ld.so.conf} and run \texttt{ldconfig} (must be done as root), or add it to variable LD\_LIBRARY\_PATH and export it. Another possibility is to load non-shared version of libraries (ending with .a) instead of shared ones (ending with .so). \item If you are {\em not} running on the same machines on which the code was compiled: you need either to have the same shared libraries installed on both machines, or to load statically all libraries (using appropriate \configure\ or loader options). The same applies to Beowulf-style parallel machines: the needed shared libraries must be present on all PCs. \end{itemize} \paragraph{errors in examples with parallel execution} If you get error messages in the example scripts -- i.e. not errors in the codes -- on a parallel machine, such as e.g.: {\em run example: -n: command not found} you may have forgotten the " " in the definitions of PARA\_PREFIX and PARA\_POSTFIX. \paragraph{pw.x prints the first few lines and then nothing happens (parallel execution)} If the code looks like it is not reading from input, maybe it isn't: the MPI libraries need to be properly configured to accept input redirection. Use \texttt{pw.x -i} and the input file name (see Sec.\ref{SubSec:para}), or inquire with your local computer wizard (if any). Since v.4.2, this is for sure the reason if the code stops at {\em Waiting for input...}. \paragraph{pw.x stops with error while reading data} There is an error in the input data, typically a misspelled namelist variable, or an empty input file. Unfortunately with most compilers the code just reports {\em Error while reading XXX namelist} and no further useful information. Here are some more subtle sources of trouble: \begin{itemize} \item Out-of-bound indices in dimensioned variables read in the namelists; \item Input data files containing \^{}M (Control-M) characters at the end of lines, or non-ASCII characters (e.g. non-ASCII quotation marks, that at a first glance may look the same as the ASCII character). Typically, this happens with files coming from Windows or produced with "smart" editors. \end{itemize} Both may cause the code to crash with rather mysterious error messages. If none of the above applies and the code stops at the first namelist (\&CONTROL) and you are running in parallel, see the previous item. \paragraph{pw.x mumbles something like {\em cannot recover} or {\em error reading recover file}} You are trying to restart from a previous job that either produced corrupted files, or did not do what you think it did. No luck: you have to restart from scratch. \paragraph{pw.x stops with {\em inconsistent DFT} error} As a rule, the flavor of DFT used in the calculation should be the same as the one used in the generation of pseudopotentials, which should all be generated using the same flavor of DFT. This is actually enforced: the type of DFT is read from pseudopotential files and it is checked that the same DFT is read from all PPs. If this does not hold, the code stops with the above error message. Use -- at your own risk -- input variable \texttt{input\_dft} to force the usage of the DFT you like. \paragraph{pw.x stops with error in cdiaghg or rdiaghg} Possible reasons for such behavior are not always clear, but they typically fall into one of the following cases: \begin{itemize} \item serious error in data, such as bad atomic positions or bad crystal structure/supercell; \item a bad pseudopotential, typically with a ghost, or a USPP giving non-positive charge density, leading to a violation of positiveness of the S matrix appearing in the USPP formalism; \item a failure of the algorithm performing subspace diagonalization. The LAPACK algorithms used by \texttt{cdiaghg} (for generic k-points) or \texttt{rdiaghg} (for $\Gamma-$only case) are very robust and extensively tested. Still, it may seldom happen that such algorithms fail. Try to use conjugate-gradient diagonalization (\texttt{diagonalization='cg'}), a slower but very robust algorithm, and see what happens. \item buggy libraries. Machine-optimized mathematical libraries are very fast but sometimes not so robust from a numerical point of view. Suspicious behavior: you get an error that is not reproducible on other architectures or that disappears if the calculation is repeated with even minimal changes in parameters. Known cases: HP-Compaq alphas with cxml libraries, Mac OS-X with system BLAS/LAPACK. Try to use compiled BLAS and LAPACK (or better, ATLAS) instead of machine-optimized libraries. \end{itemize} \paragraph{pw.x crashes with no error message at all} This happens quite often in parallel execution, or under a batch queue, or if you are writing the output to a file. When the program crashes, part of the output, including the error message, may be lost, or hidden into error files where nobody looks into. It is the fault of the operating system, not of the code. Try to run interactively and to write to the screen. If this doesn't help, move to next point. \paragraph{pw.x crashes with {\em segmentation fault} or similarly obscure messages} Possible reasons: \begin{itemize} \item too much RAM memory or stack requested (see next item). \item if you are using highly optimized mathematical libraries, verify that they are designed for your hardware. \item If you are using aggressive optimization in compilation, verify that you are using the appropriate options for your machine \item The executable was not properly compiled, or was compiled on a different and incompatible environment. \item buggy compiler or libraries: this is the default explanation if you have problems with the provided tests and examples. \end{itemize} \paragraph{pw.x works for simple systems, but not for large systems or whenever more RAM is needed} Possible solutions: \begin{itemize} \item Increase the amount of RAM you are authorized to use (which may be much smaller than the available RAM). Ask your system administrator if you don't know what to do. In some cases the stack size can be a source of problems: if so, increase it with command \texttt{limits} or \texttt{ulimit}). \item Reduce \texttt{nbnd} to the strict minimum (for insulators, the default is already the minimum, though). \item Reduce the work space for Davidson diagonalization to the minimum by setting \texttt{diago\_david\_ndim=2}; also consider using conjugate gradient diagonalization (\texttt{diagonalization='cg'}), slow but very robust, which requires almost no work space. \item If the charge density takes a significant amount of RAM, reduce \texttt{mixing\_ndim} from its default value (8) to 4 or so. \item In parallel execution, use more processors, or use the same number of processors with less pools. Remember that parallelization with respect to k-points (pools) does not distribute memory: only parallelization with respect to R- (and G-) space does. \item If none of the above is sufficient or feasible, you have to either reduce the cutoffs and/or the cell size, or to use a machine with more RAM. \end{itemize} \paragraph{pw.x crashes with {\em error in davcio}} \texttt{davcio} is the routine that performs most of the I/O operations (read from disk and write to disk) in \pwx; {\em error in davcio} means a failure of an I/O operation. \begin{itemize} \item If the error is reproducible and happens at the beginning of a calculation: check if you have read/write permission to the scratch directory specified in variable \texttt{outdir}. Also: check if there is enough free space available on the disk you are writing to, and check your disk quota (if any). \item If the error is irreproducible: your might have flaky disks; if you are writing via the network using NFS (which you shouldn't do anyway), your network connection might be not so stable, or your NFS implementation is unable to work under heavy load \item If it happens while restarting from a previous calculation: you might be restarting from the wrong place, or from wrong data, or the files might be corrupted. \item If you are running two or more instances of \pwx\ at the same time, check if you are using the same file names in the same temporary directory. For instance, if you submit a series of jobs to a batch queue, do not use the same \texttt{outdir} and the same \texttt{prefix}, unless you are sure that one job doesn't start before a preceding one has finished. \end{itemize} \paragraph{pw.x crashes in parallel execution with an obscure message related to MPI errors} Random crashes due to MPI errors have often been reported, typically in Linux PC clusters. We cannot rule out the possibility that bugs in \qe\ cause such behavior, but we are quite confident that the most likely explanation is a hardware problem (defective RAM for instance) or a software bug (in MPI libraries, compiler, operating system). Debugging a parallel code may be difficult, but you should at least verify if your problem is reproducible on different architectures/software configurations/input data sets, and if there is some particular condition that activates the bug. If this doesn't seem to happen, the odds are that the problem is not in \qe. You may still report your problem, but consider that reports like {\em it crashes with...(obscure MPI error)} contain 0 bits of information and are likely to get 0 bits of answers. \paragraph{pw.x stops with error message {\em the system is metallic, specify occupations}} You did not specify state occupations, but you need to, since your system appears to have an odd number of electrons. The variable controlling how metallicity is treated is \texttt{occupations} in namelist \&SYSTEM. The default, \texttt{occupations='fixed'}, occupies the lowest (N electrons)/2 states and works only for insulators with a gap. In all other cases, use \texttt{'smearing'} (\texttt{'tetrahedra'} for DOS calculations). See input reference documentation for more details. \paragraph{pw.x stops with {\em internal error: cannot bracket Ef}} Possible reasons: \begin{itemize} \item serious error in data, such as bad number of electrons, insufficient number of bands, absurd value of broadening; \item the Fermi energy is found by bisection assuming that the integrated DOS N(E ) is an increasing function of the energy. This is not guaranteed for Methfessel-Paxton smearing of order 1 and can give problems when very few k-points are used. Use some other smearing function: simple Gaussian broadening or, better, Marzari-Vanderbilt 'cold smearing'. \end{itemize} \paragraph{pw.x yields {\em internal error: cannot bracket Ef} message but does not stop} This may happen under special circumstances when you are calculating the band structure for selected high-symmetry lines. The message signals that occupations and Fermi energy are not correct (but eigenvalues and eigenvectors are). Remove \texttt{occupations='tetrahedra'} in the input data to get rid of the message. \paragraph{pw.x runs but nothing happens} Possible reasons: \begin{itemize} \item in parallel execution, the code died on just one processor. Unpredictable behavior may follow. \item in serial execution, the code encountered a floating-point error and goes on producing NaNs (Not a Number) forever unless exception handling is on (and usually it isn't). In both cases, look for one of the reasons given above. \item maybe your calculation will take more time than you expect. \end{itemize} \paragraph{pw.x yields weird results} If results are really weird (as opposed to misinterpreted): \begin{itemize} \item if this happens after a change in the code or in compilation or preprocessing options, try \texttt{make clean}, recompile. The \texttt{make} command should take care of all dependencies, but do not rely too heavily on it. If the problem persists, recompile with reduced optimization level. \item maybe your input data are weird. \end{itemize} \paragraph{FFT grid is machine-dependent} Yes, they are! The code automatically chooses the smallest grid that is compatible with the specified cutoff in the specified cell, and is an allowed value for the FFT library used. Most FFT libraries are implemented, or perform well, only with dimensions that factors into products of small numbers (2, 3, 5 typically, sometimes 7 and 11). Different FFT libraries follow different rules and thus different dimensions can result for the same system on different machines (or even on the same machine, with a different FFT). See function allowed in \texttt{Modules/fft\_scalar.f90}. As a consequence, the energy may be slightly different on different machines. The only piece that explicitly depends on the grid parameters is the XC part of the energy that is computed numerically on the grid. The differences should be small, though, especially for LDA calculations. Manually setting the FFT grids to a desired value is possible, but slightly tricky, using input variables \texttt{nr1}, \texttt{nr2}, \texttt{nr3} and \texttt{nr1s}, \texttt{nr2s}, \texttt{nr3s}. The code will still increase them if not acceptable. Automatic FFT grid dimensions are slightly overestimated, so one may try {\em very carefully} to reduce them a little bit. The code will stop if too small values are required, it will waste CPU time and memory for too large values. Note that in parallel execution, it is very convenient to have FFT grid dimensions along $z$ that are a multiple of the number of processors. \paragraph{pw.x does not find all the symmetries you expected} \pwx\ determines first the symmetry operations (rotations) of the Bravais lattice; then checks which of these are symmetry operations of the system (including if needed fractional translations). This is done by rotating (and translating if needed) the atoms in the unit cell and verifying if the rotated unit cell coincides with the original one. Assuming that your coordinates are correct (please carefully check!), you may not find all the symmetries you expect because: \begin{itemize} \item the number of significant figures in the atomic positions is not large enough. In file \texttt{PW/eqvect.f90}, the variable \texttt{accep} is used to decide whether a rotation is a symmetry operation. Its current value ($10^{-5}$) is quite strict: a rotated atom must coincide with another atom to 5 significant digits. You may change the value of accep and recompile. \item they are not acceptable symmetry operations of the Bravais lattice. This is the case for C$_{60}$, for instance: the $I_h$ icosahedral group of C$_{60}$ contains 5-fold rotations that are incompatible with translation symmetry. \item the system is rotated with respect to symmetry axis. For instance: a C$_{60}$ molecule in the fcc lattice will have 24 symmetry operations ($T_h$ group) only if the double bond is aligned along one of the crystal axis; if C$_{60}$ is rotated in some arbitrary way, \pwx\ may not find any symmetry, apart from inversion. \item they contain a fractional translation that is incompatible with the FFT grid (see next paragraph). Note that if you change cutoff or unit cell volume, the automatically computed FFT grid changes, and this may explain changes in symmetry (and in the number of k-points as a consequence) for no apparent good reason (only if you have fractional translations in the system, though). \item a fractional translation, without rotation, is a symmetry operation of the system. This means that the cell is actually a supercell. In this case, all symmetry operations containing fractional translations are disabled. The reason is that in this rather exotic case there is no simple way to select those symmetry operations forming a true group, in the mathematical sense of the term. \end{itemize} \paragraph{{\em Warning: symmetry operation \# N not allowed}} This is not an error. If a symmetry operation contains a fractional translation that is incompatible with the FFT grid, it is discarded in order to prevent problems with symmetrization. Typical fractional translations are 1/2 or 1/3 of a lattice vector. If the FFT grid dimension along that direction is not divisible respectively by 2 or by 3, the symmetry operation will not transform the FFT grid into itself. Solution: you can either force your FFT grid to be commensurate with fractional translation (set variables \texttt{nr1}, \texttt{nr2}, \texttt{nr3} to suitable values), or set variable \texttt{use\_all\_frac} to \texttt{.true.}, in namelist \&SYSTEM. Note however that the latter is incompatible with hybrid functionals and with phonon calculations. \paragraph{Self-consistency is slow or does not converge at all} Bad input data will often result in bad scf convergence. Please carefully check your structure first, e.g. using XCrySDen. Assuming that your input data is sensible : \begin{enumerate} \item Verify if your system is metallic or is close to a metallic state, especially if you have few k-points. If the highest occupied and lowest unoccupied state(s) keep exchanging place during self-consistency, forget about reaching convergence. A typical sign of such behavior is that the self-consistency error goes down, down, down, than all of a sudden up again, and so on. Usually one can solve the problem by adding a few empty bands and a small broadening. \item Reduce \texttt{mixing\_beta} to $\sim 0.3\div 0.1$ or smaller. Try the \texttt{mixing\_mode} value that is more appropriate for your problem. For slab geometries used in surface problems or for elongated cells, \texttt{mixing\_mode='local-TF'} should be the better choice, dampening "charge sloshing". You may also try to increase \texttt{mixing\_ndim} to more than 8 (default value). Beware: this will increase the amount of memory you need. \item Specific to USPP: the presence of negative charge density regions due to either the pseudization procedure of the augmentation part or to truncation at finite cutoff may give convergence problems. Raising the \texttt{ecutrho} cutoff for charge density will usually help. \end{enumerate} \paragraph{I do not get the same results in different machines!} If the difference is small, do not panic. It is quite normal for iterative methods to reach convergence through different paths as soon as anything changes. In particular, between serial and parallel execution there are operations that are not performed in the same order. As the numerical accuracy of computer numbers is finite, this can yield slightly different results. It is also normal that the total energy converges to a better accuracy than its terms, since only the sum is variational, i.e. has a minimum in correspondence to ground-state charge density. Thus if the convergence threshold is for instance $10^{-8}$, you get 8-digit accuracy on the total energy, but one or two less on other terms (e.g. XC and Hartree energy). It this is a problem for you, reduce the convergence threshold for instance to $10^{-10}$ or $10^{-12}$. The differences should go away (but it will probably take a few more iterations to converge). \paragraph{Execution time is time-dependent!} Yes it is! On most machines and on most operating systems, depending on machine load, on communication load (for parallel machines), on various other factors (including maybe the phase of the moon), reported execution times may vary quite a lot for the same job. \paragraph{{\em Warning : N eigenvectors not converged}} This is a warning message that can be safely ignored if it is not present in the last steps of self-consistency. If it is still present in the last steps of self-consistency, and if the number of unconverged eigenvector is a significant part of the total, it may signal serious trouble in self-consistency (see next point) or something badly wrong in input data. \paragraph{{\em Warning : negative or imaginary charge...}, or {\em ...core charge ...}, or {\em npt with rhoup$<0$...} or {\em rho dw$<0$...}} These are warning messages that can be safely ignored unless the negative or imaginary charge is sizable, let us say of the order of 0.1. If it is, something seriously wrong is going on. Otherwise, the origin of the negative charge is the following. When one transforms a positive function in real space to Fourier space and truncates at some finite cutoff, the positive function is no longer guaranteed to be positive when transformed back to real space. This happens only with core corrections and with USPPs. In some cases it may be a source of trouble (see next point) but it is usually solved by increasing the cutoff for the charge density. \paragraph{Structural optimization is slow or does not converge or ends with a mysterious bfgs error} Typical structural optimizations, based on the BFGS algorithm, converge to the default thresholds ( etot\_conv\_thr and forc\_conv\_thr ) in 15-25 BFGS steps (depending on the starting configuration). This may not happen when your system is characterized by "floppy" low-energy modes, that make very difficult (and of little use anyway) to reach a well converged structure, no matter what. Other possible reasons for a problematic convergence are listed below. Close to convergence the self-consistency error in forces may become large with respect to the value of forces. The resulting mismatch between forces and energies may confuse the line minimization algorithm, which assumes consistency between the two. The code reduces the starting self-consistency threshold conv thr when approaching the minimum energy configuration, up to a factor defined by \texttt{upscale}. Reducing \texttt{conv\_thr} (or increasing \texttt{upscale}) yields a smoother structural optimization, but if \texttt{conv\_thr} becomes too small, electronic self-consistency may not converge. You may also increase variables \texttt{etot\_conv\_thr} and \texttt{forc\_conv\_thr} that determine the threshold for convergence (the default values are quite strict). A limitation to the accuracy of forces comes from the absence of perfect translational invariance. If we had only the Hartree potential, our PW calculation would be translationally invariant to machine precision. The presence of an XC potential introduces Fourier components in the potential that are not in our basis set. This loss of precision (more serious for gradient-corrected functionals) translates into a slight but detectable loss of translational invariance (the energy changes if all atoms are displaced by the same quantity, not commensurate with the FFT grid). This sets a limit to the accuracy of forces. The situation improves somewhat by increasing the \texttt{ecutrho} cutoff. \paragraph{pw.x stops during variable-cell optimization in checkallsym with {\em non orthogonal operation} error} Variable-cell optimization may occasionally break the starting symmetry of the cell. When this happens, the run is stopped because the number of k-points calculated for the starting configuration may no longer be suitable. Possible solutions: \begin{itemize} \item start with a nonsymmetric cell; \item use a symmetry-conserving algorithm: the Wentzcovitch algorithm (\texttt{cell dynamics='damp-w'}) should not break the symmetry. \end{itemize} \subsection{Compilation problems with \texttt{PLUMED}} \paragraph{xlc compiler} If you get an error message like: \begin{verbatim} Operation between types "char**" and "int" is not allowed. \end{verbatim} change in file \texttt{clib/metadyn.h} \begin{verbatim} #define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (typeof(ptr)) calloc(nelem, sizeof(*(ptr)))) #define srenew(ptr,nelem) (ptr)= (typeof(ptr)) realloc(ptr,(nelem)*sizeof(*(ptr))) \end{verbatim} with \begin{verbatim} #define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (void*) calloc(nelem, sizeof(*(ptr)))) #define srenew(ptr,nelem) (ptr)= (void*) realloc(ptr,(nelem)*sizeof(*(ptr))) \end{verbatim} \paragraph{Calling C from fortran} PLUMED assumes that fortran compilers add a single \texttt{\_} at the end of C routines. You may get an error message as : \begin{verbatim} ERROR: Undefined symbol: .init_metadyn ERROR: Undefined symbol: .meta_force_calculation \end{verbatim} eliminate the \texttt{\_} from the definition of init\_metadyn and meta\_force\_calculation, i. e. change at line 529 \begin{verbatim} void meta_force_calculation_(real *cell, int *istep, real *xxx, real *yyy, real *zzz, \end{verbatim} with \begin{verbatim} void meta_force_calculation(real *cell, int *istep, real *xxx, real *yyy, real *zzz, \end{verbatim}, and at line 961 \begin{verbatim} void init_metadyn_(int *atoms, real *ddt, real *mass, void init_metadyn_(int *atoms, real *ddt, real *mass, \end{verbatim} \end{document} espresso-5.1/PW/Doc/INPUT_PW.html0000644000175000017500000066163612341373166014560 0ustar mbamba

Input File Description

Program: pw.x / PWscf / Quantum Espresso

TABLE OF CONTENTS

INTRODUCTION

&CONTROL

calculation | title | verbosity | restart_mode | wf_collect | nstep | iprint | tstress | tprnfor | dt | outdir | wfcdir | prefix | lkpoint_dir | max_seconds | etot_conv_thr | forc_conv_thr | disk_io | pseudo_dir | tefield | dipfield | lelfield | nberrycyc | lorbm | lberry | gdir | nppstr

&SYSTEM

ibrav | celldm | A | B | C | cosAB | cosAC | cosBC | nat | ntyp | nbnd | tot_charge | tot_magnetization | starting_magnetization | ecutwfc | ecutrho | ecutfock | nr1 | nr2 | nr3 | nr1s | nr2s | nr3s | nosym | nosym_evc | noinv | no_t_rev | force_symmorphic | use_all_frac | occupations | one_atom_occupations | starting_spin_angle | degauss | smearing | nspin | noncolin | ecfixed | qcutz | q2sigma | input_dft | exx_fraction | screening_parameter | exxdiv_treatment | x_gamma_extrapolation | ecutvcut | nqx1 | nqx2 | nqx3 | lda_plus_u | lda_plus_u_kind | Hubbard_U | Hubbard_J0 | Hubbard_alpha | Hubbard_beta | Hubbard_J(i,ityp) | starting_ns_eigenvalue(m,ispin,I) | U_projection_type | edir | emaxpos | eopreg | eamp | angle1 | angle2 | constrained_magnetization | fixed_magnetization | lambda | report | lspinorb | assume_isolated | esm_bc | esm_w | esm_efield | esm_nfit | vdw_corr | london | london_s6 | london_rcut | xdm | xdm_a1 | xdm_a2

&ELECTRONS

electron_maxstep | scf_must_converge | conv_thr | adaptive_thr | conv_thr_init | conv_thr_multi | mixing_mode | mixing_beta | mixing_ndim | mixing_fixed_ns | diagonalization | ortho_para | diago_thr_init | diago_cg_maxiter | diago_david_ndim | diago_full_acc | efield | efield_cart | startingpot | startingwfc | tqr

&IONS

ion_dynamics | ion_positions | phase_space | pot_extrapolation | wfc_extrapolation | remove_rigid_rot | ion_temperature | tempw | tolp | delta_t | nraise | refold_pos | upscale | bfgs_ndim | trust_radius_max | trust_radius_min | trust_radius_ini | w_1 | w_2

&CELL

cell_dynamics | press | wmass | cell_factor | press_conv_thr | cell_dofree

ATOMIC_SPECIES

X | Mass_X | PseudoPot_X

ATOMIC_POSITIONS

X | x | y | z | if_pos(1) | if_pos(2) | if_pos(3)

K_POINTS

nks | xk_x | xk_y | xk_z | wk | nk1 | nk2 | nk3 | sk1 | sk2 | sk3

CELL_PARAMETERS

v1 | v2 | v3

CONSTRAINTS

nconstr | constr_tol | constr_type | constr(1) | constr(2) | constr(3) | constr(4) | constr_target

OCCUPATIONS

f_inp1 | f_inp2

ATOMIC_FORCES

X | fx | fy | fz

INTRODUCTION

Input data format: { } = optional, [ ] = it depends, | = or

All quantities whose dimensions are not explicitly specified are in
RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied
by e); potentials are in energy units (i.e. they are multiplied by e)

BEWARE: TABS, DOS <CR><LF> CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE
Comment lines in namelists can be introduced by a "!", exactly as in
fortran code. Comments lines in ``cards'' can be introduced by
either a "!" or a "#" character in the first position of a line.
Do not start any line in ``cards'' with a "/" character.

Structure of the input data:
===============================================================================

&CONTROL
  ...
/

&SYSTEM
 ...
/

&ELECTRONS
...
/

[ &IONS
  ...
 / ]

[ &CELL
  ...
 / ]

ATOMIC_SPECIES
 X  Mass_X  PseudoPot_X
 Y  Mass_Y  PseudoPot_Y
 Z  Mass_Z  PseudoPot_Z

ATOMIC_POSITIONS { alat | bohr | crystal | angstrom }
  X 0.0  0.0  0.0  {if_pos(1) if_pos(2) if_pos(3)}
  Y 0.5  0.0  0.0
  Z O.0  0.2  0.2

K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c }
if (gamma)
   nothing to read
if (automatic)
   nk1, nk2, nk3, k1, k2, k3
if (not automatic)
   nks
   xk_x, xk_y, xk_z,  wk

[ CELL_PARAMETERS { alat | bohr | angstrom }
   v1(1) v1(2) v1(3)
   v2(1) v2(2) v2(3)
   v3(1) v3(2) v3(3) ]

[ OCCUPATIONS
   f_inp1(1)  f_inp1(2)  f_inp1(3) ... f_inp1(10)
   f_inp1(11) f_inp1(12) ... f_inp1(nbnd)
 [ f_inp2(1)  f_inp2(2)  f_inp2(3) ... f_inp2(10)
   f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ]

[ CONSTRAINTS
   nconstr  { constr_tol }
   constr_type(.)   constr(1,.)   constr(2,.) [ constr(3,.)   constr(4,.) ] { constr_target(.) } ]

[ ATOMIC_FORCES
   label_1 Fx(1) Fy(1) Fz(1)
   .....
   label_n Fx(n) Fy(n) Fz(n) ]
   

Namelist: CONTROL

calculation CHARACTER
Default: 'scf'
a string describing the task to be performed:
   'scf',
   'nscf',
   'bands',
   'relax',
   'md',
   'vc-relax',
   'vc-md'

   (vc = variable-cell).
         
title CHARACTER
Default: ' '
reprinted on output.
         
verbosity CHARACTER
Default: 'low'
Currently two verbosity levels are implemented:
  'high' and 'low'. 'debug' and 'medium' have the same
  effect as 'high'; 'default' and 'minimal', as 'low'
         
restart_mode CHARACTER
Default: 'from_scratch'
'from_scratch'  : from scratch. This is the normal way
                  to perform a PWscf calculation
'restart'       : from previous interrupted run. Use this
                  switch only if you want to continue an
                  interrupted calculation, not to start a
                  new one, or to perform non-scf calculations.
                  Works only if the calculation was cleanly
                  stopped using variable "max_seconds", or
                  by user request with an "exit file" (i.e.:
                  create a file "prefix".EXIT, in directory
                  "outdir"; see variables "prefix", "outdir")
         
wf_collect LOGICAL
Default: .FALSE.
This flag controls the way wavefunctions are stored to disk :

.TRUE.  collect wavefunctions from all processors, store them
        into the output data directory "outdir"/"prefix".save,
        one wavefunction per k-point in subdirs K000001/,
        K000001/, etc.. Use this if you want wavefunctions
        to be readable on a different number of processors.

.FALSE. do not collect wavefunctions, leave them in temporary
        local files (one per processor). The resulting format
        will be readable only by jobs running on the same
        number of processors and pools. Requires less I/O
        than the previous case.

Note that this flag has no effect on reading, only on writing.
         
nstep INTEGER
Default: 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases
number of ionic + electronic steps
         
iprint INTEGER
Default: write only at convergence
band energies are written every "iprint" iterations
         
tstress LOGICAL
Default: .false.
calculate stress. It is set to .TRUE. automatically if
calculation='vc-md' or 'vc-relax'
         
tprnfor LOGICAL
calculate forces. It is set to .TRUE. automatically if
calculation='relax','md','vc-md'
         
dt REAL
Default: 20.D0
time step for molecular dynamics, in Rydberg atomic units
(1 a.u.=4.8378 * 10^-17 s : beware, the CP code uses
 Hartree atomic units, half that much!!!)
         
outdir CHARACTER
Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise
input, temporary, output files are found in this directory,
see also "wfcdir"
         
wfcdir CHARACTER
Default: same as "outdir"
this directory specifies where to store files generated by
each processor (*.wfc{N}, *.igk{N}, etc.). Useful for
machines without a parallel file system: set "wfcdir" to
a local file system, while "outdir" should be a parallel
or networkfile system, visible to all processors. Beware:
in order to restart from interrupted runs, or to perform
further calculations using the produced data files, you
may need to copy files to "outdir". Works only for pw.x.
         
prefix CHARACTER
Default: 'pwscf'
prepended to input/output filenames:
prefix.wfc, prefix.rho, etc.
         
lkpoint_dir LOGICAL
Default: .true.
If .false. a subdirectory for each k_point is not opened
in the "prefix".save directory; Kohn-Sham eigenvalues are
stored instead in a single file for all k-points. Currently
doesn't work together with "wf_collect"
         
max_seconds REAL
Default: 1.D+7, or 150 days, i.e. no time limit
jobs stops after "max_seconds" CPU time. Use this option
in conjunction with option "restart_mode" if you need to
split a job too long to complete into shorter jobs that
fit into your batch queues.
         
etot_conv_thr REAL
Default: 1.0D-4
convergence threshold on total energy (a.u) for ionic
minimization: the convergence criterion is satisfied
when the total energy changes less than "etot_conv_thr"
between two consecutive scf steps. Note that "etot_conv_thr"
is extensive, like the total energy.
See also "forc_conv_thr" - both criteria must be satisfied
         
forc_conv_thr REAL
Default: 1.0D-3
convergence threshold on forces (a.u) for ionic minimization:
the convergence criterion is satisfied when all components of
all forces are smaller than "forc_conv_thr".
See also "etot_conv_thr" - both criteria must be satisfied
         
disk_io CHARACTER
Default: 'low'
Specifies the amount of disk I/O activity
'high':   save all data to disk at each SCF step

'medium': save wavefunctions at each SCF step unless
          there is a single k-point per process (in which
          case the behavior is the same as 'low')

'low' :   store wfc in memory, save only at the end

'none':   do not save anything, not even at the end
          ('scf', 'nscf', 'bands' calculations; some data
           may be written anyway for other calculations)

Note that the amount of needed RAM increases as the amount
of I/O decreases! IMPORTANT: default has been changed to 'low'.
It is no longer needed to specify 'high' in order to be able
to restart from an interrupted calculation (see "restart_mode")
but you cannot restart from disk_io='none'
         
pseudo_dir CHARACTER
Default: value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise
directory containing pseudopotential files
         
tefield LOGICAL
Default: .FALSE.
If .TRUE. a saw-like potential simulating an electric field
is added to the bare ionic potential. See variables "edir",
"eamp", "emaxpos", "eopreg" for the form and size of
the added potential.
         
dipfield LOGICAL
Default: .FALSE.
If .TRUE. and tefield=.TRUE. a dipole correction is also
added to the bare ionic potential - implements the recipe
of L. Bengtsson, PRB 59, 12301 (1999). See variables "edir",
"emaxpos", "eopreg" for the form of the correction. Must
be used ONLY in a slab geometry, for surface calculations,
with the discontinuity FALLING IN THE EMPTY SPACE.
         
lelfield LOGICAL
Default: .FALSE.
If .TRUE. a homogeneous finite electric field described
through the modern theory of the polarization is applied.
This is different from "tefield=.true." !
         
nberrycyc INTEGER
Default: 1
In the case of a finite electric field  ( lelfield == .TRUE. )
it defines the number of iterations for converging the
wavefunctions in the electric field Hamiltonian, for each
external iteration on the charge density
         
lorbm LOGICAL
Default: .FALSE.
If .TRUE. perform orbital magnetization calculation.
If finite electric field is applied (lelfield=.true.)
only Kubo terms are computed
[for details see New J. Phys. 12, 053032 (2010)].
The type of calculation is 'nscf' and should be performed
on an automatically generated uniform grid of k points.
Works ONLY with norm-conserving pseudopotentials.
         
lberry LOGICAL
Default: .FALSE.
If .TRUE. perform a Berry phase calculation
See the header of PW/src/bp_c_phase.f90 for documentation
         
gdir INTEGER
For Berry phase calculation: direction of the k-point
strings in reciprocal space. Allowed values: 1, 2, 3
1=first, 2=second, 3=third reciprocal lattice vector
For calculations with finite electric fields
(lelfield==.true.) "gdir" is the direction of the field
         
nppstr INTEGER
For Berry phase calculation: number of k-points to be
calculated along each symmetry-reduced string
The same for calculation with finite electric fields
(lelfield=.true.)
         

Namelist: SYSTEM

ibrav INTEGER
Status: REQUIRED
  Bravais-lattice index. If ibrav /= 0, specify EITHER
  [ celldm(1)-celldm(6) ] OR [ A,B,C,cosAB,cosAC,cosBC ]
  but NOT both. The lattice parameter "alat" is set to
  alat = celldm(1) (in a.u.) or alat = A (in Angstrom);
  see below for the other parameters.
  For ibrav=0 specify the lattice vectors in CELL_PARAMETER,
  optionally the lattice parameter alat = celldm(1) (in a.u.)
  or = A (in Angstrom), or else it is taken from CELL_PARAMETERS

ibrav      structure                   celldm(2)-celldm(6)
                                     or: b,c,cosab,cosac,cosbc
  0          free
      crystal axis provided in input: see card CELL_PARAMETERS

  1          cubic P (sc)
      v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,1)

  2          cubic F (fcc)
      v1 = (a/2)(-1,0,1),  v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)

  3          cubic I (bcc)
      v1 = (a/2)(1,1,1),  v2 = (a/2)(-1,1,1),  v3 = (a/2)(-1,-1,1)

  4          Hexagonal and Trigonal P        celldm(3)=c/a
      v1 = a(1,0,0),  v2 = a(-1/2,sqrt(3)/2,0),  v3 = a(0,0,c/a)

  5          Trigonal R, 3fold axis c        celldm(4)=cos(alpha)
      The crystallographic vectors form a three-fold star around
      the z-axis, the primitive cell is a simple rhombohedron:
      v1 = a(tx,-ty,tz),   v2 = a(0,2ty,tz),   v3 = a(-tx,-ty,tz)
      where c=cos(alpha) is the cosine of the angle alpha between
      any pair of crystallographic vectors, tx, ty, tz are:
        tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)
 -5          Trigonal R, 3fold axis <111>    celldm(4)=cos(alpha)
      The crystallographic vectors form a three-fold star around
      <111>. Defining a' = a/sqrt(3) :
      v1 = a' (u,v,v),   v2 = a' (v,u,v),   v3 = a' (v,v,u)
      where u and v are defined as
        u = tz - 2*sqrt(2)*ty,  v = tz + sqrt(2)*ty
      and tx, ty, tz as for case ibrav=5
      Note: if you prefer x,y,z as axis in the cubic limit,
            set  u = tz + 2*sqrt(2)*ty,  v = tz - sqrt(2)*ty
            See also the note in flib/latgen.f90

  6          Tetragonal P (st)               celldm(3)=c/a
      v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,c/a)

  7          Tetragonal I (bct)              celldm(3)=c/a
      v1=(a/2)(1,-1,c/a),  v2=(a/2)(1,1,c/a),  v3=(a/2)(-1,-1,c/a)

  8          Orthorhombic P                  celldm(2)=b/a
                                             celldm(3)=c/a
      v1 = (a,0,0),  v2 = (0,b,0), v3 = (0,0,c)

  9          Orthorhombic base-centered(bco) celldm(2)=b/a
                                             celldm(3)=c/a
      v1 = (a/2, b/2,0),  v2 = (-a/2,b/2,0),  v3 = (0,0,c)
 -9          as 9, alternate description
      v1 = (a/2,-b/2,0),  v2 = (a/2,-b/2,0),  v3 = (0,0,c)

 10          Orthorhombic face-centered      celldm(2)=b/a
                                             celldm(3)=c/a
      v1 = (a/2,0,c/2),  v2 = (a/2,b/2,0),  v3 = (0,b/2,c/2)

 11          Orthorhombic body-centered      celldm(2)=b/a
                                             celldm(3)=c/a
      v1=(a/2,b/2,c/2),  v2=(-a/2,b/2,c/2),  v3=(-a/2,-b/2,c/2)

 12          Monoclinic P, unique axis c     celldm(2)=b/a
                                             celldm(3)=c/a,
                                             celldm(4)=cos(ab)
      v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0),  v3 = (0,0,c)
      where gamma is the angle between axis a and b.
-12          Monoclinic P, unique axis b     celldm(2)=b/a
                                             celldm(3)=c/a,
                                             celldm(5)=cos(ac)
      v1 = (a,0,0), v2 = (0,b,0), v3 = (c*cos(beta),0,c*sin(beta))
      where beta is the angle between axis a and c

 13          Monoclinic base-centered        celldm(2)=b/a
                                             celldm(3)=c/a,
                                             celldm(4)=cos(ab)
      v1 = (  a/2,         0,                -c/2),
      v2 = (b*cos(gamma), b*sin(gamma), 0),
      v3 = (  a/2,         0,                  c/2),
      where gamma is the angle between axis a and b

 14          Triclinic                       celldm(2)= b/a,
                                             celldm(3)= c/a,
                                             celldm(4)= cos(bc),
                                             celldm(5)= cos(ac),
                                             celldm(6)= cos(ab)
      v1 = (a, 0, 0),
      v2 = (b*cos(gamma), b*sin(gamma), 0)
      v3 = (c*cos(beta),  c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),
           c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma)
                     - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) )
  where alpha is the angle between axis b and c
         beta is the angle between axis a and c
        gamma is the angle between axis a and b
         
Either:

celldm(i), i=1,6 REAL
See: ibrav
Crystallographic constants - see the "ibrav" variable.
Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both.
Only needed values (depending on "ibrav") must be specified
alat = celldm(1) is the lattice parameter "a" (in BOHR)
If ibrav=0, only celldm(1) is used if present;
cell vectors are read from card CELL_PARAMETERS
            
Or:

A, B, C, cosAB, cosAC, cosBC REAL
Traditional crystallographic constants: a,b,c in ANGSTROM
  cosAB = cosine of the angle between axis a and b (gamma)
  cosAC = cosine of the angle between axis a and c (beta)
  cosBC = cosine of the angle between axis b and c (alpha)
The axis are chosen according to the value of "ibrav".
Specify either these OR "celldm" but NOT both.
Only needed values (depending on "ibrav") must be specified
The lattice parameter alat = A (in ANGSTROM )
If ibrav = 0, only A is used if present;
cell vectors are read from card CELL_PARAMETERS
            
nat INTEGER
Status: REQUIRED
number of atoms in the unit cell
         
ntyp INTEGER
Status: REQUIRED
number of types of atoms in the unit cell
         
nbnd INTEGER
Default: for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more)
number of electronic states (bands) to be calculated.
Note that in spin-polarized calculations the number of
k-point, not the number of bands per k-point, is doubled
         
tot_charge REAL
Default: 0.0
total charge of the system. Useful for simulations with charged cells.
By default the unit cell is assumed to be neutral (tot_charge=0).
tot_charge=+1 means one electron missing from the system,
tot_charge=-1 means one additional electron, and so on.

In a periodic calculation a compensating jellium background is
inserted to remove divergences if the cell is not neutral.
         
tot_magnetization REAL
Default: -1 [unspecified]
total majority spin charge - minority spin charge.
Used to impose a specific total electronic magnetization.
If unspecified then tot_magnetization variable is ignored and
the amount of electronic magnetization is determined during
the self-consistent cycle.
         
starting_magnetization(i), i=1,ntyp REAL
starting spin polarization on atomic type 'i' in a spin
polarized calculation. Values range between -1 (all spins
down for the valence electrons of atom type 'i') to 1
(all spins up). Breaks the symmetry and provides a starting
point for self-consistency. The default value is zero, BUT a
value MUST be specified for AT LEAST one atomic type in spin
polarized calculations, unless you constrain the magnetization
(see "tot_magnetization" and "constrained_magnetization").
Note that if you start from zero initial magnetization, you
will invariably end up in a nonmagnetic (zero magnetization)
state. If you want to start from an antiferromagnetic state,
you may need to define two different atomic species
corresponding to sublattices of the same atomic type.
starting_magnetization is ignored if you are performing a
non-scf calculation, if you are restarting from a previous
run, or restarting from an interrupted run.
If you fix the magnetization with "tot_magnetization",
you should not specify starting_magnetization.
         
ecutwfc REAL
Status: REQUIRED
kinetic energy cutoff (Ry) for wavefunctions
         
ecutrho REAL
Default: 4 * ecutwfc
kinetic energy cutoff (Ry) for charge density and potential
For norm-conserving pseudopotential you should stick to the
default value, you can reduce it by a little but it will
introduce noise especially on forces and stress.
If there are ultrasoft PP, a larger value than the default is
often desirable (ecutrho = 8 to 12 times ecutwfc, typically).
PAW datasets can often be used at 4*ecutwfc, but it depends
on the shape of augmentation charge: testing is mandatory.
The use of gradient-corrected functional, especially in cells
with vacuum, or for pseudopotential without non-linear core
correction, usually requires an higher values of ecutrho
to be accurately converged.
         
ecutfock REAL
Default: ecutrho
kinetic energy cutoff (Ry) for the exact exchange operator in
EXX type calculations. By default this is the same as ecutrho
but in some EXX calculations significant speed-up can be found
by reducing ecutfock, at the expense of some loss in accuracy.
Currently only implemented for the optimized gamma point only
calculations.
         
nr1, nr2, nr3 INTEGER
three-dimensional FFT mesh (hard grid) for charge
density (and scf potential). If not specified
the grid is calculated based on the cutoff for
charge density (see also "ecutrho")
Note: you must specify all three dimensions for this setting to
be used.
         
nr1s, nr2s, nr3s INTEGER
three-dimensional mesh for wavefunction FFT and for the smooth
part of charge density ( smooth grid ).
Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default )
Note: you must specify all three dimensions for this setting to
be used.
         
nosym LOGICAL
Default: .FALSE.
if (.TRUE.) symmetry is not used. Note that
- if the k-point grid is provided in input, it is used "as is"
  and symmetry-inequivalent k-points are not generated;
- if the k-point grid is automatically generated, it will
  contain only points in the irreducible BZ for the bravais
  lattice, irrespective of the actual crystal symmetry.
A careful usage of this option can be advantageous
- in low-symmetry large cells, if you cannot afford a k-point
  grid with the correct symmetry
- in MD simulations
- in calculations for isolated atoms
         
nosym_evc LOGICAL
Default: .FALSE.
if(.TRUE.) symmetry is not used but the k-points are
forced to have the symmetry of the Bravais lattice;
an automatically generated k-point grid will contain
all the k-points of the grid and the points rotated by
the symmetries of the Bravais lattice which are not in the
original grid. If available, time reversal is
used to reduce the k-points (and the q => -q symmetry
is used in the phonon code). To disable also this symmetry set
noinv=.TRUE..
         
noinv LOGICAL
Default: .FALSE.
if (.TRUE.) disable the usage of k => -k symmetry
(time reversal) in k-point generation
         
no_t_rev LOGICAL
Default: .FALSE.
if (.TRUE.) disable the usage of magnetic symmetry operations
that consist in a rotation + time reversal.
         
force_symmorphic LOGICAL
Default: .FALSE.
if (.TRUE.) force the symmetry group to be symmorphic by disabling
symmetry operations having an associated fractionary translation
         
use_all_frac LOGICAL
Default: .FALSE.
if (.TRUE.) do not discard symmetry operations with an
associated fractionary translation that does not send the
real-space FFT grid into itself. These operations are
incompatible with real-space symmetrization but not with the
new G-space symmetrization. BEWARE: do not use for phonons!
The phonon code still uses real-space symmetrization.
         
occupations CHARACTER
'smearing':     gaussian smearing for metals
                see variables 'smearing' and 'degauss'

'tetrahedra' :  especially suited for calculation of DOS
                (see P.E. Bloechl, PRB49, 16223 (1994))
                Requires uniform grid of k-points,
                automatically generated (see below)
                Not suitable (because not variational) for
                force/optimization/dynamics calculations

'fixed' :       for insulators with a gap

'from_input' :  The occupation are read from input file,
                card OCCUPATIONS. Option valid only for a
                single k-point, requires "nbnd" to be set
                in input. Occupations should be consistent
                with the value of "tot_charge".
         
one_atom_occupations LOGICAL
Default: .FALSE.
This flag is used for isolated atoms (nat=1) together with
occupations='from_input'. If it is .TRUE., the wavefunctions
are ordered as the atomic starting wavefunctions, independently
from their eigenvalue. The occupations indicate which atomic
states are filled.
The order of the states is written inside the UPF
pseudopotential file.
In the scalar relativistic case:
S -> l=0, m=0
P -> l=1, z, x, y
D -> l=2, r^2-3z^2, xz, yz, xy, x^2-y^2
In the noncollinear magnetic case (with or without spin-orbit),
each group of states is doubled. For instance:
P -> l=1, z, x, y for spin up, l=1, z, x, y for spin down.
Up and down is relative to the direction of the starting
magnetization.
In the case with spin-orbit and time-reversal
(starting_magnetization=0.0) the atomic wavefunctions are
radial functions multiplied by spin-angle functions.
For instance:
P -> l=1, j=1/2, m_j=-1/2,1/2. l=1, j=3/2,
     m_j=-3/2, -1/2, 1/2, 3/2.
In the magnetic case with spin-orbit the atomic wavefunctions
can be forced to be spin-angle functions by setting
starting_spin_angle to .TRUE..
         
starting_spin_angle LOGICAL
Default: .FALSE.
In the spin-orbit case when domag=.TRUE., by default,
the starting wavefunctions are initialized as in scalar
relativistic noncollinear case without spin-orbit.
By setting starting_spin_angle=.TRUE. this behaviour can
be changed and the initial wavefunctions are radial
functions multiplied by spin-angle functions.
When domag=.FALSE. the initial wavefunctions are always
radial functions multiplied by spin-angle functions
independently from this flag.
When lspinorb is .FALSE. this flag is not used.
         
degauss REAL
Default: 0.D0 Ry
value of the gaussian spreading (Ry) for brillouin-zone
integration in metals.
         
smearing CHARACTER
Default: 'gaussian'
'gaussian', 'gauss':
    ordinary Gaussian spreading (Default)

'methfessel-paxton', 'm-p', 'mp':
    Methfessel-Paxton first-order spreading
    (see PRB 40, 3616 (1989)).

'marzari-vanderbilt', 'cold', 'm-v', 'mv':
    Marzari-Vanderbilt cold smearing
    (see PRL 82, 3296 (1999))

'fermi-dirac', 'f-d', 'fd':
    smearing with Fermi-Dirac function
         
nspin INTEGER
Default: 1
nspin = 1 :  non-polarized calculation (default)

nspin = 2 :  spin-polarized calculation, LSDA
             (magnetization along z axis)

nspin = 4 :  spin-polarized calculation, noncollinear
             (magnetization in generic direction)
             DO NOT specify nspin in this case;
             specify "noncolin=.TRUE." instead
         
noncolin LOGICAL
Default: .false.
if .true. the program will perform a noncollinear calculation.
         
ecfixed REAL
Default: 0.0
See: q2sigma
qcutz REAL
Default: 0.0
See: q2sigma
q2sigma REAL
Default: 0.1
ecfixed, qcutz, q2sigma:  parameters for modified functional to be
used in variable-cell molecular dynamics (or in stress calculation).
"ecfixed" is the value (in Rydberg) of the constant-cutoff;
"qcutz" and "q2sigma" are the height and the width (in Rydberg)
of the energy step for reciprocal vectors whose square modulus
is greater than "ecfixed". In the kinetic energy, G^2 is
replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) )
See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995)
         
input_dft CHARACTER
Default: read from pseudopotential files
Exchange-correlation functional: eg 'PBE', 'BLYP' etc
See Modules/functionals.f90 for allowed values.
Overrides the value read from pseudopotential files.
Use with care and if you know what you are doing!
         
exx_fraction REAL
Default: it depends on the specified functional
Fraction of EXX for hybrid functional calculations. In the case of
input_dft='PBE0', the default value is 0.25, while for input_dft='B3LYP'
the exx_fraction default value is 0.20.
         
screening_parameter REAL
Default: 0.106
screening_parameter for HSE like hybrid functionals.
See J. Chem. Phys. 118, 8207 (2003)
and J. Chem. Phys. 124, 219906 (2006) for more informations.
         
exxdiv_treatment CHARACTER
Default: gygi-baldereschi
Specific for EXX. It selects the kind of approach to be used
for treating the Coulomb potential divergencies at small q vectors.

gygi-baldereschi : appropriate for cubic and quasi-cubic supercells
vcut_spherical : appropriate for cubic and quasi-cubic supercells
vcut_ws : appropriate for strongly anisotropic supercells, see also
          ecutvcut.
none : sets Coulomb potential at G,q=0 to 0.0 (required for GAU-PBE)
         
x_gamma_extrapolation LOGICAL
Default: .true.
Specific for EXX. If true, extrapolate the G=0 term of the
potential (see README in examples/EXX_example for more)
Set this to .false. for GAU-PBE.
         
ecutvcut REAL
Default: 0.0 Ry
See: exxdiv_treatment
Reciprocal space cutoff for correcting
Coulomb potential divergencies at small q vectors.
         
nqx1, nqx2, nqx3 INTEGER
three-dimensional mesh for q (k1-k2) sampling of
the Fock operator (EXX). Can be smaller than
the number of k-points.

Currently this defaults to the size of the k-point mesh used.
 In QE =< 5.0.2 it defaulted to nqx1=nqx2=nqx3=1.
         
lda_plus_u LOGICAL
Default: .FALSE.
Status: DFT+U (formerly known as LDA+U) currently works only for a few selected elements. Modify flib/set_hubbard_l.f90 and PW/src/tabd.f90 if you plan to use DFT+U with an element that is not configured there.
Specify lda_plus_u = .TRUE. to enable DFT+U calculations
See: Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991);
     Anisimov et al., PRB 48, 16929 (1993);
     Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994).
You must specify, for each species with a U term, the value of
U and (optionally) alpha, J of the Hubbard model (all in eV):
see lda_plus_u_kind, Hubbard_U, Hubbard_alpha, Hubbard_J
         
lda_plus_u_kind INTEGER
Default: 0
Specifies the type of DFT+U calculation:
                  0   simplified version of Cococcioni and de Gironcoli,
                      PRB 71, 035105 (2005), using Hubbard_U
                  1   rotationally invariant scheme of Liechtenstein et al.,
                      using Hubbard_U and Hubbard_J
         
Hubbard_U(i), i=1,ntyp REAL
Default: 0.D0 for all species
Hubbard_U(i): U parameter (eV) for species i, DFT+U calculation
         
Hubbard_J0(i), i=1,ntype REAL
Default: 0.D0 for all species
Hubbard_J0(i): J0 parameter (eV) for species i, DFT+U+J calculation,
see PRB 84, 115108 (2011) for details.
         
Hubbard_alpha(i), i=1,ntyp REAL
Default: 0.D0 for all species
Hubbard_alpha(i) is the perturbation (on atom i, in eV)
used to compute U with the linear-response method of
Cococcioni and de Gironcoli, PRB 71, 35105 (2005)
(only for lda_plus_u_kind=0)
         
Hubbard_beta(i), i=1,ntyp REAL
Default: 0.D0 for all species
Hubbard_beta(i) is the perturbation (on atom i, in eV)
used to compute J0 with the linear-response method of
Cococcioni and de Gironcoli, PRB 71, 35105 (2005)
(only for lda_plus_u_kind=0). See also
PRB 84, 115108 (2011).
         
Hubbard_J(i,ityp)
Default: 0.D0 for all species
Hubbard_J(i,ityp): J parameters (eV) for species ityp,
used in DFT+U calculations (only for lda_plus_u_kind=1)
For p orbitals:  J = Hubbard_J(1,ityp);
For d orbitals:  J = Hubbard_J(1,ityp), B = Hubbard_J(2,ityp);
For f orbitals:  J = Hubbard_J(1,ityp), E2 = Hubbard_J(2,ityp),
                 E3= Hubbard_J(3,ityp).
If B or E2 or E3 are not specified or set to 0 they will be
calculated from J using atomic ratios.
         
starting_ns_eigenvalue(m,ispin,I) REAL
Default: -1.d0 that means NOT SET
In the first iteration of an DFT+U run it overwrites
the m-th eigenvalue of the ns occupation matrix for the
ispin component of atomic species I. Leave unchanged
eigenvalues that are not set. This is useful to suggest
the desired orbital occupations when the default choice
takes another path.
         
U_projection_type CHARACTER
Default: 'atomic'
Only active when lda_plus_U is .true., specifies the type
of projector on localized orbital to be used in the DFT+U
scheme.

Currently available choices:
'atomic': use atomic wfc's (as they are) to build the projector

'ortho-atomic': use Lowdin orthogonalized atomic wfc's

'norm-atomic':  Lowdin normalization of atomic wfc. Keep in mind:
                atomic wfc are not orthogonalized in this case.
                This is a "quick and dirty" trick to be used when
                atomic wfc from the pseudopotential are not
                normalized (and thus produce occupation whose
                value exceeds unity). If orthogonalized wfc are
                not needed always try 'atomic' first.

'file':         use the information from file "prefix".atwfc that must
                have been generated previously, for instance by pmw.x
                (see PP/src/poormanwannier.f90 for details).

'pseudo':       use the pseudopotential projectors. The charge density
                outside the atomic core radii is excluded.
                N.B.: for atoms with +U, a pseudopotential with the
                all-electron atomic wavefunctions is required (i.e.,
                as generated by ld1.x with lsave_wfc flag).

NB: forces and stress currently implemented only for the
'atomic' and 'pseudo' choice.
         
edir INTEGER
The direction of the electric field or dipole correction is
parallel to the bg(:,edir) reciprocal lattice vector, so the
potential is constant in planes defined by FFT grid points;
edir = 1, 2 or 3. Used only if tefield is .TRUE.
         
emaxpos REAL
Default: 0.5D0
Position of the maximum of the saw-like potential along crystal
axis "edir", within the  unit cell (see below), 0 < emaxpos < 1
Used only if tefield is .TRUE.
         
eopreg REAL
Default: 0.1D0
Zone in the unit cell where the saw-like potential decreases.
( see below, 0 < eopreg < 1 ). Used only if tefield is .TRUE.
         
eamp REAL
Default: 0.001 a.u.
Amplitude of the electric field, in ***Hartree*** a.u.;
1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE.
The saw-like potential increases with slope "eamp" in the
region from (emaxpos+eopreg-1) to (emaxpos), then decreases
to 0 until (emaxpos+eopreg), in units of the crystal
vector "edir". Important: the change of slope of this
potential must be located in the empty region, or else
unphysical forces will result.
         
angle1(i), i=1,ntyp REAL
The angle expressed in degrees between the initial
magnetization and the z-axis. For noncollinear calculations
only; index i runs over the atom types.
         
angle2(i), i=1,ntyp REAL
The angle expressed in degrees between the projection
of the initial magnetization on x-y plane and the x-axis.
For noncollinear calculations only.
         
constrained_magnetization CHARACTER
Default: 'none'
See: lambda, fixed_magnetization
Used to perform constrained calculations in magnetic systems.
Currently available choices:

'none':
         no constraint

'total':
         total magnetization is constrained by
         adding a penalty functional to the total energy:

         LAMBDA * SUM_{i} ( magnetization(i) - fixed_magnetization(i) )**2

         where the sum over i runs over the three components of
         the magnetization. Lambda is a real number (see below).
         Noncolinear case only. Use "tot_magnetization" for LSDA

'atomic':
         atomic magnetization are constrained to the defined
         starting magnetization adding a penalty:

         LAMBDA * SUM_{i,itype} ( magnetic_moment(i,itype) - mcons(i,itype) )**2

         where i runs over the cartesian components (or just z
         in the collinear case) and itype over the types (1-ntype).
         mcons(:,:) array is defined from starting_magnetization,
         (and angle1, angle2 in the non-collinear case). lambda is
         a real number

'total direction':
          the angle theta of the total magnetization
          with the z axis (theta = fixed_magnetization(3))
          is constrained:

          LAMBDA * ( arccos(magnetization(3)/mag_tot) - theta )**2

          where mag_tot is the modulus of the total magnetization.

'atomic direction':
          not all the components of the atomic
          magnetic moment are constrained but only the cosine
          of angle1, and the penalty functional is:

          LAMBDA * SUM_{itype} ( mag_mom(3,itype)/mag_mom_tot - cos(angle1(ityp)) )**2

N.B.: symmetrization may prevent to reach the desired orientation
      of the magnetization. Try not to start with very highly symmetric
      configurations or use the nosym flag (only as a last remedy)
         
fixed_magnetization(i), i=1,3 REAL
Default: 0.d0
See: constrained_magnetization
total magnetization vector (x,y,z components) to be kept
fixed when constrained_magnetization='total'
         
lambda REAL
Default: 1.d0
See: constrained_magnetization
parameter used for constrained_magnetization calculations
N.B.: if the scf calculation does not converge, try to reduce lambda
      to obtain convergence, then restart the run with a larger lambda
         
report INTEGER
Default: 1
It is the number of iterations after which the program
write all the atomic magnetic moments.
         
lspinorb LOGICAL
if .TRUE. the noncollinear code can use a pseudopotential with
spin-orbit.
         
assume_isolated CHARACTER
Default: 'none'
Used to perform calculation assuming the system to be
isolated (a molecule or a cluster in a 3D supercell).

Currently available choices:

'none' (default): regular periodic calculation w/o any correction.

'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the
         total energy is computed. An estimate of the vacuum
         level is also calculated so that eigenvalues can be
         properly aligned. ONLY FOR CUBIC SYSTEMS (ibrav=1,2,3)
         Theory:
         G.Makov, and M.C.Payne,
         "Periodic boundary conditions in ab initio
         calculations" , Phys.Rev.B 51, 4014 (1995)

'martyna-tuckerman', 'm-t', 'mt' : Martyna-Tuckerman correction
         to both total energy and scf potential. Adapted from:
         G.J. Martyna, and M.E. Tuckerman,
         "A reciprocal space based method for treating long
         range interactions in ab-initio and force-field-based
         calculation in clusters", J.Chem.Phys. 110, 2810 (1999)

'esm' :  Effective Screening Medium Method.
         For polarized or charged slab calculation, embeds
         the simulation cell within an effective semi-
         infinite medium in the perpendicular direction
         (along z). Embedding regions can be vacuum or
         semi-infinite metal electrodes (use 'esm_bc' to
         choose boundary conditions). If between two
         electrodes, an optional electric field
         ('esm_efield') may be applied. Method described in
         M. Otani and O. Sugino, "First-principles
         calculations of charged surfaces and interfaces:
         A plane-wave nonrepeated slab approach," PRB 73,
         115407 (2006).
         NB: Requires cell with a_3 lattice vector along z,
         normal to the xy plane, with the slab centered
         around z=0. Also requires symmetry checking to be
         disabled along z, either by setting 'nosym' = .TRUE.
         or by very slight displacement (i.e., 5e-4 a.u.)
         of the slab along z.
         See 'esm_bc', 'esm_efield', 'esm_w', 'esm_nfit'.
         
esm_bc CHARACTER
Default: 'pbc'
See: assume_isolated
If assume_isolated = 'esm', determines the boundary
conditions used for either side of the slab.

Currently available choices:

'pbc' (default): regular periodic calculation (no ESM).

'bc1' : Vacuum-slab-vacuum (open boundary conditions)

'bc2' : Metal-slab-metal (dual electrode configuration).
        See also 'esm_efield'.

'bc3' : Vacuum-slab-metal
         
esm_w REAL
Default: 0.d0
See: assume_isolated
If assume_isolated = 'esm', determines the position offset
[in a.u.] of the start of the effective screening region,
measured relative to the cell edge. (ESM region begins at
z = +/- [L_z/2 + esm_w] ).
         
esm_efield REAL
Default: 0.d0
See: assume_isolated, esm_bc
If assume_isolated = 'esm' and esm_bc = 'bc2', gives the
magnitude of the electric field [Ry/a.u.] to be applied
between semi-infinite ESM electrodes.
         
esm_nfit INTEGER
Default: 4
See: assume_isolated
If assume_isolated = 'esm', gives the number of z-grid points
for the polynomial fit along the cell edge.
         
vdw_corr CHARACTER
Default: 'none'
Type of Van der Waals correction. Allowed values:

   'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d': semiempirical Grimme's DFT-D2.
    Optional variables: "london_s6", "london_rcut"
    S. Grimme, J. Comp. Chem. 27, 1787 (2006),
    V. Barone et al., J. Comp. Chem. 30, 934 (2009).

    'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler': Tkatchenko-Scheffler
     dispersion corrections with first-principle derived C6 coefficients
     (implemented in CP only). Optional variables: "ts_vdw_econv_thr", "ts_vdw_isolated"
     See A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009)

    'XDM', 'xdm': Exchange-hole dipole-moment model. Optional variables: "xdm_a1", "xdm_a2"
     A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007)
         A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 136, 174109 (2012)

Note that non-local functionals (eg vdw-DF) are NOT specified here but in "input_dft"
         
london LOGICAL
Default: .FALSE.
OBSOLESCENT, same as vdw_corr='DFT-D'
         
london_s6 REAL
Default: 0.75
global scaling parameter for DFT-D. Default is good for PBE.
         
london_rcut REAL
Default: 200
cutoff radius (a.u.) for dispersion interactions
         
xdm LOGICAL
Default: .FALSE.
OBSOLESCENT, same as vdw_corr='xdm'
         
xdm_a1 REAL
Default: 0.6836
Damping function parameter a1 (adimensional). This value should change
with the exchange-correlation functional. The default corresponds to
PW86PBE.
For other functionals, see:
   http://gatsby.ucmerced.edu/wiki/XDM_damping_function_parameters
   A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013)
         
xdm_a2 REAL
Default: 1.5045
Damping function parameter a2 (angstrom). This value should change
with the exchange-correlation functional. The default corresponds to
PW86PBE.
For other functionals, see:
   http://gatsby.ucmerced.edu/wiki/XDM_damping_function_parameters
   A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013)
         

Namelist: ELECTRONS

electron_maxstep INTEGER
Default: 100
maximum number of iterations in a scf step
         
scf_must_converge LOGICAL
Default: .TRUE.
If .false. do not stop molecular dynamics or ionic relaxation
when electron_maxstep is reached. Use with care.
         
conv_thr REAL
Default: 1.D-6
Convergence threshold for selfconsistency:
   estimated energy error < conv_thr
(note that conv_thr is extensive, like the total energy).
For non-self-consistent calculations, conv_thr is used
to set the default value of the threshold (ethr) for
iterative diagonalizazion: see diago_thr_init
         
adaptive_thr LOGICAL
Default: .FALSE
If .TRUE. this turns on the use of an adaptive conv_thr for
the inner scf loops when using EXX.
         
conv_thr_init REAL
Default: 1.D-3
When adaptive_thr = .TRUE. this is the convergence threshold
used for the first scf cycle.
         
conv_thr_multi REAL
Default: 1.D-1
When adaptive_thr = .TRUE. the convergence threshold for
each scf cycle is given by:
max( conv_thr, conv_thr_multi * dexx )
         
mixing_mode CHARACTER
Default: 'plain'
'plain' :    charge density Broyden mixing

'TF' :       as above, with simple Thomas-Fermi screening
            (for highly homogeneous systems)

'local-TF':  as above, with local-density-dependent TF screening
             (for highly inhomogeneous systems)
         
mixing_beta REAL
Default: 0.7D0
mixing factor for self-consistency
         
mixing_ndim INTEGER
Default: 8
number of iterations used in mixing scheme.
If you are tight with memory, you may reduce it to 4 or so.
         
mixing_fixed_ns INTEGER
Default: 0
For DFT+U : number of iterations with fixed ns ( ns is the
  atomic density appearing in the Hubbard term ).
         
diagonalization CHARACTER
Default: 'david'
'david':  Davidson iterative diagonalization with overlap matrix
          (default). Fast, may in some rare cases fail.

'cg' :    conjugate-gradient-like band-by-band diagonalization
          Typically slower than 'david' but it uses less memory
          and is more robust (it seldom fails)

'cg-serial', 'david-serial': obsolete, use "-ndiag 1 instead"
          The subspace diagonalization in Davidson is performed
          by a fully distributed-memory parallel algorithm on
          4 or more processors, by default. The allocated memory
          scales down with the number of procs. Procs involved
          in diagonalization can be changed with command-line
          option "-ndiag N". On multicore CPUs it is often
          convenient to let just one core per CPU to work
          on linear algebra.
         
ortho_para INTEGER
Default: 0
Status: OBSOLETE: use command-line option " -ndiag XX" instead

         
diago_thr_init REAL
Convergence threshold (ethr) for iterative diagonalization
(the check is on eigenvalue convergence).
For scf calculations: default is 1.D-2 if starting from a
superposition of atomic orbitals; 1.D-5 if starting from a
charge density. During self consistency the threshold
is automatically reduced (but never below 1.D-13) when
approaching convergence.
For non-scf calculations: default is (conv_thr/N elec)/10.
         
diago_cg_maxiter INTEGER
For conjugate gradient diagonalization:
max number of iterations
         
diago_david_ndim INTEGER
Default: 4
For Davidson diagonalization: dimension of workspace
(number of wavefunction packets, at least 2 needed).
A larger value may yield a somewhat faster algorithm
but uses more memory. The opposite holds for smaller values.
Try diago_david_ndim=2 if you are tight on memory or if
your job is large: the speed penalty is often negligible
         
diago_full_acc LOGICAL
Default: .FALSE.
If .TRUE. all the empty states are diagonalized at the same level
of accuracy of the occupied ones. Otherwise the empty states are
diagonalized using a larger threshold (this should not affect
total energy, forces, and other ground-state properties).
         
efield REAL
Default: 0.D0
Amplitude of the finite electric field (in Ry a.u.;
1 a.u. = 36.3609*10^10 V/m). Used only if lelfield=.TRUE.
and if k-points (K_POINTS card) are not automatic.
         
efield_cart(i), i=1,3 REAL
Default: (0.D0, 0.D0, 0.D0)
Finite electric field (in Ry a.u.=36.3609*10^10 V/m) in
cartesian axis. Used only if lelfield=.TRUE. and if
k-points (K_POINTS card) are automatic.
         
startingpot CHARACTER
'atomic': starting potential from atomic charge superposition
          ( default for scf, *relax, *md )

'file'  : start from existing "charge-density.xml" file in the
          directory specified by variables "prefix" and "outdir"
          For nscf and bands calculation this is the default
          and the only sensible possibility.
         
startingwfc CHARACTER
Default: 'atomic+random'
'atomic': start from superposition of atomic orbitals
          If not enough atomic orbitals are available,
          fill with random numbers the remaining wfcs
          The scf typically starts better with this option,
          but in some high-symmetry cases one can "loose"
          valence states, ending up in the wrong ground state.

'atomic+random': as above, plus a superimposed "randomization"
          of atomic orbitals. Prevents the "loss" of states
          mentioned above.

'random': start from random wfcs. Slower start of scf but safe.
          It may also reduce memory usage in conjunction with
          diagonalization='cg'

'file':   start from an existing wavefunction file in the
          directory specified by variables "prefix" and "outdir"
         
tqr LOGICAL
Default: .FALSE.
If .true., use the real-space algorithm for augmentation
charges in ultrasoft pseudopotentials.
Must faster execution of ultrasoft-related calculations,
but numerically less accurate than the default algorithm.
Use with care and after testing!
         

Namelist: IONS

input this namelist only if calculation = 'relax', 'md', 'vc-relax', 'vc-md'

ion_dynamics CHARACTER
Specify the type of ionic dynamics.

For different type of calculation different possibilities are
allowed and different default values apply:

CASE ( calculation = 'relax' )
    'bfgs' :   (default)   use BFGS quasi-newton algorithm,
                           based on the trust radius procedure,
                           for structural relaxation
    'damp' :               use damped (quick-min Verlet)
                           dynamics for structural relaxation
                           Can be used for constrained
                           optimisation: see CONSTRAINTS card

CASE ( calculation = 'md' )
    'verlet' : (default)   use Verlet algorithm to integrate
                           Newton's equation. For constrained
                           dynamics, see CONSTRAINTS card
    'langevin'             ion dynamics is over-damped Langevin
    'langevin-smc'         over-damped Langevin with Smart Monte Carlo:
                           see R.J.Rossky, JCP, 69, 4628(1978)


CASE ( calculation = 'vc-relax' )
    'bfgs' :   (default)   use BFGS quasi-newton algorithm;
                           cell_dynamics must be 'bfgs' too
    'damp' :               use damped (Beeman) dynamics for
                           structural relaxation
CASE ( calculation = 'vc-md' )
    'beeman' : (default)   use Beeman algorithm to integrate
                           Newton's equation
         
ion_positions CHARACTER
Default: 'default'
'default '  : if restarting, use atomic positions read from the
              restart file; in all other cases, use atomic
              positions from standard input.

'from_input' : restart the simulation with atomic positions read
              from standard input, even if restarting.
         
phase_space CHARACTER
Default: 'full'
'full' :           the full phase-space is used for the ionic
                   dynamics.

'coarse-grained' : a coarse-grained phase-space, defined by a set
                   of constraints, is used for the ionic dynamics
                   (used for calculation of free-energy barriers)
         
pot_extrapolation CHARACTER
Default: 'atomic'
   Used to extrapolate the potential from preceding ionic steps.

   'none'        :  no extrapolation

   'atomic'      :  extrapolate the potential as if it was a sum of
                    atomic-like orbitals

   'first_order' :  extrapolate the potential with first-order
                    formula

   'second_order':  as above, with second order formula

Note: 'first_order' and 'second-order' extrapolation make sense
only for molecular dynamics calculations
         
wfc_extrapolation CHARACTER
Default: 'none'
    Used to extrapolate the wavefunctions from preceding ionic steps.

   'none'        :  no extrapolation

   'first_order' :  extrapolate the wave-functions with first-order
                    formula.

   'second_order':  as above, with second order formula.

Note: 'first_order' and 'second-order' extrapolation make sense
only for molecular dynamics calculations
         
remove_rigid_rot LOGICAL
Default: .FALSE.
This keyword is useful when simulating the dynamics and/or the
thermodynamics of an isolated system. If set to true the total
torque of the internal forces is set to zero by adding new forces
that compensate the spurious interaction with the periodic
images. This allows for the use of smaller supercells.

BEWARE: since the potential energy is no longer consistent with
the forces (it still contains the spurious interaction with the
repeated images), the total energy is not conserved anymore.
However the dynamical and thermodynamical properties should be
in closer agreement with those of an isolated system.
Also the final energy of a structural relaxation will be higher,
but the relaxation itself should be faster.
         
keywords used for molecular dynamics

ion_temperature CHARACTER
Default: 'not_controlled'
'rescaling'   control ionic temperature via velocity rescaling
              (first method) see parameters "tempw", "tolp", and
              "nraise" (for VC-MD only). This rescaling method
              is the only one currently implemented in VC-MD

'rescale-v'   control ionic temperature via velocity rescaling
              (second method) see parameters "tempw" and "nraise"

'rescale-T'   control ionic temperature via velocity rescaling
              (third method) see parameter "delta_t"

'reduce-T'    reduce ionic temperature every "nraise" steps
              by the (negative) value "delta_t"

'berendsen'   control ionic temperature using "soft" velocity
              rescaling - see parameters "tempw" and "nraise"

'andersen'    control ionic temperature using Andersen thermostat
              see parameters "tempw" and "nraise"

'initial'     initialize ion velocities to temperature "tempw"
              and leave uncontrolled further on

'not_controlled' (default) ionic temperature is not controlled
            
tempw REAL
Default: 300.D0
Starting temperature (Kelvin) in MD runs
target temperature for most thermostats.
            
tolp REAL
Default: 100.D0
Tolerance for velocity rescaling. Velocities are rescaled if
the run-averaged and target temperature differ more than tolp.
            
delta_t REAL
Default: 1.D0
if ion_temperature='rescale-T':
       at each step the instantaneous temperature is multiplied
       by delta_t; this is done rescaling all the velocities.

if ion_temperature='reduce-T':
       every 'nraise' steps the instantaneous temperature is
       reduced by -delta_T (i.e. delta_t < 0 is added to T)

The instantaneous temperature is calculated at the end of
every ionic move and BEFORE rescaling. This is the temperature
reported in the main output.

For delta_t < 0, the actual average rate of heating or cooling
should be roughly C*delta_t/(nraise*dt) (C=1 for an
ideal gas, C=0.5 for a harmonic solid, theorem of energy
equipartition between all quadratic degrees of freedom).
            
nraise INTEGER
Default: 1
if ion_temperature='reduce-T':
       every 'nraise' steps the instantaneous temperature is
       reduced by -delta_T (.e. delta_t is added to the temperature)

if ion_temperature='rescale-v':
       every 'nraise' steps the average temperature, computed from
       the last nraise steps, is rescaled to tempw

if ion_temperature='rescaling' and calculation='vc-md':
       every 'nraise' steps the instantaneous temperature
       is rescaled to tempw

if ion_temperature='berendsen':
       the "rise time" parameter is given in units of the time step:
       tau = nraise*dt, so dt/tau = 1/nraise

if ion_temperature='andersen':
       the "collision frequency" parameter is given as nu=1/tau
       defined above, so nu*dt = 1/nraise
            
refold_pos LOGICAL
Default: .FALSE.
This keyword applies only in the case of molecular dynamics or
damped dynamics. If true the ions are refolded at each step into
the supercell.
            
keywords used only in BFGS calculations

upscale REAL
Default: 100.D0
Max reduction factor for conv_thr during structural optimization
conv_thr is automatically reduced when the relaxation
approaches convergence so that forces are still accurate,
but conv_thr will not be reduced to less that
conv_thr / upscale.
            
bfgs_ndim INTEGER
Default: 1
Number of old forces and displacements vectors used in the
PULAY mixing of the residual vectors obtained on the basis
of the inverse hessian matrix given by the BFGS algorithm.
When bfgs_ndim = 1, the standard quasi-Newton BFGS method is
used.
(bfgs only)
            
trust_radius_max REAL
Default: 0.8D0
Maximum ionic displacement in the structural relaxation.
(bfgs only)
            
trust_radius_min REAL
Default: 1.D-3
Minimum ionic displacement in the structural relaxation
BFGS is reset when trust_radius < trust_radius_min.
(bfgs only)
            
trust_radius_ini REAL
Default: 0.5D0
Initial ionic displacement in the structural relaxation.
(bfgs only)
            
w_1 REAL
Default: 0.01D0
See: w_2
w_2 REAL
Default: 0.5D0
Parameters used in line search based on the Wolfe conditions.
(bfgs only)
            

Namelist: CELL

input this namelist only if calculation = 'vc-relax', 'vc-md'

cell_dynamics CHARACTER
Specify the type of dynamics for the cell.
For different type of calculation different possibilities
are allowed and different default values apply:

CASE ( calculation = 'vc-relax' )
  'none':    no dynamics
  'sd':      steepest descent ( not implemented )
  'damp-pr': damped (Beeman) dynamics of the Parrinello-Rahman
             extended lagrangian
  'damp-w':  damped (Beeman) dynamics of the new Wentzcovitch
             extended lagrangian
  'bfgs':    BFGS quasi-newton algorithm (default)
             ion_dynamics must be 'bfgs' too
CASE ( calculation = 'vc-md' )
  'none':    no dynamics
  'pr':      (Beeman) molecular dynamics of the Parrinello-Rahman
             extended lagrangian
  'w':       (Beeman) molecular dynamics of the new Wentzcovitch
             extended lagrangian
         
press REAL
Default: 0.D0
Target pressure [KBar] in a variable-cell md or relaxation run.
         
wmass REAL
Default: 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD
Fictitious cell mass [amu] for variable-cell simulations
(both 'vc-md' and 'vc-relax')
         
cell_factor REAL
Default: 1.2D0
Used in the construction of the pseudopotential tables.
It should exceed the maximum linear contraction of the
cell during a simulation.
         
press_conv_thr REAL
Default: 0.5D0 Kbar
Convergence threshold on the pressure for variable cell
relaxation ('vc-relax' : note that the other convergence
thresholds for ionic relaxation apply as well).
         
cell_dofree CHARACTER
Default: 'all'
Select which of the cell parameters should be moved:

all     = all axis and angles are moved
x       = only the x component of axis 1 (v1_x) is moved
y       = only the y component of axis 2 (v2_y) is moved
z       = only the z component of axis 3 (v3_z) is moved
xy      = only v1_x and v2_y are moved
xz      = only v1_x and v3_z are moved
yz      = only v2_y and v3_z are moved
xyz     = only v1_x, v2_y, v3_z are moved
shape   = all axis and angles, keeping the volume fixed
volume  = the volume changes, keeping all angles fixed (i.e. only celldm(1) changes)
2Dxy    = only x and y components are allowed to change
2Dshape = as above, keeping the area in xy plane fixed

BEWARE: if axis are not orthogonal, some of these options do not
 work (symmetry is broken). If you are not happy with them,
 edit subroutine init_dofree in file Modules/cell_base.f90
         

Card: ATOMIC_SPECIES

Syntax:

ATOMIC_SPECIES
 X(1)   Mass_X(1)   PseudoPot_X(1) 
 X(2)   Mass_X(2)   PseudoPot_X(2) 
 . . .
 X(ntyp)   Mass_X(ntyp)   PseudoPot_X(ntyp) 

Description of items:


X CHARACTER
label of the atom. Acceptable syntax:
chemical symbol X (1 or 2 characters, case-insensitive)
or "Xn", n=0,..., 9; "X_*", "X-*" (e.g. C1, As_h)
                  
Mass_X REAL
mass of the atomic species [amu: mass of C = 12]
Used only when performing Molecular Dynamics run
or structural optimization runs using Damped MD.
Not actually used in all other cases (but stored
in data files, so phonon calculations will use
these values unless other values are provided)
                  
PseudoPot_X CHARACTER
File containing PP for this species.

The pseudopotential file is assumed to be in the new UPF format.
If it doesn't work, the pseudopotential format is determined by
the file name:

*.vdb or *.van     Vanderbilt US pseudopotential code
*.RRKJ3            Andrea Dal Corso's code (old format)
none of the above  old PWscf norm-conserving format
                  

Card: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal }

IF calculation == 'bands' OR calculation == 'nscf' :
Specified atomic positions will be IGNORED and those from the
previous scf calculation will be used instead !!!
            
ELSEIF :

Syntax:

ATOMIC_POSITIONS { alat | bohr | angstrom | crystal }
 X(1)   x(1)   y(1)   z(1)  {  if_pos(1)(1)   if_pos(2)(1)   if_pos(3)(1)  }
 X(2)   x(2)   y(2)   z(2)  {  if_pos(1)(2)   if_pos(2)(2)   if_pos(3)(2)  }
 . . .
 X(nat)   x(nat)   y(nat)   z(nat)  {  if_pos(1)(nat)   if_pos(2)(nat)   if_pos(3)(nat)  }

Description of items:

alat    : atomic positions are in cartesian coordinates, in
          units of the lattice parameter (either celldm(1)
          or A). If no option is specified, 'alat' is assumed;
          not specifying units is DEPRECATED and will no
          longer be allowed in the future

bohr    : atomic positions are in cartesian coordinate,
          in atomic units (i.e. Bohr radii)

angstrom: atomic positions are in cartesian coordinates,
          in Angstrom

crystal : atomic positions are in crystal coordinates, i.e.
          in relative coordinates of the primitive lattice
          vectors as defined either in card CELL_PARAMETERS
          or via the ibrav + celldm / a,b,c... variables
         
X CHARACTER
 label of the atom as specified in ATOMIC_SPECIES
                        
x, y, z REAL
atomic positions

NOTE: each atomic coordinate can also be specified as a simple algebraic expression.
      To be interpreted correctly expression must NOT contain any blank
      space and must NOT start with a "+" sign. The available expressions are:

        + (plus), - (minus), / (division), * (multiplication), ^ (power)

     All numerical constants included are considered as double-precision numbers;
     i.e. 1/2 is 0.5, not zero. Other functions, such as sin, sqrt or exp are
     not available, although sqrt can be replaced with ^(1/2).

    Example:
                 C  1/3   1/2*3^(-1/2)   0

    is equivalent to

            C  0.333333  0.288675  0.000000

    Please note that this feature is NOT supported by XCrysDen (which will
    display a wrong structure, or nothing at all).
                        
if_pos(1), if_pos(2), if_pos(3) INTEGER
Default: 1
component i of the force for this atom is multiplied by if_pos(i),
which must be either 0 or 1.  Used to keep selected atoms and/or
selected components fixed in MD dynamics or
structural optimization run.
                           

Card: K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c }

IF tpiba OR crystal OR tpiba_b OR crystal_b OR tpiba_c OR crystal_c :

Syntax:

K_POINTS tpiba | crystal | tpiba_b | crystal_b | tpiba_c | crystal_c
nks  
 xk_x(1)   xk_y(1)   xk_z(1)   wk(1) 
 xk_x(2)   xk_y(2)   xk_z(2)   wk(2) 
 . . .
 xk_x(nks)   xk_y(nks)   xk_z(nks)   wk(nks) 
ELSEIF automatic :

Syntax:

K_POINTS automatic
nk1  nk2  nk3  sk1  sk2  sk3  
ELSEIF gamma :

Syntax:

K_POINTS gamma

Description of items:

 tpiba    : read k-points in cartesian coordinates,
            in units of 2 pi/a (default)

 automatic: automatically generated uniform grid of k-points, i.e,
            generates ( nk1, nk2, nk3 ) grid with ( sk1, sk2, sk3 ) offset.
            nk1, nk2, nk3 as in Monkhorst-Pack grids
            k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced
            by half a grid step in the corresponding direction )
            BEWARE: only grids having the full symmetry of the crystal
            work with tetrahedra. Some grids with offset may not work.

 crystal  : read k-points in crystal coordinates, i.e. in relative
            coordinates of the reciprocal lattice vectors

 gamma    : use k = 0 (no need to list k-point specifications after card)
            In this case wavefunctions can be chosen as real,
            and specialized subroutines optimized for calculations
            at the gamma point are used (memory and cpu requirements
            are reduced by approximately one half).

 tpiba_b  : Used for band-structure plots.
            k-points are in units of  2 pi/a.
            nks points specify nks-1 lines in reciprocal space.
            Every couple of points identifies the initial and
            final point of a line. pw.x generates N
            intermediate points of the line where N is the
            weight of the first point.

 crystal_b: as tpiba_b, but k-points are in crystal coordinates.

 tpiba_c  : Used for band-structure contour plots.
            k-points are in units of  2 pi/a. nks must be 3.
            3 k-points k_0, k_1, and k_2 specify a rectangle
            in reciprocal space of vertices k_0, k_1, k_2,
            k_1 + k_2 - k_0: k_0 + \alpha (k_1-k_0)+
            \beta (k_2-k_0) with 0<\alpha,\beta < 1.
            The code produces a uniform mesh n1 x n2
            k points in this rectangle. n1 and n2 are
            the weights of k_1 and k_2. The weight of k_0
            is not used.

crystal_c: as tpiba_c, but k-points are in crystal coordinates.
         
nks INTEGER
 Number of supplied special k-points.
                     
xk_x, xk_y, xk_z, wk REAL
Special k-points (xk_x/y/z) in the irreducible Brillouin Zone
(IBZ) of the lattice (with all symmetries) and weights (wk)
See the literature for lists of special points and
the corresponding weights.

If the symmetry is lower than the full symmetry
of the lattice, additional points with appropriate
weights are generated. Notice that such procedure
assumes that ONLY k-points in the IBZ are provided in input

In a non-scf calculation, weights do not affect the results.
If you just need eigenvalues and eigenvectors (for instance,
for a band-structure plot), weights can be set to any value
(for instance all equal to 1).
                        
nk1, nk2, nk3 INTEGER
These parameters specify the k-point grid
(nk1 x nk2 x nk3) as in Monkhorst-Pack grids.
                     
sk1, sk2, sk3 INTEGER
The grid offsets;  sk1, sk2, sk3 must be
0 ( no offset ) or 1 ( grid displaced by
half a grid step in the corresponding direction ).
                     

Card: CELL_PARAMETERS { alat | bohr | angstrom }

Optional card, needed only if ibrav = 0 is specified, ignored otherwise !

Syntax:

CELL_PARAMETERS { alat | bohr | angstrom }
 v1(1)   v1(2)   v1(3) 
 v2(1)   v2(2)   v2(3) 
 v3(1)   v3(2)   v3(3) 

Description of items:

'bohr'/'angstrom': lattice vectors in bohr radii / angstrom.
   In this case the lattice parameter alat = sqrt(v1*v1).
'alat' / nothing specified: lattice vectors in units of the
lattice parameter (either celldm(1) or a). Not specifying
units is DEPRECATED and will not be allowed in the future.
If nothing specified and no lattice parameter specified,
'bohr' is assumed - DEPRECATED, will no longer be allowed
         
v1, v2, v3 REAL
Crystal lattice vectors (in cartesian axis):
    v1(1)  v1(2)  v1(3)    ... 1st lattice vector
    v2(1)  v2(2)  v2(3)    ... 2nd lattice vector
    v3(1)  v3(2)  v3(3)    ... 3rd lattice vector
                  

Card: CONSTRAINTS

Optional card, used for constrained dynamics or constrained optimisations (only if ion_dynamics='damp' or 'verlet', variable-cell excepted)

When this card is present the SHAKE algorithm is automatically used.
      

Syntax:

CONSTRAINTS
nconstr   { constr_tol   }
 constr_type(1)   constr(1)(1)   constr(2)(1)  [  constr(3)(1)    constr(4)(1)   ] {  constr_target(1)  }
 constr_type(2)   constr(1)(2)   constr(2)(2)  [  constr(3)(2)    constr(4)(2)   ] {  constr_target(2)  }
 . . .
 constr_type(nconstr)   constr(1)(nconstr)   constr(2)(nconstr)  [  constr(3)(nconstr)    constr(4)(nconstr)   ] {  constr_target(nconstr)  }

Description of items:


nconstr INTEGER
 Number of constraints.
               
constr_tol REAL
 Tolerance for keeping the constraints satisfied.
                  
constr_type CHARACTER
Type of constrain :

'type_coord'      : constraint on global coordination-number, i.e. the
                    average number of atoms of type B surrounding the
                    atoms of type A. The coordination is defined by
                    using a Fermi-Dirac.
                    (four indexes must be specified).

'atom_coord'      : constraint on local coordination-number, i.e. the
                    average number of atoms of type A surrounding a
                    specific atom. The coordination is defined by
                    using a Fermi-Dirac.
                    (four indexes must be specified).

'distance'        : constraint on interatomic distance
                    (two atom indexes must be specified).

'planar_angle'    : constraint on planar angle
                    (three atom indexes must be specified).

'torsional_angle' : constraint on torsional angle
                    (four atom indexes must be specified).

'bennett_proj'    : constraint on the projection onto a given direction
                    of the vector defined by the position of one atom
                    minus the center of mass of the others.
                    G.Roma,J.P.Crocombette: J.Nucl.Mater.403,32(2010)
                  
constr(1), constr(2), constr(3), constr(4)
                      These variables have different meanings
                      for different constraint types:

                     'type_coord' : constr(1) is the first index of the
                                    atomic type involved
                                    constr(2) is the second index of the
                                    atomic type involved
                                    constr(3) is the cut-off radius for
                                    estimating the coordination
                                    constr(4) is a smoothing parameter

                     'atom_coord' : constr(1) is the atom index of the
                                    atom with constrained coordination
                                    constr(2) is the index of the atomic
                                    type involved in the coordination
                                    constr(3) is the cut-off radius for
                                    estimating the coordination
                                    constr(4) is a smoothing parameter

                       'distance' : atoms indices object of the
                                    constraint, as they appear in
                                    the 'ATOMIC_POSITION' CARD

'planar_angle', 'torsional_angle' : atoms indices object of the
                                    constraint, as they appear in the
                                    'ATOMIC_POSITION' CARD (beware the
                                    order)

                   'bennett_proj' : constr(1) is the index of the atom
                                    whose position is constrained.
                                    constr(2:4) are the three coordinates
                                    of the vector that specifies the
                                    constraint direction.
                  
constr_target REAL
Target for the constrain ( angles are specified in degrees ).
This variable is optional.
                     

Card: OCCUPATIONS

Optional card, used only if occupations = 'from_input', ignored otherwise !

Syntax:

OCCUPATIONS
 f_inp1(1)   f_inp1(2)   . . .  f_inp1(nbnd) 
[    f_inp2(1)   f_inp2(2)   . . .  f_inp2(nbnd)    ]

Description of items:


f_inp1 REAL
Occupations of individual states (MAX 10 PER ROW).
For spin-polarized calculations, these are majority spin states.
                  
f_inp2 REAL
Occupations of minority spin states (MAX 10 PER ROW)
To be specified only for spin-polarized calculations.
                     

Card: ATOMIC_FORCES

Optional card used to specify external forces acting on atoms

Syntax:

ATOMIC_FORCES
 X(1)   fx(1)   fy(1)   fz(1) 
 X(2)   fx(2)   fy(2)   fz(2) 
 . . .
 X(nat)   fx(nat)   fy(nat)   fz(nat) 

Description of items:


X CHARACTER
 label of the atom as specified in ATOMIC_SPECIES
                  
fx, fy, fz REAL
external force on atom X (cartesian components, Ry/a.u. units)
                  

This file has been created by helpdoc utility.
espresso-5.1/PW/Doc/user_guide.out0000644000175000017500000000252612341373154015231 0ustar mbamba\BOOKMARK [1][-]{section.1}{Introduction}{}% 1 \BOOKMARK [2][-]{subsection.1.1}{What can PWscf do}{section.1}% 2 \BOOKMARK [2][-]{subsection.1.2}{People}{section.1}% 3 \BOOKMARK [2][-]{subsection.1.3}{Terms of use}{section.1}% 4 \BOOKMARK [1][-]{section.2}{Compilation}{}% 5 \BOOKMARK [1][-]{section.3}{Using PWscf}{}% 6 \BOOKMARK [2][-]{subsection.3.1}{Input data}{section.3}% 7 \BOOKMARK [2][-]{subsection.3.2}{Data files}{section.3}% 8 \BOOKMARK [2][-]{subsection.3.3}{Electronic structure calculations}{section.3}% 9 \BOOKMARK [2][-]{subsection.3.4}{Optimization and dynamics}{section.3}% 10 \BOOKMARK [2][-]{subsection.3.5}{Direct interface with CASINO}{section.3}% 11 \BOOKMARK [1][-]{section.4}{Performances}{}% 12 \BOOKMARK [2][-]{subsection.4.1}{Execution time}{section.4}% 13 \BOOKMARK [2][-]{subsection.4.2}{Memory requirements}{section.4}% 14 \BOOKMARK [2][-]{subsection.4.3}{File space requirements}{section.4}% 15 \BOOKMARK [2][-]{subsection.4.4}{Parallelization issues}{section.4}% 16 \BOOKMARK [2][-]{subsection.4.5}{Understanding the time report}{section.4}% 17 \BOOKMARK [3][-]{subsubsection.4.5.1}{Serial execution}{subsection.4.5}% 18 \BOOKMARK [3][-]{subsubsection.4.5.2}{Parallel execution}{subsection.4.5}% 19 \BOOKMARK [1][-]{section.5}{Troubleshooting}{}% 20 \BOOKMARK [2][-]{subsection.5.1}{Compilation problems with PLUMED}{section.5}% 21 espresso-5.1/PW/Doc/INPUT_MANYPW.txt0000644000175000017500000000127712341373024015076 0ustar mbamba Poor-man pw.x parallel launcher. Usage (for mpirun): mpirun -np Np many.x -ni Ni [other options] or whatever is appropriate for your parallel environment Starts Ni pw.x instances each running on Np/Ni processors Each pw.x instances: * reads input data from from pw_N.in, N=0,..,,Ni-1 if no input file is specified via the -i option; from "input_file"_N if command-line options -i "input_file" is specified * saves temporary and final data to "outdir"_N/ directory (or to tmp_N/ if outdir='./') * writes output to pw_N.out in the current directory if no input file is specified via the -i option; to "input_file"_N.out if command-line options -i "input_file" is specified espresso-5.1/PW/Doc/input_xx.xsl0000777000175000017500000000000012341373165021715 2../../dev-tools/input_xx.xslustar mbambaespresso-5.1/PW/Doc/INPUT_PW.txt0000644000175000017500000040050412341373166014414 0ustar mbamba*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: pw.x / PWscf / Quantum Espresso ------------------------------------------------------------------------ Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied by e); potentials are in energy units (i.e. they are multiplied by e) BEWARE: TABS, DOS CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE Comment lines in namelists can be introduced by a "!", exactly as in fortran code. Comments lines in ``cards'' can be introduced by either a "!" or a "#" character in the first position of a line. Do not start any line in ``cards'' with a "/" character. Structure of the input data: =============================================================================== &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / [ &IONS ... / ] [ &CELL ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } if (gamma) nothing to read if (automatic) nk1, nk2, nk3, k1, k2, k3 if (not automatic) nks xk_x, xk_y, xk_z, wk [ CELL_PARAMETERS { alat | bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ] [ ATOMIC_FORCES label_1 Fx(1) Fy(1) Fz(1) ..... label_n Fx(n) Fy(n) Fz(n) ] ======================================================================== NAMELIST: &CONTROL +-------------------------------------------------------------------- Variable: calculation Type: CHARACTER Default: 'scf' Description: a string describing the task to be performed: 'scf', 'nscf', 'bands', 'relax', 'md', 'vc-relax', 'vc-md' (vc = variable-cell). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: title Type: CHARACTER Default: ' ' Description: reprinted on output. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: verbosity Type: CHARACTER Default: 'low' Description: Currently two verbosity levels are implemented: 'high' and 'low'. 'debug' and 'medium' have the same effect as 'high'; 'default' and 'minimal', as 'low' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: restart_mode Type: CHARACTER Default: 'from_scratch' Description: 'from_scratch' : from scratch. This is the normal way to perform a PWscf calculation 'restart' : from previous interrupted run. Use this switch only if you want to continue an interrupted calculation, not to start a new one, or to perform non-scf calculations. Works only if the calculation was cleanly stopped using variable "max_seconds", or by user request with an "exit file" (i.e.: create a file "prefix".EXIT, in directory "outdir"; see variables "prefix", "outdir") +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wf_collect Type: LOGICAL Default: .FALSE. Description: This flag controls the way wavefunctions are stored to disk : .TRUE. collect wavefunctions from all processors, store them into the output data directory "outdir"/"prefix".save, one wavefunction per k-point in subdirs K000001/, K000001/, etc.. Use this if you want wavefunctions to be readable on a different number of processors. .FALSE. do not collect wavefunctions, leave them in temporary local files (one per processor). The resulting format will be readable only by jobs running on the same number of processors and pools. Requires less I/O than the previous case. Note that this flag has no effect on reading, only on writing. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nstep Type: INTEGER Description: number of ionic + electronic steps Default: 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: iprint Type: INTEGER Default: write only at convergence Description: band energies are written every "iprint" iterations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tstress Type: LOGICAL Default: .false. Description: calculate stress. It is set to .TRUE. automatically if calculation='vc-md' or 'vc-relax' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tprnfor Type: LOGICAL Description: calculate forces. It is set to .TRUE. automatically if calculation='relax','md','vc-md' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: dt Type: REAL Default: 20.D0 Description: time step for molecular dynamics, in Rydberg atomic units (1 a.u.=4.8378 * 10^-17 s : beware, the CP code uses Hartree atomic units, half that much!!!) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: CHARACTER Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise Description: input, temporary, output files are found in this directory, see also "wfcdir" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfcdir Type: CHARACTER Default: same as "outdir" Description: this directory specifies where to store files generated by each processor (*.wfc{N}, *.igk{N}, etc.). Useful for machines without a parallel file system: set "wfcdir" to a local file system, while "outdir" should be a parallel or networkfile system, visible to all processors. Beware: in order to restart from interrupted runs, or to perform further calculations using the produced data files, you may need to copy files to "outdir". Works only for pw.x. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: prefix Type: CHARACTER Default: 'pwscf' Description: prepended to input/output filenames: prefix.wfc, prefix.rho, etc. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lkpoint_dir Type: LOGICAL Default: .true. Description: If .false. a subdirectory for each k_point is not opened in the "prefix".save directory; Kohn-Sham eigenvalues are stored instead in a single file for all k-points. Currently doesn't work together with "wf_collect" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: max_seconds Type: REAL Default: 1.D+7, or 150 days, i.e. no time limit Description: jobs stops after "max_seconds" CPU time. Use this option in conjunction with option "restart_mode" if you need to split a job too long to complete into shorter jobs that fit into your batch queues. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: etot_conv_thr Type: REAL Default: 1.0D-4 Description: convergence threshold on total energy (a.u) for ionic minimization: the convergence criterion is satisfied when the total energy changes less than "etot_conv_thr" between two consecutive scf steps. Note that "etot_conv_thr" is extensive, like the total energy. See also "forc_conv_thr" - both criteria must be satisfied +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: forc_conv_thr Type: REAL Default: 1.0D-3 Description: convergence threshold on forces (a.u) for ionic minimization: the convergence criterion is satisfied when all components of all forces are smaller than "forc_conv_thr". See also "etot_conv_thr" - both criteria must be satisfied +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: disk_io Type: CHARACTER Default: 'low' Description: Specifies the amount of disk I/O activity 'high': save all data to disk at each SCF step 'medium': save wavefunctions at each SCF step unless there is a single k-point per process (in which case the behavior is the same as 'low') 'low' : store wfc in memory, save only at the end 'none': do not save anything, not even at the end ('scf', 'nscf', 'bands' calculations; some data may be written anyway for other calculations) Note that the amount of needed RAM increases as the amount of I/O decreases! IMPORTANT: default has been changed to 'low'. It is no longer needed to specify 'high' in order to be able to restart from an interrupted calculation (see "restart_mode") but you cannot restart from disk_io='none' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: pseudo_dir Type: CHARACTER Default: value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise Description: directory containing pseudopotential files +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tefield Type: LOGICAL Default: .FALSE. Description: If .TRUE. a saw-like potential simulating an electric field is added to the bare ionic potential. See variables "edir", "eamp", "emaxpos", "eopreg" for the form and size of the added potential. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: dipfield Type: LOGICAL Default: .FALSE. Description: If .TRUE. and tefield=.TRUE. a dipole correction is also added to the bare ionic potential - implements the recipe of L. Bengtsson, PRB 59, 12301 (1999). See variables "edir", "emaxpos", "eopreg" for the form of the correction. Must be used ONLY in a slab geometry, for surface calculations, with the discontinuity FALLING IN THE EMPTY SPACE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lelfield Type: LOGICAL Default: .FALSE. Description: If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. This is different from "tefield=.true." ! +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nberrycyc Type: INTEGER Default: 1 Description: In the case of a finite electric field ( lelfield == .TRUE. ) it defines the number of iterations for converging the wavefunctions in the electric field Hamiltonian, for each external iteration on the charge density +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lorbm Type: LOGICAL Default: .FALSE. Description: If .TRUE. perform orbital magnetization calculation. If finite electric field is applied (lelfield=.true.) only Kubo terms are computed [for details see New J. Phys. 12, 053032 (2010)]. The type of calculation is 'nscf' and should be performed on an automatically generated uniform grid of k points. Works ONLY with norm-conserving pseudopotentials. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lberry Type: LOGICAL Default: .FALSE. Description: If .TRUE. perform a Berry phase calculation See the header of PW/src/bp_c_phase.f90 for documentation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: gdir Type: INTEGER Description: For Berry phase calculation: direction of the k-point strings in reciprocal space. Allowed values: 1, 2, 3 1=first, 2=second, 3=third reciprocal lattice vector For calculations with finite electric fields (lelfield==.true.) "gdir" is the direction of the field +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nppstr Type: INTEGER Description: For Berry phase calculation: number of k-points to be calculated along each symmetry-reduced string The same for calculation with finite electric fields (lelfield=.true.) +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &SYSTEM +-------------------------------------------------------------------- Variable: ibrav Type: INTEGER Status: REQUIRED Description: Bravais-lattice index. If ibrav /= 0, specify EITHER [ celldm(1)-celldm(6) ] OR [ A,B,C,cosAB,cosAC,cosBC ] but NOT both. The lattice parameter "alat" is set to alat = celldm(1) (in a.u.) or alat = A (in Angstrom); see below for the other parameters. For ibrav=0 specify the lattice vectors in CELL_PARAMETER, optionally the lattice parameter alat = celldm(1) (in a.u.) or = A (in Angstrom), or else it is taken from CELL_PARAMETERS ibrav structure celldm(2)-celldm(6) or: b,c,cosab,cosac,cosbc 0 free crystal axis provided in input: see card CELL_PARAMETERS 1 cubic P (sc) v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1) 2 cubic F (fcc) v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0) 3 cubic I (bcc) v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1) 4 Hexagonal and Trigonal P celldm(3)=c/a v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a) 5 Trigonal R, 3fold axis c celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around the z-axis, the primitive cell is a simple rhombohedron: v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz) where c=cos(alpha) is the cosine of the angle alpha between any pair of crystallographic vectors, tx, ty, tz are: tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3) -5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around <111>. Defining a' = a/sqrt(3) : v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u) where u and v are defined as u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty and tx, ty, tz as for case ibrav=5 Note: if you prefer x,y,z as axis in the cubic limit, set u = tz + 2*sqrt(2)*ty, v = tz - sqrt(2)*ty See also the note in flib/latgen.f90 6 Tetragonal P (st) celldm(3)=c/a v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a) 7 Tetragonal I (bct) celldm(3)=c/a v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a) 8 Orthorhombic P celldm(2)=b/a celldm(3)=c/a v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c) 9 Orthorhombic base-centered(bco) celldm(2)=b/a celldm(3)=c/a v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c) -9 as 9, alternate description v1 = (a/2,-b/2,0), v2 = (a/2,-b/2,0), v3 = (0,0,c) 10 Orthorhombic face-centered celldm(2)=b/a celldm(3)=c/a v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2) 11 Orthorhombic body-centered celldm(2)=b/a celldm(3)=c/a v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2) 12 Monoclinic P, unique axis c celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c) where gamma is the angle between axis a and b. -12 Monoclinic P, unique axis b celldm(2)=b/a celldm(3)=c/a, celldm(5)=cos(ac) v1 = (a,0,0), v2 = (0,b,0), v3 = (c*cos(beta),0,c*sin(beta)) where beta is the angle between axis a and c 13 Monoclinic base-centered celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1 = ( a/2, 0, -c/2), v2 = (b*cos(gamma), b*sin(gamma), 0), v3 = ( a/2, 0, c/2), where gamma is the angle between axis a and b 14 Triclinic celldm(2)= b/a, celldm(3)= c/a, celldm(4)= cos(bc), celldm(5)= cos(ac), celldm(6)= cos(ab) v1 = (a, 0, 0), v2 = (b*cos(gamma), b*sin(gamma), 0) v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma), c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma) - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) ) where alpha is the angle between axis b and c beta is the angle between axis a and c gamma is the angle between axis a and b +-------------------------------------------------------------------- ///--- EITHER: +-------------------------------------------------------------------- Variable: celldm(i), i=1,6 Type: REAL See: ibrav Description: Crystallographic constants - see the "ibrav" variable. Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both. Only needed values (depending on "ibrav") must be specified alat = celldm(1) is the lattice parameter "a" (in BOHR) If ibrav=0, only celldm(1) is used if present; cell vectors are read from card CELL_PARAMETERS +-------------------------------------------------------------------- OR: +-------------------------------------------------------------------- Variables: A, B, C, cosAB, cosAC, cosBC Type: REAL Description: Traditional crystallographic constants: a,b,c in ANGSTROM cosAB = cosine of the angle between axis a and b (gamma) cosAC = cosine of the angle between axis a and c (beta) cosBC = cosine of the angle between axis b and c (alpha) The axis are chosen according to the value of "ibrav". Specify either these OR "celldm" but NOT both. Only needed values (depending on "ibrav") must be specified The lattice parameter alat = A (in ANGSTROM ) If ibrav = 0, only A is used if present; cell vectors are read from card CELL_PARAMETERS +-------------------------------------------------------------------- \\\--- +-------------------------------------------------------------------- Variable: nat Type: INTEGER Status: REQUIRED Description: number of atoms in the unit cell +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ntyp Type: INTEGER Status: REQUIRED Description: number of types of atoms in the unit cell +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nbnd Type: INTEGER Default: for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more) Description: number of electronic states (bands) to be calculated. Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tot_charge Type: REAL Default: 0.0 Description: total charge of the system. Useful for simulations with charged cells. By default the unit cell is assumed to be neutral (tot_charge=0). tot_charge=+1 means one electron missing from the system, tot_charge=-1 means one additional electron, and so on. In a periodic calculation a compensating jellium background is inserted to remove divergences if the cell is not neutral. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tot_magnetization Type: REAL Default: -1 [unspecified] Description: total majority spin charge - minority spin charge. Used to impose a specific total electronic magnetization. If unspecified then tot_magnetization variable is ignored and the amount of electronic magnetization is determined during the self-consistent cycle. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: starting_magnetization(i), i=1,ntyp Type: REAL Description: starting spin polarization on atomic type 'i' in a spin polarized calculation. Values range between -1 (all spins down for the valence electrons of atom type 'i') to 1 (all spins up). Breaks the symmetry and provides a starting point for self-consistency. The default value is zero, BUT a value MUST be specified for AT LEAST one atomic type in spin polarized calculations, unless you constrain the magnetization (see "tot_magnetization" and "constrained_magnetization"). Note that if you start from zero initial magnetization, you will invariably end up in a nonmagnetic (zero magnetization) state. If you want to start from an antiferromagnetic state, you may need to define two different atomic species corresponding to sublattices of the same atomic type. starting_magnetization is ignored if you are performing a non-scf calculation, if you are restarting from a previous run, or restarting from an interrupted run. If you fix the magnetization with "tot_magnetization", you should not specify starting_magnetization. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutwfc Type: REAL Status: REQUIRED Description: kinetic energy cutoff (Ry) for wavefunctions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutrho Type: REAL Default: 4 * ecutwfc Description: kinetic energy cutoff (Ry) for charge density and potential For norm-conserving pseudopotential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on forces and stress. If there are ultrasoft PP, a larger value than the default is often desirable (ecutrho = 8 to 12 times ecutwfc, typically). PAW datasets can often be used at 4*ecutwfc, but it depends on the shape of augmentation charge: testing is mandatory. The use of gradient-corrected functional, especially in cells with vacuum, or for pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately converged. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutfock Type: REAL Default: ecutrho Description: kinetic energy cutoff (Ry) for the exact exchange operator in EXX type calculations. By default this is the same as ecutrho but in some EXX calculations significant speed-up can be found by reducing ecutfock, at the expense of some loss in accuracy. Currently only implemented for the optimized gamma point only calculations. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1, nr2, nr3 Type: INTEGER Description: three-dimensional FFT mesh (hard grid) for charge density (and scf potential). If not specified the grid is calculated based on the cutoff for charge density (see also "ecutrho") Note: you must specify all three dimensions for this setting to be used. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1s, nr2s, nr3s Type: INTEGER Description: three-dimensional mesh for wavefunction FFT and for the smooth part of charge density ( smooth grid ). Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default ) Note: you must specify all three dimensions for this setting to be used. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nosym Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) symmetry is not used. Note that - if the k-point grid is provided in input, it is used "as is" and symmetry-inequivalent k-points are not generated; - if the k-point grid is automatically generated, it will contain only points in the irreducible BZ for the bravais lattice, irrespective of the actual crystal symmetry. A careful usage of this option can be advantageous - in low-symmetry large cells, if you cannot afford a k-point grid with the correct symmetry - in MD simulations - in calculations for isolated atoms +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nosym_evc Type: LOGICAL Default: .FALSE. Description: if(.TRUE.) symmetry is not used but the k-points are forced to have the symmetry of the Bravais lattice; an automatically generated k-point grid will contain all the k-points of the grid and the points rotated by the symmetries of the Bravais lattice which are not in the original grid. If available, time reversal is used to reduce the k-points (and the q => -q symmetry is used in the phonon code). To disable also this symmetry set noinv=.TRUE.. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: noinv Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) disable the usage of k => -k symmetry (time reversal) in k-point generation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: no_t_rev Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) disable the usage of magnetic symmetry operations that consist in a rotation + time reversal. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: force_symmorphic Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) force the symmetry group to be symmorphic by disabling symmetry operations having an associated fractionary translation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: use_all_frac Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) do not discard symmetry operations with an associated fractionary translation that does not send the real-space FFT grid into itself. These operations are incompatible with real-space symmetrization but not with the new G-space symmetrization. BEWARE: do not use for phonons! The phonon code still uses real-space symmetrization. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: occupations Type: CHARACTER Description: 'smearing': gaussian smearing for metals see variables 'smearing' and 'degauss' 'tetrahedra' : especially suited for calculation of DOS (see P.E. Bloechl, PRB49, 16223 (1994)) Requires uniform grid of k-points, automatically generated (see below) Not suitable (because not variational) for force/optimization/dynamics calculations 'fixed' : for insulators with a gap 'from_input' : The occupation are read from input file, card OCCUPATIONS. Option valid only for a single k-point, requires "nbnd" to be set in input. Occupations should be consistent with the value of "tot_charge". +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: one_atom_occupations Type: LOGICAL Default: .FALSE. Description: This flag is used for isolated atoms (nat=1) together with occupations='from_input'. If it is .TRUE., the wavefunctions are ordered as the atomic starting wavefunctions, independently from their eigenvalue. The occupations indicate which atomic states are filled. The order of the states is written inside the UPF pseudopotential file. In the scalar relativistic case: S -> l=0, m=0 P -> l=1, z, x, y D -> l=2, r^2-3z^2, xz, yz, xy, x^2-y^2 In the noncollinear magnetic case (with or without spin-orbit), each group of states is doubled. For instance: P -> l=1, z, x, y for spin up, l=1, z, x, y for spin down. Up and down is relative to the direction of the starting magnetization. In the case with spin-orbit and time-reversal (starting_magnetization=0.0) the atomic wavefunctions are radial functions multiplied by spin-angle functions. For instance: P -> l=1, j=1/2, m_j=-1/2,1/2. l=1, j=3/2, m_j=-3/2, -1/2, 1/2, 3/2. In the magnetic case with spin-orbit the atomic wavefunctions can be forced to be spin-angle functions by setting starting_spin_angle to .TRUE.. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: starting_spin_angle Type: LOGICAL Default: .FALSE. Description: In the spin-orbit case when domag=.TRUE., by default, the starting wavefunctions are initialized as in scalar relativistic noncollinear case without spin-orbit. By setting starting_spin_angle=.TRUE. this behaviour can be changed and the initial wavefunctions are radial functions multiplied by spin-angle functions. When domag=.FALSE. the initial wavefunctions are always radial functions multiplied by spin-angle functions independently from this flag. When lspinorb is .FALSE. this flag is not used. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: degauss Type: REAL Default: 0.D0 Ry Description: value of the gaussian spreading (Ry) for brillouin-zone integration in metals. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: smearing Type: CHARACTER Default: 'gaussian' Description: 'gaussian', 'gauss': ordinary Gaussian spreading (Default) 'methfessel-paxton', 'm-p', 'mp': Methfessel-Paxton first-order spreading (see PRB 40, 3616 (1989)). 'marzari-vanderbilt', 'cold', 'm-v', 'mv': Marzari-Vanderbilt cold smearing (see PRL 82, 3296 (1999)) 'fermi-dirac', 'f-d', 'fd': smearing with Fermi-Dirac function +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nspin Type: INTEGER Default: 1 Description: nspin = 1 : non-polarized calculation (default) nspin = 2 : spin-polarized calculation, LSDA (magnetization along z axis) nspin = 4 : spin-polarized calculation, noncollinear (magnetization in generic direction) DO NOT specify nspin in this case; specify "noncolin=.TRUE." instead +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: noncolin Type: LOGICAL Default: .false. Description: if .true. the program will perform a noncollinear calculation. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecfixed Type: REAL Default: 0.0 See: q2sigma +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: qcutz Type: REAL Default: 0.0 See: q2sigma +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: q2sigma Type: REAL Default: 0.1 Description: ecfixed, qcutz, q2sigma: parameters for modified functional to be used in variable-cell molecular dynamics (or in stress calculation). "ecfixed" is the value (in Rydberg) of the constant-cutoff; "qcutz" and "q2sigma" are the height and the width (in Rydberg) of the energy step for reciprocal vectors whose square modulus is greater than "ecfixed". In the kinetic energy, G^2 is replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) ) See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: input_dft Type: CHARACTER Default: read from pseudopotential files Description: Exchange-correlation functional: eg 'PBE', 'BLYP' etc See Modules/functionals.f90 for allowed values. Overrides the value read from pseudopotential files. Use with care and if you know what you are doing! +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: exx_fraction Type: REAL Default: it depends on the specified functional Description: Fraction of EXX for hybrid functional calculations. In the case of input_dft='PBE0', the default value is 0.25, while for input_dft='B3LYP' the exx_fraction default value is 0.20. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: screening_parameter Type: REAL Default: 0.106 Description: screening_parameter for HSE like hybrid functionals. See J. Chem. Phys. 118, 8207 (2003) and J. Chem. Phys. 124, 219906 (2006) for more informations. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: exxdiv_treatment Type: CHARACTER Default: gygi-baldereschi Description: Specific for EXX. It selects the kind of approach to be used for treating the Coulomb potential divergencies at small q vectors. gygi-baldereschi : appropriate for cubic and quasi-cubic supercells vcut_spherical : appropriate for cubic and quasi-cubic supercells vcut_ws : appropriate for strongly anisotropic supercells, see also ecutvcut. none : sets Coulomb potential at G,q=0 to 0.0 (required for GAU-PBE) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: x_gamma_extrapolation Type: LOGICAL Default: .true. Description: Specific for EXX. If true, extrapolate the G=0 term of the potential (see README in examples/EXX_example for more) Set this to .false. for GAU-PBE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutvcut Type: REAL Default: 0.0 Ry See: exxdiv_treatment Description: Reciprocal space cutoff for correcting Coulomb potential divergencies at small q vectors. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nqx1, nqx2, nqx3 Type: INTEGER Description: three-dimensional mesh for q (k1-k2) sampling of the Fock operator (EXX). Can be smaller than the number of k-points. Currently this defaults to the size of the k-point mesh used. In QE =< 5.0.2 it defaulted to nqx1=nqx2=nqx3=1. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lda_plus_u Type: LOGICAL Default: .FALSE. Status: DFT+U (formerly known as LDA+U) currently works only for a few selected elements. Modify flib/set_hubbard_l.f90 and PW/src/tabd.f90 if you plan to use DFT+U with an element that is not configured there. Description: Specify lda_plus_u = .TRUE. to enable DFT+U calculations See: Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991); Anisimov et al., PRB 48, 16929 (1993); Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994). You must specify, for each species with a U term, the value of U and (optionally) alpha, J of the Hubbard model (all in eV): see lda_plus_u_kind, Hubbard_U, Hubbard_alpha, Hubbard_J +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lda_plus_u_kind Type: INTEGER Default: 0 Description: Specifies the type of DFT+U calculation: 0 simplified version of Cococcioni and de Gironcoli, PRB 71, 035105 (2005), using Hubbard_U 1 rotationally invariant scheme of Liechtenstein et al., using Hubbard_U and Hubbard_J +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_U(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Description: Hubbard_U(i): U parameter (eV) for species i, DFT+U calculation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_J0(i), i=1,ntype Type: REAL Default: 0.D0 for all species Description: Hubbard_J0(i): J0 parameter (eV) for species i, DFT+U+J calculation, see PRB 84, 115108 (2011) for details. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_alpha(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Description: Hubbard_alpha(i) is the perturbation (on atom i, in eV) used to compute U with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_beta(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Description: Hubbard_beta(i) is the perturbation (on atom i, in eV) used to compute J0 with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0). See also PRB 84, 115108 (2011). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_J(i,ityp) Default: 0.D0 for all species Description: Hubbard_J(i,ityp): J parameters (eV) for species ityp, used in DFT+U calculations (only for lda_plus_u_kind=1) For p orbitals: J = Hubbard_J(1,ityp); For d orbitals: J = Hubbard_J(1,ityp), B = Hubbard_J(2,ityp); For f orbitals: J = Hubbard_J(1,ityp), E2 = Hubbard_J(2,ityp), E3= Hubbard_J(3,ityp). If B or E2 or E3 are not specified or set to 0 they will be calculated from J using atomic ratios. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: starting_ns_eigenvalue(m,ispin,I) Type: REAL Default: -1.d0 that means NOT SET Description: In the first iteration of an DFT+U run it overwrites the m-th eigenvalue of the ns occupation matrix for the ispin component of atomic species I. Leave unchanged eigenvalues that are not set. This is useful to suggest the desired orbital occupations when the default choice takes another path. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: U_projection_type Type: CHARACTER Default: 'atomic' Description: Only active when lda_plus_U is .true., specifies the type of projector on localized orbital to be used in the DFT+U scheme. Currently available choices: 'atomic': use atomic wfc's (as they are) to build the projector 'ortho-atomic': use Lowdin orthogonalized atomic wfc's 'norm-atomic': Lowdin normalization of atomic wfc. Keep in mind: atomic wfc are not orthogonalized in this case. This is a "quick and dirty" trick to be used when atomic wfc from the pseudopotential are not normalized (and thus produce occupation whose value exceeds unity). If orthogonalized wfc are not needed always try 'atomic' first. 'file': use the information from file "prefix".atwfc that must have been generated previously, for instance by pmw.x (see PP/src/poormanwannier.f90 for details). 'pseudo': use the pseudopotential projectors. The charge density outside the atomic core radii is excluded. N.B.: for atoms with +U, a pseudopotential with the all-electron atomic wavefunctions is required (i.e., as generated by ld1.x with lsave_wfc flag). NB: forces and stress currently implemented only for the 'atomic' and 'pseudo' choice. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: edir Type: INTEGER Description: The direction of the electric field or dipole correction is parallel to the bg(:,edir) reciprocal lattice vector, so the potential is constant in planes defined by FFT grid points; edir = 1, 2 or 3. Used only if tefield is .TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: emaxpos Type: REAL Default: 0.5D0 Description: Position of the maximum of the saw-like potential along crystal axis "edir", within the unit cell (see below), 0 < emaxpos < 1 Used only if tefield is .TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: eopreg Type: REAL Default: 0.1D0 Description: Zone in the unit cell where the saw-like potential decreases. ( see below, 0 < eopreg < 1 ). Used only if tefield is .TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: eamp Type: REAL Default: 0.001 a.u. Description: Amplitude of the electric field, in ***Hartree*** a.u.; 1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE. The saw-like potential increases with slope "eamp" in the region from (emaxpos+eopreg-1) to (emaxpos), then decreases to 0 until (emaxpos+eopreg), in units of the crystal vector "edir". Important: the change of slope of this potential must be located in the empty region, or else unphysical forces will result. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: angle1(i), i=1,ntyp Type: REAL Description: The angle expressed in degrees between the initial magnetization and the z-axis. For noncollinear calculations only; index i runs over the atom types. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: angle2(i), i=1,ntyp Type: REAL Description: The angle expressed in degrees between the projection of the initial magnetization on x-y plane and the x-axis. For noncollinear calculations only. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constrained_magnetization Type: CHARACTER See: lambda, fixed_magnetization Default: 'none' Description: Used to perform constrained calculations in magnetic systems. Currently available choices: 'none': no constraint 'total': total magnetization is constrained by adding a penalty functional to the total energy: LAMBDA * SUM_{i} ( magnetization(i) - fixed_magnetization(i) )**2 where the sum over i runs over the three components of the magnetization. Lambda is a real number (see below). Noncolinear case only. Use "tot_magnetization" for LSDA 'atomic': atomic magnetization are constrained to the defined starting magnetization adding a penalty: LAMBDA * SUM_{i,itype} ( magnetic_moment(i,itype) - mcons(i,itype) )**2 where i runs over the cartesian components (or just z in the collinear case) and itype over the types (1-ntype). mcons(:,:) array is defined from starting_magnetization, (and angle1, angle2 in the non-collinear case). lambda is a real number 'total direction': the angle theta of the total magnetization with the z axis (theta = fixed_magnetization(3)) is constrained: LAMBDA * ( arccos(magnetization(3)/mag_tot) - theta )**2 where mag_tot is the modulus of the total magnetization. 'atomic direction': not all the components of the atomic magnetic moment are constrained but only the cosine of angle1, and the penalty functional is: LAMBDA * SUM_{itype} ( mag_mom(3,itype)/mag_mom_tot - cos(angle1(ityp)) )**2 N.B.: symmetrization may prevent to reach the desired orientation of the magnetization. Try not to start with very highly symmetric configurations or use the nosym flag (only as a last remedy) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fixed_magnetization(i), i=1,3 Type: REAL See: constrained_magnetization Default: 0.d0 Description: total magnetization vector (x,y,z components) to be kept fixed when constrained_magnetization='total' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lambda Type: REAL See: constrained_magnetization Default: 1.d0 Description: parameter used for constrained_magnetization calculations N.B.: if the scf calculation does not converge, try to reduce lambda to obtain convergence, then restart the run with a larger lambda +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: report Type: INTEGER Default: 1 Description: It is the number of iterations after which the program write all the atomic magnetic moments. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lspinorb Type: LOGICAL Description: if .TRUE. the noncollinear code can use a pseudopotential with spin-orbit. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: assume_isolated Type: CHARACTER Default: 'none' Description: Used to perform calculation assuming the system to be isolated (a molecule or a cluster in a 3D supercell). Currently available choices: 'none' (default): regular periodic calculation w/o any correction. 'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the total energy is computed. An estimate of the vacuum level is also calculated so that eigenvalues can be properly aligned. ONLY FOR CUBIC SYSTEMS (ibrav=1,2,3) Theory: G.Makov, and M.C.Payne, "Periodic boundary conditions in ab initio calculations" , Phys.Rev.B 51, 4014 (1995) 'martyna-tuckerman', 'm-t', 'mt' : Martyna-Tuckerman correction to both total energy and scf potential. Adapted from: G.J. Martyna, and M.E. Tuckerman, "A reciprocal space based method for treating long range interactions in ab-initio and force-field-based calculation in clusters", J.Chem.Phys. 110, 2810 (1999) 'esm' : Effective Screening Medium Method. For polarized or charged slab calculation, embeds the simulation cell within an effective semi- infinite medium in the perpendicular direction (along z). Embedding regions can be vacuum or semi-infinite metal electrodes (use 'esm_bc' to choose boundary conditions). If between two electrodes, an optional electric field ('esm_efield') may be applied. Method described in M. Otani and O. Sugino, "First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach," PRB 73, 115407 (2006). NB: Requires cell with a_3 lattice vector along z, normal to the xy plane, with the slab centered around z=0. Also requires symmetry checking to be disabled along z, either by setting 'nosym' = .TRUE. or by very slight displacement (i.e., 5e-4 a.u.) of the slab along z. See 'esm_bc', 'esm_efield', 'esm_w', 'esm_nfit'. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_bc Type: CHARACTER See: assume_isolated Default: 'pbc' Description: If assume_isolated = 'esm', determines the boundary conditions used for either side of the slab. Currently available choices: 'pbc' (default): regular periodic calculation (no ESM). 'bc1' : Vacuum-slab-vacuum (open boundary conditions) 'bc2' : Metal-slab-metal (dual electrode configuration). See also 'esm_efield'. 'bc3' : Vacuum-slab-metal +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_w Type: REAL See: assume_isolated Default: 0.d0 Description: If assume_isolated = 'esm', determines the position offset [in a.u.] of the start of the effective screening region, measured relative to the cell edge. (ESM region begins at z = +/- [L_z/2 + esm_w] ). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_efield Type: REAL See: assume_isolated, esm_bc Default: 0.d0 Description: If assume_isolated = 'esm' and esm_bc = 'bc2', gives the magnitude of the electric field [Ry/a.u.] to be applied between semi-infinite ESM electrodes. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_nfit Type: INTEGER See: assume_isolated Default: 4 Description: If assume_isolated = 'esm', gives the number of z-grid points for the polynomial fit along the cell edge. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vdw_corr Type: CHARACTER Default: 'none' Description: Type of Van der Waals correction. Allowed values: 'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d': semiempirical Grimme's DFT-D2. Optional variables: "london_s6", "london_rcut" S. Grimme, J. Comp. Chem. 27, 1787 (2006), V. Barone et al., J. Comp. Chem. 30, 934 (2009). 'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler': Tkatchenko-Scheffler dispersion corrections with first-principle derived C6 coefficients (implemented in CP only). Optional variables: "ts_vdw_econv_thr", "ts_vdw_isolated" See A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009) 'XDM', 'xdm': Exchange-hole dipole-moment model. Optional variables: "xdm_a1", "xdm_a2" A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007) A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 136, 174109 (2012) Note that non-local functionals (eg vdw-DF) are NOT specified here but in "input_dft" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london Type: LOGICAL Default: .FALSE. Description: OBSOLESCENT, same as vdw_corr='DFT-D' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london_s6 Type: REAL Default: 0.75 Description: global scaling parameter for DFT-D. Default is good for PBE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london_rcut Type: REAL Default: 200 Description: cutoff radius (a.u.) for dispersion interactions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: xdm Type: LOGICAL Default: .FALSE. Description: OBSOLESCENT, same as vdw_corr='xdm' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: xdm_a1 Type: REAL Default: 0.6836 Description: Damping function parameter a1 (adimensional). This value should change with the exchange-correlation functional. The default corresponds to PW86PBE. For other functionals, see: http://gatsby.ucmerced.edu/wiki/XDM_damping_function_parameters A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: xdm_a2 Type: REAL Default: 1.5045 Description: Damping function parameter a2 (angstrom). This value should change with the exchange-correlation functional. The default corresponds to PW86PBE. For other functionals, see: http://gatsby.ucmerced.edu/wiki/XDM_damping_function_parameters A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013) +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &ELECTRONS +-------------------------------------------------------------------- Variable: electron_maxstep Type: INTEGER Default: 100 Description: maximum number of iterations in a scf step +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: scf_must_converge Type: LOGICAL Default: .TRUE. Description: If .false. do not stop molecular dynamics or ionic relaxation when electron_maxstep is reached. Use with care. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr Type: REAL Default: 1.D-6 Description: Convergence threshold for selfconsistency: estimated energy error < conv_thr (note that conv_thr is extensive, like the total energy). For non-self-consistent calculations, conv_thr is used to set the default value of the threshold (ethr) for iterative diagonalizazion: see diago_thr_init +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: adaptive_thr Type: LOGICAL Default: .FALSE Description: If .TRUE. this turns on the use of an adaptive conv_thr for the inner scf loops when using EXX. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr_init Type: REAL Default: 1.D-3 Description: When adaptive_thr = .TRUE. this is the convergence threshold used for the first scf cycle. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr_multi Type: REAL Default: 1.D-1 Description: When adaptive_thr = .TRUE. the convergence threshold for each scf cycle is given by: max( conv_thr, conv_thr_multi * dexx ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_mode Type: CHARACTER Default: 'plain' Description: 'plain' : charge density Broyden mixing 'TF' : as above, with simple Thomas-Fermi screening (for highly homogeneous systems) 'local-TF': as above, with local-density-dependent TF screening (for highly inhomogeneous systems) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_beta Type: REAL Default: 0.7D0 Description: mixing factor for self-consistency +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_ndim Type: INTEGER Default: 8 Description: number of iterations used in mixing scheme. If you are tight with memory, you may reduce it to 4 or so. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_fixed_ns Type: INTEGER Default: 0 Description: For DFT+U : number of iterations with fixed ns ( ns is the atomic density appearing in the Hubbard term ). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diagonalization Type: CHARACTER Default: 'david' Description: 'david': Davidson iterative diagonalization with overlap matrix (default). Fast, may in some rare cases fail. 'cg' : conjugate-gradient-like band-by-band diagonalization Typically slower than 'david' but it uses less memory and is more robust (it seldom fails) 'cg-serial', 'david-serial': obsolete, use "-ndiag 1 instead" The subspace diagonalization in Davidson is performed by a fully distributed-memory parallel algorithm on 4 or more processors, by default. The allocated memory scales down with the number of procs. Procs involved in diagonalization can be changed with command-line option "-ndiag N". On multicore CPUs it is often convenient to let just one core per CPU to work on linear algebra. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ortho_para Type: INTEGER Default: 0 Status: OBSOLETE: use command-line option " -ndiag XX" instead +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_thr_init Type: REAL Description: Convergence threshold (ethr) for iterative diagonalization (the check is on eigenvalue convergence). For scf calculations: default is 1.D-2 if starting from a superposition of atomic orbitals; 1.D-5 if starting from a charge density. During self consistency the threshold is automatically reduced (but never below 1.D-13) when approaching convergence. For non-scf calculations: default is (conv_thr/N elec)/10. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_cg_maxiter Type: INTEGER Description: For conjugate gradient diagonalization: max number of iterations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_david_ndim Type: INTEGER Default: 4 Description: For Davidson diagonalization: dimension of workspace (number of wavefunction packets, at least 2 needed). A larger value may yield a somewhat faster algorithm but uses more memory. The opposite holds for smaller values. Try diago_david_ndim=2 if you are tight on memory or if your job is large: the speed penalty is often negligible +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_full_acc Type: LOGICAL Default: .FALSE. Description: If .TRUE. all the empty states are diagonalized at the same level of accuracy of the occupied ones. Otherwise the empty states are diagonalized using a larger threshold (this should not affect total energy, forces, and other ground-state properties). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: efield Type: REAL Default: 0.D0 Description: Amplitude of the finite electric field (in Ry a.u.; 1 a.u. = 36.3609*10^10 V/m). Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are not automatic. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: efield_cart(i), i=1,3 Type: REAL Default: (0.D0, 0.D0, 0.D0) Description: Finite electric field (in Ry a.u.=36.3609*10^10 V/m) in cartesian axis. Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are automatic. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: startingpot Type: CHARACTER Description: 'atomic': starting potential from atomic charge superposition ( default for scf, *relax, *md ) 'file' : start from existing "charge-density.xml" file in the directory specified by variables "prefix" and "outdir" For nscf and bands calculation this is the default and the only sensible possibility. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: startingwfc Type: CHARACTER Default: 'atomic+random' Description: 'atomic': start from superposition of atomic orbitals If not enough atomic orbitals are available, fill with random numbers the remaining wfcs The scf typically starts better with this option, but in some high-symmetry cases one can "loose" valence states, ending up in the wrong ground state. 'atomic+random': as above, plus a superimposed "randomization" of atomic orbitals. Prevents the "loss" of states mentioned above. 'random': start from random wfcs. Slower start of scf but safe. It may also reduce memory usage in conjunction with diagonalization='cg' 'file': start from an existing wavefunction file in the directory specified by variables "prefix" and "outdir" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tqr Type: LOGICAL Default: .FALSE. Description: If .true., use the real-space algorithm for augmentation charges in ultrasoft pseudopotentials. Must faster execution of ultrasoft-related calculations, but numerically less accurate than the default algorithm. Use with care and after testing! +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &IONS INPUT THIS NAMELIST ONLY IF CALCULATION = 'RELAX', 'MD', 'VC-RELAX', 'VC-MD' +-------------------------------------------------------------------- Variable: ion_dynamics Type: CHARACTER Description: Specify the type of ionic dynamics. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm, based on the trust radius procedure, for structural relaxation 'damp' : use damped (quick-min Verlet) dynamics for structural relaxation Can be used for constrained optimisation: see CONSTRAINTS card CASE ( calculation = 'md' ) 'verlet' : (default) use Verlet algorithm to integrate Newton's equation. For constrained dynamics, see CONSTRAINTS card 'langevin' ion dynamics is over-damped Langevin 'langevin-smc' over-damped Langevin with Smart Monte Carlo: see R.J.Rossky, JCP, 69, 4628(1978) CASE ( calculation = 'vc-relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm; cell_dynamics must be 'bfgs' too 'damp' : use damped (Beeman) dynamics for structural relaxation CASE ( calculation = 'vc-md' ) 'beeman' : (default) use Beeman algorithm to integrate Newton's equation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ion_positions Type: CHARACTER Default: 'default' Description: 'default ' : if restarting, use atomic positions read from the restart file; in all other cases, use atomic positions from standard input. 'from_input' : restart the simulation with atomic positions read from standard input, even if restarting. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: phase_space Type: CHARACTER Default: 'full' Description: 'full' : the full phase-space is used for the ionic dynamics. 'coarse-grained' : a coarse-grained phase-space, defined by a set of constraints, is used for the ionic dynamics (used for calculation of free-energy barriers) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: pot_extrapolation Type: CHARACTER Default: 'atomic' Description: Used to extrapolate the potential from preceding ionic steps. 'none' : no extrapolation 'atomic' : extrapolate the potential as if it was a sum of atomic-like orbitals 'first_order' : extrapolate the potential with first-order formula 'second_order': as above, with second order formula Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfc_extrapolation Type: CHARACTER Default: 'none' Description: Used to extrapolate the wavefunctions from preceding ionic steps. 'none' : no extrapolation 'first_order' : extrapolate the wave-functions with first-order formula. 'second_order': as above, with second order formula. Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: remove_rigid_rot Type: LOGICAL Default: .FALSE. Description: This keyword is useful when simulating the dynamics and/or the thermodynamics of an isolated system. If set to true the total torque of the internal forces is set to zero by adding new forces that compensate the spurious interaction with the periodic images. This allows for the use of smaller supercells. BEWARE: since the potential energy is no longer consistent with the forces (it still contains the spurious interaction with the repeated images), the total energy is not conserved anymore. However the dynamical and thermodynamical properties should be in closer agreement with those of an isolated system. Also the final energy of a structural relaxation will be higher, but the relaxation itself should be faster. +-------------------------------------------------------------------- ///--- KEYWORDS USED FOR MOLECULAR DYNAMICS +-------------------------------------------------------------------- Variable: ion_temperature Type: CHARACTER Default: 'not_controlled' Description: 'rescaling' control ionic temperature via velocity rescaling (first method) see parameters "tempw", "tolp", and "nraise" (for VC-MD only). This rescaling method is the only one currently implemented in VC-MD 'rescale-v' control ionic temperature via velocity rescaling (second method) see parameters "tempw" and "nraise" 'rescale-T' control ionic temperature via velocity rescaling (third method) see parameter "delta_t" 'reduce-T' reduce ionic temperature every "nraise" steps by the (negative) value "delta_t" 'berendsen' control ionic temperature using "soft" velocity rescaling - see parameters "tempw" and "nraise" 'andersen' control ionic temperature using Andersen thermostat see parameters "tempw" and "nraise" 'initial' initialize ion velocities to temperature "tempw" and leave uncontrolled further on 'not_controlled' (default) ionic temperature is not controlled +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tempw Type: REAL Default: 300.D0 Description: Starting temperature (Kelvin) in MD runs target temperature for most thermostats. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tolp Type: REAL Default: 100.D0 Description: Tolerance for velocity rescaling. Velocities are rescaled if the run-averaged and target temperature differ more than tolp. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: delta_t Type: REAL Default: 1.D0 Description: if ion_temperature='rescale-T': at each step the instantaneous temperature is multiplied by delta_t; this is done rescaling all the velocities. if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (i.e. delta_t < 0 is added to T) The instantaneous temperature is calculated at the end of every ionic move and BEFORE rescaling. This is the temperature reported in the main output. For delta_t < 0, the actual average rate of heating or cooling should be roughly C*delta_t/(nraise*dt) (C=1 for an ideal gas, C=0.5 for a harmonic solid, theorem of energy equipartition between all quadratic degrees of freedom). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nraise Type: INTEGER Default: 1 Description: if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (.e. delta_t is added to the temperature) if ion_temperature='rescale-v': every 'nraise' steps the average temperature, computed from the last nraise steps, is rescaled to tempw if ion_temperature='rescaling' and calculation='vc-md': every 'nraise' steps the instantaneous temperature is rescaled to tempw if ion_temperature='berendsen': the "rise time" parameter is given in units of the time step: tau = nraise*dt, so dt/tau = 1/nraise if ion_temperature='andersen': the "collision frequency" parameter is given as nu=1/tau defined above, so nu*dt = 1/nraise +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: refold_pos Type: LOGICAL Default: .FALSE. Description: This keyword applies only in the case of molecular dynamics or damped dynamics. If true the ions are refolded at each step into the supercell. +-------------------------------------------------------------------- \\\--- ///--- KEYWORDS USED ONLY IN BFGS CALCULATIONS +-------------------------------------------------------------------- Variable: upscale Type: REAL Default: 100.D0 Description: Max reduction factor for conv_thr during structural optimization conv_thr is automatically reduced when the relaxation approaches convergence so that forces are still accurate, but conv_thr will not be reduced to less that conv_thr / upscale. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: bfgs_ndim Type: INTEGER Default: 1 Description: Number of old forces and displacements vectors used in the PULAY mixing of the residual vectors obtained on the basis of the inverse hessian matrix given by the BFGS algorithm. When bfgs_ndim = 1, the standard quasi-Newton BFGS method is used. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: trust_radius_max Type: REAL Default: 0.8D0 Description: Maximum ionic displacement in the structural relaxation. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: trust_radius_min Type: REAL Default: 1.D-3 Description: Minimum ionic displacement in the structural relaxation BFGS is reset when trust_radius < trust_radius_min. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: trust_radius_ini Type: REAL Default: 0.5D0 Description: Initial ionic displacement in the structural relaxation. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: w_1 Type: REAL Default: 0.01D0 See: w_2 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: w_2 Type: REAL Default: 0.5D0 Description: Parameters used in line search based on the Wolfe conditions. (bfgs only) +-------------------------------------------------------------------- \\\--- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &CELL INPUT THIS NAMELIST ONLY IF CALCULATION = 'VC-RELAX', 'VC-MD' +-------------------------------------------------------------------- Variable: cell_dynamics Type: CHARACTER Description: Specify the type of dynamics for the cell. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'vc-relax' ) 'none': no dynamics 'sd': steepest descent ( not implemented ) 'damp-pr': damped (Beeman) dynamics of the Parrinello-Rahman extended lagrangian 'damp-w': damped (Beeman) dynamics of the new Wentzcovitch extended lagrangian 'bfgs': BFGS quasi-newton algorithm (default) ion_dynamics must be 'bfgs' too CASE ( calculation = 'vc-md' ) 'none': no dynamics 'pr': (Beeman) molecular dynamics of the Parrinello-Rahman extended lagrangian 'w': (Beeman) molecular dynamics of the new Wentzcovitch extended lagrangian +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: press Type: REAL Default: 0.D0 Description: Target pressure [KBar] in a variable-cell md or relaxation run. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wmass Type: REAL Default: 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD Description: Fictitious cell mass [amu] for variable-cell simulations (both 'vc-md' and 'vc-relax') +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_factor Type: REAL Default: 1.2D0 Description: Used in the construction of the pseudopotential tables. It should exceed the maximum linear contraction of the cell during a simulation. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: press_conv_thr Type: REAL Default: 0.5D0 Kbar Description: Convergence threshold on the pressure for variable cell relaxation ('vc-relax' : note that the other convergence thresholds for ionic relaxation apply as well). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_dofree Type: CHARACTER Default: 'all' Description: Select which of the cell parameters should be moved: all = all axis and angles are moved x = only the x component of axis 1 (v1_x) is moved y = only the y component of axis 2 (v2_y) is moved z = only the z component of axis 3 (v3_z) is moved xy = only v1_x and v2_y are moved xz = only v1_x and v3_z are moved yz = only v2_y and v3_z are moved xyz = only v1_x, v2_y, v3_z are moved shape = all axis and angles, keeping the volume fixed volume = the volume changes, keeping all angles fixed (i.e. only celldm(1) changes) 2Dxy = only x and y components are allowed to change 2Dshape = as above, keeping the area in xy plane fixed BEWARE: if axis are not orthogonal, some of these options do not work (symmetry is broken). If you are not happy with them, edit subroutine init_dofree in file Modules/cell_base.f90 +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== CARD: ATOMIC_SPECIES ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_SPECIES X(1) Mass_X(1) PseudoPot_X(1) X(2) Mass_X(2) PseudoPot_X(2) . . . X(ntyp) Mass_X(ntyp) PseudoPot_X(ntyp) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom. Acceptable syntax: chemical symbol X (1 or 2 characters, case-insensitive) or "Xn", n=0,..., 9; "X_*", "X-*" (e.g. C1, As_h) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Mass_X Type: REAL Description: mass of the atomic species [amu: mass of C = 12] Used only when performing Molecular Dynamics run or structural optimization runs using Damped MD. Not actually used in all other cases (but stored in data files, so phonon calculations will use these values unless other values are provided) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: PseudoPot_X Type: CHARACTER Description: File containing PP for this species. The pseudopotential file is assumed to be in the new UPF format. If it doesn't work, the pseudopotential format is determined by the file name: *.vdb or *.van Vanderbilt US pseudopotential code *.RRKJ3 Andrea Dal Corso's code (old format) none of the above old PWscf norm-conserving format +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal } ________________________________________________________________________ * IF calculation == 'bands' OR calculation == 'nscf' : Specified atomic positions will be IGNORED and those from the previous scf calculation will be used instead !!! * ELSE IF : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_POSITIONS { alat | bohr | angstrom | crystal } X(1) x(1) y(1) z(1) { if_pos(1)(1) if_pos(2)(1) if_pos(3)(1) } X(2) x(2) y(2) z(2) { if_pos(1)(2) if_pos(2)(2) if_pos(3)(2) } . . . X(nat) x(nat) y(nat) z(nat) { if_pos(1)(nat) if_pos(2)(nat) if_pos(3)(nat) } ///////////////////////////////////////// ENDIF ________________________________________________________________________ DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { alat | bohr | angstrom | crystal } Default: alat (DEPRECATED) Description: alat : atomic positions are in cartesian coordinates, in units of the lattice parameter (either celldm(1) or A). If no option is specified, 'alat' is assumed; not specifying units is DEPRECATED and will no longer be allowed in the future bohr : atomic positions are in cartesian coordinate, in atomic units (i.e. Bohr radii) angstrom: atomic positions are in cartesian coordinates, in Angstrom crystal : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice vectors as defined either in card CELL_PARAMETERS or via the ibrav + celldm / a,b,c... variables +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom as specified in ATOMIC_SPECIES +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: x, y, z Type: REAL Description: atomic positions NOTE: each atomic coordinate can also be specified as a simple algebraic expression. To be interpreted correctly expression must NOT contain any blank space and must NOT start with a "+" sign. The available expressions are: + (plus), - (minus), / (division), * (multiplication), ^ (power) All numerical constants included are considered as double-precision numbers; i.e. 1/2 is 0.5, not zero. Other functions, such as sin, sqrt or exp are not available, although sqrt can be replaced with ^(1/2). Example: C 1/3 1/2*3^(-1/2) 0 is equivalent to C 0.333333 0.288675 0.000000 Please note that this feature is NOT supported by XCrysDen (which will display a wrong structure, or nothing at all). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: if_pos(1), if_pos(2), if_pos(3) Type: INTEGER Default: 1 Description: component i of the force for this atom is multiplied by if_pos(i), which must be either 0 or 1. Used to keep selected atoms and/or selected components fixed in MD dynamics or structural optimization run. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } ________________________________________________________________________ * IF tpiba OR crystal OR tpiba_b OR crystal_b OR tpiba_c OR crystal_c : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// K_POINTS tpiba | crystal | tpiba_b | crystal_b | tpiba_c | crystal_c nks xk_x(1) xk_y(1) xk_z(1) wk(1) xk_x(2) xk_y(2) xk_z(2) wk(2) . . . xk_x(nks) xk_y(nks) xk_z(nks) wk(nks) ///////////////////////////////////////// * ELSE IF automatic : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// K_POINTS automatic nk1 nk2 nk3 sk1 sk2 sk3 ///////////////////////////////////////// * ELSE IF gamma : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// K_POINTS gamma ///////////////////////////////////////// ENDIF ________________________________________________________________________ DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } Default: tbipa Description: tpiba : read k-points in cartesian coordinates, in units of 2 pi/a (default) automatic: automatically generated uniform grid of k-points, i.e, generates ( nk1, nk2, nk3 ) grid with ( sk1, sk2, sk3 ) offset. nk1, nk2, nk3 as in Monkhorst-Pack grids k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ) BEWARE: only grids having the full symmetry of the crystal work with tetrahedra. Some grids with offset may not work. crystal : read k-points in crystal coordinates, i.e. in relative coordinates of the reciprocal lattice vectors gamma : use k = 0 (no need to list k-point specifications after card) In this case wavefunctions can be chosen as real, and specialized subroutines optimized for calculations at the gamma point are used (memory and cpu requirements are reduced by approximately one half). tpiba_b : Used for band-structure plots. k-points are in units of 2 pi/a. nks points specify nks-1 lines in reciprocal space. Every couple of points identifies the initial and final point of a line. pw.x generates N intermediate points of the line where N is the weight of the first point. crystal_b: as tpiba_b, but k-points are in crystal coordinates. tpiba_c : Used for band-structure contour plots. k-points are in units of 2 pi/a. nks must be 3. 3 k-points k_0, k_1, and k_2 specify a rectangle in reciprocal space of vertices k_0, k_1, k_2, k_1 + k_2 - k_0: k_0 + \alpha (k_1-k_0)+ \beta (k_2-k_0) with 0<\alpha,\beta < 1. The code produces a uniform mesh n1 x n2 k points in this rectangle. n1 and n2 are the weights of k_1 and k_2. The weight of k_0 is not used. crystal_c: as tpiba_c, but k-points are in crystal coordinates. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nks Type: INTEGER Description: Number of supplied special k-points. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: xk_x, xk_y, xk_z, wk Type: REAL Description: Special k-points (xk_x/y/z) in the irreducible Brillouin Zone (IBZ) of the lattice (with all symmetries) and weights (wk) See the literature for lists of special points and the corresponding weights. If the symmetry is lower than the full symmetry of the lattice, additional points with appropriate weights are generated. Notice that such procedure assumes that ONLY k-points in the IBZ are provided in input In a non-scf calculation, weights do not affect the results. If you just need eigenvalues and eigenvectors (for instance, for a band-structure plot), weights can be set to any value (for instance all equal to 1). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nk1, nk2, nk3 Type: INTEGER Description: These parameters specify the k-point grid (nk1 x nk2 x nk3) as in Monkhorst-Pack grids. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: sk1, sk2, sk3 Type: INTEGER Description: The grid offsets; sk1, sk2, sk3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ). +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: CELL_PARAMETERS { alat | bohr | angstrom } OPTIONAL CARD, NEEDED ONLY IF IBRAV = 0 IS SPECIFIED, IGNORED OTHERWISE ! ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// CELL_PARAMETERS { alat | bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { alat | bohr | angstrom } Description: 'bohr'/'angstrom': lattice vectors in bohr radii / angstrom. In this case the lattice parameter alat = sqrt(v1*v1). 'alat' / nothing specified: lattice vectors in units of the lattice parameter (either celldm(1) or a). Not specifying units is DEPRECATED and will not be allowed in the future. If nothing specified and no lattice parameter specified, 'bohr' is assumed - DEPRECATED, will no longer be allowed +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: v1, v2, v3 Type: REAL Description: Crystal lattice vectors (in cartesian axis): v1(1) v1(2) v1(3) ... 1st lattice vector v2(1) v2(2) v2(3) ... 2nd lattice vector v3(1) v3(2) v3(3) ... 3rd lattice vector +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: CONSTRAINTS OPTIONAL CARD, USED FOR CONSTRAINED DYNAMICS OR CONSTRAINED OPTIMISATIONS (ONLY IF ION_DYNAMICS='DAMP' OR 'VERLET', VARIABLE-CELL EXCEPTED) When this card is present the SHAKE algorithm is automatically used. ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// CONSTRAINTS nconstr { constr_tol } constr_type(1) constr(1)(1) constr(2)(1) [ constr(3)(1) constr(4)(1) ] { constr_target(1) } constr_type(2) constr(1)(2) constr(2)(2) [ constr(3)(2) constr(4)(2) ] { constr_target(2) } . . . constr_type(nconstr) constr(1)(nconstr) constr(2)(nconstr) [ constr(3)(nconstr) constr(4)(nconstr) ] { constr_target(nconstr) } ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: nconstr Type: INTEGER Description: Number of constraints. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_tol Type: REAL Description: Tolerance for keeping the constraints satisfied. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_type Type: CHARACTER Description: Type of constrain : 'type_coord' : constraint on global coordination-number, i.e. the average number of atoms of type B surrounding the atoms of type A. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'atom_coord' : constraint on local coordination-number, i.e. the average number of atoms of type A surrounding a specific atom. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'distance' : constraint on interatomic distance (two atom indexes must be specified). 'planar_angle' : constraint on planar angle (three atom indexes must be specified). 'torsional_angle' : constraint on torsional angle (four atom indexes must be specified). 'bennett_proj' : constraint on the projection onto a given direction of the vector defined by the position of one atom minus the center of mass of the others. G.Roma,J.P.Crocombette: J.Nucl.Mater.403,32(2010) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: constr(1), constr(2), constr(3), constr(4) Description: These variables have different meanings for different constraint types: 'type_coord' : constr(1) is the first index of the atomic type involved constr(2) is the second index of the atomic type involved constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'atom_coord' : constr(1) is the atom index of the atom with constrained coordination constr(2) is the index of the atomic type involved in the coordination constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'distance' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD 'planar_angle', 'torsional_angle' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD (beware the order) 'bennett_proj' : constr(1) is the index of the atom whose position is constrained. constr(2:4) are the three coordinates of the vector that specifies the constraint direction. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_target Type: REAL Description: Target for the constrain ( angles are specified in degrees ). This variable is optional. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: OCCUPATIONS OPTIONAL CARD, USED ONLY IF OCCUPATIONS = 'FROM_INPUT', IGNORED OTHERWISE ! ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// OCCUPATIONS f_inp1(1) f_inp1(2) . . . f_inp1(nbnd) [ f_inp2(1) f_inp2(2) . . . f_inp2(nbnd) ] ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: f_inp1 Type: REAL Description: Occupations of individual states (MAX 10 PER ROW). For spin-polarized calculations, these are majority spin states. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: f_inp2 Type: REAL Description: Occupations of minority spin states (MAX 10 PER ROW) To be specified only for spin-polarized calculations. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: ATOMIC_FORCES OPTIONAL CARD USED TO SPECIFY EXTERNAL FORCES ACTING ON ATOMS ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_FORCES X(1) fx(1) fy(1) fz(1) X(2) fx(2) fy(2) fz(2) . . . X(nat) fx(nat) fy(nat) fz(nat) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom as specified in ATOMIC_SPECIES +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: fx, fy, fz Type: REAL Description: external force on atom X (cartesian components, Ry/a.u. units) +-------------------------------------------------------------------- ===END OF CARD========================================================== espresso-5.1/PW/Doc/INPUT_PW.xml0000644000175000017500000026606212341373166014406 0ustar mbamba Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied by e); potentials are in energy units (i.e. they are multiplied by e) BEWARE: TABS, DOS <CR><LF> CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE Comment lines in namelists can be introduced by a "!", exactly as in fortran code. Comments lines in ``cards'' can be introduced by either a "!" or a "#" character in the first position of a line. Do not start any line in ``cards'' with a "/" character. Structure of the input data: =============================================================================== &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / [ &IONS ... / ] [ &CELL ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } if (gamma) nothing to read if (automatic) nk1, nk2, nk3, k1, k2, k3 if (not automatic) nks xk_x, xk_y, xk_z, wk [ CELL_PARAMETERS { alat | bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ] [ ATOMIC_FORCES label_1 Fx(1) Fy(1) Fz(1) ..... label_n Fx(n) Fy(n) Fz(n) ] 'scf' a string describing the task to be performed: 'scf', 'nscf', 'bands', 'relax', 'md', 'vc-relax', 'vc-md' (vc = variable-cell). ' ' reprinted on output. 'low' Currently two verbosity levels are implemented: 'high' and 'low'. 'debug' and 'medium' have the same effect as 'high'; 'default' and 'minimal', as 'low' 'from_scratch' 'from_scratch' : from scratch. This is the normal way to perform a PWscf calculation 'restart' : from previous interrupted run. Use this switch only if you want to continue an interrupted calculation, not to start a new one, or to perform non-scf calculations. Works only if the calculation was cleanly stopped using variable "max_seconds", or by user request with an "exit file" (i.e.: create a file "prefix".EXIT, in directory "outdir"; see variables "prefix", "outdir") .FALSE. This flag controls the way wavefunctions are stored to disk : .TRUE. collect wavefunctions from all processors, store them into the output data directory "outdir"/"prefix".save, one wavefunction per k-point in subdirs K000001/, K000001/, etc.. Use this if you want wavefunctions to be readable on a different number of processors. .FALSE. do not collect wavefunctions, leave them in temporary local files (one per processor). The resulting format will be readable only by jobs running on the same number of processors and pools. Requires less I/O than the previous case. Note that this flag has no effect on reading, only on writing. number of ionic + electronic steps 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases write only at convergence band energies are written every "iprint" iterations .false. calculate stress. It is set to .TRUE. automatically if calculation='vc-md' or 'vc-relax' calculate forces. It is set to .TRUE. automatically if calculation='relax','md','vc-md' 20.D0 time step for molecular dynamics, in Rydberg atomic units (1 a.u.=4.8378 * 10^-17 s : beware, the CP code uses Hartree atomic units, half that much!!!) value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise input, temporary, output files are found in this directory, see also "wfcdir" same as "outdir" this directory specifies where to store files generated by each processor (*.wfc{N}, *.igk{N}, etc.). Useful for machines without a parallel file system: set "wfcdir" to a local file system, while "outdir" should be a parallel or networkfile system, visible to all processors. Beware: in order to restart from interrupted runs, or to perform further calculations using the produced data files, you may need to copy files to "outdir". Works only for pw.x. 'pwscf' prepended to input/output filenames: prefix.wfc, prefix.rho, etc. .true. If .false. a subdirectory for each k_point is not opened in the "prefix".save directory; Kohn-Sham eigenvalues are stored instead in a single file for all k-points. Currently doesn't work together with "wf_collect" 1.D+7, or 150 days, i.e. no time limit jobs stops after "max_seconds" CPU time. Use this option in conjunction with option "restart_mode" if you need to split a job too long to complete into shorter jobs that fit into your batch queues. 1.0D-4 convergence threshold on total energy (a.u) for ionic minimization: the convergence criterion is satisfied when the total energy changes less than "etot_conv_thr" between two consecutive scf steps. Note that "etot_conv_thr" is extensive, like the total energy. See also "forc_conv_thr" - both criteria must be satisfied 1.0D-3 convergence threshold on forces (a.u) for ionic minimization: the convergence criterion is satisfied when all components of all forces are smaller than "forc_conv_thr". See also "etot_conv_thr" - both criteria must be satisfied 'low' Specifies the amount of disk I/O activity 'high': save all data to disk at each SCF step 'medium': save wavefunctions at each SCF step unless there is a single k-point per process (in which case the behavior is the same as 'low') 'low' : store wfc in memory, save only at the end 'none': do not save anything, not even at the end ('scf', 'nscf', 'bands' calculations; some data may be written anyway for other calculations) Note that the amount of needed RAM increases as the amount of I/O decreases! IMPORTANT: default has been changed to 'low'. It is no longer needed to specify 'high' in order to be able to restart from an interrupted calculation (see "restart_mode") but you cannot restart from disk_io='none' value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise directory containing pseudopotential files .FALSE. If .TRUE. a saw-like potential simulating an electric field is added to the bare ionic potential. See variables "edir", "eamp", "emaxpos", "eopreg" for the form and size of the added potential. .FALSE. If .TRUE. and tefield=.TRUE. a dipole correction is also added to the bare ionic potential - implements the recipe of L. Bengtsson, PRB 59, 12301 (1999). See variables "edir", "emaxpos", "eopreg" for the form of the correction. Must be used ONLY in a slab geometry, for surface calculations, with the discontinuity FALLING IN THE EMPTY SPACE. .FALSE. If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. This is different from "tefield=.true." ! 1 In the case of a finite electric field ( lelfield == .TRUE. ) it defines the number of iterations for converging the wavefunctions in the electric field Hamiltonian, for each external iteration on the charge density .FALSE. If .TRUE. perform orbital magnetization calculation. If finite electric field is applied (lelfield=.true.) only Kubo terms are computed [for details see New J. Phys. 12, 053032 (2010)]. The type of calculation is 'nscf' and should be performed on an automatically generated uniform grid of k points. Works ONLY with norm-conserving pseudopotentials. .FALSE. If .TRUE. perform a Berry phase calculation See the header of PW/src/bp_c_phase.f90 for documentation For Berry phase calculation: direction of the k-point strings in reciprocal space. Allowed values: 1, 2, 3 1=first, 2=second, 3=third reciprocal lattice vector For calculations with finite electric fields (lelfield==.true.) "gdir" is the direction of the field For Berry phase calculation: number of k-points to be calculated along each symmetry-reduced string The same for calculation with finite electric fields (lelfield=.true.) REQUIRED Bravais-lattice index. If ibrav /= 0, specify EITHER [ celldm(1)-celldm(6) ] OR [ A,B,C,cosAB,cosAC,cosBC ] but NOT both. The lattice parameter "alat" is set to alat = celldm(1) (in a.u.) or alat = A (in Angstrom); see below for the other parameters. For ibrav=0 specify the lattice vectors in CELL_PARAMETER, optionally the lattice parameter alat = celldm(1) (in a.u.) or = A (in Angstrom), or else it is taken from CELL_PARAMETERS ibrav structure celldm(2)-celldm(6) or: b,c,cosab,cosac,cosbc 0 free crystal axis provided in input: see card CELL_PARAMETERS 1 cubic P (sc) v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1) 2 cubic F (fcc) v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0) 3 cubic I (bcc) v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1) 4 Hexagonal and Trigonal P celldm(3)=c/a v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a) 5 Trigonal R, 3fold axis c celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around the z-axis, the primitive cell is a simple rhombohedron: v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz) where c=cos(alpha) is the cosine of the angle alpha between any pair of crystallographic vectors, tx, ty, tz are: tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3) -5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around <111>. Defining a' = a/sqrt(3) : v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u) where u and v are defined as u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty and tx, ty, tz as for case ibrav=5 Note: if you prefer x,y,z as axis in the cubic limit, set u = tz + 2*sqrt(2)*ty, v = tz - sqrt(2)*ty See also the note in flib/latgen.f90 6 Tetragonal P (st) celldm(3)=c/a v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a) 7 Tetragonal I (bct) celldm(3)=c/a v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a) 8 Orthorhombic P celldm(2)=b/a celldm(3)=c/a v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c) 9 Orthorhombic base-centered(bco) celldm(2)=b/a celldm(3)=c/a v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c) -9 as 9, alternate description v1 = (a/2,-b/2,0), v2 = (a/2,-b/2,0), v3 = (0,0,c) 10 Orthorhombic face-centered celldm(2)=b/a celldm(3)=c/a v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2) 11 Orthorhombic body-centered celldm(2)=b/a celldm(3)=c/a v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2) 12 Monoclinic P, unique axis c celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c) where gamma is the angle between axis a and b. -12 Monoclinic P, unique axis b celldm(2)=b/a celldm(3)=c/a, celldm(5)=cos(ac) v1 = (a,0,0), v2 = (0,b,0), v3 = (c*cos(beta),0,c*sin(beta)) where beta is the angle between axis a and c 13 Monoclinic base-centered celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1 = ( a/2, 0, -c/2), v2 = (b*cos(gamma), b*sin(gamma), 0), v3 = ( a/2, 0, c/2), where gamma is the angle between axis a and b 14 Triclinic celldm(2)= b/a, celldm(3)= c/a, celldm(4)= cos(bc), celldm(5)= cos(ac), celldm(6)= cos(ab) v1 = (a, 0, 0), v2 = (b*cos(gamma), b*sin(gamma), 0) v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma), c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma) - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) ) where alpha is the angle between axis b and c beta is the angle between axis a and c gamma is the angle between axis a and b ibrav Crystallographic constants - see the "ibrav" variable. Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both. Only needed values (depending on "ibrav") must be specified alat = celldm(1) is the lattice parameter "a" (in BOHR) If ibrav=0, only celldm(1) is used if present; cell vectors are read from card CELL_PARAMETERS Traditional crystallographic constants: a,b,c in ANGSTROM cosAB = cosine of the angle between axis a and b (gamma) cosAC = cosine of the angle between axis a and c (beta) cosBC = cosine of the angle between axis b and c (alpha) The axis are chosen according to the value of "ibrav". Specify either these OR "celldm" but NOT both. Only needed values (depending on "ibrav") must be specified The lattice parameter alat = A (in ANGSTROM ) If ibrav = 0, only A is used if present; cell vectors are read from card CELL_PARAMETERS REQUIRED number of atoms in the unit cell REQUIRED number of types of atoms in the unit cell for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more) number of electronic states (bands) to be calculated. Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled 0.0 total charge of the system. Useful for simulations with charged cells. By default the unit cell is assumed to be neutral (tot_charge=0). tot_charge=+1 means one electron missing from the system, tot_charge=-1 means one additional electron, and so on. In a periodic calculation a compensating jellium background is inserted to remove divergences if the cell is not neutral. -1 [unspecified] total majority spin charge - minority spin charge. Used to impose a specific total electronic magnetization. If unspecified then tot_magnetization variable is ignored and the amount of electronic magnetization is determined during the self-consistent cycle. starting spin polarization on atomic type 'i' in a spin polarized calculation. Values range between -1 (all spins down for the valence electrons of atom type 'i') to 1 (all spins up). Breaks the symmetry and provides a starting point for self-consistency. The default value is zero, BUT a value MUST be specified for AT LEAST one atomic type in spin polarized calculations, unless you constrain the magnetization (see "tot_magnetization" and "constrained_magnetization"). Note that if you start from zero initial magnetization, you will invariably end up in a nonmagnetic (zero magnetization) state. If you want to start from an antiferromagnetic state, you may need to define two different atomic species corresponding to sublattices of the same atomic type. starting_magnetization is ignored if you are performing a non-scf calculation, if you are restarting from a previous run, or restarting from an interrupted run. If you fix the magnetization with "tot_magnetization", you should not specify starting_magnetization. REQUIRED kinetic energy cutoff (Ry) for wavefunctions 4 * ecutwfc kinetic energy cutoff (Ry) for charge density and potential For norm-conserving pseudopotential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on forces and stress. If there are ultrasoft PP, a larger value than the default is often desirable (ecutrho = 8 to 12 times ecutwfc, typically). PAW datasets can often be used at 4*ecutwfc, but it depends on the shape of augmentation charge: testing is mandatory. The use of gradient-corrected functional, especially in cells with vacuum, or for pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately converged. ecutrho kinetic energy cutoff (Ry) for the exact exchange operator in EXX type calculations. By default this is the same as ecutrho but in some EXX calculations significant speed-up can be found by reducing ecutfock, at the expense of some loss in accuracy. Currently only implemented for the optimized gamma point only calculations. three-dimensional FFT mesh (hard grid) for charge density (and scf potential). If not specified the grid is calculated based on the cutoff for charge density (see also "ecutrho") Note: you must specify all three dimensions for this setting to be used. three-dimensional mesh for wavefunction FFT and for the smooth part of charge density ( smooth grid ). Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default ) Note: you must specify all three dimensions for this setting to be used. .FALSE. if (.TRUE.) symmetry is not used. Note that - if the k-point grid is provided in input, it is used "as is" and symmetry-inequivalent k-points are not generated; - if the k-point grid is automatically generated, it will contain only points in the irreducible BZ for the bravais lattice, irrespective of the actual crystal symmetry. A careful usage of this option can be advantageous - in low-symmetry large cells, if you cannot afford a k-point grid with the correct symmetry - in MD simulations - in calculations for isolated atoms .FALSE. if(.TRUE.) symmetry is not used but the k-points are forced to have the symmetry of the Bravais lattice; an automatically generated k-point grid will contain all the k-points of the grid and the points rotated by the symmetries of the Bravais lattice which are not in the original grid. If available, time reversal is used to reduce the k-points (and the q => -q symmetry is used in the phonon code). To disable also this symmetry set noinv=.TRUE.. .FALSE. if (.TRUE.) disable the usage of k => -k symmetry (time reversal) in k-point generation .FALSE. if (.TRUE.) disable the usage of magnetic symmetry operations that consist in a rotation + time reversal. .FALSE. if (.TRUE.) force the symmetry group to be symmorphic by disabling symmetry operations having an associated fractionary translation .FALSE. if (.TRUE.) do not discard symmetry operations with an associated fractionary translation that does not send the real-space FFT grid into itself. These operations are incompatible with real-space symmetrization but not with the new G-space symmetrization. BEWARE: do not use for phonons! The phonon code still uses real-space symmetrization. 'smearing': gaussian smearing for metals see variables 'smearing' and 'degauss' 'tetrahedra' : especially suited for calculation of DOS (see P.E. Bloechl, PRB49, 16223 (1994)) Requires uniform grid of k-points, automatically generated (see below) Not suitable (because not variational) for force/optimization/dynamics calculations 'fixed' : for insulators with a gap 'from_input' : The occupation are read from input file, card OCCUPATIONS. Option valid only for a single k-point, requires "nbnd" to be set in input. Occupations should be consistent with the value of "tot_charge". .FALSE. This flag is used for isolated atoms (nat=1) together with occupations='from_input'. If it is .TRUE., the wavefunctions are ordered as the atomic starting wavefunctions, independently from their eigenvalue. The occupations indicate which atomic states are filled. The order of the states is written inside the UPF pseudopotential file. In the scalar relativistic case: S -> l=0, m=0 P -> l=1, z, x, y D -> l=2, r^2-3z^2, xz, yz, xy, x^2-y^2 In the noncollinear magnetic case (with or without spin-orbit), each group of states is doubled. For instance: P -> l=1, z, x, y for spin up, l=1, z, x, y for spin down. Up and down is relative to the direction of the starting magnetization. In the case with spin-orbit and time-reversal (starting_magnetization=0.0) the atomic wavefunctions are radial functions multiplied by spin-angle functions. For instance: P -> l=1, j=1/2, m_j=-1/2,1/2. l=1, j=3/2, m_j=-3/2, -1/2, 1/2, 3/2. In the magnetic case with spin-orbit the atomic wavefunctions can be forced to be spin-angle functions by setting starting_spin_angle to .TRUE.. .FALSE. In the spin-orbit case when domag=.TRUE., by default, the starting wavefunctions are initialized as in scalar relativistic noncollinear case without spin-orbit. By setting starting_spin_angle=.TRUE. this behaviour can be changed and the initial wavefunctions are radial functions multiplied by spin-angle functions. When domag=.FALSE. the initial wavefunctions are always radial functions multiplied by spin-angle functions independently from this flag. When lspinorb is .FALSE. this flag is not used. 0.D0 Ry value of the gaussian spreading (Ry) for brillouin-zone integration in metals. 'gaussian' 'gaussian', 'gauss': ordinary Gaussian spreading (Default) 'methfessel-paxton', 'm-p', 'mp': Methfessel-Paxton first-order spreading (see PRB 40, 3616 (1989)). 'marzari-vanderbilt', 'cold', 'm-v', 'mv': Marzari-Vanderbilt cold smearing (see PRL 82, 3296 (1999)) 'fermi-dirac', 'f-d', 'fd': smearing with Fermi-Dirac function 1 nspin = 1 : non-polarized calculation (default) nspin = 2 : spin-polarized calculation, LSDA (magnetization along z axis) nspin = 4 : spin-polarized calculation, noncollinear (magnetization in generic direction) DO NOT specify nspin in this case; specify "noncolin=.TRUE." instead .false. if .true. the program will perform a noncollinear calculation. 0.0 q2sigma 0.0 q2sigma 0.1 ecfixed, qcutz, q2sigma: parameters for modified functional to be used in variable-cell molecular dynamics (or in stress calculation). "ecfixed" is the value (in Rydberg) of the constant-cutoff; "qcutz" and "q2sigma" are the height and the width (in Rydberg) of the energy step for reciprocal vectors whose square modulus is greater than "ecfixed". In the kinetic energy, G^2 is replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) ) See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995) read from pseudopotential files Exchange-correlation functional: eg 'PBE', 'BLYP' etc See Modules/functionals.f90 for allowed values. Overrides the value read from pseudopotential files. Use with care and if you know what you are doing! it depends on the specified functional Fraction of EXX for hybrid functional calculations. In the case of input_dft='PBE0', the default value is 0.25, while for input_dft='B3LYP' the exx_fraction default value is 0.20. 0.106 screening_parameter for HSE like hybrid functionals. See J. Chem. Phys. 118, 8207 (2003) and J. Chem. Phys. 124, 219906 (2006) for more informations. gygi-baldereschi Specific for EXX. It selects the kind of approach to be used for treating the Coulomb potential divergencies at small q vectors. gygi-baldereschi : appropriate for cubic and quasi-cubic supercells vcut_spherical : appropriate for cubic and quasi-cubic supercells vcut_ws : appropriate for strongly anisotropic supercells, see also ecutvcut. none : sets Coulomb potential at G,q=0 to 0.0 (required for GAU-PBE) .true. Specific for EXX. If true, extrapolate the G=0 term of the potential (see README in examples/EXX_example for more) Set this to .false. for GAU-PBE. 0.0 Ry exxdiv_treatment Reciprocal space cutoff for correcting Coulomb potential divergencies at small q vectors. three-dimensional mesh for q (k1-k2) sampling of the Fock operator (EXX). Can be smaller than the number of k-points. Currently this defaults to the size of the k-point mesh used. In QE =< 5.0.2 it defaulted to nqx1=nqx2=nqx3=1. .FALSE. DFT+U (formerly known as LDA+U) currently works only for a few selected elements. Modify flib/set_hubbard_l.f90 and PW/src/tabd.f90 if you plan to use DFT+U with an element that is not configured there. Specify lda_plus_u = .TRUE. to enable DFT+U calculations See: Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991); Anisimov et al., PRB 48, 16929 (1993); Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994). You must specify, for each species with a U term, the value of U and (optionally) alpha, J of the Hubbard model (all in eV): see lda_plus_u_kind, Hubbard_U, Hubbard_alpha, Hubbard_J 0 Specifies the type of DFT+U calculation: 0 simplified version of Cococcioni and de Gironcoli, PRB 71, 035105 (2005), using Hubbard_U 1 rotationally invariant scheme of Liechtenstein et al., using Hubbard_U and Hubbard_J 0.D0 for all species Hubbard_U(i): U parameter (eV) for species i, DFT+U calculation 0.D0 for all species Hubbard_J0(i): J0 parameter (eV) for species i, DFT+U+J calculation, see PRB 84, 115108 (2011) for details. 0.D0 for all species Hubbard_alpha(i) is the perturbation (on atom i, in eV) used to compute U with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0) 0.D0 for all species Hubbard_beta(i) is the perturbation (on atom i, in eV) used to compute J0 with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0). See also PRB 84, 115108 (2011). 0.D0 for all species Hubbard_J(i,ityp): J parameters (eV) for species ityp, used in DFT+U calculations (only for lda_plus_u_kind=1) For p orbitals: J = Hubbard_J(1,ityp); For d orbitals: J = Hubbard_J(1,ityp), B = Hubbard_J(2,ityp); For f orbitals: J = Hubbard_J(1,ityp), E2 = Hubbard_J(2,ityp), E3= Hubbard_J(3,ityp). If B or E2 or E3 are not specified or set to 0 they will be calculated from J using atomic ratios. -1.d0 that means NOT SET In the first iteration of an DFT+U run it overwrites the m-th eigenvalue of the ns occupation matrix for the ispin component of atomic species I. Leave unchanged eigenvalues that are not set. This is useful to suggest the desired orbital occupations when the default choice takes another path. 'atomic' Only active when lda_plus_U is .true., specifies the type of projector on localized orbital to be used in the DFT+U scheme. Currently available choices: 'atomic': use atomic wfc's (as they are) to build the projector 'ortho-atomic': use Lowdin orthogonalized atomic wfc's 'norm-atomic': Lowdin normalization of atomic wfc. Keep in mind: atomic wfc are not orthogonalized in this case. This is a "quick and dirty" trick to be used when atomic wfc from the pseudopotential are not normalized (and thus produce occupation whose value exceeds unity). If orthogonalized wfc are not needed always try 'atomic' first. 'file': use the information from file "prefix".atwfc that must have been generated previously, for instance by pmw.x (see PP/src/poormanwannier.f90 for details). 'pseudo': use the pseudopotential projectors. The charge density outside the atomic core radii is excluded. N.B.: for atoms with +U, a pseudopotential with the all-electron atomic wavefunctions is required (i.e., as generated by ld1.x with lsave_wfc flag). NB: forces and stress currently implemented only for the 'atomic' and 'pseudo' choice. The direction of the electric field or dipole correction is parallel to the bg(:,edir) reciprocal lattice vector, so the potential is constant in planes defined by FFT grid points; edir = 1, 2 or 3. Used only if tefield is .TRUE. 0.5D0 Position of the maximum of the saw-like potential along crystal axis "edir", within the unit cell (see below), 0 < emaxpos < 1 Used only if tefield is .TRUE. 0.1D0 Zone in the unit cell where the saw-like potential decreases. ( see below, 0 < eopreg < 1 ). Used only if tefield is .TRUE. 0.001 a.u. Amplitude of the electric field, in ***Hartree*** a.u.; 1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE. The saw-like potential increases with slope "eamp" in the region from (emaxpos+eopreg-1) to (emaxpos), then decreases to 0 until (emaxpos+eopreg), in units of the crystal vector "edir". Important: the change of slope of this potential must be located in the empty region, or else unphysical forces will result. The angle expressed in degrees between the initial magnetization and the z-axis. For noncollinear calculations only; index i runs over the atom types. The angle expressed in degrees between the projection of the initial magnetization on x-y plane and the x-axis. For noncollinear calculations only. lambda, fixed_magnetization 'none' Used to perform constrained calculations in magnetic systems. Currently available choices: 'none': no constraint 'total': total magnetization is constrained by adding a penalty functional to the total energy: LAMBDA * SUM_{i} ( magnetization(i) - fixed_magnetization(i) )**2 where the sum over i runs over the three components of the magnetization. Lambda is a real number (see below). Noncolinear case only. Use "tot_magnetization" for LSDA 'atomic': atomic magnetization are constrained to the defined starting magnetization adding a penalty: LAMBDA * SUM_{i,itype} ( magnetic_moment(i,itype) - mcons(i,itype) )**2 where i runs over the cartesian components (or just z in the collinear case) and itype over the types (1-ntype). mcons(:,:) array is defined from starting_magnetization, (and angle1, angle2 in the non-collinear case). lambda is a real number 'total direction': the angle theta of the total magnetization with the z axis (theta = fixed_magnetization(3)) is constrained: LAMBDA * ( arccos(magnetization(3)/mag_tot) - theta )**2 where mag_tot is the modulus of the total magnetization. 'atomic direction': not all the components of the atomic magnetic moment are constrained but only the cosine of angle1, and the penalty functional is: LAMBDA * SUM_{itype} ( mag_mom(3,itype)/mag_mom_tot - cos(angle1(ityp)) )**2 N.B.: symmetrization may prevent to reach the desired orientation of the magnetization. Try not to start with very highly symmetric configurations or use the nosym flag (only as a last remedy) constrained_magnetization 0.d0 total magnetization vector (x,y,z components) to be kept fixed when constrained_magnetization='total' constrained_magnetization 1.d0 parameter used for constrained_magnetization calculations N.B.: if the scf calculation does not converge, try to reduce lambda to obtain convergence, then restart the run with a larger lambda 1 It is the number of iterations after which the program write all the atomic magnetic moments. if .TRUE. the noncollinear code can use a pseudopotential with spin-orbit. 'none' Used to perform calculation assuming the system to be isolated (a molecule or a cluster in a 3D supercell). Currently available choices: 'none' (default): regular periodic calculation w/o any correction. 'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the total energy is computed. An estimate of the vacuum level is also calculated so that eigenvalues can be properly aligned. ONLY FOR CUBIC SYSTEMS (ibrav=1,2,3) Theory: G.Makov, and M.C.Payne, "Periodic boundary conditions in ab initio calculations" , Phys.Rev.B 51, 4014 (1995) 'martyna-tuckerman', 'm-t', 'mt' : Martyna-Tuckerman correction to both total energy and scf potential. Adapted from: G.J. Martyna, and M.E. Tuckerman, "A reciprocal space based method for treating long range interactions in ab-initio and force-field-based calculation in clusters", J.Chem.Phys. 110, 2810 (1999) 'esm' : Effective Screening Medium Method. For polarized or charged slab calculation, embeds the simulation cell within an effective semi- infinite medium in the perpendicular direction (along z). Embedding regions can be vacuum or semi-infinite metal electrodes (use 'esm_bc' to choose boundary conditions). If between two electrodes, an optional electric field ('esm_efield') may be applied. Method described in M. Otani and O. Sugino, "First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach," PRB 73, 115407 (2006). NB: Requires cell with a_3 lattice vector along z, normal to the xy plane, with the slab centered around z=0. Also requires symmetry checking to be disabled along z, either by setting 'nosym' = .TRUE. or by very slight displacement (i.e., 5e-4 a.u.) of the slab along z. See 'esm_bc', 'esm_efield', 'esm_w', 'esm_nfit'. assume_isolated 'pbc' If assume_isolated = 'esm', determines the boundary conditions used for either side of the slab. Currently available choices: 'pbc' (default): regular periodic calculation (no ESM). 'bc1' : Vacuum-slab-vacuum (open boundary conditions) 'bc2' : Metal-slab-metal (dual electrode configuration). See also 'esm_efield'. 'bc3' : Vacuum-slab-metal assume_isolated 0.d0 If assume_isolated = 'esm', determines the position offset [in a.u.] of the start of the effective screening region, measured relative to the cell edge. (ESM region begins at z = +/- [L_z/2 + esm_w] ). assume_isolated, esm_bc 0.d0 If assume_isolated = 'esm' and esm_bc = 'bc2', gives the magnitude of the electric field [Ry/a.u.] to be applied between semi-infinite ESM electrodes. assume_isolated 4 If assume_isolated = 'esm', gives the number of z-grid points for the polynomial fit along the cell edge. 'none' Type of Van der Waals correction. Allowed values: 'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d': semiempirical Grimme's DFT-D2. Optional variables: "london_s6", "london_rcut" S. Grimme, J. Comp. Chem. 27, 1787 (2006), V. Barone et al., J. Comp. Chem. 30, 934 (2009). 'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler': Tkatchenko-Scheffler dispersion corrections with first-principle derived C6 coefficients (implemented in CP only). Optional variables: "ts_vdw_econv_thr", "ts_vdw_isolated" See A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009) 'XDM', 'xdm': Exchange-hole dipole-moment model. Optional variables: "xdm_a1", "xdm_a2" A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007) A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 136, 174109 (2012) Note that non-local functionals (eg vdw-DF) are NOT specified here but in "input_dft" .FALSE. OBSOLESCENT, same as vdw_corr='DFT-D' 0.75 global scaling parameter for DFT-D. Default is good for PBE. 200 cutoff radius (a.u.) for dispersion interactions .FALSE. OBSOLESCENT, same as vdw_corr='xdm' 0.6836 Damping function parameter a1 (adimensional). This value should change with the exchange-correlation functional. The default corresponds to PW86PBE. For other functionals, see: http://gatsby.ucmerced.edu/wiki/XDM_damping_function_parameters A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013) 1.5045 Damping function parameter a2 (angstrom). This value should change with the exchange-correlation functional. The default corresponds to PW86PBE. For other functionals, see: http://gatsby.ucmerced.edu/wiki/XDM_damping_function_parameters A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013) 100 maximum number of iterations in a scf step .TRUE. If .false. do not stop molecular dynamics or ionic relaxation when electron_maxstep is reached. Use with care. 1.D-6 Convergence threshold for selfconsistency: estimated energy error < conv_thr (note that conv_thr is extensive, like the total energy). For non-self-consistent calculations, conv_thr is used to set the default value of the threshold (ethr) for iterative diagonalizazion: see diago_thr_init .FALSE If .TRUE. this turns on the use of an adaptive conv_thr for the inner scf loops when using EXX. 1.D-3 When adaptive_thr = .TRUE. this is the convergence threshold used for the first scf cycle. 1.D-1 When adaptive_thr = .TRUE. the convergence threshold for each scf cycle is given by: max( conv_thr, conv_thr_multi * dexx ) 'plain' 'plain' : charge density Broyden mixing 'TF' : as above, with simple Thomas-Fermi screening (for highly homogeneous systems) 'local-TF': as above, with local-density-dependent TF screening (for highly inhomogeneous systems) 0.7D0 mixing factor for self-consistency 8 number of iterations used in mixing scheme. If you are tight with memory, you may reduce it to 4 or so. 0 For DFT+U : number of iterations with fixed ns ( ns is the atomic density appearing in the Hubbard term ). 'david' 'david': Davidson iterative diagonalization with overlap matrix (default). Fast, may in some rare cases fail. 'cg' : conjugate-gradient-like band-by-band diagonalization Typically slower than 'david' but it uses less memory and is more robust (it seldom fails) 'cg-serial', 'david-serial': obsolete, use "-ndiag 1 instead" The subspace diagonalization in Davidson is performed by a fully distributed-memory parallel algorithm on 4 or more processors, by default. The allocated memory scales down with the number of procs. Procs involved in diagonalization can be changed with command-line option "-ndiag N". On multicore CPUs it is often convenient to let just one core per CPU to work on linear algebra. 0 OBSOLETE: use command-line option " -ndiag XX" instead Convergence threshold (ethr) for iterative diagonalization (the check is on eigenvalue convergence). For scf calculations: default is 1.D-2 if starting from a superposition of atomic orbitals; 1.D-5 if starting from a charge density. During self consistency the threshold is automatically reduced (but never below 1.D-13) when approaching convergence. For non-scf calculations: default is (conv_thr/N elec)/10. For conjugate gradient diagonalization: max number of iterations 4 For Davidson diagonalization: dimension of workspace (number of wavefunction packets, at least 2 needed). A larger value may yield a somewhat faster algorithm but uses more memory. The opposite holds for smaller values. Try diago_david_ndim=2 if you are tight on memory or if your job is large: the speed penalty is often negligible .FALSE. If .TRUE. all the empty states are diagonalized at the same level of accuracy of the occupied ones. Otherwise the empty states are diagonalized using a larger threshold (this should not affect total energy, forces, and other ground-state properties). 0.D0 Amplitude of the finite electric field (in Ry a.u.; 1 a.u. = 36.3609*10^10 V/m). Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are not automatic. (0.D0, 0.D0, 0.D0) Finite electric field (in Ry a.u.=36.3609*10^10 V/m) in cartesian axis. Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are automatic. 'atomic': starting potential from atomic charge superposition ( default for scf, *relax, *md ) 'file' : start from existing "charge-density.xml" file in the directory specified by variables "prefix" and "outdir" For nscf and bands calculation this is the default and the only sensible possibility. 'atomic+random' 'atomic': start from superposition of atomic orbitals If not enough atomic orbitals are available, fill with random numbers the remaining wfcs The scf typically starts better with this option, but in some high-symmetry cases one can "loose" valence states, ending up in the wrong ground state. 'atomic+random': as above, plus a superimposed "randomization" of atomic orbitals. Prevents the "loss" of states mentioned above. 'random': start from random wfcs. Slower start of scf but safe. It may also reduce memory usage in conjunction with diagonalization='cg' 'file': start from an existing wavefunction file in the directory specified by variables "prefix" and "outdir" .FALSE. If .true., use the real-space algorithm for augmentation charges in ultrasoft pseudopotentials. Must faster execution of ultrasoft-related calculations, but numerically less accurate than the default algorithm. Use with care and after testing! Specify the type of ionic dynamics. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm, based on the trust radius procedure, for structural relaxation 'damp' : use damped (quick-min Verlet) dynamics for structural relaxation Can be used for constrained optimisation: see CONSTRAINTS card CASE ( calculation = 'md' ) 'verlet' : (default) use Verlet algorithm to integrate Newton's equation. For constrained dynamics, see CONSTRAINTS card 'langevin' ion dynamics is over-damped Langevin 'langevin-smc' over-damped Langevin with Smart Monte Carlo: see R.J.Rossky, JCP, 69, 4628(1978) CASE ( calculation = 'vc-relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm; cell_dynamics must be 'bfgs' too 'damp' : use damped (Beeman) dynamics for structural relaxation CASE ( calculation = 'vc-md' ) 'beeman' : (default) use Beeman algorithm to integrate Newton's equation 'default' 'default ' : if restarting, use atomic positions read from the restart file; in all other cases, use atomic positions from standard input. 'from_input' : restart the simulation with atomic positions read from standard input, even if restarting. 'full' 'full' : the full phase-space is used for the ionic dynamics. 'coarse-grained' : a coarse-grained phase-space, defined by a set of constraints, is used for the ionic dynamics (used for calculation of free-energy barriers) 'atomic' Used to extrapolate the potential from preceding ionic steps. 'none' : no extrapolation 'atomic' : extrapolate the potential as if it was a sum of atomic-like orbitals 'first_order' : extrapolate the potential with first-order formula 'second_order': as above, with second order formula Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations 'none' Used to extrapolate the wavefunctions from preceding ionic steps. 'none' : no extrapolation 'first_order' : extrapolate the wave-functions with first-order formula. 'second_order': as above, with second order formula. Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations .FALSE. This keyword is useful when simulating the dynamics and/or the thermodynamics of an isolated system. If set to true the total torque of the internal forces is set to zero by adding new forces that compensate the spurious interaction with the periodic images. This allows for the use of smaller supercells. BEWARE: since the potential energy is no longer consistent with the forces (it still contains the spurious interaction with the repeated images), the total energy is not conserved anymore. However the dynamical and thermodynamical properties should be in closer agreement with those of an isolated system. Also the final energy of a structural relaxation will be higher, but the relaxation itself should be faster. 'not_controlled' 'rescaling' control ionic temperature via velocity rescaling (first method) see parameters "tempw", "tolp", and "nraise" (for VC-MD only). This rescaling method is the only one currently implemented in VC-MD 'rescale-v' control ionic temperature via velocity rescaling (second method) see parameters "tempw" and "nraise" 'rescale-T' control ionic temperature via velocity rescaling (third method) see parameter "delta_t" 'reduce-T' reduce ionic temperature every "nraise" steps by the (negative) value "delta_t" 'berendsen' control ionic temperature using "soft" velocity rescaling - see parameters "tempw" and "nraise" 'andersen' control ionic temperature using Andersen thermostat see parameters "tempw" and "nraise" 'initial' initialize ion velocities to temperature "tempw" and leave uncontrolled further on 'not_controlled' (default) ionic temperature is not controlled 300.D0 Starting temperature (Kelvin) in MD runs target temperature for most thermostats. 100.D0 Tolerance for velocity rescaling. Velocities are rescaled if the run-averaged and target temperature differ more than tolp. 1.D0 if ion_temperature='rescale-T': at each step the instantaneous temperature is multiplied by delta_t; this is done rescaling all the velocities. if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (i.e. delta_t < 0 is added to T) The instantaneous temperature is calculated at the end of every ionic move and BEFORE rescaling. This is the temperature reported in the main output. For delta_t < 0, the actual average rate of heating or cooling should be roughly C*delta_t/(nraise*dt) (C=1 for an ideal gas, C=0.5 for a harmonic solid, theorem of energy equipartition between all quadratic degrees of freedom). 1 if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (.e. delta_t is added to the temperature) if ion_temperature='rescale-v': every 'nraise' steps the average temperature, computed from the last nraise steps, is rescaled to tempw if ion_temperature='rescaling' and calculation='vc-md': every 'nraise' steps the instantaneous temperature is rescaled to tempw if ion_temperature='berendsen': the "rise time" parameter is given in units of the time step: tau = nraise*dt, so dt/tau = 1/nraise if ion_temperature='andersen': the "collision frequency" parameter is given as nu=1/tau defined above, so nu*dt = 1/nraise .FALSE. This keyword applies only in the case of molecular dynamics or damped dynamics. If true the ions are refolded at each step into the supercell. 100.D0 Max reduction factor for conv_thr during structural optimization conv_thr is automatically reduced when the relaxation approaches convergence so that forces are still accurate, but conv_thr will not be reduced to less that conv_thr / upscale. 1 Number of old forces and displacements vectors used in the PULAY mixing of the residual vectors obtained on the basis of the inverse hessian matrix given by the BFGS algorithm. When bfgs_ndim = 1, the standard quasi-Newton BFGS method is used. (bfgs only) 0.8D0 Maximum ionic displacement in the structural relaxation. (bfgs only) 1.D-3 Minimum ionic displacement in the structural relaxation BFGS is reset when trust_radius < trust_radius_min. (bfgs only) 0.5D0 Initial ionic displacement in the structural relaxation. (bfgs only) 0.01D0 w_2 0.5D0 Parameters used in line search based on the Wolfe conditions. (bfgs only) Specify the type of dynamics for the cell. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'vc-relax' ) 'none': no dynamics 'sd': steepest descent ( not implemented ) 'damp-pr': damped (Beeman) dynamics of the Parrinello-Rahman extended lagrangian 'damp-w': damped (Beeman) dynamics of the new Wentzcovitch extended lagrangian 'bfgs': BFGS quasi-newton algorithm (default) ion_dynamics must be 'bfgs' too CASE ( calculation = 'vc-md' ) 'none': no dynamics 'pr': (Beeman) molecular dynamics of the Parrinello-Rahman extended lagrangian 'w': (Beeman) molecular dynamics of the new Wentzcovitch extended lagrangian 0.D0 Target pressure [KBar] in a variable-cell md or relaxation run. 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD Fictitious cell mass [amu] for variable-cell simulations (both 'vc-md' and 'vc-relax') 1.2D0 Used in the construction of the pseudopotential tables. It should exceed the maximum linear contraction of the cell during a simulation. 0.5D0 Kbar Convergence threshold on the pressure for variable cell relaxation ('vc-relax' : note that the other convergence thresholds for ionic relaxation apply as well). 'all' Select which of the cell parameters should be moved: all = all axis and angles are moved x = only the x component of axis 1 (v1_x) is moved y = only the y component of axis 2 (v2_y) is moved z = only the z component of axis 3 (v3_z) is moved xy = only v1_x and v2_y are moved xz = only v1_x and v3_z are moved yz = only v2_y and v3_z are moved xyz = only v1_x, v2_y, v3_z are moved shape = all axis and angles, keeping the volume fixed volume = the volume changes, keeping all angles fixed (i.e. only celldm(1) changes) 2Dxy = only x and y components are allowed to change 2Dshape = as above, keeping the area in xy plane fixed BEWARE: if axis are not orthogonal, some of these options do not work (symmetry is broken). If you are not happy with them, edit subroutine init_dofree in file Modules/cell_base.f90 label of the atom. Acceptable syntax: chemical symbol X (1 or 2 characters, case-insensitive) or "Xn", n=0,..., 9; "X_*", "X-*" (e.g. C1, As_h) mass of the atomic species [amu: mass of C = 12] Used only when performing Molecular Dynamics run or structural optimization runs using Damped MD. Not actually used in all other cases (but stored in data files, so phonon calculations will use these values unless other values are provided) File containing PP for this species. The pseudopotential file is assumed to be in the new UPF format. If it doesn't work, the pseudopotential format is determined by the file name: *.vdb or *.van Vanderbilt US pseudopotential code *.RRKJ3 Andrea Dal Corso's code (old format) none of the above old PWscf norm-conserving format
alat | bohr | angstrom | crystal alat (DEPRECATED) alat : atomic positions are in cartesian coordinates, in units of the lattice parameter (either celldm(1) or A). If no option is specified, 'alat' is assumed; not specifying units is DEPRECATED and will no longer be allowed in the future bohr : atomic positions are in cartesian coordinate, in atomic units (i.e. Bohr radii) angstrom: atomic positions are in cartesian coordinates, in Angstrom crystal : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice vectors as defined either in card CELL_PARAMETERS or via the ibrav + celldm / a,b,c... variables Specified atomic positions will be IGNORED and those from the previous scf calculation will be used instead !!! label of the atom as specified in ATOMIC_SPECIES atomic positions NOTE: each atomic coordinate can also be specified as a simple algebraic expression. To be interpreted correctly expression must NOT contain any blank space and must NOT start with a "+" sign. The available expressions are: + (plus), - (minus), / (division), * (multiplication), ^ (power) All numerical constants included are considered as double-precision numbers; i.e. 1/2 is 0.5, not zero. Other functions, such as sin, sqrt or exp are not available, although sqrt can be replaced with ^(1/2). Example: C 1/3 1/2*3^(-1/2) 0 is equivalent to C 0.333333 0.288675 0.000000 Please note that this feature is NOT supported by XCrysDen (which will display a wrong structure, or nothing at all). component i of the force for this atom is multiplied by if_pos(i), which must be either 0 or 1. Used to keep selected atoms and/or selected components fixed in MD dynamics or structural optimization run. 1
tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c tbipa tpiba : read k-points in cartesian coordinates, in units of 2 pi/a (default) automatic: automatically generated uniform grid of k-points, i.e, generates ( nk1, nk2, nk3 ) grid with ( sk1, sk2, sk3 ) offset. nk1, nk2, nk3 as in Monkhorst-Pack grids k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ) BEWARE: only grids having the full symmetry of the crystal work with tetrahedra. Some grids with offset may not work. crystal : read k-points in crystal coordinates, i.e. in relative coordinates of the reciprocal lattice vectors gamma : use k = 0 (no need to list k-point specifications after card) In this case wavefunctions can be chosen as real, and specialized subroutines optimized for calculations at the gamma point are used (memory and cpu requirements are reduced by approximately one half). tpiba_b : Used for band-structure plots. k-points are in units of 2 pi/a. nks points specify nks-1 lines in reciprocal space. Every couple of points identifies the initial and final point of a line. pw.x generates N intermediate points of the line where N is the weight of the first point. crystal_b: as tpiba_b, but k-points are in crystal coordinates. tpiba_c : Used for band-structure contour plots. k-points are in units of 2 pi/a. nks must be 3. 3 k-points k_0, k_1, and k_2 specify a rectangle in reciprocal space of vertices k_0, k_1, k_2, k_1 + k_2 - k_0: k_0 + \alpha (k_1-k_0)+ \beta (k_2-k_0) with 0<\alpha,\beta < 1. The code produces a uniform mesh n1 x n2 k points in this rectangle. n1 and n2 are the weights of k_1 and k_2. The weight of k_0 is not used. crystal_c: as tpiba_c, but k-points are in crystal coordinates. Number of supplied special k-points. Special k-points (xk_x/y/z) in the irreducible Brillouin Zone (IBZ) of the lattice (with all symmetries) and weights (wk) See the literature for lists of special points and the corresponding weights. If the symmetry is lower than the full symmetry of the lattice, additional points with appropriate weights are generated. Notice that such procedure assumes that ONLY k-points in the IBZ are provided in input In a non-scf calculation, weights do not affect the results. If you just need eigenvalues and eigenvectors (for instance, for a band-structure plot), weights can be set to any value (for instance all equal to 1).
These parameters specify the k-point grid (nk1 x nk2 x nk3) as in Monkhorst-Pack grids. The grid offsets; sk1, sk2, sk3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ).
alat | bohr | angstrom 'bohr'/'angstrom': lattice vectors in bohr radii / angstrom. In this case the lattice parameter alat = sqrt(v1*v1). 'alat' / nothing specified: lattice vectors in units of the lattice parameter (either celldm(1) or a). Not specifying units is DEPRECATED and will not be allowed in the future. If nothing specified and no lattice parameter specified, 'bohr' is assumed - DEPRECATED, will no longer be allowed Crystal lattice vectors (in cartesian axis): v1(1) v1(2) v1(3) ... 1st lattice vector v2(1) v2(2) v2(3) ... 2nd lattice vector v3(1) v3(2) v3(3) ... 3rd lattice vector
When this card is present the SHAKE algorithm is automatically used. Number of constraints. Tolerance for keeping the constraints satisfied. Type of constrain : 'type_coord' : constraint on global coordination-number, i.e. the average number of atoms of type B surrounding the atoms of type A. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'atom_coord' : constraint on local coordination-number, i.e. the average number of atoms of type A surrounding a specific atom. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'distance' : constraint on interatomic distance (two atom indexes must be specified). 'planar_angle' : constraint on planar angle (three atom indexes must be specified). 'torsional_angle' : constraint on torsional angle (four atom indexes must be specified). 'bennett_proj' : constraint on the projection onto a given direction of the vector defined by the position of one atom minus the center of mass of the others. G.Roma,J.P.Crocombette: J.Nucl.Mater.403,32(2010) These variables have different meanings for different constraint types: 'type_coord' : constr(1) is the first index of the atomic type involved constr(2) is the second index of the atomic type involved constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'atom_coord' : constr(1) is the atom index of the atom with constrained coordination constr(2) is the index of the atomic type involved in the coordination constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'distance' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD 'planar_angle', 'torsional_angle' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD (beware the order) 'bennett_proj' : constr(1) is the index of the atom whose position is constrained. constr(2:4) are the three coordinates of the vector that specifies the constraint direction. Target for the constrain ( angles are specified in degrees ). This variable is optional.
Occupations of individual states (MAX 10 PER ROW). For spin-polarized calculations, these are majority spin states. Occupations of minority spin states (MAX 10 PER ROW) To be specified only for spin-polarized calculations.
label of the atom as specified in ATOMIC_SPECIES external force on atom X (cartesian components, Ry/a.u. units)
espresso-5.1/PW/Doc/user_guide.aux0000644000175000017500000002004112341373154015207 0ustar mbamba\relax \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined \global\let\oldcontentsline\contentsline \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global\let\oldnewlabel\newlabel \gdef\newlabel#1#2{\newlabelxx{#1}#2} \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\ifx\hyper@anchor\@undefined \let\contentsline\oldcontentsline \let\newlabel\oldnewlabel \fi} \fi} \global\let\hyper@last\relax \gdef\HyperFirstAtBeginDocument#1{#1} \providecommand\HyField@AuxAddToFields[1]{} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}What can \texttt {PWscf}\ do}{2}{subsection.1.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}People}{2}{subsection.1.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Terms of use}{4}{subsection.1.3}} \@writefile{toc}{\contentsline {section}{\numberline {2}Compilation}{4}{section.2}} \@writefile{toc}{\contentsline {section}{\numberline {3}Using \texttt {PWscf}}{6}{section.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Input data}{6}{subsection.3.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Data files}{7}{subsection.3.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Electronic structure calculations}{7}{subsection.3.3}} \@writefile{toc}{\contentsline {paragraph}{Single-point (fixed-ion) SCF calculation}{7}{section*.2}} \@writefile{toc}{\contentsline {paragraph}{Band structure calculation}{7}{section*.3}} \@writefile{toc}{\contentsline {paragraph}{Noncollinear magnetization, spin-orbit interactions}{7}{section*.4}} \@writefile{toc}{\contentsline {paragraph}{DFT+U}{8}{section*.5}} \@writefile{toc}{\contentsline {paragraph}{Dispersion Interactions (DFT-D)}{8}{section*.6}} \@writefile{toc}{\contentsline {paragraph}{Hartree-Fock and Hybrid functionals}{8}{section*.7}} \@writefile{toc}{\contentsline {paragraph}{Dispersion interaction with non-local functional (vdwDF)}{8}{section*.8}} \@writefile{toc}{\contentsline {paragraph}{Polarization via Berry Phase}{8}{section*.9}} \@writefile{toc}{\contentsline {paragraph}{Finite electric fields}{8}{section*.10}} \@writefile{toc}{\contentsline {paragraph}{Orbital magnetization}{9}{section*.11}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Optimization and dynamics}{9}{subsection.3.4}} \@writefile{toc}{\contentsline {paragraph}{Structural optimization}{9}{section*.12}} \@writefile{toc}{\contentsline {paragraph}{Molecular Dynamics}{9}{section*.13}} \@writefile{toc}{\contentsline {paragraph}{Free-energy surface calculations}{9}{section*.14}} \@writefile{toc}{\contentsline {paragraph}{Variable-cell optimization}{9}{section*.15}} \@writefile{toc}{\contentsline {paragraph}{Variable-cell molecular dynamics}{9}{section*.16}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Direct interface with \texttt {CASINO}}{10}{subsection.3.5}} \newlabel{pw2casino_info}{{3.5}{10}{Direct interface with \texttt {CASINO}\relax }{subsection.3.5}{}} \@writefile{toc}{\contentsline {paragraph}{Practicalities}{10}{section*.17}} \@writefile{toc}{\contentsline {paragraph}{How to generate \texttt {xwfn.data} files with \texttt {PWscf}}{10}{section*.18}} \@writefile{toc}{\contentsline {section}{\numberline {4}Performances}{12}{section.4}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Execution time}{12}{subsection.4.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Memory requirements}{13}{subsection.4.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}File space requirements}{13}{subsection.4.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Parallelization issues}{13}{subsection.4.4}} \newlabel{SubSec:badpara}{{4.4}{13}{Parallelization issues\relax }{subsection.4.4}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.5}Understanding the time report}{15}{subsection.4.5}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.5.1}Serial execution}{15}{subsubsection.4.5.1}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.5.2}Parallel execution}{15}{subsubsection.4.5.2}} \@writefile{toc}{\contentsline {paragraph}{ Quick estimate of parallelization parameters}{16}{section*.19}} \@writefile{toc}{\contentsline {paragraph}{Typical symptoms of bad/inadequate parallelization}{17}{section*.20}} \@writefile{toc}{\contentsline {section}{\numberline {5}Troubleshooting}{17}{section.5}} \@writefile{toc}{\contentsline {paragraph}{pw.x says 'error while loading shared libraries' or 'cannot open shared object file' and does not start}{17}{section*.21}} \@writefile{toc}{\contentsline {paragraph}{errors in examples with parallel execution}{17}{section*.22}} \@writefile{toc}{\contentsline {paragraph}{pw.x prints the first few lines and then nothing happens (parallel execution)}{18}{section*.23}} \@writefile{toc}{\contentsline {paragraph}{pw.x stops with error while reading data}{18}{section*.24}} \@writefile{toc}{\contentsline {paragraph}{pw.x mumbles something like {\em cannot recover} or {\em error reading recover file}}{18}{section*.25}} \@writefile{toc}{\contentsline {paragraph}{pw.x stops with {\em inconsistent DFT} error}{18}{section*.26}} \@writefile{toc}{\contentsline {paragraph}{pw.x stops with error in cdiaghg or rdiaghg}{18}{section*.27}} \@writefile{toc}{\contentsline {paragraph}{pw.x crashes with no error message at all}{19}{section*.28}} \@writefile{toc}{\contentsline {paragraph}{pw.x crashes with {\em segmentation fault} or similarly obscure messages}{19}{section*.29}} \@writefile{toc}{\contentsline {paragraph}{pw.x works for simple systems, but not for large systems or whenever more RAM is needed}{19}{section*.30}} \@writefile{toc}{\contentsline {paragraph}{pw.x crashes with {\em error in davcio}}{20}{section*.31}} \@writefile{toc}{\contentsline {paragraph}{pw.x crashes in parallel execution with an obscure message related to MPI errors}{20}{section*.32}} \@writefile{toc}{\contentsline {paragraph}{pw.x stops with error message {\em the system is metallic, specify occupations}}{20}{section*.33}} \@writefile{toc}{\contentsline {paragraph}{pw.x stops with {\em internal error: cannot bracket Ef}}{20}{section*.34}} \@writefile{toc}{\contentsline {paragraph}{pw.x yields {\em internal error: cannot bracket Ef} message but does not stop}{21}{section*.35}} \@writefile{toc}{\contentsline {paragraph}{pw.x runs but nothing happens}{21}{section*.36}} \@writefile{toc}{\contentsline {paragraph}{pw.x yields weird results}{21}{section*.37}} \@writefile{toc}{\contentsline {paragraph}{FFT grid is machine-dependent}{21}{section*.38}} \@writefile{toc}{\contentsline {paragraph}{pw.x does not find all the symmetries you expected}{22}{section*.39}} \@writefile{toc}{\contentsline {paragraph}{{\em Warning: symmetry operation \# N not allowed}}{22}{section*.40}} \@writefile{toc}{\contentsline {paragraph}{Self-consistency is slow or does not converge at all}{22}{section*.41}} \@writefile{toc}{\contentsline {paragraph}{I do not get the same results in different machines!}{23}{section*.42}} \@writefile{toc}{\contentsline {paragraph}{Execution time is time-dependent!}{23}{section*.43}} \@writefile{toc}{\contentsline {paragraph}{{\em Warning : N eigenvectors not converged}}{23}{section*.44}} \@writefile{toc}{\contentsline {paragraph}{{\em Warning : negative or imaginary charge...}, or {\em ...core charge ...}, or {\em npt with rhoup$<0$...} or {\em rho dw$<0$...}}{23}{section*.45}} \@writefile{toc}{\contentsline {paragraph}{Structural optimization is slow or does not converge or ends with a mysterious bfgs error}{24}{section*.46}} \@writefile{toc}{\contentsline {paragraph}{pw.x stops during variable-cell optimization in checkallsym with {\em non orthogonal operation} error}{24}{section*.47}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Compilation problems with \texttt {PLUMED}}{24}{subsection.5.1}} \@writefile{toc}{\contentsline {paragraph}{xlc compiler}{24}{section*.48}} \@writefile{toc}{\contentsline {paragraph}{Calling C from fortran}{25}{section*.49}} espresso-5.1/PW/Doc/user_guide.pdf0000644000175000017500000110071212341373154015170 0ustar mbamba%PDF-1.5 % 112 0 obj << /Length 1358 /Filter /FlateDecode >> stream xXKo6WV h֏E8>4=(Zm,T+mpIIkq)9C?|3ш2+ͣl}3t/4:obD`tXk f\GɎ}?-ϩh-V+"Fen6N8aXn?fo e1ʗ7mtD5fT '8Zb$w1S(oڢSL`}wA`!D r<|ڭ&VJ4I0AƉ% ])ZY`(4X@:`6J;0,G 6휺BYZM@cs8LbK0O8N$!GX$ Tbc!g1(7%x(`_Yt*ẸJ8akl ܷ`Zs<lC@P,Ie:r 6vynHgHdA-[QsDT-.p|iJQ9C@|G(s.+'89r9yɺ*f5&sn!a(qz 1fOJU.2@Ê4;#hEEJ.oVi6xȧcT\SazooR0(:@5PllfDOvtfV#5Nf-Ŕg>Yudpl1 ;ĔV^뺹5|`~5 \Q>+qYj$ZbE6iY%i L]kÿKp)ZMAuz|ǼIxP5.; ~H #|;-% Ypl3q7Q-S+|:̃pk> mg vQr3za,,ma*rsse֒>~ޞ6eVyrc` j*/W 9*`y\nKW0j݊~nd`4e2АBiW3tf.vb&Qik:jC9ŔOzK8ZS P7Lpj !۟ˠñpJ Lj'aw70/5۟  F[01c7AI endstream endobj 88 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (../../Doc/quantum_espresso.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 122 0 R /BBox [0 0 531 181] /Resources << /ProcSet [ /PDF /ImageB /ImageC /ImageI ] /XObject << /Im1 123 0 R >>>> /Length 53 /Filter /FlateDecode >> stream x+TT(TH-JN-()MQ( *NU5Tp endstream endobj 123 0 obj << /Length 124 0 R /Type /XObject /Subtype /Image /Width 531 /Height 181 /ColorSpace 125 0 R /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream xxTU'Bh*MAAlkWյ VA)R(IH%Hm~wWoE'aZ&r~4 @u:O>OS/lIb RO^&M" w촛%.$f> quA&M4itc{* L5zշ]u )s<.Sg뾳 M4i3u-lPaC`3Ԑ&M4i2/(\yFDպ4`b[/|M4itË^T`6[Ah1؄fhSu߹MԣI1@)xM4i'cRF;Ahc3f n^V %h-Xsb[kr}5t0c=@hI񄎌M4is,J &0Cg V-%rS!7hEki}7Rw겮iRCܘÍ4󴩀5rZJŶ2h'\ԉҤI&MWKV#֗ hj"1Yƴ/ğ 5Dnu{jv[U^D[1i-[HsmePƪ*UF+iRqT'ckţ]JrdZJ3LɆlϡ#uQ%f @JD-ºTUeu@d-[I8~hw0J;7ys_e[B8G0md`( <4ʵrm\B8#G@qX(9GfEQbQ4(FwƇDzxV~'@n2VL>],kuT2c=35QO ڝLg*pkh!/M4в}eCQ/wFjl^!nlV J$*K;:hE rh9ZF ~(p! Br!w;ײ@BPɍ㸡EiQZ.)2BHn-ڪHg=34q1;ecˌBBϫthФI_Jx~6Ë2Dl* /$c "_pETJ S?yG=iKƋpYu2w+xQ47.` @@dpno@K[3XO43727fڂv~ߍ@4)819q,'jI]iȣMYK .SQVv03M4D Аu6UN3h]ԟ|G24rPAXLkXC#WqT_LR ',XQ-{Yn7Y[&ܨ2)ή6[*ժktGU*j=3;AvB.wg"Y> pqgKXeTBmRUEY:Ȑ$ ]%Wd@4iҤ/%F UIxh_:IZ/(xMWS3e{_ v&ƽV%UP}*1aH ay !cK]ˍ9}641gnr:?jn;$u5:$} mq·()?ɀ\h) L AhL4ŏpvg ~T8 綳,k'SPkMw(NMmvaWB~dh+8CV `ch%Ǡ4.%F岩r8+՜y4i gD0ߋ]~TBۤ']+Q(!!OQ%m͘.IY +u%rJfف̃EGhiH '9mU\:-@9}lsNͥPW5P.W1]:.DÅC9pn )+ y;a3?՜4s w ع ۋxnG7)=Abx8Ju4sY,ic1a\bKwa8&Hf\N\*&,N/%gV`ZHY[v3 E˥'9YM*f&wɨbZf5NtM4r c w/dlU=9ZCp{!qxvd̽,mjȹ<{$&`KC9(? e$FxI{XP>;($.T:dz=)؏D!-=8Ǐk >K:6K>D!}-ZIij1/41U6ԛ+%;G+8],'p,iNMLX"qj 1pŷPJ4T$5c?.mQyurk-k[kCs>4! 1A]*LO0Y7b$ib9{Z Z|]:j21(ZF;&Tex4i.沴q-f?#H;Uv1fߏT>=ߔ^ݻduVH-煆,2^: E1!/%_83o#'.SVϘwּp,a*KXpU@kN*b-LJI n#eB+юZgg@WrlWi.0C6jR*!Rnf7CZÔI\BBJ\IN *eDhCۮI?Y\"+!it+)=vhD %DH‘7OMgױ?`¾)&x>}3w1 q)$,FWpj..u,{ b4 +17MtZrk̽fjd=܈ 疨TL3.+;"9ɢp)@IǠSy;!g3ⰠIK 9"H^߳͘ V* }jҠ!sN7ZoC&M] яhd? OBS8O!g?顷ĕ`TLmL_=lͨlWv>xBsb+,˒$iV9*bkza=t?C2HOO!泄ZNdn!982iR~4A%vP!U5u=n9]Q)CD wgsةE4N&gм(5"˘\&M7T.q+k6@jBrclݰz,|hX|,OW '@ rtfDh55BGkT P| GAN0Fֈ)K!-}+%$YNCPkhCTA{ E$'uXX[%i*H} I"q(܏XV:Gl8>N|,HeosȅZ|Ys!t\A%!TzQWV&MC!;ˏ:U Z~ i!yMX,ϩN c7_. a'GhNRئ"h&0upd"Q*KzG%C*;WcYoeTFvDŽxnrv%Z_Y;MfVQ ;ЗI¡T/I6iҤIӟ iǦ*8Hp)Z,")0*OTGüFD*Z,c3Vab_U2 b87k60?__'afj xRΚL*VoI?-8Ȫqfp웦C"qxk5_4(EG OԵpj1 }'>Kg8b.ݫLLl'חLrIIdzn~kQ$h5U|է+lwff#cC<,H wayYnl,.S Rws M4CUWzeHӲ>[HsWo48)́bfE[%19@N,?.=bkwJ&M<b`r ^Wb|"\zS9Cr;,ur^()<+h}6m.Z|Q0J(7vUܽk";H}F^.5OU8Ø;CB'p4g'GaVcChm&MX4֌-ppM`"IiZ.C8#; }A$G? >$_XmJK'em[+r cfdZ@!~P+U@hW"W%xդx()[pǩy4 z8>\^Hs[.#YyXDj&M4aNA/5iRi ) LvCvCgC&1JamŘѐ;^)*X*EWqݪ2PY [ `?)ԪJS!@vK gpJ134KLN]{vӢäXD:pؗ6n]&MO}eQ.( AOm`j"R ހ)X9S_a hv4:wo$^ \v~ > Z/KO$C9vO'0oNgasnE+oca4`p5<Jc^+N1~,p=89 QȅѤ 4dF z܉  jl9@` 8/6Jb4vydnY '\%GhqZsz9;D#dnTݐE&MZJO0,JR5pSX4Am

f f ?>N"KFcjD!)d ̀ a)i%;2DC_/^!%`g_[ :qr0$FʿeFΎRRae/¾;7PAO@]:_+y!1P&M5rc:e(=lO]"|!6L~V:^/`zlr$ o FCN#aS y8&K~"{ң o NB&vTsMӪDh8meX!8ܕJ}*5—ou2~ -Ԑ-Uő&cz51t krrw͊@U 4WuU-|M4xKDs[+> {!w'0M[c,׷,qIZ:1 #G? ngo W~P҂;ף/#ựU6x OeGfB2\8}CR&^`2]"pHᘯlZv^X{S ÉOY7m҃PKVdʆ_dZ\&MfC"&Xe"?XahlUء=-BR)ļ ރCo\};捦_EwA${N_!rh$U mD7YWnhUI(85[,d2pp=gΎ`83L:(f+M4yJ<`j Mre )>]3ةos696~]x"v04x4,Pj dcWL sva%k#Ln ҥX!?L>b;f`u,?|0VjФIJ lO\)#f1y-Æ{a=X?4~+p(UUGɳGwÎDž@"ڎorik pZ7 E͒ZNJY q)?Kw v _b w$Ck,]u 4phҤw>1zI?ɹ0zBAc"c~KW%h|=ۅɆas!ggLmdtˮd>E](|*Y.؏ _Á7i$q}ȎI8,KBMGY$FB+C&M236L|8I^ h{ ~ЭcMwȫƱ%w⢍c1; 8G10,z.ycp|rvBQʁ FPWlV? Wä)L|l g2]XopC4sdb>O/2ʓC$ 84iOg?K0n& C'D> uNhw> ># =}43Tz}~g·a?kȁ*J_ݔTԤI#)FC>%+1$? KbN獀φçwC)ƍ5y@2m{u :^LgP#h81IZ eG9Zڥ/D0"\5?ĥpxyNt/N!fu Wb J;:5=פIHiV% $~6?[&'‚1Šn? op:H^O/ЗWAlz{8|8> oM!~KTV..;jp&5 ~VC #H mXtdqZٳ&M~ǡH0Dؾ@olDNz6`b?B>nbOOI7ӷs?o/ Ӹ?2Bw7~\R-E MOl}۠@ganxJ?M: $~#eNBkyJYM46p# ;c 8ˑhzk:^H & Gzzz>p? fOޏ=& DZ-p1ZzE38@ˁGJЀÐ/⑰2~;h2@a$4d6nOj5iڥMPm{#!ڭ8#nD@:&}a/vG|.6Η;ߛ=C& ?OOk](O:ĕ^_Jٿ?FY2rJ=r*n~3 wqѷ:{T e?qhФIop0BJx?C φ~}aܧ1^0ҝΆrh07os0Fa}"ecEǡ( T 8ӏ_ʲ6ZK鶗R]"Bs$[iL K_ oӵ'`5eEQ<=Z&M~8LK!lÃ򲻅9H ɤ!?6яxa 't|ɁuH77~0 )npQo,  y 4\u# d&7=G~諵ʎ,)+8.xH5X=H^~0NfG>ya.ʯ@&M~#8 (5%w×##A0fx'}6_ {B/wso'W[pA7Hoqe~t<;2]>TrIsʔ} Qe2jÝ vدDdfZb>~?$r]5ԇpF!MF ::Mu}8L.fMj@OM{(M9⅃rr9vc<6xg̼ V';eˎP}1@' 5i[ȡxŃc`D/6SCݡ;qc~Nf1lh̎%v`I,EwKۆbȹKXg^`"Oj(Mn>k.@WF}IۍJH9Ü@]ſ+5 I%̘AwryM==e{Py$ ~uA3|+lT^ Z;^ ei,gK3w-!l2DKJrs.vZ&M=āy 0s }2}OǛ#8p^PGkjkAttNGtʂ(wmtN诃i`S05ٸƓ^E @/~R*0s eP6)2aN:Ϟ\` [okWg>{vl]"m#]"{Dyy9{pcN$?aܖH@zdYTvwvV]P_ʯ¾?/qsRu6tPiҤ鷝J ,Kǿe0{/#tٓf V` XW nL1XcB' %HUIJj7z`J,JT&6Oy֋s;l7*9 }e9ciRKDqODyeHac{9faafbjfލu׮W__U}v7E9SB]}f㻳ϰf Ǐ rT9lz>BOޭ0NaN#Ӵ5rI aITiҤ7C=jd~8:q=a'E&:1󂳀Gnmm VVM+:A7"ߓw|Lj0F_4F(77fϜ;hkG]A#'SX';X1GBi'&j>[%yd8|v3ԭG{^'`ǽ~a>va~a!n{89qr vrฮN}NQn w;LmRk2AĜh("H\ 3G~~2g{>kФIo UJJbQp {cFہ8X0KfR\e\i5XRXb/O k'ѓL1cnv 1B7Ν:.!6Ǭ=­=ږ] X1U0Fdu0{nl>4ᱵV^ /,]#-ݣ|;;zrp߫s rgG~'gthmo^++7㈅P=ZGX:xrqyuCdĤEGT ,`=}͑lp?~Q&M~[k,Jq/ ew-܃,TjWQC>KKNgA//2kyd5dmAQVT&*8Z#zܲko^@O-A6.[ F#Uwpd4K {vއt^G[9E8pqᆀXgsc?vMcPy @ڀc?"nc2BMmG|bK/{N[?]n<8Y8FyDm3`(0nV`__Wa靰IzCNGFt5it# Eb%LrԐ =%pI hwu6Bl}]|=v<*A0*j6`4mtǜ}#\Ý"ݼw۸v8奆8XZEJZ*C[1b6&9DZisiߊ9(#s}^>ېwQ ՘Jot< x?]0 6 ^V h4iALX&$㾆o燳QnleMuVܕPbPȉaiam]]FŦB+s 1l '߽~ZYF8 rwtK|%hkc)8fI6.йg[k3wzw“6AukjSQ* Ezp['_XUn^N֎\\{࿊Bu]o x]@x&d8,+W XMVUI"DD06톽{vƦ *;uCWXX|e`"` spJ6aZ< tfuSNk`G} P* v8ncO0k(k/w`?1ǡNҭDo_\Өm//knimj,mHK9z('r#g&;6lyF3* bx í:؟= A+4y))?/M4iw jxb, cY?Wpg[fc_Iaiv554%X \tRg> UG@nbW zg>Xgu6 [Ֆcӷ 䇟sd53)smqUfhcx.v%AfKi{{G]]C{m]c}Cus륶KmuuS^{.{]í=E>|k l #þ@(f.n}. Czrco}.9l3inL 17\I~zup ttr 1`P] bJ]<_L4  tHT׬l7fPd z|BsCTIpb*׾, ׆'|Ʉ8v3eG=Zcïj8&KbCuֲmT&w^< R-?DHzT]Br:5Y + 2_⾆(@CG&\}\,Cm}E=1:d()-UI@_E(g$CccsMM7qT4U5ڀq.$ B͘F7 2O!KOQ.n6nuAzv,dx?9PL7Lddۡ!CIdeWpxogl7Ó q-s,8Dk Y)"WfC8QG^G1xtC=SYqr,‟ͻ?pPsģwK>[>T1B#&Bi ~-  kp7뛚ZD +3B8:ڕߣ(7ߞM-ogs.;g2@/nY *4iRD}c 飽>./ r$nvі9؂ j.wL<`Ð>G215 Q:odzph 4i[B4&5`uz>l '‡ׇD6xB?=ݰ1=htZΪ>(\}N%|yҍU~ QW& H35vg7 Ќuc@ܨ3\uIDDE+ehhh_،8yWff@/NV&bQIXI2/r3-Oߌ7}468@~/{&^H76g2n}rkkC[RkK̞7ל~^ܓ!ahF{ZSOu;<Ӹǟ|ӏ#)"kSG7mD9s5_Ojkkiknoxum]]]GG`4O|7/=T'վ=}ax|ÔNqF;cg_OIh5iteJ UA)a)L#~0&;'-`#\a3 teGqXЃome7k%ƏWBE^M;Ŋ-A[ݷכ6غm١s<'̱O.kO9ݶ׾Vg(+]7 qǺ cW3MMM*8Fkk {ȯecUo?j}wo@K '\{g7Lfoǰ YlVv2U)A[EI+O-e@O'ah5> o 37C=` {Z^Li3XMֲF88=CTFJu-H,"5<7ukbu:N=wxq8mss@-)г&׾t$w Uthii &_RC}ƓCDVR,u {ν::ٖx3tydz8W4+c4phҤW-bv8.OGq0g |< |L< }~pooƔ* |1F95985;+hs{xbhtɭf/v}oӃpQ_,UJ5I&MR&0N}QA賰>j"~,w;t8Ӈi}褾d:ԃY!8dKؾ,u;L} Xڸzx{xnw`mc=n'pgv=zD8r{_{8L`UݍE*8FP} K Mkl9yx9y-30^,-/[͑<焝784it t)RBld.`4|9f,=H~{bx~0ElHΖC`4tXȗ㡾@dP:)n?.s>E>WHG!Na=\|~~{Gm-Ĺ c0VWʍэ[qqTg'D"uDcB4";9~˻Os~[[ar;&vb%GC&M1ԦA6zj"^GaݰN?Cl9 oׇӻd:GjkǭO[ #dbD?CAMuoNvvyȹgvK`ۭ܂}ٺmsw斠uÈ`2Ꮓd2 jjL&J۹AY&,9R\k)(k^;H{ >]O:G@;a`H8*M4]- *Д!,GC$y8;&a:v=> >&${V`BtmhAlaCT6xqQFrS-6JyZ pid~;=9';8tu {=STx~>n'}:~CGsS;!_JY#¯M4Ds۫G::gGiUتH8 iҤIenH:$\ = ނi4x1^~<]=V^yᮎoGѦywȓ(C-L֢9dK[Nbk>4]f7^ ÊRʃ[;"k?]yzDx:xmtqﳧ@tW:XˢB|KijnkoVR7 tܫ#z=G k,U({߀*G?TNw.]ّxZzPه 8IK#d߉&MejzVN8|ނ iq㤧kDdtJam p?hbQY,%jGWG`+wݶ^l|J|}e}Z[(746WUs474֫3F;A;[#UUUF2P`9oS{W0+‘;aj^"UjҤJyH|J@NH]V3!z: ž=`c~q{̟燐tT$YZrp0+Jk ؔPqWߖ3)ܱ6{ȁwBE/M_PH`FeU Zeau5G#G:{GڨY_~a순lgwAk7C~t1`4phҤ'_Qg vAR8 B?ad~$ö`Ac7BqpN>Knܾ󢘴ӱowafbs1h݀&_/0U!S 鹗qǡBr]]+N?I4D;=`_?]^d2٨$L~1IKkҤ闱*Afhʣe>iY"9;>LATw9i"5\6`fEX9nPu7DQlkhim簨toV5D] ^P4yke1|=Q;| debM4phҤ骃*@_Aj2xKwu$y MKcgץCBTULVJӟ%$kdR14'1c'%Ɲ>,C\qyqݧsi\Rq9t=V8`-010UaUܱef):۔ڀkXyqbc_ 8JM42V̴SxZǠ !e$.S \8|88b>>Iaӽ _enLpk\Mes;]_79`lbͯ@˓GsssSSSCw"jkjjqeC5WB5vu@f\ a{CΞܷ;98{ZW|L}/`4`2]&Mz2v+C픺\tVѦ'؅H έ!iYpx'! CY#kɿ:{#'1cU8'\$L7Vzwf+y/Vu~*5T/_C'9'nhl掆}*(8y?v40No+0kA[r%Tx84i+~+I֚6$ZK C~dC.H&m!~pXs`8,1?:ߋ3q؁]q2Ԕn9&{.'7{Q]kmW/ 65 %<  tL51Ih)@BHBܛlY{\d[ͽWV_mo{Wb#/3z5sӾ',&WcO*Sֆ’$$ժ4ѓubhq R d X{vER0o;.o(_Ǯ\**);"v??yh[h ,&ݢ }++NjlxѤsU|Úm6d<|e|WTؔ#=\`П(\ pֈ<%YVhOJ^D+27HPMvKnFz+*Ԣ$뼌%9e\lCؖI?d?Z|f^7s*W"iv)󒑽$AF̃LuDvSN VBil^RE;Q e=Z-k1Ǩ Y_3yui"ixL>q}RNS0No_S8#IH;.jzQ{ȳf= 6t o𻲡+ʵ-?58;9| 8WJȉe|mT:*,^[F.1'j[Bu(8<˃*/>D]74X~1AM$ZI;ts"t}RIU U&ڟifx^ *jH1^U ^;׬"j0uUNêMk'w4  sdC\Yq"Gy#(q#J((8섯v493+: s/%ns U8eo-?ʘ@Rǝˑ?]tNАI٩ЇT&Dóu괌,[o-^ZV^yl/ZjufV2NwI]GNj%Y_2Qžqr`ւk+ïTMY6i:{ށ%T=}ӧ\KΉD=)EY>.WYN*V&_&${Yb ՗/+SOUi'$wZBI6MVe}*xY^,Udʘ' =?""9{%1ѴWz;ޭpf{?/LqQsxet#7ة*MxmN.3T[ĕh"~t7dt‰DB`,f}x,Q+:ٌ_|j6;."طQyH<<iTz;:;є@|ƼOj1b*s;v#TU21L_4Opq[GU5h_adfQ8g?~Ű,rfeE%)i3c j vTVV96 ;:p:'޵6 !q$0W0&93vRa|mL)q!.Sgu VOEC¡xO8EƄ4uRGsQEJ(ǯhDlP蓺>@yQ9.p$fZuuA"ԆqQn$DZh''' hq ,ឹX]VRҸ?WysQȴ'^ %m Q'Sب]2vފh%:)7.}/Qrf w}=h Ӥ&6b+I]C|<XP6<𸦰gܧS#j 1GRp#dw@##kfDB&zM8"DV&>/pU%҃6X8.cX,%!v$_`셀íU ZcnQG|H.;)p gZž7>.Y0Yg֊j.vuxJoo9;aW/YwߡfT~n.黁W&uU8贴 )jj-da;:Y<%eeZIi%>fQˀEv%AϏL-mea _@^4=98$͋FH,%*C3s%.3d}sW :ආZEҴ4%/ɿ[- 4X6C6VGN _B*kpb"!ye,-<^Qe⒆2U]z"АЖ=49Q%4RݡT0gW;T7Fq9Hd&ȢC.*Ð0%JL 7=P#p0ǰɌ؁o }zy$6~WF3 \}lP_aȏB4LbEcK{|8+G`sb=LoW4 y{nxѤ:!{;\6!;2_؅* ~ɊUKSR,vx<]T.㕗lۚGZ6 wM|" XI$ fM_G;BC*P]$J&N0?0!%.*v!HfvyY. ?FP+)Tj.gWF_|~VgF8C8+ɃT}Uq{g͒OG^!($atR`f5j1'$qsCt=mAf8^zE"Ci͟zy8{EkQA-]ܺKK]iVտ87y>)8!4b͟Ky~! " (M+W]jՆ5aɟIʪ 4M}SυEe9ǵ=o8 J}Dpzhz82 9ڄФۈ 8 v۞Y .vJW|>ySv*f pN%g4mtZ\X)OL Ӵ)22B41=bE4agB MbJn<)+|@X s3M$C+?7ibJ[g<階>`"qy"KLt_Av9~-/BPh~SXyN pd<[[xDyY?EĆ#f+av44, -6r{N73R|X8+gBǜ t 84,das"o\/Z!Uq׮}eUht8ؒ7 .c7[,!T^WP>CT"b?8e5?SM)*DqWf<ApY9k;?Eɍʛ;>WY'unr6)t{VZWEgX{EJ2\W- 5c%ϩP"pD&^b|לy`m$Q y04t -E|bU/wFKB,fอi~Ĕ 麘*URG: 4]TUwo8LZ"phH*zM!RUe_E (p铜2SQSYVEqY&FDۋ2GVFeL֦9E,D8 yZ}aU "_A='n(+9b.qc(o.!pXm.' ~Sq1Lr!14/ҿδusok;yJrK&m6tNR )ƒ%;a.iH{IS兪ٗ^S-ʗG*D|}F# ڂDdn TI}Cn^hjTz$*Fu +j&W$"ֽ0I4F(MHN!]|}e|⪰i ǷN<4!^̹HSZE-GiBƐm>07Nd y:(4L/)W+ (&v@` p!X0CVHC|Ec\8HF})g yڄ\J 8?pTV!pdAZzC 8P-#,G}qI4pKYa88J44v̙!jCz_@R` =_H%uEkUFrњtҞYsUU*k֨-FhXD潌]UK _xjhpLϒ>YX8>6'~cC=pPp #dfHA #3I I=(}PN.RŴ`8ubA~&~=ˉpM'G0c|!࠷"G5%kM筿r"1_E 9=pZ I1aWa'n(꛲۝2pCǷf lO8_p󍱛2LBY ^P1eqiFBL9e6M #9)C3]eΖg,7WɞVI0 p|+C`ΚrT)^/V>ݏwr=h8pl|uB;?C*?j8v ʟ`0C6W6슯<ށaa+5Z&_⠹8iCqD la3̹q,\l¥{P!>p 0WjPD&4XZWߌ Bb.Z6"]NA+{ DilYQĔ]r#GqMv읻@7'B޽'\[LX/-F[_LۧtK)^pěBs 5Oumj#Ӣ I+ zY89-{$[m%{x NI1ɣ]#S(iy͛rYqčoȬg1KxS^&ުWJ`7_/"t\Z 3CsՆ!{AR䕨Ok::7I* d0 n){ryh2ըkL/rD }Yf+7o^1'!m@Җ,ljj(02uV7HE `Kng{߱cgEy 8P2}GSxF0JQ4yEJVZd |/(a-[l yE~,B`2؛E-]lWn<4--p5YθhLu /nl+W','x]0ZPsc\"(2&Y5R^:wi[mLt'k#t:\ϊeщuDIy, FO^ݲB .$g!E8IHjJcw}y(=/9mAqyׂ[-?5+,gůa}w:W޹NPn T|J0xRCD ^Գh|B&B*G E/Ljƀcp4,rRNCWip4 _BR|5pЄ)3K#bjh^\@,v\Tgd:}V,$zoާrYv\,Ď@6Z)-ZXW Ξ=EU#LTU3]qIŅ Q8/_p/y֭[reZZj _,X@ dIϴ QXlgrŌÜ4$fԷ+g\C|@-Ja -B6k2?d8}}d$M`]9TU@h9چ?xV5ewroVM2&UZ|wW ]R!N B2_XO*jqrbQ9IÉiH1yNUB 0S)%v/3xF_MX6ti~~=\|pKtq]a"YA SIq-cn=i!:%D}V_>FCM)LY Tã* ci$5__|~8 U0!}c/Rai8ɤ43?)W$H;yue]ʰ∸s/(,EP_ +hN:s9'ްq j?+SRRp~dك2o޼Դ2Tv"pmmmhn;8JJoEpR֎MR+:3:ہ3sQhg@JAu xdedX8Bc70!,链ۨ]L -NGp* ߛWIT7_wߟ%_(\w_q% k6⪴u~px͆5×EIQ!0^Syo,8;VΊ-HYٚrclE&= =yyjCu%*IJn.rAxY~);QQ.+׊j9cdxȱ'7nڌP^Qwvw6~Pزm:C5Q6-iݾO;7w3ܶmMMMogaSNڵuGh sUUU&yI ;c̴aK6#[?p/>Xm>'+1BQy~7ד[1G۞zĪ|rn~@{%3*~SNdE}G Rp3rjij`0nP)ʊG K?q/=0^-yz;]_>hG!hcҕ!ʱ¼tmhy2EB@YJDĶ?r}OϾ_?l{+XXa{X 3n&EaM_{:1ڧh [- Sb˿c.uE h2k?h"- c AA?)#_⺑hkyBclZWڟA&lHY$HǷUPV#lz%: XU&0 d<-ߔ:t)2-8Q$ߞ(DJld^G8?7W'pI*"M5Cwݘ9/ߪC^rǺ^6 dOtVSV[|hN|_/>ehĀ~r/U|qĠ!\Z7|IՉo5Jc } LK&D{|>! 3P YcX #p9htb:4"&ӾI ,A&;VOfIfy(? 8DmVFjN nĽ4Q:xߞ3$٨"Zq E uϒ! EX*ZD&ŊmzIJ]m&. eE+uxûRH}@=J^0)1W>\M/CO?7NN#a)1[#wPu>4culTF],V%V͙'z憄Ze2ReR!|XvAcTO~gŊ5N  KuC?pu[r4Su2mDJ9 rhcC*?37dv q*aVƗn@ _>a\߅ᗡ -sl)ry&V[0Qd3P/urX[ FS9!1׉vQ SX/5B@A$lcgBdWQRXY"'YO{|%&HEZ{Bx+GOQC+[jQNwғpJ:Yʅwe׾@),j9a!gtڵ}AS%ʏL.VEk .-(~e:Aiw;ӓ;; .>0 g8ց z֣ug3J4F]eDBnOKD;!h dWfnl, ?;",%r~pJ&Μf#nM&7fBAԄ򫮄&30΢.-/n`a8\'@X0^<2n'1Ε`壴e̙[Cc3⌅qx5%[eH/p^ 8 t$96cF"pTz% 7_WWڂ[p AGAǫō`OW OM;F&=q= 1,u=Q-4F5UaƒsGnQ :\NV!>08KJaT؁XVF p =< ^496qn d7ʟ}`?#>1nܲnex|Exla5f {>YN`e<[_8$EجLۣ?AM9(񗙳7NqqCQʴs' ߸:QqX:9aڏZ1աI%S QպĔK-@XE/bbd:'>~`_gsf q=EMU'U849[DGƩ_F@#Y~+ad@`:I;McDh3HfҌL娩ZЬNJӗ%6]u{veW ccAC%fw2AcSLF(xeE$侭 e[P$d'ϿE~ZsIi2bt~ $8B`6?bxx-%e_9_Y"M4Dy-/Q984f.z^ ЏPgqlxs OR%(Aw#aŸx{?߽vgGIKٿ_ /]/Z%V)e8R/q̴^YͷLhp=iW-<|cbJXc`.p9%3ڇex đ QֿCV|dY4ME8<"1%19ؤL?ƧÞ͊0)C0(A M*v fAߡ(ǫ=nf([g }c56'.݇iB, foǖk*T%Qɹ2}B*վ(NY Lefw_ v|߿C"$'H&bhԱgTƚU]1>bJJOY\W tA ?(GtxOmvV6 uC|?]?k'/S0^(2'n.]c|-TZZүp|ШPH&U\IDjޖ^07vao.l JKg_wB@ʑRwb; rԶѢ9%;2vP<ѶrUjm\^dt.jY|2m̦l$=E3k>{@ف~0]$k){I`]W<~=gL&t;=X4B8yWs"&GŖG$VJN=}t?[^sag" p%(A&x4O>VC:tꞅ e?F(x6+^#l52JjIc5t$):we^4MBJ,)6_YhOSd']0نzFm#1`0F0O$$W⢊^ \ICNQv;=#kw`ijI[M(Dt 8,OzZ@M!aFM:.'t\' ⧠Uq;m\%(9 |fr υC3}'Xi ^}Ci],N턑 _dyԟYicSU?Uq8t )W~[?zY@龞#V,JV|]^}ŕ E i40?v1ȰN|Y~m㢛ˣS5<>":G \ K;_ɛl`?Fqxl:(hU=wɋf_+ngaߡ+E8C1Շ;HFs׬rUyҨ4ո*2@}y竿n]?l9}rp_k}v,@b}{zMgVw;R ) Ld.S o[jE{MP'x'+c JP-VdY`c9(}LY}ZXz3< o@GB8 &ƚAad놼ߚOn O(GkukU]|*2_xCW+;l - ]sX"l%n8!d ?mvTWos%c }aD즨%I1_.w,Ywu3o%zD}?FGKDE>j=mrsF1N|6IJåз l'efi"p.j^8!yﮈLȏXU$ڸ26zMdlAX\*H7ew~7պu$;H6IaDBU{8N9۾ƽ.)Y uqڨ]TVdLFxde%yژjUcCƋ(,ͽ)ASƗ֏e?W $.z nоD0K5rWYc(%4Fj_$ȒO7} 1%.97 X -:od"3tƌ,PU3#Ⲍ'\;os`և?|Ye;o5k S2Cuh\cul%ps+r2M&>(A JPc±N"w|zxX'M{ g@Ɲ[!s:>+lO{2rT*A% /-KqQ9ڿwopeMDdxmITAK@K,NDT! \c\!X-l“K&4%BMx~XXX)W8?:a+`;J3q/b7l>?P$vW r`QζJGareGJP/Lμ 7IK=7{I^(}[SrWJ$ƂJ,[@ }Gg'w-2LLM* -*6&tՆJ]Li$B_6hjt1_\S G󔎥$ê7P9Sλ[ȾCʽ _o΅"T8|Dr ))Y$G;QsJ#q6/OJ5%+ns{Sn%: st҈0Cuxd6TYkl!C_̍Q%W^47{SC8{*'׋JEuoz*+gC3*lt.г Gȯ%(߼({5vFe_c!_R nP"l])*N|GHV@쎱crrox Wѧx$+J=y(wo|GקLM7N3LO.TTM. / O('&eGN*pUU74cӕ ‘A2 a*> A}PɈhg‰V%(ߴ>VƁ$;hԕl KwCP h~ρ=҉l9m=h$f$DqSNsoD^ ր. z6sf츪8¿E =*}7e"*ʂP{ @H&I6 spwwC\16G~(!ս7!+w.C%pz+ R v JPr0 o[ OnCG* #Խ ŏ忄Wêc)(vr5ʪS3)V)hY2E`9)픏6c1lŒGJ3cew.epٲ|Rݡ(\%"\W|+\4/N<^NI%kV氞Z,SE/M޶^l|[;UyQhr80-@͖`FPZ$<e)o}Y)l%4N}^){J'v옯YGk@؏7 2O0H2>f6WEdvgicn -pAyߠq(!-alZ GVtLZ}D8q%(A}X".+C{3еvU6{ Ď_Ao`бDW$"Y{Hg#jiA!Ӓ}xb͇6d#ȇ%i&T!U=4Vsk (Sl=*72|*(A JP.:HoGPf8PHRm`?5zʟT:WK{qf S=;Hsse4! )xJ%{F$G??OkNU+iD}Y)p5!t{Po`>=%(?8l;w'#U5Dmy~T>'W> /Aй:g<= K%x|!ȒWFd[!Ux_U~4.maorP<^/~Iou JPX:KDͧM9GaO&t.m$6װO D=wI#{7i;H'[pf/O{"WѡQo:4!Cer[*wD9Y'C,)Kw9A JP.zL$Twq1LW'`Myʖw oAPoR|iW:,c3B2rTMSv{<òs@I=۔5v˭sa{J ͍o*( L г%TNyB*/7A JPƠ(#eзS9+ݙ鞚I'tIqxK+66v%wO%T2~nz睻;7y&H=wzo4gs!T{TrZ5BmaM(HF4η6T!wDeowfQv'5**b(Wf)l*>J'4wS϶G?6ΣW/@$GT%VqƦڤE444' YsR%&X\{yF?r'95;HJ{d!"W/խ&EJNIEX>~[Eu<@yPѠ\͚(Ģ[%)·AnM_GL f N)/5<2􌸆{&9]#u;z殑"N#b)~*5e.j- smEn6,X]xgzow+Q^ ϯUf^;*O*ZϢjS14:+yF{xZ̓QgV]xCA}$W̼V&*zhC M%9 RLihDcUU27ރZq|bOg6_tpXoѫ,<";)cr1f1W!7|~z V|*z%ܤ(Y Z͡hk{P՞㝿malu,-vAW@ Qv{?׫hbdPsߛ'fj\fq2kˮzϛ444>@lZXSkUz) &%&@8E&O/eUcVU*Vw\zW@ݾ$-V_[e36J g)x z+bNØ\ j9ƎY{Im೴d6ƲHS; 8twa;(+wA Q%_>#VH &?;CU2Y9Wôy2og1sChTUM$qH*r 6*?%KAUKFnNwDCCC=HiSQKvrJR*QjAuftI3d?B_ C=>wb@fZJsշj$,P;\Mumj3}+j9LuԄ0]&Xq&у,7g4-1;b?R1PK$`Lwc]jhh|JƥU\\6=11~7r'o?n*X%^̄MKR*|fVnDlhU5֬DV n샴 rQ .諠->_,UӴr>wv "hv}4}X\̴B(=˓/¤(MjVxpUp |nڢ`o ݥuSHO|A1rF%wE܏r)*=+,h$͵h.'9UV jMwNG/@5T~\FSdoD62-2_arM&ͅG&sb]Q޳iRm_(I+w9=R3>Y4Jd[bHg444>l@Z pEj<,"k{pd]F~Tھc`˹t~6 (3%jI_RTUi_͡0,QV 1*a TS{BlfhD=-+ aVO2T;jXOsdh@F\h181 mf2o.J^j2Ƈ N4a*Y Czd,1&=LW/aeZL} X&(܏qm+m*z!d!XW<Ȫ5e 6VUra}@&mcC̵<3YO$Z2!Yޑ)8K xbQ^)>caI7:CދJ1)xJ*?X(&U{*j]N ]vd$uQ6XT/Xl}wep9|O9I \@]C? .gל>m:OS!9 } r>sW&Xefh% ԰c?cH]FajUVﴽ][uW\*QK9e&)B.`\n:C~b;dvV^T ^ VFQ)!8X^Ȏ#?\yEPO=J C3YE&?ta+?O90qq:\h 9[3l<{h)<ve+[Y\h=/[;}Y rwIu foo *Z̘*EV%qelHZTqn>fg֎obf{()̉(m3p#(Uwf#?0{]F: ٤Kj"tu0]*ttJDdѯXYdq|BaGr_rQq|QK`zp/&8[j\h> stream x}OHQǿ%Be&RNW`oʶkξn%B.A1XI:b]"(73ڃ73{@](mzy(;>7PA+Xf$vlqd}䜛] UƬxiO:bM1Wg>q[ 2M'"()Y'ld4䗉2'&Sg^}8&w֚, \V:kݤ;iR;;\u?V\\C9u(JI]BSs_ QP5Fz׋G%t{3qWD0vz \}\$um+٬C;X9:Y^gB,\ACioci]g(L;z9AnI ꭰ4Iݠx#{zwAj}΅Q=8m (o{1cd5Ugҷtlaȱi"\.5汔^8tph0k!~D Thd6챖:>f&mxA4L&%kiĔ?Cqոm&/By#Ց%i'W:XlErr'=_ܗ)i7Ҭ,F|Nٮͯ6rm^ UHW5;?Ͱh endstream endobj 89 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (../../Doc/democritos.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 128 0 R /BBox [0 0 262 76] /Resources << /Font << /F0 129 0 R>> /XObject << /Im0 130 0 R >>/ProcSet [ /PDF /Text /ImageI ] >> /Length 39 >> stream q 262.047 0 0 76.2857 0 0 cm /Im0 Do Q endstream endobj 130 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [/FlateDecode] /Width 313 /Height 89 /ColorSpace 131 0 R /BitsPerComponent 8 /Length 132 0 R >> stream x|pUd_~{즊ԲQ7""6 *]ȈXhVk֗e %3 Q R/$H`E%1 ѐa Iȅ=}dz>s?(QQQQQQQQQQQot4]Ӭ2ۧ޵:#=Lepf2~NsgsIiuIq0 Ll x2="Gtrу-xB7gY}=>u8 5S=nq'qzwds8n^'#dKXDz<ҶنxOM,Qpy7#<~iu}Gp3#/x^)ۍUy?{DނrbX{a#-wڈH)a (tbWn(85X2xě۳ȼ(^nB,Eg2MhC;*M^W}nxZL)#RƈU܉ichN2h"S)cy1taBy*lݺ&RsQ1q#RG$yU:?\h4!T7u[\׮PugP5*. +9qH D⺋!q0p$J8=ìÞGۯc`%{L ]p=b3Ĭ&oέ/ٱH2aBs݀8,dU o>B!•,Ǖje)4B(pr Qwa>Vq=f9n}5D:ifˎR+4I{jvH<*p.V#prDHbxw$(| ڭ6"|Ns6>N;H4 D$#Ct4m"nb8vsё88x}ߪD>/k~;96n8cJw`hmU8MP28ՙc'cTi?/?~DɈCBgb Ct;`pcû#DJE8/V2{֩35}"ز<$)jֈ0ɭGСqޓc莩v:Uynh 1s7Ӕ*xLsݓ+RpkpEJx=%[)R<+7dW5IUC= 0Hgr k!Y)4ؘ:5#R."**l54LFR6` ov7@b$#ݞFb=BB/ 41MDDsqRe!5:]AKm6&sDw=~By0تTUdݸu"htce8#Gdnؐo#]9]a(vjOCQa8Lls'f_AdiT+$zYHHlUs9^5ODpwYؚb䛅AhN)n!SjaLLh%l̉" qo nQT4![h9~UqEUmWCc E G14E>>47 S+k1Z =̎;qYi' {' 'Y=M(t4SI6b#Isq%LO:q9L4rb ; I3%Se8ą=jNJE3Ýt wsƤaIŃD4M>1oQٗ-LF Y59Ks8|s}'Qq?P蓖8v"[`~/?nSݿ#jg'ㄉ5uǼs@w͛QDzıhYjg^AY4Re!B{Xy@E\fvv6;kM{QʖғGY#1($50ӉȮ,&Gs^pZ;'봄gTأ7y[AD>{9kg`)eg"B>^=4}SYU@9]x8u{t %ٕrnAlOS5o ݏdFGi²捘0Yc __8=7;wCQQ"pfIO{FMg؎]6Č{MMU\#egO/9KGy\='b*P<ٱĹNM>BB`Tɍ s$Ɓǘ$9-NjɯNՐJl#B EDH%VVI>]Rt nIҵ)G""{%6??j\\֥БRÏB5UV C6lo<أ__((x1ҡpiRI9a:B*oN}t˄wM%)-.//OP{jċWJk ?8P&;ebJl9ZÁo  ߽[ II꥽40߲Yag8 ZjRj4j@dHV'ɥh_:|- ?($Kp\N[qdA1,IPޠSZid F@OɕTwEVqdf5a3?ļ/ t߇ őZVc]=ز%˞M5~&vJnhh8NO͛RYPWT^u4ta3Yy_S0l_Wr%Ny༂ qJ bjڌ=YY' Lݑ7C/YQVHtKɂGOom%_Pd~ȼEl{a„ 7b,(~Ao^aQ_em]m6*.fGlȓ#b,Vkʎx[Rы=ғ_)S(Ze|?U@V*,23Z(S1EȊZ|*"_H4V*ȫRqk/U .S+F|>OڡU+ۢr9W{˅pd8 gX_G^w˿zeX+&n(n1CUvT.% U-I{Z`Ah&#?NCǤ]얛\~*C)WP\:"o|*t<,!wuUGjWSRo T{ZhSop0r1Ǵ;uÅ^=ς g1;Vz e5Tbc |BX\!%ʐn>~B IP!!zH{VJI] &WM@zE-ň81@))X3,Ѥm0J`Z2CR$xPٸ6|\Ilu*9>Pyۘ)w-Zv풢M=}z+dS=]+6m9WPv@܀RR޽|$}a+lWYDI:~- ߔx@~L+COїR9:IDI8[0`"N[5␎jyoކ* 9ȈSRU'{k‹Z:&4pL 2w^4f̘RUz|,BO q[qyS8;u ?-BwLh)wWeW#~RDR9VKwH.ݥ௠ZیP>6urTq WtK0KEZ|X^QW=אjgZg\3ZNID-Th佧V ?,joxNp ֲ@m8WN-ty3*d tu2ԟ q8;9X_/J8K"gzׄ qMtF[R%+>Eq1Zxn֢IChC>f,˓ʵNY-/A^D Q>܂[*)>EZ9f182dơJ-m=fJyǠ:/<'kl5Cos:+z#>lF_0uK{rf^ލ8W"nM ?Ȩ;@6TbU{)ԣ?[{'V;&ڨTl=C,ޅZ\ա*ӴU ݶ[۠{}*J#u+vCKŖn m[iv8iC·a :TR=J,r:?B#onӶmU SKw݋(*w}/B)N(U{4V8c9 \FĀ^Fc}jQGx(z̢hַ ^ MӏY,1Y 'etiZ4s-4Z DEΌ[+!"0\9&YSbqW'tm)h`>%evMB˜_1|/8q{5[֢!VGC%7|M9G}B A 4VWiqRi^\}];@ hX*oX#aR\ !g ;o9#J7:]?Yrj[ E.mrq P:ιZ>hJ#CG78/EW]+}Ъ{1ZN@LEU`mBwTmaQꕢŷ)ZHvr:މ &;|j n;lz /8@f|\fP04Fv\jU/5xVYm"#\Czo薾Ղ+H\*}GX9\87^tׂsbt#DrĐlv SOZV+hh{ wSzr*مWz^@<}`<[Z{SZQ тQq1 VmeU-'F"c:ЛA#K,kc;P'aDwXUQ%^#5 *巈F{ YxǨd/ɧ6T:D7ѣwH*K>JAemST79fZ _tK~{Z.fYt-rT&\v+.F/|)U:WW 0RB}TGi!Ic@Hj"_*gz`6^| i%Bc"m+fQHZjҬiD#:ClI/kURn 3V^ uih˚0"KogqeD|c"6 ~hg0ϓ @")~${I+ޔqy(K=̳ Sg@݂O+z+ P_z츕Wjz$,cЍf4ف B?(+)8AaWW] 3|lUZg 9_/b{Л_{zf.tЅ9ߧ`e6kkз 5O5C~=F:G:YL;I:Zi+AO08YWՈiӆ~@޴lډ\ߎiֺB!ldGE1>Pt©:c'ƪ*a_Yvtz.٨}]4w#GLY;/a)C֭%vYUI•t Y ^ e2իTVLt\ɍLP3e vz&|8dZ A4'F4\ .cWi(dn`vRe22L3F25I%`W~)ȿ!F/RI|gd2ȏ> stream 32f06i54h64i88g;;j?>nA@pEDuHGw HJt!OIuKMw( )!)OQ{$0RT~UV-1WY.2\Y0819_\3:b^:<;Aaefc=Che>D?EeiFLjnnnHNKOrrQWuuSXyxUZZ[}}\b_eydfz{fi|w}x~hpmrosptrvvxxz߀⃆ነ䋋㌒厔⑕唗留䙚曜眝¬鞟蟥ĭ褢礨馪ꧫ쩭͵魯ļϸ믱Ǿɽ endstream endobj 137 0 obj << /Length 2491 /Filter /FlateDecode >> stream xڵv6_Rg,;Ɏ64Uk;9m`0.%93'ݷ۳Wa: CHhv- ?MY~jwUfH +iVxy{wm'dh*q=<&&3&LޔkwBty*iJ x' TG E2Nf0$KUe#[d7>x Z騄uW6lȝm,?ZɽkѦzZn֓"y7O]H^˯X],OeOOO{VBt~7(`>+ c?LWDVΗ.'t$-^3;upd7HT CoCS(6Q;4톺4v~%q(AR_h*Irgϐ`4dz,YٜG0`YrD,ճϮ(='.z&~'x3 ?N2 1ϲQC?/0J{ qz%gރ7Ӈ@Q1"LQYwjOvJW aRa,#Lw,v毑zީL/eG$j+!,Uz(AKn=1{+ )%X(<We mRۭ(Hip>9  Y<{$6^ԃ0`ބYvFRpLeݩ뭈pX>G6HŃqb53b>BF h)ЊnAZA&N{Rf++  f̅},>Nw* 0Rs b]g302$l׫F}$}DʁD^oEucPPs*r\u]nj z-J %Q`8gCkX+#krMe Қ=i$a9 0^ޣE41㓍;3FBZٲ.s N I{1- jz(#씽WM&$ݝ3v۵5lImu?EmtۃVĹHBDeԏ\.N L>t$t# -  hM TR 7C%e^rH4HS[ y*H qx{M(P02+@w[G61pҭ䑺ʾÄaTNЪAaG%C{i0 (X`ҹ&1y endstream endobj 142 0 obj << /Length 1919 /Filter /FlateDecode >> stream xڽX[s~_GSc>Lf!eAtb[lgӭ1dU3[y%_wx+=s]{r}óezqrý0ivݳlc]'tn&y/s-{k)ˊêKBV4JBd&˄p"7*ޞY,F7ѢEmmn`ADZ'2Dl٦(cp'83*Re8E$ӊ܉/JT4hŒJȢAZp !z\KPB F%,Zۉ jvJ% 5jzK0|Kɩ ;c~vfh{&we^ceBi}m|@ |6x?Hxj#-jQAMP@Vٶj #mk86ۀsꌻy+{2duN;>k>01ߺ/q4?DY`_ŕGu]`u|\Qo(v5l?4a4ofp̸J0J@P{v1k/DάVfܼQrىFt-u7 77\1;'1چ.VQ=o_yyQ$` f"ZS3S}y[ǠjCAș2\>k>'/ ("Ϣ8I8~DypJj> stream xڭXKs8WtUȞĉR*U;3$)B_h:٩Fśe+$Rt=cj#}iCm5)ⵆw1h[ɫY#3QD7dV94~Tg~p 0&D%,1_rcRֲQt|'u=p1{-C4mpvs{=k^ע=OQ$F4_wJX"1bO@#3eZ<s7XiE N=ߌBm, Z"cK,6ҠU}oIσlA9q͖`AV𒫵9ׂ|taW"Q ((4> vbΎ?R4Fq92\^MMltLT՘'|'!YԎEP!tP[ 5\Q:5hb+cjE1\UJJfd,Ic|y@XXk{ (%oRE.j8sIdžl4ls`ϣS2}-[M9dxպq/ΐW)@b);{QX0VǵMkTs \z:nqkLܑvgU{Y  v ]Sa徳Z<$ Qw[YGe^YJ99_Rq^c6v1ef_jiႆ`3ŖJ澥tpg'R Tm-8qz֪3Ɗ gv!HJ5ӝtv|q٘l7dΡ|!#<8pvNj73p h@v-*:vL< 9v5o[tS9| @޾%{\BZ9@9k0Lt6ܑ۰̅l $|&cr> $^^ޗ-YwF.¯.m>x-!v°w3e1`I8" #N77Trb^ <Kd}QV=&?J#nPAw/ϩ#)Q=AT,Ng/,f8s$ n>+vcAT'y%AZB"-Nx;ި: KH1O%2c<9o]31̝vIb(\GFy:-Dٵ|i:8[&,bEet9yx6kPw *R,OZf#.'Pn\?)xUI|o~ujݕ֚om[pX;,θ%byT9~~А]9> stream xڵX[۶~_@DKeMivh ZX]gCym%mù~3˻ōgqrn=r&q>[~ ~tݏ8; NG݇,VPEY6u2PF<`i*l#qG,fSKU>n{lyE]ua-r튮/z$.!Om[pr,dR&tQa bMg4C*Y`;,(D}չ*+'Ɂt>w`r(ʾʃz7LJԭ΄;F  0?i(lY] 'KAoQaU5D܃ P1$&!yCf'8aIw_`H`r,mX|.TQ.!艋[HEmW\ĊDg?硊dF3uIt#'ぢ"XXx{…MaI"rdį\^{Ce741 (nO 1vN v|A?nY/&CC, ,=!ZjX C[uբ*iM+MWkϞCi^2CQWRV$:}_4 Uyρɼ1O>R6$kSaUpOCջ¥\Tk'ILȣL}&"Ys CRt+(fLF0󺡧ٻyƃsu0`WwWp=%LRȼhgy6ۻL$cꗫ؂\\)Rh"aTAI]yB!"dMI|,1L`Tވ3_̙e,˔hG瀡F{yZ'[O#NV9TX@򻬐q"ϳbl3g_Mq'!S)((HHhP*}OnBGF2ҕv׻6)K:d^GZT A$=O):y0Ǫ4Z(=LIu^c;//GՀڋ1WX lU3"'Dnm]!T|wnm7RSTdD-eYVEY ӭ`Û/^t u6;])X,fm͕`2)FT/݆a endstream endobj 154 0 obj << /Length 2966 /Filter /FlateDecode >> stream xڵYYsF~ׯ}fKDzRq`%o RP-g_D lb)Vo\YCMUW 4BaݳD4\`wmSz{ ~B/AwYMu޶Yv 'rM_ݺ+Ceݥ]':Fn|s)Y(CNvwyD;/67Ijne1ٜ̓+i=7tBx\}>KB>^Ztk# K: "՘AhdtIv[8poY,WSq3 eϭO]W%;8٤梐)(nrݻIS`\,~1E5Mz7Ŭ:$Ny >R*wKxGxMi0PBp篨u/0cA|QfGw^$kچ>a1{H@Le ރsOY[MXp|ӂk6isD,Z@JllCq4 _ C@L5(*$t/ fa{>8qEQ|h&3fj8͜TM{lٔL;1m銶9z' QFtҶA1a,-HN܁ekt`CGN}X^N zB 垼>/ dؔԴl~.;ϾW+̀{@|byŤ o|R&3n}4joɔ\pVAAL'+2h3U}WtJNt,c.d0 Q}k:ɂLueFRIn^Bk2VN=jHru޽<۬J0oΓOW^Z֠c8i94?/.WC0vikmb}&oO7k4ٕkg5m~K$&rnqnE\ p*tB\dVj0b3PiV9;X._x6|j%>>W^Y<u=6 ߂ &%* q54bIinyG&GoyfHt%Let7J=b?dRRjH娞<߮$ߔȏQ<)W)ː!&!؇R)dI }U8i _*Q30zd2Cm5o@ o:W ]^IΪP6nNM]aՆ&G2Hz8̽"+–r" 4&_m9]abu Z?3#Ŝ!">ٽٺ S1[r[G@=뛎؜zH3#+tNhE2CP89+{?%ӆ_*{rf@8< jBquJq &ySWPi*ӗj(NBaP5š/1ߗG-vERZ( tZd-Tg"} '\X(zH}2<"&6=AɀC;ѱpM?K8Дf\Ypq)Ņɘ[k9.q 'Rd;~]k_#xԥ>J..?;h̙w94/}x~EKDQ`Ekœ@#](q͵!}ZuWcpYf\D&sO[ ZZ,.T:b;Z858vc~SlE+j+ޝۈCM: As{jtoiU퀿;l=MϫTRL&bTPgv &o/C[=le%M? r&)y{8s1ʼnIMO=9!խI 7wy&U'ڼ>h 4}XPzqQY(X9hCƀrJ_[DY^//KdGGa_œYl'jyay+ Cc nDHtq A= !C'e> o -S[`4jqq+֦1G 'bn.ٰcHS'rF endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 791 /Length 1982 /Filter /FlateDecode >> stream xڵXmoF_1p})ƍ4wq`$:UU% EŒ_VC.gwgyfwgIrd$yEI3s, K"dI+fZ6#!<鈖Dt?2X2!G㢏 dͬ&4O,{rg/#9 9C͒P `$2)$V#yO;5IIKhS\ H*H$ Cb} V) X\z:^?1fg`Ux,@p/C 6B)1̘|Fcxn(/MƱC:Hd'#+% 3 O$0FQ62MpcӕA@q4 :0V $s7Dܱdr:F4Dk3ŸKY0Oqߡm )&$_l2生Sc娭PYeu߮FŌ~[h\tӫnge=fl hG|XOդx^ݢ}\s|Ҹhޘ#hU5)A&hiY5E ˦r0v5y[M.T4<+h뭮4Q5k'~SlsU7b6pڮA}-;Sau9Чgj?0vZڡz Z٫hɤ堗=fYs.;oaļneyTń5h6g[oۦ^~}뺅;]bF ҼqwrUSʏx<~,?E7.7^6X wM*^֟Bޟ7h2H իjxOJ0+aW­_؞::J^^^^^^^^xYaSvbM){-e{KH= xH[ˆN>RѯˢiO&dbQbgepUH1rTm4b>ƺzhl*y[nL= j;ynr-s+vR^eϗ&_\#?;|\ YI\ɳlg6ϗURLrvu(YըWQݥsX-<8q~TY7?ĉ'cVa{WYqÌv\~uţO fDR} CB<gDZAx1bV>'y6kE@8 ~#(jIHϧsH: [od8+æғąOY 1F$޿J./s8klq fA1)bCF-,*,9"; j ^(9c6eT5CiW$6%bzؔo gE@TS boE₰K+%1:j1 |]{,ig|@iփ, w4rBZc˃;lsGɹ&0["հ)wY࠲ nRaSO38_+I°{L,m}ǐ_?$I f}~ 4²oA4hH'_ʝK;_؃?w! FY_kl9\>)xRéԔsԺJ]9g/_OxL ߯Uu?Nbd)/jF%@FQ}tMuymj۸T7|P, |(2[ʁ0qpiPOԇ@Ds hoE44ݻ +Uq|ÉQx{{ ˦2'(Ҡy> \Nǀ]0SLʦGj}u+cqA0:* endstream endobj 158 0 obj << /Length 3200 /Filter /FlateDecode >> stream xڥks6i&>sƙq+V9b3yS< mXg4Pi-qzzrhs+QO 3LY<@8ҽ)+[bOޕo!VE6mqǫ5Eb͂wCa%5E=9bDF\q48Jag]+%wӒpqyvx&c&ȌQ y?*?˺ z+zYbRKse ;R¬[F =v +̨[]/:n;IXǗ6ŭx=PguB Q9LQ^_ HWX awq9ZS2n3#90NI*"XsQϡSCF6_I dK2]d28<J*UtbOb~W!-EwL}+ w>1.шc!owDJ|^L!S2u`B%WTt#'SKP` D +>[/Ukp[5qL%\~!Γ10zT֥!#9I6BR,&A`CƖLMFNߠ⊃YbAŇҗB!H[s[s>RCJBk5 ޯmr$ 9a@dH?$Zb >jrl>κ=L4eA_]-<[!Vv+loQ4|](cĻ꟩>A[Y֡C(٢$q:=T)0,c|78Z;ndҖ]yEq GhlA\[8%5lޔ(*g:Fujfj uCg~yLuč)I@i06lr۽rMΨw?.,U!z!([Ir}TLeyH1qYEd~v+wl+d ME*̎jˡFA {\1[ՃGs3X[!"LR.|RJoarYEnߡggQ:3<߽3ӸHJZ(*my{#Fc7.yq(LH5.E{L\mּ;՜9`6̡d_mbcao1Q!~I3 #q03Tm*#yfmQ}jǸ_=x[żEJdlBC`[}qRv`' 6:Cg^@0g>}!!~jO3kp.JjDQX㇋W$:C'UC jnaM! z QY,S4熔@mjsp55?DB=I+;4+ TiZ_,M6 ui0V.'$hZ]_%Oa;ے&R8,;ӡ6(YUV ZEXiř"UƬŸ2`>Kyp ?H_<`W! ^?/VZY9~V"9'"̗8|moS@ lsT^b%M6soг° (a$qꁷRlE+r^5XݮԮ/Kf*Lzٴ hM'k,2YCb /"} jUu{ 78a]*LJ{W/~yuH\T,N3Qb񵩏j endstream endobj 167 0 obj << /Length 3121 /Filter /FlateDecode >> stream xڭYmo6_uP{6C t[쯿g8CrR !!35Z&]/Ey6P%9V~ K#4Ul2OXunx)>) U UǺk&4zH׶(MxOpTw;-Ʈ0M DYژ@iZ30>M4͒낅d lY,.<{o< p~HCďlHq%v0G7q[ҙkeGaVIUEC+?zpds5'ű l#N?^Z3znȍöh[nxʣ? 4tvNp8^{Zc5.g1 69XҪZ^׽G~(jƎw~*-d-Jam+Kc2!<.,{z8U]mJRp"[:Qp8%;nXȄ&1[d8^ TA}>dn!d@!_ SLUF7rb&mMa: q f0# !޷GCH !p_`_Cі2+kgzYlK BȢȿNQiF?{g#bA}I)eo83H :Z+R/{H|=\+=CU*&9s/Rqcf[ཱུwװl"?TQ(IoJڔY H6XبlU.Θx2- im t凜>sn;jhu8Jhsi N^ӣQ/6VwE=CXSZZ<(C6ܥ+#e!puPϔ+z{ʣs5fi+u uu~m"|!" b{K%QqB(|ݵM$n*+=nulF[h.PS L\^x22٘NHd2M-N S 3e`22N%U7oɒs2Sbu,`Qǰjn.[ֆ//"x"QiNA1 £y. @v&IEGY<I<$wKӰK2 ]U7JsH/Rmvq m=.I;j{&ξ/UrGOQT:Li:+1CZ(ix{,?A{rA{etL"WRxa,C79w#5h+BG."arhV_G;T"1jtG̓mA]k_)YTILYL٘\eHH endstream endobj 178 0 obj << /Length 3523 /Filter /FlateDecode >> stream xڍZ[s~Wp"Wb5U<)8)Af*tq4mOFZ-󴣞{O쏗 Yyg4D;waUfwQyO\;LIH9,H?-273"Ǹ[(Jx)NCr{P~(ʼ=NM1Υܻ6ܤ,hUr m 0Fk*r53,=c1XQ8U[߹{ո4:[a`k,Hޫ pKӘrr3MUc ƚ8rjtk aq[0;Ѿ<4wx}|H=O=el[2ك}daw@c& ς#ctcX+r[6@QHF-+3uc?"_G P"?\]fu U\>uE[voZǻՖ4F1tNY.ҜT4i gzi,h>#7z`e^ :(Ѿ,*(@I_y ˹ 7B@Y`B? δ;4;^<uk>77`-CDM3٣roEsD*G -'pkjizE<\Vv»z^nG;+PƁ>0aj m]i֏1n"NuaTy SR6P*52Fh`TG  rKBn&wpPdȍiKArjk7~/ڛưo+v&@b'-/p?t<#qA XRٚ1M,a*:AM-h+v v5OejwIyѯ$"EHM$kn;~z펶ZV0ȝA}Yp$>WeuVA%쎚g5gGl ,N`"!nW+3xW z'cC|CQw.ȆY=o9_猂5Zt&V{o;nl&kv%51Ѵwؤy ƉۢYrTXŝnYk:DP"xZ,bۚqth8[{!}h`C a]?y1"a`H&yB8PP Aۣ'krBH̙r6W| \:4->*03mbg'7w=RہNZFӑUr;+3A(W E&$OYp2%0V?P,p6"4ŠF)N׻j{=,OcU(gk &! 1f3b& cnMd %6o , 5mӄzz xGJeYg\\x |_?_pe4gseoRHQKCֶ55p[% ˿w6{+ށշn3X1^hjR|j /r_'87HnwW rցP~sA4iNaމe1Ph%| eX9@vi8ց]Q?wr5rF9?)iw4XHi5H8: J &w9MVWB0rQY 'B 6l- U` .|z N p&~G&} ʀlGGKA] #\K3Tves_ciQ 8(ǚ 3Nh137u/NG0 ŧ70gc\[8_4_L#.&nRNR ۣou}F #aŠ ăf`l+ \>x<`Ү)(BnT"cRku5+ehU%y"x3EX-pp ]{Sw q`p1 .$bpQ9\ fĐ=_be:=J@ a bB^`J渱G۾1x\ ⨮gA38 Q?_կagEu CͺQe1BxD%J,S˲0 ZmdE*hz T\(AF^]eaSkf!4 1з,:vNLP 3ߝZ8]8蓣'-iMTXj[.\cQ> ᶝ~ NGKy{l=LWG jhFbiȃlH0"Y@9{KC 3I>=,Zu pނ`x.HA2_qmaY, {PRMf.V* ]~Dp: +@ї]MF%m)DBJ{yf^23hxF3 $\P\-@A~o|[!o|v\|jIbz1l'Zzt?`= \Jg {zǞ2{/$TPq弓v%KcӶڮi*tqF3 P@gG@N'fnd$u?Ƚ3O8A-y==QϩKzrB$兛Zn…,׎1H5NEZRL#/qǮKS3}<[oKhiV9f ߁%a0CUaF>bfe6xhT\GqsL!@_'1$|nk c͒%Ž@=ۚtvB͢{ŝn,\;^+^HOJD D̉q2./b9wգj@>l?,K/Y v*_2Hក-w1ű'w@ &2晟߂q2;@gۆQB߉r3PBCOTPZnԆ +JgAdZ{_"wos) endstream endobj 189 0 obj << /Length 2865 /Filter /FlateDecode >> stream xڭYYo~_1FNݼAGE:W>Fh1Y䷧.rZ0 ]onxجwԬ(WWOv^_o$_6zM>йPw5KcQJz8nz"8AJ{lݵ^ֹ͎mSH^l5C?r*Xmt(}_DI~ae[bki 0[[nv-Kr: Z5jq~ok_}ڦb[Yꭝm( }uNEMݑ_:KhشW,! qvv({BaZjnޙp F*..TFk8f!Cg46Og,WAa\ۏI俛QscIwb'3wCD8lL:YXD1YZ8l }o?4ܼmٰm[+jzߒ}߯3F;7-w xY̫=xN[7t ah ҁV&:SULv*2[,"@[ڇRM.Bz( k{MoKv'*J9p;AZ^w-٭}QܱX }w?`ynt86V 񧅙"~t{2Md 얅m͢xQ gxQ8G?8Ce zRڋlqTWdx7TxqdٔNa QDoo˃Hov+}wLx'u辙OF]nBP&Q=@9lg)s4#?ٱ$t ~ٵ2t tQo8`T;.2&JriZ[%އnԲLduSClg/W0"*Ȓ<Q4;ǗL4QQw<"۲߷ρZr̂h`k~f[_ ׏\߂{ir 㯝E(CH}=L,2)xNzR "eP|ã/erF.DDܺ   ,.!,Vn^P"(0q8̦k`0Th&H>w.!ІQp@҉n<|u004-Xahe\iU=襁񪛉ild.=.΅\QӲu@'ryFIlW22qw0@|Q:wIYT-{,v_2$:6MQ݀"'PA,3 Tl'|gt]_m!AۺN6lg8QjQN $&rv )⟒IYJWI&\^|L&_4GCk7GśmL'K}ZZNi9'1M+3Sk$`*Sm0 LpA 7~H rDʚW?{&ZcXa,{,qd&0 8+ ,]\$`]t&1|Oq @AR tb1NPs8mݔ'݆XwIaL}x-VSbJ~v ѕDIg={/!M |ܨp @8QHlpp2ț>Va ŊQT9`~4?hu81x=-c= ѹmB>]/xZ>0g#%AxěWg9A`SdTL\_Oa863c_1U׎0-6.RĨB'YDԣz<2:^o3&>AC?;e18Y`:#,3HB#SجO:F/ @CT SR1`'X _ZoLTrdT*kT^ئ_CKˏ`(`ϲ/#>i6oEO?>Fi+}j 1JnRl6ATǧ|>x'/^0nnђvvR}jfyj14QWȧ5ƸuwJ6n.JWfqFըpTP|M%pDՏg"1˿GN آFtV܆/kљǰ |L,J̼VO/W@#"mcgZ> stream xڵZ[~SA F@@&u`yH +Ql$R&)o6ߙ3Ë]E$rΜeo"΍U&Wc-OU},v_~8e+k}_զ^x,?З]rq74V)+FXJ]s(J˨i)b; ÏFZfشxPoY_o; M}LTK+T|?L_?@l3cՎ%ۙ4M.!;_NnFuFŪ [5li+ó6uI(b;ZqǼe͙BtMٹГXSlz@W7<4aa6DF?~u&,~sЄ-Ih!\Zi 2)Qqx<†D:XI`7ƦsɳXS@4>y]M >LZ6nOG1E.[_4mV8:70w^)!sfVǫ5:ÕujVFf1&uR3|."C 9Dg+S6 8@AJ7h 4pWEтqX/jy?K3Ә'f\,UFDyޖG(-;=(|,vCv寲8 S<_9@X]ڸhyfܸ8R]HdbT k_gJYJTN.9d OT䣳}Ğ%A GT}l8BMCgsUa$L2J3͐~$ 1YJ 8+%TGS3t8Mjmsb5cgC|L,6ĢFmP{*᯻rzP"Q%yklHmÏB׸c- "t` ?(y404Cª 95c+{7W}0K%xf6q |->7EjphB34狨lI`{AZ2Kh#ѡDk\>)؃SՖdA\?pl4? ~7QLZHaRJqx-õb)Hz0^֕{lV.wv~E˅_wvXUqs=BXZ#PRm[mct@VFt@g:kUJ$GQoڒpOPЁNx6XŁ2-`:L`FُTIz>(.Jfڲx\gj񷳒'KF3~5?hoq"o;َ0iPR?(t^ w4C _7!kd[:ϴ ٱswE}[FoȨʥվt~vs'6?ڏmﰨ#(タmC9]p߼ -#]a`&IcӗWKqȥt1H 䟇.c;Xx;ј#O*$0D*=YºGc*=#hr78}%y8z_Jח^&1"Cj/|]^ P̂`QS67^MB s@Hdqy:?L~+$3aELa˭Ō*3κ(<]r% [WXV5vovWxl<ަCn[jt,U%/24LcY-: }? Ǧrgh˰u01iZp>_cKc -P4~ưOයʻ= nJNF:O1x\weXM i,c+V7mu[ծ8qwB "hLc ;%F$/ 5zg⾍^pNy w&K`UyƩoe*aJϽ28ORq7a=C?.DZyJk<܊4xdiKJR0iI#RmDH웎MJN}٬ ==U xgҳUz2C7jG[Nnŝ4(ѫ^PRf3wAz%R= XI*>ܬTMW:U }.fG[]6jG\{Ә6>|t'adQMS>>xMh@$dGх 36mʐXe|ĭ(ǼeI78TXT &\H/Z"8tY5Tyg"uĐ`?-bpYkҞ!^+utڈ k/gX+8v_.o( ػuR\*޼Cm岆\.U%97O97b^Y8 ,a ]u!S]qih\\+|BuٿOGvӶ{7@|Yd+?``^åRC y35AyخȃS^L;CtrjU.eȇm9m+NWf"LZP7 oVRQ&]jWm!=# endstream endobj 200 0 obj << /Length 3084 /Filter /FlateDecode >> stream xZݏ۸b_ȸ'~H"C&M $Y4@@vF|MwC}y]{p7!|//>㜙(gWgڰ(2g2Lqsv>Wٻyߡw4 : ߾ɚR$h7>Q5ŰFxQׯM/Efkioc=_FLǢVxEVhb nzY mqКR-bJ4oajY,(TgK*`*?]GTC\70gexpj[%.-}ҕM tDXf2JwWe,'c!"#t4֨HLEC=rUv5/d0p:6۪J=P\M5x/ *\/Є|yٴ~UIOq<+q(H6˴?/Fa*gwUoeT BMoun6 )ܐI`)ޯD%n0},bOX:Ђ:P=jW]m^^ӰiAzMu놑 < 0T"r~- f OYΚWeaB/+BO+3ZJuEܡ&l+@o*m2m86Ț&#>]gpA~eUkD tB+(VM#;s؂/<1QPF΢NA&z\+Ⱥ3ZX!KHw 2G !T7._T+@?ghHZ, T!e?J]>l_&t GL-\ J)&l~ȔOdW݇[iK +{9?GˈON0laTQ >5-*{E c`ʟ2km}2&P!i.\8 ri.垚4x+%sdB@MC^:Zd*xB٪{Ra/ВaTT^g/ nw#ѩ} ')a8C9eNsMR@)aa]ΦLLZ:Llа}Oa C>2|;zFc`hԳ o׳~_(" ϋdʥa.AFr9;r ؑ 3Cdsk=Ӕ| b,oiCR }z!\bv*x9>1`g/c(ECSq(Qּ9!g{PZ|<#zds3޳3QC$oT9E\PMC$=p ?5 ̄YdKѝML.cwMoqQf@' ~t ( ҒXM&Sj=nFpC{{xE^h`H]jv  YEpB{^D;]7afog7u EbKɓ3yLwDU|N"2MB#RBJߑx]VL3AM?eC> stream xZK802jl% bXLԶlk#dV(rm;0MQ"YWEzR!c9YLR9IeZ|[멒IYHMQ׿KiL,M2ݍ'ٔ GL"&SRx(m~.0:͋lYy-٦hj/Д d2 8ǘL'<8dZc7V:Pi*?ܫ/-N5T Qa,d2c$>V5i9ޭ6J$U-U5LTRD4!ٞE%:Z"m{Ab GS2.XjmS[z,`Ќki I?O3(oV+ʒZc +LO~ rsl:(|cI(OX; %FZʙ;u\ҡ yk$OhR| 0Q~ y7&QV.ج*`گ6>39KT{ SѪ *e4/ϲr-3Xm:}*ky/+6{^x6}aO En5c>F̸2aX5\G+6K *ZptƆF{KeɳVu ^Z5x&)f 9Yb?2/A22gIq-V|ɞo3mL2#< HeQhd+ښ%<=R>MY ΤE<Ո #1Kš44㸴 m:4&@DqЇmBaۊ9`5=e"p 5m1'Y5BP#(D)S&86/ջ> 1l:fYB{Vr& Y1Vvie1w\vhеyZ9AJ=dv>'e؎~=Czٳ= 4h#Rc9;4O [ ?,nd:myPr<=VP \V kVPZ{8xq~Zp߾Eoie4k7mq &P+\Y3ƏYejG!o;ӘIu+g> ֗!NeUN?q|Ǐ5H;޽j)ſ߯lx֟Qq-pTq0nXɃ0عv"PggwE"HENacaܕE5yPtC3fwXr'kXӏD0ct(25`";&r$jko C Xsn#/zA9d;V>X6iv6UF]z#CDрWjuC+2p]e=#Yoc*E>eX)qgP,(%ɂyS}*jIpGA<>-v1$Qo? LL:އG1;?=0]Ty6/D@LD_EY6[ 6OS1$taMڂJGq:n@"~f$C 2McrqW{U Ϝ>Z5u&qFb-CnZlڅ.xI*w1}4o Al2kbi!C<zY8E__b(lX𾑴U9LrAϏ&U͖j{TW[HJZê5AZ6:AQ3{'v 5Vx( ݚ 堞x Py'ty풃꽼ϝ-?9: dN';Q}gVGԄ `B >hՃV'@wWCROz2~O 9jX|I9W/%Kr 4y<琰xtu'|g@f1! C.]]o76$F}B> stream xڽZYo8~ϯ0$,ԕ` & 1bgdX-but$KGHyvFgaqlβܗBa~vS-M/iQ [u~!'Jhh8Lnf~ԎcSaC/n/x e}v+]vi<ʼmK>3?+:FOd+ZհytoATj(tX^uBDۆh82r@jǚ*/♧,7Y0:IKՒcRlX^ߒDm1P.;u*S{A=uK&flĎk3>N:zC$.0z-S4]P0Ak~+9φB\̝֮ :Ǩ;e!ZM5v#~Cqkɱsvb|@ `4~Y᫴"(FMΗڝR =>sE$E+Y9C`?(Y e@;MqKImH`AtZU5XoEc12 $%ԌӀ0ŋQRLyMCoLu[3 +bU.6J5e3rDD%\P$3N.(A"}!zbVc[LIJ*i8**{6v*xMh2>]u?IЌM<޼]+k,<sn'-L ?#9;YI? &$ UVsdRWkO_DZ`@Μ 1H;]8g4j%$2꾾'0pŪO6=r4-<KQx.Ss+;@Z)#xA Z@D>!t)tY`ˏ] Z%ZxQ ++xɓ~tۚ< ^ZBR@,a 1BS@۞tsW4q&5h4]*<U1]fF 70pҶ±^£\j?PO FPZA&!c{xAЗ UcQAHxpNg7!C" }O348N"Ef=sg' MV C2'-33 $f]Kv=55#Mؠmғtc`ˉn+m0t3siԿ~<< wwn^&3e j) al׉d힍 !c:$>>cIp3d㰕&ٍFRTXBūqڀcjs:3puMdBh*[zZG` Z6\JUSG@+ky]?¯z{7p; ~e!8lکXa+e"KBKP/C?P\s%BT`;_+#قH?@b,#RkΞ ?'k1$S59rOD6yAMRvnf{Ox"EOHU ]c4՘OOj?2AYλua&%UXB:8|TAPBYm\˶?L4ZQ AgɁjTxlk$L@@vfձ%魻sL Wi_UR;\yVr~sܦ@FOah;̗Tavt Kt?tvҽrs=ǧ龵;4L2ZX3ݔqpgP P4+v46Z1q Nto ,ipB " D /x9a΋S]Y_4 T_ꀨ$`X4ǚhJF)fOf~Nwj[3 xć48O) PmuRs`&C,`Ĉ]reXn<~XMYYؗ^K3S>ub*}l0t3gw9HNݰm]<aF>_ru#3@MYonf|y:& q"_M>9\%]3q*u>*x`pP6f0` 86Fj!եwoSkHU\: 3Z: ' QlZ痵.tegpfY16d kPu(y;l NiS??ÃUk.GJw0ЌWcQw3pAjջ}vl xflx9sP3ßJ72+,Y9/x܉6zK,IL T9̎ X@'ʃZ[ԊHsmuF4CixH~GGR?ٟ endstream endobj 215 0 obj << /Length 2712 /Filter /FlateDecode >> stream xڵYݏ6߿0p|UCKwC CYJRv}g8Cd-^LjH93 oDϢHW\%*Vw^nJod}M(FIzǻІf>z=]^U*{X^Ykڞ:L8~D3E^qOwZPR1IRO:~A/aep+*X(0;ODlZjk<ikϻ. t4)`M]tsď_UJP3z г U_Pi;VIw{m|^WkgMLriW{:Hsh wimi;-RIyU|.!R0 TB3ޝJC3]^ـb&WC[igP.TMnS: ҢGAp©1Pnn7n#ۂoB5LI_ ɤv׷ҺG0u]ݴߡ wΧ놆eȮ2S\`X,hp>`T*?d.dm3}i$=S48ܥĖCJ@ bvܕ%@GHv ࢭ2,I- eh4XX` >/)&~`PQl0otl'@! WF+Ga4}ﭟ}_it-mC16F$QH1tECVwe^.cdb~ o+.P#5?z(|S%Hn.9Zr"F[٥vسaG+8!& 6訐48 8JxS&a> cI(ľ x4zjMA`4">}5򲍍o *"YmMY6Uݩ# u.sBfZky@j$L?I&~gA^QMX&GTP ,@[jڡruJ2b "Qmo6tyኢj ?>^,>zO]JY202p[ ;KPee EVbwA).B"#uM~{:xl:xUVQ%~s"uo+8QюX^ͱZ-zvoq(e~lavԒ`7-[ Gu^U6eR]aU*0`x8!l8j c뿎dCd )ݠI݀+O0 3Bp] #S((ˀU`fJ[`RjnXBzM0`J&WPtSYm]xnuh:Ype0uw>u;b0 {s Ay,gx~%3쫺D["yG݀VDv1:V,ʧ \# @h9o1&['k{`%5A& <ze1jƪQwe>|rS`Y.kf\x:_Ijaҝ|Hʜឝg(_'[blZbpt%Av+BMCN>g߸g1#^H1po12tNƷFu 2 +vxG~pW()輭.7 lg'@}DžњPSaUǛ$PDz7%2{_pU Bi5 .ᾔB 57XK4>VWΆt\恡M,HTtu(Du)v5F< 11@k/h wCww{}~i2A&vhn`lBha[w>)~ N PNs?v*灧gF}7h{_ >#C0?<whJxꘗѤT_ VзY up״dRb4A*Jŧ%]˥u5&# a:$ f[sjaG0s-gy(}K gj=jDn'."ʕ"v\b{.mZ[թfH ɬĻK?cHapHe |!Y"rW˰0 endstream endobj 219 0 obj << /Length 2158 /Filter /FlateDecode >> stream xڵYKϯ`j  Vv*ή!ejPHjg'$j8U."~~M}w}ͫXR"ITp}б2 OYeHf?LN0zRόkWN%=.ܭBv8@UU~G~M7^۶2}Jb]WJ@GHU"!6oDA /"yp6A,`T\|c* !U:Uڴ .aHlPn?Kd.(y*PjuJD&r79Z:"z_'H`دݭ4il=v5-w \ٻ6 qP솝A|*.M=t4l";DX1ֽ"914[{,! <9sPD&ހ Z6tؖVSt8=nOm ?zzV 7]];}HYGRl s1L ߩp~}g?[68{K55cBQu0/~b 0YC }]q'GLX21Bkj;Bm\ 3U 6)} aegH$ 0݊{z IeD襑h僈;V:@F[yL9ZBYWTIڒg!H.]DaKqkXiFH *r { `prVnc˜ɝɭ'rքϽǘ?v6ekO4D+^q*hU~j9Ō1ץ0{F^h)!,.!#=ej$Rԗ+Sam!"]TgPX`zW"9a)OE"4l,G*Y D3&,lĽ9-9h1{Vtq Kt ˇ'Xsz:JT8nBBSͩ#*HǛYycQmVgzbg"HڻIfotϴ5sBz{߫U}=`8UΚH쬳6Z/.kǖb6`gdGG E<'~mkg4 t Y̖|+kF[HڲUAzľz+c ջtCh~1M!PHBa$a"gq鞀_zHDдn= wq{7]Ԁk*$s-"n̐.͞)ɽelv|mݙrSԦݐxi"ap_8OUq0.;f"!6sғITҾO=+d^"˳tyatϲwC8iHD?&lF?zxR@9" spLd[?c endstream endobj 224 0 obj << /Length 2479 /Filter /FlateDecode >> stream xڵYs6_K&>Hܥ:s7m`xH.H9X,]교 Y$bYdb)/h<=S-W2Kv}GkS\)G[Z;T?M_6W%3Zb*t1O&}iS2ksw"|1]jk[3+sT; +~/pfTWts+c嚖/Rϥq#Iu9#,{Ǹ,ZpBL:yRzYd:Ӽ,G2' A1h(Q(Kx] !tPx%r8$ g }Sq22Ce3J3H@rH>(2dtH>"v#XZ1]OD$.,ji\hXCFmquP3ЋF}{D}Z*=qt@ܷB'õWWʿAe5 ؅ |JTVN_TQ 2y65УHeo:Lw*msrIs|KI82W(!X g, c>O"k;=mN+)DT5  -m,٘ Al}|?viTe-%5 z?=Ao~_u6$ws Ffhqq8(_4ƭ77<؜&a2ju픊8:= I `:Z `!WcP(<7,Z7̱Wj@vmN 5|zJ `Mu*@>*}+/KWL=G8TpU$( >\yJ\@Ċ1S;*LJ%ԽW__B{r4M3rr;RhOګ~WVbאk[ғ :`DM#wdi1}j-$4zj:5j0)K!qp.]u kj8!A!Uk$sajPz;_9"[oAڜq-FZMoG~ Fll Hjoh|e]y:V7+Pp!(Cz7{9 ]>`:TkKH nF ׵1hwt"Y"p*X"@jqT.)PY/unbib1@Qdk{1t6uWÆ(#n{ɼqSlл[C`% )Xlr]zS6N054]qXa!vt:1۲s's aFld$X'F 5 7ͱ.f:%iw 6}%m"Kmjue\ #e/g҂R0*NXJ+ _aj v(a!y0 ih⫄D2tѽyyK2o Q? endstream endobj 231 0 obj << /Length 2952 /Filter /FlateDecode >> stream xڵYY~_!!flcM|L28TK"nrf)Q˅y}~ɗqR*,WU SU:QsfI48٦C? 7~TjyFtFfVvZqCsN6[T٪mM OK/O4UĬFi1QPM[u\2 Q42UQuqE5lgaOg澾}xm?ט-znq̟gKܩ8̣;4:e_F w~IdREPW-2֯[ne3[<$8kS1񒃬3J<{n""Ku=$=8)2Kf"ςj~:ƴ0 E. u 'P8L OpxhМi^2VCW0'!!846B5":0x+LYNOc܉>nϢmصM:D&pxs;1kKu@sUief{ 6:6wG3MGZ-k(dY 5XݨL&mBVscђqzGYw7Znlݠw"xUֿh96> 4>ȋwLl?R?)0Mc8-*=r| doa6I.mF`bOu̺46$|U~+PJpYF;rWނ5chebˎ⇪8`1ߗ2nv5 FA \#ryB-SHQ@ޞ cRAyqWG"q}\)΄{0,iqd=VzD b vϱt-yC;SpKݡ;^E~"4f CvMquy^30,TWh|pN(HؚMGG1́>4 tbko|@b2GCo](o L dZ* HvD"r!\VI1@M?:ygƹjo: 2KF*Tӫtj)4!4"mm.~b#  ʱF&"LcΊ_T 쐗s 4`$Ok|\!Ia6]R-VL)5@{xGf$eM(+%15:GzTp /qZYP*A^=O&B6+# }jiLs1M^h”d>^;YOyn隶q| dMv8eoA7kVd2Puڭč(]ueT1fz vteyU|N?лAS-͓)CГC>/S[,H]*h` cyoؽ?J |aDOb{qX y$βon$Ke1HXꮚ AXC}oAGxC8)2;U`w,N`J^ܢ^^^i?-i㸸ԀU/8'Hurʺcf(.qwue> stream xڵYY~_7U"`p*凕'"mURea _+()9b໛7ߩp~$f ?V&jKf_o0Y΅fu;O۝Co{fzn =KI(ugv0dOC6/jp4S9op'nFoQζ8 c?Sf0+VovtBefBg39mwQY`QYja<,>Tb`q}m]yȞ#M2 _f8j^׃zs-ZQY6N=7u/Pn0F2|RU;}:=t/4\؀DUi@PDC=Ϻق vcg<}tFV {njRNK(Vl>Txh_#G7/L yRߺqs$ ^Z3 ͏3rDj姓"*GP^#k,9 k((DӬAV~gffhqN(Fj@Z]p00fʭDi4y O8#0";0-vNDLƠ$#b)  i yDD4bo0_ڃp<<8TͲ+bSy"Tٻ%|!W4 2iZzm-r$I ƇYp9~ cCc ?r̊Ň4 ]⇞R4Œ4ح]Wˡfmg-exl"1peoL磷J2 +fѸcGӜ^ 2wq\*_8Y tPhU\4΋ qŭɍòWy5Y,b޺r${[x=sUԂ8qy]J"61E`+NBjQX(?ɐi-) 'Gw cTtIΘbk k wH*W_s(W ;8ё"X(:$/IȊɱ!@T̡j=8™Xhr v#o, ˫u_= 6yGB3xkby$#aS.z2acMZ%F)fpD|xA+ \zoO}*vH{Vl 9y9Rs0h䨀xwl H4~k*2-$_9TLǯOU ܔ 8 Ca,{x}ۮ^Z2k[#u6 fWfr@54{8k;%M\P@* ɒA+O)T5(xX u{j~[R[SHN ='Y:ic xp;%u) řox-z{$d XA~H&9i_ :^4%X LxZ;r} p9$̪TFql'Tf"\ñ.q#'!.\xY8HYױj@\~K دRqc\7X o7@je,XTCR8'-ʞqT5?&-$gIrfEQFY\gbXLFM%V endstream endobj 249 0 obj << /Length 3090 /Filter /FlateDecode >> stream xڭZIsܸWSUE HOd*cRUj*MՈdem`{m*5X=/wn^'EeEQi^~⮾g(֗8[΅foG<:Q:hb+:wfsy ?%t@[啳->ywk6şpng;su{ϯ*{vj;59i. W0Msm9?Q'Afٛ Os^>p6zmȲVRת U]\'qsL1 IPfف;6':P+eVSoS@"8]BlCݚ}Q8"'0IFd!v^^w<$Z.ZeIT]_̌kq2c΢ޚ{۾sv@ɂz7ZZe",s$""adъT~}T,N_@{k޸f"˃ "MtT(ou-:H+F{ &&0{9Lt")\"YNh~N0.ɪ\OAIoftlJ~ɥă i,Xx^ǻ=PN9 8gwO,"H$y%Ocq bM4I5G=jy[DV}2s'Mf Z\"vK@fo5:w4847gYerӹ9waa{<,׮ÈaJdaF?IT%))0ׂX / ®1'DN}9a|dNqzX{0{tt{ԅ*ŝqI.DrQE(&D@ˎIDs<{ؿ7`9\wEQ>kXl`Iv>զP$vUiNvP^ݾjHԿW1L3T-]+b0SA^-:lj3%hBKmc+ :=R?VhM&!\*y% ty{ AzY-R=a+:P_-EEa#[/_bÆm ~ MÕ'pjKAsٳ<,^bcTVEXX"Μ vjGE)t%p|Zl(kin+[p$_rc:WMwvõB0A `trӹ0  V^*.~:ԍkNHZKK l,i1aȆ"ߞy|.0 Y-f#L1m#H2)#'CB ìliZVC!2kbsZ/=/?Ւ/i\5q_5:_5p߈}Mܙ; EW\iCgja8ce%R8Y8ad24uD )d0D\ᘍ-O&\~$Z[/i9܀TA#8>|!b#pBU/'=& V"g$;$2p|P|N/ңIZwb9O}{Vef H' ߽ W눱}*@QL͑ZP9tƭ4k)ߥ*xF%]3hJeDUM>`gc s е= 3 ') Ayُ9 IY-ՠKeGN*46׷`|qi;6t#%Zwg"_SVa><~ cڸA(UigO޽z+Q k_ tr??kyXzy0(GdR܄FQ"A1_9k qFVګ̳Sesj`QaeI]zjdm^qϽ937$|feoȧthP\y>VřgaQ/em8ڿ?dZByv '5S L"g2 :}vZ7G\g3CKMKM2fρE`&TQP0 K7Tv'yO **0#uXQ43A1:䩯Repw61C"? Ի'䋲$?[ ZJ.pf3Lf: }K49g (RR0ZJ<{u O endstream endobj 257 0 obj << /Length 3046 /Filter /FlateDecode >> stream xڽYKܶﯘĭ|?\mI),ʼnשl$fYV_~)ehtq CLhww.O?,wwW oׯZXj<}"i^ nCovHkQS#2X}^L8xTǡUb/3w-HW\bV)BoOTzS_$+ LgnE$,.27#jDyTV0wQ頬U'>nQ۩ f@kSV (Ba k8=Nv}:˵Ǔyp# <ϸgd\5tU Z! _Y)Ơ`\=ц6&SGjV1S/Kޓjޛj°x``5v/j6\tʽ9:QGYOHt>ơ Իh6| ݃z}¨->ܦ%l6Wcb(SwU?:lf[phyOYb<鲣9o~gTn^UxpbGDOՙ]=,roWhdhPO&}K\ *z4j멭F̡)hqqrC(]?x^Nq{7O)7.FNp#|3z!:PQ029!A0[# ac)}oqvR @D1<ԣFꌈ+K?D~y|1jŦ2$c-QS[\~p4G Pwو=rp<y _b p.'v@cvseGy6KoEVFPdueü, (Fy2j[rM}PDŽ` fAGm(<6\(_]B |0V?XAN0D^S@B5<Lے>v؏P\$~j J|e$.((tek3Q}bQX=5LOnOmӀ#ώAF4sVmm2K0 BbA*QCΠZL|AE:0]DrdImJDa!8*+xF0( z&%\d>ï/+qf:*wv'wZPۖ+cp QwO-#Ȩn?ɤ[0'Lʏأ*;6&i<4MH{%IPc2k]U pƥP#dJWr_u)25*orݝ@ pqcV -gjUo# b\H*PCȀQX<*xP[D3};&)eٓZ)/a e4h0~(wD fa"湟G #T A\H('%w3ZSH^]hNVۑŪС֛JV4 o적۸ 9m{JS,pEKp YS71"8++l>Y|=t 2!՘A= m%B ֱ׸(%(X^-|2% +ܰN-مS`pnz:V{##q&؝o 2g1?j%.y\e^<}2;j;F0g Xdl޺CLE7p yuw/`#@Y_v tB~\Gv8|כ04aw02K|q?sDdoYcXTbV4vSιvOwJVOt" b'~ij/~`|`A6iYXK[]Ņ`~I |` 3 +Xv%y@eeĪՌ`CL/Ouv34:׷G ~W\L!)MD3.m2.8cHgGp9C5`* D: 8?_nndyYƭ{éyc:It^tn(9f!D%`K+Ǹ.ȃD~.ѰԥL$I\c?4[~$4fx%AqNwa_( =?OE;yRdγuDECԨf{X&Ru9+a' hcxg.f_2֕GcUJ^ϐ,dյ^ !6 0g0=k/[Gd~R,_T)3oNduZ_e靉uBr||ء6}X2(VG:+ne%YnBJ&gX x /OsXL1:3\< G5)3ݷMBG${nʁ'.7N'?AU4k' Q?E\HInxNµ[H^x}0-o|r(qS `}y3DӭԎzIv~HNN$ 9(N9_3#=бW{} endstream endobj 265 0 obj << /Length 3138 /Filter /FlateDecode >> stream xڵێ}EB(RMhbH4ȢW~}ύU"yṟCy{6;"MagI0Q\ }v{vnFl$#t5˶ex ^g; /K{MܱSm}_U#%R..&ϪhsёqDb+A =rZ:-v{I^M`rl\j0z72:_>o>΃pղm9Me^܎N=Ytj䀁nQe/g _d xHn`$N%9rj홁xæکn#O묭Y;e-} .|>]g76՟h]B_3s5PӰ\A8%2۝ O05#w*LP5q^n{[ˆ[حr@զ֕2 \1oِ*aΌ]&%f@[\9 Ɇ끷sHxA ,Ϫ`ajK)2'+4s)  ޚ!ܺ#[̳<[NVKg%:c8+,@lh:Z`dp`:帞H;4ǮV%E_7 JS|Ј%b₶쏂t<`}u[eaod^ᡈ(a0Ev#,sM}Cc_]VlP%ȚCjİ4z(4 (Mo9 Q@@'PPN?J"Ecj]xًdf-ffagVh~2P5~u7<<.qL=ݼY+Q" [ ]5IhJE;i}Dٜ2'a TvG{c9@;0Eb˞`ҴlYo^t҈+6Xc'Կo,uH1RT]I%ja Gh"<+( ?:8dP (**4zm<,2[LCQA46]vz&)!'G&M;R,N-iDPlc 8{7]I+DPCRTP:Lc $B޾}`ȱojz V;Ea#57s"QYXf-'}bLY?Y^i )qD,4M#Vb$>0"[.330<+9pĻ!g[*+`Dup5zRkDjf~mq+,tFRl]Cl : HYӨsL,-n#W7L]w]fje=#9Lͷn';Hy8u6^j'.}pvjĐZ X˫O?G1.M=.kwyz%: Ӝ2WanMИ94*(q/@X7_NjW Q +϶mո0_$Cɡ><]>Uhl0bl*n 'H [NSw9*zG&PD$bn1;J@v$~0"O@aq~CKU'"{-Y]MIB|P:ͺKnVtَ{@v }XʓPIp'u3Dy?z^_Fcc͏^ ^>$oQyp6pomlE/?E[!v2b> stream xڽXMo7WPOCV HshkBQ 7Zzwz %$pJxXƉ$xRb'~̓h=) -ێ'V)9œ[<%y*TZȵ^,J NEiE?jUp!a91&E'}GbU2 F0zјHt.FORY JI6kR@14inh. 0CW8 Nܣnķ j&aP A%D )ba4hTC=3NĭIAA SĄ0_ ӂW ,D5`,PÀu,Uba@ԃVM O0৵^=*b`de5e#!a(PHd fUw3€C:žiWk"NPԫÈ^ IdwsۿCڿzap ؐ{wׇO??|Rkz?%@dFX7<} DN/Q^;uooO␧6 jB!NJ&3-L77i#(>&ڈD >>۴suL^W2!J<*\#%sZ-pZ> stream xڵZKܶﯘbn!@$UN;:; ċV_~CQ;4~|ݘn2;;2QKq{ńoipͽ?`\4'ߜRG;d37S$ zW=\RsxTgM$SAqֹ​?ό@a`sp(% >c.E ?5<=JȻO


j','hP$(J%&Elx$FAV0"]\hr6xQZhޑ4p.]{_A.,d)o.P՗aAzꅒGӐ}olk 7LR~( DQDZlȷYRdKclU iH㲁拻otD;SY4Y03DrIjxk1Yhr{]K<(MVOYp\`MN](r`M~T$VrP5 j^ ,:)KYy<4Q\@}/Hgȍe]&JH'¾BcOy2u3Z7\cwDwsNj`7QUտغKԑ SJ0Qԑ T;?ZpF/?ݺ< U>+nnJ& +u\'G@' OAYԂN281Yp籵 9MD2 {BĊ I(-1,H.!4$lo{MM$ [{G%-7ƶ K;c50AD$3, Sm֧9B8Ѣs/q$ 3)'Ww:MjknGF\'PjXt+sx3}R:,{7/ øq~‚J"Huݽ@6tGIS;3v׹Зލ&oB;`0#2db<Վs9ɀVnl B?8s UM*Q)lrc2y-|/:S*^:ZK'otU] W ,5EHZ`U}]u A5 }u+%X; -}Q;nq5:XMTCJ VD`hbL\ nGqU lMki.۶IBMŵCHrMĹ\сX 6{>S&) ĝamquSc8wxiCfsb8^ES֩\ǁC>lќ+|Cg#PH9 P}+%1-r2s[jlvd(Kp1QD2-=\WM0)aqXJƲy|֯Ȁ)nt]a/6wDhXˈacdt&4ٶ+:8FG朗{ʃ- xj`37zcRihLN#v0Yc;tl>au #? bz<]#&{Q~IVNDWn*_ q(H"~Q@8+$4 0̸́‰x-&XA'-x).*zEV~E@$#!Ch/'ߐi)F=Pn-saS4^h%J[Xul"6aERs(92e}pw ͜P66(=cgM-I}MNeJvl$ɯ̩"j69?,&NszU^_T͓VoSm2 M2)f1xakIyY'iMw)3É Xslss9~=Ǐf{N߳P #3(Ad׆M:geTA{@J  c9l&+dlk2ysuvJȴGnB I@L6![&3mJlL^ Fp{ܒ䍞(:|H8 ˹>JPMCm%,xk6AhzxY:!IJSV_-Qr/c١-h2L-oIKeJ{nk!ۙR/XWkm@lC༕P"Ⲃ˥i 2hɤYั9Fd@7cF&0ow endstream endobj 285 0 obj << /Length 3131 /Filter /FlateDecode >> stream xڭZY~_R D3Rbrrb%ZI~%j\aLOO1}qWynU~dv7TEބY捇&ֻ#Aso6^q876nԾke+GCUNu)ʊν_z5aطB1Vkz럯 VQ 7\( X:|?4 X)FW2 Xn$#7I"|0?Ǣai`2;XmuY6t%d=ݭf7)SS`B~l,̖Dr_ &Jz> uM$^Oñ)>ʭ1fVƦ_ƻ(݌GRdPb;֡* S]UX ~㢊wl1L^v67\DuFxt4[8n`y[b'C_$~ZfEs` Ǿ?":yODm+ Vs}ߐhN*jA뫷W+2y $ $YՏ?- H?̳cЏŨYDnT9'[Ym&<Ņ`Q.#43y<MGA)N-&D0;xcc]jpSu83m&(YڥE\/ sa=!9UExGjNp1ijYf']U/c_"OL6t"|Pq9rh>24EB =p[H)n+R1蠩Gb*ʤ~?0/~xΏN2^c6@DK2v:v2oLzd.495|G~rK7#ĘN9C =;*΀-CŴGh@ A"wUNX&g ҉jA_I-oL 4M 7uW-)3 c_8[/0PnďLACd&Y -03Ώ[0GBkaEhvlv~x$q48ydA:vV%# I0"($rdAdM.NtmK6~(t`{q^$~L+S]`Z?yz9OxJ#? oFz+IYo10a ֋ap<ɇeXr^TZ[ "dO%Ю|ߧ -*Ubplgnx& E\W wxa\(xm9O 7r8iʱ(8;fd|*ߣs\Hɠ0htC3i>0cZq~"6>ɱQ>Q^!!PZ\6wH%D&~n:5raOq,|op~9*>l:ERt瞃(wZ6J#9|1SQ!Җz lu9IX:gWi9.̐hP.%94?e|)%='Aq3jj oMd|?]RvY5Iȩ'HGd_lrNAP)AcDŚ\bDBe돬ek& Κ]MX˝jvh0Te=O0'4.bj?DK%Â[sg@&KqĆ4f]렮0P-PL2RN`pbXQ Uۀ'Szlm}w;ZoOjK2Db8v{@g,IE_ M}w\r$5/SN|v>)'bf\"kv\1BPPMbQa\CS$]OhQ-~^\U7R_Ewik5ګ͝,^xsC+t @Q~0UcTlaIձ[Z2'oNۼKOauu貜Lgq8>qb2yrJ[y@dSOʹ( &%߭뒵M4֬ծ(K"f 0E71/rtң/&uˏý@Xpg%R s8,ǚhF7KXd',eeY.b0FJodfISM Gig$Kmcz?HmjL;>d\?}X,70G`wN4AӢIaS E]Vउ6N mmz?Nh""bg}sO隋vA#XQcG[.YY86̌m42/@̀J85?.]`Tok4^Twb&=S:C ?נQ[OsOHVhҳB<|nS }Ggۢ=l>[-0 /: )ʶAkK{ 8/ypV" P |#c0yǗ}{<3]X%4NT-W~Z$ZҔBEO~u%`XVjE'_9wFl[_Z~JxݍvP;To@QO}1<}DwປV+&k[9GaoiôUS60? ̟.:v=4<*tu ^OVO$~wFD$3gznx`׼{)_3T\_CIQ+ӏ_xAnF3|U!6rT endstream endobj 292 0 obj << /Length 799 /Filter /FlateDecode >> stream xUn0+"6+n (4=:" բmZRnb}EnEуMj8ft6|1J8'hċYNQw'BoHbn/29+ 9f~[ɇېT%<`}}gֆS-4>Kk8x~ 7I<󕬧ߺo3)`HERh&Ot1:RybcnCCJC.Ӧ.aGZ7I+GŘQC L.^C"b?mE)[橲u00JmB{{޷'BEqHIٻ ΀ D=ң(J[w( ƢNkj.FVayhhwȮL^(EsK _/Y ly&}WDiJp_:l[sZϓ#:ÕSue5YIk]3WRٲ:cx"OE>=˼JΒRSZlq\ w1b16"A,'yw?l3(Na5b$"Bq9&a$"B1r%!aCCXjL3}?1Aʽ G$b-m tv@fjxL`ʘ #jU$z<[>(zn[DrƼUY|r5ViOY ֣3s I !Y95 RUmrO`gpYg݌x2v'|ݶ?v endstream endobj 309 0 obj << /Length1 2397 /Length2 17060 /Length3 0 /Length 18457 /Filter /FlateDecode >> stream xڌPB>{:ݝABpw'g{aVw-eȔ՘DM@Rv.Ll̬q1m6v++3++; r*MN X&t*d]ml6n~6~VV;++ @7K33@@%nd_t6>>ƿDmAN@;d h ٛZ\<? ;3֙0# r9 Pڂ) na;  l,MAv'vf '8:@MF `cf?rdicPgvpa28ۃ݀6@ߩR* s6utpqfvF܀i3ٹ8#̻'?͵w/233 3W ;KGW?6`o rֿ83鿈|l[9? 8[oN9ſ2D6@?^2 >)-%CAۻ:lw|N0/,ɲ 60x߱?~oVv6 sR9(I:ψo9u;ظ:,q=!WKo?ڃܳYS60Es@np6wslg,.N? .`@0n@pL &o?G Lg<@ Sy{Sֻ*QBwq]:&%6DʯA?nDV%i->{67ǫ<<}VmAX;#'bRh !Kʋy+QW26W-T2I?p*$c 1=ƙ F+gߣh|o 92uvN|J|]NÙtG,P3HGGuő[}Q;BTʱL3IKSTgGQ. K\ڼ1,cL2s>#aJ_8raŽĆ]8Vb^/ 8Yc{|kt|$Aa~•~~t|IҙLXF! oZl,3 uKOFE&bxu!mƽI(_M}n&pW&d!iMxKGPk5/Y…I{-JD&Mq@; 9"iɆ(!Q=0MwǺEo~6e-flyc,dXm(* g|ހDhC-d27 {Ӳu0onX&疿+qV3(9h}tp%ŪR Zd?r*b&[t簔 Cͷ=MTž$yғ uReѺX4٫/_д~sLo,cΘgu%ȹ%>j.]awg"gଥ\nKz*Qm4$ۖ0hB<{k{VlW+x\ U$-o!|9c}5sUA ,+p&ˠo0NJ$ȍ7m3oGV `,1ݥvi-j*(^> !n>Yt!\᪜,<0^>oۏ">̀[aǑ[Y\--'=$M&;wҶ&MKWP~nU@1lgU^u\hMY[!`Դs0UB3ֹ '+B'}.D%7lP::}|C:?rGF^\ rKZ" FDG/^!ew9o%1P-V3{nR"eWX rhyRe^&(aӷtTrJk[Z:J:k W$&O6845g;]:]l̮w8}*6wǹS}S6NID+B.JJD\jP1b4m|8F%vbp߆SʒęwG( g"}AEcp_۩GCrF#4Οʢ:Vժs(i*N fGAƠ"j ц!;-ROY#k:zv Wobf67y(:(ApBsĈ!I2G+0ꐔ % '([Bs^?[iôh;C=+8,HVe?$;7cH'<1Qsۃ'霛Hv)qbq(q57$;KU {[b}c9'v18[t{L1 % ,mO s^acuPR'&.[kXte{ӊ) Tۻ\_ ӞfioGNШC#f hcNw/y"SޡYҙg۔=9x.K7OkF\ɢf@ 70\0]⼕U$ n#-4XҜ=W&{BH;Ա`5Я኉O{) A´r&cuGjg඀=GǞe~tA_ZH#FC,q_>8,*/65ͫTD/tTv ZsR_X R=f.uێI-erB) 2G=K KH-3!!]8uӓ4!f lw#5g >/+=T\}|iBbz#џg^3LjւW!s'hՋuU ,8mۖya%UW\SXU}K͆;njUBqtPm* fk-7NZ7q^.r8ڰM^w!].x"- 7tUH= hH]*s}:Z\Oȏg{V^]~D.OLF`C\]GwU8xXQU'(>?kマy_E&U:eUl;4+u3/84Kķ16Svi ڂ_};S Lrg/pʟv: ɷ=Os+4aK( D }טD$I@1o/#`ҮJ!#b)n^G?Efd*(Ig긠F1*r  6GEˇYqje8H/'bxy+#1n}CDA3퓸z&mI_ǡ{ -66*Řo-BH p̦>Bm)Rᬫ5t[ N,ğc-@ExF$VT(㓟7^i.Wli=겭@xX=FPeovjy_}蜴[[V me#HրmA7 I7{]bƱ8#ܫ4X繰%Te}tqb&n^9=iLBwBPVO8fyXkCxEyu+>1Gk6M(':⑲ T8W1坴L3*.o~qR0?>TiO}Y7w_[A6,NiP{QڬZDna3cڶC󰙖4wE'I)6't~ E >gNr;q$% ·~rs#A&8dO!Z,ɒl.8XnQ sg ܷe6տ={1Ya–V2B40psh䊸j#lu#ӑASHac3rRW 4$*M` /=vhҷ,{+ڸC6,b0 jn.{}%?TMLLX qZ|z l峨!s 3y4h2#¥n-9F6gΨU}Pȡ^|H ]I{B`u)E $^u5FeRjgQ%)D鳤})U%r5ođ9>UF@'̌<$e{8݊wU}{MuvjP3GPߊ͕gq&xXnhf>>pJh'7R3@56!_z`')XC6SMcXt7Sb8vM=r\K<D-/cEcHrƹtc\0r>QYoh_PmF< 3:=3O 8e+C2Iak<15x"l\m޹^=㞳oHQ8ߴ<|f ă2 '31hT !PUbwW?ͨus%"UʎO16cXމۻ߽\.vOkV4LJ2x>N @h}4Ӱ8o`2s<Ѝ0Bm䆜"7 85BK#8k3Wp\@N c']ݙisCXcY}Q㘉taame~>׻Ź賥crt[8J@* ܲ, ~xIJk雍'mss˚Nשooӏ&OXFIz7S2eO¶?Rr?~CwcSQ} PTù]+32(Yő9M5zo5JfgB'Uu2Y1 [,:~_T>Z=3\F( v $1*8;H۝Yay7_JJ;zM" %JL6q˰>7%΄kn&29*84"w/ I.w3z}hy2?oCp \Ĉ{ Zr'ֻdy#3}Fבyc$꾊Z)zq☧'WHT&mf,b ;n`zqt{RZMCmsE\M}uV(RL̇WBrF&MKJK⒙閩}Lf/^0$ogRpnUJ9  P/|dġz#vPeKt/R(B͡~B`&c`Ij8^sqi7{?SȤbzC*U&)4J,͊Q@d/;ue-SstYN;( F{= <_? ӜR9w_r71539_#H1vUQt^0LіRL$g֭=k 퓭CGFz(?{uMaPDH8-_j,ݳhY98\{sooȋAp1mujE.eF=HLȑ s-1?uLXfR*SO'Uf+^mgj~8w3DZ%, i_*d2y#HbrʿSorvb0ur̿)Xhd¦RJ&٩*<5w{s+* NO#Q(ڌ\zEQogE]#,}KJ;<*i89ooR]Zh QmDE9i>x-b@n@QrdT1 :'7{6 k[;Pg&[m1 5{a_2?6*؈x$&|[K|tOr~%g8}ã!G[E;U2xEĊ#TQCo*ձ;ʩX L[$!||;VelㇽfO6ʻIL]b&XpQ=B"U)\m;StK8Y.Ў1%J> ȯ܊׎2D &lO[!a|]$sg2xDt|Z@0bPcQw:p#iڎ,]qͿFi",qG`v+A2ssF?˾)Xb~?&LV;n]M{B9 [6؅iϘ1t\cB!$ODTR;auJY5 )+% vxq>G,g_XĦ'h2vFo K%?_.( بB8 6:wz -De1Xq1"\&Zl*w0 W:\xo5fÆ}ŷi tW-2K闯"/qk^3V9Lq3z?Z)vTt뉾D4+#8Μ>ܻωL:%gmUrtb˰97Ն+HI0#?Y®CYoXv^Ko+1 ?'q`t[KЮ{Rm)zʯ[N %Q3e cO(~2pGn~,ڋ5tReyDV7X}PPU|wiӄqj#TK;fOc< D?;.Z_-;EdjzsvlS}D:gkTQ1)'hٚnP>6Ytͻ@=k[ gѯ7[hc"[b|ύ~څߌq«R7i BZbogۛOrq!h xɼ§[sAyZ%j,jAv,u sT.)rO焓MxrVe#0 M^%kn% (֊vMK}k8d "zr1E \O,܅U75Cu-jߕ~br1/>9LZ)퓻0؈Rԕ/R.YGkj Gkat&N1p IHhe\zgpp'YJko]w$!L8m0wB^G{?0 AU[ʖq޹O"Zgd؜5XSu.u0e>g/D dhij^i <`ؽ({h|k:d,X~6y-.+7PZLjY/<3F5-kjG| 3Rsǩh2*n<%d!=)©^뜳85daK%39_.d5y[ oq[YΔB/Q]@^6l,8CiE뺺gY_n}c% `d#qd$`TќdZ g9\ )c$'%I+Vz؝UaEB.d9bwuKהgمzwL  `7Ps\I'XTwb˩27wPh'Xc KcS!#3eOYC4~ ^eK 29vr;HPHF z=eҭ#YyI \*vh!h_2Qh>(9go0O1#]Ɩd'so E+AZKJǐE^4´+aF*:]$yhUS*ϺI$h m V[@y}wD!NnAU=6}i:#iJAQYˡF79#56SQ&ЕZ?l\1.gܫ9w`MMףY_RI5?G+xQXbQOZUU7q"&T S;? Bsx&CNJA MV6_>xdF[#B]@өc[hw2ㄖ& ק-VعAyu!g{?4sj~U-ZVoR\w>W5-muƍyp/sww~N8PS3m ot&vT(,_4_Z/k2 v 1^DI*ey\8#9~KqZSlHuAot?\W(u'Yu"A&3`Pa)g6~z {G =k-$)ls̵]N2U7d}371U<.{vMaM[TX jȏ&q-_3~v9ډ\sf"{{ϧ G`@p̩-aC!/I?fW2ՠTؓEm< [@fZë򹎇٠{ڊymtÊՆ'NfKE}"n"Ak铝|ֈ9#zo p7m _k`szټ?6RA~^ԉϗxw[xjmf9܎I]W.p*f{n܈2]?'KT"֯ɉEZYu p4깵;=l۾^ڔa 풧+>M h? 60S\J)nARSCx͒ /5QȟeoS&GiaUkE977iT)7>{|kO a$E[#Jp_YAeIw;dr»X0?:b +( Ԏm\>h9O]5+mgtTL/rd˾jlѤۣDU0`6rox>x}{+PyBXio5 9=򎳐z#&RknEn!R ѺRAT|ED6&P0NJbt5rLެ/;;Eqc,_[ܩ2jt2g@G{GiVZ ;sK.o"C׮I]!؞N!*'Ml૱QF`JʂyxcE;dX>{1)vA?zC szcuN™} >ъBZg|KJrE_ʸȬѳybUws͐k#@Dl4SPs ">O|6ɃB#T0'{Z|Ð`'HQy˯{W5<qv*Ot<)v'UI|a9 |Jb Lbphz_v^upRM"gA=E)Yddƞ4~c$H2fšIOs^wGٌNF/d$VW ܦۅy Z>̹߬,=+-^{3ЄN8⨣A=RysE!]| G4Ă+>koզ;rEkvm@n XG3K%5CŸZC?xUeztP(ȞP'+>F:ڈۭjO M3{C9ݺq^/:ڮAjF_vF?&!5ex74(:+z ˀ3%yN'wIđٺ O&(|'db6q Wn{_T0l%M5F:me >-|jzEo+owW<:?eAdgdE~=Ҳ&D [-Dָxi0!"VEcTQwdER8]Ba_.cϯPt[,wқZvpmx2LPbw9KC5Mim8C CqS5#h8^2C_"C\?`kIYZy&fRs2;89,@7"{QSrL`^ahɠ/tߥX$ [bO҂$a3`Zƶ˴h / ]vȘg8TMYw .P19dh{I :_H9dcX͛ W9$vxK[d~]zǒDy[.) ܊~+Rb?H+&~MDtfB8'pDr'118(oZ|L̘}47Pi=[svӞQErW:\N _5&q*i$E n9T@ >,}Bl0S5Kz<}2O=&}S' he}hB[bIvi ]&io6YFv}MR*e֩𡤪 ?k5$-K"E,!#ŔX靴PXZ'3Ӫ `KTD™z>&`BOYsv ILP r6 tKIJ~ߌ>я{(+|AwMCs"ziԉC:cd\*?"QNSyf"ӻ+Ѝ:*NTH4'hқ$[=a&VGL)  rx*vBpIؠB%6ri6RT7,XB8 'WN|qO1[n S$Ժ:l SC2^hq8 ߷q)b/[YG4w 8C.Ɨ :|\Q,Sb-םݩ8[-_Kiɶ\-YGq#?/^6Z->Z>W>x4%9A=o#(/W[Z;TJ=eצ`VH8:Ká`(…ahmBwFp>6!:Mpv6_ [cɻ>frPJKf=>8FbSCn7e3J:rL\sE3%kⶍo2y;b,юV엃?dfW?Fޏ#IFV @&)Pa!Q̸-+OiB~L\du4XCdn];6cl~Yݘ>ux4O;w76sK*?Z S ~ 3Z^@)ծ?[!<-4!D0qT97&߭c傪fS01>=)YݐmS i4]uy/p ˡN?x 4׼O85IbSD*K`&%v-L8==h"ݲk*dR@q+ڴ6l0&w5Z [no’NZOLE?t |AzDB*G%yܔi.E8( r4urE;H)Xb}oŹRtr-}V^$$5SivLZs]oR? Q(e_Uh^įQ‘k=dV{2H?f-y-(} [SY/#(~?h\%$zh׆$CQCTڏI @b BFu*)hθa?fMNV7Suh_Ok\D 1N]!~=1;Rc zYR:ɓƤeqՃ P~r7qNJ' wn:s SJؚuR7C!N&$N2򘗙Ƽ ׶vwH2xN[412FqDRؿ#eo.lrJID ;zX%h_R!v |<5NO.];%玛9hOa9 @#u'Jѳ{=%X#ܟ˾8p x%o儣)+ =9WxE6(~ J{HL*f|ck<{|E ~rr6JbT}43Tiq'4ItF𲽎,ɽ1|y@Uła#iV$mm48ݐ;%Yg#Hn +8Ygx/n5\Tel=p+0Xᷢƽlh;䥓iڝBHUzwNDBJDJ>MKl;PC# &!K )ăܟ AVR,Z2 n$Q|K 2@aӢ0wb9 8q8v{J&zMs W  "η8{{P3=ϫwdtĘըٳi^2g;,[NBFhӶ,bNTuDיPJ&ֆA9]缥ҫ"itAT0Ŗs%B"(B% MLیH=:B@]{sCf![ܻw$ĵwϥ tfS9p?"+- -qOF41( _Ww'zr30Dpպ{!s鲏5 endstream endobj 311 0 obj << /Length1 1902 /Length2 12458 /Length3 0 /Length 13626 /Filter /FlateDecode >> stream xڍwUPZ-n;%kqw$<{3sofxUt׶s:UP1ٙlؘYlVVfVVv$**u3J#4v~I;Rlr.`#?@dPd$=Aί@kJ`a+ ft-6M5;SR Z:;󳰸1819Z1@Ζ@'+ {l ᘑ ̝݌Wd uz r5:^d@E`xllwD ۿMMlm=@sPV`vvwfۚ&^]A`cW_TƯ3{B'SG{Ji^ZLh?I#=Xbk[;7[9(f., Y&l@g+++Z.au/{;{(@9 pvtxo0:L [¯[r豾.!_{ffg Ei(I0=nqq;w; w?eU1?2ښ5gC Jv{ #}V.V?lb+Y?d=I1hC6 ǿ9EW/U /qہ'l1[}gbdf$ rM-O `-P zbe߫M__K|Uו53-Ev.n".۫f̀95:rX$,R#V?蕩7x,Z#Wdz3V0qLbcOSa1X@v?7X_[,_6vn|U ?msfu1 ?X_۳gVW?c{|mڰa?N-[_?t"-ٙ [W1~gD|#Eຯ(!#7|Akf/1{K6.p~ź6XsmF Lc'=N]#[3 MܮE.vg R7Uܕ[i8aFˁ .^!^-6=!Kt)4/\[K%/DGG(G)=܄Fi)Z1rԅA˅/rcs|>:)`) 86aJo-MEnu0Ay&v8|ςzS"ّ!Jt&y0}Jǎ#pp6kz[*[֢u~wA~1ePeg৭ѤZ'v/,S"nǼL,{be:QD1 )$R\7I X'鹯]irw~T3.!{*: e2owÎ3Z}wdr#&zsW\r{c Jܷi1wyC VHp'XssʟP@{%.|CSNEM˄[Ljj(@Tp?C^A &rkZZ#?bG;ekeEfI" Աa!!KKJKwI*_\g`Dc\۴>4< ƔBMuFPCt1B *>Cŧ̎)i4~FXZ[0t]EZj%)~>U3,@ D-~)fPj71D\J!UDa7 ffuȮ 6xnjqAgG\Q؄xrRdŽ؄c#?mh[8Tf2At*d9oIk2n`fSo<7nQ b̎S@meOqa*Q=yN@iESgRzc܋6Z`4t 2a~CiA"tkWPtbiK=G +0ӢG<ې,Z|Tt |H?idnpJbUdҒ7;Уث+4P *;ZTFk]G]#a[xEMv뉃*.?d{r|ec(ߟ vBݓPc#Bs2RS2 A_ O'Է;d,kxr]G}%f؎2Qg4ҽ-{*ؑjXNLdf6cyhO("L7rH$9ԙ%3=:L0W6 85M_"()a lzUPNZꘖHז :s^C໊ '-t{A !~4ɕq&<@+czFr)im ڊH{q7,f;R#e|)`<.O~XG.0S>SvT8FТiyo2)r2]HD,yXbŗ*ċrF%$`{Mɂkay(>8%5dXs#7n%gyO4>B 2j]ugpMnm҇JMi#uD)ْM^eV4^do1}-&^ímWo'QLYtg-Mj7ql!vB ~ݜ7+j:KKlc˛t1xa'YTYrU;.s~z<d1i[Uo?z;Szg- L`2Qݩm[S‚qܚYFT :R<CYb8NGyӑumDN B~ o<s(Ww_^~كAnYߍ[bٹLsMGY1![I1؀ՕV-n#fA[W0qoW!0;g74:#kZM>Lk]3? ܑxaT3G^ni Ձ~o}Byh:hy)/YE*K" b.Rwd@͆4rnS>w, |T>{v@ӥWtf\MeŶ}4,><LyXZMzTKZ#kEtr[Z_O9~^SP͈WO BFah{ Yy+ 8ur#fhoR}ZmZ0!-(?טUoS.Mlthq@5"1`K6"kxcYIuU7f^ҚA]̹$֣ΤSX[LV5^f1'ZWV::)8ҤDzb"Xj멏/g,"}+NxZwB{,TNVE:`ǽL}Z8!lOO98v.A]%/R5sOk4CWjA$rJVQ_;oE7ܑ1CTh9) Xs>bHO.IT4eeqo~wFea2wٖxfpC$uN]Ĉ!RAOB:{(UֳY\PS#8Qb,IҋH+$$9 (I p[8ÿ8+ul(-6Ds.XqіXhAk$6+p$6;PtKUG%eWFPJc Yu66]m~,+|生d%x"~ЦBv>xk.{Y(!W5vcOUK.T#҉>#o,׺Tj|$ɂ<{I9hu؞-Sv}}'Ux?U\ > ׮= ÚÏ8 -y惁dCyc_fVxHoQpː4S6[Y7q]ҵA i_QzjE*e{Vk-= `=U\/WsTY䧀uN.A6.Mp D#է>ig`$4 m[p4uV݄w|lez*>m:m:/ Q,"#8XC6x7"ncC_UarL݊.&Ӳxe)$?\ͱ\h ʥM5ZLa!نk q@W{/ u' .hHͩx(5u}k5Ky3L_ ?x<._iڙ#V0rѦ#G*oI:>/kl-7j:陸wب`LgQT罟QVCxWZcL8߉PadJr) 4}9\`0OJ/o>|K9H08S :yz(krhGD < Y+4UzbVWc͛LD9ғDt" cMe9idI1 ?oxjet̨”N}&&tԪ\O7L8>)}tӆ`eh|^HxE{9 (_ntyBZaa#R(SKٽ+jqՓ)s,)鹎V)?6 R*KR]9C({M8t.Y9n4Ȫ湵~4)Iw# ֩LQ7Gz |~S)SGWt|z.A+z7pUTVX`dLBrl64IҜI8[02b %[`7@<|qHQ~`x!Yi >ʹMK&Lz{ڸUZZRǥ5 T!|TMiǡ "tLtr@i]/T1Bvy/Nބ`f{vE+vbCSjj79')m[_@4Lvf:iv Imd !Fn"A15~}q3{Ӟ$o2LwS$岲j DlW! dMRWZ2JsÎh\^M<0‹8X͸Q ] _sVɖ``#K14yl@e2 < YG>`C@a*`K8'v`_f"kv ms ǎ›|%{@!ɱti[ r)%KG-(Atç CxW7ɬPBI6/ m:.R9U"(ӄ ,D,(M}OI‡HDYpEGK^uA+ʂ =D+ - [G}Wnd}>)[wͬS,+&eHr*zӗ\e`z%ծ^i*O^q|orclP+I}(ef1u*;!oJoC "9$d;T [ʨq)d/nlQqi $?{H׃΃qqe!>i?S84,|BDt$=G/V@Gn_8>toU txfnhaǍ\ѷ Y}(TAr-?{)/(hn<3F |Ivqr,8HQ4n0uFI kk_wP/PF/ק^R7v {F10$\FVmDZ:^zU) 'qMƋ{ i'O+ ^ ;YkMF+$z JZ!h-ݸ-:HǡM6F#c]1N}{̲FZ\Jp4IO%M/j9ڊC^mT_ٞ*mكdtR E`el1qz.yV)rҵ if`( N*kARjeFUea'V|9Njh :=7DTB)o XR9I7y^!Sz;0ۃ珝Y2A+E|<Фp*5Wm4 *qšIj${FoxJ&;Kp)baVO|ek9<'#"cvIUPkWX ءg+"&`;5ohTq,m;WhUzĔ`+Yag? :5='Z|q޻oQ*I0z]4kgr C}Qrk=\0UuF^c3R66 dz86:-: 8Gw KI:H,񪲍ѱ!T{f1Fvz7uu:̭f9rD¬{aLeP i< =iHj8d}T] ,ߋUa+)Chfp4ӏMB{T$1d]!0w $vvz5J92N"4z?mr4 { X RHE5ؤq<Ȳ1e9bQ! 1kɳst |e"IV9bIVaGL*[ܨ| 0Na'5Gی7r:ɘv tSɠc9!|c5g=ϖLfMہMך۪`wBǷ4Iݠ牣wd*9=_ ()O>~l&,4].2w\xɡtiR m{3Ռ;r8'0T C' rByHD-A): =s}݋6 Idn&LY?mE}SID#jys?9sMrY{17:y2V1zus9jgpJL-u!ry )XIXd'{ct=JmxB/9@\$7ǸWb%qWy gЍW o 뇾;_;jk1kޓC tedxTWjI6T[їh r ]] ZH^?0ёvPgU[Fs"[(+Jəq0X䮿ǔٴЇ*2?ongęUL7߭0npǢRqtY@^bn-x:?&2}1p<Qu0{$'{joF2"൒s 96xs5m)|1 *Abw -8 2US( @Jﹱr+UsR}p9^U[R6]W|C!_g"%f̼hj;ΔWQmʯƏx-KUx9bV~{xI ]ЖyTG $1A!,[RrvҰYna_tX$Eo<}c29.PK箁4^]aSyOY&ƛWB%tpq[7(A.q Uhs (NJxw%,'yY\,sfX6-- F5Zy ,2s5|9A FB^=g\|fҜM4 [y. btor?N\|RQ'tPz tdҴE!ƂKӯ2'&bʣOw84B ]Ĩ<:xx^ExG("Ӎ$@ }+Օ ])ŽFo0BsG<Ą >M8]Xl|oV [Y1L| 8̩3L@v'xkHo*5jl1vDO}O"$Zg>Ⱥ⽑`=U&339ϰkBa W x޶*w%D]jOη3/03-ЦBt'NռMDKsAMpL%_[E9^N8M6=?dKt ̪2PƲ}ɫG,: >P&3^hz9X:833Sj$~u,kEXj4E'﷙5D_^}2~r$ }rXY,)L"i; A0鑾WhAXD[8[>7;Vٺ`zbߑ8iJEQs mR; J 2%_ج :'e>͙y;וwYN§M\NyS6 [ 7Gbc4:^ic=q> stream xڍT6LH,Hݒҝ..,4JJ Ht#ݭE+!''(F|OaP{_8!6@ܝp;T_;6[( .W =/go'/ ?g3Nf!q;?xy5` ~gF 0M /ϓݐApGoLVIQox^7  =w:V-0GB /w[ `ku]Bq7Pۿ+`Y}?/{$EwG nݑw [R :sw_ |(p[z sSyB!Z0ݟUܥwZ7دY;ܽ\.OnmAnZI>A!Ep7wHnP_D@?N» wɴvwuk ZLCX n<}>(vf=٩0jvYtsf 9̅CO U^' [ VnOǓ|NiԡыviEKCl;uYH||lJ`,TV ihj,|FE+jlխ.xI֊S\jYDgMK_{:ZTQ̡H2nڧsWYo}(d~@:(}lEK1i׻GŴ*(Z,+rLME^o(K "bJ*KD9bFlTXQٽ܇ ;ُ\riwup7m Tx`O4M˵'Tbj z6Ŀl WgXK2l x-ᣫ8{<c+.rxٶBzlMYcDZ:.U~S9<9Ít DE@d,⮝J9*XYl\Y/yM`+uE)'2lq(fF^Rn@`7)^3ȂsaYb@Bjg~[lהy Fu>o4fr!؅cۆVKkF,nƛ)Ёݾ;[G+[:<>=]o0fhb Pzlt5CϔigUa Cr_SH(67;HĿo qJC"AUNw`[$pm:p;6;ӑ\uȈVצ^$ziUsZi%~ТtC >KXCK˄(Ub):| toBؽ(%" ט]*c=¸'Ƿe}0{tX9F#r98)uܨ0/Y$1]YdlD׀ ȟ{^3F6'0Wi}ĥhLٖߪ!uQ`'eMS+ Y ֱ^v2!W= {dў,1hywW5=NNIPuX y1[=E*F4UZPDo pCa 4QYJ\=-,̧#'$ղ`rp 'PK2T#eh2qˉ a( T}C_`ﶁa% ۦuUEV1GwZ,f8/F)XwqX) ]ho9+}?u{v:u4aN & |m{"<8X~B*LxljlbLZył(#U&h&KUĸ.\8`bzu%6ۣ㬢;VH\9(YHNhxrKlP<N3]Qyr|{9o0~ant&Kg9\u9Ln٧w|Z-`C9Vjy)y1=  cWj}}ma_7U@2 N"A}6W~uk/~̺tɁ ',f#LV,&ȱn҇dqR͘uatM"=R8"Vݲv&).NwWRЈ-U&yM·_67[Jegl_[PYu[Q~{Rp=t&å}UyLa;qHݜRj"Zaԁػ.N9]twUdH5[`էw e)FɋP7h=Ib6Ǫ6ƨlL!fm{T"'u'}_:l TBk?p&~cU'"yJmZgRp=#:؀&CG9*w)/3&:+XJۄm 9׈omk"FO?ܬYa(+>m\bn,U3m}vlήl'K x1146ӉQOE?NV\=c0$d@{}>FP*v1߆KcG;UL Q:r,g԰ *MazNRrL3 Q3ekI]+J(?BN۳`>6Wd2z41\mTZAF 9pIEù\2'pg %<&vu–ZXp=֦-hBQYUNƅi]Qcn,m׶8 g5b4 {! K\,Y ?'u^?c4 %@G/sU=QK -[vnAI<}Vyuns3 Cx~,Lu{'Eba,aR~rt-!!IRh/qi8|7[S1tkX^@/-ۄ; L9nϥN0AZ'DP=**h)BZ8"PO5Pe麞ptߵ 슅OkJBrS߷dZV2$V}̑^֫h]}CD)cq/X%jyPLszYn VL橃QpS(Ic]7dm\=A>Cҭ1ؗ ܃yF?|lwQ9)c:J-㑮8-VvN }H#s^kdE*$lU*=?諒^Oo8 z}ʡTWĠzXFxC_K'+=#J[Ma;FA'0ED\d"oj5Gt֩ ~~lmhj ~Ջ_A駸TXcR>hiGb5H ;ǵ=7.RG7QmXz^ү%Oy'OSPכvAdSIU/:|G_nΒcZܚh&TaCc=mh8Ve!9%oR54&xeP",Cm._Kax&Mg&3۟0~3 <\u!ɻxUNbvYLd#R٠#O~ϧ4^`d+W"z(خrS#4L+:~thR^[Gx?7_{+@Wm4ҲQtj:!1z9AxiyɄ>֧f>6E{?wh.9'H8;sNIumc}H.heŽIpzqv탷Is ƎGyQOsSLQߊn/~:{Is|SHΫ0JGI ZBqr b 1y'FkDjm9KbdcזʬZ.GI5G;FO2Wk^Hfo&F-f NUqz,F@gPڄe,b{Xɰ?$CG\Sed೮WEf_[_+X`0čjw}apd'㧻fI)ч{|_5q)0˩ ^g̥|XoSOkA;YT].!/5aKgnXևV|NS4iIKHg~L pvԌY1%^7:2ӫ&+Z9nLN1!U[g}?aŊF*'+S /GE_?.8{3U.mh@P[ܖ_݆l8; >{ vP&i8 -~byֿ3|a /E[\lI1m.*M 3(G[$ɺ]@2?P"‰ȸW-u[XW'')>aV"G:Z̝9%h;ϣ8ͼȸqdH}0m`"%auh~&ui V2O諶Q38!{ѽܲ_N!JEE RcKˋ+6#{<5v_zċ52-k9 'wT=o~xq":2@mf ˀ>pȅ{J+"u;҉w<ƞBsPS@j t.Q&0n0 h]2Xɹ1괼L:Ok%jT 1QW%F{&AѪ.f(aʴ! I3s_3.?8OWWZ2܏m yX'"M$1 ${?`:TO[ lT6t)ޑ{`_^EEaZpwkGrT÷ ੘/f#UTLI ;a3JjMZenNܦRlgXtj@uɃ!37'(O!'l.f#`O~쒑m6;Át .d R0$JݘGb>aɿqE͖a~  ꟫3@х;M9P̩.$LA-˴Kg62?%%JE'a^WI.dK\M#LZHH@m'e 훷$ ƱVHp~1lh[  zYUEP`YDmzԗB%g̪$_㣐${աVo(# 5 0U](kh&= i#z2G9еtŀNۖlPý'GA^pSgC~9 Th^ɐnV61Bo6JW&, uzbFaM SOwDZ9zE0JR'ab6?q-PX, ??V{qpӉ_ufF3Ϩ-O>oP?/m:j2i-ڎ"c|Rޝj~FHX9Ϸ{d}CU2t_yܽ'?a y$vMdaqLU|jOQCʞ@vG,LY&  lgO J̑H _L}9Ibӓ`_S[Cgcq^>PV[ҡwB+5_$kM"ry >[t;4wo?^āʷ5}Y]\S'Ǡտmtcd1%MLUbjC^5c }5u(z7%̬^VR" * Ҽ燻Rj:}vBCJ[D ޢc/E#|df2\IUBr&RJh`Й&g/\<_=Sѱq&!| rT_/;/ NE~E[vJѤY.,GDŽ<LVlL/<Ȟs4jD~>xsO 22T-862t%A&4Kw8lզJLYѯ+' Ik;7c$Zl|BJX1i狑bp'wn4xj~l3gr |[sl.2\}:a"e'0D9Iv9_z'DH--&F+.D endstream endobj 315 0 obj << /Length1 1404 /Length2 5894 /Length3 0 /Length 6849 /Filter /FlateDecode >> stream xڍuT6U: {޻$B wiJo4 (J"]P@v}׺we{gyy+APuYBB"BB&0o;1CP*"n(.  I D  +CUH3 SGPr"a` B9C1 71 K{ N|_`"}/=;5bv3/1 BB {aB(0{@u4+ݟ_` 0NG#C@p/ `n  Au%C?/0(+ jp  Gy* c/gp/84d#jbE"փeQO$E9l׉C)IJǯ|>H"WwVy(1DN զ45Je+ML3y~2%?B~|zΚ\?mO+Z`} Dx43ۃb@Z%!\_dh|We/-(*G)]o2ׇW U-Vϻ*>:~MԕZ˱-=+f;ôx!ysNڣ}o/Obonɼ:2NI'g|֤}GAeL^ə  bl<.jfرI9wyf ^sVxr6zNB# ?ꄻA׃4]ˀ&/wXF. )Tfk-?  V39n\:y 19p2QvOSj^MERD{spkT^[TTO{V^t ]^n'v֝AYiN\M+t pDž-]=8HCCRk]gkWtz[QeѮuSCN4@&JأcBV"2F wqxSR 'nPȼګMUƃu7S4XF ecHFґYNtٛ"e-yҌ0 TFNg8q C eXapovd\$Q~/< /o=ܟ+f_Ob擮6KX=쨚aծSs2:C ^ˆ$ҡo9vST#V:0Xf.1$.rEh~}F &"/9KJ*i/ 5۩LߏY=-=㿘p*M\;^wӚ >_W Fqe _ӲU,N|8TU#ƀὩP;3ןnw;iVxjV,qn[־ة9zWVnyQ8Uy0F_1^p݇5wei-э^uk-<+Q g!Q3lUe6v;6K6ZYrTa[slja[nBLF6|^=G+qU9}>U_Y]ֹ)7F c_c޶*پG[žsHa F8Yu5\}1A^Eg RvkξaG. :A$ o׳OUڐ*ôywɫvSHٻH{w@F~6~ Q- &acN~vp3 l7b ?oRLһ2|`H+k e˿ѭy{HefCN<_peSftбIg+i7lo0~U]^h.m͒L=S8v= 4kǗ_5VX@V" H-?!/XmF|tLH2PetP2 bm/|1EX?l=6kokk!"TKL!1x;huaFLҝ[j1Ӊ5R3t BkLTA|Ŭ nTF y f &62v:Y!{$.('䍃S d=1~USB iYPi0~}zA219!VmlCc"H3q,و|"TdHm[z?fͦ&-O(m\/WocF_?X0g2p]{9 6"\s}^İDA&X3IJyiTJ 53/L0k O} hwKQк6@xc[9zw.v7,jpd8w1^Ὀg0qWߝچ%#ˣвr*_`k|KovjH3&Ғ頱^7h`9N/z]7Ҳ7m{KyhW Nqȗ/(Ⱥȡd1ׄ'G?sM~sy9i /[H_M+&W QGV+)ʃRrW&T 8,w 9FtOI M| 5r3/Sl~Ƒ-}73*+ hK\q<_z'W[;Kzxkߚm]@LR䗧(Y^ "/L<=tK hL %4 Z= )UV @W[ܒqn" $&-?#v,?#4x)>R,y|)_i3.O\:$@1yc3Rk7HR[XHj m{߻R)<Ҕ&Jgk>vlѤ-l2Y'䍌)F,tػ-iSGT U5|K7.kkcԋMv Kb^['KR16ȚNgvN)2MYs`GOk鲏| Ymo ²wN5Ly PR E.W7H[ @lט.՚:tتUx+"KkK`Iq~c\q3ZHDOI_"ۇڄ`bQR*m^ǹ%Zr*&=,ax3t+nChYDUA訦7gT`Yk7VDh։հW9GžVx.k OQ]ڕ2CuCOrI8n!g,YY9/#ԗ]ΌoxCƤQ ,'T5~qө`XWAKN$v>üN^TM8Hf'W ԴQ}!r/aK\^2ȩY3k12ᶘa<>-t.db%*\tRqLsBA,J5 @JEj 3DҞ(=ՋuA3cýVjzuY3j?R&lX]F-{|Gؗ_/YIߨ",57$!کs%k#"Ia11!+YEi}e{q$(Ͽ8#QS:'Nɗ/3c?FD]s@6J6D@o2x_bo&)Tm??SV3)vzWQVnPg3q@F6s %ɥn"Hy:G(1<_>6UQW=fAw72YzI=:L|A Wrd;^]UIABh {Y,k+r2+q}Es 3v9J,WQ:[`eRWvruSow.yAkgWk>U AEkУlҗ׃MXEut( insWv[}XY;0駹QJmʤr䞳^7|X郟_*l=•$Z9RA rQ=}1yA&2%NR&al [1*iRnjZXp~XԢ|yB92&Ghm|NL,BK}GHӻ5T endstream endobj 317 0 obj << /Length1 1861 /Length2 12776 /Length3 0 /Length 13956 /Filter /FlateDecode >> stream xڍP C[ݡ=)nŽ8wt}N̽,޵֛DIA$ig fa03123"PPY8Y#G9-lye!2rz9d,lN^.^ff+33 yF.&yF-@!fghaf?j /w hd 7r2ټfYT ' Aodhdfs4Z8T@` 2@5F o#*l.ζ& Gkv@dpxdahgcodnak0%ܜF& vF.FFƯnQ2haf[X;1Kؚ؀lp_ݝZڹzZؚalϤnk UGfrp0ssqs@Мw5w{_JWޞvW o S'prty{[`bt,lDLƯwp2 Ofbgk3Ɋ(ikCJQQ;7'  z}8=KddOu"Jۚڽ?A7@_y r7H/=?z# k,^u9^WjhyJ;.332-KZL,d}z13^/kV_ƠU:$lv&w`h:& fhkx 0sDhNNo_b0IA\&?LJ;I0A15x^R1Yۛ4/k"BWf2|g_U:L^+|-k8߽i/ _35Z_:lm6zxg(ΎS6N_6",,k~U2Cbe+0sꓘ#N53cITrESAWvq;Ob}3bع3s r5Dx #QLT)yQ,ĻR/ nS.ɐ"8Tqj6Tơ޴ F*qZ10DaP,/ G V2#<]{^^_Gw wr iY _G|"5bD+uyyɥψjeJ%PQ34ۋN dFmbIw+LUZ#Z݃^w`t1WW5BHF0Sv+j$&$&`ox14 ǘge Mq~^r98"oi6lOM nlc"zL8%tLFJnAW c7h*ɾ\ ek)<|5K Ĥ|nN&6|L}%]j]䩖Xj&Üj%10p^c hscC(nO[.[` &m ;a)Ј4c$h#JS?[zӮz\$+Ե ]:Dmm!?_ƋrG⎥1_ZXmtQrЎo2T*ƎWQ/~| |:Cń,7p"@}<[K2"Z[Y|,\}CwYag"˴S::@\5U [OYBt4}n-[BmOOF"&%|\ioI?1O0yR}u'":1]](af&K /ENuj YSU/K4P+-w򩅽kmRǦ;'. iL̜p=\eݱNi~M0˝AQomRcH_K,p%@Tਠ!e+C>Q@=@^RM\ZU *nk ?1rΤQeLLwAo}ŠbLܯlYQxW-c4sS)a Kxӫ+U7K@b*/5)àS~thrm[/EpDqZq%'ˬ8"NBVs p0u^jՕZ/d@ -r.; )j#K1ʼnoGeӸ鬛wt(kTaQ_|}\Ӥ$;Eu]sE$v-4[nĢxQ'ʹ=D/PxDŽ4ZPvm,cn :ˇ:xt3ۜ㼱B + `+TY e%VI$5Ƿaf \7{ 6{ +k!mGCZz+^[U_54նx Pgi*5㟫:zAmߝ$I`q9eK|'q]gmpeՙAWH3UoHؽ8?"BSɼhBxȵlxsE oxͬx͜%KN8;4Ve!-G:S)l \P^A6gszIg\aP3נx~L}p9eᚶ0=Ck|-r㢟D^Jߔyۙ5Epj8bJzx$ z$0fS\ѳDQE~3ȰGXTccg+ n1e 8ȧR%79o:rȤ͹vI{Ѵ,LŇI9 ~тUVfl ) 4*29syIfL=:Lztλ"Kv0 B;J({FzђYPS}|X<؈@w@%:և_|M#ع~ zׇj!7Yu &yd[4>é wT=}޸҃˳" hc³Wqg5SRJW.ԏ.&-6*Nw ɷ??-Ҕ2t/3вԵ-uJP.a"H<}5gB(>XX1&rdOiZb>]5cfw;#TVƈZV@"ר_AR4$9pB3HytٵkVuB3VWxАnn> ?n\hA鵜">kWSp/{ͩ : nGTd+oXCkkBX=ŤX2̅ c5}BR| }NY\cp}(#2w2K`̈́&gWV?Hmf`?F"@'O}.(;pCO+%vx\>%'bb\h+[-xY.'# iH#5 A?08%)\Sj/Mj%crux:Ch4MgL"ϭjHrI]i]j)2?VW"v:"jvMc4|-,9e%M2L4]4]J.ؚq3 EE;.\ *;f`g}`pa؆QBwsj[yG#h\3{:DLLs7Ɋ7'R%^YIP'Ѫ EǗ}P>7mC,qbx*TTU_')DcX:qMlJnZ;'CO֟3v@-F!C^,/mg cW>T@oBgPһ}^S͊Lq.sxb% "#1mAڀ9_rvAw|.Tc*.%ԪC!Z1ދP!.Ӯ=D4 :̜iqa(4"-CK}D:٥ezmb?IoZ:cZ< Vt~EM1vtu+7ւ:Sw#(C"d'}\W*$~ޗ8ezӇНtzp/ܫѝ_XJY߱Urܚ ' h[ɠ$0rIKN*ֵ[o—t-^$mFdE*+x<})ϰ)sY/ 5;o߯,ySmqM-.e% }E8Qw_zʟ,L@:*Ç(Ah ;Gty/R=MŸp5_P`W4i6v%c8Pk }ip ͨx'{Ф0oIIj_M巭0nƥBdi$;v&W¼Vnս:_*/ڴ{KݙF.tP1y͍@w٭\IƜgg`r$x79ms"?C40ݴB[ A5k6dcA㄀nSuϞ0ƕn ԴH4nWMILst($<QKVW_9m~{7|L:NB$h!vh;jٟKd(ft8fl1_[+6Vwbxc(Kݏg5\Oey~ΤKM"ωm.|tV)3IT Sލ8›z̭.|v-`WSM3ِ{j_˕!9= v7F0T+P Z},2MڗϢϘ+&¡?1pr`_z gg1| 4w恦ƕR,#m侇)粿+Oy8Z~װ^蠳jVpqu7wz)%=v/_#mbRו!fVކEVCw 엹'/I/M9t֨v{n3'C8o&2.cm:INr:=#׽.nʸ~/)DRǩbz8r =c" g۾˹@3.|8]Ɗj:,R4n7s:MX/ΐ~Ջ1|"~F~~AHiJb8N]I' ԏa᪣&޺ Gѕ|IipG (̾߬o*Q%i4wBG8wL?ENS(] kr6R](/Ǝ#] V+oTE A"e&l<rYxiX/*$jBN0PDi$:)!CEDD+d#Q!~@H k^ZoYi w0r.H ?ᇩ@r1{8!,n2b7\QM@%lO, w+4¬bp ^?0&R= %$.D#qnE݉Cd6Az =Iˡ.޼~Q_0?7x(dco*՘5\PnE Xכvh·H6^'pO q> d) G=T:V#=Mѐ]!ZQ(j́~Ͼ_l^~j~٢֧ASmzfT)G(,>rozßʋ'αaOhC!Dm7?8aBU"̌.FJZ,l7?uLI#{T*lVQҦ m8䭸v28 3Uv,^Χ/#k5=ycU[:[ڹQd0nZI1zW2rA<8E8M&gvÄS2;`8^w:-Z3zn!%+ (z\12SwaurYm>!gה9욯QDwiD8BžM;= akۖY?,6++^8zF+2Dk&cͺ.Am"Z ]7!}s֕2i#0] 2/PPqfGpxםVHsxBHbp;̡. $p=-cQWͶs)߭rtư闆VGS '6Ħ- 9Jf{FKLrp>A͛Ꜿwm jG%,Q"m-Ù_=~Q.+INz4Nd։ҟGwee{#2mpQ>S8JP)/n*RbÞHB; $Fzyݠc8tc. ^5//OE(ٔ{/#7DRsLeQ(&XF'F|GX4$czrΛzB݂p"Z;čwFfoEn+wl6q޹p6VN ه8!8豳;Ch/Yɥ?"˗XUlV\DC(41 4  )WÆD1K|^SHh &g 7 i-ŊTU]26E=剡?7c% }0S*eGG֝DJąχ*WDdyBETn ʋLƩү#NUȫ0?;"xْ)kENBt#Y`‡w;JpRga0pdOͧ26Ά CĦ~Kp`/Gߏl6闧AaHsp;/G`$ğTۥJSWժ &mSvZ-D:R3,/[ãaRPMGzZ˭ sw&g Dbk1c6I }U9UaZ ##.^LqЂ2T|#۰a~s7]j7.DZ5cYS2&1ɗi,lcc9 zSu,0elRIg-m)S4'Mx_6jL[q&LeB,ˌ;~rDƪ6;ϟoG/@jtzk/C!0`Vvj5ྣ+)$GPR[iVjnfxxR/Cpk!힮~ P)Ok'ڥZ(e([Mҧxy0*D/LҤ6vK3Z Vt٤PS"{3{$\Q9cK<;Q⡍=qEMq? /Uc<|r9"W`{EࢸAFmiCjϥ[~H|NNvSBAg3[`x12R%fV'7J#1Y IV?a*,d8㦢L9WFzo^,~^K qiAGjF^2(A3&{x\4j >Ӛ^SJu,zŐtIpn% '7K;ߙ^EZCJs4q i'?tު4<]8~2ש V3-c#\^~uӾ Ni^BM )c1\T_Wm@ Mʓ[OS~<_{[dysår|R]OA'))WAO {I4CХw,ѶVZ)̺{Dwv@gJT~? i {Β3xl1LȆ:fw=h@ { fNFT/TT1<[٭st*tv0J|#?cF̴ڄo`E, 8F߮JNPCZv~֝WbG9RZVd xmv@)զ,2n[:>«gKT%rtvT2Ma9BguVdJ]1el-uRR,?5Cu@)>um=I7i]R4?yo H[k( <='~j; R,f s3G'Bzbr N|vQS[0;C ¸Kז|c>W,׈=R).f\k0s5+KlJ)39,im2m/F!C*LV:~HMH-?Rne)nL1\,_ Ž\9l>h_gO6` nd|y"d"]+WA^J- 0Vs|AS9:jqC~"K6@3H>?jbEP1Gc].MZ_Cݤ~;6 [t7ոPGk4|m(8Gd˦fa0Tזj-8Ar(*,#15%QA{D]ϰ( )"6-P< #Es]G}S[O6ͥĽP*>qٛ'U/XA\tF²4[E pY*jdʰP<8%ZfҊb ^ ͝I.] )ܨs-SD 0ߗM;\̲%:rŽ̇ds=vkj4=E_=XGDz?J#ݹdrr8Q\yPL+|6 $] [EIAqDT2{iϦOj)ۓ0[#zQ_:qt<4 y#Q 4Pc=N~B0Igy[l Fo'%B䤚v|\͵Co` *hݍ1 53C^jhhI=Fя@Kȱ2 (%NKHя߸y;;羉W{[JJmuG+J۰=7\~-'֡0S p&>6]SQġBz*Zof;z&ޓ*ڹG\^Y-?2jEm)d#4< ޹Z%;Fun˩> Mi]oak݄Dަ`9x0sSWUl>2t޵"(7cP"ޝy K p4!҉;w4\7eV& >?J{+؋#aP]rFP NX;JHqjG9 CkآβV]u8[o!cAm. VRfA4h3i C( \!a*tG %D+qZvЍݫo[Hk CRSP݊h:`LnFM,78IYV&MӔ~GK/B[&oPEzj I #VR5"8yZ@ѱ#O'rtw}flc1bjSW#U{㋶mh~ui+26vKH-hFT$RЏI*dUMf{4~zJqMgv7]ZS0[Hx Hp%SOvW?7U$BYZCúNKqK~a|T>"oQw-I)zTM.ďw]-ÿ2!~++] endstream endobj 319 0 obj << /Length1 1674 /Length2 9732 /Length3 0 /Length 10808 /Filter /FlateDecode >> stream xڍTT6LHw( CwwwwC3tJwItJ) ( %Ht|9s}kڳy7-6$rqUUl\:vn`bTZ="iY&t{SBJ`'7O_!/C@agPe(A! WTZis,, ;K  t9>gPK;`ussbgd:A]lYvn-+d0@ 36TZ_rm'x,AgwPwA2Vˀll@v?@KKmXہAu967/7bv>=v`ųʁ9IMstsrsesnw)B +d\@cfk'o`m݄.(ɳ?2C[r,mvQr?wuX?7==@7w?P99Vvn ?џ ]9 3]ENRWRz|Yx\NNN8Qb ߠ۟Ơ+:d!PQ xwkCx;x` uAf~o$`=,Fkgv@? /gRCA9>Gv|`w|N []N'^Rb})O"*u @զzC_=I_&ǯ֢QSTP纖W- BuXtL*e[$j%Θ %p7YRjḂRL\_ y#h󒗒̎/XI(ۓ] kD&܉f*h0Աzyr(clX#۲Fpd}ڇG=.fL3h't8C=̭l qK9!qkY߇f>Nq1 WC}ra{W[0ۤ޻‹KkHҸj+lv&2t%U}_7[)s>ܙιʔ}~&qAP;ѯCU < 5枼:RT`358@& &sR"΂ E|;5gn>c+-, h0f0#L&gY/ T!ػ W"@drνShNvI,Ԧ7~.+Ġ\C FKdH8}GۺA/"K0oR}8:;(:.O;ø cm,_MEXWɼ$vJ_| *3> Ȯ!ܦɌQeť13rܼoC$*j\&{y9UiяtPI\vu'j_(2;Ã5t!)YO^ oigc,y_|:SQyO1Kd@QEYrfT4iki &crQ=Mz"jpȣ3˧QB-֚z1bU.Ax؏LY3ژ};rX:6ӽ l}b$`ńi@2^3?~Qч_-Vu|xV׼w=2{x8MTا6>@<,f0m>ͯݗؤ8aLXՀB0QCFCvrJt0Ob nǏVvQ㌨oǓ%JzOsh+c5δU%!ېJ CW"4/j-vb*mR~P3V`N7k#XKT_ًX`"P_$D&Izjt\ZhqeHCRyDTs?̂ lݥC lz?XT&l5嫢O3=KJZpכ>vi͢[EjB;IAH&@wmh{vR69lQ`=FX)nko(]DyE!4kUٶ1aN^%QD67 {L5Ko3u cR Sr0 "¸ݣ= $-R6U* ƄƓ.9f#NCrb Tz)SL<1lnSb*[pFC!/};0ւXJ ʶ1p'\>~qnb2\*ږP$L&7QJF䏬ڼq;3WctE`tnu8 / 7^K Sis"a]D8z3z/&]<`-;, bGl0\:I˝\aPH1$g;/fYt/-!bP+ɇg1٩+p@ړ3Nyxla>.L]9ϋVkK1qn[Ǹ֦V,GGmpF ɣGX]fÉ-:{0r,”_fo:T]\PG}Eu]>^5&s}PjUمika詬r.gOMMch{"8+˜ ݲlk BlTDBJPI.>9)jVWbE,/Y%0 +}>WoƿVgtU Cwz2RG SR`EC*Mvޒ?mUZuB%H,枋O*C ;NL?ȫ#0h|b!thu,,|τ"c?i]3/U>|+Ctǘg , W 5DX@Y2!( !TO+77$2㳩7ͪ3-O}lo$S4O~3;Q Tm`ā _Q/nj=CK6cӨ9=ip-(dO?i:n<ˤc_}`ZLZ`I/Ÿf:ιώ3|̳M V8I߿ T;cQ;mZ`@.zW6ukI);NQ4K꯷^Sy?T7ڒBQб}{FF{|ാ5a7XU. BD q^YJZzN4XqegXOʶH؃(a:Po8%qS="ZhsQwSiw[m14N w\)58!۔w#xr~x&K*Jٯr>ho?724ݷ'ew }UKdA=b'9T =DQI(Ð@ 5 78D|VF2еD aܗkxMnu9` 5pu YI6$ -^(-MN/&γOiz< 䤚T0<*۩;c<7Vj$r3guTqNh7_MfO ^Ⱊҙns[ЅWRX#e#vбO JT;kKHߗ %eBay؛;Y_9Y׭korm8[5B}~b;2P18 I6GɆ(=GJ5ПѦ/%96CcbD%V //:@u7I.C+eꣿl]VC"5zZĨp4t%a  G.Kv2ǦJ`Bh':,p o7[wκnZŝ /Q} =8vnap}G$dV$I/>fܯ'.uR8?U9YzEYz0N:!hjr=*@f.8x[ڰx$+U\TaKл8ډ0Y Tvt a$Yi8|TBE9,imƽBOl8!lkpa(@4mp?)f"Xw0 n~&պ G;%q"*DgcX0Mܽ,Byǽ:NlȈL!V27bK+UReMM֊Z|Ϙ;Uxj8 q5:ƒW\g&K8Oᤢ{lt0}UsTs99Bz3CjN6w aNA61j#LA<Y"ԾȾF3DB}难:nqm s A?z R'`8ϣdV"H[i~?W&_ygOS\5 r ]ڐ@Ttw| G/fn@NYZ&ڥUvځ<Z/fp{ B{ ^5q5Iu*6'la.qVWGǜ)Ob/O]PosN K~t@6/Ĭ.(d¬PKc2X/^x%qU: Eq*u$<y_*x-0XEИ ޘ0ndf?jta+q=)> L4Ub;B]kյe48.xU>EHPVB:XG\FmWѼԭۑI)L9Vdy+ԛ%Ս;cgr,"#j̮]?8b$*:d&JTEPa;⎇E0pϫ:O`%ûsm?l2!|a4J+&TgӾy6_gĤc?g5%Q>\:]4}>n AT0㰆Bv;p<`IEQb<ʹk% :{toZ<,]_ ͠}w|A\hC^iwY_NR[S:2]&9MX~ xawU tUH|ClN;;g?-,8ĕX.9I>^VaVϻD"U $C0xZrU{bfW6§kp  kL!_.΁hTFTE}*T*Qp9N ӃAqxPD|ﯱxh ٺwW,rd&K5q;R*zBѻ?'m̺V^#) n-\P51v}0g}~׫3!w 4hB:Ok|UZ?^f زy\la'L$Z зJf~H*/-Ј-t)ouj<`W)8[?RT`ƀ/0g!qh^ #(8aDR`:Ghi6lCDa/=(m@baB:uӤ@8s&}ݒ]걷zGI'.+Ctwވx+>G?\1NMRc`;)^};E\sW E),(S%JUW3,%☬a46Lv_~I 1`:&s5_b"^8Jrg#61|%Ԙ}e?:h`s>ENkC ŸdG,C.Itwsz1hb5}.sE6\Wb_6'΁(= ?Tvw$D_[ luv;V+YN6\%?-T~]znL23WdĤMk -f l%,ŸTJwgy *ytXU}_u/8%GsԶQ:Ux*5<].{D| o%зS/`)Š9wUzfA cj<|suI%U-ԗbd,Q94˛\fe[mGeND4& 6!g*;6I*K>*Kxh(5|Y|t!Sq0׉W.mօzY)m@l4!.X;A$ ;c 'p`lw VOh/T6?i%K3O' UQ`⣐픈7t wEh}V9ꃒdE廄5FrMհckK߯U?T36+m ` endstream endobj 321 0 obj << /Length1 2874 /Length2 21870 /Length3 0 /Length 23477 /Filter /FlateDecode >> stream xڌT Hwנtwww 0tݝ҈twwtJҩt;xֽk֚ggoPSi2;d\Y66N66djj-kW;?bdjmAI0 I]!vʎ7;;'GW ?CG@ nmPf(8:\%֖V4 32̀e ht4z'+ ޅl)Bvh\@`w9w=XZV.5-\=`"69@<A`$9@S^ rXo&?߁r9;,v +`h퀦2 s1[;X.wH%A.ȿIYAf{}> ksE9vvvKc!?,An666^~.4b^ RRAq`7ϟ"dvv+di"Y!Af?Cx;:y=uZuu5_' rW_R5?؞;X8.һT1fPq2@<llf/m/!7;t@{k; eGn8_Sߛ 2vZyW d;,m'\)@Y;]_kllG73[rV@uoJi3G{@/d6xqps|! jk,CH',?A2> +/'+ BN`C6< E/MrzVCr8A3A\H;? 9<aхt叜A89MrW&ט\qF=8;ܿm@$7$^pAws!BnrV`in@!<fi39H$oTQ!׭=@ 3G3PЮ:q)Ի:i>Kn{tڬuxX?mi+e>MƉ3ȋȐH|:j¶C(P9z z6UL/(eyMwvt޻*oF4tDoc;K)O*{ʟ󶛺0&Y?6rk6z 5aаKip mA,ܵy%X31[_mnG7&kܲjE9sT~L{66Ypޤ=t ussA]GJ #[l2kvxW)Yyj(#Ɔ (CȷC߷q+^W9{v_@IZœjO@=W#q -?/A'@jQK|sv3Eg&7$xaq3]@riSǢuAx@S;]?-;1҈.P3Whデ4E쏱VkX..V#ZkXŕ~noAV #]"FHi]>:I .|d7@hN٭.3 2,!g/@fHvq8ɔ^l$=7(qMN%<(W-_̤ڊCQL9eWHp' i\U+.s']+Bs7He_}ai ,C>fORj6/~v .e%cXN֪Q'Ty7'p(mc:Q|.A 1$@\^44&١(1[+\a;KϠj83 H hV{;I&$330'ڔ滖&:叏Itme 6qW ~KdW@G%yYxAT).nUmP{1?EZf#5ŏILɳb熌-ђ+WX>p4^(Ő2-#3 N]IrNtiů62'6I.ԛ0lDE^=%”K=y2R91>VeDf844r563g&pdS@m'ϮJ0HV獊x{..J17xU5N8/0?{ލ;1IDM9 m1$D_E\IIm`6YVv_GN߷1e0f +d PT9GR㰣wBH0#h}0 =FݗTRZ0Pgl[7}UY=L5a:\$62F(38,Oaqy07V&Mi+:/L7Cwr9$)J2㫈o Xr yNN{5 >-H-`^.IKJ( J Y|i"3ԛ$1ja-TⳍQ[l%wFkfh,@ ?Uo 6!'/rz%5v, hwlז^.gc2SEU#ًk dFx<Ol?os.+酌;0"JtрVz8R/8:',*rw1{}̋ PR=fՏ&%OTp<N{Cڨ}ez\vykcoKzHk m GqA26[sQ(,;> C۽~tt/ˈR[x5P+lx׉wF꫻Y\*a5Iǯ_Gl^à|~I/ͦnڑx@A~K$)p%kqCo1L+tECDc]0\I­#mt0/q2A3@sرZ%&PQLE,-7Ƣvpg.cz;NMZ=3Ucqh`}hl)6gupHS&-p,*?%mwp*^}CVmcX $)[,&=p!%džhz98Iճ#^z]-B˲9EX40s%СwRͦ_1&j/ED%Ԑ8$l6H)dd;5 r/bg|ճF ZJL w l16'7)BMsoDӶvza(O?~ͲPj;G î2b|{`Tѝ` XǞqzD;܉ C3ƃ&x]e/)V..;˙. 'CKSŒy,\ghK/>>cmr9}C!}CR6,Erȍ 'v^K/@N:oGmNq~#Sb /(P&3Գj6+O!_ܼ`T 1?|%Ã$}‚?YOE%XlŠ/ЗTq_{- 7=gFFNy25O?u)ں]!U1G?7,/g)q+e~1?j mސhuR{E+fyEUd]dzK="i@OTQo3_u2J+$e/Hp Qr,'ԥT" esOR S_mc=JZ'v@4P#Kq"vA%+ύ&~mE# K$z)CÎ6^GKr<ߣ׃Z|Oqd<9Mh%[24YepFƢ(c]!0JR}CM+Bn'e(RMࠢc5 {F{Wa֙颅])ÙI]]d혌؆Ci -d0yAo쭹 e4a@6qSw F儨ZH1_XEdq]Iu.wB|RBmcۖIQ#FfUU|aeWܢc{u]s n!n`h lv@dΒy-Pa;pO@g M@AG_ͭhL.9yX.b+hVigeZ9 2E$<|OP;O _VK>U89f(SϤ'6۶vk!ymMçMw9n!£1Z5Auy19j8ɶR]>vSteiN]|*Q ev`ښVLDE4i ɫw͊PĔsjΥS]Pਵ/l t<1`ȓ%W7<&@#ßFwFULb7u9l_WMq55tp%,K!b:Rb3fls0 y 2^\TCךCNg460gc@PpݰFNn^I5&|C.gP٠ n8Ϭj[.ͩ u)θ [BMMbDBAn0u5tItÐG{:*{WiN3~!4V_ &G2TE%cV4oT,쭭Ֆ@;֫6d' <*5'^,Cs2YD*!b5^B v_ڪfNPfs´d#ﬖ |P.㪂Sކ&viX1Ӿ a1}'$혰s٣7 ظØ{BJucxby:K63Ӿb.ƨT2rn̓0L(u&_PYOh- 4o9(X@Q ;DJk]|.*1雧Y:1ˤ>X07Q)\?-NۉPvE1ܗ^^-<6ݝ_ym qR{A,}'KmVF'.rE_T RNQ!dDߊ5|nx|ћƧ">S ㋋3WOy=SXח̣ԢNAƽѝ`g) |YT[@QXšzp}]$<@`*s"W?z~C%;i0B1`w䥹t̏aK'FTSb@aeNŋNᘰùuhܗ6EE)ûHɢĀHoL7M?e q> x˙8eӮ +q! ɅB| c^A8Sr $'E=[:(bRKok^JVWxhRWZ~[_RVK86st&~mcaH3YjԄt@5/ /uġ>ş)g@@Nmђ8U+'K_ܦٗTlBIm)_qD5q`IV~X8OT㫒7y""ރ|VłpϣZe Ⱥ>񐏯`XNHuxoi4\dSUz$vdBvp+>T_ɄE}~zЮ͢g#ʟfBr聬jh8cUI)ߺ<ׂ6,kߵSX,n7NbIeDH#vo@M%.lannR`4T 1 /L9u^cNX(%ao+r& gA_b[u;R8sx[hOu`ѓ'#$4|L5J?}>!']aV`km H9edԺHt#ٵ`n+o՚rƕ=X"mcz-svY1_EGtN[w>^Qգ[jwb&gs-Ou7`:StȌ#˶'#DDH-Ivz5lzjk(~YٜM[/Mzv[dۣcTC:ݥj|>`z[qN XnrR:,ZC^3dE; ˌeoH#0hỌ!)t%"٧Rh-*J݌bWo@(3t˜ J&AX;e6B/Nn8Qi^ V&íħe{EJj\LSb*uq_ MѿyPp]cJG.{ Kj: E `muxCӣ8JFa]1-"♮BGsָ!ƈ"v𤨐WwI2/"&'5uSj/gf͝=5ippw|t_U~k0=34&vj]Vѽ&"c0^)Q؊gy<力2 c(Z&f:Ng@妆 & _ݮqӥ@a<{-#t ;.v` Vflfgz֫nuUadٿc:@O6U\,gR~gUmw\>6`m9Y%!L=qTL`=i얀vb``!6BZɓ6,7D\!V…ե8ddӹYHfQ,+ea.y㮞#WbS)%'ophEO \lLye5;j 64]K!ˊJrh +vc T=w,o? #Wg"~כ#z2RŲ6E]S.;|Ƚz}4ȼW&^^疌Z_t,q4Κ2fm 自 *zSS` *m<)08KV2i,s+HbT#:cdzG3j:dU-rCwd2UdcYExhH ? hbL92zb_FB#<= Q-= \FS`0n@ZO(KIC͎[:y2Pfrk#ُ~n+J0eH$>MTwda vtP0߂&P9ש H̑gƼjrurIȒv=FGb(:VPPBile:^yIū ^.c ~D2u {czf/FD-Pʕ;j-GsDv칪ٵOF'%{? \KWi'zyu욛lMׯc`Xz BuĠYVd`\ +HvhD&e9Q?KC:9,4Wgbj sxH$ f%>P/zG{N3r&8%zL'v?.)ʓZaFIӣ9(9tYe:kPUib],HPs%{(\^GO !È8@zь.d(lսD zL`t@*<1x#9Zпbao gGxݖ"l+ؑ0S^X?.BܕalĩJWbJn'4sL(xƿ6=}!=@6\KjO9 E&5 I3xLt}"Nd<`$!Q\T?Ӷ;Vc2^rlQOͧp.BPַh}5V40A06H,1OI?h`0N/k3-J۬O^֪XMGc_khZ4V&() -}̙9! |:lQm\6_@!x\P7z83#hXFDTq.+S+X\U'6Gwl *nC$ŝ]>>լ0?¬b`BeFpp! XqS/nhLI;Xȭ^C0h /xv[U \\'Uvx#hAHY+,B w'fgx1y9ÅD9!-+E!'m֛t.\-p),F0nX QGK}VR}CM27ڟD2soZNӧDLW_J$3S{~,dۇ^Tl,}9TߒSűijSvR&@FʠR_b04f2(*l"D |ubfQE\_ZB ov;v f2t6~jJgh &%-\XlNHJtBp$aM#W=k$w0ԉe] XZ{:}gkw$48:q~Yzai)kQEŖ9Yl=9sMyF)Ҋ* w*M ,e"fe*Žojz. x'2'-ms9ן"WHaݱ1|і\{WtUKdM<#O{Xa?~cBP\]]bd z$KW+cU4LECک0nzW\ڦ?;ʺTsOv梭}#fn<&Z_.".A9x_M6ī=@A0О)L}^Vh:4H':Q'`)U}}> U˦t.ɣ?EJP6 V)i\7+8J_8+f*RS?%w'Y mU.VA<z 8{<ۖe ]62_2adu<oCXfQ=XJdRVHa8!bFey> m ^PCZx*4 g~QfLM5+` "E\.],ξlF;ڞ |gbPߥ8G8,)Y\c1y,00N*6jaaL64SGrqbctlPdv&zdlR(42I;:e4x@CdܭG!B?1Z6L7(R:^>"'I) 5)}qo‡@Tfy;:Y,͢Z<4D@38CuKO\uc84c*%9T.XJ6Pw-w4fhM3U4ߧ#L *Z̓mDQz-~q?好9|mh L;\Pe&s"Iy܏f| ^l5DYHWn_t%i&6/Pֶ"05y DW>{_-Bv 3&r]ə4iJ%<45VO?8:foDo%I@w'@Ҙ|\ym,RӘbԖ'L-l (}UYNʲẐy_P7&yɇ&9QL9Fc2I@! ʹ.;"+ mAG~+A۞nwx eK[vS"+52>ąygZE5HQ=b"mC)I$Z㱃?/Jo8`bݧgaM/ZQ(9_J FvquPp@nxT2zv՝&Ai~zR(&s`څLs"]#i[lx^~4谆MptVr(.]R ԃ  HQ0Hf^ lVtP눘Tj[>G4¼bS1`݀ޑ7y#ZGWE&qTW!`Kp9χj7b`փihP*"VXҒ)\!G>M~sr^e}6_K@!gO=LqM46&^v=[3BxEuSdx57}T:0Nsڡ2EtO;(d)SQuY^౏cJ$s >dTb up){X Ԃ3CVk0x 7s_} Ak 2"y.Gb5jDS4{pho)Y SW5e_ 2q'UA)Tr$#ִj5zy 9 W{m¢ƽ" aК3@b<-7FS?@519LjqDaI)O)w`cLzgg<~buyMQ"lfwǛW٣; Q+ⰽ:{'W#R8jj2j1OSդJKr=NMg8B'%oYM2m<4|N%0\2UǃMFYYɽjr9Pd48ܤ ?-(_#?[ڡqzaM=?o Sw}V[7(+mn$Q9ľkDZ7^2#b6T`|DMp$ cY?'݃(V:T6 [-avWRaQ[0!aOxv-{ ^Fi.cUB'e6bT۟\:Wd8Qy}p9y93^m|n4P"l V{8C6pu~ ˻biz%30_OI5Omw,[V~ncs <誵$Ew2,p,ӰC]ҚītILV J$sDg+}I(sdՍk-#`aok3P+sD㋿cH/AC`B嚁EW@1-.ps:& *DX,zR-q^#} 9 rV{ŏ5X 90DIeޭ1@&M;p2(5-0eܸLTKHթ~_DV&U0YQv(J58~yiq`y-ֽ;lB-4H4 hj1}n8h*ztԄd0bQ _϶A8KK8lR'Muz%P+n$ܤW>Ȳ A@1d 𛄌;8UH$C٢yjA- EN%HkY*ΖY>fӎ{nxzJ-}Tq|iII3iL&T +Ɗ{Y<rЬ:8ٺ%Px nO>;T{@?b)fG`#ٴ,;w{% e'6)!YNkOniN 9hV&:Wïޗo?;e8ٴOM%tѨ8m%$=N#(\)Z2^eIݒz.4TB}t,w'q? +PӮ&ɁCmp<ě+Cm ;dxqBd}eD7V˱F}n_2 JZ,At㝁Tp'x0!@)lq\yQA9Z-,zeVh5*Pjw[r@"Ltz<Li&vVC z룣 cY؝Kb@SnUNO/#Պ˓ X%V_+"H2zHC?*!F2ZSIYȂmUk$?(KC2daptA~]I@ZvQ5'~ 5aCCXQ*(x2 #Udh "qk[70&TMC7p-4ђA`sNGԷ3] 'E͜-9/R5|^ jHeko')?]JH#IF }Hs>)A8 Ak N] W ߤ&fTL~jrk.ф]cT\p)<$ tRtO$3D_N3d)r頱׺a$ljvk phRAkHWwBb5 i!gc%hm{gׇB1"քq?SՃY~r, a7Yk$YӔq=g'0m~mi]4oxjUi'9>1n>fG1ѳ㣙 2'L)Ӥȏ y& \cĭ@A N&@@shOP<Ҩ$R:C6ۍra^{lߏ_{.%G}/ī4a2F& w6Xu|ͻE\W2:u_yCݤ.VG}S)./"4aSԪEýIBf&i0C X[tÌ\k[=ErԆ ÿ{VaٵJR%= :AjsY!ni 6NϽVȳvs(4!ނכ ջ ,\R ?IAx"Tz6dR>BlMtG؀!$(B2gg?^' :f#Ҕ2"[k2n$?ƷX8']Odb{ls>1i2z)^!Sҡ ;Xƒ-0`6$Ṃ(I.}%컿<0Le!/7[s'R"ޮy.OW=fZ+Ց?s Pn!])/w*U7PY l bK][xkJ+?|tܺ5{ky%cq 4`޵3#w]~zƩKp/*@+U&vD2+͈D G.(qp X@+ɿQ,KźOݷaӍ g\ <{:q(5J(_r'T e ƴl-pA68oZ{uH20mO{'{0P 8\VC xzAx*2Ž| ȻjZc61RX >`6GZTcgT!)X ތ l5*LTf*,h}K=/'})j6~ sfv/D##gu3 翈eV endstream endobj 323 0 obj << /Length1 1685 /Length2 8968 /Length3 0 /Length 10048 /Filter /FlateDecode >> stream xڍP\]-Jpw Npww 2&; NܝpI>߫Yk޽zסy$j1JALl̬|qE56n++3++;2 F Ew8?$Ly0@`{ `geqH9L#pYZ9?o+֌{9@23Mv;!f B X9;󱰸191C-n g+ 4*db2fd:x6؂̀`.`s#ys@ؘ_@ߋM v&``ݝ&`_D['zW3w&)QUsdwvbv*WSC`g'_IfGgm7ן6U=&lBf tprr˯N_ |!"> + `2s-A`?;zcf,/sIJȉ*1Q>11; ps|Ugn[@|v*h:wP/ `q3:z`)yn_E͐f!f֕7$nL;S4;tL^ -.wtekW["^ aMFj;McU=dHL"ޏZ60 /h\xUrqnܺݫzCgwTwȣ<O2hFLfR;3!ccL_^Mag=Q2 p|]gw;RNDMKHs=*@oPmMxJ$F(tci!Mp{U"~#trxՖ%g+zM5ΰ2Yhq<':Z]S&>ʒ3?<@W5+ j[N5f(LW5,IaњߑʪB>d &mWfȲ4]T;8Ϡ#ڨ .4Bq/3KZMV}KPqcgYQ֜{.>%'Ex=m3!Q3REl1J-Sџ7fy+XToYgE)ʌy~/XH[ A&4^\l_z(395¡w-ՂH٧n9rTv|0KIs㰨\'ŒUD1&/DF܄-;R ~|-3 .t88[UiG  tϖk| w:\MiLnG`?(5raa\$_4W5gL1Bh`Ԧ;>/@$h. P̘mܾ%kaciqx$UxVa](y%E 4_e3萟Bqk!Xm 6mTh3NB9c@+.8=]G1ܫn"s5ja)\tʙBu;+Ե񅜴 dG {QI8Y%ܬYIZcፓ@{F%n%d+ BfW0*!6ᵍ5)1[5VR j7`AwDŽF4P7 eKąe~T[Oo ^Q{ϽfjY(>JW8`!^Z1l׵16 Td#ϳv^ vɎs5ho^FM "͔kX󍹝9^PR%=$ԃ5\Xղf<~)2 i;TꩀkCO{C>w 3:jfu=Qh1dMUFe!4p keS* Z%:DJ2 uHhɮBc49 ;z=mC9de+K{#3׷H#lO}gq Ȇ N5S.J0%ਭV5^zߖʱ61 GQ![2͢ww_tc1j}XʏqӪ-QWm{Qb\Ǭ-B UD}P AUHx}U'2t%zxh6qoxһM֓$Sn+ ջiC-M|ތ&e6H"ou .`+ e*lq8eMPGlbׅ'jTTepM)ӗQmeUDj:(WKjXҌuRKxN}E<M=Q'ybE]čR .P@bW- r ޸t&S/+yZCvQQuO?V/bLRlӶ=eX?68z$|M,4X{ߨ3JZ9k<-rXZb5h'+$^qWХB<="亖oBP{$pA>OY9Cu5S's}vL6]'g{+=2~DqEft Y=xkD9xe)gw jU7B-RKTr1"a|;_?Z<(@>FcXGTWƁ?2?M-BqOE{D SSO!EeǴbzsh+rm(:lFS:u2YĮ+n6 ]ILS $Q@J@bo>Q!+]GI0߬Db3J#x,&_qwsq.oN|W-ᐰS¨8%h'PM T-F 5v Ճa(*%1c gF'iB ,^ʈ:ɍw_Qr~Zs+9r);A>?G!8p4 JhPpg> -BayiEZ)uݣPq2%l9i9#_YW{R(+(6?'C/_" %#]wgʧ` J>o*͑u*v iGڹb6LiQJGҰ쎧I^ *JC 'NcU}t:~O3GصܜZO}ll_ܺl!J52Ag24tYZM>sh,i^B vy~-׳9]mw(VNlX×Jl31dU _7sYHXz PsqI^lޖ Ӵs&o-31hPѠWnn٫&F72>A)ʷO2eja"*όG*Yõ;~SW]ÉJucThε 7( \5ZY.TwtkJo{276m}5ݗ +0PkAsusR %H:kKhxn?xiR:i0ZpEC#T=FSp [{H QM&"x9u͗{LZvO4AuaMt0'gkI(.,Jr=O=)j%novKQp!MՔH}HC!=sNќ$\滿{e>Pǟ_b?+}6뮳}[Kl{.aP&Pwt4^L?@?~q&R%[`k MMz4[Lkhݵ}GҔ4*[ GL6 3ESSh&7o7>DQ}J,MR:M֨D2UYcGUa eIrF fJH&{/<U=x6e_t,{cܚ0Zr2Q7ґ,7R)wFc=ĄoDK뺆U/e̚yfqG0$2hF޷[i3hCmlA/*ރz#ɐd+yl4qVi؅ÞIs*IiՅfaS[I8e$O%zCj5j,nHkâHa= ܠ,>^oŗ7,u p(24FR4a\ @ :"BJu\%G8ǘ.Q=3v+@rk",Ip/OD#gP;DbΏO*TE3r|`hw!v4DkoUƾNx ?7<( VNn!fzQ 0 L9?HH8d+a>x>CL5g9gHEHL9"Bne|Ma?l3]{Ǔ?vՓ;8Aޗ6aT>\p8m-$X?A!95239Vn>Kl7>8_* 14Bx=fymRUnHdsd ҽLe&1G:&n803>lOh1}sEau+3zisF}w.urcFF;?DPq|SuEW Cfr4fRo8vה6r5h*] H#ǪMg WݘMku"'aWxC̋k*rНЬ}2ė#8$j:t߄gWocX"2#A,=AL;OPYQG edhA<޵,($p42Lk9gbu𳡀M6PV؛C4q͐e^u5h/%My+_"+%U酩sx)c`0L g`R*Z#9:lk^cE2Q2a)tY+4U *p!tAK#0 UDjDrn/t-s|wr HH9 JVz ~>yԫzO9,$8rٶ-y.* w6O7axHK$JްR_W+dyli!u.ͼТAk)eԽU{SoŖ?(qUm$h_}*>Oyx`KZ9tޭG=/Cw81bFI0efJH.A0v6 y%tbt*ضֱxEsp=o5 c`orEņ}~$tz> stream xڍtT_.]%)=HwKt 0004CHIw7H "-! J}{{׺wZ9qs> "Bll`%`30+Ah@iu( I%B;EkO@ `>p#uK-(!!; m-k#u5>#*) o;<x wdEmM `v^p@ ;*jPg4: g?_ֶ0WkC@eM~7` h q=k­rzkعw~w0C_iPSw_) [ԭn3CQp0<@jy 1 *(((. o[G_ |\AaTH?W+EۃP~֞ Bo@9fG ?{T`o Jx@?+s`PϿ+?&yy7OX '$* Q fj7CuwK ?OІt p+{3AQA[-!7ףr2Vk0/;JDhPso'?C{U a 9K+Av`Tz ҅=3>PfzJQmF?T~͜!@5Qik?@P{W?QA(?0@߀@ pG= p @Gp8j lBC.6G'6dp=~r<[ɥ| y*;t75Yeͷƨ{G_|kag3v7 vlAVX«[Żra(|fSoVLU_aYp[M4 Лdl<I=+\g"cw@=-+ #)8vYeP4uK 黩sd6*IK#IܪRƜ#{Y}[HƝW' |'>vohwJ\D{7WT~R~@L/kp*weʭf&Qpـtzwڶ:T/kNO_wp8&Z(xcp>^I}ţ-̗G9,ClڱopPĚtO[!4$IAg)MK!\IZ cDl"F- r6ÎٞVc,{ؤ :B8>s5gSACGBtH͗^.c|vo*JFTs~֍ ˚A}^X:-'4kv=%^)fb#}VyA ~.0isRKrw*Xh-ɢ;Tۇ\Z5ba,cŖK }IKdH"AMG(s jb@jEfl;CCkʧ#;Yߖ\ҍКG1~oQ1uV>$7"7`b;[&}G_ h6C`O/%yg9"!<ҸWʁyGqZ9(9@k<Ż ~A䶚XE@tT;ZQk).V6Y-}yjxE0.JHrN탾"׳x>DNg1+C ZÏBQy"ymwƵZ987zH6< +}1l%};]8Bpm4SW %z G/~ vHl$}K6{;yU}@~b[ }P":Ox'JNr~WgcOu@/Wē q dljq CsdϵWB"_&˓"P3LdgcXV] ^)f$ϟB/\L!Ν̐{GA"1amۖXpL]$\k^ͼN ے=,볔,bJo%nSN+۷g.4kxm-Jc!{2%BxEr[8IqBJ)(u:PJwo3ڜ չ蠛kuP e_WLtk 'jť5[;#'<BN)1?P);t/>OvޛJoZ)jxyIG#9BW/+i {WFk|lrI٥4ԑxaz,">4u.0bMA̼rĨ|LE8YW95FW6' 0 .hDwZ36@()^QD8 8?yyx2 tJbRmRBo)ī2Y%eyt~ؔfAђenpd}K0SCn|y-Tϟ}dSc[agɶ9BcOMGs(D7$Ƕ?$!^w8ڠ$`iӓk†bU8$Ř*#>N6mHrF xʄ]CAJZv V~?>GG7|YX. foj3-ghՈn=~y9.*ڲz:/)9LIsɵ CC]Ĥɤh%9";ev5u40җbDeVeջoP#Mi) !/wblOg$sg~J.['8),xӜj[U z|Þ` xVBCώ^絠\9}yN] zGϑ\*Gڶ6d''!=MםfCk%HY23n^2$'l5uqF <qV{(+R_rT݌ťnX؀M;g\?gGKb/2dѮRM_4E}AY*͡87 ;3ZHn5E,;w?2VvJ)vp-bV܋]yfgyxJĚCmyVY1ƴuoRmsyw'Q,ܧ7嘾ڜy#]VYd8o+')Dʗs(m' 'n S50C7^gY!<!V (sw ޤF6ϕ{;%RMj?'\+y?mV?8{Mwpw|N3 'EYra1 UȓM"z1k;Oej)x0};x#νOp^DĈ1.WgGsAYܯk'dg'H!S4`\yj2I<=|'m.EfqdGbpIBf\"b˽Sj1.|޲ 'L Eh3+٤ef \TC<+1/c m)),1s-Q2kpщ>l L1&u| &To_xO08릝?ҿ3V^pT,rhu$0g~ _/䖊VRf 5ZEO 'gA9q:7Rq?;c ɸМϺg:!E5',gB^S?Ԗ&߄vaTʑ !s{i2!|B~"@'ޟh-sU5;k]iCM %n"DX)Sy-RNѢ-@#oonx-k\{{?.X߽9.g ĩurv ^.YIgsMsսVqSO9MfL؃=5$BDk9RB6JK9|ꓰ#5E@v[QվeF]n%6a`=H ~@0=#r)TjxL?$[.N =)܍}6#l}ReNVLM?$?]3Jǧ wG?[3yGڗE?4OsrDYx"4ieu1 PiUKhS +˘,"v^dp.#GcQPLςfY.>$]&zwZ в7j#Bb n.1Gϟ¾v{SѻՃh}ܗ7%!Eaee7{sAaD'O.EWj/ pOB2ܥ/X8]7 X)wzG~<7Uya4J蜟*tUAx3Ӽ&A3L``ITbgZk{{cE4"0Nۀ"ªWņśA`UÉlVTafIX,Ðu,cp͝j2Orh=Řz+)7_kod~z| pvRBI 1X=8ضR40%n rlל&g*2il&jjpg$DJ~9^opڼi#!aiqպ01I˺/JoiY5b1$X`(ޤ#^kȀxl?ڹ`;dY*|s: de|Ո.0>Ow똑d;{&rJ5xNG`˟w鸾bl_38~]d#3"= p3Gt6IK}渃bU=)![[<-\v[4!:]Nc1Nb*3%PpC"G9Cގ3c»d?l'?worn O'J|-3ֲj&HXvMӐj٭?w=EwЧͼal>x$,!Fsy,?P=!-2BMEznM,t@m&ؖ$MqP[{$~ X'ptF"1ݛ}mIL6-*])8HǛ#ͮa%e9uU=KR'2k> 9 $OCC2|Hxyࡱ&B%dqncѭ05vM]y?a|phO4@ uh eZ?@MLB4ª4S* X1ZʍBPYq;FBq\ft}!Jd2Jn$2`ß1p5>2j՚JD1,O`M?X\=]zԮGT'?LNfmdfqZY*de!5m0)L?Frsd|XCRPO$HW~E>Cl,4;Yoͪ'LzNI>7oZZP7wΦEĎ="Ș_ G)Ptlpz \sJF+_Z[hXA2C3-C[/Z"?pûK~REB endstream endobj 327 0 obj << /Length1 1566 /Length2 7031 /Length3 0 /Length 8074 /Filter /FlateDecode >> stream xڍ4Z6,zD G;e0f0%z!z NDM%DDo{YkfγyLd7TGAՐHcd! @B '1 qB=P0$B?P0 ť%A $7! P{:BHEĩt9:1y~ $~]00`h s v(!vBQP/=d.G' `t@{= Aa`4znP_d?'_``F SB`/"Bb^`l!:hcчx(! K#W1"앑PEk*0(s?uA `{_2=݀&'TS9B10@A nH7F4ż^P^ a4CCZcX0' z aH_MLu5HǨ HAaaaq sav5H_"0?glxAg(A0OCEHm]ap? L?{1LfпZjt_&E# Pj0> q.&#Q_ f .)o3YWAA1qKJ /U{H4p@z* F8y!.P̍*Fq/!a/1 D`O8QC0UC<=<07>Ŝ !2ίk?/t$YEf;i%g`D+v`?`XAY<$O44~ K8Sjf=6/S@Z*}zM(,.%S$v"H%[Sm !F=b3=KGL6OISbj298NEy4,:SȒ3 m80Q s'"VpɁO/,nf T T8l+wU"N4m:@r|e~ddvr{ S>Uqt,ˆ717q*0/WS]恂{(Y1Ŭ&VM GST._˘_.T< mM| 0qpC`7vAw<$;V^']IƝ/JB$f~P=sma?\.<&]͋ LY'v{;7}4.NqԥËbʋ1&`fBƓ–g2wCܬ4(wWRPqEHU<%6 V!&IIhAa994h v,97R]2-R2ApB$x~4뫈ieΨӂmqw8"qz\_@JdFVUKR#ݟHmvO6$酙.+մ)\ikYpVk؆N/Yr$V=dޘvpP9}7@ʼntJF wf8Å&yo]^=^sPυr&#%v0dhD__klAuԢ=՝8ncYS/_a'[#,2ޒ>w9ٝLJtOvWRf%Hgie? R uSĬDc?I:F| ZxI*AS8I#n^:>v򏚰Pqxro?;{U)}x{&u|.Jā[wifK+dj-A;~V]=Yڽ 3&ҏpE}% |8 lgMcs_"Bg9>YQHכP-\Uk'lƟ<cT~[ 0bϗI~ieC(v-$K !x*;v=b ?*=?7 U<V?iڿD,k߉| 2[Hta}l \1ޑ:D.|cSo5R'dc3p;ٝx!~-ST KW /EMF  ՙ~O8gB0ܪr񩝟<;ghtțKmƨxp wsW~bli$~+dp&Fw1}%v~p@Tr|6^2xqiäI춻~H'3=bz_POKX?1;)> pP xm8e?!s-'JU-ѓ zZL/8.8^f:#m %-g ݞf `e*ʕQ7A_#|*O+bFs*?huŭ=cviQ-Vp~/3ϢXPu4sϪMg֪}39gohg Uh8HuSXh &m_~*c;M8A!]pjjƀw؀zRj34TLݎ|'3[n/qɶ +EΟk;[6jlG?R&<0[zps潩ːw1ʪ3ۯV9l oⓅ,?,}D+P>Fzޗ}L]䵲u?GgjIT~61L껴m /֤,4U1)rZ A޷Z-g[ |3,FqP`:\V_IQTYY"LY7yqb&oF82jb $s3Iu>/8ӢK֖$ýVcV}#ftzs ѮBq/nZvNd!u9 ]jL +ACg9hbiDՃ,ZюQe}_ {6ɨr+Sv~[Oo׎؞=f^њ+e.-=(< VŦ=A;qj߷XE*o=zW(rËq0h~ݝӧ7,LsB+?Le*E('uD]$Wo*l]\KWCfqpWN zP~?P>CCQ 3nϯClrDi{_XOLoKlћ!7,'ye5ڠ[q"y-)l9LKmCY7R&|(YޡN=/@7Át" DYs75G k[Je}ڴ6xprPcs;$3xc/=Z {{;?6|rFu@` j*BVI{[0>dS;yfAٷd]fM&*i>vUXp].JݖݑLˮ?={-(\VM_fXQBkdEN$KƼz1&׍cBNo[95Sw7(zR 2w fiT9ܲQˑC}x@K'߃KnHqH_{X 8jqUAi_Ƨ#p.:SK5>Kp_^ڔS8.Uĭ*@R=ؽtCDZ1lcxղA/*9eIݗI%˹=2M$pɅveP]8B\:zN VldŴLs|NL&ns۬ф|N+}w{"d~GRvLdјPk,(@XgrӽU^KfIRH*ܷ.4#FX2qC>[Rj<;nl+ nhCk2bV[ ]=gEz[8ůuտ3=ZߖԲ']/ըsl٨>dH` 18_uO߉-L[ZqڏaD<0Z!#õϓ[Qaϵ Ăd'2J_j|>_Mz +ٱ֨6м3ZSЯ+'^EZW$wݬq ɹMIz%FAKM";JqVDt#o|Ld◣?*Ϥ,ļT'HT-ԛ 6xv֍Tg5J-yBS뷙p_ӷo}NRͮ%dvc'dfV=gN]3=\ E= oN5# p]Ari3Ey"pۼnYﷂwJyR SE$7·q5uU>-JV#o;)6|u)'N,~ć߳[|;]bRfK%ۨ\[JmȺB+̻sM[2ޱJc[-0/n*aCgZH %Ei+Z7x&Xc] -.gU!1J*أG.kG̯R$7fYZkhDF84`0 UINퟨ1u{fw 0Qz Σzq}+ugM8J٢Ƣ-*}? endstream endobj 329 0 obj << /Length1 1393 /Length2 5903 /Length3 0 /Length 6851 /Filter /FlateDecode >> stream xڍuT6-N etctJwH0@6`QB@$DJZi DAB;x~9{v02V#4((,T30 0X cĹ < F5 ԡ8|pED`,w #Tz"@PB`"7B{(Op7s'ocs@`Y)) Y 9,oi#sC H{z"8";}HxD7# 0{@lQ.>گ߈SUE{@aYII$PZZ2Y?SQeƀ8<Ђdp2m`K[RoYE/7/ᆺ"]|C-l#=\۫塂rS\XTmGb5sMWD!X7> /^u0g[_//@B1'~x޿ 8| 1h~ qE0NuB{h9q!!\Ttފ]]9Yq *ykDqVܟqoli1L3s8djs<$1ܞ *H:fz_]^f X^UgiɜO]#y爡ݝ׫8(s{ $ʬ֩Q]axChEףa)'d_R}Eͻl{ը)Y? 4z7;8U|L̉aU<'S20*emz(ns`&#o ]&"J_ݕm҉0&y'6NHb 2 eLz"vPRޞҳ뻞[񍞳N9OΓWo|㴮(H`8|p7Ω+w0UkwED`3 G7S P &j*'ȡC5_,67ŃKxv;Ivލ힐XPdnE  ѷi?Uwp6kyMATXW&qx!Hcc 4c1K$+KpIE›5vI:waw+5^q V y{ʩegJ%]`r\]HsKMVoN' tݜݶ.Ec!Gom;u79z_$WZ]%c|KY$>2HEJC7UZǣϦIBN?S%}v z"v"mtG#ȓ# S"q7N1AM['v(K ltCN*Gv%وj]Aj G5'I:j7 ~@Ї]ًLҫoܡ~>pذ㡁!J 2+y z\ aN7 [nZ! -@St2ƒ@^ek[{= ({HO[>trA;!d'!!\q@i<;&0.1\uۿsbֹǡ%h:\zF3;u#<LIi]QgEړ1_ϣB?۵HM YѮSXn[(=iJyShߟQ_BM$7R=" n "gξW˻=VLiR;L! 9X q[vZ殪⛊9aK{Ds'+οhI8Ǩ.xyuDt]UJHfu1"jt+AxN<+nvAS{}y ,HEkw!q ʭW[I/^خE,B J6_<1`@}\|85Rcgo2oGQk,7: WWv#l錜Q< wR\:Jft2f»RG;/Xmz)lwt4\l ?Hjr7h9 6H֗2MUtm:Q P}<°^y8!vufB'bo7ɝr DY [%@>sz{kԓlTDv$3߁15'Y/Ǐgi,#R"ؖYi &ܢ$>""kRjs)և'e*0[+> b".RaQ&b2S{|tx rL-*k9X+lrDrnzԘ0xM"Ԏ%@ߩݾ UڈGnϮDrKiG I:# H~?! bTBQ w!,oi=s8+6;)832φ{%@gpV1zp0?T;_`Jý'F`Ҥ2Ki2Drǣjr|vleP(^ O`ihw\hN3OM"a[xr0\-% %{DlYK2SQUf)W48 aSԁS풃1Az&SohArD Hň Jsy?rRO>_F4*dXc?'ΑHhLQKˁb9ߵPjdYY[;R6qqw!z>C|TnG?C'gYn!$ꎳ۶Ƌ[yzɛ2˹RzvRe[*/K,";ߔdֱxE9+o#e GLnj'QSqG?s2pX@9|n8]ayzK1jjS \2R k.aRl߮ÁmJW-_?M'd4]h6 HK2ӌʜT*pXWF=dOR0Az O}&AC17s+fM,/*Py6?%097[\ȠshĤy)q*mֳÜZuJ2Kxr7-w1CJ?iZ !RNC'CktIǩxM~ jO=[+HPIS!]&.ɹ;o;yv;SE-]+glr!yx@1П2r^7`ACJ4H1hY]~R5tR./46u׀>Dʸ;nՔy mZiWGԥΥ'sI6釣͹,`t -ʆ0>vouKr+HR5esRAkd6Qb ƭ)}ARϥs5 z.H!J`dĀM]9aR \l>:M]8HÁK3lJ&W\R>ZoƩZ!'wE^Nn8o]oڊ=aמn96P{mWV dkƜ3.Tu}lܵg59ͪ&c0JLfX{ga%ڮڂ6^2ጏ7Ɵ :A_sqd(H$]O9"vc?ߋygCCpu5|?,aQ+i1 :N-o{0zBv`xa9wJ 7 S[y>wk_ntwؘ'd*w ^&C%ZlUqA2B nP+fތ "/z(@>xߢ㯺o:]Z:R|@7trR |7n]nxRn^Ҽ[_BFuE9N 'گqS#}Y Yjȼ[f-UeTIÄ+dIt:Nߘ7;RFgղȧ ,pᘪ[ (TNgy8R/+vy'3w?| [_zh5KF (XvƽcUen ˃W/,mc4孿ʙhT>/yeIcמ }C|IkՇw([)fUkZgc/M(2 T]%'Q wYb] Y'{bujc-a;CA|Rkh3بPyQ]8YSo\sl9i'V\ Vj6kATR ۊ%vxs[ 5#)QwN^mL*3b+n"r5ۑז=s+'k1VIp0k$9\PuTC̀^}n8V %O!E 8h3*?ZĈup?}O/]i|+ahb15K ˲P]6Tuyi5ueCpgUƪٻs} >io{; e>|(􉻙6{OLݶ?3oQ~Kᙘh"j=h~ۭJ endstream endobj 331 0 obj << /Length1 2097 /Length2 14812 /Length3 0 /Length 16076 /Filter /FlateDecode >> stream xڍt 'hbdb۶ٱmۙ6fbĘ؜+kuzWzv=U&#W054:13rd%,0ddN&Ð88Zr01p 8}elIgk 7@ C8 ڹ;X;}[p cdnbdkda?GP;9q308:R\-&&.&ƀ?$d lLFCP6pˡdkj`0X[?B&% i /_Z038gh06ȉJ;9  m? \ , ?nP|([#8"@c![# [8}ݝ˵ں=L-Ʀ0vcPZ;H0c33q122r2sL&nF $Pv3CC?OG`FNC3 ?ML`b?&}1aƶ@k^14ߒuxұ٘LL,6FGVycD -/'ﵡoYۏy6P3ڌlF/Lϐ)+uOo`ca7c>vCcCfB˘[8_ǎ>朎/_am4u|gdlq?]&yEF 3;cΘLjl聶N!S[?. /`/`0X 8"?b0>A"?g迈gdkѴXXYG7 &_ſ?C _ۿ?Y ~o/_|(_4rp>@kSL[?gOWX>;:Z/o>"?:CIp˿GR‡:YF9;|(w.~B,} j]+Jk~:ZmO@!@ rY{~?q 儹JJw+=cpkӉ3TW> -&կ#1UPͧp`ёPX,p`AՂusgGcl;?iA-qn3y{qsd{"XqAJ<c}ێ]}$Y8iR~kLvRհ0>P'k|3Z5Ll9q<-=H[G X+w#ϩǜ]MhFgJT 5`W]ZYA&f]%D~Z) ѫִ E"҄ $f+R'~~ߨ,q*9gOT\ Lz,$V Ix&(WRϞ_fVnŋ (jHҍrJU)X+_|Flyl$.Y5&PIym/ |Wn` G`kWD|A@1Lv[v )d)9umq7s׃, qakY0JJհTEyvdu@EbG=:~;C'T;{j$$P ^1-;np۲+рlKLlCy.h<8VA3^k.AEb--Ib{My|G BR@T^5ϼ#hmzo]g7Csծ` zbs1Di]0tYk9i9P!sesEۢlrODrO%:ׯ}iDD Nv*LHnha7NZRl3X# >, ..i4/%nFc- "2q`IHgzWS.4Q<2k`g@CX ߜ2"¿XAu_XqY[J'v %thjE5K{"kNvZ_P<.֠K9D9| ѵ,D߈m5  9# 7;0r?-֫!:A^#[o8^I_dzb2d![80Q %sL}_ 3GK5b ǿ ## %qF7a enŞfuZ<}o+ѐB)Yyw(x7%Z#,!yv/%SGb!@P [ ndT\33y_Nœ+wJ@blSKﯡ;.`<]4>չi㑰ʟ񷵊`56) fqS8>͠iQI\ȗTb,S,F<_//[}aꉹBr9=54xt&64eaאt-5%]Ȗ}6q{90a[~yCpt ۓ -84h/#e'#qr=a X+Y1^zjcgVceuUϻ*A-!ׁxVCP1&717"_$6fo< NWC V-u$\l"{Gc&"B[+`vMS|Df=r)9-.}o|vK5՘zP^1Ut+mWgՃ8aӫG.HnSrWU$-뇇G-!Ab0ЁTy~uU;ZQҜw*C!pV+^3rOH@<©݁Չ g;—;I1Vrpbء' 3 ssG@,NJo7%PK\cpZ λtB"MϹ5O6`2w_ly28>{4\=v97#b(}~dFՒ0'Unfy/F8{>U|ЂyN3E@9vO' n&OdF0;l3I<BB5w)W(!)E#yo{mZ?+WY!t V@Q'OMdDjHI> tR&$G!..+?۝EdС [KM%[P:Y{狋52J{ڻTq3uġ6a_$*1Re~W&D}6B>w;{}3iUiC"ş79m|Qm*VCW9NYȻ TLыfG=}6[8 ׼;ȼU 4h+H dv{WcCbdBT98LCoFҬ/M eOlR$FKoI] _<o_>?PPU\hւp%6(' /#k5DqUk@:D%M̴vDScR\g0CnXf̋  ت2'*$ f0f6?Ӣ6/S&ӑ;DErh2v.9La2#7ar{*T0(xNVT4Zm1!k*sF+SWd?`ނ8n^ xse{O`g7\Xh_C.qӌ*9W2q)iqD^AMVIH0ӮF]jOSD5͉q綟:b&u@T(hᛝ㩢jI= z} IYpY ;e8% G/F]ͼ0)jd̐'Jf UFI3)x9-7ى;1йτyC&(D|;1r2 הl/ ,pZ+S:&"VOA2 ;hs<#yJWN_K,ED@v=6lnd# »_/S$XC M! âXX %aW#Z'6^=KXK0IN]bUzJc XoV,;u zClvވAqbqdgY63 $b"?- ׊ GO1% TiT%2bxڷ8۱QCIª1 ,'pjӚf;#{H8lReP>1 QKU=8"xO0rͣwSϪrFzU8N/ّrfox+c*ZCib!p_-rJ鈜,XhqKghi Ikv'nVO?f09Ǻd=/xsKP{ɗA&mW=dK^\ HWPN3Z^.cQA.A@܄A_KL XO+)$O2>̍6 tZ3֡ГxT\,$ ƠśMp8+_4nC+崢;.86bۂT]w< >X+FQܒxINR!3Sبk}ۜjT&q'mrn({b!}$DuրYLQ̤QC54dʇPcS!|dbnKLQ5z-#_ݮVW!DyD@d!K#7=l!7T[7ѨXG]cm*Yy*hZ.6_ =Vs[sQlxD!u0;?V/krnA)zdq2 gSNag5FJ'cj D_Kf7:*HAiNp1,\*1'UNM,IE>b 89SP-4RC%X3oJ'ѹЕ22-Ç.orT ߄N@}!>"x䉫DleHF+/k3B5pR`:,2*wkؒo`wSȴE7IࠤOkh[>G(4!! 8S)q NVNo D#x 'ֈx7]z$6q_8JW=J ~^;-_ٿVp)B%kR+~swā>}" .0v҅@8++'SbYN| |\]4&ߎZ=z1b:4C3a3^#E ܴh|A^1`}Ո]P<+Us8ыa[_*ڪG`7iI(̳.9R`$ޭW%"~E^VX%Xz=^6{yf7eů饰,*A޳~%Y ;?81SŔYz2be7i=qYUˆЭɳ;`W+<Ĝc84o&?[-BٸJ Tkϳbp{[Jӎ<ꯂSlclZ(.I*ӹ6/K;4(^9L 6Ah1ԞFƳa=<cIU꾏dcy{q9aPj;F=8Qaխ:w !|OdZAW=ҷ6{>X ۺ=2G)"#Oec]'{4eN/q^܄$;bh+1;<$?~fU וӺE6o "]oԓ|ᙤ|'RN!-/'Du(7 $C]'c++i~PnTd(" 0=hzA/+ Drmso&bjEvUROU/#=1Xl nWAn?nBz Vi tQGʬQ4W]Gte쫥B{ 9!A&{}U׷^ú]fBC Wj@s<}VIV;|cA7ݮLwFF4΢y..s~vߐ&a[YP`|ԋ7!( g 0k3W'zm]XAL?{?J-~1~} >aЃ^]N% v2m?sg& !y)Ys46(6"{YOʷhuwze8\&KF$a&;/ɓ[qi[R`z ?7]bҌ8>9`DUD)tдn"ro/ ;v sdЪǕ#^/065dP0O2bjnCkÃ,I=<{?"tq4.8%+aP8CV6g$z 5c ̐wゟ_Rtgf3yf;jdlSٸow̴*vˉEb6{P(ʈ߰ >`P:w3F P^>q %E2H=HFhFVx,=`H&+vHTO3r|;lc[he|GdE5Uw3r4 mXWeE]`o:C6k-2${pM! *v`ta~ (ﲆk%= ߱PG]O_y\.O|GIk[.U#\SoSM`@yz:C}DaS߾A4'zRF6_^#Wgk,1jcxiRCVa&dƯ01pm.@Nē DuYӊ`p5$ta*ԝ(*ڄQx.T֖T/p3-| deߞKgR>ڸc'|S@v㮬Vv؟)3l9+dsiVArJ g!pt}(i30pxq)٤hT^DRSUzeStWCB77c [\o/%@y5TRYV[0Qǧ.<.Mګ<$[8Z0,[ ]j `S̕y \y{S12oRC{~e"^&}ڡM&^Qm{ƣÉagO@諑RKh3yV3o]Y^H/Lh(zEL>KŠ[;?4,T γ(&pSL\Zxd3#-TF,6v .+Zˆw8mX)va<F19d\uFm=VI,Y۔r5O ;k: ٹ{y,H5 Z! y_ڦ@'Qr`$5i)}#~Jn˫cEucA1 /zjo*Ԏ %Z5ѓ=S@Xo {6{ g_UxOTEr ")d~A:>hJ4DX$WRZ'J{IH|R6Hpe jS>{Ef`d Z Lr4%дbVu,B%6 WVUz;0⣐d1F2T \ 7 rLS{~5J\nc3_cWȵO]c SԈω(䎯.Uxt]k3e65ŧAX&l\O>qNXT!SR w2Wt~f) v@NdW*is,s&vevLy*#n3ERz†WΆk8ծVkOc C\*u"0]65sHPnBחտODd ⻖w@YR.q<ږΐ63V@YҭQG޾vܕHbxs 9?FIK+moF +c$BŔ*w-iSV;#y]8p;_ΊH/歡a4>!j2P8'dWGWOQ79+w҈J< qSmd| &hϠC V}-m>W( ^Y#{uA-q=yDfbgfR)Vg10r tlq(93P;&ʍ\ŶR#]B]JE~r~~|OBs +!nRNSΗd!C3Zv.9SW^HRgIP\% p~V`fFRIF!+XY*r~ #'G#\,q1]s Ziؤ_ =:iU+Mx]⼺w%wQY0-0#)t{cT=ub'f$x.A0e//k~};K]T &ij f~V_:c4BT9LK絈K\[ І3( lGAq態+N5R-疙Kz¿$Nb%~a\|ZRD>ع7~f cg4?b@*4~M|ƐssKn:YV_賑VAfќrf6pMe6(,'Y(7T:E$3Dr ab5uK=ì|qNC,%F!$cTTӏ;Hm|]B޽"_9r+x3 M %$ua%ִ|(t@?L ^ ɤBzp nj?I;v޵i}kU j+}eKy1~syy<:4RD(kY=]ߔ@C.H̲ zv3-zÈZ#x P}7ҫj:A+0/Ɵ=PkRTJ⧥E:+| x)ʢ&EBr;X' chVl%sA/ q&QE=ETM2-TDPrn?vS^bwdJ 83,C{*8yCH`ԛ|)HyZp遽E_,PR~Bsig@)tPR'g  1ҡ͟k|A,Ma0saJ&Q845v&='b;_H"\LQ =7.J=U6I9Z'/vbndTH;Lt&Q3 kgDʈvSfSY:lBQ0f@-u&[)őy-VƇ!t^̵>ӕߜɳLi:;zVɧ̛% KM 6G_/po:'p]S?B;n=XDLӛMM.942=s.ћrRYO;".hB|ql?V\?c{] :y{h- E퓚#B3D(ǢEל㇥^ DBZ М+c=c/ƑR0ey(sZ=4 &(_clh I}G̜eݩ&u\R/vH{?tQ?,aR#5Fp" 4AJs 0FGz"z D:p4W4[veڞ5x&txB>]:j,ps^2MK%]f9IVePFC(IPTeCgBzm[2駆^J.J wΕCk:|Iw>q\.V|fE",vCn)\zCaŇ Uc"y8tCWfhh̶xo-\֍f$Tt^2qK#}9XW?0gkzX50ˬjL[[֧dkj׎BQ80( R|%Uxe{:TxN˼K3hs5>y;tACW ',WEPbː@.Ud<{wR &HȨܨ|%ehHSU.̍ PQk6SgW@P>^`DiK0 /3WB0D{쎣#Ir%^:KO~@cC_q8[]ygrKw?$!~^߇أP]9Z +22٥4ܦ. <]@f sIdIbY\eJF؝[ wUUXq\+IbiXؚy; x Kƒaj0d8`6t(%砈gwR[}S\S@yuib_ ?j LZW"}PBSQ(]zR'wYHa x64/ ?k!#jCZYzsNYsnY÷4^#WEkN$}>8D\Qc=T6F2Kٷ#0}DÀ#&M{xh^R׉`]l^A]ISكFerƅ.91pn\TQ>ݖcp  pY KdMY;$p.o;`}84;❠[ >Yt/sne.z%Kc@VH&(m &g^=.س&9Q>6RvB%J0_d4)*4T(LK1% {}'Ĵʐ/.(6JJm:>}c =X#uSx^7Cxwl:^")u7P|sAu&$j+҆]xr_x,YY0z)j)L߀W+R GN;Jpz.,+uNq}GHH~5u42xrtP":>cF ,nEǃ#wuĘ)8Qi5]XIxa/IゥMmcn*Ή}Sb : ڝ&זQ`kpzt|Tcag%(5iI;@hmmh̀鲲덖ah08yvu 2J)V!,9q(h96PM"'vaPjjp2mStuܬDgJbqJO4{73VΖwt}o?sƈV )Z-YG. Z9<1x^W IN+qݿz;^WvueTZi!ِj c1)vY{#U\:s*}8f#Zr3)(T:9Iq֮΢\_hjǴBM%M Dz r_rs0FTKucO@:pVXeT1o;488K8›`Tc[ݚY%:С2BN痤 j($̠rZ<`wH 7_ 8Blyz=A뫌mߧP:}Y8hc@iPd 83aS!" S^ܻ:NM t06M&&z|8Dd>Â{Ȳc .# _DGM1vAʒh65%N-`Қ z,MMHK?UԚl:%~P:PePqūlןy'@y6UIWOa.&C>.!bbلLό銆61m#A_^1)[w^ a9 Cހ>Sf74>e[cg"_ҧӈBH_jh;*i~ȽE%59Ib|uP? c<`U;" r88dͻq}[l|,.ͻȀAo^4 (4Iܶe^&䄋>eIR)S_toߡ] [f4 rX~қ%Og-N%'Wm-–Ri [?D/z_M甬d QJy[򆷭&e@+¬,`wފ99ljn a]^_THRu:_]I;V24%APȏOm~Qȏa=iQh5]Df'm+@2:*H)A9(?Nh3AdYQ=$Ry3-&E*:] Ӊݪ?Q4^$U]VbuJX[.ɉ>B=!cNy殛_Kڔշ5)Rbq 뤚9ApUcI %%*'pU7|IQg3kpu?xֶ/T.^6)(j8ZrTQ㞉lx,ս u3lR/Z0f!B|VSdr'W+ښ\u;8_#yDۅ_=܎ ЇKs2v}K] XIB+]oo[m|~:?1KI=nć %T/`jɣ<8}}at qa1}pMd"q*60)&byjT!E=Zf@~`e~rkU}qs qw[$=B)ώd-ؼRLmzcB^Ă'=19ThH| =scQVONHE|g" ;kyFZ u;Չċ}?u3< K }鳣@{W&{lU}+E,o' k-b;|k8@ڍjq5Y9'8<_ǟv!7д:lOB<0-ώ3=,xTKPn8xZK:)lqc/t'w¢2YGJ')W)e G6K%i UtFF!qn aN3M6g13)'Ct酚OH3̋fxM쾟`oO%t1yoj6!9T01c7ɔfUEFjkzT6__BkfJZ,@mr \E6i`S^wqԄe2KSH$;[ZK"!ǴWr1-~_ǻ'7DvMJK5ۉ iPExWf^_m$})ٛxJ#s&-ɁrJzXF k9&3?~y[_1n Fx ,xNzBH3!]t0t樬JJ!D5&P7~R5@N MeUs:EWDD-+}|i_?0>W@7heaڧgzB@Ery_]&Ǿ,(6&ݻ"PS"N{lg@2t\s:_:#= {MtWα"r ±zY잟xm3 ASjLڿƭfFp7pNRѴ5j-59\m@{=$+XNo+lz2?@ endstream endobj 333 0 obj << /Length1 2519 /Length2 11149 /Length3 0 /Length 12599 /Filter /FlateDecode >> stream xڍT 7 H7H]ҍ l.Ai$SnTR@|}ύ}9~b撲[@0/G a31@б .P8L g9I5G U0=+(+$ Y kJpI E /Ւ +"":@ 4TGKs{6 Ax V-(4wpm8P-@ qvX~ P3w c u F;CH=sA¬ w @[XoN?y5oCP_斖pGs'fC*@`-hnG꛻C-n#3'?Kg##o32dw|Pg%4wyYCaVֿӰruօA\! Iw4@K[t<!1y9z;4 Pk @8B|d7XA- }gIXwzx sYawP[KP㟔eJK=\.>~O (OQ5̡sgOf vIퟹ`giA fny@b!7w";fo.ݝA ;L_B,ȮkB7.oQs6ߣo~\;tN7:GVoS]rz:B`H i? v@dw "S=w|d] /R6i ܃ }\,~_ ?b@Zn]H?xG|!w_U@9P@ p;B\ZM# VwCoH?J΋LB $7 dM\]lP@xgyeΐ?f0҆h"2b wjֹѻ H@W? ^w1#-yA3䈿1{:|:y;^a19JA2#/RSkK[|EyL}R"Eɿ~D3F,vʷfh!k~,9`u:}CvK6u$*0?.jHTz{*ɩVEFCɑxA>{M͗`0pRo;`y<2Ywߗ7d5mI͍;8ͩD|x2Q2CI!zxr>u: z6Z,'[6!{v~E((ƒB~6UbL3={kSpD)o7}%dMƣy+$B ɫ wعicAƗ&eLxM^jX7~b=ztm@Y&c=4:ˌiasXNaI^N/I2kd\ߣxaKkDtqݸB2emx%2=DQhujNguQSIqERku7Džz'V]1gT2E]}X87D׺=Yk5hcq{zYV6lCʂ$39g≇SۓK\"5l.z0p=߳iVzR f|f^UUH'7tmvf3r! joc?J_'ӱe}YW V:~LPlu ^o*,f>xD_Pͼ2SRsEv5i>M&V8I#򞬘JO`~{aU\ni?fRwN AD$(4PHD c x2fVɢsuz158o$~ Ec9+HDQ9[Q!%fQաhDHmEj5mq rIJ) NӑPgRXzwj?1ΒUyJ`H. TQLޕ5l?'71B.{}EY(c4M黈$TtJig~(Aȫ+6S,z1-ﱷccøX8*s.@ݘI*a k"pzZ.ݰ1u`W#いDK \|0i5tC"YSyeCߗD[Qs+^wqKKzxk a >~Ul{]eGj+۰9\~ʳ95uLepƪNy7̜{='=>f' ' NYrr9BɌ29C|i}qvvZ1 0<'}EF8*[a)dܰ$C$1hO`4x.WB[/{=8s>[7S\u⃦q[9;l?C(cϕHXs͡3s|{yսq`g|GOO,L.r-vԮ>%d g>9H=ygHl- ebO6"DU1A~n=|ԜŚ&kiQ =!+q8AA;9? ?@gGyyJ%j8 1z#K&!}*dF ΂|is@'^<ٽTiޯ` J -G?V羢ypڿ I~@xK>0{@&OxM kP TCCҘ3.M >N![4qq;S<ղ1lE _<=;W}^S5Ty4FeI*>֣dXy^$]鄀pWmAτCch# nɺ;L6OݳqvbLC 7um`!t>3ք_ZEHEf29_Vhn&ٌ ZgItksk؊J7Mm;?(RT>!!cn 0^|(d̷bu/*M/eT2fHSd^*]4}HTRGEJCͺ4=Xӳ߃n{dO~f? {'kdef<Aui^\U|ofjNNfG8qmg b8rDM:hrvC'}NӳHӫa`%hhV&~+S+ŚI}$9"Qߕd̵smk`|$mcЀ.x$O2? ˔:Z(m2R_Ob3Wɦ]$UXFK*h5%9H SRX r2*hJ:r(z&:IKX$;:@ Գ: ]*:qtlB~{O/# c6=B<3VǞ> 3*=r^BhBQdP0prw>Dk'|BtRSFұwKɏe֤ndKqϵ_wQnk$byQ} ;"{z A ]+"_Gˬ*+%D/05Ȟ;Uқ-0b '`yfxAQ/C\)tȤ+xzw'7}iV1/*ދN}~$?J|oTl8qGV/{ Ha[k܎τ*%)y: +a{t> Uy]&=#9%ukR C~`RU$j<+k oUW4@q&]TW &chiljvd,L&#Ayѫ7_/A |,d$~Ɨ1O% )딁7lxfi6gym얹S:0M{Kؤv_MDxK̪{Q~n|{d a쉬P.ʻ" 7^* ($#"4HKoxhAYV:a%^b`eC#͊Yf 5ͱ+s% /${!Ŧ iN6q-ORcEo~fO2Z?rY. +>V;t|Xshza ,fJ8ߔDg`͵敏*Y+Xhz__#QXqBW0ؙƾ@؀ ,`Y%`^)Gȍ;6H 7:\5 :`0QGٕ$MTpHrسQrf!t 53uȰh}JU C%&g|%cɿB*ײ׋ }}T@4gI z/:E=IÆmIU8M񢕤s|~)M֦d`L}ͯaZXzY?|ew;}DGJ~?ƷzC04кΖsƁ#%ڝC$s+Y zgO;pq~xB[sf}doG%7koan^*@{vqz(^t2Xq?[VLPjW_>u?b"xDmj{e=ͨ_yA 5@Hw(_İCGxFJf;Gpg:5ZK{Ŵ2nܵÑ1{^l%E6J9xU>xjz?:~I7 r {K(f7c^%pޚ[mxt @~<ȖfE#AaY}\m0Wݔ=},ٸ$oBYh=7X|mVHBo4㎅i/2r:dЌĄ=쉩Zul%p3f0,>r/"x֑sxD8>˾ȭ2m]j؟SjHzkFk˰B24ۜbȐHb" {ź.EXDI^1CVk˯cPQ(HN >?1M63x`|O5Q3l30U$6>qNpO6ߏ=CEo_hb>LڈǸ7Fq^abZ* #?-Zvj\GJdS:X[&Q_r_KG t×>HbqԡPs2H,Og?Y} T|dlx|Vh8O~1?pp4b=囀[Gz)`~9'L$~ʤV;/톥7~ZoPgΌ+LO P>r}E^mZO(ҺiDRf~@·AYʭ*:RhWX7#,oa(Yi\?T+/<4)xnΚ># sVs۰5”홪UU'n 017~_ ZɠJ%de|EF4 M\еMLU}EY^?1 @{"Hd?2)pJ%N@#9Z1ճSe,ʔbW0*ٳ.w3RjL:^l:NЈ'R7vD`4rmz .ASb )r :ViB&6|I1›M`C-1a" Eb,Hna&;औ%gukNJȗŸMCj#66Gf={pfgݦ^ w|7vMh0qi2 ȹ"Ma凌b+5RUvȬ>ʭ[_6&7*5Ӌs/d%/p9nQImi>4eUzaa=LG  ]%"^ؓmQ{R7bdPܯETk!:&k#&H3 AbMw9_z* "l[vMv=Czvo^;3"$n>Yi#fT?bC_iB#8FB$lY>Nkv?Hqմek1Սɏ tcL]v4=/٫ηV -ﰋ xJz>C4H%pFl=(@X) Ddi,XIn\/Bа@T6lT7^isiV -aI$&B<`)}gR`bRwHR1x  cIblw9DVWwSM-BPzU-g։<~'A!&#06.-[ΡAzq*Ϥ$rn4Y6wtIn(IYC4%\D{@3 ?/}QLBe9NFG>U6m6jljb^]A{ݚ{Gvnɼw& 5&s.I"`ӊT:ZM _}cPsHuSR\AЭ ~baT&@4Q# Z: m9\Ke@rJʴ,zބپE6*u wɄ#a%,zGwT#,YT |4l1 Ԧ≓x`kZQFW  iK= VgK^cSbFQ +^Ru%4>tT j}|AgI OM?|zpnk/G6<1C4(5耳j4ठbKJ%&51җ郎X<#Qrݶ"g=tM7?)8#8eàiSZ'h-R` щLy'-[C'~: 4]ζ(8J iD' _S ŷ&Ѳ֥|Z, \Z{91OuGnZccu |e6L?Tq^}e[Tpc#J܀k+qubt6Hiaj&0J?E;Tk/A=e3b[9>rL0 .j_t=*b>5'|6=x` |.E+\TĭxsaR%`aF Vo1_St{Xڍ&YI] rp')%z="^jFt8Nvx"q'#mi9ٱ [c҈]Q篨d햤ꃚ`175ږVMg%TommewBp\eCQ,#PJ2jI9PaVL$$B!mPLG;~YfMdƽq%,WSI,} pC LXǼ̓~7E"]۴Ÿzf9dE/a}Wk|QעB7Z-O,!ְr+d散`ײB@?"V4)"f8lpEZ>4tb,0ک!`)Ѷާ;P` '~nO)3tqeHĀ⓹-\}u&R좈3Geo1' agU | č߾`庈,? }v+m5Ws+#_QEz7fc%D,QfZK Qp5>kHsg;K xa)]xjA/t$5Z"J3EkZ2uYnkRNa5`-,Vh"ƠYf\9ŢDow+ ſ=ЇՓϧB1u6r~ CB=bUTZzÙ6bkKZp3kf9^^ubOP00bO]8dY/~aPWgbͷ? >jx҉M~ D'ES0Uo1q2Q|&vyC5t wBrފ8__ȕ B%'L]<9ؿt?2QgAzkX Gd䞛q:xuW> stream x[Ys~ׯ޲oUSeV5Kh7ϯ5f 9L F70"7t0r^WF*cqjFYYј4?Y]FG[Mt Ug:*)]ES%T+:IUJbhD[D'Y)WJ(b&L,Nb# ik$KԡQg8q{t22bu2}P!1': I=%YM*MZ"Il&9CY~%%M1^K%dY-S4{+GP1+>^QK\xIDAjk" u{4zt-<<kY I&Cގ@@<De^#mLźP,OkmAHybG@], ^`{,'ʼn%C RB8 AC1ZKK݂(2g2&E2 Ix(zbY9=]RWtƒ O 8XU?\cޢn n}obw7=otvy}9NġRI_׿ċɫP+zmU}ܣGP)=M:X-)1XL/C:=&ߪ;@zVMĂC 䵔$%hmyq=Ձ!}n>x3SH#DGANH$3t*;Ю ^B5(n<~@PFM40jQRGC$FHs@7G.T7[ЩD!K56NO Czw^N;y'w(jMh&st0|؏{|#@DcƹJFd#ͥ= U?6S(*PRʨbtҾג$% M3es`6s=Uxikk}+#s:cHpHbK+T^1.>#$I%%Fn'0ujKgu[X̕<zZB/q AW? V; @q茂gwki^(=q<">znDWh +P狥0RJ{! 4h$Jj3:a984*`٘ux9p(R034h.-Wֆ6 c$V2_(l`hosCp'ސmI@L'bn1|\3hD3?mac܌}؋Z,5pΰ!pPX zZNO#$Y,Ti \, sw\: Ne[DggI{)fEpglm)E9@nd)$N4 `fkCFu.Ե|N[q$TH! >4vлM-[OSn66򺑂 >FRTʔ(1'-df 6UsumdvF'<5<GKT7,Xxq3/b*-H rUEm 5M vRLYz,3vC[fyӰ޶A-B"l/,)6ޗdIR)"s?N ykUJ\7c3,U n*!0pfL`3` pgR꺛[;_9;fpJ~kNs1:r#+<ϭ㓐~G2B_pRYNmRh5WvVcTb#?i3Ͳə mA<,Y>|i-P|055с_k\yvݏYB-;0T~99[]i̫eMܒ'4~˯.mGx` F' )<|g'/JW+x[O02YO8Gx(ůx& x)^C)&8'q*bzq:Y~o'ɹ,>:/L|__}^?񗘋sq!.T\+̞O?rot1<W[}=]fԹ\M3B,r.grVbe1տ/ŵ*-?`d*ߙWo}~=}|$Zױw=e;/Q/e<'t8G}֢}q}iXU/@\P}.0=zrCJ $Ӂ$G8Jx!;a¾mfێ?m O"mtYY& {9f -&pvַbѓ_,zh,xKҎeH{7ja/ '/OդH8gl1P؞OKrrWK_]Pzz|njRv_?GAz^/՝s)ս~;ѠQV_/1X<OG[NGܜS$,'bDX ZLN\G(f鷵Dʺɼ_եnTń7ּ^*^Z-xiMwxY'gٴ[VLKzzs,X2y$WֱFbə2dKP|4U3[v:&Ց_ ) ~t}f< uCw*/ox#2ջm;&&A3[D1718+@w=iiIt*gί;s>O}Pv&=8|Ơ_&D"޴x}{v/~{ӧd=o.x1cfԠ#E4;vTrus^g"9uavJ_\\?w54ow{RvI^\sHa8%A'iF{iŷ$\')j@/{b7*餹Ѵ ,;_?k U_YPE ]t77=gxu!^.~pHkчI!]OK9BO]`:wwwPZw {AJ[qo7r2톛lbS=%R-_h%0'e!L#_gtx2|-#1Svx5YKҹB5pVPwak޶=ײ _7&C6WX];Q@֊Z߮Ws.-Ȫ0C`C|%vJUUWFmCL{berbO[rObǂ}Δg>Ƿԃ_S3L[m4&L}[BK7h"8K6vkvv ]EɍlxۀmѶ~K5IJ\1wkm[m} ngnnm6%ܛ1-F%f^l K@jke@{m^-jk)d ث{5`jVrtbڀuT66nqV-C "0ǻ*-?=^n/y* U3 i$ՕX> endobj 349 0 obj << /Type /ObjStm /N 12 /First 100 /Length 487 /Filter /FlateDecode >> stream xڍTn0 +x4E= @ڤE"71nuviJx,@`dN>,`psA+EEQ4O~;w}߽@+gQss*r)s+-/SO܌oAJ C!# dދW22(i=(x70.V#061I@%܂Q]˃VΈE O*P^RH4Y ~H8Ë /9b]VZ)kZgRqiQrbO#}%(3OLֹÏ۟B:-2&!' ٜhޒm}l#&mםJStD#kڃ$.OM<[ CZח L)Cm%} ] /Length 887 /Filter /FlateDecode >> stream x%IlVUyׁQ  JLJ JW . kmײ!cƝF1a!Q~/wқ,,IuS uK( G@;YTΠV1iT-X BueD7GYk x'): xx'(7n㔍`^1&Ќ77CZRn[Pnvlxcx(;@'n]o?G=>`@FRl {^x|IpLiyWPJ% 1 F_9TnC`X׫.GvCc{`?=.wGeVђt(= 8|ܞ| ,*epY-6g3i2_c1釉wʜd3)'^n0 r)M  EݜI6ȼ[ :sǑ0蓖kOو`Dأ \1*]ܞJxM RD*ƥ@«Fiw zAs4_nj689Yzxxn $$file; \ rm -f /tmp/$$file; \ done @echo "" @echo "***" @echo "*** User's Guide created in user_guide/user_guide.html" @echo "***" @echo "" defs: link_input_xx INPUT_PW.html INPUT_PW.txt link_on_main_doc link_input_xx: @(if test ! -f input_xx.xsl; then \ (if test -f ../../dev-tools/input_xx.xsl; then \ (ln -sf ../../dev-tools/input_xx.xsl input_xx.xsl) ; \ else \ echo ; \ echo " Sorry, can not find input_xx.xsl html style file !!!" ; \ echo ; \ fi) ; fi) INPUT_PW.html: %.html: %.def $(HELPDOC) $< INPUT_PW.txt: %.txt: %.def $(HELPDOC) $< link_on_main_doc: -@( cd ../../Doc ; ln -fs ../PW/Doc/INPUT_PW.html . ; \ ln -fs ../PW/Doc/INPUT_PW.xml . ; \ ln -fs ../PW/Doc/INPUT_PW.txt .) espresso-5.1/PW/Doc/user_guide/0000755000175000017500000000000012341373165014475 5ustar mbambaespresso-5.1/PW/Doc/user_guide/node18.html0000644000175000017500000002362212341373165016466 0ustar mbamba 4.5 Understanding the time report next up previous contents
Next: 5 Troubleshooting Up: 4 Performances Previous: 4.4 Parallelization issues   Contents

Subsections

4.5 Understanding the time report

The time report printed at the end of a pw.x run contains a lot of useful information that can be used to understand bottlenecks and improve performances.

4.5.1 Serial execution

The following applies to calculations taking a sizable amount of time (at least minutes): for short calculations (seconds), the time spent in the various initializations dominates. Any discrepancy with the following picture signals some anomaly.

  • For a typical job with norm-conserving PPs, the total (wall) time is mostly spent in routine "electrons", calculating the self-consistent solution.
  • Most of the time spent in "electrons" is used by routine "c_bands", calculating Kohn-Sham states. "sum_band" (calculating the charge density), "v_of_rho" (calculating the potential), "mix_rho" (charge density mixing) should take a small fraction of the time.
  • Most of the time spent in "c_bands" is used by routines "cegterg" (k-points) or "regterg" (Gamma-point only), performing iterative diagonalization of the Kohn-Sham Hamiltonian in the PW basis set.
  • Most of the time spent in "*egterg" is used by routine "h_psi", calculating H$ \psi$ products. "cdiaghg" (k-points) or "rdiaghg" (Gamma-only), performing subspace diagonalization, should take only a small fraction.
  • Among the "general routines", most of the time is spent in FFT on Kohn-Sham states: "fftw", and to a smaller extent in other FFTs, "fft" and "ffts", and in "calbec", calculating $ \langle$$ \psi$|$ \beta$$ \rangle$ products.
  • Forces and stresses typically take a fraction of the order of 10 to 20% of the total time.
For PAW and Ultrasoft PP, you will see a larger contribution by "sum_band" and a nonnegligible "newd" contribution to the time spent in "electrons", but the overall picture is unchanged. You may drastically reduce the overhead of Ultrasoft PPs by using input option "tqr=.true.".

4.5.2 Parallel execution

The various parallelization levels should be used wisely in order to achieve good results. Let us summarize the effects of them on CPU:

  • Parallelization on FFT speeds up (with varying efficiency) almost all routines, with the notable exception of "cdiaghg" and "rdiaghg".
  • Parallelization on k-points speeds up (almost linearly) "c_bands" and called routines; speeds up partially "sum_band"; does not speed up at all "v_of_rho", "newd", "mix_rho".
  • Linear-algebra parallelization speeds up (not always) "cdiaghg" and "rdiaghg"
  • "task-group" parallelization speeds up "fftw"
  • OpenMP parallelization speeds up "fftw", plus selected parts of the calculation, plus (depending on the availability of OpenMP-aware libraries) some linear algebra operations
and on RAM:
  • Parallelization on FFT distributes most arrays across processors (i.e. all G-space and R-spaces arrays) but not all of them (in particular, not subspace Hamiltonian and overlap matrices)
  • Linear-algebra parallelization also distributes subspace Hamiltonian and overlap matrices.
  • All other parallelization levels do not distribute any memory
In an ideally parallelized run, you should observe the following:
  • CPU and wall time do not differ by much
  • Time usage is still dominated by the same routines as for the serial run
  • Routine "fft_scatter" (called by parallel FFT) takes a sizable part of the time spent in FFTs but does not dominate it.

4.5.2.1 Quick estimate of parallelization parameters

You need to know

  • the number of k-points, Nk
  • the third dimension of the (smooth) FFT grid, N3
  • the number of Kohn-Sham states, M
These data allow to set bounds on parallelization:
  • k-point parallelization is limited to Nk processor pools: -nk Nk
  • FFT parallelization shouldn't exceed N3 processors, i.e. if you run with -nk Nk, use N = Nk x N3 MPI processes at most (mpirun -np N ...)
  • Unless M is a few hundreds or more, don't bother using linear-algebra parallelization
You will need to experiment a bit to find the best compromise. In order to have good load balancing among MPI processes, the number of k-point pools should be an integer divisor of Nk; the number of processors for FFT parallelization should be an integer divisor of N3.

4.5.2.2 Typical symptoms of bad/inadequate parallelization

  • a large fraction of time is spent in "v_of_rho", "newd", "mix_rho", or
    the time doesn't scale well or doesn't scale at all by increasing the number of processors for k-point parallelization. Solution:
    • use (also) FFT parallelization if possible
  • a disproportionate time is spent in "cdiaghg"/"rdiaghg". Solutions:
    • use (also) k-point parallelization if possible
    • use linear-algebra parallelization, with scalapack if possible.
  • a disproportionate time is spent in "fft_scatter", or in "fft_scatter" the difference between CPU and wall time is large. Solutions:
    • if you do not have fast (better than Gigabit ethernet) communication hardware, do not try FFT parallelization on more than 4 or 8 procs.
    • use (also) k-point parallelization if possible
  • the time doesn't scale well or doesn't scale at all by increasing the number of processors for FFT parallelization. Solutions:
    • use "task groups": try command-line option -ntg 4 or -ntg 8. This may improve your scaling.


next up previous contents
Next: 5 Troubleshooting Up: 4 Performances Previous: 4.4 Parallelization issues   Contents
paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/img7.png0000644000175000017500000000021112341373161016034 0ustar mbambaPNG  IHDRPLTEMJKwuvHJtRNS@f%IDATc`R b0*1(b<IENDB`espresso-5.1/PW/Doc/user_guide/node13.html0000644000175000017500000000565012341373165016462 0ustar mbamba 4 Performances next up previous contents
Next: 4.1 Execution time Up: User's Guide for the Previous: 3.5 Direct interface with   Contents

4 Performances



Subsections

paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/img2.png0000644000175000017500000000276512341373162016050 0ustar mbambaPNG  IHDR?30PLTEMJK# b``mkkXUV856C@@wuv.*+ Ė`tRNS@fsIDATXYϋEtNg:qEAh &v'qv$` 6fvg5#( "$>9A:ţݱ^YǺYx[ϙ`t۶0iX xГ-BqlJVrADBǢz+?G'xq_p6SD!QYYi7,xmpuQ49`py~/PF97}CG4Mt4H^iҀi*A"6;g:$A-OXdL0@.,gdizb;SxRR.<7 fy.rZL=Pg[V^3_\ ǻ E7e}NPp--`i%,cMF!+v,ot Ǩ& IyywӮ~~AnҪYL@zûk5C)F3k P;J9D S 1BKlxGRN*SVb VDU.UEHrKTίb~ K^Œ | {nq%Am"ROP%=D؅Dz1NS؏AaWoSZ#=Sj:TL(*'{NsygwT/x9WA(ho!.]\O+(]*eAD E0ţ=d{gFͷqs檗 hzK/q yJ|36 !;Ӯ7@?imt@%bRn_HeŽģ*_tYҦt@Ng{2n ĚM/egw뗄 8]7y8Y R)8$v)!-'omX/J$P 1.1 What can PWscf do next up previous contents
Next: 1.2 People Up: 1 Introduction Previous: 1 Introduction   Contents

1.1 What can PWscf do

PWscf performs many different kinds of self-consistent calculations of electronic-structure properties within Density-Functional Theory (DFT), using a Plane-Wave (PW) basis set and pseudopotentials (PP). In particular:

  • ground-state energy and one-electron (Kohn-Sham) orbitals;
  • atomic forces, stresses, and structural optimization;
  • molecular dynamics on the ground-state Born-Oppenheimer surface, also with variable cell;
  • macroscopic polarization and finite electric fields via the modern theory of polarization (Berry Phases).
  • the modern theory of polarization (Berry Phases).
  • modern theory of orbital magnetization.
  • free-energy surface calculation at fixed cell through meta-dynamics, if patched with PLUMED.
All of the above works for both insulators and metals, in any crystal structure, for many exchange-correlation (XC) functionals (including spin polarization, DFT+U, nonlocal VdW functional, hybrid functionals), for norm-conserving (Hamann-Schluter-Chiang) PPs (NCPPs) in separable form or Ultrasoft (Vanderbilt) PPs (USPPs) or Projector Augmented Waves (PAW) method. Noncollinear magnetism and spin-orbit interactions are also implemented. An implementation of finite electric fields with a sawtooth potential in a supercell is also available. Please note that NEB calculations are no longer performed by pw.x, but are instead carried out by neb.x (see main user guide), a dedicated code for path optimization which can use PWscf as computational engine.


next up previous contents
Next: 1.2 People Up: 1 Introduction Previous: 1 Introduction   Contents
paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/img6.png0000644000175000017500000000031312341373157016043 0ustar mbambaPNG  IHDRyi-PLTEMJK# b``mkkXUV856C@@wuvXtRNS@fLIDATc```(`@L6'f< L , k<4@Zp l^vC8U&JyIENDB`espresso-5.1/PW/Doc/user_guide/quantum_espresso.png0000644000175000017500000011316612341373156020630 0ustar mbambaPNG  IHDRj pHYsddFtEXtRaw profile type app12 app12 15 4475636b79000100040000003c0000 u vpAgIDATxymYUǘZk7}PT H"*!1gQ_4jg>QIg)D SR@uf51s}O5*V[g֜kRU6=^ID *'Cd $JR_졯b_ Oeu'0h J՟d >BsO*}^&h. V̱ƒ=L%(L1zO= YW̱ +XAB8!zN ]Iݵ +Vq>S@=X5)X-D` P{9 +|6`+V?RsgF#e2cg +o k}0)! *$ CU{DDD-,"M@@lA e?VX3sL6Is"7,U~0狜s "r5S&"j.d+oC (CIsO9 .x"{x C2$#'H@ HV*i&$$$RUePED571\bd@, 6d@!j*`6 l01,)B ++ BTJ (xdW[_ (RDDXZB$";#CXX$db@>B5|^`a~(19M%1G5Ǽυ`Lttht+XaNJ9z rHT2Xb[MeZXm* TH,9T5'^s6PH(H *P9T*/d=Sr`32 Y%)u"XBXD`e){WXa1@G:HOY" "f)Wd>sޯk,S ɜ栒5H 9jHP4ŻT!PE>XG u(ٺ>)q`R rd4lZ#ĖۅaL@fjap)V+IbHZJ)r$Da&dj 6?ѢCTzHS$AsXd,$ 5G9̡ |Je}8wvoDeY_ 9P vrj[Lla-$@<"V1AA@=}+قs<SHF2@ 3` JD)Ң>" H 9$3!=$RM A9A稒He?΁e}~yC%`ia4DP&q`{bL@:v?nj`5(ю{b;v4Xzh&Va0d[;O9 T 9 #RPJSIrO](GL9F*^)H(=b*5\e h Fa#\쀘, UdҬ˓ 5Vقð d^'z df`F@h>b4%gfK"{fӨO Ф9j { I);NG!A ͚i"a,-[3(b|Q8QHdř$f dLQ([HqVI-)p$!oXf+)b(`rI.@2NOM?AE 5`q 7LTH4*=QBq(/ (N#e bHK#rO"ϑ{GaZ'AMD `E^,AD3,ܕkfBQ"TETKf>;"AH[fW85L%Tȸ&Fa݋aojWXa1 gSRSfKi L=Fq")\1h֔Eb@#RC:@$ͽ^I#k!c"d QE0 1e*v#&kPlRfw Ė9"' gT4kJj$J 856"pЬEU ҽ ++dq[p՜ I<#5&U(MM=l'&&۸8NjR PNii), i"H)$Xd2k%~ca=]BWʀ2Uyo o(/!R s! B!d*+P$HP Y5H{Mmxr5'Kedr[CI4cH0.Z +` A$sl52sΔI;hd+&IPB80o9G3) qN9dm(Ð1c`7la>s;^Ѓ0(QҫIbXp,se[AD4B9"gp_{ؓHk9*ܫe XҠSDb uD X=*/_a="*"'{vgI l@1 ٳ|y4A8ܛ{ aAJ>jk؊ب$"eGƩq0^%lDDظa2JD`/ X TP|V T`HFfz =E,$")HΜ3rDaJ A#INu  )+på sR95q.LӔ$" 2 J0p{o!O;s=3)H@Wn-PCl k`erׄ Uv%cL%c m([q2` Ed91a"dI#r@$=gt+ T{ɁrfI=r7DA:iʰ us\8dL̐D5t-r$ epNDJ`+r.bPr(kQ?4G!vHa퐧H3̞Lzr ZRb7URcEa%eK@ϣ>"y_ Q8pB"I$"ڋ$\q0=93gRjIze=r@"cfd [3JqbaEPIQCoRG1#0s&!X9B#[lak8- 0JUaرX6lCvW@Yd<%b,$vX$o((ϗKw.(2bb$Hf! B3RVi5LȤEQB#jiQ-Q^2tVq A-R ւ PkRK3A":0ư@CO%F 8h!E-B4EI&m}'`@Nhz՘݀LΓdFfȶ}5""f6|wo!{gx@a3RDZA,dJSo[Z_#'΂͆0BT+CURPR!*_\"lrX1E\֖NPTR1HHC"!͐f002VdjX&Sdd5l SzpXaAna4(@BB3B2RԮ DJ 1ZXq7V9.8HC 0/sD 3Ei9~Hn;6հ%b\xcًTk0 eb ,\#<;d59kJh jHG9J9%4* d J0 YQ UX1 m@N-aaJqJ簇#fŮZ5dkTc**H[{^D#A &,AA-u&/7&hE%#^SO*9W6I3HU# % @(b\+Ys<\PQ0R4AAE?AS H=a&)23WTP5`m﷨] &6d(\ 40e)$IUKCD< ]a2VC靧*"& џEC?E(ȽVR$2jkrkpCn6jruCClEvRJHq>@Fty",)]LN92ϕ.OւRQT9eŐIh-k U>p}Wx(R}S՜3l 4 g[#SѨd@uvh`P5"75`r8ܤMeNEU Qm j@0y6%"3$9GeD*3~%hgVE1;(%58Jb'DU֕dkF۸e|W{bdZha~ӾWJ [ c@-ڤ="EY(xS2#)AR(5ʕ1*KjZacE}馅v, S@SB,'x;=f6vz!9Fr{ M#7jKqɵD SPmn#5ӌM5ƹVPYbq!8Şp7)^t` VœBZVVt;$a[`2NB-Cub=h C>\j "wd &v#8ęRCgB־.۱b Y%CL9Ŏr; ]0toZ3)YYX%PF6@] {hwrGq91pVGQïsf_]PƙKYe;B3Qr|[A"  d Tx\1 @wk\aVqAHC {S)*uHLs@663v4OIHF3 z yuoffO0-[6Pm:咚B:Kؘ '!T"E @XKIÊ`!vLcKbYs\ttvS-Cj"Q@{GVpDF>RP$4U%UA(ǬCw{$hEÍT;7Bz ~ ~[AZHA!H6̖l b9Y ]4Дd Q sCdP#,ȒYU cb#̥$L"sS*a&"DzJB($pqD b(QA3[^˃CL 7Dz n [+[ -!@>l#ʲ Jq2k֜˘vF)q7dP{Py󰝱VX1ņ.VCG7Elg!R /D!"p P,9Glbޏ~$ |+H!srB kS|| "FhT:T({{&#p-:Zfc5NP+<b K\0~JiZS{H39dv9v$i}K hzFT RVp %5V0F-e14Yn]ixz'~qUf@s o=2oBѹ`{6B!.NxWƆݎBጶX `aÌ2 k^\+b R((~ơ[h_drk$Hla1I{|&"XbL9+5l;TUcm c +> 8a7eUS FӜ$"jgD܀cg3VMGvX1/,a vQj$ǜթȡ)r4338+ AQPj~~CpvwQ5T1"s-M B5(pDҀL[^ag+渠0A =”=vߥiGqJ)Dlۘ@Hf*n(9RunPo:z :\wN}("LD\B38Uhx@fz,SV Ba5gFE4GLJ,PdJ Ē{|UUQykz &&܆ ǨF(}fM/V%KȢbn&l*!j*pB,dVx` 1C$ &vy" H,HR" IA% *9j &M7k5`kU*;sէ RJqdX|6` y~{m ZW[ҪjWxX`e7r@?~=t;^gH=$MKȂ!x2~ 5[#TPmPzAv.fnvqiH]RIpq[1.h"g-R md{p S2Dd*jVq!EbR?7!Z%g=') BDbgɡE!PYx kC!~yeΐrҽ!*j8Wk@ʦc6ar# Z>cX1ɻɬwLn3wўd=0Q8e6@"@VTB =d4r$K9Td$h<=l_TitHG4ZxɁN+,A5w^(x՗U+IjbD37˱fU_q=Ie 25hw4iEEU܍{ +P ȿptL4H] b֐4ej"JQHADJE`3i`=#M%bYr' b&yr |[Ԏm%Sk%Θ|[:=+^!s\(`%r񬆳;v%)"Y!"YDJ }'1 gx 51Mi|οp:]c{Ɍ\ecSg v8v08\ mV r,ewПϢۦAt,B)qLhp֢wN &&&L`)kA5f8BKu&Zv /+< 0P#!lPPդ4kxeƨFdҴbbVq st;ܞnm.i@A(dʂ.,*RG!VdJC~ H6]׋e~ ZZ? (iԬ7y8² ;-ܘZ"ī+;Eb:#g0߁'-\noNJ9.tX$h瘷:L:M4O)z JNvHY3-ձY1 c1Q5&5#r(鷺/NU@mZCS7G\oO[ޱs{0v{觨WX1j{Srn(].Q')zhȒD@9k bg&"bff^&;asUo`r habˬn~+%[605UAz*#^I+mX- &[lcXډsA(>):2""Md g0F:o)-l t_s8WFw0hQEȒ RJ6D@5*Yʀ"90J UB N`#h  h!7 H"r@ 0BVvP">]/Ʉz 8naj:kݙ}3u4aHNṽU*T~n +j2z Dm"" D `Fv1P7dkؚMæ!< +yᴱ3# |LI"B HA1FkmXSη(6$[ٓz>q[w ;mh#f֏ Qz' N;`NW~ |}Bh}6PkP`f[Ι UC+PPc] dKh,t>k5VuU  "m0@hfj c2lxV:[čI@`, LFJ "95p虌Ax"Z+k>K?|`֒T.c]XTT;P9gOڹm5~%S_q>|{bQNmXz/HO9.Cnj;3a&'2F MsiƒŠ9.H3`T4&l",ܚO -̡5T# ;ұ->[Guh몰 tbe(T3<5>> {rm??:K gDIW̩5W]:ku)xqّE_pW^Ǎ}6Py0Z@Ȃo;{l$ 8?ݱw?=_߿U_*ң8]CSa<ޥi,TǨ`Ow!sХg §KkYy8Z,2r풛kAqI)4*!J0焏 00x1i0Np_u9grcqӾmiрdUL;$!(ZY)_/fTO|Ϥ2Z3XM6 G,&rסk%4͍P}VX[V9'8+Ad L)If"T腔x_GqNrcA `1\;G qi }QA!9+1:~>g{;Oۿ?}i: v!N僵O^cۑU_D]iVnVGuv.nhѫ i03@/gPTjqh9j….AiY71`siD18'ޥҥn4Csc~վ WLѭaD?_? U=@uV#C˟o?Qڒ˵AD3*윳v]'\e gO#o8z٨q7{G֦9z;7spt}6#B/ؙ>dH}s\ CeEN #,5@T"*ռX~`|!`86Եq5c)6 KI@- c}ΟvKqDӬ'>a>O"7?~MCu̴BgS+]# k$iٸ$%m6c.t6vk^?gM_׆);o՟؋e:`wit0Ӽv~~bX1Dž¾@PQCBJ PT({tFik [55frئYfե%Ya-bDGNk6Bl2'G< "v߻;ZUU3Q*>J&1U!뺮K)H3tͨ2Nc~sZL$ɴ1s&Sm}+VXc $h*Y{&FmB'Y*hU%̭R(|3;rG7yj%Q@]z&~Fy$uw_zÓz7I뱗1C?~ž+b .>5=ƖbD*Y]$#US Q*_!P(01!vdCK*E19D0 ZL +7}buZ5>=w/_kv)3@T؞wBH]}Ɔ3{ 0~!00| ~/]7qMu޳}4WE2:g;3݊9VxhR >lQ,0axscXъkjwԥ܇% -b߇VxP$7G5'Svvp\v2o%T:> "zASH9g;ӫ؞]583ѰvTKqU ^*\ 8\["Yu Btk_}ףLP4{?w|՗d?zvglӗ]oz5zZ~Ҷ83/]Ji6]df&sch84McA.*`?=oʿWybtW=9|˖NS'lڱvCdB0C+@F:xK3AGC@d6΀1ZP% !);\#t_τo̺jp_G_t_ f-[k?U7z~ ~bi1SU9gϷ0v/͟h,6|zo0ߨj M^5VgY޺x &í}a2醪$l@IgM (,*h(Ȣ^OyJ?\'j* ý$cXIsM/;_GݼGZ~zș>_=}_/&<}mGʺ/"!B AD9=^LD1#ٵѱu񊝄lKTw[Н;Yʳ]LN#%Wn? IaGkԛ~ӽCOߥW^ xDR]21{"KR|to ܛ9ߴG0>e [vS%9Bz +TU5\[]遌nLm:?֨Z:wjNOO11&h.5yq$bVXpɭ8W$;pGF]c9L0oAiejXwaukz0Q <ўF쵏Hl_rѹa$+؊u9%C3 d rGMMY5sWp/*F fHΙ1! 2)+HfPCYRt:N'O);:P fg<'2Reh]4@>fJ8咻+pX}T/O"8Ͼf_7}eTy큷;7ݜDfciQ`sm\aƥY}B S54qL@d X Y@o\G Pi]<^̡ԫvNv<Ιq'5M6[W\2T4/?-˽ZUK( ""yr`g>-ћ]41!Nn[!s\ r! ~zqtXl` LM-%5lY~9Ώdc!\)Vq-H† iQb2LBS*|A*$(֏%Y]!jB5k)օy$^S GާO6PZ8(?](A"w 1Xֲs]1SysݵnFI7Ȁ- @ vb߶V԰b R()kZU l8"U-yDLG dB 0v K1\%0ؔSf6n |fiVʵ??#Dz|%(S@Oc49kmUUq W<`s(>_u_ N"Ev +0.g֣qF 6Qmoz oQ ?jV. !0 ?ɛbM6&Xo9doc{{{gggooo2mB(f2}`pX/O61"躿UF I.ٳm k*zS%s\(`PX\M~;p!:5lΗEE"RX]8 _D+\쭣_κ:$)YC֦}Q ]>ɖ of4mlllmmmllFC =Z,\ Oj&Q]U s3y23,4CT `k$^2c(g fv>(YB(KpQ.GĔ1{ }+_H}_X.;sZVEi*2)iJj-b"CH1ff$8*(Ov}G gC :R"e1u3DZ7SR{DpbVd= #Yg ٜ0.٬Gst4@ ㄽӠvYjw\@@8)r +z7h{i}zZĻ!(XTnYbjuow &,YXНa"M!`󜱿_jj܎XvTO Q*B~pĝکFOirBdY է?"~oJ!A*'$%1,Wb@ܯ%$ ѡu{fCttƓN]go?tꜫj6]y7pÕW\vɓu]e/r-{ 7]B~m^ל>}:Uu΍F>=ɣ?2Ƭ7|C-oyG>fN~JsUzd:/'ֆ/zыN8a ->xM71w~׷ۛURի~vU9@z0~w۶F?}眿9POp[?<ˎ4MmphZC{:ņ=Dwىn:=m>\OˆLS=W»_Y mI|c-/;q}= w8hm2V3m 61U=?A'frcG_GC7VAS-=rw ͽO|~O#Vd|F R^oߩwLZk_gݺ e&|=~9={WNCwEx\rSV6r'j ՖVZmِf]ԬZG!Q9QK09'SU]p'[@15d%D5hdϊ{4ݧV}ަƽ;>H|죽(ȒR~UU1:ux_蝝m1ՋeϜ9u]1'O|BPuV*]/Tޔڔ}I@]9^ Bwuigzlrk EK҇_7-֭w]LI`x<F6 G2e?!l+ԉ?}P6=;t[WL'7-?~ `m/;USݳn9$kT9ƵNfX6Ĭ6/oO˳1O_5 /۷?{0sW? Dn?X;sxm3䴽wp79淼~A.+/EUU'(%sS>mΛg7ǐS2֖F]"φFl6wrYPv}Z&*[c5~1ƽ|4ͽ+sMӈ?g=hu]@|folۖo"j&%qvITZ+'\^/rkD0uִ֪j6ywԩj^ -53~3oT mzE"q?k:uϿcauson~;$B?gIoz^}3oۙ׾IX@!f_md@ΘZSV(Yd 4ʄ#z`2(KI _/GW_>ѵ׀ XOWN}).I)A?վyiDt+R*B>YqB1~W#/n#t܉E/P x\\l6; )GQ`)xo#0 +{?L]I{r|\q+vwwNb,XluAcYU m$"Re,-l2sG()m 1k( naqvc䪁V-dtC sv8:o uУ-9Kd6uǒ!GE* 4iu9l{W٦_ڰ AC-dFL E b " 5[Irs *qf+nUnեwnR  ``M3H0Wy|,w5 FN15l7K/ʖb ¬ޏO՗uGr@:+f._"*\٧VGׅtYC%cՔՄ$^ڟJj4l ˓PBwZjl;쾶㹢{W.afc%LV3Kkdh4:XdB_eJG1TL#٘,(F*Ƙ,3gō7X". ќH۬H wS:SWcLh TɢDk92d{B}`o}Neրzmnlu'M[{0w!`XV0fX"RF<ѭdooNS0&C]@}7&ܨȬ۱4Xud=@SC<2zT?yG\=9CH@H[aAG=]0?=iF0zf5L(PI ;2lBԭr.Q(t&Xc H ȁ/9dXļXD-y(Kg1"D|BŤw.|i|`̾IJȺ:g}7es]R@ۥ;{,>e屻;;{luؖPHnvMo>wxDXld^Ukߋ}ZBk8IՔDfr87 o=DD}CppUNs" b8{NUmg9iPT3tLm|p3`EIq@K;O#ic32$QY$py4o͛sXjqbKJثy=,c:gd(#!UgbBPWJ^,Ў $DY , LZrAq6M,*՗ǿBAI&ѬL$VRsv=uQ`E nSNGѲ>}[~7~[/x__?ݽ9Ò1tQOyk>6蕯ɧ>11@j礐l6s,A&ݮڅ౪TA)TOξ sUM!c'@'BHvyo__MI))P2:#g=jzԫo_?hv4L`?+_k'3ï+p˭S{c( (,ݒ0!32T1VX*Ƀ 0y18rI/ne%Xa'0GHF4w,NWwo1[L`pu$||+EDI#Dž 1c5{Pa IB1<3;9W/|;sC0YR&}C󮞄o?_n9uj>~ ۅy* !v[`zfˎzæx̋C$X+j!H~p/W\U/λ_}=3JTJO>[ng7_>kg}8% 4)Y"XAM^($"3_U3M $(-&YbOx?g~>%}Q\U9ݎEu!2{?v!rKn|>2^c2Mu]$8=n%J)y677|fwhx^ܸQ%@&g͕w竿_?|ӿou󇙀ʙk֏д{/c~omW#9 mٶ3>-NyY0*uԮ / Oi=j~ 5Pnr9?=xw_q?5_}40`[E4bk^? Kqgh雾+؍xh,7 Hل$XkFzmwtsc[qZ&-Thay2i/Ť|>Yp8F9p!eo䗁S"~xy`0(($ǽ"c\_ M /6S)5?rHIoɃgBkEg>ӞV_ef6!7[>6ؐQ]1C_abVP g>酯P ]v#c1I, 4؝!?9JEUwla9A26$ _ٯz6<>X.`@d*5\]{5?_nX,K8k5ƍe[Ec75H Rb4qhfcT*D̩'?A:* 8 RV)Iumۖզi6ҍ_X*|6pӚEI*Z(Jd ?( zTWW|;s'}4i":qNh6+㒆öhnAڜzF|`h42H)s2݅t-ŦF)PNEe`-rTRƁ4\"dU9%s`4$(g|2r3gkw?IEDpUW]SUUmllÇ/O\2.&&v b' .{X 8vAutRrW3*έoaTL ̨XvyL[yxojq_p}wĘ"T)B`0MQBlW{T(uṖIpv襵}T!y$~ {"#xLfo)"C4*L7y`Sys$clSv| *zl8 yT\3=sۧ6?[j?M<#*fvww۶` 5M5 WJuQg'CV41'H9xgHy|p:B=B.t0AS 2D&%)Kt|OKBr]ClJ¼p|yK!zEX f'b?,Č+rccR}L4:{TtIX*"eFS @E sNF âyFC?FtՕ3w4GL5 E2Ylȣ3yö m@FFh`G_9+i㺳Y# MOo Uۓp @]1 f* q8_լ}TH᪌ZFLm;0*HZj?Ox}勿UlQ$$X` Q߰g(kgǚfԑ5J8 EGíhVުKXǾF=C‰$;3o=dT?+ Yj,FbzjXr5/Q_XGwU 7~F|ƬmU:Ȣ {0j Z(|+8`>[ktVUs/\rFRLr. }o]JeO:e٬i=n_Ij[k暣GZka۶ׯ:@zmKݡ|C8ղ{/Y8ߍL"! M<01;C8' u |Dc\w\L H0zJ(P{8ծs¶E%׆d;@1؝s fԒv&g޵mx{ԍLs\`k[h8xؽINofz{:vGOu!AUIij64qG?u؞z%Pԟ^QL*m8皦4p@iH'"X_Ƿ߃< [BmzߺHGZyYS-"yc[pHD~{}^?k)@)73gqP11|b,-H({OĈ}q ,ONGЇ>4N_W;v,P.>ڐ, 967ח7;KS}Ĥre3>7/mI5_/y£LEEMW^};ٴs#/O_ 9MPRh\ !`v~ljF.ϣ}⣪Mz#oG|wRPRF%7Y1ɟՍl֟yO߿G%@DwӾt: WΦ{3| E?-6z|_xGgYΎj`ѥ(~ ί> >ݾnQCfYErFNwkxiC*`~4{dBMfx$d3"NӒ-:dLrIJ_u*²}G!:;wQNArE.Gҕ!U]_yUck;o[6"I!trK,˽嗟8|xkmm}ԩcǎ-IB1TziJmgEDR+E撦R o,5"u$F_~ȑibwq7LD]ve]VZ ,)")ѨGY[E #$ m<}[r ~߱W^5Mg]qW߶X>rSed R#̻t[ }= H1bzӄ`+ eOx\Ó=֡4ȑz1{rg?[^g=AP x Uf_5[Ϳ9|/b4 D@oSS<{mg'h_-P5$r _ũz=};oi4l|Ke9q)C@P~#zm2 p70žO D&o{~oxs:#|'rY/.{i{Z-ΥY?Jb؊U7r J`.5[G6~wq-²{gaUU!q{뭷>}sر/xh4q?~Y[[{#)"E@w9G9R;-~ss󪫮*>'V9>|nٹcUUmnn^s5ǎB*p8c N5[_gvxc8~աgoxU 5碻'˵G&" <<`oQ0ѵ_U" 3&K|78)˛qpX <_+?b.u//97(B_wӎ_Gk3v_krB*L\P_pË??~GgwI?yԑ9G_䇌lgd!?MNN /6 r/ST\!?jY_ͻ_?04s֝b!ιx<^4ѻ7&缷BY_[[[n_#$V]oGwޫK&>~~g 3Rl33;%d)WK@y6 ʒ RB{Z#5u618u; HlZ2]=ȯSB*sMIeR?8޶m)AU$ Q :R@ h>y ӔEq`)"x =cGE l+Dt 1x@'mH@>gpaA2fY8S0aH#YPz,>ČZJ _ z%1z !8X%DɎ;"( {DpB#@5AJ0m; Mۢ/+R,0 i\Zƨ2kǩ$lߎSsh^9Ԝɚ|ɏw4{FzӾt@9F2JaʹCj߱NƘt׃;Opb mI)|gl0`  1/JٱĢRXX˳ 0\*_TU&nF9gkpP`1χ[ k]์1)I)Dμ%kimC)I)I:# ".Q̮EHΏ8!a %XsֹӐ!8޻[_}ߵۯsϽtiI3}N8<`"ĨeYps;9m/]!"( \ hQ=VYB}'+07K PiB^ K C7eea,͋3ꝟoO<,&dg -A=J0ћoekMif  #DLB툎 >+͑S%$KyHI@hxT 4{GBQ1 fmns5kJLß9%#O1[u ]eS.?#OԔRow}]'tPnϑ zO@?lWuw<+UcixsQh7MYzhn޹d2z'V̞ԃ}wwi(L " ,FiX*V=/|io|ϾuP##_X SZT@s\gOh*]ꦏz|q'PKj=٬pʆa*[}wy7?YW֑0.Ͻ[yo {U?>vAU,_EwA890ta+.]x7Y"x'|D5ikK./7k} rذқBr¶6FcC1UJ>8phs8w&>)|Q$凿;3ko@kN>_}27Vx?i.GT.G8(n(g>g~eM3y7`WtFrF]9q^`4\и4~*xz/p &oi;Z#C(~{TKd|M,y^CjPVKCEN΂cauOHdp0b,}Hg݂z7@oF饛Ѝ|v10@ն 4n 0a3' ~_}_2|ߜo`c?##O$42d́!7Tףk9鼴lAD*FT0}3?Ղ&:^TͿ42r0*mu}bJS*7@QǛ6Z_%AbާS4gL孏w}-u T|G>Aٕ‘ :u6#m%Pfe5+7}koX]$3{E7MȺGu9qB_%JKU*pAF1kbvbglhS|/ݷoOʿh EBa`*X 7}z>"8#j f 'o}F@dg~{}4yi]Q ޠӓDyAF]gj KQڠrASP4p(s,h (㴌4%?pκti]oƺam."exCo *N?k*p>viP#!BKVIY- +.ZV{}/>}GV9Y{ydk3Vl4#Q9n[VCɂ= ʩ57ND3̎;ų:{%d <Ѧf2f-{>gF$PF009[ ǯۢ_$?4ɦ!X ^՝ذmX|gǖY^z.=gn@_5##sdࡳv)seJjBX"Bkg"-OIuԈ=w ?-\FJz(ݤO&h^Hiz]XsCC9uG/ex gИ4erV_J_?xeCx?͙/f uTnrGFϨ)@3D]Y+Π:rbUIIIQ`ѣ=~e̟^wąl^SL7+~>z:Ly;?B8(2QmuxRv_pXuɤK9HO_u;"Mګ쁷j&WirI2S 0C?C10BC;5B-I,y/KY#⢙P(cWADA=շ2AA F ڸ{>tΰH cO _mY]P_Y Α0&R3ί\B`n "#PMAI.&[UEDllGBO>끏֑4BEC~6=}z^Lߘm݇Elܓ%]iy>r2fnH!ȉ[9"hZ WB&$$ @0J;?~#_,—O艏||{߃M.HX`K5ˎ&hD,(SN͏Fl:μfB 0w G//B|oyy~o|Lh,y.yr&94Q9FN5r:2C;-i ma%vFF955DQ0@e@l?wƯѕ=ual?7;bz{&|ҾvirJ{{q@'r`I|LEҥ?^'TF$޿oHNyF-W?Tʽn&:nZ.}_HW7|ՄiWJ]NVKgA)DفxpZ(T,'JJrA4%.O_K?~?sqa+3>P󆷿G.b[SSazw~~4g0&oz8rB 4Y9u5}dj %9Q.3\fOf='*$;?P.l*ggՍτBsSC  @АÕˇIa$j/+IJP]~3??ēUS;ڝPSoo?׾5g_3F3N~>;\,$f٪󍌼MFn; NgI:>i˫xJGw Gl]C<'3ؼ9MHXS."δ'/^>鋓~g\p۔ỵ|=C\5Kyj9}뺜FU?gͿM=Qr U}yv.} Zij6vE-H::udTSjt!{8zVfOᓘ]%x~Vl1=^%L/Y ̙}t XF~)Y:|'݋W/}ퟣ.q_{׿}/wosE `0(Xw]Lq8|y1Ǯ|6"!yq^3ּ;GGFU{ -:svM_Vy5Y^|uYN X-1ȩfTSFN`9=a~Y0d8ϼm4ur Rnr:y 8;@2]G/?O5. f`,Y&XSS{'^<*(,Y]/| H 0e"cbP#>??2FrB>ffvfV`f I lVr }s5Y)iBS?G=}{st9,4)]]ccXc_ӗufا9{BbҬDɌa׳8*=xm ꖷ/n7.36*کdf6QlJbr/ȗ18u$3yem-v1De,JTsvPmbz hvؐpL&_le Stt'$``Rx[sM,R*s Lt3 V34ZYZR\_ (PyrCP"T* apGTFS !JfEVXЗy,u܇E-$063F@<2@ &V;:qtlZs{HC,by>7qR֨(S6 . 2ȝξS iEZ77"-ATIb=e[T]xiܢQݗswHUw<~Ap(PNPLoR܄Fh&`gA贔FF^r!!B4dSAԈqiu{nfCV*{Qc{;%9G%CK.C~0Tg(Q6&9lrآr|xO0K`T;2( !5ifؑ b;ZNh-ẅ X4*y ?fhBZg;@rGinҘ ѠEW#LQmQרoDMt\ :xTT*өEO0XKI %p F5ϡ0UR( {Ь}Gqi!w  Wk (J )&)xAW㚃݌qǐlP4E94jj3͙ \Ah01؝Ol8~nqAq88~iRgLGE?H/JV 3ܩqpAlq(!P_AknI]%OYR݄S6b)N\zn[+덩"33Jzhb9Rib1siA@׸Y9{ ̐\rP{j S-7ܢP2GFtF!7eȲFVAY4#PEj/W@LA @D:nNq;q|Mp5\IE-E_@VY##wrMB/Z`D.#;t wC#U ٛxv"FF+Nmoe愌a@#HKKKˑӂb8CxxD˽!85PC)5mڰ 2FNjD)Clp hR` B; =cJ(L`4C C!dqR6c?aHqDZRؒ&#J-=39mr(F}#EWڐ*7j_?1E5rW1*N|I-p809C/(".ab HRz  3lljaIyn39R"Hs4;@j?D\B3H [=:~„BI| >j#wr _b#K-GƁA\~3ԐڕXR\x) Ha |KS7 2ؐJ=rf9r~DZ`y 56IҘ4S+6(TjH9=Α#wr0z1UD`JE3@2Ŗb ˊl(וr0R.!ޜ@bdt@H;@9d#f8#.)/(.  L$‘+ S*6+x0_qCCW2`oUKCJ 5B%$H $ !1+3@t ۍ4e=RC{ʉ4RNZN-q~-ufX!B! K{@07vdZL tܹ=r˫zKGgshF[rԱvdP%+L sX8L@<有7q8s`v 9dun0ޖfrsIOh 04242zRsRK=$s#t shZē/͕"_X5,]Mnݎ1] h(&rD$1۽#4[7#{0WFg9 ))Q'"ȁ1]S_[S"]7~,XNf)%LM/ *rϚF"%RG 15ؑ \  $oK^w522Q9^\8bDY̌\T-Ui;X R W9 H 1/"a|p~h0:f3)icKh2˔j"jqIM#ҒsܓEt ܑJS18H )LJæ9 53Q9V r8MH\@*rsAZNz0/5C "`$DBD""0l1j# Ph6dR3a,[Δ{h"Sh6]%&bdjlL+R 4 \ OY[pa YcC j;MŨeYn)'hι[4Qi5GC[a|X\k]}dd]`kAX8ULșsSo\/L[>Ƙc: 3D"T IYBAzhLL74dl@`Ɗdg}]orsmP!HĘPCsIL<8%_ Hƿ V8X c!=(2L)!J$m fǩǕ?ohȘ`zVxb9LAvl~B h652cF!)PԠ=R"4B* 92TX_jc yM&CD?V 1}Ž؁Ac,AG,p@n\>2c: _A84Q!zb'ʐW!HZ'Ì+|l'@$2$6$ f8y# DbDw?3r+8)%& u)0%˖iȲY\lNO`_~qa|D4D?Ƭ06&XBنI*T%%8k1xxުHtg|=@W} 0ua),eޠ.®KUqX9#1(Hc C\B Oz@صvd0#7Nq 'DPB~g92r71*ȗ|ыs)?iK2[еOlWlddddu& OfTD;t\P5xy i`bLS`LqBԱ @BkN= s뫷IENDB`espresso-5.1/PW/Doc/user_guide/user_guide.css0000644000175000017500000000157312341373164017347 0ustar mbamba/* Century Schoolbook font is very similar to Computer Modern Math: cmmi */ .MATH { font-family: "Century Schoolbook", serif; } .MATH I { font-family: "Century Schoolbook", serif; font-style: italic } .BOLDMATH { font-family: "Century Schoolbook", serif; font-weight: bold } /* implement both fixed-size and relative sizes */ SMALL.XTINY { font-size : xx-small } SMALL.TINY { font-size : x-small } SMALL.SCRIPTSIZE { font-size : smaller } SMALL.FOOTNOTESIZE { font-size : small } SMALL.SMALL { } BIG.LARGE { } BIG.XLARGE { font-size : large } BIG.XXLARGE { font-size : x-large } BIG.HUGE { font-size : larger } BIG.XHUGE { font-size : xx-large } /* heading styles */ H1 { } H2 { } H3 { } H4 { } H5 { } /* mathematics styles */ DIV.displaymath { } /* math displays */ TD.eqno { } /* equation-number cells */ /* document-specific styles come next */ espresso-5.1/PW/Doc/user_guide/img9.png0000644000175000017500000000037312341373163016051 0ustar mbambaPNG  IHDR#4-PLTEMJK# b``mkkXUV856C@@wuvXtRNS@f|IDATc```cfV * $0.Ѽ @(V%Hj;$ $8DrT7.!biyLf2``bP Q TBT LIENDB`espresso-5.1/PW/Doc/user_guide/prev.png0000644000175000017500000000042712341373164016161 0ustar mbambaPNG  IHDR?GT PLTEooo[tRNS@fIDATx= 0 _pFD5K t tޡC)ät-}Y#% 4ҁͥd/v`3 v3tE$S5s}jf/hQ!ە=KV_N8K8!)x'D^K -sNH!%IENDB`espresso-5.1/PW/Doc/user_guide/node2.html0000644000175000017500000000616212341373165016377 0ustar mbamba 1 Introduction next up previous contents
Next: 1.1 What can PWscf Up: User's Guide for the Previous: Contents   Contents

1 Introduction

This guide covers the usage of the PWscf (Plane-Wave Self-Consistent Field) package, a core component of the QUANTUM ESPRESSO distribution. Further documentation, beyond what is provided in this guide, can be found in the directory PW/Doc/, containing a copy of this guide.

This guide assumes that you know the physics that PWscf describes and the methods it implements. It also assumes that you have already installed, or know how to install, QUANTUM ESPRESSO. If not, please read the general User's Guide for QUANTUM ESPRESSO, found in directory Doc/ two levels above the one containing this guide; or consult the web site:
http://www.quantum-espresso.org.

People who want to modify or contribute to PWscf should read the Developer Manual: Doc/developer_man.pdf.



Subsections

paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/next.png0000644000175000017500000000036512341373164016164 0ustar mbambaPNG  IHDR%wu PLTEooo[tRNS@fIDATxm1 0 EQF >k>B>N3=k?d M53kARM9Nl :C5tl]oD/ܡ_\lE6tU{Ccs=@uwzGB-RIENDB`espresso-5.1/PW/Doc/user_guide/img1.png0000644000175000017500000000035212341373164016037 0ustar mbambaPNG  IHDR#0PLTEMJK# b``mkkXUV856C@@wuv.*+ Ė`tRNS@fhIDATc`Lp /C3]0P"'pQإr000Pr$\xf4aUL `[_ 3e5Y 9$XN#a2p2IENDB`espresso-5.1/PW/Doc/user_guide/node8.html0000644000175000017500000001467712341373165016417 0ustar mbamba 3.1 Input data next up previous contents
Next: 3.2 Data files Up: 3 Using PWscf Previous: 3 Using PWscf   Contents

3.1 Input data

Input data is organized as several namelists, followed by other fields (``cards'') introduced by keywords. The namelists are

&CONTROL: general variables controlling the run
&SYSTEM: structural information on the system under investigation
&ELECTRONS: electronic variables: self-consistency, smearing
&IONS (optional): ionic variables: relaxation, dynamics
&CELL (optional): variable-cell optimization or dynamics

Optional namelist may be omitted if the calculation to be performed does not require them. This depends on the value of variable calculation in namelist &CONTROL. Most variables in namelists have default values. Only the following variables in &SYSTEM must always be specified:

ibrav (integer) Bravais-lattice index
celldm (real, dimension 6) crystallographic constants
nat (integer) number of atoms in the unit cell
ntyp (integer) number of types of atoms in the unit cell
ecutwfc (real) kinetic energy cutoff (Ry) for wavefunctions.

For metallic systems, you have to specify how metallicity is treated in variable occupations. If you choose occupations='smearing', you have to specify the smearing type smearing and the smearing width degauss. Spin-polarized systems are as a rule treated as metallic system, unless the total magnetization, tot_magnetization is set to a fixed value, or if occupation numbers are fixed (occupations='from input' and card OCCUPATIONS).

Explanations for the meaning of variables ibrav and celldm, as well as on alternative ways to input structural data, are in files PW/Doc/INPUT_PW.txt and PW/Doc/INPUT_PW.html. These files are the reference for input data and describe a large number of other variables as well. Almost all variables have default values, which may or may not fit your needs.

Comment lines in namelists can be introduced by a "!", exactly as in fortran code.

After the namelists, you have several fields (``cards'') introduced by keywords with self-explanatory names:

ATOMIC_SPECIES
ATOMIC_POSITIONS
K_POINTS
CELL_PARAMETERS (optional)
OCCUPATIONS (optional)
The keywords may be followed on the same line by an option. Unknown fields are ignored. See the files mentioned above for details on the available ``cards''.

Comments lines in ``cards'' can be introduced by either a ``!'' or a ``#'' character in the first position of a line.

Note about k points: The k-point grid can be either automatically generated or manually provided as a list of k-points and a weight in the Irreducible Brillouin Zone only of the Bravais lattice of the crystal. The code will generate (unless instructed not to do so: see variable nosym) all required k-points and weights if the symmetry of the system is lower than the symmetry of the Bravais lattice. The automatic generation of k-points follows the convention of Monkhorst and Pack.


next up previous contents
Next: 3.2 Data files Up: 3 Using PWscf Previous: 3 Using PWscf   Contents
paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/node11.html0000644000175000017500000001662712341373165016466 0ustar mbamba 3.4 Optimization and dynamics next up previous contents
Next: 3.5 Direct interface with Up: 3 Using PWscf Previous: 3.3 Electronic structure calculations   Contents

Subsections

3.4 Optimization and dynamics

3.4.0.1 Structural optimization

For fixed-cell optimization, specify calculation='relax' and add namelist &IONS. All options for a single SCF calculation apply, plus a few others. You may follow a structural optimization with a non-SCF band-structure calculation (since v.4.1, you do not need any longer to update the atomic positions in the input file for non scf calculation).
See Example 02.

3.4.0.2 Molecular Dynamics

Specify calculation='md', the time step dt, and possibly the number of MD stops nstep. Use variable ion_dynamics in namelist &IONS for a fine-grained control of the kind of dynamics. Other options for setting the initial temperature and for thermalization using velocity rescaling are available. Remember: this is MD on the electronic ground state, not Car-Parrinello MD. See Example 03.

3.4.0.3 Free-energy surface calculations

Once PWscf is patched with the PLUMED plug-in, it is possible to use most PLUMED functionalities by running PWscf as: ./pw.x -plumed plus the other usual PWscf arguments. The input file for PLUMED must be found in the specified outdir with fixed name plumed.dat.

3.4.0.4 Variable-cell optimization

Since v.4.2 the newer BFGS algorithm covers the case of variable-cell optimization as well. Note however that variable-cell calculations (both optimization and dynamics) are performed with plane waves and G-vectors calculated for the starting cell. This means that if you re-run a self-consistent calculation for the final cell and atomic positions using the same cutoff ecutwfc (and/or ecutrho if applicable), you may not find exactly the same results, unless your final and initial cells are very similar, or unless your cutoff(s) are very high. In order to provide a further check, a last step is performed in which a scf calculation is performed for the converged structure, with plane waves and G-vectors calculated for the final cell. Small differences between the two last steps are thus to be expected and give an estimate of the reliability of the variable-cell optimization. If you get a large difference, you are likely quite far from convergence in the plane-wave basis set and you need to increase the cutoff(s).

3.4.0.5 Variable-cell molecular dynamics

"A common mistake many new users make is to set the time step dt improperly to the same order of magnitude as for CP algorithm, or not setting dt at all. This will produce a ``not evolving dynamics''. Good values for the original RMW (RM Wentzcovitch) dynamics are dt = 50 ÷ 70. The choice of the cell mass is a delicate matter. An off-optimal mass will make convergence slower. Too small masses, as well as too long time steps, can make the algorithm unstable. A good cell mass will make the oscillation times for internal degrees of freedom comparable to cell degrees of freedom in non-damped Variable-Cell MD. Test calculations are advisable before extensive calculation. I have tested the damping algorithm that I have developed and it has worked well so far. It allows for a much longer time step (dt= 100 ÷ 150) than the RMW one and is much more stable with very small cell masses, which is useful when the cell shape, not the internal degrees of freedom, is far out of equilibrium. It also converges in a smaller number of steps than RMW." (Info from Cesar Da Silva: the new damping algorithm is the default since v. 3.1).


next up previous contents
Next: 3.5 Direct interface with Up: 3 Using PWscf Previous: 3.3 Electronic structure calculations   Contents
paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/prev_g.png0000644000175000017500000000050712341373164016466 0ustar mbambaPNG  IHDR?JtRNS-Mc%IDATx͔u D?~5m9`D:p9cm.BBb$9db`HUI:Bu:ΓE-'} C|,t%}yFsP=T.+9dG+WZ~panP895il u9'ͩβ ֒_+xe U+i@iZfG-Κ6)nsU~!L,cwmP,vzSH=hyW:C>G'oi=Q)IENDB`espresso-5.1/PW/Doc/user_guide/node15.html0000644000175000017500000000550412341373165016462 0ustar mbamba 4.2 Memory requirements next up previous contents
Next: 4.3 File space requirements Up: 4 Performances Previous: 4.1 Execution time   Contents

4.2 Memory requirements

A typical self-consistency or molecular-dynamics run requires a maximum memory in the order of O double precision complex numbers, where

O = mMN + PN + pN1N2N3 + qNr1Nr2Nr3

with m, p, q = small factors; all other variables have the same meaning as above. Note that if the $ \Gamma$ -point only (k = 0) is used to sample the Brillouin Zone, the value of N will be cut into half.

The memory required by the phonon code follows the same patterns, with somewhat larger factors m, p, q.



paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/internals.pl0000644000175000017500000000043612341373164017033 0ustar mbamba# LaTeX2HTML 2008 (1.71) # Associate internals original text with physical files. $key = q/pw2casino_info/; $ref_files{$key} = "$dir".q|node12.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:badpara/; $ref_files{$key} = "$dir".q|node17.html|; $noresave{$key} = "$nosave"; 1; espresso-5.1/PW/Doc/user_guide/img10.png0000644000175000017500000000032412341373164016116 0ustar mbambaPNG  IHDR '7'PLTEMJK# b``mkkXUVC@@wuvtRNS@f[IDATc`8U .0%J P #M/6b^ء\Xi0Q R S a lIENDB`espresso-5.1/PW/Doc/user_guide/img5.png0000644000175000017500000000041112341373161016034 0ustar mbambaPNG  IHDRXm0PLTEMJK# b``mkkXUV856C@@wuv.*+ Ė`tRNS@fIDATc` aH,rc2H% `& h ;ʾ 00o`sY  Vކ@RFHGX"K$XӔ c__]KIENDB`espresso-5.1/PW/Doc/user_guide/node14.html0000644000175000017500000002351112341373165016457 0ustar mbamba 4.1 Execution time next up previous contents
Next: 4.2 Memory requirements Up: 4 Performances Previous: 4 Performances   Contents

4.1 Execution time

The following is a rough estimate of the complexity of a plain scf calculation with pw.x, for NCPP. USPP and PAW give raise additional terms to be calculated, that may add from a few percent up to 30-40% to execution time. For phonon calculations, each of the 3Nat modes requires a time of the same order of magnitude of self-consistent calculation in the same system (possibly times a small multiple). For cp.x, each time step takes something in the order of Th + Torth + Tsub defined below.

The time required for the self-consistent solution at fixed ionic positions, Tscf , is:

Tscf = NiterTiter + Tinit

where Niter = number of self-consistency iterations (niter), Titer = time for a single iteration, Tinit = initialization time (usually much smaller than the first term).

The time required for a single self-consistency iteration Titer is:

Titer = NkTdiag + Trho + Tscf

where Nk = number of k-points, Tdiag = time per Hamiltonian iterative diagonalization, Trho = time for charge density calculation, Tscf = time for Hartree and XC potential calculation.

The time for a Hamiltonian iterative diagonalization Tdiag is:

Tdiag = NhTh + Torth + Tsub

where Nh = number of H$ \psi$ products needed by iterative diagonalization, Th = time per H$ \psi$ product, Torth = CPU time for orthonormalization, Tsub = CPU time for subspace diagonalization.

The time Th required for a H$ \psi$ product is

Th = a1MN + a2MN1N2N3log(N1N2N3) + a3MPN.

The first term comes from the kinetic term and is usually much smaller than the others. The second and third terms come respectively from local and nonlocal potential. a1, a2, a3 are prefactors (i.e. small numbers $ \cal {O}$(1)), M = number of valence bands (nbnd), N = number of PW (basis set dimension: npw), N1, N2, N3 = dimensions of the FFT grid for wavefunctions (nr1s, nr2s, nr3s; N1N2N3 $ \sim$ 8N ), P = number of pseudopotential projectors, summed on all atoms, on all values of the angular momentum l, and m = 1,..., 2l + 1.

The time Torth required by orthonormalization is

Torth = b1NMx2

and the time Tsub required by subspace diagonalization is

Tsub = b2Mx3

where b1 and b2 are prefactors, Mx = number of trial wavefunctions (this will vary between M and 2 ÷ 4M, depending on the algorithm).

The time Trho for the calculation of charge density from wavefunctions is

Trho = c1MNr1Nr2Nr3log(Nr1Nr2Nr3) + c2MNr1Nr2Nr3 + Tus

where c1, c2, c3 are prefactors, Nr1, Nr2, Nr3 = dimensions of the FFT grid for charge density (nr1, nr2, nr3; Nr1Nr2Nr3 $ \sim$ 8Ng, where Ng = number of G-vectors for the charge density, ngm), and Tus = time required by PAW/USPPs contribution (if any). Note that for NCPPs the FFT grids for charge and wavefunctions are the same.

The time Tscf for calculation of potential from charge density is

Tscf = d2Nr1Nr2Nr3 + d3Nr1Nr2Nr3log(Nr1Nr2Nr3)

where d1, d2 are prefactors.

The above estimates are for serial execution. In parallel execution, each contribution may scale in a different manner with the number of processors (see below).


next up previous contents
Next: 4.2 Memory requirements Up: 4 Performances Previous: 4 Performances   Contents
paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/images.pl0000644000175000017500000000353612341373164016305 0ustar mbamba# LaTeX2HTML 2008 (1.71) # Associate images original text with physical files. $key = q/langle;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \langle$|; $key = q/psi;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \psi$|; $key = q/sim;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \sim$|; $key = q/alpha;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \alpha$|; $key = q/Gamma;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \Gamma$|; $key = q/rangle;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \rangle$|; $key = q/cal{O};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \cal {O}$|; $key = q/displaystyle{oversqrt{}};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle {<BW\vert PW> \over \sqrt{<BW\vert BW><PW\vert PW>}}$|; $key = q/displaystylealpha;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle \alpha$|; $key = q/beta;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \beta$|; 1; espresso-5.1/PW/Doc/user_guide/node16.html0000644000175000017500000000500712341373165016461 0ustar mbamba 4.3 File space requirements next up previous contents
Next: 4.4 Parallelization issues Up: 4 Performances Previous: 4.2 Memory requirements   Contents

4.3 File space requirements

A typical pw.x run will require an amount of temporary disk space in the order of O double precision complex numbers:

O = NkMN + qNr1Nr2Nr3

where q = 2 x mixing_ndim (number of iterations used in self-consistency, default value = 8) if disk_io is set to 'high'; q = 0 otherwise.



paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/images.aux0000644000175000017500000000001012341373156016450 0ustar mbamba\relax espresso-5.1/PW/Doc/user_guide/labels.pl0000644000175000017500000000107012341373164016271 0ustar mbamba# LaTeX2HTML 2008 (1.71) # Associate labels original text with physical files. $key = q/pw2casino_info/; $external_labels{$key} = "$URL/" . q|node12.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:badpara/; $external_labels{$key} = "$URL/" . q|node17.html|; $noresave{$key} = "$nosave"; 1; # LaTeX2HTML 2008 (1.71) # labels from external_latex_labels array. $key = q/pw2casino_info/; $external_latex_labels{$key} = q|3.5|; $noresave{$key} = "$nosave"; $key = q/SubSec:badpara/; $external_latex_labels{$key} = q|4.4|; $noresave{$key} = "$nosave"; 1; espresso-5.1/PW/Doc/user_guide/node19.html0000644000175000017500000010101212341373165016455 0ustar mbamba 5 Troubleshooting next up previous contents
Next: 5.1 Compilation problems with Up: User's Guide for the Previous: 4.5 Understanding the time   Contents

5 Troubleshooting

5.0.0.1 pw.x says 'error while loading shared libraries' or 'cannot open shared object file' and does not start

Possible reasons:
  • If you are running on the same machines on which the code was compiled, this is a library configuration problem. The solution is machine-dependent. On Linux, find the path to the missing libraries; then either add it to file /etc/ld.so.conf and run ldconfig (must be done as root), or add it to variable LD_LIBRARY_PATH and export it. Another possibility is to load non-shared version of libraries (ending with .a) instead of shared ones (ending with .so).
  • If you are not running on the same machines on which the code was compiled: you need either to have the same shared libraries installed on both machines, or to load statically all libraries (using appropriate configure or loader options). The same applies to Beowulf-style parallel machines: the needed shared libraries must be present on all PCs.

5.0.0.2 errors in examples with parallel execution

If you get error messages in the example scripts - i.e. not errors in the codes - on a parallel machine, such as e.g.: run example: -n: command not found you may have forgotten the " " in the definitions of PARA_PREFIX and PARA_POSTFIX.

5.0.0.3 pw.x prints the first few lines and then nothing happens (parallel execution)

If the code looks like it is not reading from input, maybe it isn't: the MPI libraries need to be properly configured to accept input redirection. Use pw.x -i and the input file name (see Sec.[*]), or inquire with your local computer wizard (if any). Since v.4.2, this is for sure the reason if the code stops at Waiting for input....

5.0.0.4 pw.x stops with error while reading data

There is an error in the input data, typically a misspelled namelist variable, or an empty input file. Unfortunately with most compilers the code just reports Error while reading XXX namelist and no further useful information. Here are some more subtle sources of trouble:
  • Out-of-bound indices in dimensioned variables read in the namelists;
  • Input data files containing ^M (Control-M) characters at the end of lines, or non-ASCII characters (e.g. non-ASCII quotation marks, that at a first glance may look the same as the ASCII character). Typically, this happens with files coming from Windows or produced with "smart" editors.
Both may cause the code to crash with rather mysterious error messages. If none of the above applies and the code stops at the first namelist (&CONTROL) and you are running in parallel, see the previous item.

5.0.0.5 pw.x mumbles something like cannot recover or error reading recover file

You are trying to restart from a previous job that either produced corrupted files, or did not do what you think it did. No luck: you have to restart from scratch.

5.0.0.6 pw.x stops with inconsistent DFT error

As a rule, the flavor of DFT used in the calculation should be the same as the one used in the generation of pseudopotentials, which should all be generated using the same flavor of DFT. This is actually enforced: the type of DFT is read from pseudopotential files and it is checked that the same DFT is read from all PPs. If this does not hold, the code stops with the above error message. Use - at your own risk - input variable input_dft to force the usage of the DFT you like.

5.0.0.7 pw.x stops with error in cdiaghg or rdiaghg

Possible reasons for such behavior are not always clear, but they typically fall into one of the following cases:
  • serious error in data, such as bad atomic positions or bad crystal structure/supercell;
  • a bad pseudopotential, typically with a ghost, or a USPP giving non-positive charge density, leading to a violation of positiveness of the S matrix appearing in the USPP formalism;
  • a failure of the algorithm performing subspace diagonalization. The LAPACK algorithms used by cdiaghg (for generic k-points) or rdiaghg (for $ \Gamma$ -only case) are very robust and extensively tested. Still, it may seldom happen that such algorithms fail. Try to use conjugate-gradient diagonalization (diagonalization='cg'), a slower but very robust algorithm, and see what happens.
  • buggy libraries. Machine-optimized mathematical libraries are very fast but sometimes not so robust from a numerical point of view. Suspicious behavior: you get an error that is not reproducible on other architectures or that disappears if the calculation is repeated with even minimal changes in parameters. Known cases: HP-Compaq alphas with cxml libraries, Mac OS-X with system BLAS/LAPACK. Try to use compiled BLAS and LAPACK (or better, ATLAS) instead of machine-optimized libraries.

5.0.0.8 pw.x crashes with no error message at all

This happens quite often in parallel execution, or under a batch queue, or if you are writing the output to a file. When the program crashes, part of the output, including the error message, may be lost, or hidden into error files where nobody looks into. It is the fault of the operating system, not of the code. Try to run interactively and to write to the screen. If this doesn't help, move to next point.

5.0.0.9 pw.x crashes with segmentation fault or similarly obscure messages

Possible reasons:
  • too much RAM memory or stack requested (see next item).
  • if you are using highly optimized mathematical libraries, verify that they are designed for your hardware.
  • If you are using aggressive optimization in compilation, verify that you are using the appropriate options for your machine
  • The executable was not properly compiled, or was compiled on a different and incompatible environment.
  • buggy compiler or libraries: this is the default explanation if you have problems with the provided tests and examples.

5.0.0.10 pw.x works for simple systems, but not for large systems or whenever more RAM is needed

Possible solutions:
  • Increase the amount of RAM you are authorized to use (which may be much smaller than the available RAM). Ask your system administrator if you don't know what to do. In some cases the stack size can be a source of problems: if so, increase it with command limits or ulimit).
  • Reduce nbnd to the strict minimum (for insulators, the default is already the minimum, though).
  • Reduce the work space for Davidson diagonalization to the minimum by setting diago_david_ndim=2; also consider using conjugate gradient diagonalization (diagonalization='cg'), slow but very robust, which requires almost no work space.
  • If the charge density takes a significant amount of RAM, reduce mixing_ndim from its default value (8) to 4 or so.
  • In parallel execution, use more processors, or use the same number of processors with less pools. Remember that parallelization with respect to k-points (pools) does not distribute memory: only parallelization with respect to R- (and G-) space does.
  • If none of the above is sufficient or feasible, you have to either reduce the cutoffs and/or the cell size, or to use a machine with more RAM.

5.0.0.11 pw.x crashes with error in davcio

davcio is the routine that performs most of the I/O operations (read from disk and write to disk) in pw.x; error in davcio means a failure of an I/O operation.
  • If the error is reproducible and happens at the beginning of a calculation: check if you have read/write permission to the scratch directory specified in variable outdir. Also: check if there is enough free space available on the disk you are writing to, and check your disk quota (if any).
  • If the error is irreproducible: your might have flaky disks; if you are writing via the network using NFS (which you shouldn't do anyway), your network connection might be not so stable, or your NFS implementation is unable to work under heavy load
  • If it happens while restarting from a previous calculation: you might be restarting from the wrong place, or from wrong data, or the files might be corrupted.
  • If you are running two or more instances of pw.x at the same time, check if you are using the same file names in the same temporary directory. For instance, if you submit a series of jobs to a batch queue, do not use the same outdir and the same prefix, unless you are sure that one job doesn't start before a preceding one has finished.

5.0.0.12 pw.x crashes in parallel execution with an obscure message related to MPI errors

Random crashes due to MPI errors have often been reported, typically in Linux PC clusters. We cannot rule out the possibility that bugs in QUANTUM ESPRESSO cause such behavior, but we are quite confident that the most likely explanation is a hardware problem (defective RAM for instance) or a software bug (in MPI libraries, compiler, operating system).

Debugging a parallel code may be difficult, but you should at least verify if your problem is reproducible on different architectures/software configurations/input data sets, and if there is some particular condition that activates the bug. If this doesn't seem to happen, the odds are that the problem is not in QUANTUM ESPRESSO. You may still report your problem, but consider that reports like it crashes with...(obscure MPI error) contain 0 bits of information and are likely to get 0 bits of answers.

5.0.0.13 pw.x stops with error message the system is metallic, specify occupations

You did not specify state occupations, but you need to, since your system appears to have an odd number of electrons. The variable controlling how metallicity is treated is occupations in namelist &SYSTEM. The default, occupations='fixed', occupies the lowest (N electrons)/2 states and works only for insulators with a gap. In all other cases, use 'smearing' ('tetrahedra' for DOS calculations). See input reference documentation for more details.

5.0.0.14 pw.x stops with internal error: cannot bracket Ef

Possible reasons:
  • serious error in data, such as bad number of electrons, insufficient number of bands, absurd value of broadening;
  • the Fermi energy is found by bisection assuming that the integrated DOS N(E ) is an increasing function of the energy. This is not guaranteed for Methfessel-Paxton smearing of order 1 and can give problems when very few k-points are used. Use some other smearing function: simple Gaussian broadening or, better, Marzari-Vanderbilt 'cold smearing'.

5.0.0.15 pw.x yields internal error: cannot bracket Ef message but does not stop

This may happen under special circumstances when you are calculating the band structure for selected high-symmetry lines. The message signals that occupations and Fermi energy are not correct (but eigenvalues and eigenvectors are). Remove occupations='tetrahedra' in the input data to get rid of the message.

5.0.0.16 pw.x runs but nothing happens

Possible reasons:
  • in parallel execution, the code died on just one processor. Unpredictable behavior may follow.
  • in serial execution, the code encountered a floating-point error and goes on producing NaNs (Not a Number) forever unless exception handling is on (and usually it isn't). In both cases, look for one of the reasons given above.
  • maybe your calculation will take more time than you expect.

5.0.0.17 pw.x yields weird results

If results are really weird (as opposed to misinterpreted):
  • if this happens after a change in the code or in compilation or preprocessing options, try make clean, recompile. The make command should take care of all dependencies, but do not rely too heavily on it. If the problem persists, recompile with reduced optimization level.
  • maybe your input data are weird.

5.0.0.18 FFT grid is machine-dependent

Yes, they are! The code automatically chooses the smallest grid that is compatible with the specified cutoff in the specified cell, and is an allowed value for the FFT library used. Most FFT libraries are implemented, or perform well, only with dimensions that factors into products of small numbers (2, 3, 5 typically, sometimes 7 and 11). Different FFT libraries follow different rules and thus different dimensions can result for the same system on different machines (or even on the same machine, with a different FFT). See function allowed in Modules/fft_scalar.f90.

As a consequence, the energy may be slightly different on different machines. The only piece that explicitly depends on the grid parameters is the XC part of the energy that is computed numerically on the grid. The differences should be small, though, especially for LDA calculations.

Manually setting the FFT grids to a desired value is possible, but slightly tricky, using input variables nr1, nr2, nr3 and nr1s, nr2s, nr3s. The code will still increase them if not acceptable. Automatic FFT grid dimensions are slightly overestimated, so one may try very carefully to reduce them a little bit. The code will stop if too small values are required, it will waste CPU time and memory for too large values.

Note that in parallel execution, it is very convenient to have FFT grid dimensions along z that are a multiple of the number of processors.

5.0.0.19 pw.x does not find all the symmetries you expected

pw.x determines first the symmetry operations (rotations) of the Bravais lattice; then checks which of these are symmetry operations of the system (including if needed fractional translations). This is done by rotating (and translating if needed) the atoms in the unit cell and verifying if the rotated unit cell coincides with the original one.

Assuming that your coordinates are correct (please carefully check!), you may not find all the symmetries you expect because:

  • the number of significant figures in the atomic positions is not large enough. In file PW/eqvect.f90, the variable accep is used to decide whether a rotation is a symmetry operation. Its current value (10-5) is quite strict: a rotated atom must coincide with another atom to 5 significant digits. You may change the value of accep and recompile.
  • they are not acceptable symmetry operations of the Bravais lattice. This is the case for C60, for instance: the Ih icosahedral group of C60 contains 5-fold rotations that are incompatible with translation symmetry.
  • the system is rotated with respect to symmetry axis. For instance: a C60 molecule in the fcc lattice will have 24 symmetry operations (Th group) only if the double bond is aligned along one of the crystal axis; if C60 is rotated in some arbitrary way, pw.x may not find any symmetry, apart from inversion.
  • they contain a fractional translation that is incompatible with the FFT grid (see next paragraph). Note that if you change cutoff or unit cell volume, the automatically computed FFT grid changes, and this may explain changes in symmetry (and in the number of k-points as a consequence) for no apparent good reason (only if you have fractional translations in the system, though).
  • a fractional translation, without rotation, is a symmetry operation of the system. This means that the cell is actually a supercell. In this case, all symmetry operations containing fractional translations are disabled. The reason is that in this rather exotic case there is no simple way to select those symmetry operations forming a true group, in the mathematical sense of the term.

5.0.0.20 Warning: symmetry operation # N not allowed

This is not an error. If a symmetry operation contains a fractional translation that is incompatible with the FFT grid, it is discarded in order to prevent problems with symmetrization. Typical fractional translations are 1/2 or 1/3 of a lattice vector. If the FFT grid dimension along that direction is not divisible respectively by 2 or by 3, the symmetry operation will not transform the FFT grid into itself. Solution: you can either force your FFT grid to be commensurate with fractional translation (set variables nr1, nr2, nr3 to suitable values), or set variable use_all_frac to .true., in namelist &SYSTEM. Note however that the latter is incompatible with hybrid functionals and with phonon calculations.

5.0.0.21 Self-consistency is slow or does not converge at all

Bad input data will often result in bad scf convergence. Please carefully check your structure first, e.g. using XCrySDen.

Assuming that your input data is sensible :

  1. Verify if your system is metallic or is close to a metallic state, especially if you have few k-points. If the highest occupied and lowest unoccupied state(s) keep exchanging place during self-consistency, forget about reaching convergence. A typical sign of such behavior is that the self-consistency error goes down, down, down, than all of a sudden up again, and so on. Usually one can solve the problem by adding a few empty bands and a small broadening.
  2. Reduce mixing_beta to $ \sim$ 0.3 ÷ 0.1 or smaller. Try the mixing_mode value that is more appropriate for your problem. For slab geometries used in surface problems or for elongated cells, mixing_mode='local-TF' should be the better choice, dampening "charge sloshing". You may also try to increase mixing_ndim to more than 8 (default value). Beware: this will increase the amount of memory you need.
  3. Specific to USPP: the presence of negative charge density regions due to either the pseudization procedure of the augmentation part or to truncation at finite cutoff may give convergence problems. Raising the ecutrho cutoff for charge density will usually help.

5.0.0.22 I do not get the same results in different machines!

If the difference is small, do not panic. It is quite normal for iterative methods to reach convergence through different paths as soon as anything changes. In particular, between serial and parallel execution there are operations that are not performed in the same order. As the numerical accuracy of computer numbers is finite, this can yield slightly different results.

It is also normal that the total energy converges to a better accuracy than its terms, since only the sum is variational, i.e. has a minimum in correspondence to ground-state charge density. Thus if the convergence threshold is for instance 10-8, you get 8-digit accuracy on the total energy, but one or two less on other terms (e.g. XC and Hartree energy). It this is a problem for you, reduce the convergence threshold for instance to 10-10 or 10-12. The differences should go away (but it will probably take a few more iterations to converge).

5.0.0.23 Execution time is time-dependent!

Yes it is! On most machines and on most operating systems, depending on machine load, on communication load (for parallel machines), on various other factors (including maybe the phase of the moon), reported execution times may vary quite a lot for the same job.

5.0.0.24 Warning : N eigenvectors not converged

This is a warning message that can be safely ignored if it is not present in the last steps of self-consistency. If it is still present in the last steps of self-consistency, and if the number of unconverged eigenvector is a significant part of the total, it may signal serious trouble in self-consistency (see next point) or something badly wrong in input data.

5.0.0.25 Warning : negative or imaginary charge..., or ...core charge ..., or npt with rhoup< 0... or rho dw< 0...

These are warning messages that can be safely ignored unless the negative or imaginary charge is sizable, let us say of the order of 0.1. If it is, something seriously wrong is going on. Otherwise, the origin of the negative charge is the following. When one transforms a positive function in real space to Fourier space and truncates at some finite cutoff, the positive function is no longer guaranteed to be positive when transformed back to real space. This happens only with core corrections and with USPPs. In some cases it may be a source of trouble (see next point) but it is usually solved by increasing the cutoff for the charge density.

5.0.0.26 Structural optimization is slow or does not converge or ends with a mysterious bfgs error

Typical structural optimizations, based on the BFGS algorithm, converge to the default thresholds ( etot_conv_thr and forc_conv_thr ) in 15-25 BFGS steps (depending on the starting configuration). This may not happen when your system is characterized by "floppy" low-energy modes, that make very difficult (and of little use anyway) to reach a well converged structure, no matter what. Other possible reasons for a problematic convergence are listed below.

Close to convergence the self-consistency error in forces may become large with respect to the value of forces. The resulting mismatch between forces and energies may confuse the line minimization algorithm, which assumes consistency between the two. The code reduces the starting self-consistency threshold conv thr when approaching the minimum energy configuration, up to a factor defined by upscale. Reducing conv_thr (or increasing upscale) yields a smoother structural optimization, but if conv_thr becomes too small, electronic self-consistency may not converge. You may also increase variables etot_conv_thr and forc_conv_thr that determine the threshold for convergence (the default values are quite strict).

A limitation to the accuracy of forces comes from the absence of perfect translational invariance. If we had only the Hartree potential, our PW calculation would be translationally invariant to machine precision. The presence of an XC potential introduces Fourier components in the potential that are not in our basis set. This loss of precision (more serious for gradient-corrected functionals) translates into a slight but detectable loss of translational invariance (the energy changes if all atoms are displaced by the same quantity, not commensurate with the FFT grid). This sets a limit to the accuracy of forces. The situation improves somewhat by increasing the ecutrho cutoff.

5.0.0.27 pw.x stops during variable-cell optimization in checkallsym with non orthogonal operation error

Variable-cell optimization may occasionally break the starting symmetry of the cell. When this happens, the run is stopped because the number of k-points calculated for the starting configuration may no longer be suitable. Possible solutions:
  • start with a nonsymmetric cell;
  • use a symmetry-conserving algorithm: the Wentzcovitch algorithm (cell dynamics='damp-w') should not break the symmetry.



Subsections
next up previous contents
Next: 5.1 Compilation problems with Up: User's Guide for the Previous: 4.5 Understanding the time   Contents
paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/user_guide.html0000644000175000017500000002436612341373165017531 0ustar mbamba User's Guide for the PWscf package next up previous contents
Next: Contents   Contents

Image quantum_espresso Image democritos
User's Guide for PWscf

(version 5.1.0)





paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/node10.html0000644000175000017500000002336212341373165016457 0ustar mbamba 3.3 Electronic structure calculations next up previous contents
Next: 3.4 Optimization and dynamics Up: 3 Using PWscf Previous: 3.2 Data files   Contents

Subsections

3.3 Electronic structure calculations

3.3.0.1 Single-point (fixed-ion) SCF calculation

Set calculation='scf' (this is actually the default). Namelists &IONS and &CELL will be ignored. See Example 01.

3.3.0.2 Band structure calculation

First perform a SCF calculation as above; then do a non-SCF calculation with the desired k-point grid and number nbnd of bands. Use calculation='bands' if you are interested in calculating only the Kohn-Sham states for the given set of k-points (e.g. along symmetry lines: see for instance http://www.cryst.ehu.es/cryst/get_kvec.html). Specify instead calculation='nscf' if you are interested in further processing of the results of non-SCF calculations (for instance, in DOS calculations). In the latter case, you should specify a uniform grid of points. For DOS calculations you should choose occupations='tetrahedra', together with an automatically generated uniform k-point grid (card K_POINTS with option ``automatic''). Specify nosym=.true. to avoid generation of additional k-points in low symmetry cases. Variables prefix and outdir, which determine the names of input or output files, should be the same in the two runs. See Examples 01, 06, 07,

NOTA BENE: Since v.4.1, both atomic positions and the scf potential are read from the data file so that consistency is guaranteed.

3.3.0.3 Noncollinear magnetization, spin-orbit interactions

The following input variables are relevant for noncollinear and spin-orbit calculations:

noncolin
lspinorb
starting_magnetization (one for each type of atoms)
To make a spin-orbit calculation noncolin must be true. If starting_magnetization is set to zero (or not given) the code makes a spin-orbit calculation without spin magnetization (it assumes that time reversal symmetry holds and it does not calculate the magnetization). The states are still two-component spinors but the total magnetization is zero.

If starting_magnetization is different from zero, it makes a noncollinear spin polarized calculation with spin-orbit interaction. The final spin magnetization might be zero or different from zero depending on the system.

Furthermore to make a spin-orbit calculation you must use fully relativistic pseudopotentials at least for the atoms in which you think that spin-orbit interaction is large. If all the pseudopotentials are scalar relativistic the calculation becomes equivalent to a noncollinear calculation without spin orbit. (Andrea Dal Corso, 2007-07-27) See Example 06 for noncollinear magnetism, Example 07 for spin-orbit interactions.

3.3.0.4 DFT+U

DFT+U (formerly known as LDA+U) calculation can be performed within a simplified rotationally invariant form of the U Hubbard correction. Note that for all atoms having a U value there should be an item in function flib/set_hubbard_l.f90 and one in subroutine PW/src/tabd.f90, defining respectively the angular momentum and the occupancy of the orbitals with the Hubbard correction. If your Hubbard-corrected atoms are not there, you need to edit these files and to recompile.

See Example 08 and its README.

3.3.0.5 Dispersion Interactions (DFT-D)

For DFT-D (DFT + semiempirical dispersion interactions), see the description of input variables london*, sample files PW/tests/vdw.*, and the comments in source file Modules/mm_dispersion.f90.

3.3.0.6 Hartree-Fock and Hybrid functionals

Since v.5.0, calculations in the Hartree-Fock approximation, or using hybrid XC functionals that include some Hartree-Fock exchange, no longer require a special preprocessing before compilation. See EXX_example/ and its README file.

3.3.0.7 Dispersion interaction with non-local functional (vdwDF)

See example vdwDF_example and references quoted in file README therein.

3.3.0.8 Polarization via Berry Phase

See Example 04, its file README, the documentation in the header of PW/src/bp_c_phase.f90.

3.3.0.9 Finite electric fields

There are two different implementations of macroscopic electric fields in pw.x: via an external sawtooth potential (input variable tefield=.true.) and via the modern theory of polarizability (lelfield=.true.). The former is useful for surfaces, especially in conjunction with dipolar corrections (dipfield=.true.): see examples/dipole_example for an example of application. Electric fields via modern theory of polarization are documented in example 10. The exact meaning of the related variables, for both cases, is explained in the general input documentation.

3.3.0.10 Orbital magnetization

Modern theory of orbital magnetization [Phys. Rev. Lett. 95, 137205 (2005)] for insulators. The calculation is performed by setting input variable lorbm=.true. in nscf run. If finite electric field is present (lelfield=.true.) only Kubo terms are computed [see New J. Phys. 12, 053032 (2010) for details].


next up previous contents
Next: 3.4 Optimization and dynamics Up: 3 Using PWscf Previous: 3.2 Data files   Contents
paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/node1.html0000644000175000017500000000671212341373165016377 0ustar mbamba Contents next up previous
Next: 1 Introduction Up: User's Guide for the Previous: User's Guide for the


Contents



paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/index.html0000644000175000017500000000000012341373165027032 1espresso-5.1/PW/Doc/user_guide/user_guide.htmlustar mbambaespresso-5.1/PW/Doc/user_guide/node9.html0000644000175000017500000000565612341373165016415 0ustar mbamba 3.2 Data files next up previous contents
Next: 3.3 Electronic structure calculations Up: 3 Using PWscf Previous: 3.1 Input data   Contents

3.2 Data files

The output data files are written in the directory outdir/prefix.save, as specified by variables outdir and prefix (a string that is prepended to all file names, whose default value is: prefix='pwscf'). outdir can be specified as well in environment variable ESPRESSO_TMPDIR. The iotk toolkit is used to write the file in a XML format, whose definition can be found in the Developer Manual. In order to use the data directory on a different machine, you need to convert the binary files to formatted and back, using the bin/iotk script.

The execution stops if you create a file prefix.EXIT either in the working directory (i.e. where the program is executed), or in the outdir directory. Note that with some versions of MPI, the working directory is the directory where the executable is! The advantage of this procedure is that all files are properly closed, whereas just killing the process may leave data and output files in an unusable state.



paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/crossref.png0000644000175000017500000000022312341373164017025 0ustar mbambaPNG  IHDR  6tRNS-Mc%LIDATxm @ r܁!E BRcdWLTĐB1 <~ۻpjOGCIENDB`espresso-5.1/PW/Doc/user_guide/node5.html0000644000175000017500000000620112341373165016374 0ustar mbamba 1.3 Terms of use next up previous contents
Next: 2 Compilation Up: 1 Introduction Previous: 1.2 People   Contents

1.3 Terms of use

QUANTUM ESPRESSO is free software, released under the GNU General Public License. See http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt, or the file License in the distribution).

We shall greatly appreciate if scientific work done using this code will contain an explicit acknowledgment and the following reference:

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009), http://arxiv.org/abs/0906.2569
References for all exchange-correlation functionals can be found in the header of file Modules/funct.f90.
Note the form QUANTUM ESPRESSO for textual citations of the code. Pseudopotentials should be cited as (for instance)
[ ] We used the pseudopotentials C.pbe-rrjkus.UPF and O.pbe-vbc.UPF from
http://www.quantum-espresso.org.



paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/images.log0000644000175000017500000001274312341373156016454 0ustar mbambaThis is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=latex 2013.10.8) 28 MAY 2014 16:45 entering extended mode restricted \write18 enabled. %&-line parsing enabled. **./images.tex (./images.tex LaTeX2e <2011/06/27> Babel and hyphenation patterns for english, dumylang, nohyphenation, it alian, loaded. (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo File: size12.clo 2007/10/19 v1.4h Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC) ) (/usr/share/texmf/tex/latex/html/html.sty Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count87 \c@lchapter=\count88 \c@chapter=\count89 \c@lsection=\count90 \c@lsubsection=\count91 \c@lsubsubsection=\count92 \c@lparagraph=\count93 \c@lsubparagraph=\count94 \c@lsubsubparagraph=\count95 \ptrfile=\write3 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live ) Package graphics Info: Driver file: dvips.def on input line 91. (/usr/share/texlive/texmf-dist/tex/latex/graphics/dvips.def File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) \Gin@req@height=\dimen103 \Gin@req@width=\dimen104 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/color.sty Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/color.cfg File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive ) Package color Info: Driver file: dvips.def on input line 130. (/usr/share/texlive/texmf-dist/tex/latex/graphics/dvipsnam.def File: dvipsnam.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) (/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty Package: inputenc 2008/03/30 v1.1d Input encoding file \inpenc@prehook=\toks15 \inpenc@posthook=\toks16 (/usr/share/texlive/texmf-dist/tex/latex/base/latin1.def File: latin1.def 2008/03/30 v1.1d Input encoding file )) \sizebox=\box26 \lthtmlwrite=\write4 (./images.aux) \openout1 = `images.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. latex2htmlLength hsize=349.0pt latex2htmlLength vsize=721.41339pt latex2htmlLength hoffset=0.0pt latex2htmlLength voffset=0.0pt latex2htmlLength topmargin=0.0pt latex2htmlLength topskip=0.00003pt latex2htmlLength headheight=0.0pt latex2htmlLength headsep=0.0pt latex2htmlLength parskip=0.0pt plus 1.0pt latex2htmlLength oddsidemargin=0.0pt latex2htmlLength evensidemargin=0.0pt LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 194. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 194. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 194. l2hSize :tex2html_wrap_indisplay2388:8.25pt::8.25pt::8.13745pt. [1 ] l2hSize :tex2html_wrap_indisplay2389:17.61809pt::17.61809pt::157.9167pt. [2 ] l2hSize :tex2html_wrap_inline2391:7.75pt::0.0pt::8.13745pt. [3 ] l2hSize :tex2html_wrap_inline2413:8.83331pt::8.83331pt::8.65688pt. [4 ] l2hSize :tex2html_wrap_inline2425:8.19998pt::0.0pt::10.47423pt. [5 ] l2hSize :tex2html_wrap_inline2430:7.75pt::0.0pt::9.92088pt. [6 ] l2hSize :tex2html_wrap_inline2458:8.2pt::0.0pt::7.92912pt. [7 ] l2hSize :tex2html_wrap_inline2484:9.5pt::9.5pt::5.2542pt. [8 ] l2hSize :tex2html_wrap_inline2486:8.83331pt::8.83331pt::7.88606pt. [9 ] l2hSize :tex2html_wrap_inline2487:9.5pt::9.5pt::5.2542pt. [10 ] (./images.aux) ) Here is how much of TeX's memory you used: 1134 strings out of 495049 14570 string characters out of 3181577 58325 words of memory out of 3000000 4360 multiletter control sequences out of 15000+200000 6376 words of font info for 23 fonts, out of 3000000 for 9000 14 hyphenation exceptions out of 8191 25i,5n,19p,229b,147s stack positions out of 5000i,500n,10000p,200000b,50000s Output written on images.dvi (10 pages, 2336 bytes). espresso-5.1/PW/Doc/user_guide/node6.html0000644000175000017500000001212612341373165016400 0ustar mbamba 2 Compilation next up previous contents
Next: 3 Using PWscf Up: User's Guide for the Previous: 1.3 Terms of use   Contents

2 Compilation

PWscf is included in the core QUANTUM ESPRESSO distribution. Instruction on how to install it can be found in the general documentation (User's Guide) for QUANTUM ESPRESSO.

Typing make pw from the main QUANTUM ESPRESSO directory or make from the PW/ subdirectory produces the pw.x executable in PW/src and a link to the bin/ directory. In addition, several utility programs, and related links in bin/, are produced in PW/tools:

  • PW/tools/dist.x reads input data for PWscf, calculates distances and angles between atoms in a cell, taking into account periodicity
  • PW/tools/ev.x fits energy-vs-volume data to an equation of state
  • PW/tools/kpoints.x produces lists of k-points
  • PW/tools/pwi2xsf.sh, pwo2xsf.sh process respectively input and output files (not data files!) for pw.xand produce an XSF-formatted file suitable for plotting with XCrySDen: http://www.xcrysden.org/, powerful crystalline and molecular structure visualization program. BEWARE: the pwi2xsf.sh shell script requires the pwi2xsf.x executables to be located somewhere in your PATH.
  • PW/tools/band_plot.x: undocumented and possibly obsolete
  • PW/tools/bs.awk, PW/tools/mv.awk are scripts that process the output of pw.x (not data files!). Usage:
             awk -f bs.awk < my-pw-file > myfile.bs
             awk -f mv.awk < my-pw-file > myfile.mv
    
    The files so produced are suitable for use with xbs, a very simple X-windows utility to display molecules, available at:
    http://www.ccl.net/cca/software/X-WINDOW/xbsa/README.shtml
  • PW/tools/kvecs_FS.x, PW/tools/bands_FS.x: utilities for Fermi Surface plotting using XCrySDen (contributed by the late Prof. Eyvaz)
  • PW/tools/cif2qe.sh: script converting from CIF (Crystallographic Information File) to a format suitable for QUANTUM ESPRESSO. Courtesy of Carlo Nervi (Univ. Torino, Italy).
Documentation for the auxiliary codes can be found in the codes themselves, e.g. in the header of files.


next up previous contents
Next: 3 Using PWscf Up: User's Guide for the Previous: 1.3 Terms of use   Contents
paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/democritos.png0000644000175000017500000002310112341373156017350 0ustar mbambaPNG  IHDR9Yr-PLTE32f06i54h64i88g;;j?>nA@pEDuHGw HJt!OIuKMw( )!)OQ{$0RT~UV-1WY.2\Y0819_\3:b^:<;Aaefc=Che>D?EeiFLjnnnHNKOrrQWuuSXyxUZZ[}}\b_eydfz{fi|w}x~hpmrosptrvvxxz߀⃆ነ䋋㌒厔⑕唗留䙚曜眝¬鞟蟥ĭ褢礨馪ꧫ쩭͵魯ļϸ믱Ǿɽ{ pHYsVTbU vpAg9Y"IDATx|pUd}ӯi2"hԍ jsSQf.DdDW( q2,}\!*A $$RB0HHB.tխwnwtObj8J2}swϿWddrF*W\AnrF*W\AnrF*W\AnrF*W\Anr?#n,}졝N5v8 \:#})cW+Ǝelw/qv1ɲ*rKtWڌ{^hyPXA{D>㡏RriЃ ,ox\W7kO#>u Se1OXw7^D.S$ ߒ.2Ly͋l9u֮]`j&ű}e|xY;z!Kvnۉ.M97'f,yO#>c vCd<-Qߡw0< zQ+^≸y.&i%`{܂87 M67"nA6VqIc]8X}߭kE>w庤=5+ @6}ncNw`h%V8 ` ۇ3N 08_~𐣃9.$Bgǹinw#Gvzܼħpsldȼ;eQj=<3nǘpE<&q`i1A  bW[q97d9ɉ .k">S[[j/ '1ӔBΝJM\7n ZU᧐n 1lΡ 8׃b/@&'߁s m%4΋L{"BXTyd5= PuJ!gQualr2\Ρ'}ACH^艿>cRfJ Jks5҂ _Ĩd w)YMH\kyo<7ųS?\iЇw51VVǢii\ @9=&x`@{CHKΝ_ ]هRTwI/,/ s4T_L\ \,EbO|:>B6nݨ<СĴsCf&5w{*Svm,h^*ħ9:֭dn.A"#[X(I%o:xwFj4`&ǡ%|PY'Jh>;5pxvw'J .z0V6(Lttf8}Ns%BsmM 0Vf]Ӕp1c344r,%F[["]>7SjxV{H_"g9m"M3)$"DF7vԍc0kǻ9=8 )3^8q@v[¶h7DNG )FtR?ì>)Xm!8n!eJ<M)~Ufso;k5pwx7^1:pѬԛJqPXԜLA}h(l,na{[ph&VӄxvT1T0'ػ}p6kCf5bltz05vQT$G{/ s-hO6vBKぽ!/Fc"J{:/5GJT c6<A`l4Zs{5d3F;m\VIvN.gR p}BzjQŴu]'quq 17+EF{߳|;Fϟ!0vCqpxaeEu>K"/8V4\?pA.!$*{-? maaz 4+y[Gp>HwΡJ8XI,xTs,p{F<q|v\2lvdL"GBAμd`aʸ^*2D.Qg7rV85n{<եG-9 `'^"Y'XˉT-x-/;9a|ed*'Ų:-q!if014X4Ffӯe!l$NFiV+P9ά鰉 /Pbz2dbTZä'Z#;3a҃eՂĞ(ՒQa~:7=^(=f9i[r_[,0Nǭd.j79Zs(8SH&\j1Jq|r݇)kR@Ř#<~Ss3<:NV0V{ͣcgHS‚:Y(gc**UQ^? I"ʦ`o!Gp=uIGu3sK<6oGE|BEwN=Ty.AD>sYzV3zQZx{ oǿÇ Ѫz&[gG-a1fgm9 bŹ_|~to$ɺVnPxvĝ'TV/k egfOz*U5j#NW.51gqg{ި? PK k)8g9;Crh}7YD0F4SDBg˒';%_5Ubxs8w?E#DTݩ뉰PUո߇]}ˮ-U:=X4ek114˫Ch2fJ-4FIb.V7WJЈzITA4/?|?7%Ӻ t__,}. oIrse:B*iHu{'r˸+rp.Kd(:0BOQK?z )|uTk6D^U7.n J YxA|r!Ci γՠ02z MZ7@0:\A7E]hcZI7~P,(k(JKKs\N럎_apB>8d <{zYɑғrw ~q̨ mFގiRlUA9FyOÏ.]T{AA TQ[[{;,U(-CsWSyd)znu*|v^QGB/Q[\ ]80w UldEJ>T]8幡^mC-H; Zt\[ \dkǍwFb􍯘7Toծvtr'69RPvK'$9A)咻!%p,RBVXO) ڣz L䔊J }Y8%+YzPz{RH``QzTQV+jR )JTT<]0"]%X[ZR5"qU=׸\cGJszUǾ7[\ڀ"' p(|S5RQ9ni{o X+y!O6"ZBΡrAsV{VwcYF5>S^~R:*" H9nQFc|ᯐg ';1,w5@蔩-rȹrVfu5R@22V4)ejqUR5O?%sa\(OEw0Ðd( |XBʉ@, RlTx?A~p Mo<)UBH9LSV<#*9Iyjwas4Z8gUB3xxԟ r8;  S!IQc,^pq>.rABe/`pN>JKMǝdE13:h,l9藼^Iގ|0}QO*dyrw yvd?&*"GcqNLVYs RPqn+w(T"s^qF;\>DgX:SB(Ѝι{7\:`˙{6XPL9SjCjY5p]*gLNT4v[W4oiVlQ&k.-fVK7wiBaU;c71|Hz5Ƣ/ՠv.ŝNǽoЭӛuvH l"Tlҝ:h O kMP}o-rzɨLhBO/i`d:F`k^g: wzŞn4cZOTHSX`Ka0+DՏmuiZ88s Z$Gδ[WD`ry/߈dt+_HT5Ou|ߔC:RqnwVA# vqIBˆh.R= I!5o/)mZvt8^t {Qdmιt};tyg {)ց4Rrt3H?'}6,c#Z5 -S/l^[׶.֮%_E,ׯ0\\!g>g5< NָH1ynpA pΡ h_39.ppNVUcdtr3Zm_o 'Oyzj]R ꃴqEK'Rk%Fx'-SsGslwoaV19 e# szsTڴc$ 0QVn)!e=8Xtsd+ L"ћ^]S'8\;7\tp90W9G: vsU$TeQ]]{>r,O-y.w>ͭpNߜ >}»$Rk;k<+r6Jmi^mZa3M<QmwY$Y@3-#'r؟sȹޕ~pQUsiUlº( #FIn 9^s/ 9y׺F\~L>o+_yDV(JH-WV/)$_żb\8+/җ\D0"&J9 M2-Š@W6ɥJׁWn0 ytYT0(0_WΚK[cOH劲\r5W|yRVʣVjw"m6&s4j6DwLCq. K@{{+FJz%J9 )y*m@TJIlr.Hjve/fBwP&1ӳW.  oCB]"E V)VrA8(2?csIČGY}$1sh.9QNw;+tHi"+,"wI/eܮZ d9> >@F}`<[ {ZQB 9?Adu %y JzUxXͥsz ƽ ?3۠T^5314ӈ\/3,5ud‡7絋98ۅ(Mv:7jlv+8ҾsdQJys3t 5o>Awzu\ru{oӉ;F+&͚؛-AȒBJa.r_\@zFi0^6kC{YrV.e%}OTӧ,5ѭJ.MKu~+Sn@~ OsQizX^pɌ˟tyq4C+|]M=JM7"9$A9rceu՝J=K[BJ@uRsa[%]^o 4y cJ~ Kx~THI<챚"].%7' jx}T jI T)H1/{ܙYȢB fga{EqhfnL7-d퇶vOB_T4"MxQBU0A}AY;ܧH ΁V =WqzS0Dek.^ HT`DP#B {d;ҴhZWk$Oe[Mkqp:~qkU(7]W?qVoW;]Ji ӯLpK8L{W T5n`:BMaյXS3ik`~DU: l7v'im.Z=\Duu{f]q6_oڱ+ ?ѪLM|3>mKt{C aON :O4T >8{U% 'hKWʚ5kY;~|9 >NfC}7bB|Ț?J"Ia}#32K$kLb ,7tcG08L|Yq1yYrCP1Mٽрh!Th"&{a/YWFf#_TѩrO;a'hB>3<`}o j ". g]hIENDB`espresso-5.1/PW/Doc/user_guide/WARNINGS0000644000175000017500000000042012341373156015644 0ustar mbambaNo implementation found for style `graphicx' ? brace missing for \ Substitution of arg to newlabelxx delayed. redefining command \ ? brace missing for \oldcontentsline ? brace missing for \oldnewlabel There is no author for this document. ? brace missing for \cal espresso-5.1/PW/Doc/user_guide/contents.png0000644000175000017500000000042612341373164017041 0ustar mbambaPNG  IHDRAH PLTEooo[tRNS@fIDATx= 0 _jUTK>Yw:x *VK7Hϟd !xx8!2 *dqM #la"d2ʋz9mٺኝCSr-$𡡗BD`GR wAsV tGIENDB`espresso-5.1/PW/Doc/user_guide/node21.html0000644000175000017500000000551412341373165016460 0ustar mbamba About this document ... next up previous contents
Up: User's Guide for the Previous: 5.1 Compilation problems with   Contents

About this document ...

Image quantum_espresso Image democritos
User's Guide for PWscf

(version 5.1.0)

This document was generated using the LaTeX2HTML translator Version 2008 (1.71)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The command line arguments were:
latex2html -t 'User's Guide for the PWscf package' -html_version 3.2,math -toc_depth 5 -split 5 -toc_stars -show_section_numbers -local_icons -image_type png user_guide.tex

The translation was initiated by paolo giannozzi on 2014-05-28


paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/next_g.png0000644000175000017500000000042012341373164016462 0ustar mbambaPNG  IHDR%/[:tRNS-Mc%IDATx C?y2N6AKdуqHCudS. l`N#Q[O 3.5 Direct interface with CASINO next up previous contents
Next: 4 Performances Up: 3 Using PWscf Previous: 3.4 Optimization and dynamics   Contents

Subsections


3.5 Direct interface with CASINO

PWscf now supports the Cambridge quantum Monte Carlo program CASINO directly. For more information on the CASINO code see http://www.tcm.phy.cam.ac.uk/~mdt26/casino.html. CASINO may take the output of PWSCF and 'improve it' giving considerably more accurate total energies and other quantities than DFT is capable of.

PWscf users wishing to learn how to use CASINO may like to attend one of the annual CASINO summer schools in Mike Towler's "Apuan Alps Centre for Physics" in Tuscany, Italy. More information can be found at http://www.vallico.net/tti/tti.html

3.5.0.1 Practicalities

The interface between PWscf and CASINO is provided through a file with a standard format containing geometry, basis set, and orbital coefficients, which PWscf will produce on demand. For SCF calculations, the name of this file may be pwfn.data, bwfn.data or bwfn.data.b1 depending on user requests (see below). If the files are produced from an MD run, the files have a suffix .0001, .0002, .0003 etc. corresponding to the sequence of timesteps.

CASINO support is implemented by three routines in the PW directory of the espresso distribution:

  • pw2casino.f90 : the main routine
  • pw2casino_write.f90 : writes the CASINO xwfn.data file in various formats
  • pw2blip.f90 : does the plane-wave to blip conversion, if requested
Relevant behavior of PWscf may be modified through an optional auxiliary input file, named pw2casino.dat (see below).

Note that in versions prior to 4.3, this functionality was provided through separate post-processing utilities available in the PP directory: these are no longer supported. For QMC-MD runs, PWSCF etc previously needed to be 'patched' using the patch script PP/pw2casino-MDloop.sh - this is no longer necessary.

3.5.0.2 How to generate xwfn.data files with PWscf

Use the '-pw2casino' option when invoking pw.x, e.g.:
pw.x -pw2casino < input_file > output_file
The xfwn.data file will then be generated automatically.

PWscf is capable of doing the plane wave to blip conversion directly (the 'blip' utility provided in the CASINO distribution is not required) and so by default, PWscf produces the 'binary blip wave function' file bwfn.data.b1

Various options may be modified by providing a file pw2casino.dat in outdir with the following format:

&inputpp
blip_convert=.true.
blip_binary=.true.
blip_single_prec=.false.
blip_multiplicity=1.d0
n_points_for_test=0
/
Some or all of the 5 keywords may be provided, in any order. The default values are as given above (and these are used if the pw2casino.dat file is not present.

The meanings of the keywords are as follows:

blip_convert
: reexpand the converged plane-wave orbitals in localized blip functions prior to writing the CASINO wave function file. This is almost always done, since wave functions expanded in blips are considerably more efficient in quantum Monte Carlo calculations. If blip_convert=.false. a pwfn.data file is produced (orbitals expanded in plane waves); if blip_convert=.true., either a bwfn.data file or a bwfn.data.b1 file is produced, depending on the value of blip_binary (see below).

blip_binary
: if true, and if blip_convert is also true, write the blip wave function as an unformatted binary bwfn.data.b1 file. This is much smaller than the formatted bwfn.data file, but is not generally portable across all machines.

blip_single_prec
: if .false. the orbital coefficients in bwfn.data(.b1) are written out in double precision; if the user runs into hardware limits blip_single_prec can be set to .true. in which case the coefficients are written in single precision, reducing the memory and disk requirements at the cost of a small amount of accuracy..

blip_multiplicity
: the quality of the blip expansion (i.e., the fineness of the blip grid) can be improved by increasing the grid multiplicity parameter given by this keyword. Increasing the grid multiplicity results in a greater number of blip coefficients and therefore larger memory requirements and file size, but the CPU time should be unchanged. For very accurate work, one may want to experiment with grid multiplicity larger that 1.0. Note, however, that it might be more efficient to keep the grid multiplicity to 1.0 and increase the plane wave cutoff instead.

n_points_for_test
: if this is set to a positive integer greater than zero, PWscf will sample the wave function, the Laplacian and the gradient at a large number of random points in the simulation cell and compute the overlap of the blip orbitals with the original plane-wave orbitals:

$\displaystyle \alpha$ = $\displaystyle {<BW\vert PW> \over \sqrt{<BW\vert BW><PW\vert PW>}}$

The closer $ \alpha$ is to 1, the better the blip representation. By increasing blip_multiplicity, or by increasing the plane-wave cutoff, one ought to be able to make $ \alpha$ as close to 1 as desired. The number of random points used is given by n_points_for_test.

Finally, note that DFT trial wave functions produced by PWSCF must be generated using the same pseudopotential as in the subsequent QMC calculation. This requires the use of tools to switch between the different file formats used by the two codes.

CASINO uses the `CASINO tabulated format', PWSCF officially supports the UPFv2 format (though it will read other `deprecated' formats). This can be done through the `casino2upf' and `upf2casino' tools included in the upftools directory (see the upftools/README file for instructions). An alternative converter `casinogon' is included in the CASINO distribution which produces the deprecated GON format but which can be useful when using non-standard grids.


next up previous contents
Next: 4 Performances Up: 3 Using PWscf Previous: 3.4 Optimization and dynamics   Contents
paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/up.png0000644000175000017500000000032312341373164015624 0ustar mbambaPNG  IHDR5 PLTEooo[tRNS@fuIDATx]10 Ed&Cwr,'k7n)IT xOm'<Q1A BP+ :׊pۭYh/iO.c7Np_/11Ab$}IENDB`espresso-5.1/PW/Doc/user_guide/node20.html0000644000175000017500000000720112341373165016452 0ustar mbamba 5.1 Compilation problems with PLUMED next up previous contents
Next: About this document ... Up: 5 Troubleshooting Previous: 5 Troubleshooting   Contents

Subsections

5.1 Compilation problems with PLUMED

5.1.0.1 xlc compiler

If you get an error message like:
Operation between types "char**" and "int" is not allowed.
change in file clib/metadyn.h
#define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (typeof(ptr)) calloc(nelem, sizeof(*(ptr))))
#define srenew(ptr,nelem) (ptr)= (typeof(ptr)) realloc(ptr,(nelem)*sizeof(*(ptr)))
with
#define snew(ptr,nelem) (ptr)= (nelem==0 ? NULL : (void*) calloc(nelem, sizeof(*(ptr))))
#define srenew(ptr,nelem) (ptr)= (void*) realloc(ptr,(nelem)*sizeof(*(ptr)))

5.1.0.2 Calling C from fortran

PLUMED assumes that fortran compilers add a single _ at the end of C routines. You may get an error message as :
ERROR: Undefined symbol: .init_metadyn
ERROR: Undefined symbol: .meta_force_calculation
eliminate the _ from the definition of init_metadyn and meta_force_calculation, i. e. change at line 529
void meta_force_calculation_(real *cell, int *istep, real *xxx, real *yyy, real *zzz,
with
void meta_force_calculation(real *cell, int *istep, real *xxx, real *yyy, real *zzz,
, and at line 961
  void init_metadyn_(int *atoms, real *ddt, real *mass, 
  void init_metadyn_(int *atoms, real *ddt, real *mass,



paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/node17.html0000644000175000017500000001644312341373165016470 0ustar mbamba 4.4 Parallelization issues next up previous contents
Next: 4.5 Understanding the time Up: 4 Performances Previous: 4.3 File space requirements   Contents


4.4 Parallelization issues

pw.x can run in principle on any number of processors. The effectiveness of parallelization is ultimately judged by the ''scaling'', i.e. how the time needed to perform a job scales with the number of processors, and depends upon:

  • the size and type of the system under study;
  • the judicious choice of the various levels of parallelization (detailed in Sec.[*]);
  • the availability of fast interprocess communications (or lack of it).
Ideally one would like to have linear scaling, i.e. T $ \sim$ T0/Np for Np processors, where T0 is the estimated time for serial execution. In addition, one would like to have linear scaling of the RAM per processor: ON $ \sim$ O0/Np, so that large-memory systems fit into the RAM of each processor.

Parallelization on k-points:

  • guarantees (almost) linear scaling if the number of k-points is a multiple of the number of pools;
  • requires little communications (suitable for ethernet communications);
  • does not reduce the required memory per processor (unsuitable for large-memory jobs).
Parallelization on PWs:
  • yields good to very good scaling, especially if the number of processors in a pool is a divisor of N3 and Nr3 (the dimensions along the z-axis of the FFT grids, nr3 and nr3s, which coincide for NCPPs);
  • requires heavy communications (suitable for Gigabit ethernet up to 4, 8 CPUs at most, specialized communication hardware needed for 8 or more processors );
  • yields almost linear reduction of memory per processor with the number of processors in the pool.

A note on scaling: optimal serial performances are achieved when the data are as much as possible kept into the cache. As a side effect, PW parallelization may yield superlinear (better than linear) scaling, thanks to the increase in serial speed coming from the reduction of data size (making it easier for the machine to keep data in the cache).

VERY IMPORTANT: For each system there is an optimal range of number of processors on which to run the job. A too large number of processors will yield performance degradation. If the size of pools is especially delicate: Np should not exceed N3 and Nr3, and should ideally be no larger than 1/2 ÷ 1/4N3 and/or Nr3. In order to increase scalability, it is often convenient to further subdivide a pool of processors into ''task groups''. When the number of processors exceeds the number of FFT planes, data can be redistributed to "task groups" so that each group can process several wavefunctions at the same time.

The optimal number of processors for "linear-algebra" parallelization, taking care of multiplication and diagonalization of M x M matrices, should be determined by observing the performances of cdiagh/rdiagh (pw.x) or ortho (cp.x) for different numbers of processors in the linear-algebra group (must be a square integer).

Actual parallel performances will also depend on the available software (MPI libraries) and on the available communication hardware. For PC clusters, OpenMPI (http://www.openmpi.org/) seems to yield better performances than other implementations (info by Kostantin Kudin). Note however that you need a decent communication hardware (at least Gigabit ethernet) in order to have acceptable performances with PW parallelization. Do not expect good scaling with cheap hardware: PW calculations are by no means an "embarrassing parallel" problem.

Also note that multiprocessor motherboards for Intel Pentium CPUs typically have just one memory bus for all processors. This dramatically slows down any code doing massive access to memory (as most codes in the QUANTUM ESPRESSO distribution do) that runs on processors of the same motherboard.


next up previous contents
Next: 4.5 Understanding the time Up: 4 Performances Previous: 4.3 File space requirements   Contents
paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/node4.html0000644000175000017500000001410012341373165016370 0ustar mbamba 1.2 People next up previous contents
Next: 1.3 Terms of use Up: 1 Introduction Previous: 1.1 What can PWscf   Contents

1.2 People

The PWscf package (which included PHonon and PostProc in earlier releases) was originally developed by Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso (SISSA), Paolo Giannozzi (Univ. Udine), and many others. We quote in particular:

  • David Vanderbilt's group at Rutgers for Berry's phase calculations;
  • Paolo Umari (Univ. Padua) for finite electric fields;
  • Ralph Gebauer (ICTP, Trieste) and Adriano Mosca Conte (SISSA, Trieste) for noncollinear magnetism;
  • Andrea Dal Corso for spin-orbit interactions;
  • Carlo Sbraccia (Princeton) for improvements to structural optimization and to many other parts;
  • Dario Alfè (University College London) for implementation of Born-Oppenheimer molecular dynamics;
  • Renata Wentzcovitch and collaborators (Univ. Minnesota) for variable-cell molecular dynamics;
  • Lorenzo Paulatto (Univ.Paris VI) for PAW implementation, built upon previous work by Guido Fratesi (Univ.Milano Bicocca) and Riccardo Mazzarello (ETHZ-USI Lugano);
  • Dario Alfè, Mike Towler (University College London), Norbert Nemec (U.Cambridge) for interface with CASINO;
  • Matteo Cococcioni (Univ. Minnesota) for DFT+U implementation;
  • Gabriele Sclauzero (IRRMA Lausanne) for DFT+U with on-site occupations obtained from pseudopotential projectors;
  • Alexander Smogunov (CEA) for extended and noncollinear DFT+U implementation;
  • Burak Himmetoglou (Univ. Minnesota) for DFT+U+J implementation;
  • Andrei Malashevich (Univ. Berkeley) for calculation of orbital magnetization.
  • J.-W. Song for Gau-PBE implementation

Other relevant contributions to PWscf:

  • Axel Kohlmeyer contributed libraries and utilities to call PWscf from external codes (see the COUPLE sub-directory), made the parallelization more modular and usable by external codes.
  • Ikutaro Hamada (NIMS, Japan) contributed OPTB86B-vdW and REV-vdW-DF2 functionals.
  • Alberto Otero de la Roza (Merced Univ.) contributed XDM (exchange-hole dipole moment) model of dispersions, PW86 (unrevised) and B86B functionals.
  • Xiaochuan Ge (SISSA) contributed Smart MonteCarlo Langevin dynamics
  • Yves Ferro (Univ. Provence) contributed SOGGA and M06L functionals
  • Minoru Otani (AIST), Yoshio Miura (Tohoku U.), Nicephore Bonet (MIT), Nicola Marzari (Univ. Oxford), Brandon Wood (LLNL), Tadashi Ogitsu (LLNL), contributed Effective Screening Method (PRB 73, 115407 [2006])
  • Brian Kolb and Timo Thonhauser (Wake Forest University) implemented the vdW-DF and vdW-DF2 functionals, with support from Riccardo Sabatini and Stefano de Gironcoli (SISSA and DEMOCRITOS);
  • Hannu-Pekka Komsa (CSEA/Lausanne) contributed the HSE functional;
  • Dispersions interaction in the framework of DFT-D were contributed by Daniel Forrer (Padua Univ.) and Michele Pavone (Naples Univ. Federico II);
  • Filippo Spiga (ICHEC) contributed the mixed MPI-OpenMP parallelization;
  • The initial BlueGene porting was done by Costas Bekas and Alessandro Curioni (IBM Zurich).

This guide was mostly written by Paolo Giannozzi. Mike Towler wrote the PWscf to CASINO subsection.


next up previous contents
Next: 1.3 Terms of use Up: 1 Introduction Previous: 1.1 What can PWscf   Contents
paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/images.tex0000644000175000017500000002273212341373156016472 0ustar mbamba\batchmode \documentclass[12pt,a4paper]{article} \RequirePackage{ifthen} \usepackage{html} \usepackage{graphicx} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm \usepackage[dvips]{color} \pagecolor[gray]{.7} \usepackage[latin1]{inputenc} \makeatletter \makeatletter \count@=\the\catcode`\_ \catcode`\_=8 \newenvironment{tex2html_wrap}{}{}% \catcode`\<=12\catcode`\_=\count@ \newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}% \newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}% \expandafter\renewcommand\csname #1\endcsname}% \newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}% \let\newedcommand\renewedcommand \let\renewedenvironment\newedenvironment \makeatother \let\mathon=$ \let\mathoff=$ \ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi \newbox\sizebox \setlength{\hoffset}{0pt}\setlength{\voffset}{0pt} \addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt} \addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt} \addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt} \addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt} \setlength{\textwidth}{349pt} \newwrite\lthtmlwrite \makeatletter \let\realnormalsize=\normalsize \global\topskip=2sp \def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float \def\@float{\let\@savefreelist\@freelist\real@float} \def\liih@math{\ifmmode$\else\bad@math\fi} \def\end@float{\realend@float\global\let\@freelist\@savefreelist} \let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float \let\@largefloatcheck=\relax \let\if@boxedmulticols=\iftrue \def\@dbflt{\let\@savefreelist\@freelist\real@dbflt} \def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}% \def\phantompar{\csname par\endcsname}\normalsize}% \def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}% \newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }% \newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }% \newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup % \let\ifinner=\iffalse \let\)\liih@math }% \newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}% \expandafter\box\next\egroup}% \newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}% \newcommand\lthtmllogmath{\dimen0\ht\sizebox \advance\dimen0\dp\sizebox \ifdim\dimen0>.95\vsize \lthtmltypeout{% *** image for \lthtmlmathenv\space is too tall at \the\dimen0, reducing to .95 vsize ***}% \ht\sizebox.95\vsize \dp\sizebox\z@ \fi \lthtmltypeout{l2hSize % :\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}% \newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist \lthtmlmathtype{#1}\lthtmlvboxmathA}% \newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}% \newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup \let\@savefreelist\@freelist \lthtmlhboxmathB}% \newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}% \newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox \global\let\@freelist\@savefreelist}% \newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}% \newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}% \newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}% \lthtmldisplayA{#1}\let\@eqnnum\relax}% \newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}% \newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB} \newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA \vrule height1.5ex width0pt }% \newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}% \newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}% \newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline} \newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath} \newcommand\lthtmlindisplaymathZ{\egroup % \centerinlinemath\lthtmllogmath\lthtmlsetmath} \def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{% \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{% \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt% \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt% \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\centerinlinemath{% \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1 \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax} \def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill \else\expandafter\vss\fi}% \providecommand{\selectlanguage}[1]{}% \makeatletter \tracingstats = 1 \providecommand{\Beta}{\textrm{B}} \providecommand{\Mu}{\textrm{M}} \providecommand{\Kappa}{\textrm{K}} \providecommand{\Rho}{\textrm{R}} \providecommand{\Epsilon}{\textrm{E}} \providecommand{\Chi}{\textrm{X}} \providecommand{\Iota}{\textrm{J}} \providecommand{\omicron}{\textrm{o}} \providecommand{\Zeta}{\textrm{Z}} \providecommand{\Eta}{\textrm{H}} \providecommand{\Omicron}{\textrm{O}} \providecommand{\Nu}{\textrm{N}} \providecommand{\Tau}{\textrm{T}} \providecommand{\Alpha}{\textrm{A}} \begin{document} \pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}% \makeatletter \if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}% \else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi% \lthtmltypeout{}% \makeatother \setcounter{page}{1} \onecolumn % !!! IMAGES START HERE !!! \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay2388}% $\displaystyle \alpha$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay2389}% $\displaystyle { \over \sqrt{}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2391}% $ \alpha$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2413}% $ \psi$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2425}% $ \cal {O}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2430}% $ \sim$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2458}% $ \Gamma$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsubsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2484}% $ \langle$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2486}% $ \beta$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2487}% $ \rangle$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsubsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{section} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \end{document} espresso-5.1/PW/Doc/user_guide/img4.png0000644000175000017500000000035612341373160016042 0ustar mbambaPNG  IHDR#'PLTE# MJKmkkXUVC@@wuvtRNS@fuIDATc`6"FvNX%YA,::L "xxCwP ”`xu&ր u4ad B P 0@eTVW:¯MIENDB`espresso-5.1/PW/Doc/user_guide/node7.html0000644000175000017500000001221012341373165016373 0ustar mbamba 3 Using PWscf next up previous contents
Next: 3.1 Input data Up: User's Guide for the Previous: 2 Compilation   Contents

3 Using PWscf

Input files for pw.x may be either written by hand or produced via the PWgui graphical interface by Anton Kokalj, included in the QUANTUM ESPRESSO distribution. See PWgui-x.y.z/INSTALL (where x.y.z is the version number) for more info on PWgui, or GUI/README if you are using SVN sources.

You may take the tests and examples distributed with QUANTUM ESPRESSO as templates for writing your own input files. In the following, whenever we mention "Example N", we refer to those. Input files are those in the results/ subdirectories, with names ending with .in (they will appear after you have run the examples).



Subsections

paolo giannozzi 2014-05-28
espresso-5.1/PW/Doc/user_guide/img3.png0000644000175000017500000000035312341373160016036 0ustar mbambaPNG  IHDRT0PLTEMJK# b``mkkXUV856C@@wuv.*+ Ė`tRNS@fiIDATc`@(``(@RD<`Q \0eT]`\6iЁbĸX@b0;10@̘Qh5|m|IENDB`espresso-5.1/dev-tools/0000755000175000017500000000000012341373041013214 5ustar mbambaespresso-5.1/dev-tools/helpdoc.schema0000644000175000017500000001554312341373036016030 0ustar mbamba# ------------------------------------------------------------------------ # # This is the schema for helpdoc, written in its own schema-language # # ------------------------------------------------------------------------ # helpdoc schema-keywords: # ------------------------ # # -- comment # rootelement -- used to describe a root element # element -- used to describe an element # attribute -- used to describe an attribute # text -- tells that the content of an element or attribute is a simple text # string -- tells that the content of an element or attribute is a single word # ident -- tells that element has an identifier (syntax: myelem myIdent { ... }) # ref -- used to specify the reference to an element # (but the element is defined elsewhere) # define -- used to define a group of elements or ref's # (should be specified before referencing it) # interleave -- used to mark that the order of enclosed elements is not important # optional -- used to mark anything enclosed as optional # choice -- used to mark alternatice choices # group -- used for grouping items # ? -- zero or one repetition of instances of anything enclosed is allowed # * -- zero or more repetitions of instances of anything enclosed is allowed # + -- one or more repetitions of instances of anything enclosed is allowed # ancestorElements -- mark that all the elements (with rules, such as, optional, # conditional, and repetition) of the ancestor are allowed # # # IMPLICIT ASSUMPTIONS: # - order of attributes is not important # - attributes are mandatory (when they are not, use: optional { ... } keyword) # - order of elements is important (when it is not, use: interleave { ... } keyword) # - elements are mandatory (when they are not, use: optional { ... } keyword) # ------------------------------------------------------------------------ # toplevel element rootelement input_description { attribute distribution { string } attribute package { string } attribute program { string } optional { interleave { element intro { text } element toc {} } } + { interleave { optional { ref group ref namelist ref card ref linecard ref table ref label ref message ref if ref choose ref optional ref conditional ref section ref subsection ref subsubsection ref paragraph } } } } # # definition of simple elements # element info { text } element default { text } element status { text } element label { text } element message { text } element see { string } element keyword { ident } # # define what elements are used within var, dimension, ... # (will be used many times) # define varTags { interleave { optional { ref status ref default ref info ref see } } } # # definition of complex elements # element list { ident attribute type { string } interleave { element format { text } ref varTags } } element var { ident attribute type { string } ref varTags } element vargroup { attribute type { string } interleave { + { ref var } ref varTags } } element dimension { ident attribute type { string } attribute start { string } attribute end { string } ref varTags } element dimensiongroup { attribute type { string } attribute start { string } attribute end { string } interleave { + { ref dimension } ref varTags } } element table { ident choice { element rows { attribute start { string } attribute end { string } + { interleave { optional { ref col ref optional ref conditional element colgroup { attribute type { string } interleave { + { ref col } optional { ref varTags ref optional ref conditional } } } } } } } element cols { attribute start { string } attribute end { string } + { interleave { optional { ref row ref optional ref conditional element rowgroup { attribute type { string } interleave { + { ref row } optional { ref varTags ref optional ref conditional } } } } } } } } } element col { ident optional { attribute type { string } ref varTags } } element row { ident optional { attribute type { string } ref varTags } } # # higher level complex elements # element optional { ancestorElements } element conditional { ancestorElements } element group { ancestorElements } element namelist { ident interleave { + { optional { ref var ref vargroup ref dimension ref dimensiongroup } } * { optional { ref group ref label ref message ref if ref choose } } } } element card { ident optional { attribute nameless { string } ref flag } + { interleave { optional { ref syntax ref choose * { ref if ref label ref message } } } } } element linecard { interleave { + { optional { ref var ref vargroup ref list } } optional { ref optional ref conditional } } } element flag { ident optional { attribute use { string } } element enum { text } ref varTags } element syntax { ? { attribute flag { text } } + { interleave { optional { ref line ref table ref optional ref conditional } } } } element line { + { interleave { optional { ref group ref keyword ref var ref vargroup ref list ref if ref choose ref label ref message ref optional ref conditional } } } } element if { attribute test { text } optional { ref label } ancestorElements } element choose { element when { attribute test { text } optional { ref label } ancestorElements } * { element elsewhen { attribute test { text } optional { ref label } ancestorElements } } ? { element otherwise { optional { ref label } ancestorElements } } } # # some text structure stuff # element section { attribute title { text } + { interleave { optional { ref subsection ref subsubsection ref paragraph ref text } } } } element subsection { attribute title { text } + { interleave { optional { ref subsubsection ref paragraph ref text } } } } element subsubsection { attribute title { text } + { interleave { optional { ref paragraph ref text } } } } element paragraph { attribute title { text } ref text } element text { text } espresso-5.1/dev-tools/callhtml.pl0000755000175000017500000000554412341373036015370 0ustar mbamba#!/usr/bin/perl -w use strict; { # $basedir is directory where this script is my $basedir = $0; $basedir =~ s/(.*)\/.*/$1/; my @sources = split(/ /, `echo $basedir/*/*.f90`); # grab program, function and subroutine declarations my (%place, %fname, %pname, %sname); foreach my $file (@sources) { open(IN, "$file"); while () { $_ = "\L$_"; # cast everything to lowercase if (/^[^!'""']*\bfunction\s+(\w+)/o && ! /^\s*end\s+function\b/o) { $fname{$1} = 1; insert_place(\%place, $1, $file); } elsif (/^\s*program\s+(\w+)/o) { $pname{$1} = 1; insert_place(\%place, $1, $file); } elsif (/^\s*(?:(?:pure|recursive)\s+)?subroutine\s+(\w+)/o) { $sname{$1} = 1; insert_place(\%place, $1, $file); } } close(IN); } my @targets = sort keys %place; my @programs = sort keys %pname; my @functions = sort keys %fname; # html preamble print "\n"; print "\n"; print "\n"; # list of programs print "
\n"; print "
list of programs:
\n"; print "

\n"; foreach my $program (@programs) { print " $program\n"; } print "

\n"; print "
\n"; print "\n"; # list of all routines print "
\n"; foreach my $name (@targets) { print "
"; if (defined $pname{$name}) { print "program "; } elsif (defined $sname{$name}) { print "subroutine "; } elsif (defined $fname{$name}) { print "function "; } print "$name
\n"; my %cname; my @files = split(/ /, $place{$name}); foreach my $file (@files) { print "

defined in file: $file
\n"; print " calls:\n"; my $current = ""; open(IN, $file); while () { $_ = "\L$_"; if (/^\s*program\s+(\w+)/o) { $current = "$1"; } elsif (/^\s*(?:(?:pure|recursive)\s+)?subroutine\s+(\w+)/o) { $current = "$1"; } elsif (/^[^!'""']*\bfunction\s+(\w+)/o) { $current = "$1"; } # here we are inside the relevant program/subroutine/function elsif ($current eq $name) { # subroutine calls if (/^\s*call\s+(\w+)/o) { $cname{$1} = 1; } # function calls foreach my $fun (@functions) { if ($fun ne $name && /^[^!'""']*\b$fun\b/) { $cname{$fun} = 1; } } } } close(IN); my @calls = sort keys %cname; foreach my $call (@calls) { print " $call\n"; } print "

\n"; } } print "
\n"; # html postamble print "\n"; print "\n"; print "\n"; } sub insert_place { my ($place, $name, $file) = @_; if (defined $$place{$name}) { $$place{$name} = "$$place{$name} $file"; } else { $$place{$name} = "$file"; } } espresso-5.1/dev-tools/README.helpdoc0000644000175000017500000001000212341373036015506 0ustar mbamba --------------------------------- *** README file for HELPDOC *** --------------------------------- 1. HELPDOC PURPOSE Short: transform INPUT_*.def into INPUT_*.xml|html|txt HELPDOC is a small utility (located in ../dev-tools/) that transforms INPUT_*.def files into INPUT_*.txt and INPUT_*.xml files, and the latter are accordingly transformed into HTML format. The idea is to enhance/replace the plain ascii descriptions of input file syntax (i.e. INPUT_* files) with more structured and descriptive format yielding an enhanced documentation + better input syntax definition. -- 2. SOFTWARE REQUIREMENTS Helpdoc depends on tclsh, tcllib, and xsltproc. For example, to install these packages in GNU/Linux Debian-based distributions, execute as root (or sudo): apt-get install tcl tcllib xsltproc or, on RedHat-based distributions, the analogous command yum install tcl tcllib xsltproc -- 3. SYNTAX OF *.def FILES Perhaps the first choice for a markup would be XML, yet its markup is not very practical from typing point of view. Therefore *.def files use a markup that involves less typing (i.e. like wiki's use more practical markup than HTML). Consider an XML example: 1.0D-4 convergence threshold on total energy (a.u) for ionic ... The DEF markup (*.def) is more compact---involves less syntactic sugar---but is otherwise equally well-defined: var etot_conv_thr -type REAL { default { 1.0D-4 } info { convergence threshold on total energy (a.u) for ionic ... } } Full correspondence between XML and DEF markup is: XML: ... DEF: element -attribute value { ... } Technically, DEF files are Tcl-scripts (hence they use the Tcl syntax). 3.1 Differences between DEF and XML: * some elements must have a name attribute (e.g. variable and namelist must always have a name). For such elements the markup is simplified from "element -name ident ..." to "element ident ..." (i.e. -name is skipped). * attributes must be specified on a single line: # this is OK elem1 -attr1 value1 -attr2 value2 { ... } # this is BAD elem1 -attr1 value1 -attr2 value2 { ... } # but this is OK (because of line-continuation character "\") elem1 -attr1 value1 \ -attr2 value2 { ... } * separator between elements is either newline character or semicolon (;). E.g.: # this is OK element1 -attribute1 value1 { ... }; element2 -attribute2 value2 { ... } # this is BAD element1 -attribute1 value1 { ... } element2 -attribute2 value2 { ... } # this is OK element1 -attribute1 value1 { ... } element2 -attribute2 value2 { ....} The DEF markup (elements and attributes) is defined in file ./helpdoc.schema (which uses its own schema language that was inspired by RELAX NG schema language). Making use of an element and/or attribute in *.def files which is not defined in helpdoc.schema file, will produce an error during def-->xml conversion (otherwise the helpdoc is not a full validator). -- 4. HOW IT ALL WORKS To transform INPUT_*.def file to INPUT_*.xml and INPUT_*.html file, execute either: ../dev-tools/helpdoc INPUT_whatever.def or simply: make INPUT_whatever.html To convert all *.def to *.html files, use: make helpdoc During execution, the helpdoc transforms the *.def file into *.xml file and calls the xsltproc program that transforms the latter into *.html file. The instructions for doing that are provided by an XSL stylesheet (file: ./input_xx.xsl). 5. TO DO ... Put here more descriptions on the markup ... espresso-5.1/dev-tools/update_gui_help0000755000175000017500000000270312341373036016306 0ustar mbamba#!/bin/sh # the next line restarts using tclsh \ exec tclsh "$0" "$@" # # Usage: update_gui_help module # ( module = pw, ph, pp, neb, projwfc, dos, bands, atomic, or d3 ) # # Requirements: execute the check_gui first !!! # # Purpose: updates the PWgui help file, i.e., moves the # module-help.tcl file that has been created by prior # execution of check_gui to $topdir/GUI/PWgui/modules/$module/ # proc Usage {} { global argv0 puts stderr [subst { Usage: $argv0 module Where module is one of: \tpw \tph \tneb \tpp \tprojwfc \tdos \tbands \tatomic \td3 }] exit 1 } if { $argc != 1 } { Usage } set module [lindex $argv 0] set basedir [file normalize [file dirname [info script]]] set topdir [file normalize [file join $basedir ..]] # PWgui's modules dir set pwguidir [file join $topdir GUI PWgui] set moduledir [file join $pwguidir modules] if { ! [file exists $module-help.tcl] } { puts stderr "ERROR: run the \"check_gui $module\" first ..." exit 1 } puts "* moving $module-help.tcl --> [file join $moduledir $module $module-help.tcl]" file rename -force $module-help.tcl [file join $moduledir $module $module-help.tcl] if { [file exists [file join $moduledir $module $module-help.tcl.bak]] } { puts "* removing backup file: [file join $moduledir $module $module-help.tcl.bak]" } # ok, we are done; since we loaded Tk, we need an explicit exit !!! exit 0 espresso-5.1/dev-tools/helpdoc0000755000175000017500000000077212341373036014572 0ustar mbamba#!/bin/sh # the next line restarts using tclsh \ exec tclsh "$0" "$@" set basedir [file normalize [file dirname [info script]]] set sourcedir [file join $basedir helpdoc.d] source [file join $sourcedir helpdoc.tcl] # # MAIN # if { $argc < 1 } { puts stderr "\nUsage: $argv0 file1.def ?file2.def? ...\n" exit 1 } # custom ROBODOC program #set ::helpdoc::robodoc /path/to/robodoc # custom XSLTPROC program #set ::helpdoc::xsltproc /path/to/xsltproc # MAKE-IT-ALL ::helpdoc::process $argv espresso-5.1/dev-tools/calltree.pl0000755000175000017500000000543212341373036015357 0ustar mbamba#!/usr/bin/perl -w use strict; { my $maxdepth = 2; # default if ($#ARGV > 0 && $ARGV[0] eq "-d") { $maxdepth = $ARGV[1]; if ($maxdepth !~ /^\d+$/) { print STDERR "error: non-numeric maxdepth\n"; print STDERR "usage: $0 [-d maxdepth] [targets]\n"; exit 1; } shift @ARGV; shift @ARGV; } # $basedir is directory where this script is my $basedir = $0; $basedir =~ s/(.*)\/.*/$1/; my @sources = split(/ /, `echo $basedir/*/*.f90`); # grab program, function and subroutine declarations my (%place, %fname, %pname); foreach my $file (@sources) { open(IN, "$file"); while () { $_ = "\L$_"; # cast everything to lowercase if (/^[^!'""']*\bfunction\s+(\w+)/o && ! /^\s*end\s+function\b/o) { $fname{$1} = 1; push_place(\%place, $1, $file); } elsif (/^\s*program\s+(\w+)/o) { $pname{$1} = 1; push_place(\%place, $1, $file); } elsif (/^\s*(?:(?:pure|recursive)\s+)?subroutine\s+(\w+)/o) { push_place(\%place, $1, $file); } } close(IN); } my @names = sort keys %place; my @functions = sort keys %fname; # if no arguments are specified, stat all programs my @targets = @ARGV; if ($#targets < 0) { @targets = sort keys %pname; } my %cache; foreach my $name (@targets) { stat_name($name, \%place, \@functions, \%cache, 0, "", $maxdepth); } } sub push_place { my ($place, $name, $file) = @_; if (defined $$place{$name}) { $$place{$name} = "$$place{$name} $file"; } else { $$place{$name} = "$file"; } } sub stat_name { my ($name, $place, $functions, $cache, $depth, $indent, $maxdepth) = @_; print "$indent$name\n"; if ($depth >= $maxdepth || ! defined $$place{$name}) { return; } if (! defined $$cache{$name}) { my %cname; my @files = split(/ /, $$place{$name}); foreach my $file (@files) { my $current = ""; open(IN, $file); while () { $_ = "\L$_"; if (/^\s*program\s+(\w+)/o) { $current = "$1"; } elsif (/^\s*(?:(?:pure|recursive)\s+)?subroutine\s+(\w+)/o) { $current = "$1"; } elsif (/^[^!'""']*\bfunction\s+(\w+)/o) { $current = "$1"; } # here we are inside the relevant program/subroutine/function elsif ($current eq $name) { # subroutine calls if (/^\s*call\s+(\w+)/o) { $cname{$1} = 1; } # function calls foreach my $fun (@$functions) { if (/^[^!'""']*\b$fun\b/) { $cname{$fun} = 1; } } } } close(IN); } my @calls = sort keys %cname; $$cache{$name} = \@calls; } foreach my $call (@{$$cache{$name}}) { if ($call ne $name) { stat_name($call, $place, $functions, $cache, $depth+1, " $indent", $maxdepth); } } } espresso-5.1/dev-tools/diff_gui_help0000755000175000017500000000204112341373036015727 0ustar mbamba#!/bin/sh # the next line restarts using tclsh \ exec tclsh "$0" "$@" # # Usage: diff_gui_help module # ( module = pw, ph, pp, neb, projwfc, bands, dos, atomic, or d3 ) # # Requirements: execute the check_gui first !!! # # Purpose: compares the current PWgui help file with the one in $topdir/GUI/PWgui/modules/$module/ # proc Usage {} { global argv0 puts stderr [subst { Usage: $argv0 module Where module is one of: \tpw \tph \tneb \tpp \tprojwfc \tdos \tbands \tatomic \td3 }] exit 1 } if { $argc != 1 } { Usage } set module [lindex $argv 0] set basedir [file normalize [file dirname [info script]]] set topdir [file normalize [file join $basedir ..]] # PWgui's modules dir set pwguidir [file join $topdir GUI PWgui] set moduledir [file join $pwguidir modules] if { ! [file exists $module-help.tcl] } { puts stderr "ERROR: run the \"check_gui $module\" first ..." exit 1 } catch {exec tkdiff $module-help.tcl [file join $moduledir $module $module-help.tcl]} espresso-5.1/dev-tools/input_xx.xsl0000644000175000017500000007333612341373036015642 0ustar mbamba *** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST ***

Input File Description

Program: / /

This file has been created by helpdoc utility.

TABLE OF CONTENTS

INTRODUCTION

Line-of-input: | | &

| | | | | |

INTRODUCTION

	  
	

Namelist:

Card: { }

Description of items:

Syntax:

empty -flag { } [ ] non-empty -flag; ;;

{ } [ ]       var query =   
//card//syntax//table/rows  . . .  . . . //card//syntax//table//rows->rows() { } [ ]   col query = () ()   //card//syntax//table/cols {   [     ]   }  . . .  . . . node=   () ()  

Line of input

Syntax:

Description of items:

      
    
IF :
IF :
ELSEIF :
ELSE
(i), i=,
, (i), i=,
Default: Status: See:
,

espresso-5.1/dev-tools/src-normal.py0000755000175000017500000001356112341373036015660 0ustar mbamba#!/usr/bin/env python # (C) 2010 Norbert Nemec # # USAGE: src-normal.py < input.f90 > output.f90 # # Script to normalize Fortran source code: # a) expand tabs to spaces (tab width 8 characters # b) remove trailing space # c) normalize multiword keywords # d) normalize capitalization of keywords and intrinsics # d) replace old relational operators (.eq., .gt., etc.) by new ones (==, >, etc.) # The script skips comments and strings within the code import sys,re dropspace_list = [ "BLOCK *DATA", "CASE *DEFAULT", # SPLIT NOT OPTIONAL ! "DOUBLE *PRECISION", "DO *WHILE", # SPLIT NOT OPTIONAL ! "ELSE *IF", "END *BLOCK *DATA", "END *DO", "END *FILE", "END *FORALL", "END *FUNCTION", "END *IF", "END *INTERFACE", "END *MODULE", "END *PROGRAM", "END *SELECT", "END *SUBROUTINE", "END *TYPE", "END *WHERE", "GO *TO", "IN *OUT", "MODULE *PROCEDURE", # SPLIT NOT OPTIONAL ! "SELECT *CASE", ] splitword_list = [ "BLOCK DATA", "CASE DEFAULT", # SPLIT NOT OPTIONAL "DOUBLE PRECISION", "DO WHILE", # SPLIT NOT OPTIONAL # "ELSEIF", # leave as one word "END BLOCK DATA", # "ENDDO", # leave as one word "END FILE", "END FORALL", "END FUNCTION", # "ENDIF", # leave as one word "END INTERFACE", "END MODULE", "END PROGRAM", "END SELECT", "END SUBROUTINE", "END TYPE", "END WHERE", # "GOTO", # leave as one word # "INOUT", # leave as one word "MODULE PROCEDURE", # SPLIT NOT OPTIONAL "SELECT CASE", ] dropspace_re = re.compile(r"\b("+"|".join(dropspace_list)+r")\b",re.I) def dropspace_fn(s): return s.group(0).replace(" ","") splitword_dict = dict( (a.replace(" ","").lower(),a) for a in splitword_list ) splitword_re = re.compile(r"\b("+"|".join(splitword_list).replace(" ","")+r")\b",re.I) def splitword_fn(s): return splitword_dict[s.group(0).lower()] uppercase_keywords = r""" MODULE SUBROUTINE PROGRAM FUNCTION INTERFACE ENDMODULE ENDSUBROUTINE ENDPROGRAM ENDFUNCTION ENDINTERFACE BLOCKDATA DOUBLEPRECISION MODULEPROCEDURE TYPE ENDTYPE CONTAINS USE ONLY ALLOCATABLE DIMENSION INTENT EXTERNAL INTRINSIC OPTIONAL PARAMETER POINTER COMMON FORMAT IMPLICIT NONE PRIVATE PUBLIC CHARACTER COMPLEX INTEGER LOGICAL ENTRY EQUIVALENCE INCLUDE NAMELIST SAVE SEQUENCE TARGET ELEMENTAL PURE RECURSIVE RESULT SELECTCASE CASE CASEDEFAULT ENDSELECT IF THEN ELSEIF ELSE ENDIF WHERE ELSEWHERE ENDWHERE FORALL ENDFORALL DO DOWHILE ENDDO ALLOCATE ASSIGN BACKSPACE CALL CLOSE CONTINUE CYCLE DEALLOCATE ENDFILE EXIT FORMAT GOTO INQUIRE NULLIFY OPEN PAUSE PRINT READ RETURN REWIND STOP WRITE """.split() lowercase_keywords = r""" in inout out """.split() intrinsics = r""" abort abs achar acos acosd acosh adjustl adjustr aimag aint all allocated and anint any asin asind asinh associated atan atan2 atan2d atand atanh baddress bit_size btest ceiling char cmplx conjg cos cosd cosh count cshift date date_and_time dble dcmplx dfloat digits dim dnum dot_product dprod dreal eoshift epsilon exit exp exponent floor flush fnum fraction free fset fstream getarg getenv gran hfix huge iachar iaddr iand iargc ibclr ibits ibset ichar idate idim ieor igetarg ijint imag index int int1 int2 int4 int8 inum iomsg ior iqint irand iranp ishft ishftc isign ixor izext jnum jzext kind kzext lbound len len_trim lge lgt lle llt loc log log10 lshft lshift malloc matmul max maxexponent maxloc maxval mclock merge min minexponent minloc minval mod modulo mvbits nearest nint not or pack precision present product qext qfloat qnum qprod radix ran rand random_number random_seed range repeat reshape rnum rrspacing rshft rshift scale scan secnds selected_int_kind selected_real_kind set_exponent shape sign sin sind sinh size sizeof spacing spread sqrt srand sum system system_clock tan tand tanh time tiny transfer transpose trim ubound unpack verify xor zext """.split() ignore_for_the_moment = r""" real REAL isnan """ special_keywords = r""" .and. .or. .not. .true. .false. .eqv. .neqv. .eq. .ge. .gt. .le. .lt. .ne. """.replace(".","\\.").split() def uppercase_fn(s): return s.group(0).upper() def lowercase_fn(s): return s.group(0).lower() def special_fn(s): res = s.group(0).lower() res = { '.eq.': '==', '.ge.': '>=', '.gt.': '>', '.le.': '<=', '.lt.': '<', '.ne.': '/=', }.get(res,res) return res uppercase_re = re.compile(r"\b("+"|".join(uppercase_keywords)+r")\b",re.I) lowercase_re = re.compile(r"\b("+"|".join(lowercase_keywords+intrinsics)+r")\b",re.I) special_re = re.compile(r"("+"|".join(special_keywords)+r")",re.I) def correctcase(line): line = dropspace_re.sub(dropspace_fn,line) line = uppercase_re.sub(uppercase_fn,line) line = lowercase_re.sub(lowercase_fn,line) line = special_re.sub(special_fn,line) line = splitword_re.sub(splitword_fn,line) return line ############## quote = " " QUOTES = "'\"" for lin in sys.stdin: lin = lin.rstrip().expandtabs() pos = 0 lout = "" if lin[:1] == "#": lout=lin pos=len(lin) while pos < len(lin): if quote in QUOTES: npos = lin.find(quote,pos) if npos >= 0: assert lin[npos] == quote lout += lin[pos:npos+1] pos = npos+1 quote = " " elif lin[-1] == "&": lout += lin[pos:] break else: raise "unterminated string in line ["+lin+"]" cpos = lin.find("!",pos) % (len(lin)+1) qpos = lin.find("'",pos) % (len(lin)+1) dpos = lin.find('"',pos) % (len(lin)+1) npos = min(cpos,qpos,dpos) lout += correctcase(lin[pos:npos]) pos = npos if pos == len(lin): break elif lin[pos] == "!": lout += lin[pos:] break elif lin[pos] in QUOTES: quote = lin[pos] lout += quote pos += 1 continue else: raise "Strange internal error" sys.stdout.write(lout+"\n") espresso-5.1/dev-tools/src-normal0000755000175000017500000000047012341373036015224 0ustar mbamba#!/bin/bash TOOLDIR=$(dirname $0) if [[ $# == 0 ]] ; then fnames=$(for suffix in f90 ; do find -type f -name "*.$suffix" ; done) else fnames=$* fi for f in $fnames ; do mv $f $f.orig cat $f.orig |\ python $TOOLDIR/src-normal.py |\ cat > $f diff -q $f $f.orig && mv $f.orig $f done espresso-5.1/dev-tools/Makefile0000644000175000017500000000056412341373036014665 0ustar mbambaTMP_FILES = INPUT_*.xml INPUT_*.xml.tcl *-help.tcl pw: makedoc ./check_gui pw ph: makedoc ./check_gui ph pp: makedoc ./check_gui pp projwfc: makedoc ./check_gui projwfc bands: makedoc ./check_gui bands dos: makedoc ./check_gui dos atomic: makedoc ./check_gui atomic d3: makedoc ./check_gui d3 makedoc: (cd ..; $(MAKE) doc) clean: - rm $(TMP_FILES)espresso-5.1/dev-tools/guihelp.xsl0000644000175000017500000001714612341373036015416 0ustar mbamba # FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST help _flags {

Description of card's flags

}
help {
  •   Variable:

  •   Variables: (i), i=,

  •   Type:

}
help {
  •   Variables:

  •   Type:

} grouphelp { } {
  •   Variables:

  •   Type:

}
grouphelp { } {
  •   Variables: ,

  •   Variables: (i), i=,

  •   Type:

}
  •   Default:

  •   Status:

  •   See:

  •   Description:
  • help { }
    •   Variables: ,

    •   Type:

    •   Variable:

    •   Type:

    espresso-5.1/dev-tools/helpdoc.d/0000755000175000017500000000000012341373041015054 5ustar mbambaespresso-5.1/dev-tools/helpdoc.d/parseTags.tcl0000644000175000017500000001206112341373036017515 0ustar mbambaproc ::helpdoc::attrsToOpts_ {attrList} { # PURPOSE # Tranform attribute list to option list, i.e.: # {name ident type} --> {-name -ident -type} set optList {} foreach attr $attrList { lappend optList -$attr } return $optList } proc ::helpdoc::optVal2AttrVal_ {optValList} { # PURPOSE # Tranform option-value pairs to attribute value pairs, i.e.: # {-option1 value1 -option2 value2} --> {option1="value1" option2="value2"} set result "" foreach {opt val} $optValList { set attr [string trimleft $opt -] append result "$attr=\"$val\" " } return $result } proc ::helpdoc::checkIdent_ {ident} { # PURPOSE # Check if $ident is valid ident: it should not start with -, and # should be one word only, starting with an alphabetical # character" set ident [string trim $ident] set tag [tag -3] if { [regexp {^-} $ident] } { ::tclu::abort "expecting ident for tag \"$tag\", but got an option $ident" } if { [llength $ident] > 1 } { ::tclu::abort "expecting ident for tag \"$tag\" (ident should be a single word), but got a text: $ident" } if { ! [regexp {^[a-zA-Z_]} $ident] } { ::tclu::abort "not a proper ident, $ident, for tag \"$tag\", ident start with a-z, or A-Z, or _" } } proc ::helpdoc::rootnameTag_ {args} { variable tree variable stack variable state variable elemArr set tag [tag -2] set code [lindex $args end] set tree [::struct::tree] set node [$tree rootname] $tree set $node tag $tag parseTagMsg_; puts "" # do tag uses ident ? #puts "tag=$tag" #puts "array(IDENT,*): [array names elemArr IDENT,*]\n" #puts "array(ATTRLIST,*): [array names elemArr ATTRLIST,*]\n" if { [info exists elemArr(IDENT,$tag)] } { # add name="string" to attribute list set ident [lindex $args 0] checkIdent_ $ident set attr "name=\"$ident\" " set args [lrange $args 1 end] } # do tag use attributes ? if { [info exists elemArr(ATTRLIST,$tag)] } { append attr [optVal2AttrVal_ [::tclu::extractArgs \ [attrsToOpts_ $elemArr(ATTRLIST,$tag)] args]] if { [llength $args] != 1 } { # wrong attributes have been specified ::tclu::abort "wrong attributes for the \"$tag\" specified, must be one of: [join $elemArr(ATTRLIST,$tag) ,]" } } # store attributes into the tree ... if { [info exists attr] } { $tree set $node attributes $attr } # proceed further $stack push [$tree rootname] namespace eval tag $code $stack pop puts {[OK] - parsing finished} } proc ::helpdoc::elementTag_ {args} { variable tree variable stack variable state variable elemArr if { $tree == "" } { # an element tag has been specified before rootelement ::tclu::abort "an element \"$tag\" specified before the rootelement \"$state(rootElem)\"" } set tag [tag -2] set node [$tree insert [$stack peek] end] set code [lindex $args end] $tree set $node tag $tag #puts "tag=$tag" #puts "array(TEXT,*): [array names elemArr TEXT,*]\n" #puts "array(IDENT,*): [array names elemArr IDENT,*]\n" #puts "array(ATTRLIST,*): [array names elemArr ATTRLIST,*]\n" if { [info exists elemArr(TEXT,$tag)] || [info exists elemArr(STRING,$tag)] } { # we have a simple-element (leaf) $tree set $node text [lindex $args 0] parseTagMsg_; puts ok } else { # we have a complex-element # do tag uses ident ? if { [info exists elemArr(IDENT,$tag)] } { # add name="string" to attribute list set name [lindex $args 0] parseTagMsg_ $name; puts "" checkIdent_ $name set attr "name=\"$name\" " set args [lrange $args 1 end] if { $args == "" } { set code "" } } else { parseTagMsg_; puts "" } # do tag use attributes ? if { [info exists elemArr(ATTRLIST,$tag)] } { if { [llength $args] > 1 } { # this is quick-and-dirty, but we need to do more cheking on order, optionality, .... append attr [optVal2AttrVal_ [::tclu::extractArgs \ [attrsToOpts_ $elemArr(ATTRLIST,$tag)] args]] if { [llength $args] != 1 } { # wrong attributes have been specified ::tclu::abort "wrong attributes for the \"$tag\" specified, must be one of: [join $elemArr(ATTRLIST,$tag) ,]" } } } # TODO: checks on order, optionality, ... # store attributes into the tree ... if { [info exists attr] } { $tree set $node attributes $attr } # proceed further $stack push $node namespace eval tag $code $stack pop parseTagMsgOK_; } } proc ::helpdoc::parseTagMsg_ {{name {}}} { variable tree set indent [uplevel 1 {indent [$tree depth $node]}] set tag [string toupper [tag -3]] puts -nonewline "${indent}parsing $tag $name ... " } proc ::helpdoc::parseTagMsgOK_ {{name {}}} { variable tree set indent [uplevel 1 {indent [$tree depth $node]}] set tag [string toupper [tag -3]] if { $name == "" } { puts "${indent}\[OK\] - parsing $tag completed" } else { puts "${indent}\[OK\] - parsing $tag $name completed" } } espresso-5.1/dev-tools/helpdoc.d/robodoc.tcl0000644000175000017500000000405412341373036017216 0ustar mbamba# Currently disabled: this file is likely to be purged in the future # # Robodoc # proc ::helpdoc::rbd_tag_enter {tag attr content depth} { variable fid variable rbd_var variable rbd_stack variable rbd_info set content [formatString [trimEmpty $content]] attr2array_ arr $attr switch -exact $tag { input_description { set rbd_stack [::struct::stack] set module {} set rbd_info(program) unknown if { [info exists arr(distribution)] } { set module $arr(distribution) } if { [info exists arr(package)] } { set module $arr(package) } if { [info exists arr(program)] } { set module $module/$arr(program) set rbd_info(program) $arr(program) } if { $module == "" } { set module /input } set current_module [lindex [split $module /] end] $rbd_stack push $current_module puts $fid(rbd) [formatString [subst { #****h* $module # DESCRIPTION # Description of the input syntax for program ... #****** }]]\n } namelist { set module "[$rbd_stack peek]/$arr(name)" $rbd_stack push $arr(name) puts $fid(rbd) [formatString [subst { #****n* $module # DESCRIPTION # Description of the $arr(name) namelist. #****** }]]\n } var { set name $arr(name) regsub -all -- , $name + name set rbd_var "#****v* [$rbd_stack peek]/$name\n" append rbd_var "# NAME\n" append rbd_var "# $arr(name)\n" } info { append rbd_var "# DESCRIPTION\n[::textutil::indent $content {# }]" } status { append rbd_var "# STATUS\n[::textutil::indent $content {# }]\n" } } if { $tag == "default" } { append rbd_var "# DEFAULT\n[::textutil::indent $content {# }]\n" } } proc ::helpdoc::rbd_tag_leave {tag attr content depth} { variable fid variable rbd_var variable rbd_stack switch -exact $tag { namelist { puts $fid(rbd) "\n\# *** END of NAMELIST\n" $rbd_stack pop } var { puts $fid(rbd) $rbd_var puts $fid(rbd) "#******\n" } } } espresso-5.1/dev-tools/helpdoc.d/gui.tcl0000644000175000017500000001535012341373036016354 0ustar mbamba# # This file holds procs for checking the PWgui's modules against the # INPUT_*.def files (and vice versa) # proc ::helpdoc::checkMsg {type msg} { puts [labelMsg ${type}: $msg]\n } proc ::helpdoc::checkGui_def_vs_module {} { variable def_item variable def_itemL puts { ------------------------------------- *** Checking DEF vs MODULE file *** ------------------------------------- } foreach {name lowercase_name} $def_itemL { set def_type $def_item($name) switch -- $def_type { card { set def_mapping_type keyword } listvar - list { set def_mapping_type var set name [string trim $name ,] } default { set def_mapping_type "" } } if { [info exists ::guib::moduleObj::module_item($name)] } { set module_type $::guib::moduleObj::module_item($name) if { $def_type != $module_type } { # take care of guib vs. helpdoc mappings if { $def_mapping_type != $module_type } { set warning 1 # handle exceptions switch -glob -- $name { first_image - intermediate_image - last_image { if { $::module == "pw" } { # Don't report errors connected to: atomic_coordinates ... set warning 0 } } } if { $warning } { checkMsg WARNING "Type mismatch for item=$name.\n\tDef's type = $def_type\n\tModule's type = $module_type" } } } } else { set module_name [module_getItemName_ $name] if { $module_name != "" } { checkMsg WARNING "case-sensitivity mismatch for item $def_type $name.\n\tDef's name = $name (type=$def_type)\n\tModule's name = $module_name (type=$module_type)" } else { set error 1 # handle exceptions switch -glob -- $name { nwfts - test_wfs { if { $::module == "atomic" } { # Don't report errors connected to: atomic_coordinates ... set error 0 } } } if { $error } { checkMsg ERROR "$def_type $name does not exists in MODULE file" } } } } } proc ::helpdoc::checkGui_module_vs_def {} { variable def_item variable def_itemL puts { ------------------------------------- *** Checking MODULE vs DEF file *** ------------------------------------- } foreach {name lowercase_name} $::guib::moduleObj::module_itemL { set module_type $::guib::moduleObj::module_item($name) if { [info exists def_item($name)] } { set def_type $def_item($name) if { $def_type != $module_type } { # take care of guib vs. helpdoc mappings switch -- $def_type { card { set def_mapping_type keyword } listvar { set def_mapping_type var set name [string trim $name ,] } default { set def_mapping_type "" } } if { $def_mapping_type != $module_type } { # handle exceptions set warning 1 switch -glob -- $name { first_image - intermediate_image - last_image { if { $::module == "pw" } { # Don't report errors connected to: atomic_coordinates for pw.x ... set warning 0 } } } if { $warning } { checkMsg WARNING "Type mismatch for item=$name.\n\tModule's type = $module_type\n\tDef's type = $def_type" } } } } else { set def_name [def_getItemName $name] if { $def_name != "" } { checkMsg WARNING "case-sensitivity mismatch for item $def_type $name.\n\tModule's name = $name (type=$module_type)\n\tDef's name = $def_name (type=$def_type)" } else { # handle exceptions set error 1 switch -glob -- $name { atomic_coordinates_* - first_image - intermediate_image - last_image { if { $::module == "pw" } { # Don't report errors connected to: atomic_coordinates ... set error 0 } } nwfts_* - test_wfs_* { if { $::module == "atomic" } { set error 0 } } } if { $error } { checkMsg ERROR "$module_type $name does not exists in DEF file" } } } } } # # DEF's related proc's # proc ::helpdoc::def_loadDef {file} { variable tree variable def_item variable def_itemL if { [info exists def_item] } { unset def_item } if { [info exists def_itemL] } { unset def_itemL } # first read the schema (and load tag's commands) readSchema # now read the file namespace eval tag [list source $file] $tree walkproc root -order pre helpdoc::def_registerItems return $tree } proc ::helpdoc::def_checkExistance_ {tag name} { variable def_item set lowercase_name [string tolower $name] if { [info exists def_item(name,$lowercase_name)] } { puts [labelMsg WARNING: "item $name already exists (old-tag=$def_item(tag,$lowercase_name), new-tag=$tag).\nAutomatic checking is not reliable, please check item, $name, manually."] } } proc ::helpdoc::def_registerItem_ {tag name} { variable def_item variable def_itemL def_checkExistance_ $tag $name set lowercase_name [string tolower $name] set def_item($name) $tag append def_itemL "[def_addToItemList__ $name] " } proc ::helpdoc::def_addToItemList__ {name} { set lowercase_name [string tolower $name] return [list $name $lowercase_name] } proc ::helpdoc::def_getItemName {name} { variable def_itemL set lowercase_name [string tolower $name] foreach {Name LowercaseName} $def_itemL { if { $LowercaseName == $lowercase_name } { return $Name } } return {} } proc ::helpdoc::def_getItemLowercaseName {name} { set lowercase_name [string tolower $name] foreach {Name LowercaseName} $def_itemL { if { $LowercaseName == $lowercase_name } { return $lowercase_name } } return {} } proc ::helpdoc::def_registerItems {tree node action} { variable def_item variable def_itemL variable arr set tag [$tree get $node tag] set attr [getFromTree $tree $node attributes] attr2array_ arr $attr set name [arr name] set lowercase_name [string tolower $name] switch -- $tag { var - keyword - dimension - namelist - table { def_registerItem_ $tag $name } list { def_registerItem_ $tag $name set names [getDescendantText $tree $node format] foreach name $names { def_registerItem_ listvar $name } } card { set nameless [arr nameless] switch -- [string tolower $nameless] { 1 - true - yes - .true. { set name "" } } if { $name != "" } { def_registerItem_ $tag $name } } } } # # guib-MODULE's related procs # proc ::helpdoc::module_getItemName_ {name} { set lowercase_name [string tolower $name] foreach {Name LowercaseName} $::guib::moduleObj::module_itemL { if { $LowercaseName == $lowercase_name } { return $Name } } return {} } espresso-5.1/dev-tools/helpdoc.d/txt_enter.tcl0000644000175000017500000002237712341373036017613 0ustar mbambavariable indentNum set var_chars 15 set var_chars1 [expr $var_chars + 1] switch -exact -- $tag { input_description { printfNormalize [subst { ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: [arr program] / [arr package] / [arr distribution] ------------------------------------------------------------------------ }] printf \n } intro { printf $content\n } toc { # o-la-la ... } } # simple elements switch -exact -- $tag { label { if { ! [::tclu::lpresent $mode description] } { printf [string toupper $content]\n } } message { if { ! [::tclu::lpresent $mode description] } { printf $content\n } } keyword { if { [::tclu::lpresent $mode syntax] } { syntaxAppend [arr name] } } } if { ! $vargroup && ! $dimensiongroup && ! $colgroup && ! $rowgroup && ! [::tclu::lpresent $mode syntax] } { switch -exact -- $tag { info { printf [labelMsg [format "%-${var_chars}s" Description:] $content] } "default" { printf [labelMsg [format "%-${var_chars}s" Default:] $content] } status { printf [labelMsg [format "%-${var_chars}s" Status:] $content] } see { printf [labelMsg [format "%-${var_chars}s" See:] $content] } } } # composite elements switch -exact -- $tag { var - col - row { if { ! $vargroup && ! $colgroup && ! $rowgroup && ! [::tclu::lpresent $mode syntax] } { if { [printableVarDescription $tree $node] } { printf +-------------------------------------------------------------------- printf [labelMsg [format "%-${var_chars}s" Variable:] [arr name]]\n printf [labelMsg [format "%-${var_chars}s" Type:] [arr type]] } } if { $tag == "var" && [::tclu::lpresent $mode syntax] } { syntaxAppend [arr name] } } dimension { if { ! $dimensiongroup && ! [::tclu::lpresent $mode syntax] } { if { [printableVarDescription $tree $node] } { printf +-------------------------------------------------------------------- printf [labelMsg [format "%-${var_chars}s" Variable:] "[arr name](i), i=[arr start],[arr end]"]\n printf [labelMsg [format "%-${var_chars}s" Type:] [arr type]] } } if { [::tclu::lpresent $mode syntax] } { syntaxAppend "[arr name], i=[arr start],[arr end]" } } vargroup - dimensiongroup - colgroup - rowgroup { if { ($tag == "colgroup" || $tag == "rowgroup") && ! [::tclu::lpresent $mode description] } { return } if { ! [::tclu::lpresent $mode syntax] } { set $tag 1 foreach child [$tree descendants $node] { set _tag [getFromTree $tree $child tag] set _attr [getFromTree $tree $child attributes] set _text [getFromTree $tree $child text] attr2array_ _arr $_attr switch -exact -- $_tag { var - col - row { append Data(vars) "$_arr(name), " } dimension { append Data(dims) "${_arr(name)}(i), " } status - "default" - info - see { set Data($_tag) [formatString $_text] } } } if { [printableVarDescription $tree $node] } { printf +-------------------------------------------------------------------- if { $tag != "dimensiongroup" } { printf [labelMsg [format "%-${var_chars}s" Variables:] [string trim $Data(vars) {, }]]\n } else { printf [labelMsg [format "%-${var_chars}s" Variables:] "${Data(dims)}i=[arr start],[arr end]"]\n } printf [labelMsg [format "%-${var_chars}s" Type:] [arr type]] foreach field {default status see info} { if { [info exists Data($field)] } { if { $field != "info" } { set label [string totitle $field]: } else { set label Description: } printf [labelMsg [format "%-${var_chars}s" $label] $Data($field)] } } } } } } switch -exact -- $tag { list { if { ! [::tclu::lpresent $mode syntax] } { if { [printableVarDescription $tree $node] } { set vars [getDescendantText $tree $node format] printf +-------------------------------------------------------------------- printf [labelMsg [format "%-${var_chars}s" Variables:] $vars]\n printf [labelMsg [format "%-${var_chars}s" Type:] [arr type]] } } if { $tag == "var" && [::tclu::lpresent $mode syntax] } { syntaxAppend [arr name] } } format { if { [::tclu::lpresent $mode syntax] } { syntaxAppend $content } } table { } rows { if { [::tclu::lpresent $mode syntax] } { set rows(start) [arr start] set rows(end) [arr end] lappend mode rows } } cols { if { [::tclu::lpresent $mode syntax] } { set cols(start) [arr start] set cols(end) [arr end] lappend mode cols } } rowgroup { set rowgroup 1 } colgroup { set colgroup 1 } col { if { [::tclu::lpresent $mode rows] } { append rows(line) "[arr name] " } } row { if { [::tclu::lpresent $mode cols] } { append cols(vline) "[arr name] " } } optional { if { [::tclu::lpresent $mode rows] } { append rows(line) "__optional::begin__ " } elseif { [::tclu::lpresent $mode cols] } { append cols(vline) "__optional::begin__ " } elseif { [::tclu::lpresent $mode syntax] } { syntaxAppend "\{" } } conditional { if { [::tclu::lpresent $mode rows] } { append rows(line) "__conditional::begin__ " } elseif { [::tclu::lpresent $mode cols] } { append cols(vline) "__conditional::begin__ " } elseif { [::tclu::lpresent $mode syntax] } { syntaxAppend "\[" } } group { # todo printf ///--- incr txtDepth } namelist { printf ======================================================================== printf "NAMELIST: &[arr name]\n" incr txtDepth } card { if { ! [::tclu::lpresent $mode card] } { lappend mode card set flags [getDescendantText $tree $node flag enum] set use [getDescendantAttribute $tree $node flag use] if { $use == "optional" } { set flag "{ $flags }" } else { set flag "$flags" } set card(name) [arr name] set card(flag) $flag set nameless [arr nameless] switch -- [string tolower $nameless] { 1 - true - yes - .true. { set card(name) "" } } printf ======================================================================== printf "CARD: $card(name) $flag\n" incr txtDepth # first parse subtree in syntax mode txt_subtree $tree $node syntax # now parse subtree in description mode printf "DESCRIPTION OF ITEMS:\n" incr txtDepth txt_subtree $tree $node description incr txtDepth -2 printf "===END OF CARD==========================================================\n\n" ::tclu::lpop mode ::struct::tree::prune } } linecard { if { ! [::tclu::lpresent $mode card] } { lappend mode card set card(name) "" set card(flag) "" printf ======================================================================== printf "Line of input:\n" incr txtDepth # first parse subtree in syntax mode incr txtDepth txt_subtree $tree $node syntax incr txtDepth -1 printf \n # now parse subtree in description mode printf "DESCRIPTION OF ITEMS:\n" incr txtDepth txt_subtree $tree $node description incr txtDepth -2 printf "===End of line-of-input=================================================\n\n" ::tclu::lpop mode ::struct::tree::prune } } flag { if { ! [::tclu::lpresent $mode syntax] } { printf +-------------------------------------------------------------------- printf [labelMsg [format "%-${var_chars}s" "Card's flags:"] $card(flag)]\n } } enum { # nothing } syntax { if { [::tclu::lpresent $mode syntax] } { set _flags [arr flag] if { $_flags == "" } { set flags $card(flag) } else { set flags $_flags } printf "/////////////////////////////////////////" printf "// Syntax: //" printf "/////////////////////////////////////////\n" incr txtDepth if { $card(name) != "" } { printf "$card(name) $flags" } incr txtDepth } } line { # nothing ?? } if { if { ! [::tclu::lpresent $mode description] } { printf "* IF [arr test] : \n" incr txtDepth } } choose { if { ! [::tclu::lpresent $mode description] } { printf ________________________________________________________________________ } } when { if { ! [::tclu::lpresent $mode description] } { printf "* IF [arr test] : \n" incr txtDepth } } elsewhen { if { ! [::tclu::lpresent $mode description] } { printf "* ELSE IF [arr test] : \n" incr txtDepth } } otherwise { if { ! [::tclu::lpresent $mode description] } { printf "* ELSE : \n" incr txtDepth } } } # some text structure stuff switch -exact -- $tag { section { printf "\n:::: [arr title]\n" incr txtDepth } subsection { printf "\n::: [arr title]\n" incr txtDepth } subsubsection { printf "\n:: [arr title]\n" incr txtDepth } paragraph { printf "* [arr title]\n" } text { printf $content\n } }espresso-5.1/dev-tools/helpdoc.d/guihelp.tcl0000644000175000017500000001032212341373036017217 0ustar mbambanamespace eval ::helpdoc::gui_help { variable helpContent variable helpNameList "" proc printHelp_ {channel} { variable helpContent variable helpNameList foreach name $helpNameList { puts $channel "\n# ------------------------------------------------------------------------" if { [llength $name] > 1 } { puts $channel "grouphelp [list $name] -helpfmt helpdoc -helptext [list $helpContent($name)]\n" } else { puts $channel "help $name -helpfmt helpdoc -helptext [list $helpContent($name)]\n" } } } proc addHelp_ {names helpTxt} { variable helpContent variable helpNameList ::tclu::ladd helpNameList $names append helpContent($names) ${helpTxt}\n } proc grouphelp {names helpTxt} { foreach name $names { if { [info exists ::guib::moduleObj::module_item($name)] } { if { $::guib::moduleObj::module_item(ident,$name) != "" } { switch -- $::guib::moduleObj::module_item($name) { var - dimension - table { lappend ok_names $::guib::moduleObj::module_item(ident,$name) } } } } } if { [info exists ok_names] } { addHelp_ $ok_names $helpTxt } } proc help {name helpTxt} { # hande exceptions switch -- $::module { atomic { switch -- $name { nwfts - test_wfs { # in module file we have nwfts_* #puts "[array names ::guib::moduleObj::module_item -glob ${name}_*]" set names [array names ::guib::moduleObj::module_item -glob ${name}_*] if { $names != "" } { grouphelp $names $helpTxt } } } } ph { if { $name eq "alpha_mix(niter)" } { # in module file we have alpha_mix(1) set name alpha_mix(1) } } } if { $name == "occupations_table" } { puts "occupations_table" puts " def-exists [info exists ::helpdoc::def_item($name)]" puts " module-exists [info exists ::guib::moduleObj::module_item($name)]" puts " module-ident $::guib::moduleObj::module_item(ident,$name)" } if { [info exists ::guib::moduleObj::module_item($name)] } { if { $::guib::moduleObj::module_item(ident,$name) != "" } { switch -- $::guib::moduleObj::module_item($name) { var - dimension - table - text { # important: we must pass from name to ident addHelp_ $::guib::moduleObj::module_item(ident,$name) $helpTxt } } } } } } proc ::helpdoc::checkGui_makeHelpFile {deffile modulefile} { variable xsltproc variable helpfile variable xml_temp if { $xsltproc == "" } { ::tclu::ERROR "can't find useable xsltproc, gui help file creation skipped" } # help file will be written to $helpfile set helpfile [file tail [file rootname $modulefile]]-help.tcl set orig_helpfile [file rootname $modulefile]-help.tcl if { "$helpfile" == "$orig_helpfile" } { puts stderr [::tclu::labelMsg WARNING "file \"$orig_helpfile\" exists.\nMaking a $orig_helpfile.bak backup copy."] file copy -force $orig_helpfile $orig_helpfile.bak } # open/create a temporaty xml file ... set orig_xmlfile [file rootname $deffile].xml set xml_prefix [file tail [file rootname $deffile]] if { "$xml_prefix.xml" == "$orig_xmlfile" } { # ups, we don't want to overwrite $xmlfile set xml_temp ${xml_prefix}_temp.xml } else { set xml_temp ${xml_prefix}.xml } set xml_fid [open $xml_temp w] # copy $orig_xmlfile to $xml_temp, but replace the stylesheet input_xx.xsl by guihelp.xsl ::tclu::lineread line $orig_xmlfile { if { [string match {} } else { puts $xml_fid $line } } close $xml_fid puts "\n\tXml-file $xml_temp has been written.\n" catch [list exec $xsltproc $xml_temp > $xml_temp.tcl] puts "\n\tAuxiliary help-file $xml_temp.tcl has been written.\n" # create a $helpfile namespace eval gui_help { set helpID [open $::helpdoc::helpfile w] puts $helpID { # # Help-file automatically created by helpdoc utility # # !!! DO NOT EDIT: CHANGES WILL BE LOST !!! # } source $::helpdoc::xml_temp.tcl printHelp_ $helpID close $helpID } puts "\n\tHelp-file $helpfile has been written.\n" } espresso-5.1/dev-tools/helpdoc.d/txt.tcl0000644000175000017500000000627412341373036016414 0ustar mbamba# # TXT # proc ::helpdoc::attr2array_ {arrayVar attributes} { upvar $arrayVar attr foreach {name value} [::textutil::splitx $attributes "=\"|\"\[ \n\r\\t\]|\"$"] { if { $name != "" } { set attr($name) [string trim $value =] } } } proc ::helpdoc::printf {content {extraSpace 0}} { variable txtDepth variable indentNum variable fid set indent [indent $txtDepth] if { $extraSpace > 0 } { set indent $indent[::textutil::blank $extraSpace] } foreach line [split $content \n] { puts $fid(txt) ${indent}$line } } proc helpdoc::printfNormalize {content} { variable txtDepth variable indentNum variable fid set indent [indent $txtDepth] puts $fid(txt) [formatString $content] } proc helpdoc::labelMsg {label msg} { set il 1 set len [string length $label] set message {} foreach line [split [string trim $msg] \n] { if { $il == 1 } { append message [::format "%${len}s %s" $label $line] incr il } else { append message [::format "\n%${len}s %s" {} $line] } } return $message } proc ::helpdoc::arr {elem} { variable arr if { [info exists arr($elem)] } { return $arr($elem) } return "" } proc ::helpdoc::txt_tag_enter {tree node tag attr content depth} { variable txtDepth variable indentNum variable fid variable arr variable vargroup variable dimensiongroup variable colgroup variable rowgroup variable card variable mode variable rows variable cols if { [info exists arr] } { unset arr } set content [formatString [trimEmpty $content]] attr2array_ arr $attr global sourcedir source [file join $sourcedir txt_enter.tcl] } proc ::helpdoc::txt_tag_leave {tree node tag attr content depth} { variable fid variable txtDepth variable vargroup variable dimensiongroup variable colgroup variable rowgroup variable mode variable card variable rows variable cols global sourcedir source [file join $sourcedir txt_leave.tcl] } proc ::helpdoc::txt_subtree {tree node newMode} { variable mode lappend mode $newMode set newTree [::struct::tree] $newTree deserialize [$tree serialize $node] $newTree walkproc [$newTree rootname] -order both txt_subtree_print $newTree destroy ::tclu::lpop mode } proc ::helpdoc::txt_subtree_print {tree node action} { set depth [$tree depth $node] set tag [$tree get $node tag] set attributes [getFromTree $tree $node attributes] set content [getFromTree $tree $node text] txt_tag_${action} $tree $node $tag $attributes $content [expr $depth - 1] } proc ::helpdoc::printableVarDescription {tree node} { variable mode # Purpose: the description of variable in the card is printed only # when at least one of info, status or see records is present. set Info [getDescendantText $tree $node info] set Status [getDescendantText $tree $node status] set See [getDescendantText $tree $node see] if { ! [::tclu::lpresent $mode card] || ($Info != "" || $Status != "" || $See != "") } { return 1 } return 0 } espresso-5.1/dev-tools/helpdoc.d/auxil.tcl0000644000175000017500000000166012341373036016711 0ustar mbambaproc ::helpdoc::tag {{level -2}} { # PURPOSE # Return the name of the calling proc, which is used as the name # of tag. return [namespace tail [lindex [info level $level] 0]] } proc helpdoc::indent {depth {extraDepth 0}} { variable indentNum return [::textutil::blank [expr ($depth + $extraDepth) * $indentNum]] } proc ::helpdoc::formatString {string {depth 0}} { variable indentNum set indent [indent $depth] return [::textutil::indent \ [::textutil::undent \ [::textutil::untabify [::textutil::trimEmptyHeading $string]]] \ $indent] } proc ::helpdoc::trimEmpty {text} { # PURPOSE # Trim empty lines (this is not equal to [string trim], because the # beginning and ending indenation would be lost with the latter. regsub -- "^(\[ \t\]*\n)*" $text {} text regsub -- "(\[ \t\n\])*$" $text {} text return $text } espresso-5.1/dev-tools/helpdoc.d/tclIndex0000644000175000017500000002013312341373036016554 0ustar mbamba# Tcl autoload index file, version 2.0 # This file is generated by the "auto_mkindex" command # and sourced to set up indexing information for one or # more commands. Typically each line is a command that # sets an element in the auto_index array, where the # element name is the name of a command and the value is # a script that loads the command. set auto_index(::helpdoc::gui_help::printHelp_) [list source [file join $dir guihelp.tcl]] set auto_index(::helpdoc::gui_help::addHelp_) [list source [file join $dir guihelp.tcl]] set auto_index(::helpdoc::gui_help::grouphelp) [list source [file join $dir guihelp.tcl]] set auto_index(::helpdoc::gui_help::help) [list source [file join $dir guihelp.tcl]] set auto_index(::helpdoc::checkGui_makeHelpFile) [list source [file join $dir guihelp.tcl]] set auto_index(::helpdoc::getFromTree) [list source [file join $dir tree.tcl]] set auto_index(::helpdoc::getDescendantNodes) [list source [file join $dir tree.tcl]] set auto_index(::helpdoc::getDescendantText) [list source [file join $dir tree.tcl]] set auto_index(::helpdoc::getDescendantAttribute) [list source [file join $dir tree.tcl]] set auto_index(::helpdoc::xml_escape_chr) [list source [file join $dir xml.tcl]] set auto_index(::helpdoc::xml_attr_escape_chr) [list source [file join $dir xml.tcl]] set auto_index(::helpdoc::xml_tag_enter) [list source [file join $dir xml.tcl]] set auto_index(::helpdoc::xml_tag_leave) [list source [file join $dir xml.tcl]] set auto_index(::helpdoc::schema::rootelement) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::element) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::attribute) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::define) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::text) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::string) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::ref) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::ident) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::optional) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::interleave) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::choice) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::ancestorElements) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::?) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::*) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::schema::+) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::rootelement) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::element) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::attribute) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::define) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::text) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::String) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::ref) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::ident) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::optional) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::interleave) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::choice) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::ancestorElements) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::?) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::*) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::+) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::repetition_) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::assignRefs_) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::createTagCmds_) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::parseMsg_) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::parseMsgOK_) [list source [file join $dir readSchema.tcl]] set auto_index(::helpdoc::openOutputs) [list source [file join $dir helpdoc.tcl]] set auto_index(::helpdoc::writeOutputs) [list source [file join $dir helpdoc.tcl]] set auto_index(::helpdoc::readSchema) [list source [file join $dir helpdoc.tcl]] set auto_index(::helpdoc::print_xml) [list source [file join $dir helpdoc.tcl]] set auto_index(::helpdoc::print_txt) [list source [file join $dir helpdoc.tcl]] set auto_index(::helpdoc::process) [list source [file join $dir helpdoc.tcl]] set auto_index(::helpdoc::tag) [list source [file join $dir auxil.tcl]] set auto_index(::helpdoc::indent) [list source [file join $dir auxil.tcl]] set auto_index(::helpdoc::formatString) [list source [file join $dir auxil.tcl]] set auto_index(::helpdoc::trimEmpty) [list source [file join $dir auxil.tcl]] set auto_index(::helpdoc::syntaxAppend) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::syntaxFlush) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::manageRow) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::manageRow_) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::printRows) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::manageCol) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::printCols) [list source [file join $dir syntax_txt.tcl]] set auto_index(::helpdoc::attrsToOpts_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::optVal2AttrVal_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::checkIdent_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::rootnameTag_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::elementTag_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::parseTagMsg_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::parseTagMsgOK_) [list source [file join $dir parseTags.tcl]] set auto_index(::helpdoc::rbd_tag_enter) [list source [file join $dir robodoc.tcl]] set auto_index(::helpdoc::rbd_tag_leave) [list source [file join $dir robodoc.tcl]] set auto_index(::helpdoc::attr2array_) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::printf) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::printfNormalize) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::labelMsg) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::arr) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::txt_tag_enter) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::txt_tag_leave) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::txt_subtree) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::txt_subtree_print) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::printableVarDescription) [list source [file join $dir txt.tcl]] set auto_index(::helpdoc::checkMsg) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::checkGui_def_vs_module) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::checkGui_module_vs_def) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_loadDef) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_checkExistance_) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_registerItem_) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_addToItemList__) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_getItemName) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_getItemLowercaseName) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::def_registerItems) [list source [file join $dir gui.tcl]] set auto_index(::helpdoc::module_getItemName_) [list source [file join $dir gui.tcl]] espresso-5.1/dev-tools/helpdoc.d/txt_leave.tcl0000644000175000017500000000743212341373036017565 0ustar mbambavariable indentNum switch -exact -- $tag { input_description { } intro { printf \n } toc { } } # simple elements switch -exact -- $tag { info { } "default" { } status { } label { } message { } see { } keyword { } } # composite elements switch -exact -- $tag { list { if { [::tclu::lpresent $mode syntax] } { syntaxFlush } else { if { [printableVarDescription $tree $node] } { printf +-------------------------------------------------------------------- printf \n } } } format { # todo } var - dimension - col - row { if { ! $vargroup && ! $dimensiongroup && ! $colgroup && ! $rowgroup && ! [::tclu::lpresent $mode syntax] } { if { [printableVarDescription $tree $node] } { printf +--------------------------------------------------------------------\n set var_print 0 } } } vargroup - dimensiongroup - rowgroup - colgroup { # todo if { ! [::tclu::lpresent $mode syntax] } { set $tag 0 if { [printableVarDescription $tree $node] } { printf +--------------------------------------------------------------------\n } } } table { } rows { if { [::tclu::lpresent $mode syntax] && [::tclu::lpresent $mode rows] } { manageRow manageRow 1 manageRow 2 printRows unset rows ::tclu::lpop mode } } cols { if { [::tclu::lpresent $mode syntax] && [::tclu::lpresent $mode cols] } { manageCol manageCol 1 manageCol 2 printCols unset cols ::tclu::lpop mode } } optional { if { [::tclu::lpresent $mode rows] } { append rows(line) "__optional::end__ " } elseif { [::tclu::lpresent $mode cols] } { append cols(vline) "__optional::end__ " } elseif { [::tclu::lpresent $mode syntax] } { syntaxAppend "\}" } } conditional { if { [::tclu::lpresent $mode rows] } { append rows(line) "__conditional::end__ " } elseif { [::tclu::lpresent $mode cols] } { append cols(vline) "__conditional::end__ " } elseif { [::tclu::lpresent $mode syntax] } { syntaxAppend "\]" } } group { incr txtDepth -1 printf \\\\\\---\n } namelist { incr txtDepth -1 printf "===END OF NAMELIST======================================================\n\n" } card { } linecard { if { [::tclu::lpresent $mode syntax] } { syntaxFlush } } flag { if { [::tclu::lpresent $mode "description"] } { printf +-------------------------------------------------------------------- puts $fid(txt) "\n" } } enum { # todo } syntax { if { [::tclu::lpresent $mode syntax] } { incr txtDepth -2 printf "\n/////////////////////////////////////////\n" #printf "|______\n" #printf "| |" #printf "+---------------------------------------+" #printf "+---------------------------------------+\n" } } line { if { [::tclu::lpresent $mode syntax] } { syntaxFlush } } if { if { ! [::tclu::lpresent $mode description] } { incr txtDepth -1 printf ENDIF } } choose { if { ! [::tclu::lpresent $mode description] } { printf ENDIF printf ________________________________________________________________________\n } } when - elsewhen - otherwise { if { ! [::tclu::lpresent $mode description] } { printf " " incr txtDepth -1 } } } # some text structure stuff switch -exact -- $tag { section { puts $fid(txt) "" incr txtDepth -1 } subsection { puts $fid(txt) "" incr txtDepth -1 } subsubsection { puts $fid(txt) "" incr txtDepth -1 } paragraph { } text { } }espresso-5.1/dev-tools/helpdoc.d/xml.tcl0000644000175000017500000000242612341373036016370 0ustar mbamba# # XML # proc ::helpdoc::xml_escape_chr {content} { # replace xml special characters by escape-characters foreach {chr escChr} { & {\&} < {\<} > {\>} } { regsub -all -- $chr $content $escChr content } regsub -all -- ' $content {\'} content regsub -all -- \" $content {\"} content return $content } proc ::helpdoc::xml_attr_escape_chr {content} { # replace xml special characters by escape-characters foreach {chr escChr} { & {\&} < {\<} > {\>} } { regsub -all -- $chr $content $escChr content } return $content } proc ::helpdoc::xml_tag_enter {tag attr content depth} { variable fid set indent [indent $depth] set sep "" if { $content != "" } { if { [llength [split $content \n]] > 1 } { set content [trimEmpty $content] set sep \n } else { set sep " " } } set attr [xml_attr_escape_chr $attr] set content [formatString [xml_escape_chr $content]] if { $attr != "" } { puts $fid(xml) "${indent}<$tag ${attr}>${sep}${content}" } else { puts $fid(xml) "${indent}<$tag>${sep}${content}" } } proc ::helpdoc::xml_tag_leave {tag attr content depth} { variable fid puts $fid(xml) "[indent $depth]" } espresso-5.1/dev-tools/helpdoc.d/syntax_txt.tcl0000644000175000017500000001334512341373036020017 0ustar mbamba proc ::helpdoc::syntaxAppend {txt} { variable syntax if { [info exists syntax(count)] } { append syntax(txt) " " } else { set syntax(count) 0 } append syntax(txt) $txt incr syntax(count) } proc ::helpdoc::syntaxFlush {} { variable syntax variable fid if { [info exists syntax] } { printf $syntax(txt) unset syntax } } proc ::helpdoc::manageRow {{add 0}} { variable rows set diff -1 if { [string is integer $rows(start)] && [string is integer $rows(end)] } { set diff [expr $rows(end) - $rows(start)] } if { $diff > 0 } { # numerical arguments ... if { $diff < $add } { return } elseif { $add == 2 } { if { $diff > $add } { append rows(text) ". . .\n" } manageRow_ $rows(end) } else { manageRow_ [expr $rows(start) + $add] } } else { # string arguments ... if { ! [string is integer $rows(start)] } { if { $add == 0 } { set index $rows(start) } elseif { $add < 2 } { set index "$rows(start)+$add" } else { set index "$rows(end)" append rows(text) ". . .\n" } manageRow_ $index } elseif { ! [string is integer $rows(end)] } { if { $add == 0 } { set index $rows(start) } elseif { $add < 2 } { if { [string is integer $rows(start)] } { set index [expr $rows(start)+$add] } else { set index "$rows(start)+$add" } } else { set index "$rows(end)" append rows(text) ". . .\n" } manageRow_ $index } } } proc ::helpdoc::manageRow_ {index} { variable rows foreach field $rows(line) { switch -- $field { __conditional::begin__ { append rows(text) "\[ " } __conditional::end__ { append rows(text) "\] " } __optional::begin__ - __optional::end__ { append rows(text) "$field " } default { append rows(text) "${field}(${index}) " } } } append rows(text) "\n" } proc ::helpdoc::printRows {} { variable rows # scan $rows(text) for width foreach line [split $rows(text) \n] { set count 0 foreach field $line { if { $field == "__optional::begin__" } { set field \{ } if { $field == "__optional::end__" } { set field \} } set len [string length $field] if { ! [info exists max($count)] } { set max($count) $len } else { if { $len > $max($count) } { set max($count) $len } } incr count } } # now print foreach line [split $rows(text) \n] { set pl "" set count 0 foreach field $line { if { $field == "__optional::begin__" } { set field \{ } if { $field == "__optional::end__" } { set field \} } if { $field == "." } { append pl ". " } else { append pl [format "%-$max($count)s " $field] } incr count } printf ${pl} } } proc ::helpdoc::manageCol {{add 0}} { variable cols set diff -1 if { [string is integer $cols(start)] && [string is integer $cols(end)] } { set diff [expr $cols(end) - $cols(start)] } if { $diff > 0 } { # numerical arguments ... if { $diff < $add } { return } elseif { $add < 2 } { lappend cols(indices) [expr $cols(start) + $add] } elseif { $add == 2 } { if { $diff > $add } { lappend cols(indices) "..." } lappend cols(indices) $cols(end) } } else { # string arguments ... if { ! [string is integer $cols(start)] } { if { $add == 0 } { lappend cols(indices) $cols(start) } elseif { $add < 2 } { lappend cols(indices) "$cols(start)+$add" } elseif { $add == 2 } { lappend cols(indices) ... lappend cols(indices) $cols(end) } } elseif { ! [string is integer $cols(end)] } { if { $add == 0 } { lappend cols(indices) $cols(start) } elseif { $add < 2 } { lappend cols(indices) [expr $cols(start)+$add] } elseif { $add == 2 } { lappend cols(indices) ... lappend cols(indices) $cols(end) } } } } proc ::helpdoc::printCols {} { variable cols # scan for field-width set extra 0 foreach row $cols(vline) { switch -- $row { __conditional::begin__ - __optional::begin__ { incr extra continue } __conditional::end__ - __optional::end__ { continue } } set count 0 foreach ind $cols(indices) { if { ! [info exists max($count)] } { set max($count) [string length ${row}(${cols(start)})] } set _len [string length ${row}(${ind})] if { $_len > $max($count) } { set max($count) $_len } incr count } } # now print set ct "" set fie 0 set newline 0 foreach row $cols(vline) { if { $extra } { switch -- $row { __conditional::begin__ { set cbe 1 continue } __conditional::end__ { set cen 1 append ct "\] " continue } __optional::begin__ { set obe 1 continue } __optional::end__ { set oen 1 append ct "\} " continue } default { if { [info exists obe] } { incr fie } if { [info exists cbe] } { incr fie } } } } if { $newline } { append ct \n } append ct [::textutil::blank [expr ($extra - $fie) * 2]] if { [info exists obe] } { append ct "\{ " } if { [info exists cbe] } { append ct "\[ " } set count 0 foreach ind $cols(indices) { if { $ind == "..." } { append ct ". . . " } else { append ct [format "%-$max($count)s " ${row}(${ind})] } incr count } foreach var {obe oen cbe cen} { if { [info exists $var] } { unset $var } } set fie 0 set newline 1 } # must be here, if "en" is the last row ... if { [info exists oen] || [info exists cen] } { append ct \n } printf $ct } espresso-5.1/dev-tools/helpdoc.d/helpdoc.tcl0000644000175000017500000001241112341373036017201 0ustar mbambaset dir [file dirname [info script]] lappend auto_path $dir [file join $dir .. .. GUI Guib lib] package require tclu 0.9 package require struct::tree 2.1 package require struct::stack 1.3 package require textutil namespace eval ::helpdoc { variable dir [file dirname [info script]] # schema-related variables variable attrArr; # stores all about attributes variable elemArr; # stores all about elements variable defineArr; # stores all about define's variable elemList "" variable itemList "" variable state array set state { depth 0 rootVisited 0 rootElem "" } variable stackArr array set stackArr [subst { repetition [::struct::stack] optional [::struct::stack] interleave [::struct::stack] currentElem [::struct::stack] }] $stackArr(repetition) push 1; # decimal-digit | + | * | ? (meaning integer-number of times, one-or-more, zero-or-more, zero-or-one) $stackArr(optional) push 0 $stackArr(interleave) push 0 $stackArr(currentElem) push "" # stack & tree for parsing input definitions variable tree "" variable stack [::struct::stack] # output-related variable indentNum 3 variable txtDepth 0 variable fid variable head variable rbd_var variable rbd_stack variable rbd_info variable robodoc [auto_execok robodoc] variable xsltproc [auto_execok xsltproc] # TXT variables variable vargroup 0 variable dimensiongroup 0 variable colgroup 0 variable rowgroup 0 } namespace eval ::helpdoc::tag {} namespace eval ::helpdoc::schema {} source [file join $::helpdoc::dir readSchema.tcl] proc ::helpdoc::openOutputs {file} { variable fid variable head set head [file rootname $file] set fid(xml) [open $head.xml w] set fid(txt) [open $head.txt w] # currently disabled #set fid(rbd) [open $head.rbd w] puts $fid(xml) {} puts $fid(xml) {} puts $fid(xml) { } puts $fid(txt) "*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST ***\n" #puts $fid(rbd) "# *** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST ***\n" } proc ::helpdoc::writeOutputs {} { variable tree variable head variable fid variable robodoc variable xsltproc variable rbd_info #$tree destroy puts "" foreach fmt [array names fid] { puts "File $head.$fmt has been written." close $fid($fmt) } # run XSLTPROC if { $xsltproc != "" } { catch [list exec $xsltproc $head.xml > $head.html] puts "File $head.html has been written." } # run ROBODOC if { 0 } { # currently disbabled if { $robodoc != "" } { if { ! [file isdirectory $head.d] } { file mkdir $head.d } else { foreach file [glob -nocomplain $head.d/*.html] { file delete $file } } if { ! [file isdirectory $head.robodoc] } { file mkdir $head.robodoc } file copy -force $head.rbd $head.robodoc/ catch {exec $robodoc --doc $head.d/ --src $head.robodoc/ --documenttitle "Description of $rbd_info(program) input file"} if { [file exists $head.d/toc_index.html] } { file copy -force $head.d/toc_index.html $head.d/index.html puts "File $head.d/index.html has been written." } } } } proc ::helpdoc::readSchema {} { puts "\n***\n*** Parsing the helpdoc.schema\n***\n" namespace eval schema { ::source [file join $basedir helpdoc.schema] } puts "\n\n***\n*** Assigning ref's\n***\n" assignRefs_ puts "\n\n***\n*** Creating tags commands\n***\n" createTagCmds_ } proc ::helpdoc::print_xml {tree node action} { variable fid set depth [$tree depth $node] set tag [$tree get $node tag] set attributes [getFromTree $tree $node attributes] set content [getFromTree $tree $node text] xml_tag_${action} $tag $attributes $content $depth } proc ::helpdoc::print_txt {tree node action} { variable fid set depth [$tree depth $node] set tag [$tree get $node tag] set attributes [getFromTree $tree $node attributes] set content [getFromTree $tree $node text] txt_tag_${action} $tree $node $tag $attributes $content [expr $depth - 1] # currently disabled: # robodoc #rbd_tag_${action} $tag $attributes $content $depth } proc ::helpdoc::process {fileList} { variable tree variable vargroup variable dimensiongroup variable mode # first read the schema (and load tag's commands) readSchema #puts "tag commands: [info procs ::helpdoc::tag::*]" foreach file $fileList { set vargroup 0 set dimensiongroup 0 if { [file exists $file] } { openOutputs $file puts "\n\n***\n*** Parsing definition file: $file\n***\n" namespace eval tag [list source $file] set mode default $tree walkproc root -order both print_xml $tree walkproc root -order both print_txt writeOutputs $tree destroy unset mode } else { puts stderr "file [file join [pwd] $file] does not exists : aborting ..." exit 1 } } } espresso-5.1/dev-tools/helpdoc.d/tree.tcl0000644000175000017500000000373212341373036016530 0ustar mbambaproc ::helpdoc::getFromTree {tree node key} { if { [$tree keyexists $node $key] } { return [$tree get $node $key] } return "" } proc ::helpdoc::getDescendantNodes {tree node args} { # Usage: getDescendantNodes $tree $node tag1 tag2 last_tag # get all descendant node's pointers that matches set result "" set tag [lindex $args 0] foreach child [$tree children $node] { set _tag [getFromTree $tree $child tag] if { $tag == $_tag } { if { $tag == $args } { append result "$child " } else { set args1 [lrange $args 1 end] return [getDescendantNodes $tree $child $args1] } } } return $result } proc ::helpdoc::getDescendantText {tree node args} { # Usage: getDescendantText $tree $node tag1 tag2 last_tag # Beware: it will get the text from all tags that matches set result "" set tag [lindex $args 0] foreach child [$tree children $node] { set _tag [getFromTree $tree $child tag] if { $tag == $_tag } { if { $tag == $args } { append result "[getFromTree $tree $child text] " } else { set args1 [lrange $args 1 end] return [getDescendantText $tree $child $args1] } } } return $result } proc ::helpdoc::getDescendantAttribute {tree node args} { # Usage: getDescendantText $tree $node tag1 tag2 last_tag attribute_of_last_tag # Beware: it will get the requested attribute from all tags that matches set result "" set tag [lindex $args 0] set att [lindex $args end] foreach child [$tree children $node] { set _tag [getFromTree $tree $child tag] if { $tag == $_tag } { if { [llength $args] == 2 } { # ok _tag is the attribute set attr [getFromTree $tree $child attributes] attr2array_ arr $attr if { [info exists arr($att)] } { append result $arr($att) } } else { set args1 [lrange $args 1 end] return [getDescendantAttribute $tree $child $args1] } } } return $result } espresso-5.1/dev-tools/helpdoc.d/readSchema.tcl0000644000175000017500000002030712341373036017622 0ustar mbamba namespace eval ::helpdoc::schema { # here is the definition of Tcl-commands that are used in schema proc rootelement {name code} { uplevel 1 [list ::helpdoc::rootelement $name $code] } proc element {name code} { uplevel 1 [list ::helpdoc::element $name $code] } proc attribute {name code} { uplevel 1 [list ::helpdoc::attribute $name $code] } proc define {name code} { uplevel 1 [list ::helpdoc::define $name $code] } proc text {} { uplevel 1 [list ::helpdoc::text] } proc string {} { uplevel 1 [list ::helpdoc::String] } proc ref {name} { uplevel 1 [list ::helpdoc::ref $name] } proc ident {} { uplevel 1 [list ::helpdoc::ident] } proc optional {code} { uplevel 1 [list ::helpdoc::optional $code] } proc interleave {code} { uplevel 1 [list ::helpdoc::interleave $code] } proc choice {code} { uplevel 1 [list ::helpdoc::choice $code] } proc ancestorElements {} { uplevel 1 [list ::helpdoc::ancestorElements] } proc ? {code} { uplevel 1 [list ::helpdoc::? $code] } proc * {code} { uplevel 1 [list ::helpdoc::* $code] } proc + {code} { uplevel 1 [list ::helpdoc::+ $code] } } # actual implementation of commands ... proc ::helpdoc::rootelement {name code} { variable elemList variable itemList variable stackArr variable state parseMsg_ $name; puts "" incr state(depth) if { $state(rootVisited) } { ::tclu::abort "more than one rootelement; there can be only one !" } set state(rootVisited) 1 set state(rootElem) $name lappend elemList $name lappend itemList $name $stackArr(currentElem) push $name #eval $code namespace eval schema $code $stackArr(currentElem) pop incr state(depth) -1 parseMsgOK_ $name } proc ::helpdoc::element {name code} { variable elemList variable itemList variable state variable stackArr variable elemArr parseMsg_ $name; puts "" incr state(depth) # check that $name does not exists if { [::tclu::lpresent $elemList $name] } { ::tclu::abort "element \"$name\" already defined" } lappend elemList $name lappend itemList $name $stackArr(optional) push 0 $stackArr(interleave) push 0 set parentElem [$stackArr(currentElem) peek] lappend elemArr(ELEMLIST,$parentElem) $name lappend elemArr(OPTIONAL,$parentElem,$name) [$stackArr(optional) peek] lappend elemArr(INTERLEAVE,$parentElem,$name) [$stackArr(interleave) peek] lappend elemArr(REPETITION,$parentElem,$name) [$stackArr(repetition) peek] $stackArr(currentElem) push $name #eval $code namespace eval schema $code $stackArr(currentElem) pop $stackArr(optional) pop $stackArr(interleave) pop incr state(depth) -1 parseMsgOK_ $name } proc ::helpdoc::attribute {name code} { # so far we assume attributes have arbitrary values (which means # we ignore code) variable itemList variable stackArr variable elemArr parseMsg_ $name set currentElem [$stackArr(currentElem) peek] lappend itemList $name lappend elemArr(ATTRLIST,$currentElem) $name lappend attrArr(OPTIONAL,$currentElem) [$stackArr(optional) peek] puts ok } proc ::helpdoc::define {name code} { variable defineArr variable itemList parseMsg_ $name; lappend itemList $name set defineArr($name) $code puts ok } proc ::helpdoc::text {} { # BEWARE: so far can be called only from element (because # attribute does not yet support ...) variable stackArr variable elemArr set currentElem [$stackArr(currentElem) peek] set elemArr(TEXT,$currentElem) 1 } proc ::helpdoc::String {} { # BEWARE: so far can be called only from element (because # attribute does not yet support ...) variable stackArr variable elemArr set currentElem [$stackArr(currentElem) peek] set elemArr(STRING,$currentElem) 1 } proc ::helpdoc::ref {name} { variable stackArr variable elemArr variable defineArr parseMsg_ $name; if { [info exists defineArr($name)] } { puts "" # the ref points to define, evaluate it #eval $defineArr($name) namespace eval schema $defineArr($name) parseMsgOK_; return } set currentElem [$stackArr(currentElem) peek] if { $currentElem != "" } { lappend elemArr(REFLIST,$currentElem) $name lappend elemArr(OPTIONAL,$currentElem,$name) [$stackArr(optional) peek] lappend elemArr(INTERLEAVE,$currentElem,$name) [$stackArr(interleave) peek] lappend elemArr(REPETITION,$currentElem,$name) [$stackArr(repetition) peek] } else { ::tclu::abort "can't use \"ref\" outside element definition" } puts ok } proc ::helpdoc::ident {} { variable stackArr variable elemArr set currentElem [$stackArr(currentElem) peek] if { $currentElem != "" } { set elemArr(IDENT,$currentElem) 1 } else { ::tclu::abort "can't use \"ident\" outside element definition" } } proc ::helpdoc::optional {code} { variable stackArr variable state parseMsg_; puts "" incr state(depth) $stackArr(optional) push 1 # eval $code namespace eval schema $code $stackArr(optional) pop incr state(depth) -1 parseMsgOK_ } proc ::helpdoc::interleave {code} { variable stackArr variable state parseMsg_; puts "" incr state(depth) $stackArr(interleave) push 1 # eval $code namespace eval schema $code $stackArr(interleave) pop incr state(depth) -1 parseMsgOK_ } proc ::helpdoc::choice {code} { variable stackArr variable state # TODO: implement the CHOICE; so far this proc is dummy parseMsg_; puts "" incr state(depth) #eval $code namespace eval schema $code incr state(depth) -1 parseMsgOK_ } proc ::helpdoc::ancestorElements {} { parseMsg_ # DO nothing (this means no validation for correctness will be done) puts ok } proc ::helpdoc::? {code} { repetition_ $code } proc ::helpdoc::* {code} { repetition_ $code } proc ::helpdoc::+ {code} { repetition_ $code } proc ::helpdoc::repetition_ {code} { variable stackArr variable state set type [tag -2] uplevel 1 "parseMsg_; puts {}" incr state(depth) $stackArr(repetition) push $type #eval $code namespace eval schema $code $stackArr(repetition) pop incr state(depth) -1 uplevel 1 "parseMsgOK_" } proc ::helpdoc::assignRefs_ {} { variable elemList variable elemArr foreach elem $elemList { if { [info exists elemArr(REFLIST,$elem)] } { # we have a ref puts -nonewline " $elem --> " foreach ref $elemArr(REFLIST,$elem) { # check if ref points to "define" lappend elemArr(ELEMLIST,$elem) $ref puts -nonewline "$ref " # check that $ref exists if { ! [::tclu::lpresent $elemList $ref] } { puts "" ::tclu::abort "the \"$ref\" element has not been defined, yet it is referenced" } } puts "" } } } proc ::helpdoc::createTagCmds_ {} { variable state variable elemList if { $state(rootElem) == {} } { ::tclu::abort "rootelement was not defined" } # create the rootelement cmd puts " creating $state(rootElem) cmd ... ok" proc ::helpdoc::tag::$state(rootElem) {args} { eval ::helpdoc::rootnameTag_ $args } # create all elements cmds foreach elem $elemList { if { $elem != $state(rootElem) } { puts -nonewline " creating $elem cmd ... " proc ::helpdoc::tag::$elem {args} { eval ::helpdoc::elementTag_ $args } puts ok } } } # for the time being ... proc helpdoc::parseMsg_ {{name {}}} { variable state set indent [::textutil::blank [expr (1+$state(depth)) * 3]] set tag [string toupper [tag -2]] puts -nonewline "${indent}parsing $tag $name ... " } proc helpdoc::parseMsgOK_ {{name {}}} { variable state set indent [::textutil::blank [expr (1+$state(depth)) * 3]] set tag [string toupper [tag -2]] if { $name == "" } { puts "${indent}OK - parsing $tag completed" } else { puts "${indent}OK - parsing $tag $name completed" } } espresso-5.1/dev-tools/check_gui0000755000175000017500000000633612341373036015077 0ustar mbamba#!/bin/sh # the next line restarts using tclsh \ exec tclsh "$0" "$@" # # Usage: check_gui module # ( module = pw, ph, pp, projwfc, atomic, or d3 ) # # Purpose: check the PWgui modules wrt coprresponding INPUT_*.def # files and create a PWgui help files. # if { ! [info exists env(PWGUI)] } { # try with: ../GUI/PWgui set env(PWGUI) [file normalize [file join .. GUI PWgui]] } if { ! [info exists env(GUIB)] } { # try with: ../GUI/Guib set env(GUIB) [file normalize [file join .. GUI Guib]] } proc Usage {} { global argv0 puts stderr [subst { Usage: $argv0 module Where module is one of: \tpw \tneb \tph \tpp \tprojwfc \tbands \tdos \tatomic \td3 }] exit 1 } if { $argc != 1 } { Usage } set module [lindex $argv 0] set basedir [file normalize [file dirname [info script]]] set topdir [file normalize [file join $basedir ..]] # load helpdoc set helpdocdir [file join $basedir helpdoc.d] source [file join $helpdocdir helpdoc.tcl] # load Guib set guibdir [file join $topdir GUI Guib] lappend auto_path $guibdir package require Guib wm withdraw . # PWgui's modules dir set pwguidir [file join $topdir GUI PWgui] set moduledir [file join $pwguidir modules] source [file join $pwguidir init.tcl] # map from module to def- and module-file set mappings { pw PW/Doc INPUT_PW neb NEB/Doc INPUT_NEB ph PHonon/Doc INPUT_PH pp PP/Doc INPUT_PP projwfc PP/Doc INPUT_PROJWFC bands PP/Doc INPUT_BANDS dos PP/Doc INPUT_DOS atomic atomic/Doc INPUT_LD1 d3 PHonon/Doc INPUT_D3 } foreach {mod subdir def_prefix} $mappings { if { $mod == $module } { set deffile [file join $topdir $subdir $def_prefix.def] set modulefile [file join $moduledir $mod $mod.tcl] # compile the $deffile cd [file join $topdir $subdir] catch {exec make $def_prefix.html} cd $basedir # output info puts "Checking PWgui module: $mod" puts " * module file: $modulefile" puts " * definition file: $deffile" # the current $mod-help.tcl file will interfere the process, rename it: if { [file exists [file join $moduledir $mod $mod-help.tcl]] } { puts "Renaming the current $mod-help.tcl file to $mod-help.tcl.bak" file rename -force [file join $moduledir $mod $mod-help.tcl] [file join $moduledir $mod $mod-help.tcl.bak] } # make a black $mod-help.tcl file close [open [file join $moduledir $mod $mod-help.tcl] w] } } if { ! [info exists deffile] } { Usage } # read & load both the def & module file set def [::helpdoc::def_loadDef $deffile] set obj [::guib::loadModule $modulefile]; $obj storeModuleItems # # check DEF vs. MODULE file # ::helpdoc::checkGui_def_vs_module # # check MODULE vs. DEF file # ::helpdoc::checkGui_module_vs_def # # Create a HELP file # ::helpdoc::checkGui_makeHelpFile $deffile $modulefile if { [file exists [file join $moduledir $module $module-help.tcl.bak]] } { puts "Renaming back the $module-help.tcl.bak file to $module-help.tcl" file rename -force [file join $moduledir $module $module-help.tcl.bak] [file join $moduledir $module $module-help.tcl] } # ok, we are done; since we loaded Tk, we need an explicit exit !!! exit 0 espresso-5.1/dev-tools/release.sh0000755000175000017500000000551412341373036015204 0ustar mbamba#!/bin/sh -x tempdir=$HOME/Downloads version=5.1 # make sure there is no locale setting creating unneeded differences. LC_ALL=C export LC_ALL mkdir $tempdir cd $tempdir /bin/rm -rf espresso/ espresso-$version # get the svn copy svn checkout http://qeforge.qe-forge.org/svn/q-e/trunk/espresso mv espresso/ espresso-$version/ cd espresso-$version # generate version.f90 (requires svn files) touch make.sys cd Modules make version.f90 # save version.f90 (make veryclean removes it) mv version.f90 .. cd .. # remove all .svn directories, clean find . -type d -name .svn -exec /bin/rm -rf {} \; make veryclean rm archive/plumed-1.3-qe.tar.gz archive/PLUMED-latest.tar.gz # restore version.f90 mv version.f90 Modules/ # generate documentation - NOTA BENE: # in order to build the .html and .txt documentation in Doc, # "tcl", "tcllib", "xsltproc" are needed # in order to build the .pdf files in Doc, "pdflatex" is needed # in order to build html files for user guide and developer manual, # "latex2html" and "convert" (from Image-Magick) are needed touch make.sys make doc # generate PWGUI make tar-gui PWGUI_VERSION=$version tar -xzvf PWgui-$version.tgz /bin/rm PWgui-$version.tgz # cd .. tar -cvzf PWgui-$version.tar.gz espresso-$version/PWgui-$version tar -czvf espresso-$version.tar.gz espresso-$version/archive \ espresso-$version/clib \ espresso-$version/configure \ espresso-$version/COUPLE \ espresso-$version/CPV \ espresso-$version/dev-tools \ espresso-$version/Doc \ espresso-$version/environment_variables \ espresso-$version/flib \ espresso-$version/Makefile \ espresso-$version/include \ espresso-$version/install \ espresso-$version/License \ espresso-$version/Modules \ espresso-$version/PP \ espresso-$version/pseudo \ espresso-$version/PW \ espresso-$version/README \ espresso-$version/upftools # # Packages, ready for automatic unpacking cd espresso-$version tar -czvf ../PHonon-$version.tar.gz PHonon PlotPhon QHA tar -czvf ../neb-$version.tar.gz NEB tar -czvf ../pwcond-$version.tar.gz PWCOND tar -czvf ../xspectra-$version.tar.gz XSpectra tar -czvf ../GWW-$version.tar.gz GWW #tar -czvf ../GIPAW-$version.tar.gz GIPAW tar -czvf ../tddfpt-$version.tar.gz TDDFPT tar -czvf ../atomic-$version.tar.gz atomic espresso-5.1/flib/0000755000175000017500000000000012341373043012216 5ustar mbambaespresso-5.1/flib/sort.f900000644000175000017500000002445212341373036013536 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------- subroutine hpsort_eps (n, ra, ind, eps) !--------------------------------------------------------------------- ! sort an array ra(1:n) into ascending order using heapsort algorithm, ! and considering two elements being equal if their values differ ! for less than "eps". ! n is input, ra is replaced on output by its sorted rearrangement. ! create an index table (ind) by making an exchange in the index array ! whenever an exchange is made on the sorted data array (ra). ! in case of equal values in the data array (ra) the values in the ! index array (ind) are used to order the entries. ! if on input ind(1) = 0 then indices are initialized in the routine, ! if on input ind(1) != 0 then indices are assumed to have been ! initialized before entering the routine and these ! indices are carried around during the sorting process ! ! no work space needed ! ! free us from machine-dependent sorting-routines ! ! ! adapted from Numerical Recipes pg. 329 (new edition) ! use kinds, only : DP implicit none !-input/output variables integer, intent(in) :: n integer, intent(inout) :: ind (*) real(DP), intent(inout) :: ra (*) real(DP), intent(in) :: eps !-local variables integer :: i, ir, j, l, iind real(DP) :: rra ! initialize index array if (ind (1) .eq.0) then do i = 1, n ind (i) = i enddo endif ! nothing to order if (n.lt.2) return ! initialize indices for hiring and retirement-promotion phase l = n / 2 + 1 ir = n sorting: do ! still in hiring phase if ( l .gt. 1 ) then l = l - 1 rra = ra (l) iind = ind (l) ! in retirement-promotion phase. else ! clear a space at the end of the array rra = ra (ir) ! iind = ind (ir) ! retire the top of the heap into it ra (ir) = ra (1) ! ind (ir) = ind (1) ! decrease the size of the corporation ir = ir - 1 ! done with the last promotion if ( ir .eq. 1 ) then ! the least competent worker at all ! ra (1) = rra ! ind (1) = iind exit sorting endif endif ! wheter in hiring or promotion phase, we i = l ! set up to place rra in its proper level j = l + l ! do while ( j .le. ir ) if ( j .lt. ir ) then ! compare to better underling if ( abs(ra(j)-ra(j+1)).ge.eps ) then if (ra(j).lt.ra(j+1)) j = j + 1 else ! this means ra(j) == ra(j+1) within tolerance if (ind (j) .lt.ind (j + 1) ) j = j + 1 endif endif ! demote rra if ( abs(rra - ra(j)).ge.eps ) then if (rra.lt.ra(j)) then ra (i) = ra (j) ind (i) = ind (j) i = j j = j + j else ! set j to terminate do-while loop j = ir + 1 end if else !this means rra == ra(j) within tolerance ! demote rra if (iind.lt.ind (j) ) then ra (i) = ra (j) ind (i) = ind (j) i = j j = j + j else ! set j to terminate do-while loop j = ir + 1 endif end if enddo ra (i) = rra ind (i) = iind end do sorting ! end subroutine hpsort_eps ! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------- subroutine hpsort (n, ra, ind) !--------------------------------------------------------------------- ! sort an array ra(1:n) into ascending order using heapsort algorithm. ! n is input, ra is replaced on output by its sorted rearrangement. ! create an index table (ind) by making an exchange in the index array ! whenever an exchange is made on the sorted data array (ra). ! in case of equal values in the data array (ra) the values in the ! index array (ind) are used to order the entries. ! if on input ind(1) = 0 then indices are initialized in the routine, ! if on input ind(1) != 0 then indices are assumed to have been ! initialized before entering the routine and these ! indices are carried around during the sorting process ! ! no work space needed ! ! free us from machine-dependent sorting-routines ! ! ! adapted from Numerical Recipes pg. 329 (new edition) ! use kinds, only : DP implicit none !-input/output variables integer :: n integer :: ind (*) real(DP) :: ra (*) !-local variables integer :: i, ir, j, l, iind real(DP) :: rra ! initialize index array if (ind (1) .eq.0) then do i = 1, n ind (i) = i enddo endif ! nothing to order if (n.lt.2) return ! initialize indices for hiring and retirement-promotion phase l = n / 2 + 1 ir = n 10 continue ! still in hiring phase if (l.gt.1) then l = l - 1 rra = ra (l) iind = ind (l) ! in retirement-promotion phase. else ! clear a space at the end of the array rra = ra (ir) ! iind = ind (ir) ! retire the top of the heap into it ra (ir) = ra (1) ! ind (ir) = ind (1) ! decrease the size of the corporation ir = ir - 1 ! done with the last promotion if (ir.eq.1) then ! the least competent worker at all ! ra (1) = rra ! ind (1) = iind return endif endif ! wheter in hiring or promotion phase, we i = l ! set up to place rra in its proper level j = l + l ! do while (j.le.ir) if (j.lt.ir) then ! compare to better underling if (ra (j) .lt.ra (j + 1) ) then j = j + 1 elseif (ra (j) .eq.ra (j + 1) ) then if (ind (j) .lt.ind (j + 1) ) j = j + 1 endif endif ! demote rra if (rra.lt.ra (j) ) then ra (i) = ra (j) ind (i) = ind (j) i = j j = j + j elseif (rra.eq.ra (j) ) then ! demote rra if (iind.lt.ind (j) ) then ra (i) = ra (j) ind (i) = ind (j) i = j j = j + j else ! set j to terminate do-while loop j = ir + 1 endif ! this is the right place for rra else ! set j to terminate do-while loop j = ir + 1 endif enddo ra (i) = rra ind (i) = iind goto 10 ! end subroutine hpsort ! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------- subroutine ihpsort (n, ia, ind) !--------------------------------------------------------------------- ! sort an integer array ia(1:n) into ascending order using heapsort algorithm. ! n is input, ia is replaced on output by its sorted rearrangement. ! create an index table (ind) by making an exchange in the index array ! whenever an exchange is made on the sorted data array (ia). ! in case of equal values in the data array (ia) the values in the ! index array (ind) are used to order the entries. ! if on input ind(1) = 0 then indices are initialized in the routine, ! if on input ind(1) != 0 then indices are assumed to have been ! initialized before entering the routine and these ! indices are carried around during the sorting process ! ! no work space needed ! ! free us from machine-dependent sorting-routines ! ! ! adapted from Numerical Recipes pg. 329 (new edition) ! implicit none !-input/output variables integer :: n integer :: ind (*) integer :: ia (*) !-local variables integer :: i, ir, j, l, iind integer :: iia ! initialize index array if (ind (1) .eq.0) then do i = 1, n ind (i) = i enddo endif ! nothing to order if (n.lt.2) return ! initialize indices for hiring and retirement-promotion phase l = n / 2 + 1 ir = n 10 continue ! still in hiring phase if (l.gt.1) then l = l - 1 iia = ia (l) iind = ind (l) ! in retirement-promotion phase. else ! clear a space at the end of the array iia = ia (ir) ! iind = ind (ir) ! retire the top of the heap into it ia (ir) = ia (1) ! ind (ir) = ind (1) ! decrease the size of the corporation ir = ir - 1 ! done with the last promotion if (ir.eq.1) then ! the least competent worker at all ! ia (1) = iia ! ind (1) = iind return endif endif ! wheter in hiring or promotion phase, we i = l ! set up to place iia in its proper level j = l + l ! do while (j.le.ir) if (j.lt.ir) then ! compare to better underling if (ia (j) .lt.ia (j + 1) ) then j = j + 1 elseif (ia (j) .eq.ia (j + 1) ) then if (ind (j) .lt.ind (j + 1) ) j = j + 1 endif endif ! demote iia if (iia.lt.ia (j) ) then ia (i) = ia (j) ind (i) = ind (j) i = j j = j + j elseif (iia.eq.ia (j) ) then ! demote iia if (iind.lt.ind (j) ) then ia (i) = ia (j) ind (i) = ind (j) i = j j = j + j else ! set j to terminate do-while loop j = ir + 1 endif ! this is the right place for iia else ! set j to terminate do-while loop j = ir + 1 endif enddo ia (i) = iia ind (i) = iind goto 10 ! end subroutine ihpsort espresso-5.1/flib/dylmr2.f900000644000175000017500000000517512341373036013761 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine dylmr2 (nylm, ngy, g, gg, dylm, ipol) !----------------------------------------------------------------------- ! ! compute \partial Y_lm(G) \over \partial (G)_ipol ! using simple numerical derivation (SdG) ! The spherical harmonics are calculated in ylmr2 ! USE kinds, ONLY : DP implicit none ! ! here the I/O variables ! integer :: nylm, ngy, ipol ! input: number of spherical harmonics ! input: the number of g vectors to compute ! input: desired polarization real(DP) :: g (3, ngy), gg (ngy), dylm (ngy, nylm) ! input: the coordinates of g vectors ! input: the moduli of g vectors ! output: the spherical harmonics derivatives ! ! and here the local variables ! integer :: ig, lm ! counter on g vectors ! counter on l,m component real(DP), parameter :: delta = 1.d-6 real(DP), allocatable :: dg (:), dgi (:), gx (:,:), ggx (:), ylmaux (:,:) ! dg is the finite increment for numerical derivation: ! dg = delta |G| = delta * sqrt(gg) ! dgi= 1 /(delta * sqrt(gg)) ! gx = g +/- dg ! ggx = gx^2 ! allocate ( gx(3,ngy), ggx(ngy), dg(ngy), dgi(ngy), ylmaux(ngy,nylm) ) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) do ig = 1, ngy dg (ig) = delta * sqrt (gg (ig) ) if (gg (ig) .gt. 1.d-9) then dgi (ig) = 1.d0 / dg (ig) else dgi (ig) = 0.d0 endif enddo !$OMP END PARALLEL DO call dcopy (3 * ngy, g, 1, gx, 1) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) do ig = 1, ngy gx (ipol, ig) = g (ipol, ig) + dg (ig) ggx (ig) = gx (1, ig) * gx (1, ig) + & gx (2, ig) * gx (2, ig) + & gx (3, ig) * gx (3, ig) enddo !$OMP END PARALLEL DO call ylmr2 (nylm, ngy, gx, ggx, dylm) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) do ig = 1, ngy gx (ipol, ig) = g (ipol, ig) - dg (ig) ggx (ig) = gx (1, ig) * gx (1, ig) + & gx (2, ig) * gx (2, ig) + & gx (3, ig) * gx (3, ig) enddo !$OMP END PARALLEL DO call ylmr2 (nylm, ngy, gx, ggx, ylmaux) call daxpy (ngy * nylm, - 1.d0, ylmaux, 1, dylm, 1) do lm = 1, nylm !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(ig) do ig = 1, ngy dylm (ig, lm) = dylm (ig, lm) * 0.5d0 * dgi (ig) enddo !$OMP END PARALLEL DO enddo deallocate ( gx, ggx, dg, dgi, ylmaux ) return end subroutine dylmr2 espresso-5.1/flib/sph_dbes.f900000644000175000017500000000727512341373036014342 0ustar mbamba! ! Copyright (C) 2001-2004 PWSCF-FPMD-CP90 group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE sph_dbes( MMAX, R, XG, L, DJL ) !---------------------------------------------------------------------------- ! ! ... calculates derivatives of spherical bessel functions j_l(Gr) ! ... with respect to h_alpha,beta (without the factor GAGK(KK,IG)*HTM1) ! ... i.e. -x * D(jl(x))/dx ! USE kinds, ONLY : DP USE constants, ONLY : eps8 ! IMPLICIT NONE ! INTEGER :: MMAX, L REAL(DP) :: XG REAL(DP) :: DJL(MMAX), R(MMAX) ! INTEGER :: IR REAL(DP) :: XRG, XRG2 ! ! IF ( L == 1 ) THEN ! S PART IF( XG < eps8 ) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG DJL(IR) = SIN(XRG)/XRG-COS(XRG) END DO ENDIF ENDIF ! IF ( L == 2 ) THEN ! P PART IF( XG < eps8 ) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG DJL(IR) = 2.D0*(SIN(XRG)/XRG-COS(XRG))/XRG - SIN(XRG) END DO ENDIF ENDIF ! IF ( L == 3 ) THEN ! D PART IF ( XG < eps8 ) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG DJL(IR) = ( SIN(XRG)*(9.D0/(XRG*XRG)-4.D0) - & 9.D0*COS(XRG)/XRG ) /XRG + COS(XRG) END DO END IF END IF ! IF ( L == 4 ) THEN ! F PART IF ( XG < eps8 ) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG XRG2=XRG*XRG DJL(IR) = SIN(XRG)*(60.D0/(XRG2*XRG2)-27.D0/XRG2+1.d0) - & COS(XRG)*(60.D0/XRG2-7.D0)/XRG END DO END IF END IF ! IF ( L == 5 ) THEN ! G PART IF ( XG < eps8 ) THEN DO IR=1,MMAX DJL(IR) = 0.D0 END DO ELSE DJL(1) = 0.D0 DO IR=2,MMAX XRG=R(IR)*XG XRG2=XRG*XRG DJL(IR) = SIN(XRG)*(525.D0/(XRG2*XRG2)-240.D0/XRG2+11.D0)/XRG - & COS(XRG)*(525.D0/(XRG2*XRG2)-65.D0/XRG2+1.D0) END DO END IF END IF ! IF ( L <= 0 .OR. L >= 6 ) & CALL errore( 'sph_dbes', ' L NOT PROGRAMMED, L= ',L ) ! RETURN ! END SUBROUTINE sph_dbes ! SUBROUTINE sph_dbes1 ( nr, r, xg, l, jl, djl ) ! ! calculates x*dj_l(x)/dx using the recursion formula ! dj_l(x)/dx = l/x*j_l(x) - j_(l+1)(x) ! for l=0, and for l>0 : ! dj_l(x)/dx = j_(l-1)(x) - (l+1)/x * j_l(x) ! requires j_l(r) in input ! USE kinds, ONLY : DP USE constants, ONLY : eps8 ! IMPLICIT NONE INTEGER, INTENT(IN) :: l, nr REAL (DP), INTENT(IN) :: xg, jl(nr), r(nr) REAL (DP), INTENT(OUT):: djl(nr) ! if ( xg < eps8 ) then ! ! special case q=0 ! note that x*dj_l(x)/dx = 0 for x = 0 ! djl(:) = 0.0d0 else ! if ( l > 0 ) then call sph_bes ( nr, r, xg, l-1, djl ) djl(:) = djl(:) * (xg * r(:) ) - (l+1) * jl(:) else if ( l == 0 ) then call sph_bes ( nr, r, xg, l+1, djl ) djl(:) = - djl(:) * (xg * r(:) ) else call errore('sph_dbes','l < 0 not implemented', abs(l) ) end if end if ! end SUBROUTINE sph_dbes1 espresso-5.1/flib/matches.f900000644000175000017500000000472512341373036014174 0ustar mbamba! ! Copyright (C) 2001-2004 Carlo Cavazzoni and PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- FUNCTION matches( string1, string2 ) !----------------------------------------------------------------------- ! ! ... .TRUE. if string1 is contained in string2, .FALSE. otherwise ! IMPLICIT NONE ! CHARACTER (LEN=*), INTENT(IN) :: string1, string2 LOGICAL :: matches INTEGER :: len1, len2, l ! ! len1 = LEN_TRIM( string1 ) len2 = LEN_TRIM( string2 ) ! DO l = 1, ( len2 - len1 + 1 ) ! IF ( string1(1:len1) == string2(l:(l+len1-1)) ) THEN ! matches = .TRUE. ! RETURN ! END IF ! END DO ! matches = .FALSE. ! RETURN ! END FUNCTION matches ! !----------------------------------------------------------------------- FUNCTION imatches( string1, string2 ) !----------------------------------------------------------------------- ! ! ... .TRUE. if string1 is contained in string2, .FALSE. otherwise ! *** case insensitive *** ! IMPLICIT NONE ! CHARACTER (LEN=*), INTENT(IN) :: string1, string2 CHARACTER(LEN=len(string1)) :: aux1 CHARACTER(LEN=len(string2)) :: aux2 CHARACTER(LEN=1) :: lowercase LOGICAL :: imatches LOGICAL, EXTERNAL :: matches INTEGER :: i ! aux1 = string1 aux2 = string2 ! do i=1,len(aux1) aux1(i:i)=lowercase(aux1(i:i)) enddo do i=1,len(aux2) aux2(i:i)=lowercase(aux2(i:i)) enddo ! imatches = matches(aux1, aux2) ! RETURN ! END FUNCTION imatches ! !----------------------------------------------------------------------- SUBROUTINE remove_comments_from_string( string ) !----------------------------------------------------------------------- ! ! chop string removing everything after an esclamation mark (!) ! IMPLICIT NONE ! CHARACTER (LEN=*), INTENT(INOUT) :: string INTEGER :: len, l ! ! len = LEN_TRIM( string ) ! l=1 DO WHILE ( string(l:l) /= "!" ) l = l + 1 if (l == len+1) EXIT END DO len = l-1 ! string = string(1:len) ! RETURN ! END SUBROUTINE remove_comments_from_string ! espresso-5.1/flib/remove_tot_torque.f900000644000175000017500000000563412341373036016332 0ustar mbamba! ! Copyright (C) 2001-2006 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE remove_tot_torque( nat, tau, mass, force ) !---------------------------------------------------------------------------- ! ! ... This routine sets to zero the total torque associated to the internal ! ... forces acting on the atoms by correcting the force vector. ! ! ... The algorithm is based on the following expressions ( F' is the ! ... torqueless force ) : ! _ ! _ 1 \ __ _ __ _ _ ! ... m = --- /_ dR_i /\ F_i , dR_i = ( R_i - R_cm ) , ! N i ! ! __ _ 1 _ __ ! ... F'_i = F_i - -------- m /\ dR_i ! |dR_i|^2 ! ! ! ... written by carlo sbraccia (2006) ! USE kinds, ONLY : DP ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nat REAL(DP), INTENT(IN) :: tau(3,nat) REAL(DP), INTENT(IN) :: mass(nat) REAL(DP), INTENT(INOUT) :: force(3,nat) ! INTEGER :: ia REAL(DP) :: m(3), mo(3), tauref(3), delta(3), sumf(3) REAL(DP) :: nrmsq ! ! tauref(:) = 0.D0 ! DO ia = 1, nat ! tauref(:) = tauref(:) + tau(:,ia)*mass(ia) ! END DO ! tauref(:) = tauref(:) / SUM( mass(:) ) ! m(:) = 0.D0 ! DO ia = 1, nat ! delta(:) = tau(:,ia) - tauref(:) ! m(:) = m(:) + ext_prod( delta(:), force(:,ia) ) ! END DO ! mo(:) = m(:) ! m(:) = m(:) / DBLE( nat ) ! sumf(:) = 0.D0 ! DO ia = 1, nat ! delta(:) = tau(:,ia) - tauref(:) ! nrmsq = delta(1)**2 + delta(2)**2 + delta(3)**2 ! force(:,ia) = force(:,ia) - ext_prod( m(:), delta(:) ) / nrmsq ! sumf(:) = sumf(:) + force(:,ia) ! END DO ! DO ia = 1, nat ! force(:,ia) = force(:,ia) - sumf(:) / DBLE( nat ) ! END DO ! m(:) = 0.D0 ! DO ia = 1, nat ! delta(:) = tau(:,ia) - tauref(:) ! m(:) = m(:) + ext_prod( delta(:), force(:,ia) ) ! END DO ! IF ( m(1)**2+m(2)**2+m(3)**2 > mo(1)**2+mo(2)**2+mo(3)**2 ) & CALL errore( 'remove_tot_torque', & 'total torque has not been properly removed', 1 ) ! RETURN ! CONTAINS ! !------------------------------------------------------------------------ FUNCTION ext_prod( a, b ) !------------------------------------------------------------------------ ! REAL(DP), INTENT(IN) :: a(3), b(3) REAL(DP) :: ext_prod(3) ! ext_prod(1) = a(2)*b(3) - a(3)*b(2) ext_prod(2) = a(3)*b(1) - a(1)*b(3) ext_prod(3) = a(1)*b(2) - a(2)*b(1) ! END FUNCTION ext_prod ! END SUBROUTINE remove_tot_torque espresso-5.1/flib/test_input_file.f900000644000175000017500000000261212341373036015736 0ustar mbamba! ! Copyright (C) 2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! LOGICAL FUNCTION test_input_xml (myunit) ! ! check if file opened as unit "myunit" is a xml file or not ! IMPLICIT NONE ! INTEGER, INTENT(in) :: myunit ! CHARACTER(LEN=256) :: dummy CHARACTER(LEN=1), EXTERNAL :: capital INTEGER :: i, j LOGICAL :: exst ! test_input_xml = .false. INQUIRE ( UNIT=myunit, EXIST=exst ) IF ( .NOT. exst ) GO TO 10 ! read until a non-empty line is found dummy = ' ' DO WHILE ( LEN_TRIM(dummy) < 1 ) READ ( myunit,'(A)', ERR=10, END=10) dummy END DO ! remove blanks from line, convert to capital, clean trailing characters j=1 DO i=1, LEN_TRIM(dummy) IF ( dummy(i:i) /= ' ' ) THEN dummy(j:j) = capital(dummy(i:i)) j=j+1 END IF END DO DO i=j, LEN_TRIM(dummy) dummy(i:i) = ' ' END DO ! check for string "" at the end j = LEN_TRIM (dummy) test_input_xml = ( (dummy(1:5) == "") RETURN 10 WRITE (0,"('from test_input_xml: input file not opened or empty')") END FUNCTION test_input_xml espresso-5.1/flib/atomic_number.f900000644000175000017500000001370612341373036015373 0ustar mbamba! ! Copyright (C) 2004-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ------------------------------------------------------------------ function atomic_number(atm) ! ------------------------------------------------------------------ ! implicit none character(len=*) :: atm integer :: atomic_number character(len=2) :: elements(109), atom data elements/' H', 'He', & 'Li','Be',' B',' C',' N',' O',' F','Ne', & 'Na','Mg','Al','Si',' P',' S','Cl','Ar', & ' K','Ca','Sc','Ti',' V','Cr','Mn', & 'Fe','Co','Ni','Cu','Zn', & 'Ga','Ge','As','Se','Br','Kr', & 'Rb','Sr',' Y','Zr','Nb','Mo','Tc', & 'Ru','Rh','Pd','Ag','Cd', & 'In','Sn','Sb','Te',' I','Xe', & 'Cs','Ba','La','Ce','Pr','Nd','Pm','Sm','Eu','Gd', & 'Tb','Dy','Ho','Er','Tm','Yb','Lu', & 'Hf','Ta',' W','Re','Os', & 'Ir','Pt','Au','Hg', & 'Tl','Pb','Bi','Po','At','Rn', & 'Fr','Ra','Ac','Th','Pa',' U','Np','Pu', & 'Am','Cm','Bk','Cf','Es','Fm','Md','No', & 'Lr','Rf','Db','Sg','Bh','Hs','Mt' / character(len=1), external :: capital, lowercase logical, external :: isnumeric integer :: n atom=' ' if ( len(atm) == 1 ) then ! ! Case : atm='X' ! atom(2:2)=capital(atm(1:1)) else if ( ( len_trim(atm) == 1 ) .or. ( isnumeric(atm(2:2)) ) .or. & ( atm(2:2) == '-' ) .or. ( atm(2:2) == '_' ) ) then ! ! Case : atm='X ', 'X_*', 'X-*', 'X[0-9]* ' ! atom(2:2)=capital(atm(1:1)) else if (atm(1:1) == ' ') then ! ! Case : atm=' X*' ! atom(2:2)=capital(atm(2:2)) else ! ! Case : atm='XY*' ! atom(1:1)=capital(atm(1:1)) atom(2:2)=lowercase(atm(2:2)) end if do n=1, 109 if ( atom == elements(n) ) then atomic_number=n return end if end do atomic_number = 0 print '(''Atom '',a2,'' not found'')', atom stop end function atomic_number ! ------------------------------------------------------------------ function atom_name(atomic_number) ! ------------------------------------------------------------------ ! integer :: atomic_number character(len=2) :: atom_name character(len=2) :: elements(109) data elements/' H', 'He', & 'Li','Be',' B',' C',' N',' O',' F','Ne', & 'Na','Mg','Al','Si',' P',' S','Cl','Ar', & ' K','Ca','Sc','Ti',' V','Cr','Mn', & 'Fe','Co','Ni','Cu','Zn', & 'Ga','Ge','As','Se','Br','Kr', & 'Rb','Sr',' Y','Zr','Nb','Mo','Tc', & 'Ru','Rh','Pd','Ag','Cd', & 'In','Sn','Sb','Te',' I','Xe', & 'Cs','Ba','La','Ce','Pr','Nd','Pm','Sm','Eu','Gd', & 'Tb','Dy','Ho','Er','Tm','Yb','Lu', & 'Hf','Ta',' W','Re','Os', & 'Ir','Pt','Au','Hg', & 'Tl','Pb','Bi','Po','At','Rn', & 'Fr','Ra','Ac','Th','Pa',' U','Np','Pu', & 'Am','Cm','Bk','Cf','Es','Fm','Md','No', & 'Lr','Rf','Db','Sg','Bh','Hs','Mt' / if (atomic_number < 1 .or. atomic_number > 109) then call errore('atom_name','invalid atomic number',abs(atomic_number)) else atom_name=elements(atomic_number) end if return end function atom_name ! ------------------------------------------------------------------ function atom_weight(atomic_number) ! ------------------------------------------------------------------ ! USE kinds, ONLY : DP implicit none integer :: atomic_number real(DP) :: atom_weight real(DP) :: weights(109) data weights/ 1.00794_DP, 4.00260_DP, & 6.941_DP,9.01218_DP,10.811_DP,12.0107_DP,14.00674_DP, & 15.9994_DP,18.99840_DP,20.1797_DP, & 22.98977_DP,24.3050_DP,26.98154_DP,28.0855_DP,30.97376_DP, & 32.066_DP,35.4527_DP,39.948_DP, & 39.0983_DP,40.078_DP,44.95591_DP,47.867_DP,50.9415_DP, & 51.9961_DP,54.93805_DP, 55.845_DP, & 58.93320_DP,58.6934_DP,63.546_DP,65.39_DP, & 69.723_DP,72.61_DP,74.92160_DP,78.96_DP,79.904_DP,83.80_DP, & 85.4678_DP,87.62_DP,88.90585_DP,91.224_DP,92.90638_DP, & 95.94_DP,98._DP, & 101.07_DP,102.90550_DP,106.42_DP,107.8682_DP,112.411_DP, & 114.818_DP,118.710_DP,121.760_DP,127.60_DP,126.90447_DP, & 131.29_DP, & 132.90545_DP,137.327_DP,138.9055_DP,140.116_DP,140.90765_DP, & 144.24_DP,145._DP,150.36_DP,151.964_DP,157.25_DP, & 158.92534_DP,162.50_DP,164.93032_DP,167.26_DP, & 168.93421_DP,173.04_DP,174.967_DP, & 178.49_DP,180.9479_DP,183.84_DP,186.207_DP,190.23_DP, & 192.217_DP,195.078_DP,196.96655_DP,200.59_DP, & 204.3833_DP,207.2_DP,208.98038_DP,209._DP,210._DP,222._DP, & 223._DP,226._DP,227._DP,232.0381_DP,231.03588_DP, & 238.0289_DP,237._DP,244._DP, & 243._DP,247._DP,247._DP,251._DP,252._DP,257._DP, & 258._DP,259._DP,262._DP,261._DP,262._DP,266._DP,264._DP, & 277._DP,268._DP / if (atomic_number < 1 .or. atomic_number > 109) then call errore('atom_weight','invalid atomic number',abs(atomic_number)) else atom_weight=weights(atomic_number) end if return end function atom_weight ! espresso-5.1/flib/distools.f900000644000175000017500000004436712341373036014416 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . !----------------------------------------------------------------------- ! SUBROUTINE block_distribute( nat, me, nproc, ia_s, ia_e, mykey ) ! ! Distribute "nat" objects (.e.g atoms) among "nproc" processors ! Atoms "ia_s" to "ia_e" are assigned to this ("me") processor ! If nproc > nat, atoms are assigned more than once to processors, ! "mykey" labels how many times the same atom appears ! INTEGER, INTENT(IN) :: nat, me, nproc INTEGER, INTENT(OUT) :: ia_s, ia_e, mykey INTEGER :: na_loc, r, nproc_ia INTEGER, EXTERNAL :: ldim_block, gind_block ! compute how many processors we have for a given atom ! nproc_ia = nproc / nat ! IF( nproc_ia == 0 ) THEN ! ! here we have less than one processor per atom ! mykey = 0 na_loc = ldim_block( nat, nproc, me) ia_s = gind_block( 1, nat, nproc, me ) ia_e = ia_s + na_loc - 1 ! ELSE ! ! here we have more than one proc per atom ! r = MOD( nproc, nat ) ! IF( me < (nproc_ia + 1)*r ) THEN ! processors that do the work, more procs work on a single atom ia_s = me/(nproc_ia + 1) + 1 mykey = MOD( me, nproc_ia + 1 ) ELSE ia_s = ( me - (nproc_ia + 1)*r ) / nproc_ia + 1 + r mykey = MOD( me - (nproc_ia + 1)*r , nproc_ia ) END IF ! ia_e = ia_s ! END IF RETURN END SUBROUTINE ! ! SUBROUTINE GRID2D_DIMS( grid_shape, nproc, nprow, npcol ) ! ! This subroutine factorizes the number of processors (NPROC) ! into NPROW and NPCOL according to the shape ! ! Written by Carlo Cavazzoni ! IMPLICIT NONE CHARACTER, INTENT(IN) :: grid_shape INTEGER, INTENT(IN) :: nproc INTEGER, INTENT(OUT) :: nprow, npcol INTEGER :: sqrtnp, i ! sqrtnp = INT( SQRT( REAL( nproc ) + 0.1 ) ) ! IF( grid_shape == 'S' ) THEN ! Square grid nprow = sqrtnp npcol = sqrtnp ELSE ! Rectangular grid DO i = 1, sqrtnp + 1 IF( MOD( nproc, i ) == 0 ) nprow = i end do npcol = nproc / nprow END IF RETURN END SUBROUTINE SUBROUTINE GRID2D_COORDS( order, rank, nprow, npcol, row, col ) ! ! this subroutine compute the cartesian coordinetes "row" and "col" ! of the processor whose MPI task id is "rank". ! Note that if the rank is larger that the grid size ! all processors whose MPI task id is greather or equal ! than nprow * npcol are placed on the diagonal extension of the grid itself ! IMPLICIT NONE CHARACTER, INTENT(IN) :: order INTEGER, INTENT(IN) :: rank ! process index starting from 0 INTEGER, INTENT(IN) :: nprow, npcol ! dimensions of the processor grid INTEGER, INTENT(OUT) :: row, col IF( rank >= 0 .AND. rank < nprow * npcol ) THEN IF( order == 'C' .OR. order == 'c' ) THEN ! grid in COLUMN MAJOR ORDER row = MOD( rank, nprow ) col = rank / nprow ELSE ! grid in ROW MAJOR ORDER row = rank / npcol col = MOD( rank, npcol ) END IF ELSE row = rank col = rank END IF RETURN END SUBROUTINE SUBROUTINE GRID2D_RANK( order, nprow, npcol, row, col, rank ) ! ! this subroutine compute the processor MPI task id "rank" of the processor ! whose cartesian coordinate are "row" and "col". ! Note that the subroutine assume cyclic indexing ( row = nprow = 0 ) ! IMPLICIT NONE CHARACTER, INTENT(IN) :: order INTEGER, INTENT(OUT) :: rank ! process index starting from 0 INTEGER, INTENT(IN) :: nprow, npcol ! dimensions of the processor grid INTEGER, INTENT(IN) :: row, col IF( order == 'C' .OR. order == 'c' ) THEN ! grid in COLUMN MAJOR ORDER rank = MOD( row + nprow, nprow ) + MOD( col + npcol, npcol ) * nprow ELSE ! grid in ROW MAJOR ORDER rank = MOD( col + npcol, npcol ) + MOD( row + nprow, nprow ) * npcol END IF ! RETURN END SUBROUTINE ! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! INTEGER FUNCTION ldim_cyclic(gdim, np, me) ! gdim = global dimension of distributed array ! np = number of processors ! me = index of the calling processor (starting from 0) ! ! this function return the number of elements of the distributed array ! stored in the local memory of the processor "me" for a cyclic ! data distribution. ! Example of the cyclic distribution of a 10 elements array on 4 processors ! array elements | PEs ! a(1) | 0 ! a(2) | 1 ! a(3) | 2 ! a(4) | 3 ! a(5) | 0 ! a(6) | 1 ! a(7) | 2 ! a(8) | 3 ! a(9) | 0 ! a(10) | 1 IMPLICIT NONE INTEGER :: gdim, np, me, r, q IF( me >= np .OR. me < 0 ) THEN WRITE(6,*) ' ** ldim_cyclic: arg no. 3 out of range ' STOP END IF q = INT(gdim / np) r = MOD(gdim, np) IF( me .LT. r ) THEN ldim_cyclic = q+1 ELSE ldim_cyclic = q END IF RETURN END FUNCTION ldim_cyclic !=----------------------------------------------------------------------------=! INTEGER FUNCTION ldim_block(gdim, np, me) ! gdim = global dimension of distributed array ! np = number of processors ! me = index of the calling processor (starting from 0) ! ! this function return the number of elements of the distributed array ! stored in the local memory of the processor "me" for a balanced block ! data distribution, with the larger block on the lower index processors. ! Example of the block distribution of 10 elements array a on 4 processors ! array elements | PEs ! a(1) | 0 ! a(2) | 0 ! a(3) | 0 ! a(4) | 1 ! a(5) | 1 ! a(6) | 1 ! a(7) | 2 ! a(8) | 2 ! a(9) | 3 ! a(10) | 3 IMPLICIT NONE INTEGER :: gdim, np, me, r, q IF( me >= np .OR. me < 0 ) THEN WRITE(6,*) ' ** ldim_block: arg no. 3 out of range ' STOP END IF q = INT(gdim / np) r = MOD(gdim, np) IF( me .LT. r ) THEN ! ... if my index is less than the reminder I got an extra element ldim_block = q+1 ELSE ldim_block = q END IF RETURN END FUNCTION ldim_block !=----------------------------------------------------------------------------=! INTEGER FUNCTION ldim_block_sca( gdim, np, me ) ! gdim = global dimension of distributed array ! np = number of processors ! me = index of the calling processor (starting from 0) ! ! this function return the number of elements of the distributed array ! stored in the local memory of the processor "me" for equal block ! data distribution, all block have the same size but the last one. ! Example of the block distribution of 10 elements array a on 4 processors ! array elements | PEs ! a(1) | 0 ! a(2) | 0 ! a(3) | 0 ! a(4) | 1 ! a(5) | 1 ! a(6) | 1 ! a(7) | 2 ! a(8) | 2 ! a(9) | 2 ! a(10) | 3 IMPLICIT NONE INTEGER :: gdim, np, me, nb IF( me >= np .OR. me < 0 ) THEN WRITE(6,*) ' ** ldim_block: arg no. 3 out of range ' STOP END IF nb = INT( gdim / np ) IF( MOD( gdim, np ) /= 0 ) THEN nb = nb+1 ! ... last processor take the rest IF( me == ( np - 1 ) ) nb = gdim - (np-1)*nb END IF ldim_block_sca = nb RETURN END FUNCTION ldim_block_sca !=----------------------------------------------------------------------------=! INTEGER FUNCTION ldim_block_cyclic( N, NB, NPROCS, IPROC ) ! -- Derived from: NUMROC( N, NB, IPROC, ISRCPROC, NPROCS ) ! -- ScaLAPACK tools routine (version 1.5) -- ! University of Tennessee, Knoxville, Oak Ridge National Laboratory, ! and University of California, Berkeley. ! May 1, 1997 ! ! .. Scalar Arguments .. IMPLICIT NONE INTEGER IPROC, ISRCPROC, N, NB, NPROCS, NUMROC ! .. ! ! Purpose ! ======= ! ! NUMROC computes the NUMber of Rows Or Columns of a distributed ! matrix owned by the process indicated by IPROC. ! ! Arguments ! ========= ! ! N (global input) INTEGER ! The number of rows/columns in distributed matrix. ! ! NB (global input) INTEGER ! Block size, size of the blocks the distributed matrix is ! split into. ! ! IPROC (local input) INTEGER ! The coordinate of the process whose local array row or ! column is to be determined. ! ! ISRCPROC (global input) INTEGER ! The coordinate of the process that possesses the first ! row or column of the distributed matrix. ! ! NPROCS (global input) INTEGER ! The total number processes over which the matrix is ! distributed. ! ! ===================================================================== ! ! .. Local Scalars .. INTEGER EXTRABLKS, MYDIST, NBLOCKS ! .. ! .. Intrinsic Functions .. INTRINSIC MOD ! .. ! .. Executable Statements .. ! ! Figure PROC's distance from source process ! ISRCPROC = 0 MYDIST = MOD( NPROCS+IPROC-ISRCPROC, NPROCS ) ! ! Figure the total number of whole NB blocks N is split up into ! NBLOCKS = N / NB ! ! Figure the minimum number of rows/cols a process can have ! NUMROC = (NBLOCKS/NPROCS) * NB ! ! See if there are any extra blocks ! EXTRABLKS = MOD( NBLOCKS, NPROCS ) ! ! If I have an extra block ! IF( MYDIST.LT.EXTRABLKS ) THEN NUMROC = NUMROC + NB ! ! If I have last block, it may be a partial block ! ELSE IF( MYDIST.EQ.EXTRABLKS ) THEN NUMROC = NUMROC + MOD( N, NB ) END IF ! ldim_block_cyclic = numroc RETURN ! ! End of NUMROC ! END FUNCTION ldim_block_cyclic ! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! INTEGER FUNCTION lind_block(ig, nx, np, me) ! ! INPUT : ! ig global index of the x dimension of array element ! nx dimension of the global array ! np number of processor in the x dimension of the processors grid ! me index of the local processor in the processor grid ! (starting from zero) ! ! OUTPUT : ! ! lind_block return the local index corresponding to the ! global index "ig" for a balanced block distribution ! IMPLICIT NONE INTEGER :: ig, nx, np, me, r, q q = INT(nx/np) r = MOD(nx,np) IF( me < r ) THEN lind_block = ig - (q+1) * me ELSE lind_block = ig - (q+1) * r - q * (me - r) END IF RETURN END FUNCTION lind_block !=----------------------------------------------------------------------------=! INTEGER FUNCTION lind_block_sca(ig, nx, np, me) ! ! INPUT : ! ig global index of the x dimension of array element ! nx dimension of the global array ! np number of processor in the x dimension of the processors grid ! me index of the local processor in the processor grid ! (starting from zero) ! ! OUTPUT : ! ! lind_block_sca return the local index corresponding to the ! global index "ig" for an equal block distribution ! IMPLICIT NONE INTEGER :: ig, nx, np, me, nb nb = INT( nx / np ) IF( MOD( nx, np ) /= 0 ) nb = nb+1 lind_block_sca = ig - me * nb RETURN END FUNCTION lind_block_sca !=----------------------------------------------------------------------------=! INTEGER FUNCTION lind_cyclic(ig, nx, np, me) ! ! INPUT : ! ig global index of the x dimension of array element ! nx dimension of the global array ! np number of processor in the x dimension of the processors grid ! me index of the local processor in the processor grid ! (starting from zero) ! ! OUTPUT : ! ! lind_cyclic return the local index corresponding to the ! global index "ig" for a cyclic distribution ! IMPLICIT NONE INTEGER :: ig, nx, np, me lind_cyclic = (ig-1)/np + 1 RETURN END FUNCTION lind_cyclic !=----------------------------------------------------------------------------=! INTEGER FUNCTION lind_block_cyclic( INDXGLOB, NB, NPROCS, IPROC ) ! Derived from: INDXG2L( INDXGLOB, NB, IPROC, ISRCPROC, NPROCS ) ! -- ScaLAPACK tools routine (version 1.5) -- ! University of Tennessee, Knoxville, Oak Ridge National Laboratory, ! and University of California, Berkeley. ! May 1, 1997 ! ! .. Scalar Arguments .. IMPLICIT NONE INTEGER INDXGLOB, IPROC, ISRCPROC, NB, NPROCS, INDXG2L ! .. ! ! Purpose ! ======= ! ! INDXG2L computes the local index of a distributed matrix entry ! pointed to by the global index INDXGLOB. ! ! Arguments ! ========= ! ! INDXGLOB (global input) INTEGER ! The global index of the distributed matrix entry. ! ! NB (global input) INTEGER ! Block size, size of the blocks the distributed matrix is ! split into. ! ! IPROC (local dummy) INTEGER ! Dummy argument in this case in order to unify the calling ! sequence of the tool-routines. ! ! ISRCPROC (local dummy) INTEGER ! Dummy argument in this case in order to unify the calling ! sequence of the tool-routines. ! ! NPROCS (global input) INTEGER ! The total number processes over which the distributed ! matrix is distributed. ! ! ===================================================================== ! ! .. Intrinsic Functions .. INTRINSIC MOD ! .. ! .. Executable Statements .. ! ISRCPROC = 0 INDXG2L = NB*((INDXGLOB-1)/(NB*NPROCS))+MOD(INDXGLOB-1,NB)+1 lind_block_cyclic = INDXG2L ! RETURN ! ! End of INDXG2L ! END FUNCTION lind_block_cyclic !=----------------------------------------------------------------------------=! INTEGER FUNCTION gind_cyclic( lind, n, np, me ) ! This function computes the global index of a distributed array entry ! pointed to by the local index lind of the process indicated by me. ! lind local index of the distributed matrix entry. ! N is the size of the global array. ! me The coordinate of the process whose local array row or ! column is to be determined. ! np The total number processes over which the distributed ! matrix is distributed. ! INTEGER, INTENT(IN) :: lind, n, me, np INTEGER r, q gind_cyclic = (lind-1) * np + me + 1 RETURN END FUNCTION gind_cyclic !=----------------------------------------------------------------------------=! INTEGER FUNCTION gind_block( lind, n, np, me ) ! This function computes the global index of a distributed array entry ! pointed to by the local index lind of the process indicated by me. ! lind local index of the distributed matrix entry. ! N is the size of the global array. ! me The coordinate of the process whose local array row or ! column is to be determined. ! np The total number processes over which the distributed ! matrix is distributed. INTEGER, INTENT(IN) :: lind, n, me, np INTEGER r, q q = INT(n/np) r = MOD(n,np) IF( me < r ) THEN gind_block = (Q+1)*me + lind ELSE gind_block = Q*me + R + lind END IF RETURN END FUNCTION gind_block !=----------------------------------------------------------------------------=! INTEGER FUNCTION gind_block_sca( lind, n, np, me ) ! This function computes the global index of a distributed array entry ! pointed to by the local index lind of the process indicated by me. ! lind local index of the distributed matrix entry. ! N is the size of the global array. ! me The coordinate of the process whose local array row or ! column is to be determined. ! np The total number processes over which the distributed ! matrix is distributed. INTEGER, INTENT(IN) :: lind, n, me, np INTEGER nb IF( me >= np .OR. me < 0 ) THEN WRITE(6,*) ' ** ldim_block: arg no. 3 out of range ' STOP END IF nb = INT( n / np ) IF( MOD( n, np ) /= 0 ) nb = nb+1 gind_block_sca = lind + me * nb RETURN END FUNCTION gind_block_sca !=----------------------------------------------------------------------------=! INTEGER FUNCTION gind_block_cyclic( lind, n, nb, np, me ) ! This function computes the global index of a distributed array entry ! pointed to by the local index lind of the process indicated by me. ! lind local index of the distributed matrix entry. ! N is the size of the global array. ! NB size of the blocks the distributed matrix is split into. ! me The coordinate of the process whose local array row or ! column is to be determined. ! np The total number processes over which the distributed ! matrix is distributed. INTEGER, INTENT(IN) :: lind, n, nb, me, np INTEGER r, q, isrc isrc = 0 gind_block_cyclic = np*NB*((lind-1)/NB) + & MOD(lind-1,NB) + MOD(np+me-isrc, np)*NB + 1 RETURN END FUNCTION gind_block_cyclic espresso-5.1/flib/int_to_char.f900000644000175000017500000000300612341373036015030 0ustar mbamba! ! Copyright (C) 2009 Quantum ESPRESSO groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- FUNCTION int_to_char( i ) !----------------------------------------------------------------------- ! ! ... converts an integer number of up to 6 figures ! ... into a left-justifed character variable ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: i CHARACTER (LEN=6) :: int_to_char CHARACTER :: c INTEGER :: n, j, nc LOGICAL :: neg ! nc = 6 ! IF( i < 0 ) then nc = nc - 1 n = -i neg = .true. ELSE n = i neg = .false. END IF ! j = 1 DO WHILE( j <= nc ) int_to_char(j:j) = CHAR( MOD( n, 10 ) + ICHAR( '0' ) ) n = n / 10 IF( n == 0 ) EXIT j = j + 1 END DO ! IF( j <= nc ) THEN DO n = 1, j/2 c = int_to_char( n : n ) int_to_char( n : n ) = int_to_char( j-n+1 : j-n+1 ) int_to_char( j-n+1 : j-n+1 ) = c END DO IF( j < nc ) int_to_char(j+1:nc) = ' ' ELSE int_to_char(:) = '*' END IF ! IF( neg ) THEN DO n = nc+1, 2, -1 int_to_char(n:n) = int_to_char(n-1:n-1) END DO int_to_char(1:1) = '-' END IF ! RETURN ! END FUNCTION int_to_char espresso-5.1/flib/ylmr2.f900000644000175000017500000000745112341373036013614 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine ylmr2 (lmax2, ng, g, gg, ylm) !----------------------------------------------------------------------- ! ! Real spherical harmonics ylm(G) up to l=lmax ! lmax2 = (lmax+1)^2 is the total number of spherical harmonics ! Numerical recursive algorithm based on the one given in Numerical ! Recipes but avoiding the calculation of factorials that generate ! overflow for lmax > 11 ! USE kinds, ONLY : DP USE constants, ONLY : pi, fpi implicit none ! integer, intent(in) :: lmax2, ng real(DP), intent(in) :: g (3, ng), gg (ng) ! ! BEWARE: gg = g(1)^2 + g(2)^2 +g(3)^2 is not checked on input ! incorrect results will ensue if the above does not hold ! real(DP), intent(out) :: ylm (ng,lmax2) ! ! local variables ! real(DP), parameter :: eps = 1.0d-9 real(DP), allocatable :: cost (:), sent(:), phi (:), Q(:,:,:) real(DP) :: c, gmod integer :: lmax, ig, l, m, lm ! if (ng < 1 .or. lmax2 < 1) return do lmax = 0, 25 if ((lmax+1)**2 == lmax2) go to 10 end do call errore (' ylmr', 'l > 25 or wrong number of Ylm required',lmax2) 10 continue ! if (lmax == 0) then ylm(:,1) = sqrt (1.d0 / fpi) return end if ! ! theta and phi are polar angles, cost = cos(theta) ! allocate(cost(ng), sent(ng), phi(ng), Q(ng,0:lmax,0:lmax) ) ! !$omp parallel default(shared), private(ig,gmod,lm,l,c,m) !$omp do do ig = 1, ng gmod = sqrt (gg (ig) ) if (gmod < eps) then cost(ig) = 0.d0 else cost(ig) = g(3,ig)/gmod endif ! ! beware the arc tan, it is defined modulo pi ! if (g(1,ig) > eps) then phi (ig) = atan( g(2,ig)/g(1,ig) ) else if (g(1,ig) < -eps) then phi (ig) = atan( g(2,ig)/g(1,ig) ) + pi else phi (ig) = sign( pi/2.d0,g(2,ig) ) end if sent(ig) = sqrt(max(0d0,1.d0-cost(ig)**2)) enddo ! ! Q(:,l,m) are defined as sqrt ((l-m)!/(l+m)!) * P(:,l,m) where ! P(:,l,m) are the Legendre Polynomials (0 <= m <= l) ! lm = 0 do l = 0, lmax c = sqrt (DBLE(2*l+1) / fpi) if ( l == 0 ) then !$omp do do ig = 1, ng Q (ig,0,0) = 1.d0 end do else if ( l == 1 ) then !$omp do do ig = 1, ng Q (ig,1,0) = cost(ig) Q (ig,1,1) =-sent(ig)/sqrt(2.d0) end do else ! ! recursion on l for Q(:,l,m) ! do m = 0, l - 2 !$omp do do ig = 1, ng Q(ig,l,m) = cost(ig)*(2*l-1)/sqrt(DBLE(l*l-m*m))*Q(ig,l-1,m) & - sqrt(DBLE((l-1)*(l-1)-m*m))/sqrt(DBLE(l*l-m*m))*Q(ig,l-2,m) end do end do !$omp do do ig = 1, ng Q(ig,l,l-1) = cost(ig) * sqrt(DBLE(2*l-1)) * Q(ig,l-1,l-1) end do !$omp do do ig = 1, ng Q(ig,l,l) = - sqrt(DBLE(2*l-1))/sqrt(DBLE(2*l))*sent(ig)*Q(ig,l-1,l-1) end do end if ! ! Y_lm, m = 0 ! lm = lm + 1 !$omp do do ig = 1, ng ylm(ig, lm) = c * Q(ig,l,0) end do ! do m = 1, l ! ! Y_lm, m > 0 ! lm = lm + 1 !$omp do do ig = 1, ng ylm(ig, lm) = c * sqrt(2.d0) * Q(ig,l,m) * cos (m*phi(ig)) end do ! ! Y_lm, m < 0 ! lm = lm + 1 !$omp do do ig = 1, ng ylm(ig, lm) = c * sqrt(2.d0) * Q(ig,l,m) * sin (m*phi(ig)) end do end do end do ! !$omp end parallel ! deallocate(cost, sent, phi, Q) ! return end subroutine ylmr2 espresso-5.1/flib/deviatoric.f900000644000175000017500000000712512341373036014676 0ustar mbamba! ! Copyright (C) 2010 Davide Ceresoli ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- SUBROUTINE impose_deviatoric_strain ( at_old, at ) !--------------------------------------------------------------------- ! ! Impose a pure deviatoric (volume-conserving) deformation ! Needed to enforce volume conservation in variable-cell MD/optimization ! USE kinds, ONLY: dp IMPLICIT NONE REAL(dp), INTENT(in) :: at_old(3,3) REAL(dp), INTENT(inout) :: at(3,3) REAL(dp) :: tr, omega, omega_old tr = (at(1,1)+at(2,2)+at(3,3))/3.d0 tr = tr - (at_old(1,1)+at_old(2,2)+at_old(3,3))/3.d0 ! Commented out, while waiting for better idea: ! it breaks the symmetry of hexagonal lattices - PG ! at(1,1) = at(1,1) - tr ! at(2,2) = at(2,2) - tr ! at(3,3) = at(3,3) - tr ! print '("difference in trace: ",e12.4)', tr CALL volume (1.d0, at_old(1,1), at_old(1,2), at_old(1,3), omega_old) CALL volume (1.d0, at(1,1), at(1,2), at(1,3), omega) at = at * (omega_old / omega)**(1.d0/3.d0) END SUBROUTINE impose_deviatoric_strain ! !--------------------------------------------------------------------- SUBROUTINE impose_deviatoric_strain_2d ( at_old, at ) !--------------------------------------------------------------------- ! Modif. of impose_deviatoric_strain but for ! Area conserving deformation (2DSHAPE) added by Richard Charles Andrew ! Physics Department, University if Pretoria, ! South Africa, august 2012 ! USE kinds, ONLY: dp IMPLICIT NONE REAL(dp), INTENT(in) :: at_old(3,3) REAL(dp), INTENT(inout) :: at(3,3) REAL(dp) :: omega, omega_old INTEGER :: i, j CALL volume (1.d0, at_old(1,1), at_old(1,2), at_old(1,3), omega_old) CALL volume (1.d0, at(1,1), at(1,2), at(1,3), omega) DO i = 1,3 DO j = 1,3 IF (j==3) THEN at(i,j) = at(i,j) ! DON'T CHANGE IN z- DIRECTION IF 2DSHAPE ELSE at(i,j) = at(i,j) * (omega_old / omega)**(1.d0/3.d0) ENDIF ENDDO ENDDO END SUBROUTINE impose_deviatoric_strain_2d ! !--------------------------------------------------------------------- SUBROUTINE impose_deviatoric_stress ( sigma ) !--------------------------------------------------------------------- ! ! Impose a pure deviatoric stress ! USE kinds, ONLY: dp USE io_global, ONLY: stdout IMPLICIT NONE REAL(dp), INTENT(inout) :: sigma(3,3) REAL(dp) :: tr tr = (sigma(1,1)+sigma(2,2)+sigma(3,3))/3.d0 sigma(1,1) = sigma(1,1) - tr sigma(2,2) = sigma(2,2) - tr sigma(3,3) = sigma(3,3) - tr WRITE (stdout,'(5x,"Volume is kept fixed: isostatic pressure set to zero")') END SUBROUTINE impose_deviatoric_stress ! !--------------------------------------------------------------------- SUBROUTINE impose_deviatoric_stress_2d ( sigma ) !--------------------------------------------------------------------- ! ! Modif. of impose_deviatoric_stress but for ! Area conserving deformation (2DSHAPE) added by Richard Charles Andrew ! Physics Department, University if Pretoria, ! South Africa, august 2012 ! USE kinds, ONLY: dp USE io_global, ONLY: stdout IMPLICIT NONE REAL(dp), INTENT(inout) :: sigma(3,3) REAL(dp) :: tr tr = (sigma(1,1)+sigma(2,2))/2.d0 sigma(1,1) = sigma(1,1) - tr sigma(2,2) = sigma(2,2) - tr WRITE (stdout,'(5x,"Area is kept fixed: isostatic in-plane pressure in xy set to zero")') END SUBROUTINE impose_deviatoric_stress_2d espresso-5.1/flib/plot_io.f900000644000175000017500000001136212341373036014210 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine plot_io (filplot, title, nr1x, nr2x, nr3x, nr1, nr2, & nr3, nat, ntyp, ibrav, celldm, at, gcutm, dual, ecut, plot_num, atm, & ityp, zv, tau, plot, iflag) !----------------------------------------------------------------------- ! ! iflag >0 : write header and the quantity to be plotted ("plot") ! to file "filplot" ! iflag< 0 : read everything (requires that all variables that are ! read are allocated with the correct dimensions!) ! USE io_global, ONLY : stdout USE kinds, only : DP implicit none character (len=*) :: filplot character (len=75) :: title ! integer :: nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp, ibrav, & ! plot_num, ityp (nat), iflag, i integer :: nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp, ibrav, & plot_num, ityp (*), iflag, i character (len=3) :: atm(*) ! real(DP) :: celldm (6), gcutm, dual, ecut, zv (ntyp), tau (3, nat) & ! , plot (nr1x * nr2x * nr3x), at(3,3) real(DP) :: celldm (6), gcutm, dual, ecut, zv (*), tau (3, *) & , plot (*), at(3,3) ! integer :: iunplot, ios, ipol, na, nt, ir, ndum ! if (filplot == ' ') call errore ('plot_io', 'filename missing', 1) ! iunplot = 4 if (iflag == 0 ) call errore('plot_io',& ' iflag==0 not allowed, use read_io_header ',1) if (iflag > 0) then WRITE( stdout, '(5x,"Writing data to file ",a)') TRIM(filplot) open (unit = iunplot, file = filplot, form = 'formatted', & status = 'unknown', err = 100, iostat = ios) else WRITE( stdout, '(5x,"Reading data from file ",a)') TRIM(filplot) open (unit = iunplot, file = filplot, form = 'formatted', & status = 'old', err = 100, iostat = ios) endif 100 call errore ('plot_io', 'opening file '//TRIM(filplot), abs (ios) ) rewind (iunplot) if (iflag > 0) then write (iunplot, '(a)') title write (iunplot, '(8i8)') nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp write (iunplot, '(i6,2x,6f16.8)') ibrav, celldm if (ibrav == 0) then do i = 1,3 write ( iunplot, * ) ( at(ipol,i),ipol=1,3 ) enddo endif write (iunplot, '(3f20.10,i6)') gcutm, dual, ecut, plot_num write (iunplot, '(i4,3x,a2,3x,f5.2)') & (nt, atm (nt), zv (nt), nt=1, ntyp) write (iunplot, '(i4,3x,3f15.9,3x,i2)') (na, & (tau (ipol, na), ipol = 1, 3), ityp (na), na = 1, nat) write (iunplot, '(5(1pe17.9))') (plot (ir) , ir = 1, nr1x * nr2x * nr3) else read (iunplot, '(a)') title read (iunplot, * ) nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp read (iunplot, * ) ibrav, celldm if (ibrav == 0) then do i = 1,3 read ( iunplot, * ) ( at(ipol,i),ipol=1,3 ) enddo endif read (iunplot, * ) gcutm, dual, ecut, plot_num read (iunplot, '(i4,3x,a2,3x,f5.2)') & (ndum, atm(nt), zv(nt), nt=1, ntyp) read (iunplot, *) (ndum, (tau (ipol, na), ipol = 1, 3), & ityp(na), na = 1, nat) read (iunplot, * ) (plot (ir), ir = 1, nr1x * nr2x * nr3) endif close (unit = iunplot) return end subroutine plot_io !----------------------------------------------------------------------- subroutine read_io_header(filplot, title, nr1x, nr2x, nr3x, nr1, nr2, nr3, & nat, ntyp, ibrav, celldm, at, gcutm, dual, ecut, plot_num) !----------------------------------------------------------------------- ! ! read header of file "filplot" ! USE io_global, ONLY : stdout USE kinds, only : DP implicit none character (len=*) :: filplot character (len=75) :: title integer :: nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp, ibrav, plot_num, i real(DP) :: celldm (6), gcutm, dual, ecut, at(3,3) ! integer :: iunplot, ios, ipol ! if (filplot == ' ') call errore ('read_io_h', 'filename missing', 1) ! iunplot = 4 WRITE( stdout, '(5x,"Reading header from file ",a)') TRIM(filplot) open (unit = iunplot, file = filplot, form = 'formatted', & status = 'old', err = 100, iostat = ios) 100 call errore ('plot_io', 'opening file '//TRIM(filplot), abs (ios) ) rewind (iunplot) read (iunplot, '(a)') title read (iunplot, * ) nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp read (iunplot, * ) ibrav, celldm if (ibrav == 0) then do i = 1,3 read ( iunplot, * ) ( at(ipol,i),ipol=1,3 ) enddo endif read (iunplot, * ) gcutm, dual, ecut, plot_num close (unit = iunplot) return end subroutine read_io_header espresso-5.1/flib/functionals.f900000644000175000017500000024061712341373036015077 0ustar mbamba! ! Copyright (C) 2001-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine slater (rs, ex, vx) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3 ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ex, vx real(DP), parameter :: f= -0.687247939924714d0, alpha = 2.0d0/3.0d0 ! f = -9/8*(3/2pi)^(2/3) ! ex = f * alpha / rs vx = 4.d0 / 3.d0 * f * alpha / rs ! return end subroutine slater ! !----------------------------------------------------------------------- subroutine slater1(rs, ex, vx) !----------------------------------------------------------------------- ! Slater exchange with alpha=1, corresponding to -1.374/r_s Ry ! used to recover old results ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ex, vx real(DP), parameter :: f= -0.687247939924714d0, alpha = 1.0d0 ! ex = f * alpha / rs vx = 4.d0 / 3.d0 * f * alpha / rs ! return end subroutine slater1 ! !----------------------------------------------------------------------- subroutine slater_rxc (rs, ex, vx) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3 and Relativistic exchange ! USE kinds, ONLY : DP USE constants, ONLY : pi, c_au IMPLICIT none real (DP):: rs, ex, vx ! real(DP), PARAMETER :: ZERO=0.D0, ONE=1.D0, PFIVE=.5D0, & OPF=1.5D0 !, C014=0.014D0 real (DP):: trd, ftrd, tftm, a0, alp, z, fz, fzp, vxp, xp, & beta, sb, alb, c014 ! TRD = ONE/3.d0 FTRD = 4.d0*TRD TFTM = 2**FTRD-2.d0 A0 = (4.d0/(9.d0*PI))**TRD C014= 1.0_DP/a0/c_au ! X-alpha parameter: ALP = 2.d0 * TRD Z = ZERO FZ = ZERO FZP = ZERO VXP = -3.d0*ALP/(2.d0*PI*A0*RS) XP = 3.d0*VXP/4.d0 BETA = C014/RS SB = SQRT(1.d0+BETA*BETA) ALB = LOG(BETA+SB) VXP = VXP * (-PFIVE + OPF * ALB / (BETA*SB)) XP = XP * (ONE-OPF*((BETA*SB-ALB)/BETA**2)**2) ! VXF = 2**TRD*VXP ! EXF = 2**TRD*XP VX = VXP EX = XP END SUBROUTINE slater_rxc ! !----------------------------------------------------------------------- subroutine slaterKZK (rs, ex, vx, vol) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3, Kwee, Zhang and Krakauer KE ! correction ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ex, vx, dL, vol, ga, pi, a0 real(DP), parameter :: a1 = -2.2037d0, & a2 = 0.4710d0, a3 = -0.015d0, ry2h = 0.5d0 real(DP), parameter :: f= -0.687247939924714d0, alpha = 2.0d0/3.0d0 ! f = -9/8*(3/2pi)^(2/3) ! pi = 4.d0 * atan(1.d0) a0 = f * alpha * 2.d0 dL = vol**(1.d0/3.d0) ga = 0.5d0 * dL *(3.d0 /pi)**(1.d0/3.d0) ! if ( rs .le. ga) then ex = a0 / rs + a1 * rs / dL**2.d0 + a2 * rs**2.d0 / dL**3.d0 vx = (4.d0 * a0 / rs + 2.d0 * a1 * rs / dL**2.d0 + & a2 * rs**2.d0 / dL**3.d0 ) / 3.d0 else ex = a0 / ga + a1 * ga / dL**2.d0 + a2 * ga**2.d0 / dL**3.d0 ! solids vx = ex ! ex = a3 * dL**5.d0 / rs**6.d0 ! molecules ! vx = 3.d0 * ex endif ex = ry2h * ex ! Ry to Hartree vx = ry2h * vx ! return end subroutine slaterKZK ! !----------------------------------------------------------------------- subroutine pz (rs, iflag, ec, vc) !----------------------------------------------------------------------- ! LDA parameterization from Monte Carlo data ! iflag=1: J.P. Perdew and A. Zunger, PRB 23, 5048 (1981) ! iflag=2: G. Ortiz and P. Ballone, PRB 50, 1391 (1994) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc integer :: iflag ! real(DP) :: a (2), b (2), c (2), d (2), gc (2), b1 (2), b2 (2) real(DP) :: lnrs, rs12, ox, dox ! data a / 0.0311d0, 0.031091d0 /, b / -0.048d0, -0.046644d0 /, & c / 0.0020d0, 0.00419d0 /, d / -0.0116d0, -0.00983d0 / data gc / -0.1423d0, -0.103756d0 /, b1 / 1.0529d0, 0.56371d0 /, & b2 / 0.3334d0, 0.27358d0 / ! if (rs.lt.1.0d0) then ! high density formula lnrs = log (rs) ec = a (iflag) * lnrs + b (iflag) + c (iflag) * rs * lnrs + d ( & iflag) * rs vc = a (iflag) * lnrs + (b (iflag) - a (iflag) / 3.d0) + 2.d0 / & 3.d0 * c (iflag) * rs * lnrs + (2.d0 * d (iflag) - c (iflag) ) & / 3.d0 * rs else ! interpolation formula rs12 = sqrt (rs) ox = 1.d0 + b1 (iflag) * rs12 + b2 (iflag) * rs dox = 1.d0 + 7.d0 / 6.d0 * b1 (iflag) * rs12 + 4.d0 / 3.d0 * & b2 (iflag) * rs ec = gc (iflag) / ox vc = ec * dox / ox endif ! return end subroutine pz ! !----------------------------------------------------------------------- subroutine pzKZK (rs, ec, vc, vol) !----------------------------------------------------------------------- ! LDA parameterization from Monte Carlo data ! iflag=1: J.P. Perdew and A. Zunger, PRB 23, 5048 (1981) ! iflag=2: G. Ortiz and P. Ballone, PRB 50, 1391 (1994) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc, ec0 (2), vc0(2), ec0p integer :: iflag, kr ! real(DP) :: a (2), b (2), c (2), d (2), gc (2), b1 (2), b2 (2) real(DP) :: lnrs, rs12, ox, dox, lnrsk, rsk real(DP) :: a1, grs, g1, g2, g3, g4, dL, vol, gh, gl, grsp real(DP) :: f3, f2, f1, f0, pi real(DP) :: D1, D2, D3, P1, P2, ry2h ! data a / 0.0311d0, 0.031091d0 /, b / -0.048d0, -0.046644d0 /, & c / 0.0020d0, 0.00419d0 /, d / -0.0116d0, -0.00983d0 / data gc / -0.1423d0, -0.103756d0 /, b1 / 1.0529d0, 0.56371d0 /, & b2 / 0.3334d0, 0.27358d0 / data a1 / -2.2037 /, g1 / 0.1182 /, g2 / 1.1656 /, g3 / -5.2884 /, & g4 / -1.1233 / data ry2h / 0.5d0 / ! iflag = 1 pi = 4.d0 * atan(1.d0) dL = vol**(1.d0/3.d0) gh = 0.5d0 * dL / (2.d0 * pi)**(1.d0/3.d0) gl = dL * (3.d0 / 2.d0 / pi)**(1.d0/3.d0) rsk = gh do kr = 1, 2 lnrsk = log (rsk) if (rsk.lt.1.0d0) then ! high density formula ec0(kr) = a(iflag) *lnrsk + b(iflag) + c(iflag) * rsk * lnrsk + d( & iflag) * rsk vc0(kr) = a(iflag) * lnrsk + (b(iflag) - a(iflag) / 3.d0) + 2.d0 / & 3.d0 * c (iflag) * rsk * lnrsk + (2.d0 * d (iflag) - c (iflag) ) & / 3.d0 * rsk else ! interpolation formula rs12 = sqrt (rsk) ox = 1.d0 + b1 (iflag) * rs12 + b2 (iflag) * rsk dox = 1.d0 + 7.d0 / 6.d0 * b1 (iflag) * rs12 + 4.d0 / 3.d0 * & b2 (iflag) * rsk ec0(kr) = gc (iflag) / ox vc0(kr) = ec0(kr) * dox / ox endif ! grs = g1 * rsk * lnrsk + g2 * rsk + g3 * rsk**1.5d0 + g4 * rsk**2.d0 grsp = g1 * lnrsk + g1 + g2 + 1.5d0 * g3 * rsk**0.5d0 + & 2.d0 * g4 * rsk ec0(kr) = ec0(kr) + (-a1 * rsk / dL**2.d0 + grs / dL**3.d0) * ry2h vc0(kr) = vc0(kr) + (-2.d0 * a1 * rsk / dL**2.d0 / 3.d0 + & grs / dL**3.d0 - grsp * rsk / 3.d0 / dL**3.d0) * ry2h ! rsk = rs enddo lnrs = log (rs) if (rs .le. gh) then ec = ec0(2) vc = vc0(2) else if ( rs .le. gl) then ec0p = 3.d0 * (ec0(1) - vc0(1)) / gh P1 = 3.d0 * ec0(1) - gh * ec0p P2 = ec0p D1 = gl - gh D2 = gl**2.d0 - gh**2.d0 D3 = gl**3.d0 - gh**3.d0 f2 = 2.d0 * gl**2.d0 * P2 * D1 + D2 * P1 f2 = f2 / (-(2.d0*gl*D1)**2.d0 + 4.d0*gl*D1*D2 - D2**2.d0 ) f3 = - (P2 + 2.d0*D1*f2) / (3.d0 * D2) f1 = - (P1 + D2 * f2) / (2.d0 * D1) f0 = - gl * (gl * f2 + 2.d0 * f1) / 3.d0 ! ec = f3 * rs**3.d0 + f2 * rs**2.d0 + f1 * rs + f0 vc = f2 * rs**2.d0 / 3.d0 + f1 * 2.d0 * rs / 3.d0 + f0 else ec = 0.d0 vc = 0.d0 endif endif ! return end subroutine pzKZK ! !----------------------------------------------------------------------- subroutine vwn (rs, ec, vc) !----------------------------------------------------------------------- ! S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc real(DP) :: a, b, c, x0 parameter (a = 0.0310907d0, b = 3.72744d0, c = 12.9352d0, x0 = -0.10498d0) real(DP) :: q, f1, f2, f3, rs12, fx, qx, tx, tt ! q = sqrt (4.d0 * c - b * b) f1 = 2.d0 * b / q f2 = b * x0 / (x0 * x0 + b * x0 + c) f3 = 2.d0 * (2.d0 * x0 + b) / q rs12 = sqrt (rs) fx = rs + b * rs12 + c qx = atan (q / (2.d0 * rs12 + b) ) ec = a * (log (rs / fx) + f1 * qx - f2 * (log ( (rs12 - x0) **2 / & fx) + f3 * qx) ) tx = 2.d0 * rs12 + b tt = tx * tx + q * q vc = ec - rs12 * a / 6.d0 * (2.d0 / rs12 - tx / fx - 4.d0 * b / & tt - f2 * (2.d0 / (rs12 - x0) - tx / fx - 4.d0 * (2.d0 * x0 + b) & / tt) ) ! return end subroutine vwn !----------------------------------------------------------------------- subroutine lyp (rs, ec, vc) !----------------------------------------------------------------------- ! C. Lee, W. Yang, and R.G. Parr, PRB 37, 785 (1988) ! LDA part only ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc real(DP) :: a, b, c, d, pi43 parameter (a = 0.04918d0, b = 0.132d0 * 2.87123400018819108d0) ! pi43 = (4pi/3)^(1/3) parameter (pi43 = 1.61199195401647d0, c = 0.2533d0 * pi43, d = & 0.349d0 * pi43) real(DP) :: ecrs, ox ! ecrs = b * exp ( - c * rs) ox = 1.d0 / (1.d0 + d * rs) ec = - a * ox * (1.d0 + ecrs) vc = ec - rs / 3.d0 * a * ox * (d * ox + ecrs * (d * ox + c) ) ! return end subroutine lyp ! !----------------------------------------------------------------------- subroutine pw (rs, iflag, ec, vc) !----------------------------------------------------------------------- ! iflag=1: J.P. Perdew and Y. Wang, PRB 45, 13244 (1992) ! iflag=2: G. Ortiz and P. Ballone, PRB 50, 1391 (1994) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc integer :: iflag ! real(DP) :: a, b1, b2, c0, c1, c2, c3, d0, d1 parameter (a = 0.031091d0, b1 = 7.5957d0, b2 = 3.5876d0, c0 = a, & c1 = 0.046644d0, c2 = 0.00664d0, c3 = 0.01043d0, d0 = 0.4335d0, & d1 = 1.4408d0) real(DP) :: lnrs, rs12, rs32, rs2, om, dom, olog real(DP) :: a1 (2), b3 (2), b4 (2) data a1 / 0.21370d0, 0.026481d0 /, b3 / 1.6382d0, -0.46647d0 /, & b4 / 0.49294d0, 0.13354d0 / ! ! high- and low-density formulae implemented but not used in PW case ! (reason: inconsistencies in PBE/PW91 functionals) ! if (rs.lt.1d0.and.iflag.eq.2) then ! high density formula lnrs = log (rs) ec = c0 * lnrs - c1 + c2 * rs * lnrs - c3 * rs vc = c0 * lnrs - (c1 + c0 / 3.d0) + 2.d0 / 3.d0 * c2 * rs * & lnrs - (2.d0 * c3 + c2) / 3.d0 * rs elseif (rs.gt.100.d0.and.iflag.eq.2) then ! low density formula ec = - d0 / rs + d1 / rs**1.5d0 vc = - 4.d0 / 3.d0 * d0 / rs + 1.5d0 * d1 / rs**1.5d0 else ! interpolation formula rs12 = sqrt (rs) rs32 = rs * rs12 rs2 = rs**2 om = 2.d0 * a * (b1 * rs12 + b2 * rs + b3 (iflag) * rs32 + b4 ( & iflag) * rs2) dom = 2.d0 * a * (0.5d0 * b1 * rs12 + b2 * rs + 1.5d0 * b3 ( & iflag) * rs32 + 2.d0 * b4 (iflag) * rs2) olog = log (1.d0 + 1.0d0 / om) ec = - 2.d0 * a * (1.d0 + a1 (iflag) * rs) * olog vc = - 2.d0 * a * (1.d0 + 2.d0 / 3.d0 * a1 (iflag) * rs) & * olog - 2.d0 / 3.d0 * a * (1.d0 + a1 (iflag) * rs) * dom / & (om * (om + 1.d0) ) endif ! return end subroutine pw ! !----------------------------------------------------------------------- subroutine wigner (rs, ec, vc) !----------------------------------------------------------------------- ! Wigner correlation ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc real(DP) :: pi34, rho13 parameter (pi34 = 0.6203504908994d0) ! pi34=(3/4pi)^(1/3), rho13=rho^(1/3) ! rho13 = pi34 / rs vc = - rho13 * ( (0.943656d0 + 8.8963d0 * rho13) / (1.d0 + & 12.57d0 * rho13) **2) ec = - 0.738d0 * rho13 * (0.959d0 / (1.d0 + 12.57d0 * rho13) ) ! return end subroutine wigner ! !----------------------------------------------------------------------- subroutine hl (rs, ec, vc) !----------------------------------------------------------------------- ! L. Hedin and B.I. Lundqvist, J. Phys. C 4, 2064 (1971) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc real(DP) :: a, x ! a = log (1.0d0 + 21.d0 / rs) x = rs / 21.0d0 ec = a + (x**3 * a - x * x) + x / 2.d0 - 1.0d0 / 3.0d0 ec = - 0.0225d0 * ec vc = - 0.0225d0 * a ! return end subroutine hl ! !----------------------------------------------------------------------- subroutine gl (rs, ec, vc) !----------------------------------------------------------------------- ! O. Gunnarsson and B. I. Lundqvist, PRB 13, 4274 (1976) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, vc, ec real(DP) :: c, r, x parameter (c = 0.0333d0, r = 11.4d0) ! c=0.0203, r=15.9 for the paramagnetic case ! x = rs / r vc = - c * log (1.d0 + 1.d0 / x) ec = - c * ( (1.d0 + x**3) * log (1.d0 + 1.d0 / x) - 1.0d0 / & 3.0d0 + x * (0.5d0 - x) ) ! return end subroutine gl ! !----------------------------------------------------------------------- subroutine becke86b(rho, grho, sx, v1x, v2x) !----------------------------------------------------------------------- ! Becke 1986 gradient correction to exchange ! A.D. Becke, J. Chem. Phys. 85 (1986) 7184 ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, sx, v1x, v2x real(DP) :: arho, agrho, beta, gamma parameter (beta = 0.00375_dp, gamma=0.007_dp) real(dp) :: sgp1, sgp1_45, sgp1_95 real(dp) :: rdg2_43, rdg2_73, rdg2_83, rdg2_4, rdg4_5 arho = 0.5d0 * rho agrho = 0.25d0 * grho rdg2_43 = agrho / arho**(4d0/3d0) rdg2_73 = rdg2_43 / arho rdg2_83 = rdg2_43 * rdg2_43 / agrho rdg2_4 = rdg2_43 * rdg2_83 / agrho rdg4_5 = rdg2_73 * rdg2_83 sgp1 = 1d0 + gamma * rdg2_83 sgp1_45 = sgp1**(-4d0/5d0) sgp1_95 = sgp1_45 / sgp1 sx = -2d0 * beta * agrho / arho**(4d0/3d0) * sgp1_45 v1x = -beta * (-4d0/3d0 * rdg2_73 * sgp1_45 + 32d0/15d0 * gamma * rdg4_5 * sgp1_95) v2x = -beta * (sgp1_45 * rdg2_43 / agrho - 4d0/5d0 * gamma * rdg2_4 * sgp1_95) end subroutine becke86b ! !----------------------------------------------------------------------- subroutine becke88 (rho, grho, sx, v1x, v2x) !----------------------------------------------------------------------- ! Becke exchange: A.D. Becke, PRA 38, 3098 (1988) ! only gradient-corrected part, no Slater term included ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, sx, v1x, v2x real(DP) :: beta, third, two13 parameter (beta = 0.0042d0) parameter (third = 1.d0 / 3.d0, two13 = 1.259921049894873d0) ! two13 = 2^(1/3) real(DP) :: rho13, rho43, xs, xs2, sa2b8, shm1, dd, dd2, ee ! rho13 = rho**third rho43 = rho13**4 xs = two13 * sqrt (grho) / rho43 xs2 = xs * xs sa2b8 = sqrt (1.0d0 + xs2) shm1 = log (xs + sa2b8) dd = 1.0d0 + 6.0d0 * beta * xs * shm1 dd2 = dd * dd ee = 6.0d0 * beta * xs2 / sa2b8 - 1.d0 sx = two13 * grho / rho43 * ( - beta / dd) v1x = - (4.d0 / 3.d0) / two13 * xs2 * beta * rho13 * ee / dd2 v2x = two13 * beta * (ee-dd) / (rho43 * dd2) ! return end subroutine becke88 ! !----------------------------------------------------------------------- subroutine ggax (rho, grho, sx, v1x, v2x) !----------------------------------------------------------------------- ! Perdew-Wang GGA (PW91), exchange part: ! J.P. Perdew et al.,PRB 46, 6671 (1992) ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, sx, v1x, v2x real(DP) :: f1, f2, f3, f4, f5 parameter (f1 = 0.19645d0, f2 = 7.7956d0, f3 = 0.2743d0, f4 = & 0.1508d0, f5 = 0.004d0) real(DP) :: fp1, fp2 parameter (fp1 = -0.019292021296426d0, fp2 = 0.161620459673995d0) ! fp1 = -3/(16 pi)*(3 pi^2)^(-1/3) ! fp2 = (1/2)(3 pi^2)**(-1/3) real(DP) :: rhom43, s, s2, s3, s4, exps, as, sa2b8, shm1, bs, das, & dbs, dls ! rhom43 = rho** ( - 4.d0 / 3.d0) s = fp2 * sqrt (grho) * rhom43 s2 = s * s s3 = s2 * s s4 = s2 * s2 exps = f4 * exp ( - 100.d0 * s2) as = f3 - exps - f5 * s2 sa2b8 = sqrt (1.0d0 + f2 * f2 * s2) shm1 = log (f2 * s + sa2b8) bs = 1.d0 + f1 * s * shm1 + f5 * s4 das = (200.d0 * exps - 2.d0 * f5) * s dbs = f1 * (shm1 + f2 * s / sa2b8) + 4.d0 * f5 * s3 dls = (das / as - dbs / bs) sx = fp1 * grho * rhom43 * as / bs v1x = - 4.d0 / 3.d0 * sx / rho * (1.d0 + s * dls) v2x = fp1 * rhom43 * as / bs * (2.d0 + s * dls) ! return end subroutine ggax ! !----------------------------------------------------------------------- subroutine rPW86 (rho, grho, sx, v1x, v2x) !----------------------------------------------------------------------- ! PRB 33, 8800 (1986) and J. Chem. Theory comp. 5, 2754 (2009) ! USE kinds implicit none real(DP), intent(in) :: rho, grho real(DP), intent(out) :: sx, v1x, v2x real(DP) :: s, s_2, s_3, s_4, s_5, s_6, fs, grad_rho, df_ds real(DP) :: a, b, c, s_prefactor, Ax, four_thirds parameter( a = 1.851d0, b = 17.33d0, c = 0.163d0, s_prefactor = 6.18733545256027d0, & Ax = -0.738558766382022d0, four_thirds = 4.d0/3.d0) grad_rho = sqrt(grho) s = grad_rho/(s_prefactor*rho**(four_thirds)) s_2 = s**2 s_3 = s_2 * s s_4 = s_2**2 s_5 = s_3 * s_2 s_6 = s_2 * s_4 !! Calculation of energy fs = (1 + a*s_2 + b*s_4 + c*s_6)**(1.d0/15.d0) sx = Ax * rho**(four_thirds) * (fs -1.0D0) !! Calculation of the potential df_ds = (1.d0/(15.d0*fs**(14.0D0)))*(2*a*s + 4*b*s_3 + 6*c*s_5) v1x = Ax*(four_thirds)*(rho**(1.d0/3.d0)*(fs -1.0D0) & -grad_rho/(s_prefactor * rho)*df_ds) v2x = Ax * df_ds/(s_prefactor*grad_rho) end subroutine rPW86 subroutine PW86 (rho, grho, sx, v1x, v2x) !----------------------------------------------------------------------- ! Perdew-Wang 1986 exchange gradient correction: PRB 33, 8800 (1986) ! USE kinds implicit none real(DP), intent(in) :: rho, grho real(DP), intent(out) :: sx, v1x, v2x real(DP) :: s, s_2, s_3, s_4, s_5, s_6, fs, grad_rho, df_ds real(DP) :: a, b, c, s_prefactor, Ax, four_thirds parameter( a = 1.296_dp, b = 14_dp, c = 0.2_dp, s_prefactor = 6.18733545256027_dp, & Ax = -0.738558766382022_dp, four_thirds = 4._dp/3._dp) grad_rho = sqrt(grho) s = grad_rho/(s_prefactor*rho**(four_thirds)) s_2 = s**2 s_3 = s_2 * s s_4 = s_2**2 s_5 = s_3 * s_2 s_6 = s_2 * s_4 !! Calculation of energy fs = (1 + a*s_2 + b*s_4 + c*s_6)**(1.d0/15.d0) sx = Ax * rho**(four_thirds) * (fs-1d0) !! Calculation of the potential df_ds = (1.d0/(15.d0*fs**(14d0)))*(2*a*s + 4*b*s_3 + 6*c*s_5) v1x = Ax*(four_thirds)*(rho**(1.d0/3.d0)*(fs-1d0) & -grad_rho/(s_prefactor * rho)*df_ds) v2x = Ax * df_ds/(s_prefactor*grad_rho) end subroutine PW86 ! !--------------------------------------------------------------- subroutine c09x (rho, grho, sx, v1x, v2x) !--------------------------------------------------------------- ! Cooper '09 exchange for vdW-DF (without Slater exchange): ! V. R. Cooper, Phys. Rev. B 81, 161104(R) (2010) ! ! Developed thanks to the contribution of ! Ikutaro Hamada - ikutaro@wpi-aimr.tohoku.ac.jp ! WPI-Advanced Institute of Materials Research, Tohoku University ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none real(DP) :: rho, grho, sx, v1x, v2x ! input: charge and squared gradient ! output: energy ! output: potential ! local variables real(DP) :: kf, agrho, s1, s2, ds, dsg, exunif, fx ! (3*pi2*|rho|)^(1/3) ! |grho| ! |grho|/(2*kf*|rho|) ! s^2 ! n*ds/dn ! n*ds/d(gn) ! exchange energy LDA part ! exchange energy gradient part real(DP) :: dxunif, dfx, f1, f2, f3, dfx1, dfx2 ! numerical coefficients (NB: c2=(3 pi^2)^(1/3) ) real(DP) :: third, c1, c2, c5 parameter (third = 1.d0 / 3.d0, c1 = 0.75d0 / pi , & c2 = 3.093667726280136d0, c5 = 4.d0 * third) ! parameters of the functional real(DP) :: kappa, mu, alpha data kappa / 1.245d0 /, & mu / 0.0617d0 /, & alpha / 0.0483d0 / ! agrho = sqrt (grho) kf = c2 * rho**third dsg = 0.5d0 / kf s1 = agrho * dsg / rho s2 = s1 * s1 ds = - c5 * s1 ! ! Energy ! f1 = exp( - alpha * s2 ) f2 = exp( - alpha * s2 / 2.0d0 ) f3 = mu * s2 * f1 fx = f3 + kappa * ( 1.0d0 - f2 ) exunif = - c1 * kf sx = exunif * fx ! ! Potential ! dxunif = exunif * third dfx1 = 2.0d0 * mu * s1 * ( 1.0d0 - alpha * s2 ) * f1 dfx2 = kappa * alpha * s1 * f2 dfx = dfx1 + dfx2 v1x = sx + dxunif * fx + exunif * dfx * ds v2x = exunif * dfx * dsg / agrho sx = sx * rho return end subroutine c09x !--------------------------------------------------------------- subroutine b86b (rho, grho, iflag, sx, v1x, v2x) !--------------------------------------------------------------- ! Becke exchange (without Slater exchange): ! iflag=1: A. D. Becke, J. Chem. Phys. 85, 7184 (1986) (B86b) ! iflag=2: J. Klimes, Phys. Rev. B 83, 195131 (2011). (OptB86b) ! iflag=3: I. Hamada, Phys. Rev. B 89, 121103(R) (B86R) ! ! Ikutaro Hamada - HAMADA.Ikutaro@nims.go.jp ! National Institute for Materials Science ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none real(DP) :: rho, grho, sx, v1x, v2x ! input: charge and squared gradient ! output: energy ! output: potential integer :: iflag ! local variables real(DP) :: kf, agrho, s1, s2, ds, dsg, exunif, fx ! (3*pi2*|rho|)^(1/3) ! |grho| ! |grho|/(2*kf*|rho|) ! s^2 ! n*ds/dn ! n*ds/d(gn) ! exchange energy LDA part ! exchange energy gradient part real(DP) :: dxunif, dfx, f1, f2, f3, dfx1 ! numerical coefficients (NB: c2=(3 pi^2)^(1/3) ) real(DP) :: third, c1, c2, c5 parameter (third = 1.d0 / 3.d0, c1 = 0.75d0 / pi , & c2 = 3.093667726280136d0, c5 = 4.d0 * third) ! parameters of the functional real(DP) :: k (3), mu(3) data k / 0.5757d0, 1.0000d0, 0.711357d0/, & mu/ 0.2449d0, 0.1234d0, 0.1234d0 / ! agrho = sqrt (grho) kf = c2 * rho**third dsg = 0.5d0 / kf s1 = agrho * dsg / rho s2 = s1 * s1 ds = - c5 * s1 ! ! Energy ! f1=mu(iflag)*s2 f2=1.d0+mu(iflag)*s2/k(iflag) f3=f2**(4.d0/5.d0) fx= f1/f3 exunif = - c1 * kf sx = exunif * fx ! ! Potential ! dxunif = exunif * third dfx1 = 1.d0+(1.d0/5.d0)*mu(iflag)*s2/k(iflag) dfx = 2.d0* mu(iflag) * s1 * dfx1 / (f2 * f3) v1x = sx + dxunif * fx + exunif * dfx * ds v2x = exunif * dfx * dsg / agrho sx = sx * rho return end subroutine b86b ! !----------------------------------------------------------------------- subroutine perdew86 (rho, grho, sc, v1c, v2c) !----------------------------------------------------------------------- ! Perdew gradient correction on correlation: PRB 33, 8822 (1986) ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, sc, v1c, v2c real(DP) :: p1, p2, p3, p4, pc1, pc2, pci parameter (p1 = 0.023266d0, p2 = 7.389d-6, p3 = 8.723d0, p4 = & 0.472d0) parameter (pc1 = 0.001667d0, pc2 = 0.002568d0, pci = pc1 + pc2) real(DP) :: third, pi34 parameter (third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0) ! pi34=(3/4pi)^(1/3) real(DP) :: rho13, rho43, rs, rs2, rs3, cna, cnb, cn, drs real(DP) :: dcna, dcnb, dcn, phi, ephi ! rho13 = rho**third rho43 = rho13**4 rs = pi34 / rho13 rs2 = rs * rs rs3 = rs * rs2 cna = pc2 + p1 * rs + p2 * rs2 cnb = 1.d0 + p3 * rs + p4 * rs2 + 1.d4 * p2 * rs3 cn = pc1 + cna / cnb drs = - third * pi34 / rho43 dcna = (p1 + 2.d0 * p2 * rs) * drs dcnb = (p3 + 2.d0 * p4 * rs + 3.d4 * p2 * rs2) * drs dcn = dcna / cnb - cna / (cnb * cnb) * dcnb phi = 0.192d0 * pci / cn * sqrt (grho) * rho** ( - 7.d0 / 6.d0) ! SdG: in the original paper 1.745*0.11=0.19195 is used ephi = exp ( - phi) sc = grho / rho43 * cn * ephi v1c = sc * ( (1.d0 + phi) * dcn / cn - ( (4.d0 / 3.d0) - (7.d0 / & 6.d0) * phi) / rho) v2c = cn * ephi / rho43 * (2.d0 - phi) ! return end subroutine perdew86 ! !----------------------------------------------------------------------- subroutine glyp (rho, grho, sc, v1c, v2c) !----------------------------------------------------------------------- ! Lee Yang Parr: gradient correction part ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, sc, v1c, v2c real(DP) :: a, b, c, d parameter (a = 0.04918d0, b = 0.132d0, c = 0.2533d0, d = 0.349d0) real(DP) :: rhom13, rhom43, rhom53, om, xl, ff, dom, dxl ! rhom13 = rho** ( - 1.d0 / 3.d0) om = exp ( - c * rhom13) / (1.d0 + d * rhom13) xl = 1.d0 + (7.d0 / 3.d0) * (c * rhom13 + d * rhom13 / (1.d0 + d * & rhom13) ) ff = a * b * grho / 24.d0 rhom53 = rhom13**5 sc = ff * rhom53 * om * xl dom = - om * (c + d+c * d * rhom13) / (1.d0 + d * rhom13) dxl = (7.d0 / 3.d0) * (c + d+2.d0 * c * d * rhom13 + c * d * d * & rhom13**2) / (1.d0 + d * rhom13) **2 rhom43 = rhom13**4 v1c = - ff * rhom43 / 3.d0 * (5.d0 * rhom43 * om * xl + rhom53 * & dom * xl + rhom53 * om * dxl) v2c = 2.d0 * sc / grho ! return end subroutine glyp ! !----------------------------------------------------------------------- subroutine ggac (rho, grho, sc, v1c, v2c) !----------------------------------------------------------------------- ! Perdew-Wang GGA (PW91) correlation part ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, sc, v1c, v2c real(DP) :: al, pa, pb, pc, pd, cx, cxc0, cc0 parameter (al = 0.09d0, pa = 0.023266d0, pb = 7.389d-6, pc = & 8.723d0, pd = 0.472d0) parameter (cx = -0.001667d0, cxc0 = 0.002568d0, cc0 = - cx + cxc0) real(DP) :: third, pi34, nu, be, xkf, xks parameter (third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0) parameter (nu = 15.755920349483144d0, be = nu * cc0) parameter (xkf = 1.919158292677513d0, xks = 1.128379167095513d0) ! pi34=(3/4pi)^(1/3), nu=(16/pi)*(3 pi^2)^(1/3) ! xkf=(9 pi/4)^(1/3), xks= sqrt(4/pi) real(DP) :: kf, ks, rs, rs2, rs3, ec, vc, t, expe, af, bf, y, xy, & qy, s1 real(DP) :: h0, dh0, ddh0, ee, cn, dcn, cna, dcna, cnb, dcnb, h1, & dh1, ddh1 ! rs = pi34 / rho**third rs2 = rs * rs rs3 = rs * rs2 call pw (rs, 1, ec, vc) kf = xkf / rs ks = xks * sqrt (kf) t = sqrt (grho) / (2.d0 * ks * rho) expe = exp ( - 2.d0 * al * ec / (be * be) ) af = 2.d0 * al / be * (1.d0 / (expe-1.d0) ) bf = expe * (vc - ec) y = af * t * t xy = (1.d0 + y) / (1.d0 + y + y * y) qy = y * y * (2.d0 + y) / (1.d0 + y + y * y) **2 s1 = 1.d0 + 2.d0 * al / be * t * t * xy h0 = be * be / (2.d0 * al) * log (s1) dh0 = be * t * t / s1 * ( - 7.d0 / 3.d0 * xy - qy * (af * bf / & be-7.d0 / 3.d0) ) ddh0 = be / (2.d0 * ks * ks * rho) * (xy - qy) / s1 ee = - 100.d0 * (ks / kf * t) **2 cna = cxc0 + pa * rs + pb * rs2 dcna = pa * rs + 2.d0 * pb * rs2 cnb = 1.d0 + pc * rs + pd * rs2 + 1.d4 * pb * rs3 dcnb = pc * rs + 2.d0 * pd * rs2 + 3.d4 * pb * rs3 cn = cna / cnb - cx dcn = dcna / cnb - cna * dcnb / (cnb * cnb) h1 = nu * (cn - cc0 - 3.d0 / 7.d0 * cx) * t * t * exp (ee) dh1 = - third * (h1 * (7.d0 + 8.d0 * ee) + nu * t * t * exp (ee) & * dcn) ddh1 = 2.d0 * h1 * (1.d0 + ee) * rho / grho sc = rho * (h0 + h1) v1c = h0 + h1 + dh0 + dh1 v2c = ddh0 + ddh1 ! return end subroutine ggac ! !--------------------------------------------------------------- subroutine pbex (rho, grho, iflag, sx, v1x, v2x) !--------------------------------------------------------------- ! ! PBE exchange (without Slater exchange): ! iflag=1 J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996) ! iflag=2 "revised' PBE: Y. Zhang et al., PRL 80, 890 (1998) ! iflag=3 PBEsol: J.P.Perdew et al., PRL 100, 136406 (2008) ! iflag=4 PBEQ2D: L. Chiodo et al., PRL 108, 126402 (2012) ! iflag=5 optB88: Klimes et al., J. Phys. Cond. Matter, 22, 022201 (2010) ! iflag=6 optB86b: Klimes et al., Phys. Rev. B 83, 195131 (2011) ! iflag=7 ev: Engel and Vosko, PRB 47, 13164 (1991) ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none real(DP) :: rho, grho, sx, v1x, v2x ! input: charge and squared gradient ! output: energy ! output: potential integer :: iflag ! local variables real(DP) :: kf, agrho, s1, s2, ds, dsg, exunif, fx ! (3*pi2*|rho|)^(1/3) ! |grho| ! |grho|/(2*kf*|rho|) ! s^2 ! n*ds/dn ! n*ds/d(gn) ! exchange energy LDA part ! exchange energy gradient part real(DP) :: dxunif, dfx, f1, f2, f3, dfx1 real(DP) :: p, amu, ab, c, dfxdp, dfxds, upbe, uge, s, ak, aa ! numerical coefficients (NB: c2=(3 pi^2)^(1/3) ) real(DP), parameter :: third = 1._DP / 3._DP, c1 = 0.75_DP / pi , & c2 = 3.093667726280136_DP, c5 = 4._DP * third, & c6 = c2*2.51984210, c7=5._DP/6._DP, c8=0.8_DP ! (3pi^2)^(1/3)*2^(4/3) ! parameters of the functional real(DP) :: k (6), mu(6), ev(6) ! pbe rpbe pbesol pbeq2d optB88 optB86b data k / 0.804_DP, 1.2450D0, 0.804_DP , 0.804_DP , 0.0 , 0.0 /, & mu/ 0.21951_DP, 0.21951_DP, 0.12345679012345679012_DP, & 0.12345679012345679, 0.22 , 0.1234/, & ev / 1.647127_DP, 0.980118_DP, 0.017399_DP, 1.523671_DP, 0.367229_DP, & 0.011282_DP / ! a and b parameters of Engel and Vosko agrho = sqrt (grho) kf = c2 * rho**third dsg = 0.5_DP / kf s1 = agrho * dsg / rho s2 = s1 * s1 ds = - c5 * s1 ! ! Energy ! if ( iflag == 4) then p=s1*s1 s=s1 ak=0.804_DP amu=10._DP/81._DP ab=0.5217_DP c=2._DP fx = ak - ak / (1.0_dp + amu * p / ak) + p**2 * (1 + p) & /(10**c + p**3) * (-1.0_dp - ak + ak / (1.0_dp + amu * p / ak) & + ab * p ** (-0.1d1/ 0.4D1)) elseif ( iflag == 5) then ab=mu(iflag)*c7 ! mu/ab=1.2 p=s1*c6 c=log(p+sqrt(p*p+1)) ! asinh(p) dfx1=1+ab*s1*c fx = mu(iflag)*s1*s1/dfx1 elseif ( iflag == 6) then p=mu(iflag)*s1*s1 fx = p / ( 1 + p )**c8 elseif ( iflag == 7) then s=s2*s2 f1 = 1 + ev(1)*s2 + ev(2)*s + ev(3)*s*s2 f2 = 1 + ev(4)*s2 + ev(5)*s + ev(6)*s*s2 fx = f1 / f2 - 1 else f1 = s2 * mu(iflag) / k (iflag) f2 = 1._DP + f1 f3 = k (iflag) / f2 fx = k (iflag) - f3 end if exunif = - c1 * kf sx = exunif * fx ! ! Potential ! dxunif = exunif * third if ( iflag == 4) then dfxdp = dble(1 / (1 + amu * p / ak) ** 2 * amu) + dble(2 * p * (1 & + p) / (10 ** c + p ** 3) * (-1 - ak + ak / (1 + amu * p / ak) + ab & * p ** (-0.1d1 / 0.4D1))) + dble(p ** 2 / (10 ** c + p ** 3) * ( & -1 - ak + ak / (1 + amu * p / ak) + ab * p ** (-0.1d1 / 0.4D1))) - & dble(3 * p ** 4 * (1 + p) / (10 ** c + p ** 3) ** 2 * (-1 - ak + & ak / (1 + amu * p / ak) + ab * p ** (-0.1d1 / 0.4D1))) + dble(p ** & 2) * dble(1 + p) / dble(10 ** c + p ** 3) * (-dble(1 / (1 + amu * & p / ak) ** 2 * amu) - dble(ab * p ** (-0.5d1 / 0.4D1)) / 0.4D1) dfxds=dfxdp*2._DP*s dfx=dfxds elseif (iflag == 5) then dfx=2*fx/s1-fx/dfx1*(ab*c+ab*s1/sqrt(p*p+1)*c6) elseif (iflag == 6) then dfx=2*mu(iflag)*s1*fx*(1+(1-c8)*p)/(p*(1+p)) elseif (iflag == 7) then dfx = ev(1) + 2*ev(2)*s2 + 3*ev(3)*s dfx1 = ev(4) + 2*ev(5)*s2 + 3*ev(6)*s dfx = 2 * s1 * ( dfx - f1*dfx1/f2 ) / f2 else dfx1 = f2 * f2 dfx = 2._DP * mu(iflag) * s1 / dfx1 end if v1x = sx + dxunif * fx + exunif * dfx * ds v2x = exunif * dfx * dsg / agrho sx = sx * rho return end subroutine pbex ! !--------------------------------------------------------------- subroutine pbex_vec (rho, grho, iflag, sx, v1x, v2x, length, small) !--------------------------------------------------------------- ! ! PBE exchange (without Slater exchange): ! iflag=1 J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996) ! iflag=2 "revised' PBE: Y. Zhang et al., PRL 80, 890 (1998) ! iflag=3 PBEsol: J.P.Perdew et al., PRL 100, 136406 (2008) ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none integer, intent(in) :: length integer, intent(in) :: iflag real(DP), intent(in) :: small real(DP), intent(in) :: rho(length), grho(length) real(DP), intent(out) :: sx(length), v1x(length), v2x(length) ! local variables integer :: i real(DP) :: kf, agrho, s1, dsg, exunif, fx ! (3*pi2*|rho|)^(1/3) ! |grho| ! |grho|/(2*kf*|rho|) ! n*ds/d(gn) ! exchange energy LDA part ! exchange energy gradient part real(DP) :: dfx, f1, f2 ! numerical coefficients (NB: c2=(3 pi^2)^(1/3) ) real(DP) :: third, c1, c2, c5 parameter (third = 1.0_dp / 3.0_dp, c1 = 0.75_dp / pi , & c2 = 3.093667726280136_dp, c5 = 4.0_dp * third) ! parameters of the functional real(DP) :: k (3), mu(3) data k / 0.804_dp, 1.245_dp, 0.804_dp /, & mu/ 0.21951_dp, 0.21951_dp, 0.12345679012345679012_dp / ! do i=1,length if ((rho(i).gt.small).and.(grho(i).gt.small**2)) then agrho = sqrt(grho(i)) kf = c2 * rho(i)**third dsg = 0.5_dp / kf s1 = agrho * dsg / rho(i) ! ! Energy f1 = s1*s1 * mu(iflag) / k(iflag) f2 = 1.0_dp / (1.0_dp + f1) fx = k(iflag) * (1.0_dp - f2) exunif = - c1 * kf sx(i) = exunif * fx ! ! Potential dfx = 2.0_dp * mu(iflag) * s1 *f2*f2 v1x(i) = sx(i) + exunif * (third * fx - c5 * dfx * s1) v2x(i) = exunif * dfx * dsg / agrho sx(i) = sx(i) * rho(i) else v1x(i) = 0.0_dp v2x(i) = 0.0_dp sx(i) = 0.0_dp end if end do end subroutine pbex_vec ! !--------------------------------------------------------------- subroutine pbec (rho, grho, iflag, sc, v1c, v2c) !--------------------------------------------------------------- ! ! PBE correlation (without LDA part) ! iflag=1: J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996). ! iflag=2: J.P.Perdew et al., PRL 100, 136406 (2008). ! iflag=3: L. Chiodo et al, PRL 108, 126402 (2012) (PBEQ2D) ! USE kinds, ONLY : DP implicit none integer, intent(in) :: iflag real(DP) :: rho, grho, sc, v1c, v2c real(DP), parameter :: ga = 0.031091d0 real(DP) :: be (3) ! pbe pbesol pbeq2d data be / 0.066725d0, 0.046d0, 0.066725d0/ real(DP), parameter :: third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0 real(DP), parameter :: xkf = 1.919158292677513d0, xks = 1.128379167095513d0 ! pi34=(3/4pi)^(1/3), xkf=(9 pi/4)^(1/3), xks= sqrt(4/pi) real(DP) :: kf, ks, rs, ec, vc, t, expe, af, bf, y, xy, qy real(DP) :: s1, h0, dh0, ddh0, sc2D, v1c2D, v2c2D ! rs = pi34 / rho**third call pw (rs, 1, ec, vc) kf = xkf / rs ks = xks * sqrt (kf) t = sqrt (grho) / (2.d0 * ks * rho) expe = exp ( - ec / ga) af = be(iflag) / ga * (1.d0 / (expe-1.d0) ) bf = expe * (vc - ec) y = af * t * t xy = (1.d0 + y) / (1.d0 + y + y * y) qy = y * y * (2.d0 + y) / (1.d0 + y + y * y) **2 s1 = 1.d0 + be(iflag) / ga * t * t * xy h0 = ga * log (s1) dh0 = be(iflag) * t * t / s1 * ( - 7.d0 / 3.d0 * xy - qy * (af * bf / & be(iflag)-7.d0 / 3.d0) ) ddh0 = be(iflag) / (2.d0 * ks * ks * rho) * (xy - qy) / s1 sc = rho * h0 v1c = h0 + dh0 v2c = ddh0 ! q2D if (iflag == 3)then call cpbe2d(rho,grho,sc2D,v1c2D,v2c2D) sc=sc+sc2D v1c=v1c+v1c2D v2c=v2c+v2c2D endif ! return end subroutine pbec !--------------------------------------------------------------- subroutine cpbe2d(rho,grho,sc,v1c,v2c) !--------------------------------------------------------------- ! 2D correction (last term of Eq. 5, PRL 108, 126402 (2012)) USE kinds, ONLY : dp USE constants, ONLY : pi IMPLICIT NONE ! REAL(dp), INTENT(in) :: rho, grho REAL(dp), INTENT(OUT) :: sc, v1c, v2c ! REAL(dp), PARAMETER:: ex1=0.333333333333333333_dp, ex2=1.166666666666667_dp REAL(dp), PARAMETER:: ex3=ex2+1.0_dp REAL(dp) :: fac1, fac2, zeta, phi, gr, rs, drsdn, akf, aks, t, dtdn, dtdgr REAL(dp) :: p, a, g, alpha1, beta1,beta2,beta3,beta4, dgdrs, epsc, depscdrs REAL(dp) :: c, gamma1, beta, aa, cg, adddepsc, h, dhdaa, dhdt, dhdrs REAL(dp) :: epscpbe, depscpbedrs, depscpbedt, a0,a1,a2, b0,b1,b2, c0,c1,c2 REAL(dp) :: e0,e1,e2, f0,f1,f2, g0,g1,g2, h0,h1,h2, d0,d1,d2, ff, dffdt REAL(dp) :: rs3d, rs2d, drs2ddrs3d, eps2d, deps2ddrs2, depsGGAdrs, depsGGAdt REAL(dp) :: drs2ddt, rs2, ec, decdn, decdgr, daadepsc ! fac1=(3.d0*pi*pi)**ex1 fac2=sqrt(4.d0*fac1/pi) zeta=0.d0 phi=1.d0 ! gr=sqrt (grho) ! rs=(3.d0/4.d0/pi/rho)**ex1 drsdn = -dble(3 ** (0.1D1 / 0.3D1)) * dble(2 ** (0.1D1 / 0.3D1)) * & 0.3141592654D1 ** (-0.1D1 / 0.3D1) * (0.1D1 / rho) ** (-0.2D1 / & 0.3D1) / rho ** 2 / 0.6D1 ! akf=(3.d0*pi*pi*rho)**(1.d0/3.d0) aks=dsqrt(4.d0*akf/pi) t=gr/2.d0/phi/aks/rho dtdn=-7.d0/6.d0*gr/2.d0/phi/dsqrt(4.d0/pi)/ & ((3.d0*pi*pi)**(1.d0/6.d0))/(rho**(13.d0/6.d0)) dtdgr=1.d0/2.d0/phi/aks/rho ! ! for the LDA correlation p=1.d0 A=0.031091d0 alpha1=0.21370d0 beta1=7.5957d0 beta2=3.5876d0 beta3=1.6382d0 beta4=0.49294d0 G = -0.2D1 * A * dble(1 + alpha1 * rs) * log(0.1D1 + 0.1D1 / A / ( & beta1 * sqrt(dble(rs)) + dble(beta2 * rs) + dble(beta3 * rs ** ( & 0.3D1 / 0.2D1)) + dble(beta4 * rs ** (p + 1))) / 0.2D1) dGdrs = -0.2D1 * A * alpha1 * log(0.1D1 + 0.1D1 / A / (beta1 * sqrt(rs) & + beta2 * rs + beta3 * rs ** (0.3D1 / 0.2D1) + beta4 * rs ** & (p + 1)) / 0.2D1) + (0.1D1 + alpha1 * rs) / (beta1 * sqrt(rs) + & beta2 * rs + beta3 * rs ** (0.3D1 / 0.2D1) + beta4 * rs ** (p + 1)) & ** 2 * (beta1 * rs ** (-0.1D1 / 0.2D1) / 0.2D1 + beta2 + 0.3D1 / & 0.2D1 * beta3 * sqrt(rs) + beta4 * rs ** (p + 1) * dble(p + 1) / & rs) / (0.1D1 + 0.1D1 / A / (beta1 * sqrt(rs) + beta2 * rs + beta3 * & rs ** (0.3D1 / 0.2D1) + beta4 * rs ** (p + 1)) / 0.2D1) ! epsc=G depscdrs=dGdrs ! ! PBE c=1.d0 gamma1=0.031091d0 beta=0.066725d0 ! AA = beta / gamma1 / (exp(-epsc / gamma1 / phi ** 3) - 0.1D1) cg = beta / gamma1 ** 2 / (exp(-epsc/ gamma1 / phi ** 3) - 0.1D1) & ** 2 / phi ** 3 * exp(-epsc / gamma1 / phi ** 3) dAAdepsc=cg ! if(t.le.10.d0)then H = dble(gamma1) * phi ** 3 * log(dble(1 + beta / gamma1 * t ** 2 & * (1 + AA * t ** 2) / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4))) ! dHdAA = gamma1 * phi ** 3 * (beta / gamma1 * t ** 4 / (1 + c * AA & * t ** 2 + AA ** 2 * t ** 4) - beta / gamma1 * t ** 2 * (1 + AA * & t ** 2) / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4) ** 2 * (c * t **& 2 + 2 * AA * t ** 4)) / (1 + beta / gamma1 * t ** 2 * (1 + AA * & t ** 2) / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4)) ! dHdt = gamma1 * phi ** 3 * (2 * beta / gamma1 * t * (1 + AA * t ** & 2) / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4) + 2 * beta / gamma1 & * t ** 3 * AA / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4) - beta / & gamma1 * t ** 2 * (1 + AA * t ** 2) / (1 + c * AA * t ** 2 + AA ** & 2 * t ** 4) ** 2 * (2 * c * AA * t + 4 * AA ** 2 * t ** 3)) / (1 & + beta / gamma1 * t ** 2 * (1 + AA * t ** 2) / (1 + c * AA * t ** & 2 + AA ** 2 * t ** 4)) else H=gamma1*(phi**3)*dlog(1.d0+(beta/gamma1)*(1.d0/AA)) ! dHdAA =gamma1*(phi**3)*1.d0/(1.d0+(beta/gamma1)*(1.d0/AA))* & (beta/gamma1)*(-1.d0/AA/AA) ! dHdt=0.d0 endif ! dHdrs=dHdAA*dAAdepsc*depscdrs ! epscPBE=epsc+H depscPBEdrs=depscdrs+dHdrs depscPBEdt=dHdt ! ! START THE 2D CORRECTION ! beta=1.3386d0 a0=-0.1925d0 a1=0.117331d0 a2=0.0234188d0 b0=0.0863136d0 b1=-0.03394d0 b2=-0.037093d0 c0=0.057234d0 c1=-0.00766765d0 c2=0.0163618d0 e0=1.0022d0 e1=0.4133d0 e2=1.424301d0 f0=-0.02069d0 f1=0.d0 f2=0.d0 g0=0.340d0 g1=0.0668467d0 g2=0.d0 h0=0.01747d0 h1=0.0007799d0 h2=1.163099d0 d0=-a0*h0 d1=-a1*h1 d2=-a2*h2 ! ff = t ** 4 * (1 + t ** 2) / (1000000 + t ** 6) dffdt = 4 * t ** 3 * (1 + t ** 2) / (1000000 + t ** 6) + 2 * t ** & 5 / (1000000 + t ** 6) - 6 * t ** 9 * (1 + t ** 2) / (1000000 + t & ** 6) ** 2 ! rs3d=rs rs2d = 0.4552100000D0 * dble(3 ** (0.7D1 / 0.12D2)) * dble(4 ** ( & 0.5D1 / 0.12D2)) * (0.1D1 / pi) ** (-0.5D1 / 0.12D2) * rs3d ** ( & 0.5D1 / 0.4D1) * sqrt(t) cg = 0.5690125000D0 * dble(3 ** (0.7D1 / 0.12D2)) * dble(4 ** ( & 0.5D1 / 0.12D2)) * (0.1D1 / pi) ** (-0.5D1 / 0.12D2) * rs3d ** (0.1D1 & / 0.4D1) * sqrt(t) drs2ddrs3d=cg cg = 0.2276050000D0 * dble(3 ** (0.7D1 / 0.12D2)) * dble(4 ** ( & 0.5D1 / 0.12D2)) * dble((1 / pi) ** (-0.5D1 / 0.12D2)) * dble(rs3d ** & (0.5D1 / 0.4D1)) * dble(t ** (-0.1D1 / 0.2D1)) drs2ddt=cg rs2=rs2d ! eps2d = (exp(-beta * rs2) - 0.1D1) * (-0.2D1 / 0.3D1 * sqrt(0.2D1) & * dble((1 + zeta) ** (0.3D1 / 0.2D1) + (1 - zeta) ** (0.3D1 / & 0.2D1)) / pi / rs2 + 0.4D1 / 0.3D1 * (0.1D1 + 0.3D1 / 0.8D1 * dble( & zeta ** 2) + 0.3D1 / 0.128D3 * dble(zeta ** 4)) * sqrt(0.2D1) / pi / & rs2) + a0 + (b0 * rs2 + c0 * rs2 ** 2 + d0 * rs2 ** 3) * log(0.1D1 & + 0.1D1 / (e0 * rs2 + f0 * rs2 ** (0.3D1 / 0.2D1) + g0 * rs2 ** & 2 + h0 * rs2 ** 3)) + (a1 + (b1 * rs2 + c1 * rs2 ** 2 + d1 * rs2 ** & 3) * log(0.1D1 + 0.1D1 / (e1 * rs2 + f1 * rs2 ** (0.3D1 / 0.2D1) & + g1 * rs2 ** 2 + h1 * rs2 ** 3))) * dble(zeta ** 2) + (a2 + (b2 & * rs2 + c2 * rs2 ** 2 + d2 * rs2 ** 3) * log(0.1D1 + 0.1D1 / (e2 * & rs2 + f2 * rs2 ** (0.3D1 / 0.2D1) + g2 * rs2 ** 2 + h2 * rs2 ** 3 & ))) * dble(zeta ** 4) ! cg = -beta * exp(-beta * rs2) * (-0.2D1 / 0.3D1 * sqrt(0.2D1) * & dble((1 + zeta) ** (0.3D1 / 0.2D1) + (1 - zeta) ** (0.3D1 / 0.2D1)) & / pi / rs2 + 0.4D1 / 0.3D1 * (0.1D1 + 0.3D1 / 0.8D1 * dble(zeta ** & 2) + 0.3D1 / 0.128D3 * dble(zeta ** 4)) * sqrt(0.2D1) / pi / rs2) & + (exp(-beta * rs2) - 0.1D1) * (0.2D1 / 0.3D1 * sqrt(0.2D1) * dble & ((1 + zeta) ** (0.3D1 / 0.2D1) + (1 - zeta) ** (0.3D1 / 0.2D1)) / & pi / rs2 ** 2 - 0.4D1 / 0.3D1 * (0.1D1 + 0.3D1 / 0.8D1 * dble(zeta & ** 2) + 0.3D1 / 0.128D3 * dble(zeta ** 4)) * sqrt(0.2D1) / pi / & rs2 ** 2) + (b0 + 0.2D1 * c0 * rs2 + 0.3D1 * d0 * rs2 ** 2) * log( & 0.1D1 + 0.1D1 / (e0 * rs2 + f0 * rs2 ** (0.3D1 / 0.2D1) + g0 * rs2 & ** 2 + h0 * rs2 ** 3)) - (b0 * rs2 + c0 * rs2 ** 2 + d0 * rs2 ** & 3) / (e0 * rs2 + f0 * rs2 ** (0.3D1 / 0.2D1) + g0 * rs2 ** 2 + h0 & * rs2 ** 3) ** 2 * (e0 + 0.3D1 / 0.2D1 * f0 * sqrt(rs2) + 0.2D1 * & g0 * rs2 + 0.3D1 * h0 * rs2 ** 2) / (0.1D1 + 0.1D1 / (e0 * rs2 + f0 & * rs2 ** (0.3D1 / 0.2D1) + g0 * rs2 ** 2 + h0 * rs2 ** 3)) + (( & b1 + 0.2D1 * c1 * rs2 + 0.3D1 * d1 * rs2 ** 2) * log(0.1D1 + 0.1D1 & / (e1 * rs2 + f1 * rs2 ** (0.3D1 / 0.2D1) + g1 * rs2 ** 2 + h1 * & rs2 ** 3)) - (b1 * rs2 + c1 * rs2 ** 2 + d1 * rs2 ** 3) / (e1 * rs2 & + f1 * rs2 ** (0.3D1 / 0.2D1) + g1 * rs2 ** 2 + h1 * rs2 ** 3) ** & 2 * (e1 + 0.3D1 / 0.2D1 * f1 * sqrt(rs2) + 0.2D1 * g1 * rs2 + & 0.3D1 * h1 * rs2 ** 2) / (0.1D1 + 0.1D1 / (e1 * rs2 + f1 * rs2 ** ( & 0.3D1 / 0.2D1) + g1 * rs2 ** 2 + h1 * rs2 ** 3))) * dble(zeta ** 2) & + ((b2 + 0.2D1 * c2 * rs2 + 0.3D1 * d2 * rs2 ** 2) * log(0.1D1 + & 0.1D1 / (e2 * rs2 + f2 * rs2 ** (0.3D1 / 0.2D1) + g2 * rs2 ** 2 + h2 & * rs2 ** 3)) - (b2 * rs2 + c2 * rs2 ** 2 + d2 * rs2 ** 3) / (e2 & * rs2 + f2 * rs2 ** (0.3D1 / 0.2D1) + g2 * rs2 ** 2 + h2 * rs2 ** & 3) ** 2 * (e2 + 0.3D1 / 0.2D1 * f2 * sqrt(rs2) + 0.2D1 * g2 * rs2 & + 0.3D1 * h2 * rs2 ** 2) / (0.1D1 + 0.1D1 / (e2 * rs2 + f2 * rs2 ** & (0.3D1 / 0.2D1) + g2 * rs2 ** 2 + h2 * rs2 ** 3))) * dble(zeta ** & 4) deps2ddrs2=cg ! ! GGA-2D ! depsGGAdrs=ff*(-depscPBEdrs+deps2ddrs2*drs2ddrs3d) depsGGAdt=dffdt*(-epscPBE+eps2d)+ff* & (-depscPBEdt+deps2ddrs2*drs2ddt) ! ec=rho*(ff*(-epscPBE+eps2d)) ! decdn=ff*(-epscPBE+eps2d)+rho*depsGGAdrs*drsdn+ & rho*depsGGAdt*dtdn ! decdgr=rho*depsGGAdt*dtdgr ! sc=ec v1c=decdn v2c=decdgr/gr ! RETURN END subroutine cpbe2d ! !--------------------------------------------------------------- subroutine sogga (rho, grho, sx, v1x, v2x) !------------------------------------------------------------- ! ! SOGGA exchange ! ! USE kinds USE constants, ONLY : pi implicit none real(dp), intent(in) :: rho, grho real(dp), intent(out) :: sx, v1x, v2x ! input: charge and abs gradient ! output: energy ! output: potential ! local variables real(dp) :: rho43, xs, xs2, dxs2_drho, dxs2_dgrho2 real(dp) :: CX, denom, C1, C2, Fso, Fpbe, ex, Fx, dFx_dxs2, dex_drho real(dp), parameter :: one = 1.0_dp, two=2.0_dp, three = 3.0_dp, & & four = 4.0_dp, eight = 8.0_dp, & & f13 = one/three, f23 = two/three, f43 = four/three, & & f34=three/four, f83 = eight/three, f12 = one/two real(dp), parameter :: mu=0.12346d0, kapa=0.552d0 ! !_____________________________________________________________________ CX = f34 * (three/pi)**f13 ! Cx LDA denom = four * (three*pi**two)**f23 C1 = mu / denom C2 = mu / (kapa * denom) rho43 = rho**f43 xs = grho / rho43 xs2 = xs * xs dxs2_drho = -f83 * xs2 / rho dxs2_dgrho2 = one /rho**f83 ex = - CX * rho43 dex_drho = - f43 * CX * rho**f13 Fso = kapa * (one - exp(-C2*xs2)) Fpbe = C1 * xs2 / (one + C2*xs2) Fx = f12 * (Fpbe + Fso) dFx_dxs2 = f12 * (C1 / ((one + C2*xs2)**2) + C1*exp(-C2*xs2)) ! ! Energy ! sx = Fx * ex ! ! Potential ! v1x = dex_drho * Fx + ex * dFx_dxs2 * dxs2_drho v2x = two * ex * dFx_dxs2 * dxs2_dgrho2 end subroutine sogga ! ! ! ================================================================== subroutine hcth(rho,grho,sx,v1x,v2x) ! ================================================================== ! HCTH/120, JCP 109, p. 6264 (1998) ! Parameters set-up after N.L. Doltsisnis & M. Sprik (1999) ! Present release: Mauro Boero, Tsukuba, 11/05/2004 !-------------------------------------------------------------------------- ! rhoa = rhob = 0.5 * rho ! grho is the SQUARE of the gradient of rho! --> gr=sqrt(grho) ! sx : total exchange correlation energy at point r ! v1x : d(sx)/drho (eq. dfdra = dfdrb in original) ! v2x : 1/gr*d(sx)/d(gr) (eq. 0.5 * dfdza = 0.5 * dfdzb in original) !-------------------------------------------------------------------------- USE kinds, ONLY : DP USE constants, ONLY: pi implicit none real(DP) :: rho, grho, sx, v1x, v2x real(DP), parameter :: o3=1.0d0/3.0d0, o34=4.0d0/3.0d0, fr83=8.d0/3.d0 real(DP) :: cg0(6), cg1(6), caa(6), cab(6), cx(6) real(DP) :: r3q2, r3pi, gr, rho_o3, rho_o34, xa, xa2, ra, rab, & dra_drho, drab_drho, g, dg, era1, dera1_dra, erab0, derab0_drab, & ex, dex_drho, uaa, uab, ux, ffaa, ffab, dffaa_drho, dffab_drho,& denaa, denab, denx, f83rho, bygr, gaa, gab, gx, taa, tab, txx, & dgaa_drho, dgab_drho, dgx_drho, dgaa_dgr, dgab_dgr, dgx_dgr ! r3q2=2.d0**(-o3) r3pi=(3.d0/pi)**o3 !.....coefficients for pw correlation...................................... cg0(1)= 0.031091d0 cg0(2)= 0.213700d0 cg0(3)= 7.595700d0 cg0(4)= 3.587600d0 cg0(5)= 1.638200d0 cg0(6)= 0.492940d0 cg1(1)= 0.015545d0 cg1(2)= 0.205480d0 cg1(3)=14.118900d0 cg1(4)= 6.197700d0 cg1(5)= 3.366200d0 cg1(6)= 0.625170d0 !......hcth-19-4..................................... caa(1)= 0.489508d+00 caa(2)= -0.260699d+00 caa(3)= 0.432917d+00 caa(4)= -0.199247d+01 caa(5)= 0.248531d+01 caa(6)= 0.200000d+00 cab(1)= 0.514730d+00 cab(2)= 0.692982d+01 cab(3)= -0.247073d+02 cab(4)= 0.231098d+02 cab(5)= -0.113234d+02 cab(6)= 0.006000d+00 cx(1) = 0.109163d+01 cx(2) = -0.747215d+00 cx(3) = 0.507833d+01 cx(4) = -0.410746d+01 cx(5) = 0.117173d+01 cx(6)= 0.004000d+00 !........................................................................... gr=DSQRT(grho) rho_o3=rho**(o3) rho_o34=rho**(o34) xa=1.25992105d0*gr/rho_o34 xa2=xa*xa ra=0.781592642d0/rho_o3 rab=r3q2*ra dra_drho=-0.260530881d0/rho_o34 drab_drho=r3q2*dra_drho call pwcorr(ra,cg1,g,dg) era1=g dera1_dra=dg call pwcorr(rab,cg0,g,dg) erab0=g derab0_drab=dg ex=-0.75d0*r3pi*rho_o34 dex_drho=-r3pi*rho_o3 uaa=caa(6)*xa2 uaa=uaa/(1.0d0+uaa) uab=cab(6)*xa2 uab=uab/(1.0d0+uab) ux=cx(6)*xa2 ux=ux/(1.0d0+ux) ffaa=rho*era1 ffab=rho*erab0-ffaa dffaa_drho=era1+rho*dera1_dra*dra_drho dffab_drho=erab0+rho*derab0_drab*drab_drho-dffaa_drho ! mb-> i-loop removed denaa=1.d0/(1.0d0+caa(6)*xa2) denab=1.d0/(1.0d0+cab(6)*xa2) denx =1.d0/(1.0d0+cx(6)*xa2) f83rho=fr83/rho bygr=2.0d0/gr gaa=caa(1)+uaa*(caa(2)+uaa*(caa(3)+uaa*(caa(4)+uaa*caa(5)))) gab=cab(1)+uab*(cab(2)+uab*(cab(3)+uab*(cab(4)+uab*cab(5)))) gx=cx(1)+ux*(cx(2)+ux*(cx(3)+ux*(cx(4)+ux*cx(5)))) taa=denaa*uaa*(caa(2)+uaa*(2.d0*caa(3)+uaa & *(3.d0*caa(4)+uaa*4.d0*caa(5)))) tab=denab*uab*(cab(2)+uab*(2.d0*cab(3)+uab & *(3.d0*cab(4)+uab*4.d0*cab(5)))) txx=denx*ux*(cx(2)+ux*(2.d0*cx(3)+ux & *(3.d0*cx(4)+ux*4.d0*cx(5)))) dgaa_drho=-f83rho*taa dgab_drho=-f83rho*tab dgx_drho=-f83rho*txx dgaa_dgr=bygr*taa dgab_dgr=bygr*tab dgx_dgr=bygr*txx ! mb sx=ex*gx+ffaa*gaa+ffab*gab v1x=dex_drho*gx+ex*dgx_drho & +dffaa_drho*gaa+ffaa*dgaa_drho & +dffab_drho*gab+ffab*dgab_drho v2x=(ex*dgx_dgr+ffaa*dgaa_dgr+ffab*dgab_dgr)/gr return end subroutine hcth !-------------------------------------------------------------------= subroutine pwcorr(r,c,g,dg) USE kinds, ONLY : DP implicit none real(DP) :: r, g, dg, c(6) real(DP) :: r12, r32, r2, rb, drb, sb r12=dsqrt(r) r32=r*r12 r2=r*r rb=c(3)*r12+c(4)*r+c(5)*r32+c(6)*r2 sb=1.0d0+1.0d0/(2.0d0*c(1)*rb) g=-2.0d0*c(1)*(1.0d0+c(2)*r)*dlog(sb) drb=c(3)/(2.0d0*r12)+c(4)+1.5d0*c(5)*r12+2.0d0*c(6)*r dg=(1.0d0+c(2)*r)*drb/(rb*rb*sb)-2.0d0*c(1)*c(2)*dlog(sb) return end subroutine pwcorr !----------------------------------------------------------------------------- ! ================================================================== subroutine optx(rho,grho,sx,v1x,v2x) ! OPTX, Handy et al. JCP 116, p. 5411 (2002) and refs. therein ! Present release: Mauro Boero, Tsukuba, 10/9/2002 !-------------------------------------------------------------------------- ! rhoa = rhob = 0.5 * rho in LDA implementation ! grho is the SQUARE of the gradient of rho! --> gr=sqrt(grho) ! sx : total exchange correlation energy at point r ! v1x : d(sx)/drho ! v2x : 1/gr*d(sx)/d(gr) !-------------------------------------------------------------------------- use kinds, only: DP implicit none real(DP) :: rho, grho, sx, v1x, v2x real(DP), parameter :: small=1.D-30, smal2=1.D-10 !.......coefficients and exponents.................... real(DP), parameter :: o43=4.0d0/3.0d0, two13=1.259921049894873D0, & two53=3.174802103936399D0, gam=0.006D0, a1cx=0.9784571170284421D0,& a2=1.43169D0 real(DP) :: gr, rho43, xa, gamx2, uden, uu !.......OPTX in compact form.......................... if(rho <= small) then sx=0.0D0 v1x=0.0D0 v2x=0.0D0 else gr = max(grho,SMAL2) rho43=rho**o43 xa=two13*DSQRT(gr)/rho43 gamx2=gam*xa*xa uden=1.d+00/(1.d+00+gamx2) uu=a2*gamx2*gamx2*uden*uden uden=rho43*uu*uden sx=-rho43*(a1cx+uu)/two13 v1x=o43*(sx+two53*uden)/rho v2x=-two53*uden/gr endif return end subroutine optx ! !--------------------------------------------------------------- subroutine wcx (rho, grho, sx, v1x, v2x) !--------------------------------------------------------------- ! ! Wu-Cohen exchange (without Slater exchange): ! Z. Wu and R. E. Cohen, PRB 73, 235116 (2006) ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none real(DP) :: rho, grho, sx, v1x, v2x ! input: charge and squared gradient ! output: energy ! output: potential ! local variables real(DP) :: kf, agrho, s1, s2, es2, ds, dsg, exunif, fx ! (3*pi2*|rho|)^(1/3) ! |grho| ! |grho|/(2*kf*|rho|) ! s^2 ! n*ds/dn ! n*ds/d(gn) ! exchange energy LDA part ! exchange energy gradient part real(DP) :: dxunif, dfx, f1, f2, f3, dfx1, x1, x2, x3, & dxds1, dxds2, dxds3 ! numerical coefficients (NB: c2=(3 pi^2)^(1/3) ) real(DP) :: third, c1, c2, c5, c6, teneightyone parameter (third = 1.d0 / 3.d0, c1 = 0.75d0 / pi , & c2 = 3.093667726280136d0, c5 = 4.d0 * third, & teneightyone = 0.123456790123d0) ! parameters of the functional real(DP) :: k, mu, cwc parameter (k = 0.804d0, mu = 0.2195149727645171d0, cwc = 0.00793746933516d0) ! agrho = sqrt (grho) kf = c2 * rho**third dsg = 0.5d0 / kf s1 = agrho * dsg / rho s2 = s1 * s1 es2 = exp(-s2) ds = - c5 * s1 ! ! Energy ! ! x = 10/81 s^2 + (mu - 10/81) s^2 e^-s^2 + ln (1 + c s^4) x1 = teneightyone * s2 x2 = (mu - teneightyone) * s2 * es2 x3 = log(1.d0 + cwc * s2 * s2) f1 = (x1 + x2 + x3) / k f2 = 1.d0 + f1 f3 = k / f2 fx = k - f3 exunif = - c1 * kf sx = exunif * fx ! ! Potential ! dxunif = exunif * third dfx1 = f2 * f2 dxds1 = teneightyone dxds2 = (mu - teneightyone) * es2 * (1.d0 - s2) dxds3 = 2.d0 * cwc * s2 / (1.d0 + cwc * s2 *s2) dfx = 2.d0 * s1 * (dxds1 + dxds2 + dxds3) / dfx1 v1x = sx + dxunif * fx + exunif * dfx * ds v2x = exunif * dfx * dsg / agrho sx = sx * rho return end subroutine wcx ! !----------------------------------------------------------------------- function dpz (rs, iflg) !----------------------------------------------------------------------- ! derivative of the correlation potential with respect to local density ! Perdew and Zunger parameterization of the Ceperley-Alder functional ! use kinds, only: DP USE constants, ONLY: pi, fpi ! implicit none ! real(DP), intent (in) :: rs integer, intent(in) :: iflg real(DP) :: dpz ! ! local variables ! a,b,c,d,gc,b1,b2 are the parameters defining the functional ! real(DP), parameter :: a = 0.0311d0, b = -0.048d0, c = 0.0020d0, & d = -0.0116d0, gc = -0.1423d0, b1 = 1.0529d0, b2 = 0.3334d0,& a1 = 7.0d0 * b1 / 6.d0, a2 = 4.d0 * b2 / 3.d0 real(DP) :: x, den, dmx, dmrs ! ! if (iflg == 1) then dmrs = a / rs + 2.d0 / 3.d0 * c * (log (rs) + 1.d0) + & (2.d0 * d-c) / 3.d0 else x = sqrt (rs) den = 1.d0 + x * (b1 + x * b2) dmx = gc * ( (a1 + 2.d0 * a2 * x) * den - 2.d0 * (b1 + 2.d0 * & b2 * x) * (1.d0 + x * (a1 + x * a2) ) ) / den**3 dmrs = 0.5d0 * dmx / x endif ! dpz = - fpi * rs**4.d0 / 9.d0 * dmrs return ! end function dpz !---------------------------------------------------------------------- ! ! HSE (wPBE) stabbing starts HERE ! ! Note, that you can get PBEhole functional, ! M. Ernzerhof, J. Chem. Phys. 109, 3313 (1998), ! from this by just setting OMEGA=0 ! ! These are wrappers to the reference implementation !----------------------------------------------------------------------- SUBROUTINE pbexsr_lsd(RHOA,RHOB,GRHOAA,GRHOBB,sx, & V1XA,V2XA,V1XB,V2XB,OMEGA) ! ==--------------------------------------------------------------== IMPLICIT REAL*8 (A-H,O-Z) PARAMETER(SMALL=1.D-20) ! ==--------------------------------------------------------------== SXA=0.0D0 SXB=0.0D0 V1XA=0.0D0 V2XA=0.0D0 V1XB=0.0D0 V2XB=0.0D0 IF(RHOA.GT.SMALL.AND.GRHOAA.GT.SMALL) THEN CALL pbexsr(2.D0*RHOA, 4.D0*GRHOAA, SXA, V1XA, V2XA, OMEGA) ENDIF IF(RHOB.GT.SMALL.AND.GRHOBB.GT.SMALL) THEN CALL pbexsr(2.D0*RHOB, 4.D0*GRHOBB, SXB, V1XB, V2XB, OMEGA) ENDIF sx = 0.5D0*(SXA+SXB) V2XA = 2.D0*V2XA V2XB = 2.D0*V2XB ! I HOPE THIS WORKS JUST LIKE THIS ! ==--------------------------------------------------------------== RETURN END SUBROUTINE pbexsr_lsd ! !----------------------------------------------------------------------- SUBROUTINE pbexsr(RHO,GRHO,sx,V1X,V2X,OMEGA) !----------------------------------------------------------------------- ! ! INCLUDE 'cnst.inc' use kinds, ONLY : DP IMPLICIT REAL*8 (A-H,O-Z) PARAMETER(SMALL=1.D-20,SMAL2=1.D-08) PARAMETER(US=0.161620459673995492D0,AX=-0.738558766382022406D0, & UM=0.2195149727645171D0,UK=0.8040D0,UL=UM/UK) REAL(DP), PARAMETER :: f1 = -1.10783814957303361_DP, alpha = 2.0_DP/3.0_DP ! ==--------------------------------------------------------------== ! CALL XC(RHO,EX,EC,VX,VC) RS = RHO**(1.0_DP/3.0_DP) VX = (4.0_DP/3.0_DP)*f1*alpha*RS ! AA = DMAX1(GRHO,SMAL2) AA = GRHO ! RR = RHO**(-4.0_DP/3.0_DP) RR = 1.0_DP/(RHO*RS) EX = AX/RR S2 = AA*RR*RR*US*US S = SQRT(S2) IF(S.GT.8.3D0) THEN S = 8.572844D0 - 18.796223D0/S2 ENDIF CALL wpbe_analy_erfc_approx_grad(RHO,S,OMEGA,FX,D1X,D2X) sx = EX*FX ! - EX DSDN = -4.D0/3.D0*S/RHO V1X = VX*FX + (DSDN*D2X+D1X)*EX ! - VX DSDG = US*RR V2X = EX*1.D0/SQRT(AA)*DSDG*D2X ! NOTE, here sx is the total energy density, ! not just the gradient correction energy density as e.g. in pbex() ! And the same goes for the potentials V1X, V2X ! ==--------------------------------------------------------------== RETURN END SUBROUTINE pbexsr ! ! gau-pbe in ! !----------------------------------------------------------------------- SUBROUTINE pbexgau_lsd(RHOA,RHOB,GRHOAA,GRHOBB,sx, & V1XA,V2XA,V1XB,V2XB,alpha_gau) ! ==--------------------------------------------------------------== IMPLICIT REAL*8 (A-H,O-Z) PARAMETER(SMALL=1.D-20) ! ==--------------------------------------------------------------== SXA=0.0D0 SXB=0.0D0 V1XA=0.0D0 V2XA=0.0D0 V1XB=0.0D0 V2XB=0.0D0 IF(RHOA.GT.SMALL.AND.GRHOAA.GT.SMALL) THEN CALL pbexgau(2.D0*RHOA, 4.D0*GRHOAA, SXA, V1XA, V2XA, & alpha_gau) ENDIF IF(RHOB.GT.SMALL.AND.GRHOBB.GT.SMALL) THEN CALL pbexgau(2.D0*RHOB, 4.D0*GRHOBB, SXB, V1XB, V2XB, & alpha_gau) ENDIF sx = 0.5D0*(SXA+SXB) V2XA = 2.D0*V2XA V2XB = 2.D0*V2XB ! I HOPE THIS WORKS JUST LIKE THIS ! ==--------------------------------------------------------------== RETURN END SUBROUTINE pbexgau_lsd ! !----------------------------------------------------------------------- SUBROUTINE pbexgau(RHO,GRHO,sxsr,v1xsr,v2xsr,alpha_gau) !----------------------------------------------------------------------- ! use kinds, ONLY : DP IMPLICIT REAL*8 (A-H,O-Z) PARAMETER(SMALL=1.D-20,SMAL2=1.D-08) PARAMETER(US=0.161620459673995492D0,AX=-0.738558766382022406D0, & UM=0.2195149727645171D0,UK=0.8040D0,UL=UM/UK) REAL(DP), PARAMETER :: f1 = -1.10783814957303361_DP, alpha = 2.0_DP/3.0_DP ! ==--------------------------------------------------------------== RS = RHO**(1.0_DP/3.0_DP) VX = (4.0_DP/3.0_DP)*f1*alpha*RS AA = GRHO RR = 1.0_DP/(RHO*RS) EX = AX/RR ! AX is 3/4/PI*(3*PI*PI)**(1/3). This is the same as -c1*c2 in pbex(). S2 = AA*RR*RR*US*US S = SQRT(S2) IF(S.GT.10.D0) THEN S = 10.D0 ENDIF CALL pbe_gauscheme(RHO,S,alpha_gau,FX,D1X,D2X) sxsr = EX*FX ! - EX DSDN = -4.D0/3.D0*S/RHO V1Xsr = VX*FX + (DSDN*D2X+D1X)*EX ! - VX DSDG = US*RR V2Xsr = EX*1.D0/SQRT(AA)*DSDG*D2X ! NOTE, here sx is the total energy density, ! not just the gradient correction energy density as e.g. in pbex() ! And the same goes for the potentials V1X, V2X ! ==--------------------------------------------------------------== RETURN END SUBROUTINE pbexgau ! !----------------------------------------------------------------------- SUBROUTINE pbe_gauscheme(rho,s,alpha_gau,Fx,dFxdr,dFxds) !-------------------------------------------------------------------- Implicit None Real*8 rho,s,alpha_gau,Fx,dFxdr,dFxds ! input: charge and squared gradient and alpha_gau ! output: GGA enhancement factor of gau-PBE ! output: d(Fx)/d(s) , d(Fx)/d(rho) Real*8 Kx, Nx ! PBE96 GGA enhancement factor ! GGA enhancement factor of Gaussian Function Real*8 bx, cx, PI, sqrtpial, Prefac, term_PBE, Third, KsF Real*8 d1sdr, d1Kxds, d1Kxdr, d1bxdr, d1bxds, d1bxdKx, & d1Nxdbx,d1Nxdr, d1Nxds Real*8, external :: qe_erf,TayExp Real*8 Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten Save Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten Data Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten & / 0D0,1D0,2D0,3D0,4D0,5D0,6D0,7D0,8D0,9D0,10D0 / Real*8 k , mu Data k / 0.804d0 / , mu / 0.21951d0 / ! parameters of PBE functional Third = One/Three PI = ACos(-One) KsF = (Three*PI*PI*rho)**Third sqrtpial = sqrt(PI/alpha_gau) Prefac = Two *sqrt(PI/alpha_gau) / Three ! PBE96 GGA enhancement factor part term_PBE = One / (One + s*s*mu/k) Kx = One + k - k * term_PBE ! GGA enhancement factor of Gaussian Function part bx = sqrt(Kx*alpha_gau) / KsF ! cx = exp(-One/Four/bx/bx) - One If(Abs(One/bx/bx) .lt. 1.0D-4) then cx = TayExp(-One/bx/bx) else cx = exp(-One/bx/bx) - One endIf Nx = bx * Prefac * ( sqrt(PI) * qe_erf(One/bx) + & (bx - Two*bx*bx*bx)*cx - Two*bx ) ! for convergency If(Abs(Nx) .lt. 1.0D-15)then Nx = Zero else if ((One - Abs(Nx)) .lt. 1.0D-15)then Nx = One else Nx = Nx endIf ! for convergency end Fx = Kx * Nx ! 1st derivatives d1sdr = - Four / Three * s / rho d1Kxds = Two * s * mu * term_PBE * term_PBE d1Kxdr = d1Kxds * d1sdr d1bxdKx = bx / (Two* Kx) d1bxdr = - bx /(Three*rho) + d1Kxdr * d1bxdKx d1bxds = d1bxdKx * d1Kxds d1Nxdbx = Nx/bx - Prefac * bx * Three * & ( cx*(One + Two*bx*bx) + Two ) d1Nxdr = d1Nxdbx * d1bxdr d1Nxds = d1Nxdbx * d1bxds dFxdr = d1Kxdr * Nx + Kx * d1Nxdr dFxds = d1Kxds * Nx + Kx * d1Nxds RETURN END SUBROUTINE pbe_gauscheme ! FUNCTION TayExp(X) Real*8 TAYEXP,X INTEGER NTERM,I Real*8 SUMVAL,IVAL,COEF PARAMETER (NTERM=16) SUMVAL = X IVAL = X COEF = 1.0D0 DO 10 I = 2,NTERM COEF = COEF * I IVAL = IVAL * (X / COEF) SUMVAL = SUMVAL + IVAL 10 CONTINUE TAYEXP = SUMVAL RETURN END FUNCTION TayExp ! gau-pbe out ! !----------------------------------------------------------------------- SUBROUTINE wpbe_analy_erfc_approx_grad(rho,s,omega,Fx_wpbe, & d1rfx,d1sfx) !-------------------------------------------------------------------- ! ! wPBE Enhancement Factor (erfc approx.,analytical, gradients) ! !-------------------------------------------------------------------- Implicit None Real*8 rho,s,omega,Fx_wpbe,d1sfx,d1rfx Real*8 f12,f13,f14,f18,f23,f43,f32,f72,f34,f94,f1516,f98 Real*8 pi,pi2,pi_23,srpi Real*8 Three_13 Real*8 ea1,ea2,ea3,ea4,ea5,ea6,ea7,ea8 Real*8 eb1 Real*8 A,B,C,D,E Real*8 Ha1,Ha2,Ha3,Ha4,Ha5 Real*8 Fc1,Fc2 Real*8 EGa1,EGa2,EGa3 Real*8 EGscut,wcutoff,expfcutoff Real*8 xkf, xkfrho Real*8 w,w2,w3,w4,w5,w6,w7,w8 Real*8 d1rw Real*8 A2,A3,A4,A12,A32,A52,A72 Real*8 X Real*8 s2,s3,s4,s5,s6 Real*8 H,F Real*8 Hnum,Hden,d1sHnum,d1sHden Real*8 d1sH,d1sF Real*8 G_a,G_b,EG Real*8 d1sG_a,d1sG_b,d1sEG Real*8 Hsbw,Hsbw2,Hsbw3,Hsbw4,Hsbw12,Hsbw32,Hsbw52,Hsbw72 Real*8 DHsbw,DHsbw2,DHsbw3,DHsbw4,DHsbw5 Real*8 DHsbw12,DHsbw32,DHsbw52,DHsbw72,DHsbw92 Real*8 d1sHsbw,d1rHsbw Real*8 d1sDHsbw,d1rDHsbw Real*8 HsbwA94,HsbwA9412 Real*8 HsbwA942,HsbwA943,HsbwA945 Real*8 piexperf,expei Real*8 piexperfd1,expeid1 Real*8 d1spiexperf,d1sexpei Real*8 d1rpiexperf,d1rexpei Real*8 expei1,expei2,expei3,expei4 Real*8 DHs,DHs2,DHs3,DHs4,DHs72,DHs92,DHsw,DHsw2,DHsw52,DHsw72 Real*8 d1sDHs,d1rDHsw Real*8 np1,np2 Real*8 d1rnp1,d1rnp2 Real*8 t1,t2t9,t10,t10d1 Real*8 f2,f3,f4,f5,f6,f7,f8,f9 Real*8 f2d1,f3d1,f4d1,f5d1,f6d1,f8d1,f9d1 Real*8 d1sf2,d1sf3,d1sf4,d1sf5,d1sf6,d1sf7,d1sf8,d1sf9 Real*8 d1rf2,d1rf3,d1rf4,d1rf5,d1rf6,d1rf7,d1rf8,d1rf9 Real*8 d1st1,d1rt1 Real*8 d1st2t9,d1rt2t9 Real*8 d1st10,d1rt10 Real*8 d1sterm1,d1rterm1,term1d1 Real*8 d1sterm2 Real*8 d1sterm3,d1rterm3 Real*8 d1sterm4,d1rterm4 Real*8 d1sterm5,d1rterm5 Real*8 term1,term2,term3,term4,term5 Real*8 ax,um,uk,ul Real*8 gc1,gc2 Real*8, external :: qe_erf, qe_erfc ! Real*8 ei Real*8, external :: expint Real*8 Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten Real*8 Fifteen,Sixteen Real*8 r12,r64,r36,r81,r256,r384,r864,r1944,r4374 Real*8 r20,r25,r27,r48,r120,r128,r144,r288,r324,r512,r729 Real*8 r30,r32,r75,r243,r2187,r6561,r40,r105,r54,r135 Real*8 r1215,r15309 Save Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten Data Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten & / 0D0,1D0,2D0,3D0,4D0,5D0,6D0,7D0,8D0,9D0,10D0 / Save Fifteen,Sixteen Data Fifteen,Sixteen / 1.5D1, 1.6D1 / Save r36,r64,r81,r256,r384,r864,r1944,r4374 Data r36,r64,r81,r256,r384,r864,r1944,r4374 & / 3.6D1,6.4D1,8.1D1,2.56D2,3.84D2,8.64D2,1.944D3,4.374D3 / Save r27,r48,r120,r128,r144,r288,r324,r512,r729 Data r27,r48,r120,r128,r144,r288,r324,r512,r729 & / 2.7D1,4.8D1,1.2D2,1.28D2,1.44D2,2.88D2,3.24D2,5.12D2,7.29D2 / Save r20,r32,r243,r2187,r6561,r40 Data r20,r32,r243,r2187,r6561,r40 & / 2.0d1,3.2D1,2.43D2,2.187D3,6.561D3,4.0d1 / Save r12,r25,r30,r54,r75,r105,r135,r1215,r15309 Data r12,r25,r30,r54,r75,r105,r135,r1215,r15309 & / 1.2D1,2.5d1,3.0d1,5.4D1,7.5d1,1.05D2,1.35D2,1.215D3,1.5309D4 / ! General constants f12 = 0.5d0 f13 = One/Three f14 = 0.25d0 f18 = 0.125d0 f23 = Two * f13 f43 = Two * f23 f32 = 1.5d0 f72 = 3.5d0 f34 = 0.75d0 f94 = 2.25d0 f98 = 1.125d0 f1516 = Fifteen / Sixteen pi = ACos(-One) pi2 = pi*pi pi_23 = pi2**f13 srpi = sqrt(pi) Three_13 = Three**f13 ! Constants from fit ea1 = -1.128223946706117d0 ea2 = 1.452736265762971d0 ea3 = -1.243162299390327d0 ea4 = 0.971824836115601d0 ea5 = -0.568861079687373d0 ea6 = 0.246880514820192d0 ea7 = -0.065032363850763d0 ea8 = 0.008401793031216d0 eb1 = 1.455915450052607d0 ! Constants for PBE hole A = 1.0161144d0 B = -3.7170836d-1 C = -7.7215461d-2 D = 5.7786348d-1 E = -5.1955731d-2 X = - Eight/Nine ! Constants for fit of H(s) (PBE) Ha1 = 9.79681d-3 Ha2 = 4.10834d-2 Ha3 = 1.87440d-1 Ha4 = 1.20824d-3 Ha5 = 3.47188d-2 ! Constants for F(H) (PBE) Fc1 = 6.4753871d0 Fc2 = 4.7965830d-1 ! Constants for polynomial expansion for EG for small s EGa1 = -2.628417880d-2 EGa2 = -7.117647788d-2 EGa3 = 8.534541323d-2 ! Constants for large x expansion of exp(x)*ei(-x) expei1 = 4.03640D0 expei2 = 1.15198D0 expei3 = 5.03627D0 expei4 = 4.19160D0 ! Cutoff criterion below which to use polynomial expansion EGscut = 8.0d-2 wcutoff = 1.4D1 expfcutoff = 7.0D2 ! Calculate prelim variables xkf = (Three*pi2*rho) ** f13 xkfrho = xkf * rho A2 = A*A A3 = A2*A A4 = A3*A A12 = Sqrt(A) A32 = A12*A A52 = A32*A A72 = A52*A w = omega / xkf w2 = w * w w3 = w2 * w w4 = w2 * w2 w5 = w3 * w2 w6 = w5 * w w7 = w6 * w w8 = w7 * w d1rw = -(One/(Three*rho))*w X = - Eight/Nine s2 = s*s s3 = s2*s s4 = s2*s2 s5 = s4*s s6 = s5*s ! Calculate wPBE enhancement factor Hnum = Ha1*s2 + Ha2*s4 Hden = One + Ha3*s4 + Ha4*s5 + Ha5*s6 H = Hnum/Hden d1sHnum = Two*Ha1*s + Four*Ha2*s3 d1sHden = Four*Ha3*s3 + Five*Ha4*s4 + Six*Ha5*s5 d1sH = (Hden*d1sHnum - Hnum*d1sHden) / (Hden*Hden) F = Fc1*H + Fc2 d1sF = Fc1*d1sH ! Change exponent of Gaussian if we're using the simple approx. if(w .gt. wcutoff) then eb1 = 2.0d0 endif ! Calculate helper variables (should be moved later on...) Hsbw = s2*H + eb1*w2 Hsbw2 = Hsbw*Hsbw Hsbw3 = Hsbw2*Hsbw Hsbw4 = Hsbw3*Hsbw Hsbw12 = Sqrt(Hsbw) Hsbw32 = Hsbw12*Hsbw Hsbw52 = Hsbw32*Hsbw Hsbw72 = Hsbw52*Hsbw d1sHsbw = d1sH*s2 + Two*s*H d1rHsbw = Two*eb1*d1rw*w DHsbw = D + s2*H + eb1*w2 DHsbw2 = DHsbw*DHsbw DHsbw3 = DHsbw2*DHsbw DHsbw4 = DHsbw3*DHsbw DHsbw5 = DHsbw4*DHsbw DHsbw12 = Sqrt(DHsbw) DHsbw32 = DHsbw12*DHsbw DHsbw52 = DHsbw32*DHsbw DHsbw72 = DHsbw52*DHsbw DHsbw92 = DHsbw72*DHsbw HsbwA94 = f94 * Hsbw / A HsbwA942 = HsbwA94*HsbwA94 HsbwA943 = HsbwA942*HsbwA94 HsbwA945 = HsbwA943*HsbwA942 HsbwA9412 = Sqrt(HsbwA94) DHs = D + s2*H DHs2 = DHs*DHs DHs3 = DHs2*DHs DHs4 = DHs3*DHs DHs72 = DHs3*sqrt(DHs) DHs92 = DHs72*DHs d1sDHs = Two*s*H + s2*d1sH DHsw = DHs + w2 DHsw2 = DHsw*DHsw DHsw52 = sqrt(DHsw)*DHsw2 DHsw72 = DHsw52*DHsw d1rDHsw = Two*d1rw*w if(s .gt. EGscut) then G_a = srpi * (Fifteen*E + Six*C*(One+F*s2)*DHs + & Four*B*(DHs2) + Eight*A*(DHs3)) & * (One / (Sixteen * DHs72)) & - f34*pi*sqrt(A) * exp(f94*H*s2/A) * & (One - qe_erf(f32*s*sqrt(H/A))) d1sG_a = (One/r32)*srpi * & ((r36*(Two*H + d1sH*s) / (A12*sqrt(H/A))) & + (One/DHs92) * & (-Eight*A*d1sDHs*DHs3 - r105*d1sDHs*E & -r30*C*d1sDHs*DHs*(One+s2*F) & +r12*DHs2*(-B*d1sDHs + C*s*(d1sF*s + Two*F))) & - ((r54*exp(f94*H*s2/A)*srpi*s*(Two*H+d1sH*s)* & qe_erfc(f32*sqrt(H/A)*s)) & / A12)) G_b = (f1516 * srpi * s2) / DHs72 d1sG_b = (Fifteen*srpi*s*(Four*DHs - Seven*d1sDHs*s)) & / (r32*DHs92) EG = - (f34*pi + G_a) / G_b d1sEG = (-Four*d1sG_a*G_b + d1sG_b*(Four*G_a + Three*pi)) & / (Four*G_b*G_b) else EG = EGa1 + EGa2*s2 + EGa3*s4 d1sEG = Two*EGa2*s + Four*EGa3*s3 endif ! Calculate the terms needed in any case term2 = (DHs2*B + DHs*C + Two*E + DHs*s2*C*F + Two*s2*EG) / & (Two*DHs3) d1sterm2 = (-Six*d1sDHs*(EG*s2 + E) & + DHs2 * (-d1sDHs*B + s*C*(d1sF*s + Two*F)) & + Two*DHs * (Two*EG*s - d1sDHs*C & + s2 * (d1sEG - d1sDHs*C*F))) & / (Two*DHs4) term3 = - w * (Four*DHsw2*B + Six*DHsw*C + Fifteen*E & + Six*DHsw*s2*C*F + Fifteen*s2*EG) / & (Eight*DHs*DHsw52) d1sterm3 = w * (Two*d1sDHs*DHsw * (Four*DHsw2*B & + Six*DHsw*C + Fifteen*E & + Three*s2*(Five*EG + Two*DHsw*C*F)) & + DHs * (r75*d1sDHs*(EG*s2 + E) & + Four*DHsw2*(d1sDHs*B & - Three*s*C*(d1sF*s + Two*F)) & - Six*DHsw*(-Three*d1sDHs*C & + s*(Ten*EG + Five*d1sEG*s & - Three*d1sDHs*s*C*F)))) & / (Sixteen*DHs2*DHsw72) d1rterm3 = (-Two*d1rw*DHsw * (Four*DHsw2*B & + Six*DHsw*C + Fifteen*E & + Three*s2*(Five*EG + Two*DHsw*C*F)) & + w * d1rDHsw * (r75*(EG*s2 + E) & + Two*DHsw*(Two*DHsw*B + Nine*C & + Nine*s2*C*F))) & / (Sixteen*DHs*DHsw72) term4 = - w3 * (DHsw*C + Five*E + DHsw*s2*C*F + Five*s2*EG) / & (Two*DHs2*DHsw52) d1sterm4 = (w3 * (Four*d1sDHs*DHsw * (DHsw*C + Five*E & + s2 * (Five*EG + DHsw*C*F)) & + DHs * (r25*d1sDHs*(EG*s2 + E) & - Two*DHsw2*s*C*(d1sF*s + Two*F) & + DHsw * (Three*d1sDHs*C + s*(-r20*EG & - Ten*d1sEG*s & + Three*d1sDHs*s*C*F))))) & / (Four*DHs3*DHsw72) d1rterm4 = (w2 * (-Six*d1rw*DHsw * (DHsw*C + Five*E & + s2 * (Five*EG + DHsw*C*F)) & + w * d1rDHsw * (r25*(EG*s2 + E) + & Three*DHsw*C*(One + s2*F)))) & / (Four*DHs2*DHsw72) term5 = - w5 * (E + s2*EG) / & (DHs3*DHsw52) d1sterm5 = (w5 * (Six*d1sDHs*DHsw*(EG*s2 + E) & + DHs * (-Two*DHsw*s * (Two*EG + d1sEG*s) & + Five*d1sDHs * (EG*s2 + E)))) & / (Two*DHs4*DHsw72) d1rterm5 = (w4 * Five*(EG*s2 + E) * (-Two*d1rw*DHsw & + d1rDHsw * w)) & / (Two*DHs3*DHsw72) if((s.gt.0.0d0).or.(w.gt.0.0d0)) then t10 = (f12)*A*Log(Hsbw / DHsbw) t10d1 = f12*A*(One/Hsbw - One/DHsbw) d1st10 = d1sHsbw*t10d1 d1rt10 = d1rHsbw*t10d1 endif ! Calculate exp(x)*f(x) depending on size of x if(HsbwA94 .lt. expfcutoff) then piexperf = pi*Exp(HsbwA94)*qe_erfc(HsbwA9412) ! expei = Exp(HsbwA94)*Ei(-HsbwA94) expei = Exp(HsbwA94)*(-expint(1,HsbwA94)) else ! print *,rho,s," LARGE HsbwA94" piexperf = pi*(One/(srpi*HsbwA9412) & - One/(Two*Sqrt(pi*HsbwA943)) & + Three/(Four*Sqrt(pi*HsbwA945))) expei = - (One/HsbwA94) * & (HsbwA942 + expei1*HsbwA94 + expei2) / & (HsbwA942 + expei3*HsbwA94 + expei4) endif ! Calculate the derivatives (based on the orig. expression) ! --> Is this ok? ==> seems to be ok... piexperfd1 = - (Three*srpi*sqrt(Hsbw/A))/(Two*Hsbw) & + (Nine*piexperf)/(Four*A) d1spiexperf = d1sHsbw*piexperfd1 d1rpiexperf = d1rHsbw*piexperfd1 expeid1 = f14*(Four/Hsbw + (Nine*expei)/A) d1sexpei = d1sHsbw*expeid1 d1rexpei = d1rHsbw*expeid1 if (w .eq. Zero) then ! Fall back to original expression for the PBE hole t1 = -f12*A*expei d1st1 = -f12*A*d1sexpei d1rt1 = -f12*A*d1rexpei ! write(*,*) s, t1, t10, d1st1,d1rt1,d1rt10 if(s .gt. 0.0D0) then term1 = t1 + t10 d1sterm1 = d1st1 + d1st10 d1rterm1 = d1rt1 + d1rt10 Fx_wpbe = X * (term1 + term2) d1sfx = X * (d1sterm1 + d1sterm2) d1rfx = X * d1rterm1 else Fx_wpbe = 1.0d0 ! TODO This is checked to be true for term1 ! How about the other terms??? d1sfx = 0.0d0 d1rfx = 0.0d0 endif elseif(w .gt. wcutoff) then ! Use simple Gaussian approximation for large w ! print *,rho,s," LARGE w" term1 = -f12*A*(expei+log(DHsbw)-log(Hsbw)) term1d1 = - A/(Two*DHsbw) - f98*expei d1sterm1 = d1sHsbw*term1d1 d1rterm1 = d1rHsbw*term1d1 Fx_wpbe = X * (term1 + term2 + term3 + term4 + term5) d1sfx = X * (d1sterm1 + d1sterm2 + d1sterm3 & + d1sterm4 + d1sterm5) d1rfx = X * (d1rterm1 + d1rterm3 + d1rterm4 + d1rterm5) else ! For everything else, use the full blown expression ! First, we calculate the polynomials for the first term np1 = -f32*ea1*A12*w + r27*ea3*w3/(Eight*A12) & - r243*ea5*w5/(r32*A32) + r2187*ea7*w7/(r128*A52) d1rnp1 = - f32*ea1*d1rw*A12 + (r81*ea3*d1rw*w2)/(Eight*A12) & - (r1215*ea5*d1rw*w4)/(r32*A32) & + (r15309*ea7*d1rw*w6)/(r128*A52) np2 = -A + f94*ea2*w2 - r81*ea4*w4/(Sixteen*A) & + r729*ea6*w6/(r64*A2) - r6561*ea8*w8/(r256*A3) d1rnp2 = f12*(Nine*ea2*d1rw*w) & - (r81*ea4*d1rw*w3)/(Four*A) & + (r2187*ea6*d1rw*w5)/(r32*A2) & - (r6561*ea8*d1rw*w7)/(r32*A3) ! The first term is t1 = f12*(np1*piexperf + np2*expei) d1st1 = f12*(d1spiexperf*np1 + d1sexpei*np2) d1rt1 = f12*(d1rnp2*expei + d1rpiexperf*np1 + & d1rexpei*np2 + d1rnp1*piexperf) ! The factors for the main polynomoal in w and their derivatives f2 = (f12)*ea1*srpi*A / DHsbw12 f2d1 = - ea1*srpi*A / (Four*DHsbw32) d1sf2 = d1sHsbw*f2d1 d1rf2 = d1rHsbw*f2d1 f3 = (f12)*ea2*A / DHsbw f3d1 = - ea2*A / (Two*DHsbw2) d1sf3 = d1sHsbw*f3d1 d1rf3 = d1rHsbw*f3d1 f4 = ea3*srpi*(-f98 / Hsbw12 & + f14*A / DHsbw32) f4d1 = ea3*srpi*((Nine/(Sixteen*Hsbw32))- & (Three*A/(Eight*DHsbw52))) d1sf4 = d1sHsbw*f4d1 d1rf4 = d1rHsbw*f4d1 f5 = ea4*(One/r128) * (-r144*(One/Hsbw) & + r64*(One/DHsbw2)*A) f5d1 = ea4*((f98/Hsbw2)-(A/DHsbw3)) d1sf5 = d1sHsbw*f5d1 d1rf5 = d1rHsbw*f5d1 f6 = ea5*(Three*srpi*(Three*DHsbw52*(Nine*Hsbw-Two*A) & + Four*Hsbw32*A2)) & / (r32*DHsbw52*Hsbw32*A) f6d1 = ea5*srpi*((r27/(r32*Hsbw52))- & (r81/(r64*Hsbw32*A))- & ((Fifteen*A)/(Sixteen*DHsbw72))) d1sf6 = d1sHsbw*f6d1 d1rf6 = d1rHsbw*f6d1 f7 = ea6*(((r32*A)/DHsbw3 & + (-r36 + (r81*s2*H)/A)/Hsbw2)) / r32 d1sf7 = ea6*(Three*(r27*d1sH*DHsbw4*Hsbw*s2 + & Eight*d1sHsbw*A*(Three*DHsbw4 - Four*Hsbw3*A) + & r54*DHsbw4*s*(Hsbw - d1sHsbw*s)*H))/ & (r32*DHsbw4*Hsbw3*A) d1rf7 = ea6*d1rHsbw*((f94/Hsbw3)-((Three*A)/DHsbw4) & -((r81*s2*H)/(Sixteen*Hsbw3*A))) f8 = ea7*(-Three*srpi*(-r40*Hsbw52*A3 & +Nine*DHsbw72*(r27*Hsbw2-Six*Hsbw*A+Four*A2))) & / (r128 * DHsbw72*Hsbw52*A2) f8d1 = ea7*srpi*((r135/(r64*Hsbw72)) + (r729/(r256*Hsbw32*A2)) & -(r243/(r128*Hsbw52*A)) & -((r105*A)/(r32*DHsbw92))) d1sf8 = d1sHsbw*f8d1 d1rf8 = d1rHsbw*f8d1 f9 = (r324*ea6*eb1*DHsbw4*Hsbw*A & + ea8*(r384*Hsbw3*A3 + DHsbw4*(-r729*Hsbw2 & + r324*Hsbw*A - r288*A2))) / (r128*DHsbw4*Hsbw3*A2) f9d1 = -((r81*ea6*eb1)/(Sixteen*Hsbw3*A)) & + ea8*((r27/(Four*Hsbw4))+(r729/(r128*Hsbw2*A2)) & -(r81/(Sixteen*Hsbw3*A)) & -((r12*A/DHsbw5))) d1sf9 = d1sHsbw*f9d1 d1rf9 = d1rHsbw*f9d1 t2t9 = f2*w + f3*w2 + f4*w3 + f5*w4 + f6*w5 & + f7*w6 + f8*w7 + f9*w8 d1st2t9 = d1sf2*w + d1sf3*w2 + d1sf4*w3 + d1sf5*w4 & + d1sf6*w5 + d1sf7*w6 + d1sf8*w7 & + d1sf9*w8 d1rt2t9 = d1rw*f2 + d1rf2*w + Two*d1rw*f3*w & + d1rf3*w2 + Three*d1rw*f4*w2 & + d1rf4*w3 + Four*d1rw*f5*w3 & + d1rf5*w4 + Five*d1rw*f6*w4 & + d1rf6*w5 + Six*d1rw*f7*w5 & + d1rf7*w6 + Seven*d1rw*f8*w6 & + d1rf8*w7 + Eight*d1rw*f9*w7 + d1rf9*w8 ! The final value of term1 for 0 < omega < wcutoff is: term1 = t1 + t2t9 + t10 d1sterm1 = d1st1 + d1st2t9 + d1st10 d1rterm1 = d1rt1 + d1rt2t9 + d1rt10 ! The final value for the enhancement factor and its ! derivatives is: Fx_wpbe = X * (term1 + term2 + term3 + term4 + term5) d1sfx = X * (d1sterm1 + d1sterm2 + d1sterm3 & + d1sterm4 + d1sterm5) d1rfx = X * (d1rterm1 + d1rterm3 + d1rterm4 + d1rterm5) endif END SUBROUTINE wpbe_analy_erfc_approx_grad espresso-5.1/flib/latgen.f900000644000175000017500000002473112341373036014021 0ustar mbamba! ! Copyright (C) 2001-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !------------------------------------------------------------------------- subroutine latgen(ibrav,celldm,a1,a2,a3,omega) !----------------------------------------------------------------------- ! sets up the crystallographic vectors a1, a2, and a3. ! ! ibrav is the structure index: ! 1 cubic P (sc) 8 orthorhombic P ! 2 cubic F (fcc) 9 1-face (base) centered orthorhombic ! 3 cubic I (bcc) 10 all face centered orthorhombic ! 4 hexagonal and trigonal P 11 body centered orthorhombic ! 5 trigonal R, 3-fold axis c 12 monoclinic P (unique axis: c) ! 6 tetragonal P (st) 13 one face (base) centered monoclinic ! 7 tetragonal I (bct) 14 triclinic P ! Also accepted: ! 0 "free" structure -12 monoclinic P (unique axis: b) ! -5 trigonal R, threefold axis along (111) ! -9 alternate description for base centered orthorhombic ! ! celldm are parameters which fix the shape of the unit cell ! omega is the unit-cell volume ! ! NOTA BENE: all axis sets are right-handed ! Boxes for US PPs do not work properly with left-handed axis ! use kinds, only: DP implicit none integer, intent(in) :: ibrav real(DP), intent(inout) :: celldm(6) real(DP), intent(inout) :: a1(3), a2(3), a3(3) real(DP), intent(out) :: omega ! real(DP), parameter:: sr2 = 1.414213562373d0, & sr3 = 1.732050807569d0 integer :: i,j,k,l,iperm,ir real(DP) :: term, cbya, s, term1, term2, singam, sen ! ! user-supplied lattice vectors ! if (ibrav == 0) then if (SQRT( a1(1)**2 + a1(2)**2 + a1(3)**2 ) == 0 ) & call errore ('latgen', 'wrong at for ibrav=0', 1) if (SQRT( a2(1)**2 + a2(2)**2 + a2(3)**2 ) == 0 ) & call errore ('latgen', 'wrong at for ibrav=0', 2) if (SQRT( a3(1)**2 + a3(2)**2 + a3(3)**2 ) == 0 ) & call errore ('latgen', 'wrong at for ibrav=0', 3) if ( celldm(1) /= 0.D0 ) then ! ! ... input at are in units of alat => convert them to a.u. ! a1(:) = a1(:) * celldm(1) a2(:) = a2(:) * celldm(1) a3(:) = a3(:) * celldm(1) else ! ! ... input at are in atomic units: define celldm(1) from a1 ! celldm(1) = SQRT( a1(1)**2 + a1(2)**2 + a1(3)**2 ) end if ! else a1(:) = 0.d0 a2(:) = 0.d0 a3(:) = 0.d0 end if ! if (celldm (1) <= 0.d0) call errore ('latgen', 'wrong celldm(1)', ibrav) ! ! index of bravais lattice supplied ! if (ibrav == 1) then ! ! simple cubic lattice ! a1(1)=celldm(1) a2(2)=celldm(1) a3(3)=celldm(1) ! else if (ibrav == 2) then ! ! fcc lattice ! term=celldm(1)/2.d0 a1(1)=-term a1(3)=term a2(2)=term a2(3)=term a3(1)=-term a3(2)=term ! else if (ibrav == 3) then ! ! bcc lattice ! term=celldm(1)/2.d0 do ir=1,3 a1(ir)=term a2(ir)=term a3(ir)=term end do a2(1)=-term a3(1)=-term a3(2)=-term ! else if (ibrav == 4) then ! ! hexagonal lattice ! if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! cbya=celldm(3) a1(1)=celldm(1) a2(1)=-celldm(1)/2.d0 a2(2)=celldm(1)*sr3/2.d0 a3(3)=celldm(1)*cbya ! else if (ABS(ibrav) == 5) then ! ! trigonal lattice ! if (celldm (4) <= -0.5_dp .or. celldm (4) >= 1.0_dp) & call errore ('latgen', 'wrong celldm(4)', ibrav) ! term1=sqrt(1.0_dp + 2.0_dp*celldm(4)) term2=sqrt(1.0_dp - celldm(4)) ! IF ( ibrav == 5) THEN ! threefold axis along c (001) a2(2)=sr2*celldm(1)*term2/sr3 a2(3)=celldm(1)*term1/sr3 a1(1)=celldm(1)*term2/sr2 a1(2)=-a1(1)/sr3 a1(3)= a2(3) a3(1)=-a1(1) a3(2)= a1(2) a3(3)= a2(3) ELSE IF ( ibrav == -5) THEN ! threefold axis along (111) ! Notice that in the cubic limit (alpha=90, celldm(4)=0, term1=term2=1) ! does not yield the x,y,z axis, but an equivalent rotated triplet: ! a/3 (-1,2,2), a/3 (2,-1,2), a/3 (2,2,-1) ! If you prefer the x,y,z axis as cubic limit, you should modify the ! definitions of a1(1) and a1(2) as follows:' ! a1(1) = celldm(1)*(term1+2.0_dp*term2)/3.0_dp ! a1(2) = celldm(1)*(term1-term2)/3.0_dp ! (info by G. Pizzi and A. Cepellotti) ! a1(1) = celldm(1)*(term1-2.0_dp*term2)/3.0_dp a1(2) = celldm(1)*(term1+term2)/3.0_dp a1(3) = a1(2) a2(1) = a1(3) a2(2) = a1(1) a2(3) = a1(2) a3(1) = a1(2) a3(2) = a1(3) a3(3) = a1(1) END IF else if (ibrav == 6) then ! ! tetragonal lattice ! if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! cbya=celldm(3) a1(1)=celldm(1) a2(2)=celldm(1) a3(3)=celldm(1)*cbya ! else if (ibrav == 7) then ! ! body centered tetragonal lattice ! if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! cbya=celldm(3) a2(1)=celldm(1)/2.d0 a2(2)=a2(1) a2(3)=cbya*celldm(1)/2.d0 a1(1)= a2(1) a1(2)=-a2(1) a1(3)= a2(3) a3(1)=-a2(1) a3(2)=-a2(1) a3(3)= a2(3) ! else if (ibrav == 8) then ! ! Simple orthorhombic lattice ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! a1(1)=celldm(1) a2(2)=celldm(1)*celldm(2) a3(3)=celldm(1)*celldm(3) ! else if ( ABS(ibrav) == 9) then ! ! One face (base) centered orthorhombic lattice ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! IF ( ibrav == 9 ) THEN ! old PWscf description a1(1) = 0.5d0 * celldm(1) a1(2) = a1(1) * celldm(2) a2(1) = - a1(1) a2(2) = a1(2) ELSE ! alternate description a1(1) = 0.5d0 * celldm(1) a1(2) =-a1(1) * celldm(2) a2(1) = a1(1) a2(2) =-a1(2) END IF a3(3) = celldm(1) * celldm(3) ! else if (ibrav == 10) then ! ! All face centered orthorhombic lattice ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! a2(1) = 0.5d0 * celldm(1) a2(2) = a2(1) * celldm(2) a1(1) = a2(1) a1(3) = a2(1) * celldm(3) a3(2) = a2(1) * celldm(2) a3(3) = a1(3) ! else if (ibrav == 11) then ! ! Body centered orthorhombic lattice ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) ! a1(1) = 0.5d0 * celldm(1) a1(2) = a1(1) * celldm(2) a1(3) = a1(1) * celldm(3) a2(1) = - a1(1) a2(2) = a1(2) a2(3) = a1(3) a3(1) = - a1(1) a3(2) = - a1(2) a3(3) = a1(3) ! else if (ibrav == 12) then ! ! Simple monoclinic lattice, unique (i.e. orthogonal to a) axis: c ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) if (abs(celldm(4))>=1.d0) call errore ('latgen', 'wrong celldm(4)', ibrav) ! sen=sqrt(1.d0-celldm(4)**2) a1(1)=celldm(1) a2(1)=celldm(1)*celldm(2)*celldm(4) a2(2)=celldm(1)*celldm(2)*sen a3(3)=celldm(1)*celldm(3) ! else if (ibrav ==-12) then ! ! Simple monoclinic lattice, unique axis: b (more common) ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) if (abs(celldm(5))>=1.d0) call errore ('latgen', 'wrong celldm(5)', ibrav) ! sen=sqrt(1.d0-celldm(5)**2) a1(1)=celldm(1) a2(2)=celldm(1)*celldm(2) a3(1)=celldm(1)*celldm(3)*celldm(5) a3(3)=celldm(1)*celldm(3)*sen ! else if (ibrav == 13) then ! ! One face centered monoclinic lattice ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) if (abs(celldm(4))>=1.d0) call errore ('latgen', 'wrong celldm(4)', ibrav) ! sen = sqrt( 1.d0 - celldm(4) ** 2 ) a1(1) = 0.5d0 * celldm(1) a1(3) =-a1(1) * celldm(3) a2(1) = celldm(1) * celldm(2) * celldm(4) a2(2) = celldm(1) * celldm(2) * sen a3(1) = a1(1) a3(3) =-a1(3) ! else if (ibrav == 14) then ! ! Triclinic lattice ! if (celldm (2) <= 0.d0) call errore ('latgen', 'wrong celldm(2)', ibrav) if (celldm (3) <= 0.d0) call errore ('latgen', 'wrong celldm(3)', ibrav) if (abs(celldm(4))>=1.d0) call errore ('latgen', 'wrong celldm(4)', ibrav) if (abs(celldm(5))>=1.d0) call errore ('latgen', 'wrong celldm(5)', ibrav) if (abs(celldm(6))>=1.d0) call errore ('latgen', 'wrong celldm(6)', ibrav) ! singam=sqrt(1.d0-celldm(6)**2) term= (1.d0+2.d0*celldm(4)*celldm(5)*celldm(6) & -celldm(4)**2-celldm(5)**2-celldm(6)**2) if (term < 0.d0) call errore & ('latgen', 'celldm do not make sense, check your data', ibrav) term= sqrt(term/(1.d0-celldm(6)**2)) a1(1)=celldm(1) a2(1)=celldm(1)*celldm(2)*celldm(6) a2(2)=celldm(1)*celldm(2)*singam a3(1)=celldm(1)*celldm(3)*celldm(5) a3(2)=celldm(1)*celldm(3)*(celldm(4)-celldm(5)*celldm(6))/singam a3(3)=celldm(1)*celldm(3)*term ! else ! call errore('latgen',' nonexistent bravais lattice',ibrav) ! end if ! ! calculate unit-cell volume omega ! omega=0.d0 s=1.d0 i=1 j=2 k=3 ! 101 do iperm=1,3 omega=omega+s*a1(i)*a2(j)*a3(k) l=i i=j j=k k=l end do ! i=2 j=1 k=3 s=-s if(s < 0.d0) go to 101 omega=abs(omega) return ! end subroutine latgen espresso-5.1/flib/invmat_complex.f900000644000175000017500000000277312341373036015576 0ustar mbamba! ! Copyright (C) 2004 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE invmat_complex (n, a, a_inv, da) !----------------------------------------------------------------------- ! computes the inverse "a_inv" of a complex matrix "a", both ! dimensioned (n,n). If the matrix is dimensioned 3x3, it also computes ! determinant "da". Matrix "a" is unchanged on output - LAPACK ! USE kinds, ONLY : DP IMPLICIT NONE INTEGER :: n COMPLEX (DP), DIMENSION (n,n) :: a, a_inv COMPLEX (DP) :: da ! INTEGER :: info, lda, lwork, ipiv (n) ! info=0: inversion was successful ! lda : leading dimension (the same as n) ! ipiv : work space for pivoting (assumed of length lwork=n) COMPLEX (DP) :: work (n) ! more work space ! lda = n lwork=n ! a_inv(:,:) = a(:,:) ! CALL zgetrf (n, n, a_inv, lda, ipiv, info) CALL errore ('invmat', 'error in ZGETRF', abs (info) ) CALL zgetri (n, a_inv, lda, ipiv, work, lwork, info) CALL errore ('invmat', 'error in ZGETRI', abs (info) ) ! IF (n == 3) THEN da = a(1,1)*(a(2,2)*a(3,3)-a(2,3)*a(3,2)) + & a(1,2)*(a(2,3)*a(3,1)-a(2,1)*a(3,3)) + & a(1,3)*(a(2,1)*a(3,2)-a(3,1)*a(2,2)) IF (ABS(da) < 1.d-10) CALL errore(' invmat ',' singular matrix ', 1) ELSE da = (0.d0,0.d0) END IF ! RETURN ! END SUBROUTINE invmat_complex espresso-5.1/flib/volume.f900000644000175000017500000000247412341373036014056 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- subroutine volume (alat, a1, a2, a3, omega) !--------------------------------------------------------------------- ! ! Compute the volume of the unit cell ! use kinds, ONLY: DP implicit none ! ! First the I/O variables ! real(DP) :: alat, a1 (3), a2 (3), a3 (3), omega ! input: lattice parameter (unit length) ! input: the first lattice vector ! input: the second lattice vector ! input: the third lattice vector ! input: the volume of the unit cell ! ! Here the local variables required by the routine ! real(DP) :: s ! the sign of a permutation integer :: i, j, k, l, iperm !\ ! \ ! / auxiliary indices !/ ! counter on permutations ! ! Compute the volume ! omega = 0.d0 s = 1.d0 i = 1 j = 2 k = 3 101 do iperm = 1, 3 omega = omega + s * a1 (i) * a2 (j) * a3 (k) l = i i = j j = k k = l enddo i = 2 j = 1 k = 3 s = - s if (s.lt.0.d0) goto 101 omega = abs (omega) * alat**3 return end subroutine volume espresso-5.1/flib/cryst_to_car.f900000644000175000017500000000420112341373036015230 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine cryst_to_cart (nvec, vec, trmat, iflag) !----------------------------------------------------------------------- ! ! This routine transforms the atomic positions or the k-point ! components from crystallographic to cartesian coordinates ! ( iflag=1 ) and viceversa ( iflag=-1 ). ! Output cartesian coordinates are stored in the input ('vec') array ! ! USE kinds, ONLY : DP implicit none ! integer, intent(in) :: nvec, iflag ! nvec: number of vectors (atomic positions or k-points) ! to be transformed from crystal to cartesian and vice versa ! iflag: gives the direction of the transformation real(DP), intent(in) :: trmat (3, 3) ! trmat: transformation matrix ! if iflag=1: ! trmat = at , basis of the real-space lattice, for atoms or ! = bg , basis of the reciprocal-space lattice, for k-points ! if iflag=-1: the opposite real(DP), intent(inout) :: vec (3, nvec) ! coordinates of the vector (atomic positions or k-points) to be ! transformed - overwritten on output ! ! local variables ! integer :: nv, kpol ! counter on vectors ! counter on polarizations real(DP) :: vau (3) ! workspace ! ! Compute the cartesian coordinates of each vectors ! (atomic positions or k-points components) ! do nv = 1, nvec if (iflag.eq.1) then do kpol = 1, 3 vau (kpol) = trmat (kpol, 1) * vec (1, nv) + trmat (kpol, 2) & * vec (2, nv) + trmat (kpol, 3) * vec (3, nv) enddo else do kpol = 1, 3 vau (kpol) = trmat (1, kpol) * vec (1, nv) + trmat (2, kpol) & * vec (2, nv) + trmat (3, kpol) * vec (3, nv) enddo endif do kpol = 1, 3 vec (kpol, nv) = vau (kpol) enddo enddo ! return end subroutine cryst_to_cart espresso-5.1/flib/generate_k_along_lines.f900000644000175000017500000000570112341373036017221 0ustar mbambaSUBROUTINE generate_k_along_lines(nkaux, xkaux, wkaux, xk, wk, nkstot) ! ! This routine recieves as input a set of k point (xkaux) and integer weights ! (wkaux) and generates a set of k points along the lines ! xkaux(:,i+1)-xkaux(:,i). Each line contains wkaux(i) points. ! The weights of each k point wk(i) is the length of the path from xk(:,1) ! to xk(i). Points with wkaux=0 do not increase the path length. ! The total number of output points must be nkstot, and xk and wk must ! be array of length nkstot. ! USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(IN) :: nkaux, nkstot, wkaux(nkaux) REAL(DP), INTENT(IN) :: xkaux(3,nkaux) REAL(DP), INTENT(OUT) :: xk(3,nkstot), wk(nkstot) INTEGER :: nkstot_, i, j REAL(DP) :: delta, xkmod nkstot_=1 wk(1)=0.0_DP xk(:,1)=xkaux(:,1) DO i=2,nkaux IF (wkaux(i-1)>0) THEN delta=1.0_DP/wkaux(i-1) DO j=1,wkaux(i-1) nkstot_=nkstot_+1 IF (nkstot_ > nkstot) CALL errore ('generate_k_along_lines', & 'internal error 1: wrong nkstot',i) xk(:,nkstot_)=xkaux(:,i-1)+delta*j*(xkaux(:,i)-xkaux(:,i-1)) xkmod=SQRT( (xk(1,nkstot_)-xk(1,nkstot_-1))**2 + & (xk(2,nkstot_)-xk(2,nkstot_-1))**2 + & (xk(3,nkstot_)-xk(3,nkstot_-1))**2 ) wk(nkstot_)=wk(nkstot_-1) + xkmod ENDDO ELSEIF (wkaux(i-1)==0) THEN nkstot_=nkstot_+1 IF (nkstot_ > nkstot) CALL errore ('generate_k_along_lines', & 'internal error 2: wrong nkstot',i) IF (nkstot_ ==1 ) CALL errore ('generate_k_along_lines', & 'problems with weights',i) xk(:,nkstot_)=xkaux(:,i) wk(nkstot_)=wk(nkstot_-1) ELSE CALL errore ('generate_k_along_lines', 'wrong number of points',i) ENDIF ENDDO IF (nkstot_ /= nkstot) CALL errore ('generate_k_along_lines', & 'internal error 3: wrong nkstot',nkstot_) RETURN END SUBROUTINE generate_k_along_lines SUBROUTINE generate_k_in_plane(nkaux, xkaux, wkaux, xk, wk, nkstot) ! ! Generate a uniform mesh of k points on the plane defined by ! the origin xkaux(:,1), and two vectors xkaux(:,2) and xkaux(:,3). ! The size of the mesh is wkaux(2)*wkaux(3). ! USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(IN) :: nkaux, nkstot, wkaux(nkaux) REAL(DP), INTENT(IN) :: xkaux(3,nkaux) REAL(DP), INTENT(OUT) :: xk(3,nkstot), wk(nkstot) REAL(DP) :: dkx(3), dky(3), wk0 INTEGER :: ijk, i, j dkx(:)=(xkaux(:,2)-xkaux(:,1))/(wkaux(2)-1.0_DP) dky(:)=(xkaux(:,3)-xkaux(:,1))/(wkaux(3)-1.0_DP) wk0=1.0_DP/nkstot ijk=0 DO i=1, wkaux(2) DO j = 1, wkaux(3) ijk=ijk+1 IF (ijk > nkstot) CALL errore ('generate_k_in_plane', & 'internal error : wrong nstot',i) xk(:,ijk) = xkaux(:,1) + dkx(:)*(i-1) + dky(:) * (j-1) wk(ijk) = wk0 ENDDO ENDDO RETURN END SUBROUTINE generate_k_in_plane espresso-5.1/flib/linpack.f900000644000175000017500000001571512341373036014172 0ustar mbamba! Slightly modified version of LINPACK routines zgefa and zgedi SUBROUTINE ZGEFA(A,LDA,N,IPVT,INFO) USE kinds, ONLY : DP INTEGER LDA,N,IPVT(*),INFO COMPLEX(DP) A(LDA,*) ! ! ZGEFA FACTORS A COMPLEX(DP) MATRIX BY GAUSSIAN ELIMINATION. ! ! ZGEFA IS USUALLY CALLED BY ZGECO, BUT IT CAN BE CALLED ! DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED. ! (TIME FOR ZGECO) = (1 + 9/N)*(TIME FOR ZGEFA) . ! ! ON ENTRY ! ! A COMPLEX(DP)(LDA, N) ! THE MATRIX TO BE FACTORED. ! ! LDA INTEGER ! THE LEADING DIMENSION OF THE ARRAY A . ! ! N INTEGER ! THE ORDER OF THE MATRIX A . ! ! ON RETURN ! ! A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS ! WHICH WERE USED TO OBTAIN IT. ! THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE ! L IS A PRODUCT OF PERMUTATION AND UNIT LOWER ! TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR. ! ! IPVT INTEGER(N) ! AN INTEGER VECTOR OF PIVOT INDICES. ! ! INFO INTEGER ! = 0 NORMAL VALUE. ! = K IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR ! CONDITION FOR THIS SUBROUTINE, BUT IT DOES ! INDICATE THAT ZGESL OR ZGEDI WILL DIVIDE BY ZERO ! IF CALLED. USE RCOND IN ZGECO FOR A RELIABLE ! INDICATION OF SINGULARITY. ! ! LINPACK. THIS VERSION DATED 08/14/78 . ! CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB. ! ! SUBROUTINES AND FUNCTIONS ! ! BLAS ZAXPY,ZSCAL,IZAMAX ! FORTRAN DABS ! ! INTERNAL VARIABLES ! COMPLEX(DP) T INTEGER IZAMAX,J,K,KP1,L,NM1 ! COMPLEX(DP) ZDUM REAL(DP) CABS1 REAL(DP) REAL,AIMAG COMPLEX(DP) ZDUMR,ZDUMI REAL(ZDUMR) = ZDUMR AIMAG(ZDUMI) = (0.0D0,-1.0D0)*ZDUMI CABS1(ZDUM) = DABS(REAL(ZDUM)) + DABS(AIMAG(ZDUM)) ! ! GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING ! INFO = 0 NM1 = N - 1 IF (NM1 .LT. 1) GO TO 70 DO 60 K = 1, NM1 KP1 = K + 1 ! ! FIND L = PIVOT INDEX ! L = IZAMAX(N-K+1,A(K,K),1) + K - 1 IPVT(K) = L ! ! ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED ! IF (CABS1(A(L,K)) .EQ. 0.0D0) GO TO 40 ! ! INTERCHANGE IF NECESSARY ! IF (L .EQ. K) GO TO 10 T = A(L,K) A(L,K) = A(K,K) A(K,K) = T 10 CONTINUE ! ! COMPUTE MULTIPLIERS ! T = -(1.0D0,0.0D0)/A(K,K) CALL ZSCAL(N-K,T,A(K+1,K),1) ! ! ROW ELIMINATION WITH COLUMN INDEXING ! DO 30 J = KP1, N T = A(L,J) IF (L .EQ. K) GO TO 20 A(L,J) = A(K,J) A(K,J) = T 20 CONTINUE CALL ZAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1) 30 CONTINUE GO TO 50 40 CONTINUE INFO = K 50 CONTINUE 60 CONTINUE 70 CONTINUE IPVT(N) = N IF (CABS1(A(N,N)) .EQ. 0.0D0) INFO = N RETURN END SUBROUTINE ZGEFA SUBROUTINE ZGEDI(A,LDA,N,IPVT,DET,WORK,JOB) USE kinds, ONLY : DP INTEGER LDA,N,IPVT(*),JOB COMPLEX(DP) A(LDA,*),DET(2),WORK(*) ! ! ZGEDI COMPUTES THE DETERMINANT AND INVERSE OF A MATRIX ! USING THE FACTORS COMPUTED BY ZGECO OR ZGEFA. ! ! ON ENTRY ! ! A COMPLEX(DP)(LDA, N) ! THE OUTPUT FROM ZGECO OR ZGEFA. ! ! LDA INTEGER ! THE LEADING DIMENSION OF THE ARRAY A . ! ! N INTEGER ! THE ORDER OF THE MATRIX A . ! ! IPVT INTEGER(N) ! THE PIVOT VECTOR FROM ZGECO OR ZGEFA. ! ! WORK COMPLEX(DP)(N) ! WORK VECTOR. CONTENTS DESTROYED. ! ! JOB INTEGER ! = 11 BOTH DETERMINANT AND INVERSE. ! = 01 INVERSE ONLY. ! = 10 DETERMINANT ONLY. ! ! ON RETURN ! ! A INVERSE OF ORIGINAL MATRIX IF REQUESTED. ! OTHERWISE UNCHANGED. ! ! DET COMPLEX(DP)(2) ! DETERMINANT OF ORIGINAL MATRIX IF REQUESTED. ! OTHERWISE NOT REFERENCED. ! DETERMINANT = DET(1) * 10.0**DET(2) ! WITH 1.0 .LE. CABS1(DET(1)) .LT. 10.0 ! OR DET(1) .EQ. 0.0 . ! ! ERROR CONDITION ! ! A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS ! A ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED. ! IT WILL NOT OCCUR IF THE SUBROUTINES ARE CALLED CORRECTLY ! AND IF ZGECO HAS SET RCOND .GT. 0.0 OR ZGEFA HAS SET ! INFO .EQ. 0 . ! ! LINPACK. THIS VERSION DATED 08/14/78 . ! CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB. ! ! SUBROUTINES AND FUNCTIONS ! ! BLAS ZAXPY,ZSCAL,ZSWAP ! FORTRAN DABS,CMPLX,MOD ! ! INTERNAL VARIABLES ! COMPLEX(DP) T REAL(DP) TEN INTEGER I,J,K,KB,KP1,L,NM1 ! COMPLEX(DP) ZDUM REAL(DP) CABS1 REAL(DP) REAL,AIMAG COMPLEX(DP) ZDUMR,ZDUMI REAL(ZDUMR) = ZDUMR AIMAG(ZDUMI) = (0.0D0,-1.0D0)*ZDUMI CABS1(ZDUM) = DABS(REAL(ZDUM)) + DABS(AIMAG(ZDUM)) ! ! COMPUTE DETERMINANT ! IF (JOB/10 .EQ. 0) GO TO 70 DET(1) = (1.0D0,0.0D0) DET(2) = (0.0D0,0.0D0) TEN = 10.0D0 DO 50 I = 1, N IF (IPVT(I) .NE. I) DET(1) = -DET(1) DET(1) = A(I,I)*DET(1) ! ...EXIT IF (CABS1(DET(1)) .EQ. 0.0D0) GO TO 60 10 IF (CABS1(DET(1)) .GE. 1.0D0) GO TO 20 DET(1) = CMPLX(TEN,0.0D0,KIND=dp)*DET(1) DET(2) = DET(2) - (1.0D0,0.0D0) GO TO 10 20 CONTINUE 30 IF (CABS1(DET(1)) .LT. TEN) GO TO 40 DET(1) = DET(1)/CMPLX(TEN,0.0D0,KIND=dp) DET(2) = DET(2) + (1.0D0,0.0D0) GO TO 30 40 CONTINUE 50 CONTINUE 60 CONTINUE 70 CONTINUE ! ! COMPUTE INVERSE(U) ! IF (MOD(JOB,10) .EQ. 0) GO TO 150 DO 100 K = 1, N A(K,K) = (1.0D0,0.0D0)/A(K,K) T = -A(K,K) CALL ZSCAL(K-1,T,A(1,K),1) KP1 = K + 1 IF (N .LT. KP1) GO TO 90 DO 80 J = KP1, N T = A(K,J) A(K,J) = (0.0D0,0.0D0) CALL ZAXPY(K,T,A(1,K),1,A(1,J),1) 80 CONTINUE 90 CONTINUE 100 CONTINUE ! ! FORM INVERSE(U)*INVERSE(L) ! NM1 = N - 1 IF (NM1 .LT. 1) GO TO 140 DO 130 KB = 1, NM1 K = N - KB KP1 = K + 1 DO 110 I = KP1, N WORK(I) = A(I,K) A(I,K) = (0.0D0,0.0D0) 110 CONTINUE DO 120 J = KP1, N T = WORK(J) CALL ZAXPY(N,T,A(1,J),1,A(1,K),1) 120 CONTINUE L = IPVT(K) IF (L .NE. K) CALL ZSWAP(N,A(1,K),1,A(1,L),1) 130 CONTINUE 140 CONTINUE 150 CONTINUE RETURN END SUBROUTINE ZGEDI espresso-5.1/flib/avrec.f900000644000175000017500000000173212341373036013643 0ustar mbamba! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE avrec( n, alpha, v, av ) ! ... This subroutine try to use fast library to ! ... calculate ! ... av(i) = alpha / v(i) ! ... USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(IN) :: n INTEGER :: i REAL(DP), INTENT(IN) :: alpha REAL(DP), INTENT(IN) :: v(*) REAL(DP), INTENT(OUT) :: av(*) #if defined __BENCHLIB CALL oneover_v( n, v, av ) IF( alpha /= 1.0d0 ) THEN CALL dscal( n, alpha, av, 1 ) END IF #elif defined __MASS CALL vrec( av, v, n ) IF( alpha /= 1.0d0 ) THEN CALL dscal( n, alpha, av, 1 ) END IF #else DO i = 1, n av(i) = alpha / v(i) END DO #endif RETURN END SUBROUTINE avrec espresso-5.1/flib/inpfile.f900000644000175000017500000000635312341373036014175 0ustar mbamba! ! Copyright (C) 2002-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #if defined(__ABSOFT) # define getenv getenv_ # define getarg getarg_ # define iargc iargc_ #endif ! SUBROUTINE get_env ( variable_name, variable_value ) ! ! Wrapper for intrinsic getenv - all machine-dependent stuff here ! CHARACTER (LEN=*) :: variable_name, variable_value ! CALL getenv ( variable_name, variable_value) ! END SUBROUTINE get_env !---------------------------------------------------------------------------- SUBROUTINE input_from_file( ) ! ! This subroutine checks command-line arguments for -i[nput] "file name" ! if "file nname" is present, attach input unit 5 to the specified file ! IMPLICIT NONE ! INTEGER :: stdin = 5, stderr = 6, ierr = 0 CHARACTER (LEN=256) :: input_file LOGICAL :: found ! INTEGER :: iiarg, nargs ! Do not define iargc as external: gfortran doesn't like it INTEGER :: iargc ! ! nargs = iargc() found = .FALSE. input_file = ' ' ! DO iiarg = 1, ( nargs - 1 ) ! CALL getarg( iiarg, input_file ) ! IF ( TRIM( input_file ) == '-i' .OR. & TRIM( input_file ) == '-in' .OR. & TRIM( input_file ) == '-inp' .OR. & TRIM( input_file ) == '-input' ) THEN ! CALL getarg( ( iiarg + 1 ) , input_file ) found =.TRUE. EXIT ! END IF ! END DO ! IF ( found ) THEN ! OPEN ( UNIT = stdin, FILE = input_file, FORM = 'FORMATTED', & STATUS = 'OLD', IOSTAT = ierr ) ! ! TODO: return error code ierr (-1 no file, 0 file opened, > 1 error) ! do not call "errore" here: it may hang in parallel execution ! if this routine is called by a single processor ! IF ( ierr > 0 ) WRITE (stderr, & '(" *** input file ",A," not found ***")' ) TRIM( input_file ) ! ELSE ierr = -1 END IF ! RETURN ! END SUBROUTINE input_from_file !---------------------------------------------------------------------------- ! SUBROUTINE get_file( input_file ) ! ! This subroutine reads, either from command line or from terminal, ! the name of a file to be opened. To be used for serial codes only. ! Expected syntax: "code [filename]" (one command-line option, or none) ! IMPLICIT NONE ! CHARACTER (LEN=*) :: input_file ! CHARACTER (LEN=256) :: prgname INTEGER :: nargs INTEGER :: iargc LOGICAL :: exst ! nargs = iargc() CALL getarg (0,prgname) ! IF ( nargs == 0 ) THEN 10 PRINT '("Input file > ",$)' READ (5,'(a)', end = 20, err=20) input_file IF ( input_file == ' ') GO TO 10 INQUIRE ( FILE = input_file, EXIST = exst ) IF ( .NOT. exst) THEN PRINT '(A,": file not found")', TRIM(input_file) GO TO 10 END IF ELSE IF ( nargs == 1 ) then CALL getarg (1,input_file) ELSE PRINT '(A,": too many arguments ",i4)', TRIM(prgname), nargs END IF RETURN 20 PRINT '(A,": reading file name ",A)', TRIM(prgname), TRIM(input_file) ! END SUBROUTINE get_file espresso-5.1/flib/find_free_unit.f900000644000175000017500000000165612341373036015530 0ustar mbamba! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-------------------------------------------------------------------------- FUNCTION find_free_unit() !-------------------------------------------------------------------------- ! IMPLICIT NONE ! INTEGER :: find_free_unit INTEGER :: iunit LOGICAL :: opnd ! ! unit_loop: DO iunit = 99, 1, -1 ! INQUIRE( UNIT = iunit, OPENED = opnd ) ! IF ( .NOT. opnd ) THEN ! find_free_unit = iunit ! RETURN ! END IF ! END DO unit_loop ! CALL errore( 'find_free_unit()', 'free unit not found ?!?', 1 ) ! RETURN ! END FUNCTION find_free_unit ! espresso-5.1/flib/simpsn.f900000644000175000017500000001047012341373036014053 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE simpson(mesh, func, rab, asum) !----------------------------------------------------------------------- ! ! simpson's rule integration. On input: ! mesh = the number of grid points (should be odd) ! func(i)= function to be integrated ! rab(i) = r(i) * dr(i)/di * di ! For the logarithmic grid not including r=0 : ! r(i) = r_0*exp((i-1)*dx) ==> rab(i)=r(i)*dx ! For the logarithmic grid including r=0 : ! r(i) = a(exp((i-1)*dx)-1) ==> rab(i)=(r(i)+a)*dx ! Output in asum = \sum_i c_i f(i)*rab(i) = \int_0^\infty f(r) dr ! where c_i are alternativaly 2/3, 4/3 except c_1 = c_mesh = 1/3 ! USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(in) :: mesh real(DP), INTENT(in) :: rab (mesh), func (mesh) real(DP), INTENT(out):: asum ! real(DP) :: f1, f2, f3, r12 INTEGER :: i ! asum = 0.0d0 r12 = 1.0d0 / 3.0d0 f3 = func (1) * rab (1) * r12 DO i = 2, mesh - 1, 2 f1 = f3 f2 = func (i) * rab (i) * r12 f3 = func (i + 1) * rab (i + 1) * r12 asum = asum + f1 + 4.0d0 * f2 + f3 ENDDO ! ! if mesh is not odd, use open formula instead: ! ... 2/3*f(n-5) + 4/3*f(n-4) + 13/12*f(n-3) + 0*f(n-2) + 27/12*f(n-1) !!! Under testing ! !IF ( MOD(mesh,2) == 0 ) THEN ! print *, 'mesh even: correction:', f1*5.d0/4.d0-4.d0*f2+23.d0*f3/4.d0, & ! func(mesh)*rab(mesh), asum ! asum = asum + f1*5.d0/4.d0 - 4.d0*f2 + 23.d0*f3/4.d0 !END IF RETURN END SUBROUTINE simpson !=----------------------------------------------------------------------- SUBROUTINE simpson_cp90( mesh, func, rab, asum ) !----------------------------------------------------------------------- ! ! This routine computes the integral of a function defined on a ! logaritmic mesh, by using the open simpson formula given on ! pag. 109 of Numerical Recipes. In principle it is used to ! perform integrals from zero to infinity. The first point of ! the function should be the closest to zero but not the value ! in zero. The formula used here automatically includes the ! contribution from the zero point and no correction is required. ! ! Input as "simpson". At least 8 integrating points are required. ! ! last revised 12 May 1995 by Andrea Dal Corso ! USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(in) :: mesh real(DP), INTENT(in) :: rab (mesh), func (mesh) real(DP), INTENT(out):: asum ! real(DP) :: c(4) INTEGER ::i ! IF ( mesh < 8 ) CALL errore ('simpson_cp90','few mesh points',8) c(1) = 109.0d0 / 48.d0 c(2) = -5.d0 / 48.d0 c(3) = 63.d0 / 48.d0 c(4) = 49.d0 / 48.d0 asum = ( func(1)*rab(1) + func(mesh )*rab(mesh ) )*c(1) & + ( func(2)*rab(2) + func(mesh-1)*rab(mesh-1) )*c(2) & + ( func(3)*rab(3) + func(mesh-2)*rab(mesh-2) )*c(3) & + ( func(4)*rab(4) + func(mesh-3)*rab(mesh-3) )*c(4) DO i=5,mesh-4 asum = asum + func(i)*rab(i) ENDDO RETURN END SUBROUTINE simpson_cp90 ! !----------------------------------------------------------------------- SUBROUTINE herman_skillman_int(mesh,func,rab,asum) !----------------------------------------------------------------------- ! simpson rule integration for herman skillman mesh (obsolescent) ! Input as in "simpson". BEWARE: "func" is overwritten!!! ! USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(in) :: mesh real(DP), INTENT(in) :: rab (mesh) real(DP), INTENT(inout) :: func (mesh) real(DP), INTENT(out):: asum ! INTEGER :: i, j, k, i1, nblock REAL(DP) :: a1, a2e, a2o, a2es ! a1=0.0d0 a2e=0.0d0 asum=0.0d0 nblock=mesh/40 i=1 func(1)=0.0d0 DO j=1,nblock DO k=1,20 i=i+2 i1=i-1 a2es=a2e a2o=func(i1)/12.0d0 a2e=func(i)/12.0d0 a1=a1+5.0d0*a2es+8.0d0*a2o-a2e func(i1)=asum+a1*rab(i1) a1=a1-a2es+8.0d0*a2o+5.0d0*a2e func(i)=asum+a1*rab(i) ENDDO asum=func(i) a1=0.0d0 ENDDO ! RETURN END SUBROUTINE herman_skillman_int espresso-5.1/flib/erf.f900000644000175000017500000001061712341373036013321 0ustar mbamba! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------- function qe_erf (x) !--------------------------------------------------------------------- ! ! Error function - computed from the rational approximations of ! W. J. Cody, Math. Comp. 22 (1969), pages 631-637. ! ! for abs(x) le 0.47 erf is calculated directly ! for abs(x) gt 0.47 erf is calculated via erf(x)=1-erfc(x) ! use kinds, only : DP implicit none real(DP), intent(in) :: x real(DP) :: x2, p1 (4), q1 (4) real(DP), external :: qe_erfc real(DP) :: qe_erf data p1 / 2.426679552305318E2_DP, 2.197926161829415E1_DP, & 6.996383488619136_DP, -3.560984370181538E-2_DP / data q1 / 2.150588758698612E2_DP, 9.116490540451490E1_DP, & 1.508279763040779E1_DP, 1.000000000000000_DP / ! if (abs (x) > 6.0_DP) then ! ! erf(6)=1-10^(-17) cannot be distinguished from 1 ! qe_erf = sign (1.0_DP, x) else if (abs (x) <= 0.47_DP) then x2 = x**2 qe_erf=x *(p1 (1) + x2 * (p1 (2) + x2 * (p1 (3) + x2 * p1 (4) ) ) ) & / (q1 (1) + x2 * (q1 (2) + x2 * (q1 (3) + x2 * q1 (4) ) ) ) else qe_erf = 1.0_DP - qe_erfc (x) endif endif ! return end function qe_erf ! !--------------------------------------------------------------------- function qe_erfc (x) !--------------------------------------------------------------------- ! ! erfc(x) = 1-erf(x) - See comments in erf ! use kinds, only : DP implicit none real(DP),intent(in) :: x real(DP) :: qe_erfc real(DP) :: ax, x2, xm2, p2 (8), q2 (8), p3 (5), q3 (5), pim1 real(DP), external :: qe_erf data p2 / 3.004592610201616E2_DP, 4.519189537118719E2_DP, & 3.393208167343437E2_DP, 1.529892850469404E2_DP, & 4.316222722205674E1_DP, 7.211758250883094_DP, & 5.641955174789740E-1_DP,-1.368648573827167E-7_DP / data q2 / 3.004592609569833E2_DP, 7.909509253278980E2_DP, & 9.313540948506096E2_DP, 6.389802644656312E2_DP, & 2.775854447439876E2_DP, 7.700015293522947E1_DP, & 1.278272731962942E1_DP, 1.000000000000000_DP / data p3 /-2.996107077035422E-3_DP,-4.947309106232507E-2_DP, & -2.269565935396869E-1_DP,-2.786613086096478E-1_DP, & -2.231924597341847E-2_DP / data q3 / 1.062092305284679E-2_DP, 1.913089261078298E-1_DP, & 1.051675107067932_DP, 1.987332018171353_DP, & 1.000000000000000_DP / data pim1 / 0.56418958354775629_DP / ! ( pim1= sqrt(1/pi) ) ax = abs (x) if (ax > 26.0_DP) then ! ! erfc(26.0)=10^(-296); erfc( 9.0)=10^(-37); ! qe_erfc = 0.0_DP elseif (ax > 4.0_DP) then x2 = x**2 xm2 = (1.0_DP / ax) **2 qe_erfc = (1.0_DP / ax) * exp ( - x2) * (pim1 + xm2 * (p3 (1) & + xm2 * (p3 (2) + xm2 * (p3 (3) + xm2 * (p3 (4) + xm2 * p3 (5) & ) ) ) ) / (q3 (1) + xm2 * (q3 (2) + xm2 * (q3 (3) + xm2 * & (q3 (4) + xm2 * q3 (5) ) ) ) ) ) elseif (ax > 0.47_DP) then x2 = x**2 qe_erfc = exp ( - x2) * (p2 (1) + ax * (p2 (2) + ax * (p2 (3) & + ax * (p2 (4) + ax * (p2 (5) + ax * (p2 (6) + ax * (p2 (7) & + ax * p2 (8) ) ) ) ) ) ) ) / (q2 (1) + ax * (q2 (2) + ax * & (q2 (3) + ax * (q2 (4) + ax * (q2 (5) + ax * (q2 (6) + ax * & (q2 (7) + ax * q2 (8) ) ) ) ) ) ) ) else qe_erfc = 1.0_DP - qe_erf (ax) endif ! ! erf(-x)=-erf(x) => erfc(-x) = 2-erfc(x) ! if (x < 0.0_DP) qe_erfc = 2.0_DP - qe_erfc ! return end function qe_erfc ! !--------------------------------------------------------------------- function gauss_freq (x) !--------------------------------------------------------------------- ! ! gauss_freq(x) = (1+erf(x/sqrt(2)))/2 = erfc(-x/sqrt(2))/2 ! - See comments in erf ! use kinds, only : DP implicit none real(DP),intent(in) :: x real(DP) :: gauss_freq real(DP), parameter :: c = 0.7071067811865475_DP ! ( c= sqrt(1/2) ) real(DP), external :: qe_erfc ! gauss_freq = 0.5_DP * qe_erfc ( - x * c) ! return end function gauss_freq espresso-5.1/flib/transto.f900000644000175000017500000001630212341373036014234 0ustar mbamba! ! Copyright (C) 2001 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #include "opt_param.h" ! OPTIMIZED DRIVER FOR MATRIX TRASPOSITION ! ! written by Carlo Cavazzoni ! SUBROUTINE mytranspose(x, ldx, y, ldy, n, m) ! ! x input matrix (n by m) to be trasposed ! y output matrix (m by n), the transpose of x ! IMPLICIT NONE INTEGER :: ldx, ldy, n, m, what REAL(8) :: x(ldx, m), y(ldy, n) INTEGER :: i, j, k, d, nb, mb, ib, jb, ioff, joff INTEGER :: iind, jind INTEGER, PARAMETER :: bsiz = __BSIZ_VALUE REAL(8) :: buf(bsiz, bsiz), bswp if( n>ldx ) then write(6,fmt='("trasponi: inconsistent ldx and n: ",2I6)') ldx, n end if if( m>ldy ) then write(6,fmt='("trasponi: inconsistent ldy and m: ",2I6)') ldy, m end if nb = n / bsiz mb = m / bsiz IF( nb < 2 .AND. mb < 2 ) THEN what = 1 ELSE what = 2 END IF select case (what) case (1) do i=1,n do j=1,m y(j,i) = x(i,j) enddo enddo case (2) do ib = 1, nb ioff = (ib-1) * bsiz do jb = 1, mb joff = (jb-1) * bsiz do j = 1, bsiz do i = 1, bsiz buf(i,j) = x(i+ioff, j+joff) enddo enddo do j = 1, bsiz do i = 1, j-1 bswp = buf(i,j) buf(i,j) = buf(j,i) buf(j,i) = bswp enddo enddo do i=1,bsiz do j=1,bsiz y(j+joff, i+ioff) = buf(j,i) enddo enddo enddo enddo IF( MIN(1, MOD(n, bsiz)) > 0 ) THEN ioff = nb * bsiz do jb = 1, mb joff = (jb-1) * bsiz do j = 1, bsiz do i = 1, MIN(bsiz, n-ioff) buf(i,j) = x(i+ioff, j+joff) enddo enddo do i = 1, MIN(bsiz, n-ioff) do j = 1, bsiz y(j+joff,i+ioff) = buf(i,j) enddo enddo enddo END IF IF( MIN(1, MOD(m, bsiz)) > 0 ) THEN joff = mb * bsiz do ib = 1, nb ioff = (ib-1) * bsiz do j = 1, MIN(bsiz, m-joff) do i = 1, bsiz buf(i,j) = x(i+ioff, j+joff) enddo enddo do i = 1, bsiz do j = 1, MIN(bsiz, m-joff) y(j+joff,i+ioff) = buf(i,j) enddo enddo enddo END IF IF( MIN(1,MOD(n,bsiz))>0 .AND. MIN(1,MOD(m,bsiz))>0 ) THEN joff = mb * bsiz ioff = nb * bsiz do j = 1, MIN(bsiz, m-joff) do i = 1, MIN(bsiz, n-ioff) buf(i,j) = x(i+ioff, j+joff) enddo enddo do i = 1, MIN(bsiz, n-ioff) do j = 1, MIN(bsiz, m-joff) y(j+joff,i+ioff) = buf(i,j) enddo enddo END IF #if defined __ESSL case (3) CALL DGETMO (x, ldx, n, m, y, ldy) #endif case default write(6,fmt='("trasponi: undefined method")') end select RETURN END SUBROUTINE mytranspose SUBROUTINE mytransposez(x, ldx, y, ldy, n, m) ! ! x input matrix (n by m) to be trasposed ! y output matrix (m by n), the transpose of x ! IMPLICIT NONE INTEGER :: ldx, ldy, n, m, what COMPLEX(8) :: x(ldx, m), y(ldy, n) INTEGER :: i, j, k, d, nb, mb, ib, jb, ioff, joff INTEGER :: iind, jind INTEGER, PARAMETER :: bsiz = __BSIZ_VALUE / 2 COMPLEX(8) :: buf(bsiz, bsiz), bswp if( n>ldx ) then write(6,fmt='("trasponi: inconsistent ldx and n")') end if if( m>ldy ) then write(6,fmt='("trasponi: inconsistent ldy and m")') end if nb = n / bsiz mb = m / bsiz IF( nb < 2 .AND. mb < 2 ) THEN what = 1 ELSE what = 2 END IF select case (what) case (1) do i=1,n do j=1,m y(j,i) = x(i,j) enddo enddo case (2) do ib = 1, nb ioff = (ib-1) * bsiz do jb = 1, mb joff = (jb-1) * bsiz do j = 1, bsiz do i = 1, bsiz buf(i,j) = x(i+ioff, j+joff) enddo enddo do j = 1, bsiz do i = 1, j-1 bswp = buf(i,j) buf(i,j) = buf(j,i) buf(j,i) = bswp enddo enddo do i=1,bsiz do j=1,bsiz y(j+joff, i+ioff) = buf(j,i) enddo enddo enddo enddo IF( MIN(1, MOD(n, bsiz)) > 0 ) THEN ioff = nb * bsiz do jb = 1, mb joff = (jb-1) * bsiz do j = 1, bsiz do i = 1, MIN(bsiz, n-ioff) buf(i,j) = x(i+ioff, j+joff) enddo enddo do i = 1, MIN(bsiz, n-ioff) do j = 1, bsiz y(j+joff,i+ioff) = buf(i,j) enddo enddo enddo END IF IF( MIN(1, MOD(m, bsiz)) > 0 ) THEN joff = mb * bsiz do ib = 1, nb ioff = (ib-1) * bsiz do j = 1, MIN(bsiz, m-joff) do i = 1, bsiz buf(i,j) = x(i+ioff, j+joff) enddo enddo do i = 1, bsiz do j = 1, MIN(bsiz, m-joff) y(j+joff,i+ioff) = buf(i,j) enddo enddo enddo END IF IF( MIN(1,MOD(n,bsiz))>0 .AND. MIN(1,MOD(m,bsiz))>0 ) THEN joff = mb * bsiz ioff = nb * bsiz do j = 1, MIN(bsiz, m-joff) do i = 1, MIN(bsiz, n-ioff) buf(i,j) = x(i+ioff, j+joff) enddo enddo do i = 1, MIN(bsiz, n-ioff) do j = 1, MIN(bsiz, m-joff) y(j+joff,i+ioff) = buf(i,j) enddo enddo END IF #if defined __ESSL case (3) CALL ZGETMO (x, ldx, n, m, y, ldy) #endif case default write(6,fmt='("trasponi: undefined method")') end select RETURN END SUBROUTINE mytransposez espresso-5.1/flib/w1gauss.f900000644000175000017500000000475612341373036014146 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- function w1gauss (x, n) !----------------------------------------------------------------------- ! ! w1gauss(x,n) = \int_{-\infty}^x y delta(y) dy ! where delta(x) is the current approximation for the delta function, ! as obtained from w0gauss(x,n) ! ! --> (n>=0) : Methfessel-Paxton case ! ! --> (n=-1): Cold smearing (Marzari-Vanderbilt) ! w1gauss = 1/sqrt(2*pi)*(x-1/sqrt(2))*exp(-(x-1/sqrt(2))**2) ! ! --> (n=-99): Fermi-Dirac case. In this case w1gauss corresponds ! to the negative of the electronic entropy. ! ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none real(DP) :: w1gauss, x ! output: the value of the function ! input: the point where to compute the function integer :: n ! input: the order of the smearing function ! ! here the local variables ! real(DP) :: a, hp, arg, hpm1, hd, f, onemf, xp ! the coefficients a_n ! the hermite function ! the argument of the exponential ! the hermite function ! the hermite function ! Fermi-Dirac occupation number ! 1 - f ! auxiliary variable (cold smearing) integer :: i, ni ! counter on n values ! counter on 2n values ! Fermi-Dirac smearing if (n.eq. - 99) then if (abs (x) .le.36.0) then f = 1.0d0 / (1.0d0 + exp ( - x) ) onemf = 1.0d0 - f w1gauss = f * log (f) + onemf * log (onemf) ! in order to avoid problems for large values of x else ! neglect w1gauss when abs(w1gauss) < 1.0d-14 w1gauss = 0.0d0 endif return endif ! Cold smearing if (n.eq. - 1) then xp = x - 1.0d0 / sqrt (2.0d0) arg = min (200.d0, xp**2) w1gauss = 1.0d0 / sqrt (2.0d0 * pi) * xp * exp ( - arg) return endif ! Methfessel-Paxton arg = min (200.d0, x**2) w1gauss = - 0.5d0 * exp ( - arg) / sqrt (pi) if (n.eq.0) return hd = 0.d0 hp = exp ( - arg) ni = 0 a = 1.d0 / sqrt (pi) do i = 1, n hd = 2.0d0 * x * hp - 2.0d0 * DBLE (ni) * hd ni = ni + 1 hpm1 = hp hp = 2.0d0 * x * hd-2.0d0 * DBLE (ni) * hp ni = ni + 1 a = - a / (DBLE (i) * 4.0d0) w1gauss = w1gauss - a * (0.5d0 * hp + DBLE (ni) * hpm1) enddo return end function w1gauss espresso-5.1/flib/has_xml.f900000644000175000017500000000144712341373036014201 0ustar mbamba! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! LOGICAL FUNCTION has_xml(inp_string) ! ! This function returns true if the last four characters of inp_string are ! .xml or .XML. On output the string .xml or .XML is removed from inp_string ! IMPLICIT NONE CHARACTER(LEN=*), INTENT(INOUT) :: inp_string INTEGER :: leng, start CHARACTER(LEN=4) :: aux LOGICAL, EXTERNAL :: matches has_xml=.FALSE. leng=LEN_TRIM(inp_string) start=MAX(leng-3,1) aux=inp_string(start:leng) IF (matches(aux,'.xml').OR.matches(aux,'.XML')) THEN has_xml=.TRUE. inp_string(leng-3:leng)=' ' ENDIF RETURN END FUNCTION has_xml espresso-5.1/flib/recips.f900000644000175000017500000000347012341373036014031 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- subroutine recips (a1, a2, a3, b1, b2, b3) !--------------------------------------------------------------------- ! ! This routine generates the reciprocal lattice vectors b1,b2,b3 ! given the real space vectors a1,a2,a3. The b's are units of 2 pi/a. ! ! first the input variables ! use kinds, ONLY: DP implicit none real(DP) :: a1 (3), a2 (3), a3 (3), b1 (3), b2 (3), b3 (3) ! input: first direct lattice vector ! input: second direct lattice vector ! input: third direct lattice vector ! output: first reciprocal lattice vector ! output: second reciprocal lattice vector ! output: third reciprocal lattice vector ! ! then the local variables ! real(DP) :: den, s ! the denominator ! the sign of the permutations integer :: iperm, i, j, k, l, ipol ! counter on the permutations !\ ! Auxiliary variables !/ ! ! Counter on the polarizations ! ! first we compute the denominator ! den = 0 i = 1 j = 2 k = 3 s = 1.d0 100 do iperm = 1, 3 den = den + s * a1 (i) * a2 (j) * a3 (k) l = i i = j j = k k = l enddo i = 2 j = 1 k = 3 s = - s if (s.lt.0.d0) goto 100 ! ! here we compute the reciprocal vectors ! i = 1 j = 2 k = 3 do ipol = 1, 3 b1 (ipol) = (a2 (j) * a3 (k) - a2 (k) * a3 (j) ) / den b2 (ipol) = (a3 (j) * a1 (k) - a3 (k) * a1 (j) ) / den b3 (ipol) = (a1 (j) * a2 (k) - a1 (k) * a2 (j) ) / den l = i i = j j = k k = l enddo return end subroutine recips espresso-5.1/flib/capital.f900000644000175000017500000000460012341373036014155 0ustar mbamba! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- FUNCTION capital( in_char ) !----------------------------------------------------------------------- ! ! ... converts character to capital if lowercase ! ... copy character to output in all other cases ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: in_char CHARACTER(LEN=1) :: capital CHARACTER(LEN=26), PARAMETER :: lower = 'abcdefghijklmnopqrstuvwxyz', & upper = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' INTEGER :: i ! ! DO i=1, 26 ! IF ( in_char == lower(i:i) ) THEN ! capital = upper(i:i) ! RETURN ! END IF ! END DO ! capital = in_char ! RETURN ! END FUNCTION capital ! !----------------------------------------------------------------------- FUNCTION lowercase( in_char ) !----------------------------------------------------------------------- ! ! ... converts character to lowercase if capital ! ... copy character to output in all other cases ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: in_char CHARACTER(LEN=1) :: lowercase CHARACTER(LEN=26), PARAMETER :: lower = 'abcdefghijklmnopqrstuvwxyz', & upper = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' INTEGER :: i ! ! DO i=1, 26 ! IF ( in_char == upper(i:i) ) THEN ! lowercase = lower(i:i) ! RETURN ! END IF ! END DO ! lowercase = in_char ! RETURN ! END FUNCTION lowercase ! !----------------------------------------------------------------------- LOGICAL FUNCTION isnumeric ( in_char ) !----------------------------------------------------------------------- ! ! ... check if a character is a number ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: in_char CHARACTER(LEN=10), PARAMETER :: numbers = '0123456789' INTEGER :: i ! ! DO i=1, 10 ! isnumeric = ( in_char == numbers(i:i) ) IF ( isnumeric ) RETURN ! END DO RETURN ! END FUNCTION isnumeric espresso-5.1/flib/expint.f900000644000175000017500000000517212341373036014054 0ustar mbamba! ! Copyright (C) 2001-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- FUNCTION EXPINT(n, x) !----------------------------------------------------------------------- ! ! Evaluates the exponential integral E_n(x) ! Parameters: maxit is the maximum allowed number of iterations, ! eps is the desired relative error, not smaller than the machine precision, ! big is a number near the largest representable floating-point number, ! Inspired from Numerical Recipes ! USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(IN) :: n REAL(DP), INTENT(IN) :: x REAL(DP) :: expint INTEGER, parameter :: maxit=200 REAL(DP), parameter :: eps=1E-12_DP, big=huge(x)*eps REAL(DP), parameter :: euler = 0.577215664901532860606512_DP ! EPS=1E-9, FPMIN=1E-30 INTEGER :: i, nm1, k REAL(DP) :: a,b,c,d,del,fact,h,iarsum IF (.NOT. ((n >= 0).AND.(x >= 0.0).AND.((x > 0.0).OR.(n > 1)))) THEN CALL errore('expint','bad arguments', 1) END IF IF (n == 0) THEN expint = exp(-x)/x RETURN END IF nm1 = n-1 IF (x == 0.0_DP) THEN expint = 1.0_DP/nm1 ELSE IF (x > 1.0_DP) THEN b = x+n c = big d = 1.0_DP/b h = d DO i=1,maxit a = -i*(nm1+i) b = b+2.0_DP d = 1.0_DP/(a*d+b) c = b+a/c del = c*d h = h*del IF (ABS(del-1.0_DP) <= EPS) EXIT END DO IF (i > maxit) CALL errore('expint','continued fraction failed',1) expint = h*EXP(-x) ELSE IF (nm1 /= 0) THEN expint = 1.0_DP/nm1 ELSE expint = -LOG(x)-euler END IF fact = 1.0_DP do i=1,maxit fact = -fact*x/i IF (i /= nm1) THEN del = -fact/(i-nm1) ELSE iarsum = 0.0_DP do k=1,nm1 iarsum = iarsum + 1.0_DP/k end do del = fact*(-LOG(x)-euler+iarsum) ! del = fact*(-LOG(x)-euler+sum(1.0_DP/arth(1,1,nm1))) END IF expint = expint+del IF (ABS(del) < ABS(expint)*eps) EXIT END DO IF (i > maxit) CALL errore('expint','series failed',1) END IF END FUNCTION EXPINT ! ------------------------------------------------------------------- espresso-5.1/flib/sph_bes.f900000644000175000017500000001543512341373036014173 0ustar mbamba! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- subroutine sph_bes (msh, r, q, l, jl) !-------------------------------------------------------------------- ! ! ... input: ! ... msh = number of grid points points ! ... r(1:msh)= radial grid ! ... q = q ! ... l = angular momentum (-1 <= l <= 6) ! ... output: ! ... jl(1:msh) = j_l(q*r(i)) (j_l = spherical bessel function) ! use kinds, only: DP USE constants, ONLY : eps14 ! implicit none ! integer :: msh, l real(DP) :: r (msh), q, jl (msh) ! ! xseries = convergence radius of the series for small x of j_l(x) real(DP) :: x, xl, xseries = 0.05_dp integer :: ir, ir0 integer, external:: semifact ! #if defined (__MASS) real(DP) :: qr(msh), sin_qr(msh), cos_qr(msh) #endif ! case q=0 if (abs (q) < eps14) then if (l == -1) then call errore ('sph_bes', 'j_{-1}(0) ?!?', 1) elseif (l == 0) then jl(:) = 1.d0 else jl(:) = 0.d0 endif return end if ! case l=-1 if (l == - 1) then if (abs (q * r (1) ) < eps14) call errore ('sph_bes', 'j_{-1}(0) ?!?',1) #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) jl = cos_qr / qr #else jl (:) = cos (q * r (:) ) / (q * r (:) ) #endif return end if ! series expansion for small values of the argument ! ir0 is the first grid point for which q*r(ir0) > xseries ! notice that for small q it may happen that q*r(msh) < xseries ! ir0 = msh+1 do ir = 1, msh if ( abs (q * r (ir) ) > xseries ) then ir0 = ir exit end if end do do ir = 1, ir0 - 1 x = q * r (ir) if ( l == 0 ) then xl = 1.0_dp else xl = x**l end if jl (ir) = xl/semifact(2*l+1) * & ( 1.0_dp - x**2/1.0_dp/2.0_dp/(2.0_dp*l+3) * & ( 1.0_dp - x**2/2.0_dp/2.0_dp/(2.0_dp*l+5) * & ( 1.0_dp - x**2/3.0_dp/2.0_dp/(2.0_dp*l+7) * & ( 1.0_dp - x**2/4.0_dp/2.0_dp/(2.0_dp*l+9) ) ) ) ) end do ! the following shouldn't be needed but do you trust compilers ! to do the right thing in this special case ? I don't - PG if ( ir0 > msh ) return if (l == 0) then #if defined (__MASS) qr = q * r call vsin( sin_qr, qr, msh) jl (ir0:) = sin_qr(ir0:) / (q * r (ir0:) ) #else jl (ir0:) = sin (q * r (ir0:) ) / (q * r (ir0:) ) #endif elseif (l == 1) then #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) call vsin( sin_qr, qr, msh) jl (ir0:) = ( sin_qr(ir0:) / (q * r (ir0:) ) - & cos_qr(ir0:) ) / (q * r (ir0:) ) #else jl (ir0:) = (sin (q * r (ir0:) ) / (q * r (ir0:) ) - & cos (q * r (ir0:) ) ) / (q * r (ir0:) ) #endif elseif (l == 2) then #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) call vsin( sin_qr, qr, msh) jl (ir0:) = ( (3.d0 / (q*r(ir0:)) - (q*r(ir0:)) ) * sin_qr(ir0: ) - & 3.d0 * cos_qr(ir0:) ) / (q*r(ir0:))**2 #else jl (ir0:) = ( (3.d0 / (q*r(ir0:)) - (q*r(ir0:)) ) * sin (q*r(ir0:)) - & 3.d0 * cos (q*r(ir0:)) ) / (q*r(ir0:))**2 #endif elseif (l == 3) then #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) call vsin( sin_qr, qr, msh) jl (ir0:) = (sin_qr (ir0:) * & (15.d0 / (q*r(ir0:)) - 6.d0 * (q*r(ir0:)) ) + & cos_qr (ir0:) * ( (q*r(ir0:))**2 - 15.d0) ) / & (q*r(ir0:))**3 #else jl (ir0:) = (sin (q*r(ir0:)) * & (15.d0 / (q*r(ir0:)) - 6.d0 * (q*r(ir0:)) ) + & cos (q*r(ir0:)) * ( (q*r(ir0:))**2 - 15.d0) ) / & (q*r(ir0:)) **3 #endif elseif (l == 4) then #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) call vsin( sin_qr, qr, msh) jl (ir0:) = (sin_qr (ir0:) * & (105.d0 - 45.d0 * (q*r(ir0:))**2 + (q*r(ir0:))**4) + & cos_qr (ir0:) * & (10.d0 * (q*r(ir0:))**3 - 105.d0 * (q*r(ir0:))) ) / & (q*r(ir0:))**5 #else jl (ir0:) = (sin (q*r(ir0:)) * & (105.d0 - 45.d0 * (q*r(ir0:))**2 + (q*r(ir0:))**4) + & cos (q*r(ir0:)) * & (10.d0 * (q*r(ir0:))**3 - 105.d0 * (q*r(ir0:))) ) / & (q*r(ir0:))**5 #endif elseif (l == 5) then #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) call vsin( sin_qr, qr, msh) jl (ir0:) = (-cos_qr(ir0:) - & (945.d0*cos_qr(ir0:)) / (q*r(ir0:)) ** 4 + & (105.d0*cos_qr(ir0:)) / (q*r(ir0:)) ** 2 + & (945.d0*sin_qr(ir0:)) / (q*r(ir0:)) ** 5 - & (420.d0*sin_qr(ir0:)) / (q*r(ir0:)) ** 3 + & ( 15.d0*sin_qr(ir0:)) / (q*r(ir0:)) ) / (q*r(ir0:)) #else jl (ir0:) = (-cos(q*r(ir0:)) - & (945.d0*cos(q*r(ir0:))) / (q*r(ir0:)) ** 4 + & (105.d0*cos(q*r(ir0:))) / (q*r(ir0:)) ** 2 + & (945.d0*sin(q*r(ir0:))) / (q*r(ir0:)) ** 5 - & (420.d0*sin(q*r(ir0:))) / (q*r(ir0:)) ** 3 + & ( 15.d0*sin(q*r(ir0:))) / (q*r(ir0:)) ) / (q*r(ir0:)) #endif elseif (l == 6) then #if defined (__MASS) qr = q * r call vcos( cos_qr, qr, msh) call vsin( sin_qr, qr, msh) jl (ir0:) = ((-10395.d0*cos_qr(ir0:)) / (q*r(ir0:))**5 + & ( 1260.d0*cos_qr(ir0:)) / (q*r(ir0:))**3 - & ( 21.d0*cos_qr(ir0:)) / (q*r(ir0:)) - & sin_qr(ir0:) + & ( 10395.d0*sin_qr(ir0:)) / (q*r(ir0:))**6 - & ( 4725.d0*sin_qr(ir0:)) / (q*r(ir0:))**4 + & ( 210.d0*sin_qr(ir0:)) / (q*r(ir0:))**2 ) / (q*r(ir0:)) #else jl (ir0:) = ((-10395.d0*cos(q*r(ir0:))) / (q*r(ir0:))**5 + & ( 1260.d0*cos(q*r(ir0:))) / (q*r(ir0:))**3 - & ( 21.d0*cos(q*r(ir0:))) / (q*r(ir0:)) - & sin(q*r(ir0:)) + & ( 10395.d0*sin(q*r(ir0:))) / (q*r(ir0:))**6 - & ( 4725.d0*sin(q*r(ir0:))) / (q*r(ir0:))**4 + & ( 210.d0*sin(q*r(ir0:))) / (q*r(ir0:))**2 ) / (q*r(ir0:)) #endif else call errore ('sph_bes', 'not implemented', abs(l)) endif ! return end subroutine sph_bes integer function semifact(n) ! semifact(n) = n!! implicit none integer :: n, i semifact = 1 do i = n, 1, -2 semifact = i*semifact end do return end function semifact espresso-5.1/flib/iglocal.f900000644000175000017500000000343012341373036014152 0ustar mbamba! ! Copyright (C) 2001-2004 Carlo Cavazzoni ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- INTEGER FUNCTION ig_local( ig, ig_l2g, sortedig_l2g, ng ) ! ! This function computes the local index of the G vector whose ! global index is ig. If the G vector is not local to the current ! processor, then the function returns -1 ! IMPLICIT NONE INTEGER, INTENT(IN) :: ig INTEGER, INTENT(IN) :: ng INTEGER, INTENT(IN) :: ig_l2g( ng ), sortedig_l2g( ng ) INTEGER :: lb, ub, i lb = 1 ! initialize search interval lower bound ub = ng ! initialize search interval upper bound IF( ig < ig_l2g( sortedig_l2g(lb) ) .OR. ig > ig_l2g( sortedig_l2g(ub) ) )THEN ig_local = -1 RETURN END IF BINARY_SEARCH: DO i = lb + (ub - lb)/2 IF( ig >= ig_l2g( sortedig_l2g(i) ) )THEN lb = i ELSE IF( ig < ig_l2g( sortedig_l2g(i) ) )THEN ub = i ELSE lb = ub END IF IF( lb >= (ub-1) ) EXIT BINARY_SEARCH END DO BINARY_SEARCH IF( .NOT. ( (lb==ub) .OR. (lb==(ub-1)) ) )THEN CALL errore(' ig_local ',' algorithmic error ', 5) END IF IF( ig == ig_l2g( sortedig_l2g(lb) ) )THEN ig_local = sortedig_l2g(lb) ELSE IF( ig == ig_l2g( sortedig_l2g(ub) ) )THEN ig_local = sortedig_l2g(ub) ELSE ig_local = -1 END IF RETURN END FUNCTION ig_local espresso-5.1/flib/bachel.f900000644000175000017500000000454112341373036013762 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- subroutine bachel (alps, aps, npseu, lmax) !---------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants , ONLY : pi implicit none ! ! First I/O variables ! integer :: npseu, lmax (npseu) ! input: number of pseudopotential ! input: max. angul. momentum of the ps real(DP) :: alps (3, 0:3, npseu), aps (6, 0:3, npseu) ! input: the b_l coefficient ! in/out: the a_l coefficient ! ! Here local variables ! integer :: np, lmx, l, i, j, k, ia, ka, nik ! counter on number of pseudopot. ! aux. var. (max. ang. mom. of a fix. ps ! counter on angular momentum real(DP) :: s (6, 6), alpl, alpi, ail ! auxiliary array ! first real aux. var. (fix. value of al ! second real aux. var. (fix. value of a ! third real aux. var. ! do np = 1, npseu lmx = lmax (np) do l = 0, lmx do k = 1, 6 ka = mod (k - 1, 3) + 1 alpl = alps (ka, l, np) do i = 1, k ia = mod (i - 1, 3) + 1 alpi = alps (ia, l, np) ail = alpi + alpl s (i, k) = sqrt (pi / ail) / 4.d0 / ail nik = int ( (k - 1) / 3) + int ( (i - 1) / 3) + 1 do j = 2, nik s (i, k) = s (i, k) / 2.d0 / ail * (2 * j - 1) enddo enddo enddo ! do i = 1, 6 do j = i, 6 do k = 1, i - 1 s (i, j) = s (i, j) - s (k, i) * s (k, j) enddo if (i.eq.j) then s (i, i) = sqrt (s (i, i) ) else s (i, j) = s (i, j) / s (i, i) endif enddo enddo ! aps (6, l, np) = - aps (6, l, np) / s (6, 6) do i = 5, 1, - 1 aps (i, l, np) = - aps (i, l, np) do k = i + 1, 6 aps (i, l, np) = aps (i, l, np) - aps (k, l, np) * s (i, k) enddo aps (i, l, np) = aps (i, l, np) / s (i, i) enddo enddo enddo return end subroutine bachel espresso-5.1/flib/metagga.f900000644000175000017500000012007112341373036014146 0ustar mbamba! ! Copyright (C) 2001-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !------------------------------------------------------------------------- ! ! META-GGA FUNCTIONALS ! ! Available functionals : ! - TPSS ! - M06L ! !========================================================================= ! !------------------------------------------------------------------------- ! ! TPSS ! !------------------------------------------------------------------------- !------------------------------------------------------------------------- subroutine tpsscxc( rho, grho, tau, sx, sc, v1x, v2x, v3x, v1c, v2c, v3c ) !----------------------------------------------------------------------- ! tpss metaGGA corrections for exchange and correlation - Hartree a.u. ! ! ! input: rho, grho=|\nabla rho|^2, tau = kinetic energy density ! definition: E_x = \int E_x(rho,grho) dr ! output: sx = E_x(rho,grho) ! v1x= D(E_x)/D(rho) ! v2x= D(E_x)/D( D rho/D r_alpha ) / |\nabla rho| ! sc, v1c, v2c as above for correlation ! v3x= D(E_x)/D(tau) ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, tau,sx, sc, v1x, v2x,v3x,v1c,v2c,v3c real(DP) :: small parameter (small = 1.E-10_DP) ! exchange if (rho.le.small) then sx = 0.0_DP v1x = 0.0_DP v2x = 0.0_DP sc = 0.0_DP v1c = 0.0_DP v2c = 0.0_DP v3x = 0.0_DP v3c=0.0_DP return end if call metax(rho,grho,tau,sx,v1x,v2x,v3x) ! call metac(rho,grho,tau,sc,v1c,v2c,v3c) ! return end subroutine tpsscxc !------------------------------------------------------------------------- subroutine metax(rho,grho2,tau,ex,v1x,v2x,v3x) ! --------------------------------------------------------------== ! == TPSS meta-GGA exchange potential and energy ! == == ! ==--------------------------------------------------------------== USE kinds, ONLY : DP ! NOTA BENE: E_x(rho,grho)=rho\epsilon_x(rho,grho) ! ex = E_x(rho,grho) NOT \epsilon_x(rho,grho) ! v1x= D(E_x)/D(rho) ! v2x= D(E_x)/D( D rho/D r_alpha ) / |\nabla rho| ! v3x= D(E_x)/D( tau ) ! tau is the kinetic energy density ! the same applies to correlation terms ! input grho2 is |\nabla rho|^2 implicit none ! INPUT real(DP) :: rho,grho2,tau,rs ! OUTPUT real(DP) :: ex,v1x,v2x,v3x ! LOCAL real(DP) :: vx_unif,ex_unif ! ex_unif: lda \epsilon_x(rho) ! ec_unif: lda \epsilon_c(rho) real(DP) :: small, pi34, third parameter (small=1.E-10_DP) parameter (pi34 = 0.6203504908994_DP, third = 1.0_DP / 3.0_DP) ! fx=Fx(p,z) ! fxp=d Fx / d p ! fxz=d Fx / d z real(DP) fx,f1x,f2x,f3x ! ==--------------------------------------------------------------== if(abs(tau).lt.small) then ex=0.0_DP v1x=0.0_DP v2x=0.0_DP v3x=0.0_DP return endif rs = pi34/rho**third call slater(rs,ex_unif,vx_unif) call metaFX(rho,grho2,tau,fx,f1x,f2x,f3x) ex =rho*ex_unif v1x=vx_unif*fx + ex*f1x v2x=ex*f2x v3x=ex*f3x ex =ex*fx ! ==--------------------------------------------------------------== return end subroutine metax !== ------------------------------------------------------------------ subroutine metac(rho,grho2,tau,ec,v1c,v2c,v3c) !== ------------------------------------------------------------------ ! TPSS meta-GGA correlation energy and potentials !== ------------------------------------------------------------------ USE kinds, ONLY : DP implicit none ! INPUT real(DP) :: rho, grho2, tau ! OUTPUT real(DP) :: ec, v1c,v2c,v3c ! LOCAL real(DP) :: z,z2,tauw,ec_rev,rs real(DP) :: d1rev, d2rev, d3rev ! d1ec= D ec_rev / D rho ! d2ec= D ec_rev / D |D rho/ D r| / |\nabla rho| ! d3ec= D ec_rev / D tau real(DP) :: cf1,cf2,cf3 real(DP) :: v1c_pbe, v2c_pbe, ec_pbe real(DP) :: v1c_sum, v2c_sum, ec_sum real(DP) :: vc_unif,ec_unif real(DP) :: dd,cab,cabone real(DP) :: rhoup,grhoup,dummy real(DP) :: small, pi34,third parameter(small=1.0E-10_DP) parameter (pi34= 0.75_DP/3.141592653589793_DP, & third=1.0_DP/3.0_DP) parameter (dd=2.80_DP) !in unit of Hartree^-1 parameter (cab=0.53_DP, cabone=1.0_DP+cab) ! if(abs(tau).lt.small) then ec=0.0_DP v1c=0.0_DP v2c=0.0_DP v3c=0.0_DP return endif rhoup=0.5_DP*rho grhoup=0.5_DP*SQRT(grho2) if(rhoup.gt.small) then call pw_spin((pi34/rhoup)**third,1.0_DP,ec_unif,vc_unif,dummy) if(abs(grhoup).gt.small) then !1.0_DP-small to avoid pow_e of 0 in pbec_spin call pbec_spin(rhoup,1.0_DP-small,grhoup**2,1,& ec_sum,v1c_sum,dummy,v2c_sum) else ec_sum=0.0_DP v1c_sum=0.0_DP v2c_sum=0.0_DP endif ec_sum = ec_sum/rhoup + ec_unif v1c_sum = (v1c_sum + vc_unif-ec_sum)/rho !rho, not rhoup v2c_sum = v2c_sum/(2.0_DP*rho) else ec_sum=0.0_DP v1c_sum=0.0_DP v2c_sum=0.0_DP endif ! rs = (pi34/rho)**third call pw (rs, 1, ec_unif, vc_unif) ! PBE correlation energy and potential ! ec_pbe=rho*H, not rho*(epsion_c_uinf + H) ! v1c_pbe=D (rho*H) /D rho ! v2c_pbe= for rho, 2 for call pbec(rho,grho2,1,ec_pbe,v1c_pbe,v2c_pbe) ec_pbe=ec_pbe/rho+ec_unif v1c_pbe=(v1c_pbe+vc_unif-ec_pbe)/rho v2c_pbe=v2c_pbe/rho ! if(ec_sum .lt. ec_pbe) then ec_sum = ec_pbe v1c_sum= v1c_pbe v2c_sum= v2c_pbe endif ! tauw=0.1250_DP*grho2/rho z=tauw/tau z2=z*z ! ec_rev=ec_pbe*(1+cab*z2)-cabone*z2*ec_sum d1rev = v1c_pbe + (cab*v1c_pbe-cabone*v1c_sum)*z2 & -(ec_pbe*cab - ec_sum*cabone)*2.0_DP*z2/rho d2rev = v2c_pbe + (cab*v2c_pbe-cabone*v2c_sum)*z2 & +(ec_pbe*cab - ec_sum*cabone)*4.0_DP*z2/grho2 d3rev = -(ec_pbe*cab - ec_sum*cabone)*2.0_DP*z2/tau ! cf1=1.0_DP+dd*ec_rev*z2*z cf2=rho*(1.0_DP+2.0_DP*z2*z*dd*ec_rev) cf3=ec_rev*ec_rev*3.0_DP*dd*z2*z v1c=ec_rev*cf1 + cf2*d1rev-cf3 ! cf3=cf3*rho v2c=cf2*d2rev + cf3*2.0_DP/grho2 v3c=cf2*d3rev - cf3/tau ec=rho*ec_rev*(1.0_DP+dd*ec_rev*z2*z) !-rho*ec_unif v1c=v1c !-vc_unif ! ==--------------------------------------------------------------== return end subroutine metac !------------------------------------------------------------------------- subroutine metaFX(rho,grho2,tau,fx,f1x,f2x,f3x) !------------------------------------------------------------------------- USE kinds, ONLY : DP implicit none ! INPUT ! charge density, square of gradient of rho, and kinetic energy density real(DP) rho, grho2, tau ! OUTPUT ! fx = Fx(p,z) ! f1x=D (Fx) / D rho ! f2x=D (Fx) / D ( D rho/D r_alpha) /|nabla rho| ! f3x=D (Fx) / D tau real(DP) fx, f1x, f2x, f3x ! LOCAL real(DP) x, p, z, qb, al, localdp, dz real(DP) dfdx, dxdp, dxdz, dqbdp, daldp, dqbdz, daldz real(DP) fxp, fxz ! fxp =D fx /D p real(DP) tauw, tau_unif ! work variables real(DP) xf1,xf2 real(DP) xfac1, xfac2, xfac3,xfac4,xfac5,xfac6,xfac7,z2 ! real(DP) pi, THRD, ee, cc, kk, bb,miu,fac1,small parameter(pi=3.141592653589793_DP) parameter(THRD=0.3333333333333333_DP) parameter(ee=1.537_DP) parameter(cc=1.59096_DP) parameter(kk=0.804_DP) parameter(bb=0.40_DP) parameter(miu=0.21951_DP) parameter(fac1=9.57078000062731_DP) !fac1=(3*pi^2)^(2/3) parameter(small=1.0E-6_DP) !==------------------------------------------------------------- tauw=0.125_DP*grho2/rho z=tauw/tau p=sqrt(grho2)/rho**THRD/rho p=p*p/(fac1*4.0_DP) tau_unif=0.3_DP*fac1*rho**(5.0_DP/3.0_DP) al=(tau-tauw)/tau_unif al=abs(al) !make sure al is always .gt. 0.0_DP qb=0.45_DP*(al-1.0_DP)/sqrt(1.0_DP+bb*al*(al-1.0_DP)) qb=qb+2.0_DP*THRD*p ! calculate x(p,z) and fx z2=z*z xf1=10.0_DP/81.0_DP xfac1=xf1+cc*z2/(1+z2)**2.0_DP xfac2=146.0_DP/2025.0_DP xfac3=sqrt(0.5_DP*(0.36_DP*z2+p*p)) xfac4=xf1*xf1/kk xfac5=2.0_DP*sqrt(ee)*xf1*0.36_DP xfac6=xfac1*p+xfac2*qb**2.0_DP-73.0_DP/405.0_DP*qb*xfac3 xfac6=xfac6+xfac4*p**2.0_DP+xfac5*z2+ee*miu*p**3.0_DP xfac7=(1+sqrt(ee)*p) x=xfac6/(xfac7*xfac7) ! fx=kk-kk/(1.0_DP+x/kk) fx=1.0_DP + kk-kk/(1.0_DP+x/kk) ! calculate the derivatives of fx w.r.t p and z dfdx=(kk/(kk+x))**2.0_DP daldp=5.0_DP*THRD*(tau/tauw-1.0_DP) ! daldz=-0.50_DP*THRD* ! * (tau/(2.0_DP*fac1*rho**THRD*0.1250_DP*sqrt(grho2)))**2.0_DP daldz=-5.0_DP*THRD*p/z2 dqbdz=0.45_DP*(0.50_DP*bb*(al-1.0_DP)+1.0_DP) dqbdz=dqbdz/(1.0_DP+bb*al*(al-1.0_DP))**1.5_DP dqbdp=dqbdz*daldp+2.0_DP*THRD dqbdz=dqbdz*daldz ! calculate d x /d p xf1=73.0_DP/405.0_DP/xfac3*0.50_DP*qb xf2=2.0_DP*xfac2*qb-73.0_DP/405.0_DP*xfac3 dxdp=-xf1*p dxdp=dxdp+xfac1+xf2*dqbdp dxdp=dxdp+2.0_DP*xfac4*p dxdp=dxdp+3.0_DP*ee*miu*p*p dxdp=dxdp/(xfac7*xfac7)-2.0_DP*x*sqrt(ee)/xfac7 ! d x/ dz dxdz=-xf1*0.36_DP*z xfac1=cc*2.0_DP*z*(1-z2)/(1+z2)**3.0_DP dxdz=dxdz+xfac1*p+xf2*dqbdz dxdz=dxdz+xfac5*2.0_DP*z dxdz=dxdz/(xfac7*xfac7) fxp=dfdx*dxdp fxz=dfdx*dxdz ! calculate f1x localdp=-8.0_DP*THRD*p/rho ! D p /D rho dz=-z/rho ! D z /D rho f1x=fxp*localdp+fxz*dz ! f2x localdp=2.0_DP/(fac1*4.0_DP*rho**(8.0_DP/3.0_DP)) dz=2.0_DP*0.125_DP/(rho*tau) f2x=fxp*localdp + fxz*dz ! f3x localdp=0.0_DP dz=-z/tau f3x=fxz*dz return end subroutine metaFX !------------------------------------------------------------------- subroutine tpsscx_spin(rhoup,rhodw,grhoup2,grhodw2,tauup,taudw,sx,& v1xup,v1xdw,v2xup,v2xdw,v3xup,v3xdw) !----------------------------------------------------------------- ! TPSS metaGGA for exchange - Hartree a.u. ! USE kinds, ONLY : DP implicit none ! ! dummy arguments ! real(DP) :: rhoup, rhodw, grhoup2, grhodw2, sx, v1xup, v1xdw, & v2xup, v2xdw ! up and down charge ! up and down gradient of the charge ! exchange and correlation energies ! derivatives of exchange wr. rho ! derivatives of exchange wr. grho ! real(DP):: tauup,taudw, &! up and down kinetic energy density v3xup,v3xdw ! derivatives of exchange wr. tau real(DP) :: small parameter (small = 1.E-10_DP) real(DP) :: rho, sxup, sxdw ! ! exchange rho = rhoup + rhodw if (rhoup.gt.small.and.sqrt(abs(grhoup2)).gt.small & .and. abs(tauup).gt.small) then call metax(2.0_DP*rhoup,4.0_DP*grhoup2, & 2.0_DP*tauup,sxup,v1xup,v2xup,v3xup) else sxup=0.0_DP v1xup=0.0_DP v2xup=0.0_DP v3xup=0.0_DP endif if (rhodw.gt.small.and.sqrt(abs(grhodw2)).gt.small & .and. abs(taudw).gt.small) then call metax(2.0_DP*rhodw,4.0_DP*grhodw2, & 2.0_DP*taudw,sxdw,v1xdw,v2xdw,v3xdw) else sxdw=0.0_DP v1xdw=0.0_DP v2xdw=0.0_DP v3xdw=0.0_DP endif sx=0.5_DP*(sxup+sxdw) v2xup=2.0_DP*v2xup v2xdw=2.0_DP*v2xdw ! return end subroutine tpsscx_spin ! !----------------------------------------------------------------------- subroutine tpsscc_spin(rho,zeta,grhoup,grhodw, & atau,sc,v1cup,v1cdw,v2cup,v2cdw,v3cup, v3cdw) !----------------------------------------------------------------------- ! tpss metaGGA for correlations - Hartree a.u. ! USE kinds, ONLY : DP implicit none ! ! dummy arguments ! real(DP) :: rho, zeta, grhoup(3),grhodw(3), sc, v1cup, v1cdw, v3c ! the total charge ! the magnetization ! the gradient of the charge ! exchange and correlation energies ! derivatives of correlation wr. rho ! derivatives of correlation wr. grho real(DP), dimension(3) :: v2cup, v2cdw, grho_vec real(DP) :: atau,v3cup, v3cdw, grho !grho=grho2 real(DP) :: small integer :: ipol parameter (small = 1.E-10_DP) ! ! ! vector grho_vec=grhoup+grhodw grho=0.0_DP do ipol=1,3 grho = grho + grho_vec(ipol)**2 end do ! ! if (rho.le.small.or.abs (zeta) .gt.1.0_DP.or.sqrt (abs (grho) ) & .le.small.or.abs(atau).lt.small) then sc = 0.0_DP v1cup = 0.0_DP v1cdw = 0.0_DP v2cup(:) = 0.0_DP v2cdw(:) = 0.0_DP v3cup = 0.0_DP v3cdw = 0.0_DP v3c = 0.0_DP else call metac_spin(rho,zeta,grhoup,grhodw, & atau,sc,v1cup,v1cdw,v2cup,v2cdw,v3c) end if ! ! v3cup = v3c v3cdw = v3c ! return end subroutine tpsscc_spin ! !--------------------------------------------------------------- subroutine metac_spin(rho,zeta,grhoup,grhodw, & tau,sc,v1up,v1dw,v2up,v2dw,v3) !--------------------------------------------------------------- USE kinds, ONLY : DP implicit none ! input real(DP) :: rho, zeta,grhoup(3),grhodw(3), tau ! output real(DP) :: sc, v1up, v1dw, v2up(3), v2dw(3), v3 ! local real(DP) :: rhoup, rhodw,tauw,grhovec(3),grho2,grho,& grhoup2,grhodw2 !grhovec vector gradient of rho !grho mod of gradient of rho real(DP) :: ec_u, vcup_u, vcdw_u real(DP) :: ec_pbe, v1up_pbe, v1dw_pbe,v2up_pbe(3),v2dw_pbe(3) real(DP) :: ecup_0, v1up_0, v2up_0(3),v2_tmp real(DP) :: ecdw_0, v1dw_0, v2dw_0(3) real(DP) :: ec_rev, cab, aa, bb, aa2 real(DP) :: z2,z,ca0,dca0da,dcabda,dcabdb real(DP) :: term(3),term1,term2,term3 real(DP) :: drev1up, drev1dw,drev2up(3),drev2dw(3),drev3 real(DP) :: sum, dsum1up, dsum1dw,dsum2up(3),dsum2dw(3) real(DP) :: dcab1up, dcab1dw,dcab2up(3),dcab2dw(3) real(DP) :: db1up, db1dw, db2up(3), db2dw(3) real(DP) :: da1up, da1dw real(DP) :: ecup_til,ecdw_til real(DP) :: v1up_uptil, v1up_dwtil, v2up_uptil(3),v2up_dwtil(3) real(DP) :: v1dw_uptil, v1dw_dwtil, v2dw_uptil(3),v2dw_dwtil(3) real(DP) :: small, pi34, p43, third, fac parameter(small=1.0E-10_DP, & fac=3.09366772628013593097_DP**2) ! fac = (3*PI**2)**(2/3) parameter (pi34= 0.75_DP / 3.141592653589793_DP, & p43=4.0_DP/3.0_DP,third=1.0_DP/3.0_DP) integer:: ipol !----------- rhoup=(1+zeta)*0.5_DP*rho rhodw=(1-zeta)*0.5_DP*rho grho2=0.0_DP grhoup2=0.0_DP grhodw2=0.0_DP do ipol=1,3 grhovec(ipol)=grhoup(ipol)+grhodw(ipol) grho2=grho2+grhovec(ipol)**2 grhoup2=grhoup2+grhoup(ipol)**2 grhodw2=grhodw2+grhodw(ipol)**2 end do grho=sqrt(grho2) ! if(rho.gt.small) then v2_tmp=0.0_DP call pw_spin((pi34/rho)**third,zeta,ec_u,vcup_u,vcdw_u) if((abs(grho).gt.small) .and. (zeta .le. 1.0_DP)) then call pbec_spin(rho,zeta,grho2,1,& ec_pbe,v1up_pbe,v1dw_pbe,v2_tmp) else ec_pbe=0.0_DP v1up_pbe=0.0_DP v1dw_pbe=0.0_DP v2up_pbe=0.0_DP endif ec_pbe = ec_pbe/rho+ec_u ! v1xx_pbe = D_epsilon_c/ D_rho_xx :xx= up, dw v1up_pbe = (v1up_pbe+vcup_u-ec_pbe)/rho v1dw_pbe = (v1dw_pbe+vcdw_u-ec_pbe)/rho ! v2xx_pbe = (D_Ec / D grho)/rho = (D_Ec/ D |grho| /|grho|)*grho/rho v2up_pbe = v2_tmp/rho*grhovec ! v2dw === v2up for PBE v2dw_pbe = v2up_pbe else ec_pbe=0.0_DP v1up_pbe=0.0_DP v1dw_pbe=0.0_DP v2up_pbe=0.0_DP v2dw_pbe=0.0_DP endif ! ec_pbe(rhoup,0,grhoup,0) if(rhoup.gt.small) then v2_tmp=0.0_DP call pw_spin((pi34/rhoup)**third,1.0_DP,ec_u,vcup_u,vcdw_u) if(sqrt(grhoup2).gt.small) then call pbec_spin(rhoup,1.0_DP-small,grhoup2,1,& ecup_0,v1up_0,v1dw_0,v2_tmp) else ecup_0=0.0_DP v1up_0=0.0_DP v2up_0=0.0_DP endif ecup_0 = ecup_0/rhoup + ec_u v1up_0 = (v1up_0 + vcup_u-ecup_0)/rhoup v2up_0 = v2_tmp/rhoup*grhoup else ecup_0 = 0.0_DP v1up_0 = 0.0_DP v2up_0 = 0.0_DP endif ! if(ecup_0.gt.ec_pbe) then ecup_til = ecup_0 v1up_uptil=v1up_0 v2up_uptil=v2up_0 v1up_dwtil=0.0_DP v2up_dwtil=0.0_DP else ecup_til = ec_pbe v1up_uptil= v1up_pbe v1up_dwtil= v1dw_pbe v2up_uptil= v2up_pbe v2up_dwtil= v2up_pbe endif ! ec_pbe(rhodw,0,grhodw,0) ! zeta = 1.0_DP if(rhodw.gt.small) then v2_tmp=0.0_DP call pw_spin((pi34/rhodw)**third,-1.0_DP,ec_u,vcup_u,vcdw_u) if(sqrt(grhodw2).gt.small) then call pbec_spin(rhodw,-1.0_DP+small,grhodw2,1,& ecdw_0,v1up_0,v1dw_0,v2_tmp) else ecdw_0=0.0_DP v1dw_0=0.0_DP v2dw_0=0.0_DP endif ecdw_0 = ecdw_0/rhodw + ec_u v1dw_0 = (v1dw_0 + vcdw_u-ecdw_0)/rhodw v2dw_0 = v2_tmp/rhodw*grhodw else ecdw_0 = 0.0_DP v1dw_0 = 0.0_DP v2dw_0 = 0.0_DP endif ! if(ecdw_0.gt.ec_pbe) then ecdw_til = ecdw_0 v1dw_dwtil=v1dw_0 v2dw_dwtil=v2dw_0 v1dw_uptil=0.0_DP v2dw_uptil=0.0_DP else ecdw_til = ec_pbe v1dw_dwtil= v1dw_pbe v2dw_dwtil= v2dw_pbe v1dw_uptil= v1up_pbe v2dw_uptil= v2dw_pbe endif !cccccccccccccccccccccccccccccccccccccccccc-------checked sum=(rhoup*ecup_til+rhodw*ecdw_til)/rho dsum1up=(ecup_til-ecdw_til)*rhodw/rho**2 & + (rhoup*v1up_uptil + rhodw*v1dw_uptil)/rho dsum1dw=(ecdw_til-ecup_til)*rhoup/rho**2 & + (rhodw*v1dw_dwtil + rhoup*v1up_dwtil)/rho ! vector dsum2up=(rhoup*v2up_uptil + rhodw*v2dw_uptil)/rho dsum2dw=(rhodw*v2dw_dwtil + rhoup*v2up_dwtil)/rho !ccccccccccccccccccccccccccccccccccccccccc---------checked aa=zeta ! bb=(rho*(grhoup-grhodw) - (rhoup-rhodw)*grho)**2 & ! /(4.0_DP*fac*rho**(14.0_DP/3.0_DP)) bb=0.0_DP do ipol=1,3 term(ipol)= rhodw*grhoup(ipol)-rhoup*grhodw(ipol) bb=bb+ term(ipol)**2 end do !vector term=term/(fac*rho**(14.0_DP/3.0_DP)) bb=bb/(fac*rho**(14.0_DP/3.0_DP)) ! bb=(rhodw*grhoup-rhoup*grhodw)**2/fac*rho**(-14.0_DP/3.0_DP) aa2=aa*aa ca0=0.53_DP+aa2*(0.87_DP+aa2*(0.50_DP+aa2*2.26_DP)) dca0da = aa*(1.74_DP+aa2*(2.0_DP+aa2*13.56_DP)) if(abs(aa).le.1.0_DP-small) then term3 =(1.0_DP+aa)**(-p43) + (1.0_DP-aa)**(-p43) term1=(1.0_DP+bb*0.50_DP*term3) term2=(1.0_DP+aa)**(-7.0_DP/3.0_DP) + (1.0_DP-aa)**(-7.0_DP/3.0_DP) cab =ca0/term1**4 dcabda = (dca0da/ca0 + 8.0_DP/3.0_DP*bb*term2/term1)*cab dcabdb = -2.0_DP*cab*term3/term1 else cab=0.0_DP dcabda=0.0_DP dcabdb=0.0_DP endif da1up=2.0_DP*rhodw/rho**2 da1dw=-2.0_DP*rhoup/rho**2 db1up=-2.0_DP*(grhodw(1)*term(1)+grhodw(2)*term(2)+grhodw(3)*term(3)) & -14.0_DP/3.0_DP*bb/rho db1dw= 2.0_DP*(grhoup(1)*term(1)+grhoup(2)*term(2)+grhoup(3)*term(3)) & -14.0_DP/3.0_DP*bb/rho !vector, not scalar db2up= term*rhodw*2.0_DP db2dw=-term*rhoup*2.0_DP ! dcab1up = dcabda*da1up + dcabdb*db1up dcab1dw = dcabda*da1dw + dcabdb*db1dw !vector, not scalar dcab2up = dcabdb*db2up dcab2dw = dcabdb*db2dw !cccccccccccccccccccccccccccccccccccccccccccccccccccccc------checked tauw=0.1250_DP*grho2/rho z=tauw/tau z2=z*z ! term1=1.0_DP+cab*z2 term2=(1.0_DP+cab)*z2 ec_rev = ec_pbe*term1-term2*sum ! drev1up=v1up_pbe*term1 + & ec_pbe*(z2*dcab1up - 2.0_DP*cab*z2/rho) & + (2.0_DP*term2/rho - z2*dcab1up)*sum & - term2*dsum1up ! drev1dw=v1dw_pbe*term1 + & ec_pbe*(z2*dcab1dw - 2.0_DP*cab*z2/rho) & + (2.0_DP*term2/rho - z2*dcab1dw)*sum & - term2*dsum1dw ! ! vector, not scalar drev2up=v2up_pbe*term1 + & ec_pbe*(z2*dcab2up+0.5_DP*cab*z/(rho*tau)*grhovec)& - (term2*4.0_DP/grho2*grhovec + z2*dcab2up)*sum & - term2*dsum2up drev2dw=v2dw_pbe*term1 + & ec_pbe*(z2*dcab2dw+0.5_DP*cab*z/(rho*tau)*grhovec) & - (term2*4.0_DP/grho2*grhovec + z2*dcab2dw)*sum & - term2*dsum2dw ! drev3 = ((1.0_DP+cab)*sum-ec_pbe*cab)*2.0_DP*z2/tau !ccccccccccccccccccccccccccccccccccccccccccccccccccc----checked term1=ec_rev*(1.0_DP+2.8_DP*ec_rev*z2*z) term2=(1.0_DP+5.6_DP*ec_rev*z2*z)*rho term3=-8.4_DP*ec_rev*ec_rev*z2*z ! v1up = term1 + term2*drev1up + term3 v1dw = term1 + term2*drev1dw + term3 ! term3=term3*rho v3 = term2*drev3 + term3/tau ! term3=-2.0_DP*term3/grho2 !grho/|grho|^2 = 1/grho v2up = term2*drev2up + term3*grhovec v2dw = term2*drev2dw + term3*grhovec ! ! ! call pw_spin((pi34/rho)**third,zeta,ec_u,vcup_u,vcdw_u) sc=rho*ec_rev*(1.0_DP+2.8_DP*ec_rev*z2*z) !-rho*ec_u ! v1up=v1up-vcup_u ! v1dw=v1dw-vcdw_u return end subroutine metac_spin ! !------------------------------------------------------------------------- ! ! END TPSSS !------------------------------------------------------------------------- ! !========================================================================= ! !------------------------------------------------------------------------- ! ! M06L ! ! ! input: - rho ! - grho2=|\nabla rho|^2 ! - tau = the kinetic energy density ! It is defined as summ_i( |nabla phi_i|**2 ) ! ! definition: E_x = \int ex dr ! ! output: ex (rho, grho, tau) ! v1x= D(E_x)/D(rho) ! v2x= D(E_x)/D( D rho/D r_alpha ) / |\nabla rho| ! ( v2x = 1/|grho| * dsx / d|grho| = 2 * dsx / dgrho2 ) ! v3x= D(E_x)/D(tau) ! ! ec, v1c, v2c, v3c as above for correlation ! !------------------------------------------------------------------------- ! subroutine m06lxc (rho, grho2, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c) !----------------------------------------------------------------------- ! ! USE kinds, ONLY : dp implicit none real(dp), intent(in) :: rho, grho2, tau real(dp), intent(out) :: ex, ec, v1x, v2x,v3x,v1c,v2c,v3c ! real(dp) :: rhoa, rhob, grho2a, grho2b, taua, taub, v1cb, v2cb, v3cb real(dp), parameter :: zero = 0.0_dp, two = 2.0_dp, four = 4.0_dp ! ! rhoa = rho / two ! one component only rhob = rhoa ! grho2a = grho2 / four grho2b = grho2a ! taua = tau * two * 0.5_dp ! Taua, which is Tau_sigma is half Tau taub = taua ! Tau is defined as summ_i( |nabla phi_i|**2 ) ! in the M06L routine ! call m06lx (rhoa, grho2a, taua, ex, v1x, v2x, v3x) ! ex = two * ex ! Add the two components up + dw ! v2x = 0.5_dp * v2x ! call m06lc (rhoa, rhob, grho2a, grho2b, taua, taub, ec, v1c, v2c, v3c, & & v1cb, v2cb, v3cb) ! ! v2c = 0.5_dp * v2c ! end subroutine m06lxc !------------------------------------------------------------------------- ! subroutine m06lxc_spin (rhoup, rhodw, grhoup2, grhodw2, tauup, taudw, & & ex, ec, v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw, & & v1cup, v1cdw, v2cup, v2cdw, v3cup, v3cdw) !----------------------------------------------------------------------- ! ! USE kinds, ONLY : dp implicit none real(dp), intent(in) :: rhoup, rhodw, grhoup2, grhodw2, tauup, taudw real(dp), intent(out) :: ex, ec, v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw, & & v1cup, v1cdw, v2cup, v2cdw, v3cup, v3cdw ! real(dp) :: exup, exdw, taua, taub real(dp), parameter :: zero = 0.0_dp, two = 2.0_dp ! ! ! taua = tauup * two ! Tau is defined as summ_i( |nabla phi_i|**2 ) taub = taudw * two ! in the rest of the routine ! call m06lx (rhoup, grhoup2, taua, exup, v1xup, v2xup, v3xup) call m06lx (rhodw, grhodw2, taub, exdw, v1xdw, v2xdw, v3xdw) ! ex = exup + exdw ! ! call m06lc (rhoup, rhodw, grhoup2, grhodw2, taua, taub, & & ec, v1cup, v2cup, v3cup, v1cdw, v2cdw, v3cdw) ! ! ! end subroutine m06lxc_spin !=============================== M06L exchange ========================== subroutine m06lx (rho, grho2, tau, ex, v1x, v2x, v3x) !_________________________________________________________________________ use kinds, ONLY : dp use constants, ONLY : pi implicit none real(dp), intent(in) :: rho, grho2, tau real(dp), intent(out) :: ex, v1x, v2x, v3x real(dp) :: v1x_unif,ex_unif, ex_pbe, & & sx_pbe, v1x_pbe, v2x_pbe ! ! ex_unif: lda \epsilon_x(rho) ! v2x = 1/|grho| * dsx / d|grho| = 2 * dsx / dgrho2 ! real(dp), parameter :: zero = 0._dp, one = 1.0_dp, two=2.0_dp, three = 3.0_dp, & & four = 4.0_dp, five = 5.0_dp, six = 6.0_dp, & & eight = 8.0_dp, & & f12 = one/two, f13 = one/three, f23 = two/three, & & f53 = five/three, f83 = eight/three, f43 = four/three, & & pi34 = pi*three/four, pi2 = pi*pi, & & small=1.d-10 real(dp) :: d0, d1, d2, d3, d4, d5, CF, CT, CX, alpha real(dp), dimension(0:11) & & :: at integer :: i ! ! ! VSXC98 variables (LDA part) ! real(dp) :: xs, xs2, grho, rhom83, rho13, rho43, zs, gh real(dp) :: hg, dhg_dxs2, dhg_dzs real(dp) :: dxs2_drho, dxs2_dgrho2, dzs_drho, dzs_dtau real(dp) :: ex_vs98, v1x_vs98, v2x_vs98, v3x_vs98, v2x_vs98_g ! ! GGA and MGGA variables ! real(dp) :: tau_unif, ts, ws, fws, dfws, dfws_drho, dfws_dtau, & & dws_dts, dts_dtau, dts_drho ! ! _________________________________________________________________________________________ ! set parameters at(0) = 3.987756d-01 at(1) = 2.548219d-01 at(2) = 3.923994d-01 at(3) = -2.103655d+00 at(4) = -6.302147d+00 at(5) = 1.097615d+01 at(6) = 3.097273d+01 at(7) = -2.318489d+01 at(8) = -5.673480d+01 at(9) = 2.160364d+01 at(10) = 3.421814d+01 at(11) = -9.049762d+00 d0 = 6.012244d-01 d1 = 4.748822d-03 d2 = -8.635108d-03 d3 = -9.308062d-06 d4 = 4.482811d-05 d5 = zero alpha = 1.86726d-03 !___________________________________________________ if (rho < small .and. tau < small) then ex = zero v1x = zero v2x = zero v3x = zero return end if ! _________VSXC98 functional (LDA part)_____________ ! ! set variables CF = (three/five) * (six*pi2)**f23 CT = CF / two CX = -(three/two) * (three/(four*pi))**f13 ! Cx LSDA ! if (rho >= small .and. grho>=small) then grho = sqrt(grho2) rho43 = rho**f43 rho13 = rho**f13 rhom83 = one/rho**f83 xs = grho / rho43 xs2 = xs * xs zs = tau/rho**f53 - CF gh = one + alpha * (xs2 + zs) if (gh >= small) then call gvt4 (xs2, zs, d0, d1, d2, d3, d4, d5, alpha, hg, dhg_dxs2, dhg_dzs) else hg = zero dhg_dxs2 = zero dhg_dzs = zero end if dxs2_drho = -f83*xs2/rho dxs2_dgrho2 = rhom83 dzs_drho = -f53*tau*rhom83 dzs_dtau = one/rho**f53 ex_unif = CX * rho43 ex_vs98 = ex_unif * hg v1x_vs98 = CX * ( f43 * hg * rho**f13 ) + & & ex_unif * ( dhg_dxs2*dxs2_drho + dhg_dzs*dzs_drho ) v2x_vs98 = two * ex_unif * dhg_dxs2 * dxs2_dgrho2 v3x_vs98 = ex_unif * dhg_dzs * dzs_dtau !____________________mo6lx functional____________________________ tau_unif = CF * rho**f53 ! Tau is define as summ_i( |nabla phi_i|**2 ) ts = tau_unif / tau ws = (ts - one)/(ts + one) fws = zero dfws = zero do i = 0, 11 fws = fws + at(i)*ws**i dfws = dfws + i*at(i)*ws**(i-1) end do dws_dts = two/((ts+1)**2) dts_drho = ( (six*pi*pi*rho)**f23 )/tau dts_dtau = -ts/tau dfws_drho = dfws*dws_dts*dts_drho dfws_dtau = dfws*dws_dts*dts_dtau call pbex_m06l (two*rho, four*grho2, sx_pbe, v1x_pbe, v2x_pbe) v1x_unif = f43 * CX * rho13 sx_pbe = f12 * sx_pbe v1x_pbe = v1x_pbe + v1x_unif v2x_pbe = two * v2x_pbe ex_pbe = sx_pbe + ex_unif !________energy and potential_____________________________ ex = ex_vs98 + ex_pbe*fws v1x = v1x_vs98 + v1x_pbe*fws + ex_pbe*dfws_drho v2x = v2x_vs98 + v2x_pbe*fws v3X = v3x_vs98 + ex_pbe*dfws_dtau !__________________________________________________________ end subroutine m06lx !__________________________________________________________ subroutine pbex_m06l (rho, grho2, sx, v1x, v2x) !--------------------------------------------------------------- ! ! PBE exchange (without Slater exchange): ! J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996) ! ! v2x = 1/|grho| * dsx / d|grho| = 2 * dsx / dgrho2 ! USE kinds USE constants, ONLY : pi implicit none real(dp) :: rho, grho2, sx, v1x, v2x ! input: charge and squared gradient ! output: energy ! output: potential integer :: iflag ! local variables real(dp) :: grho, rho43, xs, xs2, dxs2_drho, dxs2_dgrho2 real(dp) :: CX, denom, C1, C2, ex, Fx, dFx_dxs2, dex_drho real(dp), parameter :: mu=0.21951_dp, ka=0.804_dp, one = 1.0_dp, two=2.0_dp, three = 3.0_dp, & & four = 4.0_dp, six = 6.0_dp, eight = 8.0_dp, & & f13 = one/three, f23 = two/three, f43 = four/three, & & f34=three/four, f83 = eight/three !_____________________________________________________________________ CX = f34 * (three/pi)**f13 ! Cx LDA denom = four * (three*pi**two)**f23 C1 = mu / denom C2 = mu / (ka * denom) grho = sqrt(grho2) rho43 = rho**f43 xs = grho / rho43 xs2 = xs * xs dxs2_drho = -f83 * xs2 / rho dxs2_dgrho2 = one /rho**f83 ex = - CX * rho43 dex_drho = - f43 * CX * rho**f13 Fx = C1*xs2 / (one + C2*xs2) dFx_dxs2 = C1 / (one + C2*xs2)**2 ! ! Energy ! sx = Fx * ex ! ! Potential ! v1x = dex_drho * Fx + ex * dFx_dxs2 * dxs2_drho v2x = two * ex * dFx_dxs2* dxs2_dgrho2 ! ! end subroutine pbex_m06l !=============================== M06L correlation ========================== ! !------------------------------------------------------------------------- ! subroutine m06lc (rhoa, rhob, grho2a, grho2b, taua, taub, ec, v1c_up, v2c_up, v3c_up, & & v1c_dw, v2c_dw, v3c_dw) !------------------------------------------------------------------------- ! use kinds, only : dp use constants, only : pi implicit none !------------------------------------------------------------------------- real(dp), intent(in) :: rhoa, rhob, grho2a, grho2b, taua, taub real(dp), intent(out) :: ec, v1c_up, v2c_up, v3c_up, v1c_dw, v2c_dw, v3c_dw ! real(dp), parameter :: zero = 0._dp, one = 1.0_dp, two=2.0_dp, three = 3.0_dp, & & four = 4.0_dp, five = 5.0_dp, six = 6.0_dp, & & eight = 8.0_dp, & & f12 = one/two, f13 = one/three, f23 = two/three, & & f53 = five/three, f83 = eight/three, f43 = four/three, & & pi34 = three/(four*pi), pi2 = pi*pi, f35 = three/five, & & small=1.d-10 ! ! parameters of the MO6Lc functional ! real(dp), dimension(0:4):: cs, cab ! real(dp) :: ds0, ds1, ds2, ds3, ds4, ds5, CF, alpha, Ds, & & dab0, dab1, dab2, dab3, dab4, dab5, gama_ab, gama_s, & & alpha_s, alpha_ab ! ! functions and variables ! real(dp) :: ec_pw_a, ec_pw_b, ec_pw_ab, vc_pw_a, vc_pw_b, vv, & & vc_pw_ab, vc_pw_up, vc_pw_dw, Ecaa, Ecbb, Ecab, & & Ec_UEG_ab, Ec_UEG_aa, Ec_UEG_bb, decab_drhoa, decab_drhob, & & v1_ab_up, v1_ab_dw, v2_ab_up, v2_ab_dw, v3_ab_up, v3_ab_dw, & & v1_aa_up, v2_aa_up, v3_aa_up, v1_bb_dw, v2_bb_dw, v3_bb_dw ! real(dp) :: xsa, xs2a, rsa, grhoa, xsb, xs2b, grhob, rsb, zsa, zsb, & & xs2ab, zsab, zeta, rho, rs, & & dxs2a_drhoa, dxs2b_drhob, dxs2a_dgrhoa2, dxs2b_dgrhob2, & & dzsa_drhoa, dzsb_drhob, dzsa_dtaua, dzsb_dtaub ! real(dp) :: hga, dhga_dxs2a, dhga_dzsa, hgb, dhgb_dxs2b, dhgb_dzsb, & & hgab, dhgab_dxs2ab, dhgab_dzsab, & & Dsa, Dsb, dDsa_dxs2a, dDsa_dzsa, dDsb_dxs2b, dDsb_dzsb, & & gsa, gsb, gsab, dgsa_dxs2a, dgsb_dxs2b, dgsab_dxs2ab, num integer :: ifunc !_____________________________________________________________________________________ dab0 = 3.957626d-01 dab1 = -5.614546d-01 dab2 = 1.403963d-02 dab3 = 9.831442d-04 dab4 = -3.577176d-03 dab5 = zero cab(0) = 6.042374d-01 cab(1) = 1.776783d+02 cab(2) = -2.513252d+02 cab(3) = 7.635173d+01 cab(4) = -1.255699d+01 gama_ab = 0.0031_dp alpha_ab = 0.00304966_dp ds0 = 4.650534d-01 ds1 = 1.617589d-01 ds2 = 1.833657d-01 ds3 = 4.692100d-04 ds4 = -4.990573d-03 ds5 = zero cs(0) = 5.349466d-01 cs(1) = 5.396620d-01 cs(2) = -3.161217d+01 cs(3) = 5.149592d+01 cs(4) = -2.919613d+01 gama_s = 0.06_dp alpha_s = 0.00515088_dp CF = f35 * (six*pi2)**f23 ifunc = 1 ! iflag=1 J.P. Perdew and Y. Wang, PRB 45, 13244 (1992) !______________Ecaa_____________________________________________________ if (rhoa < small .and. taua < small ) then Ecaa = zero v1_aa_up = zero v2_aa_up = zero v3_aa_up = zero else rsa = (pi34/rhoa)**f13 grhoa = sqrt(grho2a) xsa = grhoa / rhoa**f43 xs2a = xsa * xsa zsa = taua/rhoa**f53 - CF dxs2a_drhoa = -f83*xs2a/rhoa dxs2a_dgrhoa2 = one/(rhoa**f83) dzsa_drhoa = -f53*taua/(rhoa**f83) dzsa_dtaua = one/rhoa**f53 Dsa = one - xs2a/(four * (zsa + CF)) dDsa_dxs2a = - one/(four * (zsa + CF)) dDsa_dzsa = xs2a/(four * (zsa + CF)**2) ec_pw_a = zero vc_pw_a = zero call pw_spin (rsa, one, ec_pw_a, vc_pw_a, vv) call gvt4 (xs2a, zsa, ds0, ds1, ds2, ds3, ds4, ds5, alpha_s, hga, dhga_dxs2a, dhga_dzsa) call gfunc (cs, gama_s, xs2a, gsa, dgsa_dxs2a) Ec_UEG_aa = rhoa*ec_pw_a num = (dgsa_dxs2a + dhga_dxs2a)*Dsa + (gsa + hga)*dDsa_dxs2a ! ! Ecaa = Ec_UEG_aa * (gsa + hga) * Dsa v1_aa_up = vc_pw_a * (gsa + hga) * Dsa & & + Ec_UEG_aa * num * dxs2a_drhoa & & + Ec_UEG_aa * (dhga_dzsa*Dsa + (gsa + hga)*dDsa_dzsa) * dzsa_drhoa v2_aa_up = two * Ec_UEG_aa * num * dxs2a_dgrhoa2 v3_aa_up = Ec_UEG_aa * (dhga_dzsa*Dsa + (gsa + hga)*dDsa_dzsa) * dzsa_dtaua ! end if ! !______________Ecbb_____________________________________________________ if (rhob < small .and. taub < small) then Ecbb = zero v1_bb_dw = zero v2_bb_dw = zero v3_bb_dw = zero else rsb = (pi34/rhob)**f13 grhob = sqrt(grho2b) xsb = grhob / rhob**f43 xs2b = xsb * xsb zsb = taub/rhob**f53 - CF dxs2b_drhob = -f83*xs2b/rhob dxs2b_dgrhob2 = one /rhob**f83 dzsb_drhob = -f53*taub/(rhob**f83) dzsb_dtaub = one/rhob**f53 Dsb = one - xs2b/(four * (zsb + CF)) dDsb_dxs2b = - one/(four * (zsb + CF)) dDsb_dzsb = xs2b/(four * (zsb + CF)**2) call pw_spin (rsb, one, ec_pw_b, vc_pw_b, vv) call gvt4 (xs2b, zsb, ds0, ds1, ds2, ds3, ds4, ds5, alpha_s, hgb, dhgb_dxs2b, dhgb_dzsb) call gfunc (cs, gama_s, xs2b, gsb, dgsb_dxs2b) Ec_UEG_bb = rhob*ec_pw_b num = (dgsb_dxs2b + dhgb_dxs2b)*Dsb + (gsb + hgb)*dDsb_dxs2b ! ! Ecbb = Ec_UEG_bb * (gsb + hgb) * Dsb v1_bb_dw = vc_pw_b * (gsb + hgb) * Dsb & & + Ec_UEG_bb * num * dxs2b_drhob & & + Ec_UEG_bb * (dhgb_dzsb*Dsb + (gsb + hgb)*dDsb_dzsb)*dzsb_drhob v2_bb_dw = two * Ec_UEG_bb * num * dxs2b_dgrhob2 v3_bb_dw = Ec_UEG_bb * (dhgb_dzsb*Dsb + (gsb + hgb)*dDsb_dzsb)*dzsb_dtaub ! end if ! !________________Ecab____________________________________________ if (rhoa < small .and. rhob < small) then Ecab = zero v1_ab_up = zero v1_ab_dw = zero v2_ab_up = zero v2_ab_dw = zero v3_ab_up = zero v3_ab_dw = zero else xs2ab = xs2a + xs2b zsab = zsa + zsb rho = rhoa + rhob zeta = (rhoa - rhob)/rho rs = (pi34/rho)**f13 call gvt4 (xs2ab, zsab, dab0, dab1, dab2, dab3, dab4, dab5, alpha_ab, hgab, dhgab_dxs2ab, dhgab_dzsab) call pw_spin (rs, zeta, ec_pw_ab, vc_pw_up, vc_pw_dw) call gfunc (cab, gama_ab, xs2ab, gsab, dgsab_dxs2ab) decab_drhoa = vc_pw_up - vc_pw_a decab_drhob = vc_pw_dw - vc_pw_b Ec_UEG_ab = ec_pw_ab*rho - ec_pw_a*rhoa - ec_pw_b*rhob ! ! Ecab = Ec_UEG_ab * (gsab + hgab) v1_ab_up = decab_drhoa * (gsab + hgab) & & + Ec_UEG_ab * (dgsab_dxs2ab + dhgab_dxs2ab) * dxs2a_drhoa & & + Ec_UEG_ab * dhgab_dzsab * dzsa_drhoa v1_ab_dw = decab_drhob * (gsab + hgab) & & + Ec_UEG_ab * (dgsab_dxs2ab + dhgab_dxs2ab) * dxs2b_drhob & & + Ec_UEG_ab * dhgab_dzsab * dzsb_drhob v2_ab_up = two * Ec_UEG_ab * (dgsab_dxs2ab + dhgab_dxs2ab) * dxs2a_dgrhoa2 v2_ab_dw = two * Ec_UEG_ab * (dgsab_dxs2ab + dhgab_dxs2ab) * dxs2b_dgrhob2 v3_ab_up = Ec_UEG_ab * dhgab_dzsab * dzsa_dtaua v3_ab_dw = Ec_UEG_ab * dhgab_dzsab * dzsb_dtaub ! end if ! !___________________ec and vc_____________________________________________ ec = Ecaa + Ecbb + Ecab v1c_up = v1_aa_up + v1_ab_up v2c_up = v2_aa_up + v2_ab_up v3c_up = v3_aa_up + v3_ab_up v1c_dw = v1_bb_dw + v1_ab_dw v2c_dw = v2_bb_dw + v2_ab_dw v3c_dw = v3_bb_dw + v3_ab_dw !__________________________________________________________________________ contains !__________________________________________________________________________ subroutine gfunc (cspin, gama, xspin, gs, dgs_dx) implicit none real(dp), dimension (0:4), intent(in) :: cspin real(dp), intent(in) :: xspin, gama real(dp), intent(out) :: gs, dgs_dx ! real(dp) :: de, d2, x1, x2, x3, x4 real(dp), parameter :: one=1.0d0, two=2.0d0, three=3.0d0, four=4.0d0 !__________________ de = one/(one + gama*xspin) d2 = de**2 x1 = gama * xspin * de x2 = x1**2 x3 = x1**3 x4 = x1**4 gs = cspin(0) + cspin(1)*x1 + cspin(2)*x2 + cspin(3)*x3 + cspin(4)*x4 dgs_dx = gama*d2* (cspin(1) + two*cspin(2)*x1 + three*cspin(3)*x2 + four*cspin(4)*x3) end subroutine gfunc !___________________________________________________________________ end subroutine m06lc !___________________________________________________________________ subroutine gvt4 (x, z, a, b, c, d, e, f, alpha, hg, dh_dx, dh_dz) use kinds, only : dp implicit none real(dp), intent(in) :: X, z, a, b, c, d, e, f, alpha real(dp), intent(out) :: hg, dh_dx, dh_dz real(dp) :: gamma, gamma2, gamma3 real(dp), parameter :: one=1.0_dp, two=2.0_dp, three=3.0_dp gamma = one + alpha*(x+z) gamma2 = gamma*gamma gamma3 = gamma2*gamma hg = a/gamma + (b*x + c*z)/gamma2 + (d*x*x + e*x*z + f*z*z)/gamma3 dh_dx = ( -alpha*a + b + (two*x*(d - alpha*b) + z*(e - two*alpha*c))/ gamma & & - three*alpha*(d*x*x + e*x*z + f*z*z)/gamma2 )/gamma2 dh_dz = ( -alpha*a + c + (two*z*(f - alpha*c) + x*(e -two*alpha*b))/ gamma & & - three*alpha*(d*x*x + e*x*z + f*z*z)/gamma2 )/gamma2 return end subroutine gvt4 !------------------------------------------------------------------------- ! ! END M06L ! !========================================================================= espresso-5.1/flib/w0gauss.f900000644000175000017500000000432312341373036014133 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- function w0gauss (x, n) !----------------------------------------------------------------------- ! ! the derivative of wgauss: an approximation to the delta function ! ! --> (n>=0) : derivative of the corresponding Methfessel-Paxton wgauss ! ! --> (n=-1 ): derivative of cold smearing: ! 1/sqrt(pi)*exp(-(x-1/sqrt(2))**2)*(2-sqrt(2)*x) ! ! --> (n=-99): derivative of Fermi-Dirac function: 0.5/(1.0+cosh(x)) ! USE kinds, ONLY : DP USE constants, ONLY : sqrtpm1 implicit none real(DP) :: w0gauss, x ! output: the value of the function ! input: the point where to compute the function integer :: n ! input: the order of the smearing function ! ! here the local variables ! real(DP) :: a, arg, hp, hd ! the coefficients a_n ! the argument of the exponential ! the hermite function ! the hermite function integer :: i, ni ! counter on n values ! counter on 2n values ! Fermi-Dirac smearing if (n.eq. - 99) then if (abs (x) .le.36.0) then w0gauss = 1.0d0 / (2.0d0 + exp ( - x) + exp ( + x) ) ! in order to avoid problems for large values of x in the e else w0gauss = 0.d0 endif return endif ! cold smearing (Marzari-Vanderbilt) if (n.eq. - 1) then arg = min (200.d0, (x - 1.0d0 / sqrt (2.0d0) ) **2) w0gauss = sqrtpm1 * exp ( - arg) * (2.0d0 - sqrt ( 2.0d0) * x) return endif if (n.gt.10 .or. n.lt.0) call errore('w0gauss','higher order smearing is untested and unstable',abs(n)) ! Methfessel-Paxton arg = min (200.d0, x**2) w0gauss = exp ( - arg) * sqrtpm1 if (n.eq.0) return hd = 0.0d0 hp = exp ( - arg) ni = 0 a = sqrtpm1 do i = 1, n hd = 2.0d0 * x * hp - 2.0d0 * DBLE (ni) * hd ni = ni + 1 a = - a / (DBLE (i) * 4.0d0) hp = 2.0d0 * x * hd-2.0d0 * DBLE (ni) * hp ni = ni + 1 w0gauss = w0gauss + a * hp enddo return end function w0gauss espresso-5.1/flib/more_functionals.f900000644000175000017500000017476112341373036016127 0ustar mbamba! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ================================================================== SUBROUTINE LSD_LYP(RHO,ETA,ELYP,VALYP,VBLYP) ! ==--------------------------------------------------------------== ! == C. LEE, W. YANG, AND R.G. PARR, PRB 37, 785 (1988) == ! == THIS IS ONLY THE LDA PART == ! ==--------------------------------------------------------------== USE kinds, ONLY: DP ! IMPLICIT NONE ! arguments REAL(DP) :: RHO,ETA,ELYP,VALYP,VBLYP ! locals REAL(DP) :: RA,RB,RM3,DR,E1,OR,DOR,E2,DE1A,DE1B,DE2A,DE2B REAL(DP), PARAMETER :: SMALL=1.D-24, A=0.04918D0, B=0.132D0, & C=0.2533D0, D=0.349D0, CF=2.87123400018819108D0 ! ==--------------------------------------------------------------== RA=RHO*0.5D0*(1.D0+ETA) RA=MAX(RA,SMALL) RB=RHO*0.5D0*(1.D0-ETA) RB=MAX(RB,SMALL) RM3=RHO**(-1.D0/3.D0) DR=(1.D0+D*RM3) E1=4.D0*A*RA*RB/RHO/DR OR=EXP(-C*RM3)/DR*RM3**11.D0 DOR=-1.D0/3.D0*RM3**4*OR*(11.D0/RM3-C-D/DR) E2=2.D0**(11.D0/3.D0)*CF*A*B*OR*RA*RB*(RA**(8.d0/3.d0)+ RB**(8.d0/3.d0)) ELYP=(-E1-E2)/RHO DE1A=-E1*(1.D0/3.D0*D*RM3**4/DR+1./RA-1./RHO) DE1B=-E1*(1.D0/3.D0*D*RM3**4/DR+1./RB-1./RHO) DE2A=-2.D0**(11.D0/3.D0)*CF*A*B*(DOR*RA*RB*(RA**(8.d0/3.d0)+ & RB**(8.d0/3.d0))+OR*RB*(11.d0/3.d0*RA**(8.d0/3.d0)+ & RB**(8.d0/3.d0))) DE2B=-2.D0**(11.D0/3.D0)*CF*A*B*(DOR*RA*RB*(RA**(8.d0/3.d0)+ & RB**(8.d0/3.d0))+OR*RA*(11.d0/3.d0*RB**(8.d0/3.d0)+ & RA**(8.d0/3.d0))) VALYP=DE1A+DE2A VBLYP=DE1B+DE2B ! ==--------------------------------------------------------------== RETURN END SUBROUTINE LSD_LYP ! ================================================================== SUBROUTINE LSD_PADE(RHO,ETA,EC,VCA,VCB) ! ==--------------------------------------------------------------== ! == PADE APPROXIMATION == ! ==--------------------------------------------------------------== USE kinds, ONLY: DP IMPLICIT NONE ! arguments REAL(DP) :: RHO,ETA,EC,VCA,VCB ! locals REAL(DP) :: RS,FS,DFS,DFSA,DFSB,A0P,A1P,A2P,A3P,B1P,B2P,B3P,B4P REAL(DP) :: TOP,DTOP,TOPX,BOT,DBOT,BOTX,VC,DX REAL(DP), PARAMETER :: A0=.4581652932831429d0, A1=2.217058676663745d0, & A2=0.7405551735357053d0, A3=0.01968227878617998d0 REAL(DP), PARAMETER :: B1=1.0D0, B2=4.504130959426697d0, & B3=1.110667363742916d0, B4=0.02359291751427506d0 REAL(DP), PARAMETER :: DA0=.119086804055547D0, DA1=.6157402568883345d0, & DA2=.1574201515892867d0, DA3=.003532336663397157d0 REAL(DP), PARAMETER :: DB1=0.0d0, DB2=.2673612973836267d0, & DB3=.2052004607777787d0, DB4=.004200005045691381d0 REAL(DP), PARAMETER :: RSFAC=.6203504908994000d0, FSFAC=1.92366105093153617d0 ! ==--------------------------------------------------------------== RS=RSFAC*RHO**(-1.d0/3.d0) FS=FSFAC*((1.d0+ETA)**(4.d0/3.d0)+(1.d0-ETA)**(4.d0/3.d0)-2.d0) DFS=FSFAC*4.d0/3.d0* ((1.d0+ETA)**(1.d0/3.d0)-(1.d0-ETA)**(1.d0/3.d0)) DFSA=DFS*(1.d0-ETA) DFSB=DFS*(-1.d0-ETA) A0P=A0+FS*DA0 A1P=A1+FS*DA1 A2P=A2+FS*DA2 A3P=A3+FS*DA3 B1P=B1+FS*DB1 B2P=B2+FS*DB2 B3P=B3+FS*DB3 B4P=B4+FS*DB4 TOP=A0P+RS*(A1P+RS*(A2P+RS*A3P)) DTOP=A1P+RS*(2.d0*A2P+RS*3.d0*A3P) TOPX=DA0+RS*(DA1+RS*(DA2+RS*DA3)) BOT=RS*(B1P+RS*(B2P+RS*(B3P+RS*B4P))) DBOT=B1P+RS*(2.d0*B2P+RS*(3.d0*B3P+RS*4.d0*B4P)) BOTX=RS*(DB1+RS*(DB2+RS*(DB3+RS*DB4))) EC=-TOP/BOT VC=EC+RS*(DTOP/BOT-TOP*DBOT/(BOT*BOT))/3.d0 DX=-(TOPX/BOT-TOP*BOTX/(BOT*BOT)) VCA=VC+DX*DFSA VCB=VC+DX*DFSB ! ==--------------------------------------------------------------== RETURN END SUBROUTINE LSD_PADE ! ================================================================== SUBROUTINE LSD_GLYP(RA,RB,GRHOAA,GRHOAB,GRHOBB,SC, & V1CA,V2CA,V1CB,V2CB,V2CAB) ! ==--------------------------------------------------------------== USE kinds, ONLY: DP ! LEE, YANG PARR: GRADIENT CORRECTION PART IMPLICIT NONE ! REAL(DP) (A-H,O-Z), INTEGER (I-N) ! arguments REAL(DP) :: RA,RB,GRHOAA,GRHOAB,GRHOBB,SC, & V1CA,V2CA,V1CB,V2CB,V2CAB ! locals REAL(DP) :: RHO,RM3,DR,OR,DOR,DER,DDER REAL(DP) :: DLAA,DLAB,DLBB,DLAAA,DLAAB,DLABA,DLABB,DLBBA,DLBBB REAL(DP), PARAMETER :: A=0.04918D0,B=0.132D0,C=0.2533D0,D=0.349D0 ! ==--------------------------------------------------------------== RHO=RA+RB RM3=RHO**(-1.D0/3.D0) DR=(1.D0+D*RM3) OR=EXP(-C*RM3)/DR*RM3**11.D0 DOR=-1.D0/3.D0*RM3**4*OR*(11.D0/RM3-C-D/DR) DER=C*RM3+D*RM3/DR DDER=1.d0/3.d0*(D*D*RM3**5/DR/DR-DER/RHO) DLAA=-A*B*OR*(RA*RB/9.d0*(1.d0-3*DER-(DER-11.d0)*RA/RHO)-RB*RB) DLAB=-A*B*OR*(RA*RB/9.d0*(47.d0-7.d0*DER)-4.d0/3.d0*RHO*RHO) DLBB=-A*B*OR*(RA*RB/9.d0*(1.d0-3*DER-(DER-11.d0)*RB/RHO)-RA*RA) DLAAA=DOR/OR*DLAA-A*B*OR*(RB/9.d0*(1.d0-3*DER-(DER-11.d0)*RA/RHO)- & RA*RB/9.d0*((3.d0+RA/RHO)*DDER+(DER-11.d0)*RB/RHO/RHO)) DLAAB=DOR/OR*DLAA-A*B*OR*(RA/9.d0*(1.d0-3.d0*DER-(DER-11.d0)*RA/RHO)- & RA*RB/9.d0*((3.d0+RA/RHO)*DDER-(DER-11.d0)*RA/RHO/RHO)-2.d0*RB) DLABA=DOR/OR*DLAB-A*B*OR*(RB/9.d0*(47.d0-7.d0*DER)-7.d0/9.d0*RA*RB*DDER- & 8.d0/3.d0*RHO) DLABB=DOR/OR*DLAB-A*B*OR*(RA/9.d0*(47.d0-7.d0*DER)-7.d0/9.d0*RA*RB*DDER- & 8.d0/3.d0*RHO) DLBBA=DOR/OR*DLBB-A*B*OR*(RB/9.d0*(1.d0-3.d0*DER-(DER-11.d0)*RB/RHO)- & RA*RB/9.d0*((3.d0+RB/RHO)*DDER-(DER-11.d0)*RB/RHO/RHO)-2.d0*RA) DLBBB=DOR/OR*DLBB-A*B*OR*(RA/9.d0*(1.d0-3*DER-(DER-11.d0)*RB/RHO)- & RA*RB/9.d0*((3.d0+RB/RHO)*DDER+(DER-11.d0)*RA/RHO/RHO)) SC=DLAA*GRHOAA+DLAB*GRHOAB+DLBB*GRHOBB V1CA=DLAAA*GRHOAA+DLABA*GRHOAB+DLBBA*GRHOBB V1CB=DLAAB*GRHOAA+DLABB*GRHOAB+DLBBB*GRHOBB V2CA=2.d0*DLAA V2CB=2.d0*DLBB V2CAB=DLAB ! ==--------------------------------------------------------------== RETURN END SUBROUTINE LSD_GLYP !______________________________________________________________________ subroutine ggablyp4(nnr,nspin,gradr,rhor,exc) ! _________________________________________________________________ ! becke-lee-yang-parr gga ! ! exchange: becke, pra 38, 3098 (1988) but derived from ! pw91 exchange formula given in prb 48, 14944 (1993) ! by setting "b3" and "b4" to 0.0 ! correlation: miehlich et al., cpl 157, 200 (1989) ! method by ja white & dm bird, prb 50, 4954 (1994) ! ! spin-polarized version by andras stirling 10/1998, ! using original gga program of alfredo pasquarello 22/09/1994 ! and spin-unpolarized blyp routine of olivier parisel and ! alfredo pasquarello (02/1997) ! USE kinds, ONLY : DP USE constants, ONLY: pi, fpi ! implicit none ! input integer nspin, nnr real(DP) gradr(nnr,3,nspin), rhor(nnr,nspin) ! output ! on output: rhor contains the exchange-correlation potential real(DP) exc ! local integer isdw, isup, isign, ir ! real(DP) abo, agdr, agdr2, agr, agr2, agur, agur2, arodw, & arodw2, aroe, aroe2, aroup, aroup2, ax real(DP) byagdr, byagr, byagur, cden, cf, cl1, cl11, cl2, & cl21, cl22, cl23, cl24, cl25, cl26, cl27, clyp, csum real(DP) dddn, dexcdg, dexcdgd, dexcdgu, df1d, df1u, df2d, & df2u, dfd, dfnum1d, dfnum1u, dfnum2d, dfnum2u, dfs, dfu, & dfxdd, dfxdg, dfxdgd, dfxdgu, dfxdu, dilta, dilta119, dl1dn, & dl1dnd, dl1dnu, dl2dd, dl2dg, dl2dgd, dl2dgu, dl2dn, & dl2dnd, dl2dnd1, dl2dnu, dl2dnu1, dl2do, dlt, dodn, & disign, dwsign, dys, dysd, dysu real(DP) ex, excupdt, exd, exu, fac1, fac2, factor1, factor2, & fx, fxd, fxden, fxdend, fxdenu, fxnum, fxnumd, fxnumu, fxu real(DP) gkf, gkfd, gkfu, grdx, grdy, grdz, grux, gruy, gruz, & grx, gry, grz real(DP) omiga, pd, pi2, pider2, piexch, pu real(DP) rhodw, rhoup, roe, roedth, roeth, roeuth, rometh real(DP) s, s2, sd, sd2, sddw, sdup, su, su2, sysl, sysld, syslu real(DP) t113, upsign, usign real(DP) x1124, x113, x118, x13, x143, x19, x23, x43, & x4718, x53, x672, x718, x772, x83 real(DP) ys, ysd, ysl, ysld, yslu, ysr, ysrd, ysru, ysu !=========================================================================== real(DP) bb1, bb2, bb5, aa, bb, cc, dd, delt, eps parameter(bb1=0.19644797d0,bb2=0.2742931d0,bb5=7.79555418d0, & aa=0.04918d0, & bb=0.132d0,cc=0.2533d0,dd=0.349d0,delt=1.0d-12,eps=1.0d-14) ! ! x13=1.0d0/3.0d0 x19=1.0d0/9.0d0 x23=2.0d0/3.0d0 x43=4.0d0/3.0d0 x53=5.0d0/3.0d0 x83=8.0d0/3.0d0 x113=11.0d0/3.0d0 x4718=47.0d0/18.0d0 x718=7.0d0/18.0d0 x118=1.0d0/18.0d0 x1124=11.0d0/24.0d0 x143=14.0d0/3.0d0 x772=7.0d0/72.0d0 x672=6.0d0/72.0d0 ! ! _________________________________________________________________ ! derived parameters from pi ! pi2=pi*pi ax=-0.75d0*(3.0d0/pi)**x13 piexch=-0.75d0/pi pider2=(3.0d0*pi2)**x13 cf=0.3d0*pider2*pider2 ! _________________________________________________________________ ! other parameters ! t113=2.0d0**x113 ! rhodw=0.0d0 grdx=0.0d0 grdy=0.0d0 grdz=0.0d0 ! fac1=1.0d0 ! _________________________________________________________________ ! main loop ! isup=1 isdw=2 do ir=1,nnr rhoup=rhor(ir,isup) grux=gradr(ir,1,isup) gruy=gradr(ir,2,isup) gruz=gradr(ir,3,isup) if(nspin.eq.2) then rhodw=rhor(ir,isdw) grdx=gradr(ir,1,isdw) grdy=gradr(ir,2,isdw) grdz=gradr(ir,3,isdw) else rhodw=0.0d0 grdx =0.0d0 grdy =0.0d0 grdz =0.0d0 endif roe=rhoup+rhodw if(roe.eq.0.0) goto 100 aroup=abs(rhoup) arodw=abs(rhodw) aroe=abs(roe) grx=grux + grdx gry=gruy + grdy grz=gruz + grdz agur2=grux*grux+gruy*gruy+gruz*gruz agur=sqrt(agur2) agdr2=grdx*grdx+grdy*grdy+grdz*grdz agdr=sqrt(agdr2) agr2=grx*grx+gry*gry+grz*grz agr=sqrt(agr2) roeth=aroe**x13 rometh=1.0d0/roeth gkf=pider2*roeth sd=1.0d0/(2.0d0*gkf*aroe) s=agr*sd s2=s*s ! _________________________________________________________________ ! exchange ! if(nspin.eq.1) then ! ! ysr=sqrt(1.0d0+bb5*bb5*s2) ys=bb5*s+ysr ysl=log(ys)*bb1 sysl=s*ysl fxnum=1.0d0+sysl+bb2*s2 fxden=1.0d0/(1.0d0+sysl) fx=fxnum*fxden ! ex=ax*fx*roeth*aroe ! ! ### potential contribution ### ! dys=bb5*(1.0d0+bb5*s/ysr)/ys dfs=-fxnum*(ysl+bb1*s*dys)*fxden*fxden & & +(ysl+bb1*s*dys+2.0d0*s*bb2)*fxden dfxdu=(ax*roeth*x43)*(fx-dfs*s) dfxdg=ax*roeth*dfs*sd ! ! ### end of potential contribution ### ! else ! roeuth=(2.0d0*aroup)**x13 roedth=(2.0d0*arodw)**x13 gkfu=pider2*roeuth*aroup gkfd=pider2*roedth*arodw upsign=sign(1.d0,gkfu-eps) dwsign=sign(1.d0,gkfd-eps) factor1=0.5d0*(1+upsign)/(gkfu+(1-upsign)*eps) fac1=gkfu*factor1 factor2=0.5d0*(1+dwsign)/(gkfd+(1-dwsign)*eps) fac2=gkfd*factor2 sdup=1.0d0/2.0d0*factor1 sddw=1.0d0/2.0d0*factor2 su=agur*sdup su2=su*su sd=agdr*sddw sd2=sd*sd ! ysru=sqrt(1.0d0+bb5*bb5*su2) ysu=bb5*su+ysru yslu=log(ysu)*bb1 syslu=su*yslu fxnumu=1.0d0+syslu+bb2*su2 fxdenu=1.0d0/(1.0d0+syslu) fxu=fxnumu*fxdenu exu=piexch*2.0d0*gkfu*fxu*fac1 ! ysrd=sqrt(1.0d0+bb5*bb5*sd2) ysd=bb5*sd+ysrd ysld=log(ysd)*bb1 sysld=sd*ysld fxnumd=1.0d0+sysld+bb2*sd2 fxdend=1.0d0/(1.0d0+sysld) fxd=fxnumd*fxdend exd=piexch*2.0d0*gkfd*fxd*fac2 ! ex=0.5d0*(exu+exd) ! ! ### potential contribution ### ! dysu=bb5*(1.0d0+bb5*su/ysru)/ysu pu=2.0d0*su*bb2 dfnum1u=yslu+bb1*su*dysu+pu df1u=dfnum1u*fxdenu dfnum2u=fxnumu*(yslu+bb1*su*dysu) df2u=dfnum2u*fxdenu*fxdenu dfu=df1u-df2u dfxdu=ax*roeuth*x43*1.0d0*(fxu-dfu*su)*fac1 dfxdgu=ax*aroup*roeuth*dfu*sdup*fac1 ! dysd=bb5*(1.0d0+bb5*sd/ysrd)/ysd pd=2.0d0*sd*bb2 dfnum1d=ysld+bb1*sd*dysd+pd df1d=dfnum1d*fxdend dfnum2d=fxnumd*(ysld+bb1*sd*dysd) df2d=dfnum2d*fxdend*fxdend dfd=df1d-df2d dfxdd=ax*roedth*x43*1.0d0*(fxd-dfd*sd)*fac2 dfxdgd=ax*arodw*roedth*dfd*sddw*fac2 ! ! ### end of potential contribution ### ! endif ! _________________________________________________________________ ! correlation lyp(aroe,aroup,arodw,agr,agur,agdr) ! cden=1.0d0+dd*rometh cl1=-aa/cden ! omiga=exp(-cc*rometh)/cden/aroe**x113 dilta=rometh*(cc+dd/cden) aroe2=aroe*aroe abo=aa*bb*omiga ! dodn=x13*omiga/aroe*(dilta-11.0d0) dddn=x13*(dd*dd*aroe**(-x53)/cden/cden-dilta/aroe) ! if(nspin.eq.1) then ! cl1=cl1*aroe ! cl21=4.0d0*cf*aroe**x83 cl22=(x4718-x718*dilta)*agr2 cl23=(2.5d0-x118*dilta)*agr2/2.0d0 cl24=(dilta-11.0d0)/9.0d0*agr2/4.0d0 cl25=x1124*agr2 ! cl2=-abo*aroe2*(0.25d0*(cl21+cl22-cl23-cl24)-cl25) ! ! ### potential contribution ### ! dl1dnu=-aa*(1/cden+x13*dd*rometh/cden/cden) ! dlt=x672+2.0d0*x772*dilta dl2dn=-abo*aroe*(cf*x143*aroe**x83-dlt*agr2) dl2do=cl2/omiga dl2dd=abo*aroe2*x772*agr2 dl2dnu=dl2dn+dl2do*dodn+dl2dd*dddn ! dl2dg=abo*aroe2*agr*dlt ! ! ### end of potential contribution ### ! else ! cl11=cl1*4.0d0/aroe cl1=cl11*aroup*arodw ! aroup2=aroup*aroup arodw2=arodw*arodw ! cl21=t113*cf*(aroup**x83+arodw**x83) cl22=(x4718-x718*dilta)*agr2 cl23=(2.5d0-x118*dilta)*(agur2+agdr2) dilta119=(dilta-11.0d0)/9.0d0 cl24=dilta119/aroe*(aroup*agur2+arodw*agdr2) cl25=x23*aroe2*agr2 cl26=(x23*aroe2-aroup2)*agdr2 cl27=(x23*aroe2-arodw2)*agur2 ! csum=cl21+cl22-cl23-cl24 cl2=-abo*(aroup*arodw*csum-cl25+cl26+cl27) ! ! ### potential contribution ### ! ! *** cl1 has changed its form! *** ! dl1dn=cl1/aroe*(x13*dd/cden*rometh-1.0d0) dl1dnu=dl1dn+cl11*arodw dl1dnd=dl1dn+cl11*aroup ! dl2dnu1=arodw*csum+ & & arodw*aroup*(t113*cf*x83*aroup**x53- & & dilta119*arodw/aroe2*(agur2-agdr2))-x43*aroe*agr2+ & & x23*agdr2*(2.0d0*arodw-aroup)+x43*aroe*agur2 dl2dnd1=aroup*csum+ & & aroup*arodw*(t113*cf*x83*arodw**x53+ & & dilta119*aroup/aroe2*(agur2-agdr2))-x43*aroe*agr2+ & & x23*agur2*(2.0d0*aroup-arodw)+x43*aroe*agdr2 ! dl2do=cl2/omiga dl2dd=-abo*aroup*arodw* & & (-x718*agr2+x118*(agur2+agdr2)- & & x19*(aroup*agur2+arodw*agdr2)/aroe) ! dl2dnu=-abo*dl2dnu1+dl2do*dodn+dl2dd*dddn dl2dnd=-abo*dl2dnd1+dl2do*dodn+dl2dd*dddn ! dl2dg=-abo* & & (aroup*arodw*2.0d0*(x4718-x718*dilta)*agr- & & x43*aroe2*agr) dl2dgu=-2.0d0*abo*agur*((x118*dilta-2.5d0- & & dilta119*aroup/aroe)*aroup*arodw & & +x23*aroe2-arodw2) dl2dgd=-2.0d0*abo*agdr*((x118*dilta-2.5d0- & & dilta119*arodw/aroe)*aroup*arodw & & +x23*aroe2-aroup2) ! endif ! clyp=cl1+cl2 ! _________________________________________________________________ ! updating of xc-energy ! excupdt=ex+clyp ! exc=exc+excupdt ! ! _________________________________________________________________ ! first part xc-potential construction ! ! rhor(ir,isup)=dfxdu+(dl1dnu+dl2dnu)*fac1 isign=sign(1.d0,agr-delt) byagr=0.5d0*(1+isign)/(agr+(1-isign)*delt) ! if(nspin.eq.1) then ! dexcdg=(dfxdg*aroe+dl2dg)*byagr gradr(ir,1,isup)=grx*dexcdg gradr(ir,2,isup)=gry*dexcdg gradr(ir,3,isup)=grz*dexcdg ! else ! rhor(ir,isdw)=dfxdd+(dl1dnd+dl2dnd)*fac2 ! usign =sign(1.d0,agur-delt) disign=sign(1.d0,agdr-delt) byagur=0.5d0*(1+ usign)/(agur+(1- usign)*delt) byagdr=0.5d0*(1+disign)/(agdr+(1-disign)*delt) ! dexcdgu=(dfxdgu+dl2dgu)*byagur dexcdgd=(dfxdgd+dl2dgd)*byagdr dexcdg=dl2dg*byagr ! gradr(ir,1,isup)=(dexcdgu*grux+dexcdg*grx)*fac1 gradr(ir,2,isup)=(dexcdgu*gruy+dexcdg*gry)*fac1 gradr(ir,3,isup)=(dexcdgu*gruz+dexcdg*grz)*fac1 gradr(ir,1,isdw)=(dexcdgd*grdx+dexcdg*grx)*fac2 gradr(ir,2,isdw)=(dexcdgd*grdy+dexcdg*gry)*fac2 gradr(ir,3,isdw)=(dexcdgd*grdz+dexcdg*grz)*fac2 ! endif ! 100 continue end do ! return end subroutine ggablyp4 ! !______________________________________________________________________ subroutine ggapbe(nnr,nspin,gradr,rhor,excrho) ! _________________________________________________________________ ! Perdew-Burke-Ernzerhof gga ! Perdew, et al. PRL 77, 3865, 1996 ! USE kinds, ONLY: DP use constants, only: pi, fpi ! implicit none ! input integer nspin, nnr real(DP) gradr(nnr,3,nspin), rhor(nnr,nspin) ! output: excrho: exc * rho ; E_xc = \int excrho(r) d_r ! output: rhor: contains the exchange-correlation potential real(DP) excrho ! local integer ir, icar, iss, isup, isdw, nspinx real(DP) lim1, lim2 parameter ( lim1=1.d-8, lim2=1.d-8, nspinx=2 ) real(DP) zet, arho(nspinx), grad(3,nspinx), agrad(nspinx), & arhotot, gradtot(3), agradtot, & scl, scl1, wrkup, wrkdw, & exrho(nspinx), dexdrho(nspinx), dexdg(nspinx), & ecrho, decdrho(nspinx), decdg ! ! main loop ! isup=1 isdw=2 do ir=1,nnr ! arho(isup) = abs(rhor(ir,isup)) arhotot = arho(isup) zet = 0.d0 do icar = 1, 3 grad(icar,isup) = gradr(ir,icar,isup) gradtot(icar) = gradr(ir,icar,isup) enddo ! if (nspin.eq.2) then arho(isdw) = abs(rhor(ir,isdw)) arhotot = abs(rhor(ir,isup)+rhor(ir,isdw)) do icar = 1, 3 grad(icar,isdw) = gradr(ir,icar,isdw) gradtot(icar) = gradr(ir,icar,isup)+gradr(ir,icar,isdw) enddo zet = (rhor(ir,isup) - rhor(ir,isdw)) / arhotot if (zet.ge. 1.d0) zet = 1.d0 if (zet.le.-1.d0) zet = -1.d0 endif ! do iss = 1, nspin agrad(iss) = sqrt( grad(1,iss)*grad(1,iss) + & & grad(2,iss)*grad(2,iss) + & & grad(3,iss)*grad(3,iss) ) agradtot = sqrt( gradtot(1)*gradtot(1) + & & gradtot(2)*gradtot(2) + & & gradtot(3)*gradtot(3) ) enddo ! ! _________________________________________________________________ ! First it calculates the energy density excrho ! exrho: exchange term ! ecrho: correlation term ! if ( nspin.eq.2 ) then scl = 2.d0 scl1 = 0.5d0 else scl = 1.d0 scl1 = 1.d0 endif do iss = 1, nspin if ( arho(iss).gt.lim1) then call exchpbe( scl*arho(iss), scl*agrad(iss), & & exrho(iss),dexdrho(iss),dexdg(iss)) excrho = excrho + scl1*exrho(iss) else dexdrho(iss) = 0.d0 dexdg(iss) = 0.d0 endif enddo if ( arhotot.gt.lim1) then call ecorpbe( arhotot, agradtot, zet, ecrho, & & decdrho(1), decdrho(2), decdg, nspin ) excrho = excrho + ecrho else decdrho(isup) = 0.d0 decdrho(isdw) = 0.d0 decdg = 0.d0 endif ! _________________________________________________________________ ! Now it calculates the potential and writes it in rhor ! it uses the following variables: ! dexdrho = d ( ex*rho ) / d (rho) ! decdrho = d ( ec*rho ) / d (rho) ! dexdg = (d ( ex*rho ) / d (grad(rho)_i)) * agrad / grad_i ! decdg = (d ( ec*rho ) / d (grad(rho)_i)) * agrad / grad_i ! gradr here is used as a working array ! ! _________________________________________________________________ ! first part of the xc-potential : D(rho*exc)/D(rho) ! do iss = 1, nspin rhor(ir,iss) = dexdrho(iss) + decdrho(iss) enddo ! ! gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho| ! do iss = 1, nspin do icar = 1,3 wrkup =0.d0 wrkdw =0.d0 if (agrad(iss).gt.lim2) & & wrkup = dexdg(iss)*grad(icar,iss)/agrad(iss) if (agradtot.gt.lim2) & & wrkdw = decdg*gradtot(icar)/agradtot gradr(ir,icar,iss) = wrkup + wrkdw enddo enddo ! end do ! return end subroutine ggapbe ! !______________________________________________________________________ subroutine exchpbe(rho,agrad,ex,dexdrho,dexdg) ! _________________________________________________________________ ! ! Perdew-Burke-Ernzerhof gga, Exchange term: ! Calculates the exchange energy density and the two functional derivative ! that will be used to calculate the potential ! USE kinds, ONLY: DP implicit none ! input ! input rho: charge density ! input agrad: abs(grad rho) real(DP) rho, agrad ! ouput ! output ex: Ex[rho,grad_rho] = \int ex dr ! output dexdrho: d ex / d rho ! output dexdg: d ex / d grad_rho(i) = dexdg*grad_rho(i)/abs(grad_rho) real(DP) ex, dexdrho, dexdg ! local real(DP) thrd, thrd4, pi32td, ax, al, um, uk, ul parameter(thrd=.33333333333333333333d0,thrd4=4.d0/3.d0) parameter(pi32td=3.09366772628014d0) ! pi32td=(3.d0*pi*pi)**0.333d0 parameter(al=0.161620459673995d0) ! al=1.0/(2.0*(pi32)**0.333d0) parameter(ax=-0.738558766382022405884230032680836d0) parameter(um=0.2195149727645171d0,uk=0.8040d0,ul=um/uk) ! real(DP) rhothrd, exunif, dexunif, kf, s, s2, p0, fxpbe, fs !---------------------------------------------------------------------- ! construct LDA exchange energy density ! rhothrd = rho**thrd dexunif = ax*rhothrd exunif = rho*dexunif !---------------------------------------------------------------------- ! construct PBE enhancement factor ! kf = pi32td*rhothrd s = agrad/(2.d0*kf*rho) s2 = s*s p0 = 1.d0 + ul*s2 fxpbe = 1.d0 + uk - uk/p0 ex = exunif*fxpbe !---------------------------------------------------------------------- ! now calculates the potential terms ! ! fs=(1/s)*d fxPBE/ ds ! fs=2.d0*uk*ul/(p0*p0) dexdrho = dexunif*thrd4*(fxpbe-s2*fs) dexdg = ax*al*s*fs ! return end subroutine exchpbe !---------------------------------------------------------------------- subroutine ecorpbe(rho,agrad,zet,ectot,decup,decdn,decdg,nspin) ! ----------------------------------------------------------------- ! ! Adapted from the Official PBE correlation code. K. Burke, May 14, 1996. ! ! input: rho = rho_up + rho_down; total charge density ! input: agrad = abs( grad(rho) ) ! input: zet = (rho_up-rho_down)/rho ! input: nspin ! output: ectot = ec*rho ---correlation energy density--- ! output: decup = d ( ec*rho ) / d (rho_up) ! output: decdn = d ( ec*rho ) / d (rho_down) ! output: decdg = (d ( ec*rho ) / d (grad(rho)_i)) * agrad / grad_i !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! References: ! [a] J.P.~Perdew, K.~Burke, and M.~Ernzerhof, ! {\sl Generalized gradient approximation made simple}, sub. ! to Phys. Rev.Lett. May 1996. ! [b] J. P. Perdew, K. Burke, and Y. Wang, {\sl Real-space cutoff ! construction of a generalized gradient approximation: The PW91 ! density functional}, submitted to Phys. Rev. B, Feb. 1996. ! [c] J. P. Perdew and Y. Wang, Phys. Rev. B {\bf 45}, 13244 (1992). !---------------------------------------------------------------------- !---------------------------------------------------------------------- USE kinds, ONLY: DP USE constants, ONLY: pi implicit none real(DP) rho, agrad, zet, ectot, decup, decdn, decdg integer nspin real(DP) pi32, alpha, thrd, thrdm, thrd2, sixthm, thrd4, & gam, fzz, gamma, bet, delt, eta ! thrd*=various multiples of 1/3 ! numbers for use in LSD energy spin-interpolation formula, [c](9). ! gam= 2^(4/3)-2 ! fzz=f''(0)= 8/(9*gam) ! numbers for construction of PBE ! gamma=(1-log(2))/pi^2 ! bet=coefficient in gradient expansion for correlation, [a](4). ! eta=small number to stop d phi/ dzeta from blowing up at ! |zeta|=1. parameter(pi32=29.608813203268075856503472999628d0) parameter(alpha=1.91915829267751300662482032624669d0) parameter(thrd=1.d0/3.d0,thrdm=-thrd,thrd2=2.d0*thrd) parameter(sixthm=thrdm/2.d0) parameter(thrd4=4.d0*thrd) parameter(gam=0.5198420997897463295344212145565d0) parameter(fzz=8.d0/(9.d0*gam)) parameter(gamma=0.03109069086965489503494086371273d0) parameter(bet=0.06672455060314922d0,delt=bet/gamma) parameter(eta=1.d-12) real(DP) g, fk, rs, sk, twoksg, t real(DP) rtrs, eu, eurs, ep, eprs, alfm, alfrsm, z4, f, ec real(DP) ecrs, fz, eczet, comm, vcup, vcdn, g3, pon, b, b2, t2, t4 real(DP) q4, q5, h, g4, t6, rsthrd, gz, fac real(DP) bg, bec, q8, q9, hb, hrs, hz, ht, pref !---------------------------------------------------------------------- if (nspin.eq.1) then g=1.d0 else g=((1.d0+zet)**thrd2+(1.d0-zet)**thrd2)*0.5d0 endif fk=(pi32*rho)**thrd rs=alpha/fk sk=sqrt(4.d0*fk/pi) twoksg=2.d0*sk*g t=agrad/(twoksg*rho) !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! find LSD energy contributions, using [c](10) and Table I[c]. ! eu=unpolarized LSD correlation energy ! eurs=deu/drs ! ep=fully polarized LSD correlation energy ! eprs=dep/drs ! alfm=-spin stiffness, [c](3). ! alfrsm=-dalpha/drs ! f=spin-scaling factor from [c](9). ! construct ec, using [c](8) rtrs=dsqrt(rs) call gcor2(0.0310907d0,0.21370d0,7.5957d0,3.5876d0,1.6382d0, & & 0.49294d0,rtrs,eu,eurs) if (nspin.eq.2) then call gcor2(0.01554535d0,0.20548d0,14.1189d0,6.1977d0,3.3662d0, & & 0.62517d0,rtrs,ep,eprs) call gcor2(0.0168869d0,0.11125d0,10.357d0,3.6231d0,0.88026d0, & & 0.49671d0,rtrs,alfm,alfrsm) z4 = zet**4 f=((1.d0+zet)**thrd4+(1.d0-zet)**thrd4-2.d0)/gam ec = eu*(1.d0-f*z4)+ep*f*z4-alfm*f*(1.d0-z4)/fzz !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! LSD potential from [c](A1) ! ecrs = dec/drs [c](A2) ! eczet=dec/dzeta [c](A3) ! fz = df/dzeta [c](A4) ecrs = eurs*(1.d0-f*z4)+eprs*f*z4-alfrsm*f*(1.d0-z4)/fzz fz = thrd4*((1.d0+zet)**thrd-(1.d0-zet)**thrd)/gam eczet = 4.d0*(zet**3)*f*(ep-eu+alfm/fzz)+fz*(z4*ep-z4*eu & & -(1.d0-z4)*alfm/fzz) comm = ec -rs*ecrs/3.d0-zet*eczet vcup = comm + eczet vcdn = comm - eczet else ecrs = eurs ec = eu vcup = ec -rs*ecrs/3.d0 endif !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! PBE correlation energy ! g=phi(zeta), given after [a](3) ! delt=bet/gamma ! b=a of [a](8) ! g=((1.d0+zet)**thrd2+(1.d0-zet)**thrd2)/2.d0 g3 = g**3 pon=-ec/(g3*gamma) b = delt/(dexp(pon)-1.d0) b2 = b*b t2 = t*t t4 = t2*t2 q4 = 1.d0+b*t2 q5 = 1.d0+b*t2+b2*t4 h = g3*(bet/delt)*dlog(1.d0+delt*Q4*t2/Q5) ectot = rho*(ec + h) !---------------------------------------------------------------------- !---------------------------------------------------------------------- ! energy done. Now the potential, using appendix e of [b]. t6 = t4*t2 rsthrd = rs/3.d0 fac = delt/b+1.d0 bec = b2*fac/(bet*g3) q8 = q5*q5+delt*q4*q5*t2 q9 = 1.d0+2.d0*b*t2 hb = -bet*g3*b*t6*(2.d0+b*t2)/q8 hrs = -rsthrd*hb*bec*ecrs ht = 2.d0*bet*g3*q9/q8 comm = h+hrs-7.d0*t2*ht/6.d0 if (nspin.eq.2) then g4 = g3*g bg = -3.d0*b2*ec*fac/(bet*g4) gz=(((1.d0+zet)**2+eta)**sixthm- & & ((1.d0-zet)**2+eta)**sixthm)/3.d0 hz = 3.d0*gz*h/g + hb*(bg*gz+bec*eczet) pref = hz-gz*t2*ht/g decup = vcup + comm + pref*( 1.d0 - zet) decdn = vcdn + comm + pref*( -1.d0 - zet) else decup = vcup + comm endif decdg = t*ht/twoksg ! return end subroutine ecorpbe !______________________________________________________________________ subroutine gcor2(a,a1,b1,b2,b3,b4,rtrs,gg,ggrs) ! _________________________________________________________________ ! slimmed down version of GCOR used in PW91 routines, to interpolate ! LSD correlation energy, as given by (10) of ! J. P. Perdew and Y. Wang, Phys. Rev. B {\bf 45}, 13244 (1992). ! K. Burke, May 11, 1996. ! USE kinds, ONLY : DP implicit none real(DP) a, a1, b1, b2, b3, b4, rtrs, gg, ggrs real(DP) q0, q1, q2, q3 ! q0 = -2.d0*a*(1.d0+a1*rtrs*rtrs) q1 = 2.d0*a*rtrs*(b1+rtrs*(b2+rtrs*(b3+b4*rtrs))) q2 = dlog(1.d0+1.d0/q1) gg = q0*q2 q3 = a*(b1/rtrs+2.d0*b2+rtrs*(3.d0*b3+4.d0*b4*rtrs)) ggrs = -2.d0*a*a1*q2-q0*q3/(q1*(1.d0+q1)) ! return end subroutine gcor2 ! !______________________________________________________________________ subroutine ggapw(nnr,nspin,gradr,rhor,exc) ! _________________________________________________________________ ! perdew-wang gga (PW91) ! USE kinds, ONLY: DP use constants, only: pi, fpi ! implicit none ! input integer nspin, nnr real(DP) gradr(nnr,3,nspin), rhor(nnr,nspin) ! output real(DP) exc ! local integer isup, isdw, ir real(DP) rhoup, rhodw, roe, aroe, rs, zeta real(DP) grxu, gryu, grzu, grhou, grxd, gryd, grzd, grhod, grho real(DP) ex, ec,vc, sc, v1x, v2x, v1c, v2c real(DP) ecrs, eczeta real(DP) exup, vcup, v1xup, v2xup, v1cup real(DP) exdw, vcdw, v1xdw, v2xdw, v1cdw real(DP), parameter:: pi34 = 0.75d0/pi, third = 1.d0/3.d0, & small = 1.d-10 ! ! _________________________________________________________________ ! main loop ! isup=1 isdw=2 exc=0.0d0 do ir=1,nnr rhoup=rhor(ir,isup) if(nspin.eq.2) then rhodw=rhor(ir,isdw) else rhodw=0.0d0 end if roe=rhoup+rhodw aroe=abs(roe) if (aroe.lt.small) then rhor(ir,isup) =0.0d0 gradr(ir,1,isup)=0.0d0 gradr(ir,2,isup)=0.0d0 gradr(ir,3,isup)=0.0d0 if(nspin.eq.2) then rhor(ir,isdw) =0.0d0 gradr(ir,1,isdw)=0.0d0 gradr(ir,2,isdw)=0.0d0 gradr(ir,3,isdw)=0.0d0 end if go to 100 end if grxu =gradr(ir,1,isup) gryu =gradr(ir,2,isup) grzu =gradr(ir,3,isup) grhou=sqrt(grxu**2+gryu**2+grzu**2) if(nspin.eq.2) then grxd =gradr(ir,1,isdw) gryd =gradr(ir,2,isdw) grzd =gradr(ir,3,isdw) grhod=sqrt(grxd**2+gryd**2+grzd**2) else grxd =0.0d0 gryd =0.0d0 grzd =0.0d0 grhod=0.0d0 endif grho=sqrt((grxu+grxd)**2+(gryu+gryd)**2+(grzu+grzd)**2) ! rs=(pi34/aroe)**third if (nspin.eq.1) then call exchpw91(aroe,grho,ex,v1x,v2x) call pwlda(rs,ec,vc,ecrs) call corpw91ns(rs,grho,ec,ecrs,sc,v1c,v2c) exc = exc + roe*(ex+ec) + sc rhor(ir,isup) = vc + v1x + v1c ! ! gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho| ! gradr(ir,1,isup)=grxu*(v2x+v2c) gradr(ir,2,isup)=gryu*(v2x+v2c) gradr(ir,3,isup)=grzu*(v2x+v2c) else zeta=(rhoup-rhodw)/aroe zeta=min(zeta, 1.d0) zeta=max(zeta,-1.d0) call exchpw91(2.d0*abs(rhoup),2.0d0*grhou,exup,v1xup,v2xup) call exchpw91(2.d0*abs(rhodw),2.0d0*grhod,exdw,v1xdw,v2xdw) call pwlsd(rs,zeta,ec,vcup,vcdw,ecrs,eczeta) call corpw91(rs,zeta,grho,ec,ecrs,eczeta,sc,v1cup,v1cdw,v2c) rhor(ir,isup) = vcup + v1xup + v1cup rhor(ir,isdw) = vcdw + v1xdw + v1cdw exc = exc+roe*(0.5d0*((1.d0+zeta)*exup+(1.d0-zeta)*exdw)+ec) & + sc ! ! gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho| ! gradr(ir,1,isup)=grxu*(2.0d0*v2xup+v2c)+grxd*v2c gradr(ir,2,isup)=gryu*(2.0d0*v2xup+v2c)+gryd*v2c gradr(ir,3,isup)=grzu*(2.0d0*v2xup+v2c)+grzd*v2c gradr(ir,1,isdw)=grxd*(2.0d0*v2xdw+v2c)+grxu*v2c gradr(ir,2,isdw)=gryd*(2.0d0*v2xdw+v2c)+gryu*v2c gradr(ir,3,isdw)=grzd*(2.0d0*v2xdw+v2c)+grzu*v2c end if 100 continue end do ! return end subroutine ggapw ! !---------------------------------------------------------------------- subroutine exchpw91(rho,grho,ex,v1x,v2x) !---------------------------------------------------------------------- ! ! PW91 exchange for a spin-unpolarized electronic system ! Modified from the "official" PBE code of Perdew, Burke et al. ! input rho : density ! input grho: abs(grad rho) ! output: exchange energy per electron (ex) and potentials ! v1x = d(rho*exc)/drho ! v2x = d(rho*exc)/d|grho| * (1/|grho|) ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none ! input real(DP) rho, grho ! output real(DP) ex, v1x, v2x ! local real(DP) ex0, kf, s, s2, s4, f, fs, p0,p1,p2,p3,p4,p5,p6,p7 ! parameters real(DP) a1, a2, a3, a4, a, b1, bx, pi34, thrd, thrd4 parameter(a1=0.19645d0,a2=0.27430d0,a=7.7956d0,a4=100.d0) ! for becke exchange, set a3=b1=0 parameter(a3=0.15084d0,b1=0.004d0) ! pi34=3/(4pi) , bx=(3pi^2)^(1/3) parameter(pi34=0.75d0/pi, bx=3.093667726d0, thrd=0.333333333333d0, & thrd4=4.d0*thrd) ! if (rho.lt.1.d-10) then ex =0.0d0 v1x=0.0d0 v2x=0.0d0 end if ! ! kf=k_Fermi, ex0=Slater exchange energy ! kf = bx*(rho**thrd) ex0=-pi34*kf if (grho.lt.1.d-10) then ex =ex0 v1x=ex0*thrd4 v2x=0.0d0 end if s = grho/(2.d0*kf*rho) s2 = s*s s4 = s2*s2 p0 = 1.d0/sqrt(1.d0+a*a*s2) p1 = log(a*s+1.d0/p0) p2 = exp(-a4*s2) p3 = 1.d0/(1.d0+a1*s*p1+b1*s4) p4 = 1.d0+a1*s*p1+(a2-a3*p2)*s2 ! f is the enhancement factor f = p3*p4 ex = ex0*f ! energy done. now the potential: p5 = b1*s2-(a2-a3*p2) p6 = a1*s*(p1+a*s*p0) p7 = 2.d0*(a2-a3*p2)+2.d0*a3*a4*s2*p2-4.d0*b1*s2*f ! fs = (1/s) dF(s)/ds fs = p3*(p3*p5*p6+p7) v1x = ex0*thrd4*(f-s2*fs) v2x = 0.5d0*ex0/kf*s*fs/grho ! return end subroutine exchpw91 ! !---------------------------------------------------------------------- subroutine corpw91ns(rs,grho,ec,ecrs,h,v1c,v2c) !---------------------------------------------------------------------- ! ! PW91 correlation (gradient correction term) - no spin case ! Modified from the "official" PBE code of Perdew, Burke et al. ! ! input rs: seitz radius ! input zeta: relative spin polarization ! input grho: abs(grad rho) ! input ec: Perdew-Wang correlation energy ! input ecrs: d(rho*ec)/d r_s ! output h : nonlocal part of correlation energy per electron ! output v1c: nonlocal parts of correlation potential ! v1c = d(rho*exc)/drho ! v2c = d(rho*exc)/d|grho|*(1/|grho|) ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none ! input real(DP) rs, grho, ec, ecrs ! output real(DP) h, v1c, v2c ! local real(DP) rho, t, ks, bet, delt, pon, b, b2, t2, t4, t6 real(DP) q4, q5, q6, q7, q8, q9, r0, r1, r2, r3, r4, rs2, rs3 real(DP) ccrs, rsthrd, fac, bec, coeff, cc real(DP) h0, h0b, h0rs, h0t, h1, h1t, h1rs, hrs, ht ! parameters real(DP) nu, cc0, cx, alf, c1, c2, c3, c4, c5, c6, a4, ax, pi34 parameter(nu=15.75592d0,cc0=0.004235d0,cx=-0.001667212d0) parameter(c1=0.002568d0,c2=0.023266d0,c3=7.389d-6,c4=8.723d0) parameter(c5=0.472d0,c6=7.389d-2,a4=100.d0, alf=0.09d0) ! ax=(4*1.9191583/pi)^(1/2), where k_F=1.9191583/r_s, k_s=boh*r_s^(1/2) parameter(ax=1.5631853d0, pi34 = 0.75d0/pi) ! ! rs2 = rs*rs rs3 = rs2*rs rho=pi34/rs3 ! k_s=(4k_F/pi)^(1/2) ks=ax/sqrt(rs) ! t=abs(grad rho)/(rho*2.*ks) t=grho/(2.d0*rho*ks) bet = nu*cc0 delt = 2.d0*alf/bet pon = -delt*ec/bet b = delt/(exp(pon)-1.d0) b2 = b*b t2 = t*t t4 = t2*t2 t6 = t4*t2 q4 = 1.d0+b*t2 q5 = 1.d0+b*t2+b2*t4 q6 = c1+c2*rs+c3*rs2 q7 = 1.d0+c4*rs+c5*rs2+c6*rs3 cc = -cx + q6/q7 r0 = 0.663436444d0*rs r1 = a4*r0 coeff = cc-cc0-3.d0*cx/7.d0 r2 = nu*coeff r3 = exp(-r1*t2) h0 = (bet/delt)*log(1.d0+delt*q4*t2/q5) h1 = r3*r2*t2 h = (h0+h1)*rho ! energy done. now the potential: ccrs = (c2+2.d0*c3*rs)/q7 - q6*(c4+2.d0*c5*rs+3.d0*c6*rs2)/q7**2 rsthrd = rs/3.d0 r4 = rsthrd*ccrs/coeff fac = delt/b+1.d0 bec = b2*fac/bet q8 = q5*q5+delt*q4*q5*t2 q9 = 1.d0+2.d0*b*t2 h0b = -bet*b*t6*(2.d0+b*t2)/q8 h0rs = -rsthrd*h0b*bec*ecrs h0t = 2.d0*bet*q9/q8 h1rs = r3*r2*t2*(-r4+r1*t2/3.d0) h1t = 2.d0*r3*r2*(1.d0-r1*t2) hrs = h0rs+h1rs ht = h0t+h1t v1c = h0+h1+hrs-7.d0*t2*ht/6.d0 v2c = t*ht/(2.d0*ks*grho) ! return end subroutine corpw91ns ! !---------------------------------------------------------------------- subroutine corpw91(rs,zeta,grho,ec,ecrs,eczeta,h,v1cup,v1cdn,v2c) !---------------------------------------------------------------------- ! ! PW91 correlation (gradient correction term) ! Modified from the "official" PBE code of Perdew, Burke et al. ! ! input rs: seitz radius ! input zeta: relative spin polarization ! input grho: abs(grad rho) ! input ec: Perdew-Wang correlation energy ! input ecrs: d(rho*ec)/d r_s ? ! input eczeta: d(rho*ec)/d zeta ? ! output h: nonlocal part of correlation energy per electron ! output v1cup,v1cdn: nonlocal parts of correlation potentials ! v1c** = d(rho*exc)/drho (up and down components) ! v2c = d(rho*exc)/d|grho|*(1/|grho|) (same for up and down) ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none ! input real(DP) rs, zeta, grho, ec, ecrs, eczeta ! output real(DP) h, v1cup, v1cdn, v2c ! local real(DP) rho, g, t, ks, gz, bet, delt, g3, g4, pon, b, b2, t2, t4, t6 real(DP) q4, q5, q6, q7, q8, q9, r0, r1, r2, r3, r4, rs2, rs3 real(DP) ccrs, rsthrd, fac, bg, bec, coeff, cc real(DP) h0, h0b, h0rs, h0z, h0t, h1, h1t, h1rs, h1z real(DP) hz, hrs, ht, comm, pref ! parameters real(DP) nu, cc0, cx, alf, c1, c2, c3, c4, c5, c6, a4 real(DP) thrdm, thrd2, ax, eta, pi34 parameter(nu=15.75592d0,cc0=0.004235d0,cx=-0.001667212d0) parameter(c1=0.002568d0,c2=0.023266d0,c3=7.389d-6,c4=8.723d0) parameter(c5=0.472d0,c6=7.389d-2,a4=100.d0, alf=0.09d0) parameter(thrdm=-0.333333333333d0,thrd2=0.666666666667d0) ! ax=(4*1.9191583/pi)^(1/2), where k_F=1.9191583/r_s, k_s=boh*r_s^(1/2) parameter(ax=1.5631853d0, eta=1.d-12, pi34 = 0.75d0/pi ) ! ! if (grho.lt.1.d-10) then h=0.0d0 v1cup=0.0d0 v1cdn=0.0d0 v2c=0.0d0 end if rs2 = rs*rs rs3 = rs2*rs rho=pi34/rs3 g=((1.d0+zeta)**thrd2+(1.d0-zeta)**thrd2)/2.d0 ! k_s=(4k_F/pi)^(1/2) ks=ax/sqrt(rs) ! t=abs(grad rho)/(rho*2.*ks*g) t=grho/(2.d0*rho*g*ks) bet = nu*cc0 delt = 2.d0*alf/bet g3 = g**3 g4 = g3*g pon = -delt*ec/(g3*bet) b = delt/(exp(pon)-1.d0) b2 = b*b t2 = t*t t4 = t2*t2 t6 = t4*t2 q4 = 1.d0+b*t2 q5 = 1.d0+b*t2+b2*t4 q6 = c1+c2*rs+c3*rs2 q7 = 1.d0+c4*rs+c5*rs2+c6*rs3 cc = -cx + q6/q7 r0 = 0.663436444d0*rs r1 = a4*r0*g4 coeff = cc-cc0-3.d0*cx/7.d0 r2 = nu*coeff*g3 r3 = dexp(-r1*t2) h0 = g3*(bet/delt)*log(1.d0+delt*q4*t2/q5) h1 = r3*r2*t2 h = (h0+h1)*rho ! energy done. now the potential: ccrs = (c2+2.d0*c3*rs)/q7 - q6*(c4+2.d0*c5*rs+3.d0*c6*rs2)/q7**2 rsthrd = rs/3.d0 r4 = rsthrd*ccrs/coeff ! eta is a small quantity that avoids trouble if zeta=+1 or -1 gz = ((1.d0+zeta+eta)**thrdm - (1.d0-zeta+eta)**thrdm)/3.d0 fac = delt/b+1.d0 bg = -3.d0*b2*ec*fac/(bet*g4) bec = b2*fac/(bet*g3) q8 = q5*q5+delt*q4*q5*t2 q9 = 1.d0+2.d0*b*t2 h0b = -bet*g3*b*t6*(2.d0+b*t2)/q8 h0rs = -rsthrd*h0b*bec*ecrs h0z = 3.d0*gz*h0/g + h0b*(bg*gz+bec*eczeta) h0t = 2.d0*bet*g3*q9/q8 h1rs = r3*r2*t2*(-r4+r1*t2/3.d0) h1z = gz*r3*r2*t2*(3.d0-4.d0*r1*t2)/g h1t = 2.d0*r3*r2*(1.d0-r1*t2) hrs = h0rs+h1rs ht = h0t+h1t hz = h0z+h1z comm = h0+h1+hrs-7.d0*t2*ht/6.d0 pref = hz-gz*t2*ht/g comm = comm-pref*zeta v1cup = comm + pref v1cdn = comm - pref v2c = t*ht/(2.d0*ks*g*grho) ! return end subroutine corpw91 !---------------------------------------------------------------------- subroutine pwlda(rs,ec,vc,ecrs) !---------------------------------------------------------------------- ! ! uniform-gas, spin-unpolarised correlation of perdew and wang 1991 ! input: rs seitz radius ! output: ec correlation energy per electron ! vc potential ! ecrs derivatives of ec wrt rs ! USE kinds, ONLY : DP implicit none ! input real(DP) rs ! output real(DP) ec, vc, ecrs ! local real(DP) q0, rs12, q1, q2, q3 ! parameters real(DP) a, a1, b1, b2, b3, b4 parameter(a =0.0310907d0, a1=0.21370d0, b1=7.5957d0, & b2=3.5876d0, b3=1.6382d0, b4=0.49294d0) ! q0 = -2.d0*a*(1.d0+a1*rs) rs12 = sqrt(rs) q1 = 2.d0*a*rs12*(b1+rs12*(b2+rs12*(b3+b4*rs12))) q2 = log(1.d0+1.d0/q1) ec = q0*q2 q3 = a*(b1/rs12+2.d0*b2+3.d0*b3*rs12+2.d0*b4*2.d0*rs) ecrs = -2.d0*a*a1*q2-q0*q3/(q1**2+q1) vc = ec - rs*ecrs/3.d0 ! return end subroutine pwlda !---------------------------------------------------------------------- subroutine pwlsd(rs,zeta,ec,vcup,vcdn,ecrs,eczeta) !---------------------------------------------------------------------- ! ! uniform-gas correlation of perdew and wang 1991 ! Modified from the "official" PBE code of Perdew, Burke et al. ! input: seitz radius (rs), relative spin polarization (zeta) ! output: correlation energy per electron (ec) ! up- and down-spin potentials (vcup,vcdn) ! derivatives of ec wrt rs (ecrs) & zeta (eczeta) ! USE kinds, ONLY : DP implicit none ! input real(DP) rs, zeta ! output real(DP) ec, vcup, vcdn, ecrs, eczeta ! local real(DP) f, eu, ep, eurs, eprs, alfm, alfrsm, z4, fz, comm real(DP) rs12, q0, q1, q2, q3 ! parameters real(DP) gam, fzz, thrd, thrd4 parameter(gam=0.5198421d0,fzz=1.709921d0) parameter(thrd=0.333333333333d0,thrd4=1.333333333333d0) ! real(DP) au, au1, bu1, bu2, bu3, bu4 parameter(au =0.0310907d0, au1=0.21370d0, bu1=7.5957d0, & bu2=3.5876d0, bu3=1.6382d0, bu4=0.49294d0) real(DP) ap, ap1, bp1, bp2, bp3, bp4 parameter(ap =0.01554535d0,ap1=0.20548d0, bp1=14.1189d0, & bp2=6.1977d0, bp3=3.3662d0, bp4=0.62517d0 ) real(DP) am, am1, bm1, bm2, bm3, bm4 parameter(am =0.0168869d0, am1=0.11125d0, bm1=10.357d0, & bm2=3.6231d0, bm3=0.88026d0, bm4=0.49671d0 ) ! rs12 = sqrt(rs) ! q0 = -2.d0*au*(1.d0+au1*rs) q1 = 2.d0*au*rs12*(bu1+rs12*(bu2+rs12*(bu3+bu4*rs12))) q2 = log(1.d0+1.d0/q1) eu = q0*q2 q3 = au*(bu1/rs12+2.d0*bu2+3.d0*bu3*rs12+2.d0*bu4*2.d0*rs) eurs = -2.d0*au*au1*q2-q0*q3/(q1**2+q1) ! q0 = -2.d0*ap*(1.d0+ap1*rs) q1 = 2.d0*ap*rs12*(bp1+rs12*(bp2+rs12*(bp3+bp4*rs12))) q2 = log(1.d0+1.d0/q1) ep = q0*q2 q3 = ap*(bp1/rs12+2.d0*bp2+3.d0*bp3*rs12+2.d0*bp4*2.d0*rs) eprs = -2.d0*ap*ap1*q2-q0*q3/(q1**2+q1) ! q0 = -2.d0*am*(1.d0+am1*rs) q1 = 2.d0*am*rs12*(bm1+rs12*(bm2+rs12*(bm3+bm4*rs12))) q2 = log(1.d0+1.d0/q1) ! alfm is minus the spin stiffness alfc alfm=q0*q2 q3 = am*(bm1/rs12+2.d0*bm2+3.d0*bm3*rs12+2.d0*bm4*2.d0*rs) alfrsm=-2.d0*am*am1*q2-q0*q3/(q1**2+q1) ! f = ((1.d0+zeta)**thrd4+(1.d0-zeta)**thrd4-2.d0)/gam z4 = zeta**4 ec = eu*(1.d0-f*z4)+ep*f*z4-alfm*f*(1.d0-z4)/fzz ! energy done. now the potential: ecrs = eurs*(1.d0-f*z4)+eprs*f*z4-alfrsm*f*(1.d0-z4)/fzz fz = thrd4*((1.d0+zeta)**thrd-(1.d0-zeta)**thrd)/gam eczeta = 4.d0*(zeta**3)*f*(ep-eu+alfm/fzz)+fz*(z4*ep-z4*eu & & -(1.d0-z4)*alfm/fzz) comm = ec -rs*ecrs/3.d0-zeta*eczeta vcup = comm + eczeta vcdn = comm - eczeta ! return end subroutine pwlsd ! !______________________________________________________________________ subroutine ggapwold(nnr,nspin,gradr,rhor,exc) ! _________________________________________________________________ ! perdew-wang gga ! as given in y-m juan & e kaxiras, prb 48, 14944 (1993) ! method by ja white & dm bird, prb 50, 4954 (1994) ! non-spin polarized case only ! _________________________________________________________________ ! by alfredo pasquarello 22/09/1994 ! USE kinds, ONLY: DP use constants, only: pi, fpi ! implicit none ! integer nspin, nnr real(DP) gradr(nnr,3), rhor(nnr), exc ! real(DP) bb1, bb2, bb3, bb4, bb5, alfa, beta, cc0, cc1, delt, & c1, c2, c3, c4, c5, c6, c7, a, alfa1, bt1, bt2, bt3, bt4 parameter(bb1=0.19645d0,bb2=0.27430d0,bb3=-0.15084d0,bb4=0.004d0, & bb5=7.7956d0,alfa=0.09d0,beta=0.0667263212d0,cc0=15.75592d0, & cc1=0.003521d0,c1=0.001667d0,c2=0.002568d0,c3=0.023266d0,c4=7.389d-6, & c5=8.723d0,c6=0.472d0,c7=7.389d-2,a=0.0621814d0,alfa1=0.2137d0, & bt1=7.5957d0,bt2=3.5876d0,bt3=1.6382d0,bt4=0.49294d0,delt=1.0d-12) real(DP) x13, x43, x76, pi2, ax, pider1, pider2, pider3, & abder1, abder2, abder3 integer isign, ir real(DP) & aexp, abig, abig2, agr, aroe, byagr, ccr, ccrnum, ccrden, & dfxd, dfxdg, dys, dfs, dh1ds, dh1dg, dh1d, dh1dt, dexcdg, & dexcd, dh1drs, dh0da, dadec, decdrs, decd, dh0dg, dcdrs, & dh0d, dh0dt, eclog, ecr, ecden, fx, fxnum, fxden, fxexp, & gkf, grx, gry, grz, h0, h1, h0den, h0arg, h0num, & roeth, roe, rs, rs12, rs2, rs3, rs32, s, sd, s2, s3, s4, & sysl, t, td, t2, t3, t4, xchge, ys, ysl, ysr ! ! if (nspin.ne.1) call errore('ggapw','spin not implemented',nspin) ! x13=1.0d0/3.0d0 x43=4.0d0/3.0d0 x76=7.0d0/6.0d0 ! _________________________________________________________________ ! derived parameters from pi ! pi2=pi*pi ax=-0.75d0*(3.0d0/pi)**x13 pider1=(0.75d0/pi)**x13 pider2=(3.0d0*pi2)**x13 pider3=(3.0d0*pi2/16.0d0)**x13 ! _________________________________________________________________ ! derived parameters from alfa and beta ! abder1=beta*beta/(2.0d0*alfa) abder2=1.0d0/abder1 abder3=2.0d0*alfa/beta ! _________________________________________________________________ ! main loop ! do ir=1,nnr roe=rhor(ir) if(roe.eq.0.0) goto 100 aroe=abs(roe) grx=gradr(ir,1) gry=gradr(ir,2) grz=gradr(ir,3) agr=sqrt(grx*grx+gry*gry+grz*grz) roeth=aroe**x13 rs= pider1/roeth gkf=pider2*roeth sd=1.0d0/(2.0d0*gkf*aroe) s=agr*sd s2=s*s s3=s*s2 s4=s2*s2 ! _________________________________________________________________ ! exchange ! ysr=sqrt(1.0d0+bb5*bb5*s2) ys=bb5*s+ysr ysl=log(ys)*bb1 sysl=s*ysl fxexp=exp(-100.0d0*s2) fxnum=1.0d0+sysl+(bb2+bb3*fxexp)*s2 fxden=1.0d0/(1.0d0+sysl+bb4*s4) fx=fxnum*fxden xchge=ax*fx*roeth ! _________________________________________________________________ ! correlation ecr=ec(rho) ! rs12=sqrt(rs) rs32=rs12*rs rs2=rs*rs rs3=rs*rs2 ecden=a*(bt1*rs12+bt2*rs+bt3*rs32+bt4*rs2) eclog=log(1.0d0+(1.0d0/ecden)) ecr=-a*(1.0d0+alfa1*rs)*eclog ! _________________________________________________________________ ! correlation h0(t,ecr) ! td=pider3*sd/rs12 t=agr*td t2=t*t t3=t*t2 t4=t2*t2 aexp=exp(-abder2*ecr)-1.0d0 abig=abder3/aexp abig2=abig*abig h0num=t2+abig*t4 h0den=1.0d0/(1.0d0+abig*t2+abig2*t4) h0arg=1.0d0+abder3*h0num*h0den h0=abder1*log(h0arg) ! _________________________________________________________________ ! correlation h1(t,s,aroe) ! ccrnum=c2+c3*rs+c4*rs2 ccrden=1.0d0/(1.0d0+c5*rs+c6*rs2+c7*rs3) ccr=c1+ccrnum*ccrden h1=cc0*(ccr-cc1)*t2*fxexp ! _________________________________________________________________ ! updating of xc-energy ! exc=exc+(xchge+ecr+h0+h1)*aroe ! _________________________________________________________________ ! first part xc-potential from exchange ! dys=bb5*(1.0d0+bb5*s/ysr)/ys dfs=-fxnum*(ysl+bb1*s*dys+4.0d0*bb4*s3)*fxden*fxden & & +(ysl+bb1*s*dys+2.0d0*s*(bb2+bb3*fxexp) & & -200.0d0*s3*bb3*fxexp)*fxden dfxd=(ax*roeth*x43)*(fx-dfs*s) dfxdg=ax*roeth*dfs*sd ! _________________________________________________________________ ! first part xc-potential from ecr ! decdrs=-a*alfa1*eclog*rs + a*(1+alfa1*rs) & & *a*(0.5d0*bt1*rs12+bt2*rs+1.5d0*bt3*rs32+2.0d0*bt4*rs2) & & /(ecden*ecden+ecden) decd=-x13*decdrs ! _________________________________________________________________ ! first part xc-potential from h0 ! dh0da=abder1/h0arg*abder3*h0den* & & (t4-h0num*h0den*(t2+2.0d0*abig*t4)) dadec=abder3*abder2*(aexp+1.0d0)/(aexp*aexp) dh0d=dh0da*dadec*decd dh0dt=abder1/h0arg*abder3*h0den & & *(2.0d0*t+4.0d0*abig*t3-h0num*h0den*(2.0d0*abig*t+4.0d0*abig2*t3)) dh0d=dh0d-x76*t*dh0dt dh0dg=dh0dt*td ! _________________________________________________________________ ! first part xc-potential from h1 ! dcdrs=(c3+2.0d0*c4*rs-ccrnum*ccrden*(c5+2.0d0*c6*rs+3.0d0*c7*rs2)) & & *ccrden dh1drs=cc0*t2*fxexp*dcdrs dh1d=-x13*rs*dh1drs dh1dt=2.0d0*t*cc0*(ccr-cc1)*fxexp dh1d=dh1d-x76*t*dh1dt dh1ds=-200.0d0*s*cc0*(ccr-cc1)*t2*fxexp dh1d=dh1d-x43*s*dh1ds dh1dg=dh1dt*td+dh1ds*sd ! _________________________________________________________________ ! first part of xc-potential: D(rho*exc)/D(rho) ! dexcd=dfxd+decd+dh0d+dh1d+ecr+h0+h1 isign=sign(1.d0,agr-delt) byagr=0.5d0*(1+isign)/(agr+(1-isign)*delt) rhor(ir)=dexcd ! ! gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho| ! dexcdg=(dfxdg+dh0dg+dh1dg)*aroe*byagr gradr(ir,1)=gradr(ir,1)*dexcdg gradr(ir,2)=gradr(ir,2)*dexcdg gradr(ir,3)=gradr(ir,3)*dexcdg 100 continue end do ! return end subroutine ggapwold !----------------------------------------------------------------------- subroutine dftname_cp (exfact, dft) !----------------------------------------------------------------------- ! implicit none integer :: exfact character(len=25) dft ! if (exfact == 0) then dft = 'PZ' elseif (exfact == 1) then dft = 'BLYP' elseif (exfact == 2) then dft = 'B88' elseif (exfact == - 5 .or. exfact == 3) then dft = 'BP' elseif (exfact == - 6 .or. exfact == 4) then dft = 'PW91' elseif (exfact == 5) then dft = 'PBE' elseif (exfact ==-1) then dft = 'WIG' elseif (exfact ==-2) then dft = 'HL' elseif (exfact ==-3) then dft = 'GL' elseif (exfact == 6) then dft = 'TPSS' else call errore ('dftname','unknown exch-corr functional',exfact) end if return end subroutine dftname_cp !------------------------------------------------------------------------- subroutine expxc(nnr,nspin,rhor,exc) !---------------------------------------------------------------------- ! ! ceperley & alder's correlation energy ! after j.p. perdew & a. zunger prb 23, 5048 (1981) ! ! rhor contains rho(r) on input, vxc(r) on output ! USE kinds, ONLY : DP use constants, only: pi, fpi ! implicit none ! integer nnr, nspin real(DP) rhor(nnr,nspin), exc ! local variables integer ir, iflg, isup, isdw real(DP) roe, aroe, rs, rsl, rsq, ecca, vcca, eccp, vccp, & zeta, onemz, zp, zm, fz, dfzdz, exc1, vxc1, vxc2 ! constants real(DP) x76, x43, x13 parameter(x76=7.d0/6.d0, x43=4.d0/3.d0, x13=1.d0/3.d0) real(DP) ax parameter (ax = -0.916330586d0) ! Perdew and Zunger parameters real(DP) ap, bp, cp, dp0, af, bf, cf, df, & bp1, cp1, dp1, bf1, cf1, df1 parameter & ( ap=0.03110d0*2.0d0, bp=-0.0480d0*2.0d0, cp=0.0020d0*2.0d0, dp0=-0.0116d0*2.0d0 & , af=0.01555d0*2.0d0, bf=-0.0269d0*2.0d0, cf=0.0007d0*2.0d0, df=-0.0048d0*2.0d0 & , bp1=bp-ap/3.0d0, cp1=2.0d0*cp/3.0d0, dp1=(2.0d0*dp0-cp)/3.0d0 & , bf1=bf-af/3.0d0, cf1=2.0d0*cf/3.0d0, df1=(2.0d0*df-cf)/3.0d0 ) real(DP) va(2), vb(2), vc(2), vd(2), vbt1(2), vbt2(2) real(DP) a(2), b(2), c(2), d(2), g(2), b1(2), b2(2) data va/ap ,af /, vb/bp1,bf1/, vc/cp1,cf1/, vd/dp1,df1/, & vbt1/1.0529d0,1.3981d0/, vbt2/0.3334d0,0.2611d0/ data a/0.0622d0,0.0311d0/, b/-0.096d0,-0.0538d0/, c/0.0040d0,0.0014d0/, & d/-0.0232d0,-0.0096d0/, b1/1.0529d0,1.3981d0/, b2/0.3334d0,0.2611d0/, & g/-0.2846d0,-0.1686d0/ ! if (nspin.eq.1) then ! ! iflg=1: paramagnetic (unpolarised) results ! iflg=1 do ir=1,nnr roe=rhor(ir,1) if(roe.lt.1.0d-30) goto 10 aroe=abs(roe) rs= (3.d0/aroe/fpi)**x13 if(rs.le.1.d0) then rsl=log(rs) ecca= a(iflg)*rsl+ b(iflg)+ c(iflg)*rs*rsl+ d(iflg)*rs vcca=va(iflg)*rsl+vb(iflg)+vc(iflg)*rs*rsl+vd(iflg)*rs else rsq=sqrt(rs) ecca=g(iflg)/(1.d0+b1(iflg)*rsq+b2(iflg)*rs) vcca=ecca*(1.d0+x76*vbt1(iflg)*rsq+x43*vbt2(iflg)*rs)/ & & (1.d0+ vbt1(iflg)*rsq+ vbt2(iflg)*rs) end if exc1 = ( ax/rs + ecca )/2.d0 exc = exc + exc1*roe rhor(ir,1)= ( x43*ax/rs + vcca )/2.d0 10 continue end do else isup=1 isdw=2 do ir=1,nnr roe=rhor(ir,isup)+rhor(ir,isdw) if(roe.lt.1.0d-30) goto 20 aroe=abs(roe) rs= (3.d0/aroe/fpi)**x13 zeta=abs(rhor(ir,isup)-rhor(ir,isdw))/aroe zp = (1.d0+zeta)**x13 onemz=max(0.d0,1.d0-zeta) zm = onemz**x13 fz= ((1.d0+zeta)*zp + onemz*zm - 2.d0)/ & & (2.d0**x43 -2.d0) dfzdz= x43*(zp - zm)/(2.d0**x43-2.d0) ! ! iflg=1: paramagnetic (unpolarised) results ! iflg=2: ferromagnetic ( polarised) results ! if(rs.le.1.d0) then rsl=log(rs) ecca= a(1)*rsl+ b(1)+ c(1)*rs*rsl+ d(1)*rs vcca=va(1)*rsl+vb(1)+vc(1)*rs*rsl+vd(1)*rs eccp= a(2)*rsl+ b(2)+ c(2)*rs*rsl+ d(2)*rs vccp=va(2)*rsl+vb(2)+vc(2)*rs*rsl+vd(2)*rs else rsq=sqrt(rs) ecca=g(1)/(1.d0+b1(1)*rsq+b2(1)*rs) vcca=ecca*(1.d0+x76*vbt1(1)*rsq+x43*vbt2(1)*rs)/ & & (1.d0+ vbt1(1)*rsq+ vbt2(1)*rs) eccp=g(2)/(1.d0+b1(2)*rsq+b2(2)*rs) vccp=eccp*(1.d0+x76*vbt1(2)*rsq+x43*vbt2(2)*rs)/ & & (1.d0+ vbt1(2)*rsq+ vbt2(2)*rs) end if ! exchange part exc1 = ax/rs*((1.d0+zeta)*zp+(1.d0-zeta)*zm)/2.d0 vxc1 = x43*ax/rs*zp vxc2 = x43*ax/rs*zm ! correlation part vxc1 = vxc1 + vcca + fz*(vccp-vcca) & & + dfzdz*(eccp-ecca)*( 1.d0-zeta) vxc2 = vxc2 + vcca + fz*(vccp-vcca) & & + dfzdz*(eccp-ecca)*(-1.d0-zeta) exc = exc + (exc1 + ecca+fz*(eccp-ecca))*roe/2.d0 rhor(ir,isup)=vxc1/2.d0 rhor(ir,isdw)=vxc2/2.d0 20 continue end do end if return end subroutine expxc SUBROUTINE wrap_b88( rho, grho, sx, v1x, v2x ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP) :: rho, grho, sx, v1x, v2x REAL(DP) :: b1 = 0.0042d0 REAL(DP) :: RHOA,RHOB,GRHOA,GRHOB, V1XA,V2XA,V1XB,V2XB rhoa = 0.5d0 * rho rhob = 0.5d0 * rho grhoa = 0.25d0 * grho grhob = 0.25d0 * grho CALL LSD_B88(B1,RHOA,RHOB,GRHOA,GRHOB,sx,V1XA,V2XA,V1XB,V2XB) v1x = V1XA v2x = V2XA END SUBROUTINE wrap_b88 SUBROUTINE wrap_glyp( rho, grho, sc, v1c, v2c ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP) :: rho, grho, sc, v1c, v2c REAL(DP) :: RA,RB,GRHOAA,GRHOAB,GRHOBB REAL(DP) :: V1CA,V2CA,V1CB,V2CB,V2CAB ra = rho * 0.5d0 rb = rho * 0.5d0 grhoaa = 0.25d0 * grho grhobb = 0.25d0 * grho grhoab = 0.25d0 * grho CALL LSD_GLYP(RA,RB,GRHOAA,GRHOAB,GRHOBB,SC, & V1CA,V2CA,V1CB,V2CB,V2CAB) v1c = V1CA v2c = 2.0d0*(v2ca+v2cb+v2cab*2.d0)*0.25d0 END SUBROUTINE wrap_glyp ! ================================================================== SUBROUTINE LSD_B88(B1,RHOA,RHOB,GRHOA,GRHOB,sx,V1XA,V2XA,V1XB,V2XB) ! ==--------------------------------------------------------------== ! BECKE EXCHANGE: PRA 38, 3098 (1988) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP),PARAMETER :: OB3=1.D0/3.D0, SMALL=1.D-20 REAL(DP) :: xs, xs2, sa2b8, br1, br2, br4, ddd, gf, dgf, shm1, dd REAL(DP) :: dd2, grhoa, grhob, sx, b1, rhoa, rhob, v2xb, aa, a REAL(DP) :: v1xa, v2xa, v1xb ! ==--------------------------------------------------------------== sx=0.0D0 V1XA=0.0D0 V2XA=0.0D0 V1XB=0.0D0 V2XB=0.0D0 IF(ABS(RHOA).GT.SMALL) THEN AA = GRHOA A = SQRT(AA) BR1 = RHOA**OB3 BR2 = BR1*BR1 BR4 = BR2*BR2 XS = A/BR4 XS2 = XS*XS SA2B8 = SQRT(1.0D0+XS2) SHM1 = LOG(XS+SA2B8) DD = 1.0D0 + 6.0D0*B1*XS*SHM1 DD2 = DD*DD DDD = 6.0D0*B1*(SHM1+XS/SA2B8) GF = -B1*XS2/DD DGF = (-2.0D0*B1*XS*DD + B1*XS2*DDD)/DD2 sx = GF*BR4 V1XA = 4.d0/3.d0*BR1*(GF-XS*DGF) V2XA = DGF/A ENDIF IF(ABS(RHOB).GT.SMALL) THEN AA = GRHOB A = SQRT(AA) BR1 = RHOB**OB3 BR2 = BR1*BR1 BR4 = BR2*BR2 XS = A/BR4 XS2 = XS*XS SA2B8 = SQRT(1.0D0+XS2) SHM1 = LOG(XS+SA2B8) DD = 1.0D0 + 6.0D0*B1*XS*SHM1 DD2 = DD*DD DDD = 6.0D0*B1*(SHM1+XS/SA2B8) GF = -B1*XS2/DD DGF = (-2.0D0*B1*XS*DD + B1*XS2*DDD)/DD2 sx = sx+GF*BR4 V1XB = 4.d0/3.d0*BR1*(GF-XS*DGF) V2XB = DGF/A ENDIF ! ==--------------------------------------------------------------== RETURN END SUBROUTINE LSD_B88 espresso-5.1/flib/date_and_tim.f900000644000175000017500000000155512341373036015156 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine date_and_tim (cdate, ctime) ! ! Returns two strings containing the date and the time ! in human-readable format. Uses a standard f90 call. ! implicit none character (len=9) :: cdate, ctime ! character(len=3), dimension(12) :: months data months /'Jan','Feb','Mar','Apr','May','Jun', & 'Jul','Aug','Sep','Oct','Nov','Dec'/ INTEGER date_time(8) ! call date_and_time(values=date_time) ! write (cdate,'(i2,a3,i4)') date_time(3), months(date_time(2)), date_time(1) write (ctime,'(i2,":",i2,":",i2)') date_time(5), date_time(6), date_time(7) end subroutine date_and_tim espresso-5.1/flib/lsda_functionals.f900000644000175000017500000007045012341373036016076 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine pz_polarized (rs, ec, vc) !----------------------------------------------------------------------- ! J.P. Perdew and A. Zunger, PRB 23, 5048 (1981) ! spin-polarized energy and potential ! USE kinds, ONLY : DP implicit none real(DP) :: rs, ec, vc real(DP) :: a, b, c, d, gc, b1, b2 parameter (a = 0.01555d0, b = - 0.0269d0, c = 0.0007d0, d = & - 0.0048d0, gc = - 0.0843d0, b1 = 1.3981d0, b2 = 0.2611d0) real(DP) :: lnrs, rs12, ox, dox REAL(DP), PARAMETER :: xcprefact = 0.022575584d0, pi34 = 0.6203504908994d0 ! REAL(DP) :: betha, etha, csi, prefact ! if (rs.lt.1.0d0) then ! high density formula lnrs = log (rs) ec = a * lnrs + b + c * rs * lnrs + d * rs vc = a * lnrs + (b - a / 3.d0) + 2.d0 / 3.d0 * c * rs * lnrs + & (2.d0 * d-c) / 3.d0 * rs else ! interpolation formula rs12 = sqrt (rs) ox = 1.d0 + b1 * rs12 + b2 * rs dox = 1.d0 + 7.d0 / 6.d0 * b1 * rs12 + 4.d0 / 3.d0 * b2 * rs ec = gc / ox vc = ec * dox / ox endif ! ! IF ( lxc_rel ) THEN ! betha = prefact * pi34 / rs ! etha = DSQRT( 1 + betha**2 ) ! csi = betha + etha ! prefact = 1.0D0 - (3.0D0/2.0D0) * ( (betha*etha - log(csi))/betha**2 )**2 ! ec = ec * prefact ! vc = vc * prefact ! ENDIF return end subroutine pz_polarized ! !----------------------------------------------------------------------- subroutine pz_spin (rs, zeta, ec, vcup, vcdw) !----------------------------------------------------------------------- ! J.P. Perdew and Y. Wang, PRB 45, 13244 (1992) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, zeta, ec, vcup, vcdw ! real(DP) :: ecu, vcu, ecp, vcp, fz, dfz real(DP) :: p43, third parameter (p43 = 4.0d0 / 3.d0, third = 1.d0 / 3.d0) ! ! unpolarized part (Perdew-Zunger formula) call pz (rs, 1, ecu, vcu) ! polarization contribution call pz_polarized (rs, ecp, vcp) ! fz = ( (1.0d0 + zeta) **p43 + (1.d0 - zeta) **p43 - 2.d0) / & (2.d0**p43 - 2.d0) dfz = p43 * ( (1.0d0 + zeta) **third- (1.d0 - zeta) **third) & / (2.d0**p43 - 2.d0) ! ec = ecu + fz * (ecp - ecu) vcup = vcu + fz * (vcp - vcu) + (ecp - ecu) * dfz * (1.d0 - zeta) vcdw = vcu + fz * (vcp - vcu) + (ecp - ecu) * dfz * ( - 1.d0 - & zeta) ! return end subroutine pz_spin ! !--------- SUBROUTINE vwn_spin(rs, zeta, ec, vcup, vcdw) USE kinds, ONLY: DP IMPLICIT NONE ! parameters: e_c/para, e_c/ferro, alpha_c real(DP), parameter :: & A(3) = (/ 0.0310907_dp, 0.01554535_dp, -0.01688686394039_dp /), & x0(3) = (/ -0.10498_dp, -0.32500_dp, -0.0047584_dp /), & b(3) = (/3.72744_dp, 7.06042_dp, 1.13107_dp /), & c(3) = (/ 12.9352_dp, 18.0578_dp, 13.0045_dp /),& Q(3) = (/ 6.15199081975908_dp, 4.73092690956011_dp, 7.12310891781812_dp /), & tbQ(3) = (/ 1.21178334272806_dp, 2.98479352354082_dp, 0.31757762321188_dp /), & fx0(3) = (/ 12.5549141492_dp, 15.8687885_dp, 12.99914055888256_dp /), & bx0fx0(3) = (/ -0.03116760867894_dp, -0.14460061018521_dp, -0.00041403379428_dp /) ! N.B.: A is expressed in Hartree ! Q = sqrt(4*c - b^2) ! tbQ = 2*b/Q ! fx0 = X(x_0) = x_0^2 + b*x_0 + c ! bx0fx0 = b*x_0/X(x_0) real(DP), intent(in) :: rs, zeta real(DP), intent(out):: ec, vcup, vcdw ! local real(DP) :: zeta3, zeta4, trup, trdw, trup13, trdw13, fz, dfz, fzz4 real(DP) :: sqrtrs, ecP, ecF, ac, De, vcP, vcF, dac, dec1, dec2 real(DP) :: cfz, cfz1, cfz2, iddfz0 ! coefficients for f(z), df/dz, ddf/ddz(0) cfz = 2.0_dp**(4.0_dp/3.0_dp) - 2.0_dp cfz1 = 1.0_dp / cfz cfz2 = 4.0_dp/3.0_dp * cfz1 iddfz0 = 9.0_dp / 8.0_dp *cfz sqrtrs = sqrt(rs) zeta3 = zeta**3 zeta4 = zeta3*zeta trup = 1.0_dp + zeta trdw = 1.0_dp - zeta trup13 = trup**(1.0_dp/3.0_dp) trdw13 = trdw**(1.0_dp/3.0_dp) fz = cfz1 * (trup13*trup + trdw13*trdw - 2.0_dp) ! f(zeta) dfz = cfz2 * (trup13 - trdw13) ! d f / d zeta call padefit(sqrtrs, 1, ecP, vcP) ! ecF = e_c Paramagnetic call padefit(sqrtrs, 2, ecF, vcF) ! ecP = e_c Ferromagnetic call padefit(sqrtrs, 3, ac, dac) ! ac = "spin stiffness" ac = ac * iddfz0 dac = dac * iddfz0 De = ecF - ecP - ac ! e_c[F] - e_c[P] - alpha_c/(ddf/ddz(z=0)) fzz4 = fz * zeta4 ec = ecP + ac * fz + De * fzz4 dec1 = vcP + dac*fz + (vcF - vcP - dac) * fzz4 ! e_c - (r_s/3)*(de_c/dr_s) dec2 = ac*dfz + De*(4.0_dp*zeta3*fz + zeta4*dfz) ! de_c/dzeta ! v_c[s] = e_c - (r_s/3)*(de_c/dr_s) + [sign(s)-zeta]*(de_c/dzeta) vcup = dec1 + (1.0_dp - zeta)*dec2 vcdw = dec1 - (1.0_dp + zeta)*dec2 contains !--- subroutine padefit(x, i, fit, dfit) !---- ! implements formula [4.4] in: ! S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980) USE kinds, ONLY: DP implicit none ! input real(DP) :: x ! x is sqrt(r_s) integer :: i ! i is the index of the fit ! output real(DP) :: fit, dfit ! Pade fit calculated in x and its derivative w.r.t. rho ! rs = inv((rho*)^(1/3)) = x^2 ! fit [eq. 4.4] ! dfit/drho = fit - (rs/3)*dfit/drs = ec - (x/6)*dfit/dx ! local real(DP) :: sqx, xx0, Qtxb, atg, fx real(DP) :: txb, txbfx, itxbQ sqx = x * x ! x^2 = r_s xx0 = x - x0(i) ! x - x_0 Qtxb = Q(i) / (2.0_dp*x + b(i)) ! Q / (2x+b) atg = atan(Qtxb) ! tan^-1(Q/(2x+b)) fx = sqx + b(i)*x + c(i) ! X(x) = x^2 + b*x + c fit = A(i) * ( log(sqx/fx) + tbQ(i)*atg - & bx0fx0(i) * ( log(xx0*xx0/fx) + (tbQ(i) + 4.0_dp*x0(i)/Q(i)) * atg ) ) txb = 2.0_dp*x + b(i) txbfx = txb / fx itxbQ = 1.0_dp / (txb*txb + Q(i)*Q(i)) dfit = fit - A(i) / 3.0_dp + A(i)*x/6.0_dp * ( txbfx + 4.0_dp*b(i)*itxbQ + & bx0fx0(i) * ( 2.0_dp/xx0 - txbfx - 4.0_dp*(b(i)+2.0_dp*x0(i))*itxbQ ) ) end subroutine end subroutine !----------------------------------------------------------------------- subroutine pw_spin (rs, zeta, ec, vcup, vcdw) !----------------------------------------------------------------------- ! J.P. Perdew and Y. Wang, PRB 45, 13244 (1992) ! USE kinds, ONLY : DP implicit none real(DP) :: rs, zeta, ec, vcup, vcdw ! xc parameters, unpolarised real(DP) :: a, a1, b1, b2, b3, b4, c0, c1, c2, c3, d0, d1 parameter (a = 0.031091d0, a1 = 0.21370d0, b1 = 7.5957d0, b2 = & 3.5876d0, b3 = 1.6382d0, b4 = 0.49294d0, c0 = a, c1 = 0.046644d0, & c2 = 0.00664d0, c3 = 0.01043d0, d0 = 0.4335d0, d1 = 1.4408d0) ! xc parameters, polarised real(DP) :: ap, a1p, b1p, b2p, b3p, b4p, c0p, c1p, c2p, c3p, d0p, & d1p parameter (ap = 0.015545d0, a1p = 0.20548d0, b1p = 14.1189d0, b2p & = 6.1977d0, b3p = 3.3662d0, b4p = 0.62517d0, c0p = ap, c1p = & 0.025599d0, c2p = 0.00319d0, c3p = 0.00384d0, d0p = 0.3287d0, d1p & = 1.7697d0) ! xc parameters, antiferro real(DP) :: aa, a1a, b1a, b2a, b3a, b4a, c0a, c1a, c2a, c3a, d0a, & d1a parameter (aa = 0.016887d0, a1a = 0.11125d0, b1a = 10.357d0, b2a = & 3.6231d0, b3a = 0.88026d0, b4a = 0.49671d0, c0a = aa, c1a = & 0.035475d0, c2a = 0.00188d0, c3a = 0.00521d0, d0a = 0.2240d0, d1a & = 0.3969d0) real(DP) :: fz0 parameter (fz0 = 1.709921d0) real(DP) :: rs12, rs32, rs2, zeta2, zeta3, zeta4, fz, dfz real(DP) :: om, dom, olog, epwc, vpwc real(DP) :: omp, domp, ologp, epwcp, vpwcp real(DP) :: oma, doma, ologa, alpha, vpwca ! ! if(rs.lt.0.5d0) then ! high density formula (not implemented) ! ! else if(rs.gt.100.d0) then ! low density formula (not implemented) ! ! else ! interpolation formula zeta2 = zeta * zeta zeta3 = zeta2 * zeta zeta4 = zeta3 * zeta rs12 = sqrt (rs) rs32 = rs * rs12 rs2 = rs**2 ! unpolarised om = 2.d0 * a * (b1 * rs12 + b2 * rs + b3 * rs32 + b4 * rs2) dom = 2.d0 * a * (0.5d0 * b1 * rs12 + b2 * rs + 1.5d0 * b3 * rs32 & + 2.d0 * b4 * rs2) olog = log (1.d0 + 1.0d0 / om) epwc = - 2.d0 * a * (1.d0 + a1 * rs) * olog vpwc = - 2.d0 * a * (1.d0 + 2.d0 / 3.d0 * a1 * rs) * olog - 2.d0 / & 3.d0 * a * (1.d0 + a1 * rs) * dom / (om * (om + 1.d0) ) ! polarized omp = 2.d0 * ap * (b1p * rs12 + b2p * rs + b3p * rs32 + b4p * rs2) domp = 2.d0 * ap * (0.5d0 * b1p * rs12 + b2p * rs + 1.5d0 * b3p * & rs32 + 2.d0 * b4p * rs2) ologp = log (1.d0 + 1.0d0 / omp) epwcp = - 2.d0 * ap * (1.d0 + a1p * rs) * ologp vpwcp = - 2.d0 * ap * (1.d0 + 2.d0 / 3.d0 * a1p * rs) * ologp - & 2.d0 / 3.d0 * ap * (1.d0 + a1p * rs) * domp / (omp * (omp + 1.d0) & ) ! antiferro oma = 2.d0 * aa * (b1a * rs12 + b2a * rs + b3a * rs32 + b4a * rs2) doma = 2.d0 * aa * (0.5d0 * b1a * rs12 + b2a * rs + 1.5d0 * b3a * & rs32 + 2.d0 * b4a * rs2) ologa = log (1.d0 + 1.0d0 / oma) alpha = 2.d0 * aa * (1.d0 + a1a * rs) * ologa vpwca = + 2.d0 * aa * (1.d0 + 2.d0 / 3.d0 * a1a * rs) * ologa + & 2.d0 / 3.d0 * aa * (1.d0 + a1a * rs) * doma / (oma * (oma + 1.d0) & ) ! fz = ( (1.d0 + zeta) ** (4.d0 / 3.d0) + (1.d0 - zeta) ** (4.d0 / & 3.d0) - 2.d0) / (2.d0** (4.d0 / 3.d0) - 2.d0) dfz = ( (1.d0 + zeta) ** (1.d0 / 3.d0) - (1.d0 - zeta) ** (1.d0 / & 3.d0) ) * 4.d0 / (3.d0 * (2.d0** (4.d0 / 3.d0) - 2.d0) ) ! ec = epwc + alpha * fz * (1.d0 - zeta4) / fz0 + (epwcp - epwc) & * fz * zeta4 ! vcup = vpwc + vpwca * fz * (1.d0 - zeta4) / fz0 + (vpwcp - vpwc) & * fz * zeta4 + (alpha / fz0 * (dfz * (1.d0 - zeta4) - 4.d0 * fz * & zeta3) + (epwcp - epwc) * (dfz * zeta4 + 4.d0 * fz * zeta3) ) & * (1.d0 - zeta) vcdw = vpwc + vpwca * fz * (1.d0 - zeta4) / fz0 + (vpwcp - vpwc) & * fz * zeta4 - (alpha / fz0 * (dfz * (1.d0 - zeta4) - 4.d0 * fz * & zeta3) + (epwcp - epwc) * (dfz * zeta4 + 4.d0 * fz * zeta3) ) & * (1.d0 + zeta) ! endif ! return end subroutine pw_spin ! !----------------------------------------------------------------------- subroutine pw_spin_vec (rs, zeta, evc, length) !----------------------------------------------------------------------- ! J.P. Perdew and Y. Wang, PRB 45, 13244 (1992) ! USE kinds, ONLY : DP implicit none integer :: length real(DP) :: rs(length), zeta(length), evc(length,3) ! xc parameters, unpolarised real(DP) :: a, a1, b1, b2, b3, b4, c0, c1, c2, c3, d0, d1 parameter (a = 0.031091d0, a1 = 0.21370d0, b1 = 7.5957d0, b2 = & 3.5876d0, b3 = 1.6382d0, b4 = 0.49294d0, c0 = a, c1 = 0.046644d0, & c2 = 0.00664d0, c3 = 0.01043d0, d0 = 0.4335d0, d1 = 1.4408d0) ! xc parameters, polarised real(DP) :: ap, a1p, b1p, b2p, b3p, b4p, c0p, c1p, c2p, c3p, d0p, & d1p parameter (ap = 0.015545d0, a1p = 0.20548d0, b1p = 14.1189d0, b2p & = 6.1977d0, b3p = 3.3662d0, b4p = 0.62517d0, c0p = ap, c1p = & 0.025599d0, c2p = 0.00319d0, c3p = 0.00384d0, d0p = 0.3287d0, d1p & = 1.7697d0) ! xc parameters, antiferro real(DP) :: aa, a1a, b1a, b2a, b3a, b4a, c0a, c1a, c2a, c3a, d0a, & d1a parameter (aa = 0.016887d0, a1a = 0.11125d0, b1a = 10.357d0, b2a = & 3.6231d0, b3a = 0.88026d0, b4a = 0.49671d0, c0a = aa, c1a = & 0.035475d0, c2a = 0.00188d0, c3a = 0.00521d0, d0a = 0.2240d0, d1a & = 0.3969d0) real(DP) :: fz0 parameter (fz0 = 1.709921d0) real(DP) :: rs12, rs32, rs2, zeta2, zeta3, zeta4, fz, dfz real(DP) :: om, dom, olog, epwc, vpwc real(DP) :: omp, domp, ologp, epwcp, vpwcp real(DP) :: oma, doma, ologa, alpha, vpwca integer :: i ! ! if(rs.lt.0.5d0) then ! high density formula (not implemented) ! ! else if(rs.gt.100.d0) then ! low density formula (not implemented) ! ! else ! interpolation formula do i=1,length zeta2 = zeta(i) * zeta(i) zeta3 = zeta2 * zeta(i) zeta4 = zeta3 * zeta(i) rs12 = sqrt (rs(i)) rs32 = rs(i) * rs12 rs2 = rs(i)**2 ! unpolarised om = 2.d0 * a * (b1 * rs12 + b2 * rs(i) + b3 * rs32 + b4 * rs2) dom = 2.d0 * a * (0.5d0 * b1 * rs12 + b2 * rs(i) + 1.5d0 * b3 * rs32 & + 2.d0 * b4 * rs2) olog = log (1.d0 + 1.0d0 / om) epwc = - 2.d0 * a * (1.d0 + a1 * rs(i)) * olog vpwc = - 2.d0 * a * (1.d0 + 2.d0 / 3.d0 * a1 * rs(i)) * olog - 2.d0 / & 3.d0 * a * (1.d0 + a1 * rs(i)) * dom / (om * (om + 1.d0) ) ! polarized omp = 2.d0 * ap * (b1p * rs12 + b2p * rs(i) + b3p * rs32 + b4p * rs2) domp = 2.d0 * ap * (0.5d0 * b1p * rs12 + b2p * rs(i) + 1.5d0 * b3p * & rs32 + 2.d0 * b4p * rs2) ologp = log (1.d0 + 1.0d0 / omp) epwcp = - 2.d0 * ap * (1.d0 + a1p * rs(i)) * ologp vpwcp = - 2.d0 * ap * (1.d0 + 2.d0 / 3.d0 * a1p * rs(i)) * ologp - & 2.d0 / 3.d0 * ap * (1.d0 + a1p * rs(i)) * domp / (omp * (omp + 1.d0) & ) ! antiferro oma = 2.d0 * aa * (b1a * rs12 + b2a * rs(i) + b3a * rs32 + b4a * rs2) doma = 2.d0 * aa * (0.5d0 * b1a * rs12 + b2a * rs(i) + 1.5d0 * b3a * & rs32 + 2.d0 * b4a * rs2) ologa = log (1.d0 + 1.0d0 / oma) alpha = 2.d0 * aa * (1.d0 + a1a * rs(i)) * ologa vpwca = + 2.d0 * aa * (1.d0 + 2.d0 / 3.d0 * a1a * rs(i)) * ologa + & 2.d0 / 3.d0 * aa * (1.d0 + a1a * rs(i)) * doma / (oma * (oma + 1.d0) & ) ! fz = ( (1.d0 + zeta(i)) ** (4.d0 / 3.d0) + (1.d0 - zeta(i)) ** (4.d0 / & 3.d0) - 2.d0) / (2.d0** (4.d0 / 3.d0) - 2.d0) dfz = ( (1.d0 + zeta(i)) ** (1.d0 / 3.d0) - (1.d0 - zeta(i)) ** (1.d0 / & 3.d0) ) * 4.d0 / (3.d0 * (2.d0** (4.d0 / 3.d0) - 2.d0) ) ! evc(i,3) = epwc + alpha * fz * (1.d0 - zeta4) / fz0 + (epwcp - epwc) & * fz * zeta4 ! evc(i,1) = vpwc + vpwca * fz * (1.d0 - zeta4) / fz0 + (vpwcp - vpwc) & * fz * zeta4 + (alpha / fz0 * (dfz * (1.d0 - zeta4) - 4.d0 * fz * & zeta3) + (epwcp - epwc) * (dfz * zeta4 + 4.d0 * fz * zeta3) ) & * (1.d0 - zeta(i)) evc(i,2) = vpwc + vpwca * fz * (1.d0 - zeta4) / fz0 + (vpwcp - vpwc) & * fz * zeta4 - (alpha / fz0 * (dfz * (1.d0 - zeta4) - 4.d0 * fz * & zeta3) + (epwcp - epwc) * (dfz * zeta4 + 4.d0 * fz * zeta3) ) & * (1.d0 + zeta(i)) end do ! endif ! end subroutine pw_spin_vec ! !----------------------------------------------------------------------- subroutine becke88_spin (rho, grho, sx, v1x, v2x) !----------------------------------------------------------------------- ! Becke exchange: A.D. Becke, PRA 38, 3098 (1988) - Spin polarized case ! USE kinds, ONLY : DP implicit none real(DP) :: rho, grho, sx, v1x, v2x ! input: charge ! input: gradient ! output: the up and down energies ! output: first part of the potential ! output: the second part of the potential ! real(DP) :: beta, third parameter (beta = 0.0042d0, third = 1.d0 / 3.d0) real(DP) :: rho13, rho43, xs, xs2, sa2b8, shm1, dd, dd2, ee ! rho13 = rho**third rho43 = rho13**4 xs = sqrt (grho) / rho43 xs2 = xs * xs sa2b8 = sqrt (1.0d0 + xs2) shm1 = log (xs + sa2b8) dd = 1.0d0 + 6.0d0 * beta * xs * shm1 dd2 = dd * dd ee = 6.0d0 * beta * xs2 / sa2b8 - 1.d0 sx = grho / rho43 * ( - beta / dd) v1x = - (4.d0 / 3.d0) * xs2 * beta * rho13 * ee / dd2 v2x = beta * (ee-dd) / (rho43 * dd2) ! return end subroutine becke88_spin ! !----------------------------------------------------------------------- subroutine perdew86_spin (rho, zeta, grho, sc, v1cup, v1cdw, v2c) !----------------------------------------------------------------------- ! Perdew gradient correction on correlation: PRB 33, 8822 (1986) ! spin-polarized case ! USE kinds, ONLY : DP implicit none real(DP) :: rho, zeta, grho, sc, v1cup, v1cdw, v2c real(DP) :: p1, p2, p3, p4, pc1, pc2, pci parameter (p1 = 0.023266d0, p2 = 7.389d-6, p3 = 8.723d0, p4 = & 0.472d0) parameter (pc1 = 0.001667d0, pc2 = 0.002568d0, pci = pc1 + pc2) real(DP) :: third, pi34 parameter (third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0) ! pi34=(3/4pi)^(1/3) ! real(DP) :: rho13, rho43, rs, rs2, rs3, cna, cnb, cn, drs real(DP) :: dcna, dcnb, dcn, phi, ephi, dd, ddd ! rho13 = rho**third rho43 = rho13**4 rs = pi34 / rho13 rs2 = rs * rs rs3 = rs * rs2 cna = pc2 + p1 * rs + p2 * rs2 cnb = 1.d0 + p3 * rs + p4 * rs2 + 1.d4 * p2 * rs3 cn = pc1 + cna / cnb drs = - third * pi34 / rho43 dcna = (p1 + 2.d0 * p2 * rs) * drs dcnb = (p3 + 2.d0 * p4 * rs + 3.d4 * p2 * rs2) * drs dcn = dcna / cnb - cna / (cnb * cnb) * dcnb phi = 0.192d0 * pci / cn * sqrt (grho) * rho** ( - 7.d0 / 6.d0) !SdG: in the original paper 1.745*0.11=0.19195 is used dd = (2.d0) **third * sqrt ( ( (1.d0 + zeta) * 0.5d0) ** (5.d0 / & 3.d0) + ( (1.d0 - zeta) * 0.5d0) ** (5.d0 / 3.d0) ) ddd = (2.d0) ** ( - 4.d0 / 3.d0) * 5.d0 * ( ( (1.d0 + zeta) & * 0.5d0) ** (2.d0 / 3.d0) - ( (1.d0 - zeta) * 0.5d0) ** (2.d0 / & 3.d0) ) / (3.d0 * dd) ephi = exp ( - phi) sc = grho / rho43 * cn * ephi / dd v1cup = sc * ( (1.d0 + phi) * dcn / cn - ( (4.d0 / 3.d0) - & (7.d0 / 6.d0) * phi) / rho) - sc * ddd / dd * (1.d0 - zeta) & / rho v1cdw = sc * ( (1.d0 + phi) * dcn / cn - ( (4.d0 / 3.d0) - & (7.d0 / 6.d0) * phi) / rho) + sc * ddd / dd * (1.d0 + zeta) & / rho v2c = cn * ephi / rho43 * (2.d0 - phi) / dd ! return end subroutine perdew86_spin ! !----------------------------------------------------------------------- subroutine ggac_spin (rho, zeta, grho, sc, v1cup, v1cdw, v2c) !----------------------------------------------------------------------- ! Perdew-Wang GGA (PW91) correlation part - spin-polarized ! USE kinds, ONLY : DP implicit none real(DP) :: rho, zeta, grho, sc, v1cup, v1cdw, v2c real(DP) :: al, pa, pb, pc, pd, cx, cxc0, cc0 parameter (al = 0.09d0, pa = 0.023266d0, pb = 7.389d-6, pc = & 8.723d0, pd = 0.472d0) parameter (cx = - 0.001667d0, cxc0 = 0.002568d0, cc0 = - cx + & cxc0) real(DP) :: third, pi34, nu, be, xkf, xks parameter (third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0) parameter (nu = 15.755920349483144d0, be = nu * cc0) parameter (xkf = 1.919158292677513d0, xks = 1.128379167095513d0) ! pi34=(3/4pi)^(1/3), nu=(16/pi)*(3 pi^2)^(1/3) ! xkf=(9 pi/4)^(1/3), xks= sqrt(4/pi) real(DP) :: kf, ks, rs, rs2, rs3, ec, vcup, vcdw, t, expe, af, y, & xy, qy, s1, h0, ddh0, ee, cn, dcn, cna, dcna, cnb, dcnb, h1, dh1, & ddh1, fz, fz2, fz3, fz4, dfz, bfup, bfdw, dh0up, dh0dw, dh0zup, & dh0zdw, dh1zup, dh1zdw ! rs = pi34 / rho**third rs2 = rs * rs rs3 = rs * rs2 call pw_spin (rs, zeta, ec, vcup, vcdw) kf = xkf / rs ks = xks * sqrt (kf) fz = 0.5d0 * ( (1.d0 + zeta) ** (2.d0 / 3.d0) + (1.d0 - zeta) ** ( & 2.d0 / 3.d0) ) fz2 = fz * fz fz3 = fz2 * fz fz4 = fz3 * fz dfz = ( (1.d0 + zeta) ** ( - 1.d0 / 3.d0) - (1.d0 - zeta) ** ( - & 1.d0 / 3.d0) ) / 3.d0 t = sqrt (grho) / (2.d0 * fz * ks * rho) expe = exp ( - 2.d0 * al * ec / (fz3 * be * be) ) af = 2.d0 * al / be * (1.d0 / (expe-1.d0) ) bfup = expe * (vcup - ec) / fz3 bfdw = expe * (vcdw - ec) / fz3 y = af * t * t xy = (1.d0 + y) / (1.d0 + y + y * y) qy = y * y * (2.d0 + y) / (1.d0 + y + y * y) **2 s1 = 1.d0 + 2.d0 * al / be * t * t * xy h0 = fz3 * be * be / (2.d0 * al) * log (s1) dh0up = be * t * t * fz3 / s1 * ( - 7.d0 / 3.d0 * xy - qy * & (af * bfup / be-7.d0 / 3.d0) ) dh0dw = be * t * t * fz3 / s1 * ( - 7.d0 / 3.d0 * xy - qy * & (af * bfdw / be-7.d0 / 3.d0) ) dh0zup = (3.d0 * h0 / fz - be * t * t * fz2 / s1 * (2.d0 * xy - & qy * (3.d0 * af * expe * ec / fz3 / be+2.d0) ) ) * dfz * (1.d0 - & zeta) dh0zdw = - (3.d0 * h0 / fz - be * t * t * fz3 / s1 * (2.d0 * xy - & qy * (3.d0 * af * expe * ec / fz3 / be+2.d0) ) ) * dfz * (1.d0 + & zeta) ddh0 = be * fz / (2.d0 * ks * ks * rho) * (xy - qy) / s1 ee = - 100.d0 * fz4 * (ks / kf * t) **2 cna = cxc0 + pa * rs + pb * rs2 dcna = pa * rs + 2.d0 * pb * rs2 cnb = 1.d0 + pc * rs + pd * rs2 + 1.d4 * pb * rs3 dcnb = pc * rs + 2.d0 * pd * rs2 + 3.d4 * pb * rs3 cn = cna / cnb - cx dcn = dcna / cnb - cna * dcnb / (cnb * cnb) h1 = nu * (cn - cc0 - 3.d0 / 7.d0 * cx) * fz3 * t * t * exp (ee) dh1 = - third * (h1 * (7.d0 + 8.d0 * ee) + fz3 * nu * t * t * exp & (ee) * dcn) ddh1 = 2.d0 * h1 * (1.d0 + ee) * rho / grho dh1zup = (1.d0 - zeta) * dfz * h1 * (1.d0 + 2.d0 * ee / fz) dh1zdw = - (1.d0 + zeta) * dfz * h1 * (1.d0 + 2.d0 * ee / fz) sc = rho * (h0 + h1) v1cup = h0 + h1 + dh0up + dh1 + dh0zup + dh1zup v1cdw = h0 + h1 + dh0up + dh1 + dh0zdw + dh1zdw v2c = ddh0 + ddh1 return end subroutine ggac_spin ! !--------------------------------------------------------------- subroutine pbec_spin (rho, zeta, grho, iflag, sc, v1cup, v1cdw, v2c) !--------------------------------------------------------------- ! ! PBE correlation (without LDA part) - spin-polarized ! iflag = 1: J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996). ! iflag = 2: J.P.Perdew et al., PRL 100, 136406 (2008) ! USE kinds, ONLY : DP implicit none integer, intent(in) :: iflag real(DP) :: rho, zeta, grho, sc, v1cup, v1cdw, v2c real(DP) :: ga, be(2) parameter (ga = 0.031091d0) data be / 0.066725d0 , 0.046d0 / real(DP) :: third, pi34, xkf, xks parameter (third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0) parameter (xkf = 1.919158292677513d0, xks = 1.128379167095513d0) ! pi34=(3/4pi)^(1/3), xkf=(9 pi/4)^(1/3), xks= sqrt(4/pi) real(DP) :: kf, ks, rs, ec, vcup, vcdw, t, expe, af, y, xy, qy, & s1, h0, ddh0 real(DP) :: fz, fz2, fz3, fz4, dfz, bfup, bfdw, dh0up, dh0dw, & dh0zup, dh0zdw ! rs = pi34 / rho**third call pw_spin (rs, zeta, ec, vcup, vcdw) kf = xkf / rs ks = xks * sqrt (kf) fz = 0.5d0 * ( (1.d0 + zeta) ** (2.d0 / 3.d0) + (1.d0 - zeta) ** ( & 2.d0 / 3.d0) ) fz2 = fz * fz fz3 = fz2 * fz fz4 = fz3 * fz dfz = ( (1.d0 + zeta) ** ( - 1.d0 / 3.d0) - (1.d0 - zeta) ** ( - & 1.d0 / 3.d0) ) / 3.d0 t = sqrt (grho) / (2.d0 * fz * ks * rho) expe = exp ( - ec / (fz3 * ga) ) af = be(iflag) / ga * (1.d0 / (expe-1.d0) ) bfup = expe * (vcup - ec) / fz3 bfdw = expe * (vcdw - ec) / fz3 y = af * t * t xy = (1.d0 + y) / (1.d0 + y + y * y) qy = y * y * (2.d0 + y) / (1.d0 + y + y * y) **2 s1 = 1.d0 + be(iflag) / ga * t * t * xy h0 = fz3 * ga * log (s1) dh0up = be(iflag) * t * t * fz3 / s1 * ( - 7.d0 / 3.d0 * xy - qy * & (af * bfup / be(iflag)-7.d0 / 3.d0) ) dh0dw = be(iflag) * t * t * fz3 / s1 * ( - 7.d0 / 3.d0 * xy - qy * & (af * bfdw / be(iflag)-7.d0 / 3.d0) ) dh0zup = (3.d0 * h0 / fz - be(iflag) * t * t * fz2 / s1 * (2.d0 * xy - & qy * (3.d0 * af * expe * ec / fz3 / be(iflag)+2.d0) ) ) * dfz * (1.d0 - zeta) dh0zdw = - (3.d0 * h0 / fz - be(iflag) * t * t * fz2 / s1 * (2.d0 * xy - & qy * (3.d0 * af * expe * ec / fz3 / be(iflag)+2.d0) ) ) * dfz * (1.d0 + zeta) ddh0 = be(iflag) * fz / (2.d0 * ks * ks * rho) * (xy - qy) / s1 sc = rho * h0 v1cup = h0 + dh0up + dh0zup v1cdw = h0 + dh0dw + dh0zdw v2c = ddh0 return end subroutine pbec_spin ! !----------------------------------------------------------------------- subroutine slater_spin (rho, zeta, ex, vxup, vxdw) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3, spin-polarized case ! USE kinds, ONLY : DP implicit none real(DP) :: rho, zeta, ex, vxup, vxdw real(DP) :: f, alpha, third, p43 parameter (f = - 1.10783814957303361d0, alpha = 2.0d0 / 3.0d0) ! f = -9/8*(3/pi)^(1/3) parameter (third = 1.d0 / 3.d0, p43 = 4.d0 / 3.d0) real(DP) :: exup, exdw, rho13 ! rho13 = ( (1.d0 + zeta) * rho) **third exup = f * alpha * rho13 vxup = p43 * f * alpha * rho13 rho13 = ( (1.d0 - zeta) * rho) **third exdw = f * alpha * rho13 vxdw = p43 * f * alpha * rho13 ex = 0.5d0 * ( (1.d0 + zeta) * exup + (1.d0 - zeta) * exdw) ! return end subroutine slater_spin !----------------------------------------------------------------------- subroutine slater_spin_vec(rho, zeta, evx, length) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3, spin-polarized case ! USE kinds, ONLY : DP implicit none integer :: length real(DP) :: rho(length), zeta(length), evx(length,3) real(DP) :: f, alpha, third, p43 parameter (f = - 1.10783814957303361d0, alpha = 2.0d0 / 3.0d0) ! f = -9/8*(3/pi)^(1/3) parameter (third = 1.d0 / 3.d0, p43 = 4.d0 / 3.d0) real(DP) :: exup(length), exdw(length), rho13(length) ! rho13 = ( (1.d0 + zeta) * rho) **third exup = f * alpha * rho13 evx(:,1) = p43 * f * alpha * rho13 rho13 = ( (1.d0 - zeta) * rho) **third exdw = f * alpha * rho13 evx(:,2) = p43 * f * alpha * rho13 evx(:,3) = 0.5d0 * ( (1.d0 + zeta) * exup + (1.d0 - zeta) * exdw) ! end subroutine slater_spin_vec !----------------------------------------------------------------------- SUBROUTINE slater_rxc_spin ( rho, Z, ex, vxup, vxdw ) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3, relativistic exchange case ! USE kinds, ONLY : DP USE constants, ONLY : pi IMPLICIT none real (DP):: rho, ex, vxup, vxdw ! real(DP), PARAMETER :: ZERO=0.D0, ONE=1.D0, PFIVE=.5D0, & OPF=1.5D0, C014=0.014D0 real (DP):: rs, trd, ftrd, tftm, a0, alp, z, fz, fzp, vxp, xp, & beta, sb, alb, vxf, exf TRD = ONE/3.d0 FTRD = 4.d0*TRD TFTM = 2**FTRD-2.d0 A0 = (4.d0/(9.d0*PI))**TRD ! X-alpha parameter: ALP = 2.d0 * TRD IF (rho <= ZERO) THEN EX = ZERO vxup = ZERO vxdw = ZERO RETURN ELSE FZ = ((1.d0+Z)**FTRD+(1.d0-Z)**FTRD-2.d0)/TFTM FZP = FTRD*((1.d0+Z)**TRD-(1.d0-Z)**TRD)/TFTM ENDIF RS = (3.d0 / (4.d0*PI*rho) )**TRD VXP = -3.d0*ALP/(2.d0*PI*A0*RS) XP = 3.d0*VXP/4.d0 BETA = C014/RS SB = SQRT(1.d0+BETA*BETA) ALB = LOG(BETA+SB) VXP = VXP * (-PFIVE + OPF * ALB / (BETA*SB)) XP = XP * (ONE-OPF*((BETA*SB-ALB)/BETA**2)**2) VXF = 2.d0**TRD*VXP EXF = 2.d0**TRD*XP vxup = VXP + FZ*(VXF-VXP) + (1.d0-Z)*FZP*(EXF-XP) vxdw = VXP + FZ*(VXF-VXP) - (1.d0+Z)*FZP*(EXF-XP) EX = XP + FZ*(EXF-XP) END SUBROUTINE slater_rxc_spin !----------------------------------------------------------------------- subroutine slater1_spin (rho, zeta, ex, vxup, vxdw) !----------------------------------------------------------------------- ! Slater exchange with alpha=2/3, spin-polarized case ! use kinds, only: dp implicit none real(DP) :: rho, zeta, ex, vxup, vxdw real(DP), parameter :: f = - 1.10783814957303361d0, alpha = 1.0d0, & third = 1.d0 / 3.d0, p43 = 4.d0 / 3.d0 ! f = -9/8*(3/pi)^(1/3) real(DP) :: exup, exdw, rho13 ! rho13 = ( (1.d0 + zeta) * rho) **third exup = f * alpha * rho13 vxup = p43 * f * alpha * rho13 rho13 = ( (1.d0 - zeta) * rho) **third exdw = f * alpha * rho13 vxdw = p43 * f * alpha * rho13 ex = 0.5d0 * ( (1.d0 + zeta) * exup + (1.d0 - zeta) * exdw) ! return end subroutine slater1_spin ! !----------------------------------------------------------------------- function dpz_polarized (rs, iflg) !----------------------------------------------------------------------- ! derivative of the correlation potential with respect to local density ! Perdew and Zunger parameterization of the Ceperley-Alder functional ! spin-polarized case ! USE kinds, only : DP USE constants, ONLY : pi, fpi ! implicit none ! real(DP), intent (in) :: rs integer, intent(in) :: iflg real(DP) :: dpz_polarized ! ! local variables ! a,b,c,d,gc,b1,b2 are the parameters defining the functional ! real(DP), parameter :: a = 0.01555d0, b = -0.0269d0, c = 0.0007d0, & d = -0.0048d0, gc = -0.0843d0, b1 = 1.3981d0, b2 = 0.2611d0,& a1 = 7.0d0 * b1 / 6.d0, a2 = 4.d0 * b2 / 3.d0 real(DP) :: x, den, dmx, dmrs ! ! if (iflg == 1) then dmrs = a / rs + 2.d0 / 3.d0 * c * (log (rs) + 1.d0) + & (2.d0 * d-c) / 3.d0 else x = sqrt (rs) den = 1.d0 + x * (b1 + x * b2) dmx = gc * ( (a1 + 2.d0 * a2 * x) * den - 2.d0 * (b1 + 2.d0 * & b2 * x) * (1.d0 + x * (a1 + x * a2) ) ) / den**3 dmrs = 0.5d0 * dmx / x endif ! dpz_polarized = - fpi * rs**4.d0 / 9.d0 * dmrs return ! end function dpz_polarized espresso-5.1/flib/rgen.f900000644000175000017500000000632112341373036013475 0ustar mbamba! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE rgen ( dtau, rmax, mxr, at, bg, r, r2, nrm) !----------------------------------------------------------------------- ! ! generates neighbours shells (cartesian, in units of lattice parameter) ! with length < rmax,and returns them in order of increasing length: ! r(:) = i*a1(:) + j*a2(:) + k*a3(:) - dtau(:), r2 = r^2 ! where a1, a2, a3 are primitive lattice vectors. Other input variables: ! mxr = maximum number of vectors ! at = lattice vectors ( a1=at(:,1), a2=at(:,2), a3=at(:,3) ) ! bg = reciprocal lattice vectors ( b1=bg(:,1), b2=bg(:,2), b3=bg(:,3) ) ! Other output variables: ! nrm = the number of vectors with r^2 < rmax^2 ! USE kinds, ONLY : DP ! IMPLICIT NONE INTEGER, INTENT(in) :: mxr INTEGER, INTENT(out):: nrm REAL(DP), INTENT(in) :: at(3,3), bg(3,3), dtau(3), rmax REAL(DP), INTENT(out):: r(3,mxr), r2(mxr) ! ! and here the local variables ! INTEGER, ALLOCATABLE :: irr (:) INTEGER :: nm1, nm2, nm3, i, j, k, ipol, ir, indsw, iswap real(DP) :: ds(3), dtau0(3) real(DP) :: t (3), tt, swap real(DP), EXTERNAL :: dnrm2 ! ! nrm = 0 IF (rmax==0.d0) RETURN ! bring dtau into the unit cell centered on the origin - prevents trouble ! if atomic positions are not centered around the origin but displaced ! far away (remember that translational invariance allows this!) ! ds(:) = matmul( dtau(:), bg(:,:) ) ds(:) = ds(:) - anint(ds(:)) dtau0(:) = matmul( at(:,:), ds(:) ) ! ALLOCATE (irr( mxr)) ! ! these are estimates of the maximum values of needed integer indices ! nm1 = int (dnrm2 (3, bg (1, 1), 1) * rmax) + 2 nm2 = int (dnrm2 (3, bg (1, 2), 1) * rmax) + 2 nm3 = int (dnrm2 (3, bg (1, 3), 1) * rmax) + 2 ! DO i = -nm1, nm1 DO j = -nm2, nm2 DO k = -nm3, nm3 tt = 0.d0 DO ipol = 1, 3 t (ipol) = i*at (ipol, 1) + j*at (ipol, 2) + k*at (ipol, 3) & - dtau0(ipol) tt = tt + t (ipol) * t (ipol) ENDDO IF (tt<=rmax**2.and.abs (tt) >1.d-10) THEN nrm = nrm + 1 IF (nrm>mxr) CALL errore ('rgen', 'too many r-vectors', nrm) DO ipol = 1, 3 r (ipol, nrm) = t (ipol) ENDDO r2 (nrm) = tt ENDIF ENDDO ENDDO ENDDO ! ! reorder the vectors in order of increasing magnitude ! ! initialize the index inside sorting routine ! irr (1) = 0 IF (nrm>1) CALL hpsort (nrm, r2, irr) DO ir = 1, nrm - 1 20 indsw = irr (ir) IF (indsw/=ir) THEN DO ipol = 1, 3 swap = r (ipol, indsw) r (ipol, indsw) = r (ipol, irr (indsw) ) r (ipol, irr (indsw) ) = swap ENDDO iswap = irr (ir) irr (ir) = irr (indsw) irr (indsw) = iswap GOTO 20 ENDIF ENDDO DEALLOCATE(irr) ! RETURN END SUBROUTINE rgen espresso-5.1/flib/trimcheck.f900000644000175000017500000000220312341373036014506 0ustar mbamba! ! Copyright (C) 2002-2013 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- FUNCTION trimcheck ( directory ) !----------------------------------------------------------------------- ! ! ... verify if directory ends with /, add one if needed; ! ... trim white spaces and put the result in trimcheck ! IMPLICIT NONE ! CHARACTER (LEN=*), INTENT(IN) :: directory CHARACTER (LEN=256) :: trimcheck INTEGER :: l ! l = LEN_TRIM( directory ) IF ( l == 0 ) CALL errore( 'trimcheck', ' input name empty', 1) ! IF ( directory(l:l) == '/' ) THEN trimcheck = TRIM ( ADJUSTL(directory) ) ELSE IF ( l < LEN( trimcheck ) ) THEN trimcheck = TRIM ( ADJUSTL(directory) ) // '/' ELSE CALL errore( 'trimcheck', ' input name too long', l ) END IF END IF ! RETURN ! END FUNCTION trimcheck ! espresso-5.1/flib/wgauss.f900000644000175000017500000000445212341373036014056 0ustar mbamba! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- function wgauss (x, n) !----------------------------------------------------------------------- ! ! this function computes the approximate theta function for the ! given order n, at the point x. ! ! --> (n>=0) : Methfessel-Paxton case. See PRB 40, 3616 (1989). ! ! --> (n=-1 ): Cold smearing (Marzari-Vanderbilt). See PRL 82, 3296 (1999) ! 1/2*erf(x-1/sqrt(2)) + 1/sqrt(2*pi)*exp(-(x-1/sqrt(2))**2) + 1/2 ! ! --> (n=-99): Fermi-Dirac case: 1.0/(1.0+exp(-x)). ! USE kinds, ONLY : DP USE constants, ONLY : pi implicit none real(DP) :: wgauss, x ! output: the value of the function ! input: the argument of the function integer :: n ! input: the order of the function ! ! the local variables ! real(DP) :: a, hp, arg, hd, xp ! the coefficient a_n ! the hermitean function ! the argument of the exponential ! the hermitean function ! auxiliary variable (cold smearing) integer :: i, ni ! counter on the n indices ! counter on 2n real(DP), external :: gauss_freq, qe_erf real(DP), parameter :: maxarg = 200.d0 ! maximum value for the argument of the exponential ! Fermi-Dirac smearing if (n.eq. - 99) then if (x.lt. - maxarg) then wgauss = 0.d0 elseif (x.gt.maxarg) then wgauss = 1.d0 else wgauss = 1.0d0 / (1.0d0 + exp ( - x) ) endif return endif ! Cold smearing if (n.eq. - 1) then xp = x - 1.0d0 / sqrt (2.0d0) arg = min (maxarg, xp**2) wgauss = 0.5d0 * qe_erf (xp) + 1.0d0 / sqrt (2.0d0 * pi) * exp ( - & arg) + 0.5d0 return endif ! Methfessel-Paxton wgauss = gauss_freq (x * sqrt (2.0d0) ) if (n.eq.0) return hd = 0.d0 arg = min (maxarg, x**2) hp = exp ( - arg) ni = 0 a = 1.d0 / sqrt (pi) do i = 1, n hd = 2.0d0 * x * hp - 2.0d0 * DBLE (ni) * hd ni = ni + 1 a = - a / (DBLE (i) * 4.0d0) wgauss = wgauss - a * hd hp = 2.0d0 * x * hd-2.0d0 * DBLE (ni) * hp ni = ni + 1 enddo return end function wgauss espresso-5.1/flib/set_hubbard_l.f900000644000175000017500000000322512341373036015337 0ustar mbamba! ! Copyright (C) 2001-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !--------------------------------------------------------------------------- FUNCTION set_hubbard_l( psd ) RESULT( hubbard_l ) !--------------------------------------------------------------------------- ! USE io_global, ONLY : stdout ! IMPLICIT NONE ! INTEGER :: hubbard_l CHARACTER(LEN=2), INTENT(IN) :: psd ! ! SELECT CASE( TRIM(ADJUSTL(psd)) ) ! ! ... transition metals ! CASE( 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', & 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', & 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg' ) ! hubbard_l = 2 ! ! ! ... rare earths ! CASE('Ce','Pr','Nd','Pm','Sm','Eu','Gd','Tb','Dy','Ho','Er','Tm','Yb','Lu', & 'Th','Pa','U', 'Np','Pu','Am','Cm','Bk','Cf','Es','Fm','Md','No','Lr' ) ! hubbard_l = 3 ! ! ! ... other elements ! CASE( 'H' ) ! hubbard_l = 0 ! CASE( 'C', 'N', 'O' ) ! hubbard_l = 1 ! CASE( 'As', 'Ga', 'In' ) ! hubbard_l = 2 ! CASE DEFAULT ! hubbard_l = -1 ! WRITE( stdout, '(/,"psd = ",A,/)' ) psd ! CALL errore( 'set_hubbard_l', 'pseudopotential not yet inserted', 1 ) ! END SELECT ! RETURN ! END FUNCTION set_Hubbard_l espresso-5.1/flib/invmat.f900000644000175000017500000000270412341373036014041 0ustar mbamba! ! Copyright (C) 2004 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine invmat (n, a, a_inv, da) !----------------------------------------------------------------------- ! computes the inverse "a_inv" of matrix "a", both dimensioned (n,n) ! if the matrix is dimensioned 3x3, it also computes determinant "da" ! matrix "a" is unchanged on output - LAPACK ! USE kinds, ONLY : DP implicit none integer :: n real(DP), DIMENSION (n,n) :: a, a_inv real(DP) :: da ! integer :: info, lda, lwork, ipiv (n) ! info=0: inversion was successful ! lda : leading dimension (the same as n) ! ipiv : work space for pivoting (assumed of length lwork=n) real(DP) :: work (n) ! more work space ! lda = n lwork=n ! a_inv(:,:) = a(:,:) ! call dgetrf (n, n, a_inv, lda, ipiv, info) call errore ('invmat', 'error in DGETRF', abs (info) ) call dgetri (n, a_inv, lda, ipiv, work, lwork, info) call errore ('invmat', 'error in DGETRI', abs (info) ) ! if (n == 3) then da = a(1,1)*(a(2,2)*a(3,3)-a(2,3)*a(3,2)) + & a(1,2)*(a(2,3)*a(3,1)-a(2,1)*a(3,3)) + & a(1,3)*(a(2,1)*a(3,2)-a(3,1)*a(2,2)) IF (ABS(da) < 1.d-10) CALL errore(' invmat ',' singular matrix ', 1) else da = 0.d0 end if return end subroutine invmat espresso-5.1/flib/Makefile0000644000175000017500000000210412341373036013655 0ustar mbamba# Makefile for flib include ../make.sys # location of needed modules MODFLAGS= $(MOD_FLAG)../iotk/src $(MOD_FLAG)../Modules $(MOD_FLAG). OBJS = \ avrec.o \ atomic_number.o \ bachel.o \ capital.o \ cryst_to_car.o \ dost.o \ erf.o \ expint.o \ find_free_unit.o \ flush_unit.o \ functionals.o \ generate_k_along_lines.o \ lsda_functionals.o \ more_functionals.o \ has_xml.o \ iglocal.o \ inpfile.o \ int_to_char.o \ invmat.o \ invmat_complex.o \ latgen.o \ linpack.o \ metagga.o \ matches.o \ plot_io.o \ radial_gradients.o \ rgen.o \ recips.o \ remove_tot_torque.o \ set_hubbard_l.o \ simpsn.o \ sort.o \ sph_bes.o \ sph_dbes.o \ transto.o \ trimcheck.o \ test_input_file.o \ date_and_tim.o \ volume.o \ dylmr2.o \ ylmr2.o \ wgauss.o \ w0gauss.o \ w1gauss.o \ deviatoric.o POBJS = \ distools.o all: flib.a ptools.a flib_only: flib.a ptools.a flib.a : $(OBJS) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ dlamch.o : dlamch.f $(F77) $(FFLAGS_NOOPT) -c $< ptools.a : $(POBJS) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ clean : - /bin/rm -f *.a *.o *.mod *.i *.F90 core* *.L include make.depend espresso-5.1/flib/flush_unit.f900000644000175000017500000000143612341373036014724 0ustar mbamba! ! Copyright (C) 2005 PWSCF-FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! #if defined(__XLF) || defined(__ABSOFT) #define flush flush_ #endif ! !---------------------------------------------------------------------------- SUBROUTINE flush_unit( unit_tobeflushed ) !---------------------------------------------------------------------------- ! ! ... this is a wrapper to the standard flush routine ! INTEGER, INTENT(IN) :: unit_tobeflushed LOGICAL :: opnd ! ! INQUIRE( UNIT = unit_tobeflushed, OPENED = opnd ) ! IF ( opnd ) CALL flush( unit_tobeflushed ) ! RETURN ! END SUBROUTINE espresso-5.1/flib/radial_gradients.f900000644000175000017500000001107012341373036016033 0ustar mbamba! ! Copyright (C) 2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine radial_gradient(f,gf,r,mesh,iflag) ! ! This subroutine calculates the derivative with respect to r of a ! radial function defined on the mesh r. If iflag=0 it uses all mesh ! points. If iflag=1 it uses only a coarse grained mesh close to the ! origin, to avoid large errors in the derivative when the function ! is too smooth. ! use kinds, only : DP implicit none integer, intent(in) :: mesh, iflag real(DP), intent(in) :: f(mesh), r(mesh) real(DP), intent(out) :: gf(mesh) integer :: i,j,k,imin,npoint real(DP) :: delta, b(5), faux(6), raux(6) ! ! This formula is used in the all-electron case. ! if (iflag==0) then do i=2, mesh-1 gf(i)=( (r(i+1)-r(i))**2*(f(i-1)-f(i)) & -(r(i-1)-r(i))**2*(f(i+1)-f(i)) ) & /((r(i+1)-r(i))*(r(i-1)-r(i))*(r(i+1)-r(i-1))) enddo gf(mesh)=0.0_dp ! ! The gradient in the first point is a linear interpolation of the ! gradient at point 2 and 3. ! gf(1) = gf(2) + (gf(3)-gf(2)) * (r(1)-r(2)) / (r(3)-r(2)) return endif ! ! If the input function is slowly changing (as the pseudocharge), ! the previous formula is affected by numerical errors close to the ! origin where the r points are too close one to the other. Therefore ! we calculate the gradient on a coarser mesh. This gradient is often ! more accurate but still does not remove all instabilities observed ! with the GGA. ! At larger r the distances between points become larger than delta ! and this formula coincides with the previous one. ! (ADC 08/2007) ! delta=0.00001_dp imin=1 points: do i=2, mesh do j=i+1,mesh if (r(j)>r(i)+delta) then do k=i-1,1,-1 if (r(k)r(imin+1)+(k-1)*delta) then faux(k)=gf(i) raux(k)=r(i) j=i+1 cycle points_fit endif enddo enddo points_fit call fit_pol(raux,faux,npoint,3,b) do i=1,imin gf(i)=b(1)+r(i)*(b(2)+r(i)*(b(3)+r(i)*b(4))) enddo return end subroutine radial_gradient subroutine fit_pol(xdata,ydata,n,degree,b) ! ! This routine finds the coefficients of the least-square polynomial which ! interpolates the n input data points. ! use kinds, ONLY : DP implicit none integer, intent(in) :: n, degree real(DP), intent(in) :: xdata(n), ydata(n) real(DP), intent(out) :: b(degree+1) integer :: ipiv(degree+1), info, i, j, k real(DP) :: bmat(degree+1,degree+1), amat(degree+1,n) amat(1,:)=1.0_DP do i=2,degree+1 do j=1,n amat(i,j)=amat(i-1,j)*xdata(j) enddo enddo do i=1,degree+1 b(i)=0.0_DP do k=1,n b(i)=b(i)+ydata(k)*xdata(k)**(i-1) enddo enddo do i=1,degree+1 do j=1,degree+1 bmat(i,j)=0.0_DP do k=1,n bmat(i,j)=bmat(i,j)+amat(i,k)*amat(j,k) enddo enddo enddo ! ! This lapack routine solves the linear system that gives the ! coefficients of the interpolating polynomial. ! call DGESV(degree+1, 1, bmat, degree+1, ipiv, b, degree+1, info) if (info.ne.0) call errore('pol_fit','problems with the linear system', & abs(info)) return end subroutine fit_pol espresso-5.1/flib/make.depend0000644000175000017500000000303512341373036014317 0ustar mbambaatomic_number.o : ../Modules/kind.o avrec.o : ../Modules/kind.o bachel.o : ../Modules/constants.o bachel.o : ../Modules/kind.o cryst_to_car.o : ../Modules/kind.o deviatoric.o : ../Modules/io_global.o deviatoric.o : ../Modules/kind.o dost.o : ../Modules/kind.o dylmr2.o : ../Modules/kind.o erf.o : ../Modules/kind.o expint.o : ../Modules/kind.o functionals.o : ../Modules/constants.o functionals.o : ../Modules/kind.o generate_k_along_lines.o : ../Modules/kind.o invmat.o : ../Modules/kind.o invmat_complex.o : ../Modules/kind.o latgen.o : ../Modules/kind.o linpack.o : ../Modules/kind.o lsda_functionals.o : ../Modules/constants.o lsda_functionals.o : ../Modules/kind.o metagga.o : ../Modules/constants.o metagga.o : ../Modules/kind.o more_functionals.o : ../Modules/constants.o more_functionals.o : ../Modules/kind.o plot_io.o : ../Modules/io_global.o plot_io.o : ../Modules/kind.o radial_gradients.o : ../Modules/kind.o recips.o : ../Modules/kind.o remove_tot_torque.o : ../Modules/kind.o rgen.o : ../Modules/kind.o set_hubbard_l.o : ../Modules/io_global.o simpsn.o : ../Modules/kind.o sort.o : ../Modules/kind.o sph_bes.o : ../Modules/constants.o sph_bes.o : ../Modules/kind.o sph_dbes.o : ../Modules/constants.o sph_dbes.o : ../Modules/kind.o volume.o : ../Modules/kind.o w0gauss.o : ../Modules/constants.o w0gauss.o : ../Modules/kind.o w1gauss.o : ../Modules/constants.o w1gauss.o : ../Modules/kind.o wgauss.o : ../Modules/constants.o wgauss.o : ../Modules/kind.o ylmr2.o : ../Modules/constants.o ylmr2.o : ../Modules/kind.o transto.o : ../include/opt_param.h espresso-5.1/flib/dost.f900000644000175000017500000000426612341373036013521 0ustar mbamba! ! Copyright (C) 2001-2003 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- subroutine dos_t (et, nspin, nbnd, nks, ntetra, tetra, e, dost) !------------------------------------------------------------------ ! USE kinds, only : DP implicit none integer :: nspin, nbnd, nks, ntetra, tetra (4, ntetra) real(DP) :: et (nbnd, nks), e, dost (2) integer :: itetra (4), nk, ns, nt, ibnd, i real(DP) :: etetra (4), e1, e2, e3, e4 integer :: nspin0 if (nspin==4) then nspin0=1 else nspin0=nspin endif do ns = 1, nspin0 dost (ns) = 0.d0 ! ! nk is used to select k-points with up (ns=1) or down (ns=2) spin ! if (ns.eq.1) then nk = 0 else nk = nks / 2 endif do nt = 1, ntetra do ibnd = 1, nbnd ! these are the energies at the vertexes of the nt-th tetrahedron do i = 1, 4 etetra (i) = et (ibnd, tetra (i, nt) + nk) enddo itetra (1) = 0 call hpsort (4, etetra, itetra) e1 = etetra (1) e2 = etetra (2) e3 = etetra (3) e4 = etetra (4) if (e.lt.e4.and.e.ge.e3) then dost (ns) = dost (ns) + 1.d0 / ntetra * (3.0d0 * (e4 - e) **2 / & (e4 - e1) / (e4 - e2) / (e4 - e3) ) elseif (e.lt.e3.and.e.ge.e2) then dost (ns) = dost (ns) + 1.d0 / ntetra / (e3 - e1) / (e4 - e1) & * (3.0d0 * (e2 - e1) + 6.0d0 * (e-e2) - 3.0d0 * (e3 - e1 + e4 - e2) & / (e3 - e2) / (e4 - e2) * (e-e2) **2) elseif (e.lt.e2.and.e.gt.e1) then dost (ns) = dost (ns) + 1.d0 / ntetra * 3.0d0 * (e-e1) **2 / & (e2 - e1) / (e3 - e1) / (e4 - e1) endif enddo enddo ! add correct spin normalization : 2 for LDA, 1 for LSDA or ! noncollinear calculations if ( nspin == 1 ) dost (ns) = dost (ns) * 2.d0 enddo return end subroutine dos_t espresso-5.1/CPV/0000755000175000017500000000000012341373043011732 5ustar mbambaespresso-5.1/CPV/tests/0000755000175000017500000000000012341373043013074 5ustar mbambaespresso-5.1/CPV/tests/o2-us-para-pbe.in30000644000175000017500000000161712341373026016147 0ustar mbamba&CONTROL title = 'O2 Crystal', calculation = 'cp', restart_mode = 'restart', ndr = 53, ndw = 53, nstep = 10, iprint = 10, isave = 50, tstress = .TRUE., tprnfor = .TRUE., dt = 12.0d0, etot_conv_thr = 1.d-8, prefix = 'o2' verbosity = 'medium' / &SYSTEM ibrav = 14, celldm(1) = 12.0 celldm(2) = 1.0 celldm(3) = 1.0 celldm(4) = 0.0 celldm(5) = 0.0 celldm(6) = 0.0 nspin = 2, nbnd = 7 tot_magnetization = 2 nat = 2, ntyp = 1, ecutwfc = 30.0, ecutrho = 240.0, nr1b = 24, nr2b = 24, nr3b = 24 / &ELECTRONS emass = 900.d0, emass_cutoff = 2.8d0, orthogonalization = 'ortho', electron_dynamics = 'verlet', ortho_max = 30 / &IONS ion_dynamics = 'verlet', ion_radius(1) = 1.0d0, / ATOMIC_SPECIES O 16.0d0 O.pbe-rrkjus.UPF ATOMIC_POSITIONS (bohr) O 3.260309 2.287244 5.163090 O 3.260309 2.287244 7.479148 espresso-5.1/CPV/tests/si-vbc-lda.ref10000644000175000017500000011467312341373026015611 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:31: 4 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/si-vbc-lda.in1 Job Title: Silicon vbc Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/Si.pz-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 200 Print out every 100 MD Steps Reads from unit = 50 Writes to unit = 50 MD Simulation time step = 12.00 Electronic fictitious mass (emass) = 800.00 emass cut-off = 2.00 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 31117.79 [AU] ibrav = 14 alat = 10.60000000 a1 = 10.60000000 0.00000000 0.00000000 a2 = 0.00000000 10.60000000 0.00000000 a3 = 0.00000000 0.00000000 10.60000000 b1 = 0.09433962 0.00000000 0.00000000 b2 = 0.00000000 0.09433962 0.00000000 b3 = 0.00000000 0.00000000 0.09433962 omega = 1191.01600000 Energy Cut-offs --------------- Ecutwfc = 16.0 Ry, Ecutrho = 64.0 Ry, Ecuts = 64.0 Ry Gcutwfc = 6.7 , Gcutrho = 13.5 Gcuts = 13.5 modified kinetic energy functional, with parameters: ecutz = 12.0000 ecsig = 4.0000 ecfix = 12.00 NOTA BENE: refg, mmx = 0.050000 1536 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 verlet algorithm for electron dynamics with friction frice = 0.1000 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 32, of States = 16 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 8 mass = 51186.71 (a.u.), 28.08 (amu) rcmax = 0.80 (a.u.) 0.000000 0.000000 0.000000 0.000000 5.300000 5.300000 5.300000 0.000000 5.300000 5.300000 5.300000 0.000000 2.650000 2.650000 2.650000 2.650000 7.950000 7.950000 7.950000 2.650000 7.950000 7.950000 7.950000 2.650000 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 10.6000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 10.6000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 10.6000 0.0000 0.0000 1.0000 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 577 577 145 10395 10395 1309 Tot 289 289 73 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 27 27 27 27 27 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 27 27 Local number of cell to store the grid ( nrxx ) = 19683 Number of x-y planes for each processors: nr3l = 27 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 27 27 27 27 27 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 27 27 Local number of cell to store the grid ( nrxx ) = 19683 Number of x-y planes for each processors: nr3sl = 27 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 12 12 12 12 12 12 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 12 12 12 Local number of cell to store the grid ( nrxx ) = 1728 unit vectors of box grid cell in real space: in reciprocal space: 4.7111 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.7111 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.7111 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 5198 5198 5198 5198.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 5198 5198 5198 5198.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 655 655 655 655.00 Small box Mesh ngb = 448 not distributed to processors System geometry initialization ------------------------------ unit vectors of box grid cell in real space: in reciprocal space: 4.7111 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.7111 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.7111 0.0000 0.0000 1.0000 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00001 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 0.7619 0.0000 0.0000 1.8417 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 16 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 formf: eself= 63.83076 formf: vps(g=0)= -0.0088167 rhops(g=0)= -0.0033585 formf: sum_g vps(g)= -1.8106621 sum_g rhops(g)= -0.7031023 Delta V(G=0): 0.054021Ry, 1.469977eV from rhoofr: total integrated electronic density in g-space = 32.000000 in r-space = 32.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 3.78232 0.0 0.0 -2.13372 -2.13372 -2.13372 1.64861 0.0000 0.0000 0.0000 0.0000 2 9.24217 0.0 0.0 -10.84451 -10.84451 -10.84451 -1.60233 0.0000 0.0000 0.0000 0.0000 3 12.12531 0.0 0.0 -18.50826 -18.50826 -18.50826 -6.38294 0.0000 0.0000 0.0000 0.0000 4 10.51954 0.0 0.0 -21.23112 -21.23112 -21.23112 -10.71157 0.0000 0.0000 0.0000 0.0000 5 7.03133 0.0 0.0 -20.76106 -20.76106 -20.76106 -13.72973 0.0000 0.0000 0.0000 0.0000 6 4.91522 0.0 0.0 -20.80028 -20.80028 -20.80028 -15.88506 0.0000 0.0000 0.0000 0.0000 7 4.80544 0.0 0.0 -22.75928 -22.75928 -22.75928 -17.95383 0.0000 0.0000 0.0000 0.0000 8 5.21157 0.0 0.0 -25.38337 -25.38337 -25.38337 -20.17180 0.0000 0.0000 0.0000 0.0000 9 4.79259 0.0 0.0 -27.00932 -27.00932 -27.00932 -22.21673 0.0000 0.0000 0.0000 0.0000 10 3.61555 0.0 0.0 -27.39173 -27.39173 -27.39173 -23.77618 0.0000 0.0000 0.0000 0.0000 11 2.55442 0.0 0.0 -27.45911 -27.45911 -27.45911 -24.90469 0.0000 0.0000 0.0000 0.0000 12 2.08157 0.0 0.0 -27.92101 -27.92101 -27.92101 -25.83944 0.0000 0.0000 0.0000 0.0000 13 1.94273 0.0 0.0 -28.64713 -28.64713 -28.64713 -26.70440 0.0000 0.0000 0.0000 0.0000 14 1.72192 0.0 0.0 -29.18132 -29.18132 -29.18132 -27.45940 0.0000 0.0000 0.0000 0.0000 15 1.34197 0.0 0.0 -29.38508 -29.38508 -29.38508 -28.04311 0.0000 0.0000 0.0000 0.0000 16 1.00104 0.0 0.0 -29.47981 -29.47981 -29.47981 -28.47877 0.0000 0.0000 0.0000 0.0000 17 0.84028 0.0 0.0 -29.68464 -29.68464 -29.68464 -28.84435 0.0000 0.0000 0.0000 0.0000 18 0.80065 0.0 0.0 -29.99110 -29.99110 -29.99110 -29.19045 0.0000 0.0000 0.0000 0.0000 19 0.74684 0.0 0.0 -30.25804 -30.25804 -30.25804 -29.51120 0.0000 0.0000 0.0000 0.0000 20 0.62784 0.0 0.0 -30.40877 -30.40877 -30.40877 -29.78094 0.0000 0.0000 0.0000 0.0000 21 0.49186 0.0 0.0 -30.48640 -30.48640 -30.48640 -29.99454 0.0000 0.0000 0.0000 0.0000 22 0.39483 0.0 0.0 -30.56314 -30.56314 -30.56314 -30.16830 0.0000 0.0000 0.0000 0.0000 23 0.33997 0.0 0.0 -30.65804 -30.65804 -30.65804 -30.31807 0.0000 0.0000 0.0000 0.0000 24 0.29815 0.0 0.0 -30.74627 -30.74627 -30.74627 -30.44812 0.0000 0.0000 0.0000 0.0000 25 0.25203 0.0 0.0 -30.80925 -30.80925 -30.80925 -30.55722 0.0000 0.0000 0.0000 0.0000 26 0.20667 0.0 0.0 -30.85355 -30.85355 -30.85355 -30.64688 0.0000 0.0000 0.0000 0.0000 27 0.17102 0.0 0.0 -30.89287 -30.89287 -30.89287 -30.72185 0.0000 0.0000 0.0000 0.0000 28 0.14399 0.0 0.0 -30.92962 -30.92962 -30.92962 -30.78562 0.0000 0.0000 0.0000 0.0000 29 0.11885 0.0 0.0 -30.95744 -30.95744 -30.95744 -30.83859 0.0000 0.0000 0.0000 0.0000 30 0.09326 0.0 0.0 -30.97357 -30.97357 -30.97357 -30.88031 0.0000 0.0000 0.0000 0.0000 31 0.07089 0.0 0.0 -30.98302 -30.98302 -30.98302 -30.91213 0.0000 0.0000 0.0000 0.0000 32 0.05537 0.0 0.0 -30.99234 -30.99234 -30.99234 -30.93697 0.0000 0.0000 0.0000 0.0000 33 0.04594 0.0 0.0 -31.00340 -31.00340 -31.00340 -30.95746 0.0000 0.0000 0.0000 0.0000 34 0.03914 0.0 0.0 -31.01388 -31.01388 -31.01388 -30.97474 0.0000 0.0000 0.0000 0.0000 35 0.03261 0.0 0.0 -31.02165 -31.02165 -31.02165 -30.98904 0.0000 0.0000 0.0000 0.0000 36 0.02646 0.0 0.0 -31.02706 -31.02706 -31.02706 -31.00059 0.0000 0.0000 0.0000 0.0000 37 0.02176 0.0 0.0 -31.03182 -31.03182 -31.03182 -31.01006 0.0000 0.0000 0.0000 0.0000 38 0.01883 0.0 0.0 -31.03699 -31.03699 -31.03699 -31.01816 0.0000 0.0000 0.0000 0.0000 39 0.01701 0.0 0.0 -31.04241 -31.04241 -31.04241 -31.02540 0.0000 0.0000 0.0000 0.0000 40 0.01550 0.0 0.0 -31.04744 -31.04744 -31.04744 -31.03195 0.0000 0.0000 0.0000 0.0000 41 0.01390 0.0 0.0 -31.05172 -31.05172 -31.05172 -31.03783 0.0000 0.0000 0.0000 0.0000 42 0.01222 0.0 0.0 -31.05525 -31.05525 -31.05525 -31.04303 0.0000 0.0000 0.0000 0.0000 43 0.01055 0.0 0.0 -31.05813 -31.05813 -31.05813 -31.04758 0.0000 0.0000 0.0000 0.0000 44 0.00898 0.0 0.0 -31.06045 -31.06045 -31.06045 -31.05147 0.0000 0.0000 0.0000 0.0000 45 0.00757 0.0 0.0 -31.06233 -31.06233 -31.06233 -31.05475 0.0000 0.0000 0.0000 0.0000 46 0.00637 0.0 0.0 -31.06390 -31.06390 -31.06390 -31.05752 0.0000 0.0000 0.0000 0.0000 47 0.00541 0.0 0.0 -31.06528 -31.06528 -31.06528 -31.05987 0.0000 0.0000 0.0000 0.0000 48 0.00465 0.0 0.0 -31.06653 -31.06653 -31.06653 -31.06188 0.0000 0.0000 0.0000 0.0000 49 0.00403 0.0 0.0 -31.06763 -31.06763 -31.06763 -31.06361 0.0000 0.0000 0.0000 0.0000 50 0.00350 0.0 0.0 -31.06861 -31.06861 -31.06861 -31.06511 0.0000 0.0000 0.0000 0.0000 51 0.00307 0.0 0.0 -31.06949 -31.06949 -31.06949 -31.06642 0.0000 0.0000 0.0000 0.0000 52 0.00272 0.0 0.0 -31.07029 -31.07029 -31.07029 -31.06757 0.0000 0.0000 0.0000 0.0000 53 0.00244 0.0 0.0 -31.07104 -31.07104 -31.07104 -31.06860 0.0000 0.0000 0.0000 0.0000 54 0.00222 0.0 0.0 -31.07175 -31.07175 -31.07175 -31.06953 0.0000 0.0000 0.0000 0.0000 55 0.00206 0.0 0.0 -31.07244 -31.07244 -31.07244 -31.07038 0.0000 0.0000 0.0000 0.0000 56 0.00192 0.0 0.0 -31.07311 -31.07311 -31.07311 -31.07118 0.0000 0.0000 0.0000 0.0000 57 0.00180 0.0 0.0 -31.07373 -31.07373 -31.07373 -31.07193 0.0000 0.0000 0.0000 0.0000 58 0.00168 0.0 0.0 -31.07430 -31.07430 -31.07430 -31.07262 0.0000 0.0000 0.0000 0.0000 59 0.00156 0.0 0.0 -31.07483 -31.07483 -31.07483 -31.07327 0.0000 0.0000 0.0000 0.0000 60 0.00145 0.0 0.0 -31.07532 -31.07532 -31.07532 -31.07387 0.0000 0.0000 0.0000 0.0000 61 0.00136 0.0 0.0 -31.07578 -31.07578 -31.07578 -31.07443 0.0000 0.0000 0.0000 0.0000 62 0.00128 0.0 0.0 -31.07624 -31.07624 -31.07624 -31.07495 0.0000 0.0000 0.0000 0.0000 63 0.00123 0.0 0.0 -31.07668 -31.07668 -31.07668 -31.07546 0.0000 0.0000 0.0000 0.0000 64 0.00119 0.0 0.0 -31.07713 -31.07713 -31.07713 -31.07594 0.0000 0.0000 0.0000 0.0000 65 0.00116 0.0 0.0 -31.07757 -31.07757 -31.07757 -31.07641 0.0000 0.0000 0.0000 0.0000 66 0.00115 0.0 0.0 -31.07802 -31.07802 -31.07802 -31.07687 0.0000 0.0000 0.0000 0.0000 67 0.00115 0.0 0.0 -31.07848 -31.07848 -31.07848 -31.07733 0.0000 0.0000 0.0000 0.0000 68 0.00116 0.0 0.0 -31.07895 -31.07895 -31.07895 -31.07779 0.0000 0.0000 0.0000 0.0000 69 0.00117 0.0 0.0 -31.07943 -31.07943 -31.07943 -31.07826 0.0000 0.0000 0.0000 0.0000 70 0.00119 0.0 0.0 -31.07992 -31.07992 -31.07992 -31.07873 0.0000 0.0000 0.0000 0.0000 71 0.00122 0.0 0.0 -31.08044 -31.08044 -31.08044 -31.07921 0.0000 0.0000 0.0000 0.0000 72 0.00127 0.0 0.0 -31.08097 -31.08097 -31.08097 -31.07971 0.0000 0.0000 0.0000 0.0000 73 0.00131 0.0 0.0 -31.08154 -31.08154 -31.08154 -31.08022 0.0000 0.0000 0.0000 0.0000 74 0.00137 0.0 0.0 -31.08213 -31.08213 -31.08213 -31.08076 0.0000 0.0000 0.0000 0.0000 75 0.00143 0.0 0.0 -31.08275 -31.08275 -31.08275 -31.08132 0.0000 0.0000 0.0000 0.0000 76 0.00150 0.0 0.0 -31.08341 -31.08341 -31.08341 -31.08191 0.0000 0.0000 0.0000 0.0000 77 0.00158 0.0 0.0 -31.08411 -31.08411 -31.08411 -31.08252 0.0000 0.0000 0.0000 0.0000 78 0.00167 0.0 0.0 -31.08484 -31.08484 -31.08484 -31.08317 0.0000 0.0000 0.0000 0.0000 79 0.00177 0.0 0.0 -31.08563 -31.08563 -31.08563 -31.08386 0.0000 0.0000 0.0000 0.0000 80 0.00187 0.0 0.0 -31.08646 -31.08646 -31.08646 -31.08459 0.0000 0.0000 0.0000 0.0000 81 0.00198 0.0 0.0 -31.08734 -31.08734 -31.08734 -31.08536 0.0000 0.0000 0.0000 0.0000 82 0.00211 0.0 0.0 -31.08828 -31.08828 -31.08828 -31.08617 0.0000 0.0000 0.0000 0.0000 83 0.00224 0.0 0.0 -31.08928 -31.08928 -31.08928 -31.08704 0.0000 0.0000 0.0000 0.0000 84 0.00237 0.0 0.0 -31.09033 -31.09033 -31.09033 -31.08796 0.0000 0.0000 0.0000 0.0000 85 0.00252 0.0 0.0 -31.09146 -31.09146 -31.09146 -31.08894 0.0000 0.0000 0.0000 0.0000 86 0.00267 0.0 0.0 -31.09264 -31.09264 -31.09264 -31.08998 0.0000 0.0000 0.0000 0.0000 87 0.00282 0.0 0.0 -31.09390 -31.09390 -31.09390 -31.09107 0.0000 0.0000 0.0000 0.0000 88 0.00299 0.0 0.0 -31.09522 -31.09522 -31.09522 -31.09223 0.0000 0.0000 0.0000 0.0000 89 0.00315 0.0 0.0 -31.09661 -31.09661 -31.09661 -31.09346 0.0000 0.0000 0.0000 0.0000 90 0.00332 0.0 0.0 -31.09808 -31.09808 -31.09808 -31.09476 0.0000 0.0000 0.0000 0.0000 91 0.00349 0.0 0.0 -31.09961 -31.09961 -31.09961 -31.09612 0.0000 0.0000 0.0000 0.0000 92 0.00366 0.0 0.0 -31.10121 -31.10121 -31.10121 -31.09755 0.0000 0.0000 0.0000 0.0000 93 0.00383 0.0 0.0 -31.10287 -31.10287 -31.10287 -31.09905 0.0000 0.0000 0.0000 0.0000 94 0.00399 0.0 0.0 -31.10460 -31.10460 -31.10460 -31.10061 0.0000 0.0000 0.0000 0.0000 95 0.00415 0.0 0.0 -31.10639 -31.10639 -31.10639 -31.10224 0.0000 0.0000 0.0000 0.0000 96 0.00430 0.0 0.0 -31.10823 -31.10823 -31.10823 -31.10393 0.0000 0.0000 0.0000 0.0000 97 0.00444 0.0 0.0 -31.11011 -31.11011 -31.11011 -31.10568 0.0000 0.0000 0.0000 0.0000 98 0.00456 0.0 0.0 -31.11204 -31.11204 -31.11204 -31.10748 0.0000 0.0000 0.0000 0.0000 99 0.00467 0.0 0.0 -31.11400 -31.11400 -31.11400 -31.10932 0.0000 0.0000 0.0000 0.0000 100 0.00476 0.0 0.0 -31.11598 -31.11598 -31.11598 -31.11121 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//si_50.save restart file written in 0.027 sec. 101 0.00484 0.0 0.0 -31.11797 -31.11797 -31.11797 -31.11313 0.0000 0.0000 0.0000 0.0000 102 0.00489 0.0 0.0 -31.11997 -31.11997 -31.11997 -31.11508 0.0000 0.0000 0.0000 0.0000 103 0.00492 0.0 0.0 -31.12196 -31.12196 -31.12196 -31.11704 0.0000 0.0000 0.0000 0.0000 104 0.00493 0.0 0.0 -31.12394 -31.12394 -31.12394 -31.11901 0.0000 0.0000 0.0000 0.0000 105 0.00491 0.0 0.0 -31.12589 -31.12589 -31.12589 -31.12098 0.0000 0.0000 0.0000 0.0000 106 0.00487 0.0 0.0 -31.12781 -31.12781 -31.12781 -31.12294 0.0000 0.0000 0.0000 0.0000 107 0.00480 0.0 0.0 -31.12968 -31.12968 -31.12968 -31.12488 0.0000 0.0000 0.0000 0.0000 108 0.00471 0.0 0.0 -31.13150 -31.13150 -31.13150 -31.12678 0.0000 0.0000 0.0000 0.0000 109 0.00460 0.0 0.0 -31.13325 -31.13325 -31.13325 -31.12865 0.0000 0.0000 0.0000 0.0000 110 0.00447 0.0 0.0 -31.13493 -31.13493 -31.13493 -31.13046 0.0000 0.0000 0.0000 0.0000 111 0.00432 0.0 0.0 -31.13654 -31.13654 -31.13654 -31.13222 0.0000 0.0000 0.0000 0.0000 112 0.00415 0.0 0.0 -31.13807 -31.13807 -31.13807 -31.13392 0.0000 0.0000 0.0000 0.0000 113 0.00397 0.0 0.0 -31.13952 -31.13952 -31.13952 -31.13554 0.0000 0.0000 0.0000 0.0000 114 0.00378 0.0 0.0 -31.14087 -31.14087 -31.14087 -31.13709 0.0000 0.0000 0.0000 0.0000 115 0.00358 0.0 0.0 -31.14214 -31.14214 -31.14214 -31.13857 0.0000 0.0000 0.0000 0.0000 116 0.00337 0.0 0.0 -31.14332 -31.14332 -31.14332 -31.13995 0.0000 0.0000 0.0000 0.0000 117 0.00316 0.0 0.0 -31.14442 -31.14442 -31.14442 -31.14126 0.0000 0.0000 0.0000 0.0000 118 0.00294 0.0 0.0 -31.14542 -31.14542 -31.14542 -31.14248 0.0000 0.0000 0.0000 0.0000 119 0.00273 0.0 0.0 -31.14634 -31.14634 -31.14634 -31.14361 0.0000 0.0000 0.0000 0.0000 120 0.00252 0.0 0.0 -31.14718 -31.14718 -31.14718 -31.14466 0.0000 0.0000 0.0000 0.0000 121 0.00232 0.0 0.0 -31.14795 -31.14795 -31.14795 -31.14563 0.0000 0.0000 0.0000 0.0000 122 0.00212 0.0 0.0 -31.14864 -31.14864 -31.14864 -31.14652 0.0000 0.0000 0.0000 0.0000 123 0.00193 0.0 0.0 -31.14926 -31.14926 -31.14926 -31.14733 0.0000 0.0000 0.0000 0.0000 124 0.00175 0.0 0.0 -31.14981 -31.14981 -31.14981 -31.14806 0.0000 0.0000 0.0000 0.0000 125 0.00158 0.0 0.0 -31.15031 -31.15031 -31.15031 -31.14873 0.0000 0.0000 0.0000 0.0000 126 0.00142 0.0 0.0 -31.15075 -31.15075 -31.15075 -31.14933 0.0000 0.0000 0.0000 0.0000 127 0.00128 0.0 0.0 -31.15114 -31.15114 -31.15114 -31.14987 0.0000 0.0000 0.0000 0.0000 128 0.00114 0.0 0.0 -31.15149 -31.15149 -31.15149 -31.15035 0.0000 0.0000 0.0000 0.0000 129 0.00101 0.0 0.0 -31.15179 -31.15179 -31.15179 -31.15078 0.0000 0.0000 0.0000 0.0000 130 0.00090 0.0 0.0 -31.15206 -31.15206 -31.15206 -31.15116 0.0000 0.0000 0.0000 0.0000 131 0.00080 0.0 0.0 -31.15229 -31.15229 -31.15229 -31.15150 0.0000 0.0000 0.0000 0.0000 132 0.00070 0.0 0.0 -31.15250 -31.15250 -31.15250 -31.15180 0.0000 0.0000 0.0000 0.0000 133 0.00062 0.0 0.0 -31.15268 -31.15268 -31.15268 -31.15206 0.0000 0.0000 0.0000 0.0000 134 0.00054 0.0 0.0 -31.15283 -31.15283 -31.15283 -31.15229 0.0000 0.0000 0.0000 0.0000 135 0.00047 0.0 0.0 -31.15297 -31.15297 -31.15297 -31.15249 0.0000 0.0000 0.0000 0.0000 136 0.00041 0.0 0.0 -31.15308 -31.15308 -31.15308 -31.15267 0.0000 0.0000 0.0000 0.0000 137 0.00036 0.0 0.0 -31.15318 -31.15318 -31.15318 -31.15282 0.0000 0.0000 0.0000 0.0000 138 0.00031 0.0 0.0 -31.15327 -31.15327 -31.15327 -31.15296 0.0000 0.0000 0.0000 0.0000 139 0.00027 0.0 0.0 -31.15334 -31.15334 -31.15334 -31.15307 0.0000 0.0000 0.0000 0.0000 140 0.00023 0.0 0.0 -31.15341 -31.15341 -31.15341 -31.15317 0.0000 0.0000 0.0000 0.0000 141 0.00020 0.0 0.0 -31.15346 -31.15346 -31.15346 -31.15326 0.0000 0.0000 0.0000 0.0000 142 0.00017 0.0 0.0 -31.15351 -31.15351 -31.15351 -31.15334 0.0000 0.0000 0.0000 0.0000 143 0.00015 0.0 0.0 -31.15355 -31.15355 -31.15355 -31.15340 0.0000 0.0000 0.0000 0.0000 144 0.00013 0.0 0.0 -31.15359 -31.15359 -31.15359 -31.15346 0.0000 0.0000 0.0000 0.0000 145 0.00011 0.0 0.0 -31.15362 -31.15362 -31.15362 -31.15350 0.0000 0.0000 0.0000 0.0000 146 0.00010 0.0 0.0 -31.15364 -31.15364 -31.15364 -31.15355 0.0000 0.0000 0.0000 0.0000 147 0.00008 0.0 0.0 -31.15366 -31.15366 -31.15366 -31.15358 0.0000 0.0000 0.0000 0.0000 148 0.00007 0.0 0.0 -31.15368 -31.15368 -31.15368 -31.15361 0.0000 0.0000 0.0000 0.0000 149 0.00006 0.0 0.0 -31.15370 -31.15370 -31.15370 -31.15364 0.0000 0.0000 0.0000 0.0000 150 0.00005 0.0 0.0 -31.15371 -31.15371 -31.15371 -31.15366 0.0000 0.0000 0.0000 0.0000 151 0.00004 0.0 0.0 -31.15372 -31.15372 -31.15372 -31.15368 0.0000 0.0000 0.0000 0.0000 152 0.00004 0.0 0.0 -31.15373 -31.15373 -31.15373 -31.15369 0.0000 0.0000 0.0000 0.0000 153 0.00003 0.0 0.0 -31.15374 -31.15374 -31.15374 -31.15371 0.0000 0.0000 0.0000 0.0000 154 0.00003 0.0 0.0 -31.15375 -31.15375 -31.15375 -31.15372 0.0000 0.0000 0.0000 0.0000 155 0.00002 0.0 0.0 -31.15375 -31.15375 -31.15375 -31.15373 0.0000 0.0000 0.0000 0.0000 156 0.00002 0.0 0.0 -31.15376 -31.15376 -31.15376 -31.15374 0.0000 0.0000 0.0000 0.0000 157 0.00002 0.0 0.0 -31.15376 -31.15376 -31.15376 -31.15375 0.0000 0.0000 0.0000 0.0000 158 0.00001 0.0 0.0 -31.15377 -31.15377 -31.15377 -31.15375 0.0000 0.0000 0.0000 0.0000 159 0.00001 0.0 0.0 -31.15377 -31.15377 -31.15377 -31.15376 0.0000 0.0000 0.0000 0.0000 160 0.00001 0.0 0.0 -31.15377 -31.15377 -31.15377 -31.15376 0.0000 0.0000 0.0000 0.0000 161 0.00001 0.0 0.0 -31.15378 -31.15378 -31.15378 -31.15377 0.0000 0.0000 0.0000 0.0000 162 0.00001 0.0 0.0 -31.15378 -31.15378 -31.15378 -31.15377 0.0000 0.0000 0.0000 0.0000 163 0.00001 0.0 0.0 -31.15378 -31.15378 -31.15378 -31.15377 0.0000 0.0000 0.0000 0.0000 164 0.00001 0.0 0.0 -31.15378 -31.15378 -31.15378 -31.15378 0.0000 0.0000 0.0000 0.0000 165 0.00000 0.0 0.0 -31.15378 -31.15378 -31.15378 -31.15378 0.0000 0.0000 0.0000 0.0000 166 0.00000 0.0 0.0 -31.15378 -31.15378 -31.15378 -31.15378 0.0000 0.0000 0.0000 0.0000 167 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15378 0.0000 0.0000 0.0000 0.0000 168 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15378 0.0000 0.0000 0.0000 0.0000 169 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15378 0.0000 0.0000 0.0000 0.0000 170 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15378 0.0000 0.0000 0.0000 0.0000 171 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 172 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 173 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 174 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 175 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 176 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 177 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 178 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 179 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 180 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 181 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 182 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 183 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 184 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 185 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 186 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 187 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 188 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 189 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 190 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 191 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 192 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 193 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 194 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 195 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 196 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 197 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 198 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 199 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 200 total energy = -31.15379 Hartree a.u. kinetic energy = 12.29609 Hartree a.u. electrostatic energy = -38.46068 Hartree a.u. esr = 0.00000 Hartree a.u. eself = 63.83076 Hartree a.u. pseudopotential energy = -3.03679 Hartree a.u. n-l pseudopotential energy = 7.53602 Hartree a.u. exchange-correlation energy = -9.48843 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -7.26 -3.43 -3.43 -3.43 -3.43 -3.43 -3.43 1.24 1.24 1.24 1.24 1.24 1.24 3.99 3.99 3.99 Allocated memory (kb) = 10416 CELL_PARAMETERS 10.60000000 0.00000000 0.00000000 0.00000000 10.60000000 0.00000000 0.00000000 0.00000000 10.60000000 System Density [g/cm^3] : 2.1136 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -0.80546487 0.00000094 -0.00000071 0.00000094 -0.80546341 0.00000022 -0.00000071 0.00000022 -0.80546376 ATOMIC_POSITIONS Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.530000E+01 0.530000E+01 Si 0.530000E+01 0.000000E+00 0.530000E+01 Si 0.530000E+01 0.530000E+01 0.000000E+00 Si 0.265000E+01 0.265000E+01 0.265000E+01 Si 0.265000E+01 0.795000E+01 0.795000E+01 Si 0.795000E+01 0.265000E+01 0.795000E+01 Si 0.795000E+01 0.795000E+01 0.265000E+01 ATOMIC_VELOCITIES Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): Si -0.495168E-06 -0.164789E-05 -0.697777E-05 Si 0.112079E-05 0.485574E-05 0.111117E-04 Si 0.172415E-04 0.154065E-05 -0.102903E-04 Si -0.178334E-04 -0.476800E-05 0.614698E-05 Si -0.107999E-04 -0.655479E-05 0.108460E-04 Si 0.118291E-04 0.109439E-04 -0.770648E-05 Si -0.582802E-05 0.859174E-05 0.646390E-05 Si 0.482445E-05 -0.130075E-04 -0.963641E-05 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 200 0.00000 0.0 0.0 -31.15379 -31.15379 -31.15379 -31.15379 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//si_50.save restart file written in 0.022 sec. Averaged Physical Quantities accomulated this run ekinc : 0.41426 0.41426 (AU) ekin : 12.67249 12.67249 (AU) epot : -50.70428 -50.70428 (AU) total energy : -30.43606 -30.43606 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -30.43606 -30.43606 (AU) econs : -30.43606 -30.43606 (AU) pressure : 7.91034 7.91034 (Gpa) volume : 1191.01600 1191.01600 (AU) initialize : 0.77s CPU 0.08s WALL ( 1 calls) main_loop : 41.11s CPU 3.57s WALL ( 200 calls) Called by main_loop: move_electro : 32.45s CPU 2.84s WALL ( 200 calls) ortho : 1.58s CPU 0.13s WALL ( 201 calls) updatc : 0.07s CPU 0.01s WALL ( 201 calls) strucf : 0.00s CPU 0.00s WALL ( 1 calls) calbec : 0.59s CPU 0.05s WALL ( 202 calls) Called by move_electrons: rhoofr : 9.68s CPU 0.85s WALL ( 201 calls) vofrho : 8.53s CPU 0.75s WALL ( 201 calls) dforce : 11.87s CPU 1.03s WALL ( 1608 calls) calphi : 0.09s CPU 0.01s WALL ( 201 calls) newd : 0.03s CPU 0.00s WALL ( 201 calls) nlfl : 0.02s CPU 0.00s WALL ( 201 calls) Called by ortho: ortho_iter : 0.45s CPU 0.03s WALL ( 201 calls) rsg : 0.42s CPU 0.03s WALL ( 201 calls) rhoset : 0.26s CPU 0.02s WALL ( 201 calls) sigset : 0.23s CPU 0.02s WALL ( 201 calls) tauset : 0.18s CPU 0.02s WALL ( 201 calls) Small boxes: Low-level routines: prefor : 0.17s CPU 0.01s WALL ( 201 calls) nlfq : 1.92s CPU 0.16s WALL ( 201 calls) nlsm1 : 0.58s CPU 0.05s WALL ( 202 calls) nlsm2 : 1.83s CPU 0.15s WALL ( 201 calls) fft : 3.12s CPU 0.28s WALL ( 603 calls) ffts : 2.08s CPU 0.19s WALL ( 402 calls) fftw : 12.50s CPU 1.13s WALL ( 4824 calls) fft_scatter : 2.96s CPU 0.27s WALL ( 5829 calls) betagx : 0.15s CPU 0.01s WALL ( 1 calls) qradx : 0.00s CPU 0.00s WALL ( 1 calls) gram : 0.00s CPU 0.00s WALL ( 1 calls) nlinit : 0.49s CPU 0.05s WALL ( 1 calls) init_dim : 0.00s CPU 0.00s WALL ( 1 calls) newnlinit : 0.01s CPU 0.00s WALL ( 1 calls) from_scratch : 0.28s CPU 0.03s WALL ( 1 calls) ortho_iter : 0.45s CPU 0.03s WALL ( 201 calls) CP : 42.51s CPU 3.71s WALL This run was terminated on: 17:31: 8 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/sio2-us-lda.ref20000644000175000017500000005472212341373026015726 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:28:27 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/sio2-us-lda.in2 Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.pz-rrkjus.UPF file type is UPF v.1 file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized Reading pseudopotential for specie # 2 from file : /plx/userinternal/acv0/espresso/pseudo/Si.pz-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 0 reset_counters Number of MD Steps = 50 Print out every 10 MD Steps Reads from unit = 91 Writes to unit = 92 MD Simulation time step = 15.00 Electronic fictitious mass (emass) = 700.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 49868.25 [AU] ibrav = 8 alat = 9.28990000 a1 = 9.28990000 0.00000000 0.00000000 a2 = 0.00000000 16.09066419 0.00000000 a3 = 0.00000000 0.00000000 10.21470954 b1 = 0.10764379 0.00000000 0.00000000 b2 = 0.00000000 0.06214784 0.00000000 b3 = 0.00000000 0.00000000 0.09789804 omega = 1526.90153773 Energy Cut-offs --------------- Ecutwfc = 20.0 Ry, Ecutrho = 150.0 Ry, Ecuts = 80.0 Ry Gcutwfc = 6.6 , Gcutrho = 18.1 Gcuts = 13.2 modified kinetic energy functional, with parameters: ecutz = 150.0000 ecsig = 2.0000 ecfix = 16.00 NOTA BENE: refg, mmx = 0.050000 3600 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 96, of States = 48 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 12 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.188294 14.832370 1.228830 7.832315 6.787040 1.228830 2.074435 5.995380 4.737583 6.720314 14.042319 4.737583 3.963071 11.269898 7.878606 8.608021 3.222959 7.878606 3.963071 4.819153 9.146251 8.608021 12.864483 9.146251 3.187365 1.256681 5.580296 7.833244 9.302011 5.580296 2.075364 10.092062 2.073586 6.719385 2.046732 2.073586 Species 2 atoms = 6 mass = 51040.88 (a.u.), 28.00 (amu) rcmax = 1.00 (a.u.) 0.288916 8.045330 3.404563 4.933866 0.000000 3.404563 2.133890 12.277174 -0.041880 6.778840 4.231844 -0.041880 2.133890 3.813486 6.852027 6.778840 11.858816 6.852027 Ionic position will be re-read from restart file Cell Dynamics Parameters (from STDIN) ------------------------------------- Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 9.2899 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 16.0907 0.0000 0.0000 0.5773 0.0000 3 0.0000 0.0000 10.2147 0.0000 0.0000 0.9095 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1783 951 239 47285 18431 2305 Tot 892 476 120 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 40 64 40 40 64 40 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 40 64 40 Local number of cell to store the grid ( nrxx ) = 102400 Number of x-y planes for each processors: nr3l = 40 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 45 30 27 45 30 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 45 30 Local number of cell to store the grid ( nrxx ) = 36450 Number of x-y planes for each processors: nr3sl = 30 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 24 24 24 24 24 24 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 24 24 24 Local number of cell to store the grid ( nrxx ) = 13824 unit vectors of box grid cell in real space: in reciprocal space: 5.5739 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0340 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 6.1288 0.0000 0.0000 0.9095 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 23643 23643 23643 23643.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 9216 9216 9216 9216.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 1153 1153 1153 1153.00 Small box Mesh ngb = 3183 not distributed to processors System geometry initialization ------------------------------ ibrav = 8 cell parameters 9.28990 0.00000 0.00000 0.00000 16.09066 0.00000 0.00000 0.00000 10.21471 unit vectors of box grid cell in real space: in reciprocal space: 5.5739 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0340 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 6.1288 0.0000 0.0000 0.9095 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00002 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 3183 1 865 3 qqq -0.0987 0.4865 0.0000 0.0000 0.4865 -2.1787 0.0000 0.0000 0.0000 0.0000 0.2330 0.2950 0.0000 0.0000 0.2950 0.3737 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4817 -1.2813 0.0000 0.0000 -1.2813 2.3075 0.0000 0.0000 0.0000 0.0000 0.6338 0.8752 0.0000 0.0000 0.8752 1.2039 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 0.7619 0.0000 0.0000 1.8417 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /plx/userinternal/acv0/espresso/CPV/tmp//sio2_91.save restart file read in 0.031 sec. formf: eself= 210.64152 formf: vps(g=0)= -0.0099256 rhops(g=0)= -0.0039295 formf: sum_g vps(g)= -2.2959144 sum_g rhops(g)= -0.5407261 formf: vps(g=0)= -0.0098400 rhops(g=0)= -0.0026197 formf: sum_g vps(g)= -2.3753533 sum_g rhops(g)= -0.3604841 Delta V(G=0): 0.197519Ry, 5.374775eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 0.78235 0.0 0.0 -203.09753 -203.09753 -203.09753 -202.31518 0.0000 0.0000 0.0000 0.0000 2 1.91292 0.0 0.0 -205.51800 -205.51800 -205.51800 -203.60507 0.0000 0.0000 0.0000 0.0000 3 2.31925 0.0 0.0 -207.73259 -207.73259 -207.73259 -205.41335 0.0000 0.0000 0.0000 0.0000 4 1.88453 0.0 0.0 -208.91976 -208.91976 -208.91976 -207.03523 0.0000 0.0000 0.0000 0.0000 5 1.27700 0.0 0.0 -209.49383 -209.49383 -209.49383 -208.21683 0.0000 0.0000 0.0000 0.0000 6 0.90279 0.0 0.0 -209.96961 -209.96961 -209.96961 -209.06681 0.0000 0.0000 0.0000 0.0000 7 0.70830 0.0 0.0 -210.41656 -210.41656 -210.41656 -209.70825 0.0000 0.0000 0.0000 0.0000 8 0.57500 0.0 0.0 -210.79212 -210.79212 -210.79212 -210.21712 0.0000 0.0000 0.0000 0.0000 9 0.46220 0.0 0.0 -211.09046 -211.09046 -211.09046 -210.62827 0.0000 0.0000 0.0000 0.0000 10 0.36398 0.0 0.0 -211.31748 -211.31748 -211.31748 -210.95350 0.0000 0.0000 0.0000 0.0000 11 0.28654 0.0 0.0 -211.49587 -211.49587 -211.49587 -211.20933 0.0000 0.0000 0.0000 0.0000 12 0.22990 0.0 0.0 -211.64344 -211.64344 -211.64344 -211.41354 0.0000 0.0000 0.0000 0.0000 13 0.18504 0.0 0.0 -211.76402 -211.76402 -211.76402 -211.57899 0.0000 0.0000 0.0000 0.0000 14 0.14324 0.0 0.0 -211.85310 -211.85310 -211.85310 -211.70987 0.0000 0.0000 0.0000 0.0000 15 0.10298 0.0 0.0 -211.91021 -211.91021 -211.91021 -211.80723 0.0000 0.0000 0.0000 0.0000 16 0.06781 0.0 0.0 -211.94184 -211.94184 -211.94184 -211.87403 0.0000 0.0000 0.0000 0.0000 17 0.04103 0.0 0.0 -211.95711 -211.95711 -211.95711 -211.91608 0.0000 0.0000 0.0000 0.0000 18 0.02346 0.0 0.0 -211.96424 -211.96424 -211.96424 -211.94078 0.0000 0.0000 0.0000 0.0000 19 0.01355 0.0 0.0 -211.96857 -211.96857 -211.96857 -211.95502 0.0000 0.0000 0.0000 0.0000 20 0.00850 0.0 0.0 -211.97216 -211.97216 -211.97216 -211.96367 0.0000 0.0000 0.0000 0.0000 21 0.00579 0.0 0.0 -211.97513 -211.97513 -211.97513 -211.96934 0.0000 0.0000 0.0000 0.0000 22 0.00404 0.0 0.0 -211.97726 -211.97726 -211.97726 -211.97322 0.0000 0.0000 0.0000 0.0000 23 0.00280 0.0 0.0 -211.97871 -211.97871 -211.97871 -211.97591 0.0000 0.0000 0.0000 0.0000 24 0.00194 0.0 0.0 -211.97970 -211.97970 -211.97970 -211.97776 0.0000 0.0000 0.0000 0.0000 25 0.00136 0.0 0.0 -211.98042 -211.98042 -211.98042 -211.97906 0.0000 0.0000 0.0000 0.0000 26 0.00097 0.0 0.0 -211.98095 -211.98095 -211.98095 -211.97998 0.0000 0.0000 0.0000 0.0000 27 0.00069 0.0 0.0 -211.98133 -211.98133 -211.98133 -211.98064 0.0000 0.0000 0.0000 0.0000 28 0.00047 0.0 0.0 -211.98157 -211.98157 -211.98157 -211.98110 0.0000 0.0000 0.0000 0.0000 29 0.00030 0.0 0.0 -211.98170 -211.98170 -211.98170 -211.98140 0.0000 0.0000 0.0000 0.0000 30 0.00018 0.0 0.0 -211.98177 -211.98177 -211.98177 -211.98159 0.0000 0.0000 0.0000 0.0000 31 0.00010 0.0 0.0 -211.98180 -211.98180 -211.98180 -211.98169 0.0000 0.0000 0.0000 0.0000 32 0.00006 0.0 0.0 -211.98182 -211.98182 -211.98182 -211.98176 0.0000 0.0000 0.0000 0.0000 33 0.00004 0.0 0.0 -211.98184 -211.98184 -211.98184 -211.98180 0.0000 0.0000 0.0000 0.0000 34 0.00003 0.0 0.0 -211.98186 -211.98186 -211.98186 -211.98183 0.0000 0.0000 0.0000 0.0000 35 0.00002 0.0 0.0 -211.98187 -211.98187 -211.98187 -211.98185 0.0000 0.0000 0.0000 0.0000 36 0.00002 0.0 0.0 -211.98188 -211.98188 -211.98188 -211.98186 0.0000 0.0000 0.0000 0.0000 37 0.00001 0.0 0.0 -211.98189 -211.98189 -211.98189 -211.98188 0.0000 0.0000 0.0000 0.0000 38 0.00001 0.0 0.0 -211.98189 -211.98189 -211.98189 -211.98188 0.0000 0.0000 0.0000 0.0000 39 0.00001 0.0 0.0 -211.98189 -211.98189 -211.98189 -211.98189 0.0000 0.0000 0.0000 0.0000 40 0.00000 0.0 0.0 -211.98190 -211.98190 -211.98190 -211.98189 0.0000 0.0000 0.0000 0.0000 41 0.00000 0.0 0.0 -211.98190 -211.98190 -211.98190 -211.98189 0.0000 0.0000 0.0000 0.0000 42 0.00000 0.0 0.0 -211.98190 -211.98190 -211.98190 -211.98189 0.0000 0.0000 0.0000 0.0000 43 0.00000 0.0 0.0 -211.98190 -211.98190 -211.98190 -211.98190 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.757537D-06 0.1D-05 0.478908D-06 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation * Physical Quantities at step: 44 total energy = -211.98190 Hartree a.u. kinetic energy = 94.60070 Hartree a.u. electrostatic energy = -198.25276 Hartree a.u. esr = 0.42693 Hartree a.u. eself = 210.64152 Hartree a.u. pseudopotential energy = -96.26580 Hartree a.u. n-l pseudopotential energy = 36.46546 Hartree a.u. exchange-correlation energy = -48.52950 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -23.66 -23.19 -22.79 -22.32 -22.26 -22.23 -21.79 -21.77 -21.75 -21.73 -21.71 -21.70 -11.62 -11.56 -11.39 -10.73 -9.15 -8.69 -8.69 -8.66 -8.64 -8.44 -8.40 -7.74 -6.24 -6.10 -6.08 -6.01 -5.95 -5.69 -5.64 -5.25 -5.20 -4.81 -4.78 -4.41 -4.38 -4.35 -4.18 -4.03 -4.01 -3.97 -3.68 -3.63 -3.26 -3.25 -3.18 -3.00 Allocated memory (kb) = 28252 CELL_PARAMETERS 9.28990000 0.00000000 0.00000000 0.00000000 16.09066419 0.00000000 0.00000000 0.00000000 10.21470954 System Density [g/cm^3] : 2.6421 Center of mass square displacement (a.u.): 0.000000 ATOMIC_POSITIONS O 0.318829E+01 0.148324E+02 0.122883E+01 O 0.783231E+01 0.678704E+01 0.122883E+01 O 0.207443E+01 0.599538E+01 0.473758E+01 O 0.672031E+01 0.140423E+02 0.473758E+01 O 0.396307E+01 0.112699E+02 0.787861E+01 O 0.860802E+01 0.322296E+01 0.787861E+01 O 0.396307E+01 0.481915E+01 0.914625E+01 O 0.860802E+01 0.128645E+02 0.914625E+01 O 0.318736E+01 0.125668E+01 0.558030E+01 O 0.783324E+01 0.930201E+01 0.558030E+01 O 0.207536E+01 0.100921E+02 0.207359E+01 O 0.671938E+01 0.204673E+01 0.207359E+01 Si 0.288916E+00 0.804533E+01 0.340456E+01 Si 0.493387E+01 0.000000E+00 0.340456E+01 Si 0.213389E+01 0.122772E+02 -0.418803E-01 Si 0.677884E+01 0.423184E+01 -0.418803E-01 Si 0.213389E+01 0.381349E+01 0.685203E+01 Si 0.677884E+01 0.118588E+02 0.685203E+01 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 44 0.00000 0.0 0.0 -211.98190 -211.98190 -211.98190 -211.98190 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.554622D-06 0.1D-05 0.337510D-06 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//sio2_92.save restart file written in 0.116 sec. Averaged Physical Quantities accomulated this run ekinc : 0.27976 0.27976 (AU) ekin : 95.05553 95.05553 (AU) epot : -342.91850 -342.91850 (AU) total energy : -211.23553 -211.23553 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -211.23553 -211.23553 (AU) econs : -211.23553 -211.23553 (AU) pressure : 0.00000 0.00000 (Gpa) volume : 1526.90154 1526.90154 (AU) initialize : 2.35s CPU 0.22s WALL ( 1 calls) main_loop : 73.15s CPU 6.20s WALL ( 44 calls) Called by main_loop: move_electro : 69.44s CPU 5.89s WALL ( 44 calls) ortho : 2.85s CPU 0.24s WALL ( 44 calls) updatc : 0.17s CPU 0.01s WALL ( 44 calls) strucf : 0.00s CPU 0.00s WALL ( 1 calls) calbec : 0.16s CPU 0.02s WALL ( 45 calls) Called by move_electrons: rhoofr : 39.69s CPU 3.33s WALL ( 44 calls) vofrho : 3.18s CPU 0.28s WALL ( 44 calls) dforce : 13.80s CPU 1.18s WALL ( 1056 calls) calphi : 0.28s CPU 0.02s WALL ( 44 calls) newd : 12.00s CPU 1.02s WALL ( 44 calls) Called by ortho: ortho_iter : 1.02s CPU 0.09s WALL ( 44 calls) rsg : 0.38s CPU 0.03s WALL ( 44 calls) rhoset : 0.18s CPU 0.01s WALL ( 44 calls) sigset : 0.15s CPU 0.01s WALL ( 44 calls) tauset : 0.09s CPU 0.01s WALL ( 44 calls) Small boxes: rhov : 31.43s CPU 2.63s WALL ( 44 calls) fftb : 8.61s CPU 0.70s WALL ( 1630 calls) Low-level routines: prefor : 0.25s CPU 0.02s WALL ( 45 calls) nlsm1 : 1.08s CPU 0.10s WALL ( 133 calls) fft : 3.45s CPU 0.30s WALL ( 176 calls) ffts : 0.68s CPU 0.06s WALL ( 88 calls) fftw : 12.41s CPU 1.06s WALL ( 3168 calls) fft_scatter : 3.87s CPU 0.32s WALL ( 3432 calls) betagx : 1.11s CPU 0.09s WALL ( 1 calls) qradx : 0.47s CPU 0.04s WALL ( 1 calls) nlinit : 1.70s CPU 0.14s WALL ( 1 calls) init_dim : 0.01s CPU 0.01s WALL ( 1 calls) newnlinit : 0.03s CPU 0.00s WALL ( 1 calls) from_restart : 0.08s CPU 0.01s WALL ( 1 calls) ortho_iter : 1.02s CPU 0.09s WALL ( 44 calls) CP : 1m16.22s CPU 0m 6.59s WALL This run was terminated on: 17:28:33 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/h2o-mt-blyp.ref40000644000175000017500000011166712341373026015745 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:23:55 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/h2o-mt-blyp.in4 Job Title: Water Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.blyp-mt.UPF file type is UPF v.1 Reading pseudopotential for specie # 2 from file : /plx/userinternal/acv0/espresso/pseudo/H.blyp-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 200 Print out every 100 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 2493.41 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 7680 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 Electron dynamics with newton equations Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: LEE, YANG, AND PARR Using Generalized Gradient Corrections with Exchange functional: BECKE Correlation functional: PERDEW AND WANG Exchange-correlation = SLA LYP B88 BLYP ( 1 3 1 3 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 6 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.832500 -0.224300 -0.000100 -0.224300 1.832500 0.000200 Ionic position will be re-read from restart file NOT all atoms are allowed to move indx ..x.. ..y.. ..z.. 1 F F F Ionic temperature is not controlled Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 373248 Number of x-y planes for each processors: nr3l = 72 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 373248 Number of x-y planes for each processors: nr3sl = 72 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 83519 83519 83519 83519.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 83519 83519 83519 83519.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 10408 10408 10408 10408.00 System geometry initialization ------------------------------ ibrav = 14 cell parameters 12.00000 0.00000 0.00000 0.00000 12.00000 0.00000 0.00000 0.00000 12.00000 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00000 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /plx/userinternal/acv0/espresso/CPV/tmp//h2o_51.save restart file read in 0.020 sec. formf: eself= 18.94976 formf: vps(g=0)= -0.0063239 rhops(g=0)= -0.0034722 formf: sum_g vps(g)= -4.3546661 sum_g rhops(g)= -1.0540044 formf: vps(g=0)= -0.0011896 rhops(g=0)= -0.0005787 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 331 0.00004 0.0 16.5 -17.17760 -17.17760 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 332 0.00003 0.0 12.7 -17.17755 -17.17755 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 333 0.00002 0.0 9.4 -17.17751 -17.17751 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 334 0.00002 0.0 6.8 -17.17748 -17.17748 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 335 0.00002 0.0 4.8 -17.17746 -17.17746 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 336 0.00002 0.0 3.6 -17.17745 -17.17745 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 337 0.00002 0.0 3.1 -17.17744 -17.17744 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 338 0.00002 0.0 3.5 -17.17745 -17.17745 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 339 0.00002 0.0 4.8 -17.17746 -17.17746 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 340 0.00002 0.0 6.8 -17.17748 -17.17748 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 341 0.00002 0.0 9.6 -17.17751 -17.17751 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 342 0.00003 0.0 13.2 -17.17755 -17.17755 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 343 0.00003 0.0 17.4 -17.17760 -17.17760 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 344 0.00004 0.0 22.1 -17.17765 -17.17765 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 345 0.00005 0.0 27.3 -17.17770 -17.17770 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 346 0.00005 0.0 32.9 -17.17777 -17.17777 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 347 0.00006 0.0 38.6 -17.17783 -17.17783 -17.17746 -17.17739 0.0000 0.0000 0.0000 0.0000 348 0.00007 0.0 44.6 -17.17790 -17.17790 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 349 0.00009 0.0 50.5 -17.17797 -17.17797 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 350 0.00010 0.0 56.5 -17.17804 -17.17804 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 351 0.00011 0.0 62.3 -17.17811 -17.17811 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 352 0.00012 0.0 67.8 -17.17817 -17.17817 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 353 0.00012 0.0 73.0 -17.17823 -17.17823 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 354 0.00013 0.0 77.7 -17.17828 -17.17828 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 355 0.00014 0.0 81.9 -17.17832 -17.17832 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 356 0.00014 0.0 85.3 -17.17836 -17.17836 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 357 0.00014 0.0 87.8 -17.17839 -17.17839 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 358 0.00014 0.0 89.4 -17.17840 -17.17840 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 359 0.00014 0.0 90.1 -17.17841 -17.17841 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 360 0.00014 0.0 89.7 -17.17841 -17.17841 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 361 0.00014 0.0 88.2 -17.17839 -17.17839 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 362 0.00014 0.0 85.8 -17.17836 -17.17836 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 363 0.00014 0.0 82.6 -17.17833 -17.17833 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 364 0.00014 0.0 78.5 -17.17829 -17.17829 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 365 0.00013 0.0 73.8 -17.17824 -17.17824 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 366 0.00013 0.0 68.6 -17.17818 -17.17818 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 367 0.00012 0.0 63.1 -17.17812 -17.17812 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 368 0.00011 0.0 57.3 -17.17805 -17.17805 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 369 0.00010 0.0 51.5 -17.17799 -17.17799 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 370 0.00009 0.0 45.6 -17.17792 -17.17792 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 371 0.00008 0.0 39.9 -17.17785 -17.17785 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 372 0.00006 0.0 34.3 -17.17778 -17.17778 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 373 0.00005 0.0 29.2 -17.17772 -17.17772 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 374 0.00004 0.0 24.4 -17.17767 -17.17767 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 375 0.00004 0.0 20.3 -17.17762 -17.17762 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 376 0.00003 0.0 16.8 -17.17758 -17.17758 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 377 0.00002 0.0 14.1 -17.17755 -17.17755 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 378 0.00002 0.0 12.3 -17.17753 -17.17753 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 379 0.00002 0.0 11.5 -17.17753 -17.17753 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 380 0.00002 0.0 11.7 -17.17753 -17.17753 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 381 0.00002 0.0 12.9 -17.17755 -17.17755 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 382 0.00003 0.0 14.9 -17.17757 -17.17757 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 383 0.00003 0.0 17.8 -17.17761 -17.17761 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 384 0.00004 0.0 21.3 -17.17766 -17.17766 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 385 0.00005 0.0 25.5 -17.17771 -17.17771 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 386 0.00006 0.0 30.0 -17.17777 -17.17777 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 387 0.00008 0.0 34.9 -17.17783 -17.17783 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 388 0.00009 0.0 39.9 -17.17789 -17.17789 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 389 0.00010 0.0 45.0 -17.17796 -17.17796 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 390 0.00011 0.0 50.0 -17.17802 -17.17802 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 391 0.00012 0.0 54.9 -17.17808 -17.17808 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 392 0.00013 0.0 59.5 -17.17813 -17.17813 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 393 0.00014 0.0 63.9 -17.17818 -17.17818 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 394 0.00014 0.0 67.7 -17.17822 -17.17822 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 395 0.00014 0.0 71.1 -17.17826 -17.17826 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 396 0.00014 0.0 73.8 -17.17828 -17.17828 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 397 0.00014 0.0 75.7 -17.17830 -17.17830 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 398 0.00014 0.0 76.8 -17.17831 -17.17831 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 399 0.00014 0.0 77.0 -17.17831 -17.17831 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 400 0.00013 0.0 76.2 -17.17830 -17.17830 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//h2o_51.save restart file written in 0.060 sec. 401 0.00013 0.0 74.6 -17.17828 -17.17828 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 402 0.00013 0.0 72.1 -17.17825 -17.17825 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 403 0.00013 0.0 68.9 -17.17821 -17.17821 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 404 0.00012 0.0 64.9 -17.17817 -17.17817 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 405 0.00012 0.0 60.4 -17.17812 -17.17812 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 406 0.00011 0.0 55.6 -17.17806 -17.17806 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 407 0.00010 0.0 50.4 -17.17800 -17.17800 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 408 0.00009 0.0 45.0 -17.17794 -17.17794 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 409 0.00008 0.0 39.6 -17.17787 -17.17787 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 410 0.00007 0.0 34.3 -17.17781 -17.17781 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 411 0.00006 0.0 29.1 -17.17774 -17.17774 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 412 0.00005 0.0 24.1 -17.17768 -17.17768 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 413 0.00004 0.0 19.4 -17.17762 -17.17762 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 414 0.00003 0.0 15.1 -17.17757 -17.17757 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 415 0.00002 0.0 11.2 -17.17752 -17.17752 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 416 0.00002 0.0 7.8 -17.17749 -17.17749 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 417 0.00001 0.0 5.1 -17.17745 -17.17745 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 418 0.00001 0.0 3.0 -17.17743 -17.17743 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 419 0.00001 0.0 1.6 -17.17742 -17.17742 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 420 0.00001 0.0 1.0 -17.17741 -17.17741 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 421 0.00001 0.0 1.2 -17.17742 -17.17742 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 422 0.00001 0.0 2.2 -17.17743 -17.17743 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 423 0.00002 0.0 4.0 -17.17745 -17.17745 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 424 0.00002 0.0 6.5 -17.17748 -17.17748 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 425 0.00002 0.0 9.6 -17.17751 -17.17751 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 426 0.00003 0.0 13.3 -17.17756 -17.17756 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 427 0.00004 0.0 17.5 -17.17761 -17.17761 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 428 0.00004 0.0 22.0 -17.17766 -17.17766 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 429 0.00005 0.0 26.8 -17.17772 -17.17772 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 430 0.00006 0.0 31.9 -17.17778 -17.17778 -17.17746 -17.17739 0.0000 0.0000 0.0000 0.0000 431 0.00008 0.0 37.1 -17.17785 -17.17785 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 432 0.00009 0.0 42.3 -17.17792 -17.17792 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 433 0.00010 0.0 47.6 -17.17798 -17.17798 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 434 0.00011 0.0 52.9 -17.17805 -17.17805 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 435 0.00012 0.0 58.1 -17.17811 -17.17811 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 436 0.00013 0.0 63.0 -17.17817 -17.17817 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 437 0.00014 0.0 67.6 -17.17822 -17.17822 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 438 0.00014 0.0 71.8 -17.17827 -17.17827 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 439 0.00014 0.0 75.3 -17.17831 -17.17831 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 440 0.00015 0.0 78.1 -17.17834 -17.17834 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 441 0.00015 0.0 80.0 -17.17836 -17.17836 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 442 0.00014 0.0 81.0 -17.17837 -17.17837 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 443 0.00014 0.0 80.9 -17.17837 -17.17837 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 444 0.00014 0.0 79.8 -17.17835 -17.17835 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 445 0.00014 0.0 77.7 -17.17833 -17.17833 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 446 0.00014 0.0 74.8 -17.17830 -17.17830 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 447 0.00014 0.0 71.1 -17.17826 -17.17826 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 448 0.00013 0.0 66.9 -17.17821 -17.17821 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 449 0.00012 0.0 62.2 -17.17816 -17.17816 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 450 0.00012 0.0 57.2 -17.17810 -17.17810 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 451 0.00011 0.0 52.0 -17.17804 -17.17804 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 452 0.00009 0.0 46.8 -17.17797 -17.17797 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 453 0.00008 0.0 41.5 -17.17791 -17.17791 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 454 0.00007 0.0 36.4 -17.17784 -17.17784 -17.17746 -17.17739 0.0000 0.0000 0.0000 0.0000 455 0.00006 0.0 31.4 -17.17778 -17.17778 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 456 0.00005 0.0 26.8 -17.17772 -17.17772 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 457 0.00004 0.0 22.5 -17.17767 -17.17767 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 458 0.00004 0.0 18.9 -17.17763 -17.17763 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 459 0.00004 0.0 16.0 -17.17760 -17.17760 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 460 0.00003 0.0 13.9 -17.17757 -17.17757 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 461 0.00003 0.0 12.8 -17.17755 -17.17755 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 462 0.00003 0.0 12.7 -17.17755 -17.17755 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 463 0.00003 0.0 13.7 -17.17756 -17.17756 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 464 0.00003 0.0 15.7 -17.17757 -17.17757 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 465 0.00003 0.0 18.6 -17.17760 -17.17760 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 466 0.00003 0.0 22.2 -17.17764 -17.17764 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 467 0.00004 0.0 26.5 -17.17769 -17.17769 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 468 0.00005 0.0 31.3 -17.17774 -17.17774 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 469 0.00006 0.0 36.5 -17.17780 -17.17780 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 470 0.00007 0.0 41.8 -17.17786 -17.17786 -17.17746 -17.17739 0.0000 0.0000 0.0000 0.0000 471 0.00008 0.0 47.3 -17.17793 -17.17793 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 472 0.00010 0.0 52.8 -17.17800 -17.17800 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 473 0.00011 0.0 58.1 -17.17806 -17.17806 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 474 0.00012 0.0 63.3 -17.17813 -17.17813 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 475 0.00013 0.0 68.2 -17.17818 -17.17818 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 476 0.00014 0.0 72.7 -17.17824 -17.17824 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 477 0.00015 0.0 76.7 -17.17828 -17.17828 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 478 0.00015 0.0 80.1 -17.17832 -17.17832 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 479 0.00015 0.0 82.7 -17.17834 -17.17834 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 480 0.00015 0.0 84.4 -17.17836 -17.17836 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 481 0.00015 0.0 85.2 -17.17837 -17.17837 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 482 0.00015 0.0 85.1 -17.17836 -17.17836 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 483 0.00014 0.0 83.9 -17.17835 -17.17835 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 484 0.00014 0.0 81.9 -17.17833 -17.17833 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 485 0.00014 0.0 79.0 -17.17830 -17.17830 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 486 0.00013 0.0 75.3 -17.17826 -17.17826 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 487 0.00013 0.0 71.0 -17.17821 -17.17821 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 488 0.00012 0.0 66.2 -17.17816 -17.17816 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 489 0.00011 0.0 61.1 -17.17810 -17.17810 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 490 0.00010 0.0 55.6 -17.17803 -17.17803 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 491 0.00009 0.0 50.0 -17.17797 -17.17797 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 492 0.00008 0.0 44.3 -17.17790 -17.17790 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 493 0.00007 0.0 38.7 -17.17784 -17.17784 -17.17746 -17.17739 0.0000 0.0000 0.0000 0.0000 494 0.00006 0.0 33.1 -17.17777 -17.17777 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 495 0.00005 0.0 27.7 -17.17771 -17.17771 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 496 0.00004 0.0 22.6 -17.17765 -17.17765 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 497 0.00003 0.0 17.8 -17.17759 -17.17759 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 498 0.00002 0.0 13.4 -17.17754 -17.17754 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 499 0.00002 0.0 9.6 -17.17750 -17.17750 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 500 0.00001 0.0 6.4 -17.17747 -17.17747 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//h2o_51.save restart file written in 0.061 sec. 501 0.00001 0.0 4.0 -17.17744 -17.17744 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 502 0.00001 0.0 2.3 -17.17743 -17.17743 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 503 0.00001 0.0 1.4 -17.17742 -17.17742 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 504 0.00001 0.0 1.4 -17.17742 -17.17742 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 505 0.00001 0.0 2.3 -17.17743 -17.17743 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 506 0.00001 0.0 4.0 -17.17745 -17.17745 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 507 0.00002 0.0 6.5 -17.17748 -17.17748 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 508 0.00002 0.0 9.7 -17.17751 -17.17751 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 509 0.00003 0.0 13.5 -17.17756 -17.17756 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 510 0.00003 0.0 17.9 -17.17761 -17.17761 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 511 0.00004 0.0 22.7 -17.17766 -17.17766 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 512 0.00005 0.0 27.8 -17.17772 -17.17772 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 513 0.00006 0.0 33.1 -17.17778 -17.17778 -17.17746 -17.17739 0.0000 0.0000 0.0000 0.0000 514 0.00007 0.0 38.6 -17.17785 -17.17785 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 515 0.00008 0.0 44.2 -17.17791 -17.17791 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 516 0.00009 0.0 49.7 -17.17798 -17.17798 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 517 0.00010 0.0 55.1 -17.17804 -17.17804 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 518 0.00011 0.0 60.3 -17.17810 -17.17810 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 519 0.00012 0.0 65.1 -17.17815 -17.17815 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 520 0.00012 0.0 69.5 -17.17820 -17.17820 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 521 0.00013 0.0 73.3 -17.17824 -17.17824 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 522 0.00013 0.0 76.4 -17.17827 -17.17827 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 523 0.00013 0.0 78.6 -17.17829 -17.17829 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 524 0.00013 0.0 80.0 -17.17831 -17.17831 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 525 0.00013 0.0 80.4 -17.17831 -17.17831 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 526 0.00013 0.0 79.9 -17.17831 -17.17831 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 527 0.00013 0.0 78.3 -17.17829 -17.17829 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 528 0.00013 0.0 75.8 -17.17826 -17.17826 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 529 0.00013 0.0 72.5 -17.17823 -17.17823 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 530 total energy = -17.17819 Hartree a.u. kinetic energy = 12.63450 Hartree a.u. electrostatic energy = -18.18263 Hartree a.u. esr = 0.15275 Hartree a.u. eself = 18.94976 Hartree a.u. pseudopotential energy = -9.36747 Hartree a.u. n-l pseudopotential energy = 1.95008 Hartree a.u. exchange-correlation energy = -4.21267 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.81 -12.89 -8.86 -6.92 Allocated memory (kb) = 87372 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.1167 Center of mass square displacement (a.u.): 0.000029 Total stress (GPa) 0.25060449 -0.01323344 0.02334066 -0.01323344 -0.09846510 -0.00004494 0.02334066 -0.00004494 -0.06292615 ATOMIC_POSITIONS O 0.990000E-02 0.990000E-02 0.000000E+00 H 0.178426E+01 -0.298946E+00 0.127595E+00 H -0.193709E+00 0.182616E+01 -0.783811E-01 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 H -0.722441E-03 0.356861E-03 -0.300252E-04 H 0.215992E-03 -0.183277E-03 -0.401973E-05 Forces acting on atoms (au): O -0.136098E-01 -0.126210E-02 -0.973128E-03 H 0.122388E-01 0.754078E-04 0.943446E-03 H 0.185507E-02 0.772501E-03 -0.677713E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2.73 0.0000 2 67.18 0.0152 530 0.00013 0.0 68.5 -17.17819 -17.17819 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//h2o_51.save restart file written in 0.060 sec. Averaged Physical Quantities accomulated this run ekinc : 0.08442 0.00008 (AU) ekin : 12.35250 12.58657 (AU) epot : -31.07384 -31.72314 (AU) total energy : -16.72411 -17.17791 (AU) temperature : 33.31912 43.78395 (K ) enthalpy : -16.72411 -17.17791 (AU) econs : -16.72378 -17.17747 (AU) pressure : 1.27935 -0.15188 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 1.20s CPU 0.16s WALL ( 1 calls) main_loop : 475.81s CPU 42.04s WALL ( 200 calls) Called by main_loop: move_electro : 466.61s CPU 41.27s WALL ( 200 calls) ortho : 1.44s CPU 0.13s WALL ( 200 calls) updatc : 0.27s CPU 0.02s WALL ( 200 calls) strucf : 0.94s CPU 0.07s WALL ( 201 calls) calbec : 0.45s CPU 0.03s WALL ( 201 calls) Called by move_electrons: rhoofr : 84.06s CPU 7.27s WALL ( 200 calls) vofrho : 340.77s CPU 30.37s WALL ( 200 calls) dforce : 37.19s CPU 3.24s WALL ( 400 calls) calphi : 0.27s CPU 0.03s WALL ( 200 calls) nlfl : 0.03s CPU 0.00s WALL ( 200 calls) Called by ortho: ortho_iter : 0.11s CPU 0.01s WALL ( 200 calls) rsg : 0.32s CPU 0.03s WALL ( 200 calls) rhoset : 0.48s CPU 0.04s WALL ( 200 calls) sigset : 0.20s CPU 0.03s WALL ( 200 calls) tauset : 0.28s CPU 0.02s WALL ( 200 calls) Small boxes: Low-level routines: prefor : 0.18s CPU 0.02s WALL ( 401 calls) nlfq : 1.23s CPU 0.11s WALL ( 200 calls) nlsm1 : 0.44s CPU 0.03s WALL ( 201 calls) nlsm2 : 1.15s CPU 0.10s WALL ( 200 calls) fft : 117.02s CPU 10.10s WALL ( 1600 calls) ffts : 30.07s CPU 2.59s WALL ( 400 calls) fftw : 38.40s CPU 3.29s WALL ( 1200 calls) fft_scatter : 60.88s CPU 5.28s WALL ( 3200 calls) betagx : 0.37s CPU 0.04s WALL ( 1 calls) qradx : 0.00s CPU 0.00s WALL ( 1 calls) nlinit : 0.52s CPU 0.05s WALL ( 1 calls) init_dim : 0.03s CPU 0.04s WALL ( 1 calls) newnlinit : 0.02s CPU 0.00s WALL ( 1 calls) from_restart : 0.38s CPU 0.03s WALL ( 1 calls) ortho_iter : 0.11s CPU 0.01s WALL ( 200 calls) CP : 7m59.19s CPU 0m42.40s WALL This run was terminated on: 17:24:38 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/o2-us-para-pbe.ref20000644000175000017500000006234112341373026016315 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:25: 8 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/o2-us-para-pbe.in2 Job Title: O2 Crystal Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.pbe-rrkjus.UPF file type is UPF v.1 file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 100 Print out every 10 MD Steps Reads from unit = 53 Writes to unit = 53 MD Simulation time step = 12.00 Electronic fictitious mass (emass) = 900.00 emass cut-off = 2.80 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 4432.73 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 30.0 Ry, Ecutrho = 240.0 Ry, Ecuts = 120.0 Ry Gcutwfc = 10.5 , Gcutrho = 29.6 Gcuts = 20.9 NOTA BENE: refg, mmx = 0.050000 5760 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 verlet algorithm for electron dynamics with friction frice = 0.1000 , grease = 1.0000 Electron dynamics : the temperature is not controlled Electronic states ----------------- Local Spin Density calculation Number of Electron = 12 Spins up = 7, occupations: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Spins down = 5, occupations: 1.00 1.00 1.00 1.00 1.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND WANG Using Generalized Gradient Corrections with Exchange functional: PERDEW BURKE ERNZERHOF Correlation functional: PERDEW BURKE ERNZERHOF Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 6 degrees of freedom ion dynamics with fricp = 0.1000 and greasp = 1.0000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 2 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.260309 2.287244 5.163090 3.260309 2.287244 7.479148 Ionic position will be re-read from restart file All atoms are allowed to move Ionic temperature is not controlled Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2749 1369 349 108671 38401 4801 Tot 1375 685 175 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 60 60 60 60 60 60 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 60 60 60 Local number of cell to store the grid ( nrxx ) = 216000 Number of x-y planes for each processors: nr3l = 60 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 45 45 45 45 45 45 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 45 45 45 Local number of cell to store the grid ( nrxx ) = 91125 Number of x-y planes for each processors: nr3sl = 45 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 24 24 24 24 24 24 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 24 24 24 Local number of cell to store the grid ( nrxx ) = 13824 unit vectors of box grid cell in real space: in reciprocal space: 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 54336 54336 54336 54336.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 19201 19201 19201 19201.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 2401 2401 2401 2401.00 Small box Mesh ngb = 3490 not distributed to processors System geometry initialization ------------------------------ ibrav = 14 cell parameters 12.00000 0.00000 0.00000 0.00000 12.00000 0.00000 0.00000 0.00000 12.00000 unit vectors of box grid cell in real space: in reciprocal space: 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00000 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 3490 1 865 3 qqq -0.1022 0.5410 0.0000 0.0000 0.5410 -2.5883 0.0000 0.0000 0.0000 0.0000 0.2297 0.2861 0.0000 0.0000 0.2861 0.3565 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4798 -1.3236 0.0000 0.0000 -1.3236 2.2757 0.0000 0.0000 0.0000 0.0000 0.6278 0.8512 0.0000 0.0000 0.8512 1.1500 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file read in 0.023 sec. formf: eself= 28.72384 formf: vps(g=0)= -0.0087653 rhops(g=0)= -0.0034722 formf: sum_g vps(g)= -2.4887968 sum_g rhops(g)= -0.5404975 Delta V(G=0): 0.021817Ry, 0.593660eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 51 0.01090 0.0 1.2 -31.68184 -31.68184 -31.68183 -31.67093 0.0000 0.0000 0.0000 0.0000 52 0.01513 0.0 8.3 -31.69149 -31.69149 -31.69141 -31.67628 0.0000 0.0000 0.0000 0.0000 53 0.01855 0.0 15.0 -31.70187 -31.70187 -31.70172 -31.68318 0.0000 0.0000 0.0000 0.0000 54 0.02080 0.0 17.8 -31.71219 -31.71219 -31.71202 -31.69121 0.0000 0.0000 0.0000 0.0000 55 0.02179 0.0 16.6 -31.72182 -31.72182 -31.72166 -31.69987 0.0000 0.0000 0.0000 0.0000 56 0.02156 0.0 13.4 -31.73034 -31.73034 -31.73021 -31.70865 0.0000 0.0000 0.0000 0.0000 57 0.02031 0.0 9.9 -31.73750 -31.73750 -31.73741 -31.71710 0.0000 0.0000 0.0000 0.0000 58 0.01829 0.0 7.2 -31.74321 -31.74321 -31.74314 -31.72486 0.0000 0.0000 0.0000 0.0000 59 0.01578 0.0 5.5 -31.74752 -31.74752 -31.74746 -31.73168 0.0000 0.0000 0.0000 0.0000 60 0.01307 0.0 4.7 -31.75056 -31.75056 -31.75051 -31.73745 0.0000 0.0000 0.0000 0.0000 61 0.01038 0.0 4.4 -31.75255 -31.75255 -31.75250 -31.74212 0.0000 0.0000 0.0000 0.0000 62 0.00792 0.0 4.2 -31.75372 -31.75372 -31.75368 -31.74576 0.0000 0.0000 0.0000 0.0000 63 0.00578 0.0 4.0 -31.75431 -31.75431 -31.75427 -31.74848 0.0000 0.0000 0.0000 0.0000 64 0.00404 0.0 3.6 -31.75450 -31.75450 -31.75447 -31.75043 0.0000 0.0000 0.0000 0.0000 65 0.00268 0.0 2.9 -31.75447 -31.75447 -31.75444 -31.75176 0.0000 0.0000 0.0000 0.0000 66 0.00169 0.0 2.2 -31.75434 -31.75434 -31.75431 -31.75263 0.0000 0.0000 0.0000 0.0000 67 0.00101 0.0 1.5 -31.75418 -31.75418 -31.75417 -31.75316 0.0000 0.0000 0.0000 0.0000 68 0.00058 0.0 0.9 -31.75406 -31.75406 -31.75405 -31.75347 0.0000 0.0000 0.0000 0.0000 69 0.00034 0.0 0.5 -31.75399 -31.75399 -31.75399 -31.75365 0.0000 0.0000 0.0000 0.0000 70 0.00022 0.0 0.3 -31.75399 -31.75399 -31.75399 -31.75377 0.0000 0.0000 0.0000 0.0000 71 0.00019 0.0 0.3 -31.75405 -31.75405 -31.75405 -31.75385 0.0000 0.0000 0.0000 0.0000 72 0.00021 0.0 0.2 -31.75414 -31.75414 -31.75414 -31.75393 0.0000 0.0000 0.0000 0.0000 73 0.00024 0.0 0.2 -31.75427 -31.75427 -31.75426 -31.75403 0.0000 0.0000 0.0000 0.0000 74 0.00027 0.0 0.2 -31.75440 -31.75440 -31.75440 -31.75413 0.0000 0.0000 0.0000 0.0000 75 0.00029 0.0 0.2 -31.75453 -31.75453 -31.75453 -31.75424 0.0000 0.0000 0.0000 0.0000 76 0.00029 0.0 0.2 -31.75465 -31.75465 -31.75465 -31.75436 0.0000 0.0000 0.0000 0.0000 77 0.00028 0.0 0.2 -31.75476 -31.75476 -31.75476 -31.75448 0.0000 0.0000 0.0000 0.0000 78 0.00026 0.0 0.1 -31.75484 -31.75484 -31.75484 -31.75458 0.0000 0.0000 0.0000 0.0000 79 0.00023 0.0 0.1 -31.75491 -31.75491 -31.75491 -31.75468 0.0000 0.0000 0.0000 0.0000 80 0.00020 0.0 0.1 -31.75496 -31.75496 -31.75496 -31.75477 0.0000 0.0000 0.0000 0.0000 81 0.00016 0.0 0.0 -31.75500 -31.75500 -31.75500 -31.75484 0.0000 0.0000 0.0000 0.0000 82 0.00013 0.0 0.0 -31.75502 -31.75502 -31.75502 -31.75490 0.0000 0.0000 0.0000 0.0000 83 0.00010 0.0 0.0 -31.75504 -31.75504 -31.75504 -31.75494 0.0000 0.0000 0.0000 0.0000 84 0.00007 0.0 0.0 -31.75505 -31.75505 -31.75505 -31.75497 0.0000 0.0000 0.0000 0.0000 85 0.00005 0.0 0.0 -31.75505 -31.75505 -31.75505 -31.75500 0.0000 0.0000 0.0000 0.0000 86 0.00004 0.0 0.0 -31.75506 -31.75506 -31.75506 -31.75502 0.0000 0.0000 0.0000 0.0000 87 0.00003 0.0 0.0 -31.75506 -31.75506 -31.75506 -31.75503 0.0000 0.0000 0.0000 0.0000 88 0.00002 0.0 0.0 -31.75506 -31.75506 -31.75506 -31.75504 0.0000 0.0000 0.0000 0.0000 89 0.00001 0.0 0.0 -31.75506 -31.75506 -31.75506 -31.75505 0.0000 0.0000 0.0000 0.0000 90 0.00001 0.0 0.0 -31.75506 -31.75506 -31.75506 -31.75505 0.0000 0.0000 0.0000 0.0000 91 0.00001 0.0 0.0 -31.75506 -31.75506 -31.75506 -31.75505 0.0000 0.0000 0.0000 0.0000 92 0.00001 0.0 0.0 -31.75507 -31.75507 -31.75507 -31.75506 0.0000 0.0000 0.0000 0.0000 93 0.00001 0.0 0.0 -31.75507 -31.75507 -31.75507 -31.75506 0.0000 0.0000 0.0000 0.0000 94 0.00001 0.0 0.0 -31.75507 -31.75507 -31.75507 -31.75506 0.0000 0.0000 0.0000 0.0000 95 0.00001 0.0 0.0 -31.75507 -31.75507 -31.75507 -31.75507 0.0000 0.0000 0.0000 0.0000 96 0.00001 0.0 0.0 -31.75507 -31.75507 -31.75507 -31.75507 0.0000 0.0000 0.0000 0.0000 97 0.00000 0.0 0.0 -31.75507 -31.75507 -31.75507 -31.75507 0.0000 0.0000 0.0000 0.0000 98 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75507 0.0000 0.0000 0.0000 0.0000 99 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75507 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 from rhoofr: total integrated electronic density spin up in g-space = 7.000000 in r-space = 7.000000 spin down in g-space = 5.000000 in r-space = 5.000000 Spin contamination: s(s+1)= 2.01 (Slater) 2.03 (Becke) 2.00 (expected) total energy = -31.75508 Hartree a.u. kinetic energy = 13.24604 Hartree a.u. electrostatic energy = -28.34910 Hartree a.u. esr = 0.29863 Hartree a.u. eself = 28.72384 Hartree a.u. pseudopotential energy = -16.77580 Hartree a.u. n-l pseudopotential energy = 6.92577 Hartree a.u. exchange-correlation energy = -6.80200 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -32.46 -20.58 -13.29 -13.22 -13.22 -6.98 -6.98 Eigenvalues (eV), kp = 1 , spin = 2 -31.16 -18.71 -12.41 -11.25 -11.25 Allocated memory (kb) = 101288 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.2075 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -0.22113873 0.00108025 0.00100046 0.00108025 -0.22015493 -0.00044943 0.00100048 -0.00044943 -0.23163564 ATOMIC_POSITIONS O 0.326124E+01 0.228721E+01 0.515218E+01 O 0.325938E+01 0.228728E+01 0.749006E+01 ATOMIC_VELOCITIES O 0.876983E-07 -0.610732E-08 -0.918990E-06 O -0.876983E-07 0.610732E-08 0.918990E-06 Forces acting on atoms (au): O 0.374375E-03 0.184207E-03 -0.311182E-03 O 0.398052E-03 0.168481E-03 0.199904E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0001 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 100 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75507 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file written in 0.103 sec. 101 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75507 0.0000 0.0000 0.0000 0.0000 102 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 103 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 104 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 105 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 106 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 107 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 108 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 109 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 110 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 111 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 112 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 113 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 114 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 115 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 116 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 117 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 118 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.786423D-07 0.1D-05 0.455039D-08 0.1D-07 0.000000D+00 0.1D-02 MAIN: convergence achieved for system relaxation * Physical Quantities at step: 119 Spin contamination: s(s+1)= 2.01 (Slater) 2.03 (Becke) 2.00 (expected) total energy = -31.75508 Hartree a.u. kinetic energy = 13.24572 Hartree a.u. electrostatic energy = -28.34933 Hartree a.u. esr = 0.29839 Hartree a.u. eself = 28.72384 Hartree a.u. pseudopotential energy = -16.77523 Hartree a.u. n-l pseudopotential energy = 6.92563 Hartree a.u. exchange-correlation energy = -6.80186 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -32.45 -20.58 -13.29 -13.22 -13.22 -6.98 -6.98 Eigenvalues (eV), kp = 1 , spin = 2 -31.16 -18.71 -12.41 -11.24 -11.24 Allocated memory (kb) = 101288 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.2075 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -0.22275979 0.00022193 -0.00016638 0.00022193 -0.22125617 0.00008162 -0.00016637 0.00008162 -0.23929775 ATOMIC_POSITIONS O 0.326124E+01 0.228721E+01 0.515205E+01 O 0.325938E+01 0.228728E+01 0.749019E+01 ATOMIC_VELOCITIES O -0.132098E-07 0.121974E-08 -0.387461E-06 O 0.132098E-07 -0.121974E-08 0.387461E-06 Forces acting on atoms (au): O 0.381533E-03 0.180671E-03 -0.972393E-04 O 0.380566E-03 0.183504E-03 0.252993E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0001 119 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file written in 0.106 sec. Averaged Physical Quantities accomulated this run ekinc : 0.48844 0.00310 (AU) ekin : 13.33626 13.25538 (AU) epot : -50.42891 -51.93641 (AU) total energy : -30.35806 -31.75002 (AU) temperature : 1.06117 1.83013 (K ) enthalpy : -30.35806 -31.75002 (AU) econs : -30.35805 -31.75001 (AU) pressure : 5.06440 -0.07819 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 4.99s CPU 0.51s WALL ( 1 calls) main_loop : 334.33s CPU 39.80s WALL ( 69 calls) Called by main_loop: move_electro : 327.35s CPU 39.22s WALL ( 69 calls) ortho : 1.69s CPU 0.14s WALL ( 69 calls) updatc : 0.16s CPU 0.01s WALL ( 69 calls) strucf : 0.02s CPU 0.00s WALL ( 70 calls) calbec : 0.01s CPU 0.00s WALL ( 70 calls) Called by move_electrons: rhoofr : 90.35s CPU 7.81s WALL ( 69 calls) vofrho : 195.72s CPU 27.64s WALL ( 69 calls) dforce : 10.24s CPU 0.89s WALL ( 414 calls) calphi : 0.09s CPU 0.01s WALL ( 69 calls) newd : 28.32s CPU 2.64s WALL ( 69 calls) nlfl : 0.01s CPU 0.00s WALL ( 69 calls) Called by ortho: ortho_iter : 0.11s CPU 0.01s WALL ( 138 calls) rsg : 0.15s CPU 0.02s WALL ( 138 calls) rhoset : 0.14s CPU 0.01s WALL ( 138 calls) sigset : 0.10s CPU 0.01s WALL ( 138 calls) tauset : 0.14s CPU 0.01s WALL ( 138 calls) Small boxes: rhov : 7.43s CPU 0.65s WALL ( 69 calls) fftb : 19.06s CPU 1.66s WALL ( 4348 calls) Low-level routines: prefor : 0.27s CPU 0.02s WALL ( 139 calls) nlfq : 1.50s CPU 0.12s WALL ( 69 calls) nlsm1 : 1.01s CPU 0.08s WALL ( 208 calls) nlsm2 : 1.46s CPU 0.12s WALL ( 69 calls) fft : 65.06s CPU 5.65s WALL ( 1587 calls) ffts : 2.57s CPU 0.22s WALL ( 138 calls) fftw : 10.58s CPU 0.91s WALL ( 1242 calls) fft_scatter : 25.36s CPU 2.23s WALL ( 2967 calls) betagx : 2.84s CPU 0.24s WALL ( 1 calls) qradx : 1.48s CPU 0.13s WALL ( 1 calls) nlinit : 4.79s CPU 0.43s WALL ( 1 calls) init_dim : 0.02s CPU 0.03s WALL ( 1 calls) newnlinit : 0.16s CPU 0.04s WALL ( 1 calls) from_restart : 0.14s CPU 0.01s WALL ( 1 calls) ortho_iter : 0.11s CPU 0.01s WALL ( 138 calls) CP : 5m40.87s CPU 0m40.56s WALL This run was terminated on: 17:25:49 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/h2o-mt-blyp.ref20000644000175000017500000004220612341373026015733 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:23: 6 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/h2o-mt-blyp.in2 Job Title: Water Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.blyp-mt.UPF file type is UPF v.1 Reading pseudopotential for specie # 2 from file : /plx/userinternal/acv0/espresso/pseudo/H.blyp-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 50 Print out every 10 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 2493.41 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 7680 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: LEE, YANG, AND PARR Using Generalized Gradient Corrections with Exchange functional: BECKE Correlation functional: PERDEW AND WANG Exchange-correlation = SLA LYP B88 BLYP ( 1 3 1 3 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are not allowed to move Initial random displacement of ionic coordinates specie amplitude 2 0.200000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.832500 -0.224300 -0.000100 -0.224300 1.832500 0.000200 Ionic position will be re-read from restart file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 373248 Number of x-y planes for each processors: nr3l = 72 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 373248 Number of x-y planes for each processors: nr3sl = 72 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 83519 83519 83519 83519.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 83519 83519 83519 83519.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 10408 10408 10408 10408.00 System geometry initialization ------------------------------ ibrav = 14 cell parameters 12.00000 0.00000 0.00000 0.00000 12.00000 0.00000 0.00000 0.00000 12.00000 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00000 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /plx/userinternal/acv0/espresso/CPV/tmp//h2o_51.save restart file read in 0.020 sec. Randomization of SCALED ionic coordinates Species 2 atoms = 2 Old Positions New Positions 0.152708 -0.018692 -0.000008 0.145814 -0.026230 0.008111 -0.018692 0.152708 0.000017 -0.015180 0.151227 -0.004431 formf: eself= 18.94976 formf: vps(g=0)= -0.0063239 rhops(g=0)= -0.0034722 formf: sum_g vps(g)= -4.3546661 sum_g rhops(g)= -1.0540044 formf: vps(g=0)= -0.0011896 rhops(g=0)= -0.0005787 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 101 0.00069 0.0 0.0 -17.16163 -17.16163 -17.16163 -17.16093 0.0000 0.0000 0.0000 0.0000 102 0.00237 0.0 0.0 -17.16476 -17.16476 -17.16476 -17.16240 0.0000 0.0000 0.0000 0.0000 103 0.00381 0.0 0.0 -17.16892 -17.16892 -17.16892 -17.16511 0.0000 0.0000 0.0000 0.0000 104 0.00413 0.0 0.0 -17.17256 -17.17256 -17.17256 -17.16842 0.0000 0.0000 0.0000 0.0000 105 0.00352 0.0 0.0 -17.17504 -17.17504 -17.17504 -17.17151 0.0000 0.0000 0.0000 0.0000 106 0.00250 0.0 0.0 -17.17639 -17.17639 -17.17639 -17.17389 0.0000 0.0000 0.0000 0.0000 107 0.00151 0.0 0.0 -17.17695 -17.17695 -17.17695 -17.17543 0.0000 0.0000 0.0000 0.0000 108 0.00079 0.0 0.0 -17.17709 -17.17709 -17.17709 -17.17631 0.0000 0.0000 0.0000 0.0000 109 0.00036 0.0 0.0 -17.17709 -17.17709 -17.17709 -17.17673 0.0000 0.0000 0.0000 0.0000 110 0.00016 0.0 0.0 -17.17708 -17.17708 -17.17708 -17.17693 0.0000 0.0000 0.0000 0.0000 111 0.00009 0.0 0.0 -17.17711 -17.17711 -17.17711 -17.17702 0.0000 0.0000 0.0000 0.0000 112 0.00007 0.0 0.0 -17.17716 -17.17716 -17.17716 -17.17708 0.0000 0.0000 0.0000 0.0000 113 0.00008 0.0 0.0 -17.17722 -17.17722 -17.17722 -17.17715 0.0000 0.0000 0.0000 0.0000 114 0.00007 0.0 0.0 -17.17728 -17.17728 -17.17728 -17.17721 0.0000 0.0000 0.0000 0.0000 115 0.00006 0.0 0.0 -17.17732 -17.17732 -17.17732 -17.17726 0.0000 0.0000 0.0000 0.0000 116 0.00005 0.0 0.0 -17.17735 -17.17735 -17.17735 -17.17730 0.0000 0.0000 0.0000 0.0000 117 0.00003 0.0 0.0 -17.17736 -17.17736 -17.17736 -17.17733 0.0000 0.0000 0.0000 0.0000 118 0.00002 0.0 0.0 -17.17737 -17.17737 -17.17737 -17.17735 0.0000 0.0000 0.0000 0.0000 119 0.00001 0.0 0.0 -17.17738 -17.17738 -17.17738 -17.17736 0.0000 0.0000 0.0000 0.0000 120 0.00001 0.0 0.0 -17.17738 -17.17738 -17.17738 -17.17737 0.0000 0.0000 0.0000 0.0000 121 0.00000 0.0 0.0 -17.17738 -17.17738 -17.17738 -17.17738 0.0000 0.0000 0.0000 0.0000 122 0.00000 0.0 0.0 -17.17738 -17.17738 -17.17738 -17.17738 0.0000 0.0000 0.0000 0.0000 123 0.00000 0.0 0.0 -17.17738 -17.17738 -17.17738 -17.17738 0.0000 0.0000 0.0000 0.0000 124 0.00000 0.0 0.0 -17.17739 -17.17739 -17.17739 -17.17738 0.0000 0.0000 0.0000 0.0000 125 0.00000 0.0 0.0 -17.17739 -17.17739 -17.17739 -17.17739 0.0000 0.0000 0.0000 0.0000 126 0.00000 0.0 0.0 -17.17739 -17.17739 -17.17739 -17.17739 0.0000 0.0000 0.0000 0.0000 127 0.00000 0.0 0.0 -17.17739 -17.17739 -17.17739 -17.17739 0.0000 0.0000 0.0000 0.0000 128 0.00000 0.0 0.0 -17.17739 -17.17739 -17.17739 -17.17739 0.0000 0.0000 0.0000 0.0000 129 0.00000 0.0 0.0 -17.17739 -17.17739 -17.17739 -17.17739 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.782398D-06 0.1D-05 0.473523D-06 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation * Physical Quantities at step: 130 total energy = -17.17739 Hartree a.u. kinetic energy = 12.68386 Hartree a.u. electrostatic energy = -18.17160 Hartree a.u. esr = 0.16727 Hartree a.u. eself = 18.94976 Hartree a.u. pseudopotential energy = -9.41189 Hartree a.u. n-l pseudopotential energy = 1.94615 Hartree a.u. exchange-correlation energy = -4.22392 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.96 -13.03 -8.87 -6.95 Allocated memory (kb) = 87464 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.1167 Center of mass square displacement (a.u.): 0.000047 Total stress (GPa) 0.78607755 -0.13971237 0.05311147 -0.13971237 0.10488284 -0.01446226 0.05311147 -0.01446226 -0.08188289 ATOMIC_POSITIONS O 0.990000E-02 0.990000E-02 0.000000E+00 H 0.174976E+01 -0.314765E+00 0.973267E-01 H -0.182164E+00 0.181472E+01 -0.531703E-01 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): O -0.319249E-01 -0.264361E-02 -0.154936E-02 H 0.315975E-01 -0.393431E-02 0.168444E-02 H 0.109990E-02 0.710114E-02 -0.595836E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0139 130 0.00000 0.0 0.0 -17.17739 -17.17739 -17.17739 -17.17739 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.596453D-06 0.1D-05 0.367300D-06 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//h2o_51.save restart file written in 0.060 sec. Averaged Physical Quantities accomulated this run ekinc : 0.34390 0.00068 (AU) ekin : 11.61642 12.67083 (AU) epot : -29.06186 -31.79768 (AU) total energy : -15.32778 -17.17581 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -15.32778 -17.17581 (AU) econs : -15.32778 -17.17581 (AU) pressure : 5.61068 0.24979 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 1.12s CPU 0.15s WALL ( 1 calls) main_loop : 70.49s CPU 6.33s WALL ( 30 calls) Called by main_loop: move_electro : 69.22s CPU 6.22s WALL ( 30 calls) ortho : 0.28s CPU 0.02s WALL ( 30 calls) updatc : 0.02s CPU 0.00s WALL ( 30 calls) strucf : 0.00s CPU 0.00s WALL ( 1 calls) calbec : 0.05s CPU 0.00s WALL ( 31 calls) Called by move_electrons: rhoofr : 12.60s CPU 1.10s WALL ( 30 calls) vofrho : 50.40s CPU 4.58s WALL ( 30 calls) dforce : 5.44s CPU 0.48s WALL ( 60 calls) calphi : 0.07s CPU 0.01s WALL ( 30 calls) nlfl : 0.00s CPU 0.00s WALL ( 30 calls) Called by ortho: ortho_iter : 0.01s CPU 0.00s WALL ( 30 calls) rsg : 0.08s CPU 0.01s WALL ( 30 calls) rhoset : 0.11s CPU 0.01s WALL ( 30 calls) sigset : 0.05s CPU 0.00s WALL ( 30 calls) tauset : 0.03s CPU 0.00s WALL ( 30 calls) Small boxes: Low-level routines: prefor : 0.01s CPU 0.00s WALL ( 31 calls) nlfq : 0.16s CPU 0.02s WALL ( 30 calls) nlsm1 : 0.05s CPU 0.00s WALL ( 31 calls) nlsm2 : 0.15s CPU 0.02s WALL ( 30 calls) fft : 17.50s CPU 1.52s WALL ( 240 calls) ffts : 4.36s CPU 0.38s WALL ( 60 calls) fftw : 6.10s CPU 0.51s WALL ( 180 calls) fft_scatter : 9.70s CPU 0.84s WALL ( 480 calls) betagx : 0.29s CPU 0.03s WALL ( 1 calls) qradx : 0.00s CPU 0.00s WALL ( 1 calls) nlinit : 0.43s CPU 0.04s WALL ( 1 calls) init_dim : 0.03s CPU 0.04s WALL ( 1 calls) newnlinit : 0.02s CPU 0.00s WALL ( 1 calls) from_restart : 0.38s CPU 0.03s WALL ( 1 calls) ortho_iter : 0.01s CPU 0.00s WALL ( 30 calls) CP : 1m12.09s CPU 0m 6.55s WALL This run was terminated on: 17:23:13 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/sio2-us-lda.ref30000644000175000017500000017407512341373026015733 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:28:34 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/sio2-us-lda.in3 Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.pz-rrkjus.UPF file type is UPF v.1 file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized Reading pseudopotential for specie # 2 from file : /plx/userinternal/acv0/espresso/pseudo/Si.pz-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 0 reset_counters Number of MD Steps = 100 Print out every 10 MD Steps Reads from unit = 92 Writes to unit = 93 MD Simulation time step = 12.00 Electronic fictitious mass (emass) = 700.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 1.00 [KBar] wmass (calculated) = 49868.25 [AU] ibrav = 8 alat = 9.28990000 a1 = 9.28990000 0.00000000 0.00000000 a2 = 0.00000000 16.09066419 0.00000000 a3 = 0.00000000 0.00000000 10.21470954 b1 = 0.10764379 0.00000000 0.00000000 b2 = 0.00000000 0.06214784 0.00000000 b3 = 0.00000000 0.00000000 0.09789804 omega = 1526.90153773 Energy Cut-offs --------------- Ecutwfc = 20.0 Ry, Ecutrho = 150.0 Ry, Ecuts = 80.0 Ry Gcutwfc = 6.6 , Gcutrho = 18.1 Gcuts = 13.2 modified kinetic energy functional, with parameters: ecutz = 150.0000 ecsig = 2.0000 ecfix = 16.00 NOTA BENE: refg, mmx = 0.050000 6000 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 Electron dynamics with newton equations Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 96, of States = 48 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 54 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 12 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.188294 14.832370 1.228830 7.832315 6.787040 1.228830 2.074435 5.995380 4.737583 6.720314 14.042319 4.737583 3.963071 11.269898 7.878606 8.608021 3.222959 7.878606 3.963071 4.819153 9.146251 8.608021 12.864483 9.146251 3.187365 1.256681 5.580296 7.833244 9.302011 5.580296 2.075364 10.092062 2.073586 6.719385 2.046732 2.073586 Species 2 atoms = 6 mass = 51040.88 (a.u.), 28.00 (amu) rcmax = 1.00 (a.u.) 0.288916 8.045330 3.404563 4.933866 0.000000 3.404563 2.133890 12.277174 -0.041880 6.778840 4.231844 -0.041880 2.133890 3.813486 6.852027 6.778840 11.858816 6.852027 Ionic position will be re-read from restart file All atoms are allowed to move Ionic temperature control via nose thermostat ion dynamics with nose` temperature control: temperature required = 300.00000 (kelvin) NH chain length = 1 active degrees of freedom = 54 time steps per nose osc. = 516 nose` frequency(es) = 6.667 the requested type of NH chains is 0 total number of thermostats used 1 0 0 ionic degrees of freedom for each chain 54 nose` mass(es) for chain 1 = 99946.828 atom i (in sorted order) is assigned to this thermostat : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Volume dynamics with newton equations cell parameters dynamics with nose` temp. control Constant PRESSURE Molecular dynamics: External pressure (GPa) = 0.10 Volume mass = 49868.25 cell dynamics with nose` temperature control: Kinetic energy required = 300.00000 (Kelvin) time steps per nose osc. = 400 nose` frequency = 8.607 (THz) nose` mass(es) = 9993.391 Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 9.2899 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 16.0907 0.0000 0.0000 0.5773 0.0000 3 0.0000 0.0000 10.2147 0.0000 0.0000 0.9095 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1783 951 239 47285 18431 2305 Tot 892 476 120 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 40 64 40 40 64 40 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 40 64 40 Local number of cell to store the grid ( nrxx ) = 102400 Number of x-y planes for each processors: nr3l = 40 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 45 30 27 45 30 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 45 30 Local number of cell to store the grid ( nrxx ) = 36450 Number of x-y planes for each processors: nr3sl = 30 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 24 24 24 24 24 24 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 24 24 24 Local number of cell to store the grid ( nrxx ) = 13824 unit vectors of box grid cell in real space: in reciprocal space: 5.5739 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0340 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 6.1288 0.0000 0.0000 0.9095 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 23643 23643 23643 23643.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 9216 9216 9216 9216.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 1153 1153 1153 1153.00 Small box Mesh ngb = 3183 not distributed to processors System geometry initialization ------------------------------ ibrav = 8 cell parameters 9.28990 0.00000 0.00000 0.00000 16.09066 0.00000 0.00000 0.00000 10.21471 unit vectors of box grid cell in real space: in reciprocal space: 5.5739 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0340 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 6.1288 0.0000 0.0000 0.9095 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00002 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 3183 1 865 3 qqq -0.0987 0.4865 0.0000 0.0000 0.4865 -2.1787 0.0000 0.0000 0.0000 0.0000 0.2330 0.2950 0.0000 0.0000 0.2950 0.3737 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4817 -1.2813 0.0000 0.0000 -1.2813 2.3075 0.0000 0.0000 0.0000 0.0000 0.6338 0.8752 0.0000 0.0000 0.8752 1.2039 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 0.7619 0.0000 0.0000 1.8417 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /plx/userinternal/acv0/espresso/CPV/tmp//sio2_92.save restart file read in 0.031 sec. formf: eself= 210.64152 formf: vps(g=0)= -0.0099256 rhops(g=0)= -0.0039295 formf: sum_g vps(g)= -2.2959144 sum_g rhops(g)= -0.5407261 formf: vps(g=0)= -0.0098400 rhops(g=0)= -0.0026197 formf: sum_g vps(g)= -2.3753533 sum_g rhops(g)= -0.3604841 Delta V(G=0): 0.197519Ry, 5.374775eV formf: eself= 210.64152 formf: vps(g=0)= -0.0099256 rhops(g=0)= -0.0039295 formf: sum_g vps(g)= -2.2959144 sum_g rhops(g)= -0.5407261 formf: vps(g=0)= -0.0098400 rhops(g=0)= -0.0026197 formf: sum_g vps(g)= -2.3753533 sum_g rhops(g)= -0.3604841 Delta V(G=0): 0.197519Ry, 5.374775eV unit vectors of box grid cell in real space: in reciprocal space: 5.5740 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0340 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 6.1287 0.0000 0.0000 0.9095 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 0.00000 0.1 0.0 -211.98190 -211.97671 -211.97671 -211.97670 0.0000 0.0000 0.0000 0.0000 unit vectors of box grid cell in real space: in reciprocal space: 5.5741 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0340 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 6.1285 0.0000 0.0000 0.9095 2 0.00000 0.8 0.1 -211.98191 -211.97672 -211.97671 -211.97670 0.0000 0.0000 0.0000 -0.0001 unit vectors of box grid cell in real space: in reciprocal space: 5.5742 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0340 0.0000 0.0000 0.9238 0.0000 0.0000 -0.0001 6.1283 0.0000 0.0000 0.9096 3 0.00000 2.2 0.2 -211.98194 -211.97675 -211.97671 -211.97670 0.0000 0.0000 0.0000 -0.0002 unit vectors of box grid cell in real space: in reciprocal space: 5.5743 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0340 0.0000 0.0000 0.9238 0.0000 0.0000 -0.0001 6.1279 0.0000 0.0000 0.9097 4 0.00000 4.3 0.3 -211.98198 -211.97679 -211.97671 -211.97670 0.0000 -0.0001 0.0000 -0.0004 unit vectors of box grid cell in real space: in reciprocal space: 5.5746 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0340 -0.0001 0.0000 0.9239 0.0000 0.0000 -0.0001 6.1274 0.0000 0.0000 0.9098 5 0.00001 7.0 0.4 -211.98204 -211.97685 -211.97671 -211.97670 0.0000 -0.0001 0.0000 -0.0007 unit vectors of box grid cell in real space: in reciprocal space: 5.5748 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0340 -0.0001 0.0000 0.9239 0.0000 0.0000 -0.0002 6.1269 0.0000 0.0000 0.9099 6 0.00001 10.5 0.6 -211.98211 -211.97692 -211.97672 -211.97670 0.0000 -0.0002 0.0000 -0.0011 unit vectors of box grid cell in real space: in reciprocal space: 5.5751 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0339 -0.0001 0.0000 0.9240 0.0000 0.0000 -0.0003 6.1262 0.0000 0.0000 0.9100 7 0.00002 14.6 0.9 -211.98220 -211.97701 -211.97672 -211.97670 0.0000 -0.0003 0.0000 -0.0016 unit vectors of box grid cell in real space: in reciprocal space: 5.5754 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0339 -0.0001 0.0000 0.9240 0.0000 0.0000 -0.0003 6.1255 0.0000 0.0000 0.9102 8 0.00002 19.6 1.2 -211.98230 -211.97711 -211.97672 -211.97670 0.0000 -0.0004 0.0000 -0.0021 unit vectors of box grid cell in real space: in reciprocal space: 5.5758 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0339 -0.0002 0.0000 0.9241 0.0001 0.0000 -0.0004 6.1247 0.0000 0.0000 0.9104 9 0.00002 25.3 1.6 -211.98241 -211.97723 -211.97673 -211.97670 0.0000 -0.0004 -0.0001 -0.0027 unit vectors of box grid cell in real space: in reciprocal space: 5.5762 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0339 -0.0002 0.0000 0.9241 0.0001 0.0000 -0.0005 6.1237 0.0000 0.0000 0.9106 10 0.00003 31.7 2.0 -211.98250 -211.97731 -211.97669 -211.97666 0.0000 -0.0005 -0.0001 -0.0033 unit vectors of box grid cell in real space: in reciprocal space: 5.5766 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0339 -0.0002 0.0000 0.9242 0.0001 0.0000 -0.0006 6.1227 0.0000 0.0000 0.9108 11 0.00003 38.8 2.5 -211.98265 -211.97746 -211.97670 -211.97666 0.0000 -0.0006 -0.0001 -0.0041 unit vectors of box grid cell in real space: in reciprocal space: 5.5771 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0338 -0.0003 0.0000 0.9243 0.0001 0.0000 -0.0007 6.1216 0.0000 0.0000 0.9111 12 0.00004 46.5 2.9 -211.98281 -211.97762 -211.97671 -211.97666 0.0000 -0.0007 -0.0001 -0.0049 unit vectors of box grid cell in real space: in reciprocal space: 5.5776 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0338 -0.0003 0.0000 0.9244 0.0001 0.0000 -0.0008 6.1204 0.0000 0.0000 0.9113 13 0.00006 55.0 3.4 -211.98298 -211.97779 -211.97672 -211.97667 0.0000 -0.0008 -0.0001 -0.0058 unit vectors of box grid cell in real space: in reciprocal space: 5.5781 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0338 -0.0004 0.0000 0.9245 0.0001 0.0000 -0.0010 6.1190 0.0000 0.0001 0.9116 14 0.00007 64.3 4.0 -211.98317 -211.97799 -211.97673 -211.97667 0.0000 -0.0009 -0.0001 -0.0067 unit vectors of box grid cell in real space: in reciprocal space: 5.5787 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0338 -0.0004 0.0000 0.9246 0.0002 0.0000 -0.0011 6.1176 0.0000 0.0001 0.9119 15 0.00007 74.4 4.6 -211.98338 -211.97819 -211.97674 -211.97667 0.0000 -0.0010 -0.0001 -0.0077 unit vectors of box grid cell in real space: in reciprocal space: 5.5793 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0337 -0.0005 0.0000 0.9247 0.0002 0.0000 -0.0012 6.1161 0.0000 0.0001 0.9122 16 0.00007 85.4 5.3 -211.98360 -211.97841 -211.97674 -211.97667 0.0000 -0.0011 -0.0001 -0.0088 unit vectors of box grid cell in real space: in reciprocal space: 5.5800 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0337 -0.0006 0.0000 0.9248 0.0002 0.0000 -0.0014 6.1145 0.0000 0.0001 0.9126 17 0.00008 97.2 6.0 -211.98383 -211.97865 -211.97675 -211.97667 0.0000 -0.0011 -0.0001 -0.0100 unit vectors of box grid cell in real space: in reciprocal space: 5.5807 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0337 -0.0006 0.0000 0.9249 0.0002 0.0000 -0.0016 6.1128 0.0000 0.0001 0.9130 18 0.00009 109.7 6.8 -211.98408 -211.97890 -211.97676 -211.97668 0.0000 -0.0012 -0.0001 -0.0113 unit vectors of box grid cell in real space: in reciprocal space: 5.5814 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0336 -0.0007 0.0000 0.9251 0.0003 0.0000 -0.0017 6.1110 0.0000 0.0001 0.9133 19 0.00011 123.0 7.5 -211.98435 -211.97917 -211.97677 -211.97668 0.0000 -0.0012 -0.0001 -0.0126 unit vectors of box grid cell in real space: in reciprocal space: 5.5822 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0336 -0.0008 0.0000 0.9252 0.0003 0.0000 -0.0019 6.1091 0.0000 0.0001 0.9137 20 0.00013 137.0 8.3 -211.98463 -211.97945 -211.97679 -211.97668 0.0000 -0.0011 -0.0001 -0.0140 unit vectors of box grid cell in real space: in reciprocal space: 5.5830 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0335 -0.0008 0.0000 0.9253 0.0003 0.0000 -0.0021 6.1071 0.0000 0.0001 0.9142 21 0.00014 151.8 9.1 -211.98493 -211.97975 -211.97681 -211.97668 0.0000 -0.0011 -0.0001 -0.0154 unit vectors of box grid cell in real space: in reciprocal space: 5.5838 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0335 -0.0009 0.0000 0.9255 0.0003 0.0000 -0.0023 6.1050 0.0000 0.0001 0.9146 22 0.00015 167.5 10.0 -211.98524 -211.98006 -211.97682 -211.97668 0.0000 -0.0010 -0.0001 -0.0170 unit vectors of box grid cell in real space: in reciprocal space: 5.5846 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0335 -0.0010 0.0000 0.9256 0.0004 0.0000 -0.0025 6.1027 0.0000 0.0002 0.9151 23 0.00016 184.3 11.0 -211.98557 -211.98039 -211.97683 -211.97668 0.0000 -0.0009 -0.0001 -0.0186 unit vectors of box grid cell in real space: in reciprocal space: 5.5855 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0334 -0.0011 0.0000 0.9258 0.0004 0.0000 -0.0027 6.1004 0.0000 0.0002 0.9156 24 0.00017 202.1 12.0 -211.98592 -211.98074 -211.97684 -211.97669 0.0000 -0.0007 -0.0001 -0.0203 unit vectors of box grid cell in real space: in reciprocal space: 5.5864 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0334 -0.0012 0.0000 0.9259 0.0004 0.0000 -0.0030 6.0980 0.0000 0.0002 0.9161 25 0.00018 220.7 13.0 -211.98628 -211.98111 -211.97685 -211.97669 0.0000 -0.0004 -0.0001 -0.0220 unit vectors of box grid cell in real space: in reciprocal space: 5.5874 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0333 -0.0013 0.0000 0.9261 0.0005 0.0000 -0.0032 6.0954 0.0000 0.0002 0.9166 26 0.00020 240.2 14.0 -211.98667 -211.98149 -211.97687 -211.97670 0.0000 -0.0001 -0.0002 -0.0238 unit vectors of box grid cell in real space: in reciprocal space: 5.5883 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0332 -0.0014 0.0000 0.9263 0.0005 0.0000 -0.0034 6.0928 0.0000 0.0002 0.9172 27 0.00022 260.4 15.1 -211.98707 -211.98189 -211.97689 -211.97670 0.0000 0.0003 -0.0002 -0.0257 unit vectors of box grid cell in real space: in reciprocal space: 5.5893 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0332 -0.0015 0.0000 0.9264 0.0006 0.0000 -0.0037 6.0900 0.0000 0.0002 0.9178 28 0.00025 281.5 16.1 -211.98748 -211.98231 -211.97692 -211.97670 0.0000 0.0007 -0.0002 -0.0277 unit vectors of box grid cell in real space: in reciprocal space: 5.5903 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0331 -0.0016 0.0000 0.9266 0.0006 0.0000 -0.0040 6.0872 0.0000 0.0002 0.9184 29 0.00026 303.5 17.3 -211.98792 -211.98274 -211.97694 -211.97671 0.0001 0.0013 -0.0002 -0.0297 unit vectors of box grid cell in real space: in reciprocal space: 5.5913 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0331 -0.0017 0.0000 0.9268 0.0006 0.0000 -0.0042 6.0842 0.0000 0.0003 0.9190 30 0.00028 326.7 18.6 -211.98837 -211.98320 -211.97696 -211.97671 0.0001 0.0019 -0.0002 -0.0318 unit vectors of box grid cell in real space: in reciprocal space: 5.5924 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0330 -0.0018 0.0000 0.9270 0.0007 0.0000 -0.0045 6.0811 0.0000 0.0003 0.9196 31 0.00029 351.0 19.8 -211.98884 -211.98367 -211.97697 -211.97672 0.0001 0.0027 -0.0002 -0.0340 unit vectors of box grid cell in real space: in reciprocal space: 5.5935 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0329 -0.0019 0.0000 0.9272 0.0007 0.0000 -0.0048 6.0779 0.0000 0.0003 0.9203 32 0.00030 376.3 21.1 -211.98933 -211.98416 -211.97699 -211.97673 0.0001 0.0036 -0.0002 -0.0362 unit vectors of box grid cell in real space: in reciprocal space: 5.5946 0.0001 0.0000 1.0000 0.0000 0.0000 0.0000 6.0329 -0.0020 0.0000 0.9273 0.0008 0.0000 -0.0051 6.0746 0.0000 0.0003 0.9210 33 0.00032 402.6 22.4 -211.98984 -211.98467 -211.97702 -211.97673 0.0001 0.0046 -0.0002 -0.0385 unit vectors of box grid cell in real space: in reciprocal space: 5.5957 0.0001 0.0000 1.0000 0.0000 0.0000 0.0001 6.0328 -0.0022 0.0000 0.9275 0.0008 0.0000 -0.0054 6.0712 0.0000 0.0003 0.9217 34 0.00035 429.6 23.7 -211.99036 -211.98520 -211.97706 -211.97674 0.0001 0.0057 -0.0002 -0.0409 unit vectors of box grid cell in real space: in reciprocal space: 5.5968 0.0001 0.0000 1.0000 0.0000 0.0000 0.0001 6.0327 -0.0023 0.0000 0.9277 0.0009 0.0000 -0.0057 6.0676 0.0000 0.0003 0.9224 35 0.00037 457.4 25.0 -211.99091 -211.98575 -211.97709 -211.97675 0.0001 0.0069 -0.0002 -0.0433 unit vectors of box grid cell in real space: in reciprocal space: 5.5979 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0326 -0.0024 0.0000 0.9279 0.0009 0.0000 -0.0061 6.0640 0.0000 0.0004 0.9231 36 0.00040 486.2 26.4 -211.99152 -211.98636 -211.97717 -211.97680 0.0001 0.0084 -0.0002 -0.0459 unit vectors of box grid cell in real space: in reciprocal space: 5.5991 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0325 -0.0025 0.0000 0.9281 0.0010 0.0000 -0.0064 6.0602 0.0000 0.0004 0.9239 37 0.00042 516.1 27.9 -211.99212 -211.98696 -211.97722 -211.97682 0.0001 0.0100 -0.0002 -0.0484 unit vectors of box grid cell in real space: in reciprocal space: 5.6003 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0325 -0.0027 0.0000 0.9284 0.0010 0.0000 -0.0067 6.0563 0.0000 0.0004 0.9247 38 0.00043 547.0 29.4 -211.99272 -211.98757 -211.97726 -211.97683 0.0002 0.0117 -0.0002 -0.0511 unit vectors of box grid cell in real space: in reciprocal space: 5.6014 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0324 -0.0028 0.0000 0.9286 0.0011 0.0000 -0.0071 6.0523 0.0000 0.0004 0.9255 39 0.00045 579.0 30.9 -211.99334 -211.98818 -211.97729 -211.97683 0.0002 0.0137 -0.0002 -0.0538 unit vectors of box grid cell in real space: in reciprocal space: 5.6026 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0323 -0.0030 0.0000 0.9288 0.0011 0.0000 -0.0075 6.0482 0.0000 0.0005 0.9263 40 0.00047 611.8 32.4 -211.99397 -211.98882 -211.97733 -211.97683 0.0002 0.0158 -0.0002 -0.0566 unit vectors of box grid cell in real space: in reciprocal space: 5.6038 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0322 -0.0031 0.0000 0.9290 0.0012 0.0000 -0.0078 6.0439 0.0000 0.0005 0.9272 41 0.00050 645.4 33.9 -211.99462 -211.98948 -211.97738 -211.97683 0.0002 0.0182 -0.0002 -0.0594 unit vectors of box grid cell in real space: in reciprocal space: 5.6050 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0321 -0.0033 0.0000 0.9292 0.0013 0.0000 -0.0082 6.0396 0.0000 0.0005 0.9281 42 0.00053 679.6 35.5 -211.99529 -211.99015 -211.97743 -211.97682 0.0002 0.0208 -0.0002 -0.0623 unit vectors of box grid cell in real space: in reciprocal space: 5.6062 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0320 -0.0034 0.0000 0.9294 0.0013 0.0000 -0.0086 6.0351 0.0000 0.0005 0.9289 43 0.00055 714.5 37.1 -211.99599 -211.99085 -211.97749 -211.97682 0.0002 0.0237 -0.0003 -0.0653 unit vectors of box grid cell in real space: in reciprocal space: 5.6075 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0319 -0.0036 0.0000 0.9296 0.0014 0.0000 -0.0090 6.0305 0.0000 0.0006 0.9298 44 0.00058 750.2 38.8 -211.99670 -211.99156 -211.97755 -211.97682 0.0003 0.0268 -0.0003 -0.0683 unit vectors of box grid cell in real space: in reciprocal space: 5.6087 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0318 -0.0037 0.0000 0.9299 0.0015 0.0000 -0.0094 6.0258 0.0000 0.0006 0.9308 45 0.00060 786.6 40.5 -211.99743 -211.99230 -211.97762 -211.97682 0.0003 0.0301 -0.0003 -0.0715 unit vectors of box grid cell in real space: in reciprocal space: 5.6099 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0317 -0.0039 0.0000 0.9301 0.0015 0.0000 -0.0098 6.0210 0.0000 0.0006 0.9317 46 0.00062 823.7 42.3 -211.99819 -211.99305 -211.97770 -211.97683 0.0003 0.0338 -0.0003 -0.0746 unit vectors of box grid cell in real space: in reciprocal space: 5.6111 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0316 -0.0041 0.0000 0.9303 0.0016 0.0000 -0.0103 6.0161 0.0000 0.0006 0.9327 47 0.00065 861.2 44.0 -211.99896 -211.99383 -211.97780 -211.97683 0.0003 0.0377 -0.0003 -0.0779 unit vectors of box grid cell in real space: in reciprocal space: 5.6123 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0314 -0.0042 0.0000 0.9305 0.0017 0.0000 -0.0107 6.0110 0.0000 0.0007 0.9337 48 0.00068 899.0 45.8 -211.99976 -211.99463 -211.97791 -211.97684 0.0004 0.0420 -0.0003 -0.0811 unit vectors of box grid cell in real space: in reciprocal space: 5.6135 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0313 -0.0044 0.0000 0.9307 0.0017 0.0000 -0.0111 6.0059 0.0000 0.0007 0.9347 49 0.00070 937.0 47.6 -212.00057 -211.99545 -211.97803 -211.97685 0.0004 0.0466 -0.0003 -0.0845 unit vectors of box grid cell in real space: in reciprocal space: 5.6148 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0312 -0.0046 0.0000 0.9310 0.0018 0.0000 -0.0116 6.0006 0.0000 0.0007 0.9357 50 0.00073 975.1 49.4 -212.00140 -211.99628 -211.97816 -211.97686 0.0004 0.0516 -0.0003 -0.0879 unit vectors of box grid cell in real space: in reciprocal space: 5.6160 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0311 -0.0048 0.0000 0.9312 0.0019 0.0000 -0.0121 5.9952 0.0000 0.0007 0.9367 51 0.00075 1013.4 51.4 -212.00225 -211.99713 -211.97830 -211.97686 0.0005 0.0569 -0.0003 -0.0914 unit vectors of box grid cell in real space: in reciprocal space: 5.6172 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0310 -0.0050 0.0000 0.9314 0.0019 0.0000 -0.0125 5.9898 0.0000 0.0008 0.9378 52 0.00078 1051.5 53.3 -212.00309 -211.99798 -211.97844 -211.97685 0.0005 0.0626 -0.0003 -0.0949 unit vectors of box grid cell in real space: in reciprocal space: 5.6183 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0308 -0.0052 0.0000 0.9316 0.0020 0.0000 -0.0130 5.9842 0.0000 0.0008 0.9389 53 0.00080 1089.3 55.2 -212.00397 -211.99886 -211.97862 -211.97687 0.0005 0.0686 -0.0003 -0.0986 unit vectors of box grid cell in real space: in reciprocal space: 5.6195 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0307 -0.0054 0.0000 0.9318 0.0021 0.0000 -0.0135 5.9785 0.0000 0.0008 0.9400 54 0.00083 1126.6 57.2 -212.00487 -211.99976 -211.97882 -211.97688 0.0006 0.0751 -0.0003 -0.1022 unit vectors of box grid cell in real space: in reciprocal space: 5.6207 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0306 -0.0056 0.0000 0.9320 0.0022 0.0000 -0.0140 5.9728 0.0000 0.0009 0.9411 55 0.00087 1163.4 59.1 -212.00577 -212.00067 -211.97904 -211.97688 0.0006 0.0821 -0.0003 -0.1059 unit vectors of box grid cell in real space: in reciprocal space: 5.6218 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0304 -0.0058 0.0000 0.9322 0.0023 0.0000 -0.0145 5.9669 0.0000 0.0009 0.9422 56 0.00089 1199.5 61.1 -212.00669 -212.00159 -211.97928 -211.97690 0.0006 0.0894 -0.0003 -0.1097 unit vectors of box grid cell in real space: in reciprocal space: 5.6230 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0303 -0.0060 0.0000 0.9325 0.0024 0.0000 -0.0150 5.9610 0.0000 0.0009 0.9433 57 0.00092 1234.7 63.2 -212.00769 -212.00260 -211.97960 -211.97698 0.0007 0.0972 -0.0003 -0.1136 unit vectors of box grid cell in real space: in reciprocal space: 5.6241 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0301 -0.0062 0.0000 0.9327 0.0024 0.0000 -0.0156 5.9549 0.0000 0.0010 0.9444 58 0.00094 1268.8 65.3 -212.00883 -212.00375 -211.98008 -211.97720 0.0007 0.1055 -0.0003 -0.1175 unit vectors of box grid cell in real space: in reciprocal space: 5.6252 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0300 -0.0064 0.0000 0.9329 0.0025 0.0000 -0.0161 5.9488 0.0000 0.0010 0.9456 59 0.00097 1301.6 67.5 -212.00975 -212.00467 -211.98035 -211.97718 0.0008 0.1143 -0.0003 -0.1214 unit vectors of box grid cell in real space: in reciprocal space: 5.6263 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0299 -0.0066 0.0000 0.9331 0.0026 0.0000 -0.0166 5.9426 0.0000 0.0010 0.9468 60 0.00099 1332.8 69.6 -212.01066 -212.00558 -211.98064 -211.97716 0.0008 0.1235 -0.0003 -0.1254 unit vectors of box grid cell in real space: in reciprocal space: 5.6274 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0297 -0.0068 0.0000 0.9333 0.0027 0.0000 -0.0172 5.9364 0.0000 0.0011 0.9480 61 0.00103 1362.3 71.8 -212.01159 -212.00651 -211.98096 -211.97714 0.0008 0.1333 -0.0003 -0.1295 unit vectors of box grid cell in real space: in reciprocal space: 5.6284 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0296 -0.0071 0.0000 0.9335 0.0028 0.0000 -0.0178 5.9300 0.0000 0.0011 0.9491 62 0.00106 1390.0 73.9 -212.01251 -212.00744 -211.98131 -211.97712 0.0009 0.1436 -0.0003 -0.1336 unit vectors of box grid cell in real space: in reciprocal space: 5.6294 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0294 -0.0073 0.0000 0.9337 0.0029 0.0000 -0.0183 5.9237 0.0000 0.0011 0.9503 63 0.00108 1415.7 76.2 -212.01344 -212.00837 -211.98169 -211.97711 0.0009 0.1544 -0.0004 -0.1378 unit vectors of box grid cell in real space: in reciprocal space: 5.6304 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0292 -0.0075 0.0000 0.9339 0.0030 0.0000 -0.0189 5.9172 0.0000 0.0012 0.9515 64 0.00111 1439.3 78.4 -212.01437 -212.00931 -211.98209 -211.97710 0.0010 0.1658 -0.0004 -0.1421 unit vectors of box grid cell in real space: in reciprocal space: 5.6314 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0291 -0.0077 0.0000 0.9340 0.0031 0.0000 -0.0195 5.9107 0.0000 0.0012 0.9527 65 0.00113 1460.4 80.8 -212.01530 -212.01024 -211.98252 -211.97709 0.0010 0.1777 -0.0004 -0.1464 unit vectors of box grid cell in real space: in reciprocal space: 5.6324 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0289 -0.0080 0.0000 0.9342 0.0032 0.0000 -0.0201 5.9042 0.0000 0.0013 0.9540 66 0.00115 1479.0 83.1 -212.01622 -212.01116 -211.98298 -211.97709 0.0011 0.1902 -0.0004 -0.1507 unit vectors of box grid cell in real space: in reciprocal space: 5.6333 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0288 -0.0082 0.0000 0.9344 0.0033 0.0000 -0.0207 5.8977 0.0000 0.0013 0.9552 67 0.00118 1494.8 85.5 -212.01713 -212.01208 -211.98347 -211.97708 0.0011 0.2033 -0.0004 -0.1551 unit vectors of box grid cell in real space: in reciprocal space: 5.6342 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0286 -0.0085 0.0000 0.9346 0.0034 0.0000 -0.0213 5.8911 0.0000 0.0013 0.9564 68 0.00121 1507.8 87.8 -212.01803 -212.01299 -211.98400 -211.97708 0.0012 0.2169 -0.0004 -0.1596 unit vectors of box grid cell in real space: in reciprocal space: 5.6351 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0284 -0.0087 0.0000 0.9348 0.0035 0.0000 -0.0219 5.8845 0.0000 0.0014 0.9576 69 0.00124 1517.8 90.1 -212.01892 -212.01388 -211.98454 -211.97707 0.0012 0.2312 -0.0004 -0.1641 unit vectors of box grid cell in real space: in reciprocal space: 5.6359 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0283 -0.0090 0.0000 0.9349 0.0036 0.0000 -0.0226 5.8778 0.0000 0.0014 0.9589 70 0.00126 1524.9 92.5 -212.01980 -212.01477 -211.98513 -211.97707 0.0013 0.2460 -0.0004 -0.1686 unit vectors of box grid cell in real space: in reciprocal space: 5.6368 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0281 -0.0092 0.0000 0.9351 0.0037 0.0000 -0.0232 5.8712 0.0000 0.0015 0.9601 71 0.00128 1529.1 94.9 -212.02066 -212.01563 -211.98573 -211.97708 0.0013 0.2614 -0.0004 -0.1732 unit vectors of box grid cell in real space: in reciprocal space: 5.6376 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0279 -0.0095 0.0000 0.9352 0.0038 0.0000 -0.0239 5.8646 0.0000 0.0015 0.9613 72 0.00130 1530.3 97.4 -212.02150 -212.01647 -211.98634 -211.97707 0.0014 0.2774 -0.0004 -0.1779 unit vectors of box grid cell in real space: in reciprocal space: 5.6383 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0278 -0.0098 0.0000 0.9354 0.0039 0.0000 -0.0245 5.8579 0.0000 0.0016 0.9625 73 0.00132 1528.1 99.9 -212.02231 -212.01729 -211.98698 -211.97707 0.0014 0.2940 -0.0004 -0.1826 unit vectors of box grid cell in real space: in reciprocal space: 5.6390 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0276 -0.0100 0.0000 0.9355 0.0040 0.0000 -0.0252 5.8513 0.0000 0.0016 0.9637 74 0.00134 1522.7 102.4 -212.02309 -212.01807 -211.98762 -211.97705 0.0015 0.3112 -0.0004 -0.1874 unit vectors of box grid cell in real space: in reciprocal space: 5.6397 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0274 -0.0103 0.0000 0.9357 0.0041 0.0000 -0.0259 5.8447 0.0000 0.0016 0.9649 75 0.00136 1514.2 104.8 -212.02385 -212.01884 -211.98830 -211.97704 0.0015 0.3290 -0.0004 -0.1922 unit vectors of box grid cell in real space: in reciprocal space: 5.6404 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0272 -0.0106 0.0000 0.9358 0.0043 0.0000 -0.0266 5.8381 0.0000 0.0017 0.9661 76 0.00139 1502.6 107.2 -212.02458 -212.01958 -211.98900 -211.97703 0.0016 0.3474 -0.0004 -0.1970 unit vectors of box grid cell in real space: in reciprocal space: 5.6410 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0271 -0.0108 0.0000 0.9360 0.0044 0.0000 -0.0273 5.8316 0.0000 0.0017 0.9673 77 0.00141 1488.1 109.6 -212.02529 -212.02029 -211.98971 -211.97702 0.0016 0.3664 -0.0004 -0.2019 unit vectors of box grid cell in real space: in reciprocal space: 5.6416 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0269 -0.0111 0.0000 0.9361 0.0045 0.0000 -0.0280 5.8251 0.0000 0.0018 0.9685 78 0.00143 1470.6 112.1 -212.02596 -212.02097 -211.99043 -211.97702 0.0017 0.3860 -0.0004 -0.2069 unit vectors of box grid cell in real space: in reciprocal space: 5.6422 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0267 -0.0114 0.0000 0.9362 0.0046 0.0000 -0.0287 5.8187 0.0000 0.0018 0.9697 79 0.00145 1450.3 114.6 -212.02662 -212.02163 -211.99116 -211.97701 0.0017 0.4061 -0.0004 -0.2119 unit vectors of box grid cell in real space: in reciprocal space: 5.6427 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0265 -0.0117 0.0000 0.9363 0.0047 0.0000 -0.0294 5.8123 0.0000 0.0019 0.9708 80 0.00146 1427.5 117.2 -212.02724 -212.02226 -211.99190 -211.97701 0.0017 0.4268 -0.0004 -0.2169 unit vectors of box grid cell in real space: in reciprocal space: 5.6432 0.0002 0.0000 1.0000 0.0000 0.0000 0.0001 6.0264 -0.0120 0.0000 0.9364 0.0049 0.0000 -0.0301 5.8060 0.0000 0.0019 0.9720 81 0.00147 1402.1 119.7 -212.02783 -212.02285 -211.99264 -211.97701 0.0018 0.4481 -0.0004 -0.2220 unit vectors of box grid cell in real space: in reciprocal space: 5.6437 0.0001 -0.0001 1.0000 0.0000 0.0000 0.0001 6.0262 -0.0123 0.0000 0.9365 0.0050 0.0000 -0.0309 5.7997 0.0000 0.0020 0.9731 82 0.00149 1374.2 122.1 -212.02839 -212.02342 -211.99339 -211.97701 0.0018 0.4699 -0.0004 -0.2271 unit vectors of box grid cell in real space: in reciprocal space: 5.6441 0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0260 -0.0126 0.0000 0.9366 0.0051 0.0000 -0.0316 5.7935 0.0000 0.0020 0.9742 83 0.00151 1344.1 124.5 -212.02892 -212.02396 -211.99415 -211.97702 0.0019 0.4922 -0.0004 -0.2323 unit vectors of box grid cell in real space: in reciprocal space: 5.6445 0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0258 -0.0129 0.0000 0.9367 0.0052 0.0000 -0.0324 5.7874 0.0000 0.0021 0.9753 84 0.00153 1312.2 126.9 -212.02942 -212.02446 -211.99491 -211.97703 0.0019 0.5151 -0.0004 -0.2375 unit vectors of box grid cell in real space: in reciprocal space: 5.6448 0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0257 -0.0132 0.0000 0.9368 0.0054 0.0000 -0.0332 5.7814 0.0000 0.0021 0.9764 85 0.00155 1278.4 129.3 -212.02988 -212.02492 -211.99565 -211.97703 0.0020 0.5384 -0.0004 -0.2428 unit vectors of box grid cell in real space: in reciprocal space: 5.6452 0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0255 -0.0135 0.0000 0.9369 0.0055 0.0000 -0.0340 5.7754 0.0000 0.0022 0.9775 86 0.00156 1243.2 131.7 -212.03031 -212.02536 -211.99638 -211.97703 0.0020 0.5623 -0.0004 -0.2481 unit vectors of box grid cell in real space: in reciprocal space: 5.6454 0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0253 -0.0138 0.0000 0.9370 0.0056 0.0000 -0.0348 5.7696 0.0000 0.0022 0.9785 87 0.00157 1206.5 134.1 -212.03070 -212.02576 -211.99710 -211.97703 0.0020 0.5867 -0.0004 -0.2534 unit vectors of box grid cell in real space: in reciprocal space: 5.6457 0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0252 -0.0142 0.0000 0.9370 0.0058 0.0000 -0.0356 5.7638 0.0000 0.0023 0.9795 88 0.00158 1168.7 136.5 -212.03106 -212.02611 -211.99779 -211.97703 0.0021 0.6115 -0.0005 -0.2588 unit vectors of box grid cell in real space: in reciprocal space: 5.6459 0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0250 -0.0145 0.0000 0.9371 0.0059 0.0000 -0.0364 5.7582 0.0000 0.0024 0.9805 89 0.00159 1129.9 138.8 -212.03138 -212.02644 -211.99847 -211.97703 0.0021 0.6368 -0.0005 -0.2643 unit vectors of box grid cell in real space: in reciprocal space: 5.6461 0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0248 -0.0148 0.0000 0.9372 0.0061 0.0000 -0.0372 5.7527 0.0000 0.0024 0.9815 90 0.00160 1090.4 141.0 -212.03165 -212.02672 -211.99913 -211.97701 0.0022 0.6625 -0.0005 -0.2697 unit vectors of box grid cell in real space: in reciprocal space: 5.6462 0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0246 -0.0151 0.0000 0.9372 0.0062 0.0000 -0.0380 5.7472 0.0000 0.0025 0.9824 91 0.00162 1050.3 143.2 -212.03191 -212.02698 -211.99977 -211.97700 0.0022 0.6886 -0.0005 -0.2752 unit vectors of box grid cell in real space: in reciprocal space: 5.6463 0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0245 -0.0155 0.0000 0.9372 0.0063 0.0000 -0.0389 5.7419 0.0000 0.0025 0.9834 92 0.00163 1009.9 145.4 -212.03213 -212.02721 -212.00039 -211.97700 0.0022 0.7151 -0.0005 -0.2808 unit vectors of box grid cell in real space: in reciprocal space: 5.6464 0.0000 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0243 -0.0158 0.0000 0.9373 0.0065 0.0000 -0.0397 5.7367 0.0000 0.0026 0.9843 93 0.00164 969.4 147.5 -212.03233 -212.02742 -212.00099 -211.97700 0.0023 0.7421 -0.0005 -0.2864 unit vectors of box grid cell in real space: in reciprocal space: 5.6464 0.0000 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0242 -0.0162 0.0000 0.9373 0.0066 0.0000 -0.0406 5.7316 0.0000 0.0026 0.9852 94 0.00164 928.9 149.6 -212.03250 -212.02758 -212.00156 -211.97700 0.0023 0.7693 -0.0005 -0.2920 unit vectors of box grid cell in real space: in reciprocal space: 5.6465 0.0000 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0240 -0.0165 0.0000 0.9373 0.0068 0.0000 -0.0415 5.7267 0.0000 0.0027 0.9860 95 0.00165 888.8 151.6 -212.03264 -212.02773 -212.00210 -211.97700 0.0023 0.7970 -0.0005 -0.2976 unit vectors of box grid cell in real space: in reciprocal space: 5.6464 0.0000 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0238 -0.0169 0.0000 0.9374 0.0069 -0.0001 -0.0423 5.7218 0.0000 0.0028 0.9868 96 0.00166 848.9 153.6 -212.03276 -212.02786 -212.00262 -211.97700 0.0023 0.8250 -0.0005 -0.3033 unit vectors of box grid cell in real space: in reciprocal space: 5.6464 0.0000 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0237 -0.0172 0.0000 0.9374 0.0071 -0.0001 -0.0432 5.7171 0.0000 0.0028 0.9876 97 0.00167 809.6 155.5 -212.03286 -212.02796 -212.00313 -211.97701 0.0024 0.8532 -0.0005 -0.3091 unit vectors of box grid cell in real space: in reciprocal space: 5.6463 0.0000 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0235 -0.0176 0.0000 0.9374 0.0072 -0.0001 -0.0442 5.7125 0.0000 0.0029 0.9884 98 0.00167 770.8 157.3 -212.03293 -212.02804 -212.00360 -211.97702 0.0024 0.8818 -0.0005 -0.3148 unit vectors of box grid cell in real space: in reciprocal space: 5.6461 0.0000 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0234 -0.0179 0.0000 0.9374 0.0074 -0.0001 -0.0451 5.7081 0.0000 0.0029 0.9892 99 0.00168 732.9 159.1 -212.03298 -212.02808 -212.00404 -211.97703 0.0024 0.9107 -0.0005 -0.3206 * Physical Quantities at step: 100 from rhoofr: total integrated electronic density in g-space = 96.000000 in r-space = 96.000000 unit vectors of box grid cell in real space: in reciprocal space: 5.6460 0.0000 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0232 -0.0183 0.0000 0.9374 0.0076 -0.0001 -0.0460 5.7037 0.0000 0.0030 0.9899 total energy = -212.03300 Hartree a.u. kinetic energy = 94.67495 Hartree a.u. electrostatic energy = -198.34783 Hartree a.u. esr = 0.42810 Hartree a.u. eself = 210.64152 Hartree a.u. pseudopotential energy = -96.42255 Hartree a.u. n-l pseudopotential energy = 36.64065 Hartree a.u. exchange-correlation energy = -48.57823 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -23.45 -22.85 -22.63 -22.06 -21.98 -21.76 -21.59 -21.53 -21.49 -21.44 -21.33 -21.26 -11.19 -11.09 -10.82 -10.37 -8.73 -8.59 -8.36 -8.19 -8.11 -8.03 -7.99 -7.18 -6.05 -6.02 -6.01 -5.87 -5.74 -5.38 -5.29 -5.05 -4.93 -4.58 -4.51 -4.15 -4.09 -3.97 -3.92 -3.81 -3.77 -3.73 -3.67 -3.23 -2.98 -2.87 -2.80 -2.63 Allocated memory (kb) = 48692 CELL_PARAMETERS 9.41020794 -0.00001548 -0.00008980 -0.00001875 16.06227028 -0.07511659 -0.00010173 -0.04784421 9.51346247 System Density [g/cm^3] : 2.8056 Center of mass square displacement (a.u.): 0.106914 Total stress (GPa) -3.57423982 0.00844839 -0.01160082 0.00844839 0.68753185 -1.13887471 -0.01160082 -1.13887472 -0.08386638 ATOMIC_POSITIONS O 0.316705E+01 0.149053E+02 0.100491E+01 O 0.787162E+01 0.687421E+01 0.102855E+01 O 0.221562E+01 0.599155E+01 0.434047E+01 O 0.692125E+01 0.140237E+02 0.431679E+01 O 0.397337E+01 0.110398E+02 0.714623E+01 O 0.867856E+01 0.300804E+01 0.717101E+01 O 0.397178E+01 0.489616E+01 0.866215E+01 O 0.867700E+01 0.129271E+02 0.863890E+01 O 0.316697E+01 0.110526E+01 0.529137E+01 O 0.787254E+01 0.913704E+01 0.526745E+01 O 0.221610E+01 0.100180E+02 0.195180E+01 O 0.692095E+01 0.198717E+01 0.197617E+01 Si 0.318356E+00 0.800630E+01 0.314707E+01 Si 0.502375E+01 -0.251268E-01 0.317123E+01 Si 0.214286E+01 0.122626E+02 -0.900855E-01 Si 0.684785E+01 0.423182E+01 -0.662510E-01 Si 0.214213E+01 0.374806E+01 0.638425E+01 Si 0.684774E+01 0.117797E+02 0.636035E+01 ATOMIC_VELOCITIES O -0.117588E-03 0.161931E-03 -0.210103E-03 O -0.117815E-03 0.161159E-03 -0.211411E-03 O 0.183475E-03 0.267849E-04 -0.570257E-04 O 0.182555E-03 0.285733E-04 -0.586020E-04 O -0.703173E-04 -0.194388E-03 -0.234393E-03 O -0.698959E-04 -0.193675E-03 -0.233825E-03 O -0.716062E-04 0.194340E-03 0.230836E-03 O -0.718498E-04 0.194434E-03 0.231964E-03 O -0.113943E-03 -0.164938E-03 0.211490E-03 O -0.113359E-03 -0.165206E-03 0.210077E-03 O 0.179784E-03 -0.351784E-04 0.594858E-04 O 0.180108E-03 -0.356687E-04 0.610250E-04 Si 0.917959E-04 0.253864E-05 0.262261E-06 Si 0.930878E-04 0.165965E-05 -0.507191E-06 Si -0.432450E-04 0.222227E-04 -0.553092E-04 Si -0.441029E-04 0.236255E-04 -0.545389E-04 Si -0.429853E-04 -0.185170E-04 0.544020E-04 Si -0.428640E-04 -0.190551E-04 0.559666E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 223.95 0.0614 2 34.46 0.0391 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 100 0.00168 696.0 160.8 -212.03300 -212.02811 -212.00444 -211.97703 0.0024 0.9399 -0.0005 -0.3265 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//sio2_93.save restart file written in 0.102 sec. Averaged Physical Quantities accomulated this run ekinc : 0.00079 0.00079 (AU) ekin : 94.62838 94.62838 (AU) epot : -343.16337 -343.16337 (AU) total energy : -212.00502 -212.00502 (AU) temperature : 61.80030 61.80030 (K ) enthalpy : -211.99993 -211.99993 (AU) econs : -211.98343 -211.98343 (AU) pressure : -3.82291 -3.82291 (Gpa) volume : 1496.34612 1496.34612 (AU) initialize : 6.86s CPU 0.61s WALL ( 1 calls) main_loop : 884.53s CPU 74.35s WALL ( 100 calls) Called by main_loop: formf : 3.63s CPU 0.31s WALL ( 101 calls) move_electro : 817.37s CPU 68.46s WALL ( 100 calls) ortho : 5.37s CPU 0.46s WALL ( 100 calls) updatc : 0.28s CPU 0.02s WALL ( 100 calls) strucf : 0.10s CPU 0.01s WALL ( 101 calls) calbec : 0.44s CPU 0.03s WALL ( 101 calls) Called by move_electrons: rhoofr : 735.33s CPU 61.49s WALL ( 100 calls) vofrho : 15.83s CPU 1.39s WALL ( 100 calls) dforce : 29.86s CPU 2.55s WALL ( 2400 calls) calphi : 0.52s CPU 0.05s WALL ( 100 calls) newd : 29.70s CPU 2.49s WALL ( 100 calls) nlfl : 0.67s CPU 0.05s WALL ( 100 calls) Called by ortho: ortho_iter : 1.23s CPU 0.11s WALL ( 100 calls) rsg : 0.92s CPU 0.08s WALL ( 100 calls) rhoset : 0.39s CPU 0.03s WALL ( 100 calls) sigset : 0.28s CPU 0.03s WALL ( 100 calls) tauset : 0.22s CPU 0.02s WALL ( 100 calls) Small boxes: rhov : 70.77s CPU 5.92s WALL ( 100 calls) fftb : 23.30s CPU 1.94s WALL ( 5001 calls) Low-level routines: prefor : 1.26s CPU 0.10s WALL ( 201 calls) nlfq : 4.14s CPU 0.35s WALL ( 100 calls) nlsm1 : 2.51s CPU 0.21s WALL ( 301 calls) nlsm2 : 4.03s CPU 0.34s WALL ( 100 calls) fft : 26.86s CPU 2.29s WALL ( 1300 calls) ffts : 1.69s CPU 0.14s WALL ( 200 calls) fftw : 25.43s CPU 2.15s WALL ( 7200 calls) fft_scatter : 14.96s CPU 1.32s WALL ( 8700 calls) betagx : 3.41s CPU 0.29s WALL ( 1 calls) qradx : 1.54s CPU 0.13s WALL ( 1 calls) nlinit : 5.62s CPU 0.47s WALL ( 1 calls) init_dim : 0.01s CPU 0.01s WALL ( 1 calls) newnlinit : 35.96s CPU 3.23s WALL ( 101 calls) from_restart : 0.25s CPU 0.02s WALL ( 1 calls) ortho_iter : 1.23s CPU 0.11s WALL ( 100 calls) CP : 14m51.57s CPU 1m15.12s WALL This run was terminated on: 17:29:49 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/o2-us-para-pbe.in50000644000175000017500000000171312341373026016146 0ustar mbamba&CONTROL title = 'O2 Crystal', calculation = 'cp', restart_mode = 'restart', ndr = 53, ndw = 53, nstep = 100, iprint = 10, isave = 50, tstress = .TRUE., tprnfor = .TRUE., dt = 12.0d0, etot_conv_thr = 1.d-8, prefix = 'o2' verbosity = 'medium' / &SYSTEM ibrav = 14, celldm(1) = 12.0 celldm(2) = 1.0 celldm(3) = 1.0 celldm(4) = 0.0 celldm(5) = 0.0 celldm(6) = 0.0 nspin = 2, nbnd = 7 tot_magnetization = 2 nat = 2, ntyp = 1, ecutwfc = 30.0, ecutrho = 240.0, nr1b = 24, nr2b = 24, nr3b = 24 / &ELECTRONS emass = 900.d0, emass_cutoff = 2.8d0, orthogonalization = 'ortho', electron_dynamics = 'verlet', electron_velocities = 'zero', ortho_max = 30 / &IONS ion_dynamics = 'verlet', ion_radius(1) = 1.0d0, ion_velocities = 'zero', / ATOMIC_SPECIES O 16.0d0 O.pbe-rrkjus.UPF ATOMIC_POSITIONS (bohr) O 3.260309 2.287244 5.163090 O 3.260309 2.287244 7.479148 espresso-5.1/CPV/tests/check-cp.x.j0000755000175000017500000002077512341373026015211 0ustar mbamba#!/bin/sh # Automated checks for cp.x - CC 2009 # . ../../environment_variables # # You shouldn't need to modify anything below this line. # # Some specific quantities are checked against a reference output # Checks are implemented for the following calculations: # ' fill in here ' # (see below for the three latter) # # Input data: *.in, reference results: *.res, output: *.out # ./check-cp.x.j checks all *.in files # ./check-cp.x.j "some file(s)" checks the specified files # Example: # ./check-cp.x.j h2o*.in lsda* # If you want to save a copy in file "logfile": # ./check-cp.x.j h2o*.in lsda* | tee logfile # # The quantites that are verified are: # the last value of total energy, forces and stress # taken from examples - not sure it is really needed if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi # ESPRESSO_ROOT=`cd ../.. ; pwd` ESPRESSO_TMPDIR=$ESPRESSO_ROOT/CPV/tmp/ ESPRESSO_PSEUDO=$ESPRESSO_ROOT/pseudo/ # no need to specify outdir and pseudo_dir in all *.in files export ESPRESSO_TMPDIR ESPRESSO_PSEUDO if test ! -d $ESPRESSO_TMPDIR then mkdir $ESPRESSO_TMPDIR fi # this is the current directory, where the test is executed TESTDIR=`pwd` # With no arguments, checks all *.in files # With an argument, checks files (ending with .in1, .in2, ecc...) matching the argument if test $# = 0 then files=`/bin/ls *.in1` else files=`/bin/ls $*| grep "\.in[1-9]"` fi ######################################################################## # function to get pseudopotentials from the web if missing ######################################################################## get_pp () { ppfiles=`grep UPF $1 | awk '{print $3}'` for ppfile in $ppfiles do if ! test -f $ESPRESSO_PSEUDO/$ppfile ; then $ECHO "Downloading $ppfile to $ESPRESSO_PSEUDO...\c" $WGET $ESPRESSO_PSEUDO/$ppfile $NETWORK_PSEUDO/$ppfile 2> /dev/null if test $? != 0; then $ECHO "failed!" $ECHO "test $1 will not be executed" # status=1 else $ECHO "success" # status=0 fi fi done } ######################################################################## # function to test NEB calculations - usage: check_neb "file prefix" # obsolete - will be moved to NEB-specific tests ######################################################################## check_neb () { # get reference number of neb iterations n0=`grep 'neb: convergence' $1.ref | awk '{print $1}'` # get reference activation energy (truncated to 4 significant digits) e0=`grep 'activation energy' $1.ref | tail -1 | awk '{printf "%8.4f\n", $5}'` # n1=`grep 'neb: convergence' $1.out | awk '{print $1}'` e1=`grep 'activation energy' $1.out | tail -1 | awk '{printf "%8.4f\n", $5}'` if test "$e1" = "$e0" then if test "$n1" = "$n0" then $ECHO "passed" fi fi if test "$e1" != "$e0" then $ECHO "discrepancy in activation energy detected" $ECHO "Reference: $e0, You got: $e1" fi if test "$n1" != "$n0" then $ECHO "discrepancy in number of neb iterations detected" $ECHO "Reference: $n0, You got: $n1" fi } ######################################################################## # function to test scf calculations - usage: check_scf "file prefix" ######################################################################## check_cp () { fname=$1.ref$2 # get reference total energy (cut to 6 significant digits) e0=`grep "total energy =" $fname | tail -1 | awk '{printf "%18.6f\n", $4}'` # get reference number for stress matrix s0=`grep -A 3 "Total stress" $fname | tail -3 | tr '\n' ' ' | awk '{ printf "%-18.8f", $1+$2+$3+$4+$5+$6+$7+$8+$9 }'` # get reference eigenvalues v0u=`grep -A 2 "Eigenvalues (eV).*spin.*1" $fname | tail -1 | awk '{ for(i=1;i<=NF;i++) { v=v+$i; } print v }'` v0d=`grep -A 2 "Eigenvalues (eV).*spin.*2" $fname | tail -1 | awk '{ for(i=1;i<=NF;i++) { v=v+$i; } print v }'` # get average temperature over the step of the current execution t0=`grep -A 6 "Averaged Physical Quantities" $fname | tail -1 | awk '{ print $4 }'` # note that only the final energy, pressure, number of iterations, # and only the initial force are tested - hopefully this should # cover the various MD and optimization cases as well as simple scf # fname=$1.out$2 e1=`grep "total energy =" $fname | tail -1 | awk '{printf "%18.6f\n", $4}'` s1=`grep -A 3 "Total stress" $fname | tail -3 | tr '\n' ' ' | awk '{ printf "%-18.8f", $1+$2+$3+$4+$5+$6+$7+$8+$9 }'` v1u=`grep -A 2 "Eigenvalues (eV).*spin.*1" $fname | tail -1 | awk '{ for(i=1;i<=NF;i++) { v=v+$i; } print v }'` v1d=`grep -A 2 "Eigenvalues (eV).*spin.*2" $fname | tail -1 | awk '{ for(i=1;i<=NF;i++) { v=v+$i; } print v }'` t1=`grep -A 6 "Averaged Physical Quantities" $fname | tail -1 | awk '{ print $4 }'` # #echo $e1 #echo $s1 #echo $v1 #echo $t1 # if test "$e1" = "$e0" then if test "$s1" = "$s0" then if test "$v1u" = "$v0u" then if test "$v1u" = "$v0u" then if test "$t1" = "$t0" then $ECHO " $2 passed" fi fi fi fi fi if test "$e1" != "$e0" then $ECHO "discrepancy in total energy detected" $ECHO "Reference: $e0, You got: $e1" fi if test "$s1" != "$s0" then $ECHO "discrepancy in stress detected" $ECHO "Reference: $s0, You got: $s1" fi if test "$v1u" != "$v0u" then $ECHO "discrepancy in eigenvalues detected" $ECHO "Reference: $v0u, You got: $v1u" fi if test "$v1d" != "$v0d" then $ECHO "discrepancy in eigenvalues detected" $ECHO "Reference: $v0d, You got: $v1d" fi if test "$t1" != "$t0" then $ECHO "discrepancy in average temperature" $ECHO "Reference: $t0, You got: $t1" fi } ######################################################################## # function to get wall times - usage: get_times "file prefix" ######################################################################## get_times () { # convert from "1h23m45.6s" to seconds # the following line prevents cases such as "2m 7.5s" grep 'WALL$' $1.ref$2 | sed 's/m /m0/' > $1.tmp # in order to get cpu instead of wall time, replace $3 to $5 tref=`awk '{ str = $5; h = m = s = 0; if (split(str, x, "h") == 2) { h = x[1]; str = x[2]; } if (split(str, x, "m") == 2) { m = x[1]; str = x[2]; } if (split(str, x, "s") == 2) { s = x[1]; str = x[2]; } t += h * 3600 + m * 60 + s; } END { printf("%.2f\n", t); }' \ $1.tmp` # as above for file *.out grep 'WALL$' $1.out$2 | sed 's/m /m0/' > $1.tmp tout=`awk '{ str = $5; h = m = s = 0; if (split(str, x, "h") == 2) { h = x[1]; str = x[2]; } if (split(str, x, "m") == 2) { m = x[1]; str = x[2]; } if (split(str, x, "s") == 2) { s = x[1]; str = x[2]; } t += h * 3600 + m * 60 + s; } END { printf("%.2f\n", t); }' \ $1.tmp` /bin/rm $1.tmp # accumulate data totref=`echo $totref $tref | awk '{print $1+$2}'` totout=`echo $totout $tout | awk '{print $1+$2}'` } for file in $files do name=`basename $file .in1` $ECHO "Checking $name...\c" ### # run the code in the scratch directory # cd $ESPRESSO_TMPDIR # steps="" # for i in 1 2 3 4 5 6 7 8 9 do if test -f $TESTDIR/$name.in$i ; then get_pp $TESTDIR/$name.in$i $ECHO ".$i.\c" steps=`echo $steps $i` $PARA_PREFIX $ESPRESSO_ROOT/bin/cp.x $PARA_POSTFIX \ -i $TESTDIR/$name.in$i > $TESTDIR/$name.out$i if test $? != 0; then $ECHO "FAILED with error condition!" $ECHO "Input: $name.in$i, Output: $name.out$i, Reference: $name.ref$i" $ECHO "Aborting" exit 1 fi fi done # cd $TESTDIR # echo # for i in $steps do if test -f $name.ref$i ; then # reference file exists if grep 'neb: convergence achieved' $name.ref$i > /dev/null; then # # Specific test for NEB # check_neb $name # else # # Test for scf/relax/md/vc-relax # check_cp $name $i #echo check # fi # # extract wall time statistics # get_times $name $i # else $ECHO "not checked, reference file not available " fi done # done $ECHO "Total wall time (s) spent in this run: " $totout $ECHO "Reference : " $totref espresso-5.1/CPV/tests/h2o-mt-blyp.ref10000644000175000017500000006126312341373026015736 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:22:45 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/h2o-mt-blyp.in1 Job Title: Water Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.blyp-mt.UPF file type is UPF v.1 Reading pseudopotential for specie # 2 from file : /plx/userinternal/acv0/espresso/pseudo/H.blyp-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 100 Print out every 100 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 2493.41 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 7680 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: LEE, YANG, AND PARR Using Generalized Gradient Corrections with Exchange functional: BECKE Correlation functional: PERDEW AND WANG Exchange-correlation = SLA LYP B88 BLYP ( 1 3 1 3 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.832500 -0.224300 -0.000100 -0.224300 1.832500 0.000200 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 373248 Number of x-y planes for each processors: nr3l = 72 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 373248 Number of x-y planes for each processors: nr3sl = 72 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 83519 83519 83519 83519.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 83519 83519 83519 83519.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 10408 10408 10408 10408.00 System geometry initialization ------------------------------ Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00000 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 4 2.00 2.00 2.00 2.00 formf: eself= 18.94976 formf: vps(g=0)= -0.0063239 rhops(g=0)= -0.0034722 formf: sum_g vps(g)= -4.3546661 sum_g rhops(g)= -1.0540044 formf: vps(g=0)= -0.0011896 rhops(g=0)= -0.0005787 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 1.45743 0.0 0.0 16.61845 16.61845 16.61845 18.07588 0.0000 0.0000 0.0000 0.0000 2 3.37031 0.0 0.0 12.61697 12.61697 12.61697 15.98727 0.0000 0.0000 0.0000 0.0000 3 4.81260 0.0 0.0 7.78398 7.78398 7.78398 12.59658 0.0000 0.0000 0.0000 0.0000 4 5.48116 0.0 0.0 2.96217 2.96217 2.96217 8.44333 0.0000 0.0000 0.0000 0.0000 5 5.49239 0.0 0.0 -1.45144 -1.45144 -1.45144 4.04095 0.0000 0.0000 0.0000 0.0000 6 4.83753 0.0 0.0 -4.98322 -4.98322 -4.98322 -0.14570 0.0000 0.0000 0.0000 0.0000 7 3.53392 0.0 0.0 -6.98224 -6.98224 -6.98224 -3.44832 0.0000 0.0000 0.0000 0.0000 8 2.15219 0.0 0.0 -7.72794 -7.72794 -7.72794 -5.57576 0.0000 0.0000 0.0000 0.0000 9 1.32264 0.0 0.0 -8.20443 -8.20443 -8.20443 -6.88179 0.0000 0.0000 0.0000 0.0000 10 1.04393 0.0 0.0 -8.86827 -8.86827 -8.86827 -7.82433 0.0000 0.0000 0.0000 0.0000 11 0.97593 0.0 0.0 -9.62712 -9.62712 -9.62712 -8.65119 0.0000 0.0000 0.0000 0.0000 12 0.89782 0.0 0.0 -10.30456 -10.30456 -10.30456 -9.40674 0.0000 0.0000 0.0000 0.0000 13 0.78413 0.0 0.0 -10.85644 -10.85644 -10.85644 -10.07232 0.0000 0.0000 0.0000 0.0000 14 0.68263 0.0 0.0 -11.33250 -11.33250 -11.33250 -10.64987 0.0000 0.0000 0.0000 0.0000 15 0.61986 0.0 0.0 -11.78505 -11.78505 -11.78505 -11.16519 0.0000 0.0000 0.0000 0.0000 16 0.59021 0.0 0.0 -12.23682 -12.23682 -12.23682 -11.64660 0.0000 0.0000 0.0000 0.0000 17 0.57793 0.0 0.0 -12.69056 -12.69056 -12.69056 -12.11263 0.0000 0.0000 0.0000 0.0000 18 0.57140 0.0 0.0 -13.14295 -13.14295 -13.14295 -12.57155 0.0000 0.0000 0.0000 0.0000 19 0.56508 0.0 0.0 -13.59059 -13.59059 -13.59059 -13.02551 0.0000 0.0000 0.0000 0.0000 20 0.55658 0.0 0.0 -14.03047 -14.03047 -14.03047 -13.47389 0.0000 0.0000 0.0000 0.0000 21 0.54381 0.0 0.0 -14.45812 -14.45812 -14.45812 -13.91431 0.0000 0.0000 0.0000 0.0000 22 0.52411 0.0 0.0 -14.86634 -14.86634 -14.86634 -14.34223 0.0000 0.0000 0.0000 0.0000 23 0.49509 0.0 0.0 -15.24590 -15.24590 -15.24590 -14.75082 0.0000 0.0000 0.0000 0.0000 24 0.45610 0.0 0.0 -15.58802 -15.58802 -15.58802 -15.13193 0.0000 0.0000 0.0000 0.0000 25 0.40886 0.0 0.0 -15.88687 -15.88687 -15.88687 -15.47801 0.0000 0.0000 0.0000 0.0000 26 0.35685 0.0 0.0 -16.14069 -16.14069 -16.14069 -15.78384 0.0000 0.0000 0.0000 0.0000 27 0.30407 0.0 0.0 -16.35141 -16.35141 -16.35141 -16.04734 0.0000 0.0000 0.0000 0.0000 28 0.25391 0.0 0.0 -16.52336 -16.52336 -16.52336 -16.26945 0.0000 0.0000 0.0000 0.0000 29 0.20861 0.0 0.0 -16.66194 -16.66194 -16.66194 -16.45333 0.0000 0.0000 0.0000 0.0000 30 0.16924 0.0 0.0 -16.77266 -16.77266 -16.77266 -16.60342 0.0000 0.0000 0.0000 0.0000 31 0.13600 0.0 0.0 -16.86059 -16.86059 -16.86059 -16.72459 0.0000 0.0000 0.0000 0.0000 32 0.10849 0.0 0.0 -16.93010 -16.93010 -16.93010 -16.82161 0.0000 0.0000 0.0000 0.0000 33 0.08605 0.0 0.0 -16.98483 -16.98483 -16.98483 -16.89878 0.0000 0.0000 0.0000 0.0000 34 0.06790 0.0 0.0 -17.02773 -17.02773 -17.02773 -16.95984 0.0000 0.0000 0.0000 0.0000 35 0.05332 0.0 0.0 -17.06121 -17.06121 -17.06121 -17.00789 0.0000 0.0000 0.0000 0.0000 36 0.04166 0.0 0.0 -17.08720 -17.08720 -17.08720 -17.04554 0.0000 0.0000 0.0000 0.0000 37 0.03241 0.0 0.0 -17.10729 -17.10729 -17.10729 -17.07488 0.0000 0.0000 0.0000 0.0000 38 0.02512 0.0 0.0 -17.12277 -17.12277 -17.12277 -17.09766 0.0000 0.0000 0.0000 0.0000 39 0.01941 0.0 0.0 -17.13469 -17.13469 -17.13469 -17.11528 0.0000 0.0000 0.0000 0.0000 40 0.01497 0.0 0.0 -17.14387 -17.14387 -17.14387 -17.12889 0.0000 0.0000 0.0000 0.0000 41 0.01155 0.0 0.0 -17.15093 -17.15093 -17.15093 -17.13938 0.0000 0.0000 0.0000 0.0000 42 0.00892 0.0 0.0 -17.15639 -17.15639 -17.15639 -17.14747 0.0000 0.0000 0.0000 0.0000 43 0.00690 0.0 0.0 -17.16063 -17.16063 -17.16063 -17.15372 0.0000 0.0000 0.0000 0.0000 44 0.00537 0.0 0.0 -17.16394 -17.16394 -17.16394 -17.15857 0.0000 0.0000 0.0000 0.0000 45 0.00419 0.0 0.0 -17.16655 -17.16655 -17.16655 -17.16236 0.0000 0.0000 0.0000 0.0000 46 0.00330 0.0 0.0 -17.16862 -17.16862 -17.16862 -17.16532 0.0000 0.0000 0.0000 0.0000 47 0.00261 0.0 0.0 -17.17028 -17.17028 -17.17028 -17.16767 0.0000 0.0000 0.0000 0.0000 48 0.00209 0.0 0.0 -17.17162 -17.17162 -17.17162 -17.16953 0.0000 0.0000 0.0000 0.0000 49 0.00169 0.0 0.0 -17.17271 -17.17271 -17.17271 -17.17103 0.0000 0.0000 0.0000 0.0000 50 0.00137 0.0 0.0 -17.17361 -17.17361 -17.17361 -17.17224 0.0000 0.0000 0.0000 0.0000 51 0.00113 0.0 0.0 -17.17436 -17.17436 -17.17436 -17.17323 0.0000 0.0000 0.0000 0.0000 52 0.00093 0.0 0.0 -17.17498 -17.17498 -17.17498 -17.17405 0.0000 0.0000 0.0000 0.0000 53 0.00078 0.0 0.0 -17.17550 -17.17550 -17.17550 -17.17472 0.0000 0.0000 0.0000 0.0000 54 0.00065 0.0 0.0 -17.17594 -17.17594 -17.17594 -17.17529 0.0000 0.0000 0.0000 0.0000 55 0.00054 0.0 0.0 -17.17631 -17.17631 -17.17631 -17.17576 0.0000 0.0000 0.0000 0.0000 56 0.00046 0.0 0.0 -17.17662 -17.17662 -17.17662 -17.17616 0.0000 0.0000 0.0000 0.0000 57 0.00039 0.0 0.0 -17.17688 -17.17688 -17.17688 -17.17650 0.0000 0.0000 0.0000 0.0000 58 0.00033 0.0 0.0 -17.17711 -17.17711 -17.17711 -17.17678 0.0000 0.0000 0.0000 0.0000 59 0.00028 0.0 0.0 -17.17730 -17.17730 -17.17730 -17.17702 0.0000 0.0000 0.0000 0.0000 60 0.00024 0.0 0.0 -17.17746 -17.17746 -17.17746 -17.17723 0.0000 0.0000 0.0000 0.0000 61 0.00020 0.0 0.0 -17.17760 -17.17760 -17.17760 -17.17740 0.0000 0.0000 0.0000 0.0000 62 0.00017 0.0 0.0 -17.17772 -17.17772 -17.17772 -17.17755 0.0000 0.0000 0.0000 0.0000 63 0.00015 0.0 0.0 -17.17782 -17.17782 -17.17782 -17.17767 0.0000 0.0000 0.0000 0.0000 64 0.00012 0.0 0.0 -17.17791 -17.17791 -17.17791 -17.17778 0.0000 0.0000 0.0000 0.0000 65 0.00011 0.0 0.0 -17.17798 -17.17798 -17.17798 -17.17787 0.0000 0.0000 0.0000 0.0000 66 0.00009 0.0 0.0 -17.17804 -17.17804 -17.17804 -17.17795 0.0000 0.0000 0.0000 0.0000 67 0.00008 0.0 0.0 -17.17810 -17.17810 -17.17810 -17.17802 0.0000 0.0000 0.0000 0.0000 68 0.00007 0.0 0.0 -17.17814 -17.17814 -17.17814 -17.17808 0.0000 0.0000 0.0000 0.0000 69 0.00006 0.0 0.0 -17.17818 -17.17818 -17.17818 -17.17813 0.0000 0.0000 0.0000 0.0000 70 0.00005 0.0 0.0 -17.17822 -17.17822 -17.17822 -17.17817 0.0000 0.0000 0.0000 0.0000 71 0.00004 0.0 0.0 -17.17824 -17.17824 -17.17824 -17.17820 0.0000 0.0000 0.0000 0.0000 72 0.00004 0.0 0.0 -17.17827 -17.17827 -17.17827 -17.17823 0.0000 0.0000 0.0000 0.0000 73 0.00003 0.0 0.0 -17.17829 -17.17829 -17.17829 -17.17826 0.0000 0.0000 0.0000 0.0000 74 0.00003 0.0 0.0 -17.17831 -17.17831 -17.17831 -17.17828 0.0000 0.0000 0.0000 0.0000 75 0.00002 0.0 0.0 -17.17832 -17.17832 -17.17832 -17.17830 0.0000 0.0000 0.0000 0.0000 76 0.00002 0.0 0.0 -17.17834 -17.17834 -17.17834 -17.17832 0.0000 0.0000 0.0000 0.0000 77 0.00002 0.0 0.0 -17.17835 -17.17835 -17.17835 -17.17833 0.0000 0.0000 0.0000 0.0000 78 0.00001 0.0 0.0 -17.17836 -17.17836 -17.17836 -17.17834 0.0000 0.0000 0.0000 0.0000 79 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 80 0.00001 0.0 0.0 -17.17837 -17.17837 -17.17837 -17.17836 0.0000 0.0000 0.0000 0.0000 81 0.00001 0.0 0.0 -17.17838 -17.17838 -17.17838 -17.17837 0.0000 0.0000 0.0000 0.0000 82 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 83 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17838 0.0000 0.0000 0.0000 0.0000 84 0.00001 0.0 0.0 -17.17839 -17.17839 -17.17839 -17.17839 0.0000 0.0000 0.0000 0.0000 85 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17839 0.0000 0.0000 0.0000 0.0000 86 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 87 0.00000 0.0 0.0 -17.17840 -17.17840 -17.17840 -17.17840 0.0000 0.0000 0.0000 0.0000 88 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17840 0.0000 0.0000 0.0000 0.0000 89 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 90 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 91 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 92 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 93 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 94 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 95 0.00000 0.0 0.0 -17.17841 -17.17841 -17.17841 -17.17841 0.0000 0.0000 0.0000 0.0000 96 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 97 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17841 0.0000 0.0000 0.0000 0.0000 98 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 99 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 total energy = -17.17842 Hartree a.u. kinetic energy = 12.58528 Hartree a.u. electrostatic energy = -18.19051 Hartree a.u. esr = 0.14128 Hartree a.u. eself = 18.94976 Hartree a.u. pseudopotential energy = -9.32929 Hartree a.u. n-l pseudopotential energy = 1.95843 Hartree a.u. exchange-correlation energy = -4.20234 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.73 -12.71 -8.94 -6.91 Allocated memory (kb) = 84504 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.1167 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -0.21050589 0.02998249 -0.00360890 0.02998249 -0.21060143 -0.00234024 -0.00360890 -0.00234024 -0.08844614 ATOMIC_POSITIONS O 0.990000E-02 0.990000E-02 0.000000E+00 H 0.183250E+01 -0.224300E+00 -0.100000E-03 H -0.224300E+00 0.183250E+01 0.200000E-03 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): O 0.235873E-02 0.235085E-02 0.270774E-03 H -0.242591E-02 0.605181E-03 0.162770E-03 H 0.607669E-03 -0.241643E-02 0.100089E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 100 0.00000 0.0 0.0 -17.17842 -17.17842 -17.17842 -17.17842 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//h2o_51.save restart file written in 0.093 sec. Averaged Physical Quantities accomulated this run ekinc : 0.44687 0.44687 (AU) ekin : 11.30009 11.30009 (AU) epot : -28.24112 -28.24112 (AU) total energy : -14.77337 -14.77337 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -14.77337 -14.77337 (AU) econs : -14.77337 -14.77337 (AU) pressure : 7.21895 7.21895 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 3.27s CPU 0.34s WALL ( 1 calls) main_loop : 223.29s CPU 20.06s WALL ( 100 calls) Called by main_loop: move_electro : 220.01s CPU 19.77s WALL ( 100 calls) ortho : 0.75s CPU 0.07s WALL ( 101 calls) updatc : 0.16s CPU 0.01s WALL ( 101 calls) strucf : 0.01s CPU 0.00s WALL ( 1 calls) calbec : 0.23s CPU 0.01s WALL ( 102 calls) Called by move_electrons: rhoofr : 39.51s CPU 3.43s WALL ( 101 calls) vofrho : 163.11s CPU 14.85s WALL ( 101 calls) dforce : 17.57s CPU 1.52s WALL ( 202 calls) calphi : 0.29s CPU 0.02s WALL ( 101 calls) nlfl : 0.01s CPU 0.00s WALL ( 101 calls) Called by ortho: ortho_iter : 0.09s CPU 0.01s WALL ( 101 calls) rsg : 0.12s CPU 0.02s WALL ( 101 calls) rhoset : 0.24s CPU 0.02s WALL ( 101 calls) sigset : 0.08s CPU 0.01s WALL ( 101 calls) tauset : 0.21s CPU 0.01s WALL ( 101 calls) Small boxes: Low-level routines: prefor : 0.04s CPU 0.01s WALL ( 101 calls) nlfq : 0.62s CPU 0.05s WALL ( 101 calls) nlsm1 : 0.23s CPU 0.01s WALL ( 102 calls) nlsm2 : 0.57s CPU 0.05s WALL ( 101 calls) fft : 54.98s CPU 4.77s WALL ( 808 calls) ffts : 13.93s CPU 1.20s WALL ( 202 calls) fftw : 17.59s CPU 1.50s WALL ( 606 calls) fft_scatter : 30.41s CPU 2.65s WALL ( 1616 calls) betagx : 0.18s CPU 0.02s WALL ( 1 calls) qradx : 0.00s CPU 0.00s WALL ( 1 calls) gram : 0.02s CPU 0.00s WALL ( 1 calls) nlinit : 0.33s CPU 0.03s WALL ( 1 calls) init_dim : 0.04s CPU 0.04s WALL ( 1 calls) newnlinit : 0.03s CPU 0.00s WALL ( 1 calls) from_scratch : 2.88s CPU 0.26s WALL ( 1 calls) ortho_iter : 0.09s CPU 0.01s WALL ( 101 calls) CP : 3m47.16s CPU 0m20.51s WALL This run was terminated on: 17:23: 6 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/o2-us-para-pbe.in20000644000175000017500000000167312341373026016150 0ustar mbamba&CONTROL title = 'O2 Crystal', calculation = 'cp', restart_mode = 'restart', ndr = 53, ndw = 53, nstep = 100, iprint = 10, isave = 50, tstress = .TRUE., tprnfor = .TRUE., dt = 12.0d0, etot_conv_thr = 1.d-8, prefix = 'o2' verbosity = 'medium' / &SYSTEM ibrav = 14, celldm(1) = 12.0 celldm(2) = 1.0 celldm(3) = 1.0 celldm(4) = 0.0 celldm(5) = 0.0 celldm(6) = 0.0 nspin = 2, nbnd = 7 tot_magnetization = 2 nat = 2, ntyp = 1, ecutwfc = 30.0, ecutrho = 240.0, nr1b = 24, nr2b = 24, nr3b = 24 / &ELECTRONS emass = 900.d0, emass_cutoff = 2.8d0, orthogonalization = 'ortho', electron_dynamics = 'damp', electron_damping = 0.1, ortho_max = 30 / &IONS ion_dynamics = 'damp', ion_damping = 0.1, ion_radius(1) = 1.0d0, / ATOMIC_SPECIES O 16.0d0 O.pbe-rrkjus.UPF ATOMIC_POSITIONS (bohr) O 3.260309 2.287244 5.163090 O 3.260309 2.287244 7.479148 espresso-5.1/CPV/tests/sio2-us-lda.in40000644000175000017500000000303312341373026015547 0ustar mbamba &control calculation='vc-cp', restart_mode='reset_counters', nstep=100, iprint=10, isave=100, dt=12.0, ndr=93, ndw=94, prefix='sio2' verbosity='medium' / &system ibrav=8, celldm(1)=9.28990, celldm(2)=1.73206, celldm(3)=1.09955, nat=18, ntyp=2, nbnd=48, nspin=1, ecutwfc=20.0, ecutrho=150.0, nr1b=24, nr2b=24, nr3b=24, qcutz=150., q2sigma=2.0, ecfixed=16.0, / &electrons electron_dynamics='verlet', ortho_max=30, emass=700., emass_cutoff=3., / &ions ion_dynamics='verlet', ion_temperature='nose', tempw=300, fnosep=6.6666, ion_radius(1)=1.0, ion_radius(2)=1.0, / &cell cell_dynamics='pr', cell_temperature='nose', temph=300., fnoseh=8.6071, press=1.0, / ATOMIC_SPECIES O 16.00 O.pz-rrkjus.UPF Si 28.00 Si.pz-vbc.UPF ATOMIC_POSITIONS O 3.18829368 14.83237039 1.22882961 O 7.83231469 6.78704039 1.22882961 O 2.07443467 5.99537992 4.73758250 O 6.72031366 14.04231898 4.73758250 O 3.96307134 11.26989826 7.87860582 O 8.60802134 3.22295920 7.87860582 O 3.96307134 4.81915267 9.14625133 O 8.60802134 12.86448267 9.14625133 O 3.18736469 1.25668055 5.58029607 O 7.83324368 9.30201055 5.58029607 O 2.07536366 10.09206195 2.07358613 O 6.71938467 2.04673195 2.07358613 Si 0.28891589 8.04533000 3.40456284 Si 4.93386589 0.00000000 3.40456284 Si 2.13389003 12.27717358 -0.04188031 Si 6.77884003 4.23184358 -0.04188031 Si 2.13389003 3.81348642 6.85202747 Si 6.77884003 11.85881642 6.85202747 espresso-5.1/CPV/tests/si-vbc-lda.in10000644000175000017500000000225212341373026015430 0ustar mbamba&CONTROL title = ' Silicon vbc', calculation = 'cp', restart_mode = 'from_scratch', ndr = 50, ndw = 50, nstep = 200, iprint = 100, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 12.0d0, etot_conv_thr = 1.d-10, prefix = 'si' verbosity = 'medium' / &SYSTEM ibrav = 14, celldm(1) = 10.6, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 8, ntyp = 1, nbnd = 16, ecutwfc = 16.0, ecfixed = 12.0, qcutz = 12.0, q2sigma = 4.0, nr1b= 12, nr2b = 12, nr3b = 12, / &ELECTRONS emass = 800.d0, emass_cutoff = 2.0d0, orthogonalization = 'ortho', electron_dynamics = 'damp', electron_damping = 0.1, electron_velocities = 'zero', ortho_max = 30 / &IONS ion_dynamics = 'none', ion_radius(1) = 0.8d0, / ATOMIC_SPECIES Si 28.08 Si.pz-vbc.UPF ATOMIC_POSITIONS (crystal) Si 0.00000 0.00000 0.00000 Si 0.00000 0.50000 0.50000 Si 0.50000 0.00000 0.50000 Si 0.50000 0.50000 0.00000 Si 0.25000 0.25000 0.25000 Si 0.25000 0.75000 0.75000 Si 0.75000 0.25000 0.75000 Si 0.75000 0.75000 0.25000 espresso-5.1/CPV/tests/h2o-mt-blyp.in40000644000175000017500000000165612341373026015573 0ustar mbamba &control title = ' Water Molecule ', calculation = 'cp', restart_mode = 'restart', ndr = 51, ndw = 51, nstep = 200, iprint = 100, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, prefix = 'h2o' verbosity='medium', / &system ibrav = 14, celldm(1) = 12.0, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 3, ntyp = 2, nbnd = 4, ecutwfc = 80.0, / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', electron_dynamics = 'verlet', / &ions ion_dynamics = 'verlet', ion_radius(1) = 0.8d0, ion_radius(2) = 0.8d0, / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.00d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (bohr) O 0.0099 0.0099 0.0000 0 0 0 H 1.8325 -0.2243 -0.0001 1 1 1 H -0.2243 1.8325 0.0002 1 1 1 espresso-5.1/CPV/tests/sio2-us-lda.in20000644000175000017500000000257712341373026015561 0ustar mbamba &control calculation='cp', restart_mode='reset_counters', nstep=50, iprint=10, isave=50, dt=15.0, ndr=91, ndw=92, prefix='sio2' verbosity='medium' / &system ibrav=8, celldm(1)=9.28990, celldm(2)=1.73206, celldm(3)=1.09955, nat=18, ntyp=2, nbnd=48, nspin=1, ecutwfc=20.0, ecutrho=150.0, nr1b=24, nr2b=24, nr3b=24, qcutz=150., q2sigma=2.0, ecfixed=16.0, / &electrons electron_dynamics='damp', electron_damping=0.2, emass=700., emass_cutoff=3., / &ions ion_dynamics='none', ion_radius(1)=1.0, ion_radius(2)=1.0, / ATOMIC_SPECIES O 16.00 O.pz-rrkjus.UPF Si 28.00 Si.pz-vbc.UPF ATOMIC_POSITIONS O 3.18829368 14.83237039 1.22882961 O 7.83231469 6.78704039 1.22882961 O 2.07443467 5.99537992 4.73758250 O 6.72031366 14.04231898 4.73758250 O 3.96307134 11.26989826 7.87860582 O 8.60802134 3.22295920 7.87860582 O 3.96307134 4.81915267 9.14625133 O 8.60802134 12.86448267 9.14625133 O 3.18736469 1.25668055 5.58029607 O 7.83324368 9.30201055 5.58029607 O 2.07536366 10.09206195 2.07358613 O 6.71938467 2.04673195 2.07358613 Si 0.28891589 8.04533000 3.40456284 Si 4.93386589 0.00000000 3.40456284 Si 2.13389003 12.27717358 -0.04188031 Si 6.77884003 4.23184358 -0.04188031 Si 2.13389003 3.81348642 6.85202747 Si 6.77884003 11.85881642 6.85202747 espresso-5.1/CPV/tests/si-vbc-lda.ref20000644000175000017500000005263612341373026015612 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:31: 9 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/si-vbc-lda.in2 Job Title: Silicon vbc Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/Si.pz-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 50 Print out every 50 MD Steps Reads from unit = 50 Writes to unit = 50 MD Simulation time step = 12.00 Electronic fictitious mass (emass) = 800.00 emass cut-off = 2.00 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 31117.79 [AU] ibrav = 14 alat = 10.60000000 a1 = 10.60000000 0.00000000 0.00000000 a2 = 0.00000000 10.60000000 0.00000000 a3 = 0.00000000 0.00000000 10.60000000 b1 = 0.09433962 0.00000000 0.00000000 b2 = 0.00000000 0.09433962 0.00000000 b3 = 0.00000000 0.00000000 0.09433962 omega = 1191.01600000 Energy Cut-offs --------------- Ecutwfc = 16.0 Ry, Ecutrho = 64.0 Ry, Ecuts = 64.0 Ry Gcutwfc = 6.7 , Gcutrho = 13.5 Gcuts = 13.5 modified kinetic energy functional, with parameters: ecutz = 12.0000 ecsig = 4.0000 ecfix = 12.00 NOTA BENE: refg, mmx = 0.050000 1536 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 verlet algorithm for electron dynamics with friction frice = 0.1000 , grease = 1.0000 Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 32, of States = 16 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are not allowed to move Initial random displacement of ionic coordinates specie amplitude 1 0.100000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 8 mass = 51186.71 (a.u.), 28.08 (amu) rcmax = 0.80 (a.u.) 0.000000 0.000000 0.000000 0.000000 5.300000 5.300000 5.300000 0.000000 5.300000 5.300000 5.300000 0.000000 2.650000 2.650000 2.650000 2.650000 7.950000 7.950000 7.950000 2.650000 7.950000 7.950000 7.950000 2.650000 Ionic position will be re-read from restart file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 10.6000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 10.6000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 10.6000 0.0000 0.0000 1.0000 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 577 577 145 10395 10395 1309 Tot 289 289 73 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 27 27 27 27 27 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 27 27 Local number of cell to store the grid ( nrxx ) = 19683 Number of x-y planes for each processors: nr3l = 27 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 27 27 27 27 27 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 27 27 Local number of cell to store the grid ( nrxx ) = 19683 Number of x-y planes for each processors: nr3sl = 27 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 12 12 12 12 12 12 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 12 12 12 Local number of cell to store the grid ( nrxx ) = 1728 unit vectors of box grid cell in real space: in reciprocal space: 4.7111 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.7111 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.7111 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 5198 5198 5198 5198.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 5198 5198 5198 5198.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 655 655 655 655.00 Small box Mesh ngb = 448 not distributed to processors System geometry initialization ------------------------------ ibrav = 14 cell parameters 10.60000 0.00000 0.00000 0.00000 10.60000 0.00000 0.00000 0.00000 10.60000 unit vectors of box grid cell in real space: in reciprocal space: 4.7111 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.7111 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.7111 0.0000 0.0000 1.0000 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00000 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 0.7619 0.0000 0.0000 1.8417 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /plx/userinternal/acv0/espresso/CPV/tmp//si_50.save restart file read in 0.018 sec. Randomization of SCALED ionic coordinates Species 1 atoms = 8 Old Positions New Positions 0.000000 0.000000 0.000000 -0.001316 -0.001836 0.004084 0.000000 0.500000 0.500000 0.002162 0.500485 0.499564 0.500000 0.000000 0.500000 0.496402 0.000534 0.501639 0.500000 0.500000 0.000000 0.497547 0.504549 -0.001038 0.250000 0.250000 0.250000 0.254071 0.251884 0.254200 0.250000 0.750000 0.750000 0.249961 0.753345 0.748679 0.750000 0.250000 0.750000 0.748110 0.250646 0.746835 0.750000 0.750000 0.250000 0.747664 0.753464 0.252186 Electronic velocities set to zero formf: eself= 63.83076 formf: vps(g=0)= -0.0088167 rhops(g=0)= -0.0033585 formf: sum_g vps(g)= -1.8106621 sum_g rhops(g)= -0.7031023 Delta V(G=0): 0.054021Ry, 1.469977eV WARNING setting to ZERO ions, electrons and cell velocities without setting to ZERO all velocities could generate meaningles trajectories nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 201 0.00134 0.0 0.0 -31.14256 -31.14256 -31.14256 -31.14122 0.0000 0.0000 0.0000 0.0000 202 0.00436 0.0 0.0 -31.14751 -31.14751 -31.14751 -31.14315 0.0000 0.0000 0.0000 0.0000 203 0.00585 0.0 0.0 -31.15150 -31.15150 -31.15150 -31.14565 0.0000 0.0000 0.0000 0.0000 204 0.00424 0.0 0.0 -31.15166 -31.15166 -31.15166 -31.14742 0.0000 0.0000 0.0000 0.0000 205 0.00187 0.0 0.0 -31.15010 -31.15010 -31.15010 -31.14823 0.0000 0.0000 0.0000 0.0000 206 0.00100 0.0 0.0 -31.14972 -31.14972 -31.14972 -31.14873 0.0000 0.0000 0.0000 0.0000 207 0.00145 0.0 0.0 -31.15086 -31.15086 -31.15086 -31.14941 0.0000 0.0000 0.0000 0.0000 208 0.00181 0.0 0.0 -31.15200 -31.15200 -31.15200 -31.15020 0.0000 0.0000 0.0000 0.0000 209 0.00146 0.0 0.0 -31.15226 -31.15226 -31.15226 -31.15080 0.0000 0.0000 0.0000 0.0000 210 0.00088 0.0 0.0 -31.15205 -31.15205 -31.15205 -31.15117 0.0000 0.0000 0.0000 0.0000 211 0.00062 0.0 0.0 -31.15208 -31.15208 -31.15208 -31.15146 0.0000 0.0000 0.0000 0.0000 212 0.00064 0.0 0.0 -31.15240 -31.15240 -31.15240 -31.15176 0.0000 0.0000 0.0000 0.0000 213 0.00062 0.0 0.0 -31.15265 -31.15265 -31.15265 -31.15203 0.0000 0.0000 0.0000 0.0000 214 0.00047 0.0 0.0 -31.15270 -31.15270 -31.15270 -31.15223 0.0000 0.0000 0.0000 0.0000 215 0.00033 0.0 0.0 -31.15269 -31.15269 -31.15269 -31.15237 0.0000 0.0000 0.0000 0.0000 216 0.00028 0.0 0.0 -31.15277 -31.15277 -31.15277 -31.15249 0.0000 0.0000 0.0000 0.0000 217 0.00027 0.0 0.0 -31.15289 -31.15289 -31.15289 -31.15262 0.0000 0.0000 0.0000 0.0000 218 0.00024 0.0 0.0 -31.15296 -31.15296 -31.15296 -31.15272 0.0000 0.0000 0.0000 0.0000 219 0.00018 0.0 0.0 -31.15297 -31.15297 -31.15297 -31.15279 0.0000 0.0000 0.0000 0.0000 220 0.00013 0.0 0.0 -31.15299 -31.15299 -31.15299 -31.15285 0.0000 0.0000 0.0000 0.0000 221 0.00012 0.0 0.0 -31.15303 -31.15303 -31.15303 -31.15291 0.0000 0.0000 0.0000 0.0000 222 0.00011 0.0 0.0 -31.15307 -31.15307 -31.15307 -31.15296 0.0000 0.0000 0.0000 0.0000 223 0.00009 0.0 0.0 -31.15309 -31.15309 -31.15309 -31.15300 0.0000 0.0000 0.0000 0.0000 224 0.00007 0.0 0.0 -31.15309 -31.15309 -31.15309 -31.15303 0.0000 0.0000 0.0000 0.0000 225 0.00005 0.0 0.0 -31.15310 -31.15310 -31.15310 -31.15305 0.0000 0.0000 0.0000 0.0000 226 0.00005 0.0 0.0 -31.15312 -31.15312 -31.15312 -31.15307 0.0000 0.0000 0.0000 0.0000 227 0.00004 0.0 0.0 -31.15314 -31.15314 -31.15314 -31.15309 0.0000 0.0000 0.0000 0.0000 228 0.00003 0.0 0.0 -31.15314 -31.15314 -31.15314 -31.15311 0.0000 0.0000 0.0000 0.0000 229 0.00003 0.0 0.0 -31.15314 -31.15314 -31.15314 -31.15312 0.0000 0.0000 0.0000 0.0000 230 0.00002 0.0 0.0 -31.15315 -31.15315 -31.15315 -31.15313 0.0000 0.0000 0.0000 0.0000 231 0.00002 0.0 0.0 -31.15316 -31.15316 -31.15316 -31.15314 0.0000 0.0000 0.0000 0.0000 232 0.00002 0.0 0.0 -31.15316 -31.15316 -31.15316 -31.15314 0.0000 0.0000 0.0000 0.0000 233 0.00001 0.0 0.0 -31.15316 -31.15316 -31.15316 -31.15315 0.0000 0.0000 0.0000 0.0000 234 0.00001 0.0 0.0 -31.15316 -31.15316 -31.15316 -31.15315 0.0000 0.0000 0.0000 0.0000 235 0.00001 0.0 0.0 -31.15317 -31.15317 -31.15317 -31.15316 0.0000 0.0000 0.0000 0.0000 236 0.00001 0.0 0.0 -31.15317 -31.15317 -31.15317 -31.15316 0.0000 0.0000 0.0000 0.0000 237 0.00001 0.0 0.0 -31.15317 -31.15317 -31.15317 -31.15316 0.0000 0.0000 0.0000 0.0000 238 0.00000 0.0 0.0 -31.15317 -31.15317 -31.15317 -31.15317 0.0000 0.0000 0.0000 0.0000 239 0.00000 0.0 0.0 -31.15317 -31.15317 -31.15317 -31.15317 0.0000 0.0000 0.0000 0.0000 240 0.00000 0.0 0.0 -31.15317 -31.15317 -31.15317 -31.15317 0.0000 0.0000 0.0000 0.0000 241 0.00000 0.0 0.0 -31.15317 -31.15317 -31.15317 -31.15317 0.0000 0.0000 0.0000 0.0000 242 0.00000 0.0 0.0 -31.15317 -31.15317 -31.15317 -31.15317 0.0000 0.0000 0.0000 0.0000 243 0.00000 0.0 0.0 -31.15317 -31.15317 -31.15317 -31.15317 0.0000 0.0000 0.0000 0.0000 244 0.00000 0.0 0.0 -31.15317 -31.15317 -31.15317 -31.15317 0.0000 0.0000 0.0000 0.0000 245 0.00000 0.0 0.0 -31.15317 -31.15317 -31.15317 -31.15317 0.0000 0.0000 0.0000 0.0000 246 0.00000 0.0 0.0 -31.15317 -31.15317 -31.15317 -31.15317 0.0000 0.0000 0.0000 0.0000 247 0.00000 0.0 0.0 -31.15318 -31.15318 -31.15318 -31.15317 0.0000 0.0000 0.0000 0.0000 248 0.00000 0.0 0.0 -31.15318 -31.15318 -31.15318 -31.15317 0.0000 0.0000 0.0000 0.0000 249 0.00000 0.0 0.0 -31.15318 -31.15318 -31.15318 -31.15317 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 250 total energy = -31.15318 Hartree a.u. kinetic energy = 12.29406 Hartree a.u. electrostatic energy = -38.45965 Hartree a.u. esr = 0.00000 Hartree a.u. eself = 63.83076 Hartree a.u. pseudopotential energy = -3.03713 Hartree a.u. n-l pseudopotential energy = 7.53721 Hartree a.u. exchange-correlation energy = -9.48767 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -7.27 -3.50 -3.47 -3.47 -3.41 -3.39 -3.34 1.20 1.22 1.23 1.25 1.26 1.30 3.93 4.01 4.03 Allocated memory (kb) = 10336 CELL_PARAMETERS 10.60000000 0.00000000 0.00000000 0.00000000 10.60000000 0.00000000 0.00000000 0.00000000 10.60000000 System Density [g/cm^3] : 2.1136 Center of mass square displacement (a.u.): 0.000417 Total stress (GPa) -0.80559452 0.08681724 -0.19363763 0.08681724 -0.79561842 -0.18039860 -0.19363755 -0.18039905 -0.80972493 ATOMIC_POSITIONS Si -0.139478E-01 -0.194648E-01 0.432858E-01 Si 0.229173E-01 0.530514E+01 0.529538E+01 Si 0.526186E+01 0.566500E-02 0.531737E+01 Si 0.527399E+01 0.534822E+01 -0.110035E-01 Si 0.269315E+01 0.266997E+01 0.269452E+01 Si 0.264959E+01 0.798545E+01 0.793599E+01 Si 0.792997E+01 0.265684E+01 0.791645E+01 Si 0.792524E+01 0.798671E+01 0.267317E+01 ATOMIC_VELOCITIES Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): Si 0.172395E-02 0.600360E-02 -0.164198E-02 Si -0.115420E-02 0.213122E-02 -0.559875E-03 Si 0.417226E-02 0.151387E-02 -0.325888E-03 Si 0.353607E-02 -0.396270E-03 -0.116205E-02 Si -0.315765E-02 -0.133688E-02 -0.483516E-02 Si -0.495312E-02 -0.215869E-02 0.273140E-02 Si 0.108492E-02 -0.973186E-03 0.437972E-02 Si -0.129030E-02 -0.469829E-02 0.145335E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0018 250 0.00000 0.0 0.0 -31.15318 -31.15318 -31.15318 -31.15317 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//si_50.save restart file written in 0.022 sec. Averaged Physical Quantities accomulated this run ekinc : 0.33152 0.00058 (AU) ekin : 12.59712 12.29563 (AU) epot : -50.76051 -50.98546 (AU) total energy : -30.57934 -31.15244 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -30.57934 -31.15244 (AU) econs : -30.57934 -31.15244 (AU) pressure : 6.17174 -0.78268 (Gpa) volume : 1191.01600 1191.01600 (AU) initialize : 0.69s CPU 0.08s WALL ( 1 calls) main_loop : 10.49s CPU 0.91s WALL ( 50 calls) Called by main_loop: move_electro : 8.18s CPU 0.72s WALL ( 50 calls) ortho : 0.37s CPU 0.03s WALL ( 50 calls) updatc : 0.04s CPU 0.00s WALL ( 50 calls) strucf : 0.00s CPU 0.00s WALL ( 1 calls) calbec : 0.16s CPU 0.01s WALL ( 51 calls) Called by move_electrons: rhoofr : 2.42s CPU 0.22s WALL ( 50 calls) vofrho : 2.13s CPU 0.19s WALL ( 50 calls) dforce : 2.96s CPU 0.26s WALL ( 400 calls) calphi : 0.03s CPU 0.00s WALL ( 50 calls) newd : 0.01s CPU 0.00s WALL ( 50 calls) nlfl : 0.00s CPU 0.00s WALL ( 50 calls) Called by ortho: ortho_iter : 0.11s CPU 0.01s WALL ( 50 calls) rsg : 0.07s CPU 0.01s WALL ( 50 calls) rhoset : 0.06s CPU 0.01s WALL ( 50 calls) sigset : 0.07s CPU 0.00s WALL ( 50 calls) tauset : 0.04s CPU 0.00s WALL ( 50 calls) Small boxes: Low-level routines: prefor : 0.07s CPU 0.00s WALL ( 51 calls) nlfq : 0.48s CPU 0.04s WALL ( 50 calls) nlsm1 : 0.16s CPU 0.01s WALL ( 51 calls) nlsm2 : 0.48s CPU 0.04s WALL ( 50 calls) fft : 0.80s CPU 0.07s WALL ( 150 calls) ffts : 0.51s CPU 0.05s WALL ( 100 calls) fftw : 3.20s CPU 0.28s WALL ( 1200 calls) fft_scatter : 0.95s CPU 0.07s WALL ( 1450 calls) betagx : 0.19s CPU 0.02s WALL ( 1 calls) qradx : 0.00s CPU 0.00s WALL ( 1 calls) nlinit : 0.39s CPU 0.04s WALL ( 1 calls) init_dim : 0.00s CPU 0.00s WALL ( 1 calls) newnlinit : 0.01s CPU 0.00s WALL ( 1 calls) from_restart : 0.05s CPU 0.00s WALL ( 1 calls) ortho_iter : 0.11s CPU 0.01s WALL ( 50 calls) CP : 11.46s CPU 1.02s WALL This run was terminated on: 17:31:10 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/o2-us-para-pbe.in40000644000175000017500000000171112341373026016143 0ustar mbamba&CONTROL title = 'O2 Crystal', calculation = 'cp', restart_mode = 'restart', ndr = 53, ndw = 53, nstep = 50, iprint = 10, isave = 50, tstress = .TRUE., tprnfor = .TRUE., dt = 12.0d0, etot_conv_thr = 1.d-8, prefix = 'o2' verbosity = 'medium' / &SYSTEM ibrav = 14, celldm(1) = 12.0 celldm(2) = 1.0 celldm(3) = 1.0 celldm(4) = 0.0 celldm(5) = 0.0 celldm(6) = 0.0 nspin = 2, nbnd = 7 tot_magnetization = 2 nat = 2, ntyp = 1, ecutwfc = 30.0, ecutrho = 240.0, nr1b = 24, nr2b = 24, nr3b = 24 / &ELECTRONS emass = 900.d0, emass_cutoff = 2.8d0, orthogonalization = 'ortho', electron_dynamics = 'damp', electron_damping = 0.1 ortho_max = 30 / &IONS ion_dynamics = 'none', tranp(1) = .true. amprp(1) = 0.6 ion_radius(1) = 1.0d0, / ATOMIC_SPECIES O 16.0d0 O.pbe-rrkjus.UPF ATOMIC_POSITIONS (bohr) O 3.260309 2.287244 5.163090 O 3.260309 2.287244 7.479148 espresso-5.1/CPV/tests/o2-us-para-pbe.ref50000644000175000017500000007153612341373026016326 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:26:26 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/o2-us-para-pbe.in5 Job Title: O2 Crystal Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.pbe-rrkjus.UPF file type is UPF v.1 file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 100 Print out every 10 MD Steps Reads from unit = 53 Writes to unit = 53 MD Simulation time step = 12.00 Electronic fictitious mass (emass) = 900.00 emass cut-off = 2.80 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 4432.73 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 30.0 Ry, Ecutrho = 240.0 Ry, Ecuts = 120.0 Ry Gcutwfc = 10.5 , Gcutrho = 29.6 Gcuts = 20.9 NOTA BENE: refg, mmx = 0.050000 5760 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 Electron dynamics with newton equations Electron dynamics : the temperature is not controlled Electronic states ----------------- Local Spin Density calculation Number of Electron = 12 Spins up = 7, occupations: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Spins down = 5, occupations: 1.00 1.00 1.00 1.00 1.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND WANG Using Generalized Gradient Corrections with Exchange functional: PERDEW BURKE ERNZERHOF Correlation functional: PERDEW BURKE ERNZERHOF Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 6 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Zero initial momentum for ions Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 2 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.260309 2.287244 5.163090 3.260309 2.287244 7.479148 Ionic position will be re-read from restart file All atoms are allowed to move Ionic temperature is not controlled Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2749 1369 349 108671 38401 4801 Tot 1375 685 175 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 60 60 60 60 60 60 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 60 60 60 Local number of cell to store the grid ( nrxx ) = 216000 Number of x-y planes for each processors: nr3l = 60 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 45 45 45 45 45 45 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 45 45 45 Local number of cell to store the grid ( nrxx ) = 91125 Number of x-y planes for each processors: nr3sl = 45 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 24 24 24 24 24 24 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 24 24 24 Local number of cell to store the grid ( nrxx ) = 13824 unit vectors of box grid cell in real space: in reciprocal space: 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 54336 54336 54336 54336.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 19201 19201 19201 19201.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 2401 2401 2401 2401.00 Small box Mesh ngb = 3490 not distributed to processors System geometry initialization ------------------------------ ibrav = 14 cell parameters 12.00000 0.00000 0.00000 0.00000 12.00000 0.00000 0.00000 0.00000 12.00000 unit vectors of box grid cell in real space: in reciprocal space: 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00000 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 3490 1 865 3 qqq -0.1022 0.5410 0.0000 0.0000 0.5410 -2.5883 0.0000 0.0000 0.0000 0.0000 0.2297 0.2861 0.0000 0.0000 0.2861 0.3565 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4798 -1.3236 0.0000 0.0000 -1.3236 2.2757 0.0000 0.0000 0.0000 0.0000 0.6278 0.8512 0.0000 0.0000 0.8512 1.1500 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file read in 0.023 sec. Ionic velocities set to zero Electronic velocities set to zero formf: eself= 28.72384 formf: vps(g=0)= -0.0087653 rhops(g=0)= -0.0034722 formf: sum_g vps(g)= -2.4887968 sum_g rhops(g)= -0.5404975 Delta V(G=0): 0.021817Ry, 0.593660eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 180 0.00000 0.0 16.3 -31.71505 -31.71505 -31.71489 -31.71489 0.0000 0.0000 0.0000 0.0000 181 0.00002 0.0 135.8 -31.71623 -31.71623 -31.71494 -31.71492 0.0000 0.0000 0.0000 0.0000 182 0.00011 0.0 330.6 -31.71819 -31.71819 -31.71505 -31.71494 0.0000 0.0000 0.0000 0.0000 183 0.00045 0.0 543.3 -31.72054 -31.72054 -31.71537 -31.71493 0.0000 0.0000 0.0000 0.0000 184 0.00136 0.0 727.2 -31.72316 -31.72316 -31.71625 -31.71489 0.0000 0.0000 0.0000 0.0000 185 0.00310 0.0 868.5 -31.72621 -31.72621 -31.71796 -31.71486 0.0000 0.0000 0.0000 0.0000 186 0.00558 0.0 984.0 -31.72981 -31.72981 -31.72046 -31.71488 0.0000 0.0000 0.0000 0.0000 187 0.00830 0.0 1107.3 -31.73375 -31.73375 -31.72323 -31.71494 0.0000 0.0000 0.0000 0.0000 188 0.01052 0.0 1273.3 -31.73760 -31.73760 -31.72550 -31.71498 0.0000 0.0000 0.0000 0.0000 189 0.01169 0.0 1506.6 -31.74100 -31.74100 -31.72669 -31.71499 0.0000 0.0000 0.0000 0.0000 190 0.01174 0.0 1812.4 -31.74394 -31.74394 -31.72672 -31.71498 0.0000 0.0000 0.0000 0.0000 191 0.01102 0.0 2169.1 -31.74660 -31.74660 -31.72600 -31.71498 0.0000 0.0000 0.0000 0.0000 192 0.01007 0.0 2527.7 -31.74909 -31.74909 -31.72508 -31.71501 0.0000 0.0000 0.0000 0.0000 193 0.00938 0.0 2824.5 -31.75127 -31.75127 -31.72444 -31.71505 0.0000 0.0000 0.0000 0.0000 194 0.00926 0.0 3004.5 -31.75289 -31.75289 -31.72435 -31.71508 0.0000 0.0000 0.0000 0.0000 195 0.00985 0.0 3044.6 -31.75386 -31.75386 -31.72494 -31.71508 0.0000 0.0000 0.0000 0.0000 196 0.01110 0.0 2962.9 -31.75432 -31.75432 -31.72617 -31.71507 0.0000 0.0000 0.0000 0.0000 197 0.01271 0.0 2809.2 -31.75446 -31.75446 -31.72777 -31.71506 0.0000 0.0000 0.0000 0.0000 198 0.01417 0.0 2643.4 -31.75436 -31.75436 -31.72924 -31.71507 0.0000 0.0000 0.0000 0.0000 199 0.01492 0.0 2514.8 -31.75388 -31.75388 -31.72999 -31.71506 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 200 from rhoofr: total integrated electronic density spin up in g-space = 7.000000 in r-space = 7.000000 spin down in g-space = 5.000000 in r-space = 5.000000 Spin contamination: s(s+1)= 2.01 (Slater) 2.03 (Becke) 2.00 (expected) total energy = -31.75292 Hartree a.u. kinetic energy = 13.14992 Hartree a.u. electrostatic energy = -28.40842 Hartree a.u. esr = 0.23853 Hartree a.u. eself = 28.72384 Hartree a.u. pseudopotential energy = -16.62108 Hartree a.u. n-l pseudopotential energy = 6.89218 Hartree a.u. exchange-correlation energy = -6.76553 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -31.82 -20.94 -13.29 -13.02 -13.02 -7.34 -7.34 Eigenvalues (eV), kp = 1 , spin = 2 -30.49 -19.06 -12.43 -11.03 -11.03 Allocated memory (kb) = 100568 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.2075 Center of mass square displacement (a.u.): 0.016027 Total stress (GPa) -0.57578704 -0.01285070 -0.05357409 -0.01285070 -0.56298980 -0.03183149 -0.05357579 -0.03183263 -1.41315973 ATOMIC_POSITIONS O 0.315911E+01 0.215804E+01 0.524222E+01 O 0.341533E+01 0.233052E+01 0.763203E+01 ATOMIC_VELOCITIES O -0.963633E-04 -0.643448E-04 -0.885700E-03 O 0.963633E-04 0.643448E-04 0.885700E-03 Forces acting on atoms (au): O 0.232170E-02 0.166764E-02 0.122466E-01 O -0.278263E-02 -0.216024E-02 -0.140364E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2449.51 0.0252 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 200 0.01461 0.0 2449.5 -31.75292 -31.75292 -31.72965 -31.71504 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file written in 0.108 sec. 201 0.01329 0.0 2448.3 -31.75155 -31.75155 -31.72829 -31.71500 0.0000 0.0000 0.0000 0.0000 202 0.01136 0.0 2488.7 -31.74999 -31.74999 -31.72634 -31.71498 0.0000 0.0000 0.0000 0.0000 203 0.00936 0.0 2531.9 -31.74841 -31.74841 -31.72436 -31.71499 0.0000 0.0000 0.0000 0.0000 204 0.00772 0.0 2533.3 -31.74682 -31.74682 -31.72275 -31.71504 0.0000 0.0000 0.0000 0.0000 205 0.00664 0.0 2458.3 -31.74507 -31.74507 -31.72171 -31.71507 0.0000 0.0000 0.0000 0.0000 206 0.00619 0.0 2295.6 -31.74308 -31.74308 -31.72127 -31.71507 0.0000 0.0000 0.0000 0.0000 207 0.00629 0.0 2062.0 -31.74094 -31.74094 -31.72135 -31.71506 0.0000 0.0000 0.0000 0.0000 208 0.00675 0.0 1794.6 -31.73884 -31.73884 -31.72179 -31.71505 0.0000 0.0000 0.0000 0.0000 209 0.00726 0.0 1535.6 -31.73689 -31.73689 -31.72230 -31.71504 0.0000 0.0000 0.0000 0.0000 210 0.00747 0.0 1316.8 -31.73501 -31.73501 -31.72250 -31.71504 0.0000 0.0000 0.0000 0.0000 211 0.00711 0.0 1152.7 -31.73309 -31.73309 -31.72213 -31.71502 0.0000 0.0000 0.0000 0.0000 212 0.00620 0.0 1040.6 -31.73107 -31.73107 -31.72119 -31.71499 0.0000 0.0000 0.0000 0.0000 213 0.00494 0.0 965.7 -31.72908 -31.72908 -31.71991 -31.71497 0.0000 0.0000 0.0000 0.0000 214 0.00368 0.0 906.1 -31.72726 -31.72726 -31.71865 -31.71496 0.0000 0.0000 0.0000 0.0000 215 0.00269 0.0 839.2 -31.72564 -31.72564 -31.71767 -31.71498 0.0000 0.0000 0.0000 0.0000 216 0.00205 0.0 748.4 -31.72417 -31.72417 -31.71706 -31.71501 0.0000 0.0000 0.0000 0.0000 217 0.00174 0.0 629.6 -31.72274 -31.72274 -31.71676 -31.71502 0.0000 0.0000 0.0000 0.0000 218 0.00167 0.0 492.7 -31.72136 -31.72136 -31.71668 -31.71502 0.0000 0.0000 0.0000 0.0000 219 0.00171 0.0 356.2 -31.72010 -31.72010 -31.71672 -31.71501 0.0000 0.0000 0.0000 0.0000 220 0.00176 0.0 238.8 -31.71903 -31.71903 -31.71676 -31.71500 0.0000 0.0000 0.0000 0.0000 221 0.00170 0.0 150.9 -31.71813 -31.71813 -31.71670 -31.71500 0.0000 0.0000 0.0000 0.0000 222 0.00146 0.0 92.7 -31.71733 -31.71733 -31.71645 -31.71499 0.0000 0.0000 0.0000 0.0000 223 0.00109 0.0 57.7 -31.71661 -31.71661 -31.71606 -31.71498 0.0000 0.0000 0.0000 0.0000 224 0.00071 0.0 37.2 -31.71603 -31.71603 -31.71568 -31.71497 0.0000 0.0000 0.0000 0.0000 225 0.00046 0.0 23.9 -31.71565 -31.71565 -31.71542 -31.71496 0.0000 0.0000 0.0000 0.0000 226 0.00040 0.0 13.2 -31.71550 -31.71550 -31.71537 -31.71498 0.0000 0.0000 0.0000 0.0000 227 0.00047 0.0 4.0 -31.71550 -31.71550 -31.71546 -31.71499 0.0000 0.0000 0.0000 0.0000 228 0.00059 0.0 0.1 -31.71559 -31.71559 -31.71559 -31.71500 0.0000 0.0000 0.0000 0.0000 229 0.00068 0.0 9.0 -31.71576 -31.71576 -31.71568 -31.71500 0.0000 0.0000 0.0000 0.0000 230 0.00072 0.0 39.4 -31.71609 -31.71609 -31.71572 -31.71499 0.0000 0.0000 0.0000 0.0000 231 0.00072 0.0 95.3 -31.71663 -31.71663 -31.71572 -31.71500 0.0000 0.0000 0.0000 0.0000 232 0.00071 0.0 172.3 -31.71735 -31.71735 -31.71572 -31.71500 0.0000 0.0000 0.0000 0.0000 233 0.00073 0.0 258.7 -31.71820 -31.71820 -31.71574 -31.71501 0.0000 0.0000 0.0000 0.0000 234 0.00087 0.0 341.2 -31.71912 -31.71912 -31.71588 -31.71500 0.0000 0.0000 0.0000 0.0000 235 0.00123 0.0 411.7 -31.72013 -31.72013 -31.71622 -31.71499 0.0000 0.0000 0.0000 0.0000 236 0.00185 0.0 471.0 -31.72132 -31.72132 -31.71684 -31.71499 0.0000 0.0000 0.0000 0.0000 237 0.00269 0.0 528.0 -31.72270 -31.72270 -31.71768 -31.71499 0.0000 0.0000 0.0000 0.0000 238 0.00358 0.0 595.5 -31.72424 -31.72424 -31.71858 -31.71500 0.0000 0.0000 0.0000 0.0000 239 0.00433 0.0 686.8 -31.72586 -31.72586 -31.71934 -31.71501 0.0000 0.0000 0.0000 0.0000 240 0.00481 0.0 811.6 -31.72753 -31.72753 -31.71982 -31.71501 0.0000 0.0000 0.0000 0.0000 241 0.00500 0.0 972.9 -31.72925 -31.72925 -31.72001 -31.71501 0.0000 0.0000 0.0000 0.0000 242 0.00501 0.0 1164.7 -31.73109 -31.73109 -31.72002 -31.71501 0.0000 0.0000 0.0000 0.0000 243 0.00498 0.0 1371.5 -31.73303 -31.73303 -31.72000 -31.71502 0.0000 0.0000 0.0000 0.0000 244 0.00508 0.0 1571.5 -31.73505 -31.73505 -31.72012 -31.71504 0.0000 0.0000 0.0000 0.0000 245 0.00546 0.0 1744.4 -31.73708 -31.73708 -31.72050 -31.71505 0.0000 0.0000 0.0000 0.0000 246 0.00620 0.0 1878.9 -31.73909 -31.73909 -31.72124 -31.71505 0.0000 0.0000 0.0000 0.0000 247 0.00728 0.0 1976.6 -31.74110 -31.74110 -31.72232 -31.71505 0.0000 0.0000 0.0000 0.0000 248 0.00856 0.0 2051.1 -31.74310 -31.74310 -31.72361 -31.71505 0.0000 0.0000 0.0000 0.0000 249 0.00984 0.0 2122.0 -31.74505 -31.74505 -31.72489 -31.71505 0.0000 0.0000 0.0000 0.0000 250 0.01088 0.0 2207.8 -31.74690 -31.74690 -31.72593 -31.71505 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file written in 0.103 sec. 251 0.01154 0.0 2319.6 -31.74862 -31.74862 -31.72658 -31.71504 0.0000 0.0000 0.0000 0.0000 252 0.01181 0.0 2457.9 -31.75020 -31.75020 -31.72685 -31.71504 0.0000 0.0000 0.0000 0.0000 253 0.01177 0.0 2611.1 -31.75163 -31.75163 -31.72682 -31.71505 0.0000 0.0000 0.0000 0.0000 254 0.01158 0.0 2758.4 -31.75285 -31.75285 -31.72664 -31.71506 0.0000 0.0000 0.0000 0.0000 255 0.01140 0.0 2874.5 -31.75378 -31.75378 -31.72647 -31.71507 0.0000 0.0000 0.0000 0.0000 256 0.01137 0.0 2938.1 -31.75436 -31.75436 -31.72645 -31.71508 0.0000 0.0000 0.0000 0.0000 257 0.01156 0.0 2938.5 -31.75456 -31.75456 -31.72664 -31.71508 0.0000 0.0000 0.0000 0.0000 258 0.01194 0.0 2878.6 -31.75438 -31.75438 -31.72703 -31.71509 0.0000 0.0000 0.0000 0.0000 259 0.01236 0.0 2772.6 -31.75380 -31.75380 -31.72746 -31.71510 0.0000 0.0000 0.0000 0.0000 260 0.01260 0.0 2639.4 -31.75277 -31.75277 -31.72770 -31.71510 0.0000 0.0000 0.0000 0.0000 261 0.01245 0.0 2495.2 -31.75125 -31.75125 -31.72754 -31.71509 0.0000 0.0000 0.0000 0.0000 262 0.01184 0.0 2348.1 -31.74922 -31.74922 -31.72691 -31.71507 0.0000 0.0000 0.0000 0.0000 263 0.01081 0.0 2196.7 -31.74673 -31.74673 -31.72586 -31.71505 0.0000 0.0000 0.0000 0.0000 264 0.00952 0.0 2031.2 -31.74385 -31.74385 -31.72455 -31.71503 0.0000 0.0000 0.0000 0.0000 265 0.00816 0.0 1839.2 -31.74065 -31.74065 -31.72318 -31.71502 0.0000 0.0000 0.0000 0.0000 266 0.00686 0.0 1611.7 -31.73718 -31.73718 -31.72187 -31.71501 0.0000 0.0000 0.0000 0.0000 267 0.00570 0.0 1349.2 -31.73352 -31.73352 -31.72070 -31.71500 0.0000 0.0000 0.0000 0.0000 268 0.00470 0.0 1063.9 -31.72980 -31.72980 -31.71969 -31.71499 0.0000 0.0000 0.0000 0.0000 269 0.00383 0.0 778.0 -31.72621 -31.72621 -31.71881 -31.71498 0.0000 0.0000 0.0000 0.0000 270 0.00304 0.0 516.8 -31.72292 -31.72292 -31.71801 -31.71497 0.0000 0.0000 0.0000 0.0000 271 0.00228 0.0 301.3 -31.72009 -31.72009 -31.71723 -31.71495 0.0000 0.0000 0.0000 0.0000 272 0.00156 0.0 143.5 -31.71786 -31.71786 -31.71649 -31.71493 0.0000 0.0000 0.0000 0.0000 273 0.00097 0.0 45.5 -31.71631 -31.71631 -31.71588 -31.71491 0.0000 0.0000 0.0000 0.0000 274 0.00061 0.0 3.1 -31.71554 -31.71554 -31.71551 -31.71490 0.0000 0.0000 0.0000 0.0000 275 0.00058 0.0 10.8 -31.71558 -31.71558 -31.71548 -31.71490 0.0000 0.0000 0.0000 0.0000 276 0.00091 0.0 65.0 -31.71643 -31.71643 -31.71581 -31.71491 0.0000 0.0000 0.0000 0.0000 277 0.00154 0.0 165.9 -31.71803 -31.71803 -31.71646 -31.71492 0.0000 0.0000 0.0000 0.0000 278 0.00239 0.0 315.9 -31.72032 -31.72032 -31.71732 -31.71493 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 279 Spin contamination: s(s+1)= 2.01 (Slater) 2.02 (Becke) 2.00 (expected) total energy = -31.72322 Hartree a.u. kinetic energy = 13.54170 Hartree a.u. electrostatic energy = -28.02788 Hartree a.u. esr = 0.61960 Hartree a.u. eself = 28.72384 Hartree a.u. pseudopotential energy = -17.37259 Hartree a.u. n-l pseudopotential energy = 7.05737 Hartree a.u. exchange-correlation energy = -6.92182 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -35.44 -19.55 -14.53 -14.53 -13.66 -5.92 -5.91 Eigenvalues (eV), kp = 1 , spin = 2 -34.24 -17.71 -12.69 -12.57 -12.57 Allocated memory (kb) = 100568 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.2075 Center of mass square displacement (a.u.): 0.016027 Total stress (GPa) -0.60810032 0.09602327 1.25715228 0.09602327 -0.69508250 0.80181263 1.25715120 0.80181192 10.37372765 ATOMIC_POSITIONS O 0.317071E+01 0.216922E+01 0.539829E+01 O 0.340372E+01 0.231935E+01 0.747596E+01 ATOMIC_VELOCITIES O -0.565872E-04 -0.294880E-04 -0.405152E-03 O 0.565872E-04 0.294880E-04 0.405152E-03 Forces acting on atoms (au): O -0.250734E-01 -0.156422E-01 -0.215544E+00 O 0.247328E-01 0.162922E-01 0.215930E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 516.43 0.0334 279 0.00336 0.0 516.4 -31.72322 -31.72322 -31.71831 -31.71495 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file written in 0.120 sec. Averaged Physical Quantities accomulated this run ekinc : 0.21724 0.00593 (AU) ekin : 13.32880 13.20117 (AU) epot : -51.34536 -51.86569 (AU) total energy : -31.13595 -31.73347 (AU) temperature : 473.34793 1319.37781 (K ) enthalpy : -31.13595 -31.73347 (AU) econs : -31.13145 -31.72093 (AU) pressure : 2.89739 0.02853 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 5.65s CPU 0.52s WALL ( 1 calls) main_loop : 475.48s CPU 57.47s WALL ( 100 calls) Called by main_loop: move_electro : 465.67s CPU 56.64s WALL ( 100 calls) ortho : 2.48s CPU 0.21s WALL ( 100 calls) updatc : 0.13s CPU 0.01s WALL ( 100 calls) strucf : 0.05s CPU 0.01s WALL ( 101 calls) calbec : 0.01s CPU 0.00s WALL ( 101 calls) Called by move_electrons: rhoofr : 130.36s CPU 11.22s WALL ( 100 calls) vofrho : 276.87s CPU 40.03s WALL ( 100 calls) dforce : 14.58s CPU 1.26s WALL ( 600 calls) calphi : 0.27s CPU 0.02s WALL ( 100 calls) newd : 40.17s CPU 3.81s WALL ( 100 calls) nlfl : 0.04s CPU 0.00s WALL ( 100 calls) Called by ortho: ortho_iter : 0.30s CPU 0.02s WALL ( 200 calls) rsg : 0.23s CPU 0.03s WALL ( 200 calls) rhoset : 0.21s CPU 0.02s WALL ( 200 calls) sigset : 0.17s CPU 0.01s WALL ( 200 calls) tauset : 0.20s CPU 0.01s WALL ( 200 calls) Small boxes: rhov : 10.60s CPU 0.92s WALL ( 100 calls) fftb : 26.53s CPU 2.45s WALL ( 6301 calls) Low-level routines: prefor : 0.33s CPU 0.03s WALL ( 201 calls) nlfq : 2.01s CPU 0.18s WALL ( 100 calls) nlsm1 : 1.32s CPU 0.11s WALL ( 301 calls) nlsm2 : 1.95s CPU 0.17s WALL ( 100 calls) fft : 95.21s CPU 8.20s WALL ( 2300 calls) ffts : 3.54s CPU 0.31s WALL ( 200 calls) fftw : 15.17s CPU 1.30s WALL ( 1800 calls) fft_scatter : 36.15s CPU 3.24s WALL ( 4300 calls) betagx : 2.85s CPU 0.24s WALL ( 1 calls) qradx : 1.50s CPU 0.13s WALL ( 1 calls) nlinit : 5.19s CPU 0.45s WALL ( 1 calls) init_dim : 0.03s CPU 0.03s WALL ( 1 calls) newnlinit : 0.42s CPU 0.04s WALL ( 1 calls) from_restart : 0.13s CPU 0.01s WALL ( 1 calls) ortho_iter : 0.30s CPU 0.02s WALL ( 200 calls) CP : 8m 2.34s CPU 0m58.37s WALL This run was terminated on: 17:27:24 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/o2-us-para-pbe.in10000644000175000017500000000165312341373026016145 0ustar mbamba&CONTROL title = 'O2 Crystal', calculation = 'cp', restart_mode = 'from_scratch', ndr = 53, ndw = 53, nstep = 50, iprint = 10, isave = 50, tstress = .TRUE., tprnfor = .TRUE., dt = 12.0d0, etot_conv_thr = 1.d-8, prefix = 'o2' verbosity = 'medium' / &SYSTEM ibrav = 14, celldm(1) = 12.0 celldm(2) = 1.0 celldm(3) = 1.0 celldm(4) = 0.0 celldm(5) = 0.0 celldm(6) = 0.0 nspin = 2, nbnd = 7 tot_magnetization = 2 nat = 2, ntyp = 1, ecutwfc = 30.0, ecutrho = 240.0, nr1b = 24, nr2b = 24, nr3b = 24 / &ELECTRONS emass = 800.d0, emass_cutoff = 1.8d0, orthogonalization = 'ortho', electron_dynamics = 'damp', electron_damping = 0.2, ortho_max = 30, / &IONS ion_dynamics = 'none', ion_radius(1) = 1.0d0, / ATOMIC_SPECIES O 16.0d0 O.pbe-rrkjus.UPF ATOMIC_POSITIONS (bohr) O 3.260309 2.287244 5.163090 O 3.260309 2.287244 7.479148 espresso-5.1/CPV/tests/o2-us-para-pbe.ref30000644000175000017500000003744112341373026016321 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:25:49 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/o2-us-para-pbe.in3 Job Title: O2 Crystal Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.pbe-rrkjus.UPF file type is UPF v.1 file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 10 Print out every 10 MD Steps Reads from unit = 53 Writes to unit = 53 MD Simulation time step = 12.00 Electronic fictitious mass (emass) = 900.00 emass cut-off = 2.80 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 4432.73 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 30.0 Ry, Ecutrho = 240.0 Ry, Ecuts = 120.0 Ry Gcutwfc = 10.5 , Gcutrho = 29.6 Gcuts = 20.9 NOTA BENE: refg, mmx = 0.050000 5760 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 Electron dynamics with newton equations Electron dynamics : the temperature is not controlled Electronic states ----------------- Local Spin Density calculation Number of Electron = 12 Spins up = 7, occupations: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Spins down = 5, occupations: 1.00 1.00 1.00 1.00 1.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND WANG Using Generalized Gradient Corrections with Exchange functional: PERDEW BURKE ERNZERHOF Correlation functional: PERDEW BURKE ERNZERHOF Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 6 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 2 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.260309 2.287244 5.163090 3.260309 2.287244 7.479148 Ionic position will be re-read from restart file All atoms are allowed to move Ionic temperature is not controlled Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2749 1369 349 108671 38401 4801 Tot 1375 685 175 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 60 60 60 60 60 60 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 60 60 60 Local number of cell to store the grid ( nrxx ) = 216000 Number of x-y planes for each processors: nr3l = 60 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 45 45 45 45 45 45 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 45 45 45 Local number of cell to store the grid ( nrxx ) = 91125 Number of x-y planes for each processors: nr3sl = 45 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 24 24 24 24 24 24 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 24 24 24 Local number of cell to store the grid ( nrxx ) = 13824 unit vectors of box grid cell in real space: in reciprocal space: 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 54336 54336 54336 54336.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 19201 19201 19201 19201.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 2401 2401 2401 2401.00 Small box Mesh ngb = 3490 not distributed to processors System geometry initialization ------------------------------ ibrav = 14 cell parameters 12.00000 0.00000 0.00000 0.00000 12.00000 0.00000 0.00000 0.00000 12.00000 unit vectors of box grid cell in real space: in reciprocal space: 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00000 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 3490 1 865 3 qqq -0.1022 0.5410 0.0000 0.0000 0.5410 -2.5883 0.0000 0.0000 0.0000 0.0000 0.2297 0.2861 0.0000 0.0000 0.2861 0.3565 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4798 -1.3236 0.0000 0.0000 -1.3236 2.2757 0.0000 0.0000 0.0000 0.0000 0.6278 0.8512 0.0000 0.0000 0.8512 1.1500 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file read in 0.023 sec. formf: eself= 28.72384 formf: vps(g=0)= -0.0087653 rhops(g=0)= -0.0034722 formf: sum_g vps(g)= -2.4887968 sum_g rhops(g)= -0.5404975 Delta V(G=0): 0.021817Ry, 0.593660eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 120 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 121 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 122 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 123 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 124 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 125 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 126 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 127 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 128 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 129 Spin contamination: s(s+1)= 2.01 (Slater) 2.03 (Becke) 2.00 (expected) total energy = -31.75508 Hartree a.u. kinetic energy = 13.24555 Hartree a.u. electrostatic energy = -28.34947 Hartree a.u. esr = 0.29825 Hartree a.u. eself = 28.72384 Hartree a.u. pseudopotential energy = -16.77492 Hartree a.u. n-l pseudopotential energy = 6.92555 Hartree a.u. exchange-correlation energy = -6.80179 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -32.45 -20.58 -13.29 -13.22 -13.22 -6.98 -6.98 Eigenvalues (eV), kp = 1 , spin = 2 -31.16 -18.71 -12.41 -11.24 -11.24 Allocated memory (kb) = 100568 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.2075 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -0.22288679 0.00005714 -0.00012520 0.00005714 -0.22141208 -0.00001486 -0.00012519 -0.00001486 -0.24394389 ATOMIC_POSITIONS O 0.326124E+01 0.228721E+01 0.515197E+01 O 0.325938E+01 0.228728E+01 0.749027E+01 ATOMIC_VELOCITIES O 0.841553E-08 -0.470942E-08 -0.863439E-06 O -0.841553E-08 0.470942E-08 0.863439E-06 Forces acting on atoms (au): O 0.385384E-03 0.181719E-03 -0.282156E-04 O 0.377234E-03 0.181691E-03 0.148757E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0001 129 0.00000 0.0 0.0 -31.75508 -31.75508 -31.75508 -31.75508 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file written in 0.097 sec. Averaged Physical Quantities accomulated this run ekinc : 0.45058 0.00000 (AU) ekin : 13.32923 13.24564 (AU) epot : -50.54499 -51.92632 (AU) total energy : -30.46636 -31.75508 (AU) temperature : 0.97901 0.00142 (K ) enthalpy : -30.46636 -31.75508 (AU) econs : -30.46635 -31.75508 (AU) pressure : 4.65410 -0.22845 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 5.49s CPU 0.51s WALL ( 1 calls) main_loop : 44.49s CPU 5.73s WALL ( 10 calls) Called by main_loop: move_electro : 43.52s CPU 5.65s WALL ( 10 calls) ortho : 0.24s CPU 0.02s WALL ( 10 calls) updatc : 0.00s CPU 0.00s WALL ( 10 calls) strucf : 0.01s CPU 0.00s WALL ( 11 calls) calbec : 0.00s CPU 0.00s WALL ( 11 calls) Called by move_electrons: rhoofr : 12.87s CPU 1.12s WALL ( 10 calls) vofrho : 25.19s CPU 3.99s WALL ( 10 calls) dforce : 1.47s CPU 0.13s WALL ( 60 calls) calphi : 0.00s CPU 0.00s WALL ( 10 calls) newd : 3.64s CPU 0.38s WALL ( 10 calls) nlfl : 0.00s CPU 0.00s WALL ( 10 calls) Called by ortho: ortho_iter : 0.01s CPU 0.00s WALL ( 20 calls) rsg : 0.05s CPU 0.00s WALL ( 20 calls) rhoset : 0.03s CPU 0.00s WALL ( 20 calls) sigset : 0.00s CPU 0.00s WALL ( 20 calls) tauset : 0.01s CPU 0.00s WALL ( 20 calls) Small boxes: rhov : 1.03s CPU 0.09s WALL ( 10 calls) fftb : 2.60s CPU 0.24s WALL ( 631 calls) Low-level routines: prefor : 0.01s CPU 0.00s WALL ( 21 calls) nlfq : 0.24s CPU 0.02s WALL ( 10 calls) nlsm1 : 0.14s CPU 0.01s WALL ( 31 calls) nlsm2 : 0.24s CPU 0.02s WALL ( 10 calls) fft : 9.62s CPU 0.82s WALL ( 230 calls) ffts : 0.39s CPU 0.03s WALL ( 20 calls) fftw : 1.63s CPU 0.14s WALL ( 180 calls) fft_scatter : 3.54s CPU 0.30s WALL ( 430 calls) betagx : 2.81s CPU 0.24s WALL ( 1 calls) qradx : 1.51s CPU 0.13s WALL ( 1 calls) nlinit : 5.05s CPU 0.43s WALL ( 1 calls) init_dim : 0.03s CPU 0.03s WALL ( 1 calls) newnlinit : 0.40s CPU 0.04s WALL ( 1 calls) from_restart : 0.11s CPU 0.01s WALL ( 1 calls) ortho_iter : 0.01s CPU 0.00s WALL ( 20 calls) CP : 50.71s CPU 6.38s WALL This run was terminated on: 17:25:56 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/sio2-us-lda.ref40000644000175000017500000017407512341373026015734 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:29:49 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/sio2-us-lda.in4 Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.pz-rrkjus.UPF file type is UPF v.1 file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized Reading pseudopotential for specie # 2 from file : /plx/userinternal/acv0/espresso/pseudo/Si.pz-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 0 reset_counters Number of MD Steps = 100 Print out every 10 MD Steps Reads from unit = 93 Writes to unit = 94 MD Simulation time step = 12.00 Electronic fictitious mass (emass) = 700.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 1.00 [KBar] wmass (calculated) = 49868.25 [AU] ibrav = 8 alat = 9.28990000 a1 = 9.28990000 0.00000000 0.00000000 a2 = 0.00000000 16.09066419 0.00000000 a3 = 0.00000000 0.00000000 10.21470954 b1 = 0.10764379 0.00000000 0.00000000 b2 = 0.00000000 0.06214784 0.00000000 b3 = 0.00000000 0.00000000 0.09789804 omega = 1526.90153773 Energy Cut-offs --------------- Ecutwfc = 20.0 Ry, Ecutrho = 150.0 Ry, Ecuts = 80.0 Ry Gcutwfc = 6.6 , Gcutrho = 18.1 Gcuts = 13.2 modified kinetic energy functional, with parameters: ecutz = 150.0000 ecsig = 2.0000 ecfix = 16.00 NOTA BENE: refg, mmx = 0.050000 6000 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 Electron dynamics with newton equations Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 96, of States = 48 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 54 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 12 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.188294 14.832370 1.228830 7.832315 6.787040 1.228830 2.074435 5.995380 4.737583 6.720314 14.042319 4.737583 3.963071 11.269898 7.878606 8.608021 3.222959 7.878606 3.963071 4.819153 9.146251 8.608021 12.864483 9.146251 3.187365 1.256681 5.580296 7.833244 9.302011 5.580296 2.075364 10.092062 2.073586 6.719385 2.046732 2.073586 Species 2 atoms = 6 mass = 51040.88 (a.u.), 28.00 (amu) rcmax = 1.00 (a.u.) 0.288916 8.045330 3.404563 4.933866 0.000000 3.404563 2.133890 12.277174 -0.041880 6.778840 4.231844 -0.041880 2.133890 3.813486 6.852027 6.778840 11.858816 6.852027 Ionic position will be re-read from restart file All atoms are allowed to move Ionic temperature control via nose thermostat ion dynamics with nose` temperature control: temperature required = 300.00000 (kelvin) NH chain length = 1 active degrees of freedom = 54 time steps per nose osc. = 516 nose` frequency(es) = 6.667 the requested type of NH chains is 0 total number of thermostats used 1 0 0 ionic degrees of freedom for each chain 54 nose` mass(es) for chain 1 = 99946.828 atom i (in sorted order) is assigned to this thermostat : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Volume dynamics with newton equations cell parameters dynamics with nose` temp. control Constant PRESSURE Molecular dynamics: External pressure (GPa) = 0.10 Volume mass = 49868.25 cell dynamics with nose` temperature control: Kinetic energy required = 300.00000 (Kelvin) time steps per nose osc. = 400 nose` frequency = 8.607 (THz) nose` mass(es) = 9993.391 Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 9.2899 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 16.0907 0.0000 0.0000 0.5773 0.0000 3 0.0000 0.0000 10.2147 0.0000 0.0000 0.9095 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1783 951 239 47285 18431 2305 Tot 892 476 120 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 40 64 40 40 64 40 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 40 64 40 Local number of cell to store the grid ( nrxx ) = 102400 Number of x-y planes for each processors: nr3l = 40 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 45 30 27 45 30 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 45 30 Local number of cell to store the grid ( nrxx ) = 36450 Number of x-y planes for each processors: nr3sl = 30 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 24 24 24 24 24 24 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 24 24 24 Local number of cell to store the grid ( nrxx ) = 13824 unit vectors of box grid cell in real space: in reciprocal space: 5.5739 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0340 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 6.1288 0.0000 0.0000 0.9095 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 23643 23643 23643 23643.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 9216 9216 9216 9216.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 1153 1153 1153 1153.00 Small box Mesh ngb = 3183 not distributed to processors System geometry initialization ------------------------------ ibrav = 8 cell parameters 9.40993 -0.00002 -0.00009 -0.00003 16.06186 -0.07666 -0.00010 -0.04883 9.50624 unit vectors of box grid cell in real space: in reciprocal space: 5.6460 0.0000 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0232 -0.0183 0.0000 0.9374 0.0076 -0.0001 -0.0460 5.7037 0.0000 0.0030 0.9899 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00002 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 3183 1 865 3 qqq -0.0987 0.4865 0.0000 0.0000 0.4865 -2.1787 0.0000 0.0000 0.0000 0.0000 0.2330 0.2950 0.0000 0.0000 0.2950 0.3737 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4817 -1.2813 0.0000 0.0000 -1.2813 2.3075 0.0000 0.0000 0.0000 0.0000 0.6338 0.8752 0.0000 0.0000 0.8752 1.2039 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 0.7619 0.0000 0.0000 1.8417 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /plx/userinternal/acv0/espresso/CPV/tmp//sio2_93.save restart file read in 0.031 sec. formf: eself= 210.64152 formf: vps(g=0)= -0.0105484 rhops(g=0)= -0.0041761 formf: sum_g vps(g)= -2.2953729 sum_g rhops(g)= -0.5408494 formf: vps(g=0)= -0.0104575 rhops(g=0)= -0.0027841 formf: sum_g vps(g)= -2.3756620 sum_g rhops(g)= -0.3605663 Delta V(G=0): 0.209913Ry, 5.712036eV formf: eself= 210.64152 formf: vps(g=0)= -0.0105484 rhops(g=0)= -0.0041761 formf: sum_g vps(g)= -2.2953729 sum_g rhops(g)= -0.5408494 formf: vps(g=0)= -0.0104575 rhops(g=0)= -0.0027841 formf: sum_g vps(g)= -2.3756620 sum_g rhops(g)= -0.3605663 Delta V(G=0): 0.209913Ry, 5.712036eV unit vectors of box grid cell in real space: in reciprocal space: 5.6458 0.0000 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0230 -0.0187 0.0000 0.9374 0.0077 -0.0001 -0.0469 5.6997 0.0000 0.0031 0.9906 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 0.00182 641.4 162.4 -212.03300 -212.02811 -212.00508 -211.97718 0.0025 0.9693 -0.0005 -0.3323 unit vectors of box grid cell in real space: in reciprocal space: 5.6455 0.0000 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0229 -0.0191 0.0000 0.9374 0.0079 -0.0001 -0.0479 5.6957 0.0000 0.0031 0.9912 2 0.00182 590.4 164.0 -212.03298 -212.02810 -212.00566 -211.97744 0.0025 0.9989 -0.0005 -0.3382 unit vectors of box grid cell in real space: in reciprocal space: 5.6453 0.0000 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0227 -0.0194 0.0000 0.9374 0.0080 -0.0001 -0.0489 5.6919 0.0000 0.0032 0.9918 3 0.00182 559.6 165.4 -212.03294 -212.02806 -212.00594 -211.97744 0.0025 1.0288 -0.0005 -0.3442 unit vectors of box grid cell in real space: in reciprocal space: 5.6450 -0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0226 -0.0198 0.0000 0.9373 0.0082 -0.0001 -0.0498 5.6882 0.0000 0.0033 0.9924 4 0.00181 529.8 166.8 -212.03288 -212.02801 -212.00620 -211.97745 0.0025 1.0588 -0.0005 -0.3501 unit vectors of box grid cell in real space: in reciprocal space: 5.6447 -0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0224 -0.0202 0.0000 0.9373 0.0084 -0.0001 -0.0508 5.6846 0.0000 0.0033 0.9930 5 0.00181 500.8 168.1 -212.03281 -212.02794 -212.00643 -211.97745 0.0025 1.0890 -0.0005 -0.3561 unit vectors of box grid cell in real space: in reciprocal space: 5.6443 -0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0223 -0.0206 0.0000 0.9373 0.0085 -0.0001 -0.0518 5.6811 0.0000 0.0034 0.9936 6 0.00181 472.7 169.4 -212.03272 -212.02786 -212.00664 -211.97746 0.0025 1.1194 -0.0005 -0.3622 unit vectors of box grid cell in real space: in reciprocal space: 5.6439 -0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0222 -0.0210 0.0000 0.9372 0.0087 -0.0001 -0.0528 5.6778 0.0000 0.0035 0.9941 7 0.00181 445.6 170.6 -212.03262 -212.02776 -212.00682 -211.97747 0.0026 1.1500 -0.0005 -0.3682 unit vectors of box grid cell in real space: in reciprocal space: 5.6435 -0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0220 -0.0214 0.0000 0.9372 0.0089 -0.0001 -0.0538 5.6745 0.0000 0.0035 0.9946 8 0.00182 419.7 171.6 -212.03250 -212.02764 -212.00698 -211.97747 0.0026 1.1807 -0.0005 -0.3743 unit vectors of box grid cell in real space: in reciprocal space: 5.6431 -0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0219 -0.0218 0.0000 0.9371 0.0091 -0.0001 -0.0549 5.6714 0.0000 0.0036 0.9950 9 0.00182 395.3 172.6 -212.03236 -212.02751 -212.00711 -211.97747 0.0026 1.2115 -0.0005 -0.3805 unit vectors of box grid cell in real space: in reciprocal space: 5.6426 -0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0217 -0.0222 0.0000 0.9371 0.0092 -0.0001 -0.0559 5.6685 0.0000 0.0037 0.9955 10 0.00182 372.6 173.5 -212.03221 -212.02736 -212.00721 -211.97747 0.0026 1.2425 -0.0005 -0.3866 unit vectors of box grid cell in real space: in reciprocal space: 5.6421 -0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0216 -0.0227 0.0000 0.9370 0.0094 -0.0001 -0.0570 5.6656 0.0000 0.0037 0.9959 11 0.00181 351.4 174.4 -212.03205 -212.02720 -212.00728 -211.97747 0.0026 1.2736 -0.0005 -0.3928 unit vectors of box grid cell in real space: in reciprocal space: 5.6415 -0.0001 -0.0001 1.0000 0.0000 0.0000 0.0000 6.0215 -0.0231 0.0000 0.9369 0.0096 -0.0001 -0.0581 5.6628 0.0000 0.0038 0.9963 12 0.00180 331.3 175.1 -212.03188 -212.02703 -212.00734 -211.97747 0.0026 1.3048 -0.0005 -0.3990 unit vectors of box grid cell in real space: in reciprocal space: 5.6410 -0.0001 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0213 -0.0235 0.0000 0.9369 0.0098 -0.0001 -0.0591 5.6602 0.0000 0.0039 0.9966 13 0.00180 312.2 175.9 -212.03170 -212.02686 -212.00737 -211.97747 0.0026 1.3361 -0.0005 -0.4053 unit vectors of box grid cell in real space: in reciprocal space: 5.6404 -0.0001 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0212 -0.0239 0.0000 0.9368 0.0100 -0.0001 -0.0602 5.6577 0.0000 0.0040 0.9970 14 0.00179 294.1 176.5 -212.03151 -212.02667 -212.00739 -211.97747 0.0026 1.3674 -0.0005 -0.4116 unit vectors of box grid cell in real space: in reciprocal space: 5.6398 -0.0001 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0211 -0.0244 0.0000 0.9367 0.0102 -0.0001 -0.0614 5.6552 0.0000 0.0040 0.9973 15 0.00179 277.1 177.0 -212.03132 -212.02648 -212.00739 -211.97747 0.0026 1.3989 -0.0005 -0.4179 unit vectors of box grid cell in real space: in reciprocal space: 5.6392 -0.0002 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0209 -0.0248 0.0000 0.9366 0.0104 -0.0001 -0.0625 5.6529 0.0000 0.0041 0.9976 16 0.00180 261.5 177.5 -212.03111 -212.02627 -212.00737 -211.97747 0.0026 1.4304 -0.0005 -0.4242 unit vectors of box grid cell in real space: in reciprocal space: 5.6385 -0.0002 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0208 -0.0253 0.0000 0.9365 0.0105 -0.0001 -0.0636 5.6507 0.0000 0.0042 0.9979 17 0.00179 247.2 177.9 -212.03090 -212.02606 -212.00733 -211.97747 0.0026 1.4620 -0.0005 -0.4306 unit vectors of box grid cell in real space: in reciprocal space: 5.6378 -0.0002 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0207 -0.0257 0.0000 0.9365 0.0107 -0.0001 -0.0648 5.6486 0.0000 0.0043 0.9981 18 0.00179 234.1 178.2 -212.03068 -212.02585 -212.00728 -211.97747 0.0026 1.4936 -0.0005 -0.4370 unit vectors of box grid cell in real space: in reciprocal space: 5.6371 -0.0002 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0205 -0.0262 0.0000 0.9364 0.0109 -0.0001 -0.0659 5.6466 0.0000 0.0043 0.9984 19 0.00178 222.2 178.5 -212.03046 -212.02564 -212.00721 -211.97747 0.0026 1.5253 -0.0005 -0.4435 unit vectors of box grid cell in real space: in reciprocal space: 5.6364 -0.0002 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0204 -0.0266 0.0000 0.9363 0.0111 -0.0001 -0.0671 5.6447 0.0000 0.0044 0.9986 20 0.00177 211.1 178.7 -212.03024 -212.02541 -212.00712 -211.97748 0.0026 1.5570 -0.0005 -0.4499 unit vectors of box grid cell in real space: in reciprocal space: 5.6356 -0.0002 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0203 -0.0271 0.0000 0.9362 0.0113 -0.0001 -0.0683 5.6429 0.0000 0.0045 0.9988 21 0.00176 200.8 178.9 -212.03001 -212.02519 -212.00703 -211.97748 0.0026 1.5888 -0.0005 -0.4564 unit vectors of box grid cell in real space: in reciprocal space: 5.6348 -0.0002 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0202 -0.0276 0.0000 0.9360 0.0115 -0.0001 -0.0695 5.6413 0.0000 0.0046 0.9989 22 0.00176 191.3 178.9 -212.02977 -212.02495 -212.00693 -211.97748 0.0027 1.6206 -0.0005 -0.4629 unit vectors of box grid cell in real space: in reciprocal space: 5.6340 -0.0002 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0200 -0.0280 0.0000 0.9359 0.0117 -0.0001 -0.0707 5.6397 0.0000 0.0047 0.9991 23 0.00177 182.9 178.9 -212.02954 -212.02472 -212.00681 -211.97748 0.0027 1.6525 -0.0005 -0.4695 unit vectors of box grid cell in real space: in reciprocal space: 5.6332 -0.0002 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0199 -0.0285 0.0000 0.9358 0.0119 -0.0001 -0.0719 5.6381 0.0000 0.0047 0.9992 24 0.00176 175.5 178.9 -212.02930 -212.02448 -212.00669 -211.97748 0.0027 1.6843 -0.0006 -0.4761 unit vectors of box grid cell in real space: in reciprocal space: 5.6323 -0.0002 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0198 -0.0290 0.0000 0.9357 0.0121 -0.0001 -0.0732 5.6367 0.0000 0.0048 0.9993 25 0.00176 169.0 178.8 -212.02905 -212.02424 -212.00654 -211.97747 0.0027 1.7162 -0.0006 -0.4827 unit vectors of box grid cell in real space: in reciprocal space: 5.6315 -0.0002 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0196 -0.0295 0.0000 0.9356 0.0124 -0.0001 -0.0744 5.6354 0.0000 0.0049 0.9994 26 0.00175 163.3 178.7 -212.02879 -212.02398 -212.00637 -211.97746 0.0027 1.7481 -0.0006 -0.4893 unit vectors of box grid cell in real space: in reciprocal space: 5.6306 -0.0002 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0195 -0.0300 0.0000 0.9355 0.0126 -0.0001 -0.0757 5.6341 0.0000 0.0050 0.9994 27 0.00174 158.3 178.6 -212.02854 -212.02373 -212.00621 -211.97746 0.0027 1.7800 -0.0006 -0.4960 unit vectors of box grid cell in real space: in reciprocal space: 5.6297 -0.0002 -0.0001 1.0000 0.0000 0.0000 -0.0001 6.0194 -0.0305 0.0000 0.9353 0.0128 -0.0001 -0.0770 5.6330 0.0000 0.0051 0.9995 28 0.00173 153.9 178.4 -212.02830 -212.02349 -212.00604 -211.97746 0.0027 1.8119 -0.0006 -0.5027 unit vectors of box grid cell in real space: in reciprocal space: 5.6287 -0.0002 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0192 -0.0310 0.0000 0.9352 0.0130 -0.0001 -0.0783 5.6319 0.0000 0.0051 0.9995 29 0.00173 150.1 178.1 -212.02805 -212.02324 -212.00587 -211.97746 0.0027 1.8438 -0.0006 -0.5095 unit vectors of box grid cell in real space: in reciprocal space: 5.6278 -0.0002 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0191 -0.0315 0.0000 0.9351 0.0132 -0.0001 -0.0796 5.6309 0.0000 0.0052 0.9995 30 0.00173 146.9 177.8 -212.02780 -212.02300 -212.00570 -211.97746 0.0027 1.8758 -0.0006 -0.5162 unit vectors of box grid cell in real space: in reciprocal space: 5.6268 -0.0002 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0190 -0.0320 0.0000 0.9349 0.0134 -0.0002 -0.0809 5.6300 0.0000 0.0053 0.9995 31 0.00172 144.5 177.4 -212.02755 -212.02275 -212.00552 -211.97746 0.0027 1.9077 -0.0006 -0.5230 unit vectors of box grid cell in real space: in reciprocal space: 5.6258 -0.0002 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0188 -0.0325 0.0000 0.9348 0.0137 -0.0002 -0.0822 5.6291 0.0000 0.0054 0.9995 32 0.00172 142.7 177.1 -212.02730 -212.02250 -212.00533 -211.97746 0.0027 1.9396 -0.0006 -0.5299 unit vectors of box grid cell in real space: in reciprocal space: 5.6248 -0.0002 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0187 -0.0331 0.0000 0.9346 0.0139 -0.0002 -0.0836 5.6284 0.0000 0.0055 0.9995 33 0.00171 141.4 176.7 -212.02705 -212.02226 -212.00513 -211.97746 0.0027 1.9716 -0.0006 -0.5367 unit vectors of box grid cell in real space: in reciprocal space: 5.6238 -0.0002 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0185 -0.0336 0.0000 0.9345 0.0141 -0.0002 -0.0849 5.6277 0.0000 0.0056 0.9994 34 0.00170 140.5 176.3 -212.02681 -212.02201 -212.00493 -211.97746 0.0027 2.0035 -0.0006 -0.5436 unit vectors of box grid cell in real space: in reciprocal space: 5.6228 -0.0002 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0184 -0.0341 0.0000 0.9344 0.0143 -0.0002 -0.0863 5.6270 0.0000 0.0057 0.9993 35 0.00169 140.0 175.9 -212.02655 -212.02176 -212.00472 -211.97746 0.0027 2.0354 -0.0006 -0.5505 unit vectors of box grid cell in real space: in reciprocal space: 5.6217 -0.0002 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0182 -0.0347 0.0000 0.9342 0.0146 -0.0002 -0.0877 5.6265 0.0000 0.0058 0.9993 36 0.00168 139.9 175.4 -212.02630 -212.02150 -212.00451 -211.97745 0.0027 2.0673 -0.0006 -0.5575 unit vectors of box grid cell in real space: in reciprocal space: 5.6207 -0.0002 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0181 -0.0352 0.0000 0.9341 0.0148 -0.0002 -0.0891 5.6260 0.0000 0.0058 0.9992 37 0.00168 140.3 174.9 -212.02605 -212.02126 -212.00431 -211.97745 0.0027 2.0992 -0.0006 -0.5644 unit vectors of box grid cell in real space: in reciprocal space: 5.6196 -0.0002 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0179 -0.0358 0.0000 0.9339 0.0150 -0.0002 -0.0905 5.6255 0.0000 0.0059 0.9990 38 0.00168 141.1 174.3 -212.02581 -212.02102 -212.00410 -211.97746 0.0027 2.1311 -0.0006 -0.5714 unit vectors of box grid cell in real space: in reciprocal space: 5.6185 -0.0002 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0178 -0.0363 0.0000 0.9337 0.0153 -0.0002 -0.0919 5.6252 0.0000 0.0060 0.9989 39 0.00167 142.2 173.7 -212.02556 -212.02077 -212.00389 -211.97746 0.0027 2.1630 -0.0006 -0.5785 unit vectors of box grid cell in real space: in reciprocal space: 5.6174 -0.0002 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0176 -0.0369 0.0000 0.9336 0.0155 -0.0002 -0.0934 5.6248 0.0000 0.0061 0.9988 40 0.00166 143.6 173.2 -212.02531 -212.02052 -212.00367 -211.97746 0.0027 2.1948 -0.0006 -0.5856 unit vectors of box grid cell in real space: in reciprocal space: 5.6163 -0.0002 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0174 -0.0374 0.0000 0.9334 0.0157 -0.0002 -0.0948 5.6246 0.0000 0.0062 0.9986 41 0.00165 145.3 172.6 -212.02506 -212.02028 -212.00345 -211.97745 0.0027 2.2267 -0.0006 -0.5927 unit vectors of box grid cell in real space: in reciprocal space: 5.6151 -0.0001 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0172 -0.0380 0.0000 0.9333 0.0160 -0.0002 -0.0963 5.6244 0.0000 0.0063 0.9985 42 0.00165 147.1 172.0 -212.02481 -212.02003 -212.00322 -211.97745 0.0027 2.2585 -0.0006 -0.5998 unit vectors of box grid cell in real space: in reciprocal space: 5.6140 -0.0001 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0171 -0.0386 0.0000 0.9331 0.0162 -0.0002 -0.0978 5.6242 0.0000 0.0064 0.9983 43 0.00164 149.2 171.3 -212.02456 -212.01978 -212.00300 -211.97744 0.0027 2.2903 -0.0006 -0.6070 unit vectors of box grid cell in real space: in reciprocal space: 5.6128 -0.0001 -0.0002 1.0000 0.0000 0.0000 -0.0001 6.0169 -0.0392 0.0000 0.9330 0.0165 -0.0002 -0.0993 5.6241 0.0000 0.0065 0.9981 44 0.00164 151.5 170.6 -212.02431 -212.01953 -212.00278 -211.97744 0.0027 2.3222 -0.0006 -0.6141 unit vectors of box grid cell in real space: in reciprocal space: 5.6116 -0.0001 -0.0002 1.0000 0.0000 0.0000 0.0000 6.0167 -0.0397 0.0000 0.9328 0.0167 -0.0002 -0.1008 5.6241 0.0000 0.0066 0.9979 45 0.00163 154.1 169.8 -212.02406 -212.01928 -212.00256 -211.97743 0.0026 2.3540 -0.0006 -0.6214 unit vectors of box grid cell in real space: in reciprocal space: 5.6104 -0.0001 -0.0002 1.0000 0.0000 0.0000 0.0000 6.0165 -0.0403 0.0000 0.9326 0.0170 -0.0002 -0.1023 5.6241 0.0000 0.0067 0.9977 46 0.00163 156.8 169.1 -212.02381 -212.01903 -212.00234 -211.97743 0.0026 2.3857 -0.0006 -0.6286 unit vectors of box grid cell in real space: in reciprocal space: 5.6092 -0.0001 -0.0002 1.0000 0.0000 0.0000 0.0000 6.0163 -0.0409 0.0000 0.9325 0.0172 -0.0002 -0.1038 5.6242 0.0000 0.0068 0.9975 47 0.00162 159.7 168.4 -212.02356 -212.01878 -212.00211 -211.97743 0.0026 2.4175 -0.0006 -0.6359 unit vectors of box grid cell in real space: in reciprocal space: 5.6080 -0.0001 -0.0002 1.0000 0.0000 0.0000 0.0000 6.0161 -0.0415 0.0000 0.9323 0.0175 -0.0002 -0.1053 5.6243 0.0000 0.0069 0.9972 48 0.00161 162.7 167.6 -212.02331 -212.01854 -212.00188 -211.97743 0.0026 2.4493 -0.0006 -0.6433 unit vectors of box grid cell in real space: in reciprocal space: 5.6068 -0.0001 -0.0002 1.0000 0.0000 0.0000 0.0000 6.0158 -0.0421 0.0000 0.9321 0.0177 -0.0002 -0.1069 5.6244 0.0000 0.0070 0.9970 49 0.00160 165.7 166.9 -212.02307 -212.01829 -212.00166 -211.97742 0.0026 2.4810 -0.0006 -0.6506 unit vectors of box grid cell in real space: in reciprocal space: 5.6056 -0.0001 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0156 -0.0427 0.0000 0.9320 0.0180 -0.0002 -0.1084 5.6246 0.0000 0.0071 0.9968 50 0.00159 168.9 166.1 -212.02282 -212.01804 -212.00144 -211.97742 0.0026 2.5128 -0.0006 -0.6580 unit vectors of box grid cell in real space: in reciprocal space: 5.6043 -0.0001 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0154 -0.0433 0.0000 0.9318 0.0182 -0.0002 -0.1100 5.6248 0.0000 0.0072 0.9965 51 0.00159 172.1 165.2 -212.02257 -212.01780 -212.00122 -211.97742 0.0026 2.5445 -0.0006 -0.6654 unit vectors of box grid cell in real space: in reciprocal space: 5.6031 -0.0001 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0151 -0.0439 0.0000 0.9316 0.0185 -0.0002 -0.1116 5.6251 0.0000 0.0073 0.9962 52 0.00158 175.5 164.3 -212.02232 -212.01755 -212.00100 -211.97742 0.0026 2.5762 -0.0006 -0.6729 unit vectors of box grid cell in real space: in reciprocal space: 5.6018 -0.0001 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0149 -0.0446 0.0000 0.9315 0.0187 -0.0003 -0.1132 5.6254 0.0000 0.0074 0.9960 53 0.00157 179.0 163.5 -212.02207 -212.01730 -212.00077 -211.97742 0.0026 2.6079 -0.0006 -0.6804 unit vectors of box grid cell in real space: in reciprocal space: 5.6006 -0.0001 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0146 -0.0452 0.0000 0.9313 0.0190 -0.0003 -0.1148 5.6257 0.0000 0.0075 0.9957 54 0.00156 182.5 162.6 -212.02179 -212.01702 -212.00051 -211.97738 0.0026 2.6396 -0.0006 -0.6879 unit vectors of box grid cell in real space: in reciprocal space: 5.5993 0.0000 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0143 -0.0458 0.0000 0.9311 0.0193 -0.0003 -0.1164 5.6261 0.0000 0.0076 0.9954 55 0.00155 186.0 161.7 -212.02147 -212.01670 -212.00022 -211.97731 0.0026 2.6712 -0.0006 -0.6955 unit vectors of box grid cell in real space: in reciprocal space: 5.5980 0.0000 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0141 -0.0464 0.0000 0.9310 0.0195 -0.0003 -0.1180 5.6265 0.0000 0.0077 0.9951 56 0.00153 189.5 160.9 -212.02123 -212.01646 -212.00001 -211.97732 0.0026 2.7029 -0.0006 -0.7030 unit vectors of box grid cell in real space: in reciprocal space: 5.5967 0.0000 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0138 -0.0471 0.0000 0.9308 0.0198 -0.0003 -0.1196 5.6270 0.0000 0.0078 0.9948 57 0.00152 193.0 159.9 -212.02098 -212.01621 -211.99979 -211.97732 0.0026 2.7345 -0.0006 -0.7107 unit vectors of box grid cell in real space: in reciprocal space: 5.5954 0.0000 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0135 -0.0477 0.0000 0.9306 0.0201 -0.0003 -0.1213 5.6275 0.0000 0.0079 0.9945 58 0.00151 196.5 159.0 -212.02073 -212.01596 -211.99957 -211.97732 0.0026 2.7662 -0.0006 -0.7183 unit vectors of box grid cell in real space: in reciprocal space: 5.5941 0.0000 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0131 -0.0483 0.0000 0.9305 0.0203 -0.0003 -0.1229 5.6280 0.0001 0.0080 0.9942 59 0.00150 200.0 158.0 -212.02048 -212.01571 -211.99935 -211.97731 0.0026 2.7978 -0.0006 -0.7260 unit vectors of box grid cell in real space: in reciprocal space: 5.5928 0.0000 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0128 -0.0490 0.0000 0.9303 0.0206 -0.0003 -0.1246 5.6285 0.0001 0.0081 0.9938 60 0.00149 203.6 157.0 -212.02023 -212.01546 -211.99913 -211.97731 0.0026 2.8294 -0.0006 -0.7338 unit vectors of box grid cell in real space: in reciprocal space: 5.5914 0.0000 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0125 -0.0496 0.0000 0.9301 0.0209 -0.0003 -0.1263 5.6291 0.0001 0.0082 0.9935 61 0.00148 207.1 156.1 -212.01998 -212.01521 -211.99892 -211.97731 0.0026 2.8610 -0.0006 -0.7415 unit vectors of box grid cell in real space: in reciprocal space: 5.5901 0.0000 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0121 -0.0503 0.0000 0.9300 0.0211 -0.0003 -0.1279 5.6297 0.0001 0.0083 0.9932 62 0.00146 210.5 155.1 -212.01973 -212.01496 -211.99870 -211.97731 0.0026 2.8926 -0.0007 -0.7493 unit vectors of box grid cell in real space: in reciprocal space: 5.5888 0.0000 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0118 -0.0509 0.0000 0.9298 0.0214 -0.0003 -0.1296 5.6303 0.0001 0.0084 0.9928 63 0.00145 213.9 154.2 -212.01948 -212.01471 -211.99848 -211.97731 0.0026 2.9242 -0.0007 -0.7572 unit vectors of box grid cell in real space: in reciprocal space: 5.5874 0.0001 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0114 -0.0516 0.0000 0.9297 0.0217 -0.0003 -0.1313 5.6309 0.0001 0.0085 0.9925 64 0.00144 217.3 153.2 -212.01923 -212.01446 -211.99827 -211.97730 0.0026 2.9558 -0.0007 -0.7650 unit vectors of box grid cell in real space: in reciprocal space: 5.5861 0.0001 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0110 -0.0522 0.0000 0.9295 0.0219 -0.0003 -0.1330 5.6316 0.0001 0.0086 0.9921 65 0.00143 220.6 152.2 -212.01898 -212.01422 -211.99806 -211.97730 0.0026 2.9873 -0.0007 -0.7729 unit vectors of box grid cell in real space: in reciprocal space: 5.5847 0.0001 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0106 -0.0529 0.0000 0.9293 0.0222 -0.0003 -0.1347 5.6323 0.0001 0.0087 0.9918 66 0.00141 223.9 151.3 -212.01873 -212.01397 -211.99784 -211.97730 0.0026 3.0189 -0.0007 -0.7809 unit vectors of box grid cell in real space: in reciprocal space: 5.5834 0.0001 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0102 -0.0535 0.0000 0.9292 0.0225 -0.0003 -0.1364 5.6330 0.0001 0.0088 0.9914 67 0.00140 227.1 150.4 -212.01848 -212.01372 -211.99763 -211.97729 0.0026 3.0504 -0.0007 -0.7889 unit vectors of box grid cell in real space: in reciprocal space: 5.5820 0.0001 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0098 -0.0542 0.0000 0.9290 0.0228 -0.0003 -0.1381 5.6337 0.0001 0.0089 0.9910 68 0.00139 230.3 149.5 -212.01824 -212.01348 -211.99742 -211.97729 0.0026 3.0820 -0.0007 -0.7969 unit vectors of box grid cell in real space: in reciprocal space: 5.5807 0.0001 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0094 -0.0549 0.0000 0.9289 0.0230 -0.0003 -0.1398 5.6345 0.0001 0.0090 0.9907 69 0.00137 233.4 148.6 -212.01800 -212.01324 -211.99720 -211.97729 0.0026 3.1135 -0.0007 -0.8049 unit vectors of box grid cell in real space: in reciprocal space: 5.5793 0.0001 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0089 -0.0555 0.0000 0.9287 0.0233 -0.0003 -0.1415 5.6353 0.0001 0.0092 0.9903 70 0.00135 236.4 147.8 -212.01775 -212.01300 -211.99699 -211.97728 0.0026 3.1451 -0.0007 -0.8130 unit vectors of box grid cell in real space: in reciprocal space: 5.5779 0.0001 -0.0003 1.0000 0.0000 0.0000 0.0000 6.0085 -0.0562 0.0000 0.9286 0.0236 -0.0003 -0.1432 5.6360 0.0001 0.0093 0.9899 71 0.00133 239.4 147.0 -212.01752 -212.01276 -211.99678 -211.97728 0.0026 3.1766 -0.0007 -0.8212 unit vectors of box grid cell in real space: in reciprocal space: 5.5766 0.0001 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0080 -0.0569 0.0000 0.9284 0.0239 -0.0003 -0.1449 5.6369 0.0001 0.0094 0.9895 72 0.00132 242.2 146.2 -212.01728 -212.01253 -211.99657 -211.97728 0.0026 3.2081 -0.0007 -0.8293 unit vectors of box grid cell in real space: in reciprocal space: 5.5752 0.0002 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0075 -0.0575 0.0000 0.9283 0.0242 -0.0003 -0.1467 5.6377 0.0001 0.0095 0.9892 73 0.00130 245.0 145.5 -212.01705 -212.01230 -211.99637 -211.97727 0.0026 3.2396 -0.0007 -0.8375 unit vectors of box grid cell in real space: in reciprocal space: 5.5738 0.0002 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0070 -0.0582 0.0000 0.9281 0.0244 -0.0003 -0.1484 5.6385 0.0001 0.0096 0.9888 74 0.00129 247.7 144.9 -212.01683 -212.01208 -211.99616 -211.97727 0.0026 3.2712 -0.0007 -0.8458 unit vectors of box grid cell in real space: in reciprocal space: 5.5725 0.0002 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0065 -0.0589 0.0000 0.9280 0.0247 -0.0003 -0.1501 5.6394 0.0001 0.0097 0.9884 75 0.00127 250.2 144.3 -212.01661 -212.01185 -211.99595 -211.97727 0.0026 3.3027 -0.0007 -0.8541 unit vectors of box grid cell in real space: in reciprocal space: 5.5711 0.0002 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0059 -0.0596 0.0000 0.9279 0.0250 -0.0003 -0.1519 5.6403 0.0001 0.0098 0.9880 76 0.00125 252.7 143.8 -212.01639 -212.01164 -211.99575 -211.97726 0.0026 3.3342 -0.0007 -0.8624 unit vectors of box grid cell in real space: in reciprocal space: 5.5697 0.0002 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0054 -0.0602 0.0000 0.9277 0.0253 -0.0003 -0.1536 5.6411 0.0001 0.0099 0.9876 77 0.00123 255.2 143.3 -212.01618 -212.01143 -211.99554 -211.97726 0.0026 3.3657 -0.0007 -0.8708 unit vectors of box grid cell in real space: in reciprocal space: 5.5684 0.0002 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0048 -0.0609 0.0000 0.9276 0.0255 -0.0003 -0.1553 5.6420 0.0000 0.0100 0.9872 78 0.00121 257.5 143.0 -212.01598 -212.01123 -211.99533 -211.97726 0.0026 3.3972 -0.0007 -0.8791 unit vectors of box grid cell in real space: in reciprocal space: 5.5670 0.0002 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0042 -0.0616 0.0000 0.9274 0.0258 -0.0003 -0.1570 5.6429 0.0000 0.0101 0.9868 79 0.00120 259.8 142.7 -212.01578 -212.01103 -211.99513 -211.97726 0.0026 3.4287 -0.0007 -0.8876 unit vectors of box grid cell in real space: in reciprocal space: 5.5656 0.0002 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0036 -0.0623 0.0000 0.9273 0.0261 -0.0003 -0.1588 5.6439 0.0000 0.0102 0.9864 80 0.00118 261.9 142.5 -212.01559 -212.01084 -211.99492 -211.97725 0.0026 3.4602 -0.0007 -0.8961 unit vectors of box grid cell in real space: in reciprocal space: 5.5643 0.0002 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0030 -0.0629 0.0000 0.9272 0.0264 -0.0003 -0.1605 5.6448 0.0000 0.0103 0.9860 81 0.00116 263.8 142.5 -212.01541 -212.01066 -211.99472 -211.97725 0.0026 3.4917 -0.0007 -0.9046 unit vectors of box grid cell in real space: in reciprocal space: 5.5629 0.0002 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0024 -0.0636 0.0000 0.9271 0.0266 -0.0003 -0.1622 5.6457 0.0000 0.0104 0.9856 82 0.00115 265.7 142.5 -212.01523 -212.01048 -211.99451 -211.97725 0.0026 3.5231 -0.0007 -0.9131 unit vectors of box grid cell in real space: in reciprocal space: 5.5616 0.0003 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0017 -0.0643 0.0000 0.9269 0.0269 -0.0002 -0.1640 5.6467 0.0000 0.0106 0.9852 83 0.00113 267.4 142.7 -212.01506 -212.01032 -211.99431 -211.97724 0.0026 3.5546 -0.0007 -0.9217 unit vectors of box grid cell in real space: in reciprocal space: 5.5602 0.0003 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0011 -0.0650 0.0000 0.9268 0.0272 -0.0002 -0.1657 5.6477 0.0000 0.0107 0.9848 84 0.00112 269.1 143.0 -212.01491 -212.01016 -211.99410 -211.97724 0.0026 3.5861 -0.0007 -0.9303 unit vectors of box grid cell in real space: in reciprocal space: 5.5589 0.0003 -0.0003 1.0000 0.0000 0.0000 0.0001 6.0004 -0.0656 0.0000 0.9267 0.0275 -0.0002 -0.1674 5.6486 0.0000 0.0108 0.9844 85 0.00110 270.6 143.5 -212.01476 -212.01002 -211.99390 -211.97724 0.0026 3.6176 -0.0007 -0.9390 unit vectors of box grid cell in real space: in reciprocal space: 5.5575 0.0003 -0.0002 1.0000 0.0000 0.0000 0.0001 5.9997 -0.0663 0.0000 0.9266 0.0277 -0.0002 -0.1691 5.6496 0.0000 0.0109 0.9840 86 0.00108 272.1 144.1 -212.01463 -212.00989 -211.99369 -211.97724 0.0026 3.6491 -0.0007 -0.9477 unit vectors of box grid cell in real space: in reciprocal space: 5.5562 0.0003 -0.0002 1.0000 0.0000 0.0000 0.0001 5.9990 -0.0670 0.0000 0.9265 0.0280 -0.0002 -0.1708 5.6506 0.0000 0.0110 0.9836 87 0.00107 273.4 144.8 -212.01450 -212.00976 -211.99348 -211.97724 0.0026 3.6806 -0.0007 -0.9565 unit vectors of box grid cell in real space: in reciprocal space: 5.5549 0.0003 -0.0002 1.0000 0.0000 0.0000 0.0001 5.9983 -0.0677 0.0000 0.9264 0.0283 -0.0002 -0.1725 5.6516 0.0000 0.0111 0.9832 88 0.00106 274.6 145.7 -212.01439 -212.00965 -211.99327 -211.97723 0.0026 3.7121 -0.0007 -0.9653 unit vectors of box grid cell in real space: in reciprocal space: 5.5536 0.0003 -0.0002 1.0000 0.0000 0.0000 0.0001 5.9975 -0.0683 0.0000 0.9263 0.0285 -0.0002 -0.1742 5.6526 0.0000 0.0112 0.9828 89 0.00104 275.6 146.8 -212.01431 -212.00957 -211.99309 -211.97725 0.0026 3.7436 -0.0007 -0.9741 unit vectors of box grid cell in real space: in reciprocal space: 5.5523 0.0003 -0.0002 1.0000 0.0000 0.0000 0.0001 5.9967 -0.0690 -0.0001 0.9262 0.0288 -0.0002 -0.1759 5.6536 0.0000 0.0113 0.9824 90 0.00103 276.5 148.1 -212.01422 -212.00948 -211.99288 -211.97725 0.0026 3.7750 -0.0007 -0.9829 unit vectors of box grid cell in real space: in reciprocal space: 5.5510 0.0003 -0.0002 1.0000 0.0000 0.0000 0.0001 5.9960 -0.0697 -0.0001 0.9261 0.0291 -0.0002 -0.1776 5.6546 0.0000 0.0114 0.9820 91 0.00102 277.3 149.6 -212.01414 -212.00941 -211.99267 -211.97725 0.0026 3.8065 -0.0007 -0.9918 unit vectors of box grid cell in real space: in reciprocal space: 5.5497 0.0003 -0.0002 1.0000 0.0000 0.0000 0.0001 5.9952 -0.0703 -0.0001 0.9260 0.0294 -0.0002 -0.1793 5.6556 0.0000 0.0115 0.9816 92 0.00101 278.0 151.3 -212.01408 -212.00934 -211.99245 -211.97725 0.0026 3.8380 -0.0007 -1.0008 unit vectors of box grid cell in real space: in reciprocal space: 5.5484 0.0003 -0.0002 1.0000 0.0000 0.0000 0.0001 5.9944 -0.0710 -0.0001 0.9260 0.0296 -0.0002 -0.1809 5.6566 0.0000 0.0116 0.9812 93 0.00100 278.6 153.1 -212.01403 -212.00929 -211.99223 -211.97725 0.0026 3.8695 -0.0007 -1.0097 unit vectors of box grid cell in real space: in reciprocal space: 5.5471 0.0003 -0.0002 1.0000 0.0000 0.0000 0.0001 5.9935 -0.0716 -0.0001 0.9259 0.0299 -0.0002 -0.1826 5.6576 0.0000 0.0117 0.9808 94 0.00099 279.1 155.2 -212.01399 -212.00925 -211.99200 -211.97724 0.0026 3.9010 -0.0008 -1.0188 unit vectors of box grid cell in real space: in reciprocal space: 5.5459 0.0003 -0.0002 1.0000 0.0000 0.0000 0.0001 5.9927 -0.0723 -0.0001 0.9258 0.0301 -0.0002 -0.1842 5.6587 0.0000 0.0118 0.9804 95 0.00098 279.4 157.5 -212.01396 -212.00922 -211.99177 -211.97723 0.0026 3.9325 -0.0008 -1.0278 unit vectors of box grid cell in real space: in reciprocal space: 5.5446 0.0003 -0.0002 1.0000 0.0000 0.0000 0.0001 5.9918 -0.0730 -0.0001 0.9257 0.0304 -0.0001 -0.1859 5.6597 0.0000 0.0119 0.9801 96 0.00097 279.5 160.1 -212.01394 -212.00921 -211.99154 -211.97723 0.0026 3.9640 -0.0008 -1.0369 unit vectors of box grid cell in real space: in reciprocal space: 5.5434 0.0003 -0.0001 1.0000 0.0000 0.0000 0.0001 5.9910 -0.0736 -0.0001 0.9257 0.0307 -0.0001 -0.1875 5.6607 0.0000 0.0120 0.9797 97 0.00096 279.5 162.8 -212.01395 -212.00921 -211.99131 -211.97723 0.0026 3.9955 -0.0008 -1.0460 unit vectors of box grid cell in real space: in reciprocal space: 5.5422 0.0003 -0.0001 1.0000 0.0000 0.0000 0.0001 5.9901 -0.0742 -0.0001 0.9256 0.0309 -0.0001 -0.1891 5.6618 0.0000 0.0121 0.9793 98 0.00096 279.4 165.8 -212.01396 -212.00923 -211.99107 -211.97722 0.0026 4.0269 -0.0008 -1.0551 unit vectors of box grid cell in real space: in reciprocal space: 5.5410 0.0003 -0.0001 1.0000 0.0000 0.0000 0.0001 5.9892 -0.0749 -0.0001 0.9256 0.0312 -0.0001 -0.1907 5.6628 0.0000 0.0122 0.9789 99 0.00096 279.2 169.0 -212.01399 -212.00926 -211.99083 -211.97722 0.0026 4.0584 -0.0008 -1.0643 * Physical Quantities at step: 100 from rhoofr: total integrated electronic density in g-space = 96.000000 in r-space = 96.000000 unit vectors of box grid cell in real space: in reciprocal space: 5.5398 0.0003 -0.0001 1.0000 0.0000 0.0000 0.0001 5.9882 -0.0755 -0.0001 0.9255 0.0314 -0.0001 -0.1923 5.6638 0.0000 0.0123 0.9785 total energy = -212.01404 Hartree a.u. kinetic energy = 94.10473 Hartree a.u. electrostatic energy = -198.38779 Hartree a.u. esr = 0.34932 Hartree a.u. eself = 210.64152 Hartree a.u. pseudopotential energy = -95.83047 Hartree a.u. n-l pseudopotential energy = 36.46430 Hartree a.u. exchange-correlation energy = -48.36481 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -23.06 -22.63 -22.03 -21.51 -21.46 -21.44 -21.41 -21.32 -21.04 -21.04 -20.74 -20.74 -10.65 -10.42 -10.40 -9.86 -8.22 -8.16 -7.95 -7.90 -7.84 -7.58 -7.40 -6.76 -5.71 -5.70 -5.67 -5.56 -5.55 -5.07 -4.80 -4.75 -4.54 -4.47 -4.13 -4.01 -3.79 -3.76 -3.57 -3.48 -3.41 -3.41 -3.16 -2.67 -2.43 -2.38 -2.35 -2.34 Allocated memory (kb) = 56148 CELL_PARAMETERS 9.23492053 0.00033655 -0.00019245 0.00057796 15.97108217 -0.31790801 -0.00021231 -0.19971594 9.43796635 System Density [g/cm^3] : 2.8993 Center of mass square displacement (a.u.): 0.037981 Total stress (GPa) 1.85419466 -0.04449996 0.04542145 -0.04449996 -4.27121745 1.26755674 0.04542145 1.26755674 3.85170893 ATOMIC_POSITIONS O 0.309255E+01 0.150659E+02 0.664301E+00 O 0.770979E+01 0.708170E+01 0.763480E+00 O 0.237516E+01 0.576367E+01 0.429253E+01 O 0.699380E+01 0.137493E+02 0.419351E+01 O 0.370423E+01 0.107744E+02 0.683715E+01 O 0.832136E+01 0.278934E+01 0.693825E+01 O 0.370420E+01 0.466843E+01 0.869093E+01 O 0.832204E+01 0.126536E+02 0.859272E+01 O 0.309575E+01 0.693200E+00 0.543363E+01 O 0.771323E+01 0.868035E+01 0.533334E+01 O 0.237602E+01 0.999225E+01 0.179220E+01 O 0.699333E+01 0.200863E+01 0.189361E+01 Si 0.464310E+00 0.787780E+01 0.304677E+01 Si 0.508180E+01 -0.107302E+00 0.314704E+01 Si 0.203136E+01 0.122640E+02 -0.270487E+00 Si 0.664789E+01 0.427941E+01 -0.170045E+00 Si 0.203124E+01 0.349357E+01 0.636226E+01 Si 0.664938E+01 0.114798E+02 0.626311E+01 ATOMIC_VELOCITIES O 0.140225E-03 0.135858E-03 -0.764823E-05 O 0.139013E-03 0.134632E-03 -0.854985E-05 O 0.242239E-04 -0.942843E-04 0.771778E-04 O 0.229867E-04 -0.919245E-04 0.763409E-04 O -0.164528E-03 0.243388E-03 -0.178138E-04 O -0.164492E-03 0.243211E-03 -0.184343E-04 O -0.167322E-03 -0.237174E-03 0.149410E-04 O -0.166315E-03 -0.237800E-03 0.154269E-04 O 0.141334E-03 -0.129219E-03 0.145533E-04 O 0.140707E-03 -0.129169E-03 0.150859E-04 O 0.221986E-04 0.913595E-04 -0.808053E-04 O 0.211759E-04 0.919071E-04 -0.789250E-04 Si 0.195529E-03 -0.790010E-06 -0.195457E-05 Si 0.196241E-03 -0.251076E-05 -0.334422E-06 Si -0.958446E-04 0.181794E-03 0.540546E-04 Si -0.942598E-04 0.184091E-03 0.538100E-04 Si -0.981313E-04 -0.186698E-03 -0.530230E-04 Si -0.973679E-04 -0.187763E-03 -0.533237E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 141.25 0.0943 2 235.01 0.0362 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 100 0.00095 278.9 172.5 -212.01404 -212.00931 -211.99058 -211.97721 0.0026 4.0899 -0.0008 -1.0735 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//sio2_94.save restart file written in 0.083 sec. Averaged Physical Quantities accomulated this run ekinc : 0.00150 0.00150 (AU) ekin : 94.30950 94.30950 (AU) epot : -342.86838 -342.86838 (AU) total energy : -212.02287 -212.02287 (AU) temperature : 163.04002 163.04002 (K ) enthalpy : -212.01808 -212.01808 (AU) econs : -212.00066 -212.00066 (AU) pressure : 0.50029 0.50029 (Gpa) volume : 1407.80645 1407.80645 (AU) initialize : 6.41s CPU 0.57s WALL ( 1 calls) main_loop : 876.14s CPU 73.76s WALL ( 100 calls) Called by main_loop: formf : 3.52s CPU 0.30s WALL ( 101 calls) move_electro : 808.61s CPU 67.77s WALL ( 100 calls) ortho : 5.56s CPU 0.47s WALL ( 100 calls) updatc : 0.23s CPU 0.02s WALL ( 100 calls) strucf : 0.12s CPU 0.01s WALL ( 101 calls) calbec : 0.49s CPU 0.03s WALL ( 101 calls) Called by move_electrons: rhoofr : 726.42s CPU 60.77s WALL ( 100 calls) vofrho : 15.83s CPU 1.39s WALL ( 100 calls) dforce : 30.25s CPU 2.59s WALL ( 2400 calls) calphi : 0.55s CPU 0.05s WALL ( 100 calls) newd : 29.38s CPU 2.47s WALL ( 100 calls) nlfl : 0.68s CPU 0.05s WALL ( 100 calls) Called by ortho: ortho_iter : 1.27s CPU 0.11s WALL ( 100 calls) rsg : 0.92s CPU 0.08s WALL ( 100 calls) rhoset : 0.40s CPU 0.03s WALL ( 100 calls) sigset : 0.32s CPU 0.02s WALL ( 100 calls) tauset : 0.30s CPU 0.02s WALL ( 100 calls) Small boxes: rhov : 70.86s CPU 5.92s WALL ( 100 calls) fftb : 21.74s CPU 1.90s WALL ( 5001 calls) Low-level routines: prefor : 1.11s CPU 0.10s WALL ( 201 calls) nlfq : 4.15s CPU 0.35s WALL ( 100 calls) nlsm1 : 2.62s CPU 0.22s WALL ( 301 calls) nlsm2 : 4.03s CPU 0.34s WALL ( 100 calls) fft : 26.46s CPU 2.27s WALL ( 1300 calls) ffts : 1.71s CPU 0.15s WALL ( 200 calls) fftw : 25.89s CPU 2.19s WALL ( 7200 calls) fft_scatter : 14.61s CPU 1.31s WALL ( 8700 calls) betagx : 3.40s CPU 0.29s WALL ( 1 calls) qradx : 1.56s CPU 0.13s WALL ( 1 calls) nlinit : 5.65s CPU 0.48s WALL ( 1 calls) init_dim : 0.01s CPU 0.01s WALL ( 1 calls) newnlinit : 36.30s CPU 3.31s WALL ( 101 calls) from_restart : 0.23s CPU 0.02s WALL ( 1 calls) ortho_iter : 1.27s CPU 0.11s WALL ( 100 calls) CP : 14m43.00s CPU 1m14.46s WALL This run was terminated on: 17:31: 4 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/sio2-us-lda.ref10000644000175000017500000004673612341373026015733 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:28:23 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/sio2-us-lda.in1 Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.pz-rrkjus.UPF file type is UPF v.1 file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized Reading pseudopotential for specie # 2 from file : /plx/userinternal/acv0/espresso/pseudo/Si.pz-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 20 Print out every 20 MD Steps Reads from unit = 90 Writes to unit = 91 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 700.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 49868.25 [AU] ibrav = 8 alat = 9.28990000 a1 = 9.28990000 0.00000000 0.00000000 a2 = 0.00000000 16.09066419 0.00000000 a3 = 0.00000000 0.00000000 10.21470954 b1 = 0.10764379 0.00000000 0.00000000 b2 = 0.00000000 0.06214784 0.00000000 b3 = 0.00000000 0.00000000 0.09789804 omega = 1526.90153773 Energy Cut-offs --------------- Ecutwfc = 20.0 Ry, Ecutrho = 150.0 Ry, Ecuts = 80.0 Ry Gcutwfc = 6.6 , Gcutrho = 18.1 Gcuts = 13.2 modified kinetic energy functional, with parameters: ecutz = 150.0000 ecsig = 2.0000 ecfix = 16.00 NOTA BENE: refg, mmx = 0.050000 3600 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.010000 Electronic states ----------------- Number of Electron = 96, of States = 48 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 12 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.188294 14.832370 1.228830 7.832315 6.787040 1.228830 2.074435 5.995380 4.737583 6.720314 14.042319 4.737583 3.963071 11.269898 7.878606 8.608021 3.222959 7.878606 3.963071 4.819153 9.146251 8.608021 12.864483 9.146251 3.187365 1.256681 5.580296 7.833244 9.302011 5.580296 2.075364 10.092062 2.073586 6.719385 2.046732 2.073586 Species 2 atoms = 6 mass = 51040.88 (a.u.), 28.00 (amu) rcmax = 1.00 (a.u.) 0.288916 8.045330 3.404563 4.933866 0.000000 3.404563 2.133890 12.277174 -0.041880 6.778840 4.231844 -0.041880 2.133890 3.813486 6.852027 6.778840 11.858816 6.852027 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 9.2899 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 16.0907 0.0000 0.0000 0.5773 0.0000 3 0.0000 0.0000 10.2147 0.0000 0.0000 0.9095 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 1783 951 239 47285 18431 2305 Tot 892 476 120 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 40 64 40 40 64 40 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 40 64 40 Local number of cell to store the grid ( nrxx ) = 102400 Number of x-y planes for each processors: nr3l = 40 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 45 30 27 45 30 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 45 30 Local number of cell to store the grid ( nrxx ) = 36450 Number of x-y planes for each processors: nr3sl = 30 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 24 24 24 24 24 24 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 24 24 24 Local number of cell to store the grid ( nrxx ) = 13824 unit vectors of box grid cell in real space: in reciprocal space: 5.5739 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0340 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 6.1288 0.0000 0.0000 0.9095 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 23643 23643 23643 23643.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 9216 9216 9216 9216.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 1153 1153 1153 1153.00 Small box Mesh ngb = 3183 not distributed to processors System geometry initialization ------------------------------ unit vectors of box grid cell in real space: in reciprocal space: 5.5739 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.0340 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 6.1288 0.0000 0.0000 0.9095 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.01203 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 3183 1 865 3 qqq -0.0987 0.4865 0.0000 0.0000 0.4865 -2.1787 0.0000 0.0000 0.0000 0.0000 0.2330 0.2950 0.0000 0.0000 0.2950 0.3737 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4817 -1.2813 0.0000 0.0000 -1.2813 2.3075 0.0000 0.0000 0.0000 0.0000 0.6338 0.8752 0.0000 0.0000 0.8752 1.2039 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 0.7619 0.0000 0.0000 1.8417 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 48 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 formf: eself= 210.64152 formf: vps(g=0)= -0.0099256 rhops(g=0)= -0.0039295 formf: sum_g vps(g)= -2.2959144 sum_g rhops(g)= -0.5407261 formf: vps(g=0)= -0.0098400 rhops(g=0)= -0.0026197 formf: sum_g vps(g)= -2.3753533 sum_g rhops(g)= -0.3604841 Delta V(G=0): 0.197519Ry, 5.374775eV from rhoofr: total integrated electronic density in g-space = 96.000000 in r-space = 96.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 8.19301 0.0 0.0 -20.90004 -20.90004 -20.90004 -12.70703 0.0000 0.0000 0.0000 0.0000 2 19.47375 0.0 0.0 -43.99329 -43.99329 -43.99329 -24.51954 0.0000 0.0000 0.0000 0.0000 3 28.54151 0.0 0.0 -73.11803 -73.11803 -73.11803 -44.57652 0.0000 0.0000 0.0000 0.0000 4 32.53169 0.0 0.0 -102.21536 -102.21536 -102.21536 -69.68367 0.0000 0.0000 0.0000 0.0000 5 31.48903 0.0 0.0 -127.11478 -127.11478 -127.11478 -95.62574 0.0000 0.0000 0.0000 0.0000 6 27.13085 0.0 0.0 -146.21814 -146.21814 -146.21814 -119.08728 0.0000 0.0000 0.0000 0.0000 7 21.54274 0.0 0.0 -159.93123 -159.93123 -159.93123 -138.38848 0.0000 0.0000 0.0000 0.0000 8 16.25547 0.0 0.0 -169.54610 -169.54610 -169.54610 -153.29063 0.0000 0.0000 0.0000 0.0000 9 11.99595 0.0 0.0 -176.39709 -176.39709 -176.39709 -164.40115 0.0000 0.0000 0.0000 0.0000 10 8.88258 0.0 0.0 -181.49677 -181.49677 -181.49677 -172.61419 0.0000 0.0000 0.0000 0.0000 11 6.72696 0.0 0.0 -185.49478 -185.49478 -185.49478 -178.76782 0.0000 0.0000 0.0000 0.0000 12 5.25857 0.0 0.0 -188.76553 -188.76553 -188.76553 -183.50695 0.0000 0.0000 0.0000 0.0000 13 4.23919 0.0 0.0 -191.51216 -191.51216 -191.51216 -187.27297 0.0000 0.0000 0.0000 0.0000 14 3.49876 0.0 0.0 -193.84608 -193.84608 -193.84608 -190.34732 0.0000 0.0000 0.0000 0.0000 15 2.93142 0.0 0.0 -195.83621 -195.83621 -195.83621 -192.90479 0.0000 0.0000 0.0000 0.0000 16 2.47775 0.0 0.0 -197.53468 -197.53468 -197.53468 -195.05694 0.0000 0.0000 0.0000 0.0000 17 2.10643 0.0 0.0 -198.98729 -198.98729 -198.98729 -196.88085 0.0000 0.0000 0.0000 0.0000 18 1.80055 0.0 0.0 -200.23582 -200.23582 -200.23582 -198.43527 0.0000 0.0000 0.0000 0.0000 19 1.54919 0.0 0.0 -201.31732 -201.31732 -201.31732 -199.76813 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 20 total energy = -202.26293 Hartree a.u. kinetic energy = 101.88223 Hartree a.u. electrostatic energy = -198.29345 Hartree a.u. esr = 0.42693 Hartree a.u. eself = 210.64152 Hartree a.u. pseudopotential energy = -96.76824 Hartree a.u. n-l pseudopotential energy = 38.56061 Hartree a.u. exchange-correlation energy = -47.64407 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -26.98 -25.31 -24.09 -23.93 -23.53 -23.31 -23.04 -22.59 -22.29 -21.81 -19.51 -18.07 -12.34 -11.94 -10.81 -10.36 -10.11 -9.28 -9.19 -8.75 -8.30 -8.08 -7.93 -7.44 -6.92 -6.75 -6.66 -6.32 -6.17 -5.81 -5.73 -5.49 -5.33 -5.13 -5.04 -4.59 -4.28 -3.96 -3.81 -2.42 -2.20 -1.14 0.96 3.91 6.90 7.50 7.94 9.29 Allocated memory (kb) = 21248 CELL_PARAMETERS 9.28990000 0.00000000 0.00000000 0.00000000 16.09066419 0.00000000 0.00000000 0.00000000 10.21470954 System Density [g/cm^3] : 2.6421 Center of mass square displacement (a.u.): 0.000000 ATOMIC_POSITIONS O 0.318829E+01 0.148324E+02 0.122883E+01 O 0.783231E+01 0.678704E+01 0.122883E+01 O 0.207443E+01 0.599538E+01 0.473758E+01 O 0.672031E+01 0.140423E+02 0.473758E+01 O 0.396307E+01 0.112699E+02 0.787861E+01 O 0.860802E+01 0.322296E+01 0.787861E+01 O 0.396307E+01 0.481915E+01 0.914625E+01 O 0.860802E+01 0.128645E+02 0.914625E+01 O 0.318736E+01 0.125668E+01 0.558030E+01 O 0.783324E+01 0.930201E+01 0.558030E+01 O 0.207536E+01 0.100921E+02 0.207359E+01 O 0.671938E+01 0.204673E+01 0.207359E+01 Si 0.288916E+00 0.804533E+01 0.340456E+01 Si 0.493387E+01 0.000000E+00 0.340456E+01 Si 0.213389E+01 0.122772E+02 -0.418803E-01 Si 0.677884E+01 0.423184E+01 -0.418803E-01 Si 0.213389E+01 0.381349E+01 0.685203E+01 Si 0.677884E+01 0.118588E+02 0.685203E+01 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.000000E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 20 1.34347 0.0 0.0 -202.26293 -202.26293 -202.26293 -200.91946 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//sio2_91.save restart file written in 0.110 sec. Averaged Physical Quantities accomulated this run ekinc : 11.89844 11.89844 (AU) ekin : 114.37716 114.37716 (AU) epot : -305.15060 -305.15060 (AU) total energy : -157.83618 -157.83618 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -157.83618 -157.83618 (AU) econs : -157.83618 -157.83618 (AU) pressure : 0.00000 0.00000 (Gpa) volume : 1526.90154 1526.90154 (AU) initialize : 3.91s CPU 0.35s WALL ( 1 calls) main_loop : 34.04s CPU 2.88s WALL ( 20 calls) Called by main_loop: move_electro : 32.55s CPU 2.75s WALL ( 20 calls) ortho : 1.16s CPU 0.10s WALL ( 21 calls) updatc : 0.10s CPU 0.00s WALL ( 21 calls) strucf : 0.00s CPU 0.00s WALL ( 1 calls) calbec : 0.05s CPU 0.01s WALL ( 22 calls) Called by move_electrons: rhoofr : 19.25s CPU 1.62s WALL ( 21 calls) vofrho : 1.57s CPU 0.14s WALL ( 21 calls) dforce : 6.72s CPU 0.58s WALL ( 504 calls) calphi : 0.13s CPU 0.01s WALL ( 21 calls) newd : 6.26s CPU 0.52s WALL ( 21 calls) Called by ortho: ortho_iter : 0.28s CPU 0.03s WALL ( 21 calls) rsg : 0.22s CPU 0.02s WALL ( 21 calls) rhoset : 0.07s CPU 0.01s WALL ( 21 calls) sigset : 0.05s CPU 0.01s WALL ( 21 calls) tauset : 0.06s CPU 0.00s WALL ( 21 calls) Small boxes: rhov : 15.13s CPU 1.27s WALL ( 21 calls) fftb : 4.00s CPU 0.34s WALL ( 779 calls) Low-level routines: prefor : 0.17s CPU 0.01s WALL ( 21 calls) nlsm1 : 0.44s CPU 0.04s WALL ( 64 calls) fft : 1.75s CPU 0.15s WALL ( 84 calls) ffts : 0.39s CPU 0.03s WALL ( 42 calls) fftw : 6.39s CPU 0.53s WALL ( 1512 calls) fft_scatter : 2.04s CPU 0.16s WALL ( 1638 calls) betagx : 1.13s CPU 0.09s WALL ( 1 calls) qradx : 0.49s CPU 0.04s WALL ( 1 calls) gram : 0.07s CPU 0.01s WALL ( 1 calls) nlinit : 1.74s CPU 0.14s WALL ( 1 calls) init_dim : 0.01s CPU 0.01s WALL ( 1 calls) newnlinit : 0.03s CPU 0.00s WALL ( 1 calls) from_scratch : 1.95s CPU 0.17s WALL ( 1 calls) ortho_iter : 0.28s CPU 0.03s WALL ( 21 calls) CP : 38.28s CPU 3.38s WALL This run was terminated on: 17:28:26 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/o2-us-para-pbe.ref10000644000175000017500000005103212341373026016307 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:24:38 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/o2-us-para-pbe.in1 Job Title: O2 Crystal Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.pbe-rrkjus.UPF file type is UPF v.1 file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 50 Print out every 10 MD Steps Reads from unit = 53 Writes to unit = 53 MD Simulation time step = 12.00 Electronic fictitious mass (emass) = 800.00 emass cut-off = 1.80 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 4432.73 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 30.0 Ry, Ecutrho = 240.0 Ry, Ecuts = 120.0 Ry Gcutwfc = 10.5 , Gcutrho = 29.6 Gcuts = 20.9 NOTA BENE: refg, mmx = 0.050000 5760 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Local Spin Density calculation Number of Electron = 12 Spins up = 7, occupations: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Spins down = 5, occupations: 1.00 1.00 1.00 1.00 1.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND WANG Using Generalized Gradient Corrections with Exchange functional: PERDEW BURKE ERNZERHOF Correlation functional: PERDEW BURKE ERNZERHOF Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 2 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.260309 2.287244 5.163090 3.260309 2.287244 7.479148 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2749 1369 349 108671 38401 4801 Tot 1375 685 175 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 60 60 60 60 60 60 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 60 60 60 Local number of cell to store the grid ( nrxx ) = 216000 Number of x-y planes for each processors: nr3l = 60 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 45 45 45 45 45 45 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 45 45 45 Local number of cell to store the grid ( nrxx ) = 91125 Number of x-y planes for each processors: nr3sl = 45 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 24 24 24 24 24 24 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 24 24 24 Local number of cell to store the grid ( nrxx ) = 13824 unit vectors of box grid cell in real space: in reciprocal space: 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 54336 54336 54336 54336.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 19201 19201 19201 19201.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 2401 2401 2401 2401.00 Small box Mesh ngb = 3490 not distributed to processors System geometry initialization ------------------------------ unit vectors of box grid cell in real space: in reciprocal space: 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00000 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 3490 1 865 3 qqq -0.1022 0.5410 0.0000 0.0000 0.5410 -2.5883 0.0000 0.0000 0.0000 0.0000 0.2297 0.2861 0.0000 0.0000 0.2861 0.3565 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4798 -1.3236 0.0000 0.0000 -1.3236 2.2757 0.0000 0.0000 0.0000 0.0000 0.6278 0.8512 0.0000 0.0000 0.8512 1.1500 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init spin = 1 nbnd = 7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 spin = 2 nbnd = 5 1.00 1.00 1.00 1.00 1.00 formf: eself= 28.72384 formf: vps(g=0)= -0.0087653 rhops(g=0)= -0.0034722 formf: sum_g vps(g)= -2.4887968 sum_g rhops(g)= -0.5404975 Delta V(G=0): 0.021817Ry, 0.593660eV from rhoofr: total integrated electronic density spin up in g-space = 7.000000 in r-space = 7.000000 spin down in g-space = 5.000000 in r-space = 5.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 2.54444 0.0 0.0 11.23167 11.23167 11.23167 13.77611 0.0000 0.0000 0.0000 0.0000 2 7.02830 0.0 0.0 3.08035 3.08035 3.08035 10.10866 0.0000 0.0000 0.0000 0.0000 3 10.60319 0.0 0.0 -8.33974 -8.33974 -8.33974 2.26346 0.0000 0.0000 0.0000 0.0000 4 10.38660 0.0 0.0 -16.53543 -16.53543 -16.53543 -6.14883 0.0000 0.0000 0.0000 0.0000 5 7.95797 0.0 0.0 -21.22541 -21.22541 -21.22541 -13.26744 0.0000 0.0000 0.0000 0.0000 6 5.69821 0.0 0.0 -24.34680 -24.34680 -24.34680 -18.64859 0.0000 0.0000 0.0000 0.0000 7 3.94343 0.0 0.0 -26.39580 -26.39580 -26.39580 -22.45238 0.0000 0.0000 0.0000 0.0000 8 2.63245 0.0 0.0 -27.64602 -27.64602 -27.64602 -25.01358 0.0000 0.0000 0.0000 0.0000 9 1.77554 0.0 0.0 -28.50898 -28.50898 -28.50898 -26.73344 0.0000 0.0000 0.0000 0.0000 10 1.27289 0.0 0.0 -29.20957 -29.20957 -29.20957 -27.93667 0.0000 0.0000 0.0000 0.0000 11 0.96563 0.0 0.0 -29.79323 -29.79323 -29.79323 -28.82760 0.0000 0.0000 0.0000 0.0000 12 0.74437 0.0 0.0 -30.25353 -30.25353 -30.25353 -29.50915 0.0000 0.0000 0.0000 0.0000 13 0.56262 0.0 0.0 -30.59077 -30.59077 -30.59077 -30.02815 0.0000 0.0000 0.0000 0.0000 14 0.41032 0.0 0.0 -30.82248 -30.82248 -30.82248 -30.41216 0.0000 0.0000 0.0000 0.0000 15 0.28961 0.0 0.0 -30.97646 -30.97646 -30.97646 -30.68685 0.0000 0.0000 0.0000 0.0000 16 0.20137 0.0 0.0 -31.08040 -31.08040 -31.08040 -30.87904 0.0000 0.0000 0.0000 0.0000 17 0.14132 0.0 0.0 -31.15471 -31.15471 -31.15471 -31.01339 0.0000 0.0000 0.0000 0.0000 18 0.10191 0.0 0.0 -31.21107 -31.21107 -31.21107 -31.10916 0.0000 0.0000 0.0000 0.0000 19 0.07573 0.0 0.0 -31.25508 -31.25508 -31.25508 -31.17935 0.0000 0.0000 0.0000 0.0000 20 0.05753 0.0 0.0 -31.28961 -31.28961 -31.28961 -31.23207 0.0000 0.0000 0.0000 0.0000 21 0.04445 0.0 0.0 -31.31683 -31.31683 -31.31683 -31.27239 0.0000 0.0000 0.0000 0.0000 22 0.03508 0.0 0.0 -31.33887 -31.33887 -31.33887 -31.30379 0.0000 0.0000 0.0000 0.0000 23 0.02864 0.0 0.0 -31.35760 -31.35760 -31.35760 -31.32896 0.0000 0.0000 0.0000 0.0000 24 0.02447 0.0 0.0 -31.37447 -31.37447 -31.37447 -31.35000 0.0000 0.0000 0.0000 0.0000 25 0.02189 0.0 0.0 -31.39032 -31.39032 -31.39032 -31.36843 0.0000 0.0000 0.0000 0.0000 26 0.02031 0.0 0.0 -31.40556 -31.40556 -31.40556 -31.38526 0.0000 0.0000 0.0000 0.0000 27 0.01924 0.0 0.0 -31.42029 -31.42029 -31.42029 -31.40105 0.0000 0.0000 0.0000 0.0000 28 0.01842 0.0 0.0 -31.43452 -31.43452 -31.43452 -31.41610 0.0000 0.0000 0.0000 0.0000 29 0.01771 0.0 0.0 -31.44825 -31.44825 -31.44825 -31.43054 0.0000 0.0000 0.0000 0.0000 30 0.01706 0.0 0.0 -31.46150 -31.46150 -31.46150 -31.44444 0.0000 0.0000 0.0000 0.0000 31 0.01648 0.0 0.0 -31.47432 -31.47432 -31.47432 -31.45784 0.0000 0.0000 0.0000 0.0000 32 0.01595 0.0 0.0 -31.48675 -31.48675 -31.48675 -31.47080 0.0000 0.0000 0.0000 0.0000 33 0.01547 0.0 0.0 -31.49884 -31.49884 -31.49884 -31.48336 0.0000 0.0000 0.0000 0.0000 34 0.01504 0.0 0.0 -31.51060 -31.51060 -31.51060 -31.49556 0.0000 0.0000 0.0000 0.0000 35 0.01465 0.0 0.0 -31.52208 -31.52208 -31.52208 -31.50743 0.0000 0.0000 0.0000 0.0000 36 0.01430 0.0 0.0 -31.53331 -31.53331 -31.53331 -31.51900 0.0000 0.0000 0.0000 0.0000 37 0.01400 0.0 0.0 -31.54432 -31.54432 -31.54432 -31.53032 0.0000 0.0000 0.0000 0.0000 38 0.01375 0.0 0.0 -31.55516 -31.55516 -31.55516 -31.54141 0.0000 0.0000 0.0000 0.0000 39 0.01355 0.0 0.0 -31.56587 -31.56587 -31.56587 -31.55232 0.0000 0.0000 0.0000 0.0000 40 0.01338 0.0 0.0 -31.57647 -31.57647 -31.57647 -31.56309 0.0000 0.0000 0.0000 0.0000 41 0.01324 0.0 0.0 -31.58698 -31.58698 -31.58698 -31.57373 0.0000 0.0000 0.0000 0.0000 42 0.01312 0.0 0.0 -31.59739 -31.59739 -31.59739 -31.58427 0.0000 0.0000 0.0000 0.0000 43 0.01299 0.0 0.0 -31.60770 -31.60770 -31.60770 -31.59472 0.0000 0.0000 0.0000 0.0000 44 0.01284 0.0 0.0 -31.61789 -31.61789 -31.61789 -31.60505 0.0000 0.0000 0.0000 0.0000 45 0.01266 0.0 0.0 -31.62791 -31.62791 -31.62791 -31.61525 0.0000 0.0000 0.0000 0.0000 46 0.01243 0.0 0.0 -31.63773 -31.63773 -31.63773 -31.62530 0.0000 0.0000 0.0000 0.0000 47 0.01215 0.0 0.0 -31.64728 -31.64728 -31.64728 -31.63513 0.0000 0.0000 0.0000 0.0000 48 0.01180 0.0 0.0 -31.65652 -31.65652 -31.65652 -31.64472 0.0000 0.0000 0.0000 0.0000 49 0.01139 0.0 0.0 -31.66539 -31.66539 -31.66539 -31.65400 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 50 Spin contamination: s(s+1)= 2.01 (Slater) 2.01 (Becke) 2.00 (expected) total energy = -31.67385 Hartree a.u. kinetic energy = 13.34678 Hartree a.u. electrostatic energy = -28.31293 Hartree a.u. esr = 0.31950 Hartree a.u. eself = 28.72384 Hartree a.u. pseudopotential energy = -16.86562 Hartree a.u. n-l pseudopotential energy = 6.99035 Hartree a.u. exchange-correlation energy = -6.83243 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -32.89 -20.44 -13.87 -13.28 -13.02 -7.27 -6.38 Eigenvalues (eV), kp = 1 , spin = 2 -31.46 -18.56 -12.39 -11.46 -9.62 Allocated memory (kb) = 94116 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.2075 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.02081109 0.69265707 -0.28209886 0.69265707 -0.56106309 0.10267836 -0.28209981 0.10267868 4.89178533 ATOMIC_POSITIONS O 0.326031E+01 0.228724E+01 0.516309E+01 O 0.326031E+01 0.228724E+01 0.747915E+01 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): O 0.164150E-01 -0.570632E-02 -0.110611E+00 O -0.130618E-01 0.815479E-03 0.118748E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 50 0.01092 0.0 0.0 -31.67385 -31.67385 -31.67385 -31.66293 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file written in 0.108 sec. Averaged Physical Quantities accomulated this run ekinc : 1.15822 1.15822 (AU) ekin : 13.44787 13.44787 (AU) epot : -48.34856 -48.34856 (AU) total energy : -28.43715 -28.43715 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -28.43715 -28.43715 (AU) econs : -28.43715 -28.43715 (AU) pressure : 12.16117 12.16117 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 9.10s CPU 1.11s WALL ( 1 calls) main_loop : 232.81s CPU 28.42s WALL ( 50 calls) Called by main_loop: move_electro : 227.44s CPU 27.96s WALL ( 50 calls) ortho : 1.32s CPU 0.12s WALL ( 51 calls) updatc : 0.08s CPU 0.01s WALL ( 51 calls) strucf : 0.00s CPU 0.00s WALL ( 1 calls) calbec : 0.01s CPU 0.00s WALL ( 52 calls) Called by move_electrons: rhoofr : 64.93s CPU 5.61s WALL ( 51 calls) vofrho : 136.07s CPU 20.21s WALL ( 51 calls) dforce : 7.47s CPU 0.65s WALL ( 306 calls) calphi : 0.13s CPU 0.01s WALL ( 51 calls) newd : 20.72s CPU 1.95s WALL ( 51 calls) nlfl : 0.02s CPU 0.00s WALL ( 51 calls) Called by ortho: ortho_iter : 0.13s CPU 0.01s WALL ( 102 calls) rsg : 0.13s CPU 0.01s WALL ( 102 calls) rhoset : 0.14s CPU 0.01s WALL ( 102 calls) sigset : 0.12s CPU 0.01s WALL ( 102 calls) tauset : 0.08s CPU 0.01s WALL ( 102 calls) Small boxes: rhov : 5.43s CPU 0.47s WALL ( 51 calls) fftb : 13.22s CPU 1.21s WALL ( 3164 calls) Low-level routines: prefor : 0.04s CPU 0.01s WALL ( 51 calls) nlfq : 1.11s CPU 0.10s WALL ( 51 calls) nlsm1 : 0.69s CPU 0.06s WALL ( 154 calls) nlsm2 : 1.08s CPU 0.09s WALL ( 51 calls) fft : 49.18s CPU 4.25s WALL ( 1173 calls) ffts : 1.79s CPU 0.16s WALL ( 102 calls) fftw : 7.59s CPU 0.67s WALL ( 918 calls) fft_scatter : 18.68s CPU 1.65s WALL ( 2193 calls) betagx : 2.83s CPU 0.24s WALL ( 1 calls) qradx : 1.49s CPU 0.12s WALL ( 1 calls) gram : 0.02s CPU 0.00s WALL ( 1 calls) nlinit : 5.20s CPU 0.44s WALL ( 1 calls) init_dim : 0.02s CPU 0.03s WALL ( 1 calls) newnlinit : 0.43s CPU 0.04s WALL ( 1 calls) from_scratch : 3.87s CPU 0.63s WALL ( 1 calls) ortho_iter : 0.13s CPU 0.01s WALL ( 102 calls) CP : 4m 3.43s CPU 0m29.70s WALL This run was terminated on: 17:25: 8 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/h2o-mt-blyp.in10000644000175000017500000000200112341373026015551 0ustar mbamba &control title = ' Water Molecule ', calculation = 'cp', restart_mode = 'from_scratch', ndr = 51, ndw = 51, nstep = 100, iprint = 100, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-9, ekin_conv_thr = 1.d-4, prefix = 'h2o' verbosity = 'medium' / &system ibrav = 14, celldm(1) = 12.0, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 3, ntyp = 2, nbnd = 4, ecutwfc = 80.0, / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', electron_dynamics = 'damp', electron_damping = 0.2 / &ions ion_dynamics = 'none', ion_radius(1) = 0.8d0, ion_radius(2) = 0.8d0, / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.00d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (bohr) O 0.0099 0.0099 0.0000 0 0 0 H 1.8325 -0.2243 -0.0001 1 1 1 H -0.2243 1.8325 0.0002 1 1 1 espresso-5.1/CPV/tests/sio2-us-lda.in10000644000175000017500000000264212341373026015551 0ustar mbamba &control calculation='cp', restart_mode='from_scratch', nstep=20, iprint=20, isave=20, dt=5.0, ndr=90, ndw=91, prefix='sio2' verbosity='medium' / &system ibrav=8, celldm(1)=9.28990, celldm(2)=1.73206, celldm(3)=1.09955, nat=18, ntyp=2, nbnd=48, nspin=1, ecutwfc=20.0, ecutrho=150.0, nr1b=24, nr2b=24, nr3b=24, qcutz=150., q2sigma=2.0, ecfixed=16.0, / &electrons electron_dynamics='damp', electron_damping=0.2, startingwfc='random', ampre=0.01, emass=700., emass_cutoff=3., / &ions ion_dynamics='none', ion_radius(1)=1.0, ion_radius(2)=1.0, / ATOMIC_SPECIES O 16.00 O.pz-rrkjus.UPF Si 28.00 Si.pz-vbc.UPF ATOMIC_POSITIONS O 3.18829368 14.83237039 1.22882961 O 7.83231469 6.78704039 1.22882961 O 2.07443467 5.99537992 4.73758250 O 6.72031366 14.04231898 4.73758250 O 3.96307134 11.26989826 7.87860582 O 8.60802134 3.22295920 7.87860582 O 3.96307134 4.81915267 9.14625133 O 8.60802134 12.86448267 9.14625133 O 3.18736469 1.25668055 5.58029607 O 7.83324368 9.30201055 5.58029607 O 2.07536366 10.09206195 2.07358613 O 6.71938467 2.04673195 2.07358613 Si 0.28891589 8.04533000 3.40456284 Si 4.93386589 0.00000000 3.40456284 Si 2.13389003 12.27717358 -0.04188031 Si 6.77884003 4.23184358 -0.04188031 Si 2.13389003 3.81348642 6.85202747 Si 6.77884003 11.85881642 6.85202747 espresso-5.1/CPV/tests/o2-us-para-pbe.ref40000644000175000017500000005146212341373026016321 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:25:56 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/o2-us-para-pbe.in4 Job Title: O2 Crystal Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.pbe-rrkjus.UPF file type is UPF v.1 file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 50 Print out every 10 MD Steps Reads from unit = 53 Writes to unit = 53 MD Simulation time step = 12.00 Electronic fictitious mass (emass) = 900.00 emass cut-off = 2.80 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 4432.73 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 30.0 Ry, Ecutrho = 240.0 Ry, Ecuts = 120.0 Ry Gcutwfc = 10.5 , Gcutrho = 29.6 Gcuts = 20.9 NOTA BENE: refg, mmx = 0.050000 5760 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 verlet algorithm for electron dynamics with friction frice = 0.1000 , grease = 1.0000 Electron dynamics : the temperature is not controlled Electronic states ----------------- Local Spin Density calculation Number of Electron = 12 Spins up = 7, occupations: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Spins down = 5, occupations: 1.00 1.00 1.00 1.00 1.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND WANG Using Generalized Gradient Corrections with Exchange functional: PERDEW BURKE ERNZERHOF Correlation functional: PERDEW BURKE ERNZERHOF Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are not allowed to move Initial random displacement of ionic coordinates specie amplitude 1 0.600000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 2 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.260309 2.287244 5.163090 3.260309 2.287244 7.479148 Ionic position will be re-read from restart file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2749 1369 349 108671 38401 4801 Tot 1375 685 175 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 60 60 60 60 60 60 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 60 60 60 Local number of cell to store the grid ( nrxx ) = 216000 Number of x-y planes for each processors: nr3l = 60 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 45 45 45 45 45 45 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 45 45 45 Local number of cell to store the grid ( nrxx ) = 91125 Number of x-y planes for each processors: nr3sl = 45 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 24 24 24 24 24 24 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 24 24 24 Local number of cell to store the grid ( nrxx ) = 13824 unit vectors of box grid cell in real space: in reciprocal space: 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 54336 54336 54336 54336.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 19201 19201 19201 19201.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 2401 2401 2401 2401.00 Small box Mesh ngb = 3490 not distributed to processors System geometry initialization ------------------------------ ibrav = 14 cell parameters 12.00000 0.00000 0.00000 0.00000 12.00000 0.00000 0.00000 0.00000 12.00000 unit vectors of box grid cell in real space: in reciprocal space: 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00000 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 3490 1 865 3 qqq -0.1022 0.5410 0.0000 0.0000 0.5410 -2.5883 0.0000 0.0000 0.0000 0.0000 0.2297 0.2861 0.0000 0.0000 0.2861 0.3565 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4798 -1.3236 0.0000 0.0000 -1.3236 2.2757 0.0000 0.0000 0.0000 0.0000 0.6278 0.8512 0.0000 0.0000 0.8512 1.1500 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file read in 0.023 sec. Randomization of SCALED ionic coordinates Species 1 atoms = 2 Old Positions New Positions 0.271770 0.190601 0.429330 0.264796 0.180868 0.450973 0.271615 0.190607 0.624190 0.283074 0.193179 0.621881 formf: eself= 28.72384 formf: vps(g=0)= -0.0087653 rhops(g=0)= -0.0034722 formf: sum_g vps(g)= -2.4887968 sum_g rhops(g)= -0.5404975 Delta V(G=0): 0.021817Ry, 0.593660eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 130 0.10008 0.0 0.0 -30.89223 -30.89223 -30.89223 -30.79215 0.0000 0.0000 0.0000 0.0000 131 0.25320 0.0 0.0 -31.26485 -31.26485 -31.26485 -31.01165 0.0000 0.0000 0.0000 0.0000 132 0.33908 0.0 0.0 -31.52016 -31.52016 -31.52016 -31.18108 0.0000 0.0000 0.0000 0.0000 133 0.33598 0.0 0.0 -31.65628 -31.65628 -31.65628 -31.32030 0.0000 0.0000 0.0000 0.0000 134 0.23626 0.0 0.0 -31.66278 -31.66278 -31.66278 -31.42652 0.0000 0.0000 0.0000 0.0000 135 0.12363 0.0 0.0 -31.61216 -31.61216 -31.61216 -31.48852 0.0000 0.0000 0.0000 0.0000 136 0.05707 0.0 0.0 -31.57683 -31.57683 -31.57683 -31.51976 0.0000 0.0000 0.0000 0.0000 137 0.04401 0.0 0.0 -31.58481 -31.58481 -31.58481 -31.54079 0.0000 0.0000 0.0000 0.0000 138 0.05798 0.0 0.0 -31.62264 -31.62264 -31.62264 -31.56465 0.0000 0.0000 0.0000 0.0000 139 0.06932 0.0 0.0 -31.66210 -31.66210 -31.66210 -31.59278 0.0000 0.0000 0.0000 0.0000 140 0.06475 0.0 0.0 -31.68476 -31.68476 -31.68476 -31.62001 0.0000 0.0000 0.0000 0.0000 141 0.04839 0.0 0.0 -31.68987 -31.68987 -31.68987 -31.64149 0.0000 0.0000 0.0000 0.0000 142 0.03101 0.0 0.0 -31.68710 -31.68710 -31.68710 -31.65608 0.0000 0.0000 0.0000 0.0000 143 0.01989 0.0 0.0 -31.68556 -31.68556 -31.68556 -31.66567 0.0000 0.0000 0.0000 0.0000 144 0.01570 0.0 0.0 -31.68857 -31.68857 -31.68857 -31.67287 0.0000 0.0000 0.0000 0.0000 145 0.01522 0.0 0.0 -31.69461 -31.69461 -31.69461 -31.67939 0.0000 0.0000 0.0000 0.0000 146 0.01509 0.0 0.0 -31.70080 -31.70080 -31.70080 -31.68571 0.0000 0.0000 0.0000 0.0000 147 0.01369 0.0 0.0 -31.70524 -31.70524 -31.70524 -31.69155 0.0000 0.0000 0.0000 0.0000 148 0.01109 0.0 0.0 -31.70753 -31.70753 -31.70753 -31.69644 0.0000 0.0000 0.0000 0.0000 149 0.00818 0.0 0.0 -31.70834 -31.70834 -31.70834 -31.70016 0.0000 0.0000 0.0000 0.0000 150 0.00581 0.0 0.0 -31.70865 -31.70865 -31.70865 -31.70284 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file written in 0.107 sec. 151 0.00437 0.0 0.0 -31.70919 -31.70919 -31.70919 -31.70483 0.0000 0.0000 0.0000 0.0000 152 0.00371 0.0 0.0 -31.71017 -31.71017 -31.71017 -31.70646 0.0000 0.0000 0.0000 0.0000 153 0.00343 0.0 0.0 -31.71137 -31.71137 -31.71137 -31.70793 0.0000 0.0000 0.0000 0.0000 154 0.00314 0.0 0.0 -31.71242 -31.71242 -31.71242 -31.70928 0.0000 0.0000 0.0000 0.0000 155 0.00266 0.0 0.0 -31.71310 -31.71310 -31.71310 -31.71044 0.0000 0.0000 0.0000 0.0000 156 0.00206 0.0 0.0 -31.71342 -31.71342 -31.71342 -31.71136 0.0000 0.0000 0.0000 0.0000 157 0.00152 0.0 0.0 -31.71356 -31.71356 -31.71356 -31.71205 0.0000 0.0000 0.0000 0.0000 158 0.00114 0.0 0.0 -31.71371 -31.71371 -31.71371 -31.71257 0.0000 0.0000 0.0000 0.0000 159 0.00093 0.0 0.0 -31.71391 -31.71391 -31.71391 -31.71298 0.0000 0.0000 0.0000 0.0000 160 0.00081 0.0 0.0 -31.71415 -31.71415 -31.71415 -31.71334 0.0000 0.0000 0.0000 0.0000 161 0.00071 0.0 0.0 -31.71436 -31.71436 -31.71436 -31.71365 0.0000 0.0000 0.0000 0.0000 162 0.00060 0.0 0.0 -31.71451 -31.71451 -31.71451 -31.71391 0.0000 0.0000 0.0000 0.0000 163 0.00050 0.0 0.0 -31.71462 -31.71462 -31.71462 -31.71412 0.0000 0.0000 0.0000 0.0000 164 0.00040 0.0 0.0 -31.71471 -31.71471 -31.71471 -31.71430 0.0000 0.0000 0.0000 0.0000 165 0.00033 0.0 0.0 -31.71478 -31.71478 -31.71478 -31.71445 0.0000 0.0000 0.0000 0.0000 166 0.00026 0.0 0.0 -31.71482 -31.71482 -31.71482 -31.71456 0.0000 0.0000 0.0000 0.0000 167 0.00019 0.0 0.0 -31.71485 -31.71485 -31.71485 -31.71465 0.0000 0.0000 0.0000 0.0000 168 0.00015 0.0 0.0 -31.71487 -31.71487 -31.71487 -31.71472 0.0000 0.0000 0.0000 0.0000 169 0.00012 0.0 0.0 -31.71489 -31.71489 -31.71489 -31.71477 0.0000 0.0000 0.0000 0.0000 170 0.00011 0.0 0.0 -31.71493 -31.71493 -31.71493 -31.71482 0.0000 0.0000 0.0000 0.0000 171 0.00011 0.0 0.0 -31.71497 -31.71497 -31.71497 -31.71487 0.0000 0.0000 0.0000 0.0000 172 0.00009 0.0 0.0 -31.71500 -31.71500 -31.71500 -31.71491 0.0000 0.0000 0.0000 0.0000 173 0.00007 0.0 0.0 -31.71501 -31.71501 -31.71501 -31.71494 0.0000 0.0000 0.0000 0.0000 174 0.00005 0.0 0.0 -31.71501 -31.71501 -31.71501 -31.71496 0.0000 0.0000 0.0000 0.0000 175 0.00004 0.0 0.0 -31.71501 -31.71501 -31.71501 -31.71498 0.0000 0.0000 0.0000 0.0000 176 0.00003 0.0 0.0 -31.71502 -31.71502 -31.71502 -31.71499 0.0000 0.0000 0.0000 0.0000 177 0.00003 0.0 0.0 -31.71503 -31.71503 -31.71503 -31.71500 0.0000 0.0000 0.0000 0.0000 178 0.00002 0.0 0.0 -31.71504 -31.71504 -31.71504 -31.71501 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 179 Spin contamination: s(s+1)= 2.00 (Slater) 2.02 (Becke) 2.00 (expected) total energy = -31.71504 Hartree a.u. kinetic energy = 13.56263 Hartree a.u. electrostatic energy = -27.97173 Hartree a.u. esr = 0.67290 Hartree a.u. eself = 28.72384 Hartree a.u. pseudopotential energy = -17.49169 Hartree a.u. n-l pseudopotential energy = 7.13014 Hartree a.u. exchange-correlation energy = -6.94440 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -35.91 -19.34 -14.73 -14.72 -13.62 -5.74 -5.74 Eigenvalues (eV), kp = 1 , spin = 2 -34.72 -17.51 -12.76 -12.76 -12.64 Allocated memory (kb) = 100568 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.2075 Center of mass square displacement (a.u.): 0.016027 Total stress (GPa) -0.08199414 0.10351267 1.30014358 0.10351267 -0.16241301 0.87031388 1.30014262 0.87031323 12.07808178 ATOMIC_POSITIONS O 0.317755E+01 0.217042E+01 0.541168E+01 O 0.339688E+01 0.231814E+01 0.746257E+01 ATOMIC_VELOCITIES O 0.323537E-06 0.144899E-06 -0.849514E-06 O 0.303998E-06 0.154140E-06 0.948704E-06 Forces acting on atoms (au): O -0.398802E-01 -0.262716E-01 -0.350960E+00 O 0.387758E-01 0.267950E-01 0.351659E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0351 179 0.00002 0.0 0.0 -31.71504 -31.71504 -31.71504 -31.71502 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file written in 0.100 sec. Averaged Physical Quantities accomulated this run ekinc : 0.33529 0.03786 (AU) ekin : 13.40010 13.58293 (AU) epot : -51.05467 -52.36964 (AU) total energy : -30.80214 -31.66847 (AU) temperature : 0.70555 0.00000 (K ) enthalpy : -30.80214 -31.66847 (AU) econs : -30.80213 -31.66847 (AU) pressure : 4.50010 4.10278 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 5.69s CPU 0.52s WALL ( 1 calls) main_loop : 237.60s CPU 28.61s WALL ( 50 calls) Called by main_loop: move_electro : 232.36s CPU 28.17s WALL ( 50 calls) ortho : 1.29s CPU 0.11s WALL ( 50 calls) updatc : 0.07s CPU 0.01s WALL ( 50 calls) strucf : 0.00s CPU 0.00s WALL ( 1 calls) calbec : 0.01s CPU 0.00s WALL ( 51 calls) Called by move_electrons: rhoofr : 64.46s CPU 5.57s WALL ( 50 calls) vofrho : 137.97s CPU 19.83s WALL ( 50 calls) dforce : 8.03s CPU 0.70s WALL ( 300 calls) calphi : 0.10s CPU 0.01s WALL ( 50 calls) newd : 20.01s CPU 1.91s WALL ( 50 calls) nlfl : 0.01s CPU 0.00s WALL ( 50 calls) Called by ortho: ortho_iter : 0.12s CPU 0.01s WALL ( 100 calls) rsg : 0.15s CPU 0.01s WALL ( 100 calls) rhoset : 0.17s CPU 0.01s WALL ( 100 calls) sigset : 0.06s CPU 0.01s WALL ( 100 calls) tauset : 0.06s CPU 0.01s WALL ( 100 calls) Small boxes: rhov : 5.18s CPU 0.45s WALL ( 50 calls) fftb : 12.88s CPU 1.19s WALL ( 3102 calls) Low-level routines: prefor : 0.07s CPU 0.01s WALL ( 51 calls) nlfq : 1.13s CPU 0.09s WALL ( 50 calls) nlsm1 : 0.71s CPU 0.06s WALL ( 151 calls) nlsm2 : 1.08s CPU 0.09s WALL ( 50 calls) fft : 48.52s CPU 4.20s WALL ( 1150 calls) ffts : 2.12s CPU 0.18s WALL ( 100 calls) fftw : 8.73s CPU 0.75s WALL ( 900 calls) fft_scatter : 18.28s CPU 1.63s WALL ( 2150 calls) betagx : 2.84s CPU 0.24s WALL ( 1 calls) qradx : 1.49s CPU 0.13s WALL ( 1 calls) nlinit : 5.25s CPU 0.45s WALL ( 1 calls) init_dim : 0.03s CPU 0.03s WALL ( 1 calls) newnlinit : 0.43s CPU 0.04s WALL ( 1 calls) from_restart : 0.13s CPU 0.01s WALL ( 1 calls) ortho_iter : 0.12s CPU 0.01s WALL ( 100 calls) CP : 4m 5.59s CPU 0m29.38s WALL This run was terminated on: 17:26:25 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/si-vbc-lda.in20000644000175000017500000000230712341373026015432 0ustar mbamba&CONTROL title = ' Silicon vbc', calculation = 'cp', restart_mode = 'restart', ndr = 50, ndw = 50, nstep = 50, iprint = 50, isave = 50, tstress = .TRUE., tprnfor = .TRUE., dt = 12.0d0, etot_conv_thr = 1.d-10, prefix = 'si' verbosity = 'medium' / &SYSTEM ibrav = 14, celldm(1) = 10.6, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 8, ntyp = 1, nbnd = 16, ecutwfc = 16.0, ecfixed = 12.0, qcutz = 12.0, q2sigma = 4.0, nr1b= 12, nr2b = 12, nr3b = 12, / &ELECTRONS emass = 800.d0, emass_cutoff = 2.0d0, orthogonalization = 'ortho', electron_dynamics = 'damp', electron_damping = 0.1, electron_velocities = 'zero', ortho_max = 30 / &IONS ion_dynamics = 'none', tranp(1) = .true. amprp(1) = 0.1 ion_radius(1) = 0.8d0, / ATOMIC_SPECIES Si 28.08 Si.pz-vbc.UPF ATOMIC_POSITIONS (crystal) Si 0.00000 0.00000 0.00000 Si 0.00000 0.50000 0.50000 Si 0.50000 0.00000 0.50000 Si 0.50000 0.50000 0.00000 Si 0.25000 0.25000 0.25000 Si 0.25000 0.75000 0.75000 Si 0.75000 0.25000 0.75000 Si 0.75000 0.75000 0.25000 espresso-5.1/CPV/tests/o2-us-para-pbe.in60000644000175000017500000000162112341373026016145 0ustar mbamba&CONTROL title = 'O2 Crystal', calculation = 'cp', restart_mode = 'restart', ndr = 53, ndw = 54, nstep = 100, iprint = 10, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 12.0d0, etot_conv_thr = 1.d-8, prefix = 'o2' verbosity = 'medium' / &SYSTEM ibrav = 14, celldm(1) = 12.0 celldm(2) = 1.0 celldm(3) = 1.0 celldm(4) = 0.0 celldm(5) = 0.0 celldm(6) = 0.0 nspin = 2, nbnd = 7 tot_magnetization = 2 nat = 2, ntyp = 1, ecutwfc = 30.0, ecutrho = 240.0, nr1b = 24, nr2b = 24, nr3b = 24 / &ELECTRONS emass = 900.d0, emass_cutoff = 2.8d0, orthogonalization = 'ortho', electron_dynamics = 'verlet', ortho_max = 30 / &IONS ion_dynamics = 'verlet', ion_radius(1) = 1.0d0, / ATOMIC_SPECIES O 16.0d0 O.pbe-rrkjus.UPF ATOMIC_POSITIONS (bohr) O 3.260309 2.287244 5.163090 O 3.260309 2.287244 7.479148 espresso-5.1/CPV/tests/sio2-us-lda.in30000644000175000017500000000303312341373026015546 0ustar mbamba &control calculation='vc-cp', restart_mode='reset_counters', nstep=100, iprint=10, isave=100, dt=12.0, ndr=92, ndw=93, prefix='sio2' verbosity='medium' / &system ibrav=8, celldm(1)=9.28990, celldm(2)=1.73206, celldm(3)=1.09955, nat=18, ntyp=2, nbnd=48, nspin=1, ecutwfc=20.0, ecutrho=150.0, nr1b=24, nr2b=24, nr3b=24, qcutz=150., q2sigma=2.0, ecfixed=16.0, / &electrons electron_dynamics='verlet', ortho_max=30, emass=700., emass_cutoff=3., / &ions ion_dynamics='verlet', ion_temperature='nose', tempw=300, fnosep=6.6666, ion_radius(1)=1.0, ion_radius(2)=1.0, / &cell cell_dynamics='pr', cell_temperature='nose', temph=300., fnoseh=8.6071, press=1.0, / ATOMIC_SPECIES O 16.00 O.pz-rrkjus.UPF Si 28.00 Si.pz-vbc.UPF ATOMIC_POSITIONS O 3.18829368 14.83237039 1.22882961 O 7.83231469 6.78704039 1.22882961 O 2.07443467 5.99537992 4.73758250 O 6.72031366 14.04231898 4.73758250 O 3.96307134 11.26989826 7.87860582 O 8.60802134 3.22295920 7.87860582 O 3.96307134 4.81915267 9.14625133 O 8.60802134 12.86448267 9.14625133 O 3.18736469 1.25668055 5.58029607 O 7.83324368 9.30201055 5.58029607 O 2.07536366 10.09206195 2.07358613 O 6.71938467 2.04673195 2.07358613 Si 0.28891589 8.04533000 3.40456284 Si 4.93386589 0.00000000 3.40456284 Si 2.13389003 12.27717358 -0.04188031 Si 6.77884003 4.23184358 -0.04188031 Si 2.13389003 3.81348642 6.85202747 Si 6.77884003 11.85881642 6.85202747 espresso-5.1/CPV/tests/o2-us-para-pbe.ref60000644000175000017500000007120312341373026016316 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:27:25 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/o2-us-para-pbe.in6 Job Title: O2 Crystal Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.pbe-rrkjus.UPF file type is UPF v.1 file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 100 Print out every 10 MD Steps Reads from unit = 53 Writes to unit = 54 MD Simulation time step = 12.00 Electronic fictitious mass (emass) = 900.00 emass cut-off = 2.80 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 4432.73 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 30.0 Ry, Ecutrho = 240.0 Ry, Ecuts = 120.0 Ry Gcutwfc = 10.5 , Gcutrho = 29.6 Gcuts = 20.9 NOTA BENE: refg, mmx = 0.050000 5760 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 Electron dynamics with newton equations Electron dynamics : the temperature is not controlled Electronic states ----------------- Local Spin Density calculation Number of Electron = 12 Spins up = 7, occupations: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Spins down = 5, occupations: 1.00 1.00 1.00 1.00 1.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND WANG Using Generalized Gradient Corrections with Exchange functional: PERDEW BURKE ERNZERHOF Correlation functional: PERDEW BURKE ERNZERHOF Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 6 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 2 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.260309 2.287244 5.163090 3.260309 2.287244 7.479148 Ionic position will be re-read from restart file All atoms are allowed to move Ionic temperature is not controlled Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 2749 1369 349 108671 38401 4801 Tot 1375 685 175 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 60 60 60 60 60 60 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 60 60 60 Local number of cell to store the grid ( nrxx ) = 216000 Number of x-y planes for each processors: nr3l = 60 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 45 45 45 45 45 45 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 45 45 45 Local number of cell to store the grid ( nrxx ) = 91125 Number of x-y planes for each processors: nr3sl = 45 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 24 24 24 24 24 24 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 24 24 24 Local number of cell to store the grid ( nrxx ) = 13824 unit vectors of box grid cell in real space: in reciprocal space: 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 54336 54336 54336 54336.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 19201 19201 19201 19201.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 2401 2401 2401 2401.00 Small box Mesh ngb = 3490 not distributed to processors System geometry initialization ------------------------------ ibrav = 14 cell parameters 12.00000 0.00000 0.00000 0.00000 12.00000 0.00000 0.00000 0.00000 12.00000 unit vectors of box grid cell in real space: in reciprocal space: 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.8000 0.0000 0.0000 1.0000 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00000 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 3490 1 865 3 qqq -0.1022 0.5410 0.0000 0.0000 0.5410 -2.5883 0.0000 0.0000 0.0000 0.0000 0.2297 0.2861 0.0000 0.0000 0.2861 0.3565 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4798 -1.3236 0.0000 0.0000 -1.3236 2.2757 0.0000 0.0000 0.0000 0.0000 0.6278 0.8512 0.0000 0.0000 0.8512 1.1500 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_53.save restart file read in 0.023 sec. formf: eself= 28.72384 formf: vps(g=0)= -0.0087653 rhops(g=0)= -0.0034722 formf: sum_g vps(g)= -2.4887968 sum_g rhops(g)= -0.5404975 Delta V(G=0): 0.021817Ry, 0.593660eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 280 0.00435 0.0 763.4 -31.72658 -31.72658 -31.71932 -31.71497 0.0000 0.0000 0.0000 0.0000 281 0.00530 0.0 1044.8 -31.73022 -31.73022 -31.72030 -31.71499 0.0000 0.0000 0.0000 0.0000 282 0.00620 0.0 1340.9 -31.73395 -31.73395 -31.72121 -31.71501 0.0000 0.0000 0.0000 0.0000 283 0.00709 0.0 1628.2 -31.73758 -31.73758 -31.72211 -31.71502 0.0000 0.0000 0.0000 0.0000 284 0.00807 0.0 1885.7 -31.74101 -31.74101 -31.72309 -31.71503 0.0000 0.0000 0.0000 0.0000 285 0.00918 0.0 2100.8 -31.74418 -31.74418 -31.72422 -31.71504 0.0000 0.0000 0.0000 0.0000 286 0.01039 0.0 2271.4 -31.74703 -31.74703 -31.72545 -31.71506 0.0000 0.0000 0.0000 0.0000 287 0.01155 0.0 2404.6 -31.74948 -31.74948 -31.72663 -31.71508 0.0000 0.0000 0.0000 0.0000 288 0.01247 0.0 2512.3 -31.75143 -31.75143 -31.72757 -31.71509 0.0000 0.0000 0.0000 0.0000 289 0.01302 0.0 2605.7 -31.75286 -31.75286 -31.72811 -31.71509 0.0000 0.0000 0.0000 0.0000 290 0.01315 0.0 2691.2 -31.75380 -31.75380 -31.72823 -31.71508 0.0000 0.0000 0.0000 0.0000 291 0.01294 0.0 2767.7 -31.75431 -31.75431 -31.72801 -31.71507 0.0000 0.0000 0.0000 0.0000 292 0.01251 0.0 2827.8 -31.75444 -31.75444 -31.72758 -31.71507 0.0000 0.0000 0.0000 0.0000 293 0.01197 0.0 2860.3 -31.75423 -31.75423 -31.72705 -31.71508 0.0000 0.0000 0.0000 0.0000 294 0.01144 0.0 2854.6 -31.75364 -31.75364 -31.72652 -31.71508 0.0000 0.0000 0.0000 0.0000 295 0.01098 0.0 2804.8 -31.75271 -31.75271 -31.72607 -31.71508 0.0000 0.0000 0.0000 0.0000 296 0.01064 0.0 2712.5 -31.75150 -31.75150 -31.72573 -31.71509 0.0000 0.0000 0.0000 0.0000 297 0.01041 0.0 2586.1 -31.75007 -31.75007 -31.72550 -31.71509 0.0000 0.0000 0.0000 0.0000 298 0.01022 0.0 2438.9 -31.74848 -31.74848 -31.72531 -31.71509 0.0000 0.0000 0.0000 0.0000 299 0.00995 0.0 2284.7 -31.74676 -31.74676 -31.72505 -31.71510 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 300 from rhoofr: total integrated electronic density spin up in g-space = 7.000000 in r-space = 7.000000 spin down in g-space = 5.000000 in r-space = 5.000000 Spin contamination: s(s+1)= 2.01 (Slater) 2.03 (Becke) 2.00 (expected) total energy = -31.74490 Hartree a.u. kinetic energy = 13.08037 Hartree a.u. electrostatic energy = -28.48032 Hartree a.u. esr = 0.16789 Hartree a.u. eself = 28.72384 Hartree a.u. pseudopotential energy = -16.47188 Hartree a.u. n-l pseudopotential energy = 6.85032 Hartree a.u. exchange-correlation energy = -6.72339 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -30.77 -21.44 -13.15 -12.58 -12.58 -7.68 -7.68 Eigenvalues (eV), kp = 1 , spin = 2 -29.42 -19.54 -12.33 -10.60 -10.60 Allocated memory (kb) = 107232 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.2075 Center of mass square displacement (a.u.): 0.016027 Total stress (GPa) -0.44098791 -0.02577175 -0.31419540 -0.02577175 -0.41120241 -0.19933181 -0.31419730 -0.19933301 -3.57536185 ATOMIC_POSITIONS O 0.314384E+01 0.215378E+01 0.518880E+01 O 0.343059E+01 0.233479E+01 0.768545E+01 ATOMIC_VELOCITIES O -0.106727E-03 -0.608173E-04 -0.824633E-03 O 0.106727E-03 0.608173E-04 0.824633E-03 Forces acting on atoms (au): O 0.849268E-02 0.457656E-02 0.694018E-01 O -0.836273E-02 -0.675438E-02 -0.685881E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2133.97 0.0369 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 300 0.00954 0.0 2134.0 -31.74490 -31.74490 -31.72463 -31.71509 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_54.save restart file written in 0.147 sec. 301 0.00895 0.0 1992.3 -31.74295 -31.74295 -31.72402 -31.71508 0.0000 0.0000 0.0000 0.0000 302 0.00820 0.0 1859.7 -31.74094 -31.74094 -31.72327 -31.71507 0.0000 0.0000 0.0000 0.0000 303 0.00738 0.0 1732.1 -31.73889 -31.73889 -31.72244 -31.71506 0.0000 0.0000 0.0000 0.0000 304 0.00656 0.0 1603.8 -31.73684 -31.73684 -31.72161 -31.71505 0.0000 0.0000 0.0000 0.0000 305 0.00581 0.0 1469.9 -31.73482 -31.73482 -31.72085 -31.71505 0.0000 0.0000 0.0000 0.0000 306 0.00518 0.0 1328.4 -31.73284 -31.73284 -31.72022 -31.71504 0.0000 0.0000 0.0000 0.0000 307 0.00468 0.0 1181.1 -31.73094 -31.73094 -31.71972 -31.71504 0.0000 0.0000 0.0000 0.0000 308 0.00428 0.0 1032.6 -31.72913 -31.72913 -31.71932 -31.71504 0.0000 0.0000 0.0000 0.0000 309 0.00391 0.0 888.9 -31.72740 -31.72740 -31.71895 -31.71504 0.0000 0.0000 0.0000 0.0000 310 0.00351 0.0 755.3 -31.72572 -31.72572 -31.71855 -31.71504 0.0000 0.0000 0.0000 0.0000 311 0.00304 0.0 634.9 -31.72411 -31.72411 -31.71808 -31.71503 0.0000 0.0000 0.0000 0.0000 312 0.00255 0.0 528.3 -31.72259 -31.72259 -31.71758 -31.71502 0.0000 0.0000 0.0000 0.0000 313 0.00209 0.0 433.9 -31.72123 -31.72123 -31.71711 -31.71502 0.0000 0.0000 0.0000 0.0000 314 0.00171 0.0 349.3 -31.72005 -31.72005 -31.71673 -31.71502 0.0000 0.0000 0.0000 0.0000 315 0.00141 0.0 272.4 -31.71902 -31.71902 -31.71643 -31.71502 0.0000 0.0000 0.0000 0.0000 316 0.00117 0.0 202.4 -31.71812 -31.71812 -31.71620 -31.71502 0.0000 0.0000 0.0000 0.0000 317 0.00097 0.0 139.9 -31.71733 -31.71733 -31.71600 -31.71502 0.0000 0.0000 0.0000 0.0000 318 0.00081 0.0 87.1 -31.71666 -31.71666 -31.71583 -31.71502 0.0000 0.0000 0.0000 0.0000 319 0.00069 0.0 46.0 -31.71614 -31.71614 -31.71570 -31.71502 0.0000 0.0000 0.0000 0.0000 320 0.00060 0.0 18.2 -31.71580 -31.71580 -31.71562 -31.71502 0.0000 0.0000 0.0000 0.0000 321 0.00054 0.0 3.6 -31.71560 -31.71560 -31.71556 -31.71502 0.0000 0.0000 0.0000 0.0000 322 0.00049 0.0 1.0 -31.71552 -31.71552 -31.71551 -31.71502 0.0000 0.0000 0.0000 0.0000 323 0.00048 0.0 8.6 -31.71558 -31.71558 -31.71549 -31.71502 0.0000 0.0000 0.0000 0.0000 324 0.00053 0.0 25.2 -31.71578 -31.71578 -31.71554 -31.71502 0.0000 0.0000 0.0000 0.0000 325 0.00066 0.0 50.3 -31.71615 -31.71615 -31.71567 -31.71501 0.0000 0.0000 0.0000 0.0000 326 0.00087 0.0 85.1 -31.71670 -31.71670 -31.71589 -31.71502 0.0000 0.0000 0.0000 0.0000 327 0.00113 0.0 131.4 -31.71740 -31.71740 -31.71615 -31.71502 0.0000 0.0000 0.0000 0.0000 328 0.00140 0.0 191.6 -31.71824 -31.71824 -31.71642 -31.71502 0.0000 0.0000 0.0000 0.0000 329 0.00165 0.0 267.4 -31.71922 -31.71922 -31.71668 -31.71503 0.0000 0.0000 0.0000 0.0000 330 0.00190 0.0 358.5 -31.72034 -31.72034 -31.71693 -31.71503 0.0000 0.0000 0.0000 0.0000 331 0.00215 0.0 462.8 -31.72158 -31.72158 -31.71719 -31.71504 0.0000 0.0000 0.0000 0.0000 332 0.00242 0.0 576.1 -31.72293 -31.72293 -31.71746 -31.71504 0.0000 0.0000 0.0000 0.0000 333 0.00274 0.0 693.5 -31.72436 -31.72436 -31.71778 -31.71504 0.0000 0.0000 0.0000 0.0000 334 0.00315 0.0 811.2 -31.72589 -31.72589 -31.71819 -31.71503 0.0000 0.0000 0.0000 0.0000 335 0.00370 0.0 927.8 -31.72754 -31.72754 -31.71873 -31.71503 0.0000 0.0000 0.0000 0.0000 336 0.00438 0.0 1044.4 -31.72933 -31.72933 -31.71941 -31.71503 0.0000 0.0000 0.0000 0.0000 337 0.00514 0.0 1164.7 -31.73124 -31.73124 -31.72018 -31.71504 0.0000 0.0000 0.0000 0.0000 338 0.00588 0.0 1293.0 -31.73322 -31.73322 -31.72093 -31.71505 0.0000 0.0000 0.0000 0.0000 339 0.00654 0.0 1432.9 -31.73520 -31.73520 -31.72159 -31.71505 0.0000 0.0000 0.0000 0.0000 340 0.00708 0.0 1585.4 -31.73719 -31.73719 -31.72213 -31.71506 0.0000 0.0000 0.0000 0.0000 341 0.00754 0.0 1748.3 -31.73920 -31.73920 -31.72259 -31.71506 0.0000 0.0000 0.0000 0.0000 342 0.00797 0.0 1915.9 -31.74123 -31.74123 -31.72303 -31.71506 0.0000 0.0000 0.0000 0.0000 343 0.00841 0.0 2080.3 -31.74325 -31.74325 -31.72349 -31.71507 0.0000 0.0000 0.0000 0.0000 344 0.00891 0.0 2233.3 -31.74520 -31.74520 -31.72399 -31.71508 0.0000 0.0000 0.0000 0.0000 345 0.00945 0.0 2368.3 -31.74703 -31.74703 -31.72453 -31.71508 0.0000 0.0000 0.0000 0.0000 346 0.01007 0.0 2482.3 -31.74873 -31.74873 -31.72515 -31.71508 0.0000 0.0000 0.0000 0.0000 347 0.01074 0.0 2576.0 -31.75030 -31.75030 -31.72582 -31.71509 0.0000 0.0000 0.0000 0.0000 348 0.01141 0.0 2652.6 -31.75170 -31.75170 -31.72650 -31.71509 0.0000 0.0000 0.0000 0.0000 349 0.01200 0.0 2715.9 -31.75291 -31.75291 -31.72710 -31.71511 0.0000 0.0000 0.0000 0.0000 350 0.01241 0.0 2768.2 -31.75382 -31.75382 -31.72752 -31.71511 0.0000 0.0000 0.0000 0.0000 351 0.01259 0.0 2808.5 -31.75439 -31.75439 -31.72771 -31.71512 0.0000 0.0000 0.0000 0.0000 352 0.01256 0.0 2832.0 -31.75458 -31.75458 -31.72767 -31.71511 0.0000 0.0000 0.0000 0.0000 353 0.01237 0.0 2831.1 -31.75437 -31.75437 -31.72748 -31.71511 0.0000 0.0000 0.0000 0.0000 354 0.01208 0.0 2796.8 -31.75375 -31.75375 -31.72718 -31.71511 0.0000 0.0000 0.0000 0.0000 355 0.01171 0.0 2721.5 -31.75267 -31.75267 -31.72681 -31.71510 0.0000 0.0000 0.0000 0.0000 356 0.01128 0.0 2601.5 -31.75110 -31.75110 -31.72638 -31.71510 0.0000 0.0000 0.0000 0.0000 357 0.01079 0.0 2437.6 -31.74903 -31.74903 -31.72588 -31.71509 0.0000 0.0000 0.0000 0.0000 358 0.01021 0.0 2235.4 -31.74653 -31.74653 -31.72529 -31.71508 0.0000 0.0000 0.0000 0.0000 359 0.00952 0.0 2003.9 -31.74363 -31.74363 -31.72459 -31.71507 0.0000 0.0000 0.0000 0.0000 360 0.00870 0.0 1753.2 -31.74042 -31.74042 -31.72376 -31.71507 0.0000 0.0000 0.0000 0.0000 361 0.00771 0.0 1492.7 -31.73694 -31.73694 -31.72276 -31.71505 0.0000 0.0000 0.0000 0.0000 362 0.00658 0.0 1230.8 -31.73330 -31.73330 -31.72161 -31.71504 0.0000 0.0000 0.0000 0.0000 363 0.00537 0.0 974.6 -31.72964 -31.72964 -31.72038 -31.71501 0.0000 0.0000 0.0000 0.0000 364 0.00417 0.0 731.0 -31.72611 -31.72611 -31.71916 -31.71499 0.0000 0.0000 0.0000 0.0000 365 0.00307 0.0 508.1 -31.72287 -31.72287 -31.71804 -31.71497 0.0000 0.0000 0.0000 0.0000 366 0.00213 0.0 314.8 -31.72008 -31.72008 -31.71709 -31.71496 0.0000 0.0000 0.0000 0.0000 367 0.00138 0.0 161.0 -31.71785 -31.71785 -31.71632 -31.71494 0.0000 0.0000 0.0000 0.0000 368 0.00084 0.0 55.9 -31.71630 -31.71630 -31.71577 -31.71493 0.0000 0.0000 0.0000 0.0000 369 0.00055 0.0 5.8 -31.71553 -31.71553 -31.71548 -31.71493 0.0000 0.0000 0.0000 0.0000 370 0.00056 0.0 13.0 -31.71560 -31.71560 -31.71548 -31.71492 0.0000 0.0000 0.0000 0.0000 371 0.00087 0.0 75.8 -31.71652 -31.71652 -31.71580 -31.71493 0.0000 0.0000 0.0000 0.0000 372 0.00149 0.0 188.9 -31.71822 -31.71822 -31.71643 -31.71494 0.0000 0.0000 0.0000 0.0000 373 0.00236 0.0 345.8 -31.72060 -31.72060 -31.71731 -31.71495 0.0000 0.0000 0.0000 0.0000 374 0.00342 0.0 539.5 -31.72351 -31.72351 -31.71839 -31.71497 0.0000 0.0000 0.0000 0.0000 375 0.00458 0.0 764.0 -31.72683 -31.72683 -31.71957 -31.71499 0.0000 0.0000 0.0000 0.0000 376 0.00576 0.0 1013.7 -31.73040 -31.73040 -31.72077 -31.71501 0.0000 0.0000 0.0000 0.0000 377 0.00687 0.0 1282.2 -31.73409 -31.73409 -31.72190 -31.71503 0.0000 0.0000 0.0000 0.0000 378 0.00786 0.0 1560.8 -31.73774 -31.73774 -31.72291 -31.71505 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 379 Spin contamination: s(s+1)= 2.01 (Slater) 2.02 (Becke) 2.00 (expected) total energy = -31.74122 Hartree a.u. kinetic energy = 13.43135 Hartree a.u. electrostatic energy = -28.14978 Hartree a.u. esr = 0.49777 Hartree a.u. eself = 28.72384 Hartree a.u. pseudopotential energy = -17.17059 Hartree a.u. n-l pseudopotential energy = 7.03419 Hartree a.u. exchange-correlation energy = -6.88640 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -34.39 -19.77 -14.05 -14.04 -13.50 -6.23 -6.23 Eigenvalues (eV), kp = 1 , spin = 2 -33.18 -17.96 -12.56 -12.09 -12.09 Allocated memory (kb) = 107232 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.2075 Center of mass square displacement (a.u.): 0.016027 Total stress (GPa) -0.20026061 0.07921282 0.99435813 0.07921282 -0.29770772 0.54495498 0.99435664 0.54495413 7.11037935 ATOMIC_POSITIONS O 0.314912E+01 0.216603E+01 0.536378E+01 O 0.342531E+01 0.232253E+01 0.751047E+01 ATOMIC_VELOCITIES O -0.123350E-03 -0.573613E-04 -0.761637E-03 O 0.123350E-03 0.573613E-04 0.761637E-03 Forces acting on atoms (au): O -0.180763E-01 -0.103548E-01 -0.137370E+00 O 0.181319E-01 0.983268E-02 0.137994E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1837.68 0.0324 379 0.00868 0.0 1837.7 -31.74122 -31.74122 -31.72376 -31.71507 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//o2_54.save restart file written in 0.100 sec. Averaged Physical Quantities accomulated this run ekinc : 0.16157 0.00623 (AU) ekin : 13.29402 13.19699 (AU) epot : -51.48124 -51.86035 (AU) total energy : -31.29382 -31.73427 (AU) temperature : 709.53463 1368.49550 (K ) enthalpy : -31.29382 -31.73427 (AU) econs : -31.28708 -31.72127 (AU) pressure : 2.12956 -0.01268 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 5.81s CPU 0.54s WALL ( 1 calls) main_loop : 470.12s CPU 56.89s WALL ( 100 calls) Called by main_loop: move_electro : 458.99s CPU 55.95s WALL ( 100 calls) ortho : 2.68s CPU 0.23s WALL ( 100 calls) updatc : 0.17s CPU 0.01s WALL ( 100 calls) strucf : 0.04s CPU 0.01s WALL ( 101 calls) calbec : 0.01s CPU 0.00s WALL ( 101 calls) Called by move_electrons: rhoofr : 125.77s CPU 10.84s WALL ( 100 calls) vofrho : 273.44s CPU 39.69s WALL ( 100 calls) dforce : 14.69s CPU 1.27s WALL ( 600 calls) calphi : 0.18s CPU 0.02s WALL ( 100 calls) newd : 41.28s CPU 3.81s WALL ( 100 calls) nlfl : 0.03s CPU 0.00s WALL ( 100 calls) Called by ortho: ortho_iter : 0.26s CPU 0.02s WALL ( 200 calls) rsg : 0.35s CPU 0.03s WALL ( 200 calls) rhoset : 0.31s CPU 0.02s WALL ( 200 calls) sigset : 0.13s CPU 0.01s WALL ( 200 calls) tauset : 0.12s CPU 0.01s WALL ( 200 calls) Small boxes: rhov : 10.23s CPU 0.90s WALL ( 100 calls) fftb : 26.64s CPU 2.39s WALL ( 6301 calls) Low-level routines: prefor : 0.31s CPU 0.03s WALL ( 201 calls) nlfq : 2.24s CPU 0.19s WALL ( 100 calls) nlsm1 : 1.44s CPU 0.12s WALL ( 301 calls) nlsm2 : 2.19s CPU 0.19s WALL ( 100 calls) fft : 92.24s CPU 7.95s WALL ( 2300 calls) ffts : 3.42s CPU 0.31s WALL ( 200 calls) fftw : 15.55s CPU 1.33s WALL ( 1800 calls) fft_scatter : 34.56s CPU 3.03s WALL ( 4300 calls) betagx : 2.81s CPU 0.24s WALL ( 1 calls) qradx : 1.48s CPU 0.12s WALL ( 1 calls) nlinit : 5.35s CPU 0.46s WALL ( 1 calls) init_dim : 0.03s CPU 0.03s WALL ( 1 calls) newnlinit : 0.40s CPU 0.04s WALL ( 1 calls) from_restart : 0.13s CPU 0.01s WALL ( 1 calls) ortho_iter : 0.26s CPU 0.02s WALL ( 200 calls) CP : 7m59.15s CPU 0m57.75s WALL This run was terminated on: 17:28:22 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/si-vbc-lda.in30000644000175000017500000000225312341373026015433 0ustar mbamba&CONTROL title = ' Silicon vbc', calculation = 'cp', restart_mode = 'restart', ndr = 50, ndw = 50, nstep = 1000, iprint = 100, isave = 1000, tstress = .TRUE., tprnfor = .TRUE., dt = 10.0d0, etot_conv_thr = 1.d-10, prefix = 'si' verbosity = 'medium' / &SYSTEM ibrav = 14, celldm(1) = 10.6, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 8, ntyp = 1, nbnd = 16, ecutwfc = 16.0, ecfixed = 12.0, qcutz = 12.0, q2sigma = 4.0, nr1b= 12, nr2b = 12, nr3b = 12, / &ELECTRONS emass = 800.d0, emass_cutoff = 2.0d0, orthogonalization = 'ortho', electron_dynamics = 'verlet', electron_velocities = 'zero', ortho_max = 30 / &IONS ion_dynamics = 'verlet', ion_radius(1) = 0.8d0, ion_velocities = 'zero', / ATOMIC_SPECIES Si 28.08 Si.pz-vbc.UPF ATOMIC_POSITIONS (crystal) Si 0.00000 0.00000 0.00000 Si 0.00000 0.50000 0.50000 Si 0.50000 0.00000 0.50000 Si 0.50000 0.50000 0.00000 Si 0.25000 0.25000 0.25000 Si 0.25000 0.75000 0.75000 Si 0.75000 0.25000 0.75000 Si 0.75000 0.75000 0.25000 espresso-5.1/CPV/tests/si-vbc-lda.ref30000644000175000017500000041767112341373026015617 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:31:10 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/si-vbc-lda.in3 Job Title: Silicon vbc Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/Si.pz-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 1000 Print out every 100 MD Steps Reads from unit = 50 Writes to unit = 50 MD Simulation time step = 10.00 Electronic fictitious mass (emass) = 800.00 emass cut-off = 2.00 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 31117.79 [AU] ibrav = 14 alat = 10.60000000 a1 = 10.60000000 0.00000000 0.00000000 a2 = 0.00000000 10.60000000 0.00000000 a3 = 0.00000000 0.00000000 10.60000000 b1 = 0.09433962 0.00000000 0.00000000 b2 = 0.00000000 0.09433962 0.00000000 b3 = 0.00000000 0.00000000 0.09433962 omega = 1191.01600000 Energy Cut-offs --------------- Ecutwfc = 16.0 Ry, Ecutrho = 64.0 Ry, Ecuts = 64.0 Ry Gcutwfc = 6.7 , Gcutrho = 13.5 Gcuts = 13.5 modified kinetic energy functional, with parameters: ecutz = 12.0000 ecsig = 4.0000 ecfix = 12.00 NOTA BENE: refg, mmx = 0.050000 1536 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 Electron dynamics with newton equations Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 32, of States = 16 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 24 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Zero initial momentum for ions Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 8 mass = 51186.71 (a.u.), 28.08 (amu) rcmax = 0.80 (a.u.) 0.000000 0.000000 0.000000 0.000000 5.300000 5.300000 5.300000 0.000000 5.300000 5.300000 5.300000 0.000000 2.650000 2.650000 2.650000 2.650000 7.950000 7.950000 7.950000 2.650000 7.950000 7.950000 7.950000 2.650000 Ionic position will be re-read from restart file All atoms are allowed to move Ionic temperature is not controlled Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 10.6000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 10.6000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 10.6000 0.0000 0.0000 1.0000 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 577 577 145 10395 10395 1309 Tot 289 289 73 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 27 27 27 27 27 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 27 27 Local number of cell to store the grid ( nrxx ) = 19683 Number of x-y planes for each processors: nr3l = 27 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 27 27 27 27 27 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 27 27 Local number of cell to store the grid ( nrxx ) = 19683 Number of x-y planes for each processors: nr3sl = 27 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 12 12 12 12 12 12 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 12 12 12 Local number of cell to store the grid ( nrxx ) = 1728 unit vectors of box grid cell in real space: in reciprocal space: 4.7111 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.7111 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.7111 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 5198 5198 5198 5198.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 5198 5198 5198 5198.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 655 655 655 655.00 Small box Mesh ngb = 448 not distributed to processors System geometry initialization ------------------------------ ibrav = 14 cell parameters 10.60000 0.00000 0.00000 0.00000 10.60000 0.00000 0.00000 0.00000 10.60000 unit vectors of box grid cell in real space: in reciprocal space: 4.7111 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.7111 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.7111 0.0000 0.0000 1.0000 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00000 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 0.7619 0.0000 0.0000 1.8417 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /plx/userinternal/acv0/espresso/CPV/tmp//si_50.save restart file read in 0.018 sec. Ionic velocities set to zero Electronic velocities set to zero formf: eself= 63.83076 formf: vps(g=0)= -0.0088167 rhops(g=0)= -0.0033585 formf: sum_g vps(g)= -1.8106621 sum_g rhops(g)= -0.7031023 Delta V(G=0): 0.054021Ry, 1.469977eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 251 0.00000 0.0 0.0 -31.15318 -31.15318 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 252 0.00000 0.0 0.0 -31.15318 -31.15318 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 253 0.00000 0.0 0.0 -31.15318 -31.15318 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 254 0.00000 0.0 0.1 -31.15318 -31.15318 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 255 0.00000 0.0 0.1 -31.15318 -31.15318 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 256 0.00000 0.0 0.1 -31.15318 -31.15318 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 257 0.00000 0.0 0.2 -31.15318 -31.15318 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 258 0.00000 0.0 0.3 -31.15319 -31.15319 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 259 0.00000 0.0 0.4 -31.15319 -31.15319 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 260 0.00000 0.0 0.4 -31.15319 -31.15319 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 261 0.00000 0.0 0.5 -31.15320 -31.15320 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 262 0.00000 0.0 0.6 -31.15320 -31.15320 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 263 0.00000 0.0 0.8 -31.15320 -31.15320 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 264 0.00000 0.0 0.9 -31.15321 -31.15321 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 265 0.00000 0.0 1.0 -31.15321 -31.15321 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 266 0.00000 0.0 1.1 -31.15322 -31.15322 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 267 0.00000 0.0 1.3 -31.15323 -31.15323 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 268 0.00000 0.0 1.5 -31.15323 -31.15323 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 269 0.00000 0.0 1.6 -31.15324 -31.15324 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 270 0.00000 0.0 1.8 -31.15324 -31.15324 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 271 0.00000 0.0 2.0 -31.15325 -31.15325 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 272 0.00000 0.0 2.1 -31.15326 -31.15326 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 273 0.00000 0.0 2.3 -31.15327 -31.15327 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 274 0.00000 0.0 2.5 -31.15327 -31.15327 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 275 0.00000 0.0 2.7 -31.15328 -31.15328 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 276 0.00000 0.0 2.9 -31.15329 -31.15329 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 277 0.00000 0.0 3.2 -31.15330 -31.15330 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 278 0.00000 0.0 3.4 -31.15331 -31.15331 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 279 0.00000 0.0 3.6 -31.15332 -31.15332 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 280 0.00000 0.0 3.8 -31.15332 -31.15332 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 281 0.00000 0.0 4.1 -31.15333 -31.15333 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 282 0.00000 0.0 4.3 -31.15334 -31.15334 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 283 0.00000 0.0 4.5 -31.15335 -31.15335 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 284 0.00000 0.0 4.8 -31.15336 -31.15336 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 285 0.00000 0.0 5.0 -31.15337 -31.15337 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 286 0.00000 0.0 5.3 -31.15338 -31.15338 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 287 0.00000 0.0 5.5 -31.15339 -31.15339 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 288 0.00000 0.0 5.8 -31.15340 -31.15340 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 289 0.00000 0.0 6.1 -31.15341 -31.15341 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 290 0.00000 0.0 6.3 -31.15342 -31.15342 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 291 0.00001 0.0 6.6 -31.15343 -31.15343 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 292 0.00001 0.0 6.8 -31.15344 -31.15344 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 293 0.00001 0.0 7.1 -31.15345 -31.15345 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 294 0.00001 0.0 7.3 -31.15346 -31.15346 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 295 0.00001 0.0 7.6 -31.15347 -31.15347 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 296 0.00001 0.0 7.9 -31.15348 -31.15348 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 297 0.00001 0.0 8.1 -31.15349 -31.15349 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 298 0.00001 0.0 8.4 -31.15350 -31.15350 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 299 0.00001 0.0 8.7 -31.15351 -31.15351 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 300 0.00001 0.0 8.9 -31.15352 -31.15352 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 301 0.00001 0.0 9.2 -31.15353 -31.15353 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 302 0.00001 0.0 9.4 -31.15354 -31.15354 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 303 0.00001 0.0 9.7 -31.15355 -31.15355 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 304 0.00001 0.0 9.9 -31.15356 -31.15356 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 305 0.00001 0.0 10.1 -31.15357 -31.15357 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 306 0.00001 0.0 10.4 -31.15358 -31.15358 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 307 0.00001 0.0 10.6 -31.15359 -31.15359 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 308 0.00001 0.0 10.8 -31.15360 -31.15360 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 309 0.00001 0.0 11.1 -31.15361 -31.15361 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 310 0.00001 0.0 11.3 -31.15361 -31.15361 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 311 0.00001 0.0 11.5 -31.15362 -31.15362 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 312 0.00001 0.0 11.8 -31.15363 -31.15363 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 313 0.00001 0.0 12.0 -31.15364 -31.15364 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 314 0.00001 0.0 12.2 -31.15365 -31.15365 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 315 0.00001 0.0 12.4 -31.15365 -31.15365 -31.15318 -31.15318 0.0000 0.0000 0.0000 0.0000 316 0.00001 0.0 12.6 -31.15366 -31.15366 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 317 0.00001 0.0 12.7 -31.15367 -31.15367 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 318 0.00001 0.0 12.9 -31.15368 -31.15368 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 319 0.00001 0.0 13.1 -31.15368 -31.15368 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 320 0.00001 0.0 13.2 -31.15369 -31.15369 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 321 0.00001 0.0 13.4 -31.15370 -31.15370 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 322 0.00001 0.0 13.6 -31.15370 -31.15370 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 323 0.00001 0.0 13.7 -31.15371 -31.15371 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 324 0.00001 0.0 13.9 -31.15371 -31.15371 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 325 0.00001 0.0 14.0 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 326 0.00001 0.0 14.2 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 327 0.00001 0.0 14.3 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 328 0.00001 0.0 14.4 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 329 0.00001 0.0 14.5 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 330 0.00001 0.0 14.6 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 331 0.00001 0.0 14.7 -31.15375 -31.15375 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 332 0.00001 0.0 14.8 -31.15375 -31.15375 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 333 0.00001 0.0 14.9 -31.15376 -31.15376 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 334 0.00001 0.0 15.0 -31.15376 -31.15376 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 335 0.00001 0.0 15.1 -31.15376 -31.15376 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 336 0.00001 0.0 15.2 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 337 0.00001 0.0 15.2 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 338 0.00001 0.0 15.3 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 339 0.00001 0.0 15.3 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 340 0.00001 0.0 15.4 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 341 0.00002 0.0 15.4 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 342 0.00002 0.0 15.4 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 343 0.00002 0.0 15.5 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 344 0.00002 0.0 15.5 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 345 0.00002 0.0 15.5 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 346 0.00002 0.0 15.6 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 347 0.00002 0.0 15.6 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 348 0.00002 0.0 15.6 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 349 0.00002 0.0 15.6 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 350 0.00002 0.0 15.6 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 351 0.00002 0.0 15.6 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 352 0.00002 0.0 15.6 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 353 0.00002 0.0 15.6 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 354 0.00002 0.0 15.5 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 355 0.00002 0.0 15.5 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 356 0.00002 0.0 15.5 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 357 0.00002 0.0 15.5 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 358 0.00002 0.0 15.5 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 359 0.00002 0.0 15.5 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 360 0.00002 0.0 15.4 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 361 0.00002 0.0 15.4 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 362 0.00002 0.0 15.4 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 363 0.00002 0.0 15.3 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 364 0.00002 0.0 15.3 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 365 0.00002 0.0 15.3 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 366 0.00002 0.0 15.2 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 367 0.00002 0.0 15.2 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 368 0.00002 0.0 15.2 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 369 0.00002 0.0 15.1 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 370 0.00002 0.0 15.1 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 371 0.00002 0.0 15.1 -31.15376 -31.15376 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 372 0.00002 0.0 15.0 -31.15376 -31.15376 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 373 0.00002 0.0 15.0 -31.15376 -31.15376 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 374 0.00002 0.0 14.9 -31.15376 -31.15376 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 375 0.00002 0.0 14.9 -31.15376 -31.15376 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 376 0.00002 0.0 14.8 -31.15376 -31.15376 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 377 0.00002 0.0 14.8 -31.15375 -31.15375 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 378 0.00002 0.0 14.8 -31.15375 -31.15375 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 379 0.00002 0.0 14.7 -31.15375 -31.15375 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 380 0.00002 0.0 14.7 -31.15375 -31.15375 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 381 0.00001 0.0 14.7 -31.15375 -31.15375 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 382 0.00001 0.0 14.6 -31.15375 -31.15375 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 383 0.00001 0.0 14.6 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 384 0.00001 0.0 14.6 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 385 0.00001 0.0 14.5 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 386 0.00001 0.0 14.5 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 387 0.00001 0.0 14.4 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 388 0.00001 0.0 14.4 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 389 0.00001 0.0 14.4 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 390 0.00001 0.0 14.3 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 391 0.00001 0.0 14.3 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 392 0.00001 0.0 14.3 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 393 0.00001 0.0 14.3 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 394 0.00001 0.0 14.2 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 395 0.00001 0.0 14.2 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 396 0.00001 0.0 14.2 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 397 0.00001 0.0 14.2 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 398 0.00002 0.0 14.1 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 399 0.00002 0.0 14.1 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 400 0.00002 0.0 14.1 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 401 0.00002 0.0 14.1 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 402 0.00002 0.0 14.0 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 403 0.00002 0.0 14.0 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 404 0.00002 0.0 14.0 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 405 0.00002 0.0 14.0 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 406 0.00002 0.0 14.0 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 407 0.00002 0.0 14.0 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 408 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 409 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 410 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 411 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 412 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 413 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 414 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 415 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 416 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 417 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 418 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 419 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 420 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 421 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 422 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 423 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 424 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 425 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 426 0.00002 0.0 13.9 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 427 0.00002 0.0 14.0 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 428 0.00002 0.0 14.0 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 429 0.00002 0.0 14.0 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 430 0.00002 0.0 14.0 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 431 0.00002 0.0 14.0 -31.15372 -31.15372 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 432 0.00002 0.0 14.0 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 433 0.00002 0.0 14.0 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 434 0.00002 0.0 14.0 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 435 0.00002 0.0 14.1 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 436 0.00002 0.0 14.1 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 437 0.00002 0.0 14.1 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 438 0.00002 0.0 14.1 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 439 0.00002 0.0 14.1 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 440 0.00002 0.0 14.2 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 441 0.00001 0.0 14.2 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 442 0.00001 0.0 14.2 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 443 0.00001 0.0 14.2 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 444 0.00001 0.0 14.3 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 445 0.00001 0.0 14.3 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 446 0.00001 0.0 14.3 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 447 0.00001 0.0 14.3 -31.15373 -31.15373 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 448 0.00001 0.0 14.4 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 449 0.00001 0.0 14.4 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 450 0.00001 0.0 14.4 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 451 0.00001 0.0 14.5 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 452 0.00001 0.0 14.5 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 453 0.00001 0.0 14.5 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 454 0.00001 0.0 14.6 -31.15374 -31.15374 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 455 0.00001 0.0 14.6 -31.15375 -31.15375 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 456 0.00002 0.0 14.6 -31.15375 -31.15375 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 457 0.00002 0.0 14.7 -31.15375 -31.15375 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 458 0.00002 0.0 14.7 -31.15375 -31.15375 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 459 0.00002 0.0 14.8 -31.15375 -31.15375 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 460 0.00002 0.0 14.8 -31.15376 -31.15376 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 461 0.00002 0.0 14.9 -31.15376 -31.15376 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 462 0.00002 0.0 15.0 -31.15376 -31.15376 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 463 0.00002 0.0 15.0 -31.15376 -31.15376 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 464 0.00002 0.0 15.1 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 465 0.00002 0.0 15.2 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 466 0.00002 0.0 15.2 -31.15377 -31.15377 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 467 0.00002 0.0 15.3 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 468 0.00002 0.0 15.4 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 469 0.00002 0.0 15.5 -31.15378 -31.15378 -31.15319 -31.15318 0.0000 0.0000 0.0000 0.0000 470 0.00002 0.0 15.6 -31.15379 -31.15379 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 471 0.00002 0.0 15.7 -31.15379 -31.15379 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 472 0.00002 0.0 15.8 -31.15380 -31.15380 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 473 0.00002 0.0 15.9 -31.15380 -31.15380 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 474 0.00002 0.0 16.0 -31.15381 -31.15381 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 475 0.00002 0.0 16.2 -31.15381 -31.15381 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 476 0.00002 0.0 16.3 -31.15382 -31.15382 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 477 0.00002 0.0 16.4 -31.15382 -31.15382 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 478 0.00002 0.0 16.6 -31.15383 -31.15383 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 479 0.00002 0.0 16.7 -31.15384 -31.15384 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 480 0.00002 0.0 16.9 -31.15384 -31.15384 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 481 0.00003 0.0 17.1 -31.15385 -31.15385 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 482 0.00003 0.0 17.3 -31.15386 -31.15386 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 483 0.00003 0.0 17.5 -31.15387 -31.15387 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 484 0.00003 0.0 17.7 -31.15387 -31.15387 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 485 0.00003 0.0 17.9 -31.15388 -31.15388 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 486 0.00003 0.0 18.1 -31.15389 -31.15389 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 487 0.00003 0.0 18.3 -31.15390 -31.15390 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 488 0.00003 0.0 18.6 -31.15391 -31.15391 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 489 0.00003 0.0 18.8 -31.15392 -31.15392 -31.15320 -31.15318 0.0000 0.0000 0.0000 0.0000 490 0.00003 0.0 19.1 -31.15393 -31.15393 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 491 0.00003 0.0 19.4 -31.15394 -31.15394 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 492 0.00003 0.0 19.6 -31.15395 -31.15395 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 493 0.00003 0.0 19.9 -31.15396 -31.15396 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 494 0.00003 0.0 20.2 -31.15398 -31.15398 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 495 0.00003 0.0 20.6 -31.15399 -31.15399 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 496 0.00003 0.0 20.9 -31.15400 -31.15400 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 497 0.00003 0.0 21.2 -31.15401 -31.15401 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 498 0.00003 0.0 21.6 -31.15403 -31.15403 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 499 0.00003 0.0 21.9 -31.15404 -31.15404 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 500 0.00003 0.0 22.3 -31.15406 -31.15406 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 501 0.00003 0.0 22.7 -31.15407 -31.15407 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 502 0.00003 0.0 23.1 -31.15409 -31.15409 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 503 0.00003 0.0 23.5 -31.15410 -31.15410 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 504 0.00003 0.0 23.9 -31.15412 -31.15412 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 505 0.00003 0.0 24.3 -31.15413 -31.15413 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 506 0.00003 0.0 24.8 -31.15415 -31.15415 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 507 0.00003 0.0 25.2 -31.15417 -31.15417 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 508 0.00003 0.0 25.7 -31.15419 -31.15419 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 509 0.00003 0.0 26.2 -31.15420 -31.15420 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 510 0.00003 0.0 26.6 -31.15422 -31.15422 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 511 0.00004 0.0 27.1 -31.15424 -31.15424 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 512 0.00004 0.0 27.6 -31.15426 -31.15426 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 513 0.00004 0.0 28.2 -31.15428 -31.15428 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 514 0.00004 0.0 28.7 -31.15430 -31.15430 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 515 0.00004 0.0 29.2 -31.15432 -31.15432 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 516 0.00004 0.0 29.8 -31.15434 -31.15434 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 517 0.00004 0.0 30.3 -31.15437 -31.15437 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 518 0.00004 0.0 30.9 -31.15439 -31.15439 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 519 0.00004 0.0 31.5 -31.15441 -31.15441 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 520 0.00004 0.0 32.1 -31.15443 -31.15443 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 521 0.00004 0.0 32.7 -31.15446 -31.15446 -31.15321 -31.15318 0.0000 0.0000 0.0000 0.0000 522 0.00004 0.0 33.3 -31.15448 -31.15448 -31.15322 -31.15318 0.0000 0.0000 0.0000 0.0000 523 0.00004 0.0 33.9 -31.15450 -31.15450 -31.15322 -31.15318 0.0000 0.0000 0.0000 0.0000 524 0.00004 0.0 34.5 -31.15453 -31.15453 -31.15322 -31.15318 0.0000 0.0000 0.0000 0.0000 525 0.00004 0.0 35.1 -31.15455 -31.15455 -31.15322 -31.15318 0.0000 0.0000 0.0000 0.0000 526 0.00004 0.0 35.8 -31.15458 -31.15458 -31.15322 -31.15318 0.0000 0.0000 0.0000 0.0000 527 0.00004 0.0 36.4 -31.15460 -31.15460 -31.15322 -31.15318 0.0000 0.0000 0.0000 0.0000 528 0.00004 0.0 37.1 -31.15463 -31.15463 -31.15322 -31.15318 0.0000 0.0000 0.0000 0.0000 529 0.00004 0.0 37.7 -31.15465 -31.15465 -31.15322 -31.15318 0.0000 0.0000 0.0000 0.0000 530 0.00005 0.0 38.4 -31.15468 -31.15468 -31.15322 -31.15318 0.0000 0.0000 0.0000 0.0000 531 0.00005 0.0 39.1 -31.15471 -31.15471 -31.15322 -31.15318 0.0000 0.0000 0.0000 0.0000 532 0.00005 0.0 39.7 -31.15473 -31.15473 -31.15322 -31.15318 0.0000 0.0000 0.0000 0.0000 533 0.00005 0.0 40.4 -31.15476 -31.15476 -31.15322 -31.15318 0.0000 0.0000 0.0000 0.0000 534 0.00005 0.0 41.1 -31.15479 -31.15479 -31.15322 -31.15318 0.0000 0.0000 0.0000 0.0000 535 0.00005 0.0 41.8 -31.15482 -31.15482 -31.15323 -31.15318 0.0000 0.0000 0.0000 0.0000 536 0.00005 0.0 42.6 -31.15484 -31.15484 -31.15323 -31.15318 0.0000 0.0000 0.0000 0.0000 537 0.00005 0.0 43.3 -31.15487 -31.15487 -31.15323 -31.15318 0.0000 0.0000 0.0000 0.0000 538 0.00005 0.0 44.0 -31.15490 -31.15490 -31.15323 -31.15318 0.0000 0.0000 0.0000 0.0000 539 0.00005 0.0 44.7 -31.15493 -31.15493 -31.15323 -31.15318 0.0000 0.0000 0.0000 0.0000 540 0.00006 0.0 45.5 -31.15496 -31.15496 -31.15323 -31.15318 0.0000 0.0000 0.0000 0.0000 541 0.00006 0.0 46.2 -31.15499 -31.15499 -31.15323 -31.15318 0.0000 0.0000 0.0000 0.0000 542 0.00006 0.0 46.9 -31.15502 -31.15502 -31.15323 -31.15318 0.0000 0.0000 0.0000 0.0000 543 0.00006 0.0 47.7 -31.15505 -31.15505 -31.15324 -31.15318 0.0000 0.0000 0.0000 0.0000 544 0.00006 0.0 48.5 -31.15508 -31.15508 -31.15324 -31.15318 0.0000 0.0000 0.0000 0.0000 545 0.00006 0.0 49.2 -31.15511 -31.15511 -31.15324 -31.15318 0.0000 0.0000 0.0000 0.0000 546 0.00006 0.0 50.0 -31.15514 -31.15514 -31.15324 -31.15318 0.0000 0.0000 0.0000 0.0000 547 0.00006 0.0 50.8 -31.15517 -31.15517 -31.15324 -31.15318 0.0000 0.0000 0.0000 0.0000 548 0.00007 0.0 51.5 -31.15520 -31.15520 -31.15324 -31.15318 0.0000 0.0000 0.0000 0.0000 549 0.00007 0.0 52.3 -31.15523 -31.15523 -31.15324 -31.15318 0.0000 0.0000 0.0000 0.0000 550 0.00007 0.0 53.1 -31.15526 -31.15526 -31.15324 -31.15318 0.0000 0.0000 0.0000 0.0000 551 0.00007 0.0 53.9 -31.15529 -31.15529 -31.15325 -31.15318 0.0000 0.0000 0.0000 0.0000 552 0.00007 0.0 54.7 -31.15533 -31.15533 -31.15325 -31.15318 0.0000 0.0000 0.0000 0.0000 553 0.00007 0.0 55.5 -31.15536 -31.15536 -31.15325 -31.15318 0.0000 0.0000 0.0000 0.0000 554 0.00007 0.0 56.3 -31.15539 -31.15539 -31.15325 -31.15318 0.0000 0.0000 0.0000 0.0000 555 0.00007 0.0 57.1 -31.15542 -31.15542 -31.15325 -31.15318 0.0000 0.0000 0.0000 0.0000 556 0.00008 0.0 57.9 -31.15545 -31.15545 -31.15325 -31.15318 0.0000 0.0000 0.0000 0.0000 557 0.00008 0.0 58.8 -31.15549 -31.15549 -31.15325 -31.15318 0.0000 0.0000 0.0000 0.0000 558 0.00008 0.0 59.6 -31.15552 -31.15552 -31.15325 -31.15318 0.0000 0.0000 0.0000 0.0000 559 0.00008 0.0 60.4 -31.15555 -31.15555 -31.15325 -31.15318 0.0000 0.0000 0.0000 0.0000 560 0.00008 0.0 61.2 -31.15558 -31.15558 -31.15326 -31.15318 0.0000 0.0000 0.0000 0.0000 561 0.00008 0.0 62.1 -31.15562 -31.15562 -31.15326 -31.15318 0.0000 0.0000 0.0000 0.0000 562 0.00008 0.0 62.9 -31.15565 -31.15565 -31.15326 -31.15318 0.0000 0.0000 0.0000 0.0000 563 0.00008 0.0 63.8 -31.15568 -31.15568 -31.15326 -31.15318 0.0000 0.0000 0.0000 0.0000 564 0.00008 0.0 64.6 -31.15571 -31.15571 -31.15326 -31.15318 0.0000 0.0000 0.0000 0.0000 565 0.00008 0.0 65.5 -31.15575 -31.15575 -31.15326 -31.15318 0.0000 0.0000 0.0000 0.0000 566 0.00009 0.0 66.3 -31.15578 -31.15578 -31.15326 -31.15318 0.0000 0.0000 0.0000 0.0000 567 0.00009 0.0 67.2 -31.15581 -31.15581 -31.15326 -31.15318 0.0000 0.0000 0.0000 0.0000 568 0.00009 0.0 68.0 -31.15585 -31.15585 -31.15326 -31.15318 0.0000 0.0000 0.0000 0.0000 569 0.00009 0.0 68.9 -31.15588 -31.15588 -31.15326 -31.15318 0.0000 0.0000 0.0000 0.0000 570 0.00009 0.0 69.8 -31.15592 -31.15592 -31.15326 -31.15318 0.0000 0.0000 0.0000 0.0000 571 0.00009 0.0 70.7 -31.15595 -31.15595 -31.15326 -31.15318 0.0000 0.0000 0.0000 0.0000 572 0.00009 0.0 71.5 -31.15598 -31.15598 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 573 0.00009 0.0 72.4 -31.15602 -31.15602 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 574 0.00009 0.0 73.3 -31.15605 -31.15605 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 575 0.00009 0.0 74.2 -31.15609 -31.15609 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 576 0.00009 0.0 75.1 -31.15612 -31.15612 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 577 0.00009 0.0 76.0 -31.15616 -31.15616 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 578 0.00009 0.0 76.9 -31.15619 -31.15619 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 579 0.00009 0.0 77.8 -31.15622 -31.15622 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 580 0.00009 0.0 78.7 -31.15626 -31.15626 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 581 0.00009 0.0 79.6 -31.15630 -31.15630 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 582 0.00009 0.0 80.5 -31.15633 -31.15633 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 583 0.00009 0.0 81.5 -31.15637 -31.15637 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 584 0.00010 0.0 82.4 -31.15640 -31.15640 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 585 0.00010 0.0 83.3 -31.15644 -31.15644 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 586 0.00010 0.0 84.2 -31.15647 -31.15647 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 587 0.00010 0.0 85.2 -31.15651 -31.15651 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 588 0.00010 0.0 86.1 -31.15655 -31.15655 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 589 0.00010 0.0 87.1 -31.15658 -31.15658 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 590 0.00010 0.0 88.0 -31.15662 -31.15662 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 591 0.00010 0.0 89.0 -31.15666 -31.15666 -31.15327 -31.15318 0.0000 0.0000 0.0000 0.0000 592 0.00010 0.0 89.9 -31.15669 -31.15669 -31.15328 -31.15318 0.0000 0.0000 0.0000 0.0000 593 0.00010 0.0 90.9 -31.15673 -31.15673 -31.15328 -31.15318 0.0000 0.0000 0.0000 0.0000 594 0.00010 0.0 91.9 -31.15677 -31.15677 -31.15328 -31.15318 0.0000 0.0000 0.0000 0.0000 595 0.00010 0.0 92.8 -31.15681 -31.15681 -31.15328 -31.15318 0.0000 0.0000 0.0000 0.0000 596 0.00010 0.0 93.8 -31.15684 -31.15684 -31.15328 -31.15318 0.0000 0.0000 0.0000 0.0000 597 0.00010 0.0 94.8 -31.15688 -31.15688 -31.15328 -31.15318 0.0000 0.0000 0.0000 0.0000 598 0.00010 0.0 95.8 -31.15692 -31.15692 -31.15328 -31.15318 0.0000 0.0000 0.0000 0.0000 599 0.00011 0.0 96.8 -31.15696 -31.15696 -31.15328 -31.15318 0.0000 0.0000 0.0000 0.0000 600 0.00011 0.0 97.8 -31.15700 -31.15700 -31.15328 -31.15318 0.0000 0.0000 0.0000 0.0000 601 0.00011 0.0 98.8 -31.15704 -31.15704 -31.15328 -31.15318 0.0000 0.0000 0.0000 0.0000 602 0.00011 0.0 99.8 -31.15708 -31.15708 -31.15328 -31.15318 0.0000 0.0000 0.0000 0.0000 603 0.00011 0.0 100.9 -31.15712 -31.15712 -31.15329 -31.15318 0.0000 0.0000 0.0000 0.0000 604 0.00011 0.0 101.9 -31.15716 -31.15716 -31.15329 -31.15318 0.0000 0.0000 0.0000 0.0000 605 0.00011 0.0 102.9 -31.15720 -31.15720 -31.15329 -31.15318 0.0000 0.0000 0.0000 0.0000 606 0.00011 0.0 104.0 -31.15724 -31.15724 -31.15329 -31.15318 0.0000 0.0000 0.0000 0.0000 607 0.00012 0.0 105.0 -31.15728 -31.15728 -31.15329 -31.15318 0.0000 0.0000 0.0000 0.0000 608 0.00012 0.0 106.1 -31.15732 -31.15732 -31.15329 -31.15318 0.0000 0.0000 0.0000 0.0000 609 0.00012 0.0 107.2 -31.15737 -31.15737 -31.15329 -31.15318 0.0000 0.0000 0.0000 0.0000 610 0.00012 0.0 108.3 -31.15741 -31.15741 -31.15330 -31.15318 0.0000 0.0000 0.0000 0.0000 611 0.00012 0.0 109.3 -31.15745 -31.15745 -31.15330 -31.15318 0.0000 0.0000 0.0000 0.0000 612 0.00012 0.0 110.5 -31.15750 -31.15750 -31.15330 -31.15318 0.0000 0.0000 0.0000 0.0000 613 0.00013 0.0 111.6 -31.15754 -31.15754 -31.15330 -31.15318 0.0000 0.0000 0.0000 0.0000 614 0.00013 0.0 112.7 -31.15759 -31.15759 -31.15330 -31.15318 0.0000 0.0000 0.0000 0.0000 615 0.00013 0.0 113.8 -31.15763 -31.15763 -31.15330 -31.15318 0.0000 0.0000 0.0000 0.0000 616 0.00013 0.0 115.0 -31.15768 -31.15768 -31.15331 -31.15318 0.0000 0.0000 0.0000 0.0000 617 0.00013 0.0 116.2 -31.15772 -31.15772 -31.15331 -31.15318 0.0000 0.0000 0.0000 0.0000 618 0.00013 0.0 117.3 -31.15777 -31.15777 -31.15331 -31.15318 0.0000 0.0000 0.0000 0.0000 619 0.00013 0.0 118.5 -31.15781 -31.15781 -31.15331 -31.15318 0.0000 0.0000 0.0000 0.0000 620 0.00014 0.0 119.7 -31.15786 -31.15786 -31.15331 -31.15318 0.0000 0.0000 0.0000 0.0000 621 0.00014 0.0 120.9 -31.15791 -31.15791 -31.15331 -31.15318 0.0000 0.0000 0.0000 0.0000 622 0.00014 0.0 122.2 -31.15796 -31.15796 -31.15331 -31.15318 0.0000 0.0000 0.0000 0.0000 623 0.00014 0.0 123.4 -31.15801 -31.15801 -31.15332 -31.15318 0.0000 0.0000 0.0000 0.0000 624 0.00014 0.0 124.7 -31.15806 -31.15806 -31.15332 -31.15318 0.0000 0.0000 0.0000 0.0000 625 0.00014 0.0 126.0 -31.15811 -31.15811 -31.15332 -31.15318 0.0000 0.0000 0.0000 0.0000 626 0.00014 0.0 127.3 -31.15816 -31.15816 -31.15332 -31.15318 0.0000 0.0000 0.0000 0.0000 627 0.00015 0.0 128.6 -31.15821 -31.15821 -31.15332 -31.15318 0.0000 0.0000 0.0000 0.0000 628 0.00015 0.0 129.9 -31.15826 -31.15826 -31.15332 -31.15318 0.0000 0.0000 0.0000 0.0000 629 0.00015 0.0 131.2 -31.15831 -31.15831 -31.15332 -31.15318 0.0000 0.0000 0.0000 0.0000 630 0.00015 0.0 132.6 -31.15836 -31.15836 -31.15332 -31.15318 0.0000 0.0000 0.0000 0.0000 631 0.00015 0.0 134.0 -31.15842 -31.15842 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 632 0.00015 0.0 135.4 -31.15847 -31.15847 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 633 0.00015 0.0 136.8 -31.15852 -31.15852 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 634 0.00015 0.0 138.2 -31.15858 -31.15858 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 635 0.00015 0.0 139.7 -31.15864 -31.15864 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 636 0.00015 0.0 141.1 -31.15869 -31.15869 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 637 0.00015 0.0 142.6 -31.15875 -31.15875 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 638 0.00016 0.0 144.1 -31.15881 -31.15881 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 639 0.00016 0.0 145.6 -31.15886 -31.15886 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 640 0.00016 0.0 147.1 -31.15892 -31.15892 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 641 0.00016 0.0 148.7 -31.15898 -31.15898 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 642 0.00016 0.0 150.3 -31.15904 -31.15904 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 643 0.00016 0.0 151.9 -31.15910 -31.15910 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 644 0.00016 0.0 153.5 -31.15917 -31.15917 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 645 0.00016 0.0 155.1 -31.15923 -31.15923 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 646 0.00016 0.0 156.7 -31.15929 -31.15929 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 647 0.00016 0.0 158.4 -31.15935 -31.15935 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 648 0.00016 0.0 160.1 -31.15942 -31.15942 -31.15333 -31.15318 0.0000 0.0000 0.0000 0.0000 649 0.00016 0.0 161.8 -31.15948 -31.15948 -31.15334 -31.15318 0.0000 0.0000 0.0000 0.0000 650 0.00016 0.0 163.5 -31.15955 -31.15955 -31.15334 -31.15318 0.0000 0.0000 0.0000 0.0000 651 0.00016 0.0 165.2 -31.15961 -31.15961 -31.15334 -31.15318 0.0000 0.0000 0.0000 0.0000 652 0.00016 0.0 166.9 -31.15968 -31.15968 -31.15334 -31.15318 0.0000 0.0000 0.0000 0.0000 653 0.00016 0.0 168.7 -31.15975 -31.15975 -31.15334 -31.15318 0.0000 0.0000 0.0000 0.0000 654 0.00016 0.0 170.5 -31.15982 -31.15982 -31.15334 -31.15318 0.0000 0.0000 0.0000 0.0000 655 0.00016 0.0 172.3 -31.15989 -31.15989 -31.15334 -31.15318 0.0000 0.0000 0.0000 0.0000 656 0.00017 0.0 174.1 -31.15996 -31.15996 -31.15334 -31.15318 0.0000 0.0000 0.0000 0.0000 657 0.00017 0.0 175.9 -31.16003 -31.16003 -31.15334 -31.15318 0.0000 0.0000 0.0000 0.0000 658 0.00017 0.0 177.8 -31.16010 -31.16010 -31.15334 -31.15318 0.0000 0.0000 0.0000 0.0000 659 0.00017 0.0 179.6 -31.16017 -31.16017 -31.15334 -31.15318 0.0000 0.0000 0.0000 0.0000 660 0.00017 0.0 181.5 -31.16024 -31.16024 -31.15334 -31.15318 0.0000 0.0000 0.0000 0.0000 661 0.00017 0.0 183.4 -31.16032 -31.16032 -31.15335 -31.15318 0.0000 0.0000 0.0000 0.0000 662 0.00017 0.0 185.3 -31.16039 -31.16039 -31.15335 -31.15318 0.0000 0.0000 0.0000 0.0000 663 0.00017 0.0 187.2 -31.16046 -31.16046 -31.15335 -31.15318 0.0000 0.0000 0.0000 0.0000 664 0.00018 0.0 189.1 -31.16054 -31.16054 -31.15335 -31.15318 0.0000 0.0000 0.0000 0.0000 665 0.00018 0.0 191.1 -31.16062 -31.16062 -31.15335 -31.15318 0.0000 0.0000 0.0000 0.0000 666 0.00018 0.0 193.1 -31.16069 -31.16069 -31.15335 -31.15318 0.0000 0.0000 0.0000 0.0000 667 0.00018 0.0 195.1 -31.16077 -31.16077 -31.15336 -31.15318 0.0000 0.0000 0.0000 0.0000 668 0.00018 0.0 197.1 -31.16085 -31.16085 -31.15336 -31.15318 0.0000 0.0000 0.0000 0.0000 669 0.00019 0.0 199.1 -31.16093 -31.16093 -31.15336 -31.15318 0.0000 0.0000 0.0000 0.0000 670 0.00019 0.0 201.1 -31.16101 -31.16101 -31.15336 -31.15318 0.0000 0.0000 0.0000 0.0000 671 0.00019 0.0 203.2 -31.16109 -31.16109 -31.15337 -31.15318 0.0000 0.0000 0.0000 0.0000 672 0.00019 0.0 205.3 -31.16117 -31.16117 -31.15337 -31.15318 0.0000 0.0000 0.0000 0.0000 673 0.00019 0.0 207.3 -31.16125 -31.16125 -31.15337 -31.15318 0.0000 0.0000 0.0000 0.0000 674 0.00020 0.0 209.5 -31.16133 -31.16133 -31.15337 -31.15318 0.0000 0.0000 0.0000 0.0000 675 0.00020 0.0 211.6 -31.16142 -31.16142 -31.15337 -31.15318 0.0000 0.0000 0.0000 0.0000 676 0.00020 0.0 213.7 -31.16150 -31.16150 -31.15338 -31.15318 0.0000 0.0000 0.0000 0.0000 677 0.00020 0.0 215.9 -31.16158 -31.16158 -31.15338 -31.15318 0.0000 0.0000 0.0000 0.0000 678 0.00021 0.0 218.1 -31.16167 -31.16167 -31.15338 -31.15318 0.0000 0.0000 0.0000 0.0000 679 0.00021 0.0 220.3 -31.16176 -31.16176 -31.15338 -31.15318 0.0000 0.0000 0.0000 0.0000 680 0.00021 0.0 222.5 -31.16184 -31.16184 -31.15339 -31.15318 0.0000 0.0000 0.0000 0.0000 681 0.00021 0.0 224.8 -31.16193 -31.16193 -31.15339 -31.15318 0.0000 0.0000 0.0000 0.0000 682 0.00022 0.0 227.0 -31.16202 -31.16202 -31.15339 -31.15318 0.0000 0.0000 0.0000 0.0000 683 0.00022 0.0 229.3 -31.16211 -31.16211 -31.15339 -31.15318 0.0000 0.0000 0.0000 0.0000 684 0.00022 0.0 231.6 -31.16220 -31.16220 -31.15340 -31.15318 0.0000 0.0000 0.0000 0.0000 685 0.00022 0.0 233.9 -31.16229 -31.16229 -31.15340 -31.15318 0.0000 0.0000 0.0000 0.0000 686 0.00023 0.0 236.3 -31.16238 -31.16238 -31.15340 -31.15318 0.0000 0.0000 0.0000 0.0000 687 0.00023 0.0 238.6 -31.16247 -31.16247 -31.15340 -31.15318 0.0000 0.0000 0.0000 0.0000 688 0.00023 0.0 241.0 -31.16257 -31.16257 -31.15341 -31.15318 0.0000 0.0000 0.0000 0.0000 689 0.00023 0.0 243.5 -31.16266 -31.16266 -31.15341 -31.15318 0.0000 0.0000 0.0000 0.0000 690 0.00024 0.0 245.9 -31.16276 -31.16276 -31.15341 -31.15318 0.0000 0.0000 0.0000 0.0000 691 0.00024 0.0 248.4 -31.16285 -31.16285 -31.15341 -31.15318 0.0000 0.0000 0.0000 0.0000 692 0.00024 0.0 250.8 -31.16295 -31.16295 -31.15342 -31.15318 0.0000 0.0000 0.0000 0.0000 693 0.00024 0.0 253.3 -31.16305 -31.16305 -31.15342 -31.15318 0.0000 0.0000 0.0000 0.0000 694 0.00024 0.0 255.9 -31.16314 -31.16314 -31.15342 -31.15318 0.0000 0.0000 0.0000 0.0000 695 0.00025 0.0 258.4 -31.16324 -31.16324 -31.15342 -31.15318 0.0000 0.0000 0.0000 0.0000 696 0.00025 0.0 261.0 -31.16334 -31.16334 -31.15342 -31.15318 0.0000 0.0000 0.0000 0.0000 697 0.00025 0.0 263.6 -31.16344 -31.16344 -31.15343 -31.15318 0.0000 0.0000 0.0000 0.0000 698 0.00025 0.0 266.2 -31.16354 -31.16354 -31.15343 -31.15318 0.0000 0.0000 0.0000 0.0000 699 0.00025 0.0 268.9 -31.16365 -31.16365 -31.15343 -31.15318 0.0000 0.0000 0.0000 0.0000 700 0.00026 0.0 271.6 -31.16375 -31.16375 -31.15343 -31.15318 0.0000 0.0000 0.0000 0.0000 701 0.00026 0.0 274.3 -31.16385 -31.16385 -31.15343 -31.15318 0.0000 0.0000 0.0000 0.0000 702 0.00026 0.0 277.0 -31.16396 -31.16396 -31.15343 -31.15318 0.0000 0.0000 0.0000 0.0000 703 0.00026 0.0 279.7 -31.16407 -31.16407 -31.15344 -31.15318 0.0000 0.0000 0.0000 0.0000 704 0.00026 0.0 282.5 -31.16417 -31.16417 -31.15344 -31.15318 0.0000 0.0000 0.0000 0.0000 705 0.00026 0.0 285.3 -31.16428 -31.16428 -31.15344 -31.15318 0.0000 0.0000 0.0000 0.0000 706 0.00027 0.0 288.1 -31.16439 -31.16439 -31.15344 -31.15318 0.0000 0.0000 0.0000 0.0000 707 0.00027 0.0 291.0 -31.16450 -31.16450 -31.15344 -31.15318 0.0000 0.0000 0.0000 0.0000 708 0.00027 0.0 293.9 -31.16461 -31.16461 -31.15344 -31.15318 0.0000 0.0000 0.0000 0.0000 709 0.00027 0.0 296.7 -31.16472 -31.16472 -31.15345 -31.15318 0.0000 0.0000 0.0000 0.0000 710 0.00027 0.0 299.7 -31.16484 -31.16484 -31.15345 -31.15318 0.0000 0.0000 0.0000 0.0000 711 0.00027 0.0 302.6 -31.16495 -31.16495 -31.15345 -31.15318 0.0000 0.0000 0.0000 0.0000 712 0.00028 0.0 305.6 -31.16507 -31.16507 -31.15345 -31.15318 0.0000 0.0000 0.0000 0.0000 713 0.00028 0.0 308.6 -31.16518 -31.16518 -31.15345 -31.15318 0.0000 0.0000 0.0000 0.0000 714 0.00028 0.0 311.6 -31.16530 -31.16530 -31.15346 -31.15318 0.0000 0.0000 0.0000 0.0000 715 0.00028 0.0 314.7 -31.16542 -31.16542 -31.15346 -31.15318 0.0000 0.0000 0.0000 0.0000 716 0.00028 0.0 317.8 -31.16554 -31.16554 -31.15346 -31.15318 0.0000 0.0000 0.0000 0.0000 717 0.00029 0.0 320.9 -31.16566 -31.16566 -31.15346 -31.15318 0.0000 0.0000 0.0000 0.0000 718 0.00029 0.0 324.0 -31.16578 -31.16578 -31.15346 -31.15318 0.0000 0.0000 0.0000 0.0000 719 0.00029 0.0 327.2 -31.16590 -31.16590 -31.15347 -31.15318 0.0000 0.0000 0.0000 0.0000 720 0.00029 0.0 330.4 -31.16602 -31.16602 -31.15347 -31.15318 0.0000 0.0000 0.0000 0.0000 721 0.00030 0.0 333.6 -31.16615 -31.16615 -31.15347 -31.15318 0.0000 0.0000 0.0000 0.0000 722 0.00030 0.0 336.9 -31.16628 -31.16628 -31.15347 -31.15318 0.0000 0.0000 0.0000 0.0000 723 0.00030 0.0 340.1 -31.16640 -31.16640 -31.15348 -31.15318 0.0000 0.0000 0.0000 0.0000 724 0.00030 0.0 343.5 -31.16653 -31.16653 -31.15348 -31.15318 0.0000 0.0000 0.0000 0.0000 725 0.00031 0.0 346.8 -31.16666 -31.16666 -31.15348 -31.15318 0.0000 0.0000 0.0000 0.0000 726 0.00031 0.0 350.2 -31.16679 -31.16679 -31.15348 -31.15318 0.0000 0.0000 0.0000 0.0000 727 0.00031 0.0 353.6 -31.16692 -31.16692 -31.15349 -31.15318 0.0000 0.0000 0.0000 0.0000 728 0.00031 0.0 357.0 -31.16706 -31.16706 -31.15349 -31.15318 0.0000 0.0000 0.0000 0.0000 729 0.00032 0.0 360.5 -31.16719 -31.16719 -31.15349 -31.15318 0.0000 0.0000 0.0000 0.0000 730 0.00032 0.0 364.0 -31.16733 -31.16733 -31.15350 -31.15318 0.0000 0.0000 0.0000 0.0000 731 0.00032 0.0 367.5 -31.16747 -31.16747 -31.15350 -31.15318 0.0000 0.0000 0.0000 0.0000 732 0.00033 0.0 371.1 -31.16761 -31.16761 -31.15350 -31.15318 0.0000 0.0000 0.0000 0.0000 733 0.00033 0.0 374.7 -31.16775 -31.16775 -31.15351 -31.15318 0.0000 0.0000 0.0000 0.0000 734 0.00033 0.0 378.4 -31.16789 -31.16789 -31.15351 -31.15318 0.0000 0.0000 0.0000 0.0000 735 0.00034 0.0 382.1 -31.16803 -31.16803 -31.15351 -31.15318 0.0000 0.0000 0.0000 0.0000 736 0.00034 0.0 385.8 -31.16818 -31.16818 -31.15351 -31.15318 0.0000 0.0000 0.0000 0.0000 737 0.00034 0.0 389.6 -31.16832 -31.16832 -31.15352 -31.15318 0.0000 0.0000 0.0000 0.0000 738 0.00035 0.0 393.4 -31.16847 -31.16847 -31.15352 -31.15318 0.0000 0.0000 0.0000 0.0000 739 0.00035 0.0 397.2 -31.16862 -31.16862 -31.15352 -31.15318 0.0000 0.0000 0.0000 0.0000 740 0.00035 0.0 401.1 -31.16877 -31.16877 -31.15353 -31.15318 0.0000 0.0000 0.0000 0.0000 741 0.00035 0.0 405.1 -31.16892 -31.16892 -31.15353 -31.15318 0.0000 0.0000 0.0000 0.0000 742 0.00036 0.0 409.0 -31.16908 -31.16908 -31.15353 -31.15318 0.0000 0.0000 0.0000 0.0000 743 0.00036 0.0 413.0 -31.16923 -31.16923 -31.15354 -31.15318 0.0000 0.0000 0.0000 0.0000 744 0.00036 0.0 417.1 -31.16939 -31.16939 -31.15354 -31.15318 0.0000 0.0000 0.0000 0.0000 745 0.00037 0.0 421.2 -31.16955 -31.16955 -31.15354 -31.15318 0.0000 0.0000 0.0000 0.0000 746 0.00037 0.0 425.3 -31.16971 -31.16971 -31.15355 -31.15318 0.0000 0.0000 0.0000 0.0000 747 0.00037 0.0 429.5 -31.16987 -31.16987 -31.15355 -31.15318 0.0000 0.0000 0.0000 0.0000 748 0.00038 0.0 433.8 -31.17004 -31.17004 -31.15355 -31.15318 0.0000 0.0000 0.0000 0.0000 749 0.00038 0.0 438.1 -31.17020 -31.17020 -31.15355 -31.15318 0.0000 0.0000 0.0000 0.0000 750 0.00038 0.0 442.4 -31.17037 -31.17037 -31.15356 -31.15318 0.0000 0.0000 0.0000 0.0000 751 0.00038 0.0 446.8 -31.17054 -31.17054 -31.15356 -31.15318 0.0000 0.0000 0.0000 0.0000 752 0.00039 0.0 451.3 -31.17071 -31.17071 -31.15356 -31.15318 0.0000 0.0000 0.0000 0.0000 753 0.00039 0.0 455.7 -31.17088 -31.17088 -31.15356 -31.15318 0.0000 0.0000 0.0000 0.0000 754 0.00039 0.0 460.3 -31.17106 -31.17106 -31.15357 -31.15318 0.0000 0.0000 0.0000 0.0000 755 0.00039 0.0 464.9 -31.17124 -31.17124 -31.15357 -31.15318 0.0000 0.0000 0.0000 0.0000 756 0.00040 0.0 469.5 -31.17141 -31.17141 -31.15357 -31.15318 0.0000 0.0000 0.0000 0.0000 757 0.00040 0.0 474.2 -31.17159 -31.17159 -31.15358 -31.15318 0.0000 0.0000 0.0000 0.0000 758 0.00040 0.0 478.9 -31.17178 -31.17178 -31.15358 -31.15318 0.0000 0.0000 0.0000 0.0000 759 0.00040 0.0 483.7 -31.17196 -31.17196 -31.15358 -31.15318 0.0000 0.0000 0.0000 0.0000 760 0.00041 0.0 488.6 -31.17215 -31.17215 -31.15358 -31.15318 0.0000 0.0000 0.0000 0.0000 761 0.00041 0.0 493.5 -31.17234 -31.17234 -31.15359 -31.15318 0.0000 0.0000 0.0000 0.0000 762 0.00041 0.0 498.4 -31.17253 -31.17253 -31.15359 -31.15318 0.0000 0.0000 0.0000 0.0000 763 0.00042 0.0 503.4 -31.17272 -31.17272 -31.15359 -31.15318 0.0000 0.0000 0.0000 0.0000 764 0.00042 0.0 508.5 -31.17292 -31.17292 -31.15359 -31.15318 0.0000 0.0000 0.0000 0.0000 765 0.00042 0.0 513.6 -31.17312 -31.17312 -31.15360 -31.15318 0.0000 0.0000 0.0000 0.0000 766 0.00042 0.0 518.8 -31.17332 -31.17332 -31.15360 -31.15318 0.0000 0.0000 0.0000 0.0000 767 0.00043 0.0 524.0 -31.17352 -31.17352 -31.15360 -31.15318 0.0000 0.0000 0.0000 0.0000 768 0.00043 0.0 529.3 -31.17372 -31.17372 -31.15361 -31.15318 0.0000 0.0000 0.0000 0.0000 769 0.00043 0.0 534.7 -31.17393 -31.17393 -31.15361 -31.15318 0.0000 0.0000 0.0000 0.0000 770 0.00044 0.0 540.1 -31.17414 -31.17414 -31.15361 -31.15318 0.0000 0.0000 0.0000 0.0000 771 0.00044 0.0 545.6 -31.17435 -31.17435 -31.15362 -31.15318 0.0000 0.0000 0.0000 0.0000 772 0.00045 0.0 551.1 -31.17456 -31.17456 -31.15362 -31.15318 0.0000 0.0000 0.0000 0.0000 773 0.00045 0.0 556.7 -31.17478 -31.17478 -31.15362 -31.15318 0.0000 0.0000 0.0000 0.0000 774 0.00045 0.0 562.4 -31.17500 -31.17500 -31.15363 -31.15318 0.0000 0.0000 0.0000 0.0000 775 0.00046 0.0 568.1 -31.17522 -31.17522 -31.15363 -31.15318 0.0000 0.0000 0.0000 0.0000 776 0.00046 0.0 573.9 -31.17544 -31.17544 -31.15364 -31.15318 0.0000 0.0000 0.0000 0.0000 777 0.00046 0.0 579.7 -31.17567 -31.17567 -31.15364 -31.15318 0.0000 0.0000 0.0000 0.0000 778 0.00047 0.0 585.7 -31.17590 -31.17590 -31.15364 -31.15318 0.0000 0.0000 0.0000 0.0000 779 0.00047 0.0 591.7 -31.17613 -31.17613 -31.15365 -31.15318 0.0000 0.0000 0.0000 0.0000 780 0.00048 0.0 597.7 -31.17637 -31.17637 -31.15365 -31.15318 0.0000 0.0000 0.0000 0.0000 781 0.00048 0.0 603.9 -31.17660 -31.17660 -31.15366 -31.15318 0.0000 0.0000 0.0000 0.0000 782 0.00048 0.0 610.1 -31.17684 -31.17684 -31.15366 -31.15318 0.0000 0.0000 0.0000 0.0000 783 0.00049 0.0 616.4 -31.17709 -31.17709 -31.15366 -31.15318 0.0000 0.0000 0.0000 0.0000 784 0.00049 0.0 622.7 -31.17733 -31.17733 -31.15367 -31.15318 0.0000 0.0000 0.0000 0.0000 785 0.00050 0.0 629.2 -31.17758 -31.17758 -31.15367 -31.15318 0.0000 0.0000 0.0000 0.0000 786 0.00050 0.0 635.7 -31.17783 -31.17783 -31.15368 -31.15318 0.0000 0.0000 0.0000 0.0000 787 0.00051 0.0 642.3 -31.17809 -31.17809 -31.15368 -31.15318 0.0000 0.0000 0.0000 0.0000 788 0.00051 0.0 648.9 -31.17835 -31.17835 -31.15369 -31.15318 0.0000 0.0000 0.0000 0.0000 789 0.00051 0.0 655.7 -31.17861 -31.17861 -31.15369 -31.15318 0.0000 0.0000 0.0000 0.0000 790 0.00052 0.0 662.5 -31.17887 -31.17887 -31.15369 -31.15318 0.0000 0.0000 0.0000 0.0000 791 0.00052 0.0 669.5 -31.17914 -31.17914 -31.15370 -31.15318 0.0000 0.0000 0.0000 0.0000 792 0.00053 0.0 676.5 -31.17941 -31.17941 -31.15370 -31.15318 0.0000 0.0000 0.0000 0.0000 793 0.00053 0.0 683.6 -31.17968 -31.17968 -31.15371 -31.15318 0.0000 0.0000 0.0000 0.0000 794 0.00054 0.0 690.8 -31.17996 -31.17996 -31.15371 -31.15318 0.0000 0.0000 0.0000 0.0000 795 0.00054 0.0 698.0 -31.18024 -31.18024 -31.15372 -31.15318 0.0000 0.0000 0.0000 0.0000 796 0.00054 0.0 705.4 -31.18053 -31.18053 -31.15372 -31.15318 0.0000 0.0000 0.0000 0.0000 797 0.00055 0.0 712.8 -31.18081 -31.18081 -31.15372 -31.15318 0.0000 0.0000 0.0000 0.0000 798 0.00055 0.0 720.4 -31.18110 -31.18110 -31.15373 -31.15318 0.0000 0.0000 0.0000 0.0000 799 0.00056 0.0 728.0 -31.18140 -31.18140 -31.15373 -31.15318 0.0000 0.0000 0.0000 0.0000 800 0.00056 0.0 735.8 -31.18170 -31.18170 -31.15374 -31.15318 0.0000 0.0000 0.0000 0.0000 801 0.00057 0.0 743.6 -31.18200 -31.18200 -31.15374 -31.15318 0.0000 0.0000 0.0000 0.0000 802 0.00057 0.0 751.5 -31.18231 -31.18231 -31.15375 -31.15318 0.0000 0.0000 0.0000 0.0000 803 0.00058 0.0 759.6 -31.18262 -31.18262 -31.15375 -31.15318 0.0000 0.0000 0.0000 0.0000 804 0.00058 0.0 767.7 -31.18293 -31.18293 -31.15376 -31.15318 0.0000 0.0000 0.0000 0.0000 805 0.00059 0.0 775.9 -31.18325 -31.18325 -31.15376 -31.15318 0.0000 0.0000 0.0000 0.0000 806 0.00059 0.0 784.3 -31.18357 -31.18357 -31.15377 -31.15318 0.0000 0.0000 0.0000 0.0000 807 0.00060 0.0 792.7 -31.18390 -31.18390 -31.15377 -31.15318 0.0000 0.0000 0.0000 0.0000 808 0.00060 0.0 801.3 -31.18423 -31.18423 -31.15378 -31.15318 0.0000 0.0000 0.0000 0.0000 809 0.00061 0.0 810.0 -31.18456 -31.18456 -31.15378 -31.15318 0.0000 0.0000 0.0000 0.0000 810 0.00061 0.0 818.7 -31.18490 -31.18490 -31.15379 -31.15318 0.0000 0.0000 0.0000 0.0000 811 0.00062 0.0 827.6 -31.18525 -31.18525 -31.15379 -31.15318 0.0000 0.0000 0.0000 0.0000 812 0.00062 0.0 836.6 -31.18559 -31.18559 -31.15380 -31.15318 0.0000 0.0000 0.0000 0.0000 813 0.00063 0.0 845.8 -31.18595 -31.18595 -31.15381 -31.15318 0.0000 0.0000 0.0000 0.0000 814 0.00064 0.0 855.0 -31.18630 -31.18630 -31.15381 -31.15318 0.0000 0.0000 0.0000 0.0000 815 0.00064 0.0 864.4 -31.18667 -31.18667 -31.15382 -31.15318 0.0000 0.0000 0.0000 0.0000 816 0.00065 0.0 873.9 -31.18703 -31.18703 -31.15382 -31.15318 0.0000 0.0000 0.0000 0.0000 817 0.00066 0.0 883.5 -31.18740 -31.18740 -31.15383 -31.15318 0.0000 0.0000 0.0000 0.0000 818 0.00066 0.0 893.2 -31.18778 -31.18778 -31.15384 -31.15318 0.0000 0.0000 0.0000 0.0000 819 0.00067 0.0 903.1 -31.18816 -31.18816 -31.15384 -31.15318 0.0000 0.0000 0.0000 0.0000 820 0.00068 0.0 913.1 -31.18855 -31.18855 -31.15385 -31.15318 0.0000 0.0000 0.0000 0.0000 821 0.00068 0.0 923.3 -31.18894 -31.18894 -31.15386 -31.15318 0.0000 0.0000 0.0000 0.0000 822 0.00069 0.0 933.5 -31.18934 -31.18934 -31.15387 -31.15318 0.0000 0.0000 0.0000 0.0000 823 0.00070 0.0 944.0 -31.18975 -31.18975 -31.15387 -31.15318 0.0000 0.0000 0.0000 0.0000 824 0.00070 0.0 954.5 -31.19015 -31.19015 -31.15388 -31.15318 0.0000 0.0000 0.0000 0.0000 825 0.00071 0.0 965.3 -31.19057 -31.19057 -31.15389 -31.15318 0.0000 0.0000 0.0000 0.0000 826 0.00072 0.0 976.1 -31.19099 -31.19099 -31.15390 -31.15318 0.0000 0.0000 0.0000 0.0000 827 0.00073 0.0 987.1 -31.19142 -31.19142 -31.15390 -31.15318 0.0000 0.0000 0.0000 0.0000 828 0.00074 0.0 998.3 -31.19185 -31.19185 -31.15391 -31.15318 0.0000 0.0000 0.0000 0.0000 829 0.00074 0.0 1009.6 -31.19229 -31.19229 -31.15392 -31.15318 0.0000 0.0000 0.0000 0.0000 830 0.00075 0.0 1021.1 -31.19273 -31.19273 -31.15393 -31.15318 0.0000 0.0000 0.0000 0.0000 831 0.00076 0.0 1032.8 -31.19318 -31.19318 -31.15394 -31.15318 0.0000 0.0000 0.0000 0.0000 832 0.00077 0.0 1044.6 -31.19364 -31.19364 -31.15395 -31.15318 0.0000 0.0000 0.0000 0.0000 833 0.00078 0.0 1056.6 -31.19411 -31.19411 -31.15396 -31.15318 0.0000 0.0000 0.0000 0.0000 834 0.00079 0.0 1068.8 -31.19458 -31.19458 -31.15396 -31.15318 0.0000 0.0000 0.0000 0.0000 835 0.00080 0.0 1081.1 -31.19506 -31.19506 -31.15397 -31.15318 0.0000 0.0000 0.0000 0.0000 836 0.00081 0.0 1093.6 -31.19554 -31.19554 -31.15398 -31.15318 0.0000 0.0000 0.0000 0.0000 837 0.00082 0.0 1106.4 -31.19604 -31.19604 -31.15399 -31.15318 0.0000 0.0000 0.0000 0.0000 838 0.00083 0.0 1119.3 -31.19654 -31.19654 -31.15400 -31.15318 0.0000 0.0000 0.0000 0.0000 839 0.00084 0.0 1132.4 -31.19704 -31.19704 -31.15401 -31.15318 0.0000 0.0000 0.0000 0.0000 840 0.00085 0.0 1145.6 -31.19756 -31.19756 -31.15402 -31.15318 0.0000 0.0000 0.0000 0.0000 841 0.00086 0.0 1159.1 -31.19808 -31.19808 -31.15403 -31.15318 0.0000 0.0000 0.0000 0.0000 842 0.00087 0.0 1172.8 -31.19861 -31.19861 -31.15404 -31.15318 0.0000 0.0000 0.0000 0.0000 843 0.00088 0.0 1186.7 -31.19915 -31.19915 -31.15405 -31.15318 0.0000 0.0000 0.0000 0.0000 844 0.00089 0.0 1200.8 -31.19970 -31.19970 -31.15406 -31.15318 0.0000 0.0000 0.0000 0.0000 845 0.00090 0.0 1215.1 -31.20025 -31.20025 -31.15408 -31.15318 0.0000 0.0000 0.0000 0.0000 846 0.00091 0.0 1229.6 -31.20081 -31.20081 -31.15409 -31.15318 0.0000 0.0000 0.0000 0.0000 847 0.00092 0.0 1244.4 -31.20139 -31.20139 -31.15410 -31.15318 0.0000 0.0000 0.0000 0.0000 848 0.00093 0.0 1259.3 -31.20197 -31.20197 -31.15411 -31.15318 0.0000 0.0000 0.0000 0.0000 849 0.00095 0.0 1274.5 -31.20256 -31.20256 -31.15412 -31.15318 0.0000 0.0000 0.0000 0.0000 850 0.00096 0.0 1290.0 -31.20316 -31.20316 -31.15413 -31.15318 0.0000 0.0000 0.0000 0.0000 851 0.00097 0.0 1305.7 -31.20376 -31.20376 -31.15415 -31.15318 0.0000 0.0000 0.0000 0.0000 852 0.00098 0.0 1321.6 -31.20438 -31.20438 -31.15416 -31.15318 0.0000 0.0000 0.0000 0.0000 853 0.00100 0.0 1337.7 -31.20501 -31.20501 -31.15417 -31.15318 0.0000 0.0000 0.0000 0.0000 854 0.00101 0.0 1354.1 -31.20565 -31.20565 -31.15419 -31.15318 0.0000 0.0000 0.0000 0.0000 855 0.00103 0.0 1370.8 -31.20629 -31.20629 -31.15420 -31.15318 0.0000 0.0000 0.0000 0.0000 856 0.00104 0.0 1387.7 -31.20695 -31.20695 -31.15422 -31.15318 0.0000 0.0000 0.0000 0.0000 857 0.00106 0.0 1404.8 -31.20762 -31.20762 -31.15423 -31.15318 0.0000 0.0000 0.0000 0.0000 858 0.00107 0.0 1422.3 -31.20830 -31.20830 -31.15425 -31.15318 0.0000 0.0000 0.0000 0.0000 859 0.00109 0.0 1440.0 -31.20898 -31.20898 -31.15426 -31.15318 0.0000 0.0000 0.0000 0.0000 860 0.00110 0.0 1457.9 -31.20968 -31.20968 -31.15428 -31.15318 0.0000 0.0000 0.0000 0.0000 861 0.00112 0.0 1476.2 -31.21039 -31.21039 -31.15429 -31.15318 0.0000 0.0000 0.0000 0.0000 862 0.00114 0.0 1494.7 -31.21111 -31.21111 -31.15431 -31.15318 0.0000 0.0000 0.0000 0.0000 863 0.00115 0.0 1513.6 -31.21185 -31.21185 -31.15433 -31.15318 0.0000 0.0000 0.0000 0.0000 864 0.00117 0.0 1532.7 -31.21259 -31.21259 -31.15435 -31.15318 0.0000 0.0000 0.0000 0.0000 865 0.00119 0.0 1552.1 -31.21335 -31.21335 -31.15436 -31.15318 0.0000 0.0000 0.0000 0.0000 866 0.00120 0.0 1571.8 -31.21411 -31.21411 -31.15438 -31.15318 0.0000 0.0000 0.0000 0.0000 867 0.00122 0.0 1591.9 -31.21489 -31.21489 -31.15440 -31.15318 0.0000 0.0000 0.0000 0.0000 868 0.00124 0.0 1612.2 -31.21569 -31.21569 -31.15442 -31.15318 0.0000 0.0000 0.0000 0.0000 869 0.00126 0.0 1632.9 -31.21649 -31.21649 -31.15444 -31.15318 0.0000 0.0000 0.0000 0.0000 870 0.00128 0.0 1653.9 -31.21731 -31.21731 -31.15446 -31.15318 0.0000 0.0000 0.0000 0.0000 871 0.00130 0.0 1675.2 -31.21813 -31.21813 -31.15448 -31.15318 0.0000 0.0000 0.0000 0.0000 872 0.00132 0.0 1696.8 -31.21898 -31.21898 -31.15449 -31.15318 0.0000 0.0000 0.0000 0.0000 873 0.00134 0.0 1718.8 -31.21983 -31.21983 -31.15451 -31.15318 0.0000 0.0000 0.0000 0.0000 874 0.00136 0.0 1741.1 -31.22070 -31.22070 -31.15453 -31.15318 0.0000 0.0000 0.0000 0.0000 875 0.00138 0.0 1763.8 -31.22158 -31.22158 -31.15456 -31.15318 0.0000 0.0000 0.0000 0.0000 876 0.00140 0.0 1786.8 -31.22248 -31.22248 -31.15458 -31.15318 0.0000 0.0000 0.0000 0.0000 877 0.00142 0.0 1810.1 -31.22338 -31.22338 -31.15460 -31.15318 0.0000 0.0000 0.0000 0.0000 878 0.00144 0.0 1833.8 -31.22431 -31.22431 -31.15462 -31.15318 0.0000 0.0000 0.0000 0.0000 879 0.00146 0.0 1857.9 -31.22524 -31.22524 -31.15464 -31.15318 0.0000 0.0000 0.0000 0.0000 880 0.00148 0.0 1882.3 -31.22619 -31.22619 -31.15466 -31.15318 0.0000 0.0000 0.0000 0.0000 881 0.00151 0.0 1907.1 -31.22716 -31.22716 -31.15468 -31.15318 0.0000 0.0000 0.0000 0.0000 882 0.00153 0.0 1932.3 -31.22813 -31.22813 -31.15470 -31.15318 0.0000 0.0000 0.0000 0.0000 883 0.00155 0.0 1957.9 -31.22913 -31.22913 -31.15472 -31.15318 0.0000 0.0000 0.0000 0.0000 884 0.00157 0.0 1983.8 -31.23013 -31.23013 -31.15475 -31.15318 0.0000 0.0000 0.0000 0.0000 885 0.00159 0.0 2010.1 -31.23115 -31.23115 -31.15477 -31.15318 0.0000 0.0000 0.0000 0.0000 886 0.00161 0.0 2036.8 -31.23219 -31.23219 -31.15479 -31.15318 0.0000 0.0000 0.0000 0.0000 887 0.00163 0.0 2063.8 -31.23324 -31.23324 -31.15481 -31.15318 0.0000 0.0000 0.0000 0.0000 888 0.00166 0.0 2091.3 -31.23430 -31.23430 -31.15483 -31.15318 0.0000 0.0000 0.0000 0.0000 889 0.00168 0.0 2119.1 -31.23538 -31.23538 -31.15485 -31.15318 0.0000 0.0000 0.0000 0.0000 890 0.00170 0.0 2147.3 -31.23648 -31.23648 -31.15488 -31.15318 0.0000 0.0000 0.0000 0.0000 891 0.00172 0.0 2175.9 -31.23759 -31.23759 -31.15490 -31.15318 0.0000 0.0000 0.0000 0.0000 892 0.00174 0.0 2204.9 -31.23871 -31.23871 -31.15492 -31.15318 0.0000 0.0000 0.0000 0.0000 893 0.00176 0.0 2234.3 -31.23985 -31.23985 -31.15494 -31.15318 0.0000 0.0000 0.0000 0.0000 894 0.00179 0.0 2264.1 -31.24100 -31.24100 -31.15496 -31.15318 0.0000 0.0000 0.0000 0.0000 895 0.00181 0.0 2294.3 -31.24217 -31.24217 -31.15498 -31.15318 0.0000 0.0000 0.0000 0.0000 896 0.00183 0.0 2324.9 -31.24336 -31.24336 -31.15500 -31.15318 0.0000 0.0000 0.0000 0.0000 897 0.00185 0.0 2355.9 -31.24456 -31.24456 -31.15503 -31.15318 0.0000 0.0000 0.0000 0.0000 898 0.00187 0.0 2387.3 -31.24577 -31.24577 -31.15505 -31.15318 0.0000 0.0000 0.0000 0.0000 899 0.00189 0.0 2419.1 -31.24700 -31.24700 -31.15507 -31.15318 0.0000 0.0000 0.0000 0.0000 900 0.00191 0.0 2451.3 -31.24824 -31.24824 -31.15508 -31.15318 0.0000 0.0000 0.0000 0.0000 901 0.00193 0.0 2483.9 -31.24950 -31.24950 -31.15510 -31.15318 0.0000 0.0000 0.0000 0.0000 902 0.00195 0.0 2516.9 -31.25077 -31.25077 -31.15512 -31.15318 0.0000 0.0000 0.0000 0.0000 903 0.00196 0.0 2550.3 -31.25206 -31.25206 -31.15514 -31.15318 0.0000 0.0000 0.0000 0.0000 904 0.00198 0.0 2584.1 -31.25336 -31.25336 -31.15516 -31.15318 0.0000 0.0000 0.0000 0.0000 905 0.00200 0.0 2618.3 -31.25468 -31.25468 -31.15518 -31.15318 0.0000 0.0000 0.0000 0.0000 906 0.00202 0.0 2652.9 -31.25601 -31.25601 -31.15520 -31.15318 0.0000 0.0000 0.0000 0.0000 907 0.00204 0.0 2687.9 -31.25736 -31.25736 -31.15521 -31.15318 0.0000 0.0000 0.0000 0.0000 908 0.00205 0.0 2723.3 -31.25872 -31.25872 -31.15523 -31.15318 0.0000 0.0000 0.0000 0.0000 909 0.00207 0.0 2759.1 -31.26010 -31.26010 -31.15525 -31.15318 0.0000 0.0000 0.0000 0.0000 910 0.00209 0.0 2795.3 -31.26149 -31.26149 -31.15526 -31.15318 0.0000 0.0000 0.0000 0.0000 911 0.00210 0.0 2831.9 -31.26290 -31.26290 -31.15528 -31.15318 0.0000 0.0000 0.0000 0.0000 912 0.00212 0.0 2868.9 -31.26432 -31.26432 -31.15530 -31.15318 0.0000 0.0000 0.0000 0.0000 913 0.00214 0.0 2906.4 -31.26576 -31.26576 -31.15532 -31.15318 0.0000 0.0000 0.0000 0.0000 914 0.00216 0.0 2944.2 -31.26722 -31.26722 -31.15533 -31.15318 0.0000 0.0000 0.0000 0.0000 915 0.00217 0.0 2982.4 -31.26869 -31.26869 -31.15535 -31.15318 0.0000 0.0000 0.0000 0.0000 916 0.00219 0.0 3021.0 -31.27018 -31.27018 -31.15537 -31.15318 0.0000 0.0000 0.0000 0.0000 917 0.00221 0.0 3060.1 -31.27168 -31.27168 -31.15539 -31.15318 0.0000 0.0000 0.0000 0.0000 918 0.00223 0.0 3099.6 -31.27320 -31.27320 -31.15541 -31.15318 0.0000 0.0000 0.0000 0.0000 919 0.00226 0.0 3139.4 -31.27474 -31.27474 -31.15543 -31.15318 0.0000 0.0000 0.0000 0.0000 920 0.00228 0.0 3179.7 -31.27629 -31.27629 -31.15546 -31.15318 0.0000 0.0000 0.0000 0.0000 921 0.00231 0.0 3220.5 -31.27787 -31.27787 -31.15548 -31.15318 0.0000 0.0000 0.0000 0.0000 922 0.00233 0.0 3261.6 -31.27946 -31.27946 -31.15551 -31.15318 0.0000 0.0000 0.0000 0.0000 923 0.00236 0.0 3303.2 -31.28107 -31.28107 -31.15554 -31.15318 0.0000 0.0000 0.0000 0.0000 924 0.00240 0.0 3345.3 -31.28270 -31.28270 -31.15557 -31.15318 0.0000 0.0000 0.0000 0.0000 925 0.00243 0.0 3387.8 -31.28435 -31.28435 -31.15561 -31.15318 0.0000 0.0000 0.0000 0.0000 926 0.00247 0.0 3430.7 -31.28602 -31.28602 -31.15565 -31.15318 0.0000 0.0000 0.0000 0.0000 927 0.00251 0.0 3474.2 -31.28772 -31.28772 -31.15569 -31.15318 0.0000 0.0000 0.0000 0.0000 928 0.00256 0.0 3518.1 -31.28943 -31.28943 -31.15574 -31.15318 0.0000 0.0000 0.0000 0.0000 929 0.00261 0.0 3562.5 -31.29117 -31.29117 -31.15579 -31.15318 0.0000 0.0000 0.0000 0.0000 930 0.00267 0.0 3607.5 -31.29293 -31.29293 -31.15584 -31.15318 0.0000 0.0000 0.0000 0.0000 931 0.00272 0.0 3652.9 -31.29472 -31.29472 -31.15590 -31.15318 0.0000 0.0000 0.0000 0.0000 932 0.00279 0.0 3698.9 -31.29653 -31.29653 -31.15597 -31.15318 0.0000 0.0000 0.0000 0.0000 933 0.00286 0.0 3745.5 -31.29837 -31.29837 -31.15603 -31.15318 0.0000 0.0000 0.0000 0.0000 934 0.00293 0.0 3792.6 -31.30023 -31.30023 -31.15611 -31.15318 0.0000 0.0000 0.0000 0.0000 935 0.00301 0.0 3840.3 -31.30213 -31.30213 -31.15619 -31.15318 0.0000 0.0000 0.0000 0.0000 936 0.00309 0.0 3888.7 -31.30405 -31.30405 -31.15627 -31.15318 0.0000 0.0000 0.0000 0.0000 937 0.00318 0.0 3937.7 -31.30600 -31.30600 -31.15636 -31.15318 0.0000 0.0000 0.0000 0.0000 938 0.00327 0.0 3987.3 -31.30797 -31.30797 -31.15645 -31.15318 0.0000 0.0000 0.0000 0.0000 939 0.00337 0.0 4037.6 -31.30998 -31.30998 -31.15655 -31.15318 0.0000 0.0000 0.0000 0.0000 940 0.00347 0.0 4088.7 -31.31202 -31.31202 -31.15665 -31.15318 0.0000 0.0000 0.0000 0.0000 941 0.00357 0.0 4140.5 -31.31409 -31.31409 -31.15675 -31.15318 0.0000 0.0000 0.0000 0.0000 942 0.00368 0.0 4193.0 -31.31620 -31.31620 -31.15685 -31.15318 0.0000 0.0000 0.0000 0.0000 943 0.00378 0.0 4246.4 -31.31833 -31.31833 -31.15696 -31.15318 0.0000 0.0000 0.0000 0.0000 944 0.00389 0.0 4300.5 -31.32049 -31.32049 -31.15707 -31.15318 0.0000 0.0000 0.0000 0.0000 945 0.00400 0.0 4355.4 -31.32269 -31.32269 -31.15717 -31.15318 0.0000 0.0000 0.0000 0.0000 946 0.00410 0.0 4411.1 -31.32491 -31.32491 -31.15728 -31.15318 0.0000 0.0000 0.0000 0.0000 947 0.00421 0.0 4467.7 -31.32717 -31.32717 -31.15739 -31.15318 0.0000 0.0000 0.0000 0.0000 948 0.00431 0.0 4525.1 -31.32945 -31.32945 -31.15749 -31.15318 0.0000 0.0000 0.0000 0.0000 949 0.00441 0.0 4583.4 -31.33176 -31.33176 -31.15758 -31.15318 0.0000 0.0000 0.0000 0.0000 950 0.00450 0.0 4642.6 -31.33410 -31.33410 -31.15767 -31.15318 0.0000 0.0000 0.0000 0.0000 951 0.00458 0.0 4702.7 -31.33646 -31.33646 -31.15775 -31.15318 0.0000 0.0000 0.0000 0.0000 952 0.00465 0.0 4763.6 -31.33885 -31.33885 -31.15783 -31.15318 0.0000 0.0000 0.0000 0.0000 953 0.00471 0.0 4825.4 -31.34126 -31.34126 -31.15789 -31.15318 0.0000 0.0000 0.0000 0.0000 954 0.00476 0.0 4888.0 -31.34369 -31.34369 -31.15794 -31.15318 0.0000 0.0000 0.0000 0.0000 955 0.00480 0.0 4951.5 -31.34614 -31.34614 -31.15798 -31.15318 0.0000 0.0000 0.0000 0.0000 956 0.00482 0.0 5015.8 -31.34861 -31.34861 -31.15800 -31.15318 0.0000 0.0000 0.0000 0.0000 957 0.00484 0.0 5080.8 -31.35109 -31.35109 -31.15801 -31.15318 0.0000 0.0000 0.0000 0.0000 958 0.00483 0.0 5146.6 -31.35359 -31.35359 -31.15801 -31.15318 0.0000 0.0000 0.0000 0.0000 959 0.00482 0.0 5213.1 -31.35610 -31.35610 -31.15799 -31.15318 0.0000 0.0000 0.0000 0.0000 960 0.00478 0.0 5280.2 -31.35862 -31.35862 -31.15796 -31.15318 0.0000 0.0000 0.0000 0.0000 961 0.00474 0.0 5347.9 -31.36115 -31.36115 -31.15792 -31.15318 0.0000 0.0000 0.0000 0.0000 962 0.00468 0.0 5416.2 -31.36368 -31.36368 -31.15786 -31.15318 0.0000 0.0000 0.0000 0.0000 963 0.00461 0.0 5485.0 -31.36623 -31.36623 -31.15779 -31.15318 0.0000 0.0000 0.0000 0.0000 964 0.00453 0.0 5554.2 -31.36877 -31.36877 -31.15770 -31.15318 0.0000 0.0000 0.0000 0.0000 965 0.00443 0.0 5623.8 -31.37133 -31.37133 -31.15761 -31.15318 0.0000 0.0000 0.0000 0.0000 966 0.00433 0.0 5693.7 -31.37388 -31.37388 -31.15751 -31.15318 0.0000 0.0000 0.0000 0.0000 967 0.00423 0.0 5763.9 -31.37644 -31.37644 -31.15740 -31.15318 0.0000 0.0000 0.0000 0.0000 968 0.00412 0.0 5834.1 -31.37900 -31.37900 -31.15730 -31.15318 0.0000 0.0000 0.0000 0.0000 969 0.00401 0.0 5904.5 -31.38157 -31.38157 -31.15719 -31.15318 0.0000 0.0000 0.0000 0.0000 970 0.00390 0.0 5974.8 -31.38413 -31.38413 -31.15708 -31.15318 0.0000 0.0000 0.0000 0.0000 971 0.00380 0.0 6045.0 -31.38669 -31.38669 -31.15697 -31.15318 0.0000 0.0000 0.0000 0.0000 972 0.00370 0.0 6115.1 -31.38926 -31.38926 -31.15687 -31.15318 0.0000 0.0000 0.0000 0.0000 973 0.00361 0.0 6185.0 -31.39182 -31.39182 -31.15678 -31.15318 0.0000 0.0000 0.0000 0.0000 974 0.00353 0.0 6254.5 -31.39438 -31.39438 -31.15670 -31.15318 0.0000 0.0000 0.0000 0.0000 975 0.00346 0.0 6323.6 -31.39694 -31.39694 -31.15663 -31.15318 0.0000 0.0000 0.0000 0.0000 976 0.00340 0.0 6392.3 -31.39949 -31.39949 -31.15658 -31.15318 0.0000 0.0000 0.0000 0.0000 977 0.00335 0.0 6460.4 -31.40204 -31.40204 -31.15653 -31.15318 0.0000 0.0000 0.0000 0.0000 978 0.00332 0.0 6528.0 -31.40457 -31.40457 -31.15650 -31.15318 0.0000 0.0000 0.0000 0.0000 979 0.00331 0.0 6594.8 -31.40710 -31.40710 -31.15648 -31.15318 0.0000 0.0000 0.0000 0.0000 980 0.00330 0.0 6660.9 -31.40960 -31.40960 -31.15648 -31.15318 0.0000 0.0000 0.0000 0.0000 981 0.00331 0.0 6726.1 -31.41209 -31.41209 -31.15649 -31.15318 0.0000 0.0000 0.0000 0.0000 982 0.00333 0.0 6790.5 -31.41456 -31.41456 -31.15651 -31.15318 0.0000 0.0000 0.0000 0.0000 983 0.00336 0.0 6853.9 -31.41700 -31.41700 -31.15654 -31.15318 0.0000 0.0000 0.0000 0.0000 984 0.00340 0.0 6916.3 -31.41941 -31.41941 -31.15658 -31.15318 0.0000 0.0000 0.0000 0.0000 985 0.00344 0.0 6977.8 -31.42179 -31.42179 -31.15662 -31.15318 0.0000 0.0000 0.0000 0.0000 986 0.00349 0.0 7038.1 -31.42413 -31.42413 -31.15667 -31.15318 0.0000 0.0000 0.0000 0.0000 987 0.00354 0.0 7097.4 -31.42643 -31.42643 -31.15672 -31.15318 0.0000 0.0000 0.0000 0.0000 988 0.00359 0.0 7155.5 -31.42869 -31.42869 -31.15677 -31.15318 0.0000 0.0000 0.0000 0.0000 989 0.00364 0.0 7212.4 -31.43090 -31.43090 -31.15682 -31.15318 0.0000 0.0000 0.0000 0.0000 990 0.00368 0.0 7268.2 -31.43307 -31.43307 -31.15686 -31.15318 0.0000 0.0000 0.0000 0.0000 991 0.00373 0.0 7322.8 -31.43519 -31.43519 -31.15691 -31.15318 0.0000 0.0000 0.0000 0.0000 992 0.00377 0.0 7376.1 -31.43726 -31.43726 -31.15695 -31.15318 0.0000 0.0000 0.0000 0.0000 993 0.00381 0.0 7428.3 -31.43927 -31.43927 -31.15699 -31.15318 0.0000 0.0000 0.0000 0.0000 994 0.00384 0.0 7479.2 -31.44124 -31.44124 -31.15702 -31.15318 0.0000 0.0000 0.0000 0.0000 995 0.00387 0.0 7528.9 -31.44316 -31.44316 -31.15705 -31.15318 0.0000 0.0000 0.0000 0.0000 996 0.00390 0.0 7577.4 -31.44503 -31.44503 -31.15708 -31.15318 0.0000 0.0000 0.0000 0.0000 997 0.00392 0.0 7624.8 -31.44685 -31.44685 -31.15710 -31.15318 0.0000 0.0000 0.0000 0.0000 998 0.00394 0.0 7671.0 -31.44863 -31.44863 -31.15712 -31.15318 0.0000 0.0000 0.0000 0.0000 999 0.00396 0.0 7716.0 -31.45036 -31.45036 -31.15714 -31.15318 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 1000 from rhoofr: total integrated electronic density in g-space = 32.000000 in r-space = 32.000000 total energy = -31.45204 Hartree a.u. kinetic energy = 11.21264 Hartree a.u. electrostatic energy = -38.28525 Hartree a.u. esr = 0.00000 Hartree a.u. eself = 63.83076 Hartree a.u. pseudopotential energy = -3.16477 Hartree a.u. n-l pseudopotential energy = 8.11721 Hartree a.u. exchange-correlation energy = -9.33187 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -8.44 -4.63 -4.39 -3.60 -3.43 -2.82 -1.91 -0.31 0.18 0.57 0.77 0.94 1.35 2.22 2.80 3.26 Allocated memory (kb) = 10436 CELL_PARAMETERS 10.60000000 0.00000000 0.00000000 0.00000000 10.60000000 0.00000000 0.00000000 0.00000000 10.60000000 System Density [g/cm^3] : 2.1136 Center of mass square displacement (a.u.): 0.000417 Total stress (GPa) 0.32744291 -0.02244212 0.13341846 -0.02244212 -0.00412435 -2.56176642 0.13341245 -2.56177350 -0.81039339 ATOMIC_POSITIONS Si -0.105604E+01 0.613064E+00 0.174300E+01 Si -0.147795E+00 0.421574E+01 0.497143E+01 Si 0.561217E+01 -0.952826E+00 0.578112E+01 Si 0.673402E+01 0.663339E+01 -0.212610E+01 Si 0.450848E+01 0.324847E+01 0.371882E+01 Si 0.228005E+00 0.914177E+01 0.679706E+01 Si 0.805243E+01 0.195456E+01 0.805283E+01 Si 0.781148E+01 0.708436E+01 0.292701E+01 ATOMIC_VELOCITIES Si -0.994171E-03 0.288091E-03 0.930193E-03 Si -0.295337E-04 -0.472616E-03 -0.304241E-03 Si -0.176029E-04 -0.398805E-03 0.779245E-05 Si 0.138359E-02 0.269706E-03 -0.937734E-03 Si 0.101988E-02 0.380598E-03 0.135782E-02 Si -0.133887E-02 0.425428E-03 -0.944531E-03 Si -0.214255E-04 0.290279E-04 0.131328E-03 Si -0.186975E-05 -0.521429E-03 -0.240630E-03 Forces acting on atoms (au): Si -0.336117E-01 0.628763E-02 0.164000E-01 Si 0.136950E-01 0.145372E-03 -0.217252E-01 Si -0.389179E-01 0.250382E-01 -0.280488E-01 Si 0.354467E-01 -0.469697E-01 0.305032E-01 Si 0.363519E-01 0.334108E-02 0.346711E-01 Si 0.336012E-03 -0.243516E-01 -0.222943E-01 Si -0.296495E-02 0.382292E-01 0.268695E-01 Si -0.108651E-01 -0.151293E-02 -0.347322E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 7759.80 3.7928 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1000 0.00398 0.0 7759.8 -31.45204 -31.45204 -31.15716 -31.15318 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//si_50.save restart file written in 0.021 sec. 1001 0.00400 0.0 7802.5 -31.45368 -31.45368 -31.15717 -31.15318 0.0000 0.0000 0.0000 0.0000 1002 0.00401 0.0 7844.0 -31.45528 -31.45528 -31.15719 -31.15318 0.0000 0.0000 0.0000 0.0000 1003 0.00403 0.0 7884.4 -31.45683 -31.45683 -31.15721 -31.15318 0.0000 0.0000 0.0000 0.0000 1004 0.00405 0.0 7923.6 -31.45833 -31.45833 -31.15722 -31.15318 0.0000 0.0000 0.0000 0.0000 1005 0.00406 0.0 7961.7 -31.45980 -31.45980 -31.15724 -31.15318 0.0000 0.0000 0.0000 0.0000 1006 0.00408 0.0 7998.7 -31.46122 -31.46122 -31.15725 -31.15318 0.0000 0.0000 0.0000 0.0000 1007 0.00409 0.0 8034.5 -31.46259 -31.46259 -31.15727 -31.15318 0.0000 0.0000 0.0000 0.0000 1008 0.00411 0.0 8069.2 -31.46393 -31.46393 -31.15728 -31.15318 0.0000 0.0000 0.0000 0.0000 1009 0.00412 0.0 8102.8 -31.46521 -31.46521 -31.15729 -31.15318 0.0000 0.0000 0.0000 0.0000 1010 0.00413 0.0 8135.2 -31.46646 -31.46646 -31.15730 -31.15318 0.0000 0.0000 0.0000 0.0000 1011 0.00414 0.0 8166.4 -31.46765 -31.46765 -31.15731 -31.15318 0.0000 0.0000 0.0000 0.0000 1012 0.00415 0.0 8196.5 -31.46881 -31.46881 -31.15732 -31.15318 0.0000 0.0000 0.0000 0.0000 1013 0.00416 0.0 8225.3 -31.46991 -31.46991 -31.15733 -31.15318 0.0000 0.0000 0.0000 0.0000 1014 0.00417 0.0 8253.0 -31.47097 -31.47097 -31.15734 -31.15318 0.0000 0.0000 0.0000 0.0000 1015 0.00417 0.0 8279.4 -31.47198 -31.47198 -31.15735 -31.15318 0.0000 0.0000 0.0000 0.0000 1016 0.00418 0.0 8304.7 -31.47294 -31.47294 -31.15735 -31.15318 0.0000 0.0000 0.0000 0.0000 1017 0.00418 0.0 8328.7 -31.47386 -31.47386 -31.15735 -31.15318 0.0000 0.0000 0.0000 0.0000 1018 0.00418 0.0 8351.5 -31.47472 -31.47472 -31.15735 -31.15318 0.0000 0.0000 0.0000 0.0000 1019 0.00417 0.0 8373.1 -31.47554 -31.47554 -31.15735 -31.15317 0.0000 0.0000 0.0000 0.0000 1020 0.00416 0.0 8393.5 -31.47630 -31.47630 -31.15734 -31.15317 0.0000 0.0000 0.0000 0.0000 1021 0.00415 0.0 8412.6 -31.47702 -31.47702 -31.15732 -31.15317 0.0000 0.0000 0.0000 0.0000 1022 0.00413 0.0 8430.6 -31.47768 -31.47768 -31.15730 -31.15317 0.0000 0.0000 0.0000 0.0000 1023 0.00411 0.0 8447.3 -31.47829 -31.47829 -31.15728 -31.15317 0.0000 0.0000 0.0000 0.0000 1024 0.00408 0.0 8462.9 -31.47886 -31.47886 -31.15725 -31.15317 0.0000 0.0000 0.0000 0.0000 1025 0.00405 0.0 8477.3 -31.47938 -31.47938 -31.15723 -31.15317 0.0000 0.0000 0.0000 0.0000 1026 0.00403 0.0 8490.6 -31.47986 -31.47986 -31.15720 -31.15317 0.0000 0.0000 0.0000 0.0000 1027 0.00400 0.0 8502.8 -31.48030 -31.48030 -31.15718 -31.15317 0.0000 0.0000 0.0000 0.0000 1028 0.00399 0.0 8513.9 -31.48070 -31.48070 -31.15716 -31.15317 0.0000 0.0000 0.0000 0.0000 1029 0.00397 0.0 8523.9 -31.48107 -31.48107 -31.15714 -31.15317 0.0000 0.0000 0.0000 0.0000 1030 0.00397 0.0 8532.9 -31.48140 -31.48140 -31.15714 -31.15317 0.0000 0.0000 0.0000 0.0000 1031 0.00397 0.0 8540.8 -31.48171 -31.48171 -31.15714 -31.15317 0.0000 0.0000 0.0000 0.0000 1032 0.00398 0.0 8547.7 -31.48199 -31.48199 -31.15716 -31.15317 0.0000 0.0000 0.0000 0.0000 1033 0.00400 0.0 8553.7 -31.48223 -31.48223 -31.15717 -31.15317 0.0000 0.0000 0.0000 0.0000 1034 0.00403 0.0 8558.7 -31.48244 -31.48244 -31.15720 -31.15317 0.0000 0.0000 0.0000 0.0000 1035 0.00405 0.0 8562.8 -31.48262 -31.48262 -31.15722 -31.15317 0.0000 0.0000 0.0000 0.0000 1036 0.00407 0.0 8565.9 -31.48276 -31.48276 -31.15724 -31.15317 0.0000 0.0000 0.0000 0.0000 1037 0.00409 0.0 8568.2 -31.48287 -31.48287 -31.15726 -31.15317 0.0000 0.0000 0.0000 0.0000 1038 0.00410 0.0 8569.6 -31.48293 -31.48293 -31.15727 -31.15317 0.0000 0.0000 0.0000 0.0000 1039 0.00410 0.0 8570.2 -31.48296 -31.48296 -31.15727 -31.15317 0.0000 0.0000 0.0000 0.0000 1040 0.00410 0.0 8570.0 -31.48294 -31.48294 -31.15727 -31.15317 0.0000 0.0000 0.0000 0.0000 1041 0.00408 0.0 8569.0 -31.48289 -31.48289 -31.15725 -31.15317 0.0000 0.0000 0.0000 0.0000 1042 0.00406 0.0 8567.3 -31.48281 -31.48281 -31.15724 -31.15317 0.0000 0.0000 0.0000 0.0000 1043 0.00405 0.0 8564.9 -31.48270 -31.48270 -31.15722 -31.15317 0.0000 0.0000 0.0000 0.0000 1044 0.00403 0.0 8561.8 -31.48256 -31.48256 -31.15720 -31.15317 0.0000 0.0000 0.0000 0.0000 1045 0.00401 0.0 8558.0 -31.48240 -31.48240 -31.15718 -31.15317 0.0000 0.0000 0.0000 0.0000 1046 0.00400 0.0 8553.6 -31.48222 -31.48222 -31.15717 -31.15317 0.0000 0.0000 0.0000 0.0000 1047 0.00399 0.0 8548.7 -31.48203 -31.48203 -31.15716 -31.15317 0.0000 0.0000 0.0000 0.0000 1048 0.00399 0.0 8543.2 -31.48181 -31.48181 -31.15716 -31.15317 0.0000 0.0000 0.0000 0.0000 1049 0.00398 0.0 8537.2 -31.48158 -31.48158 -31.15715 -31.15317 0.0000 0.0000 0.0000 0.0000 1050 0.00397 0.0 8530.7 -31.48132 -31.48132 -31.15714 -31.15317 0.0000 0.0000 0.0000 0.0000 1051 0.00396 0.0 8523.7 -31.48105 -31.48105 -31.15713 -31.15317 0.0000 0.0000 0.0000 0.0000 1052 0.00394 0.0 8516.4 -31.48074 -31.48074 -31.15711 -31.15317 0.0000 0.0000 0.0000 0.0000 1053 0.00391 0.0 8508.6 -31.48042 -31.48042 -31.15708 -31.15317 0.0000 0.0000 0.0000 0.0000 1054 0.00388 0.0 8500.5 -31.48008 -31.48008 -31.15705 -31.15317 0.0000 0.0000 0.0000 0.0000 1055 0.00384 0.0 8492.1 -31.47972 -31.47972 -31.15701 -31.15317 0.0000 0.0000 0.0000 0.0000 1056 0.00381 0.0 8483.3 -31.47935 -31.47935 -31.15697 -31.15317 0.0000 0.0000 0.0000 0.0000 1057 0.00377 0.0 8474.3 -31.47898 -31.47898 -31.15694 -31.15317 0.0000 0.0000 0.0000 0.0000 1058 0.00375 0.0 8465.0 -31.47860 -31.47860 -31.15692 -31.15317 0.0000 0.0000 0.0000 0.0000 1059 0.00374 0.0 8455.6 -31.47823 -31.47823 -31.15690 -31.15317 0.0000 0.0000 0.0000 0.0000 1060 0.00373 0.0 8446.0 -31.47786 -31.47786 -31.15690 -31.15317 0.0000 0.0000 0.0000 0.0000 1061 0.00374 0.0 8436.2 -31.47750 -31.47750 -31.15690 -31.15317 0.0000 0.0000 0.0000 0.0000 1062 0.00375 0.0 8426.4 -31.47713 -31.47713 -31.15692 -31.15317 0.0000 0.0000 0.0000 0.0000 1063 0.00376 0.0 8416.4 -31.47677 -31.47677 -31.15693 -31.15317 0.0000 0.0000 0.0000 0.0000 1064 0.00377 0.0 8406.4 -31.47640 -31.47640 -31.15694 -31.15317 0.0000 0.0000 0.0000 0.0000 1065 0.00378 0.0 8396.3 -31.47602 -31.47602 -31.15695 -31.15317 0.0000 0.0000 0.0000 0.0000 1066 0.00378 0.0 8386.2 -31.47564 -31.47564 -31.15695 -31.15317 0.0000 0.0000 0.0000 0.0000 1067 0.00377 0.0 8376.2 -31.47525 -31.47525 -31.15694 -31.15317 0.0000 0.0000 0.0000 0.0000 1068 0.00376 0.0 8366.2 -31.47485 -31.47485 -31.15692 -31.15317 0.0000 0.0000 0.0000 0.0000 1069 0.00374 0.0 8356.3 -31.47446 -31.47446 -31.15690 -31.15317 0.0000 0.0000 0.0000 0.0000 1070 0.00372 0.0 8346.5 -31.47407 -31.47407 -31.15689 -31.15316 0.0000 0.0000 0.0000 0.0000 1071 0.00371 0.0 8336.9 -31.47369 -31.47369 -31.15687 -31.15316 0.0000 0.0000 0.0000 0.0000 1072 0.00371 0.0 8327.6 -31.47334 -31.47334 -31.15687 -31.15316 0.0000 0.0000 0.0000 0.0000 1073 0.00372 0.0 8318.5 -31.47300 -31.47300 -31.15688 -31.15316 0.0000 0.0000 0.0000 0.0000 1074 0.00374 0.0 8309.7 -31.47269 -31.47269 -31.15690 -31.15316 0.0000 0.0000 0.0000 0.0000 1075 0.00377 0.0 8301.3 -31.47240 -31.47240 -31.15693 -31.15316 0.0000 0.0000 0.0000 0.0000 1076 0.00381 0.0 8293.2 -31.47213 -31.47213 -31.15697 -31.15316 0.0000 0.0000 0.0000 0.0000 1077 0.00385 0.0 8285.6 -31.47188 -31.47188 -31.15701 -31.15316 0.0000 0.0000 0.0000 0.0000 1078 0.00389 0.0 8278.4 -31.47165 -31.47165 -31.15705 -31.15316 0.0000 0.0000 0.0000 0.0000 1079 0.00392 0.0 8271.8 -31.47143 -31.47143 -31.15709 -31.15316 0.0000 0.0000 0.0000 0.0000 1080 0.00395 0.0 8265.7 -31.47123 -31.47123 -31.15712 -31.15316 0.0000 0.0000 0.0000 0.0000 1081 0.00398 0.0 8260.2 -31.47104 -31.47104 -31.15714 -31.15316 0.0000 0.0000 0.0000 0.0000 1082 0.00401 0.0 8255.3 -31.47089 -31.47089 -31.15717 -31.15316 0.0000 0.0000 0.0000 0.0000 1083 0.00405 0.0 8251.0 -31.47076 -31.47076 -31.15721 -31.15316 0.0000 0.0000 0.0000 0.0000 1084 0.00410 0.0 8247.4 -31.47067 -31.47067 -31.15726 -31.15316 0.0000 0.0000 0.0000 0.0000 1085 0.00417 0.0 8244.4 -31.47063 -31.47063 -31.15733 -31.15316 0.0000 0.0000 0.0000 0.0000 1086 0.00426 0.0 8242.1 -31.47063 -31.47063 -31.15742 -31.15316 0.0000 0.0000 0.0000 0.0000 1087 0.00438 0.0 8240.5 -31.47069 -31.47069 -31.15754 -31.15316 0.0000 0.0000 0.0000 0.0000 1088 0.00452 0.0 8239.6 -31.47080 -31.47080 -31.15768 -31.15316 0.0000 0.0000 0.0000 0.0000 1089 0.00469 0.0 8239.5 -31.47096 -31.47096 -31.15785 -31.15316 0.0000 0.0000 0.0000 0.0000 1090 0.00488 0.0 8240.0 -31.47117 -31.47117 -31.15804 -31.15316 0.0000 0.0000 0.0000 0.0000 1091 0.00508 0.0 8241.2 -31.47142 -31.47142 -31.15824 -31.15316 0.0000 0.0000 0.0000 0.0000 1092 0.00530 0.0 8243.2 -31.47172 -31.47172 -31.15846 -31.15316 0.0000 0.0000 0.0000 0.0000 1093 0.00552 0.0 8245.9 -31.47204 -31.47204 -31.15868 -31.15316 0.0000 0.0000 0.0000 0.0000 1094 0.00575 0.0 8249.4 -31.47241 -31.47241 -31.15891 -31.15316 0.0000 0.0000 0.0000 0.0000 1095 0.00599 0.0 8253.6 -31.47280 -31.47280 -31.15915 -31.15316 0.0000 0.0000 0.0000 0.0000 1096 0.00624 0.0 8258.6 -31.47324 -31.47324 -31.15940 -31.15316 0.0000 0.0000 0.0000 0.0000 1097 0.00649 0.0 8264.3 -31.47371 -31.47371 -31.15965 -31.15316 0.0000 0.0000 0.0000 0.0000 1098 0.00676 0.0 8270.7 -31.47422 -31.47422 -31.15992 -31.15316 0.0000 0.0000 0.0000 0.0000 1099 0.00704 0.0 8277.7 -31.47477 -31.47477 -31.16020 -31.15316 0.0000 0.0000 0.0000 0.0000 1100 0.00734 0.0 8285.5 -31.47536 -31.47536 -31.16049 -31.15316 0.0000 0.0000 0.0000 0.0000 1101 0.00764 0.0 8293.9 -31.47598 -31.47598 -31.16080 -31.15316 0.0000 0.0000 0.0000 0.0000 1102 0.00794 0.0 8302.8 -31.47663 -31.47663 -31.16110 -31.15316 0.0000 0.0000 0.0000 0.0000 1103 0.00824 0.0 8312.3 -31.47729 -31.47729 -31.16141 -31.15316 0.0000 0.0000 0.0000 0.0000 1104 0.00854 0.0 8322.2 -31.47796 -31.47796 -31.16170 -31.15316 0.0000 0.0000 0.0000 0.0000 1105 0.00881 0.0 8332.4 -31.47862 -31.47862 -31.16197 -31.15316 0.0000 0.0000 0.0000 0.0000 1106 0.00905 0.0 8342.8 -31.47926 -31.47926 -31.16222 -31.15316 0.0000 0.0000 0.0000 0.0000 1107 0.00927 0.0 8353.3 -31.47987 -31.47987 -31.16243 -31.15316 0.0000 0.0000 0.0000 0.0000 1108 0.00945 0.0 8363.9 -31.48046 -31.48046 -31.16261 -31.15316 0.0000 0.0000 0.0000 0.0000 1109 0.00959 0.0 8374.2 -31.48100 -31.48100 -31.16276 -31.15316 0.0000 0.0000 0.0000 0.0000 1110 0.00971 0.0 8384.3 -31.48149 -31.48149 -31.16287 -31.15316 0.0000 0.0000 0.0000 0.0000 1111 0.00979 0.0 8393.9 -31.48194 -31.48194 -31.16295 -31.15316 0.0000 0.0000 0.0000 0.0000 1112 0.00985 0.0 8402.9 -31.48234 -31.48234 -31.16301 -31.15316 0.0000 0.0000 0.0000 0.0000 1113 0.00988 0.0 8411.1 -31.48268 -31.48268 -31.16305 -31.15316 0.0000 0.0000 0.0000 0.0000 1114 0.00990 0.0 8418.3 -31.48298 -31.48298 -31.16306 -31.15316 0.0000 0.0000 0.0000 0.0000 1115 0.00990 0.0 8424.4 -31.48321 -31.48321 -31.16307 -31.15316 0.0000 0.0000 0.0000 0.0000 1116 0.00989 0.0 8429.2 -31.48338 -31.48338 -31.16306 -31.15316 0.0000 0.0000 0.0000 0.0000 1117 0.00987 0.0 8432.4 -31.48348 -31.48348 -31.16303 -31.15316 0.0000 0.0000 0.0000 0.0000 1118 0.00982 0.0 8434.0 -31.48350 -31.48350 -31.16299 -31.15316 0.0000 0.0000 0.0000 0.0000 1119 0.00976 0.0 8433.8 -31.48343 -31.48343 -31.16293 -31.15316 0.0000 0.0000 0.0000 0.0000 1120 0.00968 0.0 8431.6 -31.48326 -31.48326 -31.16284 -31.15316 0.0000 0.0000 0.0000 0.0000 1121 0.00958 0.0 8427.2 -31.48299 -31.48299 -31.16274 -31.15316 0.0000 0.0000 0.0000 0.0000 1122 0.00945 0.0 8420.5 -31.48260 -31.48260 -31.16261 -31.15317 0.0000 0.0000 0.0000 0.0000 1123 0.00929 0.0 8411.3 -31.48210 -31.48210 -31.16246 -31.15317 0.0000 0.0000 0.0000 0.0000 1124 0.00912 0.0 8399.5 -31.48148 -31.48148 -31.16228 -31.15317 0.0000 0.0000 0.0000 0.0000 1125 0.00891 0.0 8385.1 -31.48073 -31.48073 -31.16208 -31.15317 0.0000 0.0000 0.0000 0.0000 1126 0.00868 0.0 8367.7 -31.47983 -31.47983 -31.16185 -31.15317 0.0000 0.0000 0.0000 0.0000 1127 0.00842 0.0 8347.4 -31.47880 -31.47880 -31.16159 -31.15317 0.0000 0.0000 0.0000 0.0000 1128 0.00813 0.0 8324.0 -31.47762 -31.47762 -31.16129 -31.15317 0.0000 0.0000 0.0000 0.0000 1129 0.00780 0.0 8297.4 -31.47628 -31.47628 -31.16097 -31.15317 0.0000 0.0000 0.0000 0.0000 1130 0.00744 0.0 8267.6 -31.47479 -31.47479 -31.16061 -31.15317 0.0000 0.0000 0.0000 0.0000 1131 0.00705 0.0 8234.5 -31.47314 -31.47314 -31.16022 -31.15317 0.0000 0.0000 0.0000 0.0000 1132 0.00664 0.0 8198.0 -31.47134 -31.47134 -31.15980 -31.15317 0.0000 0.0000 0.0000 0.0000 1133 0.00622 0.0 8158.2 -31.46940 -31.46940 -31.15938 -31.15316 0.0000 0.0000 0.0000 0.0000 1134 0.00580 0.0 8114.9 -31.46734 -31.46734 -31.15896 -31.15316 0.0000 0.0000 0.0000 0.0000 1135 0.00542 0.0 8068.2 -31.46518 -31.46518 -31.15858 -31.15316 0.0000 0.0000 0.0000 0.0000 1136 0.00508 0.0 8018.1 -31.46294 -31.46294 -31.15824 -31.15316 0.0000 0.0000 0.0000 0.0000 1137 0.00482 0.0 7964.5 -31.46064 -31.46064 -31.15797 -31.15315 0.0000 0.0000 0.0000 0.0000 1138 0.00465 0.0 7907.7 -31.45831 -31.45831 -31.15780 -31.15315 0.0000 0.0000 0.0000 0.0000 1139 0.00459 0.0 7847.5 -31.45596 -31.45596 -31.15774 -31.15315 0.0000 0.0000 0.0000 0.0000 1140 0.00465 0.0 7784.2 -31.45361 -31.45361 -31.15780 -31.15315 0.0000 0.0000 0.0000 0.0000 1141 0.00481 0.0 7717.8 -31.45125 -31.45125 -31.15796 -31.15315 0.0000 0.0000 0.0000 0.0000 1142 0.00508 0.0 7648.4 -31.44889 -31.44889 -31.15823 -31.15315 0.0000 0.0000 0.0000 0.0000 1143 0.00543 0.0 7576.1 -31.44649 -31.44649 -31.15859 -31.15316 0.0000 0.0000 0.0000 0.0000 1144 0.00582 0.0 7501.2 -31.44404 -31.44404 -31.15899 -31.15316 0.0000 0.0000 0.0000 0.0000 1145 0.00623 0.0 7423.8 -31.44152 -31.44152 -31.15940 -31.15317 0.0000 0.0000 0.0000 0.0000 1146 0.00661 0.0 7344.0 -31.43887 -31.43887 -31.15978 -31.15317 0.0000 0.0000 0.0000 0.0000 1147 0.00693 0.0 7262.2 -31.43608 -31.43608 -31.16010 -31.15317 0.0000 0.0000 0.0000 0.0000 1148 0.00713 0.0 7178.4 -31.43310 -31.43310 -31.16031 -31.15318 0.0000 0.0000 0.0000 0.0000 1149 0.00721 0.0 7093.1 -31.42994 -31.42994 -31.16039 -31.15318 0.0000 0.0000 0.0000 0.0000 1150 0.00714 0.0 7006.3 -31.42657 -31.42657 -31.16031 -31.15318 0.0000 0.0000 0.0000 0.0000 1151 0.00691 0.0 6918.6 -31.42300 -31.42300 -31.16009 -31.15318 0.0000 0.0000 0.0000 0.0000 1152 0.00654 0.0 6830.1 -31.41927 -31.41927 -31.15972 -31.15317 0.0000 0.0000 0.0000 0.0000 1153 0.00606 0.0 6741.3 -31.41541 -31.41541 -31.15923 -31.15317 0.0000 0.0000 0.0000 0.0000 1154 0.00550 0.0 6652.5 -31.41147 -31.41147 -31.15866 -31.15316 0.0000 0.0000 0.0000 0.0000 1155 0.00491 0.0 6564.1 -31.40751 -31.40751 -31.15806 -31.15315 0.0000 0.0000 0.0000 0.0000 1156 0.00434 0.0 6476.4 -31.40360 -31.40360 -31.15749 -31.15314 0.0000 0.0000 0.0000 0.0000 1157 0.00384 0.0 6389.9 -31.39981 -31.39981 -31.15698 -31.15314 0.0000 0.0000 0.0000 0.0000 1158 0.00347 0.0 6304.9 -31.39620 -31.39620 -31.15660 -31.15313 0.0000 0.0000 0.0000 0.0000 1159 0.00324 0.0 6221.8 -31.39281 -31.39281 -31.15637 -31.15313 0.0000 0.0000 0.0000 0.0000 1160 0.00320 0.0 6141.0 -31.38969 -31.38969 -31.15632 -31.15313 0.0000 0.0000 0.0000 0.0000 1161 0.00334 0.0 6062.7 -31.38686 -31.38686 -31.15647 -31.15313 0.0000 0.0000 0.0000 0.0000 1162 0.00367 0.0 5987.4 -31.38433 -31.38433 -31.15680 -31.15313 0.0000 0.0000 0.0000 0.0000 1163 0.00417 0.0 5915.3 -31.38209 -31.38209 -31.15730 -31.15313 0.0000 0.0000 0.0000 0.0000 1164 0.00481 0.0 5846.8 -31.38013 -31.38013 -31.15794 -31.15313 0.0000 0.0000 0.0000 0.0000 1165 0.00554 0.0 5782.3 -31.37841 -31.37841 -31.15868 -31.15314 0.0000 0.0000 0.0000 0.0000 1166 0.00632 0.0 5721.9 -31.37691 -31.37691 -31.15947 -31.15314 0.0000 0.0000 0.0000 0.0000 1167 0.00711 0.0 5666.1 -31.37558 -31.37558 -31.16026 -31.15315 0.0000 0.0000 0.0000 0.0000 1168 0.00786 0.0 5615.0 -31.37439 -31.37439 -31.16101 -31.15315 0.0000 0.0000 0.0000 0.0000 1169 0.00852 0.0 5568.9 -31.37331 -31.37331 -31.16168 -31.15316 0.0000 0.0000 0.0000 0.0000 1170 0.00907 0.0 5528.1 -31.37230 -31.37230 -31.16223 -31.15316 0.0000 0.0000 0.0000 0.0000 1171 0.00947 0.0 5492.6 -31.37136 -31.37136 -31.16263 -31.15316 0.0000 0.0000 0.0000 0.0000 1172 0.00971 0.0 5462.7 -31.37046 -31.37046 -31.16287 -31.15316 0.0000 0.0000 0.0000 0.0000 1173 0.00978 0.0 5438.4 -31.36961 -31.36961 -31.16294 -31.15316 0.0000 0.0000 0.0000 0.0000 1174 0.00968 0.0 5419.8 -31.36880 -31.36880 -31.16284 -31.15316 0.0000 0.0000 0.0000 0.0000 1175 0.00943 0.0 5406.8 -31.36806 -31.36806 -31.16259 -31.15316 0.0000 0.0000 0.0000 0.0000 1176 0.00906 0.0 5399.5 -31.36740 -31.36740 -31.16221 -31.15315 0.0000 0.0000 0.0000 0.0000 1177 0.00857 0.0 5397.6 -31.36684 -31.36684 -31.16172 -31.15315 0.0000 0.0000 0.0000 0.0000 1178 0.00802 0.0 5401.1 -31.36642 -31.36642 -31.16116 -31.15315 0.0000 0.0000 0.0000 0.0000 1179 0.00742 0.0 5409.8 -31.36614 -31.36614 -31.16056 -31.15314 0.0000 0.0000 0.0000 0.0000 1180 0.00681 0.0 5423.3 -31.36605 -31.36605 -31.15995 -31.15314 0.0000 0.0000 0.0000 0.0000 1181 0.00622 0.0 5441.4 -31.36614 -31.36614 -31.15936 -31.15314 0.0000 0.0000 0.0000 0.0000 1182 0.00568 0.0 5463.7 -31.36645 -31.36645 -31.15882 -31.15314 0.0000 0.0000 0.0000 0.0000 1183 0.00521 0.0 5489.9 -31.36698 -31.36698 -31.15835 -31.15314 0.0000 0.0000 0.0000 0.0000 1184 0.00483 0.0 5519.5 -31.36772 -31.36772 -31.15797 -31.15314 0.0000 0.0000 0.0000 0.0000 1185 0.00455 0.0 5552.1 -31.36867 -31.36867 -31.15768 -31.15314 0.0000 0.0000 0.0000 0.0000 1186 0.00437 0.0 5587.2 -31.36983 -31.36983 -31.15751 -31.15314 0.0000 0.0000 0.0000 0.0000 1187 0.00429 0.0 5624.4 -31.37117 -31.37117 -31.15744 -31.15314 0.0000 0.0000 0.0000 0.0000 1188 0.00431 0.0 5663.0 -31.37267 -31.37267 -31.15746 -31.15315 0.0000 0.0000 0.0000 0.0000 1189 0.00442 0.0 5702.7 -31.37428 -31.37428 -31.15757 -31.15315 0.0000 0.0000 0.0000 0.0000 1190 0.00459 0.0 5743.0 -31.37598 -31.37598 -31.15774 -31.15315 0.0000 0.0000 0.0000 0.0000 1191 0.00479 0.0 5783.4 -31.37773 -31.37773 -31.15795 -31.15316 0.0000 0.0000 0.0000 0.0000 1192 0.00501 0.0 5823.6 -31.37948 -31.37948 -31.15817 -31.15316 0.0000 0.0000 0.0000 0.0000 1193 0.00521 0.0 5863.2 -31.38119 -31.38119 -31.15838 -31.15317 0.0000 0.0000 0.0000 0.0000 1194 0.00538 0.0 5901.8 -31.38282 -31.38282 -31.15855 -31.15317 0.0000 0.0000 0.0000 0.0000 1195 0.00549 0.0 5939.2 -31.38436 -31.38436 -31.15866 -31.15317 0.0000 0.0000 0.0000 0.0000 1196 0.00554 0.0 5975.0 -31.38577 -31.38577 -31.15871 -31.15317 0.0000 0.0000 0.0000 0.0000 1197 0.00552 0.0 6009.2 -31.38705 -31.38705 -31.15869 -31.15317 0.0000 0.0000 0.0000 0.0000 1198 0.00544 0.0 6041.4 -31.38820 -31.38820 -31.15862 -31.15317 0.0000 0.0000 0.0000 0.0000 1199 0.00532 0.0 6071.6 -31.38923 -31.38923 -31.15849 -31.15317 0.0000 0.0000 0.0000 0.0000 1200 0.00518 0.0 6099.6 -31.39014 -31.39014 -31.15834 -31.15317 0.0000 0.0000 0.0000 0.0000 1201 0.00502 0.0 6125.2 -31.39096 -31.39096 -31.15819 -31.15316 0.0000 0.0000 0.0000 0.0000 1202 0.00489 0.0 6148.6 -31.39171 -31.39171 -31.15805 -31.15316 0.0000 0.0000 0.0000 0.0000 1203 0.00478 0.0 6169.5 -31.39240 -31.39240 -31.15794 -31.15316 0.0000 0.0000 0.0000 0.0000 1204 0.00473 0.0 6188.1 -31.39305 -31.39305 -31.15789 -31.15316 0.0000 0.0000 0.0000 0.0000 1205 0.00474 0.0 6204.2 -31.39367 -31.39367 -31.15790 -31.15316 0.0000 0.0000 0.0000 0.0000 1206 0.00482 0.0 6218.0 -31.39427 -31.39427 -31.15798 -31.15316 0.0000 0.0000 0.0000 0.0000 1207 0.00496 0.0 6229.3 -31.39484 -31.39484 -31.15812 -31.15316 0.0000 0.0000 0.0000 0.0000 1208 0.00516 0.0 6238.1 -31.39539 -31.39539 -31.15833 -31.15316 0.0000 0.0000 0.0000 0.0000 1209 0.00541 0.0 6244.6 -31.39588 -31.39588 -31.15858 -31.15316 0.0000 0.0000 0.0000 0.0000 1210 0.00569 0.0 6248.7 -31.39632 -31.39632 -31.15886 -31.15317 0.0000 0.0000 0.0000 0.0000 1211 0.00599 0.0 6250.3 -31.39668 -31.39668 -31.15916 -31.15317 0.0000 0.0000 0.0000 0.0000 1212 0.00628 0.0 6249.5 -31.39694 -31.39694 -31.15945 -31.15317 0.0000 0.0000 0.0000 0.0000 1213 0.00654 0.0 6246.3 -31.39709 -31.39709 -31.15971 -31.15317 0.0000 0.0000 0.0000 0.0000 1214 0.00677 0.0 6240.7 -31.39710 -31.39710 -31.15995 -31.15317 0.0000 0.0000 0.0000 0.0000 1215 0.00696 0.0 6232.8 -31.39699 -31.39699 -31.16013 -31.15317 0.0000 0.0000 0.0000 0.0000 1216 0.00709 0.0 6222.6 -31.39673 -31.39673 -31.16026 -31.15317 0.0000 0.0000 0.0000 0.0000 1217 0.00717 0.0 6210.2 -31.39634 -31.39634 -31.16034 -31.15317 0.0000 0.0000 0.0000 0.0000 1218 0.00720 0.0 6195.5 -31.39582 -31.39582 -31.16037 -31.15317 0.0000 0.0000 0.0000 0.0000 1219 0.00721 0.0 6178.8 -31.39518 -31.39518 -31.16038 -31.15317 0.0000 0.0000 0.0000 0.0000 1220 0.00719 0.0 6160.1 -31.39445 -31.39445 -31.16036 -31.15317 0.0000 0.0000 0.0000 0.0000 1221 0.00718 0.0 6139.4 -31.39365 -31.39365 -31.16034 -31.15316 0.0000 0.0000 0.0000 0.0000 1222 0.00718 0.0 6116.9 -31.39279 -31.39279 -31.16034 -31.15316 0.0000 0.0000 0.0000 0.0000 1223 0.00721 0.0 6092.6 -31.39190 -31.39190 -31.16037 -31.15316 0.0000 0.0000 0.0000 0.0000 1224 0.00727 0.0 6066.8 -31.39098 -31.39098 -31.16043 -31.15316 0.0000 0.0000 0.0000 0.0000 1225 0.00738 0.0 6039.4 -31.39005 -31.39005 -31.16054 -31.15316 0.0000 0.0000 0.0000 0.0000 1226 0.00752 0.0 6010.6 -31.38909 -31.38909 -31.16068 -31.15316 0.0000 0.0000 0.0000 0.0000 1227 0.00769 0.0 5980.4 -31.38811 -31.38811 -31.16085 -31.15316 0.0000 0.0000 0.0000 0.0000 1228 0.00787 0.0 5949.0 -31.38711 -31.38711 -31.16104 -31.15316 0.0000 0.0000 0.0000 0.0000 1229 0.00806 0.0 5916.5 -31.38606 -31.38606 -31.16123 -31.15316 0.0000 0.0000 0.0000 0.0000 1230 0.00825 0.0 5882.9 -31.38497 -31.38497 -31.16141 -31.15317 0.0000 0.0000 0.0000 0.0000 1231 0.00841 0.0 5848.3 -31.38382 -31.38382 -31.16158 -31.15317 0.0000 0.0000 0.0000 0.0000 1232 0.00854 0.0 5812.8 -31.38261 -31.38261 -31.16171 -31.15317 0.0000 0.0000 0.0000 0.0000 1233 0.00864 0.0 5776.6 -31.38133 -31.38133 -31.16181 -31.15317 0.0000 0.0000 0.0000 0.0000 1234 0.00870 0.0 5739.7 -31.37999 -31.37999 -31.16187 -31.15317 0.0000 0.0000 0.0000 0.0000 1235 0.00873 0.0 5702.3 -31.37859 -31.37859 -31.16189 -31.15317 0.0000 0.0000 0.0000 0.0000 1236 0.00870 0.0 5664.3 -31.37713 -31.37713 -31.16187 -31.15317 0.0000 0.0000 0.0000 0.0000 1237 0.00864 0.0 5626.0 -31.37561 -31.37561 -31.16181 -31.15317 0.0000 0.0000 0.0000 0.0000 1238 0.00853 0.0 5587.4 -31.37404 -31.37404 -31.16170 -31.15317 0.0000 0.0000 0.0000 0.0000 1239 0.00839 0.0 5548.7 -31.37242 -31.37242 -31.16156 -31.15317 0.0000 0.0000 0.0000 0.0000 1240 0.00820 0.0 5509.8 -31.37075 -31.37075 -31.16137 -31.15317 0.0000 0.0000 0.0000 0.0000 1241 0.00798 0.0 5470.9 -31.36905 -31.36905 -31.16115 -31.15317 0.0000 0.0000 0.0000 0.0000 1242 0.00773 0.0 5432.1 -31.36732 -31.36732 -31.16090 -31.15317 0.0000 0.0000 0.0000 0.0000 1243 0.00746 0.0 5393.4 -31.36558 -31.36558 -31.16062 -31.15316 0.0000 0.0000 0.0000 0.0000 1244 0.00717 0.0 5355.0 -31.36384 -31.36384 -31.16034 -31.15316 0.0000 0.0000 0.0000 0.0000 1245 0.00689 0.0 5316.9 -31.36211 -31.36211 -31.16006 -31.15316 0.0000 0.0000 0.0000 0.0000 1246 0.00663 0.0 5279.2 -31.36041 -31.36041 -31.15979 -31.15316 0.0000 0.0000 0.0000 0.0000 1247 0.00640 0.0 5242.0 -31.35877 -31.35877 -31.15956 -31.15316 0.0000 0.0000 0.0000 0.0000 1248 0.00622 0.0 5205.4 -31.35719 -31.35719 -31.15937 -31.15316 0.0000 0.0000 0.0000 0.0000 1249 0.00608 0.0 5169.4 -31.35569 -31.35569 -31.15924 -31.15316 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 1250 total energy = -31.35427 Hartree a.u. kinetic energy = 11.12064 Hartree a.u. electrostatic energy = -38.21429 Hartree a.u. esr = 0.00001 Hartree a.u. eself = 63.83076 Hartree a.u. pseudopotential energy = -3.18385 Hartree a.u. n-l pseudopotential energy = 8.18279 Hartree a.u. exchange-correlation energy = -9.25957 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -8.08 -5.40 -4.12 -3.07 -2.98 -2.42 -1.61 -0.34 0.24 0.66 1.14 1.40 2.09 2.32 2.67 2.98 Allocated memory (kb) = 10436 CELL_PARAMETERS 10.60000000 0.00000000 0.00000000 0.00000000 10.60000000 0.00000000 0.00000000 0.00000000 10.60000000 System Density [g/cm^3] : 2.1136 Center of mass square displacement (a.u.): 0.000417 Total stress (GPa) -5.32084655 8.44505383 -3.00527409 8.44505383 -0.68611740 -5.14435343 -3.00528191 -5.14437551 1.95600561 ATOMIC_POSITIONS Si -0.482367E+01 0.495244E+00 0.268451E+01 Si 0.732649E+00 0.378172E+01 0.428005E+01 Si 0.434493E+01 -0.163304E+01 0.559635E+01 Si 0.995788E+01 0.663947E+01 -0.264357E+01 Si 0.642974E+01 0.442285E+01 0.612976E+01 Si -0.639660E+00 0.954518E+01 0.460353E+01 Si 0.853377E+01 0.230960E+01 0.971323E+01 Si 0.720713E+01 0.637753E+01 0.150131E+01 ATOMIC_VELOCITIES Si -0.143675E-02 -0.433521E-03 0.608436E-03 Si -0.210092E-03 0.140959E-03 0.726491E-04 Si -0.394451E-04 -0.729121E-03 0.229267E-03 Si 0.123498E-02 0.537516E-03 -0.941735E-03 Si 0.255572E-03 0.689336E-03 0.129206E-03 Si 0.184228E-03 0.663974E-04 -0.568664E-03 Si 0.454030E-03 -0.226781E-03 -0.472222E-04 Si -0.442521E-03 -0.447854E-04 0.518063E-03 Forces acting on atoms (au): Si 0.785209E-01 0.440541E-01 -0.547710E-01 Si -0.313639E-01 0.894165E-02 0.986983E-03 Si -0.414734E-02 -0.633650E-01 0.781923E-01 Si -0.295087E-01 0.149183E-01 -0.669384E-02 Si -0.104599E-01 0.280538E-02 -0.294028E-01 Si -0.343864E-02 0.868003E-02 0.103608E-01 Si -0.233074E-01 -0.186253E-01 -0.144529E-01 Si 0.229747E-01 0.921692E-02 0.178871E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 5134.14 16.3446 1250 0.00601 0.0 5134.1 -31.35427 -31.35427 -31.15916 -31.15316 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//si_50.save restart file written in 0.021 sec. Averaged Physical Quantities accomulated this run ekinc : 0.06788 0.00197 (AU) ekin : 11.96817 11.81093 (AU) epot : -50.80953 -50.82179 (AU) total energy : -31.11684 -31.25122 (AU) temperature : 2022.55428 2528.19285 (K ) enthalpy : -31.11684 -31.25122 (AU) econs : -31.03998 -31.15514 (AU) pressure : 0.05658 -1.47221 (Gpa) volume : 1191.01600 1191.01600 (AU) initialize : 1.06s CPU 0.11s WALL ( 1 calls) main_loop : 211.66s CPU 18.30s WALL ( 1000 calls) Called by main_loop: move_electro : 165.34s CPU 14.36s WALL ( 1000 calls) ortho : 6.46s CPU 0.56s WALL ( 1000 calls) updatc : 0.60s CPU 0.04s WALL ( 1000 calls) strucf : 0.64s CPU 0.05s WALL ( 1001 calls) calbec : 3.65s CPU 0.29s WALL ( 1001 calls) Called by move_electrons: rhoofr : 48.36s CPU 4.21s WALL ( 1000 calls) vofrho : 42.29s CPU 3.71s WALL ( 1000 calls) dforce : 61.85s CPU 5.37s WALL ( 8000 calls) calphi : 0.46s CPU 0.04s WALL ( 1000 calls) newd : 0.26s CPU 0.02s WALL ( 1000 calls) nlfl : 0.09s CPU 0.01s WALL ( 1000 calls) Called by ortho: ortho_iter : 1.46s CPU 0.12s WALL ( 1000 calls) rsg : 1.81s CPU 0.16s WALL ( 1000 calls) rhoset : 1.37s CPU 0.11s WALL ( 1000 calls) sigset : 0.76s CPU 0.08s WALL ( 1000 calls) tauset : 0.87s CPU 0.07s WALL ( 1000 calls) Small boxes: Low-level routines: prefor : 1.51s CPU 0.13s WALL ( 2001 calls) nlfq : 9.78s CPU 0.82s WALL ( 1000 calls) nlsm1 : 3.64s CPU 0.29s WALL ( 1001 calls) nlsm2 : 9.26s CPU 0.78s WALL ( 1000 calls) fft : 16.08s CPU 1.40s WALL ( 3000 calls) ffts : 10.86s CPU 0.97s WALL ( 2000 calls) fftw : 66.75s CPU 5.73s WALL ( 24000 calls) fft_scatter : 17.83s CPU 1.56s WALL ( 29000 calls) betagx : 0.16s CPU 0.01s WALL ( 1 calls) qradx : 0.00s CPU 0.00s WALL ( 1 calls) nlinit : 0.51s CPU 0.05s WALL ( 1 calls) init_dim : 0.00s CPU 0.00s WALL ( 1 calls) newnlinit : 0.01s CPU 0.00s WALL ( 1 calls) from_restart : 0.30s CPU 0.03s WALL ( 1 calls) ortho_iter : 1.46s CPU 0.12s WALL ( 1000 calls) CP : 3m33.45s CPU 0m18.48s WALL This run was terminated on: 17:31:28 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/h2o-mt-blyp.ref30000644000175000017500000011220512341373026015731 0ustar mbamba Program CP v.5.0.1 (svn rev. 9335) starts on 19Aug2012 at 17:23:13 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote.php Parallel version (MPI & OpenMP), running on 12 processor cores Number of MPI processes: 1 Threads/MPI process: 12 Reading input from /plx/userinternal/acv0/espresso/CPV/tests/h2o-mt-blyp.in3 Job Title: Water Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /plx/userinternal/acv0/espresso/pseudo/O.blyp-mt.UPF file type is UPF v.1 Reading pseudopotential for specie # 2 from file : /plx/userinternal/acv0/espresso/pseudo/H.blyp-vbc.UPF file type is UPF v.1 Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 200 Print out every 100 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [KBar] wmass (calculated) = 2493.41 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 7680 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 Electron dynamics with newton equations Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: LEE, YANG, AND PARR Using Generalized Gradient Corrections with Exchange functional: BECKE Correlation functional: PERDEW AND WANG Exchange-correlation = SLA LYP B88 BLYP ( 1 3 1 3 0) EXX-fraction = 0.00 Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 6 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Zero initial momentum for ions Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.832500 -0.224300 -0.000100 -0.224300 1.832500 0.000200 Ionic position will be re-read from restart file NOT all atoms are allowed to move indx ..x.. ..y.. ..z.. 1 F F F Ionic temperature is not controlled Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iverbosity = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 3673 3673 917 167037 167037 20815 Tot 1837 1837 459 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 373248 Number of x-y planes for each processors: nr3l = 72 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nrxx ) = 373248 Number of x-y planes for each processors: nr3sl = 72 Reciprocal Space Mesh --------------------- Large Mesh Global(ngm_g) MinLocal MaxLocal Average 83519 83519 83519 83519.00 Smooth Mesh Global(ngms_g) MinLocal MaxLocal Average 83519 83519 83519 83519.00 Wave function Mesh Global(ngw_g) MinLocal MaxLocal Average 10408 10408 10408 10408.00 System geometry initialization ------------------------------ ibrav = 14 cell parameters 12.00000 0.00000 0.00000 0.00000 12.00000 0.00000 0.00000 0.00000 12.00000 Matrix Multiplication Performances ortho mmul, time for parallel driver = 0.00000 with 1 procs Constraints matrixes will be distributed block like on ortho sub-group = 1* 1 procs Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /plx/userinternal/acv0/espresso/CPV/tmp//h2o_51.save restart file read in 0.020 sec. Ionic velocities set to zero formf: eself= 18.94976 formf: vps(g=0)= -0.0063239 rhops(g=0)= -0.0034722 formf: sum_g vps(g)= -4.3546661 sum_g rhops(g)= -1.0540044 formf: vps(g=0)= -0.0011896 rhops(g=0)= -0.0005787 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV WARNING setting to ZERO ions, electrons and cell velocities without setting to ZERO all velocities could generate meaningles trajectories nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 131 0.00000 0.0 0.2 -17.17739 -17.17739 -17.17739 -17.17739 0.0000 0.0000 0.0000 0.0000 132 0.00000 0.0 1.6 -17.17741 -17.17741 -17.17739 -17.17739 0.0000 0.0000 0.0000 0.0000 133 0.00000 0.0 4.3 -17.17743 -17.17743 -17.17739 -17.17739 0.0000 0.0000 0.0000 0.0000 134 0.00000 0.0 8.0 -17.17747 -17.17747 -17.17739 -17.17739 0.0000 0.0000 0.0000 0.0000 135 0.00000 0.0 12.4 -17.17752 -17.17752 -17.17739 -17.17739 0.0000 0.0000 0.0000 0.0000 136 0.00001 0.0 17.3 -17.17757 -17.17757 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 137 0.00002 0.0 22.3 -17.17763 -17.17763 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 138 0.00004 0.0 27.3 -17.17770 -17.17770 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 139 0.00006 0.0 32.3 -17.17777 -17.17777 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 140 0.00008 0.0 37.3 -17.17784 -17.17784 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 141 0.00010 0.0 42.3 -17.17792 -17.17792 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 142 0.00012 0.0 47.4 -17.17799 -17.17799 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 143 0.00014 0.0 52.6 -17.17806 -17.17806 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 144 0.00015 0.0 57.9 -17.17812 -17.17812 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 145 0.00015 0.0 63.2 -17.17818 -17.17818 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 146 0.00015 0.0 68.2 -17.17823 -17.17823 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 147 0.00014 0.0 72.7 -17.17827 -17.17827 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 148 0.00014 0.0 76.4 -17.17830 -17.17830 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 149 0.00014 0.0 79.1 -17.17833 -17.17833 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 150 0.00013 0.0 80.5 -17.17834 -17.17834 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 151 0.00014 0.0 80.6 -17.17835 -17.17835 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 152 0.00014 0.0 79.4 -17.17834 -17.17834 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 153 0.00015 0.0 76.9 -17.17832 -17.17832 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 154 0.00015 0.0 73.5 -17.17830 -17.17830 -17.17755 -17.17739 0.0000 0.0000 0.0000 0.0000 155 0.00016 0.0 69.4 -17.17826 -17.17826 -17.17755 -17.17739 0.0000 0.0000 0.0000 0.0000 156 0.00016 0.0 64.8 -17.17822 -17.17822 -17.17755 -17.17739 0.0000 0.0000 0.0000 0.0000 157 0.00016 0.0 60.1 -17.17817 -17.17817 -17.17755 -17.17739 0.0000 0.0000 0.0000 0.0000 158 0.00015 0.0 55.3 -17.17811 -17.17811 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 159 0.00014 0.0 50.7 -17.17805 -17.17805 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 160 0.00012 0.0 46.2 -17.17799 -17.17799 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 161 0.00010 0.0 41.8 -17.17793 -17.17793 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 162 0.00008 0.0 37.6 -17.17786 -17.17786 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 163 0.00006 0.0 33.6 -17.17780 -17.17780 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 164 0.00005 0.0 29.6 -17.17775 -17.17775 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 165 0.00003 0.0 25.8 -17.17770 -17.17770 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 166 0.00002 0.0 22.1 -17.17765 -17.17765 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 167 0.00002 0.0 18.8 -17.17761 -17.17761 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 168 0.00002 0.0 15.8 -17.17758 -17.17758 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 169 0.00002 0.0 13.4 -17.17755 -17.17755 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 170 0.00002 0.0 11.6 -17.17754 -17.17754 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 171 0.00002 0.0 10.7 -17.17753 -17.17753 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 172 0.00002 0.0 10.6 -17.17752 -17.17752 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 173 0.00002 0.0 11.4 -17.17753 -17.17753 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 174 0.00003 0.0 13.1 -17.17755 -17.17755 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 175 0.00003 0.0 15.6 -17.17758 -17.17758 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 176 0.00003 0.0 18.8 -17.17761 -17.17761 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 177 0.00003 0.0 22.6 -17.17765 -17.17765 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 178 0.00004 0.0 27.0 -17.17769 -17.17769 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 179 0.00004 0.0 31.7 -17.17774 -17.17774 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 180 0.00005 0.0 36.6 -17.17780 -17.17780 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 181 0.00006 0.0 41.8 -17.17786 -17.17786 -17.17746 -17.17739 0.0000 0.0000 0.0000 0.0000 182 0.00007 0.0 47.2 -17.17792 -17.17792 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 183 0.00009 0.0 52.7 -17.17799 -17.17799 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 184 0.00010 0.0 58.1 -17.17805 -17.17805 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 185 0.00011 0.0 63.6 -17.17811 -17.17811 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 186 0.00011 0.0 68.9 -17.17817 -17.17817 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 187 0.00012 0.0 73.9 -17.17823 -17.17823 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 188 0.00012 0.0 78.6 -17.17827 -17.17827 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 189 0.00012 0.0 82.6 -17.17832 -17.17832 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 190 0.00012 0.0 86.0 -17.17835 -17.17835 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 191 0.00013 0.0 88.5 -17.17838 -17.17838 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 192 0.00013 0.0 89.9 -17.17839 -17.17839 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 193 0.00013 0.0 90.2 -17.17840 -17.17840 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 194 0.00013 0.0 89.3 -17.17839 -17.17839 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 195 0.00013 0.0 87.3 -17.17837 -17.17837 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 196 0.00014 0.0 84.2 -17.17834 -17.17834 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 197 0.00014 0.0 80.2 -17.17831 -17.17831 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 198 0.00014 0.0 75.3 -17.17826 -17.17826 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 199 0.00014 0.0 69.9 -17.17821 -17.17821 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 200 0.00014 0.0 64.1 -17.17815 -17.17815 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//h2o_51.save restart file written in 0.064 sec. 201 0.00013 0.0 58.1 -17.17808 -17.17808 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 202 0.00012 0.0 51.9 -17.17801 -17.17801 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 203 0.00011 0.0 45.7 -17.17794 -17.17794 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 204 0.00009 0.0 39.6 -17.17787 -17.17787 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 205 0.00008 0.0 33.6 -17.17779 -17.17779 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 206 0.00006 0.0 27.9 -17.17772 -17.17772 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 207 0.00005 0.0 22.4 -17.17766 -17.17766 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 208 0.00004 0.0 17.4 -17.17760 -17.17760 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 209 0.00003 0.0 12.8 -17.17754 -17.17754 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 210 0.00002 0.0 8.9 -17.17750 -17.17750 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 211 0.00002 0.0 5.7 -17.17746 -17.17746 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 212 0.00001 0.0 3.5 -17.17744 -17.17744 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 213 0.00001 0.0 2.3 -17.17742 -17.17742 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 214 0.00001 0.0 2.1 -17.17742 -17.17742 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 215 0.00001 0.0 3.0 -17.17743 -17.17743 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 216 0.00001 0.0 4.9 -17.17745 -17.17745 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 217 0.00002 0.0 7.7 -17.17749 -17.17749 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 218 0.00002 0.0 11.2 -17.17753 -17.17753 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 219 0.00003 0.0 15.4 -17.17758 -17.17758 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 220 0.00005 0.0 20.0 -17.17764 -17.17764 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 221 0.00006 0.0 25.0 -17.17770 -17.17770 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 222 0.00008 0.0 30.1 -17.17777 -17.17777 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 223 0.00009 0.0 35.4 -17.17784 -17.17784 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 224 0.00011 0.0 40.8 -17.17791 -17.17791 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 225 0.00012 0.0 46.2 -17.17797 -17.17797 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 226 0.00014 0.0 51.6 -17.17804 -17.17804 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 227 0.00014 0.0 56.8 -17.17810 -17.17810 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 228 0.00015 0.0 61.8 -17.17815 -17.17815 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 229 0.00015 0.0 66.5 -17.17819 -17.17819 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 230 0.00014 0.0 70.6 -17.17823 -17.17823 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 231 0.00014 0.0 74.1 -17.17826 -17.17826 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 232 0.00013 0.0 76.7 -17.17828 -17.17828 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 233 0.00013 0.0 78.3 -17.17829 -17.17829 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 234 0.00012 0.0 78.9 -17.17829 -17.17829 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 235 0.00012 0.0 78.4 -17.17828 -17.17828 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 236 0.00012 0.0 76.9 -17.17826 -17.17826 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 237 0.00011 0.0 74.4 -17.17824 -17.17824 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 238 0.00011 0.0 71.1 -17.17820 -17.17820 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 239 0.00011 0.0 67.2 -17.17816 -17.17816 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 240 0.00011 0.0 62.8 -17.17811 -17.17811 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 241 0.00010 0.0 58.0 -17.17806 -17.17806 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 242 0.00009 0.0 53.0 -17.17800 -17.17800 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 243 0.00008 0.0 47.9 -17.17794 -17.17794 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 244 0.00007 0.0 42.8 -17.17788 -17.17788 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 245 0.00006 0.0 37.7 -17.17782 -17.17782 -17.17746 -17.17739 0.0000 0.0000 0.0000 0.0000 246 0.00005 0.0 32.8 -17.17776 -17.17776 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 247 0.00005 0.0 28.1 -17.17771 -17.17771 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 248 0.00004 0.0 23.6 -17.17766 -17.17766 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 249 0.00003 0.0 19.5 -17.17761 -17.17761 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 250 0.00003 0.0 15.9 -17.17757 -17.17757 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 251 0.00003 0.0 12.8 -17.17754 -17.17754 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 252 0.00002 0.0 10.4 -17.17752 -17.17752 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 253 0.00002 0.0 8.7 -17.17750 -17.17750 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 254 0.00002 0.0 7.8 -17.17749 -17.17749 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 255 0.00002 0.0 7.8 -17.17749 -17.17749 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 256 0.00002 0.0 8.6 -17.17750 -17.17750 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 257 0.00002 0.0 10.2 -17.17752 -17.17752 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 258 0.00002 0.0 12.5 -17.17755 -17.17755 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 259 0.00002 0.0 15.5 -17.17758 -17.17758 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 260 0.00003 0.0 19.1 -17.17762 -17.17762 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 261 0.00003 0.0 23.1 -17.17767 -17.17767 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 262 0.00004 0.0 27.6 -17.17772 -17.17772 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 263 0.00005 0.0 32.4 -17.17778 -17.17778 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 264 0.00006 0.0 37.3 -17.17784 -17.17784 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 265 0.00007 0.0 42.5 -17.17791 -17.17791 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 266 0.00009 0.0 47.6 -17.17798 -17.17798 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 267 0.00010 0.0 52.8 -17.17804 -17.17804 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 268 0.00012 0.0 57.9 -17.17811 -17.17811 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 269 0.00013 0.0 62.9 -17.17817 -17.17817 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 270 0.00014 0.0 67.5 -17.17823 -17.17823 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 271 0.00015 0.0 71.8 -17.17828 -17.17828 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 272 0.00015 0.0 75.6 -17.17833 -17.17833 -17.17755 -17.17739 0.0000 0.0000 0.0000 0.0000 273 0.00016 0.0 78.8 -17.17836 -17.17836 -17.17755 -17.17739 0.0000 0.0000 0.0000 0.0000 274 0.00016 0.0 81.3 -17.17839 -17.17839 -17.17756 -17.17739 0.0000 0.0000 0.0000 0.0000 275 0.00016 0.0 82.9 -17.17841 -17.17841 -17.17756 -17.17739 0.0000 0.0000 0.0000 0.0000 276 0.00017 0.0 83.7 -17.17842 -17.17842 -17.17756 -17.17739 0.0000 0.0000 0.0000 0.0000 277 0.00017 0.0 83.6 -17.17842 -17.17842 -17.17756 -17.17739 0.0000 0.0000 0.0000 0.0000 278 0.00017 0.0 82.5 -17.17841 -17.17841 -17.17756 -17.17739 0.0000 0.0000 0.0000 0.0000 279 0.00016 0.0 80.6 -17.17838 -17.17838 -17.17756 -17.17739 0.0000 0.0000 0.0000 0.0000 280 0.00016 0.0 77.8 -17.17835 -17.17835 -17.17755 -17.17739 0.0000 0.0000 0.0000 0.0000 281 0.00015 0.0 74.2 -17.17831 -17.17831 -17.17755 -17.17739 0.0000 0.0000 0.0000 0.0000 282 0.00015 0.0 69.9 -17.17826 -17.17826 -17.17754 -17.17739 0.0000 0.0000 0.0000 0.0000 283 0.00014 0.0 65.1 -17.17820 -17.17820 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 284 0.00013 0.0 59.8 -17.17814 -17.17814 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 285 0.00012 0.0 54.3 -17.17807 -17.17807 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 286 0.00010 0.0 48.5 -17.17800 -17.17800 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 287 0.00009 0.0 42.6 -17.17792 -17.17792 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 288 0.00007 0.0 36.8 -17.17785 -17.17785 -17.17746 -17.17739 0.0000 0.0000 0.0000 0.0000 289 0.00006 0.0 31.2 -17.17778 -17.17778 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 290 0.00005 0.0 25.8 -17.17771 -17.17771 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 291 0.00004 0.0 20.8 -17.17765 -17.17765 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 292 0.00003 0.0 16.4 -17.17759 -17.17759 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 293 0.00002 0.0 12.6 -17.17755 -17.17755 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 294 0.00002 0.0 9.7 -17.17751 -17.17751 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 295 0.00001 0.0 7.6 -17.17748 -17.17748 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 296 0.00001 0.0 6.5 -17.17747 -17.17747 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 297 0.00001 0.0 6.5 -17.17747 -17.17747 -17.17740 -17.17739 0.0000 0.0000 0.0000 0.0000 298 0.00002 0.0 7.5 -17.17748 -17.17748 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 299 0.00002 0.0 9.5 -17.17750 -17.17750 -17.17741 -17.17739 0.0000 0.0000 0.0000 0.0000 300 0.00003 0.0 12.4 -17.17754 -17.17754 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//h2o_51.save restart file written in 0.060 sec. 301 0.00003 0.0 16.1 -17.17758 -17.17758 -17.17742 -17.17739 0.0000 0.0000 0.0000 0.0000 302 0.00004 0.0 20.5 -17.17763 -17.17763 -17.17743 -17.17739 0.0000 0.0000 0.0000 0.0000 303 0.00005 0.0 25.5 -17.17768 -17.17768 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 304 0.00006 0.0 30.8 -17.17774 -17.17774 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 305 0.00007 0.0 36.3 -17.17781 -17.17781 -17.17746 -17.17739 0.0000 0.0000 0.0000 0.0000 306 0.00008 0.0 41.8 -17.17788 -17.17788 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 307 0.00009 0.0 47.3 -17.17794 -17.17794 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 308 0.00010 0.0 52.7 -17.17801 -17.17801 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 309 0.00011 0.0 57.7 -17.17807 -17.17807 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 310 0.00012 0.0 62.4 -17.17812 -17.17812 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 311 0.00013 0.0 66.6 -17.17817 -17.17817 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 312 0.00013 0.0 70.2 -17.17821 -17.17821 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 313 0.00014 0.0 73.2 -17.17825 -17.17825 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 314 0.00014 0.0 75.4 -17.17827 -17.17827 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 315 0.00014 0.0 76.7 -17.17829 -17.17829 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 316 0.00014 0.0 77.2 -17.17829 -17.17829 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 317 0.00014 0.0 76.7 -17.17829 -17.17829 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 318 0.00014 0.0 75.4 -17.17827 -17.17827 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 319 0.00013 0.0 73.1 -17.17825 -17.17825 -17.17753 -17.17739 0.0000 0.0000 0.0000 0.0000 320 0.00013 0.0 70.1 -17.17821 -17.17821 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 321 0.00012 0.0 66.3 -17.17817 -17.17817 -17.17752 -17.17739 0.0000 0.0000 0.0000 0.0000 322 0.00012 0.0 61.9 -17.17812 -17.17812 -17.17751 -17.17739 0.0000 0.0000 0.0000 0.0000 323 0.00011 0.0 57.1 -17.17807 -17.17807 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 324 0.00010 0.0 51.9 -17.17801 -17.17801 -17.17750 -17.17739 0.0000 0.0000 0.0000 0.0000 325 0.00009 0.0 46.6 -17.17795 -17.17795 -17.17749 -17.17739 0.0000 0.0000 0.0000 0.0000 326 0.00008 0.0 41.1 -17.17789 -17.17789 -17.17748 -17.17739 0.0000 0.0000 0.0000 0.0000 327 0.00007 0.0 35.7 -17.17782 -17.17782 -17.17747 -17.17739 0.0000 0.0000 0.0000 0.0000 328 0.00006 0.0 30.5 -17.17776 -17.17776 -17.17746 -17.17739 0.0000 0.0000 0.0000 0.0000 329 0.00005 0.0 25.5 -17.17770 -17.17770 -17.17745 -17.17739 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 330 total energy = -17.17765 Hartree a.u. kinetic energy = 12.54212 Hartree a.u. electrostatic energy = -18.19786 Hartree a.u. esr = 0.12975 Hartree a.u. eself = 18.94976 Hartree a.u. pseudopotential energy = -9.28941 Hartree a.u. n-l pseudopotential energy = 1.95857 Hartree a.u. exchange-correlation energy = -4.19107 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.57 -12.70 -8.81 -6.89 Allocated memory (kb) = 86756 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.1167 Center of mass square displacement (a.u.): 0.000052 Total stress (GPa) -0.80155454 0.28792140 -0.04331138 0.28792140 -0.31289265 0.02156544 -0.04331138 0.02156544 -0.10572596 ATOMIC_POSITIONS O 0.990000E-02 0.990000E-02 0.000000E+00 H 0.185564E+01 -0.335737E+00 0.111405E+00 H -0.192839E+00 0.183734E+01 -0.607556E-01 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 H 0.448730E-03 -0.272999E-04 0.376990E-04 H 0.239408E-04 0.161109E-03 -0.126872E-04 Forces acting on atoms (au): O 0.116962E-01 -0.435917E-02 0.740030E-03 H -0.182224E-01 0.752828E-02 -0.112039E-02 H 0.415625E-02 -0.349757E-02 0.224466E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2.29 0.0001 2 19.65 0.0142 330 0.00004 0.0 20.8 -17.17765 -17.17765 -17.17744 -17.17739 0.0000 0.0000 0.0000 0.0000 writing restart file: /plx/userinternal/acv0/espresso/CPV/tmp//h2o_51.save restart file written in 0.062 sec. Averaged Physical Quantities accomulated this run ekinc : 0.13553 0.00008 (AU) ekin : 12.21063 12.59687 (AU) epot : -30.68033 -31.73233 (AU) total energy : -16.44908 -17.17792 (AU) temperature : 26.97680 44.51172 (K ) enthalpy : -16.44908 -17.17792 (AU) econs : -16.44881 -17.17748 (AU) pressure : 2.14677 -0.10477 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 1.12s CPU 0.15s WALL ( 1 calls) main_loop : 472.78s CPU 41.71s WALL ( 200 calls) Called by main_loop: move_electro : 463.53s CPU 40.91s WALL ( 200 calls) ortho : 1.53s CPU 0.13s WALL ( 200 calls) updatc : 0.28s CPU 0.02s WALL ( 200 calls) strucf : 0.79s CPU 0.07s WALL ( 201 calls) calbec : 0.34s CPU 0.03s WALL ( 201 calls) Called by move_electrons: rhoofr : 84.06s CPU 7.26s WALL ( 200 calls) vofrho : 338.12s CPU 30.06s WALL ( 200 calls) dforce : 36.95s CPU 3.21s WALL ( 400 calls) calphi : 0.42s CPU 0.03s WALL ( 200 calls) nlfl : 0.03s CPU 0.00s WALL ( 200 calls) Called by ortho: ortho_iter : 0.13s CPU 0.01s WALL ( 200 calls) rsg : 0.36s CPU 0.03s WALL ( 200 calls) rhoset : 0.41s CPU 0.04s WALL ( 200 calls) sigset : 0.27s CPU 0.02s WALL ( 200 calls) tauset : 0.32s CPU 0.02s WALL ( 200 calls) Small boxes: Low-level routines: prefor : 0.12s CPU 0.02s WALL ( 401 calls) nlfq : 1.18s CPU 0.11s WALL ( 200 calls) nlsm1 : 0.34s CPU 0.03s WALL ( 201 calls) nlsm2 : 1.12s CPU 0.10s WALL ( 200 calls) fft : 118.78s CPU 10.25s WALL ( 1600 calls) ffts : 30.15s CPU 2.59s WALL ( 400 calls) fftw : 38.21s CPU 3.27s WALL ( 1200 calls) fft_scatter : 62.57s CPU 5.40s WALL ( 3200 calls) betagx : 0.28s CPU 0.03s WALL ( 1 calls) qradx : 0.00s CPU 0.00s WALL ( 1 calls) nlinit : 0.43s CPU 0.04s WALL ( 1 calls) init_dim : 0.04s CPU 0.04s WALL ( 1 calls) newnlinit : 0.02s CPU 0.00s WALL ( 1 calls) from_restart : 0.38s CPU 0.03s WALL ( 1 calls) ortho_iter : 0.13s CPU 0.01s WALL ( 200 calls) CP : 7m55.96s CPU 0m42.06s WALL This run was terminated on: 17:23:55 19Aug2012 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/tests/h2o-mt-blyp.in30000644000175000017500000000171312341373026015564 0ustar mbamba &control title = ' Water Molecule ', calculation = 'cp', restart_mode = 'restart', ndr = 51, ndw = 51, nstep = 200, iprint = 100, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, prefix = 'h2o' verbosity='medium', / &system ibrav = 14, celldm(1) = 12.0, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 3, ntyp = 2, nbnd = 4, ecutwfc = 80.0, / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', electron_dynamics = 'verlet', / &ions ion_dynamics = 'verlet', ion_radius(1) = 0.8d0, ion_radius(2) = 0.8d0, ion_velocities = 'zero', / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.00d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (bohr) O 0.0099 0.0099 0.0000 0 0 0 H 1.8325 -0.2243 -0.0001 1 1 1 H -0.2243 1.8325 0.0002 1 1 1 espresso-5.1/CPV/tests/h2o-mt-blyp.in20000644000175000017500000000175412341373026015570 0ustar mbamba &control title = ' Water Molecule ', calculation = 'cp', restart_mode = 'restart', ndr = 51, ndw = 51, nstep = 50, iprint = 10, isave = 50, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, prefix = 'h2o' verbosity='medium', / &system ibrav = 14, celldm(1) = 12.0, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 3, ntyp = 2, nbnd = 4, ecutwfc = 80.0, / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', electron_dynamics = 'damp', electron_damping = 0.2, / &ions ion_dynamics = 'none', tranp(2) = .true. amprp(2) = 0.2 ion_radius(1) = 0.8d0, ion_radius(2) = 0.8d0, / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.00d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (bohr) O 0.0099 0.0099 0.0000 0 0 0 H 1.8325 -0.2243 -0.0001 1 1 1 H -0.2243 1.8325 0.0002 1 1 1 espresso-5.1/CPV/src/0000755000175000017500000000000012341373043012521 5ustar mbambaespresso-5.1/CPV/src/printout_base.f900000644000175000017500000002215212341373026015722 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! This module contains subroutines to print computed quantities to ! standard output and ASCII file MODULE printout_base IMPLICIT NONE SAVE CHARACTER(LEN=256) :: fort_unit(30:42) ! ... fort_unit = fortran units for saving physical quantity CHARACTER(LEN=256) :: pprefix ! ... prefix combined with the output path CONTAINS SUBROUTINE printout_base_init( outdir, prefix ) USE io_global, ONLY: ionode, ionode_id USE mp_global, ONLY: intra_image_comm ! KNK_nimage ! USE mp_global, ONLY: my_image_id USE mp, ONLY: mp_bcast INTEGER :: iunit, ierr CHARACTER(LEN=*), INTENT(IN) :: outdir CHARACTER(LEN=*), INTENT(IN) :: prefix ! KNK_nimage ! CHARACTER(LEN=6), EXTERNAL :: int_to_char IF( prefix /= ' ' ) THEN pprefix = TRIM( prefix ) ELSE pprefix = 'fpmd' END IF ! KNK_nimage ! if (my_image_id > 0) pprefix = TRIM(pprefix) // '_' // TRIM(int_to_char( my_image_id )) ! IF( outdir /= ' ' ) THEN pprefix = TRIM( outdir ) // '/' // TRIM( pprefix ) END IF ierr = 0 IF( ionode ) THEN fort_unit(30) = trim(pprefix)//'.con' fort_unit(31) = trim(pprefix)//'.eig' fort_unit(32) = trim(pprefix)//'.pol' fort_unit(33) = trim(pprefix)//'.evp' fort_unit(34) = trim(pprefix)//'.vel' fort_unit(35) = trim(pprefix)//'.pos' fort_unit(36) = trim(pprefix)//'.cel' fort_unit(37) = trim(pprefix)//'.for' fort_unit(38) = trim(pprefix)//'.str' fort_unit(39) = trim(pprefix)//'.nos' fort_unit(40) = trim(pprefix)//'.the' fort_unit(41) = trim(pprefix)//'.spr' ! wannier spread fort_unit(42) = trim(pprefix)//'.wfc' ! wannier function DO iunit = LBOUND( fort_unit, 1 ), UBOUND( fort_unit, 1 ) OPEN(UNIT=iunit, FILE=fort_unit(iunit), & STATUS='unknown', POSITION='append', IOSTAT = ierr ) CLOSE( iunit ) END DO END IF CALL mp_bcast(ierr, ionode_id, intra_image_comm) IF( ierr /= 0 ) THEN CALL errore(' printout_base_init ', & ' error in opening unit, check outdir = '//TRIM(outdir),iunit) END IF RETURN END SUBROUTINE printout_base_init SUBROUTINE printout_base_open( suffix ) CHARACTER(LEN=*), OPTIONAL, INTENT(IN) :: suffix INTEGER :: iunit LOGICAL :: ok=.true. ! ... Open units 30, 31, ... 42 for simulation output IF( PRESENT( suffix ) ) THEN IF( LEN( suffix ) /= 3 ) & CALL errore(" printout_base_open ", " wrong suffix ", 1 ) ok = .false. END IF DO iunit = LBOUND( fort_unit, 1 ), UBOUND( fort_unit, 1 ) IF( PRESENT( suffix ) ) THEN IF( index( fort_unit(iunit), suffix, back=.TRUE. ) == & ( len_trim( fort_unit(iunit) ) - 2 ) ) THEN OPEN( UNIT=iunit, FILE=fort_unit(iunit), STATUS='unknown', POSITION='append') ok = .true. END IF ELSE OPEN( UNIT=iunit, FILE=fort_unit(iunit), STATUS='unknown', POSITION='append') END IF END DO IF( PRESENT( suffix ) ) THEN IF( .NOT. ok ) & CALL errore(" printout_base_open ", " file with suffix "//suffix//" not found ", 1 ) END IF RETURN END SUBROUTINE printout_base_open FUNCTION printout_base_unit( suffix ) ! return the unit corresponding to a given suffix CHARACTER(LEN=*), INTENT(IN) :: suffix INTEGER :: printout_base_unit INTEGER :: iunit LOGICAL :: ok IF( LEN( suffix ) /= 3 ) & CALL errore(" printout_base_unit ", " wrong suffix ", 1 ) ok = .false. DO iunit = LBOUND( fort_unit, 1 ), UBOUND( fort_unit, 1 ) IF( index( fort_unit(iunit), suffix, back=.TRUE. ) == ( len_trim( fort_unit(iunit) ) - 2 ) ) THEN printout_base_unit = iunit ok = .true. END IF END DO IF( .NOT. ok ) & CALL errore(" printout_base_unit ", " file with suffix "//suffix//" not found ", 1 ) RETURN END FUNCTION printout_base_unit FUNCTION printout_base_name( suffix ) ! return the full name of a print out file with a given suffix CHARACTER(LEN=*), INTENT(IN) :: suffix CHARACTER(LEN=256) :: printout_base_name INTEGER :: iunit LOGICAL :: ok IF( LEN( suffix ) /= 3 ) & CALL errore(" printout_base_name ", " wrong suffix ", 1 ) ok = .false. DO iunit = LBOUND( fort_unit, 1 ), UBOUND( fort_unit, 1 ) IF( index( fort_unit(iunit), suffix, back=.TRUE. ) == ( len_trim( fort_unit(iunit) ) - 2 ) ) THEN printout_base_name = fort_unit(iunit) ok = .true. END IF END DO IF( .NOT. ok ) & CALL errore(" printout_base_name ", " file with suffix "//suffix//" not found ", 1 ) RETURN END FUNCTION printout_base_name SUBROUTINE printout_base_close( suffix ) CHARACTER(LEN=*), OPTIONAL, INTENT(IN) :: suffix INTEGER :: iunit LOGICAL :: topen LOGICAL :: ok ! ... Close and flush unit 30, ... 42 IF( PRESENT( suffix ) ) THEN IF( LEN( suffix ) /= 3 ) & CALL errore(" printout_base_close ", " wrong suffix ", 1 ) ok = .false. END IF DO iunit = LBOUND( fort_unit, 1 ), UBOUND( fort_unit, 1 ) IF( PRESENT( suffix ) ) THEN IF( index( fort_unit(iunit), suffix, back=.TRUE. ) == ( len_trim( fort_unit(iunit) ) - 2 ) ) THEN INQUIRE( UNIT=iunit, OPENED=topen ) IF( topen ) CLOSE(iunit) ok = .true. END IF ELSE INQUIRE( UNIT=iunit, OPENED=topen ) IF (topen) CLOSE(iunit) END IF END DO IF( PRESENT( suffix ) ) THEN IF( .NOT. ok ) & CALL errore(" printout_base_close ", " file with suffix "//suffix//" not found ", 1 ) END IF RETURN END SUBROUTINE printout_base_close SUBROUTINE printout_pos( iunit, tau, nat, what, nfi, tps, label, fact, sort, head ) ! USE kinds ! INTEGER, INTENT(IN) :: iunit, nat REAL(DP), INTENT(IN) :: tau( :, : ) CHARACTER(LEN=3), INTENT(IN), OPTIONAL :: what INTEGER, INTENT(IN), OPTIONAL :: nfi REAL(DP), INTENT(IN), OPTIONAL :: tps CHARACTER(LEN=3), INTENT(IN), OPTIONAL :: label( : ) REAL(DP), INTENT(IN), OPTIONAL :: fact INTEGER, INTENT(IN), OPTIONAL :: sort( : ) CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: head ! INTEGER :: ia, k REAL(DP) :: f ! IF( PRESENT( fact ) ) THEN f = fact ELSE f = 1.0_DP END IF ! IF( PRESENT( head ) ) THEN WRITE( iunit, 10 ) head END IF ! IF( PRESENT( what ) ) THEN IF ( what == 'xyz' ) WRITE( iunit, *) nat END IF ! IF( PRESENT( nfi ) .AND. PRESENT( tps ) ) THEN WRITE( iunit, 30 ) nfi, tps ELSE IF( PRESENT( what ) ) THEN IF( what == 'pos' ) THEN WRITE( iunit, 40 ) ELSE IF( what == 'vel' ) THEN WRITE( iunit, 50 ) ELSE IF( what == 'for' ) THEN WRITE( iunit, 60 ) END IF END IF ! IF( PRESENT( label ) ) THEN IF( PRESENT( sort ) ) THEN DO ia = 1, nat WRITE( iunit, 255 ) label( sort(ia) ), ( f * tau(k, sort(ia) ),k = 1,3) END DO ELSE DO ia = 1, nat WRITE( iunit, 255 ) label(ia), ( f * tau(k,ia),k = 1,3) END DO END IF ELSE DO ia = 1, nat WRITE( iunit, 252 ) (tau(k,ia),k = 1,3) END DO END IF 10 FORMAT(3X,A) 30 FORMAT(I7,1X,F11.8) 40 FORMAT(3X,'ATOMIC_POSITIONS') 50 FORMAT(3X,'ATOMIC_VELOCITIES') 60 FORMAT(3X,'Forces acting on atoms (au):') 255 FORMAT(3X,A3,3E14.6) 252 FORMAT(3E14.6) RETURN END SUBROUTINE printout_pos SUBROUTINE printout_cell( iunit, h, nfi, tps ) ! USE kinds ! INTEGER, INTENT(IN) :: iunit REAL(DP), INTENT(IN) :: h(3,3) INTEGER, INTENT(IN), OPTIONAL :: nfi REAL(DP), INTENT(IN), OPTIONAL :: tps ! INTEGER :: i, j ! IF( PRESENT( nfi ) .AND. PRESENT( tps ) ) THEN WRITE( iunit, 30 ) nfi, tps ELSE WRITE( iunit, 40 ) END IF ! DO i = 1, 3 WRITE( iunit, 100 ) (h(i,j),j=1,3) END DO ! 30 FORMAT(I7,1X,F11.8) 40 FORMAT(3X,'CELL_PARAMETERS') 100 FORMAT(3F14.8) RETURN END SUBROUTINE printout_cell SUBROUTINE printout_stress( iunit, str, nfi, tps ) ! USE kinds ! INTEGER, INTENT(IN) :: iunit REAL(DP), INTENT(IN) :: str(3,3) INTEGER, INTENT(IN), OPTIONAL :: nfi REAL(DP), INTENT(IN), OPTIONAL :: tps ! INTEGER :: i, j ! IF( PRESENT( nfi ) .AND. PRESENT( tps ) ) THEN WRITE( iunit, 30 ) nfi, tps ELSE WRITE( iunit, 40 ) END IF ! DO i = 1, 3 WRITE( iunit, 100 ) (str(i,j),j=1,3) END DO ! 30 FORMAT(I7,1X,F11.8) 40 FORMAT(3X,'Total stress (GPa)') 100 FORMAT(3(F18.8,1X)) RETURN END SUBROUTINE printout_stress END MODULE printout_base espresso-5.1/CPV/src/fft.f900000644000175000017500000003041512341373026013624 0ustar mbamba! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ---------------------------------------------- ! These subroutines written by Carlo Cavazzoni ! ---------------------------------------------- !----------------------------------------------------------------------- SUBROUTINE c2psi( psi, nnr, c, ca, ng, iflg ) ! use gvecs, only: nlsm, nls use kinds, only: DP implicit none complex(DP) :: psi(*), c(*), ca(*) integer, intent(in) :: nnr, ng, iflg complex(DP), parameter :: ci=(0.0d0,1.0d0) integer :: ig psi( 1 : nnr ) = 0.0d0 ! ! iflg "cases" ! ! 0 Do not use gamma symmetry ! ! 1 set psi using a wf with Gamma symmetry ! 2 set psi combining two wf with Gamma symmetry ! SELECT CASE ( iflg ) ! ! Case 0, 1 and 2 SMOOTH MESH ! CASE ( 0 ) ! do ig = 1, ng psi( nls( ig ) ) = c( ig ) end do ! CASE ( 1 ) ! do ig = 1, ng psi( nlsm( ig ) ) = CONJG( c( ig ) ) psi( nls( ig ) ) = c( ig ) end do ! CASE ( 2 ) ! do ig = 1, ng psi( nlsm( ig ) ) = CONJG( c( ig ) ) + ci * conjg( ca( ig ) ) psi( nls( ig ) ) = c( ig ) + ci * ca( ig ) end do CASE DEFAULT ! CALL errore(" c2psi "," wrong value for iflg ", ABS( iflg ) ) END SELECT return END SUBROUTINE c2psi ! ! ! SUBROUTINE rho2psi( grid_type, psi, nnr, rho, ng ) ! use gvect, only: nlm, nl use gvecs, only: nlsm, nls use kinds, only: DP implicit none complex(DP) :: psi(*), rho(*) integer, intent(in) :: nnr, ng character(len=*), intent(in) :: grid_type integer :: ig psi( 1 : nnr ) = 0.0d0 SELECT CASE ( grid_type ) ! ! Case 0, 1 and 2 SMOOTH MESH ! CASE ( 'Smooth' ) ! ! without gamma sym ! do ig = 1, ng ! psi( nls( ig ) ) = rho( ig ) ! end do ! do ig = 1, ng psi( nlsm( ig ) ) = CONJG( rho( ig ) ) psi( nls( ig ) ) = rho( ig ) end do ! CASE ( 'Dense' ) ! ! do ig = 1, ng ! psi( np( ig ) ) = rho( ig ) ! end do ! do ig = 1, ng psi( nlm( ig ) ) = CONJG( rho( ig ) ) psi( nl( ig ) ) = rho( ig ) end do ! CASE DEFAULT ! CALL errore(" rho2psi "," wrong grid "//grid_type , 1 ) END SELECT return END SUBROUTINE rho2psi !----------------------------------------------------------------------- SUBROUTINE psi2c( psi, nnr, c, ca, ng, iflg ) use gvect, only: nlm, nl use gvecs, only: nlsm, nls use kinds, only: DP implicit none complex(DP) :: psi(*), c(*), ca(*) integer, intent(in) :: nnr, ng, iflg complex(DP), parameter :: ci=(0.0d0,1.0d0) integer :: ig ! ! iflg "cases" ! ! 0, 10 Do not use gamma symmetry ! ! 1, 11 set psi using a wf with Gamma symmetry ! ! 2, 12 set psi combining two wf with Gamma symmetry ! SELECT CASE ( iflg ) ! ! Case 0, 1 and 2 SMOOTH MESH ! CASE ( 0 ) ! do ig = 1, ng c( ig ) = psi( nls( ig ) ) end do ! CASE ( 1 ) ! CALL errore(" psi2c "," wrong value for iflg ", 11 ) ! CASE ( 2 ) ! DO ig = 1, ng ca(ig) = psi( nlsm( ig ) ) c (ig) = psi( nls( ig ) ) END DO ! ! Case 10, 11 and 12 DENSE MESH ! CASE ( 10 ) ! do ig = 1, ng c( ig ) = psi( nl( ig ) ) end do ! CASE ( 11 ) ! CALL errore(" psi2c "," wrong value for iflg ", 1 ) ! CASE ( 12 ) ! DO ig = 1, ng ca(ig) = psi( nlm( ig ) ) c (ig) = psi( nl( ig ) ) END DO CASE DEFAULT ! CALL errore(" psi2c "," wrong value for iflg ", ABS( iflg ) ) END SELECT return END SUBROUTINE psi2c !----------------------------------------------------------------------- SUBROUTINE psi2rho( grid_type, psi, nnr, rho, ng ) use gvect, only: nlm, nl use gvecs, only: nlsm, nls use kinds, only: DP implicit none complex(DP) :: psi(*), rho(*) integer, intent(in) :: nnr, ng character(len=*), intent(in) :: grid_type integer :: ig SELECT CASE ( grid_type ) ! CASE ( 'Smooth' ) ! do ig = 1, ng rho( ig ) = psi( nls( ig ) ) end do ! CASE ( 'Dense' ) ! do ig = 1, ng rho( ig ) = psi( nl( ig ) ) end do ! CASE DEFAULT ! CALL errore(" psi2rho "," wrong grid "//grid_type , 1 ) END SELECT return END SUBROUTINE psi2rho !----------------------------------------------------------------------- SUBROUTINE box2grid(irb,nfft,qv,vr) !----------------------------------------------------------------------- ! ! add array qv(r) on box grid to array vr(r) on dense grid ! irb : position of the box in the dense grid ! nfft=1 add real part of qv(r) to real part of array vr(r) ! nfft=2 add imaginary part of qv(r) to real part of array vr(r) ! USE kinds, ONLY: dp USE fft_base, ONLY: dfftp, dfftb USE mp_global, ONLY: me_bgrp IMPLICIT NONE INTEGER, INTENT(in):: nfft, irb(3) REAL(dp), INTENT(in):: qv(2,dfftb%nnr) COMPLEX(dp), INTENT(inout):: vr(dfftp%nnr) ! INTEGER ir1, ir2, ir3, ir, ibig1, ibig2, ibig3, ibig INTEGER me IF(nfft.LE.0.OR.nfft.GT.2) CALL errore('box2grid','wrong data',nfft) me = me_bgrp + 1 DO ir3=1,dfftb%nr3 ibig3=irb(3)+ir3-1 ibig3=1+MOD(ibig3-1,dfftp%nr3) IF(ibig3.LT.1.OR.ibig3.GT.dfftp%nr3) & & CALL errore('box2grid','ibig3 wrong',ibig3) ibig3=ibig3-dfftp%ipp(me) IF ( ibig3 .GT. 0 .AND. ibig3 .LE. ( dfftp%npp(me) ) ) THEN DO ir2=1,dfftb%nr2 ibig2=irb(2)+ir2-1 ibig2=1+MOD(ibig2-1,dfftp%nr2) IF(ibig2.LT.1.OR.ibig2.GT.dfftp%nr2) & & CALL errore('box2grid','ibig2 wrong',ibig2) DO ir1=1,dfftb%nr1 ibig1=irb(1)+ir1-1 ibig1=1+MOD(ibig1-1,dfftp%nr1) IF(ibig1.LT.1.OR.ibig1.GT.dfftp%nr1) & & CALL errore('box2grid','ibig1 wrong',ibig1) ibig=ibig1+(ibig2-1)*dfftp%nr1x+(ibig3-1)*dfftp%nr1x*dfftp%nr2x ir=ir1+(ir2-1)*dfftb%nr1x+(ir3-1)*dfftb%nr1x*dfftb%nr2x !$omp critical vr(ibig) = vr(ibig)+qv(nfft,ir) !$omp end critical END DO END DO END IF END DO ! RETURN END SUBROUTINE box2grid !----------------------------------------------------------------------- SUBROUTINE box2grid2(irb,qv,v) !----------------------------------------------------------------------- ! ! add array qv(r) on box grid to array v(r) on dense grid ! irb : position of the box in the dense grid ! USE kinds, ONLY: dp USE fft_base, ONLY: dfftp, dfftb USE mp_global, ONLY: me_bgrp ! IMPLICIT NONE ! INTEGER, INTENT(in):: irb(3) COMPLEX(dp), INTENT(in):: qv(dfftb%nnr) COMPLEX(dp), INTENT(inout):: v(dfftp%nnr) ! INTEGER ir1, ir2, ir3, ir, ibig1, ibig2, ibig3, ibig INTEGER me me = me_bgrp + 1 DO ir3=1,dfftb%nr3 ibig3=irb(3)+ir3-1 ibig3=1+MOD(ibig3-1,dfftp%nr3) IF(ibig3.LT.1.OR.ibig3.GT.dfftp%nr3) & & CALL errore('box2grid2','ibig3 wrong',ibig3) ibig3=ibig3-dfftp%ipp(me) IF (ibig3.GT.0.AND.ibig3.LE. dfftp%npp(me) ) THEN DO ir2=1,dfftb%nr2 ibig2=irb(2)+ir2-1 ibig2=1+MOD(ibig2-1,dfftp%nr2) IF(ibig2.LT.1.OR.ibig2.GT.dfftp%nr2) & & CALL errore('box2grid2','ibig2 wrong',ibig2) DO ir1=1,dfftb%nr1 ibig1=irb(1)+ir1-1 ibig1=1+MOD(ibig1-1,dfftp%nr1) IF(ibig1.LT.1.OR.ibig1.GT.dfftp%nr1) & & CALL errore('box2grid2','ibig1 wrong',ibig1) ibig=ibig1+(ibig2-1)*dfftp%nr1x+(ibig3-1)*dfftp%nr1x*dfftp%nr2x ir=ir1+(ir2-1)*dfftb%nr1x+(ir3-1)*dfftb%nr1x*dfftb%nr2x v(ibig) = v(ibig)+qv(ir) END DO END DO END IF END DO RETURN END SUBROUTINE box2grid2 !----------------------------------------------------------------------- REAL(8) FUNCTION boxdotgrid(irb,nfft,qv,vr) !----------------------------------------------------------------------- ! ! Calculate \sum_i qv(r_i)*vr(r_i) with r_i on box grid ! array qv(r) is defined on box grid, array vr(r)on dense grid ! irb : position of the box in the dense grid ! nfft=1 (2): use real (imaginary) part of qv(r) ! Parallel execution: remember to sum the contributions from other nodes ! USE kinds, ONLY: dp USE fft_base, ONLY: dfftp, dfftb USE mp_global, ONLY: me_bgrp IMPLICIT NONE INTEGER, INTENT(in):: nfft, irb(3) REAL(dp), INTENT(in):: qv(2,dfftb%nnr), vr(dfftp%nnr) ! INTEGER ir1, ir2, ir3, ir, ibig1, ibig2, ibig3, ibig INTEGER me ! ! IF(nfft.LE.0.OR.nfft.GT.2) CALL errore('boxdotgrid','wrong data',nfft) me = me_bgrp + 1 boxdotgrid=0.d0 DO ir3=1,dfftb%nr3 ibig3=irb(3)+ir3-1 ibig3=1+MOD(ibig3-1,dfftp%nr3) ibig3=ibig3-dfftp%ipp(me) IF (ibig3.GT.0.AND.ibig3.LE. dfftp%npp(me) ) THEN DO ir2=1,dfftb%nr2 ibig2=irb(2)+ir2-1 ibig2=1+MOD(ibig2-1,dfftp%nr2) DO ir1=1,dfftb%nr1 ibig1=irb(1)+ir1-1 ibig1=1+MOD(ibig1-1,dfftp%nr1) ibig=ibig1 + (ibig2-1)*dfftp%nr1x + (ibig3-1)*dfftp%nr1x*dfftp%nr2x ir =ir1 + (ir2-1)*dfftb%nr1x + (ir3-1)*dfftb%nr1x*dfftb%nr2x boxdotgrid = boxdotgrid + qv(nfft,ir)*vr(ibig) END DO END DO ENDIF END DO RETURN END FUNCTION boxdotgrid ! !---------------------------------------------------------------------- subroutine parabox(nr3b,irb3,nr3,imin3,imax3) !---------------------------------------------------------------------- ! ! find if box grid planes in the z direction have component on the dense ! grid on this processor, and if, which range imin3-imax3 ! use mp_global, only: me_bgrp use fft_base, only: dfftp ! input integer nr3b,irb3,nr3 ! output integer imin3,imax3 ! local integer ir3, ibig3, me ! me = me_bgrp + 1 imin3=nr3b imax3=1 do ir3=1,nr3b ibig3=1+mod(irb3+ir3-2,nr3) if(ibig3.lt.1.or.ibig3.gt.nr3) & & call errore('cfftpb','ibig3 wrong',ibig3) ibig3=ibig3-dfftp%ipp(me) if (ibig3.gt.0.and.ibig3.le.dfftp%npp(me)) then imin3=min(imin3,ir3) imax3=max(imax3,ir3) end if end do ! return end subroutine parabox espresso-5.1/CPV/src/chargedensity.f900000644000175000017500000014551612341373026015707 0ustar mbamba! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ---------------------------------------------- ! AB INITIO COSTANT PRESSURE MOLECULAR DYNAMICS ! ---------------------------------------------- !=----------------------------------------------------------------------=! FUNCTION dft_total_charge_x( c, ngw, fi, n ) !=----------------------------------------------------------------------=! ! ! This subroutine compute the Total Charge in reciprocal space ! USE kinds, ONLY: DP USE gvect, ONLY: gstart IMPLICIT NONE INTEGER, INTENT(IN) :: ngw, n COMPLEX(DP), INTENT(IN) :: c(:,:) REAL (DP), INTENT(IN) :: fi(:) ! REAL(DP) :: dft_total_charge_x ! INTEGER :: ib, igs REAL(DP) :: rsum COMPLEX(DP) :: wdot COMPLEX(DP) :: zdotc EXTERNAL zdotc rsum = 0.0d0 IF( gstart == 2 ) THEN DO ib = 1, n wdot = zdotc( ( ngw - 1 ), c(2,ib), 1, c(2,ib), 1 ) wdot = wdot + DBLE( c(1,ib) )**2 / 2.0d0 rsum = rsum + fi(ib) * DBLE( wdot ) END DO ELSE DO ib = 1, n wdot = zdotc( ngw, c(1,ib), 1, c(1,ib), 1 ) rsum = rsum + fi(ib) * DBLE( wdot ) END DO END IF dft_total_charge_x = rsum RETURN END FUNCTION dft_total_charge_x !----------------------------------------------------------------------- SUBROUTINE rhoofr_cp & ( nfi, c_bgrp, irb, eigrb, bec_bgrp, dbec, rhovan, rhor, drhor, rhog, drhog, rhos, enl, denl, ekin, dekin, tstress, ndwwf ) !----------------------------------------------------------------------- ! ! this routine computes: ! rhor = normalized electron density in real space ! ekin = kinetic energy ! dekin = kinetic energy term of QM stress ! ! rhor(r) = (sum over ib) fi(ib) |psi(r,ib)|^2 ! ! Using quantities in scaled space ! rhor(r) = rhor(s) / Omega ! rhor(s) = (sum over ib) fi(ib) |psi(s,ib)|^2 ! ! fi(ib) = occupation numbers ! psi(r,ib) = psi(s,ib) / SQRT( Omega ) ! psi(s,ib) = INV_FFT ( c0(ig,ib) ) ! ! ib = index of band ! ig = index of G vector ! ---------------------------------------------- ! the normalized electron density rhor in real space ! the kinetic energy ekin ! subroutine uses complex fft so it computes two ft's ! simultaneously ! ! rho_i,ij = sum_n < beta_i,i | psi_n >< psi_n | beta_i,j > ! < psi_n | beta_i,i > = c_n(0) beta_i,i(0) + ! 2 sum_g> re(c_n*(g) (-i)**l beta_i,i(g) e^-ig.r_i) ! ! e_v = sum_i,ij rho_i,ij d^ion_is,ji ! USE kinds, ONLY: DP USE control_flags, ONLY: iprint, iverbosity, thdyn, tpre, trhor USE ions_base, ONLY: nat USE gvect, ONLY: ngm, nl, nlm USE gvecs, ONLY: ngms, nls, nlsm USE smallbox_gvec, ONLY: ngb USE gvecw, ONLY: ngw USE gvect, ONLY: gstart USE uspp, ONLY: nkb USE uspp_param, ONLY: nh, nhm USE cell_base, ONLY: omega USE electrons_base, ONLY: nspin, nbsp_bgrp, ispin_bgrp, f_bgrp USE constants, ONLY: pi, fpi USE mp, ONLY: mp_sum USE io_global, ONLY: stdout, ionode USE mp_global, ONLY: intra_bgrp_comm, nbgrp, inter_bgrp_comm, me_bgrp USE funct, ONLY: dft_is_meta USE cg_module, ONLY: tcg USE cp_interfaces, ONLY: stress_kin, enkin USE fft_interfaces, ONLY: fwfft, invfft USE fft_base, ONLY: dffts, dfftp USE cp_interfaces, ONLY: checkrho, ennl, calrhovan, dennl USE cp_main_variables, ONLY: iprint_stdout, descla USE wannier_base, ONLY: iwf USE cp_main_variables, ONLY: rhopr ! Lingzhu Kong ! IMPLICIT NONE INTEGER nfi REAL(DP) bec_bgrp(:,:) REAL(DP) dbec(:,:,:,:) REAL(DP) rhovan(:, :, : ) REAL(DP) rhor(:,:) REAL(DP) drhor(:,:,:,:) REAL(DP) rhos(:,:) REAL(DP) enl, ekin REAL(DP) denl(3,3), dekin(6) COMPLEX(DP) eigrb( :, : ) COMPLEX(DP) rhog( :, : ) COMPLEX(DP) drhog( :, :, :, : ) COMPLEX(DP) c_bgrp( :, : ) INTEGER irb( :, : ) LOGICAL, OPTIONAL, INTENT(IN) :: tstress INTEGER, OPTIONAL, INTENT(IN) :: ndwwf ! local variables INTEGER :: iss, isup, isdw, iss1, iss2, ios, i, ir, ig, k REAL(DP) :: rsumr(2), rsumg(2), sa1, sa2, detmp(6), mtmp(3,3) REAL(DP) :: rnegsum, rmin, rmax, rsum COMPLEX(DP) :: ci,fp,fm COMPLEX(DP), ALLOCATABLE :: psi(:), psis(:) REAL(DP), ALLOCATABLE :: drhovan(:,:,:,:,:) LOGICAL, SAVE :: first = .TRUE. LOGICAL :: ttstress ! CALL start_clock( 'rhoofr' ) ttstress = tpre IF( PRESENT( tstress ) ) ttstress = tstress ci = ( 0.0d0, 1.0d0 ) rhor = 0.d0 rhos = 0.d0 rhog = (0.d0, 0.d0) ! ! calculation of kinetic energy ekin ! ekin = enkin( c_bgrp, f_bgrp, nbsp_bgrp ) ! IF( nbgrp > 1 ) & CALL mp_sum( ekin, inter_bgrp_comm ) ! IF( ttstress ) THEN ! ! ... compute kinetic energy contribution ! CALL stress_kin( dekin, c_bgrp, f_bgrp ) ! IF( nbgrp > 1 ) & CALL mp_sum( dekin, inter_bgrp_comm ) ! END IF IF( PRESENT( ndwwf ) ) THEN ! ! called from WF, compute only of rhovan ! CALL calrhovan( rhovan, bec_bgrp, iwf ) ! ELSE ! ! calculation of non-local energy ! CALL ennl( enl, rhovan, bec_bgrp ) ! IF( nbgrp > 1 ) THEN CALL mp_sum( enl, inter_bgrp_comm ) CALL mp_sum( rhovan, inter_bgrp_comm ) END IF ! END IF ! IF( ttstress ) THEN ! ALLOCATE( drhovan( nhm*(nhm+1)/2, nat, nspin, 3, 3 ) ) ! CALL dennl( bec_bgrp, dbec, drhovan, denl, descla ) ! IF( nbgrp > 1 ) THEN CALL mp_sum( denl, inter_bgrp_comm ) CALL mp_sum( drhovan, inter_bgrp_comm ) END IF ! END IF ! ! warning! trhor and thdyn are not compatible yet! ! COMPUTE_CHARGE: IF( trhor .AND. ( .NOT. thdyn ) ) THEN ! ! non self-consistent calculation ! charge density is read from unit 47 ! !============================================================= ! Lingzhu Kong IF( first ) THEN CALL read_rho( nspin, rhor ) rhopr = rhor first = .FALSE. ELSE rhor = rhopr END IF !============================================================= ! ALLOCATE( psi( dfftp%nnr ) ) IF(nspin.EQ.1)THEN iss=1 DO ir=1,dfftp%nnr psi(ir)=CMPLX(rhor(ir,iss),0.d0,kind=DP) END DO CALL fwfft('Dense', psi, dfftp ) DO ig=1,ngm rhog(ig,iss)=psi(nl(ig)) END DO ELSE isup=1 isdw=2 DO ir=1,dfftp%nnr psi(ir)=CMPLX(rhor(ir,isup),rhor(ir,isdw),kind=DP) END DO CALL fwfft('Dense', psi, dfftp ) DO ig=1,ngm fp=psi(nl(ig))+psi(nlm(ig)) fm=psi(nl(ig))-psi(nlm(ig)) rhog(ig,isup)=0.5d0*CMPLX( DBLE(fp),AIMAG(fm),kind=DP) rhog(ig,isdw)=0.5d0*CMPLX(AIMAG(fp),-DBLE(fm),kind=DP) END DO ENDIF DEALLOCATE( psi ) ! ELSE ! ================================================================== ! self-consistent charge ! ================================================================== ! ! important: if n is odd then nx must be .ge.n+1 and c(*,n+1)=0. ! IF ( MOD( nbsp_bgrp, 2 ) /= 0 ) THEN ! IF( SIZE( c_bgrp, 2 ) < nbsp_bgrp + 1 ) & CALL errore( ' rhoofr ', ' c second dimension too small ', SIZE( c_bgrp, 2 ) ) ! c_bgrp( :, nbsp_bgrp + 1 ) = ( 0.d0, 0.d0 ) ! ENDIF ! IF( PRESENT( ndwwf ) ) THEN ! ! Wannier function, charge density from state iwf ! i = iwf ! psis = 0.D0 DO ig=1,ngw psis(nlsm(ig))=CONJG(c_bgrp(ig,i)) psis(nls(ig))=c_bgrp(ig,i) END DO ! CALL invfft('Wave',psis, dffts ) ! iss1=1 sa1=f_bgrp(i)/omega DO ir=1,dffts%nnr rhos(ir,iss1)=rhos(ir,iss1) + sa1*( DBLE(psis(ir)))**2 END DO ! ELSE IF( dffts%have_task_groups ) THEN ! CALL loop_over_states_tg() ! ELSE ! ALLOCATE( psis( dffts%nnr ) ) ! DO i = 1, nbsp_bgrp, 2 ! CALL c2psi( psis, dffts%nnr, c_bgrp( 1, i ), c_bgrp( 1, i+1 ), ngw, 2 ) CALL invfft('Wave',psis, dffts ) ! iss1 = ispin_bgrp(i) sa1 = f_bgrp(i) / omega IF ( i .NE. nbsp_bgrp ) THEN iss2 = ispin_bgrp(i+1) sa2 = f_bgrp(i+1) / omega ELSE iss2 = iss1 sa2 = 0.0d0 END IF ! DO ir = 1, dffts%nnr rhos(ir,iss1) = rhos(ir,iss1) + sa1 * ( DBLE(psis(ir)))**2 rhos(ir,iss2) = rhos(ir,iss2) + sa2 * (AIMAG(psis(ir)))**2 END DO ! END DO ! IF( nbgrp > 1 ) THEN call mp_sum( rhos, inter_bgrp_comm ) END IF ! DEALLOCATE( psis ) ! END IF ! ! smooth charge in g-space is put into rhog(ig) ! ALLOCATE( psis( dffts%nnr ) ) ! IF(nspin.EQ.1)THEN iss=1 DO ir=1,dffts%nnr psis(ir)=CMPLX(rhos(ir,iss),0.d0,kind=DP) END DO CALL fwfft('Smooth', psis, dffts ) DO ig=1,ngms rhog(ig,iss)=psis(nls(ig)) END DO ELSE isup=1 isdw=2 DO ir=1,dffts%nnr psis(ir)=CMPLX(rhos(ir,isup),rhos(ir,isdw),kind=DP) END DO CALL fwfft('Smooth',psis, dffts ) DO ig=1,ngms fp= psis(nls(ig)) + psis(nlsm(ig)) fm= psis(nls(ig)) - psis(nlsm(ig)) rhog(ig,isup)=0.5d0*CMPLX( DBLE(fp),AIMAG(fm),kind=DP) rhog(ig,isdw)=0.5d0*CMPLX(AIMAG(fp),-DBLE(fm),kind=DP) END DO ENDIF ! ALLOCATE( psi( dfftp%nnr ) ) ! IF( nspin .EQ. 1 ) THEN ! ! case nspin=1 ! iss=1 psi (:) = (0.d0, 0.d0) DO ig=1,ngms psi(nlm(ig))=CONJG(rhog(ig,iss)) psi(nl (ig))= rhog(ig,iss) END DO CALL invfft('Dense',psi, dfftp ) DO ir=1,dfftp%nnr rhor(ir,iss)=DBLE(psi(ir)) END DO ! ELSE ! ! case nspin=2 ! isup=1 isdw=2 psi (:) = (0.d0, 0.d0) DO ig=1,ngms psi(nlm(ig))=CONJG(rhog(ig,isup))+ci*CONJG(rhog(ig,isdw)) psi(nl(ig))=rhog(ig,isup)+ci*rhog(ig,isdw) END DO CALL invfft('Dense',psi, dfftp ) DO ir=1,dfftp%nnr rhor(ir,isup)= DBLE(psi(ir)) rhor(ir,isdw)=AIMAG(psi(ir)) END DO ENDIF ! IF ( dft_is_meta() ) CALL kedtauofr_meta( c_bgrp, psi, SIZE( psi ), psis, SIZE( psis ) ) ! METAGGA ! DEALLOCATE( psi ) DEALLOCATE( psis ) ! ! add vanderbilt contribution to the charge density ! drhov called before rhov because input rho must be the smooth part ! IF ( ttstress ) THEN CALL drhov( irb, eigrb, rhovan, drhovan, rhog, rhor, drhog, drhor ) DEALLOCATE( drhovan ) END IF ! CALL rhov( irb, eigrb, rhovan, rhog, rhor ) ENDIF COMPUTE_CHARGE ! IF( PRESENT( ndwwf ) ) THEN ! CALL old_write_rho( ndwwf, nspin, rhor ) ! END IF ! ! here to check the integral of the charge density ! IF( ( iverbosity > 1 ) .OR. ( nfi == 0 ) .OR. & ( MOD(nfi, iprint_stdout) == 0 ) .AND. ( .NOT. tcg ) ) THEN IF( iverbosity > 1 ) THEN CALL checkrho( dfftp%nnr, nspin, rhor, rmin, rmax, rsum, rnegsum ) rnegsum = rnegsum * omega / DBLE(dfftp%nr1*dfftp%nr2*dfftp%nr3) rsum = rsum * omega / DBLE(dfftp%nr1*dfftp%nr2*dfftp%nr3) WRITE( stdout,'(a,4(1x,f12.6))') & & ' rhoofr: rmin rmax rnegsum rsum ',rmin,rmax,rnegsum,rsum END IF CALL sum_charge( rsumg, rsumr ) IF ( nspin == 1 ) THEN WRITE( stdout, 10) rsumg(1), rsumr(1) ELSE WRITE( stdout, 20) rsumg(1), rsumr(1), rsumg(2), rsumr(2) ENDIF ENDIF 10 FORMAT( /, 3X, 'from rhoofr: total integrated electronic density', & & /, 3X, 'in g-space = ', f13.6, 3x, 'in r-space =', f13.6 ) 20 FORMAT( /, 3X, 'from rhoofr: total integrated electronic density', & & /, 3X, 'spin up', & & /, 3X, 'in g-space = ', f13.6, 3x, 'in r-space =', f13.6 , & & /, 3X, 'spin down', & & /, 3X, 'in g-space = ', f13.6, 3x, 'in r-space =', f13.6 ) ! CALL stop_clock( 'rhoofr' ) ! RETURN CONTAINS ! ! SUBROUTINE sum_charge( rsumg, rsumr ) ! REAL(DP), INTENT(OUT) :: rsumg( : ) REAL(DP), INTENT(OUT) :: rsumr( : ) INTEGER :: iss ! DO iss=1,nspin rsumg(iss)=omega*DBLE(rhog(1,iss)) rsumr(iss)=SUM(rhor(:,iss),1)*omega/DBLE(dfftp%nr1*dfftp%nr2*dfftp%nr3) END DO IF (gstart.NE.2) THEN ! in the parallel case, only one processor has G=0 ! DO iss=1,nspin rsumg(iss)=0.0d0 END DO END IF CALL mp_sum( rsumg( 1:nspin ), intra_bgrp_comm ) CALL mp_sum( rsumr( 1:nspin ), intra_bgrp_comm ) RETURN END SUBROUTINE ! ! SUBROUTINE loop_over_states_tg ! USE parallel_include ! ! MAIN LOOP OVER THE EIGENSTATES ! - This loop is also parallelized within the task-groups framework ! - Each group works on a number of eigenstates in parallel ! IMPLICIT NONE ! INTEGER :: from, ii, eig_index, eig_offset REAL(DP), ALLOCATABLE :: tmp_rhos(:,:) ALLOCATE( psis( dffts%tg_nnr * dffts%nogrp ) ) ! ALLOCATE( tmp_rhos ( dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ), nspin ) ) ! tmp_rhos = 0_DP do i = 1, nbsp_bgrp, 2*dffts%nogrp ! ! Initialize wave-functions in Fourier space (to be FFTed) ! The size of psis is nnr: which is equal to the total number ! of local fourier coefficients. ! !$omp parallel default(shared), private(eig_offset, ig, eig_index ) ! !$omp do do ig = 1, SIZE(psis) psis (ig) = (0.d0, 0.d0) end do ! ! Loop for all local g-vectors (ngw) ! c: stores the Fourier expansion coefficients ! the i-th column of c corresponds to the i-th state ! nlsm and nls matrices: hold conversion indices form 3D to ! 1-D vectors. Columns along the z-direction are stored contigiously ! ! The outer loop goes through i : i + 2*NOGRP to cover ! 2*NOGRP eigenstates at each iteration ! eig_offset = 0 do eig_index = 1, 2*dffts%nogrp, 2 ! ! here we pack 2*nogrp electronic states in the psis array ! IF ( ( i + eig_index - 1 ) <= nbsp_bgrp ) THEN ! ! Outer loop for eigenvalues ! The eig_index loop is executed only ONCE when NOGRP=1. ! Equivalent to the case with no task-groups ! dfft%nsw(me) holds the number of z-sticks for the current processor per wave-function ! We can either send these in the group with an mpi_allgather...or put the ! in the PSIS vector (in special positions) and send them with them. ! Otherwise we can do this once at the beginning, before the loop. ! we choose to do the latter one. !$omp do do ig=1,ngw psis(nlsm(ig)+eig_offset*dffts%tg_nnr)=conjg(c_bgrp(ig,i+eig_index-1))+ci*conjg(c_bgrp(ig,i+eig_index)) psis(nls(ig)+eig_offset*dffts%tg_nnr)=c_bgrp(ig,i+eig_index-1)+ci*c_bgrp(ig,i+eig_index) end do ! eig_offset = eig_offset + 1 ! ENDIF ! end do !$omp end parallel ! 2*NOGRP are trasformed at the same time ! psis: holds the fourier coefficients of the current proccesor ! for eigenstates i and i+2*NOGRP-1 ! CALL invfft( 'Wave', psis, dffts ) ! ! Now the first proc of the group holds the first two bands ! of the 2*nogrp bands that we are processing at the same time, ! the second proc. holds the third and fourth band ! and so on ! ! Compute the proper factor for each band ! DO ii = 1, dffts%nogrp IF( dffts%nolist( ii ) == me_bgrp ) EXIT END DO ! ! Remember two bands are packed in a single array : ! proc 0 has bands ibnd and ibnd+1 ! proc 1 has bands ibnd+2 and ibnd+3 ! .... ! ii = 2 * ii - 1 IF( ii + i - 1 < nbsp_bgrp ) THEN iss1=ispin_bgrp( ii + i - 1 ) sa1 =f_bgrp( ii + i - 1 )/omega iss2=ispin_bgrp( ii + i ) sa2 =f_bgrp( ii + i )/omega ELSE IF( ii + i - 1 == nbsp_bgrp ) THEN iss1=ispin_bgrp( ii + i - 1 ) sa1 =f_bgrp( ii + i - 1 )/omega iss2=iss1 sa2=0.0d0 ELSE iss1=ispin_bgrp( nbsp_bgrp ) sa1 = 0.0d0 iss2=iss1 sa2 =0.0d0 END IF ! !Compute local charge density ! !This is the density within each orbital group...so it !coresponds to 1 eignestate for each group and there are !NOGRP such groups. Thus, during the loop across all !occupied eigenstates, the total charge density must me !accumulated across all different orbital groups. ! !This loop goes through all components of charge density that is local !to each processor. In the original code this is nnr. In the task-groups !code this should be equal to the total number of planes ! ir = dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ) IF( ir > SIZE( psis ) ) & CALL errore( ' rhoofr ', ' psis size too small ', ir ) !$omp parallel do default(shared) do ir = 1, dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ) tmp_rhos(ir,iss1) = tmp_rhos(ir,iss1) + sa1*( real(psis(ir)))**2 tmp_rhos(ir,iss2) = tmp_rhos(ir,iss2) + sa2*(aimag(psis(ir)))**2 end do ! END DO IF( nbgrp > 1 ) THEN CALL mp_sum( tmp_rhos, inter_bgrp_comm ) END IF IF ( dffts%nogrp > 1 ) THEN CALL mp_sum( tmp_rhos, gid = dffts%ogrp_comm ) ENDIF ! !BRING CHARGE DENSITY BACK TO ITS ORIGINAL POSITION ! !If the current processor is not the "first" processor in its !orbital group then does a local copy (reshuffling) of its data ! from = 1 DO ii = 1, dffts%nogrp IF ( dffts%nolist( ii ) == me_bgrp ) EXIT !Exit the loop from = from + dffts%nr1x*dffts%nr2x*dffts%npp( dffts%nolist( ii ) + 1 )! From where to copy initially ENDDO ! DO ir = 1, nspin CALL dcopy( dffts%nr1x*dffts%nr2x*dffts%npp(me_bgrp+1), tmp_rhos(from,ir), 1, rhos(1,ir), 1) ENDDO DEALLOCATE( tmp_rhos ) DEALLOCATE( psis ) RETURN END SUBROUTINE loop_over_states_tg !----------------------------------------------------------------------- END SUBROUTINE rhoofr_cp !----------------------------------------------------------------------- !=----------------------------------------------------------------------=! SUBROUTINE fillgrad_x( nspin, rhog, gradr ) !=----------------------------------------------------------------------=! ! ! calculates gradient of charge density for gradient corrections ! in: charge density on G-space out: gradient in R-space ! USE kinds, ONLY: DP use gvect, ONLY: g, ngm, nl, nlm use cell_base, ONLY: tpiba USE fft_interfaces, ONLY: invfft USE fft_base, ONLY: dfftp ! implicit none ! input integer, intent(in) :: nspin complex(DP) :: rhog( ngm, nspin ) ! output real(DP) :: gradr( dfftp%nnr, 3, nspin ) ! local complex(DP), allocatable :: v(:) complex(DP) :: ci integer :: iss, ig, ir ! ! allocate( v( dfftp%nnr ) ) ! ci = ( 0.0d0, 1.0d0 ) do iss = 1, nspin !$omp parallel default(shared), private(ig) !$omp do do ig = 1, dfftp%nnr v( ig ) = ( 0.0d0, 0.0d0 ) end do !$omp do do ig=1,ngm v(nl (ig))= ci*tpiba*g(1,ig)*rhog(ig,iss) v(nlm(ig))=CONJG(ci*tpiba*g(1,ig)*rhog(ig,iss)) end do !$omp end parallel ! call invfft( 'Dense', v, dfftp ) ! !$omp parallel default(shared), private(ig,ir) !$omp do do ir=1,dfftp%nnr gradr(ir,1,iss)=DBLE(v(ir)) end do !$omp do do ig=1,dfftp%nnr v(ig)=(0.0d0,0.0d0) end do !$omp do do ig=1,ngm v(nl(ig))= tpiba*( ci*g(2,ig)*rhog(ig,iss)- & & g(3,ig)*rhog(ig,iss) ) v(nlm(ig))=tpiba*(CONJG(ci*g(2,ig)*rhog(ig,iss)+ & & g(3,ig)*rhog(ig,iss))) end do !$omp end parallel ! call invfft( 'Dense', v, dfftp ) ! !$omp parallel do default(shared) do ir=1,dfftp%nnr gradr(ir,2,iss)= DBLE(v(ir)) gradr(ir,3,iss)=AIMAG(v(ir)) end do end do ! deallocate( v ) ! RETURN END SUBROUTINE fillgrad_x ! !---------------------------------------------------------------------- SUBROUTINE checkrho_x(nnr,nspin,rhor,rmin,rmax,rsum,rnegsum) !---------------------------------------------------------------------- ! ! check \int rho(r)dr and the negative part of rho ! USE kinds, ONLY: DP USE mp, ONLY: mp_sum USE mp_global, ONLY: intra_bgrp_comm IMPLICIT NONE INTEGER, INTENT(IN) :: nnr, nspin REAL(DP) rhor(nnr,nspin), rmin, rmax, rsum, rnegsum ! REAL(DP) roe INTEGER ir, iss ! rsum =0.0d0 rnegsum=0.0d0 rmin =100.d0 rmax =0.0d0 DO iss = 1, nspin DO ir = 1, nnr roe = rhor(ir,iss) rsum = rsum + roe IF ( roe < 0.0d0 ) rnegsum = rnegsum + roe rmax = MAX( rmax, roe ) rmin = MIN( rmin, roe ) END DO END DO CALL mp_sum( rsum, intra_bgrp_comm ) CALL mp_sum( rnegsum, intra_bgrp_comm ) RETURN END SUBROUTINE checkrho_x !----------------------------------------------------------------------- SUBROUTINE drhov(irb,eigrb,rhovan,drhovan,rhog,rhor,drhog,drhor) !----------------------------------------------------------------------- ! this routine calculates arrays drhog drhor, derivatives wrt h of: ! ! n_v(g) = sum_i,ij rho_i,ij q_i,ji(g) e^-ig.r_i ! ! Same logic as in routine rhov. ! On input rhor and rhog must contain the smooth part only !!! ! Output in (drhor, drhog) ! USE kinds, ONLY: DP USE control_flags, ONLY: iprint USE ions_base, ONLY: na, nsp, nat USE uspp_param, ONLY: nhm, nh, nvb USE electrons_base, ONLY: nspin USE smallbox_gvec, ONLY: ngb, npb, nmb USE gvect, ONLY: ngm, nlm, nl USE cell_base, ONLY: ainv USE qgb_mod, ONLY: qgb, dqgb USE fft_interfaces, ONLY: fwfft, invfft USE fft_base, ONLY: dfftb, dfftp, dfftb USE mp_global, ONLY: my_bgrp_id, nbgrp, inter_bgrp_comm USE mp, ONLY: mp_sum IMPLICIT NONE ! input INTEGER, INTENT(IN) :: irb(3,nat) REAL(DP), INTENT(IN) :: rhor(dfftp%nnr,nspin) REAL(DP), INTENT(IN) :: rhovan(nhm*(nhm+1)/2,nat,nspin) REAL(DP), INTENT(IN) :: drhovan(nhm*(nhm+1)/2,nat,nspin,3,3) COMPLEX(DP), INTENT(IN) :: eigrb(ngb,nat), rhog(ngm,nspin) ! output REAL(DP), INTENT(OUT) :: drhor(dfftp%nnr,nspin,3,3) COMPLEX(DP), INTENT(OUT) :: drhog(ngm,nspin,3,3) ! local INTEGER i, j, isup, isdw, nfft, ifft, iv, jv, ig, ijv, is, iss, & & isa, ia, ir, ijs REAL(DP) :: asumt, dsumt COMPLEX(DP) fp, fm, ci COMPLEX(DP), ALLOCATABLE :: v(:) COMPLEX(DP), ALLOCATABLE:: dqgbt(:,:) COMPLEX(DP), ALLOCATABLE :: qv(:) ! INTEGER :: itid, mytid, ntids #ifdef __OPENMP INTEGER :: omp_get_thread_num, omp_get_num_threads EXTERNAL :: omp_get_thread_num, omp_get_num_threads #endif ! !$omp parallel default(none), private(i,j,iss,ir,ig,mytid,ntids,itid), shared(nspin,dfftp,drhor,drhog,rhor,rhog,ainv,ngm) #ifdef __OPENMP mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads #else mytid = 0 ntids = 1 #endif itid = 0 DO j=1,3 DO i=1,3 DO iss=1,nspin IF( MOD( itid, ntids ) == mytid ) THEN DO ir=1,dfftp%nnr drhor(ir,iss,i,j)=-rhor(ir,iss)*ainv(j,i) END DO DO ig=1,ngm drhog(ig,iss,i,j)=-rhog(ig,iss)*ainv(j,i) END DO END IF itid = itid + 1 END DO END DO END DO !$omp end parallel IF ( nvb <= 0 ) RETURN ALLOCATE( v( dfftp%nnr ) ) ci =( 0.0d0, 1.0d0 ) IF( nspin == 1 ) THEN ! ! nspin=1 : two fft at a time, one per atom, if possible ! DO i=1,3 DO j=1,3 v(:) = (0.d0, 0.d0) !$omp parallel default(none) & !$omp shared(nvb, na, ngb, nh, eigrb, dfftb, irb, v, & !$omp nmb, ci, npb, i, j, dqgb, qgb, nhm, rhovan, drhovan ) & !$omp private(mytid, ntids, is, ia, nfft, ifft, iv, jv, ijv, ig, iss, isa, & !$omp qv, itid, dqgbt, dsumt, asumt ) ALLOCATE( qv( dfftb%nnr ) ) ALLOCATE( dqgbt( ngb, 2 ) ) #ifdef __OPENMP mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads itid = 0 #endif iss=1 isa=1 DO is=1,nvb #ifdef __MPI DO ia=1,na(is) nfft=1 IF ( ( dfftb%np3( isa ) <= 0 ) ) THEN isa = isa + nfft CYCLE END IF #else DO ia=1,na(is),2 ! ! nfft=2 if two ffts at the same time are performed ! nfft=2 IF (ia.EQ.na(is)) nfft=1 #endif #ifdef __OPENMP IF ( mytid /= itid ) THEN isa = isa + nfft itid = MOD( itid + 1, ntids ) CYCLE ELSE itid = MOD( itid + 1, ntids ) END IF #endif dqgbt(:,:) = (0.d0, 0.d0) qv(:) = (0.d0, 0.d0) DO ifft=1,nfft DO iv=1,nh(is) DO jv=iv,nh(is) ijv = (jv-1)*jv/2 + iv IF(iv.NE.jv) THEN asumt = 2.0d0 * rhovan( ijv, isa+ifft-1, iss ) dsumt = 2.0d0 * drhovan( ijv, isa+ifft-1, iss, i, j ) ELSE asumt = rhovan( ijv, isa+ifft-1, iss ) dsumt = drhovan( ijv, isa+ifft-1, iss, i, j ) ENDIF DO ig=1,ngb dqgbt(ig,ifft)=dqgbt(ig,ifft) + asumt*dqgb(ig,ijv,is,i,j) dqgbt(ig,ifft)=dqgbt(ig,ifft) + dsumt*qgb(ig,ijv,is) END DO END DO END DO END DO ! ! add structure factor ! IF(nfft.EQ.2) THEN DO ig=1,ngb qv(npb(ig)) = eigrb(ig,isa )*dqgbt(ig,1) & & + ci* eigrb(ig,isa+1 )*dqgbt(ig,2) qv(nmb(ig))= CONJG(eigrb(ig,isa )*dqgbt(ig,1)) & & + ci* CONJG(eigrb(ig,isa+1)*dqgbt(ig,2)) END DO ELSE DO ig=1,ngb qv(npb(ig)) = eigrb(ig,isa)*dqgbt(ig,1) qv(nmb(ig)) = CONJG(eigrb(ig,isa)*dqgbt(ig,1)) END DO ENDIF ! CALL invfft( 'Box', qv, dfftb, isa ) ! ! qv = US contribution in real space on box grid ! for atomic species is, real(qv)=atom ia, imag(qv)=atom ia+1 ! ! add qv(r) to v(r), in real space on the dense grid ! CALL box2grid( irb(1,isa), 1, qv, v ) IF (nfft.EQ.2) CALL box2grid(irb(1,isa+1),2,qv,v) isa = isa + nfft ! END DO END DO DEALLOCATE( dqgbt ) DEALLOCATE( qv ) ! !$omp end parallel iss = 1 DO ir=1,dfftp%nnr drhor(ir,iss,i,j) = drhor(ir,iss,i,j) + DBLE(v(ir)) END DO ! CALL fwfft( 'Dense', v, dfftp ) ! DO ig=1,ngm drhog(ig,iss,i,j) = drhog(ig,iss,i,j) + v(nl(ig)) END DO ! ENDDO ENDDO ! ELSE ! ! nspin=2: two fft at a time, one for spin up and one for spin down ! isup=1 isdw=2 DO i=1,3 DO j=1,3 v(:) = (0.d0, 0.d0) ALLOCATE( qv( dfftb%nnr ) ) ALLOCATE( dqgbt( ngb, 2 ) ) isa=1 DO is=1,nvb DO ia=1,na(is) #ifdef __MPI IF ( dfftb%np3( isa ) <= 0 ) go to 25 #endif DO iss=1,2 dqgbt(:,iss) = (0.d0, 0.d0) DO iv= 1,nh(is) DO jv=iv,nh(is) ijv = (jv-1)*jv/2 + iv asumt=rhovan(ijv,isa,iss) dsumt =drhovan(ijv,isa,iss,i,j) IF(iv.NE.jv) THEN asumt =2.d0*asumt dsumt=2.d0*dsumt ENDIF DO ig=1,ngb dqgbt(ig,iss)=dqgbt(ig,iss) + & & (asumt*dqgb(ig,ijv,is,i,j) + & & dsumt*qgb(ig,ijv,is)) END DO END DO END DO END DO ! ! add structure factor ! qv(:) = (0.d0, 0.d0) DO ig=1,ngb qv(npb(ig))= eigrb(ig,isa)*dqgbt(ig,1) & & + ci* eigrb(ig,isa)*dqgbt(ig,2) qv(nmb(ig))= CONJG(eigrb(ig,isa)*dqgbt(ig,1)) & & + ci*CONJG(eigrb(ig,isa)*dqgbt(ig,2)) END DO CALL invfft('Box',qv, dfftb, isa ) ! ! qv is the now the US augmentation charge for atomic species is ! and atom ia: real(qv)=spin up, imag(qv)=spin down ! ! add qv(r) to v(r), in real space on the dense grid ! CALL box2grid2(irb(1,isa),qv,v) ! 25 isa = isa + 1 ! END DO END DO DEALLOCATE( dqgbt ) DEALLOCATE( qv ) ! DO ir=1,dfftp%nnr drhor(ir,isup,i,j) = drhor(ir,isup,i,j) + DBLE(v(ir)) drhor(ir,isdw,i,j) = drhor(ir,isdw,i,j) +AIMAG(v(ir)) ENDDO ! CALL fwfft('Dense', v, dfftp ) DO ig=1,ngm fp=v(nl(ig))+v(nlm(ig)) fm=v(nl(ig))-v(nlm(ig)) drhog(ig,isup,i,j) = drhog(ig,isup,i,j) + & & 0.5d0*CMPLX( DBLE(fp),AIMAG(fm),kind=DP) drhog(ig,isdw,i,j) = drhog(ig,isdw,i,j) + & & 0.5d0*CMPLX(AIMAG(fp),-DBLE(fm),kind=DP) END DO ! END DO END DO ENDIF DEALLOCATE( v ) ! RETURN END SUBROUTINE drhov ! !----------------------------------------------------------------------- SUBROUTINE rhov(irb,eigrb,rhovan,rhog,rhor) !----------------------------------------------------------------------- ! Add Vanderbilt contribution to rho(r) and rho(g) ! ! n_v(g) = sum_i,ij rho_i,ij q_i,ji(g) e^-ig.r_i ! ! routine makes use of c(-g)=c*(g) and beta(-g)=beta*(g) ! USE kinds, ONLY: dp USE ions_base, ONLY: nat, na, nsp USE io_global, ONLY: stdout USE mp_global, ONLY: intra_bgrp_comm USE mp, ONLY: mp_sum USE uspp_param, ONLY: nh, nhm, nvb USE uspp, ONLY: deeq USE electrons_base, ONLY: nspin USE smallbox_gvec, ONLY: npb, nmb, ngb USE gvect, ONLY: ngm, nl, nlm USE cell_base, ONLY: omega USE small_box, ONLY: omegab USE control_flags, ONLY: iprint, iverbosity, tpre USE qgb_mod, ONLY: qgb USE fft_interfaces, ONLY: fwfft, invfft USE fft_base, ONLY: dfftb, dfftp, dfftb ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: rhovan(nhm*(nhm+1)/2,nat,nspin) INTEGER, INTENT(in) :: irb(3,nat) COMPLEX(DP), INTENT(in):: eigrb(ngb,nat) ! REAL(DP), INTENT(inout):: rhor(dfftp%nnr,nspin) COMPLEX(DP), INTENT(inout):: rhog(ngm,nspin) ! INTEGER :: isup, isdw, nfft, ifft, iv, jv, ig, ijv, is, iss, isa, ia, ir, i, j REAL(DP) :: sumrho COMPLEX(DP) :: ci, fp, fm, ca COMPLEX(DP), ALLOCATABLE :: qgbt(:,:) COMPLEX(DP), ALLOCATABLE :: v(:) COMPLEX(DP), ALLOCATABLE :: qv(:) #ifdef __OPENMP INTEGER :: itid, mytid, ntids INTEGER :: omp_get_thread_num, omp_get_num_threads EXTERNAL :: omp_get_thread_num, omp_get_num_threads #endif ! Quick return if this sub is not needed ! IF ( nvb == 0 ) RETURN CALL start_clock( 'rhov' ) ci=(0.d0,1.d0) ! ! ALLOCATE( v( dfftp%nnr ) ) ! private variable need to be initialized, otherwise ! outside the parallel region they have an undetermined value ! #ifdef __OPENMP mytid = 0 ntids = 1 itid = 0 #endif iss = 1 isa = 1 ! IF(nspin.EQ.1) THEN ! ! nspin=1 : two fft at a time, one per atom, if possible ! !$omp parallel default(none) & !$omp shared(nvb, na, ngb, nh, rhovan, qgb, eigrb, dfftb, iverbosity, omegab, irb, v, & !$omp nmb, stdout, ci, npb, rhor, dfftp ) & !$omp private(mytid, ntids, is, ia, nfft, ifft, iv, jv, ijv, sumrho, qgbt, ig, iss, isa, ca, & !$omp qv, itid, ir ) iss=1 isa=1 !$omp workshare v (:) = (0.d0, 0.d0) !$omp end workshare #ifdef __OPENMP mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads itid = 0 #endif ALLOCATE( qgbt( ngb, 2 ) ) ALLOCATE( qv( dfftb%nnr ) ) DO is = 1, nvb #ifdef __MPI DO ia = 1, na(is) nfft = 1 IF ( dfftb%np3( isa ) <= 0 ) THEN isa = isa + nfft CYCLE END IF #else DO ia = 1, na(is), 2 ! ! nfft=2 if two ffts at the same time are performed ! nfft = 2 IF( ia .EQ. na(is) ) nfft = 1 #endif #ifdef __OPENMP IF ( mytid /= itid ) THEN isa = isa + nfft itid = MOD( itid + 1, ntids ) CYCLE ELSE itid = MOD( itid + 1, ntids ) END IF #endif DO ifft=1,nfft qgbt(:,ifft) = (0.d0, 0.d0) DO iv= 1,nh(is) DO jv=iv,nh(is) ijv = (jv-1)*jv/2 + iv sumrho=rhovan(ijv,isa+ifft-1,iss) IF(iv.NE.jv) sumrho=2.d0*sumrho DO ig=1,ngb qgbt(ig,ifft)=qgbt(ig,ifft) + sumrho*qgb(ig,ijv,is) END DO END DO END DO END DO ! ! add structure factor ! qv(:) = (0.d0, 0.d0) IF(nfft.EQ.2)THEN DO ig=1,ngb qv(npb(ig))= & eigrb(ig,isa )*qgbt(ig,1) & + ci* eigrb(ig,isa+1)*qgbt(ig,2) qv(nmb(ig))= & CONJG(eigrb(ig,isa )*qgbt(ig,1)) & + ci*CONJG(eigrb(ig,isa+1)*qgbt(ig,2)) END DO ELSE DO ig=1,ngb qv(npb(ig)) = eigrb(ig,isa)*qgbt(ig,1) qv(nmb(ig)) = CONJG(eigrb(ig,isa)*qgbt(ig,1)) END DO ENDIF CALL invfft( 'Box', qv, dfftb, isa ) ! ! qv = US augmentation charge in real space on box grid ! for atomic species is, real(qv)=atom ia, imag(qv)=atom ia+1 IF( iverbosity > 1 ) THEN ca = SUM(qv) WRITE( stdout,'(a,f12.8)') ' rhov: 1-atom g-sp = ', & & omegab*DBLE(qgbt(1,1)) WRITE( stdout,'(a,f12.8)') ' rhov: 1-atom r-sp = ', & & omegab*DBLE(ca)/(dfftb%nr1*dfftb%nr2*dfftb%nr3) WRITE( stdout,'(a,f12.8)') ' rhov: 1-atom g-sp = ', & & omegab*DBLE(qgbt(1,2)) WRITE( stdout,'(a,f12.8)') ' rhov: 1-atom r-sp = ', & & omegab*AIMAG(ca)/(dfftb%nr1*dfftb%nr2*dfftb%nr3) ENDIF ! ! add qv(r) to v(r), in real space on the dense grid ! CALL box2grid(irb(1,isa),1,qv,v) IF (nfft.EQ.2) CALL box2grid(irb(1,isa+1),2,qv,v) isa = isa + nfft ! END DO END DO DEALLOCATE(qv) DEALLOCATE(qgbt) ! ! rhor(r) = total (smooth + US) charge density in real space ! !$omp end parallel iss = 1 DO ir=1,dfftp%nnr rhor(ir,iss)=rhor(ir,iss)+DBLE(v(ir)) END DO ! IF( iverbosity > 1 ) THEN ca = SUM(v) CALL mp_sum( ca, intra_bgrp_comm ) WRITE( stdout,'(a,2f12.8)') & & ' rhov: int n_v(r) dr = ',omega*ca/(dfftp%nr1*dfftp%nr2*dfftp%nr3) ENDIF ! CALL fwfft('Dense',v, dfftp ) ! IF( iverbosity > 1 ) THEN WRITE( stdout,*) ' rhov: smooth ',omega*rhog(1,iss) WRITE( stdout,*) ' rhov: vander ',omega*v(1) WRITE( stdout,*) ' rhov: all ',omega*(rhog(1,iss)+v(1)) ENDIF ! ! rhog(g) = total (smooth + US) charge density in G-space ! DO ig = 1, ngm rhog(ig,iss)=rhog(ig,iss)+v(nl(ig)) END DO ! IF( iverbosity > 1 ) WRITE( stdout,'(a,2f12.8)') & & ' rhov: n_v(g=0) = ',omega*DBLE(rhog(1,iss)) ! ELSE ! ! nspin=2: two fft at a time, one for spin up and one for spin down ! isup=1 isdw=2 v (:) = (0.d0, 0.d0) ALLOCATE( qgbt( ngb, 2 ) ) ALLOCATE( qv( dfftb%nnr ) ) isa=1 DO is=1,nvb DO ia=1,na(is) #ifdef __MPI IF ( dfftb%np3( isa ) <= 0 ) go to 25 #endif DO iss=1,2 qgbt(:,iss) = (0.d0, 0.d0) DO iv=1,nh(is) DO jv=iv,nh(is) ijv = (jv-1)*jv/2 + iv sumrho=rhovan(ijv,isa,iss) IF(iv.NE.jv) sumrho=2.d0*sumrho DO ig=1,ngb qgbt(ig,iss)=qgbt(ig,iss)+sumrho*qgb(ig,ijv,is) END DO END DO END DO END DO ! ! add structure factor ! qv(:) = (0.d0, 0.d0) DO ig=1,ngb qv(npb(ig)) = eigrb(ig,isa)*qgbt(ig,1) & & + ci* eigrb(ig,isa)*qgbt(ig,2) qv(nmb(ig)) = CONJG(eigrb(ig,isa)*qgbt(ig,1)) & & + ci* CONJG(eigrb(ig,isa)*qgbt(ig,2)) END DO ! CALL invfft('Box',qv,dfftb,isa) ! ! qv is the now the US augmentation charge for atomic species is ! and atom ia: real(qv)=spin up, imag(qv)=spin down ! IF( iverbosity > 1 ) THEN ca = SUM(qv) WRITE( stdout,'(a,f12.8)') ' rhov: up g-space = ', & & omegab*DBLE(qgbt(1,1)) WRITE( stdout,'(a,f12.8)') ' rhov: up r-sp = ', & & omegab*DBLE(ca)/(dfftb%nr1*dfftb%nr2*dfftb%nr3) WRITE( stdout,'(a,f12.8)') ' rhov: dw g-space = ', & & omegab*DBLE(qgbt(1,2)) WRITE( stdout,'(a,f12.8)') ' rhov: dw r-sp = ', & & omegab*AIMAG(ca)/(dfftb%nr1*dfftb%nr2*dfftb%nr3) ENDIF ! ! add qv(r) to v(r), in real space on the dense grid ! CALL box2grid2(irb(1,isa),qv,v) 25 isa=isa+1 ! END DO END DO ! DO ir=1,dfftp%nnr rhor(ir,isup)=rhor(ir,isup)+DBLE(v(ir)) rhor(ir,isdw)=rhor(ir,isdw)+AIMAG(v(ir)) END DO ! IF( iverbosity > 1 ) THEN ca = SUM(v) CALL mp_sum( ca, intra_bgrp_comm ) WRITE( stdout,'(a,2f12.8)') 'rhov:in n_v ',omega*ca/(dfftp%nr1*dfftp%nr2*dfftp%nr3) ENDIF ! CALL fwfft('Dense',v, dfftp ) ! IF( iverbosity > 1 ) THEN WRITE( stdout,*) 'rhov: smooth up',omega*rhog(1,isup) WRITE( stdout,*) 'rhov: smooth dw',omega*rhog(1,isdw) WRITE( stdout,*) 'rhov: vander up',omega*DBLE(v(1)) WRITE( stdout,*) 'rhov: vander dw',omega*AIMAG(v(1)) WRITE( stdout,*) 'rhov: all up', & & omega*(rhog(1,isup)+DBLE(v(1))) WRITE( stdout,*) 'rhov: all dw', & & omega*(rhog(1,isdw)+AIMAG(v(1))) ENDIF ! DO ig=1,ngm fp= v(nl(ig)) + v(nlm(ig)) fm= v(nl(ig)) - v(nlm(ig)) rhog(ig,isup)=rhog(ig,isup) + 0.5d0*CMPLX(DBLE(fp),AIMAG(fm),kind=DP) rhog(ig,isdw)=rhog(ig,isdw) + 0.5d0*CMPLX(AIMAG(fp),-DBLE(fm),kind=DP) END DO ! IF( iverbosity > 1 ) THEN WRITE( stdout,'(a,2f12.8,/,a,2f12.8)') & & ' rhov: n_v(g=0) up = ',omega*DBLE (rhog(1,isup)), & & ' rhov: n_v(g=0) down = ',omega*DBLE(rhog(1,isdw)) END IF DEALLOCATE(qgbt) DEALLOCATE( qv ) ! ENDIF DEALLOCATE( v ) CALL stop_clock( 'rhov' ) ! RETURN END SUBROUTINE rhov ! ! ! !---------------------------------------------------------------------- SUBROUTINE read_rho( nspin, rhor ) !---------------------------------------------------------------------- ! ! read rhor(nnr,nspin) from file ! use kinds, ONLY: DP USE fft_base, ONLY: dfftp use xml_io_base, ONLY: read_rho_xml, restart_dir use control_flags, ONLY: ndr USE io_files, ONLY: tmp_dir USE io_global, ONLY: ionode USE mp_global, ONLY: intra_bgrp_comm, inter_bgrp_comm ! implicit none ! integer :: nspin real(DP) :: rhor( dfftp%nnr, nspin ) ! integer :: is CHARACTER(LEN=256) :: filename, dirname ! dirname = restart_dir( tmp_dir, ndr ) ! filename = TRIM(dirname) // '/' // 'charge-density' ! CALL read_rho_xml( filename, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & rhor(:,1) ) ! IF( nspin == 2 ) THEN ! filename = TRIM(dirname) // '/' // 'spin-polarization' ! CALL read_rho_xml( filename, dfftp%nr1, dfftp%nr2, dfftp%nr3, & dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & rhor(:,2) ) ! ! Convert rho_tot, spin_pol back to rho_up, rho_down ! rhor(:,2) = 0.5d0 * ( rhor(:,1) - rhor(:,2) ) rhor(:,1) = rhor(:,1) - rhor(:,2) ! END IF RETURN END SUBROUTINE read_rho ! !---------------------------------------------------------------------- subroutine old_write_rho( rhounit, nspin, rhor ) !---------------------------------------------------------------------- ! ! collect rhor(nnr,nspin) on first node and write to file ! use kinds, ONLY: DP use parallel_include use gvecw , only : ngw USE mp_global, ONLY : nproc_bgrp, intra_bgrp_comm USE io_global, ONLY : ionode, ionode_id USE fft_base, ONLY : dfftp USE mp, ONLY : mp_barrier, mp_gather USE constants, ONLY : bohr_radius_angs USE cell_base, ONLY : at, alat ! implicit none ! integer, INTENT(IN) :: rhounit, nspin real(kind=DP), INTENT(IN) :: rhor( dfftp%nnr, nspin ) ! integer :: ir, is integer :: proc, ierr integer, allocatable:: displs(:), recvcount(:) real(kind=DP), allocatable:: rhodist(:) ! IF ( ionode ) THEN ! OPEN( unit = rhounit, form = 'UNFORMATTED', status = 'UNKNOWN' ) ! WRITE( rhounit, '("3 2")' ) ! WRITE( rhounit, '(3(2X,I3))' ) dfftp%nr1x, dfftp%nr2x, dfftp%nr3x ! WRITE( rhounit, '(3(2X,"0",2X,F16.10))' ) & ( DBLE(dfftp%nr1x-1) / DBLE(dfftp%nr1x) ) * at(1,1)*alat * bohr_radius_angs, & ( DBLE(dfftp%nr2x-1) / DBLE(dfftp%nr2x) ) * at(2,2)*alat * bohr_radius_angs, & ( DBLE(dfftp%nr3x-1) / DBLE(dfftp%nr3x) ) * at(3,3)*alat * bohr_radius_angs ! END IF ! COLLECT_CHARGE: IF( nproc_bgrp > 1 ) THEN ! ALLOCATE( displs( nproc_bgrp ), recvcount( nproc_bgrp ) ) ! if (ionode) allocate(rhodist(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x)) ! do proc=1,nproc_bgrp recvcount(proc) = dfftp%nnp * ( dfftp%npp(proc) ) if (proc.eq.1) then displs(proc)=0 else displs(proc)=displs(proc-1) + recvcount(proc-1) end if end do ! do is=1,nspin ! ! gather the charge density on the first node ! call mp_barrier( intra_bgrp_comm ) call mp_gather( rhor(:,is), rhodist, recvcount, displs, ionode_id, intra_bgrp_comm ) ! ! write the charge density to unit "rhounit" from first node only ! if ( ionode ) & write( rhounit, '(F12.7)' ) (rhodist(ir),ir=1,dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) ! end do DEALLOCATE( displs, recvcount ) if (ionode) deallocate(rhodist) ELSE IF ( ionode ) THEN WRITE( rhounit, '(F12.7)' ) ( ( rhor(ir,is), ir = 1, dfftp%nnr ), is = 1, nspin ) END IF END IF COLLECT_CHARGE IF ( ionode ) THEN CLOSE( unit = rhounit ) END IF ! return end subroutine old_write_rho espresso-5.1/CPV/src/vofrho.f900000644000175000017500000005424312341373026014355 0ustar mbamba! ! Copyright (C) 2002-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE vofrho_x( nfi, rhor, drhor, rhog, drhog, rhos, rhoc, tfirst, & tlast, ei1, ei2, ei3, irb, eigrb, sfac, tau0, fion ) !----------------------------------------------------------------------- ! computes: the one-particle potential v in real space, ! the total energy etot, ! the forces fion acting on the ions, ! the derivative of total energy to cell parameters h ! rhor input : electronic charge on dense real space grid ! (plus core charge if present) ! rhog input : electronic charge in g space (up to density cutoff) ! rhos input : electronic charge on smooth real space grid ! rhor output: total potential on dense real space grid ! rhos output: total potential on smooth real space grid ! USE kinds, ONLY: dp USE control_flags, ONLY: iprint, iverbosity, thdyn, tpre, tfor, & tprnfor, iesr, textfor USE io_global, ONLY: stdout USE ions_base, ONLY: nsp, na, nat, rcmax, compute_eextfor USE ions_base, ONLY: ind_srt, ind_bck USE gvecs USE gvect, ONLY: ngm, nl, nlm USE cell_base, ONLY: omega, r_to_s USE cell_base, ONLY: alat, at, tpiba2, h, ainv USE gvect, ONLY: gstart, gg, g USE electrons_base, ONLY: nspin USE constants, ONLY: pi, fpi, au_gpa, e2 USE energies, ONLY: etot, eself, enl, ekin, epseu, esr, eht, & exc, eextfor USE local_pseudo, ONLY: vps, dvps, rhops USE uspp, ONLY: nlcc_any USE smallbox_gvec USE dener, ONLY: detot, dekin, dps, dh, dsr, dxc, denl, denlc,& detot6, dekin6, dps6, dh6, dsr6, dxc6, denl6 USE mp, ONLY: mp_sum USE mp_global, ONLY: intra_bgrp_comm USE funct, ONLY: dft_is_meta, dft_is_nonlocc, nlc, get_inlc USE vdW_DF, ONLY: stress_vdW_DF use rVV10, ONLY: stress_rVV10 USE pres_ai_mod, ONLY: abivol, abisur, v_vol, P_ext, volclu, & Surf_t, surfclu USE fft_interfaces, ONLY: fwfft, invfft USE sic_module, ONLY: self_interaction, sic_epsilon, sic_alpha USE energies, ONLY: self_exc, self_ehte USE cp_interfaces, ONLY: pseudo_stress, compute_gagb, stress_hartree, & add_drhoph, stress_local, force_loc, self_vofhar USE fft_base, ONLY: dfftp, dffts USE ldaU_cp, ONLY: e_hubbard USE control_flags, ONLY: ts_vdw USE tsvdw_module, ONLY: tsvdw_calculate USE tsvdw_module, ONLY: EtsvdW,UtsvdW,FtsvdW,HtsvdW USE mp_global, ONLY: me_image IMPLICIT NONE ! LOGICAL :: tlast, tfirst INTEGER :: nfi REAL(DP) :: rhor(:,:), drhor(:,:,:,:), rhos(:,:), fion(:,:) REAL(DP) :: rhoc(:), tau0(:,:) ! COMPLEX(DP) ei1(-nr1:nr1,nat), ei2(-nr2:nr2,nat), ei3(-nr3:nr3,nat) COMPLEX(DP) :: ei1(:,:), ei2(:,:), ei3(:,:) COMPLEX(DP) :: eigrb(:,:) COMPLEX(DP) :: rhog(:,:), drhog(:,:,:,:) COMPLEX(DP) :: sfac(:,:) INTEGER :: irb(:,:) ! INTEGER iss, isup, isdw, ig, ir, i, j, k, ij, is, ia, inlc REAL(DP) :: vtxc, vave, ebac, wz, eh, ehpre, enlc COMPLEX(DP) fp, fm, ci, drhop, zpseu, zh COMPLEX(DP), ALLOCATABLE :: rhotmp(:), vtemp(:) COMPLEX(DP), ALLOCATABLE :: drhot(:,:) COMPLEX(DP), ALLOCATABLE :: v(:), vs(:) REAL(DP), ALLOCATABLE :: gagb(:,:), rhosave(:,:), rhocsave(:) ! REAL(DP), ALLOCATABLE :: fion1( :, : ) REAL(DP), ALLOCATABLE :: stmp( :, : ) ! COMPLEX(DP), ALLOCATABLE :: self_vloc(:) COMPLEX(DP) :: self_rhoeg REAL(DP) :: self_ehtet, fpibg LOGICAL :: ttsic REAL(DP) :: detmp( 3, 3 ), desr( 6 ), deps( 6 ) REAL(DP) :: detmp2( 3, 3 ) REAL(DP) :: ht( 3, 3 ) REAL(DP) :: deht( 6 ) COMPLEX(DP) :: screen_coul( 1 ) ! INTEGER, DIMENSION(6), PARAMETER :: alpha = (/ 1,2,3,2,3,3 /) INTEGER, DIMENSION(6), PARAMETER :: beta = (/ 1,1,1,2,2,3 /) ! ... dalbe(:) = delta( alpha(:), beta(:) ) REAL(DP), DIMENSION(6), PARAMETER :: dalbe = & (/ 1.0_DP, 0.0_DP, 0.0_DP, 1.0_DP, 0.0_DP, 1.0_DP /) CALL start_clock( 'vofrho' ) ! ! TS-vdW calculation (RAD) ! IF (ts_vdw) THEN ! CALL start_clock( 'ts_vdw' ) ALLOCATE (stmp(3,nat)) stmp(:,:) = tau0(:,ind_bck(:)) CALL tsvdw_calculate(stmp,rhor) DEALLOCATE (stmp) CALL stop_clock( 'ts_vdw' ) ! END IF ! ci = ( 0.0d0, 1.0d0 ) ! ! wz = factor for g.neq.0 because of c*(g)=c(-g) ! wz = 2.0d0 ! ht = TRANSPOSE( h ) ! ALLOCATE( vtemp( ngm ) ) ALLOCATE( rhotmp( ngm ) ) ! IF ( tpre ) THEN ALLOCATE( drhot( ngm, 6 ) ) ALLOCATE( gagb( 6, ngm ) ) CALL compute_gagb( gagb, g, ngm, tpiba2 ) END IF ! ! ab-initio pressure and surface tension contributions to the potential ! if (abivol.or.abisur) call vol_clu(rhor,rhog,sfac,nfi) ! ttsic = ( ABS( self_interaction ) /= 0 ) ! IF( ttsic ) ALLOCATE( self_vloc( ngm ) ) ! ! first routine in which fion is calculated: annihilation ! fion = 0.d0 ! ! forces on ions, ionic term in real space ! IF( tprnfor .OR. tfor .OR. tfirst .OR. tpre ) THEN ! ALLOCATE( stmp( 3, nat ) ) ! CALL r_to_s( tau0, stmp, na, nsp, ainv ) ! CALL vofesr( iesr, esr, dsr6, fion, stmp, tpre, h ) ! call mp_sum( fion, intra_bgrp_comm ) ! DEALLOCATE( stmp ) ! END IF ! !$omp parallel default(shared), private(ig,is,ij,i,j,k) !$omp workshare rhotmp( 1:ngm ) = rhog( 1:ngm, 1 ) !$omp end workshare IF( nspin == 2 ) THEN !$omp workshare rhotmp( 1:ngm ) = rhotmp( 1:ngm ) + rhog( 1:ngm, 2 ) !$omp end workshare END IF ! IF( tpre ) THEN !$omp do DO ij = 1, 6 i = alpha( ij ) j = beta( ij ) drhot( :, ij ) = 0.0d0 DO k = 1, 3 drhot( :, ij ) = drhot( :, ij ) + drhog( :, 1, i, k ) * ht( k, j ) END DO END DO !$omp end do IF( nspin == 2 ) THEN !$omp do DO ij = 1, 6 i = alpha( ij ) j = beta( ij ) DO k = 1, 3 drhot( :, ij ) = drhot( :, ij ) + drhog( :, 2, i, k ) * ht( k, j ) END DO END DO !$omp end do ENDIF END IF ! ! calculation local potential energy ! !$omp master zpseu = 0.0d0 !$omp end master ! !$omp do DO ig = 1, SIZE(vtemp) vtemp(ig)=(0.d0,0.d0) END DO DO is=1,nsp !$omp do DO ig=1,ngms vtemp(ig)=vtemp(ig)+CONJG(rhotmp(ig))*sfac(ig,is)*vps(ig,is) END DO END DO !$omp do reduction(+:zpseu) DO ig=1,ngms zpseu = zpseu + vtemp(ig) END DO !$omp end parallel epseu = wz * DBLE(zpseu) ! IF (gstart == 2) epseu = epseu - DBLE( vtemp(1) ) ! CALL mp_sum( epseu, intra_bgrp_comm ) epseu = epseu * omega ! IF( tpre ) THEN ! CALL stress_local( dps6, epseu, gagb, sfac, rhotmp, drhot, omega ) ! END IF ! ! ! calculation hartree energy ! ! self_ehtet = 0.d0 ! IF( ttsic ) self_vloc = 0.d0 zh = 0.0d0 !$omp parallel default(shared), private(ig,is) DO is=1,nsp !$omp do DO ig=1,ngms rhotmp(ig)=rhotmp(ig)+sfac(ig,is)*rhops(ig,is) END DO END DO ! !$omp do DO ig = gstart, ngm vtemp(ig) = CONJG( rhotmp( ig ) ) * rhotmp( ig ) / gg( ig ) END DO !$omp do reduction(+:zh) DO ig = gstart, ngm zh = zh + vtemp(ig) END DO !$omp end parallel eh = DBLE( zh ) * wz * 0.5d0 * fpi / tpiba2 ! CALL mp_sum( eh, intra_bgrp_comm ) ! IF ( ttsic ) THEN ! CALL self_vofhar( .false., self_ehte, self_vloc, rhog, omega, h ) ! eh = eh - self_ehte / omega ! END IF ! IF(tpre) THEN ! CALL add_drhoph( drhot, sfac, gagb ) CALL stress_hartree(dh6, eh*omega, sfac, rhotmp, drhot, gagb, omega ) ! DEALLOCATE( gagb ) DEALLOCATE( drhot ) ! END IF ! ! forces on ions, ionic term in reciprocal space ! ALLOCATE( fion1( 3, nat ) ) ! fion1 = 0.d0 ! IF( tprnfor .OR. tfor .OR. tpre) THEN vtemp( 1:ngm ) = rhog( 1:ngm, 1 ) IF( nspin == 2 ) THEN vtemp( 1:ngm ) = vtemp(1:ngm) + rhog( 1:ngm, 2 ) END IF CALL force_loc( .false., vtemp, fion1, rhops, vps, ei1, ei2, ei3, sfac, omega, screen_coul ) END IF ! ! calculation hartree + local pseudo potential ! ! IF (gstart == 2) vtemp(1)=(0.d0,0.d0) !$omp parallel default(shared), private(ig,is) !$omp do DO ig=gstart,ngm vtemp(ig)=rhotmp(ig)*fpi/(tpiba2*gg(ig)) END DO ! DO is=1,nsp !$omp do DO ig=1,ngms vtemp(ig)=vtemp(ig)+sfac(ig,is)*vps(ig,is) END DO END DO !$omp end parallel DEALLOCATE (rhotmp) ! ! vtemp = v_loc(g) + v_h(g) ! ! =================================================================== ! calculation exchange and correlation energy and potential ! ------------------------------------------------------------------- ! ! ... UGLY HACK WARNING: rhor must be saved before exch_corr_h ! ... overwrites it and before add_cc adds to it the core charge ! ... We also need an allocated rhoc array even in absence of core charge ! IF ( dft_is_nonlocc() ) THEN ALLOCATE ( rhosave(dfftp%nnr,nspin), rhocsave(dfftp%nnr) ) rhosave(:,:) = rhor(:,:) IF ( SIZE(rhoc) == dfftp%nnr ) THEN rhocsave(:)= rhoc(:) ELSE rhocsave(:)= 0.0_dp ENDIF END IF ! IF ( nlcc_any ) CALL add_cc( rhoc, rhog, rhor ) CALL exch_corr_h( nspin, rhog, rhor, rhoc, sfac, exc, dxc, self_exc ) ! ! ... add non local corrections (if any) ! IF ( dft_is_nonlocc() ) THEN ! ! ... UGLY HACK WARNING: nlc adds nonlocal term (Ry) to input energy ! enlc = 0.0_dp CALL nlc( rhosave, rhocsave, nspin, enlc, vtxc, rhor ) CALL mp_sum( enlc, intra_bgrp_comm ) exc = exc + enlc / e2 ! ! ... non-local XC contribution to stress brought to crystal axis, ! ... transformed into energy derivative (Ha), added to dxc ! IF ( tpre ) THEN denlc(:,:) = 0.0_dp inlc = get_inlc() if (inlc==1 .or. inlc==2) then if (nspin>2) call errore('stres_vdW_DF', 'vdW+DF non implemented in spin polarized calculations',1) CALL stress_vdW_DF(rhosave, rhocsave, nspin, denlc ) elseif (inlc == 3) then if (nspin>2) call errore('stress_rVV10', 'rVV10 non implemented with nspin>2',1) CALL stress_rVV10(rhosave, rhocsave, nspin, denlc ) end if CALL mp_sum( denlc, intra_bgrp_comm ) dxc(:,:) = dxc(:,:) - omega/e2 * MATMUL(denlc,TRANSPOSE(ainv)) END IF DEALLOCATE ( rhocsave, rhosave ) ELSE denlc(:,:) = 0.0_dp END IF ! ! Add TS-vdW wavefunction forces to rhor here... (RAD) ! IF (ts_vdw) THEN ! IF (dffts%npp(me_image+1).NE.0) THEN ! IF (nspin.EQ.1) THEN ! !$omp parallel do DO ir=1,dffts%npp(me_image+1)*dfftp%nr1*dfftp%nr2 ! rhor(ir,1)=rhor(ir,1)+UtsvdW(ir) ! END DO !$omp end parallel do ! ELSE IF (nspin.EQ.2) THEN ! !$omp parallel do DO ir=1,dffts%npp(me_image+1)*dfftp%nr1*dfftp%nr2 ! rhor(ir,1)=rhor(ir,1)+UtsvdW(ir) rhor(ir,2)=rhor(ir,2)+UtsvdW(ir) ! END DO !$omp end parallel do ! END IF ! END IF ! END IF ! ! rhor contains the xc potential in r-space ! ! =================================================================== ! fourier transform of xc potential to g-space (dense grid) ! ------------------------------------------------------------------- ! ALLOCATE( v( dfftp%nnr ) ) IF( nspin == 1 ) THEN iss = 1 if (abivol.or.abisur) then !$omp parallel do do ir=1, dfftp%nnr v(ir)=CMPLX( rhor( ir, iss ) + v_vol( ir ), 0.d0 ,kind=DP) end do else !$omp parallel do do ir=1, dfftp%nnr v(ir)=CMPLX( rhor( ir, iss ), 0.d0 ,kind=DP) end do end if ! ! v_xc(r) --> v_xc(g) ! CALL fwfft( 'Dense', v, dfftp ) ! !$omp parallel do DO ig = 1, ngm rhog( ig, iss ) = vtemp(ig) + v( nl( ig ) ) END DO ! ! v_tot(g) = (v_tot(g) - v_xc(g)) +v_xc(g) ! rhog contains the total potential in g-space ! ELSE isup=1 isdw=2 if (abivol.or.abisur) then !$omp parallel do do ir=1, dfftp%nnr v(ir)=CMPLX ( rhor(ir,isup)+v_vol(ir), & rhor(ir,isdw)+v_vol(ir),kind=DP) end do else !$omp parallel do do ir=1, dfftp%nnr v(ir)=CMPLX (rhor(ir,isup),rhor(ir,isdw),kind=DP) end do end if CALL fwfft('Dense',v, dfftp ) !$omp parallel do private(fp,fm) DO ig=1,ngm fp=v(nl(ig))+v(nlm(ig)) fm=v(nl(ig))-v(nlm(ig)) IF( ttsic ) THEN rhog(ig,isup)=vtemp(ig)-self_vloc(ig) + & 0.5d0*CMPLX( DBLE(fp),AIMAG(fm),kind=DP) rhog(ig,isdw)=vtemp(ig)+self_vloc(ig) + & 0.5d0*CMPLX(AIMAG(fp),-DBLE(fm),kind=DP) ELSE rhog(ig,isup)=vtemp(ig)+0.5d0*CMPLX( DBLE(fp),AIMAG(fm),kind=DP) rhog(ig,isdw)=vtemp(ig)+0.5d0*CMPLX(AIMAG(fp),-DBLE(fm),kind=DP) ENDIF END DO ENDIF DEALLOCATE (vtemp) ! ! rhog contains now the total (local+Hartree+xc) potential in g-space ! IF( tprnfor .OR. tfor ) THEN IF ( nlcc_any ) CALL force_cc( irb, eigrb, rhor, fion1 ) CALL mp_sum( fion1, intra_bgrp_comm ) ! ! add g-space ionic and core correction contributions to fion ! fion = fion + fion1 ! ! Add TS-vdW ion forces to fion here... (RAD) ! IF (ts_vdw) THEN fion1(:,:) = FtsvdW(:,ind_srt(:)) fion = fion + fion1 !fion=fion+FtsvdW END IF END IF DEALLOCATE( fion1 ) ! IF( ttsic ) DEALLOCATE( self_vloc ) ! ! =================================================================== ! fourier transform of total potential to r-space (dense grid) ! ------------------------------------------------------------------- v(:) = (0.d0, 0.d0) IF(nspin.EQ.1) THEN iss=1 !$omp parallel do DO ig=1,ngm v(nl (ig))=rhog(ig,iss) v(nlm(ig))=CONJG(rhog(ig,iss)) END DO ! ! v(g) --> v(r) ! CALL invfft('Dense',v, dfftp ) ! !$omp parallel do DO ir=1, dfftp%nnr rhor(ir,iss)=DBLE(v(ir)) END DO ! ! calculation of average potential ! vave=SUM(rhor(:,iss))/DBLE( dfftp%nr1* dfftp%nr2* dfftp%nr3) ELSE isup=1 isdw=2 !$omp parallel do DO ig=1,ngm v(nl (ig))=rhog(ig,isup)+ci*rhog(ig,isdw) v(nlm(ig))=CONJG(rhog(ig,isup)) +ci*CONJG(rhog(ig,isdw)) END DO ! CALL invfft('Dense',v, dfftp ) !$omp parallel do DO ir=1, dfftp%nnr rhor(ir,isup)= DBLE(v(ir)) rhor(ir,isdw)=AIMAG(v(ir)) END DO ! ! calculation of average potential ! vave=(SUM(rhor(:,isup))+SUM(rhor(:,isdw))) / 2.0d0 / DBLE( dfftp%nr1 * dfftp%nr2 * dfftp%nr3 ) ENDIF CALL mp_sum( vave, intra_bgrp_comm ) ! ! fourier transform of total potential to r-space (smooth grid) ! ALLOCATE( vs( dffts%nnr ) ) vs (:) = (0.d0, 0.d0) ! IF(nspin.EQ.1)THEN ! iss=1 !$omp parallel do DO ig=1,ngms vs(nlsm(ig))=CONJG(rhog(ig,iss)) vs(nls(ig))=rhog(ig,iss) END DO ! CALL invfft('Smooth',vs, dffts ) ! !$omp parallel do DO ir=1,dffts%nnr rhos(ir,iss)=DBLE(vs(ir)) END DO ! ELSE ! isup=1 isdw=2 !$omp parallel do DO ig=1,ngms vs(nls(ig))=rhog(ig,isup)+ci*rhog(ig,isdw) vs(nlsm(ig))=CONJG(rhog(ig,isup)) +ci*CONJG(rhog(ig,isdw)) END DO ! CALL invfft('Smooth',vs, dffts ) ! !$omp parallel do DO ir=1,dffts%nnr rhos(ir,isup)= DBLE(vs(ir)) rhos(ir,isdw)=AIMAG(vs(ir)) END DO ! ENDIF IF( dft_is_meta() ) CALL vofrho_meta( v, vs ) DEALLOCATE( vs ) DEALLOCATE( v ) ebac = 0.0d0 ! eht = eh * omega + esr - eself ! eextfor = 0.0_DP IF( textfor ) eextfor = compute_eextfor( tau0 ) ! ! etot is the total energy ; ekin, enl were calculated in rhoofr ! etot = ekin + eht + epseu + enl + exc + ebac +e_hubbard + eextfor ! ! Add TS-vdW energy to etot here... (RAD) ! IF (ts_vdw) etot=etot+EtsvdW ! if (abivol) etot = etot + P_ext*volclu if (abisur) etot = etot + Surf_t*surfclu ! IF( tpre ) THEN ! detot6 = dekin6 + dh6 + dps6 + dsr6 ! call mp_sum( detot6, intra_bgrp_comm ) ! DO k = 1, 6 detmp( alpha(k), beta(k) ) = detot6(k) detmp( beta(k), alpha(k) ) = detmp( alpha(k), beta(k) ) END DO ! detot = MATMUL( detmp(:,:), TRANSPOSE( ainv(:,:) ) ) ! detot = detot + denl + dxc ! ! Add TS-vdW cell derivatives to detot here... (RAD) ! IF (ts_vdw) detot = detot + HtsvdW ! END IF ! CALL stop_clock( 'vofrho' ) ! IF ( tpre ) THEN ! IF( ( iverbosity > 1 ) .AND. ( MOD( nfi - 1, iprint) == 0 ) ) THEN ! WRITE( stdout,*) WRITE( stdout,*) "From vofrho:" WRITE( stdout,*) "cell parameters h" WRITE( stdout,5555) (at(i,1)*alat, at(i,2)*alat, at(i,3)*alat,i=1,3) ! WRITE( stdout,*) WRITE( stdout,*) "derivative of e(tot)" WRITE( stdout,5555) ((detot(i,j),j=1,3),i=1,3) WRITE( stdout,*) "kbar" detmp = -1.0d0 * MATMUL( detot, TRANSPOSE( h ) ) / omega * au_gpa * 10.0d0 WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) ! WRITE( stdout,*) WRITE( stdout,*) "derivative of e(kin)" WRITE( stdout,5555) ((dekin(i,j),j=1,3),i=1,3) WRITE( stdout,*) "kbar" detmp = -1.0d0 * MATMUL( dekin, TRANSPOSE( h ) ) / omega * au_gpa * 10.0d0 WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) ! WRITE( stdout,*) "derivative of e(h)" WRITE( stdout,5555) ((dh(i,j),j=1,3),i=1,3) WRITE( stdout,*) "kbar" detmp = -1.0d0 * MATMUL( dh, TRANSPOSE( h ) ) / omega * au_gpa * 10.0d0 WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) ! WRITE( stdout,*) "derivative of e(sr)" WRITE( stdout,5555) ((dsr(i,j),j=1,3),i=1,3) WRITE( stdout,*) "kbar" detmp = -1.0d0 * MATMUL( dsr, TRANSPOSE( h ) ) / omega * au_gpa * 10.0d0 WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) ! WRITE( stdout,*) "derivative of e(ps)" WRITE( stdout,5555) ((dps(i,j),j=1,3),i=1,3) WRITE( stdout,*) "kbar" detmp = -1.0d0 * MATMUL( dps, TRANSPOSE( h ) ) / omega * au_gpa * 10.0d0 WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) ! WRITE( stdout,*) "derivative of e(nl)" WRITE( stdout,5555) ((denl(i,j),j=1,3),i=1,3) WRITE( stdout,*) "kbar" detmp = -1.0d0 * MATMUL( denl, TRANSPOSE( h ) ) / omega * au_gpa * 10.0d0 WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) ! WRITE( stdout,*) "derivative of e(xc)" WRITE( stdout,5555) ((dxc(i,j),j=1,3),i=1,3) WRITE( stdout,*) "kbar" detmp = -1.0d0 * MATMUL( dxc, TRANSPOSE( h ) ) / omega * au_gpa * 10.0d0 WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) ! WRITE( stdout,*) "derivative of e(TS-vdW)" WRITE( stdout,5555) ((HtsvdW(i,j),j=1,3),i=1,3) WRITE( stdout,*) "kbar" detmp = -1.0d0 * MATMUL( HtsvdW, TRANSPOSE( h ) ) / omega * au_gpa * 10.0d0 WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) ENDIF ENDIF RETURN 5555 FORMAT(1x,f12.5,1x,f12.5,1x,f12.5/ & & 1x,f12.5,1x,f12.5,1x,f12.5/ & & 1x,f12.5,1x,f12.5,1x,f12.5//) ! END SUBROUTINE vofrho_x espresso-5.1/CPV/src/inner_loop_cold.f900000644000175000017500000005051612341373026016216 0ustar mbamba! ! Copyright (C) 2002 CP90 group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !==================================================================== SUBROUTINE inner_loop_cold( nfi, tfirst, tlast, eigr, irb, eigrb, & rhor, rhog, rhos, rhoc, ei1, ei2, ei3, & sfac, c0, bec, dbec, firstiter, vpot ) !==================================================================== ! ! minimizes the total free energy ! using cold smearing, ! ! ! declares modules USE kinds, ONLY: dp USE energies, ONLY: eht, epseu, exc, etot, eself, enl, & ekin, atot, entropy, egrand USE electrons_base, ONLY: f, nspin, nel, iupdwn, nupdwn, nudx, & nelt, nx => nbspx, n => nbsp, ispin , & f_bgrp,nupdwn_bgrp,iupdwn_bgrp USE ensemble_dft, ONLY: tens, ninner, ismear, etemp, & ef, z0t, c0diag, becdiag, nrcx, & e0, psihpsi, compute_entropy2, & compute_entropy_der, compute_entropy, & niter_cold_restart, lambda_cold USE gvect, ONLY: ngm USE gvecs, ONLY: ngms USE smallbox_gvec, ONLY: ngb USE gvecw, ONLY: ngw USE gvect, ONLY: gstart USE uspp_param, ONLY: nvb, ish USE ions_base, ONLY: na, nat, nsp USE cell_base, ONLY: omega, alat USE fft_base, ONLY: dfftp, dffts USE local_pseudo, ONLY: vps, rhops USE io_global, ONLY: stdout, ionode, ionode_id USE mp_global, ONLY: intra_bgrp_comm, leg_ortho USE dener USE uspp, ONLY: nhsa=> nkb, betae => vkb, & rhovan => becsum, deeq, nlcc_any USE uspp_param, ONLY: nh USE cg_module, ONLY: ene_ok USE ions_positions, ONLY: tau0 USE mp, ONLY: mp_sum,mp_bcast, mp_root_sum USE cp_interfaces, ONLY: rhoofr, dforce, protate, vofrho, calbec USE cg_module, ONLY: itercg USE cp_main_variables, ONLY: descla, drhor, drhog USE descriptors, ONLY: descla_init , la_descriptor USE dspev_module, ONLY: pdspev_drv, dspev_drv ! IMPLICIT NONE !input variables INTEGER :: nfi LOGICAL :: tfirst LOGICAL :: tlast COMPLEX(kind=DP) :: eigr( ngw, nat ) COMPLEX(kind=DP) :: c0( ngw, n ) REAL(kind=DP) :: bec( nhsa, n ) REAL(kind=DP) :: dbec( nhsa, n, 3, 3 ) LOGICAL :: firstiter INTEGER :: irb( 3, nat ) COMPLEX (kind=DP) :: eigrb( ngb, nat ) REAL(kind=DP) :: rhor( dfftp%nnr, nspin ) REAL(kind=DP) :: vpot( dfftp%nnr, nspin ) COMPLEX(kind=DP) :: rhog( ngm, nspin ) REAL(kind=DP) :: rhos( dffts%nnr, nspin ) REAL(kind=DP) :: rhoc( dfftp%nnr ) COMPLEX(kind=DP) :: ei1( dfftp%nr1:dfftp%nr1, nat ) COMPLEX(kind=DP) :: ei2( dfftp%nr2:dfftp%nr2, nat ) COMPLEX(kind=DP) :: ei3( dfftp%nr3:dfftp%nr3, nat ) COMPLEX(kind=DP) :: sfac( ngms, nsp ) !local variables REAL(kind=DP) :: atot0, atot1, atotl, atotmin REAL(kind=DP), ALLOCATABLE :: fion2(:,:), c0hc0(:,:,:) REAL(kind=DP), ALLOCATABLE :: mtmp(:,:) COMPLEX(kind=DP), ALLOCATABLE :: h0c0(:,:) INTEGER :: niter INTEGER :: i,k, is, nss, istart, ig, iss REAL(kind=DP) :: lambda, lambdap REAL(kind=DP), ALLOCATABLE :: epsi0(:,:) INTEGER :: np(2), coor_ip(2), ipr, ipc, nr, nc, ir, ic, ii, jj, root, j TYPE(la_descriptor) :: desc_ip INTEGER :: np_rot, me_rot, comm_rot, nrlx CALL start_clock( 'inner_loop') allocate(fion2(3,nat)) allocate(c0hc0(nrcx, nrcx, nspin)) allocate(h0c0(ngw,nx)) lambdap=0.3d0!small step for free-energy calculation ! calculates the initial free energy if necessary IF( .not. ene_ok ) THEN ! calculates the overlaps bec between the wavefunctions c0 ! and the beta functions CALL calbec( 1, nsp, eigr, c0, bec ) ! rotates the wavefunctions c0 and the overlaps bec ! (the occupation matrix f_ij becomes diagonal f_i) nrlx = MAXVAL(descla(:)%nrlx) CALL rotate( nrlx, z0t, c0, bec, c0diag, becdiag ) ! calculates the electronic charge density CALL rhoofr( nfi, c0diag, irb, eigrb, becdiag, dbec, rhovan, & rhor, drhor, rhog, drhog, rhos, enl, denl, ekin, dekin6 ) IF(nlcc_any) CALL set_cc( irb, eigrb, rhoc ) ! calculates the SCF potential, the total energy ! and the ionic forces vpot = rhor CALL vofrho( nfi, vpot, drhor, rhog, drhog, rhos, rhoc, tfirst, & tlast, ei1, ei2, ei3, irb, eigrb, sfac, & tau0, fion2 ) !entropy value already been calculated END IF atot0=etot+entropy !starts inner loop do niter=1,ninner !calculates c0hc0, which defines the search line (1-\labda)* psihpsi+\labda*c0hc0 ! calculateas the energy contribution associated with ! the augmentation charges and the ! corresponding contribution to the ionic force CALL newd( vpot, irb, eigrb, rhovan, fion2 ) ! operates the Hamiltonian on the wavefunction c0 h0c0( :, : )= 0.D0 DO i= 1, n, 2 CALL dforce( i, bec, betae, c0, h0c0(:,i), h0c0(:,i+1), rhos, dffts%nnr, ispin, f, n, nspin ) END DO ! calculates the Hamiltonian matrix in the basis {c0} c0hc0(:,:,:)=0.d0 ! DO is= 1, nspin nss= nupdwn( is ) istart= iupdwn( is ) np(1) = descla( is )%npr np(2) = descla( is )%npc DO ipc = 1, np(2) DO ipr = 1, np(1) coor_ip(1) = ipr - 1 coor_ip(2) = ipc - 1 CALL descla_init( desc_ip, descla( is )%n, descla( is )%nx, np, coor_ip, descla( is )%comm, 1 ) nr = desc_ip%nr nc = desc_ip%nc ir = desc_ip%ir ic = desc_ip%ic CALL GRID2D_RANK( 'R', desc_ip%npr, desc_ip%npc, desc_ip%myr, desc_ip%myc, root ) ! root = root * leg_ortho ALLOCATE( mtmp( nr, nc ) ) mtmp = 0.0d0 CALL dgemm( 'T', 'N', nr, nc, 2*ngw, - 2.0d0, c0( 1, istart + ir - 1 ), 2*ngw, & h0c0( 1, istart + ic - 1 ), 2*ngw, 0.0d0, mtmp, nr ) IF (gstart == 2) THEN DO jj = 1, nc DO ii = 1, nr i = ii + ir - 1 j = jj + ic - 1 mtmp(ii,jj) = mtmp(ii,jj) + DBLE( c0( 1, i + istart - 1 ) ) * DBLE( h0c0( 1, j + istart - 1 ) ) END DO END DO END IF CALL mp_root_sum( mtmp, c0hc0(1:nr,1:nc,is), root, intra_bgrp_comm ) ! IF( coor_ip(1) == descla( is )%myr .AND. & ! coor_ip(2) == descla( is )%myc .AND. descla( is )%active_node > 0 ) THEN ! c0hc0(1:nr,1:nc,is) = mtmp ! END IF DEALLOCATE( mtmp ) END DO END DO END DO if(mod(itercg,niter_cold_restart) == 0) then !calculates free energy at lamda=1. CALL inner_loop_lambda( nfi, tfirst, tlast, eigr, irb, eigrb, & rhor, rhog, rhos, rhoc, ei1, ei2, ei3, & sfac, c0, bec, dbec, firstiter,psihpsi,c0hc0,1.d0,atot1, vpot) !calculates free energy at lamda=lambdap CALL inner_loop_lambda( nfi, tfirst, tlast, eigr, irb, eigrb, & rhor, rhog, rhos, rhoc, ei1, ei2, ei3, & sfac, c0, bec, dbec, firstiter,psihpsi,c0hc0,lambdap,atotl, vpot) !find minimum point lambda CALL three_point_min(atot0,atotl,atot1,lambdap,lambda,atotmin) else atotl=atot0 atot1=atot0 lambda=lambda_cold endif !calculates free energy and rho at lambda ! calculates the new matrix psihpsi DO is= 1, nspin psihpsi(:,:,is) = (1.d0-lambda) * psihpsi(:,:,is) + lambda * c0hc0(:,:,is) END DO ! diagonalize and calculates energies e0( : )= 0.D0 CALL inner_loop_diag( c0, bec, psihpsi, z0t, e0 ) !calculates fro e0 the new occupation and the entropy CALL efermi( nelt, n, etemp, 1, f, ef, e0, entropy, ismear, nspin ) do is=1,nspin f_bgrp(iupdwn_bgrp(is):iupdwn_bgrp(is)+nupdwn_bgrp(is)-1)=f(1:nupdwn_bgrp(is)) enddo !calculates new charge and new energy ! calculates the electronic charge density CALL rhoofr( nfi, c0diag, irb, eigrb, becdiag, dbec, rhovan, & rhor, drhor, rhog, drhog, rhos, enl, denl, ekin, dekin6 ) IF(nlcc_any) CALL set_cc( irb, eigrb, rhoc ) ! calculates the SCF potential, the total energy ! and the ionic forces vpot = rhor CALL vofrho( nfi, vpot, drhor, rhog, drhog, rhos, rhoc, tfirst, & tlast, ei1, ei2, ei3, irb, eigrb, sfac, & tau0, fion2 ) !entropy value already been calculated if(ionode) then write(37,*) niter write(37,*) atot0,atotl,atot1 write(37,*) lambda,atotmin,etot+entropy endif atotl=atot0 atot0=etot+entropy if(lambda==0.d0) exit enddo atot=atot0 !ATTENZIONE !the following is of capital importance ene_ok= .TRUE. !but it would be better to avoid it DEALLOCATE(fion2) DEALLOCATE(c0hc0) DEALLOCATE(h0c0) CALL stop_clock( 'inner_loop' ) return !==================================================================== END SUBROUTINE inner_loop_cold !==================================================================== SUBROUTINE inner_loop_lambda( nfi, tfirst, tlast, eigr, irb, eigrb, & rhor, rhog, rhos, rhoc, ei1, ei2, ei3, & sfac, c0, bec, dbec, firstiter,c0hc0,c1hc1,lambda, & free_energy, vpot ) !this subroutine for the energy matrix (1-lambda)c0hc0+labda*c1hc1 !calculates the corresponding free energy ! declares modules USE kinds, ONLY: dp USE energies, ONLY: eht, epseu, exc, etot, eself, enl, & ekin, atot, entropy, egrand USE electrons_base, ONLY: f, nspin, nel, iupdwn, nupdwn, nudx, & nelt, nx => nbspx, n => nbsp, ispin ,& f_bgrp,nupdwn_bgrp,iupdwn_bgrp USE ensemble_dft, ONLY: tens, ninner, ismear, etemp, & c0diag, becdiag, z0t, nrcx, nrlx USE gvect, ONLY: ngm USE gvecs, ONLY: ngms USE smallbox_gvec, ONLY: ngb USE gvecw, ONLY: ngw USE gvect, ONLY: gstart USE uspp_param, ONLY: nvb, ish, nh USE ions_base, ONLY: na, nat, nsp USE cell_base, ONLY: omega, alat USE local_pseudo, ONLY: vps, rhops USE io_global, ONLY: stdout, ionode, ionode_id USE dener USE uspp, ONLY: nhsa=> nkb, betae => vkb, & rhovan => becsum, deeq, nlcc_any USE cg_module, ONLY: ene_ok USE ions_positions, ONLY: tau0 USE mp, ONLY: mp_sum,mp_bcast use cp_interfaces, only: rhoofr, dforce, vofrho USE cp_main_variables, ONLY: descla, drhor, drhog USE fft_base, ONLY: dfftp, dffts ! IMPLICIT NONE !input variables INTEGER :: nfi LOGICAL :: tfirst LOGICAL :: tlast COMPLEX(kind=DP) :: eigr( ngw, nat ) COMPLEX(kind=DP) :: c0( ngw, n ) REAL(kind=DP) :: bec( nhsa, n ) REAL(kind=DP) :: dbec( nhsa, n, 3, 3 ) LOGICAL :: firstiter INTEGER :: irb( 3, nat ) COMPLEX (kind=DP) :: eigrb( ngb, nat ) REAL(kind=DP) :: rhor( dfftp%nnr, nspin ) REAL(kind=DP) :: vpot( dfftp%nnr, nspin ) COMPLEX(kind=DP) :: rhog( ngm, nspin ) REAL(kind=DP) :: rhos( dffts%nnr, nspin ) REAL(kind=DP) :: rhoc( dfftp%nnr ) COMPLEX(kind=DP) :: ei1( dfftp%nr1:dfftp%nr1, nat ) COMPLEX(kind=DP) :: ei2( dfftp%nr2:dfftp%nr2, nat ) COMPLEX(kind=DP) :: ei3( dfftp%nr3:dfftp%nr3, nat ) COMPLEX(kind=DP) :: sfac( ngms, nsp ) REAL(kind=DP), INTENT(in) :: c0hc0(nrcx,nrcx,nspin) REAL(kind=DP), INTENT(in) :: c1hc1(nrcx,nrcx,nspin) REAL(kind=DP), INTENT(in) :: lambda REAL(kind=DP), INTENT(out) :: free_energy !local variables REAL(kind=DP), ALLOCATABLE :: clhcl(:,:,:), fion2(:,:) INTEGER :: i,k, is, nss, istart, ig REAL(kind=DP), ALLOCATABLE :: eaux(:), faux(:), zauxt(:,:,:) REAL(kind=DP) :: entropy_aux, ef_aux CALL start_clock( 'inner_lambda') allocate(clhcl(nrcx, nrcx, nspin)) allocate(eaux(nx)) allocate(faux(nx)) allocate(zauxt(nrlx,nudx,nspin)) allocate(fion2(3,nat)) !calculates the matrix clhcl DO is= 1, nspin clhcl(:,:,is)=(1.d0-lambda)*c0hc0(:,:,is)+lambda*c1hc1(:,:,is) END DO CALL inner_loop_diag( c0, bec, clhcl, zauxt, eaux ) faux(:)=f(:) CALL efermi( nelt, n, etemp, 1, f, ef_aux, eaux, entropy_aux, ismear, nspin ) do is=1,nspin f_bgrp(iupdwn_bgrp(is):iupdwn_bgrp(is)+nupdwn_bgrp(is)-1)=f(1:nupdwn_bgrp(is)) enddo ! calculates the electronic charge density CALL rhoofr( nfi, c0diag, irb, eigrb, becdiag, dbec, rhovan, & rhor, drhor, rhog, drhog, rhos, enl, denl, ekin, dekin6 ) IF(nlcc_any) CALL set_cc( irb, eigrb, rhoc ) ! calculates the SCF potential, the total energy ! and the ionic forces vpot = rhor CALL vofrho( nfi, vpot, drhor, rhog, drhog, rhos, rhoc, tfirst, & tlast, ei1, ei2, ei3, irb, eigrb, sfac, & tau0, fion2 ) !entropy value already been calculated free_energy=etot+entropy_aux f(:)=faux(:) deallocate(clhcl) deallocate(faux) deallocate(eaux) deallocate(zauxt) deallocate(fion2) CALL stop_clock( 'inner_lambda') return END SUBROUTINE inner_loop_lambda SUBROUTINE three_point_min(y0,yl,y1,l,lambda,amin) !calculates the estimate for the minimum USE kinds, ONLY : DP implicit none REAL(kind=DP), INTENT(in) :: y0,yl,y1, l REAL(kind=DP), INTENT(out) :: lambda, amin REAL(kind=DP) :: a,b,c, x_min, y_min ! factors for f(x)=ax**2+b*x+c c=y0 b=(yl-y0-y1*l**2.d0+y0*l**2.d0)/(l-l**2.d0) a=y1-y0-b x_min=-b/(2.d0*a) if( x_min <= 1.d0 .and. x_min >= 0.d0) then y_min=a*x_min**2.d0+b*x_min+c if(y_min <= y0 .and. y_min <= y1) then lambda=x_min amin=y_min else if(y0 < y1) then lambda=0.d0 amin=y0 else lambda=1.d0 amin=y1 endif endif else if(y0 < y1) then lambda=0.d0 amin=y0 else lambda=1.d0 amin=y1 endif endif return END SUBROUTINE three_point_min !==================================================================== SUBROUTINE inner_loop_diag( c0, bec, psihpsi, z0t, e0 ) !==================================================================== ! ! minimizes the total free energy ! using cold smearing, ! ! declares modules USE kinds, ONLY: dp USE energies, ONLY: eht, epseu, exc, etot, eself, enl, & ekin, atot, entropy, egrand USE electrons_base, ONLY: f, nspin, nel, iupdwn, nupdwn, nudx, & nelt, nx => nbspx, n => nbsp, ispin USE ensemble_dft, ONLY: tens, ninner, ismear, etemp, & ef, c0diag, becdiag, & compute_entropy2, nrlx, nrcx, & compute_entropy_der, compute_entropy, & niter_cold_restart, lambda_cold USE gvect, ONLY: ngm USE gvecs, ONLY: ngms USE smallbox_gvec, ONLY: ngb USE gvecw, ONLY: ngw USE gvect, & ONLY: gstart USE uspp_param, ONLY: nvb, ish USE ions_base, ONLY: na, nat, nsp USE cell_base, ONLY: omega, alat USE local_pseudo, ONLY: vps, rhops USE io_global, ONLY: stdout, ionode, ionode_id USE mp_global, ONLY: intra_bgrp_comm USE dener USE uspp, ONLY: nhsa=> nkb, betae => vkb, & rhovan => becsum, deeq USE uspp_param, ONLY: nh USE cg_module, ONLY: ene_ok USE ions_positions, ONLY: tau0 USE mp, ONLY: mp_sum,mp_bcast, mp_root_sum USE cp_interfaces, ONLY: rhoofr, dforce, protate USE cg_module, ONLY: itercg USE cp_main_variables, ONLY: descla USE descriptors, ONLY: la_descriptor, descla_init USE dspev_module, ONLY: pdspev_drv, dspev_drv ! IMPLICIT NONE COMPLEX(kind=DP) :: c0( ngw, n ) REAL(kind=DP) :: bec( nhsa, n ) REAL(kind=DP) :: psihpsi( nrcx, nrcx, nspin ) REAL(kind=DP) :: z0t( nrlx, nudx, nspin ) REAL(kind=DP) :: e0( nx ) INTEGER :: i,k, is, nss, istart, ig REAL(kind=DP), ALLOCATABLE :: epsi0(:,:), dval(:), zaux(:,:), mtmp(:,:) INTEGER :: np(2), coor_ip(2), ipr, ipc, nr, nc, ir, ic, ii, jj, root, j INTEGER :: np_rot, me_rot, comm_rot, nrl, kk CALL start_clock( 'inner_diag') e0( : )= 0.D0 DO is = 1, nspin istart = iupdwn( is ) nss = nupdwn( is ) np_rot = descla( is )%npr * descla( is )%npc me_rot = descla( is )%mype nrl = descla( is )%nrl comm_rot = descla( is )%comm allocate( dval( nx ) ) dval = 0.0d0 IF( descla( is )%active_node > 0 ) THEN ! ALLOCATE( epsi0( nrl, nss ), zaux( nrl, nss ) ) CALL blk2cyc_redist( nss, epsi0, nrl, nss, psihpsi(1,1,is), SIZE(psihpsi,1), SIZE(psihpsi,2), descla(is) ) CALL pdspev_drv( 'V', epsi0, nrl, dval, zaux, nrl, nrl, nss, np_rot, me_rot, comm_rot ) ! IF( me_rot /= 0 ) dval = 0.0d0 ! ELSE ALLOCATE( epsi0( 1, 1 ), zaux( 1, 1 ) ) END IF CALL mp_sum( dval, intra_bgrp_comm ) DO i = 1, nss e0( i+istart-1 )= dval( i ) END DO z0t(:,:,is) = 0.0d0 IF( descla( is )%active_node > 0 ) THEN !NB zaux is transposed !ALLOCATE( mtmp( nudx, nudx ) ) z0t( 1:nrl , 1:nss, is ) = zaux( 1:nrl, 1:nss ) END IF DEALLOCATE( epsi0 , zaux, dval ) END DO ! rotates the wavefunctions c0 and the overlaps bec ! (the occupation matrix f_ij becomes diagonal f_i) CALL rotate ( nrlx, z0t, c0, bec, c0diag, becdiag ) CALL stop_clock( 'inner_diag') RETURN END SUBROUTINE espresso-5.1/CPV/src/nl_base.f900000644000175000017500000006166012341373026014456 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !----------------------------------------------------------------------- subroutine nlsm1_x ( n, nspmn, nspmx, eigr, c, becp ) !----------------------------------------------------------------------- ! computes: the array becp ! becp(ia,n,iv,is)= ! = sum_g [(-i)**l beta(g,iv,is) e^(-ig.r_ia)]^* c(g,n) ! = delta_l0 beta(g=0,iv,is) c(g=0,n) ! +sum_g> beta(g,iv,is) 2 re[(i)**l e^(ig.r_ia) c(g,n)] ! ! routine makes use of c*(g)=c(-g) (g> see routine ggen) ! input : beta(ig,l,is), eigr, c ! output: becp as parameter ! USE kinds, ONLY : DP USE mp, ONLY : mp_sum USE mp_global, ONLY : nproc_bgrp, intra_bgrp_comm USE ions_base, only : na, nat USE gvecw, only : ngw USE uspp, only : nkb, nhtol, beta USE uspp_param, only : nh, ish ! USE gvect, ONLY : gstart ! implicit none integer, intent(in) :: n, nspmn, nspmx complex(DP), intent(in) :: eigr( :, : ), c( :, : ) real(DP), intent(out) :: becp( :, : ) ! integer :: isa, ig, is, iv, ia, l, inl, i, nhx real(DP), allocatable :: becps( :, : ) complex(DP), allocatable :: wrk2( :, : ) complex(DP) :: cfact ! call start_clock( 'nlsm1' ) isa = 0 do is = 1, nspmn - 1 isa = isa + na(is) end do do is = nspmn, nspmx ! IF( nh( is ) < 1 ) THEN isa = isa + na(is) CYCLE END IF ! allocate( wrk2( ngw, na( is ) ) ) ! IF( nproc_bgrp > 1 ) THEN nhx = nh( is ) * na( is ) IF( MOD( nhx, 2 ) == 0 ) nhx = nhx + 1 ALLOCATE( becps( nhx, n ) ) becps = 0.0d0 END IF ! do iv = 1, nh( is ) ! !$omp parallel default(shared), private(l,ig,ia,cfact) l = nhtol( iv, is ) ! if (l == 0) then cfact = cmplx( 1.0_dp , 0.0_dp ) else if (l == 1) then cfact = - cmplx( 0.0_dp , 1.0_dp ) else if (l == 2) then cfact = - cmplx( 0.0_dp , 1.0_dp ) cfact = cfact * cfact else if (l == 3) then cfact = - cmplx( 0.0_dp , 1.0_dp ) cfact = cfact * cfact * cfact endif ! !$omp do do ia=1,na(is) ! ! q = 0 component (with weight 1.0) ! if (gstart == 2) then wrk2( 1, ia ) = cfact * beta(1,iv,is) * eigr(1,ia+isa) end if ! ! q > 0 components (with weight 2.0) ! do ig = gstart, ngw wrk2( ig, ia ) = 2.0d0 * cfact * beta(ig,iv,is) * eigr(ig,ia+isa) end do ! end do !$omp end do !$omp end parallel ! IF( nproc_bgrp > 1 ) THEN inl=(iv-1)*na(is)+1 CALL dgemm( 'T', 'N', na(is), n, 2*ngw, 1.0d0, wrk2, 2*ngw, c, 2*ngw, 0.0d0, becps( inl, 1 ), nhx ) ELSE inl=ish(is)+(iv-1)*na(is)+1 CALL dgemm( 'T', 'N', na(is), n, 2*ngw, 1.0d0, wrk2, 2*ngw, c, 2*ngw, 0.0d0, becp( inl, 1 ), nkb ) END IF end do deallocate( wrk2 ) IF( nproc_bgrp > 1 ) THEN ! inl = ish(is) + 1 ! CALL mp_sum( becps, intra_bgrp_comm ) do i = 1, n do iv = inl , ( inl + na(is) * nh(is) - 1 ) becp( iv, i ) = becps( iv - inl + 1, i ) end do end do DEALLOCATE( becps ) END IF isa = isa + na(is) end do call stop_clock( 'nlsm1' ) return end subroutine nlsm1_x !----------------------------------------------------------------------- !------------------------------------------------------------------------- subroutine nlsm2_bgrp_x( ngw, nkb, eigr, c_bgrp, becdr_bgrp, nbspx_bgrp, nbsp_bgrp ) !----------------------------------------------------------------------- ! computes: the array becdr ! becdr(ia,n,iv,is,k) ! =2.0 sum_g> g_k beta(g,iv,is) re[ (i)**(l+1) e^(ig.r_ia) c(g,n)] ! ! routine makes use of c*(g)=c(-g) (g> see routine ggen) ! input : eigr, c ! output: becdr ! USE kinds, ONLY : DP use ions_base, only : nsp, na, nat use uspp, only : nhtol, beta use uspp_param, only : nh, ish use cell_base, only : tpiba use mp, only : mp_sum use mp_global, only : nproc_bgrp, intra_bgrp_comm use gvect, only : g, gstart ! implicit none integer, intent(in) :: ngw, nkb, nbspx_bgrp, nbsp_bgrp complex(DP), intent(in) :: eigr(:,:), c_bgrp(:,:) real(DP), intent(out) :: becdr_bgrp(:,:,:) ! real(DP), allocatable :: gk(:) complex(DP), allocatable :: wrk2(:,:) ! integer :: ig, is, iv, ia, k, l, inl, isa, i real(DP) :: arg complex(DP) :: cfact ! call start_clock( 'nlsm2' ) allocate( gk( ngw ) ) becdr_bgrp = 0.d0 ! do k = 1, 3 do ig=1,ngw gk(ig)=g(k,ig)*tpiba end do ! isa = 0 do is=1,nsp allocate( wrk2( ngw, na( is ) ) ) do iv=1,nh(is) ! ! order of states: s_1 p_x1 p_z1 p_y1 s_2 p_x2 p_z2 p_y2 ! !$omp parallel default(none), shared(na,nhtol,gstart,wrk2,gk,beta,eigr,ngw,iv,is,isa), private(l,cfact,ig,arg,ia) l=nhtol(iv,is) ! compute (-i)^(l+1) ! if (l == 0) then cfact = - cmplx( 0.0_dp , 1.0_dp ) else if (l == 1) then cfact = - cmplx( 0.0_dp , 1.0_dp ) cfact = cfact * cfact else if (l == 2) then cfact = - cmplx( 0.0_dp , 1.0_dp ) cfact = cfact * cfact * cfact else if (l == 3) then cfact = cmplx( 1.0_dp , 0.0_dp ) endif !$omp do do ia=1,na(is) ! q = 0 component (with weight 1.0) if (gstart == 2) then wrk2(1,ia) = cfact*gk(1)*beta(1,iv,is)*eigr(1,ia+isa) end if ! q > 0 components (with weight 2.0) do ig=gstart,ngw arg = 2.0d0*gk(ig)*beta(ig,iv,is) wrk2(ig,ia) = cfact * arg * eigr(ig,ia+isa) end do end do !$omp end do !$omp end parallel inl=ish(is)+(iv-1)*na(is)+1 CALL dgemm( 'T', 'N', na(is), nbsp_bgrp, 2*ngw, 1.0d0, wrk2, 2*ngw, & c_bgrp, 2*ngw, 0.0d0, becdr_bgrp( inl, 1, k ), nkb ) end do deallocate( wrk2 ) isa = isa + na(is) end do end do deallocate( gk ) IF( nproc_bgrp > 1 ) THEN CALL mp_sum( becdr_bgrp, intra_bgrp_comm ) END IF call stop_clock( 'nlsm2' ) ! return end subroutine nlsm2_bgrp_x !----------------------------------------------------------------------- !----------------------------------------------------------------------- SUBROUTINE ennl_x( ennl_val, rhovan, bec_bgrp ) !----------------------------------------------------------------------- ! ! calculation of nonlocal potential energy term and array rhovan ! use kinds, only : DP use uspp_param, only : nh, ish use uspp, only : dvan use electrons_base, only : nbsp_bgrp, nspin, ispin_bgrp, f_bgrp, nbspx_bgrp use ions_base, only : nsp, na ! implicit none ! ! input ! real(DP), intent(out) :: ennl_val real(DP), intent(out) :: rhovan( :, :, : ) real(DP), intent(in) :: bec_bgrp( :, : ) ! ! local ! real(DP) :: sumt, sums(2), ennl_t integer :: is, iv, jv, ijv, inl, jnl, isa, isat, ism, ia, iss, i ! ennl_t = 0.d0 ! ! xlf does not like name of function used for OpenMP reduction ! !$omp parallel default(shared), & !$omp private(is,iv,jv,ijv,isa,isat,ism,ia,inl,jnl,sums,i,iss,sumt), reduction(+:ennl_t) do is = 1, nsp do iv = 1, nh(is) do jv = iv, nh(is) ijv = (jv-1)*jv/2 + iv isa = 0 do ism = 1, is - 1 isa = isa + na(ism) end do !$omp do do ia = 1, na(is) inl = ish(is)+(iv-1)*na(is)+ia jnl = ish(is)+(jv-1)*na(is)+ia isat = isa+ia sums = 0.d0 do i = 1, nbsp_bgrp iss = ispin_bgrp(i) sums(iss) = sums(iss) + f_bgrp(i) * bec_bgrp(inl,i) * bec_bgrp(jnl,i) end do sumt = 0.d0 do iss = 1, nspin rhovan( ijv, isat, iss ) = sums( iss ) sumt = sumt + sums( iss ) end do if( iv .ne. jv ) sumt = 2.d0 * sumt ennl_t = ennl_t + sumt * dvan( jv, iv, is) end do !$omp end do end do end do end do !$omp end parallel ! ennl_val = ennl_t ! return end subroutine ennl_x !----------------------------------------------------------------------- !----------------------------------------------------------------------- subroutine calrhovan_x( rhovan, bec, iwf ) !----------------------------------------------------------------------- ! ! calculation of rhovan relative to state iwf ! use kinds, only : DP use uspp_param, only : nhm, nh, ish use uspp, only : nkb, dvan use electrons_base, only : n => nbsp, nspin, ispin, f use ions_base, only : nsp, nat, na ! implicit none ! ! input ! real(DP), intent(out) :: rhovan( :, :, : ) real(DP), intent(in) :: bec( :, : ) integer, intent(in) :: iwf ! ! local ! integer :: is, iv, jv, ijv, inl, jnl, isa, ism, ia, iss ! do is = 1, nsp do iv = 1, nh(is) do jv = iv, nh(is) ijv = (jv-1)*jv/2 + iv isa = 0 do ism = 1, is - 1 isa = isa + na(ism) end do do ia = 1, na(is) inl = ish(is)+(iv-1)*na(is)+ia jnl = ish(is)+(jv-1)*na(is)+ia isa = isa+1 iss = ispin(iwf) rhovan( ijv, isa, iss ) = f(iwf) * bec(inl,iwf) * bec(jnl,iwf) end do end do end do end do ! return end subroutine calrhovan_x !----------------------------------------------------------------------- !----------------------------------------------------------------------- subroutine calbec_x ( nspmn, nspmx, eigr, c, bec ) !----------------------------------------------------------------------- ! this routine calculates array bec ! ! < psi_n | beta_i,i > = c_n(0) beta_i,i(0) + ! 2 sum_g> re(c_n*(g) (-i)**l beta_i,i(g) e^-ig.r_i) ! ! routine makes use of c(-g)=c*(g) and beta(-g)=beta*(g) ! USE kinds, ONLY : DP use ions_base, only : na use io_global, only : stdout use electrons_base, only : nbsp use control_flags, only : iverbosity use uspp_param, only : nh, ish use cp_interfaces, only : nlsm1 ! implicit none ! integer, intent(in) :: nspmn, nspmx real(DP), intent(out) :: bec( :, : ) complex(DP), intent(in) :: c( :, : ), eigr( :, : ) ! local variables integer :: is, ia, i , iv ! call start_clock( 'calbec' ) ! call nlsm1( nbsp, nspmn, nspmx, eigr, c, bec ) ! if ( iverbosity > 1 ) then WRITE( stdout,*) do is=1,nspmx WRITE( stdout,'(33x,a,i4)') ' calbec: bec (is)',is do ia=1,na(is) WRITE( stdout,'(33x,a,i4)') ' calbec: bec (ia)',ia WRITE( stdout,'(8f9.4)') & & ((bec(ish(is)+(iv-1)*na(is)+ia,i),iv=1,nh(is)),i=1,nbsp) end do end do endif call stop_clock( 'calbec' ) ! return end subroutine calbec_x !----------------------------------------------------------------------- !----------------------------------------------------------------------- subroutine calbec_bgrp_x ( nspmn, nspmx, eigr, c_bgrp, bec_bgrp ) !----------------------------------------------------------------------- ! this routine calculates array bec ! ! < psi_n | beta_i,i > = c_n(0) beta_i,i(0) + ! 2 sum_g> re(c_n*(g) (-i)**l beta_i,i(g) e^-ig.r_i) ! ! routine makes use of c(-g)=c*(g) and beta(-g)=beta*(g) ! USE kinds, ONLY : DP use ions_base, only : na, nat use electrons_base, only : nbsp_bgrp, nbspx_bgrp use gvecw, only : ngw use uspp_param, only : nh, ish use uspp, only : nkb use cp_interfaces, only : nlsm1 ! implicit none ! integer, intent(in) :: nspmn, nspmx real(DP), intent(out) :: bec_bgrp( :, : ) complex(DP), intent(in) :: c_bgrp( :, : ), eigr( :, : ) ! call start_clock( 'calbec' ) ! call nlsm1( nbsp_bgrp, nspmn, nspmx, eigr, c_bgrp, bec_bgrp ) ! call stop_clock( 'calbec' ) ! return end subroutine calbec_bgrp_x !----------------------------------------------------------------------- SUBROUTINE caldbec_bgrp_x( eigr, c_bgrp, dbec, descla ) !----------------------------------------------------------------------- ! ! this routine calculates array dbec, derivative of bec: ! ! < psi_n | beta_i,i > = c_n(0) beta_i,i(0) + ! 2 sum_g> re(c_n*(g) (-i)**l beta_i,i(g) e^-ig.r_i) ! ! with respect to cell parameters h ! ! routine makes use of c(-g)=c*(g) and beta(-g)=beta*(g) ! USE kinds, ONLY : DP use mp, only : mp_sum use mp_global, only : nproc_bgrp, intra_bgrp_comm, inter_bgrp_comm, nbgrp use ions_base, only : na, nat, nsp use uspp, only : nhtol, nkb, dbeta use uspp_param, only : nh, nhm, ish use gvect, only : gstart use gvecw, only : ngw USE descriptors, ONLY : la_descriptor use electrons_base, only : nspin, iupdwn, nupdwn, nbspx_bgrp, iupdwn_bgrp, nupdwn_bgrp, & ibgrp_g2l, i2gupdwn_bgrp, nbspx, nbsp_bgrp ! implicit none ! complex(DP), intent(in) :: c_bgrp( :, : ) complex(DP), intent(in) :: eigr(:,:) real(DP), intent(out) :: dbec( :, :, :, : ) TYPE(la_descriptor), intent(in) :: descla( : ) ! complex(DP), allocatable :: wrk2(:,:) real(DP), allocatable :: dwrk_bgrp(:,:) ! integer :: ig, is, iv, ia, l, inl, i, j, ii, isa, nanh, iw, iss, nr, ir, istart, nss integer :: n1, n2, m1, m2, ibgrp_i, nrcx complex(DP) :: cfact ! nrcx = MAXVAL(descla(:)%nrcx) ! dbec = 0.0d0 ! do j=1,3 do i=1,3 isa = 0 do is=1,nsp allocate( wrk2( ngw, na(is) ) ) nanh = na(is)*nh(is) allocate( dwrk_bgrp( nanh, nbspx_bgrp ) ) do iv=1,nh(is) l=nhtol(iv,is) if (l == 0) then cfact = cmplx( 1.0_dp , 0.0_dp ) else if (l == 1) then cfact = - cmplx( 0.0_dp , 1.0_dp ) else if (l == 2) then cfact = - cmplx( 0.0_dp , 1.0_dp ) cfact = cfact * cfact else if (l == 3) then cfact = - cmplx( 0.0_dp , 1.0_dp ) cfact = cfact * cfact * cfact else CALL errore(' caldbec ', ' l not implemented ', ABS( l ) ) endif ! do ia=1,na(is) if (gstart == 2) then ! q = 0 component (with weight 1.0) wrk2(1,ia)= cfact*dbeta(1,iv,is,i,j)*eigr(1,ia+isa) end if ! q > 0 components (with weight 2.0) do ig = gstart, ngw wrk2(ig,ia) = 2.0d0*cfact*dbeta(ig,iv,is,i,j)*eigr(ig,ia+isa) end do end do inl=(iv-1)*na(is)+1 CALL dgemm( 'T', 'N', na(is), nbsp_bgrp, 2*ngw, 1.0d0, wrk2, 2*ngw, c_bgrp, 2*ngw, 0.0d0, dwrk_bgrp(inl,1), nanh ) end do deallocate( wrk2 ) if( nproc_bgrp > 1 ) then call mp_sum( dwrk_bgrp, intra_bgrp_comm ) end if inl=ish(is)+1 do iss=1,nspin IF( descla( iss )%active_node > 0 ) THEN nr = descla( iss )%nr ir = descla( iss )%ir istart = iupdwn( iss ) nss = nupdwn( iss ) do ii = 1, nr ibgrp_i = ibgrp_g2l( ii + ir - 1 + istart - 1 ) IF( ibgrp_i > 0 ) THEN do iw = 1, nanh dbec( iw + inl - 1, ii + (iss-1)*nrcx, i, j ) = dwrk_bgrp( iw, ibgrp_i ) end do END IF end do END IF end do deallocate( dwrk_bgrp ) isa = isa + na(is) end do end do end do if( nbgrp > 1 ) then CALL mp_sum( dbec, inter_bgrp_comm ) end if ! return end subroutine caldbec_bgrp_x !----------------------------------------------------------------------- !----------------------------------------------------------------------- subroutine dennl_x( bec_bgrp, dbec, drhovan, denl, descla ) !----------------------------------------------------------------------- ! ! compute the contribution of the non local part of the ! pseudopotentials to the derivative of E with respect to h ! USE kinds, ONLY : DP use uspp_param, only : nh, nhm, ish use uspp, only : nkb, dvan, deeq use ions_base, only : nsp, na, nat use cell_base, only : h use io_global, only : stdout use mp, only : mp_sum use mp_global, only : intra_bgrp_comm USE descriptors, ONLY : la_descriptor use electrons_base, only : nbspx_bgrp, nbsp_bgrp, ispin_bgrp, f_bgrp, nspin, iupdwn, nupdwn, ibgrp_g2l use gvect, only : gstart implicit none real(DP), intent(in) :: dbec( :, :, :, : ) real(DP), intent(in) :: bec_bgrp( :, : ) real(DP), intent(out) :: drhovan( :, :, :, :, : ) real(DP), intent(out) :: denl( 3, 3 ) TYPE(la_descriptor), intent(in) :: descla( : ) real(DP) :: dsum(3,3),dsums(2,3,3), detmp(3,3) integer :: is, iv, jv, ijv, inl, jnl, isa, ism, ia, iss, i,j,k integer :: istart, nss, ii, ir, nr, ibgrp, nrcx ! nrcx = MAXVAL(descla(:)%nrcx) ! denl=0.d0 drhovan=0.0d0 do is=1,nsp do iv=1,nh(is) do jv=iv,nh(is) ijv = (jv-1)*jv/2 + iv isa=0 do ism=1,is-1 isa=isa+na(ism) end do do ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(is)+(jv-1)*na(is)+ia isa=isa+1 dsums=0.d0 do iss=1,nspin IF( ( descla( iss )%active_node > 0 ) .AND. ( descla( iss )%myr == descla( iss )%myc ) ) THEN nr = descla( iss )%nr ir = descla( iss )%ir istart = iupdwn( iss ) nss = nupdwn( iss ) do i=1,nr ii = i+istart-1+ir-1 ibgrp = ibgrp_g2l( ii ) IF( ibgrp > 0 ) THEN do k=1,3 do j=1,3 dsums(iss,k,j)=dsums(iss,k,j)+f_bgrp(ibgrp)* & & (dbec(inl,i+(iss-1)*nrcx,k,j)*bec_bgrp(jnl,ibgrp) & & + bec_bgrp(inl,ibgrp)*dbec(jnl,i+(iss-1)*nrcx,k,j)) enddo enddo END IF end do dsum=0.d0 do k=1,3 do j=1,3 drhovan(ijv,isa,iss,j,k)=dsums(iss,j,k) dsum(j,k)=dsum(j,k)+dsums(iss,j,k) enddo enddo if(iv.ne.jv) dsum=2.d0*dsum denl = denl + dsum * dvan(jv,iv,is) END IF end do end do end do end do end do CALL mp_sum( denl, intra_bgrp_comm ) CALL mp_sum( drhovan, intra_bgrp_comm ) ! WRITE(6,*) 'DEBUG enl (CP) = ' ! detmp = denl ! detmp = MATMUL( detmp(:,:), TRANSPOSE( h ) ) ! WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) !5555 format(1x,f12.5,1x,f12.5,1x,f12.5/ & ! & 1x,f12.5,1x,f12.5,1x,f12.5/ & ! & 1x,f12.5,1x,f12.5,1x,f12.5//) ! ! return end subroutine dennl_x !----------------------------------------------------------------------- !----------------------------------------------------------------------- subroutine nlfq_bgrp_x( c_bgrp, eigr, bec_bgrp, becdr_bgrp, fion ) !----------------------------------------------------------------------- ! ! contribution to fion due to nonlocal part ! USE kinds, ONLY : DP use uspp, only : nkb, dvan, deeq use uspp_param, only : nhm, nh, ish, nvb use ions_base, only : nax, nat, nsp, na use electrons_base, only : nbsp_bgrp, f_bgrp, nbspx_bgrp, ispin_bgrp use gvecw, only : ngw use constants, only : pi, fpi use mp_global, only : intra_bgrp_comm, nbgrp, inter_bgrp_comm use mp, only : mp_sum use cp_interfaces, only : nlsm2_bgrp ! implicit none ! COMPLEX(DP), INTENT(IN) :: c_bgrp( :, : ), eigr( :, : ) REAL(DP), INTENT(IN) :: bec_bgrp( :, : ) REAL(DP), INTENT(OUT) :: becdr_bgrp( :, :, : ) REAL(DP), INTENT(OUT) :: fion( :, : ) ! integer :: k, is, ia, isa, inl, iv, jv, i real(DP) :: temp real(DP) :: sum_tmpdr ! real(DP), allocatable :: tmpbec(:,:), tmpdr(:,:) real(DP), allocatable :: fion_loc(:,:) #ifdef __OPENMP INTEGER :: mytid, ntids, omp_get_thread_num, omp_get_num_threads #endif ! call start_clock( 'nlfq' ) ! ! nlsm2 fills becdr ! call nlsm2_bgrp( ngw, nkb, eigr, c_bgrp, becdr_bgrp, nbspx_bgrp, nbsp_bgrp ) ! allocate ( fion_loc( 3, nat ) ) ! fion_loc = 0.0d0 ! DO k = 1, 3 !$omp parallel default(none), & !$omp shared(becdr_bgrp,bec_bgrp,fion_loc,k,f_bgrp,deeq,dvan,nbsp_bgrp,ish,nh,na,nsp,nhm,nbspx_bgrp,ispin_bgrp), & !$omp private(tmpbec,tmpdr,isa,is,ia,iv,jv,inl,temp,i,mytid,ntids,sum_tmpdr) #ifdef __OPENMP mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads #endif allocate ( tmpbec( nhm, nbspx_bgrp ), tmpdr( nhm, nbspx_bgrp ) ) isa = 0 ! DO is=1,nsp DO ia=1,na(is) isa=isa+1 #ifdef __OPENMP ! distribute atoms round robin to threads ! IF( MOD( isa, ntids ) /= mytid ) CYCLE #endif tmpbec = 0.d0 tmpdr = 0.d0 do iv=1,nh(is) do jv=1,nh(is) inl=ish(is)+(jv-1)*na(is)+ia do i = 1, nbsp_bgrp temp = dvan(iv,jv,is) + deeq(jv,iv,isa,ispin_bgrp( i ) ) tmpbec(iv,i) = tmpbec(iv,i) + temp * bec_bgrp(inl,i) end do end do end do do iv=1,nh(is) inl=ish(is)+(iv-1)*na(is)+ia do i = 1, nbsp_bgrp tmpdr(iv,i) = f_bgrp( i ) * becdr_bgrp( inl, i, k ) end do end do sum_tmpdr = 0.0d0 do i = 1, nbsp_bgrp do iv = 1, nh(is) sum_tmpdr = sum_tmpdr + tmpdr(iv,i)*tmpbec(iv,i) end do end do fion_loc(k,isa) = fion_loc(k,isa)-2.d0*sum_tmpdr END DO END DO deallocate ( tmpbec, tmpdr ) !$omp end parallel END DO ! IF( nbgrp > 1 ) THEN CALL mp_sum( fion_loc, inter_bgrp_comm ) END IF ! fion = fion + fion_loc ! ! end of x/y/z loop ! deallocate ( fion_loc ) ! call stop_clock( 'nlfq' ) ! return end subroutine nlfq_bgrp_x espresso-5.1/CPV/src/runcp.f900000644000175000017500000004160012341373026014172 0ustar mbamba! ! Copyright (C) 2002-2009 Quantm ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! Written and Revised by Carlo Cavazzoni !=----------------------------------------------------------------------------------=! SUBROUTINE runcp_uspp_x & ( nfi, fccc, ccc, ema0bg, dt2bye, rhos, bec_bgrp, c0_bgrp, cm_bgrp, fromscra, restart ) ! ! This subroutine performs a Car-Parrinello or Steepest-Descent step ! on the electronic variables, computing forces on electrons ! ! on input: ! c0_bgrp wave functions at time t ! cm_bgrp wave functions at time t - dt ! ! on output: ! cm_bgrp wave functions at time t + dt, not yet othogonalized ! USE parallel_include USE kinds, ONLY : DP USE mp_global, ONLY : me_bgrp, & my_bgrp_id, nbgrp, inter_bgrp_comm USE mp, ONLY : mp_sum USE fft_base, ONLY : dffts, tg_gather use wave_base, only : wave_steepest, wave_verlet use control_flags, only : lwf, tsde use uspp, only : deeq, vkb use gvect, only : gstart use electrons_base, only : nbsp_bgrp, ispin_bgrp, f_bgrp, nspin, nupdwn_bgrp, iupdwn_bgrp use wannier_subroutines, only : ef_potential use efield_module, only : dforce_efield, tefield, dforce_efield2, tefield2 use gvecw, only : ngw, ngwx USE cp_interfaces, ONLY : dforce USE ldaU_cp, ONLY : lda_plus_u, vupsi ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nfi REAL(DP) :: fccc, ccc REAL(DP) :: ema0bg(:), dt2bye REAL(DP) :: rhos(:,:) REAL(DP) :: bec_bgrp(:,:) COMPLEX(DP) :: c0_bgrp(:,:), cm_bgrp(:,:) LOGICAL, OPTIONAL, INTENT(IN) :: fromscra LOGICAL, OPTIONAL, INTENT(IN) :: restart ! ! real(DP) :: verl1, verl2, verl3 real(DP), allocatable :: emadt2(:) real(DP), allocatable :: emaver(:) complex(DP), allocatable :: c2(:), c3(:), c2tmp(:), c3tmp(:) REAL(DP), ALLOCATABLE :: tg_rhos(:,:), ftmp(:) INTEGER, ALLOCATABLE :: itmp(:) integer :: i, nsiz, incr, idx, idx_in, ierr integer :: iwfc, nwfc, is, ii, tg_rhos_siz, c2_siz integer :: iflag logical :: ttsde iflag = 0 ! IF( PRESENT( fromscra ) ) THEN IF( fromscra ) iflag = 1 END IF IF( PRESENT( restart ) ) THEN IF( restart ) iflag = 2 END IF IF( dffts%have_task_groups ) THEN tg_rhos_siz = dffts%nogrp * dffts%tg_nnr c2_siz = dffts%nogrp * ngwx ELSE tg_rhos_siz = 1 c2_siz = ngw END IF ! ! ... set verlet variables ! verl1 = 2.0d0 * fccc verl2 = 1.0d0 - verl1 verl3 = 1.0d0 * fccc ALLOCATE( emadt2( ngw ) ) ALLOCATE( emaver( ngw ) ) ccc = fccc * dt2bye emadt2 = dt2bye * ema0bg emaver = emadt2 * verl3 IF( iflag == 0 ) THEN ttsde = tsde ELSE IF( iflag == 1 ) THEN ttsde = .TRUE. ELSE IF( iflag == 2 ) THEN ttsde = .FALSE. END IF !============================================================================ ! Lingzhu Kong ! IF( lwf ) THEN IF( .false. ) THEN call ef_potential( nfi, rhos, bec_bgrp, deeq, vkb, c0_bgrp, cm_bgrp,& emadt2, emaver, verl1, verl2 ) ELSE allocate( c2( c2_siz ), c3( c2_siz ) ) allocate( tg_rhos( tg_rhos_siz, nspin ) ) c2 = 0D0 c3 = 0D0 IF( dffts%have_task_groups ) THEN ! ! The potential in rhos is distributed across all processors ! We need to redistribute it so that it is completely contained in the ! processors of an orbital TASK-GROUP ! DO i = 1, nspin CALL tg_gather( dffts, rhos(:,i), tg_rhos(:,i) ) END DO incr = 2 * dffts%nogrp ELSE incr = 2 END IF DO i = 1, nbsp_bgrp, incr IF( dffts%have_task_groups ) THEN ! !The input coefficients to dforce cover eigenstates i:i+2*NOGRP-1 !Thus, in dforce the dummy arguments for c0_bgrp(1,i) and !c0_bgrp(1,i+1) hold coefficients for eigenstates i,i+2*NOGRP-2,2 !and i+1,i+2*NOGRP...for example if NOGRP is 4 then we would have !1-3-5-7 and 2-4-6-8 ! if( tefield .OR. tefield2 ) then CALL errore( ' runcp_uspp ', ' electric field with task group not implemented yet ', 1 ) end if IF( nspin > 1 .AND. ispin_bgrp(i) /= ispin_bgrp( MIN( nbsp_bgrp, i+incr-1 ) ) ) THEN ! when computing force with task group and states with different spin, ! we need to compute spin up and spin down separately because the logics ! of computing two states with different spin at the same time do not work any longer ALLOCATE( c2tmp( c2_siz ) ) ALLOCATE( c3tmp( c2_siz ) ) ALLOCATE( ftmp( nbsp_bgrp ) ) ALLOCATE( itmp( nbsp_bgrp ) ) ! spin up itmp = ispin_bgrp(i) ftmp = f_bgrp(i) c2tmp = 0.0d0 c3tmp = 0.0d0 CALL dforce( i, bec_bgrp, vkb, c0_bgrp, c2tmp, c3tmp, tg_rhos, tg_rhos_siz, itmp, ftmp, nbsp_bgrp, nspin ) idx_in = 1 DO idx = 1, incr, 2 IF( i + idx - 1 <= nbsp_bgrp ) THEN IF( ispin_bgrp( i + idx - 1 ) == ispin_bgrp(i) ) THEN c2( (idx_in-1)*ngw+1 : idx_in*ngw ) = c2tmp( (idx_in-1)*ngw+1 : idx_in*ngw ) END IF IF( ispin_bgrp( i + idx ) == ispin_bgrp(i) ) THEN c3( (idx_in-1)*ngw+1 : idx_in*ngw ) = c3tmp( (idx_in-1)*ngw+1 : idx_in*ngw ) END IF END IF idx_in = idx_in + 1 END DO ! spin down itmp = ispin_bgrp( MIN( nbsp_bgrp, i+incr-1 ) ) ftmp = f_bgrp( MIN( nbsp_bgrp, i+incr-1 ) ) c2tmp = 0.0d0 c3tmp = 0.0d0 CALL dforce( i, bec_bgrp, vkb, c0_bgrp, c2tmp, c3tmp, tg_rhos, tg_rhos_siz, itmp, ftmp, nbsp_bgrp, nspin ) idx_in = 1 DO idx = 1, incr, 2 IF( i + idx - 1 <= nbsp_bgrp ) THEN IF( ispin_bgrp( i + idx - 1 ) == ispin_bgrp( MIN( nbsp_bgrp, i+incr-1 ) ) ) THEN c2( (idx_in-1)*ngw+1 : idx_in*ngw ) = c2tmp( (idx_in-1)*ngw+1 : idx_in*ngw ) END IF IF( ispin_bgrp( i + idx ) == ispin_bgrp( MIN( nbsp_bgrp, i+incr-1 ) ) ) THEN c3( (idx_in-1)*ngw+1 : idx_in*ngw ) = c3tmp( (idx_in-1)*ngw+1 : idx_in*ngw ) END IF END IF idx_in = idx_in + 1 END DO DEALLOCATE( itmp ) DEALLOCATE( ftmp ) DEALLOCATE( c3tmp ) DEALLOCATE( c2tmp ) ELSE CALL dforce( i, bec_bgrp, vkb, c0_bgrp, c2, c3, tg_rhos, tg_rhos_siz, ispin_bgrp, f_bgrp, nbsp_bgrp, nspin ) END IF IF ( lda_plus_u ) THEN idx_in = 1 DO idx = 1, incr, 2 ii = i+idx-1 IF( ii <= nbsp_bgrp ) THEN c2( (idx_in-1)*ngw+1 : idx_in*ngw ) = & c2( (idx_in-1)*ngw+1 : idx_in*ngw ) - vupsi(1:ngw,ii) c3( (idx_in-1)*ngw+1 : idx_in*ngw ) = & c3( (idx_in-1)*ngw+1 : idx_in*ngw ) - vupsi(1:ngw,ii+1) END IF idx_in = idx_in + 1 ENDDO END IF ELSE CALL dforce( i, bec_bgrp, vkb, c0_bgrp, c2, c3, rhos, & SIZE(rhos,1), ispin_bgrp, f_bgrp, nbsp_bgrp, nspin ) IF ( lda_plus_u ) THEN c2(:) = c2(:) - vupsi(:,i) c3(:) = c3(:) - vupsi(:,i+1) END IF END IF IF( tefield ) THEN CALL dforce_efield ( bec_bgrp, i, c0_bgrp, c2, c3, rhos) END IF IF( tefield2 ) THEN CALL dforce_efield2 ( bec_bgrp, i, c0_bgrp, c2, c3, rhos) END IF IF( iflag == 2 ) THEN DO idx = 1, incr, 2 IF( i + idx - 1 <= nbsp_bgrp ) THEN cm_bgrp( :, i+idx-1) = c0_bgrp(:,i+idx-1) cm_bgrp( :, i+idx ) = c0_bgrp(:,i+idx ) END IF ENDDO END IF idx_in = 1 DO idx = 1, incr, 2 IF( i + idx - 1 <= nbsp_bgrp ) THEN IF (tsde) THEN CALL wave_steepest( cm_bgrp(:, i+idx-1 ), c0_bgrp(:, i+idx-1 ), emaver, c2(:), ngw, idx_in ) CALL wave_steepest( cm_bgrp(:, i+idx ), c0_bgrp(:, i+idx ), emaver, c3(:), ngw, idx_in ) ELSE CALL wave_verlet( cm_bgrp(:, i+idx-1 ), c0_bgrp(:, i+idx-1 ), verl1, verl2, emaver, c2(:), ngw, idx_in ) CALL wave_verlet( cm_bgrp(:, i+idx ), c0_bgrp(:, i+idx ), verl1, verl2, emaver, c3(:), ngw, idx_in ) ENDIF IF ( gstart == 2 ) THEN cm_bgrp(1,i+idx-1) = CMPLX(real(cm_bgrp(1,i+idx-1)),0.0d0,kind=dp) cm_bgrp(1,i+idx ) = CMPLX(real(cm_bgrp(1,i+idx )),0.0d0,kind=dp) END IF END IF ! idx_in = idx_in + 1 ! END DO end do DEALLOCATE( c2 ) DEALLOCATE( c3 ) DEALLOCATE( tg_rhos ) END IF DEALLOCATE( emadt2 ) DEALLOCATE( emaver ) ! END SUBROUTINE runcp_uspp_x ! !=----------------------------------------------------------------------------=! ! ! !=----------------------------------------------------------------------------=! SUBROUTINE runcp_uspp_force_pairing_x & ( nfi, fccc, ccc, ema0bg, dt2bye, rhos, bec, c0, cm, intermed, fromscra, & restart ) ! ! same as runcp, except that electrons are paired forcedly ! i.e. this handles a state dependant Hamiltonian for the paired and unpaired electrons ! unpaired is assumed to exist, to be unique, and located in highest index band USE kinds, ONLY : DP USE wave_base, ONLY : wave_steepest, wave_verlet USE control_flags, ONLY : lwf, tsde USE uspp, ONLY : deeq, vkb USE gvect, ONLY : gstart USE wannier_subroutines, ONLY : ef_potential USE efield_module, ONLY : dforce_efield, tefield USE electrons_base, ONLY : ispin, nspin, f, n=>nbsp USE cp_interfaces, ONLY : dforce USE gvecw, ONLY: ngw USE fft_base, ONLY: dffts USE electrons_base, ONLY: nx=>nbnd, nupdwn, iupdwn, nbspx, nbsp USE mp, ONLY: mp_sum USE mp_global, ONLY: intra_bgrp_comm !#@@@ USE ldaU_cp !#@@@ ! IMPLICIT NONE INTEGER, INTENT(in) :: nfi REAL(DP) :: fccc, ccc REAL(DP) :: ema0bg(:), dt2bye REAL(DP) :: rhos(:,:) REAL(DP) :: bec(:,:) COMPLEX(DP) :: c0(:,:), cm(:,:) REAL(DP) :: intermed LOGICAL, OPTIONAL, INTENT(in) :: fromscra LOGICAL, OPTIONAL, INTENT(in) :: restart ! REAL(DP) :: verl1, verl2, verl3 REAL(DP), ALLOCATABLE:: emadt2(:) REAL(DP), ALLOCATABLE:: emaver(:) COMPLEX(DP), ALLOCATABLE:: c2(:), c3(:) INTEGER :: i INTEGER :: iflag LOGICAL :: ttsde ! INTEGER :: ierr, nb, np_dw, is_dw, npair, n_unp, n_dwn, n_pair REAL(DP) :: ei_unp_mem, ei_unp_wfc COMPLEX(DP) :: intermed3 REAL(DP), ALLOCATABLE :: occ(:) COMPLEX(DP), ALLOCATABLE :: c4(:), c5(:) ! ! ... Controlling on sic applicability ! IF( lwf ) CALL errore('runcp_uspp_force_pairing', & 'Wannier function and sic are not compatibile',1) IF( tefield ) CALL errore('runcp_uspp_force_pairing', & 'Electric field and sic are not implemented',2) IF( nspin == 1 ) CALL errore(' runcp_force_pairing ',' inconsistent nspin ', 1) IF( dffts%have_task_groups ) CALL errore(' runcp_force_pairing ',' task_groups not implemented ', 1) ! ALLOCATE( emadt2( ngw ) ) ALLOCATE( emaver( ngw ) ) ! iflag = 0 IF( PRESENT( fromscra ) ) THEN IF( fromscra ) iflag = 1 END IF IF( PRESENT( restart ) ) THEN IF( restart ) iflag = 2 END IF ! IF( iflag == 0 ) THEN ttsde = tsde ELSE IF( iflag == 1 ) THEN ttsde = .TRUE. ELSE IF( iflag == 2 ) THEN ttsde = .FALSE. END IF ! ALLOCATE( c2(ngw), c3(ngw), c4(ngw), c5(ngw) ) ! ! ... set verlet variables ! verl1 = 2.0d0 * fccc verl2 = 1.0d0 - verl1 verl3 = 1.0d0 * fccc ! ccc = fccc * dt2bye emadt2 = dt2bye * ema0bg emaver = emadt2 * verl3 ! IF( nupdwn(1) /= (nupdwn(2) + 1) ) & CALL errore(' runcp_force_pairing ',' inconsistent number of states ', 1) n_unp = nupdwn(1) n_dwn = nupdwn(2) is_dw = iupdwn(2) np_dw = nbsp ! ALLOCATE( occ( nbspx ) ) ! occ( 1:np_dw ) = 1.0d0 occ( nbspx ) = 0.0d0 ! ! c0(dwn_paired) == c0(up_paired) ! cm(dwn_paired) == cm(up_paired) ! the nbspx dwn state has to be empty ! ! c0(:, is_dw:np_dw ) = c0(:, 1:n_dwn ) cm(:, is_dw:np_dw ) = cm(:, 1:n_dwn ) ! c0(:, nbspx ) = (0.d0, 0.d0) cm(:, nbspx ) = (0.d0, 0.d0) ! IF( MOD(n_unp, 2) == 0 ) npair = n_unp - 2 IF( MOD(n_unp, 2) /= 0 ) npair = n_unp - 1 DO i = 1, npair, 2 ! CALL dforce(i,bec,vkb,c0,c2,c3,rhos(:,1:1),SIZE(rhos,1),ispin,f,n,nspin) CALL dforce(i,bec,vkb,c0,c4,c5,rhos(:,2:2),SIZE(rhos,1),ispin,f,n,nspin) ! c2 = occ( i )*(c2 + c4) c3 = occ(i+1)*(c3 + c5) ! IF( iflag == 2 ) THEN cm(:,i) = c0(:,i) cm(:,i+1) = c0(:,i+1) END IF ! IF( ttsde ) THEN CALL wave_steepest( cm(:, i ), c0(:, i ), emaver, c2 ) CALL wave_steepest( cm(:, i+1), c0(:, i+1), emaver, c3 ) ELSE CALL wave_verlet( cm(:, i ), c0(:, i ), verl1, verl2, emaver, c2 ) CALL wave_verlet( cm(:, i+1), c0(:, i+1), verl1, verl2, emaver, c3 ) END IF ! IF ( gstart == 2 ) THEN cm(1, i) = CMPLX(DBLE(cm(1, i)),0.d0,kind=DP) cm(1, i+1) = CMPLX(DBLE(cm(1, i+1)),0.d0,kind=DP) END IF ! END DO ! IF( MOD(n_unp, 2) == 0 ) THEN npair = n_unp - 1 ! CALL dforce(npair,bec,vkb,c0,c2,c3,rhos(:,1:1),SIZE(rhos,1),ispin,f,n,nspin) CALL dforce(npair,bec,vkb,c0,c4,c5,rhos(:,2:2),SIZE(rhos,1),ispin,f,n,nspin) ! c2 = c2 + c4 ! IF( iflag == 2 ) cm( :, npair ) = c0( :, npair ) ! IF( ttsde ) THEN CALL wave_steepest( cm(:, npair ), c0(:, npair ), emaver, c2 ) ELSE CALL wave_verlet( cm(:, npair), c0(:, npair), verl1, verl2, emaver, c2 ) ENDIF ! IF ( gstart == 2 ) cm(1, npair) = CMPLX(DBLE(cm(1, npair)),0.d0,kind=DP) ENDIF ! c0(:, is_dw:np_dw ) = c0(:, 1:n_dwn ) cm(:, is_dw:np_dw ) = cm(:, 1:n_dwn ) ! c0(:, nbspx ) = (0.d0, 0.d0) cm(:, nbspx ) = (0.d0, 0.d0) ! ! ! The electron unpaired is signed by n_unp and spin up ! for the unpaired electron the ei_unp is the value of lambda ! "TRUE" ONLY WHEN THE POT is NORM_CONSERVING ! CALL dforce( n_unp, bec, vkb, c0, c2, c3, rhos, SIZE(rhos,1), ispin,f,n,nspin ) ! intermed = - 2.d0 * sum(c2 * conjg(c0(:,n_unp))) IF ( gstart == 2 ) THEN intermed = intermed + 1.d0 * c2(1) * conjg(c0(1,n_unp)) END IF CALL mp_sum ( intermed, intra_bgrp_comm ) ! IF( iflag == 2 ) cm(:, n_unp) = c0(:, n_unp) ! IF( ttsde ) THEN CALL wave_steepest( cm(:, n_unp), c0(:, n_unp), emaver, c2 ) ELSE CALL wave_verlet( cm(:, n_unp), c0(:, n_unp), verl1, verl2, emaver, c2 ) ENDIF ! IF ( gstart == 2 ) cm(1, n_unp) = CMPLX(DBLE(cm(1, n_unp)),0.d0,kind=DP) ! DEALLOCATE( occ ) DEALLOCATE( emadt2 ) DEALLOCATE( emaver ) DEALLOCATE(c2, c4) DEALLOCATE(c3, c5) END SUBROUTINE runcp_uspp_force_pairing_x espresso-5.1/CPV/src/stress.f900000644000175000017500000004106412341373026014372 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! SUBROUTINE pstress_conv( de3x3, de6, ainv ) !------------------------------------------------------------------------------! USE kinds, ONLY: DP USE mp_global, ONLY: intra_bgrp_comm USE mp, ONLY: mp_sum USE stress_param, ONLY: alpha, beta IMPLICIT NONE REAL(DP) :: de3x3(3,3) REAL(DP), INTENT(IN) :: de6(6) REAL(DP), INTENT(IN) :: ainv(3,3) REAL(DP) :: tmp(3,3) INTEGER :: k DO k = 1, 6 tmp( alpha(k), beta(k) ) = de6(k) tmp( beta(k), alpha(k) ) = tmp(alpha(k),beta(k)) END DO de3x3 = MATMUL( tmp(:,:), TRANSPOSE( ainv(:,:) ) ) CALL mp_sum( de3x3, intra_bgrp_comm ) RETURN END SUBROUTINE !------------------------------------------------------------------------------! SUBROUTINE pseudo_stress_x( deps, epseu, gagb, sfac, dvps, rhoeg, omega ) !------------------------------------------------------------------------------! ! USE kinds, ONLY: DP USE ions_base, ONLY: nsp USE gvecs, ONLY: ngms USE electrons_base, ONLY: nspin USE stress_param, ONLY: dalbe USE cp_interfaces, ONLY: stress_local IMPLICIT NONE REAL(DP), INTENT(IN) :: omega REAL(DP), INTENT(OUT) :: deps(:) REAL(DP), INTENT(IN) :: gagb(:,:) COMPLEX(DP), INTENT(IN) :: rhoeg(:,:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) REAL(DP), INTENT(IN) :: dvps(:,:) REAL(DP), INTENT(IN) :: epseu INTEGER :: k COMPLEX(DP) :: rhets, depst(6) COMPLEX(DP), ALLOCATABLE :: rhoe( : ) COMPLEX(DP), ALLOCATABLE :: drhoe( :, : ) ! ALLOCATE( drhoe( ngms, 6 ), rhoe( ngms ) ) rhoe( 1:ngms ) = rhoeg( 1:ngms, 1 ) IF( nspin > 1 ) rhoe( 1:ngms ) = rhoe( 1:ngms ) + rhoeg( 1:ngms, 2 ) DO k = 1, 6 drhoe( 1:ngms, k ) = - rhoe( 1:ngms ) * dalbe( k ) END DO CALL stress_local( deps, epseu, gagb, sfac, rhoe, drhoe, omega ) DEALLOCATE( drhoe, rhoe ) RETURN END SUBROUTINE pseudo_stress_x !------------------------------------------------------------------------------! SUBROUTINE stress_local_x( deps, epseu, gagb, sfac, rhoe, drhoe, omega ) !------------------------------------------------------------------------------! ! USE kinds, ONLY: DP USE ions_base, ONLY: nsp USE gvect, ONLY: gstart USE gvecs, ONLY: ngms USE electrons_base, ONLY: nspin USE local_pseudo, ONLY: vps, dvps IMPLICIT NONE REAL(DP), INTENT(IN) :: omega REAL(DP), INTENT(OUT) :: deps(:) REAL(DP), INTENT(IN) :: gagb(:,:) COMPLEX(DP), INTENT(IN) :: rhoe(:) COMPLEX(DP), INTENT(IN) :: drhoe(:,:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) REAL(DP), INTENT(IN) :: epseu INTEGER :: ig,k,is, ispin COMPLEX(DP) :: dsvp, svp, depst(6) REAL(DP) :: wz ! depst = (0.d0,0.d0) wz = 2.0d0 DO ig = gstart, ngms svp = 0.0d0 DO is = 1, nsp svp = svp + sfac( ig, is ) * vps( ig, is ) END DO depst = depst + wz * CONJG( drhoe( ig, : ) ) * svp END DO IF( gstart == 2 ) THEN svp = 0.0d0 DO is = 1, nsp svp = svp + sfac( 1, is ) * vps( 1, is ) END DO depst = depst + CONJG( drhoe( 1, : ) ) * svp END IF DO ig = gstart, ngms dsvp = 0.0d0 DO is = 1, nsp dsvp = dsvp + sfac( ig, is ) * dvps( ig, is ) END DO DO k = 1, 6 depst( k ) = depst( k ) - wz * 2.0d0 * CONJG( rhoe( ig ) ) * dsvp * gagb( k, ig ) END DO END DO deps = omega * DBLE( depst ) RETURN END SUBROUTINE stress_local_x !------------------------------------------------------------------------------! SUBROUTINE stress_kin_x( dekin, c0_bgrp, occ_bgrp ) !------------------------------------------------------------------------------! ! this routine computes the kinetic energy contribution to the stress ! tensor ! ! dekin(:) = - 2 (sum over i) f(i) * ! ( (sum over g) gagb(:,g) CONJG( c0(g,i) ) c0(g,i) ) ! USE kinds, ONLY: DP USE gvecw, ONLY: q2sigma, ecfixed, qcutz, ngw USE constants, ONLY: pi USE gvect, ONLY: gstart, gg, g USE cell_base, ONLY: tpiba2 USE electrons_base, ONLY: nspin, iupdwn_bgrp, nupdwn_bgrp USE stress_param, ONLY: alpha, beta IMPLICIT NONE ! ... declare subroutine arguments REAL(DP), INTENT(OUT) :: dekin(:) COMPLEX(DP), INTENT(IN) :: c0_bgrp(:,:) REAL(DP), INTENT(IN) :: occ_bgrp(:) ! ... declare other variables REAL(DP) :: sk(6), scg, efac REAL(DP), ALLOCATABLE :: arg(:) INTEGER :: ib, ig, ispin, iwfc ! ... end of declarations ! ---------------------------------------------- dekin = 0.0_DP ALLOCATE( arg( ngw ) ) efac = 2.0d0 * qcutz / q2sigma / SQRT(pi) IF( efac > 0.0d0 ) THEN DO ig = gstart, ngw arg(ig) = 1.0d0 + efac * exp( -( ( tpiba2 *gg(ig) - ecfixed ) / q2sigma )**2 ) END DO ELSE arg = 1.0d0 END IF ! ... compute kinetic energy contribution DO ispin = 1, nspin DO ib = 1, nupdwn_bgrp( ispin ) sk = 0.0_DP iwfc = ib + iupdwn_bgrp( ispin ) - 1 DO ig = gstart, ngw scg = arg(ig) * CONJG( c0_bgrp( ig, iwfc ) ) * c0_bgrp( ig, iwfc ) sk(1) = sk(1) + scg * g( alpha( 1 ), ig ) * g( beta( 1 ), ig ) sk(2) = sk(2) + scg * g( alpha( 2 ), ig ) * g( beta( 2 ), ig ) sk(3) = sk(3) + scg * g( alpha( 3 ), ig ) * g( beta( 3 ), ig ) sk(4) = sk(4) + scg * g( alpha( 4 ), ig ) * g( beta( 4 ), ig ) sk(5) = sk(5) + scg * g( alpha( 5 ), ig ) * g( beta( 5 ), ig ) sk(6) = sk(6) + scg * g( alpha( 6 ), ig ) * g( beta( 6 ), ig ) END DO dekin = dekin + occ_bgrp( iwfc ) * sk * tpiba2 END DO END DO dekin = - 2.0_DP * dekin DEALLOCATE(arg) RETURN END SUBROUTINE stress_kin_x !------------------------------------------------------------------------------! SUBROUTINE add_drhoph_x( drhot, sfac, gagb ) !------------------------------------------------------------------------------! ! USE kinds, ONLY: DP USE gvecs, ONLY: ngms USE ions_base, ONLY: nsp, rcmax USE local_pseudo, ONLY: rhops USE stress_param, ONLY: dalbe ! IMPLICIT NONE ! COMPLEX(DP), INTENT(INOUT) :: drhot( :, : ) COMPLEX(DP), INTENT(IN) :: sfac( :, : ) REAL(DP), INTENT(IN) :: gagb( :, : ) ! INTEGER :: ij, is, ig COMPLEX(DP) :: drhop ! DO ij = 1, 6 IF( dalbe( ij ) > 0.0d0 ) THEN DO is = 1, nsp DO ig = 1, ngms drhot(ig,ij) = drhot(ig,ij) - sfac(ig,is)*rhops(ig,is) ENDDO END DO END IF END DO DO ig = 1, ngms drhop = 0.0d0 DO is = 1, nsp drhop = drhop - sfac( ig, is ) * rhops(ig,is) * rcmax(is)**2 * 0.5D0 END DO DO ij = 1, 6 drhot(ig,ij) = drhot(ig,ij) - drhop * gagb( ij, ig ) END DO END DO RETURN END SUBROUTINE add_drhoph_x !------------------------------------------------------------------------------! SUBROUTINE stress_har_x(deht, ehr, sfac, rhoeg, gagb, omega ) !------------------------------------------------------------------------------! use kinds, only: DP use ions_base, only: nsp, rcmax use mp_global, ONLY: me_bgrp, root_bgrp USE constants, ONLY: fpi USE cell_base, ONLY: tpiba2 USE gvect, ONLY: gstart USE gvecs, ONLY: ngms USE gvect, ONLY: ngm USE local_pseudo, ONLY: rhops USE electrons_base, ONLY: nspin USE stress_param, ONLY: dalbe USE cp_interfaces, ONLY: add_drhoph, stress_hartree IMPLICIT NONE REAL(DP), INTENT(OUT) :: DEHT(:) REAL(DP), INTENT(IN) :: omega, EHR, gagb(:,:) COMPLEX(DP), INTENT(IN) :: RHOEG(:,:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) COMPLEX(DP) DEHC(6) COMPLEX(DP) RHOP,DRHOP COMPLEX(DP) RHET,RHOG,RHETS,RHOGS COMPLEX(DP) CFACT COMPLEX(DP), ALLOCATABLE :: rhot(:), drhot(:,:) REAL(DP) hgm1 INTEGER ig, is, k, ispin ALLOCATE( rhot( ngm ) ) ALLOCATE( drhot( ngm, 6 ) ) ! sum up spin components ! DO ig = gstart, ngm rhot( ig ) = rhoeg( ig, 1 ) IF( nspin > 1 ) rhot( ig ) = rhot( ig ) + rhoeg( ig, 2 ) END DO ! ! add Ionic pseudo charges rho_I ! DO is = 1, nsp DO ig = gstart, ngms rhot( ig ) = rhot( ig ) + sfac( ig, is ) * rhops( ig, is ) END DO END DO ! add drho_e / dh ! DO k = 1, 6 IF( dalbe( k ) > 0.0d0 ) THEN drhot( :, k ) = - rhoeg( :, 1 ) IF( nspin > 1 ) drhot( :, k ) = drhot( :, k ) + rhoeg( :, 2 ) ELSE drhot( :, k ) = 0.0d0 END IF END DO ! add drho_I / dh ! CALL add_drhoph( drhot, sfac, gagb ) CALL stress_hartree(deht, ehr, sfac, rhot, drhot, gagb, omega ) DEALLOCATE( rhot, drhot ) RETURN END SUBROUTINE stress_har_x !------------------------------------------------------------------------------! SUBROUTINE stress_hartree_x(deht, ehr, sfac, rhot, drhot, gagb, omega ) !------------------------------------------------------------------------------! ! This subroutine computes: d E_hartree / dh = ! E_hartree * h^t + ! 4pi omega rho_t * CONJG( rho_t ) / G^2 / G^2 * G_alpha * G_beta + ! 4pi omega Re{ CONJG( rho_t ) * drho_t / G^2 } ! where: ! rho_t = rho_e + rho_I ! drho_t = d rho_t / dh = -rho_e + d rho_hard / dh + d rho_I / dh use kinds, only: DP use ions_base, only: nsp, rcmax use mp_global, ONLY: me_bgrp, root_bgrp USE constants, ONLY: fpi USE cell_base, ONLY: tpiba2 USE gvect, ONLY: gstart, gg USE gvecs, ONLY: ngms USE gvect, ONLY: ngm USE local_pseudo, ONLY: rhops USE electrons_base, ONLY: nspin USE stress_param, ONLY: dalbe IMPLICIT NONE REAL(DP), INTENT(OUT) :: DEHT(:) REAL(DP), INTENT(IN) :: omega, EHR, gagb(:,:) COMPLEX(DP) :: rhot(:) ! total charge: Sum_spin ( rho_e + rho_I ) COMPLEX(DP) :: drhot(:,:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) COMPLEX(DP) DEHC(6) COMPLEX(DP) CFACT REAL(DP), ALLOCATABLE :: hgm1( : ) REAL(DP) :: wz INTEGER ig, is, k, iss DEHC = (0.D0,0.D0) DEHT = 0.D0 wz = 2.0d0 ALLOCATE( hgm1( ngm ) ) hgm1( 1 ) = 0.0d0 DO ig = gstart, ngm hgm1( ig ) = 1.D0 / gg(ig) / tpiba2 END DO ! Add term rho_t * CONJG( rho_t ) / G^2 * G_alpha * G_beta / G^2 DO ig = gstart, ngm cfact = rhot( ig ) * CONJG( rhot( ig ) ) * hgm1( ig ) ** 2 dehc = dehc + cfact * gagb(:,ig) END DO ! Add term 2 * Re{ CONJG( rho_t ) * drho_t / G^2 } DO ig = gstart, ngm DO k = 1, 6 dehc( k ) = dehc( k ) + rhot( ig ) * CONJG( drhot( ig, k ) ) * hgm1( ig ) END DO END DO ! term: E_h * h^t if ( me_bgrp == root_bgrp ) then deht = wz * fpi * omega * DBLE(dehc) + ehr * dalbe else deht = wz * fpi * omega * DBLE(dehc) end if DEALLOCATE( hgm1 ) RETURN END SUBROUTINE stress_hartree_x !------------------------------------------------------------------------------! SUBROUTINE stress_debug(dekin, deht, dexc, desr, deps, denl, htm1) !------------------------------------------------------------------------------! USE kinds, ONLY: DP USE io_global, ONLY: stdout USE mp_global, ONLY: intra_bgrp_comm USE mp, ONLY: mp_sum USE stress_param, ONLY: alpha, beta IMPLICIT NONE REAL(DP) :: dekin(6), deht(6), dexc(6), desr(6), deps(6), denl(6) REAL(DP) :: detot(6), htm1(3,3) REAL(DP) :: detmp(3,3) INTEGER :: k, i, j detot = dekin + deht + dexc + desr + deps + denl DO k=1,6 detmp(alpha(k),beta(k)) = detot(k) detmp(beta(k),alpha(k)) = detmp(alpha(k),beta(k)) END DO CALL mp_sum( detmp, intra_bgrp_comm ) detmp = MATMUL( detmp(:,:), htm1(:,:) ) WRITE( stdout,*) "derivative of e(tot)" WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) DO k=1,6 detmp(alpha(k),beta(k)) = dekin(k) detmp(beta(k),alpha(k)) = detmp(alpha(k),beta(k)) END DO CALL mp_sum( detmp, intra_bgrp_comm ) detmp = MATMUL( detmp(:,:), htm1(:,:) ) WRITE( stdout,*) "derivative of e(kin)" WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) DO k=1,6 detmp(alpha(k),beta(k)) = deht(k) + desr(k) detmp(beta(k),alpha(k)) = detmp(alpha(k),beta(k)) END DO CALL mp_sum( detmp, intra_bgrp_comm ) detmp = MATMUL( detmp(:,:), htm1(:,:) ) WRITE( stdout,*) "derivative of e(electrostatic)" WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) DO k=1,6 detmp(alpha(k),beta(k)) = deht(k) detmp(beta(k),alpha(k)) = detmp(alpha(k),beta(k)) END DO CALL mp_sum( detmp, intra_bgrp_comm ) detmp = MATMUL( detmp(:,:), htm1(:,:) ) WRITE( stdout,*) "derivative of e(h)" WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) DO k=1,6 detmp(alpha(k),beta(k)) = desr(k) detmp(beta(k),alpha(k)) = detmp(alpha(k),beta(k)) END DO CALL mp_sum( detmp, intra_bgrp_comm ) detmp = MATMUL( detmp(:,:), htm1(:,:) ) WRITE( stdout,*) "derivative of e(sr)" WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) DO k=1,6 detmp(alpha(k),beta(k)) = deps(k) detmp(beta(k),alpha(k)) = detmp(alpha(k),beta(k)) END DO CALL mp_sum( detmp, intra_bgrp_comm ) detmp = MATMUL( detmp(:,:), htm1(:,:) ) WRITE( stdout,*) "derivative of e(ps)" WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) DO k=1,6 detmp(alpha(k),beta(k)) = denl(k) detmp(beta(k),alpha(k)) = detmp(alpha(k),beta(k)) END DO CALL mp_sum( detmp, intra_bgrp_comm ) detmp = MATMUL( detmp(:,:), htm1(:,:) ) WRITE( stdout,*) "derivative of e(nl)" WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) DO k=1,6 detmp(alpha(k),beta(k)) = dexc(k) detmp(beta(k),alpha(k)) = detmp(alpha(k),beta(k)) END DO CALL mp_sum( detmp, intra_bgrp_comm ) detmp = MATMUL( detmp(:,:), htm1(:,:) ) WRITE( stdout,*) "derivative of e(xc)" WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) 5555 format(1x,f12.5,1x,f12.5,1x,f12.5/ & & 1x,f12.5,1x,f12.5,1x,f12.5/ & & 1x,f12.5,1x,f12.5,1x,f12.5//) RETURN END SUBROUTINE stress_debug !------------------------------------------------------------------------------! SUBROUTINE compute_gagb_x( gagb, g, ngm, tpiba2 ) !------------------------------------------------------------------------------! ! ... compute G_alpha * G_beta USE kinds, ONLY: DP USE stress_param, ONLY: alpha, beta IMPLICIT NONE INTEGER, INTENT(IN) :: ngm REAL(DP), INTENT(IN) :: g(:,:) REAL(DP), INTENT(OUT) :: gagb(:,:) REAL(DP), INTENT(IN) :: tpiba2 INTEGER :: k, ig !$omp parallel do default(shared), private(k) DO ig = 1, ngm DO k = 1, 6 gagb( k, ig ) = g( alpha( k ), ig ) * g( beta( k ), ig ) * tpiba2 END DO END DO END SUBROUTINE compute_gagb_x espresso-5.1/CPV/src/eigs0.f900000644000175000017500000002423112341373026014053 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine eigs0( ei, nudx, tprint, nspin, nupdwn, iupdwn, lf, f, nx, lambda, nlam, desc ) !----------------------------------------------------------------------- ! computes eigenvalues (wr) of the real symmetric matrix lambda ! Note that lambda as calculated is multiplied by occupation numbers ! so empty states yield zero. Eigenvalues are printed out in eV ! use kinds, only : DP use io_global, only : stdout use constants, only : autoev use dspev_module, only : dspev_drv, pdspev_drv USE sic_module, only : self_interaction USE descriptors, ONLY : la_descriptor USE mp, only : mp_sum, mp_bcast USE mp_global, only : intra_bgrp_comm, root_bgrp, me_bgrp implicit none ! input logical, intent(in) :: tprint, lf integer, intent(in) :: nspin, nx, nudx, nupdwn(nspin), iupdwn(nspin), nlam type(la_descriptor), intent(in) :: desc( 2 ) real(DP), intent(in) :: lambda( nlam, nlam, nspin ), f( nx ) real(DP), intent(out) :: ei( nudx, nspin ) ! local variables real(DP), allocatable :: ap(:), wr(:) real(DP) zr(1) integer :: iss, j, i, ierr, k, n, ndim, nspin_eig, npaired INTEGER :: ir, ic, nr, nc, nrl, nrlx, comm, np, me logical :: tsic CHARACTER(LEN=80) :: msg ! tsic = ( ABS( self_interaction) /= 0 ) IF( tsic ) THEN nspin_eig = 1 npaired = nupdwn(2) ELSE nspin_eig = nspin npaired = 0 END IF do iss = 1, nspin_eig IF( nudx < nupdwn(iss) ) THEN WRITE( msg, 100 ) nudx, SIZE( ei, 1 ), nupdwn(iss) 100 FORMAT( ' wrong dimension array ei = ', 3I10 ) CALL errore( ' eigs0 ', msg, 1 ) END IF IF( tsic ) THEN n = npaired ELSE n = nupdwn(iss) END IF allocate( wr( n ) ) IF( desc( iss )%active_node > 0 ) THEN np = desc( iss )%npc * desc( iss )%npr IF( np > 1 ) THEN ! matrix is distributed CALL qe_pdsyevd( .false., n, desc(iss), lambda(1,1,iss), nlam, wr ) ELSE ! matrix is not distributed allocate( ap( n * ( n + 1 ) / 2 ) ) k = 0 do i = 1, n do j = i, n k = k + 1 ap( k ) = lambda( j, i, iss ) end do end do CALL dspev_drv( 'N', 'L', n, ap, wr, zr, 1 ) deallocate( ap ) END IF END IF call mp_bcast( wr, root_bgrp, intra_bgrp_comm ) if( lf ) then do i = 1, n if ( f(iupdwn(iss)-1+i).gt.1.e-6) then wr(i)=wr(i)/f(iupdwn(iss)-1+i) else wr(i)=wr(i)/2.0d0 * nspin ! fake occupation factor to print empty states end if end do end if ! ! store eigenvalues ! ei( 1:n, iss ) = wr( 1:n ) IF( tsic ) THEN ! ! store unpaired state ! ei( 1:n, 1 ) = ei( 1:n, 1 ) / 2.0d0 ei( nupdwn(1), 1 ) = 0.0d0 if( desc( iss )%active_node > 0 ) then IF( desc( iss )%myc == desc( iss )%myr ) THEN ir = desc( iss )%ir nr = desc( iss )%nr IF( nupdwn(1) >= ir .AND. nupdwn(1) < ir + nr ) then ei( nupdwn(1), 1 ) = lambda( nupdwn(1)-ir+1, nupdwn(1)-ir+1, 1 ) end if END IF endif call mp_sum( ei( nupdwn(1), 1 ), intra_bgrp_comm ) ! END IF ! WRITE( stdout,*) '---- DEBUG ----' ! debug ! WRITE( stdout,14) ( wr( i ) * autoev / 2.0d0, i = 1, nupdwn(iss) ) ! debug deallocate( wr ) end do ! ! do iss = 1, nspin IF( tsic .AND. iss == 2 ) THEN ei( 1:npaired, 2 ) = ei( 1:npaired, 1 ) END IF IF( tprint ) THEN ! ! print out eigenvalues ! WRITE( stdout,12) 0.d0, 0.d0, 0.d0 WRITE( stdout,14) ( ei( i, iss ) * autoev, i = 1, nupdwn(iss) ) ENDIF end do IF( tprint ) WRITE( stdout,*) 12 format(//' eigenvalues at k-point: ',3f6.3) 14 format(10f8.2) ! return end subroutine eigs0 !----------------------------------------------------------------------- SUBROUTINE rpackgam_x( gam, f, aux ) !----------------------------------------------------------------------- USE kinds, ONLY: DP USE mp_global, ONLY: me_bgrp, nproc_bgrp, intra_bgrp_comm USE mp, ONLY: mp_sum IMPLICIT NONE REAL(DP), INTENT(INOUT) :: gam(:,:) REAL(DP), INTENT(OUT), OPTIONAL :: aux(:) REAL(DP), INTENT(IN) :: f(:) INTEGER n, nrl, i, j, k, jl nrl = SIZE(gam, 1) n = SIZE(gam, 2) IF( PRESENT( aux ) ) THEN aux = 0.0d0 IF( me_bgrp < n ) THEN DO i = 1, n j = me_bgrp + 1 DO jl = 1, nrl IF( j >= i ) THEN ! maps (j,i) index to low-tri packed (k) index k = (i-1)*n + j - i*(i-1)/2 aux(k) = gam(jl,i) / f(j) END IF j = j + nproc_bgrp END DO END DO END IF CALL mp_sum(aux, intra_bgrp_comm) ELSE IF( me_bgrp < n ) THEN DO i = 1, n j = me_bgrp + 1 DO jl = 1, nrl gam(jl,i) = gam(jl,i) / f(j) j = j + nproc_bgrp END DO END DO END IF END IF RETURN END SUBROUTINE rpackgam_x !----------------------------------------------------------------------- SUBROUTINE fermi_energy_x(eig, occ, wke, ef, qtot, temp, sume) !----------------------------------------------------------------------- ! this routine computes Fermi energy and weights of occupied states ! using an improved Gaussian-smearing method ! refs: C.L.Fu and K.M.Ho, Phys.Rev. B28, 5480 (1983) ! M.Methfessel and A.T.Paxton Phys.Rev. B40 (15 aug. 89). ! ! taken from APW code by J. Soler and A. Williams (jk+ss) ! added computation of occupation numbers without k-point weight USE kinds, ONLY: DP USE io_global, ONLY: stdout USE electrons_base, ONLY: nspin, iupdwn IMPLICIT NONE ! ... declare subroutine arguments REAL(DP) :: occ(:) REAL(DP) ef, qtot, temp, sume REAL(DP) eig(:,:), wke(:,:) REAL(DP), PARAMETER :: tol = 1.d-10 INTEGER, PARAMETER :: nitmax = 100 INTEGER ne, nk ! ... declare other variables REAL(DP) sumq,emin,emax,fac,t,drange INTEGER ik,ispin,ie,iter ! end of declarations ! ---------------------------------------------- nk = 1 ne = SIZE( occ, 1) sumq=0.d0 sume=0.d0 emin=eig(1,1) emax=eig(1,1) fac=2.d0 IF (nspin.EQ.2) fac=1.d0 DO ik=1,nk DO ispin=1,nspin DO ie=1,ne wke(ie,ispin) = fac occ(ie+iupdwn(ispin)-1) = fac sumq=sumq+wke(ie,ispin) sume=sume+wke(ie,ispin)*eig(ie,ispin) emin=MIN(emin,eig(ie,ispin)) emax=MAX(emax,eig(ie,ispin)) END DO END DO END DO ef=emax IF (abs(sumq-qtot).LT.tol) RETURN IF (sumq.LT.qtot) THEN WRITE( stdout,*) 'FERMIE: NOT ENOUGH STATES' WRITE( stdout,*) 'FERMIE: QTOT,SUMQ=',qtot,sumq STOP END IF t = MAX(temp,1.d-6) drange = t * SQRT( - LOG( tol*.01d0) ) emin = emin - drange emax = emax + drange DO iter = 1, nitmax ef = 0.5d0 * (emin+emax) sumq = 0.d0 sume = 0.d0 DO ik = 1, nk DO ispin = 1, nspin DO ie = 1, ne wke(ie,ispin) = fac / 2.d0 * stepf((eig(ie,ispin)-ef)/t) occ(ie+iupdwn(ispin)-1) = fac / 2.d0 * stepf((eig(ie,ispin)-ef)/t) sumq = sumq + wke(ie,ispin) sume = sume + wke(ie,ispin) * eig(ie,ispin) END DO END DO END DO IF (ABS(sumq-qtot).LT.tol) RETURN IF (sumq.LE.qtot) emin=ef IF (sumq.GE.qtot) emax=ef END DO WRITE( stdout,*) 'FERMIE: ITERATION HAS NOT CONVERGED.' WRITE( stdout,*) 'FERMIE: QTOT,SUMQ=',qtot,sumq STOP CONTAINS DOUBLE PRECISION FUNCTION stepf(x) USE kinds IMPLICIT NONE REAL(DP) :: x REAL(DP), PARAMETER :: c=0.5641895835D0 ! REAL(DP), EXTERNAL :: qe_erfc ! stepf=qe_erfc(x) stepf=1.d0/(exp(min(x,100.d0))+1.d0) END FUNCTION stepf END SUBROUTINE fermi_energy_x ! ! ! !----------------------------------------------------------------------- SUBROUTINE cp_eigs_x( nfi, lambdap, lambda, descla ) !----------------------------------------------------------------------- USE kinds, ONLY: DP use ensemble_dft, only: tens use electrons_base, only: nbspx, f, nspin use electrons_base, only: iupdwn, nupdwn, nudx use electrons_module, only: ei use io_global, only: stdout USE descriptors, ONLY: la_descriptor IMPLICIT NONE INTEGER :: nfi REAL(DP) :: lambda( :, :, : ), lambdap( :, :, : ) TYPE(la_descriptor), INTENT(IN) :: descla( : ) if( .not. tens ) then call eigs0( ei, nudx, .false. , nspin, nupdwn, iupdwn, .true. , f, nbspx, lambda, SIZE(lambda,1), descla ) else call eigs0( ei, nudx, .false. , nspin, nupdwn, iupdwn, .false. , f, nbspx, lambdap, SIZE(lambdap,1), descla ) endif RETURN END SUBROUTINE cp_eigs_x espresso-5.1/CPV/src/ortho_base.f900000644000175000017500000013200012341373026015163 0ustar mbamba! ! Copyright (C) 2002-2009 Quantum ESPRESSO groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE orthogonalize_base USE kinds USE dspev_module, ONLY: pdspev_drv, dspev_drv IMPLICIT NONE SAVE PRIVATE REAL(DP) :: one, zero, two, minus_one, minus_two PARAMETER ( one = 1.0d0, zero = 0.0d0, two = 2.0d0, minus_one = -1.0d0 ) PARAMETER ( minus_two = -2.0d0 ) COMPLEX(DP) :: cone, czero, mcone PARAMETER ( cone = (1.0d0, 0.0d0), czero = (0.0d0, 0.0d0) ) PARAMETER ( mcone = (-1.0d0, 0.0d0) ) REAL(DP) :: small = 1.0d-14 LOGICAL :: use_parallel_diag PUBLIC :: sigset PUBLIC :: tauset PUBLIC :: rhoset PUBLIC :: ortho_iterate PUBLIC :: ortho_alt_iterate PUBLIC :: updatc, calphi_bgrp PUBLIC :: mesure_diag_perf PUBLIC :: mesure_mmul_perf PUBLIC :: diagonalize_parallel PUBLIC :: diagonalize_serial PUBLIC :: use_parallel_diag PUBLIC :: bec_bgrp2ortho CONTAINS ! ---------------------------------------------- SUBROUTINE diagonalize_serial( n, rhos, rhod ) IMPLICIT NONE INTEGER, INTENT(IN) :: n REAL(DP) :: rhos(:,:) REAL(DP) :: rhod(:) ! ! inputs: ! n size of the eigenproblem ! rhos the symmetric matrix ! outputs: ! rhos eigenvectors ! rhod eigenvalues ! REAL(DP), ALLOCATABLE :: aux(:) INTEGER :: i, j, k IF( n < 1 ) RETURN ALLOCATE( aux( n * ( n + 1 ) / 2 ) ) ! pack lower triangle of rho into aux ! k = 0 DO j = 1, n DO i = j, n k = k + 1 aux( k ) = rhos( i, j ) END DO END DO CALL dspev_drv( 'V', 'L', n, aux, rhod, rhos, SIZE(rhos,1) ) DEALLOCATE( aux ) RETURN END SUBROUTINE diagonalize_serial ! ---------------------------------------------- SUBROUTINE diagonalize_parallel( n, rhos, rhod, s, desc ) USE descriptors #ifdef __SCALAPACK USE mp_global, ONLY: ortho_cntx USE dspev_module, ONLY: pdsyevd_drv #endif IMPLICIT NONE REAL(DP), INTENT(IN) :: rhos(:,:) ! input symmetric matrix REAL(DP) :: rhod(:) ! output eigenvalues REAL(DP) :: s(:,:) ! output eigenvectors INTEGER, INTENT(IN) :: n ! size of the global matrix TYPE(la_descriptor), INTENT(IN) :: desc IF( n < 1 ) RETURN ! Matrix is distributed on the same processors group ! used for parallel matrix multiplication ! IF( SIZE(s,1) /= SIZE(rhos,1) .OR. SIZE(s,2) /= SIZE(rhos,2) ) & CALL errore( " diagonalize_parallel ", " inconsistent dimension for s and rhos ", 1 ) IF ( desc%active_node > 0 ) THEN ! IF( SIZE(s,1) /= desc%nrcx ) & CALL errore( " diagonalize_parallel ", " inconsistent dimension ", 1 ) ! ! Compute local dimension of the cyclically distributed matrix ! s = rhos ! #ifdef __SCALAPACK CALL pdsyevd_drv( .true. , n, desc%nrcx, s, SIZE(s,1), rhod, ortho_cntx ) #else CALL qe_pdsyevd( .true., n, desc, s, SIZE(s,1), rhod ) #endif ! END IF RETURN END SUBROUTINE diagonalize_parallel ! ---------------------------------------------- SUBROUTINE mesure_diag_perf( n ) ! USE mp_global, ONLY: nproc_bgrp, me_bgrp, intra_bgrp_comm, root_bgrp USE mp_global, ONLY: nproc_ortho, np_ortho, me_ortho, ortho_comm, ortho_comm_id USE io_global, ONLY: ionode, stdout USE mp, ONLY: mp_sum, mp_bcast, mp_barrier USE mp, ONLY: mp_max USE descriptors, ONLY: la_descriptor, descla_init ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n REAL(DP), ALLOCATABLE :: s(:,:), a(:,:), d(:) REAL(DP) :: t1, tpar, tser INTEGER :: nr, nc, ir, ic, nx TYPE(la_descriptor) :: desc REAL(DP) :: cclock EXTERNAL :: cclock INTEGER, PARAMETER :: paradim = 1000 ! ! Check if number of PEs for orthogonalization/diagonalization is given from the input ! IF( nproc_ortho > 0 ) THEN use_parallel_diag = .TRUE. RETURN END IF ALLOCATE( d( n ) ) ! CALL descla_init( desc, n, n, np_ortho, me_ortho, ortho_comm, ortho_comm_id ) nx = 1 IF( desc%active_node > 0 ) nx = desc%nrcx nr = desc%nr nc = desc%nc ir = desc%ir ic = desc%ic ALLOCATE( s( nx, nx ) ) ALLOCATE( a( nx, nx ) ) ! CALL set_a() ! ! some MPIs (OpenMPI) the first time they call a collective routine take too much ! time to perform initializations, then perform a dummy call to get meaningful time ! CALL diagonalize_parallel( n, a, d, s, desc ) ! CALL set_a() ! CALL mp_barrier( intra_bgrp_comm ) t1 = cclock() ! CALL diagonalize_parallel( n, a, d, s, desc ) ! tpar = cclock() - t1 CALL mp_max( tpar, intra_bgrp_comm ) DEALLOCATE( s, a ) ! IF( desc%myc == 0 .AND. desc%myr == 0 .AND. desc%active_node > 0 .AND. n < paradim ) THEN ! when n >= paradim do not mesure serial perf, go parallel ALLOCATE( a( n, n ) ) nr = n nc = n ir = 1 ic = 1 CALL set_a() t1 = cclock() CALL diagonalize_serial( n, a, d ) tser = cclock() - t1 DEALLOCATE( a ) ELSE tser = 0_DP END IF CALL mp_max( tser, intra_bgrp_comm ) #if defined __MPI IF( ionode ) THEN use_parallel_diag = .FALSE. WRITE( stdout, 90 ) IF( n < paradim ) WRITE( stdout, 100 ) tser WRITE( stdout, 110 ) tpar, np_ortho(1) * np_ortho(2) 90 FORMAT(/,3X,'Diagonalization Performances') 100 FORMAT(3X,'ortho diag, time for serial driver = ', 1F9.5) 110 FORMAT(3X,'ortho diag, time for parallel driver = ', 1F9.5, ' with ', I4, ' procs' ) IF( n < paradim ) THEN IF( tpar < tser ) use_parallel_diag = .TRUE. ELSE use_parallel_diag = .TRUE. END IF END IF #else use_parallel_diag = .FALSE. #endif CALL mp_bcast( use_parallel_diag, root_bgrp, intra_bgrp_comm ) DEALLOCATE( d ) RETURN CONTAINS SUBROUTINE set_a() INTEGER :: i, j, ii, jj IF( desc%active_node < 0 ) RETURN DO j = 1, nc DO i = 1, nr ii = i + ir - 1 jj = j + ic - 1 IF( ii == jj ) THEN a(i,j) = ( DBLE( n-ii+1 ) ) / DBLE( n ) + 1.0d0 / ( DBLE( ii+jj ) - 1.0d0 ) ELSE a(i,j) = 1.0d0 / ( DBLE( ii+jj ) - 1.0d0 ) END IF END DO END DO RETURN END SUBROUTINE set_a END SUBROUTINE mesure_diag_perf ! ---------------------------------------------- SUBROUTINE mesure_mmul_perf( n ) ! USE mp_bands, ONLY: nproc_bgrp, me_bgrp, intra_bgrp_comm, & root_bgrp USE mp_diag, ONLY: ortho_comm, nproc_ortho, np_ortho, & me_ortho, init_ortho_group, ortho_comm_id USE io_global, ONLY: ionode, stdout USE mp, ONLY: mp_sum, mp_bcast, mp_barrier USE mp, ONLY: mp_max USE descriptors, ONLY: descla_init , la_descriptor ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: n ! REAL(DP), ALLOCATABLE :: c(:,:), a(:,:), b(:,:) REAL(DP) :: t1, tcan INTEGER :: nr, nc, ir, ic, np, lnode TYPE(la_descriptor) :: desc ! REAL(DP) :: cclock EXTERNAL :: cclock ! np = MAX( INT( SQRT( DBLE( nproc_ortho ) + 0.1d0 ) ), 1 ) ! ! Make ortho group compatible with the number of electronic states ! np = MIN( np, n ) ! ! Now re-define the ortho group and test the performance ! CALL init_ortho_group( np * np, intra_bgrp_comm ) CALL descla_init( desc, n, n, np_ortho, me_ortho, ortho_comm, ortho_comm_id ) nr = desc%nr nc = desc%nc ALLOCATE( a( nr, nc ), c( nr, nc ), b( nr, nc ) ) a = 1.0d0 / DBLE( n ) b = 1.0d0 / DBLE( n ) ! some MPIs (OpenMPI) the first time they call a collective routine take too much ! time to perform initializations, then perform a dummy call to get meaningful time CALL sqr_mm_cannon( 'N', 'N', n, 1.0d0, a, nr, b, nr, 0.0d0, c, nr, desc) CALL mp_barrier( intra_bgrp_comm ) t1 = cclock() CALL sqr_mm_cannon( 'N', 'N', n, 1.0d0, a, nr, b, nr, 0.0d0, c, nr, desc) tcan = cclock() - t1 CALL mp_max( tcan, intra_bgrp_comm ) DEALLOCATE( a, c, b ) #if defined __MPI IF( ionode ) THEN ! WRITE( stdout, 90 ) WRITE( stdout, 120 ) tcan, np*np 90 FORMAT(/,3X,'Matrix Multiplication Performances') 120 FORMAT(3X,'ortho mmul, time for parallel driver = ', 1F9.5, ' with ', I4, ' procs') ! END IF #else np = 1 #endif #if defined __MPI IF( ionode ) THEN WRITE( stdout, '(/,3X,"Constraints matrixes will be distributed block like on")' ) WRITE( stdout, '(3X,"ortho sub-group = ", I4, "*", I4, " procs",/)' ) np_ortho(1), np_ortho(2) END IF #endif RETURN END SUBROUTINE mesure_mmul_perf !=----------------------------------------------------------------------------=! SUBROUTINE ortho_iterate( iter, diff, u, ldx, diag, xloc, nx0, sig, rhor, rhos, tau, nss, desc ) ! this iterative loop uses Cannon's parallel matrix multiplication ! matrix are distributed over a square processor grid: 1x1 2x2 3x3 ... ! But the subroutine work with any number of processors, when ! nproc is not a square, some procs are left idle USE kinds, ONLY: DP USE io_global, ONLY: stdout USE control_flags, ONLY: ortho_eps, ortho_max USE mp_global, ONLY: intra_bgrp_comm, me_bgrp, nproc_bgrp USE mp, ONLY: mp_sum, mp_max USE descriptors, ONLY: la_descriptor IMPLICIT NONE INTEGER, INTENT(IN) :: nss, ldx, nx0 TYPE(la_descriptor), INTENT(IN) :: desc REAL(DP) :: u ( ldx, ldx ) REAL(DP) :: diag( nss ) REAL(DP) :: xloc( nx0, nx0 ) REAL(DP) :: rhor( ldx, ldx ) REAL(DP) :: rhos( ldx, ldx ) REAL(DP) :: tau ( ldx, ldx ) REAL(DP) :: sig ( ldx, ldx ) INTEGER, INTENT(OUT) :: iter REAL(DP), INTENT(OUT) :: diff INTEGER :: i, j INTEGER :: nr, nc, ir, ic REAL(DP), ALLOCATABLE :: tmp1(:,:), tmp2(:,:), dd(:,:), tr1(:,:), tr2(:,:) REAL(DP), ALLOCATABLE :: con(:,:), x1(:,:) ! IF( nss < 1 ) RETURN ! ! all processors not involved in the parallel orthogonalization ! jump at the end of the subroutine ! IF( ldx/= nx0 ) & CALL errore( " ortho_iterate ", " inconsistent dimensions ldx, nx0 ", nx0 ) IF( desc%active_node < 0 ) then xloc = 0.0d0 iter = 0 go to 100 endif ! ! Compute the size of the local block ! nr = desc%nr nc = desc%nc ir = desc%ir ic = desc%ic IF( ldx/= desc%nrcx ) & CALL errore( " ortho_iterate ", " inconsistent dimensions ldx ", ldx ) ALLOCATE( tr1(ldx,ldx), tr2(ldx,ldx) ) ALLOCATE( tmp1(ldx,ldx), tmp2(ldx,ldx), dd(ldx,ldx), x1(ldx,ldx), con(ldx,ldx) ) ! Clear elements not involved in the orthogonalization ! do j = nc + 1, nx0 do i = 1, nx0 xloc( i, j ) = 0.0d0 end do end do do j = 1, nx0 do i = nr + 1, nx0 xloc( i, j ) = 0.0d0 end do end do ITERATIVE_LOOP: DO iter = 1, ortho_max ! ! the following calls do the following matrix multiplications: ! tmp1 = x0*rhor (1st call) ! dd = x0*tau*x0 (2nd and 3rd call) ! tmp2 = x0*rhos (4th call) ! CALL sqr_mm_cannon( 'N', 'N', nss, 1.0d0, xloc, nx0, rhor, ldx, 0.0d0, tmp1, ldx, desc) CALL sqr_mm_cannon( 'N', 'N', nss, 1.0d0, tau, ldx, xloc, nx0, 0.0d0, tmp2, ldx, desc) CALL sqr_mm_cannon( 'N', 'N', nss, 1.0d0, xloc, nx0, tmp2, ldx, 0.0d0, dd, ldx, desc) CALL sqr_mm_cannon( 'N', 'N', nss, 1.0d0, xloc, nx0, rhos, ldx, 0.0d0, tmp2, ldx, desc) ! CALL sqr_tr_cannon( nss, tmp1, ldx, tr1, ldx, desc ) CALL sqr_tr_cannon( nss, tmp2, ldx, tr2, ldx, desc ) ! !$omp parallel do default(shared), private(j) DO i=1,nr DO j=1,nc x1(i,j) = sig(i,j)-tmp1(i,j)-tr1(i,j)-dd(i,j) con(i,j)= x1(i,j)-tmp2(i,j)-tr2(i,j) END DO END DO ! ! x1 = sig -x0*rho -x0*rho^t -x0*tau*x0 ! diff = 0.d0 DO i=1,nr DO j=1,nc IF(ABS(con(i,j)).GT.diff) diff=ABS(con(i,j)) END DO END DO CALL mp_max( diff, desc%comm ) IF( diff < ortho_eps ) EXIT ITERATIVE_LOOP ! ! the following calls do: ! tmp1 = x1*u ! tmp2 = ut*x1*u ! CALL sqr_mm_cannon( 'N', 'N', nss, 1.0d0, x1, ldx, u, ldx, 0.0d0, tmp1, ldx, desc ) CALL sqr_mm_cannon( 'T', 'N', nss, 1.0d0, u, ldx, tmp1, ldx, 0.0d0, tmp2, ldx, desc ) ! ! g=ut*x1*u/d (g is stored in tmp1) ! !$omp parallel do default(shared), private(j) DO i=1,nr DO j=1,nc tmp1(i,j)=tmp2(i,j)/(diag(i+ir-1)+diag(j+ic-1)) END DO END DO ! ! the following calls do: ! tmp2 = g*ut ! x0 = u*g*ut ! CALL sqr_mm_cannon( 'N', 'T', nss, 1.0d0, tmp1, ldx, u, ldx, 0.0d0, tmp2, ldx, desc ) CALL sqr_mm_cannon( 'N', 'N', nss, 1.0d0, u, ldx, tmp2, ldx, 0.0d0, xloc, nx0, desc) ! END DO ITERATIVE_LOOP DEALLOCATE( tmp1, tmp2, dd, x1, con, tr1, tr2 ) 100 CONTINUE CALL mp_max( iter, intra_bgrp_comm ) RETURN END SUBROUTINE ortho_iterate !=----------------------------------------------------------------------------=! ! ! Alternative iterative cycle ! !=----------------------------------------------------------------------------=! ! SUBROUTINE ortho_alt_iterate( iter, diff, u, ldx, diag, xloc, nx0, sig, rhor, tau, nss, desc ) USE kinds, ONLY: DP USE io_global, ONLY: stdout USE control_flags, ONLY: ortho_eps, ortho_max USE mp_global, ONLY: intra_bgrp_comm, me_bgrp, nproc_bgrp USE mp, ONLY: mp_sum, mp_max USE descriptors, ONLY: la_descriptor IMPLICIT NONE INTEGER, INTENT(IN) :: nss, ldx, nx0 TYPE(la_descriptor), INTENT(IN) :: desc REAL(DP) :: u ( ldx, ldx ) REAL(DP) :: diag( nss ) REAL(DP) :: xloc( nx0, nx0 ) REAL(DP) :: rhor( ldx, ldx ) REAL(DP) :: tau ( ldx, ldx ) REAL(DP) :: sig ( ldx, ldx ) INTEGER, INTENT(OUT) :: iter REAL(DP), INTENT(OUT) :: diff INTEGER :: i, j INTEGER :: nr, nc, ir, ic REAL(DP), ALLOCATABLE :: tmp1(:,:), tmp2(:,:) REAL(DP), ALLOCATABLE :: x1(:,:) REAL(DP), ALLOCATABLE :: sigd(:) REAL(DP) :: den, dx ! IF( nss < 1 ) RETURN IF( ldx/= nx0 ) & CALL errore( " ortho_alt_iterate ", " inconsistent dimensions ldx, nx0 ", nx0 ) if( desc%active_node < 0 ) then xloc = 0.0d0 iter = 0 go to 100 endif ! ! Compute the size of the local block ! nr = desc%nr nc = desc%nc ir = desc%ir ic = desc%ic IF( ldx/= desc%nrcx ) & CALL errore( " ortho_alt_iterate ", " inconsistent dimensions ldx ", ldx ) ALLOCATE( tmp1(ldx,ldx), tmp2(ldx,ldx), x1(ldx,ldx), sigd(nss) ) ! Clear elements not involved in the orthogonalization ! do j = nc + 1, nx0 do i = 1, nx0 xloc( i, j ) = 0.0d0 end do end do do j = 1, nx0 do i = nr + 1, nx0 xloc( i, j ) = 0.0d0 end do end do ! ! ... Transform "sig", "rhoa" and "tau" in the new basis through matrix "s" ! CALL sqr_mm_cannon( 'N', 'N', nss, 1.0d0, sig, ldx, u, ldx, 0.0d0, tmp1, ldx, desc) CALL sqr_mm_cannon( 'T', 'N', nss, 1.0d0, u, ldx, tmp1, ldx, 0.0d0, sig, ldx, desc) ! CALL sqr_mm_cannon( 'N', 'N', nss, 1.0d0, rhor, ldx, u, ldx, 0.0d0, tmp1, ldx, desc) CALL sqr_mm_cannon( 'T', 'N', nss, 1.0d0, u, ldx, tmp1, ldx, 0.0d0, rhor, ldx, desc) ! CALL sqr_mm_cannon( 'N', 'N', nss, 1.0d0, tau, ldx, u, ldx, 0.0d0, tmp1, ldx, desc) CALL sqr_mm_cannon( 'T', 'N', nss, 1.0d0, u, ldx, tmp1, ldx, 0.0d0, tau, ldx, desc) ! ! ... Initialize x0 with preconditioning ! DO J = 1, nc DO I = 1, nr den = ( diag( i + ir - 1 ) + diag( j + ic - 1 ) ) IF( ABS( den ) <= small ) den = SIGN( small, den ) xloc( i, j ) = sig( i, j ) / den ENDDO ENDDO ! ! ... Starting iteration ! ITERATIVE_LOOP: DO iter = 0, ortho_max CALL sqr_mm_cannon( 'N', 'N', nss, 1.0d0, xloc, nx0, rhor, ldx, 0.0d0, tmp2, ldx, desc) CALL sqr_tr_cannon( nss, tmp2, ldx, tmp1, ldx, desc ) DO J=1,nc DO I=1,nr tmp2(I,J) = tmp2(I,J) + tmp1(I,J) ENDDO ENDDO ! CALL sqr_mm_cannon( 'T', 'N', nss, 1.0d0, tau, ldx, xloc, nx0, 0.0d0, tmp1, ldx, desc) ! sigd = 0.0d0 IF( desc%myr == desc%myc ) THEN DO i = 1, nr SIGD( i + ir - 1 ) = tmp1(i,i) tmp1(i,i) = -SIGD( i + ir - 1 ) ENDDO END IF CALL mp_sum( sigd, desc%comm ) CALL sqr_mm_cannon( 'T', 'N', nss, 1.0d0, xloc, nx0, tmp1, ldx, 0.0d0, x1, ldx, desc) ! CALL sqr_tr_cannon( nss, x1, ldx, tmp1, ldx, desc ) ! ... X1 = SIG - tmp2 - 0.5d0 * ( X1 + X1^t ) diff = 0.0d0 ! DO j = 1, nc DO i = 1, nr ! den = ( diag(i+ir-1) + sigd(i+ir-1) + diag(j+ic-1) + sigd(j+ic-1) ) IF( ABS( den ) <= small ) den = SIGN( small, den ) x1(i,j) = sig(i,j) - tmp2(i,j) - 0.5d0 * (x1(i,j)+tmp1(i,j)) x1(i,j) = x1(i,j) / den diff = MAX( ABS( x1(i,j) - xloc(i,j) ), diff ) xloc(i,j) = x1(i,j) ! END DO END DO CALL mp_max( diff, desc%comm ) IF( diff < ortho_eps ) EXIT ITERATIVE_LOOP END DO ITERATIVE_LOOP ! ! ... Transform x0 back to the original basis CALL sqr_mm_cannon( 'N', 'N', nss, 1.0d0, u, ldx, xloc, nx0, 0.0d0, tmp1, ldx, desc) CALL sqr_mm_cannon( 'N', 'T', nss, 1.0d0, u, ldx, tmp1, ldx, 0.0d0, xloc, nx0, desc) DEALLOCATE( tmp1, tmp2, x1, sigd ) 100 CONTINUE CALL mp_max( iter, intra_bgrp_comm ) RETURN END SUBROUTINE ortho_alt_iterate !------------------------------------------------------------------------- SUBROUTINE sigset( cp, ngwx, becp_dist, nkbx, qbecp, n, nss, ist, sig, ldx, desc ) !----------------------------------------------------------------------- ! input: cp (non-orthonormal), becp, qbecp ! computes the matrix ! sig = 1 - a , a = = + sum q_ij ! where s=s(r(t+dt)) ! routine makes use of c(-q)=c*(q) ! USE kinds, ONLY: DP USE uspp, ONLY: nkbus USE uspp_param, ONLY: nvb USE gvecw, ONLY: ngw USE gvect, ONLY: gstart USE mp, ONLY: mp_root_sum, mp_sum USE control_flags, ONLY: iverbosity USE io_global, ONLY: stdout USE mp_global, ONLY: intra_bgrp_comm, leg_ortho, inter_bgrp_comm, my_bgrp_id, nbgrp USE descriptors, ONLY: la_descriptor, descla_init USE parallel_toolkit, ONLY: dsqmsym ! IMPLICIT NONE ! INTEGER :: nss, ist, ngwx, nkbx, n, ldx, nx COMPLEX(DP) :: cp( ngwx, n ) REAL(DP) :: qbecp( nkbx, ldx ) REAL(DP) :: becp_dist( nkbx, ldx ) REAL(DP) :: sig( ldx, ldx ) TYPE(la_descriptor), INTENT(IN) :: desc ! INTEGER :: i, j, ipr, ipc, nr, nc, ir, ic, npr, npc INTEGER :: ii, jj, root TYPE(la_descriptor):: desc_ip INTEGER :: np( 2 ), coor_ip( 2 ) ! REAL(DP), ALLOCATABLE :: sigp(:,:) ! IF( nss < 1 ) RETURN np(1) = desc%npr np(2) = desc%npc nx = desc%nrcx ALLOCATE( sigp( nx, nx ) ) IF( desc%active_node > 0 ) THEN IF( desc%nrcx /= ldx ) & CALL errore( " sigset ", " inconsistent dimension ldx ", ldx ) IF( nx /= ldx ) & CALL errore( " sigset ", " inconsistent dimension nx ", nx ) END IF IF( nbgrp > 1 ) THEN sig = 0.0d0 END IF DO ipc = 1, np(2) DO ipr = 1, ipc ! np(1) use symmetry coor_ip(1) = ipr - 1 coor_ip(2) = ipc - 1 CALL descla_init( desc_ip, desc%n, desc%nx, np, coor_ip, desc%comm, 1 ) nr = desc_ip%nr nc = desc_ip%nc ir = desc_ip%ir ic = desc_ip%ic ! CALL GRID2D_RANK( 'R', desc_ip%npr, desc_ip%npc, & desc_ip%myr, desc_ip%myc, root ) IF( MOD( root , nbgrp ) == my_bgrp_id ) THEN root = root * leg_ortho CALL dgemm( 'T', 'N', nr, nc, 2*ngw, -2.0d0, cp( 1, ist + ir - 1), 2*ngwx, & cp( 1, ist + ic - 1 ), 2*ngwx, 0.0d0, sigp, nx ) ! ! q = 0 components has weight 1.0 ! IF ( gstart == 2 ) THEN CALL DGER( nr, nc, 1.D0, cp(1,ist+ir-1), 2*ngwx, cp(1,ist+ic-1), 2*ngwx, sigp, nx ) END IF ! CALL mp_root_sum( sigp, sig, root, intra_bgrp_comm ) ! ENDIF ! END DO ! END DO ! DEALLOCATE( sigp ) ! IF( nbgrp > 1 ) THEN CALL mp_sum( sig, inter_bgrp_comm ) END IF ! CALL dsqmsym( nss, sig, nx, desc ) ! IF( desc%active_node > 0 ) THEN ! nr = desc%nr nc = desc%nc ir = desc%ir ic = desc%ic ! IF( desc%myr == desc%myc ) THEN DO i = 1, nr sig(i,i) = sig(i,i) + 1.0d0 END DO END IF ! IF( nvb > 0 ) THEN CALL dgemm( 'T', 'N', nr, nc, nkbus, -1.0d0, becp_dist( 1, 1 ), & nkbx, qbecp( 1, 1 ), nkbx, 1.0d0, sig, ldx ) ENDIF ! IF( iverbosity > 2 ) THEN WRITE( stdout,*) WRITE( stdout,'(26x,a)') ' sig ' DO i = 1, nr WRITE( stdout,'(7f11.6)' ) ( sig(i,j), j=1, nc ) END DO ENDIF ! END IF ! RETURN END SUBROUTINE sigset ! !----------------------------------------------------------------------- SUBROUTINE rhoset( cp, ngwx, phi, bephi, nkbx, qbecp, n, nss, ist, rho, ldx, desc ) !----------------------------------------------------------------------- ! input: cp (non-orthonormal), phi, bephi, qbecp ! computes the matrix ! rho = = ! where |phi> = s'|c0> = |c0> + sum q_ij |i> ! where s=s(r(t+dt)) and s'=s(r(t)) ! routine makes use of c(-q)=c*(q) ! USE gvecw, ONLY: ngw USE gvect, ONLY: gstart USE uspp, ONLY: nkbus USE uspp_param, ONLY: nvb USE kinds, ONLY: DP USE mp, ONLY: mp_root_sum, mp_sum USE mp_global, ONLY: intra_bgrp_comm, me_bgrp, leg_ortho USE mp_global, ONLY: inter_bgrp_comm, my_bgrp_id, nbgrp USE control_flags, ONLY: iverbosity USE io_global, ONLY: stdout USE descriptors, ONLY: la_descriptor, descla_init ! IMPLICIT NONE ! INTEGER :: nss, ist, ngwx, nkbx, ldx, n COMPLEX(DP) :: cp( ngwx, n ), phi( ngwx, n ) REAL(DP) :: bephi( nkbx, ldx ), qbecp( nkbx, ldx ) REAL(DP) :: rho( ldx, ldx ) TYPE(la_descriptor), INTENT(IN) :: desc ! INTEGER :: i, j, ipr, ipc, nr, nc, ir, ic, npr, npc INTEGER :: ii, jj, root, nx TYPE(la_descriptor) :: desc_ip INTEGER :: np( 2 ), coor_ip( 2 ) REAL(DP), ALLOCATABLE :: rhop(:,:) ! ! ! ! IF( nss < 1 ) RETURN np(1) = desc%npr np(2) = desc%npc nx = desc%nrcx IF( desc%active_node > 0 ) THEN IF( desc%nrcx /= ldx ) & CALL errore( " rhoset ", " inconsistent dimension ldx ", ldx ) IF( nx /= ldx ) & CALL errore( " rhoset ", " inconsistent dimension nx ", nx ) END IF ALLOCATE( rhop( nx, nx ) ) rhop = 0.0d0 IF( nbgrp > 1 ) THEN rho = 0.0d0 END IF DO ipc = 1, np(2) DO ipr = 1, np(1) coor_ip(1) = ipr - 1 coor_ip(2) = ipc - 1 CALL descla_init( desc_ip, desc%n, desc%nx, np, coor_ip, desc%comm, 1 ) nr = desc_ip%nr nc = desc_ip%nc ir = desc_ip%ir ic = desc_ip%ic ! CALL GRID2D_RANK( 'R', desc_ip%npr, desc_ip%npc, & desc_ip%myr, desc_ip%myc, root ) ! IF( MOD( root , nbgrp ) == my_bgrp_id ) THEN root = root * leg_ortho CALL dgemm( 'T', 'N', nr, nc, 2*ngw, 2.0d0, phi( 1, ist + ir - 1 ), 2*ngwx, & cp( 1, ist + ic - 1 ), 2*ngwx, 0.0d0, rhop, nx ) ! ! q = 0 components has weight 1.0 ! IF (gstart == 2) THEN CALL DGER( nr, nc, -1.D0, phi(1,ist+ir-1), 2*ngwx, cp(1,ist+ic-1), 2*ngwx, rhop, nx ) END IF CALL mp_root_sum( rhop, rho, root, intra_bgrp_comm ) END IF END DO END DO DEALLOCATE( rhop ) IF( nbgrp > 1 ) THEN CALL mp_sum( rho, inter_bgrp_comm ) END IF IF( desc%active_node > 0 ) THEN ! nr = desc%nr nc = desc%nc ! ! bephi is distributed among processor rows ! qbephi is distributed among processor columns ! tau is block distributed among the whole processor 2D grid ! ! IF( nvb > 0 ) THEN ! ! rho(i,j) = rho(i,j) + SUM_b bephi( b, i ) * qbecp( b, j ) ! CALL dgemm( 'T', 'N', nr, nc, nkbus, 1.0d0, bephi, nkbx, qbecp, nkbx, 1.0d0, rho, ldx ) END IF IF ( iverbosity > 2 ) THEN WRITE( stdout,*) WRITE( stdout,'(26x,a)') ' rho ' DO i=1,nr WRITE( stdout,'(7f11.6)') (rho(i,j),j=1,nc) END DO END IF END IF ! RETURN END SUBROUTINE rhoset !------------------------------------------------------------------------- SUBROUTINE tauset( phi, ngwx, bephi, nkbx, qbephi, n, nss, ist, tau, ldx, desc ) !----------------------------------------------------------------------- ! input: phi ! computes the matrix ! tau = = , where |phi> = s'|c0> ! where s=s(r(t+dt)) and s'=s(r(t)) ! routine makes use of c(-q)=c*(q) ! USE kinds, ONLY: DP USE uspp_param, ONLY: nvb USE uspp, ONLY: nkbus USE gvecw, ONLY: ngw USE gvect, ONLY: gstart USE mp, ONLY: mp_root_sum, mp_sum USE control_flags, ONLY: iverbosity USE io_global, ONLY: stdout USE mp_global, ONLY: intra_bgrp_comm, leg_ortho USE mp_global, ONLY: inter_bgrp_comm, my_bgrp_id, nbgrp USE descriptors, ONLY: la_descriptor, descla_init USE parallel_toolkit, ONLY: dsqmsym ! IMPLICIT NONE ! INTEGER :: nss, ist, ngwx, nkbx, n, ldx, nx COMPLEX(DP) :: phi( ngwx, n ) REAL(DP) :: bephi( nkbx, ldx ), qbephi( nkbx, ldx ) REAL(DP) :: tau( ldx, ldx ) TYPE(la_descriptor), INTENT(IN) :: desc ! INTEGER :: i, j, ipr, ipc, nr, nc, ir, ic, npr, npc INTEGER :: ii, jj, root TYPE(la_descriptor) :: desc_ip INTEGER :: np( 2 ), coor_ip( 2 ) REAL(DP), ALLOCATABLE :: taup( :, : ) ! IF( nss < 1 ) RETURN ! ! get dimensions of the square processor grid ! np(1) = desc%npr np(2) = desc%npc ! nx = desc%nrcx ! IF( desc%active_node > 0 ) THEN IF( desc%nrcx /= ldx ) & CALL errore( " tauset ", " inconsistent dimension ldx ", ldx ) IF( nx /= ldx ) & CALL errore( " tauset ", " inconsistent dimension nx ", nx ) END IF ! ALLOCATE( taup( nx, nx ) ) ! taup = 0.0d0 ! IF( nbgrp > 1 ) THEN tau = 0.0d0 END IF ! ! loop on processors coordinates ! DO ipc = 1, np(2) ! DO ipr = 1, ipc ! np(1) use symmetry coor_ip(1) = ipr - 1 coor_ip(2) = ipc - 1 CALL descla_init( desc_ip, desc%n, desc%nx, np, coor_ip, desc%comm, 1 ) nr = desc_ip%nr nc = desc_ip%nc ir = desc_ip%ir ic = desc_ip%ic ! CALL GRID2D_RANK( 'R', desc_ip%npr, desc_ip%npc, & desc_ip%myr, desc_ip%myc, root ) ! IF( MOD( root , nbgrp ) == my_bgrp_id ) THEN root = root * leg_ortho ! ! All processors contribute to the tau block of processor (ipr,ipc) ! with their own part of wavefunctions ! CALL dgemm( 'T', 'N', nr, nc, 2*ngw, 2.0d0, phi( 1, ist + ir - 1 ), 2*ngwx, & phi( 1, ist + ic - 1 ), 2*ngwx, 0.0d0, taup, nx ) ! ! q = 0 components has weight 1.0 ! IF (gstart == 2) THEN CALL DGER( nr, nc, -1.D0, phi(1,ist+ir-1), 2*ngwx, phi(1,ist+ic-1), 2*ngwx, taup, nx ) END IF ! CALL mp_root_sum( taup, tau, root, intra_bgrp_comm ) ! END IF ! END DO ! END DO ! DEALLOCATE( taup ) ! IF( nbgrp > 1 ) THEN CALL mp_sum( tau, inter_bgrp_comm ) END IF ! CALL dsqmsym( nss, tau, nx, desc ) ! IF( desc%active_node > 0 ) THEN ! nr = desc%nr nc = desc%nc ! ! bephi is distributed among processor rows ! qbephi is distributed among processor columns ! tau is block distributed among the whole processor 2D grid ! IF( nvb > 0 ) THEN ! CALL dgemm( 'T', 'N', nr, nc, nkbus, 1.0d0, bephi, nkbx, qbephi, nkbx, 1.0d0, tau, ldx ) ! END IF IF( iverbosity > 2 ) THEN WRITE( stdout,*) WRITE( stdout,'(26x,a)') ' tau ' DO i=1,nr WRITE( stdout,'(7f11.6)') (tau(i,j),j=1,nc) END DO ENDIF ! ENDIF ! RETURN END SUBROUTINE tauset ! !------------------------------------------------------------------------- SUBROUTINE updatc( ccc, x0, phi, bephi, becp_bgrp, bec_bgrp, cp_bgrp, desc ) !----------------------------------------------------------------------- ! ! input ccc : dt**2/emass OR 1.0d0 demending on ortho ! input x0 : converged lambdas from ortho-loop (unchanged in output) ! input cp : non-orthonormal cp=c0+dh/dc*ccc ! input bec : ! input phi ! output cp : orthonormal cp=cp+lambda*phi ! output bec: bec=becp+lambda*bephi ! USE kinds, ONLY: DP USE ions_base, ONLY: nsp, na USE io_global, ONLY: stdout USE uspp, ONLY: nkb, nkbus USE uspp_param, ONLY: nh, nvb, ish USE gvecw, ONLY: ngw USE control_flags, ONLY: iverbosity USE mp, ONLY: mp_sum, mp_bcast USE mp_global, ONLY: intra_bgrp_comm, leg_ortho, me_bgrp, inter_bgrp_comm USE electrons_base, ONLY: nbspx_bgrp, ibgrp_g2l, nbsp, nspin, nupdwn, iupdwn, nbspx USE descriptors, ONLY: descla_init, la_descriptor ! IMPLICIT NONE ! TYPE(la_descriptor), INTENT(IN) :: desc( : ) COMPLEX(DP) :: cp_bgrp( :, : ), phi( :, : ) REAL(DP), INTENT(IN) :: ccc REAL(DP) :: bec_bgrp( :, : ), x0( :, :, : ) REAL(DP) :: bephi( :, : ) REAL(DP) :: becp_bgrp( :, : ) ! local variables INTEGER :: i, j, ig, is, iv, ia, inl, nr, nc, ir, ic, nx0, ngwx, nkbx, iss, nrcx INTEGER :: ipr, ipc, root, i1, i2, nss, istart INTEGER :: ibgrp_i, ibgrp_i_first, nbgrp_i, i_first REAL(DP), ALLOCATABLE :: wtemp(:,:) REAL(DP), ALLOCATABLE :: xd(:,:) REAL(DP), ALLOCATABLE :: bephi_tmp(:,:) INTEGER :: np( 2 ), coor_ip( 2 ) TYPE(la_descriptor) :: desc_ip DO iss = 1, nspin ! ! size of the local block ! nrcx = desc( iss )%nrcx ! nss = nupdwn(iss) istart = iupdwn(iss) i1 = (iss-1)*nrcx+1 i2 = iss*nrcx nx0 = SIZE( x0, 1 ) ngwx = SIZE( phi, 1 ) nkbx = SIZE( bephi, 1 ) ! ! lagrange multipliers ! IF( nss < 1 ) CYCLE ! IF( desc( iss )%active_node > 0 ) THEN IF( nx0 /= desc( iss )%nrcx ) & CALL errore( " updatc ", " inconsistent dimension nx0 ", nx0 ) END IF ! np(1) = desc( iss )%npr np(2) = desc( iss )%npc ! CALL start_clock( 'updatc' ) ALLOCATE( xd( nrcx, nrcx ) ) IF( nvb > 0 )THEN DO i = 1, nss ibgrp_i = ibgrp_g2l( i + istart - 1 ) IF( ibgrp_i > 0 ) THEN DO inl = 1, nkbus bec_bgrp( inl, ibgrp_i ) = becp_bgrp( inl, ibgrp_i ) END DO END IF END DO ALLOCATE( wtemp( nrcx, nkb ) ) ALLOCATE( bephi_tmp( nkbx, nrcx ) ) END IF DO ipc = 1, np(2) ! IF( nvb > 0 )THEN ! ! For the inner loop we need the block of bebhi( :, ic : ic + nc - 1 ) ! this is the same of block bephi( :, ir : ir + nr - 1 ) on processor ! with coords ipr == ipc ! ! get the right processor owning the block of bephi ! CALL GRID2D_RANK( 'R', np(1), np(2), ipc-1, ipc-1, root ) root = root * leg_ortho ! ! broadcast the block to all processors ! IF( me_bgrp == root ) bephi_tmp = bephi(:,i1:i2) CALL mp_bcast( bephi_tmp, root, intra_bgrp_comm ) ! END IF DO ipr = 1, np(1) ! ! Compute the descriptor of processor with coord: ( ipr-1, ipc-1 ), in the ortho group ! coor_ip(1) = ipr - 1 coor_ip(2) = ipc - 1 CALL descla_init( desc_ip, desc( iss )%n, desc( iss )%nx, np, coor_ip, desc( iss )%comm, 1 ) nr = desc_ip%nr nc = desc_ip%nc ir = desc_ip%ir ic = desc_ip%ic ! CALL GRID2D_RANK( 'R', desc_ip%npr, desc_ip%npc, & desc_ip%myr, desc_ip%myc, root ) ! ! we need to update only states local to the current band group, ! so here we compute the overlap between ortho and band group. ! nbgrp_i = 0 DO i = 1, nc ibgrp_i = ibgrp_g2l( i + istart + ic - 2 ) IF( ibgrp_i > 0 ) THEN IF( nbgrp_i == 0 ) THEN ibgrp_i_first = ibgrp_i i_first = i END IF nbgrp_i = nbgrp_i + 1 END IF END DO root = root * leg_ortho IF( desc( iss )%myr == ipr - 1 .AND. & desc( iss )%myc == ipc - 1 .AND. & desc( iss )%active_node > 0 ) THEN xd = x0(:,:,iss) * ccc END IF CALL mp_bcast( xd, root, intra_bgrp_comm ) CALL dgemm( 'N', 'N', 2*ngw, nbgrp_i, nr, 1.0d0, phi(1,istart+ir-1), 2*ngwx, & xd(1,i_first), nrcx, 1.0d0, cp_bgrp(1,ibgrp_i_first), 2*ngwx ) IF( nvb > 0 )THEN ! updating of the ! ! bec of vanderbilt species are updated ! CALL dgemm( 'N', 'T', nr, nkbus, nc, 1.0d0, xd, nrcx, bephi_tmp, nkbx, 0.0d0, wtemp, nrcx ) ! ! here nr and ir are still valid, since they are the same for all procs in the same row ! !$omp parallel do default(none) private(ibgrp_i,inl) shared(nr,ibgrp_g2l,istart,ir,nkbus,bec_bgrp,wtemp) DO i = 1, nr ibgrp_i = ibgrp_g2l( i + istart + ir - 2 ) IF( ibgrp_i > 0 ) THEN DO inl = 1, nkbus bec_bgrp( inl, ibgrp_i ) = bec_bgrp( inl, ibgrp_i ) + wtemp( i, inl ) END DO END IF END DO !$omp end parallel do ! END IF END DO ! END DO IF( nvb > 0 )THEN DEALLOCATE( wtemp ) DEALLOCATE( bephi_tmp ) END IF ! IF ( iverbosity > 1 ) THEN WRITE( stdout,*) DO is = 1, nvb IF( nvb > 1 ) THEN WRITE( stdout,'(33x,a,i4)') ' updatc: bec (is)',is WRITE( stdout,'(8f9.4)') & & ((bec_bgrp(ish(is)+(iv-1)*na(is)+1,i+istart-1),iv=1,nh(is)),i=1,nss) ELSE DO ia=1,na(is) WRITE( stdout,'(33x,a,i4)') ' updatc: bec (ia)',ia WRITE( stdout,'(8f9.4)') & & ((bec_bgrp(ish(is)+(iv-1)*na(is)+ia,i+istart-1),iv=1,nh(is)),i=1,nss) END DO END IF WRITE( stdout,*) END DO ENDIF ! DEALLOCATE( xd ) ! END DO ! CALL stop_clock( 'updatc' ) ! RETURN END SUBROUTINE updatc !------------------------------------------------------------------------- SUBROUTINE calphi_bgrp( c0_bgrp, ngwx, bec_bgrp, nkbx, betae, phi_bgrp, nbspx_bgrp, ema0bg ) !----------------------------------------------------------------------- ! input: c0 (orthonormal with s(r(t)), bec=, betae=|beta> ! computes the matrix phi (with the old positions) ! where |phi> = s'|c0> = |c0> + sum q_ij |i> ! where s'=s(r(t)) ! USE kinds, ONLY: DP USE ions_base, ONLY: na, nsp USE io_global, ONLY: stdout USE mp_global, ONLY: intra_bgrp_comm, inter_bgrp_comm USE uspp_param, ONLY: nh, ish, nvb USE uspp, ONLY: nkbus, qq USE gvecw, ONLY: ngw USE electrons_base, ONLY: nbsp_bgrp, nbsp USE constants, ONLY: pi, fpi USE control_flags, ONLY: iverbosity USE mp, ONLY: mp_sum ! IMPLICIT NONE INTEGER, INTENT(IN) :: ngwx, nkbx, nbspx_bgrp COMPLEX(DP) :: c0_bgrp( ngwx, nbspx_bgrp ), phi_bgrp( ngwx, nbspx_bgrp ), betae( ngwx, nkbx ) REAL(DP) :: bec_bgrp( nkbx, nbspx_bgrp ), emtot REAL(DP), OPTIONAL :: ema0bg( ngwx ) ! local variables ! INTEGER :: is, iv, jv, ia, inl, jnl, i, j REAL(DP), ALLOCATABLE :: qtemp( : , : ) REAL(DP) :: qqf ! IF( nbsp_bgrp < 1 ) RETURN ! CALL start_clock( 'calphi' ) ! ! Note that phi here is computed only for my band group ! IF ( nvb > 0 ) THEN ALLOCATE( qtemp( nkbus, nbspx_bgrp ) ) qtemp (:,:) = 0.d0 DO is=1,nvb DO iv=1,nh(is) inl = ish(is)+(iv-1)*na(is) DO jv=1,nh(is) jnl = ish(is)+(jv-1)*na(is) IF(ABS(qq(iv,jv,is)) > 1.d-5) THEN qqf = qq(iv,jv,is) DO i=1,nbsp_bgrp CALL daxpy( na(is), qqf, bec_bgrp(jnl+1,i),1,qtemp(inl+1,i), 1 ) END DO ENDIF END DO END DO END DO ! CALL dgemm ( 'N', 'N', 2*ngw, nbsp_bgrp, nkbus, 1.0d0, betae, & 2*ngwx, qtemp, nkbus, 0.0d0, phi_bgrp, 2*ngwx ) DEALLOCATE( qtemp ) ELSE phi_bgrp = (0.d0, 0.d0) END IF ! IF( PRESENT( ema0bg ) ) THEN !$omp parallel do default(shared), private(i) DO j=1,nbsp_bgrp DO i=1,ngw phi_bgrp(i,j)=(phi_bgrp(i,j)+c0_bgrp(i,j))*ema0bg(i) END DO END DO !$omp end parallel do ELSE !$omp parallel do default(shared), private(i) DO j=1,nbsp_bgrp DO i=1,ngw phi_bgrp(i,j)=phi_bgrp(i,j)+c0_bgrp(i,j) END DO END DO !$omp end parallel do END IF ! IF(iverbosity > 1) THEN emtot=0.0d0 IF( PRESENT( ema0bg ) ) THEN DO j=1,nbsp_bgrp DO i=1,ngw emtot=emtot +2.0d0*DBLE(phi_bgrp(i,j)*CONJG(c0_bgrp(i,j)))*ema0bg(i)**(-2.0d0) END DO END DO ELSE DO j=1,nbsp_bgrp DO i=1,ngw emtot=emtot +2.0d0*DBLE(phi_bgrp(i,j)*CONJG(c0_bgrp(i,j))) END DO END DO END IF emtot=emtot/nbsp CALL mp_sum( emtot, intra_bgrp_comm ) CALL mp_sum( emtot, inter_bgrp_comm ) WRITE( stdout,*) 'in calphi sqrt(emtot)=',SQRT(emtot) WRITE( stdout,*) DO is = 1, nvb IF( nvb > 1 ) THEN WRITE( stdout,'(33x,a,i4)') ' calphi: bec (is)',is WRITE( stdout,'(8f9.4)') & & ((bec_bgrp(ish(is)+(iv-1)*na(is)+1,i),iv=1,nh(is)),i=1,nbsp_bgrp) ELSE DO ia=1,na(is) WRITE( stdout,'(33x,a,i4)') ' calphi: bec (ia)',ia WRITE( stdout,'(8f9.4)') & & ((bec_bgrp(ish(is)+(iv-1)*na(is)+ia,i),iv=1,nh(is)),i=1,nbsp_bgrp) END DO END IF END DO ENDIF CALL stop_clock( 'calphi' ) ! RETURN END SUBROUTINE calphi_bgrp SUBROUTINE bec_bgrp2ortho( bec_bgrp, bec_ortho, nrcx, desc ) USE kinds, ONLY: DP USE uspp, ONLY: nkb, nkbus USE mp, ONLY: mp_sum USE mp_global, ONLY: intra_bgrp_comm, leg_ortho, me_bgrp, inter_bgrp_comm USE electrons_base, ONLY: nbspx_bgrp, ibgrp_g2l, nspin USE descriptors, ONLY: la_descriptor ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nrcx TYPE(la_descriptor), INTENT(IN) :: desc( : ) REAL(DP), INTENT(IN) :: bec_bgrp(:,:) REAL(DP), INTENT(OUT) :: bec_ortho(:,:) ! INTEGER :: ir, nr, i, ibgrp_i, nup ! bec_ortho = 0.0d0 ! IF( desc( 1 )%active_node > 0 ) THEN ir = desc( 1 )%ir nr = desc( 1 )%nr do i = 1, nr ibgrp_i = ibgrp_g2l( i + ir - 1 ) IF( ibgrp_i > 0 ) THEN bec_ortho( :, i ) = bec_bgrp( :, ibgrp_i ) END IF end do END IF ! IF( nspin == 2 ) THEN IF( desc( 2 )%active_node > 0 ) THEN nup = desc( 1 )%n ir = desc( 2 )%ir nr = desc( 2 )%nr do i = 1, nr ibgrp_i = ibgrp_g2l( i + ir - 1 + nup ) IF( ibgrp_i > 0 ) THEN bec_ortho( :, i + nrcx ) = bec_bgrp( :, ibgrp_i ) END IF end do END IF END IF ! CALL mp_sum( bec_ortho, inter_bgrp_comm ) ! RETURN END SUBROUTINE bec_bgrp2ortho END MODULE orthogonalize_base espresso-5.1/CPV/src/polarization.f900000644000175000017500000002305212341373026015557 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE polarization USE kinds USE berry_phase, only: indi_l, sour_indi, dest_indi, n_indi_rcv, n_indi_snd, icntix IMPLICIT NONE SAVE PRIVATE ! variables used for the dipole moment REAL(DP) :: p0( 3 ), p( 3 ), pdipole( 3 ), pdipolt( 3 ), pdipole0( 3 ) REAL(DP) :: cost1, cost2, cost3, fac REAL(DP) :: d1old, d2old, d3old LOGICAL :: first = .TRUE. PUBLIC :: deallocate_polarization, ddipole PUBLIC :: print_dipole CONTAINS SUBROUTINE deallocate_polarization use berry_phase, only: berry_closeup call berry_closeup() return END SUBROUTINE deallocate_polarization SUBROUTINE print_dipole( uni, tfile, nfi, tps ) ! USE io_global, ONLY : stdout, ionode ! INTEGER, INTENT(IN) :: uni LOGICAL, INTENT(IN) :: tfile INTEGER, INTENT(IN) :: nfi REAL(DP), INTENT(IN) :: tps INTEGER :: i WRITE( stdout, 19 ) WRITE( stdout, 20 ) 'P0_e', (pdipole0(i),i=1,3) WRITE( stdout, 20 ) 'P_e', (pdipole(i),i=1,3) WRITE( stdout, 20 ) 'P0_I', (p0(i),i=1,3) WRITE( stdout, 20 ) 'P_I', (p(i),i=1,3) WRITE( stdout, 20 ) 'P_tot', (pdipolt(i),i=1,3) ! IF (tfile) THEN WRITE( uni, 30 ) nfi, tps WRITE( uni, 20 ) 'P_e', (pdipole(i),i=1,3) WRITE( uni, 20 ) 'P_I', (p(i),i=1,3) WRITE( uni, 20 ) 'P_tot', (pdipolt(i),i=1,3) END IF 19 FORMAT(/,3X,'Dipole moment (AU)') 20 FORMAT(3X,A10,3(F18.8,2X)) 30 FORMAT(I7,1X,F11.8) RETURN END SUBROUTINE print_dipole SUBROUTINE ddipole( istep, c2, ngwx, taus, tfor, ngw, n, ht ) USE mp, ONLY: mp_sum USE constants, ONLY: pi USE cell_base, ONLY: tpiba, alat, s_to_r USE ions_base, ONLY: zv, nat, nsp, na USE mp_global, ONLY: me_bgrp, nproc_bgrp, intra_bgrp_comm USE mp_wave, ONLY: pwscatter IMPLICIT NONE COMPLEX(DP) :: ZDOTU, zdotc EXTERNAL ZDOTU, zdotc ! ! ... ARGUMENTS ! INTEGER, INTENT(IN) :: istep INTEGER, INTENT(IN) :: ngw, n, ngwx REAL(DP), INTENT(IN) :: ht( 3, 3 ) ! Transpose of matrix h REAL(DP), INTENT(IN) :: taus( 3, nat ) ! Transpose of matrix h LOGICAL, INTENT(IN) :: tfor COMPLEX(DP) :: c2( ngwx, n ) ! ! ... LOCALS ! REAL(DP) :: taup( 3, nat ) REAL(DP) :: d1, d2, d3 REAL(DP) :: rb1, rb2, rb3 REAL(DP) :: rb1m1, rb2m1, rb3m1 REAL(DP) :: rdummy REAL(DP) :: bg(3,3), bgm1(3,3), b1( 3 ), b2( 3 ), b3( 3 ) COMPLEX(DP) :: dumm( n, n ), det, aux( 2*n ), ptemp( ngwx ) COMPLEX(DP) :: detc( 2 ), ztmp INTEGER :: ipiv( n ), info REAL(DP) :: omega REAL(DP) :: htm1( 3, 3 ), h( 3, 3 ) INTEGER :: i, j, is, in2, in1, me, isa ! ! ... Subroutine body ! me = me_bgrp + 1 h = TRANSPOSE( ht ) CALL invmat( 3, ht, htm1, omega ) do i=1,3 b1(i) = alat * htm1(i,1) b2(i) = alat * htm1(i,2) b3(i) = alat * htm1(i,3) enddo CALL s_to_r( taus, taup, na, nsp, h ) IF(FIRST) THEN FAC=2.D0 RB1=B1(1)*B1(1) + B1(2)*B1(2) + B1(3)*B1(3) RB2=B2(1)*B2(1) + B2(2)*B2(2) + B2(3)*B2(3) RB3=B3(1)*B3(1) + B3(2)*B3(2) + B3(3)*B3(3) RB1M1=1.d0/SQRT(RB1) RB2M1=1.d0/SQRT(RB2) RB3M1=1.d0/SQRT(RB3) COST1=FAC/omega/TPIBA*RB1M1 COST2=FAC/omega/TPIBA*RB2M1 COST3=FAC/omega/TPIBA*RB3M1 DO I=1,9 BG(I,1)=0.D0 ENDDO CALL daxpy(3,RB1M1,B1,1,BG(1,1),1) CALL daxpy(3,RB2M1,B2,1,BG(1,2),1) CALL daxpy(3,RB3M1,B3,1,BG(1,3),1) CALL invmat (3, BG, BGM1, rdummy) ! ! t=0 initial ionic polarization, only if the atoms move. ! IF( tfor ) THEN DO J = 1, 3 P0(J) = 0.D0 isa = 0 DO IS = 1, nsp DO I = 1, na(is) isa = isa + 1 P0(J) = P0(J) + ZV(is) * TAUP( j, isa ) ENDDO ENDDO P0(J) = P0(J) / omega ENDDO ENDIF ! ENDIF ! !..ionic contribution ! DO J = 1, 3 P(J) = 0.D0 isa = 0 DO IS = 1, nsp DO I = 1, na(is) isa = isa + 1 P(J) = P(J) + ZV(is) * TAUP(J,isa) ENDDO ENDDO P(J) = P(J) / omega ENDDO ! !..set vectors !. !..P(1) Polarizability along x ! dumm = 0.0d0 DO IN2 = 1, N call pwscatter( C2(:,in2), PTEMP, ngw, indi_l(:,1), sour_indi(:,1), & dest_indi(:,1), n_indi_rcv(1), n_indi_snd(1), icntix(1), me_bgrp, nproc_bgrp, intra_bgrp_comm ) DO IN1 = IN2, N ztmp = zdotc( NGW, C2(1,IN1), 1, PTEMP(1), 1 ) call mp_sum( ztmp, intra_bgrp_comm ) DUMM(IN1,IN2)=ztmp ENDDO call pwscatter( C2(:,in2), PTEMP, ngw, indi_l(:,3), sour_indi(:,3), & dest_indi(:,3), n_indi_rcv(3), n_indi_snd(3), icntix(3), me_bgrp, nproc_bgrp, intra_bgrp_comm ) DO IN1=IN2,N ztmp = ZDOTU( NGW, C2(1,IN1), 1, PTEMP(1), 1 ) call mp_sum( ztmp, intra_bgrp_comm ) DUMM(IN1,IN2)=DUMM(IN1,IN2)+ztmp ENDDO call pwscatter( C2(:,in2), PTEMP, ngw, indi_l(:,2), sour_indi(:,2), & dest_indi(:,2), n_indi_rcv(2), n_indi_snd(2), icntix(2), me_bgrp, nproc_bgrp, intra_bgrp_comm ) DO IN1=IN2,N ztmp = zdotc(NGW,PTEMP(1),1,C2(1,IN1),1) call mp_sum( ztmp, intra_bgrp_comm ) DUMM(IN1,IN2)=DUMM(IN1,IN2) + ztmp ENDDO DO IN1=1,IN2-1 DUMM(IN1,IN2)=DUMM(IN2,IN1) ENDDO ENDDO ! ! Compute determinant and then log(det) for P(1) ! CALL ZGEFA(DUMM,n,N,IPIV,INFO) CALL ZGEDI(DUMM,n,N,IPIV,DETC,AUX,10) DET=DETC(1)*10.D0**DETC(2) D1= ATAN2 (AIMAG(DET),DBLE(DET)) IF(.NOT.FIRST) THEN IF(ABS(D1-D1OLD).GT.PI) THEN D1 = D1 - SIGN(2*PI,D1-D1OLD) END IF END IF D1OLD = D1 ! !..P(2) dumm = 0.0d0 DO IN2=1,N call pwscatter( C2(:,in2), PTEMP, ngw, indi_l(:,4), sour_indi(:,4), & dest_indi(:,4), n_indi_rcv(4), n_indi_snd(4), icntix(4), me_bgrp, nproc_bgrp, intra_bgrp_comm ) !. contiene il termine ig=0 DO IN1=IN2,N ztmp = zdotc(NGW,C2(1,IN1),1,PTEMP(1),1) call mp_sum( ztmp, intra_bgrp_comm ) DUMM(IN1,IN2)=ztmp ENDDO call pwscatter( C2(:,in2), PTEMP, ngw, indi_l(:,6), sour_indi(:,6), & dest_indi(:,6), n_indi_rcv(6), n_indi_snd(6), icntix(6), me_bgrp, nproc_bgrp, intra_bgrp_comm ) DO IN1=IN2,N ztmp = ZDOTU(NGW,C2(1,IN1),1,PTEMP(1),1) call mp_sum( ztmp, intra_bgrp_comm ) DUMM(IN1,IN2)=DUMM(IN1,IN2) + ztmp ENDDO call pwscatter( C2(:,in2), PTEMP, ngw, indi_l(:,5), sour_indi(:,5), & dest_indi(:,5), n_indi_rcv(5), n_indi_snd(5), icntix(5), me_bgrp, nproc_bgrp, intra_bgrp_comm ) DO IN1=IN2,N ztmp = zdotc(NGW,PTEMP(1),1,C2(1,IN1),1) call mp_sum( ztmp, intra_bgrp_comm ) DUMM(IN1,IN2)=DUMM(IN1,IN2) + ztmp ENDDO ! simmetrizzo DO IN1=1,IN2-1 DUMM(IN1,IN2)=DUMM(IN2,IN1) ENDDO ENDDO ! ! Compute determinant and then log(det) for P(2) ! CALL ZGEFA(DUMM,n,N,IPIV,INFO) CALL ZGEDI(DUMM,n,N,IPIV,DETC,AUX,10) DET=DETC(1)*10.D0**DETC(2) D2= ATAN2 (AIMAG(DET),DBLE(DET)) IF(.NOT.FIRST) THEN IF(ABS(D2-D2OLD).GT.PI) THEN D2 = D2 - SIGN(2*PI,D2-D2OLD) END IF END IF D2OLD = D2 ! !..P(3) ! dumm = 0.0d0 DO IN2=1,N call pwscatter( C2(:,in2), PTEMP, ngw, indi_l(:,7), sour_indi(:,7), & dest_indi(:,7), n_indi_rcv(7), n_indi_snd(7), icntix(7), me_bgrp, nproc_bgrp, intra_bgrp_comm ) !. contiene il termine ig=0 DO IN1=IN2,N ztmp = zdotc(NGW,C2(1,IN1),1,PTEMP(1),1) call mp_sum( ztmp, intra_bgrp_comm ) DUMM(IN1,IN2)=ztmp ENDDO call pwscatter( C2(:,in2), PTEMP, ngw, indi_l(:,8), sour_indi(:,8), & dest_indi(:,8), n_indi_rcv(8), n_indi_snd(8), icntix(8), me_bgrp, nproc_bgrp, intra_bgrp_comm ) DO IN1=IN2,N ztmp = zdotc(NGW,PTEMP(1),1,C2(1,IN1),1) call mp_sum( ztmp, intra_bgrp_comm ) DUMM(IN1,IN2)=DUMM(IN1,IN2)+ztmp ENDDO ! simmetrizzo DO IN1=1,IN2-1 DUMM(IN1,IN2)=DUMM(IN2,IN1) ENDDO ENDDO ! ! Compute determinant and then log(det) for P(3) ! CALL ZGEFA(DUMM,n,N,IPIV,INFO) CALL ZGEDI(DUMM,n,N,IPIV,DETC,AUX,10) DET=DETC(1)*10.D0**DETC(2) D3= ATAN2 (AIMAG(DET),DBLE(DET)) IF(.NOT.FIRST) THEN IF(ABS(D3-D3OLD).GT.PI) THEN D3 = D3 - SIGN(2*PI,D3-D3OLD) END IF END IF D3OLD = D3 ! ! pdipole has the polarization due to the electronic component, ! p has the ionic component, and pdipolt the total polarization. ! DO I=1,3 PDIPOLE(I) = D1*COST1*BGM1(1,I) + D2*COST2*BGM1(2,I) + D3*COST3*BGM1(3,I) PDIPOLT(I) = PDIPOLE(I) + ( P(I) - P0(I) ) ENDDO IF(FIRST.AND.TFOR) THEN PDIPOLE0 = PDIPOLE ENDIF ! FIRST=.false. ! RETURN END subroutine ddipole END MODULE POLARIZATION espresso-5.1/CPV/src/cplib.f900000644000175000017500000020030612341373026014134 0ustar mbamba! ! Copyright (C) 2002-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . !=----------------------------------------------------------------------------=! SUBROUTINE ecutoffs_setup( ecutwfc_, ecutrho_, ecfixed_, qcutz_, & q2sigma_, refg_ ) !------------------------------------------------------------------------------! USE kinds, ONLY: DP USE constants, ONLY: eps8 USE gvecw, ONLY: ecutwfc USE gvecw, ONLY: ecfixed, qcutz, q2sigma USE gvect, ONLY: ecutrho USE gvecs, ONLY: ecuts, dual, doublegrid USE pseudopotential, only: tpstab USE io_global, only: stdout, ionode USE uspp, only: okvan use betax, only: mmx, refg IMPLICIT NONE REAL(DP), INTENT(IN) :: ecutwfc_, ecutrho_, ecfixed_, qcutz_, & q2sigma_, refg_ ecutwfc = ecutwfc_ IF ( ecutrho_ <= 0.D0 ) THEN ! dual = 4.D0 ! ELSE ! dual = ecutrho_ / ecutwfc ! IF ( dual <= 1.D0 ) & CALL errore( ' ecutoffs_setup ', ' invalid dual? ', 1 ) ! END IF doublegrid = ( dual > 4.D0 ) IF ( doublegrid .AND. .NOT. okvan ) & CALL errore( 'setup', 'No USPP: set ecutrho=4*ecutwfc', 1 ) ecutrho = dual * ecutwfc ! IF ( doublegrid ) THEN ! ecuts = 4.D0 * ecutwfc ! ELSE ! ecuts = ecutrho ! END IF ! ecfixed = ecfixed_ qcutz = qcutz_ q2sigma = q2sigma_ IF( refg_ < 0.0001d0 ) THEN tpstab = .FALSE. refg = 0.05d0 ELSE refg = refg_ END IF CALL set_interpolation_table_size( mmx, refg, ecutrho ) RETURN END SUBROUTINE ecutoffs_setup SUBROUTINE set_interpolation_table_size( mmx, refg, gmax ) USE control_flags, only: thdyn USE kinds, only: DP IMPLICIT NONE INTEGER, INTENT(OUT) :: mmx REAL(DP), INTENT(IN) :: refg REAL(DP), INTENT(IN) :: gmax IF( thdyn ) THEN ! ... a larger table is used when cell is moving to allow ! ... large volume fluctuation mmx = NINT( 2.0d0 * gmax / refg ) ELSE mmx = NINT( 1.2d0 * gmax / refg ) END IF RETURN END SUBROUTINE set_interpolation_table_size SUBROUTINE gcutoffs_setup( alat, tk_inp, nk_inp, kpoints_inp ) ! (describe briefly what this routine does...) ! ---------------------------------------------- USE kinds, ONLY: DP USE gvecw, ONLY: ecutwfc, gcutw USE gvect, ONLY: ecutrho, gcutm USE gvecs, ONLY: ecuts, gcutms USE gvecw, ONLY: ekcut, gkcut USE constants, ONLY: eps8, pi IMPLICIT NONE ! ... declare subroutine arguments REAL(DP), INTENT(IN) :: alat LOGICAL, INTENT(IN) :: tk_inp INTEGER, INTENT(IN) :: nk_inp REAL(DP), INTENT(IN) :: kpoints_inp(3,*) ! ... declare other variables INTEGER :: i REAL(DP) :: kcut, ksq REAL(DP) :: tpiba ! end of declarations ! ---------------------------------------------- ! ... Set Values for the cutoff IF( alat < eps8 ) THEN CALL errore(' cut-off setup ', ' alat too small ', 0) END IF tpiba = 2.0d0 * pi / alat ! ... Constant cutoff simulation parameters gcutw = ecutwfc / tpiba**2 ! wave function cut-off gcutm = ecutrho / tpiba**2 ! potential cut-off gcutms= ecuts / tpiba**2 ! smooth mesh cut-off kcut = 0.0_DP IF ( tk_inp ) THEN ! ... augment plane wave cutoff to include all k+G's DO i = 1, nk_inp ! ... calculate modulus ksq = kpoints_inp( 1, i ) ** 2 + kpoints_inp( 2, i ) ** 2 + kpoints_inp( 3, i ) ** 2 IF ( ksq > kcut ) kcut = ksq END DO END IF gkcut = ( sqrt( kcut ) + sqrt( gcutw ) ) ** 2 ekcut = gkcut * tpiba ** 2 RETURN END SUBROUTINE gcutoffs_setup ! ---------------------------------------------- SUBROUTINE cutoffs_print_info() ! Print out information about different cut-offs USE gvecw, ONLY: ecutwfc, gcutw USE gvect, ONLY: ecutrho, gcutm USE gvecw, ONLY: ecfixed, qcutz, q2sigma USE gvecw, ONLY: ekcut, gkcut USE gvecs, ONLY: ecuts, gcutms use betax, only: mmx, refg USE io_global, ONLY: stdout WRITE( stdout, 100 ) ecutwfc, ecutrho, ecuts, sqrt(gcutw), & sqrt(gcutm), sqrt(gcutms) IF( qcutz > 0.0d0 ) THEN WRITE( stdout, 150 ) qcutz, q2sigma, ecfixed END IF WRITE( stdout,200) refg, mmx 100 FORMAT(/,3X,'Energy Cut-offs',/ & ,3X,'---------------',/ & ,3X,'Ecutwfc = ',F6.1,' Ry, ', 3X,'Ecutrho = ',F6.1,' Ry, ', 3X,'Ecuts = ',F6.1,' Ry',/ & ,3X,'Gcutwfc = ',F6.1,' , ', 3X,'Gcutrho = ',F6.1,' ', 3X,'Gcuts = ',F6.1) 150 FORMAT( 3X,'modified kinetic energy functional, with parameters:',/, & 3X,'ecutz = ',f8.4,' ecsig = ', f7.4,' ecfix = ',f6.2) 200 FORMAT( 3X,'NOTA BENE: refg, mmx = ', f10.6,I6 ) RETURN END SUBROUTINE cutoffs_print_info ! ---------------------------------------------- SUBROUTINE orthogonalize_info( ) USE control_flags, ONLY: ortho_eps, ortho_max USE io_global, ONLY: stdout IMPLICIT NONE WRITE(stdout, 585) WRITE(stdout, 511) ortho_eps, ortho_max 511 FORMAT( 3X,'Orthog. with lagrange multipliers : eps = ',E10.2, ', max = ',I3) 585 FORMAT( 3X,'Eigenvalues calculated without the kinetic term contribution') RETURN END SUBROUTINE orthogonalize_info ! ---------------------------------------------- SUBROUTINE electrons_print_info( ) USE kinds, ONLY: DP USE electrons_base, ONLY: nbnd, nspin, nel, nelt, nupdwn, iupdwn, & f, qbac USE io_global, ONLY: stdout USE ions_base, ONLY: zv, nsp, na IMPLICIT NONE INTEGER :: i,is IF( nspin == 1) THEN WRITE(stdout,6) nelt, nbnd WRITE(stdout,7) ( f( i ), i = 1, nbnd ) ELSE WRITE(stdout,8) nelt WRITE(stdout,9) nel(1) WRITE(stdout,7) ( f( i ), i = 1, nupdwn(1)) WRITE(stdout,10) nel(2) WRITE(stdout,7) ( f( i ), i = iupdwn(2), ( iupdwn(2) + nupdwn(2) - 1 ) ) END IF qbac=0. do is=1,nsp qbac=qbac+na(is)*zv(is) end do qbac=qbac-nelt if(qbac.ne.0) write(stdout,11) qbac 6 FORMAT(/,3X,'Electronic states',/ & ,3X,'-----------------',/ & ,3X,'Number of Electron = ',I5,', of States = ',I5,/ & ,3X,'Occupation numbers :') 7 FORMAT(2X,10F5.2) 8 FORMAT(/,3X,'Electronic states',/ & ,3X,'-----------------',/ & ,3X,'Local Spin Density calculation',/ & ,3X,'Number of Electron = ',I5) 9 FORMAT( 3X,'Spins up = ', I5, ', occupations: ') 10 FORMAT( 3X,'Spins down = ', I5, ', occupations: ') 11 FORMAT(/,3X,'WARNING: system charge = ',F12.6) RETURN END SUBROUTINE electrons_print_info ! ---------------------------------------------- SUBROUTINE exch_corr_print_info() USE funct, ONLY: write_dft_name USE io_global, ONLY: stdout IMPLICIT NONE WRITE(stdout,800) call write_dft_name ( ) 800 FORMAT(//,3X,'Exchange and correlations functionals',/ & ,3X,'-------------------------------------') RETURN END SUBROUTINE exch_corr_print_info ! ---------------------------------------------- SUBROUTINE ions_print_info( ) ! Print info about input parameter for ion dynamic USE io_global, ONLY: ionode, stdout USE control_flags, ONLY: tranp, amprp, tnosep, tolp, tfor, tsdp, & tzerop, tv0rd, taurdr, nbeg, tcp, tcap USE ions_base, ONLY: tau_srt, if_pos, ind_srt, nsp, na, & amass, nat, fricp, greasp, rcmax USE ions_nose, ONLY: tempw, ndega USE constants, ONLY: amu_au IMPLICIT NONE integer is, ia, k, ic, isa LOGICAL :: ismb( 3 ) WRITE( stdout, 50 ) IF( .NOT. tfor ) THEN WRITE( stdout, 518 ) ELSE WRITE( stdout, 520 ) IF( tsdp ) THEN WRITE( stdout, 521 ) ELSE WRITE( stdout, 522 ) END IF WRITE( stdout, 523 ) ndega WRITE( stdout, 524 ) fricp, greasp IF( tv0rd ) THEN WRITE( stdout, 850 ) ELSE IF ( tzerop ) THEN WRITE( stdout, 635 ) ENDIF END IF DO is = 1, nsp IF( tranp(is) ) THEN WRITE( stdout,510) WRITE( stdout,512) is, amprp(is) END IF END DO WRITE(stdout,660) isa = 0 DO IS = 1, nsp WRITE(stdout,1000) is, na(is), amass(is)*amu_au, amass(is), rcmax(is) DO IA = 1, na(is) isa = isa + 1 WRITE(stdout,1010) ( tau_srt(k,isa), K = 1,3 ) END DO END DO IF ( ( nbeg > -1 ) .AND. ( .NOT. taurdr ) ) THEN WRITE(stdout,661) ELSE WRITE(stdout,662) ENDIF IF( tfor ) THEN IF( ANY( ( if_pos( 1:3, 1:nat ) == 0 ) ) ) THEN WRITE(stdout,1020) WRITE(stdout,1022) DO isa = 1, nat ia = ind_srt( isa ) ismb( 1 ) = ( if_pos(1,ia) /= 0 ) ismb( 2 ) = ( if_pos(2,ia) /= 0 ) ismb( 3 ) = ( if_pos(3,ia) /= 0 ) IF( .NOT. ALL( ismb ) ) THEN WRITE( stdout, 1023 ) isa, ( ismb(k), K = 1, 3 ) END IF END DO ELSE WRITE(stdout,1021) END IF END IF IF( tfor ) THEN if( ( tcp .or. tcap .or. tnosep ) .and. tsdp ) then call errore(' ions_print_info', & ' Temperature control not allowed with steepest descent',1) endif IF(.not. tcp .and. .not. tcap .and. .not. tnosep ) THEN WRITE( stdout,550) ELSE IF( tcp .and. tcap ) then call errore(' ions_print_info', ' Velocity rescaling not' & //' compatible with random velocity initialization',1) ELSE IF( tcp .and. tnosep ) then call errore(' ions_print_info', ' Velocity rescaling and' & //' Nose thermostat are incompatible',1) ELSE IF(tcap .and. tnosep ) then call errore(' ions_print_info', ' Nose thermostat not' & //' compatible with random velocity initialization',1) ELSE IF(tcp) THEN WRITE( stdout,555) tempw,tolp ELSE IF(tcap) THEN WRITE( stdout,560) tempw,tolp ELSE IF(tnosep) THEN WRITE( stdout,595) ELSE WRITE( stdout,550) END IF END IF 50 FORMAT(//,3X,'Ions Simulation Parameters',/ & ,3X,'--------------------------') 510 FORMAT( 3X,'Initial random displacement of ionic coordinates',/, & 3X,' specie amplitude') 512 FORMAT( 3X,I7,2X,F9.6) 518 FORMAT( 3X,'Ions are not allowed to move') 520 FORMAT( 3X,'Ions are allowed to move') 521 FORMAT( 3X,'Ions dynamics with steepest descent') 522 FORMAT( 3X,'Ions dynamics with newton equations') 523 format( 3X,'the temperature is computed for ',i5,' degrees of freedom') 524 format( 3X,'ion dynamics with fricp = ',f7.4,' and greasp = ',f7.4) 550 FORMAT( 3X,'Ionic temperature is not controlled') 555 FORMAT( 3X,'Ionic temperature control via ', & 'rescaling of velocities :',/ & ,3X,'temperature required = ',F10.5,'K, ', & 'tolerance = ',F10.5,'K') 560 FORMAT( 3X,'Ionic temperature control via ', & 'canonical velocities rescaling :',/ & ,3X,'temperature required = ',F10.5,'K, ', & 'tolerance = ',F10.5,'K') 595 FORMAT( 3X,'Ionic temperature control via nose thermostat') 635 FORMAT( 3X,'Zero initial momentum for ions') 660 FORMAT( 3X,'Ionic position (from input)', /, & 3X,'sorted by specie, and converted to real a.u. coordinates') 661 FORMAT( 3X,'Ionic position will be re-read from restart file') 662 FORMAT( 3X,'Ionic position read from input file') 850 FORMAT( 3X,'Initial ion velocities read from input') 1000 FORMAT(3X,'Species ',I3,' atoms = ',I4,' mass = ',F12.2, ' (a.u.), ', & & F12.2, ' (amu)', ' rcmax = ', F6.2, ' (a.u.)' ) 1010 FORMAT(3X,3(1X,F12.6)) 1020 FORMAT(/,3X,'NOT all atoms are allowed to move ') 1021 FORMAT(/,3X,'All atoms are allowed to move') 1022 FORMAT( 3X,' indx ..x.. ..y.. ..z..') 1023 FORMAT( 3X,I4,3(1X,L5)) RETURN END SUBROUTINE ions_print_info ! ---------------------------------------------- subroutine cell_print_info( ) USE constants, ONLY: au_gpa USE control_flags, ONLY: thdyn, tsdc, tzeroc, tbeg, nbeg, tpre USE control_flags, ONLY: tnoseh USE io_global, ONLY: stdout USE cell_base, ONLY: press, frich, greash, wmass IMPLICIT NONE WRITE(stdout,545 ) IF ( tpre ) WRITE( stdout, 600 ) IF ( tbeg ) THEN WRITE(stdout,546) ELSE WRITE(stdout,547) IF( nbeg > -1 ) WRITE( stdout, 548 ) END IF IF( .NOT. thdyn ) THEN WRITE( stdout,525) WRITE( stdout,606) ELSE IF( tsdc ) THEN WRITE( stdout,526) ELSE IF( frich /= 0.0d0 ) THEN WRITE( stdout,602) frich, greash ELSE WRITE( stdout,527) END IF IF( tnoseh ) then WRITE( stdout,604) ELSE WRITE( stdout,565) END IF IF( tzeroc ) THEN WRITE( stdout,563) ENDIF END IF WRITE( stdout,530) press * au_gpa, wmass END IF 545 FORMAT(//,3X,'Cell Dynamics Parameters (from STDIN)',/ & ,3X,'-------------------------------------') 546 FORMAT( 3X,'Simulation cell read from STDIN') 547 FORMAT( 3X,'Starting cell generated from CELLDM') 548 FORMAT( 3X,'Cell parameters will be re-read from restart file') 525 FORMAT( 3X,'Constant VOLUME Molecular dynamics') 606 format( 3X,'cell parameters are not allowed to move') 526 FORMAT( 3X,'Volume dynamics with steepest descent') 527 FORMAT( 3X,'Volume dynamics with newton equations') 530 FORMAT( 3X,'Constant PRESSURE Molecular dynamics:',/ & ,3X,'External pressure (GPa) = ',F11.2,/ & ,3X,'Volume mass = ',F11.2) 563 FORMAT( 3X,'Zero initial momentum for cell variables') 565 FORMAT( 3X,'Volume dynamics: the temperature is not controlled') 604 format( 3X,'cell parameters dynamics with nose` temp. control' ) 600 format( 3X, 'internal stress tensor calculated') 602 format( 3X, 'cell parameters dynamics with frich = ',f7.4, & & 3X, 'and greash = ',f7.4 ) return end subroutine cell_print_info !---------------------------------------------- SUBROUTINE gmeshinfo( ) !---------------------------------------------- ! ! Print out the number of g vectors for the different mesh ! USE kinds, ONLY: DP USE mp_global, ONLY: nproc_bgrp, intra_bgrp_comm USE io_global, ONLY: ionode, ionode_id, stdout USE mp, ONLY: mp_max, mp_gather use smallbox_gvec, only: ngb USE gvecw, only: ngw_g, ngw, ngwx USE gvecs, only: ngms_g, ngms, ngsx USE gvect, only: ngm, ngm_g, ngmx IMPLICIT NONE INTEGER :: ip, ng_snd(3), ng_rcv( 3, nproc_bgrp ) INTEGER :: ierr, min_val, max_val, i REAL(DP) :: avg_val IF(ionode) THEN WRITE( stdout,*) WRITE( stdout,*) ' Reciprocal Space Mesh' WRITE( stdout,*) ' ---------------------' END IF ng_snd(1) = ngm_g ng_snd(2) = ngm ng_snd(3) = ngmx CALL mp_gather(ng_snd, ng_rcv, ionode_id, intra_bgrp_comm) ! IF(ionode) THEN min_val = MINVAL( ng_rcv(2,:) ) max_val = MAXVAL( ng_rcv(2,:) ) avg_val = REAL(SUM( ng_rcv(2,:) ))/nproc_bgrp WRITE( stdout,1000) WRITE( stdout,1011) ng_snd(1), min_val, max_val, avg_val END IF ! ng_snd(1) = ngms_g ng_snd(2) = ngms ng_snd(3) = ngsx CALL mp_gather(ng_snd, ng_rcv, ionode_id, intra_bgrp_comm) ! ierr = 0 ! IF(ionode) THEN WRITE( stdout,1001) min_val = MINVAL( ng_rcv(2,:) ) max_val = MAXVAL( ng_rcv(2,:) ) avg_val = REAL(SUM( ng_rcv(2,:) ))/nproc_bgrp WRITE( stdout,1011) ng_snd(1), min_val, max_val, avg_val IF( min_val < 1 ) ierr = ip END IF ! CALL mp_max( ierr, intra_bgrp_comm ) ! IF( ierr > 0 ) & CALL errore( " gmeshinfo ", " Wow! some processors have no G-vectors ", ierr ) ! ng_snd(1) = ngw_g ng_snd(2) = ngw ng_snd(3) = ngwx CALL mp_gather(ng_snd, ng_rcv, ionode_id, intra_bgrp_comm) ! IF(ionode) THEN WRITE( stdout,1002) min_val = MINVAL( ng_rcv(2,:) ) max_val = MAXVAL( ng_rcv(2,:) ) avg_val = REAL(SUM( ng_rcv(2,:) ))/nproc_bgrp WRITE( stdout,1011) ng_snd(1), min_val, max_val, avg_val IF( min_val < 1 ) ierr = ip END IF ! CALL mp_max( ierr, intra_bgrp_comm ) ! IF( ierr > 0 ) & CALL errore( " gmeshinfo ", " Wow! some processors have no G-vectors ", ierr ) ! IF(ionode .AND. ngb > 0 ) THEN WRITE( stdout,1050) WRITE( stdout,1060) ngb END IF 1000 FORMAT(3X,'Large Mesh',/, & ' Global(ngm_g) MinLocal MaxLocal Average') 1001 FORMAT(3X,'Smooth Mesh',/, & ' Global(ngms_g) MinLocal MaxLocal Average') 1002 FORMAT(3X,'Wave function Mesh',/, & ' Global(ngw_g) MinLocal MaxLocal Average') 1011 FORMAT( 3I15, F15.2 ) 1050 FORMAT(/,3X,'Small box Mesh') 1060 FORMAT( 3X, 'ngb = ', I12, ' not distributed to processors' ) RETURN END SUBROUTINE gmeshinfo !---------------------------------------------- SUBROUTINE constraint_info() !---------------------------------------------- USE kinds, ONLY: DP USE constraints_module, ONLY: nconstr, constr_tol, & constr_type, constr, constr_target USE io_global, ONLY: ionode, stdout USE control_flags, ONLY: lconstrain ! IMPLICIT NONE ! INTEGER :: ic ! IF( lconstrain .AND. ionode ) THEN ! WRITE( stdout, 10 ) WRITE( stdout, 20 ) nconstr, constr_tol ! DO ic = 1, nconstr ! IF( constr_type( ic ) == 3 ) THEN ! ! distance ! WRITE( stdout, 30 ) ic WRITE( stdout, 40 ) NINT( constr(1,ic) ), & NINT( constr(2,ic) ), constr_target(ic) ! END IF ! END DO ! END IF ! 10 FORMAT( 3X, "Using constrained dynamics") 20 FORMAT( 3X, "number of constrain and tolerance: ", I5, D10.2) 30 FORMAT( 3X, "constrain ", I5, " type distance ") 40 FORMAT( 3X, " atoms ", I5, I5, " target dist ", F10.5) ! END SUBROUTINE constraint_info SUBROUTINE new_atomind_constraints() ! USE kinds, ONLY: DP USE constraints_module, ONLY: constr USE ions_base, ONLY: ind_bck ! IMPLICIT NONE ! INTEGER :: ic, ia INTEGER :: iaa REAL(DP) :: aa ! ! Substitute the atom index given in the input file ! with the new atom index, after the sort in the ! atomic coordinates. ! DO ic = 1, SIZE( constr, 2 ) DO ia = 1, SIZE( constr, 1 ) IF( constr( ia, ic ) > 0.0d0 ) THEN iaa = NINT( constr( ia, ic ) ) aa = DBLE( ind_bck( iaa ) ) constr( ia, ic ) = aa END IF END DO END DO ! RETURN ! END SUBROUTINE new_atomind_constraints SUBROUTINE compute_stress_x( stress, detot, h, omega ) USE kinds, ONLY : DP IMPLICIT NONE REAL(DP), INTENT(OUT) :: stress(3,3) REAL(DP), INTENT(IN) :: detot(3,3), h(3,3), omega integer :: i, j do i=1,3 do j=1,3 stress(i,j)=-1.d0/omega*(detot(i,1)*h(j,1)+ & & detot(i,2)*h(j,2)+detot(i,3)*h(j,3)) enddo enddo return END SUBROUTINE compute_stress_x !----------------------------------------------------------------------- subroutine formf( tfirst, eself ) !----------------------------------------------------------------------- !computes (a) the self-energy eself of the ionic pseudocharges; ! (b) the form factors of: (i) pseudopotential (vps), ! (ii) ionic pseudocharge (rhops) ! also calculated the derivative of vps with respect to ! g^2 (dvps) ! USE kinds, ONLY : DP use mp, ONLY : mp_sum use control_flags, ONLY : iprint, tpre, iverbosity use io_global, ONLY : stdout use mp_global, ONLY : intra_bgrp_comm use gvecs, ONLY : ngms use cell_base, ONLY : omega, tpiba2, tpiba use ions_base, ONLY : rcmax, zv, nsp, na use local_pseudo, ONLY : vps, vps0, rhops, dvps, drhops use atom, ONLY : rgrid use uspp_param, ONLY : upf, oldvan use pseudo_base, ONLY : compute_rhops, formfn, formfa, compute_eself use pseudopotential, ONLY : tpstab, vps_sp, dvps_sp use splines, ONLY : spline use gvect, ONLY : gstart, gg use constants, ONLY : autoev ! implicit none logical :: tfirst real(DP) :: eself, DeltaV0 ! real(DP) :: vpsum, rhopsum integer :: is, ig REAL(DP) :: cost1, xg call start_clock( 'formf' ) ! IF( .NOT. ALLOCATED( rgrid ) ) & CALL errore( ' formf ', ' rgrid not allocated ', 1 ) IF( .NOT. ALLOCATED( upf ) ) & CALL errore( ' formf ', ' upf not allocated ', 1 ) ! ! calculation of gaussian selfinteraction ! eself = compute_eself( na, zv, rcmax, nsp ) if( tfirst .or. ( iverbosity > 2 ) )then WRITE( stdout, 1200 ) eself endif ! 1200 format(/,3x,'formf: eself=',f12.5) ! do is = 1, nsp IF( tpstab ) THEN ! ! Use interpolation table, with cubic spline ! cost1 = 1.0d0/omega ! IF( gstart == 2 ) THEN vps (1,is) = vps_sp(is)%y(1) * cost1 dvps(1,is) = dvps_sp(is)%y(1) * cost1 END IF ! DO ig = gstart, ngms xg = SQRT( gg(ig) ) * tpiba vps (ig,is) = spline( vps_sp(is), xg ) * cost1 dvps(ig,is) = spline( dvps_sp(is), xg ) * cost1 END DO ! ELSE call formfn( rgrid(is)%r, rgrid(is)%rab, & upf(is)%vloc(1:rgrid(is)%mesh), zv(is), rcmax(is), gg, & omega, tpiba2, rgrid(is)%mesh, ngms, oldvan(is), tpre, & vps(:,is), vps0(is), dvps(:,is) ) ! obsolete BHS form ! call formfa( vps(:,is), dvps(:,is), rc1(is), rc2(is), wrc1(is), wrc2(is), & ! rcl(:,is,lloc(is)), al(:,is,lloc(is)), bl(:,is,lloc(is)), & ! zv(is), rcmax(is), g, omega, tpiba2, ngms, gstart, tpre ) END IF ! ! fourier transform of local pp and gaussian nuclear charge ! call compute_rhops( rhops(:,is), drhops(:,is), zv(is), rcmax(is), gg, & omega, tpiba2, ngms, tpre ) if( tfirst .or. ( iverbosity > 2 ) )then vpsum = SUM( vps( 1:ngms, is ) ) rhopsum = SUM( rhops( 1:ngms, is ) ) call mp_sum( vpsum, intra_bgrp_comm ) call mp_sum( rhopsum, intra_bgrp_comm ) WRITE( stdout,1250) vps(1,is),rhops(1,is) WRITE( stdout,1300) vpsum,rhopsum endif ! end do ! ! ... DeltaV0 is the shift to be applied to eigenvalues ! ... in order to align them to other plane wave codes ! DeltaV0 = 0.0_dp DO is = 1, nsp ! ! ... na(is)/omega is the structure factor at G=0 ! DeltaV0 = DeltaV0 + na(is) / omega * vps0(is) END DO ! IF ( tfirst .or. ( iverbosity > 2 ) ) THEN write(6,'(" Delta V(G=0): ",f10.6,"Ry, ",f11.6,"eV")') & deltaV0, deltaV0*autoev END IF ! call stop_clock( 'formf' ) ! 1250 format(3x,'formf: vps(g=0)=',f12.7,' rhops(g=0)=',f12.7) 1300 format(3x,'formf: sum_g vps(g)=',f12.7,' sum_g rhops(g)=',f12.7) ! return end subroutine formf ! !----------------------------------------------------------------------- SUBROUTINE newnlinit() !----------------------------------------------------------------------- ! ! ... this routine calculates arrays beta, qq, qgb, rhocb ! ... and derivatives w.r.t. cell parameters dbeta ! ... See also comments in nlinit ! use control_flags, ONLY : tpre use pseudopotential, ONLY : tpstab use cp_interfaces, ONLY : interpolate_beta, interpolate_qradb, compute_qradx, compute_betagx, & exact_beta, check_tables, exact_qradb, build_pstab, build_cctab use betax, only : mmx, refg use kinds, only : dp use io_global, only : ionode, stdout ! IMPLICIT NONE ! LOGICAL :: recompute_table REAL(DP) :: gmax ! ! ... initialization for vanderbilt species ! CALL start_clock( 'newnlinit' ) IF( tpstab ) THEN recompute_table = tpre .AND. check_tables( gmax ) ! IF ( recompute_table ) THEN IF( ionode ) & WRITE( stdout, * ) "newnliinit: recomputing the pseudopotentials tables" !"! CALL set_interpolation_table_size( mmx, refg, gmax ) CALL compute_qradx( tpre ) call compute_betagx( tpre ) call build_pstab() ! call build_cctab() END IF ! ! initialization that is common to all species ! CALL interpolate_beta( tpre ) ! CALL interpolate_qradb( tpre ) ! ELSE ! ! ... this is mainly for testing ! CALL exact_beta( tpre ) ! CALL exact_qradb( tpre ) ! END IF ! ! ... non-linear core-correction ( rhocb(ig,is) ) ! CALL core_charge_ftr( tpre ) CALL stop_clock( 'newnlinit' ) ! RETURN ! END SUBROUTINE newnlinit ! !----------------------------------------------------------------------- subroutine nlfh_x( stress, bec_bgrp, dbec, lambda, descla ) !----------------------------------------------------------------------- ! ! contribution to the internal stress tensor due to the constraints ! USE kinds, ONLY : DP use uspp, ONLY : nkb, qq use uspp_param, ONLY : nh, nhm, nvb, ish use ions_base, ONLY : na use electrons_base, ONLY : nbspx, nbsp, nudx, nspin, nupdwn, iupdwn, ibgrp_g2l use cell_base, ONLY : omega, h use constants, ONLY : pi, fpi, au_gpa use io_global, ONLY : stdout use control_flags, ONLY : iverbosity USE descriptors, ONLY : la_descriptor USE mp, ONLY : mp_sum USE mp_global, ONLY : intra_bgrp_comm, inter_bgrp_comm ! implicit none TYPE(la_descriptor), INTENT(IN) :: descla(:) REAL(DP), INTENT(INOUT) :: stress(3,3) REAL(DP), INTENT(IN) :: bec_bgrp( :, : ), dbec( :, :, :, : ) REAL(DP), INTENT(IN) :: lambda( :, :, : ) ! INTEGER :: i, j, ii, jj, inl, iv, jv, ia, is, iss, nss, istart INTEGER :: jnl, ir, ic, nr, nc, ibgrp_i, nrcx REAL(DP) :: fpre(3,3), TT, T1, T2 ! REAL(DP), ALLOCATABLE :: tmpbec(:,:), tmpdh(:,:), temp(:,:), bec(:,:,:) ! nrcx = MAXVAL( descla( : )%nrcx ) ! ALLOCATE( bec( nkb, nrcx, nspin ) ) ! DO iss = 1, nspin IF( descla( iss )%active_node > 0 ) THEN nss = nupdwn( iss ) istart = iupdwn( iss ) ic = descla( iss )%ic nc = descla( iss )%nc DO i=1,nc ibgrp_i = ibgrp_g2l( i+istart-1+ic-1 ) IF( ibgrp_i > 0 ) THEN bec( :, i, iss ) = bec_bgrp( :, ibgrp_i ) ELSE bec( :, i, iss ) = 0.0d0 END IF END DO ELSE bec(:,:,iss) = 0.0d0 END IF END DO CALL mp_sum( bec, inter_bgrp_comm ) ! IF (nspin == 1) THEN IF( ( descla( 1 )%active_node > 0 ) ) THEN ALLOCATE ( tmpbec(nhm,nrcx), tmpdh(nrcx,nhm), temp(nrcx,nrcx) ) ENDIF ELSEIF (nspin == 2) THEN IF( ( descla( 1 )%active_node > 0 ) .OR. ( descla( 2 )%active_node > 0 ) ) THEN ALLOCATE ( tmpbec(nhm,nrcx), tmpdh(nrcx,nhm), temp(nrcx,nrcx) ) END IF ENDIF ! fpre = 0.d0 ! do ii=1,3 do jj=1,3 do is=1,nvb do ia=1,na(is) do iss = 1, nspin ! istart = iupdwn( iss ) nss = nupdwn( iss ) ! IF( descla( iss )%active_node > 0 ) THEN nr = descla( iss )%nr nc = descla( iss )%nc ir = descla( iss )%ir ic = descla( iss )%ic tmpbec = 0.d0 tmpdh = 0.d0 ! do iv=1,nh(is) do jv=1,nh(is) inl=ish(is)+(jv-1)*na(is)+ia if(abs(qq(iv,jv,is)).gt.1.e-5) then do i = 1, nc tmpbec(iv,i) = tmpbec(iv,i) + qq(iv,jv,is) * bec( inl, i, iss ) end do endif end do end do do iv=1,nh(is) inl=ish(is)+(iv-1)*na(is)+ia do i = 1, nr tmpdh(i,iv) = dbec( inl, i + (iss-1)*nrcx, ii, jj ) end do end do if(nh(is).gt.0)then CALL dgemm & ( 'N', 'N', nr, nc, nh(is), 1.0d0, tmpdh, nrcx, tmpbec, nhm, 0.0d0, temp, nrcx ) do j = 1, nc do i = 1, nr fpre(ii,jj) = fpre(ii,jj) + 2D0 * temp( i, j ) * lambda(i,j,iss) end do end do endif END IF ! end do ! end do ! end do ! end do ! end do CALL mp_sum( fpre, intra_bgrp_comm ) do i=1,3 do j=1,3 stress(i,j)=stress(i,j)+ & (fpre(i,1)*h(j,1)+fpre(i,2)*h(j,2)+fpre(i,3)*h(j,3))/omega enddo enddo IF (allocated(tmpbec)) THEN DEALLOCATE ( tmpbec, tmpdh, temp ) END IF DEALLOCATE( bec ) IF( iverbosity > 1 ) THEN WRITE( stdout,*) WRITE( stdout,*) "constraints contribution to stress" WRITE( stdout,5555) ((-fpre(i,j),j=1,3),i=1,3) fpre = MATMUL( fpre, TRANSPOSE( h ) ) / omega * au_gpa * 10.0d0 WRITE( stdout,5555) ((fpre(i,j),j=1,3),i=1,3) WRITE( stdout,*) END IF ! 5555 FORMAT(1x,f12.5,1x,f12.5,1x,f12.5/ & & 1x,f12.5,1x,f12.5,1x,f12.5/ & & 1x,f12.5,1x,f12.5,1x,f12.5//) return end subroutine nlfh_x !----------------------------------------------------------------------- subroutine nlinit !----------------------------------------------------------------------- ! ! this routine allocates and initalizes arrays beta, qq, qgb, ! rhocb, and derivatives w.r.t. cell parameters dbeta ! ! beta(ig,l,is) = 4pi/sqrt(omega) y^r(l,q^) ! int_0^inf dr r^2 j_l(qr) betar(l,is,r) ! ! Note that beta(g)_lm,is = (-i)^l*beta(ig,l,is) (?) ! ! qq_ij=int_0^r q_ij(r)=omega*qg(g=0) ! ! beta and qradb are first calculated on a fixed linear grid in |G| ! (betax, qradx) then calculated on the box grid by interpolation ! (this is done in routine newnlinit) ! use kinds, ONLY : dp use control_flags, ONLY : iprint, tpre use io_global, ONLY : stdout, ionode use gvecw, ONLY : ngw use core, ONLY : rhocb, allocate_core use constants, ONLY : pi, fpi use ions_base, ONLY : na, nsp use uspp, ONLY : aainit, beta, qq, dvan, nhtol, nhtolm, indv,& dbeta use uspp_param, ONLY : upf, lmaxq, nbetam, lmaxkb, nhm, nh, ish, nvb use atom, ONLY : rgrid use qgb_mod, ONLY : qgb, dqgb use smallbox_gvec, ONLY : ngb use gvect, ONLY : ngm use cp_interfaces, ONLY : pseudopotential_indexes, compute_dvan, & compute_betagx, compute_qradx, build_pstab, build_cctab USE fft_base, ONLY : dfftp use pseudopotential, ONLY : tpstab ! implicit none ! integer is, il, l, ir, iv, jv, lm, ind, ltmp, i0 real(dp), allocatable:: fint(:), jl(:), jltmp(:), djl(:), & & dfint(:) real(dp) xg, xrg, fac CALL start_clock( 'nlinit' ) IF( ionode ) THEN WRITE( stdout, 100 ) 100 FORMAT( //, & 3X,'Pseudopotentials initialization',/, & 3X,'-------------------------------' ) END IF IF( .NOT. ALLOCATED( rgrid ) ) & CALL errore( ' nlinit ', ' rgrid not allocated ', 1 ) IF( .NOT. ALLOCATED( upf ) ) & CALL errore( ' nlinit ', ' upf not allocated ', 1 ) ! ! initialize indexes ! CALL pseudopotential_indexes( ) ! ! initialize array ap ! call aainit( lmaxkb + 1 ) ! CALL allocate_core( dfftp%nnr, ngm, ngb, nsp ) ! ! allocate( beta( ngw, nhm, nsp ) ) allocate( qgb( ngb, nhm*(nhm+1)/2, nsp ) ) allocate( qq( nhm, nhm, nsp ) ) qq (:,:,:) =0.d0 IF (tpre) THEN allocate( dqgb( ngb, nhm*(nhm+1)/2, nsp, 3, 3 ) ) allocate( dbeta( ngw, nhm, nsp, 3, 3 ) ) END IF ! ! initialization for vanderbilt species ! CALL compute_qradx( tpre ) ! ! initialization that is common to all species ! WRITE( stdout, fmt="(//,3X,'Common initialization' )" ) do is = 1, nsp WRITE( stdout, fmt="(/,3X,'Specie: ',I5)" ) is ! fac converts ry to hartree fac=0.5d0 do iv = 1, nh(is) WRITE( stdout,901) iv, indv(iv,is), nhtol(iv,is) end do 901 format(2x,i2,' indv= ',i2,' ang. mom= ',i2) ! WRITE( stdout,*) WRITE( stdout,'(20x,a)') ' dion ' do iv = 1, upf(is)%nbeta WRITE( stdout,'(8f9.4)') ( fac*upf(is)%dion(iv,jv), jv = 1, upf(is)%nbeta ) end do ! end do ! ! calculation of array betagx(ig,iv,is) ! call compute_betagx( tpre ) ! ! calculate array dvan(iv,jv,is) ! call compute_dvan() ! IF( tpstab ) THEN call build_pstab() ! call build_cctab() ! END IF ! ! newnlinit stores qgb and qq, calculates arrays beta rhocb ! and derivatives wrt cell dbeta ! call newnlinit() CALL stop_clock( 'nlinit' ) return end subroutine nlinit !------------------------------------------------------------------------- subroutine qvan2b(ngy,iv,jv,is,ylm,qg,qradb) !-------------------------------------------------------------------------- ! ! q(g,l,k) = sum_lm (-i)^l ap(lm,l,k) yr_lm(g^) qrad(g,l,l,k) ! USE kinds, ONLY : DP use control_flags, ONLY : iprint, tpre use uspp, ONLY : nlx, lpx, lpl, ap, indv, nhtolm use smallbox_gvec, ONLY : ngb use uspp_param, ONLY : lmaxq, nbetam use ions_base, ONLY : nsp ! implicit none ! integer, intent(in) :: ngy, iv, jv, is real(DP), intent(in) :: ylm( ngb, lmaxq*lmaxq ) real(DP), intent(in) :: qradb( ngb, nbetam*(nbetam+1)/2, lmaxq, nsp ) complex(DP), intent(out) :: qg( ngb ) ! integer :: ivs, jvs, ijvs, ivl, jvl, i, ii, ij, l, lp, ig complex(DP) :: sig ! ! iv = 1..8 s_1 p_x1 p_z1 p_y1 s_2 p_x2 p_z2 p_y2 ! ivs = 1..4 s_1 s_2 p_1 p_2 ! ivl = 1..4 s p_x p_z p_y ! ivs=indv(iv,is) jvs=indv(jv,is) if (ivs >= jvs) then ijvs = ivs*(ivs-1)/2 + jvs else ijvs = jvs*(jvs-1)/2 + ivs end if ! ijvs is the packed index for (ivs,jvs) ivl=nhtolm(iv,is) jvl=nhtolm(jv,is) if (ivl > nlx .OR. jvl > nlx) & call errore (' qvan2b ', ' wrong dimensions', MAX(ivl,jvl)) ! qg(:) = (0.d0, 0.d0) ! ! lpx = max number of allowed y_lm ! lp = composite lm to indentify them ! do i=1,lpx(ivl,jvl) lp=lpl(ivl,jvl,i) if (lp > lmaxq*lmaxq) call errore(' qvan2b ',' lp out of bounds ',lp) ! ! extraction of angular momentum l from lp: ! l = int ( sqrt( DBLE(l-1) + epsilon) ) + 1 ! if (lp == 1) then l=1 else if ((lp >= 2) .and. (lp <= 4)) then l=2 else if ((lp >= 5) .and. (lp <= 9)) then l=3 else if ((lp >= 10).and.(lp <= 16)) then l=4 else if ((lp >= 17).and.(lp <= 25)) then l=5 else if ((lp >= 26).and.(lp <= 36)) then l=6 else if ((lp >= 37).and.(lp <= 49)) then l=7 else call errore(' qvan2b ',' not implemented ',lp) endif ! ! sig= (-i)^l ! sig=(0.d0,-1.d0)**(l-1) sig=sig*ap(lp,ivl,jvl) do ig=1,ngy qg(ig)=qg(ig)+sig*ylm(ig,lp)*qradb(ig,ijvs,l,is) end do end do return end subroutine qvan2b !------------------------------------------------------------------------- subroutine dqvan2b(ngy,iv,jv,is,ylm,dylm,dqg,dqrad,qradb) !-------------------------------------------------------------------------- ! ! dq(i,j) derivatives wrt to h(i,j) of q(g,l,k) calculated in qvan2b ! USE kinds, ONLY : DP use control_flags, ONLY : iprint, tpre use uspp, ONLY : nlx, lpx, lpl, ap, indv, nhtolm use smallbox_gvec, ONLY : ngb use uspp_param, ONLY : lmaxq, nbetam use ions_base, ONLY : nsp implicit none integer, intent(in) :: ngy, iv, jv, is REAL(DP), INTENT(IN) :: ylm( ngb, lmaxq*lmaxq ), dylm( ngb, lmaxq*lmaxq, 3, 3 ) complex(DP), intent(out) :: dqg( ngb, 3, 3 ) REAL(DP), INTENT(IN) :: dqrad( ngb, nbetam*(nbetam+1)/2, lmaxq, nsp, 3, 3 ) real(DP), intent(in) :: qradb( ngb, nbetam*(nbetam+1)/2, lmaxq, nsp ) integer :: ivs, jvs, ijvs, ivl, jvl, i, ii, ij, l, lp, ig complex(DP) :: sig, z1, z2, zfac ! ! ! iv = 1..8 s_1 p_x1 p_z1 p_y1 s_2 p_x2 p_z2 p_y2 ! ivs = 1..4 s_1 s_2 p_1 p_2 ! ivl = 1..4 s p_x p_z p_y ! ivs=indv(iv,is) jvs=indv(jv,is) ! if (ivs >= jvs) then ijvs = ivs*(ivs-1)/2 + jvs else ijvs = jvs*(jvs-1)/2 + ivs end if ! ! ijvs is the packed index for (ivs,jvs) ! ivl=nhtolm(iv,is) jvl=nhtolm(jv,is) ! if (ivl > nlx .OR. jvl > nlx) & call errore (' qvan2 ', ' wrong dimensions (2)', MAX(ivl,jvl)) ! dqg(:,:,:) = (0.d0, 0.d0) ! lpx = max number of allowed y_lm ! lp = composite lm to indentify them z1 = 0.0d0 z2 = 0.0d0 do i=1,lpx(ivl,jvl) lp=lpl(ivl,jvl,i) if (lp > lmaxq*lmaxq) call errore(' dqvan2b ',' lp out of bounds ',lp) ! extraction of angular momentum l from lp: ! l = int ( sqrt( DBLE(l-1) + epsilon) ) + 1 ! if (lp == 1) then l=1 else if ((lp >= 2) .and. (lp <= 4)) then l=2 else if ((lp >= 5) .and. (lp <= 9)) then l=3 else if ((lp >= 10).and.(lp <= 16)) then l=4 else if ((lp >= 17).and.(lp <= 25)) then l=5 else if ((lp >= 26).and.(lp <= 36)) then l=6 else if ((lp >= 37).and.(lp <= 49)) then l=7 else call errore(' qvan2b ',' not implemented ',lp) endif ! ! sig= (-i)^l ! sig = (0.0d0,-1.0d0)**(l-1) ! sig = sig * ap( lp, ivl, jvl ) ! do ij=1,3 do ii=1,3 do ig=1,ngy zfac = ylm(ig,lp) * dqrad(ig,ijvs,l,is,ii,ij) zfac = zfac - dylm(ig,lp,ii,ij) * qradb(ig,ijvs,l,is) dqg(ig,ii,ij) = dqg(ig,ii,ij) + sig * zfac end do end do end do end do ! ! WRITE(6,*) 'DEBUG dqvan2b: ', z1, z2 ! return end subroutine dqvan2b !----------------------------------------------------------------------- subroutine dylmr2_( nylm, ngy, g, gg, ainv, dylm ) !----------------------------------------------------------------------- ! ! temporary CP interface for PW routine dylmr2 ! dylmr2 calculates d Y_{lm} /d G_ipol ! dylmr2_ calculates G_ipol \sum_k h^(-1)(jpol,k) (dY_{lm} /dG_k) ! USE kinds, ONLY: DP implicit none ! integer, intent(IN) :: nylm, ngy real(DP), intent(IN) :: g (3, ngy), gg (ngy), ainv(3,3) real(DP), intent(OUT) :: dylm (ngy, nylm, 3, 3) ! integer :: ipol, jpol, lm, ig real(DP), allocatable :: dylmaux (:,:,:) ! allocate ( dylmaux(ngy,nylm,3) ) ! dylmaux(:,:,:) = 0.d0 ! do ipol =1,3 call dylmr2 (nylm, ngy, g, gg, dylmaux(1,1,ipol), ipol) enddo ! do ipol =1,3 do jpol =1,3 do lm=1,nylm do ig = 1, ngy dylm (ig,lm,ipol,jpol) = (dylmaux(ig,lm,1) * ainv(jpol,1) + & dylmaux(ig,lm,2) * ainv(jpol,2) + & dylmaux(ig,lm,3) * ainv(jpol,3) ) & * g(ipol,ig) end do end do end do end do ! deallocate ( dylmaux ) ! return ! end subroutine dylmr2_ SUBROUTINE print_lambda_x( lambda, descla, n, nshow, ccc, iunit ) USE kinds, ONLY : DP USE descriptors, ONLY: la_descriptor USE io_global, ONLY: stdout, ionode USE cp_interfaces, ONLY: collect_lambda USE electrons_base, ONLY: nudx IMPLICIT NONE real(DP), intent(in) :: lambda(:,:,:), ccc TYPE(la_descriptor), INTENT(IN) :: descla(:) integer, intent(in) :: n, nshow integer, intent(in), optional :: iunit ! integer :: nnn, j, un, i, is real(DP), allocatable :: lambda_repl(:,:) if( present( iunit ) ) then un = iunit else un = stdout end if nnn = min( nudx, nshow ) ALLOCATE( lambda_repl( nudx, nudx ) ) IF( ionode ) WRITE( un,*) DO is = 1, SIZE( lambda, 3 ) CALL collect_lambda( lambda_repl, lambda(:,:,is), descla(is) ) IF( ionode ) THEN WRITE( un,3370) ' lambda nudx, spin = ', nudx, is IF( nnn < n ) WRITE( un,3370) ' print only first ', nnn DO i=1,nnn WRITE( un,3380) (lambda_repl(i,j)*ccc,j=1,nnn) END DO END IF END DO DEALLOCATE( lambda_repl ) 3370 FORMAT(26x,a,2i4) 3380 FORMAT(9f8.4) RETURN END SUBROUTINE print_lambda_x !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- SUBROUTINE denlcc_x( nnr, nspin, vxcr, sfac, drhocg, dcc ) !----------------------------------------------------------------------- ! ! derivative of non linear core correction exchange energy wrt cell ! parameters h ! Output in dcc ! USE kinds, ONLY: DP USE ions_base, ONLY: nsp USE gvect, ONLY: gstart, g, gg USE gvecs, ONLY: ngms USE gvect, ONLY: ngm, nl USE cell_base, ONLY: omega, ainv, tpiba2 USE mp, ONLY: mp_sum USE mp_global, ONLY: intra_bgrp_comm USE uspp_param, ONLY: upf USE fft_interfaces, ONLY: fwfft USE fft_base, ONLY: dfftp IMPLICIT NONE ! input INTEGER, INTENT(IN) :: nnr, nspin REAL(DP), INTENT(IN) :: vxcr( :, : ) COMPLEX(DP), INTENT(IN) :: sfac( :, : ) REAL(DP), INTENT(IN) :: drhocg( :, : ) ! output REAL(DP), INTENT(OUT) :: dcc( :, : ) ! local INTEGER :: i, j, ig, is COMPLEX(DP) :: srhoc REAL(DP) :: vxcc ! COMPLEX(DP), ALLOCATABLE :: vxc( : ) ! dcc = 0.0d0 ! ALLOCATE( vxc( nnr ) ) ! vxc(:) = vxcr(:,1) ! IF( nspin > 1 ) vxc(:) = vxc(:) + vxcr(:,2) ! CALL fwfft( 'Dense', vxc, dfftp ) ! DO i=1,3 DO j=1,3 DO ig = gstart, ngms srhoc = 0.0d0 DO is = 1, nsp IF( upf(is)%nlcc ) srhoc = srhoc + sfac( ig, is ) * drhocg( ig, is ) ENDDO vxcc = DBLE( CONJG( vxc( nl( ig ) ) ) * srhoc ) / SQRT( gg(ig) * tpiba2 ) dcc(i,j) = dcc(i,j) + vxcc * & & 2.d0 * tpiba2 * g(i,ig) * & & (g(1,ig)*ainv(j,1) + & & g(2,ig)*ainv(j,2) + & & g(3,ig)*ainv(j,3) ) ENDDO ENDDO ENDDO DEALLOCATE( vxc ) dcc = dcc * omega CALL mp_sum( dcc( 1:3, 1:3 ), intra_bgrp_comm ) RETURN END SUBROUTINE denlcc_x !----------------------------------------------------------------------- SUBROUTINE dotcsc_x( eigr, cp, ngw, n ) !----------------------------------------------------------------------- ! USE kinds, ONLY: DP USE ions_base, ONLY: na, nsp, nat USE io_global, ONLY: stdout USE gvect, ONLY: gstart USE uspp, ONLY: nkb, qq USE uspp_param, ONLY: nh, ish, nvb USE mp, ONLY: mp_sum USE mp_global, ONLY: intra_bgrp_comm, nbgrp USE cp_interfaces, ONLY: nlsm1 ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: ngw, n COMPLEX(DP), INTENT(IN) :: eigr(:,:), cp(:,:) ! local variables REAL(DP) rsum, csc(n) ! automatic array COMPLEX(DP) temp(ngw) ! automatic array REAL(DP), ALLOCATABLE:: becp(:,:) INTEGER i,kmax,nnn,k,ig,is,ia,iv,jv,inl,jnl ! IF( nbgrp > 1 ) & CALL errore( ' dotcsc ', ' parallelization over bands not yet implemented ', 1 ) ! ALLOCATE(becp(nkb,n)) ! ! < beta | phi > is real. only the i lowest: ! nnn = MIN( 12, n ) DO i = nnn, 1, -1 kmax = i CALL nlsm1(i,1,nvb,eigr,cp,becp) ! DO k=1,kmax DO ig=1,ngw temp(ig)=CONJG(cp(ig,k))*cp(ig,i) END DO csc(k)=2.d0*DBLE(SUM(temp)) IF (gstart == 2) csc(k)=csc(k)-DBLE(temp(1)) END DO CALL mp_sum( csc( 1:kmax ), intra_bgrp_comm ) DO k=1,kmax rsum=0.d0 DO is=1,nvb DO iv=1,nh(is) DO jv=1,nh(is) DO ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(is)+(jv-1)*na(is)+ia rsum = rsum + & & qq(iv,jv,is)*becp(inl,i)*becp(jnl,k) END DO END DO END DO END DO csc(k)=csc(k)+rsum END DO ! WRITE( stdout,'("dotcsc =",12f18.15)') (csc(k),k=1,i) ! END DO WRITE( stdout,*) ! DEALLOCATE(becp) ! RETURN END SUBROUTINE dotcsc_x ! !----------------------------------------------------------------------- FUNCTION enkin_x( c, f, n ) !----------------------------------------------------------------------- ! ! calculation of kinetic energy term ! USE kinds, ONLY: DP USE constants, ONLY: pi, fpi USE gvecw, ONLY: ngw USE gvect, ONLY: gstart USE gvecw, ONLY: ggp USE mp, ONLY: mp_sum USE mp_global, ONLY: intra_bgrp_comm USE cell_base, ONLY: tpiba2 IMPLICIT NONE REAL(DP) :: enkin_x ! input INTEGER, INTENT(IN) :: n COMPLEX(DP), INTENT(IN) :: c( :, : ) REAL(DP), INTENT(IN) :: f( : ) ! ! local INTEGER :: ig, i REAL(DP) :: sk(n) ! automatic array ! DO i=1,n sk(i)=0.0d0 DO ig=gstart,ngw sk(i)=sk(i)+DBLE(CONJG(c(ig,i))*c(ig,i))*ggp(ig) END DO END DO CALL mp_sum( sk(1:n), intra_bgrp_comm ) enkin_x=0.0d0 DO i=1,n enkin_x=enkin_x+f(i)*sk(i) END DO ! ... reciprocal-space vectors are in units of alat/(2 pi) so a ! ... multiplicative factor (2 pi/alat)**2 is required enkin_x = enkin_x * tpiba2 ! RETURN END FUNCTION enkin_x !------------------------------------------------------------------------- SUBROUTINE nlfl_bgrp_x( bec_bgrp, becdr_bgrp, lambda, descla, fion ) !----------------------------------------------------------------------- ! contribution to fion due to the orthonormality constraint ! ! USE kinds, ONLY: DP USE io_global, ONLY: stdout USE ions_base, ONLY: na, nsp, nat USE uspp, ONLY: nhsa=>nkb, qq USE uspp_param, ONLY: nhm, nh, ish, nvb USE electrons_base, ONLY: nspin, iupdwn, nupdwn, nbspx_bgrp, ibgrp_g2l, i2gupdwn_bgrp, nbspx, & iupdwn_bgrp, nupdwn_bgrp USE constants, ONLY: pi, fpi USE descriptors, ONLY: la_descriptor USE mp, ONLY: mp_sum USE mp_global, ONLY: intra_bgrp_comm, inter_bgrp_comm ! IMPLICIT NONE REAL(DP) :: bec_bgrp(:,:), becdr_bgrp(:,:,:) REAL(DP), INTENT(IN) :: lambda(:,:,:) TYPE(la_descriptor), INTENT(IN) :: descla(:) REAL(DP), INTENT(INOUT) :: fion(:,:) ! INTEGER :: k, is, ia, iv, jv, i, j, inl, isa, iss, nss, istart, ir, ic, nr, nc, ibgrp_i INTEGER :: n1, n2, m1, m2, nrcx REAL(DP), ALLOCATABLE :: temp(:,:), tmpbec(:,:),tmpdr(:,:) REAL(DP), ALLOCATABLE :: fion_tmp(:,:) REAL(DP), ALLOCATABLE :: bec(:,:,:) REAL(DP), ALLOCATABLE :: becdr(:,:,:,:) REAL(DP), ALLOCATABLE :: bec_g(:,:) REAL(DP), ALLOCATABLE :: becdr_g(:,:,:) ! CALL start_clock( 'nlfl' ) ! ALLOCATE( fion_tmp( 3, nat ) ) ! fion_tmp = 0.0d0 ! nrcx = MAXVAL( descla( : )%nrcx ) ! ALLOCATE( temp( nrcx, nrcx ), tmpbec( nhm, nrcx ), tmpdr( nrcx, nhm ) ) ALLOCATE( bec( nhsa, nrcx, nspin ), becdr( nhsa, nrcx, nspin, 3 ) ) ! redistribute bec, becdr according to the ortho subgroup ! this is required because they are combined with "lambda" matrixes DO iss = 1, nspin IF( descla( iss )%active_node > 0 ) THEN nss = nupdwn( iss ) istart = iupdwn( iss ) ic = descla( iss )%ic nc = descla( iss )%nc DO i=1,nc ibgrp_i = ibgrp_g2l( i+istart-1+ic-1 ) IF( ibgrp_i > 0 ) THEN bec( :, i, iss ) = bec_bgrp( :, ibgrp_i ) ELSE bec( :, i, iss ) = 0.0d0 END IF END DO ir = descla( iss )%ir nr = descla( iss )%nr DO i=1,nr ibgrp_i = ibgrp_g2l( i+istart-1+ir-1 ) IF( ibgrp_i > 0 ) THEN becdr(:,i,iss,1) = becdr_bgrp( :, ibgrp_i, 1 ) becdr(:,i,iss,2) = becdr_bgrp( :, ibgrp_i, 2 ) becdr(:,i,iss,3) = becdr_bgrp( :, ibgrp_i, 3 ) ELSE becdr(:,i,iss,1) = 0.0d0 becdr(:,i,iss,2) = 0.0d0 becdr(:,i,iss,3) = 0.0d0 END IF END DO ELSE bec(:,:,iss) = 0.0d0 becdr(:,:,iss,1) = 0.0d0 becdr(:,:,iss,2) = 0.0d0 becdr(:,:,iss,3) = 0.0d0 END IF END DO CALL mp_sum( bec, inter_bgrp_comm ) CALL mp_sum( becdr, inter_bgrp_comm ) ! DO k=1,3 isa = 0 DO is=1,nvb DO ia=1,na(is) isa = isa + 1 ! DO iss = 1, nspin ! nss = nupdwn( iss ) istart = iupdwn( iss ) ! tmpbec = 0.d0 tmpdr = 0.d0 ! IF( descla( iss )%active_node > 0 ) THEN ! tmpbec distributed by columns ic = descla( iss )%ic nc = descla( iss )%nc DO iv=1,nh(is) DO jv=1,nh(is) inl=ish(is)+(jv-1)*na(is)+ia IF(ABS(qq(iv,jv,is)).GT.1.e-5) THEN DO i=1,nc tmpbec(iv,i)=tmpbec(iv,i) + qq(iv,jv,is)*bec(inl,i,iss) END DO ENDIF END DO END DO ! tmpdr distributed by rows ir = descla( iss )%ir nr = descla( iss )%nr DO iv=1,nh(is) inl=ish(is)+(iv-1)*na(is)+ia DO i=1,nr tmpdr(i,iv) = becdr( inl, i, iss, k ) END DO END DO END IF ! IF(nh(is).GT.0)THEN ! IF( descla( iss )%active_node > 0 ) THEN ir = descla( iss )%ir ic = descla( iss )%ic nr = descla( iss )%nr nc = descla( iss )%nc CALL dgemm( 'N', 'N', nr, nc, nh(is), 1.0d0, tmpdr, nrcx, tmpbec, nhm, 0.0d0, temp, nrcx ) DO j = 1, nc DO i = 1, nr fion_tmp(k,isa) = fion_tmp(k,isa) + 2D0 * temp( i, j ) * lambda( i, j, iss ) END DO END DO END IF ! ENDIF END DO ! END DO END DO END DO ! DEALLOCATE( bec, becdr ) DEALLOCATE( temp, tmpbec, tmpdr ) ! CALL mp_sum( fion_tmp, intra_bgrp_comm ) ! fion = fion + fion_tmp ! DEALLOCATE( fion_tmp ) ! CALL stop_clock( 'nlfl' ) ! RETURN END SUBROUTINE nlfl_bgrp_x ! !----------------------------------------------------------------------- SUBROUTINE pbc(rin,a1,a2,a3,ainv,rout) !----------------------------------------------------------------------- ! ! brings atoms inside the unit cell ! USE kinds, ONLY: DP IMPLICIT NONE ! input REAL(DP) rin(3), a1(3),a2(3),a3(3), ainv(3,3) ! output REAL(DP) rout(3) ! local REAL(DP) x,y,z ! ! bring atomic positions to crystal axis ! x = ainv(1,1)*rin(1)+ainv(1,2)*rin(2)+ainv(1,3)*rin(3) y = ainv(2,1)*rin(1)+ainv(2,2)*rin(2)+ainv(2,3)*rin(3) z = ainv(3,1)*rin(1)+ainv(3,2)*rin(2)+ainv(3,3)*rin(3) ! ! bring x,y,z in the range between -0.5 and 0.5 ! x = x - NINT(x) y = y - NINT(y) z = z - NINT(z) ! ! bring atomic positions back in cartesian axis ! rout(1) = x*a1(1)+y*a2(1)+z*a3(1) rout(2) = x*a1(2)+y*a2(2)+z*a3(2) rout(3) = x*a1(3)+y*a2(3)+z*a3(3) ! RETURN END SUBROUTINE pbc ! !------------------------------------------------------------------------- SUBROUTINE prefor_x(eigr,betae) !----------------------------------------------------------------------- ! ! input : eigr = e^-ig.r_i ! output: betae_i,i(g) = (-i)**l beta_i,i(g) e^-ig.r_i ! USE kinds, ONLY : DP USE ions_base, ONLY : nsp, na USE gvecw, ONLY : ngw USE uspp, ONLY : beta, nhtol USE uspp_param, ONLY : nh, ish ! IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: eigr( :, : ) COMPLEX(DP), INTENT(OUT) :: betae( :, : ) ! INTEGER :: is, iv, ia, inl, ig, isa COMPLEX(DP) :: ci ! CALL start_clock( 'prefor' ) isa = 0 DO is=1,nsp DO iv=1,nh(is) ci=(0.0d0,-1.0d0)**nhtol(iv,is) DO ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia DO ig=1,ngw betae(ig,inl)=ci*beta(ig,iv,is)*eigr(ig,ia+isa) END DO END DO END DO isa = isa + na(is) END DO CALL stop_clock( 'prefor' ) ! RETURN END SUBROUTINE prefor_x !------------------------------------------------------------------------ SUBROUTINE collect_bec_x( bec_repl, bec_dist, desc, nspin ) !------------------------------------------------------------------------ USE kinds, ONLY : DP USE mp_global, ONLY : intra_bgrp_comm USE mp, ONLY : mp_sum USE descriptors, ONLY : la_descriptor USE io_global, ONLY : stdout REAL(DP), INTENT(OUT) :: bec_repl(:,:) REAL(DP), INTENT(IN) :: bec_dist(:,:) TYPE(la_descriptor), INTENT(IN) :: desc(:) INTEGER, INTENT(IN) :: nspin INTEGER :: i, ir, n, nrcx, iss ! bec_repl = 0.0d0 ! ! bec is distributed across row processor, the first column is enough ! IF( desc( 1 )%active_node > 0 .AND. ( desc( 1 )%myc == 0 ) ) THEN ir = desc( 1 )%ir DO i = 1, desc( 1 )%nr bec_repl( :, i + ir - 1 ) = bec_dist( :, i ) END DO IF( nspin == 2 ) THEN n = desc( 1 )%n ! number of states with spin==1 ( nupdw(1) ) nrcx = desc( 1 )%nrcx ! array elements reserved for each spin ( bec(:,2*nrcx) ) ir = desc( 2 )%ir DO i = 1, desc( 2 )%nr bec_repl( :, i + ir - 1 + n ) = bec_dist( :, i + nrcx ) END DO END IF END IF ! CALL mp_sum( bec_repl, intra_bgrp_comm ) ! RETURN END SUBROUTINE collect_bec_x !------------------------------------------------------------------------ SUBROUTINE distribute_lambda_x( lambda_repl, lambda_dist, desc ) !------------------------------------------------------------------------ USE kinds, ONLY : DP USE descriptors REAL(DP), INTENT(IN) :: lambda_repl(:,:) REAL(DP), INTENT(OUT) :: lambda_dist(:,:) TYPE(la_descriptor), INTENT(IN) :: desc INTEGER :: i, j, ic, ir IF( desc%active_node > 0 ) THEN ir = desc%ir ic = desc%ic DO j = 1, desc%nc DO i = 1, desc%nr lambda_dist( i, j ) = lambda_repl( i + ir - 1, j + ic - 1 ) END DO END DO END IF RETURN END SUBROUTINE distribute_lambda_x ! !------------------------------------------------------------------------ SUBROUTINE distribute_bec_x( bec_repl, bec_dist, desc, nspin ) !------------------------------------------------------------------------ USE kinds, ONLY : DP USE descriptors REAL(DP), INTENT(IN) :: bec_repl(:,:) REAL(DP), INTENT(OUT) :: bec_dist(:,:) TYPE(la_descriptor), INTENT(IN) :: desc(:) INTEGER, INTENT(IN) :: nspin INTEGER :: i, ir, n, nrcx ! IF( desc( 1 )%active_node > 0 ) THEN ! bec_dist = 0.0d0 ! ir = desc( 1 )%ir DO i = 1, desc( 1 )%nr bec_dist( :, i ) = bec_repl( :, i + ir - 1 ) END DO ! IF( nspin == 2 ) THEN n = desc( 1 )%n ! number of states with spin 1 ( nupdw(1) ) nrcx = desc( 1 )%nrcx ! array elements reserved for each spin ( bec(:,2*nrcx) ) ir = desc( 2 )%ir DO i = 1, desc( 2 )%nr bec_dist( :, i + nrcx ) = bec_repl( :, i + ir - 1 + n ) END DO END IF ! END IF RETURN END SUBROUTINE distribute_bec_x ! !------------------------------------------------------------------------ SUBROUTINE distribute_zmat_x( zmat_repl, zmat_dist, desc ) !------------------------------------------------------------------------ USE kinds, ONLY : DP USE descriptors REAL(DP), INTENT(IN) :: zmat_repl(:,:) REAL(DP), INTENT(OUT) :: zmat_dist(:,:) TYPE(la_descriptor), INTENT(IN) :: desc INTEGER :: i, ii, j, me, np me = desc%mype np = desc%npc * desc%npr IF( desc%active_node > 0 ) THEN DO j = 1, desc%n ii = me + 1 DO i = 1, desc%nrl zmat_dist( i, j ) = zmat_repl( ii, j ) ii = ii + np END DO END DO END IF RETURN END SUBROUTINE distribute_zmat_x ! !------------------------------------------------------------------------ SUBROUTINE collect_lambda_x( lambda_repl, lambda_dist, desc ) !------------------------------------------------------------------------ USE kinds, ONLY : DP USE mp_global, ONLY: intra_bgrp_comm USE mp, ONLY: mp_sum USE descriptors REAL(DP), INTENT(OUT) :: lambda_repl(:,:) REAL(DP), INTENT(IN) :: lambda_dist(:,:) TYPE(la_descriptor), INTENT(IN) :: desc INTEGER :: i, j, ic, ir lambda_repl = 0.0d0 IF( desc%active_node > 0 ) THEN ir = desc%ir ic = desc%ic DO j = 1, desc%nc DO i = 1, desc%nr lambda_repl( i + ir - 1, j + ic - 1 ) = lambda_dist( i, j ) END DO END DO END IF CALL mp_sum( lambda_repl, intra_bgrp_comm ) RETURN END SUBROUTINE collect_lambda_x ! !------------------------------------------------------------------------ SUBROUTINE collect_zmat_x( zmat_repl, zmat_dist, desc ) !------------------------------------------------------------------------ USE kinds, ONLY : DP USE mp_global, ONLY: intra_bgrp_comm USE mp, ONLY: mp_sum USE descriptors REAL(DP), INTENT(OUT) :: zmat_repl(:,:) REAL(DP), INTENT(IN) :: zmat_dist(:,:) TYPE(la_descriptor), INTENT(IN) :: desc INTEGER :: i, ii, j, me, np, nrl zmat_repl = 0.0d0 me = desc%mype np = desc%npc * desc%npr nrl = desc%nrl IF( desc%active_node > 0 ) THEN DO j = 1, desc%n ii = me + 1 DO i = 1, nrl zmat_repl( ii, j ) = zmat_dist( i, j ) ii = ii + np END DO END DO END IF CALL mp_sum( zmat_repl, intra_bgrp_comm ) RETURN END SUBROUTINE collect_zmat_x ! !------------------------------------------------------------------------ SUBROUTINE setval_lambda_x( lambda_dist, i, j, val, desc ) !------------------------------------------------------------------------ USE kinds, ONLY : DP USE descriptors REAL(DP), INTENT(OUT) :: lambda_dist(:,:) INTEGER, INTENT(IN) :: i, j REAL(DP), INTENT(IN) :: val TYPE(la_descriptor), INTENT(IN) :: desc IF( desc%active_node > 0 ) THEN IF( ( i >= desc%ir ) .AND. ( i - desc%ir + 1 <= desc%nr ) ) THEN IF( ( j >= desc%ic ) .AND. ( j - desc%ic + 1 <= desc%nc ) ) THEN lambda_dist( i - desc%ir + 1, j - desc%ic + 1 ) = val END IF END IF END IF RETURN END SUBROUTINE setval_lambda_x !------------------------------------------------------------------------ espresso-5.1/CPV/src/cell_nose.f900000644000175000017500000001064512341373026015013 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE cell_nose !------------------------------------------------------------------------------! USE kinds, ONLY : DP ! IMPLICIT NONE SAVE REAL(DP) :: xnhh0(3,3) = 0.0_DP REAL(DP) :: xnhhm(3,3) = 0.0_DP REAL(DP) :: xnhhp(3,3) = 0.0_DP REAL(DP) :: vnhh(3,3) = 0.0_DP REAL(DP) :: temph = 0.0_DP ! Thermostat temperature (from input) REAL(DP) :: fnoseh = 0.0_DP ! Thermostat frequency (from input) REAL(DP) :: qnh = 0.0_DP ! Thermostat mass (computed) CONTAINS subroutine cell_nose_init( temph_init, fnoseh_init ) USE constants, ONLY: pi, au_terahertz, k_boltzmann_au REAL(DP), INTENT(IN) :: temph_init, fnoseh_init ! set thermostat parameter for cell qnh = 0.0_DP temph = temph_init fnoseh = fnoseh_init if( fnoseh > 0.0_DP ) qnh = 2.0_DP * ( 3 * 3 ) * temph * k_boltzmann_au / & (fnoseh*(2.0_DP*pi)*au_terahertz)**2 return end subroutine cell_nose_init subroutine cell_nosezero( vnhh, xnhh0, xnhhm ) real(DP), intent(out) :: vnhh(3,3), xnhh0(3,3), xnhhm(3,3) xnhh0=0.0_DP xnhhm=0.0_DP vnhh =0.0_DP return end subroutine cell_nosezero subroutine cell_nosevel( vnhh, xnhh0, xnhhm, delt ) implicit none REAL(DP), intent(inout) :: vnhh(3,3) REAL(DP), intent(in) :: xnhh0(3,3), xnhhm(3,3), delt vnhh(:,:)=2.0_DP*(xnhh0(:,:)-xnhhm(:,:))/delt-vnhh(:,:) return end subroutine cell_nosevel subroutine cell_noseupd( xnhhp, xnhh0, xnhhm, delt, qnh, temphh, temph, vnhh ) use constants, only: k_boltzmann_au implicit none REAL(DP), intent(out) :: xnhhp(3,3), vnhh(3,3) REAL(DP), intent(in) :: xnhh0(3,3), xnhhm(3,3), delt, qnh, temphh(3,3), temph integer :: i, j do j=1,3 do i=1,3 xnhhp(i,j) = 2.0_DP*xnhh0(i,j)-xnhhm(i,j) + & (delt**2/qnh)* k_boltzmann_au * (temphh(i,j)-temph) vnhh(i,j) =(xnhhp(i,j)-xnhhm(i,j))/( 2.0_DP * delt ) end do end do return end subroutine cell_noseupd REAL(DP) function cell_nose_nrg( qnh, xnhh0, vnhh, temph, iforceh ) use constants, only: k_boltzmann_au implicit none REAL(DP) :: qnh, vnhh( 3, 3 ), temph, xnhh0( 3, 3 ) integer :: iforceh( 3, 3 ) integer :: i, j REAL(DP) :: enij cell_nose_nrg = 0.0_DP do i=1,3 do j=1,3 enij = 0.5_DP*qnh*vnhh(i,j)*vnhh(i,j)+temph*k_boltzmann_au*xnhh0(i,j) cell_nose_nrg = cell_nose_nrg + iforceh( i, j ) * enij enddo enddo return end function cell_nose_nrg subroutine cell_nose_shiftvar( xnhhp, xnhh0, xnhhm ) ! shift values of nose variables to start a new step implicit none REAL(DP), intent(out) :: xnhhm(3,3) REAL(DP), intent(inout) :: xnhh0(3,3) REAL(DP), intent(in) :: xnhhp(3,3) xnhhm = xnhh0 xnhh0 = xnhhp return end subroutine cell_nose_shiftvar SUBROUTINE cell_nose_info ( delt ) use constants, only: au_terahertz, pi USE io_global, ONLY: stdout USE control_flags, ONLY: tnoseh IMPLICIT NONE REAL(DP), INTENT (IN) :: delt INTEGER :: nsvar REAL(DP) :: wnoseh IF( tnoseh ) THEN ! IF( fnoseh <= 0.0_DP) & CALL errore(' cell_nose_info ', ' fnoseh less than zero ', 1) IF( delt <= 0.0_DP) & CALL errore(' cell_nose_info ', ' delt less than zero ', 1) wnoseh = fnoseh * ( 2.0_DP * pi ) * au_terahertz nsvar = ( 2.0_DP * pi ) / ( wnoseh * delt ) WRITE( stdout,563) temph, nsvar, fnoseh, qnh END IF 563 format( //, & & 3X,'cell dynamics with nose` temperature control:', /, & & 3X,'Kinetic energy required = ', f10.5, ' (Kelvin) ', /, & & 3X,'time steps per nose osc. = ', i5, /, & & 3X,'nose` frequency = ', f10.3, ' (THz) ', /, & & 3X,'nose` mass(es) = ', 20(1X,f10.3),//) RETURN END SUBROUTINE cell_nose_info ! !------------------------------------------------------------------------------! END MODULE cell_nose !------------------------------------------------------------------------------! espresso-5.1/CPV/src/smallbox_grid.f900000644000175000017500000000620012341373026015666 0ustar mbamba! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE smallbox_grid_dim !=----------------------------------------------------------------------------=! ! Dimensions of the 3D real and reciprocal space FFT subgrids ! used for atomic augmentation charge density (USPP) ! Dependencies: ! fft_scalar good_fft_dimension, good_fft_order ! io_global stdout, ionode ! IMPLICIT NONE SAVE PRIVATE PUBLIC :: smallbox_grid_init, smallbox_grid_info CONTAINS SUBROUTINE smallbox_grid_init( dfftp, dfftb ) ! USE fft_scalar, only: good_fft_dimension, good_fft_order USE fft_types, only: fft_dlay_descriptor ! IMPLICIT NONE ! TYPE(fft_dlay_descriptor), INTENT(IN) :: dfftp TYPE(fft_dlay_descriptor), INTENT(INOUT) :: dfftb ! ! no default values for grid box: if nr*b=0, ignore IF( dfftb%nr1 > 0 .AND. dfftb%nr2 > 0 .AND. dfftb%nr3 > 0 ) THEN dfftb%nr1 = good_fft_order( dfftb%nr1 ) dfftb%nr2 = good_fft_order( dfftb%nr2 ) dfftb%nr3 = good_fft_order( dfftb%nr3 ) dfftb%nr1x = good_fft_dimension( dfftb%nr1 ) ELSE dfftb%nr1x = dfftb%nr1 END IF dfftb%nr2x = dfftb%nr2 dfftb%nr3x = dfftb%nr3 dfftb%nnr = dfftb%nr1x * dfftb%nr2x * dfftb%nr3x IF ( dfftb%nr1 > dfftp%nr1 .or. dfftb%nr2 > dfftp%nr2 .or. dfftb%nr3 > dfftp%nr3 ) & CALL errore(' smallbox_grid_init ', ' box grid larger than dense grid?',1) RETURN END SUBROUTINE smallbox_grid_init SUBROUTINE smallbox_grid_info( dfftb ) ! USE io_global, ONLY: stdout, ionode USE fft_types, ONLY: fft_dlay_descriptor ! TYPE(fft_dlay_descriptor), INTENT(IN) :: dfftb ! IF ( ionode ) THEN IF ( dfftb%nr1 > 0 .AND. dfftb%nr2 > 0 .AND. dfftb%nr3 > 0 ) THEN WRITE( stdout,*) WRITE( stdout,*) ' Small Box Real Mesh' WRITE( stdout,*) ' -------------------' WRITE( stdout,1000) dfftb%nr1, dfftb%nr2, dfftb%nr3, dfftb%nr1, dfftb%nr2, dfftb%nr3, 1, 1, 1 WRITE( stdout,1010) dfftb%nr1x, dfftb%nr2x, dfftb%nr3x WRITE( stdout,1020) dfftb%nnr END IF END IF 1000 FORMAT(3X, & 'Global Dimensions Local Dimensions Processor Grid',/,3X, & '.X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z.',/, & 3(1X,I5),2X,3(1X,I5),2X,3(1X,I5) ) 1010 FORMAT(3X, 'Array leading dimensions ( nr1x, nr2x, nr3x ) = ', 3(1X,I5) ) 1020 FORMAT(3X, 'Local number of cell to store the grid ( nrxx ) = ', 1X, I9 ) END SUBROUTINE smallbox_grid_info !=----------------------------------------------------------------------------=! END MODULE smallbox_grid_dim !=----------------------------------------------------------------------------=! espresso-5.1/CPV/src/print_out.f900000644000175000017500000004435412341373026015077 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! SUBROUTINE printout_new_x & ( nfi, tfirst, tfilei, tprint, tps, h, stress, tau0, vels, & fion, ekinc, temphc, tempp, temps, etot, enthal, econs, econt, & vnhh, xnhh0, vnhp, xnhp0, atot, ekin, epot, print_forces, print_stress, & tstdout) !=----------------------------------------------------------------------------=! ! USE kinds, ONLY : DP USE control_flags, ONLY : iprint, textfor, do_makov_payne USE energies, ONLY : print_energies, dft_energy_type USE printout_base, ONLY : printout_base_open, printout_base_close, & printout_pos, printout_cell, printout_stress USE constants, ONLY : au_gpa, bohr_radius_cm, amu_au, & BOHR_RADIUS_ANGS, pi USE ions_base, ONLY : na, nsp, nat, ind_bck, atm, amass, cdmi, & ions_cofmass, ions_displacement, label_srt USE cell_base, ONLY : s_to_r, get_volume USE efield_module, ONLY : tefield, pberryel, pberryion, & tefield2, pberryel2, pberryion2 USE cg_module, ONLY : tcg, itercg USE sic_module, ONLY : self_interaction, sic_alpha, sic_epsilon USE electrons_module, ONLY : print_eigenvalues USE pres_ai_mod, ONLY : P_ext, Surf_t, volclu, surfclu, abivol, & abisur, pvar, n_ele USE xml_io_base, ONLY : save_print_counter USE cp_main_variables, ONLY : nprint_nfi, iprint_stdout USE io_files, ONLY : tmp_dir USE control_flags, ONLY : ndw, tdipole USE polarization, ONLY : print_dipole USE io_global, ONLY : ionode, ionode_id, stdout USE control_flags, ONLY : lwfpbe0, lwfpbe0nscf ! Lingzhu Kong USE energies, ONLY : exx ! Lingzhu Kong USE control_flags, ONLY : ts_vdw USE tsvdw_module, ONLY : EtsvdW ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nfi LOGICAL, INTENT(IN) :: tfirst, tfilei, tprint REAL(DP), INTENT(IN) :: tps REAL(DP), INTENT(IN) :: h( 3, 3 ) REAL(DP), INTENT(IN) :: stress( 3, 3 ) REAL(DP), INTENT(IN) :: tau0( :, : ) ! real positions REAL(DP), INTENT(IN) :: vels( :, : ) ! scaled velocities REAL(DP), INTENT(IN) :: fion( :, : ) ! real forces REAL(DP), INTENT(IN) :: ekinc, temphc, tempp, etot, enthal, econs, econt REAL(DP), INTENT(IN) :: temps( : ) ! partial temperature for different ionic species REAL(DP), INTENT(IN) :: vnhh( 3, 3 ), xnhh0( 3, 3 ), vnhp( 1 ), xnhp0( 1 ) REAL(DP), INTENT(IN) :: atot! enthalpy of system for c.g. case REAL(DP), INTENT(IN) :: ekin REAL(DP), INTENT(IN) :: epot ! ( epseu + eht + exc ) LOGICAL, INTENT(IN) :: print_forces, print_stress, tstdout ! REAL(DP) :: stress_gpa( 3, 3 ) REAL(DP) :: cdm0( 3 ) REAL(DP) :: dis( nsp ) REAL(DP) :: out_press, volume REAL(DP) :: totalmass INTEGER :: isa, is, ia, kilobytes REAL(DP), ALLOCATABLE :: tauw(:, :) LOGICAL :: tsic, tfile LOGICAL, PARAMETER :: nice_output_files=.false. ! ! avoid double printing to files by refering to nprint_nfi ! tfile = tfilei .and. ( nfi .gt. nprint_nfi ) ! ! CALL memstat( kilobytes ) ! IF( ionode .AND. tfile .AND. tprint ) THEN CALL printout_base_open() END IF ! IF( tprint ) THEN IF ( tfile ) THEN ! we're writing files, let's save nfi CALL save_print_counter( nfi, tmp_dir, ndw ) ELSE IF ( tfilei ) then ! not there yet, save the old nprint_nfi CALL save_print_counter( nprint_nfi, tmp_dir, ndw ) END IF END IF ! volume = get_volume( h ) ! stress_gpa = stress * au_gpa ! out_press = ( stress_gpa(1,1) + stress_gpa(2,2) + stress_gpa(3,3) ) / 3.0d0 ! IF( nfi > 0 ) THEN CALL update_accomulators & ( ekinc, ekin, epot, etot, tempp, enthal, econs, out_press, volume ) END IF ! ! Makov-Payne correction to the total energy (isolated systems only) ! IF( do_makov_payne .AND. tprint ) CALL makov_payne( etot ) ! IF( ionode ) THEN ! IF( tprint ) THEN ! tsic = ( self_interaction /= 0 ) ! IF(tstdout) & CALL print_energies( tsic, sic_alpha = sic_alpha, sic_epsilon = sic_epsilon, textfor = textfor ) ! CALL print_eigenvalues( 31, tfile, tstdout, nfi, tps ) ! IF(tstdout) WRITE( stdout, * ) ! IF( kilobytes > 0 .AND. tstdout ) & WRITE( stdout, fmt="(3X,'Allocated memory (kb) = ', I9 )" ) kilobytes ! IF(tstdout) WRITE( stdout, * ) ! IF( tdipole ) CALL print_dipole( 32, tfile, nfi, tps ) ! IF( tstdout ) CALL printout_cell( stdout, h ) ! IF( tfile ) CALL printout_cell( 36, h, nfi, tps ) ! ! System density: ! totalmass = 0.0d0 DO is = 1, nsp totalmass = totalmass + amass(is) * na(is) END DO totalmass = totalmass / volume * 11.2061d0 ! AMU_SI * 1000.0 / BOHR_RADIUS_CM**3 IF(tstdout) & WRITE( stdout, fmt='(/,3X,"System Density [g/cm^3] : ",F10.4,/)' ) totalmass ! ! Compute Center of mass displacement since the initialization of step counter ! CALL ions_cofmass( tau0, amass, na, nsp, cdm0 ) ! IF(tstdout) & WRITE( stdout,1000) SUM( ( cdm0(:)-cdmi(:) )**2 ) ! CALL ions_displacement( dis, tau0 ) ! IF( print_stress ) THEN ! IF(tstdout) & CALL printout_stress( stdout, stress_gpa ) ! IF( tfile ) CALL printout_stress( 38, stress_gpa, nfi, tps ) ! END IF ! ! ... write out a standard XYZ file in angstroms ! IF(tstdout) & CALL printout_pos( stdout, tau0, nat, what = 'pos', & label = label_srt, sort = ind_bck ) ! IF( tfile ) then if (.not.nice_output_files) then CALL printout_pos( 35, tau0, nat, nfi = nfi, tps = tps ) else CALL printout_pos( 35, tau0, nat, what = 'xyz', & nfi = nfi, tps = tps, label = label_srt, & fact= BOHR_RADIUS_ANGS ,sort = ind_bck ) endif END IF ! ALLOCATE( tauw( 3, nat ) ) ! isa = 0 ! DO is = 1, nsp ! DO ia = 1, na(is) ! isa = isa + 1 CALL s_to_r( vels(:,isa), tauw(:,isa), h ) ! END DO ! END DO ! IF(tstdout) WRITE( stdout, * ) ! IF(tstdout) & CALL printout_pos( stdout, tauw, nat, & what = 'vel', label = label_srt, sort = ind_bck ) ! IF( tfile ) then if (.not.nice_output_files) then CALL printout_pos( 34, tauw, nat, nfi = nfi, tps = tps ) else CALL printout_pos( 34, tauw, nat, nfi = nfi, tps = tps, & what = 'vel', label = label_srt, sort = ind_bck ) endif END IF ! IF( print_forces ) THEN ! IF(tstdout) WRITE( stdout, * ) ! IF(tstdout) & CALL printout_pos( stdout, fion, nat, & what = 'for', label = label_srt, sort = ind_bck ) ! IF( tfile ) then if (.not.nice_output_files) then CALL printout_pos( 37, fion, nat, nfi = nfi, tps = tps ) else CALL printout_pos( 37, fion, nat, nfi = nfi, tps = tps, & what = 'for', label = label_srt, sort = ind_bck ) endif END IF ! END IF ! DEALLOCATE( tauw ) ! ! ... Write partial temperature and MSD for each atomic specie tu stdout ! IF(tstdout) WRITE( stdout, * ) IF(tstdout) WRITE( stdout, 1944 ) ! DO is = 1, nsp IF( tstdout ) WRITE( stdout, 1945 ) is, temps(is), dis(is) END DO ! IF( tfile ) WRITE( 33, 2948 ) nfi, ekinc, temphc, tempp, etot, enthal, & econs, econt, volume, out_press, tps IF( tfile ) WRITE( 39, 2949 ) nfi, vnhh(3,3), xnhh0(3,3), vnhp(1), & xnhp0(1), tps ! END IF ! END IF ! IF( ionode .AND. tfile .AND. tprint ) THEN ! ! ... Close and flush unit 30, ... 40 ! CALL printout_base_close() ! END IF ! IF( ( MOD( nfi, iprint_stdout ) == 0 ) .OR. tfirst ) THEN ! WRITE( stdout, * ) ! IF (ts_vdw) THEN ! WRITE( stdout, 19470) ! ELSE ! WRITE( stdout, 1947) ! END IF ! IF ( abivol .AND. pvar ) write(stdout,*) 'P = ', P_ext*au_gpa ! END IF ! if (abivol) then write(stdout,*) nfi, 'ab-initio volume = ', volclu, ' a.u.^3' write(stdout,*) nfi, 'PV = ', P_ext*volclu, ' ha' end if if (abisur) then write(stdout,*) nfi, 'ab-initio surface = ', surfclu, ' a.u.^2' if (abivol) write(stdout,*) nfi, 'spherical surface = ', & 4.d0*pi*(0.75d0*volclu/pi)**(2.d0/3.d0), ' a.u.^2' write(stdout,*) nfi, 't*S = ', Surf_t*surfclu, ' ha' end if if (abivol.or.abisur) write(stdout,*) nfi, & ' # of electrons within the isosurface = ', n_ele IF( .not. tcg ) THEN ! IF (ts_vdw) THEN ! WRITE(stdout,19480) nfi, ekinc, temphc, tempp, etot, enthal, & econs, econt, vnhh(3,3), xnhh0(3,3), vnhp(1), xnhp0(1), EtsvdW ! ELSE ! WRITE(stdout, 1948) nfi, ekinc, temphc, tempp, etot, enthal, & econs, econt, vnhh(3,3), xnhh0(3,3), vnhp(1), xnhp0(1) ! END IF ! ELSE IF ( MOD( nfi, iprint ) == 0 .OR. tfirst ) THEN ! WRITE( stdout, * ) WRITE( stdout, 255 ) 'nfi','tempp','E','-T.S-mu.nbsp','+K_p','#Iter' ! END IF ! WRITE( stdout, 256 ) nfi, INT( tempp ), etot, atot, econs, itercg ! END IF IF( tefield) THEN IF(ionode) write(stdout,'( A14,F12.6,2X,A14,F12.6)') 'Elct. dipole 1',-pberryel,'Ionic dipole 1',-pberryion ENDIF IF( tefield2) THEN IF(ionode) write(stdout,'( A14,F12.6,2X,A14,F12.6)') 'Elct. dipole 2',-pberryel2,'Ionic dipole 2',-pberryion2 ENDIF ! ! 255 FORMAT( ' ',A5,A8,3(1X,A12),A6 ) 256 FORMAT( 'Step ',I5,1X,I7,1X,F13.6,1X,F13.6,1X,F13.6,1X,I5 ) 1000 FORMAT(/,3X,'Center of mass square displacement (a.u.): ',F10.6,/) 1944 FORMAT(//' Partial temperatures (for each ionic specie) ', & /,' Species Temp (K) Mean Square Displacement (a.u.)') 1945 FORMAT(3X,I6,1X,ES10.2,1X,ES14.4) !1947 FORMAT( 2X,'nfi',5X,'ekinc',11X,'temph',7X,'tempp',7X,'etot',12X,'enthal', & ! & 10X,'econs',11X,'econt',11X,'vnhh',11X,'xnhh0',10X,'vnhp',11X,'xnhp0' ) !1948 FORMAT( I5,1X,ES15.5,1X,ES11.1,1X,ES11.1,4(1X,ES15.5),4(1X,ES14.4) ) 1947 FORMAT( 2X,'nfi',4X,'ekinc',2X,'temph',2X,'tempp',11X,'etot',9X,'enthal', & & 10X,'econs',10X,'econt',4X,'vnhh',3X,'xnhh0',4X,'vnhp',3X,'xnhp0' ) 19470 FORMAT( 2X,'nfi',4X,'ekinc',2X,'temph',2X,'tempp',11X,'etot',9X,'enthal', & & 10X,'econs',10X,'econt',4X,'vnhh',3X,'xnhh0',4X,'vnhp',3X,'xnhp0',5X,'evdw') ! GGA+TS-vdW 1948 FORMAT( I5,1X,F8.5,1X,F6.1,1X,F6.1,4(1X,F14.6),4(1X,F7.4) ) 19480 FORMAT( I5,1X,F8.5,1X,F6.1,1X,F6.1,4(1X,F14.5),4(1X,F7.4),2X,F14.5 ) ! GGA+TS-vdW 2948 FORMAT( I6,1X,ES18.10,1X,ES18.10,1X,ES18.10,4(1X,ES18.10),ES18.10, ES18.10, ES18.10 ) 2949 FORMAT( I6,1X,4(1X,ES18.10), ES18.10 ) ! RETURN END SUBROUTINE printout_new_x ! ! !=----------------------------------------------------------------------------=! SUBROUTINE print_legend() !=----------------------------------------------------------------------------=! ! USE io_global, ONLY : ionode, stdout ! IMPLICIT NONE ! IF ( .NOT. ionode ) RETURN ! WRITE( stdout, *) WRITE( stdout, *) ' Short Legend and Physical Units in the Output' WRITE( stdout, *) ' ---------------------------------------------' WRITE( stdout, *) ' NFI [int] - step index' WRITE( stdout, *) ' EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics' WRITE( stdout, *) ' TEMPH [K] - Temperature of the fictitious cell dynamics' WRITE( stdout, *) ' TEMP [K] - Ionic temperature' WRITE( stdout, *) ' ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian)' WRITE( stdout, *) ' ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V )' WRITE( stdout, *) ' ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell' WRITE( stdout, *) ' ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian' WRITE( stdout, *) ! RETURN ! END SUBROUTINE print_legend !=----------------------------------------------------------------------------=! SUBROUTINE printacc( ) !=----------------------------------------------------------------------------=! USE kinds, ONLY : DP USE cp_main_variables, ONLY : acc, acc_this_run, nfi, nfi_run USE io_global, ONLY : ionode, stdout IMPLICIT NONE ! REAL(DP) :: avgs(9) REAL(DP) :: avgs_run(9) avgs = 0.0d0 avgs_run = 0.0d0 ! IF ( nfi > 0 ) THEN avgs = acc( 1:9 ) / DBLE( nfi ) END IF ! IF ( nfi_run > 0 ) THEN avgs_run = acc_this_run(1:9) / DBLE( nfi_run ) END IF IF( ionode ) THEN WRITE( stdout,1949) WRITE( stdout,1951) avgs(1), avgs_run(1) WRITE( stdout,1952) avgs(2), avgs_run(2) WRITE( stdout,1953) avgs(3), avgs_run(3) WRITE( stdout,1954) avgs(4), avgs_run(4) WRITE( stdout,1955) avgs(5), avgs_run(5) WRITE( stdout,1956) avgs(6), avgs_run(6) WRITE( stdout,1957) avgs(7), avgs_run(7) WRITE( stdout,1958) avgs(8), avgs_run(8) WRITE( stdout,1959) avgs(9), avgs_run(9) WRITE( stdout,1990) 1949 FORMAT(//,3X,'Averaged Physical Quantities',/ & ,3X,' ',' accumulated',' this run') 1951 FORMAT(3X,'ekinc : ',F14.5,F14.5,' (AU)') 1952 FORMAT(3X,'ekin : ',F14.5,F14.5,' (AU)') 1953 FORMAT(3X,'epot : ',F14.5,F14.5,' (AU)') 1954 FORMAT(3X,'total energy : ',F14.5,F14.5,' (AU)') 1955 FORMAT(3X,'temperature : ',F14.5,F14.5,' (K )') 1956 FORMAT(3X,'enthalpy : ',F14.5,F14.5,' (AU)') 1957 FORMAT(3X,'econs : ',F14.5,F14.5,' (AU)') 1958 FORMAT(3X,'pressure : ',F14.5,F14.5,' (Gpa)') 1959 FORMAT(3X,'volume : ',F14.5,F14.5,' (AU)') 1990 FORMAT(/) END IF RETURN END SUBROUTINE printacc !=----------------------------------------------------------------------------=! SUBROUTINE open_and_append_x( iunit, file_name ) !=----------------------------------------------------------------------------=! USE io_global, ONLY: ionode IMPLICIT NONE INTEGER, INTENT(IN) :: iunit CHARACTER(LEN = *), INTENT(IN) :: file_name INTEGER :: ierr IF( ionode ) THEN OPEN( UNIT = iunit, FILE = trim( file_name ), & STATUS = 'unknown', POSITION = 'append', IOSTAT = ierr) IF( ierr /= 0 ) & CALL errore( ' open_and_append ', ' opening file '//trim(file_name), 1 ) END IF RETURN END SUBROUTINE open_and_append_x !=----------------------------------------------------------------------------=! SUBROUTINE update_accomulators & ( ekinc, ekin, epot, etot, tempp, enthal, econs, press, volume ) !=----------------------------------------------------------------------------=! USE kinds, ONLY : DP USE cp_main_variables, ONLY : acc, acc_this_run, nfi_run IMPLICIT NONE REAL(DP), INTENT(IN) :: ekinc, ekin, epot, etot, tempp REAL(DP), INTENT(IN) :: enthal, econs, press, volume nfi_run = nfi_run + 1 ! ... sum up values to be averaged acc(1) = acc(1) + ekinc acc(2) = acc(2) + ekin acc(3) = acc(3) + epot acc(4) = acc(4) + etot acc(5) = acc(5) + tempp acc(6) = acc(6) + enthal acc(7) = acc(7) + econs acc(8) = acc(8) + press ! pressure in GPa acc(9) = acc(9) + volume ! ... sum up values to be averaged acc_this_run(1) = acc_this_run(1) + ekinc acc_this_run(2) = acc_this_run(2) + ekin acc_this_run(3) = acc_this_run(3) + epot acc_this_run(4) = acc_this_run(4) + etot acc_this_run(5) = acc_this_run(5) + tempp acc_this_run(6) = acc_this_run(6) + enthal acc_this_run(7) = acc_this_run(7) + econs acc_this_run(8) = acc_this_run(8) + press ! pressure in GPa acc_this_run(9) = acc_this_run(9) + volume RETURN END SUBROUTINE espresso-5.1/CPV/src/gtable.f900000644000175000017500000005157112341373026014311 0ustar mbamba! ! Copyright (C) 2002-2010 Quantum ESPRESSO groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine gtable( ipol, ctable) ! this subroutine prepares the correspondence array to ! compute the operator exp(iG_ipol.r) ! ctable : output correspondence table ! in (ig,1) correspondence for g+1 ! in (ig,2) correspondence for (-g)+1 ! we use the rule: if non point ngw+1 ! if found positive = normal ! negative = conjugate ! ipol : input polarization direction ! a orthorombic primitive cell is supposed use kinds, only: dp use gvecw, only: ngw use gvect, only: mill use mp, only: mp_sum use io_global, only: ionode, stdout use mp_global, only: intra_bgrp_comm implicit none integer :: ipol, ctable(ngw,2) !local variables integer :: i,j,k, ig, jg logical :: found real(dp) :: test test=0.d0 do ig=1,ngw!loop on g vectors ! first +g i = mill(1,ig) j = mill(2,ig) k = mill(3,ig) if(ipol.eq.1) i=i+1 if(ipol.eq.2) j=j+1 if(ipol.eq.3) k=k+1 found = .false. do jg=1,ngw if(mill(1,jg).eq.i .and. mill(2,jg).eq.j .and. mill(3,jg).eq.k) then found=.true. ctable(ig,1)=jg endif enddo if(.not. found) then do jg=1,ngw if(-mill(1,jg).eq.i .and. -mill(2,jg).eq.j .and. -mill(3,jg).eq.k) then found=.true. ctable(ig,1)=-jg endif enddo if(.not. found) then ctable(ig,1)= ngw+1 test=test+1.d0 endif endif ! now -g i = -mill(1,ig) j = -mill(2,ig) k = -mill(3,ig) if(ipol.eq.1) i=i+1 if(ipol.eq.2) j=j+1 if(ipol.eq.3) k=k+1 found = .false. do jg=1,ngw if (-mill(1,jg).eq.i .and. -mill(2,jg).eq.j .and. -mill(3,jg).eq.k)then found=.true. ctable(ig,2)=-jg endif enddo if(.not.found) then do jg=1,ngw if(mill(1,jg).eq.i .and. mill(2,jg).eq.j .and. mill(3,jg).eq.k)then found=.true. ctable(ig,2)=jg endif enddo if(.not.found) then ctable(ig,2)=ngw+1 test=test+1.d0 endif endif enddo call mp_sum(test, intra_bgrp_comm) if(ionode) write(stdout,*) '#not found, gtable: ', test return end subroutine gtable subroutine gtablein( ipol, ctabin) ! this subroutine prepare the inverse correspondence array to ! compute the operator exp(iG_ipol.r) ! ctabin(ngw,2) : output correspondence table ! if negative to take complex conjugate, 1 g'+1, 2 g' -1 ! if not found = ngw+1 ! ipol : input polarization direction ! a orthorombic primitive cell is supposed use kinds, only: dp use gvecw, only: ngw use gvect, only: mill use mp, only: mp_sum use io_global, only: ionode, stdout use mp_global, only: intra_bgrp_comm implicit none integer :: ipol, ctabin(ngw,2) !local variables integer :: i,j,k, ig, jg logical :: found real(dp) :: test test=0.d0 do ig=1,ngw!loop on g vectors i = mill(1,ig) j = mill(2,ig) k = mill(3,ig) if(ipol.eq.1) i=i+1 if(ipol.eq.2) j=j+1 if(ipol.eq.3) k=k+1 found = .false. do jg=1,ngw if(i.eq.mill(1,jg).and. j.eq.mill(2,jg) .and. k.eq.mill(3,jg))then found = .true. ctabin(ig,1)=jg else if(i.eq.-mill(1,jg).and. j.eq.-mill(2,jg) .and. k.eq.-mill(3,jg))then found=.true. ctabin(ig,1)=-jg endif enddo if(.not.found) then ctabin(ig,1)=ngw+1 test=test+1 endif enddo do ig=1,ngw!loop on g vectors i = mill(1,ig) j = mill(2,ig) k = mill(3,ig) if(ipol.eq.1) i=i-1 if(ipol.eq.2) j=j-1 if(ipol.eq.3) k=k-1 found = .false. do jg=1,ngw if(i.eq.mill(1,jg).and. j.eq.mill(2,jg) .and. k.eq.mill(3,jg))then found = .true. ctabin(ig,2)=jg else if(i.eq.-mill(1,jg).and. j.eq.-mill(2,jg) .and. k.eq.-mill(3,jg))then found=.true. ctabin(ig,2)=-jg endif enddo if(.not.found) then ctabin(ig,2)=ngw+1 test=test+1 endif enddo call mp_sum(test, intra_bgrp_comm) if(ionode) write(stdout,*) '#not found, gtabin: ', test return end subroutine gtablein subroutine find_whose_is_g !this subroutine set the correspondence G-->Proc USE gvecw, ONLY : ngw, ngw_g USE gvect, ONLY : ig_l2g, mill_g, mill USE mp, ONLY : mp_sum USE io_global, ONLY : stdout USE mp_global, ONLY : me_bgrp, nproc_bgrp, intra_bgrp_comm USE efield_module, ONLY : whose_is_g implicit none INTEGER :: ig whose_is_g(:)=0 do ig=1,ngw if(ig_l2g(ig) > ngw_g) then write(stdout,*) 'find_whose_is_g: too large' stop endif whose_is_g(ig_l2g(ig))=me_bgrp+1 enddo call mp_sum(whose_is_g,intra_bgrp_comm) whose_is_g(:)=whose_is_g(:)-1 ! mill_g is used in gtable_missing and re-initialized here ! workaround by PG to avoid a large array like mill_g allocated all the time allocate ( mill_g(3,ngw_g) ) do ig=1,ngw mill_g(:,ig_l2g(ig)) = mill(:,ig) end do call mp_sum(mill_g,intra_bgrp_comm) return end subroutine find_whose_is_g subroutine gtable_missing USE efield_module, ONLY : ctable_missing_1, ctable_missing_2, & whose_is_g,n_g_missing_p, & ctable_missing_rev_1,ctable_missing_rev_2 USE gvecw, ONLY : ngw, ngw_g USE gvect, ONLY : ig_l2g, mill_g, mill, gstart USE mp, ONLY : mp_sum, mp_max, mp_alltoall USE io_global, ONLY : stdout USE mp_global, ONLY : me_bgrp, nproc_bgrp, intra_bgrp_comm USE parallel_include implicit none INTEGER :: ipol, i,j,k,ig,igg, nfound_max, ip LOGICAL :: found INTEGER :: nfound_proc(nproc_bgrp,2) INTEGER, ALLOCATABLE :: igg_found(:,:,:), ig_send(:,:,:), igg_found_snd(:,:,:) INTEGER, ALLOCATABLE :: igg_found_rcv(:,:,:) INTEGER :: ierr,sndint,rcvint allocate( igg_found(ngw_g,2,nproc_bgrp), ig_send(ngw_g,2,nproc_bgrp) ) do ipol=1,2 nfound_max=0 nfound_proc(:,:)=0 ig_send(:,:,:)=0 do ig=1,ngw!loop on g vectors ! first +g i = mill(1,ig) j = mill(2,ig) k = mill(3,ig) if(ipol.eq.1) i=i+1 if(ipol.eq.2) j=j+1 if(ipol.eq.3) k=k+1 do igg=1,ngw_g if( i==mill_g(1,igg) .and. j==mill_g(2,igg) .and. k==mill_g(3,igg)) then if(whose_is_g(igg) /= -1 .and. whose_is_g(igg) /= me_bgrp) then nfound_max=nfound_max+1 nfound_proc(whose_is_g(igg)+1,1)=nfound_proc(whose_is_g(igg)+1,1)+1 ig_send(nfound_proc(whose_is_g(igg)+1,1),1,whose_is_g(igg)+1)=ig igg_found(nfound_proc(whose_is_g(igg)+1,1),1,whose_is_g(igg)+1)=igg endif else if( i==-mill_g(1,igg) .and. j==-mill_g(2,igg) .and. k==-mill_g(3,igg)) then if(whose_is_g(igg) /= -1 .and. whose_is_g(igg) /= me_bgrp) then nfound_max=nfound_max+1 nfound_proc(whose_is_g(igg)+1,1)=nfound_proc(whose_is_g(igg)+1,1)+1 ig_send(nfound_proc(whose_is_g(igg)+1,1),1,whose_is_g(igg)+1)=ig igg_found(nfound_proc(whose_is_g(igg)+1,1),1,whose_is_g(igg)+1)=-igg endif endif enddo enddo do ig=gstart,ngw!loop on g vectors ! first +g i = -mill(1,ig) j = -mill(2,ig) k = -mill(3,ig) if(ipol.eq.1) i=i+1 if(ipol.eq.2) j=j+1 if(ipol.eq.3) k=k+1 do igg=1,ngw_g if( i==mill_g(1,igg) .and. j==mill_g(2,igg) .and. k==mill_g(3,igg)) then if(whose_is_g(igg) /= -1 .and. whose_is_g(igg) /= me_bgrp) then nfound_max=nfound_max+1 nfound_proc(whose_is_g(igg)+1,2)=nfound_proc(whose_is_g(igg)+1,2)+1 ig_send(nfound_proc(whose_is_g(igg)+1,2),2,whose_is_g(igg)+1)=ig igg_found(nfound_proc(whose_is_g(igg)+1,2),2,whose_is_g(igg)+1)=igg endif else if( i==-mill_g(1,igg) .and. j==-mill_g(2,igg) .and. k==-mill_g(3,igg)) then if(whose_is_g(igg) /= -1 .and. whose_is_g(igg) /= me_bgrp) then nfound_max=nfound_max+1 nfound_proc(whose_is_g(igg)+1,2)=nfound_proc(whose_is_g(igg)+1,2)+1 ig_send(nfound_proc(whose_is_g(igg)+1,2),2,whose_is_g(igg)+1)=ig igg_found(nfound_proc(whose_is_g(igg)+1,2),2,whose_is_g(igg)+1)=-igg endif endif enddo enddo ! determine the largest nfound for processor and set it as dimension ! for ctable_missing and ctable_missing_rev ! copy ig_send to ctable_missing call mp_sum(nfound_max, intra_bgrp_comm) write(stdout,*) 'Additional found:', nfound_max n_g_missing_p(ipol)=maxval(nfound_proc(:,:)) call mp_max(n_g_missing_p(ipol), intra_bgrp_comm) if(ipol==1) then allocate(ctable_missing_1(n_g_missing_p(ipol),2,nproc_bgrp)) ctable_missing_1(:,:,:)=0 do ip=1,nproc_bgrp ctable_missing_1(1:nfound_proc(ip,1),1,ip)=ig_send(1:nfound_proc(ip,1),1,ip) ctable_missing_1(1:nfound_proc(ip,2),2,ip)=ig_send(1:nfound_proc(ip,2),2,ip) enddo else allocate(ctable_missing_2(n_g_missing_p(ipol),2,nproc_bgrp)) ctable_missing_2(:,:,:)=0 do ip=1,nproc_bgrp ctable_missing_2(1:nfound_proc(ip,1),1,ip)=ig_send(1:nfound_proc(ip,1),1,ip) ctable_missing_2(1:nfound_proc(ip,2),2,ip)=ig_send(1:nfound_proc(ip,2),2,ip) enddo endif !mpi all to all for igg_found allocate(igg_found_snd(n_g_missing_p(ipol),2,nproc_bgrp)) allocate(igg_found_rcv(n_g_missing_p(ipol),2,nproc_bgrp)) igg_found_snd(:,:,:)=0 do ip=1,nproc_bgrp igg_found_snd(1:nfound_proc(ip,1),1,ip)=igg_found(1:nfound_proc(ip,1),1,ip) igg_found_snd(1:nfound_proc(ip,2),2,ip)=igg_found(1:nfound_proc(ip,2),2,ip) enddo call mp_alltoall( igg_found_snd, igg_found_rcv, intra_bgrp_comm ) if(ipol==1) then allocate(ctable_missing_rev_1(n_g_missing_p(ipol),2,nproc_bgrp)) ctable_missing_rev_1(:,:,:)=0 else allocate(ctable_missing_rev_2(n_g_missing_p(ipol),2,nproc_bgrp)) ctable_missing_rev_2(:,:,:)=0 endif nfound_max=0 do ip=1,nproc_bgrp do igg=1, n_g_missing_p(ipol) if(igg_found_rcv(igg,1,ip) /= 0 ) then found=.false. do ig=1,ngw if(igg_found_rcv(igg,1,ip)>0) then if(ig_l2g(ig)==igg_found_rcv(igg,1,ip)) then nfound_max=nfound_max+1 if(ipol==1) then ctable_missing_rev_1(igg,1,ip)=ig else ctable_missing_rev_2(igg,1,ip)=ig endif found=.true. endif else if(ig_l2g(ig)==-igg_found_rcv(igg,1,ip)) then nfound_max=nfound_max+1 if(ipol==1) then ctable_missing_rev_1(igg,1,ip)=-ig else ctable_missing_rev_2(igg,1,ip)=-ig endif found=.true. endif endif enddo if(.not.found) write(stdout,*) 'NOT FOUND:', igg_found_rcv(igg,1,ip) endif enddo do igg=1, n_g_missing_p(ipol) if(igg_found_rcv(igg,2,ip) /= 0 ) then found=.false. do ig=1,ngw if(igg_found_rcv(igg,2,ip)>0) then if(ig_l2g(ig)==igg_found_rcv(igg,2,ip)) then nfound_max=nfound_max+1 if(ipol==1) then ctable_missing_rev_1(igg,2,ip)=ig else ctable_missing_rev_2(igg,2,ip)=ig endif found=.true. endif else if(ig_l2g(ig)==-igg_found_rcv(igg,2,ip)) then nfound_max=nfound_max+1 if(ipol==1) then ctable_missing_rev_1(igg,2,ip)=-ig else ctable_missing_rev_2(igg,2,ip)=-ig endif found=.true. endif endif enddo if(.not.found) write(stdout,*) 'NOT FOUND:', igg_found_rcv(igg,2,ip) endif enddo enddo call mp_sum(nfound_max, intra_bgrp_comm) !write(stdout,*) 'Found check', nfound_max deallocate(igg_found_snd,igg_found_rcv) enddo deallocate(igg_found, ig_send) return end subroutine gtable_missing subroutine gtable_missing_inv USE efield_module, ONLY : ctabin_missing_1,ctabin_missing_2, whose_is_g,n_g_missing_m,& & ctabin_missing_rev_1,ctabin_missing_rev_2 USE gvecw, ONLY : ngw, ngw_g USE gvect, ONLY : ig_l2g, mill_g, mill, gstart USE mp, ONLY : mp_sum, mp_max, mp_alltoall USE io_global, ONLY : stdout USE mp_global, ONLY : me_bgrp, nproc_bgrp, intra_bgrp_comm USE parallel_include implicit none INTEGER :: ipol, i,j,k,ig,igg, nfound_max, ip LOGICAL :: found INTEGER :: nfound_proc(nproc_bgrp,2) INTEGER, ALLOCATABLE :: igg_found(:,:,:), ig_send(:,:,:), igg_found_snd(:,:,:) INTEGER, ALLOCATABLE :: igg_found_rcv(:,:,:) INTEGER :: ierr,sndint,rcvint allocate( igg_found(ngw_g,2,nproc_bgrp), ig_send(ngw_g,2,nproc_bgrp)) do ipol=1,2 nfound_max=0 nfound_proc(:,:)=0 ig_send(:,:,:)=0 do ig=1,ngw!loop on g vectors ! first +g i = mill(1,ig) j = mill(2,ig) k = mill(3,ig) if(ipol.eq.1) i=i+1 if(ipol.eq.2) j=j+1 if(ipol.eq.3) k=k+1 do igg=1,ngw_g if( i==mill_g(1,igg) .and. j==mill_g(2,igg) .and. k==mill_g(3,igg)) then if(whose_is_g(igg) /= -1 .and. whose_is_g(igg) /= me_bgrp) then nfound_max=nfound_max+1 nfound_proc(whose_is_g(igg)+1,1)=nfound_proc(whose_is_g(igg)+1,1)+1 ig_send(nfound_proc(whose_is_g(igg)+1,1),1,whose_is_g(igg)+1)=ig igg_found(nfound_proc(whose_is_g(igg)+1,1),1,whose_is_g(igg)+1)=igg endif else if( i==-mill_g(1,igg) .and. j==-mill_g(2,igg) .and. k==-mill_g(3,igg)) then if(whose_is_g(igg) /= -1 .and. whose_is_g(igg) /= me_bgrp) then nfound_max=nfound_max+1 nfound_proc(whose_is_g(igg)+1,1)=nfound_proc(whose_is_g(igg)+1,1)+1 ig_send(nfound_proc(whose_is_g(igg)+1,1),1,whose_is_g(igg)+1)=ig igg_found(nfound_proc(whose_is_g(igg)+1,1),1,whose_is_g(igg)+1)=-igg endif endif enddo enddo do ig=1,ngw!loop on g vectors ! first +g i = mill(1,ig) j = mill(2,ig) k = mill(3,ig) if(ipol.eq.1) i=i-1 if(ipol.eq.2) j=j-1 if(ipol.eq.3) k=k-1 do igg=1,ngw_g if( i==mill_g(1,igg) .and. j==mill_g(2,igg) .and. k==mill_g(3,igg)) then if(whose_is_g(igg) /= -1 .and. whose_is_g(igg) /= me_bgrp) then nfound_max=nfound_max+1 nfound_proc(whose_is_g(igg)+1,2)=nfound_proc(whose_is_g(igg)+1,2)+1 ig_send(nfound_proc(whose_is_g(igg)+1,2),2,whose_is_g(igg)+1)=ig igg_found(nfound_proc(whose_is_g(igg)+1,2),2,whose_is_g(igg)+1)=igg endif else if( i==-mill_g(1,igg) .and. j==-mill_g(2,igg) .and. k==-mill_g(3,igg)) then if(whose_is_g(igg) /= -1 .and. whose_is_g(igg) /= me_bgrp) then nfound_max=nfound_max+1 nfound_proc(whose_is_g(igg)+1,2)=nfound_proc(whose_is_g(igg)+1,2)+1 ig_send(nfound_proc(whose_is_g(igg)+1,2),2,whose_is_g(igg)+1)=ig igg_found(nfound_proc(whose_is_g(igg)+1,2),2,whose_is_g(igg)+1)=-igg endif endif enddo enddo !determine the largest nfound for processor and set it as dimensione for ctabin_missing and ctabin_missing_rev !copy ig_send to ctabin_missing call mp_sum(nfound_max, intra_bgrp_comm) write(stdout,*) 'Additional found:', nfound_max n_g_missing_m(ipol)=maxval(nfound_proc(:,:)) call mp_max(n_g_missing_m(ipol), intra_bgrp_comm) if(ipol==1) then allocate(ctabin_missing_1(n_g_missing_m(ipol),2,nproc_bgrp)) ctabin_missing_1(:,:,:)=0 do ip=1,nproc_bgrp ctabin_missing_1(1:nfound_proc(ip,1),1,ip)=ig_send(1:nfound_proc(ip,1),1,ip) ctabin_missing_1(1:nfound_proc(ip,2),2,ip)=ig_send(1:nfound_proc(ip,2),2,ip) enddo else allocate(ctabin_missing_2(n_g_missing_m(ipol),2,nproc_bgrp)) ctabin_missing_2(:,:,:)=0 do ip=1,nproc_bgrp ctabin_missing_2(1:nfound_proc(ip,1),1,ip)=ig_send(1:nfound_proc(ip,1),1,ip) ctabin_missing_2(1:nfound_proc(ip,2),2,ip)=ig_send(1:nfound_proc(ip,2),2,ip) enddo endif !mpi all to all for igg_found allocate(igg_found_snd(n_g_missing_m(ipol),2,nproc_bgrp)) allocate(igg_found_rcv(n_g_missing_m(ipol),2,nproc_bgrp)) igg_found_snd(:,:,:)=0 do ip=1,nproc_bgrp igg_found_snd(1:nfound_proc(ip,1),1,ip)=igg_found(1:nfound_proc(ip,1),1,ip) igg_found_snd(1:nfound_proc(ip,2),2,ip)=igg_found(1:nfound_proc(ip,2),2,ip) enddo CALL mp_alltoall( igg_found_snd, igg_found_rcv, intra_bgrp_comm ) if(ipol==1) then allocate(ctabin_missing_rev_1(n_g_missing_m(ipol),2,nproc_bgrp)) ctabin_missing_rev_1(:,:,:)=0 else allocate(ctabin_missing_rev_2(n_g_missing_m(ipol),2,nproc_bgrp)) ctabin_missing_rev_2(:,:,:)=0 endif nfound_max=0 do ip=1,nproc_bgrp do igg=1, n_g_missing_m(ipol) if(igg_found_rcv(igg,1,ip) /= 0 ) then found=.false. do ig=1,ngw if(igg_found_rcv(igg,1,ip)>0) then if(ig_l2g(ig)==igg_found_rcv(igg,1,ip)) then nfound_max=nfound_max+1 if(ipol==1) then ctabin_missing_rev_1(igg,1,ip)=ig else ctabin_missing_rev_2(igg,1,ip)=ig endif found=.true. endif else if(ig_l2g(ig)==-igg_found_rcv(igg,1,ip)) then nfound_max=nfound_max+1 if(ipol==1) then ctabin_missing_rev_1(igg,1,ip)=-ig else ctabin_missing_rev_2(igg,1,ip)=-ig endif found=.true. endif endif enddo if(.not.found) write(stdout,*) 'NOT FOUND:', igg_found_rcv(igg,1,ip) endif enddo do igg=1, n_g_missing_m(ipol) if(igg_found_rcv(igg,2,ip) /= 0 ) then found=.false. do ig=1,ngw if(igg_found_rcv(igg,2,ip)>0) then if(ig_l2g(ig)==igg_found_rcv(igg,2,ip)) then nfound_max=nfound_max+1 if(ipol==1) then ctabin_missing_rev_1(igg,2,ip)=ig else ctabin_missing_rev_2(igg,2,ip)=ig endif found=.true. endif else if(ig_l2g(ig)==-igg_found_rcv(igg,2,ip)) then nfound_max=nfound_max+1 if(ipol==1) then ctabin_missing_rev_1(igg,2,ip)=-ig else ctabin_missing_rev_2(igg,2,ip)=-ig endif found=.true. endif endif enddo if(.not.found) write(stdout,*) 'NOT FOUND:', igg_found_rcv(igg,2,ip) endif enddo enddo call mp_sum(nfound_max, intra_bgrp_comm) !write(stdout,*) 'Found check', nfound_max deallocate(igg_found_snd,igg_found_rcv) enddo deallocate(igg_found, ig_send) ! workaround by PG to avoid a large array like mill_g allocated all the time deallocate ( mill_g ) return end subroutine gtable_missing_inv espresso-5.1/CPV/src/phasefactor.f900000644000175000017500000001770012341373026015346 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! subroutine phfac_x( tau0, ei1, ei2, ei3, eigr) !=----------------------------------------------------------------------------=! ! ! this subroutine generates the complex matrices ei1, ei2, and ei3 ! used to compute the structure factor and forces on atoms : ! ei1(n1,ia,is) = exp(-i*n1*b1*tau(ia,is)) -nr1 2 ) then WRITE( stdout,*) ' phfac: tau0 ' WRITE( stdout,*) ( ( tau0(i,isa), i=1, 3 ), isa=1, nat ) endif CALL r_to_s( tau0, taus, na, nsp, ainv ) CALL phfacs( ei1, ei2, ei3, eigr, mill, taus, dfftp%nr1, dfftp%nr2, dfftp%nr3, nat ) deallocate( taus ) ! return end subroutine phfac_x !=----------------------------------------------------------------------------=! SUBROUTINE phfacs_x( ei1, ei2, ei3, eigr, mill, taus, nr1, nr2, nr3, nat ) !=----------------------------------------------------------------------------=! ! this routine computes the phase factors ! ! ei1(ix,ia) = exp ( -i ix G_1 dot R(ia)) ! ei2(iy,ia) = exp ( -i iy G_2 dot R(ia)) ! ei3(iz,ia) = exp ( -i iz G_3 dot R(ia)) ! ! eigr(ig,ia) = exp( -i G dot R(ia)) = ! = ei1(ix,ia) * ei2(iy,ia) * ei3(iz,ia) ! ! G_1,G_2,G_3 = reciprocal lattice generators ! ! ia = index of ion ! ig = index of G vector ! ix,iy,iz = Miller indices ! ---------------------------------------------- USE kinds, ONLY: DP USE constants, ONLY: tpi IMPLICIT NONE ! ... declare subroutine arguments INTEGER, INTENT(IN) :: nat INTEGER, INTENT(IN) :: nr1, nr2, nr3 COMPLEX(DP) :: ei1( -nr1 : nr1, nat ) COMPLEX(DP) :: ei2( -nr2 : nr2, nat ) COMPLEX(DP) :: ei3( -nr3 : nr3, nat ) COMPLEX(DP) :: eigr( :, : ) REAL(DP) :: taus( 3, nat ) INTEGER :: mill( :, : ) ! ... declare other variables COMPLEX(DP) :: ctep1, ctep2, ctep3, ctem1, ctem2, ctem3 REAL(DP) :: ar1, ar2, ar3 INTEGER :: i, j, k, isa INTEGER :: ig, ig1, ig2, ig3, ngw ! ... --+ end of declarations +-- if(nr1 < 3) call errore(' phfacs ',' nr1 too small ',1) if(nr2 < 3) call errore(' phfacs ',' nr2 too small ',1) if(nr3 < 3) call errore(' phfacs ',' nr3 too small ',1) DO isa = 1, nat ! ... Miller index = 0: exp(i 0 dot R(ia)) = 1 ei1( 0, isa ) = ( 1.d0, 0.d0 ) ei2( 0, isa ) = ( 1.d0, 0.d0 ) ei3( 0, isa ) = ( 1.d0, 0.d0 ) ! ... let R_1,R_2,R_3 be the direct lattice generators, ! ... G_1,G_2,G_3 the reciprocal lattice generators ! ... by definition G_i dot R_j = 2 pi delta_{ij} ! ... ionic coordinates are in units of R_1,R_2,R_3 ! ... then G_i dot R(ia) = 2 pi R(ia)_i ar1 = tpi * taus(1,isa) ! G_1 dot R(ia) ar2 = tpi * taus(2,isa) ! G_2 dot R(ia) ar3 = tpi * taus(3,isa) ! G_3 dot R(ia) ! ... Miller index = 1: exp(-i G_i dot R(ia)) ctep1 = CMPLX( cos( ar1 ), -sin( ar1 ) ,kind=DP) ctep2 = CMPLX( cos( ar2 ), -sin( ar2 ) ,kind=DP) ctep3 = CMPLX( cos( ar3 ), -sin( ar3 ) ,kind=DP) ! ... Miller index = -1: exp(-i G_im dot R(ia)) = exp(i G_i dot R(ia)) ctem1 = CONJG(ctep1) ctem2 = CONJG(ctep2) ctem3 = CONJG(ctep3) ! ... Miller index > 0: exp(i N G_i dot R(ia)) = ! ... = exp(i G_i dot R(ia)) exp(i (N-1) G_i dot R(ia)) ! ... Miller index < 0: exp(-i N G_i dot R(ia)) = ! ... = exp(-i G_i dot R(ia)) exp(-i (N-1) G_i dot R(ia)) DO i = 1, nr1 ei1( i, isa ) = ei1( i - 1, isa ) * ctep1 ei1( -i, isa ) = ei1( -i + 1, isa ) * ctem1 END DO DO j = 1, nr2 ei2( j, isa ) = ei2( j - 1, isa ) * ctep2 ei2( -j, isa ) = ei2( -j + 1, isa ) * ctem2 END DO DO k = 1, nr3 ei3( k, isa ) = ei3( k - 1, isa ) * ctep3 ei3( -k, isa ) = ei3( -k + 1, isa ) * ctem3 END DO END DO ngw = SIZE( eigr, 1 ) IF( ngw > SIZE( mill, 2 ) ) THEN CALL errore(' phfacs ',' inconsistent size for eigr ',ngw) END IF DO ig = 1, ngw ig1 = mill( 1, ig ) ig2 = mill( 2, ig ) ig3 = mill( 3, ig ) DO i = 1, nat eigr( ig, i ) = ei1( ig1, i ) * ei2( ig2, i ) * ei3( ig3, i ) END DO END DO RETURN END SUBROUTINE phfacs_x !=----------------------------------------------------------------------------=! SUBROUTINE strucf_x( sfac, ei1, ei2, ei3, mill, ngm ) !=----------------------------------------------------------------------------=! ! this routine computes the structure factors ! ! sfac(ig,is) = (sum over ia) exp(i G dot R(ia)) = ! (sum over ia) ei1(ix,ia) * ei2(iy,ia) * ei3(iz,ia) ! ! ei1(ix,ia) = exp (i ix G_1 dot R(ia)) ! ei2(iy,ia) = exp (i iy G_2 dot R(ia)) ! ei3(iz,ia) = exp (i iz G_3 dot R(ia)) ! ! G_1,G_2,G_3 = reciprocal lattice generators ! ! ia = index of ion (running over ions of species is) ! ig = index of G vector ! is = index of atomic species ! ix,iy,iz = Miller indices of G vector USE kinds, ONLY: DP USE ions_base, ONLY: nat, na, nsp use fft_base, only: dfftp IMPLICIT NONE ! ... declare subroutine arguments ! COMPLEX(DP) :: ei1( -dfftp%nr1 : dfftp%nr1, nat ) COMPLEX(DP) :: ei2( -dfftp%nr2 : dfftp%nr2, nat ) COMPLEX(DP) :: ei3( -dfftp%nr3 : dfftp%nr3, nat ) INTEGER :: mill( :, : ) INTEGER :: ngm COMPLEX(DP), INTENT(OUT) :: sfac(:,:) ! ... declare other variables ! INTEGER :: is, ig, ia, ig1, ig2, ig3, isa call start_clock( 'strucf' ) !$omp parallel do default(shared), private(ig1,ig2,ig3,isa,is,ia) DO ig = 1, ngm ig1 = mill( 1, ig ) ig2 = mill( 2, ig ) ig3 = mill( 3, ig ) isa = 1 DO is = 1, nsp sfac( ig, is ) = (0.0d0, 0.0d0) DO ia = 1, na(is) sfac( ig, is ) = sfac( ig, is ) + & ei1( ig1, isa ) * ei2( ig2, isa ) * ei3( ig3, isa ) isa = isa + 1 END DO END DO END DO call stop_clock( 'strucf' ) RETURN END SUBROUTINE strucf_x espresso-5.1/CPV/src/cp_restart.f900000644000175000017500000025011712341373026015216 0ustar mbamba! ! Copyright (C) 2005-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------------- MODULE cp_restart !----------------------------------------------------------------------------- ! ! ... This module contains subroutines to write and read data required to ! ... restart a calculation from the disk ! ! USE iotk_module USE qexml_module, ONLY : qexml_init,qexml_openfile, qexml_closefile, & qexml_write_header,qexml_write_control, qexml_write_cell, & qexml_write_ions, qexml_write_planewaves, qexml_write_spin, & qexml_write_xc, qexml_write_occ, qexml_write_bz, qexml_write_para, & qexml_write_bands_info,qexml_write_bands_cp,qexml_write_status_cp, & qexml_kpoint_dirname, qexml_read_header, qexml_read_status_cp, & qexml_read_ions, qexml_read_spin, qexml_read_occ, & qexml_read_bands_info, qexml_read_bands_cp, & fmt_version => qexml_default_version, qexml_save_history,qexml_wfc_filename, qexml_restart_dirname USE xml_io_base, ONLY : write_wfc, read_wfc, write_rho_xml,read_print_counter, create_directory ! USE kinds, ONLY : DP USE io_global, ONLY : ionode, ionode_id, stdout USE io_files, ONLY : prefix, iunpun, xmlpun, qexml_version, qexml_version_init USE mp, ONLY : mp_bcast USE parser, ONLY : version_compare ! IMPLICIT NONE ! SAVE ! PRIVATE :: read_cell ! INTEGER, PRIVATE :: iunout ! ! ! variables to describe qexml current version ! and back compatibility ! LOGICAL, PRIVATE :: qexml_version_before_1_4_0 = .FALSE. ! ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE cp_writefile( ndw, ascii, nfi, simtime, acc, nk, xk, & wk, ht, htm, htvel, gvel, xnhh0, xnhhm, vnhh, & taui, cdmi, stau0, svel0, staum, svelm, force, & vnhp, xnhp0, xnhpm, nhpcl, nhpdim, occ0, occm, & lambda0,lambdam, xnhe0, xnhem, vnhe, ekincm, & et, rho, c02, cm2, ctot, iupdwn, nupdwn, & iupdwn_tot, nupdwn_tot, mat_z ) !------------------------------------------------------------------------ ! USE control_flags, ONLY : gamma_only, force_pairing, trhow, & tksw, twfcollect, do_makov_payne, smallmem USE control_flags, ONLY : tksw, lwfpbe0nscf, lwfnscf ! Lingzhu Kong USE constants, ONLY : e2 USE io_files, ONLY : psfile, pseudo_dir, iunwfc, & nwordwfc, tmp_dir, diropn USE mp_images, ONLY : intra_image_comm, me_image, & nproc_image USE mp_pools, ONLY : nproc_pool, intra_pool_comm USE mp_bands, ONLY : me_bgrp, nproc_bgrp, & my_bgrp_id, intra_bgrp_comm, & inter_bgrp_comm, root_bgrp, & ntask_groups USE mp_pots, ONLY : nproc_pot USE mp_diag, ONLY : nproc_ortho USE mp_world, ONLY : world_comm, nproc USE run_info, ONLY : title USE gvect, ONLY : ngm, ngm_g USE gvecs, ONLY : ngms_g, ecuts, dual USE gvecw, ONLY : ngw, ngw_g, ecutwfc USE gvect, ONLY : ig_l2g, mill USE electrons_base, ONLY : nspin, nelt, nel, nudx USE cell_base, ONLY : ibrav, alat, celldm, s_to_r USE ions_base, ONLY : nsp, nat, na, atm, zv, & amass, iforce, ind_bck USE funct, ONLY : get_dft_name, get_inlc USE ldaU_cp, ONLY : lda_plus_U, ns, ldmx,Hubbard_l, & Hubbard_lmax, Hubbard_U USE energies, ONLY : enthal, ekin, eht, esr, eself, & epseu, enl, exc, vave USE mp, ONLY : mp_sum, mp_barrier USE fft_base, ONLY : dfftp, dffts, dfftb USE uspp_param, ONLY : n_atom_wfc USE global_version, ONLY : version_number USE cp_main_variables, ONLY : descla USE cp_interfaces, ONLY : collect_lambda, collect_zmat USE kernel_table, ONLY : vdw_table_name ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: ndw ! LOGICAL, INTENT(IN) :: ascii ! INTEGER, INTENT(IN) :: nfi ! index of the current step REAL(DP), INTENT(IN) :: simtime ! simulated time REAL(DP), INTENT(IN) :: acc(:) ! INTEGER, INTENT(IN) :: nk ! number of kpoints REAL(DP), INTENT(IN) :: xk(:,:) ! k-points coordinates REAL(DP), INTENT(IN) :: wk(:) ! k-points weights REAL(DP), INTENT(IN) :: ht(3,3) ! REAL(DP), INTENT(IN) :: htm(3,3) ! REAL(DP), INTENT(IN) :: htvel(3,3) ! REAL(DP), INTENT(IN) :: gvel(3,3) ! REAL(DP), INTENT(IN) :: xnhh0(3,3) ! REAL(DP), INTENT(IN) :: xnhhm(3,3) ! REAL(DP), INTENT(IN) :: vnhh(3,3) ! REAL(DP), INTENT(IN) :: taui(:,:) ! REAL(DP), INTENT(IN) :: cdmi(:) ! REAL(DP), INTENT(IN) :: stau0(:,:) ! REAL(DP), INTENT(IN) :: svel0(:,:) ! REAL(DP), INTENT(IN) :: staum(:,:) ! REAL(DP), INTENT(IN) :: svelm(:,:) ! REAL(DP), INTENT(IN) :: force(:,:) ! REAL(DP), INTENT(IN) :: xnhp0(:) ! REAL(DP), INTENT(IN) :: xnhpm(:) ! REAL(DP), INTENT(IN) :: vnhp(:) ! INTEGER, INTENT(IN) :: nhpcl ! INTEGER, INTENT(IN) :: nhpdim ! REAL(DP), INTENT(IN) :: occ0(:) ! occupations of electronic states REAL(DP), INTENT(IN) :: occm(:) ! REAL(DP), INTENT(IN) :: lambda0(:,:,:) ! REAL(DP), INTENT(IN) :: lambdam(:,:,:) ! REAL(DP), INTENT(IN) :: xnhe0 ! REAL(DP), INTENT(IN) :: xnhem ! REAL(DP), INTENT(IN) :: vnhe ! REAL(DP), INTENT(IN) :: ekincm ! REAL(DP), INTENT(IN) :: et(:,:) ! eigenvalues REAL(DP), INTENT(IN) :: rho(:,:) ! COMPLEX(DP), INTENT(IN) :: c02(:,:) ! COMPLEX(DP), INTENT(IN) :: cm2(:,:) ! COMPLEX(DP), INTENT(IN) :: ctot(:,:) ! INTEGER, INTENT(IN) :: iupdwn(:) ! INTEGER, INTENT(IN) :: nupdwn(:) ! INTEGER, INTENT(IN) :: iupdwn_tot(:)! INTEGER, INTENT(IN) :: nupdwn_tot(:)! REAL(DP), OPTIONAL, INTENT(IN) :: mat_z(:,:,:) ! ! LOGICAL :: write_charge_density CHARACTER(LEN=20) :: dft_name CHARACTER(LEN=256) :: dirname, filename, rho_file_base CHARACTER(LEN=4) :: cspin INTEGER :: kunit, ib, ik_eff INTEGER :: k1, k2, k3 INTEGER :: nk1, nk2, nk3 INTEGER :: j, i, iss, ig, nspin_wfc, iss_wfc INTEGER :: is, ia, isa, ik, ierr INTEGER, ALLOCATABLE :: ftmp(:,:) INTEGER, ALLOCATABLE :: ityp(:) REAL(DP), ALLOCATABLE :: tau(:,:) REAL(DP), ALLOCATABLE :: rhoaux(:) REAL(DP) :: omega, htm1(3,3), h(3,3) REAL(DP) :: a1(3), a2(3), a3(3) REAL(DP) :: b1(3), b2(3), b3(3) REAL(DP) :: nelec REAL(DP) :: scalef LOGICAL :: lsda REAL(DP) :: s0, s1, cclock INTEGER :: nbnd_tot INTEGER :: natomwfc, nbnd_ REAL(DP), ALLOCATABLE :: mrepl(:,:) CHARACTER(LEN=256) :: tmp_dir_save LOGICAL :: exst INTEGER :: inlc CHARACTER(iotk_attlenx) :: attr ! ! ... subroutine body ! write_charge_density = trhow ! IF( nspin > 1 .AND. .NOT. force_pairing ) THEN ! ! check if the array storing wave functions is large enought ! IF( SIZE( c02, 2 ) < ( iupdwn( 2 ) + nupdwn(1) - 1 ) ) & CALL errore('cp_writefile',' wrong wave functions dimension ', 1 ) ! END IF ! IF( nupdwn_tot(1) < nupdwn(1) ) & CALL errore( " writefile ", " wrong number of states ", 1 ) ! nbnd_ = nupdwn(1) nbnd_tot = MAX( nupdwn(1), nupdwn_tot(1) ) ! IF ( ionode ) THEN ! ! ... look for an empty unit (only ionode needs it) ! CALL iotk_free_unit( iunout, ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'cp_writefile', & 'no free units to write wavefunctions', ierr ) ! dirname = qexml_restart_dirname( tmp_dir, prefix, ndw ) ! ! ... Create main restart directory ! CALL create_directory( dirname ) ! ! ... Create k-points subdirectories ! ... note: in FPMD and CP k-points are not distributed to processors ! DO i = 1, nk ! CALL create_directory( qexml_kpoint_dirname( dirname, i ) ) ! END DO ! ! ... Some ( CP/FPMD ) default values ! IF ( nspin == 2 ) THEN ! kunit = 2 ! ELSE ! kunit = 1 ! END IF ! k1 = 0 k2 = 0 k3 = 0 nk1 = 0 nk2 = 0 nk3 = 0 ! ! ... Compute Cell related variables ! h = TRANSPOSE( ht ) ! CALL invmat( 3, ht, htm1, omega ) ! a1 = ht(1,:) a2 = ht(2,:) a3 = ht(3,:) ! ! ... Beware: omega may be negative if axis are left-handed! ! scalef = 1.D0 / SQRT( ABS (omega) ) ! ! ... Compute array ityp, and tau ! ALLOCATE( ityp( nat ) ) ALLOCATE( tau( 3, nat ) ) ! isa = 0 ! DO is = 1, nsp ! DO ia = 1, na(is) ! isa = isa + 1 ityp(isa) = is ! END DO ! END DO ! CALL s_to_r( stau0, tau, na, nsp, h ) ! lsda = ( nspin == 2 ) ! ALLOCATE( ftmp( nbnd_tot , nspin ) ) ! ftmp = 0.0d0 ! DO iss = 1, nspin ! ftmp( 1:nupdwn(iss), iss ) = occ0( iupdwn(iss) : iupdwn(iss) + nupdwn(iss) - 1 ) ! END DO ! IF ( ionode ) THEN ! ! ... Open XML descriptor ! WRITE( stdout, '(/,3X,"writing restart file: ",A)' ) TRIM( dirname ) ! CALL qexml_init( iunpun ) CALL qexml_openfile( TRIM( dirname ) // '/' // TRIM( xmlpun ), & & 'write', BINARY = .FALSE., IERR = ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'cp_writefile ', 'cannot open restart file for writing', ierr ) ! s0 = cclock() ! IF ( ionode ) THEN !------------------------------------------------------------------------------- ! ... HEADER !------------------------------------------------------------------------------- ! CALL qexml_write_header( "CP", TRIM(version_number) ) ! !------------------------------------------------------------------------------- ! ... this flag is used to check if the file can be used for post-processing !------------------------------------------------------------------------------- ! CALL qexml_write_control( PP_CHECK_FLAG=.TRUE. ) ! !------------------------------------------------------------------------------- ! ... STATUS !------------------------------------------------------------------------------- ! CALL qexml_write_status_cp( nfi,simtime,"pico-seconds",TRIM(title), & ekin, eht, esr, eself, epseu, enl, exc, vave, enthal, & 'Hartree' ) ! !------------------------------------------------------------------------------- ! ... CELL !------------------------------------------------------------------------------- ! a1 = a1 / alat a2 = a2 / alat a3 = a3 / alat ! CALL recips( a1, a2, a3, b1, b2, b3 ) ! CALL qexml_write_cell( ibrav, celldm, alat, a1, a2, a3, b1, b2, b3, & "Bohr","Bohr","2 pi / a", & do_makov_payne, .FALSE., .FALSE. ) ! !------------------------------------------------------------------------------- ! ... IONS !------------------------------------------------------------------------------- ! CALL qexml_write_ions( nsp, nat, atm, ityp(ind_bck(:)), & psfile, pseudo_dir, amass, 'a.m.u.', tau(:,ind_bck(:)), & 'Bohr', iforce(:,ind_bck(:)), dirname, 1.D0 ) ! !------------------------------------------------------------------------------- ! ... PLANE_WAVES !------------------------------------------------------------------------------- ! CALL qexml_write_planewaves( ecutwfc/e2, ecutwfc*dual/e2, ngw_g, gamma_only, & dfftp%nr1, dfftp%nr2, dfftp%nr3, ngm_g, & dffts%nr1, dffts%nr2, dffts%nr3, ngms_g,& dfftb%nr1, dfftb%nr2, dfftb%nr3, mill, .FALSE.,'Hartree' ) ! !------------------------------------------------------------------------------- ! ... SPIN !------------------------------------------------------------------------------- ! CALL qexml_write_spin( lsda, .FALSE., 1, .FALSE., .TRUE. ) ! !------------------------------------------------------------------------------- ! ... EXCHANGE_CORRELATION !------------------------------------------------------------------------------- ! dft_name = get_dft_name() inlc = get_inlc() ! CALL qexml_write_xc( DFT = dft_name, NSP = nsp, LDA_PLUS_U = lda_plus_u, & HUBBARD_LMAX = Hubbard_lmax, & HUBBARD_L = Hubbard_l, HUBBARD_U = Hubbard_U, & INLC = inlc, VDW_TABLE_NAME = vdw_table_name, & PSEUDO_DIR = pseudo_dir, DIRNAME = dirname) ! !------------------------------------------------------------------------------- ! ... OCCUPATIONS !------------------------------------------------------------------------------- ! CALL qexml_write_occ( LGAUSS = .FALSE., LTETRA = .FALSE., & TFIXED_OCC = .TRUE., LSDA = lsda, NSTATES_UP = nupdwn_tot(1), & NSTATES_DW = nupdwn_tot(2), INPUT_OCC = DBLE( ftmp ) ) ! !------------------------------------------------------------------------------- ! ... BRILLOUIN_ZONE !------------------------------------------------------------------------------- ! CALL qexml_write_bz( nk, xk, wk, k1, k2, k3, nk1, nk2, nk3, & '2 pi / a',0.0_DP ) ! !------------------------------------------------------------------------------- ! ... PARALLELISM !------------------------------------------------------------------------------- ! ! CALL qexml_write_para( kunit, nproc, nproc_pool, nproc_image, ntask_groups, & nproc_pot, nproc_bgrp, nproc_ortho ) ! END IF ! !------------------------------------------------------------------------------- ! ... CHARGE-DENSITY !------------------------------------------------------------------------------- ! IF (write_charge_density) then ! rho_file_base = 'charge-density' ! IF ( ionode ) THEN CALL iotk_link( iunpun, "CHARGE-DENSITY", rho_file_base, & CREATE = .FALSE., BINARY = .TRUE. ) END IF ! rho_file_base = TRIM( dirname ) // '/' // TRIM( rho_file_base ) ! IF ( nspin == 1 ) THEN ! CALL write_rho_xml( rho_file_base, rho(:,1), & dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1x, dfftp%nr2x, & dfftp%ipp, dfftp%npp, ionode, intra_bgrp_comm, inter_bgrp_comm ) ! ELSE IF ( nspin == 2 ) THEN ! ALLOCATE( rhoaux( SIZE( rho, 1 ) ) ) ! rhoaux = rho(:,1) + rho(:,2) ! CALL write_rho_xml( rho_file_base, rhoaux, & dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1x, dfftp%nr2x, & dfftp%ipp, dfftp%npp, ionode, intra_bgrp_comm, inter_bgrp_comm ) ! rho_file_base = 'spin-polarization' ! IF ( ionode ) & CALL iotk_link( iunpun, "SPIN-POLARIZATION", rho_file_base, & CREATE = .FALSE., BINARY = .TRUE. ) ! rho_file_base = TRIM( dirname ) // '/' // TRIM( rho_file_base ) ! rhoaux = rho(:,1) - rho(:,2) ! CALL write_rho_xml( rho_file_base, rhoaux, & dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1x, dfftp%nr2x, & dfftp%ipp, dfftp%npp, ionode, intra_bgrp_comm, inter_bgrp_comm ) ! DEALLOCATE( rhoaux ) ! END IF ! END IF ! write_charge_density ! !------------------------------------------------------------------------------- ! ... LDA+U OCCUPATIONS (compatibility with PWscf) !------------------------------------------------------------------------------- ! IF ( lda_plus_u ) THEN ! IF ( ionode ) THEN i = LEN_TRIM( dirname ) ! ugly hack to remove .save from dirname filename = dirname (1:i-4) // 'occup' OPEN (UNIT=iunout,FILE=filename,FORM ='formatted',STATUS='unknown') WRITE( iunout, * , iostat = ierr) ns END IF CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF ( ierr/=0 ) CALL errore('cp_writefile', 'Writing ldaU ns', 1) IF ( ionode ) THEN CLOSE( UNIT = iunout, STATUS = 'KEEP' ) ENDIF ! END IF ! !------------------------------------------------------------------------------- ! ... TIMESTEPS !------------------------------------------------------------------------------- ! IF ( ionode ) THEN ! CALL iotk_write_attr( attr, "nt", 2, FIRST = .TRUE. ) ! CALL iotk_write_begin( iunpun, "TIMESTEPS", attr ) ! ! ... STEP0 ! CALL iotk_write_begin( iunpun, "STEP0" ) ! CALL iotk_write_dat( iunpun, "ACCUMULATORS", acc ) ! CALL iotk_write_begin( iunpun, "IONS_POSITIONS" ) CALL iotk_write_dat( iunpun, "stau", stau0(1:3,1:nat), COLUMNS=3 ) CALL iotk_write_dat( iunpun, "svel", svel0(1:3,1:nat), COLUMNS=3 ) CALL iotk_write_dat( iunpun, "taui", taui(1:3,1:nat), COLUMNS=3 ) CALL iotk_write_dat( iunpun, "cdmi", cdmi(1:3), COLUMNS=3 ) CALL iotk_write_dat( iunpun, "force", force(1:3,1:nat), COLUMNS=3 ) CALL iotk_write_end( iunpun, "IONS_POSITIONS" ) ! CALL iotk_write_begin( iunpun, "IONS_NOSE" ) CALL iotk_write_dat( iunpun, "nhpcl", nhpcl ) CALL iotk_write_dat( iunpun, "nhpdim", nhpdim ) CALL iotk_write_dat( iunpun, "xnhp", xnhp0(1:nhpcl*nhpdim) ) CALL iotk_write_dat( iunpun, "vnhp", vnhp(1:nhpcl*nhpdim) ) CALL iotk_write_end( iunpun, "IONS_NOSE" ) ! CALL iotk_write_dat( iunpun, "ekincm", ekincm ) ! CALL iotk_write_begin( iunpun, "ELECTRONS_NOSE" ) CALL iotk_write_dat( iunpun, "xnhe", xnhe0 ) CALL iotk_write_dat( iunpun, "vnhe", vnhe ) CALL iotk_write_end( iunpun, "ELECTRONS_NOSE" ) ! CALL iotk_write_begin( iunpun, "CELL_PARAMETERS" ) CALL iotk_write_dat( iunpun, "ht", ht ) CALL iotk_write_dat( iunpun, "htvel", htvel ) CALL iotk_write_dat( iunpun, "gvel", gvel ) CALL iotk_write_end( iunpun, "CELL_PARAMETERS" ) ! CALL iotk_write_begin( iunpun, "CELL_NOSE" ) CALL iotk_write_dat( iunpun, "xnhh", xnhh0 ) CALL iotk_write_dat( iunpun, "vnhh", vnhh ) CALL iotk_write_end( iunpun, "CELL_NOSE" ) ! CALL iotk_write_end( iunpun, "STEP0" ) ! ! ... STEPM ! CALL iotk_write_begin( iunpun, "STEPM" ) ! CALL iotk_write_begin( iunpun, "IONS_POSITIONS" ) CALL iotk_write_dat( iunpun, "stau", staum(1:3,1:nat), COLUMNS=3 ) CALL iotk_write_dat( iunpun, "svel", svelm(1:3,1:nat), COLUMNS=3 ) CALL iotk_write_end( iunpun, "IONS_POSITIONS" ) ! CALL iotk_write_begin( iunpun, "IONS_NOSE" ) CALL iotk_write_dat( iunpun, "nhpcl", nhpcl ) CALL iotk_write_dat( iunpun, "nhpdim", nhpdim ) CALL iotk_write_dat( iunpun, "xnhp", xnhpm(1:nhpcl*nhpdim) ) CALL iotk_write_end( iunpun, "IONS_NOSE" ) ! CALL iotk_write_begin( iunpun, "ELECTRONS_NOSE" ) CALL iotk_write_dat( iunpun, "xnhe", xnhem ) CALL iotk_write_end( iunpun, "ELECTRONS_NOSE" ) ! CALL iotk_write_begin( iunpun, "CELL_PARAMETERS" ) CALL iotk_write_dat( iunpun, "ht", htm ) CALL iotk_write_end( iunpun, "CELL_PARAMETERS" ) ! CALL iotk_write_begin( iunpun, "CELL_NOSE" ) CALL iotk_write_dat( iunpun, "xnhh", xnhhm ) CALL iotk_write_end( iunpun, "CELL_NOSE" ) ! CALL iotk_write_end( iunpun, "STEPM" ) ! CALL iotk_write_end( iunpun, "TIMESTEPS" ) ! ! END IF ! !------------------------------------------------------------------------------- ! ... BAND_STRUCTURE_INFO !------------------------------------------------------------------------------- ! IF ( ionode ) THEN ! natomwfc = n_atom_wfc ( nat, ityp ) ! nelec = nelt ! CALL qexml_write_bands_info( nk, natomwfc, & nbnd_tot, nupdwn_tot(1),nupdwn_tot(2),& nspin, nelec, nel(1), nel(2), & "Hartree", "2 pi / a") ! !------------------------------------------------------------------------------- ! ... EIGENVALUES !------------------------------------------------------------------------------- ! CALL qexml_write_bands_cp( nbnd_tot, nk, nspin, iupdwn, nupdwn, xk, wk, et, tksw, & occ0, occm, "Hartree", "2 pi / a", iunout ,dirname ) ! ! CALL iotk_write_begin( iunpun, "EIGENVECTORS" ) ! CALL iotk_write_dat ( iunpun, "MAX_NUMBER_OF_GK-VECTORS", ngw_g ) ! END IF ! !------------------------------------------------------------------------------- ! ... EIGENVECTORS !------------------------------------------------------------------------------- ! k_points_loop2: DO ik = 1, nk IF( ionode ) THEN CALL iotk_write_begin( iunpun, "K-POINT" // TRIM( iotk_index( ik ) ) ) ! ! ... G+K vectors ! CALL iotk_write_dat( iunpun, "NUMBER_OF_GK-VECTORS", ngw_g ) ! ! filename = TRIM( qexml_wfc_filename( ".", 'gkvectors', ik ) ) ! CALL iotk_link( iunpun, "GK-VECTORS", filename, CREATE = .FALSE., BINARY = .TRUE. ) ! filename = TRIM( qexml_wfc_filename( dirname, 'gkvectors', ik ) ) ! END IF ! IF( .NOT. smallmem ) THEN CALL write_gk( iunout, ik, filename ) END IF ! DO iss = 1, nspin ! ik_eff = ik + ( iss - 1 ) * nk ! iss_wfc = iss if( force_pairing ) iss_wfc = 1 ! only the WF for the first spin is allocated ! IF( tksw ) THEN ! ! Save additional WF, ! orthogonal KS states to be used for post processing and PW ! IF ( ionode ) THEN ! IF ( nspin == 1 ) THEN ! filename = TRIM( qexml_wfc_filename( ".", 'evc', ik ) ) ! ELSE ! filename = TRIM( qexml_wfc_filename( ".", 'evc', ik, iss ) ) ! END IF ! IF( nspin == 2 ) THEN CALL iotk_link( iunpun, "WFC" // TRIM( iotk_index (iss) ), & filename, CREATE = .FALSE., BINARY = .TRUE. ) ELSE CALL iotk_link( iunpun, "WFC", filename, CREATE = .FALSE., BINARY = .TRUE. ) END IF ! IF ( nspin == 1 ) THEN ! filename = TRIM( qexml_wfc_filename( dirname, 'evc', ik ) ) ! ELSE ! filename = TRIM( qexml_wfc_filename( dirname, 'evc', ik, iss ) ) ! END IF ! END IF ! ib = iupdwn_tot( iss_wfc ) ! CALL write_wfc( iunout, ik_eff, nk*nspin, kunit, iss, nspin, & ctot( :, ib : ib + nbnd_tot - 1 ), ngw_g, gamma_only,& nbnd_tot, ig_l2g, ngw, filename, scalef, & ionode, root_bgrp, intra_bgrp_comm, inter_bgrp_comm, intra_pool_comm ) ! END IF ! IF( twfcollect ) THEN ! ! Save wave function at time t ! IF ( ionode ) THEN ! IF ( nspin == 1 ) THEN ! filename = TRIM( qexml_wfc_filename( ".", 'evc0', ik ) ) ! ELSE ! filename = TRIM( qexml_wfc_filename( ".", 'evc0', ik, iss ) ) ! END IF ! CALL iotk_link( iunpun, "WFC0" // TRIM( iotk_index (iss) ), & filename, CREATE = .FALSE., BINARY = .TRUE. ) ! IF ( nspin == 1 ) THEN ! filename = TRIM( qexml_wfc_filename( dirname, 'evc0', ik ) ) ! ELSE ! filename = TRIM( qexml_wfc_filename( dirname, 'evc0', ik, iss ) ) ! END IF ! END IF ! ib = iupdwn(iss_wfc) ! CALL write_wfc( iunout, ik_eff, nk*nspin, kunit, iss, nspin, & c02( :, ib : ib + nbnd_ - 1 ), ngw_g, gamma_only, & nbnd_, ig_l2g, ngw, filename, scalef, & ionode, root_bgrp, intra_bgrp_comm, inter_bgrp_comm, intra_pool_comm ) ! ! Save wave function at time t - dt ! IF ( ionode ) THEN ! IF ( nspin == 1 ) THEN ! filename = TRIM( qexml_wfc_filename( ".", 'evcm', ik ) ) ! ELSE ! filename = TRIM( qexml_wfc_filename( ".", 'evcm', ik, iss ) ) ! END IF ! CALL iotk_link( iunpun, "WFCM" // TRIM( iotk_index (iss) ), & filename, CREATE = .FALSE., BINARY = .TRUE. ) ! IF ( nspin == 1 ) THEN ! filename = TRIM( qexml_wfc_filename( dirname, 'evcm', ik ) ) ! ELSE ! filename = TRIM( qexml_wfc_filename( dirname, 'evcm', ik, iss ) ) ! END IF ! END IF ! ib = iupdwn(iss_wfc) ! CALL write_wfc( iunout, ik_eff, nk*nspin, kunit, iss, nspin, & cm2( :, ib : ib + nbnd_ - 1 ), ngw_g, gamma_only, & nbnd_, ig_l2g, ngw, filename, scalef, & ionode, root_bgrp, intra_bgrp_comm, inter_bgrp_comm, intra_pool_comm ) ! END IF ! cspin = iotk_index( iss ) ! ! ... write matrix lambda to file ! ALLOCATE( mrepl( nudx, nudx ) ) ! CALL collect_lambda( mrepl, lambda0(:,:,iss), descla(iss) ) ! IF ( ionode ) THEN ! filename = TRIM( qexml_wfc_filename( ".", 'lambda0', ik, iss ) ) ! CALL iotk_link( iunpun, "LAMBDA0" // TRIM( cspin ), & filename, CREATE = .TRUE., BINARY = .TRUE. ) ! CALL iotk_write_dat( iunpun, & "LAMBDA0" // TRIM( cspin ), mrepl ) !============================================================= ! Lingzhu Kong IF ( lwfpbe0nscf .or. lwfnscf ) THEN OPEN(60,file='cp_lambda.dat',status='unknown',form='formatted') DO j = 1, nudx write(60, '(8f15.8)')(mrepl(i,j),i=1,nudx) ENDDO CLOSE(60) ENDIF !============================================================= ! ! END IF ! CALL collect_lambda( mrepl, lambdam(:,:,iss), descla(iss) ) ! IF ( ionode ) THEN ! filename = TRIM( qexml_wfc_filename( ".", 'lambdam', ik, iss ) ) ! CALL iotk_link( iunpun, "LAMBDAM" // TRIM( cspin ), & filename, CREATE = .TRUE., BINARY = .TRUE. ) ! CALL iotk_write_dat( iunpun, & "LAMBDAM" // TRIM( cspin ), mrepl ) ! END IF ! IF( PRESENT( mat_z ) ) THEN ! CALL collect_zmat( mrepl, mat_z(:,:,iss), descla(iss) ) ! IF ( ionode ) THEN ! filename = TRIM( qexml_wfc_filename( ".", 'mat_z', ik, iss ) ) ! CALL iotk_link( iunpun, "MAT_Z" // TRIM( cspin ), & filename, CREATE = .TRUE., BINARY = .TRUE. ) ! CALL iotk_write_dat( iunpun, "MAT_Z" // TRIM( cspin ), mrepl ) ! END IF ! END IF ! DEALLOCATE( mrepl ) ! END DO ! IF ( ionode ) & CALL iotk_write_end( iunpun, "K-POINT" // TRIM( iotk_index(ik) ) ) ! END DO k_points_loop2 ! IF ( ionode ) CALL iotk_write_end( iunpun, "EIGENVECTORS" ) ! IF ( ionode ) THEN ! CALL qexml_closefile( 'write', IERR=ierr) ! ENDIF ! call mp_barrier( world_comm ) ! IF( .NOT. twfcollect ) THEN ! tmp_dir_save = tmp_dir tmp_dir = TRIM( qexml_restart_dirname( tmp_dir, prefix, ndw ) ) // '/' tmp_dir = TRIM( qexml_kpoint_dirname( tmp_dir, 1 ) ) // '/' ! iunwfc = 10 nwordwfc = SIZE( c02 ) ! CALL diropn ( iunwfc, 'wfc', 2*nwordwfc, exst ) CALL davcio ( c02, 2*nwordwfc, iunwfc, 1, +1 ) ! save wave funct CALL davcio ( cm2, 2*nwordwfc, iunwfc, 2, +1 ) ! save wave funct ! CLOSE( UNIT = iunwfc, STATUS = 'KEEP' ) tmp_dir = tmp_dir_save ! END IF !------------------------------------------------------------------------------- ! ... END RESTART SECTIONS !------------------------------------------------------------------------------- ! DEALLOCATE( ftmp ) DEALLOCATE( tau ) DEALLOCATE( ityp ) ! IF (ionode) CALL qexml_save_history( dirname, nfi, ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'cp_writefile', & 'cannot save history', ierr ) ! ! s1 = cclock() ! IF ( ionode ) THEN ! WRITE( stdout, & '(3X,"restart file written in ",F8.3," sec.",/)' ) ( s1 - s0 ) ! END IF ! RETURN ! END SUBROUTINE cp_writefile ! !------------------------------------------------------------------------ SUBROUTINE cp_readfile( ndr, ascii, nfi, simtime, acc, nk, xk, & wk, ht, htm, htvel, gvel, xnhh0, xnhhm, vnhh, & taui, cdmi, stau0, svel0, staum, svelm, force, & vnhp, xnhp0, xnhpm, nhpcl,nhpdim,occ0, occm, & lambda0, lambdam, b1, b2, b3, xnhe0, xnhem, vnhe, & ekincm, c02, cm2, mat_z ) !------------------------------------------------------------------------ ! USE control_flags, ONLY : gamma_only, force_pairing, iverbosity, twfcollect USE io_files, ONLY : iunpun, xmlpun, iunwfc, nwordwfc, & tmp_dir, diropn USE run_info, ONLY : title USE gvect, ONLY : ngm USE gvecw, ONLY : ngw, ngw_g USE electrons_base, ONLY : nspin, nbnd, nelt, nel, & nupdwn, iupdwn, nudx USE cell_base, ONLY : ibrav, alat, celldm, s_to_r, r_to_s USE ions_base, ONLY : nsp, nat, na, atm, zv, & sort_tau, ityp, ions_cofmass USE gvect, ONLY : ig_l2g, mill USE cp_main_variables, ONLY : nprint_nfi, descla USE cp_interfaces, ONLY : distribute_lambda, distribute_zmat USE mp, ONLY : mp_sum, mp_bcast USE mp_global, ONLY : intra_image_comm, my_bgrp_id USE mp_global, ONLY : root_bgrp, intra_bgrp_comm, inter_bgrp_comm, intra_pool_comm USE parameters, ONLY : ntypx USE constants, ONLY : eps8, angstrom_au, pi ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: ndr ! I/O unit number LOGICAL, INTENT(IN) :: ascii ! INTEGER, INTENT(INOUT) :: nfi ! index of the current step REAL(DP), INTENT(INOUT) :: simtime ! simulated time REAL(DP), INTENT(INOUT) :: acc(:) ! INTEGER, INTENT(IN) :: nk ! number of kpoints REAL(DP), INTENT(INOUT) :: xk(:,:) ! k-points coordinates REAL(DP), INTENT(INOUT) :: wk(:) ! k-points weights REAL(DP), INTENT(INOUT) :: ht(3,3) ! REAL(DP), INTENT(INOUT) :: htm(3,3) ! REAL(DP), INTENT(INOUT) :: htvel(3,3) ! REAL(DP), INTENT(INOUT) :: gvel(3,3) ! REAL(DP), INTENT(INOUT) :: xnhh0(3,3) ! REAL(DP), INTENT(INOUT) :: xnhhm(3,3) ! REAL(DP), INTENT(INOUT) :: vnhh(3,3) ! REAL(DP), INTENT(INOUT) :: taui(:,:) ! REAL(DP), INTENT(INOUT) :: cdmi(:) ! REAL(DP), INTENT(INOUT) :: stau0(:,:) ! REAL(DP), INTENT(INOUT) :: svel0(:,:) ! REAL(DP), INTENT(INOUT) :: staum(:,:) ! REAL(DP), INTENT(INOUT) :: svelm(:,:) ! REAL(DP), INTENT(INOUT) :: force(:,:) ! REAL(DP), INTENT(INOUT) :: xnhp0(:) ! REAL(DP), INTENT(INOUT) :: xnhpm(:) ! REAL(DP), INTENT(INOUT) :: vnhp(:) ! INTEGER, INTENT(INOUT) :: nhpcl ! INTEGER, INTENT(INOUT) :: nhpdim ! REAL(DP), INTENT(INOUT) :: occ0(:) ! occupations REAL(DP), INTENT(INOUT) :: occm(:) ! REAL(DP), INTENT(INOUT) :: lambda0(:,:,:) ! REAL(DP), INTENT(INOUT) :: lambdam(:,:,:) ! REAL(DP), INTENT(INOUT) :: b1(3) ! REAL(DP), INTENT(INOUT) :: b2(3) ! REAL(DP), INTENT(INOUT) :: b3(3) ! REAL(DP), INTENT(INOUT) :: xnhe0 ! REAL(DP), INTENT(INOUT) :: xnhem ! REAL(DP), INTENT(INOUT) :: vnhe ! REAL(DP), INTENT(INOUT) :: ekincm ! COMPLEX(DP), INTENT(INOUT) :: c02(:,:) ! COMPLEX(DP), INTENT(INOUT) :: cm2(:,:) ! REAL(DP), OPTIONAL, INTENT(INOUT) :: mat_z(:,:,:) ! ! CHARACTER(LEN=256) :: dirname, kdirname, filename CHARACTER(LEN=5) :: kindex CHARACTER(LEN=4) :: cspin INTEGER :: strlen INTEGER :: kunit INTEGER :: k1, k2, k3 INTEGER :: nk1, nk2, nk3 INTEGER :: i, j, iss, ig, nspin_wfc, ierr, ik REAL(DP) :: omega, htm1(3,3), hinv(3,3), scalef LOGICAL :: found ! ! ... variables read for testing pourposes ! INTEGER :: ibrav_ CHARACTER(LEN=3) :: atm_(ntypx) INTEGER :: nat_, nsp_, na_ INTEGER :: nk_, ik_, nt_ LOGICAL :: gamma_only_ , lsda_ REAL(DP) :: alat_, a1_(3), a2_(3), a3_(3) REAL(DP) :: zv_ REAL(DP) :: celldm_(6) INTEGER :: iss_, nspin_, ngwt_, nbnd_ , nbnd_tot INTEGER :: nstates_up_ , nstates_dw_ , ntmp, nel_(2) REAL(DP) :: nelec_ REAL(DP) :: scalef_ REAL(DP) :: wk_ INTEGER :: nhpcl_, nhpdim_ INTEGER :: ib, nb INTEGER :: ik_eff REAL(DP) :: amass_(ntypx) INTEGER, ALLOCATABLE :: ityp_(:) INTEGER, ALLOCATABLE :: isrt_(:) REAL(DP), ALLOCATABLE :: tau_(:,:) REAL(DP), ALLOCATABLE :: occ_(:) INTEGER, ALLOCATABLE :: if_pos_(:,:) CHARACTER(LEN=256) :: psfile_(ntypx) CHARACTER(LEN=80) :: pos_unit REAL(DP) :: s1, s0, cclock REAL(DP), ALLOCATABLE :: mrepl(:,:) LOGICAL :: exst, exist_wfc CHARACTER(LEN=256) :: tmp_dir_save INTEGER :: io_bgrp_id CHARACTER(iotk_attlenx) :: attr ! ! ... look for an empty unit ! CALL iotk_free_unit( iunout, ierr ) ! CALL errore( 'cp_readfile', & 'no free units to read wavefunctions', ierr ) ! kunit = 1 found = .FALSE. exist_wfc = .FALSE. ! dirname = qexml_restart_dirname( tmp_dir, prefix, ndr ) ! ! ... Open XML descriptor ! IF ( ionode ) THEN ! !filename = TRIM( dirname ) // '/' // TRIM( xmlpun ) ! WRITE( stdout, '(/,3X,"reading restart file: ",A)' ) TRIM( dirname ) ! !CALL iotk_open_read( iunpun, FILE = TRIM( filename ), IERR = ierr ) ! CALL qexml_init( iunpun ) ! CALL qexml_openfile( TRIM( dirname ) // '/' // TRIM( xmlpun ), & 'read', BINARY = .FALSE., IERR = ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'cp_readfile', & 'cannot open restart file for reading', ierr ) ! s0 = cclock() ! IF ( ionode ) THEN ! qexml_version = " " ! CALL qexml_read_header( FORMAT_VERSION = qexml_version, ierr = ierr ) ! qexml_version_init = .TRUE. ! ! init logical variables for versioning ! qexml_version_before_1_4_0 = .FALSE. ! IF ( TRIM( version_compare( qexml_version, "1.4.0" )) == "older" ) & qexml_version_before_1_4_0 = .TRUE. ! ENDIF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'cp_readfile', & 'error reading the header', ierr ) ! CALL mp_bcast( qexml_version, ionode_id, intra_image_comm ) CALL mp_bcast( qexml_version_init, ionode_id, intra_image_comm ) CALL mp_bcast( qexml_version_before_1_4_0 , ionode_id, intra_image_comm ) ! ! IF ( ionode ) THEN ! CALL qexml_read_status_cp( NFI=nfi,SIMTIME=simtime,TITLE=title, & FOUND=found, IERR=ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'cp_readfile', & 'error reading CP status', ierr ) ! IF ( ionode ) THEN ! CALL qexml_closefile( 'read', IERR=ierr) ! ENDIF ! IF ( ionode ) THEN ! filename = TRIM( dirname ) // '/' // TRIM( xmlpun ) ! CALL iotk_open_read( iunpun, FILE = TRIM( filename ), IERR = ierr ) ! END IF ! ! ! ... Read cell and positions ! ALLOCATE( tau_( 3, nat ) ) ALLOCATE( if_pos_( 3, nat ) ) ALLOCATE( ityp_( nat ) ) ! IF ( ionode ) THEN ! CALL read_cell( ibrav_, celldm_, alat_, a1_, a2_, a3_, b1, b2, b3 ) ! CALL recips( a1_, a2_, a3_, b1, b2, b3 ) ! END IF ! IF ( ionode ) THEN ! CALL qexml_read_ions( NSP = nsp_, NAT = nat_, ATM = atm_, ITYP = ityp_, & PSFILE = psfile_,AMASS = amass_, & TAU = tau_, TAU_UNITS = pos_unit, IF_POS = if_pos_, IERR = ierr ) ! ! ! IF ( ierr == 0 ) THEN ! IF( nsp_ /= nsp .OR. nat_ /= nat ) ierr = 2 ! DO i = 1, nat ! IF ( ityp_(i) /= ityp(i) ) ierr = 3 ! END DO ! END IF ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'cp_readfile', & 'cannot read positions from restart file', ierr ) ! ! Read SPIN infos ! lsda_ = ( nspin == 2 ) ! IF( ionode ) THEN ! CALL qexml_read_spin( LSDA = lsda_, IERR = ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'cp_readfile', & 'cannot read spins from restart file', ierr ) ! CALL mp_bcast( lsda_ , ionode_id, intra_image_comm ) ! IF( lsda_ .AND. nspin == 1 ) & CALL errore( 'cp_readfile', 'LSDA restart file with a spinless run', ierr ) ! ! Read Occupations infos ! nstates_up_ = nupdwn( 1 ) nstates_dw_ = nupdwn( 2 ) ! IF( ionode ) THEN ! CALL qexml_read_occ( NSTATES_UP = nstates_up_, NSTATES_DW = nstates_dw_ , IERR = ierr) ! ENDIF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'cp_readfile', & 'cannot read occupations from restart file', ierr ) ! CALL mp_bcast( nstates_up_ , ionode_id, intra_image_comm ) CALL mp_bcast( nstates_dw_ , ionode_id, intra_image_comm ) ! IF( lsda_ ) THEN IF( ( nstates_up_ /= nupdwn( 1 ) ) .OR. ( nstates_dw_ /= nupdwn( 2 ) ) ) & CALL errore( 'cp_readfile', 'inconsistent number of spin states', ierr ) END IF ! ... read MD timesteps variables ! IF ( ionode ) & CALL iotk_scan_begin( iunpun, "TIMESTEPS", attr, FOUND = found ) ! ierr = 0 ! IF ( ionode .AND. found ) THEN ! CALL iotk_scan_attr( attr, "nt", nt_ ) ! IF ( nt_ > 0 ) THEN ! CALL iotk_scan_begin( iunpun, "STEP0" ) ! CALL iotk_scan_dat( iunpun, "ACCUMULATORS", acc ) ! CALL iotk_scan_begin( iunpun,"IONS_POSITIONS" ) CALL iotk_scan_dat( iunpun, "stau", stau0(1:3,1:nat) ) CALL iotk_scan_dat( iunpun, "svel", svel0(1:3,1:nat) ) CALL iotk_scan_dat( iunpun, "taui", taui(1:3,1:nat) ) CALL iotk_scan_dat( iunpun, "cdmi", cdmi(1:3) ) CALL iotk_scan_dat( iunpun, "force", force(1:3,1:nat) ) CALL iotk_scan_end( iunpun, "IONS_POSITIONS" ) ! CALL iotk_scan_begin( iunpun, "IONS_NOSE" ) CALL iotk_scan_dat( iunpun, "nhpcl", nhpcl_ ) CALL iotk_scan_dat( iunpun, "nhpdim", nhpdim_ ) ! IF ( nhpcl_ == nhpcl .AND. nhpdim_ == nhpdim ) THEN ! CALL iotk_scan_dat( iunpun, "xnhp", xnhp0(1:nhpcl*nhpdim) ) CALL iotk_scan_dat( iunpun, "vnhp", vnhp(1:nhpcl*nhpdim) ) ! ELSE ! xnhp0(1:nhpcl*nhpdim) = 0.D0 vnhp(1:nhpcl*nhpdim) = 0.D0 ! END IF ! CALL iotk_scan_end( iunpun, "IONS_NOSE" ) ! CALL iotk_scan_dat( iunpun, "ekincm", ekincm ) ! CALL iotk_scan_begin( iunpun, "ELECTRONS_NOSE" ) CALL iotk_scan_dat( iunpun, "xnhe", xnhe0 ) CALL iotk_scan_dat( iunpun, "vnhe", vnhe ) CALL iotk_scan_end( iunpun, "ELECTRONS_NOSE" ) ! CALL iotk_scan_begin( iunpun, "CELL_PARAMETERS" ) CALL iotk_scan_dat( iunpun, "ht", ht ) CALL iotk_scan_dat( iunpun, "htvel", htvel ) CALL iotk_scan_dat( iunpun, "gvel", gvel ) CALL iotk_scan_end( iunpun, "CELL_PARAMETERS" ) ! CALL iotk_scan_begin( iunpun, "CELL_NOSE" ) CALL iotk_scan_dat( iunpun, "xnhh", xnhh0 ) CALL iotk_scan_dat( iunpun, "vnhh", vnhh ) CALL iotk_scan_end( iunpun, "CELL_NOSE" ) ! CALL iotk_scan_end( iunpun, "STEP0" ) ! ELSE ! ierr = 40 ! GOTO 100 ! END IF ! IF ( nt_ > 1 ) THEN ! CALL iotk_scan_begin( iunpun, "STEPM" ) ! CALL iotk_scan_begin( iunpun, "IONS_POSITIONS" ) CALL iotk_scan_dat( iunpun, "stau", staum(1:3,1:nat) ) CALL iotk_scan_dat( iunpun, "svel", svelm(1:3,1:nat) ) CALL iotk_scan_end( iunpun, "IONS_POSITIONS" ) ! CALL iotk_scan_begin( iunpun, "IONS_NOSE" ) CALL iotk_scan_dat( iunpun, "nhpcl", nhpcl_ ) CALL iotk_scan_dat( iunpun, "nhpdim", nhpdim_ ) ! IF ( nhpcl_ == nhpcl .AND. nhpdim_ == nhpdim ) THEN ! CALL iotk_scan_dat( iunpun, "xnhp", xnhpm(1:nhpcl*nhpdim) ) ! ELSE ! xnhpm(1:nhpcl*nhpdim) = 0.D0 ! END IF ! CALL iotk_scan_end( iunpun,"IONS_NOSE" ) ! CALL iotk_scan_begin( iunpun, "ELECTRONS_NOSE" ) CALL iotk_scan_dat( iunpun, "xnhe", xnhem ) CALL iotk_scan_end( iunpun, "ELECTRONS_NOSE" ) ! CALL iotk_scan_begin( iunpun, "CELL_PARAMETERS" ) CALL iotk_scan_dat( iunpun, "ht", htm ) CALL iotk_scan_end( iunpun, "CELL_PARAMETERS" ) ! CALL iotk_scan_begin( iunpun, "CELL_NOSE" ) CALL iotk_scan_dat( iunpun, "xnhh", xnhhm ) CALL iotk_scan_end( iunpun, "CELL_NOSE" ) ! CALL iotk_scan_end( iunpun, "STEPM" ) ! END IF ! CALL iotk_scan_end( iunpun, "TIMESTEPS" ) ! ELSE IF ( ionode ) THEN ! ! ... MD time steps not found, try to recover from CELL and POSITIONS ! acc = 0.D0 ! ALLOCATE( isrt_( nat ) ) ! SELECT CASE( TRIM( pos_unit ) ) CASE( "alat" ) ! tau_ = tau_ * alat_ ! CASE( "Angstrom" ) ! tau_ = tau_ * angstrom_au ! CASE DEFAULT ! END SELECT ! CALL sort_tau( taui, isrt_ , tau_ , ityp_ , nat_ , nsp_ ) ! ht(1,:) = a1_ ht(2,:) = a2_ ht(3,:) = a3_ ! CALL invmat( 3, ht, htm1, omega ) ! hinv = TRANSPOSE( htm1 ) ! CALL r_to_s( taui, stau0, na, nsp, hinv ) ! CALL ions_cofmass( taui, amass_ , na, nsp, cdmi ) ! staum = stau0 svel0 = 0.D0 svelm = 0.D0 force = 0.D0 ! htm = ht htvel = 0.D0 gvel = 0.D0 xnhh0 = 0.D0 vnhh = 0.D0 xnhhm = 0.D0 ! xnhe0 = 0.D0 xnhem = 0.D0 vnhe = 0.D0 ! ekincm = 0.D0 ! xnhp0 = 0.D0 xnhpm = 0.D0 vnhp = 0.D0 ! DEALLOCATE( isrt_ ) ! END IF ! 100 CONTINUE ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! IF( ierr /= 0 ) THEN CALL mp_bcast( attr, ionode_id, intra_image_comm ) CALL errore( 'cp_readfile ', TRIM( attr ), ierr ) END IF ! DEALLOCATE( tau_ ) DEALLOCATE( if_pos_ ) DEALLOCATE( ityp_ ) ! ! ... compute the scale factor ! IF ( ionode ) CALL invmat( 3, ht, htm1, omega ) ! CALL mp_bcast( omega, ionode_id, intra_image_comm ) ! ! ... Beware: omega may be negative if axis are left-handed! ! scalef = 1.D0 / SQRT( ABS( omega ) ) ! ! ... band Structure ! IF ( ionode ) THEN ! ierr = 0 ! CALL qexml_read_bands_info( NBND = NBND_TOT, NSPIN = nspin_, NELEC = nelec_, & NEL_UP = nel_(1), NEL_DOWN = nel_(2) , IERR = ierr) ENDIF CALL mp_bcast( ierr, ionode_id, intra_image_comm ) CALL errore( 'cp_readfile ', 'error reading bands info', ierr ) IF ( ionode) THEN ! IF ( nspin_ /= nspin ) THEN attr = "spin do not match" ierr = 31 GOTO 90 END IF ! IF ( nspin == 2 ) THEN ! IF ( ( nel(1) /= nel_(1) ) .OR. ( nel(2) /= nel_(2) ) .OR. ( NINT( nelec_ ) /= nelt ) ) THEN attr = "electrons do not match" ierr = 33 GOTO 90 END IF ! ELSE ! IF ( NINT( nelec_ ) /= nelt ) THEN attr = "electrons do not match" ierr = 33 GOTO 90 END IF ! END IF ! nbnd_ = nbnd_tot ! IF ( nbnd_ < nupdwn(1) ) THEN attr = "nbnd do not match" ierr = 32 GOTO 90 END IF ! END IF ! 90 CONTINUE CALL mp_bcast( ierr, ionode_id, intra_image_comm ) IF( ierr /= 0 ) THEN CALL mp_bcast( attr, ionode_id, intra_image_comm ) CALL errore( 'cp_readfile ', TRIM( attr ), ierr ) END IF ! IF( ionode ) THEN ! CALL qexml_read_bands_cp( nk, nbnd_tot, nudx , nspin, iupdwn, & nupdwn, occ0, occm, ierr ) ! END IF ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'cp_readfile', & 'cannot read bands from restart file', ierr ) ! IF ( ionode ) THEN CALL iotk_scan_begin( iunpun, "EIGENVECTORS" ) END IF ! k_points_loop2: DO ik = 1, nk ! IF ( ionode ) THEN CALL iotk_scan_begin( iunpun, "K-POINT" // TRIM( iotk_index(ik) ) ) END IF ! DO iss = 1, nspin ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "WFC0" // TRIM( iotk_index (iss) ), FOUND = found ) ! filename = "WFC0" // TRIM( iotk_index (iss) ) ! IF( .NOT. found ) THEN ! IF( nspin == 2 ) THEN CALL iotk_scan_begin( iunpun, "WFC" // TRIM( iotk_index (iss) ), FOUND = found ) filename = "WFC" // TRIM( iotk_index (iss) ) ELSE CALL iotk_scan_begin( iunpun, "WFC", FOUND = found ) filename = "WFC" END IF ! END IF ! END IF ! CALL mp_bcast( found, ionode_id, intra_image_comm ) ! IF ( iss == 1 ) THEN IF( found ) THEN exist_wfc = .TRUE. END IF ELSE IF( exist_wfc .AND. .NOT. found ) THEN CALL errore( " readfile ", " second spin component of wave functions not found! ", 1 ) END IF END IF ! IF( exist_wfc ) THEN ! IF( .NOT. ( iss > 1 .AND. force_pairing ) ) THEN ! ! Only WF with spin 1 are needed when force_pairing is active ! ib = iupdwn(iss) nb = nupdwn(iss) ! ! filename is not needed we are following the link! ! CALL read_wfc( iunpun, ik_eff , nk, kunit, iss_, nspin_, & c02( :, ib:ib+nb-1 ), ngwt_, nbnd_, ig_l2g, ngw, & filename, scalef_, & ionode, root_bgrp, intra_bgrp_comm, & inter_bgrp_comm, intra_pool_comm, .TRUE. ) ! END IF ! IF ( ionode ) & CALL iotk_scan_end( iunpun, TRIM(filename) ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "WFCM" // TRIM( iotk_index (iss) ), FOUND = found ) ! filename = "WFCM" // TRIM( iotk_index (iss) ) ! END IF ! CALL mp_bcast( found, ionode_id, intra_image_comm ) ! IF( found ) THEN ! IF( .NOT. ( iss > 1 .AND. force_pairing ) ) THEN ! ! Only WF with spin 1 are needed when force_pairing is active ! ib = iupdwn(iss) nb = nupdwn(iss) ! CALL read_wfc( iunpun, ik_eff, nk, kunit, iss_, nspin_, & cm2( :, ib:ib+nb-1 ), ngwt_, nbnd_, ig_l2g, ngw, & filename, scalef_ , & ionode, root_bgrp, intra_bgrp_comm, & inter_bgrp_comm, intra_pool_comm, .TRUE. ) ! END IF ! IF ( ionode ) & CALL iotk_scan_end( iunpun, TRIM( filename ) ) ! ELSE ! cm2 = c02 ! END IF ! END IF ! END DO ! ! here the I/O group send wfc to other groups ! io_bgrp_id = 0 IF( ionode ) io_bgrp_id = my_bgrp_id CALL mp_sum( io_bgrp_id, inter_bgrp_comm ) CALL mp_sum( io_bgrp_id, intra_bgrp_comm ) ! CALL mp_bcast( cm2, io_bgrp_id, inter_bgrp_comm ) CALL mp_bcast( c02, io_bgrp_id, inter_bgrp_comm ) ! DO iss = 1, nspin ! ! ... read matrix lambda to file ! cspin = iotk_index( iss ) ! ALLOCATE( mrepl( nudx, nudx ) ) ! IF( ionode ) THEN CALL iotk_scan_dat( iunpun, "LAMBDA0" // TRIM( cspin ), mrepl, FOUND = found ) IF( .NOT. found ) THEN WRITE( stdout, * ) 'WARNING lambda0 not read from restart file' mrepl = 0.0d0 END IF END IF CALL mp_bcast( mrepl, ionode_id, intra_image_comm ) CALL distribute_lambda( mrepl, lambda0(:,:,iss), descla(iss) ) IF( ionode ) THEN CALL iotk_scan_dat( iunpun, "LAMBDAM" // TRIM( cspin ), mrepl, FOUND = found ) IF( .NOT. found ) THEN WRITE( stdout, * ) 'WARNING lambdam not read from restart file' mrepl = 0.0d0 END IF END IF ! CALL mp_bcast( mrepl, ionode_id, intra_image_comm ) CALL distribute_lambda( mrepl, lambdam(:,:,iss), descla(iss) ) ! IF ( PRESENT( mat_z ) ) THEN ! IF( ionode ) THEN CALL iotk_scan_dat( iunpun, "MAT_Z" // TRIM( iotk_index( iss ) ), mrepl, FOUND = found ) IF( .NOT. found ) THEN WRITE( stdout, * ) 'WARNING mat_z not read from restart file' mrepl = 0.0d0 END IF END IF CALL mp_bcast( mrepl, ionode_id, intra_image_comm ) CALL distribute_zmat( mrepl, mat_z(:,:,iss), descla(iss) ) ! END IF ! DEALLOCATE( mrepl ) ! END DO ! IF ( ionode ) CALL iotk_scan_end( iunpun, "K-POINT" // TRIM( iotk_index(ik) ) ) ! END DO k_points_loop2 ! IF ( ionode ) THEN ! CALL iotk_scan_end( iunpun, "EIGENVECTORS" ) ! END IF ! CALL mp_bcast( qexml_version, ionode_id, intra_image_comm ) CALL mp_bcast( qexml_version_init, ionode_id, intra_image_comm ) ! CALL mp_bcast( nfi, ionode_id, intra_image_comm ) CALL mp_bcast( simtime, ionode_id, intra_image_comm ) CALL mp_bcast( title, ionode_id, intra_image_comm ) CALL mp_bcast( acc, ionode_id, intra_image_comm ) ! CALL mp_bcast( ht, ionode_id, intra_image_comm ) CALL mp_bcast( htm, ionode_id, intra_image_comm ) CALL mp_bcast( htvel, ionode_id, intra_image_comm ) CALL mp_bcast( gvel, ionode_id, intra_image_comm ) CALL mp_bcast( xnhh0, ionode_id, intra_image_comm ) CALL mp_bcast( xnhhm, ionode_id, intra_image_comm ) CALL mp_bcast( vnhh, ionode_id, intra_image_comm ) CALL mp_bcast( b1, ionode_id, intra_image_comm ) CALL mp_bcast( b2, ionode_id, intra_image_comm ) CALL mp_bcast( b3, ionode_id, intra_image_comm ) ! CALL mp_bcast( stau0, ionode_id, intra_image_comm ) CALL mp_bcast( svel0, ionode_id, intra_image_comm ) CALL mp_bcast( staum, ionode_id, intra_image_comm ) CALL mp_bcast( svelm, ionode_id, intra_image_comm ) CALL mp_bcast( taui, ionode_id, intra_image_comm ) CALL mp_bcast( force, ionode_id, intra_image_comm ) CALL mp_bcast( cdmi, ionode_id, intra_image_comm ) CALL mp_bcast( xnhp0, ionode_id, intra_image_comm ) CALL mp_bcast( xnhpm, ionode_id, intra_image_comm ) CALL mp_bcast( vnhp, ionode_id, intra_image_comm ) ! CALL mp_bcast( xnhe0, ionode_id, intra_image_comm ) CALL mp_bcast( xnhem, ionode_id, intra_image_comm ) CALL mp_bcast( vnhe, ionode_id, intra_image_comm ) ! CALL mp_bcast( kunit, ionode_id, intra_image_comm ) CALL mp_bcast( occ0, ionode_id, intra_image_comm ) CALL mp_bcast( occm, ionode_id, intra_image_comm ) ! IF ( PRESENT( mat_z ) ) & CALL mp_bcast( mat_z(:,:,:), ionode_id, intra_image_comm ) ! IF ( ionode ) & CALL iotk_close_read( iunpun ) ! IF( .NOT. exist_wfc ) THEN ! tmp_dir_save = tmp_dir tmp_dir = TRIM( qexml_restart_dirname( tmp_dir, prefix, ndr ) ) // '/' tmp_dir = TRIM( qexml_kpoint_dirname( tmp_dir, 1 ) ) // '/' ! iunwfc = 10 nwordwfc = SIZE( c02 ) ! CALL diropn ( iunwfc, 'wfc', 2*nwordwfc, exst ) IF ( exst ) THEN CALL davcio ( c02, 2*nwordwfc, iunwfc, 1, -1 ) ! read wave funct CALL davcio ( cm2, 2*nwordwfc, iunwfc, 2, -1 ) ! read wave funct CLOSE( UNIT = iunwfc, STATUS = 'KEEP' ) ELSE CLOSE( UNIT = iunwfc, STATUS = 'DELETE' ) CALL errore( ' readfile ' , ' no wave function found! ' , 1 ) END IF tmp_dir = tmp_dir_save ! END IF ! s1 = cclock() ! IF ( ionode ) THEN ! WRITE( stdout, & '(3X,"restart file read in ",F8.3," sec.",/)' ) ( s1 - s0 ) ! END IF ! if ( nprint_nfi == -2 ) then CALL read_print_counter( nprint_nfi, tmp_dir, ndr ) IF( iverbosity > 1 ) write( stdout,*) 'nprint_nfi= ',nprint_nfi endif ! RETURN ! END SUBROUTINE cp_readfile ! !------------------------------------------------------------------------ SUBROUTINE cp_read_wfc( ndr, tmp_dir, ik, nk, iss, nspin, c2, tag ) !------------------------------------------------------------------------ ! USE electrons_base, ONLY : iupdwn, nupdwn USE gvecw, ONLY : ngw USE io_global, ONLY : ionode USE mp_global, ONLY : root_bgrp, intra_bgrp_comm, inter_bgrp_comm, intra_pool_comm, my_bgrp_id USE mp, ONLY : mp_bcast, mp_sum USE gvect, ONLY : ig_l2g ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: ndr CHARACTER(LEN=*), INTENT(IN) :: tmp_dir INTEGER, INTENT(IN) :: ik, iss, nk, nspin CHARACTER, INTENT(IN) :: tag COMPLEX(DP), OPTIONAL, INTENT(OUT) :: c2(:,:) ! CHARACTER(LEN=256) :: dirname, filename INTEGER :: ik_eff, ib, nb, kunit, iss_, nspin_, ngwt_, nbnd_ INTEGER :: io_bgrp_id REAL(DP) :: scalef ! kunit = 1 ! ik_eff = ik + ( iss - 1 ) * nk ! dirname = qexml_restart_dirname( tmp_dir, prefix, ndr ) ! IF ( tag /= 'm' ) THEN ! IF ( nspin == 1 ) THEN ! filename = TRIM( qexml_wfc_filename( dirname, 'evc0', ik ) ) ! ELSE ! filename = TRIM( qexml_wfc_filename( dirname, 'evc0', ik, iss ) ) ! END IF ! ELSE ! IF ( nspin == 1 ) THEN ! filename = TRIM( qexml_wfc_filename( dirname, 'evcm', ik ) ) ! ELSE ! filename = TRIM( qexml_wfc_filename( dirname, 'evcm', ik, iss ) ) ! END IF ! END IF ! ib = iupdwn(iss) nb = nupdwn(iss) ! CALL read_wfc( iunout, ik_eff, nk, kunit, iss_, nspin_, & c2(:,ib:ib+nb-1), ngwt_, nbnd_, ig_l2g, ngw, & filename, scalef, & ionode, root_bgrp, intra_bgrp_comm, & inter_bgrp_comm, intra_pool_comm ) ! ! here the I/O group send wfc to other groups ! io_bgrp_id = 0 IF( ionode ) io_bgrp_id = my_bgrp_id CALL mp_sum( io_bgrp_id, inter_bgrp_comm ) CALL mp_sum( io_bgrp_id, intra_bgrp_comm ) CALL mp_bcast( c2, io_bgrp_id, inter_bgrp_comm ) ! RETURN ! END SUBROUTINE cp_read_wfc ! !============================================================================== !Modified from cp_read_wfc to read valence states for nscf calculations !Lingzhu Kong !------------------------------------------------------------------------ SUBROUTINE cp_read_wfc_Kong( ndr, tmp_dir, ik, nk, iss, nspin, c2, tag ) !------------------------------------------------------------------------ ! USE kinds, ONLY : DP USE gvecw, ONLY : ngw USE gvect, ONLY : ig_l2g USE wannier_base, ONLY : vnbsp USE mp_global, ONLY : intra_bgrp_comm, inter_bgrp_comm, & root_bgrp, intra_pool_comm IMPLICIT NONE ! INTEGER, INTENT(IN) :: ndr CHARACTER(LEN=*), INTENT(IN) :: tmp_dir INTEGER, INTENT(IN) :: ik, iss, nk, nspin CHARACTER, INTENT(IN) :: tag COMPLEX(DP), OPTIONAL, INTENT(OUT) :: c2(:,:) ! CHARACTER(LEN=256) :: dirname, filename INTEGER :: ik_eff, ib, nb, kunit, iss_, nspin_, ngwt_, nbnd_ REAL(DP) :: scalef ! kunit = 1 ! ik_eff = ik + ( iss - 1 ) * nk ! dirname = qexml_restart_dirname( tmp_dir, prefix, ndr ) ! IF ( tag /= 'm' ) THEN ! IF ( nspin == 1 ) THEN ! filename = TRIM( qexml_wfc_filename( dirname, 'evc0', ik ) ) ! ELSE ! filename = TRIM( qexml_wfc_filename( dirname, 'evc0', ik, iss ) ) ! END IF ! ELSE ! IF ( nspin == 1 ) THEN ! filename = TRIM( qexml_wfc_filename( dirname, 'evcm', ik ) ) ! ELSE ! filename = TRIM( qexml_wfc_filename( dirname, 'evcm', ik, iss ) ) ! END IF ! END IF ! ib = 1 nb = vnbsp ! print *,'before read_wfc me' CALL read_wfc( iunout, ik_eff, nk, kunit, iss_, nspin_, & c2(:,ib:ib+nb-1), ngwt_, nbnd_, ig_l2g, ngw, & filename, scalef, & ionode, root_bgrp, intra_bgrp_comm, & inter_bgrp_comm, intra_pool_comm ) ! RETURN ! END SUBROUTINE cp_read_wfc_Kong ! !------------------------------------------------------------------------ SUBROUTINE cp_read_cell( ndr, tmp_dir, ascii, ht, & htm, htvel, gvel, xnhh0, xnhhm, vnhh ) !------------------------------------------------------------------------ ! USE io_files, ONLY : iunpun, xmlpun USE mp_global, ONLY : intra_image_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: ndr CHARACTER(LEN=*), INTENT(IN) :: tmp_dir LOGICAL, INTENT(IN) :: ascii REAL(DP), INTENT(INOUT) :: ht(3,3) REAL(DP), INTENT(INOUT) :: htm(3,3) REAL(DP), INTENT(INOUT) :: htvel(3,3) REAL(DP), INTENT(INOUT) :: gvel(3,3) REAL(DP), INTENT(INOUT) :: xnhh0(3,3) REAL(DP), INTENT(INOUT) :: xnhhm(3,3) REAL(DP), INTENT(INOUT) :: vnhh(3,3) ! CHARACTER(LEN=256) :: dirname, filename INTEGER :: strlen INTEGER :: i, ierr, nt_ LOGICAL :: found ! ! ... variables read for testing pourposes ! INTEGER :: ibrav_ REAL(DP) :: alat_ REAL(DP) :: celldm_(6) REAL(DP) :: a1_(3), a2_(3), a3_(3) REAL(DP) :: b1_(3), b2_(3), b3_(3) CHARACTER(iotk_attlenx) :: attr ! ! dirname = qexml_restart_dirname( tmp_dir, prefix, ndr ) ! filename = TRIM( dirname ) // '/' // TRIM( xmlpun ) ! IF ( ionode ) & CALL iotk_open_read( iunpun, FILE = TRIM( filename ), & BINARY = .FALSE., ROOT = attr, IERR = ierr ) ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) ! CALL errore( 'cp_read_cell', & 'cannot open restart file for reading: ' // TRIM(filename), & ierr ) ! IF ( ionode ) THEN ! CALL iotk_scan_begin( iunpun, "TIMESTEPS", attr, FOUND = found ) ! IF ( found ) THEN ! CALL iotk_scan_attr( attr, "nt", nt_ ) ! IF ( nt_ > 0 ) THEN ! CALL iotk_scan_begin( iunpun, "STEP0" ) ! CALL iotk_scan_begin( iunpun, "CELL_PARAMETERS" ) CALL iotk_scan_dat( iunpun, "ht", ht ) CALL iotk_scan_dat( iunpun, "htvel", htvel ) CALL iotk_scan_dat( iunpun, "gvel", gvel, & FOUND = found, IERR = ierr ) ! IF ( .NOT. found ) gvel = 0.D0 ! CALL iotk_scan_end( iunpun, "CELL_PARAMETERS" ) ! CALL iotk_scan_begin( iunpun, "CELL_NOSE" ) CALL iotk_scan_dat( iunpun, "xnhh", xnhh0 ) CALL iotk_scan_dat( iunpun, "vnhh", vnhh ) CALL iotk_scan_end( iunpun, "CELL_NOSE" ) ! CALL iotk_scan_end( iunpun, "STEP0" ) ! ELSE ! ierr = 40 ! GOTO 100 ! END IF ! IF( nt_ > 1 ) THEN ! CALL iotk_scan_begin(iunpun,"STEPM") ! CALL iotk_scan_begin( iunpun, "CELL_PARAMETERS" ) CALL iotk_scan_dat( iunpun, "ht", htm) CALL iotk_scan_end( iunpun, "CELL_PARAMETERS" ) ! CALL iotk_scan_begin( iunpun, "CELL_NOSE" ) CALL iotk_scan_dat( iunpun, "xnhh", xnhhm ) CALL iotk_scan_end( iunpun, "CELL_NOSE" ) ! CALL iotk_scan_end( iunpun, "STEPM" ) ! END IF ! CALL iotk_scan_end( iunpun, "TIMESTEPS" ) ! ELSE ! ! ... MD steps have not been found, try to restart from cell data ! CALL read_cell( ibrav_, celldm_, alat_, a1_,a2_,a3_, b1_, b2_, b3_ ) ! ht(1,:) = a1_ ht(2,:) = a2_ ht(3,:) = a3_ ! htm = ht htvel = 0.D0 gvel = 0.D0 xnhh0 = 0.D0 vnhh = 0.D0 xnhhm = 0.D0 ! END IF ! END IF ! 100 CONTINUE ! CALL mp_bcast( ierr, ionode_id, intra_image_comm ) CALL mp_bcast( attr, ionode_id, intra_image_comm ) ! CALL errore( 'cp_read_cell ', attr, ierr ) ! CALL mp_bcast( ht, ionode_id, intra_image_comm ) CALL mp_bcast( htm, ionode_id, intra_image_comm ) CALL mp_bcast( htvel, ionode_id, intra_image_comm ) CALL mp_bcast( gvel, ionode_id, intra_image_comm ) CALL mp_bcast( xnhh0, ionode_id, intra_image_comm ) CALL mp_bcast( xnhhm, ionode_id, intra_image_comm ) CALL mp_bcast( vnhh, ionode_id, intra_image_comm ) ! IF ( ionode ) CALL iotk_close_read( iunpun ) ! RETURN ! END SUBROUTINE cp_read_cell ! !------------------------------------------------------------------------ !------------------------------------------------------------------------ !SUBROUTINE read_ions( nsp, nat, atm, ityp, psfile, & ! amass, tau, if_pos, pos_unit, ierr ) !------------------------------------------------------------------------ ! ! INTEGER, INTENT(OUT) :: nsp, nat ! CHARACTER(LEN=3), INTENT(OUT) :: atm(:) ! INTEGER, INTENT(OUT) :: ityp(:) ! CHARACTER(LEN=256), INTENT(OUT) :: psfile(:) ! REAL(DP), INTENT(OUT) :: amass(:) ! REAL(DP), INTENT(OUT) :: tau(:,:) ! INTEGER, INTENT(OUT) :: if_pos(:,:) ! INTEGER, INTENT(OUT) :: ierr ! CHARACTER(LEN=*), INTENT(OUT) :: pos_unit ! ! ! LOGICAL :: found, back_compat ! INTEGER :: i ! CHARACTER(LEN=3) :: lab ! CHARACTER(iotk_attlenx) :: attr ! ! ! ierr = 0 ! ! ! CALL iotk_scan_begin( iunpun, "IONS", FOUND = found ) ! ! ! IF ( .NOT. found ) THEN ! ! ! ierr = 1 ! ! ! RETURN ! ! ! END IF ! ! ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_ATOMS", nat ) ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_SPECIES", nsp ) ! ! ! IF ( nsp > SIZE( atm ) .OR. nat > SIZE( ityp ) ) THEN ! ! ! ierr = 10 ! ! ! CALL iotk_scan_end( iunpun, "IONS" ) ! ! ! RETURN ! ! ! END IF ! ! ! ! ! DO i = 1, nsp ! ! ! IF ( qexml_version_before_1_4_0 ) THEN ! ! ! CALL iotk_scan_dat( iunpun, "ATOM_TYPE", atm(i) ) ! CALL iotk_scan_dat( iunpun, TRIM( atm(i) )//"_MASS", amass(i) ) ! CALL iotk_scan_dat( iunpun, "PSEUDO_FOR_" // TRIM( atm(i) ), psfile(i) ) ! ! ! ELSE ! ! ! ! current format ! ! ! CALL iotk_scan_begin( iunpun, "SPECIE"//TRIM(iotk_index(i)) ) ! ! ! CALL iotk_scan_dat( iunpun, "ATOM_TYPE", atm(i) ) ! CALL iotk_scan_dat( iunpun, "MASS", amass(i) ) ! CALL iotk_scan_dat( iunpun, "PSEUDO", psfile(i) ) ! ! ! CALL iotk_scan_end( iunpun, "SPECIE"//TRIM(iotk_index(i)) ) ! ! ! ENDIF ! ! ! ENDDO ! ! ! CALL iotk_scan_empty( iunpun, "UNITS_FOR_ATOMIC_POSITIONS", attr ) ! CALL iotk_scan_attr( attr, "UNITS", pos_unit ) ! ! ! DO i = 1, nat ! ! ! CALL iotk_scan_empty( iunpun, "ATOM" // TRIM( iotk_index( i ) ), attr ) ! CALL iotk_scan_attr( attr, "SPECIES", lab ) ! CALL iotk_scan_attr( attr, "INDEX", ityp(i) ) ! CALL iotk_scan_attr( attr, "tau", tau(:,i) ) ! CALL iotk_scan_attr( attr, "if_pos", if_pos(:,i) ) ! ! ! END DO ! ! ! CALL iotk_scan_end( iunpun, "IONS" ) ! ! ! RETURN ! ! !END SUBROUTINE read_ions ! !------------------------------------------------------------------------ !SUBROUTINE read_ions( nsp, nat, atm, ityp, psfile, & ! amass, tau, if_pos, pos_unit, ierr ) !------------------------------------------------------------------------ ! ! INTEGER, INTENT(OUT) :: nsp, nat ! CHARACTER(LEN=3), INTENT(OUT) :: atm(:) ! INTEGER, INTENT(OUT) :: ityp(:) ! CHARACTER(LEN=256), INTENT(OUT) :: psfile(:) ! REAL(DP), INTENT(OUT) :: amass(:) ! REAL(DP), INTENT(OUT) :: tau(:,:) ! INTEGER, INTENT(OUT) :: if_pos(:,:) ! INTEGER, INTENT(OUT) :: ierr ! CHARACTER(LEN=*), INTENT(OUT) :: pos_unit ! ! ! LOGICAL :: found, back_compat ! INTEGER :: i ! CHARACTER(LEN=3) :: lab ! CHARACTER(iotk_attlenx) :: attr ! ! ! ierr = 0 ! ! ! CALL iotk_scan_begin( iunpun, "IONS", FOUND = found ) ! ! ! IF ( .NOT. found ) THEN ! ! ! ierr = 1 ! ! ! RETURN ! ! ! END IF ! ! ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_ATOMS", nat ) ! CALL iotk_scan_dat( iunpun, "NUMBER_OF_SPECIES", nsp ) ! ! ! IF ( nsp > SIZE( atm ) .OR. nat > SIZE( ityp ) ) THEN ! ! ! ierr = 10 ! ! ! CALL iotk_scan_end( iunpun, "IONS" ) ! ! ! RETURN ! ! ! END IF ! ! ! ! ! DO i = 1, nsp ! ! ! IF ( qexml_version_before_1_4_0 ) THEN ! ! ! CALL iotk_scan_dat( iunpun, "ATOM_TYPE", atm(i) ) ! CALL iotk_scan_dat( iunpun, TRIM( atm(i) )//"_MASS", amass(i) ) ! CALL iotk_scan_dat( iunpun, "PSEUDO_FOR_" // TRIM( atm(i) ), psfile(i) ) ! ! ! ELSE ! ! ! ! current format ! ! ! CALL iotk_scan_begin( iunpun, "SPECIE"//TRIM(iotk_index(i)) ) ! ! ! CALL iotk_scan_dat( iunpun, "ATOM_TYPE", atm(i) ) ! CALL iotk_scan_dat( iunpun, "MASS", amass(i) ) ! CALL iotk_scan_dat( iunpun, "PSEUDO", psfile(i) ) ! ! ! CALL iotk_scan_end( iunpun, "SPECIE"//TRIM(iotk_index(i)) ) ! ! ! ENDIF ! ! ! ENDDO ! ! ! CALL iotk_scan_empty( iunpun, "UNITS_FOR_ATOMIC_POSITIONS", attr ) ! CALL iotk_scan_attr( attr, "UNITS", pos_unit ) ! ! ! DO i = 1, nat ! ! ! CALL iotk_scan_empty( iunpun, "ATOM" // TRIM( iotk_index( i ) ), attr ) ! CALL iotk_scan_attr( attr, "SPECIES", lab ) ! CALL iotk_scan_attr( attr, "INDEX", ityp(i) ) ! CALL iotk_scan_attr( attr, "tau", tau(:,i) ) ! CALL iotk_scan_attr( attr, "if_pos", if_pos(:,i) ) ! ! ! END DO ! ! ! CALL iotk_scan_end( iunpun, "IONS" ) ! ! ! RETURN ! ! !END SUBROUTINE read_ions ! !---------------------------------------------------------------------------- SUBROUTINE read_cell( ibrav, celldm, alat, a1, a2, a3, b1, b2, b3 ) !------------------------------------------------------------------------ ! INTEGER, INTENT(OUT) :: ibrav REAL(DP), INTENT(OUT) :: celldm(6), alat REAL(DP), INTENT(OUT) :: a1(3), a2(3), a3(3) REAL(DP), INTENT(OUT) :: b1(3), b2(3), b3(3) ! CHARACTER(LEN=256) :: bravais_lattice ! ! CALL iotk_scan_begin( iunpun, "CELL" ) ! CALL iotk_scan_dat( iunpun, "BRAVAIS_LATTICE", bravais_lattice ) ! SELECT CASE ( TRIM( bravais_lattice ) ) CASE( "free" ) ibrav = 0 CASE( "cubic P (sc)" ) ibrav = 1 CASE( "cubic F (fcc)" ) ibrav = 2 CASE( "cubic I (bcc)" ) ibrav = 3 CASE( "Hexagonal and Trigonal P" ) ibrav = 4 CASE( "Trigonal R" ) ibrav = 5 CASE( "Tetragonal P (st)" ) ibrav = 6 CASE( "Tetragonal I (bct)" ) ibrav = 7 CASE( "Orthorhombic P" ) ibrav = 8 CASE( "Orthorhombic base-centered(bco)" ) ibrav = 9 CASE( "Orthorhombic face-centered" ) ibrav = 10 CASE( "Orthorhombic body-centered" ) ibrav = 11 CASE( "Monoclinic P" ) ibrav = 12 CASE( "Monoclinic base-centered" ) ibrav = 13 CASE( "Triclinic P" ) ibrav = 14 END SELECT ! CALL iotk_scan_dat( iunpun, "LATTICE_PARAMETER", alat ) CALL iotk_scan_dat( iunpun, "CELL_DIMENSIONS", celldm(1:6) ) ! CALL iotk_scan_begin( iunpun, "DIRECT_LATTICE_VECTORS" ) CALL iotk_scan_dat( iunpun, "a1", a1 ) CALL iotk_scan_dat( iunpun, "a2", a2 ) CALL iotk_scan_dat( iunpun, "a3", a3 ) CALL iotk_scan_end( iunpun, "DIRECT_LATTICE_VECTORS" ) ! CALL iotk_scan_begin( iunpun, "RECIPROCAL_LATTICE_VECTORS" ) CALL iotk_scan_dat( iunpun, "b1", b1 ) CALL iotk_scan_dat( iunpun, "b2", b2 ) CALL iotk_scan_dat( iunpun, "b3", b3 ) CALL iotk_scan_end( iunpun, "RECIPROCAL_LATTICE_VECTORS" ) ! CALL iotk_scan_end( iunpun, "CELL" ) ! RETURN ! END SUBROUTINE ! ! !---------------------------------------------------------------------------- SUBROUTINE write_gk( iun, ik, filename ) !---------------------------------------------------------------------------- ! USE gvecw, ONLY : ngw, ngw_g USE gvect, ONLY : ngm, ngm_g USE control_flags, ONLY : gamma_only USE gvect, ONLY : ig_l2g, mill USE mp, ONLY : mp_sum USE mp_global, ONLY : intra_bgrp_comm USE io_global, ONLY : ionode ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: iun, ik CHARACTER(LEN=256), INTENT(IN) :: filename ! INTEGER, ALLOCATABLE :: igwk(:) INTEGER, ALLOCATABLE :: itmp1(:) INTEGER, ALLOCATABLE :: mill_g(:,:) INTEGER :: npwx_g, npw_g, ig, ngg REAL(DP) :: xk(3) CHARACTER(iotk_attlenx) :: attr ! ... Collect G vectors ! ALLOCATE( mill_g( 3, ngm_g ) ) ! mill_g = 0 ! mill_g(:,ig_l2g(1:ngm)) = mill(:,1:ngm) ! CALL mp_sum( mill_g, intra_bgrp_comm ) ! xk = 0.0d0 npwx_g = ngw_g npw_g = ngw_g ALLOCATE( igwk( npwx_g ) ) ! igwk = 0 ! ALLOCATE( itmp1( npw_g ) ) ! itmp1 = 0 ! ! DO ig = 1, ngw ! itmp1( ig_l2g( ig ) ) = ig_l2g( ig ) ! END DO ! CALL mp_sum( itmp1, intra_bgrp_comm ) ! ngg = 0 ! DO ig = 1, npw_g ! IF ( itmp1(ig) == ig ) THEN ! ngg = ngg + 1 ! igwk( ngg ) = ig ! END IF ! END DO DEALLOCATE( itmp1 ) ! IF ( ionode ) THEN ! CALL iotk_open_write( iun, FILE = TRIM( filename ), & ROOT="GK-VECTORS", BINARY = .TRUE. ) ! CALL iotk_write_dat( iun, "NUMBER_OF_GK-VECTORS", npw_g ) CALL iotk_write_dat( iun, "MAX_NUMBER_OF_GK-VECTORS", npwx_g ) CALL iotk_write_dat( iun, "GAMMA_ONLY", gamma_only ) ! CALL iotk_write_attr ( attr, "UNITS", "2 pi / a", FIRST = .TRUE. ) CALL iotk_write_dat( iun, "K-POINT_COORDS", xk(:), ATTR = attr ) ! CALL iotk_write_dat( iun, "INDEX", igwk( 1:npw_g ) ) CALL iotk_write_dat( iun, "GRID", mill_g(1:3, igwk(1:npw_g)), COLUMNS = 3 ) ! CALL iotk_close_write( iun ) ! END IF ! DEALLOCATE( igwk ) DEALLOCATE( mill_g ) RETURN END SUBROUTINE write_gk ! ! END MODULE cp_restart espresso-5.1/CPV/src/wf.f900000644000175000017500000026727012341373026013474 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! #define ZERO ( 0.D0, 0.D0 ) #define ONE ( 1.D0, 0.D0 ) #define CI ( 0.D0, 1.D0 ) ! ! ... written by Manu Sharma ( 2001-2005 ) ! !---------------------------------------------------------------------------- SUBROUTINE wf( clwf, c, bec, eigr, eigrb, taub, irb, & b1, b2, b3, Uall, what1, wfc, jw, ibrav ) !---------------------------------------------------------------------------- ! ! ... this routine calculates overlap matrices ! ! ... routine makes use of c(-g)=c*(g) and beta(-g)=beta*(g) ! USE kinds, ONLY : DP USE constants, ONLY : pi, tpi USE ions_base, ONLY : nsp, na, nax, nat USE uspp_param, ONLY : nvb, ish USE cell_base, ONLY : omega, at, alat, h, ainv USE electrons_base, ONLY : nbspx, nbsp, nupdwn, iupdwn, nspin USE smallbox_gvec, ONLY : npb, nmb, ngb USE gvecw, ONLY : ngw USE gvect, ONLY : gstart USE control_flags, ONLY : iverbosity USE qgb_mod, ONLY : qgb USE wannier_base, ONLY : wfg, nw, weight, indexplus, indexplusz, & indexminus, indexminusz, tag, tagp, & expo, wfsd USE uspp_param, ONLY : nh, nhm USE uspp, ONLY : nkb USE io_global, ONLY : ionode, stdout USE mp, ONLY : mp_barrier, mp_sum USE mp_wave, ONLY : redistwf USE mp_global, ONLY : nproc_bgrp, me_bgrp, root_bgrp, intra_bgrp_comm USE fft_interfaces, ONLY : invfft USE fft_base, ONLY : dfftp, dfftb USE printout_base, ONLY : printout_base_open, printout_base_unit, & printout_base_close USE parallel_include ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: irb(3,nat), jw, ibrav, clwf REAL(DP), INTENT(INOUT) :: bec(nkb,nbsp) REAL(DP), INTENT(IN) :: b1(3), b2(3), b3(3), taub(3,nax) COMPLEX(DP), INTENT(INOUT) :: c(ngw,nbspx) COMPLEX(DP), INTENT(IN) :: eigr(ngw,nat), eigrb(ngb,nat) REAL(DP), INTENT(INOUT) :: Uall(nbsp,nbsp) LOGICAL, INTENT(IN) :: what1 REAL(DP), INTENT(OUT) :: wfc(3,nbsp) ! REAL(DP), ALLOCATABLE :: becwf(:,:), temp3(:,:) COMPLEX(DP), ALLOCATABLE :: cwf(:,:), bec2(:), bec3(:), bec2up(:) COMPLEX(DP), ALLOCATABLE :: bec2dw(:), bec3up(:), bec3dw(:) COMPLEX(DP), ALLOCATABLE :: c_m(:,:), c_p(:,:), c_psp(:,:) COMPLEX(DP), ALLOCATABLE :: c_msp(:,:) INTEGER, ALLOCATABLE :: tagz(:) REAL(DP), ALLOCATABLE :: Uspin(:,:) COMPLEX(DP), ALLOCATABLE :: X(:,:), Xsp(:,:), X2(:,:), X3(:,:) COMPLEX(DP), ALLOCATABLE :: O(:,:,:), Ospin(:,:,:), Oa(:,:,:) COMPLEX(DP), ALLOCATABLE :: qv(:) REAL(DP), ALLOCATABLE :: gr(:,:), mt(:), mt0(:), wr(:), W(:,:), EW(:,:) INTEGER, ALLOCATABLE :: f3(:), f4(:) COMPLEX(DP), ALLOCATABLE :: U2(:,:) ! INTEGER :: inl, jnl, iss, isa, is, ia, ijv, i, j, k, l, ig, & ierr, ti, tj, tk, iv, jv, inw, iqv, ibig1, ibig2, & ibig3, ir1, ir2, ir3, ir, m, & ib, jb, total, nstat, jj, ngpww, irb3 REAL(DP) :: t1, t2, t3, taup(3) REAL(DP) :: wrsq, wrsqmin COMPLEX(DP) :: qvt REAL (DP) :: temp_vec(3) INTEGER :: adjust,ini, ierr1,nnn, me INTEGER :: igx, igy, igz REAL(DP) :: wfcx, wfcy, wfcz REAL(DP) :: te(6) INTEGER :: iunit COMPLEX(DP), EXTERNAL :: boxdotgridcplx ! #if defined (__MPI) ! INTEGER :: proc, ntot, ncol, mc, ngpwpp(nproc_bgrp) INTEGER :: ncol1,nz1, nz_1 INTEGER :: nmin(3), nmax(3), n1,n2,nzx,nz,nz_ INTEGER :: nmin1(3), nmax1(3) ! COMPLEX(DP), ALLOCATABLE :: psitot(:,:), psitot_pl(:,:) COMPLEX(DP), ALLOCATABLE :: psitot_mi(:,:) INTEGER, ALLOCATABLE :: ns(:) ! #endif ! CALL start_clock('wf_1') ! me = me_bgrp + 1 ! ALLOCATE( becwf(nkb,nbsp), temp3(nkb,nbsp), U2(nbsp,nbsp) ) ALLOCATE( cwf(ngw,nbspx), bec2(nbsp), bec3(nbsp), bec2up(nupdwn(1)) ) ALLOCATE( bec3up( nupdwn(1) ) ) IF( nspin == 2 ) THEN ALLOCATE( bec2dw( nupdwn(2) ), bec3dw( nupdwn(2) ) ) ENDIF ! te = 0.D0 ! ALLOCATE( tagz( nw )) ! tagz(:) = 1 tagz(3) = 0 ! ! ... set up matrix O ! ALLOCATE( O( nw, nbsp, nbsp ), X( nbsp, nbsp ), Oa( nw, nbsp, nbsp ) ) ! IF ( nspin == 2 .AND. nvb > 0 ) THEN ! ALLOCATE( X2( nupdwn(1), nupdwn(1) ) ) ALLOCATE( X3( nupdwn(2), nupdwn(2) ) ) ! END IF ! #if defined (__MPI) ! ! Compute the number of states to each processor ! ALLOCATE( ns( nproc_bgrp ) ) ns = nbsp / nproc_bgrp DO j = 1, nbsp IF( (j-1) < MOD( nbsp, nproc_bgrp ) ) ns( j ) = ns( j ) + 1 END DO IF( iverbosity > 2) THEN DO j=1,nproc_bgrp WRITE( stdout, * ) ns(j) END DO END IF ! nstat = ns( me ) total = 0 DO proc=1,nproc_bgrp ngpwpp(proc)=(dfftp%nwl(proc)+1)/2 total=total+ngpwpp(proc) IF( iverbosity > 2) THEN WRITE( stdout, * ) "I am proceessor", proc, "and i have ",ns(me)," states." END IF END DO ! ALLOCATE(psitot(total,nstat)) ALLOCATE(psitot_pl(total,nstat)) ALLOCATE(psitot_mi(total,nstat)) ALLOCATE(c_p(ngw,nbspx)) ALLOCATE(c_m(ngw,nbspx)) IF( iverbosity > 2) THEN WRITE( stdout, * ) "All allocations done" END IF ! ! ... Step 1. Communicate to all Procs so that each proc has all ! ... G-vectors and some states instead of all states and some ! ... G-vectors. This information is stored in the 1-d array ! ... psitot1. ! ! Step 2. Convert the 1-d array psitot1 into a 2-d array consistent with the ! original notation c(ngw,nbsp). Psitot contains ntot = SUM_Procs(ngw) G-vecs ! and nstat states instead of all nbsp states ! ! CALL redistwf( c, psitot, ngpwpp, ns, intra_bgrp_comm, 1 ) ! #endif IF( clwf .EQ. 5 ) THEN ! CALL write_psi( c, jw ) ! END IF ! ! #if defined (__MPI) ! ! Step 3. do the translation of the 2-d array to get the transtalted ! arrays psitot_pl and psittot_mi, corresponding to G+G' and -G+G' ! DO inw=1,nw ! ! Intermediate Check. If the translation is only along the z-direction ! no interprocessor communication and data rearrangement is required ! because each processor contains all the G- components in the z-dir. ! IF(tagz(inw).EQ.0) THEN DO i=1,nbsp DO ig=1,ngw IF(indexplusz(ig).EQ.-1) THEN c_p(ig,i)=(0.D0,0.D0) ELSE c_p(ig,i)=c(indexplusz(ig),i) END IF IF(indexminusz(ig).EQ.-1) THEN c_m(ig,i)=(0.D0,0.D0) ELSE c_m(ig,i)=CONJG(c(indexminusz(ig),i)) END IF END DO END DO ELSE DO i=1,ns(me) DO ig=1,total IF(indexplus(ig,inw).EQ.-1) THEN psitot_pl(ig,i)=(0.D0,0.D0) ELSE IF(tagp(ig,inw).EQ.1) THEN psitot_pl(ig,i)=CONJG(psitot(indexplus(ig,inw),i)) ELSE psitot_pl(ig,i)=psitot(indexplus(ig,inw),i) END IF END IF IF(indexminus(ig,inw).EQ.-1) THEN psitot_mi(ig,i)=(0.D0,0.D0) ELSE IF(tag(ig,inw).EQ.1) THEN psitot_mi(ig,i)=CONJG(psitot(indexminus(ig,inw),i)) ELSE psitot_mi(ig,i)=psitot(indexminus(ig,inw),i) END IF END IF END DO END DO IF( iverbosity > 2) THEN WRITE( stdout, * ) "Step 3. do the translation of the 2-d array...Done, wf" END IF ! ! Step 4. Convert the 2-d arrays psitot_p and psitot_m into 1-d ! arrays ! ! Step 5. Redistribute among processors. The result is stored in 2-d ! arrays c_p and c_m consistent with the notation c(ngw,nbsp), such that ! c_p(j,i) contains the coeffiCIent for c(j,i) corresponding to G+G' ! and c_m(j,i) contains the coeffiCIent for c(j,i) corresponding to -G+G' ! c_p = 0.D0 CALL redistwf( c_p, psitot_pl, ngpwpp, ns, intra_bgrp_comm, -1 ) ! c_m = 0.D0 CALL redistwf( c_m, psitot_mi, ngpwpp, ns, intra_bgrp_comm, -1 ) ! END IF ! #else ! ALLOCATE(c_p(ngw,nbspx)) ALLOCATE(c_m(ngw,nbspx)) DO inw=1,nw IF(tagz(inw).EQ.0) THEN DO i=1,nbsp DO ig=1,ngw IF(indexplusz(ig).EQ.-1) THEN c_p(ig,i)=(0.D0,0.D0) ELSE c_p(ig,i)=c(indexplusz(ig),i) END IF IF(indexminusz(ig).EQ.-1) THEN c_m(ig,i)=(0.D0,0.D0) ELSE c_m(ig,i)=CONJG(c(indexminusz(ig),i)) END IF END DO END DO ELSE DO i=1,nbsp DO ig=1,ngw IF(indexplus(ig,inw).EQ.-1) THEN c_p(ig,i)=(0.D0,0.D0) ELSE IF(tagp(ig,inw).EQ.1) THEN c_p(ig,i)=CONJG(c(indexplus(ig,inw),i)) ELSE c_p(ig,i)=c(indexplus(ig,inw),i) END IF END IF IF(indexminus(ig,inw).EQ.-1) THEN c_m(ig,i)=(0.D0,0.D0) ELSE IF(tag(ig,inw).EQ.1) THEN c_m(ig,i)=CONJG(c(indexminus(ig,inw),i)) ELSE c_m(ig,i)=c(indexminus(ig,inw),i) END IF END IF END DO END DO END IF ! #endif ! ! ... Step 6. Calculate Overlaps ! ! ... Augmentation Part first ! ALLOCATE( qv( dfftb%nnr ) ) ! X = ZERO ! isa = 1 DO is = 1, nvb DO ia =1, na(is) DO iv = 1, nh(is) inl = ish(is) + (iv-1)*na(is) + ia jv = iv ijv=(jv-1)*jv/2 + iv qv( 1 : dfftb%nnr ) = 0.D0 DO ig=1,ngb qv(npb(ig))=eigrb(ig,isa)*qgb(ig,ijv,is) qv(nmb(ig))=CONJG(eigrb(ig,isa)*qgb(ig,ijv,is)) END DO #ifdef __MPI irb3=irb(3,isa) #endif CALL invfft('Box',qv,dfftb,isa) iqv=1 qvt=(0.D0,0.D0) qvt=boxdotgridcplx(irb(1,isa),qv,expo(1,inw)) #ifdef __MPI CALL mp_sum( qvt, intra_bgrp_comm ) #endif ! IF (nspin.EQ.1) THEN bec2(1:nbsp)=(0.D0,0.D0) bec2(1:nbsp)=bec(inl,1:nbsp)*ONE CALL ZSYRK('U','T',nbsp,1,qvt,bec2,1,ONE,X,nbsp) ELSE X2=(0.D0,0.D0) X3=(0.D0,0.D0) bec2up(1:nupdwn(1))=(0.D0,0.D0) bec2up(1:nupdwn(1))=bec(inl,1:nupdwn(1)) CALL ZSYRK('U','T',nupdwn(1),1,qvt,bec2up,1,ONE,X2,nupdwn(1)) bec2dw(1:nupdwn(2))=(0.D0,0.D0) bec2dw(1:nupdwn(2))=bec(inl,iupdwn(2):nbsp) CALL ZSYRK('U','T',nupdwn(2),1,qvt,bec2dw,1,ONE,X3,nupdwn(2)) DO i = 1, nupdwn(1) DO j=i, nupdwn(1) X(i,j)=X(i,j)+X2(i,j) END DO END DO DO i = 1,nupdwn(2) DO j=i,nupdwn(2) X(i+nupdwn(1),j+nupdwn(1)) =X(i+nupdwn(1),j+nupdwn(1)) + X3(i,j) END DO END DO END IF DO jv = iv+1, nh(is) jnl = ish(is) + (jv-1)*na(is) + ia ijv = (jv-1)*jv/2 + iv qv( 1:dfftb%nnr ) = 0.D0 DO ig=1,ngb qv(npb(ig))=eigrb(ig,isa)*qgb(ig,ijv,is) qv(nmb(ig))=CONJG(eigrb(ig,isa)*qgb(ig,ijv,is)) END DO CALL invfft('Box',qv,dfftb,isa) iqv=1 qvt=0.D0 qvt=boxdotgridcplx(irb(1,isa),qv,expo(1,inw)) #ifdef __MPI CALL mp_sum( qvt, intra_bgrp_comm ) #endif ! IF (nspin.EQ.1) THEN bec2(1:nbsp)=(0.D0,0.D0) bec3(1:nbsp)=(0.D0,0.D0) bec2(1:nbsp)=bec(inl,1:nbsp)*ONE bec3(1:nbsp)=bec(jnl,1:nbsp)*ONE CALL ZSYR2K('U','T',nbsp,1,qvt,bec2,1,bec3,1,ONE,X,nbsp) ELSE X2=(0.D0,0.D0) X3=(0.D0,0.D0) bec2up(1:nupdwn(1))=(0.D0,0.D0) bec3up(1:nupdwn(1))=(0.D0,0.D0) bec2up(1:nupdwn(1))=bec(inl,1:nupdwn(1))*ONE bec3up(1:nupdwn(1))=bec(jnl,1:nupdwn(1))*ONE CALL ZSYR2K('U','T',nupdwn(1),1,qvt,bec2up,1,bec3up,1,ONE,X2,nupdwn(1)) bec2dw(1:nupdwn(2))=(0.D0,0.D0) bec3dw(1:nupdwn(2))=(0.D0,0.D0) bec2dw(1:nupdwn(2))=bec(inl,iupdwn(2):nbsp)*ONE bec3dw(1:nupdwn(2))=bec(jnl,iupdwn(2):nbsp)*ONE CALL ZSYR2K('U','T',nupdwn(2),1,qvt,bec2dw,1,bec3dw,1,ONE,X3,nupdwn(2)) DO i = 1, nupdwn(1) DO j=i, nupdwn(1) X(i,j)=X(i,j)+X2(i,j) END DO END DO DO i = 1,nupdwn(2) DO j=i,nupdwn(2) X(i+nupdwn(1),j+nupdwn(1)) =X(i+nupdwn(1),j+nupdwn(1)) + X3(i,j) END DO END DO END IF END DO END DO isa = isa + 1 END DO END DO t1=omega/DBLE(dfftp%nr1*dfftp%nr2*dfftp%nr3) X=X*t1 DO i=1, nbsp DO j=i+1, nbsp X(j, i)=X(i, j) END DO END DO Oa(inw, :, :)=X(:, :) IF( iverbosity > 2) THEN WRITE( stdout, * ) "Augmentation Part Done" END IF DEALLOCATE( qv ) ! Then Soft Part IF( nspin == 1 ) THEN ! Spin Unpolarized calculation X=0.D0 IF( gstart == 2 ) THEN c_m(1,:)=0.D0 END IF ! cwf(:,:)=ZERO ! cwf(:,:)=c(:,:) CALL zgemm('C','N',nbsp,nbsp,ngw,ONE,c,ngw,c_p,ngw,ONE,X,nbsp) CALL zgemm('T','N',nbsp,nbsp,ngw,ONE,c,ngw,c_m,ngw,ONE,X,nbsp) CALL mp_sum ( X, intra_bgrp_comm ) O(inw,:,:)=Oa(inw,:,:)+X(:,:) IF( iverbosity > 2) THEN WRITE( stdout, * ) "Soft Part Done" END IF ELSE ! Spin Polarized case ! Up Spin First ALLOCATE(Xsp(nbsp,nupdwn(1))) ALLOCATE(c_psp(ngw,nupdwn(1))) ALLOCATE(c_msp(ngw,nupdwn(1))) Xsp=0.D0 c_psp=0.D0 c_msp=0.D0 DO i=1,nupdwn(1) c_psp(:,i)=c_p(:,i) c_msp(:,i)=c_m(:,i) END DO IF(gstart.EQ.2) THEN c_msp(1,:)=0.D0 END IF ! cwf(:,:)=ZERO ! cwf(:,:)=c(:,:,1,1) CALL zgemm('C','N',nbsp,nupdwn(1),ngw,ONE,c,ngw,c_psp,ngw,ONE,Xsp,nbsp) CALL zgemm('T','N',nbsp,nupdwn(1),ngw,ONE,c,ngw,c_msp,ngw,ONE,Xsp,nbsp) #ifdef __MPI CALL mp_sum ( Xsp, intra_bgrp_comm ) #endif DO i=1,nupdwn(1) DO j=1,nbsp X(j,i)=Xsp(j,i) END DO END DO DEALLOCATE(Xsp,c_psp,c_msp) ! Then Down Spin ALLOCATE(Xsp(nbsp,iupdwn(2):nbsp)) ALLOCATE(c_psp(ngw,iupdwn(2):nbsp)) ALLOCATE(c_msp(ngw,iupdwn(2):nbsp)) Xsp=0.D0 c_psp=0.D0 c_msp=0.D0 DO i=iupdwn(2),nbsp c_psp(:,i)=c_p(:,i) c_msp(:,i)=c_m(:,i) END DO IF(gstart.EQ.2) THEN c_msp(1,:)=0.D0 END IF ! cwf(:,:)=ZERO ! cwf(:,:)=c(:,:,1,1) CALL zgemm('C','N',nbsp,nupdwn(2),ngw,ONE,c,ngw,c_psp,ngw,ONE,Xsp,nbsp) CALL zgemm('T','N',nbsp,nupdwn(2),ngw,ONE,c,ngw,c_msp,ngw,ONE,Xsp,nbsp) #ifdef __MPI CALL mp_sum ( Xsp, intra_bgrp_comm ) #endif DO i=iupdwn(2),nbsp DO j=1,nbsp X(j,i)=Xsp(j,i) END DO END DO DEALLOCATE(Xsp,c_psp,c_msp) O(inw,:,:)=Oa(inw,:,:)+X(:,:) END IF END DO #ifdef __MPI DEALLOCATE(ns) #endif CALL stop_clock('wf_1') DEALLOCATE( X ) IF ( ALLOCATED( X2 ) ) DEALLOCATE( X2 ) IF ( ALLOCATED( X3 ) ) DEALLOCATE( X3 ) ! CALL start_clock('wf_2') IF(clwf.EQ.2) THEN ! output the overlap matrix to fort.38 IF(me.EQ.1) THEN REWIND 38 WRITE(38, '(i5, 2i2, i3, f9.5)') nbsp, nw, nspin, ibrav, alat IF (nspin.EQ.2) THEN WRITE(38, '(i5)') nupdwn(1) END IF WRITE(38, *) at(:,1)*alat WRITE(38, *) at(:,2)*alat WRITE(38, *) at(:,3)*alat WRITE(38, *) b1 WRITE(38, *) b2 WRITE(38, *) b3 DO inw=1, nw WRITE(38, *) wfg(inw, :), weight(inw) END DO DO inw=1, nw DO i=1, nbsp DO j=1, nbsp WRITE(38, *) O(inw, i, j) END DO END DO END DO DO i=1, nbsp DO j=1, nbsp WRITE(38, *) Uall(i, j) END DO END DO CLOSE(38) END IF CALL stop_run( .TRUE. ) END IF IF(clwf.EQ.3.OR.clwf.EQ.4) THEN IF(nspin.EQ.1) THEN IF(.NOT.what1) THEN IF(wfsd==1) THEN CALL ddyn_u(nbsp,O,Uall) ! Lingzhu Kong ELSE IF(wfsd==2) THEN CALL wfsteep(nbsp,O,Uall,b1,b2,b3) ELSE IF(wfsd==3) THEN CALL jacobi_rotation(nbsp,O,Uall,b1,b2,b3) END IF END IF IF( iverbosity > 2) THEN WRITE( stdout, * ) "Out from DDYN" END IF ELSE ALLOCATE(Uspin(nupdwn(1), nupdwn(1)), Ospin(nw, nupdwn(1), nupdwn(1))) DO i=1, nupdwn(1) DO j=1, nupdwn(1) Uspin(i, j)=Uall(i, j) Ospin(:, i, j)=O(:, i, j) END DO END DO IF(.NOT.what1) THEN IF(wfsd==1) THEN CALL ddyn_u(nupdwn(1), Ospin, Uspin) ! Lingzhu Kong ELSE IF (wfsd==2) THEN CALL wfsteep(nupdwn(1), Ospin, Uspin,b1,b2,b3) ELSE CALL jacobi_rotation(nupdwn(1), Ospin, Uspin,b1,b2,b3) END IF END IF DO i=1, nupdwn(1) DO j=1, nupdwn(1) Uall(i, j)=Uspin(i, j) O(:,i,j) =Ospin(:,i,j) END DO END DO DEALLOCATE(Uspin, Ospin) ALLOCATE(Uspin(nupdwn(2), nupdwn(2)), Ospin(nw, nupdwn(2), nupdwn(2))) DO i=1, nupdwn(2) DO j=1, nupdwn(2) Uspin(i, j)=Uall(i+nupdwn(1), j+nupdwn(1)) Ospin(:, i, j)=O(:, i+nupdwn(1), j+nupdwn(1)) END DO END DO IF(.NOT.what1) THEN IF(wfsd==1) THEN CALL ddyn_u(nupdwn(2), Ospin, Uspin) ! Lingzhu Kong ELSE IF (wfsd==2) THEN CALL wfsteep(nupdwn(2), Ospin, Uspin,b1,b2,b3) ELSE CALL jacobi_rotation(nupdwn(2), Ospin, Uspin,b1,b2,b3) END IF END IF DO i=1, nupdwn(2) DO j=1, nupdwn(2) Uall(i+nupdwn(1), j+nupdwn(1))=Uspin(i, j) O(:,i+nupdwn(1),j+nupdwn(1))=Ospin(:,i,j) END DO END DO DEALLOCATE(Uspin, Ospin) END IF END IF ! Update C and bec cwf=ZERO ! cwf(:,:)=c(:,:,1,1) becwf=0.0d0 U2=Uall*ONE CALL zgemm('N','N',ngw,nbsp,nbsp,ONE,c,ngw,U2,nbsp,ZERO,cwf,ngw) ! call zgemm('nbsp','nbsp',ngw,nbsp,nbsp,ONE,cwf,ngw,U2,nbsp,ZERO,cwf,ngw) CALL dgemm('N','N',nkb,nbsp,nbsp,ONE,bec,nkb,Uall,nbsp,ZERO,becwf,nkb) U2=ZERO IF( iverbosity > 2) THEN WRITE( stdout, * ) "Updating Wafefunctions and Bec" END IF c(:,:)=cwf(:,:) bec(:,:)=becwf(:,:) IF( iverbosity > 2) THEN WRITE( stdout, * ) "Wafefunctions and Bec Updated" END IF ! ! calculate wannier-function centers ! ALLOCATE( wr(nw), W(nw,nw), gr(nw,3), EW(nw,nw), f3(nw), f4(nw), mt0(nw), mt(nw) ) ! DO inw=1, nw gr(inw, :)=wfg(inw,1)*b1(:)+wfg(inw,2)*b2(:)+wfg(inw,3)*b3(:) END DO ! ! set up a matrix with the element (i,j) is G_iG_jweight(j) ! to check the correctness of choices on G vectors ! DO i=1, nw DO j=1, nw W(i,j)=DOT_PRODUCT(gr(i,:),gr(j,:))*weight(j) END DO END DO ! EW = W DO i=1,nw EW(i,i) = EW(i,i)-1.D0 END DO ! ! ... balance the phase factor if necessary ! ! adjust mt : very inefficient routine added by Young-Su -> must be improved DO i=1, nbsp mt0(:) = -AIMAG(LOG(O(:,i,i)))/tpi wr = MATMUL(EW,mt0) wrsq = SUM(wr(:)**2) IF ( wrsq .lt. 1.D-6 ) THEN mt = mt0 ELSE wrsqmin = 100.D0 COMB: DO k=3**nw-1,0,-1 tk=k DO j=nw,1,-1 f3(j)=tk/3**(j-1) tk=tk-f3(j)*3**(j-1) END DO mt(:)=mt0(:)+f3(:)-1 wr = MATMUL(EW,mt) wrsq = SUM(wr(:)**2) IF ( wrsq .lt. wrsqmin ) THEN wrsqmin = wrsq f4(:)=f3(:)-1 END IF END DO COMB mt = mt0 + f4 END IF ! wfc(1, i) = SUM(mt*weight(:)*gr(:,1))*alat wfc(2, i) = SUM(mt*weight(:)*gr(:,2))*alat wfc(3, i) = SUM(mt*weight(:)*gr(:,3))*alat ! END DO ! IF ( ionode ) THEN ! iunit = printout_base_unit( "wfc" ) CALL printout_base_open( "wfc" ) IF ( .NOT. what1 ) THEN ! ! ... pbc are imposed here in the range [0,1] ! DO i = 1, nbsp ! temp_vec(:) = MATMUL( ainv(:,:), wfc(:,i) ) ! temp_vec(:) = temp_vec(:) - floor (temp_vec(:)) ! temp_vec(:) = MATMUL( h(:,:), temp_vec(:) ) ! WRITE( iunit, '(3f20.14)' ) temp_vec(:) ! END DO ! END IF CALL printout_base_close( "wfc" ) ! END IF ! ! ! DEALLOCATE( wr, W, gr, EW, f3, f4, mt0, mt ) ! #if defined (__MPI) ! DEALLOCATE( psitot ) DEALLOCATE( psitot_pl ) DEALLOCATE( psitot_mi ) ! #endif ! DEALLOCATE( c_p, c_m ) ! DEALLOCATE( O ) DEALLOCATE( Oa ) DEALLOCATE( tagz ) DEALLOCATE( becwf, temp3, U2 ) DEALLOCATE( cwf, bec2, bec3, bec2up, bec3up ) IF( ALLOCATED( bec2dw ) ) DEALLOCATE( bec2dw ) IF( ALLOCATED( bec3dw ) ) DEALLOCATE( bec3dw ) CALL stop_clock('wf_2') ! RETURN ! END SUBROUTINE wf ! !---------------------------------------------------------------------------- SUBROUTINE ddyn( m, Omat, Umat, b1, b2, b3 ) !---------------------------------------------------------------------------- ! ... This part of the subroutine wf has been added by Manu. It performes ! ... Damped Dynamics on the A matrix to get the Unitary transformation to ! ... obtain the wannier function at time(t+delta). It also updates the ! ... quantities bec ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE wannier_base, ONLY : wf_friction, nsteps, tolw, adapt, wf_q, & weight, nw, wfdt USE cell_base, ONLY : alat USE constants, ONLY : tpi, bohr_radius_angs USE electrons_base, ONLY : nbsp USE control_flags, ONLY : iverbosity USE mp_global, ONLY : me_bgrp USE printout_base, ONLY : printout_base_open, printout_base_unit, & printout_base_close USE parallel_include ! IMPLICIT NONE ! INTEGER :: f3(nw), f4(nw), i,j,inw INTEGER ,INTENT(in) :: m REAL(DP), INTENT(in) :: b1(3),b2(3),b3(3) REAL(DP), INTENT(inout) :: Umat(m,m) COMPLEX(DP), INTENT(inout) :: Omat(nw,m,m) COMPLEX(DP) :: U2(m,m),U3(m,m) INTEGER :: adjust,ini, ierr1,nnn REAL(DP), ALLOCATABLE, DIMENSION(:) :: wr REAL(DP), ALLOCATABLE, DIMENSION(:,:) :: W REAL(DP) :: t0, fric,U(m,m), t2 REAL(DP) :: A(m,m),oldt0,Wm(m,m),U1(m,m) REAL(DP) :: Aminus(m,m), Aplus(m,m),f2(4*m) REAL(DP) :: temp(m,m) COMPLEX(DP) :: d(m,m) COMPLEX(DP) :: f1(2*m-1), wp(m*(m+1)/2),z(m,m) COMPLEX(DP), ALLOCATABLE, DIMENSION(:, :) :: X1 COMPLEX(DP), ALLOCATABLE, DIMENSION(:, :, :) :: Oc REAL(DP) , ALLOCATABLE , DIMENSION(:) :: mt REAL(DP) :: spread, sp REAL(DP) :: wfc(3,nbsp), gr(nw,3) INTEGER :: me, iunit ! me = me_bgrp + 1 ! ALLOCATE(mt(nw)) ALLOCATE(X1(m,m)) ALLOCATE(Oc(nw,m,m)) fric=wf_friction ALLOCATE (W(m,m),wr(m)) Umat=0.D0 DO i=1,m Umat(i,i)=1.D0 END DO U2=Umat*ONE ! ! update Oc using the initial guess of Uspin ! DO inw=1, nw X1(:, :)=Omat(inw, :, :) U3=ZERO CALL zgemm ('T', 'N', m,m,m,ONE,U2,m,X1,m,ZERO,U3,m) X1=ZERO CALL zgemm ('N','N', m,m,m,ONE,U3,m,U2,m,ZERO,X1,m) Oc(inw, :, :)=X1(:, :) END DO U2=ZERO U3=ZERO oldt0=0.D0 A=0.D0 Aminus=A temp=Aminus ! START ITERATIONS HERE DO ini=1, nsteps t0=0.D0 !use t0 to store the value of omega DO inw=1, nw DO i=1, m t0=t0+DBLE(CONJG(Oc(inw, i, i))*Oc(inw, i, i)) END DO END DO IF(ABS(t0-oldt0).LT.tolw) THEN IF(me.EQ.1) THEN WRITE(*,*) "MLWF Generated at Step",ini ! Lingzhu Kong END IF IF( iverbosity > 2) THEN WRITE( stdout, * ) "MLWF Generated at Step",ini END IF GO TO 241 END IF IF(adapt) THEN IF(oldt0.LT.t0) THEN fric=fric/2.d0 A=Aminus Aminus=temp END IF END IF ! calculate d(omega)/dA and store result in W ! this is the force for the damped dynamics ! W=0.D0 DO inw=1, nw t2=weight(inw) DO i=1,m DO j=1,m W(i,j)=W(i,j)+t2*DBLE(Oc(inw,i,j)*CONJG(Oc(inw,i,i) & -Oc(inw,j,j))+CONJG(Oc(inw,j,i))*(Oc(inw,i,i)-Oc(inw,j,j))) END DO END DO END DO ! the verlet scheme to calculate A(t+wfdt) Aplus=0.D0 DO i=1,m DO j=i+1,m Aplus(i,j)=Aplus(i,j)+(2*wfdt/(2*wfdt+fric))*(2*A(i,j) & -Aminus(i,j)+(wfdt*wfdt/wf_q)*W(i,j)) + (fric/(2*wfdt+fric))*Aminus(i,j) ENDDO ENDDO Aplus=Aplus-TRANSPOSE(Aplus) Aplus=(Aplus-A) DO i=1, m DO j=i,m wp(i + (j-1)*j/2) = CMPLX(0.d0, Aplus(i,j),kind=DP) END DO END DO #if ! defined __ESSL CALL zhpev('V','U',m,wp,wr,z,m,f1,f2,ierr1) #else CALL zhpev(21, wp, wr, z, m, m, f2, 4*m) ierr1 = 0 #endif IF (ierr1.NE.0) THEN WRITE( stdout, * ) "failed to diagonalize W!" STOP END IF d=0.D0 DO i=1, m d(i, i)=EXP(CI*wr(i)*wfdt) END DO !d=exp(d) ! U=z*exp(d)*z+ ! U3=ZERO CALL zgemm ('N', 'N', m,m,m,ONE,z,m,d,m,ZERO,U3,m) U2=ZERO CALL zgemm ('N','C', m,m,m,ONE,U3,m,z,m,ZERO,U2,m) U=DBLE(U2) U2=ZERO U3=ZERO temp=Aminus Aminus=A A=Aplus ! update Umat ! U1=ZERO CALL dgemm ('N', 'N', m,m,m,ONE,Umat,m,U,m,ZERO,U1,m) Umat=U1 ! update Oc ! U2=Umat*ONE U3=ZERO DO inw=1, nw X1(:, :)=Omat(inw, :, :) CALL zgemm ('T', 'N', m,m,m,ONE,U2,m,X1,m,ZERO,U3,m) X1=ZERO CALL zgemm ('N','N',m,m,m,ONE,U3,m,U2,m,ZERO,X1,m) Oc(inw, :, :)=X1(:, :) END DO U2=ZERO U3=ZERO IF(ABS(t0-oldt0).GE.tolw.AND.ini.GE.nsteps) THEN IF(me.EQ.1) THEN WRITE(*,*) "MLWF Not generated after",ini,"Steps." ! Lingzhu Kong END IF IF( iverbosity > 2) THEN WRITE( stdout, * ) "MLWF Not generated after",ini,"Steps." END IF GO TO 241 END IF oldt0=t0 END DO 241 DEALLOCATE(wr, W) spread=0.0d0 ! IF(me.EQ.1) THEN ! Lingzhu Kong iunit = printout_base_unit( "spr" ) CALL printout_base_open( "spr" ) ! END IF ! Lingzhu Kong DO i=1, m ! mt=1.D0-DBLE(Oc(:,i,i)*CONJG(Oc(:,i,i))) sp = (alat*bohr_radius_angs/tpi)**2*SUM(mt*weight) ! IF(me.EQ.1) THEN WRITE(iunit, '(f10.7)') sp END IF IF ( sp < 0.D0 ) & CALL errore( 'cp-wf', 'Something wrong WF Spread negative', 1 ) ! spread=spread+sp ! END DO IF(me.EQ.1) THEN CALL printout_base_close( "spr" ) END IF spread=spread/m IF(me.EQ.1) THEN WRITE(24, '(f10.7)') spread WRITE(27,*) "Average spread = ", spread END IF Omat=Oc IF( iverbosity > 2) THEN WRITE( stdout, * ) "Average spread = ", spread END IF ! DEALLOCATE (mt,X1,Oc) ! IF( iverbosity > 2) THEN WRITE( stdout, * ) "Leaving DDYN" END IF RETURN END SUBROUTINE ddyn ! !---------------------------------------------------------------------------- SUBROUTINE wfunc_init( clwf, b1, b2, b3, ibrav ) !---------------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE kinds, ONLY : DP USE gvect, ONLY : g, mill, gstart USE gvecw, ONLY : ngw USE electrons_base, ONLY : nbsp USE wannier_base, ONLY : gnx, gnn, indexplus, indexminus, & indexplusz, indexminusz, tag, tagp, & wfg, weight, nw USE uspp_param, ONLY : nvb USE mp, ONLY : mp_barrier, mp_bcast, mp_gather, mp_set_displs USE mp_global, ONLY : nproc_bgrp, me_bgrp, intra_bgrp_comm, root_bgrp USE fft_base, ONLY : dfftp USE parallel_include ! IMPLICIT NONE ! REAL(DP), INTENT(in) :: b1(3),b2(3),b3(3) INTEGER, INTENT(in) :: clwf, ibrav #ifdef __MPI INTEGER :: ntot, proc, ierr, i,j,inw,ngppp(nproc_bgrp) INTEGER :: ii,ig,displs(nproc_bgrp) #else INTEGER :: ierr, i,j,inw, ntot INTEGER :: ii,ig #endif REAL (DP), ALLOCATABLE:: bigg(:,:) INTEGER, ALLOCATABLE :: bign(:,:) INTEGER :: igcount,nw1,jj,nw2, in, kk INTEGER, ALLOCATABLE :: i_1(:), j_1(:), k_1(:) INTEGER :: ti, tj, tk REAL(DP) ::t1, vt, err1, err2, err3 INTEGER :: ti1,tj1,tk1 INTEGER :: me ! me = me_bgrp + 1 ! IF ( nbsp < nproc_bgrp ) & CALL errore( 'cp-wf', & & 'Number of Processors is greater than the number of states', 1 ) ! ALLOCATE(gnx(3,ngw)) ALLOCATE(gnn(3,ngw)) vt=1.0d-4 j=0 DO i=1,ngw gnx(1,i)=g(1,i) gnx(2,i)=g(2,i) gnx(3,i)=g(3,i) gnn(1,i)=mill(1,i) gnn(2,i)=mill(2,i) gnn(3,i)=mill(3,i) END DO #ifdef __MPI ntot=0 DO i=1,nproc_bgrp ngppp(i)=(dfftp%nwl(i)+1)/2 END DO CALL mp_set_displs( ngppp, displs, ntot, nproc_bgrp ) IF(me.EQ.1) THEN ALLOCATE(bigg(3,ntot)) ALLOCATE(bign(3,ntot)) ELSE ! NOTE: collected array should be allocated anyway ! with the right first dimensions, otherwise mp_gather will fail ALLOCATE(bigg(3,1)) ALLOCATE(bign(3,1)) END IF #else ntot=ngw ALLOCATE(bigg(3,ntot)) ALLOCATE(bign(3,ntot)) bigg(1:3,1:ntot)=gnx(1:3,1:ntot) bign(1:3,1:ntot)=gnn(1:3,1:ntot) #endif ! CALL setwfg( ibrav, b1, b2, b3 ) ! nw1 = nw WRITE( stdout, * ) "WANNIER SETUP : check G vectors and weights" DO i=1,nw1 WRITE( stdout,'("inw = ",I1,":",3I4,F11.6)') i,wfg(i,:), weight(i) END DO WRITE( stdout, * ) "Translations to be done", nw1 ALLOCATE(indexplus(ntot,nw1)) ALLOCATE(indexminus(ntot,nw1)) ALLOCATE(tag(ntot,nw1)) ALLOCATE(tagp(ntot,nw1)) ALLOCATE(indexplusz(ngw)) ALLOCATE(indexminusz(ngw)) ALLOCATE(i_1(nw1)) ALLOCATE(j_1(nw1)) ALLOCATE(k_1(nw1)) indexplus=0 indexminus=0 tag=0 tagp=0 indexplusz=0 indexminusz=0 i_1(:)=wfg(:,1) j_1(:)=wfg(:,2) k_1(:)=wfg(:,3) WRITE( stdout, * ) "ibrav selected:", ibrav ! IF(nvb.GT.0) CALL small_box_wf(i_1, j_1, k_1, nw1) #ifdef __MPI ! CALL mp_barrier( intra_bgrp_comm ) ! CALL mp_gather( gnx, bigg, ngppp, displs, root_bgrp, intra_bgrp_comm ) ! CALL mp_barrier( intra_bgrp_comm ) ! CALL mp_gather( gnn, bign, ngppp, displs, root_bgrp, intra_bgrp_comm ) ! #endif IF(me.EQ.1) THEN IF(clwf.EQ.5) THEN #ifdef __MPI DO ii=1,ntot WRITE(21,*) bigg(:,ii) END DO #else DO ii=1,ngw WRITE(21,*) g(1,ii), g(2,ii), g(3,ii) END DO #endif CLOSE(21) END IF END IF DO inw=1,nw1 IF(i_1(inw).EQ.0.AND.j_1(inw).EQ.0) THEN DO ig=1,ngw IF(gstart.EQ.2) THEN indexminusz(1)=-1 END IF ti=(gnn(1,ig)+i_1(inw)) tj=(gnn(2,ig)+j_1(inw)) tk=(gnn(3,ig)+k_1(inw)) DO ii=1,ngw err1=ABS(gnx(1,ii)-ti) err2=ABS(gnx(2,ii)-tj) err3=ABS(gnx(3,ii)-tk) IF(gnn(1,ii).EQ.ti.AND.gnn(2,ii).EQ.tj.AND.gnn(3,ii).EQ.tk) THEN indexplusz(ig)=ii GO TO 224 ELSE END IF END DO indexplusz(ig)=-1 224 ti=(-gnn(1,ig)+i_1(inw)) tj=(-gnn(2,ig)+j_1(inw)) tk=(-gnn(3,ig)+k_1(inw)) ti1=-gnn(1,ig)+i_1(inw) tj1=-gnn(2,ig)+j_1(inw) tk1=-gnn(3,ig)+k_1(inw) IF(ti1.LT.0.OR.(ti1.EQ.0.AND.(tj1.LT.0.OR.(tj1.EQ.0.AND.tk1.LT.0)))) THEN DO ii=1,ngw err1=ABS(gnx(1,ii)+ti) err2=ABS(gnx(2,ii)+tj) err3=ABS(gnx(3,ii)+tk) IF(gnn(1,ii).EQ.-ti.AND.gnn(2,ii).EQ.-tj.AND.gnn(3,ii).EQ.-tk) THEN indexminusz(ig)=ii GO TO 223 ELSE END IF END DO indexminusz(ig)=-1 ELSE DO ii=1,ngw err1=ABS(gnx(1,ii)-ti) err2=ABS(gnx(2,ii)-tj) err3=ABS(gnx(3,ii)-tk) IF(gnn(1,ii).EQ.ti.AND.gnn(2,ii).EQ.tj.AND.gnn(3,ii).EQ.tk) THEN indexminusz(ig)=ii GO TO 223 ELSE END IF END DO indexminusz(ig)=-1 END IF 223 CONTINUE END DO WRITE( stdout, * ) "Translation", inw, "for", ngw, "G vectors" ELSE #ifdef __MPI IF(me.EQ.1) THEN #endif DO ig=1,ntot IF(gstart.EQ.2) THEN indexminus(1,inw)=-1 END IF ti=(bign(1,ig)+i_1(inw)) tj=(bign(2,ig)+j_1(inw)) tk=(bign(3,ig)+k_1(inw)) ti1=bign(1,ig)+i_1(inw) tj1=bign(2,ig)+j_1(inw) tk1=bign(3,ig)+k_1(inw) IF(ti1.LT.0.OR.(ti1.EQ.0.AND.(tj1.LT.0.OR.(tj1.EQ.0.AND.tk1.LT.0)))) THEN DO ii=1,ntot err1=ABS(bigg(1,ii)+ti) err2=ABS(bigg(2,ii)+tj) err3=ABS(bigg(3,ii)+tk) ! if(err1.lt.vt.and.err2.lt.vt.and.err3.lt.vt) then IF(bign(1,ii).EQ.-ti.AND.bign(2,ii).EQ.-tj.AND.bign(3,ii).EQ.-tk) THEN indexplus(ig,inw)=ii tagp(ig,inw)=1 ! write (6,*) "Found +", ig,ii,inw ! write (6,*) "looking for", -ti,-tj,-tk GO TO 214 ELSE END IF END DO indexplus(ig,inw)=-1 tagp(ig,inw)=1 ELSE DO ii=1,ntot err1=ABS(bigg(1,ii)-ti) err2=ABS(bigg(2,ii)-tj) err3=ABS(bigg(3,ii)-tk) IF(bign(1,ii).EQ.ti.AND.bign(2,ii).EQ.tj.AND.bign(3,ii).EQ.tk) THEN indexplus(ig,inw)=ii tagp(ig,inw)=-1 GO TO 214 ELSE END IF END DO indexplus(ig,inw)=-1 tagp(ig,inw)=-1 END IF 214 ti=(-bign(1,ig)+i_1(inw)) tj=(-bign(2,ig)+j_1(inw)) tk=(-bign(3,ig)+k_1(inw)) ti1=-bign(1,ig)+i_1(inw) tj1=-bign(2,ig)+j_1(inw) tk1=-bign(3,ig)+k_1(inw) IF(ti1.LT.0.OR.(ti1.EQ.0.AND.(tj1.LT.0.OR.(tj1.EQ.0.AND.tk1.LT.0)))) THEN DO ii=1,ntot err1=ABS(bigg(1,ii)+ti) err2=ABS(bigg(2,ii)+tj) err3=ABS(bigg(3,ii)+tk) IF(bign(1,ii).EQ.-ti.AND.bign(2,ii).EQ.-tj.AND.bign(3,ii).EQ.-tk) THEN indexminus(ig,inw)=ii tag(ig,inw)=1 GO TO 213 ELSE END IF END DO indexminus(ig,inw)=-1 tag(ig,inw)=1 ELSE DO ii=1,ntot err1=ABS(bigg(1,ii)-ti) err2=ABS(bigg(2,ii)-tj) err3=ABS(bigg(3,ii)-tk) IF(bign(1,ii).EQ.ti.AND.bign(2,ii).EQ.tj.AND.bign(3,ii).EQ.tk) THEN indexminus(ig,inw)=ii tag(ig,inw)=-1 GO TO 213 ELSE END IF END DO indexminus(ig,inw)=-1 tag(ig,inw)=-1 END IF 213 CONTINUE END DO WRITE( stdout, * ) "Translation", inw, "for", ntot, "G vectors" #ifdef __MPI END IF #endif END IF END DO #ifdef __MPI CALL mp_barrier( intra_bgrp_comm ) ! CALL mp_bcast( indexplus, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( indexminus, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( tag, root_bgrp, intra_bgrp_comm ) CALL mp_bcast( tagp, root_bgrp, intra_bgrp_comm ) #endif DEALLOCATE(bigg) DEALLOCATE(bign) #ifdef __MPI #endif DEALLOCATE(i_1,j_1,k_1) RETURN END SUBROUTINE wfunc_init ! !---------------------------------------------------------------------------- SUBROUTINE grid_map() !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE efcalc, ONLY : xdist, ydist, zdist USE fft_base, ONLY : dffts USE mp_global, ONLY : me_bgrp USE parallel_include ! IMPLICIT NONE ! INTEGER :: ir1, ir2, ir3, ibig3, me, nr1s, nr2s, nr3s, nr1sx, nr2sx, nr3sx ! me = me_bgrp + 1 ! ALLOCATE(xdist(dffts%nnr)) ALLOCATE(ydist(dffts%nnr)) ALLOCATE(zdist(dffts%nnr)) ! nr1s = dffts%nr1 nr2s = dffts%nr2 nr1sx = dffts%nr1x nr2sx = dffts%nr2x nr3sx = dffts%nr3x nr3s = dffts%nr3 DO ir3=1,nr3s #ifdef __MPI ibig3 = ir3 - dffts%ipp( me ) IF(ibig3.GT.0.AND.ibig3.LE.dffts%npp(me)) THEN #else ibig3=ir3 #endif DO ir2=1,nr2s DO ir1=1,nr1s xdist(ir1+(ir2-1)*nr1sx+(ibig3-1)*nr1sx*nr2sx) = & & ((ir1-1)/DBLE(nr1sx)) ydist(ir1+(ir2-1)*nr1sx+(ibig3-1)*nr1sx*nr2sx) = & & ((ir2-1)/DBLE(nr2sx)) zdist(ir1+(ir2-1)*nr1sx+(ibig3-1)*nr1sx*nr2sx) = & & ((ir3-1)/DBLE(nr3sx)) ! END DO END DO #ifdef __MPI END IF #endif END DO RETURN END SUBROUTINE grid_map ! !---------------------------------------------------------------------------- SUBROUTINE setwfg( ibrav, b1, b2, b3 ) !---------------------------------------------------------------------------- ! ! ... added by Young-Su Lee ( Nov 2006 ) ! Find G vectors for a given ibrav and celldms ! USE kinds, ONLY : DP USE cell_base, ONLY : tpiba, celldm USE wannier_base, ONLY : wfg, nw, weight ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: b1(3), b2(3), b3(3) INTEGER, INTENT(IN) :: ibrav REAL(DP) :: tweight(6), t0, t1, t2, t3, t4, t5, t6 INTEGER :: twfg(6,3), kk twfg(:,:) = 0 twfg(1,1)=1 twfg(1,2)=0 twfg(1,3)=0 twfg(2,1)=0 twfg(2,2)=1 twfg(2,3)=0 twfg(3,1)=0 twfg(3,2)=0 twfg(3,3)=1 SELECT CASE(ibrav) CASE(1) ! ! Cubic P [sc] ! nw = 3 ! ! CASE(2) ! ! Cubic F [fcc] ! nw = 4 twfg(4,1)=-1 twfg(4,2)=-1 twfg(4,3)=-1 ! ! CASE(3) ! ! Cubic I [bcc] ! nw = 6 twfg(4,1)=1 twfg(4,2)=1 twfg(4,3)=0 twfg(5,1)=0 twfg(5,2)=1 twfg(5,3)=1 twfg(6,1)=-1 twfg(6,2)=0 twfg(6,3)=1 ! ! CASE(4) ! ! Hexagonal and Trigonal P ! nw = 4 twfg(4,1)=1 twfg(4,2)=-1 twfg(4,3)=0 ! ! CASE(5) ! ! Trigonal R ! t0 = 1.D0/3.D0 ! IF ( celldm(4) .ge. t0 ) THEN ! nw = 4 ! twfg(4,1)=1 twfg(4,2)=1 twfg(4,3)=1 ! ELSE ! IF ( celldm(4) .gt. 0 ) THEN ! nw = 6 ! twfg(4,1)=1 twfg(4,2)=1 twfg(4,3)=0 twfg(5,1)=0 twfg(5,2)=1 twfg(5,3)=1 twfg(6,1)=1 twfg(6,2)=0 twfg(6,3)=1 ! ELSE IF ( celldm(4) .eq. 0 ) THEN ! nw = 3 ! ELSE ! nw = 6 ! twfg(4,1)=1 twfg(4,2)=-1 twfg(4,3)=0 twfg(5,1)=0 twfg(5,2)=1 twfg(5,3)=-1 twfg(6,1)=-1 twfg(6,2)=0 twfg(6,3)=1 ! END IF ! END IF CASE(6) ! ! Tetragonal P [st] ! nw = 3 ! ! CASE(7) ! ! Tetragonal I [bct] ! nw = 6 twfg(4,1)=1 twfg(4,2)=0 twfg(4,3)=1 twfg(5,1)=0 twfg(5,2)=1 twfg(5,3)=-1 twfg(6,1)=1 twfg(6,2)=1 twfg(6,3)=0 ! ! CASE(8) ! ! Orthorhombic P ! nw = 3 ! ! CASE(9) ! ! Orthorhombic C ! IF (celldm(2).EQ.1) THEN ! Tetragonal P ! nw=3 ! ELSE ! nw = 4 ! IF ( celldm(2) < 1 ) THEN ! twfg(4,1)=1 twfg(4,2)=-1 twfg(4,3)=0 ! ELSE ! twfg(4,1)=1 twfg(4,2)=1 twfg(4,3)=0 ! END IF ! END IF ! ! CASE(10) ! ! Orthorhombic F ! twfg(4,1)=1 twfg(4,2)=1 twfg(4,3)=1 ! IF ( celldm(2) .eq. 1 .AND. celldm(3) .eq. 1 ) THEN ! Cubic F ! nw = 4 ! ELSE ! nw = 6 ! IF ( celldm(2) .eq. 1 .AND. celldm(3) .ne. 1) THEN ! Tetragonal I ! twfg(5,1)=1 twfg(5,2)=1 twfg(5,3)=0 twfg(6,1)=0 twfg(6,2)=1 twfg(6,3)=1 ! ELSE IF ( celldm(2) .ne. 1 .AND. celldm(3) .eq. 1) THEN ! Tetragonal I ! twfg(5,1)=1 twfg(5,2)=1 twfg(5,3)=0 twfg(6,1)=1 twfg(6,2)=0 twfg(6,3)=1 ! ELSE IF ( celldm(2) .eq. celldm(3) ) THEN ! Tetragonal I ! twfg(5,1)=0 twfg(5,2)=1 twfg(5,3)=1 twfg(6,1)=1 twfg(6,2)=0 twfg(6,3)=1 ! ELSE IF ( celldm(2) .gt. 1 .and. celldm(3) .gt. 1 ) THEN ! twfg(5,1)=0 twfg(5,2)=1 twfg(5,3)=1 twfg(6,1)=1 twfg(6,2)=0 twfg(6,3)=1 ! ELSE IF ( celldm(2) .lt. celldm(3) ) THEN ! twfg(5,1)=1 twfg(5,2)=1 twfg(5,3)=0 twfg(6,1)=1 twfg(6,2)=0 twfg(6,3)=1 ! ELSE ! twfg(5,1)=1 twfg(5,2)=1 twfg(5,3)=0 twfg(6,1)=0 twfg(6,2)=1 twfg(6,3)=1 ! END IF ! END IF ! ! CASE(11) ! ! Orthorhombic I ! nw = 6 ! twfg(4,1)=1 twfg(4,2)=1 twfg(4,3)=0 twfg(5,1)=0 twfg(5,2)=1 twfg(5,3)=1 twfg(6,1)=-1 twfg(6,2)=0 twfg(6,3)=1 ! ! CASE(12) ! ! Monoclinic P ! IF ( celldm(4) .eq. 0 ) THEN ! Orthorhombic P ! nw = 3 ! ELSE ! nw = 4 ! t1 = SQRT(DOT_PRODUCT(b1,b1)) t2 = SQRT(DOT_PRODUCT(b2,b2)) t4 = DOT_PRODUCT(b1,b2)/t1/t2 ! t0 = - t4 * t1 / t2 kk = NINT(t0) ! IF((kk.EQ.0).AND.(t0.GT.0)) kk=1 IF((kk.EQ.0).AND.(t0.LT.0)) kk=-1 twfg(4,1)=1 twfg(4,2)=kk twfg(4,3)=0 ! END IF ! ! CASE(0,13,14) ! ! Monoclinic C, Triclinic P, Free Cell ! nw = 6 ! t1 = SQRT(DOT_PRODUCT(b1,b1)) t2 = SQRT(DOT_PRODUCT(b2,b2)) t3 = SQRT(DOT_PRODUCT(b3,b3)) t4 = DOT_PRODUCT(b1,b2)/t1/t2 t5 = DOT_PRODUCT(b2,b3)/t2/t3 t6 = DOT_PRODUCT(b3,b1)/t3/t1 ! t0 = - t4 * t1 / t2 kk = NINT(t0) ! IF((kk.EQ.0).AND.(t0.GE.0)) kk=1 IF((kk.EQ.0).AND.(t0.LT.0)) kk=-1 twfg(4,1)=1 twfg(4,2)=kk twfg(4,3)=0 ! t0 = - t5 * t2 / t3 kk = NINT(t0) ! IF((kk.EQ.0).AND.(t0.GE.0)) kk=1 IF((kk.EQ.0).AND.(t0.LT.0)) kk=-1 ! twfg(5,1)=0 twfg(5,2)=1 twfg(5,3)=kk ! t0 = - t6 * t3 / t1 kk = NINT(t0) ! IF((kk.EQ.0).AND.(t0.GE.0)) kk=1 IF((kk.EQ.0).AND.(t0.LT.0)) kk=-1 ! twfg(6,1)=kk twfg(6,2)=0 twfg(6,3)=1 ! CASE DEFAULT ! alternate ibrav values -5, -9, -12: not sure what to do ! CALL errore ('setwfc','ibrav not implemented', ABS(ibrav)) ! END SELECT ! CALL tric_wts2( b1, b2, b3, nw, twfg, tweight ) ! ALLOCATE(wfg(nw,3), weight(nw)) ! wfg(:,:) = twfg(1:nw,:) weight(:) = tweight(1:nw) ! RETURN ! END SUBROUTINE setwfg ! !---------------------------------------------------------------------------- SUBROUTINE tric_wts( rp1, rp2, rp3, alat, wts ) !---------------------------------------------------------------------------- ! ! ... This subroutine computes the weights to be used for ! ... R.P. translations in the WF calculation in the case ! ... of ibrav=0 or ibrav=14 ! USE kinds, ONLY : DP USE constants, ONLY : pi USE cell_base, ONLY : tpiba, tpiba2 ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: rp1(3), rp2(3), rp3(3) REAL(DP), INTENT(IN) :: alat REAL(DP), INTENT(OUT) :: wts(6) ! REAL(DP) :: b1x, b2x, b3x, b1y, b2y, b3y, b1z, b2z, b3z INTEGER :: i ! ! b1x = rp1(1)*tpiba b2x = rp2(1)*tpiba b3x = rp3(1)*tpiba b1y = rp1(2)*tpiba b2y = rp2(2)*tpiba b3y = rp3(2)*tpiba b1z = rp1(3)*tpiba b2z = rp2(3)*tpiba b3z = rp3(3)*tpiba ! WRITE( stdout, * ) 'COMPUTING WEIGHTS NOW ...' wts(1) = tpiba2*(-b1z*b2x*b2z*b3x + b2y**2*b3x**2 + b1z*b2z*b3x**2 + & b2z**2*b3x**2 - b1z*b2y*b2z*b3y - 2.D0*b2x*b2y*b3x*b3y + & b2x**2*b3y**2 + b1z*b2z*b3y**2 + b2z**2*b3y**2 + & b1z*b2x**2*b3z + b1z*b2y**2*b3z - b1z*b2x*b3x*b3z - & 2.D0*b2x*b2z*b3x*b3z - b1z*b2y*b3y*b3z - & 2.D0*b2y*b2z*b3y*b3z + b2x**2*b3z**2 + b2y**2*b3z**2 + & b1x*(b2y**2*b3x + b2z**2*b3x - b2y*(b2x + b3x)*b3y - & b2z*(b2x + b3x)*b3z + b2x*(b3y**2 + b3z**2)) + & b1y*(b2x**2*b3y - b2x*b3x*(b2y + b3y) + & b2z*b3y*(b2z - b3z) + b2y*(b3x**2 - b2z*b3z + b3z**2)))/ & ((b1z*b2y*b3x - b1y*b2z*b3x - b1z*b2x*b3y + b1x*b2z*b3y & + b1y*b2x*b3z - b1x*b2y*b3z)**2) wts(2) = tpiba2*(b1z**2*(b2x*b3x + b3x**2 + b3y*(b2y + b3y)) + & b1y**2*(b2x*b3x + b3x**2 + b3z*(b2z + b3z)) - & b1z*(-b2z*(b3x**2 + b3y**2) + (b2x*b3x + b2y*b3y)*b3z + & b1x*(b2z*b3x + (b2x + 2.D0* b3x)*b3z)) - & b1y*(b1x*(b2y*b3x + (b2x + 2.D0*b3x)*b3y) + & b3y*(b1z*b2z + b2x*b3x + 2.D0*b1z*b3z + b2z*b3z) - & b2y*(b3x**2 - b1z* b3z + b3z**2)) + & b1x*(-b2y*b3x*b3y + b2x*b3y**2 - b2z*b3x*b3z + b2x*b3z**2 + & b1x*(b2y*b3y + b3y**2 + b3z*(b2z + b3z))))/ & ((b1z*b2y*b3x - b1y*b2z*b3x - b1z*b2x*b3y + b1x*b2z*b3y + & b1y*b2x*b3z - b1x*b2y*b3z)**2) wts(3) = tpiba2*(b1z**2*(b2x**2 + b2x*b3x + b2y*(b2y + b3y)) - & b1y*(2.D0*b1z*b2y*b2z + b2x*b2y*b3x - b2x**2*b3y + & b1z*b2z*b3y - b2z**2*b3y + b1x*(2.D0*b2x*b2y + b2y*b3x + b2x*b3y) + & b1z*b2y*b3z + b2y*b2z*b3z) + b1y**2*(b2x**2 + b2x*b3x + b2z*(b2z + b3z)) - & b1z*(b2x*b2z*b3x + b2y*b2z*b3y - b2x**2*b3z - b2y**2*b3z + & b1x*(2.D0*b2x*b2z + b2z*b3x + b2x*b3z)) + & b1x*(b2y**2*b3x + b2z**2*b3x - b2x*b2y*b3y - b2x*b2z*b3z + & b1x*(b2y**2 + b2y*b3y + b2z*(b2z + b3z))))/ & ((b1z*b2y*b3x - b1y*b2z*b3x - b1z*b2x*b3y + b1x*b2z*b3y + b1y*b2x*b3z - & b1x*b2y*b3z)**2) wts(4) = tpiba2*(b1z*(-b2z*(b3x**2 + b3y**2) + (b2x*b3x + b2y*b3y)*b3z) + & b1y*(b3y*(b2x*b3x + b2z*b3z) - b2y*(b3x**2 + b3z**2)) + & b1x*(b2y*b3x*b3y + b2z*b3x*b3z - b2x*(b3y**2 + b3z**2)))/ & ((b1z*b2y*b3x - b1y*b2z*b3x - b1z*b2x*b3y + b1x*b2z*b3y + & b1y*b2x*b3z - b1x*b2y*b3z)**2) wts(5) = -tpiba2*(b1z**2*(b2x*b3x + b2y*b3y) - b1x*b1z*(b2z*b3x + b2x*b3z) - & b1y*(b1x*b2y*b3x + b1x*b2x*b3y + b1z*b2z*b3y + b1z*b2y*b3z) + & b1y**2*(b2x*b3x + b2z*b3z) + b1x**2*(b2y*b3y + b2z*b3z))/ & ((b1z*b2y*b3x - b1y*b2z*b3x - b1z*b2x*b3y + b1x*b2z*b3y + & b1y*b2x*b3z - b1x*b2y*b3z)**2) wts(6) = -tpiba2*(b1z*(-b2x*b2z*b3x - b2y*b2z*b3y + b2x**2*b3z + b2y**2*b3z) + & b1x*(b2y**2*b3x + b2z**2*b3x - b2x*b2y*b3y - b2x*b2z*b3z) + & b1y*(-b2x*b2y*b3x + b2x**2*b3y + b2z*(b2z*b3y - b2y*b3z)))/ & ((b1z*b2y*b3x - b1y*b2z*b3x - b1z*b2x*b3y + b1x*b2z*b3y + & b1y*b2x*b3z - b1x*b2y*b3z)**2) ! RETURN ! END SUBROUTINE tric_wts ! !---------------------------------------------------------------------------- SUBROUTINE tric_wts2( rp1, rp2, rp3, nw, wfg, weight ) !---------------------------------------------------------------------------- ! ! ... added by Young-Su Lee ( Nov 2006 ) ! ! Find the least square solutions of weights for G vectors ! If the set of G vectors and calculated weights do not conform to the condition, ! SUM_i weight_i G_ia G_ib = delta_ab ! the code stops. ! USE kinds, ONLY : DP USE io_global, ONLY : stdout ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: rp1(3), rp2(3), rp3(3) INTEGER, INTENT(IN) :: wfg(6,3), nw REAL(DP), INTENT(OUT) :: weight(6) ! REAL(DP) :: gp(6,nw), A(6,nw), gr(nw,3), S(6), R(6), WORK(1000), t INTEGER :: i, LWORK, INFO ! DO i=1, nw gr(i,:) = wfg(i,1)*rp1(:)+wfg(i,2)*rp2(:)+wfg(i,3)*rp3(:) END DO DO i=1, nw gp(1,i)=gr(i,1)*gr(i,1) gp(2,i)=gr(i,2)*gr(i,2) gp(3,i)=gr(i,3)*gr(i,3) gp(4,i)=gr(i,1)*gr(i,2) gp(5,i)=gr(i,2)*gr(i,3) gp(6,i)=gr(i,3)*gr(i,1) END DO ! R = 0.D0 R(1:3) = 1.D0 ! LWORK=1000 A = gp S = R ! CALL DGELS( 'N', 6, nw, 1, A, 6, S, 6, WORK, LWORK, INFO ) ! IF (INFO .ne. 0) THEN WRITE( stdout, * ) "failed to get a weight factor for ",INFO,"th vector" STOP END IF ! weight(1:nw) = S(:) S=matmul(gp,weight(1:nw)) ! DO i=1, nw IF ( weight(i) .lt. 0.D0 ) THEN WRITE( stdout, * ) "WARNING: weight factor less than zero" END IF END DO ! DO i=1,6 t = abs(S(i)-R(i)) IF ( t .gt. 1.D-8 ) THEN WRITE( stdout, * ) "G vectors do not satisfy the completeness condition",i,t STOP END IF END DO ! RETURN ! END SUBROUTINE tric_wts2 ! !---------------------------------------------------------------------------- SUBROUTINE small_box_wf( i_1, j_1, k_1, nw1 ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE constants, ONLY : fpi USE wannier_base, ONLY : expo USE fft_base, ONLY : dfftp USE mp_global, ONLY : me_bgrp USE parallel_include ! IMPLICIT NONE INTEGER ir1, ir2, ir3, ibig3 , inw REAL(DP) x INTEGER , INTENT(in) :: nw1, i_1(nw1), j_1(nw1), k_1(nw1) INTEGER :: me me = me_bgrp + 1 ALLOCATE(expo(dfftp%nnr,nw1)) DO inw=1,nw1 WRITE( stdout, * ) inw ,":", i_1(inw), j_1(inw), k_1(inw) DO ir3=1,dfftp%nr3 #ifdef __MPI ibig3 = ir3 - dfftp%ipp( me ) IF(ibig3.GT.0.AND.ibig3.LE.dfftp%npp(me)) THEN #else ibig3=ir3 #endif DO ir2=1,dfftp%nr2 DO ir1=1,dfftp%nr1 x = (((ir1-1)/DBLE(dfftp%nr1x))*i_1(inw) + & & ((ir2-1)/DBLE(dfftp%nr2x))*j_1(inw) + & & ((ir3-1)/DBLE(dfftp%nr3x))*k_1(inw))*0.5d0*fpi expo(ir1+(ir2-1)*dfftp%nr1x+(ibig3-1)*dfftp%nr1x*dfftp%nr2x,inw) = CMPLX(COS(x), -SIN(x),kind=DP) END DO END DO #ifdef __MPI END IF #endif END DO END DO RETURN END SUBROUTINE small_box_wf ! !----------------------------------------------------------------------- FUNCTION boxdotgridcplx(irb,qv,vr) !----------------------------------------------------------------------- ! ! Calculate \sum_i qv(r_i)*vr(r_i) with r_i on box grid ! array qv(r) is defined on box grid, array vr(r)on dense grid ! irb : position of the box in the dense grid ! Parallel execution: remember to sum the contributions from other nodes ! ! use ion_parameters ! USE kinds, ONLY : DP USE fft_base, ONLY : dfftp, dfftb USE mp_global, ONLY : me_bgrp ! IMPLICIT NONE ! INTEGER, INTENT(IN):: irb(3) COMPLEX(DP), INTENT(IN):: qv(dfftb%nnr), vr(dfftp%nnr) COMPLEX(DP) :: boxdotgridcplx ! INTEGER :: ir1, ir2, ir3, ir, ibig1, ibig2, ibig3, ibig, me ! me = me_bgrp + 1 ! boxdotgridcplx = ZERO DO ir3=1,dfftb%nr3 ibig3=irb(3)+ir3-1 ibig3=1+MOD(ibig3-1,dfftp%nr3) #ifdef __MPI ibig3 = ibig3 - dfftp%ipp( me ) IF (ibig3.GT.0.AND.ibig3.LE.dfftp%npp(me)) THEN #endif DO ir2=1,dfftb%nr2 ibig2=irb(2)+ir2-1 ibig2=1+MOD(ibig2-1,dfftp%nr2) DO ir1=1,dfftb%nr1 ibig1=irb(1)+ir1-1 ibig1=1+MOD(ibig1-1,dfftp%nr1) ibig=ibig1 + (ibig2-1)*dfftp%nr1x + (ibig3-1)*dfftp%nr1x*dfftp%nr2x ir =ir1 + (ir2-1)*dfftb%nr1x + (ir3-1)*dfftb%nr1x*dfftb%nr2x boxdotgridcplx = boxdotgridcplx + qv(ir)*vr(ibig) END DO END DO #ifdef __MPI ENDIF #endif END DO ! RETURN ! END FUNCTION boxdotgridcplx ! !---------------------------------------------------------------------------- SUBROUTINE write_rho_g( rhog ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE gvect, ONLY : ngm USE gvect, ONLY : g USE electrons_base, ONLY : nspin USE fft_base, ONLY : dfftp USE mp_global, ONLY : nproc_bgrp, me_bgrp, root_bgrp, intra_bgrp_comm USE mp, ONLY : mp_barrier, mp_gather, mp_set_displs USE parallel_include ! IMPLICIT NONE ! COMPLEX(DP) ,INTENT(IN) :: rhog(ngm,nspin) REAL(DP), ALLOCATABLE:: gnx(:,:), bigg(:,:) COMPLEX(DP),ALLOCATABLE :: bigrho(:) COMPLEX(DP) :: rhotmp_g(ngm) INTEGER :: ntot, i, j, me #ifdef __MPI INTEGER proc, ierr, ngdens(nproc_bgrp), displs(nproc_bgrp) #endif CHARACTER (LEN=6) :: name CHARACTER (LEN=15) :: name2 me = me_bgrp + 1 ALLOCATE(gnx(3,ngm)) DO i=1,ngm gnx(1,i)=g(1,i) gnx(2,i)=g(2,i) gnx(3,i)=g(3,i) END DO #ifdef __MPI DO i=1,nproc_bgrp ngdens(i)=(dfftp%ngl(i)+1)/2 END DO CALL mp_set_displs( ngdens, displs, ntot, nproc_bgrp ) IF(me.EQ.1) THEN ALLOCATE(bigg(3,ntot)) END IF CALL mp_barrier(intra_bgrp_comm) CALL mp_gather( gnx, bigg, ngdens, displs, root_bgrp, intra_bgrp_comm ) DO i=1,nspin rhotmp_g(1:ngm)=rhog(1:ngm,i) IF(me.EQ.1) THEN ALLOCATE (bigrho(ntot)) END IF CALL mp_barrier(intra_bgrp_comm) CALL mp_gather( rhotmp_g, bigrho, ngdens, displs, root_bgrp, intra_bgrp_comm ) IF(me.EQ.1) THEN IF(i.EQ.1) name2="CH_DEN_G_PARA.1" IF(i.EQ.2) name2="CH_DEN_G_PARA.2" OPEN(unit=57, file=name2) DO j=1,ntot WRITE(57,*) bigrho(j) END DO CLOSE(57) DEALLOCATE(bigrho) END IF WRITE( stdout, * ) "Charge density written to ", name2 END DO IF(me.EQ.1) THEN name="G_PARA" OPEN(unit=56, file=name) DO i=1,ntot WRITE(56,*) bigg(:,i) END DO CLOSE(56) DEALLOCATE(bigg) END IF WRITE( stdout, * ) "G-vectors written to G_PARA" #else ntot=ngm ALLOCATE(bigg(3,ntot)) bigg(1:3,1:ntot)=gnx(1:3,1:ngm) DO i=1,nspin ALLOCATE(bigrho(ntot)) bigrho(1:ngm)=rhog(1:ngm,i) IF(i.EQ.1) name2="CH_DEN_G_SERL.1" IF(i.EQ.2) name2="CH_DEN_G_SERL.2" OPEN(unit=57, file=name2) DO j=1,ntot WRITE(57,*) bigrho(j) END DO CLOSE(57) DEALLOCATE(bigrho) WRITE( stdout, * ) "Charge density written to", name2 END DO name="G_SERL" OPEN(unit=56, file=name) DO i=1,ntot WRITE(56,*) bigg(:,i) END DO CLOSE(56) DEALLOCATE(bigg) WRITE( stdout, * ) "G-vectors written to G_SERL" #endif ! DEALLOCATE(gnx) ! RETURN ! END SUBROUTINE write_rho_g ! !---------------------------------------------------------------------------- SUBROUTINE macroscopic_average( rhog, tau0, e_tuned ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE gvect, ONLY : g USE gvect, ONLY : ngm USE electrons_base, ONLY : nspin USE tune, ONLY : npts, xdir, ydir, zdir, B, & shift, start, av0, av1 USE cell_base, ONLY : at, alat, tpiba, omega USE ions_base, ONLY : nsp, na, zv, nax USE constants, ONLY : pi, tpi USE mp, ONLY : mp_barrier, mp_bcast, mp_gather, mp_set_displs USE fft_base, ONLY : dfftp USE mp_global, ONLY : nproc_bgrp, me_bgrp, root_bgrp, intra_bgrp_comm USE parallel_include ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE:: gnx(:,:), bigg(:,:) COMPLEX(DP) ,INTENT(in) :: rhog(ngm,nspin) COMPLEX(DP),ALLOCATABLE :: bigrho(:) COMPLEX(DP), ALLOCATABLE :: rhotmp_g(:) INTEGER ntot, i, j, ngz, l, isa INTEGER ,ALLOCATABLE :: g_red(:,:) #ifdef __MPI INTEGER proc, ierr, ngdens(nproc_bgrp), displs( nproc_bgrp ) #endif REAL(DP) zlen,vtot, pos(3,nax,nsp), a_direct(3,3),a_trans(3,3), e_slp, e_int REAL(DP), INTENT(out) :: e_tuned(3) REAL(DP), INTENT(in) :: tau0(3,nax) REAL(DP),ALLOCATABLE :: v_mr(:), dz(:), gz(:), g_1(:,:), vbar(:), cd(:), v_final(:) REAL(DP), ALLOCATABLE:: cdion(:), cdel(:), v_line(:), dist(:) COMPLEX(DP),ALLOCATABLE :: rho_ion(:),v_1(:),vmac(:),rho_tot(:),rhogz(:), bigrhog(:) INTEGER :: me me = me_bgrp + 1 ALLOCATE(gnx(3,ngm)) DO i=1,ngm gnx(1,i)=g(1,i) gnx(2,i)=g(2,i) gnx(3,i)=g(3,i) END DO #ifdef __MPI DO i=1,nproc_bgrp ngdens(i)=(dfftp%ngl(i)+1)/2 END DO CALL mp_set_displs( ngdens, displs, ntot, nproc_bgrp ) #else ntot=ngm #endif ALLOCATE(bigg(3,ntot)) ALLOCATE (bigrho(ntot)) ALLOCATE (bigrhog(2*ntot-1)) #ifdef __MPI CALL mp_barrier( intra_bgrp_comm ) ! CALL mp_gather( gnx, bigg, ngdens, displs, root_bgrp,intra_bgrp_comm ) ! CALL mp_bcast( bigg, root_bgrp, intra_bgrp_comm ) ! ALLOCATE( rhotmp_g( ngm ) ) rhotmp_g(1:ngm)=rhog(1:ngm,1) CALL mp_barrier( intra_bgrp_comm ) ! CALL mp_gather( rhotmp_g, bigrho, ngdens, displs, root_bgrp,intra_bgrp_comm ) ! DEALLOCATE( rhotmp_g ) ! CALL mp_bcast( bigrho, root_bgrp, intra_bgrp_comm ) ! #else ! bigg(1:3,1:ntot)=gnx(1:3,1:ngm) bigrho(1:ngm)=rhog(1:ngm,1) ! #endif ALLOCATE(g_1(3,2*ntot-1)) ALLOCATE(g_red(3,2*ntot-1)) ALLOCATE(v_mr(npts)) ALLOCATE(v_final(npts)) ALLOCATE(dz(npts)) ALLOCATE(vbar(npts)) ALLOCATE(cd(npts)) ALLOCATE(cdel(npts)) ALLOCATE(cdion(npts)) !-- needed for non-orthogonal cells a_direct(1,1:3)=at(1:3,1)*alat a_direct(2,1:3)=at(1:3,2)*alat a_direct(3,1:3)=at(1:3,3)*alat a_trans=TRANSPOSE(a_direct) !--- Construct rho(-g) from rho(g). rgo(-g)=rho*(g) bigrhog(1:ntot)=bigrho(1:ntot) g_1(:,1:ntot)=bigg(:,1:ntot) DO i=2,ntot bigrhog(ntot+i-1)=CONJG(bigrho(i)) g_1(:,ntot+i-1)=-bigg(:,i) END DO !--- needed fot non-orthogonal cells DO i=1,2*ntot-1 g_red(:,i)=NINT(MATMUL(a_trans(:,:),g_1(:,i))*tpiba/tpi) END DO !--- define the direction of the line xdir=1 ydir=2 IF ((zdir).EQ.1) xdir=3 IF ((zdir).EQ.2) ydir=3 IF(zdir.EQ.1) zlen=DSQRT(at(1,1)**2+at(2,1)**2+at(3,1)**2) IF(zdir.EQ.2) zlen=DSQRT(at(1,2)**2+at(2,2)**2+at(3,2)**2) IF(zdir.EQ.3) zlen=DSQRT(at(1,3)**2+at(2,3)**2+at(3,3)**2) zlen = zlen*alat !--- We need the potentiail only along zdir, so pick the appropriate G-vectors with Gxdir=Gydir=0 ngz=0 DO i=1,2*ntot-1 IF((g_red(xdir,i).EQ.0).AND.(g_red(ydir,i).EQ.0)) ngz=ngz+1 END DO ALLOCATE(gz(ngz)) ALLOCATE(rhogz(ngz)) ALLOCATE(rho_ion(ngz)) ALLOCATE(rho_tot(ngz)) ALLOCATE(vmac(ngz)) ALLOCATE(v_1(ngz)) !--- The G-vectors are output in units of 2*pi/a, so convert them to the correct values j=0 DO i=1,2*ntot-1 IF((g_red(xdir,i).EQ.0).AND.(g_red(ydir,i).EQ.0)) THEN j=j+1 gz(j)=g_1(zdir,i)*tpiba rhogz(j)=bigrhog(i) END IF END DO isa = 0 DO i=1,nsp DO j=1,na(i) isa = isa + 1 pos(:,j,i)=tau0(:,isa) END DO END DO !--- Construct the ionic Charge density in G-space rho_ion = ZERO ! DO j=1,ngz DO i=1,nsp DO l=1,na(i) rho_ion(j)=rho_ion(j)+zv(i)*EXP(-CI*gz(j)*pos(zdir,l,i))*EXP(-gz(j)**2/(4.D0*ONE)) END DO END DO END DO rho_ion=rho_ion/omega !--- Construct the total Charge density in G-space rho_tot=rho_ion-rhogz !--- Construct the electrostatic potential and macroscopic average in G-space v_1(1)=ZERO vmac(1)=ZERO v_1(2:ngz)=4*pi*rho_tot(2:ngz)/gz(2:ngz)**2 vmac(2:)=v_1(2:)*SIN(gz(2:)*b)/(gz(2:)*b) !--- Calculate planewise average in R-space and FFT V(Gz) ---> V(z) ... well not really FFT but FT vbar=0.D0 v_mr=0.D0 cdel=0.D0 cdion=0.D0 cd=0.D0 DO j=1,npts dz(j)=(j-1)*zlen/(npts*1.D0) DO i=1,ngz vbar(j)=vbar(j)-DBLE(EXP(CI*gz(i)*dz(j))*v_1(i)) v_mr(j)=v_mr(j)-DBLE(EXP(CI*gz(i)*dz(j))*vmac(i)) cdel(j)=cdel(j)-DBLE(EXP(CI*gz(i)*dz(j))*rhogz(i)) cdion(j)=cdion(j)+DBLE(EXP(CI*gz(i)*dz(j))*rho_ion(i)) cd(j)=cd(j)+DBLE(EXP(CI*gz(i)*dz(j))*rho_tot(i)) END DO ! WRITE( stdout, * ) vbar(j), v_mr(j), cdel(j), cdion(j) END DO IF (shift) THEN vtot=(v_mr(start)+v_mr(start-1))/2.D0 v_final(1:npts-start+1)=v_mr(start:npts)-vtot v_final(npts-start+2:npts)=v_mr(1:start-1)-vtot ELSE vtot=(v_mr(1)+v_mr(npts))/2.D0 v_final(1:npts)=v_mr(1:npts)-vtot END IF e_tuned=0.D0 ALLOCATE(v_line(1:av1-av0+1)) ALLOCATE(dist(1:av1-av0+1)) v_line(1:av1-av0+1)=v_final(av0:av1) dist(1:av1-av0+1) =dz(av0:av1) e_tuned(zdir)=-(v_final(av1)-v_final(av0))/((av1-av0)*zlen/(npts*1.D0)) DEALLOCATE(bigg,g_1,bigrho,bigrhog,g_red) DEALLOCATE(gnx,v_mr,v_final,dz,vbar,cd,cdel,cdion) DEALLOCATE(v_line, dist) DEALLOCATE(gz,rhogz,rho_ion,rho_tot,vmac,v_1) RETURN END SUBROUTINE macroscopic_average ! !---------------------------------------------------------------------------- SUBROUTINE least_square( npts, x, y, slope, intercept ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: npts REAL(DP), INTENT(IN) :: x(npts), y(npts) REAL(DP), INTENT(OUT):: slope, intercept ! INTEGER :: i REAL(DP) :: sumx,sumy,sumx2,sumxy,sumsqx REAL(DP) :: xav,yav sumxy=0.D0 sumx =0.D0 sumy =0.D0 sumx2=0.D0 DO i=1,npts sumxy=sumxy+x(i)*y(i) sumx =sumx +x(i) sumy =sumy +y(i) sumx2=sumx2+x(i)*x(i) END DO sumsqx=sumx**2 xav=sumx/DBLE(npts) yav=sumy/DBLE(npts) slope=(npts*sumxy - sumx*sumy)/(npts*sumx2 - sumsqx) intercept=yav-slope*xav RETURN END SUBROUTINE least_square ! !---------------------------------------------------------------------------- SUBROUTINE wfsteep( m, Omat, Umat, b1, b2, b3 ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE wannier_base, ONLY : nw, weight, nit, tolw, wfdt, maxwfdt, nsd USE control_flags, ONLY : iverbosity USE cell_base, ONLY : alat USE constants, ONLY : tpi, bohr_radius_angs USE mp_global, ONLY : me_bgrp USE printout_base, ONLY : printout_base_open, printout_base_unit, & printout_base_close USE parallel_include ! IMPLICIT NONE ! (m,m) is the size of the matrix Ospin. ! Ospin is input overlap matrix. ! Uspin is the output unitary transformation. ! Rough guess for Uspin can be carried in. ! ! conjugated gradient to search maximization ! INTEGER, INTENT(in) :: m REAL(DP), INTENT(in) :: b1(3),b2(3),b3(3) COMPLEX(DP), INTENT(inout) :: Omat(nw, m, m) REAL(DP), INTENT(inout) :: Umat(m,m) ! INTEGER :: i, j, k, l, ig, ierr, ti, tj, tk, inw, ir, adjust INTEGER :: f3(nw), f4(nw), ierr1 REAL(DP) :: slope, slope2, t1, t2, t3, mt(nw),t21,temp1,maxdt REAL(DP) :: U(m,m), wfc(3, m), Wm(m,m), schd(m,m), f2(4*m), gr(nw, 3) REAL(DP) :: Uspin2(m,m),temp2,wfdtold,oldt1,t01, d3(m,m), d4(m,m), U1(m,m) REAL(DP) :: spread, sp REAL(DP), ALLOCATABLE :: wr(:) REAL(DP), ALLOCATABLE :: W(:,:) COMPLEX(DP) :: ct1, ct2, ct3, z(m, m), X(m, m), d(m,m), d2(m,m) COMPLEX(DP) :: f1(2*m-1), wp(m*(m+1)/2), Oc(nw, m, m) COMPLEX(DP) :: Oc2(nw, m, m),wp1(m*(m+1)/2), X1(m,m), U2(m,m), U3(m,m) INTEGER :: me, iunit ! me = me_bgrp + 1 ! ALLOCATE(W(m,m), wr(m)) ! Umat=0.D0 DO i=1,m Umat(i,i)=1.D0 END DO Oc=ZERO Oc2=ZERO X1=ZERO U2=Umat*ONE ! ! update Oc using the initial guess of Uspin ! DO inw=1, nw X1(:, :)=Omat(inw, :, :) U3=ZERO CALL zgemm ('T', 'N', m,m,m,ONE,U2,m,X1,m,ZERO,U3,m) X1=ZERO CALL zgemm ('N','N', m,m,m,ONE,U3,m,U2,m,ZERO,X1,m) Oc(inw, :, :)=X1(:, :) END DO U2=ZERO U3=ZERO W=0.D0 schd=0.D0 oldt1=0.D0 wfdtold=0.D0 DO k=1, nit t01=0.D0 !use t1 to store the value of omiga DO inw=1, nw DO i=1, m t01=t01+DBLE(CONJG(Oc(inw, i, i))*Oc(inw, i, i)) END DO END DO ! WRITE( stdout, * ) t01 IF(ABS(oldt1-t01).LT.tolw) THEN IF(me.EQ.1) THEN WRITE(*,*) "MLWF Generated at Step",k ! Lingzhu Kong END IF IF( iverbosity > 2 ) THEN WRITE( stdout, * ) "MLWF Generated at Step",k END IF GO TO 40 END IF ! oldt1=t01 ! calculate d(omiga)/dW and store result in W ! W should be a real symmetric matrix for gamma-point calculation ! Wm=W W=0.D0 DO inw=1, nw t2=weight(inw) DO i=1,m DO j=i+1,m W(i,j)=W(i,j)+t2*DBLE(Oc(inw,i,j)*CONJG(Oc(inw,i,i) & -Oc(inw,j,j))+CONJG(Oc(inw,j,i))*(Oc(inw,i,i)-Oc(inw,j,j))) END DO END DO END DO W=W-TRANSPOSE(W) ! calculate slope=d(omiga)/d(lamda) slope=SUM(W**2) ! calculate slope2=d2(omiga)/d(lamda)2 slope2=0.D0 DO ti=1, m DO tj=1, m DO tk=1, m t2=0.D0 DO inw=1, nw t2=t2+DBLE(Oc(inw,tj,tk)*CONJG(Oc(inw,tj,tj)+Oc(inw,tk,tk) & -2.D0*Oc(inw,ti,ti))-4.D0*Oc(inw,ti,tk) & *CONJG(Oc(inw,ti,tj)))*weight(inw) END DO slope2=slope2+W(tk,ti)*W(ti,tj)*2.D0*t2 END DO END DO END DO slope2=2.D0*slope2 ! use parabola approximation. Defined by 1 point and 2 slopes IF (slope2.LT.0) wfdt=-slope/2.D0/slope2 IF (maxwfdt.GT.0.AND.wfdt.GT.maxwfdt) wfdt=maxwfdt IF (k.LT.nsd) THEN schd=W !use steepest-descent technique ! calculate slope=d(omiga)/d(lamda) slope=SUM(schd**2) ! schd=schd*maxwfdt DO i=1, m DO j=i, m wp1(i + (j-1)*j/2) = CMPLX(0.d0, schd(i,j),kind=DP) END DO END DO #if defined (__ESSL) ! CALL zhpev(21, wp1, wr, z, m, m, f2, 4*m) ! ierr1 = 0 ! #else ! CALL zhpev('V','U',m,wp1,wr,z,m,f1,f2,ierr) ! #endif IF (ierr.NE.0) STOP 'failed to diagonalize W!' ELSE ! CALL dgemm ('T','N', m,m,m,ONE,Wm,m,Wm,m,ZERO,d3,m) t1=0.D0 DO i=1, m t1=t1+d3(i, i) END DO IF (t1.NE.0) THEN d4=(W-Wm) CALL dgemm ('T','N', m,m,m,ONE,W,m,d4,m,ZERO,d3,m) t2=0.D0 DO i=1, m t2=t2+d3(i, i) END DO t3=t2/t1 schd=W+schd*t3 ELSE schd=W END IF ! ! calculate the new d(Lambda) for the new Search Direction ! added by Manu. September 19, 2001 ! ! calculate slope=d(omiga)/d(lamda) slope=SUM(schd**2) !------------------------------------------------------------------------ ! schd=schd*maxwfdt DO i=1, m DO j=i, m wp1(i + (j-1)*j/2) = CMPLX(0.d0, schd(i,j),kind=DP) END DO END DO #if defined __ESSL CALL zhpev(21, wp1, wr, z, m, m, f2, 4*m) ierr1 = 0 #else CALL zhpev('V','U',m,wp1,wr,z,m,f1,f2,ierr) #endif IF (ierr.NE.0) STOP 'failed to diagonalize W!' maxdt=maxwfdt 11 d=0.D0 DO i=1, m d(i, i)=EXP(CI*(maxwfdt)*wr(i)) END DO U3=ZERO CALL zgemm ('N', 'N', m,m,m,ONE,z,m,d,m,ZERO,U3,m) U2=ZERO CALL zgemm ('N','C', m,m,m,ONE,U3,m,z,m,ZERO,U2,m) U=DBLE(U2) U2=ZERO U3=ZERO ! ! update Uspin U1=ZERO CALL dgemm ('N', 'N', m,m,m,ONE,Umat,m,U,m,ZERO,U1,m) Umat=U1 ! ! update Oc ! U2=Umat*ONE U3=ZERO DO inw=1, nw X1(:,:)=Omat(inw,:,:) CALL zgemm ('T', 'N', m,m,m,ONE,U2,m,X1,m,ZERO,U3,m) X1=ZERO CALL zgemm ('N','N',m,m,m,ONE,U3,m,U2,m,ZERO,X1,m) Oc2(inw, :,:)=X(:,:) END DO U2=ZERO U3=ZERO ! t21=0.D0 !use t21 to store the value of omiga DO inw=1, nw DO i=1, m t21=t21+DBLE(CONJG(Oc2(inw, i, i))*Oc2(inw, i, i)) END DO END DO temp1=-((t01-t21)+slope*maxwfdt)/(maxwfdt**2) temp2=slope wfdt=-temp2/(2*temp1) IF (wfdt.GT.maxwfdt.OR.wfdt.LT.0.D0) THEN maxwfdt=2*maxwfdt GO TO 11 END IF maxwfdt=maxdt ! ! ! use parabola approximation. Defined by 2 point and 1 slopes ! if (slope2.lt.0) wfdt=-slope/2.D0/slope2 ! if (maxwfdt.gt.0.and.wfdt.gt.maxwfdt) wfdt=maxwfdt ! ! write(6, '(e12.5E2,1x,e11.5E2,1x,f6.2)') slope2, slope, wfdt !------------------------------------------------------------------------- ! ! schd is the new searching direction ! END IF d=0.D0 DO i=1, m d(i, i)=EXP(CI*wfdt*wr(i)) END DO !d=exp(d) ! U=z*exp(d)*z+ ! U3=ZERO CALL zgemm ('N', 'N', m,m,m,ONE,z,m,d,m,ZERO,U3,m) U2=ZERO CALL zgemm ('N','C', m,m,m,ONE,U3,m,z,m,ZERO,U2,m) U=DBLE(U2) U2=ZERO U3=ZERO ! update Uspin ! U1=ZERO CALL dgemm ('N', 'N', m,m,m,ONE,Umat,m,U,m,ZERO,U1,m) Umat=U1 ! update Oc ! U2=Umat*ONE U3=ZERO DO inw=1, nw X1(:, :)=Omat(inw, :, :) CALL zgemm ('T', 'N', m,m,m,ONE,U2,m,X1,m,ZERO,U3,m) X1=ZERO CALL zgemm ('N','N',m,m,m,ONE,U3,m,U2,m,ZERO,X1,m) Oc(inw, :, :)=X1(:, :) END DO U2=ZERO U3=ZERO IF(ABS(t01-oldt1).GE.tolw.AND.k.GE.nit) THEN IF(me.EQ.1) THEN WRITE(*,*) "MLWF Not generated after",k,"Steps." ! Lingzhu Kong END IF IF( iverbosity > 2 ) THEN WRITE( stdout, * ) "MLWF Not generated after",k,"Steps." END IF GO TO 40 END IF oldt1=t01 END DO 40 DEALLOCATE(W, wr) ! ! calculate the spread ! ! write(24, *) "spread: (unit \AA^2)" IF(me.EQ.1) THEN iunit = printout_base_unit( "spr" ) CALL printout_base_open( "spr" ) END IF DO i=1, m ! mt=1.D0-DBLE(Oc(:,i,i)*CONJG(Oc(:,i,i))) sp = (alat*bohr_radius_angs/tpi)**2*SUM(mt*weight) ! IF(me.EQ.1) THEN WRITE(iunit, '(f10.7)') sp END IF IF( sp < 0.D0 ) & CALL errore( 'cp-wf', 'Something wrong WF Spread negative', 1 ) ! spread=spread+sp ! END DO spread=spread/DBLE(m) IF(me.EQ.1) THEN CALL printout_base_open( "spr" ) END IF IF(me.EQ.1) THEN WRITE(24, '(f10.7)') spread WRITE(27,*) "Average spread = ", spread END IF ! Omat=Oc ! RETURN END SUBROUTINE wfsteep ! ! ! !---------------------------------------------------------------------------- SUBROUTINE write_psi( c, jw ) !---------------------------------------------------------------------------- ! ... for calwf 5 - M.S ! ... collect wavefunctions on first node and write to file ! USE kinds, ONLY : DP USE io_global, ONLY : stdout, ionode USE gvecw , ONLY : ngw USE electrons_base, ONLY : nbspx USE mp, ONLY : mp_barrier, mp_set_displs, mp_gather USE fft_base, ONLY : dfftp USE mp_global, ONLY : nproc_bgrp, me_bgrp, root_bgrp, intra_bgrp_comm ! IMPLICIT NONE ! INTEGER :: jw COMPLEX(DP) :: c(ngw,nbspx) ! INTEGER ::i, ig, proc, ntot, ngpwpp(nproc_bgrp) INTEGER ::displs(nproc_bgrp) COMPLEX(DP), ALLOCATABLE:: psitot(:) #if defined (__MPI) ! DO proc=1,nproc_bgrp ngpwpp(proc)=(dfftp%nwl(proc)+1)/2 END DO ! CALL mp_set_displs( ngpwpp, displs, ntot, nproc_bgrp ) ! ! allocate the needed work spaces ! IF ( me_bgrp == root_bgrp ) THEN ALLOCATE(psitot(ntot)) ELSE ALLOCATE(psitot(1)) END IF ! ! ... gather all psis arrays on the first node, in psitot ! CALL mp_barrier( intra_bgrp_comm ) ! CALL mp_gather( c(:,jw), psitot, ngpwpp, displs, root_bgrp, intra_bgrp_comm ) ! ! write the node-number-independent array ! IF( me_bgrp == root_bgrp ) THEN DO i=1,ntot WRITE(22,*) psitot(i) END DO END IF ! DEALLOCATE(psitot) #else ! DO i=1,ngw WRITE(22,*) c(i,jw) END DO ! #endif IF( ionode ) WRITE( stdout, * ) "State Written", jw ! CALL stop_run( .TRUE. ) ! RETURN ! END SUBROUTINE write_psi ! !---------------------------------------------------------------------------- SUBROUTINE jacobi_rotation( m, Omat, Umat, b1, b2, b3 ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE wannier_base, ONLY : nw, weight, nit, tolw, wfdt, maxwfdt, nsd USE cell_base, ONLY : alat USE constants, ONLY : tpi USE mp_global, ONLY : me_bgrp USE printout_base, ONLY : printout_base_open, printout_base_unit, & printout_base_close USE parallel_include ! IMPLICIT NONE ! (m,m) is the size of the matrix Ospin. ! Ospin is input overlap matrix. ! Uspin is the output unitary transformation. ! ! Jacobi rotations method is used to minimize the spread. ! (F. Gygi, J.-L. Fatterbert and E. Schwegler, Comput. Phys. Commun. 155, 1 (2003)) ! ! This subroutine has been written by Sylvie Stucki and Audrius Alkauskas ! in the Chair of Atomic Scale Simulation in Lausanne (Switzerland) ! under the direction of Prof. Alfredo Pasquarello. ! INTEGER, intent(in) :: m COMPLEX(DP), DIMENSION(nw, m, m), intent(inout) :: Omat REAL(DP), DIMENSION(m, m), intent(inout) :: Umat LOGICAL :: stopCriteria INTEGER :: iterationNumber, lig, col, i, nbMat INTEGER, PARAMETER :: dimG=2 REAL(DP), DIMENSION(2*nw, m, m):: OmatReal REAL(DP), DIMENSION(dimG, dimG):: matrixG REAL(DP), DIMENSION(dimG) :: eigenVec REAL(DP) :: a1, a2 ! are the components aii-ajj and aij-aji of the matrixes used to build matrixG REAL(DP) :: r, c, s ! For a single rotation REAL(DP) :: bMinusa, outDiag ! To compute the eigenvector linked to the largest eigenvalue of matrixG REAL(DP) :: newMat_ll, newMat_cc, newMat_lc, presentSpread, saveSpread, mt(nw) REAL(DP), DIMENSION (m,2) :: newMat_cols REAL(DP), INTENT(in) :: b1(3),b2(3),b3(3) INTEGER :: me, iunit REAL(DP), DIMENSION(m, m) :: matriceTest ! me = me_bgrp + 1 nbMat=2*nw ! WRITE(24, *) 'Spreads before optimization' DO i=1, m ! mt=1.D0-DBLE(Omat(:,i,i)*CONJG(Omat(:,i,i))) presentSpread = SUM(mt*weight) presentSpread = (alat/tpi)*DSQRT(presentSpread) WRITE(24, *) 'Spread of the ', i, '-th wannier function is ' , presentSpread IF( presentSpread < 0.D0 ) & CALL errore( 'cp-wf', 'Something is wrong, WannierF spread negative', 1 ) ! ENDDO ! Umat=0.D0 DO i=1,m Umat(i,i)=1.D0 END DO do i=1,m write (*, *) Umat(i, :) end do do i = 1, nw OmatReal((2*i-1), :, :) = real(Omat(i, :, :), DP) OmatReal(2*i, :, :) = aimag(Omat(i, :, :)) end do ! iterationNumber = 0 stopCriteria = .false. ! ! Calculation of the spread presentSpread = 0. do i=1, nbMat do lig=1, m-1 do col = lig+1, m presentSpread = presentSpread + OmatReal(i, lig, col)*OmatReal(i, lig, col) end do end do end do print *, "Initial spread : ", presentSpread saveSpread=presentSpread ! ! ATTENTION! limite d'iteration = nit !!!! do while ((.not. stopCriteria) .and. (iterationNumber BOHR_RADIUS_ANGS USE mp_global, ONLY : nproc_image, me_image, intra_image_comm USE cp_main_variables, ONLY: descla USE cp_interfaces, ONLY: distribute_lambda, collect_lambda USE printout_base, ONLY : printout_base_open, printout_base_unit, printout_base_close USE parallel_include IMPLICIT NONE INTEGER , INTENT(in) :: nbsp REAL(DP), INTENT(out) :: U(nbsp,nbsp) COMPLEX(DP), INTENT(inout) :: O(nw,nbsp,nbsp) INTEGER :: ista(0:nproc_image-1),iend(0:nproc_image-1) REAL(DP), ALLOCATABLE, DIMENSION(:,:) :: identy,Um,Up,U0,Ul,W,X2,X3,tmpr2,tmpi2, tmpr,tmpi COMPLEX(DP), ALLOCATABLE, DIMENSION(:, :, :) :: Oc, Ocold, Ol INTEGER :: i, j, inw, nmax, iter, iunit,ini, nr, nc, ir, ic, ierr, nlam REAL(DP) :: t0, myt0, fric, t2(nw), mt(nw), oldt0,fric1,spread,sp, eps, wfdt2, fricp, fricm nlam = 1 IF( SIZE( descla ) < 2 ) THEN IF( descla(1)%active_node > 0 ) & nlam = descla(1)%nrcx ELSE IF( ( descla(1)%active_node > 0 ) .OR. ( descla(2)%active_node > 0 ) ) & nlam = MAX( descla(1)%nrcx, descla(2)%nrcx ) END IF ALLOCATE(Oc(nbsp,nbsp, nw), Ocold(nbsp,nbsp,nw), Ol(nlam,nlam,nw)) ALLOCATE(Up(nlam,nlam), U0(nlam,nlam), Um(nlam,nlam), Ul(nlam,nlam), X2(nbsp,nbsp), X3(nbsp,nbsp)) ALLOCATE(W(nlam,nlam), identy(nlam,nlam)) ALLOCATE(tmpr(nlam,nlam), tmpi(nlam,nlam), tmpr2(nlam,nlam), tmpi2(nlam,nlam)) IF(me_image.EQ.0) THEN iunit = printout_base_unit( "spr" ) CALL printout_base_open( "spr" ) END IF eps=1.0E-13_DP nmax=50 fric=wf_friction oldt0=0.D0 nr = descla(1)%nr nc = descla(1)%nc ir = descla(1)%ir ic = descla(1)%ic do inw = 1, nw X2(:,:) = REAL(O(inw, :, :)) X3(:,:) = AIMAG(O(inw, :, :)) call distribute_lambda(X2, tmpr, descla(1)) call distribute_lambda(X3, tmpi, descla(1)) Oc(:,:,inw) = DCMPLX(X2,X3) Ol(:,:,inw) = DCMPLX(tmpr,tmpi) enddo Ocold = Oc X2=0.D0 DO i=1,nbsp X2(i,i)=1.D0 END DO call distribute_lambda(X2, identy, descla(1)) Ul = identy call para_range(1, nbsp, nproc_image, ista, iend) DO inw = 1,nw t2(inw) = 2.D0 * weight(inw) ENDDO U0 = identy Up = identy DO ini=1, nsteps Um = identy U0 = identy fric1 = fric/(2*wfdt) wfdt2 = wfdt*wfdt/(wf_q*(1+fric1)) fricp = 2.d0/(1+fric1) fricm = (1-fric1)/(1+fric1) DO j = 1, nc DO i = 1, nr W(i,j) = 0.D0 DO inw = 1, nw W(i,j) = W(i,j) + & t2(inw)*REAL((Ocold(i+ir-1,j+ic-1,inw)+Ocold(j+ic-1,i+ir-1,inw))*CONJG(Oc(j+ic-1,j+ic-1,inw)) ) ENDDO Up(i,j)=fricp*U0(i,j)-fricm*Um(i,j)+wfdt2*W(i,j) END DO END DO CALL ortho_u(Up,U0,nlam,identy,eps,nmax,nbsp) CALL sqr_mm_cannon( 'N', 'N', nbsp, 1.0d0, Ul, nlam, Up, nlam, 0.0d0, tmpr, nlam, descla(1)) Ul = tmpr Ocold = Oc DO inw = 1, nw tmpr(:,:)=REAL(Ol(:,:,inw)) tmpi(:,:)=AIMAG(Ol(:,:,inw)) CALL sqr_mm_cannon( 'T', 'N', nbsp, 1.0d0, Ul, nlam, tmpr, nlam, 0.0d0, tmpr2, nlam, descla(1)) CALL sqr_mm_cannon( 'T', 'N', nbsp, 1.0d0, Ul, nlam, tmpi, nlam, 0.0d0, tmpi2, nlam, descla(1)) CALL sqr_mm_cannon( 'N', 'N', nbsp, 1.0d0, tmpr2, nlam, Ul, nlam, 0.0d0, tmpr, nlam, descla(1)) CALL sqr_mm_cannon( 'N', 'N', nbsp, 1.0d0, tmpi2, nlam, Ul, nlam, 0.0d0, tmpi, nlam, descla(1)) call collect_lambda(X2, tmpr, descla(1) ) call collect_lambda(X3, tmpi, descla(1)) Oc(:,:,inw)=CMPLX(X2,X3) ENDDO !====================================================================== myt0=0.D0 DO i = ista(me_image), iend(me_image) ! DO i = 1, nbsp DO inw=1, nw myt0=myt0+DBLE(CONJG(Oc( i, i, inw))*Oc( i, i, inw)) END DO END DO #ifdef __MPI CALL mpi_allreduce (myt0, t0, 1, MPI_DOUBLE_PRECISION, MPI_SUM, & intra_image_comm, ierr) #else t0 = myt0 #endif if(mod(ini,10) == 0)print *, 'spread at ', ini, ' = ', t0 IF(ABS(t0-oldt0).LT.tolw) THEN WRITE(*,*) "MLWF Generated at Step",ini exit ELSEIF(ini.GE.nsteps) THEN WRITE(*,*) "MLWF Not generated after",ini,"Steps." END IF IF(oldt0 .GT. t0) fric=fric/2.D0 oldt0=t0 END DO !cycl for nsteps spread=0.0d0 DO i=1, nbsp mt=1.D0-DBLE(Oc(i,i,:)*CONJG(Oc(i,i,:))) sp = (alat*autoaf/tpi)**2*SUM(mt*weight) IF(me_image.EQ.0) WRITE(iunit, '(f10.7)') sp print *, 'sp = ',i, sp IF ( sp < 0.D0 ) & CALL errore( 'cp-wf', 'Something wrong WF Spread negative', 1 ) spread=spread+sp END DO IF(me_image.EQ.0) CALL printout_base_close( "spr" ) spread=spread/nbsp IF(me_image.EQ.0) write(*,*) "Average spread = ", spread call collect_lambda(U,Ul,descla(1)) do inw = 1, nw O(inw,:,:) = Oc(:,:,inw) enddo DEALLOCATE(tmpr,tmpi,tmpr2,tmpi2,identy,Oc,Ocold,Up,U0,Um,W,Ol, Ul, X2, X3) RETURN END SUBROUTINE ddyn_u !------------------------------------------------------------------------- SUBROUTINE ortho_u(up,u0,nlam,identy,eps,nmax,nbsp) !----------------------------------------------------------------------- ! input = up (non-unitary), u0 (must be unitary) ! output = up (unitary), ! the method used is similar (same) to the ortho (les houches 1988) ! x^t x + b x + x^t b^t + a = 1 ! where b = up^t u0 a = up^t up ! USE kinds, ONLY : DP USE mp_global, ONLY : me_image, intra_image_comm USE mp, ONLY : mp_max USE cp_main_variables, ONLY : descla IMPLICIT NONE INTEGER, INTENT(IN) :: nlam, nmax, nbsp REAL(DP),INTENT(INOUT) :: up(nlam,nlam) REAL(DP),INTENT(IN) :: u0(nlam,nlam), identy(nlam,nlam),eps REAL(DP) :: delta INTEGER :: i,j,iter, nc, nr REAL(DP), ALLOCATABLE, DIMENSION(:,:) :: xloc,tmp, tmp2, tmp2t, amat, bmat ALLOCATE( xloc(nlam,nlam)) ALLOCATE( tmp(nlam,nlam),tmp2(nlam,nlam),tmp2t(nlam,nlam) ) ALLOCATE( amat(nlam,nlam),bmat(nlam,nlam)) nr = descla(1)%nr nc = descla(1)%nc CALL sqr_mm_cannon( 'T', 'N', nbsp, 1.0d0, up, nlam, up, nlam, 0.0d0, amat, nlam, descla(1)) CALL sqr_mm_cannon( 'T', 'N', nbsp, 1.0d0, up, nlam, u0, nlam, 0.0d0, bmat, nlam, descla(1)) amat = identy-amat bmat = identy-bmat xloc = 0.5d0*amat delta = 1.0E10_DP DO iter = 1,nmax CALL sqr_mm_cannon( 'N', 'N', nbsp, 1.0d0, bmat, nlam, xloc, nlam, 0.0d0, tmp2, nlam, descla(1)) CALL sqr_mm_cannon( 'T', 'N', nbsp, 1.0d0, xloc, nlam, xloc, nlam, 0.0d0, tmp, nlam, descla(1)) CALL sqr_tr_cannon( nbsp, tmp2, nlam, tmp2t, nlam, descla(1) ) do j=1,nc do i=1,nr xloc(i,j)=0.5d0*(amat(i,j) + tmp2(i,j) + tmp2t(i,j) - tmp(i,j) ) end do end do IF(iter .GE. 3) THEN tmp = up ! upnew = up + u0*xloc CALL sqr_mm_cannon( 'N', 'N', nbsp, 1.0d0, u0, nlam, xloc, nlam, 1.0d0, tmp, nlam, descla(1)) tmp2 = identy CALL sqr_mm_cannon( 'T', 'N', nbsp, 1.0d0, tmp, nlam, tmp, nlam, -1.0d0, tmp2, nlam, descla(1)) delta = 0.d0 do j=1,nc do i=1,nr delta=max(delta,abs(tmp2(i,j)) ) end do end do CALL mp_max( delta, intra_image_comm ) IF( delta .le. eps ) exit ENDIF ENDDO up = tmp DEALLOCATE(xloc, amat, bmat, tmp, tmp2, tmp2t) return END SUBROUTINE ortho_u SUBROUTINE para_range(n1, n2, nprocs, ista, iend) INTEGER n1,n2,nprocs,ista(0:nprocs-1),iend(0:nprocs-1) INTEGER iwork1,iwork2 iwork1 = (n2 - n1 + 1) / nprocs iwork2 = MOD(n2 - n1 + 1, nprocs) do irank = 0,nprocs-1 ista(irank) = irank * iwork1 + n1 + MIN(irank, iwork2) iend(irank) = ista(irank) + iwork1 - 1 IF (iwork2 > irank) iend(irank) = iend(irank) + 1 enddo return end espresso-5.1/CPV/src/efermi.f900000644000175000017500000005240312341373026014315 0ustar mbamba! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE EFERMI(NEL,NBANDS,DEL,NKPTS,OCC,EF,EIGVAL, & & entropy,ismear,nspin) !----------------------------------------------------------------------- ! ! FERMI ENERGY & SMEARING PACKAGE WRITTEN BY A. DE VITA ! IN JULY 1992 FROM R.J. NEEDS ORIGINAL VERSION. ! ! THIS VERSION IS BY N. MARZARI. COLD SMEARING ADDED IN OCT 1995. ! ! GIVEN A SET OF WEIGHTS AND THE EIGENVALUES ASSOCIATED TO THEIR ! K-POINTS FOR BZ SAMPLING, THIS SUBROUTINE PERFORMS TWO TASKS: ! ! (1) DETERMINES THE FERMI LEVEL AND THE OCCUPANCY OF THE STATES ! ACCORDING TO THE CHOSEN (ismear) THERMAL BROADENING ! ! (2) CALCULATES -TS (for schemes 1, 2 and 4, one-half of -TS ! is the entropy correction that should be added to the ! total energy to recover the zero-broadening energy ! (i.e. the true ground-state energy). This is not really ! necessary anymore using schemes 3, 5, and 6: the free ! energy E-TS is automatically independent of the temperature (!) ! up to the fourth (3) or third order (5, 6) in T. Note that ! (5, 6) do not have negative occupation numbers, at variance ! with (3). ! ! THE SUGGESTED SMEARING SCHEME IS ismear=6 (COLD SMEARING II, ! Marzari et al., Phys. Rev. Lett. 82, 3296 (1999) ) ! ! THE SIX SMEARING SCHEMES (CHOOSE ONE WITH PARAMETER ISMEAR) ARE: ! ! (1) GAUSSIAN: ! ! SEE: C-L FU AND K-M HO, PHYS. REV. B 28, 5480 (1983). ! THEIR IMPLEMENTATION WAS VARIATIONAL BUT *NOT* CORRECTED FOR ! SECOND ORDER DEVIATION IN SIGMA, AS ALSO WAS THE SIMILAR SCHEME ! (WITH OPPOSITE SIGN DEVIATION) IN: R.J.NEEDS, R.M.MARTIN AND O.H. ! NIELSEN, PHYS. REV. B 33 , 3778 (1986). ! USING THE CORRECTION CALCULATED HEREAFTER EVERYTHING SHOULD BE OK. ! THE SMEARING FUNCTION IS A GAUSSIAN NORMALISED TO 2. ! THE OCCUPATION FUNCTION IS THE ASSOCIATED COMPLEMENTARY ! ERROR FUNCTION. ! ! (2) FERMI-DIRAC: ! ! SEE: M.J.GILLAN J. PHYS. CONDENS. MATTER 1, 689 (1989), FOLLOWING ! THE SCHEME OUTLINED IN J.CALLAWAY AND N.H.MARCH, SOLID STATE PHYS. 38, ! 136 (1984), AFTER D.N.MERMIN, PHYS. REV 137, A1441 (1965). ! THE OCCUPATION FUNCTION IS TWICE THE SINGLE ELECTRON ! FERMI-DIRAC DISTRIBUTION. ! ! (3) HERMITE-DELTA_EXPANSION: ! ! SEE: METHFESSEL AND PAXTON, PHYS. REV.B 40, 3616 (1989). ! THE SMEARING FUNCTION IS A TRUNCATED EXPANSION OF DIRAC'S DELTA ! IN HERMITE POLINOMIALS. ! FOR THE SMEARING FUNCTION IMPLEMENTED HERE THE TRUNCATION IS ! AT THE FIRST NON-TRIVIAL EXPANSION TERM D1(X). ! THE OCCUPATION FUNCTION IS THE ASSOCIATED PRIMITIVE. ! (NOTE: THE OCCUPATION FUNCTION IS NEITHER MONOTONIC NOR LIMITED ! BETWEEN 0. AND 2. : PLEASE CHECK THE COMPATIBILITY OF THIS WITH ! YOUR CODE'S VERSION AND VERIFY IN A TEST CALCULATION THAT THE ! FERMI LEVEL IS *UNIQUELY* DETERMINED). ! ! THE ENTROPY CORRECTION HOLDS UP TO THE THIRD ORDER IN DELTA AT LEAST, ! AND IT IS NOT NECESSARY (PUT = 0.) FOR THE HERMITE_DELTA EXPANSION, ! SINCE THE LINEAR ENTROPY TERM IN SIGMA IS ZERO BY CONSTRUCTION ! IN THAT CASE. (well, we still need the correct free energy. hence ! delcor is set to its true value, nmar) ! ! (4) GAUSSIAN SPLINES: ! ! similar to a Gaussian smearing, but does not require the ! function inversion to calculate the gradients on the occupancies. ! It is thus to be preferred in a scheme in which the occ are ! independent variables. (N. Marzari) ! ! (5) COLD SMEARING I: ! ! similar to Methfessel-Paxton (zeroes the linear order in the entropy), ! but now with positive-definite occupations (note they can be greater ! than 1). This version has a=-0.5634 (minimization of the bump), not ! a=-0.8165 (monotonic function in the tail) (N. Marzari) ! ! (6) COLD SMEARING II: ! ! the one to use. (5) and (6) are practically identical; this is more elegant. ! For a discussion, see Marzari et al., Phys. Rev. Lett. 82, 3296 (1999), ! or Marzari's PhD thesis (Univ. of Cambridge, 1996), at ! http://quasiamore.mit.edu/phd ! !----------------------------------------------------------------------- ! PLEASE INQUIRE WITH ADV/NMAR FOR REFERENCE & SUGGESTIONS IF ! YOU PLAN TO USE THE PRESENT CORRECTED BZ SAMPLING SCHEME !----------------------------------------------------------------------- ! ! INPUT ! ! NEL ..... NUMBER OF ELECTRONS PER UNIT CELL ! NBANDS .. NUMBER OF BANDS FOR EACH K-POINT ! DEL ..... WIDTH OF GAUSSIAN SMEARING FUNCTION ! NKPTS ... NUMBER OF K-POINTS ! WEIGHT .. THE WEIGHT OF EACH K-POINT ! EIGVAL .. EIGENVALUES ! ISMEAR .. SMEARING SCHEME ! NSPIN ... 1:SPIN RESTRICTED, 2:SPIN UNRESTRICTED ! ! OUTPUT ! ! OCC ..... THE OCCUPANCY OF EACH STATE ! EF ...... THE FERMI ENERGY ! entropy.. -TS (such that the variational functional, i.e. ! the free energy, is E-TS) ! ! Also available ! ! SORT .... THE EIGENVALUES ARE WRITTEN INTO SORT WHICH IS ! THEN SORTED INTO ASCENDING NUMERICAL VALUE, FROM ! WHICH BOUNDS ON EF CAN EASILY BE OBTAINED ! DELCOR THE CORRECTION -0.5*T*S (the correction is needed ! for 1,2 and 4 only) ! !----------------------------------------------------------------------- ! NOTE : ! ! ISMEAR = 1 GAUSSIAN BROADENING ! = 2 FERMI-DIRAC BROADENING ! = 3 HERMITE EXPANSION (1ST ORD.) (right delcor now, nmar) ! = 4 SPLINE OF GAUSSIANS (nmar) ! = 5 COLD SMEARING I (nmar) ! = 6 COLD SMEARING II (nmar) ! ! JMAX THE MAX NUMBER OF BISECTIONS TO GET EF ! XACC THE DESIRED ACCURACY ON EF !----------------------------------------------------------------------- ! ANOTHER NOTE: ! Thanks to the possible > 2 or < 0 ! orbital occupancies in the general case of smearing function, ! (e.g. in the M-P case) the algorithm to find EF has been ! chosen to be the robust bisection method (from Numerical ! Recipes) to allow for non monotonic relation between total ! NEL (see above) and EF. One value for EF which solves ! NEL(EF) - Z = 0 is always found. !----------------------------------------------------------------------- USE kinds, ONLY : DP implicit none INTEGER, INTENT(IN) :: nel, nbands, nkpts REAL(kind=DP), INTENT(OUT) :: occ(nbands,nkpts) REAL(kind=DP), INTENT(OUT) :: ef REAL(kind=DP), INTENT(IN) :: eigval(nbands, nkpts) REAL(kind=DP), INTENT(OUT) :: entropy INTEGER, INTENT(IN) :: ismear, nspin REAL(kind=DP), INTENT(IN) :: del REAL(kind=DP) :: weight(nkpts), sort(nbands*nkpts) REAL(kind=DP), EXTERNAL :: qe_erfc,FERMID,DELTHM,POSHM,POSHM2, EFERMI_SPLINE INTEGER, PARAMETER :: JMAX =300 REAL(kind=DP), PARAMETER :: XACC=1.0D-17 INTEGER :: isppt,j,nkp,neig,nn,n, inel, nel2, j2 REAL(kind=DP) :: fspin, entrofac,entrospin REAL(kind=DP) :: pi,ee,eesh,sq2i,piesqq,z,en REAL(kind=DP) :: eigmin, eigmax, xe1,xe2,z1 REAL(kind=DP) :: x,fmid, f, rtbis,dx,xmid,delcor,fi,a REAL(kind=DP) :: zeta,elow, test if ((nspin == 1).or.(nspin == 2)) then continue else write(*,*) 'ERROR: EFERMI with nspin different from 1 or 2' stop end if fspin=DBLE(nspin) entrofac=3.d0-fspin entrospin=2.d0/fspin ! if ((nspin == 2).and.(ismear == 2)) then ! write(*,*) 'ERROR: EFERMI with nspin.eq.2 and ismear.ne.2' ! stop ! end if if (nspin == 1) then if (2*nbands == nel) then DO ISPPT = 1, NKPTS DO J = 1,NBANDS OCC(J,ISPPT) = 2.0d0 end do end do return end if else if (nbands == nel) then DO ISPPT = 1, NKPTS DO J = 1,NBANDS OCC(J,ISPPT) = 1.0d0 end do end do return end if end if pi=acos(0.d0)*2.d0 ee=exp(1.d0) eesh=sqrt(ee)*0.5d0 sq2i=sqrt(2.0d0)*0.5d0 piesqq=sqrt(ee*pi)*0.25d0 ! note that this has to be changed if k-points are introduced ! do nkp=1,nkpts weight(nkp)=1.d0/DBLE(nkpts) end do Z = DBLE (NEL) ! COPY EIGVAL INTO SORT ARRAY. NEIG = 0 DO ISPPT = 1,NKPTS DO J = 1, NBANDS NEIG = NEIG + 1 SORT(NEIG) = EIGVAL(J,ISPPT) enddo enddo !----------------------------------------------------------------------- ! THE ARRAY IS ORDERED INTO ASCENDING ORDER OF EIGENVALUE !----------------------------------------------------------------------- DO N=2,NKPTS*NBANDS EN=SORT(N) DO NN=N-1,1,-1 IF (SORT(NN).LE.EN) THEN EXIT ENDIF SORT(NN+1)=SORT(NN) enddo SORT(NN+1)=EN end do eigmin=sort(1) eigmax=sort(NKPTS*nbands) !----------------------------------------------------------------------- ! if the temperature is 0 (well, le.1d-9) then set manually the ! Fermi energy between the HOMO and LUMO !----------------------------------------------------------------------- if ((abs(del).le.1.d-9).and.(nspin.eq.1)) then if ((2*(nel/2)).ne.nel) then write(*,*) 'EFERMI: etemp=0.0 but nel is odd !' stop end if nel2=nel/2 entropy=0.d0 ef=0.5d0*(sort(NKPTS*nel2)+sort(NKPTS*nel2+1)) DO ISPPT = 1,NKPTS DO J = 1, NBANDS if (eigval(J,ISPPT).le.ef) then occ(j,isppt)=2.d0 else occ(j,isppt)=0.d0 end if end do end do TEST = 0.d0 ! write(*,'(a8,f12.6)') 'Efermi: ',ef DO ISPPT = 1,NKPTS DO J = 1,NBANDS ! write(*,'(a8,f12.6,f10.6)') 'Eigs,f: ',& ! & eigval(J,ISPPT),OCC(J,ISPPT) TEST = TEST + WEIGHT(ISPPT)*OCC(J,ISPPT) end do end do ! this is commented since occ is normalized to 2 ! test=test*2.0 IF ( ABS(TEST-Z) .GT. 1.0D-5) THEN WRITE(*,*) '*** WARNING *** OCCUPANCIES MANUALLY SET' DO ISPPT = 1,NKPTS DO J = 1, NBANDS if (j.le.nel2) then occ(j,isppt)=2.d0 else occ(j,isppt)=0.d0 end if ! write(*,'(a8,f12.6,f10.6)') 'Eigs,f: ', ! & eigval(J,ISPPT),OCC(J,ISPPT) end do end do end if return else if ((abs(del).le.1.d-9).and.(nspin.ne.1)) then if ((2*(nel/2)).ne.nel) then write(*,*) 'EFERMI: etemp=0.0 but nel is odd !' stop end if entropy=0.d0 ef=0.5d0*(sort(NKPTS*nel)+sort(NKPTS*nel+1)) DO ISPPT = 1,NKPTS DO J = 1, NBANDS if (eigval(J,ISPPT).le.ef) then occ(j,isppt)=1.d0 else occ(j,isppt)=0.d0 end if end do end do TEST = 0.d0 ! write(*,'(a8,f12.6)') 'Efermi: ',ef DO ISPPT = 1,NKPTS DO J = 1,NBANDS ! write(*,'(a8,f12.6,f10.6)') 'Eigs,f: ', & ! & eigval(J,ISPPT),OCC(J,ISPPT) TEST = TEST + WEIGHT(ISPPT)*OCC(J,ISPPT) end do end do ! this is commented since occ is normalized to 2 ! test=test*2.0 IF ( ABS(TEST-Z) .GT. 1.0D-5) THEN WRITE(*,*) '*** WARNING *** OCCUPANCIES MANUALLY SET' DO ISPPT = 1,NKPTS DO J = 1, NBANDS if (j.le.nel) then occ(j,isppt)=1.d0 else occ(j,isppt)=0.d0 end if ! write(*,'(a8,f12.6,f10.6)') 'Eigs,f: ', ! & eigval(J,ISPPT),OCC(J,ISPPT) end do end do end if return end if !----------------------------------------------------------------------- ! THE UPPER BOUND XE2 AND THE LOWER BOUND XE1 ! ARE PUT TO FIRST AND LAST EIGENVALUE, THEN ! THE ACTUAL FERMI ENERGY IS FOUND BY BISECTION ! UPPER BOUND IS ACTUALLY UPPED A BIT, JUST IN CASE !----------------------------------------------------------------------- XE1=SORT(1) XE2=SORT(NKPTS*NBANDS)+del*5.d0 ! write(*,*) NEL,NBANDS,DEL,NKPTS,ismear ! write(*,*) xe1,xe2 ! ! WRITE(*,*) ' ' IF(ISMEAR.EQ.1) THEN ! WRITE(*,*) 'GAUSSIAN BROADENING' ELSEIF(ISMEAR.EQ.2) THEN ! WRITE(*,*) 'FERMI-DIRAC BROADENING' ELSEIF(ISMEAR.EQ.3) THEN ! WRITE(*,*) 'HERMITE-DIRAC BROADENING' ELSEIF(ISMEAR.EQ.4) THEN ! WRITE(*,*) 'GAUSSIAN SPLINES BROADENING' ELSEIF(ISMEAR.EQ.5) THEN ! WRITE(*,*) 'COLD SMEARING I' ELSEIF(ISMEAR.EQ.6) THEN ! WRITE(*,*) 'COLD SMEARING II' ENDIF ! ! FMID = FUNC(X2) in Numerical Recipes. ! Z1=0.D0 DO ISPPT = 1,NKPTS DO J = 1,NBANDS X = (XE2 - EIGVAL(J,ISPPT))/DEL IF(ISMEAR.EQ.1) THEN Z1 = Z1 + WEIGHT(ISPPT)*( 2.d0 - qe_erfc(X) )/fspin ELSEIF(ISMEAR.EQ.2) THEN Z1 = Z1 + WEIGHT(ISPPT)*FERMID(-X)/fspin ELSEIF(ISMEAR.EQ.3) THEN Z1 = Z1 + WEIGHT(ISPPT)*DELTHM(X)/fspin ELSEIF(ISMEAR.EQ.4) THEN Z1 = Z1 + WEIGHT(ISPPT)*EFERMI_SPLINE(-X)/fspin ELSEIF(ISMEAR.EQ.5) THEN Z1 = Z1 + WEIGHT(ISPPT)*POSHM(X)/fspin ELSEIF(ISMEAR.EQ.6) THEN Z1 = Z1 + WEIGHT(ISPPT)*POSHM2(X)/fspin ENDIF END DO END DO FMID= Z1-Z ! write(*,*) fmid,z1,z ! F = FUNC(X1) Z1=0.D0 DO ISPPT = 1,NKPTS DO J = 1,NBANDS X = (XE1 - EIGVAL(J,ISPPT))/DEL IF(ISMEAR.EQ.1) THEN Z1 = Z1 + WEIGHT(ISPPT)*( 2.d0 - qe_erfc(X) )/fspin ELSEIF(ISMEAR.EQ.2) THEN Z1 = Z1 + WEIGHT(ISPPT)*FERMID(-X)/fspin ELSEIF(ISMEAR.EQ.3) THEN Z1 = Z1 + WEIGHT(ISPPT)*DELTHM(X)/fspin ELSEIF(ISMEAR.EQ.4) THEN Z1 = Z1 + WEIGHT(ISPPT)*EFERMI_SPLINE(-X)/fspin ELSEIF(ISMEAR.EQ.5) THEN Z1 = Z1 + WEIGHT(ISPPT)*POSHM(X)/fspin ELSEIF(ISMEAR.EQ.6) THEN Z1 = Z1 + WEIGHT(ISPPT)*POSHM2(X)/fspin ENDIF END DO END DO F= Z1-Z ! write(*,*) f,z1,z IF(F*FMID .GE. 0.D0) THEN WRITE(*,*) 'WARNING: NO FERMI ENERGY INSIDE EIGENVALUES ?' ENDIF IF(F .LT. 0.D0) THEN RTBIS = XE1 DX = XE2 - XE1 ELSE RTBIS = XE2 DX = XE1 - XE2 ENDIF DO J = 1, JMAX DX = DX * 0.5D0 XMID = RTBIS + DX ! FMID=FUNC(XMID) Z1=0.D0 DO ISPPT = 1,NKPTS DO J2 = 1,NBANDS X = (XMID - EIGVAL(J2,ISPPT))/DEL IF(ISMEAR.EQ.1) THEN Z1 = Z1 + WEIGHT(ISPPT)*( 2.d0 - qe_erfc(X) )/fspin ELSEIF(ISMEAR.EQ.2) THEN Z1 = Z1 + WEIGHT(ISPPT)*FERMID(-X)/fspin ELSEIF(ISMEAR.EQ.3) THEN Z1 = Z1 + WEIGHT(ISPPT)*DELTHM(X)/fspin ELSEIF(ISMEAR.EQ.4) THEN Z1 = Z1 + WEIGHT(ISPPT)*EFERMI_SPLINE(-X)/fspin ELSEIF(ISMEAR.EQ.5) THEN Z1 = Z1 + WEIGHT(ISPPT)*POSHM(X)/fspin ELSEIF(ISMEAR.EQ.6) THEN Z1 = Z1 + WEIGHT(ISPPT)*POSHM2(X)/fspin ENDIF END DO END DO FMID= Z1-Z IF(FMID .LE. 0.D0) RTBIS=XMID IF(ABS(DX) .LT. XACC .OR. FMID .EQ. 0) THEN EXIT ENDIF ENDDO IF(J >= JMAX) THEN WRITE(*,*) 'CANNOT BISECT FOREVER, CAN I ?' CALL EXIT ENDIF EF = RTBIS DO ISPPT = 1, NKPTS DO J = 1,NBANDS X = ( EF-EIGVAL(J,ISPPT))/DEL IF(ISMEAR.EQ.1) THEN OCC(J,ISPPT) = 2.d0 - qe_erfc(X) ELSEIF(ISMEAR.EQ.2) THEN OCC(J,ISPPT) = FERMID(-X) ELSEIF(ISMEAR.EQ.3) THEN OCC(J,ISPPT) = DELTHM(X) ELSEIF(ISMEAR.EQ.4) THEN OCC(J,ISPPT) = EFERMI_SPLINE(-X) ELSEIF(ISMEAR.EQ.5) THEN OCC(J,ISPPT) = POSHM(X) ELSEIF(ISMEAR.EQ.6) THEN OCC(J,ISPPT) = POSHM2(X) ENDIF ! occupations are normalized to two or one depending on nspin OCC(J,ISPPT) = OCC(J,ISPPT)/fspin ENDDO ENDDO !------------------------------------------------------------- ! CALCULATES THE CORRECTION TERM TO GET "0 TEMPERATURE" ENERGY !------------------------------------------------------------- DELCOR=0.0D0 DO ISPPT = 1, NKPTS DO J = 1,NBANDS X = ( EF-EIGVAL(J,ISPPT))/DEL IF(ISMEAR.EQ.1) THEN DELCOR=DELCOR & & -DEL*WEIGHT(ISPPT)*EXP(-X*X)/(2.D0*SQRT(pi)) ELSEIF(ISMEAR.EQ.2) THEN FI=FERMID(-X)/entrospin IF(ABS(FI) .GT. 1.d-12) THEN IF(ABS(FI-1.D0) .GT. 1.d-12) THEN DELCOR=DELCOR+DEL*WEIGHT(ISPPT)* & & (FI*LOG(FI)+(1.D0-FI)*LOG(1.D0-FI)) ENDIF ENDIF ELSEIF(ISMEAR.EQ.3) THEN DELCOR=DELCOR+DEL/2.0d0*WEIGHT(ISPPT) & & *(2.0d0*x*x-1.d0)*exp(-x*x)/(2.0d0*sqrt(pi)) ELSEIF(ISMEAR.EQ.4) THEN x=abs(x) zeta=eesh*abs(x)*exp(-(x+sq2i)**2)+piesqq*qe_erfc(x+sq2i) delcor=delcor-del*WEIGHT(ISPPT)*zeta ELSEIF(ISMEAR.EQ.5) THEN a=-0.5634d0 ! a=-0.8165 DELCOR=DELCOR-DEL/2.d0*WEIGHT(ISPPT) & ! NOTE g's are all intended to be normalized to 1 ! ! this following line is -2*int_minf^x [t*g(t)]dt & *(2.d0*a*x**3-2.d0*x*x+1 )*exp(-x*x)/(2.d0*sqrt(pi)) ELSEIF(ISMEAR.EQ.6) THEN DELCOR=DELCOR-DEL/2.d0*WEIGHT(ISPPT) & ! NOTE g's are all intended to be normalized to 1 ! ! this following line is -2*int_minf^x [t*g(t)]dt & *(1.d0-sqrt(2.d0)*x)*exp(-(x-1.d0/sqrt(2.d0))**2)/sqrt(pi) ENDIF END DO END DO !-------------------------------------------------------- ! the correction is also stored in sort, for compatibility, ! and -TS is stored in entropy !-------------------------------------------------------- sort(1)=delcor entropy=entrospin*delcor !-------------------------------------------------------- ! TEST WHETHER OCCUPANCY ADDS UP TO Z !-------------------------------------------------------- TEST = 0.d0 ! write(*,'(a8,f12.6)') 'Efermi: ',ef DO ISPPT = 1,NKPTS DO J = 1,NBANDS ! write(*,'(a8,f12.6,f10.6)') 'Eigs,f: ', ! & eigval(J,ISPPT),OCC(J,ISPPT) TEST = TEST + WEIGHT(ISPPT)*OCC(J,ISPPT) end do end do IF ( ABS(TEST-Z) .GT. 1.0D-5) THEN WRITE(*,*) '*** WARNING ***' WRITE(*,220) TEST,NEL 220 FORMAT(' SUM OF OCCUPANCIES =',F30.20 ,' BUT NEL =',I5) ! ELSE ! !230 FORMAT(' TOTAL CHARGE = ',F15.8) ENDIF ! ! TEST WHETHER THE MATERIAL IS A SEMICONDUCTOR ! IF ( MOD( NEL, 2) .EQ. 1) RETURN INEL = NEL/2 ELOW = EIGVAL(INEL+1,1) DO ISPPT = 2,NKPTS ELOW =MIN( ELOW, EIGVAL(INEL+1,ISPPT)) ENDDO DO ISPPT = 1,NKPTS IF (ELOW .LT. EIGVAL(INEL,ISPPT)) RETURN END DO if (NKPTS.gt.1) then WRITE (*,*) 'MATERIAL MAY BE A SEMICONDUCTOR' end if ! RETURN END SUBROUTINE efermi !----------------------------------------------------------------------- FUNCTION fermid(xx) USE kinds, ONLY : DP implicit none REAL(kind=DP), INTENT(in) :: xx REAL(kind=DP) :: fermid IF(XX .GT. 30.D0) THEN FERMID=0.D0 ELSEIF(XX .LT. -30.D0) THEN FERMID=2.D0 ELSE FERMID=2.D0/(1.D0+EXP(XX)) ENDIF ! RETURN END FUNCTION fermid !----------------------------------------------------------------------- FUNCTION delthm(xx) ! USE kinds, ONLY : DP implicit none REAL(kind=DP) :: delthm REAL(kind=DP), INTENT(in) :: xx REAL(kind=DP), EXTERNAL :: qe_erfc REAL(kind=DP) :: pi pi=3.14159265358979d0 IF(XX .GT. 10.D0) THEN DELTHM=2.D0 ELSEIF(XX .LT. -10.D0) THEN DELTHM=0.D0 ELSE DELTHM=(2.D0-qe_erfc(XX))+XX*EXP(-XX*XX)/SQRT(PI) ENDIF ! RETURN END FUNCTION delthm !----------------------------------------------------------------------- FUNCTION efermi_spline(x) USE kinds, ONLY : DP implicit none REAL(kind=DP) :: efermi_spline REAL(kind=DP), INTENT(in) :: x REAL(kind=DP) :: eesqh,sq2i,fx eesqh=sqrt(exp(1.d0))*0.5d0 sq2i=sqrt(2.d0)*0.5d0 if (x.ge.0.d0) then fx=eesqh*exp(-(x+sq2i)**2) else fx=1.d0-eesqh*exp(-(x-sq2i)**2) endif efermi_spline=2.d0*fx ! return END FUNCTION efermi_spline !----------------------------------------------------------------------- FUNCTION poshm(x) ! ! NOTE g's are all intended to be normalized to 1 ! ! function = 2 * int_minf^x [g(t)] dt ! USE kinds, ONLY : DP implicit none REAL(kind=DP) :: poshm REAL(kind=DP), INTENT(in) :: x REAL(kind=DP), EXTERNAL :: qe_erfc REAL(kind=DP) :: pi,a pi=3.141592653589793238d0 a=-0.5634d0 ! a=-0.8165 IF(X .GT. 10.D0) THEN POSHM=2.D0 ELSEIF(X .LT. -10.D0) THEN POSHM=0.D0 ELSE POSHM=(2.D0-qe_erfc(X))+(-2.d0*a*x*x+2*x+a)*EXP(-X*X)/SQRT(PI)/2.d0 ENDIF ! RETURN END FUNCTION poshm !----------------------------------------------------------------------- FUNCTION poshm2(x) ! ! NOTE g's are all intended to be normalized to 1 ! ! function = 2 * int_minf^x [g(t)] dt ! USE kinds, ONLY : DP implicit none REAL(kind=DP) :: poshm2 REAL(kind=DP), INTENT(in) :: x REAL(kind=DP), EXTERNAL :: qe_erfc REAL(kind=DP) :: pi pi=3.141592653589793238d0 IF(X .GT. 10.D0) THEN POSHM2=2.D0 ELSEIF(X .LT. -10.D0) THEN POSHM2=0.D0 ELSE POSHM2=(2.D0-qe_erfc(X-1.d0/sqrt(2.d0)))+ & & sqrt(2.d0)*exp(-x*x+sqrt(2.d0)*x-0.5d0)/sqrt(pi) ENDIF ! RETURN END FUNCTION poshm2 !----------------------------------------------------------------------- espresso-5.1/CPV/src/entropy.f900000644000175000017500000000327012341373026014544 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! AB INITIO COSTANT PRESSURE MOLECULAR DYNAMICS ! ---------------------------------------------- ! Car-Parrinello Parallel Program ! Carlo Cavazzoni - Gerardo Ballabio ! SISSA, Trieste, Italy - 1997-99 ! Last modified: Tue Nov 30 10:59:55 MET 1999 ! ---------------------------------------------- ! BEGIN manual SUBROUTINE entropy(f,temp,nx,ent) ! this routine computes the entropic contribution due to the finite ! temperature assigned to electrons when computing occupation numbers ! ---------------------------------------------- ! END manual USE kinds IMPLICIT NONE ! ... declare subroutine arguments INTEGER nx REAL(DP) f(nx),temp,ent ! ... declare other variables INTEGER i REAL(DP) fm REAL(DP), PARAMETER :: eps = 1.0d-10 ! end of declarations ! ---------------------------------------------- ent=0.d0 DO i=1,nx fm=0.5d0*f(i) ent = ent+ fm*log(eps+fm)+(1.d0-fm)*log(eps+1.d0-fm) END DO ent=-2.d0*temp*ent RETURN END SUBROUTINE entropy subroutine entropy_s(f,temp,nx,ent) use kinds implicit none integer nx integer i real(DP) f(nx),temp,ent, fm,eps parameter(eps=1.d-10) ent=0.d0 do i=1,nx fm=0.5d0*f(i) ent = ent+ fm*log(eps+fm)+(1.d0-fm)*log(eps+1.d0-fm) enddo ent=-2.d0*temp*ent return end subroutine entropy_s espresso-5.1/CPV/src/init_run.f900000644000175000017500000002667212341373026014706 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE init_run() !---------------------------------------------------------------------------- ! ! ... this routine initialise the cp code and allocates (calling the ! ... appropriate routines) the memory ! USE kinds, ONLY : DP USE control_flags, ONLY : nbeg, nomore, lwf, iverbosity, iprint, & ndr, ndw, tfor, tprnfor, tpre, ts_vdw, & force_pairing USE cp_electronic_mass, ONLY : emass, emass_cutoff USE ions_base, ONLY : na, nax, nat, nsp, iforce, amass, cdms USE ions_positions, ONLY : tau0, taum, taup, taus, tausm, tausp, & vels, velsm, velsp, fion, fionm USE gvecw, ONLY : ngw, ngw_g, ggp USE smallbox_gvec, ONLY : ngb USE gvecs, ONLY : ngms USE gvect, ONLY : ngm, gstart USE fft_base, ONLY : dfftp, dffts USE electrons_base, ONLY : nspin, nbsp, nbspx, nupdwn, f USE uspp, ONLY : nkb, vkb, deeq, becsum,nkbus USE core, ONLY : rhoc USE wavefunctions_module, ONLY : c0_bgrp, cm_bgrp, phi_bgrp USE ensemble_dft, ONLY : tens, z0t USE cg_module, ONLY : tcg USE electrons_base, ONLY : nudx, nbnd USE efield_module, ONLY : tefield, tefield2 USE uspp_param, ONLY : nhm USE ions_nose, ONLY : xnhp0, xnhpm, vnhp, nhpcl, nhpdim USE cell_base, ONLY : h, hold, hnew, velh, tpiba2, ibrav, & alat, celldm, at, bg USE cp_main_variables, ONLY : lambda, lambdam, lambdap, ema0bg, & sfac, eigr, taub, & irb, eigrb, rhog, rhos, rhor, & acc, acc_this_run, wfill, & edft, nfi, vpot, ht0, htm, iprint_stdout USE cp_main_variables, ONLY : allocate_mainvar, descla USE energies, ONLY : eself, enl, ekin, etot, enthal, ekincm USE dener, ONLY : detot USE time_step, ONLY : dt2, delt, tps USE electrons_nose, ONLY : xnhe0, xnhem, vnhe USE electrons_base, ONLY : nbspx_bgrp USE cell_nose, ONLY : xnhh0, xnhhm, vnhh USE funct, ONLY : dft_is_meta USE metagga, ONLY : crosstaus, dkedtaus, gradwfc ! USE efcalc, ONLY : clear_nbeg USE local_pseudo, ONLY : allocate_local_pseudo USE cp_electronic_mass, ONLY : emass_precond USE wannier_subroutines, ONLY : wannier_startup USE cp_interfaces, ONLY : readfile USE ions_base, ONLY : ions_cofmass USE ensemble_dft, ONLY : id_matrix_init, allocate_ensemble_dft, h_matrix_init USE efield_module, ONLY : allocate_efield, allocate_efield2 USE cg_module, ONLY : allocate_cg USE wannier_module, ONLY : allocate_wannier USE io_files, ONLY : tmp_dir, prefix USE io_global, ONLY : ionode, stdout USE printout_base, ONLY : printout_base_init USE wave_types, ONLY : wave_descriptor_info USE xml_io_base, ONLY : restart_dir, create_directory, change_directory USE orthogonalize_base, ONLY : mesure_diag_perf, mesure_mmul_perf USE ions_base, ONLY : ions_reference_positions, cdmi USE mp_bands, ONLY : nbgrp USE mp, ONLY : mp_barrier USE wrappers USE ldaU_cp USE control_flags, ONLY : lwfpbe0nscf ! Lingzhu Kong USE wavefunctions_module, ONLY : cv0 ! Lingzhu Kong USE wannier_base, ONLY : vnbsp ! Lingzhu Kong USE cp_restart, ONLY : cp_read_wfc_Kong ! Lingzhu Kong USE tsvdw_module, ONLY : tsvdw_initialize ! IMPLICIT NONE ! INTEGER :: i CHARACTER(LEN=256) :: dirname REAL(DP) :: a1(3), a2(3), a3(3) LOGICAL :: ftest ! ! CALL start_clock( 'initialize' ) ! ! ... initialize directories ! IF( nbeg < 0 ) THEN CALL create_directory( tmp_dir ) END IF ! CALL plugin_initialization() IF( nbgrp > 1 .AND. force_pairing ) & CALL errore( ' init_run ', ' force_pairing with parallelization over bands not implemented yet ', 1 ) ! CALL printout_base_init( tmp_dir, prefix ) ! dirname = restart_dir( tmp_dir, ndw ) ! ! ... Create main restart directory ! CALL create_directory( dirname ) ! ! ... initialize g-vectors, fft grids ! ... The number of g-vectors are based on the input celldm! ! CALL init_dimensions() ! ! ... initialize atomic positions and cell ! CALL init_geometry() ! ! ... mesure performances of parallel routines ! CALL mesure_mmul_perf( nudx ) ! CALL mesure_diag_perf( nudx ) ! IF ( lwf ) CALL clear_nbeg( nbeg ) ! !======================================================================= ! allocate and initialize local and nonlocal potentials !======================================================================= ! CALL allocate_local_pseudo( ngms, nsp ) ! CALL nlinit() ! !======================================================================= ! allocation of all arrays not already allocated in init and nlinit !======================================================================= ! CALL allocate_mainvar( ngw, ngw_g, ngb, ngms, ngm, dfftp%nr1,dfftp%nr2,dfftp%nr3, dfftp%nr1x, & dfftp%nr2x, dfftp%npl, dfftp%nnr, dffts%nnr, nat, nax, nsp, & nspin, nbsp, nbspx, nupdwn, nkb, gstart, nudx, & tpre, nbspx_bgrp ) ! !======================================================================= ! Initialization of the TS-vdW code (RAD) !======================================================================= ! IF (ts_vdw) CALL tsvdw_initialize() ! ! initialize wave functions descriptors and allocate wf ! IF(lwfpbe0nscf) ALLOCATE(cv0( ngw, vnbsp ) ) ! Lingzhu Kong ALLOCATE( c0_bgrp( ngw, nbspx ) ) ALLOCATE( cm_bgrp( ngw, nbspx ) ) ALLOCATE( phi_bgrp( ngw, nbspx ) ) ! IF ( iverbosity > 1 ) THEN ! CALL wave_descriptor_info( wfill, 'wfill', stdout ) ! END IF ! ! Depending on the verbosity set the frequency of ! verbose information to stdout ! IF( iverbosity < 0 ) iprint_stdout = 100 * iprint IF( iverbosity ==0 .OR. iverbosity == 1 ) iprint_stdout = 10 * iprint IF( iverbosity > 1 ) iprint_stdout = iprint ! acc = 0.D0 acc_this_run = 0.D0 ! edft%ent = 0.D0 edft%esr = 0.D0 edft%evdw = 0.D0 edft%ekin = 0.D0 edft%enl = 0.D0 edft%etot = 0.D0 ! ALLOCATE( becsum( nhm*(nhm+1)/2, nat, nspin ) ) ALLOCATE( deeq( nhm, nhm, nat, nspin ) ) ! ALLOCATE( vkb( ngw, nkb ) ) ! IF ( dft_is_meta() .AND. tens ) & CALL errore( ' init_run ', 'ensemble_dft not implemented for metaGGA', 1 ) ! IF ( dft_is_meta() .AND. nbgrp > 1 ) & CALL errore( ' init_run ', 'band parallelization not implemented for metaGGA', 1 ) ! IF ( dft_is_meta() .AND. tpre ) THEN ! ALLOCATE( crosstaus( dffts%nnr, 6, nspin ) ) ALLOCATE( dkedtaus( dffts%nnr, 3, 3, nspin ) ) ALLOCATE( gradwfc( dffts%nnr, 3 ) ) ! END IF ! IF ( lwf ) THEN IF( nbgrp > 1 ) & CALL errore( ' init_run ', ' wannier with band parallelization not implemented ', 1 ) CALL allocate_wannier( nbsp, dffts%nnr, nspin, ngm ) END IF ! IF ( tens .OR. tcg ) THEN IF( nbgrp > 1 ) & CALL errore( ' init_run ', ' ensemble_dft with band parallelization not implemented ', 1 ) CALL allocate_ensemble_dft( nkb, nbsp, ngw, nudx, nspin, nbspx, & dffts%nnr, nat, descla ) END IF ! IF ( tcg ) THEN CALL allocate_cg( ngw, nbspx,nkbus ) END IF ! IF ( tefield ) THEN IF( nbgrp > 1 ) & CALL errore( ' init_run ', ' efield with band paralleliztion not implemented ', 1 ) CALL allocate_efield( ngw, ngw_g, nbspx, nhm, nax, nsp ) END IF IF ( tefield2 ) THEN IF( nbgrp > 1 ) & CALL errore( ' init_run ', ' efield with band paralleliztion not implemented ', 1 ) CALL allocate_efield2( ngw, nbspx, nhm, nax, nsp ) END IF ! IF ( ALLOCATED( deeq ) ) deeq(:,:,:,:) = 0.D0 ! IF ( ALLOCATED( lambda ) ) lambda = 0.D0 IF ( ALLOCATED( lambdam ) ) lambdam = 0.D0 ! taum = tau0 taup = 0.D0 tausm = taus tausp = 0.D0 vels = 0.D0 velsm = 0.D0 velsp = 0.D0 ! hnew = h ! IF(lwfpbe0nscf) cv0=( 0.D0, 0.D0 ) ! Lingzhu Kong cm_bgrp = ( 0.D0, 0.D0 ) c0_bgrp = ( 0.D0, 0.D0 ) phi_bgrp = ( 0.D0, 0.D0 ) ! IF ( tens ) then CALL id_matrix_init( descla, nspin ) CALL h_matrix_init( descla, nspin ) ENDIF ! a1(:)=at(:,1)*alat; a2(:)=at(:,2)*alat; a3(:)=at(:,3)*alat IF ( lwf ) CALL wannier_startup( ibrav, alat, a1, a2, a3, & bg(:,1), bg(:,2), bg(:,3) ) ! ! ... Calculate: ema0bg = ecutmass / MAX( 1.0d0, (2pi/alat)^2 * |G|^2 ) ! CALL emass_precond( ema0bg, ggp, ngw, tpiba2, emass_cutoff ) ! CALL print_legend( ) ! CALL ldaU_init() ! IF ( nbeg < 0 ) THEN ! !====================================================================== ! Initialize from scratch nbeg = -1 !====================================================================== ! nfi = 0 ! CALL from_scratch( ) ! ELSE ! !====================================================================== ! nbeg = 0, nbeg = 1 !====================================================================== ! !====================================================================== ! Kong, read the valence orbitals IF(lwfpbe0nscf) THEN CALL cp_read_wfc_Kong( 36, tmp_dir, 1, 1, 1, 1, cv0, 'v' ) ENDIF !====================================================================== i = 1 CALL readfile( i, h, hold, nfi, c0_bgrp, cm_bgrp, taus, & tausm, vels, velsm, acc, lambda, lambdam, xnhe0, xnhem, & vnhe, xnhp0, xnhpm, vnhp,nhpcl,nhpdim,ekincm, xnhh0, xnhhm,& vnhh, velh, fion, tps, z0t, f ) ! CALL from_restart( ) ! END IF ! !======================================================================= ! restart with new averages and nfi=0 !======================================================================= ! ! ... reset some variables if nbeg < 0 ! ... ( new simulation or step counter reset to 0 ) ! IF ( nbeg <= 0 ) THEN ! acc = 0.D0 nfi = 0 ! END IF ! IF ( .NOT. tfor .AND. .NOT. tprnfor ) fion(:,:) = 0.D0 ! nomore = nomore + nfi ! ! Set center of mass for scaled coordinates ! CALL ions_cofmass( taus, amass, na, nsp, cdms ) ! IF ( nbeg <= 0 .OR. lwf ) THEN ! CALL ions_reference_positions( tau0 ) ! END IF ! CALL stop_clock( 'initialize' ) ! RETURN ! END SUBROUTINE init_run espresso-5.1/CPV/src/ions_nose.f900000644000175000017500000003727112341373026015050 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE ions_nose !------------------------------------------------------------------------------! USE kinds, ONLY: DP ! IMPLICIT NONE ! Some comments are in order on how Nose-Hoover chains work here (K.N. Kudin) ! the present code allows one to use "massive" Nose-Hoover chains: ! TOBIAS DJ, MARTYNA GJ, KLEIN ML ! JOURNAL OF PHYSICAL CHEMISTRY 97 (49): 12959-12966 DEC 9 1993 ! ! one chain for the whole system is specified by nhptyp=0 (or nothing) ! currently input options allow one chain per atomic type (nhptyp=1), ! one chain per atom (nhptyp=2), and fancy stuff with nhptyp=3 (& nhgrp) ! ! nhpdim is the total number of the resulting NH chains ! nhpend is 1 if there is a chain above all chains, otherwise it is 0 ! nhpbeg is usually 0, however, if using groups (nhptyp = 3), it might ! be desirable to have atoms with uncontrolled temperature, so then ! nhpbeg becomes 1, and all the "uncontrolled" atoms are assigned to the ! 1st thermostat that is always zero in velocity and so it does not ! affect ionic motion ! array atm2nhp(1:nat) gives the chain number from the atom list (which ! is sorted by type) ! anum2nhp is the number of degrees of freedom per chain (now just 3*nat_i) ! ekin2nhp is the kinetic energy of the present chain ! gkbt2nhp are the NH chain parameters ! qnp are the chain masses, qnp_ is a temporary array for now ! see subroutine ions_nose_allocate on what are the dimensions of these ! variables ! INTEGER :: nhpcl=1, ndega, nhpdim=1, nhptyp=0, nhpbeg=0, nhpend=0 INTEGER, ALLOCATABLE :: atm2nhp(:) INTEGER, ALLOCATABLE :: anum2nhp(:) REAL(DP), ALLOCATABLE :: vnhp(:), xnhp0(:), xnhpm(:), xnhpp(:), & ekin2nhp(:), gkbt2nhp(:), scal2nhp(:), qnp(:), qnp_(:), fnosep(:) REAL(DP) :: gkbt = 0.0_DP REAL(DP) :: kbt = 0.0_DP REAL(DP) :: tempw = 0.0_DP !------------------------------------------------------------------------------! CONTAINS !------------------------------------------------------------------------------! subroutine ions_nose_init( tempw_ , fnosep_ , nhpcl_ , nhptyp_ , ndega_ , nhgrp_ , fnhscl_) use constants, only: k_boltzmann_au, pi, au_terahertz use control_flags, only: tnosep use ions_base, only: ndofp, tions_base_init, nsp, nat, na real(DP), intent(in) :: tempw_ , fnosep_(:), fnhscl_(:) integer, intent(in) :: nhpcl_ , nhptyp_ , ndega_ , nhgrp_(:) integer :: i, j, iat, is, ia IF( .NOT. tions_base_init ) & CALL errore(' ions_nose_init ', ' you should call ions_base_init first ', 1 ) ! tempw = tempw_ ! IF( ALLOCATED( atm2nhp ) ) DEALLOCATE( atm2nhp ) ALLOCATE( atm2nhp( nat ) ) ! atm2nhp(1:nat) = 1 ! if (tnosep) then nhpcl = MAX( nhpcl_ , 1 ) if (abs(nhptyp_).eq.1) then nhptyp = 1 if (nhptyp_.gt.0) nhpend = 1 nhpdim = nsp iat = 0 do is=1,nsp do ia=1,na(is) iat = iat+1 atm2nhp(iat) = is enddo enddo elseif (abs(nhptyp_).eq.2) then nhptyp = 2 if (nhptyp_.gt.0) nhpend = 1 nhpdim = nat do i=1,nat atm2nhp(i) = i enddo elseif (abs(nhptyp_).eq.3) then nhptyp = 3 if (nhptyp_.gt.0) nhpend = 1 call set_atmnhp(nhgrp_,atm2nhp,nhpdim,nhpbeg) endif ! Add one more chain on top if needed nhpdim = nhpdim + nhpend endif ! CALL ions_nose_allocate() ! ! Setup Nose-Hoover chain masses ! if ( ndega_ > 0 ) then ndega = ndega_ else if ( ndega_ < 0 ) then ndega = ndofp - ( - ndega_ ) else ndega = ndofp endif ! there is no need to initialize any Nose variables except for nhpcl ! and ndega if the thermostat is not used ! IF( tnosep ) THEN IF( nhpcl > SIZE( fnosep_ ) ) & CALL errore(' ions_nose_init ', ' fnosep size too small ', nhpcl ) ! count the number of atoms per thermostat and set the value anum2nhp = 0 iat = 0 ! Here we shall check if the scaling factors are provided If (maxval(fnhscl_(1:nsp)).lt.0.0d0) then scal2nhp = DBLE(ndega)/DBLE(3*nat) else scal2nhp = -1.0_DP endif ! do is=1,nsp do ia=1,na(is) iat = iat+1 anum2nhp(atm2nhp(iat)) = anum2nhp(atm2nhp(iat)) + 3 if (scal2nhp(atm2nhp(iat)).lt.0.0_DP) & scal2nhp(atm2nhp(iat)) = fnhscl_(is) enddo enddo if (nhpend.eq.1) anum2nhp(nhpdim) = nhpdim - 1 - nhpbeg ! set gkbt2nhp for each thermostat do is=1,nhpdim gkbt2nhp(is) = DBLE(anum2nhp(is)) * tempw * k_boltzmann_au enddo ! scale the target energy by some factor convering 3*nat to ndega if (nhpdim.gt.1) then do is=1,(nhpdim-nhpend) if (scal2nhp(is).lt.0.0_DP) scal2nhp(is) = 1.0_DP gkbt2nhp(is) = gkbt2nhp(is)*scal2nhp(is) enddo endif ! gkbt = DBLE( ndega ) * tempw * k_boltzmann_au if (nhpdim.eq.1) gkbt2nhp(1) = gkbt kbt = tempw * k_boltzmann_au fnosep(1) = fnosep_ (1) if( fnosep(1) > 0.0_DP ) then qnp_(1) = 2.0_DP * gkbt / ( fnosep(1) * ( 2.0_DP * pi ) * au_terahertz )**2 end if if ( nhpcl > 1 ) then do i = 2, nhpcl fnosep(i) = fnosep_ (i) if( fnosep(i) > 0.0_DP ) then qnp_(i) = 2.0_DP * tempw * k_boltzmann_au / & ( fnosep(i) * ( 2.0_DP * pi ) * au_terahertz )**2 else qnp_(i) = qnp_(1) / DBLE(ndega) endif enddo endif ! set the NH masses for all the chains do j=1,nhpdim qnp((j-1)*nhpcl+1) = qnp_(1)*gkbt2nhp(j)/gkbt If (nhpcl > 1) then do i=2,nhpcl qnp((j-1)*nhpcl+i) = qnp_(i) enddo endif enddo END IF ! WRITE( stdout,100) ! WRITE( stdout,110) QNOSEP,TEMPW ! WRITE( stdout,120) GLIB ! WRITE( stdout,130) NSVAR ! 100 FORMAT(//' * Temperature control of ions with nose thermostat'/) ! 110 FORMAT(3X,'nose mass:',F12.4,' temperature (K):',F12.4) ! 120 FORMAT(3X,'ionic degrees of freedom: ',F5.0) ! 130 FORMAT(3X,'time steps per nose oscillation: ',I5,//) return end subroutine ions_nose_init subroutine set_atmnhp(nhgrp,atm2nhp,nhpdim,nhpbeg) ! use ions_base, only: nsp, nat, na IMPLICIT NONE integer, intent(in) :: nhgrp(:) integer, intent(out) :: nhpdim, nhpbeg, atm2nhp(:) ! integer :: i,iat,is,ia,igrpmax,ith INTEGER, ALLOCATABLE :: indtmp(:) ! ! find maximum group igrpmax = max(maxval(nhgrp(1:nsp)),1) ! find out which groups are assigned (assuming gaps) allocate(indtmp(igrpmax)) indtmp=0 do is=1,nsp if (nhgrp(is).gt.0) indtmp(nhgrp(is)) = 1 enddo ! assign thermostat index to requested groups ith = 0 ! make the 1st thermostat idle if there are negative groups if (minval(nhgrp(1:nsp)).lt.0) ith = 1 nhpbeg = ith ! do i=1,igrpmax if (indtmp(i).gt.0) then ith = ith + 1 indtmp(i) = ith endif enddo ! assign thermostats to atoms depending on what is requested iat = 0 do is=1,nsp do ia=1,na(is) iat = iat+1 if (nhgrp(is).gt.0) then atm2nhp(iat) = indtmp(nhgrp(is)) elseif (nhgrp(is).eq.0) then ith = ith + 1 atm2nhp(iat) = ith else atm2nhp(iat) = 1 endif enddo enddo nhpdim = ith deallocate(indtmp) return ! end subroutine set_atmnhp SUBROUTINE ions_nose_allocate() ! IMPLICIT NONE ! IF ( .NOT. ALLOCATED( vnhp ) ) ALLOCATE( vnhp( nhpcl*nhpdim ) ) IF ( .NOT. ALLOCATED( xnhp0 ) ) ALLOCATE( xnhp0( nhpcl*nhpdim ) ) IF ( .NOT. ALLOCATED( xnhpm ) ) ALLOCATE( xnhpm( nhpcl*nhpdim ) ) IF ( .NOT. ALLOCATED( xnhpp ) ) ALLOCATE( xnhpp( nhpcl*nhpdim ) ) IF ( .NOT. ALLOCATED( ekin2nhp ) ) ALLOCATE( ekin2nhp( nhpdim ) ) IF ( .NOT. ALLOCATED( gkbt2nhp ) ) ALLOCATE( gkbt2nhp( nhpdim ) ) IF ( .NOT. ALLOCATED( scal2nhp ) ) ALLOCATE( scal2nhp( nhpdim ) ) IF ( .NOT. ALLOCATED( anum2nhp ) ) ALLOCATE( anum2nhp( nhpdim ) ) IF ( .NOT. ALLOCATED( qnp ) ) ALLOCATE( qnp( nhpcl*nhpdim ) ) IF ( .NOT. ALLOCATED( qnp_ ) ) ALLOCATE( qnp_( nhpcl ) ) IF ( .NOT. ALLOCATED( fnosep ) ) ALLOCATE( fnosep( nhpcl ) ) ! vnhp = 0.0_DP xnhp0 = 0.0_DP xnhpm = 0.0_DP xnhpp = 0.0_DP qnp = 0.0_DP qnp_ = 0.0_DP ! RETURN ! END SUBROUTINE ions_nose_allocate SUBROUTINE ions_nose_deallocate() ! IMPLICIT NONE ! IF ( ALLOCATED( vnhp ) ) DEALLOCATE( vnhp ) IF ( ALLOCATED( xnhp0 ) ) DEALLOCATE( xnhp0 ) IF ( ALLOCATED( xnhpm ) ) DEALLOCATE( xnhpm ) IF ( ALLOCATED( xnhpp ) ) DEALLOCATE( xnhpp ) IF ( ALLOCATED( ekin2nhp ) ) DEALLOCATE( ekin2nhp ) IF ( ALLOCATED( gkbt2nhp ) ) DEALLOCATE( gkbt2nhp ) IF ( ALLOCATED( scal2nhp ) ) DEALLOCATE( scal2nhp ) IF ( ALLOCATED( anum2nhp ) ) DEALLOCATE( anum2nhp ) IF ( ALLOCATED( qnp ) ) DEALLOCATE( qnp ) IF ( ALLOCATED( qnp_ ) ) DEALLOCATE( qnp_ ) IF ( ALLOCATED( fnosep ) ) DEALLOCATE( fnosep ) ! IF( ALLOCATED( atm2nhp ) ) DEALLOCATE( atm2nhp ) ! RETURN ! END SUBROUTINE ions_nose_deallocate SUBROUTINE ions_nose_info(delt) use constants, only: au_terahertz, pi USE io_global, ONLY: stdout USE control_flags, ONLY: tnosep use ions_base, only: nat IMPLICIT NONE REAL(DP), INTENT(IN) :: delt INTEGER :: nsvar, i, j REAL(DP) :: wnosep IF( tnosep ) THEN ! IF( fnosep(1) <= 0.0_DP) & CALL errore(' ions_nose_info ', ' fnosep less than zero ', 1) IF( delt <= 0.0_DP) & CALL errore(' ions_nose_info ', ' delt less than zero ', 1) wnosep = fnosep(1) * ( 2.0_DP * pi ) * au_terahertz nsvar = ( 2.0_DP * pi ) / ( wnosep * delt ) WRITE( stdout,563) tempw, nhpcl, ndega, nsvar WRITE( stdout,564) (fnosep(i),i=1,nhpcl) WRITE( stdout,565) nhptyp, (nhpdim-nhpend), nhpend , nhpbeg, & (anum2nhp(j),j=1,nhpdim) do j=1,nhpdim WRITE( stdout,566) j,(qnp((j-1)*nhpcl+i),i=1,nhpcl) enddo WRITE( stdout,567) do j=1,nat,20 WRITE( stdout,568) atm2nhp(j:min(nat,j+19)) enddo END IF 563 format( //, & & 3X,'ion dynamics with nose` temperature control:', /, & & 3X,'temperature required = ', f10.5, ' (kelvin) ', /, & & 3X,'NH chain length = ', i3, /, & & 3X,'active degrees of freedom = ', i3, /, & & 3X,'time steps per nose osc. = ', i5 ) 564 format( //, & & 3X,'nose` frequency(es) = ', 20(1X,f10.3) ) ! 565 format( //, & ! & 3X,'nose` mass(es) = ', 20(1X,f10.3), // ) 565 FORMAT( //, & & 3X,'the requested type of NH chains is ',I5, /, & & 3X,'total number of thermostats used ',I5,1X,I1,1X,I1, /, & & 3X,'ionic degrees of freedom for each chain ',20(1X,I3)) 566 format( //, & & 3X,'nose` mass(es) for chain ',i4,' = ', 20(1X,f10.3)) 567 format( //, & & 3X,'atom i (in sorted order) is assigned to this thermostat :') 568 format(20(1X,I3)) RETURN END SUBROUTINE ions_nose_info subroutine ions_nosevel( vnhp, xnhp0, xnhpm, delt, nhpcl, nhpdim ) implicit none integer, intent(in) :: nhpcl, nhpdim real(DP), intent(inout) :: vnhp(nhpcl,nhpdim) real(DP), intent(in) :: xnhp0(nhpcl,nhpdim), xnhpm(nhpcl,nhpdim), delt integer :: i,j do j=1,nhpdim do i=1,nhpcl vnhp(i,j)=2.0_DP * (xnhp0(i,j)-xnhpm(i,j)) / delt-vnhp(i,j) end do end do ! ! this is equivalent to: ! velocity = ( 3.0_DP * xnos0(1) - 4.0_DP * xnosm(1) + xnos2m(1) ) / ( 2.0_DP * delt ) ! but we do not need variables at time t-2dt ( xnos2m ) ! return end subroutine ions_nosevel subroutine ions_noseupd( xnhpp, xnhp0, xnhpm, delt, qnp, ekin2nhp, gkbt2nhp, vnhp, kbt, nhpcl, nhpdim, nhpbeg, nhpend ) implicit none integer, intent(in) :: nhpcl, nhpdim, nhpbeg, nhpend real(DP), intent(out) :: xnhpp(nhpcl,nhpdim) real(DP), intent(in) :: xnhp0(nhpcl,nhpdim), xnhpm(nhpcl,nhpdim), delt, qnp(nhpcl,nhpdim), gkbt2nhp(:), kbt real(DP), intent(inout) :: ekin2nhp(:), vnhp(nhpcl,nhpdim) integer :: i, j real(DP) :: dt2, zetfrc, vp1dlt, ekinend, vp1dend ekinend = 0.0_DP vp1dend = 0.0_DP if ( nhpend == 1 ) vp1dend = 0.5_DP * delt * vnhp(1,nhpdim) dt2 = delt**2 if (nhpbeg.gt.0) then xnhpp(:,1:nhpbeg) = 0.0_DP vnhp (:,1:nhpbeg) = 0.0_DP endif do j=(1+nhpbeg),nhpdim zetfrc = dt2 * ( 2.0_DP * ekin2nhp(j) - gkbt2nhp(j) ) if ( nhpcl > 1 ) then do i=1,(nhpcl-1) vp1dlt = 0.5_DP * delt * vnhp(i+1,j) xnhpp(i,j)=(2.0_DP * xnhp0(i,j)-(1.0_DP-vp1dlt)*xnhpm(i,j)+zetfrc/qnp(i,j))& & /(1.0_DP+vp1dlt) ! xnhpp(i,j)=(4.d0*xnhp0(i,j)-(2.d0-delt*vnhp(i+1,j))*xnhpm(i,j)+2.0d0*dt2*zetfrc/qnp(i,j))& ! & /(2.d0+delt*vnhp(i+1,j)) vnhp(i,j) =(xnhpp(i,j)-xnhpm(i,j))/( 2.0_DP * delt ) zetfrc = dt2*(qnp(i,j)*vnhp(i,j)**2-kbt) end do end if ! Last variable i = nhpcl if ( nhpend == 0 ) then xnhpp(i,j)=2.0_DP * xnhp0(i,j)-xnhpm(i,j) + zetfrc / qnp(i,j) vnhp(i,j) =(xnhpp(i,j)-xnhpm(i,j))/( 2.0_DP * delt ) elseif (nhpend == 1) then xnhpp(i,j)=(2.0_DP*xnhp0(i,j)-(1.0_DP-vp1dend)*xnhpm(i,j)+zetfrc/qnp(i,j))& & /(1.0_DP+vp1dend) vnhp(i,j) =(xnhpp(i,j)-xnhpm(i,j))/( 2.0_DP * delt ) ekinend = ekinend + (qnp(i,j)*vnhp(i,j)**2) if (j.eq.(nhpdim-nhpend)) then ekin2nhp(nhpdim) = 0.5_DP*ekinend vp1dend = 0.0_DP endif endif enddo ! Update velocities ! do i=1,nhpcl ! vnhp(i) =(xnhpp(i)-xnhpm(i))/( 2.0d0 * delt ) ! end do ! These are the original expressions from cpr.f90 ! xnhpp(1)=2.*xnhp0(1)-xnhpm(1)+2.*( delt**2 / qnp(1) )*(ekinpr-gkbt/2.) ! vnhp(1) =(xnhpp(1)-xnhpm(1))/( 2.0d0 * delt ) return end subroutine ions_noseupd real(DP) function ions_nose_nrg( xnhp0, vnhp, qnp, gkbt2nhp, kbt, nhpcl, nhpdim ) implicit none integer :: nhpcl, nhpdim real(DP) :: gkbt2nhp(:), qnp(nhpcl,nhpdim),vnhp(nhpcl,nhpdim),xnhp0(nhpcl,nhpdim),kbt integer :: i,j real(DP) :: stmp ! stmp = 0.0_DP do j=1,nhpdim stmp = stmp + 0.5_DP * qnp(1,j) * vnhp(1,j) * vnhp(1,j) + gkbt2nhp(j) * xnhp0(1,j) if (nhpcl > 1) then do i=2,nhpcl stmp = stmp + 0.5_DP * qnp(i,j) * vnhp(i,j) * vnhp(i,j) + kbt * xnhp0(i,j) enddo endif enddo ions_nose_nrg = stmp return end function ions_nose_nrg subroutine ions_nose_shiftvar( xnhpp, xnhp0, xnhpm ) ! shift values of nose variables to start a new step implicit none real(DP), intent(inout) :: xnhpm(:), xnhp0(:) real(DP), intent(in) :: xnhpp(:) ! xnhpm = xnhp0 xnhp0 = xnhpp ! return end subroutine ions_nose_shiftvar !------------------------------------------------------------------------------! END MODULE ions_nose !------------------------------------------------------------------------------! espresso-5.1/CPV/src/plugin_initialization.f900000644000175000017500000000122412341373026017446 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE plugin_initialization() !---------------------------------------------------------------------------- ! ! USE io_global, ONLY : stdout, ionode USE kinds, ONLY : DP USE io_files, ONLY : tmp_dir ! USE plugin_flags ! IMPLICIT NONE ! ! END SUBROUTINE plugin_initialization espresso-5.1/CPV/src/smallbox.f900000644000175000017500000000532012341373026014663 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE small_box !------------------------------------------------------------------------------! ! This module contains the basis vector of the small sub-cell ! (small box) used for charge augmentation process USE kinds, ONLY : DP ! IMPLICIT NONE SAVE ! atb: lattice crystal vectors in "alatb" units (equivalent to "at") REAL(DP) :: atb(3,3) = RESHAPE( (/ 0.0_DP /), (/ 3, 3 /), (/ 0.0_DP /) ) ! bgb: reciprocal lattice vectors, in 2pi/alatb units (equiv to "bg") REAL(DP) :: bgb(3,3) = RESHAPE( (/ 0.0_DP /), (/ 3, 3 /), (/ 0.0_DP /) ) ! omegab: volume of the small boxes REAl(DP) :: omegab = 0.0_DP ! alatb: lattice parameter of the boxes (the equivalent of "alat") REAL(DP) :: alatb = 0.0_DP ! tpibab: 2pi/alatb REAL(DP) :: tpibab = 0.0_DP !------------------------------------------------------------------------------! CONTAINS !------------------------------------------------------------------------------! ! SUBROUTINE small_box_set( alat, omega, at, rat1, rat2, rat3, tprint ) USE constants, ONLY: pi USE io_global, ONLY: stdout, ionode IMPLICIT NONE REAL(DP), INTENT(IN) :: alat, omega, at(3,3), rat1, rat2, rat3 LOGICAL, INTENT(IN) :: tprint alatb = alat * rat1 IF( alatb <= 0.0_DP ) CALL errore(' small_box_set ', ' alatb <= 0 ', 1 ) tpibab = 2.0_DP * pi / alatb atb(:,1) = at(:,1)*alat * rat1 / alatb atb(:,2) = at(:,2)*alat * rat2 / alatb atb(:,3) = at(:,3)*alat * rat3 / alatb omegab = omega * rat1 * rat2 * rat3 ! CALL recips( atb(1,1), atb(1,2), atb(1,3), bgb(1,1), bgb(1,2), bgb(1,3) ) IF( tprint .AND. ionode ) THEN WRITE( stdout,*) WRITE( stdout,220) 220 format( 3X, 'unit vectors of box grid cell',/, & & 3X, 'in real space:',25x,'in reciprocal space:') WRITE( stdout,'(3X,3f10.4,10x,3f10.4)') atb(:,1)*alatb, bgb(:,1) WRITE( stdout,'(3X,3f10.4,10x,3f10.4)') atb(:,2)*alatb, bgb(:,2) WRITE( stdout,'(3X,3f10.4,10x,3f10.4)') atb(:,3)*alatb, bgb(:,3) END IF RETURN END SUBROUTINE small_box_set ! !------------------------------------------------------------------------------! END MODULE small_box !------------------------------------------------------------------------------! espresso-5.1/CPV/src/gradrho.f900000644000175000017500000001023012341373026014464 0ustar mbamba! ! Copyright (C) 2002-2020 Quantum ESPRESSO grouo ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------- SUBROUTINE gradrho(nspin,rhog,drho,d2rho,dxdyrho,dxdzrho,dydzrho) !---------------------------------------------------------------------- ! ! calculates gradient of charge density for gradient corrections ! in: charge density on G-space out: gradient in R-space ! use cell_base use gvect, only: ngm, nl, nlm, g USE fft_interfaces, ONLY: invfft USE fft_base, ONLY: dfftp ! implicit none ! input integer nspin complex(kind=8) rhog(ngm,nspin) ! output real(kind=8) drho(3,dfftp%nnr), d2rho(3,dfftp%nnr), & & dxdyrho(dfftp%nnr), dxdzrho(dfftp%nnr), & & dydzrho(dfftp%nnr) ! local complex(kind=8), allocatable:: v(:), w(:) complex(kind=8) ci integer iss, ig, ir, j ! ! allocate(v(dfftp%nnr)) allocate(w(dfftp%nnr)) ci=(0.0d0,1.0d0) do ir = 1,dfftp%nnr do j = 1,3 drho(j,ir) = 0.d0 d2rho(j,ir) = 0.d0 end do dxdyrho(ir) = 0.d0 dxdzrho(ir) = 0.d0 dydzrho(ir) = 0.d0 end do do iss=1,nspin do ig=1,dfftp%nnr v(ig)=(0.0d0,0.0d0) w(ig)=(0.0d0,0.0d0) end do do ig=1,ngm v(nl(ig)) = ci*tpiba*g(1,ig)*rhog(ig,iss) v(nlm(ig))=conjg(ci*tpiba*g(1,ig)*rhog(ig,iss)) w(nl(ig)) = -1.d0*tpiba**2*g(1,ig)**2*rhog(ig,iss) w(nlm(ig))=conjg(-1.d0*tpiba**2*g(1,ig)**2*rhog(ig,iss)) end do call invfft('Dense',v, dfftp ) call invfft('Dense',w, dfftp ) do ir=1,dfftp%nnr drho(1,ir)=drho(1,ir)+real(v(ir)) d2rho(1,ir)=d2rho(1,ir)+real(w(ir)) end do ! do ig=1,dfftp%nnr v(ig)=(0.0d0,0.0d0) w(ig)=(0.0d0,0.0d0) end do do ig=1,ngm v(nl(ig))= tpiba*( ci*g(2,ig)*rhog(ig,iss)- & & g(3,ig)*rhog(ig,iss) ) v(nlm(ig))=tpiba*(conjg(ci*g(2,ig)*rhog(ig,iss))+ & & ci*conjg(ci*g(3,ig)*rhog(ig,iss))) w(nl(ig))= -1.d0*tpiba**2*( g(2,ig)**2*rhog(ig,iss) + & & ci*g(3,ig)**2*rhog(ig,iss) ) w(nlm(ig))=-1.d0*tpiba**2*(conjg(g(2,ig)**2*rhog(ig,iss))+ & & ci*conjg(g(3,ig)**2*rhog(ig,iss))) end do call invfft('Dense',v, dfftp ) call invfft('Dense',w, dfftp ) do ir=1,dfftp%nnr drho(2,ir)=drho(2,ir)+real(v(ir)) drho(3,ir)=drho(3,ir)+aimag(v(ir)) d2rho(2,ir)=d2rho(2,ir)+real(w(ir)) d2rho(3,ir)=d2rho(3,ir)+aimag(w(ir)) end do do ig=1,dfftp%nnr v(ig)=(0.0d0,0.0d0) end do do ig=1,ngm v(nl(ig)) = -1.d0*tpiba**2*g(1,ig)*g(2,ig)*rhog(ig,iss) v(nlm(ig))=conjg(v(nl(ig))) end do call invfft('Dense',v, dfftp ) do ir=1,dfftp%nnr dxdyrho(ir)=dxdyrho(ir)+real(v(ir)) end do ! do ig=1,dfftp%nnr v(ig)=(0.0d0,0.0d0) end do do ig=1,ngm v(nl(ig))= -1.d0*tpiba**2*(g(1,ig)*g(3,ig)*rhog(ig,iss) + & & ci*g(2,ig)*g(3,ig)*rhog(ig,iss) ) v(nlm(ig))=-1.d0*tpiba**2* & & (conjg(g(1,ig)*g(3,ig)*rhog(ig,iss))+ & & ci*conjg(g(2,ig)*g(3,ig)*rhog(ig,iss))) end do call invfft('Dense',v, dfftp ) do ir=1,dfftp%nnr dxdzrho(ir)=dxdzrho(ir)+real(v(ir)) dydzrho(ir)=dydzrho(ir)+aimag(v(ir)) end do end do deallocate(v) deallocate(w) END SUBROUTINE gradrho espresso-5.1/CPV/src/wave.f900000644000175000017500000004466112341373026014017 0ustar mbamba! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! SUBROUTINE interpolate_lambda_x( lambdap, lambda, lambdam ) !=----------------------------------------------------------------------------=! USE kinds, ONLY: DP IMPLICIT NONE REAL(DP) :: lambdap(:,:,:), lambda(:,:,:), lambdam(:,:,:) ! ! interpolate new lambda at (t+dt) from lambda(t) and lambda(t-dt): ! lambdap= 2.d0*lambda - lambdam lambdam=lambda lambda =lambdap RETURN END SUBROUTINE interpolate_lambda_x !=----------------------------------------------------------------------------=! SUBROUTINE update_lambda_x( i, lambda, c0, c2, n, noff, tdist ) !=----------------------------------------------------------------------------=! USE kinds, ONLY: DP USE electrons_module, ONLY: ib_owner, ib_local USE mp_global, ONLY: me_bgrp, intra_bgrp_comm USE mp, ONLY: mp_sum USE wave_base, ONLY: hpsi USE gvect, ONLY: gstart IMPLICIT NONE INTEGER, INTENT(IN) :: n, noff REAL(DP) :: lambda(:,:) COMPLEX(DP) :: c0(:,:), c2(:) INTEGER, INTENT(IN) :: i LOGICAL, INTENT(IN) :: tdist ! if .true. lambda is distributed ! REAL(DP), ALLOCATABLE :: prod(:) INTEGER :: ibl LOGICAL :: gzero ! gzero = (gstart == 2) ALLOCATE( prod( n ) ) prod = hpsi( gzero, c0, SIZE( c0, 1 ), c2, n, noff ) CALL mp_sum( prod, intra_bgrp_comm ) IF( tdist ) THEN IF( me_bgrp == ib_owner( i ) ) THEN ibl = ib_local( i ) lambda( ibl, : ) = prod( : ) END IF ELSE lambda( i, : ) = prod( : ) END IF DEALLOCATE( prod ) RETURN END SUBROUTINE update_lambda_x !=----------------------------------------------------------------------------=! subroutine elec_fakekine_x( ekincm, ema0bg, emass, c0, cm, ngw, n, noff, delt ) !=----------------------------------------------------------------------------=! ! ! This subroutine computes the CP(fake) wave functions kinetic energy USE kinds, only : DP use mp, only : mp_sum use mp_global, only : intra_bgrp_comm, nbgrp, inter_bgrp_comm use gvect, only : gstart use wave_base, only : wave_speed2 ! IMPLICIT NONE ! integer, intent(in) :: ngw ! number of plane wave coeff. integer, intent(in) :: n ! number of bands integer, intent(in) :: noff ! offset for band index real(DP), intent(out) :: ekincm real(DP), intent(in) :: ema0bg( ngw ), delt, emass complex(DP), intent(in) :: c0( ngw, n ), cm( ngw, n ) ! real(DP), allocatable :: emainv(:) real(DP) :: ftmp integer :: i ALLOCATE( emainv( ngw ) ) emainv = 1.0d0 / ema0bg ftmp = 1.0d0 if( gstart == 2 ) ftmp = 0.5d0 ekincm=0.0d0 do i = noff, n + noff - 1 ekincm = ekincm + 2.0d0 * wave_speed2( c0(:,i), cm(:,i), emainv, ftmp ) end do ekincm = ekincm * emass / ( delt * delt ) CALL mp_sum( ekincm, intra_bgrp_comm ) IF( nbgrp > 1 ) & CALL mp_sum( ekincm, inter_bgrp_comm ) DEALLOCATE( emainv ) return end subroutine elec_fakekine_x !=----------------------------------------------------------------------------=! subroutine bandsum( bsum, c0, ngw, tbgrp ) !=----------------------------------------------------------------------------=! ! ! This subroutine computes the CP(fake) wave functions kinetic energy USE kinds, only : DP use mp, only : mp_sum use mp_global, only : intra_bgrp_comm, nbgrp, inter_bgrp_comm USE electrons_base, ONLY : nbsp, nbsp_bgrp ! IMPLICIT NONE ! integer, intent(in) :: ngw ! number of plane wave coeff. real(DP), intent(out) :: bsum complex(DP), intent(in) :: c0( ngw, * ) logical, intent(in) :: tbgrp ! integer :: i, n n = nbsp IF( tbgrp ) n = nbsp_bgrp bsum=0.0d0 do i = 1, n bsum = bsum + SUM( DBLE( CONJG( c0( :, i ) ) * c0( :, i ) ) ) end do CALL mp_sum( bsum, intra_bgrp_comm ) IF( tbgrp ) & CALL mp_sum( bsum, inter_bgrp_comm ) return end subroutine bandsum !=----------------------------------------------------------------------------=! SUBROUTINE protate_x ( c0, bec, c0rot, becrot, ngwl, nss, noff, lambda, nrl, & na, nsp, ish, nh, np_rot, me_rot, comm_rot ) !=----------------------------------------------------------------------------=! ! this routine rotates the wave functions using the matrix lambda ! it works with a block-like distributed matrix ! of the Lagrange multipliers ( lambda ). ! no replicated data are used, allowing scalability for large problems. ! the layout of lambda is as follows : ! ! (PE 0) (PE 1) .. (PE NPE-1) ! lambda(1 ,1:nx) lambda(2 ,1:nx) .. lambda(NPE ,1:nx) ! lambda(1+ NPE,1:nx) lambda(2+ NPE,1:nx) .. lambda(NPE+ NPE,1:nx) ! lambda(1+2*NPE,1:nx) lambda(2+2*NPE,1:nx) .. lambda(NPE+2*NPE,1:nx) ! ! distributes lambda's rows across processors with a blocking factor ! of 1, ( row 1 to PE 1, row 2 to PE 2, .. row nproc_bgrp+1 to PE 1 and ! so on). ! nrl = local number of rows ! ---------------------------------------------- ! ... declare modules USE kinds, ONLY: DP USE mp, ONLY: mp_bcast USE mp_global, ONLY: nproc_bgrp, me_bgrp, intra_bgrp_comm USE dspev_module, ONLY: pdspev_drv, dspev_drv IMPLICIT NONE ! ... declare subroutine arguments INTEGER, INTENT(IN) :: ngwl, nss, nrl, noff INTEGER, INTENT(IN) :: na(:), nsp, ish(:), nh(:) INTEGER, INTENT(IN) :: np_rot, me_rot, comm_rot COMPLEX(DP), INTENT(IN) :: c0(:,:) COMPLEX(DP), INTENT(OUT) :: c0rot(:,:) REAL(DP), INTENT(IN) :: lambda(:,:) REAL(DP), INTENT(IN) :: bec(:,:) REAL(DP), INTENT(OUT) :: becrot(:,:) ! ... declare other variables INTEGER :: i, j, k, ip INTEGER :: jl, nrl_ip, is, ia, jv, jnl, nj REAL(DP), ALLOCATABLE :: uu(:,:) IF( nss < 1 ) THEN RETURN END IF CALL start_clock('protate') DO i = 1, nss c0rot( :, i+noff-1 ) = 0.0d0 becrot(:,i+noff-1 ) = 0.0d0 END DO ! becrot = 0.0d0 ! c0rot = 0.0d0 DO ip = 1, np_rot nrl_ip = nss / np_rot IF( (ip-1) < mod( nss, np_rot ) ) THEN nrl_ip = nrl_ip + 1 END IF ALLOCATE( uu( nrl_ip, nss ) ) IF( me_rot .EQ. (ip-1) ) THEN uu = lambda( 1:nrl_ip, 1:nss ) END IF CALL mp_bcast( uu, (ip-1), intra_bgrp_comm) j = ip DO jl = 1, nrl_ip DO i = 1, nss CALL daxpy(2*ngwl,uu(jl,i),c0(1,j+noff-1),1,c0rot(1,i+noff-1),1) END DO do is=1,nsp do jv=1,nh(is) do ia=1,na(is) jnl=ish(is)+(jv-1)*na(is)+ia do i = 1, nss becrot(jnl,i+noff-1) = becrot(jnl,i+noff-1)+ uu(jl, i) * bec( jnl, j+noff-1 ) end do end do end do end do j = j + np_rot END DO DEALLOCATE(uu) END DO CALL stop_clock('protate') RETURN END SUBROUTINE protate_x !=----------------------------------------------------------------------------=! SUBROUTINE crot_gamma2 ( c0rot, c0, ngw, n, noffr, noff, lambda, nx, eig ) !=----------------------------------------------------------------------------=! ! this routine rotates the wave functions to the Kohn-Sham base ! it works with a block-like distributed matrix ! of the Lagrange multipliers ( lambda ). ! ! ... declare modules USE kinds, ONLY: DP USE mp, ONLY: mp_bcast USE mp_global, ONLY: nproc_bgrp, me_bgrp, intra_bgrp_comm USE dspev_module, ONLY: dspev_drv IMPLICIT NONE ! ... declare subroutine arguments INTEGER, INTENT(IN) :: ngw, n, nx, noffr, noff COMPLEX(DP), INTENT(INOUT) :: c0rot(:,:) COMPLEX(DP), INTENT(IN) :: c0(:,:) REAL(DP), INTENT(IN) :: lambda(:,:) REAL(DP), INTENT(OUT) :: eig(:) ! ... declare other variables ! REAL(DP), ALLOCATABLE :: vv(:,:), ap(:) INTEGER :: i, j, k IF( nx < 1 ) THEN RETURN END IF ALLOCATE( vv( nx, nx ) ) ! NON distributed lambda ALLOCATE( ap( nx * ( nx + 1 ) / 2 ) ) K = 0 DO J = 1, n DO I = J, n K = K + 1 ap( k ) = lambda( i, j ) END DO END DO CALL dspev_drv( 'V', 'L', n, ap, eig, vv, nx ) DEALLOCATE( ap ) DO i = 1, n c0rot( :, i+noffr-1 ) = 0.0d0 END DO DO j = 1, n DO i = 1, n CALL daxpy( 2*ngw, vv(j,i), c0(1,j+noff-1), 1, c0rot(1,i+noffr-1), 1 ) END DO END DO DEALLOCATE( vv ) RETURN END SUBROUTINE crot_gamma2 !=----------------------------------------------------------------------------=! SUBROUTINE proj_gamma( a, b, ngw, n, noff, lambda) !=----------------------------------------------------------------------------=! ! projection A=A-SUM{B}B ! no replicated data are used, allowing scalability for large problems. ! The layout of lambda is as follows : ! ! (PE 0) (PE 1) .. (PE NPE-1) ! lambda(1 ,1:nx) lambda(2 ,1:nx) .. lambda(NPE ,1:nx) ! lambda(1+ NPE,1:nx) lambda(2+ NPE,1:nx) .. lambda(NPE+ NPE,1:nx) ! lambda(1+2*NPE,1:nx) lambda(2+2*NPE,1:nx) .. lambda(NPE+2*NPE,1:nx) ! ! distribute lambda's rows across processors with a blocking factor ! of 1, ( row 1 to PE 1, row 2 to PE 2, .. row nproc_bgrp+1 to PE 1 and so on). ! ---------------------------------------------- ! ... declare modules USE kinds, ONLY: DP USE mp_global, ONLY: nproc_bgrp, me_bgrp, intra_bgrp_comm USE wave_base, ONLY: dotp USE gvect, ONLY: gstart IMPLICIT NONE ! ... declare subroutine arguments INTEGER, INTENT( IN ) :: ngw, n, noff COMPLEX(DP), INTENT(INOUT) :: a(:,:), b(:,:) REAL(DP), OPTIONAL :: lambda(:,:) ! ... declare other variables REAL(DP), ALLOCATABLE :: ee(:) INTEGER :: i, j, jl COMPLEX(DP) :: alp LOGICAL :: gzero ! ... end of declarations ! ---------------------------------------------- IF( n < 1 ) THEN RETURN END IF gzero = (gstart == 2) ALLOCATE( ee( n ) ) DO i = 1, n DO j = 1, n ee(j) = -dotp( gzero, ngw, b(:,j+noff-1), a(:,i+noff-1), intra_bgrp_comm ) END DO IF( PRESENT(lambda) ) THEN IF( MOD( (i-1), nproc_bgrp ) == me_bgrp ) THEN DO j = 1, n lambda( (i-1) / nproc_bgrp + 1, j ) = ee(j) END DO END IF END IF DO j = 1, n alp = CMPLX(ee(j),0.0d0,kind=DP) CALL zaxpy( ngw, alp, b(1,j+noff-1), 1, a(1,i+noff-1), 1 ) END DO END DO DEALLOCATE(ee) RETURN END SUBROUTINE proj_gamma !=----------------------------------------------------------------------------=! SUBROUTINE wave_rand_init_x( cm_bgrp, global ) !=----------------------------------------------------------------------------=! ! this routine sets the initial wavefunctions at random ! ... declare modules USE kinds, ONLY: DP USE mp, ONLY: mp_sum, mp_max, mp_min USE mp_wave, ONLY: splitwf USE mp_global, ONLY: me_bgrp, nproc_bgrp, root_bgrp, intra_bgrp_comm USE gvect, ONLY: ig_l2g, gstart USE gvect, ONLY: mill, gg USE gvecw, ONLY: ngw, ngw_g USE io_global, ONLY: stdout USE random_numbers, ONLY: randy USE electrons_base, ONLY: nbsp, ibgrp_g2l IMPLICIT NONE ! ... declare subroutine arguments COMPLEX(DP), INTENT(OUT) :: cm_bgrp(:,:) LOGICAL, OPTIONAL, INTENT(IN) :: global ! ... declare other variables INTEGER :: ntest, ig, ib, ibgrp, lb, ub REAL(DP) :: rranf1, rranf2, ampre, ggx, fac, r1, r2, r3 COMPLEX(DP), ALLOCATABLE :: pwt( : ) REAL(DP), ALLOCATABLE :: RND( : , : ) INTEGER :: iss, n1, n2, m1, m2, i LOGICAL :: local ! ... initialize the wave functions in such a way that the values ! ... of the components are independent on the number of processors ! ... with "local" option the initialization is independend from G sorting too! ! ... Check array dimensions IF( SIZE( cm_bgrp, 1 ) < ngw ) THEN CALL errore(' wave_rand_init ', ' wrong dimensions ', 3) END IF local = .TRUE. IF( PRESENT( global ) ) THEN local = .NOT. global END IF ! ... Reset them to zero cm_bgrp = 0.0d0 ampre = 0.01d0 IF( local ) THEN ggx = MAXVAL( gg( 1:ngw ) ) CALL mp_max( ggx, intra_bgrp_comm ) lb = MINVAL( mill ) CALL mp_min( lb, intra_bgrp_comm ) ub = MAXVAL( mill ) CALL mp_max( ub, intra_bgrp_comm ) ALLOCATE( RND( 3, lb:ub ) ) ELSE ALLOCATE( pwt( ngw_g ) ) ntest = ngw_g / 4 IF( ntest < SIZE( cm_bgrp, 2 ) ) THEN ntest = ngw_g END IF END IF ! ! ... assign random values to wave functions ! DO ib = 1, nbsp IF( local ) THEN rnd = 0.0d0 DO ig = lb, ub rnd( 1, ig ) = 0.5d0 - randy() rnd( 2, ig ) = 0.5d0 - randy() rnd( 3, ig ) = 0.5d0 - randy() END DO ELSE pwt( : ) = 0.0d0 DO ig = 3, ntest rranf1 = 0.5d0 - randy() rranf2 = randy() pwt( ig ) = ampre * CMPLX(rranf1, rranf2,kind=DP) END DO END IF ! ibgrp = ibgrp_g2l( ib ) ! IF( ibgrp > 0 ) THEN DO ig = 1, ngw IF( local ) THEN IF( gg(ig) < ggx / 2.519d0 ) THEN ! 2.519 = 4^(2/3), equivalent to keep only (ngw_g/4) values rranf1 = rnd( 1, mill(1,ig) ) * rnd( 2, mill(2,ig) ) * rnd( 3, mill(3,ig) ) rranf2 = 0.0d0 cm_bgrp( ig, ibgrp ) = ampre * CMPLX( rranf1, rranf2 ,kind=DP) / ( 1.0d0 + gg(ig) ) END IF ELSE cm_bgrp( ig, ibgrp ) = pwt( ig_l2g( ig ) ) END IF END DO END IF ! END DO IF ( gstart == 2 ) THEN cm_bgrp( 1, : ) = (0.0d0, 0.0d0) END IF IF( ALLOCATED( pwt ) ) DEALLOCATE( pwt ) IF( ALLOCATED( rnd ) ) DEALLOCATE( rnd ) #ifdef PIPPO_DEBUG write(1000+mpime,fmt='(8I5)') nbsp, nbsp_bgrp, nudx, nudx_bgrp, nbsp, nbsp_bgrp, nbspx, nbspx_bgrp DO iss = 1, nspin write(1000+mpime,fmt='(5I5)') nupdwn(iss), iupdwn(iss), nupdwn_bgrp(iss), iupdwn_bgrp(iss), i2gupdwn_bgrp(iss) END DO DO ib = 1, nbsp ! write(1000+mpime,fmt='(2I5)') ib, ibgrp_g2l(ib) END DO DO iss = nspin, 1, -1 write(1000+mpime,*) 'copy' n1 = iupdwn_bgrp(iss) n2 = n1 + nupdwn_bgrp(iss) - 1 m1 = iupdwn(iss)+i2gupdwn_bgrp(iss) - 1 m2 = m1 + nupdwn_bgrp(iss) - 1 DO i = m2, m1, -1 write(1000+mpime,fmt='(2I5)') i, i-m1+n1 END DO END DO DO iss = 1, nspin m1 = iupdwn(iss)+i2gupdwn_bgrp(iss) - 1 m2 = m1 + nupdwn_bgrp(iss) - 1 write(1000+mpime,*) 'zero' DO i = iupdwn(iss), m1-1 write(1000+mpime,fmt='(1I5)') i END DO write(1000+mpime,*) 'zero' DO i = m2+1, iupdwn(iss) + nupdwn(iss) - 1 write(1000+mpime,fmt='(1I5)') i END DO END DO #endif RETURN END SUBROUTINE wave_rand_init_x SUBROUTINE c_bgrp_expand_x( c_bgrp ) USE kinds, ONLY: DP USE mp, ONLY: mp_sum USE electrons_base, ONLY: nspin, i2gupdwn_bgrp, nupdwn, iupdwn_bgrp, iupdwn, nupdwn_bgrp USE mp_global, ONLY: nbgrp, inter_bgrp_comm IMPLICIT NONE COMPLEX(DP) :: c_bgrp(:,:) INTEGER :: iss, n1, n2, m1, m2, i IF( nbgrp < 2 ) & RETURN DO iss = nspin, 1, -1 n1 = iupdwn_bgrp(iss) n2 = n1 + nupdwn_bgrp(iss) - 1 m1 = iupdwn(iss)+i2gupdwn_bgrp(iss) - 1 m2 = m1 + nupdwn_bgrp(iss) - 1 DO i = m2, m1, -1 c_bgrp(:,i) = c_bgrp(:,i-m1+n1) END DO END DO DO iss = 1, nspin m1 = iupdwn(iss)+i2gupdwn_bgrp(iss) - 1 m2 = m1 + nupdwn_bgrp(iss) - 1 DO i = iupdwn(iss), m1-1 c_bgrp(:,i) = 0.0d0 END DO DO i = m2+1, iupdwn(iss) + nupdwn(iss) - 1 c_bgrp(:,i) = 0.0d0 END DO END DO CALL mp_sum( c_bgrp, inter_bgrp_comm ) RETURN END SUBROUTINE c_bgrp_expand_x SUBROUTINE c_bgrp_pack_x( c_bgrp ) USE kinds, ONLY: DP USE electrons_base, ONLY: nspin, i2gupdwn_bgrp, nupdwn, iupdwn_bgrp, iupdwn, nupdwn_bgrp USE mp_global, ONLY: nbgrp IMPLICIT NONE COMPLEX(DP) :: c_bgrp(:,:) INTEGER :: iss, n1, n2, m1, m2, i IF( nbgrp < 2 ) & RETURN DO iss = 1, nspin n1 = iupdwn_bgrp(iss) n2 = n1 + nupdwn_bgrp(iss) - 1 m1 = iupdwn(iss)+i2gupdwn_bgrp(iss) - 1 m2 = m1 + nupdwn_bgrp(iss) - 1 DO i = n1, n2 c_bgrp(:,i) = c_bgrp(:,i-n1+m1) END DO END DO RETURN END SUBROUTINE c_bgrp_pack_x espresso-5.1/CPV/src/cg.f900000644000175000017500000001022112341373026013427 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE cg_module USE kinds, ONLY: DP IMPLICIT NONE SAVE logical :: tcg = .false. ! if true do conjugate gradient minimization for electrons integer :: maxiter = 100 ! maximum number of iterations real(DP) :: conv_thr = 1.d-5 !energy treshold real(DP) :: passop =0.3d0 !small step for conjugate gradient integer :: niter_cg_restart = 20!frequency (in iterations) for restarting the cg algorith !*** !*** Conjugate Gradient !*** COMPLEX(DP), ALLOCATABLE :: c0old(:,:)!old wfcs for extrapolation logical ene_ok!if .true. do not recalculate energy REAL(DP) :: enever!used to pass data to/from inner_loop INTEGER :: itercg!number of cg iterations ! real(DP) ene0,ene1,dene0,enever,enesti !energy terms for linear minimization along hi ! real(DP) passof,passov !step to minimum: effective, estimated ! integer itercg !iteration number ! logical ltresh!flag for convergence on energy ! real(DP) passo!step to minimum ! real(DP) etotnew,etotold!energies ! real(DP) spasso!sign of small step ! logical tcutoff! ! logical restartcg!if .true. restart again the CG algorithm, performing a SD step ! integer numok!counter on converged iterations ! real(DP) pcnum,pcden ! integer iter3 ! real(DP) ebanda integer ninner_ef CONTAINS SUBROUTINE cg_init( tcg_ , maxiter_ , conv_thr_ , passop_ ,niter_cg_restart_) USE kinds, ONLY: DP LOGICAL, INTENT(IN) :: tcg_ INTEGER, INTENT(IN) :: maxiter_ REAL(DP), INTENT(IN) :: conv_thr_ , passop_ INTEGER :: niter_cg_restart_ tcg=tcg_ maxiter=maxiter_ conv_thr=conv_thr_ passop=passop_ niter_cg_restart=niter_cg_restart_ IF (tcg) CALL cg_info() RETURN END SUBROUTINE cg_init SUBROUTINE cg_info() USE io_global, ONLY: stdout if(tcg) then write (stdout,400) maxiter,conv_thr,passop,niter_cg_restart endif 400 format (/4x,'========================================' & & /4x,'| CONJUGATE GRADIENT |' & & /4x,'========================================' & & /4x,'| iterations =',i14,' |' & & /4x,'| conv_thr =',f14.11,' a.u. |' & & /4x,'| passop =',f14.5,' a.u. |' & & /4x,'| niter_cg_restart =',i4,' |' & & /4x,'========================================') RETURN END SUBROUTINE cg_info SUBROUTINE allocate_cg( ngw, nx, nhsavb ) IMPLICIT NONE INTEGER, INTENT(IN) :: ngw, nx, nhsavb allocate(c0old(ngw,nx)) RETURN END SUBROUTINE allocate_cg SUBROUTINE deallocate_cg( ) IMPLICIT NONE IF( ALLOCATED( c0old ) ) deallocate(c0old ) RETURN END SUBROUTINE deallocate_cg SUBROUTINE cg_update( tfirst, nfi, c0 ) use gvecw, only: ngw use electrons_base, only: n => nbsp IMPLICIT NONE COMPLEX(DP) :: c0( :, : ) INTEGER :: nfi LOGICAL :: tfirst INTEGER :: i, ig if(.not. tfirst.and.(mod(nfi,10).ne.1)) then call DSWAP(2*ngw*n,c0,1,c0old,1) do i=1,n do ig=1,ngw c0(ig,i)=-c0(ig,i)+2.d0*c0old(ig,i) enddo enddo else do i=1,n do ig=1,ngw c0old(ig,i)=c0(ig,i) enddo enddo endif RETURN END SUBROUTINE cg_update SUBROUTINE print_clock_tcg() CALL print_clock( 'runcg_uspp') CALL print_clock( 'inner_loop') CALL print_clock( 'rotate' ) CALL print_clock( 'calcmt' ) CALL print_clock( 'calcm' ) CALL print_clock( 'pc2' ) CALL print_clock( 'pcdaga2' ) CALL print_clock( 'set_x_minus1' ) CALL print_clock( 'xminus1' ) CALL print_clock( 'emass_p_tpa' ) return END SUBROUTINE print_clock_tcg END MODULE cg_module espresso-5.1/CPV/src/wave_types.f900000644000175000017500000001307612341373026015237 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ---------------------------------------------- ! BEGIN manual ! ---------------------------------------------- ! MODULE wave_types ! ---------------------------------------------- ! ! ---------------------------------------------- ! END manual USE kinds IMPLICIT NONE PRIVATE SAVE ! BEGIN manual ! TYPE DEFINITIONS TYPE wave_descriptor INTEGER :: ldg ! leading dimension for pw array dimension INTEGER :: ldb ! leading dimension for band array dimension INTEGER :: lds ! leading dimension for spin array dimension INTEGER :: ldk ! leading dimension for k-points array dimension INTEGER :: ngwl ! local number of pw INTEGER :: ngwt ! global number of pw INTEGER :: nbl( 2 ) ! local number of bands INTEGER :: nbt( 2 ) ! global number of bands INTEGER :: nkl ! local number of k-points INTEGER :: nkt ! global number of k-points INTEGER :: nspin ! number of spin INTEGER :: isym ! symmetry of the wave function ! ( gamma symmetry: isym == 0 ) LOGICAL :: gamma ! true if wave functions have gamma symmetry LOGICAL :: gzero ! true if the first plane wave is the one ! with |G| == 0 END TYPE wave_descriptor ! ---------------------------------------------- ! END manual PUBLIC :: wave_descriptor, wave_descriptor_init, wave_descriptor_info ! end of module-scope declarations ! ---------------------------------------------- CONTAINS ! ---------------------------------------------- ! ! subroutines SUBROUTINE wave_descriptor_init( desc, ngwl, ngwt, nbl, nbt, nkl, nkt, & nspin, scheme, lgz ) IMPLICIT NONE TYPE (wave_descriptor), INTENT(OUT) :: desc INTEGER, INTENT(IN) :: ngwl INTEGER, INTENT(IN) :: ngwt INTEGER, INTENT(IN) :: nbl( : ) INTEGER, INTENT(IN) :: nbt( : ) INTEGER, INTENT(IN) :: nkl INTEGER, INTENT(IN) :: nkt INTEGER, INTENT(IN) :: nspin CHARACTER(LEN=*), INTENT(IN) :: scheme LOGICAL, INTENT(IN) :: lgz INTEGER :: is ! g vectors IF( ngwt < 0 ) & CALL errore( ' wave_descriptor_init ', ' arg no. 3 out of range ', 1 ) desc % ngwt = ngwt IF( ngwl <= 0 ) THEN desc % ngwl = ngwt ELSE IF( ngwl > ngwt ) THEN CALL errore( ' wave_descriptor_init ', ' arg no. 2 incompatible with arg no. 3 ', 1 ) ELSE desc % ngwl = ngwl END IF ! bands desc % nbt = 0 DO is = 1, nspin IF( nbt( is ) < 0 ) & CALL errore( ' wave_descriptor_init ', ' arg no. 5 out of range ', 1 ) desc % nbt( is ) = nbt( is ) END DO desc % nbl = 0 DO is = 1, nspin IF( nbl( is ) <= 0 ) THEN desc % nbl( is ) = nbt( is ) ELSE IF( nbl( is ) > nbt( is ) ) THEN CALL errore( ' wave_descriptor_init ', ' arg no. 4 incompatible with arg no. 5 ', 1 ) ELSE desc % nbl( is ) = nbl( is ) END IF END DO ! k - points IF( nkt < 0 ) & CALL errore( ' wave_descriptor_init ', ' arg no. 7 out of range ', 1 ) desc % nkt = nkt IF( nkl <= 0 ) THEN desc % nkl = nkt ELSE IF( nkl > nkt ) THEN CALL errore( ' wave_descriptor_init ', ' arg no. 6 incompatible with arg no. 7 ', 1 ) ELSE desc % nkl = nkl END IF ! spin IF( nspin < 0 .OR. nspin > 2 ) & CALL errore( ' wave_descriptor_init ', ' arg no. 8 out of range ', 1 ) desc % nspin = nspin ! other IF( TRIM( scheme ) == 'gamma' ) THEN desc % isym = 0 desc % gamma = .TRUE. ELSE desc % isym = 1 desc % gamma = .FALSE. END IF desc % gzero = lgz desc % ldg = MAX( 1, desc % ngwl ) desc % ldb = MAX( 1, MAXVAL( desc % nbl ) ) desc % ldk = MAX( 1, desc % nkl ) desc % lds = MAX( 1, desc % nspin ) RETURN END SUBROUTINE wave_descriptor_init SUBROUTINE wave_descriptor_info( desc, nam, iunit ) IMPLICIT NONE TYPE (wave_descriptor), INTENT(IN) :: desc INTEGER, INTENT(IN) :: iunit CHARACTER(LEN=*) :: nam WRITE( iunit, 10 ) nam, desc%ldg, desc%ldb, desc%ldk, desc%lds, & desc%ngwl, desc%ngwt, desc%nbl, desc%nbt, desc%nkl, desc%nkt, & desc%nspin, desc%isym, desc%gzero 10 FORMAT( 3X, 'Wave function descriptor . . . . . : ',A20,/ & ,3X, 'leading dimensions (g,b,k,s) . . . : ',4I8,/ & ,3X, 'num. of plane wave (Local, Global) : ',2I8,/& ,3X, 'num. of bands (Local, Global). . . : ',4I5,/& ,3X, 'num. of k points (Local, Global) . : ',2I5,/& ,3X, 'num. of spin . . . . . . . . . . . : ',I4,/& ,3X, 'symmetry . . . . . . . . . . . . . : ',I4,/& ,3X, 'has G == 0 vector. . . . . . . . . : ',L7) RETURN END SUBROUTINE wave_descriptor_info ! ---------------------------------------------- ! END MODULE wave_types ! ---------------------------------------------- ! espresso-5.1/CPV/src/pres_ai_mod.f900000644000175000017500000000521012341373026015321 0ustar mbamba! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE pres_ai_mod !=----------------------------------------------------------------------------=! use kinds, only: dp use parameters, only: nsx IMPLICIT NONE ! SAVE ! logical :: abivol, abisur, pvar, fill_vac, scale_at, t_gauss, jellium logical :: cntr(nsx) real(dp), allocatable:: rho_gaus(:), posv(:,:), v_vol(:), f_vol(:,:,:) real(dp) :: P_ext, P_in, P_fin, rho_thr, step_rad(nsx) real(dp) :: Surf_t, dthr, volclu, surfclu, n_ele, nelect real(dp) :: R_j, e_j, h_j real(dp) :: stress_vol(3,3) real(dp) :: delta_eps, delta_sigma real(dp) :: xc0(500), weight(500) integer :: n_cntr, axis CONTAINS !---------------------------------------------------------------------- SUBROUTINE pres_ai_init (abivol_, abisur_, pvar_, fill_vac_, & scale_at_, t_gauss_, jellium_, cntr_, & P_ext_, P_in_, P_fin_, rho_thr_, & step_rad_, Surf_t_, dthr_, R_j_, h_j_, & delta_eps_, delta_sigma_, n_cntr_, axis_) !---------------------------------------------------------------------- ! USE constants, ONLY : au_gpa ! IMPLICIT NONE ! LOGICAL :: abivol_, abisur_, pvar_, fill_vac_, scale_at_, & t_gauss_, jellium_, cntr_(nsx) REAL(dp) :: P_ext_, P_in_, P_fin_, rho_thr_, step_rad_(nsx), & Surf_t_, dthr_, R_j_, h_j_, delta_eps_, delta_sigma_ INTEGER :: n_cntr_, axis_ ! ! Copy variables read from input into module ! abivol = abivol_ abisur = abisur_ pvar = pvar_ fill_vac = fill_vac_ scale_at = scale_at_ t_gauss = t_gauss_ cntr_(:) = cntr_(:) jellium = .false. ! provvisorio rho_thr = rho_thr_ step_rad(:) = step_rad_(:) Surf_t = Surf_t_ dthr = dthr_ R_j = R_j_ h_j = h_j_ delta_eps = delta_eps_ delta_sigma = delta_sigma_ n_cntr = n_cntr_ axis = axis_ ! ! Correct (a.u.) units to pressure ! P_ext = P_ext_ / au_gpa P_in = P_in_ / au_gpa P_fin = P_fin_ / au_gpa if (pvar) P_ext = P_in ! END SUBROUTINE pres_ai_init !=----------------------------------------------------------------------------=! END MODULE pres_ai_mod !=----------------------------------------------------------------------------=! espresso-5.1/CPV/src/cp_autopilot.f900000644000175000017500000003333112341373026015547 0ustar mbamba! cp_autopilot.f90 !******************************************************************************** ! cp_autopilot.f90 Copyright (c) 2005 Targacept, Inc. !******************************************************************************** ! The Autopilot Feature suite is a user level enhancement that enables the ! following features: ! automatic restart of a job; ! preconfiguration of job parameters; ! on-the-fly changes to job parameters; ! and pausing of a running job. ! ! For more information, see AUTOPILOT in document directory. ! ! This program is free software; you can redistribute it and/or modify it under ! the terms of the GNU General Public License as published by the Free Software ! Foundation; either version 2 of the License, or (at your option) any later version. ! This program is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY FOR A PARTICULAR ! PURPOSE. See the GNU General Public License at www.gnu.or/copyleft/gpl.txt for ! more details. ! ! THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. ! EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES ! PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, ! INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND ! FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND THE ! PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, ! YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! ! IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING, ! WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE ! THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY ! GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR ! INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA ! BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A ! FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER ! OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! ! You should have received a copy of the GNU General Public License along with ! this program; if not, write to the ! Free Software Foundation, Inc., ! 51 Franklin Street, ! Fifth Floor, ! Boston, MA 02110-1301, USA. ! ! Targacept's address is ! 200 East First Street, Suite 300 ! Winston-Salem, North Carolina USA 27101-4165 ! Attn: Molecular Design. ! Email: atp@targacept.com ! ! This work was supported by the Advanced Technology Program of the ! National Institute of Standards and Technology (NIST), Award No. 70NANB3H3065 ! !******************************************************************************** MODULE cp_autopilot !--------------------------------------------------------------------------- ! ! This module handles the Autopilot Feature Suite ! Written by Lee Atkinson, with help from the ATP team at Targacept, Inc ! Created June 2005 ! Modified by Yonas Abrahm Sept 2006 ! ! The address for Targacept, Inc. is: ! 200 East First Street, Suite ! 300, Winston-Salem, North Carolina 27101; ! Attn: Molecular Design. ! ! See README.AUTOPILOT in the Doc directory for more information. !--------------------------------------------------------------------------- USE kinds USE autopilot, ONLY : current_nfi, pilot_p, pilot_unit, pause_p,auto_error, & & parse_mailbox, rule_isave, rule_iprint, rule_dt, rule_emass, & & rule_electron_dynamics, rule_electron_damping, rule_ion_dynamics, & & rule_ion_damping, rule_ion_temperature, rule_tempw USE autopilot, ONLY : event_index, event_step, event_isave, event_iprint, & & event_dt, event_emass, event_electron_dynamics, event_electron_damping, & & event_ion_dynamics, event_ion_damping, event_ion_temperature, event_tempw IMPLICIT NONE SAVE PRIVATE PUBLIC :: pilot, employ_rules CONTAINS !----------------------------------------------------------------------- ! EMPLOY_RULES !----------------------------------------------------------------------- SUBROUTINE employ_rules() USE input_parameters, ONLY : dt, & & electron_dynamics, electron_damping, & & ion_dynamics, ion_damping, & & ion_temperature, fnosep, nhpcl, nhptyp, nhgrp, fnhscl, ndega, nat use ions_nose, ONLY: tempw USE control_flags, only: tsde, tsdp, tfor, tcp, tnosep, isave,iprint,& tconvthrs, tolp, & ekin_conv_thr, forc_conv_thr, etot_conv_thr USE control_flags, only: tsteepdesc_ => tsteepdesc, & tdamp_ => tdamp, & tdampions_ => tdampions use wave_base, only: frice use ions_base, only: fricp USE ions_nose, ONLY: ions_nose_init USE io_global, ONLY: ionode, ionode_id USE time_step, ONLY : set_time_step USE cp_electronic_mass, ONLY: emass IMPLICIT NONE !---------------------------------------- ! &CONTROL !---------------------------------------- ! ISAVE if (event_isave(event_index)) then isave = rule_isave(event_index) IF ( ionode ) write(*,'(4X,A,15X,I10)') 'Rule event: isave', isave endif ! IPRINT if (event_iprint(event_index)) then iprint = rule_iprint(event_index) IF ( ionode ) write(*,'(4X,A,13X,I10)') 'Rule event: iprint', iprint endif if (event_dt(event_index)) then dt = rule_dt(event_index) CALL set_time_step( dt ) IF ( ionode ) write(*,'(4X,A,18X,F10.4)') 'Rule event: dt', dt endif !---------------------------------------- ! &SYSTEM !---------------------------------------- !---------------------------------------- ! &ELECTRONS !---------------------------------------- ! EMASS if (event_emass(event_index)) then emass = rule_emass(event_index) IF ( ionode ) write(*,'(4X,A,15X,F10.4)') 'Rule event: emass', emass endif ! ELECTRON_DYNAMICS ! electron_dynamics = 'sd' | 'verlet' | 'damp' | 'none' if (event_electron_dynamics(event_index)) then electron_dynamics= rule_electron_dynamics(event_index) tdamp_ = .FALSE. tsteepdesc_ = .FALSE. frice = 0.d0 select case ( electron_dynamics ) case ('SD') tsde = .true. case ('VERLET') tsde = .false. case ('DAMP') tsde = .false. tdamp_ = .TRUE. frice = electron_damping case ('NONE') tsde = .false. case default call auto_error(' autopilot ',' unknown electron_dynamics '//trim(electron_dynamics) ) end select IF ( ionode ) write(*,'(4X,A,2X,A10)') 'Rule event: electron_dynamics', electron_dynamics endif ! ELECTRON_DAMPING if (event_electron_damping(event_index)) then ! meaningful only if " electron_dynamics = 'damp' " electron_damping = rule_electron_damping(event_index) frice = electron_damping IF ( ionode ) write(*,'(4X,A,4X,F10.4)') 'Rule event: electron_damping', electron_damping endif !---------------------------------------- ! &IONS !---------------------------------------- ! ION_DYNAMICS ! ion_dynamics = 'sd' | 'verlet' | 'damp' | 'none' if (event_ion_dynamics(event_index)) then ion_dynamics= rule_ion_dynamics(event_index) tdampions_ = .FALSE. tconvthrs%active = .FALSE. tconvthrs%nstep = 1 tconvthrs%ekin = 0.0d0 tconvthrs%derho = 0.0d0 tconvthrs%force = 0.0d0 select case ( ion_dynamics ) case ('SD') tsdp = .true. tfor = .true. fricp= 0.d0 tconvthrs%ekin = ekin_conv_thr tconvthrs%derho = etot_conv_thr tconvthrs%force = forc_conv_thr tconvthrs%active = .TRUE. tconvthrs%nstep = 1 case ('VERLET') tsdp = .false. tfor = .true. fricp= 0.d0 case ('DAMP') tsdp = .false. tfor = .true. tdampions_ = .TRUE. fricp= ion_damping tconvthrs%ekin = ekin_conv_thr tconvthrs%derho = etot_conv_thr tconvthrs%force = forc_conv_thr tconvthrs%active = .TRUE. tconvthrs%nstep = 1 case ('NONE') tsdp = .false. tfor = .false. fricp= 0.d0 case default call auto_error(' iosys ',' unknown ion_dynamics '//trim(ion_dynamics) ) end select endif ! ION_DAMPING if (event_ion_damping(event_index)) then ! meaningful only if " ion_dynamics = 'damp' " ion_damping = rule_ion_damping(event_index) IF ( ionode ) write(*,'(4X,A,9X,F10.4)') 'Rule event: ion_damping', ion_damping endif ! ION_TEMPERATURE if (event_ion_temperature(event_index)) then ion_temperature = rule_ion_temperature(event_index) tcp = .FALSE. tnosep = .FALSE. tolp = tolp select case ( ion_temperature ) ! temperature control of ions via nose' thermostat ! tempw (real(DP)) frequency (in which units?) ! fnosep (real(DP)) temperature (in which units?) case ('NOSE') tnosep = .true. tcp = .false. case ('NOT_CONTROLLED') tnosep = .false. tcp = .false. case ('RESCALING' ) tnosep = .false. tcp = .true. case default call auto_error(' iosys ',' unknown ion_temperature '//trim(ion_temperature) ) end select IF ( ionode ) write(*,'(4X,A,5X,A)') 'Rule event: ion_temperature', ion_temperature endif ! TEMPW if (event_tempw(event_index)) then tempw = rule_tempw(event_index) ! The follwiong is a required side effect ! when resetting tempw CALL ions_nose_init( tempw, fnosep, nhpcl, nhptyp, ndega, nhgrp, fnhscl) IF ( ionode ) write(*,'(4X,A,15X,F10.4)') 'Rule event: tempw', tempw endif !---------------------------------------- ! &CELL !---------------------------------------- !---------------------------------------- ! &PHONON !---------------------------------------- END SUBROUTINE employ_rules !----------------------------------------------------------------------- ! PILOT ! ! Here is the main pilot routine called in CPR, at the top ! of the basic dynamics loop just after nose hoover update !----------------------------------------------------------------------- subroutine pilot (nfi) USE parser, ONLY: parse_unit USE io_global, ONLY: ionode, ionode_id USE mp, ONLY : mp_bcast, mp_barrier USE mp_world, ONLY : world_comm IMPLICIT NONE INTEGER :: nfi LOGICAL :: file_p CHARACTER (LEN=256) :: mbfile = "pilot.mb" ! Dynamics Loop Started pilot_p = .TRUE. ! This is so we can usurp the exiting parser ! that defaults to stdin (unit=5) ! We have to do it this way if we are to ! call (reuse) the card_autopilot that is called ! by read_cards parse_unit = pilot_unit ! Our own local for nfi current_nfi = nfi ! This allows one pass. Calling parse_mailbox will either: ! 1) call init_auto_pilot, which will always set this modules global PAUSE_P variable to FALSE ! 2) detect a pause indicator, setting PAUSE_P to TRUE until a new mailbox overrides. pause_loop: do file_p = .FALSE. IF ( ionode ) INQUIRE( FILE = TRIM( mbfile ), EXIST = file_p ) call mp_bcast(file_p, ionode_id,world_comm) IF ( file_p ) THEN IF ( ionode ) THEN WRITE(*,*) WRITE(*,*) '****************************************************' WRITE(*,*) ' Autopilot: Mailbox found at nfi=', current_nfi END IF call flush_unit(6) ! Open the mailbox IF ( ionode ) OPEN( UNIT = pilot_unit, FILE = TRIM( mbfile ) ) ! Will reset PAUSE_P to false unless there is a PAUSE cmd ! The following call is MPI safe! It only generates side effects CALL parse_mailbox() call mp_barrier( world_comm ) IF ( ionode ) THEN WRITE(*,*) ' Autopilot: Done reading mailbox' WRITE(*,*) '****************************************************' WRITE(*,*) END IF ! Perhaps instead of deleting move the file as an input log IF( ionode ) CLOSE( UNIT = pilot_unit, STATUS = 'DELETE' ) END IF IF( .NOT. pause_p ) THEN EXIT pause_loop ELSE IF( ionode ) write(*,*) 'SLEEPING .... send another pilot.mb' call sleep (5) END if end do pause_loop ! Autopilot (Dynamic Rules) Implementation ! When nfi has passed (is greater than ! the next event, then employ rules ! Mailbox may have issued several rules ! Attempt to catch up! do while (current_nfi >= event_step(event_index) ) IF ( ionode ) THEN WRITE(*,*) WRITE(*,*) '****************************************************' WRITE(*,*) ' Autopilot employ rules: ' END IF call employ_rules() IF ( ionode ) THEN WRITE(*,*) '****************************************************' WRITE(*,*) END IF call mp_barrier( world_comm ) ! update event_index to current event_index = event_index + 1 enddo end subroutine pilot END MODULE cp_autopilot espresso-5.1/CPV/src/pseudopot_sub.f900000644000175000017500000013475412341373026015753 0ustar mbamba! ! Copyright (C) 2002-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! SUBROUTINE compute_dvan_x() ! ! calculate array dvan(iv,jv,is) ! ! rw**2 * vrps = [ ( Vpsnl(r) - Vpsloc(r) )* Rps(r) * r^2 ] ! = [ DVpsnl(r) * Rps(r) * r^2 ] ! dion = (2l+1) / < Rps(r) | DVpsnl(r) | Rps(r) > USE kinds, ONLY: DP use uspp, only: dvan, nhtolm, indv use uspp_param, only: upf, nhm, nh use ions_base, only: nsp ! implicit none ! integer :: is, iv, jv real(DP) :: fac ! if( allocated( dvan ) ) deallocate( dvan ) allocate( dvan( nhm, nhm, nsp ) ) dvan(:,:,:) =0.d0 ! do is = 1, nsp ! fac converts ry to hartree fac = 0.5d0 do iv=1,nh(is) do jv=1,nh(is) if ( nhtolm(iv,is) == nhtolm(jv,is) ) then dvan( iv, jv, is ) = fac * upf(is)%dion( indv(iv,is), indv(jv,is) ) endif end do end do end do RETURN END SUBROUTINE compute_dvan_x !------------------------------------------------------------------------------! SUBROUTINE pseudopotential_indexes_x( ) use parameters, only: lmaxx ! use ions_base, only: nsp, & ! number of specie na ! number of atoms for each specie use uspp, only: nkb, & ! nkbus ! use uspp_param, only: ish, &! upf, &! lmaxkb, &! nhm, &! nbetam, &! nh, &! lmaxq ! use uspp, only: nhtol, &! nhtolm, &! indv ! IMPLICIT NONE ! INTEGER :: is, iv, ind, il, lm ! ------------------------------------------------------------------ ! find number of beta functions per species, max dimensions, ! total number of beta functions (all and Vanderbilt only) ! ------------------------------------------------------------------ lmaxkb = -1 nkb = 0 nkbus = 0 ! do is = 1, nsp ind = 0 do iv = 1, upf(is)%nbeta lmaxkb = max( lmaxkb, upf(is)%lll( iv ) ) ind = ind + 2 * upf(is)%lll( iv ) + 1 end do nh(is) = ind ish(is)=nkb nkb = nkb + na(is) * nh(is) if( upf(is)%tvanp ) nkbus = nkbus + na(is) * nh(is) end do nhm = MAXVAL( nh(1:nsp) ) nbetam = MAXVAL( upf(1:nsp)%nbeta ) if (lmaxkb > lmaxx) call errore(' pseudopotential_indexes ',' l > lmax ',lmaxkb) lmaxq = 2*lmaxkb + 1 ! ! the following prevents an out-of-bound error: nqlc(is)=2*lmax+1 ! but in some versions of the PP files lmax is not set to the maximum ! l of the beta functions but includes the l of the local potential ! do is=1,nsp upf(is)%nqlc = MIN ( upf(is)%nqlc, lmaxq ) end do if (nkb <= 0) call errore(' pseudopotential_indexes ',' not implemented ?',nkb) if( allocated( nhtol ) ) deallocate( nhtol ) if( allocated( indv ) ) deallocate( indv ) if( allocated( nhtolm ) ) deallocate( nhtolm ) ! allocate(nhtol(nhm,nsp)) allocate(indv (nhm,nsp)) allocate(nhtolm(nhm,nsp)) ! ------------------------------------------------------------------ ! definition of indices nhtol, indv, nhtolm ! ------------------------------------------------------------------ ! do is = 1, nsp ind = 0 do iv = 1, upf(is)%nbeta lm = upf(is)%lll(iv)**2 do il = 1, 2* upf(is)%lll( iv ) + 1 lm = lm + 1 ind = ind + 1 nhtolm( ind, is ) = lm nhtol( ind, is ) = upf(is)%lll( iv ) indv( ind, is ) = iv end do end do end do RETURN END SUBROUTINE pseudopotential_indexes_x !------------------------------------------------------------------------------! SUBROUTINE compute_xgtab_x( xgmin, xgmax ) ! USE kinds, ONLY : DP USE cell_base, ONLY : tpiba, tpiba2 USE mp, ONLY : mp_max USE mp_global, ONLY : intra_bgrp_comm USE gvect, ONLY : gg USE pseudopotential, ONLY : xgtab USE betax, ONLY : mmx, refg ! IMPLICIT NONE ! REAL(DP), INTENT(OUT) :: xgmax, xgmin ! INTEGER :: ig REAL(DP) :: xg, dxg, res ! IF( ALLOCATED( xgtab ) ) & DEALLOCATE( xgtab ) ALLOCATE( xgtab( mmx ) ) ! xgmin = 0.0d0 xgmax = SQRT( refg * mmx ) dxg = (xgmax - xgmin) / DBLE( mmx - 1 ) ! DO ig = 1, SIZE( xgtab ) xgtab(ig) = xgmin + DBLE(ig-1) * dxg END DO ! xgtab = xgtab**2 / tpiba**2 ! RETURN END SUBROUTINE compute_xgtab_x !------------------------------------------------------------------------------! SUBROUTINE build_pstab_x( ) USE kinds, ONLY : DP USE atom, ONLY : rgrid USE ions_base, ONLY : nsp, rcmax, zv USE cell_base, ONLY : tpiba, tpiba2 USE splines, ONLY : init_spline, allocate_spline, kill_spline, nullify_spline USE pseudo_base, ONLY : formfn, formfa USE uspp_param, only : upf, oldvan USE control_flags, only : tpre use gvect, ONLY : gg, gstart USE cp_interfaces, ONLY : compute_xgtab USE pseudopotential, ONLY : vps_sp, dvps_sp, xgtab USE local_pseudo, ONLY : vps0 USE betax, ONLY : mmx IMPLICIT NONE INTEGER :: is, ig REAL(DP) :: xgmax, xgmin LOGICAL :: compute_tab ! IF( .NOT. ALLOCATED( rgrid ) ) & CALL errore( ' build_pstab_x ', ' rgrid not allocated ', 1 ) IF( .NOT. ALLOCATED( upf ) ) & CALL errore( ' build_pstab_x ', ' upf not allocated ', 1 ) ! IF( ALLOCATED( vps_sp ) .AND. ALLOCATED( dvps_sp ) ) THEN ! DO is = 1, nsp CALL kill_spline( vps_sp(is), 'a' ) CALL kill_spline(dvps_sp(is),'a') END DO DEALLOCATE( vps_sp ) DEALLOCATE(dvps_sp) ! END IF ! IF( ALLOCATED( vps_sp ) .OR. ALLOCATED( dvps_sp ) ) THEN CALL errore( ' build_pstab_x ', ' inconsistent allocation ', 1 ) END IF ! CALL compute_xgtab( xgmin, xgmax ) ! ALLOCATE( vps_sp(nsp)) ALLOCATE( dvps_sp(nsp)) ! DO is = 1, nsp CALL nullify_spline( vps_sp( is ) ) CALL nullify_spline( dvps_sp( is ) ) CALL allocate_spline( vps_sp(is), mmx, xgmin, xgmax ) CALL allocate_spline( dvps_sp(is), mmx, xgmin, xgmax ) call formfn( rgrid(is)%r, rgrid(is)%rab, & upf(is)%vloc(1:rgrid(is)%mesh), zv(is), rcmax(is), & xgtab, 1.0d0, tpiba2, rgrid(is)%mesh, mmx, oldvan(is),& tpre, vps_sp(is)%y, vps0(is), dvps_sp(is)%y ) ! obsolete BHS format !call formfa( vps_sp(is)%y, dvps_sp(is)%y, rc1(is), rc2(is), & ! wrc1(is), wrc2(is), rcl(:,is,lloc(is)), & ! al(:,is,lloc(is)), bl(:,is,lloc(is)), zv(is), & ! rcmax(is), xgtab, 1.0d0, tpiba2, mmx, 2 , tpre ) ! WRITE( 13, "(3D16.8)" ) ( xgtab(ig), vps_sp(is)%y(ig), dvps_sp(is)%y(ig), ig = 1, mmx ) CALL init_spline( vps_sp(is) ) CALL init_spline( dvps_sp(is) ) END DO RETURN END SUBROUTINE build_pstab_x !------------------------------------------------------------------------------! SUBROUTINE build_cctab_x( ) USE kinds, ONLY : DP USE atom, ONLY : rgrid USE uspp_param, ONLY : upf USE ions_base, ONLY : nsp, rcmax USE cell_base, ONLY : tpiba, tpiba2 USE splines, ONLY : init_spline, allocate_spline, kill_spline, nullify_spline USE pseudo_base, ONLY : compute_rhocg USE gvect, ONLY : gg, gstart USE cp_interfaces, ONLY : compute_xgtab USE pseudopotential, ONLY : rhoc1_sp, rhocp_sp, xgtab USE betax, ONLY : mmx IMPLICIT NONE INTEGER :: is REAL(DP) :: xgmax, xgmin LOGICAL :: compute_tab ! IF( .NOT. ALLOCATED( rgrid ) ) & CALL errore( ' build_cctab_x ', ' rgrid not allocated ', 1 ) IF( .NOT. ALLOCATED( upf ) ) & CALL errore( ' build_cctab_x ', ' upf not allocated ', 1 ) ! IF( ALLOCATED( rhoc1_sp ) .AND. ALLOCATED( rhocp_sp ) ) THEN ! DO is = 1, nsp CALL kill_spline(rhoc1_sp(is),'a') CALL kill_spline(rhocp_sp(is),'a') END DO DEALLOCATE(rhoc1_sp) DEALLOCATE(rhocp_sp) ! END IF ! IF( ALLOCATED( rhoc1_sp ) .OR. ALLOCATED( rhocp_sp ) ) THEN CALL errore( ' build_cctab_x ', ' inconsistent allocation ', 1 ) END IF ! CALL compute_xgtab( xgmin, xgmax ) ! ALLOCATE( rhoc1_sp(nsp)) ALLOCATE( rhocp_sp(nsp)) ! DO is = 1, nsp CALL nullify_spline( rhoc1_sp( is ) ) CALL nullify_spline( rhocp_sp( is ) ) IF( upf(is)%nlcc ) THEN ! CALL allocate_spline( rhoc1_sp(is), mmx, xgmin, xgmax ) CALL allocate_spline( rhocp_sp(is), mmx, xgmin, xgmax ) ! CALL compute_rhocg( rhoc1_sp(is)%y, rhocp_sp(is)%y, rgrid(is)%r, & rgrid(is)%rab, upf(is)%rho_atc(:), xgtab, 1.0d0, tpiba2, & rgrid(is)%mesh, mmx, 1 ) ! CALL init_spline( rhoc1_sp(is) ) CALL init_spline( rhocp_sp(is) ) ! END IF END DO RETURN END SUBROUTINE build_cctab_x !------------------------------------------------------------------------------! SUBROUTINE compute_betagx_x( tpre ) ! ! calculation of array betagx(ig,iv,is) ! USE kinds, ONLY : DP USE ions_base, ONLY : nsp USE uspp_param, ONLY : upf, nh, nhm, oldvan USE atom, ONLY : rgrid USE uspp, ONLY : nhtol, indv USE betax, only : refg, betagx, mmx, dbetagx ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: tpre ! INTEGER :: is, iv, l, il, ir, nr REAL(DP), ALLOCATABLE :: dfint(:), djl(:), fint(:), jl(:) REAL(DP) :: xg ! CALL start_clock('betagx') ! IF( .NOT. ALLOCATED( rgrid ) ) & CALL errore( ' compute_betagx_x ', ' rgrid not allocated ', 1 ) IF( .NOT. ALLOCATED( upf ) ) & CALL errore( ' compute_betagx_x ', ' upf not allocated ', 1 ) ! IF( ALLOCATED( betagx ) ) DEALLOCATE( betagx ) IF( ALLOCATED( dbetagx ) ) DEALLOCATE( dbetagx ) ! ALLOCATE( betagx ( mmx, nhm, nsp ) ) IF ( tpre ) ALLOCATE( dbetagx( mmx, nhm, nsp ) ) ! do is = 1, nsp ! nr = upf(is)%kkbeta ! do iv = 1, nh(is) ! l = nhtol(iv,is) ! !$omp parallel default(none), private( dfint, djl, fint, jl, il, xg, ir ), & !$omp shared( tpre, nr, mmx, refg, l, is, rgrid, upf, indv, iv, betagx, dbetagx, oldvan ) if ( tpre ) then allocate( dfint( nr ) ) allocate( djl ( nr ) ) end if ! allocate( fint ( nr ) ) allocate( jl ( nr ) ) ! !$omp do interp_tab : do il = 1, mmx ! xg = sqrt( refg * (il-1) ) call sph_bes ( nr, rgrid(is)%r, xg, l, jl ) ! if( tpre )then ! call sph_dbes1 ( nr, rgrid(is)%r, xg, l, jl, djl) ! endif ! ! beta(ir)=r*beta(r) ! do ir = 1, nr fint(ir) = rgrid(is)%r(ir) * jl(ir) * & upf(is)%beta( ir, indv(iv,is) ) end do if (oldvan(is)) then call herman_skillman_int(nr,fint,rgrid(is)%rab,betagx(il,iv,is)) else call simpson_cp90(nr,fint,rgrid(is)%rab,betagx(il,iv,is)) endif ! if(tpre) then do ir = 1, nr dfint(ir) = rgrid(is)%r(ir) * djl(ir) * & upf(is)%beta( ir, indv(iv,is) ) end do if (oldvan(is)) then call herman_skillman_int(nr,dfint,rgrid(is)%rab,dbetagx(il,iv,is)) else call simpson_cp90(nr,dfint,rgrid(is)%rab,dbetagx(il,iv,is)) end if endif ! end do interp_tab !$omp end do ! deallocate(jl) deallocate(fint) ! if (tpre) then deallocate(djl) deallocate(dfint) end if ! !$omp end parallel ! end do ! end do CALL stop_clock('betagx') RETURN END SUBROUTINE compute_betagx_x !------------------------------------------------------------------------------! SUBROUTINE compute_qradx_x( tpre ) ! ! calculation of array qradx(igb,iv,jv,is) for interpolation table ! (symmetric wrt exchange of iv and jv: a single index ijv is used) ! ! qradx(ig,l,k,is) = 4pi/omega int_0^r dr r^2 j_l(qr) q(r,l,k,is) ! ! ! USE kinds, ONLY : DP use io_global, only : stdout USE ions_base, ONLY : nsp USE uspp_param, ONLY : upf, nh, nhm, nbetam, lmaxq, oldvan, ish, nvb USE atom, ONLY : rgrid USE uspp, ONLY : indv USE betax, only : refg, qradx, mmx, dqradx use smallbox_gvec, only : ngb USE cp_interfaces, ONLY : fill_qrl ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: tpre ! INTEGER :: is, iv, l, il, ir, jv, ijv, ierr INTEGER :: nr REAL(DP), ALLOCATABLE :: dfint(:), djl(:), fint(:), jl(:), qrl(:,:,:) REAL(DP) :: xg CALL start_clock('qradx') IF( .NOT. ALLOCATED( rgrid ) ) & CALL errore( ' compute_qradx_x ', ' rgrid not allocated ', 1 ) IF( .NOT. ALLOCATED( upf ) ) & CALL errore( ' compute_qradx_x ', ' upf not allocated ', 1 ) IF( ALLOCATED( qradx ) ) DEALLOCATE( qradx ) IF( ALLOCATED( dqradx ) ) DEALLOCATE( dqradx ) ! ALLOCATE( qradx( mmx, nbetam*(nbetam+1)/2, lmaxq, nsp ) ) ! IF ( tpre ) ALLOCATE( dqradx( mmx, nbetam*(nbetam+1)/2, lmaxq, nsp ) ) DO is = 1, nvb ! ! qqq and beta are now indexed and taken in the same order ! as vanderbilts ppot-code prints them out ! WRITE( stdout,*) ' nlinit nh(is), ngb, is, kkbeta, lmaxq = ', & & nh(is), ngb, is, upf(is)%kkbeta, upf(is)%nqlc ! nr = upf(is)%kkbeta ! ALLOCATE( qrl( nr, upf(is)%nbeta*(upf(is)%nbeta+1)/2, upf(is)%nqlc) ) ! call fill_qrl ( is, qrl ) ! do l = 1, upf(is)%nqlc ! !$omp parallel default(none), private( djl, dfint, fint, jl, il, iv, jv, ijv, xg, ir ), & !$omp shared( tpre, nr, mmx, refg, rgrid, l, upf, qrl, oldvan, qradx, dqradx, is ) IF ( tpre ) THEN ALLOCATE( djl ( nr ) ) ALLOCATE( dfint( nr ) ) END IF ! ALLOCATE( fint( nr ) ) ALLOCATE( jl ( nr ) ) !$omp do interp_tab : do il = 1, mmx ! xg = sqrt( refg * DBLE(il-1) ) ! call sph_bes ( nr, rgrid(is)%r, xg, l-1, jl(1) ) ! if( tpre ) then ! call sph_dbes1 ( nr, rgrid(is)%r, xg, l-1, jl, djl) ! endif ! ! do iv = 1, upf(is)%nbeta do jv = iv, upf(is)%nbeta ijv = jv * ( jv - 1 ) / 2 + iv ! ! note qrl(r)=r^2*q(r) ! do ir = 1, nr fint( ir ) = qrl( ir, ijv, l ) * jl( ir ) end do if (oldvan(is)) then call herman_skillman_int & (nr,fint(1),rgrid(is)%rab,qradx(il,ijv,l,is)) else call simpson_cp90 & (nr,fint(1),rgrid(is)%rab,qradx(il,ijv,l,is)) end if ! if( tpre ) then do ir = 1, nr dfint(ir) = qrl(ir,ijv,l) * djl(ir) end do if ( oldvan(is) ) then call herman_skillman_int & (nr,dfint(1),rgrid(is)%rab,dqradx(il,ijv,l,is)) else call simpson_cp90 & (nr,dfint(1),rgrid(is)%rab,dqradx(il,ijv,l,is)) end if end if ! end do end do ! ! end do interp_tab !$omp end do ! DEALLOCATE ( jl ) DEALLOCATE ( fint ) ! if ( tpre ) then DEALLOCATE(djl) DEALLOCATE ( dfint ) end if ! !$omp end parallel ! end do ! DEALLOCATE ( qrl ) WRITE( stdout,*) WRITE( stdout,'(20x,a)') ' qqq ' ! do iv=1,upf(is)%nbeta WRITE( stdout,'(8f9.4)') (upf(is)%qqq(iv,jv),jv=1,upf(is)%nbeta) end do WRITE( stdout,*) ! end do CALL stop_clock('qradx') RETURN END SUBROUTINE compute_qradx_x !------------------------------------------------------------------------------! SUBROUTINE exact_qradb_x( tpre ) ! USE kinds, ONLY : DP use io_global, only: stdout USE ions_base, ONLY: nsp USE uspp_param, ONLY: upf, nh, nhm, nbetam, lmaxq, oldvan use uspp_param, only: lmaxkb, ish, nvb USE atom, ONLY: rgrid USE uspp, ONLY: indv use uspp, only: qq, beta USE betax, only: refg, qradx, mmx, dqradx use smallbox_gvec, only: ngb use control_flags, only: iprint, iverbosity use cell_base, only: ainv use constants, only: pi, fpi use qgb_mod, only: qgb, dqgb use smallbox_gvec, only: gb, gxb use small_box, only: omegab, tpibab USE cp_interfaces, ONLY: fill_qrl ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: tpre ! INTEGER :: is, iv, l, il, ir, jv, ijv, ierr INTEGER :: ig, i,j, jj, nr REAL(DP), ALLOCATABLE :: dfint(:), djl(:), fint(:), jl(:), qrl(:,:,:) REAL(DP) :: xg, c, betagl, dbetagl REAL(DP), ALLOCATABLE :: dqradb(:,:,:,:) REAL(DP), ALLOCATABLE :: dqrad( :, :, :, :, :, : ) REAL(DP), ALLOCATABLE :: qradb(:,:,:,:) REAL(DP), ALLOCATABLE :: ylmb(:,:), dylmb(:,:,:,:) COMPLEX(DP), ALLOCATABLE :: dqgbs(:,:,:) IF( nvb < 1 ) & return IF( .NOT. ALLOCATED( rgrid ) ) & CALL errore( ' exact_qradb_x ', ' rgrid not allocated ', 1 ) IF( .NOT. ALLOCATED( upf ) ) & CALL errore( ' exact_qradb_x ', ' upf not allocated ', 1 ) IF( ALLOCATED( qradx ) ) DEALLOCATE( qradx ) IF( ALLOCATED( dqradx ) ) DEALLOCATE( dqradx ) ! ALLOCATE( qradx( ngb, nbetam*(nbetam+1)/2, lmaxq, nsp ) ) ! IF ( tpre ) ALLOCATE( dqradx( ngb, nbetam*(nbetam+1)/2, lmaxq, nsp ) ) ALLOCATE( qradb( ngb, nbetam*(nbetam+1)/2, lmaxq, nsp ) ) qradb(:,:,:,:) = 0.d0 DO is = 1, nvb ! ! qqq and beta are now indexed and taken in the same order ! as vanderbilts ppot-code prints them out ! WRITE( stdout,*) ' nlinit nh(is), ngb, is, kkbeta, lmaxq = ', & & nh(is), ngb, is, upf(is)%kkbeta, upf(is)%nqlc ! nr = upf(is)%kkbeta ! IF ( tpre ) THEN ALLOCATE( djl ( nr ) ) ALLOCATE( dfint( nr ) ) END IF ! ALLOCATE( fint( nr ) ) ALLOCATE( jl ( nr ) ) ALLOCATE( qrl( nr, upf(is)%nbeta*(upf(is)%nbeta+1)/2, upf(is)%nqlc) ) ! call fill_qrl ( is, qrl ) ! qrl = 0.0d0 ! do l = 1, upf(is)%nqlc ! do il = 1, ngb ! xg = sqrt( gb( il ) * tpibab * tpibab ) ! call sph_bes ( nr, rgrid(is)%r, xg, l-1, jl(1) ) ! if( tpre ) then ! call sph_dbes1 ( nr, rgrid(is)%r, xg, l-1, jl, djl) ! endif ! ! do iv = 1, upf(is)%nbeta do jv = iv, upf(is)%nbeta ijv = jv * ( jv - 1 ) / 2 + iv ! ! note qrl(r)=r^2*q(r) ! do ir = 1, nr fint( ir ) = qrl( ir, ijv, l ) * jl( ir ) end do if (oldvan(is)) then call herman_skillman_int & (nr,fint(1),rgrid(is)%rab,qradx(il,ijv,l,is)) else call simpson_cp90 & (nr,fint(1),rgrid(is)%rab,qradx(il,ijv,l,is)) end if ! if( tpre ) then do ir = 1, nr dfint(ir) = qrl(ir,ijv,l) * djl(ir) end do if ( oldvan(is) ) then call herman_skillman_int & (nr,dfint(1),rgrid(is)%rab,dqradx(il,ijv,l,is)) else call simpson_cp90 & (nr,dfint(1),rgrid(is)%rab,dqradx(il,ijv,l,is)) end if end if ! end do end do ! ! end do end do ! DEALLOCATE ( jl ) DEALLOCATE ( qrl ) DEALLOCATE ( fint ) ! if ( tpre ) then DEALLOCATE(djl) DEALLOCATE ( dfint ) end if ! WRITE( stdout,*) WRITE( stdout,'(20x,a)') ' qqq ' ! do iv=1, upf(is)%nbeta WRITE( stdout,'(8f9.4)') (upf(is)%qqq(iv,jv),jv=1, upf(is)%nbeta) end do WRITE( stdout,*) ! end do allocate( ylmb( ngb, lmaxq*lmaxq ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore(' exact_qradb ', ' cannot allocate ylmb ', 1 ) ! call ylmr2 (lmaxq*lmaxq, ngb, gxb, gb, ylmb) do is = 1, nvb ! ! calculation of array qradb(igb,iv,jv,is) ! ! qradb(ig,l,k,is) = 4pi/omega int_0^r dr r^2 j_l(qr) q(r,l,k,is) ! if( iverbosity > 2 ) WRITE( stdout,*) ' qradb ' ! c = fpi / omegab ! do iv= 1, upf(is)%nbeta do jv = iv, upf(is)%nbeta ijv = jv*(jv-1)/2 + iv do ig=1,ngb do l=1,upf(is)%nqlc qradb(ig,ijv,l,is)= c*qradx(ig,ijv,l,is) enddo enddo enddo enddo ! ! --------------------------------------------------------------- ! stocking of qgb(igb,ijv,is) and of qq(iv,jv,is) ! --------------------------------------------------------------- ! do iv= 1,nh(is) do jv=iv,nh(is) ! ! compact indices because qgb is symmetric ! ijv = jv*(jv-1)/2 + iv call qvan2b(ngb,iv,jv,is,ylmb,qgb(1,ijv,is),qradb ) ! qq(iv,jv,is)=omegab*DBLE(qgb(1,ijv,is)) qq(jv,iv,is)=qq(iv,jv,is) ! end do end do end do ! if (tpre) then ! --------------------------------------------------------------- ! arrays required for stress calculation, variable-cell dynamics ! --------------------------------------------------------------- allocate(dqradb(ngb,nbetam*(nbetam+1)/2,lmaxq,nsp)) allocate(dylmb(ngb,lmaxq*lmaxq,3,3)) allocate(dqgbs(ngb,3,3)) allocate( dqrad( ngb, nbetam*(nbetam+1)/2, lmaxq, nsp, 3, 3 ) ) dqrad(:,:,:,:,:,:) = 0.d0 ! call dylmr2_(lmaxq*lmaxq, ngb, gxb, gb, ainv, dylmb) ! do is=1,nvb ! do iv= 1, upf(is)%nbeta do jv=iv, upf(is)%nbeta ijv = jv*(jv-1)/2 + iv do l=1,upf(is)%nqlc do ig=1,ngb dqradb(ig,ijv,l,is) = dqradx(ig,ijv,l,is) enddo do i=1,3 do j=1,3 dqrad(1,ijv,l,is,i,j) = & -qradb(1,ijv,l,is) * ainv(j,i) do ig=2,ngb dqrad(ig,ijv,l,is,i,j) = & & -qradb(ig,ijv,l,is)*ainv(j,i) & & -c*dqradb(ig,ijv,l,is)* & & gxb(i,ig)/gb(ig)* & & (gxb(1,ig)*ainv(j,1)+ & & gxb(2,ig)*ainv(j,2)+ & & gxb(3,ig)*ainv(j,3)) enddo enddo enddo end do enddo enddo ! do iv= 1,nh(is) do jv=iv,nh(is) ! ! compact indices because qgb is symmetric ! ijv = jv*(jv-1)/2 + iv call dqvan2b(ngb,iv,jv,is,ylmb,dylmb,dqgbs,dqrad,qradb ) do i=1,3 do j=1,3 do ig=1,ngb dqgb(ig,ijv,is,i,j)=dqgbs(ig,i,j) enddo enddo enddo end do end do end do deallocate(dqrad) deallocate(dqgbs) deallocate(dylmb) deallocate(dqradb) end if deallocate( ylmb ) deallocate( qradb ) IF( ALLOCATED( qradx ) ) DEALLOCATE( qradx ) IF( ALLOCATED( dqradx ) ) DEALLOCATE( dqradx ) RETURN END SUBROUTINE exact_qradb_x !------------------------------------------------------------------------------! LOGICAL FUNCTION check_tables_x( gmax ) ! ! check table size against cell variations ! ! USE kinds, ONLY : DP USE betax, ONLY : refg, mmx USE mp, ONLY : mp_max USE mp_global, ONLY : intra_bgrp_comm USE gvecw, ONLY : ngw USE cell_base, ONLY : tpiba2 USE small_box, ONLY : tpibab USE smallbox_gvec, ONLY : gb, ngb USE gvect, ONLY : gg, ngm ! IMPLICIT NONE ! REAL(DP), INTENT(OUT) :: gmax REAL(DP) :: g2, g2b ! g2 = MAXVAL( gg( 1:ngm ) ) ! g2 = g2 * tpiba2 / refg ! IF( ALLOCATED( gb ) ) THEN ! g2b = MAXVAL( gb( 1:ngb ) ) g2b = g2b * tpibab * tpibab / refg gmax = MAX( g2, g2b ) ! ELSE ! gmax = g2 ! END IF ! CALL mp_max( gmax, intra_bgrp_comm ) ! check_tables_x = .FALSE. IF( INT( gmax ) + 2 >= mmx ) check_tables_x = .TRUE. ! RETURN END FUNCTION check_tables_x !------------------------------------------------------------------------------! SUBROUTINE interpolate_beta_x( tpre ) ! ! interpolate array beta(ig,iv,is) ! ! USE kinds, ONLY : DP USE control_flags, only: iverbosity USE constants, only: pi, fpi USE io_global, only: stdout USE gvecw, only: ngw USE ions_base, only: nsp USE gvect, only: gg, g, gstart USE uspp_param, only: upf, lmaxq, lmaxkb, nh USE uspp, only: qq, nhtolm, beta, dbeta USE cell_base, only: ainv, omega, tpiba2, tpiba USE betax, ONLY : refg, betagx, dbetagx IMPLICIT NONE LOGICAL, INTENT(IN) :: tpre REAL(DP), ALLOCATABLE :: ylm(:,:), dylm(:,:,:,:) REAL(DP) :: c, g2, betagl, dbetagl INTEGER :: is, iv, lp, ig, jj, i, j ALLOCATE( ylm( ngw, (lmaxkb+1)**2 ) ) CALL ylmr2 ( (lmaxkb+1)**2, ngw, g, gg, ylm) ! ! do is = 1, nsp ! ! calculation of array beta(ig,iv,is) ! if( iverbosity > 2 ) WRITE( stdout,*) ' beta ' c = fpi / sqrt(omega) do iv = 1, nh(is) lp = nhtolm( iv, is ) do ig = gstart, ngw g2 = gg( ig ) * tpiba * tpiba / refg jj = int( g2 ) + 1 betagl = betagx( jj+1, iv, is ) * ( g2 - DBLE(jj-1) ) + betagx( jj, iv, is ) * ( DBLE(jj) - g2 ) beta( ig, iv, is ) = c * ylm( ig, lp ) * betagl end do if( gstart == 2 ) then beta( 1, iv, is ) = c * ylm( 1, lp ) * betagx( 1, iv, is ) end if end do end do if (tpre) then ! ! calculation of array dbeta required for stress, variable-cell ! allocate( dylm( ngw, (lmaxkb+1)**2, 3, 3 ) ) ! call dylmr2_( (lmaxkb+1)**2, ngw, g, gg, ainv, dylm ) ! do is = 1, nsp if( iverbosity > 2 ) WRITE( stdout,*) ' dbeta ' c = fpi / sqrt(omega) do iv = 1, nh(is) lp = nhtolm(iv,is) if( ngw > 0 ) then betagl = betagx(1,iv,is) do i=1,3 do j=1,3 dbeta( 1, iv, is, i, j ) = -0.5d0 * beta( 1, iv, is ) * ainv( j, i ) & & - c * dylm( 1, lp, i, j ) * betagl ! SEGNO enddo enddo end if do ig = gstart, ngw g2 = gg(ig) * tpiba * tpiba / refg jj=int(g2)+1 betagl = betagx( jj+1, iv, is ) * ( g2 - DBLE(jj-1) ) + & & betagx( jj , iv, is ) * ( DBLE(jj) - g2 ) dbetagl= dbetagx( jj+1, iv, is ) * ( g2 - DBLE(jj-1) ) + & & dbetagx( jj , iv, is ) * ( DBLE(jj) - g2 ) do i=1,3 do j=1,3 dbeta( ig, iv, is, i, j ) = & & - 0.5d0 * beta( ig, iv, is ) * ainv( j, i ) & & - c * dylm( ig, lp, i, j ) * betagl & ! SEGNO & - c * ylm ( ig, lp ) *dbetagl * g(i,ig)/gg(ig)& & * ( g( 1, ig ) * ainv( j, 1 ) + g( 2, ig ) * ainv( j, 2 ) + g( 3, ig ) * ainv( j, 3 ) ) end do end do end do end do end do ! deallocate(dylm) ! end if ! deallocate(ylm) RETURN END SUBROUTINE interpolate_beta_x !------------------------------------------------------------------------------! SUBROUTINE interpolate_qradb_x( tpre ) ! ! interpolate array qradb(ig,iv,is) ! ! USE kinds, ONLY : DP use control_flags, only: iprint, iverbosity use io_global, only: stdout use gvecw, only: ngw use cell_base, only: ainv use uspp, only: qq, nhtolm, beta use constants, only: pi, fpi use ions_base, only: nsp use uspp_param, only: upf, lmaxq, lmaxkb, nbetam, nh, nvb use qgb_mod, only: qgb, dqgb use smallbox_gvec, only: gb, gxb, ngb use small_box, only: omegab, tpibab USE betax, ONLY: qradx, dqradx, refg, mmx ! implicit none LOGICAL, INTENT(IN) :: tpre integer is, l, ig, ir, iv, jv, ijv, i,j, jj, ierr real(dp), allocatable:: fint(:), jl(:), dqradb(:,:,:,:) real(dp), allocatable:: ylmb(:,:), dylmb(:,:,:,:) REAL(DP), ALLOCATABLE :: dqrad( :, :, :, :, :, : ) REAL(DP), ALLOCATABLE :: qradb( :, :, :, : ) complex(dp), allocatable:: dqgbs(:,:,:) real(dp) xg, c, betagl, dbetagl, g2 ! ! if( nvb < 1 ) & return allocate( qradb( ngb, nbetam*(nbetam+1)/2, lmaxq, nsp ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore(' interpolate_qradb ', ' cannot allocate qradb ', 1 ) ! qradb(:,:,:,:) = 0.d0 ! allocate( ylmb( ngb, lmaxq*lmaxq ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore(' interpolate_qradb ', ' cannot allocate ylmb ', 1 ) ! call ylmr2 (lmaxq*lmaxq, ngb, gxb, gb, ylmb) do is = 1, nvb ! ! calculation of array qradb(igb,iv,jv,is) ! ! qradb(ig,l,k,is) = 4pi/omega int_0^r dr r^2 j_l(qr) q(r,l,k,is) ! if( iverbosity > 2 ) WRITE( stdout,*) ' qradb ' ! c = fpi / omegab ! do iv= 1, upf(is)%nbeta do jv = iv, upf(is)%nbeta ijv = jv*(jv-1)/2 + iv do l=1, upf(is)%nqlc qradb(1,ijv,l,is) = c * qradx(1,ijv,l,is) end do do ig=2,ngb g2=gb(ig)*tpibab*tpibab/refg jj=int(g2)+1 do l=1,upf(is)%nqlc if(jj.ge.mmx) then qradb(ig,ijv,l,is)=0.d0 else qradb(ig,ijv,l,is)= & & c*qradx(jj+1,ijv,l,is)*(g2-DBLE(jj-1))+ & & c*qradx(jj,ijv,l,is)*(DBLE(jj)-g2) endif enddo enddo enddo enddo ! ! --------------------------------------------------------------- ! stocking of qgb(igb,ijv,is) and of qq(iv,jv,is) ! --------------------------------------------------------------- do iv= 1,nh(is) do jv=iv,nh(is) ! ! compact indices because qgb is symmetric ! ijv = jv*(jv-1)/2 + iv call qvan2b(ngb,iv,jv,is,ylmb,qgb(1,ijv,is),qradb ) ! qq(iv,jv,is)=omegab*DBLE(qgb(1,ijv,is)) qq(jv,iv,is)=qq(iv,jv,is) ! end do end do end do ! if (tpre) then ! --------------------------------------------------------------- ! arrays required for stress calculation, variable-cell dynamics ! --------------------------------------------------------------- allocate(dqradb(ngb,nbetam*(nbetam+1)/2,lmaxq,nsp)) allocate(dylmb(ngb,lmaxq*lmaxq,3,3)) allocate(dqgbs(ngb,3,3)) allocate( dqrad( ngb, nbetam*(nbetam+1)/2, lmaxq, nsp, 3, 3 ) ) dqrad(:,:,:,:,:,:) = 0.d0 ! call dylmr2_( lmaxq*lmaxq, ngb, gxb, gb, ainv, dylmb ) ! do is=1,nvb ! do iv= 1, upf(is)%nbeta do jv=iv, upf(is)%nbeta ijv = jv*(jv-1)/2 + iv do l=1,upf(is)%nqlc dqradb(1,ijv,l,is) = dqradx(1,ijv,l,is) do ig=2,ngb g2=gb(ig)*tpibab*tpibab/refg jj=int(g2)+1 if(jj.ge.mmx) then dqradb(ig,ijv,l,is) = 0.d0 else dqradb(ig,ijv,l,is) = & dqradx(jj+1,ijv,l,is)*(g2-DBLE(jj-1)) + & dqradx(jj,ijv,l,is)*(DBLE(jj)-g2) endif enddo do i=1,3 do j=1,3 dqrad(1,ijv,l,is,i,j) = - qradb(1,ijv,l,is) * ainv(j,i) do ig=2,ngb dqrad(ig,ijv,l,is,i,j) = & & - qradb(ig,ijv,l,is)*ainv(j,i) & & - c * dqradb(ig,ijv,l,is)* & & gxb(i,ig)/gb(ig)* & & (gxb(1,ig)*ainv(j,1)+ & & gxb(2,ig)*ainv(j,2)+ & & gxb(3,ig)*ainv(j,3)) enddo enddo enddo end do enddo enddo ! do iv= 1,nh(is) do jv=iv,nh(is) ! ! compact indices because qgb is symmetric ! ijv = jv*(jv-1)/2 + iv call dqvan2b(ngb,iv,jv,is,ylmb,dylmb,dqgbs,dqrad,qradb ) do i=1,3 do j=1,3 do ig=1,ngb dqgb(ig,ijv,is,i,j)=dqgbs(ig,i,j) enddo enddo enddo end do end do end do deallocate(dqrad) deallocate(dqgbs) deallocate(dylmb) deallocate(dqradb) end if deallocate(ylmb) deallocate(qradb) RETURN END SUBROUTINE interpolate_qradb_x !------------------------------------------------------------------------------! SUBROUTINE exact_beta_x( tpre ) ! ! compute array beta without interpolation ! ! USE control_flags, only : iverbosity USE kinds, ONLY : DP USE constants, only : pi, fpi USE io_global, only : stdout USE gvecw, only : ngw USE ions_base, only : nsp USE uspp_param, only : upf, lmaxq, lmaxkb, nh, nhm, oldvan USE uspp, only : qq, nhtolm, beta, nhtol, indv, dbeta USE cell_base, only : ainv, omega, tpiba2, tpiba USE atom, ONLY : rgrid USE gvect, only : gg, g, gstart IMPLICIT NONE LOGICAL, INTENT(IN) :: tpre REAL(DP), ALLOCATABLE :: ylm(:,:), dylm(:,:,:,:) REAL(DP) :: c, g2, betagl, dbetagl INTEGER :: is, iv, lp, ig, jj, i, j, nr INTEGER :: l, il, ir REAL(DP), ALLOCATABLE :: dfint(:), djl(:), fint(:), jl(:) REAL(DP), ALLOCATABLE :: betagx ( :, :, : ), dbetagx( :, :, : ) REAL(DP) :: xg IF( .NOT. ALLOCATED( rgrid ) ) & CALL errore( ' exact_beta_x ', ' rgrid not allocated ', 1 ) IF( .NOT. ALLOCATED( upf ) ) & CALL errore( ' exact_beta_x ', ' upf not allocated ', 1 ) ALLOCATE( ylm( ngw, (lmaxkb+1)**2 ) ) ALLOCATE( betagx ( ngw, nhm, nsp ) ) IF (tpre) ALLOCATE( dbetagx( ngw, nhm, nsp ) ) CALL ylmr2 ( (lmaxkb+1)**2, ngw, g, gg, ylm) ! do is = 1, nsp ! nr = upf(is)%kkbeta ! if ( tpre ) then allocate( dfint( nr ) ) allocate( djl ( nr ) ) end if ! allocate( fint ( nr ) ) allocate( jl ( nr ) ) ! do iv = 1, nh(is) ! l = nhtol(iv,is) ! do il = 1, ngw ! xg = sqrt( gg( il ) * tpiba * tpiba ) call sph_bes (nr, rgrid(is)%r, xg, l, jl ) ! if( tpre )then ! call sph_dbes1 ( nr, rgrid(is)%r, xg, l, jl, djl) ! endif ! ! beta(ir)=r*beta(r) ! do ir = 1, nr fint(ir) = rgrid(is)%r(ir) * jl(ir) * & upf(is)%beta( ir, indv(iv,is) ) end do if (oldvan(is)) then call herman_skillman_int(nr,fint,rgrid(is)%rab,betagx(il,iv,is)) else call simpson_cp90(nr,fint,rgrid(is)%rab,betagx(il,iv,is)) endif ! if(tpre) then do ir = 1, nr dfint(ir) = rgrid(is)%r(ir) * djl(ir) * & upf(is)%beta( ir, indv(iv,is) ) end do if (oldvan(is)) then call herman_skillman_int(nr,dfint,rgrid(ir)%rab,dbetagx(il,iv,is)) else call simpson_cp90(nr,dfint,rgrid(is)%rab,dbetagx(il,iv,is)) end if endif ! end do end do ! deallocate(jl) deallocate(fint) ! if (tpre) then deallocate(djl) deallocate(dfint) end if ! end do ! do is = 1, nsp ! ! calculation of array beta(ig,iv,is) ! if( iverbosity > 2 ) WRITE( stdout,*) ' beta ' c = fpi / sqrt(omega) do iv = 1, nh(is) lp = nhtolm( iv, is ) do ig = 1, ngw betagl = betagx( ig, iv, is ) beta( ig, iv, is ) = c * ylm( ig, lp ) * betagl end do end do end do if (tpre) then ! ! calculation of array dbeta required for stress, variable-cell ! allocate( dylm( ngw, (lmaxkb+1)**2, 3, 3 ) ) ! call dylmr2_( (lmaxkb+1)**2, ngw, g, gg, ainv, dylm ) ! do is = 1, nsp if( iverbosity > 2 ) WRITE( stdout,*) ' dbeta ' c = fpi / sqrt(omega) do iv = 1, nh(is) lp = nhtolm(iv,is) betagl = betagx(1,iv,is) do i=1,3 do j=1,3 dbeta(1,iv,is,i,j)=-0.5d0*beta(1,iv,is)*ainv(j,i) & & -c*dylm(1,lp,i,j)*betagl ! SEGNO enddo enddo do ig=gstart,ngw betagl = betagx(ig,iv,is) dbetagl= dbetagx(ig,iv,is) do i=1,3 do j=1,3 dbeta(ig,iv,is,i,j)= & & -0.5d0*beta(ig,iv,is)*ainv(j,i) & & -c*dylm(ig,lp,i,j)*betagl & ! SEGNO & -c*ylm (ig,lp)*dbetagl*g(i,ig)/gg(ig) & & *(g(1,ig)*ainv(j,1)+ & & g(2,ig)*ainv(j,2)+ & & g(3,ig)*ainv(j,3)) end do end do end do end do end do ! deallocate(dylm) ! end if ! deallocate(ylm) IF( ALLOCATED( betagx ) ) DEALLOCATE( betagx ) IF( ALLOCATED( dbetagx ) ) DEALLOCATE( dbetagx ) RETURN END SUBROUTINE exact_beta_x ! ! !------------------------------------------------------------------------------! ! ! SUBROUTINE fill_qrl_x( is, qrl ) ! ! fill l-components of Q(r) as in Vanderbilt's approach ! USE uspp_param, ONLY: upf USE atom, ONLY: rgrid USE kinds, ONLY: DP USE io_global, ONLY: stdout ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: is REAL(DP), INTENT(OUT) :: qrl( :, :, : ) ! INTEGER :: iv, jv, ijv, lmin, lmax, l, ir, i INTEGER :: dim1, dim2, dim3 ! IF( .NOT. ALLOCATED( rgrid ) ) & CALL errore( ' fill_qrl_x ', ' rgrid not allocated ', 1 ) IF( .NOT. ALLOCATED( upf ) ) & CALL errore( ' fill_qrl_x ', ' upf not allocated ', 1 ) dim1 = SIZE( qrl, 1 ) dim2 = SIZE( qrl, 2 ) dim3 = SIZE( qrl, 3 ) ! IF ( upf(is)%kkbeta > dim1 ) & CALL errore ('fill_qrl', 'bad 1st dimension for array qrl', 1) ! qrl = 0.0d0 ! do iv = 1, upf(is)%nbeta ! do jv = iv, upf(is)%nbeta ! ijv = (jv-1)*jv/2 + iv ! IF ( ijv > dim2) & CALL errore ('fill_qrl', 'bad 2nd dimension for array qrl', 2) ! notice that L runs from 1 to Lmax+1 lmin = ABS (upf(is)%lll(jv) - upf(is)%lll(iv)) + 1 lmax = upf(is)%lll(jv) + upf(is)%lll(iv) + 1 ! WRITE( stdout, * ) 'QRL is, jv, iv = ', is, jv, iv ! WRITE( stdout, * ) 'QRL lll jv, iv = ', upf(is)%lll(jv), upf(is)%lll(iv) ! WRITE( stdout, * ) 'QRL lmin, lmax = ', lmin, lmax ! WRITE( stdout, * ) '---------------- ' IF ( lmin < 1 .OR. lmax > dim3) THEN WRITE( stdout, * ) ' lmin, lmax = ', lmin, lmax CALL errore ('fill_qrl', 'bad 3rd dimension for array qrl', 3) END IF do l = lmin, lmax do ir = 1, upf(is)%kkbeta IF( upf(is)%q_with_l ) THEN ! BEWARE: index l in upf%qfuncl(l) runs from 0 to lmax, ! not from 1 to lmax+1 qrl(ir,ijv,l)=upf(is)%qfuncl(ir,ijv,l-1) ELSE if ( rgrid(is)%r(ir) >= upf(is)%rinner(l) ) then qrl(ir,ijv,l)=upf(is)%qfunc(ir,ijv) else qrl(ir,ijv,l)=upf(is)%qfcoef(1,l,iv,jv) do i = 2, upf(is)%nqf qrl(ir,ijv,l)=qrl(ir,ijv,l) + & upf(is)%qfcoef(i,l,iv,jv)*rgrid(is)%r(ir)**(2*i-2) end do qrl(ir,ijv,l) = qrl(ir,ijv,l) * rgrid(is)%r(ir)**(l+1) end if ENDIF end do end do end do end do RETURN END SUBROUTINE fill_qrl_x espresso-5.1/CPV/src/makov_payne.f900000644000175000017500000002103612341373026015355 0ustar mbamba! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ... original code written by Giovanni Cantele and Paolo Cazzato ! ... adapted to work in the parallel case by Carlo Sbraccia ! ... code for the calculation of the vacuum level written by Carlo Sbraccia ! ... code ported from PW to CP by Federico Zipoli ! SUBROUTINE makov_payne(etot) ! ! CP Modules USE kinds, ONLY : DP USE ions_base, ONLY : nat, zv, ityp, ind_srt USE ions_positions, ONLY : tau0 USE io_global, ONLY : stdout, ionode, ionode_id USE constants, ONLY : pi, autoev, au_debye USE cp_main_variables, ONLY : rhor USE electrons_base, ONLY : nspin USE cell_base, ONLY : at, bg, omega, alat, ibrav USE parallel_include USE gvecw , ONLY : ngw USE fft_base, ONLY : dfftp #if defined __MPI USE mp_global, ONLY : me_bgrp, nproc_bgrp, intra_bgrp_comm USE mp, ONLY : mp_barrier USE mp_world, ONLY : world_comm #endif ! IMPLICIT NONE INTEGER :: nspecie INTEGER :: i,j,k,l,m,n,ip INTEGER, ALLOCATABLE, DIMENSION(:) :: zvv REAL(DP), ALLOCATABLE, DIMENSION(:,:,:) :: rhof REAL(DP), ALLOCATABLE, DIMENSION(:,:) :: r REAL(DP) :: h(3,3),volumetto,a(3,3) REAL(DP) :: usunx,usuny,usunz,R0(3),qq,aa,bb REAL(DP) :: charge, charge_ion, charge_el REAL(DP) :: dipole(3), dipole_ion(3), dipole_el(3) REAL(DP) :: quadrupole, quadrupole_ion, quadrupole_el REAL(DP) :: corr1, corr2, etot REAL(DP), ALLOCATABLE, DIMENSION(:) :: rgx,rgy,rgz INTEGER :: ir, is INTEGER :: ierr #if defined __MPI INTEGER :: proc INTEGER, ALLOCATABLE:: displs(:), recvcount(:) #endif REAL(KIND=DP), ALLOCATABLE:: rhodist1(:) REAL(KIND=DP), ALLOCATABLE:: rhodist2(:) ! IF(ibrav.NE.1)THEN WRITE(*,*)" WARNING Makov-Payne implemented in CP only when ibrav=1 " RETURN ENDIF ! usunx=1.0D0/DBLE(dfftp%nr1x) usuny=1.0D0/DBLE(dfftp%nr2x) usunz=1.0D0/DBLE(dfftp%nr3x) ALLOCATE ( r(nat,3),rhof(dfftp%nr1x,dfftp%nr2x,dfftp%nr3x),& & rgx(dfftp%nr1x),rgy(dfftp%nr2x),rgz(dfftp%nr3x),zvv(nat) ) ! DO i=1,nat zvv(i)=zv(ityp(ind_srt(i))) DO j=1,3 r(i,j)=tau0(j,i) ENDDO ENDDO ! ip=0 rhof=0.0D0 ! !-------------------------------------------------------------------- ALLOCATE(rhodist1(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x)) IF (nspin.EQ.2) ALLOCATE(rhodist2(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x)) #if defined __MPI ALLOCATE( displs( nproc_bgrp ), recvcount( nproc_bgrp ) ) ! do proc=1,nproc_bgrp recvcount(proc) = dfftp%nnp * ( dfftp%npp(proc) ) if (proc.eq.1) then displs(proc)=0 else displs(proc)=displs(proc-1) + recvcount(proc-1) end if end do ! ! gather the charge density on the first node ! call mp_barrier( world_comm ) call mpi_gatherv( rhor(1,1), recvcount(me_bgrp+1), MPI_DOUBLE_PRECISION,& & rhodist1,recvcount, displs, MPI_DOUBLE_PRECISION,& & ionode_id, intra_bgrp_comm, ierr) call errore('mpi_gatherv','ierr<>0',ierr) ! IF(nspin .eq. 2)THEN call mp_barrier( world_comm ) call mpi_gatherv( rhor(1,2), recvcount(me_bgrp+1), MPI_DOUBLE_PRECISION, & & rhodist2,recvcount, displs, MPI_DOUBLE_PRECISION, & & ionode_id, intra_bgrp_comm, ierr) call errore('mpi_gatherv','ierr<>0',ierr) ENDIF #else rhodist1=rhor(:,1) IF(nspin .eq. 2) rhodist2=rhor(:,2) #endif ! #if defined __MPI IF ( ionode ) THEN #endif DO k = 1, dfftp%nr3x DO j = 1, dfftp%nr2x DO i = 1, dfftp%nr1x ip=ip+1 IF (nspin == 1 )rhof(i,j,k)=rhodist1(ip) IF (nspin == 2 )rhof(i,j,k)=rhodist1(ip)+rhodist2(ip) ENDDO ENDDO ENDDO ip=0 DO i=1,dfftp%nr1x rgx(i)=DBLE(i-1)*usunx*alat ENDDO DO i=1,dfftp%nr2x rgy(i)=DBLE(i-1)*usuny*alat ENDDO DO i=1,dfftp%nr3x rgz(i)=DBLE(i-1)*usunz*alat ENDDO ! !---------------------------------------------------------- ! ! center of charge of the ions ! R0=0.0D0 DO i=1,nat R0(1)=R0(1)+zvv(i)*r(i,1) R0(2)=R0(2)+zvv(i)*r(i,2) R0(3)=R0(3)+zvv(i)*r(i,3) ENDDO R0=R0/SUM(zvv(1:nat)) ! ! shift of the ions (no PBC) ! DO i=1,nat r(i,1)=(r(i,1)-R0(1)) r(i,2)=(r(i,2)-R0(2)) r(i,3)=(r(i,3)-R0(3)) ENDDO ! ! shift of the electon density ! DO i=1,dfftp%nr1x rgx(i)=(rgx(i)-R0(1))-alat*anint( (rgx(i)-R0(1))/alat ) ENDDO DO i=1,dfftp%nr2x rgy(i)=(rgy(i)-R0(2))-alat*anint( (rgy(i)-R0(2))/alat ) ENDDO DO i=1,dfftp%nr3x rgz(i)=(rgz(i)-R0(3))-alat*anint( (rgz(i)-R0(3))/alat ) ENDDO ! ! ions ! charge_ion = SUM(zvv(1:nat)) dipole_ion = 0.D0 quadrupole_ion = 0.D0 DO i = 1, nat DO j = 1, 3 dipole_ion(j) = dipole_ion(j) + zvv(i)*r(i,j) quadrupole_ion = quadrupole_ion + zvv(i)*(r(i,j))**2 ENDDO ENDDO ! ! electrons ! charge_el = 0.0D0 dipole_el = 0.0D0 quadrupole_el = 0.0D0 DO i = 1, dfftp%nr1x DO j = 1, dfftp%nr2x DO k = 1, dfftp%nr3x charge_el = charge_el + rhof(i,j,k) dipole_el(1) = dipole_el(1) + rgx(i)*rhof(i,j,k) dipole_el(2) = dipole_el(2) + rgy(j)*rhof(i,j,k) dipole_el(3) = dipole_el(3) + rgz(k)*rhof(i,j,k) quadrupole_el = quadrupole_el + rhof(i,j,k) * & & ( (rgx(i))**2 + (rgy(j))**2 + (rgz(k))**2 ) ENDDO ENDDO ENDDO charge_el=charge_el*alat**3/DBLE(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) dipole_el=dipole_el*alat**3/DBLE(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) quadrupole_el=quadrupole_el*alat**3/DBLE(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x) ! ... compute ionic+electronic total charge, dipole and quadrupole moments ! charge = -charge_el + charge_ion dipole = -dipole_el + dipole_ion quadrupole = -quadrupole_el + quadrupole_ion ! ! WRITE( stdout, * )"total charge of the system ",charge WRITE( stdout, '(/5X,"charge density inside the ", & & "Wigner-Seitz cell:",3F14.8," el.")' ) charge_el ! WRITE( stdout, & '(/5X,"reference position (R0):",5X,3F14.8," bohr")' ) R0(:) ! ! ... A positive dipole goes from the - charge to the + charge. ! WRITE( stdout, '(/5X,"Dipole moments (with respect to x0):")' ) WRITE( stdout, '( 5X,"Elect",3F10.4," au, ", 3F10.4," Debye")' ) & (-dipole_el(ip), ip = 1, 3), (-dipole_el(ip)*au_debye, ip = 1, 3 ) WRITE( stdout, '( 5X,"Ionic",3F10.4," au, ", 3F10.4," Debye")' ) & ( dipole_ion(ip),ip = 1, 3), ( dipole_ion(ip)*au_debye,ip = 1, 3 ) WRITE( stdout, '( 5X,"Total",3F10.4," au, ", 3F10.4," Debye")' ) & ( dipole(ip), ip = 1, 3), ( dipole(ip)*au_debye, ip = 1, 3 ) ! ! ... print the electronic, ionic and total quadrupole moments ! WRITE( stdout, '(/5X,"Electrons quadrupole moment",F20.8," a.u.")' ) & -quadrupole_el WRITE( stdout, '( 5X," Ions quadrupole moment",F20.8," a.u.")' ) & quadrupole_ion WRITE( stdout, '( 5X," Total quadrupole moment",F20.8," a.u.")' ) & quadrupole ! ! ... Makov-Payne correction, PRB 51, 43014 (1995) ! ... Note that Eq. 15 has the wrong sign for the quadrupole term ! ! 1 / 2 Ry -> a.u. corr1 = - 2.8373D0 / alat * charge**2 / 2.0D0 ! aa = quadrupole bb = dipole(1)**2 + dipole(2)**2 + dipole(3)**2 ! corr2 = ( 2.D0 / 3.D0 * pi )*( charge*aa - bb ) / alat**3 ! ! ... print the Makov-Payne correction ! WRITE( stdout, '(/,5X,"********* MAKOV-PAYNE CORRECTION *********")' ) ! WRITE( stdout,'(/5X,"Makov-Payne correction ",F14.8," a.u. = ",F6.3, & & " eV (1st order, 1/a0)")' ) -corr1, -corr1*autoev WRITE( stdout,'( 5X," ",F14.8," a.u. = ",F6.3, & & " eV (2nd order, 1/a0^3)")' ) -corr2, -corr2*autoev WRITE( stdout,'( 5X," ",F14.8," a.u. = ",F6.3, & & " eV (total)")' ) -corr1-corr2, (-corr1-corr2)*autoev ! WRITE( stdout,'(/5X,"corrected Total energy = ",F14.8," a.u.")' ) & etot - corr1 - corr2 ! #if defined __MPI ENDIF ! ionode #endif ! IF ( ALLOCATED( rhodist1 ) ) DEALLOCATE( rhodist1 ) IF ( ALLOCATED( rhodist2 ) ) DEALLOCATE( rhodist2 ) #if defined __MPI IF ( ALLOCATED( displs ) ) DEALLOCATE( displs ) IF ( ALLOCATED( recvcount ) ) DEALLOCATE( recvcount ) #endif IF ( ALLOCATED( r ) ) DEALLOCATE( r ) IF ( ALLOCATED( rgx ) ) DEALLOCATE( rgx ) IF ( ALLOCATED( rgy ) ) DEALLOCATE( rgy ) IF ( ALLOCATED( rgz ) ) DEALLOCATE( rgz ) IF ( ALLOCATED( zvv ) ) DEALLOCATE( zvv ) IF ( ALLOCATED( rhof ) ) DEALLOCATE( rhof ) ! RETURN END espresso-5.1/CPV/src/cp_interfaces.f900000644000175000017500000011150312341373026015650 0ustar mbamba! ! Copyright (C) 2002-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! written by Carlo Cavazzoni !=----------------------------------------------------------------------------=! MODULE cp_interfaces !=----------------------------------------------------------------------------=! IMPLICIT NONE PRIVATE PUBLIC :: dforce PUBLIC :: pseudopotential_indexes PUBLIC :: compute_dvan PUBLIC :: compute_betagx PUBLIC :: compute_qradx PUBLIC :: interpolate_beta PUBLIC :: interpolate_qradb PUBLIC :: exact_beta PUBLIC :: build_cctab PUBLIC :: build_pstab PUBLIC :: check_tables PUBLIC :: fill_qrl PUBLIC :: exact_qradb PUBLIC :: compute_xgtab PUBLIC :: rhoofr PUBLIC :: fillgrad PUBLIC :: checkrho PUBLIC :: dft_total_charge PUBLIC :: writefile PUBLIC :: readfile PUBLIC :: runcp_uspp PUBLIC :: runcp_uspp_force_pairing PUBLIC :: eigs PUBLIC :: fermi_energy PUBLIC :: packgam PUBLIC :: ortho PUBLIC :: ortho_gamma PUBLIC :: nlfh PUBLIC :: nlfl_bgrp PUBLIC :: pseudo_stress PUBLIC :: compute_gagb PUBLIC :: stress_har PUBLIC :: stress_hartree PUBLIC :: add_drhoph PUBLIC :: stress_local PUBLIC :: stress_kin PUBLIC :: interpolate_lambda PUBLIC :: update_lambda PUBLIC :: elec_fakekine PUBLIC :: wave_rand_init PUBLIC :: crot PUBLIC :: proj PUBLIC :: phfacs PUBLIC :: strucf PUBLIC :: printout_new PUBLIC :: open_and_append PUBLIC :: cp_print_rho PUBLIC :: vofmean PUBLIC :: vofps PUBLIC :: vofloc PUBLIC :: force_loc PUBLIC :: self_vofhar ! PUBLIC :: set_eitot PUBLIC :: set_evtot ! PUBLIC :: print_lambda ! PUBLIC :: move_electrons ! PUBLIC :: compute_stress PUBLIC :: protate PUBLIC :: c_bgrp_expand PUBLIC :: c_bgrp_pack PUBLIC :: vofrho PUBLIC :: enkin PUBLIC :: newinit PUBLIC :: prefor PUBLIC :: denlcc PUBLIC :: dotcsc PUBLIC :: nlsm1 PUBLIC :: nlsm2_bgrp PUBLIC :: calbec_bgrp PUBLIC :: ennl PUBLIC :: calrhovan PUBLIC :: calbec PUBLIC :: caldbec_bgrp PUBLIC :: dennl PUBLIC :: nlfq_bgrp PUBLIC :: collect_bec PUBLIC :: distribute_lambda ! ------------------------------------ ! INTERFACE dforce SUBROUTINE dforce_x( i, bec, vkb, c, df, da, v, ldv, ispin, f, n, nspin, v1 ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(IN) :: i REAL(DP) :: bec(:,:) COMPLEX(DP) :: vkb(:,:) COMPLEX(DP) :: c(:,:) COMPLEX(DP) :: df(:), da(:) INTEGER, INTENT(IN) :: ldv REAL(DP) :: v( ldv, * ) INTEGER :: ispin( : ) REAL(DP) :: f( : ) INTEGER, INTENT(IN) :: n, nspin REAL(DP), OPTIONAL :: v1( ldv, * ) END SUBROUTINE dforce_x END INTERFACE INTERFACE pseudopotential_indexes SUBROUTINE pseudopotential_indexes_x( ) IMPLICIT NONE END SUBROUTINE pseudopotential_indexes_x END INTERFACE INTERFACE compute_dvan SUBROUTINE compute_dvan_x() IMPLICIT NONE END SUBROUTINE END INTERFACE INTERFACE compute_betagx SUBROUTINE compute_betagx_x( tpre ) IMPLICIT NONE LOGICAL, INTENT(IN) :: tpre END SUBROUTINE END INTERFACE INTERFACE compute_qradx SUBROUTINE compute_qradx_x( tpre ) IMPLICIT NONE LOGICAL, INTENT(IN) :: tpre END SUBROUTINE END INTERFACE INTERFACE interpolate_beta SUBROUTINE interpolate_beta_x( tpre ) IMPLICIT NONE LOGICAL, INTENT(IN) :: tpre END SUBROUTINE END INTERFACE INTERFACE interpolate_qradb SUBROUTINE interpolate_qradb_x( tpre ) IMPLICIT NONE LOGICAL, INTENT(IN) :: tpre END SUBROUTINE END INTERFACE INTERFACE exact_beta SUBROUTINE exact_beta_x( tpre ) IMPLICIT NONE LOGICAL, INTENT(IN) :: tpre END SUBROUTINE END INTERFACE INTERFACE build_cctab SUBROUTINE build_cctab_x( ) IMPLICIT NONE END SUBROUTINE END INTERFACE INTERFACE build_pstab SUBROUTINE build_pstab_x( ) IMPLICIT NONE END SUBROUTINE END INTERFACE INTERFACE check_tables LOGICAL FUNCTION check_tables_x( gmax ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP), INTENT(OUT) :: gmax END FUNCTION check_tables_x END INTERFACE INTERFACE fill_qrl SUBROUTINE fill_qrl_x( is, qrl ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(IN) :: is REAL(DP), INTENT(OUT) :: qrl( :, :, : ) END SUBROUTINE END INTERFACE INTERFACE exact_qradb SUBROUTINE exact_qradb_x( tpre ) IMPLICIT NONE LOGICAL, INTENT(IN) :: tpre END SUBROUTINE END INTERFACE INTERFACE compute_xgtab SUBROUTINE compute_xgtab_x( xgmin, xgmax ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP), INTENT(OUT) :: xgmax, xgmin END SUBROUTINE END INTERFACE INTERFACE dft_total_charge FUNCTION dft_total_charge_x( c, ngw, fi, n ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(IN) :: ngw, n COMPLEX(DP), INTENT(IN) :: c(:,:) REAL (DP), INTENT(IN) :: fi(:) REAL(DP) dft_total_charge_x END FUNCTION END INTERFACE INTERFACE rhoofr SUBROUTINE rhoofr_cp & ( nfi, c_bgrp, irb, eigrb, bec, dbec, rhovan, rhor, drhor, rhog, drhog, rhos, enl, denl, ekin, dekin, tstress, ndwwf ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER nfi COMPLEX(DP) c_bgrp( :, : ) INTEGER irb( :, : ) COMPLEX(DP) eigrb( :, : ) REAL(DP) bec(:,:) REAL(DP) dbec(:,:,:,:) REAL(DP) rhovan(:, :, : ) REAL(DP) rhor(:,:) REAL(DP) drhor(:,:,:,:) COMPLEX(DP) rhog( :, : ) COMPLEX(DP) drhog( :, :, :, : ) REAL(DP) rhos(:,:) REAL(DP) enl, ekin REAL(DP) denl(3,3), dekin(6) LOGICAL, OPTIONAL, INTENT(IN) :: tstress INTEGER, OPTIONAL, INTENT(IN) :: ndwwf END SUBROUTINE rhoofr_cp END INTERFACE INTERFACE fillgrad SUBROUTINE fillgrad_x( nspin, rhog, gradr ) USE kinds, ONLY: DP USE gvect, ONLY: ngm USE fft_base, ONLY: dfftp IMPLICIT NONE INTEGER, INTENT(IN) :: nspin complex(DP) :: rhog( ngm, nspin ) real(DP) :: gradr( dfftp%nnr, 3, nspin ) END SUBROUTINE fillgrad_x END INTERFACE INTERFACE checkrho SUBROUTINE checkrho_x(nnr,nspin,rhor,rmin,rmax,rsum,rnegsum) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(IN) :: nnr, nspin REAL(DP) :: rhor(nnr,nspin), rmin, rmax, rsum, rnegsum END SUBROUTINE checkrho_x END INTERFACE INTERFACE readfile SUBROUTINE readfile_x & & ( flag, h,hold,nfi,c0,cm,taus,tausm,vels,velsm,acc, & & lambda,lambdam,xnhe0,xnhem,vnhe,xnhp0,xnhpm,vnhp,nhpcl,nhpdim,ekincm,& & xnhh0,xnhhm,vnhh,velh,fion, tps, mat_z, occ_f ) USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(in) :: flag integer :: nfi REAL(DP) :: h(3,3), hold(3,3) complex(DP) :: c0(:,:), cm(:,:) REAL(DP) :: tausm(:,:),taus(:,:), fion(:,:) REAL(DP) :: vels(:,:), velsm(:,:) REAL(DP) :: acc(:),lambda(:,:,:), lambdam(:,:,:) REAL(DP) :: xnhe0,xnhem,vnhe REAL(DP) :: xnhp0(:), xnhpm(:), vnhp(:) integer, INTENT(inout) :: nhpcl,nhpdim REAL(DP) :: ekincm REAL(DP) :: xnhh0(3,3),xnhhm(3,3),vnhh(3,3),velh(3,3) REAL(DP), INTENT(OUT) :: tps REAL(DP), INTENT(INOUT) :: mat_z(:,:,:), occ_f(:) END SUBROUTINE readfile_x END INTERFACE INTERFACE writefile SUBROUTINE writefile_x & & ( h,hold,nfi,c0,cm,taus,tausm,vels,velsm,acc, & & lambda,lambdam,descla,xnhe0,xnhem,vnhe,xnhp0,xnhpm,vnhp,nhpcl,nhpdim,ekincm,& & xnhh0,xnhhm,vnhh,velh, fion, tps, mat_z, occ_f, rho ) USE kinds, ONLY: DP USE descriptors, ONLY: la_descriptor implicit none integer, INTENT(IN) :: nfi REAL(DP), INTENT(IN) :: h(3,3), hold(3,3) complex(DP), INTENT(IN) :: c0(:,:), cm(:,:) REAL(DP), INTENT(IN) :: tausm(:,:), taus(:,:), fion(:,:) REAL(DP), INTENT(IN) :: vels(:,:), velsm(:,:) REAL(DP), INTENT(IN) :: acc(:), lambda(:,:,:), lambdam(:,:,:) TYPE(la_descriptor), INTENT(IN) :: descla( : ) REAL(DP), INTENT(IN) :: xnhe0, xnhem, vnhe, ekincm REAL(DP), INTENT(IN) :: xnhp0(:), xnhpm(:), vnhp(:) integer, INTENT(in) :: nhpcl, nhpdim REAL(DP), INTENT(IN) :: xnhh0(3,3),xnhhm(3,3),vnhh(3,3),velh(3,3) REAL(DP), INTENT(in) :: tps REAL(DP), INTENT(in) :: rho(:,:) REAL(DP), INTENT(in) :: occ_f(:) REAL(DP), INTENT(in) :: mat_z(:,:,:) END SUBROUTINE writefile_x END INTERFACE INTERFACE runcp_uspp SUBROUTINE runcp_uspp_x & ( nfi, fccc, ccc, ema0bg, dt2bye, rhos, bec_bgrp, c0_bgrp, cm_bgrp, fromscra, restart ) USE kinds, ONLY: DP IMPLICIT NONE integer, intent(in) :: nfi real(DP) :: fccc, ccc real(DP) :: ema0bg(:), dt2bye real(DP) :: rhos(:,:) real(DP) :: bec_bgrp(:,:) complex(DP) :: c0_bgrp(:,:), cm_bgrp(:,:) logical, optional, intent(in) :: fromscra logical, optional, intent(in) :: restart END SUBROUTINE END INTERFACE INTERFACE runcp_uspp_force_pairing SUBROUTINE runcp_uspp_force_pairing_x & ( nfi, fccc, ccc, ema0bg, dt2bye, rhos, bec, c0, cm, intermed, fromscra, & restart ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(in) :: nfi REAL(DP) :: fccc, ccc REAL(DP) :: ema0bg(:), dt2bye REAL(DP) :: rhos(:,:) REAL(DP) :: bec(:,:) COMPLEX(DP) :: c0(:,:), cm(:,:) REAL(DP) :: intermed LOGICAL, OPTIONAL, INTENT(in) :: fromscra LOGICAL, OPTIONAL, INTENT(in) :: restart END SUBROUTINE END INTERFACE INTERFACE eigs SUBROUTINE cp_eigs_x( nfi, lambdap, lambda, desc ) USE kinds, ONLY: DP USE descriptors, ONLY: la_descriptor IMPLICIT NONE INTEGER :: nfi REAL(DP) :: lambda( :, :, : ), lambdap( :, :, : ) TYPE(la_descriptor), INTENT(IN) :: desc( : ) END SUBROUTINE END INTERFACE INTERFACE fermi_energy SUBROUTINE fermi_energy_x(eig, occ, wke, ef, qtot, temp, sume) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP) :: occ(:) REAL(DP) ef, qtot, temp, sume REAL(DP) eig(:,:), wke(:,:) END SUBROUTINE END INTERFACE INTERFACE packgam SUBROUTINE rpackgam_x( gam, f, aux ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP), INTENT(INOUT) :: gam(:,:) REAL(DP), INTENT(OUT), OPTIONAL :: aux(:) REAL(DP), INTENT(IN) :: f(:) END SUBROUTINE END INTERFACE INTERFACE ortho SUBROUTINE ortho_x & ( eigr, cp_bgrp, phi_bgrp, x0, descla, diff, iter, ccc, bephi, becp_bgrp ) USE kinds, ONLY: DP USE descriptors, ONLY: la_descriptor IMPLICIT NONE TYPE(la_descriptor), INTENT(IN) :: descla( : ) COMPLEX(DP) :: eigr( :, : ) COMPLEX(DP) :: cp_bgrp( :, : ), phi_bgrp( :, : ) REAL(DP) :: x0( :, :, : ), diff, ccc INTEGER :: iter REAL(DP) :: bephi(:,:) REAL(DP) :: becp_bgrp(:,:) END SUBROUTINE END INTERFACE INTERFACE ortho_gamma SUBROUTINE ortho_gamma_x & ( iopt, cp, ngwx, phi, becp_dist, qbecp, nkbx, bephi, qbephi, & x0, nx0, descla, diff, iter, n, nss, istart ) USE kinds, ONLY: DP USE descriptors, ONLY: la_descriptor IMPLICIT NONE INTEGER, INTENT(IN) :: iopt INTEGER, INTENT(IN) :: ngwx, nkbx, nx0 INTEGER, INTENT(IN) :: n, nss, istart COMPLEX(DP) :: phi( ngwx, n ), cp( ngwx, n ) REAL(DP) :: bephi( :, : ) REAL(DP) :: becp_dist(:,:) REAL(DP) :: qbephi( :, : ), qbecp( :, : ) REAL(DP) :: x0( nx0, nx0 ) TYPE(la_descriptor), INTENT(IN) :: descla INTEGER, INTENT(OUT) :: iter REAL(DP), INTENT(OUT) :: diff END SUBROUTINE END INTERFACE INTERFACE pseudo_stress SUBROUTINE pseudo_stress_x( deps, epseu, gagb, sfac, dvps, rhoeg, omega ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP), INTENT(IN) :: omega REAL(DP), INTENT(OUT) :: deps(:) REAL(DP), INTENT(IN) :: gagb(:,:) COMPLEX(DP), INTENT(IN) :: rhoeg(:,:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) REAL(DP), INTENT(IN) :: dvps(:,:) REAL(DP), INTENT(IN) :: epseu END SUBROUTINE END INTERFACE INTERFACE compute_gagb SUBROUTINE compute_gagb_x( gagb, gx, ngm, tpiba2 ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(IN) :: ngm REAL(DP), INTENT(IN) :: gx(:,:) REAL(DP), INTENT(OUT) :: gagb(:,:) REAL(DP), INTENT(IN) :: tpiba2 END SUBROUTINE END INTERFACE INTERFACE stress_har SUBROUTINE stress_har_x(deht, ehr, sfac, rhoeg, gagb, omega ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP), INTENT(OUT) :: DEHT(:) REAL(DP), INTENT(IN) :: omega, EHR, gagb(:,:) COMPLEX(DP), INTENT(IN) :: RHOEG(:,:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) END SUBROUTINE END INTERFACE INTERFACE stress_hartree SUBROUTINE stress_hartree_x(deht, ehr, sfac, rhot, drhot, gagb, omega ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP), INTENT(OUT) :: DEHT(:) REAL(DP), INTENT(IN) :: omega, EHR, gagb(:,:) COMPLEX(DP) :: rhot(:) ! total charge: Sum_spin ( rho_e + rho_I ) COMPLEX(DP) :: drhot(:,:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) END SUBROUTINE END INTERFACE INTERFACE add_drhoph SUBROUTINE add_drhoph_x( drhot, sfac, gagb ) USE kinds, ONLY: DP IMPLICIT NONE COMPLEX(DP), INTENT(INOUT) :: drhot( :, : ) COMPLEX(DP), INTENT(IN) :: sfac( :, : ) REAL(DP), INTENT(IN) :: gagb( :, : ) END SUBROUTINE END INTERFACE INTERFACE stress_local SUBROUTINE stress_local_x( deps, epseu, gagb, sfac, rhoe, drhoe, omega ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP), INTENT(IN) :: omega REAL(DP), INTENT(OUT) :: deps(:) REAL(DP), INTENT(IN) :: gagb(:,:) COMPLEX(DP), INTENT(IN) :: rhoe(:) COMPLEX(DP), INTENT(IN) :: drhoe(:,:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) REAL(DP), INTENT(IN) :: epseu END SUBROUTINE END INTERFACE INTERFACE stress_kin SUBROUTINE stress_kin_x(dekin, c0, occ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP), INTENT(OUT) :: dekin(:) COMPLEX(DP), INTENT(IN) :: c0(:,:) REAL(DP), INTENT(IN) :: occ(:) END SUBROUTINE END INTERFACE INTERFACE interpolate_lambda SUBROUTINE interpolate_lambda_x( lambdap, lambda, lambdam ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP) :: lambdap(:,:,:), lambda(:,:,:), lambdam(:,:,:) END SUBROUTINE END INTERFACE INTERFACE update_lambda SUBROUTINE update_lambda_x( i, lambda, c0, c2, n, noff, tdist ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(IN) :: n, noff REAL(DP) :: lambda(:,:) COMPLEX(DP) :: c0(:,:), c2(:) INTEGER, INTENT(IN) :: i LOGICAL, INTENT(IN) :: tdist ! if .true. lambda is distributed END SUBROUTINE END INTERFACE INTERFACE elec_fakekine SUBROUTINE elec_fakekine_x( ekincm, ema0bg, emass, c0, cm, ngw, n, noff, delt ) USE kinds, ONLY: DP IMPLICIT NONE integer, intent(in) :: ngw ! number of plane wave coeff. integer, intent(in) :: n ! number of bands integer, intent(in) :: noff ! offset for band index real(DP), intent(out) :: ekincm real(DP), intent(in) :: ema0bg( ngw ), delt, emass complex(DP), intent(in) :: c0( ngw, n ), cm( ngw, n ) END SUBROUTINE END INTERFACE INTERFACE wave_rand_init SUBROUTINE wave_rand_init_x( cm, global ) USE kinds, ONLY: DP IMPLICIT NONE COMPLEX(DP), INTENT(OUT) :: cm(:,:) LOGICAL, OPTIONAL, INTENT(IN) :: global END SUBROUTINE END INTERFACE INTERFACE crot SUBROUTINE crot_gamma2 ( c0rot, c0, ngw, n, noffr, noff, lambda, nx, eig ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(IN) :: ngw, n, nx, noffr, noff COMPLEX(DP), INTENT(INOUT) :: c0rot(:,:) COMPLEX(DP), INTENT(IN) :: c0(:,:) REAL(DP), INTENT(IN) :: lambda(:,:) REAL(DP), INTENT(OUT) :: eig(:) END SUBROUTINE END INTERFACE INTERFACE proj SUBROUTINE proj_gamma( a, b, ngw, n, noff, lambda) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT( IN ) :: ngw, n, noff COMPLEX(DP), INTENT(INOUT) :: a(:,:), b(:,:) REAL(DP), OPTIONAL :: lambda(:,:) END SUBROUTINE END INTERFACE INTERFACE phfacs SUBROUTINE phfacs_x( ei1, ei2, ei3, eigr, mill, taus, nr1, nr2, nr3, nat ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(IN) :: nat INTEGER, INTENT(IN) :: nr1, nr2, nr3 COMPLEX(DP) :: ei1( -nr1 : nr1, nat ) COMPLEX(DP) :: ei2( -nr2 : nr2, nat ) COMPLEX(DP) :: ei3( -nr3 : nr3, nat ) COMPLEX(DP) :: eigr( :, : ) REAL(DP) :: taus( 3, nat ) INTEGER :: mill( :, : ) END SUBROUTINE END INTERFACE INTERFACE strucf SUBROUTINE strucf_x( sfac, ei1, ei2, ei3, mill, ngm ) USE kinds, ONLY: DP USE ions_base, ONLY: nat USE fft_base, ONLY: dfftp IMPLICIT NONE COMPLEX(DP) :: ei1( -dfftp%nr1 : dfftp%nr1, nat ) COMPLEX(DP) :: ei2( -dfftp%nr2 : dfftp%nr2, nat ) COMPLEX(DP) :: ei3( -dfftp%nr3 : dfftp%nr3, nat ) INTEGER :: mill( :, : ) INTEGER :: ngm COMPLEX(DP), INTENT(OUT) :: sfac(:,:) END SUBROUTINE END INTERFACE INTERFACE printout_new SUBROUTINE printout_new_x & ( nfi, tfirst, tfilei, tprint, tps, h, stress, tau0, vels, & fion, ekinc, temphc, tempp, temps, etot, enthal, econs, econt, & vnhh, xnhh0, vnhp, xnhp0, atot, ekin, epot, print_forces, print_stress,tstdout ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(IN) :: nfi LOGICAL, INTENT(IN) :: tfirst, tfilei, tprint REAL(DP), INTENT(IN) :: tps REAL(DP), INTENT(IN) :: h( 3, 3 ) REAL(DP), INTENT(IN) :: stress( 3, 3 ) REAL(DP), INTENT(IN) :: tau0( :, : ) ! real positions REAL(DP), INTENT(IN) :: vels( :, : ) ! scaled velocities REAL(DP), INTENT(IN) :: fion( :, : ) ! real forces REAL(DP), INTENT(IN) :: ekinc, temphc, tempp, etot, enthal, econs, econt REAL(DP), INTENT(IN) :: temps( : ) ! partial temperature for different ionic species REAL(DP), INTENT(IN) :: vnhh( 3, 3 ), xnhh0( 3, 3 ), vnhp( 1 ), xnhp0( 1 ) REAL(DP), INTENT(IN) :: atot! enthalpy of system for c.g. case REAL(DP), INTENT(IN) :: ekin REAL(DP), INTENT(IN) :: epot ! ( epseu + eht + exc ) LOGICAL, INTENT(IN) :: print_forces, print_stress, tstdout END SUBROUTINE END INTERFACE INTERFACE open_and_append SUBROUTINE open_and_append_x( iunit, file_name ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(IN) :: iunit CHARACTER(LEN = *), INTENT(IN) :: file_name END SUBROUTINE END INTERFACE INTERFACE cp_print_rho SUBROUTINE cp_print_rho_x & (nfi, bec, c0, eigr, irb, eigrb, rhor, rhog, rhos, lambdap, lambda, tau0, h ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER :: nfi INTEGER :: irb(:,:) COMPLEX(DP) :: c0( :, : ) REAL(DP) :: bec( :, : ), rhor( :, : ), rhos( :, : ) REAL(DP) :: lambda( :, :, : ), lambdap( :, :, : ) REAL(DP) :: tau0( :, : ), h( 3, 3 ) COMPLEX(DP) :: eigrb( :, : ), rhog( :, : ) COMPLEX(DP) :: eigr( :, : ) END SUBROUTINE END INTERFACE INTERFACE vofmean SUBROUTINE vofmean_x( sfac, rhops, rhoeg ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP), INTENT(IN) :: RHOPS(:,:) COMPLEX(DP), INTENT(IN) :: RHOEG(:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) END SUBROUTINE END INTERFACE INTERFACE vofps SUBROUTINE vofps_x( eps, vloc, rhoeg, vps, sfac, omega ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP), INTENT(IN) :: vps(:,:) REAL(DP), INTENT(IN) :: omega COMPLEX(DP), INTENT(OUT) :: vloc(:) COMPLEX(DP), INTENT(IN) :: rhoeg(:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) COMPLEX(DP), INTENT(OUT) :: eps END SUBROUTINE END INTERFACE INTERFACE vofloc SUBROUTINE vofloc_x( tscreen, ehte, ehti, eh, vloc, rhoeg, & rhops, vps, sfac, omega, screen_coul ) USE kinds, ONLY: DP IMPLICIT NONE LOGICAL, INTENT(IN) :: tscreen REAL(DP), INTENT(IN) :: rhops(:,:), vps(:,:) COMPLEX(DP), INTENT(INOUT) :: vloc(:) COMPLEX(DP), INTENT(IN) :: rhoeg(:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) REAL(DP), INTENT(OUT) :: ehte, ehti REAL(DP), INTENT(IN) :: omega COMPLEX(DP), INTENT(OUT) :: eh COMPLEX(DP), INTENT(IN) :: screen_coul(:) END SUBROUTINE END INTERFACE INTERFACE force_loc SUBROUTINE force_loc_x( tscreen, rhoeg, fion, rhops, vps, ei1, ei2, ei3, & sfac, omega, screen_coul ) USE kinds, ONLY: DP USE fft_base, ONLY: dfftp USE ions_base, ONLY: nat IMPLICIT NONE LOGICAL :: tscreen REAL(DP) :: fion(:,:) REAL(DP) :: rhops(:,:), vps(:,:) COMPLEX(DP) :: rhoeg(:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) COMPLEX(DP) :: ei1(-dfftp%nr1:dfftp%nr1,nat) COMPLEX(DP) :: ei2(-dfftp%nr2:dfftp%nr2,nat) COMPLEX(DP) :: ei3(-dfftp%nr3:dfftp%nr3,nat) REAL(DP) :: omega COMPLEX(DP) :: screen_coul(:) END SUBROUTINE END INTERFACE INTERFACE self_vofhar SUBROUTINE self_vofhar_x( tscreen, self_ehte, vloc, rhoeg, omega, hmat ) USE kinds, ONLY: DP IMPLICIT NONE LOGICAL :: tscreen COMPLEX(DP) :: vloc(:) COMPLEX(DP) :: rhoeg(:,:) REAL(DP) :: self_ehte REAL(DP), INTENT(IN) :: omega REAL(DP), INTENT(IN) :: hmat( 3, 3 ) END SUBROUTINE END INTERFACE INTERFACE set_eitot SUBROUTINE set_eitot_x( eitot ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP), INTENT(OUT) :: eitot(:,:) END SUBROUTINE END INTERFACE INTERFACE set_evtot SUBROUTINE set_evtot_x( c0, ctot, lambda, descla, iupdwn_tot, nupdwn_tot ) USE kinds, ONLY: DP USE descriptors, ONLY: la_descriptor IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: c0(:,:) COMPLEX(DP), INTENT(OUT) :: ctot(:,:) REAL(DP), INTENT(IN) :: lambda(:,:,:) TYPE(la_descriptor), INTENT(IN) :: descla(:) INTEGER, INTENT(IN) :: iupdwn_tot(2), nupdwn_tot(2) END SUBROUTINE END INTERFACE INTERFACE print_projwfc SUBROUTINE print_projwfc_x ( c0, lambda, eigr, vkb ) USE kinds, ONLY: DP IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: c0(:,:), eigr(:,:), vkb(:,:) REAL(DP), INTENT(IN) :: lambda(:,:,:) END SUBROUTINE END INTERFACE INTERFACE move_electrons SUBROUTINE move_electrons_x( & nfi, tfirst, tlast, b1, b2, b3, fion, c0_bgrp, cm_bgrp, phi_bgrp, enthal, enb, & & enbi, fccc, ccc, dt2bye, stress,l_cprestart ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(IN) :: nfi LOGICAL, INTENT(IN) :: tfirst, tlast REAL(DP), INTENT(IN) :: b1(3), b2(3), b3(3) REAL(DP) :: fion(:,:) COMPLEX(DP) :: c0_bgrp(:,:), cm_bgrp(:,:), phi_bgrp(:,:) REAL(DP), INTENT(IN) :: dt2bye REAL(DP) :: fccc, ccc REAL(DP) :: enb, enbi REAL(DP) :: enthal REAL(DP) :: ei_unp REAL(DP) :: stress(3,3) LOGICAL, INTENT(in) :: l_cprestart END SUBROUTINE END INTERFACE INTERFACE compute_stress SUBROUTINE compute_stress_x( stress, detot, h, omega ) USE kinds, ONLY : DP IMPLICIT NONE REAL(DP), INTENT(OUT) :: stress(3,3) REAL(DP), INTENT(IN) :: detot(3,3), h(3,3), omega END SUBROUTINE END INTERFACE INTERFACE nlfh SUBROUTINE nlfh_x( stress, bec, dbec, lambda, descla ) USE kinds, ONLY : DP USE descriptors, ONLY: la_descriptor IMPLICIT NONE REAL(DP), INTENT(INOUT) :: stress(3,3) REAL(DP), INTENT(IN) :: bec( :, : ), dbec( :, :, :, : ) REAL(DP), INTENT(IN) :: lambda( :, :, : ) TYPE(la_descriptor), INTENT(IN) :: descla(:) END SUBROUTINE END INTERFACE INTERFACE nlfl_bgrp SUBROUTINE nlfl_bgrp_x( bec_bgrp, becdr_bgrp, lambda, descla, fion ) USE kinds, ONLY: DP USE descriptors, ONLY: la_descriptor IMPLICIT NONE REAL(DP) :: bec_bgrp(:,:), becdr_bgrp(:,:,:) REAL(DP), INTENT(IN) :: lambda(:,:,:) TYPE(la_descriptor), INTENT(IN) :: descla(:) REAL(DP), INTENT(INOUT) :: fion(:,:) END SUBROUTINE END INTERFACE INTERFACE print_lambda SUBROUTINE print_lambda_x( lambda, descla, n, nshow, ccc, iunit ) USE kinds, ONLY : DP USE descriptors, ONLY: la_descriptor IMPLICIT NONE REAL(DP), INTENT(IN) :: lambda(:,:,:), ccc TYPE(la_descriptor), INTENT(IN) :: descla(:) INTEGER, INTENT(IN) :: n, nshow INTEGER, INTENT(IN), OPTIONAL :: iunit END SUBROUTINE END INTERFACE INTERFACE protate SUBROUTINE protate_x ( c0, bec, c0rot, becrot, ngwl, nss, noff, lambda, nrl, & na, nsp, ish, nh, np_rot, me_rot, comm_rot ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(IN) :: ngwl, nss, nrl, noff INTEGER, INTENT(IN) :: na(:), nsp, ish(:), nh(:) INTEGER, INTENT(IN) :: np_rot, me_rot, comm_rot COMPLEX(DP), INTENT(IN) :: c0(:,:) COMPLEX(DP), INTENT(OUT) :: c0rot(:,:) REAL(DP), INTENT(IN) :: lambda(:,:) REAL(DP), INTENT(IN) :: bec(:,:) REAL(DP), INTENT(OUT) :: becrot(:,:) END SUBROUTINE END INTERFACE INTERFACE c_bgrp_expand SUBROUTINE c_bgrp_expand_x( c_bgrp ) USE kinds, ONLY: DP IMPLICIT NONE COMPLEX(DP) :: c_bgrp(:,:) END SUBROUTINE c_bgrp_expand_x END INTERFACE INTERFACE c_bgrp_pack SUBROUTINE c_bgrp_pack_x( c_bgrp ) USE kinds, ONLY: DP IMPLICIT NONE COMPLEX(DP) :: c_bgrp(:,:) END SUBROUTINE c_bgrp_pack_x END INTERFACE INTERFACE vofrho SUBROUTINE vofrho_x( nfi, rhor, drhor, rhog, drhog, rhos, rhoc, tfirst, tlast, & & ei1, ei2, ei3, irb, eigrb, sfac, tau0, fion ) USE kinds, ONLY: dp IMPLICIT NONE LOGICAL :: tlast, tfirst INTEGER :: nfi REAL(DP) :: rhor(:,:), drhor(:,:,:,:), rhos(:,:), fion(:,:) REAL(DP) :: rhoc(:), tau0(:,:) ! COMPLEX(DP) ei1(-nr1:nr1,nat), ei2(-nr2:nr2,nat), ei3(-nr3:nr3,nat) COMPLEX(DP) :: ei1(:,:), ei2(:,:), ei3(:,:) COMPLEX(DP) :: eigrb(:,:) COMPLEX(DP) :: rhog(:,:), drhog(:,:,:,:) COMPLEX(DP) :: sfac(:,:) INTEGER :: irb(:,:) END SUBROUTINE vofrho_x END INTERFACE INTERFACE enkin FUNCTION enkin_x( c, f, n ) USE kinds, ONLY: dp IMPLICIT NONE INTEGER, INTENT(IN) :: n COMPLEX(DP), INTENT(IN) :: c( :, : ) REAL(DP), INTENT(IN) :: f( : ) REAL(DP) :: enkin_x END FUNCTION enkin_x END INTERFACE INTERFACE newinit SUBROUTINE newinit_x( h, iverbosity ) USE kinds, ONLY: dp IMPLICIT NONE REAL(DP), INTENT(IN) :: h( 3, 3 ) INTEGER, INTENT(IN) :: iverbosity END SUBROUTINE newinit_x END INTERFACE INTERFACE prefor SUBROUTINE prefor_x( eigr, betae ) USE kinds, ONLY: dp IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: eigr( :, : ) COMPLEX(DP), INTENT(OUT) :: betae( :, : ) END SUBROUTINE prefor_x END INTERFACE INTERFACE denlcc SUBROUTINE denlcc_x( nnr, nspin, vxcr, sfac, drhocg, dcc ) USE kinds, ONLY: dp IMPLICIT NONE INTEGER, INTENT(IN) :: nnr, nspin REAL(DP), INTENT(IN) :: vxcr( :, : ) COMPLEX(DP), INTENT(IN) :: sfac( :, : ) REAL(DP), INTENT(IN) :: drhocg( :, : ) REAL(DP), INTENT(OUT) :: dcc( :, : ) END SUBROUTINE denlcc_x END INTERFACE INTERFACE dotcsc SUBROUTINE dotcsc_x( eigr, cp, ngw, n ) USE kinds, ONLY: dp IMPLICIT NONE INTEGER, INTENT(IN) :: ngw, n COMPLEX(DP), INTENT(IN) :: eigr(:,:), cp(:,:) END SUBROUTINE dotcsc_x END INTERFACE INTERFACE nlsm1 SUBROUTINE nlsm1_x ( n, nspmn, nspmx, eigr, c, becp ) USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(IN) :: n, nspmn, nspmx COMPLEX(DP), INTENT(IN) :: eigr( :, : ), c( :, : ) REAL(DP), INTENT(OUT) :: becp( :, : ) END SUBROUTINE nlsm1_x END INTERFACE INTERFACE nlsm2_bgrp SUBROUTINE nlsm2_bgrp_x( ngw, nkb, eigr, c_bgrp, becdr_bgrp, nbspx_bgrp, nbsp_bgrp ) USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(IN) :: ngw, nkb, nbspx_bgrp, nbsp_bgrp COMPLEX(DP), INTENT(IN) :: eigr( :, : ), c_bgrp( :, : ) REAL(DP), INTENT(OUT) :: becdr_bgrp( :, :, : ) END SUBROUTINE nlsm2_bgrp_x END INTERFACE INTERFACE calbec_bgrp SUBROUTINE calbec_bgrp_x ( nspmn, nspmx, eigr, c_bgrp, bec_bgrp ) USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(IN) :: nspmn, nspmx COMPLEX(DP), INTENT(IN) :: eigr( :, : ), c_bgrp( :, : ) REAL(DP), INTENT(OUT) :: bec_bgrp( :, : ) END SUBROUTINE calbec_bgrp_x END INTERFACE INTERFACE ennl SUBROUTINE ennl_x( ennl_val, rhovan, bec_bgrp ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP), INTENT(OUT) :: ennl_val REAL(DP), INTENT(OUT) :: rhovan( :, :, : ) REAL(DP), INTENT(IN) :: bec_bgrp( :, : ) END SUBROUTINE ennl_x END INTERFACE INTERFACE calrhovan SUBROUTINE calrhovan_x( rhovan, bec, iwf ) USE kinds, ONLY: DP IMPLICIT NONE REAL(DP), INTENT(OUT) :: rhovan( :, :, : ) REAL(DP), INTENT(IN) :: bec( :, : ) INTEGER, INTENT(IN) :: iwf END SUBROUTINE calrhovan_x END INTERFACE INTERFACE calbec SUBROUTINE calbec_x( nspmn, nspmx, eigr, c, bec ) USE kinds, ONLY: DP IMPLICIT NONE INTEGER, INTENT(IN) :: nspmn, nspmx REAL(DP), INTENT(OUT) :: bec( :, : ) COMPLEX(DP), INTENT(IN) :: c( :, : ), eigr( :, : ) END SUBROUTINE calbec_x END INTERFACE INTERFACE caldbec_bgrp SUBROUTINE caldbec_bgrp_x( eigr, c_bgrp, dbec, descla ) USE kinds, ONLY: DP USE descriptors, ONLY: la_descriptor IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: c_bgrp( :, : ), eigr( :, : ) REAL(DP), INTENT(OUT) :: dbec( :, :, :, : ) TYPE(la_descriptor), INTENT(IN) :: descla( : ) END SUBROUTINE caldbec_bgrp_x END INTERFACE INTERFACE dennl SUBROUTINE dennl_x( bec_bgrp, dbec, drhovan, denl, descla ) USE kinds, ONLY: DP USE descriptors, ONLY: la_descriptor IMPLICIT NONE REAL(DP), INTENT(IN) :: dbec( :, :, :, : ) REAL(DP), INTENT(IN) :: bec_bgrp( :, : ) REAL(DP), INTENT(OUT) :: drhovan( :, :, :, :, : ) REAL(DP), INTENT(OUT) :: denl( 3, 3 ) TYPE(la_descriptor), INTENT(IN) :: descla( : ) END SUBROUTINE dennl_x END INTERFACE INTERFACE nlfq_bgrp SUBROUTINE nlfq_bgrp_x( c_bgrp, eigr, bec_bgrp, becdr_bgrp, fion ) USE kinds, ONLY: DP IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: c_bgrp( :, : ), eigr( :, : ) REAL(DP), INTENT(IN) :: bec_bgrp( :, : ) REAL(DP), INTENT(OUT) :: becdr_bgrp( :, :, : ) REAL(DP), INTENT(OUT) :: fion( :, : ) END SUBROUTINE nlfq_bgrp_x END INTERFACE INTERFACE collect_bec SUBROUTINE collect_bec_x( bec_repl, bec_dist, desc, nspin ) USE kinds, ONLY : DP USE descriptors, ONLY : la_descriptor REAL(DP), INTENT(OUT) :: bec_repl(:,:) REAL(DP), INTENT(IN) :: bec_dist(:,:) TYPE(la_descriptor), INTENT(IN) :: desc(:) INTEGER, INTENT(IN) :: nspin END SUBROUTINE collect_bec_x END INTERFACE INTERFACE distribute_lambda SUBROUTINE distribute_lambda_x( lambda_repl, lambda_dist, desc ) USE kinds, ONLY : DP USE descriptors, ONLY : la_descriptor REAL(DP), INTENT(IN) :: lambda_repl(:,:) REAL(DP), INTENT(OUT) :: lambda_dist(:,:) TYPE(la_descriptor), INTENT(IN) :: desc END SUBROUTINE distribute_lambda_x END INTERFACE PUBLIC :: collect_lambda INTERFACE collect_lambda SUBROUTINE collect_lambda_x( lambda_repl, lambda_dist, desc ) USE kinds, ONLY : DP USE descriptors, ONLY : la_descriptor REAL(DP), INTENT(OUT) :: lambda_repl(:,:) REAL(DP), INTENT(IN) :: lambda_dist(:,:) TYPE(la_descriptor), INTENT(IN) :: desc END SUBROUTINE collect_lambda_x END INTERFACE PUBLIC :: setval_lambda INTERFACE setval_lambda SUBROUTINE setval_lambda_x( lambda_dist, i, j, val, desc ) USE kinds, ONLY : DP USE descriptors, ONLY : la_descriptor REAL(DP), INTENT(OUT) :: lambda_dist(:,:) INTEGER, INTENT(IN) :: i, j REAL(DP), INTENT(IN) :: val TYPE(la_descriptor), INTENT(IN) :: desc END SUBROUTINE setval_lambda_x END INTERFACE PUBLIC :: distribute_zmat INTERFACE distribute_zmat SUBROUTINE distribute_zmat_x( zmat_repl, zmat_dist, desc ) USE kinds, ONLY : DP USE descriptors, ONLY : la_descriptor REAL(DP), INTENT(IN) :: zmat_repl(:,:) REAL(DP), INTENT(OUT) :: zmat_dist(:,:) TYPE(la_descriptor), INTENT(IN) :: desc END SUBROUTINE distribute_zmat_x END INTERFACE PUBLIC :: collect_zmat INTERFACE collect_zmat SUBROUTINE collect_zmat_x( zmat_repl, zmat_dist, desc ) USE kinds, ONLY : DP USE descriptors, ONLY : la_descriptor REAL(DP), INTENT(OUT) :: zmat_repl(:,:) REAL(DP), INTENT(IN) :: zmat_dist(:,:) TYPE(la_descriptor), INTENT(IN) :: desc END SUBROUTINE collect_zmat_x END INTERFACE !=----------------------------------------------------------------------------=! !=----------------------------------------------------------------------------=! END MODULE !=----------------------------------------------------------------------------=! espresso-5.1/CPV/src/ortho.f900000644000175000017500000003663312341373026014210 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! SUBROUTINE ortho_gamma_x( iopt, cp, ngwx, phi, becp_dist, qbecp, nkbx, bephi, qbephi, & x0, nx0, descla, diff, iter, n, nss, istart ) !=----------------------------------------------------------------------------=! ! USE kinds, ONLY: DP USE orthogonalize_base, ONLY: rhoset, sigset, tauset, ortho_iterate, & ortho_alt_iterate, diagonalize_serial, & use_parallel_diag, diagonalize_parallel USE descriptors, ONLY: la_descriptor USE mp_global, ONLY: nproc_bgrp, me_bgrp, intra_bgrp_comm, my_bgrp_id, inter_bgrp_comm, nbgrp USE mp, ONLY: mp_sum, mp_bcast IMPLICIT NONE ! ... Arguments INTEGER, INTENT(IN) :: iopt INTEGER, INTENT(IN) :: ngwx, nkbx, nx0 INTEGER, INTENT(IN) :: n, nss, istart COMPLEX(DP) :: phi( ngwx, n ), cp( ngwx, n ) REAL(DP) :: bephi( :, : ) REAL(DP) :: becp_dist( :, : ) REAL(DP) :: qbephi( :, : ), qbecp( :, : ) REAL(DP) :: x0( nx0, nx0 ) TYPE(la_descriptor), INTENT(IN) :: descla INTEGER, INTENT(OUT) :: iter REAL(DP), INTENT(OUT) :: diff ! ... Locals REAL(DP), ALLOCATABLE :: s(:,:), sig(:,:), tau(:,:), rhot(:,:) REAL(DP), ALLOCATABLE :: wrk(:,:), rhoa(:,:), rhos(:,:), rhod(:) INTEGER :: i, j, info, nr, nc, ir, ic ! ! ... Subroutine body ! IF( descla%active_node > 0 ) THEN ! IF( nx0 /= descla%nrcx ) & CALL errore( ' ortho_gamma ', ' inconsistent dimensions nx0 ' , nx0 ) ! nr = descla%nr nc = descla%nc ! ir = descla%ir ic = descla%ic ! ELSE ! nr = 1 nc = 1 ! IF( nx0 /= 1 ) & CALL errore( ' ortho_gamma ', ' inconsistent dimensions nx0, should be 1 ' , nx0 ) ! END IF ! ALLOCATE( rhos( nx0, nx0 ), STAT = info ) IF( info /= 0 ) & CALL errore( ' ortho_gamma ', ' allocating rhos ', ABS( info ) ) ALLOCATE( rhoa( nx0, nx0 ), STAT = info ) ! antisymmetric part of rho IF( info /= 0 ) & CALL errore( ' ortho_gamma ', ' allocating rhoa ', ABS( info ) ) ALLOCATE( s( nx0, nx0 ), STAT = info ) IF( info /= 0 ) & CALL errore( ' ortho_gamma ', ' allocating s ', ABS( info ) ) ALLOCATE( sig( nx0, nx0 ), STAT = info ) IF( info /= 0 ) & CALL errore( ' ortho_gamma ', ' allocating sig ', ABS( info ) ) ALLOCATE( tau( nx0, nx0 ), STAT = info ) IF( info /= 0 ) & CALL errore( ' ortho_gamma ', ' allocating tau ', ABS( info ) ) ! ALLOCATE( rhod( nss ), STAT = info ) IF( info /= 0 ) & CALL errore( ' ortho_gamma ', ' allocating tau ', ABS( rhod ) ) ! ! rho = ! CALL start_clock( 'rhoset' ) ! CALL rhoset( cp, ngwx, phi, bephi, nkbx, qbecp, n, nss, istart, rhos, nx0, descla ) ! IF( descla%active_node > 0 ) THEN ! ALLOCATE( rhot( nx0, nx0 ), STAT = info ) ! transpose of rho IF( info /= 0 ) & CALL errore( ' ortho_gamma ', ' allocating rhot ', ABS( rhod ) ) ! ! distributed array rhos contains "rho", ! now transpose rhos and store the result in distributed array rhot ! CALL sqr_tr_cannon( nss, rhos, nx0, rhot, nx0, descla ) ! ! Compute the symmetric part of rho ! DO j = 1, nc DO i = 1, nr rhos( i, j ) = 0.5d0 * ( rhos( i, j ) + rhot( i, j ) ) END DO END DO ! ! distributed array rhos now contains symmetric part of "rho", ! CALL consistency_check( rhos ) ! ! Antisymmetric part of rho, alredy distributed across ortho procs. ! DO j = 1, nc DO i = 1, nr rhoa( i, j ) = rhos( i, j ) - rhot( i, j ) END DO END DO ! DEALLOCATE( rhot ) ! END IF CALL stop_clock( 'rhoset' ) CALL start_clock( 'rsg' ) ! ! ... Diagonalize symmetric part of rho (rhos) ! ... "s" is the matrix of eigenvectors, "rhod" is the array of eigenvalues ! IF( use_parallel_diag ) THEN ! CALL diagonalize_parallel( nss, rhos, rhod, s, descla ) ! ELSE ! IF( descla%active_node > 0 ) THEN ! ALLOCATE( wrk( nss, nss ), STAT = info ) IF( info /= 0 ) CALL errore( ' ortho_gamma ', ' allocating wrk ', 1 ) ! CALL collect_matrix( wrk, rhos ) ! CALL diagonalize_serial( nss, wrk, rhod ) ! CALL distribute_matrix( wrk, s ) ! DEALLOCATE( wrk ) ! END IF ! END IF ! CALL stop_clock( 'rsg' ) ! ! sig = 1- ! CALL start_clock( 'sigset' ) CALL sigset( cp, ngwx, becp_dist, nkbx, qbecp, n, nss, istart, sig, nx0, descla ) CALL stop_clock( 'sigset' ) ! ! tau = ! CALL start_clock( 'tauset' ) CALL tauset( phi, ngwx, bephi, nkbx, qbephi, n, nss, istart, tau, nx0, descla ) CALL stop_clock( 'tauset' ) ! CALL start_clock( 'ortho_iter' ) ! IF( my_bgrp_id == 0 ) THEN ! ! Matrices and orthogonalization are replicated on all band groups, there is no ! need to keep all processors busy with this task. The processors of the first ! group are enough. Moreover replicating the computation across groups could leads ! to small numerical differences and weird numerical effects. ! IF( iopt == 0 ) THEN ! CALL ortho_iterate( iter, diff, s, nx0, rhod, x0, nx0, sig, rhoa, rhos, tau, nss, descla) ! ELSE ! CALL ortho_alt_iterate( iter, diff, s, nx0, rhod, x0, nx0, sig, rhoa, tau, nss, descla) ! END IF ! END IF ! IF( nbgrp > 1 ) THEN ! ! All groups must have the same lambda matrix, in order to avoid weird ! numerical side effects. ! CALL mp_bcast( x0, 0, inter_bgrp_comm ) CALL mp_bcast( iter, 0, inter_bgrp_comm ) CALL mp_bcast( diff, 0, inter_bgrp_comm ) ! END IF ! CALL stop_clock( 'ortho_iter' ) ! DEALLOCATE( rhoa, rhos, rhod, s, sig, tau ) ! IF( descla%active_node > 0 ) CALL consistency_check( x0 ) RETURN CONTAINS SUBROUTINE distribute_matrix( a, b ) REAL(DP) :: a(:,:), b(:,:) INTEGER :: i, j IF( descla%active_node > 0 ) THEN DO j = 1, nc DO i = 1, nr b( i, j ) = a( i + ir - 1, j + ic - 1 ) END DO END DO END IF RETURN END SUBROUTINE SUBROUTINE collect_matrix( a, b ) REAL(DP) :: a(:,:), b(:,:) INTEGER :: i, j a = 0.0d0 IF( descla%active_node > 0 ) THEN DO j = 1, nc DO i = 1, nr a( ir + i - 1, ic + j - 1 ) = b( i, j ) END DO END DO END IF CALL mp_sum( a, descla%comm ) RETURN END SUBROUTINE SUBROUTINE consistency_check( a ) REAL(DP) :: a(:,:) INTEGER :: i, j ! ! on some machines (IBM RS/6000 for instance) the following test allows ! to distinguish between Numbers and Sodium Nitride (NaN, Not a Number). ! If a matrix of Not-Numbers is passed to rs, the most likely outcome is ! that the program goes on forever doing nothing and writing nothing. ! DO j = 1, nc DO i = 1, nr IF (a(i,j) /= a(i,j)) CALL errore(' ortho ',' ortho went bananas ',1) END DO END DO RETURN END SUBROUTINE END SUBROUTINE ortho_gamma_x !=----------------------------------------------------------------------------=! SUBROUTINE ortho_x( eigr, cp_bgrp, phi_bgrp, x0, descla, diff, iter, ccc, bephi, becp_bgrp ) !=----------------------------------------------------------------------------=! ! ! input = cp (non-orthonormal), beta ! input = phi |phi>=s'|c0> ! output= cp (orthonormal with s( r(t+dt) ) ) ! output= bephi, becp ! the method used is similar to the version in les houches 1988 ! 'simple molecular systems at..' p. 462-463 (18-22) ! xcx + b x + b^t x^t + a = 1 ! where c = b = a = ! where s=s(r(t+dt)) and s'=s(r(t)) ! for vanderbilt pseudo pot - kl & ap ! USE kinds, ONLY: DP USE ions_base, ONLY: na, nat USE uspp, ONLY: nkb, qq USE uspp_param, ONLY: nh, ish, nvb USE electrons_base, ONLY: f, nbsp_bgrp, iupdwn_bgrp, nupdwn_bgrp, i2gupdwn_bgrp, nbsp, nspin, nupdwn, iupdwn USE gvecw, ONLY: ngw USE control_flags, ONLY: iprint, iverbosity, ortho_max USE control_flags, ONLY: force_pairing USE io_global, ONLY: stdout, ionode USE cp_interfaces, ONLY: ortho_gamma, c_bgrp_expand, c_bgrp_pack, nlsm1, collect_bec USE descriptors, ONLY: la_descriptor USE mp_global, ONLY: nproc_bgrp, me_bgrp, intra_bgrp_comm, inter_bgrp_comm ! DEBUG USE orthogonalize_base, ONLY: bec_bgrp2ortho USE mp, ONLY : mp_sum ! IMPLICIT NONE ! TYPE(la_descriptor), INTENT(IN) :: descla(:) COMPLEX(DP) :: eigr(:,:) COMPLEX(DP) :: cp_bgrp(:,:), phi_bgrp(:,:) REAL(DP) :: x0(:,:,:), diff, ccc INTEGER :: iter REAL(DP) :: bephi(:,:) REAL(DP) :: becp_bgrp(:,:) ! REAL(DP), ALLOCATABLE :: xloc(:,:), becp_dist(:,:) REAL(DP), ALLOCATABLE :: qbephi(:,:,:), qbecp(:,:,:), bec_col(:,:) INTEGER :: nkbx INTEGER :: info, i, j, iss, iv, jv, ia, is, inl, jnl INTEGER :: n1, n2, m1, m2 INTEGER :: nspin_sub, nx0, ngwx, nrcx REAL(DP) :: qqf, dum ! nkbx = nkb ngwx = SIZE( cp_bgrp, 1 ) ! nx0 = SIZE( x0, 1 ) ! ! calculation of becp and bephi ! CALL start_clock( 'ortho' ) nrcx = MAXVAL( descla( : )%nrcx ) ALLOCATE( becp_dist( nkbx, nrcx*nspin ), STAT = info ) IF( info /= 0 ) & CALL errore( ' ortho ', ' allocating becp_dist ', ABS( info ) ) IF( nvb > 0 ) THEN ! becp_bgrp = 0.0d0 ! CALL nlsm1 ( nbsp_bgrp, 1, nvb, eigr, phi_bgrp, becp_bgrp ) CALL bec_bgrp2ortho( becp_bgrp, bephi, nrcx, descla ) ! becp_bgrp = 0.0d0 ! CALL nlsm1 ( nbsp_bgrp, 1, nvb, eigr, cp_bgrp, becp_bgrp ) CALL bec_bgrp2ortho( becp_bgrp, becp_dist, nrcx, descla ) ! END IF ! ! calculation of qbephi and qbecp ! ALLOCATE( qbephi( nkbx, nx0, nspin ), STAT = info ) IF( info /= 0 ) & CALL errore( ' ortho ', ' allocating qbephi ', ABS( info ) ) ! IF( nvb > 0 ) THEN ALLOCATE( bec_col ( nkbx, nrcx*nspin ), STAT = info ) IF( info /= 0 ) & CALL errore( ' ortho ', ' allocating bec_col ', ABS( info ) ) CALL redist_row2col( nupdwn(1), bephi, bec_col, nkbx, nrcx, descla(1) ) IF( nspin == 2 ) THEN CALL redist_row2col( nupdwn(2), bephi(1,nrcx+1), bec_col(1,nrcx+1), nkbx, nrcx, descla(2) ) END IF END IF ! qbephi = 0.d0 ! DO is=1,nvb DO iv=1,nh(is) inl = ish(is)+(iv-1)*na(is) DO jv=1,nh(is) jnl = ish(is)+(jv-1)*na(is) qqf = qq(iv,jv,is) IF( ABS( qqf ) > 1.D-5 ) THEN DO iss = 1, nspin IF( descla( iss )%active_node > 0 ) THEN DO i = 1, descla( iss )%nc CALL daxpy( na(is), qqf, bec_col(jnl+1,i+(iss-1)*nrcx),1,qbephi(inl+1,i,iss), 1 ) END DO END IF END DO ENDIF END DO END DO END DO ! ALLOCATE( qbecp ( nkbx, nx0, nspin ), STAT = info ) IF( info /= 0 ) & CALL errore( ' ortho ', ' allocating qbecp ', ABS( info ) ) qbecp = 0.d0 IF( nvb > 0 ) THEN CALL redist_row2col( nupdwn(1), becp_dist, bec_col, nkbx, nrcx, descla(1) ) IF( nspin == 2 ) THEN CALL redist_row2col( nupdwn(2), becp_dist(1,nrcx+1), bec_col(1,nrcx+1), nkbx, nrcx, descla(2) ) END IF END IF DO is=1,nvb DO iv=1,nh(is) inl = ish(is)+(iv-1)*na(is) DO jv=1,nh(is) jnl = ish(is)+(jv-1)*na(is) qqf = qq(iv,jv,is) IF( ABS( qqf ) > 1.D-5 ) THEN DO iss = 1, nspin IF( descla( iss )%active_node > 0 ) THEN DO i = 1, descla( iss )%nc CALL daxpy( na(is), qqf, bec_col(jnl+1,i+(iss-1)*nrcx),1, qbecp(inl+1,i,iss), 1 ) END DO END IF END DO ENDIF END DO END DO END DO ! IF( nvb > 0 ) DEALLOCATE( bec_col ) ! ! Expand cp and phi to contain all electronic band ! CALL c_bgrp_expand( cp_bgrp ) CALL c_bgrp_expand( phi_bgrp ) ! ALLOCATE( xloc( nx0, nx0 ), STAT = info ) IF( info /= 0 ) & CALL errore( ' ortho ', ' allocating xloc ', ABS( info ) ) ! nspin_sub = nspin if( force_pairing ) nspin_sub = 1 ! DO iss = 1, nspin_sub IF( descla( iss )%active_node > 0 ) xloc = x0(:,:,iss) * ccc CALL ortho_gamma( 0, cp_bgrp, ngwx, phi_bgrp, becp_dist(:,(iss-1)*nrcx+1:iss*nrcx), qbecp(:,:,iss), nkbx, & bephi(:,((iss-1)*nrcx+1):iss*nrcx), & qbephi(:,:,iss), xloc, nx0, descla(iss), diff, iter, nbsp, nupdwn(iss), iupdwn(iss) ) IF( iter > ortho_max ) THEN WRITE( stdout, 100 ) diff, iter CALL errore('ortho','max number of iterations exceeded',iter) END IF IF( iverbosity > 1 ) THEN WRITE( stdout, 100 ) diff, iter ENDIF ! IF( descla( iss )%active_node > 0 ) x0( :, :, iss ) = xloc / ccc ! END DO IF( force_pairing ) cp_bgrp(:, iupdwn(2):iupdwn(2)+nupdwn(2)-1 ) = cp_bgrp(:,1:nupdwn(2)) ! DEALLOCATE( xloc ) DEALLOCATE( qbecp ) DEALLOCATE( qbephi ) DEALLOCATE( becp_dist ) ! ! pack cp so that it contains only the bands in the band subgroup ! CALL c_bgrp_pack( cp_bgrp ) ! CALL stop_clock( 'ortho' ) ! RETURN ! 100 FORMAT(3X,'diff = ',D18.10,' iter = ', I5 ) ! END SUBROUTINE ortho_x espresso-5.1/CPV/src/wfdd.f900000644000175000017500000005177212341373026014002 0ustar mbamba! ! Copyright (C) 2005 MANU/YUDONG WU/NICOLA MARZARI/ROBERTO CAR ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE wanpar ! nw: the number of the G vectors ! nit: the number of total iteration during searching ! nsd: the number of steepest descent iterations ! ibrav: the structure index, the same as ibrav in CP code. INTEGER :: nw, nit, nsd, ibrav LOGICAL adapt, restart ! wfdt: time step during searching ! maxwfdt: the maximum time step during searching ! b1,b2,b3: the reciprocal lattice ! alat: the lattice parameter ! a1,a2,a3: the real-space lattice real(kind=8) :: wfdt, maxwfdt, b1(3), b2(3), b3(3), alat real(kind=8) :: a1(3), a2(3), a3(3), tolw ! wfg: the G vectors involoved in general symmetry calculation ! the units are b1, b2, b3. ! For example: ! the ith G vector: wfg(i,1)*b1+wfg(i,2)*b2+wfg(i,3)*b3 INTEGER, ALLOCATABLE :: wfg(:,:) ! weight: the weight of each G vectors real(kind=8), ALLOCATABLE :: weight(:) ! ! These are the Input variables for Damped Dynamics ! ! q: imaginary mass of the Unitary Matrix ! dt: Time Step for damped dynamics ! cgordd: 1=conjugate gradient/SD ! any other number = damped dynamics ! fric: damping coefficient, b/w 0 and 1 ! nsteps: Max No. of MD Steps real(kind=8) :: q, dt, fric INTEGER :: cgordd, nsteps END MODULE wanpar !---------------------------------------------------------------------- PROGRAM wfdd !---------------------------------------------------------------------- ! ! This program works on the overlap matrix calculated ! from parallel machine and search the unitary transformation ! Uall corresponding to the Maximally localized Wannier functions. ! ! The overlap matrix and lattice information are read from fort.38. ! ! ! Searching parameters are in the input file: ! ! cgordd wfdt maxwfdt nit nsd q dt fric nsteps ! ! ! The final unitary matrix Uall is output to fort.39. ! Some running information is output to fort.24. ! ! Yudong Wu ! June 28,2001 ! ! This code has been modified to include Damped dynamics to ! find the maximally localized wannier functions. ! ! Manu ! September 16,2001 ! ! ! copyright MANU/YUDONG WU/NICOLA MARZARI/ROBERTO CAR ! !---------------------------------------------------------------------- USE wanpar ! IMPLICIT NONE INTEGER :: i, j, inw, n, nspin, nupdwn(2) COMPLEX(kind=8), ALLOCATABLE :: O(:, :, :), Ospin(:, :, :) real(kind=8), ALLOCATABLE :: Uall(:,:), Uspin(:,:), u1(:,:) READ (5,*) cgordd, wfdt, maxwfdt, nit, nsd READ (5,*) q, dt, fric, adapt, nsteps, tolw READ (5,*) restart ! ! input the overlap matrix from fort.38 ! REWIND 38 READ(38, '(i5, 2i2, i3, f9.5)') n, nw, nspin, ibrav, alat ALLOCATE(wfg(nw, 3), weight(nw), O(nw,n,n), Uall(n,n), u1(n,n)) IF (nspin==2) THEN READ(38, '(i5)') nupdwn(1) ENDIF nupdwn(2)=n-nupdwn(1) READ(38, *) a1 READ(38, *) a2 READ(38, *) a3 READ(38, *) b1 READ(38, *) b2 READ(38, *) b3 DO inw=1, nw READ(38, *) wfg(inw, :), weight(inw) ENDDO DO inw=1, nw DO i=1, n DO j=1, n READ(38, *) O(inw, i, j) ENDDO ENDDO ENDDO IF(restart) THEN DO i=1, n DO j=1, n READ(39, *) Uall(i, j) ENDDO ENDDO ELSE Uall=0.0d0 DO i=1,n Uall(i,i)=1.d0 ENDDO ENDIF REWIND 24 IF(cgordd==1) THEN IF (nspin==1) THEN CALL searchwf(n, O, Uall) ELSE ! ! For those spin-polarized calculation, ! spin up and spin down parts are dealt with seperately ! and the total unitary matrices are put together. ! WRITE(24, *) "spin up:" ALLOCATE(Uspin(nupdwn(1), nupdwn(1)), Ospin(nw, nupdwn(1), nupdwn(1))) DO i=1, nupdwn(1) DO j=1, nupdwn(1) Uspin(i, j)=Uall(i, j) Ospin(:, i, j)=O(:, i, j) ENDDO ENDDO CALL searchwf(nupdwn(1), Ospin, Uspin) DO i=1, nupdwn(1) DO j=1, nupdwn(1) Uall(i, j)=Uspin(i, j) ENDDO ENDDO DEALLOCATE(Uspin, Ospin) WRITE(24, *) "spin down:" ALLOCATE(Uspin(nupdwn(2), nupdwn(2)), Ospin(nw, nupdwn(2), nupdwn(2))) DO i=1, nupdwn(2) DO j=1, nupdwn(2) Uspin(i, j)=Uall(i+nupdwn(1), j+nupdwn(1)) Ospin(:, i, j)=O(:, i+nupdwn(1), j+nupdwn(1)) ENDDO ENDDO CALL searchwf(nupdwn(2), Ospin, Uspin) DO i=1, nupdwn(2) DO j=1, nupdwn(2) Uall(i+nupdwn(1), j+nupdwn(1))=Uspin(i, j) ENDDO ENDDO DEALLOCATE(Uspin, Ospin) ENDIF ELSE IF (nspin==1) THEN CALL ddyn(n,O,Uall) ELSE ! ! For those spin-polarized calculation, ! spin up and spin down parts are dealt with seperately ! and the total unitary matrices are put together. ! WRITE(24, *) "spin up:" ALLOCATE(Uspin(nupdwn(1), nupdwn(1)), Ospin(nw, nupdwn(1), nupdwn(1))) DO i=1, nupdwn(1) DO j=1, nupdwn(1) Uspin(i, j)=Uall(i, j) Ospin(:, i, j)=O(:, i, j) ENDDO ENDDO CALL ddyn(nupdwn(1), Ospin, Uspin) DO i=1, nupdwn(1) DO j=1, nupdwn(1) Uall(i, j)=Uspin(i, j) ENDDO ENDDO DEALLOCATE(Uspin, Ospin) WRITE(24, *) "spin down:" ALLOCATE(Uspin(nupdwn(2), nupdwn(2)), Ospin(nw, nupdwn(2), nupdwn(2))) DO i=1, nupdwn(2) DO j=1, nupdwn(2) Uspin(i, j)=Uall(i+nupdwn(1), j+nupdwn(1)) Ospin(:, i, j)=O(:, i+nupdwn(1), j+nupdwn(1)) ENDDO ENDDO CALL ddyn(nupdwn(2), Ospin, Uspin) DO i=1, nupdwn(2) DO j=1, nupdwn(2) Uall(i+nupdwn(1), j+nupdwn(1))=Uspin(i, j) ENDDO ENDDO DEALLOCATE(Uspin, Ospin) ENDIF ENDIF REWIND 39 DO i=1, n DO j=1, n WRITE(39, *) Uall(i, j) ENDDO ENDDO !u1=matmul(Uall,transpose(Uall)) ! do i=1, n ! do j=1, n ! write(6, *) u1(i, j) ! end do ! end do DEALLOCATE(wfg, weight, O, Uall,u1) CONTAINS !------------------------------------------------------------------------- SUBROUTINE ddyn(m,Omat,Umat) ! (m,m) is the size of the matrix Ospin. ! Ospin is input overlap matrix. ! Uspin is the output unitary transformation. ! Rough guess for Uspin can be carried in. ! ! ! MANU ! SEPTEMBER 17, 2001 !------------------------------------------------------------------------- USE wanpar USE constants, ONLY : tpi, autoaf => BOHR_RADIUS_ANGS ! implicit none INTEGER :: f3(nw), f4(nw), i,j,inw INTEGER ,INTENT(in) :: m real(kind=8), INTENT(inout) :: Umat(m,m) COMPLEX(kind=8), INTENT(inout) :: Omat(nw,m,m) COMPLEX(kind=8) :: U2(m,m),U3(m,m) INTEGER :: adjust,ini, ierr1 real(kind=8), ALLOCATABLE, DIMENSION(:) :: wr real(kind=8), ALLOCATABLE, DIMENSION(:,:) :: W real(kind=8) :: t0, U(m,m), t2 real(kind=8) :: A(m,m),oldt0,Wm(m,m),U1(m,m) real(kind=8) :: Aminus(m,m), Aplus(m,m),f2(3*m-2) ! real(kind=8) :: Aminus(m,m), Aplus(m,m),f2(4*m) real(kind=8) :: temp(m,m) COMPLEX(kind=8) :: d(m,m), alpha, beta1, ci COMPLEX(kind=8) :: f1(2*m-1), wp(m*(m+1)/2),z(m,m) COMPLEX(kind=8), ALLOCATABLE, DIMENSION(:, :) :: X1 COMPLEX(kind=8), ALLOCATABLE, DIMENSION(:, :, :) :: Oc real(kind=8) , ALLOCATABLE , DIMENSION(:) :: mt real(kind=8) :: spread, sp, oldspread real(kind=8) :: wfc(3,n), gr(nw,3) alpha=(1.d0,0.d0) beta1=(0.d0,0.d0) ci =(0.d0,1.d0) ALLOCATE(mt(nw)) ALLOCATE(X1(m,m)) ALLOCATE(Oc(nw,m,m)) ! fric=friction ALLOCATE (W(m,m),wr(m)) ! Umat=0.d0 ! do i=1,m ! Umat(i,i)=1.d0 ! end do U2=Umat*alpha ! ! update Oc using the initial guess of Uspin ! DO inw=1, nw X1(:, :)=Omat(inw, :, :) U3=beta1 ! call ZGEMUL(U2, m, 'T', X1, m, 'N', U3, m, m,m,m) CALL zgemm ('T', 'N', m,m,m,alpha,U2,m,X1,m,beta1,U3,m) X1=beta1 ! call ZGEMUL(U3, m, 'N', U2, m, 'N', X1, m, m,m,m) CALL zgemm ('N','N', m,m,m,alpha,U3,m,U2,m,beta1,X1,m) Oc(inw, :, :)=X1(:, :) ENDDO U2=beta1 U3=beta1 oldspread=0.0d0 WRITE(24, *) "spread: (unit \AA^2)" DO i=1, m mt=1.d0-dble(Oc(:,i,i)*conjg(Oc(:,i,i))) sp= (alat*autoaf/tpi)**2*sum(mt*weight) WRITE(24, '(f10.7)') (alat*autoaf/tpi)**2*sum(mt*weight) oldspread=oldspread+sp ENDDO oldspread=oldspread/m WRITE(51, '(f10.7)') oldspread oldt0=0.d0 A=0.d0 Aminus=A temp=Aminus ! START ITERATIONS HERE DO ini=1, nsteps t0=0.d0 !use t0 to store the value of omega DO inw=1, nw DO i=1, m t0=t0+dble(conjg(Oc(inw, i, i))*Oc(inw, i, i)) ENDDO ENDDO WRITE(6, *) t0 IF(abs(t0-oldt0)=tolw.and.ini>=nsteps) THEN GOTO 241 ENDIF oldt0=t0 ENDDO 241 spread=0.0d0 WRITE(24, *) "spread: (unit \AA^2)" DO i=1, m mt=1.d0-dble(Oc(:,i,i)*conjg(Oc(:,i,i))) sp= (alat*autoaf/tpi)**2*sum(mt*weight) WRITE(24, '(f10.7)') (alat*autoaf/tpi)**2*sum(mt*weight) spread=spread+sp ENDDO spread=spread/m WRITE(51, '(f10.7)') spread DEALLOCATE(wr, W) ! output wfc's and spreads of the max. loc. wf's ! ALLOCATE(wr(nw), W(nw, nw)) DO inw=1, nw gr(inw, :)=wfg(inw,1)*b1(:)+wfg(inw,2)*b2(:)+wfg(inw,3)*b3(:) ENDDO ! ! set up a matrix with the element (i,j) is G_i * G_j * weight(j) ! to check the correctness of choices on G vectors ! DO i=1, nw DO j=1, nw W(i,j)=sum(gr(i,:)*gr(j,:))*weight(j) ! write(6, *) i,j,W(i,j) ENDDO ENDDO ! write(24, *) "wannier function centers: (unit:\AA)" DO i=1, m mt=-aimag(log(Oc(:,i,i)))/tpi wfc(1, i)=sum(mt*weight*gr(:,1)) wfc(2, i)=sum(mt*weight*gr(:,2)) wfc(3, i)=sum(mt*weight*gr(:,3)) DO inw=1, nw wr(inw)=sum(wfc(:,i)*gr(inw,:))-mt(inw) ENDDO mt=wr f3=0 adjust=0 ! ! balance the phase factor if necessary ! ! do while(SUM((mt-f3)**2).gt.0.01d0) ! f4=f3 ! f3=nint(mt-mt(1)) ! if (adjust.gt.200) f3=f3-1 ! if (adjust.gt.100.and.adjust.le.200) f3=f3+1 ! mt=wr+matmul(W, f3) ! write(6,*) "mt:", mt ! write(6,*) "f3:", f3 ! adjust=adjust+1 ! if (adjust.gt.300) stop "unable to balance the phase!" ! end do wfc(1,i)=(wfc(1,i)+sum(mt*weight*gr(:,1)))*alat wfc(2,i)=(wfc(2,i)+sum(mt*weight*gr(:,2)))*alat wfc(3,i)=(wfc(3,i)+sum(mt*weight*gr(:,3)))*alat ENDDO ! if (ibrav.eq.1.or.ibrav.eq.6.or.ibrav.eq.8) then ! do i=1, m ! if (wfc(1, i).lt.0) wfc(1, i)=wfc(1, i)+a1(1) ! if (wfc(2, i).lt.0) wfc(2, i)=wfc(2, i)+a2(2) ! if (wfc(3, i).lt.0) wfc(3, i)=wfc(3, i)+a3(3) ! end do ! end if DO i=1, m WRITE(26, '(3f11.6)') wfc(:,i)*autoaf ENDDO WRITE(6,*) "Friction =", fric WRITE(6,*) "Mass =", q DEALLOCATE(wr, W) RETURN END SUBROUTINE ddyn !----------------------------------------------------------------------- SUBROUTINE searchwf(m, Omat, Umat) !----------------------------------------------------------------------- ! (m,m) is the size of the matrix Ospin. ! Ospin is input overlap matrix. ! Uspin is the output unitary transformation. ! Rough guess for Uspin can be carried in. ! USE wanpar USE constants, ONLY : tpi, autoaf => BOHR_RADIUS_ANGS ! ! ! conjugated gradient to search maximization ! IMPLICIT NONE ! INTEGER, INTENT(in) :: m COMPLEX(kind=8), INTENT(in) :: Omat(nw, m, m) real(kind=8), INTENT(inout) :: Umat(m,m) ! INTEGER :: i, j, k, l, ig, ierr, ti, tj, tk, inw, ir INTEGER :: istep real(kind=8) :: slope, slope2, t1, t2, t3, mt(nw),t21,temp1,maxdt real(kind=8) :: U(m,m), wfc(3, m), Wm(m,m), schd(m,m), f2(3*m-2), gr(nw, 3) real(kind=8) :: Uspin2(m,m),temp2,wfdtold,oldt1,t01, d3(m,m), d4(m,m), U1(m,m) real(kind=8), ALLOCATABLE, DIMENSION(:) :: wr real(kind=8), ALLOCATABLE, DIMENSION(:,:) :: W COMPLEX(kind=8) :: ci, ct1, ct2, ct3, z(m, m), X(m, m), d(m,m), d2(m,m) COMPLEX(kind=8) :: f1(2*m-1), wp(m*(m+1)/2), Oc(nw, m, m), alpha, beta1 COMPLEX(kind=8) :: Oc2(nw, m, m),wp1(m*(m+1)/2), X1(m,m), U2(m,m), U3(m,m) ! ci=(0.d0,1.d0) alpha=(1.0d0, 0.0d0) beta1=(0.0d0, 0.0d0) ! ALLOCATE(W(m,m), wr(m)) ! Umat=0.d0 ! do i=1,m ! Umat(i,i)=1.d0 ! end do Oc=beta1 Oc2=beta1 X1=beta1 U2=Umat*alpha ! ! update Oc using the initial guess of Uspin ! DO inw=1, nw X1(:, :)=Omat(inw, :, :) U3=beta1 CALL zgemm ('T', 'N', m,m,m,alpha,U2,m,X1,m,beta1,U3,m) X1=beta1 CALL zgemm ('N','N', m,m,m,alpha,U3,m,U2,m,beta1,X1,m) Oc(inw, :, :)=X1(:, :) ENDDO U2=beta1 U3=beta1 W=0.d0 schd=0.d0 oldt1=0.d0 wfdtold=0.d0 DO k=1, nit t01=0.d0 !use t1 to store the value of omiga DO inw=1, nw DO i=1, m t01=t01+dble(conjg(Oc(inw, i, i))*Oc(inw, i, i)) ENDDO ENDDO WRITE(6,*) t01 IF(abs(oldt1-t01)0.and.wfdt>maxwfdt) wfdt=maxwfdt IF (kmaxwfdt.or.wfdt<0.d0) THEN maxwfdt=2*maxwfdt GOTO 11 ENDIF maxwfdt=maxdt ! ! ! use parabola approximation. Defined by 2 point and 1 slopes ! if (slope2.lt.0) wfdt=-slope/2.d0/slope2 ! if (maxwfdt.gt.0.and.wfdt.gt.maxwfdt) wfdt=maxwfdt ! ! write(6, '(e12.5E2,1x,e11.5E2,1x,f6.2)') slope2, slope, wfdt !------------------------------------------------------------------------- ! ! schd is the new searching direction ! ENDIF d=0.d0 DO i=1, m d(i, i)=exp(ci*wfdt*wr(i)) ENDDO !d=exp(d) ! U=z*exp(d)*z+ ! U3=beta1 CALL zgemm ('N', 'N', m,m,m,alpha,z,m,d,m,beta1,U3,m) U2=beta1 CALL zgemm ('N','c', m,m,m,alpha,U3,m,z,m,beta1,U2,m) U=dble(U2) U2=beta1 U3=beta1 ! update Uspin ! U1=beta1 CALL dgemm ('N', 'N', m,m,m,alpha,Umat,m,U,m,beta1,U1,m) Umat=U1 ! update Oc ! U2=Umat*alpha U3=beta1 DO inw=1, nw X1(:, :)=Omat(inw, :, :) CALL zgemm ('T', 'N', m,m,m,alpha,U2,m,X1,m,beta1,U3,m) X1=beta1 CALL zgemm ('N','N',m,m,m,alpha,U3,m,U2,m,beta1,X1,m) Oc(inw, :, :)=X1(:, :) ENDDO U2=beta1 U3=beta1 ENDDO 40 DEALLOCATE(W, wr) ! ! calculate the spread ! WRITE(24, *) "spread: (unit \AA^2)" DO i=1, m mt=1.d0-dble(Oc(:,i,i)*conjg(Oc(:,i,i))) WRITE(24, '(f10.7)') (alat*autoaf/tpi)**2*sum(mt*weight) ENDDO ! ! calculate wannier-function centers ! ALLOCATE(wr(nw), W(nw, nw)) DO inw=1, nw gr(inw, :)=wfg(inw,1)*b1(:)+wfg(inw,2)*b2(:)+wfg(inw,3)*b3(:) ENDDO ! ! set up a matrix with the element (i,j) is G_i * G_j * weight(j) ! to check the correctness of choices on G vectors ! DO i=1, nw DO j=1, nw W(i,j)=sum(gr(i,:)*gr(j,:))*weight(j) ! write(6, *) i,j,W(i,j) ENDDO ENDDO ! write(24, *) "wannier function centers: (unit:\AA)" DO i=1, m mt=-aimag(log(Oc(:,i,i)))/tpi wfc(1, i)=sum(mt*weight*gr(:,1)) wfc(2, i)=sum(mt*weight*gr(:,2)) wfc(3, i)=sum(mt*weight*gr(:,3)) DO inw=1, nw wr(inw)=sum(wfc(:,i)*gr(inw,:))-mt(inw) ENDDO mt=wr wfc(1, i)=(wfc(1,i)+sum(mt*weight*gr(:,1)))*alat wfc(2, i)=(wfc(2,i)+sum(mt*weight*gr(:,2)))*alat wfc(3, i)=(wfc(3,i)+sum(mt*weight*gr(:,3)))*alat ENDDO DO i=1, m WRITE(26, '(3f11.6)') wfc(:,i)*autoaf ENDDO DEALLOCATE(wr, W) RETURN END SUBROUTINE searchwf END PROGRAM wfdd espresso-5.1/CPV/src/smallbox_gvec.f900000644000175000017500000000336612341373026015677 0ustar mbamba! ! Copyright (C) 20102011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE smallbox_gvec !=----------------------------------------------------------------------------=! USE kinds, ONLY: DP IMPLICIT NONE SAVE ! ... Variables describing G-vectors for the small box grid ! ... Basically the same meaning as for the corresponding ! ... quantities for the true lattice ! INTEGER :: ngb = 0 ! local number of G vectors INTEGER :: ngbl = 0 ! number of G-vector shells up to ngw REAL(DP), ALLOCATABLE :: gb(:) ! G(i)^2 in (tpi/alatb)**2 units REAL(DP), ALLOCATABLE :: gxb(:,:) ! G(:,i) in tpi/alatb units REAL(DP), ALLOCATABLE :: glb(:) ! shells of G(i)^2 INTEGER, ALLOCATABLE :: npb(:), nmb(:) ! FFT indices INTEGER, ALLOCATABLE :: mill_b(:,:) ! miller indices REAL(DP) :: gcutb = 0.0_DP ! effective cut-off in (tpi/alatb)**2 units CONTAINS SUBROUTINE deallocate_smallbox_gvec() IF( ALLOCATED( gb ) ) DEALLOCATE( gb ) IF( ALLOCATED( gxb ) ) DEALLOCATE( gxb ) IF( ALLOCATED( glb ) ) DEALLOCATE( glb ) IF( ALLOCATED( npb ) ) DEALLOCATE( npb ) IF( ALLOCATED( nmb ) ) DEALLOCATE( nmb ) IF( ALLOCATED( mill_b ) ) DEALLOCATE( mill_b ) END SUBROUTINE deallocate_smallbox_gvec !=----------------------------------------------------------------------------=! END MODULE smallbox_gvec !=----------------------------------------------------------------------------=! espresso-5.1/CPV/src/berryion.f900000644000175000017500000000716112341373026014700 0ustar mbamba! ! Copyright (C) 2002-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine berryion( tau0,fion, tfor,ipol,evalue,enbi) ! this subroutine returns the berry phase energy ! = L/2*Pi*Im(log Sum_R exp(i*(2pi/L)*R_i*rho_i)) ! of the ions and the constant force on the ions ! now only for orthorombic primitive cell ! tau0 : input, positions of ions ! fion : input,output, forces on ions ! tfor : input, flag for force calculation ! ipol : input, electric field polarization ! evalue : input, scale for electric field ! enbi : output, berry phase energy of the ions use kinds, only : dp use constants, only : pi use ions_base, ONLY : nsp, na, zv use cell_base, only : alat, at implicit none real(dp) tau0(3,*) real(dp) fion(3,*) real(dp) enbi, evalue integer ipol, isa logical tfor !local variables real(dp) :: gmes, pola integer is, ia complex(dp) temp, ci real(dp), external:: g_mes temp = (0.0_dp,0.0_dp) ci = (0.0_dp,1.0_dp) gmes = g_mes ( ipol, at, alat) pola=0.0_dp isa = 0 do is=1,nsp do ia=1,na(is) isa = isa + 1 !this force term is along ipol-direction if( tfor) then fion(ipol,isa)=fion(ipol,isa)+evalue*zv(is) endif temp = temp - ci*gmes*tau0(ipol,isa)*zv(is) pola=pola+evalue*zv(is)*tau0(ipol,isa)!this is just the center of ionic charge enddo enddo enbi=AIMAG(log(exp(temp)))/gmes!this sounds stupid it's just a Riemann plane return end subroutine berryion !------------------------------------------------------------------------- subroutine cofcharge(tau,cdz) !----------------------------------------------------------------------- !this subroutine gives the center of the ionic charge use kinds, only : dp use ions_base, only: na, nsp, zv ! implicit none real(dp) tau(3,*), cdz(3) ! local variables real(dp) zmas integer is,i,ia,isa ! zmas=0.0d0 do is=1,nsp zmas=zmas+na(is)*zv(is) end do ! isa = 0 do i=1,3 cdz(i)=0.0d0 do is=1,nsp do ia=1,na(is) isa = isa + 1 cdz(i)=cdz(i)+tau(i,isa)*zv(is) end do end do cdz(i)=cdz(i)/zmas end do ! write(6,*) 'Center of charge', cdz(3)!ATTENZIONE ! return end subroutine cofcharge ! !---------------------------------------------------- subroutine noforce(fion, ipol) !---------------------------------------------------- ! this subroutine adds an electric force, in order ! to keep steady the center of mass along the electric ! field direction use kinds, only : dp use ions_base, ONLY : na, nsp, zv implicit none real(dp) fion(3,*) integer ipol!el. field polarization integer i,ia,is,isa real(dp) fcm!force appplied on center of mass real(dp) tch!total charge fcm=0.d0 tch=0.d0 isa = 0 do is=1,nsp do ia=1,na(is) isa = isa + 1 fcm=fcm+fion(ipol,isa) tch=tch+zv(is) enddo enddo fcm=fcm/tch isa = 0 do is=1,nsp do ia=1,na(is) isa = isa + 1 fion(ipol,isa)=fion(ipol,isa)-fcm*zv(is) enddo enddo return end subroutine noforce espresso-5.1/CPV/src/mainvar.f900000644000175000017500000003601412341373026014503 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- MODULE cp_main_variables !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE funct, ONLY : dft_is_meta USE metagga, ONLY : kedtaur, kedtaus, kedtaug USE cell_base, ONLY : boxdimensions USE wave_types, ONLY : wave_descriptor, wave_descriptor_init USE energies, ONLY : dft_energy_type USE pres_ai_mod, ONLY : abivol, abisur, jellium, t_gauss, rho_gaus, & v_vol, posv, f_vol USE descriptors, ONLY : la_descriptor USE control_flags, ONLY : lwfnscf, lwfpbe0, lwfpbe0nscf ! Lingzhu Kong ! IMPLICIT NONE SAVE ! ! ... structure factors e^{-ig*R} ! ! ... G = reciprocal lattice vectors ! ... R_I = ionic positions ! COMPLEX(DP), ALLOCATABLE :: eigr(:,:) ! exp (i G dot R_I) ! ! ... structure factors (summed over atoms of the same kind) ! ! S( s, G ) = sum_(I in s) exp( i G dot R_(s,I) ) ! s = index of the atomic specie ! R_(s,I) = position of the I-th atom of the "s" specie ! COMPLEX(DP), ALLOCATABLE:: sfac(:,:) ! ! ... indexes, positions, and structure factors for the box grid ! REAL(DP), ALLOCATABLE :: taub(:,:) COMPLEX(DP), ALLOCATABLE :: eigrb(:,:) INTEGER, ALLOCATABLE :: irb(:,:) ! ! ... nonlocal projectors: ! ... bec = scalar product of projectors and wave functions ! ... betae = nonlocal projectors in g space = beta x e^(-ig.R) ! ... becdr = used in force calculation ! ... rhovan= \sum_i f(i) ! ... deeq = \int V_eff(r) q_lm(r) dr ! REAL(DP), ALLOCATABLE :: bephi(:,:) ! distributed (orhto group) REAL(DP), ALLOCATABLE :: becp_bgrp(:,:) ! distributed becp (band group) REAL(DP), ALLOCATABLE :: bec_bgrp(:,:) ! distributed bec (band group) REAL(DP), ALLOCATABLE :: becdr_bgrp(:,:,:) ! distributed becdr (band group) REAL(DP), ALLOCATABLE :: dbec(:,:,:,:) ! derivative of bec distributed(ortho group) ! ! ... mass preconditioning ! REAL(DP), ALLOCATABLE :: ema0bg(:) ! ! ... constraints (lambda at t, lambdam at t-dt, lambdap at t+dt) ! REAL(DP), ALLOCATABLE :: lambda(:,:,:), lambdam(:,:,:), lambdap(:,:,:) ! TYPE(la_descriptor), ALLOCATABLE :: descla(:) ! descriptor of the lambda distribution ! see descriptors_module ! INTEGER, PARAMETER :: nacx = 10 ! max number of averaged ! quantities saved to the restart REAL(DP) :: acc(nacx) REAL(DP) :: acc_this_run(nacx) ! ! cell geometry ! TYPE (boxdimensions) :: htm, ht0, htp ! cell metrics ! ! charge densities and potentials ! ! rhog = charge density in g space ! rhor = charge density in r space (dense grid) ! rhos = charge density in r space (smooth grid) ! vpot = potential in r space (dense grid) ! COMPLEX(DP), ALLOCATABLE :: rhog(:,:) REAL(DP), ALLOCATABLE :: rhor(:,:), rhos(:,:) REAL(DP), ALLOCATABLE :: vpot(:,:) REAL(DP), ALLOCATABLE :: rhopr(:,:) ! Lingzhu Kong ! ! derivative wrt cell ! COMPLEX(DP), ALLOCATABLE :: drhog(:,:,:,:) REAL(DP), ALLOCATABLE :: drhor(:,:,:,:) TYPE (wave_descriptor) :: wfill ! wave function descriptor for filled ! TYPE(dft_energy_type) :: edft ! INTEGER :: nfi ! counter on the electronic iterations INTEGER :: nprint_nfi=-1 ! counter indicating the last time data have been ! printed on file ( prefix.pos, ... ), it is used ! to avoid printing stuff two times . INTEGER :: nfi_run=0 ! counter on the electronic iterations, ! for the present run INTEGER :: iprint_stdout=1 ! define how often CP writes verbose information to stdout ! !========================================================================== ! Lingzhu Kong INTEGER :: my_nbspx INTEGER :: nord2 ! order of expansion ( points on one side) INTEGER :: lap_neig(3,3) ! new directions REAL(DP) :: lap_dir_step(3) ! step in the new directions INTEGER :: lap_dir_num ! number of new directions REAL(DP) :: b_lap(6) ! coefficients of the directions INTEGER :: lap_dir(3) ! activeness of the new directions INTEGER np_in_sp, np_in_sp2 ! number of grid points in the 1st sphere and the shell between 1st and 2nd sphere ! conversion between 3D index (i,j,k) and 1D index np INTEGER, ALLOCATABLE :: odtothd_in_sp(:,:) INTEGER, ALLOCATABLE :: thdtood_in_sp(:,:,:) INTEGER, ALLOCATABLE :: thdtood(:,:,:) REAL(DP), ALLOCATABLE :: xx_in_sp(:) REAL(DP), ALLOCATABLE :: yy_in_sp(:) REAL(DP), ALLOCATABLE :: zz_in_sp(:) REAL(DP), ALLOCATABLE :: selfv(:,:,:) REAL(DP), ALLOCATABLE :: pairv(:,:,:,:) REAL(DP), ALLOCATABLE :: exx_potential(:, :) REAL(DP), ALLOCATABLE :: clm(:,:) REAL(DP), ALLOCATABLE :: coeke(:,:) REAL(DP), ALLOCATABLE :: vwc(:,:) INTEGER :: lmax INTEGER :: n_exx =0 !========================================================================== CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE allocate_mainvar( ngw, ngw_g, ngb, ngs, ng, nr1, nr2, nr3, & nr1x, nr2x, npl, nnr, nrxxs, nat, nax, & nsp, nspin, n, nx, nupdwn, nhsa, & gstart, nudx, tpre, nbspx_bgrp ) !------------------------------------------------------------------------ ! USE mp_global, ONLY: np_ortho, me_ortho, intra_bgrp_comm, ortho_comm, & me_bgrp, ortho_comm_id USE mp, ONLY: mp_max, mp_min USE descriptors, ONLY: la_descriptor, descla_init !============================================================================== !Lingzhu Kong USE mp_global, ONLY : nproc_image USE fft_base, ONLY : dffts USE electrons_base, ONLY : nbsp USE wannier_base, ONLY : neigh, exx_ps_rcut, exx_me_rcut, vnbsp USE control_flags, ONLY : lwfnscf, lwfpbe0, lwfpbe0nscf !=============================================================================== ! INTEGER, INTENT(IN) :: ngw, ngw_g, ngb, ngs, ng, nr1,nr2,nr3, & nnr, nrxxs, nat, nax, nsp, nspin, & n, nx, nhsa, nr1x, nr2x, npl INTEGER, INTENT(IN) :: nupdwn(:) INTEGER, INTENT(IN) :: gstart, nudx LOGICAL, INTENT(IN) :: tpre INTEGER, INTENT(IN) :: nbspx_bgrp ! INTEGER :: iss, ierr, nlam, nrcx LOGICAL :: gzero ! ! ... allocation of all arrays not already allocated in init and nlinit ! ALLOCATE( eigr( ngw, nat ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate eigr ', ierr ) ALLOCATE( sfac( ngs, nsp ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate sfac ', ierr ) ALLOCATE( eigrb( ngb, nat ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate eigrb ', ierr ) ALLOCATE( irb( 3, nat ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate irb ', ierr ) ! IF ( dft_is_meta() ) THEN ! ! ... METAGGA ! ALLOCATE( kedtaur( nnr, nspin ) ) ALLOCATE( kedtaus( nrxxs, nspin ) ) ALLOCATE( kedtaug( ng, nspin ) ) ! ELSE ! ! ... dummy allocation required because this array appears in the ! ... list of arguments of some routines ! ALLOCATE( kedtaur( 1, nspin ) ) ALLOCATE( kedtaus( 1, nspin ) ) ALLOCATE( kedtaug( 1, nspin ) ) ! END IF ! ALLOCATE( ema0bg( ngw ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate ema0bg ', ierr ) ! ALLOCATE( rhor( nnr, nspin ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate rhor ', ierr ) ALLOCATE( vpot( nnr, nspin ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate vpot ', ierr ) ALLOCATE( rhos( nrxxs, nspin ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate rhos ', ierr ) ALLOCATE( rhog( ng, nspin ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate rhog ', ierr ) IF ( tpre ) THEN ALLOCATE( drhog( ng, nspin, 3, 3 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate drhog ', ierr ) ALLOCATE( drhor( nnr, nspin, 3, 3 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate drhor ', ierr ) ELSE ALLOCATE( drhog( 1, 1, 1, 1 ) ) ALLOCATE( drhor( 1, 1, 1, 1 ) ) END IF !========================================================================== ! ! Compute local dimensions for lambda matrixes ! ALLOCATE( descla( nspin ) ) ! DO iss = 1, nspin CALL descla_init( descla( iss ), nupdwn( iss ), nudx, np_ortho, me_ortho, ortho_comm, ortho_comm_id ) END DO ! nrcx = MAXVAL( descla( : )%nrcx ) ! nlam = 1 IF( SIZE( descla ) < 2 ) THEN IF( descla(1)%active_node > 0 ) & nlam = descla(1)%nrcx ELSE IF( ( descla(1)%active_node > 0 ) .OR. ( descla(2)%active_node > 0 ) ) & nlam = MAX( descla(1)%nrcx, descla(2)%nrcx ) END IF ! ! ! ... End with lambda dimensions ! ! if ( abivol.or.abisur ) then ! allocate(rho_gaus(nnr)) allocate(v_vol(nnr)) if (jellium.or.t_gauss) allocate(posv(3,nr1*nr2*nr3)) if (t_gauss) allocate(f_vol(3,nax,nsp)) ! end if ! ALLOCATE( lambda( nlam, nlam, nspin ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate lambda ', ierr ) ALLOCATE( lambdam( nlam, nlam, nspin ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate lambdam ', ierr ) ALLOCATE( lambdap( nlam, nlam, nspin ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate lambdap ', ierr ) ! ! becdr, distributed over row processors of the ortho group ! ALLOCATE( becdr_bgrp( nhsa, nbspx_bgrp, 3 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate becdr_bgrp ', ierr ) ALLOCATE( bec_bgrp( nhsa, nbspx_bgrp ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate bec_bgrp ', ierr ) ALLOCATE( bephi( nhsa, nspin*nrcx ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate becphi ', ierr ) ALLOCATE( becp_bgrp( nhsa, nbspx_bgrp ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate becp_bgrp ', ierr ) ! IF ( tpre ) THEN ALLOCATE( dbec( nhsa, 2*nrcx, 3, 3 ), STAT=ierr ) IF( ierr /= 0 ) & CALL errore( ' allocate_mainvar ', ' unable to allocate dbec ', ierr ) ELSE ALLOCATE( dbec( 1, 1, 1, 1 ) ) END IF gzero = (gstart == 2) ! CALL wave_descriptor_init( wfill, ngw, ngw_g, nupdwn, nupdwn, & 1, 1, nspin, 'gamma', gzero ) ! RETURN ! END SUBROUTINE allocate_mainvar ! !------------------------------------------------------------------------ SUBROUTINE deallocate_mainvar() !------------------------------------------------------------------------ ! IF( ALLOCATED( eigr ) ) DEALLOCATE( eigr ) IF( ALLOCATED( sfac ) ) DEALLOCATE( sfac ) IF( ALLOCATED( eigrb ) ) DEALLOCATE( eigrb ) IF( ALLOCATED( irb ) ) DEALLOCATE( irb ) IF( ALLOCATED( rhor ) ) DEALLOCATE( rhor ) IF( ALLOCATED( rhos ) ) DEALLOCATE( rhos ) IF( ALLOCATED( rhog ) ) DEALLOCATE( rhog ) !==================================================================== !Lingzhu Kong IF ( lwfpbe0 )THEN IF( ALLOCATED( selfv ) ) DEALLOCATE( selfv ) ENDIF IF ( lwfpbe0nscf .or. lwfnscf)THEN IF( ALLOCATED( rhopr ) ) DEALLOCATE( rhopr ) ENDIF IF ( lwfpbe0nscf )THEN IF( ALLOCATED( vwc) ) DEALLOCATE( vwc ) ENDIF IF ( lwfpbe0 .or. lwfpbe0nscf ) THEN IF( ALLOCATED( pairv ) ) DEALLOCATE( pairv ) IF( ALLOCATED( exx_potential ) ) DEALLOCATE( exx_potential ) IF( ALLOCATED( odtothd_in_sp ) ) DEALLOCATE(odtothd_in_sp ) IF( ALLOCATED( thdtood_in_sp ) ) DEALLOCATE(thdtood_in_sp ) IF( ALLOCATED( thdtood )) DEALLOCATE(thdtood) IF( ALLOCATED( xx_in_sp )) DEALLOCATE(xx_in_sp ) IF( ALLOCATED( yy_in_sp )) DEALLOCATE(yy_in_sp ) IF( ALLOCATED( zz_in_sp )) DEALLOCATE(zz_in_sp ) IF( ALLOCATED( clm ) ) DEALLOCATE(clm) IF( ALLOCATED( coeke) ) DEALLOCATE(coeke) END IF !=================================================================== IF( ALLOCATED( drhog ) ) DEALLOCATE( drhog ) IF( ALLOCATED( drhor ) ) DEALLOCATE( drhor ) IF( ALLOCATED( bec_bgrp ) ) DEALLOCATE( bec_bgrp ) IF( ALLOCATED( becdr_bgrp ) ) DEALLOCATE( becdr_bgrp ) IF( ALLOCATED( bephi ) ) DEALLOCATE( bephi ) IF( ALLOCATED( becp_bgrp ) ) DEALLOCATE( becp_bgrp ) IF( ALLOCATED( dbec ) ) DEALLOCATE( dbec ) IF( ALLOCATED( ema0bg ) ) DEALLOCATE( ema0bg ) IF( ALLOCATED( lambda ) ) DEALLOCATE( lambda ) IF( ALLOCATED( lambdam ) ) DEALLOCATE( lambdam ) IF( ALLOCATED( lambdap ) ) DEALLOCATE( lambdap ) IF( ALLOCATED( kedtaur ) ) DEALLOCATE( kedtaur ) IF( ALLOCATED( kedtaus ) ) DEALLOCATE( kedtaus ) IF( ALLOCATED( kedtaug ) ) DEALLOCATE( kedtaug ) IF( ALLOCATED( vpot ) ) DEALLOCATE( vpot ) IF( ALLOCATED( taub ) ) DEALLOCATE( taub ) IF( ALLOCATED( descla ) ) DEALLOCATE( descla ) ! RETURN ! END SUBROUTINE deallocate_mainvar ! END MODULE cp_main_variables espresso-5.1/CPV/src/ensemble_dft.f900000644000175000017500000002301712341373026015474 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE ensemble_dft USE kinds, ONLY: DP IMPLICIT NONE SAVE logical :: tens = .false. ! whether to do ensemble calculations. logical :: tgrand = .false. ! whether to do grand canonical ! ensemble calculations. integer :: ninner = 0 ! number of inner loops per CP step. integer :: ismear = 2 ! type of smearing: ! 1 => gaussian ! 2 => fermi-dirac ! 3 => hermite-delta_function ! 4 => gaussian splines ! 5 => cold smearing i ! 6 => cold smearing ii real(DP) :: etemp = 0 ! smearing temperature. real(DP) :: ef = 0 ! Fermi energy (relevant if tgrand=.true.). integer :: niter_cold_restart !frequency for accuarate cold smearing (in iterations) real(DP) :: lambda_cold !step for cold smearing for not accurate iterations INTEGER :: nrlx ! first dimension of z0t, fmat0 INTEGER :: nrcx ! first two dimensions of psihpsi !***ensemble-DFT real(DP), allocatable:: z0t(:,:,:) ! transpose of z0 complex(DP), allocatable:: c0diag(:,:) real(DP), allocatable:: becdiag(:,:) real(DP), allocatable:: e0(:) real(DP), allocatable:: fmat0(:,:,:) real(DP) :: gibbsfe ! variables for cold-smearing real(DP), allocatable :: psihpsi(:,:,:)!it contains the matrix CONTAINS SUBROUTINE compute_entropy( entropy, f, nspin ) implicit none real(DP), intent(out) :: entropy real(DP), intent(in) :: f integer, intent(in) :: nspin real(DP) :: f2 entropy=0.0d0 if ((f.gt.1.0d-20).and.(f.lt.(2.0/DBLE(nspin)-1.0d-20))) then f2=DBLE(nspin)*f/2.0d0 entropy=-f2*log(f2)-(1.d0-f2)*log(1.d0-f2) end if entropy=-etemp*2.0d0*entropy/DBLE(nspin) END SUBROUTINE compute_entropy SUBROUTINE compute_entropy2( entropy, f, n, nspin ) implicit none real(DP), intent(out) :: entropy real(DP), intent(in) :: f(:) integer, intent(in) :: n, nspin real(DP) :: f2 integer :: i entropy=0.0d0 do i=1,n if ((f(i).gt.1.0d-20).and.(f(i).lt.(2.0/DBLE(nspin)-1.0d-20))) then f2=DBLE(nspin)*f(i)/2.0d0 entropy=entropy-f2*log(f2)-(1.d0-f2)*log(1.d0-f2) end if end do entropy=-etemp*2.0d0*entropy/DBLE(nspin) return END SUBROUTINE compute_entropy2 SUBROUTINE compute_entropy_der( ex, fx, n, nspin ) implicit none real(DP), intent(out) :: ex(:) real(DP), intent(in) :: fx(:) integer, intent(in) :: n, nspin real(DP) :: f2,xx integer :: i ! calculation of the entropy derivative at x do i=1,n if ((fx(i).gt.1.0d-200).and.(fx(i).lt.(2.0/DBLE(nspin)-1.0d-200))) then ex(i)=(log((2.0d0/DBLE(nspin)-fx(i))/fx(i))) else if (fx(i).le.1.0d-200) then xx=1.0d-200 ex(i)=log(2.0d0/DBLE(nspin)/xx-1) else ! the calculation of ex_i is done using ex_i=-log(mf/(1-f_i)-1) ! instead of ex_i=log(mf/f_i-1) ! to avoid numerical errors xx=1.0d-200 ex(i)=-log(2.0d0/DBLE(nspin)/xx-1) end if end do return END SUBROUTINE compute_entropy_der SUBROUTINE id_matrix_init( descla, nspin ) ! initialization of the matrix identity USE descriptors IMPLICIT NONE INTEGER, INTENT(IN) :: nspin TYPE(la_descriptor), INTENT(IN) :: descla( nspin ) INTEGER :: is, i, ii INTEGER :: np, me z0t(:,:,:)=0.0d0 do is = 1, nspin np = descla( is )%npc * descla( is )%npr me = descla( is )%mype IF( descla( is )%active_node > 0 ) THEN ii = me + 1 DO i = 1, descla( is )%nrl z0t( i, ii , is ) = 1.d0 ii = ii + np END DO END IF end do RETURN END SUBROUTINE id_matrix_init SUBROUTINE h_matrix_init( descla, nspin ) ! initialization of the psihpsi matrix USE descriptors IMPLICIT NONE INTEGER, INTENT(IN) :: nspin TYPE(la_descriptor), INTENT(IN) :: descla( nspin ) INTEGER :: is, i, nr psihpsi(:,:,:)=0.0d0 do is = 1, nspin IF( descla( is )%active_node > 0 ) THEN ! nr = descla( is )%nr ! ! IF( descla( is )%la_myr == descla( is )%la_myc ) THEN DO i = 1, nr psihpsi(i,i,is) = 1.0d0 END DO ! END IF END IF end do RETURN END SUBROUTINE h_matrix_init SUBROUTINE ensemble_initval & ( occupations_ , n_inner_ , fermi_energy_ ,niter_cold_restart_, lambda_cold_, rotmass_ , occmass_ , rotation_damping_ , & occupation_damping_ , occupation_dynamics_ , rotation_dynamics_ , degauss_ , smearing_) IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN) :: occupations_ CHARACTER(LEN=*), INTENT(IN) :: rotation_dynamics_ CHARACTER(LEN=*), INTENT(IN) :: occupation_dynamics_ CHARACTER(LEN=*), INTENT(IN) :: smearing_ INTEGER, INTENT(IN) :: n_inner_ REAL(DP), INTENT(IN) :: fermi_energy_ , rotmass_ , occmass_ , rotation_damping_ REAL(DP), INTENT(IN) :: occupation_damping_ , degauss_ INTEGER, INTENT(in) :: niter_cold_restart_ REAL(DP), INTENT(in) :: lambda_cold_ SELECT CASE ( TRIM( occupations_ ) ) ! CASE ('bogus') ! CASE ('from_input') ! CASE ('fixed') ! CASE ('grand-canonical','g-c','gc') ! tens =.true. tgrand =.true. CALL errore(' ensemble_initval ','grand-canonical not yet implemented ', 1 ) ! CASE ('ensemble','ensemble-dft','edft') ! tens =.true. ninner = n_inner_ etemp = degauss_ ef = fermi_energy_ niter_cold_restart = niter_cold_restart_ lambda_cold = lambda_cold_ SELECT CASE ( TRIM( smearing_ ) ) CASE ( 'gaussian','g' ) ismear = 1 CASE ( 'fermi-dirac','f-d', 'fd' ) ismear = 2 CASE ( 'hermite-delta','h-d','hd' ) ismear = 3 CASE ( 'gaussian-splines','g-s','gs' ) ismear = 4 CASE ( 'cold-smearing','c-s','cs','cs1' ) ismear = 5 CASE ( 'marzari-vanderbilt','m-v','mv','cs2' ) ismear = 6 CASE ( '0') ismear = 0 CASE ( '-1') ismear = -1 CASE DEFAULT CALL errore(' ensemble_initval ',' smearing not implemented', 1 ) END SELECT ! CASE DEFAULT ! CALL errore(' ensemble_initval ',' occupation method not implemented', 1 ) ! END SELECT IF(tens) CALL ensemble_dft_info() RETURN END SUBROUTINE ensemble_initval SUBROUTINE ensemble_dft_info() USE io_global, ONLY: stdout write(stdout,250) tens write(stdout,252) tgrand 250 format (4x,' ensemble-DFT calculation =',l5) 252 format (4x,' grand-canonical calculation =',l5) if(tens) then write (stdout,251) ninner,etemp,ismear,ef endif 251 format (/4x,'=====================================' & & /4x,'| ensemble-DFT parameters |' & & /4x,'=====================================' & & /4x,'| ninner =',i10,' |' & & /4x,'| etemp =',f10.5,' a.u. |' & & /4x,'| ismear =',i10,' |' & & /4x,'| fermi energy =',f10.5,' a.u. |' & & /4x,'=====================================') if(tens.and. ismear /= 2) then write(stdout,*) 'Full inner-cycle every: ', niter_cold_restart, ' Iterations' write(stdout, *) 'With step :', lambda_cold endif RETURN END SUBROUTINE ensemble_dft_info SUBROUTINE allocate_ensemble_dft( nhsa, n, ngw, nudx, nspin, nx, nrxxs, nat,& descla ) USE descriptors IMPLICIT NONE INTEGER, INTENT(IN) :: nhsa, n, ngw, nudx, nspin, nx, nrxxs, nat TYPE(la_descriptor), INTENT(IN) :: descla( nspin ) nrcx = MAXVAL (descla(:)%nrcx ) nrlx = MAXVAL (descla(:)%nrlx ) allocate(c0diag(ngw,nx)) allocate(z0t(nrlx,nudx,nspin)) allocate(becdiag(nhsa,n)) allocate(e0(nx)) allocate(fmat0(nrlx,nudx,nspin)) allocate(psihpsi(nrcx,nrcx,nspin)) RETURN END SUBROUTINE allocate_ensemble_dft SUBROUTINE deallocate_ensemble_dft( ) IMPLICIT NONE IF( ALLOCATED( c0diag ) ) deallocate(c0diag ) IF( ALLOCATED( z0t ) ) deallocate(z0t ) IF( ALLOCATED( becdiag ) ) deallocate(becdiag ) IF( ALLOCATED( e0 ) ) deallocate(e0 ) IF( ALLOCATED( fmat0 ) ) deallocate(fmat0 ) IF( ALLOCATED( psihpsi ) ) deallocate(psihpsi) RETURN END SUBROUTINE deallocate_ensemble_dft END MODULE ensemble_dft espresso-5.1/CPV/src/fromscra.f900000644000175000017500000002506212341373026014663 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! SUBROUTINE from_scratch( ) ! USE kinds, ONLY : DP USE control_flags, ONLY : tranp, trane, iverbosity, tpre, tv0rd, & tfor, thdyn, & lwf, tprnfor, tortho, amprp, ampre, & tsde, ortho_eps, ortho_max, & force_pairing USE ions_positions, ONLY : taus, tau0, tausm, vels, velsm, fion, fionm USE ions_base, ONLY : na, nsp, randpos, zv, ions_vel, vel_srt USE ions_base, ONLY : cdmi, nat, iforce USE ions_nose, ONLY : xnhp0, xnhpm, vnhp USE cell_base, ONLY : ainv, h, s_to_r, ibrav, omega, press, & hold, r_to_s, deth, wmass, iforceh, & cell_force, velh, at, alat USE cell_nose, ONLY : xnhh0, xnhhm, vnhh USE electrons_nose, ONLY : xnhe0, xnhem, vnhe use electrons_base, ONLY : nbsp, f, nspin, nupdwn, iupdwn, nbsp_bgrp, nbspx_bgrp, nbspx USE electrons_module, ONLY : occn_info, distribute_c, collect_c, distribute_b, collect_b USE energies, ONLY : entropy, eself, enl, ekin, enthal, etot, ekincm USE energies, ONLY : dft_energy_type, debug_energies USE dener, ONLY : denl, denl6, dekin6, detot USE uspp, ONLY : vkb, becsum, deeq, nkb, okvan, nlcc_any USE io_global, ONLY : stdout, ionode USE core, ONLY : rhoc USE gvecw, ONLY : ngw USE gvecs, ONLY : ngms USE gvect, ONLY : ngm, gg USE gvect, ONLY : gstart, mill, eigts1, eigts2, eigts3 USE uspp_param, ONLY : nvb USE cp_electronic_mass, ONLY : emass USE efield_module, ONLY : tefield, efield_berry_setup, berry_energy, & tefield2, efield_berry_setup2, berry_energy2 USE cg_module, ONLY : tcg USE ensemble_dft, ONLY : tens, compute_entropy USE cp_interfaces, ONLY : runcp_uspp, runcp_uspp_force_pairing, & strucf, phfacs, nlfh, vofrho, nlfl_bgrp, prefor USE cp_interfaces, ONLY : rhoofr, ortho, wave_rand_init, elec_fakekine USE cp_interfaces, ONLY : compute_stress, dotcsc, calbec_bgrp, caldbec_bgrp USE cp_interfaces, ONLY : print_lambda, nlfq_bgrp, setval_lambda USE printout_base, ONLY : printout_pos USE orthogonalize_base, ONLY : updatc, calphi_bgrp USE wave_base, ONLY : wave_steepest USE wavefunctions_module, ONLY : c0_bgrp, cm_bgrp, phi_bgrp USE fft_base, ONLY : dfftp USE time_step, ONLY : delt USE cp_main_variables, ONLY : descla, bephi, becp_bgrp, nfi, & sfac, eigr, taub, irb, eigrb, bec_bgrp, & lambda, lambdam, lambdap, ema0bg, rhog, rhor, rhos, & vpot, ht0, edft, becdr_bgrp, dbec, drhor, drhog USE mp_global, ONLY : np_ortho, me_ortho, ortho_comm, inter_bgrp_comm, nbgrp USE mp, ONLY : mp_sum ! IMPLICIT NONE ! REAL(DP), ALLOCATABLE :: emadt2(:), emaver(:) REAL(DP) :: verl1, verl2 REAL(DP) :: bigr, dum INTEGER :: i, j, iter, iss, ierr, nspin_wfc LOGICAL :: tlast = .FALSE. REAL(DP) :: gam(1,1,1) REAL(DP) :: fcell(3,3), ccc, enb, enbi, fccc LOGICAL :: ttforce LOGICAL :: tstress LOGICAL, PARAMETER :: ttprint = .TRUE. REAL(DP) :: ei_unp REAL(DP) :: dt2bye INTEGER :: n_spin_start LOGICAL :: tfirst = .TRUE. REAL(DP) :: stress(3,3) INTEGER :: i1, i2 ! ! ... Subroutine body ! CALL start_clock( 'from_scratch' ) ! nfi = 0 ! ttforce = tfor .or. tprnfor tstress = thdyn .or. tpre ! stress = 0.0d0 ! IF( tsde ) THEN fccc = 1.0d0 ELSE fccc = 0.5d0 END IF ! dt2bye = delt * delt / emass ! IF( ANY( tranp( 1:nsp ) ) ) THEN ! CALL invmat( 3, h, ainv, deth ) ! CALL randpos( taus, na, nsp, tranp, amprp, ainv, iforce ) ! CALL s_to_r( taus, tau0, na, nsp, h ) ! END IF ! CALL phfacs( eigts1, eigts2, eigts3, eigr, mill, taus, dfftp%nr1, dfftp%nr2, dfftp%nr3, nat ) ! CALL strucf( sfac, eigts1, eigts2, eigts3, mill, ngms ) ! IF ( okvan .OR. nlcc_any ) THEN CALL initbox ( tau0, alat, at, ainv, taub, irb ) CALL phbox( taub, iverbosity, eigrb ) END IF ! ! wfc initialization with random numbers ! CALL wave_rand_init( cm_bgrp ) ! IF ( ionode ) & WRITE( stdout, fmt = '(//,3X, "Wave Initialization: random initial wave-functions" )' ) ! ! ... prefor calculates vkb (used by gram) ! CALL prefor( eigr, vkb ) ! nspin_wfc = nspin IF( force_pairing ) nspin_wfc = 1 CALL gram_bgrp( vkb, bec_bgrp, nkb, cm_bgrp, ngw ) IF( force_pairing ) cm_bgrp(:,iupdwn(2):iupdwn(2)+nupdwn(2)-1) = cm_bgrp(:,1:nupdwn(2)) ! if( iverbosity > 1 ) CALL dotcsc( eigr, cm_bgrp, ngw, nbsp ) ! ! ... initialize bands ! CALL occn_info( f ) ! hold = h velh = 0.0d0 fion = 0.0d0 ! IF ( tv0rd .AND. tfor ) THEN ! ! ... vel_srt=starting velocities, read from input, are brough to ! ... scaled axis and copied into array vels. Since velocites are ! ... not actually used by the Verlet algorithm, we set tau(t-dt) ! ... to tausm=tau(t)-v*delta t so that the Verlet algorithm will ! ... start with the correct velocity ! CALL r_to_s( vel_srt, vels, na, nsp, ainv ) tausm(:,:) = taus(:,:) - vels(:,:)*delt velsm(:,:) = vels(:,:) ELSE vels = 0.D0 tausm = taus END IF ! ! ... compute local form factors ! CALL formf( tfirst, eself ) ! edft%eself = eself IF( tefield ) THEN CALL efield_berry_setup( eigr, tau0 ) END IF IF( tefield2 ) THEN CALL efield_berry_setup2( eigr, tau0 ) END IF ! IF( .NOT. tcg ) THEN ! CALL calbec_bgrp ( 1, nsp, eigr, cm_bgrp, bec_bgrp ) ! if ( tstress ) CALL caldbec_bgrp( eigr, cm_bgrp, dbec, descla ) ! CALL rhoofr( nfi, cm_bgrp, irb, eigrb, bec_bgrp, dbec, becsum, rhor, drhor, rhog, drhog, rhos, enl, denl, ekin, dekin6 ) ! edft%enl = enl edft%ekin = ekin ! END IF ! ! put core charge (if present) in rhoc(r) ! if ( nlcc_any ) CALL set_cc( irb, eigrb, rhoc ) ! IF( .NOT. tcg ) THEN IF( tens ) THEN CALL compute_entropy( entropy, f(1), nspin ) entropy = entropy * nbsp END IF ! vpot = rhor ! CALL vofrho( nfi, vpot, drhor, rhog, drhog, rhos, rhoc, tfirst, tlast, & & eigts1, eigts2, eigts3, irb, eigrb, sfac, tau0, fion ) IF( tefield ) THEN CALL berry_energy( enb, enbi, bec_bgrp, cm_bgrp, fion ) etot = etot + enb + enbi END IF IF( tefield2 ) THEN CALL berry_energy2( enb, enbi, bec_bgrp, cm_bgrp, fion ) etot = etot + enb + enbi END IF CALL compute_stress( stress, detot, h, omega ) if( iverbosity > 1 ) & CALL printout_pos( stdout, fion, nat, head = ' fion ' ) CALL newd( vpot, irb, eigrb, becsum, fion ) ! IF( force_pairing ) THEN ! CALL runcp_uspp_force_pairing( nfi, fccc, ccc, ema0bg, dt2bye, rhos,& bec_bgrp, cm_bgrp, c0_bgrp, ei_unp, fromscra = .TRUE. ) ! CALL setval_lambda( lambda(:,:,2), nupdwn(1), nupdwn(1), 0.d0, descla(1) ) ! ELSE ! CALL runcp_uspp( nfi, fccc, ccc, ema0bg, dt2bye, rhos, bec_bgrp, cm_bgrp, c0_bgrp, fromscra = .TRUE. ) ! ENDIF ! ! nlfq needs deeq bec ! IF( ttforce ) THEN CALL nlfq_bgrp( cm_bgrp, eigr, bec_bgrp, becdr_bgrp, fion ) END IF ! ! calphi calculates phi ! the electron mass rises with g**2 ! CALL calphi_bgrp( cm_bgrp, ngw, bec_bgrp, nkb, vkb, phi_bgrp, nbspx_bgrp, ema0bg ) ! IF( force_pairing ) & & phi_bgrp( :, iupdwn(2):(iupdwn(2)+nupdwn(2)-1) ) = phi_bgrp( :, 1:nupdwn(2)) if( tortho ) then CALL ortho( eigr, c0_bgrp, phi_bgrp, lambda, descla, bigr, iter, ccc, bephi, becp_bgrp ) else CALL gram_bgrp( vkb, bec_bgrp, nkb, c0_bgrp, ngw ) endif ! IF ( ttforce ) THEN CALL nlfl_bgrp( bec_bgrp, becdr_bgrp, lambda, descla, fion ) END IF if ( iverbosity > 1 ) CALL print_lambda( lambda, descla, nbsp, 9, ccc ) ! if ( tstress ) CALL nlfh( stress, bec_bgrp, dbec, lambda, descla ) ! IF ( tortho ) THEN CALL updatc( ccc, lambda, phi_bgrp, bephi, becp_bgrp, bec_bgrp, c0_bgrp, descla ) END IF ! IF( force_pairing ) THEN ! c0_bgrp ( :, iupdwn(2):(iupdwn(2)+nupdwn(2)-1) ) = c0_bgrp( :, 1:nupdwn(2)) phi_bgrp( :, iupdwn(2):(iupdwn(2)+nupdwn(2)-1) ) = phi_bgrp( :, 1:nupdwn(2)) lambda(:,:,2) = lambda(:,:,1) ! ENDIF ! ! CALL calbec_bgrp ( nvb+1, nsp, eigr, c0_bgrp, bec_bgrp ) ! if ( tstress ) CALL caldbec_bgrp( eigr, cm_bgrp, dbec, descla ) if ( iverbosity > 1 ) CALL dotcsc( eigr, c0_bgrp, ngw, nbsp_bgrp ) ! xnhp0 = 0.0d0 xnhpm = 0.0d0 vnhp = 0.0d0 fionm = 0.0d0 ! CALL ions_vel( vels, taus, tausm, na, nsp, delt ) ! xnhh0(:,:) = 0.0d0 xnhhm(:,:) = 0.0d0 vnhh (:,:) = 0.0d0 velh (:,:) = ( h(:,:) - hold(:,:) ) / delt ! CALL elec_fakekine( ekincm, ema0bg, emass, c0_bgrp, cm_bgrp, ngw, nbsp_bgrp, 1, delt ) xnhe0 = 0.0d0 xnhem = 0.0d0 vnhe = 0.0d0 lambdam = lambda ! ELSE ! c0_bgrp = cm_bgrp ! END IF ! CALL stop_clock( 'from_scratch' ) ! RETURN ! END SUBROUTINE from_scratch espresso-5.1/CPV/src/energies.f900000644000175000017500000002534012341373026014647 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE energies USE io_global, ONLY : stdout USE kinds USE control_flags, ONLY : lwfpbe0, lwfpbe0nscf ! Lingzhu Kong IMPLICIT NONE SAVE PRIVATE TYPE dft_energy_type REAL(DP) :: ETOT REAL(DP) :: SKIN REAL(DP) :: EMKIN REAL(DP) :: EHT REAL(DP) :: EH REAL(DP) :: SELF_EHTE REAL(DP) :: EHTE REAL(DP) :: EHTI REAL(DP) :: EPSEU REAL(DP) :: ENL REAL(DP) :: ENT REAL(DP) :: exx REAL(DP) :: VXC REAL(DP) :: EXC REAL(DP) :: SELF_VXC REAL(DP) :: SELF_EXC REAL(DP) :: ESELF REAL(DP) :: ESR REAL(DP) :: EVDW REAL(DP) :: EBAND REAL(DP) :: EKIN REAL(DP) :: ATOT ! Ensamble DFT REAL(DP) :: ENTROPY ! Ensamble DFT REAL(DP) :: EGRAND ! Ensamble DFT REAL(DP) :: VAVE ! Ensamble DFT REAL(DP) :: EEXTFOR ! Energy of the external forces END TYPE REAL(DP) :: EHTE = 0.0_DP REAL(DP) :: SELF_EHTE = 0.0_DP REAL(DP) :: EHTI = 0.0_DP REAL(DP) :: EH = 0.0_DP REAL(DP) :: EHT = 0.0_DP REAL(DP) :: SELF_EXC = 0.0_DP REAL(DP) :: SELF_VXC = 0.0_DP REAL(DP) :: EKIN = 0.0_DP REAL(DP) :: ESELF = 0.0_DP REAL(DP) :: EVDW = 0.0_DP REAL(DP) :: EPSEU = 0.0_DP REAL(DP) :: ENT = 0.0_DP REAL(DP) :: ETOT = 0.0_DP REAL(DP) :: ENL = 0.0_DP REAL(DP) :: ESR = 0.0_DP REAL(DP) :: EXC = 0.0_DP REAL(DP) :: VXC = 0.0_DP REAL(DP) :: exx = 0.0_DP REAL(DP) :: EBAND = 0.0_DP REAL(DP) :: ATOT = 0.0_DP REAL(DP) :: ENTROPY = 0.0_DP REAL(DP) :: EGRAND = 0.0_DP REAL(DP) :: VAVE = 0.0_DP ! average potential REAL(DP) :: EEXTFOR = 0.0_DP ! Energy of the external forces REAL(DP) :: enthal = 0.0_DP, ekincm PUBLIC :: dft_energy_type, total_energy, eig_total_energy, & print_energies, debug_energies PUBLIC :: etot, eself, enl, ekin, epseu, esr, eht, exc, ekincm, exx PUBLIC :: self_exc, self_ehte PUBLIC :: atot, entropy, egrand, enthal, vave PUBLIC :: eextfor CONTAINS ! ---------------------------------------------------------------------------- ! SUBROUTINE total_energy( edft ) TYPE (dft_energy_type) :: edft eself = edft%eself epseu = edft%epseu ent = edft%ent enl = edft%enl evdw = edft%evdw esr = edft%esr ekin = edft%ekin vxc = edft%vxc ehti = edft%ehti ehte = edft%ehte self_ehte = edft%self_ehte self_exc = edft%self_exc self_vxc = edft%self_vxc exc = edft%exc eht = edft%eht etot = ekin + eht + epseu + enl + exc + evdw - ent ! edft%etot = etot RETURN END SUBROUTINE total_energy ! ---------------------------------------------------------------------------- ! SUBROUTINE eig_total_energy(ei) IMPLICIT NONE REAL(DP), INTENT(IN) :: ei(:) INTEGER :: i REAL(DP) etot_band, EII eband = 0.0_DP do i = 1, SIZE(ei) eband = eband + ei(i) * 2.0_DP end do EII = ehti + ESR - ESELF etot_band = eband - ehte + (exc-vxc) + eii WRITE( stdout,200) etot_band, eband, ehte, (exc-vxc), eii 200 FORMAT(' *** TOTAL ENERGY : ',F14.8,/ & ,' eband : ',F14.8,/ & ,' eh : ',F14.8,/ & ,' xc : ',F14.8,/ & ,' eii : ',F14.8) RETURN END SUBROUTINE eig_total_energy ! ---------------------------------------------------------------------------- ! SUBROUTINE print_energies( tsic, iprsta, edft, sic_alpha, sic_epsilon, textfor ) LOGICAL, INTENT(IN) :: tsic TYPE (dft_energy_type), OPTIONAL, INTENT(IN) :: edft INTEGER, OPTIONAL, INTENT(IN) :: iprsta REAL(DP), OPTIONAL, INTENT(IN) :: sic_alpha, sic_epsilon LOGICAL, OPTIONAL, INTENT(IN) :: textfor IF( PRESENT ( edft ) ) THEN WRITE( stdout, * ) WRITE( stdout, * ) WRITE( stdout, 1 ) edft%etot WRITE( stdout, 2 ) edft%ekin WRITE( stdout, 3 ) edft%eht WRITE( stdout, 4 ) edft%eself ! self interaction of the pseudocharges NOT SIC! WRITE( stdout, 5 ) edft%esr WRITE( stdout, 9 ) edft%epseu WRITE( stdout, 10 ) edft%enl WRITE( stdout, 11 ) edft%exc IF( PRESENT( iprsta ) ) THEN IF( iprsta > 1 ) THEN WRITE( stdout, * ) WRITE( stdout, 6 ) edft%eh WRITE( stdout, 7 ) edft%ehte WRITE( stdout, 8 ) edft%ehti WRITE( stdout, 12 ) edft%evdw WRITE( stdout, 13 ) edft%emkin END IF END IF ELSE ! WRITE( stdout,100) etot, ekin, eht, esr, eself, epseu, enl, exc, vave !==================================================================================== !Lingzhu Kong if( lwfpbe0 .or. lwfpbe0nscf) then WRITE( stdout,101) -exx*0.25, etot-exx*0.25 end if !==================================================================================== END IF ! IF( tsic ) THEN ! IF( .NOT. PRESENT( sic_alpha ) .OR. .NOT. PRESENT( sic_epsilon ) ) & CALL errore( ' print_energies ', ' sic without parameters? ', 1 ) WRITE( stdout, fmt = "('Sic contributes in Mauri&al. approach:')" ) WRITE( stdout, fmt = "('--------------------------------------')" ) ! ! qui e' da aggiungere i due parametetri alpha_si e si_epsilon che determinano "quanto" ! correggo lo exc e hartree ! WRITE( stdout, 14 ) self_ehte, sic_epsilon WRITE( stdout, 15 ) self_exc, sic_alpha END IF ! IF( PRESENT( textfor ) ) THEN IF( textfor ) WRITE( stdout, 16 ) eextfor END IF ! 1 FORMAT(6X,' total energy = ',F18.10,' Hartree a.u.') 2 FORMAT(6X,' kinetic energy = ',F18.10,' Hartree a.u.') 3 FORMAT(6X,' electrostatic energy = ',F18.10,' Hartree a.u.') 4 FORMAT(6X,' eself = ',F18.10,' Hartree a.u.') 5 FORMAT(6X,' esr = ',F18.10,' Hartree a.u.') 6 FORMAT(6X,' hartree energy = ',F18.10,' Hartree a.u.') 7 FORMAT(6X,' hartree ehte = ',F18.10,' Hartree a.u.') 8 FORMAT(6X,' hartree ehti = ',F18.10,' Hartree a.u.') 9 FORMAT(6X,' pseudopotential energy = ',F18.10,' Hartree a.u.') 10 FORMAT(6X,' n-l pseudopotential energy = ',F18.10,' Hartree a.u.') 11 FORMAT(6X,' exchange-correlation energy = ',F18.10,' Hartree a.u.') 12 FORMAT(6X,' van der waals energy = ',F18.10,' Hartree a.u.') 13 FORMAT(6X,' emass kinetic energy = ',F18.10,' Hartree a.u.') 14 FORMAT(6X,' hartree sic_ehte = ',F18.10,' Hartree a.u.', 1X, 'corr. factor = ',F6.3) 15 FORMAT(6X,' sic exchange-correla energy = ',F18.10,' Hartree a.u.', 1X, 'corr. factor = ',F6.3) 16 FORMAT(6X,' external force energy = ',F18.10,' Hartree a.u.') 100 format(//' total energy = ',f20.11,' Hartree a.u.'/ & & ' kinetic energy = ',f14.5,' Hartree a.u.'/ & & ' electrostatic energy = ',f14.5,' Hartree a.u.'/ & & ' esr = ',f14.5,' Hartree a.u.'/ & & ' eself = ',f14.5,' Hartree a.u.'/ & & ' pseudopotential energy = ',f14.5,' Hartree a.u.'/ & & ' n-l pseudopotential energy = ',f14.5,' Hartree a.u.'/ & & ' exchange-correlation energy = ',f14.5,' Hartree a.u.'/ & & ' average potential = ',f14.5,' Hartree a.u.'//) 101 format(//' exx energy = ',F14.5,' Hartree a.u.'/ & & ' total energy with exx = ',F14.5,' Hartree a.u.' / ) RETURN END SUBROUTINE print_energies ! ---------------------------------------------------------------------------- ! SUBROUTINE debug_energies( edft ) TYPE (dft_energy_type), OPTIONAL, INTENT(IN) :: edft IF( PRESENT ( edft ) ) THEN WRITE( stdout,2) edft%ETOT, edft%EKIN, edft%EHT, & edft%ESELF, edft%ESR, edft%EH, & edft%EPSEU, edft%ENL, edft%EXC, edft%VXC, edft%EVDW, edft%EHTE, & edft%EHTI, edft%ENT, edft%EBAND, (edft%EXC-edft%VXC), & (edft%EHTI+edft%ESR-edft%ESELF), & edft%EBAND-edft%EHTE+(edft%EXC-edft%VXC)+(edft%EHTI+edft%ESR-edft%ESELF) ELSE WRITE( stdout,2) ETOT, EKIN, EHT, ESELF, ESR, EH, EPSEU, ENL, EXC, VXC, & EVDW, EHTE, EHTI, ENT, EBAND, (EXC-VXC), (EHTI+ESR-ESELF), & EBAND-EHTE+(EXC-VXC)+(EHTI+ESR-ESELF) END IF 2 FORMAT(/,/ & ,6X,' ETOT .... = ',F18.10,/ & ,6X,' EKIN .... = ',F18.10,/ & ,6X,' EHT ..... = ',F18.10,/ & ,6X,' ESELF ... = ',F18.10,/ & ,6X,' ESR ..... = ',F18.10,/ & ,6X,' EH ...... = ',F18.10,/ & ,6X,' EPSEU ... = ',F18.10,/ & ,6X,' ENL ..... = ',F18.10,/ & ,6X,' EXC ..... = ',F18.10,/ & ,6X,' VXC ..... = ',F18.10,/ & ,6X,' EVDW .... = ',F18.10,/ & ,6X,' EHTE .... = ',F18.10,/ & ,6X,' EHTI .... = ',F18.10,/ & ,6X,' ENT ..... = ',F18.10,/ & ,6X,' EBAND ... = ',F18.10,/ & ,6X,' EXC-VXC ............................. = ',F18.10,/ & ,6X,' EHTI+ESR-ESELF ...................... = ',F18.10,/ & ,6X,' EBAND-EHTE+(EXC-VXC)+(EHTI+ESR-ESELF) = ',F18.10) RETURN END SUBROUTINE debug_energies END MODULE energies espresso-5.1/CPV/src/pseudopot.f900000644000175000017500000000465712341373026015100 0ustar mbamba! ! Copyright (C) 2002-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! AB INITIO COSTANT PRESSURE MOLECULAR DYNAMICS ! ---------------------------------------------- ! Car-Parrinello Parallel Program ! Carlo Cavazzoni - Gerardo Ballabio ! SISSA, Trieste, Italy - 1997-99 ! Last modified: Tue Nov 2 08:03:11 MET 1999 ! ---------------------------------------------- MODULE pseudopotential ! ... declare modules USE kinds, ONLY: DP USE splines, ONLY: spline_data IMPLICIT NONE SAVE ! declare module-scope variables TYPE (spline_data), ALLOCATABLE :: vps_sp(:) TYPE (spline_data), ALLOCATABLE :: dvps_sp(:) ! TYPE (spline_data), ALLOCATABLE :: rhoc1_sp(:) TYPE (spline_data), ALLOCATABLE :: rhocp_sp(:) ! REAL(DP), ALLOCATABLE :: xgtab(:) LOGICAL :: tpstab = .TRUE. ! ---------------------------------------------- CONTAINS ! ---------------------------------------------- SUBROUTINE deallocate_pseudopotential USE splines, ONLY: kill_spline USE local_pseudo, ONLY: deallocate_local_pseudo USE uspp, ONLY: dvan INTEGER :: i, j CALL deallocate_local_pseudo() ! IF( ALLOCATED( dvan ) ) DEALLOCATE( dvan ) IF( ALLOCATED( xgtab ) ) DEALLOCATE( xgtab ) ! IF( ALLOCATED( vps_sp ) ) THEN DO i = 1, size(vps_sp) CALL kill_spline(vps_sp(i),'a') END DO DEALLOCATE(vps_sp) END IF ! IF( ALLOCATED(dvps_sp) ) THEN DO i = 1, size(dvps_sp) CALL kill_spline(dvps_sp(i),'a') END DO DEALLOCATE(dvps_sp) END IF ! IF( ALLOCATED(rhoc1_sp) ) THEN DO i = 1, size(rhoc1_sp) CALL kill_spline(rhoc1_sp(i),'a') END DO DEALLOCATE(rhoc1_sp) END IF ! IF( ALLOCATED(rhocp_sp) ) THEN DO i = 1, size(rhocp_sp) CALL kill_spline(rhocp_sp(i),'a') END DO DEALLOCATE(rhocp_sp) END IF ! RETURN END SUBROUTINE deallocate_pseudopotential END MODULE pseudopotential ! ---------------------------------------------- espresso-5.1/CPV/src/cp_emass.f900000644000175000017500000000360012341373026014633 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE cp_electronic_mass !------------------------------------------------------------------------------! ! This module contains variable and functions relative to the ! Car-Parrinello fictitious electronic masse USE kinds, ONLY: DP ! IMPLICIT NONE SAVE REAL(DP) :: emass = 1.0d0 ! fictitious electronic mass ( mu ) REAL(DP) :: emass_cutoff = 1.0d0 ! kinetic energy cutoff for plane ! waves to be used for Fourier acceleration ! preconditioning !------------------------------------------------------------------------------! CONTAINS !------------------------------------------------------------------------------! SUBROUTINE emass_precond( ema0bg, ggp, ngw, tpiba2, emaec ) USE control_flags, ONLY: iverbosity IMPLICIT NONE REAL(DP), INTENT(OUT) :: ema0bg(:) REAL(DP), INTENT(IN) :: ggp(:), tpiba2, emaec INTEGER, INTENT(IN) :: ngw INTEGER :: i ! mass preconditioning: ema0bg(i) = ratio of emass(g=0) to emass(g) ! for g**2>emaec the electron mass ema0bg(g) rises quadratically do i = 1, ngw ema0bg(i) = 1.0d0 / MAX( 1.d0, tpiba2 * ggp(i) / emaec ) IF( iverbosity > 2 ) print *,i,' ema0bg(i) ',ema0bg(i) end do RETURN END SUBROUTINE emass_precond !------------------------------------------------------------------------------! END MODULE cp_electronic_mass !------------------------------------------------------------------------------! espresso-5.1/CPV/src/smallbox_lib.f900000644000175000017500000001526412341373026015521 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- SUBROUTINE initbox ( tau0, alat, at, ainv, taub, irb ) !----------------------------------------------------------------------- ! ! sets the indexes irb and positions taub for the small boxes ! around atoms ! USE kinds, ONLY: DP USE ions_base, ONLY: nsp, na, nat USE control_flags, ONLY: iverbosity USE io_global, ONLY: stdout USE mp_global, ONLY: nproc_bgrp, me_bgrp, intra_bgrp_comm USE fft_base, ONLY: dfftb, dfftp, dfftb, fft_dlay_descriptor USE fft_types, ONLY: fft_box_set IMPLICIT NONE ! input REAL(DP), INTENT(in) :: tau0(3,nat), at(3,3), ainv(3,3), alat ! output INTEGER, INTENT(out) :: irb(3,nat) REAL(DP), INTENT(out) :: taub(3,nat) ! local REAL(DP) :: x(3), xmod INTEGER :: nr(3), nrb(3), xint, is, ia, i, isa ! IF ( dfftb%nr1 < 1) CALL errore & ('initbox', 'incorrect value for box grid dimensions', 1) IF ( dfftb%nr2 < 1) CALL errore & ('initbox', 'incorrect value for box grid dimensions', 2) IF ( dfftb%nr3 < 1) CALL errore & ('initbox', 'incorrect value for box grid dimensions', 3) nr (1)=dfftp%nr1 nr (2)=dfftp%nr2 nr (3)=dfftp%nr3 nrb(1)=dfftb%nr1 nrb(2)=dfftb%nr2 nrb(3)=dfftb%nr3 ! isa = 0 DO is=1,nsp DO ia=1,na(is) isa = isa + 1 ! DO i=1,3 ! ! bring atomic positions to crystal axis ! x(i) = ainv(i,1)*tau0(1,isa) + & & ainv(i,2)*tau0(2,isa) + & & ainv(i,3)*tau0(3,isa) ! ! bring x in the range between 0 and 1 ! x(i) = MOD(x(i),1.d0) IF (x(i).LT.0.d0) x(i)=x(i)+1.d0 ! ! case of nrb(i) even ! IF (MOD(nrb(i),2).EQ.0) THEN ! ! find irb = index of the grid point at the corner of the small box ! (the indices of the small box run from irb to irb+nrb-1) ! xint=INT(x(i)*nr(i)) irb (i,isa)=xint+1-nrb(i)/2+1 IF(irb(i,isa).LT.1) irb(i,isa)=irb(i,isa)+nr(i) ! ! x(i) are the atomic positions in crystal coordinates, where the ! "crystal lattice" is the small box lattice and the origin is at ! the corner of the small box. Used to calculate phases exp(iG*taub) ! xmod=x(i)*nr(i)-xint x(i)=(xmod+nrb(i)/2-1)/nr(i) ELSE ! ! case of nrb(i) odd - see above for comments ! xint=NINT(x(i)*nr(i)) irb (i,isa)=xint+1-(nrb(i)-1)/2 IF(irb(i,isa).LT.1) irb(i,isa)=irb(i,isa)+nr(i) xmod=x(i)*nr(i)-xint x(i)=(xmod+(nrb(i)-1)/2)/nr(i) END IF END DO ! ! bring back taub in cartesian coordinates ! DO i=1,3 taub(i,isa)=(x(1)*at(i,1) + x(2)*at(i,2) + x(3)*at(i,3))*alat END DO END DO END DO ! initialize FFT descriptor CALL fft_box_set( dfftb, dfftb%nr1, dfftb%nr2, dfftb%nr3, dfftb%nr1x, dfftb%nr2x, dfftb%nr3x, & nat, irb, dfftp%npp, dfftp%ipp ) IF( iverbosity > 1 ) THEN isa = 1 DO is=1,nsp WRITE( stdout, '( /, 2x, "species= ", i2 )' ) is DO ia=1,na(is) WRITE( stdout,2000) ia, (irb(i,isa),i=1,3) 2000 FORMAT(2x, 'atom= ', i3, ' irb1= ', i3, ' irb2= ', i3, ' irb3= ', i3) isa = isa + 1 END DO END DO ENDIF #ifdef __MPI ! ! for processor that do not call fft on the box ! artificially start the clock ! CALL start_clock( 'fftb' ) CALL stop_clock( 'fftb' ) ! #endif ! RETURN END SUBROUTINE initbox ! !----------------------------------------------------------------------- SUBROUTINE phbox( taub, iverbosity, eigrb ) !----------------------------------------------------------------------- ! calculates the phase factors for the g's of the little box ! eigrt=exp(-i*g*tau) . ! Uses the same logic for fast calculation as in phfac ! USE kinds, only: DP use io_global, only: stdout use ions_base, only: nsp, na, nat use cell_base, only: r_to_s use cp_interfaces, only: phfacs use small_box, only: bgb, alatb use smallbox_gvec, only: ngb, mill_b use fft_base, only: dfftb ! IMPLICIT NONE REAL(DP), INTENT(IN) :: taub(3,nat) COMPLEX(DP), INTENT(OUT) :: eigrb(ngb,nat) INTEGER, INTENT(IN) :: iverbosity ! local REAL(DP) :: ainvb(3,3) integer :: i,j,k, is, ia, ig, isa complex(dp), allocatable:: ei1b(:,:), ei2b(:,:), ei3b(:,:) real(dp), allocatable :: taus(:,:) ! allocate(ei1b(-dfftb%nr1:dfftb%nr1,nat)) allocate(ei2b(-dfftb%nr2:dfftb%nr2,nat)) allocate(ei3b(-dfftb%nr3:dfftb%nr3,nat)) allocate( taus( 3, nat ) ) ! if(iverbosity > 2) then WRITE( stdout,*) ' phbox: taub ' WRITE( stdout,*) ( (taub(i,isa), i=1, 3 ), isa=1, nat ) endif ainvb(1,:) = bgb(:,1)/alatb ainvb(2,:) = bgb(:,2)/alatb ainvb(3,:) = bgb(:,3)/alatb CALL r_to_s( taub, taus, na, nsp, ainvb ) CALL phfacs( ei1b, ei2b, ei3b, eigrb, mill_b, taus, dfftb%nr1,dfftb%nr2,dfftb%nr3, nat ) ! if(iverbosity > 2) then WRITE( stdout,*) if(nsp.gt.1) then isa = 0 do is=1,nsp WRITE( stdout,'(33x,a,i4)') ' ei1b, ei2b, ei3b (is)',is do ig=1,4 WRITE( stdout,'(6f9.4)') & & ei1b(ig,1+isa),ei2b(ig,1+isa),ei3b(ig,1+isa) end do WRITE( stdout,*) isa = isa + na(is) end do else do ia=1,na(1) WRITE( stdout,'(33x,a,i4)') ' ei1b, ei2b, ei3b (ia)',ia do ig=1,4 WRITE( stdout,'(6f9.4)') & & ei1b(ig,ia),ei2b(ig,ia),ei3b(ig,ia) end do WRITE( stdout,*) end do endif endif ! deallocate(ei3b) deallocate(ei2b) deallocate(ei1b) deallocate( taus ) ! RETURN END SUBROUTINE phbox espresso-5.1/CPV/src/input.f900000644000175000017500000011716512341373026014214 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE input !--------------------------------------------------------------------------- ! USE kinds, ONLY: DP USE read_input, ONLY : has_been_read ! IMPLICIT NONE SAVE ! PRIVATE ! Input Subroutines ! should be called in the following order ! a) read input file (module read_input) PUBLIC :: iosys_pseudo ! b) then read pseudo files PUBLIC :: iosys ! c) finally copy variables to modules PUBLIC :: modules_setup, set_control_flags ! CHARACTER(LEN=256), EXTERNAL :: trimcheck ! CONTAINS ! !------------------------------------------------------------------------- SUBROUTINE iosys_pseudo() !------------------------------------------------------------------------- ! USE input_parameters, ONLY : atom_pfile, pseudo_dir, ntyp, nat, & prefix, outdir, input_dft USE read_pseudo_mod, ONLY : readpp, check_order USE io_global, ONLY : stdout USE io_files, ONLY : psfile_ => psfile , & pseudo_dir_ => pseudo_dir, & outdir_ => outdir, & prefix_ => prefix, & tmp_dir USE ions_base, ONLY : nsp_ => nsp, nat_ => nat USE input_parameters, ONLY : title USE run_info, ONLY : title_ => title ! ! IF ( .NOT. has_been_read ) & CALL errore( 'iosys_pseudo ', 'input file has not been read yet!', 1 ) ! ! ... Set job title and print it on standard output ! title_ = title WRITE( stdout, '(/,3X,"Job Title: ",A )' ) TRIM( title_ ) ! prefix_ = TRIM( prefix ) outdir_ = trimcheck( outdir ) tmp_dir = trimcheck( outdir ) ! ! ... Set internal variables for the number of species and number of atoms ! nsp_ = ntyp nat_ = nat ! psfile_ = ' ' psfile_(1:nsp_) = atom_pfile(1:nsp_) pseudo_dir_ = trimcheck( pseudo_dir ) ! ! ... read in pseudopotentials and wavefunctions files ! CALL readpp( input_dft, .TRUE. ) CALL check_order ( ) ! RETURN ! END SUBROUTINE iosys_pseudo ! !------------------------------------------------------------------------- SUBROUTINE iosys() !------------------------------------------------------------------------- ! USE control_flags, ONLY : fix_dependencies, lconstrain USE io_global, ONLY : ionode, stdout USE ions_base, ONLY : nat, tau, ityp USE constraints_module, ONLY : init_constraint ! IMPLICIT NONE ! ! IF ( ionode ) THEN ! WRITE( UNIT = stdout, & FMT = "(//,3X,'Main Simulation Parameters (from input)',/ & & ,3X,'---------------------------------------')" ) ! END IF ! ! ... Set internal flags according to the input ! CALL set_control_flags() ! ! ... write to stdout basic simulation parameters ! CALL input_info() ! ! ... call the module specific setup routine ! CALL modules_setup() ! IF ( lconstrain ) CALL init_constraint( nat, tau, ityp, 1.D0 ) ! ! ... write to stdout input module information ! CALL modules_info() ! RETURN ! END SUBROUTINE iosys ! !------------------------------------------------------------------------- SUBROUTINE set_control_flags() !------------------------------------------------------------------------- ! USE io_global, ONLY : stdout USE autopilot, ONLY : auto_check USE autopilot, ONLY : restart_p USE control_flags, ONLY : ndw_ => ndw, & ndr_ => ndr, & iprint_ => iprint, & isave_ => isave, & tstress_ => tstress, & tprnfor_ => tprnfor, & tprnsfac_ => tprnsfac, & ampre_ => ampre, & trane_ => trane, & tdipole_ => tdipole, & nomore_ => nomore, & memchk_ => memchk, & tpre_ => tpre, & timing_ => timing, & iverbosity_ => iverbosity, & taurdr_ => taurdr, & nbeg_ => nbeg, & gamma_only_ => gamma_only, & tatomicwfc_ => tatomicwfc, & printwfc_ => printwfc, & tortho_ => tortho, & nstep_ => nstep USE control_flags, ONLY : tsde_ => tsde, & tsteepdesc_ => tsteepdesc, & tzeroe_ => tzeroe, & tdamp_ => tdamp, & trhor_ => trhor, & trhow_ => trhow, & tksw_ => tksw, & ortho_eps_ => ortho_eps, & ortho_max_ => ortho_max, & tnosee_ => tnosee USE control_flags, ONLY : tdampions_ => tdampions, & tfor_ => tfor, & tsdp_ => tsdp USE control_flags, ONLY : tnosep_ => tnosep, & tcap_ => tcap, & tcp_ => tcp, & tolp_ => tolp, & tzerop_ => tzerop, & tv0rd_ => tv0rd, & tranp_ => tranp, & amprp_ => amprp, & dt_old_ => dt_old USE control_flags, ONLY : tionstep_ => tionstep, & nstepe_ => nstepe USE control_flags, ONLY : tzeroc_ => tzeroc, & tnoseh_ => tnoseh, & thdyn_ => thdyn, & tsdc_ => tsdc, & tbeg_ => tbeg USE control_flags, ONLY : ekin_conv_thr_ => ekin_conv_thr, & etot_conv_thr_ => etot_conv_thr, & forc_conv_thr_ => forc_conv_thr, & ekin_maxiter_ => ekin_maxiter, & etot_maxiter_ => etot_maxiter, & forc_maxiter_ => forc_maxiter USE control_flags, ONLY : force_pairing_ => force_pairing USE control_flags, ONLY : remove_rigid_rot_ => remove_rigid_rot USE control_flags, ONLY : iesr USE control_flags, ONLY : textfor USE control_flags, ONLY : do_makov_payne, twfcollect USE control_flags, ONLY : lwf, lwfnscf, lwfpbe0, lwfpbe0nscf ! Lingzhu Kong USE control_flags, ONLY : smallmem USE control_flags, ONLY : tconvthrs ! ! ... Other modules ! USE cp_main_variables, ONLY : nprint_nfi USE wave_base, ONLY : frice_ => frice USE ions_base, ONLY : fricp_ => fricp USE cell_base, ONLY : frich_ => frich USE time_step, ONLY : set_time_step USE cp_electronic_mass, ONLY : emass_ => emass, & emaec_ => emass_cutoff ! USE efield_module, ONLY : tefield_ => tefield, & epol_ => epol, & efield_ => efield, & tefield2_ => tefield2, & epol2_ => epol2, & efield2_ => efield2 ! USE uspp_param, ONLY : nvb ! USE input_parameters, ONLY: & electron_dynamics, electron_damping, electron_temperature, & ion_dynamics, ekin_conv_thr, etot_conv_thr, forc_conv_thr, ion_maxstep,& electron_maxstep, ion_damping, ion_temperature, ion_velocities, tranp, & amprp, ion_nstepe, cell_nstepe, cell_dynamics, cell_damping, london, & cell_parameters, cell_velocities, cell_temperature, force_pairing, & tapos, tavel, ecutwfc, emass, emass_cutoff, taspc, trd_ht, ibrav, & ortho_eps, ortho_max, ntyp, tolp, calculation, disk_io, dt, & tcg, ndr, ndw, iprint, isave, tstress, k_points, tprnfor, verbosity, & ampre, nstep, restart_mode, ion_positions, startingwfc, printwfc, & orthogonalization, electron_velocities, nat, if_pos, phase_space, & tefield, epol, efield, tefield2, epol2, efield2, remove_rigid_rot, & iesr_inp, saverho, tdipole_card, rd_for, assume_isolated, wf_collect, & memory ! IMPLICIT NONE ! ! IF ( .NOT. has_been_read ) & CALL errore( 'iosys ', 'input file has not been read yet!', 1 ) ! ndr_ = ndr ndw_ = ndw iprint_ = iprint isave_ = isave tstress_ = tstress tpre_ = tstress gamma_only_ = ( TRIM( k_points ) == 'gamma' ) tprnfor_ = tprnfor printwfc_ = printwfc ekin_conv_thr_ = ekin_conv_thr etot_conv_thr_ = etot_conv_thr forc_conv_thr_ = forc_conv_thr ekin_maxiter_ = electron_maxstep iesr = iesr_inp remove_rigid_rot_ = remove_rigid_rot ! ! ... define memory- and disk-related internal switches ! smallmem = ( TRIM( memory ) == 'small' ) twfcollect = wf_collect ! ! Options for isolated system SELECT CASE( TRIM( assume_isolated ) ) ! CASE( 'makov-payne', 'm-p', 'mp' ) ! do_makov_payne = .TRUE. ! CASE( 'none' ) ! do_makov_payne = .FALSE. ! CASE DEFAULT ! do_makov_payne = .FALSE. ! END SELECT ! tefield_ = tefield epol_ = epol efield_ = efield tefield2_ = tefield2 epol2_ = epol2 efield2_ = efield2 ! ! ... Set internal time step variables ( delt, twodelt, dt2 ... ) ! CALL set_time_step( dt ) ! ! ... Set electronic fictitius mass and its cut-off for fourier ! ... acceleration ! emass_ = emass emaec_ = emass_cutoff !==================================================================== !Lingzhu Kong lwf = ( TRIM( calculation ) == 'cp-wf' .OR. & TRIM( calculation ) == 'cp-wf-nscf' .OR. & TRIM( calculation ) == 'cp-wf-pbe0' .OR. & TRIM( calculation ) == 'pbe0-nscf' ) lwfnscf = ( TRIM( calculation ) == 'cp-wf-nscf' ) lwfpbe0 = ( TRIM( calculation ) == 'cp-wf-pbe0') lwfpbe0nscf = ( TRIM( calculation ) == 'pbe0-nscf' ) !==================================================================== ! ! ... set the level of output, the code verbosity ! trhor_ = ( TRIM( calculation ) == 'nscf' .OR. & TRIM( calculation ) == 'cp-wf-nscf' .OR. & TRIM( calculation ) == 'pbe0-nscf' ) ! Lingzhu Kong trhow_ = saverho tksw_ = ( TRIM( disk_io ) == 'high' ) ! iverbosity_ = 0 timing_ = .FALSE. ! The code write to files fort.8 fort.41 fort.42 fort.43 ! a detailed report of subroutines timing memchk_ = .FALSE. ! The code performs a memory check, write on standard ! output the allocated memory at each step. ! Architecture Dependent tprnsfac_ = .FALSE. ! Print on file STRUCTURE_FACTOR the structure factor ! gvectors and charge density, in reciprocal space. ! SELECT CASE( TRIM( verbosity ) ) CASE( 'minimal' ) ! iverbosity_ =-1 ! CASE( 'low', 'default' ) ! iverbosity_ = 0 timing_ = .TRUE. ! CASE( 'medium' ) ! iverbosity_ = 1 timing_ = .TRUE. tprnsfac_ = .TRUE. ! CASE( 'high' ) ! iverbosity_ = 2 memchk_ = .TRUE. timing_ = .TRUE. tprnsfac_ = .TRUE. ! CASE( 'debug' ) ! iverbosity_ = 3 memchk_ = .TRUE. timing_ = .TRUE. ! CASE DEFAULT ! CALL errore( 'control_flags ', & 'unknown verbosity ' // TRIM( verbosity ), 1 ) ! END SELECT ! tdipole_ = tdipole_card ! ! ... set the restart flags ! trane_ = .FALSE. ampre_ = ampre taurdr_ = .FALSE. ! SELECT CASE ( TRIM( restart_mode ) ) ! CASE( 'from_scratch' ) ! nbeg_ = -1 nomore_ = nstep nstep_ = nstep trane_ = ( startingwfc == 'random' ) ! IF ( ampre_ == 0.D0 ) ampre_ = 0.02D0 ! CASE( 'reset_counters' ) ! nbeg_ = 0 nomore_ = nstep nstep_ = nstep ! CASE( 'restart' ) ! nbeg_ = 1 nomore_ = nstep nstep_ = nstep nprint_nfi = -2 ! CASE( 'auto' ) ! IF ( auto_check( ndr, ' ' ) ) THEN ! WRITE( stdout, '("autopilot: Auto Check detects restart.xml")' ) WRITE( stdout, '(" adjusting restart_mode to restart")' ) ! restart_mode = 'restart' ! nbeg_ = 1 ! ! ... Also handle NSTEPS adjustment so that ! ... nomore does not include past nfi in cpr.f90 ! restart_p = .TRUE. nomore_ = nstep nstep_ = nstep nprint_nfi = -2 ! IF ( ion_positions == 'from_input' ) THEN ! taurdr_ = .TRUE. nbeg_ = -1 ! END IF ! ELSE ! WRITE( stdout, & '("autopilot: Auto Check did not detect restart.xml")' ) ! WRITE( stdout, & '(" adjusting restart_mode to from_scratch")' ) ! restart_mode = 'from_scratch' ! nbeg_ = -2 ! IF ( ion_positions == 'from_input' ) nbeg_ = -1 ! nomore_ = nstep nstep_ = nstep ! trane_ = ( startingwfc == 'random' ) ! IF ( ampre_ == 0.d0 ) ampre_ = 0.02D0 ! END IF ! CASE DEFAULT ! CALL errore( 'iosys ', & 'unknown restart_mode ' // TRIM( restart_mode ), 1 ) ! END SELECT ! ! ... Starting/Restarting Atomic positions ! SELECT CASE ( TRIM(ion_positions) ) CASE ( 'from_input' ) taurdr_ = .TRUE. ! Positions read from standard input CASE ( 'default' ) taurdr_ = .FALSE. CASE DEFAULT CALL errore(' control_flags ',' unknown ion_positions '//TRIM(ion_positions), 1 ) END SELECT ! ... Electronic randomization tatomicwfc_ = .FALSE. SELECT CASE ( TRIM(startingwfc) ) CASE ('default','none') trane_ = .FALSE. CASE ('random') trane_ = .TRUE. CASE ('atomic') tatomicwfc_ = .TRUE. CASE DEFAULT PRINT*,"startingwfc",startingwfc CALL errore(' control_flags ',' unknown startingwfc '//TRIM(startingwfc), 1 ) END SELECT IF( ampre_ == 0 ) trane_ = .FALSE. ! ... TORTHO SELECT CASE ( orthogonalization ) CASE ('Gram-Schmidt') tortho_ = .FALSE. CASE ('ortho') tortho_ = .TRUE. CASE DEFAULT CALL errore(' iosys ',' unknown orthogonalization '//& TRIM(orthogonalization), 1 ) END SELECT ortho_max_ = ortho_max ortho_eps_ = ortho_eps ! ... Electrons initial velocity SELECT CASE ( TRIM(electron_velocities) ) CASE ('default') tzeroe_ = .FALSE. CASE ('zero') tzeroe_ = .TRUE. CASE DEFAULT CALL errore(' control_flags ',' unknown electron_velocities '//TRIM(electron_velocities), 1 ) END SELECT ! ... Electron dynamics tdamp_ = .FALSE. tsteepdesc_ = .FALSE. frice_ = 0.d0 SELECT CASE ( TRIM(electron_dynamics) ) CASE ('sd', 'default') tsde_ = .TRUE. CASE ('verlet') tsde_ = .FALSE. CASE ('cg') tsde_ = .FALSE. tcg = .TRUE. tortho_ = .FALSE. CASE ('damp') tsde_ = .FALSE. tdamp_ = .TRUE. frice_ = electron_damping CASE ('diis') CALL errore( "iosys ", " electron_dynamics keyword diis not yet implemented ", 1 ) CASE ('none') tsde_ = .FALSE. CASE DEFAULT CALL errore(' control_flags ',' unknown electron_dynamics '//TRIM(electron_dynamics), 1 ) END SELECT ! ... Electronic Temperature tnosee_ = .FALSE. SELECT CASE ( TRIM(electron_temperature) ) ! temperature control of electrons via Nose' thermostat CASE ('nose') tnosee_ = .TRUE. CASE ('not_controlled', 'default') tnosee_ = .FALSE. CASE DEFAULT CALL errore(' control_flags ',' unknown electron_temperature '//TRIM(electron_temperature), 1 ) END SELECT ! ... Ions dynamics tdampions_ = .FALSE. tconvthrs%active = .FALSE. tconvthrs%nstep = 1 tconvthrs%ekin = 0.0d0 tconvthrs%derho = 0.0d0 tconvthrs%force = 0.0d0 SELECT CASE ( TRIM(ion_dynamics) ) CASE ('sd') tsdp_ = .TRUE. tfor_ = .TRUE. fricp_ = 0.d0 tconvthrs%ekin = ekin_conv_thr tconvthrs%derho = etot_conv_thr tconvthrs%force = forc_conv_thr tconvthrs%active = .TRUE. tconvthrs%nstep = 1 CASE ('verlet') tsdp_ = .FALSE. tfor_ = .TRUE. fricp_ = 0.d0 CASE ('cg') ! Conjugate Gradient minimization for ions CALL errore( "iosys ", " ion_dynamics = '//TRIM(ion_dynamics)//' not yet implemented ", 1 ) CASE ('damp') tsdp_ = .FALSE. tfor_ = .TRUE. tdampions_ = .TRUE. fricp_ = ion_damping tconvthrs%ekin = ekin_conv_thr tconvthrs%derho = etot_conv_thr tconvthrs%force = forc_conv_thr tconvthrs%active = .TRUE. tconvthrs%nstep = 1 CASE ('none', 'default') tsdp_ = .FALSE. tfor_ = .FALSE. fricp_ = 0.d0 CASE DEFAULT CALL errore(' control_flags ',' unknown ion_dynamics '//TRIM(ion_dynamics), 1 ) END SELECT ! External Forces on Ions has been specified ! IF ( ANY( rd_for(:,1:nat) /= 0.0_DP ) ) textfor = .TRUE. ! ... Ionic Temperature tcp_ = .FALSE. tnosep_ = .FALSE. tolp_ = tolp SELECT CASE ( TRIM(ion_temperature) ) ! temperature control of ions via Nose' thermostat CASE ('nose') tnosep_ = .TRUE. tcp_ = .FALSE. CASE ('not_controlled', 'default') tnosep_ = .FALSE. tcp_ = .FALSE. CASE ('rescaling' ) tnosep_ = .FALSE. tcp_ = .TRUE. CASE DEFAULT CALL errore(' control_flags ',' unknown ion_temperature '//TRIM(ion_temperature), 1 ) END SELECT ! ... Starting/Restarting ionic velocities tzerop_= .FALSE. tv0rd_ = .FALSE. tcap_ = .FALSE. SELECT CASE ( TRIM(ion_velocities) ) CASE ('default') CONTINUE CASE ('change_step') dt_old_ = tolp CASE ('zero') tzerop_= .TRUE. CASE ('from_input') tv0rd_ = .TRUE. IF( .NOT. tavel ) CALL errore(' iosys ', & ' ION_VELOCITIES not present in stdin ', 1 ) CASE ('random') tcap_ = .TRUE. CASE DEFAULT CALL errore(' control_flags ',' unknown ion_velocities '//TRIM(ion_velocities), 1 ) END SELECT ! ... Ionic randomization tranp_ ( 1 : ntyp ) = tranp ( 1 : ntyp ) amprp_ ( 1 : ntyp ) = amprp ( 1 : ntyp ) ! ... Ionic/electronic step ratio tionstep_ = .FALSE. nstepe_ = 1 IF( ( ion_nstepe > 1 ) .OR. ( cell_nstepe > 1 ) ) THEN ! This card is used to control the ionic step, when active ionic step are ! allowed only when the two criteria are met, i.e. the ions are allowed ! to move if MOD( NFI, NSTEP ) == 0 and EKIN < EKIN_THR . tionstep_ = .TRUE. nstepe_ = MAX( ion_nstepe, cell_nstepe ) WRITE(stdout, * ) " ion_nstepe or cell_nstepe have no effects " END IF ! Cell dynamics SELECT CASE ( TRIM(cell_dynamics) ) CASE ('sd') tpre_ = .TRUE. thdyn_ = .TRUE. tsdc_ = .TRUE. frich_= 0.d0 CASE ( 'damp', 'damp-pr' ) thdyn_ = .TRUE. tsdc_ = .FALSE. frich_ = cell_damping tpre_ = .TRUE. CASE ('pr') thdyn_ = .TRUE. tsdc_ = .FALSE. tpre_ = .TRUE. frich_= 0.d0 CASE ('none', 'default') thdyn_ = .FALSE. tsdc_ = .FALSE. frich_= 0.d0 CASE DEFAULT CALL errore(' control_flags ',' unknown cell_dynamics '//TRIM(cell_dynamics), 1 ) END SELECT ! ... Starting/Restarting Cell parameters SELECT CASE ( TRIM(cell_parameters) ) CASE ('default') tbeg_ = .FALSE. CASE ('from_input') tbeg_ = .TRUE. IF( force_pairing_) & WRITE(stdout) " cell_parameters have no effects " CASE DEFAULT CALL errore(' control_flags ',' unknown cell_parameters '//TRIM(cell_parameters), 1 ) END SELECT ! ... Cell initial velocities SELECT CASE ( TRIM(cell_velocities) ) CASE ('default') tzeroc_ = .FALSE. CASE ('zero') tzeroc_ = .TRUE. CASE DEFAULT CALL errore(' control_flags ',' unknown cell_velocities '//TRIM(cell_velocities), 1 ) END SELECT ! ... Cell Temperature SELECT CASE ( TRIM(cell_temperature) ) ! cell temperature control of ions via Nose' thermostat CASE ('nose') tnoseh_ = .TRUE. CASE ('not_controlled', 'default') tnoseh_ = .FALSE. CASE DEFAULT CALL errore(' control_flags ',' unknown cell_temperature '//TRIM(cell_temperature), 1 ) END SELECT ! .. If only electron are allowed to move ! .. check for SCF convergence on the ground state IF( ion_dynamics == 'none' .AND. cell_dynamics == 'none' ) THEN tconvthrs%ekin = ekin_conv_thr tconvthrs%derho = etot_conv_thr tconvthrs%force = 1.D+10 tconvthrs%active = .TRUE. tconvthrs%nstep = 1 END IF ! force pairing force_pairing_ = force_pairing ! ! ... the 'ATOMIC_SPECIES' card must be present, check it IF( .NOT. taspc ) & CALL errore(' iosys ',' ATOMIC_SPECIES not found in stdin ',1) ! ... the 'ATOMIC_POSITIONS' card must be present, check it IF( .NOT. tapos ) & CALL errore(' iosys ',' ATOMIC_POSITIONS not found in stdin ',1) IF( .NOT. trd_ht .AND. TRIM(cell_parameters)=='from_input' ) & CALL errore(' iosys ',' CELL_PARAMETERS not present in stdin ', 1 ) IF( .NOT. trd_ht .AND. ibrav == 0 ) & CALL errore(' iosys ',' ibrav = 0 but CELL_PARAMETERS not present in stdin ', 1 ) RETURN END SUBROUTINE set_control_flags ! !------------------------------------------------------------------------- SUBROUTINE modules_setup() !------------------------------------------------------------------------- ! USE input_parameters, ONLY: ibrav , celldm , trd_ht, dt, & rd_ht, a, b, c, cosab, cosac, cosbc, ntyp , nat , & na_inp , sp_pos , rd_pos , rd_vel, atom_mass, atom_label, if_pos, & atomic_positions, id_loc, sic, sic_epsilon, sic_rloc, ecutwfc, & ecutrho, ecfixed, qcutz, q2sigma, tk_inp, wmass, & ion_radius, emass, emass_cutoff, temph, fnoseh, nr1b, nr2b, nr3b, & tempw, fnosep, nr1, nr2, nr3, nr1s, nr2s, nr3s, ekincw, fnosee, & outdir, prefix, nkstot, xk, vdw_table_name, & occupations, n_inner, fermi_energy, rotmass, occmass, & rotation_damping, occupation_damping, occupation_dynamics, & rotation_dynamics, degauss, smearing, nhpcl, nhptyp, ndega, & nhgrp, fnhscl, cell_units, restart_mode, sic_alpha , & niter_cold_restart, lambda_cold, rd_for USE input_parameters, ONLY: nconstr_inp, iprnks, nprnks, & etot_conv_thr, ekin_conv_thr, nspin, f_inp, nbnd, & press, cell_damping, cell_dofree, tf_inp, & refg, greash, grease, greasp, epol, efield, tcg, maxiter, conv_thr, & passop, tot_charge, tot_magnetization, niter_cg_restart ! USE input_parameters, ONLY : wf_efield, wf_switch, sw_len, efx0, efy0, & efz0, efx1, efy1, efz1, wfsd, wfdt, maxwfdt, & wf_q, wf_friction, nit, nsd, nsteps, tolw, & adapt, calwf, nwf, wffort, writev, & wannier_index !=============================================================== !Lingzhu Kong USE input_parameters, ONLY : neigh, poisson_eps, dis_cutoff, exx_ps_rcut,& exx_me_rcut, vnbsp !=============================================================== ! USE input_parameters, ONLY : abivol, abisur, pvar, fill_vac, & scale_at, t_gauss, jellium, cntr, & P_ext, P_in, P_fin, rho_thr, & step_rad, Surf_t, dthr, R_j, h_j, & delta_eps, delta_sigma, n_cntr, & axis USE input_parameters, ONLY : lda_plus_u, Hubbard_U USE input_parameters, ONLY : step_pen, A_pen, alpha_pen, sigma_pen USE input_parameters, ONLY : vdw_corr, london, london_s6, london_rcut, & ts_vdw, ts_vdw_isolated, ts_vdw_econv_thr ! USE constants, ONLY : amu_au, pi USE control_flags, ONLY : lconstrain, tpre, thdyn, tksw USE ions_base, ONLY : zv USE cell_base, ONLY : cell_base_init, cell_dyn_init, at, cell_alat USE cell_nose, ONLY : cell_nose_init USE ions_base, ONLY : ions_base_init, greasp_ => greasp USE sic_module, ONLY : sic_initval USE ions_nose, ONLY : ions_nose_init USE wave_base, ONLY : grease_ => grease USE electrons_nose, ONLY : electrons_nose_init USE printout_base, ONLY : printout_base_init USE efield_module, ONLY : efield_init USE cg_module, ONLY : cg_init USE pres_ai_mod, ONLY : pres_ai_init USE ldaU_cp, ONLY : ldaU_init0 USE step_penalty, ONLY : ldaUpen_init USE fft_base, ONLY : dfftp, dffts, dfftb USE kohn_sham_states, ONLY : ks_states_init USE electrons_module, ONLY : electrons_setup USE electrons_base, ONLY : electrons_base_initval USE ensemble_dft, ONLY : ensemble_initval,tens USE wannier_base, ONLY : wannier_init USE efield_module, ONLY : tefield USE funct, ONLY : dft_is_nonlocc, get_inlc USE kernel_table, ONLY : vdw_table_name_ => vdw_table_name, & initialize_kernel_table USE control_flags, ONLY : llondon, ts_vdw_ => ts_vdw USE london_module, ONLY : init_london, scal6, lon_rcut USE tsvdw_module, ONLY : vdw_isolated, vdw_econv_thr ! IMPLICIT NONE ! REAL(DP) :: alat_ , massa_totale ! ... DIIS INTEGER :: ia, iss, inlc LOGICAL :: ltest ! ! Subroutine Body ! IF( .NOT. has_been_read ) & CALL errore( ' modules_setup ', ' input file has not been read yet! ', 1 ) ! ! ... Set cell base module ! massa_totale = SUM( atom_mass(1:ntyp)*na_inp(1:ntyp) ) ! CALL cell_base_init( ibrav, celldm, a, b, c, cosab, cosac, cosbc, & trd_ht, rd_ht, cell_units ) CALL cell_dyn_init ( trd_ht, rd_ht, wmass, massa_totale, press, & cell_damping, greash, cell_dofree ) ! alat_ = cell_alat() ! ... Set ions base module CALL ions_base_init( ntyp , nat , na_inp , sp_pos , rd_pos , rd_vel, & atom_mass, atom_label, if_pos, atomic_positions, & alat_ , at, ion_radius, rd_for ) ! ... Set Values for the cutoff CALL ecutoffs_setup( ecutwfc, ecutrho, ecfixed, qcutz, q2sigma, refg ) if (.not. allocated(xk)) then allocate(xk(3,1)) xk = 0.d0 endif CALL gcutoffs_setup( alat_ , tk_inp, nkstot, xk ) ! ... grease_ = grease greasp_ = greasp ! ! ... set thermostat parameter for cell, ions and electrons ! CALL cell_nose_init( temph, fnoseh ) ! CALL ions_nose_init( tempw, fnosep, nhpcl, nhptyp, ndega, nhgrp, fnhscl) ! CALL electrons_nose_init( ekincw , fnosee ) ! set box grid module variables dfftb%nr1 = nr1b dfftb%nr2 = nr2b dfftb%nr3 = nr3b ! set size for potentials and charge density ! (re-calculated automatically) dfftp%nr1 = nr1 dfftp%nr2 = nr2 dfftp%nr3 = nr3 ! set size for wavefunctions ! (re-calculated automatically) dffts%nr1 = nr1s dffts%nr2 = nr2s dffts%nr3 = nr3s CALL efield_init( epol, efield ) CALL cg_init( tcg , maxiter , conv_thr , passop ,niter_cg_restart) ! IF( ( TRIM( sic ) /= 'none' ) .and. ( tpre .or. thdyn ) ) & CALL errore( ' module setup ', ' Stress is not yet implemented with SIC ', 1 ) ! CALL sic_initval( nat, id_loc, sic, sic_epsilon, sic_alpha, sic_rloc ) ! CALL ks_states_init( nspin, nprnks, iprnks ) ! ! kohn-sham states implies disk-io = 'high' ! DO iss = 1, nspin tksw = tksw .OR. ( nprnks(iss) > 0 ) END DO CALL electrons_base_initval( zv, na_inp, ntyp, nbnd, nspin, & occupations, f_inp, & tot_charge, tot_magnetization ) CALL electrons_setup( emass, emass_cutoff ) CALL ensemble_initval( occupations, n_inner, fermi_energy,& niter_cold_restart, lambda_cold, rotmass, & occmass, rotation_damping, occupation_damping, & occupation_dynamics, rotation_dynamics, degauss, & smearing ) IF( .NOT.tcg .AND. tens ) & CALL errore(' modules_setup ', 'Ensemble DFT implemented only with CG ', 1 ) ! ! ... variables for constrained dynamics are set here ! lconstrain = ( nconstr_inp > 0 ) ! !======================================================================== !Lingzhu Kong CALL wannier_init( wf_efield, wf_switch, sw_len, efx0, efy0, efz0, & efx1, efy1, efz1, wfsd, wfdt, neigh,poisson_eps,& dis_cutoff, exx_ps_rcut, exx_me_rcut, vnbsp, & maxwfdt, wf_q, & wf_friction, nit, nsd, nsteps, tolw, adapt, & calwf, nwf, wffort, writev, wannier_index, & restart_mode ) !======================================================================== ! ! ... initialize variables for clusters under pressure ! CALL pres_ai_init( abivol, abisur, pvar, fill_vac, scale_at, & t_gauss, jellium, cntr, P_ext, P_in, P_fin, & rho_thr, step_rad, Surf_t, dthr, R_j, h_j, & delta_eps, delta_sigma, n_cntr, axis ) ! ! ... initialize variables for lda+U calculations ! CALL ldaU_init0 ( ntyp, lda_plus_u, Hubbard_U ) CALL ldaUpen_init( SIZE(sigma_pen), step_pen, sigma_pen, alpha_pen, A_pen ) ! ! ... initialize variables for vdW (dispersions) corrections ! SELECT CASE( TRIM( vdw_corr ) ) ! CASE( 'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d' ) ! llondon= .TRUE. ts_vdw_= .FALSE. ! CASE( 'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler' ) ! llondon= .FALSE. ts_vdw_= .TRUE. ! CASE DEFAULT ! llondon= .FALSE. ts_vdw_= .FALSE. ! END SELECT ! IF ( ts_vdw ) THEN CALL infomsg("iosys","ts_vdw is obsolete, use ''vdw_corr='ts-vdw''' instead") ts_vdw_ = .TRUE. END IF IF ( london ) THEN CALL infomsg("iosys","london is obsolete, use ''vdw_corr='grimme-d2''' instead") llondon = .TRUE. END IF IF (ts_vdw_.AND.llondon) CALL errore("iosys", & "must choose a unique vdW correction!", 1) IF ( llondon) THEN lon_rcut = london_rcut scal6 = london_s6 CALL init_london ( ) ELSE IF ( ts_vdw_ ) THEN vdw_isolated = ts_vdw_isolated vdw_econv_thr= ts_vdw_econv_thr END IF ! ! ... initialize kernel table for nonlocal functionals ! IF ( dft_is_nonlocc( ) ) THEN vdw_table_name_ = vdw_table_name inlc = get_inlc() call initialize_kernel_table(inlc) ENDIF ! RETURN ! END SUBROUTINE modules_setup ! ! -------------------------------------------------------- ! ! print out heading ! SUBROUTINE input_info() ! this subroutine print to standard output some parameters read from input ! ---------------------------------------------- USE input_parameters, ONLY: restart_mode USE control_flags, ONLY: nbeg, iprint, ndr, ndw, nomore USE time_step, ONLY: delt USE cp_electronic_mass, ONLY: emass, emass_cutoff USE io_global, ONLY: ionode, stdout IMPLICIT NONE IF( .NOT. has_been_read ) & CALL errore( ' iosys ', ' input file has not been read yet! ', 1 ) IF( ionode ) THEN WRITE( stdout, 500) nbeg, restart_mode, nomore, iprint, ndr, ndw WRITE( stdout, 505) delt WRITE( stdout, 510) emass WRITE( stdout, 511) emass_cutoff END IF 500 FORMAT( 3X,'Restart Mode = ',I7, 3X, A15, /, & 3X,'Number of MD Steps = ',I7, /, & 3X,'Print out every ',I7, ' MD Steps',/ & 3X,'Reads from unit = ',I7, /, & 3X,'Writes to unit = ',I7) 505 FORMAT( 3X,'MD Simulation time step = ',F10.2) 510 FORMAT( 3X,'Electronic fictitious mass (emass) = ',F10.2) 511 FORMAT( 3X,'emass cut-off = ',F10.2) RETURN END SUBROUTINE input_info ! ! ---------------------------------------------------------------- ! SUBROUTINE modules_info() USE input_parameters, ONLY: electron_dynamics, electron_temperature, & orthogonalization USE control_flags, ONLY: tortho, tnosee, trane, ampre, & trhor, tksw, tfor, tnosep, iverbosity, & thdyn, tnoseh ! USE electrons_nose, ONLY: electrons_nose_info USE sic_module, ONLY: sic_info USE wave_base, ONLY: frice, grease USE ions_base, ONLY: fricp USE ions_nose, ONLY: ions_nose_info USE cell_nose, ONLY: cell_nose_info USE cell_base, ONLY: frich USE efield_module, ONLY: tefield, efield_info, tefield2, efield_info2 USE io_global, ONLY: ionode, stdout USE time_step, ONLY: delt ! ! IMPLICIT NONE INTEGER :: is IF( .NOT. has_been_read ) & CALL errore( ' iosys ', ' input file has not been read yet! ', 1 ) IF( ionode ) THEN ! CALL cutoffs_print_info( ) ! IF( tortho ) THEN CALL orthogonalize_info( ) ELSE WRITE( stdout,512) END IF ! IF( TRIM(electron_dynamics) == 'sd' ) THEN WRITE( stdout,513) ELSE IF( TRIM(electron_dynamics) == 'verlet' ) THEN WRITE( stdout,510) frice = 0.d0 ELSE IF( TRIM(electron_dynamics) == 'damp' ) THEN tnosee = .FALSE. WRITE( stdout,509) WRITE( stdout,514) frice, grease ELSE IF( TRIM(electron_dynamics) == 'cg' ) THEN WRITE( stdout,511) ELSE CALL errore(' input_info ', ' unknown electron dynamics ', 1 ) END IF ! IF( tnosee ) THEN WRITE( stdout,590) CALL electrons_nose_info(delt) ELSE WRITE( stdout,535) END IF ! IF( trane ) THEN WRITE( stdout,515) ampre ENDIF ! CALL electrons_print_info( ) ! CALL exch_corr_print_info( ) IF ( trhor ) THEN WRITE( stdout,720) ENDIF IF( tksw )THEN WRITE( stdout,722) ENDIF ! IF( tfor .AND. tnosep ) fricp = 0.0d0 ! CALL ions_print_info( ) ! IF( tfor .AND. tnosep ) CALL ions_nose_info(delt) ! CALL constraint_info( ) ! IF( thdyn .AND. tnoseh ) frich = 0.0d0 ! CALL cell_print_info( ) ! IF( thdyn .AND. tnoseh ) CALL cell_nose_info (delt) ! ! CALL sic_info() ! maybe useful ! IF(tefield) call efield_info( ) IF(tefield2) call efield_info2( ) WRITE( stdout,700) iverbosity END IF ! RETURN ! 509 FORMAT( 3X,'verlet algorithm for electron dynamics') 510 FORMAT( 3X,'Electron dynamics with newton equations') 511 FORMAT( 3X,'Electron dynamics with conjugate gradient') 512 FORMAT( 3X,'Orthog. with Gram-Schmidt') 513 FORMAT( 3X,'Electron dynamics with steepest descent') 514 FORMAT( 3X,'with friction frice = ',f7.4,' , grease = ',f7.4) 515 FORMAT( 3X,'initial random displacement of el. coordinates with ', & ' amplitude=',f10.6) 535 FORMAT( 3X,'Electron dynamics : the temperature is not controlled') 590 FORMAT( 3X,'Electron temperature control via nose thermostat') ! 700 FORMAT( /,3X, 'Verbosity: iverbosity = ',i2,/) 720 FORMAT( 3X, 'charge density is read from file') 722 FORMAT( 3X, 'Wavefunctions will be written to file as Kohn-Sham states') ! END SUBROUTINE modules_info ! END MODULE input espresso-5.1/CPV/src/ksstates.f900000644000175000017500000001263012341373026014705 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE kohn_sham_states IMPLICIT NONE SAVE PRIVATE ! ... print KS states to file KS.indx_ksout if ksout true LOGICAL :: tksout CHARACTER(LEN=2 ), PARAMETER :: ks_file = 'KS' INTEGER, ALLOCATABLE :: indx_ksout(:,:) ! (state inds, spin indxs) INTEGER, ALLOCATABLE :: n_ksout(:) ! (spin indxs) PUBLIC :: ks_states_init, ks_states_closeup PUBLIC :: n_ksout, indx_ksout, tksout, print_all_states ! ---------------------------------------------- CONTAINS ! ---------------------------------------------- SUBROUTINE ks_states_init( nspin, nprnks, iprnks ) INTEGER, INTENT(IN) :: nspin, nprnks(:) INTEGER, INTENT(IN) :: iprnks(:,:) INTEGER :: i, ip, k, nstates ! ... Tell the code which Kohn-Sham state should be printed to file ! IF( ALLOCATED( n_ksout ) ) DEALLOCATE( n_ksout ) IF( ALLOCATED( indx_ksout ) ) DEALLOCATE( indx_ksout ) ! tksout = ANY( nprnks > 0 ) ! IF( tksout ) THEN nstates = MAXVAL( nprnks ) ALLOCATE( n_ksout( nspin ) ) ALLOCATE( indx_ksout( nstates, nspin) ) n_ksout( 1:nspin ) = nprnks( 1:nspin ) DO i = 1, nspin DO k = 1, nprnks( i ) indx_ksout( k, i ) = iprnks( k, i ) END DO END DO END IF RETURN END SUBROUTINE ks_states_init ! ---------------------------------------------- SUBROUTINE ks_states_closeup() IF( ALLOCATED( indx_ksout ) ) DEALLOCATE( indx_ksout ) IF( ALLOCATED( n_ksout ) ) DEALLOCATE( n_ksout ) tksout = .FALSE. RETURN END SUBROUTINE ks_states_closeup ! ---------------------------------------------- ! ---------------------------------------------- SUBROUTINE print_all_states( ctot, iupdwn_tot, nupdwn_tot ) USE kinds, ONLY : DP USE mp_global, ONLY : intra_bgrp_comm USE io_global, ONLY : ionode USE io_global, ONLY : stdout USE electrons_base, ONLY : nupdwn, iupdwn, nspin IMPLICIT NONE ! ... declare subroutine arguments COMPLEX(DP), INTENT(IN) :: ctot(:,:) INTEGER, INTENT(IN) :: iupdwn_tot(2) INTEGER, INTENT(IN) :: nupdwn_tot(2) ! ... declare other variables INTEGER :: i, iss, iks, itot CHARACTER(LEN=256) :: file_name CHARACTER(LEN=10), DIMENSION(2) :: spin_name CHARACTER (LEN=6), EXTERNAL :: int_to_char IF( tksout ) THEN IF (ionode) THEN WRITE( stdout,*) WRITE( stdout,'( " Khon Sham state")') WRITE( stdout,'( " ---------------")') END IF IF( nspin == 2 ) THEN spin_name(1) = '_UP_' spin_name(2) = '_DW_' ELSE spin_name(1) = '_' spin_name(2) = '_' END IF DO iss = 1, nspin IF( tksout ) THEN DO i = 1, n_ksout(iss) iks = indx_ksout(i, iss) IF( ( iks > 0 ) .AND. ( iks <= nupdwn( iss ) ) ) THEN itot = iks + iupdwn_tot(iss) - 1 file_name = TRIM( ks_file ) // & & trim(spin_name(iss)) // trim( int_to_char( iks ) ) CALL print_ks_states( ctot( :, itot ), file_name ) END IF END DO END IF END DO END IF RETURN ! ... END SUBROUTINE print_all_states ! ---------------------------------------------- ! ---------------------------------------------- SUBROUTINE print_ks_states( c, file_name ) USE kinds USE mp, ONLY: mp_sum USE io_global, ONLY: ionode, ionode_id USE io_global, ONLY: stdout USE gvecw, ONLY: ngw USE fft_base, ONLY: dfftp, dffts, dfftp USE fft_interfaces, ONLY: invfft USE xml_io_base, ONLY: write_rho_xml USE mp_global, ONLY: intra_bgrp_comm, inter_bgrp_comm IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: c(:) CHARACTER(LEN=*), INTENT(IN) :: file_name REAL(DP), ALLOCATABLE :: rpsi2(:) COMPLEX(DP), ALLOCATABLE :: psi(:) INTEGER :: i REAL(DP) :: charge ALLOCATE( psi( dfftp%nnr ) ) ALLOCATE( rpsi2( dfftp%nnr ) ) CALL c2psi( psi, dffts%nnr, c, c, ngw, 1 ) CALL invfft( 'Wave', psi, dffts ) DO i = 1, dfftp%nnr rpsi2( i ) = DBLE( psi( i ) )**2 END DO charge = SUM( rpsi2 ) CALL write_rho_xml( file_name, rpsi2, & dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1x, dfftp%nr2x, dfftp%ipp, dfftp%npp, & ionode, intra_bgrp_comm, inter_bgrp_comm ) CALL mp_sum( charge, intra_bgrp_comm ) IF ( ionode ) THEN WRITE( stdout,'(3X,A15," integrated charge : ",F14.5)') & & TRIM(file_name), charge / DBLE(dfftp%nr1*dfftp%nr2*dfftp%nr3) END IF DEALLOCATE( rpsi2, psi ) ! ... RETURN ! ... END SUBROUTINE print_ks_states ! ---------------------------------------------- ! END MODULE kohn_sham_states espresso-5.1/CPV/src/cplib_meta.f900000644000175000017500000003025312341373026015144 0ustar mbamba! ! Copyright (C) 2005-2010 Quantum ESPRESSO groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine dforce_meta (c,ca,df,da, psi,iss1,iss2,fi,fip) !----------------------------------------------------------------------- !computes: the generalized force df=cmplx(dfr,dfi) acting on the i-th ! electron state at the gamma point of the brillouin zone ! represented by the vector c=cmplx(cr,ci) ! ! contribution from metaGGA use kinds, only: dp use gvect, only : g use gvecs, only : ngms, nlsm, nls use gvecw, only : ngw use cell_base, only : tpiba2 USE metagga, ONLY : kedtaus USE fft_interfaces, ONLY : fwfft, invfft USE fft_base, ONLY : dffts ! implicit none ! complex(dp) c(ngw), ca(ngw), df(ngw), da(ngw),psi(dffts%nnr) integer iss1, iss2 real(dp) fi, fip ! local variables integer ir,ig, ipol !metagga complex(dp) fp,fm,ci ! ! ci=(0.0d0,1.0d0) ! do ipol = 1, 3 psi(:)=(0.d0,0.d0) do ig=1,ngw psi(nls(ig))=g(ipol,ig)* (ci*c(ig) - ca(ig)) psi(nlsm(ig))=g(ipol,ig)* (CONJG(ci*c(ig) + ca(ig))) end do call invfft('Wave',psi,dffts ) ! on smooth grids--> grids for charge density do ir=1, dffts%nnr psi(ir) = CMPLX (kedtaus(ir,iss1)*DBLE(psi(ir)), & kedtaus(ir,iss2)*AIMAG(psi(ir)),kind=DP) end do call fwfft('Wave',psi, dffts ) do ig=1,ngw fp= (psi(nls(ig)) + psi(nlsm(ig))) fm= (psi(nls(ig)) - psi(nlsm(ig))) df(ig)= df(ig) - ci*fi*tpiba2*g(ipol,ig) * & CMPLX(DBLE(fp), AIMAG(fm),kind=DP) da(ig)= da(ig) - ci*fip*tpiba2*g(ipol,ig)* & CMPLX(AIMAG(fp),-DBLE(fm),kind=DP) end do end do ! return end subroutine dforce_meta !----------------------------------------------------------------------- ! !----------------------------------------------------------------------- subroutine kedtauofr_meta (c, psi, nlsi, psis, nlsis ) !----------------------------------------------------------------------- ! use kinds, only: dp use control_flags, only: tpre use gvecs use gvecw, only: ngw use gvect, only: g use gvect, only: nl, nlm use cell_base, only : omega, tpiba, ainv use electrons_base, only: nx => nbspx, n => nbsp, f, ispin, nspin use constants, only: pi, fpi ! use dener use metagga, ONLY : kedtaur, kedtaus, kedtaug, crosstaus, gradwfc, & dkedtaus USE fft_interfaces, ONLY: fwfft, invfft USE fft_base, ONLY: dffts, dfftp implicit none integer, intent(in) :: nlsi, nlsis complex(dp) :: c(ngw,nx) complex(dp) :: psi( nlsi ), psis( nlsis ) ! local variables integer iss, isup, isdw, iss1, iss2, ios, i, ir, ig integer ipol, ix,iy, ipol2xy(3,3) real(dp) sa1, sa2 complex(dp) ci,fp,fm ! psi( : ) = (0.d0,0.d0) ! ci=(0.0d0,1.0d0) kedtaur(:,:)=0.d0 kedtaus(:,:)=0.d0 kedtaug(:,:)=(0.d0,0.d0) if(tpre) crosstaus(:,:,:)=0.d0 ! ! ! warning! trhor and thdyn are not compatible yet! ! ! important: if n is odd then nx must be .ge.n+1 and c(*,n+1)=0. ! if (mod(n,2).ne.0) then c(1:ngw,n+1)=(0.d0,0.d0) endif ! do i=1,n,2 iss1=ispin(i) sa1=f(i)/omega if (i.ne.n) then iss2=ispin(i+1) sa2=f(i+1)/omega else iss2=iss1 sa2=0.0d0 end if do ipol = 1, 3 psis( : ) = (0.d0,0.d0) do ig=1,ngw psis(nls(ig))=tpiba*g(ipol,ig)* (ci*c(ig,i) - c(ig,i+1)) psis(nlsm(ig))=tpiba*g(ipol,ig)*CONJG(ci*c(ig,i)+c(ig,i+1)) end do ! gradient of wfc in real space call invfft('Wave',psis, dffts ) ! on smooth grids--> grids for charge density do ir=1, dffts%nnr kedtaus(ir,iss1)=kedtaus(ir,iss1)+0.5d0*sa1*DBLE(psis(ir))**2 kedtaus(ir,iss2)=kedtaus(ir,iss2)+0.5d0*sa2*AIMAG(psis(ir))**2 end do if(tpre) then do ir=1, dffts%nnr gradwfc(ir,ipol)=psis(ir) end do end if end do if(tpre) then ipol=1 do ix=1,3 do iy=1,ix ipol2xy(ix,iy)=ipol ipol2xy(iy,ix)=ipol do ir=1,dffts%nnr crosstaus(ir,ipol,iss1) = crosstaus(ir,ipol,iss1) +& sa1*DBLE(gradwfc(ir,ix))*DBLE(gradwfc(ir,iy)) crosstaus(ir,ipol,iss2) = crosstaus(ir,ipol,iss2) +& sa2*AIMAG(gradwfc(ir,ix))*AIMAG(gradwfc(ir,iy)) end do ipol=ipol+1 end do end do end if ! d kedtaug / d h if(tpre) then do iss=1,nspin do ix=1,3 do iy=1,3 do ir=1,dffts%nnr dkedtaus(ir,ix,iy,iss)=-kedtaus(ir,iss)*ainv(iy,ix)& -crosstaus(ir,ipol2xy(1,ix),iss)*ainv(iy,1)& -crosstaus(ir,ipol2xy(2,ix),iss)*ainv(iy,2)& -crosstaus(ir,ipol2xy(3,ix),iss)*ainv(iy,3) end do end do end do end do end if !end metagga ! end do ! kinetic energy density (kedtau) in g-space (kedtaug) if(nspin.eq.1)then iss=1 psis(1:dffts%nnr)=CMPLX(kedtaus(1:dffts%nnr,iss),0.d0,kind=DP) call fwfft('Smooth',psis, dffts ) kedtaug(1:ngms,iss)=psis(nls(1:ngms)) else isup=1 isdw=2 psis(1:dffts%nnr)=CMPLX(kedtaus(1:dffts%nnr,isup),kedtaus(1:dffts%nnr,isdw),kind=DP) call fwfft('Smooth',psis, dffts ) do ig=1,ngms fp= psis(nls(ig)) + psis(nlsm(ig)) fm= psis(nls(ig)) - psis(nlsm(ig)) kedtaug(ig,isup)=0.5d0*CMPLX( DBLE(fp),AIMAG(fm),kind=DP) kedtaug(ig,isdw)=0.5d0*CMPLX(AIMAG(fp),-DBLE(fm),kind=DP) end do endif ! if(nspin.eq.1) then ! ================================================================== ! case nspin=1 ! ------------------------------------------------------------------ iss=1 psi( : ) = (0.d0,0.d0) psi(nlm(1:ngms))=CONJG(kedtaug(1:ngms,iss)) psi(nl(1:ngms)) = kedtaug(1:ngms,iss) call invfft('Dense',psi, dfftp ) kedtaur(1:dfftp%nnr,iss)=DBLE(psi(1:dfftp%nnr)) else ! ================================================================== ! case nspin=2 ! ------------------------------------------------------------------ isup=1 isdw=2 psi( : ) = (0.d0,0.d0) do ig=1,ngms psi(nlm(ig))=CONJG(kedtaug(ig,isup))+ci*conjg(kedtaug(ig,isdw)) psi(nl(ig)) =kedtaug(ig,isup)+ci*kedtaug(ig,isdw) end do call invfft('Dense',psi, dfftp ) kedtaur(1:dfftp%nnr,isup)= DBLE(psi(1:dfftp%nnr)) kedtaur(1:dfftp%nnr,isdw)=AIMAG(psi(1:dfftp%nnr)) endif ! return end subroutine kedtauofr_meta ! ! !----------------------------------------------------------------------- subroutine vofrho_meta (v, vs) !----------------------------------------------------------------------- ! computes: the one-particle potential v in real space, ! the total energy etot, ! the forces fion acting on the ions, ! the derivative of total energy to cell parameters h ! rhor input : electronic charge on dense real space grid ! (plus core charge if present) ! rhog input : electronic charge in g space (up to density cutoff) ! rhos input : electronic charge on smooth real space grid ! rhor output: total potential on dense real space grid ! rhos output: total potential on smooth real space grid ! use kinds, only: dp use control_flags, only: thdyn, tpre, tfor, tprnfor use io_global, only: stdout use ions_base, only: nsp, na, nat use gvecs use gvect, only: ngm, nl, nlm use cell_base, only: omega use electrons_base, only: nspin use constants, only: pi, fpi use energies, only: etot, eself, enl, ekin, epseu, esr, eht, exc use local_pseudo, only: vps, rhops use core use smallbox_gvec use dener ! use derho use mp, ONLY : mp_sum use mp_global, ONLY : intra_bgrp_comm use metagga, ONLY : kedtaur, kedtaug, kedtaus, dkedtaus USE fft_interfaces, ONLY: fwfft, invfft USE fft_base, ONLY: dffts, dfftp ! implicit none ! integer iss, isup, isdw, ig, ir,i,j,k,is, ia real(dp) dkedxc(3,3) !metagga complex(dp) fp, fm, ci complex(dp) v(dfftp%nnr), vs(dffts%nnr) ! ci=(0.d0,1.d0) v(:)=(0.d0,0.d0) ! ! =================================================================== ! calculation exchange and correlation energy and potential ! ------------------------------------------------------------------- ! if (nlcc.gt.0) call add_cc(rhoc,rhog,rhor) ! #ifdef VARIABLECELL ! call exch_corr_h(nspin,rhog,rhor,exc,dxc) #else ! call exch_corr(nspin,rhog,rhor,exc) #endif ! ! rhor contains the xc potential in r-space ! ! =================================================================== ! fourier transform of xc potential to g-space (dense grid) ! ------------------------------------------------------------------- ! if(nspin.eq.1) then iss=1 do ir=1,dfftp%nnr v(ir)=CMPLX(kedtaur(ir,iss),0.0d0,kind=DP) end do call fwfft('Dense',v, dfftp ) ! do ig=1,ngm kedtaug(ig,iss)=v(nl(ig)) end do else isup=1 isdw=2 v(1:dfftp%nnr)=CMPLX(kedtaur(1:dfftp%nnr,isup),kedtaur(1:dfftp%nnr,isdw),kind=DP) call fwfft('Dense',v, dfftp ) do ig=1,ngm fp=v(nl(ig))+v(nlm(ig)) fm=v(nl(ig))-v(nlm(ig)) kedtaug(ig,isup)=0.5d0*CMPLX( DBLE(fp),AIMAG(fm),kind=DP) kedtaug(ig,isdw)=0.5d0*CMPLX(AIMAG(fp),-DBLE(fm),kind=DP) end do endif ! vs(:) = (0.d0,0.d0) if(nspin.eq.1)then iss=1 do ig=1,ngms vs(nlsm(ig))=CONJG(kedtaug(ig,iss)) vs(nls(ig))=kedtaug(ig,iss) end do ! call invfft('Smooth',vs, dffts ) ! kedtaus(1:dffts%nnr,iss)=DBLE(vs(1:dffts%nnr)) else isup=1 isdw=2 do ig=1,ngms vs(nls(ig))=kedtaug(ig,isup)+ci*kedtaug(ig,isdw) vs(nlsm(ig))=CONJG(kedtaug(ig,isup)) +ci*conjg(kedtaug(ig,isdw)) end do call invfft('Smooth',vs, dffts ) kedtaus(1:dffts%nnr,isup)= DBLE(vs(1:dffts%nnr)) kedtaus(1:dffts%nnr,isdw)=AIMAG(vs(1:dffts%nnr)) endif !calculate dkedxc in real space on smooth grids !metagga if(tpre) then do iss=1,nspin do j=1,3 do i=1,3 dkedxc(i,j)=0.d0 do ir=1,dffts%nnr !2.d0 : because kedtau = 0.5d0 d_Exc/d_kedtau dkedxc(i,j)= dkedxc(i,j)+kedtaus(ir,iss)*2.d0*& dkedtaus(ir,i,j,iss) end do end do end do end do #ifdef PARA call mp_sum( dkedxc, intra_bgrp_comm ) #endif do j=1,3 do i=1,3 dxc(i,j) = dxc(i,j) + omega/(dffts%nr1*dffts%nr2*dffts%nr3)*dkedxc(i,j) end do end do end if return end subroutine vofrho_meta !----------------------------------------------------------------------- espresso-5.1/CPV/src/problem_size.f900000644000175000017500000000600712341373026015537 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE problem_size IMPLICIT NONE SAVE PRIVATE PUBLIC :: cpsizes CONTAINS SUBROUTINE cpsizes() USE kinds use ions_base, only: nat, nsp use electrons_base, only: nx => nbnd, nspin use gvecw, only: ngwx use gvect, only: ngmx use smallbox_gvec, only: ngb use uspp_param, only: nhm use uspp, only: nkb USE io_global, ONLY: ionode USE io_global, ONLY: stdout USE fft_base, ONLY: dfftp, dffts implicit none integer nr1x, nr2x, nr3x, nr1_l, nr2_l, nr3_l integer nbyte integer nbyte_alloc integer itmp nr1_l = dfftp%nr1x nr2_l = dfftp%nr2x nr3_l = dfftp%npl nr1x = dfftp%nr1x nr2x = dfftp%nr2x nr3x = dfftp%nr3x nbyte = 0 nbyte_alloc = 0 ! ... Atoms type nbyte = nbyte + 8* 3 * 14 * nat ! ... GVEC nbyte = nbyte + 8 * 10 * ngb nbyte = nbyte + 8 * 13 * ngmx ! ... Pseudo nbyte = nbyte + 8 * 5 * nkb * nx * nspin ! ... C0 CM CP nbyte = nbyte + 3 * 16 * ngwx * nx * nspin ! ... ei1 ei2 ei3, eigr, sfac nbyte = nbyte + 3 * 16 * MAX( nr1x, nr2x, nr3x ) * nat nbyte = nbyte + 16 * ngwx * nat nbyte = nbyte + 16 * ngmx * nsp ! ... rhoe and vpot ( nr1_l, nr2_l, nr3_l, nspin ) nbyte = nbyte + ( 8 + 16 ) * NR1_L * NR2_L * NR3_L * nspin ! ... TEMPORARY ALLOCATED MEMORY ! ... ortho itmp = 8 * 8 * NX * NX if(itmp.gt.nbyte_alloc) nbyte_alloc = itmp ! ... pvofrho & pstress itmp = 8 * ( NR1_L * NR2_L * NR3_L * 8 + & & nat * NX * nhm * 6 + 6 * ngmx + 6*ngwx + & & ngwx*nhm*nsp + 2*ngwx*nat ) if(itmp.gt.nbyte_alloc) nbyte_alloc = itmp IF(ionode) THEN WRITE( stdout,10) nbyte + nbyte_alloc END IF 10 FORMAT(//,3X,'Estimated Sizes of the problem',/ & & ,3X,'------------------------------',/ & & ,3X,'dimension of the problem (byte/pe) : ',I12) RETURN END SUBROUTINE cpsizes END MODULE problem_size espresso-5.1/CPV/src/spline.f900000644000175000017500000005207112341373026014341 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !-----------------------------------------------------------------------------! ! This module is basad on a similar module from CP2K !-----------------------------------------------------------------------------! MODULE splines ! routines for handling splines ! allocate_spline: allocates x and y vectors for splines ! init_spline: generate table for spline (allocate spl%y2) ! spline: return value of spline for given abscissa (optional:also y1) ! spline_1: return value of 1. derivative of spline for given abscissa ! spline_int: return value of integral on given interval of spline ! kill_spline: destructor ( spl%x,y und/oder spl%y2) ! NB: splines are always "natural splines", i.e. values of first ! derivative at the end-points cannot be specified !-----------------------------------------------------------------------------! USE kinds, ONLY : DP IMPLICIT NONE PRIVATE PUBLIC :: spline_data, allocate_spline, init_spline, spline, spline_1, & spline_int, kill_spline, splineh, splinedx, splintdx, nullify_spline TYPE spline_data REAL (DP), POINTER :: x(:) ! array containing x values REAL (DP), POINTER :: y(:) ! array containing y values ! y(i) is the function value corresponding ! to x(i) in the interpolation table REAL (DP), POINTER :: y2(:) ! second derivative of interpolating function INTEGER :: n ! number of element in the interpolation table INTEGER :: pos REAL (DP) :: h, invh, h26, h16 REAL (DP) :: xmin, xmax ! ... added by Carlo Cavazzoni END TYPE spline_data !-----------------------------------------------------------------------------! CONTAINS !-----------------------------------------------------------------------------! SUBROUTINE nullify_spline( spl ) TYPE (spline_data), INTENT (INOUT) :: spl NULLIFY( spl%x ) NULLIFY( spl%y ) NULLIFY( spl%y2 ) spl%n = 0 spl%pos = 0 spl%h = 0.0d0 spl%invh = 0.0d0 spl%h26 = 0.0d0 spl%h16 = 0.0d0 spl%xmin = 0.0d0 spl%xmax = 0.0d0 RETURN END SUBROUTINE nullify_spline SUBROUTINE allocate_spline( spl, nn, xmin, xmax ) IMPLICIT NONE TYPE (spline_data), INTENT (INOUT) :: spl INTEGER, INTENT (IN) :: nn REAL(DP), INTENT (IN), OPTIONAL :: xmin, xmax INTEGER err IF( PRESENT( xmin ) .AND. .NOT. PRESENT( xmax ) ) & CALL errore(' allocate_spline ', ' wrong number of arguments ', 1 ) spl%n = nn IF ( associated(spl%x) ) THEN DEALLOCATE (spl%x,STAT=err) IF (err/=0) CALL errore(' allocate_spline ','could not deallocate spl%x',1) NULLIFY (spl%x) END IF ! note that spl%x is not allocated if we use a regular x grid IF( PRESENT( xmin ) .AND. PRESENT( xmax ) ) THEN IF( xmin >= xmax ) & CALL errore(' allocate_spline ', ' wrong interval ', 1) spl%xmin = xmin spl%xmax = xmax spl%h = ( xmax - xmin ) / DBLE( nn - 1 ) spl%invh = 1.0d0 / spl%h ELSE spl%xmin = 0 spl%xmax = 0 ALLOCATE (spl%x(1:nn),STAT=err) IF (err/=0) CALL errore(' allocate_spline ','could not allocate spl%x',1) END IF IF (associated(spl%y)) THEN DEALLOCATE (spl%y,STAT=err) IF (err/=0) CALL errore(' allocate_spline ','could not deallocate spl%y',1) NULLIFY (spl%y) END IF ALLOCATE (spl%y(1:nn),STAT=err) IF (err/=0) CALL errore(' allocate_spline ','could not allocate spl%y',1) IF (associated(spl%y2)) THEN DEALLOCATE (spl%y2,STAT=err) IF (err/=0) CALL errore(' allocate_spline ','could not deallocate spl%y2',1) NULLIFY (spl%y2) END IF ALLOCATE (spl%y2(1:nn),STAT=err) IF (err/=0) CALL errore(' allocate_spline ','could not allocate spl%y2',1) RETURN END SUBROUTINE allocate_spline !----------------------------------------------------------------------- SUBROUTINE init_spline( spl, endpt, y1a, y1b ) ! endpt: 's': regular spacing ! 'l': left; 'r': right; 'b': both = specify 1-deriv for each endpoints IMPLICIT NONE TYPE (spline_data), INTENT (INOUT) :: spl CHARACTER (len=*), INTENT (IN), OPTIONAL :: endpt REAL (DP), INTENT (IN), OPTIONAL :: y1a, y1b ! end point derivative INTEGER :: err, i, k, n REAL (DP) :: p, qn, sig, un, y1l, y1r, dyp, dym, dxp, dxm, dxpm REAL (DP), POINTER :: ww(:) CHARACTER (len=8) :: ep LOGICAL :: reg, lep, rep ! shortcat for regular mesh without table of x values IF( .NOT. ASSOCIATED( spl%x ) ) THEN CALL splinedx( spl%xmin, spl%xmax, spl%y(:), spl%n, 0.0d0, 0.0d0, spl%y2(:) ) RETURN END IF ! Find out if y first derivative is given at endpoints IF ( .NOT. present(endpt) ) THEN ep = ' ' ELSE ep = endpt END IF reg = ( scan(ep,'sS') > 0 ) lep = ( scan(ep,'lL') > 0 ) .OR. ( scan(ep,'bB') > 0 ) rep = ( scan(ep,'rR') > 0 ) .OR. ( scan(ep,'bB') > 0 ) ! check input parameter consistency IF ( ( lep .OR. rep ) .AND. .NOT. present(y1a) ) & CALL errore( 'init_spline', 'first deriv. at end-point missing', 1 ) IF ( lep .AND. rep .AND. .NOT. present(y1b) ) & CALL errore( 'init_spline', 'first deriv. at end-point missing', 1 ) ! define endpoints derivative IF ( lep ) y1l = y1a IF ( rep .AND. .NOT. lep ) y1r = y1a IF ( rep .AND. lep ) y1r = y1b spl%pos = 1 ALLOCATE ( ww( 1 : spl%n ), STAT = err ) IF (err/=0) CALL errore('init_spline','could not allocate ww',1) n = spl % n IF ( lep ) THEN spl%y2(1) = -0.5d0 dxp = spl%x(2) - spl%x(1) dyp = spl%y(2) - spl%y(1) ww(1) = ( 3.0d0 / dxp ) * ( dyp / dxp - y1l ) ELSE spl%y2(1) = 0 ww(1) = 0.d0 END IF DO i = 2, n - 1 dxp = spl%x(i+1) - spl%x(i) dxm = spl%x(i) - spl%x(i-1) dxpm = spl%x(i+1) - spl%x(i-1) sig = dxm / dxpm p = sig * spl%y2(i-1) + 2.0d0 spl%y2(i) = ( sig - 1.0d0 ) / p dyp = spl%y(i+1) - spl%y(i) dym = spl%y(i) - spl%y(i-1) ww(i) = ( 6.0d0 * ( dyp / dxp - dym / dxm ) / dxpm - sig * ww(i-1) ) / p END DO IF ( rep ) THEN qn = 0.5d0 dxm = spl%x(n) - spl%x(n-1) dym = spl%y(n) - spl%y(n-1) un = ( 3.0d0 / dxm ) * ( y1r - dym / dxm ) ELSE qn = 0 un = 0 END IF spl % y2(n) = ( un - qn * ww(n-1) ) / ( qn * spl%y2(n-1) + 1.0d0 ) DO k = n - 1, 1, -1 spl % y2(k) = spl%y2(k) * spl%y2(k+1) + ww(k) END DO DEALLOCATE ( ww, STAT = err ) IF (err/=0) CALL errore('init_spline','could not deallocate ww',1) IF ( reg ) THEN spl%h = ( spl%x(n) - spl%x(1) ) / ( n - 1.0d0 ) spl%h16 = spl%h / 6.0d0 spl%h26 = spl%h**2 / 6.0d0 spl%invh = 1 / spl%h ELSE spl%h = 0.0d0 spl%invh = 0.0d0 END IF RETURN END SUBROUTINE init_spline !----------------------------------------------------------------------- FUNCTION interv( spl, xx ) IMPLICIT NONE TYPE (spline_data), INTENT (IN) :: spl REAL (DP), INTENT (IN) :: xx INTEGER :: interv INTEGER :: khi, klo, i, p, n, k ! if we have a regular mesh use a quick position search IF ( spl%h /= 0 ) THEN i = ( xx - spl%x(1) ) * spl%invh + 1 IF ( i < 1 .OR. i > spl%n ) & CALL errore('interv', 'illegal x-value passed to interv',1) interv = i RETURN END IF p = spl%pos IF ( p >= spl%n .OR. p <= 1 ) p = spl%n / 2 i = 0 n = spl%n ! check if interval is close to previous interval IF ( xx < spl%x(p+1) ) THEN IF ( xx >= spl%x(p) ) THEN i = spl%pos ELSE IF ( p > 1 .AND. xx >= spl%x(p-1) ) THEN i = p - 1 ELSE klo = 1 khi = p + 1 END IF ELSE IF ( (p + 2) <= n .AND. xx < spl%x(p+2) ) THEN i = p + 1 ELSE klo = p + 1 khi = n END IF ! perform binary search IF ( i == 0 ) THEN IF ( xx < spl%x(1) .OR. xx > spl%x(n) ) & CALL errore('interv', 'xx value out of spline-range',1) DO WHILE ( (khi - klo) > 1 ) k = ( khi + klo ) / 2 IF ( spl%x(k) > xx ) THEN khi = k ELSE klo = k END IF END DO i = klo END IF interv = i RETURN END FUNCTION interv !----------------------------------------------------------------------- FUNCTION spline( spl, xx, y1 ) IMPLICIT NONE TYPE (spline_data), INTENT (INOUT) :: spl REAL (DP), INTENT (IN) :: xx REAL (DP), INTENT (OUT), OPTIONAL :: y1 REAL (DP) :: spline INTEGER :: khi, klo REAL (DP) :: a, b, h, invh, ylo, yhi, y2lo, y2hi, a3ma, b3mb ! shortcat for regular mesh without table of x values IF( .NOT. ASSOCIATED( spl%x ) ) THEN IF( PRESENT( y1 ) ) & CALL errore(' spline ', ' y1 without x table not implemented ', 1 ) CALL splintdx( spl%xmin, spl%xmax, spl%y, spl%y2, spl%n, xx, a ) spline = a RETURN END IF spl%pos = interv( spl, xx ) klo = spl%pos khi = spl%pos + 1 IF ( spl%h /= 0 ) THEN h = spl%h invh = spl%invh ELSE h = spl%x( khi ) - spl%x( klo ) invh = spl%invh IF ( h == 0.0d0 ) & CALL errore('spline','bad spl%x input',1) END IF a = ( spl%x( khi ) - xx ) * invh b = 1 - a a3ma = a**3 - a b3mb = b**3 - b ylo = spl%y( klo ) yhi = spl%y( khi ) y2lo = spl%y2( klo ) y2hi = spl%y2( khi ) spline = a * ylo + b * yhi + ( a3ma * y2lo + b3mb * y2hi ) * ( h**2 ) / 6.0d0 IF ( present( y1 ) ) then y1 = ( yhi - ylo ) * invh + & ( ( 1.0d0 - 3 * a**2 ) * y2lo + ( 3 * b**2 - 1.0d0 ) * y2hi ) * h / 6.0d0 END IF RETURN END FUNCTION spline !----------------------------------------------------------------------- FUNCTION splineh(spl,xx,y1) IMPLICIT NONE TYPE (spline_data), INTENT (IN) :: spl REAL (DP), INTENT (IN) :: xx REAL (DP), INTENT (OUT) :: y1 REAL (DP) :: splineh INTEGER :: khi, klo, i REAL (DP) :: a, b, h, invh, t, ylo, yhi, y2lo, y2hi, d, d0 ! fast spline for pair potentials without checks h = spl%h invh = spl%invh d=xx-spl%x(1); i=INT(d*spl%invh); d0=DBLE(i)*h; i=i+1 i = (xx-spl%x(1))*invh + 1 a = (spl%x(i+1)-xx)*invh b = 1 - a t = -a*b ! b=(d-d0)*invh; a=1-b; t=-a*b ylo = spl%y(i) yhi = spl%y(i+1) y2lo = spl%y2(i) y2hi = spl%y2(i+1) splineh = a*ylo + b*yhi + ((a+1)*y2lo+(b+1)*y2hi)*t*spl%h26 y1 = (yhi-ylo)*invh + ((1.d0-3*a*a)*y2lo+(3*b*b-1.d0)*y2hi)*spl%h16 END FUNCTION splineh !----------------------------------------------------------------------- FUNCTION spline_1(spl,xx) IMPLICIT NONE TYPE (spline_data), INTENT (INOUT) :: spl REAL (DP), INTENT (IN) :: xx REAL (DP) :: spline_1 INTEGER :: khi, klo REAL (DP) :: a, b, h spl%pos = interv(spl,xx) klo = spl%pos khi = spl%pos + 1 h = spl%x(khi) - spl%x(klo) IF (h==0.d0) CALL errore('spline','bad spl%x input',1) a = (spl%x(khi)-xx)/h b = 1 - a spline_1 = (spl%y(khi)-spl%y(klo))/h + ((1.d0-3*a**2)*spl%y2(klo)+(3*b** & 2-1.d0)*spl%y2(khi))*h/6.d0 RETURN END FUNCTION spline_1 !----------------------------------------------------------------------- FUNCTION stamm(spl,p,x) IMPLICIT NONE TYPE (spline_data), INTENT (IN) :: spl INTEGER, INTENT (IN) :: p REAL (DP), INTENT (IN) :: x REAL (DP) :: stamm REAL (DP) :: a, b, aa, bb, h h = spl%x(p+1) - spl%x(p) b = (x-spl%x(p))/h a = 1 - b aa = a**2 bb = b**2 stamm = 0.5d0*h*(bb*spl%y(p+1)-aa*spl%y(p)) + h**3/12.d0*(aa*(1-0.5d0*aa)* & spl%y2(p)-bb*(1-0.5d0*bb)*spl%y2(p+1)) RETURN END FUNCTION stamm !----------------------------------------------------------------------- FUNCTION spline_int(spl,x0,x1) IMPLICIT NONE TYPE (spline_data), INTENT (INOUT) :: spl REAL (DP), INTENT (IN) :: x0, x1 REAL (DP) :: spline_int INTEGER :: j, pa, pb REAL (DP) :: h, vorz, xa, xb, i1, i2 vorz = 1 xa = min(x0,x1) xb = max(x0,x1) IF (x0>x1) vorz = -1 IF (xaspl%x(spl%n)) CALL errore('spline_int', & 'illegal integration range',1) pa = interv(spl,xa) pb = interv(spl,xb) IF (pa==pb) THEN spline_int = vorz*(stamm(spl,pa,xb)-stamm(spl,pa,xa)) RETURN END IF i1 = 0 i2 = 0 DO j = pa + 1, pb - 1 h = spl%x(j+1) - spl%x(j) i1 = i1 + h*(spl%y(j)+spl%y(j+1)) i2 = i2 + h**3*(spl%y2(j)+spl%y2(j+1)) END DO h = spl%x(pa+1) - spl%x(pa) i1 = i1 + h*spl%y(pa+1) i2 = i2 + h**3*spl%y2(pa+1) h = spl%x(pb+1) - spl%x(pb) i1 = i1 + h*spl%y(pb) i2 = i2 + h**3*spl%y2(pb) spline_int = vorz*(i1/2.-i2/24.d0+stamm(spl,pb,xb)-stamm(spl,pa,xa)) RETURN END FUNCTION spline_int !----------------------------------------------------------------------- SUBROUTINE kill_spline(spl,what) ! deallocate splines ! what=='a' or not present: deallocate all (spl%x, spl%y, spl%y2) ! what=='d': deallocate only data (spl%x, spl%y) ! what=='2': deallocate only table of 2. derivatives (spl%y2) IMPLICIT NONE TYPE (spline_data), INTENT (INOUT) :: spl CHARACTER, INTENT (IN), OPTIONAL :: what CHARACTER :: w INTEGER :: err w = 'a' IF (present(what)) w = what SELECT CASE (w) CASE ('d','D') IF (associated(spl%x)) THEN DEALLOCATE (spl%x,STAT=err) IF (err/=0) CALL errore('kill_spline', 'could not deallocate spl%x',1) NULLIFY (spl%x) END IF IF (associated(spl%y)) THEN DEALLOCATE (spl%y,STAT=err) IF (err/=0) CALL errore('kill_spline', 'could not deallocate spl%y',1) NULLIFY (spl%y) END IF CASE ('2') IF (associated(spl%y2)) THEN DEALLOCATE (spl%y2,STAT=err) IF (err/=0) CALL errore('kill_spline', 'could not deallocate spl%y2',1) NULLIFY (spl%y2) END IF CASE ('a','A') IF (associated(spl%x)) THEN DEALLOCATE (spl%x,STAT=err) IF (err/=0) CALL errore('kill_spline', 'could not deallocate spl%x',1) NULLIFY (spl%x) END IF IF (associated(spl%y)) THEN DEALLOCATE (spl%y,STAT=err) IF (err/=0) CALL errore('kill_spline', 'could not deallocate spl%y',1) NULLIFY (spl%y) END IF IF (associated(spl%y2)) THEN DEALLOCATE (spl%y2,STAT=err) IF (err/=0) CALL errore('kill_spline', 'could not deallocate spl%y2',1) NULLIFY (spl%y2) END IF END SELECT RETURN END SUBROUTINE kill_spline !=-----------------------------------------------------------------------=! ! Subroutines: splinedx, splintdx ! added for compatibility with SISSA code ! Carlo Cavazzoni 15-03-2000 !=-----------------------------------------------------------------------=! SUBROUTINE splinedx(xmin,xmax,y,n,yp1,ypn,y2) USE kinds IMPLICIT NONE INTEGER, INTENT(IN) :: n REAL(DP), INTENT(IN) :: yp1,ypn,xmin,xmax,y(:) REAL(DP), INTENT(OUT) :: y2(:) INTEGER :: i, k REAL(DP) :: p, qn, sig, un, dx REAL(DP) :: u(n) dx = (xmax-xmin)/DBLE(n-1) if ( yp1 .gt. 0.99d30 ) then y2(1)=0.d0 u(1)=0.0d0 else y2(1)=-0.5d0 u(1)=(3.d0/dx) * ( (y(2)-y(1)) / dx - yp1 ) endif do i=2,n-1 sig=0.5d0 p=sig*y2(i-1)+2.d0 y2(i)=(sig-1.d0)/p u(i) = (6.0d0 * ( (y(i+1)-y(i))/ dx - (y(i)-y(i-1))/ dx ) & / (2.0d0*dx) - sig * u(i-1) ) / p end do if ( ypn .gt. 0.99d30 ) then qn=0.d0 un=0.d0 else qn=0.5d0 un= ( 3.d0 / dx ) * ( ypn - (y(n)-y(n-1)) / dx ) endif y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.0d0) do k=n-1,1,-1 y2(k)=y2(k)*y2(k+1)+u(k) end do return END SUBROUTINE splinedx SUBROUTINE splintdx(xmin,xmax,ya,y2a,n,x,y) USE kinds IMPLICIT NONE INTEGER, INTENT(IN) :: n REAL(DP), INTENT(IN) :: x,xmin,xmax,ya(:),y2a(:) REAL(DP), INTENT(OUT) :: y INTEGER :: khi,klo REAL(DP) :: a,b,h,dx,xhi,xlo dx = (xmax-xmin)/DBLE(n-1) klo = INT(x/dx) khi = klo+1 IF(klo.LT.1) THEN CALL errore(' splintdx ',' klo less than one ',klo) END IF IF(khi.GT.n) THEN CALL errore(' splintdx ',' khi grether than N ',khi) END IF xlo = xmin + DBLE(klo-1) * dx xhi = xmin + DBLE(khi-1) * dx a = (xhi-x)/dx b = (x-xlo)/dx y = a*ya(klo) + b*ya(khi) + & ( (a*a*a-a)*y2a(klo) + (b*b*b-b)*y2a(khi) ) * (dx*dx)/6.0d0 RETURN END SUBROUTINE splintdx !----------------------------------------------------------------------- SUBROUTINE nr_spline( x, y, n, yp1, ypn, y2 ) INTEGER :: n REAL(DP) :: yp1, ypn, x(n), y(n), y2(n) INTEGER :: i, k REAL(DP) :: p, qn, sig, un REAL(DP) :: u( n ) if ( yp1 .gt. 0.99d30 ) then y2(1)=0.d0 u(1)=0.d0 else y2(1)=-0.5d0 u(1)=(3.d0/(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1) endif do i=2,n-1 sig=(x(i)-x(i-1))/(x(i+1)-x(i-1)) p=sig*y2(i-1)+2.d0 y2(i)=(sig-1.d0)/p u(i)=(6.d0*((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1)) / & (x(i)-x(i-1))) / (x(i+1)-x(i-1))-sig*u(i-1))/p end do if ( ypn .gt. 0.99d30 ) then qn=0.d0 un=0.d0 else qn=0.5d0 un=(3.d0/(x(n)-x(n-1)))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1))) endif y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.d0) do k=n-1,1,-1 y2(k)=y2(k)*y2(k+1)+u(k) end do return END SUBROUTINE nr_spline SUBROUTINE nr_splint( xa, ya, y2a, n, x, y ) INTEGER :: n REAL(DP) :: x,y,xa(n),y2a(n),ya(n) INTEGER :: k,khi,klo REAL(DP) :: a,b,h klo=1 khi=n 1 if (khi-klo.gt.1) then k=(khi+klo)/2 if(xa(k).gt.x)then khi=k else klo=k endif goto 1 endif h=xa(khi)-xa(klo) if (h.eq.0.) & CALL errore(' nr_splint ', 'bad xa input in splint' , 1 ) a=(xa(khi)-x)/h b=(x-xa(klo))/h y=a*ya(klo)+b*ya(khi)+((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))* & (h**2)/6.d0 return END SUBROUTINE nr_splint SUBROUTINE nr_splie2( x1a, x2a, ya, m, n, y2a ) INTEGER :: m, n REAL(DP) :: x1a(m), x2a(n), y2a(m,n), ya(m,n) INTEGER :: j,k REAL(DP) :: y2tmp(n), ytmp(n) do j = 1, m do k = 1, n ytmp(k) = ya(j,k) end do call nr_spline( x2a, ytmp, n, 1.d30, 1.d30, y2tmp ) do k = 1, n y2a(j,k) = y2tmp(k) end do end do return END SUBROUTINE nr_splie2 SUBROUTINE nr_splin2( x1a, x2a, ya, y2a, m, n, x1, x2, y ) INTEGER :: m, n REAL(DP) :: x1, x2, y, x1a(m), x2a(n), y2a(m,n), ya(m,n) INTEGER :: j, k REAL(DP) :: y2tmp( MAX(n,m) ), ytmp( n ), yytmp( MAX(n,m) ) do j = 1, m do k = 1, n ytmp(k) = ya(j,k) y2tmp(k) = y2a(j,k) end do call nr_splint( x2a, ytmp, y2tmp, n, x2, yytmp(j) ) end do call nr_spline( x1a, yytmp, m, 1.d30, 1.d30, y2tmp ) call nr_splint( x1a, yytmp, y2tmp, m, x1, y ) return END SUBROUTINE nr_splin2 !----------------------------------------------------------------------- END MODULE splines espresso-5.1/CPV/src/wannier_base.f900000644000175000017500000001601612341373026015503 0ustar mbamba! ! Copyright (C) 2002-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE wannier_base !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! IMPLICIT NONE ! ! ... input variables ! LOGICAL :: wf_efield LOGICAL :: wf_switch INTEGER :: sw_len REAL(DP) :: efx0, efy0, efz0 REAL(DP) :: efx1, efy1, efz1 INTEGER :: wfsd REAL(DP) :: wfdt !============================================================== !Lingzhu Kong INTEGER :: neigh INTEGER :: vnbsp REAL(DP) :: poisson_eps REAL(DP) :: dis_cutoff REAL(DP) :: exx_ps_rcut REAL(DP) :: exx_me_rcut !============================================================== REAL(DP) :: maxwfdt REAL(DP) :: wf_q REAL(DP) :: wf_friction INTEGER :: nit INTEGER :: nsd INTEGER :: nsteps REAL(DP) :: tolw LOGICAL :: adapt INTEGER :: calwf INTEGER :: nwf INTEGER :: wffort LOGICAL :: writev INTEGER, ALLOCATABLE :: iplot(:) ! ! ... other internal variables ! INTEGER :: nw, nwrwf, iwf, jwf INTEGER, ALLOCATABLE :: wfg1(:), wfg(:,:) INTEGER, ALLOCATABLE :: indexplus(:,:), indexminus(:,:) INTEGER, ALLOCATABLE :: indexplusz(:), indexminusz(:) INTEGER, ALLOCATABLE :: tag(:,:), tagp(:,:) REAL(DP), ALLOCATABLE :: weight(:) ! weights of G vectors REAL(DP), ALLOCATABLE :: gnx(:,:) INTEGER , ALLOCATABLE :: gnn(:,:) COMPLEX(DP), ALLOCATABLE :: expo(:,:) ! CONTAINS ! !------------------------------------------------------------------------ !============================================================================= !Lingzhu Kong ! SUBROUTINE wannier_init( wf_efield_, wf_switch_, sw_len_, efx0_, efy0_, & ! efz0_, efx1_, efy1_, efz1_, wfsd_, wfdt_, & ! maxwfdt_, wf_q_, wf_friction_, nit_, nsd_, & ! nsteps_, tolw_, adapt_, calwf_, nwf_, wffort_, & ! writev_, iplot_, restart_mode_ ) SUBROUTINE wannier_init( wf_efield_, wf_switch_, sw_len_, efx0_, efy0_, & efz0_, efx1_, efy1_, efz1_, wfsd_, wfdt_, & neigh_, poisson_eps_ ,dis_cutoff_, exx_ps_rcut_, exx_me_rcut_, vnbsp_, & maxwfdt_, wf_q_, wf_friction_, nit_, nsd_, & nsteps_, tolw_, adapt_, calwf_, nwf_, wffort_, & writev_, iplot_, restart_mode_ ) !============================================================================= !------------------------------------------------------------------------ ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: wf_efield_ LOGICAL, INTENT(IN) :: wf_switch_ INTEGER, INTENT(IN) :: sw_len_ REAL(DP), INTENT(IN) :: efx0_, efy0_, efz0_ REAL(DP), INTENT(IN) :: efx1_, efy1_, efz1_ INTEGER, INTENT(IN) :: wfsd_ REAL(DP), INTENT(IN) :: wfdt_ !============================================================================= ! Lingzhu Kong INTEGER, INTENT(IN) :: neigh_ INTEGER, INTENT(IN) :: vnbsp_ REAL(DP), INTENT(IN) :: poisson_eps_ REAL(DP), INTENT(IN) :: dis_cutoff_ REAL(DP), INTENT(IN) :: exx_ps_rcut_ REAL(DP), INTENT(IN) :: exx_me_rcut_ !============================================================================= REAL(DP), INTENT(IN) :: maxwfdt_ REAL(DP), INTENT(IN) :: wf_q_ REAL(DP), INTENT(IN) :: wf_friction_ INTEGER, INTENT(IN) :: nit_ INTEGER, INTENT(IN) :: nsd_ INTEGER, INTENT(IN) :: nsteps_ REAL(DP), INTENT(IN) :: tolw_ LOGICAL, INTENT(IN) :: adapt_ INTEGER, INTENT(IN) :: calwf_ INTEGER, INTENT(IN) :: nwf_ INTEGER, INTENT(IN) :: wffort_ INTEGER, INTENT(IN) :: iplot_(:) LOGICAL, INTENT(IN) :: writev_ CHARACTER(LEN=*), INTENT(IN) :: restart_mode_ ! ! wf_efield = wf_efield_ wf_switch = wf_switch_ sw_len = sw_len_ efx0 = efx0_ efy0 = efy0_ efz0 = efz0_ efx1 = efx1_ efy1 = efy1_ efz1 = efz1_ wfsd = wfsd_ wfdt = wfdt_ !================================================================== !Lingzhu Kong neigh = neigh_ vnbsp = vnbsp_ poisson_eps = poisson_eps_ dis_cutoff = dis_cutoff_ exx_ps_rcut = exx_ps_rcut_ exx_me_rcut = exx_me_rcut_ !================================================================== maxwfdt = maxwfdt_ wf_q = wf_q_ wf_friction = wf_friction_ nit = nit_ nsd = nsd_ nsteps = nsteps_ tolw = tolw_ adapt = adapt_ calwf = calwf_ nwf = nwf_ wffort = wffort_ writev = writev_ ! IF ( calwf == 1 .AND. nwf == 0 ) & CALL errore( 'wannier_init ', & & 'when calwf = 1, nwf must be larger that 0', 1 ) ! IF ( nwf > 0 ) THEN ! ALLOCATE( iplot( nwf ) ) ! iplot(:) = iplot_(1:nwf) ! END IF ! IF ( TRIM( restart_mode_ ) == "from_scratch" ) THEN ! IF ( wf_efield ) & CALL errore( 'wannier_init', 'electric field not ' // & & 'allowed when starting from scratch', 1 ) ! END IF ! END SUBROUTINE wannier_init ! ! ! SUBROUTINE deallocate_wannier_base() IF( ALLOCATED( iplot ) ) DEALLOCATE( iplot ) IF( ALLOCATED( wfg1 ) ) DEALLOCATE( wfg1 ) IF( ALLOCATED( wfg ) ) DEALLOCATE( wfg ) IF( ALLOCATED( indexplus ) ) DEALLOCATE( indexplus ) IF( ALLOCATED( indexminus ) ) DEALLOCATE( indexminus ) IF( ALLOCATED( indexplusz ) ) DEALLOCATE( indexplusz ) IF( ALLOCATED( indexminusz ) ) DEALLOCATE( indexminusz ) IF( ALLOCATED( tag ) ) DEALLOCATE( tag ) IF( ALLOCATED( tagp ) ) DEALLOCATE( tagp ) IF( ALLOCATED( weight ) ) DEALLOCATE( weight ) IF( ALLOCATED( gnx ) ) DEALLOCATE( gnx ) IF( ALLOCATED( gnn ) ) DEALLOCATE( gnn ) IF( ALLOCATED( expo ) ) DEALLOCATE( expo ) RETURN END SUBROUTINE deallocate_wannier_base ! ! ! END MODULE wannier_base espresso-5.1/CPV/src/gvecw.f900000644000175000017500000000613112341373026014156 0ustar mbamba! ! Copyright (C) 2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE gvecw !=----------------------------------------------------------------------------=! USE kinds, ONLY: DP IMPLICIT NONE SAVE PRIVATE PUBLIC :: ngw, ngw_g, ngwx, ecutwfc, gcutw, ekcut, gkcut PUBLIC :: ggp, ecfixed, qcutz, q2sigma PUBLIC :: gvecw_init, g2kin_init, deallocate_gvecw ! ... G vectors less than the wave function cut-off ( ecutwfc ) INTEGER :: ngw = 0 ! local number of G vectors INTEGER :: ngw_g= 0 ! in parallel execution global number of G vectors, ! in serial execution this is equal to ngw INTEGER :: ngwx = 0 ! maximum local number of G vectors REAL(DP) :: ecutwfc = 0.0_DP REAL(DP) :: gcutw = 0.0_DP ! values for costant cut-off computations REAL(DP) :: ecfixed=0.0_DP ! value of the constant cut-off REAL(DP) :: qcutz = 0.0_DP ! height of the penalty function (above ecfix) REAL(DP) :: q2sigma=0.0_DP ! spread of the penalty function around ecfix ! augmented cut-off for k-point calculation REAL(DP) :: ekcut = 0.0_DP REAL(DP) :: gkcut = 0.0_DP ! array of G vectors module plus penalty function for constant cut-off ! simulation. ! ggp = g + ( agg / tpiba**2 ) * ( 1 + erf( ( tpiba2 * g - e0gg ) / sgg ) ) REAL(DP), ALLOCATABLE, TARGET :: ggp(:) CONTAINS SUBROUTINE gvecw_init( ngw_ , comm ) ! USE mp, ONLY: mp_max, mp_sum IMPLICIT NONE INTEGER, INTENT(IN) :: ngw_ INTEGER, INTENT(IN) :: comm ! ngw = ngw_ ! ! calculate maximum over all processors ! ngwx = ngw CALL mp_max( ngwx, comm ) ! ! calculate sum over all processors ! ngw_g = ngw CALL mp_sum( ngw_g, comm ) ! ! allocate kinetic energy ! ALLOCATE( ggp(ngw) ) ! RETURN END SUBROUTINE gvecw_init SUBROUTINE g2kin_init( gg, tpiba2 ) ! IMPLICIT NONE REAL(DP), INTENT(IN) :: gg(:), tpiba2 REAL(DP), EXTERNAL :: qe_erf REAL(DP) :: gcutz INTEGER :: ig ! ! initialize kinetic energy ! gcutz = qcutz / tpiba2 IF( gcutz > 0.0d0 ) THEN DO ig=1,ngw ggp(ig) = gg(ig) + gcutz * & ( 1.0d0 + qe_erf( ( tpiba2 *gg(ig) - ecfixed )/q2sigma ) ) ENDDO ELSE ggp( 1 : ngw ) = gg( 1 : ngw ) END IF RETURN END SUBROUTINE g2kin_init SUBROUTINE deallocate_gvecw IF( ALLOCATED( ggp ) ) DEALLOCATE( ggp ) END SUBROUTINE deallocate_gvecw !=----------------------------------------------------------------------------=! END MODULE gvecw !=----------------------------------------------------------------------------=! espresso-5.1/CPV/src/cprstart.f900000644000175000017500000000435712341373026014715 0ustar mbamba! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !============================================================================== !*** Molecular Dynamics using Density-Functional Theory **** !*** this is the main routine driver for Car-Parrinello simulations **** !****************************************************************************** !*** See the documentation coming with the Quantum ESPRESSO distribution **** !*** for credits, references, appropriate citation of this code **** !****************************************************************************** ! !---------------------------------------------------------------------------- PROGRAM main !---------------------------------------------------------------------------- ! USE input, ONLY : iosys_pseudo, iosys USE read_input, ONLY : read_input_file USE mp_global, ONLY : mp_startup USE io_global, ONLY : ionode, ionode_id USE environment, ONLY : environment_start USE check_stop, ONLY : check_stop_init USE mp_images, ONLY : intra_image_comm USE command_line_options, ONLY : input_file_ ! IMPLICIT NONE ! ! ... program starts here ! ! ... initialize MPI (parallel processing handling) ! CALL mp_startup ( ) ! ! ... start the environment ! CALL environment_start( 'CP' ) ! ! reading plugin arguments ! IF(ionode) CALL plugin_arguments() CALL plugin_arguments_bcast(ionode_id,intra_image_comm) ! ! ... open, read, close the input file ! CALL read_input_file( 'CP', input_file_ ) ! ! ... read in pseudopotentials files and then ! ... copy pseudopotential parameters into internal variables ! CALL iosys_pseudo() ! ! ... copy-in input parameters from input_parameter module ! CALL iosys() ! ! call to void routine for user define / plugin patches initializations ! temporary moved to init_run ! CALL plugin_initialization() ! ! CALL check_stop_init() ! CALL cpr_loop( 1 ) ! CALL stop_run() CALL do_stop( .TRUE. ) ! STOP ! END PROGRAM main espresso-5.1/CPV/src/spinsq.f900000644000175000017500000001121112341373026014353 0ustar mbamba!----------------------------------------------------------------------- SUBROUTINE spinsq (c,bec,rhor) !----------------------------------------------------------------------- ! ! estimate of =s(s+1) in two different ways. ! 1) using as many-body wavefunction a single Slater determinant ! constructed with Kohn-Sham orbitals: ! ! = (Nup-Ndw)/2 * (Nup-Ndw)/2+1) + Ndw - ! \sum_up\sum_dw < psi_up | psi_dw > ! ! where Nup, Ndw = number of up and down states, the sum is over ! occupied states. Not suitable for fractionary occupancy. ! In the ultrasoft scheme (c is the smooth part of \psi): ! ! < psi_up | psi_dw > = \sum_G c*_up(G) c_dw(G) + ! \int Q_ij ! ! This is the usual formula, unsuitable for fractionary occupancy. ! 2) using the "LSD model" of Wang, Becke, Smith, JCP 102, 3477 (1995): ! ! = (Nup-Ndw)/2 * (Nup-Ndw)/2+1) + Ndw - ! \int max(rhoup(r),rhodw(r)) dr ! ! Requires on input: c=psi, bec=, rhoup(r), rhodw(r) ! Assumes real psi, with only half G vectors. ! USE kinds, only: dp USE electrons_base, ONLY: nx => nbspx, n => nbsp, iupdwn, nupdwn, f, nel, nspin USE io_global, ONLY: stdout USE mp_global, ONLY: intra_bgrp_comm USE mp, ONLY: mp_sum USE fft_base, ONLY: dfftp USE gvecw, ONLY: ngw USE gvect, ONLY: gstart USE cell_base, ONLY: omega USE uspp, ONLY: nhsa => nkb, nhsavb=>nkbus, qq USE uspp_param, ONLY: nvb, ish, nh USE ions_base, ONLY: na ! IMPLICIT NONE ! input REAL(dp) :: bec(nhsa,n), rhor(dfftp%nnr,nspin) COMPLEX(dp):: c(ngw,nx) ! local variables INTEGER :: nup, ndw, ir, i, j, jj, ig, ia, is, iv, jv, inl, jnl REAL(dp) :: spin0, spin1, spin2, fup, fdw REAL(dp), ALLOCATABLE:: overlap(:,:), temp(:) LOGICAL :: frac ! ! IF (nspin.EQ.1) RETURN ! ! find spin-up and spin-down states ! fup = 0.0d0 DO i=iupdwn(1),nupdwn(1) fup = fup + f(i) END DO nup = NINT(fup) ndw = nel(1)+nel(2) - nup ! ! paranoid checks ! frac= ABS(fup-nup).GT.1.0d-6 fup = 0.0d0 DO i=1,nup fup = fup + f(i) END DO frac=frac.OR.ABS(fup-nup).GT.1.0d-6 fdw = 0.0d0 DO j=iupdwn(2),iupdwn(2)-1+ndw fdw = fdw + f(j) END DO frac=frac.OR.ABS(fdw-ndw).GT.1.0d-6 ! spin0 = ABS(fup-fdw)/2.d0 * ( ABS(fup-fdw)/2.d0 + 1.d0 ) + fdw ! ! Becke's formula for spin polarization ! spin1 = 0.0d0 DO ir=1,dfftp%nnr spin1 = spin1 - MIN(rhor(ir,1),rhor(ir,2)) END DO CALL mp_sum( spin1, intra_bgrp_comm ) spin1 = spin0 + omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3)*spin1 IF (frac) THEN WRITE( stdout,'(/" Spin contamination: s(s+1)=",f5.2," (Becke) ",& & f5.2," (expected)")') & & spin1, ABS(fup-fdw)/2.d0*(ABS(fup-fdw)/2.d0+1.d0) RETURN END IF ! ! Slater formula, smooth contribution to < psi_up | psi_dw > ! ALLOCATE (overlap(nup,ndw)) ALLOCATE (temp(ngw)) DO j=1,ndw jj=j+iupdwn(2)-1 DO i=1,nup overlap(i,j)=0.d0 DO ig=1,ngw temp(ig)=DBLE(CONJG(c(ig,i))*c(ig,jj)) END DO overlap(i,j) = 2.d0*SUM(temp) IF (gstart == 2) overlap(i,j) = overlap(i,j) - temp(1) END DO END DO DEALLOCATE (temp) CALL mp_sum( overlap, intra_bgrp_comm ) DO j=1,ndw jj=j+iupdwn(2)-1 DO i=1,nup ! ! vanderbilt contribution to < psi_up | psi_dw > ! DO is=1,nvb DO iv=1,nh(is) DO jv=1,nh(is) IF(ABS(qq(iv,jv,is)).GT.1.e-5) THEN DO ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(is)+(jv-1)*na(is)+ia overlap(i,j) = overlap(i,j) + & & qq(iv,jv,is)*bec(inl,i)*bec(jnl,jj) END DO ENDIF END DO END DO END DO END DO END DO ! spin2 = spin0 DO j=1,ndw DO i=1,nup spin2 = spin2 - overlap(i,j)**2 END DO END DO ! DEALLOCATE (overlap) ! WRITE( stdout,'(/" Spin contamination: s(s+1)=",f5.2," (Slater) ", & & f5.2," (Becke) ",f5.2," (expected)")') & & spin2,spin1, ABS(fup-fdw)/2.d0*(ABS(fup-fdw)/2.d0+1.d0) ! RETURN END SUBROUTINE spinsq espresso-5.1/CPV/src/move_electrons.f900000644000175000017500000001632312341373026016073 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE move_electrons_x( nfi, tfirst, tlast, b1, b2, b3, fion, c0_bgrp, & cm_bgrp, phi_bgrp, enthal, enb, enbi, fccc, ccc, dt2bye, stress, l_cprestart ) !---------------------------------------------------------------------------- ! ! ... this routine updates the electronic degrees of freedom ! USE kinds, ONLY : DP USE control_flags, ONLY : lwf, tfor, tprnfor, thdyn USE cg_module, ONLY : tcg USE cp_main_variables, ONLY : eigr, irb, eigrb, rhog, rhos, rhor, drhor, & drhog, sfac, ema0bg, bec_bgrp, becdr_bgrp, & taub, lambda, lambdam, lambdap, vpot, dbec, descla USE cell_base, ONLY : omega, ibrav, h, press USE uspp, ONLY : becsum, vkb, nkb, nlcc_any USE energies, ONLY : ekin, enl, entropy, etot USE electrons_base, ONLY : nbsp, nspin, f, nudx, nupdwn, nbspx_bgrp, nbsp_bgrp USE core, ONLY : rhoc USE ions_positions, ONLY : tau0 USE ions_base, ONLY : nat USE dener, ONLY : detot, denl, dekin6 USE efield_module, ONLY : tefield, ipolp, qmat, gqq, evalue, & tefield2, ipolp2, qmat2, gqq2, evalue2 ! USE wannier_subroutines, ONLY : get_wannier_center, wf_options, & write_charge_and_exit, ef_tune USE ensemble_dft, ONLY : compute_entropy2 USE efield_module, ONLY : berry_energy, berry_energy2 USE cp_interfaces, ONLY : runcp_uspp, runcp_uspp_force_pairing, & interpolate_lambda USE gvecw, ONLY : ngw USE orthogonalize_base, ONLY : calphi_bgrp USE control_flags, ONLY : force_pairing USE cp_interfaces, ONLY : rhoofr, compute_stress, vofrho, nlfl_bgrp, prefor, nlfq_bgrp USE electrons_module, ONLY : distribute_c, collect_c, distribute_b USE gvect, ONLY : eigts1, eigts2, eigts3 USE control_flags, ONLY : lwfpbe0, lwfpbe0nscf ! Lingzhu Kong USE wavefunctions_module, ONLY : cv0 ! Lingzhu Kong ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nfi LOGICAL, INTENT(IN) :: tfirst, tlast REAL(DP), INTENT(IN) :: b1(3), b2(3), b3(3) REAL(DP) :: fion(:,:) COMPLEX(DP) :: c0_bgrp(:,:), cm_bgrp(:,:), phi_bgrp(:,:) REAL(DP), INTENT(IN) :: dt2bye REAL(DP) :: fccc, ccc REAL(DP) :: enb, enbi REAL(DP) :: enthal REAL(DP) :: ei_unp REAL(DP) :: stress(3,3) REAL(DP) :: dum LOGICAL, INTENT(in) :: l_cprestart ! INTEGER :: i, j, is, n2 ! CALL start_clock('move_electrons') electron_dynamic: IF ( tcg ) THEN ! CALL runcg_uspp( nfi, tfirst, tlast, eigr, bec_bgrp, irb, eigrb, & rhor, rhog, rhos, rhoc, eigts1, eigts2, eigts3, sfac, & fion, ema0bg, becdr_bgrp, lambdap, lambda, SIZE(lambda,1), vpot, c0_bgrp, & cm_bgrp, phi_bgrp, dbec, l_cprestart ) ! CALL compute_stress( stress, detot, h, omega ) ! ELSE ! IF ( lwf ) & CALL get_wannier_center( tfirst, cm_bgrp, bec_bgrp, eigr, & eigrb, taub, irb, ibrav, b1, b2, b3 ) ! CALL rhoofr( nfi, c0_bgrp, irb, eigrb, bec_bgrp, dbec, becsum, rhor, & drhor, rhog, drhog, rhos, enl, denl, ekin, dekin6 ) ! ! ... put core charge (if present) in rhoc(r) ! IF ( nlcc_any ) CALL set_cc( irb, eigrb, rhoc ) ! IF ( lwf ) THEN ! CALL write_charge_and_exit( rhog ) CALL ef_tune( rhog, tau0 ) ! END IF ! vpot = rhor ! CALL vofrho( nfi, vpot, drhor, rhog, drhog, rhos, rhoc, tfirst, tlast,& eigts1, eigts2, eigts3, irb, eigrb, sfac, & tau0, fion ) ! IF ( lwf ) CALL wf_options( tfirst, nfi, cm_bgrp, becsum, bec_bgrp, dbec, & eigr, eigrb, taub, irb, ibrav, b1, & b2, b3, vpot, drhor, rhog, drhog, rhos, enl, ekin ) ! CALL compute_stress( stress, detot, h, omega ) ! enthal = etot + press * omega ! IF( tefield ) THEN ! CALL berry_energy( enb, enbi, bec_bgrp, c0_bgrp, fion ) ! etot = etot + enb + enbi ! END IF IF( tefield2 ) THEN ! CALL berry_energy2( enb, enbi, bec_bgrp, c0_bgrp, fion ) ! etot = etot + enb + enbi ! END IF ! !======================================================================= ! ! verlet algorithm ! ! loop which updates electronic degrees of freedom ! cm=c(t+dt) is obtained from cm=c(t-dt) and c0=c(t) ! the electron mass rises with g**2 ! !======================================================================= ! CALL newd( vpot, irb, eigrb, becsum, fion ) ! CALL prefor( eigr, vkb ) ! IF( force_pairing ) THEN ! CALL runcp_uspp_force_pairing( nfi, fccc, ccc, ema0bg, dt2bye, & rhos, bec_bgrp, c0_bgrp, cm_bgrp, ei_unp ) ! ELSE ! CALL runcp_uspp( nfi, fccc, ccc, ema0bg, dt2bye, rhos, bec_bgrp, c0_bgrp, cm_bgrp ) ! ENDIF ! !---------------------------------------------------------------------- ! contribution to fion due to lambda !---------------------------------------------------------------------- ! ! ... nlfq needs deeq bec ! IF ( tfor .OR. tprnfor ) THEN CALL nlfq_bgrp( c0_bgrp, eigr, bec_bgrp, becdr_bgrp, fion ) END IF ! IF ( (tfor.or.tprnfor) .AND. tefield ) & CALL bforceion( fion, .TRUE. , ipolp, qmat, bec_bgrp, becdr_bgrp, gqq, evalue ) IF ( (tfor.or.tprnfor) .AND. tefield2 ) & CALL bforceion( fion, .TRUE. , ipolp2, qmat2, bec_bgrp, becdr_bgrp, gqq2, evalue2 ) ! IF( force_pairing ) THEN lambda( :, :, 2 ) = lambda(:, :, 1 ) lambdam( :, :, 2 ) = lambdam(:, :, 1 ) ENDIF ! IF ( tfor .OR. thdyn ) then CALL interpolate_lambda( lambdap, lambda, lambdam ) ELSE ! take care of the otherwise uninitialized lambdam lambdam = lambda END IF ! ! ... calphi calculates phi ! ... the electron mass rises with g**2 ! CALL calphi_bgrp( c0_bgrp, ngw, bec_bgrp, nkb, vkb, phi_bgrp, nbspx_bgrp, ema0bg ) ! ! ... begin try and error loop (only one step!) ! ! ... nlfl and nlfh need: lambda (guessed) becdr ! IF ( tfor .OR. tprnfor ) THEN CALL nlfl_bgrp( bec_bgrp, becdr_bgrp, lambda, descla, fion ) END IF ! END IF electron_dynamic CALL stop_clock('move_electrons') ! RETURN ! END SUBROUTINE move_electrons_x espresso-5.1/CPV/src/ldaU.f900000644000175000017500000007007112341373026013734 0ustar mbamba! ! Copyright (C) 2011-2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------- SUBROUTINE s_wfc(nwfc,becwfc,betae,wfc,swfc) !----------------------------------------------------------------------- ! ! input: wfc, becwfc=, betae=|beta> ! output: swfc=S|wfc> ! USE kinds, ONLY: DP USE ions_base, ONLY: na USE uspp, ONLY: nhsa => nkb, nhsavb=>nkbus, qq USE uspp_param, ONLY: nh, nvb, ish USE gvecw, ONLY: ngw IMPLICIT NONE ! input INTEGER, INTENT(in) :: nwfc COMPLEX(DP), INTENT(in) :: betae(ngw,nhsa), & & wfc(ngw,nwfc) REAL(DP), INTENT(in) :: becwfc(nhsa,nwfc) ! output COMPLEX(DP), INTENT(out):: swfc(ngw,nwfc) ! local INTEGER :: is, iv, jv, ia, inl, jnl, i REAL(DP) :: qtemp(nhsavb,nwfc) ! swfc = wfc ! IF (nvb > 0) THEN qtemp=0.d0 DO is=1,nvb DO iv=1,nh(is) DO jv=1,nh(is) IF(ABS(qq(iv,jv,is)).GT.1.e-5) THEN DO ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(is)+(jv-1)*na(is)+ia DO i=1,nwfc qtemp(inl,i) = qtemp(inl,i) + & & qq(iv,jv,is)*becwfc(jnl,i) END DO END DO ENDIF END DO END DO END DO ! CALL dgemm & ('N','N',2*ngw,nwfc,nhsavb,1.0d0,betae,2*ngw,& qtemp,nhsavb,1.0d0,swfc,2*ngw) ! END IF ! RETURN END SUBROUTINE s_wfc !----------------------------------------------------------------------- subroutine ldaU_init !----------------------------------------------------------------------- ! use ldaU_cp, ONLY: nwfcU, lda_plus_u, Hubbard_U use ldaU_cp, ONLY: Hubbard_lmax, Hubbard_l, ldmx, ns, vupsi use ions_base, only: na, nsp, nat, atm use gvecw, only: ngw use electrons_base, only: nspin, nx => nbspx USE uspp_param, ONLY: upf ! implicit none integer is, nb, l integer, external :: set_hubbard_l IF ( .NOT.lda_plus_u ) RETURN ! FIXME: wasteful allocation, should be removed allocate(vupsi(ngw,nx)) vupsi=(0.0d0,0.0d0) Hubbard_lmax = -1 do is=1,nsp if (Hubbard_U(is).ne.0.d0) then Hubbard_l(is) = set_hubbard_l( upf(is)%psd ) Hubbard_lmax = max(Hubbard_lmax,Hubbard_l(is)) write (6,*) ' HUBBARD L FOR TYPE ',atm(is),' IS ', Hubbard_l(is) end if end do write (6,*) ' MAXIMUM HUBBARD L IS ', Hubbard_lmax if (Hubbard_lmax.eq.-1) call errore & & ('setup','lda_plus_u calculation but Hubbard_l not set',1) ! ldmx = 2 * Hubbard_lmax + 1 allocate(ns(ldmx,ldmx,nat,nspin)) ! return end subroutine ldaU_init ! !----------------------------------------------------------------------- subroutine new_ns( c, eigr, betae, hpsi, forceh ) !----------------------------------------------------------------------- ! ! This routine computes the on site occupation numbers of the Hubbard ions. ! It also calculates the contribution of the Hubbard Hamiltonian to the ! electronic potential and to the forces acting on ions. ! use kinds, ONLY: DP use control_flags, ONLY: tfor, tprnfor use ions_base, only: na, nat, nsp use gvecw, only: ngw use gvect, only: gstart USE uspp, ONLY: nhsa=>nkb USE uspp_param, ONLY: upf use electrons_base, only: nspin, n => nbsp, nx => nbspx, ispin, f USE ldaU_cp, ONLY: Hubbard_U, Hubbard_l, ldmx USE ldaU_cp, ONLY: nwfcU, ns, e_hubbard USE step_penalty, ONLY: penalty_e, penalty_f USE mp_pools, ONLY: intra_pool_comm, me_pool, nproc_pool USE mp_bands, only: nbgrp USE cp_interfaces, only: nlsm1, nlsm2_bgrp ! implicit none complex(DP), intent(in) :: c(ngw,nx), eigr(ngw,nat), betae(ngw,nhsa) complex(DP), intent(out) :: hpsi(ngw,nx) real(DP), INTENT(OUT) :: forceh(3,nat) ! complex(DP), allocatable:: wfcU(:,:), swfc(:,:), spsi(:,:) real(DP), allocatable :: becwfc(:,:), bp(:,:), dbp(:,:,:), wdb(:,:,:) real(DP), allocatable :: dns(:,:,:,:), proj(:,:), tempsi(:,:) integer is, ia, iat, nb, isp, l, m, m1, m2, k, i, ldim, ig integer iv, jv, inl, jnl,alpha,alpha_a,alpha_s,ipol integer, allocatable :: offset (:,:) INTEGER :: nb_s, nb_e, mykey ! if( nbgrp > 1 ) call errore(' new_ns ', & ' parallelization over bands not yet implemented ', 1 ) call start_clock('new_ns') ! allocate(offset(nsp,nat)) offset(:,:) = -1 ! offset = -1 means "not a Hubbard wfc" nwfcU = 0 do is = 1, nsp do ia = 1, na(is) do i = 1, upf(is)%nwfc l = upf(is)%lchi(i) if (l == Hubbard_l(is)) offset (is,ia) = nwfcU nwfcU = nwfcU + 2 * l + 1 end do end do end do ! allocate(wfcU(ngw,nwfcU)) allocate(becwfc(nhsa,nwfcU)) allocate(swfc(ngw,nwfcU)) allocate(proj(nwfcU,n)) ! ! calculate proj = ! CALL projwfc_hub( c, nx, eigr, betae, n, nwfcU, & & offset, Hubbard_l, wfcU, becwfc, swfc, proj ) ! ns(:,:,:,:) = 0.d0 iat = 0 do is = 1,nsp do ia = 1,na(is) iat = iat + 1 if (Hubbard_U(is).ne.0.d0) then k = offset(is,ia) do m1 = 1, 2*Hubbard_l(is) + 1 do m2 = m1, 2*Hubbard_l(is) + 1 do i = 1,n ns(m1,m2,iat,ispin(i)) = ns(m1,m2,iat,ispin(i)) + & & f(i) * proj(k+m2,i) * proj(k+m1,i) end do end do do m2 = m1+1, 2*Hubbard_l(is) + 1 ns(m2,m1,iat,:) = ns(m1,m2,iat,:) end do end do end if end do end do if (nspin.eq.1) ns = 0.5d0 * ns ! Contributions to total energy e_hubbard = 0.d0 iat = 0 do is = 1,nsp do ia = 1,na(is) iat=iat + 1 if (Hubbard_U(is).ne.0.d0) then do isp = 1,nspin do m1 = 1, 2*Hubbard_l(is) + 1 e_hubbard = e_hubbard + 0.5d0 * Hubbard_U(is) * & & ns(m1,m1,iat,isp) do m2 = 1, 2*Hubbard_l(is) + 1 e_hubbard = e_hubbard - 0.5d0 * Hubbard_U(is) * & & ns(m1,m2,iat,isp) * ns(m2,m1,iat,isp) end do end do end do end if end do end do if (nspin.eq.1) e_hubbard = 2.d0*e_hubbard ! ! Calculate the potential and forces on wavefunctions due to U ! hpsi(:,:)=(0.d0,0.d0) ALLOCATE ( tempsi(ldmx,n) ) tempsi(:,:)=(0.d0,0.d0) iat=0 do is = 1, nsp do ia=1, na(is) iat = iat + 1 if (Hubbard_U(is).ne.0.d0) then ldim = 2*Hubbard_l(is) + 1 do i=1, n do m1 = 1, ldim tempsi(m1,i) = proj (offset(is,ia)+m1,i) do m2 = 1, ldim tempsi(m1,i) = tempsi(m1,i) - & 2.0_dp*ns(m1,m2,iat,ispin(i)) * & proj (offset(is,ia)+m2,i) enddo tempsi(m1,i) = tempsi(m1,i) * Hubbard_U(is)/2.d0*f(i) enddo enddo ! CALL dgemm ( 'N','N', 2*ngw, n, ldim, 1.0_dp, & swfc(1,offset(is,ia)+1), 2*ngw, tempsi, & ldmx, 1.0_dp, hpsi, 2*ngw ) endif enddo enddo DEALLOCATE ( tempsi ) ! ! Calculate the potential and energy due to constraint ! CALL penalty_e ( offset, swfc, proj, e_hubbard, hpsi ) ! ! Calculate the contribution to forces on ions due to U and constraint ! forceh=0.d0 if ( tfor .or. tprnfor ) then call start_clock('new_ns:forc') allocate (bp(nhsa,n), dbp(nhsa,nx,3), wdb(nhsa,nwfcU,3)) allocate(dns(ldmx,ldmx,nat,nspin)) allocate (spsi(ngw,n)) ! call nlsm1 ( n, 1, nsp, eigr, c, bp ) call s_wfc ( n, bp, betae, c, spsi ) call nlsm2_bgrp( ngw, nhsa, eigr, c, dbp, nx, n ) call nlsm2_bgrp( ngw, nhsa, eigr, wfcU, wdb, nwfcU, nwfcU ) ! ! poor-man parallelization over bands ! - if nproc_pool=1 : nb_s=1, nb_e=n, mykey=0 ! - if nproc_pool<=nbnd:each processor calculates band nb_s to nb_e; mykey=0 ! - if nproc_pool>nbnd :each processor takes care of band na_s=nb_e; ! mykey labels how many times each band appears (mykey=0 first time etc.) ! CALL block_distribute( n, me_pool, nproc_pool, nb_s, nb_e, mykey ) ! alpha=0 do alpha_s = 1, nsp do alpha_a = 1, na(alpha_s) alpha=alpha+1 do ipol = 1,3 call dndtau(alpha_a,alpha_s,becwfc,spsi,bp,dbp,wdb, & offset,wfcU,eigr,betae,proj,ipol,nb_s,nb_e,mykey,& dns) iat=0 do is = 1, nsp do ia=1, na(is) iat = iat + 1 if (Hubbard_U(is).ne.0.d0) then do isp = 1,nspin do m2 = 1,2*Hubbard_l(is) + 1 forceh(ipol,alpha) = forceh(ipol,alpha) - & & Hubbard_U(is) * 0.5d0 * dns(m2,m2,iat,isp) do m1 = 1,2*Hubbard_l(is) + 1 forceh(ipol,alpha) = forceh(ipol,alpha) + & & Hubbard_U(is)*ns(m2,m1,iat,isp)* & & dns(m1,m2,iat,isp) end do end do end do end if ! Occupation constraint added here to forceh(ipol,alpha) CALL penalty_f ( is, iat, dns, forceh(ipol,alpha) ) end do end do end do end do end do ! ! I am not sure why the following instruction (present in PW) ! seems to yield a wrong factor here ... PG !if (nspin.eq.1) then ! forceh = 2.d0 * forceh !end if ! deallocate ( spsi, dns, bp, dbp, wdb) call stop_clock('new_ns:forc') end if ! deallocate ( wfcU, becwfc, proj, offset, swfc) ! call stop_clock('new_ns') ! return end subroutine new_ns ! !----------------------------------------------------------------------- subroutine write_ns !----------------------------------------------------------------------- ! ! This routine computes the occupation numbers on atomic orbitals. ! It also write the occupation number in the output file. ! USE kinds, only: DP USE constants, ONLY: autoev use electrons_base, only: nspin use electrons_base, only: n => nbsp use ions_base, only: na, nat, nsp use gvecw, only: ngw USE ldaU_cp, ONLY: Hubbard_U, Hubbard_l, ldmx USE ldaU_cp, ONLY: nwfcU, ns, e_hubbard use dspev_module, only : dspev_drv USE step_penalty, ONLY: write_pen implicit none integer :: is, isp, ia, m1, m2, iat, err, k real(DP), allocatable :: ftemp1(:), ftemp2(:), f1 (:), vet (:,:) real(DP) :: lambda (ldmx), nsum, nsuma CALL write_pen (nsp, nspin) write (6,'(6(a,i2,a,f8.4,6x))') & ('U(',is,') =', Hubbard_U(is) * autoev, is=1,nsp) nsum = 0.d0 allocate( ftemp1(ldmx), ftemp2(ldmx), f1(ldmx*ldmx), vet(ldmx,ldmx) ) iat = 0 write(6,*) 'nsp',nsp do is = 1,nsp do ia = 1, na(is) nsuma = 0.d0 iat = iat + 1 ! if (iat.eq.1) then if (Hubbard_U(is).ne.0.d0) then do isp = 1, nspin do m1 = 1, 2 * Hubbard_l(is) + 1 nsuma = nsuma + ns (m1,m1,iat,isp) end do end do if (nspin.eq.1) nsuma = 2.d0 * nsuma write(6,'(a,1x,i2,2x,a,f11.7)') 'atom', iat, & & ' Tr[ns(na)]= ',nsuma nsum = nsum + nsuma ! do isp = 1, nspin k = 0 do m1 = 1, 2 * Hubbard_l(is) + 1 do m2 = m1, 2 * Hubbard_l(is) + 1 k = k + 1 f1 ( k ) = ns (m2,m1,iat,isp) enddo enddo CALL dspev_drv( 'V', 'L', 2 * Hubbard_l(is) + 1, & f1, lambda, vet, ldmx ) write(6,'(a,1x,i2,2x,a,1x,i2)') 'atom', iat, 'spin', isp write(6,'(a,7f10.7)') 'eigenvalues: ',(lambda(m1),m1=1,& & 2 * Hubbard_l(is) + 1) write(6,*) 'eigenvectors' do m2 = 1, 2*Hubbard_l(is)+1 write(6,'(i2,2x,7(f10.7,1x))') m2,(real(vet(m1,m2)),& & m1=1,2 * Hubbard_l(is) + 1) end do write(6,*) 'occupations' do m1 = 1, 2*Hubbard_l(is)+1 write (6,'(7(f6.3,1x))') (ns(m1,m2,iat,isp),m2=1, & & 2*Hubbard_l(is)+1) end do end do end if ! end if end do end do deallocate ( ftemp1, ftemp2,f1, vet ) return end subroutine write_ns ! !------------------------------------------------------------------------- subroutine dndtau(alpha_a,alpha_s,becwfc,spsi,bp,dbp,wdb, & offset,wfcU,eigr,betae, proj,ipol,nb_s,nb_e,mykey,& dns) !----------------------------------------------------------------------- ! ! This routine computes the derivative of the ns with respect to the ionic ! displacement tau(alpha,ipol) used to obtain the Hubbard contribution to the ! atomic forces. ! use ions_base, only: na, nat, nsp use gvecw, only: ngw use electrons_base, only: nspin, n => nbsp, nx => nbspx, ispin, f USE uspp, ONLY: nhsa=>nkb USE ldaU_cp, ONLY: Hubbard_U, Hubbard_l, ldmx USE ldaU_cp, ONLY: nwfcU, ns USE kinds, ONLY: DP USE mp, ONLY: mp_sum USE mp_pools, ONLY: intra_pool_comm ! implicit none ! input integer, intent(in) :: offset(nsp,nat) integer, intent(in) :: alpha_a,alpha_s,ipol INTEGER, INTENT(in) :: nb_s, nb_e, mykey real(DP), intent(in) :: wfcU(ngw,nwfcU), & & eigr(2,ngw,nat),betae(2,ngw,nhsa), & & becwfc(nhsa,nwfcU), & & bp(nhsa,n), dbp(nhsa,nx,3), & wdb(nhsa,nwfcU,3) real(DP), intent(in) :: proj(nwfcU,n) complex (DP), intent(in) :: spsi(ngw,n) ! output real (DP), intent(out) :: dns(ldmx,ldmx,nat,nspin) ! dns derivative of ns(:,:,:,:) w.r.t. tau ! integer ibnd,is,i,ia, m1,m2, l, iat, alpha, ldim real (DP), allocatable :: dproj(:,:) ! dproj(nwfcU,n) derivative of proj(:,:) w.r.t. tau ! CALL start_clock('dndtau') ! allocate (dproj(nwfcU,nb_s:nb_e) ) call dprojdtau(wfcU,becwfc,spsi,bp,dbp,wdb,eigr,alpha_a, & alpha_s,ipol,offset(alpha_s,alpha_a),nb_s,nb_e,mykey, & dproj) ! ! compute the derivative of occupation numbers (the quantities dn(m1,m2)) ! of the atomic orbitals. They are real quantities as well as n(m1,m2) ! dns(:,:,:,:) = 0.d0 ! ! band parallelization. If each band appears more than once ! compute its contribution only once (i.e. when mykey=0) ! IF ( mykey /= 0 ) GO TO 10 iat=0 do is=1,nsp do ia = 1,na(is) iat=iat+1 if (Hubbard_U(is).ne.0.d0) then ldim = 2*Hubbard_l(is) + 1 do m1 = 1, ldim do m2 = m1, ldim do ibnd = nb_s,nb_e dns(m1,m2,iat,ispin(ibnd)) = & & dns(m1,m2,iat,ispin(ibnd)) + & & f(ibnd)*REAL( proj(offset(is,ia)+m1,ibnd) * & & (dproj(offset(is,ia)+m2,ibnd))+ & & dproj(offset(is,ia)+m1,ibnd) * & & (proj(offset(is,ia)+m2,ibnd)) ) end do dns(m2,m1,iat,:) = dns(m1,m2,iat,:) end do end do end if end do end do ! 10 deallocate (dproj) CALL mp_sum(dns, intra_pool_comm) CALL stop_clock('dndtau') return end subroutine dndtau ! !----------------------------------------------------------------------- subroutine dprojdtau(wfcU,becwfc,spsi,bp,dbp,wdb,eigr,alpha_a, & alpha_s,ipol,offset,nb_s,nb_e,mykey,dproj) !----------------------------------------------------------------------- ! ! This routine computes the first derivative of the projection ! <\fi^{at}_{I,m1}|S|\psi_{k,v,s}> with respect to the atomic displacement ! u(alpha,ipol) (we remember that ns_{m1,m2,I,s} = \sum_{k,v} ! f_{kv} <\fi^{at}_{I,m1}|S|\psi_{k,v,s}><\psi_{k,v,s}|S|\fi^{at}_{I,m2}>) ! use ions_base, only: na, nat use gvecw, only: ngw use gvect, only: g, gstart use electrons_base, only: n => nbsp, nx => nbspx USE uspp, ONLY: nhsa=>nkb, qq USE ldaU_cp, ONLY: Hubbard_U, Hubbard_l USE ldaU_cp, ONLY: nwfcU use cell_base, ONLY: tpiba USE uspp_param, only: nh, ish use mp_global, only: intra_bgrp_comm use mp, only: mp_sum USE kinds, ONLY: DP ! implicit none integer, INTENT(in) :: alpha_a, alpha_s,ipol, offset ! input: the displaced atom ! input: the component of displacement ! input: the offset of the wfcs of the atom "alpha_a,alpha_s" INTEGER, INTENT(in) :: nb_s, nb_e, mykey complex (DP), intent(in) :: spsi(ngw,n), & & eigr(ngw,nat) ! input: S|evc>, structure factors real(DP), intent(in) ::becwfc(nhsa,nwfcU), & & wfcU(2,ngw,nwfcU), & & bp(nhsa,n), dbp(nhsa,nx,3), wdb(nhsa,nwfcU,3) real(DP), intent(out) :: dproj(nwfcU,nb_s:nb_e) ! output: the derivative of the projection ! integer i,ig,m1,ibnd,iwf,ia,is,iv,jv,ldim,alpha,l,m,k,inl ! real(dp), allocatable :: dproj0(:,:) real(dp) :: gvec complex (DP), allocatable :: dwfc(:,:) real (DP), allocatable :: betapsi(:,:), dbetapsi(:,:), & & wfcbeta(:,:),wfcdbeta(:,:), auxwfc(:,:) ! dwfc(ngw,ldmx), ! the derivative of the atomic Hubbard wfc ! betapsi(nh,n), ! ! dbetapsi(nh,n), ! ! wfcbeta(nwfcU,nh), ! ! wfcdbeta(nwfcU,nh), ! ldim = 2 * Hubbard_l(alpha_s) + 1 dproj(:,:)=0.d0 ! ! At first the derivative of the atomic wfc is computed ! if (Hubbard_U(alpha_s).ne.0.d0) then ! allocate ( dwfc(ngw,ldim), dproj0(ldim,n) ) ! do ig=1,ngw gvec = g(ipol,ig)*tpiba do m1=1,ldim dwfc(ig,m1) = CMPLX (gvec*wfcU(2,ig,offset+m1), & & -gvec*wfcU(1,ig,offset+m1), kind=dp ) end do end do ! ! no need to calculate the G=0 term: it is zero ! CALL dgemm( 'C', 'N', ldim, n, 2*ngw, 2.0_DP, dwfc, 2*ngw, spsi, & 2*ngw, 0.0_DP, dproj0, ldim ) call mp_sum( dproj0, intra_bgrp_comm ) ! ! copy to dproj results for the bands treated by this processor ! dproj(offset+1:offset+ldim,:) = dproj0(:,nb_s:nb_e) deallocate (dproj0, dwfc) ! end if ! allocate ( wfcbeta(nwfcU,nh(alpha_s)) ) allocate ( wfcdbeta(nwfcU,nh(alpha_s)) ) allocate ( auxwfc(nwfcU,nh(alpha_s)) ) ! do iv=1,nh(alpha_s) inl=ish(alpha_s)+(iv-1)*na(alpha_s)+alpha_a do m=1,nwfcU auxwfc(m,iv) = becwfc(inl,m) end do end do ! following dgemm performs (note that qq is symmetric) ! wfcbeta(m,iv) = sum_jv qq(iv,jv,alpha_s)*auxwfc(m,jv) CALL dgemm( 'N', 'N', nwfcU, nh(alpha_s), nh(alpha_s), 1.0_DP, & auxwfc, nwfcU, qq(1,1,alpha_s), nh(alpha_s), & 0.0_DP, wfcbeta, nwfcU ) do iv=1,nh(alpha_s) inl=ish(alpha_s)+(iv-1)*na(alpha_s)+alpha_a do m=1,nwfcU auxwfc(m,iv) = wdb(inl,m,ipol) end do end do ! as above with wfcbeta(m,iv) => wfcdbeta CALL dgemm( 'N', 'N', nwfcU, nh(alpha_s), nh(alpha_s), 1.0_DP, & auxwfc, nwfcU, qq(1,1,alpha_s), nh(alpha_s), & 0.0_DP, wfcdbeta, nwfcU ) deallocate(auxwfc) ! IF ( mykey == 0 ) THEN allocate ( betapsi(nh(alpha_s),nb_s:nb_e) ) allocate ( dbetapsi(nh(alpha_s),nb_s:nb_e) ) do iv=1,nh(alpha_s) inl=ish(alpha_s)+(iv-1)*na(alpha_s)+alpha_a do i=nb_s,nb_e betapsi (iv,i)=bp(inl,i) dbetapsi(iv,i)=dbp(inl,i,ipol) end do end do ! ! dproj(m,i) = \sum_iv wfcdbeta(m,iv)*betapsi (iv,i) + ! wfcbeta (m,iv)*dbetapsi(iv,i) ! CALL dgemm( 'N', 'N', nwfcU, nb_e-nb_s+1, nh(alpha_s), 1.0_DP, & wfcdbeta, nwfcU, betapsi(1,nb_s), nh(alpha_s), & 1.0_DP, dproj(1,nb_s), nwfcU ) CALL dgemm( 'N', 'N', nwfcU, nb_e-nb_s+1, nh(alpha_s), 1.0_DP, & wfcbeta, nwfcU, dbetapsi(1,nb_s), nh(alpha_s), & 1.0_DP, dproj(1,nb_s), nwfcU ) ! deallocate (dbetapsi) deallocate (betapsi) ! end if ! end band parallelization - only dproj(1,nb_s:nb_e) are calculated ! deallocate (wfcbeta) deallocate (wfcdbeta) return end subroutine dprojdtau ! !----------------------------------------------------------------------- SUBROUTINE projwfc_hub( c, nx, eigr, betae, n, nwfcU, & & offset, Hubbard_l, wfcU, becwfc, swfc, proj ) !----------------------------------------------------------------------- ! ! Projection on atomic wavefunctions ! Atomic wavefunctions are not orthogonalized ! USE kinds, ONLY: DP USE io_global, ONLY: stdout USE mp_global, ONLY: intra_bgrp_comm USE mp, ONLY: mp_sum USE gvecw, ONLY: ngw USE gvect, ONLY: gstart USE ions_base, ONLY: nsp, na, nat USE uspp, ONLY: nhsa => nkb USE cp_interfaces, only: nlsm1 ! IMPLICIT NONE INTEGER, INTENT(IN) :: nx, n, nwfcU, offset(nsp,nat), & Hubbard_l(nsp) COMPLEX(DP), INTENT(IN) :: c( ngw, nx ), eigr(ngw,nat), betae(ngw,nhsa) ! COMPLEX(DP), INTENT(OUT):: wfcU(ngw, nwfcU), & & swfc(ngw, nwfcU) real(DP), intent(out):: becwfc(nhsa,nwfcU), proj(nwfcU,n) INTEGER :: is, ia, nb, l, m, k, i ! IF ( nwfcU .EQ. 0 ) RETURN ! CALL start_clock('projwfc_hub') ! ! calculate wfcU = atomic states with associated Hubbard U ! CALL atomic_wfc_hub( offset, Hubbard_l, eigr, nwfcU, wfcU ) ! ! calculate bec = ! CALL nlsm1( nwfcU, 1, nsp, eigr, wfcU, becwfc ) ! ! calculate swfc = S|wfc> ! CALL s_wfc( nwfcU, becwfc, betae, wfcU, swfc ) ! ! calculate proj = ! CALL dgemm( 'C', 'N', nwfcU, n, 2*ngw, 2.0_DP, swfc, 2*ngw, c, & 2*ngw, 0.0_DP, proj, nwfcU ) IF ( gstart == 2 ) & CALL dger( nwfcU, n, -1.0_DP, swfc, 2*ngw, c, 2*ngw, proj, nwfcU ) CALL mp_sum( proj, intra_bgrp_comm ) ! CALL stop_clock('projwfc_hub') ! RETURN END SUBROUTINE projwfc_hub ! !----------------------------------------------------------------------- SUBROUTINE atomic_wfc_hub( offset, Hubbard_l, eigr, nwfcU, wfcU ) !----------------------------------------------------------------------- ! ! Compute atomic wavefunctions (not orthogonalized) in G-space ! USE kinds, ONLY: DP USE gvecw, ONLY: ngw USE gvect, ONLY: gstart, gg, g USE ions_base, ONLY: nsp, na, nat USE cell_base, ONLY: tpiba, omega USE atom, ONLY: rgrid USE uspp_param, ONLY: upf USE constants, ONLY: fpi ! IMPLICIT NONE INTEGER, INTENT(in) :: nwfcU, offset(nsp,nat), & Hubbard_l(nsp) COMPLEX(DP), INTENT(in) :: eigr( ngw, nat ) COMPLEX(DP), INTENT(out):: wfcU( ngw, nwfcU ) ! INTEGER :: natwfc, ndm, is, ia, ir, nb, l, m, lm, i, lmax_wfc, isa REAL(DP), ALLOCATABLE :: ylm(:,:), q(:), jl(:), vchi(:), chiq(:) IF( .NOT. ALLOCATED( rgrid ) ) & CALL errore( ' atomic_wfc_hub ', ' rgrid not allocated ', 1 ) ! ! calculate max angular momentum required in wavefunctions ! lmax_wfc=-1 DO is = 1,nsp lmax_wfc = MAX ( lmax_wfc, MAXVAL (upf(is)%lchi(1:upf(is)%nwfc) ) ) ENDDO ! ALLOCATE(ylm(ngw,(lmax_wfc+1)**2)) ! CALL ylmr2 ((lmax_wfc+1)**2, ngw, g, gg, ylm) ndm = MAXVAL(rgrid(1:nsp)%mesh) ! ALLOCATE(jl(ndm), vchi(ndm)) ALLOCATE(q(ngw), chiq(ngw)) ! DO i=1,ngw q(i) = SQRT(gg(i))*tpiba END DO ! isa = 0 DO is=1,nsp ! ! radial fourier transform of the chi functions. NOTA BENE: ! chi is r times the radial part of the atomic wavefunction ! natwfc=0 DO nb = 1,upf(is)%nwfc l = upf(is)%lchi(nb) IF ( l /= Hubbard_l(is) ) GO TO 10 DO i=1,ngw CALL sph_bes (rgrid(is)%mesh, rgrid(is)%r, q(i), l, jl) DO ir=1,rgrid(is)%mesh vchi(ir) = upf(is)%chi(ir,nb)*rgrid(is)%r(ir)*jl(ir) ENDDO CALL simpson_cp90(rgrid(is)%mesh,vchi,rgrid(is)%rab,chiq(i)) ENDDO ! ! multiply by angular part and structure factor ! NOTA BENE: the factor i^l MUST be present!!! ! DO m = 1,2*l+1 lm = l**2 + m natwfc = natwfc + 1 DO ia = 1, na(is) wfcU(:,natwfc+offset(is,ia)) = (0.d0,1.d0)**l * & eigr(:,ia+isa) * ylm(:,lm)*chiq(:) ENDDO ENDDO 10 CONTINUE ENDDO isa = isa + na(is) ENDDO ! IF ( natwfc+offset(nsp,na(nsp)) .NE. nwfcU) & CALL errore('atomic_wfc','unexpected error',natwfc) ! do i = 1,nwfcU call dscal(2*ngw,fpi/sqrt(omega),wfcU(1,i),1) end do DEALLOCATE(q, chiq, vchi, jl, ylm) ! RETURN END SUBROUTINE atomic_wfc_hub espresso-5.1/CPV/src/restart_sub.f900000644000175000017500000001316012341373026015400 0ustar mbamba! ! Copyright (C) 2002-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! SUBROUTINE from_restart( ) ! USE kinds, ONLY : DP USE control_flags, ONLY : tbeg, taurdr, tfor, tsdp, iverbosity, & tsde, tzeroe, tzerop, nbeg, tranp, amprp,& thdyn, tzeroc, force_pairing, trhor, & ampre, trane, tpre, dt_old USE wavefunctions_module, ONLY : c0_bgrp, cm_bgrp USE electrons_module, ONLY : occn_info USE electrons_base, ONLY : nspin, iupdwn, nupdwn, f, nbsp, nbsp_bgrp USE io_global, ONLY : ionode, ionode_id, stdout USE cell_base, ONLY : ainv, h, hold, deth, r_to_s, s_to_r, & velh, at, alat USE ions_base, ONLY : na, nsp, iforce, vel_srt, nat, randpos USE time_step, ONLY : tps, delt USE ions_positions, ONLY : taus, tau0, tausm, taum, vels, fion, fionm, set_velocities USE ions_nose, ONLY : xnhp0, xnhpm USE gvect, ONLY : mill, eigts1, eigts2, eigts3 USE printout_base, ONLY : printout_pos USE gvecs, ONLY : ngms USE gvecw, ONLY : ngw USE cp_interfaces, ONLY : phfacs, strucf, prefor, calbec_bgrp, caldbec_bgrp USE energies, ONLY : eself, dft_energy_type USE wave_base, ONLY : rande_base USE efield_module, ONLY : efield_berry_setup, tefield, & efield_berry_setup2, tefield2 USE uspp, ONLY : okvan, vkb, nkb, nlcc_any USE cp_main_variables, ONLY : ht0, htm, lambdap, lambda, lambdam, eigr, & sfac, taub, irb, eigrb, edft, bec_bgrp, dbec, descla USE time_step, ONLY : delt USE fft_base, ONLY : dfftp ! IMPLICIT NONE INTEGER :: iss CALL start_clock( 'from_restart' ) ! ! ... We are restarting from file recompute ainv ! CALL invmat( 3, h, ainv, deth ) ! ! ... Reset total time counter if the run is not strictly 'restart' ! IF ( nbeg < 1 ) tps = 0.D0 ! IF ( taurdr ) THEN ! ! ... Input positions read from input file and stored in tau0 ! ... in readfile, only scaled positions are read ! CALL r_to_s( tau0, taus, na, nsp, ainv ) ! END IF ! IF ( ANY( tranp(1:nsp) ) ) THEN ! ! ... Input positions are randomized ! CALL randpos( taus, na, nsp, tranp, amprp, ainv, iforce ) ! END IF ! IF ( tzerop .AND. tfor ) THEN ! vel_srt(:,:) = 0.0_dp vels(:,:) = 0.0_dp CALL set_velocities( tausm, taus, vels, iforce, nat, delt ) WRITE( stdout, '(" Ionic velocities set to zero")' ) ! END IF ! CALL s_to_r( taus, tau0, na, nsp, h ) ! CALL s_to_r( tausm, taum, na, nsp, h ) ! IF ( tzeroc ) THEN ! hold = h velh = 0.D0 ! htm = ht0 ht0%hvel = 0.D0 ! END IF ! fion = 0.D0 ! IF( force_pairing ) THEN cm_bgrp(:,iupdwn(2):nbsp) = cm_bgrp(:,1:nupdwn(2)) c0_bgrp(:,iupdwn(2):nbsp) = c0_bgrp(:,1:nupdwn(2)) lambdap( :, :, 2) = lambdap( :, :, 1) lambda( :, :, 2) = lambda( :, :, 1) lambdam( :, :, 2) = lambdam( :, :, 1) END IF ! IF ( tzeroe ) THEN ! lambdam = lambda ! cm_bgrp = c0_bgrp ! WRITE( stdout, '(" Electronic velocities set to zero")' ) ! END IF ! ! ... computes form factors and initializes nl-pseudop. according ! ... to starting cell (from ndr or again standard input) ! IF ( okvan .or. nlcc_any ) THEN CALL initbox( tau0, alat, at, ainv, taub, irb ) CALL phbox( taub, iverbosity, eigrb ) END IF ! CALL phfacs( eigts1, eigts2, eigts3, eigr, mill, taus, dfftp%nr1, dfftp%nr2, dfftp%nr3, nat ) ! CALL strucf( sfac, eigts1, eigts2, eigts3, mill, ngms ) ! CALL prefor( eigr, vkb ) ! CALL formf( .TRUE. , eself ) ! IF ( trane ) THEN ! WRITE( stdout, 515 ) ampre ! 515 FORMAT( 3X,'Initial random displacement of el. coordinates',/ & 3X,'Amplitude = ',F10.6 ) ! CALL rande_base( c0_bgrp, ampre ) ! CALL gram_bgrp( vkb, bec_bgrp, nkb, c0_bgrp, ngw ) ! IF( force_pairing ) c0_bgrp(:,iupdwn(2):nbsp) = c0_bgrp(:,1:nupdwn(2)) ! cm_bgrp = c0_bgrp ! END IF ! CALL calbec_bgrp( 1, nsp, eigr, c0_bgrp, bec_bgrp ) ! IF ( tpre ) CALL caldbec_bgrp( eigr, c0_bgrp, dbec, descla ) ! IF ( tefield ) CALL efield_berry_setup( eigr, tau0 ) IF ( tefield2 ) CALL efield_berry_setup2( eigr, tau0 ) ! edft%eself = eself ! IF( tzerop .or. tzeroe .or. tzeroc ) THEN IF( .not. ( tzerop .and. tzeroe .and. ( tzeroc .or. .not. thdyn ) ) ) THEN IF( ionode ) THEN WRITE( stdout, * ) 'WARNING setting to ZERO ions, electrons and cell velocities without ' WRITE( stdout, * ) 'setting to ZERO all velocities could generate meaningles trajectories ' END IF END IF END IF ! ! dt_old should be -1.0 here if untouched ... ! if ( dt_old > 0.0d0 ) then tausm = taus - (taus-tausm)*delt/dt_old xnhpm = xnhp0 - (xnhp0-xnhpm)*delt/dt_old WRITE( stdout, '(" tausm & xnhpm were rescaled ")' ) endif CALL stop_clock( 'from_restart' ) ! RETURN ! END SUBROUTINE from_restart espresso-5.1/CPV/src/fpmdpp.f900000644000175000017500000007172312341373026014342 0ustar mbamba! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! This file holds XSF (=Xcrysden Structure File) utilities. ! Routines written by Tone Kokalj on Mon Jan 27 18:51:17 CET 2003 ! modified by Gerardo Ballabio and Carlo Cavazzoni ! on Thu Jul 22 18:57:26 CEST 2004 ! ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! -------------------------------------------------------------------- ! this routine writes the crystal structure in XSF, GRD and PDB format ! from a FPMD output files ! -------------------------------------------------------------------- PROGRAM fpmd_postproc USE kinds, ONLY : DP USE constants, ONLY : bohr => BOHR_RADIUS_ANGS USE io_files, ONLY : prefix, iunpun, xmlpun, tmp_dir, outdir USE mp_global, ONLY : mp_startup, mp_global_end USE iotk_module USE xml_io_base IMPLICIT NONE INTEGER, PARAMETER :: maxsp = 20 INTEGER :: natoms, nsp, na(maxsp), atomic_number(maxsp) INTEGER :: ounit, cunit, punit, funit, dunit, bunit, ksunit INTEGER :: nr1, nr2, nr3, ns1, ns2, ns3 INTEGER :: np1, np2, np3, np, ispin INTEGER, ALLOCATABLE :: ityp(:) REAL(DP) :: at(3, 3), atinv(3, 3), ht0(3, 3), h0(3, 3) REAL(DP) :: rhof, rhomax, rhomin, rhoc(6) REAL(DP), ALLOCATABLE :: rho_in(:,:,:), rho_out(:,:,:) REAL(DP), ALLOCATABLE :: tau_in(:,:), tau_out(:,:) REAL(DP), ALLOCATABLE :: sigma(:,:), force(:,:) REAL(DP), ALLOCATABLE :: stau0(:,:), svel0(:,:), force0(:,:) CHARACTER(len=256) :: filepp, fileout, output CHARACTER(len=256) :: filecel, filepos, filefor, filepdb CHARACTER(len=256) :: print_state CHARACTER(len=3) :: atm( maxsp ), lab CHARACTER(len=4) :: charge_density LOGICAL :: lcharge, lforces, ldynamics, lpdb, lrotation LOGICAL :: lbinary, found INTEGER :: nframes INTEGER :: ios, nat, ndr INTEGER :: nproc, mpime, world, root REAL(DP) :: x, y, z, fx, fy, fz INTEGER :: i, j, k, n, ix, iy, iz, ierr REAL(DP) :: euler(6) NAMELIST /inputpp/ prefix, fileout, output, outdir, & lcharge, lforces, ldynamics, lpdb, lrotation, & ns1, ns2, ns3, np1, np2, np3, print_state, & atomic_number, nframes, ndr, charge_density, & lbinary ! default values dunit = 14 ! ... Intel compilers v .ge.8 allocate a lot of stack space ! ... Stack limit is often small, thus causing SIGSEGV and crash CALL remove_stack_limit ( ) ! initialize mpi CALL mp_startup ( ) ! CALL get_env( 'ESPRESSO_TMPDIR', outdir ) IF ( TRIM( outdir ) == ' ' ) outdir = './' prefix = 'cp' fileout = 'out' output = 'xsf' ! 'grd' lcharge = .false. lforces = .false. ldynamics = .false. lpdb = .false. lrotation = .false. ns1 = 0 ns2 = 0 ns3 = 0 np1 = 1 np2 = 1 np3 = 1 ! nframes = 1 ! number of MD step to be read to buind the trajectory ndr = 51 ! restart file number atomic_number = 1 ! atomic number of the species in the restart file charge_density = 'full' ! specify the component to plot: 'full', 'spin' print_state = ' ' ! specify the Kohn-Sham state to plot: 'KS_1' lbinary = .TRUE. call input_from_file() ! read namelist READ( 5, inputpp, iostat=ios) ! set file names ! tmp_dir = TRIM(outdir) filecel = TRIM(tmp_dir) // TRIM(prefix) // '.cel' filepos = TRIM(tmp_dir) // TRIM(prefix) // '.pos' filefor = TRIM(tmp_dir) // TRIM(prefix) // '.for' ! filepdb = TRIM(fileout) // '.pdb' ! ! append extension ! IF (output == 'xsf') THEN IF (ldynamics) THEN fileout = TRIM(fileout) // '.axsf' ELSE fileout = TRIM(fileout) // '.xsf' END IF ELSE IF (output == 'grd') THEN fileout = TRIM(fileout) // '.grd' END IF np = np1 * np2 * np3 IF (np1 < 1 .OR. np2 < 1 .OR. np3 < 1) THEN WRITE(*,*) 'Error: zero or negative replicas not allowed' STOP END IF ! check for wrong input IF (ldynamics .AND. nframes < 2) THEN WRITE(*,*) 'Error: dynamics requested, but only one frame' STOP END IF IF (.NOT. ldynamics) nframes = 1 IF (ldynamics .AND. lcharge) THEN WRITE(*,*) 'Error: dynamics with charge density not supported' STOP END IF IF (ldynamics .AND. ( print_state /= ' ' ) ) THEN WRITE(*,*) 'Error: dynamics with print_state not supported' STOP END IF ! ! Now read the XML data file ! filepp = restart_dir( tmp_dir, ndr ) ! filepp = TRIM( filepp ) // '/' // TRIM(xmlpun) ! CALL iotk_open_read( dunit, file = TRIM( filepp ), BINARY = .FALSE., & ROOT = attr, IERR = ierr ) IF( ierr /= 0 ) CALL errore( ' cppp ', ' Cannot open file '//TRIM(filepp), 1 ) CALL iotk_scan_begin( dunit, "IONS", FOUND = found ) IF( .NOT. found ) THEN CALL errore( ' cppp ', ' IONS not found in data-file.xml ', 1 ) END IF CALL iotk_scan_dat( dunit, "NUMBER_OF_ATOMS", nat ) CALL iotk_scan_dat( dunit, "NUMBER_OF_SPECIES", nsp ) ALLOCATE( ityp( nat * np ) ) ! atomic species DO i = 1, nsp ! CALL iotk_scan_begin( dunit, "SPECIE" // TRIM( iotk_index( i ) ), FOUND = found ) ! IF( .NOT. found ) THEN CALL errore( ' cppp ', "SPECIE" // TRIM( iotk_index( i ) ) // ' not found in data-file.xml ', 1 ) END IF CALL iotk_scan_dat( dunit, "ATOM_TYPE", atm(i) ) ! ! CALL iotk_scan_dat( dunit, & ! TRIM( atm(i) )//"_MASS", amass(i), ATTR = attr ) ! ! CALL iotk_scan_dat( dunit, & ! "PSEUDO_FOR_" // TRIM( atm(i) ), psfile(i) ) ! CALL iotk_scan_end( dunit, "SPECIE" // TRIM( iotk_index( i ) ) ) ! END DO ! ! CALL iotk_scan_empty( dunit, "UNITS_FOR_ATOMIC_POSITIONS", attr ) ! CALL iotk_scan_attr( attr, "UNIT", pos_unit ) ! DO i = 1, nat ! CALL iotk_scan_empty( dunit, "ATOM" // TRIM( iotk_index( i ) ), attr ) CALL iotk_scan_attr( attr, "SPECIES", lab ) CALL iotk_scan_attr( attr, "INDEX", ityp(i) ) ! CALL iotk_scan_attr( attr, "tau", tau(:,i) ) ! CALL iotk_scan_attr( attr, "if_pos", if_pos(:,i) ) ! END DO CALL iotk_scan_end( dunit, "IONS" ) CALL iotk_scan_begin( dunit, "PLANE_WAVES" ) CALL iotk_scan_empty( dunit, "FFT_GRID", attr ) CALL iotk_scan_attr( attr, "nr1", nr1 ) CALL iotk_scan_attr( attr, "nr2", nr2 ) CALL iotk_scan_attr( attr, "nr3", nr3 ) CALL iotk_scan_end( dunit, "PLANE_WAVES" ) ALLOCATE( stau0( 3, nat ) ) ALLOCATE( svel0( 3, nat ) ) ALLOCATE( force0( 3, nat ) ) ! forces, atomic units CALL iotk_scan_begin( dunit, "TIMESTEPS", attr ) CALL iotk_scan_begin( dunit, "STEP0" ) CALL iotk_scan_begin( dunit, "IONS_POSITIONS" ) CALL iotk_scan_dat( dunit, "stau", stau0 ) CALL iotk_scan_dat( dunit, "svel", svel0 ) CALL iotk_scan_dat( dunit, "force", force0 ) CALL iotk_scan_end( dunit, "IONS_POSITIONS" ) CALL iotk_scan_begin( dunit, "CELL_PARAMETERS" ) CALL iotk_scan_dat( dunit, "ht", ht0 ) CALL iotk_scan_end( dunit, "CELL_PARAMETERS" ) CALL iotk_scan_end( dunit, "STEP0" ) CALL iotk_scan_end( dunit, "TIMESTEPS" ) ! ispin = 1 ! ! CALL iotk_close_read( dunit ) ! ! End of reading from data file ! IF ( nsp > maxsp ) THEN WRITE(*,*) 'Error: too many atomic species' STOP END IF natoms = nat ! ! Count atoms in each species ! na = 0 DO i = 1, nat na( ityp( i ) ) = na( ityp( i ) ) + 1 ! total number of atoms END DO ! assign species (from input) to each atom ! k = 0 DO i = 1, nsp DO j = 1, na(i) k = k + 1 ityp(k) = atomic_number(i) END DO END DO ! allocate arrays ALLOCATE(tau_in(3, nat)) ! atomic positions, angstroms ALLOCATE(tau_out(3, nat * np)) ! replicated positions ALLOCATE(sigma(3, nat ) ) ! scaled coordinates ! IF (lforces) ALLOCATE( force( 3, nat * np ) ) ! charge density IF ( lcharge .OR. print_state /= ' ' ) THEN IF (ns1 == 0) ns1 = nr1 IF (ns2 == 0) ns2 = nr2 IF (ns3 == 0) ns3 = nr3 ALLOCATE( rho_in ( nr1, nr2, nr3 ) ) ! original charge density ALLOCATE( rho_out( ns1, ns2, ns3 ) ) ! rescaled charge density END IF ! open output file for trajectories or charge density ! ounit = 10 OPEN(ounit, file=fileout, status='unknown') ! open Cell trajectory file ! cunit = 11 OPEN(cunit, file=filecel, status='old') ! open Positions trajectory file ! punit = 12 OPEN(punit, file=filepos, status='old') ! open Force trajectory file ! funit = 13 if (lforces) OPEN(funit, file=filefor, status='old') ! open PDB file ! bunit = 15 OPEN(bunit, file=filepdb, status='unknown') ! Unit for KS states ! ksunit = 16 ! XSF file header ! IF ( output == 'xsf' ) THEN IF ( ldynamics ) WRITE(ounit,*) 'ANIMSTEPS', nframes WRITE( ounit, * ) 'CRYSTAL' END IF DO n = 1, nframes ! IF ( ldynamics ) WRITE(*,'("frame",1X,I4)') n ! read data from files produced by fpmd ! CALL read_fpmd( lforces, lcharge, lbinary, cunit, punit, funit, dunit, & natoms, nr1, nr2, nr3, ispin, at, tau_in, force, & rho_in, prefix, tmp_dir, ndr, charge_density ) IF( nframes == 1 ) THEN ! ! use values from the XML file ! IF( lforces ) force( 1:3, 1:nat ) = force0( 1:3, 1:nat ) ! h0 = TRANSPOSE( ht0 ) ! ! from scaled to real coordinates ! tau_in( :, : ) = MATMUL( h0( :, : ), stau0( :, : ) ) ! ! convert atomic units to Angstroms ! at = h0 * bohr tau_in = tau_in * bohr ! END IF WRITE(*,'(2x,"Cell parameters (Angstroms):")') WRITE(*,'(3(2x,f10.6))') ((at(i, j), i=1,3), j=1,3) ! WRITE(*,'(2x,"Atomic coordinates (Angstroms):")') WRITE(*,'(3(2x,f10.6))') ((tau_in(i, j), i=1,3), j=1,natoms) ! compute scaled coordinates ! CALL inverse( at, atinv ) sigma(:,:) = MATMUL(atinv(:,:), tau_in(:,:)) ! compute cell dimensions and Euler angles CALL at_to_euler( at, euler ) IF (lpdb) THEN ! apply periodic boundary conditions DO i = 1, natoms DO j = 1, 3 sigma(j, i) = sigma(j, i) - FLOOR(sigma(j, i)) END DO END DO ! recompute Cartesian coordinates tau_in(:,:) = MATMUL(at(:,:), sigma(:,:)) END IF IF (lrotation) THEN ! compute rotated cell CALL euler_to_at( euler, at ) ! rotate atomic positions as well tau_in(:,:) = MATMUL(at(:,:), sigma(:,:)) END IF ! replicate atoms k = 0 DO ix = 1, np1 DO iy = 1, np2 DO iz = 1, np3 DO j = 1, natoms k = k + 1 tau_out(:, k) = tau_in(:, j) + (ix-1) * at(:, 1) + & (iy-1) * at(:, 2) + (iz-1) * at(:, 3) ityp(k) = ityp(j) IF (lforces) force(:, k) = force(:, j) END DO END DO END DO END DO natoms = natoms * np ! compute supercell at(:, 1) = at(:, 1) * np1 at(:, 2) = at(:, 2) * np2 at(:, 3) = at(:, 3) * np3 euler(1) = euler(1) * np1 euler(2) = euler(2) * np2 euler(3) = euler(3) * np3 IF ( lcharge ) & CALL scale_charge( rho_in, rho_out, nr1, nr2, nr3, ns1, ns2, ns3, & np1, np2, np3 ) IF ( output == 'xsf' ) THEN ! write data as XSF format CALL write_xsf( ldynamics, lforces, lcharge, ounit, n, at, & natoms, ityp, tau_out, force, rho_out, & ns1, ns2, ns3 ) ELSE IF( output == 'grd' ) THEN ! write data as GRD format CALL write_grd( ounit, at, rho_out, ns1, ns2, ns3 ) END IF END DO CLOSE(ounit) IF ( print_state /= ' ' ) THEN ! CALL read_density( TRIM( print_state ) // '.xml', dunit, nr1, nr2, nr3, rho_in, lbinary ) CALL scale_charge( rho_in, rho_out, nr1, nr2, nr3, ns1, ns2, ns3, np1, np2, np3 ) ! IF (output == 'xsf') THEN ! write data as XSF format OPEN( unit = ksunit, file = TRIM( print_state ) // '.xsf' ) WRITE( ksunit, * ) 'CRYSTAL' ! XSF files need this one line header CALL write_xsf( ldynamics, lforces, .true., ksunit, n, at, & natoms, ityp, tau_out, force, rho_out, ns1, ns2, ns3 ) ELSE IF( output == 'grd' ) THEN OPEN( unit = ksunit, file = TRIM( print_state ) // '.grd' ) CALL write_grd( ksunit, at, rho_out, ns1, ns2, ns3 ) END IF ! CLOSE( ksunit ) ! END IF ! write atomic positions as PDB format CALL write_pdb( bunit, at, tau_out, natoms, ityp, euler, lrotation ) ! free allocated resources CLOSE(punit) CLOSE(cunit) IF (lforces) CLOSE(funit) DEALLOCATE(tau_in) DEALLOCATE(tau_out) DEALLOCATE(ityp) IF( ALLOCATED( force ) ) DEALLOCATE(force) IF( ALLOCATED( rho_in ) ) DEALLOCATE(rho_in) IF( ALLOCATED( rho_out ) ) DEALLOCATE(rho_out) DEALLOCATE( stau0 ) DEALLOCATE( svel0 ) DEALLOCATE( force0 ) CALL mp_global_end () STOP END PROGRAM fpmd_postproc ! ! ! SUBROUTINE read_fpmd( lforces, lcharge, lbinary, cunit, punit, funit, dunit, & natoms, nr1, nr2, nr3, ispin, at, tau, force, & rho, prefix, tmp_dir, ndr, charge_density ) USE kinds, ONLY: DP USE constants, ONLY: bohr => BOHR_RADIUS_ANGS USE xml_io_base USE iotk_module IMPLICIT NONE LOGICAL, INTENT(in) :: lforces, lcharge, lbinary INTEGER, INTENT(in) :: cunit, punit, funit, dunit INTEGER, INTENT(in) :: natoms, nr1, nr2, nr3, ispin, ndr REAL(DP), INTENT(out) :: at(3, 3), tau(3, natoms), force(3, natoms) REAL(DP), INTENT(out) :: rho(nr1, nr2, nr3) CHARACTER(LEN=*), INTENT(IN) :: prefix CHARACTER(LEN=*), INTENT(IN) :: tmp_dir CHARACTER(LEN=*), INTENT(IN) :: charge_density INTEGER :: i, j, ix, iy, iz REAL(DP) :: rhomin, rhomax, rhof REAL(DP) :: x, y, z, fx, fy, fz CHARACTER(LEN=256) :: filename INTEGER :: n1, n2, n3 REAL(DP), ALLOCATABLE :: rho_plane(:) ! read cell vectors ! NOTE: colums are lattice vectors ! READ(cunit,*) DO i = 1, 3 READ(cunit,*) ( at(i, j), j=1,3 ) END DO at(:, :) = at(:, :) * bohr ! read atomic coordinates READ(punit,*) IF (lforces) READ(funit,*) DO i = 1, natoms ! convert atomic units to Angstroms READ(punit,*) x, y, z tau(1, i) = x * bohr tau(2, i) = y * bohr tau(3, i) = z * bohr IF (lforces) THEN ! read forces READ (funit,*) fx, fy, fz force(1, i) = fx force(2, i) = fy force(3, i) = fz END IF END DO IF (lcharge) THEN filename = restart_dir( tmp_dir, ndr ) ! IF( charge_density == 'spin' ) THEN filename = TRIM( filename ) // '/' // 'spin-polarization' ELSE filename = TRIM( filename ) // '/' // 'charge-density' END IF ! ! IF ( check_file_exst ( TRIM(filename)//'.dat' ) ) THEN ! CALL read_density( TRIM(filename)//'.dat', dunit, nr1, nr2, nr3, rho, lbinary ) ! ELSEIF ( check_file_exst ( TRIM(filename)//'.xml' ) ) THEN ! CALL read_density( TRIM(filename)//'.xml', dunit, nr1, nr2, nr3, rho, lbinary ) ! ELSE CALL infomsg ('read_fpmd', 'file '//TRIM(filename)//' not found' ) ENDIF ! END IF RETURN END SUBROUTINE read_fpmd SUBROUTINE read_density( filename, dunit, nr1, nr2, nr3, rho, lbinary ) USE kinds, ONLY: DP USE xml_io_base USE iotk_module IMPLICIT NONE LOGICAL, INTENT(in) :: lbinary INTEGER, INTENT(in) :: dunit INTEGER, INTENT(in) :: nr1, nr2, nr3 REAL(DP), INTENT(out) :: rho(nr1, nr2, nr3) CHARACTER(LEN=*), INTENT(IN) :: filename INTEGER :: ix, iy, iz, ierr REAL(DP) :: rhomin, rhomax, rhof INTEGER :: n1, n2, n3 REAL(DP), ALLOCATABLE :: rho_plane(:) ! WRITE(*,'("Reading density from: ", A80)' ) TRIM( filename ) ! CALL iotk_open_read( dunit, file = TRIM( filename ) , BINARY = lbinary, ROOT = attr, IERR = ierr ) ! CALL iotk_scan_begin( dunit, "CHARGE-DENSITY" ) CALL iotk_scan_empty( dunit, "INFO", attr ) CALL iotk_scan_attr( attr, "nr1", n1 ) CALL iotk_scan_attr( attr, "nr2", n2 ) CALL iotk_scan_attr( attr, "nr3", n3 ) ! ALLOCATE( rho_plane( n1 * n2 ) ) ! read charge density from file ! note: must transpose DO iz = 1, n3 CALL iotk_scan_dat( dunit, "z" // iotk_index( iz ), rho_plane ) IF( iz <= nr3 ) THEN DO iy = 1, MIN( n2, nr2 ) DO ix = 1, MIN( n1, nr1 ) rho(ix, iy, iz) = rho_plane( ix + ( iy - 1 ) * n1 ) END DO END DO END IF END DO CALL iotk_scan_end( dunit, "CHARGE-DENSITY" ) CALL iotk_close_read( dunit ) rhomin = MINVAL(rho(:,:,:)) rhomax = MAXVAL(rho(:,:,:)) ! print some info WRITE(*,'(2x,"Density grid:")') WRITE(*,'(3(2x,i6))') nr1, nr2, nr3 WRITE(*,'(2x,"spin = ",A4)') filename WRITE(*,'(2x,"Minimum and maximum values:")') WRITE(*,'(3(2x,1pe12.4))') rhomin, rhomax RETURN END SUBROUTINE read_density ! ! ! ! compute inverse of 3*3 matrix ! SUBROUTINE inverse( at, atinv ) IMPLICIT NONE INTEGER, PARAMETER :: DP = KIND(0.0d0) REAL(DP), INTENT(in) :: at(3, 3) REAL(DP), INTENT(out) :: atinv(3, 3) REAL(DP) :: det atinv(1, 1) = at(2, 2) * at(3, 3) - at(2, 3) * at(3, 2) atinv(2, 1) = at(2, 3) * at(3, 1) - at(2, 1) * at(3, 3) atinv(3, 1) = at(2, 1) * at(3, 2) - at(2, 2) * at(3, 1) atinv(1, 2) = at(1, 3) * at(3, 2) - at(1, 2) * at(3, 3) atinv(2, 2) = at(1, 1) * at(3, 3) - at(1, 3) * at(3, 1) atinv(3, 2) = at(1, 2) * at(3, 1) - at(1, 1) * at(3, 2) atinv(1, 3) = at(1, 2) * at(2, 3) - at(1, 3) * at(2, 2) atinv(2, 3) = at(1, 3) * at(2, 1) - at(1, 1) * at(2, 3) atinv(3, 3) = at(1, 1) * at(2, 2) - at(1, 2) * at(2, 1) det = at(1, 1) * atinv(1, 1) + at(1, 2) * atinv(2, 1) + & at(1, 3) * atinv(3, 1) atinv(:,:) = atinv(:,:) / det; RETURN END SUBROUTINE inverse ! generate cell dimensions and Euler angles from cell vectors ! euler(1:6) = a, b, c, alpha, beta, gamma ! I didn't call the array "celldm" because that could be confusing, ! since in PWscf the convention is different: ! celldm(1:6) = a, b/a, c/a, cos(alpha), cos(beta), cos(gamma) SUBROUTINE at_to_euler( at, euler ) IMPLICIT NONE INTEGER, PARAMETER :: DP = KIND(0.0d0) REAL(DP), INTENT(in) :: at(3, 3) REAL(DP), INTENT(out) :: euler(6) REAL(DP), PARAMETER :: rad2deg = 180.0d0 / 3.14159265358979323846d0 REAL(DP) :: dot(3, 3) INTEGER :: i, j DO i = 1, 3 DO j = i, 3 dot(i, j) = dot_product(at(:,i), at(:,j)) END DO END DO DO i = 1, 3 euler(i) = sqrt(dot(i, i)) END DO euler(4) = acos(dot(2, 3) / (euler(2) * euler(3))) * rad2deg euler(5) = acos(dot(1, 3) / (euler(1) * euler(3))) * rad2deg euler(6) = acos(dot(1, 2) / (euler(1) * euler(2))) * rad2deg RETURN END SUBROUTINE at_to_euler ! generate cell vectors back from cell dimensions and Euler angles ! euler(1:6) = a, b, c, alpha, beta, gamma ! here I follow the PDB convention, namely, c is oriented along the z ! axis and b lies in the yz plane, or to put it another way, at is ! lower triangular SUBROUTINE euler_to_at( euler, at ) IMPLICIT NONE INTEGER, PARAMETER :: DP = KIND(0.0d0) REAL(DP), PARAMETER :: deg2rad = 3.14159265358979323846d0 / 180.0d0 REAL(DP), INTENT(in) :: euler(6) REAL(DP), INTENT(out) :: at(3, 3) REAL(DP) :: cos_ab, cos_ac, cos_bc, temp1, temp2 cos_bc = COS(euler(4) * deg2rad) cos_ac = COS(euler(5) * deg2rad) cos_ab = COS(euler(6) * deg2rad) temp1 = SQRT(1.0d0 - cos_bc*cos_bc) ! sin_bc temp2 = (cos_ab - cos_bc*cos_ac) / temp1 at(1, 1) = SQRT(1.0d0 - cos_ac*cos_ac - temp2*temp2) * euler(1) at(2, 1) = temp2 * euler(1) at(3, 1) = cos_ac * euler(1) at(1, 3) = 0.0d0 at(2, 3) = 0.0d0 at(3, 3) = euler(3) at(1, 2) = 0.0d0 at(2, 2) = temp1 * euler(2) at(3, 2) = cos_bc * euler(2) RETURN END SUBROUTINE euler_to_at ! map charge density from a grid to another by linear interpolation ! along the three axes SUBROUTINE scale_charge( rho_in, rho_out, nr1, nr2, nr3, ns1, ns2, ns3, & np1, np2, np3 ) IMPLICIT NONE INTEGER, PARAMETER :: DP = KIND(0.0d0) INTEGER, INTENT(in) :: nr1, nr2, nr3, ns1, ns2, ns3, np1, np2, np3 REAL(DP), INTENT(in) :: rho_in( nr1, nr2, nr3 ) REAL(DP), INTENT(out) :: rho_out( ns1, ns2, ns3 ) INTEGER :: i, j, k INTEGER :: i0(ns1), j0(ns2), k0(ns3), i1(ns1), j1(ns2), k1(ns3) REAL(DP) :: x0(ns1), y0(ns2), z0(ns3), x1(ns1), y1(ns2), z1(ns3) ! precompute interpolation data DO i = 1, ns1 CALL scale_linear( i, nr1, ns1, np1, i0(i), i1(i), x0(i), x1(i) ) END DO DO j = 1, ns2 CALL scale_linear( j, nr2, ns2, np2, j0(j), j1(j), y0(j), y1(j) ) END DO DO k = 1, ns3 CALL scale_linear( k, nr3, ns3, np3, k0(k), k1(k), z0(k), z1(k) ) END DO ! interpolate linearly along three axes DO i = 1, ns1 DO j = 1, ns2 DO k = 1, ns3 rho_out(i, j, k) = & rho_in(i1(i), j1(j), k1(k)) * x0(i) * y0(j) * z0(k) + & rho_in(i0(i), j1(j), k1(k)) * x1(i) * y0(j) * z0(k) + & rho_in(i1(i), j0(j), k1(k)) * x0(i) * y1(j) * z0(k) + & rho_in(i1(i), j1(j), k0(k)) * x0(i) * y0(j) * z1(k) + & rho_in(i0(i), j0(j), k1(k)) * x1(i) * y1(j) * z0(k) + & rho_in(i0(i), j1(j), k0(k)) * x1(i) * y0(j) * z1(k) + & rho_in(i1(i), j0(j), k0(k)) * x0(i) * y1(j) * z1(k) + & rho_in(i0(i), j0(j), k0(k)) * x1(i) * y1(j) * z1(k) END DO END DO END DO RETURN END SUBROUTINE scale_charge ! compute grid parameters for linear interpolation SUBROUTINE scale_linear( n, nr, ns, np, n0, n1, r0, r1 ) IMPLICIT NONE INTEGER, PARAMETER :: DP = KIND(0.0d0) INTEGER, INTENT(in) :: n, nr, ns, np INTEGER, INTENT(out) :: n0, n1 REAL(DP), INTENT(out) :: r0, r1 ! map new grid point onto old grid ! mapping is: 1 --> 1, ns+1 --> (nr*np)+1 r0 = REAL((n-1) * nr*np, DP) / ns + 1.0d0 ! indices of neighbors n0 = int(r0) n1 = n0 + 1 ! distances from neighbors r0 = r0 - n0 r1 = 1.0d0 - r0 ! apply periodic boundary conditions n0 = MOD(n0 - 1, nr) + 1 n1 = MOD(n1 - 1, nr) + 1 RETURN END SUBROUTINE scale_linear SUBROUTINE write_xsf( ldynamics, lforces, lcharge, ounit, n, at, & natoms, ityp, tau, force, rho, nr1, nr2, nr3 ) IMPLICIT NONE INTEGER, PARAMETER :: DP = KIND(0.0d0) LOGICAL, INTENT(in) :: ldynamics, lforces, lcharge INTEGER, INTENT(in) :: ounit, n, natoms, ityp(natoms) INTEGER, INTENT(in) :: nr1, nr2, nr3 REAL(DP), INTENT(in) :: at(3, 3), tau(3, natoms), force(3, natoms) REAL(DP), INTENT(in) :: rho(nr1, nr2, nr3) INTEGER :: i, j, ix, iy, iz ! write cell IF (ldynamics) THEN WRITE(ounit,*) 'PRIMVEC', n ELSE WRITE(ounit,*) 'PRIMVEC' END IF WRITE(ounit,'(2(3f15.9/),3f15.9)') at IF (ldynamics) THEN WRITE(ounit,*) 'CONVVEC', n WRITE(ounit,'(2(3f15.9/),3f15.9)') at END IF ! write atomic coordinates (and forces) IF (ldynamics) THEN WRITE(ounit,*) 'PRIMCOORD', n ELSE WRITE(ounit,*) 'PRIMCOORD' END IF WRITE(ounit,*) natoms, 1 DO i = 1, natoms IF (lforces) THEN WRITE (ounit,'(i3,3x,3f15.9,1x,3f12.5)') ityp(i), & (tau(j, i), j=1,3), (force(j, i), j=1,3) ELSE WRITE (ounit,'(i3,3x,3f15.9,1x,3f12.5)') ityp(i), & (tau(j, i), j=1,3) END IF END DO ! write charge density IF (lcharge) THEN ! XSF scalar-field header WRITE(ounit,'(a)') 'BEGIN_BLOCK_DATAGRID_3D' WRITE(ounit,'(a)') '3D_PWSCF' WRITE(ounit,'(a)') 'DATAGRID_3D_UNKNOWN' ! mesh dimensions WRITE(ounit,*) nr1, nr2, nr3 ! origin WRITE(ounit,'(3f10.6)') 0.0d0, 0.0d0, 0.0d0 ! lattice vectors WRITE(ounit,'(3f10.6)') ((at(i, j), i=1,3), j=1,3) ! charge density WRITE(ounit,'(6e13.5)') & (((rho(ix, iy, iz), ix=1,nr1), iy=1,nr2), iz=1,nr3) WRITE(ounit,'(a)') 'END_DATAGRID_3D' WRITE(ounit,'(a)') 'END_BLOCK_DATAGRID_3D' END IF RETURN END SUBROUTINE write_xsf SUBROUTINE write_grd( ounit, at, rho, nr1, nr2, nr3 ) IMPLICIT NONE INTEGER, PARAMETER :: DP = KIND(0.0d0) INTEGER, INTENT(in) :: ounit INTEGER, INTENT(in) :: nr1, nr2, nr3 REAL(DP), INTENT(in) :: at(3, 3), rho(nr1, nr2, nr3) INTEGER :: i, j, k REAL(DP) :: euler(6) CALL at_to_euler( at, euler ) WRITE(ounit,*) 'charge density' WRITE(ounit,*) '(1p,e12.5)' WRITE(ounit,fmt='(6f9.3)') (euler(i), i=1,6) WRITE(ounit,fmt='(3i5)') nr1 - 1, nr2 - 1, nr3 - 1 WRITE(ounit,fmt='(7i5)') 1, 0, 0, 0, nr1 - 1, nr2 - 1, nr3 - 1 WRITE(ounit,fmt='(1p,e12.5)') (((rho(i, j, k), i=1,nr1), j=1,nr2), k=1,nr3) RETURN END SUBROUTINE write_grd SUBROUTINE write_pdb( bunit, at, tau, natoms, ityp, euler, lrotation ) IMPLICIT NONE INTEGER, PARAMETER :: DP = KIND(0.0d0) INTEGER, INTENT(in) :: bunit, natoms INTEGER, INTENT(in) :: ityp(natoms) REAL(DP), INTENT(in) :: at(3, 3), tau(3, natoms), euler(6) LOGICAL, INTENT(in) :: lrotation INTEGER :: i, j CHARACTER*2 :: label(103) DATA label /" H", "He", "Li", "Be", " B", " C", " N", " O", " F", "Ne", & "Na", "Mg", "Al", "Si", " P", " S", "Cl", "Ar", " K", "Ca", & "Sc", "Ti", " V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn", & "Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", " Y", "Zr", & "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "St", & "Sb", "Te", " I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd", & "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb", & "Lu", "Hf", "Ta", " W", "Re", "Os", "Ir", "Pt", "Au", "Hg", & "Tl", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th", & "Pa", " U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm", & "Md", "No", "Lr"/ WRITE(bunit,'("HEADER PROTEIN")') WRITE(bunit,'("COMPND UNNAMED")') WRITE(bunit,'("AUTHOR GENERATED BY ...")') IF (lrotation) & WRITE(bunit,'("CRYST1",3F9.3,3F7.2,1X,A10,I3)') euler, "P 1", 1 DO i = 1, natoms WRITE(bunit,'("ATOM ",I5,1X,A2,3X,2A3,I3,3X,F9.3,2F8.3,2F6.2," ")') & i, label(ityp(i)), "UKN", "", 1, (tau(j, i), j=1,3), 1.0d0, 0.0d0 END DO WRITE(bunit,'("MASTER 0 0 0 0 0 0 0 0 ", I4," 0 ",I4," 0")') natoms, natoms WRITE(bunit,'("END")') RETURN END SUBROUTINE write_pdb ! PDB File Format !--------------------------------------------------------------------------- !Field | Column | FORTRAN | ! No. | range | format | Description !--------------------------------------------------------------------------- ! 1. | 1 - 6 | A6 | Record ID (eg ATOM, HETATM) ! 2. | 7 - 11 | I5 | Atom serial number ! - | 12 - 12 | 1X | Blank ! 3. | 13 - 16 | A4 | Atom name (eg " CA " , " ND1") ! 4. | 17 - 17 | A1 | Alternative location code (if any) ! 5. | 18 - 20 | A3 | Standard 3-letter amino acid code for residue ! - | 21 - 21 | 1X | Blank ! 6. | 22 - 22 | A1 | Chain identifier code ! 7. | 23 - 26 | I4 | Residue sequence number ! 8. | 27 - 27 | A1 | Insertion code (if any) ! - | 28 - 30 | 3X | Blank ! 9. | 31 - 38 | F8.3 | Atom's x-coordinate ! 10. | 39 - 46 | F8.3 | Atom's y-coordinate ! 11. | 47 - 54 | F8.3 | Atom's z-coordinate ! 12. | 55 - 60 | F6.2 | Occupancy value for atom ! 13. | 61 - 66 | F6.2 | B-value (thermal factor) ! - | 67 - 67 | 1X | Blank ! 14. | 68 - 68 | I3 | Footnote number !--------------------------------------------------------------------------- espresso-5.1/CPV/src/metaxc.f900000644000175000017500000000660112341373026014326 0ustar mbamba! ! Copyright (C) 2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! SUBROUTINE tpssmeta(nnr, nspin,grho,rho,kedtau,etxc) ! =================== !-------------------------------------------------------------------- use kinds, only: dp IMPLICIT NONE ! ! input integer nspin , nnr real(dp) grho(nnr,3,nspin), rho(nnr,nspin),kedtau(nnr,nspin) ! output: excrho: exc * rho ; E_xc = \int excrho(r) d_r ! output: rhor: contains the exchange-correlation potential real(dp) etxc REAL(dp) :: zeta, rh, grh2 INTEGER :: k, ipol, is REAL(dp) :: grho2 (2), sx, sc, v1x, v2x, v3x,v1c, v2c, v3c, & v1xup, v1xdw, v2xup, v2xdw, v1cup, v1cdw ,v2cup(3),v2cdw(3), & v3xup, v3xdw,grhoup(3),grhodw(3),& segno, arho, atau REAL(dp), PARAMETER :: epsr = 1.0d-6, epsg = 1.0d-10 etxc = 0.d0 ! calculate the gradient of rho+rho_core in real space DO k = 1, nnr DO is = 1, nspin grho2 (is) = grho(k,1, is)**2 + grho(k,2,is)**2 + grho(k,3, is)**2 ENDDO IF (nspin == 1) THEN ! ! This is the spin-unpolarised case ! arho = ABS (rho (k, 1) ) segno = SIGN (1.d0, rho (k, 1) ) atau = kedtau(k,1) IF (arho.GT.epsr.AND.grho2 (1) .GT.epsg.AND.ABS(atau).GT.epsr) THEN CALL tpsscxc (arho, grho2(1),atau,sx, sc, & v1x, v2x,v3x,v1c, v2c,v3c) rho (k, 1) = (v1x + v1c ) kedtau(k,1)= (v3x + v3c) *0.5d0 ! h contains D(rho*Exc)/D(|grad rho|) * (grad rho) / |grad rho| DO ipol = 1, 3 grho(k,ipol,1) = (v2x + v2c)*grho (k,ipol,1) ENDDO etxc = etxc + (sx + sc) * segno ELSE DO ipol = 1, 3 grho (k, ipol, 1) = 0.d0 ENDDO kedtau(k,1)=0.d0 ENDIF ELSE ! ! spin-polarised case ! CALL tpsscx_spin(rho (k, 1), rho (k, 2), grho2 (1), grho2 (2), & kedtau(k,1),kedtau(k,2),sx, & v1xup,v1xdw,v2xup,v2xdw,v3xup,v3xdw) rh = rho (k, 1) + rho (k, 2) IF (rh.GT.epsr) THEN zeta = (rho (k, 1) - rho (k, 2) ) / rh DO ipol=1,3 grhoup(ipol)=grho(k,ipol,1) grhodw(ipol)=grho(k,ipol,2) END DO atau=kedtau(k,1)+kedtau(k,2) CALL tpsscc_spin(rh,zeta,grhoup,grhodw, & atau,sc,v1cup,v1cdw,v2cup,v2cdw,v3c) ELSE sc = 0.d0 v1cup = 0.d0 v1cdw = 0.d0 v2cup=0.d0 v2cdw=0.d0 v3c=0.d0 ! ENDIF ! ! first term of the gradient correction : D(rho*Exc)/D(rho) ! rho(k, 1) = (v1xup + v1cup) rho(k, 2) = (v1xdw + v1cdw) ! ! h contains D(rho*Exc)/D(|grad rho|) * (grad rho) / |grad rho| ! DO ipol = 1, 3 grho(k,ipol,1) = (v2xup*grho(k,ipol,1) + v2cup(ipol)) grho(k,ipol,2) = (v2xdw*grho(k,ipol,2) + v2cdw(ipol)) ENDDO kedtau(k,1)= (v3xup + v3c) *0.5d0 kedtau(k,2)= (v3xdw + v3c) *0.5d0 etxc = etxc + (sx + sc) ENDIF ENDDO RETURN END SUBROUTINE tpssmeta !----------------------------------------------------------------------- espresso-5.1/CPV/src/smallbox_subs.f900000644000175000017500000001622312341373026015723 0ustar mbamba! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !=----------------------------------------------------------------------= MODULE smallbox_subs !=----------------------------------------------------------------------= ! ... subroutines generating G-vectors and variables needed to map ! ... G-vector components onto the FFT grid(s) in reciprocal space ! ... Small-Box grid USE small_box, ONLY : bgb, tpibab USE smallbox_gvec, ONLY : ngb, ngbl, gb, gxb, glb, npb, nmb, mill_b, gcutb USE fft_base, ONLY : dfftb PRIVATE SAVE PUBLIC :: ggenb, gcalb !=----------------------------------------------------------------------= CONTAINS !=----------------------------------------------------------------------= ! SUBROUTINE ggenb ( ecutrho, iprsta ) !----------------------------------------------------------------------- ! ! As ggen, for the box grid. A "b" is appended to box variables. ! The documentation for ggen applies ! USE kinds, ONLY: DP USE io_global, ONLY: stdout, ionode ! IMPLICIT NONE ! REAL(DP), INTENT(in) :: ecutrho INTEGER, INTENT (in) :: iprsta ! INTEGER, ALLOCATABLE:: idx(:), iglb(:) INTEGER n1pb, n2pb, n3pb, n1mb, n2mb, n3mb INTEGER it, icurr, nr1m1, nr2m1, nr3m1, ir, ig, i,j,k, itv(3), ip REAL(DP) t(3), g2 ! ! gcutb is the effective cut-off for G-vectors of the small box grid ! gcutb = ecutrho / tpibab**2 ! nr1m1=dfftb%nr1-1 nr2m1=dfftb%nr2-1 nr3m1=dfftb%nr3-1 ngb=0 ! ! first step : count the number of vectors with g2 < gcutb ! ! exclude space with x<0 ! DO i= 0,nr1m1 DO j=-nr2m1,nr2m1 ! ! exclude plane with x=0, y<0 ! IF(i==0.and.j<0) GOTO 10 ! DO k=-nr3m1,nr3m1 ! ! exclude line with x=0, y=0, z<0 ! IF(i==0.and.j==0.and.k<0) GOTO 20 g2=0.d0 DO ir=1,3 t(ir) = dble(i)*bgb(ir,1)+dble(j)*bgb(ir,2)+dble(k)*bgb(ir,3) g2=g2+t(ir)*t(ir) ENDDO IF(g2>gcutb) GOTO 20 ngb=ngb+1 20 CONTINUE ENDDO 10 CONTINUE ENDDO ENDDO ! ! second step: allocate space ! ALLOCATE(gxb(3,ngb)) ALLOCATE(gb(ngb)) ALLOCATE(npb(ngb)) ALLOCATE(nmb(ngb)) ALLOCATE(iglb(ngb)) ALLOCATE(mill_b(3,ngb)) ALLOCATE(idx(ngb)) ! ! third step : find the vectors with g2 < gcutb ! ngb=0 ! ! exclude space with x<0 ! DO i= 0,nr1m1 DO j=-nr2m1,nr2m1 ! ! exclude plane with x=0, y<0 ! IF(i==0.and.j<0) GOTO 15 ! DO k=-nr3m1,nr3m1 ! ! exclude line with x=0, y=0, z<0 ! IF(i==0.and.j==0.and.k<0) GOTO 25 g2=0.d0 DO ir=1,3 t(ir) = dble(i)*bgb(ir,1)+dble(j)*bgb(ir,2)+dble(k)*bgb(ir,3) g2=g2+t(ir)*t(ir) ENDDO IF(g2>gcutb) GOTO 25 ngb=ngb+1 gb(ngb)=g2 mill_b(1,ngb)=i mill_b(2,ngb)=j mill_b(3,ngb)=k 25 CONTINUE ENDDO 15 CONTINUE ENDDO ENDDO IF( iprsta > 3 ) THEN WRITE( stdout,*) WRITE( stdout,170) ngb 170 FORMAT(' ggenb: # of gb vectors < gcutb ngb = ',i6) ENDIF idx(1)=0 CALL hpsort (ngb,gb,idx) DO ig=1,ngb-1 icurr=ig 30 IF(idx(icurr)/=ig) THEN itv=mill_b(:,icurr) mill_b(:,icurr)=mill_b(:,idx(icurr)) mill_b(:,idx(icurr))=itv it=icurr icurr=idx(icurr) idx(it)=it IF(idx(icurr)==ig) THEN idx(icurr)=icurr GOTO 35 ENDIF GOTO 30 ENDIF 35 CONTINUE ENDDO ! DEALLOCATE(idx) ! ! costruct fft indexes (n1b,n2b,n3b) for the box grid ! DO ig=1,ngb i=mill_b(1,ig) j=mill_b(2,ig) k=mill_b(3,ig) n1pb=i+1 n2pb=j+1 n3pb=k+1 ! ! n1pb,n2pb,n3pb: indexes of G ! negative indexes are refolded (note that by construction i.ge.0) ! IF(i<0) n1pb=n1pb+dfftb%nr1 IF(j<0) n2pb=n2pb+dfftb%nr2 IF(k<0) n3pb=n3pb+dfftb%nr3 ! ! n1mb,n2mb,n3mb: indexes of -G ! IF(i==0) THEN n1mb=1 ELSE n1mb=dfftb%nr1-n1pb+2 ENDIF IF(j==0) THEN n2mb=1 ELSE n2mb=dfftb%nr2-n2pb+2 ENDIF IF(k==0) THEN n3mb=1 ELSE n3mb=dfftb%nr3-n3pb+2 ENDIF ! ! conversion from (i,j,k) index to combined 1-d ijk index: ! ijk = 1 + (i-1)+(j-1)*ix+(k-1)*ix*jx ! where the (i,j,k) array is assumed to be dimensioned (ix,jx,kx) ! npb(ig) = n1pb+(n2pb-1)*dfftb%nr1x+(n3pb-1)*dfftb%nr1x*dfftb%nr2x nmb(ig) = n1mb+(n2mb-1)*dfftb%nr1x+(n3mb-1)*dfftb%nr1x*dfftb%nr2x ENDDO ! ! shells of G - first calculate their number and position ! CALL gshcount( ngb, gb, ngbl, iglb ) ! IF( iprsta > 3 ) THEN WRITE( stdout,180) ngbl 180 FORMAT(' ggenb: # of gb shells < gcutb ngbl= ',i6) ENDIF ! ! then allocate the array glb ! ALLOCATE(glb(ngbl)) ! ! and finally fill glb with the values of the shells ! glb(iglb(1))=gb(1) DO ig=2,ngb IF(iglb(ig)/=iglb(ig-1)) glb(iglb(ig))=gb(ig) ENDDO ! ! calculation of G-vectors ! DO ig=1,ngb i=mill_b(1,ig) j=mill_b(2,ig) k=mill_b(3,ig) gxb(:,ig)=i*bgb(:,1)+j*bgb(:,2)+k*bgb(:,3) ENDDO ! DEALLOCATE (iglb) ! RETURN ! END SUBROUTINE ggenb ! !------------------------------------------------------------------------- SUBROUTINE gshcount( ng, gg, ngl, igl ) !------------------------------------------------------------------------- ! USE kinds, ONLY: DP ! IMPLICIT NONE INTEGER, INTENT (IN) :: ng REAL(DP),INTENT (IN) :: gg(ng) INTEGER, INTENT (OUT) :: ngl, igl(ng) INTEGER :: ig ngl=1 igl(1)=ngl DO ig=2,ng IF(abs(gg(ig)-gg(ig-1))>1.e-6) THEN ngl=ngl+1 ENDIF igl(ig)=ngl ENDDO RETURN ! END SUBROUTINE gshcount ! ! SUBROUTINE gcalb ( ) ! ! re-generation of little box g-vectors ! USE kinds, ONLY: DP ! IMPLICIT NONE ! INTEGER :: ig, i1,i2,i3 IF ( dfftb%nr1 == 0 .OR. dfftb%nr2 == 0 .OR. dfftb%nr3 == 0 ) return ! do ig=1,ngb i1=mill_b(1,ig) i2=mill_b(2,ig) i3=mill_b(3,ig) gxb(:,ig)=i1*bgb(:,1)+i2*bgb(:,2)+i3*bgb(:,3) gb(ig)=gxb(1,ig)**2 + gxb(2,ig)**2 + gxb(3,ig)**2 enddo ! RETURN END SUBROUTINE gcalb ! !=----------------------------------------------------------------------= END MODULE smallbox_subs !=----------------------------------------------------------------------= espresso-5.1/CPV/src/cg_sub.f900000644000175000017500000011167512341373026014317 0ustar mbamba! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !======================================================================= ! subroutine runcg_uspp( nfi, tfirst, tlast, eigr, bec, irb, eigrb, & rhor, rhog, rhos, rhoc, ei1, ei2, ei3, sfac, fion, ema0bg, becdr, & lambdap, lambda, nlam, vpot, c0, cm, phi, dbec,l_cprestart ) use kinds, only: dp use control_flags, only: iprint, thdyn, tpre, iverbosity, & tfor, taurdr, tprnfor use control_flags, only: nbeg, nomore, tsde, tortho, tnosee, & tnosep, trane, tranp, tsdp, tcp, tcap, ampre, amprp, tnoseh !---ensemble-DFT use energies, only: eht, epseu, exc, etot, eself, enl, ekin, & & atot, entropy, egrand use electrons_base, only: f, nspin, nel, iupdwn, nupdwn, nudx, nelt, & nbspx, nbsp, ispin use ensemble_dft, only: tens, ef, z0t, c0diag, & becdiag, fmat0, e0, id_matrix_init !--- use gvect, only: ngm use gvecs, only: ngms use smallbox_gvec, only: ngb use gvecw, only: ngw use gvect, only: gstart use ions_base, only: na, nat, nax, nsp, rcmax use cell_base, only: omega, alat, tpiba2 use local_pseudo, only: vps, rhops use io_global, ONLY : stdout, ionode, ionode_id use mp_global, ONLY : intra_bgrp_comm, np_ortho, me_ortho, ortho_comm use dener use constants, only : pi, au_gpa USE io_files, ONLY : tmp_dir, prefix use uspp, only : nhsa=> nkb, nhsavb=> nkbus, & betae => vkb, rhovan => becsum, & deeq, qq, nlcc_any use uspp_param, only : nh, nvb, ish use cg_module, only : ene_ok, maxiter,niter_cg_restart, & conv_thr, passop, enever, itercg,c0old use ions_positions, only : tau0 use efield_module, only : tefield, evalue, ctable, qmat, detq, ipolp, & berry_energy, ctabin, gqq, gqqm, df, pberryel, & tefield2, evalue2, ctable2, qmat2, detq2, ipolp2, & berry_energy2, ctabin2, gqq2, gqqm2, pberryel2 use mp, only : mp_sum, mp_bcast use cp_electronic_mass, ONLY : emass_cutoff use orthogonalize_base, ONLY : calphi_bgrp use cp_interfaces, ONLY : rhoofr, dforce, compute_stress, vofrho, nlfl_bgrp, prefor use cp_interfaces, ONLY : nlsm2_bgrp, calbec, caldbec_bgrp, nlfq_bgrp use cp_interfaces, ONLY : collect_lambda, distribute_lambda USE cp_main_variables, ONLY : descla, drhor, drhog USE descriptors, ONLY : la_descriptor, ldim_cyclic USE mp_global, ONLY: me_image, my_image_id, nbgrp USE fft_base, ONLY: dffts, dfftp ! implicit none ! LOGICAL, INTENT(in) :: l_cprestart !if true prepares a CG->CP restart CHARACTER(LEN=80) :: uname CHARACTER(LEN=6), EXTERNAL :: int_to_char integer :: nfi, nlam logical :: tfirst , tlast complex(dp) :: eigr(ngw,nat) real(dp) :: bec(nhsa,nbspx) real(dp) :: becdr(nhsa,nbspx,3) integer irb(3,nat) complex(dp) :: eigrb(ngb,nat) real(dp) :: rhor(dfftp%nnr,nspin) real(dp) :: vpot(dfftp%nnr,nspin) complex(dp) :: rhog(ngm,nspin) real(dp) :: rhos(dffts%nnr,nspin) real(dp) :: rhoc(dfftp%nnr) complex(dp) :: ei1(-dfftp%nr1:dfftp%nr1,nat) complex(dp) :: ei2(-dfftp%nr2:dfftp%nr2,nat) complex(dp) :: ei3(-dfftp%nr3:dfftp%nr3,nat) complex(dp) :: sfac( ngms, nsp ) real(dp) :: fion(3,nat) real(dp) :: ema0bg(ngw) real(dp) :: lambdap(nlam,nlam,nspin) real(dp) :: lambda(nlam,nlam,nspin) complex(dp) :: c0( ngw, nbspx ) complex(dp) :: cm( ngw, nbspx ) complex(dp) :: phi( ngw, nbspx ) real(dp) :: dbec(nhsa,nbspx,3,3) ! ! integer :: i, j, ig, k, is, iss,ia, iv, jv, il, ii, jj, kk, ip, nrlx integer :: inl, jnl, niter, istart, nss, nrl, me_rot, np_rot , comm real(dp) :: enb, enbi, x complex(dp), allocatable :: c2(:) complex(dp), allocatable :: c3(:) real(dp) :: gamma, entmp, sta complex(dp),allocatable :: hpsi(:,:), hpsi0(:,:), gi(:,:), hi(:,:) real(DP), allocatable:: s_minus1(:,:)!factors for inverting US S matrix real(DP), allocatable:: k_minus1(:,:)!factors for inverting US preconditioning matrix real(DP), allocatable :: lambda_repl(:,:) ! replicated copy of lambda real(DP), allocatable :: lambda_dist(:,:) ! replicated copy of lambda real(dp) :: sca, dumm(1) logical :: newscheme, firstiter integer :: maxiter3 ! ! real(kind=DP), allocatable :: bec0(:,:), becm(:,:), becdrdiag(:,:,:) real(kind=DP), allocatable :: ave_ene(:)!average kinetic energy for preconditioning real(kind=DP), allocatable :: fmat_(:,:)!average kinetic energy for preconditioning logical :: pre_state!if .true. does preconditioning state by state real(DP) esse,essenew !factors in c.g. logical ltresh!flag for convergence on energy real(DP) passo!step to minimum real(DP) etotnew,etotold!energies real(DP) spasso!sign of small step logical restartcg!if .true. restart again the CG algorithm, performing a SD step integer numok!counter on converged iterations integer iter3 real(DP) passof,passov !step to minimum: effective, estimated real(DP) ene0,ene1,dene0,enesti !energy terms for linear minimization along hi INTEGER :: i_max REAL(kind=DP) :: max_sca nrlx = MAXVAL(descla(:)%nrlx) allocate(bec0(nhsa,nbspx),becm(nhsa,nbspx), becdrdiag(nhsa,nbspx,3)) allocate (ave_ene(nbspx)) allocate(c2(ngw),c3(ngw)) call start_clock('runcg_uspp') if( nbgrp > 1 ) & call errore(' runcg_uspp ', ' parallelization over bands not yet implemented ', 1 ) newscheme=.false. firstiter=.true. pre_state=.false.!normally is disabled maxiter3=250 if(ionode) then uname = TRIM( tmp_dir ) // trim(prefix) // '.' & // trim(int_to_char( my_image_id )) // '_' // trim(int_to_char( me_image)) !open(37,file='convergence.dat',status='unknown')!for debug and tuning purposes open(37,file=uname,status='unknown')!for debug and tuning purposes endif if( tfirst .and. ionode ) & write(stdout,*) 'PERFORMING CONJUGATE GRADIENT MINIMIZATION OF EL. STATES' !set tpa preconditioning call emass_precond_tpa( ema0bg, tpiba2, emass_cutoff ) call prefor(eigr,betae) ltresh = .false. itercg = 1 etotold = 1.d8 restartcg = .true. passof = passop ene_ok = .false. !orthonormalize c0 call calbec(1,nsp,eigr,c0,bec) CALL gram_bgrp( betae, bec, nhsa, c0, ngw ) !calculates phi for pcdaga CALL calphi_bgrp( c0, SIZE(c0,1), bec, nhsa, betae, phi, nbsp ) !calculates the factors for S and K inversion in US case if(nvb.gt.0) then allocate( s_minus1(nhsavb,nhsavb)) allocate( k_minus1(nhsavb,nhsavb)) call set_x_minus1(betae,s_minus1,dumm,.false.) call set_x_minus1(betae,k_minus1,ema0bg,.true.) else allocate( s_minus1(1,1)) allocate( k_minus1(1,1)) endif !set index on number of converged iterations numok = 0 !initialize z0t call id_matrix_init( descla, nspin ) allocate(hpsi(ngw,nbspx),hpsi0(ngw,nbspx),gi(ngw,nbspx),hi(ngw,nbspx)) do while ( itercg .lt. maxiter .and. (.not.ltresh) ) ENERGY_CHECK: if(.not. ene_ok ) then call calbec(1,nsp,eigr,c0,bec) if(.not.tens) then call rhoofr(nfi,c0(:,:),irb,eigrb,bec,dbec,rhovan,rhor,drhor,rhog,drhog,rhos,enl,denl,ekin,dekin6) else if(newscheme.or.firstiter) then call inner_loop_cold( nfi, tfirst, tlast, eigr, irb, eigrb, & rhor, rhog, rhos, rhoc, ei1, ei2, ei3, sfac,c0,bec,dbec,firstiter,vpot) firstiter=.false. endif ! calculation of the rotated quantities call rotate( nrlx, z0t, c0(:,:), bec, c0diag, becdiag ) ! calculation of rho corresponding to the rotated wavefunctions call rhoofr(nfi,c0diag,irb,eigrb,becdiag,dbec, & rhovan,rhor,drhor,rhog,drhog,rhos,enl,denl,ekin,dekin6) endif !when cycle is restarted go to diagonal representation if(mod(itercg,niter_cg_restart)==1 .and. itercg >=2) then call rotate( nrlx, z0t, c0(:,:), bec, c0diag, becdiag ) c0(:,:)=c0diag(:,:) bec(:,:)=becdiag(:,:) call id_matrix_init( descla, nspin ) endif !calculates the potential ! ! put core charge (if present) in rhoc(r) ! if (nlcc_any) call set_cc(irb,eigrb,rhoc) ! !---ensemble-DFT vpot = rhor call vofrho(nfi,vpot,drhor,rhog,drhog,rhos,rhoc,tfirst,tlast, & & ei1,ei2,ei3,irb,eigrb,sfac,tau0,fion) if (.not.tens) then etotnew=etot else etotnew=etot+entropy end if if(tefield ) then!just in this case calculates elfield stuff at zeo field-->to be bettered call berry_energy( enb, enbi, bec, c0(:,:), fion ) etot=etot+enb+enbi endif if(tefield2 ) then!just in this case calculates elfield stuff at zeo field-->to be bettered call berry_energy2( enb, enbi, bec, c0(:,:), fion ) etot=etot+enb+enbi endif else etot=enever if(.not.tens) then etotnew=etot else etotnew=etot+entropy endif ene_ok=.false. end if ENERGY_CHECK if(ionode) write(37,*)itercg, etotnew,pberryel,pberryel2!for debug and tuning purposes if(abs(etotnew-etotold).lt.conv_thr) then numok=numok+1 else numok=0 endif if(numok.ge.4) then ltresh=.true. endif etotold=etotnew ene0=etot if(tens .and. newscheme) then ene0=ene0+entropy endif !update d call newd(vpot,irb,eigrb,rhovan,fion) call prefor(eigr,betae)!ATTENZIONE do i=1,nbsp,2 call dforce( i, bec, betae, c0,c2,c3,rhos, dffts%nnr, ispin,f,nbsp,nspin) if(tefield .and. (evalue.ne.0.d0)) then call dforceb(c0, i, betae, ipolp, bec ,ctabin(1,1,ipolp), gqq, gqqm, qmat, deeq, df) c2(1:ngw)=c2(1:ngw)+evalue*df(1:ngw) call dforceb(c0, i+1, betae, ipolp, bec ,ctabin(1,1,ipolp), gqq, gqqm, qmat, deeq, df) c3(1:ngw)=c3(1:ngw)+evalue*df(1:ngw) endif if(tefield2 .and. (evalue2.ne.0.d0)) then call dforceb(c0, i, betae, ipolp2, bec ,ctabin2(1,1,ipolp2), gqq2, gqqm2, qmat2, deeq, df) c2(1:ngw)=c2(1:ngw)+evalue2*df(1:ngw) call dforceb(c0, i+1, betae, ipolp2, bec ,ctabin2(1,1,ipolp2), gqq2, gqqm2, qmat2, deeq, df) c3(1:ngw)=c3(1:ngw)+evalue2*df(1:ngw) endif hpsi(1:ngw, i)=c2(1:ngw) if(i+1 <= nbsp) then hpsi(1:ngw,i+1)=c3(1:ngw) endif if (gstart==2) then hpsi(1, i)=CMPLX(DBLE(hpsi(1, i)), 0.d0,kind=DP) if(i+1 <= nbsp) then hpsi(1,i+1)=CMPLX(DBLE(hpsi(1,i+1)), 0.d0,kind=DP) endif end if enddo if(pre_state) call ave_kin(c0,SIZE(c0,1),nbsp,ave_ene) call pcdaga2(c0,phi,hpsi) hpsi0=hpsi gi = hpsi call calbec(1,nsp,eigr,hpsi,becm) call xminus1(hpsi,betae,dumm,becm,s_minus1,.false.) ! call sminus1(hpsi,becm,betae) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !look if the following two lines are really needed call calbec(1,nsp,eigr,hpsi,becm) call pc2(c0,bec,hpsi,becm) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! call kminus1(gi,betae,ema0bg) if(.not.pre_state) then call xminus1(gi,betae,ema0bg,becm,k_minus1,.true.) else call xminus1_state(gi,betae,ema0bg,becm,k_minus1,.true.,ave_ene) endif call calbec(1,nsp,eigr,gi,becm) call pc2(c0,bec,gi,becm) if(tens) call calcmt( nrlx, f, z0t, fmat0 ) call calbec(1,nsp,eigr,hpsi,bec0) ! calculates gamma gamma=0.d0 if(.not.tens) then do i=1,nbsp do ig=1,ngw gamma=gamma+2.d0*DBLE(CONJG(gi(ig,i))*hpsi(ig,i)) enddo if (gstart==2) then gamma=gamma-DBLE(CONJG(gi(1,i))*hpsi(1,i)) endif enddo call mp_sum( gamma, intra_bgrp_comm ) if (nvb.gt.0) then do i=1,nbsp do is=1,nvb do iv=1,nh(is) do jv=1,nh(is) do ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(is)+(jv-1)*na(is)+ia gamma=gamma+ qq(iv,jv,is)*becm(inl,i)*bec0(jnl,i) end do end do end do end do enddo endif else do iss=1,nspin nss=nupdwn(iss) istart=iupdwn(iss) me_rot = descla( iss )%mype np_rot = descla( iss )%npc * descla( iss )%npr allocate( fmat_ ( nrlx, nudx ) ) do ip = 1, np_rot if( me_rot == ( ip - 1 ) ) then fmat_ = fmat0(:,:,iss) end if nrl = ldim_cyclic( nss, np_rot, ip - 1 ) CALL mp_bcast( fmat_ , ip - 1 , intra_bgrp_comm ) do i=1,nss jj = ip do j=1,nrl do ig=1,ngw gamma=gamma+2.d0*DBLE(CONJG(gi(ig,i+istart-1))*hpsi(ig,jj+istart-1))*fmat_(j,i) enddo if (gstart==2) then gamma=gamma-DBLE(CONJG(gi(1,i+istart-1))*hpsi(1,jj+istart-1))*fmat_(j,i) endif jj = jj + np_rot enddo enddo enddo deallocate( fmat_ ) enddo if(nvb.gt.0) then do iss=1,nspin nss=nupdwn(iss) istart=iupdwn(iss) me_rot = descla( iss )%mype np_rot = descla( iss )%npc * descla( iss )%npr allocate( fmat_ ( nrlx, nudx ) ) do ip = 1, np_rot if( me_rot == ( ip - 1 ) ) then fmat_ = fmat0(:,:,iss) end if nrl = ldim_cyclic( nss, np_rot, ip - 1 ) CALL mp_bcast( fmat_ , ip - 1 , intra_bgrp_comm ) do i=1,nss jj = ip do j=1,nrl do is=1,nvb do iv=1,nh(is) do jv=1,nh(is) do ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(is)+(jv-1)*na(is)+ia gamma=gamma+ qq(iv,jv,is)*becm(inl,i+istart-1)*bec0(jnl,jj+istart-1)*fmat_(j,i) end do end do end do enddo jj = jj + np_rot enddo enddo end do deallocate( fmat_ ) enddo endif call mp_sum( gamma, intra_bgrp_comm ) endif !case of first iteration if(itercg==1.or.(mod(itercg,niter_cg_restart).eq.1).or.restartcg) then restartcg=.false. passof=passop hi=gi!hi is the search direction esse=gamma else !find direction hi for general case !calculates gamma for general case, not using Polak Ribiere essenew=gamma gamma=gamma/esse esse=essenew hi=gi+gamma*hi endif !note that hi, is saved on gi, because we need it before projection on conduction states !find minimum along direction hi: !project hi on conduction sub-space call calbec(1,nsp,eigr,hi,bec0) call pc2(c0,bec,hi,bec0) !do quadratic minimization ! !calculate derivative with respect to lambda along direction hi dene0=0. if(.not.tens) then do i=1,nbsp do ig=1,ngw dene0=dene0-4.d0*DBLE(CONJG(hi(ig,i))*hpsi0(ig,i)) enddo if (gstart==2) then dene0=dene0+2.d0*DBLE(CONJG(hi(1,i))*hpsi0(1,i)) endif end do else !in the ensamble case the derivative is Sum_ij (+ )*f_ji ! calculation of the kinetic energy x=xmin call calcmt( nrlx, f, z0t, fmat0 ) do iss = 1, nspin nss = nupdwn(iss) istart = iupdwn(iss) me_rot = descla( iss )%mype np_rot = descla( iss )%npc * descla( iss )%npr allocate( fmat_ ( nrlx, nudx ) ) do ip = 1, np_rot if( me_rot == ( ip - 1 ) ) then fmat_ = fmat0(:,:,iss) end if nrl = ldim_cyclic( nss, np_rot, ip - 1 ) CALL mp_bcast( fmat_ , ip - 1 , intra_bgrp_comm ) do i=1,nss jj = ip do j=1,nrl do ig=1,ngw dene0=dene0-2.d0*DBLE(CONJG(hi(ig,i+istart-1))*hpsi0(ig,jj+istart-1))*fmat_(j,i) dene0=dene0-2.d0*DBLE(CONJG(hpsi0(ig,i+istart-1))*hi(ig,jj+istart-1))*fmat_(j,i) enddo if (gstart==2) then dene0=dene0+DBLE(CONJG(hi(1,i+istart-1))*hpsi0(1,jj+istart-1))*fmat_(j,i) dene0=dene0+DBLE(CONJG(hpsi0(1,i+istart-1))*hi(1,jj+istart-1))*fmat_(j,i) end if jj = jj + np_rot enddo enddo end do deallocate( fmat_ ) enddo endif call mp_sum( dene0, intra_bgrp_comm ) !if the derivative is positive, search along opposite direction if(dene0.gt.0.d0) then spasso=-1.D0 else spasso=1.d0 endif !calculates wave-functions on a point on direction hi cm=c0+spasso*passof*hi !orthonormalize call calbec(1,nsp,eigr,cm,becm) CALL gram_bgrp( betae, becm, nhsa, cm, ngw ) !calculate energy if(.not.tens) then call rhoofr(nfi,cm(:,:),irb,eigrb,becm,dbec,rhovan,rhor,drhor,rhog,drhog,rhos,enl,denl,ekin,dekin6) else if(newscheme) then call inner_loop_cold( nfi, tfirst, tlast, eigr, irb, eigrb, & rhor, rhog, rhos, rhoc, ei1, ei2, ei3, sfac,cm,becm,dbec,.false., vpot ) endif ! calculation of the rotated quantities call rotate( nrlx, z0t, cm(:,:), becm, c0diag, becdiag ) ! calculation of rho corresponding to the rotated wavefunctions call rhoofr(nfi,c0diag,irb,eigrb,becdiag,dbec,rhovan,rhor, & drhor,rhog,drhog,rhos,enl,denl,ekin,dekin6) endif !calculate potential ! ! put core charge (if present) in rhoc(r) ! if (nlcc_any) call set_cc(irb,eigrb,rhoc) ! vpot = rhor ! call vofrho(nfi,vpot,drhor,rhog,drhog,rhos,rhoc,tfirst,tlast, & & ei1,ei2,ei3,irb,eigrb,sfac,tau0,fion) if( tefield ) then!to be bettered call berry_energy( enb, enbi, becm, cm(:,:), fion ) etot=etot+enb+enbi endif if( tefield2 ) then!to be bettered call berry_energy2( enb, enbi, becm, cm(:,:), fion ) etot=etot+enb+enbi endif ene1=etot if(tens.and.newscheme) then ene1=ene1+entropy endif !find the minimum call minparabola(ene0,spasso*dene0,ene1,passof,passo,enesti) if( iverbosity > 0 ) write(6,*) ene0,dene0,ene1,passo, gamma, esse !set new step passov=passof passof=2.d0*passo !calculates wave-functions at minimum cm=c0+spasso*passo*hi if(gstart==2) then cm(1,:)=0.5d0*(cm(1,:)+CONJG(cm(1,:))) endif call calbec(1,nsp,eigr,cm,becm) CALL gram_bgrp( betae, becm, nhsa, cm, ngw ) !test on energy: check the energy has really diminished !call calbec(1,nsp,eigr,cm,becm) if(.not.tens) then call rhoofr(nfi,cm(:,:),irb,eigrb,becm,dbec,rhovan,rhor,drhor,rhog,drhog,rhos,enl,denl,ekin,dekin6) else if(newscheme) then call inner_loop_cold( nfi, tfirst, tlast, eigr, irb, eigrb, & rhor, rhog, rhos, rhoc, ei1, ei2, ei3, sfac,cm,becm,dbec,.false., vpot ) endif ! calculation of the rotated quantities call rotate( nrlx, z0t, cm(:,:), becm, c0diag, becdiag ) ! calculation of rho corresponding to the rotated wavefunctions call rhoofr(nfi,c0diag,irb,eigrb,becdiag,dbec,rhovan,rhor, & drhor,rhog,drhog,rhos,enl,denl,ekin,dekin6) endif !calculates the potential ! ! put core charge (if present) in rhoc(r) ! if (nlcc_any) call set_cc(irb,eigrb,rhoc) ! vpot = rhor ! call vofrho(nfi,vpot,drhor,rhog,drhog,rhos,rhoc,tfirst,tlast, & & ei1,ei2,ei3,irb,eigrb,sfac,tau0,fion) if( tefield ) then!to be bettered call berry_energy( enb, enbi, becm, cm(:,:), fion ) etot=etot+enb+enbi endif if( tefield2 ) then!to be bettered call berry_energy2( enb, enbi, becm, cm(:,:), fion ) etot=etot+enb+enbi endif enever=etot if(tens.and.newscheme) then enever=enever+entropy endif if(tens.and.newscheme) then if(ionode) write(37,'(a3,4f20.10)') 'CG1',ene0,ene1,enesti,enever if(ionode) write(37,'(a3,4f10.7)') 'CG2',spasso,passov,passo,(enever-ene0)/passo/dene0 else if(ionode) write(37,'(a3,4f20.10)') 'CG1',ene0+entropy,ene1+entropy,enesti+entropy,enever+entropy if(ionode) write(37,'(a3,4f10.7)') 'CG2',spasso,passov,passo,(enever-ene0)/passo/dene0 endif !check with what supposed if(ionode) then if( iverbosity > 1 ) then write(stdout,*) 'cg_sub: estimate :' , (enesti-enever)/(ene0-enever) write(stdout,*) 'cg_sub: minmum :' , enever,passo,passov endif endif !if the energy has diminished with respect to ene0 and ene1 , everything ok if( ((enever.lt.ene0) .and. (enever.lt.ene1)).or.(tefield.or.tefield2)) then c0(:,:)=cm(:,:) bec(:,:)=becm(:,:) ene_ok=.true. elseif( (enever.ge.ene1) .and. (enever.lt.ene0)) then if(ionode) then write(stdout,*) 'cg_sub: missed minimum, case 1, iteration',itercg endif c0=c0+spasso*passov*hi restartcg=.true. call calbec(1,nsp,eigr,c0,bec) CALL gram_bgrp( betae, bec, nhsa, c0, ngw ) ene_ok=.false. !if ene1 << energy < ene0; go to ene1 else if( (enever.ge.ene0).and.(ene0.gt.ene1)) then if(ionode) then write(stdout,*) 'cg_sub: missed minimum, case 2, iteration',itercg endif c0=c0+spasso*passov*hi restartcg=.true.!ATTENZIONE call calbec(1,nsp,eigr,c0,bec) CALL gram_bgrp( betae, bec, nhsa, c0, ngw ) !if ene > ene0,en1 do a steepest descent step ene_ok=.false. else if((enever.ge.ene0).and.(ene0.le.ene1)) then if(ionode) then write(stdout,*) 'cg_sub: missed minimum, case 3, iteration',itercg endif iter3=0 do while(enever.gt.ene0 .and. iter3.lt.maxiter3) iter3=iter3+1 passov=passov*0.5d0 cm=c0+spasso*passov*hi ! chenge the searching direction spasso=spasso*(-1.d0) call calbec(1,nsp,eigr,cm,becm) CALL gram_bgrp( betae, bec, nhsa, cm, ngw ) call calbec(1,nsp,eigr,cm,becm) if(.not.tens) then call rhoofr(nfi,cm(:,:),irb,eigrb,becm,dbec,rhovan,rhor,drhor,rhog,drhog,rhos,enl,denl,ekin,dekin6) else if(newscheme) then call inner_loop_cold( nfi, tfirst, tlast, eigr, irb, eigrb, & rhor, rhog, rhos, rhoc, ei1, ei2, ei3, sfac,cm,becm,dbec,.false., vpot ) endif ! calculation of the rotated quantities call rotate( nrlx, z0t, cm(:,:), becm, c0diag, becdiag ) ! calculation of rho corresponding to the rotated wavefunctions call rhoofr(nfi,c0diag,irb,eigrb,becdiag,dbec,rhovan,rhor, & drhor,rhog,drhog,rhos,enl,denl,ekin,dekin6) endif !calculates the potential ! ! put core charge (if present) in rhoc(r) ! if (nlcc_any) call set_cc(irb,eigrb,rhoc) ! vpot = rhor ! call vofrho(nfi,vpot,drhor,rhog,drhog,rhos,rhoc,tfirst,tlast, & & ei1,ei2,ei3,irb,eigrb,sfac,tau0,fion) if( tefield) then !to be bettered call berry_energy( enb, enbi, becm, cm(:,:), fion ) etot=etot+enb+enbi endif if( tefield2) then !to be bettered call berry_energy2( enb, enbi, becm, cm(:,:), fion ) etot=etot+enb+enbi endif enever=etot if(tens.and.newscheme) then enever=enever+entropy endif end do if(iter3 == maxiter3) write(stdout,*) 'missed minimun: iter3 = maxiter3' c0(:,:)=cm(:,:) restartcg=.true. ene_ok=.false. end if if(tens.and.newscheme) enever=enever-entropy if(.not. ene_ok) call calbec (1,nsp,eigr,c0,bec) !calculates phi for pc_daga CALL calphi_bgrp( c0, SIZE(c0,1), bec, nhsa, betae, phi, nbsp ) !======================================================================= ! ! start of the inner loop ! (Uij degrees of freedom) ! !======================================================================= if(tens.and. .not.newscheme) then call inner_loop_cold( nfi, tfirst, tlast, eigr, irb, eigrb, & rhor, rhog, rhos, rhoc, ei1, ei2, ei3, sfac,c0,bec,dbec,firstiter, vpot ) !the following sets up the new energy enever=etot endif !======================================================================= ! end of the inner loop !======================================================================= itercg=itercg+1 ! restore hi ! hi(:,:)=gi(:,:) end do!on conjugate gradient iterations !calculates atomic forces and lambda if(tpre) then!if pressure is need the following is written because of caldbec call calbec(1,nsp,eigr,c0,bec) if(.not.tens) then call caldbec_bgrp( eigr, c0, dbec, descla ) call rhoofr(nfi,c0(:,:),irb,eigrb,bec,dbec,rhovan,rhor,drhor,rhog,drhog,rhos,enl,denl,ekin,dekin6) else ! calculation of the rotated quantities call rotate( nrlx, z0t, c0(:,:), bec, c0diag, becdiag ) ! calculation of rho corresponding to the rotated wavefunctions call caldbec_bgrp( eigr, c0diag, dbec, descla ) call rhoofr(nfi,c0diag,irb,eigrb,becdiag,dbec,rhovan,rhor, & drhor,rhog,drhog,rhos,enl,denl,ekin,dekin6) endif !calculates the potential ! ! put core charge (if present) in rhoc(r) ! if (nlcc_any) call set_cc(irb,eigrb,rhoc) ! !---ensemble-DFT vpot = rhor call vofrho(nfi,vpot,drhor,rhog,drhog,rhos,rhoc,tfirst,tlast, & & ei1,ei2,ei3,irb,eigrb,sfac,tau0,fion) endif call calcmt( nrlx, f, z0t, fmat0 ) call newd(vpot,irb,eigrb,rhovan,fion) if (.not.tens) then if (tfor .or. tprnfor) call nlfq_bgrp( c0, eigr, bec, becdr, fion ) ! call nlfq(c0,eigr,bec,becdr,fion) else if (tfor .or. tprnfor) call nlfq_bgrp( c0diag, eigr, becdiag, becdrdiag, fion ) ! call nlfq(c0diag,eigr,becdiag,becdrdiag,fion) endif call prefor(eigr,betae) do i=1,nbsp,2 call dforce(i,bec,betae,c0,c2,c3,rhos,dffts%nnr,ispin,f,nbsp,nspin) if(tefield.and.(evalue .ne. 0.d0)) then call dforceb & (c0, i, betae, ipolp, bec ,ctabin(1,1,ipolp), gqq, gqqm, qmat, deeq, df) do ig=1,ngw c2(ig)=c2(ig)+evalue*df(ig) enddo call dforceb & (c0, i+1, betae, ipolp, bec ,ctabin(1,1,ipolp), gqq, gqqm, qmat, deeq, df) do ig=1,ngw c3(ig)=c3(ig)+evalue*df(ig) enddo endif if(tefield2.and.(evalue2 .ne. 0.d0)) then call dforceb & (c0, i, betae, ipolp2, bec ,ctabin2(1,1,ipolp2), gqq2, gqqm2, qmat2, deeq, df) do ig=1,ngw c2(ig)=c2(ig)+evalue2*df(ig) enddo call dforceb & (c0, i+1, betae, ipolp2, bec ,ctabin2(1,1,ipolp2), gqq2, gqqm2, qmat2, deeq, df) do ig=1,ngw c3(ig)=c3(ig)+evalue2*df(ig) enddo endif do ig=1,ngw gi(ig, i)=c2(ig) if(i+1 <= nbsp) then gi(ig,i+1)=c3(ig) endif end do if (gstart==2) then gi(1, i)=CMPLX(DBLE(gi(1, i)),0.d0,kind=DP) if(i+1 <= nbsp) then gi(1,i+1)=CMPLX(DBLE(gi(1,i+1)),0.d0,kind=DP) endif end if enddo ALLOCATE( lambda_repl( nudx, nudx ) ) ! do is = 1, nspin ! nss = nupdwn(is) istart = iupdwn(is) lambda_repl = 0.d0 ! ! do i = 1, nss do j = i, nss ii = i + istart - 1 jj = j + istart - 1 do ig = 1, ngw lambda_repl( i, j ) = lambda_repl( i, j ) - & 2.d0 * DBLE( CONJG( c0( ig, ii ) ) * gi( ig, jj) ) enddo if( gstart == 2 ) then lambda_repl( i, j ) = lambda_repl( i, j ) + & DBLE( CONJG( c0( 1, ii ) ) * gi( 1, jj ) ) endif lambda_repl( j, i ) = lambda_repl( i, j ) enddo enddo CALL mp_sum( lambda_repl, intra_bgrp_comm ) ! CALL distribute_lambda( lambda_repl, lambda( :, :, is ), descla( is ) ) ! end do if(l_cprestart .and. .not.tens .and. nspin==1 .and. nvb<1) then !if required project c0 on previous manifold of occupied states !NOT IMPLEMENTED YET FOR ENSEMBLE DFT AND NSPIN==2 !NOT IMPLEMENTED FOR US PSEUDOPOTENTIALS lambda_repl=0.d0 do i = 1, nss do j = 1, nss ii = i + istart - 1 jj = j + istart - 1 do ig = 1, ngw lambda_repl( i, j ) = lambda_repl( i, j ) + & 2.d0 * DBLE( CONJG( c0old( ig, ii ) ) * c0( ig, jj) ) enddo if( gstart == 2 ) then lambda_repl( i, j ) = lambda_repl( i, j ) - & DBLE( CONJG( c0old( 1, ii ) ) * c0( 1, jj ) ) endif enddo enddo CALL mp_sum( lambda_repl, intra_bgrp_comm ) cm(:,:)=c0(:,:) c0=(0.d0,0.d0) do i=1,nss do j=1,nss c0(1:ngw,i)=c0(1:ngw,i)+lambda_repl(i,j)*cm(1:ngw,j) enddo enddo call calbec (1,nsp,eigr,c0,bec) CALL gram_bgrp( betae, bec, nhsa, c0, ngw ) call calbec(1,nsp,eigr,c0,bec) do i=1,nbsp,2 call dforce(i,bec,betae,c0,c2,c3,rhos,dffts%nnr,ispin,f,nbsp,nspin) do ig=1,ngw gi(ig, i)=c2(ig) if(i+1 <= nbsp) then gi(ig,i+1)=c3(ig) endif end do if (gstart==2) then gi(1, i)=CMPLX(DBLE(gi(1, i)),0.d0,kind=DP) if(i+1 <= nbsp) then gi(1,i+1)=CMPLX(DBLE(gi(1,i+1)),0.d0,kind=DP) endif end if enddo lambda_repl = 0.d0 do i = 1, nss do j = i, nss ii = i + istart - 1 jj = j + istart - 1 do ig = 1, ngw lambda_repl( i, j ) = lambda_repl( i, j ) - & 2.d0 * DBLE( CONJG( c0( ig, ii ) ) * gi( ig, jj) ) enddo if( gstart == 2 ) then lambda_repl( i, j ) = lambda_repl( i, j ) + & DBLE( CONJG( c0( 1, ii ) ) * gi( 1, jj ) ) endif lambda_repl( j, i ) = lambda_repl( i, j ) enddo enddo CALL mp_sum( lambda_repl, intra_bgrp_comm ) CALL distribute_lambda( lambda_repl, lambda( :, :, 1 ), descla( 1 ) ) cm(:,:)=c0(:,:) call calbec (1,nsp,eigr,cm,becm) endif DEALLOCATE( lambda_repl ) if ( tens ) then ! ! in the ensemble case matrix labda must be multiplied with f ALLOCATE( lambda_dist( nlam, nlam ) ) do iss = 1, nspin ! nss = nupdwn( iss ) ! lambdap(:,:,iss) = 0.0d0 ! CALL cyc2blk_redist( nss, fmat0(1,1,iss), nrlx, SIZE(fmat0,2), & lambda_dist, nlam, nlam, descla(iss) ) ! ! Perform lambdap = lambda * fmat0 ! CALL sqr_mm_cannon( 'N', 'N', nss, 1.0d0, lambda(1,1,iss), nlam, lambda_dist, nlam, & 0.0d0, lambdap(1,1,iss), nlam, descla(iss) ) ! lambda_dist = lambda(:,:,iss) lambda(:,:,iss) = lambdap(:,:,iss) lambdap(:,:,iss) = lambda_dist ! end do ! DEALLOCATE( lambda_dist ) ! call nlsm2_bgrp( ngw, nhsa, eigr, c0, becdr, nbspx, nbsp ) ! endif ! ! CALL nlfl_bgrp( bec, becdr, lambda, descla, fion ) ! bforceion adds the force term due to electronic berry phase ! only in US-case if( tefield.and.(evalue .ne. 0.d0) ) then call bforceion(fion,tfor.or.tprnfor,ipolp, qmat,bec,becdr,gqq,evalue) endif if( tefield2.and.(evalue2 .ne. 0.d0) ) then call bforceion(fion,tfor.or.tprnfor,ipolp2, qmat2,bec,becdr,gqq2,evalue2) endif deallocate(hpsi0,hpsi,gi,hi) deallocate( s_minus1,k_minus1) if(ionode) close(37)!for debug and tuning purposes call stop_clock('runcg_uspp') deallocate(bec0,becm,becdrdiag) deallocate(ave_ene) deallocate(c2,c3) return END SUBROUTINE runcg_uspp espresso-5.1/CPV/src/ldaU_cp.f900000644000175000017500000000251412341373026014413 0ustar mbamba! ! Copyright (C) 2011-2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------- MODULE ldaU_cp !------------------------------------------------------------------------- USE parameters, ONLY: nsx USE kinds implicit none save real(DP) :: Hubbard_U(nsx) real(DP) :: e_hubbard = 0.d0 real(DP), allocatable :: ns(:,:,:,:) integer :: Hubbard_l(nsx), Hubbard_lmax=0, ldmx=0, nwfcU logical :: lda_plus_u COMPLEX(DP), allocatable:: vupsi(:,:) ! contains ! subroutine ldaU_init0 ( nsp, lda_plus_u_, Hubbard_U_ ) !----------------------------------------------------------------------- ! USE constants, ONLY: autoev ! IMPLICIT NONE INTEGER, INTENT(IN) :: nsp LOGICAL, INTENT(IN) :: lda_plus_u_ REAL(DP),INTENT(IN) :: Hubbard_U_(nsp) lda_plus_u = lda_plus_u_ Hubbard_U(1:nsp) = Hubbard_U_(1:nsp) / autoev ! END SUBROUTINE ldaU_init0 ! subroutine deallocate_lda_plus_u() ! IF( ALLOCATED( ns ) ) DEALLOCATE( ns ) IF( ALLOCATED( vupsi ) ) DEALLOCATE( vupsi ) ! ! end subroutine ! end module ldaU_cp espresso-5.1/CPV/src/nlcc.f900000644000175000017500000003152512341373026013767 0ustar mbamba! ! Copyright (C) 2002-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! subroutine core_charge_ftr( tpre ) !=----------------------------------------------------------------------------=! ! ! Compute the fourier trasform of the core charge, from the radial ! mesh to the reciprocal space ! use kinds, ONLY : DP use ions_base, ONLY : nsp use atom, ONLY : rgrid use uspp, ONLY : nlcc_any use uspp_param, ONLY : upf use smallbox_gvec, ONLY : ngb, gb use small_box, ONLY : omegab, tpibab use pseudo_base, ONLY : compute_rhocg use pseudopotential, ONLY : tpstab, rhoc1_sp, rhocp_sp use cell_base, ONLY : omega, tpiba2, tpiba USE splines, ONLY : spline use gvect, ONLY : ngm use gvect, ONLY : gg, gstart USE core, ONLY : rhocb, rhocg, drhocg ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: tpre ! INTEGER :: is, ig REAL(DP) :: xg, cost1 ! ! IF( .NOT. nlcc_any ) RETURN ! IF( .NOT. ALLOCATED( rgrid ) ) & CALL errore( ' core_charge_ftr ', ' rgrid not allocated ', 1 ) IF( .NOT. ALLOCATED( upf ) ) & CALL errore( ' core_charge_ftr ', ' upf not allocated ', 1 ) ! do is = 1, nsp ! if( upf(is)%nlcc ) then ! CALL compute_rhocg( rhocb(:,is), rhocb(:,is), rgrid(is)%r, & rgrid(is)%rab, upf(is)%rho_atc(:), gb, omegab, tpibab**2, & rgrid(is)%mesh, ngb, 0 ) ! IF( tpre ) THEN ! IF( tpstab ) THEN ! cost1 = 1.0d0/omega ! IF( gstart == 2 ) THEN rhocg (1,is) = rhoc1_sp(is)%y( 1 ) * cost1 drhocg(1,is) = 0.0d0 END IF DO ig = gstart, SIZE( rhocg, 1 ) xg = SQRT( gg(ig) ) * tpiba rhocg (ig,is) = spline( rhoc1_sp(is), xg ) * cost1 drhocg(ig,is) = spline( rhocp_sp(is), xg ) * cost1 END DO ! ELSE CALL compute_rhocg( rhocg(:,is), drhocg(:,is), rgrid(is)%r, & rgrid(is)%rab, upf(is)%rho_atc(:), gg, & omega, tpiba2, rgrid(is)%mesh, ngm, 1 ) END IF ! END IF ! endif ! end do return end subroutine core_charge_ftr !----------------------------------------------------------------------- subroutine add_cc( rhoc, rhog, rhor ) !----------------------------------------------------------------------- ! ! add core correction to the charge density for exch-corr calculation ! USE kinds, ONLY: DP use electrons_base, only: nspin use control_flags, only: iverbosity use io_global, only: stdout use mp_global, only: intra_bgrp_comm use cell_base, only: omega USE mp, ONLY: mp_sum ! this isn't really needed, but if I remove it, ifc 7.1 ! gives an "internal compiler error" use gvect, only: gstart use gvect, only: ngm, nl USE fft_interfaces, ONLY: fwfft USE fft_base, ONLY: dfftp ! implicit none ! REAL(DP), INTENT(IN) :: rhoc( dfftp%nnr ) REAL(DP), INTENT(INOUT):: rhor( dfftp%nnr, nspin ) COMPLEX(DP), INTENT(INOUT):: rhog( ngm, nspin ) ! COMPLEX(DP), ALLOCATABLE :: wrk1( : ) ! integer :: ig, ir, iss, isup, isdw REAL(DP) :: rsum ! IF( iverbosity > 1 ) THEN rsum = SUM( rhoc ) * omega / DBLE(dfftp%nr1*dfftp%nr2*dfftp%nr3) CALL mp_sum( rsum, intra_bgrp_comm ) WRITE( stdout, 10 ) rsum 10 FORMAT( 3X, 'Core Charge = ', D14.6 ) END IF ! ! In r-space: ! if ( nspin .eq. 1 ) then iss=1 call daxpy(dfftp%nnr,1.d0,rhoc,1,rhor(1,iss),1) else isup=1 isdw=2 call daxpy(dfftp%nnr,0.5d0,rhoc,1,rhor(1,isup),1) call daxpy(dfftp%nnr,0.5d0,rhoc,1,rhor(1,isdw),1) end if ! ! rhoc(r) -> rhoc(g) (wrk1 is used as work space) ! allocate( wrk1( dfftp%nnr ) ) wrk1(:) = rhoc(:) call fwfft('Dense',wrk1, dfftp ) ! ! In g-space: ! if (nspin.eq.1) then do ig=1,ngm rhog(ig,iss)=rhog(ig,iss)+wrk1(nl(ig)) end do else do ig=1,ngm rhog(ig,isup)=rhog(ig,isup)+0.5d0*wrk1(nl(ig)) rhog(ig,isdw)=rhog(ig,isdw)+0.5d0*wrk1(nl(ig)) end do end if deallocate( wrk1 ) ! return end subroutine add_cc ! !----------------------------------------------------------------------- subroutine force_cc(irb,eigrb,vxc,fion1) !----------------------------------------------------------------------- ! ! core correction force: f = \int V_xc(r) (d rhoc(r)/d R_i) dr ! same logic as in newd - uses box grid. For parallel execution: ! the sum over node contributions is done in the calling routine ! USE kinds, ONLY: DP use electrons_base, only: nspin use smallbox_gvec, only: gxb, ngb, npb, nmb use cell_base, only: omega use ions_base, only: nsp, na, nat use small_box, only: tpibab use uspp_param, only: upf use core, only: rhocb use fft_interfaces, only: invfft use fft_base, only: dfftb, dfftp use gvect, only: gstart implicit none ! input integer, intent(in) :: irb(3,nat) complex(dp), intent(in):: eigrb(ngb,nat) real(dp), intent(in) :: vxc(dfftp%nnr,nspin) ! output real(dp), intent(inout):: fion1(3,nat) ! local integer :: iss, ix, ig, is, ia, nfft, isa real(dp) :: fac, res, boxdotgrid complex(dp) ci, facg complex(dp), allocatable :: qv(:) real(dp), allocatable :: fcc(:,:) external boxdotgrid #ifdef __OPENMP INTEGER :: itid, mytid, ntids, omp_get_thread_num, omp_get_num_threads EXTERNAL :: omp_get_thread_num, omp_get_num_threads #endif ! call start_clock( 'forcecc' ) ci = (0.d0,1.d0) fac = omega/DBLE(dfftp%nr1*dfftp%nr2*dfftp%nr3*nspin) !$omp parallel default(none) & !$omp shared(nsp, na, ngb, eigrb, dfftb, irb, nmb, npb, ci, rhocb, & !$omp gxb, nat, fac, upf, vxc, nspin, tpibab, fion1 ) & !$omp private(mytid, ntids, is, ia, nfft, ig, isa, qv, itid, res, ix, fcc, facg, iss ) allocate( fcc( 3, nat ) ) allocate( qv( dfftb%nnr ) ) fcc(:,:) = 0.d0 isa = 0 #ifdef __OPENMP mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads itid = 0 #endif do is = 1, nsp if( .not. upf(is)%nlcc ) then isa = isa + na(is) cycle end if #ifdef __MPI do ia = 1, na(is) nfft = 1 if ( dfftb%np3( ia + isa ) <= 0 ) cycle #else ! ! two fft's on two atoms at the same time (when possible) ! do ia=1,na(is),2 nfft=2 if( ia .eq. na(is) ) nfft=1 #endif #ifdef __OPENMP IF ( mytid /= itid ) THEN itid = MOD( itid + 1, ntids ) CYCLE ELSE itid = MOD( itid + 1, ntids ) END IF #endif do ix=1,3 qv(:) = (0.d0, 0.d0) if (nfft.eq.2) then do ig=1,ngb facg = tpibab*CMPLX(0.d0,gxb(ix,ig),kind=DP)*rhocb(ig,is) qv(npb(ig)) = eigrb(ig,ia+isa )*facg & & + ci * eigrb(ig,ia+isa+1)*facg qv(nmb(ig)) = CONJG(eigrb(ig,ia+isa )*facg) & & + ci * CONJG(eigrb(ig,ia+isa+1)*facg) end do else do ig=1,ngb facg = tpibab*CMPLX(0.d0,gxb(ix,ig),kind=DP)*rhocb(ig,is) qv(npb(ig)) = eigrb(ig,ia+isa)*facg qv(nmb(ig)) = CONJG(eigrb(ig,ia+isa)*facg) end do end if ! call invfft( 'Box', qv, dfftb, ia+isa ) ! ! note that a factor 1/2 is hidden in fac if nspin=2 ! do iss=1,nspin res = boxdotgrid(irb(1,ia +isa),1,qv,vxc(1,iss)) fcc(ix,ia+isa) = fcc(ix,ia+isa) + fac * res if (nfft.eq.2) then res = boxdotgrid(irb(1,ia+1+isa),2,qv,vxc(1,iss)) fcc(ix,ia+1+isa) = fcc(ix,ia+1+isa) + fac * res end if end do end do end do isa = isa + na(is) end do ! !$omp critical do ia = 1, nat fion1(:,ia) = fion1(:,ia) + fcc(:,ia) end do !$omp end critical deallocate( qv ) deallocate( fcc ) !$omp end parallel ! call stop_clock( 'forcecc' ) return end subroutine force_cc ! !----------------------------------------------------------------------- subroutine set_cc( irb, eigrb, rhoc ) !----------------------------------------------------------------------- ! ! Calculate core charge contribution in real space, rhoc(r) ! Same logic as for rhov: use box grid for core charges ! use kinds, only: dp use ions_base, only: nsp, na, nat use uspp_param, only: upf use smallbox_gvec, only: ngb, npb, nmb use control_flags, only: iprint use core, only: rhocb use fft_interfaces, only: invfft use fft_base, only: dfftb, dfftp implicit none ! input integer, intent(in) :: irb(3,nat) complex(dp), intent(in):: eigrb(ngb,nat) ! output real(dp), intent(out) :: rhoc(dfftp%nnr) ! local integer nfft, ig, is, ia, isa complex(dp) ci complex(dp), allocatable :: wrk1(:) complex(dp), allocatable :: qv(:) #ifdef __OPENMP INTEGER :: itid, mytid, ntids, omp_get_thread_num, omp_get_num_threads EXTERNAL :: omp_get_thread_num, omp_get_num_threads #endif ! call start_clock( 'set_cc' ) ci=(0.d0,1.d0) allocate( wrk1 ( dfftp%nnr ) ) wrk1 (:) = (0.d0, 0.d0) ! !$omp parallel default(none) & !$omp shared(nsp, na, ngb, eigrb, dfftb, irb, nmb, npb, ci, rhocb, & !$omp nat, upf, wrk1 ) & !$omp private(mytid, ntids, is, ia, nfft, ig, isa, qv, itid ) allocate( qv ( dfftb%nnr ) ) ! isa = 0 #ifdef __OPENMP mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads itid = 0 #endif do is = 1, nsp ! if (.not.upf(is)%nlcc) then isa = isa + na(is) cycle end if ! #ifdef __MPI do ia=1,na(is) nfft=1 if ( dfftb%np3( ia + isa ) <= 0 ) cycle #else ! ! two ffts at the same time, on two atoms (if possible: nfft=2) ! do ia=1,na(is),2 nfft=2 if( ia.eq.na(is) ) nfft=1 #endif #ifdef __OPENMP IF ( mytid /= itid ) THEN itid = MOD( itid + 1, ntids ) CYCLE ELSE itid = MOD( itid + 1, ntids ) END IF #endif qv(:) = (0.d0, 0.d0) if(nfft.eq.2)then do ig=1,ngb qv(npb(ig))= eigrb(ig,ia +isa)*rhocb(ig,is) & & + ci*eigrb(ig,ia+1+isa)*rhocb(ig,is) qv(nmb(ig))= CONJG(eigrb(ig,ia +isa)*rhocb(ig,is)) & & + ci*CONJG(eigrb(ig,ia+1+isa)*rhocb(ig,is)) end do else do ig=1,ngb qv(npb(ig)) = eigrb(ig,ia+isa)*rhocb(ig,is) qv(nmb(ig)) = CONJG(eigrb(ig,ia+isa)*rhocb(ig,is)) end do endif ! call invfft( 'Box', qv, dfftb, isa+ia ) ! call box2grid(irb(1,ia+isa),1,qv,wrk1) if (nfft.eq.2) call box2grid(irb(1,ia+1+isa),2,qv,wrk1) ! end do isa = isa + na(is) end do ! deallocate( qv ) !$omp end parallel call dcopy( dfftp%nnr, wrk1, 2, rhoc, 1 ) deallocate( wrk1 ) ! call stop_clock( 'set_cc' ) ! return end subroutine set_cc espresso-5.1/CPV/src/init.f900000644000175000017500000003100412341373026014003 0ustar mbamba! ! Copyright (C) 2002-2010 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------=! ! ! CP90 / FPMD common init subroutine ! !=----------------------------------------------------------------------=! subroutine init_dimensions( ) ! ! initialize G-vectors and related quantities ! USE kinds, ONLY: dp USE constants, ONLY: tpi use io_global, only: stdout, ionode use control_flags, only: gamma_only, iverbosity use cell_base, only: ainv, at, omega, alat use small_box, only: small_box_set use smallbox_grid_dim, only: smallbox_grid_init,smallbox_grid_info USE grid_subroutines, ONLY: realspace_grids_init, realspace_grids_info use ions_base, only: nat USE recvec_subs, ONLY: ggen USE gvect, ONLY: mill_g, eigts1,eigts2,eigts3, gg, & ecutrho, gcutm, gvect_init use gvecs, only: gcutms, gvecs_init use gvecw, only: gkcut, gvecw_init, g2kin_init USE smallbox_subs, ONLY: ggenb USE fft_base, ONLY: dfftp, dffts, dfftb USE fft_scalar, ONLY: cft_b_omp_init USE stick_set, ONLY: pstickset USE control_flags, ONLY: tdipole, gamma_only, smallmem USE berry_phase, ONLY: berry_setup USE electrons_module, ONLY: bmeshset USE electrons_base, ONLY: distribute_bands USE problem_size, ONLY: cpsizes USE mp_bands, ONLY: me_bgrp, root_bgrp, nproc_bgrp, nbgrp, & my_bgrp_id, intra_bgrp_comm, ntask_groups USE uspp, ONLY: okvan, nlcc_any implicit none ! integer :: i real(dp) :: rat1, rat2, rat3 real(dp) :: bg(3,3), tpiba2 integer :: ng_, ngs_, ngm_ , ngw_ CALL start_clock( 'init_dim' ) tpiba2 = ( tpi / alat ) ** 2 IF( ionode ) THEN WRITE( stdout, 100 ) 100 FORMAT( //, & 3X,'Simulation dimensions initialization',/, & 3X,'------------------------------------' ) END IF ! ! ... Initialize bands indexes for parallel linear algebra ! ... (distribute bands to processors) ! CALL bmeshset( ) ! ! ... cell dimensions and lattice vectors ! ... note that at are in alat units call recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) ! bg(:,1), bg(:,2), bg(:,3) are the basis vectors, in ! 2pi/alat units, generating the reciprocal lattice ! ... Initialize FFT real-space grids and small box grid ! CALL realspace_grids_init( dfftp, dffts, at, bg, gcutm, gcutms) CALL smallbox_grid_init( dfftp, dfftb ) IF( ionode ) THEN WRITE( stdout,210) 210 format(/,3X,'unit vectors of full simulation cell',& &/,3X,'in real space:',25x,'in reciprocal space (units 2pi/alat):') WRITE( stdout,'(3X,I1,1X,3f10.4,10x,3f10.4)') 1,at(:,1)*alat,bg(:,1) WRITE( stdout,'(3X,I1,1X,3f10.4,10x,3f10.4)') 2,at(:,2)*alat,bg(:,2) WRITE( stdout,'(3X,I1,1X,3f10.4,10x,3f10.4)') 3,at(:,3)*alat,bg(:,3) END IF ! do i=1,3 ainv(1,i)=bg(i,1)/alat ainv(2,i)=bg(i,2)/alat ainv(3,i)=bg(i,3)/alat end do ! ! ainv is transformation matrix from cartesian to crystal coordinates ! if r=x1*a1+x2*a2+x3*a3 => x(i)=sum_j ainv(i,j)r(j) ! Note that ainv is really the inverse of a=(a1,a2,a3) ! (but only if the axis triplet is right-handed, otherwise ! for a left-handed triplet, ainv is minus the inverse of a) ! ! ... set the sticks mesh and distribute g vectors among processors ! ... pstickset lso sets the local real-space grid dimensions ! CALL pstickset( gamma_only, bg, gcutm, gkcut, gcutms, & dfftp, dffts, ngw_ , ngm_ , ngs_ , me_bgrp, root_bgrp, & nproc_bgrp, intra_bgrp_comm, ntask_groups ) ! ! ! ... Initialize reciprocal space local and global dimensions ! NOTE in a parallel run ngm_ , ngw_ , ngs_ here are the ! local number of reciprocal vectors ! CALL gvect_init ( ngm_ , intra_bgrp_comm ) CALL gvecs_init ( ngs_ , intra_bgrp_comm ) ! ! ... Print real-space grid dimensions ! CALL realspace_grids_info ( dfftp, dffts, nproc_bgrp ) CALL smallbox_grid_info ( dfftb ) ! ! ... generate g-space vectors (dense and smooth grid) ! ... call to gshells generates gl, igtongl used in vdW-DF functional ! IF( smallmem ) THEN CALL ggen( gamma_only, at, bg, intra_bgrp_comm, no_global_sort = .TRUE. ) ELSE CALL ggen( gamma_only, at, bg ) END IF CALL gshells (.TRUE.) ! ! ... allocate and generate (modified) kinetic energy ! CALL gvecw_init ( ngw_ , intra_bgrp_comm ) CALL g2kin_init ( gg, tpiba2 ) ! ! Allocate index required to compute polarizability ! IF( tdipole ) THEN CALL berry_setup( ngw_ , mill_g ) END IF ! ! global arrays are no more needed ! if( allocated( mill_g ) ) deallocate( mill_g ) ! ! allocate spaces for phases e^{-iG*tau_s} ! allocate( eigts1(-dfftp%nr1:dfftp%nr1,nat) ) allocate( eigts2(-dfftp%nr2:dfftp%nr2,nat) ) allocate( eigts3(-dfftp%nr3:dfftp%nr3,nat) ) ! ! small boxes ! IF ( dfftb%nr1 > 0 .AND. dfftb%nr2 > 0 .AND. dfftb%nr3 > 0 ) THEN ! set the small box parameters rat1 = DBLE( dfftb%nr1 ) / DBLE( dfftp%nr1 ) rat2 = DBLE( dfftb%nr2 ) / DBLE( dfftp%nr2 ) rat3 = DBLE( dfftb%nr3 ) / DBLE( dfftp%nr3 ) ! CALL small_box_set( alat, omega, at, rat1, rat2, rat3, tprint = .TRUE. ) ! ! generate small-box G-vectors, initialize FFT tables ! CALL ggenb ( ecutrho, iverbosity ) ! #if defined __OPENMP && defined __FFTW CALL cft_b_omp_init( dfftb%nr1, dfftb%nr2, dfftb%nr3 ) #endif ELSE IF( okvan .OR. nlcc_any ) THEN CALL errore( ' init_dimensions ', ' nr1b, nr2b, nr3b must be given for ultrasoft and core corrected pp ', 1 ) END IF ! ... distribute bands CALL distribute_bands( nbgrp, my_bgrp_id ) ! ... printout g vector distribution summary ! CALL gmeshinfo() ! ! CALL cpsizes( ) Maybe useful ! ! Flush stdout ! CALL flush_unit( stdout ) ! CALL stop_clock( 'init_dim' ) ! return end subroutine init_dimensions !----------------------------------------------------------------------- subroutine init_geometry ( ) !----------------------------------------------------------------------- ! USE kinds, ONLY: DP use control_flags, only: iprint, thdyn, ndr, nbeg, tbeg use io_global, only: stdout, ionode use mp_global, only: nproc_bgrp, me_bgrp, intra_bgrp_comm, root_bgrp USE io_files, ONLY: tmp_dir use ions_base, only: na, nsp, nat, tau_srt, ind_srt, if_pos use cell_base, only: at, alat, r_to_s, cell_init, deth use cell_base, only: ibrav, ainv, h, hold, tcell_base_init USE ions_positions, ONLY: allocate_ions_positions, tau0, taus use cp_restart, only: cp_read_cell USE fft_base, ONLY: dfftb USE fft_types, ONLY: fft_box_allocate USE cp_main_variables,ONLY: ht0, htm, taub USE cp_interfaces, ONLY: newinit USE constants, ONLY: amu_au implicit none ! ! local ! integer :: i, j real(DP) :: gvel(3,3), ht(3,3) real(DP) :: xnhh0(3,3), xnhhm(3,3), vnhh(3,3), velh(3,3) REAL(DP), ALLOCATABLE :: pmass(:), taus_srt( :, : ) IF( .NOT. tcell_base_init ) & CALL errore( ' init_geometry ', ' cell_base_init has not been call yet! ', 1 ) IF( ionode ) THEN WRITE( stdout, 100 ) 100 FORMAT( //, & 3X,'System geometry initialization',/, & 3X,'------------------------------' ) END IF ! Set ht0 and htm, cell at time t and t-dt ! CALL cell_init( alat, at, ht0 ) CALL cell_init( alat, at, htm ) CALL allocate_ions_positions( nsp, nat ) ! ! tau0 = initial positions, sorted wrt order read from input ! taus = initial positions, scaled with the cell read from input ! tau0(:,:) = tau_srt(:,:) CALL r_to_s( tau_srt, taus, na, nsp, ainv ) ! ! Allocate box descriptor ! ALLOCATE( taub( 3, nat ) ) ! CALL fft_box_allocate( dfftb, me_bgrp, root_bgrp, nproc_bgrp, intra_bgrp_comm, nat ) ! ! if tbeg = .true. the geometry is given in the standard input even if ! we are restarting a previous run ! if( ( nbeg > -1 ) .and. ( .not. tbeg ) ) then ! ! read only h and hold from restart file "ndr" ! CALL cp_read_cell( ndr, tmp_dir, .TRUE., ht, hold, velh, gvel, xnhh0, xnhhm, vnhh ) CALL cell_init( 't', ht0, ht ) CALL cell_init( 't', htm, hold ) ht0%hvel = velh ! set cell velocity ht0%gvel = gvel h = TRANSPOSE( ht ) ht = TRANSPOSE( hold ) hold = ht ht = TRANSPOSE( velh ) velh = ht WRITE( stdout,344) ibrav do i=1,3 WRITE( stdout,345) (h(i,j),j=1,3) enddo WRITE( stdout,*) else ! ! geometry is set to the cell parameters read from stdin ! do i = 1, 3 h(i,1) = at(i,1)*alat h(i,2) = at(i,2)*alat h(i,3) = at(i,3)*alat enddo hold = h end if ! ! generate true g-space ! call newinit( ht0%hmat, iverbosity = 1 ) ! CALL invmat( 3, h, ainv, deth ) ! 344 format(3X,'ibrav = ',i4,' cell parameters ',/) 345 format(3(4x,f10.5)) return end subroutine init_geometry !----------------------------------------------------------------------- subroutine newinit_x( h, iverbosity ) ! ! re-initialization of lattice parameters and g-space vectors. ! Note that direct and reciprocal lattice primitive vectors ! at, ainv, and corresponding quantities for small boxes ! are recalculated according to the value of cell parameter h ! USE kinds, ONLY : DP USE constants, ONLY : tpi USE cell_base, ONLY : at, bg, omega, alat, tpiba2, & cell_base_reinit USE gvecw, ONLY : g2kin_init USE gvect, ONLY : g, gg, ngm, mill USE fft_base, ONLY : dfftp, dfftb USE small_box, ONLY : small_box_set USE smallbox_subs, ONLY : gcalb USE io_global, ONLY : stdout, ionode ! implicit none ! REAL(DP), INTENT(IN) :: h(3,3) INTEGER, INTENT(IN) :: iverbosity ! REAL(DP) :: rat1, rat2, rat3 INTEGER :: ig, i1, i2, i3 ! !WRITE( stdout, "(4x,'h from newinit')" ) !do i=1,3 ! WRITE( stdout, '(3(4x,f12.7)' ) (h(i,j),j=1,3) !enddo ! ! re-initialize the cell base module with the new geometry ! CALL cell_base_reinit( TRANSPOSE( h ) ) ! ! re-calculate G-vectors and kinetic energy ! do ig=1,ngm i1=mill(1,ig) i2=mill(2,ig) i3=mill(3,ig) g(:,ig)=i1*bg(:,1)+i2*bg(:,2)+i3*bg(:,3) gg(ig)=g(1,ig)**2 + g(2,ig)**2 + g(3,ig)**2 enddo ! call g2kin_init ( gg, tpiba2 ) ! IF ( dfftb%nr1 == 0 .OR. dfftb%nr2 == 0 .OR. dfftb%nr3 == 0 ) RETURN ! ! generation of little box g-vectors ! rat1 = DBLE( dfftb%nr1 ) / DBLE( dfftp%nr1 ) rat2 = DBLE( dfftb%nr2 ) / DBLE( dfftp%nr2 ) rat3 = DBLE( dfftb%nr3 ) / DBLE( dfftp%nr3 ) CALL small_box_set( alat, omega, at, rat1, rat2, rat3, tprint = ( iverbosity > 0 ) ) ! call gcalb ( ) ! return end subroutine newinit_x espresso-5.1/CPV/src/stop_run.f900000644000175000017500000000206112341373026014712 0ustar mbamba! ! Copyright (C) 2001-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE stop_run() !---------------------------------------------------------------------------- ! ! ... Close all files and synchronize processes before stopping. ! USE environment, ONLY : environment_end USE control_flags, ONLY : lconstrain USE constraints_module, ONLY : deallocate_constraint USE mp_global, ONLY : mp_global_end ! IMPLICIT NONE ! ! CALL environment_end( 'CP' ) ! CALL deallocate_modules_var() ! IF ( lconstrain ) CALL deallocate_constraint() ! CALL mp_global_end() ! END SUBROUTINE stop_run SUBROUTINE do_stop( flag ) IMPLICIT NONE ! LOGICAL, INTENT(IN) :: flag ! IF ( flag ) THEN STOP ELSE STOP 1 END IF ! END SUBROUTINE do_stop espresso-5.1/CPV/src/dforceb.f900000644000175000017500000002071612341373026014454 0ustar mbamba! ! Copyright (C) 2002-2008 Quantum ESPRESS0 groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine dforceb(c0, i, betae, ipol, bec0, ctabin, gqq, gqqm, qmat, dq2, df) ! this subroutine computes the force for electrons ! in case of Berry,s phase like perturbation ! it gives the force for the i-th state ! c0 input: Psi^0_i ! c1 input: Psi^1_i ! i input: ot computes the force for the i-th state ! v0 input: the local zeroth order potential ! v1 input: the local first order potential ! betae input: the functions beta_iR ! ipol input:the polarization of nabla_k ! bec0 input: the factors ! bec1 input: the factors ! ctabin input: the inverse-correspondence array g'+(-)1=g ! gqq input: the factors int dr Beta_Rj*Beta_Ri exp(iGr) ! gqqm input: the factors int dr Beta_Rj*Beta_Ri exp(iGr) ! qmat input: ! dq2 input: factors d^2hxc_ijR ! df output: force for the i-th state use kinds, only : DP use gvecs use gvecw, only: ngw use parameters use electrons_base, only: nx => nbspx, n => nbsp, nspin, f use constants use ions_base, only : nat, nax, na, nsp use cell_base, only: at, alat use uspp_param, only: nh, nhm, nvb, ish use uspp, only : nhsa=> nkb use efield_module, ONLY : ctabin_missing_1,ctabin_missing_2,n_g_missing_m,& & ctabin_missing_rev_1,ctabin_missing_rev_2 use mp_global, only: intra_bgrp_comm, nproc_bgrp use mp, only: mp_alltoall use parallel_include implicit none complex(DP) c0(ngw, n), betae(ngw,nhsa), df(ngw),& & gqq(nhm,nhm,nax,nsp),gqqm(nhm,nhm,nax,nsp),& & qmat(nx,nx) real(DP) bec0(nhsa,n), dq2(nat,nhm,nhm,nspin), gmes real(DP), EXTERNAL :: g_mes integer i, ipol, ctabin(ngw,2) ! local variables integer j,k,ig,iv,jv,ix,jx,is,ia, isa,iss,iss1,mism integer ir,ism,itemp,itempa,jnl,inl complex(DP) ci ,fi, fp, fm real(DP) afr(nhsa), dd complex(DP) afrc(nhsa) complex(DP), allocatable:: dtemp(:) complex(DP), allocatable :: sndbuf(:,:,:),rcvbuf(:,:,:) integer :: ierr, ip allocate( dtemp(ngw)) ci=(0.d0,1.d0) ! now the interaction term ! first the norm-conserving part do ig=1,ngw dtemp(ig)=(0.d0,0.d0) enddo do j=1,n do ig=1,ngw if(ctabin(ig,2) .ne. (ngw+1)) then if(ctabin(ig,2).ge.0) then dtemp(ig)=dtemp(ig)+c0(ctabin(ig,2),j)*qmat(j,i) else dtemp(ig)=dtemp(ig)+CONJG(c0(-ctabin(ig,2),j))*qmat(j,i) endif endif enddo do ig=1,ngw if(ctabin(ig,1) .ne. (ngw+1)) then if(ctabin(ig,1).ge.0) then dtemp(ig)=dtemp(ig)-c0(ctabin(ig,1),j)*CONJG(qmat(j,i)) else dtemp(ig)=dtemp(ig)-CONJG(c0(-ctabin(ig,1),j))*conjg(qmat(j,i)) endif endif enddo #ifdef __MPI if(ipol/=3) then !allocate arrays allocate(sndbuf(n_g_missing_m(ipol),2,nproc_bgrp)) sndbuf(:,:,:)=(0.d0,0.d0) allocate(rcvbuf(n_g_missing_m(ipol),2,nproc_bgrp)) !copy arrays to snd buf do ip=1,nproc_bgrp do ig=1,n_g_missing_m(ipol) if(ipol==1) then if(ctabin_missing_rev_1(ig,1,ip)>0) then sndbuf(ig,1,ip)=-c0(ctabin_missing_rev_1(ig,1,ip),j)*CONJG(qmat(j,i)) elseif(ctabin_missing_rev_1(ig,1,ip)<0) then sndbuf(ig,1,ip)=-conjg(c0(-ctabin_missing_rev_1(ig,1,ip),j))*CONJG(qmat(j,i)) endif else if(ctabin_missing_rev_2(ig,1,ip)>0) then sndbuf(ig,1,ip)=-c0(ctabin_missing_rev_2(ig,1,ip),j)*CONJG(qmat(j,i)) elseif(ctabin_missing_rev_2(ig,1,ip)<0) then sndbuf(ig,1,ip)=-conjg(c0(-ctabin_missing_rev_2(ig,1,ip),j))*CONJG(qmat(j,i)) endif endif enddo do ig=1,n_g_missing_m(ipol) if(ipol==1) then if(ctabin_missing_rev_1(ig,2,ip)>0) then sndbuf(ig,2,ip)=c0(ctabin_missing_rev_1(ig,2,ip),j)*qmat(j,i) elseif(ctabin_missing_rev_1(ig,2,ip)<0) then sndbuf(ig,2,ip)=conjg(c0(-ctabin_missing_rev_1(ig,2,ip),j))*qmat(j,i) endif else if(ctabin_missing_rev_2(ig,2,ip)>0) then sndbuf(ig,2,ip)=c0(ctabin_missing_rev_2(ig,2,ip),j)*qmat(j,i) elseif(ctabin_missing_rev_2(ig,2,ip)<0) then sndbuf(ig,2,ip)=conjg(c0(-ctabin_missing_rev_2(ig,2,ip),j))*qmat(j,i) endif endif enddo enddo CALL mp_alltoall( sndbuf, rcvbuf, intra_bgrp_comm ) !update sca do ip=1,nproc_bgrp do ig=1,n_g_missing_m(ipol) if(ipol==1) then if(ctabin_missing_1(ig,1,ip)/=0) then dtemp(ctabin_missing_1(ig,1,ip))=dtemp(ctabin_missing_1(ig,1,ip))+rcvbuf(ig,1,ip) endif if(ctabin_missing_1(ig,2,ip)/=0) then dtemp(ctabin_missing_1(ig,2,ip))=dtemp(ctabin_missing_1(ig,2,ip))+rcvbuf(ig,2,ip) endif else if(ctabin_missing_2(ig,1,ip)/=0) then dtemp(ctabin_missing_2(ig,1,ip))=dtemp(ctabin_missing_2(ig,1,ip))+rcvbuf(ig,1,ip) endif if(ctabin_missing_2(ig,2,ip)/=0) then dtemp(ctabin_missing_2(ig,2,ip))=dtemp(ctabin_missing_2(ig,2,ip))+rcvbuf(ig,2,ip) endif endif enddo enddo !deallocate arrays deallocate(rcvbuf,sndbuf) endif #endif enddo gmes = g_mes ( ipol, at, alat ) fi=f(i)*ci/(2.d0*gmes) do ig=1,ngw df(ig)= fi*dtemp(ig) end do ! now the interacting Vanderbilt term ! the term (-ie/|G|)(-beta_i'R>gqq(i',j')bec0_jRj'Q^-1_ji+ ! +beta_i'R>gqqm(i',j')bec0jRj'Q^-1_ij* if(nhsa.gt.0) then do inl=1,nhsa afrc(inl)=(0.d0,0.d0) end do do is=1,nvb!loop on species do iv=1,nh(is) !loop on projectors do jv=1,nh(is) !loop on projectors do ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(is)+(jv-1)*na(is)+ia do j=1,n !loop on states afrc(inl)=afrc(inl)+gqq(iv,jv,ia,is)*bec0(jnl,j)*qmat(j,i)& & -CONJG(gqq(jv,iv,ia,is))*bec0(jnl,j)*conjg(qmat(i,j)) end do end do end do end do enddo do ig=1,ngw dtemp(ig)=(0.d0,0.d0) end do do inl=1,nhsa do ig=1,ngw dtemp(ig)=dtemp(ig)+afrc(inl)*betae(ig,inl) enddo enddo ! call MXMA ! & (betae,1,2*ngw,afr,1,nhsax,dtemp,1,2*ngw,2*ngw,nhsa,1) do ig=1,ngw df(ig)=df(ig)+fi*dtemp(ig) end do endif deallocate( dtemp) return end subroutine dforceb function enberry( detq, ipol ) use constants use kinds, only: dp use cell_base, only: alat, at USE electrons_base, ONLY : nspin implicit none complex(dp), intent (in) :: detq real(dp) :: enberry integer ipol real(dp) gmes real(dp), external :: g_mes gmes = g_mes ( ipol, at, alat ) enberry = 2.d0/REAL(nspin,DP)*AIMAG(log(detq))/gmes ! take care of sign return end function enberry ! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! FUNCTION g_mes ( ipol, at, alat ) USE kinds, ONLY : dp USE constants, ONLY : pi IMPLICIT NONE INTEGER, INTENT(IN) :: ipol REAL(dp), INTENT(IN) :: at(3,3), alat REAL(dp) :: g_mes IF ( ipol < 1 .OR. ipol > 3) CALL errore ( 'gmes','incorrect ipol', 1) g_mes = 2.0_dp*pi/alat/SQRT(at(1,ipol)**2+at(2,ipol)**2+at(3,ipol)**2) END FUNCTION g_mes espresso-5.1/CPV/src/cglib.f900000644000175000017500000006204312341373026014127 0ustar mbamba! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !----------------------------------------------------------------------- subroutine calcmt( nrlx, fdiag, zmat, fmat ) !----------------------------------------------------------------------- ! ! constructs fmat=z0^t.fdiag.z0 zmat = z0^t ! USE kinds, ONLY: DP use electrons_base, ONLY: nudx, nspin, nupdwn, iupdwn, nx => nbspx USE cp_main_variables, ONLY: descla USE descriptors, ONLY: la_descriptor , ldim_cyclic USE mp, ONLY: mp_sum, mp_bcast implicit none integer, intent(in) :: nrlx real(DP) :: zmat( nrlx, nudx, nspin ), fmat( nrlx, nudx, nspin ) ! NOTE: zmat and fmat are distributed by row across processors real(dp) :: fdiag( nx ) ! fdiag is replicated integer :: iss, nss, istart, i, j, k, ii, jj, kk integer :: np_rot, me_rot, nrl, comm_rot, ip, nrl_ip real(DP), ALLOCATABLE :: mtmp(:,:) real(DP) :: f_z0t call start_clock('calcmt') fmat = 0.0d0 DO iss = 1, nspin nss = nupdwn( iss ) istart = iupdwn( iss ) np_rot = descla( iss )%npr * descla( iss )%npc me_rot = descla( iss )%mype nrl = descla( iss )%nrl comm_rot = descla( iss )%comm IF( descla( iss )%active_node > 0 ) THEN ALLOCATE( mtmp( MAXVAL(descla(:)%nrlx), nudx ) ) DO ip = 1, np_rot IF( me_rot == ( ip - 1 ) ) THEN mtmp = zmat(:,:,iss) END IF nrl_ip = ldim_cyclic( nss, np_rot, ip - 1 ) CALL mp_bcast( mtmp , ip - 1 , comm_rot ) DO j = 1, nss ii = ip DO i = 1, nrl_ip f_z0t = fdiag( j + istart - 1 ) * mtmp( i, j ) DO k = 1, nrl fmat( k, ii, iss ) = fmat( k, ii, iss )+ zmat( k, j, iss ) * f_z0t END DO ii = ii + np_rot END DO END DO END DO DEALLOCATE( mtmp ) END IF END DO call stop_clock('calcmt') RETURN END SUBROUTINE calcmt !----------------------------------------------------------------------- subroutine rotate( nrlx, z0, c0, bec, c0diag, becdiag ) !----------------------------------------------------------------------- use kinds, only: dp use electrons_base, only: nudx, nspin, nupdwn, iupdwn, nx => nbspx, n => nbsp use uspp_param, only: nh, ish, nvb use uspp, only :nhsa=>nkb, nhsavb=>nkbus, qq use gvecw, only: ngw use ions_base, only: nsp, na USE cp_main_variables, ONLY: descla USE descriptors, ONLY: la_descriptor USE cp_interfaces, ONLY: protate implicit none integer, intent(in) :: nrlx real(kind=DP) z0( nrlx, nudx, nspin ) real(kind=DP) bec( nhsa, n ), becdiag( nhsa, n ) complex(kind=DP) c0( ngw, nx ), c0diag( ngw, nx ) integer :: np_rot, me_rot, nrl, comm_rot integer iss, nss, istart CALL start_clock( 'rotate' ) DO iss = 1, nspin istart = iupdwn( iss ) nss = nupdwn( iss ) np_rot = descla( iss )%npr * descla( iss )%npc me_rot = descla( iss )%mype nrl = descla( iss )%nrl comm_rot = descla( iss )%comm CALL protate ( c0, bec, c0diag, becdiag, ngw, nss, istart, z0(:,:,iss), nrl, & na, nsp, ish, nh, np_rot, me_rot, comm_rot ) END DO CALL stop_clock( 'rotate' ) return end subroutine rotate !----------------------------------------------------------------------- subroutine ddiag(nx,n,amat,dval,dvec,iflag) !----------------------------------------------------------------------- ! use dspev_module, only: dspev_drv use kinds , only : dp implicit none integer nx,n,ndim,iflag,k,i,j real(dp) dval(n) real(dp) amat(nx,n), dvec(nx,n) real(dp), allocatable:: ap(:) ndim=(n*(n+1))/2 allocate(ap(ndim)) ap(:)=0.d0 k=0 do j=1,n do i=1,j k=k+1 ap(k)=amat(i,j) end do end do CALL dspev_drv( 'V', 'U', n, ap, dval, dvec, nx ) deallocate(ap) return end subroutine ddiag subroutine minparabola(ene0,dene0,ene1,passop,passo,stima) !this subroutines finds the minimum of a quadratic real function use kinds, only : dp implicit none real(dp) ene0,dene0,ene1,passop,passo,stima real(dp) a,b,c!a*x^2+b*x+c c=ene0 b=dene0 a=(ene1-b*passop-c)/(passop**2.d0) passo = -b/(2.d0*a) if( a.lt.0.d0) then if(ene1.lt.ene0) then passo=passop else passo=0.5d0*passop endif endif stima=a*passo**2.d0+b*passo+c return end subroutine minparabola subroutine pc2(a,beca,b,becb) ! this function applies the operator Pc ! this subroutine applies the Pc operator ! a input :unperturbed wavefunctions ! b input :first order wavefunctions ! b output:b_i =b_i-a_j> use kinds, only: dp use ions_base, only: na, nsp use io_global, only: stdout use mp_global, only: intra_bgrp_comm use gvecw, only: ngw use constants, only: pi, fpi use gvect, only: gstart use mp, only: mp_sum use electrons_base, only: n => nbsp, ispin, nupdwn, iupdwn, nspin use uspp_param, only: nh, nvb, ish use uspp, only :nhsa=>nkb use uspp, only :qq use parallel_toolkit, only : rep_matmul_drv implicit none complex(kind=DP) a(ngw,n), b(ngw,n) real(kind=DP) beca(nhsa,n),becb(nhsa,n) ! local variables integer is, iv, jv, ia, inl, jnl, i, j,ig real(kind=DP) sca real(DP), allocatable :: bectmp(:,:) real(DP), allocatable :: qq_tmp(:,:), qqb_tmp(:,:) complex(DP), allocatable :: zbectmp(:,:) integer :: nl_max integer :: nss,iss, istart logical :: mat_par=.true.!if true uses parallel routines CALL start_clock( 'pc2' ) do iss= 1, nspin nss= nupdwn( iss ) istart= iupdwn( iss ) allocate(bectmp(nss,nss)) allocate(zbectmp(nss,nss)) bectmp(:,:)=0.d0 call zgemm('C','N',nss,nss,ngw,(1.d0,0.d0),a(:,istart),ngw,b(:,istart),ngw,(0.d0,0.d0),zbectmp,nss) do j=1,nss do i=1,nss bectmp(i,j)=2.d0*dble(zbectmp(i,j)) if(gstart==2) bectmp(i,j)=bectmp(i,j)-DBLE(a(1,j))*DBLE(b(1,i)) enddo enddo deallocate(zbectmp) call mp_sum( bectmp(:,:), intra_bgrp_comm) if(nvb >= 0) then nl_max=0 do is=1,nvb nl_max=nl_max+nh(is)*na(is) enddo allocate (qq_tmp(nl_max,nl_max)) allocate (qqb_tmp(nl_max,nss)) qq_tmp(:,:)=0.d0 do is=1,nvb do iv=1,nh(is) do jv=1,nh(is) do ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(is)+(jv-1)*na(is)+ia qq_tmp(inl,jnl)=qq(iv,jv,is) enddo enddo enddo enddo if(.not. mat_par) then call dgemm('N','N',nl_max,nss,nl_max,1.d0,qq_tmp,nl_max,becb(:,istart),nhsa,0.d0,qqb_tmp,nl_max) call dgemm('T','N',nss,nss,nl_max,1.d0,beca(:,istart),nhsa,qqb_tmp,nl_max,1.d0,bectmp,nss) else call para_dgemm & & ('N','N',nl_max,nss,nl_max,1.d0,qq_tmp,nl_max,becb(:,istart),nhsa,0.d0,qqb_tmp,nl_max, intra_bgrp_comm) call para_dgemm & &('T','N',nss,nss,nl_max,1.d0,beca(:,istart),nhsa,qqb_tmp,nl_max,1.d0,bectmp,nss, intra_bgrp_comm) endif deallocate(qq_tmp,qqb_tmp) endif allocate(zbectmp(nss,nss)) do i=1,nss do j=1,nss zbectmp(i,j)=CMPLX(bectmp(i,j),0.d0,kind=dp) enddo enddo call zgemm('N','N',ngw,nss,nss,(-1.d0,0.d0),a(:,istart),ngw,zbectmp,nss,(1.d0,0.d0),b(:,istart),ngw) deallocate(zbectmp) call dgemm('N','N',nhsa,nss,nss,1.0d0,beca(:,istart),nhsa,bectmp,nss,1.0d0,becb(:,istart),nhsa) deallocate(bectmp) enddo!on spin CALL stop_clock( 'pc2' ) return end subroutine pc2 subroutine pcdaga2(a,as ,b ) ! this function applies the operator Pc ! this subroutine applies the Pc^dagerr operator ! a input :unperturbed wavefunctions ! b input :first order wavefunctions ! b output:b_i =b_i - S|a_j> use kinds use ions_base, only: na, nsp use io_global, only: stdout use mp_global, only: intra_bgrp_comm use gvecw, only: ngw use constants, only: pi, fpi use gvect, only: gstart use mp, only: mp_sum use electrons_base, only: n => nbsp, ispin use uspp_param, only: nh, ish, nvb use uspp, only :nhsa=>nkb implicit none complex(dp) a(ngw,n), b(ngw,n), as(ngw,n) ! local variables integer is, iv, jv, ia, inl, jnl, i, j,ig real(dp) sca real(DP), allocatable:: scar(:) ! call start_clock('pcdaga2') allocate(scar(n)) do j=1,n do i=1,n sca=0.0d0 if(ispin(i) == ispin(j)) then if (gstart==2) b(1,i) = CMPLX(dble(b(1,i)),0.0d0,kind=dp) do ig=1,ngw !loop on g vectors sca=sca+DBLE(CONJG(a(ig,j))*b(ig,i)) enddo sca = sca*2.0d0 !2. for real weavefunctions if (gstart==2) sca = sca - dble(a(1,j))*dble(b(1,i)) endif scar(i) = sca enddo call mp_sum( scar, intra_bgrp_comm ) do i=1,n if(ispin(i) == ispin(j)) then sca = scar(i) do ig=1,ngw b(ig,i)=b(ig,i)-sca*as(ig,j) enddo ! this to prevent numerical errors if (gstart==2) b(1,i) = CMPLX(dble(b(1,i)),0.0d0,kind=dp) endif enddo enddo deallocate(scar) call stop_clock('pcdaga2') return end subroutine pcdaga2 subroutine set_x_minus1(betae,m_minus1,ema0bg,use_ema) ! this function calculates the factors for the inverse of the US K matrix ! it takes care of the preconditioning use kinds, only: dp use ions_base, only: na, nsp use io_global, only: stdout use mp_global, only: intra_bgrp_comm use gvecw, only: ngw use constants, only: pi, fpi use gvect, only: gstart use mp, only: mp_sum, mp_bcast use electrons_base, only: n => nbsp, ispin use uspp_param, only: nh, ish, nvb use uspp, only :nhsa=>nkb,qq,nhsavb=>nkbus use io_global, ONLY: ionode, ionode_id implicit none complex(DP) :: betae(ngw,nhsa) real(DP) :: m_minus1(nhsavb,nhsavb) real(DP) :: ema0bg(ngw) logical :: use_ema ! local variables real(DP),allocatable :: q_matrix(:,:), b_matrix(:,:),c_matrix(:,:) integer is, iv, jv, ia, inl, jnl, i, j, k,ig, js, ja real(DP) sca integer info, lwork integer, allocatable :: ipiv(:) real(dp),allocatable :: work(:) call start_clock('set_x_minus1') allocate(ipiv(nhsavb)) allocate(work(nhsavb)) lwork=nhsavb allocate(q_matrix(nhsavb,nhsavb),c_matrix(nhsavb,nhsavb)) !construct q matrix q_matrix(:,:) = 0.d0 do is=1,nvb do iv=1,nh(is) do jv=1,nh(is) do ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(is)+(jv-1)*na(is)+ia q_matrix(inl,jnl)= qq(iv,jv,is) enddo enddo enddo enddo !construct b matrix ! m_minus1 used to be b matrix m_minus1(:,:) = 0.d0 do is=1,nvb do ia=1,na(is) do iv=1,nh(is) do js=1,nvb do ja=1,na(js) do jv=1,nh(js) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(js)+(jv-1)*na(js)+ja sca=0.d0 if (use_ema) then ! k_minus case do ig=1,ngw !loop on g vectors sca=sca+ema0bg(ig)*DBLE(CONJG(betae(ig,inl))*betae(ig,jnl)) enddo sca = sca*2.0d0 !2. for real weavefunctions if (gstart==2) sca = sca - ema0bg(1)*DBLE(CONJG(betae(1,inl))*betae(1,jnl)) else ! s_minus case do ig=1,ngw !loop on g vectors sca=sca+DBLE(CONJG(betae(ig,inl))*betae(ig,jnl)) enddo sca = sca*2.0d0 !2. for real weavefunctions if (gstart==2) sca = sca - DBLE(CONJG(betae(1,inl))*betae(1,jnl)) endif m_minus1(inl,jnl)=sca enddo enddo enddo enddo enddo enddo call mp_sum( m_minus1, intra_bgrp_comm ) !calculate -(1+QB)**(-1) * Q CALL dgemm('N','N',nhsavb,nhsavb,nhsavb,1.0d0,q_matrix,nhsavb,m_minus1,nhsavb,0.0d0,c_matrix,nhsavb) do i=1,nhsavb c_matrix(i,i)=c_matrix(i,i)+1.d0 enddo if(ionode) then call dgetrf(nhsavb,nhsavb,c_matrix,nhsavb,ipiv,info) if(info .ne. 0) write(stdout,*) 'set_k_minus1 Problem with dgetrf :', info call dgetri(nhsavb,c_matrix,nhsavb,ipiv,work,lwork,info) if(info .ne. 0) write(stdout,*) 'set_k_minus1 Problem with dgetri :', info endif call mp_bcast( c_matrix, ionode_id, intra_bgrp_comm ) CALL dgemm('N','N',nhsavb,nhsavb,nhsavb,-1.0d0,c_matrix,nhsavb,q_matrix,nhsavb,0.0d0,m_minus1,nhsavb) deallocate(q_matrix,c_matrix) deallocate(ipiv,work) call stop_clock('set_x_minus1') return end subroutine set_x_minus1 ! subroutine xminus1(c0,betae,ema0bg,beck,m_minus1,do_k) ! if (do_k) then !----------------------------------------------------------------------- ! input: c0 , bec=, betae=|beta> ! computes the matrix phi (with the old positions) ! where |phi> = K^{-1}|c0> ! else !----------------------------------------------------------------------- ! input: c0 , bec=, betae=|beta> ! computes the matrix phi (with the old positions) ! where |phi> = s^{-1}|c0> ! endif use kinds, only: dp use ions_base, only: na, nsp use io_global, only: stdout use mp_global, only: intra_bgrp_comm use uspp_param, only: nh, nvb, ish use uspp, only :nhsa=>nkb, nhsavb=>nkbus, qq use electrons_base, only: n => nbsp use gvecw, only: ngw use constants, only: pi, fpi use mp, only: mp_sum use gvect, only: gstart ! implicit none complex(dp) c0(ngw,n), betae(ngw,nhsa) real(dp) beck(nhsa,n), ema0bg(ngw) real(DP) :: m_minus1(nhsavb,nhsavb) logical :: do_k ! local variables complex(dp), allocatable :: phi(:,:) real(dp) , allocatable :: qtemp(:,:) integer is, iv, jv, ia, inl, jnl, i, j, js, ja,ig real(dp) becktmp logical :: mat_par=.true.!if true uses parallel routines call start_clock('xminus1') if (nvb.gt.0) then !calculates beck if (do_k) then beck(:,:) = 0.d0 do is=1,nvb do iv=1,nh(is) do ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia do i=1,n becktmp = 0.0d0 do ig=1,ngw becktmp=becktmp+ema0bg(ig)*DBLE(CONJG(betae(ig,inl))*c0(ig,i)) enddo becktmp = becktmp*2.0d0 if (gstart==2) becktmp = becktmp-ema0bg(1)*DBLE(CONJG(betae(1,inl))*c0(1,i)) beck(inl,i) = beck(inl,i) + becktmp enddo enddo enddo enddo call mp_sum( beck, intra_bgrp_comm ) endif ! ! allocate(phi(ngw,n)) allocate(qtemp(nhsavb,n)) phi(1:ngw,1:n) = 0.0d0 qtemp(:,:) = 0.0d0 if(.not.mat_par) then call dgemm( 'N', 'N', nhsavb, n, nhsavb, 1.0d0, m_minus1,nhsavb , & beck, nhsa, 0.0d0, qtemp,nhsavb ) else call para_dgemm( 'N', 'N', nhsavb, n, nhsavb, 1.0d0, m_minus1,nhsavb , & beck, nhsa, 0.0d0, qtemp,nhsavb,intra_bgrp_comm ) endif !NB nhsavb is the total number of US projectors ! it works because the first pseudos are the vanderbilt's ones CALL dgemm( 'N', 'N', 2*ngw, n, nhsavb, 1.0d0, betae, 2*ngw, & qtemp, nhsavb, 0.0d0, phi, 2*ngw ) if (do_k) then do j=1,n do ig=1,ngw c0(ig,j)=(phi(ig,j)+c0(ig,j))*ema0bg(ig) end do end do else do j=1,n do i=1,ngw c0(i,j)=(phi(i,j)+c0(i,j)) end do end do endif deallocate(qtemp,phi) else if (do_k) then do j=1,n do ig=1,ngw c0(ig,j)=c0(ig,j)*ema0bg(ig) end do end do endif endif call stop_clock('xminus1') return end subroutine xminus1 SUBROUTINE emass_precond_tpa( ema0bg, tpiba2, emaec ) use kinds, ONLY : dp use gvecw, ONLY : ggp,ngw IMPLICIT NONE REAL(DP), INTENT(OUT) :: ema0bg(ngw) REAL(DP), INTENT(IN) :: tpiba2, emaec INTEGER :: i real(DP) :: x call start_clock('emass_p_tpa') do i = 1, ngw x=0.5d0*tpiba2*ggp(i)/emaec ema0bg(i) = 1.d0/(1.d0+(16.d0*x**4)/(27.d0+18.d0*x+12.d0*x**2+8.d0*x**3)) end do call stop_clock('emass_p_tpa') RETURN END SUBROUTINE emass_precond_tpa subroutine ave_kin( c, ngwx, n, ene_ave ) !this subroutine calculates the average kinetic energy of !each state , to be used for preconditioning USE kinds, ONLY: DP USE constants, ONLY: pi, fpi USE gvecw, ONLY: ngw USE gvect, ONLY: gstart USE gvecw, ONLY: ggp USE mp, ONLY: mp_sum USE mp_global, ONLY: intra_bgrp_comm USE cell_base, ONLY: tpiba2 IMPLICIT NONE ! input INTEGER, INTENT(IN) :: ngwx, n COMPLEX(kind=DP), INTENT(IN) :: c( ngwx, n ) REAL(kind=DP), INTENT(out) :: ene_ave(n)!average kinetic energy to be calculated ! ! local INTEGER :: ig, i ! DO i=1,n ene_ave(i)=0.d0 DO ig=gstart,ngw ene_ave(i)=ene_ave(i)+DBLE(CONJG(c(ig,i))*c(ig,i))*ggp(ig) END DO END DO CALL mp_sum( ene_ave(1:n), intra_bgrp_comm ) ene_ave(:)=ene_ave(:)*tpiba2 RETURN END subroutine ave_kin subroutine xminus1_state(c0,betae,ema0bg,beck,m_minus1,do_k,ave_kin) ! if (do_k) then !----------------------------------------------------------------------- ! input: c0 , bec=, betae=|beta> ! computes the matrix phi (with the old positions) ! where |phi> = K^{-1}|c0> ! else !----------------------------------------------------------------------- ! input: c0 , bec=, betae=|beta> ! computes the matrix phi (with the old positions) ! where |phi> = s^{-1}|c0> ! endif !adapted for state by state use kinds, only: dp use ions_base, only: na, nsp use io_global, only: stdout use mp_global, only: intra_bgrp_comm use uspp_param, only: nh, nvb, ish use uspp, only :nhsa=>nkb, nhsavb=>nkbus, qq use electrons_base, only: n => nbsp use gvecw, only: ngw use constants, only: pi, fpi use mp, only: mp_sum use gvect, only: gstart USE gvecw, ONLY: ggp USE cell_base, ONLY: tpiba2 ! implicit none complex(dp) c0(ngw,n), betae(ngw,nhsa) real(dp) beck(nhsa,n), ema0bg(ngw) real(DP) :: m_minus1(nhsavb,nhsavb) logical :: do_k real(kind=DP) :: ave_kin(n)!average kinetic energy per state ! local variables complex(dp), allocatable :: phi(:,:) real(dp) , allocatable :: qtemp(:,:) integer is, iv, jv, ia, inl, jnl, i, j, js, ja,ig real(dp) becktmp real(kind=DP) :: prec_fact, x call start_clock('xminus1') if (nvb.gt.0) then !calculates beck if (do_k) then beck(:,:) = 0.d0 do is=1,nvb do iv=1,nh(is) do ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia do i=1,n becktmp = 0.0d0 do ig=1,ngw becktmp=becktmp+ema0bg(ig)*DBLE(CONJG(betae(ig,inl))*c0(ig,i)) enddo becktmp = becktmp*2.0d0 if (gstart==2) becktmp = becktmp-ema0bg(1)*DBLE(CONJG(betae(1,inl))*c0(1,i)) beck(inl,i) = beck(inl,i) + becktmp enddo enddo enddo enddo call mp_sum( beck, intra_bgrp_comm ) endif ! ! allocate(phi(ngw,n)) allocate(qtemp(nhsavb,n)) phi(1:ngw,1:n) = 0.0d0 qtemp(:,:) = 0.0d0 call dgemm( 'N', 'N', nhsavb, n, nhsavb, 1.0d0, m_minus1,nhsavb , & beck, nhsa, 0.0d0, qtemp,nhsavb ) !NB nhsavb is the total number of US projectors, it works because the first pseudos are the vanderbilt's ones CALL dgemm( 'N', 'N', 2*ngw, n, nhsavb, 1.0d0, betae, 2*ngw, & qtemp, nhsavb, 0.0d0, phi, 2*ngw ) if (do_k) then do j=1,n do ig=1,ngw x=tpiba2*ggp(i)/ave_kin(j) prec_fact = 1.d0/(1.d0+(16.d0*x**4)/(27.d0+18.d0*x+12.d0*x**2+8.d0*x**3)) c0(ig,j)=c0(ig,j)*prec_fact !c0(ig,j)=(phi(ig,j)+c0(ig,j))*ema0bg(ig) end do end do else do j=1,n do i=1,ngw c0(i,j)=(phi(i,j)+c0(i,j)) end do end do endif deallocate(qtemp,phi) else if (do_k) then do j=1,n do ig=1,ngw x=tpiba2*ggp(ig)/ave_kin(j) prec_fact = 1.d0/(1.d0+(16.d0*x**4)/(27.d0+18.d0*x+12.d0*x**2+8.d0*x**3)) c0(ig,j)=c0(ig,j)*prec_fact end do end do endif endif call stop_clock('xminus1') return end subroutine xminus1_state ! ! ... some simple routines for parallel linear algebra (the matrices are ! ... always replicated on all the cpus) ! ! ... written by carlo sbraccia ( 2006 ) ! !---------------------------------------------------------------------------- SUBROUTINE para_dgemm( transa, transb, m, n, k, & alpha, a, lda, b, ldb, beta, c, ldc, comm ) !---------------------------------------------------------------------------- ! ! ... trivial parallelization (splitting matrix B by columns) of dgemm ! USE kinds, ONLY : DP USE parallel_toolkit ! IMPLICIT NONE ! CHARACTER(LEN=1), INTENT(IN) :: transa, transb INTEGER, INTENT(IN) :: m, n, k REAL(DP), INTENT(IN) :: alpha, beta INTEGER, INTENT(IN) :: lda, ldb, ldc REAL(DP), INTENT(INOUT) :: a(lda,*), b(ldb,*), c(ldc,*) INTEGER, INTENT(IN) :: comm ! ! ... quick return if possible ! IF ( m == 0 .OR. n == 0 .OR. & ( ( alpha == 0.0_DP .OR. k == 0 ) .AND. beta == 1.0_DP ) ) RETURN ! !write(*,*) 'DEBUG: para_dgemm' ! CALL rep_matmul_drv( transa, transb, m, n, k, & alpha, a, lda, b, ldb, beta, c, ldc, comm ) RETURN ! END SUBROUTINE para_dgemm espresso-5.1/CPV/src/cpr_mod.f900000644000175000017500000000174012341373026014467 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- module betax !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! IMPLICIT NONE SAVE ! INTEGER :: mmx = 5000 REAL(DP) :: refg REAL(DP),ALLOCATABLE :: betagx(:,:,:), dbetagx(:,:,:), & qradx(:,:,:,:), dqradx(:,:,:,:) ! CONTAINS ! SUBROUTINE deallocate_betax() ! IF ( ALLOCATED( betagx ) ) DEALLOCATE( betagx ) IF ( ALLOCATED( dbetagx ) ) DEALLOCATE( dbetagx ) IF ( ALLOCATED( qradx ) ) DEALLOCATE( qradx ) IF ( ALLOCATED( dqradx ) ) DEALLOCATE( dqradx ) ! END SUBROUTINE deallocate_betax ! END MODULE betax ! espresso-5.1/CPV/src/newd.f900000644000175000017500000002755512341373026014015 0ustar mbamba! ! Copyright (C) 2002-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------- SUBROUTINE newd(vr,irb,eigrb,rhovan,fion) !----------------------------------------------------------------------- ! ! this routine calculates array deeq: ! deeq_i,lm = \int V_eff(r) q_i,lm(r) dr ! and the corresponding term in forces ! fion_i = \int V_eff(r) \sum_lm rho_lm (dq_i,lm(r)/dR_i) dr ! where ! rho_lm = \sum_j f_j ! USE kinds, ONLY: dp USE uspp_param, ONLY: nh, nhm, nvb USE uspp, ONLY: deeq USE ions_base, ONLY: nat, nsp, na USE constants, ONLY: pi, fpi USE smallbox_gvec, ONLY: ngb, npb, nmb, gxb USE small_box, ONLY: omegab, tpibab USE qgb_mod, ONLY: qgb USE electrons_base, ONLY: nspin USE control_flags, ONLY: iprint, thdyn, tfor, tprnfor USE mp, ONLY: mp_sum USE mp_bands, ONLY: intra_bgrp_comm, inter_bgrp_comm, & my_bgrp_id, nbgrp USE fft_interfaces, ONLY: invfft USE fft_base, ONLY: dfftb, dfftp ! IMPLICIT NONE ! input INTEGER irb(3,nat) REAL(DP) rhovan(nhm*(nhm+1)/2,nat,nspin) COMPLEX(DP) eigrb(ngb,nat) REAL(DP) vr(dfftp%nnr,nspin) ! output REAL(DP) fion(3,nat) ! local INTEGER isup,isdw,iss, iv,ijv,jv, ik, nfft, isa, ia, is, ig REAL(DP) fvan(3,nat,nvb), fac, fac1, fac2, boxdotgrid, res COMPLEX(DP) ci, facg1, facg2 COMPLEX(DP), ALLOCATABLE :: qv(:) INTEGER :: na_bgrp, ia_bgrp EXTERNAL boxdotgrid #ifdef __OPENMP INTEGER :: itid, mytid, ntids, omp_get_thread_num, omp_get_num_threads EXTERNAL :: omp_get_thread_num, omp_get_num_threads #endif ! IF ( dfftb%nr1==0 .OR. dfftb%nr2==0 .OR. dfftb%nr3==0 ) RETURN CALL start_clock( 'newd' ) ci=(0.d0,1.d0) fac=omegab/DBLE(dfftb%nr1*dfftb%nr2*dfftb%nr3) deeq (:,:,:,:) = 0.d0 fvan (:,:,:) = 0.d0 !$omp parallel default(none) & !$omp shared(nvb, na, ngb, nh, qgb, eigrb, dfftb, irb, vr, nmb, npb, ci, deeq, & !$omp fac, nspin, my_bgrp_id, nbgrp ) & !$omp private(mytid, ntids, is, ia, nfft, iv, jv, ijv, ig, isa, qv, itid, res, iss ) isa = 1 #ifdef __OPENMP mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads itid = 0 #endif ALLOCATE( qv( dfftb%nnr ) ) ! ! calculation of deeq_i,lm = \int V_eff(r) q_i,lm(r) dr ! DO is = 1, nvb #ifdef __MPI DO ia=1,na(is) nfft = 1 IF ( ( dfftb%np3( isa ) <= 0 ) .OR. ( my_bgrp_id /= MOD( ia, nbgrp ) ) ) THEN isa = isa + nfft CYCLE END IF #else DO ia=1,na(is),2 nfft=2 #endif #ifdef __OPENMP IF ( mytid /= itid ) THEN isa = isa + nfft itid = MOD( itid + 1, ntids ) CYCLE ELSE itid = MOD( itid + 1, ntids ) END IF #endif IF( ia .EQ. na(is) ) nfft=1 ! ! two ffts at the same time, on two atoms (if possible: nfft=2) ! DO iv=1,nh(is) DO jv=iv,nh(is) ijv = (jv-1)*jv/2 + iv qv(:) = (0.d0, 0.d0) IF (nfft.EQ.2) THEN DO ig=1,ngb qv(npb(ig))= eigrb(ig,isa )*qgb(ig,ijv,is) & & + ci*eigrb(ig,isa+1)*qgb(ig,ijv,is) qv(nmb(ig))= CONJG( & & eigrb(ig,isa )*qgb(ig,ijv,is)) & & + ci*CONJG( & & eigrb(ig,isa+1)*qgb(ig,ijv,is)) END DO ELSE DO ig=1,ngb qv(npb(ig)) = eigrb(ig,isa)*qgb(ig,ijv,is) qv(nmb(ig)) = CONJG( & & eigrb(ig,isa)*qgb(ig,ijv,is)) END DO END IF ! CALL invfft( 'Box', qv, dfftb, isa ) ! DO iss=1,nspin res = boxdotgrid(irb(1,isa),1,qv,vr(1,iss)) deeq(iv,jv,isa,iss) = fac * res IF (iv.NE.jv) & & deeq(jv,iv,isa,iss)=deeq(iv,jv,isa,iss) IF (nfft.EQ.2) THEN res = boxdotgrid(irb(1,isa+1),2,qv,vr(1,iss)) deeq(iv,jv,isa+1,iss) = fac * res IF (iv.NE.jv) & & deeq(jv,iv,isa+1,iss)=deeq(iv,jv,isa+1,iss) END IF END DO END DO END DO isa=isa+nfft END DO END DO DEALLOCATE( qv ) !$omp end parallel CALL mp_sum( deeq, intra_bgrp_comm ) CALL mp_sum( deeq, inter_bgrp_comm ) IF (.NOT.( tfor .OR. thdyn .OR. tprnfor ) ) go to 10 ! ! calculation of fion_i = \int V_eff(r) \sum_lm rho_lm (dq_i,lm(r)/dR_i) dr ! IF( nspin == 1 ) THEN ! ================================================================= ! case nspin=1: two ffts at the same time, on two atoms (if possible) ! ----------------------------------------------------------------- !$omp parallel default(none) & !$omp shared(nvb, na, ngb, nh, qgb, eigrb, dfftb, irb, vr, nmb, npb, ci, deeq, & !$omp fac, nspin, rhovan, tpibab, gxb, fvan, my_bgrp_id, nbgrp ) & !$omp private(mytid, ntids, is, ia, ik, nfft, iv, jv, ijv, ig, isa, qv, itid, res, iss, & !$omp fac1, fac2, facg1, facg2 ) ALLOCATE( qv( dfftb%nnr ) ) iss=1 isa=1 #ifdef __OPENMP mytid = omp_get_thread_num() ! take the thread ID ntids = omp_get_num_threads() ! take the number of threads itid = 0 #endif DO is = 1, nvb #ifdef __MPI DO ia=1,na(is) nfft=1 IF ( ( dfftb%np3( isa ) <= 0 ) .OR. ( my_bgrp_id /= MOD( ia, nbgrp ) ) ) THEN isa = isa + nfft CYCLE END IF #else DO ia=1,na(is),2 nfft=2 #endif #ifdef __OPENMP IF ( mytid /= itid ) THEN isa = isa + nfft itid = MOD( itid + 1, ntids ) CYCLE ELSE itid = MOD( itid + 1, ntids ) END IF #endif IF( ia.EQ.na(is)) nfft=1 DO ik=1,3 qv(:) = (0.d0, 0.d0) DO iv=1,nh(is) DO jv=iv,nh(is) ijv = (jv-1)*jv/2 + iv IF(iv.NE.jv) THEN fac1=2.d0*fac*tpibab*rhovan(ijv,isa,iss) IF (nfft.EQ.2) fac2=2.d0*fac*tpibab* & & rhovan(ijv,isa+1,iss) ELSE fac1= fac*tpibab*rhovan(ijv,isa,iss) IF (nfft.EQ.2) fac2= fac*tpibab* & & rhovan(ijv,isa+1,iss) ENDIF IF (nfft.EQ.2) THEN DO ig=1,ngb facg1 = CMPLX(0.d0,-gxb(ik,ig),kind=DP) * & & qgb(ig,ijv,is) * fac1 facg2 = CMPLX(0.d0,-gxb(ik,ig),kind=DP) * & & qgb(ig,ijv,is) * fac2 qv(npb(ig)) = qv(npb(ig)) & & + eigrb(ig,isa )*facg1 & & + ci*eigrb(ig,isa+1)*facg2 qv(nmb(ig)) = qv(nmb(ig)) & & + CONJG(eigrb(ig,isa )*facg1)& & +ci*CONJG(eigrb(ig,isa+1)*facg2) END DO ELSE DO ig=1,ngb facg1 = CMPLX(0.d0,-gxb(ik,ig),kind=DP) * & & qgb(ig,ijv,is)*fac1 qv(npb(ig)) = qv(npb(ig)) & & + eigrb(ig,isa)*facg1 qv(nmb(ig)) = qv(nmb(ig)) & & + CONJG( eigrb(ig,isa)*facg1) END DO END IF END DO END DO ! CALL invfft('Box',qv,dfftb,isa) ! res = boxdotgrid(irb(1,isa),1,qv,vr(1,iss)) fvan(ik,ia,is) = res ! IF (nfft.EQ.2) THEN res = boxdotgrid(irb(1,isa+1),2,qv,vr(1,iss)) fvan(ik,ia+1,is) = res END IF END DO isa = isa+nfft END DO END DO DEALLOCATE( qv ) !$omp end parallel ELSE ! ================================================================= ! case nspin=2: up and down spin fft's combined into a single fft ! ----------------------------------------------------------------- ALLOCATE( qv( dfftb%nnr ) ) isup=1 isdw=2 isa=1 DO is=1,nvb DO ia=1,na(is) #ifdef __MPI IF ( dfftb%np3( isa ) <= 0 ) go to 25 #endif DO ik=1,3 qv(:) = (0.d0, 0.d0) ! DO iv=1,nh(is) DO jv=iv,nh(is) ijv = (jv-1)*jv/2 + iv IF(iv.NE.jv) THEN fac1=2.d0*fac*tpibab*rhovan(ijv,isa,isup) fac2=2.d0*fac*tpibab*rhovan(ijv,isa,isdw) ELSE fac1= fac*tpibab*rhovan(ijv,isa,isup) fac2= fac*tpibab*rhovan(ijv,isa,isdw) END IF DO ig=1,ngb facg1 = fac1 * CMPLX(0.d0,-gxb(ik,ig),kind=DP) * & & qgb(ig,ijv,is) * eigrb(ig,isa) facg2 = fac2 * CMPLX(0.d0,-gxb(ik,ig),kind=DP) * & & qgb(ig,ijv,is) * eigrb(ig,isa) qv(npb(ig)) = qv(npb(ig)) & & + facg1 + ci*facg2 qv(nmb(ig)) = qv(nmb(ig)) & & +CONJG(facg1)+ci*CONJG(facg2) END DO END DO END DO ! CALL invfft('Box',qv,dfftb,isa) ! fvan(ik,ia,is) = & & boxdotgrid(irb(1,isa),isup,qv,vr(1,isup)) + & & boxdotgrid(irb(1,isa),isdw,qv,vr(1,isdw)) END DO 25 isa = isa+1 END DO END DO DEALLOCATE( qv ) END IF CALL mp_sum( fvan, intra_bgrp_comm ) CALL mp_sum( fvan, inter_bgrp_comm ) isa = 0 DO is = 1, nvb DO ia = 1, na(is) isa = isa + 1 fion(:,isa) = fion(:,isa) - fvan(:,ia,is) END DO END DO 10 CONTINUE ! CALL stop_clock( 'newd' ) ! RETURN END SUBROUTINE newd espresso-5.1/CPV/src/potentials.f900000644000175000017500000005071112341373026015230 0ustar mbamba! ! Copyright (C) 2002-2008 Quantm-Espresso group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! AB INITIO COSTANT PRESSURE MOLECULAR DYNAMICS ! ---------------------------------------------- ! Car-Parrinello Parallel Program SUBROUTINE potential_print_info( iunit ) USE control_flags, ONLY: iesr INTEGER, INTENT(IN) :: iunit WRITE(iunit,50) WRITE(iunit,115) (2*iesr+1),(2*iesr+1),(2*iesr+1) 50 FORMAT(//,3X,'Potentials Parameters',/,3X,'---------------------') 115 FORMAT( 3X,'Ewald sum over ',I1,'*',I1,'*',I1,' cells') RETURN END SUBROUTINE potential_print_info !=----------------------------------------------------------------------------=! SUBROUTINE cluster_bc( screen_coul, hg, omega, hmat ) USE kinds, ONLY: DP USE mp_global, ONLY: me_bgrp USE fft_base, ONLY: dfftp USE fft_interfaces, ONLY: fwfft USE gvect, ONLY: ngm USE constants, ONLY: gsmall, pi USE cell_base, ONLY: tpiba2, s_to_r, alat IMPLICIT NONE REAL(DP), INTENT(IN) :: hg( ngm ) REAL(DP), INTENT(IN) :: omega, hmat( 3, 3 ) COMPLEX(DP) :: screen_coul( ngm ) REAL(DP), EXTERNAL :: qe_erf ! ... Locals ! COMPLEX(DP), ALLOCATABLE :: grr(:) COMPLEX(DP), ALLOCATABLE :: grg(:) REAL(DP) :: rc, r(3), s(3), rmod, g2, rc2, arg, fact INTEGER :: ig, i, j, k, ir INTEGER :: ir1, ir2, ir3, nr3l ir1 = 1 ir2 = 1 ir3 = 1 DO k = 1, me_bgrp ir3 = ir3 + dfftp%npp( k ) END DO nr3l = dfftp%npl ALLOCATE( grr( dfftp%nnr ) ) ALLOCATE( grg( SIZE( screen_coul ) ) ) grr = 0.0d0 ! ... Martyna and Tuckerman convergence criterium ! rc = 7.0d0 / alat rc2 = rc**2 fact = omega / ( dfftp%nr1 * dfftp%nr2 * dfftp%nr3 ) IF( MOD(dfftp%nr1 * dfftp%nr2 * dfftp%nr3, 2) /= 0 ) fact = -fact DO k = 1, nr3l s(3) = DBLE ( (k-1) + (ir3 - 1) ) / dfftp%nr3 - 0.5d0 DO j = 1, dfftp%nr2 s(2) = DBLE ( (j-1) + (ir2 - 1) ) / dfftp%nr2 - 0.5d0 DO i = 1, dfftp%nr1 s(1) = DBLE ( (i-1) + (ir1 - 1) ) / dfftp%nr1 - 0.5d0 CALL S_TO_R( S, R, hmat ) rmod = SQRT( r(1)**2 + r(2)**2 + r(3)**2 ) ir = i + (j-1)*dfftp%nr1x + (k-1)*dfftp%nr1x*dfftp%nr2x IF( rmod < gsmall ) THEN grr( ir ) = fact * 2.0d0 * rc / SQRT( pi ) ELSE grr( ir ) = fact * qe_erf( rc * rmod ) / rmod END IF END DO END DO END DO ! grg = FFT( grr ) CALL fwfft( 'Dense', grr, dfftp ) CALL psi2rho( 'Dense', grr, dfftp%nnr, grg, ngm ) DO ig = 1, SIZE( screen_coul ) IF( hg(ig) < gsmall ) THEN screen_coul(ig) = grg(1) - ( - pi / rc2 ) ELSE g2 = tpiba2 * hg(ig) arg = - g2 / ( 4.0d0 * rc2 ) screen_coul(ig) = grg(ig) - ( 4.0d0 * pi * EXP( arg ) / g2 ) END IF END DO DEALLOCATE( grr, grg ) RETURN END SUBROUTINE cluster_bc !=----------------------------------------------------------------------------=! SUBROUTINE vofps_x( eps, vloc, rhoeg, vps, sfac, omega ) ! this routine computes: ! omega = ht%deth ! vloc_ps(ig) = (sum over is) sfac(is,ig) * vps(ig,is) ! ! Eps = Fact * omega * (sum over ig) cmplx ( rho_e(ig) ) * vloc_ps(ig) ! if Gamma symmetry Fact = 2 else Fact = 1 ! USE kinds, ONLY: DP USE io_global, ONLY: stdout USE ions_base, ONLY: nsp USE gvect, ONLY: ngm USE gvect, ONLY: gstart USE mp_global, ONLY: intra_bgrp_comm USE mp, ONLY: mp_sum IMPLICIT NONE ! ... Arguments REAL(DP), INTENT(IN) :: vps(:,:) REAL(DP), INTENT(IN) :: omega COMPLEX(DP), INTENT(OUT) :: vloc(:) COMPLEX(DP), INTENT(IN) :: rhoeg(:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) COMPLEX(DP), INTENT(OUT) :: eps ! ... Locals INTEGER :: is, ig COMPLEX(DP) :: vp ! ... Subroutine body ... ! eps = (0.D0,0.D0) ! DO ig = gstart, ngm vp = (0.D0,0.D0) DO is = 1, nsp vp = vp + sfac( ig, is ) * vps( ig, is ) END DO vloc(ig) = vp eps = eps + vp * CONJG( rhoeg( ig ) ) END DO ! ... ! ... G = 0 element ! IF ( gstart == 2 ) THEN vp = (0.D0,0.D0) DO is = 1, nsp vp = vp + sfac( 1, is) * vps(1, is) END DO vloc(1) = VP eps = eps + vp * CONJG( rhoeg(1) ) * 0.5d0 END IF ! eps = 2.D0 * eps * omega ! CALL mp_sum( eps, intra_bgrp_comm ) RETURN END SUBROUTINE vofps_x !=----------------------------------------------------------------------------=! SUBROUTINE vofloc_x( tscreen, ehte, ehti, eh, vloc, rhoeg, & rhops, vps, sfac, omega, screen_coul ) ! this routine computes: ! omega = ht%deth ! rho_e(ig) = (sum over iss) rhoeg(ig,iss) ! rho_I(ig) = (sum over is) sfac(is,ig) * rhops(ig,is) ! vloc_h(ig) = fpi / ( g(ig) * tpiba2 ) * { rho_e(ig) + rho_I(ig) } ! ! Eh = Fact * omega * (sum over ig) * fpi / ( g(ig) * tpiba2 ) * ! { rho_e(ig) + rho_I(ig) } * conjugate { rho_e(ig) + rho_I(ig) } ! if Gamma symmetry Fact = 1 else Fact = 1/2 ! ! Hatree potential and local pseudopotential ! vloc(ig) = vloc_h(ig) + vloc_ps(ig) ! USE kinds, ONLY: DP USE constants, ONLY: fpi USE cell_base, ONLY: tpiba2, tpiba USE io_global, ONLY: stdout USE gvect, ONLY: gstart, gg USE ions_base, ONLY: nsp USE gvect, ONLY: ngm USE mp_global, ONLY: intra_bgrp_comm USE mp, ONLY: mp_sum IMPLICIT NONE ! ... Arguments LOGICAL, INTENT(IN) :: tscreen REAL(DP), INTENT(IN) :: rhops(:,:), vps(:,:) COMPLEX(DP), INTENT(INOUT) :: vloc(:) COMPLEX(DP), INTENT(IN) :: rhoeg(:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) REAL(DP), INTENT(OUT) :: ehte, ehti REAL(DP), INTENT(IN) :: omega COMPLEX(DP), INTENT(OUT) :: eh COMPLEX(DP), INTENT(IN) :: screen_coul(:) ! ... Locals INTEGER :: is, ig REAL(DP) :: fpibg, cost COMPLEX(DP) :: rhet, rhog, rp, vscreen ! ... Subroutine body ... eh = 0.0d0 ehte = 0.0d0 ehti = 0.0d0 !$omp parallel do default(shared), private(rp,is,rhet,rhog,fpibg), reduction(+:eh,ehte,ehti) DO ig = gstart, ngm rp = (0.D0,0.D0) DO is = 1, nsp rp = rp + sfac( ig, is ) * rhops( ig, is ) END DO rhet = rhoeg( ig ) rhog = rhet + rp IF( tscreen ) THEN fpibg = fpi / ( gg(ig) * tpiba2 ) + screen_coul(ig) ELSE fpibg = fpi / ( gg(ig) * tpiba2 ) END IF vloc(ig) = vloc(ig) + fpibg * rhog eh = eh + fpibg * rhog * CONJG(rhog) ehte = ehte + fpibg * DBLE(rhet * CONJG(rhet)) ehti = ehti + fpibg * DBLE( rp * CONJG(rp)) END DO ! ... ! ... G = 0 element ! IF ( gstart == 2 ) THEN rp = (0.D0,0.D0) IF( tscreen ) THEN vscreen = screen_coul(1) ELSE vscreen = 0.0d0 END IF DO IS = 1, nsp rp = rp + sfac( 1, is) * rhops(1, is) END DO rhet = rhoeg(1) rhog = rhet + rp vloc(1) = vloc(1) + vscreen * rhog eh = eh + vscreen * rhog * CONJG(rhog) ehte = ehte + vscreen * DBLE(rhet * CONJG(rhet)) ehti = ehti + vscreen * DBLE( rp * CONJG(rp)) END IF ! ... eh = eh * omega ehte = ehte * omega ehti = ehti * omega ! ... CALL mp_sum(eh , intra_bgrp_comm) CALL mp_sum(ehte, intra_bgrp_comm) CALL mp_sum(ehti, intra_bgrp_comm) ! RETURN END SUBROUTINE vofloc_x SUBROUTINE force_loc_x( tscreen, rhoeg, fion, rhops, vps, ei1, ei2, ei3, & sfac, omega, screen_coul ) ! this routine computes: ! ! Local contribution to the forces on the ions ! eigrx(ig,isa) = ei1( mill(1,ig), isa) ! eigry(ig,isa) = ei2( mill(2,ig), isa) ! eigrz(ig,isa) = ei3( mill(3,ig), isa) ! fpibg = fpi / ( g(ig) * tpiba2 ) ! tx_h(ig,is) = fpibg * rhops(ig, is) * CONJG( rho_e(ig) + rho_I(ig) ) ! tx_ps(ig,is) = vps(ig,is) * CONJG( rho_e(ig) ) ! gx(ig) = cmplx(0.D0, gx(1,ig),kind=DP) * tpiba ! fion(x,isa) = fion(x,isa) + ! Fact * omega * ( sum over ig, iss) (tx_h(ig,is) + tx_ps(ig,is)) * ! gx(ig) * eigrx(ig,isa) * eigry(ig,isa) * eigrz(ig,isa) ! if Gamma symmetry Fact = 2.0 else Fact = 1 ! USE kinds, ONLY: DP USE constants, ONLY: fpi USE cell_base, ONLY: tpiba2, tpiba USE io_global, ONLY: stdout USE gvect, ONLY: mill, gstart, g, gg USE ions_base, ONLY: nat, nsp, na USE gvect, ONLY: ngm USE gvecs, ONLY: ngms USE fft_base, ONLY: dfftp IMPLICIT NONE ! ... Arguments LOGICAL :: tscreen REAL(DP) :: fion(:,:) REAL(DP) :: rhops(:,:), vps(:,:) COMPLEX(DP) :: rhoeg(:) COMPLEX(DP), INTENT(IN) :: sfac(:,:) COMPLEX(DP) :: ei1(-dfftp%nr1:dfftp%nr1,nat) COMPLEX(DP) :: ei2(-dfftp%nr2:dfftp%nr2,nat) COMPLEX(DP) :: ei3(-dfftp%nr3:dfftp%nr3,nat) REAL(DP) :: omega COMPLEX(DP) :: screen_coul(:) ! ... Locals INTEGER :: is, ia, isa, ig, ig1, ig2, ig3 REAL(DP) :: fpibg COMPLEX(DP) :: cxc, rhet, rhog, vp, rp, gxc, gyc, gzc COMPLEX(DP) :: teigr, cnvg, cvn, tx, ty, tz COMPLEX(DP), ALLOCATABLE :: ftmp(:,:) ! ... Subroutine body ... ALLOCATE( ftmp( 3, SIZE( fion, 2 ) ) ) ftmp = 0.0d0 DO ig = gstart, ngms RP = (0.D0,0.D0) DO IS = 1, nsp RP = RP + sfac( ig, is ) * rhops( ig, is ) END DO RHET = RHOEG( ig ) RHOG = RHET + RP IF( tscreen ) THEN FPIBG = fpi / ( gg(ig) * tpiba2 ) + screen_coul(ig) ELSE FPIBG = fpi / ( gg(ig) * tpiba2 ) END IF ig1 = mill(1,IG) ig2 = mill(2,IG) ig3 = mill(3,IG) GXC = CMPLX(0.D0,g(1,IG),kind=DP) GYC = CMPLX(0.D0,g(2,IG),kind=DP) GZC = CMPLX(0.D0,g(3,IG),kind=DP) isa = 1 DO IS = 1, nsp CNVG = RHOPS(IG,is) * FPIBG * CONJG(rhog) CVN = VPS(ig, is) * CONJG(rhet) TX = (CNVG+CVN) * GXC TY = (CNVG+CVN) * GYC TZ = (CNVG+CVN) * GZC DO IA = 1, na(is) TEIGR = ei1(IG1,ISA) * ei2(IG2,ISA) * ei3(IG3,ISA) ftmp(1,ISA) = ftmp(1,ISA) + TEIGR*TX ftmp(2,ISA) = ftmp(2,ISA) + TEIGR*TY ftmp(3,ISA) = ftmp(3,ISA) + TEIGR*TZ isa = isa + 1 END DO END DO END DO ! fion = fion + DBLE(ftmp) * 2.D0 * omega * tpiba DEALLOCATE( ftmp ) RETURN END SUBROUTINE force_loc_x ! !=----------------------------------------------------------------------------=! SUBROUTINE vofesr( iesr, esr, desr, fion, taus, tstress, hmat ) !=----------------------------------------------------------------------------=! USE kinds, ONLY : DP USE constants, ONLY : sqrtpm1 USE cell_base, ONLY : s_to_r, pbcs USE mp_global, ONLY : nproc_bgrp, me_bgrp, intra_bgrp_comm USE mp, ONLY : mp_sum USE ions_base, ONLY : rcmax, zv, nsp, na, nat IMPLICIT NONE ! ... ARGUMENTS INTEGER, INTENT(IN) :: iesr REAL(DP), INTENT(IN) :: taus(3,nat) REAL(DP) :: ESR REAL(DP) :: DESR(6) REAL(DP) :: FION(3,nat) LOGICAL, INTENT(IN) :: TSTRESS REAL(DP), INTENT(in) :: hmat( 3, 3 ) REAL(DP), EXTERNAL :: qe_erfc INTEGER, EXTERNAL :: ldim_block, gind_block ! ... LOCALS INTEGER :: na_loc, ia_s, ia_e, igis INTEGER :: k, i, j, l, m, is, ia, infm, ix, iy, iz, ishft INTEGER :: npt, isa, me INTEGER :: iakl, iajm LOGICAL :: split, tzero, tshift INTEGER, ALLOCATABLE :: iatom(:,:) REAL(DP), ALLOCATABLE :: zv2(:,:) REAL(DP), ALLOCATABLE :: rc(:,:) REAL(DP), ALLOCATABLE :: fionloc(:,:) REAL(DP) :: rxlm(3), sxlm(3) REAL(DP) :: xlm,ylm,zlm, xlm0,ylm0,zlm0, erre2, rlm, arg, esrtzero REAL(DP) :: addesr, addpre, repand, fxx REAL(DP) :: rckj_m1 REAL(DP) :: zvk, zvj, zv2_kj REAL(DP) :: fact_pre REAL(DP) :: iasp( nsp ) INTEGER, DIMENSION(6), PARAMETER :: ALPHA = (/ 1,2,3,2,3,3 /) INTEGER, DIMENSION(6), PARAMETER :: BETA = (/ 1,1,1,2,2,3 /) ! ... SUBROUTINE BODY me = me_bgrp + 1 ! get the index of the first atom of each specie isa = 1 DO is = 1, nsp iasp( is ) = isa isa = isa + na( is ) END DO ! Here count the pairs of atoms npt = 0 DO k = 1, nsp DO j = k, nsp DO l = 1, na(k) IF ( k == j ) THEN infm = l ! If the specie is the same avoid ELSE ! atoms double counting infm = 1 END IF DO m = infm, na(j) npt = npt + 1 END DO END DO END DO END DO ALLOCATE( iatom( 4, npt ) ) ALLOCATE( rc( nsp, nsp ) ) ALLOCATE( zv2( nsp, nsp ) ) ALLOCATE( fionloc( 3, nat ) ) rc = 0.0_DP zv2 = 0.0_DP fionloc = 0.0_DP ! Here pre-compute some factors DO k = 1, nsp DO j = k, nsp zv2( k, j ) = zv( k ) * zv( j ) rc ( k, j ) = SQRT( rcmax(k)**2 + rcmax(j)**2 ) END DO END DO ! Here store the indexes of all pairs of atoms npt = 0 DO k = 1, nsp DO j = k, nsp DO l = 1, na(k) IF (k.EQ.j) THEN infm = l ELSE infm = 1 END IF DO m = infm, na(j) npt = npt + 1 iatom(1,npt) = k iatom(2,npt) = j iatom(3,npt) = l iatom(4,npt) = m END DO END DO END DO END DO xlm = 1.0_DP ylm = 1.0_DP zlm = 1.0_DP ESR = 0.0_DP DESR = 0.0_DP ! Distribute the atoms pairs to processors NA_LOC = ldim_block( npt, nproc_bgrp, me_bgrp) IA_S = gind_block( 1, npt, nproc_bgrp, me_bgrp ) IA_E = IA_S + NA_LOC - 1 DO ia = ia_s, ia_e k = iatom(1,ia) j = iatom(2,ia) l = iatom(3,ia) m = iatom(4,ia) zv2_kj = zv2(k,j) rckj_m1 = 1.0_DP / rc(k,j) fact_pre = (2.0_DP * zv2_kj * sqrtpm1) * rckj_m1 iakl = iasp(k) + l - 1 iajm = iasp(j) + m - 1 IF( (l.EQ.m) .AND. (k.EQ.j)) THEN ! ... same atoms xlm=0.0_DP; ylm=0.0_DP; zlm=0.0_DP; tzero=.TRUE. ELSE ! ... different atoms xlm0= taus(1,iakl) - taus(1,iajm) ylm0= taus(2,iakl) - taus(2,iajm) zlm0= taus(3,iakl) - taus(3,iajm) CALL pbcs(xlm0,ylm0,zlm0,xlm,ylm,zlm,1) TZERO=.FALSE. END IF DO IX=-IESR,IESR sxlm(1) = XLM + DBLE(IX) DO IY=-IESR,IESR sxlm(2) = YLM + DBLE(IY) DO IZ=-IESR,IESR TSHIFT= IX.EQ.0 .AND. IY.EQ.0 .AND. IZ.EQ.0 IF( .NOT. ( TZERO .AND. TSHIFT ) ) THEN sxlm(3) = ZLM + DBLE(IZ) CALL S_TO_R( sxlm, rxlm, hmat ) ERRE2 = rxlm(1)**2 + rxlm(2)**2 + rxlm(3)**2 RLM = SQRT(ERRE2) ARG = RLM * rckj_m1 IF (TZERO) THEN ESRTZERO=0.5D0 ELSE ESRTZERO=1.D0 END IF ADDESR = ZV2_KJ * qe_erfc(ARG) / RLM ESR = ESR + ESRTZERO*ADDESR ADDPRE = FACT_PRE * EXP(-ARG*ARG) REPAND = ESRTZERO*(ADDESR + ADDPRE)/ERRE2 ! DO i = 1, 3 fxx = repand * rxlm( i ) fionloc( i, iakl ) = fionloc( i, iakl ) + fxx fionloc( i, iajm ) = fionloc( i, iajm ) - fxx END DO ! IF( tstress ) THEN DO i = 1, 6 fxx = repand * rxlm( alpha( i ) ) * rxlm( beta( i ) ) desr( i ) = desr( i ) - fxx END DO END IF ! END IF END DO ! IZ END DO ! IY END DO ! IX END DO ! ! each processor add its own contribution to the array FION ! isa = 0 DO IS = 1, nsp DO IA = 1, na(is) isa = isa + 1 FION(1,ISA) = FION(1,ISA)+FIONLOC(1,ISA) FION(2,ISA) = FION(2,ISA)+FIONLOC(2,ISA) FION(3,ISA) = FION(3,ISA)+FIONLOC(3,ISA) END DO END DO CALL mp_sum(esr, intra_bgrp_comm) DEALLOCATE(iatom) DEALLOCATE(rc) DEALLOCATE(zv2) DEALLOCATE(fionloc) RETURN !=----------------------------------------------------------------------------=! END SUBROUTINE vofesr !=----------------------------------------------------------------------------=! !=----------------------------------------------------------------------------=! SUBROUTINE self_vofhar_x( tscreen, self_ehte, vloc, rhoeg, omega, hmat ) !=----------------------------------------------------------------------------=! ! adds the hartree part of the self interaction USE kinds, ONLY: DP USE constants, ONLY: fpi USE control_flags, ONLY: gamma_only USE cell_base, ONLY: tpiba2 USE gvect, ONLY: ngm USE gvect, ONLY: gstart, gg USE sic_module, ONLY: sic_epsilon, sic_alpha USE mp_global, ONLY: intra_bgrp_comm USE mp, ONLY: mp_sum IMPLICIT NONE ! ... Arguments LOGICAL :: tscreen COMPLEX(DP) :: vloc(:) COMPLEX(DP) :: rhoeg(:,:) REAL(DP) :: self_ehte REAL(DP), INTENT(IN) :: omega REAL(DP), INTENT(IN) :: hmat( 3, 3 ) ! ... Locals INTEGER :: ig REAL(DP) :: fpibg COMPLEX(DP) :: rhog COMPLEX(DP) :: ehte COMPLEX(DP) :: vscreen COMPLEX(DP), ALLOCATABLE :: screen_coul(:) ! ... Subroutine body ... IF( tscreen ) THEN ALLOCATE( screen_coul( ngm ) ) CALL cluster_bc( screen_coul, gg, omega, hmat ) END IF !== HARTREE == ehte = 0.D0 DO IG = gstart, ngm rhog = rhoeg(ig,1) - rhoeg(ig,2) IF( tscreen ) THEN FPIBG = fpi / ( gg(ig) * tpiba2 ) + screen_coul(ig) ELSE FPIBG = fpi / ( gg(ig) * tpiba2 ) END IF vloc(ig) = fpibg * rhog ehte = ehte + fpibg * rhog * CONJG(rhog) END DO ! ... G = 0 element ! IF ( gstart == 2 ) THEN rhog = rhoeg(1,1) - rhoeg(1,2) IF( tscreen ) THEN vscreen = screen_coul(1) ELSE vscreen = 0.0d0 END IF vloc(1) = vscreen * rhog ehte = ehte + vscreen * rhog * CONJG(rhog) END IF ! ... IF( .NOT. gamma_only ) THEN ehte = ehte * 0.5d0 END IF ! self_ehte = DBLE(ehte) * omega * sic_epsilon vloc = vloc * sic_epsilon CALL mp_sum( self_ehte, intra_bgrp_comm ) IF( ALLOCATED( screen_coul ) ) DEALLOCATE( screen_coul ) RETURN !=----------------------------------------------------------------------------=! END SUBROUTINE self_vofhar_x !=----------------------------------------------------------------------------=! espresso-5.1/CPV/src/forces.f900000644000175000017500000002742412341373026014334 0ustar mbamba! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ! Written and revised by Carlo Cavazzoni ! Task Groups parallelization by C. Bekas (IBM Research Zurich). ! !------------------------------------------------------------------------- SUBROUTINE dforce_x ( i, bec, vkb, c, df, da, v, ldv, ispin, f, n, nspin, v1 ) !----------------------------------------------------------------------- !computes: the generalized force df=cmplx(dfr,dfi,kind=DP) acting on the i-th ! electron state at the gamma point of the brillouin zone ! represented by the vector c=cmplx(cr,ci,kind=DP) ! ! d_n(g) = f_n { 0.5 g^2 c_n(g) + [vc_n](g) + ! sum_i,ij d^q_i,ij (-i)**l beta_i,i(g) ! e^-ig.r_i < beta_i,j | c_n >} ! USE parallel_include USE kinds, ONLY: dp USE control_flags, ONLY: iprint USE gvecs, ONLY: nlsm, nls USE uspp, ONLY: nhsa=>nkb, dvan, deeq USE uspp_param, ONLY: nhm, nh, ish USE constants, ONLY: pi, fpi USE ions_base, ONLY: nsp, na, nat USE gvecw, ONLY: ngw, ggp USE cell_base, ONLY: tpiba2 USE ensemble_dft, ONLY: tens USE funct, ONLY: dft_is_meta USE fft_base, ONLY: dffts USE fft_interfaces, ONLY: fwfft, invfft USE mp_global, ONLY: me_bgrp USE control_flags, ONLY: lwfpbe0, lwfpbe0nscf ! Lingzhu Kong USE cp_main_variables, ONLY: exx_potential ! Lingzhu Kong ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: i REAL(DP) :: bec(:,:) COMPLEX(DP) :: vkb(:,:) COMPLEX(DP) :: c(:,:) COMPLEX(DP) :: df(:), da(:) INTEGER, INTENT(IN) :: ldv REAL(DP) :: v( ldv, * ) INTEGER :: ispin( : ) REAL(DP) :: f( : ) INTEGER, INTENT(IN) :: n, nspin REAL(DP), OPTIONAL :: v1( ldv, * ) ! ! local variables ! INTEGER :: iv, jv, ia, is, isa, ism, ios, iss1, iss2, ir, ig, inl, jnl INTEGER :: ivoff, jvoff, igoff, igno, igrp, ierr INTEGER :: idx, eig_offset, eig_index, nogrp_ REAL(DP) :: fi, fip, dd, dv COMPLEX(DP) :: fp, fm, ci REAL(DP), ALLOCATABLE :: af( :, : ), aa( :, : ) COMPLEX(DP), ALLOCATABLE :: psi(:) REAL(DP) :: tmp1, tmp2 ! Lingzhu Kong REAL(DP), ALLOCATABLE :: exx_a(:), exx_b(:) ! Lingzhu Kong ! CALL start_clock( 'dforce' ) ! !======================================================================= !Lingzhu Kong if( lwfpbe0 .or. lwfpbe0nscf )then allocate( exx_a( dffts%nnr ) ) allocate( exx_b( dffts%nnr ) ) end if !======================================================================= IF( dffts%have_task_groups ) THEN nogrp_ = dffts%nogrp ALLOCATE( psi( dffts%tg_nnr * dffts%nogrp ) ) ELSE nogrp_ = 1 ALLOCATE( psi( dffts%nnr ) ) END IF ! ci = ( 0.0d0, 1.0d0 ) ! psi( : ) = (0.d0, 0.d0) igoff = 0 DO idx = 1, 2*nogrp_ , 2 ! ! This loop is executed only ONCE when NOGRP=1. ! Equivalent to the case with no task-groups ! dfft%nsw(me) holds the number of z-sticks for the current processor per wave-function ! We can either send these in the group with an mpi_allgather...or put the ! in the PSIS vector (in special positions) and send them with them. ! Otherwise we can do this once at the beginning, before the loop. ! we choose to do the latter one. ! ! important: if n is odd => c(*,n+1)=0. ! IF ( ( idx + i - 1 ) == n ) c( : , idx + i ) = 0.0d0 IF( idx + i - 1 <= n ) THEN DO ig=1,ngw psi(nlsm(ig)+igoff) = conjg( c(ig,idx+i-1) - ci * c(ig,idx+i) ) psi(nls(ig)+igoff) = c(ig,idx+i-1) + ci * c(ig,idx+i) END DO END IF igoff = igoff + dffts%tg_nnr END DO CALL invfft( 'Wave', psi, dffts ) ! ! the following avoids a potential out-of-bounds error ! IF ( i < n ) THEN iss1 = ispin(i) iss2 = ispin(i+1) ELSE iss1 = ispin(i) iss2 = iss1 END IF ! IF( dffts%have_task_groups ) THEN ! !=============================================================================== !Lingzhu Kong IF( lwfpbe0 .or. lwfpbe0nscf )THEN !$omp parallel do DO ir = 1, dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ) tmp1 = v(ir,iss1) * DBLE( psi(ir) )+exx_potential(ir,i/nogrp_+1) tmp2 = v(ir,iss2) * AIMAG(psi(ir) )+exx_potential(ir,i/nogrp_+2) psi(ir) = CMPLX( tmp1, tmp2, kind=DP) END DO !$omp end parallel do ELSE !$omp parallel do DO ir = 1, dffts%nr1x*dffts%nr2x*dffts%tg_npp( me_bgrp + 1 ) psi(ir) = CMPLX ( v(ir,iss1) * DBLE( psi(ir) ), & v(ir,iss2) *AIMAG( psi(ir) ) ,kind=DP) END DO !$omp end parallel do ENDIF !=============================================================================== ! ELSE ! IF( PRESENT( v1 ) ) THEN !=============================================================================== !Lingzhu Kong IF( lwfpbe0 .or. lwfpbe0nscf )THEN IF ( (mod(n,2).ne.0 ) .and. (i.eq.n) ) THEN exx_a(:) = exx_potential(:, n) exx_b(:) = 0.0d0 ELSE exx_a(:) = exx_potential(:, i) exx_b(:) = exx_potential(:, i+1) ENDIF !$omp parallel do DO ir=1,dffts%nnr tmp1 = v(ir,iss1)* DBLE(psi(ir))+exx_a(ir) tmp2 = v1(ir,iss2)*AIMAG(psi(ir))+exx_b(ir) psi(ir)=CMPLX( tmp1, tmp2, kind=DP ) END DO !$omp end parallel do ELSE !$omp parallel do DO ir=1,dffts%nnr psi(ir)=CMPLX ( v(ir,iss1)* DBLE(psi(ir)), & v1(ir,iss2)*AIMAG(psi(ir)) ,kind=DP) END DO !$omp end parallel do ENDIF ELSE !$omp parallel do DO ir=1,dffts%nnr psi(ir)=CMPLX( v(ir,iss1)* DBLE(psi(ir)), & v(ir,iss2)*AIMAG(psi(ir)) ,kind=DP) END DO !$omp end parallel do END IF ! END IF ! CALL fwfft( 'Wave', psi, dffts ) ! ! note : the factor 0.5 appears ! in the kinetic energy because it is defined as 0.5*g**2 ! in the potential part because of the logics ! ! Each processor will treat its own part of the eigenstate ! assigned to its ORBITAL group ! !$omp parallel default(none) & !$omp private( eig_offset, igno, fi, fip, idx, fp, fm, ig ) & !$omp shared( nogrp_ , f, ngw, psi, df, da, c, tpiba2, tens, dffts, me_bgrp, & !$omp i, n, ggp, nls, nlsm ) eig_offset = 0 igno = 1 DO idx = 1, 2*nogrp_ , 2 IF( idx + i - 1 <= n ) THEN if (tens) then fi = -0.5d0 fip = -0.5d0 else fi = -0.5d0*f(i+idx-1) fip = -0.5d0*f(i+idx) endif IF( dffts%have_task_groups ) THEN !$omp do DO ig=1,ngw fp= psi(nls(ig)+eig_offset) + psi(nlsm(ig)+eig_offset) fm= psi(nls(ig)+eig_offset) - psi(nlsm(ig)+eig_offset) df(ig+igno-1)= fi *(tpiba2 * ggp(ig) * c(ig,idx+i-1) + & CMPLX(real (fp), aimag(fm), kind=dp )) da(ig+igno-1)= fip*(tpiba2 * ggp(ig) * c(ig,idx+i ) + & CMPLX(aimag(fp),-real (fm), kind=dp )) END DO !$omp end do igno = igno + ngw ELSE !$omp do DO ig=1,ngw fp= psi(nls(ig)) + psi(nlsm(ig)) fm= psi(nls(ig)) - psi(nlsm(ig)) df(ig)= fi*(tpiba2*ggp(ig)* c(ig,idx+i-1)+CMPLX(DBLE(fp), AIMAG(fm),kind=DP)) da(ig)=fip*(tpiba2*ggp(ig)* c(ig,idx+i )+CMPLX(AIMAG(fp),-DBLE(fm),kind=DP)) END DO !$omp end do END IF END IF eig_offset = eig_offset + dffts%nr3x * dffts%nsw(me_bgrp+1) ! We take into account the number of elements received from other members of the orbital group ENDDO !$omp end parallel ! IF(dft_is_meta()) THEN CALL dforce_meta(c(1,i),c(1,i+1),df,da,psi,iss1,iss2,fi,fip) !METAGGA END IF IF( nhsa > 0 ) THEN ! ! aa_i,i,n = sum_j d_i,ij ! ALLOCATE( af( nhsa, nogrp_ ), aa( nhsa, nogrp_ ) ) af = 0.0d0 aa = 0.0d0 ! !$omp parallel default(none) & !$omp private(iv,jv,ivoff,jvoff,dd,dv,inl,jnl,is,isa,ism,igrp,idx,fi,fip) & !$omp shared( nogrp_ , f, ngw, deeq, bec, af, aa, i, n, nsp, na, nh, dvan, tens, ish, iss1, iss2 ) ! igrp = 1 DO idx = 1, 2*nogrp_ , 2 IF( idx + i - 1 <= n ) THEN IF (tens) THEN fi = 1.0d0 fip= 1.0d0 ELSE fi = f(i+idx-1) fip= f(i+idx) END IF ! DO is = 1, nsp DO iv = 1, nh(is) DO jv = 1, nh(is) isa = 0 DO ism = 1, is-1 isa = isa + na( ism ) END DO dv = dvan(iv,jv,is) ivoff = ish(is)+(iv-1)*na(is) jvoff = ish(is)+(jv-1)*na(is) IF( i + idx - 1 /= n ) THEN !$omp do DO ia=1,na(is) inl = ivoff + ia jnl = jvoff + ia dd = deeq(iv,jv,isa+ia,iss1) + dv af(inl,igrp) = af(inl,igrp) - fi * dd * bec(jnl,i+idx-1) dd = deeq(iv,jv,isa+ia,iss2) + dv aa(inl,igrp) = aa(inl,igrp) - fip * dd * bec(jnl,i+idx) END DO ELSE !$omp do DO ia=1,na(is) inl = ivoff + ia jnl = jvoff + ia dd = deeq(iv,jv,isa+ia,iss1) + dv af(inl,igrp) = af(inl,igrp) - fi * dd * bec(jnl,i+idx-1) END DO END IF END DO END DO END DO END IF igrp = igrp + 1 END DO !$omp end parallel ! CALL dgemm ( 'N', 'N', 2*ngw, nogrp_ , nhsa, 1.0d0, vkb, 2*ngw, af, nhsa, 1.0d0, df, 2*ngw) CALL dgemm ( 'N', 'N', 2*ngw, nogrp_ , nhsa, 1.0d0, vkb, 2*ngw, aa, nhsa, 1.0d0, da, 2*ngw) ! DEALLOCATE( aa, af ) ! ENDIF ! if (lwfpbe0 .or. lwfpbe0nscf) DEALLOCATE(exx_a, exx_b) ! Lingzhu Kong DEALLOCATE( psi ) ! CALL stop_clock( 'dforce' ) ! RETURN END SUBROUTINE dforce_x espresso-5.1/CPV/src/ldaUpen.f900000644000175000017500000002043612341373026014437 0ustar mbamba! ! Copyright (C) 2011-2014 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------- MODULE step_penalty !------------------------------------------------------------------------- ! ! LDA+U with occupation constraint ! USE kinds implicit none integer :: natx real(DP) :: E_pen = 0.d0 real(DP), allocatable :: A_pen(:,:), sigma_pen(:), alpha_pen(:) logical :: step_pen PRIVATE PUBLIC :: ldaUpen_init, deallocate_step_pen, write_pen, penalty_e, penalty_f CONTAINS ! subroutine ldaUpen_init ( natx_, step_pen_, sigma_pen_, alpha_pen_, A_pen_ ) !----------------------------------------------------------------------- ! IMPLICIT NONE INTEGER, INTENT(IN) :: natx_ LOGICAL, INTENT(IN) :: step_pen_ REAL(DP),INTENT(IN) :: sigma_pen_(natx_), alpha_pen_(natx_), A_pen_(natx_,2) step_pen=step_pen_ natx = natx_ IF ( step_pen ) THEN allocate (A_pen(natx,2), sigma_pen(natx), alpha_pen(natx) ) sigma_pen=sigma_pen_ alpha_pen=alpha_pen_ A_pen=A_pen_ END IF END SUBROUTINE ldaUpen_init ! subroutine deallocate_step_pen() !----------------------------------------------------------------------- ! IF( ALLOCATED( alpha_pen ) ) DEALLOCATE( alpha_pen ) IF( ALLOCATED( sigma_pen ) ) DEALLOCATE( sigma_pen ) IF( ALLOCATED( A_pen ) ) DEALLOCATE( A_pen ) ! end subroutine deallocate_step_pen !----------------------------------------------------------------------- subroutine write_pen (nsp, nspin) !----------------------------------------------------------------------- ! IMPLICIT NONE INTEGER, intent(in) :: nsp, nspin INTEGER :: is, isp ! if (step_pen) then do isp=1,nspin write (6,'(6(a,i2,a,i2,a,f8.4,6x))') & ('A_pen(',is,',',isp,') =', A_pen(is,isp),is=1,nsp) enddo write (6,'(6(a,i2,a,f8.4,6x))') & ('sigma_pen(',is,') =', sigma_pen(is), is=1,nsp) write (6,'(6(a,i2,a,f8.4,6x))') & ('alpha_pen(',is,') =', alpha_pen(is), is=1,nsp) endif END subroutine write_pen ! !----------------------------------------------------------------------- SUBROUTINE penalty_e ( offset, swfc, proj, e_hubbard, hpsi ) !----------------------------------------------------------------------- ! ! Calculate the energy (added to e_hubbard) and the potential (added ! to hpsi) due to constraint ! USE kinds, ONLY: dp USE ions_base, ONLY: na, nat, nsp USE gvecw, ONLY: ngw USE electrons_base, ONLY: nspin, n => nbsp, nx => nbspx, ispin, f USE ldaU_cp, ONLY: Hubbard_U, Hubbard_l, ldmx, nwfcU, ns USE dspev_module, ONLY: dspev_drv ! IMPLICIT NONE INTEGER, intent(in) :: offset(nsp,nat) REAL(dp), intent(in) :: proj(nwfcU,n) COMPLEX(dp), intent(in) :: swfc(ngw,nwfcU) REAL(dp), intent(inout) :: e_hubbard COMPLEX(dp), intent(inout) :: hpsi(ngw,nx) ! REAL(dp), allocatable :: lambda(:), f1(:), vet(:,:) REAL(dp) :: x_value, g_value, step_value COMPLEX(dp) :: tempsi INTEGER :: is, ia, iat, isp, m1, m2, k, i ! E_pen=0 IF ( .NOT. step_pen ) RETURN allocate(f1(ldmx*ldmx), vet(ldmx,ldmx), lambda(ldmx) ) iat=0 do is = 1,nsp do ia = 1, na(is) iat = iat + 1 if (Hubbard_U(is).ne.0.0_dp) then do isp = 1, nspin if (A_pen(iat,isp).ne.0.0_dp) then k = 0 f1=0.0 do m1 = 1, 2 * Hubbard_l(is) + 1 do m2 = m1, 2 * Hubbard_l(is) + 1 k = k + 1 f1 (k) = ns (m2,m1,iat,isp) enddo enddo CALL dspev_drv( 'V', 'L', 2*Hubbard_l(is)+1, f1, & lambda, vet, ldmx ) x_value=alpha_pen(iat)-lambda(2*Hubbard_l(is)+1) call stepfn(A_pen(iat,isp),sigma_pen(iat),x_value, & & g_value,step_value) do i=1, n do m1 = 1, 2 * Hubbard_l(is) + 1 do m2 = 1, 2 * Hubbard_l(is) + 1 tempsi=-1.d0*f(i)*proj (offset(is,ia)+m1,i) * & vet(m1,2*Hubbard_l(is)+1) * & vet(m2,2*Hubbard_l(is)+1) * g_value ! add to hpsi call ZAXPY (ngw,tempsi,swfc(1,offset(is,ia)+m2),& 1,hpsi(1,i),1) enddo enddo end do E_pen=E_pen+step_value end if enddo endif enddo enddo e_hubbard = e_hubbard + E_pen deallocate(f1, vet, lambda) ! end subroutine penalty_e ! !----------------------------------------------------------------------- SUBROUTINE penalty_f ( is, iat, dns, forceh ) !----------------------------------------------------------------------- ! ! Calculate forces due to constraint (added to forceh) ! USE kinds, ONLY: dp USE ions_base, ONLY: na, nat, nsp USE gvecw, ONLY: ngw USE electrons_base, ONLY: nspin, n => nbsp, nx => nbspx, ispin, f USE ldaU_cp, ONLY: Hubbard_U, Hubbard_l, ldmx, nwfcU, ns USE dspev_module, ONLY: dspev_drv ! IMPLICIT NONE INTEGER, intent(in) :: is, iat REAL(dp), intent(in) :: dns(ldmx,ldmx,nat,nspin) REAL(dp), intent(inout) :: forceh ! REAL(dp), allocatable :: lambda(:), f1(:), vet(:,:) REAL(dp) :: x_value, g_value, step_value COMPLEX(dp) :: tempsi INTEGER :: isp, m1, m2, k ! IF ( .NOT. step_pen ) RETURN allocate(f1(ldmx*ldmx), vet(ldmx,ldmx), lambda(ldmx) ) do isp = 1, nspin if ( (A_pen(iat,isp).ne.0.0) .and. (Hubbard_U(is).ne.0.d0)) then k = 0 f1=0.0 do m1 = 1, 2 * Hubbard_l(is) + 1 do m2 = m1, 2 * Hubbard_l(is) + 1 k = k + 1 f1 (k) = ns (m2,m1,iat,isp) enddo enddo CALL dspev_drv( 'V', 'L', 2 * Hubbard_l(is) + 1,& f1, lambda, vet, ldmx ) x_value=alpha_pen(iat)-lambda(2*Hubbard_l(is)+1) call stepfn(A_pen(iat,isp),sigma_pen(iat),x_value,g_value,& step_value) do m1 = 1,2*Hubbard_l(is) + 1 do m2 = 1,2*Hubbard_l(is) + 1 forceh = forceh + g_value * dns(m1,m2,iat,isp) & * vet(m1,2*Hubbard_l(is)+1) & * vet(m2,2*Hubbard_l(is)+1) end do end do endif end do deallocate ( f1, vet, lambda ) ! end subroutine penalty_f !----------------------------------------------------------------------- subroutine stepfn(A,sigma,x_value,g_value,step_value) !----------------------------------------------------------------------- ! This subroutine calculates the value of the gaussian and step ! functions with a given x_value. A and sigma are given in the ! input file. ... to be used in occupation_constraint... ! USE constants, ONLY : pi implicit none real(kind=8) A, sigma, x_value, g_value, step_value real(kind=8) x integer i step_value=0.0d0 g_value=0.0d0 ! do i=1,100000 x=x_value + (i-100000)/100000.0d0*(x_value + 5.d0*sigma) ! ! Integrate from 5 sigma before the x_value ! g_value=A*dexp(-x*x/(2*sigma*sigma))/(sigma*dsqrt(2*pi)) ! write(6,*) 'step', step_value,'g',g_value ! if (g_value.le.0.0) g_value=0.0 if ((x_value+5*sigma).ge.0.0d0) then step_value=step_value+g_value/100000.0d0*(x_value+5.d0*sigma) end if end do return end subroutine stepfn end module step_penalty espresso-5.1/CPV/src/exch_corr.f900000644000175000017500000004667112341373026015034 0ustar mbamba! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ... Gradient Correction & exchange and correlation !=----------------------------------------------------------------------------=! subroutine exch_corr_h( nspin, rhog, rhor, rhoc, sfac, exc, dxc, self_exc ) ! ! calculate exch-corr potential, energy, and derivatives dxc(i,j) ! of e(xc) with respect to to cell parameter h(i,j) ! use funct, only : dft_is_gradient, dft_is_meta use gvect, only : ngm use gvecs, only : ngms use fft_base, only : dfftp use cell_base, only : ainv, omega, h use ions_base, only : nsp use control_flags, only : tpre, iverbosity use core, only : drhocg use uspp, only : nlcc_any use mp, only : mp_sum use metagga, ONLY : kedtaur USE io_global, ONLY : stdout USE mp_global, ONLY : intra_bgrp_comm use kinds, ONLY : DP use constants, ONLY : au_gpa USE sic_module, ONLY : self_interaction, sic_alpha USE cp_interfaces, ONLY : fillgrad, denlcc use cp_main_variables, only : drhor ! implicit none ! input ! integer nspin ! ! rhog contains the charge density in G space ! rhor contains the charge density in R space ! complex(DP) :: rhog( ngm, nspin ) complex(DP) :: sfac( ngms, nsp ) ! ! output ! rhor contains the exchange-correlation potential ! real(DP) :: rhor( dfftp%nnr, nspin ), rhoc( dfftp%nnr ) real(DP) :: dxc( 3, 3 ), exc real(DP) :: dcc( 3, 3 ), drc( 3, 3 ) ! ! local ! integer :: i, j, ir, iss real(DP) :: dexc(3,3) real(DP), allocatable :: gradr(:,:,:) ! !sic REAL(DP) :: self_exc REAL(DP), ALLOCATABLE :: self_rho( :,: ), self_gradr(:,:,:) complex(DP), ALLOCATABLE :: self_rhog( :,: ) LOGICAL :: ttsic real(DP) :: detmp(3,3) ! ! filling of gradr with the gradient of rho using fft's ! if ( dft_is_gradient() ) then ! allocate( gradr( dfftp%nnr, 3, nspin ) ) call fillgrad( nspin, rhog, gradr ) ! else ! allocate( gradr( 1, 3, 2 ) ) ! end if ttsic = (self_interaction /= 0 ) ! IF ( ttsic ) THEN ! IF ( dft_is_meta() ) CALL errore ('exch_corr_h', & 'SIC and meta-GGA not together', 1) IF ( tpre ) CALL errore( 'exch_corr_h', 'SIC and stress not implemented', 1) ! allocate the sic_arrays ! ALLOCATE( self_rho( dfftp%nnr, nspin ) ) ALLOCATE( self_rhog(ngm, nspin ) ) IF( dft_is_gradient() ) ALLOCATE( self_gradr( dfftp%nnr, 3, nspin ) ) self_rho(:, 1) = rhor( :, 2) self_rho(:, 2) = rhor( :, 2) IF( dft_is_gradient() ) THEN self_gradr(:, :, 1) = gradr(:, :, 2) self_gradr(:, :, 2) = gradr(:, :, 2) ENDIF self_rhog(:, 1) = rhog( :, 2) self_rhog(:, 2) = rhog( :, 2) ! END IF ! self_exc = 0.d0 ! if( dft_is_meta() ) then ! call tpssmeta( dfftp%nnr, nspin, gradr, rhor, kedtaur, exc ) ! else ! CALL exch_corr_cp(dfftp%nnr, nspin, gradr, rhor, exc) ! IF ( ttsic ) THEN CALL exch_corr_cp(dfftp%nnr, nspin, self_gradr, self_rho, self_exc) self_exc = sic_alpha * (exc - self_exc) exc = exc - self_exc END IF ! end if call mp_sum( exc, intra_bgrp_comm ) IF ( ttsic ) call mp_sum( self_exc, intra_bgrp_comm ) exc = exc * omega / DBLE( dfftp%nr1 * dfftp%nr2 * dfftp%nr3 ) IF ( ttsic ) self_exc = self_exc * omega/DBLE(dfftp%nr1 * dfftp%nr2 *dfftp%nr3 ) ! WRITE(*,*) 'Debug: calcolo exc', exc, 'eself', self_exc ! ! exchange-correlation contribution to pressure ! dxc = 0.0d0 ! if ( tpre ) then ! ! Add term: Vxc( r ) * Drhovan( r )_ij - Vxc( r ) * rho( r ) * ((H^-1)^t)_ij ! do iss = 1, nspin do j=1,3 do i=1,3 do ir=1,dfftp%nnr dxc(i,j) = dxc(i,j) + rhor( ir, iss ) * drhor( ir, iss, i, j ) end do end do end do end do ! dxc = dxc * omega / DBLE( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) ! call mp_sum ( dxc, intra_bgrp_comm ) ! do j = 1, 3 do i = 1, 3 dxc( i, j ) = dxc( i, j ) + exc * ainv( j, i ) end do end do ! ! DEBUG ! ! write (stdout,*) "derivative of e(xc)" ! write (stdout,5555) ((dxc(i,j),j=1,3),i=1,3) ! IF( iverbosity > 1 ) THEN DO i=1,3 DO j=1,3 detmp(i,j)=exc*ainv(j,i) END DO END DO WRITE( stdout,*) "derivative of e(xc) - diag - kbar" detmp = -1.0d0 * MATMUL( detmp, TRANSPOSE( h ) ) / omega * au_gpa * 10.0d0 WRITE( stdout,5555) ((detmp(i,j),j=1,3),i=1,3) END IF ! end if ! if (dft_is_gradient()) then ! ! Add second part of the xc-potential to rhor ! Compute contribution to the stress dexc ! call gradh( nspin, gradr, rhog, rhor, dexc) ! if (tpre) then ! call mp_sum ( dexc, intra_bgrp_comm ) ! dxc = dxc + dexc ! end if ! end if ! IF( ttsic ) THEN ! IF (dft_is_gradient()) then call gradh( nspin, self_gradr, self_rhog, self_rho, dexc) gradr(:,:, 1) = (1.d0 - sic_alpha ) * gradr(:,:, 1) gradr(:,:, 2) = (1.d0 - sic_alpha ) * gradr(:,:, 2) + & & sic_alpha * ( self_gradr(:,:,1) + self_gradr(:,:,2) ) ENDIF rhor(:, 1) = (1.d0 - sic_alpha ) * rhor(:, 1) rhor(:, 2) = (1.d0 - sic_alpha ) * rhor(:, 2) + & & sic_alpha * ( self_rho(:,1) + self_rho(:,2) ) IF(ALLOCATED(self_gradr)) DEALLOCATE(self_gradr) IF(ALLOCATED(self_rhog)) DEALLOCATE(self_rhog) IF(ALLOCATED(self_rho)) DEALLOCATE(self_rho) ! ENDIF IF( tpre ) THEN ! dcc = 0.0d0 ! IF( nlcc_any ) CALL denlcc( dfftp%nnr, nspin, rhor, sfac, drhocg, dcc ) ! ! DEBUG ! ! write (stdout,*) "derivative of e(xc) - nlcc part" ! write (stdout,5555) ((dcc(i,j),j=1,3),i=1,3) ! dxc = dxc + dcc ! do iss = 1, nspin drc = 0.0d0 IF( nlcc_any ) THEN do j=1,3 do i=1,3 do ir=1,dfftp%nnr drc(i,j) = drc(i,j) + rhor( ir, iss ) * rhoc( ir ) * ainv(j,i) end do end do end do call mp_sum ( drc, intra_bgrp_comm ) END IF dxc = dxc - drc * ( 1.0d0 / nspin ) * omega / ( dfftp%nr1*dfftp%nr2*dfftp%nr3 ) end do ! END IF ! IF( ALLOCATED( gradr ) ) DEALLOCATE( gradr ) 5555 format(1x,f12.5,1x,f12.5,1x,f12.5/ & & 1x,f12.5,1x,f12.5,1x,f12.5/ & & 1x,f12.5,1x,f12.5,1x,f12.5//) ! return end subroutine exch_corr_h !=----------------------------------------------------------------------------=! subroutine gradh( nspin, gradr, rhog, rhor, dexc ) ! _________________________________________________________________ ! ! calculate the second part of gradient corrected xc potential ! plus the gradient-correction contribution to pressure ! USE kinds, ONLY: DP use control_flags, only: iprint, tpre use gvect, only: g use gvect, only: ngm, nl, nlm use cell_base, only: ainv, tpiba, omega use cp_main_variables, only: drhog USE fft_interfaces, ONLY: fwfft, invfft USE fft_base, ONLY: dfftp ! implicit none ! input integer nspin real(DP) :: gradr( dfftp%nnr, 3, nspin ), rhor( dfftp%nnr, nspin ), dexc( 3, 3 ) complex(DP) :: rhog( ngm, nspin ) ! complex(DP), allocatable:: v(:) complex(DP), allocatable:: x(:), vtemp(:) complex(DP) :: ci, fp, fm integer :: iss, ig, ir, i,j ! allocate(v(dfftp%nnr)) allocate(x(ngm)) allocate(vtemp(ngm)) ! ci=(0.0d0,1.0d0) ! dexc = 0.0d0 ! do iss=1, nspin ! _________________________________________________________________ ! second part xc-potential: 3 forward ffts ! do ir=1,dfftp%nnr v(ir)=CMPLX(gradr(ir,1,iss),0.d0,kind=DP) end do call fwfft('Dense',v, dfftp ) do ig=1,ngm x(ig)=ci*tpiba*g(1,ig)*v(nl(ig)) end do ! if(tpre) then do i=1,3 do j=1,3 do ig=1,ngm vtemp(ig) = omega*ci*CONJG(v(nl(ig)))* & & tpiba*(-rhog(ig,iss)*g(i,ig)*ainv(j,1)+ & & g(1,ig)*drhog(ig,iss,i,j)) end do dexc(i,j) = dexc(i,j) + DBLE(SUM(vtemp))*2.0d0 end do end do endif ! do ir=1,dfftp%nnr v(ir)=CMPLX(gradr(ir,2,iss),gradr(ir,3,iss),kind=DP) end do call fwfft('Dense',v, dfftp ) ! do ig=1,ngm fp=v(nl(ig))+v(nlm(ig)) fm=v(nl(ig))-v(nlm(ig)) x(ig) = x(ig) + & & ci*tpiba*g(2,ig)*0.5d0*CMPLX( DBLE(fp),AIMAG(fm),kind=DP) x(ig) = x(ig) + & & ci*tpiba*g(3,ig)*0.5d0*CMPLX(AIMAG(fp),-DBLE(fm),kind=DP) end do ! if(tpre) then do i=1,3 do j=1,3 do ig=1,ngm fp=v(nl(ig))+v(nlm(ig)) fm=v(nl(ig))-v(nlm(ig)) vtemp(ig) = omega*ci* & & (0.5d0*CMPLX(DBLE(fp),-AIMAG(fm),kind=DP)* & & tpiba*(-rhog(ig,iss)*g(i,ig)*ainv(j,2)+ & & g(2,ig)*drhog(ig,iss,i,j))+ & & 0.5d0*CMPLX(AIMAG(fp),DBLE(fm),kind=DP)*tpiba* & & (-rhog(ig,iss)*g(i,ig)*ainv(j,3)+ & & g(3,ig)*drhog(ig,iss,i,j))) end do dexc(i,j) = dexc(i,j) + 2.0d0*DBLE(SUM(vtemp)) end do end do endif ! _________________________________________________________________ ! second part xc-potential: 1 inverse fft ! do ig=1,dfftp%nnr v(ig)=(0.0d0,0.0d0) end do do ig=1,ngm v(nl(ig))=x(ig) v(nlm(ig))=CONJG(x(ig)) end do call invfft('Dense',v, dfftp ) do ir=1,dfftp%nnr rhor(ir,iss)=rhor(ir,iss)-DBLE(v(ir)) end do end do ! deallocate(vtemp) deallocate(x) deallocate(v) ! return end subroutine gradh !=----------------------------------------------------------------------------=! ! ! This wrapper interface CP/FPMD to the PW xc and gga functionals ! ! tested with PP/xctest.f90 code ! !=----------------------------------------------------------------------------=! subroutine exch_corr_wrapper(nnr, nspin, grhor, rhor, etxc, v, h) use kinds, only: DP use funct, only: dft_is_gradient, get_igcc, & xc, xc_spin, gcxc, gcx_spin, gcc_spin, gcc_spin_more implicit none integer, intent(in) :: nnr integer, intent(in) :: nspin real(DP), intent(in) :: grhor( nnr, 3, nspin ) real(DP) :: h( nnr, nspin, nspin ) real(DP), intent(in) :: rhor( nnr, nspin ) real(DP) :: v( nnr, nspin ) real(DP) :: etxc integer :: ir, is, k real(DP) :: rup, rdw, ex, ec, vx(2), vc(2) real(DP) :: rh, grh2, zeta real(DP) :: sx, sc, v1x, v2x, v1c, v2c real(DP) :: rhox, arhox, e2 real(DP) :: grho2(2), arho, segno real(DP) :: v1xup, v1xdw, v2xup, v2xdw real(DP) :: v1cup, v1cdw real(DP) :: grhoup, grhodw, grhoud real(DP) :: v2cup, v2cdw, v2cud integer :: neg(3) real(DP), parameter :: epsr = 1.0d-10, epsg = 1.0d-10 logical :: debug_xc = .false. logical :: igcc_is_lyp igcc_is_lyp = (get_igcc() == 3) ! e2 = 1.0d0 etxc = 0.0d0 if( nspin == 1 ) then ! ! spin-unpolarized case ! !$omp parallel do private( rhox, arhox, ex, ec, vx, vc ), reduction(+:etxc) do ir = 1, nnr rhox = rhor (ir, nspin) arhox = abs (rhox) if (arhox.gt.1.d-30) then CALL xc( arhox, ex, ec, vx(1), vc(1) ) v(ir,nspin) = e2 * (vx(1) + vc(1) ) etxc = etxc + e2 * (ex + ec) * rhox else v(ir,nspin) = 0.0D0 endif enddo !$omp end parallel do ! else ! ! spin-polarized case ! neg (1) = 0 neg (2) = 0 neg (3) = 0 do ir = 1, nnr rhox = rhor(ir,1) + rhor(ir,2) arhox = abs(rhox) if (arhox.gt.1.d-30) then zeta = ( rhor(ir,1) - rhor(ir,2) ) / arhox if (abs(zeta) .gt.1.d0) then neg(3) = neg(3) + 1 zeta = sign(1.d0,zeta) endif ! WRITE(6,*) rhox, zeta if (rhor(ir,1) < 0.d0) neg(1) = neg(1) + 1 if (rhor(ir,2) < 0.d0) neg(2) = neg(2) + 1 call xc_spin (arhox, zeta, ex, ec, vx(1), vx(2), vc(1), vc(2) ) do is = 1, nspin v(ir,is) = e2 * (vx(is) + vc(is) ) enddo etxc = etxc + e2 * (ex + ec) * rhox else do is = 1, nspin v(ir,is) = 0.0D0 end do endif enddo endif if( debug_xc ) then open(unit=17,form='unformatted') write(17) nnr, nspin write(17) rhor write(17) grhor close(17) debug_xc = .false. end if ! now come the corrections if( dft_is_gradient() ) then if (nspin == 1) then ! ! This is the spin-unpolarised case ! !$omp parallel do & !$omp private( is, grho2, arho, segno, sx, sc, v1x, v2x, v1c, v2c ), reduction(+:etxc) do k = 1, nnr ! grho2 (1) = grhor(k, 1, 1)**2 + grhor(k, 2, 1)**2 + grhor(k, 3, 1)**2 arho = abs (rhor (k, 1) ) segno = sign (1.d0, rhor (k, 1) ) if (arho > epsr .and. grho2 (1) > epsg) then call gcxc (arho, grho2(1), sx, sc, v1x, v2x, v1c, v2c) ! ! first term of the gradient correction : D(rho*Exc)/D(rho) v (k, 1) = v (k, 1) + e2 * (v1x + v1c) ! HERE h contains D(rho*Exc)/D(|grad rho|) / |grad rho| ! h (k, 1, 1) = e2 * (v2x + v2c) etxc = etxc + e2 * (sx + sc) * segno else h (k, 1, 1) = 0.d0 endif ! end do !$omp end parallel do ! else ! ! spin-polarised case ! do k = 1, nnr do is = 1, nspin grho2 (is) = grhor(k, 1, is)**2 + grhor(k, 2, is)**2 + grhor(k, 3, is)**2 enddo rup = rhor (k, 1) rdw = rhor (k, 2) call gcx_spin ( rup, rdw, grho2 (1), grho2 (2), sx, v1xup, v1xdw, v2xup, v2xdw) ! rh = rhor (k, 1) + rhor (k, 2) ! if (rh.gt.epsr) then if( igcc_is_lyp ) then grhoup = grhor(k,1,1)**2 + grhor(k,2,1)**2 + grhor(k,3,1)**2 grhodw = grhor(k,1,2)**2 + grhor(k,2,2)**2 + grhor(k,3,2)**2 grhoud = grhor(k,1,1)* grhor(k,1,2) grhoud = grhoud + grhor(k,2,1)* grhor(k,2,2) grhoud = grhoud + grhor(k,3,1)* grhor(k,3,2) call gcc_spin_more(rup, rdw, grhoup, grhodw, grhoud, sc, & v1cup, v1cdw, v2cup, v2cdw, v2cud) else zeta = (rhor (k, 1) - rhor (k, 2) ) / rh ! grh2 = (grhor (k, 1, 1) + grhor (k, 1, 2) ) **2 + & (grhor (k, 2, 1) + grhor (k, 2, 2) ) **2 + & (grhor (k, 3, 1) + grhor (k, 3, 2) ) **2 call gcc_spin (rh, zeta, grh2, sc, v1cup, v1cdw, v2c) v2cup = v2c v2cdw = v2c v2cud = v2c end if else sc = 0.d0 v1cup = 0.d0 v1cdw = 0.d0 v2c = 0.d0 v2cup = 0.0d0 v2cdw = 0.0d0 v2cud = 0.0d0 endif ! ! first term of the gradient correction : D(rho*Exc)/D(rho) ! v (k, 1) = v (k, 1) + e2 * (v1xup + v1cup) v (k, 2) = v (k, 2) + e2 * (v1xdw + v1cdw) ! ! HERE h contains D(rho*Exc)/D(|grad rho|) / |grad rho| ! h (k, 1, 1) = e2 * (v2xup + v2cup) ! Spin UP-UP h (k, 1, 2) = e2 * v2cud ! Spin UP-DW h (k, 2, 1) = e2 * v2cud ! Spin DW-UP h (k, 2, 2) = e2 * (v2xdw + v2cdw) ! Spin DW-DW ! etxc = etxc + e2 * (sx + sc) ! ! enddo ! endif ! end if return end subroutine exch_corr_wrapper !=----------------------------------------------------------------------------=! ! ! For CP we need a further small interface subroutine ! !=----------------------------------------------------------------------------=! subroutine exch_corr_cp(nnr,nspin,grhor,rhor,etxc) use kinds, only: DP use funct, only: dft_is_gradient implicit none integer, intent(in) :: nnr integer, intent(in) :: nspin real(DP) :: grhor( nnr, 3, nspin ) real(DP) :: rhor( nnr, nspin ) real(DP) :: etxc integer :: k, ipol real(DP) :: grup, grdw real(DP), allocatable :: v(:,:) real(DP), allocatable :: h(:,:,:) ! allocate( v( nnr, nspin ) ) if( dft_is_gradient() ) then allocate( h( nnr, nspin, nspin ) ) else allocate( h( 1, 1, 1 ) ) endif ! call exch_corr_wrapper(nnr,nspin,grhor,rhor,etxc,v,h) if( dft_is_gradient() ) then ! if( nspin == 1 ) then ! ! h contains D(rho*Exc)/D(|grad rho|) * (grad rho) / |grad rho| ! !$omp parallel default(none), shared(nnr,grhor,h), private(ipol,k) do ipol = 1, 3 !$omp do do k = 1, nnr grhor (k, ipol, 1) = h (k, 1, 1) * grhor (k, ipol, 1) enddo !$omp end do end do !$omp end parallel ! ! else ! !$omp parallel default(none), shared(nnr,grhor,h), private(ipol,k,grup,grdw) do ipol = 1, 3 !$omp do do k = 1, nnr grup = grhor (k, ipol, 1) grdw = grhor (k, ipol, 2) grhor (k, ipol, 1) = h (k, 1, 1) * grup + h (k, 1, 2) * grdw grhor (k, ipol, 2) = h (k, 2, 2) * grdw + h (k, 2, 1) * grup enddo !$omp end do enddo !$omp end parallel ! end if ! end if rhor = v deallocate( v ) deallocate( h ) return end subroutine exch_corr_cp espresso-5.1/CPV/src/efield.f900000644000175000017500000002770412341373026014304 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE efield_module USE kinds, ONLY : DP IMPLICIT NONE SAVE logical :: tefield = .FALSE. logical :: tefield2 = .FALSE. integer :: epol = 3 !direction electric field real(kind=DP) :: efield = 0.d0 !intensity electric field real(kind=DP) :: efield2 =0.d0 real(kind=DP) evalue!strenght of electric field real(kind=DP) evalue2 integer epol2,ipolp2 integer ipolp !direction of electric field real(kind=DP) :: pberryel = 0.0d0, pberryion = 0.0d0 real(kind=DP) :: pberryel2 = 0.0d0, pberryion2 = 0.0d0 !*** !*** Berry phase !*** integer, allocatable:: ctable(:,:,:)!correspondence tables for diff. polarization integer, allocatable:: ctabin(:,:,:)!inverse correspondence table complex(DP), allocatable:: qmat(:,:)!inverse of matrix Q, for Barry's phase complex(DP), allocatable:: gqq(:,:,:,:)!factors int beta_Ri^*beta_Rj exp(iGr)dr complex(DP), allocatable:: gqqm(:,:,:,:)! the same with exp(-iGr) complex(DP), allocatable:: gqq0(:,:,:,:)!factors int beta_Ri^*beta_Rj exp(iGr)dr, at Gamma complex(DP), allocatable:: gqqm0(:,:,:,:)! the same with exp(-iGr), at Gamma complex(DP), allocatable:: df(:) integer, allocatable:: ctable2(:,:,:)!correspondence tables for diff. polarization integer, allocatable:: ctabin2(:,:,:)!inverse correspondence table complex(DP), allocatable:: qmat2(:,:)!inverse of matrix Q, for Barry's phase complex(DP), allocatable:: gqq2(:,:,:,:)!factors int beta_Ri^*beta_Rj exp(iGr)dr complex(DP), allocatable:: gqqm2(:,:,:,:)! the same with exp(-iGr) complex(DP), allocatable:: gqq02(:,:,:,:)!factors int beta_Ri^*beta_Rj exp(iGr)dr, at Gamma complex(DP), allocatable:: gqqm02(:,:,:,:)! the same with exp(-iGr), at Gamma complex(DP) detq complex(DP) detq2 real(DP) cdzp(3),cdzm(3), cdz0(3)!centers of ionic charges !for parallelization for direcions 1 and 2 integer :: n_g_missing_p(2)!number of g vector with correspondence G-->G+1 is missing integer :: n_g_missing_m(2)!number of g vector with correspondence G-->G-1 is missing integer, allocatable :: whose_is_g(:) !correspondence G(plane waves, global) ---> processor integer, allocatable :: ctable_missing_1(:,:,:)!correspondence G(plane waves local)--> array for mpi_alltoall !n_g_missing*nproc integer, allocatable :: ctable_missing_rev_1(:,:,:)!missing_g --> G (plane waves local) integer, allocatable :: ctable_missing_2(:,:,:)!correspondence G(plane waves local)--> array for mpi_alltoall !n_g_missing*nproc integer, allocatable :: ctable_missing_rev_2(:,:,:)!missing_g --> G (plane waves local) integer, allocatable :: ctabin_missing_1(:,:,:)!correspondence G(plane waves local)--> array for mpi_alltoall !n_g_missing*nproc integer, allocatable :: ctabin_missing_rev_1(:,:,:)!missing_g --> G (plane waves local) integer, allocatable :: ctabin_missing_2(:,:,:)!correspondence G(plane waves local)--> array for mpi_alltoall !n_g_missing*nproc integer, allocatable :: ctabin_missing_rev_2(:,:,:)!missing_g --> G (plane waves local) CONTAINS SUBROUTINE efield_init( epol_ , efield_ ) USE kinds, ONLY: DP REAL(DP), INTENT(IN) :: efield_ INTEGER, INTENT(IN) :: epol_ epol = epol_ efield = efield_ RETURN END SUBROUTINE efield_init SUBROUTINE efield_info( ) USE io_global, ONLY: ionode,stdout if(ionode) write (stdout,401) epol, efield 401 format (/4x,'=====================================' & & /4x,'| BERRY PHASE ELECTRIC FIELD 1 ' & & /4x,'=====================================' & & /4x,'| direction =',i10,' ' & & /4x,'| intensity =',f10.5,' a.u. ' & & /4x,'=====================================') RETURN END SUBROUTINE efield_info SUBROUTINE efield_berry_setup( eigr, tau0 ) USE io_global, ONLY: ionode,stdout IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: eigr(:,:) REAL(DP), INTENT(IN) :: tau0(:,:) if(ionode) write(stdout,'("Initialize Berry phase electric field")') ipolp = epol evalue = efield !set up for parallel calculations #ifdef __MPI call find_whose_is_g call gtable_missing call gtable_missing_inv #endif call gtable(ipolp,ctable(1,1,ipolp)) call gtablein(ipolp,ctabin(1,1,ipolp)) call qqberry2(gqq0,gqqm0,ipolp)!for Vanderbilt pps call qqupdate(eigr,gqqm0,gqq,gqqm,ipolp) !the following line was to keep the center of charge fixed !when performing molecular dynamics in the presence of an electric !field !call cofcharge(tau0,cdz0) RETURN END SUBROUTINE efield_berry_setup SUBROUTINE efield_update( eigr ) IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: eigr(:,:) call qqupdate(eigr,gqqm0,gqq,gqqm,ipolp) RETURN END SUBROUTINE efield_update SUBROUTINE allocate_efield( ngw, ngw_g, nx, nhx, nax, nsp ) IMPLICIT NONE INTEGER, INTENT(IN) :: ngw, ngw_g, nx, nhx, nax, nsp allocate( ctable(ngw,2,3)) allocate( ctabin(ngw,2,3)) allocate( qmat(nx,nx)) allocate( gqq(nhx,nhx,nax,nsp)) allocate( gqqm(nhx,nhx,nax,nsp)) allocate( df(ngw)) allocate( gqq0(nhx,nhx,nax,nsp)) allocate( gqqm0(nhx,nhx,nax,nsp)) allocate( whose_is_g(ngw_g)) RETURN END SUBROUTINE allocate_efield SUBROUTINE deallocate_efield( ) IMPLICIT NONE IF( allocated( ctable ) ) deallocate( ctable ) IF( allocated( ctabin ) ) deallocate( ctabin ) IF( allocated( qmat ) ) deallocate( qmat ) IF( allocated( gqq ) ) deallocate( gqq ) IF( allocated( gqqm ) ) deallocate( gqqm ) IF( allocated( df ) ) deallocate( df ) IF( allocated( gqq0 ) ) deallocate( gqq0 ) IF( allocated( gqqm0 ) ) deallocate( gqqm0 ) IF( allocated( whose_is_g) ) deallocate(whose_is_g) IF( allocated( ctable_missing_1) ) deallocate( ctable_missing_1) IF( allocated( ctable_missing_2) ) deallocate( ctable_missing_2) IF( allocated( ctable_missing_rev_1) ) deallocate( ctable_missing_rev_1) IF( allocated( ctable_missing_rev_1) ) deallocate( ctable_missing_rev_2) IF( allocated( ctabin_missing_1) ) deallocate( ctabin_missing_1) IF( allocated( ctabin_missing_2) ) deallocate( ctabin_missing_2) IF( allocated( ctabin_missing_rev_1) ) deallocate( ctabin_missing_rev_1) IF( allocated( ctabin_missing_rev_1) ) deallocate( ctabin_missing_rev_2) RETURN END SUBROUTINE deallocate_efield SUBROUTINE berry_energy( enb, enbi, bec, cm, fion ) USE ions_positions, ONLY: tau0 USE control_flags, ONLY: tfor, tprnfor IMPLICIT NONE real(DP), intent(out) :: enb, enbi real(DP) :: bec(:,:) real(DP) :: fion(:,:) complex(DP) :: cm(:,:) real(dp), external :: enberry call qmatrixd(cm,bec,ctable(1,1,ipolp),gqq,qmat,detq,ipolp) enb = enberry( detq, ipolp ) call berryion(tau0,fion,tfor.or.tprnfor,ipolp,evalue,enbi) pberryel=enb pberryion=enbi enb=enb*evalue enbi=enbi*evalue END SUBROUTINE berry_energy SUBROUTINE dforce_efield (bec,i,cm,c2,c3,rhos) USE uspp, ONLY: betae => vkb, deeq USE gvecw, ONLY: ngw IMPLICIT NONE complex(DP), intent(out) :: c2(:), c3(:) complex(DP), intent(in) :: cm(:,:) REAL(DP) :: rhos(:,:) real(DP) :: bec(:,:) integer :: i integer :: ig call dforceb (cm, i, betae, ipolp, bec ,ctabin(1,1,ipolp), gqq, gqqm, qmat, deeq, df) do ig=1,ngw c2(ig)=c2(ig)+evalue*df(ig) enddo call dforceb (cm, i+1, betae, ipolp, bec ,ctabin(1,1,ipolp), gqq, gqqm, qmat, deeq, df) do ig=1,ngw c3(ig)=c3(ig)+evalue*df(ig) enddo END SUBROUTINE dforce_efield SUBROUTINE efield_init2( epol_ , efield_ ) USE kinds, ONLY: DP REAL(DP), INTENT(IN) :: efield_ INTEGER, INTENT(IN) :: epol_ epol2 = epol_ efield2 = efield_ RETURN END SUBROUTINE efield_init2 SUBROUTINE efield_info2( ) USE io_global, ONLY: ionode,stdout if(ionode) write (stdout,402) epol2, efield2 402 format (/4x,'=====================================' & & /4x,'| BERRY PHASE ELECTRIC FIELD 2 ' & & /4x,'=====================================' & & /4x,'| direction =',i10,' ' & & /4x,'| intensity =',f10.5,' a.u. ' & & /4x,'=====================================') RETURN END SUBROUTINE efield_info2 SUBROUTINE efield_berry_setup2( eigr, tau0 ) USE io_global, ONLY: ionode,stdout IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: eigr(:,:) REAL(DP), INTENT(IN) :: tau0(:,:) if(ionode) write(stdout,'("Initialize Berry phase electric field")') ipolp2 = epol2 evalue2 = efield2 call gtable(ipolp2,ctable2(1,1,ipolp2)) call gtablein(ipolp2,ctabin2(1,1,ipolp2)) call qqberry2(gqq02,gqqm02,ipolp2)!for Vanderbilt pps call qqupdate(eigr,gqqm02,gqq2,gqqm2,ipolp2) !the following line was to keep the center of charge fixed !when performing molecular dynamics in the presence of an electric !field !call cofcharge(tau0,cdz0) RETURN END SUBROUTINE efield_berry_setup2 SUBROUTINE efield_update2( eigr ) IMPLICIT NONE COMPLEX(DP), INTENT(IN) :: eigr(:,:) call qqupdate(eigr,gqqm02,gqq2,gqqm2,ipolp2) RETURN END SUBROUTINE efield_update2 SUBROUTINE allocate_efield2( ngw, nx, nhx, nax, nsp ) IMPLICIT NONE INTEGER, INTENT(IN) :: ngw, nx, nhx, nax, nsp allocate( ctable2(ngw,2,3)) allocate( ctabin2(ngw,2,3)) allocate( qmat2(nx,nx)) allocate( gqq2(nhx,nhx,nax,nsp)) allocate( gqqm2(nhx,nhx,nax,nsp)) allocate( gqq02(nhx,nhx,nax,nsp)) allocate( gqqm02(nhx,nhx,nax,nsp)) RETURN END SUBROUTINE allocate_efield2 SUBROUTINE deallocate_efield2( ) IMPLICIT NONE IF( allocated( ctable2 ) ) deallocate( ctable2 ) IF( allocated( ctabin2 ) ) deallocate( ctabin2 ) IF( allocated( qmat2 ) ) deallocate( qmat2 ) IF( allocated( gqq2 ) ) deallocate( gqq2 ) IF( allocated( gqqm2 ) ) deallocate( gqqm2 ) IF( allocated( gqq02 ) ) deallocate( gqq02 ) IF( allocated( gqqm02 ) ) deallocate( gqqm02 ) RETURN END SUBROUTINE deallocate_efield2 SUBROUTINE berry_energy2( enb, enbi, bec, cm, fion ) USE ions_positions, ONLY: tau0 USE control_flags, ONLY: tfor, tprnfor IMPLICIT NONE real(DP), intent(out) :: enb, enbi real(DP) :: bec(:,:) real(DP) :: fion(:,:) complex(DP) :: cm(:,:) real(dp), external :: enberry call qmatrixd(cm,bec,ctable2(1,1,ipolp2),gqq2,qmat2,detq2,ipolp2) enb = enberry( detq2, ipolp2 ) call berryion(tau0,fion,tfor.or.tprnfor,ipolp2,evalue2,enbi) pberryel2=enb pberryion2=enbi enb=enb*evalue2 enbi=enbi*evalue2 END SUBROUTINE berry_energy2 SUBROUTINE dforce_efield2 (bec,i,cm,c2,c3,rhos) USE uspp, ONLY: betae => vkb, deeq USE gvecw, ONLY: ngw IMPLICIT NONE complex(DP), intent(out) :: c2(:), c3(:) complex(DP), intent(in) :: cm(:,:) REAL(DP) :: rhos(:,:) real(DP) :: bec(:,:) integer :: i integer :: ig call dforceb (cm, i, betae, ipolp2, bec ,ctabin2(1,1,ipolp2), gqq2, gqqm2, qmat2, deeq, df) do ig=1,ngw c2(ig)=c2(ig)+evalue2*df(ig) enddo call dforceb (cm, i+1, betae, ipolp2, bec ,ctabin2(1,1,ipolp2), gqq2, gqqm2, qmat2, deeq, df) do ig=1,ngw c3(ig)=c3(ig)+evalue2*df(ig) enddo END SUBROUTINE dforce_efield2 END MODULE efield_module espresso-5.1/CPV/src/restart.f900000644000175000017500000002442712341373026014537 0ustar mbamba! ! Copyright (C) 2002-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! written by Carlo Cavazzoni !----------------------------------------------------------------------- SUBROUTINE writefile_x & & ( h,hold,nfi,c0,cm,taus,tausm,vels,velsm,acc, & & lambda,lambdam,descla,xnhe0,xnhem,vnhe,xnhp0,xnhpm,vnhp,nhpcl,nhpdim,ekincm,& & xnhh0,xnhhm,vnhh,velh, fion, tps, mat_z, occ_f, rho ) !----------------------------------------------------------------------- ! USE kinds, ONLY: DP USE ions_base, ONLY: nsp, na, cdmi, taui USE cell_base, ONLY: s_to_r USE cp_restart, ONLY: cp_writefile USE cp_interfaces, ONLY: set_evtot, set_eitot, c_bgrp_expand, c_bgrp_pack USE electrons_base, ONLY: nspin, nbnd, nbsp, iupdwn, nupdwn, nbspx USE electrons_module, ONLY: ei USE io_files, ONLY: tmp_dir USE ensemble_dft, ONLY: tens USE mp, ONLY: mp_bcast USE control_flags, ONLY: tksw, ndw, io_level, twfcollect USE xml_io_base, ONLY: restart_dir USE electrons_module, ONLY: collect_c USE descriptors, ONLY: la_descriptor USE gvecw, ONLY: ngw ! implicit none integer, INTENT(IN) :: nfi REAL(DP), INTENT(IN) :: h(3,3), hold(3,3) complex(DP), INTENT(IN) :: c0(:,:), cm(:,:) REAL(DP), INTENT(IN) :: tausm(:,:), taus(:,:), fion(:,:) REAL(DP), INTENT(IN) :: vels(:,:), velsm(:,:) REAL(DP), INTENT(IN) :: acc(:), lambda(:,:,:), lambdam(:,:,:) REAL(DP), INTENT(IN) :: xnhe0, xnhem, vnhe, ekincm REAL(DP), INTENT(IN) :: xnhp0(:), xnhpm(:), vnhp(:) integer, INTENT(in) :: nhpcl, nhpdim REAL(DP), INTENT(IN) :: xnhh0(3,3),xnhhm(3,3),vnhh(3,3),velh(3,3) REAL(DP), INTENT(in) :: tps REAL(DP), INTENT(in) :: rho(:,:) REAL(DP), INTENT(in) :: occ_f(:) REAL(DP), INTENT(in) :: mat_z(:,:,:) TYPE(la_descriptor), INTENT(IN) :: descla(:) REAL(DP) :: ht(3,3), htm(3,3), htvel(3,3), gvel(3,3) INTEGER :: nk = 1, ispin, i, ib REAL(DP) :: xk(3,1) = 0.0d0, wk(1) = 2.0d0 COMPLEX(DP), ALLOCATABLE :: ctot(:,:) REAL(DP), ALLOCATABLE :: eitot(:,:) INTEGER :: nupdwn_tot( 2 ), iupdwn_tot( 2 ) if ( ndw < 1 ) then ! ! Do not write restart file if the unit number ! is negative, this is used mainly for benchmarks and tests ! return ! end if CALL c_bgrp_expand( c0 ) CALL c_bgrp_expand( cm ) ht = TRANSPOSE( h ) htm = TRANSPOSE( hold ) htvel = TRANSPOSE( velh ) gvel = 0.0d0 nupdwn_tot = nupdwn iupdwn_tot(1) = iupdwn(1) iupdwn_tot(2) = nupdwn(1) + 1 ! ALLOCATE( eitot( nupdwn_tot(1), nspin ) ) ! CALL set_eitot( eitot ) ! IF( tksw ) THEN ! ALLOCATE( ctot( SIZE( c0, 1 ), nupdwn_tot(1) * nspin ) ) ! CALL set_evtot( c0, ctot, lambda, descla, iupdwn_tot, nupdwn_tot ) ! END IF ! IF( tens ) THEN ! CALL cp_writefile( ndw, .TRUE., nfi, tps, acc, nk, xk, wk, & ht, htm, htvel, gvel, xnhh0, xnhhm, vnhh, taui, cdmi , taus, & vels, tausm, velsm, fion, vnhp, xnhp0, xnhpm, nhpcl,nhpdim, occ_f , & occ_f , lambda, lambdam, xnhe0, xnhem, vnhe, ekincm, ei, & rho, c0, cm, ctot, iupdwn, nupdwn, iupdwn, nupdwn, mat_z = mat_z ) ! ELSE ! CALL cp_writefile( ndw, .TRUE., nfi, tps, acc, nk, xk, wk, & ht, htm, htvel, gvel, xnhh0, xnhhm, vnhh, taui, cdmi , taus, & vels, tausm, velsm, fion, vnhp, xnhp0, xnhpm, nhpcl,nhpdim, occ_f,& occ_f , lambda, lambdam, xnhe0, xnhem, vnhe, ekincm, eitot, & rho, c0, cm, ctot, iupdwn, nupdwn, iupdwn_tot, nupdwn_tot ) ! END IF DEALLOCATE( eitot ) ! IF( tksw ) DEALLOCATE( ctot ) ! CALL c_bgrp_pack( c0 ) CALL c_bgrp_pack( cm ) return end subroutine writefile_x !----------------------------------------------------------------------- subroutine readfile_x & & ( flag, h,hold,nfi,c0,cm,taus,tausm,vels,velsm,acc, & & lambda,lambdam,xnhe0,xnhem,vnhe,xnhp0,xnhpm,vnhp,nhpcl,nhpdim,ekincm,& & xnhh0,xnhhm,vnhh,velh,& & fion, tps, mat_z, occ_f ) !----------------------------------------------------------------------- ! ! read from file and distribute data calculated in preceding iterations ! USE kinds, ONLY : DP USE io_files, ONLY : tmp_dir USE electrons_base, ONLY : nbnd, nbsp, nspin, nupdwn, iupdwn, keep_occ, nbspx USE gvecw, ONLY : ngw USE ions_base, ONLY : nsp, na, cdmi, taui USE cp_restart, ONLY : cp_readfile, cp_read_cell, cp_read_wfc USE ensemble_dft, ONLY : tens USE autopilot, ONLY : event_step, event_index, max_event_step USE cp_autopilot, ONLY : employ_rules USE control_flags, ONLY : ndr USE cp_interfaces, ONLY : c_bgrp_pack ! implicit none INTEGER, INTENT(in) :: flag integer :: nfi REAL(DP) :: h(3,3), hold(3,3) complex(DP) :: c0(:,:), cm(:,:) REAL(DP) :: tausm(:,:),taus(:,:), fion(:,:) REAL(DP) :: vels(:,:), velsm(:,:) REAL(DP) :: acc(:),lambda(:,:,:), lambdam(:,:,:) REAL(DP) :: xnhe0,xnhem,vnhe REAL(DP) :: xnhp0(:), xnhpm(:), vnhp(:) integer, INTENT(inout) :: nhpcl,nhpdim REAL(DP) :: ekincm REAL(DP) :: xnhh0(3,3),xnhhm(3,3),vnhh(3,3),velh(3,3) REAL(DP), INTENT(OUT) :: tps REAL(DP), INTENT(INOUT) :: mat_z(:,:,:), occ_f(:) ! REAL(DP) :: ht(3,3), htm(3,3), htvel(3,3), gvel(3,3) integer :: nk = 1, ispin, i, ib REAL(DP) :: xk(3,1) = 0.0d0, wk(1) = 2.0d0 REAL(DP), ALLOCATABLE :: occ_ ( : ) REAL(DP) :: b1(3) , b2(3), b3(3) IF( flag == -1 ) THEN CALL cp_read_cell( ndr, tmp_dir, .TRUE., ht, htm, htvel, gvel, xnhh0, xnhhm, vnhh ) h = TRANSPOSE( ht ) hold = TRANSPOSE( htm ) velh = TRANSPOSE( htvel ) RETURN END IF IF ( flag == 0 ) THEN DO ispin = 1, nspin CALL cp_read_wfc( ndr, tmp_dir, 1, 1, ispin, nspin, c2 = cm(:,:), tag = 'm' ) END DO CALL c_bgrp_pack( cm ) RETURN END IF ALLOCATE( occ_ ( SIZE( occ_f ) ) ) IF( tens ) THEN CALL cp_readfile( ndr, .TRUE., nfi, tps, acc, nk, xk, wk, & ht, htm, htvel, gvel, xnhh0, xnhhm, vnhh, taui, cdmi, taus, & vels, tausm, velsm, fion, vnhp, xnhp0, xnhpm, nhpcl,nhpdim,occ_ , & occ_ , lambda, lambdam, b1, b2, b3, & xnhe0, xnhem, vnhe, ekincm, c0, cm, mat_z = mat_z ) ELSE CALL cp_readfile( ndr, .TRUE., nfi, tps, acc, nk, xk, wk, & ht, htm, htvel, gvel, xnhh0, xnhhm, vnhh, taui, cdmi, taus, & vels, tausm, velsm, fion, vnhp, xnhp0, xnhpm, nhpcl,nhpdim,occ_ , & occ_ , lambda, lambdam, b1, b2, b3, & xnhe0, xnhem, vnhe, ekincm, c0, cm ) END IF ! ! AutoPilot (Dynamic Rules) Implementation event_index = 1 do while (event_step(event_index) <= nfi) ! Assuming that the remaining dynamic parm values are set correctly by reading ! the the restart file. ! if this is not true, employ rules as events are updated right here as: call employ_rules() event_index = event_index + 1 if( event_index > max_event_step ) then CALL errore( ' readfile ' , ' maximum events exceeded for dynamic rules ' , 1 ) end if enddo IF( .NOT. keep_occ ) THEN occ_f( : ) = occ_ ( : ) END IF CALL c_bgrp_pack( cm ) CALL c_bgrp_pack( c0 ) ! DEALLOCATE( occ_ ) return end subroutine readfile_x !------------------------------------------------------------------------------! SUBROUTINE set_eitot_x( eitot ) !------------------------------------------------------------------------------! USE kinds, ONLY: DP USE electrons_base, ONLY: nupdwn, nspin USE electrons_module, ONLY: ei ! IMPLICIT NONE ! REAL(DP), INTENT(OUT) :: eitot(:,:) ! INTEGER :: n ! eitot = 0.0d0 ! eitot( 1:nupdwn(1), 1 ) = ei( 1:nupdwn(1), 1 ) IF( nspin == 2 ) eitot( 1:nupdwn(2), 2 ) = ei( 1:nupdwn(2), 2 ) ! RETURN END SUBROUTINE set_eitot_x !------------------------------------------------------------------------------! SUBROUTINE set_evtot_x( c0, ctot, lambda, descla, iupdwn_tot, nupdwn_tot ) !------------------------------------------------------------------------------! USE kinds, ONLY: DP USE electrons_base, ONLY: nupdwn, nspin, iupdwn, nudx USE electrons_module, ONLY: ei USE cp_interfaces, ONLY: crot, collect_lambda USE descriptors, ONLY: la_descriptor ! IMPLICIT NONE ! COMPLEX(DP), INTENT(IN) :: c0(:,:) COMPLEX(DP), INTENT(OUT) :: ctot(:,:) REAL(DP), INTENT(IN) :: lambda(:,:,:) INTEGER, INTENT(IN) :: iupdwn_tot(2), nupdwn_tot(2) TYPE(la_descriptor), INTENT(IN) :: descla(:) ! REAL(DP), ALLOCATABLE :: eitmp(:) REAL(DP), ALLOCATABLE :: lambda_repl(:,:) ! ALLOCATE( eitmp( nudx ) ) ALLOCATE( lambda_repl( nudx, nudx ) ) ! ctot = 0.0d0 ! CALL collect_lambda( lambda_repl, lambda(:,:,1), descla(1) ) ! CALL crot( ctot, c0, SIZE( c0, 1 ), nupdwn(1), iupdwn_tot(1), iupdwn(1), lambda_repl, nudx, eitmp ) ! IF( nspin == 2 ) THEN CALL collect_lambda( lambda_repl, lambda(:,:,2), descla(2) ) CALL crot( ctot, c0, SIZE( c0, 1 ), nupdwn(2), iupdwn_tot(2), iupdwn(2), lambda_repl, nudx, eitmp ) END IF ! DEALLOCATE( lambda_repl ) ! DEALLOCATE( eitmp ) ! RETURN END SUBROUTINE set_evtot_x espresso-5.1/CPV/src/cpr.f900000644000175000017500000010652612341373026013640 0ustar mbamba! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE cprmain( tau_out, fion_out, etot_out ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE constants, ONLY : bohr_radius_angs, amu_au USE control_flags, ONLY : iprint, isave, thdyn, tpre, iverbosity, & tfor, remove_rigid_rot, taurdr, llondon,& tprnfor, tsdc, lconstrain, lwf, & ndr, ndw, nomore, tsde, textfor, & tortho, tnosee, tnosep, trane, tranp, & tsdp, tcp, tcap, ampre, amprp, tnoseh, & tolp, ortho_eps, ortho_max, printwfc USE core, ONLY : rhoc USE uspp_param, ONLY : nhm, nh, nvb, ish USE uspp, ONLY : nkb, vkb, becsum, deeq, okvan, nlcc_any USE energies, ONLY : eht, epseu, exc, etot, eself, enl, & ekin, atot, entropy, egrand, enthal, & ekincm, print_energies USE electrons_base, ONLY : nbspx, nbsp, ispin, f, nspin, nbsp_bgrp USE electrons_base, ONLY : nel, iupdwn, nupdwn, nudx, nelt USE electrons_module, ONLY : distribute_c, collect_c USE efield_module, ONLY : efield, epol, tefield, allocate_efield, & efield_update, ipolp, qmat, gqq, evalue,& berry_energy, pberryel, pberryion, & efield2, epol2, tefield2, & allocate_efield2, efield_update2, & ipolp2, qmat2, gqq2, evalue2, & berry_energy2, pberryel2, pberryion2 USE ensemble_dft, ONLY : tens, z0t, gibbsfe USE cg_module, ONLY : tcg, cg_update, c0old USE gvect, ONLY : ngm USE gvecs, ONLY : ngms USE smallbox_gvec, ONLY : ngb USE gvecw, ONLY : ngw USE gvect, ONLY : gstart, mill, eigts1, eigts2, eigts3 USE ions_base, ONLY : na, nat, amass, nax, nsp, rcmax USE ions_base, ONLY : ind_srt, ions_cofmass, ions_kinene, & ions_temp, ions_thermal_stress, & if_pos, extfor USE ions_base, ONLY : ions_vrescal, fricp, greasp, & iforce, ndfrz, ions_shiftvar, ityp, & atm, ind_bck, cdm, cdms, ions_cofmsub USE cell_base, ONLY : at, bg, ainv, frich, & greash, tpiba2, omega, alat, ibrav, & celldm, h, hold, hnew, velh, & wmass, press, iforceh, cell_force USE local_pseudo, ONLY : allocate_local_pseudo USE io_global, ONLY : stdout, ionode, ionode_id USE dener, ONLY : detot !USE cdvan, ONLY : drhovan USE gvecw, ONLY : ggp USE constants, ONLY : pi, k_boltzmann_au, au_ps USE io_files, ONLY : psfile, pseudo_dir USE wave_base, ONLY : wave_steepest, wave_verlet USE wave_base, ONLY : wave_speed2, frice, grease USE control_flags, ONLY : conv_elec, tconvthrs USE check_stop, ONLY : check_stop_now USE efcalc, ONLY : clear_nbeg, ef_force USE ions_base, ONLY : zv, ions_vel USE cp_electronic_mass, ONLY : emass, emass_cutoff, emass_precond USE ions_positions, ONLY : tau0, taum, taup, taus, tausm, tausp, & vels, velsm, velsp, ions_hmove, & ions_move, fion, fionm USE ions_nose, ONLY : gkbt, kbt, qnp, ndega, nhpcl, nhpdim, & nhpbeg, nhpend, & vnhp, xnhp0, xnhpm, xnhpp, & atm2nhp, ions_nosevel, ions_noseupd, & tempw, ions_nose_nrg, gkbt2nhp, & ekin2nhp, anum2nhp USE electrons_nose, ONLY : qne, ekincw, xnhe0, xnhep, xnhem, & vnhe, electrons_nose_nrg, & electrons_nose_shiftvar, & electrons_nosevel, electrons_noseupd USE pres_ai_mod, ONLY : P_ext, P_in, P_fin, pvar, volclu, & surfclu, Surf_t, abivol, abisur USE wavefunctions_module, ONLY : c0_bgrp, cm_bgrp, phi_bgrp USE wannier_module, ONLY : allocate_wannier USE cp_interfaces, ONLY : printout_new, move_electrons, newinit USE cell_nose, ONLY : xnhh0, xnhhm, xnhhp, vnhh, temph, & qnh, cell_nosevel, cell_noseupd, & cell_nose_nrg, cell_nose_shiftvar USE cell_base, ONLY : cell_kinene, cell_gamma, & cell_move, cell_hmove USE gvecw, ONLY : ecutwfc USE gvect, ONLY : ecutrho USE time_step, ONLY : delt, tps, dt2, twodelt USE cp_interfaces, ONLY : cp_print_rho, nlfh, print_lambda, prefor, dotcsc USE cp_main_variables, ONLY : acc, lambda, lambdam, lambdap, & ema0bg, sfac, eigr, iprint_stdout, & irb, taub, eigrb, rhog, rhos, & rhor, bephi, becp_bgrp, nfi, descla, & drhor, drhog, bec_bgrp, dbec USE autopilot, ONLY : event_step, event_index, & max_event_step, restart_p USE cell_base, ONLY : s_to_r, r_to_s USE wannier_subroutines, ONLY : wannier_startup, wf_closing_options, & ef_enthalpy USE cp_interfaces, ONLY : writefile, eigs, strucf, phfacs USE cp_interfaces, ONLY : ortho, elec_fakekine, calbec_bgrp, calbec, caldbec_bgrp USE constraints_module, ONLY : check_constraint, remove_constr_force USE cp_autopilot, ONLY : pilot USE ions_nose, ONLY : ions_nose_allocate, ions_nose_shiftvar USE orthogonalize_base, ONLY : updatc USE control_flags, ONLY : force_pairing USE mp, ONLY : mp_bcast, mp_sum USE mp_global, ONLY : root_bgrp, intra_bgrp_comm, np_ortho, & me_ortho, ortho_comm, & me_bgrp, inter_bgrp_comm, nbgrp USE ldaU_cp, ONLY : lda_plus_u, vupsi USE fft_base, ONLY : dfftp USE london_module, ONLY : energy_london, force_london, stres_london ! IMPLICIT NONE ! ! ... input/output variables ! REAL(DP), INTENT(OUT) :: tau_out(3,nat) REAL(DP), INTENT(OUT) :: fion_out(3,nat) REAL(DP), INTENT(OUT) :: etot_out ! ! ... control variables ! LOGICAL :: tfirst, tlast, tstop, tconv LOGICAL :: tprint, tfile, tstdout ! logical variable used to control printout ! ! ... forces on ions ! REAL(DP) :: maxfion, fion_tot(3) ! ! ... work variables ! REAL(DP) :: tempp, savee, saveh, savep, epot, epre, & enow, econs, econt, fccc, ccc, bigr, dt2bye REAL(DP) :: ekinc0, ekinp, ekinpr, ekinc REAL(DP) :: temps(nat) REAL(DP) :: ekinh, temphc, randy REAL(DP) :: delta_etot REAL(DP) :: ftmp, enb, enbi INTEGER :: is, nacc, ia, j, iter, i, isa, ipos, iat INTEGER :: k, ii, l, m, iss REAL(DP) :: hgamma(3,3), temphh(3,3) REAL(DP) :: fcell(3,3) REAL(DP) :: deltaP, ekincf REAL(DP) :: stress_gpa(3,3), thstress(3,3), stress(3,3) ! REAL(DP), ALLOCATABLE :: usrt_tau0(:,:), usrt_taup(:,:), usrt_fion(:,:) ! temporary array used to store unsorted positions and forces for ! constrained dynamics CHARACTER(LEN=3) :: labelw( nat ) ! for force_pairing INTEGER :: nspin_sub , i1, i2 ! pmass contains masses in atomic Hartree units REAL(DP), ALLOCATABLE :: pmass(:) REAL(DP), ALLOCATABLE :: forceh(:,:) ! etot_out = 0.D0 enow = 1.D9 stress = 0.0D0 ! tfirst = .TRUE. tlast = .FALSE. nacc = 5 ! ALLOCATE ( pmass (nsp) ) pmass(1:nsp) = amass(1:nsp) * amu_au nspin_sub = nspin IF( force_pairing ) nspin_sub = 1 ! ! ... Check for restart_p from Autopilot Feature Suite ! IF ( restart_p ) THEN ! ! ... do not add past nfi ! nomore = nomore ! END IF ! IF ( lda_plus_u ) ALLOCATE( forceh( 3, nat ) ) ! ! !====================================================================== ! ! basic loop for molecular dynamics starts here ! !====================================================================== ! main_loop: DO ! CALL start_clock( 'main_loop' ) ! dt2bye = dt2 / emass nfi = nfi + 1 tlast = ( nfi == nomore ) .OR. tlast tprint = ( MOD( nfi, iprint ) == 0 ) .OR. tlast tfile = ( MOD( nfi, iprint ) == 0 ) tstdout = ( MOD( nfi, iprint_stdout ) == 0 ) .OR. tlast ! IF ( abivol ) THEN IF ( pvar ) THEN IF ( nfi .EQ. 1 ) THEN deltaP = (P_fin - P_in) / DBLE(nomore) P_ext = P_in ELSE P_ext = P_ext + deltaP END IF END IF END IF ! IF ( ionode .AND. tstdout ) & WRITE( stdout, '(/," * Physical Quantities at step:",I6)' ) nfi ! IF ( tnosee ) THEN fccc = 1.D0 / ( 1.D0 + 0.5D0 * delt * vnhe ) ELSE IF ( tsde ) THEN fccc = 1.D0 ELSE fccc = 1.D0 / ( 1.D0 + frice ) END IF ! ! ... calculation of velocity of nose-hoover variables ! IF ( tnosep ) THEN ! CALL ions_nosevel( vnhp, xnhp0, xnhpm, delt, nhpcl, nhpdim ) ! END IF ! IF ( tnosee ) THEN ! CALL electrons_nosevel( vnhe, xnhe0, xnhem, delt ) ! END IF ! IF ( tnoseh ) THEN ! CALL cell_nosevel( vnhh, xnhh0, xnhhm, delt ) ! velh(:,:) = 2.D0 * ( h(:,:) - hold(:,:) ) / delt - velh(:,:) ! END IF ! IF ( (okvan .or. nlcc_any ) .AND. (tfor .OR. thdyn .OR. tfirst) ) THEN ! CALL initbox( tau0, alat, at, ainv, taub, irb ) ! CALL phbox( taub, iverbosity, eigrb ) ! END IF ! IF ( tfor .OR. thdyn ) THEN ! CALL phfacs( eigts1,eigts2,eigts3, eigr, mill, taus, dfftp%nr1,dfftp%nr2,dfftp%nr3, nat ) ! ! ... strucf calculates the structure factor sfac ! CALL strucf( sfac, eigts1, eigts2, eigts3, mill, ngms ) ! END IF ! IF ( thdyn ) THEN ! CALL formf( tfirst, eself ) ! END IF ! ! ... why this call ??? from Paolo Umari ! IF ( tefield .or. tefield2 ) THEN ! CALL calbec( 1, nsp, eigr, c0_bgrp, bec_bgrp ) ! ATTENZIONE ! END IF ! ! Autopilot (Dynamic Rules) Implimentation ! call pilot(nfi) ! IF ( ( tfor .OR. tfirst ) .AND. tefield ) CALL efield_update( eigr ) IF ( ( tfor .OR. tfirst ) .AND. tefield2 ) CALL efield_update2( eigr ) ! IF ( lda_plus_u ) then ! forceh ! Forces on ions due to Hubbard U forceh=0.0d0 ! vupsi ! potentials on electrons due to Hubbard U vupsi=(0.0d0,0.0d0) CALL new_ns(c0_bgrp,eigr,vkb,vupsi,forceh) if ( mod(nfi,iprint).eq.0 ) call write_ns endif ! !======================================================================= ! ! electronic degrees of freedom are updated here ! !======================================================================= ! IF( force_pairing ) THEN c0_bgrp(:,iupdwn(2):nbsp) = c0_bgrp(:,1:nupdwn(2)) cm_bgrp(:,iupdwn(2):nbsp) = cm_bgrp(:,1:nupdwn(2)) phi_bgrp(:,iupdwn(2):nbsp) = phi_bgrp(:,1:nupdwn(2)) lambda(:,:, 2) = lambda(:,:, 1) ENDIF ! ! ... fake electronic kinetic energy ! IF ( .NOT. tcg ) THEN ! ekincf = 0.0d0 CALL elec_fakekine( ekincf, ema0bg, emass, cm_bgrp, c0_bgrp, ngw, nbsp_bgrp, 1, delt ) ! END IF ! CALL move_electrons( nfi, tfirst, tlast, bg(:,1), bg(:,2), bg(:,3), & fion, c0_bgrp, cm_bgrp, phi_bgrp, & enthal, enb, enbi, fccc, ccc, dt2bye, stress, .false. ) ! IF (lda_plus_u) fion = fion + forceh ! ! DFT+D (Grimme) dispersion energy, forces (factor 0.5 converts to Ha/a.u.) ! IF ( llondon ) THEN ALLOCATE( usrt_tau0( 3, nat )) usrt_tau0(:,:) = tau0(:,ind_bck(:))/alat delta_etot = 0.5_dp*energy_london (alat, nat,ityp,at,bg, usrt_tau0) etot = etot + delta_etot enthal=enthal+delta_etot IF ( tfor ) THEN ALLOCATE( usrt_fion( 3, nat ) ) usrt_fion = 0.5_dp*force_london ( alat, nat,ityp, at,bg, usrt_tau0 ) fion(:,:) = fion(:,:) + usrt_fion(:,ind_srt(:)) DEALLOCATE (usrt_fion) END IF IF ( tpre ) stress = stress + 0.5_dp * stres_london ( alat , nat , & ityp , at , bg , usrt_tau0 , omega ) DEALLOCATE ( usrt_tau0 ) END IF ! IF ( tpre ) THEN ! CALL nlfh( stress, bec_bgrp, dbec, lambda, descla ) ! CALL ions_thermal_stress( stress, pmass, omega, h, vels, nsp, na ) ! END IF ! !======================================================================= ! ! verlet algorithm ! ! loop which updates cell parameters and ionic degrees of freedom ! hnew=h(t+dt) is obtained from hold=h(t-dt) and h=h(t) ! tausp=pos(t+dt) from tausm=pos(t-dt) taus=pos(t) h=h(t) ! ! guessed displacement of ions !======================================================================= ! hgamma(:,:) = 0.D0 ! IF ( thdyn ) THEN ! CALL cell_force( fcell, ainv, stress, omega, press, wmass ) ! CALL cell_move( hnew, h, hold, delt, iforceh, & fcell, frich, tnoseh, vnhh, velh, tsdc ) ! velh(:,:) = ( hnew(:,:) - hold(:,:) ) / twodelt ! CALL cell_gamma( hgamma, ainv, h, velh ) ! END IF ! !====================================================================== ! IF ( tfor ) THEN ! IF ( lwf ) CALL ef_force( fion, na, nsp, zv ) ! IF( textfor ) THEN ! FORALL( ia = 1:nat ) fion(:,ia) = fion(:,ia) + extfor(:,ia) ! fion_tot(:) = SUM( fion(:,:), DIM = 2 ) / DBLE( nat ) ! FORALL( ia = 1:nat ) fion(:,ia) = fion(:,ia) - fion_tot(:) ! END IF ! IF ( remove_rigid_rot ) & CALL remove_tot_torque( nat, tau0, pmass(ityp(ind_srt(:))), fion ) ! IF ( lconstrain ) THEN ! IF ( ionode ) THEN ! ALLOCATE( usrt_tau0( 3, nat ) ) ALLOCATE( usrt_taup( 3, nat ) ) ALLOCATE( usrt_fion( 3, nat ) ) ! usrt_tau0(:,:) = tau0(:,ind_bck(:)) usrt_fion(:,:) = fion(:,ind_bck(:)) ! ! ... we first remove the component of the force along the ! ... constrain gradient (this constitutes the initial guess ! ... for the lagrange multiplier) ! CALL remove_constr_force( nat, usrt_tau0, if_pos, ityp, 1.D0, usrt_fion ) ! fion(:,:) = usrt_fion(:,ind_srt(:)) ! END IF ! CALL mp_bcast( fion, ionode_id, intra_bgrp_comm ) ! END IF ! ! ! ... call void routine for user define/ plugin patches on external forces ! CALL plugin_ext_forces() ! ! CALL ions_move( tausp, taus, tausm, iforce, pmass, fion, ainv, & delt, na, nsp, fricp, hgamma, vels, tsdp, tnosep, & fionm, vnhp, velsp, velsm, nhpcl, nhpdim, atm2nhp ) ! IF ( lconstrain ) THEN ! ! ... constraints are imposed here ! IF ( ionode ) THEN ! CALL s_to_r( tausp, taup, na, nsp, hnew ) ! usrt_taup(:,:) = taup(:,ind_bck(:)) ! CALL check_constraint( nat, usrt_taup, usrt_tau0, usrt_fion, & if_pos, ityp, 1.D0, delt, amu_au ) ! taup(:,:) = usrt_taup(:,ind_srt(:)) fion(:,:) = usrt_fion(:,ind_srt(:)) ! DEALLOCATE( usrt_tau0, usrt_taup, usrt_fion ) ! END IF ! CALL mp_bcast( taup, ionode_id, intra_bgrp_comm ) CALL mp_bcast( fion, ionode_id, intra_bgrp_comm ) ! CALL r_to_s( taup, tausp, na, nsp, ainv ) ! END IF ! CALL ions_cofmass( tausp, pmass, na, nsp, cdm ) ! IF ( ndfrz == 0 ) & CALL ions_cofmsub( tausp, iforce, nat, cdm, cdms ) ! CALL s_to_r( tausp, taup, na, nsp, hnew ) ! END IF ! !-------------------------------------------------------------------------- ! initialization with guessed positions of ions !-------------------------------------------------------------------------- ! ! ... if thdyn=true g vectors and pseudopotentials are recalculated for ! ... the new cell parameters ! IF ( tfor .OR. thdyn ) THEN ! IF ( thdyn ) THEN ! hold = h h = hnew ! IF( nbgrp > 1 ) THEN CALL mp_bcast( h, 0, inter_bgrp_comm ) END IF ! CALL newinit( h, iverbosity ) ! CALL newnlinit() ! ELSE ! hold = h ! END IF ! ! ... phfac calculates eigr ! CALL phfacs( eigts1,eigts2,eigts3, eigr, mill, tausp, dfftp%nr1,dfftp%nr2,dfftp%nr3, nat ) ! ... prefor calculates vkb ! CALL prefor( eigr, vkb ) ! END IF ! !-------------------------------------------------------------------------- ! imposing the orthogonality !-------------------------------------------------------------------------- ! IF ( .NOT. tcg ) THEN ! IF ( tortho ) THEN ! CALL ortho( eigr, cm_bgrp, phi_bgrp, lambda, descla, bigr, iter, ccc, bephi, becp_bgrp ) ! ELSE ! CALL gram_bgrp( vkb, bec_bgrp, nkb, cm_bgrp, ngw ) ! IF ( iverbosity > 2 ) CALL dotcsc( eigr, cm_bgrp, ngw, nbsp_bgrp ) ! END IF ! ! correction to displacement of ions ! IF ( iverbosity > 1 ) CALL print_lambda( lambda, descla, nbsp, 9, 1.D0 ) ! IF ( tortho ) THEN CALL updatc( ccc, lambda, phi_bgrp, bephi, becp_bgrp, bec_bgrp, cm_bgrp, descla ) END IF ! IF( force_pairing ) THEN c0_bgrp(:,iupdwn(2):nbsp) = c0_bgrp(:,1:nupdwn(2)) cm_bgrp(:,iupdwn(2):nbsp) = cm_bgrp(:,1:nupdwn(2)) phi_bgrp(:,iupdwn(2):nbsp) = phi_bgrp(:,1:nupdwn(2)) lambda(:,:, 2) = lambda(:,:, 1) ENDIF ! CALL calbec_bgrp( nvb+1, nsp, eigr, cm_bgrp, bec_bgrp ) ! IF ( tpre ) THEN CALL caldbec_bgrp( eigr, cm_bgrp, dbec, descla ) END IF ! IF ( iverbosity > 1 ) CALL dotcsc( eigr, cm_bgrp, ngw, nbsp_bgrp ) ! END IF ! !-------------------------------------------------------------------------- ! temperature monitored and controlled !-------------------------------------------------------------------------- ! ekinp = 0.D0 ekinpr = 0.D0 tempp = 0.D0 temps = 0.D0 ekinc0 = 0.0d0 ekinc = 0.0d0 ! ! ! ... ionic kinetic energy and temperature ! IF ( tfor ) THEN ! CALL ions_vel( vels, tausp, tausm, na, nsp, delt ) ! CALL ions_kinene( ekinp, vels, na, nsp, hold, pmass ) ! CALL ions_temp( tempp, temps, ekinpr, vels, na, nsp, & hold, pmass, ndega, nhpdim, atm2nhp, ekin2nhp ) ! END IF ! ! ... fake electronic kinetic energy ! IF ( .NOT. tcg ) THEN ! CALL elec_fakekine( ekinc0, ema0bg, emass, c0_bgrp, cm_bgrp, ngw, nbsp_bgrp, 1, delt ) ! ekinc0 = (ekinc0 + ekincf)*0.5d0 ! ekinc = ekinc0 ! END IF ! ! ... fake cell-parameters kinetic energy ! ekinh = 0.D0 ! IF ( thdyn ) THEN ! CALL cell_kinene( ekinh, temphh, velh ) ! END IF ! IF ( COUNT( iforceh == 1 ) > 0 ) THEN ! temphc = 2.D0 / k_boltzmann_au * ekinh / DBLE( COUNT( iforceh == 1 ) ) ! ELSE ! temphc = 0.D0 ! END IF ! ! ... udating nose-hoover friction variables ! IF ( tnosep ) CALL ions_noseupd( xnhpp, xnhp0, xnhpm, delt, qnp, & ekin2nhp, gkbt2nhp, vnhp, kbt, & nhpcl, nhpdim, nhpbeg, nhpend ) ! IF ( tnosee ) CALL electrons_noseupd( xnhep, xnhe0, xnhem, & delt, qne, ekinc, ekincw, vnhe ) ! IF ( tnoseh ) CALL cell_noseupd( xnhhp, xnhh0, xnhhm, & delt, qnh, temphh, temph, vnhh ) ! ! ... warning: thdyn and tcp/tcap are not compatible yet!!! ! IF ( tcp .AND. tfor .AND. .NOT.thdyn ) THEN ! IF ( tempp > (tempw+tolp) .OR. & tempp < (tempw-tolp) .AND. tempp /= 0.D0 ) THEN ! CALL ions_vrescal( tcap, tempw, tempp, taup, & tau0, taum, na, nsp, fion, iforce, pmass, delt ) CALL r_to_s( taup, tausp, na, nsp, ainv ) ! END IF ! END IF ! IF ( tprint ) THEN ! IF( tortho ) THEN ! IF( force_pairing ) THEN lambda(:, :, 2) = lambda(:, :, 1) lambdap(:, :, 2) = lambdap(:, :, 1) WRITE( stdout, '("Occupations in CPR:")' ) WRITE( stdout, '(10F9.6)' ) ( f(i), i = 1, nbspx ) END IF ! CALL eigs( nfi, lambdap, lambda, descla ) ! ELSE ! WRITE( stdout, '("NOTE: eigenvalues are not computed without ortho")' ) ! END IF ! END IF ! IF ( lwf ) CALL ef_enthalpy( enthal, tau0 ) ! IF ( tens .AND. tprint ) THEN ! WRITE( stdout, '("Occupations :")' ) WRITE( stdout, '(10F9.6)' ) ( f(i), i = 1, nbsp ) ! END IF ! epot = eht + epseu + exc ! IF ( .NOT. tcg ) THEN ! econs = ekinp + ekinh + enthal econt = econs + ekinc ! ELSE ! IF ( .NOT. tens ) THEN ! econs = ekinp + etot atot = etot econt = econs ! ELSE ! gibbsfe = atot econs = ekinp + atot econt = econs ! END IF ! END IF ! ! ... add energies of thermostats ! IF ( tnosep ) & econt = econt + ions_nose_nrg( xnhp0, vnhp, qnp, & gkbt2nhp, kbt, nhpcl, nhpdim ) IF ( tnosee ) & econt = econt + electrons_nose_nrg( xnhe0, vnhe, qne, ekincw ) IF ( tnoseh ) & econt = econt + cell_nose_nrg( qnh, xnhh0, vnhh, temph, iforceh ) ! tps = tps + delt * au_ps ! if (abivol) etot = etot - P_ext*volclu if (abisur) etot = etot - Surf_t*surfclu ! IF ( tstdout) CALL spinsq ( c0_bgrp, bec_bgrp, rhor ) ! CALL printout_new( nfi, tfirst, tfile, tprint, tps, hold, stress, & tau0, vels, fion, ekinc, temphc, tempp, temps, etot, & enthal, econs, econt, vnhh, xnhh0, vnhp, xnhp0, atot, & ekin, epot, tprnfor, tpre, tstdout ) ! if (abivol) etot = etot + P_ext*volclu if (abisur) etot = etot + Surf_t*surfclu ! IF( tfor ) THEN ! ! ... new variables for next step ! CALL ions_shiftvar( taup, tau0, taum ) ! real positions CALL ions_shiftvar( tausp, taus, tausm ) ! scaled positions CALL ions_shiftvar( velsp, vels, velsm ) ! scaled velocities ! IF ( tnosep ) CALL ions_nose_shiftvar( xnhpp, xnhp0, xnhpm ) IF ( tnosee ) CALL electrons_nose_shiftvar( xnhep, xnhe0, xnhem ) IF ( tnoseh ) CALL cell_nose_shiftvar( xnhhp, xnhh0, xnhhm ) ! IF( nbgrp > 1 ) THEN CALL mp_bcast( tau0, 0, inter_bgrp_comm ) CALL mp_bcast( taus, 0, inter_bgrp_comm ) CALL mp_bcast( vels, 0, inter_bgrp_comm ) CALL mp_bcast( xnhp0, 0, inter_bgrp_comm ) CALL mp_bcast( xnhe0, 0, inter_bgrp_comm ) CALL mp_bcast( xnhh0, 0, inter_bgrp_comm ) END IF ! END IF ! IF ( thdyn .AND. tfirst ) CALL emass_precond( ema0bg, ggp, ngw, tpiba2, emass_cutoff ) ! ekincm = ekinc0 ! ! ... cm=c(t+dt) c0=c(t) ! IF( .NOT. tcg ) THEN ! CALL dswap( 2*SIZE( c0_bgrp ), c0_bgrp, 1, cm_bgrp, 1 ) ! ELSE ! CALL cg_update( tfirst, nfi, c0_bgrp ) ! IF ( tfor .AND. .NOT. tens .AND. tprint ) THEN ! ! ... in this case optimize c0 and lambda for smooth ! ... restart with CP ! IF ( okvan .or. nlcc_any ) THEN CALL initbox( tau0, alat, at, ainv, taub, irb ) CALL phbox( taub, iverbosity, eigrb ) END IF CALL r_to_s( tau0, taus, na, nsp, ainv ) CALL phfacs( eigts1,eigts2,eigts3, eigr, mill, taus, dfftp%nr1,dfftp%nr2,dfftp%nr3, nat ) CALL strucf( sfac, eigts1, eigts2, eigts3, mill, ngms ) ! IF ( thdyn ) CALL formf( tfirst, eself ) IF ( tefield ) CALL efield_update( eigr ) IF ( tefield2 ) CALL efield_update2( eigr ) ! lambdam = lambda ! CALL move_electrons( nfi, tfirst, tlast, bg(:,1), bg(:,2), bg(:,3),& fion, c0_bgrp, cm_bgrp, phi_bgrp, enthal, enb,& enbi, fccc, ccc, dt2bye, stress,.true. ) ! END IF ! END IF ! ! ... now: cm=c(t) c0=c(t+dt) ! tfirst = .FALSE. ! CALL stop_clock( 'main_loop' ) ! ! ... write on file ndw each isave ! IF ( ( MOD( nfi, isave ) == 0 ) .AND. ( nfi < nomore ) ) THEN ! IF ( tcg ) THEN ! CALL writefile( h, hold ,nfi, c0_bgrp, c0old, taus, tausm, & vels, velsm, acc, lambda, lambdam, descla, xnhe0, xnhem, & vnhe, xnhp0, xnhpm, vnhp, nhpcl,nhpdim,ekincm, xnhh0,& xnhhm, vnhh, velh, fion, tps, z0t, f, rhor ) ! ELSE ! CALL writefile( h, hold, nfi, c0_bgrp, cm_bgrp, taus, & tausm, vels, velsm, acc, lambda, lambdam, descla, xnhe0, & xnhem, vnhe, xnhp0, xnhpm, vnhp, nhpcl, nhpdim, ekincm,& xnhh0, xnhhm, vnhh, velh, fion, tps, z0t, f, rhor ) ! END IF ! END IF ! epre = enow enow = etot ! frice = frice * grease fricp = fricp * greasp frich = frich * greash ! !====================================================================== ! delta_etot = ABS( epre - enow ) ! tstop = check_stop_now() .OR. tlast ! tconv = .FALSE. ! IF ( tconvthrs%active ) THEN ! ! ... electrons ! tconv = ( ekinc < tconvthrs%ekin .AND. delta_etot < tconvthrs%derho ) ! IF ( tfor ) THEN ! ! ... ions ! maxfion = MAXVAL( ABS( fion(:,1:nat) ) ) ! tconv = tconv .AND. ( maxfion < tconvthrs%force ) ! END IF ! END IF ! ! ... in the case cp-wf the check on convergence is done starting ! ... from the second step ! IF ( lwf .AND. tfirst ) tconv = .FALSE. ! IF ( tconv ) THEN ! tlast = .TRUE. ! IF ( ionode ) THEN ! WRITE( stdout, & & "(/,3X,'MAIN:',10X,'EKINC (thr)', & & 10X,'DETOT (thr)',7X,'MAXFORCE (thr)')" ) WRITE( stdout, "(3X,'MAIN: ',3(D14.6,1X,D8.1))" ) & ekinc, tconvthrs%ekin, delta_etot, & tconvthrs%derho, 0.D0, tconvthrs%force WRITE( stdout, & "(3X,'MAIN: convergence achieved for system relaxation')" ) ! END IF ! END IF ! IF ( lwf ) & CALL wf_closing_options( nfi, c0_bgrp, cm_bgrp, bec_bgrp, eigr, eigrb,& taub, irb, ibrav, bg(:,1), bg(:,2), bg(:,3), & taus, tausm, vels, & velsm, acc, lambda, lambdam, descla, xnhe0, xnhem, & vnhe, xnhp0, xnhpm, vnhp, nhpcl, nhpdim, & ekincm, xnhh0, xnhhm, vnhh, velh, ecutrho, & ecutwfc,delt,celldm, fion, tps, z0t, f, rhor ) ! IF ( tstop ) EXIT main_loop ! END DO main_loop ! !===================== end of main loop of molecular dynamics =============== ! DEALLOCATE ( pmass ) ! ... Here copy relevant physical quantities into the output arrays/variables ! etot_out = etot ! isa = 0 ! DO is = 1, nsp ! DO ia = 1, na(is) ! isa = isa + 1 ipos = ind_srt( isa ) tau_out(:,ipos) = tau0(:,isa) fion_out(:,ipos) = fion(:,isa) ! END DO ! END DO ! conv_elec = .TRUE. ! IF ( tcg ) cm_bgrp = c0old ! CALL writefile( h, hold, nfi, c0_bgrp, cm_bgrp, taus, tausm, & vels, velsm, acc, lambda, lambdam, descla, xnhe0, xnhem, vnhe, & xnhp0, xnhpm, vnhp, nhpcl,nhpdim,ekincm, xnhh0, xnhhm, & vnhh, velh, fion, tps, z0t, f, rhor ) ! IF( iverbosity > 1 ) CALL print_lambda( lambda, descla, nbsp, nbsp, 1.D0 ) ! IF (lda_plus_u) DEALLOCATE( forceh ) RETURN ! END SUBROUTINE cprmain ! !---------------------------------------------------------------------------- SUBROUTINE terminate_run() !---------------------------------------------------------------------------- ! USE io_global, ONLY : stdout, ionode USE control_flags, ONLY : ts_vdw, thdyn, tortho USE cg_module, ONLY : tcg, print_clock_tcg USE ldaU_cp, ONLY : lda_plus_u USE mp, ONLY : mp_report USE tsvdw_module, ONLY : tsvdw_finalize ! IMPLICIT NONE ! ! ... print statistics ! CALL printacc() ! CALL print_clock( 'initialize' ) CALL print_clock( 'main_loop' ) ! WRITE( stdout, '(/5x,"Called by main_loop:")' ) IF (thdyn) CALL print_clock( 'formf' ) CALL print_clock( 'move_electrons' ) IF (tortho) THEN CALL print_clock( 'ortho' ) CALL print_clock( 'updatc' ) ELSE CALL print_clock( 'gram' ) END IF CALL print_clock( 'new_ns' ) CALL print_clock( 'strucf' ) CALL print_clock( 'calbec' ) WRITE( stdout, '(/5x,"Called by move_electrons:")' ) CALL print_clock( 'rhoofr' ) CALL print_clock( 'vofrho' ) CALL print_clock( 'dforce' ) CALL print_clock( 'calphi' ) CALL print_clock( 'newd' ) CALL print_clock( 'nlfl' ) IF (lda_plus_u) WRITE( stdout, '(/5x,"Called by new_ns:")' ) CALL print_clock( 'new_ns:forc' ) CALL print_clock( 'projwfc_hub' ) CALL print_clock( 'dndtau' ) IF (tortho) WRITE( stdout, '(/5x,"Called by ortho:")' ) CALL print_clock( 'ortho_iter' ) CALL print_clock( 'rsg' ) CALL print_clock( 'rhoset' ) CALL print_clock( 'sigset' ) CALL print_clock( 'tauset' ) WRITE( stdout, '(/5x,"Small boxes:")' ) CALL print_clock( 'rhov' ) CALL print_clock( 'fftb' ) CALL print_clock( 'set_cc' ) CALL print_clock( 'forcecc' ) WRITE( stdout, '(/5x,"Low-level routines:")' ) CALL print_clock( 'prefor' ) CALL print_clock( 'nlfq' ) CALL print_clock( 'nlsm1' ) CALL print_clock( 'nlsm2' ) CALL print_clock( 'fft' ) CALL print_clock( 'ffts' ) CALL print_clock( 'fftw' ) CALL print_clock( 'fft_scatter' ) CALL print_clock( 'betagx' ) CALL print_clock( 'qradx' ) CALL print_clock( 'tmp_clk1' ) CALL print_clock( 'tmp_clk2' ) CALL print_clock( 'tmp_clk3' ) CALL print_clock( 'gram' ) CALL print_clock( 'nlinit' ) CALL print_clock( 'init_dim' ) CALL print_clock( 'newnlinit' ) CALL print_clock( 'from_scratch' ) CALL print_clock( 'from_restart' ) !============================================================== ! Lingzhu Kong CALL print_clock( 'wf' ) CALL print_clock( 'wf_1' ) CALL print_clock( 'wf_2' ) CALL print_clock('rhoiofr') CALL print_clock('wf_close_opt') CALL print_clock('ddyn_u') CALL print_clock('uforce') CALL print_clock('ortho_u') CALL print_clock('ddyn_2') CALL print_clock('ortho_iter') CALL print_clock('getdelta') CALL print_clock('exact_exchange') CALL print_clock('r_orbital') CALL print_clock('hpotcg') CALL print_clock('getqlm') CALL print_clock('exx_bound') CALL print_clock('lapmv') CALL print_clock('send_psi') CALL print_clock('vl2vg') CALL print_clock('getpairv') !======================================================================== IF (ts_vdw) THEN WRITE( stdout, '(/5x,"Called by tsvdw:")' ) CALL print_clock( 'ts_vdw' ) CALL print_clock( 'tsvdw_pair' ) CALL print_clock( 'tsvdw_rhotot' ) CALL print_clock( 'tsvdw_screen' ) CALL print_clock( 'tsvdw_veff' ) CALL print_clock( 'tsvdw_dveff' ) CALL print_clock( 'tsvdw_energy' ) CALL print_clock( 'tsvdw_wfforce' ) ! CALL tsvdw_finalize() END IF ! IF (tcg) call print_clock_tcg() ! CALL print_clock( 'ALLTOALL' ) ! CALL mp_report() ! END SUBROUTINE terminate_run espresso-5.1/CPV/src/cpr_loop.f900000644000175000017500000000235212341373026014661 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ... set ion_positions = 'from_input' and rd_pos = +your_positions+ ! ... to force cprmain to compute forces for +your_position+ configuration ! !---------------------------------------------------------------------------- SUBROUTINE cpr_loop( nloop ) !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE ions_base, ONLY : nat ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nloop ! INTEGER :: iloop REAL(DP), ALLOCATABLE :: tau(:,:) REAL(DP), ALLOCATABLE :: fion(:,:) REAL(DP) :: etot ! ! IF ( nat > 0 ) THEN ! ALLOCATE( tau( 3, nat ) ) ALLOCATE( fion( 3, nat ) ) ! ELSE ! CALL errore( ' cpr_loop ', ' nat less or equal 0 ', 1 ) ! END IF ! CALL init_run() ! DO iloop = 1, nloop ! CALL cprmain( tau, fion, etot ) ! END DO ! CALL terminate_run() ! DEALLOCATE( tau, fion ) ! RETURN ! END SUBROUTINE cpr_loop espresso-5.1/CPV/src/ions_positions.f900000644000175000017500000002434712341373026016133 0ustar mbamba! ! Copyright (C) 2002-2012 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE ions_positions !------------------------------------------------------------------------------! ! USE kinds, ONLY : DP ! IMPLICIT NONE ! ! ... Atomic positions arrays used in the cp codes during the dynamics ! REAL(DP), TARGET, ALLOCATABLE :: tau0(:,:), taum(:,:), taup(:,:) REAL(DP), TARGET, ALLOCATABLE :: taus(:,:), tausm(:,:), tausp(:,:) REAL(DP), TARGET, ALLOCATABLE :: vels(:,:), velsm(:,:), velsp(:,:) REAL(DP), TARGET, ALLOCATABLE :: fion(:,:), fionm(:,:), fionp(:,:) !INTEGER, TARGET, ALLOCATABLE :: ityp(:), mobil(:,:) ! CONTAINS ! ! ... meaning of some variables appearing in the following subs. ! ! nsp number of atomic species ! nax maximum number of atoms per specie ! nat total number of atoms ! na(:) number of atoms per specie ! pmass(:) mass (converted to a.u.) of ions ! ! SUBROUTINE allocate_ions_positions( nsp, nat ) INTEGER, INTENT(IN) :: nsp, nat ! IF( ALLOCATED( tau0 ) ) DEALLOCATE( tau0 ) IF( ALLOCATED( taum ) ) DEALLOCATE( taum ) IF( ALLOCATED( taup ) ) DEALLOCATE( taup ) IF( ALLOCATED( taus ) ) DEALLOCATE( taus ) IF( ALLOCATED( tausm ) ) DEALLOCATE( tausm ) IF( ALLOCATED( tausp ) ) DEALLOCATE( tausp ) IF( ALLOCATED( vels ) ) DEALLOCATE( vels ) IF( ALLOCATED( velsm ) ) DEALLOCATE( velsm ) IF( ALLOCATED( velsp ) ) DEALLOCATE( velsp ) IF( ALLOCATED( fion ) ) DEALLOCATE( fion ) IF( ALLOCATED( fionm ) ) DEALLOCATE( fionm ) IF( ALLOCATED( fionp ) ) DEALLOCATE( fionp ) !IF( ALLOCATED( ityp ) ) DEALLOCATE( ityp ) !IF( ALLOCATED( mobil ) ) DEALLOCATE( mobil ) ! ALLOCATE( tau0( 3, nat ) ) ALLOCATE( taum( 3, nat ) ) ALLOCATE( taup( 3, nat ) ) ALLOCATE( taus( 3, nat ) ) ALLOCATE( tausm( 3, nat ) ) ALLOCATE( tausp( 3, nat ) ) ALLOCATE( vels( 3, nat ) ) ALLOCATE( velsm( 3, nat ) ) ALLOCATE( velsp( 3, nat ) ) ALLOCATE( fion( 3, nat ) ) ALLOCATE( fionm( 3, nat ) ) ALLOCATE( fionp( 3, nat ) ) !ALLOCATE( ityp( nat ) ) !ALLOCATE( mobil( 3, nat ) ) ! RETURN END SUBROUTINE allocate_ions_positions !-------------------------------------------------------------------------- SUBROUTINE deallocate_ions_positions( ) IF( ALLOCATED( tau0 ) ) DEALLOCATE( tau0 ) IF( ALLOCATED( taum ) ) DEALLOCATE( taum ) IF( ALLOCATED( taup ) ) DEALLOCATE( taup ) IF( ALLOCATED( taus ) ) DEALLOCATE( taus ) IF( ALLOCATED( tausm ) ) DEALLOCATE( tausm ) IF( ALLOCATED( tausp ) ) DEALLOCATE( tausp ) IF( ALLOCATED( vels ) ) DEALLOCATE( vels ) IF( ALLOCATED( velsm ) ) DEALLOCATE( velsm ) IF( ALLOCATED( velsp ) ) DEALLOCATE( velsp ) IF( ALLOCATED( fion ) ) DEALLOCATE( fion ) IF( ALLOCATED( fionm ) ) DEALLOCATE( fionm ) IF( ALLOCATED( fionp ) ) DEALLOCATE( fionp ) !IF( ALLOCATED( ityp ) ) DEALLOCATE( ityp ) !IF( ALLOCATED( mobil ) ) DEALLOCATE( mobil ) RETURN END SUBROUTINE deallocate_ions_positions !-------------------------------------------------------------------------- SUBROUTINE ions_hmove( taus, tausm, iforce, pmass, fion, ainv, delt, na, nsp ) !-------------------------------------------------------------------------- ! REAL(DP), INTENT(IN) :: tausm(:,:), pmass(:), fion(:,:) INTEGER, INTENT(IN) :: iforce(:,:) REAL(DP), INTENT(IN) :: ainv(3,3), delt REAL(DP), INTENT(OUT) :: taus(:,:) INTEGER, INTENT(IN) :: na(:), nsp INTEGER :: is, ia, i, isa REAL(DP) :: dt2by2, fac, fions(3) ! ! dt2by2 = 0.5D0 * delt * delt ! isa = 0 ! DO is = 1, nsp ! fac = dt2by2 / pmass(is) ! DO ia = 1, na(is) ! isa = isa + 1 ! DO i = 1, 3 ! fions(i) = fion(1,isa) * ainv(i,1) + & fion(2,isa) * ainv(i,2) + & fion(3,isa) * ainv(i,3) ! END DO ! taus(:,isa) = tausm(:,isa) + iforce(:,isa) * fac * fions(:) ! END DO END DO ! RETURN ! END SUBROUTINE ions_hmove ! !-------------------------------------------------------------------------- SUBROUTINE ions_move( tausp, taus, tausm, iforce, pmass, fion, ainv, & delt, na, nsp, fricp, hgamma, vels, tsdp, tnosep, & fionm, vnhp, velsp, velsm, nhpcl, nhpdim, atm2nhp ) !-------------------------------------------------------------------------- ! IMPLICIT NONE ! REAL(DP), INTENT(IN) :: taus(:,:), tausm(:,:), pmass(:), fion(:,:) INTEGER, INTENT(IN) :: iforce(:,:) REAL(DP), INTENT(IN) :: ainv(3,3), delt REAL(DP), INTENT(OUT) :: tausp(:,:) INTEGER, INTENT(IN) :: na(:), nsp, nhpcl, nhpdim, atm2nhp(:) REAL(DP), INTENT(IN) :: fricp, hgamma(3,3), vels(:,:) LOGICAL, INTENT(IN) :: tsdp, tnosep REAL(DP), INTENT(INOUT) :: fionm(:,:) REAL(DP), INTENT(IN) :: vnhp(nhpcl,nhpdim) REAL(DP), INTENT(OUT) :: velsp(:,:) REAL(DP), INTENT(IN) :: velsm(:,:) INTEGER :: is, ia, i, isa REAL(DP) :: dt2by2, fac, dt2, twodel REAL(DP) :: verl1, verl2, verl3 REAL(DP) :: ftmp(3) ! ! dt2by2 = 0.5D0 * delt * delt dt2 = delt * delt twodel = 2.D0 * delt ! verl1 = 2.D0 / ( 1.D0 + fricp ) verl2 = 1.D0 - verl1 verl3 = dt2 / ( 1.D0 + fricp ) ! IF ( tsdp ) THEN ! isa = 0 ! DO is = 1, nsp ! DO ia = 1, na(is) ! isa = isa + 1 ! DO i = 1, 3 ! tausp(i,isa) = taus(i,isa) - pmass(is) * & ( hgamma(i,1) * vels(1,isa) + & hgamma(i,2) * vels(2,isa) + & hgamma(i,3) * vels(3,isa) ) + & iforce(i,isa) * dt2 / pmass(is) * & ( fion(1,isa) * ainv(i,1) + & fion(2,isa) * ainv(i,2) + & fion(3,isa) * ainv(i,3) ) ! END DO ! END DO ! END DO ! ELSE IF ( tnosep ) THEN ! isa = 0 ! DO is = 1, nsp ! DO ia = 1, na(is) ! isa = isa + 1 ! DO i = 1, 3 ! fionm(i,isa) = ainv(i,1) * fion(1,isa) + & ainv(i,2) * fion(2,isa) + & ainv(i,3) * fion(3,isa) - & vnhp(1,atm2nhp(isa)) * vels(i,isa) * pmass(is) - & pmass(is) * ( hgamma(i,1) * vels(1,isa) + & hgamma(i,2) * vels(2,isa) + & hgamma(i,3) * vels(3,isa) ) ! END DO ! tausp(:,isa) = 2.D0 * taus(:,isa) - tausm(:,isa) + & dt2 * iforce(:,isa) * fionm(:,isa) / pmass(is) ! velsp(:,isa) = velsm(:,isa) + twodel * fionm(:,isa) / pmass(is) ! END DO ! END DO ! ELSE ! isa = 0 ! DO is = 1, nsp ! DO ia = 1, na(is) ! isa = isa + 1 ! DO i = 1, 3 ! tausp(i,isa) = verl1 * taus(i,isa) + verl2 * tausm(i,isa) + & verl3 / pmass(is) * iforce(i,isa) * & ( ainv(i,1) * fion(1,isa) + & ainv(i,2) * fion(2,isa) + & ainv(i,3) * fion(3,isa) ) - & verl3 * iforce(i,isa) * & ( hgamma(i,1) * vels(1,isa) + & hgamma(i,2) * vels(2,isa) + & hgamma(i,3) * vels(3,isa) ) ! velsp(i,isa) = velsm(i,isa) - 4.D0 * fricp * vels(i,isa) + & twodel / pmass(is) * iforce(i,isa) * & ( ainv(i,1) * fion(1,isa) + & ainv(i,2) * fion(2,isa) + & ainv(i,3) * fion(3,isa) ) - & twodel * iforce(i,isa) * & ( hgamma(i,1) * vels(1,isa) + & hgamma(i,2) * vels(2,isa) + & hgamma(i,3) * vels(3,isa) ) ! END DO ! END DO ! END DO ! END IF ! RETURN ! END SUBROUTINE ions_move ! ! SUBROUTINE set_velocities( tausm, taus0, vels, iforce, nat, delt) USE kinds, ONLY : DP IMPLICIT NONE INTEGER, INTENT(IN) :: nat REAL(DP) :: tausm( 3, nat ), taus0( 3, nat ) REAL(DP), INTENT(IN) :: delt REAL(DP), INTENT(IN) :: vels( 3, nat ) INTEGER, INTENT(IN) :: iforce( 3, nat ) INTEGER :: i, ia DO ia = 1, nat tausm( :, ia ) = taus0( :, ia ) DO i = 1, 3 IF( iforce( i, ia ) > 0 ) THEN taus0( i, ia ) = taus0( i, ia ) + vels( i, ia ) * delt END IF ENDDO END DO RETURN END SUBROUTINE set_velocities ! !------------------------------------------------------------------------------! END MODULE ions_positions !------------------------------------------------------------------------------! espresso-5.1/CPV/src/dealloc.f900000644000175000017500000000662512341373026014456 0ustar mbamba! ! Copyright (C) 2002-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !---------------------------------------------------------------------------- SUBROUTINE deallocate_modules_var() !---------------------------------------------------------------------------- ! USE uspp, ONLY : beta, dbeta, qq USE core, ONLY : rhocb ! USE core, ONLY : deallocate_core USE uspp, ONLY : deallocate_uspp USE electrons_base, ONLY : deallocate_elct USE efield_module, ONLY : deallocate_efield USE ensemble_dft, ONLY : deallocate_ensemble_dft USE cg_module, ONLY : deallocate_cg USE gvect, ONLY : deallocate_gvect USE gvecs, ONLY : deallocate_gvecs USE gvecw, ONLY : deallocate_gvecw USE smallbox_gvec, ONLY : deallocate_smallbox_gvec USE local_pseudo, ONLY : deallocate_local_pseudo USE qgb_mod, ONLY : deallocate_qgb_mod USE betax, ONLY : deallocate_betax USE wavefunctions_module, ONLY : deallocate_wavefunctions USE wannier_module, ONLY : deallocate_wannier USE fft_types, ONLY : fft_dlay_descriptor, fft_dlay_deallocate USE fft_types, ONLY : fft_box_deallocate USE fft_base, ONLY : dfftp, dffts, dfftb USE stick_base, ONLY : sticks_deallocate USE electrons_module, ONLY : deallocate_electrons USE ions_base, ONLY : deallocate_ions_base USE sic_module, ONLY : deallocate_sic USE polarization, ONLY : deallocate_polarization USE cp_main_variables, ONLY : deallocate_mainvar USE pseudopotential, ONLY : deallocate_pseudopotential USE ions_nose, ONLY : ions_nose_deallocate USE metagga, ONLY : deallocate_metagga USE ions_positions, ONLY : deallocate_ions_positions USE kohn_sham_states, ONLY : ks_states_closeup USE ldaU_cp, ONLY : deallocate_lda_plus_u USE step_penalty, ONLY : deallocate_step_pen ! IMPLICIT NONE ! ! IF ( ALLOCATED( beta ) ) DEALLOCATE( beta ) IF ( ALLOCATED( qq ) ) DEALLOCATE( qq ) IF ( ALLOCATED( rhocb ) ) DEALLOCATE( rhocb ) IF ( ALLOCATED( dbeta ) ) DEALLOCATE( dbeta ) ! CALL deallocate_mainvar() CALL deallocate_ions_positions() CALL deallocate_efield( ) CALL deallocate_ensemble_dft() CALL deallocate_cg( ) CALL deallocate_core() CALL deallocate_uspp() CALL deallocate_gvect() CALL deallocate_gvecs() CALL deallocate_gvecw() CALL deallocate_smallbox_gvec( ) CALL deallocate_local_pseudo() CALL deallocate_qgb_mod() CALL deallocate_betax() ! CALL fft_dlay_deallocate( dfftp ) CALL fft_dlay_deallocate( dffts ) CALL fft_box_deallocate( dfftb ) CALL sticks_deallocate() ! CALL deallocate_ions_base() ! CALL deallocate_wavefunctions() CALL deallocate_wannier() ! CALL deallocate_elct() CALL deallocate_electrons() CALL deallocate_polarization() CALL deallocate_pseudopotential() ! CALL deallocate_sic() CALL deallocate_metagga() CALL ions_nose_deallocate() CALL ks_states_closeup() ! CALL deallocate_lda_plus_u() CALL deallocate_step_pen() ! RETURN ! END SUBROUTINE deallocate_modules_var espresso-5.1/CPV/src/bforceion.f900000644000175000017500000000613112341373026015011 0ustar mbamba! ! Copyright (C) 2002-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine bforceion(fion,tfor,ipol,qmatinv,bec0,becdr,gqq,evalue) ! this subroutine compute the part of force for the ions due to ! electronic berry phase( see internal notes) ! it needs becdr ! fion : input, forces on ions ! tfor : input, if true it computes force ! at : input, direct lattice vectors, divided by alat ! ipol : input, electric field polarization ! qmatinv : input, inverse of Q matrix: Q_i,j= ! bec0 : input, factors ! becdr : input, factors d/dR ! gqq : input, Int_e exp(iG*r)*q_ijR(r) ! evalue : input, scale of electric field use ions_base, only : nax, na, nsp use uspp_param, only: nvb, ish use kinds, only : dp use constants use cell_base, only: at, alat use uspp_param, only: nh, nhm use uspp, only : nhsa=> nkb use electrons_base, only: nbsp, nbspx, nspin, nbspx_bgrp use mp_global, only: nbgrp implicit none real(dp) evalue complex(dp) qmatinv(nbspx,nbspx),gqq(nhm,nhm,nax,nsp) real(dp) bec0(nhsa,nbspx),becdr(nhsa,nbspx,3) real(dp) fion(3,*) integer ipol logical tfor !local variables complex(dp) ci, temp, temp1,temp2,temp3 real(dp) :: gmes real(dp), external :: g_mes integer iv,jv,ia,is,k,i,j,isa,ilm,jlm,inl,jnl,ism if(.not. tfor) return if( nbgrp > 1 ) & call errore(' bforceion ', ' parallelization over bands not yet implemented ', 1 ) ci = (0.d0,1.d0) gmes = g_mes (ipol, at, alat) isa = 0 do is=1,nvb do ia=1,na(is) isa = isa + 1 do iv= 1,nh(is) do jv=1,nh(is) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(is)+(jv-1)*na(is)+ia temp=(0.d0,0.d0) temp1=(0.d0,0.d0) temp2=(0.d0,0.d0) temp3=(0.d0,0.d0) do i=1,nbsp do j=1,nbsp temp = temp + ci*gmes*gqq(iv,jv,ia,is)* &!TAKECARE: sign + due to exp(+iGr) in gqq & bec0(inl,i)*bec0(jnl,j)*qmatinv(j,i) temp1 = temp1 + gqq(iv,jv,ia,is)*& & ( becdr(inl,i,1)*bec0(jnl,j)+bec0(inl,i)*becdr(jnl,j,1))*qmatinv(j,i) temp2 = temp2 + gqq(iv,jv,ia,is)*& & ( becdr(inl,i,2)*bec0(jnl,j)+bec0(inl,i)*becdr(jnl,j,2))*qmatinv(j,i) temp3 = temp3 + gqq(iv,jv,ia,is)*& & ( becdr(inl,i,3)*bec0(jnl,j)+bec0(inl,i)*becdr(jnl,j,3))*qmatinv(j,i) enddo enddo fion(ipol,isa) = fion(ipol,isa) - 2.d0*evalue*AIMAG(temp)/gmes fion(1,isa) = fion(1,isa) - 2.d0*evalue*AIMAG(temp1)/gmes fion(2,isa) = fion(2,isa) - 2.d0*evalue*AIMAG(temp2)/gmes fion(3,isa) = fion(3,isa) - 2.d0*evalue*AIMAG(temp3)/gmes end do end do end do end do return end subroutine bforceion espresso-5.1/CPV/src/plugin_ext_forces.f900000644000175000017500000000135612341373026016566 0ustar mbamba! ! Copyright (C) 2001-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- SUBROUTINE plugin_ext_forces() !---------------------------------------------------------------------------- ! ! USE mp_global, ONLY : intra_image_comm USE mp, ONLY : mp_bcast USE io_global, ONLY : stdout, ionode, ionode_id USE kinds, ONLY : DP USE io_files, ONLY : outdir ! USE plugin_flags ! IMPLICIT NONE ! ! END SUBROUTINE plugin_ext_forces espresso-5.1/CPV/src/vol_clu.f900000644000175000017500000003362212341373026014513 0ustar mbamba! ! Copyright (C) 2002-2007 Quantum ESPRESSO groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- SUBROUTINE vol_clu(rho_real,rho_g,s_fac,flag) !---------------------------------------------------------------------- ! it computes the volume of the cluster (cluster calculations) starting ! from the measure of the region of space occupied by the electronic density ! above a given threshold USE kinds, ONLY: dp USE constants, ONLY: pi USE parameters, ONLY: nsx USE cell_base, ONLY: alat, at, h, omega, tpiba, tpiba2 USE electrons_base, ONLY: nspin USE ions_base, ONLY: na, nsp, amass USE ions_positions, ONLY: tau0 USE gvect, ONLY: g, gg, ngm, nl, nlm USE gvecs, ONLY: ngms USE cp_main_variables, only: drhor USE control_flags, ONLY: tpre USE fft_base, ONLY: dfftp USE fft_interfaces, ONLY: invfft USE pres_ai_mod, ONLY: rho_thr, n_cntr, cntr, step_rad, fill_vac, & & delta_eps, delta_sigma, axis, & & abisur, dthr, Surf_t, rho_gaus, v_vol, & & posv, xc0, weight, volclu, stress_vol, & & surfclu, n_ele, jellium, R_j, h_j, e_j, & & nelect, P_ext USE mp_world, ONLY: nproc, mpime USE io_global, ONLY: ionode USE mp, ONLY: mp_bcast, mp_sum USE mp_bands, ONLY: intra_bgrp_comm implicit none real(kind=8) dx, dxx, xcc(4800) real(kind=8) weight0, wpiu, wmeno, maxr, minr real(kind=8) tau00(3), dist real(kind=8) rho_real(dfftp%nnr,nspin), rhoc real(kind=8) alfa(nsx), alfa0, sigma, hgt real(kind=8) pos_cry(3), pos_car(3), pos_aux(3) real(kind=8) pos_cry0(3), dpvdh(3,3) real(kind=8) v_d(3) real(kind=8) mtot, rad0, cm(3) real(kind=8) modr, lap real(kind=8) prod, aux1 real(kind=8) gxl, xyr, xzr, yzr real(kind=8), allocatable:: vec(:,:,:), aiuto(:,:,:) real(kind=8), allocatable:: drho(:,:), d2rho(:,:) real(kind=8), allocatable:: dxdyrho(:), dxdzrho(:) real(kind=8), allocatable:: dydzrho(:) real(kind=8), allocatable:: tauv(:,:,:) complex(kind=8) s_fac(ngms,nsp), ci complex(kind=8) sum_sf, aux, auxx, fact, rho_g(ngm,nspin) complex(kind=8), allocatable :: psi(:), rhofill(:), rhotmp(:,:) integer ir, ir1, ir2, ir3, is, iss, ia, flag, ierr integer i, j, k, l, ig, cnt, nmin, nmax, n_at #ifdef __MPI real(kind=8) maxr_p(nproc), minr_p(nproc), maxr_pp, minr_pp integer shift(nproc), incr(nproc), ppp(nproc) integer displs(nproc), ip, me #endif if (abisur) allocate(drho(3,dfftp%nnr)) if (abisur) allocate(d2rho(3,dfftp%nnr)) if (abisur) allocate(dxdyrho(dfftp%nnr)) if (abisur) allocate(dxdzrho(dfftp%nnr)) if (abisur) allocate(dydzrho(dfftp%nnr)) allocate(psi(dfftp%nnr)) call start_clock( 'vol_clu' ) ci = (0.d0,1.d0) #ifdef __MPI me = mpime + 1 do ip=1,nproc ppp(ip) = dfftp%nnp * ( dfftp%npp(ip) ) if (ip.eq.1) then shift(ip)=0 else shift(ip)=shift(ip-1) + ppp(ip-1) end if end do #endif sigma = rho_thr/3.d0 !3.d0 hgt = 0.0050d0 !5000.d0*rho_thr ! We smear the step function defining the volume and approximate its derivative ! with a gaussian. Here we sample the integral of this gaussian. It has to ! be done once for ever ! XXX: using an array for xcc() is a big waste. two scalar variables would do. dx = 5.d0*sigma/60.d0 if (flag.eq.1) then dxx = dx/40.d0 weight(1) = 0.d0 xcc(1) = rho_thr - 5.d0*sigma xc0(1) = xcc(1) cnt = 1 do i = 2,121 weight(i) = weight(i-1) do j = 1,40 cnt = cnt + 1 xcc(cnt) = xcc(cnt-1) + dxx if (j.eq.40) then xc0(i) = xcc(cnt) end if aux1 = xcc(cnt)-dxx/2.d0-rho_thr weight(i) = weight(i) + 1.d0/(sigma*dsqrt(pi*2.d0)) * & & dxx * dexp(-1.d0*aux1**2/(2.d0*sigma**2)) end do end do ! This doesn't work yet..... if (jellium) then do ir3 = 1,dfftp%nr3 do ir2 = 1,dfftp%nr2 do ir1 = 1,dfftp%nr1 ir = ir1 + (ir2-1)*dfftp%nr1 + (ir3-1)*dfftp%nr2*dfftp%nr1 dist = 0.d0 do i = 1,3 posv(i,ir) = (DBLE(ir1)-1.0d0)*at(i,1)/DBLE(dfftp%nr1) +& & (DBLE(ir2)-1.0d0)*at(i,2)/DBLE(dfftp%nr2) +& & (DBLE(ir3)-1.0d0)*at(i,3)/DBLE(dfftp%nr3) end do end do end do end do posv(:,:) = posv(:,:)*alat end if end if n_at = MAXVAL ( na(1:nsp) ) allocate ( tauv(3,n_at,nsp) ) n_at = 0 do is = 1,nsp alfa(is) = step_rad(is)/2.d0 do ia = 1,na(is) n_at = n_at + 1 do k = 1,3 tauv(k,ia,is) = tau0(k,n_at) end do end do end do stress_vol = 0.d0 dpvdh = 0.d0 ! Now we compute the volume and other quantities volclu = 0.d0 n_ele = 0.d0 surfclu = 0.d0 ! Let's add rhops to fill possible holes in the valence charge density on top ! of the ions allocate(rhotmp(ngm,nspin)) rhotmp = (0.d0,0.d0) if (nspin.eq.1) then do ig = 1,ngm rhotmp(ig,1)=rho_g(ig,1) end do else do ig = 1,ngm do iss = 1,2 rhotmp(ig,iss) = rho_g(ig,iss) end do end do end if ! To fill the vacuum inside hollow structures if (fill_vac) then allocate(rhofill(ngm)) rhofill = 0.d0 do k = 1,3 cm(k) = 0.d0 mtot = 0.d0 do is = 1,nsp do ia = 1,na(is) cm(k) = cm(k) + tauv(k,ia,is)*amass(is) end do mtot = mtot + amass(is) end do cm(k) = cm(k)/mtot end do end if if (fill_vac) then do i = 1,n_cntr do is = 1,nsp if (cntr(is)) then rad0 = step_rad(is) + DBLE(i)*delta_sigma alfa0 = rad0/2.d0 do ia = 1,na(is) do k = 1,3 if (k.ne.axis) then tau00(k) = (tauv(k,ia,is)-cm(k))* & & (1.d0-delta_eps*DBLE(i))+cm(k) else tau00(k) = tauv(k,ia,is) end if end do do ig = 1,ngm prod = 0.d0 do k = 1,3 prod = prod + g(k,ig)*tau00(k) end do prod = prod*tpiba fact = CMPLX(cos(prod),-1.d0*sin(prod),kind=DP) aux = alfa0*hgt*EXP(-(0.50d0*alfa0**2*gg(ig)*tpiba2)) rhofill(ig) = rhofill(ig) + aux*fact end do end do end if end do end do if (nspin.eq.1) then do ig=1,ngm rhotmp(ig,1) = rhotmp(ig,1) + rhofill(ig) end do else do ig = 1,ngm do iss = 1,2 rhotmp(ig,iss) = rhotmp(ig,iss) + 0.5d0*rhofill(ig) end do end do end if end if if (fill_vac) then deallocate(rhofill) end if if (abisur) & & call gradrho(nspin,rhotmp,drho,d2rho,dxdyrho,dxdzrho,dydzrho) psi = (0.d0,0.d0) if (nspin.eq.1) then do ig = 1,ngm psi(nl(ig)) = rhotmp(ig,1) psi(nlm(ig))= conjg(rhotmp(ig,1)) end do call invfft('Dense',psi, dfftp ) do ir = 1,dfftp%nnr rho_gaus(ir) = real(psi(ir)) end do else do ig = 1,ngm psi(nl(ig)) = rhotmp(ig,1) + ci*rhotmp(ig,2) psi(nlm(ig))= conjg(rhotmp(ig,1)) + ci*conjg(rhotmp(ig,2)) end do call invfft('Dense',psi, dfftp ) do ir = 1,dfftp%nnr rho_gaus(ir) = real(psi(ir))+aimag(psi(ir)) end do end if deallocate(psi) deallocate(rhotmp) e_j = 0.d0 do ir = 1,dfftp%nnr v_vol(ir) = 0.d0 if (jellium) then #ifdef __MPI do j = 1,3 pos_aux(j) = posv(j,ir+shift(me)) end do #else do j = 1,3 pos_aux(j) = posv(j,ir) end do #endif dist = 0.d0 do j = 1,3 dist = dist + (pos_aux(j) - 0.5d0*(at(j,1)+at(j,2)+at(j,3)))**2 end do dist = dsqrt(dist)*alat if (dist.ge.R_j) then v_vol(ir) = - nelect/dist v_vol(ir) = 0.d0 else ! The last term in the internal potential is for its continuity v_vol(ir) = + 0.5d0*nelect*dist**2/R_j**3 & - 1.5d0*nelect/R_j v_vol(ir) = - h_j end if if (nspin.eq.1) then e_j = e_j + v_vol(ir) * rho_real(ir,1) * omega / & & DBLE(dfftp%nr1*dfftp%nr2*dfftp%nr3) else e_j = e_j + v_vol(ir) * & ( rho_real(ir,1) + rho_real(ir,2) ) * omega / & & DBLE(dfftp%nr1*dfftp%nr2*dfftp%nr3) end if end if rhoc = rho_gaus(ir) ! Volume and surface if (rhoc.gt.rho_thr+5.d0*sigma) then weight0 = 1.d0 wpiu = 1.d0 i = int((rhoc-rho_thr-dthr+5.d0*sigma)/dx) + 1 if (i.gt.120) then wmeno = 1.d0 else wmeno = weight(i) + (weight(i+1)-weight(i)) * & & (rhoc-rho_thr-dthr-DBLE(i-1)*dx+5.d0*sigma)/dx end if go to 79 end if ! Volume and surface k = int((rhoc-rho_thr+5.d0*sigma)/dx) + 1 weight0 = weight(k) + (weight(k+1)-weight(k)) * & (rhoc-rho_thr+5.d0*sigma-DBLE(k-1)*dx)/dx if (abisur) then if (rhoc-rho_thr+dthr.gt.5.d0*sigma) then wpiu = weight0 i = int((rhoc-rho_thr-dthr+5.d0*sigma)/dx) + 1 wmeno = weight(i)+(weight(i+1)-weight(i))* & & (rhoc-rho_thr-dthr+5.d0*sigma-DBLE(i-1)*dx)/dx else if (rho_thr+dthr-rhoc.gt.5.d0*sigma) then wmeno = 0.d0 i = int((rhoc-rho_thr+dthr+5.d0*sigma)/dx) + 1 wpiu = weight0 else i = int((rhoc-rho_thr+dthr+5.d0*sigma)/dx) + 1 wpiu = weight0 i = int((rhoc-rho_thr-dthr+5.d0*sigma)/dx) + 1 wmeno = weight(i)+(weight(i+1)-weight(i))* & & (rhoc-rho_thr-dthr+5.d0*sigma-DBLE(i-1)*dx)/dx end if end if 79 continue if (nspin.eq.1) then n_ele = n_ele + weight0 * rho_real(ir,1) else n_ele = n_ele + weight0 * (rho_real(ir,1) + rho_real(ir,2)) end if volclu = volclu + weight0 v_vol(ir) = v_vol(ir) + P_ext /(sigma*dsqrt(pi*2.d0)) * & & dexp(-1.d0*(rhoc-rho_thr)**2/(2.d0*sigma**2)) if (tpre) then do k = 1,3 do j = 1,3 do is = 1,nspin dpvdh(k,j) = dpvdh(k,j) + & & v_vol(ir)*drhor(ir,is,k,j)*omega/ & & DBLE(dfftp%nr1*dfftp%nr2*dfftp%nr3) end do end do end do end if if (abisur) then modr = 0.d0 lap = 0.d0 gxl = 0.d0 do j = 1,3 modr = modr + drho(j,ir)**2 lap = lap + d2rho(j,ir) gxl = gxl + drho(j,ir)**2*d2rho(j,ir) end do xyr = 2.d0*dxdyrho(ir)*drho(1,ir)*drho(2,ir) xzr = 2.d0*dxdzrho(ir)*drho(1,ir)*drho(3,ir) yzr = 2.d0*dydzrho(ir)*drho(2,ir)*drho(3,ir) modr = dsqrt(modr) surfclu = surfclu + (wpiu-wmeno)*modr v_vol(ir) = v_vol(ir) -1.d0*Surf_t/dthr * (wpiu-wmeno) * & & (lap/modr - (gxl + xyr + xzr + yzr)/modr**3) end if end do call mp_sum(volclu,intra_bgrp_comm) call mp_sum(n_ele,intra_bgrp_comm) if (jellium) call mp_sum(e_j,intra_bgrp_comm) call mp_sum(surfclu,intra_bgrp_comm) call mp_sum(dpvdh,intra_bgrp_comm) volclu = volclu * omega / DBLE(dfftp%nr1*dfftp%nr2*dfftp%nr3) n_ele = n_ele * omega / DBLE(dfftp%nr1*dfftp%nr2*dfftp%nr3) surfclu = surfclu * omega / DBLE(dfftp%nr1*dfftp%nr2*dfftp%nr3) / dthr do i = 1,3 do j = 1,3 stress_vol(i,j) = dpvdh(i,1)*h(j,1) + dpvdh(i,2)*h(j,2) + & & dpvdh(i,3)*h(j,3) end do end do deallocate( tauv ) if ( abisur ) deallocate( drho ) if ( abisur ) deallocate( d2rho ) if ( abisur ) deallocate( dxdyrho ) if ( abisur ) deallocate( dxdzrho ) if ( abisur ) deallocate( dydzrho ) call stop_clock( 'vol_clu' ) END SUBROUTINE vol_clu espresso-5.1/CPV/src/berry_phase.f900000644000175000017500000001614612341373026015355 0ustar mbamba! ! Copyright (C) 2002 FPMD group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! MODULE berry_phase USE io_global, ONLY : stdout IMPLICIT NONE PRIVATE SAVE PUBLIC :: berry_setup, berry_closeup INTEGER, allocatable, target :: indi_l(:,:) ! list of G-vec index to be exchanged INTEGER, allocatable, target :: sour_indi(:,:) ! the list of source processors INTEGER, allocatable, target :: dest_indi(:,:) ! the list of destination processors INTEGER :: n_indi_rcv(8) = 0 ! number of G-vectors to be received INTEGER :: n_indi_snd(8) = 0 ! number of G-vectors to be sent INTEGER :: icntix(8) = 0 ! total number of G-vec to be exchanged LOGICAL :: lsetup = .FALSE. PUBLIC :: indi_l, sour_indi, dest_indi, n_indi_rcv, n_indi_snd, icntix CONTAINS SUBROUTINE ln_setup( mill, ngwt ) ! setups the "C" functions that will manage the ! mapping between the miller index and the g-vector ! index INTEGER :: mill( :, : ) INTEGER :: ngwt INTEGER :: ig CALL LN_ALLOC( ngwt ) DO IG = 1, ngwt call LN_SET( mill(1,ig), mill(2,ig), mill(3,ig), ig ) ENDDO CALL LN_ACTIVATE lsetup = .TRUE. RETURN END SUBROUTINE ln_setup SUBROUTINE ln_closeup IF( lsetup ) CALL LN_DEALLOC RETURN END SUBROUTINE ln_closeup SUBROUTINE berry_setup( ngw, mill ) USE io_global, only: ionode, stdout USE mp_global, ONLY: nproc_image, me_image, intra_image_comm USE mp, ONLY: mp_max, mp_sum USE mp_world, ONLY: world_comm USE stick_base, ONLY : sticks_owner USE gvect, ONLY: ig_l2g, sortedig_l2g IMPLICIT NONE integer LN_IND integer ig_local external ln_ind, ig_local integer :: mill(:,:), ngw integer in(8) integer, allocatable :: icnt_snd(:,:) ! icnt_snd(nproc_image,8) integer, allocatable :: icnt_rcv(:,:) ! icnt_rcv(nproc_image,8) integer :: i, j, ig, itmp, in_l, ngwt IF( ionode ) THEN WRITE( stdout, fmt="(3X,'Polarizability using berry phase')" ) END IF allocate( icnt_snd( nproc_image, 8 ) ) allocate( icnt_rcv( nproc_image, 8 ) ) ! compute global number of G vectors ! ngwt = ngw CALL mp_sum( ngwt, world_comm ) CALL ln_setup( mill, ngwt ) allocate( indi_l( ngw, 8 ) ) allocate( sour_indi( ngw, 8 ) ) allocate( dest_indi( ngw, 8 ) ) n_indi_rcv = 0 n_indi_snd = 0 DO IG = 1, ngwt ! compute the indexes "in" of the G + 1 vectors call indi_of_ig( mill(:,ig), in ) do i = 1, 8 if( in(i) > 0 ) then ! find out local index in_l corresponding to the global index in(i) in_l = ig_local( in(i), ig_l2g, sortedig_l2g, SIZE( ig_l2g ) ) if( in_l > 0 ) then n_indi_snd(i) = n_indi_snd(i) + 1 ! find out the processor that own the G vector in(i) ! and fill in the array of destination procs dest_indi( n_indi_snd(i), i ) = sticks_owner( mill(1,ig), mill(2,ig) ) ! array of index to of G-vecs to be sent to the processor ! whose index is stored in dest_indi indi_l( n_indi_snd(i), i ) = in_l end if end if if( sticks_owner( mill(1,ig), mill(2,ig) ) == ( me_image+1 ) ) then n_indi_rcv(i) = n_indi_rcv(i) + 1 if( in(i) > 0 ) then sour_indi( n_indi_rcv(i), i ) = sticks_owner( mill( 1 , in(i) ), mill( 2 , in(i) ) ) else sour_indi( n_indi_rcv(i), i ) = -1 end if end if end do end do ! calculate dimension for the variable to be allocated icnt_snd = 0 do i = 1,8 do ig = 1,n_indi_snd(i) itmp = dest_indi(ig,i) if(itmp.ne.(me_image+1)) then icnt_snd(itmp,i) = icnt_snd(itmp,i) + 1 end if end do end do do i = 1,8 icntix(i) = 0 do j=1,nproc_image if(icnt_snd(j,i).gt.icntix(i)) then icntix(i) = icnt_snd(j,i) end if end do end do call mp_max( icntix(1:8), intra_image_comm ) WRITE( stdout, fmt="(3X,'Dipole init ')" ) DO i = 1, 8 WRITE( stdout, fmt="(3X,'icntix ',I3,' = ',I5)" ) i, icntix(i) END DO CALL ln_closeup( ) DEALLOCATE(icnt_snd) DEALLOCATE(icnt_rcv) ! workaround: sortedig_l2g no longer needed after this routine DEALLOCATE(sortedig_l2g) RETURN END SUBROUTINE berry_setup SUBROUTINE berry_closeup( ) IF( allocated( indi_l ) ) deallocate(INDI_L ) IF( allocated( sour_indi ) ) deallocate(SOUR_INDI) IF( allocated( dest_indi ) ) deallocate(DEST_INDI) RETURN END SUBROUTINE berry_closeup SUBROUTINE indi_of_ig( mill, indi ) ! compute the array "indi" containing the position of ! translated G vectors, given the array of miller ( mill ) indexes of the ! G vectors. ! mill( 1 : 3 ) miller index of a G vectors ! indi( 1 ) = index of G whose miller index are: mill(1) + 1, mill(2), mill(3) IMPLICIT NONE INTEGER :: LN_IND EXTERNAL LN_IND ! INTEGER, INTENT(IN) :: mill(:) INTEGER, INTENT(OUT) :: indi(:) ! INTEGER :: iri1, iri2, iri3, iricheck ! iri1 = mill(1) iri2 = mill(2) iri3 = mill(3) iricheck = iri1**2 + iri2**2 + iri3**2 if( iricheck == 0 ) then ! only positive directions for Gamma point when Gamma symmetry is used INDI(1) = LN_IND(1,0,0) INDI(2) = 0 INDI(3) = 0 INDI(4) = LN_IND(0,1,0) INDI(5) = 0 INDI(6) = 0 INDI(7) = LN_IND(0,0,1) INDI(8) = 0 ELSE ! for gamma symmetry iri1 >= 0 INDI(1) = LN_IND( IRI1 + 1, IRI2, IRI3 ) IF( IRI1 > 0 ) THEN INDI(2) = LN_IND( IRI1 - 1, IRI2, IRI3 ) ELSE INDI(2) = -1 ! LN_IND( IRI1 + 1, IRI2, IRI3 ) ENDIF iricheck = iri2**2 + iri3**2 IF( ( IRI1 < 2 ) .and. ( iricheck /= 0 ) ) THEN INDI(3) = LN_IND( 1 - IRI1, -IRI2, -IRI3 ) ELSE INDI(3) = -1 ENDIF INDI(4) = LN_IND(IRI1,IRI2+1,IRI3) INDI(5) = LN_IND(IRI1,IRI2-1,IRI3) IF( ( IRI1 == 0 ) .AND. ( IRI2 < 2 ) .and. ( iri3 /= 0 ) ) THEN INDI(6) = LN_IND( 0, 1-IRI2, -IRI3 ) ELSE INDI(6) = -1 ENDIF INDI(7)=LN_IND(IRI1,IRI2,IRI3+1) INDI(8)=LN_IND(IRI1,IRI2,IRI3-1) END IF RETURN END SUBROUTINE indi_of_ig END MODULE berry_phase espresso-5.1/CPV/src/Makefile0000644000175000017500000000471212341373026014166 0ustar mbamba# Makefile for CP/FPMD include ../../make.sys # location of needed modules and included files (if any) MODFLAGS= $(MOD_FLAG)../../iotk/src $(MOD_FLAG)../../Modules $(MOD_FLAG). IFLAGS= FOBJS = \ berryion.o \ berry_phase.o \ bforceion.o \ cell_nose.o \ cg.o \ cg_sub.o \ cglib.o \ chargedensity.o \ cp_autopilot.o \ cp_emass.o \ cp_interfaces.o \ cp_restart.o \ cplib.o \ cpr_mod.o \ cpr.o \ dealloc.o \ dforceb.o \ efermi.o \ efield.o \ eigs0.o \ electrons.o \ electrons_nose.o \ energies.o \ ensemble_dft.o \ exch_corr.o \ fft.o \ forces.o \ fromscra.o \ gradrho.o \ gram.o \ gtable.o \ gvecw.o\ init.o \ init_run.o \ inner_loop_cold.o \ input.o \ ions_nose.o \ ions_positions.o \ ksstates.o \ ldaU_cp.o \ ldaU.o \ ldaUpen.o \ mainvar.o \ cpr_loop.o \ cplib_meta.o \ metaxc.o \ modules.o \ move_electrons.o \ newd.o \ nl_base.o \ nlcc.o \ ortho_base.o \ ortho.o \ phasefactor.o \ plugin_initialization.o \ plugin_ext_forces.o \ polarization.o \ potentials.o \ pres_ai_mod.o \ print_out.o \ printout_base.o \ problem_size.o \ pseudo_base.o \ pseudopot.o \ pseudopot_sub.o \ qmatrixd.o \ qqberry.o \ restart.o \ restart_sub.o \ runcp.o \ smallbox.o \ smallbox_grid.o \ smallbox_gvec.o \ smallbox_subs.o \ smallbox_lib.o \ spline.o \ spinsq.o \ stop_run.o \ stress.o \ vol_clu.o \ vofrho.o \ wannier_base.o \ wannier.o \ wave.o \ wave_types.o \ wf.o \ makov_payne.o LOBJS = \ entropy.o QEMODS=../../Modules/libqemod.a TLDEPS= bindir mods libs libiotk LIBOBJS= ../../flib/ptools.a ../../flib/flib.a ../../clib/clib.a ../../iotk/src/libiotk.a all : tldeps libcp.a cp.x cppp.x wfdd.x cp.x : cprstart.o libcp.a $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o cp.x cprstart.o \ libcp.a $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../CPV/src/cp.x . ) libcp.a : $(FOBJS) $(LOBJS) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ cp_version.o : cpver.h cpver.h : echo "CHARACTER(LEN=70), PARAMETER :: version_date = '"`date`"'" \ > cpver.h cppp.x : fpmdpp.o $(QEMODS) $(LIBOBJS) $(LD) $(LDFLAGS) -o cppp.x fpmdpp.o $(QEMODS) $(LIBOBJS) $(LIBS) - (cd ../../bin ; ln -fs ../CPV/src/cppp.x . ) wfdd.x : wfdd.o $(LD) $(LDFLAGS) -o $@ wfdd.o $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin ; ln -fs ../CPV/src/$@ . ) tldeps : if test -n "$(TLDEPS)" ; then \ ( cd ../.. ; $(MAKE) $(TLDEPS) || exit 1 ) ; fi clean : - /bin/rm -f cppp.x *.o *.mod cpver.h *.i core* *.F90 fort* \ *.cpp *.d *.L *.a *.s cp.x wfdd.x -/bin/rm -rf ../../bin/cppp.x ../../bin/cp.x ../../bin/wfdd.x include make.depend espresso-5.1/CPV/src/electrons.f900000644000175000017500000002252112341373026015042 0ustar mbamba! ! Copyright (C) 2002-2009 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE electrons_module !=----------------------------------------------------------------------------=! USE kinds USE dspev_module, ONLY: pdspev_drv, dspev_drv USE electrons_base, ONLY: nbnd, nbndx, nbsp, nbspx, nspin, nel, nelt, & nupdwn, iupdwn, telectrons_base_initval, f, & nudx, nupdwn_bgrp, iupdwn_bgrp, nudx_bgrp, & nbsp_bgrp, nbspx_bgrp, i2gupdwn_bgrp USE cp_electronic_mass, ONLY: ecutmass => emass_cutoff, emass, emass_precond IMPLICIT NONE SAVE PRIVATE ! ... declare module-scope variables INTEGER, PARAMETER :: nspinx = 2 LOGICAL :: band_first = .TRUE. INTEGER :: nb_l(nspinx) = 0 ! local number of states ( for each spin components ) ! INTEGER, ALLOCATABLE :: ib_owner(:) INTEGER, ALLOCATABLE :: ib_local(:) REAL(DP), ALLOCATABLE :: ei(:,:) ! ... Fourier acceleration LOGICAL :: toccrd = .FALSE. ! read occupation number from standard input PUBLIC :: electrons_setup PUBLIC :: bmeshset, occn_info PUBLIC :: deallocate_electrons PUBLIC :: ib_owner, ib_local, nb_l PUBLIC :: ei PUBLIC :: print_eigenvalues PUBLIC :: distribute_c, collect_c PUBLIC :: distribute_b, collect_b ! ! end of module-scope declarations ! !=----------------------------------------------------------------------------=! CONTAINS !=----------------------------------------------------------------------------=! SUBROUTINE occn_info( occ ) ! ! This subroutine prints occupation numbers to stdout ! USE io_global, ONLY: stdout, ionode ! REAL(DP) :: occ(:) INTEGER :: i, iss ! IF( ionode ) THEN WRITE( stdout, fmt="(3X,'Occupation number from init')" ) IF( nspin == 1 ) THEN WRITE( stdout, fmt = " (3X, 'nbnd = ', I5 ) " ) nbnd WRITE( stdout, fmt = " (3X,10F5.2)" ) ( occ( i ), i = 1, nbnd ) ELSE DO iss = 1, nspin WRITE( stdout, fmt = " (3X,'spin = ', I3, ' nbnd = ', I5 ) " ) iss, nupdwn( iss ) WRITE( stdout, fmt = " (3X,10F5.2)" ) ( occ( i+iupdwn(iss)-1 ), i = 1, nupdwn( iss ) ) END DO END IF END IF ! RETURN END SUBROUTINE occn_info ! ---------------------------------------------- SUBROUTINE distribute_b( b, b_bgrp ) REAL(DP), INTENT(IN) :: b(:,:) REAL(DP), INTENT(OUT) :: b_bgrp(:,:) INTEGER :: iss, n1, n2, m1, m2 DO iss = 1, nspin n1 = iupdwn_bgrp(iss) n2 = n1 + nupdwn_bgrp(iss) - 1 m1 = iupdwn(iss)+i2gupdwn_bgrp(iss) - 1 m2 = m1 + nupdwn_bgrp(iss) - 1 b_bgrp(:,n1:n2) = b(:,m1:m2) END DO RETURN END SUBROUTINE distribute_b ! SUBROUTINE collect_b( b, b_bgrp ) USE mp_global, ONLY : inter_bgrp_comm USE mp, ONLY : mp_sum REAL(DP), INTENT(OUT) :: b(:,:) REAL(DP), INTENT(IN) :: b_bgrp(:,:) INTEGER :: iss, n1, n2, m1, m2 b = 0.0d0 DO iss = 1, nspin n1 = iupdwn_bgrp(iss) n2 = n1 + nupdwn_bgrp(iss) - 1 m1 = iupdwn(iss)+i2gupdwn_bgrp(iss) - 1 m2 = m1 + nupdwn_bgrp(iss) - 1 b(:,m1:m2) = b_bgrp(:,n1:n2) !write(1000+mpime,*) 'n1, n2 = ', n1, n2 ! debug !write(1000+mpime,*) 'm1, m2 = ', m1, m2 ! debug END DO CALL mp_sum( b, inter_bgrp_comm ) RETURN END SUBROUTINE collect_b SUBROUTINE distribute_c( c, c_bgrp ) COMPLEX(DP), INTENT(IN) :: c(:,:) COMPLEX(DP), INTENT(OUT) :: c_bgrp(:,:) INTEGER :: iss, n1, n2, m1, m2 DO iss = 1, nspin n1 = iupdwn_bgrp(iss) n2 = n1 + nupdwn_bgrp(iss) - 1 m1 = iupdwn(iss)+i2gupdwn_bgrp(iss) - 1 m2 = m1 + nupdwn_bgrp(iss) - 1 c_bgrp(:,n1:n2) = c(:,m1:m2) END DO RETURN END SUBROUTINE distribute_c ! SUBROUTINE collect_c( c, c_bgrp ) USE mp_global, ONLY : inter_bgrp_comm USE mp, ONLY : mp_sum COMPLEX(DP), INTENT(OUT) :: c(:,:) COMPLEX(DP), INTENT(IN) :: c_bgrp(:,:) INTEGER :: iss, n1, n2, m1, m2 c = 0.0d0 DO iss = 1, nspin n1 = iupdwn_bgrp(iss) n2 = n1 + nupdwn_bgrp(iss) - 1 m1 = iupdwn(iss)+i2gupdwn_bgrp(iss) - 1 m2 = m1 + nupdwn_bgrp(iss) - 1 c(:,m1:m2) = c_bgrp(:,n1:n2) !write(1000+mpime,*) 'n1, n2 = ', n1, n2 ! debug !write(1000+mpime,*) 'm1, m2 = ', m1, m2 ! debug END DO CALL mp_sum( c, inter_bgrp_comm ) RETURN END SUBROUTINE collect_c ! ---------------------------------------------- ! ---------------------------------------------- SUBROUTINE bmeshset ! This subroutine initialize the variables for the ! distribution across processors of the overlap matrixes ! of sizes ( nx, nx ) USE mp_global, ONLY: me_bgrp, nproc_bgrp IMPLICIT NONE INTEGER :: i, ierr IF( band_first ) THEN CALL errore(' bmeshset ',' module not initialized ',0) END IF DO i = 1, nspin ! IF( i > nspinx ) CALL errore( ' bmeshset ',' spin too large ', i) ! nb_l( i ) = nupdwn( i ) / nproc_bgrp IF( me_bgrp < MOD( nupdwn( i ), nproc_bgrp ) ) nb_l( i ) = nb_l( i ) + 1 ! END DO IF( ALLOCATED( ib_owner ) ) DEALLOCATE( ib_owner ) ALLOCATE( ib_owner( nbndx ), STAT=ierr) IF( ierr/=0 ) CALL errore( ' bmeshset ',' allocating ib_owner ', ierr) IF( ALLOCATED( ib_local ) ) DEALLOCATE( ib_local ) ALLOCATE( ib_local( nbndx ), STAT=ierr) IF( ierr/=0 ) CALL errore( ' bmeshset ',' allocating ib_local ', ierr) ! here define the association between processors and electronic states ! round robin distribution is used ib_local = 0 ib_owner = -1 DO i = 1, nbndx ib_local( i ) = ( i - 1 ) / nproc_bgrp ! local index of the i-th band ib_owner( i ) = MOD( ( i - 1 ), nproc_bgrp ) ! owner of th i-th band IF( me_bgrp <= ib_owner( i ) ) THEN ib_local( i ) = ib_local( i ) + 1 END IF END DO RETURN END SUBROUTINE bmeshset ! ---------------------------------------------- ! ! ! ! ---------------------------------------------- SUBROUTINE electrons_setup( emass_inp, ecutmass_inp ) IMPLICIT NONE REAL(DP), INTENT(IN) :: emass_inp, ecutmass_inp INTEGER :: ierr, i IF( .NOT. telectrons_base_initval ) & CALL errore( ' electrons_setup ', ' electrons_base not initialized ', 1 ) ! IF( ALLOCATED( ei ) ) DEALLOCATE( ei ) ALLOCATE( ei( nudx, nspin ), STAT=ierr) IF( ierr/=0 ) CALL errore( ' electrons ',' allocating ei ',ierr) ei = 0.0_DP ecutmass = ecutmass_inp emass = emass_inp IF ( ecutmass < 0.0_DP ) & CALL errore(' electrons ',' ecutmass out of range ' , 0) band_first = .FALSE. RETURN END SUBROUTINE electrons_setup !---------------------------------------------------------------------- SUBROUTINE print_eigenvalues( ei_unit, tfile, tstdout, nfi, tps ) ! use constants, only : autoev USE io_global, ONLY : stdout, ionode ! INTEGER, INTENT(IN) :: ei_unit LOGICAL, INTENT(IN) :: tfile, tstdout INTEGER, INTENT(IN) :: nfi REAL(DP), INTENT(IN) :: tps ! INTEGER :: i, j, ik ! IF ( tfile ) THEN WRITE(ei_unit,30) nfi, tps END IF ! ik = 1 ! DO j = 1, nspin ! IF( tstdout ) THEN WRITE( stdout,1002) ik, j WRITE( stdout,1004) ( ei( i, j ) * autoev, i = 1, nupdwn(j) ) END IF ! IF( tfile ) THEN WRITE(ei_unit,1010) ik, j WRITE(ei_unit,1020) ( ei( i, j ) * autoev, i = 1, nupdwn(j) ) END IF ! END DO ! 30 FORMAT(2X,'STEP:',I7,1X,F10.2) 1002 FORMAT(/,3X,'Eigenvalues (eV), kp = ',I3, ' , spin = ',I2,/) 1004 FORMAT(10F8.2) 1010 FORMAT(3X,'Eigenvalues (eV), kp = ',I3, ' , spin = ',I2) 1020 FORMAT(10F8.2) ! RETURN END SUBROUTINE print_eigenvalues ! ---------------------------------------------- SUBROUTINE deallocate_electrons INTEGER :: ierr IF(ALLOCATED(ei)) THEN DEALLOCATE(ei, STAT=ierr) IF( ierr/=0 ) CALL errore( ' deallocate_electrons ',' deallocating ei ',ierr ) END IF IF(ALLOCATED(ib_owner)) THEN DEALLOCATE(ib_owner, STAT=ierr) IF( ierr/=0 ) CALL errore( ' deallocate_electrons ',' deallocating ib_owner ',ierr ) END IF IF(ALLOCATED(ib_local)) THEN DEALLOCATE(ib_local, STAT=ierr) IF( ierr/=0 ) CALL errore( ' deallocate_electrons ',' deallocating ib_local ',ierr ) END IF RETURN END SUBROUTINE deallocate_electrons !=----------------------------------------------------------------------------=! END MODULE electrons_module !=----------------------------------------------------------------------------=! espresso-5.1/CPV/src/qmatrixd.f900000644000175000017500000001612612341373026014701 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine qmatrixd(c0, bec0,ctable, gqq, qmat, detq, ipol) ! this subroutine computes the inverse of the matrix Q ! Q_ij= ! and det Q ! Matrix Q is symmetric, and we make us of it ! c0 input: the unperturbed wavefunctions ! bec0 input: the coefficients ! ctable input: the coorespondence array ! gqq input: the intqq(r) exp(iG_ipol*r) array ! qmat output: the inverse q matrix ! detq output: det Q ! ipol: electric field direction use kinds, only : DP use gvecw, only: ngw use ions_base, only : nax, nsp, na use gvect, only: gstart use uspp_param, only: nh, nhm, nvb, ish use uspp, only : nkb use electrons_base, only: nx => nbspx, n => nbsp, ispin use mp, only: mp_sum, mp_alltoall use mp_global, only: intra_bgrp_comm, nproc_bgrp USE efield_module, ONLY : ctable_missing_1,ctable_missing_2, whose_is_g,n_g_missing_p,& & ctable_missing_rev_1,ctable_missing_rev_2 use io_global, only : stdout implicit none real(DP) :: bec0(nkb,n) complex(DP) :: gqq(nhm,nhm,nax,nsp) complex(DP) :: c0(ngw,nx), qmat(nx,nx), detq integer :: ctable(ngw,2) integer, intent(in) :: ipol ! local variables integer ig,ix,jx, iv,jv,is,ia, inl,jnl, ip complex(DP) :: sca integer :: info, ierr integer, allocatable :: ipiv(:,:) complex(DP), allocatable :: work(:) complex(DP), allocatable :: sndbuf(:,:,:),rcvbuf(:,:,:) qmat(:,:)=(0.d0,0.d0) ALLOCATE( ipiv( nx, nx ), work( nx ) ) do ix=1,n do jx=ix,n ! first the local part sca=(0.d0,0.d0) if(ispin(ix) == ispin(jx) ) then do ig=1,ngw if(ctable(ig,1).ne.(ngw+1))then if(ctable(ig,1).ge.0) then sca=sca+CONJG(c0(ctable(ig,1),ix))*c0(ig,jx) endif endif enddo do ig=1,ngw if(ctable(ig,1).ne.(ngw+1))then if(ctable(ig,1).lt. 0) then sca=sca+c0(-ctable(ig,1),ix)*c0(ig,jx) endif endif enddo do ig=gstart,ngw if(ctable(ig,2).ne.(ngw+1)) then if(ctable(ig,2).lt.0) then sca=sca+c0(-ctable(ig,2),ix)*CONJG(c0(ig,jx)) endif endif enddo do ig=gstart,ngw if(ctable(ig,2).ne.(ngw+1)) then if(ctable(ig,2).ge.0) then sca=sca+CONJG(c0(ctable(ig,2),ix))*conjg(c0(ig,jx)) endif endif enddo #ifdef __MPI if(ipol /= 3) then ! allocate(sndbuf(n_g_missing_p(ipol),2,nproc_bgrp)) sndbuf(:,:,:)=(0.d0,0.d0) allocate(rcvbuf(n_g_missing_p(ipol),2,nproc_bgrp)) !copy arrays to snd buf do ip=1,nproc_bgrp do ig=1,n_g_missing_p(ipol) if(ipol==1) then if(ctable_missing_1(ig,1,ip)/=0) then sndbuf(ig,1,ip)=c0(ctable_missing_1(ig,1,ip),jx) endif else if(ctable_missing_2(ig,1,ip)/=0) then sndbuf(ig,1,ip)=c0(ctable_missing_2(ig,1,ip),jx) endif endif enddo do ig=1,n_g_missing_p(ipol) if(ipol==1) then if(ctable_missing_1(ig,2,ip)/=0) then sndbuf(ig,2,ip)=conjg(c0(ctable_missing_1(ig,2,ip),jx)) endif else if(ctable_missing_2(ig,2,ip)/=0) then sndbuf(ig,2,ip)=conjg(c0(ctable_missing_2(ig,2,ip),jx)) endif endif enddo enddo CALL mp_alltoall( sndbuf, rcvbuf, intra_bgrp_comm ) !update sca do ip=1,nproc_bgrp do ig=1,n_g_missing_p(ipol) if(ipol==1) then if(ctable_missing_rev_1(ig,1,ip) >0) then sca=sca+conjg(c0(ctable_missing_rev_1(ig,1,ip),ix))*rcvbuf(ig,1,ip) else if(ctable_missing_rev_1(ig,1,ip)< 0) then sca=sca+c0(-ctable_missing_rev_1(ig,1,ip),ix)*rcvbuf(ig,1,ip) endif else if(ctable_missing_rev_2(ig,1,ip) >0) then sca=sca+conjg(c0(ctable_missing_rev_2(ig,1,ip),ix))*rcvbuf(ig,1,ip) else if(ctable_missing_rev_2(ig,1,ip)< 0) then sca=sca+c0(-ctable_missing_rev_2(ig,1,ip),ix)*rcvbuf(ig,1,ip) endif endif enddo do ig=1,n_g_missing_p(ipol) if(ipol==1) then if(ctable_missing_rev_1(ig,2,ip) >0) then sca=sca+conjg(c0(ctable_missing_rev_1(ig,2,ip),ix))*rcvbuf(ig,2,ip) else if(ctable_missing_rev_1(ig,2,ip)< 0) then sca=sca+c0(-ctable_missing_rev_1(ig,2,ip),ix)*rcvbuf(ig,2,ip) endif else if(ctable_missing_rev_2(ig,2,ip) >0) then sca=sca+conjg(c0(ctable_missing_rev_2(ig,2,ip),ix))*rcvbuf(ig,2,ip) else if(ctable_missing_rev_2(ig,2,ip)< 0) then sca=sca+c0(-ctable_missing_rev_2(ig,2,ip),ix)*rcvbuf(ig,2,ip) endif endif enddo enddo deallocate(rcvbuf,sndbuf) endif #endif call mp_sum( sca, intra_bgrp_comm ) endif qmat(ix,jx)=sca ! now the non local vanderbilt part sca =(0.d0,0.d0) if(ispin(ix)==ispin(jx)) then do is=1,nvb!loop on vanderbilt species do ia=1,na(is)!loop on atoms do iv=1,nh(is)!loop on projectors do jv=1,nh(is) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(is)+(jv-1)*na(is)+ia sca=sca+gqq(iv,jv,ia,is)*bec0(inl,ix)*bec0(jnl,jx) enddo enddo enddo enddo qmat(ix,jx)=qmat(ix,jx)+sca endif qmat(jx,ix)=qmat(ix,jx) enddo enddo !LAPACK call zgetrf (n,n,qmat,nx,ipiv,info) ! write(6,*) 'info trf', info detq=(1.d0,0.d0) do ix=1,n if(ix.ne.ipiv(ix,1)) detq=-detq enddo do ix=1,n detq = detq*qmat(ix,ix) enddo call zgetri (n,qmat,nx,ipiv,work,nx,info) ! force qmat to be symmetric do ix=1,n do jx=ix+1,n qmat(jx,ix)=0.5d0*(qmat(ix,jx)+qmat(jx,ix)) qmat(ix,jx)=qmat(jx,ix) enddo enddo deallocate( ipiv, work ) return end subroutine qmatrixd espresso-5.1/CPV/src/qqberry.f900000644000175000017500000001625412341373026014537 0ustar mbamba! ! Copyright (C) 2002-2005 FPMD-CPV groups ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! subroutine qqberry2( gqq,gqqm, ipol) ! this subroutine computes the array gqq and gqqm ! gqq=int_dr qq(r)exp(iGr)= ! gqqm=int_dr qq(r)exp(-iGr)= ! gqq output: as defined above use kinds, only: dp use uspp_param, only: upf, lmaxq, nbetam, nh, nhm, oldvan, nvb use uspp, only: indv, lpx, lpl, ap,nhtolm use atom, only: rgrid use core use gvecw, only: ngw use gvect, only: mill use constants use ions_base, only: nax, na, nsp use cell_base, only: at, alat use gvect, only: g, gg use mp, only: mp_sum use mp_global, only: intra_bgrp_comm use cp_interfaces, only: fill_qrl implicit none complex(dp) gqq(nhm,nhm,nax,nsp) complex(dp) gqqm(nhm,nhm,nax,nsp) real(dp) gmes real(dp), external :: g_mes integer :: ipol ! local variables integer :: ndm, ig, is, iv, jv, i, istart, il,l,ir, igi,ia real(dp), allocatable:: fint(:),jl(:) real(dp), allocatable:: qrl(:,:,:), qradb2(:,:,:,:) real(dp) c, xg complex(dp) qgbs,sig integer :: ivs, jvs, ivl, jvl, lp, ijv real(dp), allocatable:: ylm(:,:) IF( .NOT. ALLOCATED( rgrid ) ) & CALL errore( ' qqberry2 ', ' rgrid not allocated ', 1 ) IF( .NOT. ALLOCATED( upf ) ) & CALL errore( ' qqberry2 ', ' upf not allocated ', 1 ) ndm = MAXVAL (upf(1:nsp)%kkbeta) allocate( fint( ndm), jl(ndm)) allocate( qradb2(nbetam,nbetam,lmaxq,nsp)) allocate( ylm(ngw, lmaxq*lmaxq)) CALL ylmr2( lmaxq*lmaxq, ngw, g, gg, ylm ) qradb2 = 0.0d0 do is=1,nsp do ia=1,nax do jv=1,nhm do iv=1,nhm gqq(iv,jv,ia,is)=(0.d0,0.d0) gqqm(iv,jv,ia,is)=(0.d0,0.d0) enddo enddo enddo enddo gmes = g_mes ( ipol, at, alat ) ! only for Vanderbilt species do is=1,nvb c=fpi !/omegab ! ALLOCATE ( qrl( upf(is)%kkbeta, upf(is)%nbeta*(upf(is)%nbeta+1)/2, & upf(is)%nqlc ) ) ! call fill_qrl ( is, qrl ) ! now the radial part do l=1,upf(is)%nqlc xg= gmes !only orthorombic cells !!!call bess(xg,l,upf(is)%kkbeta,rgrid(is)%r,jl) call sph_bes ( upf(is)%kkbeta, rgrid(is)%r, xg, l-1, jl ) do iv= 1,upf(is)%nbeta do jv=iv,upf(is)%nbeta ijv = (jv-1)*jv/2 + iv ! ! note qrl(r)=r^2*q(r) ! do ir=1,upf(is)%kkbeta fint(ir)=qrl(ir,ijv,l)*jl(ir) end do if (oldvan(is)) then call herman_skillman_int ( upf(is)%kkbeta,fint,rgrid(is)%rab,& qradb2(iv,jv,l,is) ) else call simpson ( upf(is)%kkbeta,fint,rgrid(is)%rab,& qradb2(iv,jv,l,is) ) endif qradb2(iv,jv,l,is)= c*qradb2(iv,jv,l,is) if ( iv /= jv ) qradb2(jv,iv,l,is)= qradb2(iv,jv,l,is) end do end do end do DEALLOCATE ( qrl ) enddo igi=-1 do ig=1,ngw if(ipol.eq.1 ) then if(mill(1,ig).eq.1 .and. mill(2,ig).eq.0 .and. mill(3,ig).eq. 0) igi=ig endif if(ipol.eq.2 ) then if(mill(1,ig).eq.0 .and. mill(2,ig).eq.1 .and. mill(3,ig).eq. 0) igi=ig endif if(ipol.eq.3 ) then if(mill(1,ig).eq.0 .and. mill(2,ig).eq.0 .and. mill(3,ig).eq. 1) igi=ig endif enddo if( igi.ne.-1) then !setting array beigr do is=1,nvb do iv= 1,nh(is) do jv=iv,nh(is) ivs=indv(iv,is) jvs=indv(jv,is) ivl=nhtolm(iv,is) jvl=nhtolm(jv,is) ! ! lpx = max number of allowed y_lm ! lp = composite lm to indentify them ! qgbs=(0.d0,0.d0) do i=1,lpx(ivl,jvl) lp=lpl(ivl,jvl,i) ! ! extraction of angular momentum l from lp: ! if (lp.eq.1) then l=1 else if ((lp.ge.2) .and. (lp.le.4)) then l=2 else if ((lp.ge.5) .and. (lp.le.9)) then l=3 else if ((lp.ge.10).and.(lp.le.16)) then l=4 else if ((lp.ge.17).and.(lp.le.25)) then l=5 else if (lp.ge.26) then call errore(' qvanb ',' lp.ge.26 ',lp) endif ! ! sig= (-i)^l ! sig=(0.d0,-1.d0)**(l-1) sig=sig*ap(lp,ivl,jvl) qgbs=qgbs+sig*ylm(igi,lp)*qradb2(ivs,jvs,l,is) end do do ia=1,na(is) gqqm(iv,jv,ia,is)=qgbs gqqm(jv,iv,ia,is)=qgbs gqq(iv,jv,ia,is)=CONJG(gqqm(iv,jv,ia,is)) gqq(jv,iv,ia,is)=CONJG(gqqm(iv,jv,ia,is)) end do end do enddo enddo endif call mp_sum(gqq(:,:,:,:),intra_bgrp_comm) call mp_sum(gqqm(:,:,:,:),intra_bgrp_comm) deallocate( fint) deallocate( jl) deallocate(qradb2) deallocate(ylm) return end subroutine qqberry2 ! this subroutine updates gqq and gqqm to the ! (new) atomic position subroutine qqupdate(eigr, gqqm0, gqq, gqqm, ipol) ! gqq output: as defined above use kinds, only : dp use gvecw, only: ngw use ions_base, only : nax, nat, na, nsp use gvect, only: mill use uspp_param, only: nh, nhm, nvb, ish use mp, only: mp_sum use mp_global, only: intra_bgrp_comm implicit none complex(dp) eigr(ngw,nat) complex(dp) gqq(nhm,nhm,nax,nsp) complex(dp) gqqm(nhm,nhm,nax,nsp) complex(dp) gqqm0(nhm,nhm,nax,nsp) integer ipol integer igi,ig,is,iv,jv,ia,isa do is=1,nsp do ia=1,nax do jv=1,nhm do iv=1,nhm gqq(iv,jv,ia,is)=(0.d0,0.d0) gqqm(iv,jv,ia,is)=(0.d0,0.d0) enddo enddo enddo enddo igi=-1 do ig=1,ngw if(ipol.eq.1 ) then if(mill(1,ig).eq.1 .and. mill(2,ig).eq.0 .and. mill(3,ig).eq. 0) igi=ig endif if(ipol.eq.2 ) then if(mill(1,ig).eq.0 .and. mill(2,ig).eq.1 .and. mill(3,ig).eq. 0) igi=ig endif if(ipol.eq.3 ) then if(mill(1,ig).eq.0 .and. mill(2,ig).eq.0 .and. mill(3,ig).eq. 1) igi=ig endif enddo if( igi.ne.-1) then isa = 1 do is=1,nvb do ia=1,na(is) do iv= 1,nh(is) do jv=iv,nh(is) gqqm(iv,jv,ia,is)= gqqm0(iv,jv,ia,is)*eigr(igi,isa) gqqm(jv,iv,ia,is)= gqqm0(iv,jv,ia,is)*eigr(igi,isa) gqq(iv,jv,ia,is)=CONJG(gqqm(iv,jv,ia,is)) gqq(jv,iv,ia,is)=CONJG(gqqm(iv,jv,ia,is)) enddo enddo isa = isa + 1 enddo enddo endif call mp_sum(gqq(:,:,:,:),intra_bgrp_comm) call mp_sum(gqqm(:,:,:,:),intra_bgrp_comm) return end subroutine qqupdate espresso-5.1/CPV/src/gram.f900000644000175000017500000002223512341373026013774 0ustar mbamba! ! Copyright (C) 2002-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------- SUBROUTINE gram_bgrp( betae, bec_bgrp, nkbx, cp_bgrp, ngwx ) !----------------------------------------------------------------------- ! gram-schmidt orthogonalization of the set of wavefunctions cp ! USE uspp, ONLY : nkb, nhsavb=> nkbus USE gvecw, ONLY : ngw USE electrons_base, ONLY : nbspx_bgrp, ibgrp_g2l, nupdwn, iupdwn, nbspx, iupdwn_bgrp, nspin USE kinds, ONLY : DP USE mp_global, ONLY : inter_bgrp_comm USE mp, ONLY : mp_sum ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: nkbx, ngwx REAL(DP) :: bec_bgrp( nkbx, nbspx_bgrp ) COMPLEX(DP) :: cp_bgrp( ngwx, nbspx_bgrp ), betae( ngwx, nkb ) ! REAL(DP) :: anorm REAL(DP), ALLOCATABLE :: csc( : ) COMPLEX(DP), ALLOCATABLE :: ctmp( : ) INTEGER :: i,k,j, ig, ibgrp_k, ibgrp_i, nbgrp_im1, iss REAL(DP), PARAMETER :: one = 1.d0 REAL(DP), PARAMETER :: mone = -1.d0 ! CALL start_clock( 'gram' ) ALLOCATE( csc( nbspx ) ) ALLOCATE( ctmp( ngwx ) ) ! DO iss = 1, nspin DO i = iupdwn(iss), iupdwn(iss) + nupdwn(iss) - 1 ! ibgrp_i = ibgrp_g2l( i ) ! CALL gracsc_bgrp( bec_bgrp, betae, cp_bgrp, i, csc, iss, nbgrp_im1 ) ! ! calculate orthogonalized cp(i) : |cp(i)>=|cp(i)>-\sum_k ! IF( ibgrp_i > 0 ) THEN ctmp = cp_bgrp( :, ibgrp_i ) ELSE ctmp = 0.0d0 END IF ! IF( nbgrp_im1 > 0 ) & CALL dgemv( 'N', 2*ngw, nbgrp_im1, mone, cp_bgrp(1,iupdwn_bgrp(iss)), 2*ngwx, csc, 1, one, ctmp, 1 ) CALL mp_sum( ctmp, inter_bgrp_comm ) IF( ibgrp_i > 0 ) THEN cp_bgrp( :, ibgrp_i ) = ctmp anorm = cscnorm( bec_bgrp, cp_bgrp, ibgrp_i, nbspx_bgrp ) CALL dscal( 2*ngw, 1.0d0/anorm, cp_bgrp(1,ibgrp_i), 1 ) CALL dscal( nkbx, 1.0d0/anorm, bec_bgrp(1,ibgrp_i), 1 ) END IF END DO END DO ! DEALLOCATE( ctmp ) DEALLOCATE( csc ) CALL stop_clock( 'gram' ) ! RETURN CONTAINS !----------------------------------------------------------------------- FUNCTION cscnorm( bec, cp, i, n ) !----------------------------------------------------------------------- ! ! Compute the norm of the i-th electronic state = ()^(1/2) ! requires in input the updated bec(i) ! USE ions_base, ONLY: na USE gvecw, ONLY: ngw USE gvect, ONLY: gstart USE uspp_param, ONLY: nh, ish, nvb USE uspp, ONLY: qq USE mp, ONLY: mp_sum USE mp_global, ONLY: intra_bgrp_comm USE kinds, ONLY: DP ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: i, n REAL(DP), INTENT(IN) :: bec( :, : ) COMPLEX(DP), INTENT(IN) :: cp( :, : ) ! REAL(DP) :: cscnorm ! INTEGER ig, is, iv, jv, ia, inl, jnl REAL(DP) rsum REAL(DP), ALLOCATABLE:: temp(:) ! ! ALLOCATE(temp(ngw)) DO ig=1,ngw temp(ig)=DBLE(CONJG(cp(ig,i))*cp(ig,i)) END DO rsum=2.d0*SUM(temp) IF (gstart == 2) rsum=rsum-temp(1) CALL mp_sum( rsum, intra_bgrp_comm ) DEALLOCATE(temp) ! DO is=1,nvb DO iv=1,nh(is) DO jv=1,nh(is) IF(ABS(qq(iv,jv,is)).GT.1.e-5) THEN DO ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(is)+(jv-1)*na(is)+ia rsum = rsum + & & qq(iv,jv,is)*bec(inl,i)*bec(jnl,i) END DO ENDIF END DO END DO END DO ! cscnorm=SQRT(rsum) ! RETURN END FUNCTION cscnorm ! ! !------------------------------------------------------------------------- SUBROUTINE gracsc_bgrp( bec_bgrp, betae, cp_bgrp, i, csc, iss, nk ) !----------------------------------------------------------------------- ! requires in input the updated bec(k) for knkbus, qq USE uspp_param, ONLY: nh, nvb, ish USE electrons_base, ONLY: ispin, ispin_bgrp, nbspx_bgrp, ibgrp_g2l, iupdwn, nupdwn, nbspx USE gvecw, ONLY: ngw USE mp, ONLY: mp_sum USE mp_global, ONLY: intra_bgrp_comm, inter_bgrp_comm USE kinds, ONLY: DP USE gvect, ONLY: gstart ! IMPLICIT NONE ! INTEGER, INTENT(IN) :: i, iss INTEGER, INTENT(OUT) :: nk COMPLEX(DP) :: betae( :, : ) REAL(DP) :: bec_bgrp( :, : ) COMPLEX(DP) :: cp_bgrp( :, : ) REAL(DP) :: csc( : ) INTEGER :: k, kmax,ig, is, iv, jv, ia, inl, jnl, ibgrp_k, ibgrp_i REAL(DP) :: rsum REAL(DP), ALLOCATABLE :: temp(:) COMPLEX(DP), ALLOCATABLE :: cp_tmp(:) REAL(DP), ALLOCATABLE :: bec_tmp(:) REAL(DP), ALLOCATABLE :: csc2( : ) ! ! calculate csc(k)=, k 0 ) cp_tmp = cp_bgrp( :, ibgrp_i ) CALL mp_sum( cp_tmp, inter_bgrp_comm ) !$omp parallel default(none), & !$omp shared(iupdwn,kmax,ispin,ibgrp_g2l,ngw,cp_bgrp,cp_tmp,csc,nhsavb,betae,bec_bgrp,i,iss,gstart), & !$omp private( temp, k, ig, inl, ibgrp_k, ibgrp_i ) ALLOCATE( temp( ngw ) ) !$omp do DO k = iupdwn( iss ), kmax IF ( ispin(i) .EQ. ispin(k) ) THEN ibgrp_k = ibgrp_g2l( k ) IF( ibgrp_k > 0 ) THEN DO ig = 1, ngw !temp(ig) = cp_bgrp(1,ig,ibgrp_k) * cp_tmp(1,ig) + cp_bgrp(2,ig,ibgrp_k) * cp_tmp(2,ig) temp(ig) = DBLE( cp_bgrp(ig,ibgrp_k) * CONJG(cp_tmp(ig)) ) END DO csc(k) = 2.0d0 * SUM(temp) IF (gstart == 2) csc(k) = csc(k) - temp(1) END IF ENDIF END DO !$omp end do ! ! ! calculate bec(i)= ! ibgrp_i = ibgrp_g2l( i ) ! IF( ibgrp_i > 0 ) THEN !$omp do DO inl=1,nhsavb DO ig=1,ngw temp(ig) = DBLE( cp_bgrp(ig,ibgrp_i) * CONJG(betae(ig,inl)) ) ! temp(ig)=cp_bgrp(1,ig,ibgrp_i)* DBLE(betae(ig,inl))+ & ! & cp_bgrp(2,ig,ibgrp_i)*AIMAG(betae(ig,inl)) END DO bec_bgrp(inl,ibgrp_i)=2.d0*SUM(temp) IF (gstart == 2) bec_bgrp(inl,ibgrp_i)= bec_bgrp(inl,ibgrp_i)-temp(1) END DO !$omp end do END IF DEALLOCATE( temp ) !$omp end parallel CALL mp_sum( csc, intra_bgrp_comm ) CALL mp_sum( csc, inter_bgrp_comm ) IF( ibgrp_i > 0 ) THEN CALL mp_sum( bec_bgrp( 1:nhsavb, ibgrp_i ), intra_bgrp_comm ) END IF bec_tmp = 0.0d0 IF( ibgrp_i > 0 ) bec_tmp = bec_bgrp(:,ibgrp_i ) CALL mp_sum( bec_tmp, inter_bgrp_comm ) ! ! calculate csc(k)=, k 0 ) THEN DO is=1,nvb DO iv=1,nh(is) DO jv=1,nh(is) IF(ABS(qq(iv,jv,is)).GT.1.e-5) THEN DO ia=1,na(is) inl=ish(is)+(iv-1)*na(is)+ia jnl=ish(is)+(jv-1)*na(is)+ia rsum = rsum + qq(iv,jv,is)*bec_tmp(inl)*bec_bgrp(jnl,ibgrp_k) END DO ENDIF END DO END DO END DO END IF csc2(k)=csc2(k)+rsum ENDIF END DO !$omp end parallel do ! ! orthogonalized cp(i) : |cp(i)>=|cp(i)>-\sum_k ! ! corresponing bec: bec(i)=-csc(k) ! CALL mp_sum( csc2, inter_bgrp_comm ) csc = csc + csc2 bec_tmp = 0.0d0 nk = 0 DO k = iupdwn(iss), kmax ibgrp_k = ibgrp_g2l( k ) IF( ibgrp_k > 0 ) THEN nk = nk + 1 DO inl=1,nkbx bec_tmp(inl)=bec_tmp(inl)-csc(k)*bec_bgrp(inl,ibgrp_k) END DO csc( nk ) = csc( k ) END IF END DO CALL mp_sum( bec_tmp, inter_bgrp_comm ) IF( ibgrp_i > 0 ) bec_bgrp(:,ibgrp_i ) = bec_bgrp(:,ibgrp_i ) + bec_tmp DEALLOCATE( csc2 ) DEALLOCATE( bec_tmp ) DEALLOCATE( cp_tmp ) ! RETURN END SUBROUTINE gracsc_bgrp END SUBROUTINE gram_bgrp espresso-5.1/CPV/src/electrons_nose.f900000644000175000017500000001013312341373026016062 0ustar mbamba! ! Copyright (C) 2002-2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !------------------------------------------------------------------------------! MODULE electrons_nose !------------------------------------------------------------------------------! USE kinds, ONLY: DP ! IMPLICIT NONE SAVE REAL(DP) :: fnosee = 0.0_DP ! frequency of the thermostat ( in THz ) REAL(DP) :: qne = 0.0_DP ! mass of teh termostat REAL(DP) :: ekincw = 0.0_DP ! kinetic energy to be kept constant REAL(DP) :: xnhe0 = 0.0_DP REAL(DP) :: xnhep = 0.0_DP REAL(DP) :: xnhem = 0.0_DP REAL(DP) :: vnhe = 0.0_DP ! !------------------------------------------------------------------------------! CONTAINS !------------------------------------------------------------------------------! subroutine electrons_nose_init( ekincw_ , fnosee_ ) USE constants, ONLY: pi, au_terahertz REAL(DP), INTENT(IN) :: ekincw_, fnosee_ ! set thermostat parameter for electrons qne = 0.0_DP ekincw = ekincw_ fnosee = fnosee_ xnhe0 = 0.0_DP xnhep = 0.0_DP xnhem = 0.0_DP vnhe = 0.0_DP if( fnosee > 0.0_DP ) qne = 4.0_DP * ekincw / ( fnosee * ( 2.0_DP * pi ) * au_terahertz )**2 return end subroutine electrons_nose_init function electrons_nose_nrg( xnhe0, vnhe, qne, ekincw ) ! compute energy term for nose thermostat implicit none real(dp) :: electrons_nose_nrg real(dp), intent(in) :: xnhe0, vnhe, qne, ekincw ! electrons_nose_nrg = 0.5_DP * qne * vnhe * vnhe + 2.0_DP * ekincw * xnhe0 ! return end function electrons_nose_nrg subroutine electrons_nose_shiftvar( xnhep, xnhe0, xnhem ) ! shift values of nose variables to start a new step implicit none real(dp), intent(out) :: xnhem real(dp), intent(inout) :: xnhe0 real(dp), intent(in) :: xnhep ! xnhem = xnhe0 xnhe0 = xnhep ! return end subroutine electrons_nose_shiftvar subroutine electrons_nosevel( vnhe, xnhe0, xnhem, delt ) implicit none real(dp), intent(inout) :: vnhe real(dp), intent(in) :: xnhe0, xnhem, delt vnhe=2.0_DP*(xnhe0-xnhem)/delt-vnhe return end subroutine electrons_nosevel subroutine electrons_noseupd( xnhep, xnhe0, xnhem, delt, qne, ekinc, ekincw, vnhe ) implicit none real(dp), intent(out) :: xnhep, vnhe real(dp), intent(in) :: xnhe0, xnhem, delt, qne, ekinc, ekincw xnhep = 2.0_DP * xnhe0 - xnhem + 2.0_DP * ( delt**2 / qne ) * ( ekinc - ekincw ) vnhe = ( xnhep - xnhem ) / ( 2.0_DP * delt ) return end subroutine electrons_noseupd SUBROUTINE electrons_nose_info( delt) use constants, only: au_terahertz, pi USE io_global, ONLY: stdout USE control_flags, ONLY: tnosee IMPLICIT NONE REAL(DP), INTENT(IN) :: delt INTEGER :: nsvar REAL(DP) :: wnosee IF( tnosee ) THEN ! IF( fnosee <= 0.0_DP) & CALL errore(' electrons_nose_info ', ' fnosee less than zero ', 1) IF( delt <= 0.0_DP) & CALL errore(' electrons_nose_info ', ' delt less than zero ', 1) wnosee = fnosee * ( 2.0_DP * pi ) * au_terahertz nsvar = ( 2.0_DP * pi ) / ( wnosee * delt ) WRITE( stdout,563) ekincw, nsvar, fnosee, qne END IF 563 format( //, & & 3X,'electrons dynamics with nose` temperature control:', /, & & 3X,'Kinetic energy required = ', f10.5, ' (a.u.) ', /, & & 3X,'time steps per nose osc. = ', i5, /, & & 3X,'nose` frequency = ', f10.3, ' (THz) ', /, & & 3X,'nose` mass(es) = ', 20(1X,f10.3),//) RETURN END SUBROUTINE electrons_nose_info !------------------------------------------------------------------------------! END MODULE electrons_nose !------------------------------------------------------------------------------! espresso-5.1/CPV/src/wannier.f900000644000175000017500000006244212341373026014515 0ustar mbamba! ! Copyright (C) 2002-2005 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! ... wannier function dynamics and electric field ! - M.S ! !---------------------------------------------------------------------------- MODULE efcalc !---------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout USE wannier_base, ONLY : wf_efield, wf_switch USE wannier_base, ONLY : efx0, efy0, efz0, efx1, efy1, efz1, sw_len ! IMPLICIT NONE ! REAL(DP) :: efx, efy, efz, sw_step REAL(DP), ALLOCATABLE :: xdist(:), ydist(:), zdist(:) ! CONTAINS ! !-------------------------------------------------------------------------- SUBROUTINE clear_nbeg( nbeg ) !-------------------------------------------------------------------------- ! ! ... some more electric field stuff ! - M.S ! INTEGER, INTENT(INOUT) :: nbeg ! ! IF ( wf_efield ) THEN ! IF ( wf_switch ) THEN ! WRITE( stdout, '(/,5X,"!----------------------------------!")' ) WRITE( stdout, '( 5X,"! !")' ) WRITE( stdout, '( 5X,"! ADIABATIC SWITCHING OF THE FIELD !")' ) WRITE( stdout, '( 5X,"! !")' ) WRITE( stdout, '( 5X,"!----------------------------------!",/)' ) ! nbeg=0 ! END IF ! END IF ! RETURN ! END SUBROUTINE clear_nbeg ! !-------------------------------------------------------------------------- SUBROUTINE ef_force( fion, na, nsp, zv ) !-------------------------------------------------------------------------- ! ! ... Electric Feild for ions here ! IMPLICIT NONE ! REAL(DP) :: fion(:,:), zv(:) INTEGER :: na(:), nsp INTEGER :: is, ia, isa ! IF ( wf_efield ) THEN ! isa = 0 ! DO is =1, nsp ! DO ia = 1, na(is) ! isa = isa + 1 ! fion(1,isa) = fion(1,isa) + efx * zv(is) fion(2,isa) = fion(2,isa) + efy * zv(is) fion(3,isa) = fion(3,isa) + efz * zv(is) ! END DO ! END DO ! END IF ! RETURN ! END SUBROUTINE ef_force ! ! SUBROUTINE deallocate_efcalc() IF( ALLOCATED( xdist ) ) DEALLOCATE( xdist ) IF( ALLOCATED( ydist ) ) DEALLOCATE( ydist ) IF( ALLOCATED( zdist ) ) DEALLOCATE( zdist ) END SUBROUTINE deallocate_efcalc ! END MODULE efcalc ! !-------------------------------------------------------------------------- MODULE tune !-------------------------------------------------------------------------- ! USE kinds, ONLY : DP ! LOGICAL :: shift INTEGER :: npts, av0, av1, xdir, ydir, zdir, start REAL(DP) :: alpha, b ! END MODULE tune ! !-------------------------------------------------------------------------- MODULE wannier_module !-------------------------------------------------------------------------- ! ! ... In the presence of an electric field every wannier state feels a ! ... different potantial, which depends on the position of its center. ! ... RHOS is read in as the charge density in subrouting vofrho and ! ... overwritten to be the potential. ! ... -M.S ! USE kinds, ONLY : DP ! IMPLICIT NONE ! SAVE ! LOGICAL :: what1, wann_calc REAL(DP) :: wfx, wfy, wfz, ionx, iony, ionz REAL(DP), ALLOCATABLE :: utwf(:,:) REAL(DP), ALLOCATABLE :: wfc(:,:) REAL(DP), ALLOCATABLE :: rhos1(:,:), rhos2(:,:) COMPLEX(DP), ALLOCATABLE :: rhogdum(:,:) ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE allocate_wannier( nbsp, nrxxs, nspin, ng ) !------------------------------------------------------------------------ ! INTEGER, INTENT(in) :: nbsp, nrxxs, nspin, ng ! ALLOCATE( utwf( nbsp, nbsp ) ) ALLOCATE( wfc( 3, nbsp ) ) ALLOCATE( rhos1( nrxxs, nspin) ) ALLOCATE( rhos2( nrxxs, nspin) ) ALLOCATE( rhogdum( ng, nspin ) ) ! RETURN ! END SUBROUTINE allocate_wannier ! !------------------------------------------------------------------------ SUBROUTINE deallocate_wannier() !------------------------------------------------------------------------ ! IF ( ALLOCATED( utwf ) ) DEALLOCATE( utwf ) IF ( ALLOCATED( wfc ) ) DEALLOCATE( wfc ) IF ( ALLOCATED( rhos1 ) ) DEALLOCATE( rhos1 ) IF ( ALLOCATED( rhos2 ) ) DEALLOCATE( rhos2 ) IF ( ALLOCATED( rhogdum ) ) DEALLOCATE( rhogdum ) ! RETURN ! END SUBROUTINE deallocate_wannier ! END MODULE wannier_module ! !-------------------------------------------------------------------------- MODULE electric_field_module !-------------------------------------------------------------------------- ! ! ... 1 Volt / meter = 1/(5.1412*1.e+11) a.u. ! USE kinds, ONLY : DP ! IMPLICIT NONE ! SAVE ! LOGICAL :: field_tune, ft REAL(DP) :: efe_elec, efe_ion, prefactor, e_tuned(3) REAL(DP) :: tt(3), tt2(3) REAL(DP) :: par, alen, blen, clen, rel1(3), rel2(3) ! END MODULE electric_field_module ! !-------------------------------------------------------------------------- MODULE wannier_subroutines !-------------------------------------------------------------------------- ! USE kinds, ONLY : DP USE io_global, ONLY : stdout, ionode ! IMPLICIT NONE SAVE ! CONTAINS ! !------------------------------------------------------------------------ SUBROUTINE wannier_startup( ibrav, alat, a1, a2, a3, b1, b2, b3 ) !------------------------------------------------------------------------ ! USE wannier_module, ONLY : utwf USE efcalc, ONLY : wf_efield, efx0, efy0, efz0, & efx1, efy1, efz1, wf_switch, sw_len USE wannier_base, ONLY : calwf, wfsd, wfdt, maxwfdt, nsd, nit, & wf_q, wf_friction, nsteps USE printout_base, ONLY : printout_base_name ! IMPLICIT NONE ! INTEGER :: ibrav REAL(DP) :: a1(3), a2(3), a3(3) REAL(DP) :: b1(3), b2(3), b3(3) REAL(DP) :: alat CHARACTER(LEN=256) :: fname ! INTEGER :: i ! ! ... More Wannier and Field Initialization ! IF (calwf.GT.1) THEN IF (calwf.EQ.3 .AND. ionode ) THEN WRITE( stdout, * ) "------------------------DYNAMICS IN THE WANNIER BASIS--------------------------" WRITE( stdout, * ) " DYNAMICS PARAMETERS " IF (wfsd == 1) THEN WRITE( stdout, 12125) wf_q WRITE( stdout, 12126) wfdt WRITE( stdout, 12124) wf_friction WRITE( stdout, * ) nsteps,"STEPS OF DAMPED MOLECULAR DYNAMICS FOR OPTIMIZATION OF THE SPREAD" ELSE IF (wfsd == 2) THEN WRITE( stdout, 12132) wfdt WRITE( stdout, 12133) maxwfdt WRITE( stdout, * ) nsd,"STEPS OF STEEPEST DESCENT FOR OPTIMIZATION OF THE SPREAD" WRITE( stdout, * ) nit-nsd,"STEPS OF CONJUGATE GRADIENT FOR OPTIMIZATION OF THE SPREAD" ELSE WRITE( stdout, * ) "USING JACOBI ROTATIONS FOR OPTIMIZATION OF THE SPREAD" END IF WRITE( stdout, * ) "AVERAGE WANNIER FUNCTION SPREAD WRITTEN TO FORT.24" fname = printout_base_name( "spr" ) WRITE( stdout, * ) "INDIVIDUAL WANNIER FUNCTION SPREAD WRITTEN TO "//TRIM(fname) fname = printout_base_name( "wfc" ) WRITE( stdout, * ) "WANNIER CENTERS WRITTEN TO "//TRIM(fname) WRITE( stdout, * ) "SOME PERTINENT RUN-TIME INFORMATION WRITTEN TO FORT.27" WRITE( stdout, * ) "-------------------------------------------------------------------------------" WRITE( stdout, * ) 12124 FORMAT(' DAMPING COEFFICIENT USED FOR WANNIER FUNCTION SPREAD OPTIMIZATION = ',f10.7) 12125 FORMAT(' FICTITIOUS MASS PARAMETER USED FOR SPREAD OPTIMIZATION = ',f7.1) 12126 FORMAT(' TIME STEP USED FOR DAMPED DYNAMICS = ',f10.7) ! 12132 FORMAT(' SMALLEST TIMESTEP IN THE SD / CG DIRECTION FOR SPREAD OPTIMIZATION= ',f10.7) 12133 FORMAT(' LARGEST TIMESTEP IN THE SD / CG DIRECTION FOR SPREAD OPTIMIZATION = ',f10.7) END IF WRITE( stdout, * ) "wannier_startup IBRAV SELECTED:",ibrav ! CALL recips( a1, a2, a3, b1, b2, b3 ) b1 = b1 * alat b2 = b2 * alat b3 = b3 * alat ! CALL wfunc_init( calwf, b1, b2, b3, ibrav) ! WRITE( stdout, * ) utwf=0.d0 DO i=1, SIZE( utwf, 1 ) utwf(i, i)=1.d0 END DO END IF IF(wf_efield) THEN CALL grid_map IF( ionode ) THEN WRITE( stdout, * ) "GRID MAPPING DONE" WRITE( stdout, * ) "DYNAMICS IN THE PRESENCE OF AN EXTERNAL ELECTRIC FIELD" WRITE( stdout, * ) WRITE( stdout, * ) "POLARIZATION CONTRIBUTION OUTPUT TO FORT.28 IN THE FOLLOWING FORMAT" WRITE( stdout, * ) WRITE( stdout, * ) "EFX, EFY, EFZ, ELECTRIC ENTHALPY(ELECTRONIC), ELECTRIC ENTHALPY(IONIC)" WRITE( stdout, * ) WRITE( stdout, '(" E0(x) = ",F10.7)' ) efx0 WRITE( stdout, '(" E0(y) = ",F10.7)' ) efy0 WRITE( stdout, '(" E0(z) = ",F10.7)' ) efz0 WRITE( stdout, '(" E1(x) = ",F10.7)' ) efx1 WRITE( stdout, '(" E1(y) = ",F10.7)' ) efy1 WRITE( stdout, '(" E1(z) = ",F10.7)' ) efz1 ! IF ( wf_switch ) WRITE( stdout, 12127) sw_len ! WRITE( stdout, * ) ! END IF ! 12127 FORMAT(' FIELD WILL BE TURNED ON ADIBATICALLY OVER ',i5,' STEPS') END IF ! RETURN ! END SUBROUTINE wannier_startup ! !-------------------------------------------------------------------------- SUBROUTINE get_wannier_center( tfirst, cm, bec, eigr, & eigrb, taub, irb, ibrav, b1, b2, b3 ) !-------------------------------------------------------------------------- ! USE efcalc, ONLY: wf_efield USE wannier_base, ONLY: calwf, jwf USE wannier_module, ONLY: what1, wfc, utwf ! IMPLICIT NONE ! LOGICAL, INTENT(in) :: tfirst COMPLEX(DP) :: cm(:,:) REAL(DP) :: bec(:,:) COMPLEX(DP) :: eigrb(:,:), eigr(:,:) INTEGER :: irb(:,:) REAL(DP) :: taub(:,:) INTEGER :: ibrav REAL(DP) :: b1(:), b2(:), b3(:) ! ! ... Get Wannier centers for the first step if wf_efield=true ! IF ( wf_efield ) THEN ! IF ( tfirst ) THEN ! what1 = .TRUE. ! jwf = 1 ! CALL wf( calwf,cm, bec, eigr, eigrb, taub, irb, & b1, b2, b3, utwf, what1, wfc, jwf, ibrav ) ! what1 = .FALSE. ! END IF END IF ! RETURN ! END SUBROUTINE get_wannier_center ! !-------------------------------------------------------------------------- SUBROUTINE ef_tune( rhog, tau0 ) !-------------------------------------------------------------------------- ! USE electric_field_module, ONLY: field_tune, e_tuned USE wannier_module, ONLY: rhogdum ! IMPLICIT NONE ! COMPLEX(DP) :: rhog(:,:) REAL(DP) :: tau0(:,:) ! ! ... Tune the Electric field ! IF ( field_tune ) THEN ! rhogdum = rhog ! CALL macroscopic_average( rhogdum, tau0, e_tuned ) ! END IF ! RETURN ! END SUBROUTINE ef_tune ! !-------------------------------------------------------------------------- SUBROUTINE write_charge_and_exit( rhog ) !-------------------------------------------------------------------------- ! USE wannier_base, ONLY : writev ! IMPLICIT NONE ! COMPLEX(DP) :: rhog(:,:) ! ! ... Write chargedensity in g-space ! IF ( writev ) THEN ! CALL write_rho_g( rhog ) ! CALL stop_run( .TRUE. ) ! END IF ! RETURN ! END SUBROUTINE write_charge_and_exit ! !-------------------------------------------------------------------------- SUBROUTINE wf_options( tfirst, nfi, cm, rhovan, bec, dbec, eigr, eigrb, & taub, irb, ibrav, b1, b2, b3, rhor, drhor, rhog, & drhog ,rhos, enl, ekin ) !-------------------------------------------------------------------------- ! USE efcalc, ONLY : wf_efield USE wannier_base, ONLY : nwf, calwf, jwf, wffort, iplot, iwf USE wannier_module, ONLY : what1, wfc, utwf USE cp_interfaces, ONLY : rhoofr USE dener, ONLY : denl, dekin6 ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: tfirst INTEGER :: nfi COMPLEX(DP) :: cm(:,:) REAL(DP) :: bec(:,:) REAL(DP) :: dbec(:,:,:,:) REAL(DP) :: rhovan(:,:,:) COMPLEX(DP) :: eigrb(:,:), eigr(:,:) INTEGER :: irb(:,:) REAL(DP) :: taub(:,:) INTEGER :: ibrav REAL(DP) :: b1(:), b2(:), b3(:) COMPLEX(DP) :: rhog(:,:) COMPLEX(DP) :: drhog(:,:,:,:) REAL(DP) :: drhor(:,:,:,:), rhor(:,:), rhos(:,:) REAL(DP) :: enl, ekin ! INTEGER :: i, j ! ! ! ... Wannier Function options - M.S ! jwf=1 IF (calwf.EQ.1) THEN DO i=1, nwf iwf=iplot(i) j=wffort+i-1 CALL rhoofr (nfi,cm, irb, eigrb,bec,dbec,rhovan,rhor,drhor,rhog,drhog,rhos,enl,denl,ekin,dekin6,.false.,j) END DO ! CALL stop_run( .TRUE. ) ! END IF ! IF ( calwf == 2 ) THEN ! ! ... calculate the overlap matrix ! jwf=1 ! CALL wf (calwf,cm,bec,eigr,eigrb,taub,irb,b1,b2,b3,utwf,what1,wfc,jwf,ibrav) ! CALL stop_run( .TRUE. ) ! END IF ! IF (calwf.EQ.5) THEN ! jwf=iplot(1) CALL wf (calwf,cm,bec,eigr,eigrb,taub,irb,b1,b2,b3,utwf,what1,wfc,jwf,ibrav) ! CALL stop_run( .TRUE. ) ! END IF ! ! ... End Wannier Function options - M.S ! RETURN END SUBROUTINE wf_options ! !-------------------------------------------------------------------------- SUBROUTINE ef_potential( nfi, rhos, bec, deeq, betae, c0, cm, emadt2, emaver, verl1, verl2 ) !-------------------------------------------------------------------------- ! USE efcalc, ONLY : wf_efield, efx, efy, efz, & efx0, efy0, efz0, efx1, efy1, efz1, & wf_switch, sw_len, sw_step, xdist, & ydist, zdist USE electric_field_module, ONLY : field_tune, e_tuned, par, rel1, rel2 USE wannier_module, ONLY : rhos1, rhos2, wfc USE electrons_base, ONLY : nbsp, nspin, nupdwn, f, ispin USE cell_base, ONLY : ainv, alat, at USE gvect, ONLY : gstart USE control_flags, ONLY : tsde USE wave_base, ONLY : wave_steepest, wave_verlet USE cp_interfaces, ONLY : dforce USE fft_base, ONLY : dffts ! IMPLICIT NONE ! INTEGER :: nfi REAL(DP) :: rhos(:,:) REAL(DP) :: bec(:,:) REAL(DP) :: deeq(:,:,:,:) COMPLEX(DP) :: betae(:,:) COMPLEX(DP) :: c0( :, : ) COMPLEX(DP) :: cm( :, : ) REAL(DP) :: emadt2(:) REAL(DP) :: emaver(:) REAL(DP) :: verl1, verl2 REAL(DP) :: a1(3), a2(3), a3(3) COMPLEX(DP), ALLOCATABLE :: c2( : ), c3( : ) INTEGER :: i, ir ! ! ... Potential for electric field ! ALLOCATE( c2( SIZE( c0, 1 ))) ALLOCATE( c3( SIZE( c0, 1 ))) a1(:) = at(:,1)/alat ; a2(:) = at(:,2)/alat ; a3(:) = at(:,3)/alat IF(wf_efield) THEN IF(field_tune) THEN efx=e_tuned(1) efy=e_tuned(2) efz=e_tuned(3) WRITE( stdout, '(" wf_efield Now ",3(F12.8,1X))' ) efx, efy,efz ! ELSE IF(wf_switch) THEN par=0.d0 IF(nfi.LE.sw_len) THEN sw_step=1.0d0/DBLE(sw_len) par=nfi*sw_step IF(efx1.LT.efx0) THEN efx=efx0-(efx0-efx1)*par**5*(70*par**4-315*par**3+540*par**2-420*par+126) ELSE efx=efx0+(efx1-efx0)*par**5*(70*par**4-315*par**3+540*par**2-420*par+126) END IF IF(efy1.LT.efy0) THEN efy=efy0-(efy0-efy1)*par**5*(70*par**4-315*par**3+540*par**2-420*par+126) ELSE efy=efy0+(efy1-efy0)*par**5*(70*par**4-315*par**3+540*par**2-420*par+126) END IF IF(efz1.LT.efz0) THEN efz=efz0-(efz0-efz1)*par**5*(70*par**4-315*par**3+540*par**2-420*par+126) ELSE efz=efz0+(efz1-efz0)*par**5*(70*par**4-315*par**3+540*par**2-420*par+126) END IF END IF ELSE efx=efx1 efy=efy1 efz=efz1 END IF END IF END IF DO i=1,nbsp,2 IF(wf_efield) THEN rhos1=0.d0 rhos2=0.d0 DO ir=1,dffts%nnr rel1(1)=xdist(ir)*a1(1)+ydist(ir)*a2(1)+zdist(ir)*a3(1)-wfc(1,i) rel1(2)=xdist(ir)*a1(2)+ydist(ir)*a2(2)+zdist(ir)*a3(2)-wfc(2,i) rel1(3)=xdist(ir)*a1(3)+ydist(ir)*a2(3)+zdist(ir)*a3(3)-wfc(3,i) ! minimum image convention CALL pbc(rel1,a1,a2,a3,ainv,rel1) IF(nspin.EQ.2) THEN IF(i.LE.nupdwn(1)) THEN rhos1(ir,1)=rhos(ir,1)+efx*rel1(1)+efy*rel1(2)+efz*rel1(3) ELSE rhos1(ir,2)=rhos(ir,2)+efx*rel1(1)+efy*rel1(2)+efz*rel1(3) END IF ELSE rhos1(ir,1)=rhos(ir,1)+efx*rel1(1)+efy*rel1(2)+efz*rel1(3) END IF IF(i.NE.nbsp) THEN rel2(1)=xdist(ir)*a1(1)+ydist(ir)*a2(1)+zdist(ir)*a3(1)-wfc(1,i+1) rel2(2)=xdist(ir)*a1(2)+ydist(ir)*a2(2)+zdist(ir)*a3(2)-wfc(2,i+1) rel2(3)=xdist(ir)*a1(3)+ydist(ir)*a2(3)+zdist(ir)*a3(3)-wfc(3,i+1) ! minimum image convention CALL pbc(rel2,a1,a2,a3,ainv,rel2) IF(nspin.EQ.2) THEN IF(i+1.LE.nupdwn(1)) THEN rhos2(ir,1)=rhos(ir,1)+efx*rel2(1)+efy*rel2(2)+efz*rel2(3) ELSE rhos2(ir,2)=rhos(ir,2)+efx*rel2(1)+efy*rel2(2)+efz*rel2(3) END IF ELSE rhos2(ir,1)=rhos(ir,1)+efx*rel2(1)+efy*rel2(2)+efz*rel2(3) END IF ELSE rhos2(ir,:)=rhos1(ir,:) END IF END DO CALL dforce(i,bec,betae,c0,c2,c3,rhos1,dffts%nnr,ispin,f,nbsp,nspin,rhos2) ELSE CALL dforce(i,bec,betae,c0,c2,c3,rhos,dffts%nnr,ispin,f,nbsp,nspin) END IF IF(tsde) THEN CALL wave_steepest( cm(:, i ), c0(:, i ), emadt2, c2 ) CALL wave_steepest( cm(:, i+1), c0(:, i+1), emadt2, c3 ) ELSE CALL wave_verlet( cm(:, i ), c0(:, i ), verl1, verl2, emaver, c2 ) CALL wave_verlet( cm(:, i+1), c0(:, i+1), verl1, verl2, emaver, c3 ) ENDIF IF (gstart.EQ.2) THEN cm(1, i)=CMPLX(DBLE(cm(1, i)),0.d0,kind=DP) cm(1,i+1)=CMPLX(DBLE(cm(1,i+1)),0.d0,kind=DP) END IF END DO DEALLOCATE( c2 ) DEALLOCATE( c3 ) RETURN END SUBROUTINE ef_potential ! !-------------------------------------------------------------------- ! ... Electric Field Implementation for Electric Enthalpy ! ... - M.S !-------------------------------------------------------------------- ! !-------------------------------------------------------------------------- SUBROUTINE ef_enthalpy( enthal, tau0 ) !-------------------------------------------------------------------------- ! USE efcalc, ONLY : wf_efield, efx, efy, efz USE electric_field_module, ONLY : efe_elec, efe_ion, tt2, tt USE wannier_module, ONLY : wfx, wfy, wfz, ionx, iony, ionz, wfc USE electrons_base, ONLY : nbsp, f USE cell_base, ONLY : ainv, alat, at USE ions_base, ONLY : na, nsp, zv USE io_global, ONLY : ionode ! IMPLICIT NONE ! REAL(DP) :: enthal, tau0(:,:) REAL(DP) :: a1(3), a2(3), a3(3) INTEGER :: i, is, ia, isa ! a1(:) = at(:,1)/alat ; a2(:) = at(:,2)/alat ; a3(:) = at(:,3)/alat IF(wf_efield) THEN ! Electronic Contribution First wfx=0.d0 wfy=0.d0 wfz=0.d0 efe_elec=0.d0 DO i=1,nbsp tt2(1)=wfc(1,i) tt2(2)=wfc(2,i) tt2(3)=wfc(3,i) CALL pbc(tt2,a1,a2,a3,ainv,tt2) wfx=wfx+f(i)*tt2(1) wfy=wfy+f(i)*tt2(2) wfz=wfz+f(i)*tt2(3) END DO efe_elec=efe_elec+efx*wfx+efy*wfy+efz*wfz !Then Ionic Contribution ionx=0.d0 iony=0.d0 ionz=0.d0 efe_ion=0.d0 isa = 0 DO is=1,nsp DO ia=1,na(is) isa = isa + 1 tt(1)=tau0(1,isa) tt(2)=tau0(2,isa) tt(3)=tau0(3,isa) CALL pbc(tt,a1,a2,a3,ainv,tt) ionx=ionx+zv(is)*tt(1) iony=iony+zv(is)*tt(2) ionz=ionz+zv(is)*tt(3) END DO END DO efe_ion=efe_ion+efx*ionx+efy*iony+efz*ionz IF( ionode ) THEN WRITE(28,'(f12.9,1x,f12.9,1x,f12.9,1x,f20.15,1x,f20.15)') efx, efy, efz, efe_elec,-efe_ion END IF ELSE efe_elec = 0.0_DP efe_ion = 0.0_DP END IF enthal=enthal+efe_elec-efe_ion RETURN END SUBROUTINE ef_enthalpy ! !-------------------------------------------------------------------------- SUBROUTINE wf_closing_options( nfi, c0, cm, bec, eigr, eigrb, taub, & irb, ibrav, b1, b2, b3, taus, tausm, vels, & velsm, acc, lambda, lambdam, descla, xnhe0, xnhem, & vnhe, xnhp0, xnhpm, vnhp, nhpcl,nhpdim,ekincm,& xnhh0, xnhhm, vnhh, velh, ecut, ecutw, delt, & celldm, fion, tps, mat_z, occ_f, rho ) !-------------------------------------------------------------------------- ! USE efcalc, ONLY : wf_efield USE wannier_base, ONLY : nwf, calwf, jwf, wffort, iplot, iwf USE wannier_module, ONLY : what1, wfc, utwf USE electrons_base, ONLY : nbsp USE gvecw, ONLY : ngw USE control_flags, ONLY : ndw USE cell_base, ONLY : h, hold USE uspp_param, ONLY : nvb USE cp_interfaces, ONLY : writefile USE descriptors, ONLY : la_descriptor ! IMPLICIT NONE ! INTEGER :: nfi COMPLEX(DP) :: c0(:,:) COMPLEX(DP) :: cm(:,:) REAL(DP) :: bec(:,:) COMPLEX(DP) :: eigrb(:,:), eigr(:,:) INTEGER :: irb(:,:) REAL(DP) :: taub(:,:) INTEGER :: ibrav REAL(DP) :: b1(:), b2(:), b3(:) REAL(DP) :: taus(:,:), tausm(:,:), vels(:,:), velsm(:,:) REAL(DP) :: acc(:) REAL(DP) :: lambda(:,:,:), lambdam(:,:,:) TYPE(la_descriptor), INTENT(IN) :: descla(:) REAL(DP) :: xnhe0, xnhem, vnhe, xnhp0(:), xnhpm(:), vnhp(:), ekincm INTEGER :: nhpcl, nhpdim REAL(DP) :: velh(:,:) REAL(DP) :: xnhh0(:,:), xnhhm(:,:), vnhh(:,:) REAL(DP) :: ecut, ecutw, delt, celldm(:) REAL(DP) :: fion(:,:), tps REAL(DP) :: mat_z(:,:,:), occ_f(:), rho(:,:) ! CALL start_clock('wf_close_opt') ! ! ... More Wannier Function Options ! IF ( calwf == 4 ) THEN ! jwf = 1 ! CALL wf( calwf, c0, bec, eigr, eigrb, taub, irb, & b1, b2, b3, utwf, what1, wfc, jwf, ibrav ) ! IF ( nvb == 0 ) THEN ! CALL wf( calwf, cm, bec, eigr, eigrb, taub, irb, & b1, b2, b3, utwf, what1, wfc, jwf, ibrav ) ! ELSE ! cm = c0 ! END IF ! CALL writefile( h, hold, nfi, c0, cm, taus, & tausm, vels, velsm,acc, lambda, lambdam, descla, xnhe0, xnhem, & vnhe, xnhp0, xnhpm, vnhp,nhpcl,nhpdim,ekincm, xnhh0, xnhhm,& vnhh, velh, fion, tps, mat_z, occ_f, rho ) ! CALL stop_clock('wf_close_opt') CALL stop_run( .TRUE. ) ! END IF ! IF ( calwf == 3 ) THEN ! ! ... construct overlap matrix and calculate spreads and do Localization ! jwf = 1 ! CALL wf( calwf, c0, bec, eigr, eigrb, taub, irb, & b1, b2, b3, utwf, what1, wfc, jwf, ibrav ) ! CALL stop_clock('wf_close_opt') ! END IF ! RETURN ! END SUBROUTINE wf_closing_options ! END MODULE wannier_subroutines espresso-5.1/CPV/src/make.depend0000644000175000017500000010464412341373026014631 0ustar mbambaberry_phase.o : ../../Modules/io_global.o berry_phase.o : ../../Modules/mp.o berry_phase.o : ../../Modules/mp_global.o berry_phase.o : ../../Modules/mp_world.o berry_phase.o : ../../Modules/recvec.o berry_phase.o : ../../Modules/stick_base.o berryion.o : ../../Modules/cell_base.o berryion.o : ../../Modules/constants.o berryion.o : ../../Modules/ions_base.o berryion.o : ../../Modules/kind.o bforceion.o : ../../Modules/cell_base.o bforceion.o : ../../Modules/constants.o bforceion.o : ../../Modules/electrons_base.o bforceion.o : ../../Modules/ions_base.o bforceion.o : ../../Modules/kind.o bforceion.o : ../../Modules/mp_global.o bforceion.o : ../../Modules/uspp.o cell_nose.o : ../../Modules/constants.o cell_nose.o : ../../Modules/control_flags.o cell_nose.o : ../../Modules/io_global.o cell_nose.o : ../../Modules/kind.o cg.o : ../../Modules/electrons_base.o cg.o : ../../Modules/io_global.o cg.o : ../../Modules/kind.o cg.o : gvecw.o cg_sub.o : ../../Modules/cell_base.o cg_sub.o : ../../Modules/constants.o cg_sub.o : ../../Modules/control_flags.o cg_sub.o : ../../Modules/descriptors.o cg_sub.o : ../../Modules/electrons_base.o cg_sub.o : ../../Modules/fft_base.o cg_sub.o : ../../Modules/io_files.o cg_sub.o : ../../Modules/io_global.o cg_sub.o : ../../Modules/ions_base.o cg_sub.o : ../../Modules/kind.o cg_sub.o : ../../Modules/mp.o cg_sub.o : ../../Modules/mp_global.o cg_sub.o : ../../Modules/recvec.o cg_sub.o : ../../Modules/uspp.o cg_sub.o : cg.o cg_sub.o : cp_emass.o cg_sub.o : cp_interfaces.o cg_sub.o : efield.o cg_sub.o : energies.o cg_sub.o : ensemble_dft.o cg_sub.o : gvecw.o cg_sub.o : ions_positions.o cg_sub.o : mainvar.o cg_sub.o : modules.o cg_sub.o : ortho_base.o cg_sub.o : smallbox_gvec.o cglib.o : ../../Modules/cell_base.o cglib.o : ../../Modules/constants.o cglib.o : ../../Modules/descriptors.o cglib.o : ../../Modules/dspev_drv.o cglib.o : ../../Modules/electrons_base.o cglib.o : ../../Modules/io_global.o cglib.o : ../../Modules/ions_base.o cglib.o : ../../Modules/kind.o cglib.o : ../../Modules/mp.o cglib.o : ../../Modules/mp_global.o cglib.o : ../../Modules/ptoolkit.o cglib.o : ../../Modules/recvec.o cglib.o : ../../Modules/uspp.o cglib.o : cp_interfaces.o cglib.o : gvecw.o cglib.o : mainvar.o chargedensity.o : ../../Modules/cell_base.o chargedensity.o : ../../Modules/constants.o chargedensity.o : ../../Modules/control_flags.o chargedensity.o : ../../Modules/electrons_base.o chargedensity.o : ../../Modules/fft_base.o chargedensity.o : ../../Modules/fft_interfaces.o chargedensity.o : ../../Modules/funct.o chargedensity.o : ../../Modules/io_files.o chargedensity.o : ../../Modules/io_global.o chargedensity.o : ../../Modules/ions_base.o chargedensity.o : ../../Modules/kind.o chargedensity.o : ../../Modules/mp.o chargedensity.o : ../../Modules/mp_global.o chargedensity.o : ../../Modules/parallel_include.o chargedensity.o : ../../Modules/recvec.o chargedensity.o : ../../Modules/uspp.o chargedensity.o : ../../Modules/xml_io_base.o chargedensity.o : cg.o chargedensity.o : cp_interfaces.o chargedensity.o : gvecw.o chargedensity.o : mainvar.o chargedensity.o : modules.o chargedensity.o : smallbox.o chargedensity.o : smallbox_gvec.o chargedensity.o : wannier_base.o cp_autopilot.o : ../../Modules/autopilot.o cp_autopilot.o : ../../Modules/control_flags.o cp_autopilot.o : ../../Modules/input_parameters.o cp_autopilot.o : ../../Modules/io_global.o cp_autopilot.o : ../../Modules/ions_base.o cp_autopilot.o : ../../Modules/kind.o cp_autopilot.o : ../../Modules/mp.o cp_autopilot.o : ../../Modules/mp_world.o cp_autopilot.o : ../../Modules/parser.o cp_autopilot.o : ../../Modules/timestep.o cp_autopilot.o : ../../Modules/wave_base.o cp_autopilot.o : cp_emass.o cp_autopilot.o : ions_nose.o cp_emass.o : ../../Modules/control_flags.o cp_emass.o : ../../Modules/kind.o cp_interfaces.o : ../../Modules/descriptors.o cp_interfaces.o : ../../Modules/fft_base.o cp_interfaces.o : ../../Modules/ions_base.o cp_interfaces.o : ../../Modules/kind.o cp_interfaces.o : ../../Modules/recvec.o cp_restart.o : ../../Modules/cell_base.o cp_restart.o : ../../Modules/constants.o cp_restart.o : ../../Modules/control_flags.o cp_restart.o : ../../Modules/electrons_base.o cp_restart.o : ../../Modules/fft_base.o cp_restart.o : ../../Modules/funct.o cp_restart.o : ../../Modules/io_files.o cp_restart.o : ../../Modules/io_global.o cp_restart.o : ../../Modules/ions_base.o cp_restart.o : ../../Modules/kernel_table.o cp_restart.o : ../../Modules/kind.o cp_restart.o : ../../Modules/mp.o cp_restart.o : ../../Modules/mp_bands.o cp_restart.o : ../../Modules/mp_diag.o cp_restart.o : ../../Modules/mp_global.o cp_restart.o : ../../Modules/mp_images.o cp_restart.o : ../../Modules/mp_pools.o cp_restart.o : ../../Modules/mp_pots.o cp_restart.o : ../../Modules/mp_world.o cp_restart.o : ../../Modules/parameters.o cp_restart.o : ../../Modules/parser.o cp_restart.o : ../../Modules/qexml.o cp_restart.o : ../../Modules/recvec.o cp_restart.o : ../../Modules/run_info.o cp_restart.o : ../../Modules/uspp.o cp_restart.o : ../../Modules/version.o cp_restart.o : ../../Modules/xml_io_base.o cp_restart.o : ../../iotk/src/iotk_module.o cp_restart.o : cp_interfaces.o cp_restart.o : energies.o cp_restart.o : gvecw.o cp_restart.o : ldaU_cp.o cp_restart.o : mainvar.o cp_restart.o : wannier_base.o cplib.o : ../../Modules/atom.o cplib.o : ../../Modules/cell_base.o cplib.o : ../../Modules/constants.o cplib.o : ../../Modules/constraints_module.o cplib.o : ../../Modules/control_flags.o cplib.o : ../../Modules/descriptors.o cplib.o : ../../Modules/electrons_base.o cplib.o : ../../Modules/fft_base.o cplib.o : ../../Modules/fft_interfaces.o cplib.o : ../../Modules/funct.o cplib.o : ../../Modules/io_global.o cplib.o : ../../Modules/ions_base.o cplib.o : ../../Modules/kind.o cplib.o : ../../Modules/mp.o cplib.o : ../../Modules/mp_global.o cplib.o : ../../Modules/recvec.o cplib.o : ../../Modules/uspp.o cplib.o : cp_interfaces.o cplib.o : cpr_mod.o cplib.o : gvecw.o cplib.o : ions_nose.o cplib.o : modules.o cplib.o : pseudo_base.o cplib.o : pseudopot.o cplib.o : smallbox_gvec.o cplib.o : spline.o cplib_meta.o : ../../Modules/cell_base.o cplib_meta.o : ../../Modules/constants.o cplib_meta.o : ../../Modules/control_flags.o cplib_meta.o : ../../Modules/electrons_base.o cplib_meta.o : ../../Modules/fft_base.o cplib_meta.o : ../../Modules/fft_interfaces.o cplib_meta.o : ../../Modules/io_global.o cplib_meta.o : ../../Modules/ions_base.o cplib_meta.o : ../../Modules/kind.o cplib_meta.o : ../../Modules/mp.o cplib_meta.o : ../../Modules/mp_global.o cplib_meta.o : ../../Modules/recvec.o cplib_meta.o : energies.o cplib_meta.o : gvecw.o cplib_meta.o : modules.o cplib_meta.o : smallbox_gvec.o cpr.o : ../../Modules/autopilot.o cpr.o : ../../Modules/cell_base.o cpr.o : ../../Modules/check_stop.o cpr.o : ../../Modules/constants.o cpr.o : ../../Modules/constraints_module.o cpr.o : ../../Modules/control_flags.o cpr.o : ../../Modules/electrons_base.o cpr.o : ../../Modules/fft_base.o cpr.o : ../../Modules/io_files.o cpr.o : ../../Modules/io_global.o cpr.o : ../../Modules/ions_base.o cpr.o : ../../Modules/kind.o cpr.o : ../../Modules/mm_dispersion.o cpr.o : ../../Modules/mp.o cpr.o : ../../Modules/mp_global.o cpr.o : ../../Modules/recvec.o cpr.o : ../../Modules/timestep.o cpr.o : ../../Modules/tsvdw.o cpr.o : ../../Modules/uspp.o cpr.o : ../../Modules/wave_base.o cpr.o : ../../Modules/wavefunctions.o cpr.o : cell_nose.o cpr.o : cg.o cpr.o : cp_autopilot.o cpr.o : cp_emass.o cpr.o : cp_interfaces.o cpr.o : efield.o cpr.o : electrons.o cpr.o : electrons_nose.o cpr.o : energies.o cpr.o : ensemble_dft.o cpr.o : gvecw.o cpr.o : ions_nose.o cpr.o : ions_positions.o cpr.o : ldaU_cp.o cpr.o : mainvar.o cpr.o : modules.o cpr.o : ortho_base.o cpr.o : pres_ai_mod.o cpr.o : smallbox_gvec.o cpr.o : wannier.o cpr_loop.o : ../../Modules/ions_base.o cpr_loop.o : ../../Modules/kind.o cpr_mod.o : ../../Modules/kind.o cprstart.o : ../../Modules/check_stop.o cprstart.o : ../../Modules/command_line_options.o cprstart.o : ../../Modules/environment.o cprstart.o : ../../Modules/io_global.o cprstart.o : ../../Modules/mp_global.o cprstart.o : ../../Modules/mp_images.o cprstart.o : ../../Modules/read_input.o cprstart.o : input.o dealloc.o : ../../Modules/electrons_base.o dealloc.o : ../../Modules/fft_base.o dealloc.o : ../../Modules/fft_types.o dealloc.o : ../../Modules/ions_base.o dealloc.o : ../../Modules/recvec.o dealloc.o : ../../Modules/sic.o dealloc.o : ../../Modules/stick_base.o dealloc.o : ../../Modules/uspp.o dealloc.o : ../../Modules/wavefunctions.o dealloc.o : cg.o dealloc.o : cpr_mod.o dealloc.o : efield.o dealloc.o : electrons.o dealloc.o : ensemble_dft.o dealloc.o : gvecw.o dealloc.o : ions_nose.o dealloc.o : ions_positions.o dealloc.o : ksstates.o dealloc.o : ldaU_cp.o dealloc.o : ldaUpen.o dealloc.o : mainvar.o dealloc.o : modules.o dealloc.o : polarization.o dealloc.o : pseudopot.o dealloc.o : smallbox_gvec.o dealloc.o : wannier.o dforceb.o : ../../Modules/cell_base.o dforceb.o : ../../Modules/constants.o dforceb.o : ../../Modules/electrons_base.o dforceb.o : ../../Modules/ions_base.o dforceb.o : ../../Modules/kind.o dforceb.o : ../../Modules/mp.o dforceb.o : ../../Modules/mp_global.o dforceb.o : ../../Modules/parallel_include.o dforceb.o : ../../Modules/parameters.o dforceb.o : ../../Modules/recvec.o dforceb.o : ../../Modules/uspp.o dforceb.o : efield.o dforceb.o : gvecw.o efermi.o : ../../Modules/kind.o efield.o : ../../Modules/control_flags.o efield.o : ../../Modules/io_global.o efield.o : ../../Modules/kind.o efield.o : ../../Modules/uspp.o efield.o : gvecw.o efield.o : ions_positions.o eigs0.o : ../../Modules/constants.o eigs0.o : ../../Modules/descriptors.o eigs0.o : ../../Modules/dspev_drv.o eigs0.o : ../../Modules/electrons_base.o eigs0.o : ../../Modules/io_global.o eigs0.o : ../../Modules/kind.o eigs0.o : ../../Modules/mp.o eigs0.o : ../../Modules/mp_global.o eigs0.o : ../../Modules/sic.o eigs0.o : electrons.o eigs0.o : ensemble_dft.o electrons.o : ../../Modules/constants.o electrons.o : ../../Modules/dspev_drv.o electrons.o : ../../Modules/electrons_base.o electrons.o : ../../Modules/io_global.o electrons.o : ../../Modules/kind.o electrons.o : ../../Modules/mp.o electrons.o : ../../Modules/mp_global.o electrons.o : cp_emass.o electrons_nose.o : ../../Modules/constants.o electrons_nose.o : ../../Modules/control_flags.o electrons_nose.o : ../../Modules/io_global.o electrons_nose.o : ../../Modules/kind.o energies.o : ../../Modules/control_flags.o energies.o : ../../Modules/io_global.o energies.o : ../../Modules/kind.o ensemble_dft.o : ../../Modules/descriptors.o ensemble_dft.o : ../../Modules/io_global.o ensemble_dft.o : ../../Modules/kind.o entropy.o : ../../Modules/kind.o exch_corr.o : ../../Modules/cell_base.o exch_corr.o : ../../Modules/constants.o exch_corr.o : ../../Modules/control_flags.o exch_corr.o : ../../Modules/fft_base.o exch_corr.o : ../../Modules/fft_interfaces.o exch_corr.o : ../../Modules/funct.o exch_corr.o : ../../Modules/io_global.o exch_corr.o : ../../Modules/ions_base.o exch_corr.o : ../../Modules/kind.o exch_corr.o : ../../Modules/mp.o exch_corr.o : ../../Modules/mp_global.o exch_corr.o : ../../Modules/recvec.o exch_corr.o : ../../Modules/sic.o exch_corr.o : ../../Modules/uspp.o exch_corr.o : cp_interfaces.o exch_corr.o : mainvar.o exch_corr.o : modules.o fft.o : ../../Modules/fft_base.o fft.o : ../../Modules/kind.o fft.o : ../../Modules/mp_global.o fft.o : ../../Modules/recvec.o forces.o : ../../Modules/cell_base.o forces.o : ../../Modules/constants.o forces.o : ../../Modules/control_flags.o forces.o : ../../Modules/fft_base.o forces.o : ../../Modules/fft_interfaces.o forces.o : ../../Modules/funct.o forces.o : ../../Modules/ions_base.o forces.o : ../../Modules/kind.o forces.o : ../../Modules/mp_global.o forces.o : ../../Modules/parallel_include.o forces.o : ../../Modules/recvec.o forces.o : ../../Modules/uspp.o forces.o : ensemble_dft.o forces.o : gvecw.o forces.o : mainvar.o fpmdpp.o : ../../Modules/constants.o fpmdpp.o : ../../Modules/io_files.o fpmdpp.o : ../../Modules/kind.o fpmdpp.o : ../../Modules/mp_global.o fpmdpp.o : ../../Modules/xml_io_base.o fpmdpp.o : ../../iotk/src/iotk_module.o fromscra.o : ../../Modules/cell_base.o fromscra.o : ../../Modules/control_flags.o fromscra.o : ../../Modules/electrons_base.o fromscra.o : ../../Modules/fft_base.o fromscra.o : ../../Modules/io_global.o fromscra.o : ../../Modules/ions_base.o fromscra.o : ../../Modules/kind.o fromscra.o : ../../Modules/mp.o fromscra.o : ../../Modules/mp_global.o fromscra.o : ../../Modules/recvec.o fromscra.o : ../../Modules/timestep.o fromscra.o : ../../Modules/uspp.o fromscra.o : ../../Modules/wave_base.o fromscra.o : ../../Modules/wavefunctions.o fromscra.o : cell_nose.o fromscra.o : cg.o fromscra.o : cp_emass.o fromscra.o : cp_interfaces.o fromscra.o : efield.o fromscra.o : electrons.o fromscra.o : electrons_nose.o fromscra.o : energies.o fromscra.o : ensemble_dft.o fromscra.o : gvecw.o fromscra.o : ions_nose.o fromscra.o : ions_positions.o fromscra.o : mainvar.o fromscra.o : modules.o fromscra.o : ortho_base.o fromscra.o : printout_base.o gradrho.o : ../../Modules/cell_base.o gradrho.o : ../../Modules/fft_base.o gradrho.o : ../../Modules/fft_interfaces.o gradrho.o : ../../Modules/recvec.o gram.o : ../../Modules/electrons_base.o gram.o : ../../Modules/ions_base.o gram.o : ../../Modules/kind.o gram.o : ../../Modules/mp.o gram.o : ../../Modules/mp_global.o gram.o : ../../Modules/recvec.o gram.o : ../../Modules/uspp.o gram.o : gvecw.o gtable.o : ../../Modules/io_global.o gtable.o : ../../Modules/kind.o gtable.o : ../../Modules/mp.o gtable.o : ../../Modules/mp_global.o gtable.o : ../../Modules/parallel_include.o gtable.o : ../../Modules/recvec.o gtable.o : efield.o gtable.o : gvecw.o gvecw.o : ../../Modules/kind.o gvecw.o : ../../Modules/mp.o init.o : ../../Modules/cell_base.o init.o : ../../Modules/constants.o init.o : ../../Modules/control_flags.o init.o : ../../Modules/electrons_base.o init.o : ../../Modules/fft_base.o init.o : ../../Modules/fft_scalar.o init.o : ../../Modules/fft_types.o init.o : ../../Modules/griddim.o init.o : ../../Modules/io_files.o init.o : ../../Modules/io_global.o init.o : ../../Modules/ions_base.o init.o : ../../Modules/kind.o init.o : ../../Modules/mp_bands.o init.o : ../../Modules/mp_global.o init.o : ../../Modules/recvec.o init.o : ../../Modules/recvec_subs.o init.o : ../../Modules/stick_set.o init.o : ../../Modules/uspp.o init.o : berry_phase.o init.o : cp_interfaces.o init.o : cp_restart.o init.o : electrons.o init.o : gvecw.o init.o : ions_positions.o init.o : mainvar.o init.o : problem_size.o init.o : smallbox.o init.o : smallbox_grid.o init.o : smallbox_subs.o init_run.o : ../../Modules/cell_base.o init_run.o : ../../Modules/control_flags.o init_run.o : ../../Modules/electrons_base.o init_run.o : ../../Modules/fft_base.o init_run.o : ../../Modules/funct.o init_run.o : ../../Modules/io_files.o init_run.o : ../../Modules/io_global.o init_run.o : ../../Modules/ions_base.o init_run.o : ../../Modules/kind.o init_run.o : ../../Modules/mp.o init_run.o : ../../Modules/mp_bands.o init_run.o : ../../Modules/recvec.o init_run.o : ../../Modules/timestep.o init_run.o : ../../Modules/tsvdw.o init_run.o : ../../Modules/uspp.o init_run.o : ../../Modules/wavefunctions.o init_run.o : ../../Modules/wrappers.o init_run.o : ../../Modules/xml_io_base.o init_run.o : cell_nose.o init_run.o : cg.o init_run.o : cp_emass.o init_run.o : cp_interfaces.o init_run.o : cp_restart.o init_run.o : efield.o init_run.o : electrons_nose.o init_run.o : energies.o init_run.o : ensemble_dft.o init_run.o : gvecw.o init_run.o : ions_nose.o init_run.o : ions_positions.o init_run.o : ldaU_cp.o init_run.o : mainvar.o init_run.o : modules.o init_run.o : ortho_base.o init_run.o : printout_base.o init_run.o : smallbox_gvec.o init_run.o : wannier.o init_run.o : wannier_base.o init_run.o : wave_types.o inner_loop_cold.o : ../../Modules/cell_base.o inner_loop_cold.o : ../../Modules/descriptors.o inner_loop_cold.o : ../../Modules/dspev_drv.o inner_loop_cold.o : ../../Modules/electrons_base.o inner_loop_cold.o : ../../Modules/fft_base.o inner_loop_cold.o : ../../Modules/io_global.o inner_loop_cold.o : ../../Modules/ions_base.o inner_loop_cold.o : ../../Modules/kind.o inner_loop_cold.o : ../../Modules/mp.o inner_loop_cold.o : ../../Modules/mp_global.o inner_loop_cold.o : ../../Modules/recvec.o inner_loop_cold.o : ../../Modules/uspp.o inner_loop_cold.o : cg.o inner_loop_cold.o : cp_interfaces.o inner_loop_cold.o : energies.o inner_loop_cold.o : ensemble_dft.o inner_loop_cold.o : gvecw.o inner_loop_cold.o : ions_positions.o inner_loop_cold.o : mainvar.o inner_loop_cold.o : modules.o inner_loop_cold.o : smallbox_gvec.o input.o : ../../Modules/autopilot.o input.o : ../../Modules/cell_base.o input.o : ../../Modules/constants.o input.o : ../../Modules/constraints_module.o input.o : ../../Modules/control_flags.o input.o : ../../Modules/electrons_base.o input.o : ../../Modules/fft_base.o input.o : ../../Modules/funct.o input.o : ../../Modules/input_parameters.o input.o : ../../Modules/io_files.o input.o : ../../Modules/io_global.o input.o : ../../Modules/ions_base.o input.o : ../../Modules/kernel_table.o input.o : ../../Modules/kind.o input.o : ../../Modules/mm_dispersion.o input.o : ../../Modules/read_input.o input.o : ../../Modules/read_pseudo.o input.o : ../../Modules/run_info.o input.o : ../../Modules/sic.o input.o : ../../Modules/timestep.o input.o : ../../Modules/tsvdw.o input.o : ../../Modules/uspp.o input.o : ../../Modules/wave_base.o input.o : cell_nose.o input.o : cg.o input.o : cp_emass.o input.o : efield.o input.o : electrons.o input.o : electrons_nose.o input.o : ensemble_dft.o input.o : ions_nose.o input.o : ksstates.o input.o : ldaU_cp.o input.o : ldaUpen.o input.o : mainvar.o input.o : pres_ai_mod.o input.o : printout_base.o input.o : wannier_base.o ions_nose.o : ../../Modules/constants.o ions_nose.o : ../../Modules/control_flags.o ions_nose.o : ../../Modules/io_global.o ions_nose.o : ../../Modules/ions_base.o ions_nose.o : ../../Modules/kind.o ions_positions.o : ../../Modules/kind.o ksstates.o : ../../Modules/electrons_base.o ksstates.o : ../../Modules/fft_base.o ksstates.o : ../../Modules/fft_interfaces.o ksstates.o : ../../Modules/io_global.o ksstates.o : ../../Modules/kind.o ksstates.o : ../../Modules/mp.o ksstates.o : ../../Modules/mp_global.o ksstates.o : ../../Modules/xml_io_base.o ksstates.o : gvecw.o ldaU.o : ../../Modules/atom.o ldaU.o : ../../Modules/cell_base.o ldaU.o : ../../Modules/constants.o ldaU.o : ../../Modules/control_flags.o ldaU.o : ../../Modules/dspev_drv.o ldaU.o : ../../Modules/electrons_base.o ldaU.o : ../../Modules/io_global.o ldaU.o : ../../Modules/ions_base.o ldaU.o : ../../Modules/kind.o ldaU.o : ../../Modules/mp.o ldaU.o : ../../Modules/mp_bands.o ldaU.o : ../../Modules/mp_global.o ldaU.o : ../../Modules/mp_pools.o ldaU.o : ../../Modules/recvec.o ldaU.o : ../../Modules/uspp.o ldaU.o : cp_interfaces.o ldaU.o : gvecw.o ldaU.o : ldaU_cp.o ldaU.o : ldaUpen.o ldaU_cp.o : ../../Modules/constants.o ldaU_cp.o : ../../Modules/kind.o ldaU_cp.o : ../../Modules/parameters.o ldaUpen.o : ../../Modules/constants.o ldaUpen.o : ../../Modules/dspev_drv.o ldaUpen.o : ../../Modules/electrons_base.o ldaUpen.o : ../../Modules/ions_base.o ldaUpen.o : ../../Modules/kind.o ldaUpen.o : gvecw.o ldaUpen.o : ldaU_cp.o mainvar.o : ../../Modules/cell_base.o mainvar.o : ../../Modules/control_flags.o mainvar.o : ../../Modules/descriptors.o mainvar.o : ../../Modules/electrons_base.o mainvar.o : ../../Modules/fft_base.o mainvar.o : ../../Modules/funct.o mainvar.o : ../../Modules/kind.o mainvar.o : ../../Modules/mp.o mainvar.o : ../../Modules/mp_global.o mainvar.o : energies.o mainvar.o : modules.o mainvar.o : pres_ai_mod.o mainvar.o : wannier_base.o mainvar.o : wave_types.o makov_payne.o : ../../Modules/cell_base.o makov_payne.o : ../../Modules/constants.o makov_payne.o : ../../Modules/electrons_base.o makov_payne.o : ../../Modules/fft_base.o makov_payne.o : ../../Modules/io_global.o makov_payne.o : ../../Modules/ions_base.o makov_payne.o : ../../Modules/kind.o makov_payne.o : ../../Modules/mp.o makov_payne.o : ../../Modules/mp_global.o makov_payne.o : ../../Modules/mp_world.o makov_payne.o : ../../Modules/parallel_include.o makov_payne.o : gvecw.o makov_payne.o : ions_positions.o makov_payne.o : mainvar.o metaxc.o : ../../Modules/kind.o modules.o : ../../Modules/kind.o modules.o : ../../Modules/uspp.o move_electrons.o : ../../Modules/cell_base.o move_electrons.o : ../../Modules/control_flags.o move_electrons.o : ../../Modules/electrons_base.o move_electrons.o : ../../Modules/ions_base.o move_electrons.o : ../../Modules/kind.o move_electrons.o : ../../Modules/recvec.o move_electrons.o : ../../Modules/uspp.o move_electrons.o : ../../Modules/wavefunctions.o move_electrons.o : cg.o move_electrons.o : cp_interfaces.o move_electrons.o : efield.o move_electrons.o : electrons.o move_electrons.o : energies.o move_electrons.o : ensemble_dft.o move_electrons.o : gvecw.o move_electrons.o : ions_positions.o move_electrons.o : mainvar.o move_electrons.o : modules.o move_electrons.o : ortho_base.o move_electrons.o : wannier.o newd.o : ../../Modules/constants.o newd.o : ../../Modules/control_flags.o newd.o : ../../Modules/electrons_base.o newd.o : ../../Modules/fft_base.o newd.o : ../../Modules/fft_interfaces.o newd.o : ../../Modules/ions_base.o newd.o : ../../Modules/kind.o newd.o : ../../Modules/mp.o newd.o : ../../Modules/mp_bands.o newd.o : ../../Modules/uspp.o newd.o : modules.o newd.o : smallbox.o newd.o : smallbox_gvec.o nl_base.o : ../../Modules/cell_base.o nl_base.o : ../../Modules/constants.o nl_base.o : ../../Modules/control_flags.o nl_base.o : ../../Modules/descriptors.o nl_base.o : ../../Modules/electrons_base.o nl_base.o : ../../Modules/io_global.o nl_base.o : ../../Modules/ions_base.o nl_base.o : ../../Modules/kind.o nl_base.o : ../../Modules/mp.o nl_base.o : ../../Modules/mp_global.o nl_base.o : ../../Modules/recvec.o nl_base.o : ../../Modules/uspp.o nl_base.o : cp_interfaces.o nl_base.o : gvecw.o nlcc.o : ../../Modules/atom.o nlcc.o : ../../Modules/cell_base.o nlcc.o : ../../Modules/control_flags.o nlcc.o : ../../Modules/electrons_base.o nlcc.o : ../../Modules/fft_base.o nlcc.o : ../../Modules/fft_interfaces.o nlcc.o : ../../Modules/io_global.o nlcc.o : ../../Modules/ions_base.o nlcc.o : ../../Modules/kind.o nlcc.o : ../../Modules/mp.o nlcc.o : ../../Modules/mp_global.o nlcc.o : ../../Modules/recvec.o nlcc.o : ../../Modules/uspp.o nlcc.o : modules.o nlcc.o : pseudo_base.o nlcc.o : pseudopot.o nlcc.o : smallbox.o nlcc.o : smallbox_gvec.o nlcc.o : spline.o ortho.o : ../../Modules/control_flags.o ortho.o : ../../Modules/descriptors.o ortho.o : ../../Modules/electrons_base.o ortho.o : ../../Modules/io_global.o ortho.o : ../../Modules/ions_base.o ortho.o : ../../Modules/kind.o ortho.o : ../../Modules/mp.o ortho.o : ../../Modules/mp_global.o ortho.o : ../../Modules/uspp.o ortho.o : cp_interfaces.o ortho.o : gvecw.o ortho.o : ortho_base.o ortho_base.o : ../../Modules/constants.o ortho_base.o : ../../Modules/control_flags.o ortho_base.o : ../../Modules/descriptors.o ortho_base.o : ../../Modules/dspev_drv.o ortho_base.o : ../../Modules/electrons_base.o ortho_base.o : ../../Modules/io_global.o ortho_base.o : ../../Modules/ions_base.o ortho_base.o : ../../Modules/kind.o ortho_base.o : ../../Modules/mp.o ortho_base.o : ../../Modules/mp_bands.o ortho_base.o : ../../Modules/mp_diag.o ortho_base.o : ../../Modules/mp_global.o ortho_base.o : ../../Modules/ptoolkit.o ortho_base.o : ../../Modules/recvec.o ortho_base.o : ../../Modules/uspp.o ortho_base.o : gvecw.o phasefactor.o : ../../Modules/cell_base.o phasefactor.o : ../../Modules/constants.o phasefactor.o : ../../Modules/control_flags.o phasefactor.o : ../../Modules/fft_base.o phasefactor.o : ../../Modules/io_global.o phasefactor.o : ../../Modules/ions_base.o phasefactor.o : ../../Modules/kind.o phasefactor.o : ../../Modules/recvec.o phasefactor.o : cp_interfaces.o phasefactor.o : gvecw.o plugin_ext_forces.o : ../../Modules/io_files.o plugin_ext_forces.o : ../../Modules/io_global.o plugin_ext_forces.o : ../../Modules/kind.o plugin_ext_forces.o : ../../Modules/mp.o plugin_ext_forces.o : ../../Modules/mp_global.o plugin_ext_forces.o : ../../Modules/plugin_flags.o plugin_initialization.o : ../../Modules/io_files.o plugin_initialization.o : ../../Modules/io_global.o plugin_initialization.o : ../../Modules/kind.o plugin_initialization.o : ../../Modules/plugin_flags.o polarization.o : ../../Modules/cell_base.o polarization.o : ../../Modules/constants.o polarization.o : ../../Modules/io_global.o polarization.o : ../../Modules/ions_base.o polarization.o : ../../Modules/kind.o polarization.o : ../../Modules/mp.o polarization.o : ../../Modules/mp_global.o polarization.o : ../../Modules/mp_wave.o polarization.o : berry_phase.o potentials.o : ../../Modules/cell_base.o potentials.o : ../../Modules/constants.o potentials.o : ../../Modules/control_flags.o potentials.o : ../../Modules/fft_base.o potentials.o : ../../Modules/fft_interfaces.o potentials.o : ../../Modules/io_global.o potentials.o : ../../Modules/ions_base.o potentials.o : ../../Modules/kind.o potentials.o : ../../Modules/mp.o potentials.o : ../../Modules/mp_global.o potentials.o : ../../Modules/recvec.o potentials.o : ../../Modules/sic.o pres_ai_mod.o : ../../Modules/constants.o pres_ai_mod.o : ../../Modules/kind.o pres_ai_mod.o : ../../Modules/parameters.o print_out.o : ../../Modules/cell_base.o print_out.o : ../../Modules/constants.o print_out.o : ../../Modules/control_flags.o print_out.o : ../../Modules/io_files.o print_out.o : ../../Modules/io_global.o print_out.o : ../../Modules/ions_base.o print_out.o : ../../Modules/kind.o print_out.o : ../../Modules/sic.o print_out.o : ../../Modules/tsvdw.o print_out.o : ../../Modules/xml_io_base.o print_out.o : cg.o print_out.o : efield.o print_out.o : electrons.o print_out.o : energies.o print_out.o : mainvar.o print_out.o : polarization.o print_out.o : pres_ai_mod.o print_out.o : printout_base.o printout_base.o : ../../Modules/io_global.o printout_base.o : ../../Modules/kind.o printout_base.o : ../../Modules/mp.o printout_base.o : ../../Modules/mp_global.o problem_size.o : ../../Modules/electrons_base.o problem_size.o : ../../Modules/fft_base.o problem_size.o : ../../Modules/io_global.o problem_size.o : ../../Modules/ions_base.o problem_size.o : ../../Modules/kind.o problem_size.o : ../../Modules/recvec.o problem_size.o : ../../Modules/uspp.o problem_size.o : gvecw.o problem_size.o : smallbox_gvec.o pseudo_base.o : ../../Modules/cell_base.o pseudo_base.o : ../../Modules/constants.o pseudo_base.o : ../../Modules/control_flags.o pseudo_base.o : ../../Modules/io_global.o pseudo_base.o : ../../Modules/kind.o pseudopot.o : ../../Modules/kind.o pseudopot.o : ../../Modules/uspp.o pseudopot.o : modules.o pseudopot.o : spline.o pseudopot_sub.o : ../../Modules/atom.o pseudopot_sub.o : ../../Modules/cell_base.o pseudopot_sub.o : ../../Modules/constants.o pseudopot_sub.o : ../../Modules/control_flags.o pseudopot_sub.o : ../../Modules/io_global.o pseudopot_sub.o : ../../Modules/ions_base.o pseudopot_sub.o : ../../Modules/kind.o pseudopot_sub.o : ../../Modules/mp.o pseudopot_sub.o : ../../Modules/mp_global.o pseudopot_sub.o : ../../Modules/parameters.o pseudopot_sub.o : ../../Modules/recvec.o pseudopot_sub.o : ../../Modules/uspp.o pseudopot_sub.o : cp_interfaces.o pseudopot_sub.o : cpr_mod.o pseudopot_sub.o : gvecw.o pseudopot_sub.o : modules.o pseudopot_sub.o : pseudo_base.o pseudopot_sub.o : pseudopot.o pseudopot_sub.o : smallbox.o pseudopot_sub.o : smallbox_gvec.o pseudopot_sub.o : spline.o qmatrixd.o : ../../Modules/electrons_base.o qmatrixd.o : ../../Modules/io_global.o qmatrixd.o : ../../Modules/ions_base.o qmatrixd.o : ../../Modules/kind.o qmatrixd.o : ../../Modules/mp.o qmatrixd.o : ../../Modules/mp_global.o qmatrixd.o : ../../Modules/recvec.o qmatrixd.o : ../../Modules/uspp.o qmatrixd.o : efield.o qmatrixd.o : gvecw.o qqberry.o : ../../Modules/atom.o qqberry.o : ../../Modules/cell_base.o qqberry.o : ../../Modules/constants.o qqberry.o : ../../Modules/ions_base.o qqberry.o : ../../Modules/kind.o qqberry.o : ../../Modules/mp.o qqberry.o : ../../Modules/mp_global.o qqberry.o : ../../Modules/recvec.o qqberry.o : ../../Modules/uspp.o qqberry.o : cp_interfaces.o qqberry.o : gvecw.o qqberry.o : modules.o restart.o : ../../Modules/autopilot.o restart.o : ../../Modules/cell_base.o restart.o : ../../Modules/control_flags.o restart.o : ../../Modules/descriptors.o restart.o : ../../Modules/electrons_base.o restart.o : ../../Modules/io_files.o restart.o : ../../Modules/ions_base.o restart.o : ../../Modules/kind.o restart.o : ../../Modules/mp.o restart.o : ../../Modules/xml_io_base.o restart.o : cp_autopilot.o restart.o : cp_interfaces.o restart.o : cp_restart.o restart.o : electrons.o restart.o : ensemble_dft.o restart.o : gvecw.o restart_sub.o : ../../Modules/cell_base.o restart_sub.o : ../../Modules/control_flags.o restart_sub.o : ../../Modules/electrons_base.o restart_sub.o : ../../Modules/fft_base.o restart_sub.o : ../../Modules/io_global.o restart_sub.o : ../../Modules/ions_base.o restart_sub.o : ../../Modules/kind.o restart_sub.o : ../../Modules/recvec.o restart_sub.o : ../../Modules/timestep.o restart_sub.o : ../../Modules/uspp.o restart_sub.o : ../../Modules/wave_base.o restart_sub.o : ../../Modules/wavefunctions.o restart_sub.o : cp_interfaces.o restart_sub.o : efield.o restart_sub.o : electrons.o restart_sub.o : energies.o restart_sub.o : gvecw.o restart_sub.o : ions_nose.o restart_sub.o : ions_positions.o restart_sub.o : mainvar.o restart_sub.o : printout_base.o runcp.o : ../../Modules/control_flags.o runcp.o : ../../Modules/electrons_base.o runcp.o : ../../Modules/fft_base.o runcp.o : ../../Modules/kind.o runcp.o : ../../Modules/mp.o runcp.o : ../../Modules/mp_global.o runcp.o : ../../Modules/parallel_include.o runcp.o : ../../Modules/recvec.o runcp.o : ../../Modules/uspp.o runcp.o : ../../Modules/wave_base.o runcp.o : cp_interfaces.o runcp.o : efield.o runcp.o : gvecw.o runcp.o : ldaU_cp.o runcp.o : wannier.o smallbox.o : ../../Modules/constants.o smallbox.o : ../../Modules/io_global.o smallbox.o : ../../Modules/kind.o smallbox_grid.o : ../../Modules/fft_scalar.o smallbox_grid.o : ../../Modules/fft_types.o smallbox_grid.o : ../../Modules/io_global.o smallbox_gvec.o : ../../Modules/kind.o smallbox_lib.o : ../../Modules/cell_base.o smallbox_lib.o : ../../Modules/control_flags.o smallbox_lib.o : ../../Modules/fft_base.o smallbox_lib.o : ../../Modules/fft_types.o smallbox_lib.o : ../../Modules/io_global.o smallbox_lib.o : ../../Modules/ions_base.o smallbox_lib.o : ../../Modules/kind.o smallbox_lib.o : ../../Modules/mp_global.o smallbox_lib.o : cp_interfaces.o smallbox_lib.o : smallbox.o smallbox_lib.o : smallbox_gvec.o smallbox_subs.o : ../../Modules/fft_base.o smallbox_subs.o : ../../Modules/io_global.o smallbox_subs.o : ../../Modules/kind.o smallbox_subs.o : smallbox.o smallbox_subs.o : smallbox_gvec.o spinsq.o : ../../Modules/cell_base.o spinsq.o : ../../Modules/electrons_base.o spinsq.o : ../../Modules/fft_base.o spinsq.o : ../../Modules/io_global.o spinsq.o : ../../Modules/ions_base.o spinsq.o : ../../Modules/kind.o spinsq.o : ../../Modules/mp.o spinsq.o : ../../Modules/mp_global.o spinsq.o : ../../Modules/recvec.o spinsq.o : ../../Modules/uspp.o spinsq.o : gvecw.o spline.o : ../../Modules/kind.o stop_run.o : ../../Modules/constraints_module.o stop_run.o : ../../Modules/control_flags.o stop_run.o : ../../Modules/environment.o stop_run.o : ../../Modules/mp_global.o stress.o : ../../Modules/cell_base.o stress.o : ../../Modules/constants.o stress.o : ../../Modules/electrons_base.o stress.o : ../../Modules/io_global.o stress.o : ../../Modules/ions_base.o stress.o : ../../Modules/kind.o stress.o : ../../Modules/mp.o stress.o : ../../Modules/mp_global.o stress.o : ../../Modules/recvec.o stress.o : cp_interfaces.o stress.o : gvecw.o stress.o : modules.o vofrho.o : ../../Modules/cell_base.o vofrho.o : ../../Modules/constants.o vofrho.o : ../../Modules/control_flags.o vofrho.o : ../../Modules/electrons_base.o vofrho.o : ../../Modules/fft_base.o vofrho.o : ../../Modules/fft_interfaces.o vofrho.o : ../../Modules/funct.o vofrho.o : ../../Modules/io_global.o vofrho.o : ../../Modules/ions_base.o vofrho.o : ../../Modules/kind.o vofrho.o : ../../Modules/mp.o vofrho.o : ../../Modules/mp_global.o vofrho.o : ../../Modules/recvec.o vofrho.o : ../../Modules/sic.o vofrho.o : ../../Modules/tsvdw.o vofrho.o : ../../Modules/uspp.o vofrho.o : ../../Modules/xc_rVV10.o vofrho.o : ../../Modules/xc_vdW_DF.o vofrho.o : cp_interfaces.o vofrho.o : energies.o vofrho.o : ldaU_cp.o vofrho.o : modules.o vofrho.o : pres_ai_mod.o vofrho.o : smallbox_gvec.o vol_clu.o : ../../Modules/cell_base.o vol_clu.o : ../../Modules/constants.o vol_clu.o : ../../Modules/control_flags.o vol_clu.o : ../../Modules/electrons_base.o vol_clu.o : ../../Modules/fft_base.o vol_clu.o : ../../Modules/fft_interfaces.o vol_clu.o : ../../Modules/io_global.o vol_clu.o : ../../Modules/ions_base.o vol_clu.o : ../../Modules/kind.o vol_clu.o : ../../Modules/mp.o vol_clu.o : ../../Modules/mp_bands.o vol_clu.o : ../../Modules/mp_world.o vol_clu.o : ../../Modules/parameters.o vol_clu.o : ../../Modules/recvec.o vol_clu.o : ions_positions.o vol_clu.o : mainvar.o vol_clu.o : pres_ai_mod.o wannier.o : ../../Modules/cell_base.o wannier.o : ../../Modules/control_flags.o wannier.o : ../../Modules/descriptors.o wannier.o : ../../Modules/electrons_base.o wannier.o : ../../Modules/fft_base.o wannier.o : ../../Modules/io_global.o wannier.o : ../../Modules/ions_base.o wannier.o : ../../Modules/kind.o wannier.o : ../../Modules/recvec.o wannier.o : ../../Modules/uspp.o wannier.o : ../../Modules/wave_base.o wannier.o : cp_interfaces.o wannier.o : gvecw.o wannier.o : modules.o wannier.o : printout_base.o wannier.o : wannier_base.o wannier_base.o : ../../Modules/kind.o wave.o : ../../Modules/dspev_drv.o wave.o : ../../Modules/electrons_base.o wave.o : ../../Modules/io_global.o wave.o : ../../Modules/kind.o wave.o : ../../Modules/mp.o wave.o : ../../Modules/mp_global.o wave.o : ../../Modules/mp_wave.o wave.o : ../../Modules/random_numbers.o wave.o : ../../Modules/recvec.o wave.o : ../../Modules/wave_base.o wave.o : electrons.o wave.o : gvecw.o wave_types.o : ../../Modules/kind.o wf.o : ../../Modules/cell_base.o wf.o : ../../Modules/constants.o wf.o : ../../Modules/control_flags.o wf.o : ../../Modules/electrons_base.o wf.o : ../../Modules/fft_base.o wf.o : ../../Modules/fft_interfaces.o wf.o : ../../Modules/io_global.o wf.o : ../../Modules/ions_base.o wf.o : ../../Modules/kind.o wf.o : ../../Modules/mp.o wf.o : ../../Modules/mp_global.o wf.o : ../../Modules/mp_wave.o wf.o : ../../Modules/parallel_include.o wf.o : ../../Modules/recvec.o wf.o : ../../Modules/uspp.o wf.o : cp_interfaces.o wf.o : gvecw.o wf.o : mainvar.o wf.o : modules.o wf.o : printout_base.o wf.o : smallbox_gvec.o wf.o : wannier.o wf.o : wannier_base.o wfdd.o : ../../Modules/constants.o espresso-5.1/CPV/src/pseudo_base.f900000644000175000017500000003352012341373026015336 0ustar mbamba! ! Copyright (C) 2002-2008 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !=----------------------------------------------------------------------------=! MODULE pseudo_base !=----------------------------------------------------------------------------=! USE kinds USE constants, ONLY: gsmall, fpi, pi USE cell_base, ONLY: tpiba IMPLICIT NONE SAVE PRIVATE PUBLIC :: compute_rhops, formfn, formfa PUBLIC :: compute_eself, compute_rhocg !=----------------------------------------------------------------------------=! CONTAINS !=----------------------------------------------------------------------------=! subroutine compute_rhocg( rhocb, drhocb, r, rab, rho_atc, gb, omegab, & tpibab2, mesh, ngb, what ) ! if what == 0 compute rhocb(G) ! if what == 1 compute rhocb(G) and drhocb(G) ! ! rhocb(G) = (integral) rho_cc(r) j_0(r,G) r**2 dr ! = (integral) rho_cc(r) j_0(r,G) r**2 dr/dx dx ! drhocb(G) = (integral) rho_cc(r) dj_0(r,G)/dG r**2 dr use kinds, only: DP use constants, only: fpi use control_flags, only: iverbosity use io_global, only: stdout implicit none integer, intent(in) :: mesh integer, intent(in) :: ngb integer, intent(in) :: what real(DP), intent(out) :: rhocb( ngb ) real(DP), intent(out) :: drhocb( ngb ) real(DP), intent(in) :: rho_atc( mesh ) real(DP), intent(in) :: r( mesh ) real(DP), intent(in) :: rab( mesh ) real(DP), intent(in) :: gb( ngb ) real(DP), intent(in) :: omegab real(DP), intent(in) :: tpibab2 integer :: ig, ir real(DP), allocatable :: fint(:), jl(:), djl(:) real(DP) :: c, xg !$omp parallel default(none) private(ig,c,xg,fint,jl,djl,ir) & !$omp shared(mesh,what,omegab,ngb,tpibab2,gb,r,rho_atc,rhocb,rab,drhocb) allocate(fint(mesh)) allocate(jl(mesh)) if( what == 1 ) then allocate(djl(mesh)) end if if( what < 0 .and. what > 1 ) & call errore(" compute_rhocg ", " parameter what is out of range ", 1 ) c = fpi / omegab !$omp do do ig = 1, ngb xg = sqrt( gb(ig) * tpibab2 ) call sph_bes ( mesh, r(1), xg, 0, jl ) do ir=1,mesh fint(ir)=r(ir)**2*rho_atc(ir)*jl(ir) end do call simpson_cp90( mesh,fint,rab(1),rhocb(ig)) if( what == 1 ) then ! djl = - d j_0(x) /dx = + j_1(x) call sph_bes ( mesh, r(1), xg, +1, djl ) do ir=1,mesh fint(ir)=r(ir)**3*rho_atc(ir)*djl(ir) end do call simpson_cp90( mesh, fint, rab(1), drhocb(ig) ) end if end do !$omp do do ig=1,ngb rhocb(ig) = c * rhocb(ig) end do if( what == 1 ) then !$omp do do ig=1,ngb drhocb(ig) = c * drhocb(ig) end do end if deallocate( jl, fint ) if( what == 1 ) then deallocate(djl) end if !$omp end parallel if(iverbosity > 2) WRITE( stdout,'(a,f12.8)') & ' integrated core charge= ',omegab*rhocb(1) return end subroutine compute_rhocg !----------------------------------------------------------------------- subroutine compute_rhops( rhops, drhops, zv, rcmax, g, omega, tpiba2, ngs, tpre ) ! use kinds, only: DP ! implicit none integer, intent(in) :: ngs logical, intent(in) :: tpre real(DP), intent(in) :: g( ngs ) real(DP), intent(out) :: rhops( ngs ) real(DP), intent(out) :: drhops( ngs ) real(DP), intent(in) :: zv, rcmax, omega, tpiba2 ! real(DP) :: r2new integer :: ig ! r2new = 0.25d0 * tpiba2 * rcmax**2 do ig = 1, ngs rhops(ig) = - zv * exp( -r2new * g(ig) ) / omega end do if(tpre) then drhops( 1:ngs ) = - rhops( 1:ngs ) * r2new / tpiba2 endif ! return end subroutine compute_rhops !----------------------------------------------------------------------- FUNCTION compute_eself( na, zv, rcmax, nsp ) !----------------------------------------------------------------------- ! ! calculation of gaussian selfinteraction ! USE constants, ONLY: pi ! IMPLICIT NONE REAL (DP) :: compute_eself ! INTEGER, INTENT(IN) :: nsp INTEGER, INTENT(IN) :: na( nsp ) REAL (DP), INTENT(IN) :: zv( nsp ) REAL (DP), INTENT(IN) :: rcmax( nsp ) ! REAL (DP) :: eself INTEGER :: is ! eself = 0.0d0 DO is = 1, nsp eself = eself + DBLE( na( is ) ) * zv( is )**2 / rcmax( is ) END DO eself = eself / SQRT( 2.0d0 * pi ) ! compute_eself = eself RETURN END FUNCTION compute_eself !----------------------------------------------------------------------- subroutine formfn( r, rab, vloc_at, zv, rcmax, g, omega, & tpiba2, mesh, ngs, oldvan, tpre, vps, dv0, dvps ) !----------------------------------------------------------------------- ! !computes the form factors of pseudopotential (vps), ! also calculated the derivative of vps with respect to ! g^2 (dvps) ! use kinds, only: DP use constants, only: pi, fpi, gsmall ! implicit none integer, intent(in) :: ngs integer, intent(in) :: mesh logical, intent(in) :: oldvan logical, intent(in) :: tpre real(DP), intent(in) :: g( ngs ) real(DP), intent(in) :: r( mesh ) real(DP), intent(in) :: rab( mesh ) real(DP), intent(in) :: vloc_at( mesh ) real(DP), intent(out) :: vps( ngs ) real(DP), intent(out) :: dvps( ngs ) real(DP), intent(out) :: dv0 real(DP), intent(in) :: zv, rcmax, omega, tpiba2 ! real(DP) :: xg integer :: ig, ir, irmax real(DP), allocatable:: f(:),vscr(:), figl(:) real(DP), allocatable:: df(:), dfigl(:) real(DP), external :: qe_erf, qe_erfc ! allocate( vscr(mesh), figl(ngs) ) if (tpre) then allocate( dfigl(ngs) ) end if ! ! definition of irmax: gridpoint beyond which potential is zero ! irmax = 0 do ir = 1, mesh if( r( ir ) < 10.0d0 ) irmax = ir end do ! do ir = 1, irmax vscr(ir) = 0.5d0 * r(ir) * vloc_at(ir) + zv * qe_erf( r(ir) / rcmax ) end do do ir = irmax + 1, mesh vscr(ir)=0.0d0 end do ! ! ... In CP the G=0 value of the Hartree+local pseudopotential ! ... is not set to its correct value, the "alpha Z" term, but ! ... to a different value. This has no effect on the energy ! ... of a neutral system as long as all terms are consistent ! ... but it yields a different alignment of levels and, only ! ... in charged system, a different energy. ! ... dv0 is the correction to the G=0 term in CP needed to ! ... reproduce the results from other PW codes ! !$omp parallel default(none) private( ig, xg, ir, f, df ) & !$omp shared( irmax, r, rcmax, mesh, oldvan, rab, dv0, tpiba2, g, ngs, vscr, tpre, zv, figl, vps, dvps, omega, dfigl ) allocate( f(mesh) ) if (tpre) then allocate( df(mesh) ) end if DO ir = 1, irmax f(ir) = fpi * ( zv * qe_erfc( r(ir)/rcmax ) ) * r(ir) END DO DO ir = irmax + 1, mesh f(ir)=0.0d0 END DO !$omp master IF ( oldvan ) THEN CALL herman_skillman_int( mesh, f, rab, dv0 ) ELSE CALL simpson_cp90( mesh, f, rab, dv0 ) END IF !$omp end master ! !$omp do do ig = 1, ngs xg = sqrt( g(ig) * tpiba2 ) if( xg < gsmall ) then ! ! g=0 ! do ir = 1, irmax f(ir) = vscr(ir) * r(ir) if( tpre ) then df(ir) = vscr(ir) * r(ir) ** 3 endif end do do ir = irmax + 1, mesh f(ir) = 0.0d0 if( tpre ) then df(ir) = 0.0d0 end if end do ! if ( oldvan ) then call herman_skillman_int( mesh, f, rab, figl(ig) ) if(tpre) call herman_skillman_int( mesh, df, rab, dfigl(ig) ) else call simpson_cp90( mesh, f, rab, figl(ig) ) if(tpre) call simpson_cp90( mesh, df, rab, dfigl(ig) ) end if ! else ! ! g>0 ! do ir = 1, mesh f(ir) = vscr(ir) * sin( r(ir) * xg ) if( tpre ) then df(ir) = vscr(ir) * cos( r(ir) * xg ) * 0.5d0 * r(ir) / xg endif end do ! if ( oldvan ) then call herman_skillman_int( mesh, f, rab(1), figl(ig) ) if(tpre) call herman_skillman_int( mesh, df, rab(1), dfigl(ig) ) else call simpson_cp90(mesh,f,rab(1),figl(ig)) if(tpre) call simpson_cp90(mesh,df,rab(1),dfigl(ig)) end if ! end if end do ! !$omp do do ig = 1, ngs xg = sqrt( g(ig) * tpiba2 ) if( xg < gsmall ) then ! ! g=0 ! vps(ig) = fpi * figl(ig) / omega if(tpre)then dvps(ig) = - fpi * dfigl(ig) / omega / 6.0d0 ! limit ( xg -> 0 ) dvps( xgi ) end if ! else ! ! g>0 ! vps(ig) = fpi * figl(ig) / ( omega * xg ) if(tpre)then dvps(ig) = fpi * dfigl(ig) / ( omega * xg ) - 0.5d0 * vps(ig) / (xg*xg) endif end if end do deallocate( f ) if (tpre) then deallocate( df ) end if !$omp end parallel ! deallocate( figl, vscr ) if (tpre) then deallocate( dfigl ) end if ! return end subroutine formfn !----------------------------------------------------------------------- subroutine formfa( vps, dvps, rc1, rc2, wrc1, wrc2, rcl, al, bl, & zv, rcmax, g, omega, tpiba2, ngs, gstart, tpre ) !----------------------------------------------------------------------- ! !computes the form factors of pseudopotential (vps), ! also calculated the derivative of vps with respect to ! g^2 (dvps) ! ! BHS pseudopotentials (fourier transformed analytically) use kinds, only: DP use constants, only: pi, fpi, gsmall ! implicit none integer, intent(in) :: ngs, gstart logical, intent(in) :: tpre real(DP), intent(in) :: g( ngs ) real(DP), intent(in) :: rc1, rc2 real(DP), intent(in) :: wrc1, wrc2 real(DP), intent(in) :: rcl( 3 ), al( 3 ), bl( 3 ) real(DP), intent(out) :: vps( ngs ) real(DP), intent(out) :: dvps( ngs ) real(DP), intent(in) :: zv, rcmax, omega, tpiba2 ! real(DP) :: r2max, r21, r22, gps, sfp, r2l, ql, el, par, sp real(DP) :: emax, e1, e2, fpibg, dgps, dsfp integer :: ib, ig r2max = rcmax**2 r21 = rc1**2 r22 = rc2**2 ! ! g = 0 ! if (gstart == 2) then gps = - zv * pi * ( - wrc2 * r22 - wrc1 * r21 + r2max ) / omega sfp = 0.0d0 do ib = 1, 3 r2l = rcl( ib )**2 ql = 0.25d0 * r2l * g(1) * tpiba2 el = exp( -ql ) par = al( ib ) + bl( ib ) * r2l * ( 1.5d0 - ql ) sp = ( pi * r2l )**1.5d0 * el / omega sfp = sp * par + sfp end do vps(1) = gps + sfp end if ! ! g > 0 ! do ig = gstart, ngs ! emax = exp ( -0.25d0 * r2max * g(ig) * tpiba2 ) e1 = exp ( -0.25d0 * r21 * g(ig) * tpiba2 ) e2 = exp ( -0.25d0 * r22 * g(ig) * tpiba2 ) fpibg = fpi / ( g(ig) * tpiba2 ) gps = - zv * ( wrc1 * e1 - emax + wrc2 * e2 ) / omega gps = gps * fpibg ! if(tpre) then dgps = - gps / ( tpiba2 * g(ig) ) + fpibg * zv * & & ( wrc1 * r21 * e1 - r2max * emax + wrc2 * r22 * e2 ) * & & 0.25d0 / omega end if ! sfp = 0.0d0 dsfp = 0.0d0 ! do ib = 1, 3 r2l = rcl( ib )**2 ql = 0.25d0 * r2l * g(ig) * tpiba2 par = al( ib ) + bl( ib ) * r2l * ( 1.5d0 - ql ) sp = ( pi * r2l )**1.5d0 * exp( -ql ) / omega sfp = sp * par + sfp if(tpre) then dsfp = dsfp - sp * ( par + bl( ib ) * r2l ) * ql / ( tpiba2 * g(ig) ) end if end do ! vps(ig) = sfp + gps if(tpre) dvps(ig) = dsfp + dgps ! end do ! return end subroutine formfa !=----------------------------------------------------------------------------=! END MODULE pseudo_base !=----------------------------------------------------------------------------=! espresso-5.1/CPV/src/modules.f900000644000175000017500000001156212341373026014517 0ustar mbamba! ! Copyright (C) 2002-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! module local_pseudo use kinds, only: DP implicit none save ! ! rhops = ionic pseudocharges (for Ewald term) ! vps = local pseudopotential in G space for each species ! real(DP), allocatable:: rhops(:,:), vps(:,:) ! ! drhops = derivative of rhops respect to G^2 ! dvps = derivative of vps respect to G^2 ! real(DP),allocatable:: dvps(:,:), drhops(:,:) ! ! vps0 = correction factors needed to align V(0) to the "traditional" ! value used by other plane-wave codes - one per species ! real(DP),allocatable:: vps0(:) ! contains ! subroutine allocate_local_pseudo( ng, nsp ) integer, intent(in) :: ng, nsp call deallocate_local_pseudo() ALLOCATE( rhops( ng, nsp ) ) ALLOCATE( vps( ng, nsp ) ) ALLOCATE( drhops( ng, nsp ) ) ALLOCATE( dvps( ng, nsp ) ) ALLOCATE( vps0( nsp ) ) end subroutine ! subroutine deallocate_local_pseudo IF( ALLOCATED( vps0 ) ) DEALLOCATE( vps0 ) IF( ALLOCATED( dvps ) ) DEALLOCATE( dvps ) IF( ALLOCATED( drhops ) ) DEALLOCATE( drhops ) IF( ALLOCATED( vps ) ) DEALLOCATE( vps ) IF( ALLOCATED( rhops ) ) DEALLOCATE( rhops ) end subroutine ! end module local_pseudo module qgb_mod USE kinds, ONLY: DP implicit none save complex(DP), allocatable :: qgb(:,:,:) complex(DP), allocatable :: dqgb(:,:,:,:,:) contains subroutine deallocate_qgb_mod IF( ALLOCATED( qgb ) ) DEALLOCATE( qgb ) IF( ALLOCATED( dqgb ) ) DEALLOCATE( dqgb ) end subroutine deallocate_qgb_mod end module qgb_mod MODULE metagga !metagga USE kinds, ONLY: DP implicit none !the variables needed for meta-GGA REAL(DP), ALLOCATABLE :: & kedtaus(:,:), &! KineticEnergyDensity in real space,smooth grid kedtaur(:,:), &! real space, density grid crosstaus(:,:,:), &!used by stress tensor,in smooth grid dkedtaus(:,:,:,:) !derivative of kedtau wrt h on smooth grid COMPLEX(DP) , ALLOCATABLE :: & kedtaug(:,:), & !KineticEnergyDensity in G space gradwfc(:,:) !used by stress tensor contains subroutine deallocate_metagga IF( ALLOCATED(crosstaus))DEALLOCATE(crosstaus) IF( ALLOCATED(dkedtaus)) DEALLOCATE(dkedtaus) IF( ALLOCATED(gradwfc)) DEALLOCATE(gradwfc) end subroutine deallocate_metagga END MODULE metagga !end metagga MODULE dener USE kinds, ONLY: DP IMPLICIT NONE SAVE REAL(DP) :: dekin(3,3) REAL(DP) :: dh(3,3) REAL(DP) :: dps(3,3) REAL(DP) :: denl(3,3) REAL(DP) :: dxc(3,3) REAL(DP) :: dsr(3,3) REAL(DP) :: detot(3,3) REAL(DP) :: denlc(3,3) REAL(DP) :: dekin6(6) REAL(DP) :: dh6(6) REAL(DP) :: dps6(6) REAL(DP) :: denl6(6) REAL(DP) :: dxc6(6) REAL(DP) :: dsr6(6) REAL(DP) :: detot6(6) END MODULE dener MODULE stress_param USE kinds, ONLY : DP IMPLICIT NONE SAVE INTEGER, DIMENSION(6), PARAMETER :: alpha = (/ 1,2,3,2,3,3 /) INTEGER, DIMENSION(6), PARAMETER :: beta = (/ 1,1,1,2,2,3 /) REAL(DP), DIMENSION(3,3), PARAMETER :: delta = reshape & ( (/ 1.0_DP, 0.0_DP, 0.0_DP, & 0.0_DP, 1.0_DP, 0.0_DP, & 0.0_DP, 0.0_DP, 1.0_DP & /), (/ 3, 3 /) ) ! ... dalbe(:) = delta(alpha(:),beta(:)) ! REAL(DP), DIMENSION(6), PARAMETER :: dalbe = & (/ 1.0_DP, 0.0_DP, 0.0_DP, 1.0_DP, 0.0_DP, 1.0_DP /) END MODULE MODULE core ! USE kinds USE uspp, ONLY : nlcc_any ! IMPLICIT NONE SAVE ! rhocb = core charge in G space (box grid) ! rhoc = core charge in real space (dense grid) ! rhocg = core charge in G space (dense grid) ! drhocg = derivative of core charge in G space (used for stress) ! REAL(DP), ALLOCATABLE:: rhocb(:,:) REAL(DP), ALLOCATABLE:: rhoc(:) REAL(DP), ALLOCATABLE:: rhocg(:,:) REAL(DP), ALLOCATABLE:: drhocg(:,:) ! CONTAINS ! SUBROUTINE allocate_core( nrxx, ngm, ngb, nsp ) INTEGER, INTENT(IN) :: nrxx, ngm, ngb, nsp IF ( nlcc_any ) THEN ! ALLOCATE( rhoc( nrxx ) ) ALLOCATE( rhocb( ngb, nsp ) ) ALLOCATE( rhocg( ngm, nsp ) ) ALLOCATE( drhocg( ngm, nsp ) ) ! ELSE ! ! ... dummy allocation required because this array appears in the ! ... list of arguments of some routines ! ALLOCATE( rhoc( 1 ) ) ! END IF END SUBROUTINE allocate_core ! SUBROUTINE deallocate_core() IF( ALLOCATED( rhocb ) ) DEALLOCATE( rhocb ) IF( ALLOCATED( rhoc ) ) DEALLOCATE( rhoc ) IF( ALLOCATED( rhocg ) ) DEALLOCATE( rhocg ) IF( ALLOCATED( drhocg ) ) DEALLOCATE( drhocg ) END SUBROUTINE deallocate_core ! END MODULE core ! espresso-5.1/CPV/examples/0000755000175000017500000000000012341373043013550 5ustar mbambaespresso-5.1/CPV/examples/example06/0000755000175000017500000000000012341373043015351 5ustar mbambaespresso-5.1/CPV/examples/example06/run_xml_example0000755000175000017500000002315412341373026020504 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x to calculate Wannier functions and" $ECHO "to perform dynamics with an external electric field." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="H.blyp-vbc.UPF O.blyp-mt.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" cat > h2o.scf.xml << EOF 0.0 0.0 0.0 0.0 0.0 8.0 O.blyp-mt.UPF 1.0 H.blyp-vbc.UPF 5.093750000000 5.093750000000 5.093750000000 3.648508572765 5.093750000000 3.967985471743 6.538991443058 5.093750000000 3.967985459417 $PSEUDO_DIR/ $TMP_DIR/ from_scratch 1 FALSE TRUE 70.0 1.0d-6 1.0d-2 280.0 1.d-8 4 1000 1.0d0 TRUE 50 400.d0 3.d0 1.0d-8 Gram-Schmidt TRUE 0.3 250 EOF $ECHO " running electronic minimization...\c" $CP_COMMAND < h2o.scf.xml > h2o.scf.out check_failure $? $ECHO " done" cat > h2o.wannier.xml << EOF 0.0 0.0 0.0 0.0 0.0 8.0 O.blyp-mt.UPF 1.0 H.blyp-vbc.UPF 5.093750000000 5.093750000000 5.093750000000 3.648508572765 5.093750000000 3.967985471743 6.538991443058 5.093750000000 3.967985459417 $PSEUDO_DIR/ $TMP_DIR/ restart 1 FALSE TRUE 70.0 1.0d-6 1.0d-2 280.0 1.d-8 4 1000 1.0d0 none TRUE 50 51 400.d0 3.d0 1.0d-8 200 Gram-Schmidt TRUE 0.3 250 3 4 100 100 1.0D-14 EOF $ECHO " running Wannier function calculation...\c" $CP_COMMAND < h2o.wannier.xml > h2o.wannier.out check_failure $? $ECHO " done" $ECHO "">> h2o.wannier.out $ECHO " Wannier functions centers:">> h2o.wannier.out tail -4 $TMP_DIR/h2o_mol.wfc >> h2o.wannier.out tail -4 fort.24 >> h2o.wannier.out $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/CPV/examples/example06/README0000644000175000017500000000046512341373026016237 0ustar mbambaThis is a second example of how to use cp.x to calculate Wannier functions (contributed by people at IRRMA Lausanne) The first calculation finds the electronic ground state, while the subsequent one calculates Wannier orbitals for a water molecule, using Jacobi Rotation as localization algorithm (wfsd=3). espresso-5.1/CPV/examples/example06/run_example0000755000175000017500000001053612341373026017624 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This is a second example of how to use cp.x to calculate Wannier functions," $ECHO "using Jacobi Rotation as localization algorithm (courtesy of IRRMA Lausanne)." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="H.blyp-vbc.UPF O.blyp-mt.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cp* $ECHO " done" cat > h2o.scf.in << EOF &control calculation = 'scf' restart_mode='from_scratch', prefix='h2o_mol', tstress = .false. tprnfor = .true. saverho = .true. pseudo_dir = "$PSEUDO_DIR/", outdir = "$TMP_DIR/", ndw=50 nstep=1000 iprint=1 dt = 1.0d0 ekin_conv_thr = 1.0d-8 etot_conv_thr = 1.0d-6 forc_conv_thr = 1.0d-2 / &system ibrav= 1, celldm(1)=16.0, nat= 3, ntyp= 2, ecutwfc = 70.0, ecutrho=280.0, nbnd=4, / &electrons emass = 400.d0, emass_cutoff = 3.d0, orthogonalization = 'Gram-Schmidt', tcg=.true., passop=0.3, maxiter = 250, conv_thr=1.d-8 / ATOMIC_SPECIES O 8 O.blyp-mt.UPF H 1 H.blyp-vbc.UPF ATOMIC_POSITIONS {bohr} O 5.093750000000 5.093750000000 5.093750000000 H 3.648508572765 5.093750000000 3.967985471743 H 6.538991443058 5.093750000000 3.967985459417 EOF $ECHO " running electronic minimization...\c" $CP_COMMAND < h2o.scf.in > h2o.scf.out check_failure $? $ECHO " done" cat > h2o.wannier.in << EOF &control calculation = 'cp-wf' restart_mode='restart', prefix='h2o_mol', tstress = .false. tprnfor = .true. saverho = .true. pseudo_dir = "$PSEUDO_DIR/", outdir = "$TMP_DIR/", ndr=50 ndw=51 nstep=1000 iprint=1 dt = 1.0d0 ekin_conv_thr = 1.0d-8 etot_conv_thr = 1.0d-6 forc_conv_thr = 1.0d-2 / &system ibrav= 1, celldm(1)=16.0, nat= 3, ntyp= 2, ecutwfc = 70.0, ecutrho=280.0, nbnd=4, / &electrons emass = 400.d0, emass_cutoff = 3.d0, orthogonalization = 'Gram-Schmidt', tcg=.true., passop=0.3, maxiter = 250, conv_thr=1.d-8 / &ions ion_dynamics = 'none' / &wannier wfsd = 3 calwf = 4 nit = 100 nsd = 100 nsteps = 200 tolw = 1.0D-14 / ATOMIC_SPECIES O 8 O.blyp-mt.UPF H 1 H.blyp-vbc.UPF ATOMIC_POSITIONS {bohr} O 5.093750000000 5.093750000000 5.093750000000 H 3.648508572765 5.093750000000 3.967985471743 H 6.538991443058 5.093750000000 3.967985459417 EOF $ECHO " running Wannier function calculation...\c" $CP_COMMAND < h2o.wannier.in > h2o.wannier.out check_failure $? $ECHO " done" $ECHO "">> h2o.wannier.out $ECHO " Wannier functions centers:">> h2o.wannier.out tail -4 $TMP_DIR/h2o_mol.wfc >> h2o.wannier.out tail -4 fort.24 >> h2o.wannier.out $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/CPV/examples/example06/reference/0000755000175000017500000000000012341373043017307 5ustar mbambaespresso-5.1/CPV/examples/example06/reference/h2o.wannier.out0000644000175000017500000003146212341373026022201 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.1CVS - Wed Mar 11 17:41:02 CET 2009 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 11:22:23 17Mar2009 Serial Build Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/espresso/pseudo/O.blyp-mt.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/espresso/pseudo/H.blyp-vbc.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 1000 Print out every 1 MD Steps Reads from unit = 50 Writes to unit = 51 MD Simulation time step = 1.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 1385.23 [AU] ibrav = 1 alat = 16.00000000 a1 = 16.00000000 0.00000000 0.00000000 a2 = 0.00000000 16.00000000 0.00000000 a3 = 0.00000000 0.00000000 16.00000000 b1 = 0.06250000 0.00000000 0.00000000 b2 = 0.00000000 0.06250000 0.00000000 b3 = 0.00000000 0.00000000 0.06250000 omega = 4096.00000000 ======================================== | CONJUGATE GRADIENT | ======================================== | iterations = 250 | | conv_thr = 0.00000001000 a.u. | | passop = 0.30000 a.u. | | niter_cg_restart = 20 | ======================================== Energy Cut-offs --------------- Ecutwfc = 70.0 Ry, Ecutrho = 280.0 Ry, Ecuts = 280.0 Ry Gcutwfc = 21.3 , Gcutrho = 42.6 Gcuts = 42.6 NOTA BENE: refg, mmx = 0.050000 11200 Orthog. with Gram-Schmidt verlet algorithm for electron dynamics with friction frice = 0.1000 , grease = 1.0000 Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: LEE, YANG, AND PARR Using Generalized Gradient Corrections with Exchange functional: BECKE Correlation functional: PERDEW AND WANG Exchange-correlation = SLA LYP B88 BLYP (1313) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 14583.11 (a.u.), 8.00 (amu) rcmax = 0.50 (a.u.) 5.093750 5.093750 5.093750 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.50 (a.u.) 3.648509 5.093750 3.967985 6.538991 5.093750 3.967985 Ionic position will be re-read from restart file Cell Dynamics Parameters (from STDIN) ------------------------------------- Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 16.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 16.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 16.0000 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 2857, nstw = 717, nsts = 2857 PEs n.st n.stw n.sts n.g n.gw n.gs 1 5713 1433 5713 324157 40483 324157 0 5713 1433 5713 324157 40483 324157 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 90 90 90 90 90 90 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 90 90 90 Local number of cell to store the grid ( nnrx ) = 729000 Number of x-y planes for each processors: nr3l = 90 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 90 90 90 90 90 90 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 90 90 90 Local number of cell to store the grid ( nnrx ) = 729000 Number of x-y planes for each processors: nr3sl = 90 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 162079 162079 162079 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 162079 162079 162079 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 20242 20242 20242 System geometry initialization ------------------------------ Scaled positions from standard input O 0.318359E+00 0.318359E+00 0.318359E+00 H 0.228032E+00 0.318359E+00 0.247999E+00 H 0.408687E+00 0.318359E+00 0.247999E+00 ibrav = 1 cell parameters 16.00000 0.00000 0.00000 0.00000 16.00000 0.00000 0.00000 0.00000 16.00000 Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion IBRAV SELECTED: 1 WANNIER SETUP : check G vectors and weights inw = 1: 1 0 0 1.000000 inw = 2: 0 1 0 1.000000 inw = 3: 0 0 1 1.000000 Translations to be done 3 ibrav selected: 1 Translation 1 for 20242 G vectors Translation 2 for 20242 G vectors Translation 3 for 20242 G vectors Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /home/giannozz/tmp//h2o_mol_50.save restart file read in 0.023 sec. nprint_nfi= -2 nprint_nfi= 3 formf: eself= 30.31961 formf: vps(g=0)= -0.0008731 rhops(g=0)= -0.0014648 formf: sum_g vps(g)= -1.7560905 sum_g rhops(g)= -4.3108228 formf: vps(g=0)= -0.0002027 rhops(g=0)= -0.0002441 formf: sum_g vps(g)= -2.0909708 sum_g rhops(g)= -0.7184705 Delta V(G=0): 0.001534Ry, 0.041742eV PERFORMING CONJUGATE GRADIENT MINIMIZATION OF EL. STATES cg_sub: missed minimum, case 3, iteration 1 cg_sub: missed minimum, case 2, iteration 5 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 nfi tempp E -T.S-mu.nbsp +K_p #Iter Step 4 0 -17.17481 -17.17481 -17.17481 6 1.00000000000000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.00000000000000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.00000000000000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.00000000000000 Initial spread : 0.123934984832669 Tournus numero : 1 1 7.976273044040344E-002 Tournus numero : 2 2 7.460151488884242E-002 Tournus numero : 3 3 7.391425025211217E-002 Tournus numero : 4 4 7.376183634401831E-002 Tournus numero : 5 5 7.373517685661003E-002 Tournus numero : 6 6 7.373085280779126E-002 Tournus numero : 7 7 7.373021316495980E-002 Tournus numero : 8 8 7.373012054807992E-002 Tournus numero : 9 9 7.373010726983334E-002 Tournus numero : 10 10 7.373010536629893E-002 Tournus numero : 11 11 7.373010509313195E-002 Tournus numero : 12 12 7.373010505388439E-002 Tournus numero : 13 13 7.373010504824155E-002 Tournus numero : 14 14 7.373010504742997E-002 Tournus numero : 15 15 7.373010504731324E-002 Tournus numero : 16 16 7.373010504729642E-002 Tournus numero : 17 17 7.373010504729402E-002 Arret : 17 7.373010504729402E-002 1.00000000000000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.00000000000000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.00000000000000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 1.00000000000000 Initial spread : 0.123935088953706 Tournus numero : 1 1 7.976285415533411E-002 Tournus numero : 2 2 7.460152989771232E-002 Tournus numero : 3 3 7.391425385505250E-002 Tournus numero : 4 4 7.376183636946218E-002 Tournus numero : 5 5 7.373517603603531E-002 Tournus numero : 6 6 7.373085178352386E-002 Tournus numero : 7 7 7.373021209789221E-002 Tournus numero : 8 8 7.373011947276124E-002 Tournus numero : 9 9 7.373010619302313E-002 Tournus numero : 10 10 7.373010428923031E-002 Tournus numero : 11 11 7.373010401601987E-002 Tournus numero : 12 12 7.373010397676515E-002 Tournus numero : 13 13 7.373010397112116E-002 Tournus numero : 14 14 7.373010397030938E-002 Tournus numero : 15 15 7.373010397019258E-002 Tournus numero : 16 16 7.373010397017578E-002 Tournus numero : 17 17 7.373010397017335E-002 Arret : 17 7.373010397017335E-002 writing restart file: /home/giannozz/tmp//h2o_mol_51.save restart file written in 0.098 sec. CP : 11.31s CPU time, 11.63s wall time This run was terminated on: 11:22:35 17Mar2009 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= Wannier functions centers: 4.32980992237975 5.09375384407030 4.46145702628894 5.09376804313364 5.60291753775800 5.35351891613608 5.09373744359639 4.58456794425987 5.35354172609476 5.85768369794555 5.09373238952404 4.46145457705008 Spread of the 1 -th wannier function is 1.29482146061484 Spread of the 2 -th wannier function is 1.37631742505141 Spread of the 3 -th wannier function is 1.37633126163902 Spread of the 4 -th wannier function is 1.29482392602192 espresso-5.1/CPV/examples/example06/reference/h2o.scf.out0000644000175000017500000002762012341373026021312 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.1CVS - Wed Mar 11 17:41:02 CET 2009 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 11:20:28 17Mar2009 Serial Build Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/espresso/pseudo/O.blyp-mt.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/espresso/pseudo/H.blyp-vbc.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 1000 Print out every 1 MD Steps Reads from unit = 50 Writes to unit = 50 MD Simulation time step = 1.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 1385.23 [AU] ibrav = 1 alat = 16.00000000 a1 = 16.00000000 0.00000000 0.00000000 a2 = 0.00000000 16.00000000 0.00000000 a3 = 0.00000000 0.00000000 16.00000000 b1 = 0.06250000 0.00000000 0.00000000 b2 = 0.00000000 0.06250000 0.00000000 b3 = 0.00000000 0.00000000 0.06250000 omega = 4096.00000000 ======================================== | CONJUGATE GRADIENT | ======================================== | iterations = 250 | | conv_thr = 0.00000001000 a.u. | | passop = 0.30000 a.u. | | niter_cg_restart = 20 | ======================================== Energy Cut-offs --------------- Ecutwfc = 70.0 Ry, Ecutrho = 280.0 Ry, Ecuts = 280.0 Ry Gcutwfc = 21.3 , Gcutrho = 42.6 Gcuts = 42.6 NOTA BENE: refg, mmx = 0.050000 11200 Orthog. with Gram-Schmidt verlet algorithm for electron dynamics with friction frice = 0.1000 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: LEE, YANG, AND PARR Using Generalized Gradient Corrections with Exchange functional: BECKE Correlation functional: PERDEW AND WANG Exchange-correlation = SLA LYP B88 BLYP (1313) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 14583.11 (a.u.), 8.00 (amu) rcmax = 0.50 (a.u.) 5.093750 5.093750 5.093750 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.50 (a.u.) 3.648509 5.093750 3.967985 6.538991 5.093750 3.967985 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 16.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 16.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 16.0000 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 2857, nstw = 717, nsts = 2857 PEs n.st n.stw n.sts n.g n.gw n.gs 1 5713 1433 5713 324157 40483 324157 0 5713 1433 5713 324157 40483 324157 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 90 90 90 90 90 90 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 90 90 90 Local number of cell to store the grid ( nnrx ) = 729000 Number of x-y planes for each processors: nr3l = 90 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 90 90 90 90 90 90 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 90 90 90 Local number of cell to store the grid ( nnrx ) = 729000 Number of x-y planes for each processors: nr3sl = 90 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 162079 162079 162079 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 162079 162079 162079 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 20242 20242 20242 System geometry initialization ------------------------------ Scaled positions from standard input O 0.318359E+00 0.318359E+00 0.318359E+00 H 0.228032E+00 0.318359E+00 0.247999E+00 H 0.408687E+00 0.318359E+00 0.247999E+00 Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 4 2.00 2.00 2.00 2.00 formf: eself= 30.31961 formf: vps(g=0)= -0.0008731 rhops(g=0)= -0.0014648 formf: sum_g vps(g)= -1.7560905 sum_g rhops(g)= -4.3108228 formf: vps(g=0)= -0.0002027 rhops(g=0)= -0.0002441 formf: sum_g vps(g)= -2.0909708 sum_g rhops(g)= -0.7184705 Delta V(G=0): 0.001534Ry, 0.041742eV PERFORMING CONJUGATE GRADIENT MINIMIZATION OF EL. STATES cg_sub: missed minimum, case 1, iteration 21 cg_sub: missed minimum, case 1, iteration 22 cg_sub: missed minimum, case 1, iteration 24 cg_sub: missed minimum, case 3, iteration 25 cg_sub: missed minimum, case 3, iteration 26 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 nfi tempp E -T.S-mu.nbsp +K_p #Iter Step 1 0 -17.17481 -17.17481 -17.17481 27 cg_sub: missed minimum, case 3, iteration 1 cg_sub: missed minimum, case 3, iteration 2 cg_sub: missed minimum, case 3, iteration 3 cg_sub: missed minimum, case 3, iteration 4 cg_sub: missed minimum, case 3, iteration 5 nfi tempp E -T.S-mu.nbsp +K_p #Iter Step 2 0 -17.17481 -17.17481 -17.17481 6 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.000000D+00 0.1D-07 0.157460D-09 0.1D-05 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation * Physical Quantities at step: 3 cg_sub: missed minimum, case 3, iteration 1 cg_sub: missed minimum, case 3, iteration 3 cg_sub: missed minimum, case 3, iteration 4 cg_sub: missed minimum, case 3, iteration 5 nfi tempp E -T.S-mu.nbsp +K_p #Iter Step 3 0 -17.17481 -17.17481 -17.17481 6 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.000000D+00 0.1D-07 0.438543D-09 0.1D-05 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation writing restart file: /home/giannozz/tmp//h2o_mol_50.save restart file written in 0.097 sec. Averaged Physical Quantities accomulated this run ekinc : 0.00000 0.00000 (AU) ekin : 12.57159 12.57159 (AU) epot : -31.70707 -31.70707 (AU) total energy : -17.17481 -17.17481 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : 0.00000 0.00000 (AU) econs : -17.17481 -17.17481 (AU) pressure : 0.00000 0.00000 (Gpa) volume : 4096.00000 4096.00000 (AU) initialize : 0.38s CPU total_time : 110.04s CPU ( 3 calls, 36.681 s avg) formf : 0.11s CPU rhoofr : 22.24s CPU ( 166 calls, 0.134 s avg) vofrho : 82.58s CPU ( 166 calls, 0.497 s avg) dforce : 3.88s CPU ( 78 calls, 0.050 s avg) calphi : 0.03s CPU ( 39 calls, 0.001 s avg) gram : 0.13s CPU ( 159 calls, 0.001 s avg) newd : 0.00s CPU ( 39 calls, 0.000 s avg) calbec : 0.15s CPU ( 446 calls, 0.000 s avg) prefor : 0.00s CPU ( 43 calls, 0.000 s avg) strucf : 0.01s CPU nlfl : 0.00s CPU ( 3 calls, 0.000 s avg) nlfq : 0.00s CPU ( 3 calls, 0.001 s avg) nlsm1 : 0.15s CPU ( 446 calls, 0.000 s avg) nlsm2 : 0.00s CPU ( 3 calls, 0.001 s avg) fft : 38.51s CPU ( 1330 calls, 0.029 s avg) ffts : 9.83s CPU ( 332 calls, 0.030 s avg) fftw : 8.62s CPU ( 488 calls, 0.018 s avg) runcg_uspp : 110.04s CPU ( 3 calls, 36.679 s avg) calcmt : 0.00s CPU ( 3 calls, 0.000 s avg) pc2 : 0.18s CPU ( 108 calls, 0.002 s avg) pcdaga2 : 0.08s CPU ( 36 calls, 0.002 s avg) xminus1 : 0.01s CPU ( 72 calls, 0.000 s avg) emass_p_tpa : 0.00s CPU ( 3 calls, 0.000 s avg) CP : 1m50.61s CPU time, 1m55.41s wall time This run was terminated on: 11:22:23 17Mar2009 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example09/0000755000175000017500000000000012341373043015354 5ustar mbambaespresso-5.1/CPV/examples/example09/run_xml_example0000755000175000017500000012150512341373026020506 0ustar mbamba#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x to perform molecular dynamics" $ECHO "in the presence of an electric field described through the" $ECHO "modern theory of the polarization. The example shows how to" $ECHO "calculate high-frequency and static dielectric constants and" $ECHO "Born effective charges." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="O.pz-rrkjus.UPF Mg.pz-n-vbc.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # molecular dynamics calculation cat > mgo.cp.cg.xml << EOF 0.0 0.0 0.0 0.0 0.0 12.01 O.pz-rrkjus.UPF 0.8d0 24.30 Mg.pz-n-vbc.UPF 0.066300000 0.066300000 0.066300000 4.044300000 4.044300000 0.066300000 4.044300000 0.066300000 4.044300000 0.066300000 4.044300000 4.044300000 0.066300000 0.066300000 8.022300000 4.044300000 4.044300000 8.022300000 4.044300000 0.066300000 12.000300000 0.066300000 4.044300000 12.000300000 0.066300000 8.022300000 0.066300000 4.044300000 12.000300000 0.066300000 4.044300000 8.022300000 4.044300000 0.066300000 12.000300000 4.044300000 0.066300000 8.022300000 8.022300000 4.044300000 12.000300000 8.022300000 4.044300000 8.022300000 12.000300000 0.066300000 12.000300000 12.000300000 8.022300000 0.066300000 0.066300000 12.000300000 4.044300000 0.066300000 12.000300000 0.066300000 4.044300000 8.022300000 4.044300000 4.044300000 8.022300000 0.066300000 8.022300000 12.000300000 4.044300000 8.022300000 12.000300000 0.066300000 12.000300000 8.022300000 4.044300000 12.000300000 8.022300000 8.022300000 0.066300000 12.000300000 12.000300000 0.066300000 12.000300000 8.022300000 4.044300000 8.022300000 12.000300000 4.044300000 8.022300000 8.022300000 8.022300000 12.000300000 12.000300000 8.022300000 12.000300000 8.022300000 12.000300000 8.022300000 12.000300000 12.000300000 0.066300000 0.066300000 4.044300000 4.044300000 4.044300000 4.044300000 4.044300000 0.066300000 8.022300000 0.066300000 4.044300000 8.022300000 0.066300000 0.066300000 12.000300000 4.044300000 4.044300000 12.000300000 4.044300000 0.066300000 15.978300000 0.066300000 4.044300000 15.978300000 0.066300000 8.022300000 4.044300000 4.044300000 12.000300000 4.044300000 4.044300000 8.022300000 8.022300000 0.066300000 12.000300000 8.022300000 0.066300000 8.022300000 12.000300000 4.044300000 12.000300000 12.000300000 4.044300000 8.022300000 15.978300000 0.066300000 12.000300000 15.978300000 8.022300000 0.066300000 4.044300000 12.000300000 4.044300000 4.044300000 12.000300000 0.066300000 8.022300000 8.022300000 4.044300000 8.022300000 8.022300000 0.066300000 12.000300000 12.000300000 4.044300000 12.000300000 12.000300000 0.066300000 15.978300000 8.022300000 4.044300000 15.978300000 8.022300000 8.022300000 4.044300000 12.000300000 12.000300000 4.044300000 12.000300000 8.022300000 8.022300000 8.022300000 12.000300000 8.022300000 8.022300000 8.022300000 12.000300000 12.000300000 12.000300000 12.000300000 12.000300000 8.022300000 15.978300000 8.022300000 12.000300000 15.978300000 $PSEUDO_DIR/ $TMP_DIR/ from_scratch 1 TRUE TRUE random from_input 20.0 160.0 1.d-8 128 1 TRUE 0.0 1 none not_controlled none 1 30 30 30 1000.d0 4.d0 Gram-Schmidt 0.02 TRUE 0.3 250 0.0 1.0 3 EOF $ECHO " running the CG calculation for bulk MgO E_field=0. a.u. ...\c" $CP_COMMAND < mgo.cp.cg.xml > mgo.cp.cg.out check_failure $? $ECHO " done" cat > mgo.cp.cg.efield.xml << EOF 0.0 0.0 0.0 0.0 0.0 12.01 O.pz-rrkjus.UPF 0.8d0 24.30 Mg.pz-n-vbc.UPF 0.066300000 0.066300000 0.066300000 4.044300000 4.044300000 0.066300000 4.044300000 0.066300000 4.044300000 0.066300000 4.044300000 4.044300000 0.066300000 0.066300000 8.022300000 4.044300000 4.044300000 8.022300000 4.044300000 0.066300000 12.000300000 0.066300000 4.044300000 12.000300000 0.066300000 8.022300000 0.066300000 4.044300000 12.000300000 0.066300000 4.044300000 8.022300000 4.044300000 0.066300000 12.000300000 4.044300000 0.066300000 8.022300000 8.022300000 4.044300000 12.000300000 8.022300000 4.044300000 8.022300000 12.000300000 0.066300000 12.000300000 12.000300000 8.022300000 0.066300000 0.066300000 12.000300000 4.044300000 0.066300000 12.000300000 0.066300000 4.044300000 8.022300000 4.044300000 4.044300000 8.022300000 0.066300000 8.022300000 12.000300000 4.044300000 8.022300000 12.000300000 0.066300000 12.000300000 8.022300000 4.044300000 12.000300000 8.022300000 8.022300000 0.066300000 12.000300000 12.000300000 0.066300000 12.000300000 8.022300000 4.044300000 8.022300000 12.000300000 4.044300000 8.022300000 8.022300000 8.022300000 12.000300000 12.000300000 8.022300000 12.000300000 8.022300000 12.000300000 8.022300000 12.000300000 12.000300000 0.066300000 0.066300000 4.044300000 4.044300000 4.044300000 4.044300000 4.044300000 0.066300000 8.022300000 0.066300000 4.044300000 8.022300000 0.066300000 0.066300000 12.000300000 4.044300000 4.044300000 12.000300000 4.044300000 0.066300000 15.978300000 0.066300000 4.044300000 15.978300000 0.066300000 8.022300000 4.044300000 4.044300000 12.000300000 4.044300000 4.044300000 8.022300000 8.022300000 0.066300000 12.000300000 8.022300000 0.066300000 8.022300000 12.000300000 4.044300000 12.000300000 12.000300000 4.044300000 8.022300000 15.978300000 0.066300000 12.000300000 15.978300000 8.022300000 0.066300000 4.044300000 12.000300000 4.044300000 4.044300000 12.000300000 0.066300000 8.022300000 8.022300000 4.044300000 8.022300000 8.022300000 0.066300000 12.000300000 12.000300000 4.044300000 12.000300000 12.000300000 0.066300000 15.978300000 8.022300000 4.044300000 15.978300000 8.022300000 8.022300000 4.044300000 12.000300000 12.000300000 4.044300000 12.000300000 8.022300000 8.022300000 8.022300000 12.000300000 8.022300000 8.022300000 8.022300000 12.000300000 12.000300000 12.000300000 12.000300000 12.000300000 8.022300000 15.978300000 8.022300000 12.000300000 15.978300000 $PSEUDO_DIR/ $TMP_DIR/ restart 1 FALSE TRUE random from_input 20.0 160.0 1.d-8 128 1 TRUE 0.001 1 none not_controlled none 1 30 30 30 1000.d0 4.d0 Gram-Schmidt 0.02 TRUE 0.3 250 0.0 1.0 3 EOF $ECHO " running the CG calculation for bulk MgO E_field=0.001 a.u. ...\c" $CP_COMMAND < mgo.cp.cg.efield.xml > mgo.cp.cg.efield.out check_failure $? $ECHO " done" cat > mgo.cp.damp.efield.xml << EOF 0.0 0.0 0.0 0.0 0.0 1.0 O.pz-rrkjus.UPF 1.0 Mg.pz-n-vbc.UPF 0.066300000 0.066300000 0.066300000 4.044300000 4.044300000 0.066300000 4.044300000 0.066300000 4.044300000 0.066300000 4.044300000 4.044300000 0.066300000 0.066300000 8.022300000 4.044300000 4.044300000 8.022300000 4.044300000 0.066300000 12.000300000 0.066300000 4.044300000 12.000300000 0.066300000 8.022300000 0.066300000 4.044300000 12.000300000 0.066300000 4.044300000 8.022300000 4.044300000 0.066300000 12.000300000 4.044300000 0.066300000 8.022300000 8.022300000 4.044300000 12.000300000 8.022300000 4.044300000 8.022300000 12.000300000 0.066300000 12.000300000 12.000300000 8.022300000 0.066300000 0.066300000 12.000300000 4.044300000 0.066300000 12.000300000 0.066300000 4.044300000 8.022300000 4.044300000 4.044300000 8.022300000 0.066300000 8.022300000 12.000300000 4.044300000 8.022300000 12.000300000 0.066300000 12.000300000 8.022300000 4.044300000 12.000300000 8.022300000 8.022300000 0.066300000 12.000300000 12.000300000 0.066300000 12.000300000 8.022300000 4.044300000 8.022300000 12.000300000 4.044300000 8.022300000 8.022300000 8.022300000 12.000300000 12.000300000 8.022300000 12.000300000 8.022300000 12.000300000 8.022300000 12.000300000 12.000300000 0.066300000 0.066300000 4.044300000 4.044300000 4.044300000 4.044300000 4.044300000 0.066300000 8.022300000 0.066300000 4.044300000 8.022300000 0.066300000 0.066300000 12.000300000 4.044300000 4.044300000 12.000300000 4.044300000 0.066300000 15.978300000 0.066300000 4.044300000 15.978300000 0.066300000 8.022300000 4.044300000 4.044300000 12.000300000 4.044300000 4.044300000 8.022300000 8.022300000 0.066300000 12.000300000 8.022300000 0.066300000 8.022300000 12.000300000 4.044300000 12.000300000 12.000300000 4.044300000 8.022300000 15.978300000 0.066300000 12.000300000 15.978300000 8.022300000 0.066300000 4.044300000 12.000300000 4.044300000 4.044300000 12.000300000 0.066300000 8.022300000 8.022300000 4.044300000 8.022300000 8.022300000 0.066300000 12.000300000 12.000300000 4.044300000 12.000300000 12.000300000 0.066300000 15.978300000 8.022300000 4.044300000 15.978300000 8.022300000 8.022300000 4.044300000 12.000300000 12.000300000 4.044300000 12.000300000 8.022300000 8.022300000 8.022300000 12.000300000 8.022300000 8.022300000 8.022300000 12.000300000 12.000300000 12.000300000 12.000300000 12.000300000 8.022300000 15.978300000 8.022300000 12.000300000 15.978300000 $PSEUDO_DIR/ $TMP_DIR/ restart 100 FALSE TRUE random 20.0 160.0 128 1 TRUE 0.001 20 10.0 verlet none 100 30 30 30 250.d0 3.d0 0.02 0.0 3 damp 30 0.05 EOF $ECHO " running the CP- damped MD calculation for bulk MgO E_field=0.001 a.u. ...\c" $CP_COMMAND < mgo.cp.damp.efield.xml > mgo.cp.damp.efield.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/CPV/examples/example09/README0000644000175000017500000001076212341373026016243 0ustar mbambaWARNING: For speeding up the execution time for testing purposes, the plane waves cut-off has been reduced to 20 Ryd (from 23 Ryd), the charge cut-off has been reduced to 160 Ryd (from 200 Ryd) and the CP-MD damped dynamics uses a step of 10 a.u. (from 5 a.u.) and 20 steps (from 400 steps) USE the original parameters for obtaining converged results. This example shows how to perform calculations with cp.x for a system under the presence of an homogeneous static finite electric field. The coupling of the system with the electric field is described through the Modern Theory of the Polarization. We illustrate here the same example (bulk MgO) appearing in the paper: P.Umari and A.Pasquarello, Physical Review Letters, 89, p.157602 (2002). The concerned input parameters are: in namelist &CONTROL: tefield LOGICAL ( default = .FALSE.) If .TRUE. perform calculations with a finite electric field which is described through the modern theory of the polarization in namelist &ELECTRONS: epol INTEGER ( default = 3 ) direction of the finite electric field (only if tefield == .TRUE.) In the case of a PARALLEL calculation ONLY the case epol==3 is implemented efield REAL ( default = 0.d0 ) intensity in a.u. of the finite electric field (only if tefield == .TRUE.) NOTE: the implementation has been tested ONLY for orthorhombic cells. **************** The first two calculations use fast conjugate-gradient minimization for calculating the system's properties keeping the position of the atoms fixed in the experimental equilibrium positions, in the presence of an electric field E of 0. a.u. and 0.001 a.u. along the 3rd direction. The third calculation uses damped Car-Parrinello molecular dynamic for relaxing the atomic structure under the presence of a 0.001 a.u. electric field. This allows the calculation of the static dielectric constant. Calculation of high-frequency dielectric constant: For the converged wavefunctions the output file reports the electric dipole D. We obtain: For E = 0.001 a.u. , we have D=15.4128 a.u. For E = 0. a.u. , we have D=14.8516 a.u. The high-frequency dielectric constant eps_inf is given by eps_inf = 4*pi*(D[E=0.001 a.u.]-D[E=0. a.u.])/(0.001 a.u. * Omega) + 1 = 2.75 where Omega is the volume of the cell in a.u. (cfr. PU&AP with other pseudos: 2.79, exp. 2.96) Calculation of Born-effective charges: The effective charges can be found as finite difference of atomic forces F, with respect to the electric field: For Mg: F[E=0.001 a.u.] = 0.197318*10**-2 a.u. F[E=0. a.u. ] = 0.93162*10**-5 a.u. For O: F[E=0.001 a.u.] = -0.203209*10**-2 a.u. F[E=0. a.u. ] = -0.7028*10**-4 a.u. the effective charge Z* are found through: Z*= (F[E=0.001 a.u.]-F[E=0. a.u. ] )/(0.001 a.u.) we find: Mg: 1.96 O: -1.96 (cfr. PU&AP with other pseudos: 1.96, exp.1.96) Note: the atomic forces are not strictly null at no electric field, because of the (very-)small error caused by the introduction of a discretized mesh for describing wavefunctions in the cell. Calculation of the static dielectric constant: The third calculation relaxes the atomic coordinates under the presence of an electric field of 0.001 a.u. .The wavefunctions are taken from the previous calculation. It is a Car-Parrinello simulation, where only the electronic degrees of freedom are damped. At the beginning of the relaxation, the electronic D1_el, and ionic D1_ion dipoles read: D1_el=15.4128 a.u. and D1_ion=1.0608 a.u. At the end of the relaxation, the electronic D2_el, and ionic D2_ion, dipoles read: D2_el=-12.0495 a.u. and D2_ion=-1.141061 a.u. NOTE: the electronic dipole is defined modulo a factor (2*L=31.824i a.u., during the MD simulation the term "ln det S" changes the Riemann plane, this must be taken into account when addressing the electronic dipole. Therefore, it reads: D2_el=19.7745 a.u. and D2_ion=-1.141061 a.u. The difference d_Eps between static and high-frequency dielectric constant, is given by: d_Eps=4*pi*(D2_el+D2_ion-D1_el-d1_ion)/(0.001 a.u. * Omega) = 6.74 (cfr. PU&AP with other pseudos 5.15, exp. 6.67 ) The difference with respect to PU&AP is due to the better estimation of the optical phonon frequency at Gamma. espresso-5.1/CPV/examples/example09/run_example0000755000175000017500000003422212341373026017625 0ustar mbamba#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x to perform molecular dynamics" $ECHO "in the presence of an electric field described through the" $ECHO "modern theory of the polarization. The example shows how to" $ECHO "calculate high-frequency and static dielectric constants and" $ECHO "Born effective charges." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="O.pz-rrkjus.UPF Mg.pz-n-vbc.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cp* $ECHO " done" # molecular dynamics calculation cat > mgo.cp.cg.in << EOF &CONTROL calculation = 'cp', restart_mode = 'from_scratch', nstep = 1, iprint = 1, isave = 1, tstress = .TRUE., tprnfor = .TRUE., prefix = 'mgo', tefield = .TRUE. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &SYSTEM ibrav = 1, celldm(1) = 15.912, celldm(2) = 0.0, celldm(3) = 0.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nbnd=128, nat =64, ntyp =2, ecutwfc = 20, ecutrho = 160, nr1b= 30, nr2b = 30, nr3b = 30, nspin=1, / &ELECTRONS emass = 1000.d0, emass_cutoff = 4.d0, orthogonalization = 'Gram-Schmidt', startingwfc = 'random', ampre = 0.02, tcg = .true., passop=0.3, maxiter = 250, conv_thr=1.d-8 epol = 3 efield = 0.0 / &IONS ion_dynamics = 'none', ion_damping = 0., ion_positions = 'from_input', greasp=1.0, ion_radius(1) = 0.8d0, ion_temperature = 'not_controlled', / &CELL cell_dynamics = 'none', / ATOMIC_SPECIES O 12.01 O.pz-rrkjus.UPF Mg 24.30 Mg.pz-n-vbc.UPF ATOMIC_POSITIONS (bohr) Mg 0.066300000 0.066300000 0.066300000 Mg 4.044300000 4.044300000 0.066300000 Mg 4.044300000 0.066300000 4.044300000 Mg 0.066300000 4.044300000 4.044300000 Mg 0.066300000 0.066300000 8.022300000 Mg 4.044300000 4.044300000 8.022300000 Mg 4.044300000 0.066300000 12.000300000 Mg 0.066300000 4.044300000 12.000300000 Mg 0.066300000 8.022300000 0.066300000 Mg 4.044300000 12.000300000 0.066300000 Mg 4.044300000 8.022300000 4.044300000 Mg 0.066300000 12.000300000 4.044300000 Mg 0.066300000 8.022300000 8.022300000 Mg 4.044300000 12.000300000 8.022300000 Mg 4.044300000 8.022300000 12.000300000 Mg 0.066300000 12.000300000 12.000300000 Mg 8.022300000 0.066300000 0.066300000 Mg 12.000300000 4.044300000 0.066300000 Mg 12.000300000 0.066300000 4.044300000 Mg 8.022300000 4.044300000 4.044300000 Mg 8.022300000 0.066300000 8.022300000 Mg 12.000300000 4.044300000 8.022300000 Mg 12.000300000 0.066300000 12.000300000 Mg 8.022300000 4.044300000 12.000300000 Mg 8.022300000 8.022300000 0.066300000 Mg 12.000300000 12.000300000 0.066300000 Mg 12.000300000 8.022300000 4.044300000 Mg 8.022300000 12.000300000 4.044300000 Mg 8.022300000 8.022300000 8.022300000 Mg 12.000300000 12.000300000 8.022300000 Mg 12.000300000 8.022300000 12.000300000 Mg 8.022300000 12.000300000 12.000300000 O 0.066300000 0.066300000 4.044300000 O 4.044300000 4.044300000 4.044300000 O 4.044300000 0.066300000 8.022300000 O 0.066300000 4.044300000 8.022300000 O 0.066300000 0.066300000 12.000300000 O 4.044300000 4.044300000 12.000300000 O 4.044300000 0.066300000 15.978300000 O 0.066300000 4.044300000 15.978300000 O 0.066300000 8.022300000 4.044300000 O 4.044300000 12.000300000 4.044300000 O 4.044300000 8.022300000 8.022300000 O 0.066300000 12.000300000 8.022300000 O 0.066300000 8.022300000 12.000300000 O 4.044300000 12.000300000 12.000300000 O 4.044300000 8.022300000 15.978300000 O 0.066300000 12.000300000 15.978300000 O 8.022300000 0.066300000 4.044300000 O 12.000300000 4.044300000 4.044300000 O 12.000300000 0.066300000 8.022300000 O 8.022300000 4.044300000 8.022300000 O 8.022300000 0.066300000 12.000300000 O 12.000300000 4.044300000 12.000300000 O 12.000300000 0.066300000 15.978300000 O 8.022300000 4.044300000 15.978300000 O 8.022300000 8.022300000 4.044300000 O 12.000300000 12.000300000 4.044300000 O 12.000300000 8.022300000 8.022300000 O 8.022300000 12.000300000 8.022300000 O 8.022300000 8.022300000 12.000300000 O 12.000300000 12.000300000 12.000300000 O 12.000300000 8.022300000 15.978300000 O 8.022300000 12.000300000 15.978300000 EOF $ECHO " running the CG calculation for bulk MgO E_field=0. a.u. ...\c" $CP_COMMAND < mgo.cp.cg.in > mgo.cp.cg.out check_failure $? $ECHO " done" cat > mgo.cp.cg.efield.in << EOF &CONTROL calculation = 'cp', restart_mode = 'restart', nstep = 1, iprint = 1, isave = 1, tstress = .FALSE., tprnfor = .TRUE., prefix = 'mgo', tefield = .TRUE. pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &SYSTEM ibrav = 1, celldm(1) = 15.912, celldm(2) = 0.0, celldm(3) = 0.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nbnd=128, nat =64, ntyp =2, ecutwfc = 20, ecutrho = 160, nr1b= 30, nr2b = 30, nr3b = 30, nspin=1, / &ELECTRONS emass = 1000.d0, emass_cutoff = 4.d0, orthogonalization = 'Gram-Schmidt', startingwfc = 'random', ampre = 0.02, tcg = .true., passop=0.3, maxiter = 250, conv_thr=1.d-8 epol = 3 efield = 0.001 / &IONS ion_dynamics = 'none', ion_damping = 0., ion_positions = 'from_input', greasp=1.0, ion_radius(1) = 0.8d0, ion_temperature = 'not_controlled', / &CELL cell_dynamics = 'none', / ATOMIC_SPECIES O 12.01 O.pz-rrkjus.UPF Mg 24.30 Mg.pz-n-vbc.UPF ATOMIC_POSITIONS (bohr) Mg 0.066300000 0.066300000 0.066300000 Mg 4.044300000 4.044300000 0.066300000 Mg 4.044300000 0.066300000 4.044300000 Mg 0.066300000 4.044300000 4.044300000 Mg 0.066300000 0.066300000 8.022300000 Mg 4.044300000 4.044300000 8.022300000 Mg 4.044300000 0.066300000 12.000300000 Mg 0.066300000 4.044300000 12.000300000 Mg 0.066300000 8.022300000 0.066300000 Mg 4.044300000 12.000300000 0.066300000 Mg 4.044300000 8.022300000 4.044300000 Mg 0.066300000 12.000300000 4.044300000 Mg 0.066300000 8.022300000 8.022300000 Mg 4.044300000 12.000300000 8.022300000 Mg 4.044300000 8.022300000 12.000300000 Mg 0.066300000 12.000300000 12.000300000 Mg 8.022300000 0.066300000 0.066300000 Mg 12.000300000 4.044300000 0.066300000 Mg 12.000300000 0.066300000 4.044300000 Mg 8.022300000 4.044300000 4.044300000 Mg 8.022300000 0.066300000 8.022300000 Mg 12.000300000 4.044300000 8.022300000 Mg 12.000300000 0.066300000 12.000300000 Mg 8.022300000 4.044300000 12.000300000 Mg 8.022300000 8.022300000 0.066300000 Mg 12.000300000 12.000300000 0.066300000 Mg 12.000300000 8.022300000 4.044300000 Mg 8.022300000 12.000300000 4.044300000 Mg 8.022300000 8.022300000 8.022300000 Mg 12.000300000 12.000300000 8.022300000 Mg 12.000300000 8.022300000 12.000300000 Mg 8.022300000 12.000300000 12.000300000 O 0.066300000 0.066300000 4.044300000 O 4.044300000 4.044300000 4.044300000 O 4.044300000 0.066300000 8.022300000 O 0.066300000 4.044300000 8.022300000 O 0.066300000 0.066300000 12.000300000 O 4.044300000 4.044300000 12.000300000 O 4.044300000 0.066300000 15.978300000 O 0.066300000 4.044300000 15.978300000 O 0.066300000 8.022300000 4.044300000 O 4.044300000 12.000300000 4.044300000 O 4.044300000 8.022300000 8.022300000 O 0.066300000 12.000300000 8.022300000 O 0.066300000 8.022300000 12.000300000 O 4.044300000 12.000300000 12.000300000 O 4.044300000 8.022300000 15.978300000 O 0.066300000 12.000300000 15.978300000 O 8.022300000 0.066300000 4.044300000 O 12.000300000 4.044300000 4.044300000 O 12.000300000 0.066300000 8.022300000 O 8.022300000 4.044300000 8.022300000 O 8.022300000 0.066300000 12.000300000 O 12.000300000 4.044300000 12.000300000 O 12.000300000 0.066300000 15.978300000 O 8.022300000 4.044300000 15.978300000 O 8.022300000 8.022300000 4.044300000 O 12.000300000 12.000300000 4.044300000 O 12.000300000 8.022300000 8.022300000 O 8.022300000 12.000300000 8.022300000 O 8.022300000 8.022300000 12.000300000 O 12.000300000 12.000300000 12.000300000 O 12.000300000 8.022300000 15.978300000 O 8.022300000 12.000300000 15.978300000 EOF $ECHO " running the CG calculation for bulk MgO E_field=0.001 a.u. ...\c" $CP_COMMAND < mgo.cp.cg.efield.in > mgo.cp.cg.efield.out check_failure $? $ECHO " done" cat > mgo.cp.damp.efield.in << EOF &CONTROL calculation = 'cp', restart_mode = 'restart', nstep = 20, iprint = 100, isave = 100, tstress = .FALSE., tprnfor = .TRUE., prefix = 'mgo', tefield = .TRUE., dt=10., pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &SYSTEM ibrav = 1, celldm(1) = 15.912, celldm(2) = 0.0, celldm(3) = 0.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nbnd=128, nat =64, ntyp =2, ecutwfc = 20, ecutrho = 160, nr1b= 30, nr2b = 30, nr3b = 30, nspin=1, / &ELECTRONS emass = 250.d0, emass_cutoff = 3.d0, electron_dynamics='damp', ortho_max=30 electron_damping=0.05 startingwfc = 'random', ampre = 0.02, epol = 3 efield = 0.001 / &IONS ion_dynamics = 'verlet', ion_damping = 0. / &CELL cell_dynamics = 'none', / ATOMIC_SPECIES O 1.0 O.pz-rrkjus.UPF Mg 1.0 Mg.pz-n-vbc.UPF ATOMIC_POSITIONS (bohr) Mg 0.066300000 0.066300000 0.066300000 Mg 4.044300000 4.044300000 0.066300000 Mg 4.044300000 0.066300000 4.044300000 Mg 0.066300000 4.044300000 4.044300000 Mg 0.066300000 0.066300000 8.022300000 Mg 4.044300000 4.044300000 8.022300000 Mg 4.044300000 0.066300000 12.000300000 Mg 0.066300000 4.044300000 12.000300000 Mg 0.066300000 8.022300000 0.066300000 Mg 4.044300000 12.000300000 0.066300000 Mg 4.044300000 8.022300000 4.044300000 Mg 0.066300000 12.000300000 4.044300000 Mg 0.066300000 8.022300000 8.022300000 Mg 4.044300000 12.000300000 8.022300000 Mg 4.044300000 8.022300000 12.000300000 Mg 0.066300000 12.000300000 12.000300000 Mg 8.022300000 0.066300000 0.066300000 Mg 12.000300000 4.044300000 0.066300000 Mg 12.000300000 0.066300000 4.044300000 Mg 8.022300000 4.044300000 4.044300000 Mg 8.022300000 0.066300000 8.022300000 Mg 12.000300000 4.044300000 8.022300000 Mg 12.000300000 0.066300000 12.000300000 Mg 8.022300000 4.044300000 12.000300000 Mg 8.022300000 8.022300000 0.066300000 Mg 12.000300000 12.000300000 0.066300000 Mg 12.000300000 8.022300000 4.044300000 Mg 8.022300000 12.000300000 4.044300000 Mg 8.022300000 8.022300000 8.022300000 Mg 12.000300000 12.000300000 8.022300000 Mg 12.000300000 8.022300000 12.000300000 Mg 8.022300000 12.000300000 12.000300000 O 0.066300000 0.066300000 4.044300000 O 4.044300000 4.044300000 4.044300000 O 4.044300000 0.066300000 8.022300000 O 0.066300000 4.044300000 8.022300000 O 0.066300000 0.066300000 12.000300000 O 4.044300000 4.044300000 12.000300000 O 4.044300000 0.066300000 15.978300000 O 0.066300000 4.044300000 15.978300000 O 0.066300000 8.022300000 4.044300000 O 4.044300000 12.000300000 4.044300000 O 4.044300000 8.022300000 8.022300000 O 0.066300000 12.000300000 8.022300000 O 0.066300000 8.022300000 12.000300000 O 4.044300000 12.000300000 12.000300000 O 4.044300000 8.022300000 15.978300000 O 0.066300000 12.000300000 15.978300000 O 8.022300000 0.066300000 4.044300000 O 12.000300000 4.044300000 4.044300000 O 12.000300000 0.066300000 8.022300000 O 8.022300000 4.044300000 8.022300000 O 8.022300000 0.066300000 12.000300000 O 12.000300000 4.044300000 12.000300000 O 12.000300000 0.066300000 15.978300000 O 8.022300000 4.044300000 15.978300000 O 8.022300000 8.022300000 4.044300000 O 12.000300000 12.000300000 4.044300000 O 12.000300000 8.022300000 8.022300000 O 8.022300000 12.000300000 8.022300000 O 8.022300000 8.022300000 12.000300000 O 12.000300000 12.000300000 12.000300000 O 12.000300000 8.022300000 15.978300000 O 8.022300000 12.000300000 15.978300000 EOF $ECHO " running the CP- damped MD calculation for bulk MgO E_field=0.001 a.u. ...\c" $CP_COMMAND < mgo.cp.damp.efield.in > mgo.cp.damp.efield.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/CPV/examples/example09/reference/0000755000175000017500000000000012341373043017312 5ustar mbambaespresso-5.1/CPV/examples/example09/reference/mgo.cp.damp.efield.out0000644000175000017500000010217612341373026023405 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.0 - Mon Apr 28 15:32:33 CEST 2008 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 16:34:51 28Apr2008 Serial Build Warning: card &CELL ignored Warning: card CELL_DYNAMICS = 'NONE', ignored Warning: card / ignored Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/pseudo/O.pz-rrkjus.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/pseudo/Mg.pz-n-vbc.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 20 Print out every 100 MD Steps Reads from unit = 50 Writes to unit = 50 MD Simulation time step = 10.00 Electronic fictitious mass (emass) = 250.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 8865.47 [AU] ibrav = 1 alat = 15.91200000 a1 = 15.91200000 0.00000000 0.00000000 a2 = 0.00000000 15.91200000 0.00000000 a3 = 0.00000000 0.00000000 15.91200000 b1 = 0.06284565 0.00000000 0.00000000 b2 = 0.00000000 0.06284565 0.00000000 b3 = 0.00000000 0.00000000 0.06284565 omega = 4028.78703053 Energy Cut-offs --------------- Ecutwfc = 20.0 Ry, Ecutrho = 160.0 Ry, Ecuts = 80.0 Ry Gcutwfc = 11.3 , Gcutrho = 32.0 Gcuts = 22.7 NOTA BENE: refg, mmx = 0.050000 3840 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 verlet algorithm for electron dynamics with friction frice = 0.0500 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 256, of States = 128 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC (1100) Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 192 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 32 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.50 (a.u.) 0.066300 0.066300 4.044300 4.044300 4.044300 4.044300 4.044300 0.066300 8.022300 0.066300 4.044300 8.022300 0.066300 0.066300 12.000300 4.044300 4.044300 12.000300 4.044300 0.066300 15.978300 0.066300 4.044300 15.978300 0.066300 8.022300 4.044300 4.044300 12.000300 4.044300 4.044300 8.022300 8.022300 0.066300 12.000300 8.022300 0.066300 8.022300 12.000300 4.044300 12.000300 12.000300 4.044300 8.022300 15.978300 0.066300 12.000300 15.978300 8.022300 0.066300 4.044300 12.000300 4.044300 4.044300 12.000300 0.066300 8.022300 8.022300 4.044300 8.022300 8.022300 0.066300 12.000300 12.000300 4.044300 12.000300 12.000300 0.066300 15.978300 8.022300 4.044300 15.978300 8.022300 8.022300 4.044300 12.000300 12.000300 4.044300 12.000300 8.022300 8.022300 8.022300 12.000300 8.022300 8.022300 8.022300 12.000300 12.000300 12.000300 12.000300 12.000300 8.022300 15.978300 8.022300 12.000300 15.978300 Species 2 atoms = 32 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.50 (a.u.) 0.066300 0.066300 0.066300 4.044300 4.044300 0.066300 4.044300 0.066300 4.044300 0.066300 4.044300 4.044300 0.066300 0.066300 8.022300 4.044300 4.044300 8.022300 4.044300 0.066300 12.000300 0.066300 4.044300 12.000300 0.066300 8.022300 0.066300 4.044300 12.000300 0.066300 4.044300 8.022300 4.044300 0.066300 12.000300 4.044300 0.066300 8.022300 8.022300 4.044300 12.000300 8.022300 4.044300 8.022300 12.000300 0.066300 12.000300 12.000300 8.022300 0.066300 0.066300 12.000300 4.044300 0.066300 12.000300 0.066300 4.044300 8.022300 4.044300 4.044300 8.022300 0.066300 8.022300 12.000300 4.044300 8.022300 12.000300 0.066300 12.000300 8.022300 4.044300 12.000300 8.022300 8.022300 0.066300 12.000300 12.000300 0.066300 12.000300 8.022300 4.044300 8.022300 12.000300 4.044300 8.022300 8.022300 8.022300 12.000300 12.000300 8.022300 12.000300 8.022300 12.000300 8.022300 12.000300 12.000300 Ionic position will be re-read from restart file All atoms are allowed to move Ionic temperature is not controlled Cell Dynamics Parameters (from STDIN) ------------------------------------- Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move ===================================== | BERRY PHASE ELECTRIC FIELD 1 ===================================== | direction = 3 | intensity = 0.00100 a.u. ===================================== Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 15.9120 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 15.9120 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 15.9120 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 1617, nstw = 203, nsts = 805 PEs n.st n.stw n.sts n.g n.gw n.gs 1 3233 405 1609 137929 6043 48693 0 3233 405 1609 137929 6043 48693 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nnrx ) = 373248 Number of x-y planes for each processors: nr3l = 72 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 45 45 45 45 45 45 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 45 45 45 Local number of cell to store the grid ( nnrx ) = 91125 Number of x-y planes for each processors: nr3sl = 45 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 30 30 30 30 30 30 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 30 30 30 Local number of cell to store the grid ( nnrx ) = 27000 unit vectors of box grid cell in real space: in reciprocal space: 6.6300 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.6300 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.6300 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 68965 68965 68965 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 24347 24347 24347 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 3022 3022 3022 Small box Mesh ngb = 4970 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input O 0.416667E-02 0.416667E-02 0.254167E+00 O 0.254167E+00 0.254167E+00 0.254167E+00 O 0.254167E+00 0.416667E-02 0.504167E+00 O 0.416667E-02 0.254167E+00 0.504167E+00 O 0.416667E-02 0.416667E-02 0.754167E+00 O 0.254167E+00 0.254167E+00 0.754167E+00 O 0.254167E+00 0.416667E-02 0.100417E+01 O 0.416667E-02 0.254167E+00 0.100417E+01 O 0.416667E-02 0.504167E+00 0.254167E+00 O 0.254167E+00 0.754167E+00 0.254167E+00 O 0.254167E+00 0.504167E+00 0.504167E+00 O 0.416667E-02 0.754167E+00 0.504167E+00 O 0.416667E-02 0.504167E+00 0.754167E+00 O 0.254167E+00 0.754167E+00 0.754167E+00 O 0.254167E+00 0.504167E+00 0.100417E+01 O 0.416667E-02 0.754167E+00 0.100417E+01 O 0.504167E+00 0.416667E-02 0.254167E+00 O 0.754167E+00 0.254167E+00 0.254167E+00 O 0.754167E+00 0.416667E-02 0.504167E+00 O 0.504167E+00 0.254167E+00 0.504167E+00 O 0.504167E+00 0.416667E-02 0.754167E+00 O 0.754167E+00 0.254167E+00 0.754167E+00 O 0.754167E+00 0.416667E-02 0.100417E+01 O 0.504167E+00 0.254167E+00 0.100417E+01 O 0.504167E+00 0.504167E+00 0.254167E+00 O 0.754167E+00 0.754167E+00 0.254167E+00 O 0.754167E+00 0.504167E+00 0.504167E+00 O 0.504167E+00 0.754167E+00 0.504167E+00 O 0.504167E+00 0.504167E+00 0.754167E+00 O 0.754167E+00 0.754167E+00 0.754167E+00 O 0.754167E+00 0.504167E+00 0.100417E+01 O 0.504167E+00 0.754167E+00 0.100417E+01 Mg 0.416667E-02 0.416667E-02 0.416667E-02 Mg 0.254167E+00 0.254167E+00 0.416667E-02 Mg 0.254167E+00 0.416667E-02 0.254167E+00 Mg 0.416667E-02 0.254167E+00 0.254167E+00 Mg 0.416667E-02 0.416667E-02 0.504167E+00 Mg 0.254167E+00 0.254167E+00 0.504167E+00 Mg 0.254167E+00 0.416667E-02 0.754167E+00 Mg 0.416667E-02 0.254167E+00 0.754167E+00 Mg 0.416667E-02 0.504167E+00 0.416667E-02 Mg 0.254167E+00 0.754167E+00 0.416667E-02 Mg 0.254167E+00 0.504167E+00 0.254167E+00 Mg 0.416667E-02 0.754167E+00 0.254167E+00 Mg 0.416667E-02 0.504167E+00 0.504167E+00 Mg 0.254167E+00 0.754167E+00 0.504167E+00 Mg 0.254167E+00 0.504167E+00 0.754167E+00 Mg 0.416667E-02 0.754167E+00 0.754167E+00 Mg 0.504167E+00 0.416667E-02 0.416667E-02 Mg 0.754167E+00 0.254167E+00 0.416667E-02 Mg 0.754167E+00 0.416667E-02 0.254167E+00 Mg 0.504167E+00 0.254167E+00 0.254167E+00 Mg 0.504167E+00 0.416667E-02 0.504167E+00 Mg 0.754167E+00 0.254167E+00 0.504167E+00 Mg 0.754167E+00 0.416667E-02 0.754167E+00 Mg 0.504167E+00 0.254167E+00 0.754167E+00 Mg 0.504167E+00 0.504167E+00 0.416667E-02 Mg 0.754167E+00 0.754167E+00 0.416667E-02 Mg 0.754167E+00 0.504167E+00 0.254167E+00 Mg 0.504167E+00 0.754167E+00 0.254167E+00 Mg 0.504167E+00 0.504167E+00 0.504167E+00 Mg 0.754167E+00 0.754167E+00 0.504167E+00 Mg 0.754167E+00 0.504167E+00 0.754167E+00 Mg 0.504167E+00 0.754167E+00 0.754167E+00 ibrav = 1 cell parameters 15.91200 0.00000 0.00000 0.00000 15.91200 0.00000 0.00000 0.00000 15.91200 Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 4970 1 865 3 qqq -0.0987 0.4865 0.0000 0.0000 0.4865 -2.1787 0.0000 0.0000 0.0000 0.0000 0.2330 0.2950 0.0000 0.0000 0.2950 0.3737 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4817 -1.2813 0.0000 0.0000 -1.2813 2.3075 0.0000 0.0000 0.0000 0.0000 0.6338 0.8752 0.0000 0.0000 0.8752 1.2039 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 3.2181 0.0000 0.0000 12.0575 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /mgo_50.save restart file read in 0.090 sec. nprint_nfi= -2 nprint_nfi= 2 formf: eself=1021.29224 formf: vps(g=0)= -0.0002527 rhops(g=0)= -0.0014893 formf: sum_g vps(g)= 1.0836538 sum_g rhops(g)= -4.2308845 formf: vps(g=0)= 0.0012432 rhops(g=0)= -0.0004964 formf: sum_g vps(g)= 1.6241241 sum_g rhops(g)= -1.4102948 Delta V(G=0): 0.049906Ry, 1.358014eV Initial random displacement of el. coordinates Amplitude = 0.020000 Initialize Berry phase electric field #not found, gtable: 405.000000000000 #not found, gtabin: 405.000000000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3 ******** 0.0 27.4 -121.75353 -121.73721 -121.72888 332.36893 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.262498 Ionic dipole 1 1.060800 4 ******** 0.0 41.7 -532.22084 -532.20452 -532.19183 -247.84583 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.214072 Ionic dipole 1 1.105861 5 39.37112 0.0 4.3 -138.99908 -138.98291 -138.98161 -99.61050 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.057603 Ionic dipole 1 1.110277 6 ******** 0.0 19.3 -338.41362 -338.39716 -338.39129 41.84537 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.363748 Ionic dipole 1 1.092984 7 ******** 0.0 8.9 -484.96789 -484.95168 -484.94897 -361.73458 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.100734 Ionic dipole 1 1.100868 8 ******** 0.0 21.4 -221.10231 -221.08583 -221.07932 -120.96766 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.386663 Ionic dipole 1 1.099481 9 ******** 0.0 11.5 -463.67927 -463.66254 -463.65904 -191.43269 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.611830 Ionic dipole 1 1.110825 10 46.50437 0.0 13.2 -436.56730 -436.55098 -436.54696 -390.04260 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.223543 Ionic dipole 1 1.093967 11 ******** 0.0 9.3 -327.05866 -327.04220 -327.03936 -195.45104 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.423859 Ionic dipole 1 1.036924 12 ******** 0.0 17.3 -510.73047 -510.71403 -510.70876 -342.58784 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.444400 Ionic dipole 1 0.996913 13 29.07614 0.0 9.4 -419.77978 -419.76345 -419.76059 -390.68445 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.358016 Ionic dipole 1 0.979651 14 ******** 0.0 10.1 -417.88262 -417.86579 -417.86273 -289.11423 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.868829 Ionic dipole 1 0.960172 15 92.26172 0.0 9.3 -516.89817 -516.88144 -516.87860 -424.61688 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.819083 Ionic dipole 1 0.913716 16 34.60029 0.0 10.1 -431.93807 -431.92158 -431.91850 -397.31820 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.666908 Ionic dipole 1 0.829551 17 ******** 0.0 9.9 -477.49924 -477.48266 -477.47964 -373.22210 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.828772 Ionic dipole 1 0.755094 18 48.50876 0.0 6.1 -510.96635 -510.94983 -510.94796 -462.43921 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 15.813695 Ionic dipole 1 0.702685 19 41.06200 0.0 6.9 -458.62227 -458.63735 -458.63524 -417.57323 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 -15.724229 Ionic dipole 1 0.650587 20 74.14651 0.0 6.2 -509.38649 -509.40125 -509.39936 -435.25285 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 -15.342691 Ionic dipole 1 0.582394 21 28.02337 0.0 7.5 -507.03551 -507.05024 -507.04798 -479.02461 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 -15.219003 Ionic dipole 1 0.482692 * Physical Quantities at step: 22 total energy = -486.58027 Hartree a.u. kinetic energy = 291.56641 Hartree a.u. electrostatic energy = -728.32071 Hartree a.u. esr = 0.00000 Hartree a.u. eself = 1021.29224 Hartree a.u. pseudopotential energy = -22.19572 Hartree a.u. n-l pseudopotential energy = 105.27030 Hartree a.u. exchange-correlation energy = -132.91518 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -14.61 -14.03 -13.98 -13.91 -13.89 -13.86 -13.81 -13.60 -13.57 -13.54 -13.52 -13.45 -13.44 -13.42 -13.39 -13.35 -13.34 -13.31 -13.29 -13.25 -13.23 -13.20 -13.12 -13.11 -13.03 -12.97 -12.96 -12.90 -12.86 -12.82 -12.75 -12.72 -0.42 -0.40 -0.35 -0.32 -0.02 0.02 0.10 0.49 0.51 0.53 0.56 0.56 0.60 0.61 0.65 0.65 0.67 0.71 0.77 0.93 0.99 1.00 1.03 1.05 1.08 1.10 1.12 1.15 1.17 1.18 1.19 1.43 1.48 1.53 1.54 1.57 1.63 1.85 1.88 1.92 1.95 1.98 1.99 2.01 2.03 2.06 2.10 2.11 2.16 2.18 2.24 2.26 2.29 2.31 2.36 2.50 2.52 2.54 2.57 2.58 2.63 3.00 3.02 3.04 3.09 3.11 3.11 3.12 3.15 3.18 3.20 3.22 3.23 3.26 3.27 3.29 3.31 3.33 3.34 3.36 3.38 3.39 3.41 3.41 3.42 3.43 3.46 3.47 3.48 3.49 3.54 3.56 3.58 3.86 3.89 3.91 Allocated memory (kb) = 102760 CELL_PARAMETERS 15.91200000 0.00000000 0.00000000 0.00000000 15.91200000 0.00000000 0.00000000 0.00000000 15.91200000 System Density [g/cm^3] : 0.1780 Center of mass square displacement (a.u.): 0.453232 ATOMIC_POSITIONS Mg 0.660389E-01 0.256654E-01 0.624755E-01 Mg 0.404507E+01 0.406287E+01 0.616278E-01 Mg 0.403987E+01 0.990396E-01 0.403392E+01 Mg 0.838879E-01 0.405050E+01 0.405167E+01 Mg 0.915091E-01 0.754846E-01 0.802758E+01 Mg 0.407284E+01 0.405261E+01 0.804993E+01 Mg 0.402746E+01 0.501929E-01 0.120126E+02 Mg 0.636661E-01 0.406525E+01 0.119812E+02 Mg 0.741049E-01 0.801005E+01 0.645271E-01 Mg 0.406247E+01 0.120157E+02 0.630357E-01 Mg 0.407064E+01 0.802320E+01 0.404975E+01 Mg 0.545012E-01 0.120141E+02 0.405504E+01 Mg 0.865111E-01 0.801520E+01 0.803986E+01 Mg 0.405032E+01 0.119971E+02 0.801860E+01 Mg 0.401364E+01 0.803122E+01 0.119946E+02 Mg 0.657897E-01 0.120176E+02 0.120124E+02 Mg 0.803004E+01 0.521666E-01 0.934236E-01 Mg 0.119887E+02 0.406172E+01 0.748960E-01 Mg 0.119881E+02 0.776124E-01 0.403526E+01 Mg 0.800064E+01 0.404133E+01 0.406345E+01 Mg 0.801610E+01 0.492847E-01 0.802486E+01 Mg 0.119869E+02 0.404066E+01 0.801544E+01 Mg 0.119995E+02 0.779150E-01 0.120083E+02 Mg 0.801940E+01 0.404413E+01 0.119664E+02 Mg 0.801865E+01 0.801059E+01 0.732317E-01 Mg 0.120090E+02 0.120053E+02 0.850118E-01 Mg 0.119879E+02 0.802642E+01 0.407177E+01 Mg 0.802902E+01 0.120243E+02 0.406350E+01 Mg 0.800776E+01 0.803216E+01 0.801418E+01 Mg 0.119889E+02 0.120148E+02 0.803888E+01 Mg 0.119727E+02 0.802758E+01 0.120182E+02 Mg 0.802062E+01 0.119764E+02 0.120105E+02 O 0.624022E-01 0.485161E-01 0.402869E+01 O 0.404712E+01 0.404118E+01 0.402464E+01 O 0.404328E+01 0.625856E-01 0.802501E+01 O 0.919435E-01 0.401740E+01 0.803578E+01 O 0.691829E-01 0.578024E-01 0.119932E+02 O 0.403349E+01 0.402977E+01 0.119869E+02 O 0.406493E+01 0.652587E-01 0.159974E+02 O 0.418564E-01 0.405971E+01 0.159839E+02 O 0.855375E-01 0.801666E+01 0.405397E+01 O 0.404740E+01 0.119738E+02 0.403875E+01 O 0.404069E+01 0.801563E+01 0.799143E+01 O 0.626846E-01 0.120433E+02 0.802874E+01 O 0.850875E-01 0.801270E+01 0.119718E+02 O 0.401541E+01 0.120142E+02 0.120264E+02 O 0.407870E+01 0.802314E+01 0.159316E+02 O 0.909728E-01 0.120166E+02 0.159728E+02 O 0.806165E+01 0.419888E-01 0.403454E+01 O 0.120214E+02 0.404563E+01 0.404783E+01 O 0.119871E+02 0.435655E-01 0.803704E+01 O 0.803123E+01 0.405163E+01 0.796526E+01 O 0.800297E+01 0.586275E-01 0.119822E+02 O 0.120110E+02 0.404051E+01 0.120192E+02 O 0.119789E+02 0.342947E-01 0.159622E+02 O 0.803558E+01 0.404287E+01 0.159821E+02 O 0.803293E+01 0.800660E+01 0.403544E+01 O 0.119464E+02 0.119662E+02 0.403879E+01 O 0.120041E+02 0.801791E+01 0.803697E+01 O 0.803655E+01 0.120459E+02 0.798749E+01 O 0.799222E+01 0.799937E+01 0.119682E+02 O 0.119479E+02 0.120317E+02 0.120190E+02 O 0.119938E+02 0.805264E+01 0.160021E+02 O 0.805467E+01 0.119855E+02 0.159816E+02 ATOMIC_VELOCITIES Mg -0.305461E-05 -0.102806E-03 0.127173E-04 Mg 0.310724E-04 0.945726E-04 -0.474535E-04 Mg 0.258182E-04 0.127368E-03 -0.165691E-05 Mg 0.553865E-04 0.464165E-04 0.735403E-04 Mg 0.122992E-03 0.562817E-04 0.684142E-04 Mg 0.130535E-03 0.557619E-05 0.156158E-03 Mg -0.582295E-04 -0.458851E-04 0.148423E-03 Mg -0.819937E-05 0.341428E-04 -0.561882E-05 Mg 0.480707E-04 -0.349921E-04 0.110727E-03 Mg 0.193831E-03 -0.139787E-06 0.158749E-03 Mg 0.193045E-03 0.748128E-05 -0.487704E-04 Mg -0.520424E-04 0.211364E-04 0.113756E-03 Mg 0.862722E-04 -0.522909E-04 0.346822E-04 Mg 0.608433E-04 0.422542E-04 0.261283E-04 Mg -0.140661E-03 -0.118312E-05 0.354017E-04 Mg -0.122132E-03 0.120500E-03 0.898615E-04 Mg 0.805091E-04 -0.554851E-04 0.152982E-03 Mg -0.509226E-04 0.699404E-04 0.146077E-03 Mg -0.450366E-04 0.419210E-04 0.149758E-04 Mg -0.271036E-04 -0.578848E-04 0.668898E-04 Mg -0.293825E-04 -0.382525E-04 0.520187E-04 Mg 0.545578E-05 -0.674454E-04 0.364080E-04 Mg -0.509725E-04 0.795943E-04 0.116109E-03 Mg 0.329122E-04 -0.133407E-03 -0.844921E-04 Mg 0.484340E-04 -0.524177E-04 0.881745E-04 Mg 0.531053E-04 -0.352285E-04 0.198818E-03 Mg -0.108950E-04 -0.396601E-04 0.203619E-03 Mg 0.435835E-04 0.949406E-04 0.632886E-04 Mg -0.464158E-05 0.633450E-04 -0.844134E-04 Mg -0.458045E-04 0.102042E-03 0.154498E-03 Mg -0.120402E-03 0.164157E-04 0.201310E-03 Mg -0.234437E-04 -0.628823E-04 0.146845E-03 O -0.173538E-04 -0.844996E-04 -0.884949E-04 O 0.808068E-04 0.313593E-05 -0.164958E-03 O -0.153719E-04 -0.672773E-04 -0.247530E-04 O 0.430306E-04 0.435958E-04 0.635952E-05 O 0.529380E-04 0.544257E-04 -0.107496E-03 O -0.122648E-03 -0.673664E-04 -0.336681E-04 O 0.502736E-04 0.209890E-04 -0.355115E-04 O -0.939554E-04 0.870670E-04 -0.136054E-03 O 0.838509E-04 -0.415286E-04 0.950933E-04 O 0.688004E-04 -0.155587E-03 -0.198923E-04 O -0.644731E-04 0.110636E-03 -0.274602E-03 O 0.339713E-04 0.553352E-04 -0.325032E-04 O 0.101302E-05 0.518201E-04 -0.193508E-03 O -0.262071E-04 0.503649E-04 -0.119565E-04 O 0.110903E-03 -0.246910E-04 -0.179782E-03 O -0.164296E-04 0.521498E-06 -0.153563E-03 O 0.200245E-03 -0.558496E-04 -0.934852E-04 O 0.173796E-03 0.373234E-04 -0.240780E-04 O -0.642303E-04 -0.280725E-04 -0.829919E-05 O 0.156362E-03 -0.113794E-03 -0.217837E-03 O -0.131608E-03 0.973482E-04 -0.500339E-04 O -0.107861E-03 0.110240E-03 0.691245E-04 O -0.112140E-03 -0.200308E-03 -0.152356E-03 O -0.404761E-04 0.600633E-04 -0.716473E-04 O 0.358444E-04 0.100032E-03 -0.677679E-04 O -0.171281E-03 -0.199042E-03 -0.317762E-04 O 0.155576E-04 -0.133670E-03 0.621869E-04 O -0.100742E-03 0.831535E-04 -0.203468E-03 O -0.150862E-03 -0.721145E-04 -0.193438E-03 O -0.272855E-03 0.264380E-05 0.397652E-04 O -0.696591E-04 0.131283E-03 -0.713060E-04 O 0.518194E-04 -0.100146E-03 -0.284593E-04 Forces acting on atoms (au): Mg -0.347720E-02 0.568593E-02 -0.659991E-02 Mg -0.782887E-02 -0.440153E-02 -0.199013E-02 Mg -0.798408E-03 -0.306629E-02 0.520466E-02 Mg -0.781342E-02 -0.210506E-02 -0.438225E-02 Mg -0.305106E-02 0.275323E-02 0.384377E-02 Mg -0.136219E-02 0.265297E-02 -0.152452E-02 Mg -0.339899E-02 0.492335E-02 -0.485395E-02 Mg -0.294823E-02 -0.252547E-02 0.615778E-02 Mg -0.791501E-04 -0.366715E-02 0.100091E-02 Mg -0.220045E-02 -0.261860E-02 0.266270E-02 Mg -0.658118E-02 0.364524E-03 -0.460346E-02 Mg -0.561936E-02 -0.673616E-02 -0.441652E-03 Mg -0.157846E-02 -0.180874E-02 -0.377086E-02 Mg -0.565965E-02 -0.560945E-02 -0.193421E-02 Mg 0.111533E-02 -0.898543E-02 -0.501330E-02 Mg -0.554556E-02 0.173850E-02 -0.163860E-02 Mg -0.389857E-03 -0.577908E-02 -0.258546E-02 Mg -0.365538E-02 -0.355615E-02 0.879379E-03 Mg 0.241120E-02 -0.700821E-02 -0.658010E-02 Mg 0.430104E-02 -0.300901E-02 -0.587089E-02 Mg 0.103019E-02 0.411386E-02 -0.696069E-02 Mg -0.216877E-02 -0.257811E-02 -0.821319E-02 Mg 0.467673E-03 -0.638302E-02 -0.581700E-02 Mg -0.380756E-02 -0.251007E-02 -0.413170E-02 Mg 0.673168E-02 -0.266437E-02 0.412061E-02 Mg -0.618444E-03 0.109584E-02 -0.365649E-02 Mg -0.188992E-02 -0.236950E-02 -0.198629E-02 Mg -0.465007E-02 -0.144756E-02 -0.102558E-01 Mg 0.417411E-04 -0.302922E-02 -0.320516E-02 Mg -0.395854E-03 -0.635220E-02 -0.278203E-02 Mg -0.266423E-03 0.524488E-02 0.666620E-03 Mg -0.519139E-02 0.176970E-02 -0.164427E-02 O -0.256733E-01 -0.629069E-03 -0.911397E-02 O -0.177117E-01 -0.104073E-01 0.356992E-01 O 0.681614E-02 0.122515E-01 -0.281036E-01 O 0.132773E-03 -0.504310E-03 0.949289E-02 O -0.910989E-02 0.285363E-01 -0.265592E-01 O -0.580501E-02 -0.938788E-02 0.203972E-01 O 0.219846E-02 -0.106193E-01 -0.392249E-01 O 0.527853E-01 -0.758342E-02 0.309352E-01 O -0.384604E-01 0.709262E-02 -0.163522E-01 O 0.225742E-01 0.608150E-02 -0.105324E-01 O -0.795814E-02 0.209298E-01 0.417628E-01 O 0.334637E-01 -0.213508E-01 -0.208023E-02 O -0.313984E-01 -0.179734E-01 0.171153E-01 O 0.370250E-01 0.265395E-02 -0.260000E-01 O 0.109637E-01 0.156222E-01 0.308409E-01 O -0.320313E-01 -0.236809E-02 -0.391626E-01 O -0.370746E-01 0.876217E-02 0.474921E-01 O -0.127873E-01 0.488981E-01 0.105210E-01 O 0.102211E-01 0.313907E-01 -0.231131E-02 O 0.770595E-02 0.275079E-02 -0.396254E-02 O 0.336798E-01 0.431208E-01 -0.515762E-02 O -0.359668E-01 -0.186491E-01 0.632383E-02 O -0.510462E-02 0.602229E-02 0.554702E-01 O 0.103651E-02 -0.437442E-01 0.157514E-01 O 0.583616E-02 0.273044E-01 -0.260586E-01 O 0.562909E-01 0.199407E-01 0.104943E-01 O 0.295910E-01 -0.114197E-01 0.182555E-02 O -0.531215E-02 -0.398358E-01 0.917451E-02 O -0.197945E-01 0.179979E-01 0.121019E-01 O 0.212810E-01 0.119475E-01 -0.614206E-02 O 0.112181E-01 -0.708724E-01 -0.226768E-01 O 0.624516E-02 0.119092E-01 -0.160548E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 6.35 0.4618 2 4.38 0.4467 22 41.65340 0.0 5.4 -486.58027 -486.59490 -486.59327 -444.93987 0.0000 0.0000 0.0000 0.0000 Elct. dipole 1 -15.011435 Ionic dipole 1 0.378438 writing restart file: /mgo_50.save restart file written in 0.175 sec. Averaged Physical Quantities accomulated this run ekinc : 119.18890 131.10779 (AU) ekin : 348.21817 359.49688 (AU) epot : -882.94237 -882.08244 (AU) total energy : -427.57446 -415.60409 (AU) temperature : 11.61042 12.77147 (K ) enthalpy : -377.81262 -415.59388 (AU) econs : -427.56165 -415.58999 (AU) pressure : -2.35854 0.00000 (Gpa) volume : 4028.78703 4028.78703 (AU) initialize : 2.76s CPU total_time : 126.05s CPU ( 20 calls, 6.302 s avg) formf : 0.06s CPU rhoofr : 6.65s CPU ( 20 calls, 0.332 s avg) vofrho : 4.59s CPU ( 20 calls, 0.229 s avg) dforce : 21.41s CPU ( 1280 calls, 0.017 s avg) calphi : 0.97s CPU ( 20 calls, 0.048 s avg) ortho : 4.90s CPU ( 20 calls, 0.245 s avg) ortho_iter : 1.14s CPU ( 20 calls, 0.057 s avg) rsg : 0.10s CPU ( 20 calls, 0.005 s avg) rhoset : 0.45s CPU ( 20 calls, 0.022 s avg) updatc : 0.43s CPU ( 20 calls, 0.021 s avg) gram : 0.70s CPU newd : 20.09s CPU ( 20 calls, 1.004 s avg) calbec : 2.47s CPU ( 41 calls, 0.060 s avg) prefor : 0.56s CPU ( 41 calls, 0.014 s avg) strucf : 0.19s CPU ( 21 calls, 0.009 s avg) nlfl : 0.15s CPU ( 20 calls, 0.007 s avg) nlfq : 5.50s CPU ( 20 calls, 0.275 s avg) set_cc : 0.72s CPU ( 20 calls, 0.036 s avg) rhov : 1.82s CPU ( 20 calls, 0.091 s avg) nlsm1 : 4.83s CPU ( 81 calls, 0.060 s avg) nlsm2 : 5.41s CPU ( 20 calls, 0.271 s avg) forcecc : 1.28s CPU ( 20 calls, 0.064 s avg) fft : 2.17s CPU ( 100 calls, 0.022 s avg) ffts : 0.17s CPU ( 40 calls, 0.004 s avg) fftw : 9.88s CPU ( 3840 calls, 0.003 s avg) fftb : 13.54s CPU ( 14080 calls, 0.001 s avg) CP : 2m 8.96s CPU time, 2m 9.39s wall time This run was terminated on: 16:37: 1 28Apr2008 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example09/reference/mgo.cp.cg.out0000644000175000017500000007515712341373026021636 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.0 - Mon Apr 28 15:32:33 CEST 2008 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 16:23:12 28Apr2008 Serial Build Warning: card &CELL ignored Warning: card CELL_DYNAMICS = 'NONE', ignored Warning: card / ignored Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/pseudo/O.pz-rrkjus.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/pseudo/Mg.pz-n-vbc.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 1 Print out every 1 MD Steps Reads from unit = 50 Writes to unit = 50 MD Simulation time step = 1.00 Electronic fictitious mass (emass) = 1000.00 emass cut-off = 4.00 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 160952.54 [AU] ibrav = 1 alat = 15.91200000 a1 = 15.91200000 0.00000000 0.00000000 a2 = 0.00000000 15.91200000 0.00000000 a3 = 0.00000000 0.00000000 15.91200000 b1 = 0.06284565 0.00000000 0.00000000 b2 = 0.00000000 0.06284565 0.00000000 b3 = 0.00000000 0.00000000 0.06284565 omega = 4028.78703053 ======================================== | CONJUGATE GRADIENT | ======================================== | iterations = 250 | | conv_thr = 0.00000001000 a.u. | | passop = 0.30000 a.u. | | niter_cg_restart = 20 | ======================================== Energy Cut-offs --------------- Ecutwfc = 20.0 Ry, Ecutrho = 160.0 Ry, Ecuts = 80.0 Ry Gcutwfc = 11.3 , Gcutrho = 32.0 Gcuts = 22.7 NOTA BENE: refg, mmx = 0.050000 3840 Orthog. with Gram-Schmidt Electron dynamics with newton equations Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 256, of States = 128 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC (1100) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 32 mass = 21892.89 (a.u.), 12.01 (amu) rcmax = 0.80 (a.u.) 0.066300 0.066300 4.044300 4.044300 4.044300 4.044300 4.044300 0.066300 8.022300 0.066300 4.044300 8.022300 0.066300 0.066300 12.000300 4.044300 4.044300 12.000300 4.044300 0.066300 15.978300 0.066300 4.044300 15.978300 0.066300 8.022300 4.044300 4.044300 12.000300 4.044300 4.044300 8.022300 8.022300 0.066300 12.000300 8.022300 0.066300 8.022300 12.000300 4.044300 12.000300 12.000300 4.044300 8.022300 15.978300 0.066300 12.000300 15.978300 8.022300 0.066300 4.044300 12.000300 4.044300 4.044300 12.000300 0.066300 8.022300 8.022300 4.044300 8.022300 8.022300 0.066300 12.000300 12.000300 4.044300 12.000300 12.000300 0.066300 15.978300 8.022300 4.044300 15.978300 8.022300 8.022300 4.044300 12.000300 12.000300 4.044300 12.000300 8.022300 8.022300 8.022300 12.000300 8.022300 8.022300 8.022300 12.000300 12.000300 12.000300 12.000300 12.000300 8.022300 15.978300 8.022300 12.000300 15.978300 Species 2 atoms = 32 mass = 44296.19 (a.u.), 24.30 (amu) rcmax = 0.50 (a.u.) 0.066300 0.066300 0.066300 4.044300 4.044300 0.066300 4.044300 0.066300 4.044300 0.066300 4.044300 4.044300 0.066300 0.066300 8.022300 4.044300 4.044300 8.022300 4.044300 0.066300 12.000300 0.066300 4.044300 12.000300 0.066300 8.022300 0.066300 4.044300 12.000300 0.066300 4.044300 8.022300 4.044300 0.066300 12.000300 4.044300 0.066300 8.022300 8.022300 4.044300 12.000300 8.022300 4.044300 8.022300 12.000300 0.066300 12.000300 12.000300 8.022300 0.066300 0.066300 12.000300 4.044300 0.066300 12.000300 0.066300 4.044300 8.022300 4.044300 4.044300 8.022300 0.066300 8.022300 12.000300 4.044300 8.022300 12.000300 0.066300 12.000300 8.022300 4.044300 12.000300 8.022300 8.022300 0.066300 12.000300 12.000300 0.066300 12.000300 8.022300 4.044300 8.022300 12.000300 4.044300 8.022300 8.022300 8.022300 12.000300 12.000300 8.022300 12.000300 8.022300 12.000300 8.022300 12.000300 12.000300 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move ===================================== | BERRY PHASE ELECTRIC FIELD 1 ===================================== | direction = 3 | intensity = 0.00000 a.u. ===================================== Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 15.9120 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 15.9120 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 15.9120 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 1617, nstw = 203, nsts = 805 PEs n.st n.stw n.sts n.g n.gw n.gs 1 3233 405 1609 137929 6043 48693 0 3233 405 1609 137929 6043 48693 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nnrx ) = 373248 Number of x-y planes for each processors: nr3l = 72 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 45 45 45 45 45 45 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 45 45 45 Local number of cell to store the grid ( nnrx ) = 91125 Number of x-y planes for each processors: nr3sl = 45 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 30 30 30 30 30 30 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 30 30 30 Local number of cell to store the grid ( nnrx ) = 27000 unit vectors of box grid cell in real space: in reciprocal space: 6.6300 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.6300 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.6300 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 68965 68965 68965 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 24347 24347 24347 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 3022 3022 3022 Small box Mesh ngb = 4970 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input O 0.416667E-02 0.416667E-02 0.254167E+00 O 0.254167E+00 0.254167E+00 0.254167E+00 O 0.254167E+00 0.416667E-02 0.504167E+00 O 0.416667E-02 0.254167E+00 0.504167E+00 O 0.416667E-02 0.416667E-02 0.754167E+00 O 0.254167E+00 0.254167E+00 0.754167E+00 O 0.254167E+00 0.416667E-02 0.100417E+01 O 0.416667E-02 0.254167E+00 0.100417E+01 O 0.416667E-02 0.504167E+00 0.254167E+00 O 0.254167E+00 0.754167E+00 0.254167E+00 O 0.254167E+00 0.504167E+00 0.504167E+00 O 0.416667E-02 0.754167E+00 0.504167E+00 O 0.416667E-02 0.504167E+00 0.754167E+00 O 0.254167E+00 0.754167E+00 0.754167E+00 O 0.254167E+00 0.504167E+00 0.100417E+01 O 0.416667E-02 0.754167E+00 0.100417E+01 O 0.504167E+00 0.416667E-02 0.254167E+00 O 0.754167E+00 0.254167E+00 0.254167E+00 O 0.754167E+00 0.416667E-02 0.504167E+00 O 0.504167E+00 0.254167E+00 0.504167E+00 O 0.504167E+00 0.416667E-02 0.754167E+00 O 0.754167E+00 0.254167E+00 0.754167E+00 O 0.754167E+00 0.416667E-02 0.100417E+01 O 0.504167E+00 0.254167E+00 0.100417E+01 O 0.504167E+00 0.504167E+00 0.254167E+00 O 0.754167E+00 0.754167E+00 0.254167E+00 O 0.754167E+00 0.504167E+00 0.504167E+00 O 0.504167E+00 0.754167E+00 0.504167E+00 O 0.504167E+00 0.504167E+00 0.754167E+00 O 0.754167E+00 0.754167E+00 0.754167E+00 O 0.754167E+00 0.504167E+00 0.100417E+01 O 0.504167E+00 0.754167E+00 0.100417E+01 Mg 0.416667E-02 0.416667E-02 0.416667E-02 Mg 0.254167E+00 0.254167E+00 0.416667E-02 Mg 0.254167E+00 0.416667E-02 0.254167E+00 Mg 0.416667E-02 0.254167E+00 0.254167E+00 Mg 0.416667E-02 0.416667E-02 0.504167E+00 Mg 0.254167E+00 0.254167E+00 0.504167E+00 Mg 0.254167E+00 0.416667E-02 0.754167E+00 Mg 0.416667E-02 0.254167E+00 0.754167E+00 Mg 0.416667E-02 0.504167E+00 0.416667E-02 Mg 0.254167E+00 0.754167E+00 0.416667E-02 Mg 0.254167E+00 0.504167E+00 0.254167E+00 Mg 0.416667E-02 0.754167E+00 0.254167E+00 Mg 0.416667E-02 0.504167E+00 0.504167E+00 Mg 0.254167E+00 0.754167E+00 0.504167E+00 Mg 0.254167E+00 0.504167E+00 0.754167E+00 Mg 0.416667E-02 0.754167E+00 0.754167E+00 Mg 0.504167E+00 0.416667E-02 0.416667E-02 Mg 0.754167E+00 0.254167E+00 0.416667E-02 Mg 0.754167E+00 0.416667E-02 0.254167E+00 Mg 0.504167E+00 0.254167E+00 0.254167E+00 Mg 0.504167E+00 0.416667E-02 0.504167E+00 Mg 0.754167E+00 0.254167E+00 0.504167E+00 Mg 0.754167E+00 0.416667E-02 0.754167E+00 Mg 0.504167E+00 0.254167E+00 0.754167E+00 Mg 0.504167E+00 0.504167E+00 0.416667E-02 Mg 0.754167E+00 0.754167E+00 0.416667E-02 Mg 0.754167E+00 0.504167E+00 0.254167E+00 Mg 0.504167E+00 0.754167E+00 0.254167E+00 Mg 0.504167E+00 0.504167E+00 0.504167E+00 Mg 0.754167E+00 0.754167E+00 0.504167E+00 Mg 0.754167E+00 0.504167E+00 0.754167E+00 Mg 0.504167E+00 0.754167E+00 0.754167E+00 Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 4970 1 865 3 qqq -0.0987 0.4865 0.0000 0.0000 0.4865 -2.1787 0.0000 0.0000 0.0000 0.0000 0.2330 0.2950 0.0000 0.0000 0.2950 0.3737 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4817 -1.2813 0.0000 0.0000 -1.2813 2.3075 0.0000 0.0000 0.0000 0.0000 0.6338 0.8752 0.0000 0.0000 0.8752 1.2039 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 3.2181 0.0000 0.0000 12.0575 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 128 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 formf: eself= 676.60611 formf: vps(g=0)= -0.0020774 rhops(g=0)= -0.0014893 formf: sum_g vps(g)= -1.4455266 sum_g rhops(g)= -1.0530008 formf: vps(g=0)= 0.0012432 rhops(g=0)= -0.0004964 formf: sum_g vps(g)= 1.6241241 sum_g rhops(g)= -1.4102948 Delta V(G=0): 0.108296Ry, 2.946897eV Initialize Berry phase electric field #not found, gtable: 405.000000000000 #not found, gtabin: 405.000000000000 * Physical Quantities at step: 1 PERFORMING CONJUGATE GRADIENT MINIMIZATION OF EL. STATES total energy = -547.27009 Hartree a.u. kinetic energy = 235.43107 Hartree a.u. electrostatic energy = -588.81032 Hartree a.u. esr = 0.00000 Hartree a.u. eself = 676.60611 Hartree a.u. pseudopotential energy = -167.88011 Hartree a.u. n-l pseudopotential energy = 108.84078 Hartree a.u. exchange-correlation energy = -134.85151 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -14.79 -14.01 -14.01 -14.01 -14.01 -14.01 -14.01 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.47 -13.47 -13.47 -13.47 -13.14 -13.14 -13.14 -13.11 -13.11 -13.11 -13.11 -13.11 -13.11 -2.27 -2.27 -2.27 -2.27 -1.83 -1.83 -1.83 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.63 0.63 0.63 0.63 0.63 0.63 1.02 1.02 1.02 1.02 1.02 1.02 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 2.46 2.46 2.46 Allocated memory (kb) = 235460 CELL_PARAMETERS 15.91200000 0.00000000 0.00000000 0.00000000 15.91200000 0.00000000 0.00000000 0.00000000 15.91200000 System Density [g/cm^3] : 3.2319 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -51.88781488 0.00008337 0.00008276 0.00008337 -51.88779953 0.00008457 0.00008276 0.00008457 -51.88778260 ATOMIC_POSITIONS Mg 0.663000E-01 0.663000E-01 0.663000E-01 Mg 0.404430E+01 0.404430E+01 0.663000E-01 Mg 0.404430E+01 0.663000E-01 0.404430E+01 Mg 0.663000E-01 0.404430E+01 0.404430E+01 Mg 0.663000E-01 0.663000E-01 0.802230E+01 Mg 0.404430E+01 0.404430E+01 0.802230E+01 Mg 0.404430E+01 0.663000E-01 0.120003E+02 Mg 0.663000E-01 0.404430E+01 0.120003E+02 Mg 0.663000E-01 0.802230E+01 0.663000E-01 Mg 0.404430E+01 0.120003E+02 0.663000E-01 Mg 0.404430E+01 0.802230E+01 0.404430E+01 Mg 0.663000E-01 0.120003E+02 0.404430E+01 Mg 0.663000E-01 0.802230E+01 0.802230E+01 Mg 0.404430E+01 0.120003E+02 0.802230E+01 Mg 0.404430E+01 0.802230E+01 0.120003E+02 Mg 0.663000E-01 0.120003E+02 0.120003E+02 Mg 0.802230E+01 0.663000E-01 0.663000E-01 Mg 0.120003E+02 0.404430E+01 0.663000E-01 Mg 0.120003E+02 0.663000E-01 0.404430E+01 Mg 0.802230E+01 0.404430E+01 0.404430E+01 Mg 0.802230E+01 0.663000E-01 0.802230E+01 Mg 0.120003E+02 0.404430E+01 0.802230E+01 Mg 0.120003E+02 0.663000E-01 0.120003E+02 Mg 0.802230E+01 0.404430E+01 0.120003E+02 Mg 0.802230E+01 0.802230E+01 0.663000E-01 Mg 0.120003E+02 0.120003E+02 0.663000E-01 Mg 0.120003E+02 0.802230E+01 0.404430E+01 Mg 0.802230E+01 0.120003E+02 0.404430E+01 Mg 0.802230E+01 0.802230E+01 0.802230E+01 Mg 0.120003E+02 0.120003E+02 0.802230E+01 Mg 0.120003E+02 0.802230E+01 0.120003E+02 Mg 0.802230E+01 0.120003E+02 0.120003E+02 O 0.663000E-01 0.663000E-01 0.404430E+01 O 0.404430E+01 0.404430E+01 0.404430E+01 O 0.404430E+01 0.663000E-01 0.802230E+01 O 0.663000E-01 0.404430E+01 0.802230E+01 O 0.663000E-01 0.663000E-01 0.120003E+02 O 0.404430E+01 0.404430E+01 0.120003E+02 O 0.404430E+01 0.663000E-01 0.159783E+02 O 0.663000E-01 0.404430E+01 0.159783E+02 O 0.663000E-01 0.802230E+01 0.404430E+01 O 0.404430E+01 0.120003E+02 0.404430E+01 O 0.404430E+01 0.802230E+01 0.802230E+01 O 0.663000E-01 0.120003E+02 0.802230E+01 O 0.663000E-01 0.802230E+01 0.120003E+02 O 0.404430E+01 0.120003E+02 0.120003E+02 O 0.404430E+01 0.802230E+01 0.159783E+02 O 0.663000E-01 0.120003E+02 0.159783E+02 O 0.802230E+01 0.663000E-01 0.404430E+01 O 0.120003E+02 0.404430E+01 0.404430E+01 O 0.120003E+02 0.663000E-01 0.802230E+01 O 0.802230E+01 0.404430E+01 0.802230E+01 O 0.802230E+01 0.663000E-01 0.120003E+02 O 0.120003E+02 0.404430E+01 0.120003E+02 O 0.120003E+02 0.663000E-01 0.159783E+02 O 0.802230E+01 0.404430E+01 0.159783E+02 O 0.802230E+01 0.802230E+01 0.404430E+01 O 0.120003E+02 0.120003E+02 0.404430E+01 O 0.120003E+02 0.802230E+01 0.802230E+01 O 0.802230E+01 0.120003E+02 0.802230E+01 O 0.802230E+01 0.802230E+01 0.120003E+02 O 0.120003E+02 0.120003E+02 0.120003E+02 O 0.120003E+02 0.802230E+01 0.159783E+02 O 0.802230E+01 0.120003E+02 0.159783E+02 ATOMIC_VELOCITIES Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): Mg -0.663936E-05 -0.648055E-05 -0.629669E-05 Mg -0.673548E-05 -0.643233E-05 -0.645183E-05 Mg -0.658358E-05 -0.666289E-05 -0.632697E-05 Mg -0.648698E-05 -0.676978E-05 -0.684140E-05 Mg -0.655990E-05 -0.661621E-05 -0.639941E-05 Mg -0.671225E-05 -0.661797E-05 -0.658300E-05 Mg -0.623172E-05 -0.634797E-05 -0.648709E-05 Mg -0.639960E-05 -0.616207E-05 -0.600081E-05 Mg -0.658190E-05 -0.642018E-05 -0.661360E-05 Mg -0.661288E-05 -0.623246E-05 -0.625361E-05 Mg -0.644342E-05 -0.632336E-05 -0.660960E-05 Mg -0.653561E-05 -0.620553E-05 -0.633554E-05 Mg -0.662974E-05 -0.637704E-05 -0.637936E-05 Mg -0.646618E-05 -0.614740E-05 -0.628570E-05 Mg -0.662802E-05 -0.599128E-05 -0.629307E-05 Mg -0.645712E-05 -0.624729E-05 -0.614203E-05 Mg -0.647171E-05 -0.655955E-05 -0.654383E-05 Mg -0.595919E-05 -0.659275E-05 -0.635272E-05 Mg -0.643909E-05 -0.646911E-05 -0.656627E-05 Mg -0.613260E-05 -0.661155E-05 -0.664811E-05 Mg -0.627959E-05 -0.666810E-05 -0.643461E-05 Mg -0.645743E-05 -0.639024E-05 -0.671634E-05 Mg -0.627208E-05 -0.683667E-05 -0.636213E-05 Mg -0.641907E-05 -0.651568E-05 -0.649146E-05 Mg -0.651387E-05 -0.600632E-05 -0.669754E-05 Mg -0.614544E-05 -0.612420E-05 -0.643939E-05 Mg -0.620154E-05 -0.656780E-05 -0.647099E-05 Mg -0.633169E-05 -0.621263E-05 -0.659779E-05 Mg -0.619587E-05 -0.633169E-05 -0.635753E-05 Mg -0.643130E-05 -0.617378E-05 -0.612484E-05 Mg -0.617111E-05 -0.620627E-05 -0.638013E-05 Mg -0.629038E-05 -0.606197E-05 -0.653862E-05 O -0.780720E-04 -0.789652E-04 -0.802993E-04 O -0.792248E-04 -0.793349E-04 -0.777991E-04 O -0.776974E-04 -0.783540E-04 -0.759925E-04 O -0.772945E-04 -0.780479E-04 -0.789704E-04 O -0.796060E-04 -0.800854E-04 -0.765415E-04 O -0.807433E-04 -0.790985E-04 -0.769695E-04 O -0.771514E-04 -0.788206E-04 -0.785768E-04 O -0.791663E-04 -0.792896E-04 -0.758533E-04 O -0.769393E-04 -0.777614E-04 -0.779338E-04 O -0.790576E-04 -0.775257E-04 -0.798652E-04 O -0.778447E-04 -0.772451E-04 -0.765571E-04 O -0.791929E-04 -0.770645E-04 -0.786014E-04 O -0.765952E-04 -0.772137E-04 -0.771112E-04 O -0.780612E-04 -0.778032E-04 -0.769948E-04 O -0.785191E-04 -0.776292E-04 -0.775297E-04 O -0.783411E-04 -0.771389E-04 -0.786447E-04 O -0.784534E-04 -0.787501E-04 -0.786748E-04 O -0.802732E-04 -0.786299E-04 -0.791914E-04 O -0.780344E-04 -0.776292E-04 -0.795309E-04 O -0.800486E-04 -0.782043E-04 -0.770896E-04 O -0.765875E-04 -0.788784E-04 -0.777709E-04 O -0.776307E-04 -0.771895E-04 -0.775736E-04 O -0.766267E-04 -0.788909E-04 -0.778845E-04 O -0.798011E-04 -0.792274E-04 -0.785389E-04 O -0.774144E-04 -0.774353E-04 -0.774374E-04 O -0.775434E-04 -0.783351E-04 -0.798990E-04 O -0.774275E-04 -0.793926E-04 -0.781964E-04 O -0.782484E-04 -0.773414E-04 -0.782759E-04 O -0.775823E-04 -0.774142E-04 -0.769332E-04 O -0.784880E-04 -0.768803E-04 -0.786019E-04 O -0.761887E-04 -0.785393E-04 -0.781253E-04 O -0.784605E-04 -0.787432E-04 -0.779378E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 nfi tempp E -T.S-mu.nbsp +K_p #Iter Step 1 0 -547.27009 -547.27009 -547.27009 40 Elct. dipole 1 14.851574 Ionic dipole 1 1.060800 writing restart file: /mgo_50.save restart file written in 0.203 sec. Averaged Physical Quantities accomulated this run ekinc : 0.00000 0.00000 (AU) ekin : 235.43107 235.43107 (AU) epot : -891.54194 -891.54194 (AU) total energy : -547.27009 -547.27009 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : 0.00000 0.00000 (AU) econs : -547.27009 -547.27009 (AU) pressure : -51.88780 -51.88780 (Gpa) volume : 4028.78703 4028.78703 (AU) initialize : 4.19s CPU total_time : 409.76s CPU formf : 0.14s CPU rhoofr : 111.38s CPU ( 80 calls, 1.392 s avg) vofrho : 26.28s CPU ( 80 calls, 0.329 s avg) dforce : 42.10s CPU ( 2560 calls, 0.016 s avg) calphi : 1.96s CPU ( 40 calls, 0.049 s avg) gram : 64.31s CPU ( 80 calls, 0.804 s avg) newd : 39.32s CPU ( 40 calls, 0.983 s avg) calbec : 24.96s CPU ( 277 calls, 0.090 s avg) prefor : 0.60s CPU ( 42 calls, 0.014 s avg) strucf : 0.01s CPU nlfl : 0.01s CPU nlfq : 0.26s CPU set_cc : 2.86s CPU ( 80 calls, 0.036 s avg) rhov : 7.19s CPU ( 80 calls, 0.090 s avg) nlsm1 : 24.96s CPU ( 277 calls, 0.090 s avg) nlsm2 : 0.25s CPU forcecc : 5.29s CPU ( 80 calls, 0.066 s avg) fft : 26.97s CPU ( 1200 calls, 0.022 s avg) ffts : 0.69s CPU ( 160 calls, 0.004 s avg) fftw : 25.81s CPU ( 10240 calls, 0.003 s avg) fftb : 40.23s CPU ( 42880 calls, 0.001 s avg) runcg_uspp : 409.63s CPU calcmt : 0.00s CPU pc2 : 10.58s CPU ( 117 calls, 0.090 s avg) pcdaga2 : 24.30s CPU ( 39 calls, 0.623 s avg) set_x_minus1 : 1.98s CPU ( 2 calls, 0.990 s avg) xminus1 : 23.01s CPU ( 78 calls, 0.295 s avg) emass_p_tpa : 0.00s CPU CP : 6m54.12s CPU time, 7m 4.56s wall time This run was terminated on: 16:30:16 28Apr2008 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example09/reference/mgo.cp.cg.efield.out0000644000175000017500000007403412341373026023056 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.0 - Mon Apr 28 15:32:33 CEST 2008 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 16:30:16 28Apr2008 Serial Build Warning: card &CELL ignored Warning: card CELL_DYNAMICS = 'NONE', ignored Warning: card / ignored Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/pseudo/O.pz-rrkjus.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/pseudo/Mg.pz-n-vbc.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 1 Print out every 1 MD Steps Reads from unit = 50 Writes to unit = 50 MD Simulation time step = 1.00 Electronic fictitious mass (emass) = 1000.00 emass cut-off = 4.00 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 160952.54 [AU] ibrav = 1 alat = 15.91200000 a1 = 15.91200000 0.00000000 0.00000000 a2 = 0.00000000 15.91200000 0.00000000 a3 = 0.00000000 0.00000000 15.91200000 b1 = 0.06284565 0.00000000 0.00000000 b2 = 0.00000000 0.06284565 0.00000000 b3 = 0.00000000 0.00000000 0.06284565 omega = 4028.78703053 ======================================== | CONJUGATE GRADIENT | ======================================== | iterations = 250 | | conv_thr = 0.00000001000 a.u. | | passop = 0.30000 a.u. | | niter_cg_restart = 20 | ======================================== Energy Cut-offs --------------- Ecutwfc = 20.0 Ry, Ecutrho = 160.0 Ry, Ecuts = 80.0 Ry Gcutwfc = 11.3 , Gcutrho = 32.0 Gcuts = 22.7 NOTA BENE: refg, mmx = 0.050000 3840 Orthog. with Gram-Schmidt Electron dynamics with newton equations Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 256, of States = 128 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC (1100) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 32 mass = 21892.89 (a.u.), 12.01 (amu) rcmax = 0.80 (a.u.) 0.066300 0.066300 4.044300 4.044300 4.044300 4.044300 4.044300 0.066300 8.022300 0.066300 4.044300 8.022300 0.066300 0.066300 12.000300 4.044300 4.044300 12.000300 4.044300 0.066300 15.978300 0.066300 4.044300 15.978300 0.066300 8.022300 4.044300 4.044300 12.000300 4.044300 4.044300 8.022300 8.022300 0.066300 12.000300 8.022300 0.066300 8.022300 12.000300 4.044300 12.000300 12.000300 4.044300 8.022300 15.978300 0.066300 12.000300 15.978300 8.022300 0.066300 4.044300 12.000300 4.044300 4.044300 12.000300 0.066300 8.022300 8.022300 4.044300 8.022300 8.022300 0.066300 12.000300 12.000300 4.044300 12.000300 12.000300 0.066300 15.978300 8.022300 4.044300 15.978300 8.022300 8.022300 4.044300 12.000300 12.000300 4.044300 12.000300 8.022300 8.022300 8.022300 12.000300 8.022300 8.022300 8.022300 12.000300 12.000300 12.000300 12.000300 12.000300 8.022300 15.978300 8.022300 12.000300 15.978300 Species 2 atoms = 32 mass = 44296.19 (a.u.), 24.30 (amu) rcmax = 0.50 (a.u.) 0.066300 0.066300 0.066300 4.044300 4.044300 0.066300 4.044300 0.066300 4.044300 0.066300 4.044300 4.044300 0.066300 0.066300 8.022300 4.044300 4.044300 8.022300 4.044300 0.066300 12.000300 0.066300 4.044300 12.000300 0.066300 8.022300 0.066300 4.044300 12.000300 0.066300 4.044300 8.022300 4.044300 0.066300 12.000300 4.044300 0.066300 8.022300 8.022300 4.044300 12.000300 8.022300 4.044300 8.022300 12.000300 0.066300 12.000300 12.000300 8.022300 0.066300 0.066300 12.000300 4.044300 0.066300 12.000300 0.066300 4.044300 8.022300 4.044300 4.044300 8.022300 0.066300 8.022300 12.000300 4.044300 8.022300 12.000300 0.066300 12.000300 8.022300 4.044300 12.000300 8.022300 8.022300 0.066300 12.000300 12.000300 0.066300 12.000300 8.022300 4.044300 8.022300 12.000300 4.044300 8.022300 8.022300 8.022300 12.000300 12.000300 8.022300 12.000300 8.022300 12.000300 8.022300 12.000300 12.000300 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move ===================================== | BERRY PHASE ELECTRIC FIELD 1 ===================================== | direction = 3 | intensity = 0.00100 a.u. ===================================== Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 15.9120 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 15.9120 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 15.9120 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 1617, nstw = 203, nsts = 805 PEs n.st n.stw n.sts n.g n.gw n.gs 1 3233 405 1609 137929 6043 48693 0 3233 405 1609 137929 6043 48693 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nnrx ) = 373248 Number of x-y planes for each processors: nr3l = 72 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 45 45 45 45 45 45 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 45 45 45 Local number of cell to store the grid ( nnrx ) = 91125 Number of x-y planes for each processors: nr3sl = 45 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 30 30 30 30 30 30 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 30 30 30 Local number of cell to store the grid ( nnrx ) = 27000 unit vectors of box grid cell in real space: in reciprocal space: 6.6300 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.6300 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 6.6300 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 68965 68965 68965 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 24347 24347 24347 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 3022 3022 3022 Small box Mesh ngb = 4970 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input O 0.416667E-02 0.416667E-02 0.254167E+00 O 0.254167E+00 0.254167E+00 0.254167E+00 O 0.254167E+00 0.416667E-02 0.504167E+00 O 0.416667E-02 0.254167E+00 0.504167E+00 O 0.416667E-02 0.416667E-02 0.754167E+00 O 0.254167E+00 0.254167E+00 0.754167E+00 O 0.254167E+00 0.416667E-02 0.100417E+01 O 0.416667E-02 0.254167E+00 0.100417E+01 O 0.416667E-02 0.504167E+00 0.254167E+00 O 0.254167E+00 0.754167E+00 0.254167E+00 O 0.254167E+00 0.504167E+00 0.504167E+00 O 0.416667E-02 0.754167E+00 0.504167E+00 O 0.416667E-02 0.504167E+00 0.754167E+00 O 0.254167E+00 0.754167E+00 0.754167E+00 O 0.254167E+00 0.504167E+00 0.100417E+01 O 0.416667E-02 0.754167E+00 0.100417E+01 O 0.504167E+00 0.416667E-02 0.254167E+00 O 0.754167E+00 0.254167E+00 0.254167E+00 O 0.754167E+00 0.416667E-02 0.504167E+00 O 0.504167E+00 0.254167E+00 0.504167E+00 O 0.504167E+00 0.416667E-02 0.754167E+00 O 0.754167E+00 0.254167E+00 0.754167E+00 O 0.754167E+00 0.416667E-02 0.100417E+01 O 0.504167E+00 0.254167E+00 0.100417E+01 O 0.504167E+00 0.504167E+00 0.254167E+00 O 0.754167E+00 0.754167E+00 0.254167E+00 O 0.754167E+00 0.504167E+00 0.504167E+00 O 0.504167E+00 0.754167E+00 0.504167E+00 O 0.504167E+00 0.504167E+00 0.754167E+00 O 0.754167E+00 0.754167E+00 0.754167E+00 O 0.754167E+00 0.504167E+00 0.100417E+01 O 0.504167E+00 0.754167E+00 0.100417E+01 Mg 0.416667E-02 0.416667E-02 0.416667E-02 Mg 0.254167E+00 0.254167E+00 0.416667E-02 Mg 0.254167E+00 0.416667E-02 0.254167E+00 Mg 0.416667E-02 0.254167E+00 0.254167E+00 Mg 0.416667E-02 0.416667E-02 0.504167E+00 Mg 0.254167E+00 0.254167E+00 0.504167E+00 Mg 0.254167E+00 0.416667E-02 0.754167E+00 Mg 0.416667E-02 0.254167E+00 0.754167E+00 Mg 0.416667E-02 0.504167E+00 0.416667E-02 Mg 0.254167E+00 0.754167E+00 0.416667E-02 Mg 0.254167E+00 0.504167E+00 0.254167E+00 Mg 0.416667E-02 0.754167E+00 0.254167E+00 Mg 0.416667E-02 0.504167E+00 0.504167E+00 Mg 0.254167E+00 0.754167E+00 0.504167E+00 Mg 0.254167E+00 0.504167E+00 0.754167E+00 Mg 0.416667E-02 0.754167E+00 0.754167E+00 Mg 0.504167E+00 0.416667E-02 0.416667E-02 Mg 0.754167E+00 0.254167E+00 0.416667E-02 Mg 0.754167E+00 0.416667E-02 0.254167E+00 Mg 0.504167E+00 0.254167E+00 0.254167E+00 Mg 0.504167E+00 0.416667E-02 0.504167E+00 Mg 0.754167E+00 0.254167E+00 0.504167E+00 Mg 0.754167E+00 0.416667E-02 0.754167E+00 Mg 0.504167E+00 0.254167E+00 0.754167E+00 Mg 0.504167E+00 0.504167E+00 0.416667E-02 Mg 0.754167E+00 0.754167E+00 0.416667E-02 Mg 0.754167E+00 0.504167E+00 0.254167E+00 Mg 0.504167E+00 0.754167E+00 0.254167E+00 Mg 0.504167E+00 0.504167E+00 0.504167E+00 Mg 0.754167E+00 0.754167E+00 0.504167E+00 Mg 0.754167E+00 0.504167E+00 0.754167E+00 Mg 0.504167E+00 0.754167E+00 0.754167E+00 ibrav = 1 cell parameters 15.91200 0.00000 0.00000 0.00000 15.91200 0.00000 0.00000 0.00000 15.91200 Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 4970 1 865 3 qqq -0.0987 0.4865 0.0000 0.0000 0.4865 -2.1787 0.0000 0.0000 0.0000 0.0000 0.2330 0.2950 0.0000 0.0000 0.2950 0.3737 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4817 -1.2813 0.0000 0.0000 -1.2813 2.3075 0.0000 0.0000 0.0000 0.0000 0.6338 0.8752 0.0000 0.0000 0.8752 1.2039 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 3.2181 0.0000 0.0000 12.0575 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /mgo_50.save restart file read in 0.091 sec. nprint_nfi= -2 nprint_nfi= 1 formf: eself= 676.60611 formf: vps(g=0)= -0.0020774 rhops(g=0)= -0.0014893 formf: sum_g vps(g)= -1.4455266 sum_g rhops(g)= -1.0530008 formf: vps(g=0)= 0.0012432 rhops(g=0)= -0.0004964 formf: sum_g vps(g)= 1.6241241 sum_g rhops(g)= -1.4102948 Delta V(G=0): 0.108296Ry, 2.946897eV Initial random displacement of el. coordinates Amplitude = 0.020000 Initialize Berry phase electric field #not found, gtable: 405.000000000000 #not found, gtabin: 405.000000000000 * Physical Quantities at step: 2 PERFORMING CONJUGATE GRADIENT MINIMIZATION OF EL. STATES total energy = -547.28628 Hartree a.u. kinetic energy = 235.43095 Hartree a.u. electrostatic energy = -588.81023 Hartree a.u. esr = 0.00000 Hartree a.u. eself = 676.60611 Hartree a.u. pseudopotential energy = -167.87987 Hartree a.u. n-l pseudopotential energy = 108.84068 Hartree a.u. exchange-correlation energy = -134.85134 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -14.79 -14.01 -14.01 -14.01 -14.01 -14.01 -14.01 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.53 -13.47 -13.47 -13.47 -13.47 -13.14 -13.14 -13.14 -13.11 -13.11 -13.11 -13.11 -13.11 -13.11 -2.27 -2.27 -2.27 -2.27 -1.83 -1.83 -1.83 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.69 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.63 0.63 0.63 0.63 0.63 0.63 1.02 1.02 1.02 1.02 1.02 1.02 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 2.46 2.46 2.46 Allocated memory (kb) = 119232 CELL_PARAMETERS 15.91200000 0.00000000 0.00000000 0.00000000 15.91200000 0.00000000 0.00000000 0.00000000 15.91200000 System Density [g/cm^3] : 3.2319 Center of mass square displacement (a.u.): 0.000000 ATOMIC_POSITIONS Mg 0.663000E-01 0.663000E-01 0.663000E-01 Mg 0.404430E+01 0.404430E+01 0.663000E-01 Mg 0.404430E+01 0.663000E-01 0.404430E+01 Mg 0.663000E-01 0.404430E+01 0.404430E+01 Mg 0.663000E-01 0.663000E-01 0.802230E+01 Mg 0.404430E+01 0.404430E+01 0.802230E+01 Mg 0.404430E+01 0.663000E-01 0.120003E+02 Mg 0.663000E-01 0.404430E+01 0.120003E+02 Mg 0.663000E-01 0.802230E+01 0.663000E-01 Mg 0.404430E+01 0.120003E+02 0.663000E-01 Mg 0.404430E+01 0.802230E+01 0.404430E+01 Mg 0.663000E-01 0.120003E+02 0.404430E+01 Mg 0.663000E-01 0.802230E+01 0.802230E+01 Mg 0.404430E+01 0.120003E+02 0.802230E+01 Mg 0.404430E+01 0.802230E+01 0.120003E+02 Mg 0.663000E-01 0.120003E+02 0.120003E+02 Mg 0.802230E+01 0.663000E-01 0.663000E-01 Mg 0.120003E+02 0.404430E+01 0.663000E-01 Mg 0.120003E+02 0.663000E-01 0.404430E+01 Mg 0.802230E+01 0.404430E+01 0.404430E+01 Mg 0.802230E+01 0.663000E-01 0.802230E+01 Mg 0.120003E+02 0.404430E+01 0.802230E+01 Mg 0.120003E+02 0.663000E-01 0.120003E+02 Mg 0.802230E+01 0.404430E+01 0.120003E+02 Mg 0.802230E+01 0.802230E+01 0.663000E-01 Mg 0.120003E+02 0.120003E+02 0.663000E-01 Mg 0.120003E+02 0.802230E+01 0.404430E+01 Mg 0.802230E+01 0.120003E+02 0.404430E+01 Mg 0.802230E+01 0.802230E+01 0.802230E+01 Mg 0.120003E+02 0.120003E+02 0.802230E+01 Mg 0.120003E+02 0.802230E+01 0.120003E+02 Mg 0.802230E+01 0.120003E+02 0.120003E+02 O 0.663000E-01 0.663000E-01 0.404430E+01 O 0.404430E+01 0.404430E+01 0.404430E+01 O 0.404430E+01 0.663000E-01 0.802230E+01 O 0.663000E-01 0.404430E+01 0.802230E+01 O 0.663000E-01 0.663000E-01 0.120003E+02 O 0.404430E+01 0.404430E+01 0.120003E+02 O 0.404430E+01 0.663000E-01 0.159783E+02 O 0.663000E-01 0.404430E+01 0.159783E+02 O 0.663000E-01 0.802230E+01 0.404430E+01 O 0.404430E+01 0.120003E+02 0.404430E+01 O 0.404430E+01 0.802230E+01 0.802230E+01 O 0.663000E-01 0.120003E+02 0.802230E+01 O 0.663000E-01 0.802230E+01 0.120003E+02 O 0.404430E+01 0.120003E+02 0.120003E+02 O 0.404430E+01 0.802230E+01 0.159783E+02 O 0.663000E-01 0.120003E+02 0.159783E+02 O 0.802230E+01 0.663000E-01 0.404430E+01 O 0.120003E+02 0.404430E+01 0.404430E+01 O 0.120003E+02 0.663000E-01 0.802230E+01 O 0.802230E+01 0.404430E+01 0.802230E+01 O 0.802230E+01 0.663000E-01 0.120003E+02 O 0.120003E+02 0.404430E+01 0.120003E+02 O 0.120003E+02 0.663000E-01 0.159783E+02 O 0.802230E+01 0.404430E+01 0.159783E+02 O 0.802230E+01 0.802230E+01 0.404430E+01 O 0.120003E+02 0.120003E+02 0.404430E+01 O 0.120003E+02 0.802230E+01 0.802230E+01 O 0.802230E+01 0.120003E+02 0.802230E+01 O 0.802230E+01 0.802230E+01 0.120003E+02 O 0.120003E+02 0.120003E+02 0.120003E+02 O 0.120003E+02 0.802230E+01 0.159783E+02 O 0.802230E+01 0.120003E+02 0.159783E+02 ATOMIC_VELOCITIES Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 Mg 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): Mg -0.649832E-05 -0.628798E-05 0.195571E-02 Mg -0.630989E-05 -0.645165E-05 0.195565E-02 Mg -0.653127E-05 -0.649702E-05 0.195561E-02 Mg -0.637109E-05 -0.657283E-05 0.195564E-02 Mg -0.651775E-05 -0.627099E-05 0.195564E-02 Mg -0.664243E-05 -0.651217E-05 0.195581E-02 Mg -0.636087E-05 -0.640417E-05 0.195556E-02 Mg -0.637183E-05 -0.641185E-05 0.195556E-02 Mg -0.642386E-05 -0.648346E-05 0.195559E-02 Mg -0.650301E-05 -0.640031E-05 0.195551E-02 Mg -0.659315E-05 -0.657916E-05 0.195562E-02 Mg -0.656403E-05 -0.629709E-05 0.195549E-02 Mg -0.647184E-05 -0.646337E-05 0.195575E-02 Mg -0.649410E-05 -0.641195E-05 0.195564E-02 Mg -0.640628E-05 -0.658838E-05 0.195562E-02 Mg -0.643621E-05 -0.656990E-05 0.195557E-02 Mg -0.635782E-05 -0.635625E-05 0.195564E-02 Mg -0.631268E-05 -0.623755E-05 0.195569E-02 Mg -0.648748E-05 -0.638138E-05 0.195564E-02 Mg -0.633606E-05 -0.650411E-05 0.195551E-02 Mg -0.635631E-05 -0.653026E-05 0.195567E-02 Mg -0.629815E-05 -0.646136E-05 0.195563E-02 Mg -0.654692E-05 -0.629069E-05 0.195566E-02 Mg -0.645116E-05 -0.646623E-05 0.195567E-02 Mg -0.638365E-05 -0.644341E-05 0.195558E-02 Mg -0.647191E-05 -0.639863E-05 0.195553E-02 Mg -0.643854E-05 -0.633238E-05 0.195555E-02 Mg -0.646869E-05 -0.642115E-05 0.195550E-02 Mg -0.633885E-05 -0.638086E-05 0.195564E-02 Mg -0.642009E-05 -0.653014E-05 0.195564E-02 Mg -0.631911E-05 -0.641705E-05 0.195555E-02 Mg -0.641786E-05 -0.643383E-05 0.195547E-02 O -0.771989E-04 -0.780493E-04 -0.204013E-02 O -0.784301E-04 -0.779739E-04 -0.203989E-02 O -0.776212E-04 -0.787391E-04 -0.203973E-02 O -0.777262E-04 -0.782079E-04 -0.203983E-02 O -0.782545E-04 -0.777601E-04 -0.204004E-02 O -0.771697E-04 -0.786720E-04 -0.204023E-02 O -0.776499E-04 -0.781590E-04 -0.203907E-02 O -0.785355E-04 -0.781766E-04 -0.204020E-02 O -0.778548E-04 -0.785407E-04 -0.204076E-02 O -0.787347E-04 -0.784281E-04 -0.203964E-02 O -0.774420E-04 -0.787714E-04 -0.203966E-02 O -0.793503E-04 -0.784549E-04 -0.203928E-02 O -0.773382E-04 -0.778549E-04 -0.204029E-02 O -0.786335E-04 -0.779923E-04 -0.203940E-02 O -0.779783E-04 -0.784798E-04 -0.204032E-02 O -0.780622E-04 -0.782377E-04 -0.204013E-02 O -0.782255E-04 -0.786974E-04 -0.203988E-02 O -0.778113E-04 -0.784045E-04 -0.203978E-02 O -0.784041E-04 -0.782231E-04 -0.204003E-02 O -0.776132E-04 -0.781861E-04 -0.203986E-02 O -0.788691E-04 -0.786263E-04 -0.203972E-02 O -0.774608E-04 -0.786141E-04 -0.203932E-02 O -0.786061E-04 -0.779920E-04 -0.204014E-02 O -0.781905E-04 -0.773731E-04 -0.204037E-02 O -0.773647E-04 -0.783484E-04 -0.204021E-02 O -0.791976E-04 -0.782701E-04 -0.204051E-02 O -0.780675E-04 -0.777471E-04 -0.203984E-02 O -0.778008E-04 -0.779806E-04 -0.203978E-02 O -0.781168E-04 -0.787094E-04 -0.203980E-02 O -0.778605E-04 -0.783572E-04 -0.204067E-02 O -0.779739E-04 -0.778978E-04 -0.203909E-02 O -0.778582E-04 -0.781345E-04 -0.204018E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 nfi tempp E -T.S-mu.nbsp +K_p #Iter Step 2 0 -547.28628 -547.28628 -547.28628 27 Elct. dipole 1 15.415051 Ionic dipole 1 1.060800 writing restart file: /mgo_50.save restart file written in 0.175 sec. Averaged Physical Quantities accomulated this run ekinc : 0.00000 0.00000 (AU) ekin : 235.43101 235.43095 (AU) epot : -891.54169 -891.54144 (AU) total energy : -547.27818 -547.28628 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : 0.00000 0.00000 (AU) econs : -547.27818 -547.28628 (AU) pressure : -25.94390 0.00000 (Gpa) volume : 4028.78703 4028.78703 (AU) initialize : 3.30s CPU total_time : 267.86s CPU formf : 0.06s CPU rhoofr : 18.59s CPU ( 54 calls, 0.344 s avg) vofrho : 12.60s CPU ( 53 calls, 0.238 s avg) dforce : 29.29s CPU ( 1728 calls, 0.017 s avg) calphi : 1.38s CPU ( 27 calls, 0.051 s avg) gram : 42.23s CPU ( 54 calls, 0.782 s avg) newd : 26.63s CPU ( 27 calls, 0.986 s avg) calbec : 16.87s CPU ( 186 calls, 0.091 s avg) prefor : 0.38s CPU ( 29 calls, 0.013 s avg) strucf : 0.01s CPU nlfl : 0.01s CPU nlfq : 0.27s CPU set_cc : 1.98s CPU ( 54 calls, 0.037 s avg) rhov : 4.99s CPU ( 54 calls, 0.092 s avg) nlsm1 : 16.87s CPU ( 186 calls, 0.091 s avg) nlsm2 : 0.27s CPU forcecc : 3.58s CPU ( 53 calls, 0.068 s avg) fft : 5.90s CPU ( 267 calls, 0.022 s avg) ffts : 0.48s CPU ( 107 calls, 0.004 s avg) fftw : 17.80s CPU ( 6912 calls, 0.003 s avg) fftb : 20.06s CPU ( 21120 calls, 0.001 s avg) runcg_uspp : 267.76s CPU calcmt : 0.00s CPU pc2 : 7.18s CPU ( 78 calls, 0.092 s avg) pcdaga2 : 17.60s CPU ( 26 calls, 0.677 s avg) set_x_minus1 : 1.82s CPU ( 2 calls, 0.912 s avg) xminus1 : 15.60s CPU ( 52 calls, 0.300 s avg) emass_p_tpa : 0.00s CPU CP : 4m31.33s CPU time, 4m35.07s wall time This run was terminated on: 16:34:51 28Apr2008 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example03/0000755000175000017500000000000012341373043015346 5ustar mbambaespresso-5.1/CPV/examples/example03/README0000644000175000017500000000012412341373026016224 0ustar mbambaThis example shows how to use cp.x to perform molecular dynamics simulation of NH3. espresso-5.1/CPV/examples/example03/run_example0000755000175000017500000000716012341373026017620 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x to perform molecular dynamics" $ECHO "simulation of NH3." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="N.blyp-mt.UPF H.blyp-vbc.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables FPMD_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $FPMD_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cp* $ECHO " done" # molecular dynamics calculation cat > nh3.in << EOF &control title = ' Ammonia Molecule ', calculation = 'cp', restart_mode = 'from_scratch', ! 'restart', ndr = 51, ndw = 51, nstep = 100, iprint = 10, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-9, ekin_conv_thr = 1.d-4, prefix = 'nh3_mol' pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav = 14, celldm(1) = 12.0, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 4, ntyp = 2, nbnd = 4, ecutwfc = 80.0, ! ecfixed = 68.0, ! qcutz = 68.0, ! q2sigma = 8.0, input_dft = 'BLYP' / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', ortho_eps = 5.d-8, ortho_max = 15, electron_dynamics = 'sd', ! electron_damping = 0.3, electron_velocities = 'zero', electron_temperature = 'not_controlled', / &ions ion_dynamics = 'damp', ion_damping = 0.2, ion_radius(1) = 0.8d0, ion_radius(2) = 0.8d0, ion_velocities = 'zero', ion_temperature = 'not_controlled', ion_nstepe = 10 / &cell cell_dynamics = 'none', cell_velocities = 'zero', press = 0.0d0, / ATOMIC_SPECIES N 16.0d0 N.blyp-mt.UPF H 1.0d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (bohr) N 0.0099 0.0099 0.0000 H 1.9186 -0.2443 -0.2208 H -0.2305 1.9214 -0.2144 H -0.1795 -0.1807 1.9236 EOF $ECHO " running the damped dynamics calculation...\c" $FPMD_COMMAND < nh3.in > nh3.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/CPV/examples/example03/reference/0000755000175000017500000000000012341373043017304 5ustar mbambaespresso-5.1/CPV/examples/example03/reference/nh3.out0000644000175000017500000006604612341373026020542 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.1 - Tue Jul 14 08:46:06 CEST 2009 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 9:17:38 14Jul2009 Serial Build Job Title: Ammonia Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /scratch_local/acv0/espresso-serial/pseudo/N.blyp-mt.UPF file type is 20: UPF Type is NC and NONLOCAL. Local component is ..... : 1 Non local components are : 0 Pseudo charge : 5.000 Pseudopotentials Grid : Channels = 2, Mesh = 281 point radius vloc ( vnl - vloc ) 1 0.479232E-04 -0.170889E+02 0.484490E-03 70 0.150960E-02 -0.170788E+02 0.152616E-01 140 0.499911E-01 -0.153303E+02 0.505843E+00 281 0.576327E+02 -0.867563E-01 0.000000E+00 Atomic wavefunction Grid : Channels = 2, Mesh = 281 Channels occupation number : 2.0000 3.0000 point radius wavefunction 1 0.479232E-04 0.457049E-04 0.906037E-08 70 0.150960E-02 0.143972E-02 0.899047E-05 140 0.499911E-01 0.477217E-01 0.981079E-02 281 0.576327E+02 0.000000E+00 0.000000E+00 Warning XC functionals forced to be: BLYP Reading pseudopotential for specie # 2 from file : /scratch_local/acv0/espresso-serial/pseudo/H.blyp-vbc.UPF file type is 20: UPF Type is NC and LOCAL. Local component is ..... : 0 Pseudo charge : 1.000 Pseudopotentials Grid : Channels = 1, Mesh = 243 point radius vloc ( vnl - vloc ) 1 0.335463E-03 -0.647511E+01 60 0.640933E-02 -0.647310E+01 121 0.135335E+00 -0.566341E+01 243 0.603403E+02 -0.165727E-01 Atomic wavefunction Grid : Channels = 1, Mesh = 243 Channels occupation number : 1.0000 point radius wavefunction 1 0.335463E-03 0.554554E-03 60 0.640933E-02 0.105944E-01 121 0.135335E+00 0.215593E+00 243 0.603403E+02 0.000000E+00 Warning XC functionals forced to be: BLYP Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 100 Print out every 10 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 2631.94 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 12800 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.50E-07, max = 15 Electron dynamics with steepest descent Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: LEE, YANG, AND PARR Using Generalized Gradient Corrections with Exchange functional: BECKE Correlation functional: PERDEW AND WANG Exchange-correlation = BLYP (1313) Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 12 degrees of freedom ion dynamics with fricp = 0.2000 and greasp = 1.0000 Zero initial momentum for ions Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 3 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.918600 -0.244300 -0.220800 -0.230500 1.921400 -0.214400 -0.179500 -0.180700 1.923600 Ionic position read from input file All atoms are allowed to move Ionic temperature is not controlled Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Potentials Parameters --------------------- Ewald sum over 3*3*3 cells Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 1837, nstw = 459, nsts = 1837 PEs n.st n.stw n.sts n.g n.gw n.gs 1 3673 917 3673 167037 20815 167037 0 3673 917 3673 167037 20815 167037 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nnrx ) = 373248 Number of x-y planes for each processors: nr3l = 72 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nnrx ) = 373248 Number of x-y planes for each processors: nr3sl = 72 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 83519 83519 83519 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 83519 83519 83519 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 10408 10408 10408 Estimated Sizes of the problem ------------------------------ dimension of the problem (byte/pe) : 52058632 System geometry initialization ------------------------------ Scaled positions from standard input N 0.825000E-03 0.825000E-03 0.000000E+00 H 0.159883E+00 -0.203583E-01 -0.184000E-01 H -0.192083E-01 0.160117E+00 -0.178667E-01 H -0.149583E-01 -0.150583E-01 0.160300E+00 Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.3463 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 4 2.00 2.00 2.00 2.00 formf: eself= 13.96298 formf: vps(g=0)= -0.0054200 rhops(g=0)= -0.0028935 formf: sum_g vps(g)= -3.8923711 sum_g rhops(g)= -0.8783370 formf: vps(g=0)= -0.0011896 rhops(g=0)= -0.0005787 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 ESR (real part of Ewald sum) = 0.11870195D+00 MAIN: doions = F nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 4.65563 0.0 0.0 55.40402 55.40402 55.40402 60.05965 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 2 4.89860 0.0 0.0 45.47839 45.47839 45.47839 50.37699 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 3 4.66868 0.0 0.0 35.85334 35.85334 35.85334 40.52202 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 4 4.15891 0.0 0.0 27.19590 27.19590 27.19590 31.35482 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 5 3.56484 0.0 0.0 19.73582 19.73582 19.73582 23.30066 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 6 2.98846 0.0 0.0 13.45946 13.45946 13.45946 16.44793 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 7 2.46510 0.0 0.0 8.26523 8.26523 8.26523 10.73033 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 8 2.00266 0.0 0.0 4.03066 4.03066 4.03066 6.03333 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 9 1.60093 0.0 0.0 0.63284 0.63284 0.63284 2.23377 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 10 1.25858 0.0 0.0 -2.04779 -2.04779 -2.04779 -0.78921 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 11 0.97511 0.0 0.0 -4.12975 -4.12975 -4.12975 -3.15464 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 12 0.74843 0.0 0.0 -5.72922 -5.72922 -5.72922 -4.98079 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 13 0.57269 0.0 0.0 -6.95264 -6.95264 -6.95264 -6.37995 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 14 0.43919 0.0 0.0 -7.88965 -7.88965 -7.88965 -7.45046 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 15 0.33872 0.0 0.0 -8.61100 -8.61100 -8.61100 -8.27228 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 16 0.26325 0.0 0.0 -9.17044 -9.17044 -9.17044 -8.90719 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 17 0.20643 0.0 0.0 -9.60812 -9.60812 -9.60812 -9.40170 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 18 0.16342 0.0 0.0 -9.95379 -9.95379 -9.95379 -9.79038 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 19 0.13066 0.0 0.0 -10.22949 -10.22949 -10.22949 -10.09884 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 20 0.10552 0.0 0.0 -10.45161 -10.45161 -10.45161 -10.34609 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 21 0.08607 0.0 0.0 -10.63235 -10.63235 -10.63235 -10.54629 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 22 0.07089 0.0 0.0 -10.78088 -10.78088 -10.78088 -10.70999 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 23 0.05894 0.0 0.0 -10.90409 -10.90409 -10.90409 -10.84515 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 24 0.04943 0.0 0.0 -11.00721 -11.00721 -11.00721 -10.95779 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 25 0.04180 0.0 0.0 -11.09425 -11.09425 -11.09425 -11.05245 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 26 0.03561 0.0 0.0 -11.16827 -11.16827 -11.16827 -11.13266 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 27 0.03054 0.0 0.0 -11.23165 -11.23165 -11.23165 -11.20111 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 28 0.02635 0.0 0.0 -11.28627 -11.28627 -11.28627 -11.25992 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 29 0.02286 0.0 0.0 -11.33359 -11.33359 -11.33359 -11.31073 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 30 0.01993 0.0 0.0 -11.37479 -11.37479 -11.37479 -11.35487 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 31 0.01745 0.0 0.0 -11.41083 -11.41083 -11.41083 -11.39339 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 32 0.01534 0.0 0.0 -11.44248 -11.44248 -11.44248 -11.42715 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 33 0.01353 0.0 0.0 -11.47037 -11.47037 -11.47037 -11.45684 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 34 0.01197 0.0 0.0 -11.49502 -11.49502 -11.49502 -11.48306 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 35 0.01062 0.0 0.0 -11.51688 -11.51688 -11.51688 -11.50627 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 36 0.00944 0.0 0.0 -11.53632 -11.53632 -11.53632 -11.52687 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 37 0.00842 0.0 0.0 -11.55363 -11.55363 -11.55363 -11.54521 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 38 0.00753 0.0 0.0 -11.56910 -11.56910 -11.56910 -11.56157 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 39 0.00674 0.0 0.0 -11.58294 -11.58294 -11.58294 -11.57620 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 40 0.00605 0.0 0.0 -11.59535 -11.59535 -11.59535 -11.58930 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 41 0.00544 0.0 0.0 -11.60650 -11.60650 -11.60650 -11.60107 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 42 0.00489 0.0 0.0 -11.61654 -11.61654 -11.61654 -11.61164 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 43 0.00441 0.0 0.0 -11.62558 -11.62558 -11.62558 -11.62117 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 44 0.00398 0.0 0.0 -11.63374 -11.63374 -11.63374 -11.62976 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 45 0.00360 0.0 0.0 -11.64112 -11.64112 -11.64112 -11.63752 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 46 0.00326 0.0 0.0 -11.64780 -11.64780 -11.64780 -11.64453 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 47 0.00296 0.0 0.0 -11.65385 -11.65385 -11.65385 -11.65089 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 48 0.00269 0.0 0.0 -11.65934 -11.65934 -11.65934 -11.65665 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 49 0.00244 0.0 0.0 -11.66433 -11.66433 -11.66433 -11.66188 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 50 0.00222 0.0 0.0 -11.66887 -11.66887 -11.66887 -11.66664 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 51 0.00202 0.0 0.0 -11.67300 -11.67300 -11.67300 -11.67098 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 52 0.00184 0.0 0.0 -11.67677 -11.67677 -11.67677 -11.67492 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 53 0.00168 0.0 0.0 -11.68020 -11.68020 -11.68020 -11.67852 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 54 0.00154 0.0 0.0 -11.68334 -11.68334 -11.68334 -11.68181 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 55 0.00140 0.0 0.0 -11.68621 -11.68621 -11.68621 -11.68480 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 56 0.00128 0.0 0.0 -11.68883 -11.68883 -11.68883 -11.68755 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 57 0.00117 0.0 0.0 -11.69122 -11.69122 -11.69122 -11.69005 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 58 0.00107 0.0 0.0 -11.69342 -11.69342 -11.69342 -11.69234 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 59 0.00098 0.0 0.0 -11.69543 -11.69543 -11.69543 -11.69445 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 60 0.00090 0.0 0.0 -11.69727 -11.69727 -11.69727 -11.69637 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 61 0.00083 0.0 0.0 -11.69896 -11.69896 -11.69896 -11.69814 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 62 0.00076 0.0 0.0 -11.70052 -11.70052 -11.70052 -11.69976 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 63 0.00070 0.0 0.0 -11.70194 -11.70194 -11.70194 -11.70124 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 64 0.00064 0.0 0.0 -11.70325 -11.70325 -11.70325 -11.70261 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 65 0.00059 0.0 0.0 -11.70446 -11.70446 -11.70446 -11.70387 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 66 0.00054 0.0 0.0 -11.70557 -11.70557 -11.70557 -11.70502 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 67 0.00050 0.0 0.0 -11.70659 -11.70659 -11.70659 -11.70609 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 68 0.00046 0.0 0.0 -11.70753 -11.70753 -11.70753 -11.70707 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 69 0.00042 0.0 0.0 -11.70839 -11.70839 -11.70839 -11.70797 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 70 0.00039 0.0 0.0 -11.70919 -11.70919 -11.70919 -11.70880 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 71 0.00036 0.0 0.0 -11.70993 -11.70993 -11.70993 -11.70957 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 72 0.00033 0.0 0.0 -11.71061 -11.71061 -11.71061 -11.71028 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 73 0.00031 0.0 0.0 -11.71124 -11.71124 -11.71124 -11.71093 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 74 0.00028 0.0 0.0 -11.71182 -11.71182 -11.71182 -11.71154 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 75 0.00026 0.0 0.0 -11.71236 -11.71236 -11.71236 -11.71209 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 76 0.00024 0.0 0.0 -11.71285 -11.71285 -11.71285 -11.71261 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 77 0.00022 0.0 0.0 -11.71331 -11.71331 -11.71331 -11.71308 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 78 0.00021 0.0 0.0 -11.71373 -11.71373 -11.71373 -11.71353 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 79 0.00019 0.0 0.0 -11.71413 -11.71413 -11.71413 -11.71393 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 80 0.00018 0.0 0.0 -11.71449 -11.71449 -11.71449 -11.71431 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 81 0.00016 0.0 0.0 -11.71482 -11.71482 -11.71482 -11.71466 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 82 0.00015 0.0 0.0 -11.71514 -11.71514 -11.71514 -11.71498 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 83 0.00014 0.0 0.0 -11.71542 -11.71542 -11.71542 -11.71528 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 84 0.00013 0.0 0.0 -11.71569 -11.71569 -11.71569 -11.71556 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 85 0.00012 0.0 0.0 -11.71594 -11.71594 -11.71594 -11.71582 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 86 0.00011 0.0 0.0 -11.71617 -11.71617 -11.71617 -11.71606 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 87 0.00010 0.0 0.0 -11.71638 -11.71638 -11.71638 -11.71628 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 88 0.00010 0.0 0.0 -11.71658 -11.71658 -11.71658 -11.71648 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 89 0.00009 0.0 0.0 -11.71676 -11.71676 -11.71676 -11.71667 0.0000 0.0000 0.0000 0.0000 MAIN: doions = T 90 0.00008 0.0 0.7 -11.71693 -11.71693 -11.71684 -11.71676 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 91 0.00008 0.0 15.0 -11.71707 -11.71707 -11.71698 -11.71691 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 92 0.00007 0.0 15.0 -11.71722 -11.71722 -11.71713 -11.71706 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 93 0.00007 0.0 15.0 -11.71736 -11.71736 -11.71727 -11.71720 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 94 0.00006 0.0 15.0 -11.71749 -11.71749 -11.71740 -11.71734 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 95 0.00006 0.0 15.0 -11.71761 -11.71761 -11.71752 -11.71746 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 96 0.00005 0.0 15.0 -11.71772 -11.71772 -11.71763 -11.71757 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 97 0.00005 0.0 15.0 -11.71782 -11.71782 -11.71773 -11.71768 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 98 0.00005 0.0 15.0 -11.71791 -11.71791 -11.71782 -11.71778 0.0000 0.0000 0.0000 0.0000 MAIN: doions = F 99 0.00004 0.0 15.0 -11.71800 -11.71800 -11.71791 -11.71787 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 Simulated time t = 0.12094422D-01 ps from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 MAIN: doions = T MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.402330D-04 0.1D-03 0.819824D-04 0.1D-08 0.673819D+00 0.1D-02 MAIN: convergence NOT achieved for system relaxation total energy = -11.71808 Hartree a.u. kinetic energy = 9.00828 Hartree a.u. electrostatic energy = -12.87347 Hartree a.u. esr = 0.11854 Hartree a.u. eself = 13.96298 Hartree a.u. pseudopotential energy = -5.41735 Hartree a.u. n-l pseudopotential energy = 1.15216 Hartree a.u. exchange-correlation energy = -3.58770 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -20.72 -10.72 -10.42 -6.02 Allocated memory (kb) = 44840 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.1232 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -0.05338436 0.06026114 -0.16026348 0.06026114 -0.07179909 -0.09007512 -0.16026348 -0.09007512 -0.07696068 ATOMIC_POSITIONS N 0.940444E-02 0.948909E-02 -0.430996E-03 H 0.191846E+01 -0.244333E+00 -0.220862E+00 H -0.230500E+00 0.192148E+01 -0.214449E+00 H -0.179546E+00 -0.180782E+00 0.192368E+01 ATOMIC_VELOCITIES N -0.130724E-03 -0.110299E-03 -0.114534E-03 H -0.343274E-04 -0.824521E-05 -0.164619E-04 H -0.346711E-06 0.172993E-04 -0.134291E-04 H -0.122355E-04 -0.206435E-04 0.182404E-04 Forces acting on atoms (au): N -0.673819E+00 -0.585383E+00 -0.597804E+00 H -0.926112E-02 -0.238184E-02 -0.537439E-02 H -0.256816E-03 0.403995E-02 -0.465274E-02 H -0.403518E-02 -0.612812E-02 0.402768E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2.82 0.0000 2 5.14 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 100 0.00004 0.0 4.6 -11.71808 -11.71808 -11.71746 -11.71742 0.0000 0.0000 0.0000 0.0000 writing restart file: /scratch_local/acv0/tmp//nh3_mol_51.save restart file written in 0.105 sec. Averaged Physical Quantities accomulated this run ekinc : 0.36815 0.36815 (AU) ekin : 12.14186 12.14186 (AU) epot : -21.24750 -21.24750 (AU) total energy : -8.02494 -8.02494 (AU) temperature : 1.40291 1.40291 (K ) enthalpy : -8.02494 -8.02494 (AU) econs : -8.02493 -8.02493 (AU) pressure : 83.83430 83.83430 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 1.52s CPU main_loop : 68.46s CPU ( 100 calls, 0.685 s avg) formf : 0.34s CPU rhoofr : 12.73s CPU ( 101 calls, 0.126 s avg) vofrho : 46.43s CPU ( 101 calls, 0.460 s avg) dforce : 8.77s CPU ( 202 calls, 0.043 s avg) calphi : 0.07s CPU ( 101 calls, 0.001 s avg) ortho : 0.30s CPU ( 101 calls, 0.003 s avg) ortho_iter : 0.00s CPU ( 101 calls, 0.000 s avg) rsg : 0.01s CPU ( 101 calls, 0.000 s avg) rhoset : 0.06s CPU ( 101 calls, 0.001 s avg) updatc : 0.05s CPU ( 101 calls, 0.000 s avg) gram : 0.00s CPU calbec : 0.06s CPU ( 101 calls, 0.001 s avg) prefor : 0.02s CPU ( 101 calls, 0.000 s avg) strucf : 0.48s CPU ( 101 calls, 0.005 s avg) nlfq : 0.17s CPU ( 101 calls, 0.002 s avg) nlsm1 : 0.06s CPU ( 101 calls, 0.001 s avg) nlsm2 : 0.17s CPU ( 101 calls, 0.002 s avg) fft : 24.73s CPU ( 808 calls, 0.031 s avg) ffts : 3.35s CPU ( 101 calls, 0.033 s avg) fftw : 10.77s CPU ( 606 calls, 0.018 s avg) CP : 1m10.17s CPU time, 1m13.05s wall time This run was terminated on: 9:18:52 14Jul2009 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example07/0000755000175000017500000000000012341373043015352 5ustar mbambaespresso-5.1/CPV/examples/example07/run_xml_example0000755000175000017500000001402412341373026020501 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x to perform SCF" $ECHO "simulation of C4H6 with TPSS metaGGA Exc." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x " PSEUDO_LIST="C.tpss-mt.UPF H.tpss-mt.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # molecular dynamics calculation cat > c4h6.cp.metaGGA.xml << EOF 0.0 0.0 0.0 0.0 0.0 1.007825035 H.tpss-mt.UPF 12.00 C.tpss-mt.UPF -0.271695E+01 -0.245822E+01 0.236174E+01 -0.291292E+01 0.249129E+01 0.952936E+00 0.203629E+01 -0.270414E+01 -0.104887E+01 0.310911E+01 -0.162987E+01 0.189331E+01 0.244815E+01 0.263846E+01 0.332670E+00 0.940835E+00 0.160187E+01 -0.258377E+01 -0.121505E+01 -0.130902E+01 0.131661E+01 -0.136126E+01 0.116614E+01 0.825189E+00 0.154872E+01 -0.143358E+01 0.510627E+00 0.109484E+01 0.137081E+01 -0.496954E+00 $PSEUDO_DIR/ $TMP_DIR/ from_scratch 100 TRUE TRUE 30.0 11 500 4.0 500 10 10 10 damp 0.15D0 350.D0 2.5D0 EOF $ECHO " running the cp.x SCF calculation...\c" $CP_COMMAND < c4h6.cp.metaGGA.xml > c4h6.cp.metaGGA.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/CPV/examples/example07/README0000644000175000017500000000012112341373026016225 0ustar mbambaThis example shows how to use cp.x to perform TPSS metaGGA calculation for C4H6 espresso-5.1/CPV/examples/example07/run_example0000755000175000017500000000625712341373026017632 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x and to perform SCF" $ECHO "simulation of C4H6 with TPSS metaGGA Exc." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x " PSEUDO_LIST="C.tpss-mt.UPF H.tpss-mt.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cp* $ECHO " done" # molecular dynamics calculation cat > c4h6.cp.metaGGA.in << EOF &control calculation='scf', restart_mode='from_scratch', nstep=500, iprint=100, isave=500, dt=4.0, pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', tprnfor=.true. tstress=.true. / &system ibrav=1, celldm(1)=8.00, nat=10, ntyp=2, nbnd=11, ecutwfc=30.0, nr1b=10, nr2b=10, nr3b=10, / &electrons electron_dynamics='damp', electron_damping=0.15D0, emass=350.D0, emass_cutoff=2.5D0, / ATOMIC_SPECIES H 1.007825035 H.tpss-mt.UPF C 12.00 C.tpss-mt.UPF ATOMIC_POSITIONS bohr H -0.271695E+01 -0.245822E+01 0.236174E+01 H -0.291292E+01 0.249129E+01 0.952936E+00 H 0.203629E+01 -0.270414E+01 -0.104887E+01 H 0.310911E+01 -0.162987E+01 0.189331E+01 H 0.244815E+01 0.263846E+01 0.332670E+00 H 0.940835E+00 0.160187E+01 -0.258377E+01 C -0.121505E+01 -0.130902E+01 0.131661E+01 C -0.136126E+01 0.116614E+01 0.825189E+00 C 0.154872E+01 -0.143358E+01 0.510627E+00 C 0.109484E+01 0.137081E+01 -0.496954E+00 EOF $ECHO " running the cp.x SCF calculation...\c" $CP_COMMAND < c4h6.cp.metaGGA.in > c4h6.cp.metaGGA.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/CPV/examples/example07/reference/0000755000175000017500000000000012341373043017310 5ustar mbambaespresso-5.1/CPV/examples/example07/reference/c4h6.pw.metaGGA.out0000644000175000017500000002516012341373026022503 0ustar mbamba Program PWSCF v.4.0 starts ... Today is 28Apr2008 at 16:20:15 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 gamma-point specific algorithms are used bravais-lattice index = 1 lattice parameter (a_0) = 8.0000 a.u. unit-cell volume = 512.0000 (a.u.)^3 number of atoms/cell = 10 number of atomic types = 2 number of electrons = 22.00 number of Kohn-Sham states= 11 kinetic-energy cutoff = 30.0000 Ry charge density cutoff = 120.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PW TPSS TPSS (1476) celldm(1)= 8.000000 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.000000 0.000000 ) a(3) = ( 0.000000 0.000000 1.000000 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 1.000000 0.000000 ) b(3) = ( 0.000000 0.000000 1.000000 ) PseudoPot. # 1 for H read from file Hmeta.tm.UPF Pseudo is Norm-conserving, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1263 points, 0 beta functions with: PseudoPot. # 2 for C read from file C.meta.tm.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1983 points, 1 beta functions with: l(1) = 0 atomic species valence mass pseudopotential H 1.00 1.00783 H ( 1.00) C 4.00 12.00000 C ( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 H tau( 1) = ( -0.3396188 -0.3072775 0.2952175 ) 2 H tau( 2) = ( -0.3641150 0.3114112 0.1191170 ) 3 H tau( 3) = ( 0.2545363 -0.3380175 -0.1311087 ) 4 H tau( 4) = ( 0.3886387 -0.2037337 0.2366638 ) 5 H tau( 5) = ( 0.3060188 0.3298075 0.0415838 ) 6 H tau( 6) = ( 0.1176044 0.2002337 -0.3229712 ) 7 C tau( 7) = ( -0.1518812 -0.1636275 0.1645763 ) 8 C tau( 8) = ( -0.1701575 0.1457675 0.1031486 ) 9 C tau( 9) = ( 0.1935900 -0.1791975 0.0638284 ) 10 C tau( 10) = ( 0.1368550 0.1713513 -0.0621193 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 194.5367 ( 5682 G-vectors) FFT grid: ( 30, 30, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.11 Mb ( 683, 11) NL pseudopotentials 0.04 Mb ( 683, 4) Each V/rho on FFT grid 0.41 Mb ( 27000) Each G-vector array 0.04 Mb ( 5682) G-vector shells 0.00 Mb ( 164) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 0.23 Mb ( 683, 44) Each subspace H/S matrix 0.01 Mb ( 44, 44) Each matrix 0.00 Mb ( 4, 11) Arrays for rho mixing 3.30 Mb ( 27000, 8) Initial potential from superposition of free atoms starting charge 21.99977, renormalised to 22.00000 Starting wfc are 22 atomic wfcs total cpu time spent up to now is 0.28 secs per-process dynamical memory: 8.2 Mb Self-consistent Calculation iteration # 1 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.45 secs total energy = -51.78293803 Ry Harris-Foulkes estimate = -51.88409720 Ry estimated scf accuracy < 3.10433795 Ry iteration # 2 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 1.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.59 secs total energy = -51.91358442 Ry Harris-Foulkes estimate = -51.93181256 Ry estimated scf accuracy < 0.30910947 Ry iteration # 3 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.41E-03, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.77 secs total energy = -51.94351458 Ry Harris-Foulkes estimate = -51.95251081 Ry estimated scf accuracy < 0.03877186 Ry iteration # 4 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.76E-04, avg # of iterations = 2.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 0.93 secs total energy = -51.94877237 Ry Harris-Foulkes estimate = -51.94892150 Ry estimated scf accuracy < 0.00074292 Ry iteration # 5 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 3.38E-06, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 1.10 secs total energy = -51.94895420 Ry Harris-Foulkes estimate = -51.94897149 Ry estimated scf accuracy < 0.00014188 Ry iteration # 6 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 6.45E-07, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 1.28 secs total energy = -51.94896459 Ry Harris-Foulkes estimate = -51.94899356 Ry estimated scf accuracy < 0.00011748 Ry iteration # 7 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 5.34E-07, avg # of iterations = 3.0 Warning: cannot save meta-gga kinetic terms: not implemented. total cpu time spent up to now is 1.44 secs total energy = -51.94897431 Ry Harris-Foulkes estimate = -51.94897510 Ry estimated scf accuracy < 0.00000427 Ry iteration # 8 ecut= 30.00 Ry beta=0.70 Davidson diagonalization with overlap ethr = 1.94E-08, avg # of iterations = 3.0 total cpu time spent up to now is 1.60 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 683 PWs) bands (ev): -16.0447 -10.0090 -9.5472 -7.9890 -4.9924 -4.1286 -3.5507 -2.6531 -1.4013 -1.1572 0.4485 ! total energy = -51.94897533 Ry Harris-Foulkes estimate = -51.94897541 Ry estimated scf accuracy < 0.00000041 Ry The total energy is the sum of the following terms: one-electron contribution = -33.02744095 Ry hartree contribution = 24.10031526 Ry xc contribution = -18.36712010 Ry ewald contribution = -24.65472953 Ry convergence has been achieved in 8 iterations Forces acting on atoms (Ry/au): atom 1 type 1 force = 0.09757634 0.00963712 -0.03184016 atom 2 type 1 force = 0.00962257 -0.00778389 0.00125317 atom 3 type 1 force = -0.01775239 0.01459015 -0.01889584 atom 4 type 1 force = -0.06653927 0.02241435 0.00418652 atom 5 type 1 force = -0.00016651 0.00780717 0.00203376 atom 6 type 1 force = -0.00360629 -0.01354863 -0.01506266 atom 7 type 2 force = -0.04067759 -0.08625650 0.11665125 atom 8 type 2 force = -0.01252152 0.09556040 0.01173775 atom 9 type 2 force = 0.02552645 -0.02973626 -0.05883797 atom 10 type 2 force = 0.00853821 -0.01268391 -0.01122582 Total force = 0.233645 Total SCF correction = 0.000605 entering subroutine stress ... Message from routine stress: Meta-GGA and stress not implemented Writing output data file pwscf.save Warning: cannot save meta-gga kinetic terms: not implemented. PWSCF : 1.65s CPU time, 2.17s wall time init_run : 0.26s CPU electrons : 1.32s CPU forces : 0.02s CPU stress : 0.00s CPU Called by init_run: wfcinit : 0.05s CPU potinit : 0.07s CPU Called by electrons: c_bands : 0.61s CPU ( 8 calls, 0.076 s avg) sum_band : 0.14s CPU ( 8 calls, 0.017 s avg) v_of_rho : 0.57s CPU ( 9 calls, 0.064 s avg) mix_rho : 0.03s CPU ( 8 calls, 0.004 s avg) Called by c_bands: init_us_2 : 0.00s CPU ( 17 calls, 0.000 s avg) regterg : 0.61s CPU ( 8 calls, 0.076 s avg) Called by *egterg: h_psi : 0.63s CPU ( 28 calls, 0.023 s avg) g_psi : 0.00s CPU ( 19 calls, 0.000 s avg) rdiaghg : 0.01s CPU ( 27 calls, 0.001 s avg) Called by h_psi: add_vuspsi : 0.00s CPU ( 28 calls, 0.000 s avg) h_psi_meta : 0.47s CPU ( 28 calls, 0.017 s avg) General routines calbec : 0.00s CPU ( 32 calls, 0.000 s avg) cft3 : 0.10s CPU ( 108 calls, 0.001 s avg) cft3s : 0.66s CPU ( 1312 calls, 0.001 s avg) interpolate : 0.00s CPU ( 9 calls, 0.000 s avg) davcio : 0.00s CPU ( 8 calls, 0.000 s avg) espresso-5.1/CPV/examples/example07/reference/c4h6.cp.metaGGA.out0000644000175000017500000010037012341373026022454 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.0 - Mon Apr 28 15:32:33 CEST 2008 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 16:19:59 28Apr2008 Serial Build Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/pseudo/Hmeta.tm.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/pseudo/C.meta.tm.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 500 Print out every 100 MD Steps Reads from unit = 50 Writes to unit = 50 MD Simulation time step = 4.00 Electronic fictitious mass (emass) = 350.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 7486.74 [AU] ibrav = 1 alat = 8.00000000 a1 = 8.00000000 0.00000000 0.00000000 a2 = 0.00000000 8.00000000 0.00000000 a3 = 0.00000000 0.00000000 8.00000000 b1 = 0.12500000 0.00000000 0.00000000 b2 = 0.00000000 0.12500000 0.00000000 b3 = 0.00000000 0.00000000 0.12500000 omega = 512.00000000 Energy Cut-offs --------------- Ecutwfc = 30.0 Ry, Ecutrho = 120.0 Ry, Ecuts = 120.0 Ry Gcutwfc = 7.0 , Gcutrho = 13.9 Gcuts = 13.9 NOTA BENE: refg, mmx = 0.050000 2880 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.1500 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 22, of States = 11 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND WANG Using Generalized Gradient Corrections with Exchange functional: META-TPSS Correlation functional: META-TPSS Exchange-correlation = SLA PW TPSS TPSS (1476) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 6 mass = 1837.15 (a.u.), 1.01 (amu) rcmax = 0.50 (a.u.) -2.716950 -2.458220 2.361740 -2.912920 2.491290 0.952936 2.036290 -2.704140 -1.048870 3.109110 -1.629870 1.893310 2.448150 2.638460 0.332670 0.940835 1.601870 -2.583770 Species 2 atoms = 4 mass = 21874.66 (a.u.), 12.00 (amu) rcmax = 0.50 (a.u.) -1.215050 -1.309020 1.316610 -1.361260 1.166140 0.825189 1.548720 -1.433580 0.510627 1.094840 1.370810 -0.496954 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 8.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 8.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 8.0000 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 305, nstw = 73, nsts = 305 PEs n.st n.stw n.sts n.g n.gw n.gs 1 609 145 609 11363 1365 11363 0 609 145 609 11363 1365 11363 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 27 27 27 27 27 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 27 27 Local number of cell to store the grid ( nnrx ) = 19683 Number of x-y planes for each processors: nr3l = 27 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 27 27 27 27 27 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 27 27 Local number of cell to store the grid ( nnrx ) = 19683 Number of x-y planes for each processors: nr3sl = 27 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 10 10 10 10 10 10 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 10 10 10 Local number of cell to store the grid ( nnrx ) = 1000 unit vectors of box grid cell in real space: in reciprocal space: 2.9630 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 2.9630 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 2.9630 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 5682 5682 5682 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 5682 5682 5682 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 683 683 683 Small box Mesh ngb = 294 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input H -0.339619E+00 -0.307277E+00 0.295218E+00 H -0.364115E+00 0.311411E+00 0.119117E+00 H 0.254536E+00 -0.338018E+00 -0.131109E+00 H 0.388639E+00 -0.203734E+00 0.236664E+00 H 0.306019E+00 0.329807E+00 0.415838E-01 H 0.117604E+00 0.200234E+00 -0.322971E+00 C -0.151881E+00 -0.163628E+00 0.164576E+00 C -0.170157E+00 0.145767E+00 0.103149E+00 C 0.193590E+00 -0.179198E+00 0.638284E-01 C 0.136855E+00 0.171351E+00 -0.621193E-01 Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 dion Specie: 2 1 indv= 1 ang. mom= 0 dion 0.5812 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 11 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 formf: eself= 55.85192 formf: vps(g=0)= -0.0015641 rhops(g=0)= -0.0019531 formf: sum_g vps(g)= -0.9006009 sum_g rhops(g)= -0.7180186 formf: vps(g=0)= -0.0054520 rhops(g=0)= -0.0078125 formf: sum_g vps(g)= -1.1169161 sum_g rhops(g)= -2.8720744 Delta V(G=0): 0.033747Ry, 0.918305eV from rhoofr: total integrated electronic density in g-space = 22.000000 in r-space = 22.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 4.58551 0.0 0.0 52.88652 52.88652 52.88652 57.47204 0.0000 0.0000 0.0000 0.0000 2 9.69883 0.0 0.0 45.39858 45.39858 45.39858 55.09741 0.0000 0.0000 0.0000 0.0000 3 14.33796 0.0 0.0 34.59103 34.59103 34.59103 48.92899 0.0000 0.0000 0.0000 0.0000 4 17.16347 0.0 0.0 22.26575 22.26575 22.26575 39.42921 0.0000 0.0000 0.0000 0.0000 5 17.60369 0.0 0.0 10.46585 10.46585 10.46585 28.06954 0.0000 0.0000 0.0000 0.0000 6 15.99332 0.0 0.0 0.68306 0.68306 0.68306 16.67638 0.0000 0.0000 0.0000 0.0000 7 13.19059 0.0 0.0 -6.52684 -6.52684 -6.52684 6.66375 0.0000 0.0000 0.0000 0.0000 8 10.08652 0.0 0.0 -11.36887 -11.36887 -11.36887 -1.28235 0.0000 0.0000 0.0000 0.0000 9 7.31583 0.0 0.0 -14.43219 -14.43219 -14.43219 -7.11636 0.0000 0.0000 0.0000 0.0000 10 5.18993 0.0 0.0 -16.37442 -16.37442 -16.37442 -11.18449 0.0000 0.0000 0.0000 0.0000 11 3.75101 0.0 0.0 -17.73779 -17.73779 -17.73779 -13.98679 0.0000 0.0000 0.0000 0.0000 12 2.86930 0.0 0.0 -18.87022 -18.87022 -18.87022 -16.00092 0.0000 0.0000 0.0000 0.0000 13 2.34822 0.0 0.0 -19.92772 -19.92772 -19.92772 -17.57950 0.0000 0.0000 0.0000 0.0000 14 2.00739 0.0 0.0 -20.93065 -20.93065 -20.93065 -18.92327 0.0000 0.0000 0.0000 0.0000 15 1.72681 0.0 0.0 -21.83636 -21.83636 -21.83636 -20.10955 0.0000 0.0000 0.0000 0.0000 16 1.45306 0.0 0.0 -22.59796 -22.59796 -22.59796 -21.14490 0.0000 0.0000 0.0000 0.0000 17 1.18119 0.0 0.0 -23.19525 -23.19525 -23.19525 -22.01405 0.0000 0.0000 0.0000 0.0000 18 0.92891 0.0 0.0 -23.63971 -23.63971 -23.63971 -22.71079 0.0000 0.0000 0.0000 0.0000 19 0.71519 0.0 0.0 -23.96346 -23.96346 -23.96346 -23.24828 0.0000 0.0000 0.0000 0.0000 20 0.54922 0.0 0.0 -24.20405 -24.20405 -24.20405 -23.65482 0.0000 0.0000 0.0000 0.0000 21 0.42882 0.0 0.0 -24.39291 -24.39291 -24.39291 -23.96409 0.0000 0.0000 0.0000 0.0000 22 0.34430 0.0 0.0 -24.55048 -24.55048 -24.55048 -24.20619 0.0000 0.0000 0.0000 0.0000 23 0.28381 0.0 0.0 -24.68683 -24.68683 -24.68683 -24.40302 0.0000 0.0000 0.0000 0.0000 24 0.23739 0.0 0.0 -24.80517 -24.80517 -24.80517 -24.56778 0.0000 0.0000 0.0000 0.0000 25 0.19870 0.0 0.0 -24.90586 -24.90586 -24.90586 -24.70716 0.0000 0.0000 0.0000 0.0000 26 0.16484 0.0 0.0 -24.98914 -24.98914 -24.98914 -24.82430 0.0000 0.0000 0.0000 0.0000 27 0.13517 0.0 0.0 -25.05641 -25.05641 -25.05641 -24.92124 0.0000 0.0000 0.0000 0.0000 28 0.10998 0.0 0.0 -25.11019 -25.11019 -25.11019 -25.00020 0.0000 0.0000 0.0000 0.0000 29 0.08953 0.0 0.0 -25.15351 -25.15351 -25.15351 -25.06399 0.0000 0.0000 0.0000 0.0000 30 0.07362 0.0 0.0 -25.18927 -25.18927 -25.18927 -25.11565 0.0000 0.0000 0.0000 0.0000 31 0.06163 0.0 0.0 -25.21974 -25.21974 -25.21974 -25.15811 0.0000 0.0000 0.0000 0.0000 32 0.05268 0.0 0.0 -25.24646 -25.24646 -25.24646 -25.19378 0.0000 0.0000 0.0000 0.0000 33 0.04593 0.0 0.0 -25.27040 -25.27040 -25.27040 -25.22447 0.0000 0.0000 0.0000 0.0000 34 0.04070 0.0 0.0 -25.29209 -25.29209 -25.29209 -25.25139 0.0000 0.0000 0.0000 0.0000 35 0.03653 0.0 0.0 -25.31188 -25.31188 -25.31188 -25.27536 0.0000 0.0000 0.0000 0.0000 36 0.03316 0.0 0.0 -25.33008 -25.33008 -25.33008 -25.29692 0.0000 0.0000 0.0000 0.0000 37 0.03047 0.0 0.0 -25.34699 -25.34699 -25.34699 -25.31652 0.0000 0.0000 0.0000 0.0000 38 0.02837 0.0 0.0 -25.36290 -25.36290 -25.36290 -25.33453 0.0000 0.0000 0.0000 0.0000 39 0.02680 0.0 0.0 -25.37811 -25.37811 -25.37811 -25.35131 0.0000 0.0000 0.0000 0.0000 40 0.02570 0.0 0.0 -25.39288 -25.39288 -25.39288 -25.36718 0.0000 0.0000 0.0000 0.0000 41 0.02499 0.0 0.0 -25.40741 -25.40741 -25.40741 -25.38242 0.0000 0.0000 0.0000 0.0000 42 0.02460 0.0 0.0 -25.42187 -25.42187 -25.42187 -25.39727 0.0000 0.0000 0.0000 0.0000 43 0.02447 0.0 0.0 -25.43639 -25.43639 -25.43639 -25.41192 0.0000 0.0000 0.0000 0.0000 44 0.02455 0.0 0.0 -25.45106 -25.45106 -25.45106 -25.42651 0.0000 0.0000 0.0000 0.0000 45 0.02478 0.0 0.0 -25.46595 -25.46595 -25.46595 -25.44116 0.0000 0.0000 0.0000 0.0000 46 0.02515 0.0 0.0 -25.48112 -25.48112 -25.48112 -25.45597 0.0000 0.0000 0.0000 0.0000 47 0.02562 0.0 0.0 -25.49663 -25.49663 -25.49663 -25.47101 0.0000 0.0000 0.0000 0.0000 48 0.02616 0.0 0.0 -25.51251 -25.51251 -25.51251 -25.48635 0.0000 0.0000 0.0000 0.0000 49 0.02677 0.0 0.0 -25.52879 -25.52879 -25.52879 -25.50202 0.0000 0.0000 0.0000 0.0000 50 0.02740 0.0 0.0 -25.54547 -25.54547 -25.54547 -25.51806 0.0000 0.0000 0.0000 0.0000 51 0.02805 0.0 0.0 -25.56255 -25.56255 -25.56255 -25.53450 0.0000 0.0000 0.0000 0.0000 52 0.02868 0.0 0.0 -25.58002 -25.58002 -25.58002 -25.55133 0.0000 0.0000 0.0000 0.0000 53 0.02928 0.0 0.0 -25.59784 -25.59784 -25.59784 -25.56856 0.0000 0.0000 0.0000 0.0000 54 0.02982 0.0 0.0 -25.61597 -25.61597 -25.61597 -25.58615 0.0000 0.0000 0.0000 0.0000 55 0.03029 0.0 0.0 -25.63437 -25.63437 -25.63437 -25.60408 0.0000 0.0000 0.0000 0.0000 56 0.03066 0.0 0.0 -25.65295 -25.65295 -25.65295 -25.62229 0.0000 0.0000 0.0000 0.0000 57 0.03091 0.0 0.0 -25.67165 -25.67165 -25.67165 -25.64074 0.0000 0.0000 0.0000 0.0000 58 0.03104 0.0 0.0 -25.69038 -25.69038 -25.69038 -25.65934 0.0000 0.0000 0.0000 0.0000 59 0.03102 0.0 0.0 -25.70904 -25.70904 -25.70904 -25.67803 0.0000 0.0000 0.0000 0.0000 60 0.03084 0.0 0.0 -25.72754 -25.72754 -25.72754 -25.69671 0.0000 0.0000 0.0000 0.0000 61 0.03049 0.0 0.0 -25.74577 -25.74577 -25.74577 -25.71528 0.0000 0.0000 0.0000 0.0000 62 0.02998 0.0 0.0 -25.76363 -25.76363 -25.76363 -25.73365 0.0000 0.0000 0.0000 0.0000 63 0.02929 0.0 0.0 -25.78100 -25.78100 -25.78100 -25.75171 0.0000 0.0000 0.0000 0.0000 64 0.02844 0.0 0.0 -25.79779 -25.79779 -25.79779 -25.76936 0.0000 0.0000 0.0000 0.0000 65 0.02742 0.0 0.0 -25.81391 -25.81391 -25.81391 -25.78649 0.0000 0.0000 0.0000 0.0000 66 0.02627 0.0 0.0 -25.82927 -25.82927 -25.82927 -25.80300 0.0000 0.0000 0.0000 0.0000 67 0.02498 0.0 0.0 -25.84380 -25.84380 -25.84380 -25.81881 0.0000 0.0000 0.0000 0.0000 68 0.02359 0.0 0.0 -25.85744 -25.85744 -25.85744 -25.83385 0.0000 0.0000 0.0000 0.0000 69 0.02212 0.0 0.0 -25.87015 -25.87015 -25.87015 -25.84803 0.0000 0.0000 0.0000 0.0000 70 0.02059 0.0 0.0 -25.88192 -25.88192 -25.88192 -25.86133 0.0000 0.0000 0.0000 0.0000 71 0.01904 0.0 0.0 -25.89273 -25.89273 -25.89273 -25.87369 0.0000 0.0000 0.0000 0.0000 72 0.01748 0.0 0.0 -25.90259 -25.90259 -25.90259 -25.88511 0.0000 0.0000 0.0000 0.0000 73 0.01594 0.0 0.0 -25.91152 -25.91152 -25.91152 -25.89558 0.0000 0.0000 0.0000 0.0000 74 0.01444 0.0 0.0 -25.91956 -25.91956 -25.91956 -25.90512 0.0000 0.0000 0.0000 0.0000 75 0.01300 0.0 0.0 -25.92675 -25.92675 -25.92675 -25.91375 0.0000 0.0000 0.0000 0.0000 76 0.01163 0.0 0.0 -25.93314 -25.93314 -25.93314 -25.92151 0.0000 0.0000 0.0000 0.0000 77 0.01035 0.0 0.0 -25.93880 -25.93880 -25.93880 -25.92845 0.0000 0.0000 0.0000 0.0000 78 0.00915 0.0 0.0 -25.94377 -25.94377 -25.94377 -25.93461 0.0000 0.0000 0.0000 0.0000 79 0.00806 0.0 0.0 -25.94812 -25.94812 -25.94812 -25.94006 0.0000 0.0000 0.0000 0.0000 80 0.00706 0.0 0.0 -25.95192 -25.95192 -25.95192 -25.94485 0.0000 0.0000 0.0000 0.0000 81 0.00616 0.0 0.0 -25.95521 -25.95521 -25.95521 -25.94905 0.0000 0.0000 0.0000 0.0000 82 0.00536 0.0 0.0 -25.95806 -25.95806 -25.95806 -25.95270 0.0000 0.0000 0.0000 0.0000 83 0.00464 0.0 0.0 -25.96052 -25.96052 -25.96052 -25.95588 0.0000 0.0000 0.0000 0.0000 84 0.00400 0.0 0.0 -25.96263 -25.96263 -25.96263 -25.95862 0.0000 0.0000 0.0000 0.0000 85 0.00345 0.0 0.0 -25.96444 -25.96444 -25.96444 -25.96099 0.0000 0.0000 0.0000 0.0000 86 0.00296 0.0 0.0 -25.96598 -25.96598 -25.96598 -25.96303 0.0000 0.0000 0.0000 0.0000 87 0.00253 0.0 0.0 -25.96730 -25.96730 -25.96730 -25.96477 0.0000 0.0000 0.0000 0.0000 88 0.00216 0.0 0.0 -25.96843 -25.96843 -25.96843 -25.96626 0.0000 0.0000 0.0000 0.0000 89 0.00184 0.0 0.0 -25.96938 -25.96938 -25.96938 -25.96754 0.0000 0.0000 0.0000 0.0000 90 0.00157 0.0 0.0 -25.97019 -25.97019 -25.97019 -25.96863 0.0000 0.0000 0.0000 0.0000 91 0.00133 0.0 0.0 -25.97088 -25.97088 -25.97088 -25.96955 0.0000 0.0000 0.0000 0.0000 92 0.00113 0.0 0.0 -25.97146 -25.97146 -25.97146 -25.97033 0.0000 0.0000 0.0000 0.0000 93 0.00096 0.0 0.0 -25.97196 -25.97196 -25.97196 -25.97100 0.0000 0.0000 0.0000 0.0000 94 0.00081 0.0 0.0 -25.97238 -25.97238 -25.97238 -25.97156 0.0000 0.0000 0.0000 0.0000 95 0.00069 0.0 0.0 -25.97273 -25.97273 -25.97273 -25.97204 0.0000 0.0000 0.0000 0.0000 96 0.00058 0.0 0.0 -25.97303 -25.97303 -25.97303 -25.97244 0.0000 0.0000 0.0000 0.0000 97 0.00049 0.0 0.0 -25.97328 -25.97328 -25.97328 -25.97279 0.0000 0.0000 0.0000 0.0000 98 0.00042 0.0 0.0 -25.97349 -25.97349 -25.97349 -25.97307 0.0000 0.0000 0.0000 0.0000 99 0.00035 0.0 0.0 -25.97367 -25.97367 -25.97367 -25.97332 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 from rhoofr: total integrated electronic density in g-space = 22.000000 in r-space = 22.000000 total energy = -25.97382 Hartree a.u. kinetic energy = 19.18633 Hartree a.u. electrostatic energy = -35.30678 Hartree a.u. esr = 0.00038 Hartree a.u. eself = 55.85192 Hartree a.u. pseudopotential energy = -3.31575 Hartree a.u. n-l pseudopotential energy = 2.64558 Hartree a.u. exchange-correlation energy = -9.18320 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -16.95 -10.92 -10.46 -8.89 -5.91 -5.05 -4.47 -3.55 -2.30 -2.08 -0.46 Allocated memory (kb) = 11900 CELL_PARAMETERS 8.00000000 0.00000000 0.00000000 0.00000000 8.00000000 0.00000000 0.00000000 0.00000000 8.00000000 System Density [g/cm^3] : 1.1829 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -13.93847909 -6.06452873 -0.75813231 -6.06452873 -13.75984181 -2.00539206 -0.75813231 -2.00539206 -20.08358063 ATOMIC_POSITIONS H -0.271695E+01 -0.245822E+01 0.236174E+01 H -0.291292E+01 0.249129E+01 0.952936E+00 H 0.203629E+01 -0.270414E+01 -0.104887E+01 H 0.310911E+01 -0.162987E+01 0.189331E+01 H 0.244815E+01 0.263846E+01 0.332670E+00 H 0.940835E+00 0.160187E+01 -0.258377E+01 C -0.121505E+01 -0.130902E+01 0.131661E+01 C -0.136126E+01 0.116614E+01 0.825189E+00 C 0.154872E+01 -0.143358E+01 0.510627E+00 C 0.109484E+01 0.137081E+01 -0.496954E+00 ATOMIC_VELOCITIES H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): H 0.484339E-01 0.441839E-02 -0.193341E-01 H 0.222675E-02 -0.411038E-02 -0.231772E-02 H -0.977981E-02 0.810413E-02 -0.809001E-02 H -0.321187E-01 0.969003E-02 0.394347E-02 H 0.161965E-02 0.368851E-02 0.864832E-03 H -0.166186E-02 -0.647797E-02 -0.788998E-02 C -0.173335E-01 -0.436855E-01 0.576932E-01 C -0.589781E-02 0.475733E-01 0.149535E-02 C 0.105803E-01 -0.123403E-01 -0.274883E-01 C 0.418446E-02 -0.666631E-02 -0.263551E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 100 0.00030 0.0 0.0 -25.97382 -25.97382 -25.97382 -25.97352 0.0000 0.0000 0.0000 0.0000 101 0.00025 0.0 0.0 -25.97395 -25.97395 -25.97395 -25.97370 0.0000 0.0000 0.0000 0.0000 102 0.00021 0.0 0.0 -25.97406 -25.97406 -25.97406 -25.97385 0.0000 0.0000 0.0000 0.0000 103 0.00018 0.0 0.0 -25.97415 -25.97415 -25.97415 -25.97397 0.0000 0.0000 0.0000 0.0000 104 0.00015 0.0 0.0 -25.97422 -25.97422 -25.97422 -25.97407 0.0000 0.0000 0.0000 0.0000 105 0.00013 0.0 0.0 -25.97429 -25.97429 -25.97429 -25.97416 0.0000 0.0000 0.0000 0.0000 106 0.00011 0.0 0.0 -25.97434 -25.97434 -25.97434 -25.97424 0.0000 0.0000 0.0000 0.0000 107 0.00009 0.0 0.0 -25.97439 -25.97439 -25.97439 -25.97430 0.0000 0.0000 0.0000 0.0000 108 0.00008 0.0 0.0 -25.97443 -25.97443 -25.97443 -25.97435 0.0000 0.0000 0.0000 0.0000 109 0.00006 0.0 0.0 -25.97446 -25.97446 -25.97446 -25.97440 0.0000 0.0000 0.0000 0.0000 110 0.00005 0.0 0.0 -25.97449 -25.97449 -25.97449 -25.97444 0.0000 0.0000 0.0000 0.0000 111 0.00005 0.0 0.0 -25.97451 -25.97451 -25.97451 -25.97447 0.0000 0.0000 0.0000 0.0000 112 0.00004 0.0 0.0 -25.97453 -25.97453 -25.97453 -25.97450 0.0000 0.0000 0.0000 0.0000 113 0.00003 0.0 0.0 -25.97455 -25.97455 -25.97455 -25.97452 0.0000 0.0000 0.0000 0.0000 114 0.00003 0.0 0.0 -25.97457 -25.97457 -25.97457 -25.97454 0.0000 0.0000 0.0000 0.0000 115 0.00002 0.0 0.0 -25.97458 -25.97458 -25.97458 -25.97455 0.0000 0.0000 0.0000 0.0000 116 0.00002 0.0 0.0 -25.97459 -25.97459 -25.97459 -25.97457 0.0000 0.0000 0.0000 0.0000 117 0.00002 0.0 0.0 -25.97460 -25.97460 -25.97460 -25.97458 0.0000 0.0000 0.0000 0.0000 118 0.00001 0.0 0.0 -25.97460 -25.97460 -25.97460 -25.97459 0.0000 0.0000 0.0000 0.0000 119 0.00001 0.0 0.0 -25.97461 -25.97461 -25.97461 -25.97460 0.0000 0.0000 0.0000 0.0000 120 0.00001 0.0 0.0 -25.97462 -25.97462 -25.97462 -25.97460 0.0000 0.0000 0.0000 0.0000 121 0.00001 0.0 0.0 -25.97462 -25.97462 -25.97462 -25.97461 0.0000 0.0000 0.0000 0.0000 122 0.00001 0.0 0.0 -25.97462 -25.97462 -25.97462 -25.97462 0.0000 0.0000 0.0000 0.0000 123 0.00001 0.0 0.0 -25.97463 -25.97463 -25.97463 -25.97462 0.0000 0.0000 0.0000 0.0000 124 0.00001 0.0 0.0 -25.97463 -25.97463 -25.97463 -25.97462 0.0000 0.0000 0.0000 0.0000 125 0.00000 0.0 0.0 -25.97463 -25.97463 -25.97463 -25.97463 0.0000 0.0000 0.0000 0.0000 126 0.00000 0.0 0.0 -25.97463 -25.97463 -25.97463 -25.97463 0.0000 0.0000 0.0000 0.0000 127 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97463 0.0000 0.0000 0.0000 0.0000 128 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97463 0.0000 0.0000 0.0000 0.0000 129 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 130 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 131 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 132 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 133 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 134 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 135 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.867435D-06 0.1D-05 0.446436D-06 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation * Physical Quantities at step: 136 total energy = -25.97464 Hartree a.u. kinetic energy = 19.18733 Hartree a.u. electrostatic energy = -35.30791 Hartree a.u. esr = 0.00038 Hartree a.u. eself = 55.85192 Hartree a.u. pseudopotential energy = -3.31687 Hartree a.u. n-l pseudopotential energy = 2.64660 Hartree a.u. exchange-correlation energy = -9.18379 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -16.96 -10.93 -10.47 -8.91 -5.91 -5.05 -4.47 -3.57 -2.32 -2.08 -0.47 Allocated memory (kb) = 11900 CELL_PARAMETERS 8.00000000 0.00000000 0.00000000 0.00000000 8.00000000 0.00000000 0.00000000 0.00000000 8.00000000 System Density [g/cm^3] : 1.1829 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -14.16875972 -6.16607537 -1.26759663 -6.16607537 -13.79633079 -1.63595495 -1.26759663 -1.63595495 -19.66080505 ATOMIC_POSITIONS H -0.271695E+01 -0.245822E+01 0.236174E+01 H -0.291292E+01 0.249129E+01 0.952936E+00 H 0.203629E+01 -0.270414E+01 -0.104887E+01 H 0.310911E+01 -0.162987E+01 0.189331E+01 H 0.244815E+01 0.263846E+01 0.332670E+00 H 0.940835E+00 0.160187E+01 -0.258377E+01 C -0.121505E+01 -0.130902E+01 0.131661E+01 C -0.136126E+01 0.116614E+01 0.825189E+00 C 0.154872E+01 -0.143358E+01 0.510627E+00 C 0.109484E+01 0.137081E+01 -0.496954E+00 ATOMIC_VELOCITIES H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 C 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): H 0.487237E-01 0.482894E-02 -0.162940E-01 H 0.472494E-02 -0.373208E-02 0.596498E-03 H -0.929220E-02 0.756100E-02 -0.943960E-02 H -0.332618E-01 0.112282E-01 0.227387E-02 H -0.505123E-04 0.393306E-02 0.807105E-03 H -0.140672E-02 -0.624909E-02 -0.756574E-02 C -0.209621E-01 -0.444245E-01 0.584766E-01 C -0.555646E-02 0.465998E-01 0.466845E-02 C 0.134230E-01 -0.136789E-01 -0.306621E-01 C 0.296821E-02 -0.714242E-02 -0.455580E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 136 0.00000 0.0 0.0 -25.97464 -25.97464 -25.97464 -25.97464 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.736663D-06 0.1D-05 0.379169D-06 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation writing restart file: /cp_50.save restart file written in 0.049 sec. Averaged Physical Quantities accomulated this run ekinc : 1.00097 1.00097 (AU) ekin : 21.38282 21.38282 (AU) epot : -46.75973 -46.75973 (AU) total energy : -22.67942 -22.67942 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -22.67942 -22.67942 (AU) econs : -22.67942 -22.67942 (AU) pressure : 89.68782 89.68782 (Gpa) volume : 512.00000 512.00000 (AU) initialize : 0.63s CPU total_time : 14.34s CPU ( 136 calls, 0.105 s avg) formf : 0.21s CPU rhoofr : 4.10s CPU ( 137 calls, 0.030 s avg) vofrho : 7.09s CPU ( 137 calls, 0.052 s avg) dforce : 3.06s CPU ( 822 calls, 0.004 s avg) calphi : 0.01s CPU ( 137 calls, 0.000 s avg) ortho : 0.05s CPU ( 137 calls, 0.000 s avg) ortho_iter : 0.01s CPU ( 137 calls, 0.000 s avg) rsg : 0.01s CPU ( 137 calls, 0.000 s avg) rhoset : 0.01s CPU ( 137 calls, 0.000 s avg) updatc : 0.01s CPU ( 137 calls, 0.000 s avg) gram : 0.00s CPU newd : 0.00s CPU ( 137 calls, 0.000 s avg) calbec : 0.00s CPU ( 138 calls, 0.000 s avg) prefor : 0.00s CPU ( 137 calls, 0.000 s avg) strucf : 0.00s CPU nlfl : 0.00s CPU ( 137 calls, 0.000 s avg) nlfq : 0.03s CPU ( 137 calls, 0.000 s avg) nlsm1 : 0.00s CPU ( 412 calls, 0.000 s avg) nlsm2 : 0.02s CPU ( 137 calls, 0.000 s avg) fft : 0.94s CPU ( 1370 calls, 0.001 s avg) ffts : 0.36s CPU ( 548 calls, 0.001 s avg) fftw : 4.18s CPU ( 9864 calls, 0.000 s avg) CP : 15.03s CPU time, 16.14s wall time This run was terminated on: 16:20:15 28Apr2008 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example01/0000755000175000017500000000000012341373043015344 5ustar mbambaespresso-5.1/CPV/examples/example01/run_xml_example0000755000175000017500000006504712341373026020506 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x to perform molecular dynamics" $ECHO "simulation of SiO2." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="Si.pz-vbc.UPF O.pz-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # molecular dynamics calculation cat > sio2.cp.start.xml << EOF 1.73206 1.09955 0.0 0.0 0.0 16.00 O.pz-rrkjus.UPF 1.0 28.00 Si.pz-vbc.UPF 1.0 3.18829368 14.83237039 1.22882961 7.83231469 6.78704039 1.22882961 2.07443467 5.99537992 4.73758250 6.72031366 14.04231898 4.73758250 3.96307134 11.26989826 7.87860582 8.60802134 3.22295920 7.87860582 3.96307134 4.81915267 9.14625133 8.60802134 12.86448267 9.14625133 3.18736469 1.25668055 5.58029607 7.83324368 9.30201055 5.58029607 2.07536366 10.09206195 2.07358613 6.71938467 2.04673195 2.07358613 0.28891589 8.04533000 3.40456284 4.93386589 0.00000000 3.40456284 2.13389003 12.27717358 -0.04188031 6.77884003 4.23184358 -0.04188031 2.13389003 3.81348642 6.85202747 6.77884003 11.85881642 6.85202747 $PSEUDO_DIR/ $TMP_DIR/ from_scratch 20 random 20.0 150.0 48 150.0 2.0 16.0 1 20 5.0 none 20 16 16 16 damp 0.2 700.0 3.0 90 91 0.01 EOF $ECHO " running the calculation with fixed ions...\c" $CP_COMMAND < sio2.cp.start.xml > sio2.cp.start.out check_failure $? $ECHO " done" # molecular dynamics calculation cat > sio2.cp.restart.xml << EOF 1.73206 1.09955 0.0 0.0 0.0 16.00 O.pz-rrkjus.UPF 1.0 28.00 Si.pz-vbc.UPF 1.0 3.18829368 14.83237039 1.22882961 7.83231469 6.78704039 1.22882961 2.07443467 5.99537992 4.73758250 6.72031366 14.04231898 4.73758250 3.96307134 11.26989826 7.87860582 8.60802134 3.22295920 7.87860582 3.96307134 4.81915267 9.14625133 8.60802134 12.86448267 9.14625133 3.18736469 1.25668055 5.58029607 7.83324368 9.30201055 5.58029607 2.07536366 10.09206195 2.07358613 6.71938467 2.04673195 2.07358613 0.28891589 8.04533000 3.40456284 4.93386589 0.00000000 3.40456284 2.13389003 12.27717358 -0.04188031 6.77884003 4.23184358 -0.04188031 2.13389003 3.81348642 6.85202747 6.77884003 11.85881642 6.85202747 $PSEUDO_DIR/ $TMP_DIR/ reset_counters 50 20.0 150.0 48 150.0 2.0 16.0 1 50 15.0 none 50 16 16 16 damp 0.2 700.0 3.0 91 92 EOF $ECHO " running the calculation with fixed ions, restart...\c" $CP_COMMAND < sio2.cp.restart.xml > sio2.cp.restart.out check_failure $? $ECHO " done" # molecular dynamics calculation cat > sio2.vc-cp.xml << EOF 1.73206 1.09955 0.0 0.0 0.0 16.00 O.pz-rrkjus.UPF 1.0 28.00 Si.pz-vbc.UPF 1.0 3.18829368 14.83237039 1.22882961 7.83231469 6.78704039 1.22882961 2.07443467 5.99537992 4.73758250 6.72031366 14.04231898 4.73758250 3.96307134 11.26989826 7.87860582 8.60802134 3.22295920 7.87860582 3.96307134 4.81915267 9.14625133 8.60802134 12.86448267 9.14625133 3.18736469 1.25668055 5.58029607 7.83324368 9.30201055 5.58029607 2.07536366 10.09206195 2.07358613 6.71938467 2.04673195 2.07358613 0.28891589 8.04533000 3.40456284 4.93386589 0.00000000 3.40456284 2.13389003 12.27717358 -0.04188031 6.77884003 4.23184358 -0.04188031 2.13389003 3.81348642 6.85202747 6.77884003 11.85881642 6.85202747 $PSEUDO_DIR/ $TMP_DIR/ reset_counters 10 20.0 150.0 48 150.0 2.0 16.0 1 10 pr 1.0 12.0 verlet nose 300.0 10 16 16 16 verlet 700.0 3.0 92 93 30 6.6666 6.6666 6.6666 6.6666 nose 300.0 8.6071 EOF $ECHO " running the variable-cell calculation...\c" $CP_COMMAND < sio2.vc-cp.xml > sio2.vc-cp.out check_failure $? $ECHO " done" # molecular dynamics calculation cat > sio2.vc-cp.restart.xml << EOF 1.73206 1.09955 0.0 0.0 0.0 16.00 O.pz-rrkjus.UPF 1.0 28.00 Si.pz-vbc.UPF 1.0 3.18829368 14.83237039 1.22882961 7.83231469 6.78704039 1.22882961 2.07443467 5.99537992 4.73758250 6.72031366 14.04231898 4.73758250 3.96307134 11.26989826 7.87860582 8.60802134 3.22295920 7.87860582 3.96307134 4.81915267 9.14625133 8.60802134 12.86448267 9.14625133 3.18736469 1.25668055 5.58029607 7.83324368 9.30201055 5.58029607 2.07536366 10.09206195 2.07358613 6.71938467 2.04673195 2.07358613 0.28891589 8.04533000 3.40456284 4.93386589 0.00000000 3.40456284 2.13389003 12.27717358 -0.04188031 6.77884003 4.23184358 -0.04188031 2.13389003 3.81348642 6.85202747 6.77884003 11.85881642 6.85202747 $PSEUDO_DIR/ $TMP_DIR/ reset_counters 10 20.0 150.0 48 150.0 2.0 16.0 1 10 pr 1.0 12.0 verlet nose 300.0 10 16 16 16 verlet 700.0 3.0 93 94 30 6.6666 6.6666 6.6666 6.6666 nose 300.0 8.6071 EOF $ECHO " running the variable-cell calculation, restart...\c" $CP_COMMAND < sio2.vc-cp.restart.xml > sio2.vc-cp.restart.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/CPV/examples/example01/README0000644000175000017500000000012512341373026016223 0ustar mbambaThis example shows how to use cp.x to perform molecular dynamics simulation of SiO2. espresso-5.1/CPV/examples/example01/run_example0000755000175000017500000002127512341373026017621 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x to perform molecular dynamics" $ECHO "simulation of SiO2." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="Si.pz-vbc.UPF O.pz-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cp* $ECHO " done" # molecular dynamics calculation cat > sio2.cp.start.in << EOF &control calculation='cp', restart_mode='from_scratch', nstep=20, iprint=20, isave=20, dt=5.0, ndr=90, ndw=91, pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav=8, celldm(1)=9.28990, celldm(2)=1.73206, celldm(3)=1.09955, nat=18, ntyp=2, nbnd=48, nspin=1, ecutwfc=20.0, ecutrho=150.0, nr1b=16, nr2b=16, nr3b=16, qcutz=150., q2sigma=2.0, ecfixed=16.0, / &electrons electron_dynamics='damp', electron_damping=0.2, startingwfc='random', ampre=0.01, emass=700., emass_cutoff=3., / &ions ion_dynamics='none', ion_radius(1)=1.0, ion_radius(2)=1.0, / ATOMIC_SPECIES O 16.00 O.pz-rrkjus.UPF Si 28.00 Si.pz-vbc.UPF ATOMIC_POSITIONS O 3.18829368 14.83237039 1.22882961 O 7.83231469 6.78704039 1.22882961 O 2.07443467 5.99537992 4.73758250 O 6.72031366 14.04231898 4.73758250 O 3.96307134 11.26989826 7.87860582 O 8.60802134 3.22295920 7.87860582 O 3.96307134 4.81915267 9.14625133 O 8.60802134 12.86448267 9.14625133 O 3.18736469 1.25668055 5.58029607 O 7.83324368 9.30201055 5.58029607 O 2.07536366 10.09206195 2.07358613 O 6.71938467 2.04673195 2.07358613 Si 0.28891589 8.04533000 3.40456284 Si 4.93386589 0.00000000 3.40456284 Si 2.13389003 12.27717358 -0.04188031 Si 6.77884003 4.23184358 -0.04188031 Si 2.13389003 3.81348642 6.85202747 Si 6.77884003 11.85881642 6.85202747 EOF $ECHO " running the calculation with fixed ions...\c" $CP_COMMAND < sio2.cp.start.in > sio2.cp.start.out check_failure $? $ECHO " done" # molecular dynamics calculation cat > sio2.cp.restart.in << EOF &control calculation='cp', restart_mode='reset_counters', nstep=50, iprint=50, isave=50, dt=15.0, ndr=91, ndw=92, pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav=8, celldm(1)=9.28990, celldm(2)=1.73206, celldm(3)=1.09955, nat=18, ntyp=2, nbnd=48, nspin=1, ecutwfc=20.0, ecutrho=150.0, nr1b=16, nr2b=16, nr3b=16, qcutz=150., q2sigma=2.0, ecfixed=16.0, / &electrons electron_dynamics='damp', electron_damping=0.2, emass=700., emass_cutoff=3., / &ions ion_dynamics='none', ion_radius(1)=1.0, ion_radius(2)=1.0, / ATOMIC_SPECIES O 16.00 O.pz-rrkjus.UPF Si 28.00 Si.pz-vbc.UPF ATOMIC_POSITIONS O 3.18829368 14.83237039 1.22882961 O 7.83231469 6.78704039 1.22882961 O 2.07443467 5.99537992 4.73758250 O 6.72031366 14.04231898 4.73758250 O 3.96307134 11.26989826 7.87860582 O 8.60802134 3.22295920 7.87860582 O 3.96307134 4.81915267 9.14625133 O 8.60802134 12.86448267 9.14625133 O 3.18736469 1.25668055 5.58029607 O 7.83324368 9.30201055 5.58029607 O 2.07536366 10.09206195 2.07358613 O 6.71938467 2.04673195 2.07358613 Si 0.28891589 8.04533000 3.40456284 Si 4.93386589 0.00000000 3.40456284 Si 2.13389003 12.27717358 -0.04188031 Si 6.77884003 4.23184358 -0.04188031 Si 2.13389003 3.81348642 6.85202747 Si 6.77884003 11.85881642 6.85202747 EOF $ECHO " running the calculation with fixed ions, restart...\c" $CP_COMMAND < sio2.cp.restart.in > sio2.cp.restart.out check_failure $? $ECHO " done" # molecular dynamics calculation cat > sio2.vc-cp.in << EOF &control calculation='vc-cp', restart_mode='reset_counters', nstep=10, iprint=10, isave=10, dt=12.0, ndr=92, ndw=93, pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav=8, celldm(1)=9.28990, celldm(2)=1.73206, celldm(3)=1.09955, nat=18, ntyp=2, nbnd=48, nspin=1, ecutwfc=20.0, ecutrho=150.0, nr1b=16, nr2b=16, nr3b=16, qcutz=150., q2sigma=2.0, ecfixed=16.0, / &electrons electron_dynamics='verlet', ortho_max=30, emass=700., emass_cutoff=3., / &ions ion_dynamics='verlet', ion_temperature='nose', tempw=300, fnosep=6.6666, ion_radius(1)=1.0, ion_radius(2)=1.0, / &cell cell_dynamics='pr', cell_temperature='nose', temph=300., fnoseh=8.6071, press=1.0, / ATOMIC_SPECIES O 16.00 O.pz-rrkjus.UPF Si 28.00 Si.pz-vbc.UPF ATOMIC_POSITIONS O 3.18829368 14.83237039 1.22882961 O 7.83231469 6.78704039 1.22882961 O 2.07443467 5.99537992 4.73758250 O 6.72031366 14.04231898 4.73758250 O 3.96307134 11.26989826 7.87860582 O 8.60802134 3.22295920 7.87860582 O 3.96307134 4.81915267 9.14625133 O 8.60802134 12.86448267 9.14625133 O 3.18736469 1.25668055 5.58029607 O 7.83324368 9.30201055 5.58029607 O 2.07536366 10.09206195 2.07358613 O 6.71938467 2.04673195 2.07358613 Si 0.28891589 8.04533000 3.40456284 Si 4.93386589 0.00000000 3.40456284 Si 2.13389003 12.27717358 -0.04188031 Si 6.77884003 4.23184358 -0.04188031 Si 2.13389003 3.81348642 6.85202747 Si 6.77884003 11.85881642 6.85202747 EOF $ECHO " running the variable-cell calculation...\c" $CP_COMMAND < sio2.vc-cp.in > sio2.vc-cp.out check_failure $? $ECHO " done" # molecular dynamics calculation cat > sio2.vc-cp.restart.in << EOF &control calculation='vc-cp', restart_mode='reset_counters', nstep=10, iprint=10, isave=10, dt=12.0, ndr=93, ndw=94, pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav=8, celldm(1)=9.28990, celldm(2)=1.73206, celldm(3)=1.09955, nat=18, ntyp=2, nbnd=48, nspin=1, ecutwfc=20.0, ecutrho=150.0, nr1b=16, nr2b=16, nr3b=16, qcutz=150., q2sigma=2.0, ecfixed=16.0, / &electrons electron_dynamics='verlet', ortho_max=30, emass=700., emass_cutoff=3., / &ions ion_dynamics='verlet', ion_temperature='nose', tempw=300, fnosep=6.6666, ion_radius(1)=1.0, ion_radius(2)=1.0, / &cell cell_dynamics='pr', cell_temperature='nose', temph=300., fnoseh=8.6071, press=1.0, / ATOMIC_SPECIES O 16.00 O.pz-rrkjus.UPF Si 28.00 Si.pz-vbc.UPF ATOMIC_POSITIONS O 3.18829368 14.83237039 1.22882961 O 7.83231469 6.78704039 1.22882961 O 2.07443467 5.99537992 4.73758250 O 6.72031366 14.04231898 4.73758250 O 3.96307134 11.26989826 7.87860582 O 8.60802134 3.22295920 7.87860582 O 3.96307134 4.81915267 9.14625133 O 8.60802134 12.86448267 9.14625133 O 3.18736469 1.25668055 5.58029607 O 7.83324368 9.30201055 5.58029607 O 2.07536366 10.09206195 2.07358613 O 6.71938467 2.04673195 2.07358613 Si 0.28891589 8.04533000 3.40456284 Si 4.93386589 0.00000000 3.40456284 Si 2.13389003 12.27717358 -0.04188031 Si 6.77884003 4.23184358 -0.04188031 Si 2.13389003 3.81348642 6.85202747 Si 6.77884003 11.85881642 6.85202747 EOF $ECHO " running the variable-cell calculation, restart...\c" $CP_COMMAND < sio2.vc-cp.restart.in > sio2.vc-cp.restart.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/CPV/examples/example01/reference/0000755000175000017500000000000012341373043017302 5ustar mbambaespresso-5.1/CPV/examples/example01/reference/sio2.vc-cp.out0000644000175000017500000004023012341373026021716 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.1 - Tue Jul 14 08:46:06 CEST 2009 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 9:27:27 14Jul2009 Serial Build Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /scratch_local/acv0/espresso-serial/pseudo/O.pz-rrkjus.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /scratch_local/acv0/espresso-serial/pseudo/Si.pz-vbc.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 0 reset_counters Number of MD Steps = 10 Print out every 10 MD Steps Reads from unit = 92 Writes to unit = 93 MD Simulation time step = 12.00 Electronic fictitious mass (emass) = 700.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 1.00 [GPa] wmass (calculated) = 49868.25 [AU] ibrav = 8 alat = 9.28990000 a1 = 9.28990000 0.00000000 0.00000000 a2 = 0.00000000 16.09066419 0.00000000 a3 = 0.00000000 0.00000000 10.21470954 b1 = 0.10764379 0.00000000 0.00000000 b2 = 0.00000000 0.06214784 0.00000000 b3 = 0.00000000 0.00000000 0.09789804 omega = 1526.90153773 Energy Cut-offs --------------- Ecutwfc = 20.0 Ry, Ecutrho = 150.0 Ry, Ecuts = 80.0 Ry Gcutwfc = 6.6 , Gcutrho = 18.1 Gcuts = 13.2 modified kinetic energy functional, with parameters: ecutz = 150.0000 ecsig = 2.0000 ecfix = 16.00 NOTA BENE: refg, mmx = 0.050000 6000 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 Electron dynamics with newton equations Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 96, of States = 48 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC (1100) Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 54 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 12 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.188294 14.832370 1.228830 7.832315 6.787040 1.228830 2.074435 5.995380 4.737583 6.720314 14.042319 4.737583 3.963071 11.269898 7.878606 8.608021 3.222959 7.878606 3.963071 4.819153 9.146251 8.608021 12.864483 9.146251 3.187365 1.256681 5.580296 7.833244 9.302011 5.580296 2.075364 10.092062 2.073586 6.719385 2.046732 2.073586 Species 2 atoms = 6 mass = 51040.88 (a.u.), 28.00 (amu) rcmax = 1.00 (a.u.) 0.288916 8.045330 3.404563 4.933866 0.000000 3.404563 2.133890 12.277174 -0.041880 6.778840 4.231844 -0.041880 2.133890 3.813486 6.852027 6.778840 11.858816 6.852027 Ionic position will be re-read from restart file All atoms are allowed to move Ionic temperature control via nose thermostat ion dynamics with nose` temperature control: temperature required = 300.00000 (kelvin) NH chain length = 1 active degrees of freedom = 54 time steps per nose osc. = 516 nose` frequency(es) = 6.667 the requested type of NH chains is 0 total number of thermostats used 1 0 0 ionic degrees of freedom for each chain 54 nose` mass(es) for chain 1 = 99946.828 atom i (in sorted order) is assigned to this thermostat : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Volume dynamics with newton equations cell parameters dynamics with nose` temp. control Constant PRESSURE Molecular dynamics: External pressure (GPa) = 1.00 Volume mass = 49868.25 cell dynamics with nose` temperature control: Kinetic energy required = 300.00000 (Kelvin) time steps per nose osc. = 400 nose` frequency = 8.607 (THz) nose` mass(es) = 9993.391 Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 9.2899 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 16.0907 0.0000 0.0000 0.5773 0.0000 3 0.0000 0.0000 10.2147 0.0000 0.0000 0.9095 Stick Mesh ---------- nst = 892, nstw = 120, nsts = 476 PEs n.st n.stw n.sts n.g n.gw n.gs 1 1783 239 951 47285 2305 18431 0 1783 239 951 47285 2305 18431 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 40 64 40 40 64 40 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 40 64 40 Local number of cell to store the grid ( nnrx ) = 102400 Number of x-y planes for each processors: nr3l = 40 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 45 30 27 45 30 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 45 30 Local number of cell to store the grid ( nnrx ) = 36450 Number of x-y planes for each processors: nr3sl = 30 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 16 16 16 16 16 16 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 16 16 16 Local number of cell to store the grid ( nnrx ) = 4096 unit vectors of box grid cell in real space: in reciprocal space: 3.7160 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.0227 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 4.0859 0.0000 0.0000 0.9095 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 23643 23643 23643 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 9216 9216 9216 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 1153 1153 1153 Small box Mesh ngb = 948 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input O 0.343200E+00 0.921800E+00 0.120300E+00 O 0.843100E+00 0.421800E+00 0.120300E+00 O 0.223300E+00 0.372600E+00 0.463800E+00 O 0.723400E+00 0.872700E+00 0.463800E+00 O 0.426600E+00 0.700400E+00 0.771300E+00 O 0.926600E+00 0.200300E+00 0.771300E+00 O 0.426600E+00 0.299500E+00 0.895400E+00 O 0.926600E+00 0.799500E+00 0.895400E+00 O 0.343100E+00 0.781000E-01 0.546300E+00 O 0.843200E+00 0.578100E+00 0.546300E+00 O 0.223400E+00 0.627200E+00 0.203000E+00 O 0.723300E+00 0.127200E+00 0.203000E+00 Si 0.311000E-01 0.500000E+00 0.333300E+00 Si 0.531100E+00 0.000000E+00 0.333300E+00 Si 0.229700E+00 0.763000E+00 -0.410000E-02 Si 0.729700E+00 0.263000E+00 -0.410000E-02 Si 0.229700E+00 0.237000E+00 0.670800E+00 Si 0.729700E+00 0.737000E+00 0.670800E+00 ibrav = 8 cell parameters 9.28990 0.00000 0.00000 0.00000 16.09066 0.00000 0.00000 0.00000 10.21471 Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 948 1 865 3 qqq -0.0987 0.4865 0.0000 0.0000 0.4865 -2.1787 0.0000 0.0000 0.0000 0.0000 0.2330 0.2950 0.0000 0.0000 0.2950 0.3737 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4817 -1.2813 0.0000 0.0000 -1.2813 2.3075 0.0000 0.0000 0.0000 0.0000 0.6338 0.8752 0.0000 0.0000 0.8752 1.2039 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 0.7619 0.0000 0.0000 1.8417 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /scratch_local/acv0/tmp//cp_92.save restart file read in 0.042 sec. formf: eself= 210.64152 formf: vps(g=0)= -0.0099256 rhops(g=0)= -0.0039295 formf: sum_g vps(g)= -2.2959144 sum_g rhops(g)= -0.5407261 formf: vps(g=0)= -0.0098400 rhops(g=0)= -0.0026197 formf: sum_g vps(g)= -2.3753533 sum_g rhops(g)= -0.3604841 Delta V(G=0): 0.197519Ry, 5.374775eV formf: eself= 210.64152 formf: vps(g=0)= -0.0099256 rhops(g=0)= -0.0039295 formf: sum_g vps(g)= -2.2959144 sum_g rhops(g)= -0.5407261 formf: vps(g=0)= -0.0098400 rhops(g=0)= -0.0026197 formf: sum_g vps(g)= -2.3753533 sum_g rhops(g)= -0.3604841 Delta V(G=0): 0.197519Ry, 5.374775eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 0.00000 0.1 0.0 -211.98210 -211.93020 -211.93020 -211.93020 0.0000 0.0000 0.0000 0.0000 Delta V(G=0): 0.197522Ry, 5.374837eV 2 0.00000 0.9 0.1 -211.98211 -211.93021 -211.93020 -211.93020 0.0000 0.0000 0.0000 -0.0001 Delta V(G=0): 0.197526Ry, 5.374960eV 3 0.00000 2.4 0.2 -211.98214 -211.93025 -211.93020 -211.93020 0.0000 0.0000 0.0000 -0.0002 Delta V(G=0): 0.197533Ry, 5.375143eV 4 0.00000 4.7 0.3 -211.98219 -211.93029 -211.93020 -211.93020 0.0000 -0.0001 0.0000 -0.0004 Delta V(G=0): 0.197542Ry, 5.375387eV 5 0.00001 7.7 0.5 -211.98225 -211.93035 -211.93021 -211.93020 0.0000 -0.0001 0.0000 -0.0007 Delta V(G=0): 0.197553Ry, 5.375691eV 6 0.00001 11.5 0.7 -211.98232 -211.93043 -211.93021 -211.93020 0.0000 -0.0002 0.0000 -0.0011 Delta V(G=0): 0.197566Ry, 5.376056eV 7 0.00002 16.1 0.9 -211.98241 -211.93053 -211.93022 -211.93020 0.0000 -0.0003 0.0000 -0.0016 Delta V(G=0): 0.197582Ry, 5.376485eV 8 0.00002 21.5 1.3 -211.98252 -211.93064 -211.93022 -211.93020 0.0000 -0.0003 0.0000 -0.0021 Delta V(G=0): 0.197600Ry, 5.376978eV 9 0.00002 27.7 1.7 -211.98264 -211.93076 -211.93022 -211.93020 0.0000 -0.0004 -0.0001 -0.0027 * Physical Quantities at step: 10 Delta V(G=0): 0.197621Ry, 5.377536eV 10 0.00003 34.8 2.1 -211.98271 -211.93084 -211.93016 -211.93013 0.0000 -0.0005 -0.0001 -0.0033 writing restart file: /scratch_local/acv0/tmp//cp_93.save restart file written in 0.118 sec. Averaged Physical Quantities accomulated this run ekinc : 0.00001 0.00001 (AU) ekin : 94.60238 94.60238 (AU) epot : -343.05127 -343.05127 (AU) total energy : -211.98234 -211.98234 (AU) temperature : 0.75835 0.75835 (K ) enthalpy : -211.93045 -211.93045 (AU) econs : -211.93020 -211.93020 (AU) pressure : -2.19645 -2.19645 (Gpa) volume : 1526.61474 1526.61474 (AU) initialize : 6.93s CPU total_time : 7.95s CPU ( 10 calls, 0.795 s avg) formf : 0.47s CPU ( 11 calls, 0.043 s avg) rhoofr : 2.88s CPU ( 10 calls, 0.288 s avg) vofrho : 0.72s CPU ( 10 calls, 0.072 s avg) dforce : 1.27s CPU ( 240 calls, 0.005 s avg) calphi : 0.07s CPU ( 10 calls, 0.007 s avg) ortho : 0.33s CPU ( 10 calls, 0.033 s avg) ortho_iter : 0.03s CPU ( 10 calls, 0.003 s avg) rsg : 0.01s CPU ( 10 calls, 0.001 s avg) rhoset : 0.04s CPU ( 10 calls, 0.004 s avg) updatc : 0.03s CPU ( 10 calls, 0.003 s avg) newd : 0.78s CPU ( 10 calls, 0.078 s avg) calbec : 0.04s CPU ( 11 calls, 0.004 s avg) prefor : 0.03s CPU ( 21 calls, 0.001 s avg) strucf : 0.02s CPU ( 11 calls, 0.002 s avg) nlfl : 0.01s CPU ( 10 calls, 0.001 s avg) nlfq : 0.38s CPU ( 10 calls, 0.038 s avg) rhov : 0.19s CPU ( 10 calls, 0.019 s avg) nlsm1 : 0.23s CPU ( 31 calls, 0.007 s avg) nlsm2 : 0.37s CPU ( 10 calls, 0.037 s avg) fft : 1.54s CPU ( 130 calls, 0.012 s avg) ffts : 0.04s CPU ( 20 calls, 0.002 s avg) fftw : 0.96s CPU ( 720 calls, 0.001 s avg) fftb : 0.24s CPU ( 2940 calls, 0.000 s avg) CP : 14.99s CPU time, 15.73s wall time This run was terminated on: 9:27:43 14Jul2009 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example01/reference/sio2.cp.start.out0000644000175000017500000003653012341373026022454 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.1 - Tue Jul 14 08:46:06 CEST 2009 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 9:26:55 14Jul2009 Serial Build Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /scratch_local/acv0/espresso-serial/pseudo/O.pz-rrkjus.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /scratch_local/acv0/espresso-serial/pseudo/Si.pz-vbc.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 20 Print out every 20 MD Steps Reads from unit = 90 Writes to unit = 91 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 700.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 49868.25 [AU] ibrav = 8 alat = 9.28990000 a1 = 9.28990000 0.00000000 0.00000000 a2 = 0.00000000 16.09066419 0.00000000 a3 = 0.00000000 0.00000000 10.21470954 b1 = 0.10764379 0.00000000 0.00000000 b2 = 0.00000000 0.06214784 0.00000000 b3 = 0.00000000 0.00000000 0.09789804 omega = 1526.90153773 Energy Cut-offs --------------- Ecutwfc = 20.0 Ry, Ecutrho = 150.0 Ry, Ecuts = 80.0 Ry Gcutwfc = 6.6 , Gcutrho = 18.1 Gcuts = 13.2 modified kinetic energy functional, with parameters: ecutz = 150.0000 ecsig = 2.0000 ecfix = 16.00 NOTA BENE: refg, mmx = 0.050000 6000 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.010000 Electronic states ----------------- Number of Electron = 96, of States = 48 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC (1100) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 12 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.188294 14.832370 1.228830 7.832315 6.787040 1.228830 2.074435 5.995380 4.737583 6.720314 14.042319 4.737583 3.963071 11.269898 7.878606 8.608021 3.222959 7.878606 3.963071 4.819153 9.146251 8.608021 12.864483 9.146251 3.187365 1.256681 5.580296 7.833244 9.302011 5.580296 2.075364 10.092062 2.073586 6.719385 2.046732 2.073586 Species 2 atoms = 6 mass = 51040.88 (a.u.), 28.00 (amu) rcmax = 1.00 (a.u.) 0.288916 8.045330 3.404563 4.933866 0.000000 3.404563 2.133890 12.277174 -0.041880 6.778840 4.231844 -0.041880 2.133890 3.813486 6.852027 6.778840 11.858816 6.852027 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 9.2899 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 16.0907 0.0000 0.0000 0.5773 0.0000 3 0.0000 0.0000 10.2147 0.0000 0.0000 0.9095 Stick Mesh ---------- nst = 892, nstw = 120, nsts = 476 PEs n.st n.stw n.sts n.g n.gw n.gs 1 1783 239 951 47285 2305 18431 0 1783 239 951 47285 2305 18431 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 40 64 40 40 64 40 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 40 64 40 Local number of cell to store the grid ( nnrx ) = 102400 Number of x-y planes for each processors: nr3l = 40 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 45 30 27 45 30 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 45 30 Local number of cell to store the grid ( nnrx ) = 36450 Number of x-y planes for each processors: nr3sl = 30 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 16 16 16 16 16 16 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 16 16 16 Local number of cell to store the grid ( nnrx ) = 4096 unit vectors of box grid cell in real space: in reciprocal space: 3.7160 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.0227 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 4.0859 0.0000 0.0000 0.9095 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 23643 23643 23643 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 9216 9216 9216 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 1153 1153 1153 Small box Mesh ngb = 948 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input O 0.343200E+00 0.921800E+00 0.120300E+00 O 0.843100E+00 0.421800E+00 0.120300E+00 O 0.223300E+00 0.372600E+00 0.463800E+00 O 0.723400E+00 0.872700E+00 0.463800E+00 O 0.426600E+00 0.700400E+00 0.771300E+00 O 0.926600E+00 0.200300E+00 0.771300E+00 O 0.426600E+00 0.299500E+00 0.895400E+00 O 0.926600E+00 0.799500E+00 0.895400E+00 O 0.343100E+00 0.781000E-01 0.546300E+00 O 0.843200E+00 0.578100E+00 0.546300E+00 O 0.223400E+00 0.627200E+00 0.203000E+00 O 0.723300E+00 0.127200E+00 0.203000E+00 Si 0.311000E-01 0.500000E+00 0.333300E+00 Si 0.531100E+00 0.000000E+00 0.333300E+00 Si 0.229700E+00 0.763000E+00 -0.410000E-02 Si 0.729700E+00 0.263000E+00 -0.410000E-02 Si 0.229700E+00 0.237000E+00 0.670800E+00 Si 0.729700E+00 0.737000E+00 0.670800E+00 Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 948 1 865 3 qqq -0.0987 0.4865 0.0000 0.0000 0.4865 -2.1787 0.0000 0.0000 0.0000 0.0000 0.2330 0.2950 0.0000 0.0000 0.2950 0.3737 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4817 -1.2813 0.0000 0.0000 -1.2813 2.3075 0.0000 0.0000 0.0000 0.0000 0.6338 0.8752 0.0000 0.0000 0.8752 1.2039 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 0.7619 0.0000 0.0000 1.8417 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 48 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 formf: eself= 210.64152 formf: vps(g=0)= -0.0099256 rhops(g=0)= -0.0039295 formf: sum_g vps(g)= -2.2959144 sum_g rhops(g)= -0.5407261 formf: vps(g=0)= -0.0098400 rhops(g=0)= -0.0026197 formf: sum_g vps(g)= -2.3753533 sum_g rhops(g)= -0.3604841 Delta V(G=0): 0.197519Ry, 5.374775eV from rhoofr: total integrated electronic density in g-space = 96.000000 in r-space = 96.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 9.20241 0.0 0.0 52.34042 52.34042 52.34042 61.54283 0.0000 0.0000 0.0000 0.0000 2 22.75326 0.0 0.0 25.50653 25.50653 25.50653 48.25979 0.0000 0.0000 0.0000 0.0000 3 35.31181 0.0 0.0 -11.06632 -11.06632 -11.06632 24.24549 0.0000 0.0000 0.0000 0.0000 4 43.01840 0.0 0.0 -50.98442 -50.98442 -50.98442 -7.96603 0.0000 0.0000 0.0000 0.0000 5 44.50308 0.0 0.0 -88.12787 -88.12787 -88.12787 -43.62479 0.0000 0.0000 0.0000 0.0000 6 40.66592 0.0 0.0 -118.60809 -118.60809 -118.60809 -77.94218 0.0000 0.0000 0.0000 0.0000 7 33.79280 0.0 0.0 -141.43418 -141.43418 -141.43418 -107.64138 0.0000 0.0000 0.0000 0.0000 8 26.21849 0.0 0.0 -157.61240 -157.61240 -157.61240 -131.39390 0.0000 0.0000 0.0000 0.0000 9 19.48387 0.0 0.0 -168.87793 -168.87793 -168.87793 -149.39406 0.0000 0.0000 0.0000 0.0000 10 14.22277 0.0 0.0 -176.86430 -176.86430 -176.86430 -162.64153 0.0000 0.0000 0.0000 0.0000 11 10.43957 0.0 0.0 -182.77868 -182.77868 -182.77868 -172.33910 0.0000 0.0000 0.0000 0.0000 12 7.84016 0.0 0.0 -187.38467 -187.38467 -187.38467 -179.54451 0.0000 0.0000 0.0000 0.0000 13 6.06750 0.0 0.0 -191.11182 -191.11182 -191.11182 -185.04432 0.0000 0.0000 0.0000 0.0000 14 4.82240 0.0 0.0 -194.18525 -194.18525 -194.18525 -189.36285 0.0000 0.0000 0.0000 0.0000 15 3.90000 0.0 0.0 -196.72758 -196.72758 -196.72758 -192.82759 0.0000 0.0000 0.0000 0.0000 16 3.17982 0.0 0.0 -198.82110 -198.82110 -198.82110 -195.64128 0.0000 0.0000 0.0000 0.0000 17 2.59910 0.0 0.0 -200.53653 -200.53653 -200.53653 -197.93743 0.0000 0.0000 0.0000 0.0000 18 2.12669 0.0 0.0 -201.94095 -201.94095 -201.94095 -199.81427 0.0000 0.0000 0.0000 0.0000 19 1.74492 0.0 0.0 -203.09635 -203.09635 -203.09635 -201.35143 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 20 20 1.44006 0.0 0.0 -204.05611 -204.05611 -204.05611 -202.61606 0.0000 0.0000 0.0000 0.0000 writing restart file: /scratch_local/acv0/tmp//cp_91.save restart file written in 0.117 sec. Averaged Physical Quantities accomulated this run ekinc : 16.66665 16.66665 (AU) ekin : 136.79453 136.79453 (AU) epot : -309.64406 -309.64406 (AU) total energy : -139.81838 -139.81838 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -139.81838 -139.81838 (AU) econs : -139.81838 -139.81838 (AU) pressure : 0.00000 0.00000 (Gpa) volume : 1526.90154 1526.90154 (AU) initialize : 4.02s CPU total_time : 6.67s CPU ( 20 calls, 0.333 s avg) formf : 0.21s CPU rhoofr : 1.48s CPU ( 21 calls, 0.071 s avg) vofrho : 0.88s CPU ( 21 calls, 0.042 s avg) dforce : 2.40s CPU ( 504 calls, 0.005 s avg) calphi : 0.13s CPU ( 21 calls, 0.006 s avg) ortho : 0.64s CPU ( 21 calls, 0.031 s avg) ortho_iter : 0.06s CPU ( 21 calls, 0.003 s avg) rsg : 0.02s CPU ( 21 calls, 0.001 s avg) rhoset : 0.07s CPU ( 21 calls, 0.003 s avg) updatc : 0.06s CPU ( 21 calls, 0.003 s avg) gram : 0.05s CPU newd : 1.25s CPU ( 21 calls, 0.060 s avg) calbec : 0.06s CPU ( 22 calls, 0.003 s avg) prefor : 0.03s CPU ( 21 calls, 0.001 s avg) strucf : 0.00s CPU rhov : 0.35s CPU ( 21 calls, 0.017 s avg) nlsm1 : 0.41s CPU ( 64 calls, 0.006 s avg) fft : 0.85s CPU ( 84 calls, 0.010 s avg) ffts : 0.09s CPU ( 42 calls, 0.002 s avg) fftw : 2.02s CPU ( 1512 calls, 0.001 s avg) fftb : 0.39s CPU ( 4662 calls, 0.000 s avg) CP : 10.79s CPU time, 11.92s wall time This run was terminated on: 9:27: 7 14Jul2009 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example01/reference/sio2.cp.restart.out0000644000175000017500000004354712341373026023011 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.1 - Tue Jul 14 08:46:06 CEST 2009 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 9:27: 7 14Jul2009 Serial Build Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /scratch_local/acv0/espresso-serial/pseudo/O.pz-rrkjus.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /scratch_local/acv0/espresso-serial/pseudo/Si.pz-vbc.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 0 reset_counters Number of MD Steps = 50 Print out every 50 MD Steps Reads from unit = 91 Writes to unit = 92 MD Simulation time step = 15.00 Electronic fictitious mass (emass) = 700.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 49868.25 [AU] ibrav = 8 alat = 9.28990000 a1 = 9.28990000 0.00000000 0.00000000 a2 = 0.00000000 16.09066419 0.00000000 a3 = 0.00000000 0.00000000 10.21470954 b1 = 0.10764379 0.00000000 0.00000000 b2 = 0.00000000 0.06214784 0.00000000 b3 = 0.00000000 0.00000000 0.09789804 omega = 1526.90153773 Energy Cut-offs --------------- Ecutwfc = 20.0 Ry, Ecutrho = 150.0 Ry, Ecuts = 80.0 Ry Gcutwfc = 6.6 , Gcutrho = 18.1 Gcuts = 13.2 modified kinetic energy functional, with parameters: ecutz = 150.0000 ecsig = 2.0000 ecfix = 16.00 NOTA BENE: refg, mmx = 0.050000 6000 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 96, of States = 48 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC (1100) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 12 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.188294 14.832370 1.228830 7.832315 6.787040 1.228830 2.074435 5.995380 4.737583 6.720314 14.042319 4.737583 3.963071 11.269898 7.878606 8.608021 3.222959 7.878606 3.963071 4.819153 9.146251 8.608021 12.864483 9.146251 3.187365 1.256681 5.580296 7.833244 9.302011 5.580296 2.075364 10.092062 2.073586 6.719385 2.046732 2.073586 Species 2 atoms = 6 mass = 51040.88 (a.u.), 28.00 (amu) rcmax = 1.00 (a.u.) 0.288916 8.045330 3.404563 4.933866 0.000000 3.404563 2.133890 12.277174 -0.041880 6.778840 4.231844 -0.041880 2.133890 3.813486 6.852027 6.778840 11.858816 6.852027 Ionic position will be re-read from restart file Cell Dynamics Parameters (from STDIN) ------------------------------------- Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 9.2899 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 16.0907 0.0000 0.0000 0.5773 0.0000 3 0.0000 0.0000 10.2147 0.0000 0.0000 0.9095 Stick Mesh ---------- nst = 892, nstw = 120, nsts = 476 PEs n.st n.stw n.sts n.g n.gw n.gs 1 1783 239 951 47285 2305 18431 0 1783 239 951 47285 2305 18431 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 40 64 40 40 64 40 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 40 64 40 Local number of cell to store the grid ( nnrx ) = 102400 Number of x-y planes for each processors: nr3l = 40 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 45 30 27 45 30 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 45 30 Local number of cell to store the grid ( nnrx ) = 36450 Number of x-y planes for each processors: nr3sl = 30 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 16 16 16 16 16 16 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 16 16 16 Local number of cell to store the grid ( nnrx ) = 4096 unit vectors of box grid cell in real space: in reciprocal space: 3.7160 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.0227 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 4.0859 0.0000 0.0000 0.9095 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 23643 23643 23643 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 9216 9216 9216 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 1153 1153 1153 Small box Mesh ngb = 948 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input O 0.343200E+00 0.921800E+00 0.120300E+00 O 0.843100E+00 0.421800E+00 0.120300E+00 O 0.223300E+00 0.372600E+00 0.463800E+00 O 0.723400E+00 0.872700E+00 0.463800E+00 O 0.426600E+00 0.700400E+00 0.771300E+00 O 0.926600E+00 0.200300E+00 0.771300E+00 O 0.426600E+00 0.299500E+00 0.895400E+00 O 0.926600E+00 0.799500E+00 0.895400E+00 O 0.343100E+00 0.781000E-01 0.546300E+00 O 0.843200E+00 0.578100E+00 0.546300E+00 O 0.223400E+00 0.627200E+00 0.203000E+00 O 0.723300E+00 0.127200E+00 0.203000E+00 Si 0.311000E-01 0.500000E+00 0.333300E+00 Si 0.531100E+00 0.000000E+00 0.333300E+00 Si 0.229700E+00 0.763000E+00 -0.410000E-02 Si 0.729700E+00 0.263000E+00 -0.410000E-02 Si 0.229700E+00 0.237000E+00 0.670800E+00 Si 0.729700E+00 0.737000E+00 0.670800E+00 ibrav = 8 cell parameters 9.28990 0.00000 0.00000 0.00000 16.09066 0.00000 0.00000 0.00000 10.21471 Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 948 1 865 3 qqq -0.0987 0.4865 0.0000 0.0000 0.4865 -2.1787 0.0000 0.0000 0.0000 0.0000 0.2330 0.2950 0.0000 0.0000 0.2950 0.3737 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4817 -1.2813 0.0000 0.0000 -1.2813 2.3075 0.0000 0.0000 0.0000 0.0000 0.6338 0.8752 0.0000 0.0000 0.8752 1.2039 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 0.7619 0.0000 0.0000 1.8417 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /scratch_local/acv0/tmp//cp_91.save restart file read in 0.042 sec. formf: eself= 210.64152 formf: vps(g=0)= -0.0099256 rhops(g=0)= -0.0039295 formf: sum_g vps(g)= -2.2959144 sum_g rhops(g)= -0.5407261 formf: vps(g=0)= -0.0098400 rhops(g=0)= -0.0026197 formf: sum_g vps(g)= -2.3753533 sum_g rhops(g)= -0.3604841 Delta V(G=0): 0.197519Ry, 5.374775eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 0.73509 0.0 0.0 -204.86314 -204.86314 -204.86314 -204.12805 0.0000 0.0000 0.0000 0.0000 2 1.68081 0.0 0.0 -207.00199 -207.00199 -207.00199 -205.32117 0.0000 0.0000 0.0000 0.0000 3 1.91098 0.0 0.0 -208.73256 -208.73256 -208.73256 -206.82158 0.0000 0.0000 0.0000 0.0000 4 1.52426 0.0 0.0 -209.65564 -209.65564 -209.65564 -208.13138 0.0000 0.0000 0.0000 0.0000 5 1.09478 0.0 0.0 -210.22136 -210.22136 -210.22136 -209.12658 0.0000 0.0000 0.0000 0.0000 6 0.84016 0.0 0.0 -210.72592 -210.72592 -210.72592 -209.88577 0.0000 0.0000 0.0000 0.0000 7 0.68573 0.0 0.0 -211.18396 -211.18396 -211.18396 -210.49822 0.0000 0.0000 0.0000 0.0000 8 0.53951 0.0 0.0 -211.52870 -211.52870 -211.52870 -210.98919 0.0000 0.0000 0.0000 0.0000 9 0.38187 0.0 0.0 -211.73394 -211.73394 -211.73394 -211.35206 0.0000 0.0000 0.0000 0.0000 10 0.23918 0.0 0.0 -211.83124 -211.83124 -211.83124 -211.59207 0.0000 0.0000 0.0000 0.0000 11 0.13659 0.0 0.0 -211.87198 -211.87198 -211.87198 -211.73539 0.0000 0.0000 0.0000 0.0000 12 0.07757 0.0 0.0 -211.89489 -211.89489 -211.89489 -211.81732 0.0000 0.0000 0.0000 0.0000 13 0.04927 0.0 0.0 -211.91613 -211.91613 -211.91613 -211.86685 0.0000 0.0000 0.0000 0.0000 14 0.03608 0.0 0.0 -211.93713 -211.93713 -211.93713 -211.90105 0.0000 0.0000 0.0000 0.0000 15 0.02766 0.0 0.0 -211.95435 -211.95435 -211.95435 -211.92669 0.0000 0.0000 0.0000 0.0000 16 0.02017 0.0 0.0 -211.96587 -211.96587 -211.96587 -211.94570 0.0000 0.0000 0.0000 0.0000 17 0.01346 0.0 0.0 -211.97232 -211.97232 -211.97232 -211.95886 0.0000 0.0000 0.0000 0.0000 18 0.00825 0.0 0.0 -211.97547 -211.97547 -211.97547 -211.96722 0.0000 0.0000 0.0000 0.0000 19 0.00490 0.0 0.0 -211.97716 -211.97716 -211.97716 -211.97225 0.0000 0.0000 0.0000 0.0000 20 0.00309 0.0 0.0 -211.97846 -211.97846 -211.97846 -211.97537 0.0000 0.0000 0.0000 0.0000 21 0.00215 0.0 0.0 -211.97960 -211.97960 -211.97960 -211.97745 0.0000 0.0000 0.0000 0.0000 22 0.00157 0.0 0.0 -211.98050 -211.98050 -211.98050 -211.97893 0.0000 0.0000 0.0000 0.0000 23 0.00112 0.0 0.0 -211.98112 -211.98112 -211.98112 -211.98000 0.0000 0.0000 0.0000 0.0000 24 0.00075 0.0 0.0 -211.98148 -211.98148 -211.98148 -211.98073 0.0000 0.0000 0.0000 0.0000 25 0.00048 0.0 0.0 -211.98168 -211.98168 -211.98168 -211.98121 0.0000 0.0000 0.0000 0.0000 26 0.00030 0.0 0.0 -211.98181 -211.98181 -211.98181 -211.98151 0.0000 0.0000 0.0000 0.0000 27 0.00019 0.0 0.0 -211.98190 -211.98190 -211.98190 -211.98170 0.0000 0.0000 0.0000 0.0000 28 0.00013 0.0 0.0 -211.98196 -211.98196 -211.98196 -211.98183 0.0000 0.0000 0.0000 0.0000 29 0.00009 0.0 0.0 -211.98201 -211.98201 -211.98201 -211.98192 0.0000 0.0000 0.0000 0.0000 30 0.00006 0.0 0.0 -211.98204 -211.98204 -211.98204 -211.98198 0.0000 0.0000 0.0000 0.0000 31 0.00004 0.0 0.0 -211.98206 -211.98206 -211.98206 -211.98202 0.0000 0.0000 0.0000 0.0000 32 0.00003 0.0 0.0 -211.98207 -211.98207 -211.98207 -211.98204 0.0000 0.0000 0.0000 0.0000 33 0.00002 0.0 0.0 -211.98208 -211.98208 -211.98208 -211.98206 0.0000 0.0000 0.0000 0.0000 34 0.00001 0.0 0.0 -211.98209 -211.98209 -211.98209 -211.98207 0.0000 0.0000 0.0000 0.0000 35 0.00001 0.0 0.0 -211.98209 -211.98209 -211.98209 -211.98208 0.0000 0.0000 0.0000 0.0000 36 0.00001 0.0 0.0 -211.98209 -211.98209 -211.98209 -211.98209 0.0000 0.0000 0.0000 0.0000 37 0.00000 0.0 0.0 -211.98209 -211.98209 -211.98209 -211.98209 0.0000 0.0000 0.0000 0.0000 38 0.00000 0.0 0.0 -211.98209 -211.98209 -211.98209 -211.98209 0.0000 0.0000 0.0000 0.0000 39 0.00000 0.0 0.0 -211.98210 -211.98210 -211.98210 -211.98209 0.0000 0.0000 0.0000 0.0000 40 0.00000 0.0 0.0 -211.98210 -211.98210 -211.98210 -211.98210 0.0000 0.0000 0.0000 0.0000 41 0.00000 0.0 0.0 -211.98210 -211.98210 -211.98210 -211.98210 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.717444D-06 0.1D-05 0.281746D-06 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation * Physical Quantities at step: 42 42 0.00000 0.0 0.0 -211.98210 -211.98210 -211.98210 -211.98210 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.472344D-06 0.1D-05 0.249053D-06 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation writing restart file: /scratch_local/acv0/tmp//cp_92.save restart file written in 0.122 sec. Averaged Physical Quantities accomulated this run ekinc : 0.23849 0.23849 (AU) ekin : 94.97674 94.97674 (AU) epot : -342.96326 -342.96326 (AU) total energy : -211.44098 -211.44098 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -211.44098 -211.44098 (AU) econs : -211.44098 -211.44098 (AU) pressure : 0.00000 0.00000 (Gpa) volume : 1526.90154 1526.90154 (AU) initialize : 3.67s CPU total_time : 16.00s CPU ( 42 calls, 0.381 s avg) formf : 0.19s CPU rhoofr : 3.29s CPU ( 42 calls, 0.078 s avg) vofrho : 2.02s CPU ( 42 calls, 0.048 s avg) dforce : 5.76s CPU ( 1008 calls, 0.006 s avg) calphi : 0.29s CPU ( 42 calls, 0.007 s avg) ortho : 1.56s CPU ( 42 calls, 0.037 s avg) ortho_iter : 0.19s CPU ( 42 calls, 0.005 s avg) rsg : 0.04s CPU ( 42 calls, 0.001 s avg) rhoset : 0.17s CPU ( 42 calls, 0.004 s avg) updatc : 0.15s CPU ( 42 calls, 0.004 s avg) newd : 2.49s CPU ( 42 calls, 0.059 s avg) calbec : 0.14s CPU ( 43 calls, 0.003 s avg) prefor : 0.08s CPU ( 43 calls, 0.002 s avg) strucf : 0.00s CPU rhov : 0.87s CPU ( 42 calls, 0.021 s avg) nlsm1 : 1.01s CPU ( 127 calls, 0.008 s avg) fft : 2.03s CPU ( 168 calls, 0.012 s avg) ffts : 0.18s CPU ( 84 calls, 0.002 s avg) fftw : 4.07s CPU ( 3024 calls, 0.001 s avg) fftb : 0.79s CPU ( 9324 calls, 0.000 s avg) CP : 19.77s CPU time, 20.54s wall time This run was terminated on: 9:27:27 14Jul2009 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example01/reference/sio2.vc-cp.restart.out0000644000175000017500000004023012341373026023401 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.1 - Tue Jul 14 08:46:06 CEST 2009 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 9:27:43 14Jul2009 Serial Build Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /scratch_local/acv0/espresso-serial/pseudo/O.pz-rrkjus.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /scratch_local/acv0/espresso-serial/pseudo/Si.pz-vbc.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 0 reset_counters Number of MD Steps = 10 Print out every 10 MD Steps Reads from unit = 93 Writes to unit = 94 MD Simulation time step = 12.00 Electronic fictitious mass (emass) = 700.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 1.00 [GPa] wmass (calculated) = 49868.25 [AU] ibrav = 8 alat = 9.28990000 a1 = 9.28990000 0.00000000 0.00000000 a2 = 0.00000000 16.09066419 0.00000000 a3 = 0.00000000 0.00000000 10.21470954 b1 = 0.10764379 0.00000000 0.00000000 b2 = 0.00000000 0.06214784 0.00000000 b3 = 0.00000000 0.00000000 0.09789804 omega = 1526.90153773 Energy Cut-offs --------------- Ecutwfc = 20.0 Ry, Ecutrho = 150.0 Ry, Ecuts = 80.0 Ry Gcutwfc = 6.6 , Gcutrho = 18.1 Gcuts = 13.2 modified kinetic energy functional, with parameters: ecutz = 150.0000 ecsig = 2.0000 ecfix = 16.00 NOTA BENE: refg, mmx = 0.050000 6000 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 30 Electron dynamics with newton equations Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 96, of States = 48 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC (1100) Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 54 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 12 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.188294 14.832370 1.228830 7.832315 6.787040 1.228830 2.074435 5.995380 4.737583 6.720314 14.042319 4.737583 3.963071 11.269898 7.878606 8.608021 3.222959 7.878606 3.963071 4.819153 9.146251 8.608021 12.864483 9.146251 3.187365 1.256681 5.580296 7.833244 9.302011 5.580296 2.075364 10.092062 2.073586 6.719385 2.046732 2.073586 Species 2 atoms = 6 mass = 51040.88 (a.u.), 28.00 (amu) rcmax = 1.00 (a.u.) 0.288916 8.045330 3.404563 4.933866 0.000000 3.404563 2.133890 12.277174 -0.041880 6.778840 4.231844 -0.041880 2.133890 3.813486 6.852027 6.778840 11.858816 6.852027 Ionic position will be re-read from restart file All atoms are allowed to move Ionic temperature control via nose thermostat ion dynamics with nose` temperature control: temperature required = 300.00000 (kelvin) NH chain length = 1 active degrees of freedom = 54 time steps per nose osc. = 516 nose` frequency(es) = 6.667 the requested type of NH chains is 0 total number of thermostats used 1 0 0 ionic degrees of freedom for each chain 54 nose` mass(es) for chain 1 = 99946.828 atom i (in sorted order) is assigned to this thermostat : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Volume dynamics with newton equations cell parameters dynamics with nose` temp. control Constant PRESSURE Molecular dynamics: External pressure (GPa) = 1.00 Volume mass = 49868.25 cell dynamics with nose` temperature control: Kinetic energy required = 300.00000 (Kelvin) time steps per nose osc. = 400 nose` frequency = 8.607 (THz) nose` mass(es) = 9993.391 Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 9.2899 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 16.0907 0.0000 0.0000 0.5773 0.0000 3 0.0000 0.0000 10.2147 0.0000 0.0000 0.9095 Stick Mesh ---------- nst = 892, nstw = 120, nsts = 476 PEs n.st n.stw n.sts n.g n.gw n.gs 1 1783 239 951 47285 2305 18431 0 1783 239 951 47285 2305 18431 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 40 64 40 40 64 40 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 40 64 40 Local number of cell to store the grid ( nnrx ) = 102400 Number of x-y planes for each processors: nr3l = 40 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 45 30 27 45 30 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 45 30 Local number of cell to store the grid ( nnrx ) = 36450 Number of x-y planes for each processors: nr3sl = 30 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 16 16 16 16 16 16 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 16 16 16 Local number of cell to store the grid ( nnrx ) = 4096 unit vectors of box grid cell in real space: in reciprocal space: 3.7160 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.0227 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 4.0859 0.0000 0.0000 0.9095 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 23643 23643 23643 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 9216 9216 9216 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 1153 1153 1153 Small box Mesh ngb = 948 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input O 0.343200E+00 0.921800E+00 0.120300E+00 O 0.843100E+00 0.421800E+00 0.120300E+00 O 0.223300E+00 0.372600E+00 0.463800E+00 O 0.723400E+00 0.872700E+00 0.463800E+00 O 0.426600E+00 0.700400E+00 0.771300E+00 O 0.926600E+00 0.200300E+00 0.771300E+00 O 0.426600E+00 0.299500E+00 0.895400E+00 O 0.926600E+00 0.799500E+00 0.895400E+00 O 0.343100E+00 0.781000E-01 0.546300E+00 O 0.843200E+00 0.578100E+00 0.546300E+00 O 0.223400E+00 0.627200E+00 0.203000E+00 O 0.723300E+00 0.127200E+00 0.203000E+00 Si 0.311000E-01 0.500000E+00 0.333300E+00 Si 0.531100E+00 0.000000E+00 0.333300E+00 Si 0.229700E+00 0.763000E+00 -0.410000E-02 Si 0.729700E+00 0.263000E+00 -0.410000E-02 Si 0.229700E+00 0.237000E+00 0.670800E+00 Si 0.729700E+00 0.737000E+00 0.670800E+00 ibrav = 8 cell parameters 9.29287 0.00001 -0.00001 0.00003 16.08993 -0.00083 -0.00001 -0.00053 10.20549 Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 948 1 865 3 qqq -0.0987 0.4865 0.0000 0.0000 0.4865 -2.1787 0.0000 0.0000 0.0000 0.0000 0.2330 0.2950 0.0000 0.0000 0.2950 0.3737 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4817 -1.2813 0.0000 0.0000 -1.2813 2.3075 0.0000 0.0000 0.0000 0.0000 0.6338 0.8752 0.0000 0.0000 0.8752 1.2039 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 0.7619 0.0000 0.0000 1.8417 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /scratch_local/acv0/tmp//cp_93.save restart file read in 0.041 sec. formf: eself= 210.64152 formf: vps(g=0)= -0.0099318 rhops(g=0)= -0.0039320 formf: sum_g vps(g)= -2.2958559 sum_g rhops(g)= -0.5407274 formf: vps(g=0)= -0.0098462 rhops(g=0)= -0.0026213 formf: sum_g vps(g)= -2.3753564 sum_g rhops(g)= -0.3604849 Delta V(G=0): 0.197644Ry, 5.378158eV formf: eself= 210.64152 formf: vps(g=0)= -0.0099318 rhops(g=0)= -0.0039320 formf: sum_g vps(g)= -2.2958559 sum_g rhops(g)= -0.5407274 formf: vps(g=0)= -0.0098462 rhops(g=0)= -0.0026213 formf: sum_g vps(g)= -2.3753564 sum_g rhops(g)= -0.3604849 Delta V(G=0): 0.197644Ry, 5.378158eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 0.00003 42.6 2.5 -211.98286 -211.93099 -211.93017 -211.93014 0.0000 -0.0006 -0.0001 -0.0041 Delta V(G=0): 0.197669Ry, 5.378846eV 2 0.00005 51.1 3.0 -211.98303 -211.93117 -211.93018 -211.93014 0.0000 -0.0007 -0.0001 -0.0049 Delta V(G=0): 0.197697Ry, 5.379598eV 3 0.00006 60.5 3.5 -211.98321 -211.93136 -211.93020 -211.93014 0.0000 -0.0008 -0.0001 -0.0058 Delta V(G=0): 0.197727Ry, 5.380418eV 4 0.00007 70.7 4.1 -211.98341 -211.93156 -211.93021 -211.93014 0.0000 -0.0009 -0.0001 -0.0067 Delta V(G=0): 0.197759Ry, 5.381307eV 5 0.00007 81.9 4.7 -211.98362 -211.93179 -211.93022 -211.93014 0.0000 -0.0009 -0.0001 -0.0077 Delta V(G=0): 0.197795Ry, 5.382267eV 6 0.00008 94.1 5.4 -211.98385 -211.93203 -211.93022 -211.93015 0.0000 -0.0010 -0.0001 -0.0088 Delta V(G=0): 0.197833Ry, 5.383300eV 7 0.00009 107.2 6.2 -211.98410 -211.93228 -211.93023 -211.93015 0.0000 -0.0010 -0.0001 -0.0100 Delta V(G=0): 0.197873Ry, 5.384406eV 8 0.00010 121.1 6.9 -211.98436 -211.93256 -211.93024 -211.93015 0.0000 -0.0010 -0.0001 -0.0113 Delta V(G=0): 0.197917Ry, 5.385585eV 9 0.00011 135.9 7.7 -211.98465 -211.93285 -211.93026 -211.93015 0.0000 -0.0010 -0.0001 -0.0126 * Physical Quantities at step: 10 Delta V(G=0): 0.197963Ry, 5.386840eV 10 0.00013 151.5 8.5 -211.98494 -211.93316 -211.93028 -211.93016 0.0000 -0.0009 -0.0001 -0.0140 writing restart file: /scratch_local/acv0/tmp//cp_94.save restart file written in 0.113 sec. Averaged Physical Quantities accomulated this run ekinc : 0.00008 0.00008 (AU) ekin : 94.60340 94.60340 (AU) epot : -343.05684 -343.05684 (AU) total energy : -211.98380 -211.98380 (AU) temperature : 5.25187 5.25187 (K ) enthalpy : -211.93198 -211.93198 (AU) econs : -211.93022 -211.93022 (AU) pressure : -2.51389 -2.51389 (Gpa) volume : 1524.83158 1524.83158 (AU) initialize : 6.94s CPU total_time : 7.03s CPU ( 10 calls, 0.703 s avg) formf : 0.51s CPU ( 11 calls, 0.047 s avg) rhoofr : 2.50s CPU ( 10 calls, 0.250 s avg) vofrho : 0.63s CPU ( 10 calls, 0.063 s avg) dforce : 1.13s CPU ( 240 calls, 0.005 s avg) calphi : 0.06s CPU ( 10 calls, 0.006 s avg) ortho : 0.30s CPU ( 10 calls, 0.030 s avg) ortho_iter : 0.03s CPU ( 10 calls, 0.003 s avg) rsg : 0.01s CPU ( 10 calls, 0.001 s avg) rhoset : 0.04s CPU ( 10 calls, 0.004 s avg) updatc : 0.03s CPU ( 10 calls, 0.003 s avg) newd : 0.77s CPU ( 10 calls, 0.077 s avg) calbec : 0.04s CPU ( 11 calls, 0.003 s avg) prefor : 0.03s CPU ( 21 calls, 0.001 s avg) strucf : 0.02s CPU ( 11 calls, 0.002 s avg) nlfl : 0.01s CPU ( 10 calls, 0.001 s avg) nlfq : 0.32s CPU ( 10 calls, 0.032 s avg) rhov : 0.17s CPU ( 10 calls, 0.017 s avg) nlsm1 : 0.20s CPU ( 31 calls, 0.006 s avg) nlsm2 : 0.32s CPU ( 10 calls, 0.032 s avg) fft : 1.38s CPU ( 130 calls, 0.011 s avg) ffts : 0.04s CPU ( 20 calls, 0.002 s avg) fftw : 0.95s CPU ( 720 calls, 0.001 s avg) fftb : 0.25s CPU ( 2940 calls, 0.000 s avg) CP : 14.09s CPU time, 14.27s wall time This run was terminated on: 9:27:57 14Jul2009 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/Restart_example/0000755000175000017500000000000012341373043016707 5ustar mbambaespresso-5.1/CPV/examples/Restart_example/README0000644000175000017500000000026612341373026017574 0ustar mbambaThis example shows how to use cp.x together with pw.x to perform an electronic minimization at Gamma for SiO2. Note that "prefix" for pw.x = "prefix"_"ndr" or "prefix_ndw" for cp.x espresso-5.1/CPV/examples/Restart_example/run_example0000755000175000017500000001535412341373026021165 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how pw.x can restart from cp.x data and viceversa." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="pw.x cp.x" PSEUDO_LIST="Si.pz-vbc.UPF O.pz-rrkjus.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO " running pw.x as: $PW_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cp* $ECHO " done" # molecular dynamics calculation cat > sio2.cp.start.in << EOF &control calculation='cp', restart_mode='from_scratch', nstep=20, iprint=20, isave=20, dt=5.0, ndr=90, ndw=91, pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', disk_io='high', / &system ibrav=8, celldm(1)=9.28990, celldm(2)=1.73206, celldm(3)=1.09955, nat=18, ntyp=2, nbnd=48, nspin=1, ecutwfc=20.0, ecutrho=150.0, nr1b=16, nr2b=16, nr3b=16, qcutz=150., q2sigma=2.0, ecfixed=16.0, / &electrons electron_dynamics='damp', electron_damping=0.2, startingwfc='random', ampre=0.01, emass=700., emass_cutoff=3., / &ions ion_dynamics='none', ion_radius(1)=1.0, ion_radius(2)=1.0, / ATOMIC_SPECIES O 16.00 O.pz-rrkjus.UPF Si 28.00 Si.pz-vbc.UPF ATOMIC_POSITIONS O 3.18829368 14.83237039 1.22882961 O 7.83231469 6.78704039 1.22882961 O 2.07443467 5.99537992 4.73758250 O 6.72031366 14.04231898 4.73758250 O 3.96307134 11.26989826 7.87860582 O 8.60802134 3.22295920 7.87860582 O 3.96307134 4.81915267 9.14625133 O 8.60802134 12.86448267 9.14625133 O 3.18736469 1.25668055 5.58029607 O 7.83324368 9.30201055 5.58029607 O 2.07536366 10.09206195 2.07358613 O 6.71938467 2.04673195 2.07358613 Si 0.28891589 8.04533000 3.40456284 Si 4.93386589 0.00000000 3.40456284 Si 2.13389003 12.27717358 -0.04188031 Si 6.77884003 4.23184358 -0.04188031 Si 2.13389003 3.81348642 6.85202747 Si 6.77884003 11.85881642 6.85202747 EOF $ECHO " Starting the cp.x calculation (with fixed ions)...\c" $CP_COMMAND -input sio2.cp.start.in > sio2.cp.start.out $ECHO " done" # # Total energy self consistent run # cat > sio2.pw.restart.in << EOF &control calculation='scf', restart_mode='restart', prefix = 'cp_91' pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', wf_collect = .true. / &system ibrav=8, celldm(1)=9.28990, celldm(2)=1.73206, celldm(3)=1.09955, nat=18, ntyp=2, nbnd=48, nspin=1, ecutwfc=20.0, ecutrho=150.0, qcutz=150., q2sigma=2.0, ecfixed=16.0, / &electrons mixing_beta = 0.3 startingpot='file', startingwfc='file' / ATOMIC_SPECIES O 16.00 O.pz-rrkjus.UPF Si 28.00 Si.pz-vbc.UPF ATOMIC_POSITIONS (bohr) O 3.18829368 14.83237039 1.22882961 O 7.83231469 6.78704039 1.22882961 O 2.07443467 5.99537992 4.73758250 O 6.72031366 14.04231898 4.73758250 O 3.96307134 11.26989826 7.87860582 O 8.60802134 3.22295920 7.87860582 O 3.96307134 4.81915267 9.14625133 O 8.60802134 12.86448267 9.14625133 O 3.18736469 1.25668055 5.58029607 O 7.83324368 9.30201055 5.58029607 O 2.07536366 10.09206195 2.07358613 O 6.71938467 2.04673195 2.07358613 Si 0.28891589 8.04533000 3.40456284 Si 4.93386589 0.00000000 3.40456284 Si 2.13389003 12.27717358 -0.04188031 Si 6.77884003 4.23184358 -0.04188031 Si 2.13389003 3.81348642 6.85202747 Si 6.77884003 11.85881642 6.85202747 K_POINTS (gamma) EOF $ECHO " continuing SCF calculation with pw.x...\c" $PW_COMMAND -input sio2.pw.restart.in > sio2.pw.restart.out $ECHO " done" # molecular dynamics calculation cat > sio2.cp.restart.in << EOF &control calculation='cp', restart_mode='reset_counters', nstep=50, iprint=50, isave=50, dt=15.0, ndr=91, ndw=92, pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav=8, celldm(1)=9.28990, celldm(2)=1.73206, celldm(3)=1.09955, nat=18, ntyp=2, nbnd=48, nspin=1, ecutwfc=20.0, ecutrho=150.0, nr1b=16, nr2b=16, nr3b=16, qcutz=150., q2sigma=2.0, ecfixed=16.0, / &electrons electron_dynamics='damp', electron_damping=0.2, emass=700., emass_cutoff=3., / &ions ion_dynamics='none', ion_radius(1)=1.0, ion_radius(2)=1.0, / ATOMIC_SPECIES O 16.00 O.pz-rrkjus.UPF Si 28.00 Si.pz-vbc.UPF ATOMIC_POSITIONS O 3.18829368 14.83237039 1.22882961 O 7.83231469 6.78704039 1.22882961 O 2.07443467 5.99537992 4.73758250 O 6.72031366 14.04231898 4.73758250 O 3.96307134 11.26989826 7.87860582 O 8.60802134 3.22295920 7.87860582 O 3.96307134 4.81915267 9.14625133 O 8.60802134 12.86448267 9.14625133 O 3.18736469 1.25668055 5.58029607 O 7.83324368 9.30201055 5.58029607 O 2.07536366 10.09206195 2.07358613 O 6.71938467 2.04673195 2.07358613 Si 0.28891589 8.04533000 3.40456284 Si 4.93386589 0.00000000 3.40456284 Si 2.13389003 12.27717358 -0.04188031 Si 6.77884003 4.23184358 -0.04188031 Si 2.13389003 3.81348642 6.85202747 Si 6.77884003 11.85881642 6.85202747 EOF $ECHO " restarting calculation with cp.x ...\c" $CP_COMMAND -input sio2.cp.restart.in > sio2.cp.restart.out $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/CPV/examples/Restart_example/reference/0000755000175000017500000000000012341373043020645 5ustar mbambaespresso-5.1/CPV/examples/Restart_example/reference/sio2.pw.restart.out0000644000175000017500000002533412341373026024372 0ustar mbamba Program PWSCF v.4.1 starts ... Today is 18Jul2009 at 10:45:18 For Norm-Conserving or Ultrasoft (Vanderbilt) Pseudopotentials or PAW Current dimensions of program pwscf are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Waiting for input... file O.pz-rrkjus.UPF: wavefunction(s) 2S renormalized Atomic positions and unit cell read from directory: /home/giannozz/tmp/cp_91.save/ gamma-point specific algorithms are used bravais-lattice index = 8 lattice parameter (a_0) = 9.2899 a.u. unit-cell volume = 1526.9015 (a.u.)^3 number of atoms/cell = 18 number of atomic types = 2 number of electrons = 96.00 number of Kohn-Sham states= 48 kinetic-energy cutoff = 20.0000 Ry charge density cutoff = 150.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.3000 number of iterations used = 8 plain mixing Exchange-correlation = SLA PZ NOGX NOGC (1100) A smooth kinetic-energy cutoff is imposed at 16.0000 Ry height of the smooth step-function = 150.0000 Ry width of the smooth step-function = 2.0000 Ry celldm(1)= 9.289900 celldm(2)= 1.732060 celldm(3)= 1.099550 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of a_0) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( 0.000000 1.732060 0.000000 ) a(3) = ( 0.000000 0.000000 1.099550 ) reciprocal axes: (cart. coord. in units 2 pi/a_0) b(1) = ( 1.000000 0.000000 0.000000 ) b(2) = ( 0.000000 0.577347 0.000000 ) b(3) = ( 0.000000 0.000000 0.909463 ) PseudoPot. # 1 for O read from file O.pz-rrkjus.UPF Pseudo is Ultrasoft, Zval = 6.0 Generated by new atomic code, or converted to UPF format Using radial grid of 1269 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 0 coefficients PseudoPot. # 2 for Si read from file Si.pz-vbc.UPF Pseudo is Norm-conserving, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 431 points, 2 beta functions with: l(1) = 0 l(2) = 1 atomic species valence mass pseudopotential O 6.00 16.00000 O ( 1.00) Si 4.00 28.00000 Si( 1.00) No symmetry! Cartesian axes site n. atom positions (a_0 units) 1 O tau( 1) = ( 0.3432000 1.5966125 0.1322759 ) 2 O tau( 2) = ( 0.8431000 0.7305827 0.1322759 ) 3 O tau( 3) = ( 0.2233000 0.6453654 0.5099713 ) 4 O tau( 4) = ( 0.7234000 1.5115684 0.5099713 ) 5 O tau( 5) = ( 0.4266000 1.2131345 0.8480830 ) 6 O tau( 6) = ( 0.9266000 0.3469315 0.8480830 ) 7 O tau( 7) = ( 0.4266000 0.5187518 0.9845371 ) 8 O tau( 8) = ( 0.9266000 1.3847816 0.9845371 ) 9 O tau( 9) = ( 0.3431000 0.1352739 0.6006842 ) 10 O tau( 10) = ( 0.8432000 1.0013036 0.6006842 ) 11 O tau( 11) = ( 0.2234000 1.0863477 0.2232087 ) 12 O tau( 12) = ( 0.7233000 0.2203180 0.2232087 ) 13 Si tau( 13) = ( 0.0311000 0.8660298 0.3664800 ) 14 Si tau( 14) = ( 0.5311000 0.0000000 0.3664800 ) 15 Si tau( 15) = ( 0.2297000 1.3215614 -0.0045082 ) 16 Si tau( 16) = ( 0.7297000 0.4555317 -0.0045082 ) 17 Si tau( 17) = ( 0.2297000 0.4104981 0.7375782 ) 18 Si tau( 18) = ( 0.7297000 1.2765279 0.7375782 ) number of k points= 1 cart. coord. in units 2pi/a_0 k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 G cutoff = 327.9092 ( 23643 G-vectors) FFT grid: ( 40, 64, 40) G cutoff = 174.8849 ( 9216 G-vectors) smooth grid: ( 27, 45, 30) Largest allocated arrays est. size (Mb) dimensions Kohn-Sham Wavefunctions 0.84 Mb ( 1153, 48) NL pseudopotentials 2.11 Mb ( 1153, 120) Each V/rho on FFT grid 1.56 Mb ( 102400) Each G-vector array 0.18 Mb ( 23643) G-vector shells 0.05 Mb ( 6537) Largest temporary arrays est. size (Mb) dimensions Auxiliary wavefunctions 1.69 Mb ( 1153, 192) Each subspace H/S matrix 0.28 Mb ( 192, 192) Each matrix 0.04 Mb ( 120, 48) Arrays for rho mixing 12.50 Mb ( 102400, 8) The initial density is read from file : /home/giannozz/tmp/cp_91.save/charge-density.dat Starting wfc from file total cpu time spent up to now is 0.77 secs per-process dynamical memory: 19.5 Mb Self-consistent Calculation iteration # 1 ecut= 20.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.00E-05, avg # of iterations = 6.0 total cpu time spent up to now is 1.47 secs total energy = -423.95900311 Ry Harris-Foulkes estimate = -424.29413056 Ry estimated scf accuracy < 0.98236651 Ry iteration # 2 ecut= 20.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 1.02E-03, avg # of iterations = 2.0 total cpu time spent up to now is 1.89 secs total energy = -423.92493471 Ry Harris-Foulkes estimate = -424.01528280 Ry estimated scf accuracy < 0.24791747 Ry iteration # 3 ecut= 20.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 2.58E-04, avg # of iterations = 2.0 total cpu time spent up to now is 2.33 secs total energy = -423.94196594 Ry Harris-Foulkes estimate = -423.95413051 Ry estimated scf accuracy < 0.03983467 Ry iteration # 4 ecut= 20.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.15E-05, avg # of iterations = 2.0 total cpu time spent up to now is 2.79 secs total energy = -423.94430689 Ry Harris-Foulkes estimate = -423.94683470 Ry estimated scf accuracy < 0.00590305 Ry iteration # 5 ecut= 20.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 6.15E-06, avg # of iterations = 2.0 total cpu time spent up to now is 3.25 secs total energy = -423.94539617 Ry Harris-Foulkes estimate = -423.94546988 Ry estimated scf accuracy < 0.00035623 Ry iteration # 6 ecut= 20.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.71E-07, avg # of iterations = 2.0 total cpu time spent up to now is 3.70 secs total energy = -423.94543631 Ry Harris-Foulkes estimate = -423.94543890 Ry estimated scf accuracy < 0.00004542 Ry iteration # 7 ecut= 20.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 4.73E-08, avg # of iterations = 1.0 total cpu time spent up to now is 4.11 secs total energy = -423.94544132 Ry Harris-Foulkes estimate = -423.94543942 Ry estimated scf accuracy < 0.00000295 Ry iteration # 8 ecut= 20.00 Ry beta=0.30 Davidson diagonalization with overlap ethr = 3.08E-09, avg # of iterations = 2.0 total cpu time spent up to now is 4.55 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 1153 PWs) bands (ev): -18.2844 -17.8141 -17.4161 -16.9520 -16.8913 -16.8632 -16.4172 -16.3979 -16.3793 -16.3643 -16.3366 -16.3294 -6.2438 -6.1862 -6.0203 -5.3554 -3.7774 -3.3166 -3.3158 -3.2831 -3.2644 -3.0682 -3.0292 -2.3647 -0.8642 -0.7241 -0.7000 -0.6302 -0.5778 -0.3165 -0.2646 0.1292 0.1791 0.5693 0.5959 0.9622 0.9939 1.0235 1.1965 1.3415 1.3705 1.4063 1.6916 1.7443 2.1154 2.1246 2.2001 2.3807 ! total energy = -423.94544394 Ry Harris-Foulkes estimate = -423.94544179 Ry estimated scf accuracy < 0.00000063 Ry The total energy is the sum of the following terms: one-electron contribution = -187.19694966 Ry hartree contribution = 139.97602944 Ry xc contribution = -97.05374318 Ry ewald contribution = -279.67078054 Ry convergence has been achieved in 8 iterations Writing output data file cp_91.save PWSCF : 4.61s CPU time, 4.79s wall time init_run : 0.73s CPU electrons : 3.78s CPU Called by init_run: wfcinit : 0.00s CPU potinit : 0.03s CPU Called by electrons: c_bands : 1.46s CPU ( 8 calls, 0.183 s avg) sum_band : 1.13s CPU ( 8 calls, 0.141 s avg) v_of_rho : 0.14s CPU ( 9 calls, 0.015 s avg) newd : 1.00s CPU ( 9 calls, 0.112 s avg) mix_rho : 0.06s CPU ( 8 calls, 0.007 s avg) Called by c_bands: init_us_2 : 0.02s CPU ( 16 calls, 0.001 s avg) regterg : 1.41s CPU ( 8 calls, 0.176 s avg) Called by *egterg: h_psi : 0.92s CPU ( 27 calls, 0.034 s avg) s_psi : 0.07s CPU ( 27 calls, 0.003 s avg) g_psi : 0.04s CPU ( 19 calls, 0.002 s avg) rdiaghg : 0.12s CPU ( 26 calls, 0.005 s avg) Called by h_psi: add_vuspsi : 0.07s CPU ( 27 calls, 0.003 s avg) General routines calbec : 0.11s CPU ( 35 calls, 0.003 s avg) cft3 : 0.15s CPU ( 67 calls, 0.002 s avg) cft3s : 0.74s CPU ( 1347 calls, 0.001 s avg) interpolate : 0.07s CPU ( 17 calls, 0.004 s avg) davcio : 0.00s CPU ( 11 calls, 0.000 s avg) espresso-5.1/CPV/examples/Restart_example/reference/sio2.cp.start.out0000644000175000017500000003661212341373026024020 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.1 - Sat Jul 11 09:12:31 CEST 2009 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 10:45:12 18Jul2009 Serial Build Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/espresso/pseudo/O.pz-rrkjus.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/espresso/pseudo/Si.pz-vbc.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 20 Print out every 20 MD Steps Reads from unit = 90 Writes to unit = 91 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 700.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 49868.25 [AU] ibrav = 8 alat = 9.28990000 a1 = 9.28990000 0.00000000 0.00000000 a2 = 0.00000000 16.09066419 0.00000000 a3 = 0.00000000 0.00000000 10.21470954 b1 = 0.10764379 0.00000000 0.00000000 b2 = 0.00000000 0.06214784 0.00000000 b3 = 0.00000000 0.00000000 0.09789804 omega = 1526.90153773 Energy Cut-offs --------------- Ecutwfc = 20.0 Ry, Ecutrho = 150.0 Ry, Ecuts = 80.0 Ry Gcutwfc = 6.6 , Gcutrho = 18.1 Gcuts = 13.2 modified kinetic energy functional, with parameters: ecutz = 150.0000 ecsig = 2.0000 ecfix = 16.00 NOTA BENE: refg, mmx = 0.050000 6000 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.010000 Electronic states ----------------- Number of Electron = 96, of States = 48 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC (1100) Wavefunctions will be written to file as Kohn-Sham states Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 12 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.188294 14.832370 1.228830 7.832315 6.787040 1.228830 2.074435 5.995380 4.737583 6.720314 14.042319 4.737583 3.963071 11.269898 7.878606 8.608021 3.222959 7.878606 3.963071 4.819153 9.146251 8.608021 12.864483 9.146251 3.187365 1.256681 5.580296 7.833244 9.302011 5.580296 2.075364 10.092062 2.073586 6.719385 2.046732 2.073586 Species 2 atoms = 6 mass = 51040.88 (a.u.), 28.00 (amu) rcmax = 1.00 (a.u.) 0.288916 8.045330 3.404563 4.933866 0.000000 3.404563 2.133890 12.277174 -0.041880 6.778840 4.231844 -0.041880 2.133890 3.813486 6.852027 6.778840 11.858816 6.852027 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 9.2899 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 16.0907 0.0000 0.0000 0.5773 0.0000 3 0.0000 0.0000 10.2147 0.0000 0.0000 0.9095 Stick Mesh ---------- nst = 892, nstw = 120, nsts = 476 PEs n.st n.stw n.sts n.g n.gw n.gs 1 1783 239 951 47285 2305 18431 0 1783 239 951 47285 2305 18431 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 40 64 40 40 64 40 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 40 64 40 Local number of cell to store the grid ( nnrx ) = 102400 Number of x-y planes for each processors: nr3l = 40 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 45 30 27 45 30 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 45 30 Local number of cell to store the grid ( nnrx ) = 36450 Number of x-y planes for each processors: nr3sl = 30 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 16 16 16 16 16 16 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 16 16 16 Local number of cell to store the grid ( nnrx ) = 4096 unit vectors of box grid cell in real space: in reciprocal space: 3.7160 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.0227 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 4.0859 0.0000 0.0000 0.9095 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 23643 23643 23643 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 9216 9216 9216 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 1153 1153 1153 Small box Mesh ngb = 948 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input O 0.343200E+00 0.921800E+00 0.120300E+00 O 0.843100E+00 0.421800E+00 0.120300E+00 O 0.223300E+00 0.372600E+00 0.463800E+00 O 0.723400E+00 0.872700E+00 0.463800E+00 O 0.426600E+00 0.700400E+00 0.771300E+00 O 0.926600E+00 0.200300E+00 0.771300E+00 O 0.426600E+00 0.299500E+00 0.895400E+00 O 0.926600E+00 0.799500E+00 0.895400E+00 O 0.343100E+00 0.781000E-01 0.546300E+00 O 0.843200E+00 0.578100E+00 0.546300E+00 O 0.223400E+00 0.627200E+00 0.203000E+00 O 0.723300E+00 0.127200E+00 0.203000E+00 Si 0.311000E-01 0.500000E+00 0.333300E+00 Si 0.531100E+00 0.000000E+00 0.333300E+00 Si 0.229700E+00 0.763000E+00 -0.410000E-02 Si 0.729700E+00 0.263000E+00 -0.410000E-02 Si 0.229700E+00 0.237000E+00 0.670800E+00 Si 0.729700E+00 0.737000E+00 0.670800E+00 Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 948 1 865 3 qqq -0.0987 0.4865 0.0000 0.0000 0.4865 -2.1787 0.0000 0.0000 0.0000 0.0000 0.2330 0.2950 0.0000 0.0000 0.2950 0.3737 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4817 -1.2813 0.0000 0.0000 -1.2813 2.3075 0.0000 0.0000 0.0000 0.0000 0.6338 0.8752 0.0000 0.0000 0.8752 1.2039 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 0.7619 0.0000 0.0000 1.8417 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 48 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 formf: eself= 210.64152 formf: vps(g=0)= -0.0099256 rhops(g=0)= -0.0039295 formf: sum_g vps(g)= -2.2959144 sum_g rhops(g)= -0.5407261 formf: vps(g=0)= -0.0098400 rhops(g=0)= -0.0026197 formf: sum_g vps(g)= -2.3753533 sum_g rhops(g)= -0.3604841 Delta V(G=0): 0.197519Ry, 5.374775eV from rhoofr: total integrated electronic density in g-space = 96.000000 in r-space = 96.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 9.20241 0.0 0.0 52.34042 52.34042 52.34042 61.54283 0.0000 0.0000 0.0000 0.0000 2 22.75326 0.0 0.0 25.50653 25.50653 25.50653 48.25979 0.0000 0.0000 0.0000 0.0000 3 35.31181 0.0 0.0 -11.06632 -11.06632 -11.06632 24.24549 0.0000 0.0000 0.0000 0.0000 4 43.01840 0.0 0.0 -50.98442 -50.98442 -50.98442 -7.96603 0.0000 0.0000 0.0000 0.0000 5 44.50308 0.0 0.0 -88.12787 -88.12787 -88.12787 -43.62479 0.0000 0.0000 0.0000 0.0000 6 40.66592 0.0 0.0 -118.60809 -118.60809 -118.60809 -77.94218 0.0000 0.0000 0.0000 0.0000 7 33.79280 0.0 0.0 -141.43418 -141.43418 -141.43418 -107.64138 0.0000 0.0000 0.0000 0.0000 8 26.21849 0.0 0.0 -157.61240 -157.61240 -157.61240 -131.39390 0.0000 0.0000 0.0000 0.0000 9 19.48387 0.0 0.0 -168.87793 -168.87793 -168.87793 -149.39406 0.0000 0.0000 0.0000 0.0000 10 14.22277 0.0 0.0 -176.86430 -176.86430 -176.86430 -162.64153 0.0000 0.0000 0.0000 0.0000 11 10.43957 0.0 0.0 -182.77868 -182.77868 -182.77868 -172.33910 0.0000 0.0000 0.0000 0.0000 12 7.84016 0.0 0.0 -187.38467 -187.38467 -187.38467 -179.54451 0.0000 0.0000 0.0000 0.0000 13 6.06750 0.0 0.0 -191.11182 -191.11182 -191.11182 -185.04432 0.0000 0.0000 0.0000 0.0000 14 4.82240 0.0 0.0 -194.18525 -194.18525 -194.18525 -189.36285 0.0000 0.0000 0.0000 0.0000 15 3.90000 0.0 0.0 -196.72758 -196.72758 -196.72758 -192.82759 0.0000 0.0000 0.0000 0.0000 16 3.17982 0.0 0.0 -198.82110 -198.82110 -198.82110 -195.64128 0.0000 0.0000 0.0000 0.0000 17 2.59910 0.0 0.0 -200.53653 -200.53653 -200.53653 -197.93743 0.0000 0.0000 0.0000 0.0000 18 2.12669 0.0 0.0 -201.94095 -201.94095 -201.94095 -199.81427 0.0000 0.0000 0.0000 0.0000 19 1.74492 0.0 0.0 -203.09635 -203.09635 -203.09635 -201.35143 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 20 20 1.44006 0.0 0.0 -204.05611 -204.05611 -204.05611 -202.61606 0.0000 0.0000 0.0000 0.0000 writing restart file: /home/giannozz/tmp//cp_91.save restart file written in 0.084 sec. Averaged Physical Quantities accomulated this run ekinc : 16.66665 16.66665 (AU) ekin : 136.79453 136.79453 (AU) epot : -309.64406 -309.64406 (AU) total energy : -139.81838 -139.81838 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -139.81838 -139.81838 (AU) econs : -139.81838 -139.81838 (AU) pressure : 0.00000 0.00000 (Gpa) volume : 1526.90154 1526.90154 (AU) initialize : 2.85s CPU total_time : 2.51s CPU ( 20 calls, 0.125 s avg) formf : 0.10s CPU rhoofr : 0.56s CPU ( 21 calls, 0.027 s avg) vofrho : 0.40s CPU ( 21 calls, 0.019 s avg) dforce : 0.86s CPU ( 504 calls, 0.002 s avg) calphi : 0.06s CPU ( 21 calls, 0.003 s avg) ortho : 0.25s CPU ( 21 calls, 0.012 s avg) ortho_iter : 0.03s CPU ( 21 calls, 0.001 s avg) rsg : 0.01s CPU ( 21 calls, 0.000 s avg) rhoset : 0.02s CPU ( 21 calls, 0.001 s avg) updatc : 0.02s CPU ( 21 calls, 0.001 s avg) gram : 0.02s CPU newd : 0.41s CPU ( 21 calls, 0.020 s avg) calbec : 0.03s CPU ( 22 calls, 0.001 s avg) prefor : 0.01s CPU ( 21 calls, 0.001 s avg) strucf : 0.00s CPU rhov : 0.10s CPU ( 21 calls, 0.005 s avg) nlsm1 : 0.16s CPU ( 64 calls, 0.003 s avg) fft : 0.19s CPU ( 84 calls, 0.002 s avg) ffts : 0.04s CPU ( 42 calls, 0.001 s avg) fftw : 0.89s CPU ( 1512 calls, 0.001 s avg) fftb : 0.19s CPU ( 4662 calls, 0.000 s avg) CP : 5.45s CPU time, 5.65s wall time This run was terminated on: 10:45:18 18Jul2009 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/Restart_example/reference/sio2.cp.restart.out0000644000175000017500000003375612341373026024355 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.1 - Sat Jul 11 09:12:31 CEST 2009 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 10:45:23 18Jul2009 Serial Build Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/espresso/pseudo/O.pz-rrkjus.UPF file type is 20: UPF Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/espresso/pseudo/Si.pz-vbc.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 0 reset_counters Number of MD Steps = 50 Print out every 50 MD Steps Reads from unit = 91 Writes to unit = 92 MD Simulation time step = 15.00 Electronic fictitious mass (emass) = 700.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 49868.25 [AU] ibrav = 8 alat = 9.28990000 a1 = 9.28990000 0.00000000 0.00000000 a2 = 0.00000000 16.09066419 0.00000000 a3 = 0.00000000 0.00000000 10.21470954 b1 = 0.10764379 0.00000000 0.00000000 b2 = 0.00000000 0.06214784 0.00000000 b3 = 0.00000000 0.00000000 0.09789804 omega = 1526.90153773 Energy Cut-offs --------------- Ecutwfc = 20.0 Ry, Ecutrho = 150.0 Ry, Ecuts = 80.0 Ry Gcutwfc = 6.6 , Gcutrho = 18.1 Gcuts = 13.2 modified kinetic energy functional, with parameters: ecutz = 150.0000 ecsig = 2.0000 ecfix = 16.00 NOTA BENE: refg, mmx = 0.050000 6000 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-07, max = 20 verlet algorithm for electron dynamics with friction frice = 0.2000 , grease = 1.0000 Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 96, of States = 48 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND ZUNGER Exchange-correlation = SLA PZ NOGX NOGC (1100) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 12 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 1.00 (a.u.) 3.188294 14.832370 1.228830 7.832315 6.787040 1.228830 2.074435 5.995380 4.737583 6.720314 14.042319 4.737583 3.963071 11.269898 7.878606 8.608021 3.222959 7.878606 3.963071 4.819153 9.146251 8.608021 12.864483 9.146251 3.187365 1.256681 5.580296 7.833244 9.302011 5.580296 2.075364 10.092062 2.073586 6.719385 2.046732 2.073586 Species 2 atoms = 6 mass = 51040.88 (a.u.), 28.00 (amu) rcmax = 1.00 (a.u.) 0.288916 8.045330 3.404563 4.933866 0.000000 3.404563 2.133890 12.277174 -0.041880 6.778840 4.231844 -0.041880 2.133890 3.813486 6.852027 6.778840 11.858816 6.852027 Ionic position will be re-read from restart file Cell Dynamics Parameters (from STDIN) ------------------------------------- Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 9.2899 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 16.0907 0.0000 0.0000 0.5773 0.0000 3 0.0000 0.0000 10.2147 0.0000 0.0000 0.9095 Stick Mesh ---------- nst = 892, nstw = 120, nsts = 476 PEs n.st n.stw n.sts n.g n.gw n.gs 1 1783 239 951 47285 2305 18431 0 1783 239 951 47285 2305 18431 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 40 64 40 40 64 40 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 40 64 40 Local number of cell to store the grid ( nnrx ) = 102400 Number of x-y planes for each processors: nr3l = 40 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 27 45 30 27 45 30 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 27 45 30 Local number of cell to store the grid ( nnrx ) = 36450 Number of x-y planes for each processors: nr3sl = 30 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 16 16 16 16 16 16 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 16 16 16 Local number of cell to store the grid ( nnrx ) = 4096 unit vectors of box grid cell in real space: in reciprocal space: 3.7160 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.0227 0.0000 0.0000 0.9238 0.0000 0.0000 0.0000 4.0859 0.0000 0.0000 0.9095 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 23643 23643 23643 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 9216 9216 9216 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 1153 1153 1153 Small box Mesh ngb = 948 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input O 0.343200E+00 0.921800E+00 0.120300E+00 O 0.843100E+00 0.421800E+00 0.120300E+00 O 0.223300E+00 0.372600E+00 0.463800E+00 O 0.723400E+00 0.872700E+00 0.463800E+00 O 0.426600E+00 0.700400E+00 0.771300E+00 O 0.926600E+00 0.200300E+00 0.771300E+00 O 0.426600E+00 0.299500E+00 0.895400E+00 O 0.926600E+00 0.799500E+00 0.895400E+00 O 0.343100E+00 0.781000E-01 0.546300E+00 O 0.843200E+00 0.578100E+00 0.546300E+00 O 0.223400E+00 0.627200E+00 0.203000E+00 O 0.723300E+00 0.127200E+00 0.203000E+00 Si 0.311000E-01 0.500000E+00 0.333300E+00 Si 0.531100E+00 0.000000E+00 0.333300E+00 Si 0.229700E+00 0.763000E+00 -0.410000E-02 Si 0.729700E+00 0.263000E+00 -0.410000E-02 Si 0.229700E+00 0.237000E+00 0.670800E+00 Si 0.729700E+00 0.737000E+00 0.670800E+00 ibrav = 8 cell parameters 9.28990 0.00000 0.00000 0.00000 16.09066 0.00000 0.00000 0.00000 10.21471 Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 948 1 865 3 qqq -0.0987 0.4865 0.0000 0.0000 0.4865 -2.1787 0.0000 0.0000 0.0000 0.0000 0.2330 0.2950 0.0000 0.0000 0.2950 0.3737 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 0.4817 -1.2813 0.0000 0.0000 -1.2813 2.3075 0.0000 0.0000 0.0000 0.0000 0.6338 0.8752 0.0000 0.0000 0.8752 1.2039 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 1 3 indv= 2 ang. mom= 1 4 indv= 2 ang. mom= 1 dion 0.7619 0.0000 0.0000 1.8417 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /home/giannozz/tmp//cp_91.save WARNING lambda0 not read from restart file WARNING lambdam not read from restart file restart file read in 0.056 sec. formf: eself= 210.64152 formf: vps(g=0)= -0.0099256 rhops(g=0)= -0.0039295 formf: sum_g vps(g)= -2.2959144 sum_g rhops(g)= -0.5407261 formf: vps(g=0)= -0.0098400 rhops(g=0)= -0.0026197 formf: sum_g vps(g)= -2.3753533 sum_g rhops(g)= -0.3604841 Delta V(G=0): 0.197519Ry, 5.374775eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 0.00000 0.0 0.0 -211.98185 -211.98185 -211.98185 -211.98185 0.0000 0.0000 0.0000 0.0000 2 0.00000 0.0 0.0 -211.98210 -211.98210 -211.98210 -211.98209 0.0000 0.0000 0.0000 0.0000 3 0.00000 0.0 0.0 -211.98210 -211.98210 -211.98210 -211.98209 0.0000 0.0000 0.0000 0.0000 4 0.00000 0.0 0.0 -211.98210 -211.98210 -211.98210 -211.98210 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.566001D-06 0.1D-05 0.196281D-07 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation * Physical Quantities at step: 5 5 0.00000 0.0 0.0 -211.98210 -211.98210 -211.98210 -211.98210 0.0000 0.0000 0.0000 0.0000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.581217D-06 0.1D-05 0.798482D-06 0.1D-03 0.000000D+00 0.1D+11 MAIN: convergence achieved for system relaxation writing restart file: /home/giannozz/tmp//cp_92.save restart file written in 0.075 sec. Averaged Physical Quantities accomulated this run ekinc : 0.00000 0.00000 (AU) ekin : 94.60086 94.60086 (AU) epot : -343.04822 -343.04822 (AU) total energy : -211.98205 -211.98205 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -211.98205 -211.98205 (AU) econs : -211.98205 -211.98205 (AU) pressure : 0.00000 0.00000 (Gpa) volume : 1526.90154 1526.90154 (AU) initialize : 2.75s CPU total_time : 0.65s CPU ( 5 calls, 0.130 s avg) formf : 0.10s CPU rhoofr : 0.13s CPU ( 5 calls, 0.027 s avg) vofrho : 0.10s CPU ( 5 calls, 0.019 s avg) dforce : 0.21s CPU ( 120 calls, 0.002 s avg) calphi : 0.01s CPU ( 5 calls, 0.003 s avg) ortho : 0.06s CPU ( 5 calls, 0.013 s avg) ortho_iter : 0.01s CPU ( 5 calls, 0.002 s avg) rsg : 0.00s CPU ( 5 calls, 0.001 s avg) rhoset : 0.01s CPU ( 5 calls, 0.001 s avg) updatc : 0.01s CPU ( 5 calls, 0.001 s avg) newd : 0.10s CPU ( 5 calls, 0.021 s avg) calbec : 0.01s CPU ( 6 calls, 0.002 s avg) prefor : 0.00s CPU ( 6 calls, 0.001 s avg) strucf : 0.00s CPU rhov : 0.02s CPU ( 5 calls, 0.004 s avg) nlsm1 : 0.04s CPU ( 16 calls, 0.003 s avg) fft : 0.05s CPU ( 20 calls, 0.002 s avg) ffts : 0.01s CPU ( 10 calls, 0.001 s avg) fftw : 0.21s CPU ( 360 calls, 0.001 s avg) fftb : 0.04s CPU ( 1110 calls, 0.000 s avg) CP : 3.48s CPU time, 3.57s wall time This run was terminated on: 10:45:26 18Jul2009 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example04/0000755000175000017500000000000012341373043015347 5ustar mbambaespresso-5.1/CPV/examples/example04/README0000644000175000017500000000051312341373026016227 0ustar mbambaThis example shows how to use cp.x to perform molecular dynamics simulation of medium to large systems. This example consists in calculations with 32, 64, 128, 256 water molecules and takes a long time to execute. To run a calculation with up to N molecules, use: ./run_example N Note that "./run_example" alone does nothing. espresso-5.1/CPV/examples/example04/run_example0000755000175000017500000044064712341373026017634 0ustar mbamba#!/bin/sh ############################################################################### ## ## HIGH VERBOSITY EXAMPLE ## ############################################################################### # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x to perform molecular dynamics" $ECHO "simulation of medium to large systems." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="O.blyp-mt.UPF H.blyp-vbc.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables FPMD_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $FPMD_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cp* $ECHO " done" # molecular dynamics calculation cat > h2o-32.in << EOF &control title = ' Water 32 molecules ', calculation = 'cp', restart_mode = 'from_scratch', ! 'restart', ndr = 50, ndw = -1, nstep = 10, iprint = 10, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-8, prefix = 'h2o', pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav = 14, celldm(1) = 18.65, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 96, ntyp = 2, nbnd = 128, ecutwfc = 70.0, ecfixed = 68.0, qcutz = 68.0, q2sigma = 8.0, input_dft = 'BLYP', / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', ortho_eps = 5.d-8, ortho_max = 25, electron_dynamics = 'sd', electron_velocities = 'zero', electron_temperature = 'not_controlled', / &ions ion_dynamics = 'none', ion_radius(1) = 0.8d0, ion_radius(2) = 0.5d0, ! ion_velocities = 'zero', ion_temperature = 'not_controlled' / &cell cell_dynamics = 'none', cell_velocities = 'zero', press = 0.0d0, wmass = 70000.0d0 / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.0079d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (crystal) O 0.3342 0.3858 0.1702 O 0.6681 0.0772 0.0996 O 0.4894 0.2752 0.9664 O 0.8374 0.0165 0.8885 O 0.4164 0.1406 0.5374 O 0.9200 0.2746 0.7479 O 0.9298 0.6759 0.0546 O 0.5197 0.5773 0.2470 O 0.8453 0.2308 0.2531 O 0.7080 0.4512 0.1102 O 0.6297 0.6739 0.4697 O 0.6889 0.4428 0.8100 O 0.9273 0.8859 0.2748 O 0.7260 0.9572 0.4514 O 0.9539 0.6297 0.6304 O 0.0634 0.4197 0.2665 O 0.0088 0.1409 0.5073 O 0.8042 0.4375 0.4942 O 0.6981 0.1893 0.5833 O 0.2908 0.5198 0.5234 O 0.1835 0.3971 0.7808 O 0.2450 0.2024 0.3474 O 0.3062 0.1574 0.7995 O 0.4465 0.8389 0.2161 O 0.1931 0.5738 0.0049 O 0.1879 0.9665 0.1899 O 0.0876 0.6667 0.4085 O 0.2637 0.7476 0.7879 O 0.5203 0.6329 0.7214 O 0.3714 0.8763 0.4899 O 0.7915 0.8290 0.7054 O 0.1436 0.9899 0.9297 H 0.3742 0.3360 0.0929 H 0.3150 0.3226 0.2472 H 0.9405 0.1804 0.4516 H 0.6062 0.0086 0.1372 H 0.7231 0.0354 0.0264 H 0.5460 0.2002 0.9884 H 0.5502 0.3269 0.9029 H 0.8537 0.1049 0.8480 H 0.4251 0.0432 0.5210 H 0.3722 0.1543 0.6275 H 0.7041 0.0486 0.4909 H 0.9378 0.2191 0.6620 H 0.9083 0.7339 0.1314 H 0.5940 0.5403 0.1919 H 0.4413 0.5140 0.2303 H 0.7975 0.1623 0.1939 H 0.9351 0.2490 0.2169 H 0.7495 0.3794 0.1764 H 0.7769 0.5261 0.0949 H 0.7242 0.6488 0.4514 H 0.5812 0.6156 0.4033 H 0.7610 0.3991 0.7586 H 0.7253 0.4549 0.9012 H 0.9805 0.8118 0.3158 H 0.8774 0.9234 0.3508 H 0.8266 0.9432 0.8185 H 0.6439 0.9054 0.4658 H 0.9099 0.7082 0.6739 H 0.1146 0.3475 0.3129 H 0.1177 0.4592 0.1936 H 0.0984 0.1864 0.4941 H 0.8732 0.4903 0.5432 H 0.8466 0.4047 0.4105 H 0.5983 0.1849 0.5758 H 0.7255 0.2866 0.5619 H 0.2468 0.6010 0.4948 H 0.3655 0.5512 0.5766 H 0.2218 0.4478 0.6984 H 0.2272 0.3027 0.7736 H 0.0089 0.3172 0.7749 H 0.3206 0.1756 0.4126 H 0.2308 0.1250 0.2800 H 0.2420 0.1027 0.8550 H 0.3752 0.1963 0.8703 H 0.3477 0.8559 0.1901 H 0.4738 0.7418 0.2103 H 0.0297 0.6626 0.0605 H 0.2668 0.5360 0.0599 H 0.1691 0.9883 0.0958 H 0.0952 0.9378 0.2237 H 0.0161 0.6488 0.4768 H 0.0940 0.5739 0.3729 H 0.2728 0.6995 0.8762 H 0.3551 0.7479 0.7517 H 0.5812 0.5576 0.7579 H 0.5605 0.6617 0.6349 H 0.1741 0.5139 0.9284 H 0.3026 0.8058 0.5084 H 0.4067 0.8573 0.3940 H 0.7040 0.7965 0.7365 H 0.7716 0.8608 0.6097 H 0.0148 0.6043 0.7064 H 0.1834 0.9112 0.8662 H 0.0492 0.9894 0.9207 KSOUT 2 1 4 EOF $ECHO " running the calculation with 32 H2O molecules...\c" if test "0$1" -ge 32 ; then $FPMD_COMMAND < h2o-32.in > h2o-32.out check_failure $? $ECHO " done" else $ECHO " skipped" # too big, don't run fi # molecular dynamics calculation cat > h2o-64.in << EOF &control title = ' Water 64 molecules ', calculation = 'cp', restart_mode = 'from_scratch', ! 'restart', ndr = 50, ndw = -1, nstep = 10, iprint = 10, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-8, prefix = 'h2o', pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav = 14, celldm(1) = 18.65, celldm(2) = 1.0, celldm(3) = 2.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 192, ntyp = 2, nbnd = 256, ecutwfc = 70.0, ecfixed = 68.0, qcutz = 68.0, q2sigma = 8.0, input_dft = 'BLYP', / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', ortho_eps = 5.d-8, ortho_max = 25, electron_dynamics = 'sd', electron_velocities = 'zero', electron_temperature = 'not_controlled', / &ions ion_dynamics = 'none', ion_radius(1) = 0.8d0, ion_radius(2) = 0.5d0, ! ion_velocities = 'zero', ion_temperature = 'not_controlled' / &cell cell_dynamics = 'none', cell_velocities = 'zero', press = 0.0d0, wmass = 70000.0d0 / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.0079d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (crystal) O 0.3342 0.3858 0.0851 O 0.6681 0.0772 0.0498 O 0.4894 0.2752 0.4832 O 0.8374 0.0165 0.4442 O 0.4164 0.1406 0.2687 O 0.9200 0.2746 0.3740 O 0.9298 0.6759 0.0273 O 0.5197 0.5773 0.1235 O 0.8453 0.2308 0.1265 O 0.7080 0.4512 0.0551 O 0.6297 0.6739 0.2349 O 0.6889 0.4428 0.4050 O 0.9273 0.8859 0.1374 O 0.7260 0.9572 0.2257 O 0.9539 0.6297 0.3152 O 0.0634 0.4197 0.1333 O 0.0088 0.1409 0.2536 O 0.8042 0.4375 0.2471 O 0.6981 0.1893 0.2917 O 0.2908 0.5198 0.2617 O 0.1835 0.3971 0.3904 O 0.2450 0.2024 0.1737 O 0.3062 0.1574 0.3997 O 0.4465 0.8389 0.1080 O 0.1931 0.5738 0.0024 O 0.1879 0.9665 0.0950 O 0.0876 0.6667 0.2042 O 0.2637 0.7476 0.3940 O 0.5203 0.6329 0.3607 O 0.3714 0.8763 0.2450 O 0.7915 0.8290 0.3527 O 0.1436 0.9899 0.4648 O 0.3342 0.3858 0.5851 O 0.6681 0.0772 0.5498 O 0.4894 0.2752 0.9832 O 0.8374 0.0165 0.9442 O 0.4164 0.1406 0.7687 O 0.9200 0.2746 0.8740 O 0.9298 0.6759 0.5273 O 0.5197 0.5773 0.6235 O 0.8453 0.2308 0.6265 O 0.7080 0.4512 0.5551 O 0.6297 0.6739 0.7349 O 0.6889 0.4428 0.9050 O 0.9273 0.8859 0.6374 O 0.7260 0.9572 0.7257 O 0.9539 0.6297 0.8152 O 0.0634 0.4197 0.6333 O 0.0088 0.1409 0.7536 O 0.8042 0.4375 0.7471 O 0.6981 0.1893 0.7917 O 0.2908 0.5198 0.7617 O 0.1835 0.3971 0.8904 O 0.2450 0.2024 0.6737 O 0.3062 0.1574 0.8997 O 0.4465 0.8389 0.6080 O 0.1931 0.5738 0.5024 O 0.1879 0.9665 0.5950 O 0.0876 0.6667 0.7042 O 0.2637 0.7476 0.8940 O 0.5203 0.6329 0.8607 O 0.3714 0.8763 0.7450 O 0.7915 0.8290 0.8527 O 0.1436 0.9899 0.9648 H 0.3742 0.3360 0.0464 H 0.3150 0.3226 0.1236 H 0.9405 0.1804 0.2258 H 0.6062 0.0086 0.0686 H 0.7231 0.0354 0.0132 H 0.5460 0.2002 0.4942 H 0.5502 0.3269 0.4515 H 0.8537 0.1049 0.4240 H 0.4251 0.0432 0.2605 H 0.3722 0.1543 0.3137 H 0.7041 0.0486 0.2455 H 0.9378 0.2191 0.3310 H 0.9083 0.7339 0.0657 H 0.5940 0.5403 0.0959 H 0.4413 0.5140 0.1152 H 0.7975 0.1623 0.0969 H 0.9351 0.2490 0.1085 H 0.7495 0.3794 0.0882 H 0.7769 0.5261 0.0474 H 0.7242 0.6488 0.2257 H 0.5812 0.6156 0.2016 H 0.7610 0.3991 0.3793 H 0.7253 0.4549 0.4506 H 0.9805 0.8118 0.1579 H 0.8774 0.9234 0.1754 H 0.8266 0.9432 0.4093 H 0.6439 0.9054 0.2329 H 0.9099 0.7082 0.3370 H 0.1146 0.3475 0.1565 H 0.1177 0.4592 0.0968 H 0.0984 0.1864 0.2470 H 0.8732 0.4903 0.2716 H 0.8466 0.4047 0.2052 H 0.5983 0.1849 0.2879 H 0.7255 0.2866 0.2809 H 0.2468 0.6010 0.2474 H 0.3655 0.5512 0.2883 H 0.2218 0.4478 0.3492 H 0.2272 0.3027 0.3868 H 0.0089 0.3172 0.3875 H 0.3206 0.1756 0.2063 H 0.2308 0.1250 0.1400 H 0.2420 0.1027 0.4275 H 0.3752 0.1963 0.4351 H 0.3477 0.8559 0.0950 H 0.4738 0.7418 0.1051 H 0.0297 0.6626 0.0302 H 0.2668 0.5360 0.0300 H 0.1691 0.9883 0.0479 H 0.0952 0.9378 0.1119 H 0.0161 0.6488 0.2384 H 0.0940 0.5739 0.1865 H 0.2728 0.6995 0.4381 H 0.3551 0.7479 0.3759 H 0.5812 0.5576 0.3790 H 0.5605 0.6617 0.3175 H 0.1741 0.5139 0.4642 H 0.3026 0.8058 0.2542 H 0.4067 0.8573 0.1970 H 0.7040 0.7965 0.3683 H 0.7716 0.8608 0.3049 H 0.0148 0.6043 0.3532 H 0.1834 0.9112 0.4331 H 0.0492 0.9894 0.4603 H 0.3742 0.3360 0.5464 H 0.3150 0.3226 0.6236 H 0.9405 0.1804 0.7258 H 0.6062 0.0086 0.5686 H 0.7231 0.0354 0.5132 H 0.5460 0.2002 0.9942 H 0.5502 0.3269 0.9515 H 0.8537 0.1049 0.9240 H 0.4251 0.0432 0.7605 H 0.3722 0.1543 0.8137 H 0.7041 0.0486 0.7455 H 0.9378 0.2191 0.8310 H 0.9083 0.7339 0.5657 H 0.5940 0.5403 0.5959 H 0.4413 0.5140 0.6152 H 0.7975 0.1623 0.5969 H 0.9351 0.2490 0.6085 H 0.7495 0.3794 0.5882 H 0.7769 0.5261 0.5474 H 0.7242 0.6488 0.7257 H 0.5812 0.6156 0.7016 H 0.7610 0.3991 0.8793 H 0.7253 0.4549 0.9506 H 0.9805 0.8118 0.6579 H 0.8774 0.9234 0.6754 H 0.8266 0.9432 0.9093 H 0.6439 0.9054 0.7329 H 0.9099 0.7082 0.8370 H 0.1146 0.3475 0.6565 H 0.1177 0.4592 0.5968 H 0.0984 0.1864 0.7470 H 0.8732 0.4903 0.7716 H 0.8466 0.4047 0.7052 H 0.5983 0.1849 0.7879 H 0.7255 0.2866 0.7809 H 0.2468 0.6010 0.7474 H 0.3655 0.5512 0.7883 H 0.2218 0.4478 0.8492 H 0.2272 0.3027 0.8868 H 0.0089 0.3172 0.8875 H 0.3206 0.1756 0.7063 H 0.2308 0.1250 0.6400 H 0.2420 0.1027 0.9275 H 0.3752 0.1963 0.9351 H 0.3477 0.8559 0.5950 H 0.4738 0.7418 0.6051 H 0.0297 0.6626 0.5302 H 0.2668 0.5360 0.5300 H 0.1691 0.9883 0.5479 H 0.0952 0.9378 0.6119 H 0.0161 0.6488 0.7384 H 0.0940 0.5739 0.6865 H 0.2728 0.6995 0.9381 H 0.3551 0.7479 0.8759 H 0.5812 0.5576 0.8790 H 0.5605 0.6617 0.8175 H 0.1741 0.5139 0.9642 H 0.3026 0.8058 0.7542 H 0.4067 0.8573 0.6970 H 0.7040 0.7965 0.8683 H 0.7716 0.8608 0.8049 H 0.0148 0.6043 0.8532 H 0.1834 0.9112 0.9331 H 0.0492 0.9894 0.9603 EOF $ECHO " running the calculation with 64 H2O molecules...\c" if test "0$1" -ge 64 ; then $FPMD_COMMAND < h2o-64.in > h2o-64.out check_failure $? $ECHO " done" else $ECHO " skipped" # too big, don't run fi # molecular dynamics calculation cat > h2o-128.in << EOF &control title = ' Water 128 molecules ', calculation = 'cp', restart_mode = 'from_scratch', ! 'restart', ndr = 50, ndw = -1, nstep = 10, iprint = 10, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-8, prefix = 'h2o', pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav = 14, celldm(1) = 18.65, celldm(2) = 2.0, celldm(3) = 2.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 384, ntyp = 2, nbnd = 512, ecutwfc = 70.0, ecfixed = 68.0, qcutz = 68.0, q2sigma = 8.0, input_dft = 'BLYP', / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', ortho_eps = 5.d-8, ortho_max = 25, electron_dynamics = 'sd', electron_velocities = 'zero', electron_temperature = 'not_controlled', / &ions ion_dynamics = 'none', ion_radius(1) = 0.8d0, ion_radius(2) = 0.5d0, ! ion_velocities = 'zero', ion_temperature = 'not_controlled' / &cell cell_dynamics = 'none', cell_velocities = 'zero', press = 0.0d0, wmass = 70000.0d0 / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.0079d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (crystal) O 0.3342 0.1929 0.0851 O 0.6681 0.0386 0.0498 O 0.4894 0.1376 0.4832 O 0.8374 0.0083 0.4442 O 0.4164 0.0703 0.2687 O 0.9200 0.1373 0.3740 O 0.9298 0.3379 0.0273 O 0.5197 0.2887 0.1235 O 0.8453 0.1154 0.1265 O 0.7080 0.2256 0.0551 O 0.6297 0.3370 0.2349 O 0.6889 0.2214 0.4050 O 0.9273 0.4430 0.1374 O 0.7260 0.4786 0.2257 O 0.9539 0.3149 0.3152 O 0.0634 0.2099 0.1333 O 0.0088 0.0704 0.2536 O 0.8042 0.2188 0.2471 O 0.6981 0.0946 0.2917 O 0.2908 0.2599 0.2617 O 0.1835 0.1986 0.3904 O 0.2450 0.1012 0.1737 O 0.3062 0.0787 0.3997 O 0.4465 0.4194 0.1080 O 0.1931 0.2869 0.0024 O 0.1879 0.4833 0.0950 O 0.0876 0.3333 0.2042 O 0.2637 0.3738 0.3940 O 0.5203 0.3165 0.3607 O 0.3714 0.4381 0.2450 O 0.7915 0.4145 0.3527 O 0.1436 0.4950 0.4648 O 0.3342 0.1929 0.5851 O 0.6681 0.0386 0.5498 O 0.4894 0.1376 0.9832 O 0.8374 0.0083 0.9442 O 0.4164 0.0703 0.7687 O 0.9200 0.1373 0.8740 O 0.9298 0.3379 0.5273 O 0.5197 0.2887 0.6235 O 0.8453 0.1154 0.6265 O 0.7080 0.2256 0.5551 O 0.6297 0.3370 0.7349 O 0.6889 0.2214 0.9050 O 0.9273 0.4430 0.6374 O 0.7260 0.4786 0.7257 O 0.9539 0.3149 0.8152 O 0.0634 0.2099 0.6333 O 0.0088 0.0704 0.7536 O 0.8042 0.2188 0.7471 O 0.6981 0.0946 0.7917 O 0.2908 0.2599 0.7617 O 0.1835 0.1986 0.8904 O 0.2450 0.1012 0.6737 O 0.3062 0.0787 0.8997 O 0.4465 0.4194 0.6080 O 0.1931 0.2869 0.5024 O 0.1879 0.4833 0.5950 O 0.0876 0.3333 0.7042 O 0.2637 0.3738 0.8940 O 0.5203 0.3165 0.8607 O 0.3714 0.4381 0.7450 O 0.7915 0.4145 0.8527 O 0.1436 0.4950 0.9648 O 0.3342 0.6929 0.0851 O 0.6681 0.5386 0.0498 O 0.4894 0.6376 0.4832 O 0.8374 0.5083 0.4442 O 0.4164 0.5703 0.2687 O 0.9200 0.6373 0.3740 O 0.9298 0.8379 0.0273 O 0.5197 0.7887 0.1235 O 0.8453 0.6154 0.1265 O 0.7080 0.7256 0.0551 O 0.6297 0.8370 0.2349 O 0.6889 0.7214 0.4050 O 0.9273 0.9430 0.1374 O 0.7260 0.9786 0.2257 O 0.9539 0.8149 0.3152 O 0.0634 0.7099 0.1333 O 0.0088 0.5704 0.2536 O 0.8042 0.7188 0.2471 O 0.6981 0.5946 0.2917 O 0.2908 0.7599 0.2617 O 0.1835 0.6986 0.3904 O 0.2450 0.6012 0.1737 O 0.3062 0.5787 0.3997 O 0.4465 0.9194 0.1080 O 0.1931 0.7869 0.0024 O 0.1879 0.9833 0.0950 O 0.0876 0.8333 0.2042 O 0.2637 0.8738 0.3940 O 0.5203 0.8165 0.3607 O 0.3714 0.9381 0.2450 O 0.7915 0.9145 0.3527 O 0.1436 0.9950 0.4648 O 0.3342 0.6929 0.5851 O 0.6681 0.5386 0.5498 O 0.4894 0.6376 0.9832 O 0.8374 0.5083 0.9442 O 0.4164 0.5703 0.7687 O 0.9200 0.6373 0.8740 O 0.9298 0.8379 0.5273 O 0.5197 0.7887 0.6235 O 0.8453 0.6154 0.6265 O 0.7080 0.7256 0.5551 O 0.6297 0.8370 0.7349 O 0.6889 0.7214 0.9050 O 0.9273 0.9430 0.6374 O 0.7260 0.9786 0.7257 O 0.9539 0.8149 0.8152 O 0.0634 0.7099 0.6333 O 0.0088 0.5704 0.7536 O 0.8042 0.7188 0.7471 O 0.6981 0.5946 0.7917 O 0.2908 0.7599 0.7617 O 0.1835 0.6986 0.8904 O 0.2450 0.6012 0.6737 O 0.3062 0.5787 0.8997 O 0.4465 0.9194 0.6080 O 0.1931 0.7869 0.5024 O 0.1879 0.9833 0.5950 O 0.0876 0.8333 0.7042 O 0.2637 0.8738 0.8940 O 0.5203 0.8165 0.8607 O 0.3714 0.9381 0.7450 O 0.7915 0.9145 0.8527 O 0.1436 0.9950 0.9648 H 0.3742 0.1680 0.0464 H 0.3150 0.1613 0.1236 H 0.9405 0.0902 0.2258 H 0.6062 0.0043 0.0686 H 0.7231 0.0177 0.0132 H 0.5460 0.1001 0.4942 H 0.5502 0.1635 0.4515 H 0.8537 0.0524 0.4240 H 0.4251 0.0216 0.2605 H 0.3722 0.0771 0.3137 H 0.7041 0.0243 0.2455 H 0.9378 0.1095 0.3310 H 0.9083 0.3669 0.0657 H 0.5940 0.2702 0.0959 H 0.4413 0.2570 0.1152 H 0.7975 0.0811 0.0969 H 0.9351 0.1245 0.1085 H 0.7495 0.1897 0.0882 H 0.7769 0.2631 0.0474 H 0.7242 0.3244 0.2257 H 0.5812 0.3078 0.2016 H 0.7610 0.1996 0.3793 H 0.7253 0.2275 0.4506 H 0.9805 0.4059 0.1579 H 0.8774 0.4617 0.1754 H 0.8266 0.4716 0.4093 H 0.6439 0.4527 0.2329 H 0.9099 0.3541 0.3370 H 0.1146 0.1737 0.1565 H 0.1177 0.2296 0.0968 H 0.0984 0.0932 0.2470 H 0.8732 0.2452 0.2716 H 0.8466 0.2024 0.2052 H 0.5983 0.0925 0.2879 H 0.7255 0.1433 0.2809 H 0.2468 0.3005 0.2474 H 0.3655 0.2756 0.2883 H 0.2218 0.2239 0.3492 H 0.2272 0.1514 0.3868 H 0.0089 0.1586 0.3875 H 0.3206 0.0878 0.2063 H 0.2308 0.0625 0.1400 H 0.2420 0.0513 0.4275 H 0.3752 0.0982 0.4351 H 0.3477 0.4279 0.0950 H 0.4738 0.3709 0.1051 H 0.0297 0.3313 0.0302 H 0.2668 0.2680 0.0300 H 0.1691 0.4941 0.0479 H 0.0952 0.4689 0.1119 H 0.0161 0.3244 0.2384 H 0.0940 0.2869 0.1865 H 0.2728 0.3498 0.4381 H 0.3551 0.3740 0.3759 H 0.5812 0.2788 0.3790 H 0.5605 0.3308 0.3175 H 0.1741 0.2570 0.4642 H 0.3026 0.4029 0.2542 H 0.4067 0.4286 0.1970 H 0.7040 0.3982 0.3683 H 0.7716 0.4304 0.3049 H 0.0148 0.3021 0.3532 H 0.1834 0.4556 0.4331 H 0.0492 0.4947 0.4603 H 0.3742 0.1680 0.5464 H 0.3150 0.1613 0.6236 H 0.9405 0.0902 0.7258 H 0.6062 0.0043 0.5686 H 0.7231 0.0177 0.5132 H 0.5460 0.1001 0.9942 H 0.5502 0.1635 0.9515 H 0.8537 0.0524 0.9240 H 0.4251 0.0216 0.7605 H 0.3722 0.0771 0.8137 H 0.7041 0.0243 0.7455 H 0.9378 0.1095 0.8310 H 0.9083 0.3669 0.5657 H 0.5940 0.2702 0.5959 H 0.4413 0.2570 0.6152 H 0.7975 0.0811 0.5969 H 0.9351 0.1245 0.6085 H 0.7495 0.1897 0.5882 H 0.7769 0.2631 0.5474 H 0.7242 0.3244 0.7257 H 0.5812 0.3078 0.7016 H 0.7610 0.1996 0.8793 H 0.7253 0.2275 0.9506 H 0.9805 0.4059 0.6579 H 0.8774 0.4617 0.6754 H 0.8266 0.4716 0.9093 H 0.6439 0.4527 0.7329 H 0.9099 0.3541 0.8370 H 0.1146 0.1737 0.6565 H 0.1177 0.2296 0.5968 H 0.0984 0.0932 0.7470 H 0.8732 0.2452 0.7716 H 0.8466 0.2024 0.7052 H 0.5983 0.0925 0.7879 H 0.7255 0.1433 0.7809 H 0.2468 0.3005 0.7474 H 0.3655 0.2756 0.7883 H 0.2218 0.2239 0.8492 H 0.2272 0.1514 0.8868 H 0.0089 0.1586 0.8875 H 0.3206 0.0878 0.7063 H 0.2308 0.0625 0.6400 H 0.2420 0.0513 0.9275 H 0.3752 0.0982 0.9351 H 0.3477 0.4279 0.5950 H 0.4738 0.3709 0.6051 H 0.0297 0.3313 0.5302 H 0.2668 0.2680 0.5300 H 0.1691 0.4941 0.5479 H 0.0952 0.4689 0.6119 H 0.0161 0.3244 0.7384 H 0.0940 0.2869 0.6865 H 0.2728 0.3498 0.9381 H 0.3551 0.3740 0.8759 H 0.5812 0.2788 0.8790 H 0.5605 0.3308 0.8175 H 0.1741 0.2570 0.9642 H 0.3026 0.4029 0.7542 H 0.4067 0.4286 0.6970 H 0.7040 0.3982 0.8683 H 0.7716 0.4304 0.8049 H 0.0148 0.3021 0.8532 H 0.1834 0.4556 0.9331 H 0.0492 0.4947 0.9603 H 0.3742 0.6680 0.0464 H 0.3150 0.6613 0.1236 H 0.9405 0.5902 0.2258 H 0.6062 0.5043 0.0686 H 0.7231 0.5177 0.0132 H 0.5460 0.6001 0.4942 H 0.5502 0.6635 0.4515 H 0.8537 0.5524 0.4240 H 0.4251 0.5216 0.2605 H 0.3722 0.5771 0.3137 H 0.7041 0.5243 0.2455 H 0.9378 0.6095 0.3310 H 0.9083 0.8669 0.0657 H 0.5940 0.7702 0.0959 H 0.4413 0.7570 0.1152 H 0.7975 0.5811 0.0969 H 0.9351 0.6245 0.1085 H 0.7495 0.6897 0.0882 H 0.7769 0.7631 0.0474 H 0.7242 0.8244 0.2257 H 0.5812 0.8078 0.2016 H 0.7610 0.6996 0.3793 H 0.7253 0.7275 0.4506 H 0.9805 0.9059 0.1579 H 0.8774 0.9617 0.1754 H 0.8266 0.9716 0.4093 H 0.6439 0.9527 0.2329 H 0.9099 0.8541 0.3370 H 0.1146 0.6737 0.1565 H 0.1177 0.7296 0.0968 H 0.0984 0.5932 0.2470 H 0.8732 0.7452 0.2716 H 0.8466 0.7024 0.2052 H 0.5983 0.5925 0.2879 H 0.7255 0.6433 0.2809 H 0.2468 0.8005 0.2474 H 0.3655 0.7756 0.2883 H 0.2218 0.7239 0.3492 H 0.2272 0.6514 0.3868 H 0.0089 0.6586 0.3875 H 0.3206 0.5878 0.2063 H 0.2308 0.5625 0.1400 H 0.2420 0.5513 0.4275 H 0.3752 0.5982 0.4351 H 0.3477 0.9279 0.0950 H 0.4738 0.8709 0.1051 H 0.0297 0.8313 0.0302 H 0.2668 0.7680 0.0300 H 0.1691 0.9941 0.0479 H 0.0952 0.9689 0.1119 H 0.0161 0.8244 0.2384 H 0.0940 0.7869 0.1865 H 0.2728 0.8498 0.4381 H 0.3551 0.8740 0.3759 H 0.5812 0.7788 0.3790 H 0.5605 0.8308 0.3175 H 0.1741 0.7570 0.4642 H 0.3026 0.9029 0.2542 H 0.4067 0.9286 0.1970 H 0.7040 0.8982 0.3683 H 0.7716 0.9304 0.3049 H 0.0148 0.8021 0.3532 H 0.1834 0.9556 0.4331 H 0.0492 0.9947 0.4603 H 0.3742 0.6680 0.5464 H 0.3150 0.6613 0.6236 H 0.9405 0.5902 0.7258 H 0.6062 0.5043 0.5686 H 0.7231 0.5177 0.5132 H 0.5460 0.6001 0.9942 H 0.5502 0.6635 0.9515 H 0.8537 0.5524 0.9240 H 0.4251 0.5216 0.7605 H 0.3722 0.5771 0.8137 H 0.7041 0.5243 0.7455 H 0.9378 0.6095 0.8310 H 0.9083 0.8669 0.5657 H 0.5940 0.7702 0.5959 H 0.4413 0.7570 0.6152 H 0.7975 0.5811 0.5969 H 0.9351 0.6245 0.6085 H 0.7495 0.6897 0.5882 H 0.7769 0.7631 0.5474 H 0.7242 0.8244 0.7257 H 0.5812 0.8078 0.7016 H 0.7610 0.6996 0.8793 H 0.7253 0.7275 0.9506 H 0.9805 0.9059 0.6579 H 0.8774 0.9617 0.6754 H 0.8266 0.9716 0.9093 H 0.6439 0.9527 0.7329 H 0.9099 0.8541 0.8370 H 0.1146 0.6737 0.6565 H 0.1177 0.7296 0.5968 H 0.0984 0.5932 0.7470 H 0.8732 0.7452 0.7716 H 0.8466 0.7024 0.7052 H 0.5983 0.5925 0.7879 H 0.7255 0.6433 0.7809 H 0.2468 0.8005 0.7474 H 0.3655 0.7756 0.7883 H 0.2218 0.7239 0.8492 H 0.2272 0.6514 0.8868 H 0.0089 0.6586 0.8875 H 0.3206 0.5878 0.7063 H 0.2308 0.5625 0.6400 H 0.2420 0.5513 0.9275 H 0.3752 0.5982 0.9351 H 0.3477 0.9279 0.5950 H 0.4738 0.8709 0.6051 H 0.0297 0.8313 0.5302 H 0.2668 0.7680 0.5300 H 0.1691 0.9941 0.5479 H 0.0952 0.9689 0.6119 H 0.0161 0.8244 0.7384 H 0.0940 0.7869 0.6865 H 0.2728 0.8498 0.9381 H 0.3551 0.8740 0.8759 H 0.5812 0.7788 0.8790 H 0.5605 0.8308 0.8175 H 0.1741 0.7570 0.9642 H 0.3026 0.9029 0.7542 H 0.4067 0.9286 0.6970 H 0.7040 0.8982 0.8683 H 0.7716 0.9304 0.8049 H 0.0148 0.8021 0.8532 H 0.1834 0.9556 0.9331 H 0.0492 0.9947 0.9603 EOF $ECHO " running the calculation with 128 H2O molecules...\c" if test "0$1" -ge 128 ; then $FPMD_COMMAND < h2o-128.in > h2o-128.out check_failure $? $ECHO " done" else $ECHO " skipped" # too big, don't run fi # molecular dynamics calculation cat > h2o-256.in << EOF &control title = ' Water 256 molecules ', calculation = 'cp', restart_mode = 'from_scratch', ! 'restart', ndr = 50, ndw = -1, nstep = 10, iprint = 10, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-8, prefix = 'h2o', pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav = 14, celldm(1) = 37.30, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 768, ntyp = 2, nbnd = 1024, ecutwfc = 70.0, ecfixed = 68.0, qcutz = 68.0, q2sigma = 8.0, input_dft = 'BLYP', / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', ortho_eps = 5.d-8, ortho_max = 25, electron_dynamics = 'sd', electron_velocities = 'zero', electron_temperature = 'not_controlled', / &ions ion_dynamics = 'none', ion_radius(1) = 0.8d0, ion_radius(2) = 0.5d0, ! ion_velocities = 'zero', ion_temperature = 'not_controlled' / &cell cell_dynamics = 'none', cell_velocities = 'zero', press = 0.0d0, wmass = 70000.0d0 / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.0079d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (crystal) O 0.1671 0.1929 0.0851 O 0.3341 0.0386 0.0498 O 0.2447 0.1376 0.4832 O 0.4187 0.0083 0.4442 O 0.2082 0.0703 0.2687 O 0.4600 0.1373 0.3740 O 0.4649 0.3379 0.0273 O 0.2599 0.2887 0.1235 O 0.4227 0.1154 0.1265 O 0.3540 0.2256 0.0551 O 0.3149 0.3370 0.2349 O 0.3444 0.2214 0.4050 O 0.4637 0.4430 0.1374 O 0.3630 0.4786 0.2257 O 0.4769 0.3149 0.3152 O 0.0317 0.2099 0.1333 O 0.0044 0.0704 0.2536 O 0.4021 0.2188 0.2471 O 0.3491 0.0946 0.2917 O 0.1454 0.2599 0.2617 O 0.0917 0.1986 0.3904 O 0.1225 0.1012 0.1737 O 0.1531 0.0787 0.3997 O 0.2233 0.4194 0.1080 O 0.0965 0.2869 0.0024 O 0.0940 0.4833 0.0950 O 0.0438 0.3333 0.2042 O 0.1318 0.3738 0.3940 O 0.2601 0.3165 0.3607 O 0.1857 0.4381 0.2450 O 0.3957 0.4145 0.3527 O 0.0718 0.4950 0.4648 O 0.1671 0.1929 0.5851 O 0.3341 0.0386 0.5498 O 0.2447 0.1376 0.9832 O 0.4187 0.0083 0.9442 O 0.2082 0.0703 0.7687 O 0.4600 0.1373 0.8740 O 0.4649 0.3379 0.5273 O 0.2599 0.2887 0.6235 O 0.4227 0.1154 0.6265 O 0.3540 0.2256 0.5551 O 0.3149 0.3370 0.7349 O 0.3444 0.2214 0.9050 O 0.4637 0.4430 0.6374 O 0.3630 0.4786 0.7257 O 0.4769 0.3149 0.8152 O 0.0317 0.2099 0.6333 O 0.0044 0.0704 0.7536 O 0.4021 0.2188 0.7471 O 0.3491 0.0946 0.7917 O 0.1454 0.2599 0.7617 O 0.0917 0.1986 0.8904 O 0.1225 0.1012 0.6737 O 0.1531 0.0787 0.8997 O 0.2233 0.4194 0.6080 O 0.0965 0.2869 0.5024 O 0.0940 0.4833 0.5950 O 0.0438 0.3333 0.7042 O 0.1318 0.3738 0.8940 O 0.2601 0.3165 0.8607 O 0.1857 0.4381 0.7450 O 0.3957 0.4145 0.8527 O 0.0718 0.4950 0.9648 O 0.1671 0.6929 0.0851 O 0.3341 0.5386 0.0498 O 0.2447 0.6376 0.4832 O 0.4187 0.5083 0.4442 O 0.2082 0.5703 0.2687 O 0.4600 0.6373 0.3740 O 0.4649 0.8379 0.0273 O 0.2599 0.7887 0.1235 O 0.4227 0.6154 0.1265 O 0.3540 0.7256 0.0551 O 0.3149 0.8370 0.2349 O 0.3444 0.7214 0.4050 O 0.4637 0.9430 0.1374 O 0.3630 0.9786 0.2257 O 0.4769 0.8149 0.3152 O 0.0317 0.7099 0.1333 O 0.0044 0.5704 0.2536 O 0.4021 0.7188 0.2471 O 0.3491 0.5946 0.2917 O 0.1454 0.7599 0.2617 O 0.0917 0.6986 0.3904 O 0.1225 0.6012 0.1737 O 0.1531 0.5787 0.3997 O 0.2233 0.9194 0.1080 O 0.0965 0.7869 0.0024 O 0.0940 0.9833 0.0950 O 0.0438 0.8333 0.2042 O 0.1318 0.8738 0.3940 O 0.2601 0.8165 0.3607 O 0.1857 0.9381 0.2450 O 0.3957 0.9145 0.3527 O 0.0718 0.9950 0.4648 O 0.1671 0.6929 0.5851 O 0.3341 0.5386 0.5498 O 0.2447 0.6376 0.9832 O 0.4187 0.5083 0.9442 O 0.2082 0.5703 0.7687 O 0.4600 0.6373 0.8740 O 0.4649 0.8379 0.5273 O 0.2599 0.7887 0.6235 O 0.4227 0.6154 0.6265 O 0.3540 0.7256 0.5551 O 0.3149 0.8370 0.7349 O 0.3444 0.7214 0.9050 O 0.4637 0.9430 0.6374 O 0.3630 0.9786 0.7257 O 0.4769 0.8149 0.8152 O 0.0317 0.7099 0.6333 O 0.0044 0.5704 0.7536 O 0.4021 0.7188 0.7471 O 0.3491 0.5946 0.7917 O 0.1454 0.7599 0.7617 O 0.0917 0.6986 0.8904 O 0.1225 0.6012 0.6737 O 0.1531 0.5787 0.8997 O 0.2233 0.9194 0.6080 O 0.0965 0.7869 0.5024 O 0.0940 0.9833 0.5950 O 0.0438 0.8333 0.7042 O 0.1318 0.8738 0.8940 O 0.2601 0.8165 0.8607 O 0.1857 0.9381 0.7450 O 0.3957 0.9145 0.8527 O 0.0718 0.9950 0.9648 O 0.6671 0.1929 0.0851 O 0.8341 0.0386 0.0498 O 0.7447 0.1376 0.4832 O 0.9187 0.0083 0.4442 O 0.7082 0.0703 0.2687 O 0.9600 0.1373 0.3740 O 0.9649 0.3379 0.0273 O 0.7599 0.2887 0.1235 O 0.9227 0.1154 0.1265 O 0.8540 0.2256 0.0551 O 0.8149 0.3370 0.2349 O 0.8444 0.2214 0.4050 O 0.9637 0.4430 0.1374 O 0.8630 0.4786 0.2257 O 0.9769 0.3149 0.3152 O 0.5317 0.2099 0.1333 O 0.5044 0.0704 0.2536 O 0.9021 0.2188 0.2471 O 0.8491 0.0946 0.2917 O 0.6454 0.2599 0.2617 O 0.5917 0.1986 0.3904 O 0.6225 0.1012 0.1737 O 0.6531 0.0787 0.3997 O 0.7233 0.4194 0.1080 O 0.5965 0.2869 0.0024 O 0.5940 0.4833 0.0950 O 0.5438 0.3333 0.2042 O 0.6318 0.3738 0.3940 O 0.7601 0.3165 0.3607 O 0.6857 0.4381 0.2450 O 0.8957 0.4145 0.3527 O 0.5718 0.4950 0.4648 O 0.6671 0.1929 0.5851 O 0.8341 0.0386 0.5498 O 0.7447 0.1376 0.9832 O 0.9187 0.0083 0.9442 O 0.7082 0.0703 0.7687 O 0.9600 0.1373 0.8740 O 0.9649 0.3379 0.5273 O 0.7599 0.2887 0.6235 O 0.9227 0.1154 0.6265 O 0.8540 0.2256 0.5551 O 0.8149 0.3370 0.7349 O 0.8444 0.2214 0.9050 O 0.9637 0.4430 0.6374 O 0.8630 0.4786 0.7257 O 0.9769 0.3149 0.8152 O 0.5317 0.2099 0.6333 O 0.5044 0.0704 0.7536 O 0.9021 0.2188 0.7471 O 0.8491 0.0946 0.7917 O 0.6454 0.2599 0.7617 O 0.5917 0.1986 0.8904 O 0.6225 0.1012 0.6737 O 0.6531 0.0787 0.8997 O 0.7233 0.4194 0.6080 O 0.5965 0.2869 0.5024 O 0.5940 0.4833 0.5950 O 0.5438 0.3333 0.7042 O 0.6318 0.3738 0.8940 O 0.7601 0.3165 0.8607 O 0.6857 0.4381 0.7450 O 0.8957 0.4145 0.8527 O 0.5718 0.4950 0.9648 O 0.6671 0.6929 0.0851 O 0.8341 0.5386 0.0498 O 0.7447 0.6376 0.4832 O 0.9187 0.5083 0.4442 O 0.7082 0.5703 0.2687 O 0.9600 0.6373 0.3740 O 0.9649 0.8379 0.0273 O 0.7599 0.7887 0.1235 O 0.9227 0.6154 0.1265 O 0.8540 0.7256 0.0551 O 0.8149 0.8370 0.2349 O 0.8444 0.7214 0.4050 O 0.9637 0.9430 0.1374 O 0.8630 0.9786 0.2257 O 0.9769 0.8149 0.3152 O 0.5317 0.7099 0.1333 O 0.5044 0.5704 0.2536 O 0.9021 0.7188 0.2471 O 0.8491 0.5946 0.2917 O 0.6454 0.7599 0.2617 O 0.5917 0.6986 0.3904 O 0.6225 0.6012 0.1737 O 0.6531 0.5787 0.3997 O 0.7233 0.9194 0.1080 O 0.5965 0.7869 0.0024 O 0.5940 0.9833 0.0950 O 0.5438 0.8333 0.2042 O 0.6318 0.8738 0.3940 O 0.7601 0.8165 0.3607 O 0.6857 0.9381 0.2450 O 0.8957 0.9145 0.3527 O 0.5718 0.9950 0.4648 O 0.6671 0.6929 0.5851 O 0.8341 0.5386 0.5498 O 0.7447 0.6376 0.9832 O 0.9187 0.5083 0.9442 O 0.7082 0.5703 0.7687 O 0.9600 0.6373 0.8740 O 0.9649 0.8379 0.5273 O 0.7599 0.7887 0.6235 O 0.9227 0.6154 0.6265 O 0.8540 0.7256 0.5551 O 0.8149 0.8370 0.7349 O 0.8444 0.7214 0.9050 O 0.9637 0.9430 0.6374 O 0.8630 0.9786 0.7257 O 0.9769 0.8149 0.8152 O 0.5317 0.7099 0.6333 O 0.5044 0.5704 0.7536 O 0.9021 0.7188 0.7471 O 0.8491 0.5946 0.7917 O 0.6454 0.7599 0.7617 O 0.5917 0.6986 0.8904 O 0.6225 0.6012 0.6737 O 0.6531 0.5787 0.8997 O 0.7233 0.9194 0.6080 O 0.5965 0.7869 0.5024 O 0.5940 0.9833 0.5950 O 0.5438 0.8333 0.7042 O 0.6318 0.8738 0.8940 O 0.7601 0.8165 0.8607 O 0.6857 0.9381 0.7450 O 0.8957 0.9145 0.8527 O 0.5718 0.9950 0.9648 H 0.1871 0.1680 0.0464 H 0.1575 0.1613 0.1236 H 0.4703 0.0902 0.2258 H 0.3031 0.0043 0.0686 H 0.3615 0.0177 0.0132 H 0.2730 0.1001 0.4942 H 0.2751 0.1635 0.4515 H 0.4269 0.0524 0.4240 H 0.2125 0.0216 0.2605 H 0.1861 0.0771 0.3137 H 0.3520 0.0243 0.2455 H 0.4689 0.1095 0.3310 H 0.4541 0.3669 0.0657 H 0.2970 0.2702 0.0959 H 0.2207 0.2570 0.1152 H 0.3987 0.0811 0.0969 H 0.4676 0.1245 0.1085 H 0.3748 0.1897 0.0882 H 0.3885 0.2631 0.0474 H 0.3621 0.3244 0.2257 H 0.2906 0.3078 0.2016 H 0.3805 0.1996 0.3793 H 0.3626 0.2275 0.4506 H 0.4903 0.4059 0.1579 H 0.4387 0.4617 0.1754 H 0.4133 0.4716 0.4093 H 0.3220 0.4527 0.2329 H 0.4550 0.3541 0.3370 H 0.0573 0.1737 0.1565 H 0.0588 0.2296 0.0968 H 0.0492 0.0932 0.2470 H 0.4366 0.2452 0.2716 H 0.4233 0.2024 0.2052 H 0.2992 0.0925 0.2879 H 0.3628 0.1433 0.2809 H 0.1234 0.3005 0.2474 H 0.1827 0.2756 0.2883 H 0.1109 0.2239 0.3492 H 0.1136 0.1514 0.3868 H 0.0044 0.1586 0.3875 H 0.1603 0.0878 0.2063 H 0.1154 0.0625 0.1400 H 0.1210 0.0513 0.4275 H 0.1876 0.0982 0.4351 H 0.1739 0.4279 0.0950 H 0.2369 0.3709 0.1051 H 0.0149 0.3313 0.0302 H 0.1334 0.2680 0.0300 H 0.0846 0.4941 0.0479 H 0.0476 0.4689 0.1119 H 0.0080 0.3244 0.2384 H 0.0470 0.2869 0.1865 H 0.1364 0.3498 0.4381 H 0.1776 0.3740 0.3759 H 0.2906 0.2788 0.3790 H 0.2802 0.3308 0.3175 H 0.0871 0.2570 0.4642 H 0.1513 0.4029 0.2542 H 0.2034 0.4286 0.1970 H 0.3520 0.3982 0.3683 H 0.3858 0.4304 0.3049 H 0.0074 0.3021 0.3532 H 0.0917 0.4556 0.4331 H 0.0246 0.4947 0.4603 H 0.1871 0.1680 0.5464 H 0.1575 0.1613 0.6236 H 0.4703 0.0902 0.7258 H 0.3031 0.0043 0.5686 H 0.3615 0.0177 0.5132 H 0.2730 0.1001 0.9942 H 0.2751 0.1635 0.9515 H 0.4269 0.0524 0.9240 H 0.2125 0.0216 0.7605 H 0.1861 0.0771 0.8137 H 0.3520 0.0243 0.7455 H 0.4689 0.1095 0.8310 H 0.4541 0.3669 0.5657 H 0.2970 0.2702 0.5959 H 0.2207 0.2570 0.6152 H 0.3987 0.0811 0.5969 H 0.4676 0.1245 0.6085 H 0.3748 0.1897 0.5882 H 0.3885 0.2631 0.5474 H 0.3621 0.3244 0.7257 H 0.2906 0.3078 0.7016 H 0.3805 0.1996 0.8793 H 0.3626 0.2275 0.9506 H 0.4903 0.4059 0.6579 H 0.4387 0.4617 0.6754 H 0.4133 0.4716 0.9093 H 0.3220 0.4527 0.7329 H 0.4550 0.3541 0.8370 H 0.0573 0.1737 0.6565 H 0.0588 0.2296 0.5968 H 0.0492 0.0932 0.7470 H 0.4366 0.2452 0.7716 H 0.4233 0.2024 0.7052 H 0.2992 0.0925 0.7879 H 0.3628 0.1433 0.7809 H 0.1234 0.3005 0.7474 H 0.1827 0.2756 0.7883 H 0.1109 0.2239 0.8492 H 0.1136 0.1514 0.8868 H 0.0044 0.1586 0.8875 H 0.1603 0.0878 0.7063 H 0.1154 0.0625 0.6400 H 0.1210 0.0513 0.9275 H 0.1876 0.0982 0.9351 H 0.1739 0.4279 0.5950 H 0.2369 0.3709 0.6051 H 0.0149 0.3313 0.5302 H 0.1334 0.2680 0.5300 H 0.0846 0.4941 0.5479 H 0.0476 0.4689 0.6119 H 0.0080 0.3244 0.7384 H 0.0470 0.2869 0.6865 H 0.1364 0.3498 0.9381 H 0.1776 0.3740 0.8759 H 0.2906 0.2788 0.8790 H 0.2802 0.3308 0.8175 H 0.0871 0.2570 0.9642 H 0.1513 0.4029 0.7542 H 0.2034 0.4286 0.6970 H 0.3520 0.3982 0.8683 H 0.3858 0.4304 0.8049 H 0.0074 0.3021 0.8532 H 0.0917 0.4556 0.9331 H 0.0246 0.4947 0.9603 H 0.1871 0.6680 0.0464 H 0.1575 0.6613 0.1236 H 0.4703 0.5902 0.2258 H 0.3031 0.5043 0.0686 H 0.3615 0.5177 0.0132 H 0.2730 0.6001 0.4942 H 0.2751 0.6635 0.4515 H 0.4269 0.5524 0.4240 H 0.2125 0.5216 0.2605 H 0.1861 0.5771 0.3137 H 0.3520 0.5243 0.2455 H 0.4689 0.6095 0.3310 H 0.4541 0.8669 0.0657 H 0.2970 0.7702 0.0959 H 0.2207 0.7570 0.1152 H 0.3987 0.5811 0.0969 H 0.4676 0.6245 0.1085 H 0.3748 0.6897 0.0882 H 0.3885 0.7631 0.0474 H 0.3621 0.8244 0.2257 H 0.2906 0.8078 0.2016 H 0.3805 0.6996 0.3793 H 0.3626 0.7275 0.4506 H 0.4903 0.9059 0.1579 H 0.4387 0.9617 0.1754 H 0.4133 0.9716 0.4093 H 0.3220 0.9527 0.2329 H 0.4550 0.8541 0.3370 H 0.0573 0.6737 0.1565 H 0.0588 0.7296 0.0968 H 0.0492 0.5932 0.2470 H 0.4366 0.7452 0.2716 H 0.4233 0.7024 0.2052 H 0.2992 0.5925 0.2879 H 0.3628 0.6433 0.2809 H 0.1234 0.8005 0.2474 H 0.1827 0.7756 0.2883 H 0.1109 0.7239 0.3492 H 0.1136 0.6514 0.3868 H 0.0044 0.6586 0.3875 H 0.1603 0.5878 0.2063 H 0.1154 0.5625 0.1400 H 0.1210 0.5513 0.4275 H 0.1876 0.5982 0.4351 H 0.1739 0.9279 0.0950 H 0.2369 0.8709 0.1051 H 0.0149 0.8313 0.0302 H 0.1334 0.7680 0.0300 H 0.0846 0.9941 0.0479 H 0.0476 0.9689 0.1119 H 0.0080 0.8244 0.2384 H 0.0470 0.7869 0.1865 H 0.1364 0.8498 0.4381 H 0.1776 0.8740 0.3759 H 0.2906 0.7788 0.3790 H 0.2802 0.8308 0.3175 H 0.0871 0.7570 0.4642 H 0.1513 0.9029 0.2542 H 0.2034 0.9286 0.1970 H 0.3520 0.8982 0.3683 H 0.3858 0.9304 0.3049 H 0.0074 0.8021 0.3532 H 0.0917 0.9556 0.4331 H 0.0246 0.9947 0.4603 H 0.1871 0.6680 0.5464 H 0.1575 0.6613 0.6236 H 0.4703 0.5902 0.7258 H 0.3031 0.5043 0.5686 H 0.3615 0.5177 0.5132 H 0.2730 0.6001 0.9942 H 0.2751 0.6635 0.9515 H 0.4269 0.5524 0.9240 H 0.2125 0.5216 0.7605 H 0.1861 0.5771 0.8137 H 0.3520 0.5243 0.7455 H 0.4689 0.6095 0.8310 H 0.4541 0.8669 0.5657 H 0.2970 0.7702 0.5959 H 0.2207 0.7570 0.6152 H 0.3987 0.5811 0.5969 H 0.4676 0.6245 0.6085 H 0.3748 0.6897 0.5882 H 0.3885 0.7631 0.5474 H 0.3621 0.8244 0.7257 H 0.2906 0.8078 0.7016 H 0.3805 0.6996 0.8793 H 0.3626 0.7275 0.9506 H 0.4903 0.9059 0.6579 H 0.4387 0.9617 0.6754 H 0.4133 0.9716 0.9093 H 0.3220 0.9527 0.7329 H 0.4550 0.8541 0.8370 H 0.0573 0.6737 0.6565 H 0.0588 0.7296 0.5968 H 0.0492 0.5932 0.7470 H 0.4366 0.7452 0.7716 H 0.4233 0.7024 0.7052 H 0.2992 0.5925 0.7879 H 0.3628 0.6433 0.7809 H 0.1234 0.8005 0.7474 H 0.1827 0.7756 0.7883 H 0.1109 0.7239 0.8492 H 0.1136 0.6514 0.8868 H 0.0044 0.6586 0.8875 H 0.1603 0.5878 0.7063 H 0.1154 0.5625 0.6400 H 0.1210 0.5513 0.9275 H 0.1876 0.5982 0.9351 H 0.1739 0.9279 0.5950 H 0.2369 0.8709 0.6051 H 0.0149 0.8313 0.5302 H 0.1334 0.7680 0.5300 H 0.0846 0.9941 0.5479 H 0.0476 0.9689 0.6119 H 0.0080 0.8244 0.7384 H 0.0470 0.7869 0.6865 H 0.1364 0.8498 0.9381 H 0.1776 0.8740 0.8759 H 0.2906 0.7788 0.8790 H 0.2802 0.8308 0.8175 H 0.0871 0.7570 0.9642 H 0.1513 0.9029 0.7542 H 0.2034 0.9286 0.6970 H 0.3520 0.8982 0.8683 H 0.3858 0.9304 0.8049 H 0.0074 0.8021 0.8532 H 0.0917 0.9556 0.9331 H 0.0246 0.9947 0.9603 H 0.6871 0.1680 0.0464 H 0.6575 0.1613 0.1236 H 0.9703 0.0902 0.2258 H 0.8031 0.0043 0.0686 H 0.8615 0.0177 0.0132 H 0.7730 0.1001 0.4942 H 0.7751 0.1635 0.4515 H 0.9269 0.0524 0.4240 H 0.7125 0.0216 0.2605 H 0.6861 0.0771 0.3137 H 0.8520 0.0243 0.2455 H 0.9689 0.1095 0.3310 H 0.9541 0.3669 0.0657 H 0.7970 0.2702 0.0959 H 0.7207 0.2570 0.1152 H 0.8987 0.0811 0.0969 H 0.9676 0.1245 0.1085 H 0.8748 0.1897 0.0882 H 0.8885 0.2631 0.0474 H 0.8621 0.3244 0.2257 H 0.7906 0.3078 0.2016 H 0.8805 0.1996 0.3793 H 0.8626 0.2275 0.4506 H 0.9903 0.4059 0.1579 H 0.9387 0.4617 0.1754 H 0.9133 0.4716 0.4093 H 0.8220 0.4527 0.2329 H 0.9550 0.3541 0.3370 H 0.5573 0.1737 0.1565 H 0.5588 0.2296 0.0968 H 0.5492 0.0932 0.2470 H 0.9366 0.2452 0.2716 H 0.9233 0.2024 0.2052 H 0.7992 0.0925 0.2879 H 0.8628 0.1433 0.2809 H 0.6234 0.3005 0.2474 H 0.6827 0.2756 0.2883 H 0.6109 0.2239 0.3492 H 0.6136 0.1514 0.3868 H 0.5044 0.1586 0.3875 H 0.6603 0.0878 0.2063 H 0.6154 0.0625 0.1400 H 0.6210 0.0513 0.4275 H 0.6876 0.0982 0.4351 H 0.6739 0.4279 0.0950 H 0.7369 0.3709 0.1051 H 0.5149 0.3313 0.0302 H 0.6334 0.2680 0.0300 H 0.5846 0.4941 0.0479 H 0.5476 0.4689 0.1119 H 0.5080 0.3244 0.2384 H 0.5470 0.2869 0.1865 H 0.6364 0.3498 0.4381 H 0.6776 0.3740 0.3759 H 0.7906 0.2788 0.3790 H 0.7802 0.3308 0.3175 H 0.5871 0.2570 0.4642 H 0.6513 0.4029 0.2542 H 0.7034 0.4286 0.1970 H 0.8520 0.3982 0.3683 H 0.8858 0.4304 0.3049 H 0.5074 0.3021 0.3532 H 0.5917 0.4556 0.4331 H 0.5246 0.4947 0.4603 H 0.6871 0.1680 0.5464 H 0.6575 0.1613 0.6236 H 0.9703 0.0902 0.7258 H 0.8031 0.0043 0.5686 H 0.8615 0.0177 0.5132 H 0.7730 0.1001 0.9942 H 0.7751 0.1635 0.9515 H 0.9269 0.0524 0.9240 H 0.7125 0.0216 0.7605 H 0.6861 0.0771 0.8137 H 0.8520 0.0243 0.7455 H 0.9689 0.1095 0.8310 H 0.9541 0.3669 0.5657 H 0.7970 0.2702 0.5959 H 0.7207 0.2570 0.6152 H 0.8987 0.0811 0.5969 H 0.9676 0.1245 0.6085 H 0.8748 0.1897 0.5882 H 0.8885 0.2631 0.5474 H 0.8621 0.3244 0.7257 H 0.7906 0.3078 0.7016 H 0.8805 0.1996 0.8793 H 0.8626 0.2275 0.9506 H 0.9903 0.4059 0.6579 H 0.9387 0.4617 0.6754 H 0.9133 0.4716 0.9093 H 0.8220 0.4527 0.7329 H 0.9550 0.3541 0.8370 H 0.5573 0.1737 0.6565 H 0.5588 0.2296 0.5968 H 0.5492 0.0932 0.7470 H 0.9366 0.2452 0.7716 H 0.9233 0.2024 0.7052 H 0.7992 0.0925 0.7879 H 0.8628 0.1433 0.7809 H 0.6234 0.3005 0.7474 H 0.6827 0.2756 0.7883 H 0.6109 0.2239 0.8492 H 0.6136 0.1514 0.8868 H 0.5044 0.1586 0.8875 H 0.6603 0.0878 0.7063 H 0.6154 0.0625 0.6400 H 0.6210 0.0513 0.9275 H 0.6876 0.0982 0.9351 H 0.6739 0.4279 0.5950 H 0.7369 0.3709 0.6051 H 0.5149 0.3313 0.5302 H 0.6334 0.2680 0.5300 H 0.5846 0.4941 0.5479 H 0.5476 0.4689 0.6119 H 0.5080 0.3244 0.7384 H 0.5470 0.2869 0.6865 H 0.6364 0.3498 0.9381 H 0.6776 0.3740 0.8759 H 0.7906 0.2788 0.8790 H 0.7802 0.3308 0.8175 H 0.5871 0.2570 0.9642 H 0.6513 0.4029 0.7542 H 0.7034 0.4286 0.6970 H 0.8520 0.3982 0.8683 H 0.8858 0.4304 0.8049 H 0.5074 0.3021 0.8532 H 0.5917 0.4556 0.9331 H 0.5246 0.4947 0.9603 H 0.6871 0.6680 0.0464 H 0.6575 0.6613 0.1236 H 0.9703 0.5902 0.2258 H 0.8031 0.5043 0.0686 H 0.8615 0.5177 0.0132 H 0.7730 0.6001 0.4942 H 0.7751 0.6635 0.4515 H 0.9269 0.5524 0.4240 H 0.7125 0.5216 0.2605 H 0.6861 0.5771 0.3137 H 0.8520 0.5243 0.2455 H 0.9689 0.6095 0.3310 H 0.9541 0.8669 0.0657 H 0.7970 0.7702 0.0959 H 0.7207 0.7570 0.1152 H 0.8987 0.5811 0.0969 H 0.9676 0.6245 0.1085 H 0.8748 0.6897 0.0882 H 0.8885 0.7631 0.0474 H 0.8621 0.8244 0.2257 H 0.7906 0.8078 0.2016 H 0.8805 0.6996 0.3793 H 0.8626 0.7275 0.4506 H 0.9903 0.9059 0.1579 H 0.9387 0.9617 0.1754 H 0.9133 0.9716 0.4093 H 0.8220 0.9527 0.2329 H 0.9550 0.8541 0.3370 H 0.5573 0.6737 0.1565 H 0.5588 0.7296 0.0968 H 0.5492 0.5932 0.2470 H 0.9366 0.7452 0.2716 H 0.9233 0.7024 0.2052 H 0.7992 0.5925 0.2879 H 0.8628 0.6433 0.2809 H 0.6234 0.8005 0.2474 H 0.6827 0.7756 0.2883 H 0.6109 0.7239 0.3492 H 0.6136 0.6514 0.3868 H 0.5044 0.6586 0.3875 H 0.6603 0.5878 0.2063 H 0.6154 0.5625 0.1400 H 0.6210 0.5513 0.4275 H 0.6876 0.5982 0.4351 H 0.6739 0.9279 0.0950 H 0.7369 0.8709 0.1051 H 0.5149 0.8313 0.0302 H 0.6334 0.7680 0.0300 H 0.5846 0.9941 0.0479 H 0.5476 0.9689 0.1119 H 0.5080 0.8244 0.2384 H 0.5470 0.7869 0.1865 H 0.6364 0.8498 0.4381 H 0.6776 0.8740 0.3759 H 0.7906 0.7788 0.3790 H 0.7802 0.8308 0.3175 H 0.5871 0.7570 0.4642 H 0.6513 0.9029 0.2542 H 0.7034 0.9286 0.1970 H 0.8520 0.8982 0.3683 H 0.8858 0.9304 0.3049 H 0.5074 0.8021 0.3532 H 0.5917 0.9556 0.4331 H 0.5246 0.9947 0.4603 H 0.6871 0.6680 0.5464 H 0.6575 0.6613 0.6236 H 0.9703 0.5902 0.7258 H 0.8031 0.5043 0.5686 H 0.8615 0.5177 0.5132 H 0.7730 0.6001 0.9942 H 0.7751 0.6635 0.9515 H 0.9269 0.5524 0.9240 H 0.7125 0.5216 0.7605 H 0.6861 0.5771 0.8137 H 0.8520 0.5243 0.7455 H 0.9689 0.6095 0.8310 H 0.9541 0.8669 0.5657 H 0.7970 0.7702 0.5959 H 0.7207 0.7570 0.6152 H 0.8987 0.5811 0.5969 H 0.9676 0.6245 0.6085 H 0.8748 0.6897 0.5882 H 0.8885 0.7631 0.5474 H 0.8621 0.8244 0.7257 H 0.7906 0.8078 0.7016 H 0.8805 0.6996 0.8793 H 0.8626 0.7275 0.9506 H 0.9903 0.9059 0.6579 H 0.9387 0.9617 0.6754 H 0.9133 0.9716 0.9093 H 0.8220 0.9527 0.7329 H 0.9550 0.8541 0.8370 H 0.5573 0.6737 0.6565 H 0.5588 0.7296 0.5968 H 0.5492 0.5932 0.7470 H 0.9366 0.7452 0.7716 H 0.9233 0.7024 0.7052 H 0.7992 0.5925 0.7879 H 0.8628 0.6433 0.7809 H 0.6234 0.8005 0.7474 H 0.6827 0.7756 0.7883 H 0.6109 0.7239 0.8492 H 0.6136 0.6514 0.8868 H 0.5044 0.6586 0.8875 H 0.6603 0.5878 0.7063 H 0.6154 0.5625 0.6400 H 0.6210 0.5513 0.9275 H 0.6876 0.5982 0.9351 H 0.6739 0.9279 0.5950 H 0.7369 0.8709 0.6051 H 0.5149 0.8313 0.5302 H 0.6334 0.7680 0.5300 H 0.5846 0.9941 0.5479 H 0.5476 0.9689 0.6119 H 0.5080 0.8244 0.7384 H 0.5470 0.7869 0.6865 H 0.6364 0.8498 0.9381 H 0.6776 0.8740 0.8759 H 0.7906 0.7788 0.8790 H 0.7802 0.8308 0.8175 H 0.5871 0.7570 0.9642 H 0.6513 0.9029 0.7542 H 0.7034 0.9286 0.6970 H 0.8520 0.8982 0.8683 H 0.8858 0.9304 0.8049 H 0.5074 0.8021 0.8532 H 0.5917 0.9556 0.9331 H 0.5246 0.9947 0.9603 EOF $ECHO " running the calculation with 256 H2O molecules...\c" if test "0$1" -ge 256 ; then $FPMD_COMMAND < h2o-256.in > h2o-256.out check_failure $? $ECHO " done" else $ECHO " skipped" # too big, don't run fi # molecular dynamics calculation cat > h2o-384.in << EOF &control title = ' Water 384 molecules ', calculation = 'cp', restart_mode = 'from_scratch', ! 'restart', ndr = 50, ndw = -1, nstep = 10, iprint = 10, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-8, prefix = 'h2o', pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav = 14, celldm(1) = 37.30, celldm(2) = 1.0, celldm(3) = 1.5, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 1152, ntyp = 2, nbnd = 1536, ecutwfc = 70.0, ecfixed = 68.0, qcutz = 68.0, q2sigma = 8.0, input_dft = 'BLYP', / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', ortho_eps = 5.d-8, ortho_max = 25, electron_dynamics = 'sd', electron_velocities = 'zero', electron_temperature = 'not_controlled', / &ions ion_dynamics = 'none', ion_radius(1) = 0.8d0, ion_radius(2) = 0.5d0, ! ion_velocities = 'zero', ion_temperature = 'not_controlled' / &cell cell_dynamics = 'none', cell_velocities = 'zero', press = 0.0d0, wmass = 70000.0d0 / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.0079d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (crystal) O 0.1671 0.1929 0.0567 O 0.3341 0.0386 0.0332 O 0.2447 0.1376 0.3221 O 0.4187 0.0083 0.2962 O 0.2082 0.0703 0.1791 O 0.4600 0.1373 0.2493 O 0.4649 0.3379 0.0182 O 0.2599 0.2887 0.0823 O 0.4227 0.1154 0.0844 O 0.3540 0.2256 0.0367 O 0.3149 0.3370 0.1566 O 0.3444 0.2214 0.2700 O 0.4637 0.4430 0.0916 O 0.3630 0.4786 0.1505 O 0.4769 0.3149 0.2101 O 0.0317 0.2099 0.0888 O 0.0044 0.0704 0.1691 O 0.4021 0.2188 0.1647 O 0.3491 0.0946 0.1944 O 0.1454 0.2599 0.1745 O 0.0917 0.1986 0.2603 O 0.1225 0.1012 0.1158 O 0.1531 0.0787 0.2665 O 0.2233 0.4194 0.0720 O 0.0965 0.2869 0.0016 O 0.0940 0.4833 0.0633 O 0.0438 0.3333 0.1362 O 0.1318 0.3738 0.2626 O 0.2601 0.3165 0.2405 O 0.1857 0.4381 0.1633 O 0.3957 0.4145 0.2351 O 0.0718 0.4950 0.3099 O 0.1671 0.1929 0.3900 O 0.3341 0.0386 0.3665 O 0.2447 0.1376 0.6554 O 0.4187 0.0083 0.6295 O 0.2082 0.0703 0.5124 O 0.4600 0.1373 0.5826 O 0.4649 0.3379 0.3515 O 0.2599 0.2887 0.4156 O 0.4227 0.1154 0.4177 O 0.3540 0.2256 0.3700 O 0.3149 0.3370 0.4899 O 0.3444 0.2214 0.6033 O 0.4637 0.4430 0.4249 O 0.3630 0.4786 0.4838 O 0.4769 0.3149 0.5434 O 0.0317 0.2099 0.4221 O 0.0044 0.0704 0.5024 O 0.4021 0.2188 0.4980 O 0.3491 0.0946 0.5277 O 0.1454 0.2599 0.5078 O 0.0917 0.1986 0.5936 O 0.1225 0.1012 0.4491 O 0.1531 0.0787 0.5998 O 0.2233 0.4194 0.4053 O 0.0965 0.2869 0.3349 O 0.0940 0.4833 0.3966 O 0.0438 0.3333 0.4695 O 0.1318 0.3738 0.5959 O 0.2601 0.3165 0.5738 O 0.1857 0.4381 0.4966 O 0.3957 0.4145 0.5684 O 0.0718 0.4950 0.6432 O 0.1671 0.1929 0.7234 O 0.3341 0.0386 0.6999 O 0.2447 0.1376 0.9888 O 0.4187 0.0083 0.9629 O 0.2082 0.0703 0.8458 O 0.4600 0.1373 0.9160 O 0.4649 0.3379 0.6849 O 0.2599 0.2887 0.7490 O 0.4227 0.1154 0.7511 O 0.3540 0.2256 0.7034 O 0.3149 0.3370 0.8233 O 0.3444 0.2214 0.9367 O 0.4637 0.4430 0.7583 O 0.3630 0.4786 0.8172 O 0.4769 0.3149 0.8768 O 0.0317 0.2099 0.7555 O 0.0044 0.0704 0.8358 O 0.4021 0.2188 0.8314 O 0.3491 0.0946 0.8611 O 0.1454 0.2599 0.8412 O 0.0917 0.1986 0.9270 O 0.1225 0.1012 0.7825 O 0.1531 0.0787 0.9332 O 0.2233 0.4194 0.7387 O 0.0965 0.2869 0.6683 O 0.0940 0.4833 0.7300 O 0.0438 0.3333 0.8029 O 0.1318 0.3738 0.9293 O 0.2601 0.3165 0.9072 O 0.1857 0.4381 0.8300 O 0.3957 0.4145 0.9018 O 0.0718 0.4950 0.9766 O 0.1671 0.6929 0.0567 O 0.3341 0.5386 0.0332 O 0.2447 0.6376 0.3221 O 0.4187 0.5083 0.2962 O 0.2082 0.5703 0.1791 O 0.4600 0.6373 0.2493 O 0.4649 0.8379 0.0182 O 0.2599 0.7887 0.0823 O 0.4227 0.6154 0.0844 O 0.3540 0.7256 0.0367 O 0.3149 0.8370 0.1566 O 0.3444 0.7214 0.2700 O 0.4637 0.9430 0.0916 O 0.3630 0.9786 0.1505 O 0.4769 0.8149 0.2101 O 0.0317 0.7099 0.0888 O 0.0044 0.5704 0.1691 O 0.4021 0.7188 0.1647 O 0.3491 0.5946 0.1944 O 0.1454 0.7599 0.1745 O 0.0917 0.6986 0.2603 O 0.1225 0.6012 0.1158 O 0.1531 0.5787 0.2665 O 0.2233 0.9194 0.0720 O 0.0965 0.7869 0.0016 O 0.0940 0.9833 0.0633 O 0.0438 0.8333 0.1362 O 0.1318 0.8738 0.2626 O 0.2601 0.8165 0.2405 O 0.1857 0.9381 0.1633 O 0.3957 0.9145 0.2351 O 0.0718 0.9950 0.3099 O 0.1671 0.6929 0.3900 O 0.3341 0.5386 0.3665 O 0.2447 0.6376 0.6554 O 0.4187 0.5083 0.6295 O 0.2082 0.5703 0.5124 O 0.4600 0.6373 0.5826 O 0.4649 0.8379 0.3515 O 0.2599 0.7887 0.4156 O 0.4227 0.6154 0.4177 O 0.3540 0.7256 0.3700 O 0.3149 0.8370 0.4899 O 0.3444 0.7214 0.6033 O 0.4637 0.9430 0.4249 O 0.3630 0.9786 0.4838 O 0.4769 0.8149 0.5434 O 0.0317 0.7099 0.4221 O 0.0044 0.5704 0.5024 O 0.4021 0.7188 0.4980 O 0.3491 0.5946 0.5277 O 0.1454 0.7599 0.5078 O 0.0917 0.6986 0.5936 O 0.1225 0.6012 0.4491 O 0.1531 0.5787 0.5998 O 0.2233 0.9194 0.4053 O 0.0965 0.7869 0.3349 O 0.0940 0.9833 0.3966 O 0.0438 0.8333 0.4695 O 0.1318 0.8738 0.5959 O 0.2601 0.8165 0.5738 O 0.1857 0.9381 0.4966 O 0.3957 0.9145 0.5684 O 0.0718 0.9950 0.6432 O 0.1671 0.6929 0.7234 O 0.3341 0.5386 0.6999 O 0.2447 0.6376 0.9888 O 0.4187 0.5083 0.9629 O 0.2082 0.5703 0.8458 O 0.4600 0.6373 0.9160 O 0.4649 0.8379 0.6849 O 0.2599 0.7887 0.7490 O 0.4227 0.6154 0.7511 O 0.3540 0.7256 0.7034 O 0.3149 0.8370 0.8233 O 0.3444 0.7214 0.9367 O 0.4637 0.9430 0.7583 O 0.3630 0.9786 0.8172 O 0.4769 0.8149 0.8768 O 0.0317 0.7099 0.7555 O 0.0044 0.5704 0.8358 O 0.4021 0.7188 0.8314 O 0.3491 0.5946 0.8611 O 0.1454 0.7599 0.8412 O 0.0917 0.6986 0.9270 O 0.1225 0.6012 0.7825 O 0.1531 0.5787 0.9332 O 0.2233 0.9194 0.7387 O 0.0965 0.7869 0.6683 O 0.0940 0.9833 0.7300 O 0.0438 0.8333 0.8029 O 0.1318 0.8738 0.9293 O 0.2601 0.8165 0.9072 O 0.1857 0.9381 0.8300 O 0.3957 0.9145 0.9018 O 0.0718 0.9950 0.9766 O 0.6671 0.1929 0.0567 O 0.8341 0.0386 0.0332 O 0.7447 0.1376 0.3221 O 0.9187 0.0083 0.2962 O 0.7082 0.0703 0.1791 O 0.9600 0.1373 0.2493 O 0.9649 0.3379 0.0182 O 0.7599 0.2887 0.0823 O 0.9227 0.1154 0.0844 O 0.8540 0.2256 0.0367 O 0.8149 0.3370 0.1566 O 0.8444 0.2214 0.2700 O 0.9637 0.4430 0.0916 O 0.8630 0.4786 0.1505 O 0.9769 0.3149 0.2101 O 0.5317 0.2099 0.0888 O 0.5044 0.0704 0.1691 O 0.9021 0.2188 0.1647 O 0.8491 0.0946 0.1944 O 0.6454 0.2599 0.1745 O 0.5917 0.1986 0.2603 O 0.6225 0.1012 0.1158 O 0.6531 0.0787 0.2665 O 0.7233 0.4194 0.0720 O 0.5965 0.2869 0.0016 O 0.5940 0.4833 0.0633 O 0.5438 0.3333 0.1362 O 0.6318 0.3738 0.2626 O 0.7601 0.3165 0.2405 O 0.6857 0.4381 0.1633 O 0.8957 0.4145 0.2351 O 0.5718 0.4950 0.3099 O 0.6671 0.1929 0.3900 O 0.8341 0.0386 0.3665 O 0.7447 0.1376 0.6554 O 0.9187 0.0083 0.6295 O 0.7082 0.0703 0.5124 O 0.9600 0.1373 0.5826 O 0.9649 0.3379 0.3515 O 0.7599 0.2887 0.4156 O 0.9227 0.1154 0.4177 O 0.8540 0.2256 0.3700 O 0.8149 0.3370 0.4899 O 0.8444 0.2214 0.6033 O 0.9637 0.4430 0.4249 O 0.8630 0.4786 0.4838 O 0.9769 0.3149 0.5434 O 0.5317 0.2099 0.4221 O 0.5044 0.0704 0.5024 O 0.9021 0.2188 0.4980 O 0.8491 0.0946 0.5277 O 0.6454 0.2599 0.5078 O 0.5917 0.1986 0.5936 O 0.6225 0.1012 0.4491 O 0.6531 0.0787 0.5998 O 0.7233 0.4194 0.4053 O 0.5965 0.2869 0.3349 O 0.5940 0.4833 0.3966 O 0.5438 0.3333 0.4695 O 0.6318 0.3738 0.5959 O 0.7601 0.3165 0.5738 O 0.6857 0.4381 0.4966 O 0.8957 0.4145 0.5684 O 0.5718 0.4950 0.6432 O 0.6671 0.1929 0.7234 O 0.8341 0.0386 0.6999 O 0.7447 0.1376 0.9888 O 0.9187 0.0083 0.9629 O 0.7082 0.0703 0.8458 O 0.9600 0.1373 0.9160 O 0.9649 0.3379 0.6849 O 0.7599 0.2887 0.7490 O 0.9227 0.1154 0.7511 O 0.8540 0.2256 0.7034 O 0.8149 0.3370 0.8233 O 0.8444 0.2214 0.9367 O 0.9637 0.4430 0.7583 O 0.8630 0.4786 0.8172 O 0.9769 0.3149 0.8768 O 0.5317 0.2099 0.7555 O 0.5044 0.0704 0.8358 O 0.9021 0.2188 0.8314 O 0.8491 0.0946 0.8611 O 0.6454 0.2599 0.8412 O 0.5917 0.1986 0.9270 O 0.6225 0.1012 0.7825 O 0.6531 0.0787 0.9332 O 0.7233 0.4194 0.7387 O 0.5965 0.2869 0.6683 O 0.5940 0.4833 0.7300 O 0.5438 0.3333 0.8029 O 0.6318 0.3738 0.9293 O 0.7601 0.3165 0.9072 O 0.6857 0.4381 0.8300 O 0.8957 0.4145 0.9018 O 0.5718 0.4950 0.9766 O 0.6671 0.6929 0.0567 O 0.8341 0.5386 0.0332 O 0.7447 0.6376 0.3221 O 0.9187 0.5083 0.2962 O 0.7082 0.5703 0.1791 O 0.9600 0.6373 0.2493 O 0.9649 0.8379 0.0182 O 0.7599 0.7887 0.0823 O 0.9227 0.6154 0.0844 O 0.8540 0.7256 0.0367 O 0.8149 0.8370 0.1566 O 0.8444 0.7214 0.2700 O 0.9637 0.9430 0.0916 O 0.8630 0.9786 0.1505 O 0.9769 0.8149 0.2101 O 0.5317 0.7099 0.0888 O 0.5044 0.5704 0.1691 O 0.9021 0.7188 0.1647 O 0.8491 0.5946 0.1944 O 0.6454 0.7599 0.1745 O 0.5917 0.6986 0.2603 O 0.6225 0.6012 0.1158 O 0.6531 0.5787 0.2665 O 0.7233 0.9194 0.0720 O 0.5965 0.7869 0.0016 O 0.5940 0.9833 0.0633 O 0.5438 0.8333 0.1362 O 0.6318 0.8738 0.2626 O 0.7601 0.8165 0.2405 O 0.6857 0.9381 0.1633 O 0.8957 0.9145 0.2351 O 0.5718 0.9950 0.3099 O 0.6671 0.6929 0.3900 O 0.8341 0.5386 0.3665 O 0.7447 0.6376 0.6554 O 0.9187 0.5083 0.6295 O 0.7082 0.5703 0.5124 O 0.9600 0.6373 0.5826 O 0.9649 0.8379 0.3515 O 0.7599 0.7887 0.4156 O 0.9227 0.6154 0.4177 O 0.8540 0.7256 0.3700 O 0.8149 0.8370 0.4899 O 0.8444 0.7214 0.6033 O 0.9637 0.9430 0.4249 O 0.8630 0.9786 0.4838 O 0.9769 0.8149 0.5434 O 0.5317 0.7099 0.4221 O 0.5044 0.5704 0.5024 O 0.9021 0.7188 0.4980 O 0.8491 0.5946 0.5277 O 0.6454 0.7599 0.5078 O 0.5917 0.6986 0.5936 O 0.6225 0.6012 0.4491 O 0.6531 0.5787 0.5998 O 0.7233 0.9194 0.4053 O 0.5965 0.7869 0.3349 O 0.5940 0.9833 0.3966 O 0.5438 0.8333 0.4695 O 0.6318 0.8738 0.5959 O 0.7601 0.8165 0.5738 O 0.6857 0.9381 0.4966 O 0.8957 0.9145 0.5684 O 0.5718 0.9950 0.6432 O 0.6671 0.6929 0.7234 O 0.8341 0.5386 0.6999 O 0.7447 0.6376 0.9888 O 0.9187 0.5083 0.9629 O 0.7082 0.5703 0.8458 O 0.9600 0.6373 0.9160 O 0.9649 0.8379 0.6849 O 0.7599 0.7887 0.7490 O 0.9227 0.6154 0.7511 O 0.8540 0.7256 0.7034 O 0.8149 0.8370 0.8233 O 0.8444 0.7214 0.9367 O 0.9637 0.9430 0.7583 O 0.8630 0.9786 0.8172 O 0.9769 0.8149 0.8768 O 0.5317 0.7099 0.7555 O 0.5044 0.5704 0.8358 O 0.9021 0.7188 0.8314 O 0.8491 0.5946 0.8611 O 0.6454 0.7599 0.8412 O 0.5917 0.6986 0.9270 O 0.6225 0.6012 0.7825 O 0.6531 0.5787 0.9332 O 0.7233 0.9194 0.7387 O 0.5965 0.7869 0.6683 O 0.5940 0.9833 0.7300 O 0.5438 0.8333 0.8029 O 0.6318 0.8738 0.9293 O 0.7601 0.8165 0.9072 O 0.6857 0.9381 0.8300 O 0.8957 0.9145 0.9018 O 0.5718 0.9950 0.9766 H 0.1871 0.1680 0.0310 H 0.1575 0.1613 0.0824 H 0.4703 0.0902 0.1505 H 0.3031 0.0043 0.0457 H 0.3615 0.0177 0.0088 H 0.2730 0.1001 0.3295 H 0.2751 0.1635 0.3010 H 0.4269 0.0524 0.2827 H 0.2125 0.0216 0.1737 H 0.1861 0.0771 0.2092 H 0.3520 0.0243 0.1636 H 0.4689 0.1095 0.2207 H 0.4541 0.3669 0.0438 H 0.2970 0.2702 0.0640 H 0.2207 0.2570 0.0768 H 0.3987 0.0811 0.0646 H 0.4676 0.1245 0.0723 H 0.3748 0.1897 0.0588 H 0.3885 0.2631 0.0316 H 0.3621 0.3244 0.1505 H 0.2906 0.3078 0.1344 H 0.3805 0.1996 0.2529 H 0.3626 0.2275 0.3004 H 0.4903 0.4059 0.1053 H 0.4387 0.4617 0.1169 H 0.4133 0.4716 0.2728 H 0.3220 0.4527 0.1553 H 0.4550 0.3541 0.2246 H 0.0573 0.1737 0.1043 H 0.0588 0.2296 0.0645 H 0.0492 0.0932 0.1647 H 0.4366 0.2452 0.1811 H 0.4233 0.2024 0.1368 H 0.2992 0.0925 0.1919 H 0.3628 0.1433 0.1873 H 0.1234 0.3005 0.1649 H 0.1827 0.2756 0.1922 H 0.1109 0.2239 0.2328 H 0.1136 0.1514 0.2579 H 0.0044 0.1586 0.2583 H 0.1603 0.0878 0.1375 H 0.1154 0.0625 0.0933 H 0.1210 0.0513 0.2850 H 0.1876 0.0982 0.2901 H 0.1739 0.4279 0.0634 H 0.2369 0.3709 0.0701 H 0.0149 0.3313 0.0202 H 0.1334 0.2680 0.0200 H 0.0846 0.4941 0.0319 H 0.0476 0.4689 0.0746 H 0.0080 0.3244 0.1589 H 0.0470 0.2869 0.1243 H 0.1364 0.3498 0.2921 H 0.1776 0.3740 0.2506 H 0.2906 0.2788 0.2526 H 0.2802 0.3308 0.2116 H 0.0871 0.2570 0.3095 H 0.1513 0.4029 0.1695 H 0.2034 0.4286 0.1313 H 0.3520 0.3982 0.2455 H 0.3858 0.4304 0.2032 H 0.0074 0.3021 0.2355 H 0.0917 0.4556 0.2887 H 0.0246 0.4947 0.3069 H 0.1871 0.1680 0.3643 H 0.1575 0.1613 0.4157 H 0.4703 0.0902 0.4838 H 0.3031 0.0043 0.3790 H 0.3615 0.0177 0.3421 H 0.2730 0.1001 0.6628 H 0.2751 0.1635 0.6343 H 0.4269 0.0524 0.6160 H 0.2125 0.0216 0.5070 H 0.1861 0.0771 0.5425 H 0.3520 0.0243 0.4969 H 0.4689 0.1095 0.5540 H 0.4541 0.3669 0.3771 H 0.2970 0.2702 0.3973 H 0.2207 0.2570 0.4101 H 0.3987 0.0811 0.3979 H 0.4676 0.1245 0.4056 H 0.3748 0.1897 0.3921 H 0.3885 0.2631 0.3649 H 0.3621 0.3244 0.4838 H 0.2906 0.3078 0.4677 H 0.3805 0.1996 0.5862 H 0.3626 0.2275 0.6337 H 0.4903 0.4059 0.4386 H 0.4387 0.4617 0.4502 H 0.4133 0.4716 0.6061 H 0.3220 0.4527 0.4886 H 0.4550 0.3541 0.5579 H 0.0573 0.1737 0.4376 H 0.0588 0.2296 0.3978 H 0.0492 0.0932 0.4980 H 0.4366 0.2452 0.5144 H 0.4233 0.2024 0.4701 H 0.2992 0.0925 0.5252 H 0.3628 0.1433 0.5206 H 0.1234 0.3005 0.4982 H 0.1827 0.2756 0.5255 H 0.1109 0.2239 0.5661 H 0.1136 0.1514 0.5912 H 0.0044 0.1586 0.5916 H 0.1603 0.0878 0.4708 H 0.1154 0.0625 0.4266 H 0.1210 0.0513 0.6183 H 0.1876 0.0982 0.6234 H 0.1739 0.4279 0.3967 H 0.2369 0.3709 0.4034 H 0.0149 0.3313 0.3535 H 0.1334 0.2680 0.3533 H 0.0846 0.4941 0.3652 H 0.0476 0.4689 0.4079 H 0.0080 0.3244 0.4922 H 0.0470 0.2869 0.4576 H 0.1364 0.3498 0.6254 H 0.1776 0.3740 0.5839 H 0.2906 0.2788 0.5859 H 0.2802 0.3308 0.5449 H 0.0871 0.2570 0.6428 H 0.1513 0.4029 0.5028 H 0.2034 0.4286 0.4646 H 0.3520 0.3982 0.5788 H 0.3858 0.4304 0.5365 H 0.0074 0.3021 0.5688 H 0.0917 0.4556 0.6220 H 0.0246 0.4947 0.6402 H 0.1871 0.1680 0.6977 H 0.1575 0.1613 0.7491 H 0.4703 0.0902 0.8172 H 0.3031 0.0043 0.7124 H 0.3615 0.0177 0.6755 H 0.2730 0.1001 0.9962 H 0.2751 0.1635 0.9677 H 0.4269 0.0524 0.9494 H 0.2125 0.0216 0.8404 H 0.1861 0.0771 0.8759 H 0.3520 0.0243 0.8303 H 0.4689 0.1095 0.8874 H 0.4541 0.3669 0.7105 H 0.2970 0.2702 0.7307 H 0.2207 0.2570 0.7435 H 0.3987 0.0811 0.7313 H 0.4676 0.1245 0.7390 H 0.3748 0.1897 0.7255 H 0.3885 0.2631 0.6983 H 0.3621 0.3244 0.8172 H 0.2906 0.3078 0.8011 H 0.3805 0.1996 0.9196 H 0.3626 0.2275 0.9671 H 0.4903 0.4059 0.7720 H 0.4387 0.4617 0.7836 H 0.4133 0.4716 0.9395 H 0.3220 0.4527 0.8220 H 0.4550 0.3541 0.8913 H 0.0573 0.1737 0.7710 H 0.0588 0.2296 0.7312 H 0.0492 0.0932 0.8314 H 0.4366 0.2452 0.8478 H 0.4233 0.2024 0.8035 H 0.2992 0.0925 0.8586 H 0.3628 0.1433 0.8540 H 0.1234 0.3005 0.8316 H 0.1827 0.2756 0.8589 H 0.1109 0.2239 0.8995 H 0.1136 0.1514 0.9246 H 0.0044 0.1586 0.9250 H 0.1603 0.0878 0.8042 H 0.1154 0.0625 0.7600 H 0.1210 0.0513 0.9517 H 0.1876 0.0982 0.9568 H 0.1739 0.4279 0.7301 H 0.2369 0.3709 0.7368 H 0.0149 0.3313 0.6869 H 0.1334 0.2680 0.6867 H 0.0846 0.4941 0.6986 H 0.0476 0.4689 0.7413 H 0.0080 0.3244 0.8256 H 0.0470 0.2869 0.7910 H 0.1364 0.3498 0.9588 H 0.1776 0.3740 0.9173 H 0.2906 0.2788 0.9193 H 0.2802 0.3308 0.8783 H 0.0871 0.2570 0.9762 H 0.1513 0.4029 0.8362 H 0.2034 0.4286 0.7980 H 0.3520 0.3982 0.9122 H 0.3858 0.4304 0.8699 H 0.0074 0.3021 0.9022 H 0.0917 0.4556 0.9554 H 0.0246 0.4947 0.9736 H 0.1871 0.6680 0.0310 H 0.1575 0.6613 0.0824 H 0.4703 0.5902 0.1505 H 0.3031 0.5043 0.0457 H 0.3615 0.5177 0.0088 H 0.2730 0.6001 0.3295 H 0.2751 0.6635 0.3010 H 0.4269 0.5524 0.2827 H 0.2125 0.5216 0.1737 H 0.1861 0.5771 0.2092 H 0.3520 0.5243 0.1636 H 0.4689 0.6095 0.2207 H 0.4541 0.8669 0.0438 H 0.2970 0.7702 0.0640 H 0.2207 0.7570 0.0768 H 0.3987 0.5811 0.0646 H 0.4676 0.6245 0.0723 H 0.3748 0.6897 0.0588 H 0.3885 0.7631 0.0316 H 0.3621 0.8244 0.1505 H 0.2906 0.8078 0.1344 H 0.3805 0.6996 0.2529 H 0.3626 0.7275 0.3004 H 0.4903 0.9059 0.1053 H 0.4387 0.9617 0.1169 H 0.4133 0.9716 0.2728 H 0.3220 0.9527 0.1553 H 0.4550 0.8541 0.2246 H 0.0573 0.6737 0.1043 H 0.0588 0.7296 0.0645 H 0.0492 0.5932 0.1647 H 0.4366 0.7452 0.1811 H 0.4233 0.7024 0.1368 H 0.2992 0.5925 0.1919 H 0.3628 0.6433 0.1873 H 0.1234 0.8005 0.1649 H 0.1827 0.7756 0.1922 H 0.1109 0.7239 0.2328 H 0.1136 0.6514 0.2579 H 0.0044 0.6586 0.2583 H 0.1603 0.5878 0.1375 H 0.1154 0.5625 0.0933 H 0.1210 0.5513 0.2850 H 0.1876 0.5982 0.2901 H 0.1739 0.9279 0.0634 H 0.2369 0.8709 0.0701 H 0.0149 0.8313 0.0202 H 0.1334 0.7680 0.0200 H 0.0846 0.9941 0.0319 H 0.0476 0.9689 0.0746 H 0.0080 0.8244 0.1589 H 0.0470 0.7869 0.1243 H 0.1364 0.8498 0.2921 H 0.1776 0.8740 0.2506 H 0.2906 0.7788 0.2526 H 0.2802 0.8308 0.2116 H 0.0871 0.7570 0.3095 H 0.1513 0.9029 0.1695 H 0.2034 0.9286 0.1313 H 0.3520 0.8982 0.2455 H 0.3858 0.9304 0.2032 H 0.0074 0.8021 0.2355 H 0.0917 0.9556 0.2887 H 0.0246 0.9947 0.3069 H 0.1871 0.6680 0.3643 H 0.1575 0.6613 0.4157 H 0.4703 0.5902 0.4838 H 0.3031 0.5043 0.3790 H 0.3615 0.5177 0.3421 H 0.2730 0.6001 0.6628 H 0.2751 0.6635 0.6343 H 0.4269 0.5524 0.6160 H 0.2125 0.5216 0.5070 H 0.1861 0.5771 0.5425 H 0.3520 0.5243 0.4969 H 0.4689 0.6095 0.5540 H 0.4541 0.8669 0.3771 H 0.2970 0.7702 0.3973 H 0.2207 0.7570 0.4101 H 0.3987 0.5811 0.3979 H 0.4676 0.6245 0.4056 H 0.3748 0.6897 0.3921 H 0.3885 0.7631 0.3649 H 0.3621 0.8244 0.4838 H 0.2906 0.8078 0.4677 H 0.3805 0.6996 0.5862 H 0.3626 0.7275 0.6337 H 0.4903 0.9059 0.4386 H 0.4387 0.9617 0.4502 H 0.4133 0.9716 0.6061 H 0.3220 0.9527 0.4886 H 0.4550 0.8541 0.5579 H 0.0573 0.6737 0.4376 H 0.0588 0.7296 0.3978 H 0.0492 0.5932 0.4980 H 0.4366 0.7452 0.5144 H 0.4233 0.7024 0.4701 H 0.2992 0.5925 0.5252 H 0.3628 0.6433 0.5206 H 0.1234 0.8005 0.4982 H 0.1827 0.7756 0.5255 H 0.1109 0.7239 0.5661 H 0.1136 0.6514 0.5912 H 0.0044 0.6586 0.5916 H 0.1603 0.5878 0.4708 H 0.1154 0.5625 0.4266 H 0.1210 0.5513 0.6183 H 0.1876 0.5982 0.6234 H 0.1739 0.9279 0.3967 H 0.2369 0.8709 0.4034 H 0.0149 0.8313 0.3535 H 0.1334 0.7680 0.3533 H 0.0846 0.9941 0.3652 H 0.0476 0.9689 0.4079 H 0.0080 0.8244 0.4922 H 0.0470 0.7869 0.4576 H 0.1364 0.8498 0.6254 H 0.1776 0.8740 0.5839 H 0.2906 0.7788 0.5859 H 0.2802 0.8308 0.5449 H 0.0871 0.7570 0.6428 H 0.1513 0.9029 0.5028 H 0.2034 0.9286 0.4646 H 0.3520 0.8982 0.5788 H 0.3858 0.9304 0.5365 H 0.0074 0.8021 0.5688 H 0.0917 0.9556 0.6220 H 0.0246 0.9947 0.6402 H 0.1871 0.6680 0.6977 H 0.1575 0.6613 0.7491 H 0.4703 0.5902 0.8172 H 0.3031 0.5043 0.7124 H 0.3615 0.5177 0.6755 H 0.2730 0.6001 0.9962 H 0.2751 0.6635 0.9677 H 0.4269 0.5524 0.9494 H 0.2125 0.5216 0.8404 H 0.1861 0.5771 0.8759 H 0.3520 0.5243 0.8303 H 0.4689 0.6095 0.8874 H 0.4541 0.8669 0.7105 H 0.2970 0.7702 0.7307 H 0.2207 0.7570 0.7435 H 0.3987 0.5811 0.7313 H 0.4676 0.6245 0.7390 H 0.3748 0.6897 0.7255 H 0.3885 0.7631 0.6983 H 0.3621 0.8244 0.8172 H 0.2906 0.8078 0.8011 H 0.3805 0.6996 0.9196 H 0.3626 0.7275 0.9671 H 0.4903 0.9059 0.7720 H 0.4387 0.9617 0.7836 H 0.4133 0.9716 0.9395 H 0.3220 0.9527 0.8220 H 0.4550 0.8541 0.8913 H 0.0573 0.6737 0.7710 H 0.0588 0.7296 0.7312 H 0.0492 0.5932 0.8314 H 0.4366 0.7452 0.8478 H 0.4233 0.7024 0.8035 H 0.2992 0.5925 0.8586 H 0.3628 0.6433 0.8540 H 0.1234 0.8005 0.8316 H 0.1827 0.7756 0.8589 H 0.1109 0.7239 0.8995 H 0.1136 0.6514 0.9246 H 0.0044 0.6586 0.9250 H 0.1603 0.5878 0.8042 H 0.1154 0.5625 0.7600 H 0.1210 0.5513 0.9517 H 0.1876 0.5982 0.9568 H 0.1739 0.9279 0.7301 H 0.2369 0.8709 0.7368 H 0.0149 0.8313 0.6869 H 0.1334 0.7680 0.6867 H 0.0846 0.9941 0.6986 H 0.0476 0.9689 0.7413 H 0.0080 0.8244 0.8256 H 0.0470 0.7869 0.7910 H 0.1364 0.8498 0.9588 H 0.1776 0.8740 0.9173 H 0.2906 0.7788 0.9193 H 0.2802 0.8308 0.8783 H 0.0871 0.7570 0.9762 H 0.1513 0.9029 0.8362 H 0.2034 0.9286 0.7980 H 0.3520 0.8982 0.9122 H 0.3858 0.9304 0.8699 H 0.0074 0.8021 0.9022 H 0.0917 0.9556 0.9554 H 0.0246 0.9947 0.9736 H 0.6871 0.1680 0.0310 H 0.6575 0.1613 0.0824 H 0.9703 0.0902 0.1505 H 0.8031 0.0043 0.0457 H 0.8615 0.0177 0.0088 H 0.7730 0.1001 0.3295 H 0.7751 0.1635 0.3010 H 0.9269 0.0524 0.2827 H 0.7125 0.0216 0.1737 H 0.6861 0.0771 0.2092 H 0.8520 0.0243 0.1636 H 0.9689 0.1095 0.2207 H 0.9541 0.3669 0.0438 H 0.7970 0.2702 0.0640 H 0.7207 0.2570 0.0768 H 0.8987 0.0811 0.0646 H 0.9676 0.1245 0.0723 H 0.8748 0.1897 0.0588 H 0.8885 0.2631 0.0316 H 0.8621 0.3244 0.1505 H 0.7906 0.3078 0.1344 H 0.8805 0.1996 0.2529 H 0.8626 0.2275 0.3004 H 0.9903 0.4059 0.1053 H 0.9387 0.4617 0.1169 H 0.9133 0.4716 0.2728 H 0.8220 0.4527 0.1553 H 0.9550 0.3541 0.2246 H 0.5573 0.1737 0.1043 H 0.5588 0.2296 0.0645 H 0.5492 0.0932 0.1647 H 0.9366 0.2452 0.1811 H 0.9233 0.2024 0.1368 H 0.7992 0.0925 0.1919 H 0.8628 0.1433 0.1873 H 0.6234 0.3005 0.1649 H 0.6827 0.2756 0.1922 H 0.6109 0.2239 0.2328 H 0.6136 0.1514 0.2579 H 0.5044 0.1586 0.2583 H 0.6603 0.0878 0.1375 H 0.6154 0.0625 0.0933 H 0.6210 0.0513 0.2850 H 0.6876 0.0982 0.2901 H 0.6739 0.4279 0.0634 H 0.7369 0.3709 0.0701 H 0.5149 0.3313 0.0202 H 0.6334 0.2680 0.0200 H 0.5846 0.4941 0.0319 H 0.5476 0.4689 0.0746 H 0.5080 0.3244 0.1589 H 0.5470 0.2869 0.1243 H 0.6364 0.3498 0.2921 H 0.6776 0.3740 0.2506 H 0.7906 0.2788 0.2526 H 0.7802 0.3308 0.2116 H 0.5871 0.2570 0.3095 H 0.6513 0.4029 0.1695 H 0.7034 0.4286 0.1313 H 0.8520 0.3982 0.2455 H 0.8858 0.4304 0.2032 H 0.5074 0.3021 0.2355 H 0.5917 0.4556 0.2887 H 0.5246 0.4947 0.3069 H 0.6871 0.1680 0.3643 H 0.6575 0.1613 0.4157 H 0.9703 0.0902 0.4838 H 0.8031 0.0043 0.3790 H 0.8615 0.0177 0.3421 H 0.7730 0.1001 0.6628 H 0.7751 0.1635 0.6343 H 0.9269 0.0524 0.6160 H 0.7125 0.0216 0.5070 H 0.6861 0.0771 0.5425 H 0.8520 0.0243 0.4969 H 0.9689 0.1095 0.5540 H 0.9541 0.3669 0.3771 H 0.7970 0.2702 0.3973 H 0.7207 0.2570 0.4101 H 0.8987 0.0811 0.3979 H 0.9676 0.1245 0.4056 H 0.8748 0.1897 0.3921 H 0.8885 0.2631 0.3649 H 0.8621 0.3244 0.4838 H 0.7906 0.3078 0.4677 H 0.8805 0.1996 0.5862 H 0.8626 0.2275 0.6337 H 0.9903 0.4059 0.4386 H 0.9387 0.4617 0.4502 H 0.9133 0.4716 0.6061 H 0.8220 0.4527 0.4886 H 0.9550 0.3541 0.5579 H 0.5573 0.1737 0.4376 H 0.5588 0.2296 0.3978 H 0.5492 0.0932 0.4980 H 0.9366 0.2452 0.5144 H 0.9233 0.2024 0.4701 H 0.7992 0.0925 0.5252 H 0.8628 0.1433 0.5206 H 0.6234 0.3005 0.4982 H 0.6827 0.2756 0.5255 H 0.6109 0.2239 0.5661 H 0.6136 0.1514 0.5912 H 0.5044 0.1586 0.5916 H 0.6603 0.0878 0.4708 H 0.6154 0.0625 0.4266 H 0.6210 0.0513 0.6183 H 0.6876 0.0982 0.6234 H 0.6739 0.4279 0.3967 H 0.7369 0.3709 0.4034 H 0.5149 0.3313 0.3535 H 0.6334 0.2680 0.3533 H 0.5846 0.4941 0.3652 H 0.5476 0.4689 0.4079 H 0.5080 0.3244 0.4922 H 0.5470 0.2869 0.4576 H 0.6364 0.3498 0.6254 H 0.6776 0.3740 0.5839 H 0.7906 0.2788 0.5859 H 0.7802 0.3308 0.5449 H 0.5871 0.2570 0.6428 H 0.6513 0.4029 0.5028 H 0.7034 0.4286 0.4646 H 0.8520 0.3982 0.5788 H 0.8858 0.4304 0.5365 H 0.5074 0.3021 0.5688 H 0.5917 0.4556 0.6220 H 0.5246 0.4947 0.6402 H 0.6871 0.1680 0.6977 H 0.6575 0.1613 0.7491 H 0.9703 0.0902 0.8172 H 0.8031 0.0043 0.7124 H 0.8615 0.0177 0.6755 H 0.7730 0.1001 0.9962 H 0.7751 0.1635 0.9677 H 0.9269 0.0524 0.9494 H 0.7125 0.0216 0.8404 H 0.6861 0.0771 0.8759 H 0.8520 0.0243 0.8303 H 0.9689 0.1095 0.8874 H 0.9541 0.3669 0.7105 H 0.7970 0.2702 0.7307 H 0.7207 0.2570 0.7435 H 0.8987 0.0811 0.7313 H 0.9676 0.1245 0.7390 H 0.8748 0.1897 0.7255 H 0.8885 0.2631 0.6983 H 0.8621 0.3244 0.8172 H 0.7906 0.3078 0.8011 H 0.8805 0.1996 0.9196 H 0.8626 0.2275 0.9671 H 0.9903 0.4059 0.7720 H 0.9387 0.4617 0.7836 H 0.9133 0.4716 0.9395 H 0.8220 0.4527 0.8220 H 0.9550 0.3541 0.8913 H 0.5573 0.1737 0.7710 H 0.5588 0.2296 0.7312 H 0.5492 0.0932 0.8314 H 0.9366 0.2452 0.8478 H 0.9233 0.2024 0.8035 H 0.7992 0.0925 0.8586 H 0.8628 0.1433 0.8540 H 0.6234 0.3005 0.8316 H 0.6827 0.2756 0.8589 H 0.6109 0.2239 0.8995 H 0.6136 0.1514 0.9246 H 0.5044 0.1586 0.9250 H 0.6603 0.0878 0.8042 H 0.6154 0.0625 0.7600 H 0.6210 0.0513 0.9517 H 0.6876 0.0982 0.9568 H 0.6739 0.4279 0.7301 H 0.7369 0.3709 0.7368 H 0.5149 0.3313 0.6869 H 0.6334 0.2680 0.6867 H 0.5846 0.4941 0.6986 H 0.5476 0.4689 0.7413 H 0.5080 0.3244 0.8256 H 0.5470 0.2869 0.7910 H 0.6364 0.3498 0.9588 H 0.6776 0.3740 0.9173 H 0.7906 0.2788 0.9193 H 0.7802 0.3308 0.8783 H 0.5871 0.2570 0.9762 H 0.6513 0.4029 0.8362 H 0.7034 0.4286 0.7980 H 0.8520 0.3982 0.9122 H 0.8858 0.4304 0.8699 H 0.5074 0.3021 0.9022 H 0.5917 0.4556 0.9554 H 0.5246 0.4947 0.9736 H 0.6871 0.6680 0.0310 H 0.6575 0.6613 0.0824 H 0.9703 0.5902 0.1505 H 0.8031 0.5043 0.0457 H 0.8615 0.5177 0.0088 H 0.7730 0.6001 0.3295 H 0.7751 0.6635 0.3010 H 0.9269 0.5524 0.2827 H 0.7125 0.5216 0.1737 H 0.6861 0.5771 0.2092 H 0.8520 0.5243 0.1636 H 0.9689 0.6095 0.2207 H 0.9541 0.8669 0.0438 H 0.7970 0.7702 0.0640 H 0.7207 0.7570 0.0768 H 0.8987 0.5811 0.0646 H 0.9676 0.6245 0.0723 H 0.8748 0.6897 0.0588 H 0.8885 0.7631 0.0316 H 0.8621 0.8244 0.1505 H 0.7906 0.8078 0.1344 H 0.8805 0.6996 0.2529 H 0.8626 0.7275 0.3004 H 0.9903 0.9059 0.1053 H 0.9387 0.9617 0.1169 H 0.9133 0.9716 0.2728 H 0.8220 0.9527 0.1553 H 0.9550 0.8541 0.2246 H 0.5573 0.6737 0.1043 H 0.5588 0.7296 0.0645 H 0.5492 0.5932 0.1647 H 0.9366 0.7452 0.1811 H 0.9233 0.7024 0.1368 H 0.7992 0.5925 0.1919 H 0.8628 0.6433 0.1873 H 0.6234 0.8005 0.1649 H 0.6827 0.7756 0.1922 H 0.6109 0.7239 0.2328 H 0.6136 0.6514 0.2579 H 0.5044 0.6586 0.2583 H 0.6603 0.5878 0.1375 H 0.6154 0.5625 0.0933 H 0.6210 0.5513 0.2850 H 0.6876 0.5982 0.2901 H 0.6739 0.9279 0.0634 H 0.7369 0.8709 0.0701 H 0.5149 0.8313 0.0202 H 0.6334 0.7680 0.0200 H 0.5846 0.9941 0.0319 H 0.5476 0.9689 0.0746 H 0.5080 0.8244 0.1589 H 0.5470 0.7869 0.1243 H 0.6364 0.8498 0.2921 H 0.6776 0.8740 0.2506 H 0.7906 0.7788 0.2526 H 0.7802 0.8308 0.2116 H 0.5871 0.7570 0.3095 H 0.6513 0.9029 0.1695 H 0.7034 0.9286 0.1313 H 0.8520 0.8982 0.2455 H 0.8858 0.9304 0.2032 H 0.5074 0.8021 0.2355 H 0.5917 0.9556 0.2887 H 0.5246 0.9947 0.3069 H 0.6871 0.6680 0.3643 H 0.6575 0.6613 0.4157 H 0.9703 0.5902 0.4838 H 0.8031 0.5043 0.3790 H 0.8615 0.5177 0.3421 H 0.7730 0.6001 0.6628 H 0.7751 0.6635 0.6343 H 0.9269 0.5524 0.6160 H 0.7125 0.5216 0.5070 H 0.6861 0.5771 0.5425 H 0.8520 0.5243 0.4969 H 0.9689 0.6095 0.5540 H 0.9541 0.8669 0.3771 H 0.7970 0.7702 0.3973 H 0.7207 0.7570 0.4101 H 0.8987 0.5811 0.3979 H 0.9676 0.6245 0.4056 H 0.8748 0.6897 0.3921 H 0.8885 0.7631 0.3649 H 0.8621 0.8244 0.4838 H 0.7906 0.8078 0.4677 H 0.8805 0.6996 0.5862 H 0.8626 0.7275 0.6337 H 0.9903 0.9059 0.4386 H 0.9387 0.9617 0.4502 H 0.9133 0.9716 0.6061 H 0.8220 0.9527 0.4886 H 0.9550 0.8541 0.5579 H 0.5573 0.6737 0.4376 H 0.5588 0.7296 0.3978 H 0.5492 0.5932 0.4980 H 0.9366 0.7452 0.5144 H 0.9233 0.7024 0.4701 H 0.7992 0.5925 0.5252 H 0.8628 0.6433 0.5206 H 0.6234 0.8005 0.4982 H 0.6827 0.7756 0.5255 H 0.6109 0.7239 0.5661 H 0.6136 0.6514 0.5912 H 0.5044 0.6586 0.5916 H 0.6603 0.5878 0.4708 H 0.6154 0.5625 0.4266 H 0.6210 0.5513 0.6183 H 0.6876 0.5982 0.6234 H 0.6739 0.9279 0.3967 H 0.7369 0.8709 0.4034 H 0.5149 0.8313 0.3535 H 0.6334 0.7680 0.3533 H 0.5846 0.9941 0.3652 H 0.5476 0.9689 0.4079 H 0.5080 0.8244 0.4922 H 0.5470 0.7869 0.4576 H 0.6364 0.8498 0.6254 H 0.6776 0.8740 0.5839 H 0.7906 0.7788 0.5859 H 0.7802 0.8308 0.5449 H 0.5871 0.7570 0.6428 H 0.6513 0.9029 0.5028 H 0.7034 0.9286 0.4646 H 0.8520 0.8982 0.5788 H 0.8858 0.9304 0.5365 H 0.5074 0.8021 0.5688 H 0.5917 0.9556 0.6220 H 0.5246 0.9947 0.6402 H 0.6871 0.6680 0.6977 H 0.6575 0.6613 0.7491 H 0.9703 0.5902 0.8172 H 0.8031 0.5043 0.7124 H 0.8615 0.5177 0.6755 H 0.7730 0.6001 0.9962 H 0.7751 0.6635 0.9677 H 0.9269 0.5524 0.9494 H 0.7125 0.5216 0.8404 H 0.6861 0.5771 0.8759 H 0.8520 0.5243 0.8303 H 0.9689 0.6095 0.8874 H 0.9541 0.8669 0.7105 H 0.7970 0.7702 0.7307 H 0.7207 0.7570 0.7435 H 0.8987 0.5811 0.7313 H 0.9676 0.6245 0.7390 H 0.8748 0.6897 0.7255 H 0.8885 0.7631 0.6983 H 0.8621 0.8244 0.8172 H 0.7906 0.8078 0.8011 H 0.8805 0.6996 0.9196 H 0.8626 0.7275 0.9671 H 0.9903 0.9059 0.7720 H 0.9387 0.9617 0.7836 H 0.9133 0.9716 0.9395 H 0.8220 0.9527 0.8220 H 0.9550 0.8541 0.8913 H 0.5573 0.6737 0.7710 H 0.5588 0.7296 0.7312 H 0.5492 0.5932 0.8314 H 0.9366 0.7452 0.8478 H 0.9233 0.7024 0.8035 H 0.7992 0.5925 0.8586 H 0.8628 0.6433 0.8540 H 0.6234 0.8005 0.8316 H 0.6827 0.7756 0.8589 H 0.6109 0.7239 0.8995 H 0.6136 0.6514 0.9246 H 0.5044 0.6586 0.9250 H 0.6603 0.5878 0.8042 H 0.6154 0.5625 0.7600 H 0.6210 0.5513 0.9517 H 0.6876 0.5982 0.9568 H 0.6739 0.9279 0.7301 H 0.7369 0.8709 0.7368 H 0.5149 0.8313 0.6869 H 0.6334 0.7680 0.6867 H 0.5846 0.9941 0.6986 H 0.5476 0.9689 0.7413 H 0.5080 0.8244 0.8256 H 0.5470 0.7869 0.7910 H 0.6364 0.8498 0.9588 H 0.6776 0.8740 0.9173 H 0.7906 0.7788 0.9193 H 0.7802 0.8308 0.8783 H 0.5871 0.7570 0.9762 H 0.6513 0.9029 0.8362 H 0.7034 0.9286 0.7980 H 0.8520 0.8982 0.9122 H 0.8858 0.9304 0.8699 H 0.5074 0.8021 0.9022 H 0.5917 0.9556 0.9554 H 0.5246 0.9947 0.9736 EOF $ECHO " running the calculation with 384 H2O molecules...\c" if test "0$1" -ge 384 ; then $FPMD_COMMAND < h2o-384.in > h2o-384.out check_failure $? $ECHO " done" else $ECHO " skipped" # too big, don't run fi # molecular dynamics calculation cat > h2o-512.in << EOF &control title = ' Water 512 molecules ', calculation = 'cp', restart_mode = 'from_scratch', ! 'restart', ndr = 50, ndw = -1, nstep = 10, iprint = 10, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-8, prefix = 'h2o', pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav = 14, celldm(1) = 37.30, celldm(2) = 1.0, celldm(3) = 2.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 1536, ntyp = 2, nbnd = 2048, ecutwfc = 70.0, ecfixed = 68.0, qcutz = 68.0, q2sigma = 8.0, input_dft = 'BLYP', / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', ortho_eps = 5.d-8, ortho_max = 25, electron_dynamics = 'sd', electron_velocities = 'zero', electron_temperature = 'not_controlled', / &ions ion_dynamics = 'none', ion_radius(1) = 0.8d0, ion_radius(2) = 0.5d0, ! ion_velocities = 'zero', ion_temperature = 'not_controlled' / &cell cell_dynamics = 'none', cell_velocities = 'zero', press = 0.0d0, wmass = 70000.0d0 / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.0079d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (crystal) O 0.1671 0.1929 0.0425 O 0.3341 0.0386 0.0249 O 0.2447 0.1376 0.2416 O 0.4187 0.0083 0.2221 O 0.2082 0.0703 0.1343 O 0.4600 0.1373 0.1870 O 0.4649 0.3379 0.0137 O 0.2599 0.2887 0.0617 O 0.4227 0.1154 0.0633 O 0.3540 0.2256 0.0276 O 0.3149 0.3370 0.1174 O 0.3444 0.2214 0.2025 O 0.4637 0.4430 0.0687 O 0.3630 0.4786 0.1129 O 0.4769 0.3149 0.1576 O 0.0317 0.2099 0.0666 O 0.0044 0.0704 0.1268 O 0.4021 0.2188 0.1235 O 0.3491 0.0946 0.1458 O 0.1454 0.2599 0.1308 O 0.0917 0.1986 0.1952 O 0.1225 0.1012 0.0868 O 0.1531 0.0787 0.1999 O 0.2233 0.4194 0.0540 O 0.0965 0.2869 0.0012 O 0.0940 0.4833 0.0475 O 0.0438 0.3333 0.1021 O 0.1318 0.3738 0.1970 O 0.2601 0.3165 0.1804 O 0.1857 0.4381 0.1225 O 0.3957 0.4145 0.1764 O 0.0718 0.4950 0.2324 O 0.1671 0.1929 0.2925 O 0.3341 0.0386 0.2749 O 0.2447 0.1376 0.4916 O 0.4187 0.0083 0.4721 O 0.2082 0.0703 0.3843 O 0.4600 0.1373 0.4370 O 0.4649 0.3379 0.2637 O 0.2599 0.2887 0.3117 O 0.4227 0.1154 0.3133 O 0.3540 0.2256 0.2776 O 0.3149 0.3370 0.3674 O 0.3444 0.2214 0.4525 O 0.4637 0.4430 0.3187 O 0.3630 0.4786 0.3629 O 0.4769 0.3149 0.4076 O 0.0317 0.2099 0.3166 O 0.0044 0.0704 0.3768 O 0.4021 0.2188 0.3735 O 0.3491 0.0946 0.3958 O 0.1454 0.2599 0.3808 O 0.0917 0.1986 0.4452 O 0.1225 0.1012 0.3368 O 0.1531 0.0787 0.4499 O 0.2233 0.4194 0.3040 O 0.0965 0.2869 0.2512 O 0.0940 0.4833 0.2975 O 0.0438 0.3333 0.3521 O 0.1318 0.3738 0.4470 O 0.2601 0.3165 0.4304 O 0.1857 0.4381 0.3725 O 0.3957 0.4145 0.4264 O 0.0718 0.4950 0.4824 O 0.1671 0.1929 0.5425 O 0.3341 0.0386 0.5249 O 0.2447 0.1376 0.7416 O 0.4187 0.0083 0.7221 O 0.2082 0.0703 0.6343 O 0.4600 0.1373 0.6870 O 0.4649 0.3379 0.5137 O 0.2599 0.2887 0.5617 O 0.4227 0.1154 0.5633 O 0.3540 0.2256 0.5276 O 0.3149 0.3370 0.6174 O 0.3444 0.2214 0.7025 O 0.4637 0.4430 0.5687 O 0.3630 0.4786 0.6129 O 0.4769 0.3149 0.6576 O 0.0317 0.2099 0.5666 O 0.0044 0.0704 0.6268 O 0.4021 0.2188 0.6235 O 0.3491 0.0946 0.6458 O 0.1454 0.2599 0.6308 O 0.0917 0.1986 0.6952 O 0.1225 0.1012 0.5868 O 0.1531 0.0787 0.6999 O 0.2233 0.4194 0.5540 O 0.0965 0.2869 0.5012 O 0.0940 0.4833 0.5475 O 0.0438 0.3333 0.6021 O 0.1318 0.3738 0.6970 O 0.2601 0.3165 0.6804 O 0.1857 0.4381 0.6225 O 0.3957 0.4145 0.6764 O 0.0718 0.4950 0.7324 O 0.1671 0.1929 0.7925 O 0.3341 0.0386 0.7749 O 0.2447 0.1376 0.9916 O 0.4187 0.0083 0.9721 O 0.2082 0.0703 0.8843 O 0.4600 0.1373 0.9370 O 0.4649 0.3379 0.7637 O 0.2599 0.2887 0.8117 O 0.4227 0.1154 0.8133 O 0.3540 0.2256 0.7776 O 0.3149 0.3370 0.8674 O 0.3444 0.2214 0.9525 O 0.4637 0.4430 0.8187 O 0.3630 0.4786 0.8629 O 0.4769 0.3149 0.9076 O 0.0317 0.2099 0.8166 O 0.0044 0.0704 0.8768 O 0.4021 0.2188 0.8735 O 0.3491 0.0946 0.8958 O 0.1454 0.2599 0.8808 O 0.0917 0.1986 0.9452 O 0.1225 0.1012 0.8368 O 0.1531 0.0787 0.9499 O 0.2233 0.4194 0.8040 O 0.0965 0.2869 0.7512 O 0.0940 0.4833 0.7975 O 0.0438 0.3333 0.8521 O 0.1318 0.3738 0.9470 O 0.2601 0.3165 0.9304 O 0.1857 0.4381 0.8725 O 0.3957 0.4145 0.9264 O 0.0718 0.4950 0.9824 O 0.1671 0.6929 0.0425 O 0.3341 0.5386 0.0249 O 0.2447 0.6376 0.2416 O 0.4187 0.5083 0.2221 O 0.2082 0.5703 0.1343 O 0.4600 0.6373 0.1870 O 0.4649 0.8379 0.0137 O 0.2599 0.7887 0.0617 O 0.4227 0.6154 0.0633 O 0.3540 0.7256 0.0276 O 0.3149 0.8370 0.1174 O 0.3444 0.7214 0.2025 O 0.4637 0.9430 0.0687 O 0.3630 0.9786 0.1129 O 0.4769 0.8149 0.1576 O 0.0317 0.7099 0.0666 O 0.0044 0.5704 0.1268 O 0.4021 0.7188 0.1235 O 0.3491 0.5946 0.1458 O 0.1454 0.7599 0.1308 O 0.0917 0.6986 0.1952 O 0.1225 0.6012 0.0868 O 0.1531 0.5787 0.1999 O 0.2233 0.9194 0.0540 O 0.0965 0.7869 0.0012 O 0.0940 0.9833 0.0475 O 0.0438 0.8333 0.1021 O 0.1318 0.8738 0.1970 O 0.2601 0.8165 0.1804 O 0.1857 0.9381 0.1225 O 0.3957 0.9145 0.1764 O 0.0718 0.9950 0.2324 O 0.1671 0.6929 0.2925 O 0.3341 0.5386 0.2749 O 0.2447 0.6376 0.4916 O 0.4187 0.5083 0.4721 O 0.2082 0.5703 0.3843 O 0.4600 0.6373 0.4370 O 0.4649 0.8379 0.2637 O 0.2599 0.7887 0.3117 O 0.4227 0.6154 0.3133 O 0.3540 0.7256 0.2776 O 0.3149 0.8370 0.3674 O 0.3444 0.7214 0.4525 O 0.4637 0.9430 0.3187 O 0.3630 0.9786 0.3629 O 0.4769 0.8149 0.4076 O 0.0317 0.7099 0.3166 O 0.0044 0.5704 0.3768 O 0.4021 0.7188 0.3735 O 0.3491 0.5946 0.3958 O 0.1454 0.7599 0.3808 O 0.0917 0.6986 0.4452 O 0.1225 0.6012 0.3368 O 0.1531 0.5787 0.4499 O 0.2233 0.9194 0.3040 O 0.0965 0.7869 0.2512 O 0.0940 0.9833 0.2975 O 0.0438 0.8333 0.3521 O 0.1318 0.8738 0.4470 O 0.2601 0.8165 0.4304 O 0.1857 0.9381 0.3725 O 0.3957 0.9145 0.4264 O 0.0718 0.9950 0.4824 O 0.1671 0.6929 0.5425 O 0.3341 0.5386 0.5249 O 0.2447 0.6376 0.7416 O 0.4187 0.5083 0.7221 O 0.2082 0.5703 0.6343 O 0.4600 0.6373 0.6870 O 0.4649 0.8379 0.5137 O 0.2599 0.7887 0.5617 O 0.4227 0.6154 0.5633 O 0.3540 0.7256 0.5276 O 0.3149 0.8370 0.6174 O 0.3444 0.7214 0.7025 O 0.4637 0.9430 0.5687 O 0.3630 0.9786 0.6129 O 0.4769 0.8149 0.6576 O 0.0317 0.7099 0.5666 O 0.0044 0.5704 0.6268 O 0.4021 0.7188 0.6235 O 0.3491 0.5946 0.6458 O 0.1454 0.7599 0.6308 O 0.0917 0.6986 0.6952 O 0.1225 0.6012 0.5868 O 0.1531 0.5787 0.6999 O 0.2233 0.9194 0.5540 O 0.0965 0.7869 0.5012 O 0.0940 0.9833 0.5475 O 0.0438 0.8333 0.6021 O 0.1318 0.8738 0.6970 O 0.2601 0.8165 0.6804 O 0.1857 0.9381 0.6225 O 0.3957 0.9145 0.6764 O 0.0718 0.9950 0.7324 O 0.1671 0.6929 0.7925 O 0.3341 0.5386 0.7749 O 0.2447 0.6376 0.9916 O 0.4187 0.5083 0.9721 O 0.2082 0.5703 0.8843 O 0.4600 0.6373 0.9370 O 0.4649 0.8379 0.7637 O 0.2599 0.7887 0.8117 O 0.4227 0.6154 0.8133 O 0.3540 0.7256 0.7776 O 0.3149 0.8370 0.8674 O 0.3444 0.7214 0.9525 O 0.4637 0.9430 0.8187 O 0.3630 0.9786 0.8629 O 0.4769 0.8149 0.9076 O 0.0317 0.7099 0.8166 O 0.0044 0.5704 0.8768 O 0.4021 0.7188 0.8735 O 0.3491 0.5946 0.8958 O 0.1454 0.7599 0.8808 O 0.0917 0.6986 0.9452 O 0.1225 0.6012 0.8368 O 0.1531 0.5787 0.9499 O 0.2233 0.9194 0.8040 O 0.0965 0.7869 0.7512 O 0.0940 0.9833 0.7975 O 0.0438 0.8333 0.8521 O 0.1318 0.8738 0.9470 O 0.2601 0.8165 0.9304 O 0.1857 0.9381 0.8725 O 0.3957 0.9145 0.9264 O 0.0718 0.9950 0.9824 O 0.6671 0.1929 0.0425 O 0.8341 0.0386 0.0249 O 0.7447 0.1376 0.2416 O 0.9187 0.0083 0.2221 O 0.7082 0.0703 0.1343 O 0.9600 0.1373 0.1870 O 0.9649 0.3379 0.0137 O 0.7599 0.2887 0.0617 O 0.9227 0.1154 0.0633 O 0.8540 0.2256 0.0276 O 0.8149 0.3370 0.1174 O 0.8444 0.2214 0.2025 O 0.9637 0.4430 0.0687 O 0.8630 0.4786 0.1129 O 0.9769 0.3149 0.1576 O 0.5317 0.2099 0.0666 O 0.5044 0.0704 0.1268 O 0.9021 0.2188 0.1235 O 0.8491 0.0946 0.1458 O 0.6454 0.2599 0.1308 O 0.5917 0.1986 0.1952 O 0.6225 0.1012 0.0868 O 0.6531 0.0787 0.1999 O 0.7233 0.4194 0.0540 O 0.5965 0.2869 0.0012 O 0.5940 0.4833 0.0475 O 0.5438 0.3333 0.1021 O 0.6318 0.3738 0.1970 O 0.7601 0.3165 0.1804 O 0.6857 0.4381 0.1225 O 0.8957 0.4145 0.1764 O 0.5718 0.4950 0.2324 O 0.6671 0.1929 0.2925 O 0.8341 0.0386 0.2749 O 0.7447 0.1376 0.4916 O 0.9187 0.0083 0.4721 O 0.7082 0.0703 0.3843 O 0.9600 0.1373 0.4370 O 0.9649 0.3379 0.2637 O 0.7599 0.2887 0.3117 O 0.9227 0.1154 0.3133 O 0.8540 0.2256 0.2776 O 0.8149 0.3370 0.3674 O 0.8444 0.2214 0.4525 O 0.9637 0.4430 0.3187 O 0.8630 0.4786 0.3629 O 0.9769 0.3149 0.4076 O 0.5317 0.2099 0.3166 O 0.5044 0.0704 0.3768 O 0.9021 0.2188 0.3735 O 0.8491 0.0946 0.3958 O 0.6454 0.2599 0.3808 O 0.5917 0.1986 0.4452 O 0.6225 0.1012 0.3368 O 0.6531 0.0787 0.4499 O 0.7233 0.4194 0.3040 O 0.5965 0.2869 0.2512 O 0.5940 0.4833 0.2975 O 0.5438 0.3333 0.3521 O 0.6318 0.3738 0.4470 O 0.7601 0.3165 0.4304 O 0.6857 0.4381 0.3725 O 0.8957 0.4145 0.4264 O 0.5718 0.4950 0.4824 O 0.6671 0.1929 0.5425 O 0.8341 0.0386 0.5249 O 0.7447 0.1376 0.7416 O 0.9187 0.0083 0.7221 O 0.7082 0.0703 0.6343 O 0.9600 0.1373 0.6870 O 0.9649 0.3379 0.5137 O 0.7599 0.2887 0.5617 O 0.9227 0.1154 0.5633 O 0.8540 0.2256 0.5276 O 0.8149 0.3370 0.6174 O 0.8444 0.2214 0.7025 O 0.9637 0.4430 0.5687 O 0.8630 0.4786 0.6129 O 0.9769 0.3149 0.6576 O 0.5317 0.2099 0.5666 O 0.5044 0.0704 0.6268 O 0.9021 0.2188 0.6235 O 0.8491 0.0946 0.6458 O 0.6454 0.2599 0.6308 O 0.5917 0.1986 0.6952 O 0.6225 0.1012 0.5868 O 0.6531 0.0787 0.6999 O 0.7233 0.4194 0.5540 O 0.5965 0.2869 0.5012 O 0.5940 0.4833 0.5475 O 0.5438 0.3333 0.6021 O 0.6318 0.3738 0.6970 O 0.7601 0.3165 0.6804 O 0.6857 0.4381 0.6225 O 0.8957 0.4145 0.6764 O 0.5718 0.4950 0.7324 O 0.6671 0.1929 0.7925 O 0.8341 0.0386 0.7749 O 0.7447 0.1376 0.9916 O 0.9187 0.0083 0.9721 O 0.7082 0.0703 0.8843 O 0.9600 0.1373 0.9370 O 0.9649 0.3379 0.7637 O 0.7599 0.2887 0.8117 O 0.9227 0.1154 0.8133 O 0.8540 0.2256 0.7776 O 0.8149 0.3370 0.8674 O 0.8444 0.2214 0.9525 O 0.9637 0.4430 0.8187 O 0.8630 0.4786 0.8629 O 0.9769 0.3149 0.9076 O 0.5317 0.2099 0.8166 O 0.5044 0.0704 0.8768 O 0.9021 0.2188 0.8735 O 0.8491 0.0946 0.8958 O 0.6454 0.2599 0.8808 O 0.5917 0.1986 0.9452 O 0.6225 0.1012 0.8368 O 0.6531 0.0787 0.9499 O 0.7233 0.4194 0.8040 O 0.5965 0.2869 0.7512 O 0.5940 0.4833 0.7975 O 0.5438 0.3333 0.8521 O 0.6318 0.3738 0.9470 O 0.7601 0.3165 0.9304 O 0.6857 0.4381 0.8725 O 0.8957 0.4145 0.9264 O 0.5718 0.4950 0.9824 O 0.6671 0.6929 0.0425 O 0.8341 0.5386 0.0249 O 0.7447 0.6376 0.2416 O 0.9187 0.5083 0.2221 O 0.7082 0.5703 0.1343 O 0.9600 0.6373 0.1870 O 0.9649 0.8379 0.0137 O 0.7599 0.7887 0.0617 O 0.9227 0.6154 0.0633 O 0.8540 0.7256 0.0276 O 0.8149 0.8370 0.1174 O 0.8444 0.7214 0.2025 O 0.9637 0.9430 0.0687 O 0.8630 0.9786 0.1129 O 0.9769 0.8149 0.1576 O 0.5317 0.7099 0.0666 O 0.5044 0.5704 0.1268 O 0.9021 0.7188 0.1235 O 0.8491 0.5946 0.1458 O 0.6454 0.7599 0.1308 O 0.5917 0.6986 0.1952 O 0.6225 0.6012 0.0868 O 0.6531 0.5787 0.1999 O 0.7233 0.9194 0.0540 O 0.5965 0.7869 0.0012 O 0.5940 0.9833 0.0475 O 0.5438 0.8333 0.1021 O 0.6318 0.8738 0.1970 O 0.7601 0.8165 0.1804 O 0.6857 0.9381 0.1225 O 0.8957 0.9145 0.1764 O 0.5718 0.9950 0.2324 O 0.6671 0.6929 0.2925 O 0.8341 0.5386 0.2749 O 0.7447 0.6376 0.4916 O 0.9187 0.5083 0.4721 O 0.7082 0.5703 0.3843 O 0.9600 0.6373 0.4370 O 0.9649 0.8379 0.2637 O 0.7599 0.7887 0.3117 O 0.9227 0.6154 0.3133 O 0.8540 0.7256 0.2776 O 0.8149 0.8370 0.3674 O 0.8444 0.7214 0.4525 O 0.9637 0.9430 0.3187 O 0.8630 0.9786 0.3629 O 0.9769 0.8149 0.4076 O 0.5317 0.7099 0.3166 O 0.5044 0.5704 0.3768 O 0.9021 0.7188 0.3735 O 0.8491 0.5946 0.3958 O 0.6454 0.7599 0.3808 O 0.5917 0.6986 0.4452 O 0.6225 0.6012 0.3368 O 0.6531 0.5787 0.4499 O 0.7233 0.9194 0.3040 O 0.5965 0.7869 0.2512 O 0.5940 0.9833 0.2975 O 0.5438 0.8333 0.3521 O 0.6318 0.8738 0.4470 O 0.7601 0.8165 0.4304 O 0.6857 0.9381 0.3725 O 0.8957 0.9145 0.4264 O 0.5718 0.9950 0.4824 O 0.6671 0.6929 0.5425 O 0.8341 0.5386 0.5249 O 0.7447 0.6376 0.7416 O 0.9187 0.5083 0.7221 O 0.7082 0.5703 0.6343 O 0.9600 0.6373 0.6870 O 0.9649 0.8379 0.5137 O 0.7599 0.7887 0.5617 O 0.9227 0.6154 0.5633 O 0.8540 0.7256 0.5276 O 0.8149 0.8370 0.6174 O 0.8444 0.7214 0.7025 O 0.9637 0.9430 0.5687 O 0.8630 0.9786 0.6129 O 0.9769 0.8149 0.6576 O 0.5317 0.7099 0.5666 O 0.5044 0.5704 0.6268 O 0.9021 0.7188 0.6235 O 0.8491 0.5946 0.6458 O 0.6454 0.7599 0.6308 O 0.5917 0.6986 0.6952 O 0.6225 0.6012 0.5868 O 0.6531 0.5787 0.6999 O 0.7233 0.9194 0.5540 O 0.5965 0.7869 0.5012 O 0.5940 0.9833 0.5475 O 0.5438 0.8333 0.6021 O 0.6318 0.8738 0.6970 O 0.7601 0.8165 0.6804 O 0.6857 0.9381 0.6225 O 0.8957 0.9145 0.6764 O 0.5718 0.9950 0.7324 O 0.6671 0.6929 0.7925 O 0.8341 0.5386 0.7749 O 0.7447 0.6376 0.9916 O 0.9187 0.5083 0.9721 O 0.7082 0.5703 0.8843 O 0.9600 0.6373 0.9370 O 0.9649 0.8379 0.7637 O 0.7599 0.7887 0.8117 O 0.9227 0.6154 0.8133 O 0.8540 0.7256 0.7776 O 0.8149 0.8370 0.8674 O 0.8444 0.7214 0.9525 O 0.9637 0.9430 0.8187 O 0.8630 0.9786 0.8629 O 0.9769 0.8149 0.9076 O 0.5317 0.7099 0.8166 O 0.5044 0.5704 0.8768 O 0.9021 0.7188 0.8735 O 0.8491 0.5946 0.8958 O 0.6454 0.7599 0.8808 O 0.5917 0.6986 0.9452 O 0.6225 0.6012 0.8368 O 0.6531 0.5787 0.9499 O 0.7233 0.9194 0.8040 O 0.5965 0.7869 0.7512 O 0.5940 0.9833 0.7975 O 0.5438 0.8333 0.8521 O 0.6318 0.8738 0.9470 O 0.7601 0.8165 0.9304 O 0.6857 0.9381 0.8725 O 0.8957 0.9145 0.9264 O 0.5718 0.9950 0.9824 H 0.1871 0.1680 0.0232 H 0.1575 0.1613 0.0618 H 0.4703 0.0902 0.1129 H 0.3031 0.0043 0.0343 H 0.3615 0.0177 0.0066 H 0.2730 0.1001 0.2471 H 0.2751 0.1635 0.2257 H 0.4269 0.0524 0.2120 H 0.2125 0.0216 0.1303 H 0.1861 0.0771 0.1569 H 0.3520 0.0243 0.1227 H 0.4689 0.1095 0.1655 H 0.4541 0.3669 0.0328 H 0.2970 0.2702 0.0480 H 0.2207 0.2570 0.0576 H 0.3987 0.0811 0.0485 H 0.4676 0.1245 0.0542 H 0.3748 0.1897 0.0441 H 0.3885 0.2631 0.0237 H 0.3621 0.3244 0.1129 H 0.2906 0.3078 0.1008 H 0.3805 0.1996 0.1897 H 0.3626 0.2275 0.2253 H 0.4903 0.4059 0.0790 H 0.4387 0.4617 0.0877 H 0.4133 0.4716 0.2046 H 0.3220 0.4527 0.1164 H 0.4550 0.3541 0.1685 H 0.0573 0.1737 0.0782 H 0.0588 0.2296 0.0484 H 0.0492 0.0932 0.1235 H 0.4366 0.2452 0.1358 H 0.4233 0.2024 0.1026 H 0.2992 0.0925 0.1439 H 0.3628 0.1433 0.1405 H 0.1234 0.3005 0.1237 H 0.1827 0.2756 0.1442 H 0.1109 0.2239 0.1746 H 0.1136 0.1514 0.1934 H 0.0044 0.1586 0.1937 H 0.1603 0.0878 0.1032 H 0.1154 0.0625 0.0700 H 0.1210 0.0513 0.2137 H 0.1876 0.0982 0.2176 H 0.1739 0.4279 0.0475 H 0.2369 0.3709 0.0526 H 0.0149 0.3313 0.0151 H 0.1334 0.2680 0.0150 H 0.0846 0.4941 0.0239 H 0.0476 0.4689 0.0559 H 0.0080 0.3244 0.1192 H 0.0470 0.2869 0.0932 H 0.1364 0.3498 0.2190 H 0.1776 0.3740 0.1879 H 0.2906 0.2788 0.1895 H 0.2802 0.3308 0.1587 H 0.0871 0.2570 0.2321 H 0.1513 0.4029 0.1271 H 0.2034 0.4286 0.0985 H 0.3520 0.3982 0.1841 H 0.3858 0.4304 0.1524 H 0.0074 0.3021 0.1766 H 0.0917 0.4556 0.2165 H 0.0246 0.4947 0.2302 H 0.1871 0.1680 0.2732 H 0.1575 0.1613 0.3118 H 0.4703 0.0902 0.3629 H 0.3031 0.0043 0.2843 H 0.3615 0.0177 0.2566 H 0.2730 0.1001 0.4971 H 0.2751 0.1635 0.4757 H 0.4269 0.0524 0.4620 H 0.2125 0.0216 0.3803 H 0.1861 0.0771 0.4069 H 0.3520 0.0243 0.3727 H 0.4689 0.1095 0.4155 H 0.4541 0.3669 0.2828 H 0.2970 0.2702 0.2980 H 0.2207 0.2570 0.3076 H 0.3987 0.0811 0.2985 H 0.4676 0.1245 0.3042 H 0.3748 0.1897 0.2941 H 0.3885 0.2631 0.2737 H 0.3621 0.3244 0.3629 H 0.2906 0.3078 0.3508 H 0.3805 0.1996 0.4397 H 0.3626 0.2275 0.4753 H 0.4903 0.4059 0.3290 H 0.4387 0.4617 0.3377 H 0.4133 0.4716 0.4546 H 0.3220 0.4527 0.3664 H 0.4550 0.3541 0.4185 H 0.0573 0.1737 0.3282 H 0.0588 0.2296 0.2984 H 0.0492 0.0932 0.3735 H 0.4366 0.2452 0.3858 H 0.4233 0.2024 0.3526 H 0.2992 0.0925 0.3939 H 0.3628 0.1433 0.3905 H 0.1234 0.3005 0.3737 H 0.1827 0.2756 0.3942 H 0.1109 0.2239 0.4246 H 0.1136 0.1514 0.4434 H 0.0044 0.1586 0.4437 H 0.1603 0.0878 0.3532 H 0.1154 0.0625 0.3200 H 0.1210 0.0513 0.4637 H 0.1876 0.0982 0.4676 H 0.1739 0.4279 0.2975 H 0.2369 0.3709 0.3026 H 0.0149 0.3313 0.2651 H 0.1334 0.2680 0.2650 H 0.0846 0.4941 0.2739 H 0.0476 0.4689 0.3059 H 0.0080 0.3244 0.3692 H 0.0470 0.2869 0.3432 H 0.1364 0.3498 0.4690 H 0.1776 0.3740 0.4379 H 0.2906 0.2788 0.4395 H 0.2802 0.3308 0.4087 H 0.0871 0.2570 0.4821 H 0.1513 0.4029 0.3771 H 0.2034 0.4286 0.3485 H 0.3520 0.3982 0.4341 H 0.3858 0.4304 0.4024 H 0.0074 0.3021 0.4266 H 0.0917 0.4556 0.4665 H 0.0246 0.4947 0.4802 H 0.1871 0.1680 0.5232 H 0.1575 0.1613 0.5618 H 0.4703 0.0902 0.6129 H 0.3031 0.0043 0.5343 H 0.3615 0.0177 0.5066 H 0.2730 0.1001 0.7471 H 0.2751 0.1635 0.7257 H 0.4269 0.0524 0.7120 H 0.2125 0.0216 0.6303 H 0.1861 0.0771 0.6569 H 0.3520 0.0243 0.6227 H 0.4689 0.1095 0.6655 H 0.4541 0.3669 0.5328 H 0.2970 0.2702 0.5480 H 0.2207 0.2570 0.5576 H 0.3987 0.0811 0.5485 H 0.4676 0.1245 0.5542 H 0.3748 0.1897 0.5441 H 0.3885 0.2631 0.5237 H 0.3621 0.3244 0.6129 H 0.2906 0.3078 0.6008 H 0.3805 0.1996 0.6897 H 0.3626 0.2275 0.7253 H 0.4903 0.4059 0.5790 H 0.4387 0.4617 0.5877 H 0.4133 0.4716 0.7046 H 0.3220 0.4527 0.6164 H 0.4550 0.3541 0.6685 H 0.0573 0.1737 0.5782 H 0.0588 0.2296 0.5484 H 0.0492 0.0932 0.6235 H 0.4366 0.2452 0.6358 H 0.4233 0.2024 0.6026 H 0.2992 0.0925 0.6439 H 0.3628 0.1433 0.6405 H 0.1234 0.3005 0.6237 H 0.1827 0.2756 0.6442 H 0.1109 0.2239 0.6746 H 0.1136 0.1514 0.6934 H 0.0044 0.1586 0.6937 H 0.1603 0.0878 0.6032 H 0.1154 0.0625 0.5700 H 0.1210 0.0513 0.7137 H 0.1876 0.0982 0.7176 H 0.1739 0.4279 0.5475 H 0.2369 0.3709 0.5526 H 0.0149 0.3313 0.5151 H 0.1334 0.2680 0.5150 H 0.0846 0.4941 0.5239 H 0.0476 0.4689 0.5559 H 0.0080 0.3244 0.6192 H 0.0470 0.2869 0.5932 H 0.1364 0.3498 0.7190 H 0.1776 0.3740 0.6879 H 0.2906 0.2788 0.6895 H 0.2802 0.3308 0.6587 H 0.0871 0.2570 0.7321 H 0.1513 0.4029 0.6271 H 0.2034 0.4286 0.5985 H 0.3520 0.3982 0.6841 H 0.3858 0.4304 0.6524 H 0.0074 0.3021 0.6766 H 0.0917 0.4556 0.7165 H 0.0246 0.4947 0.7302 H 0.1871 0.1680 0.7732 H 0.1575 0.1613 0.8118 H 0.4703 0.0902 0.8629 H 0.3031 0.0043 0.7843 H 0.3615 0.0177 0.7566 H 0.2730 0.1001 0.9971 H 0.2751 0.1635 0.9757 H 0.4269 0.0524 0.9620 H 0.2125 0.0216 0.8803 H 0.1861 0.0771 0.9069 H 0.3520 0.0243 0.8727 H 0.4689 0.1095 0.9155 H 0.4541 0.3669 0.7828 H 0.2970 0.2702 0.7980 H 0.2207 0.2570 0.8076 H 0.3987 0.0811 0.7985 H 0.4676 0.1245 0.8042 H 0.3748 0.1897 0.7941 H 0.3885 0.2631 0.7737 H 0.3621 0.3244 0.8629 H 0.2906 0.3078 0.8508 H 0.3805 0.1996 0.9397 H 0.3626 0.2275 0.9753 H 0.4903 0.4059 0.8290 H 0.4387 0.4617 0.8377 H 0.4133 0.4716 0.9546 H 0.3220 0.4527 0.8664 H 0.4550 0.3541 0.9185 H 0.0573 0.1737 0.8282 H 0.0588 0.2296 0.7984 H 0.0492 0.0932 0.8735 H 0.4366 0.2452 0.8858 H 0.4233 0.2024 0.8526 H 0.2992 0.0925 0.8939 H 0.3628 0.1433 0.8905 H 0.1234 0.3005 0.8737 H 0.1827 0.2756 0.8942 H 0.1109 0.2239 0.9246 H 0.1136 0.1514 0.9434 H 0.0044 0.1586 0.9437 H 0.1603 0.0878 0.8532 H 0.1154 0.0625 0.8200 H 0.1210 0.0513 0.9637 H 0.1876 0.0982 0.9676 H 0.1739 0.4279 0.7975 H 0.2369 0.3709 0.8026 H 0.0149 0.3313 0.7651 H 0.1334 0.2680 0.7650 H 0.0846 0.4941 0.7739 H 0.0476 0.4689 0.8059 H 0.0080 0.3244 0.8692 H 0.0470 0.2869 0.8432 H 0.1364 0.3498 0.9690 H 0.1776 0.3740 0.9379 H 0.2906 0.2788 0.9395 H 0.2802 0.3308 0.9087 H 0.0871 0.2570 0.9821 H 0.1513 0.4029 0.8771 H 0.2034 0.4286 0.8485 H 0.3520 0.3982 0.9341 H 0.3858 0.4304 0.9024 H 0.0074 0.3021 0.9266 H 0.0917 0.4556 0.9665 H 0.0246 0.4947 0.9802 H 0.1871 0.6680 0.0232 H 0.1575 0.6613 0.0618 H 0.4703 0.5902 0.1129 H 0.3031 0.5043 0.0343 H 0.3615 0.5177 0.0066 H 0.2730 0.6001 0.2471 H 0.2751 0.6635 0.2257 H 0.4269 0.5524 0.2120 H 0.2125 0.5216 0.1303 H 0.1861 0.5771 0.1569 H 0.3520 0.5243 0.1227 H 0.4689 0.6095 0.1655 H 0.4541 0.8669 0.0328 H 0.2970 0.7702 0.0480 H 0.2207 0.7570 0.0576 H 0.3987 0.5811 0.0485 H 0.4676 0.6245 0.0542 H 0.3748 0.6897 0.0441 H 0.3885 0.7631 0.0237 H 0.3621 0.8244 0.1129 H 0.2906 0.8078 0.1008 H 0.3805 0.6996 0.1897 H 0.3626 0.7275 0.2253 H 0.4903 0.9059 0.0790 H 0.4387 0.9617 0.0877 H 0.4133 0.9716 0.2046 H 0.3220 0.9527 0.1164 H 0.4550 0.8541 0.1685 H 0.0573 0.6737 0.0782 H 0.0588 0.7296 0.0484 H 0.0492 0.5932 0.1235 H 0.4366 0.7452 0.1358 H 0.4233 0.7024 0.1026 H 0.2992 0.5925 0.1439 H 0.3628 0.6433 0.1405 H 0.1234 0.8005 0.1237 H 0.1827 0.7756 0.1442 H 0.1109 0.7239 0.1746 H 0.1136 0.6514 0.1934 H 0.0044 0.6586 0.1937 H 0.1603 0.5878 0.1032 H 0.1154 0.5625 0.0700 H 0.1210 0.5513 0.2137 H 0.1876 0.5982 0.2176 H 0.1739 0.9279 0.0475 H 0.2369 0.8709 0.0526 H 0.0149 0.8313 0.0151 H 0.1334 0.7680 0.0150 H 0.0846 0.9941 0.0239 H 0.0476 0.9689 0.0559 H 0.0080 0.8244 0.1192 H 0.0470 0.7869 0.0932 H 0.1364 0.8498 0.2190 H 0.1776 0.8740 0.1879 H 0.2906 0.7788 0.1895 H 0.2802 0.8308 0.1587 H 0.0871 0.7570 0.2321 H 0.1513 0.9029 0.1271 H 0.2034 0.9286 0.0985 H 0.3520 0.8982 0.1841 H 0.3858 0.9304 0.1524 H 0.0074 0.8021 0.1766 H 0.0917 0.9556 0.2165 H 0.0246 0.9947 0.2302 H 0.1871 0.6680 0.2732 H 0.1575 0.6613 0.3118 H 0.4703 0.5902 0.3629 H 0.3031 0.5043 0.2843 H 0.3615 0.5177 0.2566 H 0.2730 0.6001 0.4971 H 0.2751 0.6635 0.4757 H 0.4269 0.5524 0.4620 H 0.2125 0.5216 0.3803 H 0.1861 0.5771 0.4069 H 0.3520 0.5243 0.3727 H 0.4689 0.6095 0.4155 H 0.4541 0.8669 0.2828 H 0.2970 0.7702 0.2980 H 0.2207 0.7570 0.3076 H 0.3987 0.5811 0.2985 H 0.4676 0.6245 0.3042 H 0.3748 0.6897 0.2941 H 0.3885 0.7631 0.2737 H 0.3621 0.8244 0.3629 H 0.2906 0.8078 0.3508 H 0.3805 0.6996 0.4397 H 0.3626 0.7275 0.4753 H 0.4903 0.9059 0.3290 H 0.4387 0.9617 0.3377 H 0.4133 0.9716 0.4546 H 0.3220 0.9527 0.3664 H 0.4550 0.8541 0.4185 H 0.0573 0.6737 0.3282 H 0.0588 0.7296 0.2984 H 0.0492 0.5932 0.3735 H 0.4366 0.7452 0.3858 H 0.4233 0.7024 0.3526 H 0.2992 0.5925 0.3939 H 0.3628 0.6433 0.3905 H 0.1234 0.8005 0.3737 H 0.1827 0.7756 0.3942 H 0.1109 0.7239 0.4246 H 0.1136 0.6514 0.4434 H 0.0044 0.6586 0.4437 H 0.1603 0.5878 0.3532 H 0.1154 0.5625 0.3200 H 0.1210 0.5513 0.4637 H 0.1876 0.5982 0.4676 H 0.1739 0.9279 0.2975 H 0.2369 0.8709 0.3026 H 0.0149 0.8313 0.2651 H 0.1334 0.7680 0.2650 H 0.0846 0.9941 0.2739 H 0.0476 0.9689 0.3059 H 0.0080 0.8244 0.3692 H 0.0470 0.7869 0.3432 H 0.1364 0.8498 0.4690 H 0.1776 0.8740 0.4379 H 0.2906 0.7788 0.4395 H 0.2802 0.8308 0.4087 H 0.0871 0.7570 0.4821 H 0.1513 0.9029 0.3771 H 0.2034 0.9286 0.3485 H 0.3520 0.8982 0.4341 H 0.3858 0.9304 0.4024 H 0.0074 0.8021 0.4266 H 0.0917 0.9556 0.4665 H 0.0246 0.9947 0.4802 H 0.1871 0.6680 0.5232 H 0.1575 0.6613 0.5618 H 0.4703 0.5902 0.6129 H 0.3031 0.5043 0.5343 H 0.3615 0.5177 0.5066 H 0.2730 0.6001 0.7471 H 0.2751 0.6635 0.7257 H 0.4269 0.5524 0.7120 H 0.2125 0.5216 0.6303 H 0.1861 0.5771 0.6569 H 0.3520 0.5243 0.6227 H 0.4689 0.6095 0.6655 H 0.4541 0.8669 0.5328 H 0.2970 0.7702 0.5480 H 0.2207 0.7570 0.5576 H 0.3987 0.5811 0.5485 H 0.4676 0.6245 0.5542 H 0.3748 0.6897 0.5441 H 0.3885 0.7631 0.5237 H 0.3621 0.8244 0.6129 H 0.2906 0.8078 0.6008 H 0.3805 0.6996 0.6897 H 0.3626 0.7275 0.7253 H 0.4903 0.9059 0.5790 H 0.4387 0.9617 0.5877 H 0.4133 0.9716 0.7046 H 0.3220 0.9527 0.6164 H 0.4550 0.8541 0.6685 H 0.0573 0.6737 0.5782 H 0.0588 0.7296 0.5484 H 0.0492 0.5932 0.6235 H 0.4366 0.7452 0.6358 H 0.4233 0.7024 0.6026 H 0.2992 0.5925 0.6439 H 0.3628 0.6433 0.6405 H 0.1234 0.8005 0.6237 H 0.1827 0.7756 0.6442 H 0.1109 0.7239 0.6746 H 0.1136 0.6514 0.6934 H 0.0044 0.6586 0.6937 H 0.1603 0.5878 0.6032 H 0.1154 0.5625 0.5700 H 0.1210 0.5513 0.7137 H 0.1876 0.5982 0.7176 H 0.1739 0.9279 0.5475 H 0.2369 0.8709 0.5526 H 0.0149 0.8313 0.5151 H 0.1334 0.7680 0.5150 H 0.0846 0.9941 0.5239 H 0.0476 0.9689 0.5559 H 0.0080 0.8244 0.6192 H 0.0470 0.7869 0.5932 H 0.1364 0.8498 0.7190 H 0.1776 0.8740 0.6879 H 0.2906 0.7788 0.6895 H 0.2802 0.8308 0.6587 H 0.0871 0.7570 0.7321 H 0.1513 0.9029 0.6271 H 0.2034 0.9286 0.5985 H 0.3520 0.8982 0.6841 H 0.3858 0.9304 0.6524 H 0.0074 0.8021 0.6766 H 0.0917 0.9556 0.7165 H 0.0246 0.9947 0.7302 H 0.1871 0.6680 0.7732 H 0.1575 0.6613 0.8118 H 0.4703 0.5902 0.8629 H 0.3031 0.5043 0.7843 H 0.3615 0.5177 0.7566 H 0.2730 0.6001 0.9971 H 0.2751 0.6635 0.9757 H 0.4269 0.5524 0.9620 H 0.2125 0.5216 0.8803 H 0.1861 0.5771 0.9069 H 0.3520 0.5243 0.8727 H 0.4689 0.6095 0.9155 H 0.4541 0.8669 0.7828 H 0.2970 0.7702 0.7980 H 0.2207 0.7570 0.8076 H 0.3987 0.5811 0.7985 H 0.4676 0.6245 0.8042 H 0.3748 0.6897 0.7941 H 0.3885 0.7631 0.7737 H 0.3621 0.8244 0.8629 H 0.2906 0.8078 0.8508 H 0.3805 0.6996 0.9397 H 0.3626 0.7275 0.9753 H 0.4903 0.9059 0.8290 H 0.4387 0.9617 0.8377 H 0.4133 0.9716 0.9546 H 0.3220 0.9527 0.8664 H 0.4550 0.8541 0.9185 H 0.0573 0.6737 0.8282 H 0.0588 0.7296 0.7984 H 0.0492 0.5932 0.8735 H 0.4366 0.7452 0.8858 H 0.4233 0.7024 0.8526 H 0.2992 0.5925 0.8939 H 0.3628 0.6433 0.8905 H 0.1234 0.8005 0.8737 H 0.1827 0.7756 0.8942 H 0.1109 0.7239 0.9246 H 0.1136 0.6514 0.9434 H 0.0044 0.6586 0.9437 H 0.1603 0.5878 0.8532 H 0.1154 0.5625 0.8200 H 0.1210 0.5513 0.9637 H 0.1876 0.5982 0.9676 H 0.1739 0.9279 0.7975 H 0.2369 0.8709 0.8026 H 0.0149 0.8313 0.7651 H 0.1334 0.7680 0.7650 H 0.0846 0.9941 0.7739 H 0.0476 0.9689 0.8059 H 0.0080 0.8244 0.8692 H 0.0470 0.7869 0.8432 H 0.1364 0.8498 0.9690 H 0.1776 0.8740 0.9379 H 0.2906 0.7788 0.9395 H 0.2802 0.8308 0.9087 H 0.0871 0.7570 0.9821 H 0.1513 0.9029 0.8771 H 0.2034 0.9286 0.8485 H 0.3520 0.8982 0.9341 H 0.3858 0.9304 0.9024 H 0.0074 0.8021 0.9266 H 0.0917 0.9556 0.9665 H 0.0246 0.9947 0.9802 H 0.6871 0.1680 0.0232 H 0.6575 0.1613 0.0618 H 0.9703 0.0902 0.1129 H 0.8031 0.0043 0.0343 H 0.8615 0.0177 0.0066 H 0.7730 0.1001 0.2471 H 0.7751 0.1635 0.2257 H 0.9269 0.0524 0.2120 H 0.7125 0.0216 0.1303 H 0.6861 0.0771 0.1569 H 0.8520 0.0243 0.1227 H 0.9689 0.1095 0.1655 H 0.9541 0.3669 0.0328 H 0.7970 0.2702 0.0480 H 0.7207 0.2570 0.0576 H 0.8987 0.0811 0.0485 H 0.9676 0.1245 0.0542 H 0.8748 0.1897 0.0441 H 0.8885 0.2631 0.0237 H 0.8621 0.3244 0.1129 H 0.7906 0.3078 0.1008 H 0.8805 0.1996 0.1897 H 0.8626 0.2275 0.2253 H 0.9903 0.4059 0.0790 H 0.9387 0.4617 0.0877 H 0.9133 0.4716 0.2046 H 0.8220 0.4527 0.1164 H 0.9550 0.3541 0.1685 H 0.5573 0.1737 0.0782 H 0.5588 0.2296 0.0484 H 0.5492 0.0932 0.1235 H 0.9366 0.2452 0.1358 H 0.9233 0.2024 0.1026 H 0.7992 0.0925 0.1439 H 0.8628 0.1433 0.1405 H 0.6234 0.3005 0.1237 H 0.6827 0.2756 0.1442 H 0.6109 0.2239 0.1746 H 0.6136 0.1514 0.1934 H 0.5044 0.1586 0.1937 H 0.6603 0.0878 0.1032 H 0.6154 0.0625 0.0700 H 0.6210 0.0513 0.2137 H 0.6876 0.0982 0.2176 H 0.6739 0.4279 0.0475 H 0.7369 0.3709 0.0526 H 0.5149 0.3313 0.0151 H 0.6334 0.2680 0.0150 H 0.5846 0.4941 0.0239 H 0.5476 0.4689 0.0559 H 0.5080 0.3244 0.1192 H 0.5470 0.2869 0.0932 H 0.6364 0.3498 0.2190 H 0.6776 0.3740 0.1879 H 0.7906 0.2788 0.1895 H 0.7802 0.3308 0.1587 H 0.5871 0.2570 0.2321 H 0.6513 0.4029 0.1271 H 0.7034 0.4286 0.0985 H 0.8520 0.3982 0.1841 H 0.8858 0.4304 0.1524 H 0.5074 0.3021 0.1766 H 0.5917 0.4556 0.2165 H 0.5246 0.4947 0.2302 H 0.6871 0.1680 0.2732 H 0.6575 0.1613 0.3118 H 0.9703 0.0902 0.3629 H 0.8031 0.0043 0.2843 H 0.8615 0.0177 0.2566 H 0.7730 0.1001 0.4971 H 0.7751 0.1635 0.4757 H 0.9269 0.0524 0.4620 H 0.7125 0.0216 0.3803 H 0.6861 0.0771 0.4069 H 0.8520 0.0243 0.3727 H 0.9689 0.1095 0.4155 H 0.9541 0.3669 0.2828 H 0.7970 0.2702 0.2980 H 0.7207 0.2570 0.3076 H 0.8987 0.0811 0.2985 H 0.9676 0.1245 0.3042 H 0.8748 0.1897 0.2941 H 0.8885 0.2631 0.2737 H 0.8621 0.3244 0.3629 H 0.7906 0.3078 0.3508 H 0.8805 0.1996 0.4397 H 0.8626 0.2275 0.4753 H 0.9903 0.4059 0.3290 H 0.9387 0.4617 0.3377 H 0.9133 0.4716 0.4546 H 0.8220 0.4527 0.3664 H 0.9550 0.3541 0.4185 H 0.5573 0.1737 0.3282 H 0.5588 0.2296 0.2984 H 0.5492 0.0932 0.3735 H 0.9366 0.2452 0.3858 H 0.9233 0.2024 0.3526 H 0.7992 0.0925 0.3939 H 0.8628 0.1433 0.3905 H 0.6234 0.3005 0.3737 H 0.6827 0.2756 0.3942 H 0.6109 0.2239 0.4246 H 0.6136 0.1514 0.4434 H 0.5044 0.1586 0.4437 H 0.6603 0.0878 0.3532 H 0.6154 0.0625 0.3200 H 0.6210 0.0513 0.4637 H 0.6876 0.0982 0.4676 H 0.6739 0.4279 0.2975 H 0.7369 0.3709 0.3026 H 0.5149 0.3313 0.2651 H 0.6334 0.2680 0.2650 H 0.5846 0.4941 0.2739 H 0.5476 0.4689 0.3059 H 0.5080 0.3244 0.3692 H 0.5470 0.2869 0.3432 H 0.6364 0.3498 0.4690 H 0.6776 0.3740 0.4379 H 0.7906 0.2788 0.4395 H 0.7802 0.3308 0.4087 H 0.5871 0.2570 0.4821 H 0.6513 0.4029 0.3771 H 0.7034 0.4286 0.3485 H 0.8520 0.3982 0.4341 H 0.8858 0.4304 0.4024 H 0.5074 0.3021 0.4266 H 0.5917 0.4556 0.4665 H 0.5246 0.4947 0.4802 H 0.6871 0.1680 0.5232 H 0.6575 0.1613 0.5618 H 0.9703 0.0902 0.6129 H 0.8031 0.0043 0.5343 H 0.8615 0.0177 0.5066 H 0.7730 0.1001 0.7471 H 0.7751 0.1635 0.7257 H 0.9269 0.0524 0.7120 H 0.7125 0.0216 0.6303 H 0.6861 0.0771 0.6569 H 0.8520 0.0243 0.6227 H 0.9689 0.1095 0.6655 H 0.9541 0.3669 0.5328 H 0.7970 0.2702 0.5480 H 0.7207 0.2570 0.5576 H 0.8987 0.0811 0.5485 H 0.9676 0.1245 0.5542 H 0.8748 0.1897 0.5441 H 0.8885 0.2631 0.5237 H 0.8621 0.3244 0.6129 H 0.7906 0.3078 0.6008 H 0.8805 0.1996 0.6897 H 0.8626 0.2275 0.7253 H 0.9903 0.4059 0.5790 H 0.9387 0.4617 0.5877 H 0.9133 0.4716 0.7046 H 0.8220 0.4527 0.6164 H 0.9550 0.3541 0.6685 H 0.5573 0.1737 0.5782 H 0.5588 0.2296 0.5484 H 0.5492 0.0932 0.6235 H 0.9366 0.2452 0.6358 H 0.9233 0.2024 0.6026 H 0.7992 0.0925 0.6439 H 0.8628 0.1433 0.6405 H 0.6234 0.3005 0.6237 H 0.6827 0.2756 0.6442 H 0.6109 0.2239 0.6746 H 0.6136 0.1514 0.6934 H 0.5044 0.1586 0.6937 H 0.6603 0.0878 0.6032 H 0.6154 0.0625 0.5700 H 0.6210 0.0513 0.7137 H 0.6876 0.0982 0.7176 H 0.6739 0.4279 0.5475 H 0.7369 0.3709 0.5526 H 0.5149 0.3313 0.5151 H 0.6334 0.2680 0.5150 H 0.5846 0.4941 0.5239 H 0.5476 0.4689 0.5559 H 0.5080 0.3244 0.6192 H 0.5470 0.2869 0.5932 H 0.6364 0.3498 0.7190 H 0.6776 0.3740 0.6879 H 0.7906 0.2788 0.6895 H 0.7802 0.3308 0.6587 H 0.5871 0.2570 0.7321 H 0.6513 0.4029 0.6271 H 0.7034 0.4286 0.5985 H 0.8520 0.3982 0.6841 H 0.8858 0.4304 0.6524 H 0.5074 0.3021 0.6766 H 0.5917 0.4556 0.7165 H 0.5246 0.4947 0.7302 H 0.6871 0.1680 0.7732 H 0.6575 0.1613 0.8118 H 0.9703 0.0902 0.8629 H 0.8031 0.0043 0.7843 H 0.8615 0.0177 0.7566 H 0.7730 0.1001 0.9971 H 0.7751 0.1635 0.9757 H 0.9269 0.0524 0.9620 H 0.7125 0.0216 0.8803 H 0.6861 0.0771 0.9069 H 0.8520 0.0243 0.8727 H 0.9689 0.1095 0.9155 H 0.9541 0.3669 0.7828 H 0.7970 0.2702 0.7980 H 0.7207 0.2570 0.8076 H 0.8987 0.0811 0.7985 H 0.9676 0.1245 0.8042 H 0.8748 0.1897 0.7941 H 0.8885 0.2631 0.7737 H 0.8621 0.3244 0.8629 H 0.7906 0.3078 0.8508 H 0.8805 0.1996 0.9397 H 0.8626 0.2275 0.9753 H 0.9903 0.4059 0.8290 H 0.9387 0.4617 0.8377 H 0.9133 0.4716 0.9546 H 0.8220 0.4527 0.8664 H 0.9550 0.3541 0.9185 H 0.5573 0.1737 0.8282 H 0.5588 0.2296 0.7984 H 0.5492 0.0932 0.8735 H 0.9366 0.2452 0.8858 H 0.9233 0.2024 0.8526 H 0.7992 0.0925 0.8939 H 0.8628 0.1433 0.8905 H 0.6234 0.3005 0.8737 H 0.6827 0.2756 0.8942 H 0.6109 0.2239 0.9246 H 0.6136 0.1514 0.9434 H 0.5044 0.1586 0.9437 H 0.6603 0.0878 0.8532 H 0.6154 0.0625 0.8200 H 0.6210 0.0513 0.9637 H 0.6876 0.0982 0.9676 H 0.6739 0.4279 0.7975 H 0.7369 0.3709 0.8026 H 0.5149 0.3313 0.7651 H 0.6334 0.2680 0.7650 H 0.5846 0.4941 0.7739 H 0.5476 0.4689 0.8059 H 0.5080 0.3244 0.8692 H 0.5470 0.2869 0.8432 H 0.6364 0.3498 0.9690 H 0.6776 0.3740 0.9379 H 0.7906 0.2788 0.9395 H 0.7802 0.3308 0.9087 H 0.5871 0.2570 0.9821 H 0.6513 0.4029 0.8771 H 0.7034 0.4286 0.8485 H 0.8520 0.3982 0.9341 H 0.8858 0.4304 0.9024 H 0.5074 0.3021 0.9266 H 0.5917 0.4556 0.9665 H 0.5246 0.4947 0.9802 H 0.6871 0.6680 0.0232 H 0.6575 0.6613 0.0618 H 0.9703 0.5902 0.1129 H 0.8031 0.5043 0.0343 H 0.8615 0.5177 0.0066 H 0.7730 0.6001 0.2471 H 0.7751 0.6635 0.2257 H 0.9269 0.5524 0.2120 H 0.7125 0.5216 0.1303 H 0.6861 0.5771 0.1569 H 0.8520 0.5243 0.1227 H 0.9689 0.6095 0.1655 H 0.9541 0.8669 0.0328 H 0.7970 0.7702 0.0480 H 0.7207 0.7570 0.0576 H 0.8987 0.5811 0.0485 H 0.9676 0.6245 0.0542 H 0.8748 0.6897 0.0441 H 0.8885 0.7631 0.0237 H 0.8621 0.8244 0.1129 H 0.7906 0.8078 0.1008 H 0.8805 0.6996 0.1897 H 0.8626 0.7275 0.2253 H 0.9903 0.9059 0.0790 H 0.9387 0.9617 0.0877 H 0.9133 0.9716 0.2046 H 0.8220 0.9527 0.1164 H 0.9550 0.8541 0.1685 H 0.5573 0.6737 0.0782 H 0.5588 0.7296 0.0484 H 0.5492 0.5932 0.1235 H 0.9366 0.7452 0.1358 H 0.9233 0.7024 0.1026 H 0.7992 0.5925 0.1439 H 0.8628 0.6433 0.1405 H 0.6234 0.8005 0.1237 H 0.6827 0.7756 0.1442 H 0.6109 0.7239 0.1746 H 0.6136 0.6514 0.1934 H 0.5044 0.6586 0.1937 H 0.6603 0.5878 0.1032 H 0.6154 0.5625 0.0700 H 0.6210 0.5513 0.2137 H 0.6876 0.5982 0.2176 H 0.6739 0.9279 0.0475 H 0.7369 0.8709 0.0526 H 0.5149 0.8313 0.0151 H 0.6334 0.7680 0.0150 H 0.5846 0.9941 0.0239 H 0.5476 0.9689 0.0559 H 0.5080 0.8244 0.1192 H 0.5470 0.7869 0.0932 H 0.6364 0.8498 0.2190 H 0.6776 0.8740 0.1879 H 0.7906 0.7788 0.1895 H 0.7802 0.8308 0.1587 H 0.5871 0.7570 0.2321 H 0.6513 0.9029 0.1271 H 0.7034 0.9286 0.0985 H 0.8520 0.8982 0.1841 H 0.8858 0.9304 0.1524 H 0.5074 0.8021 0.1766 H 0.5917 0.9556 0.2165 H 0.5246 0.9947 0.2302 H 0.6871 0.6680 0.2732 H 0.6575 0.6613 0.3118 H 0.9703 0.5902 0.3629 H 0.8031 0.5043 0.2843 H 0.8615 0.5177 0.2566 H 0.7730 0.6001 0.4971 H 0.7751 0.6635 0.4757 H 0.9269 0.5524 0.4620 H 0.7125 0.5216 0.3803 H 0.6861 0.5771 0.4069 H 0.8520 0.5243 0.3727 H 0.9689 0.6095 0.4155 H 0.9541 0.8669 0.2828 H 0.7970 0.7702 0.2980 H 0.7207 0.7570 0.3076 H 0.8987 0.5811 0.2985 H 0.9676 0.6245 0.3042 H 0.8748 0.6897 0.2941 H 0.8885 0.7631 0.2737 H 0.8621 0.8244 0.3629 H 0.7906 0.8078 0.3508 H 0.8805 0.6996 0.4397 H 0.8626 0.7275 0.4753 H 0.9903 0.9059 0.3290 H 0.9387 0.9617 0.3377 H 0.9133 0.9716 0.4546 H 0.8220 0.9527 0.3664 H 0.9550 0.8541 0.4185 H 0.5573 0.6737 0.3282 H 0.5588 0.7296 0.2984 H 0.5492 0.5932 0.3735 H 0.9366 0.7452 0.3858 H 0.9233 0.7024 0.3526 H 0.7992 0.5925 0.3939 H 0.8628 0.6433 0.3905 H 0.6234 0.8005 0.3737 H 0.6827 0.7756 0.3942 H 0.6109 0.7239 0.4246 H 0.6136 0.6514 0.4434 H 0.5044 0.6586 0.4437 H 0.6603 0.5878 0.3532 H 0.6154 0.5625 0.3200 H 0.6210 0.5513 0.4637 H 0.6876 0.5982 0.4676 H 0.6739 0.9279 0.2975 H 0.7369 0.8709 0.3026 H 0.5149 0.8313 0.2651 H 0.6334 0.7680 0.2650 H 0.5846 0.9941 0.2739 H 0.5476 0.9689 0.3059 H 0.5080 0.8244 0.3692 H 0.5470 0.7869 0.3432 H 0.6364 0.8498 0.4690 H 0.6776 0.8740 0.4379 H 0.7906 0.7788 0.4395 H 0.7802 0.8308 0.4087 H 0.5871 0.7570 0.4821 H 0.6513 0.9029 0.3771 H 0.7034 0.9286 0.3485 H 0.8520 0.8982 0.4341 H 0.8858 0.9304 0.4024 H 0.5074 0.8021 0.4266 H 0.5917 0.9556 0.4665 H 0.5246 0.9947 0.4802 H 0.6871 0.6680 0.5232 H 0.6575 0.6613 0.5618 H 0.9703 0.5902 0.6129 H 0.8031 0.5043 0.5343 H 0.8615 0.5177 0.5066 H 0.7730 0.6001 0.7471 H 0.7751 0.6635 0.7257 H 0.9269 0.5524 0.7120 H 0.7125 0.5216 0.6303 H 0.6861 0.5771 0.6569 H 0.8520 0.5243 0.6227 H 0.9689 0.6095 0.6655 H 0.9541 0.8669 0.5328 H 0.7970 0.7702 0.5480 H 0.7207 0.7570 0.5576 H 0.8987 0.5811 0.5485 H 0.9676 0.6245 0.5542 H 0.8748 0.6897 0.5441 H 0.8885 0.7631 0.5237 H 0.8621 0.8244 0.6129 H 0.7906 0.8078 0.6008 H 0.8805 0.6996 0.6897 H 0.8626 0.7275 0.7253 H 0.9903 0.9059 0.5790 H 0.9387 0.9617 0.5877 H 0.9133 0.9716 0.7046 H 0.8220 0.9527 0.6164 H 0.9550 0.8541 0.6685 H 0.5573 0.6737 0.5782 H 0.5588 0.7296 0.5484 H 0.5492 0.5932 0.6235 H 0.9366 0.7452 0.6358 H 0.9233 0.7024 0.6026 H 0.7992 0.5925 0.6439 H 0.8628 0.6433 0.6405 H 0.6234 0.8005 0.6237 H 0.6827 0.7756 0.6442 H 0.6109 0.7239 0.6746 H 0.6136 0.6514 0.6934 H 0.5044 0.6586 0.6937 H 0.6603 0.5878 0.6032 H 0.6154 0.5625 0.5700 H 0.6210 0.5513 0.7137 H 0.6876 0.5982 0.7176 H 0.6739 0.9279 0.5475 H 0.7369 0.8709 0.5526 H 0.5149 0.8313 0.5151 H 0.6334 0.7680 0.5150 H 0.5846 0.9941 0.5239 H 0.5476 0.9689 0.5559 H 0.5080 0.8244 0.6192 H 0.5470 0.7869 0.5932 H 0.6364 0.8498 0.7190 H 0.6776 0.8740 0.6879 H 0.7906 0.7788 0.6895 H 0.7802 0.8308 0.6587 H 0.5871 0.7570 0.7321 H 0.6513 0.9029 0.6271 H 0.7034 0.9286 0.5985 H 0.8520 0.8982 0.6841 H 0.8858 0.9304 0.6524 H 0.5074 0.8021 0.6766 H 0.5917 0.9556 0.7165 H 0.5246 0.9947 0.7302 H 0.6871 0.6680 0.7732 H 0.6575 0.6613 0.8118 H 0.9703 0.5902 0.8629 H 0.8031 0.5043 0.7843 H 0.8615 0.5177 0.7566 H 0.7730 0.6001 0.9971 H 0.7751 0.6635 0.9757 H 0.9269 0.5524 0.9620 H 0.7125 0.5216 0.8803 H 0.6861 0.5771 0.9069 H 0.8520 0.5243 0.8727 H 0.9689 0.6095 0.9155 H 0.9541 0.8669 0.7828 H 0.7970 0.7702 0.7980 H 0.7207 0.7570 0.8076 H 0.8987 0.5811 0.7985 H 0.9676 0.6245 0.8042 H 0.8748 0.6897 0.7941 H 0.8885 0.7631 0.7737 H 0.8621 0.8244 0.8629 H 0.7906 0.8078 0.8508 H 0.8805 0.6996 0.9397 H 0.8626 0.7275 0.9753 H 0.9903 0.9059 0.8290 H 0.9387 0.9617 0.8377 H 0.9133 0.9716 0.9546 H 0.8220 0.9527 0.8664 H 0.9550 0.8541 0.9185 H 0.5573 0.6737 0.8282 H 0.5588 0.7296 0.7984 H 0.5492 0.5932 0.8735 H 0.9366 0.7452 0.8858 H 0.9233 0.7024 0.8526 H 0.7992 0.5925 0.8939 H 0.8628 0.6433 0.8905 H 0.6234 0.8005 0.8737 H 0.6827 0.7756 0.8942 H 0.6109 0.7239 0.9246 H 0.6136 0.6514 0.9434 H 0.5044 0.6586 0.9437 H 0.6603 0.5878 0.8532 H 0.6154 0.5625 0.8200 H 0.6210 0.5513 0.9637 H 0.6876 0.5982 0.9676 H 0.6739 0.9279 0.7975 H 0.7369 0.8709 0.8026 H 0.5149 0.8313 0.7651 H 0.6334 0.7680 0.7650 H 0.5846 0.9941 0.7739 H 0.5476 0.9689 0.8059 H 0.5080 0.8244 0.8692 H 0.5470 0.7869 0.8432 H 0.6364 0.8498 0.9690 H 0.6776 0.8740 0.9379 H 0.7906 0.7788 0.9395 H 0.7802 0.8308 0.9087 H 0.5871 0.7570 0.9821 H 0.6513 0.9029 0.8771 H 0.7034 0.9286 0.8485 H 0.8520 0.8982 0.9341 H 0.8858 0.9304 0.9024 H 0.5074 0.8021 0.9266 H 0.5917 0.9556 0.9665 H 0.5246 0.9947 0.9802 EOF $ECHO " running the calculation with 512 H2O molecules...\c" if test "0$1" -ge 512 ; then $FPMD_COMMAND < h2o-512.in > h2o-512.out check_failure $? $ECHO " done" else $ECHO " skipped" # too big, don't run fi $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/CPV/examples/example04/reference/0000755000175000017500000000000012341373043017305 5ustar mbambaespresso-5.1/CPV/examples/example04/reference/h2o-32.out0000644000175000017500000011517112341373026020757 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.0 - Mon Oct 8 02:36:14 CEST 2007 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 4:17:51 21Dec2007 Serial Build Job Title: Water 32 molecules Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/pseudo/O.BLYP.UPF file type is 20: UPF Type is NC and NONLOCAL. Local component is ..... : 1 Non local components are : 0 Pseudo charge : 6.000 Pseudopotentials Grid : Channels = 2, Mesh = 631 point radius vloc ( vnl - vloc ) 1 0.781250E-03 -0.253772E+02 0.392686E-02 157 0.116993E-01 -0.239772E+02 0.588100E-01 315 0.181383E+00 -0.201489E+02 0.915268E+00 631 0.435987E+02 -0.137619E+00 0.000000E+00 Atomic wavefunction Grid : Channels = 2, Mesh = 631 Channels occupation number : 2.0000 4.0000 point radius wavefunction 1 0.781250E-03 0.255544E-03 0.103901E-05 157 0.116993E-01 0.382712E-02 0.232913E-03 315 0.181383E+00 0.605741E-01 0.510268E-01 631 0.435987E+02 0.000000E+00 0.000000E+00 Warning XC functionals forced to be: BLYP Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/pseudo/H.fpmd.UPF file type is 20: UPF Type is NC and LOCAL. Local component is ..... : 0 Pseudo charge : 1.000 Pseudopotentials Grid : Channels = 1, Mesh = 809 point radius vloc ( vnl - vloc ) 1 0.112299E-02 -0.647505E+01 202 0.170886E+00 -0.525294E+01 404 0.266620E+02 -0.375065E-01 809 0.665464E+06 -0.150271E-05 Atomic wavefunction Grid : Channels = 1, Mesh = 809 Channels occupation number : 1.0000 point radius wavefunction 1 0.112299E-02 0.000000E+00 202 0.170886E+00 0.000000E+00 404 0.266620E+02 0.000000E+00 809 0.665464E+06 0.000000E+00 Warning XC functionals forced to be: BLYP Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 10 Print out every 10 MD Steps Reads from unit = 50 Writes to unit = -1 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (read from input) = 70000.00 [AU] ibrav = 14 alat = 18.65000000 a1 = 18.65000000 0.00000000 0.00000000 a2 = 0.00000000 18.65000000 0.00000000 a3 = 0.00000000 0.00000000 18.65000000 b1 = 0.05361930 0.00000000 0.00000000 b2 = 0.00000000 0.05361930 0.00000000 b3 = 0.00000000 0.00000000 0.05361930 omega = 6486.88962500 Energy Cut-offs --------------- Ecutwfc = 70.0 Ry, Ecutrho = 280.0 Ry, Ecuts = 280.0 Ry Gcutwfc = 24.8 , Gcutrho = 49.7 Gcuts = 49.7 modified kinetic energy functional, with parameters: ecutz = 68.0000 ecsig = 8.0000 ecfix = 68.00 NOTA BENE: refg, mmx = 0.050000 6720 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.50E-07, max = 15 Electron dynamics with steepest descent Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 256, of States = 128 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: LEE, YANG, AND PARR Using Generalized Gradient Corrections with Exchange functional: BECKE Correlation functional: PERDEW AND WANG Exchange-correlation = BLYP (1313) Wavefunctions will be written to file as Kohn-Sham states Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 32 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 6.232830 7.195170 3.174230 12.460065 1.439780 1.857540 9.127310 5.132480 18.023360 15.617510 0.307725 16.570525 7.765860 2.622190 10.022510 17.158000 5.121290 13.948335 17.340770 12.605535 1.018290 9.692405 10.766645 4.606550 15.764845 4.304420 4.720315 13.204200 8.414880 2.055230 11.743905 12.568235 8.759905 12.847985 8.258220 15.106500 17.294145 16.522035 5.125020 13.539900 17.851780 8.418610 17.790235 11.743905 11.756960 1.182410 7.827405 4.970225 0.164120 2.627785 9.461145 14.998330 8.159375 9.216830 13.019565 3.530445 10.878545 5.423420 9.694270 9.761410 3.422275 7.405915 14.561920 4.569250 3.774760 6.479010 5.710630 2.935510 14.910675 8.327225 15.645485 4.030265 3.601315 10.701370 0.091385 3.504335 18.025225 3.541635 1.633740 12.433955 7.618525 4.918005 13.942740 14.694335 9.703595 11.803585 13.454110 6.926610 16.342995 9.136635 14.761475 15.460850 13.155710 2.678140 18.461635 17.338905 Species 2 atoms = 64 mass = 1837.29 (a.u.), 1.01 (amu) rcmax = 0.50 (a.u.) 6.978830 6.266400 1.732585 5.874750 6.016490 4.610280 17.540325 3.364460 8.422340 11.305630 0.160390 2.558780 13.485815 0.660210 0.492360 10.182900 3.733730 18.433660 10.261230 6.096685 16.839085 15.921505 1.956385 15.815200 7.928115 0.805680 9.716650 6.941530 2.877695 11.702875 13.131465 0.906390 9.155285 17.489970 4.086215 12.346300 16.939795 13.687235 2.450610 11.078100 10.076595 3.578935 8.230245 9.586100 4.295095 14.873375 3.026895 3.616235 17.439615 4.643850 4.045185 13.978175 7.075810 3.289860 14.489185 9.811765 1.769885 13.506330 12.100120 8.418610 10.839380 11.480940 7.521545 14.192650 7.443215 14.147890 13.526845 8.483885 16.807380 18.286325 15.140070 5.889670 16.363510 17.221410 6.542420 15.416090 17.590680 15.265025 12.008735 16.885710 8.687170 16.969635 13.207930 12.568235 2.137290 6.480875 5.835585 2.195105 8.564080 3.610640 1.835160 3.476360 9.214965 16.285180 9.144095 10.130680 15.789090 7.547655 7.655825 11.158295 3.448385 10.738670 13.530575 5.345090 10.479435 4.602820 11.208650 9.228020 6.816575 10.279880 10.753590 4.136570 8.351470 13.025160 4.237280 5.645355 14.427640 0.165985 5.915780 14.451885 5.979190 3.274940 7.694990 4.304420 2.331250 5.222000 4.513300 1.915355 15.945750 6.997480 3.660995 16.231095 6.484605 15.962535 3.545365 8.836370 13.834570 3.922095 0.553905 12.357490 1.128325 4.975820 9.996400 1.117135 3.153715 18.431795 1.786670 1.775480 17.489970 4.172005 0.300265 12.100120 8.892320 1.753100 10.703235 6.954585 5.087720 13.045675 16.341130 6.622615 13.948335 14.019205 10.839380 10.399240 14.134835 10.453325 12.340705 11.840885 3.246965 9.584235 17.314660 5.643490 15.028170 9.481660 7.584955 15.988645 7.348100 13.129600 14.854725 13.735725 14.390340 16.053920 11.370905 0.276020 11.270195 13.174360 3.420410 16.993880 16.154630 0.917580 18.452310 17.171055 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Potentials Parameters --------------------- Ewald sum over 3*3*3 cells Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 18.6500 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 18.6500 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 18.6500 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 3881, nstw = 967, nsts = 3881 PEs n.st n.stw n.sts n.g n.gw n.gs 1 7761 1933 7761 513171 64085 513171 0 7761 1933 7761 513171 64085 513171 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 100 100 100 100 100 100 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 100 100 100 Local number of cell to store the grid ( nnrx ) = 1000000 Number of x-y planes for each processors: nr3l = 100 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 100 100 100 100 100 100 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 100 100 100 Local number of cell to store the grid ( nnrx ) = 1000000 Number of x-y planes for each processors: nr3sl = 100 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 256586 256586 256586 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 256586 256586 256586 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 32043 32043 32043 Estimated Sizes of the problem ------------------------------ dimension of the problem (byte/pe) : 432551232 System geometry initialization ------------------------------ Scaled positions from standard input O 0.334200E+00 0.385800E+00 0.170200E+00 O 0.668100E+00 0.772000E-01 0.996000E-01 O 0.489400E+00 0.275200E+00 0.966400E+00 O 0.837400E+00 0.165000E-01 0.888500E+00 O 0.416400E+00 0.140600E+00 0.537400E+00 O 0.920000E+00 0.274600E+00 0.747900E+00 O 0.929800E+00 0.675900E+00 0.546000E-01 O 0.519700E+00 0.577300E+00 0.247000E+00 O 0.845300E+00 0.230800E+00 0.253100E+00 O 0.708000E+00 0.451200E+00 0.110200E+00 O 0.629700E+00 0.673900E+00 0.469700E+00 O 0.688900E+00 0.442800E+00 0.810000E+00 O 0.927300E+00 0.885900E+00 0.274800E+00 O 0.726000E+00 0.957200E+00 0.451400E+00 O 0.953900E+00 0.629700E+00 0.630400E+00 O 0.634000E-01 0.419700E+00 0.266500E+00 O 0.880000E-02 0.140900E+00 0.507300E+00 O 0.804200E+00 0.437500E+00 0.494200E+00 O 0.698100E+00 0.189300E+00 0.583300E+00 O 0.290800E+00 0.519800E+00 0.523400E+00 O 0.183500E+00 0.397100E+00 0.780800E+00 O 0.245000E+00 0.202400E+00 0.347400E+00 O 0.306200E+00 0.157400E+00 0.799500E+00 O 0.446500E+00 0.838900E+00 0.216100E+00 O 0.193100E+00 0.573800E+00 0.490000E-02 O 0.187900E+00 0.966500E+00 0.189900E+00 O 0.876000E-01 0.666700E+00 0.408500E+00 O 0.263700E+00 0.747600E+00 0.787900E+00 O 0.520300E+00 0.632900E+00 0.721400E+00 O 0.371400E+00 0.876300E+00 0.489900E+00 O 0.791500E+00 0.829000E+00 0.705400E+00 O 0.143600E+00 0.989900E+00 0.929700E+00 H 0.374200E+00 0.336000E+00 0.929000E-01 H 0.315000E+00 0.322600E+00 0.247200E+00 H 0.940500E+00 0.180400E+00 0.451600E+00 H 0.606200E+00 0.860000E-02 0.137200E+00 H 0.723100E+00 0.354000E-01 0.264000E-01 H 0.546000E+00 0.200200E+00 0.988400E+00 H 0.550200E+00 0.326900E+00 0.902900E+00 H 0.853700E+00 0.104900E+00 0.848000E+00 H 0.425100E+00 0.432000E-01 0.521000E+00 H 0.372200E+00 0.154300E+00 0.627500E+00 H 0.704100E+00 0.486000E-01 0.490900E+00 H 0.937800E+00 0.219100E+00 0.662000E+00 H 0.908300E+00 0.733900E+00 0.131400E+00 H 0.594000E+00 0.540300E+00 0.191900E+00 H 0.441300E+00 0.514000E+00 0.230300E+00 H 0.797500E+00 0.162300E+00 0.193900E+00 H 0.935100E+00 0.249000E+00 0.216900E+00 H 0.749500E+00 0.379400E+00 0.176400E+00 H 0.776900E+00 0.526100E+00 0.949000E-01 H 0.724200E+00 0.648800E+00 0.451400E+00 H 0.581200E+00 0.615600E+00 0.403300E+00 H 0.761000E+00 0.399100E+00 0.758600E+00 H 0.725300E+00 0.454900E+00 0.901200E+00 H 0.980500E+00 0.811800E+00 0.315800E+00 H 0.877400E+00 0.923400E+00 0.350800E+00 H 0.826600E+00 0.943200E+00 0.818500E+00 H 0.643900E+00 0.905400E+00 0.465800E+00 H 0.909900E+00 0.708200E+00 0.673900E+00 H 0.114600E+00 0.347500E+00 0.312900E+00 H 0.117700E+00 0.459200E+00 0.193600E+00 H 0.984000E-01 0.186400E+00 0.494100E+00 H 0.873200E+00 0.490300E+00 0.543200E+00 H 0.846600E+00 0.404700E+00 0.410500E+00 H 0.598300E+00 0.184900E+00 0.575800E+00 H 0.725500E+00 0.286600E+00 0.561900E+00 H 0.246800E+00 0.601000E+00 0.494800E+00 H 0.365500E+00 0.551200E+00 0.576600E+00 H 0.221800E+00 0.447800E+00 0.698400E+00 H 0.227200E+00 0.302700E+00 0.773600E+00 H 0.890000E-02 0.317200E+00 0.774900E+00 H 0.320600E+00 0.175600E+00 0.412600E+00 H 0.230800E+00 0.125000E+00 0.280000E+00 H 0.242000E+00 0.102700E+00 0.855000E+00 H 0.375200E+00 0.196300E+00 0.870300E+00 H 0.347700E+00 0.855900E+00 0.190100E+00 H 0.473800E+00 0.741800E+00 0.210300E+00 H 0.297000E-01 0.662600E+00 0.605000E-01 H 0.266800E+00 0.536000E+00 0.599000E-01 H 0.169100E+00 0.988300E+00 0.958000E-01 H 0.952000E-01 0.937800E+00 0.223700E+00 H 0.161000E-01 0.648800E+00 0.476800E+00 H 0.940000E-01 0.573900E+00 0.372900E+00 H 0.272800E+00 0.699500E+00 0.876200E+00 H 0.355100E+00 0.747900E+00 0.751700E+00 H 0.581200E+00 0.557600E+00 0.757900E+00 H 0.560500E+00 0.661700E+00 0.634900E+00 H 0.174100E+00 0.513900E+00 0.928400E+00 H 0.302600E+00 0.805800E+00 0.508400E+00 H 0.406700E+00 0.857300E+00 0.394000E+00 H 0.704000E+00 0.796500E+00 0.736500E+00 H 0.771600E+00 0.860800E+00 0.609700E+00 H 0.148000E-01 0.604300E+00 0.706400E+00 H 0.183400E+00 0.911200E+00 0.866200E+00 H 0.492000E-01 0.989400E+00 0.920700E+00 Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 3.2390 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 128 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 formf: eself= 625.54150 formf: vps(g=0)= -0.0017634 rhops(g=0)= -0.0009249 formf: sum_g vps(g)= -6.3380944 sum_g rhops(g)= -1.0527308 formf: vps(g=0)= -0.0001280 rhops(g=0)= -0.0001542 formf: sum_g vps(g)= -2.0909089 sum_g rhops(g)= -0.7184255 from rhoofr: total integrated electronic density in g-space = 256.000000 in r-space = 256.000000 ESR (real part of Ewald sum) = 0.10196278D+01 1 ******** 0.0 0.0 1588.55259 1588.55259 1588.55259 1717.42413 0.0000 0.0000 0.0000 0.0000 2 ******** 0.0 0.0 1293.03183 1293.03183 1293.03183 1441.98354 0.0000 0.0000 0.0000 0.0000 3 ******** 0.0 0.0 980.36223 980.36223 980.36223 1134.03683 0.0000 0.0000 0.0000 0.0000 4 ******** 0.0 0.0 682.95085 682.95085 682.95085 826.36496 0.0000 0.0000 0.0000 0.0000 5 ******** 0.0 0.0 422.76813 422.76813 422.76813 546.45738 0.0000 0.0000 0.0000 0.0000 6 ******** 0.0 0.0 209.08364 209.08364 209.08364 309.69326 0.0000 0.0000 0.0000 0.0000 7 78.74755 0.0 0.0 40.93125 40.93125 40.93125 119.67879 0.0000 0.0000 0.0000 0.0000 8 60.35550 0.0 0.0 -88.24272 -88.24272 -88.24272 -27.88722 0.0000 0.0000 0.0000 0.0000 9 45.85555 0.0 0.0 -186.42539 -186.42539 -186.42539 -140.56984 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 10 Simulated time t = 0.12094422D-02 ps from rhoofr: total integrated electronic density in g-space = 256.000000 in r-space = 256.000000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.347915D+02 0.1D-05 0.744465D+02 0.1D-07 0.891309D+00 0.1D+11 MAIN: convergence NOT achieved for system relaxation total energy = -260.87193 Hartree a.u. kinetic energy = 438.25896 Hartree a.u. electrostatic energy = -516.70240 Hartree a.u. esr = 1.01963 Hartree a.u. eself = 625.54150 Hartree a.u. pseudopotential energy = -157.80523 Hartree a.u. n-l pseudopotential energy = 76.29453 Hartree a.u. exchange-correlation energy = -100.91779 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -43.23 -42.62 -41.82 -41.62 -40.99 -40.84 -40.53 -40.38 -40.32 -40.11 -40.03 -39.80 -39.75 -39.66 -39.26 -39.23 -39.12 -39.01 -38.86 -38.69 -38.41 -37.57 -37.48 -37.14 -36.82 -36.60 -36.33 -36.15 -35.86 -35.11 -34.27 -32.48 -13.76 -13.49 -13.14 -12.79 -12.48 -12.01 -11.63 -11.13 -11.06 -10.73 -10.29 -9.87 -9.64 -9.53 -9.29 -8.91 -8.48 -8.29 -8.26 -8.06 -7.54 -6.97 -6.71 -6.57 -6.10 -5.82 -5.56 -5.30 -4.81 -4.76 -4.35 -3.96 -3.85 -3.45 -3.04 -2.67 -2.40 -2.17 -2.07 -1.85 -1.25 -1.06 -0.68 -0.05 0.09 0.59 1.06 1.21 1.35 2.34 2.47 2.89 3.08 3.36 3.91 4.33 4.80 5.17 5.52 5.88 6.16 6.62 6.70 7.75 8.02 8.27 8.81 9.28 9.68 10.66 10.77 11.27 11.48 11.55 12.20 12.42 13.40 13.68 13.83 14.25 14.86 15.26 15.90 16.04 16.49 16.74 17.43 17.47 17.80 18.17 18.57 19.28 19.57 20.03 20.66 21.16 Allocated memory (kb) = 483396 CELL_PARAMETERS 18.65000000 0.00000000 0.00000000 0.00000000 18.65000000 0.00000000 0.00000000 0.00000000 18.65000000 System Density [g/cm^3] : 0.9959 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 501.74993337 -0.59898817 -9.87582831 -0.59898817 492.05038642 4.68539016 -9.87582831 4.68539016 497.41625231 ATOMIC_POSITIONS O 0.623283E+01 0.719517E+01 0.317423E+01 O 0.124601E+02 0.143978E+01 0.185754E+01 O 0.912731E+01 0.513248E+01 0.180234E+02 O 0.156175E+02 0.307725E+00 0.165705E+02 O 0.776586E+01 0.262219E+01 0.100225E+02 O 0.171580E+02 0.512129E+01 0.139483E+02 O 0.173408E+02 0.126055E+02 0.101829E+01 O 0.969241E+01 0.107666E+02 0.460655E+01 O 0.157648E+02 0.430442E+01 0.472031E+01 O 0.132042E+02 0.841488E+01 0.205523E+01 O 0.117439E+02 0.125682E+02 0.875990E+01 O 0.128480E+02 0.825822E+01 0.151065E+02 O 0.172941E+02 0.165220E+02 0.512502E+01 O 0.135399E+02 0.178518E+02 0.841861E+01 O 0.177902E+02 0.117439E+02 0.117570E+02 O 0.118241E+01 0.782740E+01 0.497023E+01 O 0.164120E+00 0.262778E+01 0.946114E+01 O 0.149983E+02 0.815937E+01 0.921683E+01 O 0.130196E+02 0.353044E+01 0.108785E+02 O 0.542342E+01 0.969427E+01 0.976141E+01 O 0.342227E+01 0.740591E+01 0.145619E+02 O 0.456925E+01 0.377476E+01 0.647901E+01 O 0.571063E+01 0.293551E+01 0.149107E+02 O 0.832723E+01 0.156455E+02 0.403026E+01 O 0.360131E+01 0.107014E+02 0.913850E-01 O 0.350433E+01 0.180252E+02 0.354163E+01 O 0.163374E+01 0.124340E+02 0.761852E+01 O 0.491800E+01 0.139427E+02 0.146943E+02 O 0.970359E+01 0.118036E+02 0.134541E+02 O 0.692661E+01 0.163430E+02 0.913664E+01 O 0.147615E+02 0.154608E+02 0.131557E+02 O 0.267814E+01 0.184616E+02 0.173389E+02 H 0.697883E+01 0.626640E+01 0.173258E+01 H 0.587475E+01 0.601649E+01 0.461028E+01 H 0.175403E+02 0.336446E+01 0.842234E+01 H 0.113056E+02 0.160390E+00 0.255878E+01 H 0.134858E+02 0.660210E+00 0.492360E+00 H 0.101829E+02 0.373373E+01 0.184337E+02 H 0.102612E+02 0.609668E+01 0.168391E+02 H 0.159215E+02 0.195638E+01 0.158152E+02 H 0.792811E+01 0.805680E+00 0.971665E+01 H 0.694153E+01 0.287769E+01 0.117029E+02 H 0.131315E+02 0.906390E+00 0.915528E+01 H 0.174900E+02 0.408621E+01 0.123463E+02 H 0.169398E+02 0.136872E+02 0.245061E+01 H 0.110781E+02 0.100766E+02 0.357893E+01 H 0.823025E+01 0.958610E+01 0.429509E+01 H 0.148734E+02 0.302689E+01 0.361623E+01 H 0.174396E+02 0.464385E+01 0.404519E+01 H 0.139782E+02 0.707581E+01 0.328986E+01 H 0.144892E+02 0.981176E+01 0.176988E+01 H 0.135063E+02 0.121001E+02 0.841861E+01 H 0.108394E+02 0.114809E+02 0.752154E+01 H 0.141926E+02 0.744321E+01 0.141479E+02 H 0.135268E+02 0.848388E+01 0.168074E+02 H 0.182863E+02 0.151401E+02 0.588967E+01 H 0.163635E+02 0.172214E+02 0.654242E+01 H 0.154161E+02 0.175907E+02 0.152650E+02 H 0.120087E+02 0.168857E+02 0.868717E+01 H 0.169696E+02 0.132079E+02 0.125682E+02 H 0.213729E+01 0.648087E+01 0.583559E+01 H 0.219510E+01 0.856408E+01 0.361064E+01 H 0.183516E+01 0.347636E+01 0.921496E+01 H 0.162852E+02 0.914410E+01 0.101307E+02 H 0.157891E+02 0.754765E+01 0.765582E+01 H 0.111583E+02 0.344839E+01 0.107387E+02 H 0.135306E+02 0.534509E+01 0.104794E+02 H 0.460282E+01 0.112086E+02 0.922802E+01 H 0.681657E+01 0.102799E+02 0.107536E+02 H 0.413657E+01 0.835147E+01 0.130252E+02 H 0.423728E+01 0.564536E+01 0.144276E+02 H 0.165985E+00 0.591578E+01 0.144519E+02 H 0.597919E+01 0.327494E+01 0.769499E+01 H 0.430442E+01 0.233125E+01 0.522200E+01 H 0.451330E+01 0.191535E+01 0.159457E+02 H 0.699748E+01 0.366099E+01 0.162311E+02 H 0.648460E+01 0.159625E+02 0.354536E+01 H 0.883637E+01 0.138346E+02 0.392209E+01 H 0.553905E+00 0.123575E+02 0.112832E+01 H 0.497582E+01 0.999640E+01 0.111713E+01 H 0.315371E+01 0.184318E+02 0.178667E+01 H 0.177548E+01 0.174900E+02 0.417200E+01 H 0.300265E+00 0.121001E+02 0.889232E+01 H 0.175310E+01 0.107032E+02 0.695458E+01 H 0.508772E+01 0.130457E+02 0.163411E+02 H 0.662261E+01 0.139483E+02 0.140192E+02 H 0.108394E+02 0.103992E+02 0.141348E+02 H 0.104533E+02 0.123407E+02 0.118409E+02 H 0.324696E+01 0.958423E+01 0.173147E+02 H 0.564349E+01 0.150282E+02 0.948166E+01 H 0.758495E+01 0.159886E+02 0.734810E+01 H 0.131296E+02 0.148547E+02 0.137357E+02 H 0.143903E+02 0.160539E+02 0.113709E+02 H 0.276020E+00 0.112702E+02 0.131744E+02 H 0.342041E+01 0.169939E+02 0.161546E+02 H 0.917580E+00 0.184523E+02 0.171711E+02 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): O -0.545784E-01 0.402626E+00 -0.254578E+00 O 0.210464E+00 0.878755E+00 0.199173E+00 O -0.517409E+00 0.243407E+00 0.148430E+00 O -0.213604E+00 -0.231589E+00 0.625209E+00 O -0.504092E-01 0.318003E+00 -0.299497E+00 O -0.787558E+00 -0.665180E-01 -0.493543E-01 O -0.279483E+00 -0.515391E+00 -0.133809E+00 O -0.160301E+00 0.535969E+00 0.480331E+00 O -0.465971E+00 0.141715E+00 0.502408E+00 O -0.208197E+00 0.665337E-01 -0.284190E+00 O -0.258199E+00 0.523569E+00 0.284212E+00 O -0.530875E+00 0.297847E-01 -0.452521E+00 O 0.705037E-01 0.340085E+00 -0.447636E+00 O 0.466491E+00 -0.531475E-01 -0.471193E+00 O -0.194745E+00 -0.109294E+00 -0.891309E+00 O -0.307372E+00 0.243443E+00 0.436477E+00 O -0.214321E+00 -0.291843E+00 0.802208E-01 O -0.769256E+00 -0.317889E+00 0.275064E+00 O 0.468814E+00 -0.138192E+00 0.165317E+00 O -0.129325E+00 -0.684093E+00 -0.390327E+00 O -0.243290E+00 0.214996E+00 0.382854E+00 O -0.503641E+00 0.633839E+00 0.238932E+00 O -0.561612E-01 0.991597E-01 -0.709205E+00 O 0.406205E+00 0.539954E+00 0.528505E+00 O -0.274155E+00 0.729281E+00 0.167360E+00 O 0.336973E+00 -0.125527E+00 0.387691E+00 O 0.332317E+00 0.927695E-01 -0.631225E-01 O -0.579713E+00 0.301936E+00 -0.378369E+00 O -0.657293E+00 -0.190896E+00 -0.419939E-01 O 0.370760E+00 0.319748E+00 0.931609E-02 O 0.625971E+00 0.224744E+00 0.435920E+00 O 0.507235E+00 0.532204E+00 0.720660E+00 H 0.229947E+00 -0.277774E+00 -0.410007E+00 H -0.833089E-01 -0.298425E+00 0.300739E+00 H -0.414633E+00 0.308491E+00 -0.361919E+00 H -0.369595E+00 -0.360329E+00 0.248991E+00 H 0.280458E+00 -0.175187E+00 -0.355852E+00 H 0.336217E+00 -0.461831E+00 0.142277E+00 H 0.273268E+00 0.268210E+00 -0.271335E+00 H 0.828704E-01 0.582235E+00 -0.263432E+00 H 0.558187E-01 -0.534973E+00 -0.960732E-01 H -0.233878E+00 0.905873E-01 0.428537E+00 H -0.718112E-01 0.424683E+00 0.184887E+00 H 0.375260E-01 -0.244404E+00 -0.418701E+00 H -0.992678E-01 0.316777E+00 0.478537E+00 H 0.365055E+00 -0.208433E+00 -0.316080E+00 H -0.402718E+00 -0.279570E+00 -0.673904E-01 H -0.228231E+00 -0.279441E+00 -0.260743E+00 H 0.493293E+00 0.148406E+00 -0.165699E+00 H 0.179382E+00 -0.293015E+00 0.319626E+00 H 0.285899E+00 0.295650E+00 -0.828143E-01 H 0.525618E+00 -0.129006E+00 -0.283431E-01 H -0.264229E+00 -0.226805E+00 -0.353811E+00 H 0.413127E+00 -0.283895E+00 -0.344318E+00 H 0.214293E+00 0.195618E-01 0.494417E+00 H 0.313325E+00 -0.432852E+00 0.213629E+00 H -0.314050E+00 0.284718E+00 0.476527E+00 H -0.645394E-01 -0.338215E+00 -0.318920E+00 H -0.467702E+00 -0.301231E+00 0.945194E-01 H -0.205806E+00 0.414471E+00 0.196596E+00 H 0.240145E+00 -0.364171E+00 0.309732E+00 H 0.281168E+00 0.193072E+00 -0.390228E+00 H 0.457541E+00 0.246293E+00 -0.101396E+00 H 0.398525E+00 0.295656E+00 0.372385E+00 H 0.256449E+00 -0.263401E+00 -0.473781E+00 H -0.495441E+00 -0.350690E-01 -0.702472E-01 H 0.111174E+00 0.441047E+00 -0.841735E-01 H -0.279253E+00 0.538003E+00 -0.212560E+00 H 0.466495E+00 0.224219E+00 0.385415E+00 H 0.180648E+00 0.349518E+00 -0.333242E+00 H 0.194287E+00 -0.421079E+00 -0.135762E-01 H 0.473909E+00 0.198074E+00 0.161499E+00 H 0.343926E+00 -0.111198E+00 0.276995E+00 H -0.869415E-01 -0.388331E+00 -0.345578E+00 H -0.316858E+00 -0.217389E+00 0.261509E+00 H 0.243054E+00 0.210495E+00 0.298067E+00 H -0.440382E+00 0.558790E-01 -0.991789E-01 H 0.163878E+00 -0.434177E+00 -0.355296E-01 H 0.535400E+00 -0.685857E-01 0.774470E-01 H 0.437506E+00 -0.230333E+00 0.332058E+00 H -0.114172E+00 0.148870E+00 -0.547560E+00 H -0.404548E+00 -0.162825E+00 0.118746E+00 H -0.367800E+00 -0.118954E+00 0.276732E+00 H -0.127566E-01 -0.500561E+00 -0.167739E+00 H 0.696458E-02 -0.332766E+00 0.526666E+00 H 0.567853E+00 0.957729E-02 -0.297765E+00 H 0.188621E+00 -0.331095E+00 0.897058E-01 H 0.228966E+00 0.165108E+00 -0.467712E+00 H -0.864441E-01 -0.349398E+00 -0.473320E+00 H -0.375979E+00 -0.399832E+00 0.884304E-01 H 0.163841E+00 -0.102535E+00 -0.413898E+00 H -0.507288E+00 -0.198079E+00 0.176753E+00 H -0.126945E+00 0.166591E+00 -0.508195E+00 H 0.307768E+00 -0.132006E+00 0.389490E+00 H 0.134543E+00 -0.241862E+00 -0.213272E+00 H -0.632626E+00 -0.102260E-01 0.394217E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 10 34.79155 0.0 0.0 -260.87193 -260.87193 -260.87193 -226.08038 0.0000 0.0000 0.0000 0.0000 Averaged Physical Quantities accomulated this run ekinc : 101.89610 101.89610 (AU) ekin : 995.48060 995.48060 (AU) epot : -569.82242 -569.82242 (AU) total energy : 468.21405 468.21405 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : 468.21405 468.21405 (AU) econs : 468.21405 468.21405 (AU) pressure : 5457.46969 5457.46969 (Gpa) volume : 6486.88962 6486.88962 (AU) initialize : 66.61s CPU main_loop : 463.49s CPU ( 10 calls, 46.349 s avg) formf : 1.31s CPU rhoofr : 146.29s CPU ( 11 calls, 13.299 s avg) vofrho : 44.16s CPU ( 11 calls, 4.015 s avg) dforce : 278.94s CPU ( 704 calls, 0.396 s avg) calphi : 1.57s CPU ( 11 calls, 0.143 s avg) ortho : 30.92s CPU ( 11 calls, 2.811 s avg) ortho_iter : 0.45s CPU ( 11 calls, 0.041 s avg) rhoset : 7.91s CPU ( 11 calls, 0.719 s avg) updatc : 6.67s CPU ( 11 calls, 0.606 s avg) gram : 13.15s CPU prefor : 0.02s CPU strucf : 1.16s CPU nlsm1 : 2.69s CPU ( 11 calls, 0.245 s avg) nlsm2 : 1.55s CPU ( 2 calls, 0.775 s avg) fft : 24.47s CPU ( 88 calls, 0.278 s avg) fftw : 354.15s CPU ( 2112 calls, 0.168 s avg) rsg : 0.17s CPU ( 11 calls, 0.015 s avg) CP : 8m52.13s CPU time, 9m23.71s wall time This run was terminated on: 4:27:14 21Dec2007 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example04/reference/h2o-64.out0000644000175000017500000017650412341373026020773 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.0 - Mon Oct 8 02:36:14 CEST 2007 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 4:27:15 21Dec2007 Serial Build Job Title: Water 64 molecules Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/pseudo/O.BLYP.UPF file type is 20: UPF Type is NC and NONLOCAL. Local component is ..... : 1 Non local components are : 0 Pseudo charge : 6.000 Pseudopotentials Grid : Channels = 2, Mesh = 631 point radius vloc ( vnl - vloc ) 1 0.781250E-03 -0.253772E+02 0.392686E-02 157 0.116993E-01 -0.239772E+02 0.588100E-01 315 0.181383E+00 -0.201489E+02 0.915268E+00 631 0.435987E+02 -0.137619E+00 0.000000E+00 Atomic wavefunction Grid : Channels = 2, Mesh = 631 Channels occupation number : 2.0000 4.0000 point radius wavefunction 1 0.781250E-03 0.255544E-03 0.103901E-05 157 0.116993E-01 0.382712E-02 0.232913E-03 315 0.181383E+00 0.605741E-01 0.510268E-01 631 0.435987E+02 0.000000E+00 0.000000E+00 Warning XC functionals forced to be: BLYP Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/pseudo/H.fpmd.UPF file type is 20: UPF Type is NC and LOCAL. Local component is ..... : 0 Pseudo charge : 1.000 Pseudopotentials Grid : Channels = 1, Mesh = 809 point radius vloc ( vnl - vloc ) 1 0.112299E-02 -0.647505E+01 202 0.170886E+00 -0.525294E+01 404 0.266620E+02 -0.375065E-01 809 0.665464E+06 -0.150271E-05 Atomic wavefunction Grid : Channels = 1, Mesh = 809 Channels occupation number : 1.0000 point radius wavefunction 1 0.112299E-02 0.000000E+00 202 0.170886E+00 0.000000E+00 404 0.266620E+02 0.000000E+00 809 0.665464E+06 0.000000E+00 Warning XC functionals forced to be: BLYP Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 10 Print out every 10 MD Steps Reads from unit = 50 Writes to unit = -1 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (read from input) = 70000.00 [AU] ibrav = 14 alat = 18.65000000 a1 = 18.65000000 0.00000000 0.00000000 a2 = 0.00000000 18.65000000 0.00000000 a3 = 0.00000000 0.00000000 37.30000000 b1 = 0.05361930 0.00000000 0.00000000 b2 = 0.00000000 0.05361930 0.00000000 b3 = 0.00000000 0.00000000 0.02680965 omega = 12973.77925000 Energy Cut-offs --------------- Ecutwfc = 70.0 Ry, Ecutrho = 280.0 Ry, Ecuts = 280.0 Ry Gcutwfc = 24.8 , Gcutrho = 49.7 Gcuts = 49.7 modified kinetic energy functional, with parameters: ecutz = 68.0000 ecsig = 8.0000 ecfix = 68.00 NOTA BENE: refg, mmx = 0.050000 6720 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.50E-07, max = 15 Electron dynamics with steepest descent Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 512, of States = 256 Occupation numbers : 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: LEE, YANG, AND PARR Using Generalized Gradient Corrections with Exchange functional: BECKE Correlation functional: PERDEW AND WANG Exchange-correlation = BLYP (1313) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 64 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 6.232830 7.195170 3.174230 12.460065 1.439780 1.857540 9.127310 5.132480 18.023360 15.617510 0.307725 16.568660 7.765860 2.622190 10.022510 17.158000 5.121290 13.950200 17.340770 12.605535 1.018290 9.692405 10.766645 4.606550 15.764845 4.304420 4.718450 13.204200 8.414880 2.055230 11.743905 12.568235 8.761770 12.847985 8.258220 15.106500 17.294145 16.522035 5.125020 13.539900 17.851780 8.418610 17.790235 11.743905 11.756960 1.182410 7.827405 4.972090 0.164120 2.627785 9.459280 14.998330 8.159375 9.216830 13.019565 3.530445 10.880410 5.423420 9.694270 9.761410 3.422275 7.405915 14.561920 4.569250 3.774760 6.479010 5.710630 2.935510 14.908810 8.327225 15.645485 4.028400 3.601315 10.701370 0.089520 3.504335 18.025225 3.543500 1.633740 12.433955 7.616660 4.918005 13.942740 14.696200 9.703595 11.803585 13.454110 6.926610 16.342995 9.138500 14.761475 15.460850 13.155710 2.678140 18.461635 17.337040 6.232830 7.195170 21.824230 12.460065 1.439780 20.507540 9.127310 5.132480 36.673360 15.617510 0.307725 35.218660 7.765860 2.622190 28.672510 17.158000 5.121290 32.600200 17.340770 12.605535 19.668290 9.692405 10.766645 23.256550 15.764845 4.304420 23.368450 13.204200 8.414880 20.705230 11.743905 12.568235 27.411770 12.847985 8.258220 33.756500 17.294145 16.522035 23.775020 13.539900 17.851780 27.068610 17.790235 11.743905 30.406960 1.182410 7.827405 23.622090 0.164120 2.627785 28.109280 14.998330 8.159375 27.866830 13.019565 3.530445 29.530410 5.423420 9.694270 28.411410 3.422275 7.405915 33.211920 4.569250 3.774760 25.129010 5.710630 2.935510 33.558810 8.327225 15.645485 22.678400 3.601315 10.701370 18.739520 3.504335 18.025225 22.193500 1.633740 12.433955 26.266660 4.918005 13.942740 33.346200 9.703595 11.803585 32.104110 6.926610 16.342995 27.788500 14.761475 15.460850 31.805710 2.678140 18.461635 35.987040 Species 2 atoms = 128 mass = 1837.29 (a.u.), 1.01 (amu) rcmax = 0.50 (a.u.) 6.978830 6.266400 1.730720 5.874750 6.016490 4.610280 17.540325 3.364460 8.422340 11.305630 0.160390 2.558780 13.485815 0.660210 0.492360 10.182900 3.733730 18.433660 10.261230 6.096685 16.840950 15.921505 1.956385 15.815200 7.928115 0.805680 9.716650 6.941530 2.877695 11.701010 13.131465 0.906390 9.157150 17.489970 4.086215 12.346300 16.939795 13.687235 2.450610 11.078100 10.076595 3.577070 8.230245 9.586100 4.296960 14.873375 3.026895 3.614370 17.439615 4.643850 4.047050 13.978175 7.075810 3.289860 14.489185 9.811765 1.768020 13.506330 12.100120 8.418610 10.839380 11.480940 7.519680 14.192650 7.443215 14.147890 13.526845 8.483885 16.807380 18.286325 15.140070 5.889670 16.363510 17.221410 6.542420 15.416090 17.590680 15.266890 12.008735 16.885710 8.687170 16.969635 13.207930 12.570100 2.137290 6.480875 5.837450 2.195105 8.564080 3.610640 1.835160 3.476360 9.213100 16.285180 9.144095 10.130680 15.789090 7.547655 7.653960 11.158295 3.448385 10.738670 13.530575 5.345090 10.477570 4.602820 11.208650 9.228020 6.816575 10.279880 10.753590 4.136570 8.351470 13.025160 4.237280 5.645355 14.427640 0.165985 5.915780 14.453750 5.979190 3.274940 7.694990 4.304420 2.331250 5.222000 4.513300 1.915355 15.945750 6.997480 3.660995 16.229230 6.484605 15.962535 3.543500 8.836370 13.834570 3.920230 0.553905 12.357490 1.126460 4.975820 9.996400 1.119000 3.153715 18.431795 1.786670 1.775480 17.489970 4.173870 0.300265 12.100120 8.892320 1.753100 10.703235 6.956450 5.087720 13.045675 16.341130 6.622615 13.948335 14.021070 10.839380 10.399240 14.136700 10.453325 12.340705 11.842750 3.246965 9.584235 17.314660 5.643490 15.028170 9.481660 7.584955 15.988645 7.348100 13.129600 14.854725 13.737590 14.390340 16.053920 11.372770 0.276020 11.270195 13.174360 3.420410 16.993880 16.154630 0.917580 18.452310 17.169190 6.978830 6.266400 20.380720 5.874750 6.016490 23.260280 17.540325 3.364460 27.072340 11.305630 0.160390 21.208780 13.485815 0.660210 19.142360 10.182900 3.733730 37.083660 10.261230 6.096685 35.490950 15.921505 1.956385 34.465200 7.928115 0.805680 28.366650 6.941530 2.877695 30.351010 13.131465 0.906390 27.807150 17.489970 4.086215 30.996300 16.939795 13.687235 21.100610 11.078100 10.076595 22.227070 8.230245 9.586100 22.946960 14.873375 3.026895 22.264370 17.439615 4.643850 22.697050 13.978175 7.075810 21.939860 14.489185 9.811765 20.418020 13.506330 12.100120 27.068610 10.839380 11.480940 26.169680 14.192650 7.443215 32.797890 13.526845 8.483885 35.457380 18.286325 15.140070 24.539670 16.363510 17.221410 25.192420 15.416090 17.590680 33.916890 12.008735 16.885710 27.337170 16.969635 13.207930 31.220100 2.137290 6.480875 24.487450 2.195105 8.564080 22.260640 1.835160 3.476360 27.863100 16.285180 9.144095 28.780680 15.789090 7.547655 26.303960 11.158295 3.448385 29.388670 13.530575 5.345090 29.127570 4.602820 11.208650 27.878020 6.816575 10.279880 29.403590 4.136570 8.351470 31.675160 4.237280 5.645355 33.077640 0.165985 5.915780 33.103750 5.979190 3.274940 26.344990 4.304420 2.331250 23.872000 4.513300 1.915355 34.595750 6.997480 3.660995 34.879230 6.484605 15.962535 22.193500 8.836370 13.834570 22.570230 0.553905 12.357490 19.776460 4.975820 9.996400 19.769000 3.153715 18.431795 20.436670 1.775480 17.489970 22.823870 0.300265 12.100120 27.542320 1.753100 10.703235 25.606450 5.087720 13.045675 34.991130 6.622615 13.948335 32.671070 10.839380 10.399240 32.786700 10.453325 12.340705 30.492750 3.246965 9.584235 35.964660 5.643490 15.028170 28.131660 7.584955 15.988645 25.998100 13.129600 14.854725 32.387590 14.390340 16.053920 30.022770 0.276020 11.270195 31.824360 3.420410 16.993880 34.804630 0.917580 18.452310 35.819190 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Potentials Parameters --------------------- Ewald sum over 3*3*3 cells Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 18.6500 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 18.6500 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 37.3000 0.0000 0.0000 0.5000 Stick Mesh ---------- nst = 3881, nstw = 967, nsts = 3881 PEs n.st n.stw n.sts n.g n.gw n.gs 1 7761 1933 7761 1026143 128263 1026143 0 7761 1933 7761 1026143 128263 1026143 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 100 100 200 100 100 200 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 100 100 200 Local number of cell to store the grid ( nnrx ) = 2000000 Number of x-y planes for each processors: nr3l = 200 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 100 100 200 100 100 200 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 100 100 200 Local number of cell to store the grid ( nnrx ) = 2000000 Number of x-y planes for each processors: nr3sl = 200 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 513072 513072 513072 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 513072 513072 513072 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 64132 64132 64132 Estimated Sizes of the problem ------------------------------ dimension of the problem (byte/pe) : 1457472320 System geometry initialization ------------------------------ Scaled positions from standard input O 0.334200E+00 0.385800E+00 0.851000E-01 O 0.668100E+00 0.772000E-01 0.498000E-01 O 0.489400E+00 0.275200E+00 0.483200E+00 O 0.837400E+00 0.165000E-01 0.444200E+00 O 0.416400E+00 0.140600E+00 0.268700E+00 O 0.920000E+00 0.274600E+00 0.374000E+00 O 0.929800E+00 0.675900E+00 0.273000E-01 O 0.519700E+00 0.577300E+00 0.123500E+00 O 0.845300E+00 0.230800E+00 0.126500E+00 O 0.708000E+00 0.451200E+00 0.551000E-01 O 0.629700E+00 0.673900E+00 0.234900E+00 O 0.688900E+00 0.442800E+00 0.405000E+00 O 0.927300E+00 0.885900E+00 0.137400E+00 O 0.726000E+00 0.957200E+00 0.225700E+00 O 0.953900E+00 0.629700E+00 0.315200E+00 O 0.634000E-01 0.419700E+00 0.133300E+00 O 0.880000E-02 0.140900E+00 0.253600E+00 O 0.804200E+00 0.437500E+00 0.247100E+00 O 0.698100E+00 0.189300E+00 0.291700E+00 O 0.290800E+00 0.519800E+00 0.261700E+00 O 0.183500E+00 0.397100E+00 0.390400E+00 O 0.245000E+00 0.202400E+00 0.173700E+00 O 0.306200E+00 0.157400E+00 0.399700E+00 O 0.446500E+00 0.838900E+00 0.108000E+00 O 0.193100E+00 0.573800E+00 0.240000E-02 O 0.187900E+00 0.966500E+00 0.950000E-01 O 0.876000E-01 0.666700E+00 0.204200E+00 O 0.263700E+00 0.747600E+00 0.394000E+00 O 0.520300E+00 0.632900E+00 0.360700E+00 O 0.371400E+00 0.876300E+00 0.245000E+00 O 0.791500E+00 0.829000E+00 0.352700E+00 O 0.143600E+00 0.989900E+00 0.464800E+00 O 0.334200E+00 0.385800E+00 0.585100E+00 O 0.668100E+00 0.772000E-01 0.549800E+00 O 0.489400E+00 0.275200E+00 0.983200E+00 O 0.837400E+00 0.165000E-01 0.944200E+00 O 0.416400E+00 0.140600E+00 0.768700E+00 O 0.920000E+00 0.274600E+00 0.874000E+00 O 0.929800E+00 0.675900E+00 0.527300E+00 O 0.519700E+00 0.577300E+00 0.623500E+00 O 0.845300E+00 0.230800E+00 0.626500E+00 O 0.708000E+00 0.451200E+00 0.555100E+00 O 0.629700E+00 0.673900E+00 0.734900E+00 O 0.688900E+00 0.442800E+00 0.905000E+00 O 0.927300E+00 0.885900E+00 0.637400E+00 O 0.726000E+00 0.957200E+00 0.725700E+00 O 0.953900E+00 0.629700E+00 0.815200E+00 O 0.634000E-01 0.419700E+00 0.633300E+00 O 0.880000E-02 0.140900E+00 0.753600E+00 O 0.804200E+00 0.437500E+00 0.747100E+00 O 0.698100E+00 0.189300E+00 0.791700E+00 O 0.290800E+00 0.519800E+00 0.761700E+00 O 0.183500E+00 0.397100E+00 0.890400E+00 O 0.245000E+00 0.202400E+00 0.673700E+00 O 0.306200E+00 0.157400E+00 0.899700E+00 O 0.446500E+00 0.838900E+00 0.608000E+00 O 0.193100E+00 0.573800E+00 0.502400E+00 O 0.187900E+00 0.966500E+00 0.595000E+00 O 0.876000E-01 0.666700E+00 0.704200E+00 O 0.263700E+00 0.747600E+00 0.894000E+00 O 0.520300E+00 0.632900E+00 0.860700E+00 O 0.371400E+00 0.876300E+00 0.745000E+00 O 0.791500E+00 0.829000E+00 0.852700E+00 O 0.143600E+00 0.989900E+00 0.964800E+00 H 0.374200E+00 0.336000E+00 0.464000E-01 H 0.315000E+00 0.322600E+00 0.123600E+00 H 0.940500E+00 0.180400E+00 0.225800E+00 H 0.606200E+00 0.860000E-02 0.686000E-01 H 0.723100E+00 0.354000E-01 0.132000E-01 H 0.546000E+00 0.200200E+00 0.494200E+00 H 0.550200E+00 0.326900E+00 0.451500E+00 H 0.853700E+00 0.104900E+00 0.424000E+00 H 0.425100E+00 0.432000E-01 0.260500E+00 H 0.372200E+00 0.154300E+00 0.313700E+00 H 0.704100E+00 0.486000E-01 0.245500E+00 H 0.937800E+00 0.219100E+00 0.331000E+00 H 0.908300E+00 0.733900E+00 0.657000E-01 H 0.594000E+00 0.540300E+00 0.959000E-01 H 0.441300E+00 0.514000E+00 0.115200E+00 H 0.797500E+00 0.162300E+00 0.969000E-01 H 0.935100E+00 0.249000E+00 0.108500E+00 H 0.749500E+00 0.379400E+00 0.882000E-01 H 0.776900E+00 0.526100E+00 0.474000E-01 H 0.724200E+00 0.648800E+00 0.225700E+00 H 0.581200E+00 0.615600E+00 0.201600E+00 H 0.761000E+00 0.399100E+00 0.379300E+00 H 0.725300E+00 0.454900E+00 0.450600E+00 H 0.980500E+00 0.811800E+00 0.157900E+00 H 0.877400E+00 0.923400E+00 0.175400E+00 H 0.826600E+00 0.943200E+00 0.409300E+00 H 0.643900E+00 0.905400E+00 0.232900E+00 H 0.909900E+00 0.708200E+00 0.337000E+00 H 0.114600E+00 0.347500E+00 0.156500E+00 H 0.117700E+00 0.459200E+00 0.968000E-01 H 0.984000E-01 0.186400E+00 0.247000E+00 H 0.873200E+00 0.490300E+00 0.271600E+00 H 0.846600E+00 0.404700E+00 0.205200E+00 H 0.598300E+00 0.184900E+00 0.287900E+00 H 0.725500E+00 0.286600E+00 0.280900E+00 H 0.246800E+00 0.601000E+00 0.247400E+00 H 0.365500E+00 0.551200E+00 0.288300E+00 H 0.221800E+00 0.447800E+00 0.349200E+00 H 0.227200E+00 0.302700E+00 0.386800E+00 H 0.890000E-02 0.317200E+00 0.387500E+00 H 0.320600E+00 0.175600E+00 0.206300E+00 H 0.230800E+00 0.125000E+00 0.140000E+00 H 0.242000E+00 0.102700E+00 0.427500E+00 H 0.375200E+00 0.196300E+00 0.435100E+00 H 0.347700E+00 0.855900E+00 0.950000E-01 H 0.473800E+00 0.741800E+00 0.105100E+00 H 0.297000E-01 0.662600E+00 0.302000E-01 H 0.266800E+00 0.536000E+00 0.300000E-01 H 0.169100E+00 0.988300E+00 0.479000E-01 H 0.952000E-01 0.937800E+00 0.111900E+00 H 0.161000E-01 0.648800E+00 0.238400E+00 H 0.940000E-01 0.573900E+00 0.186500E+00 H 0.272800E+00 0.699500E+00 0.438100E+00 H 0.355100E+00 0.747900E+00 0.375900E+00 H 0.581200E+00 0.557600E+00 0.379000E+00 H 0.560500E+00 0.661700E+00 0.317500E+00 H 0.174100E+00 0.513900E+00 0.464200E+00 H 0.302600E+00 0.805800E+00 0.254200E+00 H 0.406700E+00 0.857300E+00 0.197000E+00 H 0.704000E+00 0.796500E+00 0.368300E+00 H 0.771600E+00 0.860800E+00 0.304900E+00 H 0.148000E-01 0.604300E+00 0.353200E+00 H 0.183400E+00 0.911200E+00 0.433100E+00 H 0.492000E-01 0.989400E+00 0.460300E+00 H 0.374200E+00 0.336000E+00 0.546400E+00 H 0.315000E+00 0.322600E+00 0.623600E+00 H 0.940500E+00 0.180400E+00 0.725800E+00 H 0.606200E+00 0.860000E-02 0.568600E+00 H 0.723100E+00 0.354000E-01 0.513200E+00 H 0.546000E+00 0.200200E+00 0.994200E+00 H 0.550200E+00 0.326900E+00 0.951500E+00 H 0.853700E+00 0.104900E+00 0.924000E+00 H 0.425100E+00 0.432000E-01 0.760500E+00 H 0.372200E+00 0.154300E+00 0.813700E+00 H 0.704100E+00 0.486000E-01 0.745500E+00 H 0.937800E+00 0.219100E+00 0.831000E+00 H 0.908300E+00 0.733900E+00 0.565700E+00 H 0.594000E+00 0.540300E+00 0.595900E+00 H 0.441300E+00 0.514000E+00 0.615200E+00 H 0.797500E+00 0.162300E+00 0.596900E+00 H 0.935100E+00 0.249000E+00 0.608500E+00 H 0.749500E+00 0.379400E+00 0.588200E+00 H 0.776900E+00 0.526100E+00 0.547400E+00 H 0.724200E+00 0.648800E+00 0.725700E+00 H 0.581200E+00 0.615600E+00 0.701600E+00 H 0.761000E+00 0.399100E+00 0.879300E+00 H 0.725300E+00 0.454900E+00 0.950600E+00 H 0.980500E+00 0.811800E+00 0.657900E+00 H 0.877400E+00 0.923400E+00 0.675400E+00 H 0.826600E+00 0.943200E+00 0.909300E+00 H 0.643900E+00 0.905400E+00 0.732900E+00 H 0.909900E+00 0.708200E+00 0.837000E+00 H 0.114600E+00 0.347500E+00 0.656500E+00 H 0.117700E+00 0.459200E+00 0.596800E+00 H 0.984000E-01 0.186400E+00 0.747000E+00 H 0.873200E+00 0.490300E+00 0.771600E+00 H 0.846600E+00 0.404700E+00 0.705200E+00 H 0.598300E+00 0.184900E+00 0.787900E+00 H 0.725500E+00 0.286600E+00 0.780900E+00 H 0.246800E+00 0.601000E+00 0.747400E+00 H 0.365500E+00 0.551200E+00 0.788300E+00 H 0.221800E+00 0.447800E+00 0.849200E+00 H 0.227200E+00 0.302700E+00 0.886800E+00 H 0.890000E-02 0.317200E+00 0.887500E+00 H 0.320600E+00 0.175600E+00 0.706300E+00 H 0.230800E+00 0.125000E+00 0.640000E+00 H 0.242000E+00 0.102700E+00 0.927500E+00 H 0.375200E+00 0.196300E+00 0.935100E+00 H 0.347700E+00 0.855900E+00 0.595000E+00 H 0.473800E+00 0.741800E+00 0.605100E+00 H 0.297000E-01 0.662600E+00 0.530200E+00 H 0.266800E+00 0.536000E+00 0.530000E+00 H 0.169100E+00 0.988300E+00 0.547900E+00 H 0.952000E-01 0.937800E+00 0.611900E+00 H 0.161000E-01 0.648800E+00 0.738400E+00 H 0.940000E-01 0.573900E+00 0.686500E+00 H 0.272800E+00 0.699500E+00 0.938100E+00 H 0.355100E+00 0.747900E+00 0.875900E+00 H 0.581200E+00 0.557600E+00 0.879000E+00 H 0.560500E+00 0.661700E+00 0.817500E+00 H 0.174100E+00 0.513900E+00 0.964200E+00 H 0.302600E+00 0.805800E+00 0.754200E+00 H 0.406700E+00 0.857300E+00 0.697000E+00 H 0.704000E+00 0.796500E+00 0.868300E+00 H 0.771600E+00 0.860800E+00 0.804900E+00 H 0.148000E-01 0.604300E+00 0.853200E+00 H 0.183400E+00 0.911200E+00 0.933100E+00 H 0.492000E-01 0.989400E+00 0.960300E+00 Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 3.2390 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 256 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 formf: eself=1251.08299 formf: vps(g=0)= -0.0008817 rhops(g=0)= -0.0004625 formf: sum_g vps(g)= -6.3376607 sum_g rhops(g)= -1.0524995 formf: vps(g=0)= -0.0000640 rhops(g=0)= -0.0000771 formf: sum_g vps(g)= -2.0908651 sum_g rhops(g)= -0.7183869 from rhoofr: total integrated electronic density in g-space = 512.000000 in r-space = 512.000000 ESR (real part of Ewald sum) = 0.20387057D+01 1 ******** 0.0 0.0 3178.77067 3178.77067 3178.77067 3437.31530 0.0000 0.0000 0.0000 0.0000 2 ******** 0.0 0.0 2585.62916 2585.62916 2585.62916 2884.59302 0.0000 0.0000 0.0000 0.0000 3 ******** 0.0 0.0 1958.06742 1958.06742 1958.06742 2266.44706 0.0000 0.0000 0.0000 0.0000 4 ******** 0.0 0.0 1361.71724 1361.71724 1361.71724 1649.17667 0.0000 0.0000 0.0000 0.0000 5 ******** 0.0 0.0 840.88715 840.88715 840.88715 1088.40058 0.0000 0.0000 0.0000 0.0000 6 ******** 0.0 0.0 413.78591 413.78591 413.78591 614.83949 0.0000 0.0000 0.0000 0.0000 7 ******** 0.0 0.0 77.98316 77.98316 77.98316 235.23179 0.0000 0.0000 0.0000 0.0000 8 ******** 0.0 0.0 -179.89156 -179.89156 -179.89156 -59.40327 0.0000 0.0000 0.0000 0.0000 9 91.53569 0.0 0.0 -375.88072 -375.88072 -375.88072 -284.34502 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 10 Simulated time t = 0.12094422D-02 ps from rhoofr: total integrated electronic density in g-space = 512.000000 in r-space = 512.000000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.694490D+02 0.1D-05 0.148607D+03 0.1D-07 0.888329D+00 0.1D+11 MAIN: convergence NOT achieved for system relaxation total energy = -524.48735 Hartree a.u. kinetic energy = 872.57316 Hartree a.u. electrostatic energy = -1033.34292 Hartree a.u. esr = 2.03871 Hartree a.u. eself = 1251.08299 Hartree a.u. pseudopotential energy = -314.85655 Hartree a.u. n-l pseudopotential energy = 152.40558 Hartree a.u. exchange-correlation energy = -201.26661 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -43.68 -42.72 -42.58 -42.05 -41.80 -41.67 -41.49 -41.40 -41.19 -41.11 -41.06 -40.94 -40.83 -40.81 -40.64 -40.57 -40.54 -40.41 -40.39 -40.17 -40.12 -40.00 -39.93 -39.88 -39.78 -39.61 -39.55 -39.52 -39.47 -39.38 -39.37 -39.27 -39.12 -39.09 -38.97 -38.82 -38.78 -38.65 -38.59 -38.40 -38.28 -38.12 -38.07 -37.93 -37.85 -37.75 -37.71 -37.54 -37.31 -37.14 -37.09 -36.94 -36.86 -36.68 -36.54 -36.33 -36.07 -35.90 -35.55 -35.13 -34.83 -34.75 -34.35 -34.04 -13.97 -13.35 -13.13 -13.08 -12.94 -12.56 -12.49 -12.45 -12.23 -12.07 -12.05 -11.86 -11.84 -11.78 -11.66 -11.28 -11.23 -10.89 -10.80 -10.64 -10.43 -10.27 -10.05 -9.87 -9.83 -9.72 -9.50 -9.43 -9.33 -9.18 -9.09 -9.01 -8.92 -8.59 -8.55 -8.35 -8.19 -8.12 -7.90 -7.79 -7.68 -7.61 -7.29 -7.26 -7.14 -6.89 -6.79 -6.63 -6.57 -6.49 -6.40 -6.16 -5.83 -5.81 -5.78 -5.58 -5.52 -5.38 -5.21 -4.80 -4.76 -4.65 -4.50 -4.23 -4.17 -3.94 -3.88 -3.65 -3.38 -3.30 -3.10 -2.96 -2.93 -2.73 -2.62 -2.59 -2.49 -2.28 -2.09 -1.90 -1.59 -1.35 -1.22 -1.09 -0.96 -0.77 -0.36 -0.22 -0.08 0.12 0.18 0.32 0.55 0.82 0.92 0.98 1.15 1.38 1.62 1.73 1.86 2.12 2.20 2.54 2.85 2.93 3.08 3.33 3.50 3.69 4.13 4.28 4.33 4.50 4.79 5.00 5.08 5.53 5.63 6.05 6.11 6.26 6.42 6.57 6.75 7.21 7.35 7.49 7.64 7.99 8.21 8.27 8.66 8.72 8.96 9.11 9.46 9.66 9.98 10.12 10.27 10.45 10.63 11.01 11.15 11.36 11.77 11.97 12.13 12.48 12.56 12.64 12.82 12.94 13.32 13.51 13.74 13.95 14.22 14.57 14.66 14.94 15.05 15.21 15.34 15.68 15.86 15.92 16.28 16.51 16.77 16.87 16.93 17.11 17.27 17.61 17.86 17.98 18.32 18.45 18.52 18.71 18.99 19.06 19.39 19.79 20.20 20.45 20.80 21.08 21.12 21.33 Allocated memory (kb) = 1801152 CELL_PARAMETERS 18.65000000 0.00000000 0.00000000 0.00000000 18.65000000 0.00000000 0.00000000 0.00000000 37.30000000 System Density [g/cm^3] : 0.9959 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 501.89960162 1.44129809 -11.17842689 1.44129809 486.24264738 6.20741706 -11.17842689 6.20741706 487.84339060 ATOMIC_POSITIONS O 0.623283E+01 0.719517E+01 0.317423E+01 O 0.124601E+02 0.143978E+01 0.185754E+01 O 0.912731E+01 0.513248E+01 0.180234E+02 O 0.156175E+02 0.307725E+00 0.165687E+02 O 0.776586E+01 0.262219E+01 0.100225E+02 O 0.171580E+02 0.512129E+01 0.139502E+02 O 0.173408E+02 0.126055E+02 0.101829E+01 O 0.969241E+01 0.107666E+02 0.460655E+01 O 0.157648E+02 0.430442E+01 0.471845E+01 O 0.132042E+02 0.841488E+01 0.205523E+01 O 0.117439E+02 0.125682E+02 0.876177E+01 O 0.128480E+02 0.825822E+01 0.151065E+02 O 0.172941E+02 0.165220E+02 0.512502E+01 O 0.135399E+02 0.178518E+02 0.841861E+01 O 0.177902E+02 0.117439E+02 0.117570E+02 O 0.118241E+01 0.782740E+01 0.497209E+01 O 0.164120E+00 0.262778E+01 0.945928E+01 O 0.149983E+02 0.815937E+01 0.921683E+01 O 0.130196E+02 0.353044E+01 0.108804E+02 O 0.542342E+01 0.969427E+01 0.976141E+01 O 0.342227E+01 0.740591E+01 0.145619E+02 O 0.456925E+01 0.377476E+01 0.647901E+01 O 0.571063E+01 0.293551E+01 0.149088E+02 O 0.832723E+01 0.156455E+02 0.402840E+01 O 0.360131E+01 0.107014E+02 0.895200E-01 O 0.350433E+01 0.180252E+02 0.354350E+01 O 0.163374E+01 0.124340E+02 0.761666E+01 O 0.491800E+01 0.139427E+02 0.146962E+02 O 0.970359E+01 0.118036E+02 0.134541E+02 O 0.692661E+01 0.163430E+02 0.913850E+01 O 0.147615E+02 0.154608E+02 0.131557E+02 O 0.267814E+01 0.184616E+02 0.173370E+02 O 0.623283E+01 0.719517E+01 0.218242E+02 O 0.124601E+02 0.143978E+01 0.205075E+02 O 0.912731E+01 0.513248E+01 0.366734E+02 O 0.156175E+02 0.307725E+00 0.352187E+02 O 0.776586E+01 0.262219E+01 0.286725E+02 O 0.171580E+02 0.512129E+01 0.326002E+02 O 0.173408E+02 0.126055E+02 0.196683E+02 O 0.969241E+01 0.107666E+02 0.232566E+02 O 0.157648E+02 0.430442E+01 0.233684E+02 O 0.132042E+02 0.841488E+01 0.207052E+02 O 0.117439E+02 0.125682E+02 0.274118E+02 O 0.128480E+02 0.825822E+01 0.337565E+02 O 0.172941E+02 0.165220E+02 0.237750E+02 O 0.135399E+02 0.178518E+02 0.270686E+02 O 0.177902E+02 0.117439E+02 0.304070E+02 O 0.118241E+01 0.782740E+01 0.236221E+02 O 0.164120E+00 0.262778E+01 0.281093E+02 O 0.149983E+02 0.815937E+01 0.278668E+02 O 0.130196E+02 0.353044E+01 0.295304E+02 O 0.542342E+01 0.969427E+01 0.284114E+02 O 0.342227E+01 0.740591E+01 0.332119E+02 O 0.456925E+01 0.377476E+01 0.251290E+02 O 0.571063E+01 0.293551E+01 0.335588E+02 O 0.832723E+01 0.156455E+02 0.226784E+02 O 0.360131E+01 0.107014E+02 0.187395E+02 O 0.350433E+01 0.180252E+02 0.221935E+02 O 0.163374E+01 0.124340E+02 0.262667E+02 O 0.491800E+01 0.139427E+02 0.333462E+02 O 0.970359E+01 0.118036E+02 0.321041E+02 O 0.692661E+01 0.163430E+02 0.277885E+02 O 0.147615E+02 0.154608E+02 0.318057E+02 O 0.267814E+01 0.184616E+02 0.359870E+02 H 0.697883E+01 0.626640E+01 0.173072E+01 H 0.587475E+01 0.601649E+01 0.461028E+01 H 0.175403E+02 0.336446E+01 0.842234E+01 H 0.113056E+02 0.160390E+00 0.255878E+01 H 0.134858E+02 0.660210E+00 0.492360E+00 H 0.101829E+02 0.373373E+01 0.184337E+02 H 0.102612E+02 0.609668E+01 0.168409E+02 H 0.159215E+02 0.195638E+01 0.158152E+02 H 0.792811E+01 0.805680E+00 0.971665E+01 H 0.694153E+01 0.287769E+01 0.117010E+02 H 0.131315E+02 0.906390E+00 0.915715E+01 H 0.174900E+02 0.408621E+01 0.123463E+02 H 0.169398E+02 0.136872E+02 0.245061E+01 H 0.110781E+02 0.100766E+02 0.357707E+01 H 0.823025E+01 0.958610E+01 0.429696E+01 H 0.148734E+02 0.302689E+01 0.361437E+01 H 0.174396E+02 0.464385E+01 0.404705E+01 H 0.139782E+02 0.707581E+01 0.328986E+01 H 0.144892E+02 0.981176E+01 0.176802E+01 H 0.135063E+02 0.121001E+02 0.841861E+01 H 0.108394E+02 0.114809E+02 0.751968E+01 H 0.141926E+02 0.744321E+01 0.141479E+02 H 0.135268E+02 0.848388E+01 0.168074E+02 H 0.182863E+02 0.151401E+02 0.588967E+01 H 0.163635E+02 0.172214E+02 0.654242E+01 H 0.154161E+02 0.175907E+02 0.152669E+02 H 0.120087E+02 0.168857E+02 0.868717E+01 H 0.169696E+02 0.132079E+02 0.125701E+02 H 0.213729E+01 0.648087E+01 0.583745E+01 H 0.219510E+01 0.856408E+01 0.361064E+01 H 0.183516E+01 0.347636E+01 0.921310E+01 H 0.162852E+02 0.914410E+01 0.101307E+02 H 0.157891E+02 0.754765E+01 0.765396E+01 H 0.111583E+02 0.344839E+01 0.107387E+02 H 0.135306E+02 0.534509E+01 0.104776E+02 H 0.460282E+01 0.112086E+02 0.922802E+01 H 0.681657E+01 0.102799E+02 0.107536E+02 H 0.413657E+01 0.835147E+01 0.130252E+02 H 0.423728E+01 0.564536E+01 0.144276E+02 H 0.165985E+00 0.591578E+01 0.144537E+02 H 0.597919E+01 0.327494E+01 0.769499E+01 H 0.430442E+01 0.233125E+01 0.522200E+01 H 0.451330E+01 0.191535E+01 0.159457E+02 H 0.699748E+01 0.366099E+01 0.162292E+02 H 0.648460E+01 0.159625E+02 0.354350E+01 H 0.883637E+01 0.138346E+02 0.392023E+01 H 0.553905E+00 0.123575E+02 0.112646E+01 H 0.497582E+01 0.999640E+01 0.111900E+01 H 0.315371E+01 0.184318E+02 0.178667E+01 H 0.177548E+01 0.174900E+02 0.417387E+01 H 0.300265E+00 0.121001E+02 0.889232E+01 H 0.175310E+01 0.107032E+02 0.695645E+01 H 0.508772E+01 0.130457E+02 0.163411E+02 H 0.662261E+01 0.139483E+02 0.140211E+02 H 0.108394E+02 0.103992E+02 0.141367E+02 H 0.104533E+02 0.123407E+02 0.118427E+02 H 0.324696E+01 0.958423E+01 0.173147E+02 H 0.564349E+01 0.150282E+02 0.948166E+01 H 0.758495E+01 0.159886E+02 0.734810E+01 H 0.131296E+02 0.148547E+02 0.137376E+02 H 0.143903E+02 0.160539E+02 0.113728E+02 H 0.276020E+00 0.112702E+02 0.131744E+02 H 0.342041E+01 0.169939E+02 0.161546E+02 H 0.917580E+00 0.184523E+02 0.171692E+02 H 0.697883E+01 0.626640E+01 0.203807E+02 H 0.587475E+01 0.601649E+01 0.232603E+02 H 0.175403E+02 0.336446E+01 0.270723E+02 H 0.113056E+02 0.160390E+00 0.212088E+02 H 0.134858E+02 0.660210E+00 0.191424E+02 H 0.101829E+02 0.373373E+01 0.370837E+02 H 0.102612E+02 0.609668E+01 0.354909E+02 H 0.159215E+02 0.195638E+01 0.344652E+02 H 0.792811E+01 0.805680E+00 0.283666E+02 H 0.694153E+01 0.287769E+01 0.303510E+02 H 0.131315E+02 0.906390E+00 0.278072E+02 H 0.174900E+02 0.408621E+01 0.309963E+02 H 0.169398E+02 0.136872E+02 0.211006E+02 H 0.110781E+02 0.100766E+02 0.222271E+02 H 0.823025E+01 0.958610E+01 0.229470E+02 H 0.148734E+02 0.302689E+01 0.222644E+02 H 0.174396E+02 0.464385E+01 0.226971E+02 H 0.139782E+02 0.707581E+01 0.219399E+02 H 0.144892E+02 0.981176E+01 0.204180E+02 H 0.135063E+02 0.121001E+02 0.270686E+02 H 0.108394E+02 0.114809E+02 0.261697E+02 H 0.141926E+02 0.744321E+01 0.327979E+02 H 0.135268E+02 0.848388E+01 0.354574E+02 H 0.182863E+02 0.151401E+02 0.245397E+02 H 0.163635E+02 0.172214E+02 0.251924E+02 H 0.154161E+02 0.175907E+02 0.339169E+02 H 0.120087E+02 0.168857E+02 0.273372E+02 H 0.169696E+02 0.132079E+02 0.312201E+02 H 0.213729E+01 0.648087E+01 0.244874E+02 H 0.219510E+01 0.856408E+01 0.222606E+02 H 0.183516E+01 0.347636E+01 0.278631E+02 H 0.162852E+02 0.914410E+01 0.287807E+02 H 0.157891E+02 0.754765E+01 0.263040E+02 H 0.111583E+02 0.344839E+01 0.293887E+02 H 0.135306E+02 0.534509E+01 0.291276E+02 H 0.460282E+01 0.112086E+02 0.278780E+02 H 0.681657E+01 0.102799E+02 0.294036E+02 H 0.413657E+01 0.835147E+01 0.316752E+02 H 0.423728E+01 0.564536E+01 0.330776E+02 H 0.165985E+00 0.591578E+01 0.331037E+02 H 0.597919E+01 0.327494E+01 0.263450E+02 H 0.430442E+01 0.233125E+01 0.238720E+02 H 0.451330E+01 0.191535E+01 0.345957E+02 H 0.699748E+01 0.366099E+01 0.348792E+02 H 0.648460E+01 0.159625E+02 0.221935E+02 H 0.883637E+01 0.138346E+02 0.225702E+02 H 0.553905E+00 0.123575E+02 0.197765E+02 H 0.497582E+01 0.999640E+01 0.197690E+02 H 0.315371E+01 0.184318E+02 0.204367E+02 H 0.177548E+01 0.174900E+02 0.228239E+02 H 0.300265E+00 0.121001E+02 0.275423E+02 H 0.175310E+01 0.107032E+02 0.256064E+02 H 0.508772E+01 0.130457E+02 0.349911E+02 H 0.662261E+01 0.139483E+02 0.326711E+02 H 0.108394E+02 0.103992E+02 0.327867E+02 H 0.104533E+02 0.123407E+02 0.304927E+02 H 0.324696E+01 0.958423E+01 0.359647E+02 H 0.564349E+01 0.150282E+02 0.281317E+02 H 0.758495E+01 0.159886E+02 0.259981E+02 H 0.131296E+02 0.148547E+02 0.323876E+02 H 0.143903E+02 0.160539E+02 0.300228E+02 H 0.276020E+00 0.112702E+02 0.318244E+02 H 0.342041E+01 0.169939E+02 0.348046E+02 H 0.917580E+00 0.184523E+02 0.358192E+02 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): O -0.235577E+00 0.588566E+00 0.529394E-01 O 0.160775E+00 0.713313E+00 0.460120E+00 O -0.695199E+00 0.369052E+00 0.241840E+00 O -0.636069E-01 -0.455643E+00 0.708619E+00 O 0.214948E+00 0.308305E+00 -0.444647E+00 O -0.454177E+00 0.216970E+00 0.686665E-01 O -0.401299E+00 -0.364266E-01 -0.394055E+00 O -0.742244E-02 0.384401E+00 0.386875E+00 O -0.141256E+00 0.189881E+00 0.532508E+00 O -0.671018E+00 -0.286171E+00 -0.188286E+00 O -0.237179E+00 0.434439E+00 0.512105E+00 O -0.672321E+00 0.114724E+00 -0.390068E+00 O 0.616291E-01 0.191965E+00 -0.590345E+00 O 0.757574E+00 -0.691152E-01 -0.157307E+00 O -0.577393E-01 -0.288732E+00 -0.765567E+00 O -0.646586E+00 0.192814E+00 0.220697E+00 O -0.144444E+00 -0.329940E+00 0.212033E+00 O -0.579514E+00 -0.154066E+00 0.230660E+00 O 0.517526E+00 -0.465862E+00 0.152849E+00 O -0.270512E+00 -0.624421E+00 -0.100764E+00 O -0.245191E+00 0.427838E+00 0.560244E+00 O -0.458811E+00 0.421800E+00 0.231407E+00 O 0.234210E-01 0.184900E+00 -0.536462E+00 O 0.217969E+00 0.308291E+00 0.256429E+00 O -0.355401E+00 0.476226E+00 0.132157E+00 O 0.412456E+00 -0.167887E+00 0.393651E+00 O 0.367686E+00 0.533830E+00 -0.183960E+00 O -0.593205E+00 0.220604E+00 -0.148118E+00 O -0.270981E+00 0.266433E+00 0.740610E-01 O 0.335051E+00 0.551425E+00 0.287191E+00 O 0.629960E+00 0.208389E-01 0.537025E-01 O 0.357870E+00 0.104140E+00 0.458785E+00 O -0.150972E+00 0.587143E+00 -0.713343E-02 O 0.251573E+00 0.888329E+00 0.380714E+00 O -0.574585E+00 0.259007E+00 0.224673E+00 O -0.195860E+00 -0.480069E+00 0.625587E+00 O 0.331511E-01 0.300229E+00 -0.846328E-01 O -0.559959E+00 0.163175E+00 0.287389E+00 O -0.289881E+00 -0.324099E+00 -0.395036E+00 O -0.183740E-01 0.618769E+00 0.259957E+00 O -0.122737E+00 0.433754E+00 0.574439E+00 O -0.489570E+00 -0.118690E+00 -0.259696E+00 O -0.384035E+00 0.425928E+00 0.571233E+00 O -0.623361E+00 0.155011E+00 -0.257016E+00 O 0.274462E+00 0.106180E+00 -0.585206E+00 O 0.696575E+00 0.184461E-01 -0.134671E+00 O -0.114707E+00 -0.150919E+00 -0.728115E+00 O -0.528292E+00 0.455861E-01 0.235393E+00 O -0.161146E+00 -0.508519E+00 0.445203E+00 O -0.641259E+00 -0.770894E-01 0.338378E+00 O 0.695683E+00 -0.503288E+00 0.120636E+00 O -0.391954E+00 -0.732237E+00 -0.391651E+00 O -0.344640E+00 0.267423E+00 0.100519E+00 O -0.364992E+00 0.682169E+00 -0.559454E-01 O -0.410845E-01 0.893227E-01 -0.606371E+00 O 0.257753E+00 0.302765E+00 0.526036E+00 O -0.174353E+00 0.510684E+00 0.138500E+00 O 0.468745E+00 -0.108697E+00 0.248543E+00 O 0.243445E+00 0.471172E+00 -0.154903E+00 O -0.680811E+00 0.240646E-02 -0.402602E-01 O -0.542637E+00 -0.109578E+00 0.145329E+00 O 0.332194E+00 0.548801E+00 0.197562E+00 O 0.634141E+00 -0.113043E+00 -0.111297E-01 O 0.435878E+00 0.524641E+00 0.844044E+00 H 0.197129E+00 -0.252745E+00 -0.369274E+00 H -0.137285E+00 -0.282185E+00 0.361572E+00 H -0.473912E+00 0.303490E+00 -0.370163E+00 H -0.309268E+00 -0.338603E+00 0.234701E+00 H 0.307236E+00 -0.216575E+00 -0.343395E+00 H 0.366083E+00 -0.429741E+00 0.130797E+00 H 0.306753E+00 0.245561E+00 -0.314776E+00 H 0.831931E-01 0.540154E+00 -0.259655E+00 H 0.500996E-01 -0.545139E+00 -0.122650E+00 H -0.256770E+00 0.999177E-01 0.486284E+00 H -0.790400E-01 0.414362E+00 0.184875E+00 H 0.850302E-01 -0.218039E+00 -0.377115E+00 H -0.135946E+00 0.310968E+00 0.456570E+00 H 0.321083E+00 -0.197182E+00 -0.218380E+00 H -0.406822E+00 -0.304958E+00 -0.539287E-01 H -0.211964E+00 -0.346145E+00 -0.256474E+00 H 0.557414E+00 0.123240E+00 -0.211348E+00 H 0.145622E+00 -0.297981E+00 0.257211E+00 H 0.325032E+00 0.354830E+00 -0.699972E-01 H 0.591089E+00 -0.967546E-01 -0.532221E-01 H -0.243502E+00 -0.282680E+00 -0.317859E+00 H 0.410671E+00 -0.233546E+00 -0.327178E+00 H 0.177340E+00 0.644457E-01 0.514497E+00 H 0.280921E+00 -0.418586E+00 0.204247E+00 H -0.273048E+00 0.251835E+00 0.440741E+00 H -0.260168E-01 -0.313469E+00 -0.343863E+00 H -0.465795E+00 -0.344547E+00 0.112654E+00 H -0.250231E+00 0.471044E+00 0.217105E+00 H 0.310453E+00 -0.387928E+00 0.266960E+00 H 0.314859E+00 0.256624E+00 -0.401286E+00 H 0.465677E+00 0.253268E+00 -0.878340E-01 H 0.374932E+00 0.289823E+00 0.281687E+00 H 0.256666E+00 -0.216613E+00 -0.452674E+00 H -0.468817E+00 -0.542995E-01 -0.375367E-01 H 0.140153E+00 0.414207E+00 -0.525833E-01 H -0.285574E+00 0.525445E+00 -0.157227E+00 H 0.482894E+00 0.210310E+00 0.338630E+00 H 0.178922E+00 0.232274E+00 -0.381140E+00 H 0.187819E+00 -0.410425E+00 -0.375453E-01 H 0.410703E+00 0.230547E+00 0.102810E+00 H 0.276902E+00 -0.812059E-01 0.252125E+00 H -0.908342E-01 -0.324352E+00 -0.279450E+00 H -0.310569E+00 -0.240286E+00 0.263724E+00 H 0.238857E+00 0.171606E+00 0.292049E+00 H -0.500799E+00 0.107114E+00 -0.113447E+00 H 0.106532E+00 -0.524165E+00 -0.233557E-01 H 0.541935E+00 -0.512093E-01 0.622837E-01 H 0.383013E+00 -0.178830E+00 0.332397E+00 H -0.140899E+00 0.881189E-01 -0.575709E+00 H -0.450638E+00 -0.107038E+00 0.183938E+00 H -0.360369E+00 -0.135771E+00 0.366798E+00 H 0.525362E-01 -0.544143E+00 -0.212375E+00 H 0.251784E-01 -0.266264E+00 0.442373E+00 H 0.525283E+00 0.234239E-01 -0.233228E+00 H 0.251306E+00 -0.349408E+00 0.133759E+00 H 0.249935E+00 0.150241E+00 -0.464973E+00 H -0.101235E+00 -0.325822E+00 -0.423192E+00 H -0.355860E+00 -0.432551E+00 0.108147E+00 H 0.172034E+00 -0.744226E-01 -0.432777E+00 H -0.518070E+00 -0.169988E+00 0.150564E+00 H -0.847502E-01 0.109882E+00 -0.435058E+00 H 0.368327E+00 -0.157343E+00 0.397592E+00 H 0.106232E+00 -0.282477E+00 -0.211204E+00 H -0.674104E+00 0.126644E-01 -0.509128E-01 H 0.166615E+00 -0.226883E+00 -0.422676E+00 H -0.906233E-01 -0.301241E+00 0.366336E+00 H -0.491545E+00 0.272245E+00 -0.359187E+00 H -0.338538E+00 -0.367246E+00 0.245060E+00 H 0.326387E+00 -0.187444E+00 -0.382836E+00 H 0.360230E+00 -0.500662E+00 0.917582E-01 H 0.312915E+00 0.294120E+00 -0.311500E+00 H 0.763123E-01 0.550818E+00 -0.255649E+00 H 0.301085E-01 -0.508644E+00 -0.826096E-01 H -0.242356E+00 0.604584E-01 0.420242E+00 H -0.908152E-01 0.421874E+00 0.176737E+00 H 0.689326E-01 -0.233708E+00 -0.403799E+00 H -0.121595E+00 0.341783E+00 0.510217E+00 H 0.410852E+00 -0.157639E+00 -0.253388E+00 H -0.373299E+00 -0.280445E+00 -0.751611E-01 H -0.210410E+00 -0.360740E+00 -0.309562E+00 H 0.543275E+00 0.148920E+00 -0.214002E+00 H 0.158444E+00 -0.304912E+00 0.277818E+00 H 0.303865E+00 0.329267E+00 -0.681934E-01 H 0.565375E+00 -0.152036E+00 -0.955653E-01 H -0.247065E+00 -0.301824E+00 -0.289117E+00 H 0.390124E+00 -0.279308E+00 -0.299006E+00 H 0.200945E+00 0.470616E-01 0.517824E+00 H 0.336785E+00 -0.373578E+00 0.215311E+00 H -0.270470E+00 0.233384E+00 0.436437E+00 H -0.470699E-01 -0.298273E+00 -0.340220E+00 H -0.519987E+00 -0.295923E+00 0.978792E-01 H -0.260132E+00 0.379640E+00 0.190491E+00 H 0.283333E+00 -0.398019E+00 0.256164E+00 H 0.317108E+00 0.247904E+00 -0.383557E+00 H 0.468163E+00 0.274060E+00 -0.632351E-01 H 0.380296E+00 0.281778E+00 0.283668E+00 H 0.255124E+00 -0.174901E+00 -0.492290E+00 H -0.539324E+00 -0.394658E-01 -0.374155E-01 H 0.169048E+00 0.408137E+00 -0.100185E+00 H -0.274287E+00 0.524933E+00 -0.193372E+00 H 0.503540E+00 0.206696E+00 0.342786E+00 H 0.168843E+00 0.208204E+00 -0.360727E+00 H 0.179208E+00 -0.380399E+00 -0.442863E-01 H 0.419102E+00 0.230792E+00 0.156845E+00 H 0.247939E+00 -0.856097E-01 0.243657E+00 H -0.475550E-01 -0.313928E+00 -0.290808E+00 H -0.305269E+00 -0.233672E+00 0.259872E+00 H 0.230707E+00 0.145966E+00 0.251997E+00 H -0.436851E+00 0.438302E-01 -0.764412E-01 H 0.129999E+00 -0.469186E+00 -0.222130E-02 H 0.551111E+00 -0.944180E-01 0.308563E-01 H 0.390765E+00 -0.173389E+00 0.324456E+00 H -0.111980E+00 0.114643E+00 -0.501728E+00 H -0.408891E+00 -0.147022E+00 0.149749E+00 H -0.331319E+00 -0.108544E+00 0.315202E+00 H 0.434630E-01 -0.497812E+00 -0.195882E+00 H 0.503971E-01 -0.227570E+00 0.449018E+00 H 0.518288E+00 0.533729E-02 -0.215367E+00 H 0.296584E+00 -0.309888E+00 0.160921E+00 H 0.271049E+00 0.182046E+00 -0.456919E+00 H -0.982405E-01 -0.321803E+00 -0.429796E+00 H -0.413126E+00 -0.391762E+00 0.808708E-01 H 0.183314E+00 -0.663447E-01 -0.397648E+00 H -0.467413E+00 -0.234053E+00 0.157174E+00 H -0.410170E-01 0.141391E+00 -0.438199E+00 H 0.370666E+00 -0.162985E+00 0.380254E+00 H 0.143584E+00 -0.288890E+00 -0.227149E+00 H -0.663487E+00 0.405688E-01 0.502932E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 10 69.44897 0.0 0.0 -524.48735 -524.48735 -524.48735 -455.03838 0.0000 0.0000 0.0000 0.0000 Averaged Physical Quantities accomulated this run ekinc : 204.06362 204.06362 (AU) ekin : 1987.81606 1987.81606 (AU) epot : -1139.44233 -1139.44233 (AU) total energy : 933.65811 933.65811 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : 933.65811 933.65811 (AU) econs : 933.65811 933.65811 (AU) pressure : 5460.67850 5460.67850 (Gpa) volume : 12973.77925 12973.77925 (AU) initialize : 349.67s CPU main_loop : 2072.81s CPU ( 10 calls, 207.281 s avg) formf : 1.52s CPU rhoofr : 629.65s CPU ( 11 calls, 57.241 s avg) vofrho : 109.78s CPU ( 11 calls, 9.980 s avg) dforce : 1264.34s CPU ( 1408 calls, 0.898 s avg) calphi : 6.17s CPU ( 11 calls, 0.561 s avg) ortho : 227.84s CPU ( 11 calls, 20.713 s avg) ortho_iter : 3.08s CPU ( 11 calls, 0.280 s avg) rhoset : 57.92s CPU ( 11 calls, 5.265 s avg) updatc : 49.24s CPU ( 11 calls, 4.476 s avg) gram : 105.86s CPU prefor : 0.05s CPU strucf : 9.04s CPU nlsm1 : 18.92s CPU ( 11 calls, 1.720 s avg) nlsm2 : 10.65s CPU ( 2 calls, 5.325 s avg) fft : 50.36s CPU ( 88 calls, 0.572 s avg) fftw : 1530.49s CPU ( 4224 calls, 0.362 s avg) rsg : 1.57s CPU ( 11 calls, 0.143 s avg) CP : 40m30.56s CPU time, 42m42.04s wall time This run was terminated on: 5: 9:57 21Dec2007 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/README0000644000175000017500000001164412341373026014437 0ustar mbambaThese are instructions on how to run the examples for CP package. These examples try to exercise all the programs and features of the CP package. If you find that any relevant feature isn't being tested, please contact us (or even better, write and send us a new example). To run the examples, you should follow this procedure: 1) Edit the "environment_variables" file from the main ESPRESSO directory, setting the following variables as needed: BIN_DIR = directory where ESPRESSO executables reside PSEUDO_DIR = directory where pseudopotential files reside TMP_DIR = directory to be used as temporary storage area If you have downloaded the full ESPRESSO distribution, you may set BIN_DIR=$TOPDIR/bin and PSEUDO_DIR=$TOPDIR/pseudo, where $TOPDIR is the root of the ESPRESSO source tree. TMP_DIR must be a directory you have read and write access to, with enough available space to host the temporary files produced by the example runs, and possibly offering high I/O performance (i.e., don't use an NFS-mounted directory). 2) If you want to test the parallel version of ESPRESSO, you will usually have to specify a driver program (such as "poe" or "mpirun") and the number of processors. This can be done by editing PARA_PREFIX and PARA_POSTFIX variables (in the "environment_variables" file). Parallel executables will be run by a command like this: $PARA_PREFIX cp.x $PARA_POSTFIX < file.in > file.out For example, if the command line is like this (as for an IBM SP): poe cp.x -procs 4 < file.in > file.out you should set PARA_PREFIX="poe", PARA_POSTFIX="-procs 4". See section "Running on parallel machines" of the user guide for details. Furthermore, if your machine does not support interactive use, you must run the commands specified below through the batch queueing system installed on that machine. Ask your system administrator for instructions. 3) To run a single example, go to the corresponding directory (for instance, "example/example01") and execute: ./run_example (except for example 04, see below) This will create a subdirectory "results", containing the input and output files generated by the calculation. Some examples take only a few seconds to run, while others may require several minutes depending on your system. 4) In each example's directory, the "reference" subdirectory contains verified output files, that you can check your results against. The reference results were generated on a Linux PC with Intel compiler. On different architectures the precise numbers could be slightly different, in particular if different FFT dimensions are automatically selected. For this reason, a plain "diff" of your results against the reference data doesn't work, or at least, it requires human inspection of the results. ----------------------------------------------------------------------- LIST AND CONTENT OF THE EXAMPLES example01: This example shows how to use cp.x to perform molecular dynamics simulation of SiO2. example02: This example shows how to use cp.x to perform molecular dynamics simulation of H2O. example03: This example shows how to use cp.x to perform molecular dynamics simulation of NH3. example04: This example shows how to use cp.x to perform molecular dynamics simulation of medium to large systems. This example consists in calculations with 32, 64, 128, 256 water molecules and takes a long time to execute. To run a calculation with up to N molecules, use: ./run_example N Note that "./run_example" alone does nothing. example05: This example shows how to use cp.x to calculate Wannier functions and to perform dynamics with an external electric field. (contributed by Manu Sharma) example06: Additional example of calculation of Wannier functions with cp.x, using the Jacobi Rotation algorithm for localizing Wannier functions (contributed by IRRMA, Lausanne) example07: This example shows how to use cp.x to perform TPSS metaGGA calculations for C4H6 example08: This example shows how to perform Born-Oppenheimer molecular dynamics with conjugate gradient algorithm for the electronic states and ensemble-DFT for treating metallic systems. It is a simple Si dimer. example09: This example shows how to use cp.x to perform molecular dynamics in the presence of an electric field described through the modern theory of the polarization. The example shows how to calculate high-frequency and static dielectric constants and Born effective charges. Additional feature-specific examples: autopilot-example: This example (a water molecule) shows how to use cp.x to perform molecular dynamics with variable parameters using AUTOPILOT. Restart_example: This example shows how to use cp.x together with pw.x to perform an electronic minimization at Gamma for SiO2. espresso-5.1/CPV/examples/example08/0000755000175000017500000000000012341373043015353 5ustar mbambaespresso-5.1/CPV/examples/example08/run_xml_example0000755000175000017500000001455012341373026020506 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x to perform" $ECHO "Born-Oppenheimer molecular dynamics using the" $ECHO "conjugate gradient minimization of the electronic" $ECHO "states. It shows also the use of ensemble-DFT" $ECHO "for metallic systems." $ECHO "The example shows a Si dimer" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="Si.pbe-rrkj.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # molecular dynamics calculation cat > si2.ensemble-dyn.xml << EOF 1.0 1.5 0.0 0.0 0.0 28.086 Si.pbe-rrkj.UPF 0.8d0 0.0 0.0 0.0 0.0 0.0 5.5 $PSEUDO_DIR/ $TMP_DIR/ from_scratch 10 TRUE TRUE random from_input 15.0 60.0 1.d-6 8 ensemble fd 0.025 1 5 10.0d0 damp not_controlled 10 20 20 20 1000.d0 4.d0 Gram-Schmidt 0.02 8 TRUE 0.3 250 0.0 1.0 EOF $ECHO " running the calculation BO-MD for Si-dimer...\c" $CP_COMMAND < si2.ensemble-dyn.xml > si2.ensemble-dyn.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/CPV/examples/example08/README0000644000175000017500000001106012341373026016232 0ustar mbambaThis example shows how to perform Born-Oppeheimer molecular dynamics using the conjugate-gradient minimization of the electronic states. It uses also the ensemble DFT for dealing with partial occupations of the electronic states. The example shows a simple Silicon dimer. The systems has 8 valence electrons, described by 8 states (nspin=1). For every ionic step, it fully minimized the electronic enthalpy (electronic energy if ensemble-DFT is not used) The conjugate-gradient algorith REQUIRES Gram-Schmidt orho-normalization. Ensemble-DFT is implemented only for conjugate gradient minimization of the electronic states and Born-Oppenheimer molecular dynamics (NOT FOR Car-Parrinello), it supports Ultrasoft pseudopotentials. For Ensemble DFT see: N. Marzari, D. Vanderbilt, and M. C. Payne "Ensemble Density-Functional Theory for Ab Initio Molecular Dynamics of Metals and Finite-Temperature Insulators" Phys. Rev. Lett. 79, 1337-1340 (1997) Note that here we start a conjugate gradient minimizatio from scratch, directly with preconditioning on the electron masses (emass=1000.d0,emass_cutoff = 4.d0). This should not be done for larger systems (Just use maxiter=5 for doing some c.g. iteration with no mass preconditioning and then do restart with mass preconditioning) The concerned parameters are: FOR CONJUGATE GRADIENT: tcg LOGICAL ( default = .FALSE. ) if .TRUE. perform a conjugate gradient minimization of the electronic states for every ionic step. It requires Gram-Schmidt orthogonalization of the electronic states. maxiter INTEGER ( default = 100 ) maximum number of conjugate gradient iterations for conjugate gradient minimizations of electronic states conv_thr REAL ( default = 1.D-6 ) convergence criterion for energy in the case of conjugate gradient minimization of the electronic states passop REAL ( default = 0.3D0 ) small step used in the conjugate gradient minimization of the electronic states. FOR ENSEMBLE-DFT occupations CHARACTER a string describing the occupation of the electronic states. In the case of conjugate gradient style of minimization of the electronic states, if occupations is set to 'ensemble', this allows ensemble dft calculations for metallic systems smearing CHARACTER a string describing the kind of occupations for electronic states in the case of ensemble dft (occupations == 'ensemble' ); now only Fermi-Dirac ('fd') case is implemented degauss REAL ( default = 0.D0 ) parameter for the smearing function, only used for ensemble dft calculations n_inner INTEGER ( default = 2 ) number of internal cycles for every conjugate gradient iteration only for ensemble dft The output file is slightly different from the Car-Parrinello case: It reports Kohn-Sham eigenstates energies and occupancies: eigenvalues at k-point: 0.000 0.000 0.000 -10.79 -9.16 -4.57 -3.85 -3.85 -2.54 -2.54 -0.25 Occupations : 1.999925 1.999182 1.484846 1.000959 1.000959 0.252111 0.252111 0.009907 At every steps, it reports: nfi tempp E -T.S-mu.nbsp +K_p #Iter Step 10 13 -7.57738 -7.71516 -7.71504 9 Step 11 15 -7.57743 -7.71519 -7.71504 10 Step 12 19 -7.57748 -7.71522 -7.71504 6 Step 13 22 -7.57754 -7.71525 -7.71504 6 where nfi is a counter of the ionic steps, tempp is the ionic temperature, E is the electronic energy at the minimum of the electronic enthalpy, -T.S-mu.nbsp is the electronic enthalpy (electronic energy -TS , S=entropy) , and +K_p is the electronic enthalpy plus the ionic kinetic energy, #Iter is the number of iterations which were needed to minimized the electronic enthalpy with the conjugate gradient algorithm. NB: from one ionic step to the following, a linear extrapolation is used to provide an estimate for the electronic wave-functions, every 10 steps, this procedure is restarted. A more powerful scheme will be implemented in the future. espresso-5.1/CPV/examples/example08/run_example0000755000175000017500000000656212341373026017632 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x to perform" $ECHO "Born-Oppenheimer molecular dynamics using the" $ECHO "conjugate gradient minimization of the electronic" $ECHO "states. It shows also the use of ensemble-DFT" $ECHO "for metallic systems." $ECHO "The example shows a Si dimer" # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="Si.pbe-rrkj.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cp* $ECHO " done" # molecular dynamics calculation cat > si2.ensemble-dyn.in << EOF &CONTROL calculation = 'cp', restart_mode = 'from_scratch', nstep = 5, iprint = 10, isave = 10, tstress = .TRUE., tprnfor = .TRUE., dt = 10.0d0, prefix = 'Si_dimer', pseudo_dir = '$PSEUDO_DIR/', outdir='$TMP_DIR/' / &SYSTEM ibrav = 8, celldm(1) = 10., celldm(2) = 1.0, celldm(3) = 1.5, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nbnd=8, nat =2, ntyp =1, ecutwfc = 15, ecutrho = 60, nr1b=20,nr2b=20,nr3b=20 occupations = 'ensemble', smearing='fd', degauss=0.025, nspin=1, / &ELECTRONS emass = 1000.d0, emass_cutoff = 4.d0, orthogonalization = 'Gram-Schmidt', startingwfc = 'random', ampre = 0.02, n_inner = 8, tcg = .true., passop=0.3, maxiter = 250, conv_thr=1.d-6 / &IONS ion_dynamics = 'damp', ion_damping = 0., ion_positions = 'from_input', greasp=1.0, ion_radius(1) = 0.8d0, ion_temperature = 'not_controlled', / ATOMIC_SPECIES Si 28.086 Si.pbe-rrkj.UPF ATOMIC_POSITIONS (bohr) Si 0. 0. 0. 1 1 1 Si 0. 0. 5.5 1 1 1 EOF $ECHO " running the calculation BO-MD for Si-dimer...\c" $CP_COMMAND < si2.ensemble-dyn.in > si2.ensemble-dyn.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/CPV/examples/example08/reference/0000755000175000017500000000000012341373043017311 5ustar mbambaespresso-5.1/CPV/examples/example08/reference/si2.ensemble-dyn.out0000644000175000017500000003343312341373026023127 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.0 - Mon Apr 28 15:32:33 CEST 2008 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 16:21:53 28Apr2008 Serial Build Message from routine system_checkin : degauss is not used in CP Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/pseudo/Si.pbe-rrkj.UPF file type is 20: UPF Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 5 Print out every 10 MD Steps Reads from unit = 50 Writes to unit = 50 MD Simulation time step = 10.00 Electronic fictitious mass (emass) = 1000.00 emass cut-off = 4.00 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 7781.11 [AU] ibrav = 8 alat = 10.00000000 a1 = 10.00000000 0.00000000 0.00000000 a2 = 0.00000000 10.00000000 0.00000000 a3 = 0.00000000 0.00000000 15.00000000 b1 = 0.10000000 0.00000000 0.00000000 b2 = 0.00000000 0.10000000 0.00000000 b3 = 0.00000000 0.00000000 0.06666667 omega = 1500.00000000 ======================================== | CONJUGATE GRADIENT | ======================================== | iterations = 250 | | conv_thr = 0.00000100000 a.u. | | passop = 0.30000 a.u. | | niter_cg_restart = 20 | ======================================== ensemble-DFT calculation = T grand-canonical calculation = F ===================================== | ensemble-DFT parameters | ===================================== | ninner = 8 | | etemp = 0.02500 a.u. | | ismear = 2 | | fermi energy = 0.00000 a.u. | ===================================== Energy Cut-offs --------------- Ecutwfc = 15.0 Ry, Ecutrho = 60.0 Ry, Ecuts = 60.0 Ry Gcutwfc = 6.2 , Gcutrho = 12.3 Gcuts = 12.3 NOTA BENE: refg, mmx = 0.050000 1440 Orthog. with Gram-Schmidt Electron dynamics with newton equations Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 8, of States = 8 Occupation numbers : 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND WANG Using Generalized Gradient Corrections with Exchange functional: PERDEW BURKE ERNZERHOF Correlation functional: PERDEW BURKE ERNZERHOF Exchange-correlation = SLA PW PBE PBE (1434) Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 6 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 2 mass = 51197.65 (a.u.), 28.09 (amu) rcmax = 0.80 (a.u.) 0.000000 0.000000 0.000000 0.000000 0.000000 5.500000 Ionic position read from input file All atoms are allowed to move Ionic temperature is not controlled Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 10.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 10.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 15.0000 0.0000 0.0000 0.6667 Stick Mesh ---------- nst = 241, nstw = 61, nsts = 241 PEs n.st n.stw n.sts n.g n.gw n.gs 1 481 121 481 11725 1467 11725 0 481 121 481 11725 1467 11725 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 25 25 40 25 25 40 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 25 25 40 Local number of cell to store the grid ( nnrx ) = 25000 Number of x-y planes for each processors: nr3l = 40 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 25 25 40 25 25 40 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 25 25 40 Local number of cell to store the grid ( nnrx ) = 25000 Number of x-y planes for each processors: nr3sl = 40 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 20 20 20 20 20 20 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 20 20 20 Local number of cell to store the grid ( nnrx ) = 8000 unit vectors of box grid cell in real space: in reciprocal space: 8.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 8.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 7.5000 0.0000 0.0000 1.0667 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 5863 5863 5863 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 5863 5863 5863 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 734 734 734 Small box Mesh ngb = 1880 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input Si 0.000000E+00 0.000000E+00 0.000000E+00 Si 0.000000E+00 0.000000E+00 0.366667E+00 Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 dion 0.3316 0.7421 0.0000 0.7421 1.6623 0.0000 0.0000 0.0000 0.1215 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 formf: eself= 15.95769 formf: vps(g=0)= -0.0030619 rhops(g=0)= -0.0026667 formf: sum_g vps(g)= 0.1655508 sum_g rhops(g)= -0.7026660 Delta V(G=0): 0.010723Ry, 0.291796eV PERFORMING CONJUGATE GRADIENT MINIMIZATION OF EL. STATES cg_sub: missed minimum, case 3, iteration 3 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 nfi tempp E -T.S-mu.nbsp +K_p #Iter Step 1 0 -7.56896 -7.70161 -7.70161 57 Step 2 0 -7.56896 -7.70162 -7.70161 6 Step 3 0 -7.56896 -7.70162 -7.70161 6 Step 4 1 -7.56897 -7.70163 -7.70161 6 * Physical Quantities at step: 5 Occupations : 1.999949 1.999451 1.627654 0.933501 0.933495 0.245845 0.245843 0.014262 total energy = -7.56899 Hartree a.u. kinetic energy = 2.49378 Hartree a.u. electrostatic energy = -9.31510 Hartree a.u. esr = 0.00000 Hartree a.u. eself = 15.95769 Hartree a.u. pseudopotential energy = -0.50588 Hartree a.u. n-l pseudopotential energy = 1.77984 Hartree a.u. exchange-correlation energy = -2.02163 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -9.73 -8.12 -3.55 -2.45 -2.45 -1.20 -1.20 0.82 Allocated memory (kb) = 19788 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 15.00000000 System Density [g/cm^3] : 0.4196 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.27247551 -0.00021012 0.00031682 -0.00021012 0.27231049 -0.00011295 0.00031682 -0.00011294 -4.63131119 ATOMIC_POSITIONS Si 0.142692E-06 0.371963E-06 0.507901E-03 Si -0.142692E-06 -0.371963E-06 0.549949E+01 ATOMIC_VELOCITIES Si 0.923356E-09 0.915024E-08 0.228535E-04 Si -0.923356E-09 -0.915024E-08 -0.228535E-04 Forces acting on atoms (au): Si -0.135878E-04 -0.104167E-04 0.259769E-01 Si 0.135878E-04 0.104167E-04 -0.259769E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2.81 0.0000 Step 5 2 -7.56899 -7.70164 -7.70162 6 writing restart file: /Si_dimer_50.save restart file written in 0.037 sec. Averaged Physical Quantities accomulated this run ekinc : 0.00000 0.00000 (AU) ekin : 2.49365 2.49365 (AU) epot : -11.84246 -11.84246 (AU) total energy : -7.56897 -7.56897 (AU) temperature : 1.14681 1.14681 (K ) enthalpy : 0.00000 0.00000 (AU) econs : -7.70161 -7.70161 (AU) pressure : -1.36311 -1.36311 (Gpa) volume : 1500.00000 1500.00000 (AU) initialize : 0.41s CPU total_time : 72.39s CPU ( 5 calls, 14.477 s avg) formf : 0.03s CPU rhoofr : 12.98s CPU ( 2115 calls, 0.006 s avg) vofrho : 55.02s CPU ( 2115 calls, 0.026 s avg) dforce : 3.45s CPU ( 2916 calls, 0.001 s avg) calphi : 0.01s CPU ( 81 calls, 0.000 s avg) gram : 0.02s CPU ( 161 calls, 0.000 s avg) newd : 0.01s CPU ( 729 calls, 0.000 s avg) calbec : 0.07s CPU ( 560 calls, 0.000 s avg) prefor : 0.00s CPU ( 92 calls, 0.000 s avg) strucf : 0.00s CPU ( 6 calls, 0.000 s avg) nlfl : 0.00s CPU ( 5 calls, 0.000 s avg) nlfq : 0.00s CPU ( 5 calls, 0.000 s avg) nlsm1 : 0.07s CPU ( 560 calls, 0.000 s avg) nlsm2 : 0.00s CPU ( 10 calls, 0.000 s avg) fft : 15.34s CPU ( 16920 calls, 0.001 s avg) ffts : 3.78s CPU ( 4230 calls, 0.001 s avg) fftw : 7.14s CPU ( 14292 calls, 0.000 s avg) runcg_uspp : 72.38s CPU ( 5 calls, 14.477 s avg) inner_loop : 66.42s CPU ( 81 calls, 0.820 s avg) rotate : 0.23s CPU ( 2115 calls, 0.000 s avg) calcmt : 0.00s CPU ( 157 calls, 0.000 s avg) pc2 : 0.04s CPU ( 228 calls, 0.000 s avg) pcdaga2 : 0.02s CPU ( 76 calls, 0.000 s avg) xminus1 : 0.00s CPU ( 152 calls, 0.000 s avg) emass_p_tpa : 0.00s CPU ( 5 calls, 0.000 s avg) CP : 1m12.84s CPU time, 1m18.47s wall time This run was terminated on: 16:23:12 28Apr2008 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example05/0000755000175000017500000000000012341373043015350 5ustar mbambaespresso-5.1/CPV/examples/example05/run_xml_example0000755000175000017500000002144612341373026020505 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x to calculate Wannier functions and" $ECHO "to perform dynamics with an external electric field." # set the needed environment variables . ../../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="H_US.van O_US.van" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE \ http://www.quantum-espresso.org/pseudo/1.3/UPF/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" cat > h2o.wannier.xml << EOF 0.0 0.0 0.0 0.0 0.0 16.D0 O_US.van 2.D0 H_US.van 10.0000 10.0000 10.000 11.7325 9.6757 10.000 9.6757 11.7325 10.000 $PSEUDO_DIR/ $TMP_DIR/ from_scratch 100 25.D0 1.D-16 100 4.D0 none 100 10 10 10 damp 0.15 350.D0 3.D0 5.D-8 250 1.D-16 TRUE 10 EOF $ECHO " running the Wannier functions calculation...\c" $CP_COMMAND < h2o.wannier.xml > h2o.wannier.out check_failure $? $ECHO " Wannier functions spreads...\c">> h2o.wannier.out $ECHO "">> h2o.wannier.out tail -4 $TMP_DIR/h2o_mol.spr >> h2o.wannier.out $ECHO " Wannier functions centers...\c">> h2o.wannier.out $ECHO "">> h2o.wannier.out tail -4 $TMP_DIR/h2o_mol.wfc >> h2o.wannier.out $ECHO " done" # calculation with an electric field cat > h2o.efield.xml << EOF 0.0 0.0 0.0 0.0 0.0 16.D0 O_US.van 2.D0 H_US.van 10.0000 10.0000 10.000 11.7325 9.6757 10.000 9.6757 11.7325 10.000 $PSEUDO_DIR/ $TMP_DIR/ reset_counters 100 25.D0 200 6.D0 verlet 100 10 10 10 verlet 350.D0 3.D0 51 5.D-8 250 TRUE TRUE 100 0.5D-2 EOF $ECHO " running the calculation with electric field...\c" $CP_COMMAND < h2o.efield.xml > h2o.efield.out check_failure $? $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/CPV/examples/example05/README0000644000175000017500000000067012341373026016234 0ustar mbambaThis example shows how to use cp.x to calculate Wannier functions and to perform dynamics with an external electric field. (contributed by Manu Sharma) The first calculation runs a cp with Wannier functions and generates from scratch the Wannier orbitals for a water molecule. The second calculation then applies an electric field in the z-direction to this water molecule. The molecule should oscillate about the applied electric field. espresso-5.1/CPV/examples/example05/run_example0000755000175000017500000001057012341373026017621 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x to calculate Wannier functions and" $ECHO "to perform dynamics with an external electric field." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="H_US.van O_US.van" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cp* $ECHO " done" cat > h2o.wannier.in << EOF &CONTROL calculation = "cp-wf", restart_mode = "from_scratch", nstep = 100, iprint = 100, isave = 100, dt = 4.D0, etot_conv_thr = 1.D-16, ekin_conv_thr = 1.D-16, prefix = "h2o_mol", pseudo_dir = "$PSEUDO_DIR/", outdir = "$TMP_DIR/", / &SYSTEM ibrav = 1, celldm(1) = 20.0, nat = 3, ntyp = 2, ecutwfc = 25.D0, nr1b = 10, nr2b = 10, nr3b = 10, / &ELECTRONS emass = 350.D0, emass_cutoff = 3.D0, ortho_eps = 5.D-8, ortho_max = 250, electron_dynamics = "damp", electron_damping = 0.15, / &IONS ion_dynamics = "none", / &WANNIER adapt = .true., nsteps = 10, / ATOMIC_SPECIES O 16.D0 O_US.van H 2.D0 H_US.van ATOMIC_POSITIONS (bohr) O 10.0000 10.0000 10.000 H 11.7325 9.6757 10.000 H 9.6757 11.7325 10.000 EOF $ECHO " running the Wannier functions calculation...\c" $CP_COMMAND < h2o.wannier.in > h2o.wannier.out check_failure $? $ECHO " Wannier functions spreads...\c">> h2o.wannier.out $ECHO "">> h2o.wannier.out tail -4 $TMP_DIR/h2o_mol.spr >> h2o.wannier.out $ECHO " Wannier functions centers...\c">> h2o.wannier.out $ECHO "">> h2o.wannier.out tail -4 $TMP_DIR/h2o_mol.wfc >> h2o.wannier.out $ECHO " done" # calculation with an electric field cat > h2o.efield.in << EOF &CONTROL calculation = "cp-wf", restart_mode = "reset_counters", ndw = 51 nstep = 200, iprint = 100, isave = 100, dt = 6.D0, prefix = "h2o_mol", pseudo_dir = "$PSEUDO_DIR/", outdir = "$TMP_DIR/", / &SYSTEM ibrav = 1, celldm(1) = 20.0, nat = 3, ntyp = 2, ecutwfc = 25.D0, nr1b = 10, nr2b = 10, nr3b = 10, / &ELECTRONS emass = 350.D0, emass_cutoff = 3.D0, ortho_eps = 5.D-8, ortho_max = 250, electron_dynamics = "verlet", / &IONS ion_dynamics = "verlet", / &WANNIER wf_efield = .TRUE., wf_switch = .TRUE., sw_len = 100, efz1 = 0.5D-2, / ATOMIC_SPECIES O 16.D0 O_US.van H 2.D0 H_US.van ATOMIC_POSITIONS (bohr) O 10.0000 10.0000 10.000 H 11.7325 9.6757 10.000 H 9.6757 11.7325 10.000 EOF $ECHO " running the calculation with electric field...\c" $CP_COMMAND < h2o.efield.in > h2o.efield.out check_failure $? $ECHO $ECHO "$EXAMPLE_DIR: done" espresso-5.1/CPV/examples/example05/reference/0000755000175000017500000000000012341373043017306 5ustar mbambaespresso-5.1/CPV/examples/example05/reference/h2o.wannier.out0000644000175000017500000006664212341373026022210 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.0 - Mon Apr 28 15:32:33 CEST 2008 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 16:10:18 28Apr2008 Serial Build Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/pseudo/O_US.van file type is 1: Vanderbilt US PP ============================================================ | pseudopotential report for atomic species: 1 | | pseudo potential version 7 3 2 | ------------------------------------------------------------ | oxygen PBE exchange-corr | | z = 8. zv( 1) = 6. exfact = 5.00000 | | ifpcor = 0 atomic energy = -31.58351 Ry | | index orbital occupation energy | | 1 200 2.00 -1.76 | | 2 210 4.00 -0.66 | | rinner = 0.7000 0.7000 0.7000 | | new generation scheme: | | nbeta = 4 kkbeta = 519 rcloc = 1.0000 | | ibeta l epsilon rcut | | 1 0 -1.76 1.20 | | 2 0 -0.66 1.20 | | 3 1 -1.76 1.20 | | 4 1 -0.66 1.20 | ============================================================ Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/pseudo/H_US.van file type is 1: Vanderbilt US PP ============================================================ | pseudopotential report for atomic species: 2 | | pseudo potential version 7 3 2 | ------------------------------------------------------------ | hydrogen PBE exchange-corr | | z = 1. zv( 2) = 1. exfact = 5.00000 | | ifpcor = 0 atomic energy = -0.91772 Ry | | index orbital occupation energy | | 1 100 1.00 -0.48 | | rinner = 0.5000 | | new generation scheme: | | nbeta = 1 kkbeta = 271 rcloc = 0.6000 | | ibeta l epsilon rcut | | 1 0 -0.48 0.80 | ============================================================ Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 100 Print out every 100 MD Steps Reads from unit = 50 Writes to unit = 50 MD Simulation time step = 4.00 Electronic fictitious mass (emass) = 350.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 2770.46 [AU] ibrav = 1 alat = 20.00000000 a1 = 20.00000000 0.00000000 0.00000000 a2 = 0.00000000 20.00000000 0.00000000 a3 = 0.00000000 0.00000000 20.00000000 b1 = 0.05000000 0.00000000 0.00000000 b2 = 0.00000000 0.05000000 0.00000000 b3 = 0.00000000 0.00000000 0.05000000 omega = 8000.00000000 Energy Cut-offs --------------- Ecutwfc = 25.0 Ry, Ecutrho = 100.0 Ry, Ecuts = 100.0 Ry Gcutwfc = 15.9 , Gcutrho = 31.8 Gcuts = 31.8 NOTA BENE: refg, mmx = 0.050000 2400 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.50E-07, max = 250 verlet algorithm for electron dynamics with friction frice = 0.1500 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND WANG Using Generalized Gradient Corrections with Exchange functional: PERDEW BURKE ERNZERHOF Correlation functional: PERDEW BURKE ERNZERHOF Exchange-correlation = PBE (1434) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.50 (a.u.) 10.000000 10.000000 10.000000 Species 2 atoms = 2 mass = 3645.78 (a.u.), 2.00 (amu) rcmax = 0.50 (a.u.) 11.732500 9.675700 10.000000 9.675700 11.732500 10.000000 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 20.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 20.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 20.0000 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 1591, nstw = 397, nsts = 1591 PEs n.st n.stw n.sts n.g n.gw n.gs 1 3181 793 3181 135043 16879 135043 0 3181 793 3181 135043 16879 135043 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 64 64 64 64 64 64 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 64 64 64 Local number of cell to store the grid ( nnrx ) = 262144 Number of x-y planes for each processors: nr3l = 64 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 64 64 64 64 64 64 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 64 64 64 Local number of cell to store the grid ( nnrx ) = 262144 Number of x-y planes for each processors: nr3sl = 64 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 10 10 10 10 10 10 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 10 10 10 Local number of cell to store the grid ( nnrx ) = 1000 unit vectors of box grid cell in real space: in reciprocal space: 3.1250 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 3.1250 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 3.1250 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 67522 67522 67522 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 67522 67522 67522 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 8440 8440 8440 Small box Mesh ngb = 243 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input O 0.500000E+00 0.500000E+00 0.500000E+00 H 0.586625E+00 0.483785E+00 0.500000E+00 H 0.483785E+00 0.586625E+00 0.500000E+00 Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 243 1 519 3 qqq -0.2814 -0.1752 0.0000 0.0000 -0.1752 -0.1519 0.0000 0.0000 0.0000 0.0000 3.4543 -1.8676 0.0000 0.0000 -1.8676 0.9140 nlinit nh(is), ngb, is, kkbeta, lmaxq = 1 243 2 271 1 qqq 9.4958 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 1.1855 -0.0482 0.0000 0.0000 -0.0482 -0.1194 0.0000 0.0000 0.0000 0.0000 24.3757 -18.2972 0.0000 0.0000 -18.2972 13.6557 Specie: 2 1 indv= 1 ang. mom= 0 dion 3.3279 ------------------------DYNAMICS IN THE WANNIER BASIS-------------------------- DYNAMICS PARAMETERS FICTITIOUS MASS PARAMETER USED FOR SPREAD OPTIMIZATION = 1500.0 TIME STEP USED FOR DAMPED DYNAMICS = 5.0000000 DAMPING COEFFICIENT USED FOR WANNIER FUNCTION SPREAD OPTIMIZATION = 0.3000000 10 STEPS OF DAMPED MOLECULAR DYNAMICS FOR OPTIMIZATION OF THE SPREAD AVERAGE WANNIER FUNCTION SPREAD WRITTEN TO FORT.24 INDIVIDUAL WANNIER FUNCTION SPREAD WRITTEN TO /h2o_mol.spr WANNIER CENTERS WRITTEN TO /h2o_mol.wfc SOME PERTINENT RUN-TIME INFORMATION WRITTEN TO FORT.27 ------------------------------------------------------------------------------- IBRAV SELECTED: 1 WANNIER SETUP : check G vectors and weights inw = 1: 1 0 0 1.000000 inw = 2: 0 1 0 1.000000 inw = 3: 0 0 1 1.000000 Translations to be done 3 ibrav selected: 1 1 : 1 0 0 2 : 0 1 0 3 : 0 0 1 Translation 1 for 8440 G vectors Translation 2 for 8440 G vectors Translation 3 for 8440 G vectors Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 4 2.00 2.00 2.00 2.00 formf: eself= 30.31961 formf: vps(g=0)= -0.0002325 rhops(g=0)= -0.0007500 formf: sum_g vps(g)= -0.4490836 sum_g rhops(g)= -4.2852036 formf: vps(g=0)= -0.0000709 rhops(g=0)= -0.0001250 formf: sum_g vps(g)= -0.7398336 sum_g rhops(g)= -0.7142006 Delta V(G=0): 0.000785Ry, 0.021372eV from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 1.25829 0.0 0.0 25.44319 25.44319 25.44319 26.70148 0.0000 0.0000 0.0000 0.0000 2 15.17700 0.0 0.0 23.33716 23.33716 23.33716 38.51415 0.0000 0.0000 0.0000 0.0000 3 3.49778 0.0 0.0 21.14457 21.14457 21.14457 24.64235 0.0000 0.0000 0.0000 0.0000 4 5.21321 0.0 0.0 17.51144 17.51144 17.51144 22.72465 0.0000 0.0000 0.0000 0.0000 5 7.78105 0.0 0.0 12.22781 12.22781 12.22781 20.00886 0.0000 0.0000 0.0000 0.0000 6 10.61853 0.0 0.0 5.11692 5.11692 5.11692 15.73545 0.0000 0.0000 0.0000 0.0000 7 12.06949 0.0 0.0 -2.92099 -2.92099 -2.92099 9.14850 0.0000 0.0000 0.0000 0.0000 8 10.60587 0.0 0.0 -8.87104 -8.87104 -8.87104 1.73484 0.0000 0.0000 0.0000 0.0000 9 7.37142 0.0 0.0 -11.26294 -11.26294 -11.26294 -3.89152 0.0000 0.0000 0.0000 0.0000 10 4.55446 0.0 0.0 -11.71980 -11.71980 -11.71980 -7.16534 0.0000 0.0000 0.0000 0.0000 11 2.82583 0.0 0.0 -11.84430 -11.84430 -11.84430 -9.01847 0.0000 0.0000 0.0000 0.0000 12 2.23533 0.0 0.0 -12.31820 -12.31820 -12.31820 -10.08287 0.0000 0.0000 0.0000 0.0000 13 2.12535 0.0 0.0 -13.14270 -13.14270 -13.14270 -11.01735 0.0000 0.0000 0.0000 0.0000 14 1.88229 0.0 0.0 -14.02649 -14.02649 -14.02649 -12.14420 0.0000 0.0000 0.0000 0.0000 15 1.52290 0.0 0.0 -14.73330 -14.73330 -14.73330 -13.21041 0.0000 0.0000 0.0000 0.0000 16 1.18944 0.0 0.0 -15.20365 -15.20365 -15.20365 -14.01421 0.0000 0.0000 0.0000 0.0000 17 0.94438 0.0 0.0 -15.49497 -15.49497 -15.49497 -14.55059 0.0000 0.0000 0.0000 0.0000 18 0.80024 0.0 0.0 -15.69271 -15.69271 -15.69271 -14.89247 0.0000 0.0000 0.0000 0.0000 19 0.73833 0.0 0.0 -15.85982 -15.85982 -15.85982 -15.12149 0.0000 0.0000 0.0000 0.0000 20 0.72165 0.0 0.0 -16.02451 -16.02451 -16.02451 -15.30287 0.0000 0.0000 0.0000 0.0000 21 0.69948 0.0 0.0 -16.18980 -16.18980 -16.18980 -15.49033 0.0000 0.0000 0.0000 0.0000 22 0.62064 0.0 0.0 -16.34849 -16.34849 -16.34849 -15.72786 0.0000 0.0000 0.0000 0.0000 23 0.48480 0.0 0.0 -16.49381 -16.49381 -16.49381 -16.00901 0.0000 0.0000 0.0000 0.0000 24 0.34951 0.0 0.0 -16.62277 -16.62277 -16.62277 -16.27326 0.0000 0.0000 0.0000 0.0000 25 0.26224 0.0 0.0 -16.73507 -16.73507 -16.73507 -16.47283 0.0000 0.0000 0.0000 0.0000 26 0.22268 0.0 0.0 -16.83117 -16.83117 -16.83117 -16.60849 0.0000 0.0000 0.0000 0.0000 27 0.20360 0.0 0.0 -16.91158 -16.91158 -16.91158 -16.70798 0.0000 0.0000 0.0000 0.0000 28 0.18219 0.0 0.0 -16.97705 -16.97705 -16.97705 -16.79485 0.0000 0.0000 0.0000 0.0000 29 0.15210 0.0 0.0 -17.02890 -17.02890 -17.02890 -16.87680 0.0000 0.0000 0.0000 0.0000 30 0.11839 0.0 0.0 -17.06908 -17.06908 -17.06908 -16.95070 0.0000 0.0000 0.0000 0.0000 31 0.08849 0.0 0.0 -17.09985 -17.09985 -17.09985 -17.01136 0.0000 0.0000 0.0000 0.0000 32 0.06707 0.0 0.0 -17.12335 -17.12335 -17.12335 -17.05628 0.0000 0.0000 0.0000 0.0000 33 0.05499 0.0 0.0 -17.14140 -17.14140 -17.14140 -17.08640 0.0000 0.0000 0.0000 0.0000 34 0.05044 0.0 0.0 -17.15532 -17.15532 -17.15532 -17.10488 0.0000 0.0000 0.0000 0.0000 35 0.05046 0.0 0.0 -17.16609 -17.16609 -17.16609 -17.11563 0.0000 0.0000 0.0000 0.0000 36 0.05220 0.0 0.0 -17.17439 -17.17439 -17.17439 -17.12219 0.0000 0.0000 0.0000 0.0000 37 0.05361 0.0 0.0 -17.18076 -17.18076 -17.18076 -17.12714 0.0000 0.0000 0.0000 0.0000 38 0.05363 0.0 0.0 -17.18559 -17.18559 -17.18559 -17.13196 0.0000 0.0000 0.0000 0.0000 39 0.05197 0.0 0.0 -17.18921 -17.18921 -17.18921 -17.13724 0.0000 0.0000 0.0000 0.0000 40 0.04888 0.0 0.0 -17.19189 -17.19189 -17.19189 -17.14301 0.0000 0.0000 0.0000 0.0000 41 0.04476 0.0 0.0 -17.19385 -17.19385 -17.19385 -17.14909 0.0000 0.0000 0.0000 0.0000 42 0.04003 0.0 0.0 -17.19529 -17.19529 -17.19529 -17.15526 0.0000 0.0000 0.0000 0.0000 43 0.03502 0.0 0.0 -17.19636 -17.19636 -17.19636 -17.16134 0.0000 0.0000 0.0000 0.0000 44 0.02997 0.0 0.0 -17.19717 -17.19717 -17.19717 -17.16720 0.0000 0.0000 0.0000 0.0000 45 0.02509 0.0 0.0 -17.19782 -17.19782 -17.19782 -17.17273 0.0000 0.0000 0.0000 0.0000 46 0.02053 0.0 0.0 -17.19836 -17.19836 -17.19836 -17.17783 0.0000 0.0000 0.0000 0.0000 47 0.01640 0.0 0.0 -17.19879 -17.19879 -17.19879 -17.18239 0.0000 0.0000 0.0000 0.0000 48 0.01279 0.0 0.0 -17.19915 -17.19915 -17.19915 -17.18637 0.0000 0.0000 0.0000 0.0000 49 0.00972 0.0 0.0 -17.19944 -17.19944 -17.19944 -17.18972 0.0000 0.0000 0.0000 0.0000 50 0.00720 0.0 0.0 -17.19967 -17.19967 -17.19967 -17.19248 0.0000 0.0000 0.0000 0.0000 51 0.00518 0.0 0.0 -17.19985 -17.19985 -17.19985 -17.19467 0.0000 0.0000 0.0000 0.0000 52 0.00363 0.0 0.0 -17.20000 -17.20000 -17.20000 -17.19637 0.0000 0.0000 0.0000 0.0000 53 0.00246 0.0 0.0 -17.20011 -17.20011 -17.20011 -17.19765 0.0000 0.0000 0.0000 0.0000 54 0.00161 0.0 0.0 -17.20019 -17.20019 -17.20019 -17.19858 0.0000 0.0000 0.0000 0.0000 55 0.00102 0.0 0.0 -17.20026 -17.20026 -17.20026 -17.19924 0.0000 0.0000 0.0000 0.0000 56 0.00060 0.0 0.0 -17.20032 -17.20032 -17.20032 -17.19972 0.0000 0.0000 0.0000 0.0000 57 0.00035 0.0 0.0 -17.20036 -17.20036 -17.20036 -17.20000 0.0000 0.0000 0.0000 0.0000 58 0.00020 0.0 0.0 -17.20039 -17.20039 -17.20039 -17.20019 0.0000 0.0000 0.0000 0.0000 59 0.00011 0.0 0.0 -17.20041 -17.20041 -17.20041 -17.20030 0.0000 0.0000 0.0000 0.0000 60 0.00006 0.0 0.0 -17.20043 -17.20043 -17.20043 -17.20036 0.0000 0.0000 0.0000 0.0000 61 0.00004 0.0 0.0 -17.20044 -17.20044 -17.20044 -17.20040 0.0000 0.0000 0.0000 0.0000 62 0.00003 0.0 0.0 -17.20045 -17.20045 -17.20045 -17.20042 0.0000 0.0000 0.0000 0.0000 63 0.00002 0.0 0.0 -17.20046 -17.20046 -17.20046 -17.20044 0.0000 0.0000 0.0000 0.0000 64 0.00002 0.0 0.0 -17.20046 -17.20046 -17.20046 -17.20044 0.0000 0.0000 0.0000 0.0000 65 0.00002 0.0 0.0 -17.20047 -17.20047 -17.20047 -17.20045 0.0000 0.0000 0.0000 0.0000 66 0.00002 0.0 0.0 -17.20047 -17.20047 -17.20047 -17.20045 0.0000 0.0000 0.0000 0.0000 67 0.00002 0.0 0.0 -17.20047 -17.20047 -17.20047 -17.20045 0.0000 0.0000 0.0000 0.0000 68 0.00001 0.0 0.0 -17.20047 -17.20047 -17.20047 -17.20046 0.0000 0.0000 0.0000 0.0000 69 0.00001 0.0 0.0 -17.20047 -17.20047 -17.20047 -17.20047 0.0000 0.0000 0.0000 0.0000 70 0.00000 0.0 0.0 -17.20047 -17.20047 -17.20047 -17.20047 0.0000 0.0000 0.0000 0.0000 71 0.00000 0.0 0.0 -17.20047 -17.20047 -17.20047 -17.20047 0.0000 0.0000 0.0000 0.0000 72 0.00000 0.0 0.0 -17.20047 -17.20047 -17.20047 -17.20047 0.0000 0.0000 0.0000 0.0000 73 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20047 0.0000 0.0000 0.0000 0.0000 74 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20047 0.0000 0.0000 0.0000 0.0000 75 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20047 0.0000 0.0000 0.0000 0.0000 76 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 77 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 78 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 79 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 80 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 81 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 82 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 83 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 84 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 85 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 86 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 87 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 88 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 89 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 90 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 91 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 92 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 93 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 94 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 95 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 96 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 97 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 98 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 99 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20048 Hartree a.u. kinetic energy = 7.93847 Hartree a.u. electrostatic energy = -23.67313 Hartree a.u. esr = 0.00288 Hartree a.u. eself = 30.31961 Hartree a.u. pseudopotential energy = -1.79469 Hartree a.u. n-l pseudopotential energy = 4.56995 Hartree a.u. exchange-correlation energy = -4.24107 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -25.51 -13.63 -8.89 -7.26 Allocated memory (kb) = 87980 CELL_PARAMETERS 20.00000000 0.00000000 0.00000000 0.00000000 20.00000000 0.00000000 0.00000000 0.00000000 20.00000000 System Density [g/cm^3] : 0.0280 Center of mass square displacement (a.u.): 0.000000 ATOMIC_POSITIONS O 0.100000E+02 0.100000E+02 0.100000E+02 H 0.117325E+02 0.967570E+01 0.100000E+02 H 0.967570E+01 0.117325E+02 0.100000E+02 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 100 0.00000 0.0 0.0 -17.20048 -17.20048 -17.20048 -17.20048 0.0000 0.0000 0.0000 0.0000 writing restart file: /h2o_mol_50.save restart file written in 0.070 sec. Averaged Physical Quantities accomulated this run ekinc : 0.97257 0.97257 (AU) ekin : 8.73327 8.73327 (AU) epot : -27.52343 -27.52343 (AU) total energy : -14.45147 -14.45147 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -14.45147 -14.45147 (AU) econs : -14.45147 -14.45147 (AU) pressure : 0.00000 0.00000 (Gpa) volume : 8000.00000 8000.00000 (AU) initialize : 1.52s CPU total_time : 47.49s CPU ( 100 calls, 0.475 s avg) formf : 0.05s CPU rhoofr : 9.68s CPU ( 101 calls, 0.096 s avg) vofrho : 32.04s CPU ( 101 calls, 0.317 s avg) dforce : 5.38s CPU ( 202 calls, 0.027 s avg) calphi : 0.10s CPU ( 101 calls, 0.001 s avg) ortho : 0.30s CPU ( 101 calls, 0.003 s avg) ortho_iter : 0.00s CPU ( 101 calls, 0.000 s avg) rsg : 0.01s CPU ( 101 calls, 0.000 s avg) rhoset : 0.01s CPU ( 101 calls, 0.000 s avg) updatc : 0.02s CPU ( 101 calls, 0.000 s avg) gram : 0.00s CPU newd : 0.09s CPU ( 101 calls, 0.001 s avg) calbec : 0.00s CPU ( 102 calls, 0.000 s avg) prefor : 0.09s CPU ( 101 calls, 0.001 s avg) strucf : 0.00s CPU rhov : 2.31s CPU ( 101 calls, 0.023 s avg) nlsm1 : 0.24s CPU ( 304 calls, 0.001 s avg) fft : 14.72s CPU ( 909 calls, 0.016 s avg) ffts : 3.29s CPU ( 202 calls, 0.016 s avg) fftw : 6.05s CPU ( 606 calls, 0.010 s avg) fftb : 0.22s CPU ( 15339 calls, 0.000 s avg) CP : 49.89s CPU time, 53.25s wall time This run was terminated on: 16:11:11 28Apr2008 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= Wannier functions spreads... 0.5454020 0.5452435 0.4616614 0.4616525 Wannier functions centers... 9.816397 9.816372 9.505523 9.811334 9.811391 10.489287 9.885149 10.951626 10.002261 10.951626 9.885121 10.002329 espresso-5.1/CPV/examples/example05/reference/h2o.efield.out0000644000175000017500000012100112341373026021752 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.0 - Mon Apr 28 15:32:33 CEST 2008 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 16:11:11 28Apr2008 Serial Build Job Title: MD Simulation Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/pseudo/O_US.van file type is 1: Vanderbilt US PP ============================================================ | pseudopotential report for atomic species: 1 | | pseudo potential version 7 3 2 | ------------------------------------------------------------ | oxygen PBE exchange-corr | | z = 8. zv( 1) = 6. exfact = 5.00000 | | ifpcor = 0 atomic energy = -31.58351 Ry | | index orbital occupation energy | | 1 200 2.00 -1.76 | | 2 210 4.00 -0.66 | | rinner = 0.7000 0.7000 0.7000 | | new generation scheme: | | nbeta = 4 kkbeta = 519 rcloc = 1.0000 | | ibeta l epsilon rcut | | 1 0 -1.76 1.20 | | 2 0 -0.66 1.20 | | 3 1 -1.76 1.20 | | 4 1 -0.66 1.20 | ============================================================ Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/pseudo/H_US.van file type is 1: Vanderbilt US PP ============================================================ | pseudopotential report for atomic species: 2 | | pseudo potential version 7 3 2 | ------------------------------------------------------------ | hydrogen PBE exchange-corr | | z = 1. zv( 2) = 1. exfact = 5.00000 | | ifpcor = 0 atomic energy = -0.91772 Ry | | index orbital occupation energy | | 1 100 1.00 -0.48 | | rinner = 0.5000 | | new generation scheme: | | nbeta = 1 kkbeta = 271 rcloc = 0.6000 | | ibeta l epsilon rcut | | 1 0 -0.48 0.80 | ============================================================ Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 0 reset_counters Number of MD Steps = 200 Print out every 100 MD Steps Reads from unit = 50 Writes to unit = 51 MD Simulation time step = 6.00 Electronic fictitious mass (emass) = 350.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 2770.46 [AU] ibrav = 1 alat = 20.00000000 a1 = 20.00000000 0.00000000 0.00000000 a2 = 0.00000000 20.00000000 0.00000000 a3 = 0.00000000 0.00000000 20.00000000 b1 = 0.05000000 0.00000000 0.00000000 b2 = 0.00000000 0.05000000 0.00000000 b3 = 0.00000000 0.00000000 0.05000000 omega = 8000.00000000 Energy Cut-offs --------------- Ecutwfc = 25.0 Ry, Ecutrho = 100.0 Ry, Ecuts = 100.0 Ry Gcutwfc = 15.9 , Gcutrho = 31.8 Gcuts = 31.8 NOTA BENE: refg, mmx = 0.050000 2400 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.50E-07, max = 250 Electron dynamics with newton equations Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND WANG Using Generalized Gradient Corrections with Exchange functional: PERDEW BURKE ERNZERHOF Correlation functional: PERDEW BURKE ERNZERHOF Exchange-correlation = PBE (1434) Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 9 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.50 (a.u.) 10.000000 10.000000 10.000000 Species 2 atoms = 2 mass = 3645.78 (a.u.), 2.00 (amu) rcmax = 0.50 (a.u.) 11.732500 9.675700 10.000000 9.675700 11.732500 10.000000 Ionic position will be re-read from restart file All atoms are allowed to move Ionic temperature is not controlled Cell Dynamics Parameters (from STDIN) ------------------------------------- Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 20.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 20.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 20.0000 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 1591, nstw = 397, nsts = 1591 PEs n.st n.stw n.sts n.g n.gw n.gs 1 3181 793 3181 135043 16879 135043 0 3181 793 3181 135043 16879 135043 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 64 64 64 64 64 64 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 64 64 64 Local number of cell to store the grid ( nnrx ) = 262144 Number of x-y planes for each processors: nr3l = 64 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 64 64 64 64 64 64 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 64 64 64 Local number of cell to store the grid ( nnrx ) = 262144 Number of x-y planes for each processors: nr3sl = 64 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 10 10 10 10 10 10 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 10 10 10 Local number of cell to store the grid ( nnrx ) = 1000 unit vectors of box grid cell in real space: in reciprocal space: 3.1250 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 3.1250 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 3.1250 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 67522 67522 67522 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 67522 67522 67522 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 8440 8440 8440 Small box Mesh ngb = 243 not distributed to processors System geometry initialization ------------------------------ Scaled positions from standard input O 0.500000E+00 0.500000E+00 0.500000E+00 H 0.586625E+00 0.483785E+00 0.500000E+00 H 0.483785E+00 0.586625E+00 0.500000E+00 ibrav = 1 cell parameters 20.00000 0.00000 0.00000 0.00000 20.00000 0.00000 0.00000 0.00000 20.00000 !----------------------------------! ! ! ! ADIABATIC SWITCHING OF THE FIELD ! ! ! !----------------------------------! Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 243 1 519 3 qqq -0.2814 -0.1752 0.0000 0.0000 -0.1752 -0.1519 0.0000 0.0000 0.0000 0.0000 3.4543 -1.8676 0.0000 0.0000 -1.8676 0.9140 nlinit nh(is), ngb, is, kkbeta, lmaxq = 1 243 2 271 1 qqq 9.4958 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 1.1855 -0.0482 0.0000 0.0000 -0.0482 -0.1194 0.0000 0.0000 0.0000 0.0000 24.3757 -18.2972 0.0000 0.0000 -18.2972 13.6557 Specie: 2 1 indv= 1 ang. mom= 0 dion 3.3279 ------------------------DYNAMICS IN THE WANNIER BASIS-------------------------- DYNAMICS PARAMETERS FICTITIOUS MASS PARAMETER USED FOR SPREAD OPTIMIZATION = 1500.0 TIME STEP USED FOR DAMPED DYNAMICS = 5.0000000 DAMPING COEFFICIENT USED FOR WANNIER FUNCTION SPREAD OPTIMIZATION = 0.3000000 20 STEPS OF DAMPED MOLECULAR DYNAMICS FOR OPTIMIZATION OF THE SPREAD AVERAGE WANNIER FUNCTION SPREAD WRITTEN TO FORT.24 INDIVIDUAL WANNIER FUNCTION SPREAD WRITTEN TO /h2o_mol.spr WANNIER CENTERS WRITTEN TO /h2o_mol.wfc SOME PERTINENT RUN-TIME INFORMATION WRITTEN TO FORT.27 ------------------------------------------------------------------------------- IBRAV SELECTED: 1 WANNIER SETUP : check G vectors and weights inw = 1: 1 0 0 1.000000 inw = 2: 0 1 0 1.000000 inw = 3: 0 0 1 1.000000 Translations to be done 3 ibrav selected: 1 1 : 1 0 0 2 : 0 1 0 3 : 0 0 1 Translation 1 for 8440 G vectors Translation 2 for 8440 G vectors Translation 3 for 8440 G vectors GRID MAPPING DONE DYNAMICS IN THE PRESENCE OF AN EXTERNAL ELECTRIC FIELD POLARIZATION CONTRIBUTION OUTPUT TO FORT.28 IN THE FOLLOWING FORMAT EFX, EFY, EFZ, ELECTRIC ENTHALPY(ELECTRONIC), ELECTRIC ENTHALPY(IONIC) E0(x) = 0.0000000 E0(y) = 0.0000000 E0(z) = 0.0000000 E1(x) = 0.0000000 E1(y) = 0.0000000 E1(z) = 0.0050000 FIELD WILL BE TURNED ON ADIBATICALLY OVER 100 STEPS Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /h2o_mol_50.save restart file read in 0.019 sec. formf: eself= 30.31961 formf: vps(g=0)= -0.0002325 rhops(g=0)= -0.0007500 formf: sum_g vps(g)= -0.4490836 sum_g rhops(g)= -4.2852036 formf: vps(g=0)= -0.0000709 rhops(g=0)= -0.0001250 formf: sum_g vps(g)= -0.7398336 sum_g rhops(g)= -0.7142006 Delta V(G=0): 0.000785Ry, 0.021372eV nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 0.00000 0.0 0.7 -17.20048 -17.20048 -17.20047 -17.20047 0.0000 0.0000 0.0000 0.0000 2 0.00001 0.0 6.0 -17.20016 -17.20016 -17.20008 -17.20007 0.0000 0.0000 0.0000 0.0000 3 0.00006 0.0 16.0 -17.20033 -17.20033 -17.20010 -17.20004 0.0000 0.0000 0.0000 0.0000 4 0.00007 0.0 30.2 -17.20055 -17.20055 -17.20012 -17.20006 0.0000 0.0000 0.0000 0.0000 5 0.00006 0.0 47.6 -17.20082 -17.20082 -17.20014 -17.20008 0.0000 0.0000 0.0000 0.0000 6 0.00006 0.0 67.7 -17.20113 -17.20116 -17.20019 -17.20014 0.0000 0.0000 0.0000 0.0000 7 0.00011 0.0 89.9 -17.20148 -17.20148 -17.20020 -17.20009 0.0000 0.0000 0.0000 0.0000 8 0.00019 0.0 113.9 -17.20188 -17.20188 -17.20025 -17.20007 0.0000 0.0000 0.0000 0.0000 9 0.00026 0.0 139.6 -17.20229 -17.20229 -17.20030 -17.20005 0.0000 0.0000 0.0000 0.0000 10 0.00027 0.0 166.7 -17.20271 -17.20235 -17.19998 -17.19971 0.0000 0.0000 0.0000 0.0000 11 0.00021 0.0 194.7 -17.20313 -17.20258 -17.19980 -17.19959 0.0000 0.0000 0.0000 0.0000 12 0.00020 0.0 222.8 -17.20355 -17.20355 -17.20038 -17.20017 0.0000 0.0000 0.0000 0.0000 13 0.00023 0.0 250.1 -17.20397 -17.20397 -17.20040 -17.20018 0.0000 0.0000 0.0000 0.0000 14 0.00025 0.0 275.3 -17.20435 -17.20435 -17.20043 -17.20018 0.0000 0.0000 0.0000 0.0000 15 0.00025 0.0 297.7 -17.20469 -17.20469 -17.20045 -17.20019 0.0000 0.0000 0.0000 0.0000 16 0.00026 0.0 316.4 -17.20497 -17.20198 -17.19747 -17.19721 0.0000 0.0000 0.0000 0.0000 17 0.00031 0.0 331.2 -17.20522 -17.20132 -17.19660 -17.19629 0.0000 0.0000 0.0000 0.0000 18 0.00039 0.0 342.1 -17.20543 -17.20043 -17.19555 -17.19516 0.0000 0.0000 0.0000 0.0000 19 0.00047 0.0 349.5 -17.20558 -17.20558 -17.20060 -17.20013 0.0000 0.0000 0.0000 0.0000 20 0.00050 0.0 353.8 -17.20566 -17.21349 -17.20845 -17.20795 0.0000 0.0000 0.0000 0.0000 21 0.00037 0.0 355.3 -17.20568 -17.21529 -17.21023 -17.20985 0.0000 0.0000 0.0000 0.0000 22 0.00029 0.0 354.1 -17.20565 -17.20565 -17.20061 -17.20032 0.0000 0.0000 0.0000 0.0000 23 0.00028 0.0 350.3 -17.20559 -17.20559 -17.20060 -17.20032 0.0000 0.0000 0.0000 0.0000 24 0.00025 0.0 343.6 -17.20547 -17.20547 -17.20057 -17.20032 0.0000 0.0000 0.0000 0.0000 25 0.00022 0.0 333.8 -17.20530 -17.20530 -17.20054 -17.20032 0.0000 0.0000 0.0000 0.0000 26 0.00020 0.0 320.7 -17.20508 -17.22794 -17.22336 -17.22317 0.0000 0.0000 0.0000 0.0000 27 0.00019 0.0 304.5 -17.20484 -17.23132 -17.22698 -17.22679 0.0000 0.0000 0.0000 0.0000 28 0.00026 0.0 285.6 -17.20458 -17.20458 -17.20051 -17.20025 0.0000 0.0000 0.0000 0.0000 29 0.00026 0.0 264.8 -17.20429 -17.20430 -17.20052 -17.20026 0.0000 0.0000 0.0000 0.0000 30 0.00022 0.0 243.4 -17.20262 -17.20262 -17.19915 -17.19893 0.0000 0.0000 0.0000 0.0000 31 0.00018 0.0 222.1 -17.20230 -17.24692 -17.24375 -17.24357 0.0000 0.0000 0.0000 0.0000 32 0.00021 0.0 201.4 -17.20200 -17.20200 -17.19913 -17.19892 0.0000 0.0000 0.0000 0.0000 33 0.00023 0.0 181.6 -17.20170 -17.14579 -17.14320 -17.14297 0.0000 0.0000 0.0000 0.0000 34 0.00015 0.0 162.9 -17.20141 -17.13930 -17.13698 -17.13682 0.0000 0.0000 0.0000 0.0000 35 0.00011 0.0 145.1 -17.20112 -17.20113 -17.19906 -17.19895 0.0000 0.0000 0.0000 0.0000 36 0.00008 0.0 128.4 -17.20084 -17.12523 -17.12340 -17.12332 0.0000 0.0000 0.0000 0.0000 37 0.00009 0.0 112.6 -17.20059 -17.20061 -17.19900 -17.19891 0.0000 0.0000 0.0000 0.0000 38 0.00008 0.0 98.0 -17.20037 -17.08727 -17.08588 -17.08580 0.0000 0.0000 0.0000 0.0000 39 0.00010 0.0 84.8 -17.20018 -17.20020 -17.19900 -17.19890 0.0000 0.0000 0.0000 0.0000 40 0.00006 0.0 73.5 -17.20001 -17.09339 -17.09235 -17.09229 0.0000 0.0000 0.0000 0.0000 41 0.00007 0.0 64.3 -17.19987 -17.22867 -17.22776 -17.22769 0.0000 0.0000 0.0000 0.0000 42 0.00005 0.0 57.6 -17.19976 -17.07591 -17.07509 -17.07503 0.0000 0.0000 0.0000 0.0000 43 0.00007 0.0 53.5 -17.19971 -17.06688 -17.06612 -17.06605 0.0000 0.0000 0.0000 0.0000 44 0.00007 0.0 52.0 -17.19969 -17.05767 -17.05693 -17.05686 0.0000 0.0000 0.0000 0.0000 45 0.00006 0.0 53.1 -17.19970 -17.19974 -17.19898 -17.19892 0.0000 0.0000 0.0000 0.0000 46 0.00005 0.0 56.5 -17.19972 -17.03880 -17.03800 -17.03795 0.0000 0.0000 0.0000 0.0000 47 0.00005 0.0 62.2 -17.19980 -17.02924 -17.02836 -17.02830 0.0000 0.0000 0.0000 0.0000 48 0.00006 0.0 70.1 -17.19992 -17.01962 -17.01862 -17.01856 0.0000 0.0000 0.0000 0.0000 49 0.00006 0.0 80.2 -17.20007 -17.00997 -17.00883 -17.00876 0.0000 0.0000 0.0000 0.0000 50 0.00006 0.0 92.5 -17.20024 -16.95031 -16.94899 -16.94893 0.0000 0.0000 0.0000 0.0000 51 0.00006 0.0 106.8 -17.20044 -17.25298 -17.25146 -17.25139 0.0000 0.0000 0.0000 0.0000 52 0.00008 0.0 123.0 -17.20067 -16.98109 -16.97934 -16.97926 0.0000 0.0000 0.0000 0.0000 53 0.00010 0.0 140.8 -17.20094 -16.97164 -16.96963 -16.96954 0.0000 0.0000 0.0000 0.0000 54 0.00011 0.0 159.9 -17.20123 -16.96229 -16.96001 -16.95989 0.0000 0.0000 0.0000 0.0000 55 0.00012 0.0 180.0 -17.20152 -16.89092 -16.88835 -16.88823 0.0000 0.0000 0.0000 0.0000 56 0.00013 0.0 200.7 -17.20183 -17.26643 -17.26357 -17.26344 0.0000 0.0000 0.0000 0.0000 57 0.00016 0.0 221.9 -17.20214 -17.26903 -17.26587 -17.26571 0.0000 0.0000 0.0000 0.0000 58 0.00021 0.0 243.2 -17.20246 -16.85742 -16.85395 -16.85374 0.0000 0.0000 0.0000 0.0000 59 0.00020 0.0 264.5 -17.20278 -16.91804 -16.91428 -16.91407 0.0000 0.0000 0.0000 0.0000 60 0.00020 0.0 285.6 -17.20308 -16.90986 -16.90579 -16.90559 0.0000 0.0000 0.0000 0.0000 61 0.00022 0.0 306.0 -17.20338 -16.82655 -16.82219 -16.82196 0.0000 0.0000 0.0000 0.0000 62 0.00026 0.0 326.0 -17.20522 -16.81850 -16.81386 -16.81360 0.0000 0.0000 0.0000 0.0000 63 0.00027 0.0 344.8 -17.20552 -17.28496 -17.28005 -17.27978 0.0000 0.0000 0.0000 0.0000 64 0.00023 0.0 361.5 -17.20575 -16.80043 -16.79527 -16.79505 0.0000 0.0000 0.0000 0.0000 65 0.00022 0.0 375.4 -17.20594 -16.79199 -16.78664 -16.78642 0.0000 0.0000 0.0000 0.0000 66 0.00022 0.0 386.2 -17.20609 -16.78393 -16.77842 -16.77820 0.0000 0.0000 0.0000 0.0000 67 0.00023 0.0 393.6 -17.20619 -16.77628 -16.77067 -16.77044 0.0000 0.0000 0.0000 0.0000 68 0.00025 0.0 397.5 -17.20626 -16.76906 -16.76340 -16.76315 0.0000 0.0000 0.0000 0.0000 69 0.00026 0.0 397.8 -17.20628 -16.76225 -16.75658 -16.75633 0.0000 0.0000 0.0000 0.0000 70 0.00025 0.0 394.6 -17.20623 -17.29657 -17.29095 -17.29070 0.0000 0.0000 0.0000 0.0000 71 0.00023 0.0 387.7 -17.20610 -16.74982 -16.74429 -16.74406 0.0000 0.0000 0.0000 0.0000 72 0.00023 0.0 377.1 -17.20594 -16.74425 -16.73887 -16.73865 0.0000 0.0000 0.0000 0.0000 73 0.00023 0.0 362.8 -17.20573 -16.73906 -16.73389 -16.73367 0.0000 0.0000 0.0000 0.0000 74 0.00022 0.0 345.0 -17.20546 -16.73427 -16.72935 -16.72914 0.0000 0.0000 0.0000 0.0000 75 0.00020 0.0 324.0 -17.20516 -17.30050 -17.29589 -17.29569 0.0000 0.0000 0.0000 0.0000 76 0.00021 0.0 300.2 -17.20478 -16.72577 -16.72150 -16.72129 0.0000 0.0000 0.0000 0.0000 77 0.00018 0.0 274.0 -17.20438 -16.72212 -16.71821 -16.71803 0.0000 0.0000 0.0000 0.0000 78 0.00018 0.0 246.3 -17.20398 -16.71880 -16.71529 -16.71511 0.0000 0.0000 0.0000 0.0000 79 0.00017 0.0 217.5 -17.20356 -16.71582 -16.71272 -16.71255 0.0000 0.0000 0.0000 0.0000 80 0.00015 0.0 188.4 -17.20313 -17.30142 -17.29873 -17.29858 0.0000 0.0000 0.0000 0.0000 81 0.00011 0.0 159.6 -17.20268 -16.71078 -16.70850 -16.70839 0.0000 0.0000 0.0000 0.0000 82 0.00010 0.0 131.8 -17.20226 -16.70875 -16.70688 -16.70677 0.0000 0.0000 0.0000 0.0000 83 0.00010 0.0 105.5 -17.20187 -16.70700 -16.70550 -16.70540 0.0000 0.0000 0.0000 0.0000 84 0.00008 0.0 81.5 -17.20153 -17.30103 -17.29987 -17.29979 0.0000 0.0000 0.0000 0.0000 85 0.00006 0.0 60.4 -17.20120 -16.70424 -16.70338 -16.70332 0.0000 0.0000 0.0000 0.0000 86 0.00004 0.0 42.7 -17.20093 -16.70325 -16.70264 -16.70260 0.0000 0.0000 0.0000 0.0000 87 0.00003 0.0 28.9 -17.20072 -16.70245 -16.70204 -16.70201 0.0000 0.0000 0.0000 0.0000 88 0.00004 0.0 19.5 -17.20059 -16.70187 -16.70160 -16.70156 0.0000 0.0000 0.0000 0.0000 89 0.00004 0.0 14.4 -17.20053 -16.70147 -16.70127 -16.70122 0.0000 0.0000 0.0000 0.0000 90 0.00004 0.0 13.9 -17.20053 -16.70122 -16.70103 -16.70099 0.0000 0.0000 0.0000 0.0000 91 0.00004 0.0 17.8 -17.20059 -16.70111 -16.70086 -16.70082 0.0000 0.0000 0.0000 0.0000 92 0.00006 0.0 25.9 -17.20072 -16.70113 -16.70076 -16.70070 0.0000 0.0000 0.0000 0.0000 93 0.00009 0.0 37.9 -17.20092 -16.70126 -16.70072 -16.70063 0.0000 0.0000 0.0000 0.0000 94 0.00011 0.0 53.6 -17.20118 -16.70148 -16.70071 -16.70060 0.0000 0.0000 0.0000 0.0000 95 0.00012 0.0 72.5 -17.20147 -16.70175 -16.70072 -16.70060 0.0000 0.0000 0.0000 0.0000 96 0.00013 0.0 94.1 -17.20180 -16.70207 -16.70073 -16.70060 0.0000 0.0000 0.0000 0.0000 97 0.00015 0.0 117.8 -17.20217 -16.70244 -16.70076 -16.70061 0.0000 0.0000 0.0000 0.0000 98 0.00017 0.0 143.0 -17.20258 -17.30284 -17.30081 -17.30063 0.0000 0.0000 0.0000 0.0000 99 0.00019 0.0 168.9 -17.20297 -16.70321 -16.70080 -16.70062 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20337 Hartree a.u. kinetic energy = 7.89488 Hartree a.u. electrostatic energy = -23.63568 Hartree a.u. esr = 0.00199 Hartree a.u. eself = 30.31961 Hartree a.u. pseudopotential energy = -1.77286 Hartree a.u. n-l pseudopotential energy = 4.52955 Hartree a.u. exchange-correlation energy = -4.21926 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -25.50 -12.80 -9.50 -7.19 Allocated memory (kb) = 94136 CELL_PARAMETERS 20.00000000 0.00000000 0.00000000 0.00000000 20.00000000 0.00000000 0.00000000 0.00000000 20.00000000 System Density [g/cm^3] : 0.0280 Center of mass square displacement (a.u.): 0.000000 ATOMIC_POSITIONS O 0.997384E+01 0.997384E+01 0.100000E+02 H 0.117766E+02 0.984081E+01 0.100003E+02 H 0.984085E+01 0.117767E+02 0.999973E+01 ATOMIC_VELOCITIES O -0.914210E-04 -0.913682E-04 0.233414E-06 H 0.827931E-03 -0.969419E-04 0.842079E-06 H -0.965636E-04 0.827887E-03 -0.270939E-05 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 51.29 0.0014 2 266.63 0.0292 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 100 0.00019 0.0 194.8 -17.20337 -17.30364 -17.30086 -17.30067 0.0000 0.0000 0.0000 0.0000 writing restart file: /h2o_mol_51.save restart file written in 0.071 sec. 101 0.00028 0.0 220.0 -17.20373 -16.70398 -16.70084 -16.70057 0.0000 0.0000 0.0000 0.0000 102 0.00029 0.0 243.8 -17.20410 -16.70436 -16.70089 -16.70060 0.0000 0.0000 0.0000 0.0000 103 0.00028 0.0 265.6 -17.20444 -16.70471 -16.70092 -16.70064 0.0000 0.0000 0.0000 0.0000 104 0.00027 0.0 285.0 -17.20476 -16.70502 -16.70096 -16.70069 0.0000 0.0000 0.0000 0.0000 105 0.00024 0.0 301.6 -17.20503 -17.30529 -17.30099 -17.30075 0.0000 0.0000 0.0000 0.0000 106 0.00027 0.0 315.3 -17.20522 -16.70546 -16.70096 -16.70069 0.0000 0.0000 0.0000 0.0000 107 0.00024 0.0 325.9 -17.20539 -16.70564 -16.70100 -16.70076 0.0000 0.0000 0.0000 0.0000 108 0.00023 0.0 333.1 -17.20551 -16.70576 -16.70102 -16.70079 0.0000 0.0000 0.0000 0.0000 109 0.00024 0.0 336.9 -17.20557 -16.70583 -16.70103 -16.70079 0.0000 0.0000 0.0000 0.0000 110 0.00026 0.0 337.3 -17.20557 -16.70583 -16.70103 -16.70077 0.0000 0.0000 0.0000 0.0000 111 0.00028 0.0 334.1 -17.20552 -16.70578 -16.70102 -16.70074 0.0000 0.0000 0.0000 0.0000 112 0.00029 0.0 327.6 -17.20542 -16.70568 -16.70102 -16.70072 0.0000 0.0000 0.0000 0.0000 113 0.00031 0.0 318.0 -17.20529 -16.70555 -16.70102 -16.70072 0.0000 0.0000 0.0000 0.0000 114 0.00031 0.0 305.6 -17.20512 -16.70538 -16.70103 -16.70072 0.0000 0.0000 0.0000 0.0000 115 0.00028 0.0 290.9 -17.20490 -16.70516 -16.70102 -16.70074 0.0000 0.0000 0.0000 0.0000 116 0.00024 0.0 274.3 -17.20464 -16.70491 -16.70100 -16.70075 0.0000 0.0000 0.0000 0.0000 117 0.00021 0.0 256.9 -17.20280 -16.70307 -16.69941 -16.69920 0.0000 0.0000 0.0000 0.0000 118 0.00019 0.0 238.9 -17.20253 -16.70280 -16.69939 -16.69921 0.0000 0.0000 0.0000 0.0000 119 0.00017 0.0 220.4 -17.20225 -16.70252 -16.69938 -16.69921 0.0000 0.0000 0.0000 0.0000 120 0.00016 0.0 201.4 -17.20196 -16.70223 -16.69936 -16.69920 0.0000 0.0000 0.0000 0.0000 121 0.00014 0.0 182.4 -17.20166 -16.70193 -16.69933 -16.69919 0.0000 0.0000 0.0000 0.0000 122 0.00013 0.0 163.5 -17.20136 -16.70163 -16.69930 -16.69918 0.0000 0.0000 0.0000 0.0000 123 0.00012 0.0 144.9 -17.20109 -16.70136 -16.69929 -16.69917 0.0000 0.0000 0.0000 0.0000 124 0.00012 0.0 127.1 -17.20083 -16.70110 -16.69929 -16.69917 0.0000 0.0000 0.0000 0.0000 125 0.00010 0.0 110.2 -17.20057 -16.70084 -16.69927 -16.69917 0.0000 0.0000 0.0000 0.0000 126 0.00008 0.0 94.6 -17.20033 -16.70060 -16.69925 -16.69917 0.0000 0.0000 0.0000 0.0000 127 0.00007 0.0 80.5 -17.20011 -16.70039 -16.69924 -16.69917 0.0000 0.0000 0.0000 0.0000 128 0.00007 0.0 68.2 -17.19994 -16.70021 -16.69924 -16.69917 0.0000 0.0000 0.0000 0.0000 129 0.00006 0.0 57.8 -17.19979 -16.70006 -16.69924 -16.69918 0.0000 0.0000 0.0000 0.0000 130 0.00005 0.0 49.7 -17.19967 -16.69994 -16.69923 -16.69918 0.0000 0.0000 0.0000 0.0000 131 0.00004 0.0 43.8 -17.19957 -16.69984 -16.69922 -16.69918 0.0000 0.0000 0.0000 0.0000 132 0.00004 0.0 40.2 -17.19951 -16.69979 -16.69921 -16.69918 0.0000 0.0000 0.0000 0.0000 133 0.00005 0.0 38.8 -17.19950 -16.69978 -16.69922 -16.69918 0.0000 0.0000 0.0000 0.0000 134 0.00006 0.0 39.8 -17.19953 -16.69980 -16.69924 -16.69918 0.0000 0.0000 0.0000 0.0000 135 0.00006 0.0 43.0 -17.19958 -16.69986 -16.69924 -16.69919 0.0000 0.0000 0.0000 0.0000 136 0.00005 0.0 48.6 -17.19966 -16.69994 -16.69924 -16.69919 0.0000 0.0000 0.0000 0.0000 137 0.00006 0.0 56.5 -17.19978 -16.70006 -16.69925 -16.69919 0.0000 0.0000 0.0000 0.0000 138 0.00007 0.0 66.7 -17.19994 -16.70021 -16.69926 -16.69919 0.0000 0.0000 0.0000 0.0000 139 0.00008 0.0 79.1 -17.20014 -16.70041 -16.69928 -16.69920 0.0000 0.0000 0.0000 0.0000 140 0.00009 0.0 93.6 -17.20035 -16.70062 -16.69929 -16.69920 0.0000 0.0000 0.0000 0.0000 141 0.00009 0.0 109.8 -17.20058 -16.70086 -16.69929 -16.69920 0.0000 0.0000 0.0000 0.0000 142 0.00011 0.0 127.6 -17.20085 -16.70112 -16.69930 -16.69919 0.0000 0.0000 0.0000 0.0000 143 0.00014 0.0 146.7 -17.20115 -16.70142 -16.69933 -16.69919 0.0000 0.0000 0.0000 0.0000 144 0.00016 0.0 166.7 -17.20146 -16.70173 -16.69936 -16.69920 0.0000 0.0000 0.0000 0.0000 145 0.00017 0.0 187.5 -17.20178 -16.70205 -16.69938 -16.69921 0.0000 0.0000 0.0000 0.0000 146 0.00017 0.0 208.8 -17.20210 -16.70237 -16.69939 -16.69922 0.0000 0.0000 0.0000 0.0000 147 0.00019 0.0 230.3 -17.20243 -16.70269 -16.69941 -16.69922 0.0000 0.0000 0.0000 0.0000 148 0.00021 0.0 251.8 -17.20276 -16.70302 -16.69944 -16.69923 0.0000 0.0000 0.0000 0.0000 149 0.00022 0.0 272.9 -17.20309 -16.70335 -16.69946 -16.69924 0.0000 0.0000 0.0000 0.0000 150 0.00023 0.0 293.3 -17.20340 -16.70366 -16.69948 -16.69926 0.0000 0.0000 0.0000 0.0000 151 0.00022 0.0 313.0 -17.20524 -16.70551 -16.70105 -16.70082 0.0000 0.0000 0.0000 0.0000 152 0.00023 0.0 331.5 -17.20551 -16.70578 -16.70106 -16.70082 0.0000 0.0000 0.0000 0.0000 153 0.00025 0.0 348.1 -17.20576 -16.70603 -16.70107 -16.70082 0.0000 0.0000 0.0000 0.0000 154 0.00027 0.0 362.3 -17.20598 -16.70624 -16.70108 -16.70081 0.0000 0.0000 0.0000 0.0000 155 0.00028 0.0 373.6 -17.20614 -16.70641 -16.70109 -16.70081 0.0000 0.0000 0.0000 0.0000 156 0.00028 0.0 381.8 -17.20625 -16.70652 -16.70108 -16.70079 0.0000 0.0000 0.0000 0.0000 157 0.00030 0.0 386.6 -17.20631 -16.70658 -16.70107 -16.70077 0.0000 0.0000 0.0000 0.0000 158 0.00032 0.0 387.8 -17.20633 -16.70660 -16.70108 -16.70076 0.0000 0.0000 0.0000 0.0000 159 0.00033 0.0 385.5 -17.20630 -16.70657 -16.70107 -16.70075 0.0000 0.0000 0.0000 0.0000 160 0.00032 0.0 379.6 -17.20620 -16.70647 -16.70106 -16.70074 0.0000 0.0000 0.0000 0.0000 161 0.00030 0.0 370.3 -17.20604 -16.70631 -16.70103 -16.70073 0.0000 0.0000 0.0000 0.0000 162 0.00029 0.0 357.7 -17.20583 -16.70610 -16.70100 -16.70071 0.0000 0.0000 0.0000 0.0000 163 0.00027 0.0 342.0 -17.20559 -17.30586 -17.30098 -17.30071 0.0000 0.0000 0.0000 0.0000 164 0.00029 0.0 323.4 -17.20529 -17.30553 -17.30092 -17.30063 0.0000 0.0000 0.0000 0.0000 165 0.00033 0.0 302.2 -17.20494 -17.30518 -17.30088 -17.30054 0.0000 0.0000 0.0000 0.0000 166 0.00037 0.0 278.8 -17.20453 -16.70478 -16.70081 -16.70043 0.0000 0.0000 0.0000 0.0000 167 0.00026 0.0 253.7 -17.20412 -16.70439 -16.70078 -16.70052 0.0000 0.0000 0.0000 0.0000 168 0.00018 0.0 227.5 -17.20371 -16.70398 -16.70074 -16.70055 0.0000 0.0000 0.0000 0.0000 169 0.00015 0.0 200.6 -17.20330 -16.70356 -16.70070 -16.70055 0.0000 0.0000 0.0000 0.0000 170 0.00015 0.0 173.9 -17.20288 -16.70314 -16.70066 -16.70051 0.0000 0.0000 0.0000 0.0000 171 0.00018 0.0 147.9 -17.20249 -17.30274 -17.30063 -17.30045 0.0000 0.0000 0.0000 0.0000 172 0.00012 0.0 123.5 -17.20209 -16.70232 -16.70056 -16.70043 0.0000 0.0000 0.0000 0.0000 173 0.00015 0.0 101.4 -17.20175 -16.70200 -16.70055 -16.70040 0.0000 0.0000 0.0000 0.0000 174 0.00015 0.0 82.2 -17.20145 -16.90170 -16.90053 -16.90038 0.0000 0.0000 0.0000 0.0000 175 0.00013 0.0 66.6 -17.20120 -16.90145 -16.90050 -16.90037 0.0000 0.0000 0.0000 0.0000 176 0.00012 0.0 54.8 -17.20099 -16.90124 -16.90046 -16.90034 0.0000 0.0000 0.0000 0.0000 177 0.00011 0.0 47.2 -17.20085 -16.90110 -16.90043 -16.90032 0.0000 0.0000 0.0000 0.0000 178 0.00008 0.0 43.9 -17.20078 -16.90104 -16.90041 -16.90033 0.0000 0.0000 0.0000 0.0000 179 0.00007 0.0 44.7 -17.20079 -16.90104 -16.90041 -16.90034 0.0000 0.0000 0.0000 0.0000 180 0.00005 0.0 49.6 -17.20085 -16.90111 -16.90040 -16.90035 0.0000 0.0000 0.0000 0.0000 181 0.00005 0.0 58.4 -17.20099 -17.50124 -17.50041 -17.50036 0.0000 0.0000 0.0000 0.0000 182 0.00011 0.0 71.0 -17.20116 -17.50140 -17.50039 -17.50028 0.0000 0.0000 0.0000 0.0000 183 0.00026 0.0 86.8 -17.20139 -16.70163 -16.70039 -16.70013 0.0000 0.0000 0.0000 0.0000 184 0.00027 0.0 105.6 -17.20159 -16.90185 -16.90035 -16.90008 0.0000 0.0000 0.0000 0.0000 185 0.00023 0.0 126.6 -17.20190 -16.70216 -16.70036 -16.70013 0.0000 0.0000 0.0000 0.0000 186 0.00018 0.0 149.4 -17.20222 -16.70249 -16.70036 -16.70019 0.0000 0.0000 0.0000 0.0000 187 0.00015 0.0 173.1 -17.20257 -16.70284 -16.70038 -16.70023 0.0000 0.0000 0.0000 0.0000 188 0.00015 0.0 197.0 -17.20294 -16.70321 -16.70040 -16.70025 0.0000 0.0000 0.0000 0.0000 189 0.00017 0.0 220.5 -17.20331 -16.70358 -16.70043 -16.70026 0.0000 0.0000 0.0000 0.0000 190 0.00020 0.0 243.0 -17.20367 -17.30393 -17.30047 -17.30028 0.0000 0.0000 0.0000 0.0000 191 0.00019 0.0 263.9 -17.20399 -17.30422 -17.30046 -17.30027 0.0000 0.0000 0.0000 0.0000 192 0.00022 0.0 282.8 -17.20426 -16.70450 -16.70047 -16.70025 0.0000 0.0000 0.0000 0.0000 193 0.00022 0.0 299.3 -17.20451 -16.70478 -16.70051 -16.70029 0.0000 0.0000 0.0000 0.0000 194 0.00024 0.0 313.0 -17.20473 -16.70500 -16.70054 -16.70030 0.0000 0.0000 0.0000 0.0000 195 0.00026 0.0 323.7 -17.20490 -16.70517 -16.70055 -16.70030 0.0000 0.0000 0.0000 0.0000 196 0.00026 0.0 331.1 -17.20501 -16.70528 -16.70056 -16.70030 0.0000 0.0000 0.0000 0.0000 197 0.00026 0.0 335.0 -17.20507 -16.70533 -16.70056 -16.70030 0.0000 0.0000 0.0000 0.0000 198 0.00026 0.0 335.4 -17.20508 -16.70535 -16.70057 -16.70030 0.0000 0.0000 0.0000 0.0000 199 0.00026 0.0 332.3 -17.20506 -17.30532 -17.30059 -17.30032 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 200 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20497 Hartree a.u. kinetic energy = 7.80633 Hartree a.u. electrostatic energy = -23.59375 Hartree a.u. esr = 0.00118 Hartree a.u. eself = 30.31961 Hartree a.u. pseudopotential energy = -1.74434 Hartree a.u. n-l pseudopotential energy = 4.51370 Hartree a.u. exchange-correlation energy = -4.18692 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.90 -13.13 -8.82 -7.07 Allocated memory (kb) = 94136 CELL_PARAMETERS 20.00000000 0.00000000 0.00000000 0.00000000 20.00000000 0.00000000 0.00000000 0.00000000 20.00000000 System Density [g/cm^3] : 0.0280 Center of mass square displacement (a.u.): 0.000000 ATOMIC_POSITIONS O 0.999211E+01 0.999216E+01 0.100000E+02 H 0.118289E+02 0.964196E+01 0.100024E+02 H 0.964243E+01 0.118290E+02 0.999756E+01 ATOMIC_VELOCITIES O -0.823051E-04 -0.822689E-04 0.643465E-06 H 0.103717E-02 -0.379607E-03 0.377913E-05 H -0.378725E-03 0.103776E-02 -0.892684E-05 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 41.58 0.0001 2 468.23 0.0104 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 200 0.00025 0.0 326.0 -17.20497 -17.30521 -17.30057 -17.30032 0.0000 0.0000 0.0000 0.0000 writing restart file: /h2o_mol_51.save restart file written in 0.089 sec. Averaged Physical Quantities accomulated this run ekinc : 0.00018 0.00018 (AU) ekin : 7.82053 7.82053 (AU) epot : -29.53578 -29.53578 (AU) total energy : -17.20285 -17.20285 (AU) temperature : 201.05257 201.05257 (K ) enthalpy : -16.90456 -16.90456 (AU) econs : -16.90170 -16.90170 (AU) pressure : 0.00000 0.00000 (Gpa) volume : 8000.00000 8000.00000 (AU) initialize : 1.06s CPU total_time : 106.08s CPU ( 200 calls, 0.530 s avg) formf : 0.05s CPU rhoofr : 19.19s CPU ( 200 calls, 0.096 s avg) vofrho : 64.63s CPU ( 200 calls, 0.323 s avg) dforce : 10.87s CPU ( 400 calls, 0.027 s avg) calphi : 0.19s CPU ( 200 calls, 0.001 s avg) ortho : 0.62s CPU ( 200 calls, 0.003 s avg) ortho_iter : 0.01s CPU ( 200 calls, 0.000 s avg) rsg : 0.00s CPU ( 200 calls, 0.000 s avg) rhoset : 0.05s CPU ( 200 calls, 0.000 s avg) updatc : 0.03s CPU ( 200 calls, 0.000 s avg) newd : 0.24s CPU ( 200 calls, 0.001 s avg) calbec : 0.00s CPU ( 201 calls, 0.000 s avg) prefor : 0.30s CPU ( 401 calls, 0.001 s avg) strucf : 0.54s CPU ( 201 calls, 0.003 s avg) nlfl : 0.00s CPU ( 200 calls, 0.000 s avg) nlfq : 0.67s CPU ( 200 calls, 0.003 s avg) rhov : 4.55s CPU ( 200 calls, 0.023 s avg) nlsm1 : 0.47s CPU ( 601 calls, 0.001 s avg) nlsm2 : 0.67s CPU ( 200 calls, 0.003 s avg) fft : 29.04s CPU ( 1800 calls, 0.016 s avg) ffts : 6.48s CPU ( 400 calls, 0.016 s avg) fftw : 12.11s CPU ( 1200 calls, 0.010 s avg) fftb : 0.41s CPU ( 31914 calls, 0.000 s avg) CP : 1m48.85s CPU time, 1m58.66s wall time This run was terminated on: 16:13:10 28Apr2008 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/autopilot-example/0000755000175000017500000000000012341373043017221 5ustar mbambaespresso-5.1/CPV/examples/autopilot-example/run_example_water0000755000175000017500000001207512341373026022676 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example (a water molecule) shows how to use cp.x to perform" $ECHO "molecular dynamics with variable parameters using AUTOPILOT." $ECHO "The variables are changed without stopping and starting cp.x." $ECHO "For example the dt value can be changed from 3 to 5 to 10 to 15" $ECHO "at predefined time steps. For other advanced options like STRING" $ECHO "(send a signal to a running cp.x process to change some parameter" $ECHO "on the fly) or Pause please consult the AUTOPILOT documentation." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="H_US.van O_US.van" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables CP_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $CP_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/* $ECHO " done" # molecular dynamics calculation cat > water.autopilot.in << EOF &CONTROL calculation='cp', title="WATER", restart_mode='from_scratch', nstep=10000, iprint=30, isave=30, tstress=.FALSE., tprnfor=.FALSE., dt = 3., ndr=90, ndw=91, ekin_conv_thr=1e-09 pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &SYSTEM ibrav = 1, celldm(1) = 10., nat =3, ntyp =2, nbnd =4, ecutwfc =25.0, ecutrho =200.0, nr1b=20, nr2b=20, nr3b=20, occupations = 'fixed', nspin=1, ecfixed =25.0 / &ELECTRONS emass = 700., emass_cutoff = 3., orthogonalization = 'ortho', electron_maxstep = 200, ortho_eps = 1.e-10, ortho_max = 250, electron_dynamics= 'damp', electron_damping =0.15, startingwfc='random' ampre=0.02 / &IONS ion_dynamics = 'none', ion_radius = 1.0, ion_damping = 0.0, ion_positions = 'default', ion_temperature = 'not_controlled', tempw=800, fnosep=37.22179 / AUTOPILOT on_step = 31 : dt=5 on_step = 61 : dt=10 on_step = 91 : dt=15 on_step = 91 : iprint=100 on_step = 91 : isave=100 on_step = 191 : ion_dynamics = 'damp' on_step = 191 : electron_damping =0.00 on_step = 191 : isave=500 on_step = 191 : isave=500 on_step = 691 : ion_temperature = 'nose' on_step = 691 : tempw=150 on_step = 1191 : tempw=300 on_step = 1691 : tempw=500 on_step = 2191 : iprint=50 on_step = 2191 : isave=50 on_step = 2191 : electron_damping = 0.10 on_step = 2191 : ion_dynamics = 'none' on_step = 2191 : ion_temperature ='not_controlled' on_step = 2241 : iprint=200 on_step = 2241 : isave=200 on_step = 2241 : electron_damping =0.00 on_step = 2241 : ion_dynamics = 'damp' on_step = 2441 : iprint=900 on_step = 2441 : isave=500 on_step = 2441 : electron_damping =0.15 on_step = 2441 : ion_temperature = 'nose' on_step = 2441 : tempw=800 on_step = 3341 : iprint=200 on_step = 3341 : isave=200 on_step = 3341 : electron_damping =0.00 on_step = 3541 : iprint=50 on_step = 3541 : isave=50 on_step = 3541 : ion_dynamics = 'none' on_step = 3541 : ion_temperature = 'not_controlled' on_step = 3591 : iprint=2000 on_step = 3591 : isave=2000 on_step = 3591 : ion_dynamics = 'damp' on_step = 3591 : ion_temperature = 'nose' on_step = 6591 : iprint=10000 on_step = 6591 : isave=500 on_step = 6591 : electron_damping =0.00 on_step = 6591 : ion_temperature = 'nose' ENDRULES ATOMIC_SPECIES H 1.00794000 H_US.van O 15.99940000 O_US.van ATOMIC_POSITIONS {bohr} H 0.57164238 0.94335166 0.96565043 H -0.24339682 -0.43501513 -1.37874473 O -0.32824556 -0.50852550 0.41309430 EOF $ECHO " running CP calculation with AUTOPILOT option...\c" $CP_COMMAND < water.autopilot.in > water.autopilot.out $ECHO " done" exit 0 espresso-5.1/CPV/examples/autopilot-example/reference/0000755000175000017500000000000012341373043021157 5ustar mbambaespresso-5.1/CPV/examples/autopilot-example/reference/water.autopilot.out0000644000175000017500000350717312341373026025072 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 3.0 - Mon Jan 31 11:35:49 CET 2005 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 18:26:24 13Jan2006 Serial Build card_autopilot 1: input_line AUTOPILOT card_autopilot 2: input_line ON_STEP = 31 : DT=5 about to add_rule: input_line ON_STEP = 31 : DT=5 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 1 DT 5 RULE_DT 5.00000000000000 EVENT 1 Autopilot: Rule Assigned 1 n_rules= 1 card_autopilot 1: input_line ON_STEP = 31 : DT=5 card_autopilot 2: input_line ON_STEP = 61 : DT=10 about to add_rule: input_line ON_STEP = 61 : DT=10 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 2 DT 10 RULE_DT 10.0000000000000 EVENT 2 Autopilot: Rule Assigned 2 n_rules= 2 card_autopilot 1: input_line ON_STEP = 61 : DT=10 card_autopilot 2: input_line ON_STEP = 91 : DT=15 about to add_rule: input_line ON_STEP = 91 : DT=15 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 3 DT 15 RULE_DT 15.0000000000000 EVENT 3 Autopilot: Rule Assigned 3 n_rules= 3 card_autopilot 1: input_line ON_STEP = 91 : DT=15 card_autopilot 2: input_line ON_STEP = 91 : IPRINT=100 about to add_rule: input_line ON_STEP = 91 : IPRINT=100 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 3 IPRINT 100 Autopilot: Rule Assigned 4 n_rules= 4 card_autopilot 1: input_line ON_STEP = 91 : IPRINT=100 card_autopilot 2: input_line ON_STEP = 91 : ISAVE=100 about to add_rule: input_line ON_STEP = 91 : ISAVE=100 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 3 ISAVE 100 Autopilot: Rule Assigned 5 n_rules= 5 card_autopilot 1: input_line ON_STEP = 91 : ISAVE=100 card_autopilot 2: input_line ON_STEP = 191 : ION_DYNAMICS = 'DAMP' about to add_rule: input_line ON_STEP = 191 : ION_DYNAMICS = 'DAMP' ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 4 ION_DYNAMICS DAMP Autopilot: Rule Assigned 6 n_rules= 6 card_autopilot 1: input_line ON_STEP = 191 : ION_DYNAMICS = 'DAMP' card_autopilot 2: input_line ON_STEP = 191 : ELECTRON_DAMPING =0.00 about to add_rule: input_line ON_STEP = 191 : ELECTRON_DAMPING =0.00 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 4 ELECTRON_DAMPING 0.00 Autopilot: Rule Assigned 7 n_rules= 7 card_autopilot 1: input_line ON_STEP = 191 : ELECTRON_DAMPING =0.00 card_autopilot 2: input_line ON_STEP = 191 : ISAVE=500 about to add_rule: input_line ON_STEP = 191 : ISAVE=500 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 4 ISAVE 500 Autopilot: Rule Assigned 8 n_rules= 8 card_autopilot 1: input_line ON_STEP = 191 : ISAVE=500 card_autopilot 2: input_line ON_STEP = 191 : ISAVE=500 about to add_rule: input_line ON_STEP = 191 : ISAVE=500 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 4 ISAVE 500 Autopilot: Rule Assigned 9 n_rules= 9 card_autopilot 1: input_line ON_STEP = 191 : ISAVE=500 card_autopilot 2: input_line ON_STEP = 691 : ION_TEMPERATURE = 'NOSE' about to add_rule: input_line ON_STEP = 691 : ION_TEMPERATURE = 'NOSE' ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 5 ION_TEMPERATURE NOSE Autopilot: Rule Assigned 10 n_rules= 10 card_autopilot 1: input_line ON_STEP = 691 : ION_TEMPERATURE = 'NOSE' card_autopilot 2: input_line ON_STEP = 691 : TEMPW=150 about to add_rule: input_line ON_STEP = 691 : TEMPW=150 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 5 TEMPW 150 Autopilot: Rule Assigned 11 n_rules= 11 card_autopilot 1: input_line ON_STEP = 691 : TEMPW=150 card_autopilot 2: input_line ON_STEP = 1191 : TEMPW=300 about to add_rule: input_line ON_STEP = 1191 : TEMPW=300 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 6 TEMPW 300 Autopilot: Rule Assigned 12 n_rules= 12 card_autopilot 1: input_line ON_STEP = 1191 : TEMPW=300 card_autopilot 2: input_line ON_STEP = 1691 : TEMPW=500 about to add_rule: input_line ON_STEP = 1691 : TEMPW=500 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 7 TEMPW 500 Autopilot: Rule Assigned 13 n_rules= 13 card_autopilot 1: input_line ON_STEP = 1691 : TEMPW=500 card_autopilot 2: input_line ON_STEP = 2191 : IPRINT=50 about to add_rule: input_line ON_STEP = 2191 : IPRINT=50 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 8 IPRINT 50 Autopilot: Rule Assigned 14 n_rules= 14 card_autopilot 1: input_line ON_STEP = 2191 : IPRINT=50 card_autopilot 2: input_line ON_STEP = 2191 : ISAVE=50 about to add_rule: input_line ON_STEP = 2191 : ISAVE=50 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 8 ISAVE 50 Autopilot: Rule Assigned 15 n_rules= 15 card_autopilot 1: input_line ON_STEP = 2191 : ISAVE=50 card_autopilot 2: input_line ON_STEP = 2191 : ELECTRON_DAMPING = 0.10 about to add_rule: input_line ON_STEP = 2191 : ELECTRON_DAMPING = 0.10 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 8 ELECTRON_DAMPING 0.10 Autopilot: Rule Assigned 16 n_rules= 16 card_autopilot 1: input_line ON_STEP = 2191 : ELECTRON_DAMPING = 0.10 card_autopilot 2: input_line ON_STEP = 2191 : ION_DYNAMICS = 'NONE' about to add_rule: input_line ON_STEP = 2191 : ION_DYNAMICS = 'NONE' ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 8 ION_DYNAMICS NONE Autopilot: Rule Assigned 17 n_rules= 17 card_autopilot 1: input_line ON_STEP = 2191 : ION_DYNAMICS = 'NONE' card_autopilot 2: input_line ON_STEP = 2191 : ION_TEMPERATURE ='NOT_CONTROLLED' about to add_rule: input_line ON_STEP = 2191 : ION_TEMPERATURE ='NOT_CONTROLLED' ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 8 ION_TEMPERATURE NOT_CONTROLLED Autopilot: Rule Assigned 18 n_rules= 18 card_autopilot 1: input_line ON_STEP = 2191 : ION_TEMPERATURE ='NOT_CONTROLLED' card_autopilot 2: input_line ON_STEP = 2241 : IPRINT=200 about to add_rule: input_line ON_STEP = 2241 : IPRINT=200 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 9 IPRINT 200 Autopilot: Rule Assigned 19 n_rules= 19 card_autopilot 1: input_line ON_STEP = 2241 : IPRINT=200 card_autopilot 2: input_line ON_STEP = 2241 : ISAVE=200 about to add_rule: input_line ON_STEP = 2241 : ISAVE=200 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 9 ISAVE 200 Autopilot: Rule Assigned 20 n_rules= 20 card_autopilot 1: input_line ON_STEP = 2241 : ISAVE=200 card_autopilot 2: input_line ON_STEP = 2241 : ELECTRON_DAMPING =0.00 about to add_rule: input_line ON_STEP = 2241 : ELECTRON_DAMPING =0.00 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 9 ELECTRON_DAMPING 0.00 Autopilot: Rule Assigned 21 n_rules= 21 card_autopilot 1: input_line ON_STEP = 2241 : ELECTRON_DAMPING =0.00 card_autopilot 2: input_line ON_STEP = 2241 : ION_DYNAMICS = 'DAMP' about to add_rule: input_line ON_STEP = 2241 : ION_DYNAMICS = 'DAMP' ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 9 ION_DYNAMICS DAMP Autopilot: Rule Assigned 22 n_rules= 22 card_autopilot 1: input_line ON_STEP = 2241 : ION_DYNAMICS = 'DAMP' card_autopilot 2: input_line ON_STEP = 2441 : IPRINT=900 about to add_rule: input_line ON_STEP = 2441 : IPRINT=900 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 10 IPRINT 900 Autopilot: Rule Assigned 23 n_rules= 23 card_autopilot 1: input_line ON_STEP = 2441 : IPRINT=900 card_autopilot 2: input_line ON_STEP = 2441 : ISAVE=500 about to add_rule: input_line ON_STEP = 2441 : ISAVE=500 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 10 ISAVE 500 Autopilot: Rule Assigned 24 n_rules= 24 card_autopilot 1: input_line ON_STEP = 2441 : ISAVE=500 card_autopilot 2: input_line ON_STEP = 2441 : ELECTRON_DAMPING =0.15 about to add_rule: input_line ON_STEP = 2441 : ELECTRON_DAMPING =0.15 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 10 ELECTRON_DAMPING 0.15 Autopilot: Rule Assigned 25 n_rules= 25 card_autopilot 1: input_line ON_STEP = 2441 : ELECTRON_DAMPING =0.15 card_autopilot 2: input_line ON_STEP = 2441 : ION_TEMPERATURE = 'NOSE' about to add_rule: input_line ON_STEP = 2441 : ION_TEMPERATURE = 'NOSE' ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 10 ION_TEMPERATURE NOSE Autopilot: Rule Assigned 26 n_rules= 26 card_autopilot 1: input_line ON_STEP = 2441 : ION_TEMPERATURE = 'NOSE' card_autopilot 2: input_line ON_STEP = 2441 : TEMPW=800 about to add_rule: input_line ON_STEP = 2441 : TEMPW=800 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 10 TEMPW 800 Autopilot: Rule Assigned 27 n_rules= 27 card_autopilot 1: input_line ON_STEP = 2441 : TEMPW=800 card_autopilot 2: input_line ON_STEP = 3341 : IPRINT=200 about to add_rule: input_line ON_STEP = 3341 : IPRINT=200 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 11 IPRINT 200 Autopilot: Rule Assigned 28 n_rules= 28 card_autopilot 1: input_line ON_STEP = 3341 : IPRINT=200 card_autopilot 2: input_line ON_STEP = 3341 : ISAVE=200 about to add_rule: input_line ON_STEP = 3341 : ISAVE=200 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 11 ISAVE 200 Autopilot: Rule Assigned 29 n_rules= 29 card_autopilot 1: input_line ON_STEP = 3341 : ISAVE=200 card_autopilot 2: input_line ON_STEP = 3341 : ELECTRON_DAMPING =0.00 about to add_rule: input_line ON_STEP = 3341 : ELECTRON_DAMPING =0.00 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 11 ELECTRON_DAMPING 0.00 Autopilot: Rule Assigned 30 n_rules= 30 card_autopilot 1: input_line ON_STEP = 3341 : ELECTRON_DAMPING =0.00 card_autopilot 2: input_line ON_STEP = 3541 : IPRINT=50 about to add_rule: input_line ON_STEP = 3541 : IPRINT=50 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 12 IPRINT 50 Autopilot: Rule Assigned 31 n_rules= 31 card_autopilot 1: input_line ON_STEP = 3541 : IPRINT=50 card_autopilot 2: input_line ON_STEP = 3541 : ISAVE=50 about to add_rule: input_line ON_STEP = 3541 : ISAVE=50 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 12 ISAVE 50 Autopilot: Rule Assigned 32 n_rules= 32 card_autopilot 1: input_line ON_STEP = 3541 : ISAVE=50 card_autopilot 2: input_line ON_STEP = 3541 : ION_DYNAMICS = 'NONE' about to add_rule: input_line ON_STEP = 3541 : ION_DYNAMICS = 'NONE' ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 12 ION_DYNAMICS NONE Autopilot: Rule Assigned 33 n_rules= 33 card_autopilot 1: input_line ON_STEP = 3541 : ION_DYNAMICS = 'NONE' card_autopilot 2: input_line ON_STEP = 3541 : ION_TEMPERATURE = 'NOT_CONTROLLED' about to add_rule: input_line ON_STEP = 3541 : ION_TEMPERATURE = 'NOT_CONTROLLED' ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 12 ION_TEMPERATURE NOT_CONTROLLED Autopilot: Rule Assigned 34 n_rules= 34 card_autopilot 1: input_line ON_STEP = 3541 : ION_TEMPERATURE = 'NOT_CONTROLLED' card_autopilot 2: input_line ON_STEP = 3591 : IPRINT=2000 about to add_rule: input_line ON_STEP = 3591 : IPRINT=2000 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 13 IPRINT 2000 Autopilot: Rule Assigned 35 n_rules= 35 card_autopilot 1: input_line ON_STEP = 3591 : IPRINT=2000 card_autopilot 2: input_line ON_STEP = 3591 : ISAVE=2000 about to add_rule: input_line ON_STEP = 3591 : ISAVE=2000 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 13 ISAVE 2000 Autopilot: Rule Assigned 36 n_rules= 36 card_autopilot 1: input_line ON_STEP = 3591 : ISAVE=2000 card_autopilot 2: input_line ON_STEP = 3591 : ION_DYNAMICS = 'DAMP' about to add_rule: input_line ON_STEP = 3591 : ION_DYNAMICS = 'DAMP' ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 13 ION_DYNAMICS DAMP Autopilot: Rule Assigned 37 n_rules= 37 card_autopilot 1: input_line ON_STEP = 3591 : ION_DYNAMICS = 'DAMP' card_autopilot 2: input_line ON_STEP = 3591 : ION_TEMPERATURE = 'NOSE' about to add_rule: input_line ON_STEP = 3591 : ION_TEMPERATURE = 'NOSE' ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 13 ION_TEMPERATURE NOSE Autopilot: Rule Assigned 38 n_rules= 38 card_autopilot 1: input_line ON_STEP = 3591 : ION_TEMPERATURE = 'NOSE' card_autopilot 2: input_line ON_STEP = 6591 : IPRINT=10000 about to add_rule: input_line ON_STEP = 6591 : IPRINT=10000 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 14 IPRINT 10000 Autopilot: Rule Assigned 39 n_rules= 39 card_autopilot 1: input_line ON_STEP = 6591 : IPRINT=10000 card_autopilot 2: input_line ON_STEP = 6591 : ISAVE=500 about to add_rule: input_line ON_STEP = 6591 : ISAVE=500 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 14 ISAVE 500 Autopilot: Rule Assigned 40 n_rules= 40 card_autopilot 1: input_line ON_STEP = 6591 : ISAVE=500 card_autopilot 2: input_line ON_STEP = 6591 : ELECTRON_DAMPING =0.00 about to add_rule: input_line ON_STEP = 6591 : ELECTRON_DAMPING =0.00 ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 14 ELECTRON_DAMPING 0.00 Autopilot: Rule Assigned 41 n_rules= 41 card_autopilot 1: input_line ON_STEP = 6591 : ELECTRON_DAMPING =0.00 card_autopilot 2: input_line ON_STEP = 6591 : ION_TEMPERATURE = 'NOSE' about to add_rule: input_line ON_STEP = 6591 : ION_TEMPERATURE = 'NOSE' ADD_RULE: pilot_type AUTO ADD_RULE: POWER STEERING ASSIGNING RULE: event var value 14 ION_TEMPERATURE NOSE Autopilot: Rule Assigned 42 n_rules= 42 card_autopilot 1: input_line ON_STEP = 6591 : ION_TEMPERATURE = 'NOSE' card_autopilot 2: input_line ENDRULES Job Title: WATER Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /home/giannozz/espresso/pseudo/H_US.van file type is 1: Vanderbilt US PP ============================================================ | pseudopotential report for atomic species: 1 | | pseudo potential version 7 3 2 | ------------------------------------------------------------ | hydrogen PBE exchange-corr | | z = 1. zv( 1) = 1. exfact = 5.00000 | | ifpcor = 0 atomic energy = -0.91772 Ry | | index orbital occupation energy | | 1 100 1.00 -0.48 | | rinner = 0.5000 | | new generation scheme: | | nbeta = 1 kkbeta = 271 rcloc = 0.6000 | | ibeta l epsilon rcut | | 1 0 -0.48 0.80 | ============================================================ Reading pseudopotential for specie # 2 from file : /home/giannozz/espresso/pseudo/O_US.van file type is 1: Vanderbilt US PP ============================================================ | pseudopotential report for atomic species: 2 | | pseudo potential version 7 3 2 | ------------------------------------------------------------ | oxygen PBE exchange-corr | | z = 8. zv( 2) = 6. exfact = 5.00000 | | ifpcor = 0 atomic energy = -31.58351 Ry | | index orbital occupation energy | | 1 200 2.00 -1.76 | | 2 210 4.00 -0.66 | | rinner = 0.7000 0.7000 0.7000 | | new generation scheme: | | nbeta = 4 kkbeta = 519 rcloc = 1.0000 | | ibeta l epsilon rcut | | 1 0 -1.76 1.20 | | 2 0 -0.66 1.20 | | 3 1 -1.76 1.20 | | 4 1 -0.66 1.20 | ============================================================ Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 10000 Print out every 30 MD Steps Reads from unit = 90 Writes to unit = 91 MD Simulation time step = 3.00 Electronic fictitious mass (emass) = 700.00 emass cut-off = 3.00 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 2495.53 [AU] ibrav = 1 alat = 10.00000000 a1 = 10.00000000 0.00000000 0.00000000 a2 = 0.00000000 10.00000000 0.00000000 a3 = 0.00000000 0.00000000 10.00000000 b1 = 0.10000000 0.00000000 0.00000000 b2 = 0.00000000 0.10000000 0.00000000 b3 = 0.00000000 0.00000000 0.10000000 omega = 1000.00000000 Energy Cut-offs --------------- Ecutwfc = 25.0 Ryd., Ecutrho = 200.0 Ryd., Ecuts = 100.0 Ryd. Gcutwfc = 8.0 , Gcutrho = 22.5 Gcuts = 15.9 NOTA BENE: refg, mmx = 0.050000 4800 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.10E-09, max = 250 verlet algorithm for electron dynamics with friction frice = 0.1500 , grease = 1.0000 Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: PERDEW AND WANG Using Generalized Gradient Corrections with Exchange functional: PERDEW BURKE ERNZERHOF Correlation functional: PERDEW BURKE ERNZERHOF Exchange-correlation = PBE (1434) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 2 mass = 1837.36 (a.u.), 1.01 (amu) rcmax = 1.00 (a.u.) 0.571642 0.943352 0.965650 -0.243397 -0.435015 -1.378745 Species 2 atoms = 1 mass = 29165.15 (a.u.), 16.00 (amu) rcmax = 0.50 (a.u.) -0.328246 -0.508525 0.413094 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 10.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 10.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 10.0000 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 799, nstw = 97, nsts = 397 PEs n.st n.stw n.sts n.g n.gw n.gs 1 1597 193 793 47833 2103 16879 0 1597 193 793 47833 2103 16879 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 45 45 45 45 45 45 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 45 45 45 Local number of cell to store the grid ( nnrx ) = 91125 Number of x-y planes for each processors: nr3l = 45 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 32 32 32 32 32 32 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 32 32 32 Local number of cell to store the grid ( nnrx ) = 32768 Number of x-y planes for each processors: nr3sl = 32 Small Box Real Mesh ------------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 20 20 20 20 20 20 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 20 20 20 Local number of cell to store the grid ( nnrx ) = 8000 unit vectors of box grid cell in real space: in reciprocal space: 4.4444 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.4444 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 4.4444 0.0000 0.0000 1.0000 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 23917 23917 23917 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 8440 8440 8440 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 1052 1052 1052 Small box Mesh ngb = 2085 not distributed to processors System geometry initialization ------------------------------ Scaled atomic positions from standard input Species 1 atoms = 2 H 0.057164 0.094335 0.096565 H -0.024340 -0.043502 -0.137874 Species 2 atoms = 1 O -0.032825 -0.050853 0.041309 Pseudopotentials initialization ------------------------------- nlinit nh(is), ngb, is, kkbeta, lmaxq = 1 2085 1 271 1 qqq 9.4958 nlinit nh(is), ngb, is, kkbeta, lmaxq = 8 2085 2 519 3 qqq -0.2814 -0.1752 0.0000 0.0000 -0.1752 -0.1519 0.0000 0.0000 0.0000 0.0000 3.4543 -1.8676 0.0000 0.0000 -1.8676 0.9140 Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 3.3279 Specie: 2 1 indv= 1 ang. mom= 0 2 indv= 2 ang. mom= 0 3 indv= 3 ang. mom= 1 4 indv= 3 ang. mom= 1 5 indv= 3 ang. mom= 1 6 indv= 4 ang. mom= 1 7 indv= 4 ang. mom= 1 8 indv= 4 ang. mom= 1 dion 1.1855 -0.0482 0.0000 0.0000 -0.0482 -0.1194 0.0000 0.0000 0.0000 0.0000 24.3757 -18.2972 0.0000 0.0000 -18.2972 13.6557 Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian formf: eself= 29.52173 formf: vps(g=0)= -0.0029231 rhops(g=0)= -0.0010000 formf: sum_g vps(g)= -1.3050001 sum_g rhops(g)= -0.0902936 formf: vps(g=0)= -0.0018602 rhops(g=0)= -0.0060000 formf: sum_g vps(g)= -0.4498604 sum_g rhops(g)= -4.2878454 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 0.64044 0.0 0.0 14.62176 14.62176 14.62176 15.26221 0.0000 0.0000 0.0000 0.0000 2 1.33276 0.0 0.0 13.58654 13.58654 13.58654 14.91930 0.0000 0.0000 0.0000 0.0000 3 1.99579 0.0 0.0 12.09664 12.09664 12.09664 14.09243 0.0000 0.0000 0.0000 0.0000 4 2.54070 0.0 0.0 10.29525 10.29525 10.29525 12.83595 0.0000 0.0000 0.0000 0.0000 5 2.93551 0.0 0.0 8.30817 8.30817 8.30817 11.24368 0.0000 0.0000 0.0000 0.0000 6 3.18725 0.0 0.0 6.23437 6.23437 6.23437 9.42162 0.0000 0.0000 0.0000 0.0000 7 3.32658 0.0 0.0 4.13793 4.13793 4.13793 7.46451 0.0000 0.0000 0.0000 0.0000 8 3.39089 0.0 0.0 2.05010 2.05010 2.05010 5.44099 0.0000 0.0000 0.0000 0.0000 9 3.40913 0.0 0.0 -0.01836 -0.01836 -0.01836 3.39078 0.0000 0.0000 0.0000 0.0000 10 3.39280 0.0 0.0 -2.05995 -2.05995 -2.05995 1.33285 0.0000 0.0000 0.0000 0.0000 11 3.33503 0.0 0.0 -4.05519 -4.05519 -4.05519 -0.72016 0.0000 0.0000 0.0000 0.0000 12 3.21842 0.0 0.0 -5.96558 -5.96558 -5.96558 -2.74715 0.0000 0.0000 0.0000 0.0000 13 3.02808 0.0 0.0 -7.73846 -7.73846 -7.73846 -4.71039 0.0000 0.0000 0.0000 0.0000 14 2.76311 0.0 0.0 -9.32149 -9.32149 -9.32149 -6.55838 0.0000 0.0000 0.0000 0.0000 15 2.44046 0.0 0.0 -10.67884 -10.67884 -10.67884 -8.23838 0.0000 0.0000 0.0000 0.0000 16 2.08944 0.0 0.0 -11.80046 -11.80046 -11.80046 -9.71102 0.0000 0.0000 0.0000 0.0000 17 1.74158 0.0 0.0 -12.70088 -12.70088 -12.70088 -10.95930 0.0000 0.0000 0.0000 0.0000 18 1.42197 0.0 0.0 -13.41062 -13.41062 -13.41062 -11.98866 0.0000 0.0000 0.0000 0.0000 19 1.14531 0.0 0.0 -13.96614 -13.96614 -13.96614 -12.82084 0.0000 0.0000 0.0000 0.0000 20 0.91652 0.0 0.0 -14.40233 -14.40233 -14.40233 -13.48581 0.0000 0.0000 0.0000 0.0000 21 0.73354 0.0 0.0 -14.74865 -14.74865 -14.74865 -14.01510 0.0000 0.0000 0.0000 0.0000 22 0.59051 0.0 0.0 -15.02811 -15.02811 -15.02811 -14.43761 0.0000 0.0000 0.0000 0.0000 23 0.48019 0.0 0.0 -15.25785 -15.25785 -15.25785 -14.77766 0.0000 0.0000 0.0000 0.0000 24 0.39561 0.0 0.0 -15.45027 -15.45027 -15.45027 -15.05466 0.0000 0.0000 0.0000 0.0000 25 0.33073 0.0 0.0 -15.61430 -15.61430 -15.61430 -15.28357 0.0000 0.0000 0.0000 0.0000 26 0.28069 0.0 0.0 -15.75634 -15.75634 -15.75634 -15.47564 0.0000 0.0000 0.0000 0.0000 27 0.24175 0.0 0.0 -15.88106 -15.88106 -15.88106 -15.63931 0.0000 0.0000 0.0000 0.0000 28 0.21109 0.0 0.0 -15.99190 -15.99190 -15.99190 -15.78081 0.0000 0.0000 0.0000 0.0000 29 0.18661 0.0 0.0 -16.09143 -16.09143 -16.09143 -15.90481 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 30 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -16.18155 Hartree a.u. kinetic energy = 8.51609 Hartree a.u. electrostatic energy = -23.03200 Hartree a.u. esr = 0.15634 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.38661 Hartree a.u. n-l pseudopotential energy = 4.85180 Hartree a.u. exchange-correlation energy = -4.13084 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -27.86 -14.58 -9.05 -1.14 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.571642E+00 0.943352E+00 0.965650E+00 H -0.243397E+00 -0.435015E+00 -0.137874E+01 O -0.328246E+00 -0.508525E+00 0.413094E+00 ATOMIC_VELOCITIES H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 30 0.16677 0.0 0.0 -16.18155 -16.18155 -16.18155 -16.01478 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.890 sec. in while: event_index 1 ======================================== EMPLOY RULES: CURRENT_NFI= 31 event_index= 1 event_step== 31 ======================================== RULE EVENT: dt 5.00000000000000 in while after: event_index 2 31 0.15040 0.0 0.0 -16.26375 -16.26375 -16.26375 -16.11334 0.0000 0.0000 0.0000 0.0000 32 0.13667 0.0 0.0 -16.33912 -16.33912 -16.33912 -16.20245 0.0000 0.0000 0.0000 0.0000 33 0.12491 0.0 0.0 -16.40850 -16.40850 -16.40850 -16.28359 0.0000 0.0000 0.0000 0.0000 34 0.11468 0.0 0.0 -16.47255 -16.47255 -16.47255 -16.35787 0.0000 0.0000 0.0000 0.0000 35 0.10560 0.0 0.0 -16.53177 -16.53177 -16.53177 -16.42617 0.0000 0.0000 0.0000 0.0000 36 0.09744 0.0 0.0 -16.58657 -16.58657 -16.58657 -16.48913 0.0000 0.0000 0.0000 0.0000 37 0.09001 0.0 0.0 -16.63727 -16.63727 -16.63727 -16.54727 0.0000 0.0000 0.0000 0.0000 38 0.08317 0.0 0.0 -16.68417 -16.68417 -16.68417 -16.60100 0.0000 0.0000 0.0000 0.0000 39 0.07685 0.0 0.0 -16.72752 -16.72752 -16.72752 -16.65067 0.0000 0.0000 0.0000 0.0000 40 0.07097 0.0 0.0 -16.76755 -16.76755 -16.76755 -16.69658 0.0000 0.0000 0.0000 0.0000 41 0.06550 0.0 0.0 -16.80447 -16.80447 -16.80447 -16.73898 0.0000 0.0000 0.0000 0.0000 42 0.06039 0.0 0.0 -16.83850 -16.83850 -16.83850 -16.77810 0.0000 0.0000 0.0000 0.0000 43 0.05563 0.0 0.0 -16.86981 -16.86981 -16.86981 -16.81418 0.0000 0.0000 0.0000 0.0000 44 0.05119 0.0 0.0 -16.89860 -16.89860 -16.89860 -16.84741 0.0000 0.0000 0.0000 0.0000 45 0.04705 0.0 0.0 -16.92503 -16.92503 -16.92503 -16.87798 0.0000 0.0000 0.0000 0.0000 46 0.04319 0.0 0.0 -16.94927 -16.94927 -16.94927 -16.90608 0.0000 0.0000 0.0000 0.0000 47 0.03961 0.0 0.0 -16.97148 -16.97148 -16.97148 -16.93187 0.0000 0.0000 0.0000 0.0000 48 0.03629 0.0 0.0 -16.99181 -16.99181 -16.99181 -16.95552 0.0000 0.0000 0.0000 0.0000 49 0.03322 0.0 0.0 -17.01040 -17.01040 -17.01040 -16.97718 0.0000 0.0000 0.0000 0.0000 50 0.03038 0.0 0.0 -17.02738 -17.02738 -17.02738 -16.99700 0.0000 0.0000 0.0000 0.0000 51 0.02775 0.0 0.0 -17.04288 -17.04288 -17.04288 -17.01513 0.0000 0.0000 0.0000 0.0000 52 0.02534 0.0 0.0 -17.05703 -17.05703 -17.05703 -17.03169 0.0000 0.0000 0.0000 0.0000 53 0.02312 0.0 0.0 -17.06992 -17.06992 -17.06992 -17.04680 0.0000 0.0000 0.0000 0.0000 54 0.02108 0.0 0.0 -17.08167 -17.08167 -17.08167 -17.06059 0.0000 0.0000 0.0000 0.0000 55 0.01921 0.0 0.0 -17.09237 -17.09237 -17.09237 -17.07316 0.0000 0.0000 0.0000 0.0000 56 0.01750 0.0 0.0 -17.10212 -17.10212 -17.10212 -17.08462 0.0000 0.0000 0.0000 0.0000 57 0.01594 0.0 0.0 -17.11099 -17.11099 -17.11099 -17.09505 0.0000 0.0000 0.0000 0.0000 58 0.01451 0.0 0.0 -17.11906 -17.11906 -17.11906 -17.10455 0.0000 0.0000 0.0000 0.0000 59 0.01321 0.0 0.0 -17.12641 -17.12641 -17.12641 -17.11320 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 60 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.13309 Hartree a.u. kinetic energy = 8.02943 Hartree a.u. electrostatic energy = -23.00375 Hartree a.u. esr = 0.15634 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.50108 Hartree a.u. n-l pseudopotential energy = 4.59103 Hartree a.u. exchange-correlation energy = -4.24872 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.54 -12.35 -7.80 -6.20 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.571642E+00 0.943352E+00 0.965650E+00 H -0.243397E+00 -0.435015E+00 -0.137874E+01 O -0.328246E+00 -0.508525E+00 0.413094E+00 ATOMIC_VELOCITIES H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 60 0.01202 0.0 0.0 -17.13309 -17.13309 -17.13309 -17.12107 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.778 sec. in while: event_index 2 ======================================== EMPLOY RULES: CURRENT_NFI= 61 event_index= 2 event_step== 61 ======================================== RULE EVENT: dt 10.0000000000000 in while after: event_index 3 61 0.01094 0.0 0.0 -17.13917 -17.13917 -17.13917 -17.12824 0.0000 0.0000 0.0000 0.0000 62 0.00995 0.0 0.0 -17.14470 -17.14470 -17.14470 -17.13475 0.0000 0.0000 0.0000 0.0000 63 0.00905 0.0 0.0 -17.14973 -17.14973 -17.14973 -17.14068 0.0000 0.0000 0.0000 0.0000 64 0.00823 0.0 0.0 -17.15431 -17.15431 -17.15431 -17.14608 0.0000 0.0000 0.0000 0.0000 65 0.00749 0.0 0.0 -17.15847 -17.15847 -17.15847 -17.15098 0.0000 0.0000 0.0000 0.0000 66 0.00681 0.0 0.0 -17.16226 -17.16226 -17.16226 -17.15545 0.0000 0.0000 0.0000 0.0000 67 0.00620 0.0 0.0 -17.16570 -17.16570 -17.16570 -17.15951 0.0000 0.0000 0.0000 0.0000 68 0.00564 0.0 0.0 -17.16884 -17.16884 -17.16884 -17.16320 0.0000 0.0000 0.0000 0.0000 69 0.00513 0.0 0.0 -17.17169 -17.17169 -17.17169 -17.16656 0.0000 0.0000 0.0000 0.0000 70 0.00466 0.0 0.0 -17.17428 -17.17428 -17.17428 -17.16961 0.0000 0.0000 0.0000 0.0000 71 0.00424 0.0 0.0 -17.17664 -17.17664 -17.17664 -17.17239 0.0000 0.0000 0.0000 0.0000 72 0.00386 0.0 0.0 -17.17878 -17.17878 -17.17878 -17.17492 0.0000 0.0000 0.0000 0.0000 73 0.00351 0.0 0.0 -17.18074 -17.18074 -17.18074 -17.17722 0.0000 0.0000 0.0000 0.0000 74 0.00320 0.0 0.0 -17.18252 -17.18252 -17.18252 -17.17932 0.0000 0.0000 0.0000 0.0000 75 0.00291 0.0 0.0 -17.18414 -17.18414 -17.18414 -17.18122 0.0000 0.0000 0.0000 0.0000 76 0.00265 0.0 0.0 -17.18561 -17.18561 -17.18561 -17.18296 0.0000 0.0000 0.0000 0.0000 77 0.00241 0.0 0.0 -17.18695 -17.18695 -17.18695 -17.18454 0.0000 0.0000 0.0000 0.0000 78 0.00220 0.0 0.0 -17.18818 -17.18818 -17.18818 -17.18598 0.0000 0.0000 0.0000 0.0000 79 0.00200 0.0 0.0 -17.18929 -17.18929 -17.18929 -17.18729 0.0000 0.0000 0.0000 0.0000 80 0.00183 0.0 0.0 -17.19031 -17.19031 -17.19031 -17.18848 0.0000 0.0000 0.0000 0.0000 81 0.00166 0.0 0.0 -17.19124 -17.19124 -17.19124 -17.18957 0.0000 0.0000 0.0000 0.0000 82 0.00152 0.0 0.0 -17.19208 -17.19208 -17.19208 -17.19056 0.0000 0.0000 0.0000 0.0000 83 0.00138 0.0 0.0 -17.19285 -17.19285 -17.19285 -17.19147 0.0000 0.0000 0.0000 0.0000 84 0.00126 0.0 0.0 -17.19356 -17.19356 -17.19356 -17.19229 0.0000 0.0000 0.0000 0.0000 85 0.00115 0.0 0.0 -17.19420 -17.19420 -17.19420 -17.19305 0.0000 0.0000 0.0000 0.0000 86 0.00105 0.0 0.0 -17.19479 -17.19479 -17.19479 -17.19373 0.0000 0.0000 0.0000 0.0000 87 0.00096 0.0 0.0 -17.19532 -17.19532 -17.19532 -17.19436 0.0000 0.0000 0.0000 0.0000 88 0.00088 0.0 0.0 -17.19581 -17.19581 -17.19581 -17.19493 0.0000 0.0000 0.0000 0.0000 89 0.00080 0.0 0.0 -17.19626 -17.19626 -17.19626 -17.19546 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 90 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19667 Hartree a.u. kinetic energy = 7.93311 Hartree a.u. electrostatic energy = -22.94648 Hartree a.u. esr = 0.15634 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.49803 Hartree a.u. n-l pseudopotential energy = 4.55179 Hartree a.u. exchange-correlation energy = -4.23706 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.75 -12.51 -8.50 -6.51 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.571642E+00 0.943352E+00 0.965650E+00 H -0.243397E+00 -0.435015E+00 -0.137874E+01 O -0.328246E+00 -0.508525E+00 0.413094E+00 ATOMIC_VELOCITIES H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 90 0.00073 0.0 0.0 -17.19667 -17.19667 -17.19667 -17.19593 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.785 sec. in while: event_index 3 ======================================== EMPLOY RULES: CURRENT_NFI= 91 event_index= 3 event_step== 91 ======================================== RULE EVENT: isave 100 RULE EVENT: iprint 100 RULE EVENT: dt 15.0000000000000 in while after: event_index 4 91 0.00067 0.0 0.0 -17.19704 -17.19704 -17.19704 -17.19637 0.0000 0.0000 0.0000 0.0000 92 0.00061 0.0 0.0 -17.19738 -17.19738 -17.19738 -17.19677 0.0000 0.0000 0.0000 0.0000 93 0.00056 0.0 0.0 -17.19769 -17.19769 -17.19769 -17.19713 0.0000 0.0000 0.0000 0.0000 94 0.00051 0.0 0.0 -17.19798 -17.19798 -17.19798 -17.19747 0.0000 0.0000 0.0000 0.0000 95 0.00047 0.0 0.0 -17.19824 -17.19824 -17.19824 -17.19777 0.0000 0.0000 0.0000 0.0000 96 0.00043 0.0 0.0 -17.19848 -17.19848 -17.19848 -17.19805 0.0000 0.0000 0.0000 0.0000 97 0.00039 0.0 0.0 -17.19870 -17.19870 -17.19870 -17.19831 0.0000 0.0000 0.0000 0.0000 98 0.00036 0.0 0.0 -17.19890 -17.19890 -17.19890 -17.19854 0.0000 0.0000 0.0000 0.0000 99 0.00033 0.0 0.0 -17.19908 -17.19908 -17.19908 -17.19875 0.0000 0.0000 0.0000 0.0000 100 0.00030 0.0 0.0 -17.19925 -17.19925 -17.19925 -17.19895 0.0000 0.0000 0.0000 0.0000 101 0.00028 0.0 0.0 -17.19940 -17.19940 -17.19940 -17.19913 0.0000 0.0000 0.0000 0.0000 102 0.00025 0.0 0.0 -17.19955 -17.19955 -17.19955 -17.19929 0.0000 0.0000 0.0000 0.0000 103 0.00023 0.0 0.0 -17.19968 -17.19968 -17.19968 -17.19944 0.0000 0.0000 0.0000 0.0000 104 0.00021 0.0 0.0 -17.19980 -17.19980 -17.19980 -17.19958 0.0000 0.0000 0.0000 0.0000 105 0.00020 0.0 0.0 -17.19990 -17.19990 -17.19990 -17.19971 0.0000 0.0000 0.0000 0.0000 106 0.00018 0.0 0.0 -17.20000 -17.20000 -17.20000 -17.19983 0.0000 0.0000 0.0000 0.0000 107 0.00016 0.0 0.0 -17.20010 -17.20010 -17.20010 -17.19993 0.0000 0.0000 0.0000 0.0000 108 0.00015 0.0 0.0 -17.20018 -17.20018 -17.20018 -17.20003 0.0000 0.0000 0.0000 0.0000 109 0.00014 0.0 0.0 -17.20026 -17.20026 -17.20026 -17.20012 0.0000 0.0000 0.0000 0.0000 110 0.00013 0.0 0.0 -17.20033 -17.20033 -17.20033 -17.20020 0.0000 0.0000 0.0000 0.0000 111 0.00012 0.0 0.0 -17.20040 -17.20040 -17.20040 -17.20028 0.0000 0.0000 0.0000 0.0000 112 0.00011 0.0 0.0 -17.20046 -17.20046 -17.20046 -17.20035 0.0000 0.0000 0.0000 0.0000 113 0.00010 0.0 0.0 -17.20051 -17.20051 -17.20051 -17.20041 0.0000 0.0000 0.0000 0.0000 114 0.00009 0.0 0.0 -17.20056 -17.20056 -17.20056 -17.20047 0.0000 0.0000 0.0000 0.0000 115 0.00008 0.0 0.0 -17.20061 -17.20061 -17.20061 -17.20053 0.0000 0.0000 0.0000 0.0000 116 0.00008 0.0 0.0 -17.20066 -17.20066 -17.20066 -17.20058 0.0000 0.0000 0.0000 0.0000 117 0.00007 0.0 0.0 -17.20070 -17.20070 -17.20070 -17.20062 0.0000 0.0000 0.0000 0.0000 118 0.00007 0.0 0.0 -17.20073 -17.20073 -17.20073 -17.20067 0.0000 0.0000 0.0000 0.0000 119 0.00006 0.0 0.0 -17.20077 -17.20077 -17.20077 -17.20071 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 120 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20080 Hartree a.u. kinetic energy = 7.92375 Hartree a.u. electrostatic energy = -22.94025 Hartree a.u. esr = 0.15634 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.49758 Hartree a.u. n-l pseudopotential energy = 4.54693 Hartree a.u. exchange-correlation energy = -4.23365 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.84 -12.57 -8.61 -6.59 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.571642E+00 0.943352E+00 0.965650E+00 H -0.243397E+00 -0.435015E+00 -0.137874E+01 O -0.328246E+00 -0.508525E+00 0.413094E+00 ATOMIC_VELOCITIES H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 120 0.00006 0.0 0.0 -17.20080 -17.20080 -17.20080 -17.20074 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.787 sec. 121 0.00005 0.0 0.0 -17.20083 -17.20083 -17.20083 -17.20078 0.0000 0.0000 0.0000 0.0000 122 0.00005 0.0 0.0 -17.20085 -17.20085 -17.20085 -17.20081 0.0000 0.0000 0.0000 0.0000 123 0.00004 0.0 0.0 -17.20088 -17.20088 -17.20088 -17.20083 0.0000 0.0000 0.0000 0.0000 124 0.00004 0.0 0.0 -17.20090 -17.20090 -17.20090 -17.20086 0.0000 0.0000 0.0000 0.0000 125 0.00004 0.0 0.0 -17.20092 -17.20092 -17.20092 -17.20089 0.0000 0.0000 0.0000 0.0000 126 0.00003 0.0 0.0 -17.20094 -17.20094 -17.20094 -17.20091 0.0000 0.0000 0.0000 0.0000 127 0.00003 0.0 0.0 -17.20096 -17.20096 -17.20096 -17.20093 0.0000 0.0000 0.0000 0.0000 128 0.00003 0.0 0.0 -17.20098 -17.20098 -17.20098 -17.20095 0.0000 0.0000 0.0000 0.0000 129 0.00003 0.0 0.0 -17.20099 -17.20099 -17.20099 -17.20097 0.0000 0.0000 0.0000 0.0000 130 0.00003 0.0 0.0 -17.20101 -17.20101 -17.20101 -17.20098 0.0000 0.0000 0.0000 0.0000 131 0.00002 0.0 0.0 -17.20102 -17.20102 -17.20102 -17.20100 0.0000 0.0000 0.0000 0.0000 132 0.00002 0.0 0.0 -17.20103 -17.20103 -17.20103 -17.20101 0.0000 0.0000 0.0000 0.0000 133 0.00002 0.0 0.0 -17.20104 -17.20104 -17.20104 -17.20102 0.0000 0.0000 0.0000 0.0000 134 0.00002 0.0 0.0 -17.20106 -17.20106 -17.20106 -17.20104 0.0000 0.0000 0.0000 0.0000 135 0.00002 0.0 0.0 -17.20107 -17.20107 -17.20107 -17.20105 0.0000 0.0000 0.0000 0.0000 136 0.00002 0.0 0.0 -17.20107 -17.20107 -17.20107 -17.20106 0.0000 0.0000 0.0000 0.0000 137 0.00002 0.0 0.0 -17.20108 -17.20108 -17.20108 -17.20107 0.0000 0.0000 0.0000 0.0000 138 0.00001 0.0 0.0 -17.20109 -17.20109 -17.20109 -17.20108 0.0000 0.0000 0.0000 0.0000 139 0.00001 0.0 0.0 -17.20110 -17.20110 -17.20110 -17.20109 0.0000 0.0000 0.0000 0.0000 140 0.00001 0.0 0.0 -17.20111 -17.20111 -17.20111 -17.20109 0.0000 0.0000 0.0000 0.0000 141 0.00001 0.0 0.0 -17.20111 -17.20111 -17.20111 -17.20110 0.0000 0.0000 0.0000 0.0000 142 0.00001 0.0 0.0 -17.20112 -17.20112 -17.20112 -17.20111 0.0000 0.0000 0.0000 0.0000 143 0.00001 0.0 0.0 -17.20112 -17.20112 -17.20112 -17.20111 0.0000 0.0000 0.0000 0.0000 144 0.00001 0.0 0.0 -17.20113 -17.20113 -17.20113 -17.20112 0.0000 0.0000 0.0000 0.0000 145 0.00001 0.0 0.0 -17.20113 -17.20113 -17.20113 -17.20112 0.0000 0.0000 0.0000 0.0000 146 0.00001 0.0 0.0 -17.20114 -17.20114 -17.20114 -17.20113 0.0000 0.0000 0.0000 0.0000 147 0.00001 0.0 0.0 -17.20114 -17.20114 -17.20114 -17.20113 0.0000 0.0000 0.0000 0.0000 148 0.00001 0.0 0.0 -17.20115 -17.20115 -17.20115 -17.20114 0.0000 0.0000 0.0000 0.0000 149 0.00001 0.0 0.0 -17.20115 -17.20115 -17.20115 -17.20114 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 150 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20115 Hartree a.u. kinetic energy = 7.92318 Hartree a.u. electrostatic energy = -22.93942 Hartree a.u. esr = 0.15634 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.49771 Hartree a.u. n-l pseudopotential energy = 4.54581 Hartree a.u. exchange-correlation energy = -4.23301 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.86 -12.59 -8.63 -6.61 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.571642E+00 0.943352E+00 0.965650E+00 H -0.243397E+00 -0.435015E+00 -0.137874E+01 O -0.328246E+00 -0.508525E+00 0.413094E+00 ATOMIC_VELOCITIES H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 150 0.00001 0.0 0.0 -17.20115 -17.20115 -17.20115 -17.20115 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.784 sec. 151 0.00001 0.0 0.0 -17.20116 -17.20116 -17.20116 -17.20115 0.0000 0.0000 0.0000 0.0000 152 0.00001 0.0 0.0 -17.20116 -17.20116 -17.20116 -17.20115 0.0000 0.0000 0.0000 0.0000 153 0.00000 0.0 0.0 -17.20116 -17.20116 -17.20116 -17.20116 0.0000 0.0000 0.0000 0.0000 154 0.00000 0.0 0.0 -17.20116 -17.20116 -17.20116 -17.20116 0.0000 0.0000 0.0000 0.0000 155 0.00000 0.0 0.0 -17.20117 -17.20117 -17.20117 -17.20116 0.0000 0.0000 0.0000 0.0000 156 0.00000 0.0 0.0 -17.20117 -17.20117 -17.20117 -17.20117 0.0000 0.0000 0.0000 0.0000 157 0.00000 0.0 0.0 -17.20117 -17.20117 -17.20117 -17.20117 0.0000 0.0000 0.0000 0.0000 158 0.00000 0.0 0.0 -17.20117 -17.20117 -17.20117 -17.20117 0.0000 0.0000 0.0000 0.0000 159 0.00000 0.0 0.0 -17.20118 -17.20118 -17.20118 -17.20117 0.0000 0.0000 0.0000 0.0000 160 0.00000 0.0 0.0 -17.20118 -17.20118 -17.20118 -17.20117 0.0000 0.0000 0.0000 0.0000 161 0.00000 0.0 0.0 -17.20118 -17.20118 -17.20118 -17.20118 0.0000 0.0000 0.0000 0.0000 162 0.00000 0.0 0.0 -17.20118 -17.20118 -17.20118 -17.20118 0.0000 0.0000 0.0000 0.0000 163 0.00000 0.0 0.0 -17.20118 -17.20118 -17.20118 -17.20118 0.0000 0.0000 0.0000 0.0000 164 0.00000 0.0 0.0 -17.20118 -17.20118 -17.20118 -17.20118 0.0000 0.0000 0.0000 0.0000 165 0.00000 0.0 0.0 -17.20118 -17.20118 -17.20118 -17.20118 0.0000 0.0000 0.0000 0.0000 166 0.00000 0.0 0.0 -17.20119 -17.20119 -17.20119 -17.20118 0.0000 0.0000 0.0000 0.0000 167 0.00000 0.0 0.0 -17.20119 -17.20119 -17.20119 -17.20119 0.0000 0.0000 0.0000 0.0000 168 0.00000 0.0 0.0 -17.20119 -17.20119 -17.20119 -17.20119 0.0000 0.0000 0.0000 0.0000 169 0.00000 0.0 0.0 -17.20119 -17.20119 -17.20119 -17.20119 0.0000 0.0000 0.0000 0.0000 170 0.00000 0.0 0.0 -17.20119 -17.20119 -17.20119 -17.20119 0.0000 0.0000 0.0000 0.0000 171 0.00000 0.0 0.0 -17.20119 -17.20119 -17.20119 -17.20119 0.0000 0.0000 0.0000 0.0000 172 0.00000 0.0 0.0 -17.20119 -17.20119 -17.20119 -17.20119 0.0000 0.0000 0.0000 0.0000 173 0.00000 0.0 0.0 -17.20119 -17.20119 -17.20119 -17.20119 0.0000 0.0000 0.0000 0.0000 174 0.00000 0.0 0.0 -17.20119 -17.20119 -17.20119 -17.20119 0.0000 0.0000 0.0000 0.0000 175 0.00000 0.0 0.0 -17.20119 -17.20119 -17.20119 -17.20119 0.0000 0.0000 0.0000 0.0000 176 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20119 0.0000 0.0000 0.0000 0.0000 177 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20119 0.0000 0.0000 0.0000 0.0000 178 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 179 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 180 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20120 Hartree a.u. kinetic energy = 7.92337 Hartree a.u. electrostatic energy = -22.93930 Hartree a.u. esr = 0.15634 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.49781 Hartree a.u. n-l pseudopotential energy = 4.54544 Hartree a.u. exchange-correlation energy = -4.23290 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.86 -12.59 -8.64 -6.61 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.571642E+00 0.943352E+00 0.965650E+00 H -0.243397E+00 -0.435015E+00 -0.137874E+01 O -0.328246E+00 -0.508525E+00 0.413094E+00 ATOMIC_VELOCITIES H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 180 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.818 sec. 181 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 182 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 183 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 184 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 185 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 186 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 187 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 188 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 189 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 190 0.00000 0.0 0.0 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 in while: event_index 4 ======================================== EMPLOY RULES: CURRENT_NFI= 191 event_index= 4 event_step== 191 ======================================== RULE EVENT: isave 500 RULE EVENT: electron_damping 0.000000000000000E+000 RULE EVENT: ion_dynamics DAMP in while after: event_index 5 191 0.00000 0.0 0.1 -17.20120 -17.20120 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 192 0.00000 0.0 1.0 -17.20121 -17.20121 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 193 0.00000 0.0 2.6 -17.20124 -17.20124 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 194 0.00000 0.0 5.1 -17.20127 -17.20127 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 195 0.00000 0.0 8.3 -17.20132 -17.20132 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 196 0.00000 0.0 12.0 -17.20137 -17.20137 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 197 0.00000 0.0 16.3 -17.20144 -17.20144 -17.20120 -17.20120 0.0000 0.0000 0.0000 0.0000 198 0.00000 0.0 21.0 -17.20151 -17.20151 -17.20121 -17.20120 0.0000 0.0000 0.0000 0.0000 199 0.00000 0.0 26.0 -17.20158 -17.20158 -17.20121 -17.20120 0.0000 0.0000 0.0000 0.0000 200 0.00001 0.0 31.1 -17.20166 -17.20166 -17.20121 -17.20121 0.0000 0.0000 0.0000 0.0000 201 0.00001 0.0 36.3 -17.20173 -17.20173 -17.20122 -17.20121 0.0000 0.0000 0.0000 0.0000 202 0.00001 0.0 41.4 -17.20181 -17.20181 -17.20123 -17.20121 0.0000 0.0000 0.0000 0.0000 203 0.00002 0.0 46.3 -17.20189 -17.20189 -17.20124 -17.20122 0.0000 0.0000 0.0000 0.0000 204 0.00002 0.0 50.9 -17.20197 -17.20197 -17.20125 -17.20123 0.0000 0.0000 0.0000 0.0000 205 0.00002 0.0 55.1 -17.20205 -17.20205 -17.20127 -17.20124 0.0000 0.0000 0.0000 0.0000 206 0.00003 0.0 58.9 -17.20213 -17.20213 -17.20129 -17.20126 0.0000 0.0000 0.0000 0.0000 207 0.00004 0.0 62.2 -17.20220 -17.20220 -17.20131 -17.20127 0.0000 0.0000 0.0000 0.0000 208 0.00004 0.0 65.0 -17.20227 -17.20227 -17.20134 -17.20130 0.0000 0.0000 0.0000 0.0000 209 0.00005 0.0 67.2 -17.20233 -17.20233 -17.20137 -17.20132 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 210 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20239 Hartree a.u. kinetic energy = 7.90972 Hartree a.u. electrostatic energy = -22.95681 Hartree a.u. esr = 0.14064 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.46400 Hartree a.u. n-l pseudopotential energy = 4.53488 Hartree a.u. exchange-correlation energy = -4.22618 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.54 -12.34 -8.51 -6.45 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.584696E+00 0.964138E+00 0.974711E+00 H -0.242851E+00 -0.435154E+00 -0.140466E+01 O -0.329102E+00 -0.509826E+00 0.414156E+00 ATOMIC_VELOCITIES H 0.359430E-03 0.570711E-03 0.249540E-03 H 0.139339E-04 -0.575400E-05 -0.711941E-03 O -0.235214E-04 -0.355915E-04 0.291306E-04 Forces acting on atoms (au): H 0.270247E-02 0.403760E-02 0.881551E-03 H 0.475993E-03 0.508056E-03 -0.473244E-02 O 0.605612E-02 0.930219E-02 -0.713849E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 99.05 0.0007 2 8.19 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 210 0.00006 0.0 68.8 -17.20239 -17.20239 -17.20141 -17.20135 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.781 sec. 211 0.00006 0.0 69.8 -17.20245 -17.20245 -17.20145 -17.20139 0.0000 0.0000 0.0000 0.0000 212 0.00007 0.0 70.2 -17.20250 -17.20250 -17.20150 -17.20143 0.0000 0.0000 0.0000 0.0000 213 0.00008 0.0 70.1 -17.20255 -17.20255 -17.20155 -17.20147 0.0000 0.0000 0.0000 0.0000 214 0.00008 0.0 69.4 -17.20259 -17.20259 -17.20160 -17.20152 0.0000 0.0000 0.0000 0.0000 215 0.00009 0.0 68.2 -17.20263 -17.20263 -17.20166 -17.20157 0.0000 0.0000 0.0000 0.0000 216 0.00010 0.0 66.5 -17.20267 -17.20267 -17.20172 -17.20162 0.0000 0.0000 0.0000 0.0000 217 0.00010 0.0 64.5 -17.20270 -17.20270 -17.20178 -17.20168 0.0000 0.0000 0.0000 0.0000 218 0.00010 0.0 62.0 -17.20273 -17.20273 -17.20184 -17.20174 0.0000 0.0000 0.0000 0.0000 219 0.00011 0.0 59.3 -17.20275 -17.20275 -17.20191 -17.20180 0.0000 0.0000 0.0000 0.0000 220 0.00011 0.0 56.3 -17.20278 -17.20278 -17.20197 -17.20187 0.0000 0.0000 0.0000 0.0000 221 0.00011 0.0 53.0 -17.20280 -17.20280 -17.20204 -17.20193 0.0000 0.0000 0.0000 0.0000 222 0.00011 0.0 49.6 -17.20282 -17.20282 -17.20211 -17.20200 0.0000 0.0000 0.0000 0.0000 223 0.00011 0.0 46.1 -17.20283 -17.20283 -17.20218 -17.20206 0.0000 0.0000 0.0000 0.0000 224 0.00011 0.0 42.6 -17.20285 -17.20285 -17.20224 -17.20213 0.0000 0.0000 0.0000 0.0000 225 0.00011 0.0 39.0 -17.20286 -17.20286 -17.20230 -17.20220 0.0000 0.0000 0.0000 0.0000 226 0.00011 0.0 35.4 -17.20287 -17.20287 -17.20237 -17.20226 0.0000 0.0000 0.0000 0.0000 227 0.00010 0.0 32.0 -17.20288 -17.20288 -17.20243 -17.20233 0.0000 0.0000 0.0000 0.0000 228 0.00010 0.0 28.6 -17.20289 -17.20289 -17.20249 -17.20239 0.0000 0.0000 0.0000 0.0000 229 0.00010 0.0 25.3 -17.20290 -17.20290 -17.20254 -17.20245 0.0000 0.0000 0.0000 0.0000 230 0.00009 0.0 22.2 -17.20291 -17.20291 -17.20259 -17.20250 0.0000 0.0000 0.0000 0.0000 231 0.00009 0.0 19.3 -17.20292 -17.20292 -17.20265 -17.20256 0.0000 0.0000 0.0000 0.0000 232 0.00008 0.0 16.5 -17.20293 -17.20293 -17.20269 -17.20261 0.0000 0.0000 0.0000 0.0000 233 0.00008 0.0 14.0 -17.20294 -17.20294 -17.20274 -17.20266 0.0000 0.0000 0.0000 0.0000 234 0.00007 0.0 11.7 -17.20294 -17.20294 -17.20278 -17.20271 0.0000 0.0000 0.0000 0.0000 235 0.00007 0.0 9.6 -17.20295 -17.20295 -17.20281 -17.20275 0.0000 0.0000 0.0000 0.0000 236 0.00006 0.0 7.7 -17.20296 -17.20296 -17.20285 -17.20279 0.0000 0.0000 0.0000 0.0000 237 0.00006 0.0 6.1 -17.20297 -17.20297 -17.20288 -17.20282 0.0000 0.0000 0.0000 0.0000 238 0.00005 0.0 4.7 -17.20298 -17.20298 -17.20291 -17.20286 0.0000 0.0000 0.0000 0.0000 239 0.00005 0.0 3.5 -17.20298 -17.20298 -17.20294 -17.20289 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 240 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20299 Hartree a.u. kinetic energy = 7.84226 Hartree a.u. electrostatic energy = -22.95211 Hartree a.u. esr = 0.11682 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40318 Hartree a.u. n-l pseudopotential energy = 4.51000 Hartree a.u. exchange-correlation energy = -4.19996 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.33 -12.17 -8.51 -6.45 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.607802E+00 0.100010E+01 0.990245E+00 H -0.242172E+00 -0.435990E+00 -0.144956E+01 O -0.330601E+00 -0.512039E+00 0.416006E+00 ATOMIC_VELOCITIES H 0.780642E-04 0.106898E-03 0.365618E-04 H 0.921621E-06 -0.732366E-05 -0.132633E-03 O -0.497600E-05 -0.627307E-05 0.605237E-05 Forces acting on atoms (au): H -0.734458E-02 -0.120069E-01 -0.607802E-02 H 0.214939E-04 0.557302E-03 0.152231E-01 O 0.995372E-02 0.153068E-01 -0.117680E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 3.53 0.0051 2 0.31 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 240 0.00004 0.0 2.5 -17.20299 -17.20299 -17.20296 -17.20292 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.793 sec. 241 0.00004 0.0 1.6 -17.20300 -17.20300 -17.20298 -17.20294 0.0000 0.0000 0.0000 0.0000 242 0.00003 0.0 1.0 -17.20301 -17.20301 -17.20300 -17.20296 0.0000 0.0000 0.0000 0.0000 243 0.00003 0.0 0.5 -17.20302 -17.20302 -17.20301 -17.20298 0.0000 0.0000 0.0000 0.0000 244 0.00003 0.0 0.2 -17.20303 -17.20303 -17.20303 -17.20300 0.0000 0.0000 0.0000 0.0000 245 0.00002 0.0 0.1 -17.20304 -17.20304 -17.20304 -17.20302 0.0000 0.0000 0.0000 0.0000 246 0.00002 0.0 0.0 -17.20305 -17.20305 -17.20305 -17.20303 0.0000 0.0000 0.0000 0.0000 247 0.00002 0.0 0.1 -17.20306 -17.20306 -17.20306 -17.20304 0.0000 0.0000 0.0000 0.0000 248 0.00001 0.0 0.3 -17.20307 -17.20307 -17.20306 -17.20305 0.0000 0.0000 0.0000 0.0000 249 0.00001 0.0 0.5 -17.20308 -17.20308 -17.20307 -17.20306 0.0000 0.0000 0.0000 0.0000 250 0.00001 0.0 0.8 -17.20309 -17.20309 -17.20308 -17.20307 0.0000 0.0000 0.0000 0.0000 251 0.00001 0.0 1.1 -17.20310 -17.20310 -17.20308 -17.20307 0.0000 0.0000 0.0000 0.0000 252 0.00001 0.0 1.5 -17.20311 -17.20311 -17.20308 -17.20308 0.0000 0.0000 0.0000 0.0000 253 0.00001 0.0 1.9 -17.20311 -17.20311 -17.20309 -17.20308 0.0000 0.0000 0.0000 0.0000 254 0.00001 0.0 2.4 -17.20312 -17.20312 -17.20309 -17.20308 0.0000 0.0000 0.0000 0.0000 255 0.00000 0.0 2.8 -17.20313 -17.20313 -17.20309 -17.20309 0.0000 0.0000 0.0000 0.0000 256 0.00000 0.0 3.2 -17.20314 -17.20314 -17.20309 -17.20309 0.0000 0.0000 0.0000 0.0000 257 0.00000 0.0 3.6 -17.20315 -17.20315 -17.20310 -17.20309 0.0000 0.0000 0.0000 0.0000 258 0.00000 0.0 4.0 -17.20316 -17.20316 -17.20310 -17.20310 0.0000 0.0000 0.0000 0.0000 259 0.00000 0.0 4.3 -17.20316 -17.20316 -17.20310 -17.20310 0.0000 0.0000 0.0000 0.0000 260 0.00000 0.0 4.6 -17.20317 -17.20317 -17.20310 -17.20310 0.0000 0.0000 0.0000 0.0000 261 0.00000 0.0 4.9 -17.20317 -17.20317 -17.20311 -17.20310 0.0000 0.0000 0.0000 0.0000 262 0.00000 0.0 5.1 -17.20318 -17.20318 -17.20311 -17.20310 0.0000 0.0000 0.0000 0.0000 263 0.00000 0.0 5.3 -17.20319 -17.20319 -17.20311 -17.20311 0.0000 0.0000 0.0000 0.0000 264 0.00000 0.0 5.4 -17.20319 -17.20319 -17.20311 -17.20311 0.0000 0.0000 0.0000 0.0000 265 0.00001 0.0 5.5 -17.20320 -17.20320 -17.20312 -17.20311 0.0000 0.0000 0.0000 0.0000 266 0.00001 0.0 5.5 -17.20320 -17.20320 -17.20312 -17.20312 0.0000 0.0000 0.0000 0.0000 267 0.00001 0.0 5.5 -17.20320 -17.20320 -17.20312 -17.20312 0.0000 0.0000 0.0000 0.0000 268 0.00001 0.0 5.4 -17.20321 -17.20321 -17.20313 -17.20312 0.0000 0.0000 0.0000 0.0000 269 0.00001 0.0 5.4 -17.20321 -17.20321 -17.20313 -17.20313 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 270 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20321 Hartree a.u. kinetic energy = 7.84063 Hartree a.u. electrostatic energy = -22.94343 Hartree a.u. esr = 0.12139 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41441 Hartree a.u. n-l pseudopotential energy = 4.51360 Hartree a.u. exchange-correlation energy = -4.19961 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.52 -12.29 -8.61 -6.56 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.604469E+00 0.992790E+00 0.984703E+00 H -0.241942E+00 -0.435635E+00 -0.144006E+01 O -0.330405E+00 -0.511601E+00 0.415757E+00 ATOMIC_VELOCITIES H -0.793355E-04 -0.151074E-03 -0.106454E-03 H 0.743753E-05 0.153654E-04 0.195703E-03 O 0.452947E-05 0.854946E-05 -0.562254E-05 Forces acting on atoms (au): H 0.707262E-03 0.111080E-02 0.534552E-03 H 0.352676E-04 0.240490E-04 -0.142871E-02 O -0.471771E-02 -0.738452E-02 0.647280E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 7.64 0.0038 2 0.38 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 270 0.00001 0.0 5.2 -17.20321 -17.20321 -17.20314 -17.20313 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.783 sec. 271 0.00001 0.0 5.1 -17.20321 -17.20321 -17.20314 -17.20313 0.0000 0.0000 0.0000 0.0000 272 0.00001 0.0 4.9 -17.20322 -17.20322 -17.20315 -17.20314 0.0000 0.0000 0.0000 0.0000 273 0.00001 0.0 4.7 -17.20322 -17.20322 -17.20315 -17.20314 0.0000 0.0000 0.0000 0.0000 274 0.00001 0.0 4.4 -17.20322 -17.20322 -17.20316 -17.20315 0.0000 0.0000 0.0000 0.0000 275 0.00001 0.0 4.2 -17.20322 -17.20322 -17.20316 -17.20315 0.0000 0.0000 0.0000 0.0000 276 0.00001 0.0 3.9 -17.20322 -17.20322 -17.20316 -17.20316 0.0000 0.0000 0.0000 0.0000 277 0.00001 0.0 3.6 -17.20322 -17.20322 -17.20317 -17.20316 0.0000 0.0000 0.0000 0.0000 278 0.00001 0.0 3.4 -17.20322 -17.20322 -17.20317 -17.20317 0.0000 0.0000 0.0000 0.0000 279 0.00001 0.0 3.1 -17.20322 -17.20322 -17.20318 -17.20317 0.0000 0.0000 0.0000 0.0000 280 0.00001 0.0 2.8 -17.20322 -17.20322 -17.20318 -17.20318 0.0000 0.0000 0.0000 0.0000 281 0.00001 0.0 2.5 -17.20322 -17.20322 -17.20319 -17.20318 0.0000 0.0000 0.0000 0.0000 282 0.00001 0.0 2.3 -17.20322 -17.20322 -17.20319 -17.20318 0.0000 0.0000 0.0000 0.0000 283 0.00001 0.0 2.0 -17.20322 -17.20322 -17.20319 -17.20319 0.0000 0.0000 0.0000 0.0000 284 0.00001 0.0 1.8 -17.20322 -17.20322 -17.20320 -17.20319 0.0000 0.0000 0.0000 0.0000 285 0.00001 0.0 1.5 -17.20322 -17.20322 -17.20320 -17.20320 0.0000 0.0000 0.0000 0.0000 286 0.00001 0.0 1.3 -17.20322 -17.20322 -17.20320 -17.20320 0.0000 0.0000 0.0000 0.0000 287 0.00001 0.0 1.1 -17.20322 -17.20322 -17.20321 -17.20320 0.0000 0.0000 0.0000 0.0000 288 0.00000 0.0 1.0 -17.20322 -17.20322 -17.20321 -17.20321 0.0000 0.0000 0.0000 0.0000 289 0.00000 0.0 0.8 -17.20322 -17.20322 -17.20321 -17.20321 0.0000 0.0000 0.0000 0.0000 290 0.00000 0.0 0.7 -17.20322 -17.20322 -17.20321 -17.20321 0.0000 0.0000 0.0000 0.0000 291 0.00000 0.0 0.5 -17.20322 -17.20322 -17.20322 -17.20321 0.0000 0.0000 0.0000 0.0000 292 0.00000 0.0 0.4 -17.20322 -17.20322 -17.20322 -17.20322 0.0000 0.0000 0.0000 0.0000 293 0.00000 0.0 0.4 -17.20322 -17.20322 -17.20322 -17.20322 0.0000 0.0000 0.0000 0.0000 294 0.00000 0.0 0.3 -17.20323 -17.20323 -17.20322 -17.20322 0.0000 0.0000 0.0000 0.0000 295 0.00000 0.0 0.2 -17.20323 -17.20323 -17.20322 -17.20322 0.0000 0.0000 0.0000 0.0000 296 0.00000 0.0 0.2 -17.20323 -17.20323 -17.20322 -17.20322 0.0000 0.0000 0.0000 0.0000 297 0.00000 0.0 0.2 -17.20323 -17.20323 -17.20322 -17.20322 0.0000 0.0000 0.0000 0.0000 298 0.00000 0.0 0.2 -17.20323 -17.20323 -17.20323 -17.20322 0.0000 0.0000 0.0000 0.0000 299 0.00000 0.0 0.2 -17.20323 -17.20323 -17.20323 -17.20322 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 300 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20323 Hartree a.u. kinetic energy = 7.85710 Hartree a.u. electrostatic energy = -22.94611 Hartree a.u. esr = 0.12578 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42645 Hartree a.u. n-l pseudopotential energy = 4.51789 Hartree a.u. exchange-correlation energy = -4.20566 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.54 -12.30 -8.61 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.601725E+00 0.986237E+00 0.977832E+00 H -0.240861E+00 -0.433848E+00 -0.143119E+01 O -0.330300E+00 -0.511301E+00 0.415631E+00 ATOMIC_VELOCITIES H 0.238960E-04 0.147603E-04 -0.365719E-04 H 0.140051E-04 0.198001E-04 -0.112120E-04 O -0.238771E-05 -0.217726E-05 0.301032E-05 Forces acting on atoms (au): H 0.173169E-02 0.280222E-02 0.155389E-02 H -0.690619E-04 -0.209743E-03 -0.355712E-02 O -0.220934E-02 -0.340689E-02 0.307552E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.27 0.0028 2 0.06 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 300 0.00000 0.0 0.2 -17.20323 -17.20323 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.874 sec. 301 0.00000 0.0 0.2 -17.20323 -17.20323 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 302 0.00000 0.0 0.3 -17.20323 -17.20323 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 303 0.00000 0.0 0.3 -17.20323 -17.20323 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 304 0.00000 0.0 0.3 -17.20323 -17.20323 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 305 0.00000 0.0 0.4 -17.20323 -17.20323 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 306 0.00000 0.0 0.4 -17.20323 -17.20323 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 307 0.00000 0.0 0.4 -17.20323 -17.20323 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 308 0.00000 0.0 0.5 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 309 0.00000 0.0 0.5 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 310 0.00000 0.0 0.6 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 311 0.00000 0.0 0.6 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 312 0.00000 0.0 0.6 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 313 0.00000 0.0 0.7 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 314 0.00000 0.0 0.7 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 315 0.00000 0.0 0.7 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 316 0.00000 0.0 0.7 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 317 0.00000 0.0 0.7 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 318 0.00000 0.0 0.7 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 319 0.00000 0.0 0.7 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 320 0.00000 0.0 0.7 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 321 0.00000 0.0 0.7 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 322 0.00000 0.0 0.7 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 323 0.00000 0.0 0.7 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 324 0.00000 0.0 0.6 -17.20324 -17.20324 -17.20323 -17.20323 0.0000 0.0000 0.0000 0.0000 325 0.00000 0.0 0.6 -17.20324 -17.20324 -17.20324 -17.20323 0.0000 0.0000 0.0000 0.0000 326 0.00000 0.0 0.6 -17.20324 -17.20324 -17.20324 -17.20323 0.0000 0.0000 0.0000 0.0000 327 0.00000 0.0 0.5 -17.20324 -17.20324 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 328 0.00000 0.0 0.5 -17.20324 -17.20324 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 329 0.00000 0.0 0.5 -17.20324 -17.20324 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 330 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20324 Hartree a.u. kinetic energy = 7.85352 Hartree a.u. electrostatic energy = -22.94773 Hartree a.u. esr = 0.12323 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42021 Hartree a.u. n-l pseudopotential energy = 4.51528 Hartree a.u. exchange-correlation energy = -4.20410 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.25 -8.59 -6.52 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.605612E+00 0.990395E+00 0.976495E+00 H -0.239880E+00 -0.432592E+00 -0.143591E+01 O -0.330607E+00 -0.511642E+00 0.416012E+00 ATOMIC_VELOCITIES H 0.414479E-04 0.438428E-04 -0.725739E-05 H 0.642740E-05 0.732493E-05 -0.518159E-04 O -0.301607E-05 -0.322350E-05 0.372154E-05 Forces acting on atoms (au): H -0.659164E-03 -0.103900E-02 -0.174774E-03 H -0.165844E-03 -0.199152E-03 0.125156E-02 O 0.152929E-02 0.241205E-02 -0.159359E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.63 0.0034 2 0.10 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 330 0.00000 0.0 0.5 -17.20324 -17.20324 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.810 sec. 331 0.00000 0.0 0.4 -17.20324 -17.20324 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 332 0.00000 0.0 0.4 -17.20324 -17.20324 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 333 0.00000 0.0 0.4 -17.20325 -17.20325 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 334 0.00000 0.0 0.3 -17.20325 -17.20325 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 335 0.00000 0.0 0.3 -17.20325 -17.20325 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 336 0.00000 0.0 0.3 -17.20325 -17.20325 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 337 0.00000 0.0 0.2 -17.20325 -17.20325 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 338 0.00000 0.0 0.2 -17.20325 -17.20325 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 339 0.00000 0.0 0.2 -17.20325 -17.20325 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 340 0.00000 0.0 0.2 -17.20325 -17.20325 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 341 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 342 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 343 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 344 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20324 -17.20324 0.0000 0.0000 0.0000 0.0000 345 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20324 0.0000 0.0000 0.0000 0.0000 346 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20324 0.0000 0.0000 0.0000 0.0000 347 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 348 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 349 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 350 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 351 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 352 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 353 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 354 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 355 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 356 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 357 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 358 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 359 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 360 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.84954 Hartree a.u. electrostatic energy = -22.94653 Hartree a.u. esr = 0.12240 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41792 Hartree a.u. n-l pseudopotential energy = 4.51426 Hartree a.u. exchange-correlation energy = -4.20260 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.25 -8.61 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.607638E+00 0.991639E+00 0.975285E+00 H -0.239699E+00 -0.432423E+00 -0.143741E+01 O -0.330746E+00 -0.511731E+00 0.416183E+00 ATOMIC_VELOCITIES H 0.666289E-05 -0.112619E-04 -0.188168E-04 H -0.154334E-05 -0.245272E-05 0.125538E-04 O -0.322524E-06 0.864002E-06 0.394563E-06 Forces acting on atoms (au): H -0.406925E-03 -0.633157E-03 -0.451338E-04 H -0.124710E-03 -0.157792E-03 0.729750E-03 O 0.209301E-03 0.396032E-03 0.913832E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.07 0.0036 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 360 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.813 sec. 361 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 362 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 363 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 364 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 365 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 366 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 367 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 368 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 369 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 370 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 371 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 372 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 373 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 374 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 375 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 376 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 377 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 378 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 379 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 380 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 381 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 382 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 383 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 384 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 385 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 386 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 387 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 388 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 389 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 390 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85110 Hartree a.u. electrostatic energy = -22.94630 Hartree a.u. esr = 0.12312 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41978 Hartree a.u. n-l pseudopotential energy = 4.51493 Hartree a.u. exchange-correlation energy = -4.20320 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.26 -8.61 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.607991E+00 0.990255E+00 0.973753E+00 H -0.240009E+00 -0.432885E+00 -0.143595E+01 O -0.330749E+00 -0.511615E+00 0.416188E+00 ATOMIC_VELOCITIES H 0.622649E-05 -0.114257E-04 -0.123061E-04 H -0.480673E-05 -0.735546E-05 0.996569E-05 O -0.894433E-07 0.118319E-05 0.147443E-06 Forces acting on atoms (au): H 0.195531E-03 0.330128E-03 0.297732E-03 H -0.591164E-04 -0.973407E-04 -0.434140E-03 O -0.454480E-03 -0.607602E-03 0.875285E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.05 0.0034 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 390 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.784 sec. 391 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 392 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 393 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 394 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 395 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 396 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 397 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 398 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 399 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 400 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 401 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 402 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 403 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 404 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 405 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 406 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 407 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 408 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 409 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 410 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 411 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 412 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 413 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 414 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 415 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 416 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 417 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 418 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 419 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 420 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85170 Hartree a.u. electrostatic energy = -22.94665 Hartree a.u. esr = 0.12314 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41988 Hartree a.u. n-l pseudopotential energy = 4.51498 Hartree a.u. exchange-correlation energy = -4.20341 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.61 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.608958E+00 0.989895E+00 0.973128E+00 H -0.240519E+00 -0.433690E+00 -0.143595E+01 O -0.330778E+00 -0.511541E+00 0.416227E+00 ATOMIC_VELOCITIES H 0.135886E-04 0.724332E-06 -0.322008E-05 H -0.639861E-05 -0.102153E-04 -0.624668E-05 O -0.452962E-06 0.597916E-06 0.596393E-06 Forces acting on atoms (au): H 0.324133E-04 0.640758E-04 0.890472E-04 H -0.229662E-04 -0.284166E-04 -0.606040E-04 O 0.166963E-04 0.129150E-03 0.270083E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.04 0.0034 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 420 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.780 sec. 421 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 422 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 423 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 424 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 425 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 426 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 427 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 428 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 429 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 430 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 431 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 432 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 433 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 434 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 435 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 436 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 437 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 438 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 439 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 440 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 441 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 442 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 443 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 444 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 445 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 446 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 447 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 448 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 449 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 450 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85111 Hartree a.u. electrostatic energy = -22.94665 Hartree a.u. esr = 0.12293 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41932 Hartree a.u. n-l pseudopotential energy = 4.51479 Hartree a.u. exchange-correlation energy = -4.20319 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.61 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.610115E+00 0.989864E+00 0.972857E+00 H -0.241132E+00 -0.434657E+00 -0.143640E+01 O -0.330812E+00 -0.511478E+00 0.416272E+00 ATOMIC_VELOCITIES H 0.112793E-04 -0.279503E-05 -0.388529E-05 H -0.701600E-05 -0.108958E-04 -0.195176E-05 O -0.268585E-06 0.862505E-06 0.367727E-06 Forces acting on atoms (au): H -0.736057E-04 -0.108400E-03 -0.398294E-04 H -0.489092E-06 0.138585E-04 0.165716E-03 O 0.613912E-04 0.203232E-03 0.225453E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.03 0.0035 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 450 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.789 sec. 451 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 452 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 453 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 454 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 455 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 456 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 457 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 458 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 459 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 460 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 461 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 462 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 463 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 464 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 465 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 466 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 467 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 468 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 469 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 470 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 471 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 472 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 473 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 474 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 475 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 476 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 477 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 478 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 479 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 480 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85106 Hartree a.u. electrostatic energy = -22.94658 Hartree a.u. esr = 0.12297 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41940 Hartree a.u. n-l pseudopotential energy = 4.51485 Hartree a.u. exchange-correlation energy = -4.20318 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.61 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.611023E+00 0.989445E+00 0.972388E+00 H -0.241747E+00 -0.435601E+00 -0.143635E+01 O -0.330830E+00 -0.511392E+00 0.416299E+00 ATOMIC_VELOCITIES H 0.960520E-05 -0.541299E-05 -0.622630E-05 H -0.653532E-05 -0.992004E-05 0.164299E-05 O -0.193398E-06 0.965960E-06 0.288743E-06 Forces acting on atoms (au): H 0.234607E-05 0.118882E-04 -0.248062E-05 H 0.110402E-04 0.261879E-04 0.190855E-04 O -0.103055E-03 -0.460165E-04 0.427927E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.03 0.0035 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 480 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.781 sec. 481 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 482 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 483 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 484 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 485 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 486 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 487 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 488 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 489 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 490 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 491 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 492 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 493 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 494 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 495 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 496 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 497 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 498 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 499 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 500 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 501 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 502 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 503 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 504 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 505 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 506 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 507 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 508 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 509 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 510 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85123 Hartree a.u. electrostatic energy = -22.94661 Hartree a.u. esr = 0.12302 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41954 Hartree a.u. n-l pseudopotential energy = 4.51491 Hartree a.u. exchange-correlation energy = -4.20324 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.61 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.611932E+00 0.989030E+00 0.971788E+00 H -0.242299E+00 -0.436436E+00 -0.143627E+01 O -0.330853E+00 -0.511314E+00 0.416332E+00 ATOMIC_VELOCITIES H 0.107074E-04 -0.363556E-05 -0.699443E-05 H -0.574289E-05 -0.866759E-05 -0.490054E-07 O -0.312760E-06 0.775082E-06 0.443727E-06 Forces acting on atoms (au): H 0.183236E-04 0.370858E-04 0.111911E-04 H 0.104144E-04 0.237831E-04 -0.105923E-04 O -0.997280E-04 -0.389571E-04 0.417942E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.03 0.0035 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 510 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.784 sec. 511 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 512 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 513 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 514 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 515 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 516 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 517 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 518 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 519 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 520 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 521 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 522 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 523 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 524 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 525 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 526 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 527 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 528 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 529 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 530 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 531 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 532 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 533 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 534 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 535 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 536 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 537 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 538 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 539 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 540 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85122 Hartree a.u. electrostatic energy = -22.94664 Hartree a.u. esr = 0.12301 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41950 Hartree a.u. n-l pseudopotential energy = 4.51490 Hartree a.u. exchange-correlation energy = -4.20324 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.612925E+00 0.988750E+00 0.971126E+00 H -0.242789E+00 -0.437172E+00 -0.143631E+01 O -0.330885E+00 -0.511250E+00 0.416376E+00 ATOMIC_VELOCITIES H 0.111510E-04 -0.291094E-05 -0.778224E-05 H -0.519242E-05 -0.777128E-05 -0.518719E-06 O -0.375385E-06 0.672965E-06 0.522949E-06 Forces acting on atoms (au): H -0.588528E-05 -0.138195E-05 0.445804E-05 H 0.457382E-05 0.158599E-04 0.334843E-04 O -0.637711E-04 0.168769E-04 0.373814E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.03 0.0036 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 540 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.896 sec. 541 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 542 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 543 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 544 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 545 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 546 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 547 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 548 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 549 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 550 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 551 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 552 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 553 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 554 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 555 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 556 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 557 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 558 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 559 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 560 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 561 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 562 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 563 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 564 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 565 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 566 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 567 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 568 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 569 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 570 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85118 Hartree a.u. electrostatic energy = -22.94663 Hartree a.u. esr = 0.12300 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41947 Hartree a.u. n-l pseudopotential energy = 4.51490 Hartree a.u. exchange-correlation energy = -4.20323 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.613919E+00 0.988474E+00 0.970388E+00 H -0.243242E+00 -0.437846E+00 -0.143633E+01 O -0.330919E+00 -0.511190E+00 0.416424E+00 ATOMIC_VELOCITIES H 0.109346E-04 -0.322850E-05 -0.852113E-05 H -0.490928E-05 -0.726950E-05 0.856341E-07 O -0.379585E-06 0.661360E-06 0.531424E-06 Forces acting on atoms (au): H -0.748957E-05 -0.365972E-05 0.146669E-04 H -0.850039E-06 0.707054E-05 0.315491E-04 O -0.710914E-04 0.577917E-05 0.383355E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.03 0.0036 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 570 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.785 sec. 571 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 572 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 573 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 574 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 575 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 576 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 577 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 578 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 579 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 580 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 581 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 582 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 583 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 584 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 585 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 586 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 587 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 588 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 589 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 590 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 591 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 592 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 593 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 594 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 595 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 596 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 597 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 598 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 599 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 600 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85120 Hartree a.u. electrostatic energy = -22.94662 Hartree a.u. esr = 0.12300 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41949 Hartree a.u. n-l pseudopotential energy = 4.51490 Hartree a.u. exchange-correlation energy = -4.20323 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.614901E+00 0.988182E+00 0.969610E+00 H -0.243679E+00 -0.438491E+00 -0.143632E+01 O -0.330953E+00 -0.511131E+00 0.416472E+00 ATOMIC_VELOCITIES H 0.109289E-04 -0.319934E-05 -0.868308E-05 H -0.482244E-05 -0.710335E-05 0.102772E-06 O -0.384696E-06 0.649055E-06 0.540548E-06 Forces acting on atoms (au): H -0.295858E-05 0.374040E-05 0.255906E-04 H -0.445403E-05 0.890453E-06 0.199944E-04 O -0.747177E-04 0.449663E-07 0.386708E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.03 0.0036 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 600 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.787 sec. 601 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 602 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 603 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 604 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 605 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 606 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 607 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 608 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 609 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 610 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 611 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 612 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 613 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 614 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 615 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 616 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 617 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 618 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 619 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 620 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 621 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 622 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 623 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 624 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 625 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 626 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 627 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 628 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 629 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 630 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85120 Hartree a.u. electrostatic energy = -22.94663 Hartree a.u. esr = 0.12300 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41949 Hartree a.u. n-l pseudopotential energy = 4.51490 Hartree a.u. exchange-correlation energy = -4.20323 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.615887E+00 0.987900E+00 0.968835E+00 H -0.244114E+00 -0.439131E+00 -0.143632E+01 O -0.330988E+00 -0.511073E+00 0.416521E+00 ATOMIC_VELOCITIES H 0.109716E-04 -0.308555E-05 -0.853254E-05 H -0.487026E-05 -0.715829E-05 -0.614237E-07 O -0.384375E-06 0.645348E-06 0.541408E-06 Forces acting on atoms (au): H -0.484684E-05 0.797521E-06 0.275958E-04 H -0.617613E-05 -0.179088E-05 0.226693E-04 O -0.674082E-04 0.108374E-04 0.377184E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.03 0.0036 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 630 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.815 sec. 631 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 632 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 633 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 634 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 635 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 636 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 637 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 638 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 639 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 640 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 641 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 642 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 643 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 644 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 645 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 646 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 647 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 648 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 649 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 650 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 651 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 652 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 653 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 654 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 655 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 656 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 657 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 658 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 659 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 660 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85120 Hartree a.u. electrostatic energy = -22.94663 Hartree a.u. esr = 0.12300 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41948 Hartree a.u. n-l pseudopotential energy = 4.51489 Hartree a.u. exchange-correlation energy = -4.20323 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.616872E+00 0.987621E+00 0.968074E+00 H -0.244557E+00 -0.439781E+00 -0.143632E+01 O -0.331022E+00 -0.511014E+00 0.416569E+00 ATOMIC_VELOCITIES H 0.109018E-04 -0.314834E-05 -0.836524E-05 H -0.496949E-05 -0.728922E-05 -0.402212E-07 O -0.373728E-06 0.657552E-06 0.529532E-06 Forces acting on atoms (au): H -0.615982E-05 -0.133523E-05 0.269446E-04 H -0.635873E-05 -0.205756E-05 0.250153E-04 O -0.646801E-04 0.147575E-04 0.373963E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.03 0.0037 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 660 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.790 sec. 661 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 662 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 663 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 664 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 665 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 666 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 667 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 668 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 669 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 670 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 671 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 672 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 673 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 674 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 675 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 676 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 677 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 678 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 679 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 680 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 681 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 682 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 683 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 684 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 685 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 686 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 687 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 688 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 689 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 690 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85119 Hartree a.u. electrostatic energy = -22.94663 Hartree a.u. esr = 0.12300 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41948 Hartree a.u. n-l pseudopotential energy = 4.51489 Hartree a.u. exchange-correlation energy = -4.20323 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.617850E+00 0.987334E+00 0.967328E+00 H -0.245008E+00 -0.440443E+00 -0.143633E+01 O -0.331055E+00 -0.510954E+00 0.416616E+00 ATOMIC_VELOCITIES H 0.108292E-04 -0.321778E-05 -0.822475E-05 H -0.505679E-05 -0.740270E-05 -0.764498E-08 O -0.363653E-06 0.669076E-06 0.518629E-06 Forces acting on atoms (au): H -0.529536E-05 -0.371072E-07 0.263417E-04 H -0.574062E-05 -0.118145E-05 0.237838E-04 O -0.654100E-04 0.130838E-04 0.374734E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.03 0.0037 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 690 0.00000 0.0 0.0 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 writing restart file: .//cp_91.save restart file written in 0.813 sec. in while: event_index 5 ======================================== EMPLOY RULES: CURRENT_NFI= 691 event_index= 5 event_step== 691 ======================================== RULE EVENT: ion_temperature NOSE RULE EVENT: tempw 150.000000000000 in while after: event_index 6 691 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 0.0000 0.0000 692 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0001 -0.0001 693 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0001 -0.0004 694 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0002 -0.0009 695 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0002 -0.0014 696 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0003 -0.0022 697 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0003 -0.0030 698 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0004 -0.0040 699 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0004 -0.0052 700 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0005 -0.0065 701 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0005 -0.0079 702 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0006 -0.0095 703 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0006 -0.0112 704 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0006 -0.0131 705 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0007 -0.0151 706 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0007 -0.0173 707 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0008 -0.0196 708 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0008 -0.0220 709 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0009 -0.0246 710 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0009 -0.0273 711 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0010 -0.0302 712 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0010 -0.0332 713 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0011 -0.0364 714 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0011 -0.0397 715 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0012 -0.0432 716 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0012 -0.0468 717 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0013 -0.0505 718 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0013 -0.0544 719 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0014 -0.0584 * Physical Quantities at step: 720 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85119 Hartree a.u. electrostatic energy = -22.94663 Hartree a.u. esr = 0.12300 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41948 Hartree a.u. n-l pseudopotential energy = 4.51489 Hartree a.u. exchange-correlation energy = -4.20323 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.618841E+00 0.987038E+00 0.966579E+00 H -0.245475E+00 -0.441125E+00 -0.143633E+01 O -0.331088E+00 -0.510893E+00 0.416663E+00 ATOMIC_VELOCITIES H 0.114106E-04 -0.341383E-05 -0.858548E-05 H -0.539863E-05 -0.789192E-05 -0.195411E-07 O -0.378749E-06 0.712247E-06 0.542104E-06 Forces acting on atoms (au): H -0.105169E-04 0.266776E-05 0.299317E-04 H -0.204909E-05 0.415286E-05 0.237514E-04 O -0.631525E-04 0.102509E-04 0.373482E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.03 0.0037 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 720 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0014 -0.0626 writing restart file: .//cp_91.save restart file written in 0.790 sec. 721 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0015 -0.0669 722 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0015 -0.0714 723 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0016 -0.0760 724 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0016 -0.0807 725 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0017 -0.0856 726 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0017 -0.0906 727 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0018 -0.0958 728 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0018 -0.1011 729 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0018 -0.1066 730 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0019 -0.1122 731 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0019 -0.1180 732 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0020 -0.1239 733 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0020 -0.1299 734 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0021 -0.1361 735 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0021 -0.1424 736 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0022 -0.1489 737 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0022 -0.1555 738 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0023 -0.1623 739 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0023 -0.1692 740 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0024 -0.1762 741 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0024 -0.1834 742 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0025 -0.1907 743 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0025 -0.1982 744 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0026 -0.2058 745 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0026 -0.2136 746 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0027 -0.2215 747 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0027 -0.2296 748 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0028 -0.2378 749 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0028 -0.2461 * Physical Quantities at step: 750 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85119 Hartree a.u. electrostatic energy = -22.94663 Hartree a.u. esr = 0.12300 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41948 Hartree a.u. n-l pseudopotential energy = 4.51489 Hartree a.u. exchange-correlation energy = -4.20323 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.619933E+00 0.986710E+00 0.965760E+00 H -0.245992E+00 -0.441882E+00 -0.143633E+01 O -0.331124E+00 -0.510824E+00 0.416715E+00 ATOMIC_VELOCITIES H 0.129916E-04 -0.390281E-05 -0.971939E-05 H -0.615343E-05 -0.901704E-05 -0.147194E-07 O -0.430797E-06 0.813933E-06 0.613235E-06 Forces acting on atoms (au): H -0.316454E-04 0.940098E-05 0.459461E-04 H 0.921006E-05 0.206674E-04 0.250464E-04 O -0.546924E-04 0.143518E-05 0.369153E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.04 0.0038 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 750 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0029 -0.2546 writing restart file: .//cp_91.save restart file written in 1.032 sec. 751 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0029 -0.2632 752 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0029 -0.2720 753 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0030 -0.2809 754 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0030 -0.2900 755 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0031 -0.2992 756 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0031 -0.3086 757 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0032 -0.3180 758 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0032 -0.3277 759 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0033 -0.3375 760 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0033 -0.3474 761 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0034 -0.3575 762 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0034 -0.3677 763 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0035 -0.3780 764 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0035 -0.3885 765 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0036 -0.3992 766 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0036 -0.4100 767 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0037 -0.4209 768 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0037 -0.4320 769 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0038 -0.4432 770 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0038 -0.4546 771 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0039 -0.4661 772 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0039 -0.4777 773 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0040 -0.4895 774 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0040 -0.5014 775 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0041 -0.5135 776 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0041 -0.5258 777 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0041 -0.5381 778 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0042 -0.5506 779 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0042 -0.5633 * Physical Quantities at step: 780 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85119 Hartree a.u. electrostatic energy = -22.94663 Hartree a.u. esr = 0.12300 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41948 Hartree a.u. n-l pseudopotential energy = 4.51489 Hartree a.u. exchange-correlation energy = -4.20323 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.621205E+00 0.986327E+00 0.964810E+00 H -0.246592E+00 -0.442765E+00 -0.143633E+01 O -0.331167E+00 -0.510745E+00 0.416775E+00 ATOMIC_VELOCITIES H 0.154339E-04 -0.468300E-05 -0.114971E-04 H -0.723941E-05 -0.106894E-04 0.412278E-08 O -0.516240E-06 0.968438E-06 0.724042E-06 Forces acting on atoms (au): H -0.663878E-04 0.206235E-04 0.730274E-04 H 0.266163E-04 0.467739E-04 0.261607E-04 O -0.414579E-04 -0.137471E-04 0.362633E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.05 0.0038 2 0.01 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 780 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0043 -0.5761 writing restart file: .//cp_91.save restart file written in 1.276 sec. 781 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0043 -0.5890 782 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0044 -0.6021 783 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0044 -0.6154 784 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0045 -0.6287 785 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0045 -0.6423 786 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0046 -0.6559 787 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0046 -0.6697 788 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0047 -0.6837 789 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0047 -0.6978 790 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0048 -0.7120 791 0.00000 0.0 0.1 -17.20325 -17.20325 -17.20325 -17.20325 0.0000 0.0000 -0.0048 -0.7264 792 0.00000 0.0 0.1 -17.20326 -17.20326 -17.20325 -17.20325 0.0000 0.0000 -0.0049 -0.7409 793 0.00000 0.0 0.1 -17.20326 -17.20326 -17.20325 -17.20325 0.0000 0.0000 -0.0049 -0.7556 794 0.00000 0.0 0.1 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0050 -0.7704 795 0.00000 0.0 0.1 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0050 -0.7854 796 0.00000 0.0 0.1 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0051 -0.8005 797 0.00000 0.0 0.1 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0051 -0.8157 798 0.00000 0.0 0.1 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0052 -0.8311 799 0.00000 0.0 0.1 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0052 -0.8466 800 0.00000 0.0 0.1 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0052 -0.8623 801 0.00000 0.0 0.1 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0053 -0.8781 802 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0053 -0.8941 803 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0054 -0.9102 804 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0054 -0.9265 805 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0055 -0.9429 806 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0055 -0.9594 807 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0056 -0.9761 808 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0056 -0.9929 809 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0057 -1.0099 * Physical Quantities at step: 810 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20326 Hartree a.u. kinetic energy = 7.85119 Hartree a.u. electrostatic energy = -22.94663 Hartree a.u. esr = 0.12300 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41947 Hartree a.u. n-l pseudopotential energy = 4.51489 Hartree a.u. exchange-correlation energy = -4.20323 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.622745E+00 0.985856E+00 0.963667E+00 H -0.247307E+00 -0.443828E+00 -0.143633E+01 O -0.331219E+00 -0.510648E+00 0.416847E+00 ATOMIC_VELOCITIES H 0.189959E-04 -0.583868E-05 -0.140645E-04 H -0.874325E-05 -0.130794E-04 0.200842E-07 O -0.645905E-06 0.119181E-05 0.884778E-06 Forces acting on atoms (au): H -0.117237E-03 0.376813E-04 0.112942E-03 H 0.508657E-04 0.840410E-04 0.277524E-04 O -0.219369E-04 -0.356538E-04 0.352542E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.08 0.0039 2 0.01 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 810 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0057 -1.0270 writing restart file: .//cp_91.save restart file written in 0.826 sec. 811 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0058 -1.0442 812 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0058 -1.0617 813 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0059 -1.0792 814 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0059 -1.0969 815 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0060 -1.1147 816 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0060 -1.1327 817 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0061 -1.1508 818 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0061 -1.1691 819 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0062 -1.1875 820 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0062 -1.2060 821 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0063 -1.2247 822 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0063 -1.2436 823 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0064 -1.2626 824 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0064 -1.2817 825 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0064 -1.3010 826 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0065 -1.3204 827 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0065 -1.3399 828 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0066 -1.3596 829 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0066 -1.3795 830 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0067 -1.3995 831 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0067 -1.4196 832 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0068 -1.4399 833 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0068 -1.4603 834 0.00000 0.0 0.2 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0069 -1.4809 835 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0069 -1.5016 836 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0070 -1.5224 837 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0070 -1.5434 838 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0071 -1.5645 839 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0071 -1.5858 * Physical Quantities at step: 840 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20326 Hartree a.u. kinetic energy = 7.85119 Hartree a.u. electrostatic energy = -22.94664 Hartree a.u. esr = 0.12300 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41947 Hartree a.u. n-l pseudopotential energy = 4.51489 Hartree a.u. exchange-correlation energy = -4.20323 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.624676E+00 0.985258E+00 0.962243E+00 H -0.248185E+00 -0.445151E+00 -0.143633E+01 O -0.331285E+00 -0.510527E+00 0.416937E+00 ATOMIC_VELOCITIES H 0.242998E-04 -0.758546E-05 -0.178300E-04 H -0.109004E-04 -0.165559E-04 0.129899E-07 O -0.844143E-06 0.152087E-05 0.112244E-05 Forces acting on atoms (au): H -0.192629E-03 0.632173E-04 0.171176E-03 H 0.846620E-04 0.139279E-03 0.296961E-04 O 0.821370E-05 -0.678459E-04 0.334727E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.13 0.0040 2 0.01 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 840 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0072 -1.6073 writing restart file: .//cp_91.save restart file written in 0.785 sec. 841 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0072 -1.6288 842 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0073 -1.6505 843 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0073 -1.6724 844 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0074 -1.6944 845 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0074 -1.7165 846 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0075 -1.7388 847 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0075 -1.7613 848 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0075 -1.7838 849 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0076 -1.8065 850 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0076 -1.8294 851 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0077 -1.8524 852 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0077 -1.8756 853 0.00000 0.0 0.3 -17.20326 -17.20326 -17.20326 -17.20326 0.0000 0.0000 -0.0078 -1.8989 854 0.00000 0.0 0.4 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0078 -1.9223 855 0.00000 0.0 0.4 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0079 -1.9459 856 0.00000 0.0 0.4 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0079 -1.9696 857 0.00000 0.0 0.4 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0080 -1.9935 858 0.00000 0.0 0.4 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0080 -2.0175 859 0.00000 0.0 0.4 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0081 -2.0416 860 0.00000 0.0 0.4 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0081 -2.0659 861 0.00000 0.0 0.4 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0082 -2.0904 862 0.00000 0.0 0.4 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0082 -2.1149 863 0.00000 0.0 0.4 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0083 -2.1397 864 0.00000 0.0 0.4 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0083 -2.1645 865 0.00000 0.0 0.4 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0084 -2.1896 866 0.00000 0.0 0.5 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0084 -2.2147 867 0.00000 0.0 0.5 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0085 -2.2400 868 0.00000 0.0 0.5 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0085 -2.2655 869 0.00000 0.0 0.5 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0086 -2.2911 * Physical Quantities at step: 870 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20326 Hartree a.u. kinetic energy = 7.85119 Hartree a.u. electrostatic energy = -22.94664 Hartree a.u. esr = 0.12300 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41946 Hartree a.u. n-l pseudopotential energy = 4.51489 Hartree a.u. exchange-correlation energy = -4.20323 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.627206E+00 0.984460E+00 0.960399E+00 H -0.249302E+00 -0.446864E+00 -0.143632E+01 O -0.331374E+00 -0.510369E+00 0.417052E+00 ATOMIC_VELOCITIES H 0.325692E-04 -0.103791E-04 -0.235853E-04 H -0.141384E-04 -0.219288E-04 0.903687E-07 O -0.116111E-05 0.203536E-05 0.148015E-05 Forces acting on atoms (au): H -0.308654E-03 0.102741E-03 0.260013E-03 H 0.135301E-03 0.219871E-03 0.354524E-04 O 0.552282E-04 -0.115613E-03 0.309450E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.23 0.0041 2 0.02 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 870 0.00000 0.0 0.5 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0086 -2.3168 writing restart file: .//cp_91.save restart file written in 0.826 sec. 871 0.00000 0.0 0.5 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0086 -2.3427 872 0.00000 0.0 0.5 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0087 -2.3687 873 0.00000 0.0 0.5 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0087 -2.3948 874 0.00000 0.0 0.5 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0088 -2.4211 875 0.00000 0.0 0.5 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0088 -2.4476 876 0.00000 0.0 0.6 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0089 -2.4742 877 0.00000 0.0 0.6 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0089 -2.5009 878 0.00000 0.0 0.6 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0090 -2.5278 879 0.00000 0.0 0.6 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0090 -2.5548 880 0.00000 0.0 0.6 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0091 -2.5820 881 0.00000 0.0 0.6 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0091 -2.6093 882 0.00000 0.0 0.6 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0092 -2.6368 883 0.00000 0.0 0.6 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0092 -2.6644 884 0.00000 0.0 0.7 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0093 -2.6921 885 0.00000 0.0 0.7 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0093 -2.7200 886 0.00000 0.0 0.7 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0094 -2.7480 887 0.00000 0.0 0.7 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0094 -2.7762 888 0.00000 0.0 0.7 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0095 -2.8045 889 0.00000 0.0 0.7 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0095 -2.8329 890 0.00000 0.0 0.8 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0096 -2.8615 891 0.00000 0.0 0.8 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0096 -2.8903 892 0.00000 0.0 0.8 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0097 -2.9192 893 0.00000 0.0 0.8 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0097 -2.9482 894 0.00000 0.0 0.8 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0097 -2.9774 895 0.00000 0.0 0.9 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0098 -3.0067 896 0.00000 0.0 0.9 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0098 -3.0361 897 0.00000 0.0 0.9 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0099 -3.0657 898 0.00000 0.0 0.9 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0099 -3.0955 899 0.00000 0.0 0.9 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0100 -3.1254 * Physical Quantities at step: 900 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20326 Hartree a.u. kinetic energy = 7.85118 Hartree a.u. electrostatic energy = -22.94665 Hartree a.u. esr = 0.12299 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41946 Hartree a.u. n-l pseudopotential energy = 4.51489 Hartree a.u. exchange-correlation energy = -4.20323 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.630699E+00 0.983331E+00 0.957892E+00 H -0.250785E+00 -0.449203E+00 -0.143631E+01 O -0.331501E+00 -0.510150E+00 0.417209E+00 ATOMIC_VELOCITIES H 0.462724E-04 -0.151599E-04 -0.329133E-04 H -0.192470E-04 -0.308372E-04 0.263454E-06 O -0.170256E-05 0.289776E-05 0.205689E-05 Forces acting on atoms (au): H -0.497859E-03 0.168876E-03 0.402061E-03 H 0.214258E-03 0.350496E-03 0.390300E-04 O 0.133992E-03 -0.193250E-03 0.276445E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.46 0.0044 2 0.05 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 900 0.00000 0.0 1.0 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0100 -3.1554 writing restart file: .//cp_91.save restart file written in 0.804 sec. 901 0.00000 0.0 1.0 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0101 -3.1856 902 0.00000 0.0 1.0 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0101 -3.2159 903 0.00000 0.0 1.0 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0102 -3.2463 904 0.00000 0.0 1.1 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0102 -3.2769 905 0.00000 0.0 1.1 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0103 -3.3077 906 0.00000 0.0 1.1 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0103 -3.3386 907 0.00000 0.0 1.2 -17.20326 -17.20326 -17.20325 -17.20326 0.0000 0.0000 -0.0104 -3.3696 908 0.00000 0.0 1.2 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0104 -3.4008 909 0.00000 0.0 1.2 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0105 -3.4321 910 0.00000 0.0 1.3 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0105 -3.4635 911 0.00000 0.0 1.3 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0106 -3.4951 912 0.00000 0.0 1.3 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0106 -3.5269 913 0.00000 0.0 1.4 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0107 -3.5588 914 0.00000 0.0 1.4 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0107 -3.5908 915 0.00000 0.0 1.4 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0107 -3.6230 916 0.00000 0.0 1.5 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0108 -3.6553 917 0.00000 0.0 1.5 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0108 -3.6877 918 0.00000 0.0 1.6 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0109 -3.7203 919 0.00000 0.0 1.6 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0109 -3.7531 920 0.00000 0.0 1.7 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0110 -3.7860 921 0.00000 0.0 1.7 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0110 -3.8190 922 0.00000 0.0 1.8 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0111 -3.8522 923 0.00000 0.0 1.8 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0111 -3.8855 924 0.00000 0.0 1.9 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0112 -3.9189 925 0.00000 0.0 1.9 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0112 -3.9525 926 0.00000 0.0 2.0 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0113 -3.9863 927 0.00000 0.0 2.0 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0113 -4.0201 928 0.00000 0.0 2.1 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0114 -4.0542 929 0.00000 0.0 2.2 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0114 -4.0883 * Physical Quantities at step: 930 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20326 Hartree a.u. kinetic energy = 7.85118 Hartree a.u. electrostatic energy = -22.94665 Hartree a.u. esr = 0.12299 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41945 Hartree a.u. n-l pseudopotential energy = 4.51489 Hartree a.u. exchange-correlation energy = -4.20323 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.635850E+00 0.981613E+00 0.954272E+00 H -0.252868E+00 -0.452619E+00 -0.143627E+01 O -0.331694E+00 -0.509827E+00 0.417435E+00 ATOMIC_VELOCITIES H 0.706816E-04 -0.239899E-04 -0.491351E-04 H -0.278279E-04 -0.466804E-04 0.492100E-06 O -0.269972E-05 0.445213E-05 0.306444E-05 Forces acting on atoms (au): H -0.828693E-03 0.288084E-03 0.644119E-03 H 0.345295E-03 0.577735E-03 0.471082E-04 O 0.276513E-03 -0.329995E-03 0.215554E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1.06 0.0047 2 0.11 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 930 0.00000 0.0 2.2 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0115 -4.1226 writing restart file: .//cp_91.save restart file written in 0.824 sec. 931 0.00000 0.0 2.3 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0115 -4.1571 932 0.00000 0.0 2.4 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0116 -4.1917 933 0.00000 0.0 2.4 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0116 -4.2264 934 0.00000 0.0 2.5 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0116 -4.2613 935 0.00000 0.0 2.6 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0117 -4.2963 936 0.00000 0.0 2.7 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0117 -4.3314 937 0.00000 0.0 2.8 -17.20326 -17.20326 -17.20325 -17.20327 0.0000 0.0000 -0.0118 -4.3667 938 0.00000 0.0 2.9 -17.20326 -17.20326 -17.20325 -17.20328 0.0000 0.0000 -0.0118 -4.4022 939 0.00000 0.0 3.0 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0119 -4.4377 940 0.00000 0.0 3.0 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0119 -4.4735 941 0.00000 0.0 3.2 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0120 -4.5093 942 0.00000 0.0 3.3 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0120 -4.5453 943 0.00000 0.0 3.4 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0121 -4.5815 944 0.00000 0.0 3.5 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0121 -4.6177 945 0.00000 0.0 3.6 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0122 -4.6542 946 0.00000 0.0 3.7 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0122 -4.6907 947 0.00000 0.0 3.8 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0123 -4.7274 948 0.00000 0.0 4.0 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0123 -4.7643 949 0.00000 0.0 4.1 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0124 -4.8013 950 0.00000 0.0 4.3 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0124 -4.8384 951 0.00000 0.0 4.4 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0124 -4.8756 952 0.00000 0.0 4.6 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0125 -4.9130 953 0.00000 0.0 4.7 -17.20326 -17.20326 -17.20324 -17.20328 0.0000 0.0000 -0.0125 -4.9506 954 0.00000 0.0 4.9 -17.20326 -17.20326 -17.20324 -17.20329 0.0000 0.0000 -0.0126 -4.9883 955 0.00000 0.0 5.1 -17.20326 -17.20326 -17.20323 -17.20329 0.0000 0.0000 -0.0126 -5.0261 956 0.00000 0.0 5.3 -17.20326 -17.20326 -17.20323 -17.20329 0.0000 0.0000 -0.0127 -5.0640 957 0.00000 0.0 5.5 -17.20326 -17.20326 -17.20323 -17.20329 0.0000 0.0000 -0.0127 -5.1021 958 0.00000 0.0 5.7 -17.20326 -17.20326 -17.20323 -17.20329 0.0000 0.0000 -0.0128 -5.1404 959 0.00000 0.0 5.9 -17.20326 -17.20326 -17.20323 -17.20329 0.0000 0.0000 -0.0128 -5.1788 * Physical Quantities at step: 960 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20326 Hartree a.u. kinetic energy = 7.85117 Hartree a.u. electrostatic energy = -22.94667 Hartree a.u. esr = 0.12298 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41941 Hartree a.u. n-l pseudopotential energy = 4.51488 Hartree a.u. exchange-correlation energy = -4.20322 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.644088E+00 0.978751E+00 0.948626E+00 H -0.255997E+00 -0.458036E+00 -0.143621E+01 O -0.332016E+00 -0.509305E+00 0.417787E+00 ATOMIC_VELOCITIES H 0.117858E-03 -0.417935E-04 -0.797494E-04 H -0.432835E-04 -0.772272E-04 0.111268E-05 O -0.469806E-05 0.749814E-05 0.495401E-05 Forces acting on atoms (au): H -0.145626E-02 0.520755E-03 0.108955E-02 H 0.578829E-03 0.100608E-02 0.655137E-04 O 0.557881E-03 -0.589655E-03 0.103025E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2.89 0.0054 2 0.32 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 960 0.00000 0.0 6.1 -17.20326 -17.20326 -17.20323 -17.20329 0.0000 0.0000 -0.0129 -5.2173 writing restart file: .//cp_91.save restart file written in 0.800 sec. 961 0.00000 0.0 6.3 -17.20326 -17.20326 -17.20323 -17.20329 0.0000 0.0000 -0.0129 -5.2559 962 0.00000 0.0 6.6 -17.20326 -17.20326 -17.20323 -17.20329 0.0000 0.0000 -0.0130 -5.2947 963 0.00000 0.0 6.8 -17.20326 -17.20326 -17.20323 -17.20329 0.0000 0.0000 -0.0130 -5.3336 964 0.00000 0.0 7.1 -17.20326 -17.20326 -17.20322 -17.20330 0.0000 0.0000 -0.0130 -5.3727 965 0.00000 0.0 7.3 -17.20326 -17.20326 -17.20322 -17.20330 0.0000 0.0000 -0.0131 -5.4119 966 0.00000 0.0 7.6 -17.20326 -17.20326 -17.20322 -17.20330 0.0000 0.0000 -0.0131 -5.4513 967 0.00000 0.0 7.9 -17.20326 -17.20326 -17.20322 -17.20330 0.0000 0.0000 -0.0132 -5.4907 968 0.00000 0.0 8.2 -17.20326 -17.20326 -17.20322 -17.20330 0.0000 0.0000 -0.0132 -5.5303 969 0.00000 0.0 8.6 -17.20326 -17.20326 -17.20322 -17.20330 0.0000 0.0000 -0.0133 -5.5701 970 0.00000 0.0 8.9 -17.20326 -17.20326 -17.20321 -17.20330 0.0000 0.0000 -0.0133 -5.6100 971 0.00000 0.0 9.2 -17.20326 -17.20326 -17.20321 -17.20330 0.0000 0.0000 -0.0134 -5.6500 972 0.00000 0.0 9.6 -17.20326 -17.20326 -17.20321 -17.20331 0.0000 0.0000 -0.0134 -5.6901 973 0.00000 0.0 10.0 -17.20326 -17.20326 -17.20321 -17.20331 0.0000 0.0000 -0.0135 -5.7304 974 0.00000 0.0 10.4 -17.20326 -17.20326 -17.20321 -17.20331 0.0000 0.0000 -0.0135 -5.7709 975 0.00000 0.0 10.8 -17.20326 -17.20326 -17.20320 -17.20331 0.0000 0.0000 -0.0135 -5.8114 976 0.00000 0.0 11.3 -17.20326 -17.20326 -17.20320 -17.20331 0.0000 0.0000 -0.0136 -5.8521 977 0.00000 0.0 11.8 -17.20325 -17.20325 -17.20320 -17.20331 0.0000 0.0000 -0.0136 -5.8929 978 0.00000 0.0 12.2 -17.20325 -17.20325 -17.20320 -17.20332 0.0000 0.0000 -0.0137 -5.9339 979 0.00000 0.0 12.8 -17.20325 -17.20325 -17.20319 -17.20332 0.0000 0.0000 -0.0137 -5.9750 980 0.00000 0.0 13.3 -17.20325 -17.20325 -17.20319 -17.20332 0.0000 0.0000 -0.0138 -6.0162 981 0.00000 0.0 13.9 -17.20325 -17.20325 -17.20319 -17.20332 0.0000 0.0000 -0.0138 -6.0576 982 0.00000 0.0 14.4 -17.20325 -17.20325 -17.20318 -17.20333 0.0000 0.0000 -0.0138 -6.0990 983 0.00000 0.0 15.1 -17.20325 -17.20325 -17.20318 -17.20333 0.0000 0.0000 -0.0139 -6.1406 984 0.00000 0.0 15.7 -17.20325 -17.20325 -17.20318 -17.20333 0.0000 0.0000 -0.0139 -6.1824 985 0.00000 0.0 16.4 -17.20325 -17.20325 -17.20317 -17.20333 0.0000 0.0000 -0.0140 -6.2243 986 0.00000 0.0 17.1 -17.20325 -17.20325 -17.20317 -17.20334 0.0000 0.0000 -0.0140 -6.2663 987 0.00000 0.0 17.9 -17.20325 -17.20325 -17.20317 -17.20334 0.0000 0.0000 -0.0141 -6.3084 988 0.00000 0.0 18.7 -17.20325 -17.20325 -17.20316 -17.20334 0.0000 0.0000 -0.0141 -6.3506 989 0.00001 0.0 19.5 -17.20325 -17.20325 -17.20316 -17.20334 0.0000 0.0000 -0.0141 -6.3930 * Physical Quantities at step: 990 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20325 Hartree a.u. kinetic energy = 7.85112 Hartree a.u. electrostatic energy = -22.94670 Hartree a.u. esr = 0.12296 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41933 Hartree a.u. n-l pseudopotential energy = 4.51486 Hartree a.u. exchange-correlation energy = -4.20321 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.658585E+00 0.973456E+00 0.938968E+00 H -0.261084E+00 -0.467503E+00 -0.143604E+01 O -0.332609E+00 -0.508375E+00 0.418385E+00 ATOMIC_VELOCITIES H 0.217098E-03 -0.814090E-04 -0.142845E-03 H -0.731913E-04 -0.141454E-03 0.304419E-05 O -0.906593E-05 0.140401E-04 0.880726E-05 Forces acting on atoms (au): H -0.275698E-02 0.101504E-02 0.198219E-02 H 0.102745E-02 0.188637E-02 0.964199E-04 O 0.117182E-02 -0.112204E-02 -0.108567E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 9.63 0.0069 2 1.10 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 990 0.00001 0.0 20.3 -17.20325 -17.20325 -17.20315 -17.20335 0.0000 0.0000 -0.0142 -6.4355 writing restart file: .//cp_91.save restart file written in 0.819 sec. 991 0.00001 0.0 21.3 -17.20325 -17.20325 -17.20315 -17.20335 0.0000 0.0000 -0.0142 -6.4781 992 0.00001 0.0 22.2 -17.20325 -17.20325 -17.20314 -17.20335 0.0000 0.0000 -0.0143 -6.5209 993 0.00001 0.0 23.2 -17.20325 -17.20325 -17.20314 -17.20336 0.0000 0.0000 -0.0143 -6.5638 994 0.00001 0.0 24.3 -17.20325 -17.20325 -17.20313 -17.20336 0.0000 0.0000 -0.0144 -6.6068 995 0.00001 0.0 25.4 -17.20325 -17.20325 -17.20312 -17.20336 0.0000 0.0000 -0.0144 -6.6499 996 0.00001 0.0 26.6 -17.20324 -17.20324 -17.20312 -17.20337 0.0000 0.0000 -0.0144 -6.6931 997 0.00001 0.0 27.8 -17.20324 -17.20324 -17.20311 -17.20337 0.0000 0.0000 -0.0145 -6.7365 998 0.00001 0.0 29.1 -17.20324 -17.20324 -17.20310 -17.20338 0.0000 0.0000 -0.0145 -6.7800 999 0.00001 0.0 30.4 -17.20324 -17.20324 -17.20310 -17.20338 0.0000 0.0000 -0.0145 -6.8235 1000 0.00001 0.0 31.9 -17.20324 -17.20324 -17.20309 -17.20339 0.0000 0.0000 -0.0146 -6.8672 1001 0.00001 0.0 33.4 -17.20324 -17.20324 -17.20308 -17.20339 0.0000 0.0000 -0.0146 -6.9111 1002 0.00001 0.0 35.0 -17.20324 -17.20324 -17.20307 -17.20340 0.0000 0.0000 -0.0147 -6.9550 1003 0.00001 0.0 36.6 -17.20324 -17.20324 -17.20306 -17.20340 0.0000 0.0000 -0.0147 -6.9990 1004 0.00001 0.0 38.4 -17.20324 -17.20324 -17.20305 -17.20341 0.0000 0.0000 -0.0147 -7.0432 1005 0.00001 0.0 40.2 -17.20323 -17.20323 -17.20304 -17.20341 0.0000 0.0000 -0.0148 -7.0874 1006 0.00001 0.0 42.2 -17.20323 -17.20323 -17.20303 -17.20342 0.0000 0.0000 -0.0148 -7.1318 1007 0.00001 0.0 44.2 -17.20323 -17.20323 -17.20302 -17.20343 0.0000 0.0000 -0.0148 -7.1762 1008 0.00001 0.0 46.4 -17.20323 -17.20323 -17.20301 -17.20343 0.0000 0.0000 -0.0149 -7.2208 1009 0.00001 0.0 48.6 -17.20323 -17.20323 -17.20300 -17.20344 0.0000 0.0000 -0.0149 -7.2655 1010 0.00001 0.0 51.0 -17.20323 -17.20323 -17.20298 -17.20345 0.0000 0.0000 -0.0149 -7.3102 1011 0.00001 0.0 53.5 -17.20322 -17.20322 -17.20297 -17.20345 0.0000 0.0000 -0.0150 -7.3551 1012 0.00001 0.0 56.2 -17.20322 -17.20322 -17.20296 -17.20346 0.0000 0.0000 -0.0150 -7.4000 1013 0.00001 0.0 59.0 -17.20322 -17.20322 -17.20294 -17.20347 0.0000 0.0000 -0.0150 -7.4451 1014 0.00002 0.0 61.9 -17.20322 -17.20322 -17.20292 -17.20348 0.0000 0.0000 -0.0151 -7.4902 1015 0.00002 0.0 65.0 -17.20322 -17.20322 -17.20291 -17.20349 0.0000 0.0000 -0.0151 -7.5354 1016 0.00002 0.0 68.3 -17.20321 -17.20321 -17.20289 -17.20350 0.0000 0.0000 -0.0151 -7.5807 1017 0.00002 0.0 71.7 -17.20321 -17.20321 -17.20287 -17.20351 0.0000 0.0000 -0.0151 -7.6261 1018 0.00002 0.0 75.3 -17.20321 -17.20321 -17.20285 -17.20352 0.0000 0.0000 -0.0152 -7.6715 1019 0.00002 0.0 79.2 -17.20320 -17.20320 -17.20283 -17.20353 0.0000 0.0000 -0.0152 -7.7170 * Physical Quantities at step: 1020 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20320 Hartree a.u. kinetic energy = 7.85097 Hartree a.u. electrostatic energy = -22.94678 Hartree a.u. esr = 0.12287 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41904 Hartree a.u. n-l pseudopotential energy = 4.51479 Hartree a.u. exchange-correlation energy = -4.20315 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.686793E+00 0.962437E+00 0.920659E+00 H -0.270089E+00 -0.485869E+00 -0.143554E+01 O -0.333818E+00 -0.506524E+00 0.419507E+00 ATOMIC_VELOCITIES H 0.440097E-03 -0.178245E-03 -0.282979E-03 H -0.134213E-03 -0.286775E-03 0.924284E-05 O -0.192703E-04 0.292956E-04 0.172450E-04 Forces acting on atoms (au): H -0.568477E-02 0.214783E-02 0.391353E-02 H 0.194540E-02 0.384367E-02 0.159778E-03 O 0.265275E-02 -0.226739E-02 -0.561063E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 39.25 0.0111 2 4.69 0.0001 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1020 0.00002 0.0 83.2 -17.20320 -17.20320 -17.20280 -17.20354 0.0000 0.0000 -0.0152 -7.7626 writing restart file: .//cp_91.save restart file written in 0.833 sec. 1021 0.00002 0.0 87.4 -17.20320 -17.20320 -17.20278 -17.20356 0.0000 0.0000 -0.0152 -7.8083 1022 0.00002 0.0 91.9 -17.20319 -17.20319 -17.20276 -17.20357 0.0000 0.0000 -0.0152 -7.8540 1023 0.00002 0.0 96.6 -17.20319 -17.20319 -17.20273 -17.20358 0.0000 0.0000 -0.0153 -7.8998 1024 0.00002 0.0 101.5 -17.20318 -17.20318 -17.20270 -17.20360 0.0000 0.0000 -0.0153 -7.9456 1025 0.00003 0.0 106.8 -17.20318 -17.20318 -17.20267 -17.20361 0.0000 0.0000 -0.0153 -7.9914 1026 0.00003 0.0 112.3 -17.20318 -17.20318 -17.20264 -17.20363 0.0000 0.0000 -0.0153 -8.0373 1027 0.00003 0.0 118.0 -17.20317 -17.20317 -17.20261 -17.20364 0.0000 0.0000 -0.0153 -8.0833 1028 0.00003 0.0 124.1 -17.20317 -17.20317 -17.20258 -17.20366 0.0000 0.0000 -0.0153 -8.1292 1029 0.00003 0.0 130.5 -17.20316 -17.20316 -17.20254 -17.20368 0.0000 0.0000 -0.0153 -8.1752 1030 0.00003 0.0 137.3 -17.20315 -17.20315 -17.20250 -17.20370 0.0000 0.0000 -0.0153 -8.2213 1031 0.00004 0.0 144.4 -17.20315 -17.20315 -17.20246 -17.20372 0.0000 0.0000 -0.0153 -8.2673 1032 0.00004 0.0 151.8 -17.20314 -17.20314 -17.20242 -17.20374 0.0000 0.0000 -0.0153 -8.3133 1033 0.00004 0.0 159.7 -17.20313 -17.20313 -17.20238 -17.20376 0.0000 0.0000 -0.0153 -8.3593 1034 0.00004 0.0 167.9 -17.20313 -17.20313 -17.20233 -17.20378 0.0000 0.0000 -0.0153 -8.4054 1035 0.00004 0.0 176.6 -17.20312 -17.20312 -17.20228 -17.20381 0.0000 0.0000 -0.0153 -8.4514 1036 0.00005 0.0 185.7 -17.20311 -17.20311 -17.20223 -17.20383 0.0000 0.0000 -0.0153 -8.4973 1037 0.00005 0.0 195.3 -17.20310 -17.20310 -17.20218 -17.20386 0.0000 0.0000 -0.0153 -8.5433 1038 0.00005 0.0 205.3 -17.20309 -17.20309 -17.20212 -17.20389 0.0000 0.0000 -0.0153 -8.5892 1039 0.00005 0.0 215.8 -17.20309 -17.20309 -17.20206 -17.20392 0.0000 0.0000 -0.0153 -8.6350 1040 0.00006 0.0 226.8 -17.20308 -17.20308 -17.20200 -17.20395 0.0000 0.0000 -0.0152 -8.6808 1041 0.00006 0.0 238.4 -17.20306 -17.20306 -17.20193 -17.20398 0.0000 0.0000 -0.0152 -8.7265 1042 0.00006 0.0 250.4 -17.20305 -17.20305 -17.20186 -17.20402 0.0000 0.0000 -0.0152 -8.7722 1043 0.00006 0.0 263.1 -17.20304 -17.20304 -17.20179 -17.20406 0.0000 0.0000 -0.0152 -8.8177 1044 0.00007 0.0 276.3 -17.20303 -17.20303 -17.20172 -17.20409 0.0000 0.0000 -0.0151 -8.8631 1045 0.00007 0.0 290.1 -17.20302 -17.20302 -17.20164 -17.20413 0.0000 0.0000 -0.0151 -8.9084 1046 0.00007 0.0 304.5 -17.20300 -17.20300 -17.20156 -17.20418 0.0000 0.0000 -0.0150 -8.9536 1047 0.00008 0.0 319.5 -17.20299 -17.20299 -17.20147 -17.20422 0.0000 0.0000 -0.0150 -8.9986 1048 0.00008 0.0 335.1 -17.20297 -17.20297 -17.20138 -17.20427 0.0000 0.0000 -0.0149 -9.0434 1049 0.00009 0.0 351.3 -17.20296 -17.20296 -17.20129 -17.20432 0.0000 0.0000 -0.0149 -9.0881 * Physical Quantities at step: 1050 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20294 Hartree a.u. kinetic energy = 7.85030 Hartree a.u. electrostatic energy = -22.94708 Hartree a.u. esr = 0.12247 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41777 Hartree a.u. n-l pseudopotential energy = 4.51446 Hartree a.u. exchange-correlation energy = -4.20285 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.25 -8.60 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.745547E+00 0.937105E+00 0.883104E+00 H -0.286953E+00 -0.524383E+00 -0.143392E+01 O -0.336457E+00 -0.502502E+00 0.421770E+00 ATOMIC_VELOCITIES H 0.917096E-03 -0.418641E-03 -0.585635E-03 H -0.250638E-03 -0.605760E-03 0.314149E-04 O -0.419859E-04 0.645358E-04 0.349151E-04 Forces acting on atoms (au): H -0.123226E-01 0.471619E-02 0.808570E-02 H 0.378800E-02 0.821922E-02 0.318950E-03 O 0.646549E-02 -0.457480E-02 -0.160059E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 173.11 0.0250 2 21.94 0.0002 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1050 0.00009 0.0 368.2 -17.20294 -17.20294 -17.20119 -17.20437 0.0000 0.0000 -0.0148 -9.1326 writing restart file: .//cp_91.save restart file written in 0.818 sec. 1051 0.00009 0.0 385.6 -17.20293 -17.20293 -17.20109 -17.20442 0.0000 0.0000 -0.0147 -9.1769 1052 0.00010 0.0 403.8 -17.20291 -17.20291 -17.20099 -17.20448 0.0000 0.0000 -0.0146 -9.2209 1053 0.00010 0.0 422.5 -17.20289 -17.20289 -17.20088 -17.20454 0.0000 0.0000 -0.0146 -9.2647 1054 0.00011 0.0 441.9 -17.20287 -17.20287 -17.20077 -17.20460 0.0000 0.0000 -0.0145 -9.3083 1055 0.00011 0.0 461.8 -17.20285 -17.20285 -17.20066 -17.20467 0.0000 0.0000 -0.0144 -9.3515 1056 0.00012 0.0 482.3 -17.20283 -17.20283 -17.20054 -17.20473 0.0000 0.0000 -0.0143 -9.3945 1057 0.00013 0.0 503.4 -17.20281 -17.20281 -17.20042 -17.20481 0.0000 0.0000 -0.0142 -9.4372 1058 0.00013 0.0 525.0 -17.20279 -17.20279 -17.20029 -17.20488 0.0000 0.0000 -0.0140 -9.4795 1059 0.00014 0.0 547.1 -17.20276 -17.20276 -17.20016 -17.20496 0.0000 0.0000 -0.0139 -9.5214 1060 0.00015 0.0 569.6 -17.20274 -17.20274 -17.20003 -17.20504 0.0000 0.0000 -0.0138 -9.5630 1061 0.00015 0.0 592.6 -17.20271 -17.20271 -17.19990 -17.20513 0.0000 0.0000 -0.0137 -9.6041 1062 0.00016 0.0 615.8 -17.20269 -17.20269 -17.19976 -17.20522 0.0000 0.0000 -0.0135 -9.6449 1063 0.00017 0.0 639.4 -17.20266 -17.20266 -17.19963 -17.20532 0.0000 0.0000 -0.0134 -9.6852 1064 0.00017 0.0 663.1 -17.20264 -17.20264 -17.19949 -17.20542 0.0000 0.0000 -0.0132 -9.7250 1065 0.00018 0.0 686.9 -17.20261 -17.20261 -17.19935 -17.20552 0.0000 0.0000 -0.0130 -9.7643 1066 0.00019 0.0 710.8 -17.20258 -17.20258 -17.19920 -17.20563 0.0000 0.0000 -0.0128 -9.8031 1067 0.00020 0.0 734.6 -17.20255 -17.20255 -17.19906 -17.20574 0.0000 0.0000 -0.0127 -9.8414 1068 0.00020 0.0 758.3 -17.20252 -17.20252 -17.19892 -17.20586 0.0000 0.0000 -0.0125 -9.8791 1069 0.00021 0.0 781.7 -17.20249 -17.20249 -17.19878 -17.20598 0.0000 0.0000 -0.0123 -9.9163 1070 0.00022 0.0 804.7 -17.20246 -17.20246 -17.19864 -17.20611 0.0000 0.0000 -0.0121 -9.9528 1071 0.00023 0.0 827.2 -17.20243 -17.20243 -17.19850 -17.20624 0.0000 0.0000 -0.0119 -9.9887 1072 0.00024 0.0 849.0 -17.20240 -17.20240 -17.19837 -17.20638 0.0000 0.0000 -0.0116 ******* 1073 0.00025 0.0 870.1 -17.20237 -17.20237 -17.19824 -17.20652 0.0000 0.0000 -0.0114 ******* 1074 0.00026 0.0 890.4 -17.20234 -17.20234 -17.19811 -17.20667 0.0000 0.0000 -0.0112 ******* 1075 0.00026 0.0 909.6 -17.20231 -17.20231 -17.19799 -17.20682 0.0000 0.0000 -0.0109 ******* 1076 0.00027 0.0 927.7 -17.20228 -17.20228 -17.19787 -17.20698 0.0000 0.0000 -0.0107 ******* 1077 0.00028 0.0 944.5 -17.20224 -17.20224 -17.19776 -17.20714 0.0000 0.0000 -0.0104 ******* 1078 0.00029 0.0 959.9 -17.20221 -17.20221 -17.19765 -17.20731 0.0000 0.0000 -0.0102 ******* 1079 0.00030 0.0 973.8 -17.20219 -17.20219 -17.19756 -17.20748 0.0000 0.0000 -0.0099 ******* * Physical Quantities at step: 1080 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20216 Hartree a.u. kinetic energy = 7.84762 Hartree a.u. electrostatic energy = -22.94778 Hartree a.u. esr = 0.12104 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41344 Hartree a.u. n-l pseudopotential energy = 4.51313 Hartree a.u. exchange-correlation energy = -4.20169 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.47 -12.21 -8.60 -6.52 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.855026E+00 0.881518E+00 0.812252E+00 H -0.315184E+00 -0.598252E+00 -0.142863E+01 O -0.341576E+00 -0.494346E+00 0.425901E+00 ATOMIC_VELOCITIES H 0.143945E-02 -0.815785E-03 -0.951378E-03 H -0.353343E-03 -0.997421E-03 0.930756E-04 O -0.684234E-04 0.114229E-03 0.540718E-04 Forces acting on atoms (au): H -0.227102E-01 0.875945E-02 0.141856E-01 H 0.609780E-02 0.148906E-01 0.522893E-03 O 0.136920E-01 -0.768185E-02 -0.356119E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 461.38 0.0710 2 63.41 0.0005 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1080 0.00031 0.0 986.2 -17.20216 -17.20216 -17.19747 -17.20766 0.0000 0.0000 -0.0097 ******* writing restart file: .//cp_91.save restart file written in 0.788 sec. 1081 0.00031 0.0 996.8 -17.20213 -17.20213 -17.19740 -17.20784 0.0000 0.0000 -0.0094 ******* 1082 0.00032 0.0 1005.6 -17.20210 -17.20210 -17.19733 -17.20803 0.0000 0.0000 -0.0091 ******* 1083 0.00033 0.0 1012.6 -17.20208 -17.20208 -17.19727 -17.20823 0.0000 0.0000 -0.0088 ******* 1084 0.00034 0.0 1017.6 -17.20206 -17.20206 -17.19722 -17.20842 0.0000 0.0000 -0.0086 ******* 1085 0.00034 0.0 1020.6 -17.20203 -17.20203 -17.19719 -17.20862 0.0000 0.0000 -0.0083 ******* 1086 0.00035 0.0 1021.7 -17.20201 -17.20201 -17.19716 -17.20883 0.0000 0.0000 -0.0080 ******* 1087 0.00035 0.0 1020.7 -17.20200 -17.20200 -17.19715 -17.20904 0.0000 0.0000 -0.0077 ******* 1088 0.00036 0.0 1017.6 -17.20198 -17.20198 -17.19715 -17.20925 0.0000 0.0000 -0.0075 ******* 1089 0.00037 0.0 1012.6 -17.20197 -17.20197 -17.19716 -17.20947 0.0000 0.0000 -0.0072 ******* 1090 0.00037 0.0 1005.6 -17.20195 -17.20195 -17.19718 -17.20969 0.0000 0.0000 -0.0069 ******* 1091 0.00037 0.0 996.6 -17.20194 -17.20194 -17.19721 -17.20991 0.0000 0.0000 -0.0066 ******* 1092 0.00038 0.0 985.8 -17.20194 -17.20194 -17.19725 -17.21014 0.0000 0.0000 -0.0064 ******* 1093 0.00038 0.0 973.2 -17.20193 -17.20193 -17.19731 -17.21036 0.0000 0.0000 -0.0061 ******* 1094 0.00038 0.0 958.8 -17.20193 -17.20193 -17.19737 -17.21059 0.0000 0.0000 -0.0058 ******* 1095 0.00038 0.0 942.9 -17.20193 -17.20193 -17.19745 -17.21082 0.0000 0.0000 -0.0056 ******* 1096 0.00038 0.0 925.5 -17.20193 -17.20193 -17.19753 -17.21105 0.0000 0.0000 -0.0053 ******* 1097 0.00038 0.0 906.7 -17.20193 -17.20193 -17.19763 -17.21128 0.0000 0.0000 -0.0051 ******* 1098 0.00038 0.0 886.7 -17.20194 -17.20194 -17.19773 -17.21151 0.0000 0.0000 -0.0048 ******* 1099 0.00038 0.0 865.6 -17.20195 -17.20195 -17.19784 -17.21173 0.0000 0.0000 -0.0046 ******* 1100 0.00038 0.0 843.5 -17.20196 -17.20196 -17.19795 -17.21196 0.0000 0.0000 -0.0044 ******* 1101 0.00037 0.0 820.5 -17.20197 -17.20197 -17.19808 -17.21219 0.0000 0.0000 -0.0042 ******* 1102 0.00037 0.0 796.9 -17.20199 -17.20199 -17.19820 -17.21241 0.0000 0.0000 -0.0040 ******* 1103 0.00037 0.0 772.6 -17.20201 -17.20201 -17.19834 -17.21264 0.0000 0.0000 -0.0038 ******* 1104 0.00036 0.0 748.0 -17.20203 -17.20203 -17.19847 -17.21286 0.0000 0.0000 -0.0036 ******* 1105 0.00036 0.0 723.0 -17.20205 -17.20205 -17.19861 -17.21307 0.0000 0.0000 -0.0034 ******* 1106 0.00035 0.0 697.8 -17.20207 -17.20207 -17.19875 -17.21329 0.0000 0.0000 -0.0032 ******* 1107 0.00034 0.0 672.5 -17.20209 -17.20209 -17.19890 -17.21350 0.0000 0.0000 -0.0030 ******* 1108 0.00034 0.0 647.3 -17.20212 -17.20212 -17.19904 -17.21371 0.0000 0.0000 -0.0029 ******* 1109 0.00033 0.0 622.2 -17.20215 -17.20215 -17.19919 -17.21391 0.0000 0.0000 -0.0027 ******* * Physical Quantities at step: 1110 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20217 Hartree a.u. kinetic energy = 7.84397 Hartree a.u. electrostatic energy = -22.94676 Hartree a.u. esr = 0.12007 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41077 Hartree a.u. n-l pseudopotential energy = 4.51160 Hartree a.u. exchange-correlation energy = -4.20023 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.47 -12.19 -8.62 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.971691E+00 0.802717E+00 0.731493E+00 H -0.342616E+00 -0.683646E+00 -0.141766E+01 O -0.347197E+00 -0.484002E+00 0.430298E+00 ATOMIC_VELOCITIES H 0.984214E-03 -0.828613E-03 -0.727409E-03 H -0.221500E-03 -0.783618E-03 0.135217E-03 O -0.480499E-04 0.101568E-03 0.373073E-04 Forces acting on atoms (au): H -0.212486E-01 0.103790E-01 0.139903E-01 H 0.480817E-02 0.141877E-01 -0.303106E-03 O 0.121454E-01 -0.101953E-01 -0.402285E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 277.14 0.1539 2 43.03 0.0013 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1110 0.00032 0.0 597.3 -17.20217 -17.20217 -17.19934 -17.21411 0.0000 0.0000 -0.0026 ******* writing restart file: .//cp_91.save restart file written in 0.818 sec. 1111 0.00032 0.0 572.7 -17.20220 -17.20220 -17.19948 -17.21430 0.0000 0.0000 -0.0024 ******* 1112 0.00031 0.0 548.5 -17.20223 -17.20223 -17.19963 -17.21449 0.0000 0.0000 -0.0023 ******* 1113 0.00030 0.0 524.7 -17.20226 -17.20226 -17.19977 -17.21468 0.0000 0.0000 -0.0022 ******* 1114 0.00029 0.0 501.4 -17.20229 -17.20229 -17.19991 -17.21486 0.0000 0.0000 -0.0020 ******* 1115 0.00028 0.0 478.7 -17.20232 -17.20232 -17.20005 -17.21503 0.0000 0.0000 -0.0019 ******* 1116 0.00028 0.0 456.5 -17.20235 -17.20235 -17.20019 -17.21520 0.0000 0.0000 -0.0018 ******* 1117 0.00027 0.0 435.0 -17.20239 -17.20239 -17.20032 -17.21537 0.0000 0.0000 -0.0017 ******* 1118 0.00026 0.0 414.2 -17.20242 -17.20242 -17.20045 -17.21553 0.0000 0.0000 -0.0017 ******* 1119 0.00025 0.0 394.0 -17.20245 -17.20245 -17.20058 -17.21568 0.0000 0.0000 -0.0016 ******* 1120 0.00024 0.0 374.5 -17.20248 -17.20248 -17.20070 -17.21583 0.0000 0.0000 -0.0015 ******* 1121 0.00023 0.0 355.7 -17.20251 -17.20251 -17.20082 -17.21598 0.0000 0.0000 -0.0014 ******* 1122 0.00022 0.0 337.6 -17.20254 -17.20254 -17.20094 -17.21612 0.0000 0.0000 -0.0014 ******* 1123 0.00021 0.0 320.2 -17.20257 -17.20257 -17.20105 -17.21625 0.0000 0.0000 -0.0013 ******* 1124 0.00021 0.0 303.5 -17.20260 -17.20260 -17.20116 -17.21638 0.0000 0.0000 -0.0013 ******* 1125 0.00020 0.0 287.5 -17.20263 -17.20263 -17.20127 -17.21650 0.0000 0.0000 -0.0012 ******* 1126 0.00019 0.0 272.3 -17.20266 -17.20266 -17.20137 -17.21662 0.0000 0.0000 -0.0012 ******* 1127 0.00018 0.0 257.6 -17.20269 -17.20269 -17.20147 -17.21674 0.0000 0.0000 -0.0011 ******* 1128 0.00017 0.0 243.7 -17.20272 -17.20272 -17.20156 -17.21685 0.0000 0.0000 -0.0011 ******* 1129 0.00017 0.0 230.4 -17.20274 -17.20274 -17.20165 -17.21695 0.0000 0.0000 -0.0011 ******* 1130 0.00016 0.0 217.7 -17.20277 -17.20277 -17.20174 -17.21705 0.0000 0.0000 -0.0010 ******* 1131 0.00015 0.0 205.7 -17.20279 -17.20279 -17.20182 -17.21715 0.0000 0.0000 -0.0010 ******* 1132 0.00015 0.0 194.2 -17.20282 -17.20282 -17.20190 -17.21724 0.0000 0.0000 -0.0010 ******* 1133 0.00014 0.0 183.4 -17.20284 -17.20284 -17.20197 -17.21733 0.0000 0.0000 -0.0010 ******* 1134 0.00013 0.0 173.0 -17.20287 -17.20287 -17.20204 -17.21741 0.0000 0.0000 -0.0010 ******* 1135 0.00013 0.0 163.2 -17.20289 -17.20289 -17.20211 -17.21749 0.0000 0.0000 -0.0010 ******* 1136 0.00012 0.0 153.9 -17.20291 -17.20291 -17.20218 -17.21756 0.0000 0.0000 -0.0010 ******* 1137 0.00011 0.0 145.1 -17.20293 -17.20293 -17.20224 -17.21764 0.0000 0.0000 -0.0010 ******* 1138 0.00011 0.0 136.8 -17.20295 -17.20295 -17.20230 -17.21771 0.0000 0.0000 -0.0010 ******* 1139 0.00010 0.0 128.9 -17.20297 -17.20297 -17.20236 -17.21777 0.0000 0.0000 -0.0010 ******* * Physical Quantities at step: 1140 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20299 Hartree a.u. kinetic energy = 7.84789 Hartree a.u. electrostatic energy = -22.94530 Hartree a.u. esr = 0.12216 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41687 Hartree a.u. n-l pseudopotential energy = 4.51310 Hartree a.u. exchange-correlation energy = -4.20181 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.22 -8.64 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.102891E+01 0.744025E+00 0.687617E+00 H -0.355175E+00 -0.734061E+00 -0.140727E+01 O -0.350011E+00 -0.477129E+00 0.432407E+00 ATOMIC_VELOCITIES H 0.368651E-03 -0.461897E-03 -0.275126E-03 H -0.789752E-04 -0.371768E-03 0.862579E-04 O -0.182492E-04 0.525197E-04 0.118984E-04 Forces acting on atoms (au): H -0.823475E-02 0.881835E-02 0.784069E-02 H 0.145974E-02 0.697017E-02 -0.128151E-02 O 0.220215E-02 -0.876927E-02 -0.217217E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 55.78 0.2144 2 9.93 0.0018 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1140 0.00010 0.0 121.5 -17.20299 -17.20299 -17.20241 -17.21783 0.0000 0.0000 -0.0010 ******* writing restart file: .//cp_91.save restart file written in 0.784 sec. 1141 0.00009 0.0 114.5 -17.20300 -17.20300 -17.20246 -17.21789 0.0000 0.0000 -0.0010 ******* 1142 0.00009 0.0 107.8 -17.20302 -17.20302 -17.20251 -17.21795 0.0000 0.0000 -0.0010 ******* 1143 0.00008 0.0 101.5 -17.20304 -17.20304 -17.20255 -17.21800 0.0000 0.0000 -0.0010 ******* 1144 0.00008 0.0 95.6 -17.20305 -17.20305 -17.20260 -17.21805 0.0000 0.0000 -0.0011 ******* 1145 0.00008 0.0 90.0 -17.20307 -17.20307 -17.20264 -17.21810 0.0000 0.0000 -0.0011 ******* 1146 0.00007 0.0 84.8 -17.20308 -17.20308 -17.20268 -17.21815 0.0000 0.0000 -0.0011 ******* 1147 0.00007 0.0 79.8 -17.20309 -17.20309 -17.20271 -17.21819 0.0000 0.0000 -0.0011 ******* 1148 0.00006 0.0 75.2 -17.20311 -17.20311 -17.20275 -17.21823 0.0000 0.0000 -0.0011 ******* 1149 0.00006 0.0 70.8 -17.20312 -17.20312 -17.20278 -17.21827 0.0000 0.0000 -0.0012 ******* 1150 0.00006 0.0 66.6 -17.20313 -17.20313 -17.20281 -17.21831 0.0000 0.0000 -0.0012 ******* 1151 0.00006 0.0 62.8 -17.20314 -17.20314 -17.20284 -17.21834 0.0000 0.0000 -0.0012 ******* 1152 0.00005 0.0 59.1 -17.20315 -17.20315 -17.20287 -17.21837 0.0000 0.0000 -0.0012 ******* 1153 0.00005 0.0 55.7 -17.20316 -17.20316 -17.20290 -17.21841 0.0000 0.0000 -0.0013 ******* 1154 0.00005 0.0 52.5 -17.20317 -17.20317 -17.20292 -17.21843 0.0000 0.0000 -0.0013 ******* 1155 0.00004 0.0 49.4 -17.20318 -17.20318 -17.20295 -17.21846 0.0000 0.0000 -0.0013 ******* 1156 0.00004 0.0 46.6 -17.20319 -17.20319 -17.20297 -17.21849 0.0000 0.0000 -0.0014 ******* 1157 0.00004 0.0 43.9 -17.20320 -17.20320 -17.20299 -17.21851 0.0000 0.0000 -0.0014 ******* 1158 0.00004 0.0 41.4 -17.20321 -17.20321 -17.20301 -17.21854 0.0000 0.0000 -0.0014 ******* 1159 0.00004 0.0 39.1 -17.20321 -17.20321 -17.20303 -17.21856 0.0000 0.0000 -0.0015 ******* 1160 0.00003 0.0 36.9 -17.20322 -17.20322 -17.20305 -17.21858 0.0000 0.0000 -0.0015 ******* 1161 0.00003 0.0 34.8 -17.20323 -17.20323 -17.20306 -17.21860 0.0000 0.0000 -0.0015 ******* 1162 0.00003 0.0 32.9 -17.20323 -17.20323 -17.20308 -17.21862 0.0000 0.0000 -0.0016 ******* 1163 0.00003 0.0 31.1 -17.20324 -17.20324 -17.20309 -17.21864 0.0000 0.0000 -0.0016 ******* 1164 0.00003 0.0 29.4 -17.20325 -17.20325 -17.20311 -17.21866 0.0000 0.0000 -0.0017 ******* 1165 0.00003 0.0 27.8 -17.20325 -17.20325 -17.20312 -17.21867 0.0000 0.0000 -0.0017 ******* 1166 0.00002 0.0 26.4 -17.20326 -17.20326 -17.20313 -17.21869 0.0000 0.0000 -0.0017 ******* 1167 0.00002 0.0 25.0 -17.20326 -17.20326 -17.20314 -17.21870 0.0000 0.0000 -0.0018 ******* 1168 0.00002 0.0 23.7 -17.20327 -17.20327 -17.20316 -17.21872 0.0000 0.0000 -0.0018 ******* 1169 0.00002 0.0 22.5 -17.20327 -17.20327 -17.20317 -17.21873 0.0000 0.0000 -0.0019 ******* * Physical Quantities at step: 1170 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20328 Hartree a.u. kinetic energy = 7.85207 Hartree a.u. electrostatic energy = -22.94622 Hartree a.u. esr = 0.12321 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41997 Hartree a.u. n-l pseudopotential energy = 4.51427 Hartree a.u. exchange-correlation energy = -4.20343 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.22 -8.63 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.105145E+01 0.716836E+00 0.674961E+00 H -0.360232E+00 -0.757920E+00 -0.140219E+01 O -0.351112E+00 -0.473913E+00 0.432884E+00 ATOMIC_VELOCITIES H 0.174107E-03 -0.173222E-03 -0.413209E-04 H -0.450378E-04 -0.189149E-03 0.325344E-04 O -0.813119E-05 0.228288E-04 0.553537E-06 Forces acting on atoms (au): H -0.277072E-02 0.475677E-02 0.300711E-02 H 0.219813E-03 0.304696E-02 -0.746101E-03 O 0.127998E-02 -0.319911E-02 -0.121172E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 9.76 0.2422 2 1.80 0.0021 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1170 0.00002 0.0 21.3 -17.20328 -17.20328 -17.20318 -17.21874 0.0000 0.0000 -0.0019 ******* writing restart file: .//cp_91.save restart file written in 0.834 sec. 1171 0.00002 0.0 20.3 -17.20328 -17.20328 -17.20319 -17.21875 0.0000 0.0000 -0.0019 ******* 1172 0.00002 0.0 19.3 -17.20329 -17.20329 -17.20319 -17.21876 0.0000 0.0000 -0.0020 ******* 1173 0.00002 0.0 18.3 -17.20329 -17.20329 -17.20320 -17.21877 0.0000 0.0000 -0.0020 ******* 1174 0.00002 0.0 17.4 -17.20329 -17.20329 -17.20321 -17.21878 0.0000 0.0000 -0.0021 ******* 1175 0.00001 0.0 16.6 -17.20330 -17.20330 -17.20322 -17.21879 0.0000 0.0000 -0.0021 ******* 1176 0.00001 0.0 15.9 -17.20330 -17.20330 -17.20323 -17.21880 0.0000 0.0000 -0.0021 ******* 1177 0.00001 0.0 15.1 -17.20330 -17.20330 -17.20323 -17.21881 0.0000 0.0000 -0.0022 ******* 1178 0.00001 0.0 14.5 -17.20331 -17.20331 -17.20324 -17.21882 0.0000 0.0000 -0.0022 ******* 1179 0.00001 0.0 13.8 -17.20331 -17.20331 -17.20324 -17.21882 0.0000 0.0000 -0.0023 ******* 1180 0.00001 0.0 13.2 -17.20331 -17.20331 -17.20325 -17.21883 0.0000 0.0000 -0.0023 ******* 1181 0.00001 0.0 12.7 -17.20332 -17.20332 -17.20326 -17.21884 0.0000 0.0000 -0.0024 ******* 1182 0.00001 0.0 12.1 -17.20332 -17.20332 -17.20326 -17.21885 0.0000 0.0000 -0.0024 ******* 1183 0.00001 0.0 11.6 -17.20332 -17.20332 -17.20327 -17.21885 0.0000 0.0000 -0.0025 ******* 1184 0.00001 0.0 11.2 -17.20332 -17.20332 -17.20327 -17.21886 0.0000 0.0000 -0.0025 ******* 1185 0.00001 0.0 10.7 -17.20333 -17.20333 -17.20327 -17.21886 0.0000 0.0000 -0.0025 ******* 1186 0.00001 0.0 10.3 -17.20333 -17.20333 -17.20328 -17.21887 0.0000 0.0000 -0.0026 ******* 1187 0.00001 0.0 9.9 -17.20333 -17.20333 -17.20328 -17.21887 0.0000 0.0000 -0.0026 ******* 1188 0.00001 0.0 9.5 -17.20333 -17.20333 -17.20329 -17.21888 0.0000 0.0000 -0.0027 ******* 1189 0.00001 0.0 9.2 -17.20333 -17.20333 -17.20329 -17.21888 0.0000 0.0000 -0.0027 ******* 1190 0.00001 0.0 8.8 -17.20334 -17.20334 -17.20329 -17.21889 0.0000 0.0000 -0.0028 ******* in while: event_index 6 ======================================== EMPLOY RULES: CURRENT_NFI= 1191 event_index= 6 event_step== 1191 ======================================== RULE EVENT: tempw 300.000000000000 in while after: event_index 7 1191 0.00001 0.0 8.5 -17.20334 -17.20334 -17.20330 -17.23449 0.0000 0.0000 -0.0028 ******* 1192 0.00001 0.0 8.2 -17.20334 -17.20334 -17.20330 -17.23450 0.0000 0.0000 -0.0029 ******* 1193 0.00001 0.0 7.9 -17.20334 -17.20334 -17.20330 -17.23450 0.0000 0.0000 -0.0029 ******* 1194 0.00001 0.0 7.7 -17.20334 -17.20334 -17.20331 -17.23450 0.0000 0.0000 -0.0029 ******* 1195 0.00001 0.0 7.4 -17.20334 -17.20334 -17.20331 -17.23451 0.0000 0.0000 -0.0030 ******* 1196 0.00001 0.0 7.2 -17.20334 -17.20334 -17.20331 -17.23451 0.0000 0.0000 -0.0030 ******* 1197 0.00001 0.0 6.9 -17.20335 -17.20335 -17.20331 -17.23451 0.0000 0.0000 -0.0031 ******* 1198 0.00000 0.0 6.7 -17.20335 -17.20335 -17.20331 -17.23452 0.0000 0.0000 -0.0031 ******* 1199 0.00000 0.0 6.5 -17.20335 -17.20335 -17.20332 -17.23452 0.0000 0.0000 -0.0032 ******* * Physical Quantities at step: 1200 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20335 Hartree a.u. kinetic energy = 7.85098 Hartree a.u. electrostatic energy = -22.94690 Hartree a.u. esr = 0.12262 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41840 Hartree a.u. n-l pseudopotential energy = 4.51405 Hartree a.u. exchange-correlation energy = -4.20308 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.23 -8.61 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.106301E+01 0.707105E+00 0.675451E+00 H -0.364211E+00 -0.771432E+00 -0.140020E+01 O -0.351590E+00 -0.472448E+00 0.432728E+00 ATOMIC_VELOCITIES H 0.852822E-04 -0.687576E-04 0.341639E-04 H -0.441895E-04 -0.120886E-03 0.168553E-04 O -0.258879E-05 0.119473E-04 -0.321414E-05 Forces acting on atoms (au): H -0.217604E-02 0.136262E-02 0.372713E-03 H 0.286814E-03 0.179422E-02 -0.156920E-03 O 0.201592E-02 -0.151381E-03 -0.395776E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2.90 0.2549 2 0.49 0.0022 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1200 0.00000 0.0 6.3 -17.20335 -17.20335 -17.20332 -17.23452 0.0000 0.0000 -0.0032 ******* writing restart file: .//cp_91.save restart file written in 0.783 sec. 1201 0.00000 0.0 6.1 -17.20335 -17.20335 -17.20332 -17.23453 0.0000 0.0000 -0.0033 ******* 1202 0.00000 0.0 5.9 -17.20335 -17.20335 -17.20332 -17.23453 0.0000 0.0000 -0.0033 ******* 1203 0.00000 0.0 5.7 -17.20335 -17.20335 -17.20332 -17.23453 0.0000 0.0000 -0.0034 ******* 1204 0.00000 0.0 5.6 -17.20335 -17.20335 -17.20333 -17.23453 0.0000 0.0000 -0.0034 ******* 1205 0.00000 0.0 5.4 -17.20335 -17.20335 -17.20333 -17.23454 0.0000 0.0000 -0.0035 ******* 1206 0.00000 0.0 5.3 -17.20335 -17.20335 -17.20333 -17.23454 0.0000 0.0000 -0.0035 ******* 1207 0.00000 0.0 5.1 -17.20336 -17.20336 -17.20333 -17.23454 0.0000 0.0000 -0.0036 ******* 1208 0.00000 0.0 5.0 -17.20336 -17.20336 -17.20333 -17.23454 0.0000 0.0000 -0.0036 ******* 1209 0.00000 0.0 4.9 -17.20336 -17.20336 -17.20333 -17.23454 0.0000 0.0000 -0.0037 ******* 1210 0.00000 0.0 4.7 -17.20336 -17.20336 -17.20334 -17.23455 0.0000 0.0000 -0.0037 ******* 1211 0.00000 0.0 4.6 -17.20336 -17.20336 -17.20334 -17.23455 0.0000 0.0000 -0.0037 ******* 1212 0.00000 0.0 4.5 -17.20336 -17.20336 -17.20334 -17.23455 0.0000 0.0000 -0.0038 ******* 1213 0.00000 0.0 4.4 -17.20336 -17.20336 -17.20334 -17.23455 0.0000 0.0000 -0.0038 ******* 1214 0.00000 0.0 4.3 -17.20336 -17.20336 -17.20334 -17.23455 0.0000 0.0000 -0.0039 ******* 1215 0.00000 0.0 4.2 -17.20336 -17.20336 -17.20334 -17.23455 0.0000 0.0000 -0.0039 ******* 1216 0.00000 0.0 4.1 -17.20336 -17.20336 -17.20334 -17.23456 0.0000 0.0000 -0.0040 ******* 1217 0.00000 0.0 4.0 -17.20336 -17.20336 -17.20334 -17.23456 0.0000 0.0000 -0.0040 ******* 1218 0.00000 0.0 3.9 -17.20336 -17.20336 -17.20334 -17.23456 0.0000 0.0000 -0.0041 ******* 1219 0.00000 0.0 3.8 -17.20336 -17.20336 -17.20335 -17.23456 0.0000 0.0000 -0.0041 ******* 1220 0.00000 0.0 3.7 -17.20336 -17.20336 -17.20335 -17.23456 0.0000 0.0000 -0.0042 ******* 1221 0.00000 0.0 3.6 -17.20336 -17.20336 -17.20335 -17.23456 0.0000 0.0000 -0.0042 ******* 1222 0.00000 0.0 3.6 -17.20336 -17.20336 -17.20335 -17.23456 0.0000 0.0000 -0.0043 ******* 1223 0.00000 0.0 3.5 -17.20337 -17.20337 -17.20335 -17.23457 0.0000 0.0000 -0.0043 ******* 1224 0.00000 0.0 3.4 -17.20337 -17.20337 -17.20335 -17.23457 0.0000 0.0000 -0.0044 ******* 1225 0.00000 0.0 3.3 -17.20337 -17.20337 -17.20335 -17.23457 0.0000 0.0000 -0.0044 ******* 1226 0.00000 0.0 3.3 -17.20337 -17.20337 -17.20335 -17.23457 0.0000 0.0000 -0.0045 ******* 1227 0.00000 0.0 3.2 -17.20337 -17.20337 -17.20335 -17.23457 0.0000 0.0000 -0.0045 ******* 1228 0.00000 0.0 3.1 -17.20337 -17.20337 -17.20335 -17.23457 0.0000 0.0000 -0.0046 ******* 1229 0.00000 0.0 3.1 -17.20337 -17.20337 -17.20335 -17.23457 0.0000 0.0000 -0.0046 ******* * Physical Quantities at step: 1230 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20337 Hartree a.u. kinetic energy = 7.85007 Hartree a.u. electrostatic energy = -22.94685 Hartree a.u. esr = 0.12261 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41814 Hartree a.u. n-l pseudopotential energy = 4.51440 Hartree a.u. exchange-correlation energy = -4.20285 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.25 -8.60 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.106751E+01 0.701866E+00 0.679057E+00 H -0.368010E+00 -0.780647E+00 -0.139865E+01 O -0.351634E+00 -0.471538E+00 0.432403E+00 ATOMIC_VELOCITIES H 0.226417E-04 -0.518430E-04 0.396931E-04 H -0.385285E-04 -0.867329E-04 0.182020E-04 O 0.100085E-05 0.873009E-05 -0.364731E-05 Forces acting on atoms (au): H -0.934224E-03 0.758401E-03 -0.556817E-03 H 0.534490E-03 0.136880E-02 -0.146700E-03 O 0.128124E-03 -0.721192E-03 0.340039E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1.36 0.2609 2 0.28 0.0023 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1230 0.00000 0.0 3.0 -17.20337 -17.20337 -17.20335 -17.23457 0.0000 0.0000 -0.0046 ******* writing restart file: .//cp_91.save restart file written in 0.955 sec. 1231 0.00000 0.0 2.9 -17.20337 -17.20337 -17.20335 -17.23457 0.0000 0.0000 -0.0047 ******* 1232 0.00000 0.0 2.9 -17.20337 -17.20337 -17.20335 -17.23458 0.0000 0.0000 -0.0047 ******* 1233 0.00000 0.0 2.8 -17.20337 -17.20337 -17.20335 -17.23458 0.0000 0.0000 -0.0048 ******* 1234 0.00000 0.0 2.8 -17.20337 -17.20337 -17.20336 -17.23458 0.0000 0.0000 -0.0048 ******* 1235 0.00000 0.0 2.7 -17.20337 -17.20337 -17.20336 -17.23458 0.0000 0.0000 -0.0049 ******* 1236 0.00000 0.0 2.6 -17.20337 -17.20337 -17.20336 -17.23458 0.0000 0.0000 -0.0049 ******* 1237 0.00000 0.0 2.6 -17.20337 -17.20337 -17.20336 -17.23458 0.0000 0.0000 -0.0050 ******* 1238 0.00000 0.0 2.5 -17.20337 -17.20337 -17.20336 -17.23458 0.0000 0.0000 -0.0050 ******* 1239 0.00000 0.0 2.5 -17.20337 -17.20337 -17.20336 -17.23458 0.0000 0.0000 -0.0051 ******* 1240 0.00000 0.0 2.4 -17.20337 -17.20337 -17.20336 -17.23458 0.0000 0.0000 -0.0051 ******* 1241 0.00000 0.0 2.4 -17.20337 -17.20337 -17.20336 -17.23458 0.0000 0.0000 -0.0052 ******* 1242 0.00000 0.0 2.3 -17.20337 -17.20337 -17.20336 -17.23458 0.0000 0.0000 -0.0052 ******* 1243 0.00000 0.0 2.3 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0053 ******* 1244 0.00000 0.0 2.2 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0053 ******* 1245 0.00000 0.0 2.2 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0054 ******* 1246 0.00000 0.0 2.1 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0054 ******* 1247 0.00000 0.0 2.1 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0055 ******* 1248 0.00000 0.0 2.0 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0055 ******* 1249 0.00000 0.0 2.0 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0056 ******* 1250 0.00000 0.0 1.9 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0056 ******* 1251 0.00000 0.0 1.9 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0056 ******* 1252 0.00000 0.0 1.8 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0057 ******* 1253 0.00000 0.0 1.8 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0057 ******* 1254 0.00000 0.0 1.7 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0058 ******* 1255 0.00000 0.0 1.7 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0058 ******* 1256 0.00000 0.0 1.6 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0059 ******* 1257 0.00000 0.0 1.6 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0059 ******* 1258 0.00000 0.0 1.5 -17.20337 -17.20337 -17.20336 -17.23459 0.0000 0.0000 -0.0060 ******* 1259 0.00000 0.0 1.5 -17.20337 -17.20337 -17.20336 -17.23460 0.0000 0.0000 -0.0060 ******* * Physical Quantities at step: 1260 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20337 Hartree a.u. kinetic energy = 7.85099 Hartree a.u. electrostatic energy = -22.94701 Hartree a.u. esr = 0.12310 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41927 Hartree a.u. n-l pseudopotential energy = 4.51522 Hartree a.u. exchange-correlation energy = -4.20330 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.27 -8.58 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.106880E+01 0.697938E+00 0.681978E+00 H -0.370854E+00 -0.787372E+00 -0.139705E+01 O -0.351536E+00 -0.470867E+00 0.432118E+00 ATOMIC_VELOCITIES H 0.140374E-04 -0.333683E-04 0.231834E-04 H -0.232994E-04 -0.639451E-04 0.163152E-04 O 0.583495E-06 0.613061E-05 -0.248836E-05 Forces acting on atoms (au): H 0.544318E-04 0.888262E-03 -0.720457E-03 H 0.638874E-03 0.116136E-02 -0.297422E-03 O -0.904950E-03 -0.116834E-02 0.868972E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.65 0.2643 2 0.14 0.0023 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1260 0.00000 0.0 1.4 -17.20337 -17.20337 -17.20336 -17.23460 0.0000 0.0000 -0.0061 ******* writing restart file: .//cp_91.save restart file written in 0.797 sec. 1261 0.00000 0.0 1.4 -17.20337 -17.20337 -17.20336 -17.23460 0.0000 0.0000 -0.0061 ******* 1262 0.00000 0.0 1.4 -17.20337 -17.20337 -17.20336 -17.23460 0.0000 0.0000 -0.0062 ******* 1263 0.00000 0.0 1.3 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0062 ******* 1264 0.00000 0.0 1.3 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0063 ******* 1265 0.00000 0.0 1.2 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0063 ******* 1266 0.00000 0.0 1.2 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0064 ******* 1267 0.00000 0.0 1.2 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0064 ******* 1268 0.00000 0.0 1.1 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0065 ******* 1269 0.00000 0.0 1.1 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0065 ******* 1270 0.00000 0.0 1.1 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0066 ******* 1271 0.00000 0.0 1.0 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0066 ******* 1272 0.00000 0.0 1.0 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0067 ******* 1273 0.00000 0.0 1.0 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0067 ******* 1274 0.00000 0.0 1.0 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0067 ******* 1275 0.00000 0.0 0.9 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0068 ******* 1276 0.00000 0.0 0.9 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0068 ******* 1277 0.00000 0.0 0.9 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0069 ******* 1278 0.00000 0.0 0.9 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0069 ******* 1279 0.00000 0.0 0.8 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0070 ******* 1280 0.00000 0.0 0.8 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0070 ******* 1281 0.00000 0.0 0.8 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0071 ******* 1282 0.00000 0.0 0.8 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0071 ******* 1283 0.00000 0.0 0.8 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0072 ******* 1284 0.00000 0.0 0.8 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0072 ******* 1285 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0073 ******* 1286 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23460 0.0000 0.0000 -0.0073 ******* 1287 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0074 ******* 1288 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0074 ******* 1289 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0075 ******* * Physical Quantities at step: 1290 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20337 Hartree a.u. kinetic energy = 7.85142 Hartree a.u. electrostatic energy = -22.94734 Hartree a.u. esr = 0.12318 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41945 Hartree a.u. n-l pseudopotential energy = 4.51550 Hartree a.u. exchange-correlation energy = -4.20350 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.28 -8.57 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107065E+01 0.695814E+00 0.682892E+00 H -0.371996E+00 -0.792319E+00 -0.139587E+01 O -0.351581E+00 -0.470421E+00 0.431986E+00 ATOMIC_VELOCITIES H 0.262679E-04 -0.166638E-04 -0.485051E-05 H -0.111125E-05 -0.466724E-04 0.972745E-05 O -0.158483E-05 0.399009E-05 -0.307241E-06 Forces acting on atoms (au): H -0.217392E-03 0.410582E-03 -0.618973E-03 H 0.525226E-03 0.100354E-02 -0.257605E-03 O -0.277927E-03 -0.580579E-03 0.101719E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.32 0.2674 2 0.06 0.0024 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1290 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0075 ******* writing restart file: .//cp_91.save restart file written in 0.785 sec. 1291 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0076 ******* 1292 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0076 ******* 1293 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0077 ******* 1294 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0077 ******* 1295 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0078 ******* 1296 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0078 ******* 1297 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0078 ******* 1298 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0079 ******* 1299 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0079 ******* 1300 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0080 ******* 1301 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0080 ******* 1302 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0081 ******* 1303 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0081 ******* 1304 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0082 ******* 1305 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0082 ******* 1306 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0083 ******* 1307 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0083 ******* 1308 0.00000 0.0 0.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0084 ******* 1309 0.00000 0.0 0.8 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0084 ******* 1310 0.00000 0.0 0.8 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0085 ******* 1311 0.00000 0.0 0.8 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0085 ******* 1312 0.00000 0.0 0.8 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0086 ******* 1313 0.00000 0.0 0.8 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0086 ******* 1314 0.00000 0.0 0.8 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0087 ******* 1315 0.00000 0.0 0.9 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0087 ******* 1316 0.00000 0.0 0.9 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0088 ******* 1317 0.00000 0.0 0.9 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0088 ******* 1318 0.00000 0.0 1.0 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0089 ******* 1319 0.00000 0.0 1.0 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0089 ******* * Physical Quantities at step: 1320 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20337 Hartree a.u. kinetic energy = 7.85105 Hartree a.u. electrostatic energy = -22.94732 Hartree a.u. esr = 0.12302 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41906 Hartree a.u. n-l pseudopotential energy = 4.51530 Hartree a.u. exchange-correlation energy = -4.20334 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.27 -8.58 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107310E+01 0.694287E+00 0.680783E+00 H -0.370917E+00 -0.795895E+00 -0.139521E+01 O -0.351803E+00 -0.470100E+00 0.432078E+00 ATOMIC_VELOCITIES H 0.262965E-04 -0.200742E-04 -0.432233E-04 H 0.255932E-04 -0.336706E-04 0.595749E-05 O -0.326897E-05 0.338585E-05 0.234769E-05 Forces acting on atoms (au): H -0.514930E-03 0.158423E-03 -0.102589E-03 H 0.129203E-03 0.784170E-03 -0.827943E-04 O 0.375469E-04 -0.447343E-03 0.656310E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.46 0.2707 2 0.08 0.0024 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1320 0.00000 0.0 1.0 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0089 ******* writing restart file: .//cp_91.save restart file written in 0.783 sec. 1321 0.00000 0.0 1.0 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0090 ******* 1322 0.00000 0.0 1.1 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0090 ******* 1323 0.00000 0.0 1.1 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0091 ******* 1324 0.00000 0.0 1.1 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0091 ******* 1325 0.00000 0.0 1.2 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0092 ******* 1326 0.00000 0.0 1.2 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0092 ******* 1327 0.00000 0.0 1.3 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0093 ******* 1328 0.00000 0.0 1.3 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0093 ******* 1329 0.00000 0.0 1.4 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0094 ******* 1330 0.00000 0.0 1.4 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0094 ******* 1331 0.00000 0.0 1.4 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0095 ******* 1332 0.00000 0.0 1.5 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0095 ******* 1333 0.00000 0.0 1.5 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0096 ******* 1334 0.00000 0.0 1.6 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0096 ******* 1335 0.00000 0.0 1.6 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0097 ******* 1336 0.00000 0.0 1.7 -17.20337 -17.20337 -17.20337 -17.23461 0.0000 0.0000 -0.0097 ******* 1337 0.00000 0.0 1.8 -17.20337 -17.20337 -17.20337 -17.23462 0.0000 0.0000 -0.0098 ******* 1338 0.00000 0.0 1.8 -17.20337 -17.20337 -17.20337 -17.23462 0.0000 0.0000 -0.0098 ******* 1339 0.00000 0.0 1.9 -17.20338 -17.20338 -17.20337 -17.23462 0.0000 0.0000 -0.0099 ******* 1340 0.00000 0.0 1.9 -17.20338 -17.20338 -17.20337 -17.23462 0.0000 0.0000 -0.0099 ******* 1341 0.00000 0.0 2.0 -17.20338 -17.20338 -17.20337 -17.23462 0.0000 0.0000 -0.0100 ******* 1342 0.00000 0.0 2.1 -17.20338 -17.20338 -17.20337 -17.23462 0.0000 0.0000 -0.0100 ******* 1343 0.00000 0.0 2.1 -17.20338 -17.20338 -17.20337 -17.23462 0.0000 0.0000 -0.0100 ******* 1344 0.00000 0.0 2.2 -17.20338 -17.20338 -17.20337 -17.23462 0.0000 0.0000 -0.0101 ******* 1345 0.00000 0.0 2.2 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0101 ******* 1346 0.00000 0.0 2.3 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0102 ******* 1347 0.00000 0.0 2.4 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0102 ******* 1348 0.00000 0.0 2.5 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0103 ******* 1349 0.00000 0.0 2.5 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0103 ******* * Physical Quantities at step: 1350 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20338 Hartree a.u. kinetic energy = 7.85113 Hartree a.u. electrostatic energy = -22.94700 Hartree a.u. esr = 0.12304 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41924 Hartree a.u. n-l pseudopotential energy = 4.51506 Hartree a.u. exchange-correlation energy = -4.20331 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.59 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107549E+01 0.692074E+00 0.675057E+00 H -0.367364E+00 -0.798640E+00 -0.139461E+01 O -0.352178E+00 -0.469787E+00 0.432401E+00 ATOMIC_VELOCITIES H 0.298001E-04 -0.279992E-04 -0.834958E-04 H 0.530770E-04 -0.296380E-04 0.803336E-05 O -0.522114E-05 0.363106E-05 0.475403E-05 Forces acting on atoms (au): H -0.346675E-03 0.470257E-03 0.868479E-03 H -0.525383E-03 0.497692E-03 -0.231335E-04 O 0.232353E-04 -0.725858E-03 0.918938E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1.20 0.2746 2 0.19 0.0024 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1350 0.00000 0.0 2.6 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0104 ******* writing restart file: .//cp_91.save restart file written in 0.815 sec. 1351 0.00000 0.0 2.7 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0104 ******* 1352 0.00000 0.0 2.7 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0105 ******* 1353 0.00000 0.0 2.8 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0105 ******* 1354 0.00000 0.0 2.9 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0106 ******* 1355 0.00000 0.0 3.0 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0106 ******* 1356 0.00000 0.0 3.0 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0107 ******* 1357 0.00000 0.0 3.1 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0107 ******* 1358 0.00000 0.0 3.2 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0108 ******* 1359 0.00000 0.0 3.3 -17.20338 -17.20338 -17.20336 -17.23462 0.0000 0.0000 -0.0108 ******* 1360 0.00000 0.0 3.4 -17.20338 -17.20338 -17.20336 -17.23463 0.0000 0.0000 -0.0109 ******* 1361 0.00000 0.0 3.5 -17.20338 -17.20338 -17.20336 -17.23463 0.0000 0.0000 -0.0109 ******* 1362 0.00000 0.0 3.5 -17.20338 -17.20338 -17.20336 -17.23463 0.0000 0.0000 -0.0109 ******* 1363 0.00000 0.0 3.6 -17.20338 -17.20338 -17.20336 -17.23463 0.0000 0.0000 -0.0110 ******* 1364 0.00000 0.0 3.7 -17.20338 -17.20338 -17.20336 -17.23463 0.0000 0.0000 -0.0110 ******* 1365 0.00000 0.0 3.8 -17.20338 -17.20338 -17.20336 -17.23463 0.0000 0.0000 -0.0111 ******* 1366 0.00000 0.0 3.9 -17.20338 -17.20338 -17.20336 -17.23463 0.0000 0.0000 -0.0111 ******* 1367 0.00000 0.0 4.0 -17.20338 -17.20338 -17.20336 -17.23463 0.0000 0.0000 -0.0112 ******* 1368 0.00000 0.0 4.1 -17.20338 -17.20338 -17.20336 -17.23463 0.0000 0.0000 -0.0112 ******* 1369 0.00000 0.0 4.2 -17.20338 -17.20338 -17.20336 -17.23463 0.0000 0.0000 -0.0113 ******* 1370 0.00000 0.0 4.3 -17.20337 -17.20337 -17.20335 -17.23463 0.0000 0.0000 -0.0113 ******* 1371 0.00000 0.0 4.4 -17.20337 -17.20337 -17.20335 -17.23463 0.0000 0.0000 -0.0114 ******* 1372 0.00000 0.0 4.5 -17.20337 -17.20337 -17.20335 -17.23463 0.0000 0.0000 -0.0114 ******* 1373 0.00000 0.0 4.6 -17.20337 -17.20337 -17.20335 -17.23463 0.0000 0.0000 -0.0115 ******* 1374 0.00000 0.0 4.7 -17.20337 -17.20337 -17.20335 -17.23463 0.0000 0.0000 -0.0115 ******* 1375 0.00000 0.0 4.8 -17.20337 -17.20337 -17.20335 -17.23464 0.0000 0.0000 -0.0116 ******* 1376 0.00000 0.0 4.9 -17.20337 -17.20337 -17.20335 -17.23464 0.0000 0.0000 -0.0116 ******* 1377 0.00000 0.0 5.0 -17.20337 -17.20337 -17.20335 -17.23464 0.0000 0.0000 -0.0117 ******* 1378 0.00000 0.0 5.1 -17.20337 -17.20337 -17.20335 -17.23464 0.0000 0.0000 -0.0117 ******* 1379 0.00000 0.0 5.3 -17.20337 -17.20337 -17.20335 -17.23464 0.0000 0.0000 -0.0118 ******* * Physical Quantities at step: 1380 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20337 Hartree a.u. kinetic energy = 7.85145 Hartree a.u. electrostatic energy = -22.94673 Hartree a.u. esr = 0.12300 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41936 Hartree a.u. n-l pseudopotential energy = 4.51459 Hartree a.u. exchange-correlation energy = -4.20332 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.24 -8.61 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107905E+01 0.689467E+00 0.665933E+00 H -0.361495E+00 -0.801868E+00 -0.139370E+01 O -0.352771E+00 -0.469420E+00 0.432918E+00 ATOMIC_VELOCITIES H 0.514325E-04 -0.299302E-04 -0.118120E-03 H 0.761950E-04 -0.472325E-04 0.122753E-04 O -0.804036E-05 0.486114E-05 0.666805E-05 Forces acting on atoms (au): H -0.625867E-03 0.591800E-03 0.199927E-02 H -0.130946E-02 0.339920E-03 -0.863789E-04 O 0.101664E-02 -0.414004E-03 -0.515967E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2.48 0.2802 2 0.41 0.0025 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1380 0.00000 0.0 5.4 -17.20337 -17.20337 -17.20335 -17.23464 0.0000 0.0000 -0.0118 ******* writing restart file: .//cp_91.save restart file written in 0.791 sec. 1381 0.00000 0.0 5.5 -17.20337 -17.20337 -17.20335 -17.23464 0.0000 0.0000 -0.0118 ******* 1382 0.00000 0.0 5.6 -17.20337 -17.20337 -17.20335 -17.23464 0.0000 0.0000 -0.0119 ******* 1383 0.00000 0.0 5.7 -17.20337 -17.20337 -17.20334 -17.23464 0.0000 0.0000 -0.0119 ******* 1384 0.00000 0.0 5.9 -17.20337 -17.20337 -17.20334 -17.23464 0.0000 0.0000 -0.0120 ******* 1385 0.00000 0.0 6.0 -17.20337 -17.20337 -17.20334 -17.23464 0.0000 0.0000 -0.0120 ******* 1386 0.00000 0.0 6.1 -17.20337 -17.20337 -17.20334 -17.23465 0.0000 0.0000 -0.0121 ******* 1387 0.00000 0.0 6.3 -17.20337 -17.20337 -17.20334 -17.23465 0.0000 0.0000 -0.0121 ******* 1388 0.00000 0.0 6.4 -17.20337 -17.20337 -17.20334 -17.23465 0.0000 0.0000 -0.0122 ******* 1389 0.00000 0.0 6.5 -17.20337 -17.20337 -17.20334 -17.23465 0.0000 0.0000 -0.0122 ******* 1390 0.00000 0.0 6.7 -17.20337 -17.20337 -17.20334 -17.23465 0.0000 0.0000 -0.0123 ******* 1391 0.00000 0.0 6.8 -17.20337 -17.20337 -17.20334 -17.23465 0.0000 0.0000 -0.0123 ******* 1392 0.00000 0.0 7.0 -17.20337 -17.20337 -17.20333 -17.23465 0.0000 0.0000 -0.0124 ******* 1393 0.00000 0.0 7.1 -17.20337 -17.20337 -17.20333 -17.23465 0.0000 0.0000 -0.0124 ******* 1394 0.00000 0.0 7.3 -17.20337 -17.20337 -17.20333 -17.23466 0.0000 0.0000 -0.0125 ******* 1395 0.00000 0.0 7.4 -17.20337 -17.20337 -17.20333 -17.23466 0.0000 0.0000 -0.0125 ******* 1396 0.00000 0.0 7.6 -17.20337 -17.20337 -17.20333 -17.23466 0.0000 0.0000 -0.0126 ******* 1397 0.00000 0.0 7.8 -17.20337 -17.20337 -17.20333 -17.23466 0.0000 0.0000 -0.0126 ******* 1398 0.00000 0.0 7.9 -17.20336 -17.20336 -17.20333 -17.23466 0.0000 0.0000 -0.0126 ******* 1399 0.00000 0.0 8.1 -17.20336 -17.20336 -17.20333 -17.23466 0.0000 0.0000 -0.0127 ******* 1400 0.00000 0.0 8.3 -17.20336 -17.20336 -17.20332 -17.23466 0.0000 0.0000 -0.0127 ******* 1401 0.00000 0.0 8.5 -17.20336 -17.20336 -17.20332 -17.23466 0.0000 0.0000 -0.0128 ******* 1402 0.00000 0.0 8.7 -17.20336 -17.20336 -17.20332 -17.23467 0.0000 0.0000 -0.0128 ******* 1403 0.00000 0.0 8.9 -17.20336 -17.20336 -17.20332 -17.23467 0.0000 0.0000 -0.0129 ******* 1404 0.00000 0.0 9.1 -17.20336 -17.20336 -17.20332 -17.23467 0.0000 0.0000 -0.0129 ******* 1405 0.00000 0.0 9.3 -17.20336 -17.20336 -17.20332 -17.23467 0.0000 0.0000 -0.0130 ******* 1406 0.00000 0.0 9.6 -17.20336 -17.20336 -17.20331 -17.23467 0.0000 0.0000 -0.0130 ******* 1407 0.00000 0.0 9.8 -17.20336 -17.20336 -17.20331 -17.23467 0.0000 0.0000 -0.0131 ******* 1408 0.00000 0.0 10.0 -17.20336 -17.20336 -17.20331 -17.23468 0.0000 0.0000 -0.0131 ******* 1409 0.00000 0.0 10.3 -17.20336 -17.20336 -17.20331 -17.23468 0.0000 0.0000 -0.0132 ******* * Physical Quantities at step: 1410 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20336 Hartree a.u. kinetic energy = 7.85107 Hartree a.u. electrostatic energy = -22.94646 Hartree a.u. esr = 0.12263 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41866 Hartree a.u. n-l pseudopotential energy = 4.51371 Hartree a.u. exchange-correlation energy = -4.20301 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.21 -8.63 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.108483E+01 0.686259E+00 0.653964E+00 H -0.353914E+00 -0.808469E+00 -0.139226E+01 O -0.353613E+00 -0.468802E+00 0.433582E+00 ATOMIC_VELOCITIES H 0.762773E-04 -0.460255E-04 -0.147186E-03 H 0.905555E-04 -0.109876E-03 0.217039E-04 O -0.105102E-04 0.982157E-05 0.790518E-05 Forces acting on atoms (au): H -0.143394E-02 0.531740E-03 0.310440E-02 H -0.206386E-02 0.727017E-03 -0.828393E-04 O 0.255754E-02 -0.129166E-03 -0.142023E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 4.87 0.2892 2 0.83 0.0026 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1410 0.00000 0.0 10.6 -17.20336 -17.20336 -17.20331 -17.23468 0.0000 0.0000 -0.0132 ******* writing restart file: .//cp_91.save restart file written in 0.786 sec. 1411 0.00000 0.0 10.8 -17.20336 -17.20336 -17.20330 -17.23468 0.0000 0.0000 -0.0132 ******* 1412 0.00000 0.0 11.1 -17.20336 -17.20336 -17.20330 -17.23468 0.0000 0.0000 -0.0133 ******* 1413 0.00000 0.0 11.4 -17.20335 -17.20335 -17.20330 -17.23469 0.0000 0.0000 -0.0133 ******* 1414 0.00000 0.0 11.7 -17.20335 -17.20335 -17.20330 -17.23469 0.0000 0.0000 -0.0134 ******* 1415 0.00000 0.0 12.1 -17.20335 -17.20335 -17.20330 -17.23469 0.0000 0.0000 -0.0134 ******* 1416 0.00000 0.0 12.4 -17.20335 -17.20335 -17.20329 -17.23469 0.0000 0.0000 -0.0135 ******* 1417 0.00000 0.0 12.8 -17.20335 -17.20335 -17.20329 -17.23469 0.0000 0.0000 -0.0135 ******* 1418 0.00000 0.0 13.1 -17.20335 -17.20335 -17.20329 -17.23470 0.0000 0.0000 -0.0136 ******* 1419 0.00000 0.0 13.5 -17.20335 -17.20335 -17.20329 -17.23470 0.0000 0.0000 -0.0136 ******* 1420 0.00000 0.0 13.9 -17.20335 -17.20335 -17.20328 -17.23470 0.0000 0.0000 -0.0137 ******* 1421 0.00000 0.0 14.4 -17.20335 -17.20335 -17.20328 -17.23470 0.0000 0.0000 -0.0137 ******* 1422 0.00000 0.0 14.8 -17.20335 -17.20335 -17.20328 -17.23471 0.0000 0.0000 -0.0138 ******* 1423 0.00000 0.0 15.3 -17.20335 -17.20335 -17.20327 -17.23471 0.0000 0.0000 -0.0138 ******* 1424 0.00000 0.0 15.8 -17.20334 -17.20334 -17.20327 -17.23471 0.0000 0.0000 -0.0138 ******* 1425 0.00000 0.0 16.3 -17.20334 -17.20334 -17.20327 -17.23471 0.0000 0.0000 -0.0139 ******* 1426 0.00000 0.0 16.8 -17.20334 -17.20334 -17.20326 -17.23472 0.0000 0.0000 -0.0139 ******* 1427 0.00000 0.0 17.4 -17.20334 -17.20334 -17.20326 -17.23472 0.0000 0.0000 -0.0140 ******* 1428 0.00001 0.0 18.0 -17.20334 -17.20334 -17.20325 -17.23472 0.0000 0.0000 -0.0140 ******* 1429 0.00001 0.0 18.7 -17.20334 -17.20334 -17.20325 -17.23473 0.0000 0.0000 -0.0141 ******* 1430 0.00001 0.0 19.3 -17.20334 -17.20334 -17.20325 -17.23473 0.0000 0.0000 -0.0141 ******* 1431 0.00001 0.0 20.0 -17.20334 -17.20334 -17.20324 -17.23473 0.0000 0.0000 -0.0142 ******* 1432 0.00001 0.0 20.8 -17.20334 -17.20334 -17.20324 -17.23473 0.0000 0.0000 -0.0142 ******* 1433 0.00001 0.0 21.6 -17.20333 -17.20333 -17.20323 -17.23474 0.0000 0.0000 -0.0142 ******* 1434 0.00001 0.0 22.4 -17.20333 -17.20333 -17.20323 -17.23474 0.0000 0.0000 -0.0143 ******* 1435 0.00001 0.0 23.3 -17.20333 -17.20333 -17.20322 -17.23475 0.0000 0.0000 -0.0143 ******* 1436 0.00001 0.0 24.2 -17.20333 -17.20333 -17.20322 -17.23475 0.0000 0.0000 -0.0144 ******* 1437 0.00001 0.0 25.2 -17.20333 -17.20333 -17.20321 -17.23475 0.0000 0.0000 -0.0144 ******* 1438 0.00001 0.0 26.2 -17.20333 -17.20333 -17.20320 -17.23476 0.0000 0.0000 -0.0145 ******* 1439 0.00001 0.0 27.3 -17.20333 -17.20333 -17.20320 -17.23476 0.0000 0.0000 -0.0145 ******* * Physical Quantities at step: 1440 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20332 Hartree a.u. kinetic energy = 7.85042 Hartree a.u. electrostatic energy = -22.94603 Hartree a.u. esr = 0.12230 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41799 Hartree a.u. n-l pseudopotential energy = 4.51291 Hartree a.u. exchange-correlation energy = -4.20264 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.19 -8.65 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.109291E+01 0.680107E+00 0.639526E+00 H -0.345516E+00 -0.824449E+00 -0.138905E+01 O -0.354651E+00 -0.467408E+00 0.434289E+00 ATOMIC_VELOCITIES H 0.107734E-03 -0.975593E-04 -0.173493E-03 H 0.944068E-04 -0.268484E-03 0.564879E-04 O -0.127346E-04 0.230602E-04 0.737114E-05 Forces acting on atoms (au): H -0.191544E-02 0.124403E-02 0.419107E-02 H -0.260460E-02 0.242665E-02 -0.228596E-03 O 0.333891E-02 -0.136771E-02 -0.229254E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 13.09 0.3048 2 2.30 0.0028 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1440 0.00001 0.0 28.5 -17.20332 -17.20332 -17.20319 -17.23477 0.0000 0.0000 -0.0146 ******* writing restart file: .//cp_91.save restart file written in 0.816 sec. 1441 0.00001 0.0 29.7 -17.20332 -17.20332 -17.20318 -17.23477 0.0000 0.0000 -0.0146 ******* 1442 0.00001 0.0 31.0 -17.20332 -17.20332 -17.20317 -17.23477 0.0000 0.0000 -0.0146 ******* 1443 0.00001 0.0 32.4 -17.20332 -17.20332 -17.20317 -17.23478 0.0000 0.0000 -0.0147 ******* 1444 0.00001 0.0 33.8 -17.20332 -17.20332 -17.20316 -17.23478 0.0000 0.0000 -0.0147 ******* 1445 0.00001 0.0 35.4 -17.20332 -17.20332 -17.20315 -17.23479 0.0000 0.0000 -0.0148 ******* 1446 0.00001 0.0 37.0 -17.20331 -17.20331 -17.20314 -17.23480 0.0000 0.0000 -0.0148 ******* 1447 0.00001 0.0 38.7 -17.20331 -17.20331 -17.20313 -17.23480 0.0000 0.0000 -0.0149 ******* 1448 0.00001 0.0 40.5 -17.20331 -17.20331 -17.20312 -17.23481 0.0000 0.0000 -0.0149 ******* 1449 0.00001 0.0 42.4 -17.20331 -17.20331 -17.20311 -17.23481 0.0000 0.0000 -0.0149 ******* 1450 0.00001 0.0 44.5 -17.20331 -17.20331 -17.20310 -17.23482 0.0000 0.0000 -0.0150 ******* 1451 0.00001 0.0 46.6 -17.20331 -17.20331 -17.20308 -17.23483 0.0000 0.0000 -0.0150 ******* 1452 0.00001 0.0 48.9 -17.20330 -17.20330 -17.20307 -17.23483 0.0000 0.0000 -0.0151 ******* 1453 0.00001 0.0 51.4 -17.20330 -17.20330 -17.20306 -17.23484 0.0000 0.0000 -0.0151 ******* 1454 0.00001 0.0 53.9 -17.20330 -17.20330 -17.20304 -17.23485 0.0000 0.0000 -0.0151 ******* 1455 0.00001 0.0 56.7 -17.20330 -17.20330 -17.20303 -17.23486 0.0000 0.0000 -0.0152 ******* 1456 0.00001 0.0 59.5 -17.20329 -17.20329 -17.20301 -17.23486 0.0000 0.0000 -0.0152 ******* 1457 0.00002 0.0 62.6 -17.20329 -17.20329 -17.20299 -17.23487 0.0000 0.0000 -0.0153 ******* 1458 0.00002 0.0 65.8 -17.20329 -17.20329 -17.20298 -17.23488 0.0000 0.0000 -0.0153 ******* 1459 0.00002 0.0 69.3 -17.20329 -17.20329 -17.20296 -17.23489 0.0000 0.0000 -0.0153 ******* 1460 0.00002 0.0 72.9 -17.20328 -17.20328 -17.20294 -17.23490 0.0000 0.0000 -0.0154 ******* 1461 0.00002 0.0 76.8 -17.20328 -17.20328 -17.20291 -17.23491 0.0000 0.0000 -0.0154 ******* 1462 0.00002 0.0 80.9 -17.20328 -17.20328 -17.20289 -17.23492 0.0000 0.0000 -0.0154 ******* 1463 0.00002 0.0 85.3 -17.20327 -17.20327 -17.20287 -17.23493 0.0000 0.0000 -0.0155 ******* 1464 0.00002 0.0 89.9 -17.20327 -17.20327 -17.20284 -17.23495 0.0000 0.0000 -0.0155 ******* 1465 0.00002 0.0 94.8 -17.20327 -17.20327 -17.20282 -17.23496 0.0000 0.0000 -0.0155 ******* 1466 0.00002 0.0 100.0 -17.20326 -17.20326 -17.20279 -17.23497 0.0000 0.0000 -0.0156 ******* 1467 0.00002 0.0 105.5 -17.20326 -17.20326 -17.20276 -17.23499 0.0000 0.0000 -0.0156 ******* 1468 0.00003 0.0 111.4 -17.20325 -17.20325 -17.20272 -17.23500 0.0000 0.0000 -0.0156 ******* 1469 0.00003 0.0 117.6 -17.20325 -17.20325 -17.20269 -17.23502 0.0000 0.0000 -0.0157 ******* * Physical Quantities at step: 1470 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20324 Hartree a.u. kinetic energy = 7.85031 Hartree a.u. electrostatic energy = -22.94590 Hartree a.u. esr = 0.12228 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41784 Hartree a.u. n-l pseudopotential energy = 4.51277 Hartree a.u. exchange-correlation energy = -4.20258 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.19 -8.66 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.110619E+01 0.667082E+00 0.622537E+00 H -0.337070E+00 -0.863425E+00 -0.138021E+01 O -0.356020E+00 -0.464132E+00 0.434802E+00 ATOMIC_VELOCITIES H 0.206043E-03 -0.205869E-03 -0.207699E-03 H 0.942479E-04 -0.654367E-03 0.156038E-03 O -0.189179E-04 0.541937E-04 0.325460E-05 Forces acting on atoms (au): H -0.268178E-02 0.299781E-02 0.507502E-02 H -0.265397E-02 0.729532E-02 -0.122486E-02 O 0.432347E-02 -0.461957E-02 -0.216996E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 57.00 0.3361 2 10.15 0.0032 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1470 0.00003 0.0 124.1 -17.20324 -17.20324 -17.20265 -17.23503 0.0000 0.0000 -0.0157 ******* writing restart file: .//cp_91.save restart file written in 0.783 sec. 1471 0.00003 0.0 131.1 -17.20324 -17.20324 -17.20261 -17.23505 0.0000 0.0000 -0.0157 ******* 1472 0.00003 0.0 138.5 -17.20323 -17.20323 -17.20257 -17.23507 0.0000 0.0000 -0.0157 ******* 1473 0.00003 0.0 146.4 -17.20322 -17.20322 -17.20253 -17.23509 0.0000 0.0000 -0.0158 ******* 1474 0.00004 0.0 154.7 -17.20322 -17.20322 -17.20248 -17.23511 0.0000 0.0000 -0.0158 ******* 1475 0.00004 0.0 163.6 -17.20321 -17.20321 -17.20244 -17.23513 0.0000 0.0000 -0.0158 ******* 1476 0.00004 0.0 172.9 -17.20321 -17.20321 -17.20238 -17.23515 0.0000 0.0000 -0.0158 ******* 1477 0.00004 0.0 182.9 -17.20320 -17.20320 -17.20233 -17.23517 0.0000 0.0000 -0.0159 ******* 1478 0.00004 0.0 193.4 -17.20319 -17.20319 -17.20227 -17.23520 0.0000 0.0000 -0.0159 ******* 1479 0.00005 0.0 204.6 -17.20318 -17.20318 -17.20221 -17.23523 0.0000 0.0000 -0.0159 ******* 1480 0.00005 0.0 216.4 -17.20318 -17.20318 -17.20215 -17.23526 0.0000 0.0000 -0.0159 ******* 1481 0.00005 0.0 228.9 -17.20317 -17.20317 -17.20208 -17.23529 0.0000 0.0000 -0.0159 ******* 1482 0.00005 0.0 242.2 -17.20316 -17.20316 -17.20201 -17.23532 0.0000 0.0000 -0.0159 ******* 1483 0.00006 0.0 256.3 -17.20315 -17.20315 -17.20193 -17.23535 0.0000 0.0000 -0.0159 ******* 1484 0.00006 0.0 271.2 -17.20313 -17.20313 -17.20185 -17.23538 0.0000 0.0000 -0.0159 ******* 1485 0.00006 0.0 286.9 -17.20312 -17.20312 -17.20176 -17.23542 0.0000 0.0000 -0.0159 ******* 1486 0.00007 0.0 303.6 -17.20311 -17.20311 -17.20167 -17.23546 0.0000 0.0000 -0.0159 ******* 1487 0.00007 0.0 321.3 -17.20310 -17.20310 -17.20157 -17.23550 0.0000 0.0000 -0.0159 ******* 1488 0.00008 0.0 339.9 -17.20308 -17.20308 -17.20147 -17.23554 0.0000 0.0000 -0.0159 ******* 1489 0.00008 0.0 359.6 -17.20307 -17.20307 -17.20136 -17.23559 0.0000 0.0000 -0.0159 ******* 1490 0.00008 0.0 380.5 -17.20305 -17.20305 -17.20124 -17.23564 0.0000 0.0000 -0.0159 ******* 1491 0.00009 0.0 402.5 -17.20303 -17.20303 -17.20112 -17.23569 0.0000 0.0000 -0.0159 ******* 1492 0.00010 0.0 425.7 -17.20301 -17.20301 -17.20099 -17.23574 0.0000 0.0000 -0.0159 ******* 1493 0.00010 0.0 450.1 -17.20299 -17.20299 -17.20086 -17.23580 0.0000 0.0000 -0.0159 ******* 1494 0.00011 0.0 475.9 -17.20297 -17.20297 -17.20071 -17.23586 0.0000 0.0000 -0.0158 ******* 1495 0.00011 0.0 503.1 -17.20295 -17.20295 -17.20056 -17.23592 0.0000 0.0000 -0.0158 ******* 1496 0.00012 0.0 531.7 -17.20293 -17.20293 -17.20040 -17.23599 0.0000 0.0000 -0.0158 ******* 1497 0.00013 0.0 561.8 -17.20290 -17.20290 -17.20024 -17.23606 0.0000 0.0000 -0.0157 ******* 1498 0.00013 0.0 593.3 -17.20288 -17.20288 -17.20006 -17.23613 0.0000 0.0000 -0.0157 ******* 1499 0.00014 0.0 626.5 -17.20285 -17.20285 -17.19987 -17.23621 0.0000 0.0000 -0.0156 ******* * Physical Quantities at step: 1500 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20282 Hartree a.u. kinetic energy = 7.84924 Hartree a.u. electrostatic energy = -22.94704 Hartree a.u. esr = 0.12173 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41575 Hartree a.u. n-l pseudopotential energy = 4.51301 Hartree a.u. exchange-correlation energy = -4.20228 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.48 -12.20 -8.62 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.113476E+01 0.638372E+00 0.600556E+00 H -0.327595E+00 -0.957658E+00 -0.135607E+01 O -0.358417E+00 -0.456386E+00 0.434666E+00 ATOMIC_VELOCITIES H 0.461201E-03 -0.474519E-03 -0.295752E-03 H 0.128469E-03 -0.155377E-02 0.425111E-03 O -0.371484E-04 0.127779E-03 -0.814946E-05 Forces acting on atoms (au): H -0.608020E-02 0.598204E-02 0.570712E-02 H -0.207671E-02 0.197946E-01 -0.343589E-02 O 0.783493E-02 -0.119704E-01 -0.161944E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 303.34 0.4121 2 54.57 0.0041 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1500 0.00015 0.0 661.2 -17.20282 -17.20282 -17.19968 -17.23630 0.0000 0.0000 -0.0156 ******* writing restart file: .//cp_91.save restart file written in 0.779 sec. 1501 0.00016 0.0 697.6 -17.20279 -17.20279 -17.19948 -17.23639 0.0000 0.0000 -0.0155 ******* 1502 0.00017 0.0 735.7 -17.20276 -17.20276 -17.19926 -17.23648 0.0000 0.0000 -0.0155 ******* 1503 0.00018 0.0 775.5 -17.20272 -17.20272 -17.19904 -17.23658 0.0000 0.0000 -0.0154 ******* 1504 0.00019 0.0 817.0 -17.20269 -17.20269 -17.19880 -17.23669 0.0000 0.0000 -0.0153 ******* 1505 0.00020 0.0 860.2 -17.20265 -17.20265 -17.19856 -17.23680 0.0000 0.0000 -0.0152 ******* 1506 0.00021 0.0 905.2 -17.20261 -17.20261 -17.19831 -17.23691 0.0000 0.0000 -0.0151 ******* 1507 0.00022 0.0 951.8 -17.20256 -17.20256 -17.19804 -17.23704 0.0000 0.0000 -0.0150 ******* 1508 0.00023 0.0 1000.2 -17.20252 -17.20252 -17.19777 -17.23717 0.0000 0.0000 -0.0149 ******* 1509 0.00024 0.0 1050.2 -17.20247 -17.20247 -17.19748 -17.23730 0.0000 0.0000 -0.0148 ******* 1510 0.00026 0.0 1101.8 -17.20242 -17.20242 -17.19719 -17.23745 0.0000 0.0000 -0.0147 ******* 1511 0.00027 0.0 1154.9 -17.20237 -17.20237 -17.19689 -17.23760 0.0000 0.0000 -0.0145 ******* 1512 0.00028 0.0 1209.5 -17.20232 -17.20232 -17.19657 -17.23776 0.0000 0.0000 -0.0144 ******* 1513 0.00030 0.0 1265.4 -17.20226 -17.20226 -17.19625 -17.23793 0.0000 0.0000 -0.0143 ******* 1514 0.00031 0.0 1322.5 -17.20221 -17.20221 -17.19592 -17.23811 0.0000 0.0000 -0.0141 ******* 1515 0.00033 0.0 1380.6 -17.20213 -17.20213 -17.19558 -17.23829 0.0000 0.0000 -0.0139 ******* 1516 0.00035 0.0 1439.6 -17.20207 -17.20207 -17.19523 -17.23848 0.0000 0.0000 -0.0138 ******* 1517 0.00036 0.0 1499.3 -17.20201 -17.20201 -17.19489 -17.23869 0.0000 0.0000 -0.0136 ******* 1518 0.00038 0.0 1559.4 -17.20194 -17.20194 -17.19453 -17.23891 0.0000 0.0000 -0.0134 ******* 1519 0.00040 0.0 1619.8 -17.20187 -17.20187 -17.19418 -17.23914 0.0000 0.0000 -0.0132 ******* 1520 0.00042 0.0 1680.1 -17.20180 -17.20180 -17.19382 -17.23938 0.0000 0.0000 -0.0129 ******* 1521 0.00044 0.0 1740.0 -17.20173 -17.20173 -17.19347 -17.23963 0.0000 0.0000 -0.0127 ******* 1522 0.00046 0.0 1799.2 -17.20166 -17.20166 -17.19311 -17.23989 0.0000 0.0000 -0.0125 ******* 1523 0.00048 0.0 1857.5 -17.20158 -17.20158 -17.19276 -17.24016 0.0000 0.0000 -0.0122 ******* 1524 0.00050 0.0 1914.3 -17.20151 -17.20151 -17.19242 -17.24045 0.0000 0.0000 -0.0120 ******* 1525 0.00052 0.0 1969.5 -17.20143 -17.20143 -17.19208 -17.24075 0.0000 0.0000 -0.0117 ******* 1526 0.00054 0.0 2022.6 -17.20136 -17.20136 -17.19175 -17.24106 0.0000 0.0000 -0.0115 ******* 1527 0.00056 0.0 2073.2 -17.20128 -17.20128 -17.19143 -17.24138 0.0000 0.0000 -0.0112 ******* 1528 0.00058 0.0 2121.0 -17.20120 -17.20120 -17.19113 -17.24171 0.0000 0.0000 -0.0109 ******* 1529 0.00060 0.0 2165.5 -17.20113 -17.20113 -17.19084 -17.24206 0.0000 0.0000 -0.0106 ******* * Physical Quantities at step: 1530 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20105 Hartree a.u. kinetic energy = 7.84307 Hartree a.u. electrostatic energy = -22.94982 Hartree a.u. esr = 0.11890 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40635 Hartree a.u. n-l pseudopotential energy = 4.51207 Hartree a.u. exchange-correlation energy = -4.20003 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.41 -12.21 -8.54 -6.49 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.119231E+01 0.573797E+00 0.567067E+00 H -0.310594E+00 -0.115605E+01 -0.129263E+01 O -0.363113E+00 -0.439820E+00 0.432779E+00 ATOMIC_VELOCITIES H 0.784212E-03 -0.963400E-03 -0.439159E-03 H 0.264347E-03 -0.275199E-02 0.103340E-02 O -0.660577E-04 0.234064E-03 -0.374362E-04 Forces acting on atoms (au): H -0.122168E-01 0.116298E-01 0.670920E-02 H -0.186821E-02 0.422010E-01 -0.596390E-02 O 0.131507E-01 -0.286645E-01 -0.409661E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1010.30 0.6062 2 185.90 0.0063 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1530 0.00062 0.0 2206.5 -17.20105 -17.20105 -17.19057 -17.24242 0.0000 0.0000 -0.0103 ******* writing restart file: .//cp_91.save restart file written in 0.778 sec. 1531 0.00064 0.0 2243.5 -17.20098 -17.20098 -17.19032 -17.24279 0.0000 0.0000 -0.0100 ******* 1532 0.00066 0.0 2276.3 -17.20090 -17.20090 -17.19009 -17.24318 0.0000 0.0000 -0.0097 ******* 1533 0.00068 0.0 2304.6 -17.20083 -17.20083 -17.18989 -17.24357 0.0000 0.0000 -0.0094 ******* 1534 0.00070 0.0 2328.0 -17.20076 -17.20076 -17.18971 -17.24398 0.0000 0.0000 -0.0090 ******* 1535 0.00072 0.0 2346.4 -17.20070 -17.20070 -17.18955 -17.24440 0.0000 0.0000 -0.0087 ******* 1536 0.00074 0.0 2359.5 -17.20064 -17.20064 -17.18943 -17.24483 0.0000 0.0000 -0.0084 ******* 1537 0.00075 0.0 2367.3 -17.20058 -17.20058 -17.18933 -17.24527 0.0000 0.0000 -0.0080 ******* 1538 0.00077 0.0 2369.6 -17.20052 -17.20052 -17.18927 -17.24572 0.0000 0.0000 -0.0077 ******* 1539 0.00078 0.0 2366.5 -17.20048 -17.20048 -17.18923 -17.24618 0.0000 0.0000 -0.0074 ******* 1540 0.00080 0.0 2357.8 -17.20043 -17.20043 -17.18923 -17.24665 0.0000 0.0000 -0.0071 ******* 1541 0.00081 0.0 2343.7 -17.20039 -17.20039 -17.18926 -17.24713 0.0000 0.0000 -0.0067 ******* 1542 0.00082 0.0 2324.3 -17.20036 -17.20036 -17.18932 -17.24762 0.0000 0.0000 -0.0064 ******* 1543 0.00083 0.0 2299.8 -17.20033 -17.20033 -17.18941 -17.24811 0.0000 0.0000 -0.0061 ******* 1544 0.00083 0.0 2270.3 -17.20031 -17.20031 -17.18952 -17.24860 0.0000 0.0000 -0.0058 ******* 1545 0.00084 0.0 2236.1 -17.20029 -17.20029 -17.18967 -17.24910 0.0000 0.0000 -0.0055 ******* 1546 0.00084 0.0 2197.5 -17.20028 -17.20028 -17.18984 -17.24961 0.0000 0.0000 -0.0051 ******* 1547 0.00085 0.0 2154.9 -17.20028 -17.20028 -17.19004 -17.25012 0.0000 0.0000 -0.0048 ******* 1548 0.00085 0.0 2108.5 -17.20028 -17.20028 -17.19027 -17.25062 0.0000 0.0000 -0.0046 ******* 1549 0.00085 0.0 2058.7 -17.20029 -17.20029 -17.19051 -17.25113 0.0000 0.0000 -0.0043 ******* 1550 0.00084 0.0 2006.0 -17.20031 -17.20031 -17.19078 -17.25164 0.0000 0.0000 -0.0040 ******* 1551 0.00084 0.0 1950.7 -17.20033 -17.20033 -17.19106 -17.25215 0.0000 0.0000 -0.0037 ******* 1552 0.00083 0.0 1893.2 -17.20036 -17.20036 -17.19136 -17.25265 0.0000 0.0000 -0.0035 ******* 1553 0.00082 0.0 1833.9 -17.20039 -17.20039 -17.19168 -17.25315 0.0000 0.0000 -0.0032 ******* 1554 0.00081 0.0 1773.1 -17.20043 -17.20043 -17.19201 -17.25364 0.0000 0.0000 -0.0030 ******* 1555 0.00080 0.0 1711.4 -17.20047 -17.20047 -17.19234 -17.25413 0.0000 0.0000 -0.0027 ******* 1556 0.00079 0.0 1648.9 -17.20052 -17.20052 -17.19269 -17.25462 0.0000 0.0000 -0.0025 ******* 1557 0.00078 0.0 1586.1 -17.20057 -17.20057 -17.19304 -17.25509 0.0000 0.0000 -0.0023 ******* 1558 0.00076 0.0 1523.3 -17.20063 -17.20063 -17.19339 -17.25556 0.0000 0.0000 -0.0021 ******* 1559 0.00075 0.0 1460.8 -17.20069 -17.20069 -17.19375 -17.25602 0.0000 0.0000 -0.0019 ******* * Physical Quantities at step: 1560 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20075 Hartree a.u. kinetic energy = 7.83392 Hartree a.u. electrostatic energy = -22.94843 Hartree a.u. esr = 0.11669 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.39966 Hartree a.u. n-l pseudopotential energy = 4.51004 Hartree a.u. exchange-correlation energy = -4.19662 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.40 -12.21 -8.53 -6.50 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.125663E+01 0.483117E+00 0.530359E+00 H -0.282884E+00 -0.138438E+01 -0.118050E+01 O -0.368911E+00 -0.419723E+00 0.428028E+00 ATOMIC_VELOCITIES H 0.536336E-03 -0.900952E-03 -0.320108E-03 H 0.308655E-03 -0.191530E-02 0.128947E-02 O -0.532332E-04 0.177420E-03 -0.610682E-04 Forces acting on atoms (au): H -0.116257E-01 0.133609E-01 0.595648E-02 H -0.284348E-02 0.423104E-01 -0.967262E-02 O 0.100288E-01 -0.304993E-01 0.279849E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 640.98 0.9063 2 116.79 0.0098 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1560 0.00073 0.0 1398.7 -17.20075 -17.20075 -17.19411 -17.25647 0.0000 0.0000 -0.0017 ******* writing restart file: .//cp_91.save restart file written in 0.788 sec. 1561 0.00071 0.0 1337.5 -17.20082 -17.20082 -17.19447 -17.25691 0.0000 0.0000 -0.0016 ******* 1562 0.00070 0.0 1277.3 -17.20089 -17.20089 -17.19482 -17.25734 0.0000 0.0000 -0.0014 ******* 1563 0.00068 0.0 1218.2 -17.20096 -17.20096 -17.19517 -17.25775 0.0000 0.0000 -0.0013 ******* 1564 0.00066 0.0 1160.5 -17.20103 -17.20103 -17.19552 -17.25816 0.0000 0.0000 -0.0011 ******* 1565 0.00064 0.0 1104.3 -17.20111 -17.20111 -17.19586 -17.25856 0.0000 0.0000 -0.0010 ******* 1566 0.00062 0.0 1049.7 -17.20118 -17.20118 -17.19620 -17.25894 0.0000 0.0000 -0.0009 ******* 1567 0.00060 0.0 996.8 -17.20126 -17.20126 -17.19652 -17.25931 0.0000 0.0000 -0.0007 ******* 1568 0.00058 0.0 945.6 -17.20133 -17.20133 -17.19684 -17.25967 0.0000 0.0000 -0.0006 ******* 1569 0.00056 0.0 896.3 -17.20141 -17.20141 -17.19715 -17.26001 0.0000 0.0000 -0.0005 ******* 1570 0.00054 0.0 848.8 -17.20148 -17.20148 -17.19745 -17.26035 0.0000 0.0000 -0.0004 ******* 1571 0.00052 0.0 803.1 -17.20156 -17.20156 -17.19774 -17.26067 0.0000 0.0000 -0.0004 ******* 1572 0.00050 0.0 759.4 -17.20163 -17.20163 -17.19803 -17.26098 0.0000 0.0000 -0.0003 ******* 1573 0.00048 0.0 717.5 -17.20171 -17.20171 -17.19830 -17.26127 0.0000 0.0000 -0.0002 ******* 1574 0.00046 0.0 677.5 -17.20178 -17.20178 -17.19856 -17.26156 0.0000 0.0000 -0.0001 ******* 1575 0.00044 0.0 639.2 -17.20185 -17.20185 -17.19881 -17.26183 0.0000 0.0000 -0.0001 ******* 1576 0.00042 0.0 602.8 -17.20192 -17.20192 -17.19905 -17.26209 0.0000 0.0000 0.0000 ******* 1577 0.00040 0.0 568.1 -17.20198 -17.20198 -17.19928 -17.26234 0.0000 0.0000 0.0000 ******* 1578 0.00038 0.0 535.1 -17.20205 -17.20205 -17.19951 -17.26258 0.0000 0.0000 0.0000 ******* 1579 0.00036 0.0 503.7 -17.20211 -17.20211 -17.19972 -17.26281 0.0000 0.0000 0.0001 ******* 1580 0.00035 0.0 473.9 -17.20217 -17.20217 -17.19992 -17.26303 0.0000 0.0000 0.0001 ******* 1581 0.00033 0.0 445.7 -17.20223 -17.20223 -17.20011 -17.26323 0.0000 0.0000 0.0001 ******* 1582 0.00031 0.0 418.9 -17.20228 -17.20228 -17.20029 -17.26343 0.0000 0.0000 0.0002 ******* 1583 0.00030 0.0 393.6 -17.20234 -17.20234 -17.20047 -17.26362 0.0000 0.0000 0.0002 ******* 1584 0.00028 0.0 369.6 -17.20239 -17.20239 -17.20064 -17.26380 0.0000 0.0000 0.0002 ******* 1585 0.00027 0.0 346.9 -17.20244 -17.20244 -17.20080 -17.26397 0.0000 0.0000 0.0002 ******* 1586 0.00026 0.0 325.5 -17.20249 -17.20249 -17.20095 -17.26413 0.0000 0.0000 0.0002 ******* 1587 0.00024 0.0 305.2 -17.20254 -17.20254 -17.20109 -17.26429 0.0000 0.0000 0.0002 ******* 1588 0.00023 0.0 286.1 -17.20258 -17.20258 -17.20122 -17.26443 0.0000 0.0000 0.0002 ******* 1589 0.00022 0.0 268.1 -17.20263 -17.20263 -17.20135 -17.26457 0.0000 0.0000 0.0002 ******* * Physical Quantities at step: 1590 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20267 Hartree a.u. kinetic energy = 7.84310 Hartree a.u. electrostatic energy = -22.94462 Hartree a.u. esr = 0.12169 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41448 Hartree a.u. n-l pseudopotential energy = 4.51362 Hartree a.u. exchange-correlation energy = -4.20029 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.27 -8.61 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.128665E+01 0.423474E+00 0.511705E+00 H -0.260037E+00 -0.149030E+01 -0.108663E+01 O -0.372242E+00 -0.409293E+00 0.423289E+00 ATOMIC_VELOCITIES H 0.181288E-03 -0.438897E-03 -0.112525E-03 H 0.194205E-03 -0.620810E-03 0.730242E-03 O -0.236555E-04 0.667600E-04 -0.389153E-04 Forces acting on atoms (au): H -0.429709E-02 0.860871E-02 0.310390E-02 H -0.259610E-02 0.152744E-01 -0.133686E-01 O 0.120319E-02 -0.730802E-02 0.126034E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 115.52 1.0934 2 20.05 0.0119 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1590 0.00021 0.0 251.1 -17.20267 -17.20267 -17.20147 -17.26470 0.0000 0.0000 0.0002 ******* writing restart file: .//cp_91.save restart file written in 0.789 sec. 1591 0.00020 0.0 235.1 -17.20270 -17.20270 -17.20159 -17.26483 0.0000 0.0000 0.0002 ******* 1592 0.00019 0.0 220.0 -17.20274 -17.20274 -17.20170 -17.26495 0.0000 0.0000 0.0002 ******* 1593 0.00018 0.0 205.8 -17.20278 -17.20278 -17.20180 -17.26506 0.0000 0.0000 0.0002 ******* 1594 0.00017 0.0 192.4 -17.20281 -17.20281 -17.20190 -17.26516 0.0000 0.0000 0.0001 ******* 1595 0.00016 0.0 179.8 -17.20284 -17.20284 -17.20199 -17.26526 0.0000 0.0000 0.0001 ******* 1596 0.00015 0.0 168.0 -17.20287 -17.20287 -17.20207 -17.26536 0.0000 0.0000 0.0001 ******* 1597 0.00014 0.0 156.9 -17.20290 -17.20290 -17.20216 -17.26545 0.0000 0.0000 0.0001 ******* 1598 0.00013 0.0 146.5 -17.20293 -17.20293 -17.20223 -17.26553 0.0000 0.0000 0.0001 ******* 1599 0.00013 0.0 136.7 -17.20295 -17.20295 -17.20230 -17.26561 0.0000 0.0000 0.0000 ******* 1600 0.00012 0.0 127.6 -17.20298 -17.20298 -17.20237 -17.26568 0.0000 0.0000 0.0000 ******* 1601 0.00011 0.0 119.0 -17.20300 -17.20300 -17.20244 -17.26576 0.0000 0.0000 0.0000 ******* 1602 0.00010 0.0 111.0 -17.20302 -17.20302 -17.20250 -17.26582 0.0000 0.0000 0.0000 ******* 1603 0.00010 0.0 103.5 -17.20304 -17.20304 -17.20255 -17.26589 0.0000 0.0000 -0.0001 ******* 1604 0.00009 0.0 96.5 -17.20306 -17.20306 -17.20261 -17.26594 0.0000 0.0000 -0.0001 ******* 1605 0.00009 0.0 89.9 -17.20308 -17.20308 -17.20266 -17.26600 0.0000 0.0000 -0.0001 ******* 1606 0.00008 0.0 83.8 -17.20310 -17.20310 -17.20270 -17.26605 0.0000 0.0000 -0.0002 ******* 1607 0.00008 0.0 78.1 -17.20312 -17.20312 -17.20275 -17.26610 0.0000 0.0000 -0.0002 ******* 1608 0.00007 0.0 72.8 -17.20313 -17.20313 -17.20279 -17.26615 0.0000 0.0000 -0.0002 ******* 1609 0.00007 0.0 67.8 -17.20315 -17.20315 -17.20283 -17.26619 0.0000 0.0000 -0.0003 ******* 1610 0.00006 0.0 63.2 -17.20316 -17.20316 -17.20286 -17.26623 0.0000 0.0000 -0.0003 ******* 1611 0.00006 0.0 58.9 -17.20318 -17.20318 -17.20290 -17.26627 0.0000 0.0000 -0.0004 ******* 1612 0.00006 0.0 55.0 -17.20319 -17.20319 -17.20293 -17.26631 0.0000 0.0000 -0.0004 ******* 1613 0.00005 0.0 51.3 -17.20320 -17.20320 -17.20296 -17.26634 0.0000 0.0000 -0.0004 ******* 1614 0.00005 0.0 47.8 -17.20321 -17.20321 -17.20299 -17.26637 0.0000 0.0000 -0.0005 ******* 1615 0.00005 0.0 44.6 -17.20322 -17.20322 -17.20301 -17.26640 0.0000 0.0000 -0.0005 ******* 1616 0.00004 0.0 41.7 -17.20324 -17.20324 -17.20304 -17.26643 0.0000 0.0000 -0.0006 ******* 1617 0.00004 0.0 38.9 -17.20325 -17.20325 -17.20306 -17.26646 0.0000 0.0000 -0.0006 ******* 1618 0.00004 0.0 36.4 -17.20325 -17.20325 -17.20308 -17.26648 0.0000 0.0000 -0.0006 ******* 1619 0.00004 0.0 34.0 -17.20326 -17.20326 -17.20310 -17.26651 0.0000 0.0000 -0.0007 ******* * Physical Quantities at step: 1620 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20327 Hartree a.u. kinetic energy = 7.85395 Hartree a.u. electrostatic energy = -22.94611 Hartree a.u. esr = 0.12434 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42258 Hartree a.u. n-l pseudopotential energy = 4.51574 Hartree a.u. exchange-correlation energy = -4.20427 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.52 -12.25 -8.62 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.129722E+01 0.397910E+00 0.506727E+00 H -0.247189E+00 -0.152609E+01 -0.104779E+01 O -0.373717E+00 -0.405427E+00 0.421156E+00 ATOMIC_VELOCITIES H 0.782209E-04 -0.163278E-03 -0.118115E-04 H 0.969612E-04 -0.265381E-03 0.190461E-03 O -0.110362E-04 0.270050E-04 -0.112547E-04 Forces acting on atoms (au): H -0.123488E-02 0.424933E-02 0.119844E-02 H -0.194607E-02 0.393559E-02 -0.740107E-02 O 0.557988E-03 -0.226429E-02 0.372237E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 14.41 1.1673 2 3.00 0.0128 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1620 0.00003 0.0 31.8 -17.20327 -17.20327 -17.20312 -17.26653 0.0000 0.0000 -0.0007 ******* writing restart file: .//cp_91.save restart file written in 0.819 sec. 1621 0.00003 0.0 29.8 -17.20328 -17.20328 -17.20314 -17.26655 0.0000 0.0000 -0.0008 ******* 1622 0.00003 0.0 27.9 -17.20329 -17.20329 -17.20316 -17.26657 0.0000 0.0000 -0.0008 ******* 1623 0.00003 0.0 26.2 -17.20330 -17.20330 -17.20317 -17.26659 0.0000 0.0000 -0.0009 ******* 1624 0.00003 0.0 24.5 -17.20330 -17.20330 -17.20319 -17.26660 0.0000 0.0000 -0.0009 ******* 1625 0.00003 0.0 23.0 -17.20331 -17.20331 -17.20320 -17.26662 0.0000 0.0000 -0.0009 ******* 1626 0.00002 0.0 21.6 -17.20332 -17.20332 -17.20321 -17.26663 0.0000 0.0000 -0.0010 ******* 1627 0.00002 0.0 20.3 -17.20332 -17.20332 -17.20322 -17.26665 0.0000 0.0000 -0.0010 ******* 1628 0.00002 0.0 19.1 -17.20333 -17.20333 -17.20324 -17.26666 0.0000 0.0000 -0.0011 ******* 1629 0.00002 0.0 18.0 -17.20333 -17.20333 -17.20325 -17.26667 0.0000 0.0000 -0.0011 ******* 1630 0.00002 0.0 16.9 -17.20334 -17.20334 -17.20326 -17.26669 0.0000 0.0000 -0.0012 ******* 1631 0.00002 0.0 15.9 -17.20334 -17.20334 -17.20327 -17.26670 0.0000 0.0000 -0.0012 ******* 1632 0.00002 0.0 15.0 -17.20335 -17.20335 -17.20328 -17.26671 0.0000 0.0000 -0.0013 ******* 1633 0.00002 0.0 14.2 -17.20335 -17.20335 -17.20328 -17.26672 0.0000 0.0000 -0.0013 ******* 1634 0.00001 0.0 13.3 -17.20335 -17.20335 -17.20329 -17.26673 0.0000 0.0000 -0.0014 ******* 1635 0.00001 0.0 12.6 -17.20336 -17.20336 -17.20330 -17.26673 0.0000 0.0000 -0.0014 ******* 1636 0.00001 0.0 11.9 -17.20336 -17.20336 -17.20331 -17.26674 0.0000 0.0000 -0.0014 ******* 1637 0.00001 0.0 11.2 -17.20337 -17.20337 -17.20331 -17.26675 0.0000 0.0000 -0.0015 ******* 1638 0.00001 0.0 10.5 -17.20337 -17.20337 -17.20332 -17.26676 0.0000 0.0000 -0.0015 ******* 1639 0.00001 0.0 9.9 -17.20337 -17.20337 -17.20332 -17.26677 0.0000 0.0000 -0.0016 ******* 1640 0.00001 0.0 9.4 -17.20337 -17.20337 -17.20333 -17.26677 0.0000 0.0000 -0.0016 ******* 1641 0.00001 0.0 8.8 -17.20338 -17.20338 -17.20334 -17.26678 0.0000 0.0000 -0.0017 ******* 1642 0.00001 0.0 8.3 -17.20338 -17.20338 -17.20334 -17.26678 0.0000 0.0000 -0.0017 ******* 1643 0.00001 0.0 7.8 -17.20338 -17.20338 -17.20335 -17.26679 0.0000 0.0000 -0.0018 ******* 1644 0.00001 0.0 7.4 -17.20338 -17.20338 -17.20335 -17.26680 0.0000 0.0000 -0.0018 ******* 1645 0.00001 0.0 6.9 -17.20339 -17.20339 -17.20335 -17.26680 0.0000 0.0000 -0.0019 ******* 1646 0.00001 0.0 6.5 -17.20339 -17.20339 -17.20336 -17.26681 0.0000 0.0000 -0.0019 ******* 1647 0.00001 0.0 6.1 -17.20339 -17.20339 -17.20336 -17.26681 0.0000 0.0000 -0.0020 ******* 1648 0.00001 0.0 5.8 -17.20339 -17.20339 -17.20337 -17.26681 0.0000 0.0000 -0.0020 ******* 1649 0.00001 0.0 5.4 -17.20339 -17.20339 -17.20337 -17.26682 0.0000 0.0000 -0.0021 ******* * Physical Quantities at step: 1650 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20340 Hartree a.u. kinetic energy = 7.85169 Hartree a.u. electrostatic energy = -22.94706 Hartree a.u. esr = 0.12272 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41875 Hartree a.u. n-l pseudopotential energy = 4.51403 Hartree a.u. exchange-correlation energy = -4.20330 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.22 -8.61 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.130245E+01 0.389340E+00 0.507875E+00 H -0.241775E+00 -0.154373E+01 -0.104008E+01 O -0.374388E+00 -0.403776E+00 0.420598E+00 ATOMIC_VELOCITIES H 0.393560E-04 -0.462953E-04 0.306616E-04 H 0.275126E-04 -0.130405E-03 0.363322E-04 O -0.421263E-05 0.111319E-04 -0.422052E-05 Forces acting on atoms (au): H -0.937326E-03 0.163285E-02 0.214949E-03 H -0.128783E-02 0.318846E-02 -0.626401E-03 O 0.172459E-02 -0.299531E-02 -0.260028E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2.29 1.1973 2 0.49 0.0132 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1650 0.00001 0.0 5.1 -17.20340 -17.20340 -17.20337 -17.26682 0.0000 0.0000 -0.0021 ******* writing restart file: .//cp_91.save restart file written in 0.798 sec. 1651 0.00001 0.0 4.8 -17.20340 -17.20340 -17.20338 -17.26683 0.0000 0.0000 -0.0021 ******* 1652 0.00001 0.0 4.5 -17.20340 -17.20340 -17.20338 -17.26683 0.0000 0.0000 -0.0022 ******* 1653 0.00001 0.0 4.2 -17.20340 -17.20340 -17.20338 -17.26683 0.0000 0.0000 -0.0022 ******* 1654 0.00000 0.0 3.9 -17.20340 -17.20340 -17.20338 -17.26684 0.0000 0.0000 -0.0023 ******* 1655 0.00000 0.0 3.7 -17.20340 -17.20340 -17.20339 -17.26684 0.0000 0.0000 -0.0023 ******* 1656 0.00000 0.0 3.5 -17.20340 -17.20340 -17.20339 -17.26684 0.0000 0.0000 -0.0024 ******* 1657 0.00000 0.0 3.3 -17.20341 -17.20341 -17.20339 -17.26684 0.0000 0.0000 -0.0024 ******* 1658 0.00000 0.0 3.1 -17.20341 -17.20341 -17.20339 -17.26685 0.0000 0.0000 -0.0025 ******* 1659 0.00000 0.0 2.9 -17.20341 -17.20341 -17.20339 -17.26685 0.0000 0.0000 -0.0025 ******* 1660 0.00000 0.0 2.7 -17.20341 -17.20341 -17.20340 -17.26685 0.0000 0.0000 -0.0026 ******* 1661 0.00000 0.0 2.5 -17.20341 -17.20341 -17.20340 -17.26685 0.0000 0.0000 -0.0026 ******* 1662 0.00000 0.0 2.4 -17.20341 -17.20341 -17.20340 -17.26685 0.0000 0.0000 -0.0027 ******* 1663 0.00000 0.0 2.3 -17.20341 -17.20341 -17.20340 -17.26686 0.0000 0.0000 -0.0027 ******* 1664 0.00000 0.0 2.1 -17.20341 -17.20341 -17.20340 -17.26686 0.0000 0.0000 -0.0028 ******* 1665 0.00000 0.0 2.0 -17.20341 -17.20341 -17.20340 -17.26686 0.0000 0.0000 -0.0028 ******* 1666 0.00000 0.0 1.9 -17.20341 -17.20341 -17.20341 -17.26686 0.0000 0.0000 -0.0029 ******* 1667 0.00000 0.0 1.8 -17.20342 -17.20342 -17.20341 -17.26686 0.0000 0.0000 -0.0029 ******* 1668 0.00000 0.0 1.8 -17.20342 -17.20342 -17.20341 -17.26686 0.0000 0.0000 -0.0030 ******* 1669 0.00000 0.0 1.7 -17.20342 -17.20342 -17.20341 -17.26687 0.0000 0.0000 -0.0030 ******* 1670 0.00000 0.0 1.6 -17.20342 -17.20342 -17.20341 -17.26687 0.0000 0.0000 -0.0030 ******* 1671 0.00000 0.0 1.6 -17.20342 -17.20342 -17.20341 -17.26687 0.0000 0.0000 -0.0031 ******* 1672 0.00000 0.0 1.5 -17.20342 -17.20342 -17.20341 -17.26687 0.0000 0.0000 -0.0031 ******* 1673 0.00000 0.0 1.5 -17.20342 -17.20342 -17.20341 -17.26687 0.0000 0.0000 -0.0032 ******* 1674 0.00000 0.0 1.4 -17.20342 -17.20342 -17.20341 -17.26687 0.0000 0.0000 -0.0032 ******* 1675 0.00000 0.0 1.4 -17.20342 -17.20342 -17.20341 -17.26687 0.0000 0.0000 -0.0033 ******* 1676 0.00000 0.0 1.4 -17.20342 -17.20342 -17.20341 -17.26687 0.0000 0.0000 -0.0033 ******* 1677 0.00000 0.0 1.3 -17.20342 -17.20342 -17.20342 -17.26687 0.0000 0.0000 -0.0034 ******* 1678 0.00000 0.0 1.3 -17.20342 -17.20342 -17.20342 -17.26688 0.0000 0.0000 -0.0034 ******* 1679 0.00000 0.0 1.3 -17.20342 -17.20342 -17.20342 -17.26688 0.0000 0.0000 -0.0035 ******* * Physical Quantities at step: 1680 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20342 Hartree a.u. kinetic energy = 7.84902 Hartree a.u. electrostatic energy = -22.94640 Hartree a.u. esr = 0.12219 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41721 Hartree a.u. n-l pseudopotential energy = 4.51350 Hartree a.u. exchange-correlation energy = -4.20234 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.23 -8.61 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.130436E+01 0.387248E+00 0.511397E+00 H -0.241396E+00 -0.155056E+01 -0.103630E+01 O -0.374532E+00 -0.403214E+00 0.420138E+00 ATOMIC_VELOCITIES H 0.446333E-05 -0.790448E-05 0.445595E-04 H -0.140564E-04 -0.335807E-04 0.506152E-04 O 0.604348E-06 0.261351E-05 -0.599588E-05 Forces acting on atoms (au): H -0.632700E-03 0.542367E-03 -0.207948E-03 H -0.462939E-03 0.143004E-02 -0.225864E-03 O 0.880307E-03 -0.359255E-03 -0.377225E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.58 1.2071 2 0.13 0.0133 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1680 0.00000 0.0 1.3 -17.20342 -17.20342 -17.20342 -17.26688 0.0000 0.0000 -0.0035 ******* writing restart file: .//cp_91.save restart file written in 0.789 sec. 1681 0.00000 0.0 1.3 -17.20342 -17.20342 -17.20342 -17.26688 0.0000 0.0000 -0.0036 ******* 1682 0.00000 0.0 1.3 -17.20342 -17.20342 -17.20342 -17.26688 0.0000 0.0000 -0.0036 ******* 1683 0.00000 0.0 1.2 -17.20342 -17.20342 -17.20342 -17.26688 0.0000 0.0000 -0.0037 ******* 1684 0.00000 0.0 1.2 -17.20343 -17.20343 -17.20342 -17.26688 0.0000 0.0000 -0.0037 ******* 1685 0.00000 0.0 1.2 -17.20343 -17.20343 -17.20342 -17.26688 0.0000 0.0000 -0.0038 ******* 1686 0.00000 0.0 1.2 -17.20343 -17.20343 -17.20342 -17.26688 0.0000 0.0000 -0.0038 ******* 1687 0.00000 0.0 1.2 -17.20343 -17.20343 -17.20342 -17.26688 0.0000 0.0000 -0.0039 ******* 1688 0.00000 0.0 1.2 -17.20343 -17.20343 -17.20342 -17.26688 0.0000 0.0000 -0.0039 ******* 1689 0.00000 0.0 1.2 -17.20343 -17.20343 -17.20342 -17.26688 0.0000 0.0000 -0.0040 ******* 1690 0.00000 0.0 1.2 -17.20343 -17.20343 -17.20342 -17.26688 0.0000 0.0000 -0.0040 ******* in while: event_index 7 ======================================== EMPLOY RULES: CURRENT_NFI= 1691 event_index= 7 event_step== 1691 ======================================== RULE EVENT: tempw 500.000000000000 in while after: event_index 8 1691 0.00000 0.0 1.2 -17.20343 -17.20343 -17.20342 -17.30919 0.0000 0.0000 -0.0041 ******* 1692 0.00000 0.0 1.2 -17.20343 -17.20343 -17.20342 -17.30919 0.0000 0.0000 -0.0041 ******* 1693 0.00000 0.0 1.2 -17.20343 -17.20343 -17.20342 -17.30919 0.0000 0.0000 -0.0041 ******* 1694 0.00000 0.0 1.1 -17.20343 -17.20343 -17.20342 -17.30919 0.0000 0.0000 -0.0042 ******* 1695 0.00000 0.0 1.1 -17.20343 -17.20343 -17.20342 -17.30919 0.0000 0.0000 -0.0042 ******* 1696 0.00000 0.0 1.1 -17.20343 -17.20343 -17.20342 -17.30919 0.0000 0.0000 -0.0043 ******* 1697 0.00000 0.0 1.1 -17.20343 -17.20343 -17.20342 -17.30920 0.0000 0.0000 -0.0043 ******* 1698 0.00000 0.0 1.1 -17.20343 -17.20343 -17.20342 -17.30920 0.0000 0.0000 -0.0044 ******* 1699 0.00000 0.0 1.1 -17.20343 -17.20343 -17.20342 -17.30920 0.0000 0.0000 -0.0044 ******* 1700 0.00000 0.0 1.1 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0045 ******* 1701 0.00000 0.0 1.1 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0045 ******* 1702 0.00000 0.0 1.0 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0046 ******* 1703 0.00000 0.0 1.0 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0046 ******* 1704 0.00000 0.0 1.0 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0047 ******* 1705 0.00000 0.0 1.0 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0047 ******* 1706 0.00000 0.0 1.0 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0048 ******* 1707 0.00000 0.0 1.0 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0048 ******* 1708 0.00000 0.0 1.0 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0049 ******* 1709 0.00000 0.0 1.0 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0049 ******* * Physical Quantities at step: 1710 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20343 Hartree a.u. kinetic energy = 7.85029 Hartree a.u. electrostatic energy = -22.94633 Hartree a.u. esr = 0.12289 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41889 Hartree a.u. n-l pseudopotential energy = 4.51439 Hartree a.u. exchange-correlation energy = -4.20290 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.25 -8.61 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.130380E+01 0.387196E+00 0.515565E+00 H -0.243467E+00 -0.155237E+01 -0.103232E+01 O -0.374366E+00 -0.403097E+00 0.419625E+00 ATOMIC_VELOCITIES H -0.127867E-04 0.513932E-05 0.469768E-04 H -0.281137E-04 -0.178030E-04 0.293915E-04 O 0.257667E-05 0.797796E-06 -0.481109E-05 Forces acting on atoms (au): H 0.930957E-05 0.192236E-03 -0.468991E-03 H 0.173525E-03 -0.310453E-05 -0.111856E-02 O -0.326352E-03 0.658697E-03 0.103845E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.42 1.2082 2 0.09 0.0133 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1710 0.00000 0.0 0.9 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0050 ******* writing restart file: .//cp_91.save restart file written in 0.800 sec. 1711 0.00000 0.0 0.9 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0050 ******* 1712 0.00000 0.0 0.9 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0051 ******* 1713 0.00000 0.0 0.9 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0051 ******* 1714 0.00000 0.0 0.9 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0052 ******* 1715 0.00000 0.0 0.9 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0052 ******* 1716 0.00000 0.0 0.9 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0052 ******* 1717 0.00000 0.0 0.9 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0053 ******* 1718 0.00000 0.0 0.9 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0053 ******* 1719 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0054 ******* 1720 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0054 ******* 1721 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0055 ******* 1722 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0055 ******* 1723 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0056 ******* 1724 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0056 ******* 1725 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30920 0.0000 0.0000 -0.0057 ******* 1726 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0057 ******* 1727 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0058 ******* 1728 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0058 ******* 1729 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0059 ******* 1730 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0059 ******* 1731 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0060 ******* 1732 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0060 ******* 1733 0.00000 0.0 0.8 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0061 ******* 1734 0.00000 0.0 0.7 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0061 ******* 1735 0.00000 0.0 0.7 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0062 ******* 1736 0.00000 0.0 0.7 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0062 ******* 1737 0.00000 0.0 0.7 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0063 ******* 1738 0.00000 0.0 0.7 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0063 ******* 1739 0.00000 0.0 0.7 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0064 ******* * Physical Quantities at step: 1740 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20343 Hartree a.u. kinetic energy = 7.85098 Hartree a.u. electrostatic energy = -22.94688 Hartree a.u. esr = 0.12301 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41912 Hartree a.u. n-l pseudopotential energy = 4.51480 Hartree a.u. exchange-correlation energy = -4.20321 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.26 -8.59 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.130271E+01 0.388006E+00 0.519688E+00 H -0.245953E+00 -0.155444E+01 -0.103130E+01 O -0.374141E+00 -0.403017E+00 0.419301E+00 ATOMIC_VELOCITIES H -0.911637E-05 0.117858E-04 0.436234E-04 H -0.251410E-04 -0.254191E-04 -0.163474E-05 O 0.215817E-05 0.858879E-06 -0.264523E-05 Forces acting on atoms (au): H 0.291020E-03 -0.790506E-04 -0.707684E-03 H 0.477463E-03 0.393848E-03 -0.298055E-03 O -0.599252E-03 -0.270363E-03 -0.554953E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.33 1.2078 2 0.04 0.0133 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1740 0.00000 0.0 0.7 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0064 ******* writing restart file: .//cp_91.save restart file written in 0.780 sec. 1741 0.00000 0.0 0.7 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0064 ******* 1742 0.00000 0.0 0.7 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0065 ******* 1743 0.00000 0.0 0.7 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0065 ******* 1744 0.00000 0.0 0.7 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0066 ******* 1745 0.00000 0.0 0.6 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0066 ******* 1746 0.00000 0.0 0.6 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0067 ******* 1747 0.00000 0.0 0.6 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0067 ******* 1748 0.00000 0.0 0.6 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0068 ******* 1749 0.00000 0.0 0.6 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0068 ******* 1750 0.00000 0.0 0.6 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0069 ******* 1751 0.00000 0.0 0.6 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0069 ******* 1752 0.00000 0.0 0.5 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0070 ******* 1753 0.00000 0.0 0.5 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0070 ******* 1754 0.00000 0.0 0.5 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0071 ******* 1755 0.00000 0.0 0.5 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0071 ******* 1756 0.00000 0.0 0.5 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0072 ******* 1757 0.00000 0.0 0.5 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0072 ******* 1758 0.00000 0.0 0.5 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0073 ******* 1759 0.00000 0.0 0.4 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0073 ******* 1760 0.00000 0.0 0.4 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0074 ******* 1761 0.00000 0.0 0.4 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0074 ******* 1762 0.00000 0.0 0.4 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0075 ******* 1763 0.00000 0.0 0.4 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0075 ******* 1764 0.00000 0.0 0.4 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0075 ******* 1765 0.00000 0.0 0.4 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0076 ******* 1766 0.00000 0.0 0.3 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0076 ******* 1767 0.00000 0.0 0.3 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0077 ******* 1768 0.00000 0.0 0.3 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0077 ******* 1769 0.00000 0.0 0.3 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0078 ******* * Physical Quantities at step: 1770 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20344 Hartree a.u. kinetic energy = 7.85025 Hartree a.u. electrostatic energy = -22.94705 Hartree a.u. esr = 0.12276 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41842 Hartree a.u. n-l pseudopotential energy = 4.51476 Hartree a.u. exchange-correlation energy = -4.20298 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.26 -8.58 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.130224E+01 0.389014E+00 0.523202E+00 H -0.247694E+00 -0.155608E+01 -0.103145E+01 O -0.374001E+00 -0.402977E+00 0.419089E+00 ATOMIC_VELOCITIES H -0.240731E-05 0.849947E-05 0.332316E-04 H -0.119682E-04 -0.751728E-05 0.267936E-05 O 0.905636E-06 -0.618767E-07 -0.226234E-05 Forces acting on atoms (au): H 0.109462E-03 -0.309989E-03 -0.797281E-03 H 0.551058E-03 0.631305E-03 0.189741E-03 O -0.475089E-03 -0.157065E-03 -0.985475E-06 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.13 1.2071 2 0.02 0.0133 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1770 0.00000 0.0 0.3 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0078 ******* writing restart file: .//cp_91.save restart file written in 0.780 sec. 1771 0.00000 0.0 0.3 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0079 ******* 1772 0.00000 0.0 0.3 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0079 ******* 1773 0.00000 0.0 0.3 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0080 ******* 1774 0.00000 0.0 0.2 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0080 ******* 1775 0.00000 0.0 0.2 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0081 ******* 1776 0.00000 0.0 0.2 -17.20344 -17.20344 -17.20343 -17.30921 0.0000 0.0000 -0.0081 ******* 1777 0.00000 0.0 0.2 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0082 ******* 1778 0.00000 0.0 0.2 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0082 ******* 1779 0.00000 0.0 0.2 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0083 ******* 1780 0.00000 0.0 0.2 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0083 ******* 1781 0.00000 0.0 0.2 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0084 ******* 1782 0.00000 0.0 0.2 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0084 ******* 1783 0.00000 0.0 0.2 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0085 ******* 1784 0.00000 0.0 0.2 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0085 ******* 1785 0.00000 0.0 0.2 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0086 ******* 1786 0.00000 0.0 0.2 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0086 ******* 1787 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0087 ******* 1788 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0087 ******* 1789 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0087 ******* 1790 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0088 ******* 1791 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0088 ******* 1792 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0089 ******* 1793 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0089 ******* 1794 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0090 ******* 1795 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0090 ******* 1796 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0091 ******* 1797 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0091 ******* 1798 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0092 ******* 1799 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0092 ******* * Physical Quantities at step: 1800 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20344 Hartree a.u. kinetic energy = 7.85032 Hartree a.u. electrostatic energy = -22.94688 Hartree a.u. esr = 0.12294 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41882 Hartree a.u. n-l pseudopotential energy = 4.51498 Hartree a.u. exchange-correlation energy = -4.20304 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.27 -8.58 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.130208E+01 0.389199E+00 0.525493E+00 H -0.247806E+00 -0.155578E+01 -0.103085E+01 O -0.373984E+00 -0.403008E+00 0.418907E+00 ATOMIC_VELOCITIES H -0.159370E-05 -0.557065E-05 0.171132E-04 H 0.111664E-04 0.114247E-04 0.652976E-05 O -0.603066E-06 -0.368799E-06 -0.148947E-05 Forces acting on atoms (au): H 0.308856E-04 -0.226821E-03 -0.645246E-03 H 0.367299E-03 0.105694E-04 -0.311661E-03 O -0.645138E-03 0.538636E-03 0.932783E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.06 1.2058 2 0.01 0.0133 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1800 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0093 ******* writing restart file: .//cp_91.save restart file written in 0.791 sec. 1801 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0093 ******* 1802 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0094 ******* 1803 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0094 ******* 1804 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0095 ******* 1805 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0095 ******* 1806 0.00000 0.0 0.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0096 ******* 1807 0.00000 0.0 0.2 -17.20343 -17.20343 -17.20343 -17.30921 0.0000 0.0000 -0.0096 ******* 1808 0.00000 0.0 0.2 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0097 ******* 1809 0.00000 0.0 0.2 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0097 ******* 1810 0.00000 0.0 0.2 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0098 ******* 1811 0.00000 0.0 0.2 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0098 ******* 1812 0.00000 0.0 0.2 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0099 ******* 1813 0.00000 0.0 0.2 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0099 ******* 1814 0.00000 0.0 0.2 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0099 ******* 1815 0.00000 0.0 0.2 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0100 ******* 1816 0.00000 0.0 0.2 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0100 ******* 1817 0.00000 0.0 0.3 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0101 ******* 1818 0.00000 0.0 0.3 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0101 ******* 1819 0.00000 0.0 0.3 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0102 ******* 1820 0.00000 0.0 0.3 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0102 ******* 1821 0.00000 0.0 0.3 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0103 ******* 1822 0.00000 0.0 0.3 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0103 ******* 1823 0.00000 0.0 0.4 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0104 ******* 1824 0.00000 0.0 0.4 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0104 ******* 1825 0.00000 0.0 0.4 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0105 ******* 1826 0.00000 0.0 0.4 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0105 ******* 1827 0.00000 0.0 0.5 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0106 ******* 1828 0.00000 0.0 0.5 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0106 ******* 1829 0.00000 0.0 0.5 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0107 ******* * Physical Quantities at step: 1830 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20343 Hartree a.u. kinetic energy = 7.85101 Hartree a.u. electrostatic energy = -22.94688 Hartree a.u. esr = 0.12314 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41939 Hartree a.u. n-l pseudopotential energy = 4.51511 Hartree a.u. exchange-correlation energy = -4.20328 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.27 -8.59 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.130210E+01 0.387967E+00 0.526280E+00 H -0.245426E+00 -0.155457E+01 -0.103105E+01 O -0.374136E+00 -0.403007E+00 0.418869E+00 ATOMIC_VELOCITIES H 0.401237E-05 -0.213084E-04 0.911359E-06 H 0.427840E-04 0.140452E-04 -0.130001E-04 O -0.294810E-05 0.457575E-06 0.761573E-06 Forces acting on atoms (au): H 0.113365E-03 0.136563E-03 -0.310665E-03 H -0.179143E-03 -0.240781E-03 -0.209949E-03 O -0.611628E-03 0.125436E-03 0.444562E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.26 1.2047 2 0.03 0.0133 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1830 0.00000 0.0 0.5 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0107 ******* writing restart file: .//cp_91.save restart file written in 0.780 sec. 1831 0.00000 0.0 0.6 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0108 ******* 1832 0.00000 0.0 0.6 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0108 ******* 1833 0.00000 0.0 0.6 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0109 ******* 1834 0.00000 0.0 0.7 -17.20343 -17.20343 -17.20343 -17.30922 0.0000 0.0000 -0.0109 ******* 1835 0.00000 0.0 0.7 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0110 ******* 1836 0.00000 0.0 0.7 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0110 ******* 1837 0.00000 0.0 0.8 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0110 ******* 1838 0.00000 0.0 0.8 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0111 ******* 1839 0.00000 0.0 0.9 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0111 ******* 1840 0.00000 0.0 0.9 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0112 ******* 1841 0.00000 0.0 0.9 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0112 ******* 1842 0.00000 0.0 1.0 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0113 ******* 1843 0.00000 0.0 1.0 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0113 ******* 1844 0.00000 0.0 1.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0114 ******* 1845 0.00000 0.0 1.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0114 ******* 1846 0.00000 0.0 1.2 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0115 ******* 1847 0.00000 0.0 1.2 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0115 ******* 1848 0.00000 0.0 1.2 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0116 ******* 1849 0.00000 0.0 1.3 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0116 ******* 1850 0.00000 0.0 1.3 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0117 ******* 1851 0.00000 0.0 1.4 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0117 ******* 1852 0.00000 0.0 1.4 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0118 ******* 1853 0.00000 0.0 1.5 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0118 ******* 1854 0.00000 0.0 1.5 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0119 ******* 1855 0.00000 0.0 1.6 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0119 ******* 1856 0.00000 0.0 1.7 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0120 ******* 1857 0.00000 0.0 1.7 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0120 ******* 1858 0.00000 0.0 1.8 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0121 ******* 1859 0.00000 0.0 1.8 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0121 ******* * Physical Quantities at step: 1860 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20344 Hartree a.u. kinetic energy = 7.85081 Hartree a.u. electrostatic energy = -22.94686 Hartree a.u. esr = 0.12286 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41887 Hartree a.u. n-l pseudopotential energy = 4.51459 Hartree a.u. exchange-correlation energy = -4.20311 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.25 -8.60 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.130308E+01 0.385470E+00 0.525843E+00 H -0.239990E+00 -0.155297E+01 -0.103298E+01 O -0.374540E+00 -0.402950E+00 0.419019E+00 ATOMIC_VELOCITIES H 0.181452E-04 -0.339513E-04 -0.902362E-05 H 0.783338E-04 0.251913E-04 -0.264990E-04 O -0.607804E-05 0.551868E-06 0.223788E-05 Forces acting on atoms (au): H -0.178322E-03 0.498344E-03 0.110666E-03 H -0.105720E-02 -0.102693E-03 0.541839E-03 O 0.314561E-03 -0.459890E-03 -0.682065E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.87 1.2045 2 0.13 0.0133 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1860 0.00000 0.0 1.9 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0121 ******* writing restart file: .//cp_91.save restart file written in 0.779 sec. 1861 0.00000 0.0 1.9 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0122 ******* 1862 0.00000 0.0 2.0 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0122 ******* 1863 0.00000 0.0 2.1 -17.20344 -17.20344 -17.20343 -17.30922 0.0000 0.0000 -0.0123 ******* 1864 0.00000 0.0 2.1 -17.20343 -17.20343 -17.20342 -17.30922 0.0000 0.0000 -0.0123 ******* 1865 0.00000 0.0 2.2 -17.20343 -17.20343 -17.20342 -17.30922 0.0000 0.0000 -0.0124 ******* 1866 0.00000 0.0 2.2 -17.20343 -17.20343 -17.20342 -17.30922 0.0000 0.0000 -0.0124 ******* 1867 0.00000 0.0 2.3 -17.20343 -17.20343 -17.20342 -17.30922 0.0000 0.0000 -0.0125 ******* 1868 0.00000 0.0 2.4 -17.20343 -17.20343 -17.20342 -17.30922 0.0000 0.0000 -0.0125 ******* 1869 0.00000 0.0 2.4 -17.20343 -17.20343 -17.20342 -17.30922 0.0000 0.0000 -0.0126 ******* 1870 0.00000 0.0 2.5 -17.20343 -17.20343 -17.20342 -17.30922 0.0000 0.0000 -0.0126 ******* 1871 0.00000 0.0 2.6 -17.20343 -17.20343 -17.20342 -17.30923 0.0000 0.0000 -0.0127 ******* 1872 0.00000 0.0 2.6 -17.20343 -17.20343 -17.20342 -17.30923 0.0000 0.0000 -0.0127 ******* 1873 0.00000 0.0 2.7 -17.20343 -17.20343 -17.20342 -17.30923 0.0000 0.0000 -0.0128 ******* 1874 0.00000 0.0 2.8 -17.20343 -17.20343 -17.20342 -17.30923 0.0000 0.0000 -0.0128 ******* 1875 0.00000 0.0 2.9 -17.20343 -17.20343 -17.20342 -17.30923 0.0000 0.0000 -0.0129 ******* 1876 0.00000 0.0 2.9 -17.20343 -17.20343 -17.20342 -17.30923 0.0000 0.0000 -0.0129 ******* 1877 0.00000 0.0 3.0 -17.20343 -17.20343 -17.20342 -17.30923 0.0000 0.0000 -0.0130 ******* 1878 0.00000 0.0 3.1 -17.20343 -17.20343 -17.20342 -17.30923 0.0000 0.0000 -0.0130 ******* 1879 0.00000 0.0 3.2 -17.20343 -17.20343 -17.20342 -17.30923 0.0000 0.0000 -0.0131 ******* 1880 0.00000 0.0 3.3 -17.20343 -17.20343 -17.20342 -17.30923 0.0000 0.0000 -0.0131 ******* 1881 0.00000 0.0 3.3 -17.20343 -17.20343 -17.20342 -17.30923 0.0000 0.0000 -0.0132 ******* 1882 0.00000 0.0 3.4 -17.20343 -17.20343 -17.20342 -17.30923 0.0000 0.0000 -0.0132 ******* 1883 0.00000 0.0 3.5 -17.20343 -17.20343 -17.20341 -17.30923 0.0000 0.0000 -0.0132 ******* 1884 0.00000 0.0 3.6 -17.20343 -17.20343 -17.20341 -17.30923 0.0000 0.0000 -0.0133 ******* 1885 0.00000 0.0 3.7 -17.20343 -17.20343 -17.20341 -17.30923 0.0000 0.0000 -0.0133 ******* 1886 0.00000 0.0 3.8 -17.20343 -17.20343 -17.20341 -17.30923 0.0000 0.0000 -0.0134 ******* 1887 0.00000 0.0 3.8 -17.20343 -17.20343 -17.20341 -17.30923 0.0000 0.0000 -0.0134 ******* 1888 0.00000 0.0 3.9 -17.20343 -17.20343 -17.20341 -17.30923 0.0000 0.0000 -0.0135 ******* 1889 0.00000 0.0 4.0 -17.20343 -17.20343 -17.20341 -17.30924 0.0000 0.0000 -0.0135 ******* * Physical Quantities at step: 1890 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20343 Hartree a.u. kinetic energy = 7.85024 Hartree a.u. electrostatic energy = -22.94641 Hartree a.u. esr = 0.12257 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41833 Hartree a.u. n-l pseudopotential energy = 4.51385 Hartree a.u. exchange-correlation energy = -4.20277 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.23 -8.62 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.130513E+01 0.381798E+00 0.525117E+00 H -0.231272E+00 -0.154943E+01 -0.103531E+01 O -0.375218E+00 -0.402942E+00 0.419211E+00 ATOMIC_VELOCITIES H 0.245144E-04 -0.482525E-04 -0.304597E-05 H 0.115871E-03 0.549790E-04 -0.252185E-04 O -0.884411E-05 -0.423765E-06 0.178062E-05 Forces acting on atoms (au): H -0.743419E-03 0.887366E-03 0.514183E-03 H -0.216414E-02 -0.713103E-03 0.591172E-03 O 0.154837E-02 -0.203783E-04 -0.684442E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1.94 1.2037 2 0.25 0.0134 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1890 0.00000 0.0 4.1 -17.20343 -17.20343 -17.20341 -17.30924 0.0000 0.0000 -0.0136 ******* writing restart file: .//cp_91.save restart file written in 0.780 sec. 1891 0.00000 0.0 4.2 -17.20343 -17.20343 -17.20341 -17.30924 0.0000 0.0000 -0.0136 ******* 1892 0.00000 0.0 4.3 -17.20343 -17.20343 -17.20341 -17.30924 0.0000 0.0000 -0.0137 ******* 1893 0.00000 0.0 4.4 -17.20343 -17.20343 -17.20341 -17.30924 0.0000 0.0000 -0.0137 ******* 1894 0.00000 0.0 4.5 -17.20343 -17.20343 -17.20341 -17.30924 0.0000 0.0000 -0.0138 ******* 1895 0.00000 0.0 4.6 -17.20343 -17.20343 -17.20340 -17.30924 0.0000 0.0000 -0.0138 ******* 1896 0.00000 0.0 4.7 -17.20343 -17.20343 -17.20340 -17.30924 0.0000 0.0000 -0.0139 ******* 1897 0.00000 0.0 4.8 -17.20343 -17.20343 -17.20340 -17.30924 0.0000 0.0000 -0.0139 ******* 1898 0.00000 0.0 4.9 -17.20343 -17.20343 -17.20340 -17.30924 0.0000 0.0000 -0.0140 ******* 1899 0.00000 0.0 5.0 -17.20342 -17.20342 -17.20340 -17.30924 0.0000 0.0000 -0.0140 ******* 1900 0.00000 0.0 5.2 -17.20342 -17.20342 -17.20340 -17.30924 0.0000 0.0000 -0.0141 ******* 1901 0.00000 0.0 5.3 -17.20342 -17.20342 -17.20340 -17.30924 0.0000 0.0000 -0.0141 ******* 1902 0.00000 0.0 5.4 -17.20342 -17.20342 -17.20340 -17.30925 0.0000 0.0000 -0.0142 ******* 1903 0.00000 0.0 5.5 -17.20342 -17.20342 -17.20340 -17.30925 0.0000 0.0000 -0.0142 ******* 1904 0.00000 0.0 5.6 -17.20342 -17.20342 -17.20339 -17.30925 0.0000 0.0000 -0.0142 ******* 1905 0.00000 0.0 5.8 -17.20342 -17.20342 -17.20339 -17.30925 0.0000 0.0000 -0.0143 ******* 1906 0.00000 0.0 5.9 -17.20342 -17.20342 -17.20339 -17.30925 0.0000 0.0000 -0.0143 ******* 1907 0.00000 0.0 6.0 -17.20342 -17.20342 -17.20339 -17.30925 0.0000 0.0000 -0.0144 ******* 1908 0.00000 0.0 6.2 -17.20342 -17.20342 -17.20339 -17.30925 0.0000 0.0000 -0.0144 ******* 1909 0.00000 0.0 6.3 -17.20342 -17.20342 -17.20339 -17.30925 0.0000 0.0000 -0.0145 ******* 1910 0.00000 0.0 6.4 -17.20342 -17.20342 -17.20339 -17.30925 0.0000 0.0000 -0.0145 ******* 1911 0.00000 0.0 6.6 -17.20342 -17.20342 -17.20339 -17.30926 0.0000 0.0000 -0.0146 ******* 1912 0.00000 0.0 6.7 -17.20342 -17.20342 -17.20338 -17.30926 0.0000 0.0000 -0.0146 ******* 1913 0.00000 0.0 6.9 -17.20341 -17.20341 -17.20338 -17.30926 0.0000 0.0000 -0.0147 ******* 1914 0.00000 0.0 7.1 -17.20341 -17.20341 -17.20338 -17.30926 0.0000 0.0000 -0.0147 ******* 1915 0.00000 0.0 7.2 -17.20341 -17.20341 -17.20338 -17.30926 0.0000 0.0000 -0.0148 ******* 1916 0.00000 0.0 7.4 -17.20341 -17.20341 -17.20338 -17.30926 0.0000 0.0000 -0.0148 ******* 1917 0.00000 0.0 7.6 -17.20341 -17.20341 -17.20337 -17.30926 0.0000 0.0000 -0.0149 ******* 1918 0.00000 0.0 7.8 -17.20341 -17.20341 -17.20337 -17.30926 0.0000 0.0000 -0.0149 ******* 1919 0.00000 0.0 8.0 -17.20341 -17.20341 -17.20337 -17.30927 0.0000 0.0000 -0.0150 ******* * Physical Quantities at step: 1920 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20341 Hartree a.u. kinetic energy = 7.85053 Hartree a.u. electrostatic energy = -22.94583 Hartree a.u. esr = 0.12261 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41867 Hartree a.u. n-l pseudopotential energy = 4.51331 Hartree a.u. exchange-correlation energy = -4.20275 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.20 -8.64 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.130697E+01 0.376775E+00 0.526519E+00 H -0.218965E+00 -0.154319E+01 -0.103824E+01 O -0.376109E+00 -0.403018E+00 0.419308E+00 ATOMIC_VELOCITIES H 0.143619E-04 -0.622392E-04 0.451198E-04 H 0.159204E-03 0.821596E-04 -0.469272E-04 O -0.109344E-04 -0.125496E-05 0.113866E-06 Forces acting on atoms (au): H -0.813192E-03 0.152095E-02 0.536984E-03 H -0.350470E-02 -0.178448E-02 0.414950E-03 O 0.222622E-02 0.522505E-04 -0.746324E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 3.91 1.1996 2 0.37 0.0135 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1920 0.00000 0.0 8.2 -17.20341 -17.20341 -17.20337 -17.30927 0.0000 0.0000 -0.0150 ******* writing restart file: .//cp_91.save restart file written in 0.788 sec. 1921 0.00000 0.0 8.4 -17.20341 -17.20341 -17.20337 -17.30927 0.0000 0.0000 -0.0150 ******* 1922 0.00000 0.0 8.6 -17.20341 -17.20341 -17.20336 -17.30927 0.0000 0.0000 -0.0151 ******* 1923 0.00000 0.0 8.9 -17.20340 -17.20340 -17.20336 -17.30927 0.0000 0.0000 -0.0151 ******* 1924 0.00000 0.0 9.1 -17.20340 -17.20340 -17.20336 -17.30927 0.0000 0.0000 -0.0152 ******* 1925 0.00000 0.0 9.4 -17.20340 -17.20340 -17.20336 -17.30927 0.0000 0.0000 -0.0152 ******* 1926 0.00000 0.0 9.7 -17.20340 -17.20340 -17.20336 -17.30928 0.0000 0.0000 -0.0153 ******* 1927 0.00000 0.0 9.9 -17.20340 -17.20340 -17.20335 -17.30928 0.0000 0.0000 -0.0153 ******* 1928 0.00000 0.0 10.3 -17.20340 -17.20340 -17.20335 -17.30928 0.0000 0.0000 -0.0154 ******* 1929 0.00000 0.0 10.6 -17.20340 -17.20340 -17.20335 -17.30928 0.0000 0.0000 -0.0154 ******* 1930 0.00000 0.0 10.9 -17.20340 -17.20340 -17.20335 -17.30928 0.0000 0.0000 -0.0155 ******* 1931 0.00000 0.0 11.3 -17.20340 -17.20340 -17.20334 -17.30928 0.0000 0.0000 -0.0155 ******* 1932 0.00000 0.0 11.6 -17.20339 -17.20339 -17.20334 -17.30929 0.0000 0.0000 -0.0156 ******* 1933 0.00000 0.0 12.0 -17.20339 -17.20339 -17.20334 -17.30929 0.0000 0.0000 -0.0156 ******* 1934 0.00000 0.0 12.5 -17.20339 -17.20339 -17.20333 -17.30929 0.0000 0.0000 -0.0157 ******* 1935 0.00000 0.0 12.9 -17.20339 -17.20339 -17.20333 -17.30929 0.0000 0.0000 -0.0157 ******* 1936 0.00000 0.0 13.4 -17.20339 -17.20339 -17.20333 -17.30929 0.0000 0.0000 -0.0158 ******* 1937 0.00000 0.0 13.9 -17.20339 -17.20339 -17.20332 -17.30930 0.0000 0.0000 -0.0158 ******* 1938 0.00000 0.0 14.4 -17.20339 -17.20339 -17.20332 -17.30930 0.0000 0.0000 -0.0158 ******* 1939 0.00000 0.0 15.0 -17.20338 -17.20338 -17.20331 -17.30930 0.0000 0.0000 -0.0159 ******* 1940 0.00000 0.0 15.6 -17.20338 -17.20338 -17.20331 -17.30930 0.0000 0.0000 -0.0159 ******* 1941 0.00000 0.0 16.2 -17.20338 -17.20338 -17.20330 -17.30931 0.0000 0.0000 -0.0160 ******* 1942 0.00000 0.0 16.9 -17.20338 -17.20338 -17.20330 -17.30931 0.0000 0.0000 -0.0160 ******* 1943 0.00000 0.0 17.6 -17.20338 -17.20338 -17.20330 -17.30931 0.0000 0.0000 -0.0161 ******* 1944 0.00000 0.0 18.4 -17.20338 -17.20338 -17.20329 -17.30932 0.0000 0.0000 -0.0161 ******* 1945 0.00001 0.0 19.2 -17.20338 -17.20338 -17.20328 -17.30932 0.0000 0.0000 -0.0162 ******* 1946 0.00001 0.0 20.1 -17.20337 -17.20337 -17.20328 -17.30932 0.0000 0.0000 -0.0162 ******* 1947 0.00001 0.0 21.0 -17.20337 -17.20337 -17.20327 -17.30932 0.0000 0.0000 -0.0163 ******* 1948 0.00001 0.0 22.0 -17.20337 -17.20337 -17.20327 -17.30933 0.0000 0.0000 -0.0163 ******* 1949 0.00001 0.0 23.1 -17.20337 -17.20337 -17.20326 -17.30933 0.0000 0.0000 -0.0164 ******* * Physical Quantities at step: 1950 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20337 Hartree a.u. kinetic energy = 7.85067 Hartree a.u. electrostatic energy = -22.94568 Hartree a.u. esr = 0.12239 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41834 Hartree a.u. n-l pseudopotential energy = 4.51263 Hartree a.u. exchange-correlation energy = -4.20264 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.18 -8.67 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.130758E+01 0.371076E+00 0.536498E+00 H -0.202094E+00 -0.153437E+01 -0.104500E+01 O -0.377210E+00 -0.403215E+00 0.419105E+00 ATOMIC_VELOCITIES H -0.143375E-05 -0.606000E-04 0.205516E-03 H 0.220951E-03 0.121521E-03 -0.108740E-03 O -0.138293E-04 -0.383794E-05 -0.609674E-05 Forces acting on atoms (au): H -0.495679E-03 0.201862E-02 -0.910428E-03 H -0.513636E-02 -0.228635E-02 0.164390E-02 O 0.308962E-02 -0.111034E-02 -0.211526E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 11.73 1.1875 2 0.75 0.0135 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1950 0.00001 0.0 24.2 -17.20337 -17.20337 -17.20325 -17.30933 0.0000 0.0000 -0.0164 ******* writing restart file: .//cp_91.save restart file written in 0.786 sec. 1951 0.00001 0.0 25.4 -17.20337 -17.20337 -17.20324 -17.30934 0.0000 0.0000 -0.0164 ******* 1952 0.00001 0.0 26.7 -17.20336 -17.20336 -17.20324 -17.30934 0.0000 0.0000 -0.0165 ******* 1953 0.00001 0.0 28.1 -17.20336 -17.20336 -17.20323 -17.30935 0.0000 0.0000 -0.0165 ******* 1954 0.00001 0.0 29.5 -17.20336 -17.20336 -17.20322 -17.30935 0.0000 0.0000 -0.0166 ******* 1955 0.00001 0.0 31.1 -17.20336 -17.20336 -17.20321 -17.30936 0.0000 0.0000 -0.0166 ******* 1956 0.00001 0.0 32.8 -17.20336 -17.20336 -17.20320 -17.30936 0.0000 0.0000 -0.0167 ******* 1957 0.00001 0.0 34.6 -17.20335 -17.20335 -17.20319 -17.30936 0.0000 0.0000 -0.0167 ******* 1958 0.00001 0.0 36.5 -17.20335 -17.20335 -17.20318 -17.30937 0.0000 0.0000 -0.0168 ******* 1959 0.00001 0.0 38.6 -17.20335 -17.20335 -17.20316 -17.30938 0.0000 0.0000 -0.0168 ******* 1960 0.00001 0.0 40.8 -17.20335 -17.20335 -17.20315 -17.30938 0.0000 0.0000 -0.0169 ******* 1961 0.00001 0.0 43.1 -17.20334 -17.20334 -17.20314 -17.30939 0.0000 0.0000 -0.0169 ******* 1962 0.00001 0.0 45.6 -17.20334 -17.20334 -17.20312 -17.30939 0.0000 0.0000 -0.0169 ******* 1963 0.00001 0.0 48.3 -17.20334 -17.20334 -17.20311 -17.30940 0.0000 0.0000 -0.0170 ******* 1964 0.00001 0.0 51.2 -17.20333 -17.20333 -17.20309 -17.30941 0.0000 0.0000 -0.0170 ******* 1965 0.00001 0.0 54.3 -17.20333 -17.20333 -17.20307 -17.30941 0.0000 0.0000 -0.0171 ******* 1966 0.00001 0.0 57.6 -17.20333 -17.20333 -17.20306 -17.30942 0.0000 0.0000 -0.0171 ******* 1967 0.00001 0.0 61.1 -17.20333 -17.20333 -17.20303 -17.30943 0.0000 0.0000 -0.0172 ******* 1968 0.00002 0.0 64.9 -17.20332 -17.20332 -17.20301 -17.30944 0.0000 0.0000 -0.0172 ******* 1969 0.00002 0.0 69.0 -17.20332 -17.20332 -17.20299 -17.30945 0.0000 0.0000 -0.0172 ******* 1970 0.00002 0.0 73.4 -17.20331 -17.20331 -17.20297 -17.30946 0.0000 0.0000 -0.0173 ******* 1971 0.00002 0.0 78.1 -17.20331 -17.20331 -17.20294 -17.30947 0.0000 0.0000 -0.0173 ******* 1972 0.00002 0.0 83.1 -17.20331 -17.20331 -17.20291 -17.30948 0.0000 0.0000 -0.0174 ******* 1973 0.00002 0.0 88.5 -17.20330 -17.20330 -17.20288 -17.30949 0.0000 0.0000 -0.0174 ******* 1974 0.00002 0.0 94.2 -17.20330 -17.20330 -17.20285 -17.30950 0.0000 0.0000 -0.0174 ******* 1975 0.00002 0.0 100.4 -17.20329 -17.20329 -17.20282 -17.30951 0.0000 0.0000 -0.0175 ******* 1976 0.00002 0.0 107.0 -17.20329 -17.20329 -17.20278 -17.30953 0.0000 0.0000 -0.0175 ******* 1977 0.00003 0.0 114.2 -17.20328 -17.20328 -17.20274 -17.30954 0.0000 0.0000 -0.0176 ******* 1978 0.00003 0.0 121.8 -17.20328 -17.20328 -17.20270 -17.30956 0.0000 0.0000 -0.0176 ******* 1979 0.00003 0.0 130.0 -17.20327 -17.20327 -17.20265 -17.30957 0.0000 0.0000 -0.0176 ******* * Physical Quantities at step: 1980 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20326 Hartree a.u. kinetic energy = 7.84915 Hartree a.u. electrostatic energy = -22.94589 Hartree a.u. esr = 0.12164 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41636 Hartree a.u. n-l pseudopotential energy = 4.51184 Hartree a.u. exchange-correlation energy = -4.20200 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.16 -8.67 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.130592E+01 0.366428E+00 0.572316E+00 H -0.177188E+00 -0.151814E+01 -0.105877E+01 O -0.378675E+00 -0.403945E+00 0.417716E+00 ATOMIC_VELOCITIES H -0.476931E-04 -0.422242E-04 0.670648E-03 H 0.354370E-03 0.269360E-03 -0.207177E-03 O -0.193202E-04 -0.143093E-04 -0.291980E-04 Forces acting on atoms (au): H -0.584018E-03 0.149302E-02 -0.666767E-02 H -0.723623E-02 -0.373761E-02 0.360868E-02 O 0.500363E-02 -0.821911E-03 -0.139235E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 67.20 1.1533 2 4.39 0.0135 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1980 0.00003 0.0 138.8 -17.20326 -17.20326 -17.20260 -17.30959 0.0000 0.0000 -0.0177 ******* writing restart file: .//cp_91.save restart file written in 0.783 sec. 1981 0.00003 0.0 148.2 -17.20326 -17.20326 -17.20255 -17.30961 0.0000 0.0000 -0.0177 ******* 1982 0.00003 0.0 158.3 -17.20325 -17.20325 -17.20250 -17.30963 0.0000 0.0000 -0.0177 ******* 1983 0.00004 0.0 169.2 -17.20324 -17.20324 -17.20244 -17.30965 0.0000 0.0000 -0.0178 ******* 1984 0.00004 0.0 180.8 -17.20323 -17.20323 -17.20237 -17.30967 0.0000 0.0000 -0.0178 ******* 1985 0.00004 0.0 193.3 -17.20322 -17.20322 -17.20230 -17.30969 0.0000 0.0000 -0.0178 ******* 1986 0.00004 0.0 206.8 -17.20321 -17.20321 -17.20223 -17.30972 0.0000 0.0000 -0.0178 ******* 1987 0.00005 0.0 221.1 -17.20320 -17.20320 -17.20215 -17.30975 0.0000 0.0000 -0.0179 ******* 1988 0.00005 0.0 236.6 -17.20319 -17.20319 -17.20206 -17.30978 0.0000 0.0000 -0.0179 ******* 1989 0.00005 0.0 253.1 -17.20318 -17.20318 -17.20197 -17.30981 0.0000 0.0000 -0.0179 ******* 1990 0.00006 0.0 270.9 -17.20316 -17.20316 -17.20188 -17.30984 0.0000 0.0000 -0.0179 ******* 1991 0.00006 0.0 289.9 -17.20315 -17.20315 -17.20177 -17.30987 0.0000 0.0000 -0.0180 ******* 1992 0.00007 0.0 310.4 -17.20313 -17.20313 -17.20166 -17.30991 0.0000 0.0000 -0.0180 ******* 1993 0.00007 0.0 332.3 -17.20312 -17.20312 -17.20154 -17.30995 0.0000 0.0000 -0.0180 ******* 1994 0.00008 0.0 355.7 -17.20310 -17.20310 -17.20141 -17.30999 0.0000 0.0000 -0.0180 ******* 1995 0.00008 0.0 380.9 -17.20308 -17.20308 -17.20127 -17.31004 0.0000 0.0000 -0.0180 ******* 1996 0.00009 0.0 407.9 -17.20306 -17.20306 -17.20112 -17.31009 0.0000 0.0000 -0.0180 ******* 1997 0.00009 0.0 436.8 -17.20304 -17.20304 -17.20096 -17.31014 0.0000 0.0000 -0.0181 ******* 1998 0.00010 0.0 467.7 -17.20301 -17.20301 -17.20079 -17.31019 0.0000 0.0000 -0.0181 ******* 1999 0.00011 0.0 500.8 -17.20299 -17.20299 -17.20061 -17.31025 0.0000 0.0000 -0.0181 ******* 2000 0.00011 0.0 536.3 -17.20296 -17.20296 -17.20041 -17.31032 0.0000 0.0000 -0.0181 ******* 2001 0.00012 0.0 574.2 -17.20293 -17.20293 -17.20020 -17.31038 0.0000 0.0000 -0.0181 ******* 2002 0.00013 0.0 614.8 -17.20290 -17.20290 -17.19998 -17.31046 0.0000 0.0000 -0.0180 ******* 2003 0.00014 0.0 658.2 -17.20286 -17.20286 -17.19974 -17.31053 0.0000 0.0000 -0.0180 ******* 2004 0.00015 0.0 704.5 -17.20283 -17.20283 -17.19948 -17.31062 0.0000 0.0000 -0.0180 ******* 2005 0.00016 0.0 754.0 -17.20279 -17.20279 -17.19920 -17.31071 0.0000 0.0000 -0.0180 ******* 2006 0.00017 0.0 806.7 -17.20274 -17.20274 -17.19891 -17.31080 0.0000 0.0000 -0.0180 ******* 2007 0.00018 0.0 863.0 -17.20270 -17.20270 -17.19860 -17.31090 0.0000 0.0000 -0.0179 ******* 2008 0.00019 0.0 922.9 -17.20265 -17.20265 -17.19826 -17.31101 0.0000 0.0000 -0.0179 ******* 2009 0.00021 0.0 986.7 -17.20259 -17.20259 -17.19791 -17.31113 0.0000 0.0000 -0.0178 ******* * Physical Quantities at step: 2010 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20254 Hartree a.u. kinetic energy = 7.84686 Hartree a.u. electrostatic energy = -22.94706 Hartree a.u. esr = 0.12100 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41343 Hartree a.u. n-l pseudopotential energy = 4.51248 Hartree a.u. exchange-correlation energy = -4.20139 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.47 -12.20 -8.61 -6.52 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.129370E+01 0.362165E+00 0.681706E+00 H -0.130264E+00 -0.147727E+01 -0.108703E+01 O -0.380861E+00 -0.406251E+00 0.412605E+00 ATOMIC_VELOCITIES H -0.279334E-03 -0.740122E-04 0.196841E-02 H 0.766347E-03 0.709764E-03 -0.470324E-03 O -0.306811E-04 -0.400515E-04 -0.943773E-04 Forces acting on atoms (au): H 0.641073E-04 -0.459586E-03 -0.245751E-01 H -0.113417E-01 -0.981991E-02 0.582860E-02 O 0.738966E-02 0.269526E-02 0.591645E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 509.67 1.0620 2 35.16 0.0132 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2010 0.00022 0.0 1054.5 -17.20254 -17.20254 -17.19753 -17.31125 0.0000 0.0000 -0.0178 ******* writing restart file: .//cp_91.save restart file written in 0.781 sec. 2011 0.00024 0.0 1126.6 -17.20248 -17.20248 -17.19712 -17.31139 0.0000 0.0000 -0.0177 ******* 2012 0.00025 0.0 1203.0 -17.20241 -17.20241 -17.19670 -17.31153 0.0000 0.0000 -0.0177 ******* 2013 0.00027 0.0 1284.0 -17.20234 -17.20234 -17.19624 -17.31168 0.0000 0.0000 -0.0176 ******* 2014 0.00029 0.0 1369.7 -17.20226 -17.20226 -17.19576 -17.31184 0.0000 0.0000 -0.0175 ******* 2015 0.00031 0.0 1460.3 -17.20218 -17.20218 -17.19525 -17.31202 0.0000 0.0000 -0.0174 ******* 2016 0.00033 0.0 1555.9 -17.20210 -17.20210 -17.19471 -17.31220 0.0000 0.0000 -0.0173 ******* 2017 0.00036 0.0 1656.5 -17.20201 -17.20201 -17.19414 -17.31240 0.0000 0.0000 -0.0172 ******* 2018 0.00038 0.0 1762.3 -17.20191 -17.20191 -17.19354 -17.31262 0.0000 0.0000 -0.0171 ******* 2019 0.00041 0.0 1873.3 -17.20181 -17.20181 -17.19291 -17.31284 0.0000 0.0000 -0.0170 ******* 2020 0.00043 0.0 1989.5 -17.20170 -17.20170 -17.19225 -17.31309 0.0000 0.0000 -0.0169 ******* 2021 0.00046 0.0 2110.8 -17.20158 -17.20158 -17.19155 -17.31335 0.0000 0.0000 -0.0167 ******* 2022 0.00049 0.0 2237.1 -17.20146 -17.20146 -17.19083 -17.31362 0.0000 0.0000 -0.0165 ******* 2023 0.00052 0.0 2368.3 -17.20132 -17.20132 -17.19008 -17.31392 0.0000 0.0000 -0.0164 ******* 2024 0.00056 0.0 2504.1 -17.20119 -17.20119 -17.18930 -17.31423 0.0000 0.0000 -0.0162 ******* 2025 0.00059 0.0 2644.3 -17.20104 -17.20104 -17.18848 -17.31457 0.0000 0.0000 -0.0160 ******* 2026 0.00063 0.0 2788.4 -17.20089 -17.20089 -17.18765 -17.31492 0.0000 0.0000 -0.0158 ******* 2027 0.00067 0.0 2935.9 -17.20073 -17.20073 -17.18679 -17.31530 0.0000 0.0000 -0.0156 ******* 2028 0.00071 0.0 3086.4 -17.20056 -17.20056 -17.18590 -17.31570 0.0000 0.0000 -0.0153 ******* 2029 0.00075 0.0 3239.0 -17.20039 -17.20039 -17.18500 -17.31612 0.0000 0.0000 -0.0151 ******* 2030 0.00080 0.0 3393.2 -17.20020 -17.20020 -17.18409 -17.31657 0.0000 0.0000 -0.0148 ******* 2031 0.00084 0.0 3548.0 -17.20001 -17.20001 -17.18316 -17.31705 0.0000 0.0000 -0.0145 ******* 2032 0.00089 0.0 3702.4 -17.19982 -17.19982 -17.18223 -17.31756 0.0000 0.0000 -0.0142 ******* 2033 0.00094 0.0 3855.5 -17.19961 -17.19961 -17.18130 -17.31809 0.0000 0.0000 -0.0139 ******* 2034 0.00099 0.0 4006.1 -17.19940 -17.19940 -17.18038 -17.31865 0.0000 0.0000 -0.0136 ******* 2035 0.00104 0.0 4152.9 -17.19919 -17.19919 -17.17946 -17.31925 0.0000 0.0000 -0.0132 ******* 2036 0.00109 0.0 4294.9 -17.19897 -17.19897 -17.17857 -17.31987 0.0000 0.0000 -0.0129 ******* 2037 0.00115 0.0 4430.5 -17.19875 -17.19875 -17.17770 -17.32052 0.0000 0.0000 -0.0125 ******* 2038 0.00120 0.0 4558.6 -17.19852 -17.19852 -17.17687 -17.32121 0.0000 0.0000 -0.0121 ******* 2039 0.00126 0.0 4677.8 -17.19830 -17.19830 -17.17608 -17.32193 0.0000 0.0000 -0.0117 ******* * Physical Quantities at step: 2040 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19807 Hartree a.u. kinetic energy = 7.83787 Hartree a.u. electrostatic energy = -22.95413 Hartree a.u. esr = 0.11673 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.39687 Hartree a.u. n-l pseudopotential energy = 4.51358 Hartree a.u. exchange-correlation energy = -4.19851 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.31 -12.28 -8.39 -6.45 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.123963E+01 0.343947E+00 0.960531E+00 H -0.230781E-01 -0.137706E+01 -0.115166E+01 O -0.384208E+00 -0.411417E+00 0.399111E+00 ATOMIC_VELOCITIES H -0.101493E-02 -0.410863E-03 0.412337E-02 H 0.162394E-02 0.151800E-02 -0.929027E-03 O -0.383668E-04 -0.697484E-04 -0.201239E-03 Forces acting on atoms (au): H 0.230205E-02 -0.392845E-02 -0.646134E-01 H -0.208218E-01 -0.201981E-01 0.145250E-01 O 0.181667E-01 0.802832E-02 0.190886E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2321.47 0.8965 2 143.78 0.0128 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2040 0.00131 0.0 4786.7 -17.19807 -17.19807 -17.17533 -17.32268 0.0000 0.0000 -0.0113 ******* writing restart file: .//cp_91.save restart file written in 0.789 sec. 2041 0.00136 0.0 4884.3 -17.19784 -17.19784 -17.17464 -17.32347 0.0000 0.0000 -0.0109 ******* 2042 0.00142 0.0 4969.2 -17.19762 -17.19762 -17.17401 -17.32428 0.0000 0.0000 -0.0105 ******* 2043 0.00147 0.0 5040.4 -17.19739 -17.19739 -17.17345 -17.32513 0.0000 0.0000 -0.0100 ******* 2044 0.00152 0.0 5097.0 -17.19718 -17.19718 -17.17297 -17.32601 0.0000 0.0000 -0.0096 ******* 2045 0.00157 0.0 5138.3 -17.19697 -17.19697 -17.17256 -17.32693 0.0000 0.0000 -0.0091 ******* 2046 0.00162 0.0 5163.5 -17.19677 -17.19677 -17.17224 -17.32787 0.0000 0.0000 -0.0087 ******* 2047 0.00166 0.0 5172.4 -17.19657 -17.19657 -17.17201 -17.32884 0.0000 0.0000 -0.0083 ******* 2048 0.00170 0.0 5164.7 -17.19639 -17.19639 -17.17186 -17.32983 0.0000 0.0000 -0.0078 ******* 2049 0.00174 0.0 5140.3 -17.19622 -17.19622 -17.17181 -17.33085 0.0000 0.0000 -0.0074 ******* 2050 0.00177 0.0 5099.6 -17.19607 -17.19607 -17.17184 -17.33190 0.0000 0.0000 -0.0069 ******* 2051 0.00180 0.0 5043.0 -17.19593 -17.19593 -17.17197 -17.33296 0.0000 0.0000 -0.0065 ******* 2052 0.00183 0.0 4971.0 -17.19580 -17.19580 -17.17219 -17.33405 0.0000 0.0000 -0.0060 ******* 2053 0.00185 0.0 4884.6 -17.19569 -17.19569 -17.17249 -17.33515 0.0000 0.0000 -0.0056 ******* 2054 0.00187 0.0 4784.6 -17.19560 -17.19560 -17.17287 -17.33626 0.0000 0.0000 -0.0052 ******* 2055 0.00188 0.0 4672.2 -17.19553 -17.19553 -17.17334 -17.33738 0.0000 0.0000 -0.0048 ******* 2056 0.00189 0.0 4548.7 -17.19547 -17.19547 -17.17387 -17.33851 0.0000 0.0000 -0.0044 ******* 2057 0.00189 0.0 4415.3 -17.19544 -17.19544 -17.17446 -17.33965 0.0000 0.0000 -0.0040 ******* 2058 0.00188 0.0 4273.4 -17.19542 -17.19542 -17.17512 -17.34078 0.0000 0.0000 -0.0037 ******* 2059 0.00188 0.0 4124.5 -17.19542 -17.19542 -17.17583 -17.34191 0.0000 0.0000 -0.0033 ******* 2060 0.00186 0.0 3970.0 -17.19544 -17.19544 -17.17658 -17.34304 0.0000 0.0000 -0.0030 ******* 2061 0.00184 0.0 3811.3 -17.19548 -17.19548 -17.17738 -17.34416 0.0000 0.0000 -0.0026 ******* 2062 0.00182 0.0 3649.6 -17.19553 -17.19553 -17.17820 -17.34527 0.0000 0.0000 -0.0023 ******* 2063 0.00179 0.0 3486.4 -17.19560 -17.19560 -17.17904 -17.34636 0.0000 0.0000 -0.0020 ******* 2064 0.00176 0.0 3322.7 -17.19569 -17.19569 -17.17991 -17.34744 0.0000 0.0000 -0.0017 ******* 2065 0.00173 0.0 3159.8 -17.19579 -17.19579 -17.18078 -17.34850 0.0000 0.0000 -0.0015 ******* 2066 0.00169 0.0 2998.6 -17.19591 -17.19591 -17.18166 -17.34954 0.0000 0.0000 -0.0012 ******* 2067 0.00165 0.0 2839.9 -17.19603 -17.19603 -17.18254 -17.35055 0.0000 0.0000 -0.0010 ******* 2068 0.00160 0.0 2684.7 -17.19617 -17.19617 -17.18342 -17.35154 0.0000 0.0000 -0.0008 ******* 2069 0.00156 0.0 2533.6 -17.19632 -17.19632 -17.18428 -17.35251 0.0000 0.0000 -0.0006 ******* * Physical Quantities at step: 2070 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19647 Hartree a.u. kinetic energy = 7.81383 Hartree a.u. electrostatic energy = -22.95521 Hartree a.u. esr = 0.11071 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.37687 Hartree a.u. n-l pseudopotential energy = 4.51199 Hartree a.u. exchange-correlation energy = -4.19021 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.21 -12.42 -8.20 -6.44 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.112160E+01 0.284204E+00 0.129214E+01 H 0.121237E+00 -0.123996E+01 -0.121826E+01 O -0.385863E+00 -0.416290E+00 0.382416E+00 ATOMIC_VELOCITIES H -0.137188E-02 -0.824368E-03 0.246139E-02 H 0.129806E-02 0.127145E-02 -0.358678E-03 O 0.465083E-05 -0.281653E-04 -0.132468E-03 Forces acting on atoms (au): H 0.850749E-02 -0.151366E-02 -0.682944E-01 H -0.199539E-01 -0.182900E-01 0.171246E-01 O 0.572605E-02 0.583594E-02 0.232094E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1165.32 0.8251 2 56.37 0.0128 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2070 0.00151 0.0 2387.0 -17.19647 -17.19647 -17.18513 -17.35344 0.0000 0.0000 -0.0004 ******* writing restart file: .//cp_91.save restart file written in 0.784 sec. 2071 0.00146 0.0 2245.6 -17.19663 -17.19663 -17.18597 -17.35435 0.0000 0.0000 -0.0002 ******* 2072 0.00141 0.0 2109.6 -17.19680 -17.19680 -17.18678 -17.35522 0.0000 0.0000 -0.0001 ******* 2073 0.00135 0.0 1979.3 -17.19697 -17.19697 -17.18757 -17.35606 0.0000 0.0000 0.0001 ******* 2074 0.00130 0.0 1854.9 -17.19715 -17.19715 -17.18834 -17.35688 0.0000 0.0000 0.0002 ******* 2075 0.00125 0.0 1736.5 -17.19733 -17.19733 -17.18908 -17.35766 0.0000 0.0000 0.0003 ******* 2076 0.00119 0.0 1624.1 -17.19751 -17.19751 -17.18980 -17.35840 0.0000 0.0000 0.0005 ******* 2077 0.00114 0.0 1517.7 -17.19769 -17.19769 -17.19048 -17.35912 0.0000 0.0000 0.0006 ******* 2078 0.00109 0.0 1417.3 -17.19788 -17.19788 -17.19114 -17.35981 0.0000 0.0000 0.0007 ******* 2079 0.00104 0.0 1322.6 -17.19806 -17.19806 -17.19177 -17.36046 0.0000 0.0000 0.0007 ******* 2080 0.00099 0.0 1233.6 -17.19823 -17.19823 -17.19237 -17.36108 0.0000 0.0000 0.0008 ******* 2081 0.00094 0.0 1150.1 -17.19841 -17.19841 -17.19295 -17.36168 0.0000 0.0000 0.0009 ******* 2082 0.00089 0.0 1071.8 -17.19858 -17.19858 -17.19349 -17.36224 0.0000 0.0000 0.0009 ******* 2083 0.00085 0.0 998.5 -17.19875 -17.19875 -17.19401 -17.36278 0.0000 0.0000 0.0010 ******* 2084 0.00080 0.0 930.0 -17.19892 -17.19892 -17.19450 -17.36328 0.0000 0.0000 0.0010 ******* 2085 0.00076 0.0 866.1 -17.19908 -17.19908 -17.19497 -17.36376 0.0000 0.0000 0.0011 ******* 2086 0.00072 0.0 806.5 -17.19924 -17.19924 -17.19541 -17.36422 0.0000 0.0000 0.0011 ******* 2087 0.00068 0.0 750.9 -17.19939 -17.19939 -17.19582 -17.36465 0.0000 0.0000 0.0011 ******* 2088 0.00064 0.0 699.2 -17.19953 -17.19953 -17.19621 -17.36506 0.0000 0.0000 0.0012 ******* 2089 0.00061 0.0 651.1 -17.19968 -17.19968 -17.19658 -17.36544 0.0000 0.0000 0.0012 ******* 2090 0.00057 0.0 606.3 -17.19981 -17.19981 -17.19693 -17.36580 0.0000 0.0000 0.0012 ******* 2091 0.00054 0.0 564.7 -17.19995 -17.19995 -17.19726 -17.36614 0.0000 0.0000 0.0012 ******* 2092 0.00051 0.0 526.1 -17.20007 -17.20007 -17.19757 -17.36647 0.0000 0.0000 0.0012 ******* 2093 0.00048 0.0 490.1 -17.20019 -17.20019 -17.19786 -17.36677 0.0000 0.0000 0.0012 ******* 2094 0.00045 0.0 456.8 -17.20031 -17.20031 -17.19814 -17.36706 0.0000 0.0000 0.0012 ******* 2095 0.00042 0.0 425.8 -17.20042 -17.20042 -17.19840 -17.36733 0.0000 0.0000 0.0012 ******* 2096 0.00040 0.0 397.1 -17.20053 -17.20053 -17.19864 -17.36758 0.0000 0.0000 0.0012 ******* 2097 0.00038 0.0 370.4 -17.20063 -17.20063 -17.19887 -17.36782 0.0000 0.0000 0.0012 ******* 2098 0.00035 0.0 345.7 -17.20072 -17.20072 -17.19908 -17.36804 0.0000 0.0000 0.0012 ******* 2099 0.00033 0.0 322.8 -17.20082 -17.20082 -17.19928 -17.36825 0.0000 0.0000 0.0011 ******* * Physical Quantities at step: 2100 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20090 Hartree a.u. kinetic energy = 7.83289 Hartree a.u. electrostatic energy = -22.94707 Hartree a.u. esr = 0.12243 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41122 Hartree a.u. n-l pseudopotential energy = 4.52276 Hartree a.u. exchange-correlation energy = -4.19828 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.46 -12.66 -8.29 -6.56 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.102986E+01 0.216827E+00 0.139810E+01 H 0.204168E+00 -0.115956E+01 -0.122021E+01 O -0.385309E+00 -0.417110E+00 0.375863E+00 ATOMIC_VELOCITIES H -0.563881E-03 -0.593827E-03 0.285901E-03 H 0.657884E-03 0.571833E-03 0.181526E-03 O -0.592205E-05 0.138560E-05 -0.294473E-04 Forces acting on atoms (au): H 0.183645E-01 0.675337E-02 -0.207643E-01 H -0.577783E-02 -0.965001E-02 0.276296E-02 O -0.300292E-01 -0.275668E-02 0.538143E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 149.42 0.8376 2 2.78 0.0130 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2100 0.00031 0.0 301.6 -17.20090 -17.20090 -17.19947 -17.36845 0.0000 0.0000 0.0011 ******* writing restart file: .//cp_91.save restart file written in 0.775 sec. 2101 0.00029 0.0 282.0 -17.20099 -17.20099 -17.19965 -17.36864 0.0000 0.0000 0.0011 ******* 2102 0.00028 0.0 263.8 -17.20107 -17.20107 -17.19982 -17.36882 0.0000 0.0000 0.0011 ******* 2103 0.00026 0.0 247.0 -17.20114 -17.20114 -17.19997 -17.36898 0.0000 0.0000 0.0011 ******* 2104 0.00024 0.0 231.6 -17.20122 -17.20122 -17.20012 -17.36914 0.0000 0.0000 0.0010 ******* 2105 0.00023 0.0 217.3 -17.20129 -17.20129 -17.20026 -17.36928 0.0000 0.0000 0.0010 ******* 2106 0.00021 0.0 204.2 -17.20135 -17.20135 -17.20038 -17.36942 0.0000 0.0000 0.0010 ******* 2107 0.00020 0.0 192.2 -17.20142 -17.20142 -17.20051 -17.36955 0.0000 0.0000 0.0009 ******* 2108 0.00019 0.0 181.2 -17.20148 -17.20148 -17.20062 -17.36967 0.0000 0.0000 0.0009 ******* 2109 0.00018 0.0 171.1 -17.20154 -17.20154 -17.20073 -17.36978 0.0000 0.0000 0.0009 ******* 2110 0.00017 0.0 161.9 -17.20159 -17.20159 -17.20082 -17.36989 0.0000 0.0000 0.0009 ******* 2111 0.00016 0.0 153.6 -17.20165 -17.20165 -17.20092 -17.36999 0.0000 0.0000 0.0008 ******* 2112 0.00015 0.0 146.1 -17.20170 -17.20170 -17.20101 -17.37008 0.0000 0.0000 0.0008 ******* 2113 0.00014 0.0 139.3 -17.20175 -17.20175 -17.20109 -17.37017 0.0000 0.0000 0.0008 ******* 2114 0.00013 0.0 133.2 -17.20180 -17.20180 -17.20117 -17.37025 0.0000 0.0000 0.0007 ******* 2115 0.00012 0.0 127.8 -17.20184 -17.20184 -17.20124 -17.37033 0.0000 0.0000 0.0007 ******* 2116 0.00011 0.0 122.9 -17.20189 -17.20189 -17.20131 -17.37040 0.0000 0.0000 0.0006 ******* 2117 0.00011 0.0 118.7 -17.20193 -17.20193 -17.20137 -17.37047 0.0000 0.0000 0.0006 ******* 2118 0.00010 0.0 114.9 -17.20198 -17.20198 -17.20143 -17.37054 0.0000 0.0000 0.0006 ******* 2119 0.00010 0.0 111.7 -17.20202 -17.20202 -17.20149 -17.37060 0.0000 0.0000 0.0005 ******* 2120 0.00009 0.0 108.9 -17.20206 -17.20206 -17.20154 -17.37065 0.0000 0.0000 0.0005 ******* 2121 0.00008 0.0 106.5 -17.20209 -17.20209 -17.20159 -17.37071 0.0000 0.0000 0.0005 ******* 2122 0.00008 0.0 104.5 -17.20213 -17.20213 -17.20164 -17.37076 0.0000 0.0000 0.0004 ******* 2123 0.00008 0.0 102.9 -17.20217 -17.20217 -17.20168 -17.37081 0.0000 0.0000 0.0004 ******* 2124 0.00007 0.0 101.5 -17.20221 -17.20221 -17.20172 -17.37085 0.0000 0.0000 0.0003 ******* 2125 0.00007 0.0 100.4 -17.20224 -17.20224 -17.20176 -17.37089 0.0000 0.0000 0.0003 ******* 2126 0.00006 0.0 99.6 -17.20227 -17.20227 -17.20180 -17.37093 0.0000 0.0000 0.0003 ******* 2127 0.00006 0.0 99.0 -17.20231 -17.20231 -17.20184 -17.37097 0.0000 0.0000 0.0002 ******* 2128 0.00006 0.0 98.5 -17.20234 -17.20234 -17.20187 -17.37101 0.0000 0.0000 0.0002 ******* 2129 0.00006 0.0 98.3 -17.20237 -17.20237 -17.20190 -17.37104 0.0000 0.0000 0.0002 ******* * Physical Quantities at step: 2130 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20240 Hartree a.u. kinetic energy = 7.86036 Hartree a.u. electrostatic energy = -22.94978 Hartree a.u. esr = 0.12930 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.43232 Hartree a.u. n-l pseudopotential energy = 4.52758 Hartree a.u. exchange-correlation energy = -4.20825 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.58 -8.37 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.101926E+01 0.180891E+00 0.139886E+01 H 0.255733E+00 -0.112646E+01 -0.120352E+01 O -0.387889E+00 -0.416931E+00 0.374763E+00 ATOMIC_VELOCITIES H 0.232851E-03 -0.234202E-03 -0.124633E-03 H 0.528642E-03 0.211414E-03 0.148144E-03 O -0.479730E-04 0.143560E-05 -0.148116E-05 Forces acting on atoms (au): H 0.895986E-02 0.493366E-02 -0.245839E-02 H -0.133055E-02 -0.456148E-02 -0.209249E-02 O -0.148724E-01 0.200342E-03 0.429069E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 45.52 0.8637 2 7.08 0.0134 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2130 0.00005 0.0 98.1 -17.20240 -17.20240 -17.20194 -17.37108 0.0000 0.0000 0.0001 ******* writing restart file: .//cp_91.save restart file written in 0.827 sec. 2131 0.00005 0.0 98.1 -17.20243 -17.20243 -17.20197 -17.37111 0.0000 0.0000 0.0001 ******* 2132 0.00005 0.0 98.1 -17.20246 -17.20246 -17.20200 -17.37114 0.0000 0.0000 0.0000 ******* 2133 0.00005 0.0 98.2 -17.20249 -17.20249 -17.20202 -17.37117 0.0000 0.0000 0.0000 ******* 2134 0.00005 0.0 98.4 -17.20252 -17.20252 -17.20205 -17.37120 0.0000 0.0000 0.0000 ******* 2135 0.00005 0.0 98.5 -17.20255 -17.20255 -17.20208 -17.37123 0.0000 0.0000 -0.0001 ******* 2136 0.00004 0.0 98.7 -17.20257 -17.20257 -17.20210 -17.37126 0.0000 0.0000 -0.0001 ******* 2137 0.00004 0.0 98.9 -17.20260 -17.20260 -17.20213 -17.37128 0.0000 0.0000 -0.0002 ******* 2138 0.00004 0.0 99.1 -17.20263 -17.20263 -17.20216 -17.37131 0.0000 0.0000 -0.0002 ******* 2139 0.00004 0.0 99.2 -17.20265 -17.20265 -17.20218 -17.37133 0.0000 0.0000 -0.0002 ******* 2140 0.00004 0.0 99.2 -17.20267 -17.20267 -17.20220 -17.37136 0.0000 0.0000 -0.0003 ******* 2141 0.00004 0.0 99.3 -17.20270 -17.20270 -17.20223 -17.37138 0.0000 0.0000 -0.0003 ******* 2142 0.00004 0.0 99.2 -17.20272 -17.20272 -17.20225 -17.37141 0.0000 0.0000 -0.0003 ******* 2143 0.00004 0.0 99.1 -17.20274 -17.20274 -17.20227 -17.37143 0.0000 0.0000 -0.0004 ******* 2144 0.00004 0.0 99.0 -17.20277 -17.20277 -17.20230 -17.37146 0.0000 0.0000 -0.0004 ******* 2145 0.00004 0.0 98.7 -17.20279 -17.20279 -17.20232 -17.37148 0.0000 0.0000 -0.0005 ******* 2146 0.00004 0.0 98.4 -17.20281 -17.20281 -17.20234 -17.37150 0.0000 0.0000 -0.0005 ******* 2147 0.00004 0.0 98.0 -17.20283 -17.20283 -17.20236 -17.37153 0.0000 0.0000 -0.0005 ******* 2148 0.00004 0.0 97.6 -17.20285 -17.20285 -17.20238 -17.37155 0.0000 0.0000 -0.0006 ******* 2149 0.00004 0.0 97.0 -17.20286 -17.20286 -17.20240 -17.37157 0.0000 0.0000 -0.0006 ******* 2150 0.00004 0.0 96.4 -17.20288 -17.20288 -17.20242 -17.37160 0.0000 0.0000 -0.0007 ******* 2151 0.00004 0.0 95.8 -17.20290 -17.20290 -17.20245 -17.37162 0.0000 0.0000 -0.0007 ******* 2152 0.00004 0.0 95.0 -17.20292 -17.20292 -17.20247 -17.37164 0.0000 0.0000 -0.0007 ******* 2153 0.00004 0.0 94.2 -17.20293 -17.20293 -17.20249 -17.37167 0.0000 0.0000 -0.0008 ******* 2154 0.00004 0.0 93.3 -17.20295 -17.20295 -17.20251 -17.37169 0.0000 0.0000 -0.0008 ******* 2155 0.00004 0.0 92.4 -17.20297 -17.20297 -17.20253 -17.37171 0.0000 0.0000 -0.0008 ******* 2156 0.00004 0.0 91.4 -17.20298 -17.20298 -17.20255 -17.37173 0.0000 0.0000 -0.0009 ******* 2157 0.00004 0.0 90.3 -17.20300 -17.20300 -17.20257 -17.37175 0.0000 0.0000 -0.0009 ******* 2158 0.00004 0.0 89.2 -17.20301 -17.20301 -17.20259 -17.37178 0.0000 0.0000 -0.0010 ******* 2159 0.00004 0.0 88.1 -17.20302 -17.20302 -17.20260 -17.37180 0.0000 0.0000 -0.0010 ******* * Physical Quantities at step: 2160 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20304 Hartree a.u. kinetic energy = 7.85579 Hartree a.u. electrostatic energy = -22.95012 Hartree a.u. esr = 0.12482 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42323 Hartree a.u. n-l pseudopotential energy = 4.52014 Hartree a.u. exchange-correlation energy = -4.20563 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.46 -12.39 -8.47 -6.51 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.104975E+01 0.166593E+00 0.138278E+01 H 0.300414E+00 -0.111462E+01 -0.119335E+01 O -0.392625E+00 -0.416777E+00 0.375136E+00 ATOMIC_VELOCITIES H 0.344301E-03 -0.120545E-03 -0.232775E-03 H 0.452608E-03 0.803364E-04 0.977742E-04 O -0.502041E-04 0.253307E-05 0.850489E-05 Forces acting on atoms (au): H -0.359785E-02 0.808902E-03 -0.155895E-02 H -0.342473E-02 -0.127532E-02 0.511351E-04 O 0.320024E-02 0.148479E-02 0.299599E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 39.47 0.8989 2 7.98 0.0140 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2160 0.00004 0.0 86.9 -17.20304 -17.20304 -17.20262 -17.37182 0.0000 0.0000 -0.0010 ******* writing restart file: .//cp_91.save restart file written in 0.772 sec. 2161 0.00004 0.0 85.7 -17.20305 -17.20305 -17.20264 -17.37184 0.0000 0.0000 -0.0011 ******* 2162 0.00003 0.0 84.5 -17.20306 -17.20306 -17.20266 -17.37186 0.0000 0.0000 -0.0011 ******* 2163 0.00003 0.0 83.2 -17.20307 -17.20307 -17.20268 -17.37188 0.0000 0.0000 -0.0012 ******* 2164 0.00003 0.0 81.9 -17.20308 -17.20308 -17.20269 -17.37190 0.0000 0.0000 -0.0012 ******* 2165 0.00003 0.0 80.6 -17.20310 -17.20310 -17.20271 -17.37192 0.0000 0.0000 -0.0012 ******* 2166 0.00003 0.0 79.3 -17.20311 -17.20311 -17.20273 -17.37195 0.0000 0.0000 -0.0013 ******* 2167 0.00003 0.0 77.9 -17.20312 -17.20312 -17.20275 -17.37196 0.0000 0.0000 -0.0013 ******* 2168 0.00003 0.0 76.6 -17.20313 -17.20313 -17.20276 -17.37198 0.0000 0.0000 -0.0014 ******* 2169 0.00003 0.0 75.2 -17.20314 -17.20314 -17.20278 -17.37200 0.0000 0.0000 -0.0014 ******* 2170 0.00003 0.0 73.9 -17.20314 -17.20314 -17.20279 -17.37202 0.0000 0.0000 -0.0014 ******* 2171 0.00003 0.0 72.5 -17.20315 -17.20315 -17.20281 -17.37204 0.0000 0.0000 -0.0015 ******* 2172 0.00003 0.0 71.1 -17.20316 -17.20316 -17.20282 -17.37206 0.0000 0.0000 -0.0015 ******* 2173 0.00003 0.0 69.8 -17.20317 -17.20317 -17.20284 -17.37208 0.0000 0.0000 -0.0016 ******* 2174 0.00003 0.0 68.4 -17.20318 -17.20318 -17.20285 -17.37210 0.0000 0.0000 -0.0016 ******* 2175 0.00003 0.0 67.0 -17.20318 -17.20318 -17.20287 -17.37211 0.0000 0.0000 -0.0017 ******* 2176 0.00003 0.0 65.7 -17.20319 -17.20319 -17.20288 -17.37213 0.0000 0.0000 -0.0017 ******* 2177 0.00003 0.0 64.3 -17.20320 -17.20320 -17.20289 -17.37215 0.0000 0.0000 -0.0017 ******* 2178 0.00003 0.0 63.0 -17.20320 -17.20320 -17.20291 -17.37216 0.0000 0.0000 -0.0018 ******* 2179 0.00003 0.0 61.6 -17.20321 -17.20321 -17.20292 -17.37218 0.0000 0.0000 -0.0018 ******* 2180 0.00003 0.0 60.3 -17.20322 -17.20322 -17.20293 -17.37220 0.0000 0.0000 -0.0019 ******* 2181 0.00003 0.0 58.9 -17.20322 -17.20322 -17.20294 -17.37221 0.0000 0.0000 -0.0019 ******* 2182 0.00002 0.0 57.6 -17.20323 -17.20323 -17.20295 -17.37223 0.0000 0.0000 -0.0019 ******* 2183 0.00002 0.0 56.3 -17.20323 -17.20323 -17.20296 -17.37224 0.0000 0.0000 -0.0020 ******* 2184 0.00002 0.0 54.9 -17.20324 -17.20324 -17.20298 -17.37226 0.0000 0.0000 -0.0020 ******* 2185 0.00002 0.0 53.6 -17.20324 -17.20324 -17.20299 -17.37227 0.0000 0.0000 -0.0021 ******* 2186 0.00002 0.0 52.3 -17.20325 -17.20325 -17.20300 -17.37229 0.0000 0.0000 -0.0021 ******* 2187 0.00002 0.0 51.0 -17.20325 -17.20325 -17.20301 -17.37230 0.0000 0.0000 -0.0022 ******* 2188 0.00002 0.0 49.7 -17.20325 -17.20325 -17.20302 -17.37231 0.0000 0.0000 -0.0022 ******* 2189 0.00002 0.0 48.4 -17.20326 -17.20326 -17.20303 -17.37233 0.0000 0.0000 -0.0022 ******* * Physical Quantities at step: 2190 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20326 Hartree a.u. kinetic energy = 7.84914 Hartree a.u. electrostatic energy = -22.94643 Hartree a.u. esr = 0.12255 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41848 Hartree a.u. n-l pseudopotential energy = 4.51502 Hartree a.u. exchange-correlation energy = -4.20251 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.27 -8.59 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107312E+01 0.156537E+00 0.135899E+01 H 0.335093E+00 -0.110907E+01 -0.118361E+01 O -0.396282E+00 -0.416493E+00 0.376021E+00 ATOMIC_VELOCITIES H 0.176282E-03 -0.995792E-04 -0.270205E-03 H 0.311194E-03 0.479074E-04 0.118373E-03 O -0.307103E-04 0.325525E-05 0.956521E-05 Forces acting on atoms (au): H -0.391665E-02 0.125807E-02 0.211293E-02 H -0.484216E-02 -0.728859E-03 -0.321955E-03 O 0.244778E-02 -0.371002E-03 -0.117294E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 21.97 0.9262 2 3.21 0.0145 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2190 0.00002 0.0 47.1 -17.20326 -17.20326 -17.20304 -17.37234 0.0000 0.0000 -0.0023 ******* writing restart file: .//cp_91.save restart file written in 0.774 sec. in while: event_index 8 ======================================== EMPLOY RULES: CURRENT_NFI= 2191 event_index= 8 event_step== 2191 ======================================== RULE EVENT: isave 50 RULE EVENT: iprint 50 RULE EVENT: electron_damping 0.100000000000000 RULE EVENT: ion_dynamics NONE RULE EVENT: ion_temperature NOT_CONTROLLED in while after: event_index 9 2191 0.00002 0.0 0.0 -17.20326 -17.20326 -17.20326 -17.20324 0.0000 0.0000 -0.0023 ******* 2192 0.00002 0.0 0.0 -17.20327 -17.20327 -17.20327 -17.20325 0.0000 0.0000 -0.0023 ******* 2193 0.00002 0.0 0.0 -17.20328 -17.20328 -17.20328 -17.20326 0.0000 0.0000 -0.0023 ******* 2194 0.00001 0.0 0.0 -17.20329 -17.20329 -17.20329 -17.20328 0.0000 0.0000 -0.0023 ******* 2195 0.00001 0.0 0.0 -17.20330 -17.20330 -17.20330 -17.20328 0.0000 0.0000 -0.0023 ******* 2196 0.00001 0.0 0.0 -17.20330 -17.20330 -17.20330 -17.20329 0.0000 0.0000 -0.0023 ******* 2197 0.00001 0.0 0.0 -17.20331 -17.20331 -17.20331 -17.20330 0.0000 0.0000 -0.0023 ******* 2198 0.00001 0.0 0.0 -17.20331 -17.20331 -17.20331 -17.20330 0.0000 0.0000 -0.0023 ******* 2199 0.00001 0.0 0.0 -17.20331 -17.20331 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* 2200 0.00000 0.0 0.0 -17.20331 -17.20331 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* 2201 0.00000 0.0 0.0 -17.20331 -17.20331 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* 2202 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20331 0.0000 0.0000 -0.0023 ******* 2203 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20331 0.0000 0.0000 -0.0023 ******* 2204 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2205 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2206 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2207 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2208 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2209 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2210 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2211 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2212 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2213 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2214 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2215 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2216 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2217 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2218 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2219 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* * Physical Quantities at step: 2220 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20332 Hartree a.u. kinetic energy = 7.84901 Hartree a.u. electrostatic energy = -22.94633 Hartree a.u. esr = 0.12255 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41843 Hartree a.u. n-l pseudopotential energy = 4.51486 Hartree a.u. exchange-correlation energy = -4.20243 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.28 -8.59 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107364E+01 0.156240E+00 0.135818E+01 H 0.336018E+00 -0.110893E+01 -0.118325E+01 O -0.396373E+00 -0.416483E+00 0.376050E+00 ATOMIC_VELOCITIES H 0.170579E-03 -0.981597E-04 -0.268459E-03 H 0.304832E-03 0.470533E-04 0.118683E-03 O -0.312666E-04 0.325266E-05 0.956460E-05 Forces acting on atoms (au): H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.9269 2 0.00 0.0145 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2220 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* writing restart file: .//cp_91.save restart file written in 0.774 sec. 2221 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2222 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2223 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2224 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2225 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2226 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2227 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2228 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2229 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2230 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2231 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2232 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2233 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2234 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2235 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2236 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2237 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2238 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2239 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2240 0.00000 0.0 0.0 -17.20332 -17.20332 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* in while: event_index 9 ======================================== EMPLOY RULES: CURRENT_NFI= 2241 event_index= 9 event_step== 2241 ======================================== RULE EVENT: isave 200 RULE EVENT: iprint 200 RULE EVENT: electron_damping 0.000000000000000E+000 RULE EVENT: ion_dynamics DAMP in while after: event_index 10 2241 0.00000 0.0 46.6 -17.20332 -17.20332 -17.20310 -17.20310 0.0000 0.0000 -0.0023 ******* 2242 0.00000 0.0 46.7 -17.20332 -17.20332 -17.20310 -17.20310 0.0000 0.0000 -0.0023 ******* 2243 0.00000 0.0 46.6 -17.20332 -17.20332 -17.20310 -17.20310 0.0000 0.0000 -0.0023 ******* 2244 0.00000 0.0 46.2 -17.20332 -17.20332 -17.20310 -17.20310 0.0000 0.0000 -0.0023 ******* 2245 0.00000 0.0 45.6 -17.20332 -17.20332 -17.20310 -17.20310 0.0000 0.0000 -0.0023 ******* 2246 0.00000 0.0 44.8 -17.20331 -17.20331 -17.20310 -17.20310 0.0000 0.0000 -0.0023 ******* 2247 0.00000 0.0 43.8 -17.20331 -17.20331 -17.20310 -17.20310 0.0000 0.0000 -0.0023 ******* 2248 0.00000 0.0 42.6 -17.20331 -17.20331 -17.20310 -17.20310 0.0000 0.0000 -0.0023 ******* 2249 0.00000 0.0 41.3 -17.20330 -17.20330 -17.20311 -17.20310 0.0000 0.0000 -0.0023 ******* * Physical Quantities at step: 2250 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20330 Hartree a.u. kinetic energy = 7.84937 Hartree a.u. electrostatic energy = -22.94566 Hartree a.u. esr = 0.12259 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41893 Hartree a.u. n-l pseudopotential energy = 4.51429 Hartree a.u. exchange-correlation energy = -4.20237 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.24 -8.63 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107811E+01 0.153667E+00 0.135094E+01 H 0.344137E+00 -0.110774E+01 -0.118001E+01 O -0.397166E+00 -0.416396E+00 0.376302E+00 ATOMIC_VELOCITIES H 0.153600E-03 -0.881878E-04 -0.257152E-03 H 0.282955E-03 0.395090E-04 0.117566E-03 O -0.275024E-04 0.306670E-05 0.879371E-05 Forces acting on atoms (au): H -0.228692E-02 0.135356E-02 0.257057E-02 H -0.369424E-02 -0.749865E-03 -0.663424E-03 O 0.114801E-02 -0.522057E-03 -0.136121E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 18.66 0.9329 2 2.59 0.0146 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2250 0.00000 0.0 39.9 -17.20330 -17.20330 -17.20311 -17.20311 0.0000 0.0000 -0.0023 ******* writing restart file: .//cp_91.save restart file written in 0.775 sec. 2251 0.00001 0.0 38.4 -17.20330 -17.20330 -17.20311 -17.20311 0.0000 0.0000 -0.0023 ******* 2252 0.00001 0.0 36.8 -17.20329 -17.20329 -17.20312 -17.20311 0.0000 0.0000 -0.0023 ******* 2253 0.00001 0.0 35.2 -17.20329 -17.20329 -17.20312 -17.20312 0.0000 0.0000 -0.0023 ******* 2254 0.00001 0.0 33.5 -17.20329 -17.20329 -17.20313 -17.20312 0.0000 0.0000 -0.0023 ******* 2255 0.00001 0.0 31.9 -17.20329 -17.20329 -17.20314 -17.20313 0.0000 0.0000 -0.0023 ******* 2256 0.00001 0.0 30.2 -17.20329 -17.20329 -17.20314 -17.20313 0.0000 0.0000 -0.0023 ******* 2257 0.00001 0.0 28.5 -17.20328 -17.20328 -17.20315 -17.20314 0.0000 0.0000 -0.0023 ******* 2258 0.00001 0.0 26.9 -17.20328 -17.20328 -17.20316 -17.20314 0.0000 0.0000 -0.0023 ******* 2259 0.00001 0.0 25.3 -17.20328 -17.20328 -17.20316 -17.20315 0.0000 0.0000 -0.0023 ******* 2260 0.00001 0.0 23.8 -17.20328 -17.20328 -17.20317 -17.20316 0.0000 0.0000 -0.0023 ******* 2261 0.00001 0.0 22.2 -17.20328 -17.20328 -17.20317 -17.20316 0.0000 0.0000 -0.0023 ******* 2262 0.00001 0.0 20.8 -17.20328 -17.20328 -17.20318 -17.20317 0.0000 0.0000 -0.0023 ******* 2263 0.00001 0.0 19.4 -17.20328 -17.20328 -17.20319 -17.20318 0.0000 0.0000 -0.0023 ******* 2264 0.00001 0.0 18.0 -17.20328 -17.20328 -17.20319 -17.20318 0.0000 0.0000 -0.0023 ******* 2265 0.00001 0.0 16.7 -17.20328 -17.20328 -17.20320 -17.20319 0.0000 0.0000 -0.0023 ******* 2266 0.00001 0.0 15.5 -17.20328 -17.20328 -17.20320 -17.20319 0.0000 0.0000 -0.0023 ******* 2267 0.00001 0.0 14.3 -17.20328 -17.20328 -17.20321 -17.20320 0.0000 0.0000 -0.0023 ******* 2268 0.00001 0.0 13.2 -17.20328 -17.20328 -17.20321 -17.20321 0.0000 0.0000 -0.0023 ******* 2269 0.00001 0.0 12.1 -17.20328 -17.20328 -17.20322 -17.20321 0.0000 0.0000 -0.0023 ******* 2270 0.00001 0.0 11.1 -17.20328 -17.20328 -17.20322 -17.20322 0.0000 0.0000 -0.0023 ******* 2271 0.00001 0.0 10.1 -17.20328 -17.20328 -17.20323 -17.20322 0.0000 0.0000 -0.0023 ******* 2272 0.00001 0.0 9.2 -17.20328 -17.20328 -17.20323 -17.20322 0.0000 0.0000 -0.0023 ******* 2273 0.00001 0.0 8.4 -17.20327 -17.20327 -17.20323 -17.20323 0.0000 0.0000 -0.0023 ******* 2274 0.00001 0.0 7.6 -17.20327 -17.20327 -17.20324 -17.20323 0.0000 0.0000 -0.0023 ******* 2275 0.00001 0.0 6.9 -17.20327 -17.20327 -17.20324 -17.20324 0.0000 0.0000 -0.0023 ******* 2276 0.00001 0.0 6.2 -17.20327 -17.20327 -17.20324 -17.20324 0.0000 0.0000 -0.0023 ******* 2277 0.00000 0.0 5.5 -17.20327 -17.20327 -17.20325 -17.20324 0.0000 0.0000 -0.0023 ******* 2278 0.00000 0.0 4.9 -17.20327 -17.20327 -17.20325 -17.20324 0.0000 0.0000 -0.0023 ******* 2279 0.00000 0.0 4.4 -17.20327 -17.20327 -17.20325 -17.20325 0.0000 0.0000 -0.0023 ******* * Physical Quantities at step: 2280 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20327 Hartree a.u. kinetic energy = 7.85076 Hartree a.u. electrostatic energy = -22.94469 Hartree a.u. esr = 0.12278 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41990 Hartree a.u. n-l pseudopotential energy = 4.51317 Hartree a.u. exchange-correlation energy = -4.20261 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.53 -12.19 -8.68 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.108739E+01 0.149538E+00 0.133574E+01 H 0.360371E+00 -0.110619E+01 -0.117211E+01 O -0.398773E+00 -0.416233E+00 0.376761E+00 ATOMIC_VELOCITIES H 0.578694E-04 -0.361431E-05 -0.778347E-04 H 0.818115E-04 -0.636313E-05 0.520885E-04 O -0.879970E-05 0.628564E-06 0.162198E-05 Forces acting on atoms (au): H -0.174790E-02 0.152689E-02 0.335432E-02 H -0.358103E-02 -0.923049E-03 -0.149427E-02 O 0.316187E-02 -0.248620E-03 -0.105956E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1.82 0.9454 2 0.25 0.0148 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2280 0.00000 0.0 3.9 -17.20327 -17.20327 -17.20325 -17.20325 0.0000 0.0000 -0.0023 ******* writing restart file: .//cp_91.save restart file written in 0.773 sec. 2281 0.00000 0.0 3.4 -17.20327 -17.20327 -17.20326 -17.20325 0.0000 0.0000 -0.0023 ******* 2282 0.00000 0.0 3.0 -17.20327 -17.20327 -17.20326 -17.20325 0.0000 0.0000 -0.0023 ******* 2283 0.00000 0.0 2.6 -17.20327 -17.20327 -17.20326 -17.20326 0.0000 0.0000 -0.0023 ******* 2284 0.00000 0.0 2.3 -17.20327 -17.20327 -17.20326 -17.20326 0.0000 0.0000 -0.0023 ******* 2285 0.00000 0.0 2.0 -17.20327 -17.20327 -17.20326 -17.20326 0.0000 0.0000 -0.0023 ******* 2286 0.00000 0.0 1.7 -17.20327 -17.20327 -17.20326 -17.20326 0.0000 0.0000 -0.0023 ******* 2287 0.00000 0.0 1.5 -17.20327 -17.20327 -17.20326 -17.20326 0.0000 0.0000 -0.0023 ******* 2288 0.00000 0.0 1.2 -17.20327 -17.20327 -17.20326 -17.20326 0.0000 0.0000 -0.0023 ******* 2289 0.00000 0.0 1.1 -17.20327 -17.20327 -17.20327 -17.20326 0.0000 0.0000 -0.0023 ******* 2290 0.00000 0.0 0.9 -17.20327 -17.20327 -17.20327 -17.20326 0.0000 0.0000 -0.0023 ******* 2291 0.00000 0.0 0.8 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2292 0.00000 0.0 0.7 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2293 0.00000 0.0 0.6 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2294 0.00000 0.0 0.5 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2295 0.00000 0.0 0.5 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2296 0.00000 0.0 0.4 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2297 0.00000 0.0 0.4 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2298 0.00000 0.0 0.4 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2299 0.00000 0.0 0.4 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2300 0.00000 0.0 0.5 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2301 0.00000 0.0 0.5 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2302 0.00000 0.0 0.6 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2303 0.00000 0.0 0.7 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2304 0.00000 0.0 0.7 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2305 0.00000 0.0 0.8 -17.20327 -17.20327 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2306 0.00000 0.0 0.9 -17.20328 -17.20328 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2307 0.00000 0.0 1.0 -17.20328 -17.20328 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2308 0.00000 0.0 1.1 -17.20328 -17.20328 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2309 0.00000 0.0 1.2 -17.20328 -17.20328 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* * Physical Quantities at step: 2310 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20328 Hartree a.u. kinetic energy = 7.85023 Hartree a.u. electrostatic energy = -22.94494 Hartree a.u. esr = 0.12239 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41889 Hartree a.u. n-l pseudopotential energy = 4.51269 Hartree a.u. exchange-correlation energy = -4.20237 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.52 -12.18 -8.68 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.108915E+01 0.151743E+00 0.133442E+01 H 0.361558E+00 -0.110857E+01 -0.117044E+01 O -0.398959E+00 -0.416222E+00 0.376739E+00 ATOMIC_VELOCITIES H -0.165748E-04 0.440129E-04 0.308301E-04 H -0.402060E-04 -0.425226E-04 -0.857893E-05 O 0.357711E-05 -0.938876E-07 -0.140179E-05 Forces acting on atoms (au): H -0.129915E-02 0.489504E-03 0.118708E-02 H -0.156235E-02 -0.453555E-03 -0.772663E-03 O 0.362236E-02 0.158784E-03 -0.341144E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.64 0.9467 2 0.05 0.0148 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2310 0.00000 0.0 1.3 -17.20328 -17.20328 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* writing restart file: .//cp_91.save restart file written in 1.041 sec. 2311 0.00000 0.0 1.4 -17.20328 -17.20328 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2312 0.00000 0.0 1.6 -17.20328 -17.20328 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2313 0.00000 0.0 1.7 -17.20328 -17.20328 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2314 0.00000 0.0 1.8 -17.20328 -17.20328 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2315 0.00000 0.0 1.9 -17.20328 -17.20328 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2316 0.00000 0.0 2.1 -17.20328 -17.20328 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2317 0.00000 0.0 2.2 -17.20328 -17.20328 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2318 0.00000 0.0 2.3 -17.20328 -17.20328 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2319 0.00000 0.0 2.4 -17.20329 -17.20329 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2320 0.00000 0.0 2.5 -17.20329 -17.20329 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2321 0.00000 0.0 2.7 -17.20329 -17.20329 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2322 0.00000 0.0 2.8 -17.20329 -17.20329 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2323 0.00000 0.0 2.9 -17.20329 -17.20329 -17.20327 -17.20327 0.0000 0.0000 -0.0023 ******* 2324 0.00000 0.0 3.0 -17.20329 -17.20329 -17.20328 -17.20327 0.0000 0.0000 -0.0023 ******* 2325 0.00000 0.0 3.1 -17.20329 -17.20329 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2326 0.00000 0.0 3.2 -17.20329 -17.20329 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2327 0.00000 0.0 3.3 -17.20329 -17.20329 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2328 0.00000 0.0 3.4 -17.20329 -17.20329 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2329 0.00000 0.0 3.5 -17.20329 -17.20329 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2330 0.00000 0.0 3.6 -17.20330 -17.20330 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2331 0.00000 0.0 3.6 -17.20330 -17.20330 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2332 0.00000 0.0 3.7 -17.20330 -17.20330 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2333 0.00000 0.0 3.8 -17.20330 -17.20330 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2334 0.00000 0.0 3.8 -17.20330 -17.20330 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2335 0.00000 0.0 3.9 -17.20330 -17.20330 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2336 0.00000 0.0 4.0 -17.20330 -17.20330 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2337 0.00000 0.0 4.0 -17.20330 -17.20330 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2338 0.00000 0.0 4.1 -17.20330 -17.20330 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* 2339 0.00000 0.0 4.1 -17.20330 -17.20330 -17.20328 -17.20328 0.0000 0.0000 -0.0023 ******* * Physical Quantities at step: 2340 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20331 Hartree a.u. kinetic energy = 7.84924 Hartree a.u. electrostatic energy = -22.94519 Hartree a.u. esr = 0.12225 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41824 Hartree a.u. n-l pseudopotential energy = 4.51302 Hartree a.u. exchange-correlation energy = -4.20213 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.52 -12.21 -8.66 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.108535E+01 0.156299E+00 0.133876E+01 H 0.355459E+00 -0.111301E+01 -0.117218E+01 O -0.398335E+00 -0.416230E+00 0.376576E+00 ATOMIC_VELOCITIES H -0.595468E-04 0.533967E-04 0.562558E-04 H -0.846736E-04 -0.518908E-04 -0.230115E-04 O 0.908568E-05 -0.948713E-07 -0.209434E-05 Forces acting on atoms (au): H -0.265152E-03 0.121957E-05 0.210419E-04 H -0.225422E-03 0.250955E-04 0.550402E-04 O 0.182862E-02 -0.524528E-04 -0.530436E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1.93 0.9418 2 0.27 0.0148 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2340 0.00000 0.0 4.1 -17.20331 -17.20331 -17.20329 -17.20328 0.0000 0.0000 -0.0023 ******* writing restart file: .//cp_91.save restart file written in 0.781 sec. 2341 0.00000 0.0 4.2 -17.20331 -17.20331 -17.20329 -17.20328 0.0000 0.0000 -0.0023 ******* 2342 0.00000 0.0 4.2 -17.20331 -17.20331 -17.20329 -17.20329 0.0000 0.0000 -0.0023 ******* 2343 0.00000 0.0 4.2 -17.20331 -17.20331 -17.20329 -17.20329 0.0000 0.0000 -0.0023 ******* 2344 0.00000 0.0 4.2 -17.20331 -17.20331 -17.20329 -17.20329 0.0000 0.0000 -0.0023 ******* 2345 0.00000 0.0 4.2 -17.20331 -17.20331 -17.20329 -17.20329 0.0000 0.0000 -0.0023 ******* 2346 0.00000 0.0 4.2 -17.20331 -17.20331 -17.20329 -17.20329 0.0000 0.0000 -0.0023 ******* 2347 0.00000 0.0 4.2 -17.20331 -17.20331 -17.20329 -17.20329 0.0000 0.0000 -0.0023 ******* 2348 0.00000 0.0 4.2 -17.20331 -17.20331 -17.20329 -17.20329 0.0000 0.0000 -0.0023 ******* 2349 0.00000 0.0 4.2 -17.20331 -17.20331 -17.20329 -17.20329 0.0000 0.0000 -0.0023 ******* 2350 0.00000 0.0 4.2 -17.20331 -17.20331 -17.20329 -17.20329 0.0000 0.0000 -0.0023 ******* 2351 0.00000 0.0 4.2 -17.20331 -17.20331 -17.20329 -17.20329 0.0000 0.0000 -0.0023 ******* 2352 0.00000 0.0 4.2 -17.20332 -17.20332 -17.20330 -17.20329 0.0000 0.0000 -0.0023 ******* 2353 0.00000 0.0 4.2 -17.20332 -17.20332 -17.20330 -17.20329 0.0000 0.0000 -0.0023 ******* 2354 0.00000 0.0 4.1 -17.20332 -17.20332 -17.20330 -17.20330 0.0000 0.0000 -0.0023 ******* 2355 0.00000 0.0 4.1 -17.20332 -17.20332 -17.20330 -17.20330 0.0000 0.0000 -0.0023 ******* 2356 0.00000 0.0 4.1 -17.20332 -17.20332 -17.20330 -17.20330 0.0000 0.0000 -0.0023 ******* 2357 0.00000 0.0 4.0 -17.20332 -17.20332 -17.20330 -17.20330 0.0000 0.0000 -0.0023 ******* 2358 0.00000 0.0 4.0 -17.20332 -17.20332 -17.20330 -17.20330 0.0000 0.0000 -0.0023 ******* 2359 0.00000 0.0 4.0 -17.20332 -17.20332 -17.20330 -17.20330 0.0000 0.0000 -0.0023 ******* 2360 0.00000 0.0 3.9 -17.20332 -17.20332 -17.20330 -17.20330 0.0000 0.0000 -0.0023 ******* 2361 0.00000 0.0 3.9 -17.20332 -17.20332 -17.20330 -17.20330 0.0000 0.0000 -0.0023 ******* 2362 0.00000 0.0 3.8 -17.20332 -17.20332 -17.20330 -17.20330 0.0000 0.0000 -0.0023 ******* 2363 0.00000 0.0 3.8 -17.20332 -17.20332 -17.20330 -17.20330 0.0000 0.0000 -0.0023 ******* 2364 0.00000 0.0 3.7 -17.20332 -17.20332 -17.20331 -17.20330 0.0000 0.0000 -0.0023 ******* 2365 0.00000 0.0 3.7 -17.20332 -17.20332 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* 2366 0.00000 0.0 3.6 -17.20332 -17.20332 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* 2367 0.00000 0.0 3.5 -17.20333 -17.20333 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* 2368 0.00000 0.0 3.5 -17.20333 -17.20333 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* 2369 0.00000 0.0 3.4 -17.20333 -17.20333 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* * Physical Quantities at step: 2370 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20333 Hartree a.u. kinetic energy = 7.84941 Hartree a.u. electrostatic energy = -22.94554 Hartree a.u. esr = 0.12255 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41874 Hartree a.u. n-l pseudopotential energy = 4.51390 Hartree a.u. exchange-correlation energy = -4.20236 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.24 -8.64 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107992E+01 0.160982E+00 0.134355E+01 H 0.347842E+00 -0.111747E+01 -0.117385E+01 O -0.397514E+00 -0.416244E+00 0.376379E+00 ATOMIC_VELOCITIES H -0.550331E-04 0.494977E-04 0.470077E-04 H -0.783108E-04 -0.462608E-04 -0.127978E-04 O 0.840048E-05 -0.203918E-06 -0.215518E-05 Forces acting on atoms (au): H 0.460596E-03 -0.142444E-03 -0.383420E-03 H 0.533096E-03 0.157025E-03 0.231339E-03 O 0.196642E-03 0.150754E-04 -0.144480E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1.56 0.9353 2 0.23 0.0147 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2370 0.00000 0.0 3.3 -17.20333 -17.20333 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* writing restart file: .//cp_91.save restart file written in 0.809 sec. 2371 0.00000 0.0 3.3 -17.20333 -17.20333 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* 2372 0.00000 0.0 3.2 -17.20333 -17.20333 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* 2373 0.00000 0.0 3.2 -17.20333 -17.20333 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* 2374 0.00000 0.0 3.1 -17.20333 -17.20333 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* 2375 0.00000 0.0 3.0 -17.20333 -17.20333 -17.20331 -17.20331 0.0000 0.0000 -0.0023 ******* 2376 0.00000 0.0 3.0 -17.20333 -17.20333 -17.20332 -17.20331 0.0000 0.0000 -0.0023 ******* 2377 0.00000 0.0 2.9 -17.20333 -17.20333 -17.20332 -17.20331 0.0000 0.0000 -0.0023 ******* 2378 0.00000 0.0 2.8 -17.20333 -17.20333 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2379 0.00000 0.0 2.8 -17.20333 -17.20333 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2380 0.00000 0.0 2.7 -17.20333 -17.20333 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2381 0.00000 0.0 2.6 -17.20333 -17.20333 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2382 0.00000 0.0 2.5 -17.20333 -17.20333 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2383 0.00000 0.0 2.5 -17.20333 -17.20333 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2384 0.00000 0.0 2.4 -17.20333 -17.20333 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2385 0.00000 0.0 2.4 -17.20333 -17.20333 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2386 0.00000 0.0 2.3 -17.20333 -17.20333 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2387 0.00000 0.0 2.2 -17.20333 -17.20333 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2388 0.00000 0.0 2.2 -17.20333 -17.20333 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2389 0.00000 0.0 2.1 -17.20333 -17.20333 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2390 0.00000 0.0 2.0 -17.20333 -17.20333 -17.20332 -17.20332 0.0000 0.0000 -0.0023 ******* 2391 0.00000 0.0 2.0 -17.20333 -17.20333 -17.20333 -17.20332 0.0000 0.0000 -0.0023 ******* 2392 0.00000 0.0 1.9 -17.20333 -17.20333 -17.20333 -17.20332 0.0000 0.0000 -0.0023 ******* 2393 0.00000 0.0 1.8 -17.20333 -17.20333 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2394 0.00000 0.0 1.8 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2395 0.00000 0.0 1.7 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2396 0.00000 0.0 1.7 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2397 0.00000 0.0 1.6 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2398 0.00000 0.0 1.6 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2399 0.00000 0.0 1.5 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* * Physical Quantities at step: 2400 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20334 Hartree a.u. kinetic energy = 7.84987 Hartree a.u. electrostatic energy = -22.94591 Hartree a.u. esr = 0.12282 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41927 Hartree a.u. n-l pseudopotential energy = 4.51463 Hartree a.u. exchange-correlation energy = -4.20265 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.26 -8.62 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107596E+01 0.165050E+00 0.134682E+01 H 0.342072E+00 -0.112129E+01 -0.117450E+01 O -0.396901E+00 -0.416259E+00 0.376214E+00 ATOMIC_VELOCITIES H -0.325285E-04 0.402970E-04 0.242459E-04 H -0.482126E-04 -0.388421E-04 -0.205946E-05 O 0.508658E-05 -0.916566E-07 -0.139772E-05 Forces acting on atoms (au): H 0.499661E-03 -0.212019E-03 -0.527363E-03 H 0.724668E-03 0.148668E-03 0.187323E-03 O -0.383732E-03 0.150246E-03 0.221169E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.69 0.9304 2 0.09 0.0146 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2400 0.00000 0.0 1.5 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* writing restart file: .//cp_91.save restart file written in 0.841 sec. 2401 0.00000 0.0 1.4 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2402 0.00000 0.0 1.4 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2403 0.00000 0.0 1.3 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2404 0.00000 0.0 1.3 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2405 0.00000 0.0 1.2 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2406 0.00000 0.0 1.2 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2407 0.00000 0.0 1.1 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2408 0.00000 0.0 1.1 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2409 0.00000 0.0 1.1 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2410 0.00000 0.0 1.0 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2411 0.00000 0.0 1.0 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2412 0.00000 0.0 0.9 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2413 0.00000 0.0 0.9 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2414 0.00000 0.0 0.9 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2415 0.00000 0.0 0.8 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2416 0.00000 0.0 0.8 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2417 0.00000 0.0 0.8 -17.20334 -17.20334 -17.20333 -17.20333 0.0000 0.0000 -0.0023 ******* 2418 0.00000 0.0 0.8 -17.20334 -17.20334 -17.20334 -17.20333 0.0000 0.0000 -0.0023 ******* 2419 0.00000 0.0 0.7 -17.20334 -17.20334 -17.20334 -17.20333 0.0000 0.0000 -0.0023 ******* 2420 0.00000 0.0 0.7 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2421 0.00000 0.0 0.7 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2422 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2423 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2424 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2425 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2426 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2427 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2428 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2429 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* * Physical Quantities at step: 2430 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20334 Hartree a.u. kinetic energy = 7.85010 Hartree a.u. electrostatic energy = -22.94612 Hartree a.u. esr = 0.12295 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41951 Hartree a.u. n-l pseudopotential energy = 4.51499 Hartree a.u. exchange-correlation energy = -4.20280 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.27 -8.61 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107394E+01 0.168205E+00 0.134788E+01 H 0.339152E+00 -0.112448E+01 -0.117427E+01 O -0.396590E+00 -0.416257E+00 0.376133E+00 ATOMIC_VELOCITIES H -0.134094E-04 0.301302E-04 0.308174E-06 H -0.179891E-04 -0.322079E-04 0.695374E-05 O 0.197806E-05 0.130892E-06 -0.457491E-06 Forces acting on atoms (au): H 0.345432E-03 -0.175992E-03 -0.423075E-03 H 0.540578E-03 0.128953E-03 0.170504E-03 O -0.535663E-03 0.132548E-03 0.206667E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.24 0.9279 2 0.01 0.0146 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2430 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* writing restart file: .//cp_91.save restart file written in 0.773 sec. 2431 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2432 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2433 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2434 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2435 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2436 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2437 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2438 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2439 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* 2440 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.20334 0.0000 0.0000 -0.0023 ******* in while: event_index 10 ======================================== EMPLOY RULES: CURRENT_NFI= 2441 event_index= 10 event_step== 2441 ======================================== RULE EVENT: isave 500 RULE EVENT: iprint 900 RULE EVENT: electron_damping 0.150000000000000 RULE EVENT: ion_temperature NOSE RULE EVENT: tempw 800.000000000000 in while after: event_index 11 2441 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0023 ******* 2442 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0024 ******* 2443 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0024 ******* 2444 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0025 ******* 2445 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0025 ******* 2446 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0026 ******* 2447 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0026 ******* 2448 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0027 ******* 2449 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0027 ******* 2450 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0028 ******* 2451 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0028 ******* 2452 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0029 ******* 2453 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0029 ******* 2454 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0030 ******* 2455 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0030 ******* 2456 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0031 ******* 2457 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0031 ******* 2458 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0032 ******* 2459 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0032 ******* * Physical Quantities at step: 2460 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20334 Hartree a.u. kinetic energy = 7.85022 Hartree a.u. electrostatic energy = -22.94616 Hartree a.u. esr = 0.12301 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41965 Hartree a.u. n-l pseudopotential energy = 4.51511 Hartree a.u. exchange-correlation energy = -4.20286 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.27 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107334E+01 0.170698E+00 0.134709E+01 H 0.338478E+00 -0.112727E+01 -0.117325E+01 O -0.396509E+00 -0.416238E+00 0.376118E+00 ATOMIC_VELOCITIES H -0.113034E-05 0.274371E-04 -0.169607E-04 H 0.101885E-05 -0.317205E-04 0.159083E-04 O 0.702382E-08 0.269845E-06 0.663025E-07 Forces acting on atoms (au): H 0.206052E-03 -0.123271E-03 -0.191103E-03 H 0.284954E-03 0.124193E-03 0.880622E-04 O -0.512094E-03 0.103957E-03 0.148798E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.22 0.9271 2 0.00 0.0145 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2460 0.00000 0.0 0.4 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0032 ******* writing restart file: .//cp_91.save restart file written in 0.774 sec. 2461 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0033 ******* 2462 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0033 ******* 2463 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0034 ******* 2464 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0034 ******* 2465 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0035 ******* 2466 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0035 ******* 2467 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0036 ******* 2468 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0036 ******* 2469 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0037 ******* 2470 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0037 ******* 2471 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0038 ******* 2472 0.00000 0.0 0.5 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0038 ******* 2473 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0039 ******* 2474 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0039 ******* 2475 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0040 ******* 2476 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0040 ******* 2477 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0041 ******* 2478 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0041 ******* 2479 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0042 ******* 2480 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0042 ******* 2481 0.00000 0.0 0.6 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0043 ******* 2482 0.00000 0.0 0.7 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0043 ******* 2483 0.00000 0.0 0.7 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0044 ******* 2484 0.00000 0.0 0.7 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0044 ******* 2485 0.00000 0.0 0.7 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0044 ******* 2486 0.00000 0.0 0.7 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0045 ******* 2487 0.00000 0.0 0.7 -17.20334 -17.20334 -17.20334 -17.47426 0.0000 0.0000 -0.0045 ******* 2488 0.00000 0.0 0.7 -17.20335 -17.20335 -17.20334 -17.47426 0.0000 0.0000 -0.0046 ******* 2489 0.00000 0.0 0.7 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0046 ******* * Physical Quantities at step: 2490 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20335 Hartree a.u. kinetic energy = 7.85031 Hartree a.u. electrostatic energy = -22.94614 Hartree a.u. esr = 0.12302 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41972 Hartree a.u. n-l pseudopotential energy = 4.51509 Hartree a.u. exchange-correlation energy = -4.20288 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.27 -8.61 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107362E+01 0.173300E+00 0.134499E+01 H 0.339120E+00 -0.113033E+01 -0.117146E+01 O -0.396567E+00 -0.416209E+00 0.376137E+00 ATOMIC_VELOCITIES H 0.673998E-05 0.309798E-04 -0.288985E-04 H 0.122409E-04 -0.369036E-04 0.235316E-04 O -0.119577E-05 0.373191E-06 0.338109E-06 Forces acting on atoms (au): H 0.440727E-04 -0.149258E-03 0.547084E-04 H 0.503871E-04 0.180936E-03 -0.626573E-04 O -0.306957E-03 0.102098E-03 0.127489E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.38 0.9273 2 0.01 0.0146 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2490 0.00000 0.0 0.8 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0047 ******* writing restart file: .//cp_91.save restart file written in 0.924 sec. 2491 0.00000 0.0 0.8 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0047 ******* 2492 0.00000 0.0 0.8 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0048 ******* 2493 0.00000 0.0 0.8 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0048 ******* 2494 0.00000 0.0 0.8 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0049 ******* 2495 0.00000 0.0 0.8 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0049 ******* 2496 0.00000 0.0 0.8 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0050 ******* 2497 0.00000 0.0 0.9 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0050 ******* 2498 0.00000 0.0 0.9 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0051 ******* 2499 0.00000 0.0 0.9 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0051 ******* 2500 0.00000 0.0 0.9 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0052 ******* 2501 0.00000 0.0 0.9 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0052 ******* 2502 0.00000 0.0 0.9 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0053 ******* 2503 0.00000 0.0 0.9 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0053 ******* 2504 0.00000 0.0 1.0 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0054 ******* 2505 0.00000 0.0 1.0 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0054 ******* 2506 0.00000 0.0 1.0 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0055 ******* 2507 0.00000 0.0 1.0 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0055 ******* 2508 0.00000 0.0 1.0 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0055 ******* 2509 0.00000 0.0 1.0 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0056 ******* 2510 0.00000 0.0 1.1 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0056 ******* 2511 0.00000 0.0 1.1 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0057 ******* 2512 0.00000 0.0 1.1 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0057 ******* 2513 0.00000 0.0 1.1 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0058 ******* 2514 0.00000 0.0 1.1 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0058 ******* 2515 0.00000 0.0 1.1 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0059 ******* 2516 0.00000 0.0 1.2 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0059 ******* 2517 0.00000 0.0 1.2 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0060 ******* 2518 0.00000 0.0 1.2 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0060 ******* 2519 0.00000 0.0 1.2 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0061 ******* * Physical Quantities at step: 2520 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20335 Hartree a.u. kinetic energy = 7.85030 Hartree a.u. electrostatic energy = -22.94608 Hartree a.u. esr = 0.12298 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41966 Hartree a.u. n-l pseudopotential energy = 4.51496 Hartree a.u. exchange-correlation energy = -4.20286 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.26 -8.61 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107440E+01 0.176392E+00 0.134200E+01 H 0.340502E+00 -0.113403E+01 -0.116906E+01 O -0.396704E+00 -0.416171E+00 0.376175E+00 ATOMIC_VELOCITIES H 0.973075E-05 0.384889E-04 -0.372777E-04 H 0.174753E-04 -0.462195E-04 0.296122E-04 O -0.171394E-05 0.487017E-06 0.482912E-06 Forces acting on atoms (au): H -0.116495E-03 -0.222672E-03 0.281913E-03 H -0.167287E-03 0.287895E-03 -0.202463E-03 O -0.134639E-04 0.816904E-04 0.586226E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.61 0.9281 2 0.01 0.0146 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2520 0.00000 0.0 1.2 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0061 ******* writing restart file: .//cp_91.save restart file written in 0.822 sec. 2521 0.00000 0.0 1.2 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0062 ******* 2522 0.00000 0.0 1.3 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0062 ******* 2523 0.00000 0.0 1.3 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0063 ******* 2524 0.00000 0.0 1.3 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0063 ******* 2525 0.00000 0.0 1.3 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0064 ******* 2526 0.00000 0.0 1.3 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0064 ******* 2527 0.00000 0.0 1.4 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0065 ******* 2528 0.00000 0.0 1.4 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0065 ******* 2529 0.00000 0.0 1.4 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0066 ******* 2530 0.00000 0.0 1.4 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0066 ******* 2531 0.00000 0.0 1.4 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0067 ******* 2532 0.00000 0.0 1.5 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0067 ******* 2533 0.00000 0.0 1.5 -17.20335 -17.20335 -17.20334 -17.47427 0.0000 0.0000 -0.0067 ******* 2534 0.00000 0.0 1.5 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0068 ******* 2535 0.00000 0.0 1.5 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0068 ******* 2536 0.00000 0.0 1.6 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0069 ******* 2537 0.00000 0.0 1.6 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0069 ******* 2538 0.00000 0.0 1.6 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0070 ******* 2539 0.00000 0.0 1.6 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0070 ******* 2540 0.00000 0.0 1.7 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0071 ******* 2541 0.00000 0.0 1.7 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0071 ******* 2542 0.00000 0.0 1.7 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0072 ******* 2543 0.00000 0.0 1.7 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0072 ******* 2544 0.00000 0.0 1.8 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0073 ******* 2545 0.00000 0.0 1.8 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0073 ******* 2546 0.00000 0.0 1.8 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0074 ******* 2547 0.00000 0.0 1.8 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0074 ******* 2548 0.00000 0.0 1.9 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0075 ******* 2549 0.00000 0.0 1.9 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0075 ******* * Physical Quantities at step: 2550 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20335 Hartree a.u. kinetic energy = 7.85023 Hartree a.u. electrostatic energy = -22.94601 Hartree a.u. esr = 0.12292 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41957 Hartree a.u. n-l pseudopotential energy = 4.51479 Hartree a.u. exchange-correlation energy = -4.20280 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.26 -8.61 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107524E+01 0.180395E+00 0.133835E+01 H 0.342089E+00 -0.113882E+01 -0.116611E+01 O -0.396856E+00 -0.416122E+00 0.376219E+00 ATOMIC_VELOCITIES H 0.807842E-05 0.516215E-04 -0.434655E-04 H 0.168448E-04 -0.611845E-04 0.362849E-04 O -0.157013E-05 0.602450E-06 0.452364E-06 Forces acting on atoms (au): H -0.201996E-03 -0.363495E-03 0.499004E-03 H -0.320111E-03 0.476790E-03 -0.341530E-03 O 0.222478E-03 0.435586E-04 -0.284091E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.96 0.9290 2 0.01 0.0146 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2550 0.00000 0.0 1.9 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0076 ******* writing restart file: .//cp_91.save restart file written in 0.770 sec. 2551 0.00000 0.0 2.0 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0076 ******* 2552 0.00000 0.0 2.0 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0077 ******* 2553 0.00000 0.0 2.0 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0077 ******* 2554 0.00000 0.0 2.1 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0078 ******* 2555 0.00000 0.0 2.1 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0078 ******* 2556 0.00000 0.0 2.1 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0078 ******* 2557 0.00000 0.0 2.2 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0079 ******* 2558 0.00000 0.0 2.2 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0079 ******* 2559 0.00000 0.0 2.3 -17.20335 -17.20335 -17.20334 -17.47428 0.0000 0.0000 -0.0080 ******* 2560 0.00000 0.0 2.3 -17.20335 -17.20335 -17.20334 -17.47429 0.0000 0.0000 -0.0080 ******* 2561 0.00000 0.0 2.3 -17.20335 -17.20335 -17.20334 -17.47429 0.0000 0.0000 -0.0081 ******* 2562 0.00000 0.0 2.4 -17.20335 -17.20335 -17.20334 -17.47429 0.0000 0.0000 -0.0081 ******* 2563 0.00000 0.0 2.4 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0082 ******* 2564 0.00000 0.0 2.5 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0082 ******* 2565 0.00000 0.0 2.5 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0083 ******* 2566 0.00000 0.0 2.6 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0083 ******* 2567 0.00000 0.0 2.6 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0084 ******* 2568 0.00000 0.0 2.6 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0084 ******* 2569 0.00000 0.0 2.7 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0085 ******* 2570 0.00000 0.0 2.7 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0085 ******* 2571 0.00000 0.0 2.8 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0086 ******* 2572 0.00000 0.0 2.9 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0086 ******* 2573 0.00000 0.0 2.9 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0087 ******* 2574 0.00000 0.0 3.0 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0087 ******* 2575 0.00000 0.0 3.0 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0088 ******* 2576 0.00000 0.0 3.1 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0088 ******* 2577 0.00000 0.0 3.2 -17.20336 -17.20336 -17.20334 -17.47429 0.0000 0.0000 -0.0089 ******* 2578 0.00000 0.0 3.2 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0089 ******* 2579 0.00000 0.0 3.3 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0089 ******* * Physical Quantities at step: 2580 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20336 Hartree a.u. kinetic energy = 7.85016 Hartree a.u. electrostatic energy = -22.94595 Hartree a.u. esr = 0.12287 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41948 Hartree a.u. n-l pseudopotential energy = 4.51467 Hartree a.u. exchange-correlation energy = -4.20276 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.25 -8.62 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107575E+01 0.185948E+00 0.133419E+01 H 0.343379E+00 -0.114532E+01 -0.116246E+01 O -0.396970E+00 -0.416062E+00 0.376251E+00 ATOMIC_VELOCITIES H 0.274605E-05 0.736256E-04 -0.490998E-04 H 0.110368E-04 -0.852684E-04 0.454909E-04 O -0.868298E-06 0.733479E-06 0.227353E-06 Forces acting on atoms (au): H -0.202478E-03 -0.635442E-03 0.686048E-03 H -0.357243E-03 0.795042E-03 -0.515121E-03 O 0.356600E-03 0.173966E-04 -0.606424E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1.67 0.9296 2 0.00 0.0146 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2580 0.00000 0.0 3.4 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0090 ******* writing restart file: .//cp_91.save restart file written in 0.780 sec. 2581 0.00000 0.0 3.4 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0090 ******* 2582 0.00000 0.0 3.5 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0091 ******* 2583 0.00000 0.0 3.6 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0091 ******* 2584 0.00000 0.0 3.6 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0092 ******* 2585 0.00000 0.0 3.7 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0092 ******* 2586 0.00000 0.0 3.8 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0093 ******* 2587 0.00000 0.0 3.9 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0093 ******* 2588 0.00000 0.0 4.0 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0094 ******* 2589 0.00000 0.0 4.1 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0094 ******* 2590 0.00000 0.0 4.2 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0095 ******* 2591 0.00000 0.0 4.3 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0095 ******* 2592 0.00000 0.0 4.4 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0096 ******* 2593 0.00000 0.0 4.5 -17.20336 -17.20336 -17.20334 -17.47430 0.0000 0.0000 -0.0096 ******* 2594 0.00000 0.0 4.6 -17.20336 -17.20336 -17.20334 -17.47431 0.0000 0.0000 -0.0097 ******* 2595 0.00000 0.0 4.7 -17.20336 -17.20336 -17.20334 -17.47431 0.0000 0.0000 -0.0097 ******* 2596 0.00000 0.0 4.8 -17.20336 -17.20336 -17.20334 -17.47431 0.0000 0.0000 -0.0098 ******* 2597 0.00000 0.0 4.9 -17.20336 -17.20336 -17.20334 -17.47431 0.0000 0.0000 -0.0098 ******* 2598 0.00000 0.0 5.0 -17.20336 -17.20336 -17.20333 -17.47431 0.0000 0.0000 -0.0099 ******* 2599 0.00000 0.0 5.1 -17.20336 -17.20336 -17.20333 -17.47431 0.0000 0.0000 -0.0099 ******* 2600 0.00000 0.0 5.3 -17.20336 -17.20336 -17.20333 -17.47431 0.0000 0.0000 -0.0099 ******* 2601 0.00000 0.0 5.4 -17.20336 -17.20336 -17.20333 -17.47431 0.0000 0.0000 -0.0100 ******* 2602 0.00000 0.0 5.5 -17.20336 -17.20336 -17.20333 -17.47431 0.0000 0.0000 -0.0100 ******* 2603 0.00000 0.0 5.7 -17.20336 -17.20336 -17.20333 -17.47431 0.0000 0.0000 -0.0101 ******* 2604 0.00000 0.0 5.8 -17.20336 -17.20336 -17.20333 -17.47432 0.0000 0.0000 -0.0101 ******* 2605 0.00000 0.0 5.9 -17.20336 -17.20336 -17.20333 -17.47432 0.0000 0.0000 -0.0102 ******* 2606 0.00000 0.0 6.1 -17.20336 -17.20336 -17.20333 -17.47432 0.0000 0.0000 -0.0102 ******* 2607 0.00000 0.0 6.3 -17.20336 -17.20336 -17.20333 -17.47432 0.0000 0.0000 -0.0103 ******* 2608 0.00000 0.0 6.4 -17.20336 -17.20336 -17.20333 -17.47432 0.0000 0.0000 -0.0103 ******* 2609 0.00000 0.0 6.6 -17.20336 -17.20336 -17.20333 -17.47432 0.0000 0.0000 -0.0104 ******* * Physical Quantities at step: 2610 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20336 Hartree a.u. kinetic energy = 7.85008 Hartree a.u. electrostatic energy = -22.94596 Hartree a.u. esr = 0.12284 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41939 Hartree a.u. n-l pseudopotential energy = 4.51463 Hartree a.u. exchange-correlation energy = -4.20272 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.25 -8.62 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107562E+01 0.194076E+00 0.132941E+01 H 0.343957E+00 -0.115464E+01 -0.115775E+01 O -0.396998E+00 -0.415987E+00 0.376256E+00 ATOMIC_VELOCITIES H -0.642711E-05 0.110143E-03 -0.582463E-04 H 0.127496E-05 -0.125442E-03 0.605723E-04 O 0.324579E-06 0.963813E-06 -0.146537E-06 Forces acting on atoms (au): H -0.110750E-03 -0.114118E-02 0.847194E-03 H -0.255379E-03 0.135312E-02 -0.743202E-03 O 0.355010E-03 -0.847013E-05 -0.411492E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 3.38 0.9297 2 0.00 0.0146 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2610 0.00000 0.0 6.8 -17.20336 -17.20336 -17.20333 -17.47432 0.0000 0.0000 -0.0104 ******* writing restart file: .//cp_91.save restart file written in 0.780 sec. 2611 0.00000 0.0 6.9 -17.20336 -17.20336 -17.20333 -17.47432 0.0000 0.0000 -0.0105 ******* 2612 0.00000 0.0 7.1 -17.20336 -17.20336 -17.20333 -17.47432 0.0000 0.0000 -0.0105 ******* 2613 0.00000 0.0 7.3 -17.20336 -17.20336 -17.20333 -17.47433 0.0000 0.0000 -0.0106 ******* 2614 0.00000 0.0 7.5 -17.20336 -17.20336 -17.20333 -17.47433 0.0000 0.0000 -0.0106 ******* 2615 0.00000 0.0 7.7 -17.20336 -17.20336 -17.20332 -17.47433 0.0000 0.0000 -0.0107 ******* 2616 0.00000 0.0 7.9 -17.20336 -17.20336 -17.20332 -17.47433 0.0000 0.0000 -0.0107 ******* 2617 0.00000 0.0 8.2 -17.20336 -17.20336 -17.20332 -17.47433 0.0000 0.0000 -0.0108 ******* 2618 0.00000 0.0 8.4 -17.20336 -17.20336 -17.20332 -17.47433 0.0000 0.0000 -0.0108 ******* 2619 0.00000 0.0 8.6 -17.20336 -17.20336 -17.20332 -17.47433 0.0000 0.0000 -0.0109 ******* 2620 0.00000 0.0 8.9 -17.20336 -17.20336 -17.20332 -17.47434 0.0000 0.0000 -0.0109 ******* 2621 0.00000 0.0 9.1 -17.20336 -17.20336 -17.20332 -17.47434 0.0000 0.0000 -0.0109 ******* 2622 0.00000 0.0 9.4 -17.20336 -17.20336 -17.20332 -17.47434 0.0000 0.0000 -0.0110 ******* 2623 0.00000 0.0 9.7 -17.20336 -17.20336 -17.20332 -17.47434 0.0000 0.0000 -0.0110 ******* 2624 0.00000 0.0 9.9 -17.20336 -17.20336 -17.20332 -17.47434 0.0000 0.0000 -0.0111 ******* 2625 0.00000 0.0 10.2 -17.20336 -17.20336 -17.20331 -17.47435 0.0000 0.0000 -0.0111 ******* 2626 0.00000 0.0 10.5 -17.20336 -17.20336 -17.20331 -17.47435 0.0000 0.0000 -0.0112 ******* 2627 0.00000 0.0 10.9 -17.20336 -17.20336 -17.20331 -17.47435 0.0000 0.0000 -0.0112 ******* 2628 0.00000 0.0 11.2 -17.20336 -17.20336 -17.20331 -17.47435 0.0000 0.0000 -0.0113 ******* 2629 0.00000 0.0 11.5 -17.20336 -17.20336 -17.20331 -17.47435 0.0000 0.0000 -0.0113 ******* 2630 0.00000 0.0 11.9 -17.20336 -17.20336 -17.20331 -17.47436 0.0000 0.0000 -0.0114 ******* 2631 0.00000 0.0 12.2 -17.20336 -17.20336 -17.20331 -17.47436 0.0000 0.0000 -0.0114 ******* 2632 0.00000 0.0 12.6 -17.20336 -17.20336 -17.20330 -17.47436 0.0000 0.0000 -0.0115 ******* 2633 0.00000 0.0 13.0 -17.20336 -17.20336 -17.20330 -17.47436 0.0000 0.0000 -0.0115 ******* 2634 0.00000 0.0 13.4 -17.20336 -17.20336 -17.20330 -17.47436 0.0000 0.0000 -0.0116 ******* 2635 0.00000 0.0 13.8 -17.20336 -17.20336 -17.20330 -17.47437 0.0000 0.0000 -0.0116 ******* 2636 0.00000 0.0 14.2 -17.20336 -17.20336 -17.20330 -17.47437 0.0000 0.0000 -0.0117 ******* 2637 0.00000 0.0 14.7 -17.20336 -17.20336 -17.20329 -17.47437 0.0000 0.0000 -0.0117 ******* 2638 0.00000 0.0 15.2 -17.20336 -17.20336 -17.20329 -17.47437 0.0000 0.0000 -0.0118 ******* 2639 0.00000 0.0 15.6 -17.20336 -17.20336 -17.20329 -17.47438 0.0000 0.0000 -0.0118 ******* * Physical Quantities at step: 2640 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20336 Hartree a.u. kinetic energy = 7.84998 Hartree a.u. electrostatic energy = -22.94605 Hartree a.u. esr = 0.12282 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41929 Hartree a.u. n-l pseudopotential energy = 4.51471 Hartree a.u. exchange-correlation energy = -4.20271 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.26 -8.61 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107445E+01 0.206554E+00 0.132335E+01 H 0.343533E+00 -0.116879E+01 -0.115113E+01 O -0.396897E+00 -0.415882E+00 0.376220E+00 ATOMIC_VELOCITIES H -0.203751E-04 0.173203E-03 -0.796699E-04 H -0.109461E-04 -0.195904E-03 0.902591E-04 O 0.197319E-05 0.143019E-05 -0.667108E-06 Forces acting on atoms (au): H 0.118775E-03 -0.204969E-02 0.107301E-02 H -0.826564E-05 0.236038E-02 -0.110283E-02 O 0.142338E-03 -0.650903E-04 0.631429E-05 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 8.07 0.9292 2 0.02 0.0147 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2640 0.00000 0.0 16.2 -17.20336 -17.20336 -17.20329 -17.47438 0.0000 0.0000 -0.0118 ******* writing restart file: .//cp_91.save restart file written in 0.779 sec. 2641 0.00001 0.0 16.7 -17.20336 -17.20336 -17.20328 -17.47438 0.0000 0.0000 -0.0119 ******* 2642 0.00001 0.0 17.2 -17.20336 -17.20336 -17.20328 -17.47439 0.0000 0.0000 -0.0119 ******* 2643 0.00001 0.0 17.8 -17.20336 -17.20336 -17.20328 -17.47439 0.0000 0.0000 -0.0120 ******* 2644 0.00001 0.0 18.4 -17.20336 -17.20336 -17.20328 -17.47439 0.0000 0.0000 -0.0120 ******* 2645 0.00001 0.0 19.0 -17.20336 -17.20336 -17.20327 -17.47440 0.0000 0.0000 -0.0121 ******* 2646 0.00001 0.0 19.6 -17.20336 -17.20336 -17.20327 -17.47440 0.0000 0.0000 -0.0121 ******* 2647 0.00001 0.0 20.3 -17.20336 -17.20336 -17.20327 -17.47440 0.0000 0.0000 -0.0122 ******* 2648 0.00001 0.0 21.0 -17.20336 -17.20336 -17.20326 -17.47441 0.0000 0.0000 -0.0122 ******* 2649 0.00001 0.0 21.7 -17.20336 -17.20336 -17.20326 -17.47441 0.0000 0.0000 -0.0123 ******* 2650 0.00001 0.0 22.4 -17.20336 -17.20336 -17.20326 -17.47441 0.0000 0.0000 -0.0123 ******* 2651 0.00001 0.0 23.2 -17.20336 -17.20336 -17.20325 -17.47442 0.0000 0.0000 -0.0124 ******* 2652 0.00001 0.0 24.0 -17.20336 -17.20336 -17.20325 -17.47442 0.0000 0.0000 -0.0124 ******* 2653 0.00001 0.0 24.8 -17.20336 -17.20336 -17.20324 -17.47443 0.0000 0.0000 -0.0125 ******* 2654 0.00001 0.0 25.7 -17.20336 -17.20336 -17.20324 -17.47443 0.0000 0.0000 -0.0125 ******* 2655 0.00001 0.0 26.6 -17.20336 -17.20336 -17.20324 -17.47443 0.0000 0.0000 -0.0125 ******* 2656 0.00001 0.0 27.5 -17.20336 -17.20336 -17.20323 -17.47444 0.0000 0.0000 -0.0126 ******* 2657 0.00001 0.0 28.5 -17.20336 -17.20336 -17.20323 -17.47444 0.0000 0.0000 -0.0126 ******* 2658 0.00001 0.0 29.5 -17.20336 -17.20336 -17.20322 -17.47445 0.0000 0.0000 -0.0127 ******* 2659 0.00001 0.0 30.6 -17.20336 -17.20336 -17.20321 -17.47445 0.0000 0.0000 -0.0127 ******* 2660 0.00001 0.0 31.7 -17.20336 -17.20336 -17.20321 -17.47446 0.0000 0.0000 -0.0128 ******* 2661 0.00001 0.0 32.9 -17.20336 -17.20336 -17.20320 -17.47447 0.0000 0.0000 -0.0128 ******* 2662 0.00001 0.0 34.1 -17.20336 -17.20336 -17.20320 -17.47447 0.0000 0.0000 -0.0129 ******* 2663 0.00001 0.0 35.3 -17.20336 -17.20336 -17.20319 -17.47448 0.0000 0.0000 -0.0129 ******* 2664 0.00001 0.0 36.6 -17.20336 -17.20336 -17.20318 -17.47448 0.0000 0.0000 -0.0130 ******* 2665 0.00001 0.0 38.0 -17.20336 -17.20336 -17.20318 -17.47449 0.0000 0.0000 -0.0130 ******* 2666 0.00001 0.0 39.4 -17.20336 -17.20336 -17.20317 -17.47450 0.0000 0.0000 -0.0131 ******* 2667 0.00001 0.0 40.9 -17.20336 -17.20336 -17.20316 -17.47450 0.0000 0.0000 -0.0131 ******* 2668 0.00001 0.0 42.5 -17.20336 -17.20336 -17.20315 -17.47451 0.0000 0.0000 -0.0131 ******* 2669 0.00001 0.0 44.1 -17.20335 -17.20335 -17.20315 -17.47452 0.0000 0.0000 -0.0132 ******* * Physical Quantities at step: 2670 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20335 Hartree a.u. kinetic energy = 7.84985 Hartree a.u. electrostatic energy = -22.94626 Hartree a.u. esr = 0.12283 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41917 Hartree a.u. n-l pseudopotential energy = 4.51495 Hartree a.u. exchange-correlation energy = -4.20272 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.26 -8.60 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107177E+01 0.226856E+00 0.131418E+01 H 0.341987E+00 -0.119174E+01 -0.114048E+01 O -0.396631E+00 -0.415715E+00 0.376127E+00 ATOMIC_VELOCITIES H -0.403336E-04 0.290934E-03 -0.131781E-03 H -0.230749E-04 -0.329008E-03 0.155055E-03 O 0.399465E-05 0.239858E-05 -0.146622E-05 Forces acting on atoms (au): H 0.521169E-03 -0.374670E-02 0.158713E-02 H 0.377890E-03 0.425586E-02 -0.183787E-02 O -0.297586E-03 -0.178847E-03 0.116497E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 22.87 0.9285 2 0.07 0.0147 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2670 0.00001 0.0 45.8 -17.20335 -17.20335 -17.20314 -17.47452 0.0000 0.0000 -0.0132 ******* writing restart file: .//cp_91.save restart file written in 0.828 sec. 2671 0.00001 0.0 47.6 -17.20335 -17.20335 -17.20313 -17.47453 0.0000 0.0000 -0.0133 ******* 2672 0.00001 0.0 49.4 -17.20335 -17.20335 -17.20312 -17.47454 0.0000 0.0000 -0.0133 ******* 2673 0.00001 0.0 51.4 -17.20335 -17.20335 -17.20311 -17.47455 0.0000 0.0000 -0.0134 ******* 2674 0.00001 0.0 53.4 -17.20335 -17.20335 -17.20310 -17.47456 0.0000 0.0000 -0.0134 ******* 2675 0.00002 0.0 55.5 -17.20335 -17.20335 -17.20308 -17.47457 0.0000 0.0000 -0.0135 ******* 2676 0.00002 0.0 57.7 -17.20335 -17.20335 -17.20307 -17.47458 0.0000 0.0000 -0.0135 ******* 2677 0.00002 0.0 60.0 -17.20335 -17.20335 -17.20306 -17.47459 0.0000 0.0000 -0.0135 ******* 2678 0.00002 0.0 62.4 -17.20334 -17.20334 -17.20305 -17.47460 0.0000 0.0000 -0.0136 ******* 2679 0.00002 0.0 64.9 -17.20334 -17.20334 -17.20303 -17.47461 0.0000 0.0000 -0.0136 ******* 2680 0.00002 0.0 67.6 -17.20334 -17.20334 -17.20302 -17.47462 0.0000 0.0000 -0.0137 ******* 2681 0.00002 0.0 70.4 -17.20334 -17.20334 -17.20300 -17.47463 0.0000 0.0000 -0.0137 ******* 2682 0.00002 0.0 73.3 -17.20334 -17.20334 -17.20299 -17.47464 0.0000 0.0000 -0.0138 ******* 2683 0.00002 0.0 76.3 -17.20333 -17.20333 -17.20297 -17.47465 0.0000 0.0000 -0.0138 ******* 2684 0.00002 0.0 79.5 -17.20333 -17.20333 -17.20295 -17.47466 0.0000 0.0000 -0.0139 ******* 2685 0.00002 0.0 82.8 -17.20333 -17.20333 -17.20294 -17.47468 0.0000 0.0000 -0.0139 ******* 2686 0.00002 0.0 86.3 -17.20333 -17.20333 -17.20292 -17.47469 0.0000 0.0000 -0.0139 ******* 2687 0.00002 0.0 89.9 -17.20332 -17.20332 -17.20290 -17.47471 0.0000 0.0000 -0.0140 ******* 2688 0.00003 0.0 93.7 -17.20332 -17.20332 -17.20288 -17.47472 0.0000 0.0000 -0.0140 ******* 2689 0.00003 0.0 97.8 -17.20332 -17.20332 -17.20285 -17.47474 0.0000 0.0000 -0.0141 ******* 2690 0.00003 0.0 102.0 -17.20332 -17.20332 -17.20283 -17.47475 0.0000 0.0000 -0.0141 ******* 2691 0.00003 0.0 106.4 -17.20331 -17.20331 -17.20281 -17.47477 0.0000 0.0000 -0.0142 ******* 2692 0.00003 0.0 111.0 -17.20331 -17.20331 -17.20278 -17.47479 0.0000 0.0000 -0.0142 ******* 2693 0.00003 0.0 115.8 -17.20331 -17.20331 -17.20276 -17.47480 0.0000 0.0000 -0.0142 ******* 2694 0.00003 0.0 120.9 -17.20330 -17.20330 -17.20273 -17.47482 0.0000 0.0000 -0.0143 ******* 2695 0.00003 0.0 126.3 -17.20330 -17.20330 -17.20270 -17.47484 0.0000 0.0000 -0.0143 ******* 2696 0.00004 0.0 131.9 -17.20329 -17.20329 -17.20267 -17.47486 0.0000 0.0000 -0.0144 ******* 2697 0.00004 0.0 137.8 -17.20329 -17.20329 -17.20263 -17.47488 0.0000 0.0000 -0.0144 ******* 2698 0.00004 0.0 143.9 -17.20328 -17.20328 -17.20260 -17.47491 0.0000 0.0000 -0.0144 ******* 2699 0.00004 0.0 150.4 -17.20328 -17.20328 -17.20256 -17.47493 0.0000 0.0000 -0.0145 ******* * Physical Quantities at step: 2700 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20327 Hartree a.u. kinetic energy = 7.84955 Hartree a.u. electrostatic energy = -22.94669 Hartree a.u. esr = 0.12278 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41877 Hartree a.u. n-l pseudopotential energy = 4.51534 Hartree a.u. exchange-correlation energy = -4.20270 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.28 -8.59 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.106684E+01 0.262469E+00 0.129739E+01 H 0.339540E+00 -0.123212E+01 -0.112071E+01 O -0.396167E+00 -0.415414E+00 0.375939E+00 ATOMIC_VELOCITIES H -0.724443E-04 0.529848E-03 -0.260704E-03 H -0.297186E-04 -0.602663E-03 0.306335E-03 O 0.643612E-05 0.458726E-05 -0.287464E-05 Forces acting on atoms (au): H 0.110490E-02 -0.715809E-02 0.290139E-02 H 0.835370E-03 0.810674E-02 -0.351843E-02 O -0.801701E-03 -0.421191E-03 0.287051E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 78.51 0.9303 2 0.22 0.0147 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2700 0.00004 0.0 157.2 -17.20327 -17.20327 -17.20253 -17.47495 0.0000 0.0000 -0.0145 ******* writing restart file: .//cp_91.save restart file written in 0.796 sec. 2701 0.00004 0.0 164.4 -17.20327 -17.20327 -17.20249 -17.47498 0.0000 0.0000 -0.0146 ******* 2702 0.00005 0.0 171.9 -17.20326 -17.20326 -17.20244 -17.47500 0.0000 0.0000 -0.0146 ******* 2703 0.00005 0.0 179.8 -17.20325 -17.20325 -17.20240 -17.47503 0.0000 0.0000 -0.0146 ******* 2704 0.00005 0.0 188.1 -17.20325 -17.20325 -17.20235 -17.47506 0.0000 0.0000 -0.0147 ******* 2705 0.00005 0.0 196.9 -17.20324 -17.20324 -17.20231 -17.47509 0.0000 0.0000 -0.0147 ******* 2706 0.00005 0.0 206.0 -17.20323 -17.20323 -17.20225 -17.47512 0.0000 0.0000 -0.0147 ******* 2707 0.00006 0.0 215.7 -17.20323 -17.20323 -17.20220 -17.47515 0.0000 0.0000 -0.0148 ******* 2708 0.00006 0.0 225.8 -17.20322 -17.20322 -17.20214 -17.47519 0.0000 0.0000 -0.0148 ******* 2709 0.00006 0.0 236.5 -17.20321 -17.20321 -17.20208 -17.47522 0.0000 0.0000 -0.0148 ******* 2710 0.00006 0.0 247.7 -17.20319 -17.20319 -17.20202 -17.47525 0.0000 0.0000 -0.0149 ******* 2711 0.00007 0.0 259.5 -17.20318 -17.20318 -17.20195 -17.47529 0.0000 0.0000 -0.0149 ******* 2712 0.00007 0.0 271.9 -17.20317 -17.20317 -17.20188 -17.47533 0.0000 0.0000 -0.0149 ******* 2713 0.00007 0.0 285.0 -17.20316 -17.20316 -17.20181 -17.47538 0.0000 0.0000 -0.0150 ******* 2714 0.00008 0.0 298.7 -17.20315 -17.20315 -17.20173 -17.47542 0.0000 0.0000 -0.0150 ******* 2715 0.00008 0.0 313.1 -17.20314 -17.20314 -17.20165 -17.47547 0.0000 0.0000 -0.0150 ******* 2716 0.00008 0.0 328.3 -17.20313 -17.20313 -17.20157 -17.47551 0.0000 0.0000 -0.0151 ******* 2717 0.00009 0.0 344.4 -17.20311 -17.20311 -17.20148 -17.47556 0.0000 0.0000 -0.0151 ******* 2718 0.00009 0.0 361.2 -17.20310 -17.20310 -17.20138 -17.47562 0.0000 0.0000 -0.0151 ******* 2719 0.00010 0.0 378.9 -17.20308 -17.20308 -17.20128 -17.47567 0.0000 0.0000 -0.0151 ******* 2720 0.00010 0.0 397.6 -17.20306 -17.20306 -17.20118 -17.47573 0.0000 0.0000 -0.0152 ******* 2721 0.00011 0.0 417.2 -17.20305 -17.20305 -17.20107 -17.47579 0.0000 0.0000 -0.0152 ******* 2722 0.00011 0.0 437.8 -17.20303 -17.20303 -17.20095 -17.47586 0.0000 0.0000 -0.0152 ******* 2723 0.00012 0.0 459.6 -17.20301 -17.20301 -17.20083 -17.47592 0.0000 0.0000 -0.0152 ******* 2724 0.00012 0.0 482.4 -17.20299 -17.20299 -17.20070 -17.47599 0.0000 0.0000 -0.0153 ******* 2725 0.00013 0.0 506.5 -17.20297 -17.20297 -17.20056 -17.47607 0.0000 0.0000 -0.0153 ******* 2726 0.00013 0.0 531.8 -17.20295 -17.20295 -17.20042 -17.47614 0.0000 0.0000 -0.0153 ******* 2727 0.00014 0.0 558.4 -17.20292 -17.20292 -17.20027 -17.47622 0.0000 0.0000 -0.0153 ******* 2728 0.00015 0.0 586.4 -17.20290 -17.20290 -17.20011 -17.47631 0.0000 0.0000 -0.0153 ******* 2729 0.00016 0.0 615.8 -17.20287 -17.20287 -17.19994 -17.47640 0.0000 0.0000 -0.0153 ******* * Physical Quantities at step: 2730 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20284 Hartree a.u. kinetic energy = 7.84838 Hartree a.u. electrostatic energy = -22.94772 Hartree a.u. esr = 0.12231 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41685 Hartree a.u. n-l pseudopotential energy = 4.51574 Hartree a.u. exchange-correlation energy = -4.20239 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.47 -12.30 -8.55 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.105767E+01 0.330257E+00 0.126150E+01 H 0.337093E+00 -0.130959E+01 -0.107875E+01 O -0.395435E+00 -0.414804E+00 0.375557E+00 ATOMIC_VELOCITIES H -0.141774E-03 0.104056E-02 -0.586707E-03 H -0.211610E-04 -0.119354E-02 0.684387E-03 O 0.102647E-04 0.963775E-05 -0.615374E-05 Forces acting on atoms (au): H 0.192869E-02 -0.145092E-01 0.631437E-02 H 0.112726E-02 0.165666E-01 -0.743561E-02 O -0.695478E-03 -0.116783E-02 0.249456E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 323.04 0.9457 2 0.72 0.0147 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2730 0.00016 0.0 646.8 -17.20284 -17.20284 -17.19977 -17.47649 0.0000 0.0000 -0.0153 ******* writing restart file: .//cp_91.save restart file written in 0.774 sec. 2731 0.00017 0.0 679.4 -17.20281 -17.20281 -17.19959 -17.47659 0.0000 0.0000 -0.0153 ******* 2732 0.00018 0.0 713.6 -17.20278 -17.20278 -17.19939 -17.47669 0.0000 0.0000 -0.0154 ******* 2733 0.00019 0.0 749.5 -17.20275 -17.20275 -17.19919 -17.47680 0.0000 0.0000 -0.0154 ******* 2734 0.00020 0.0 787.3 -17.20271 -17.20271 -17.19897 -17.47691 0.0000 0.0000 -0.0154 ******* 2735 0.00021 0.0 827.0 -17.20268 -17.20268 -17.19875 -17.47703 0.0000 0.0000 -0.0154 ******* 2736 0.00022 0.0 868.6 -17.20264 -17.20264 -17.19851 -17.47715 0.0000 0.0000 -0.0154 ******* 2737 0.00023 0.0 912.3 -17.20260 -17.20260 -17.19827 -17.47729 0.0000 0.0000 -0.0153 ******* 2738 0.00024 0.0 958.2 -17.20256 -17.20256 -17.19800 -17.47742 0.0000 0.0000 -0.0153 ******* 2739 0.00025 0.0 1006.2 -17.20251 -17.20251 -17.19773 -17.47757 0.0000 0.0000 -0.0153 ******* 2740 0.00026 0.0 1056.6 -17.20246 -17.20246 -17.19744 -17.47772 0.0000 0.0000 -0.0153 ******* 2741 0.00028 0.0 1109.4 -17.20241 -17.20241 -17.19714 -17.47788 0.0000 0.0000 -0.0153 ******* 2742 0.00029 0.0 1164.7 -17.20236 -17.20236 -17.19683 -17.47804 0.0000 0.0000 -0.0153 ******* 2743 0.00031 0.0 1222.5 -17.20230 -17.20230 -17.19650 -17.47822 0.0000 0.0000 -0.0153 ******* 2744 0.00032 0.0 1283.0 -17.20225 -17.20225 -17.19615 -17.47840 0.0000 0.0000 -0.0152 ******* 2745 0.00034 0.0 1346.2 -17.20218 -17.20218 -17.19579 -17.47859 0.0000 0.0000 -0.0152 ******* 2746 0.00035 0.0 1412.1 -17.20212 -17.20212 -17.19541 -17.47879 0.0000 0.0000 -0.0152 ******* 2747 0.00037 0.0 1481.0 -17.20205 -17.20205 -17.19502 -17.47901 0.0000 0.0000 -0.0151 ******* 2748 0.00039 0.0 1552.7 -17.20198 -17.20198 -17.19461 -17.47923 0.0000 0.0000 -0.0151 ******* 2749 0.00041 0.0 1627.4 -17.20191 -17.20191 -17.19418 -17.47946 0.0000 0.0000 -0.0150 ******* 2750 0.00043 0.0 1705.1 -17.20183 -17.20183 -17.19373 -17.47971 0.0000 0.0000 -0.0150 ******* 2751 0.00045 0.0 1785.9 -17.20175 -17.20175 -17.19326 -17.47997 0.0000 0.0000 -0.0149 ******* 2752 0.00047 0.0 1869.8 -17.20166 -17.20166 -17.19278 -17.48024 0.0000 0.0000 -0.0149 ******* 2753 0.00050 0.0 1956.7 -17.20157 -17.20157 -17.19228 -17.48052 0.0000 0.0000 -0.0148 ******* 2754 0.00052 0.0 2046.7 -17.20148 -17.20148 -17.19176 -17.48082 0.0000 0.0000 -0.0147 ******* 2755 0.00054 0.0 2139.8 -17.20138 -17.20138 -17.19122 -17.48113 0.0000 0.0000 -0.0146 ******* 2756 0.00057 0.0 2235.8 -17.20128 -17.20128 -17.19066 -17.48145 0.0000 0.0000 -0.0146 ******* 2757 0.00060 0.0 2334.8 -17.20117 -17.20117 -17.19008 -17.48180 0.0000 0.0000 -0.0145 ******* 2758 0.00063 0.0 2436.7 -17.20106 -17.20106 -17.18949 -17.48215 0.0000 0.0000 -0.0144 ******* 2759 0.00066 0.0 2541.3 -17.20095 -17.20095 -17.18887 -17.48253 0.0000 0.0000 -0.0143 ******* * Physical Quantities at step: 2760 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20083 Hartree a.u. kinetic energy = 7.84317 Hartree a.u. electrostatic energy = -22.95073 Hartree a.u. esr = 0.11983 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40809 Hartree a.u. n-l pseudopotential energy = 4.51537 Hartree a.u. exchange-correlation energy = -4.20056 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.40 -12.31 -8.47 -6.49 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.103787E+01 0.463777E+00 0.117868E+01 H 0.336322E+00 -0.146318E+01 -0.981406E+00 O -0.394139E+00 -0.413540E+00 0.374642E+00 ATOMIC_VELOCITIES H -0.328829E-03 0.199133E-02 -0.134268E-02 H 0.481819E-05 -0.229294E-02 0.159487E-02 O 0.204122E-04 0.190012E-04 -0.158880E-04 Forces acting on atoms (au): H 0.301485E-02 -0.299529E-01 0.142141E-01 H 0.675406E-03 0.346608E-01 -0.160780E-01 O 0.268879E-02 -0.359579E-02 -0.839537E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1322.69 1.0219 2 3.16 0.0148 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2760 0.00069 0.0 2648.5 -17.20083 -17.20083 -17.18825 -17.48292 0.0000 0.0000 -0.0142 ******* writing restart file: .//cp_91.save restart file written in 0.813 sec. 2761 0.00072 0.0 2758.2 -17.20070 -17.20070 -17.18760 -17.48333 0.0000 0.0000 -0.0141 ******* 2762 0.00075 0.0 2870.1 -17.20057 -17.20057 -17.18694 -17.48376 0.0000 0.0000 -0.0139 ******* 2763 0.00078 0.0 2984.1 -17.20044 -17.20044 -17.18627 -17.48421 0.0000 0.0000 -0.0138 ******* 2764 0.00082 0.0 3099.8 -17.20030 -17.20030 -17.18558 -17.48468 0.0000 0.0000 -0.0137 ******* 2765 0.00085 0.0 3216.9 -17.20016 -17.20016 -17.18488 -17.48517 0.0000 0.0000 -0.0135 ******* 2766 0.00089 0.0 3335.2 -17.20001 -17.20001 -17.18417 -17.48568 0.0000 0.0000 -0.0134 ******* 2767 0.00093 0.0 3454.3 -17.19986 -17.19986 -17.18345 -17.48621 0.0000 0.0000 -0.0132 ******* 2768 0.00097 0.0 3573.8 -17.19971 -17.19971 -17.18273 -17.48677 0.0000 0.0000 -0.0131 ******* 2769 0.00101 0.0 3693.2 -17.19955 -17.19955 -17.18201 -17.48735 0.0000 0.0000 -0.0129 ******* 2770 0.00105 0.0 3812.0 -17.19939 -17.19939 -17.18128 -17.48795 0.0000 0.0000 -0.0127 ******* 2771 0.00109 0.0 3929.8 -17.19922 -17.19922 -17.18055 -17.48858 0.0000 0.0000 -0.0125 ******* 2772 0.00113 0.0 4046.1 -17.19905 -17.19905 -17.17983 -17.48923 0.0000 0.0000 -0.0123 ******* 2773 0.00117 0.0 4160.2 -17.19888 -17.19888 -17.17912 -17.48991 0.0000 0.0000 -0.0121 ******* 2774 0.00121 0.0 4271.6 -17.19871 -17.19871 -17.17842 -17.49061 0.0000 0.0000 -0.0119 ******* 2775 0.00126 0.0 4379.7 -17.19853 -17.19853 -17.17773 -17.49133 0.0000 0.0000 -0.0117 ******* 2776 0.00130 0.0 4484.0 -17.19835 -17.19835 -17.17705 -17.49208 0.0000 0.0000 -0.0115 ******* 2777 0.00134 0.0 4583.6 -17.19817 -17.19817 -17.17640 -17.49286 0.0000 0.0000 -0.0113 ******* 2778 0.00138 0.0 4678.2 -17.19800 -17.19800 -17.17577 -17.49367 0.0000 0.0000 -0.0111 ******* 2779 0.00143 0.0 4767.0 -17.19782 -17.19782 -17.17517 -17.49450 0.0000 0.0000 -0.0108 ******* 2780 0.00147 0.0 4849.5 -17.19764 -17.19764 -17.17461 -17.49535 0.0000 0.0000 -0.0106 ******* 2781 0.00151 0.0 4925.1 -17.19746 -17.19746 -17.17407 -17.49623 0.0000 0.0000 -0.0103 ******* 2782 0.00155 0.0 4993.3 -17.19729 -17.19729 -17.17357 -17.49714 0.0000 0.0000 -0.0101 ******* 2783 0.00159 0.0 5053.5 -17.19712 -17.19712 -17.17312 -17.49807 0.0000 0.0000 -0.0098 ******* 2784 0.00163 0.0 5105.3 -17.19695 -17.19695 -17.17271 -17.49902 0.0000 0.0000 -0.0096 ******* 2785 0.00167 0.0 5148.3 -17.19679 -17.19679 -17.17234 -17.50000 0.0000 0.0000 -0.0093 ******* 2786 0.00170 0.0 5182.2 -17.19664 -17.19664 -17.17202 -17.50100 0.0000 0.0000 -0.0091 ******* 2787 0.00173 0.0 5206.5 -17.19649 -17.19649 -17.17175 -17.50202 0.0000 0.0000 -0.0088 ******* 2788 0.00177 0.0 5221.3 -17.19634 -17.19634 -17.17154 -17.50306 0.0000 0.0000 -0.0085 ******* 2789 0.00180 0.0 5226.2 -17.19621 -17.19621 -17.17138 -17.50412 0.0000 0.0000 -0.0083 ******* * Physical Quantities at step: 2790 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19608 Hartree a.u. kinetic energy = 7.82575 Hartree a.u. electrostatic energy = -22.95587 Hartree a.u. esr = 0.11292 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.38434 Hartree a.u. n-l pseudopotential energy = 4.51256 Hartree a.u. exchange-correlation energy = -4.19417 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.23 -12.33 -8.28 -6.42 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.992839E+00 0.676844E+00 0.101364E+01 H 0.336589E+00 -0.170767E+01 -0.780434E+00 O -0.391319E+00 -0.411560E+00 0.372379E+00 ATOMIC_VELOCITIES H -0.675814E-03 0.245823E-02 -0.221896E-02 H -0.142306E-04 -0.280034E-02 0.277011E-02 O 0.434718E-04 0.215525E-04 -0.347217E-04 Forces acting on atoms (au): H 0.466030E-02 -0.481484E-01 0.248279E-01 H -0.322504E-03 0.563146E-01 -0.282702E-01 O 0.804854E-02 -0.827723E-02 -0.192123E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2605.15 1.2824 2 10.93 0.0150 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2790 0.00182 0.0 5221.2 -17.19608 -17.19608 -17.17128 -17.50520 0.0000 0.0000 -0.0080 ******* writing restart file: .//cp_91.save restart file written in 0.780 sec. 2791 0.00185 0.0 5206.4 -17.19596 -17.19596 -17.17123 -17.50630 0.0000 0.0000 -0.0077 ******* 2792 0.00187 0.0 5181.7 -17.19584 -17.19584 -17.17123 -17.50740 0.0000 0.0000 -0.0075 ******* 2793 0.00189 0.0 5147.5 -17.19574 -17.19574 -17.17129 -17.50853 0.0000 0.0000 -0.0072 ******* 2794 0.00190 0.0 5103.8 -17.19565 -17.19565 -17.17141 -17.50966 0.0000 0.0000 -0.0069 ******* 2795 0.00192 0.0 5051.0 -17.19557 -17.19557 -17.17158 -17.51080 0.0000 0.0000 -0.0067 ******* 2796 0.00193 0.0 4989.6 -17.19550 -17.19550 -17.17180 -17.51195 0.0000 0.0000 -0.0064 ******* 2797 0.00193 0.0 4919.8 -17.19544 -17.19544 -17.17207 -17.51311 0.0000 0.0000 -0.0062 ******* 2798 0.00194 0.0 4842.2 -17.19539 -17.19539 -17.17239 -17.51427 0.0000 0.0000 -0.0059 ******* 2799 0.00194 0.0 4757.3 -17.19536 -17.19536 -17.17276 -17.51544 0.0000 0.0000 -0.0057 ******* 2800 0.00193 0.0 4665.8 -17.19533 -17.19533 -17.17317 -17.51660 0.0000 0.0000 -0.0055 ******* 2801 0.00193 0.0 4568.1 -17.19532 -17.19532 -17.17362 -17.51776 0.0000 0.0000 -0.0052 ******* 2802 0.00192 0.0 4465.0 -17.19532 -17.19532 -17.17411 -17.51892 0.0000 0.0000 -0.0050 ******* 2803 0.00191 0.0 4357.0 -17.19533 -17.19533 -17.17463 -17.52007 0.0000 0.0000 -0.0048 ******* 2804 0.00189 0.0 4244.8 -17.19535 -17.19535 -17.17518 -17.52122 0.0000 0.0000 -0.0046 ******* 2805 0.00187 0.0 4129.1 -17.19538 -17.19538 -17.17577 -17.52235 0.0000 0.0000 -0.0044 ******* 2806 0.00185 0.0 4010.4 -17.19542 -17.19542 -17.17637 -17.52348 0.0000 0.0000 -0.0042 ******* 2807 0.00183 0.0 3889.5 -17.19547 -17.19547 -17.17700 -17.52459 0.0000 0.0000 -0.0040 ******* 2808 0.00180 0.0 3767.0 -17.19553 -17.19553 -17.17764 -17.52569 0.0000 0.0000 -0.0038 ******* 2809 0.00177 0.0 3643.3 -17.19560 -17.19560 -17.17830 -17.52677 0.0000 0.0000 -0.0036 ******* 2810 0.00174 0.0 3519.1 -17.19568 -17.19568 -17.17897 -17.52783 0.0000 0.0000 -0.0035 ******* 2811 0.00171 0.0 3394.9 -17.19577 -17.19577 -17.17965 -17.52888 0.0000 0.0000 -0.0033 ******* 2812 0.00167 0.0 3271.1 -17.19587 -17.19587 -17.18033 -17.52990 0.0000 0.0000 -0.0032 ******* 2813 0.00164 0.0 3148.3 -17.19597 -17.19597 -17.18101 -17.53091 0.0000 0.0000 -0.0030 ******* 2814 0.00160 0.0 3026.7 -17.19608 -17.19608 -17.18170 -17.53189 0.0000 0.0000 -0.0029 ******* 2815 0.00156 0.0 2906.9 -17.19619 -17.19619 -17.18238 -17.53285 0.0000 0.0000 -0.0028 ******* 2816 0.00152 0.0 2789.0 -17.19631 -17.19631 -17.18306 -17.53379 0.0000 0.0000 -0.0026 ******* 2817 0.00148 0.0 2673.5 -17.19643 -17.19643 -17.18373 -17.53470 0.0000 0.0000 -0.0025 ******* 2818 0.00144 0.0 2560.5 -17.19656 -17.19656 -17.18440 -17.53559 0.0000 0.0000 -0.0024 ******* 2819 0.00140 0.0 2450.2 -17.19669 -17.19669 -17.18505 -17.53645 0.0000 0.0000 -0.0023 ******* * Physical Quantities at step: 2820 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19682 Hartree a.u. kinetic energy = 7.81425 Hartree a.u. electrostatic energy = -22.95134 Hartree a.u. esr = 0.11337 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.38378 Hartree a.u. n-l pseudopotential energy = 4.51471 Hartree a.u. exchange-correlation energy = -4.19067 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.28 -12.55 -8.21 -6.48 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.927751E+00 0.843086E+00 0.821510E+00 H 0.334171E+00 -0.189361E+01 -0.534242E+00 O -0.387066E+00 -0.410319E+00 0.368972E+00 ATOMIC_VELOCITIES H -0.657202E-03 0.107277E-02 -0.183851E-02 H -0.215137E-05 -0.115642E-02 0.240114E-02 O 0.415384E-04 0.526964E-05 -0.354450E-04 Forces acting on atoms (au): H 0.992038E-02 -0.359767E-01 0.248793E-01 H 0.312469E-02 0.411852E-01 -0.322702E-01 O -0.140105E-01 -0.263489E-02 0.599943E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1166.81 1.6660 2 9.24 0.0151 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2820 0.00136 0.0 2342.9 -17.19682 -17.19682 -17.18569 -17.53729 0.0000 0.0000 -0.0022 ******* writing restart file: .//cp_91.save restart file written in 0.856 sec. 2821 0.00131 0.0 2238.6 -17.19695 -17.19695 -17.18632 -17.53811 0.0000 0.0000 -0.0021 ******* 2822 0.00127 0.0 2137.5 -17.19709 -17.19709 -17.18694 -17.53889 0.0000 0.0000 -0.0020 ******* 2823 0.00123 0.0 2039.7 -17.19723 -17.19723 -17.18754 -17.53966 0.0000 0.0000 -0.0020 ******* 2824 0.00119 0.0 1945.1 -17.19736 -17.19736 -17.18812 -17.54039 0.0000 0.0000 -0.0019 ******* 2825 0.00115 0.0 1854.0 -17.19750 -17.19750 -17.18869 -17.54110 0.0000 0.0000 -0.0018 ******* 2826 0.00110 0.0 1766.2 -17.19764 -17.19764 -17.18925 -17.54179 0.0000 0.0000 -0.0018 ******* 2827 0.00106 0.0 1681.8 -17.19777 -17.19777 -17.18979 -17.54245 0.0000 0.0000 -0.0017 ******* 2828 0.00102 0.0 1600.7 -17.19791 -17.19791 -17.19031 -17.54309 0.0000 0.0000 -0.0017 ******* 2829 0.00099 0.0 1522.9 -17.19804 -17.19804 -17.19081 -17.54371 0.0000 0.0000 -0.0016 ******* 2830 0.00095 0.0 1448.3 -17.19817 -17.19817 -17.19129 -17.54430 0.0000 0.0000 -0.0016 ******* 2831 0.00091 0.0 1376.9 -17.19830 -17.19830 -17.19176 -17.54487 0.0000 0.0000 -0.0015 ******* 2832 0.00087 0.0 1308.7 -17.19843 -17.19843 -17.19221 -17.54541 0.0000 0.0000 -0.0015 ******* 2833 0.00084 0.0 1243.5 -17.19856 -17.19856 -17.19265 -17.54594 0.0000 0.0000 -0.0015 ******* 2834 0.00080 0.0 1181.3 -17.19868 -17.19868 -17.19307 -17.54644 0.0000 0.0000 -0.0015 ******* 2835 0.00077 0.0 1121.9 -17.19880 -17.19880 -17.19347 -17.54692 0.0000 0.0000 -0.0014 ******* 2836 0.00074 0.0 1065.4 -17.19891 -17.19891 -17.19385 -17.54738 0.0000 0.0000 -0.0014 ******* 2837 0.00071 0.0 1011.6 -17.19903 -17.19903 -17.19422 -17.54783 0.0000 0.0000 -0.0014 ******* 2838 0.00068 0.0 960.4 -17.19914 -17.19914 -17.19458 -17.54825 0.0000 0.0000 -0.0014 ******* 2839 0.00065 0.0 911.7 -17.19925 -17.19925 -17.19492 -17.54866 0.0000 0.0000 -0.0014 ******* 2840 0.00062 0.0 865.5 -17.19935 -17.19935 -17.19524 -17.54904 0.0000 0.0000 -0.0014 ******* 2841 0.00059 0.0 821.6 -17.19946 -17.19946 -17.19555 -17.54942 0.0000 0.0000 -0.0014 ******* 2842 0.00057 0.0 780.0 -17.19956 -17.19956 -17.19585 -17.54977 0.0000 0.0000 -0.0014 ******* 2843 0.00054 0.0 740.6 -17.19965 -17.19965 -17.19613 -17.55011 0.0000 0.0000 -0.0014 ******* 2844 0.00052 0.0 703.3 -17.19975 -17.19975 -17.19641 -17.55043 0.0000 0.0000 -0.0014 ******* 2845 0.00049 0.0 668.0 -17.19984 -17.19984 -17.19666 -17.55074 0.0000 0.0000 -0.0014 ******* 2846 0.00047 0.0 634.7 -17.19993 -17.19993 -17.19691 -17.55104 0.0000 0.0000 -0.0014 ******* 2847 0.00045 0.0 603.2 -17.20001 -17.20001 -17.19715 -17.55132 0.0000 0.0000 -0.0014 ******* 2848 0.00043 0.0 573.6 -17.20010 -17.20010 -17.19737 -17.55159 0.0000 0.0000 -0.0014 ******* 2849 0.00041 0.0 545.6 -17.20018 -17.20018 -17.19759 -17.55184 0.0000 0.0000 -0.0014 ******* * Physical Quantities at step: 2850 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20026 Hartree a.u. kinetic energy = 7.84327 Hartree a.u. electrostatic energy = -22.94711 Hartree a.u. esr = 0.12647 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42108 Hartree a.u. n-l pseudopotential energy = 4.52696 Hartree a.u. exchange-correlation energy = -4.20229 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.73 -8.28 -6.57 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.891343E+00 0.885645E+00 0.694255E+00 H 0.345878E+00 -0.193908E+01 -0.371533E+00 O -0.385510E+00 -0.410136E+00 0.366739E+00 ATOMIC_VELOCITIES H -0.107523E-03 0.616954E-04 -0.102773E-02 H 0.303303E-03 -0.101533E-03 0.122734E-02 O -0.123339E-04 0.250973E-05 -0.125753E-04 Forces acting on atoms (au): H 0.123294E-01 -0.972492E-02 0.161719E-01 H 0.654262E-02 0.804419E-02 -0.247219E-01 O -0.299717E-01 0.595893E-02 0.940520E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 259.20 1.9016 2 0.97 0.0151 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2850 0.00039 0.0 519.4 -17.20026 -17.20026 -17.19779 -17.55209 0.0000 0.0000 -0.0014 ******* writing restart file: .//cp_91.save restart file written in 0.803 sec. 2851 0.00037 0.0 494.7 -17.20033 -17.20033 -17.19798 -17.55232 0.0000 0.0000 -0.0015 ******* 2852 0.00035 0.0 471.5 -17.20041 -17.20041 -17.19817 -17.55254 0.0000 0.0000 -0.0015 ******* 2853 0.00034 0.0 449.8 -17.20048 -17.20048 -17.19834 -17.55276 0.0000 0.0000 -0.0015 ******* 2854 0.00032 0.0 429.5 -17.20055 -17.20055 -17.19851 -17.55296 0.0000 0.0000 -0.0015 ******* 2855 0.00031 0.0 410.6 -17.20062 -17.20062 -17.19867 -17.55315 0.0000 0.0000 -0.0015 ******* 2856 0.00029 0.0 392.9 -17.20069 -17.20069 -17.19882 -17.55333 0.0000 0.0000 -0.0016 ******* 2857 0.00028 0.0 376.4 -17.20075 -17.20075 -17.19896 -17.55351 0.0000 0.0000 -0.0016 ******* 2858 0.00027 0.0 361.1 -17.20082 -17.20082 -17.19910 -17.55368 0.0000 0.0000 -0.0016 ******* 2859 0.00025 0.0 347.0 -17.20088 -17.20088 -17.19923 -17.55383 0.0000 0.0000 -0.0016 ******* 2860 0.00024 0.0 333.8 -17.20094 -17.20094 -17.19935 -17.55399 0.0000 0.0000 -0.0017 ******* 2861 0.00023 0.0 321.7 -17.20100 -17.20100 -17.19947 -17.55413 0.0000 0.0000 -0.0017 ******* 2862 0.00022 0.0 310.5 -17.20106 -17.20106 -17.19958 -17.55427 0.0000 0.0000 -0.0017 ******* 2863 0.00021 0.0 300.2 -17.20111 -17.20111 -17.19969 -17.55440 0.0000 0.0000 -0.0018 ******* 2864 0.00020 0.0 290.7 -17.20117 -17.20117 -17.19979 -17.55452 0.0000 0.0000 -0.0018 ******* 2865 0.00019 0.0 282.0 -17.20123 -17.20123 -17.19989 -17.55464 0.0000 0.0000 -0.0018 ******* 2866 0.00018 0.0 274.1 -17.20128 -17.20128 -17.19998 -17.55476 0.0000 0.0000 -0.0019 ******* 2867 0.00017 0.0 266.8 -17.20133 -17.20133 -17.20006 -17.55487 0.0000 0.0000 -0.0019 ******* 2868 0.00017 0.0 260.2 -17.20138 -17.20138 -17.20015 -17.55497 0.0000 0.0000 -0.0019 ******* 2869 0.00016 0.0 254.2 -17.20143 -17.20143 -17.20023 -17.55507 0.0000 0.0000 -0.0020 ******* 2870 0.00015 0.0 248.7 -17.20148 -17.20148 -17.20030 -17.55517 0.0000 0.0000 -0.0020 ******* 2871 0.00015 0.0 243.8 -17.20153 -17.20153 -17.20037 -17.55526 0.0000 0.0000 -0.0020 ******* 2872 0.00014 0.0 239.3 -17.20158 -17.20158 -17.20044 -17.55535 0.0000 0.0000 -0.0021 ******* 2873 0.00014 0.0 235.2 -17.20163 -17.20163 -17.20051 -17.55544 0.0000 0.0000 -0.0021 ******* 2874 0.00013 0.0 231.5 -17.20167 -17.20167 -17.20057 -17.55552 0.0000 0.0000 -0.0021 ******* 2875 0.00013 0.0 228.2 -17.20172 -17.20172 -17.20063 -17.55560 0.0000 0.0000 -0.0022 ******* 2876 0.00012 0.0 225.2 -17.20176 -17.20176 -17.20069 -17.55567 0.0000 0.0000 -0.0022 ******* 2877 0.00012 0.0 222.5 -17.20181 -17.20181 -17.20075 -17.55575 0.0000 0.0000 -0.0022 ******* 2878 0.00012 0.0 220.0 -17.20185 -17.20185 -17.20080 -17.55582 0.0000 0.0000 -0.0023 ******* 2879 0.00011 0.0 217.7 -17.20189 -17.20189 -17.20085 -17.55589 0.0000 0.0000 -0.0023 ******* * Physical Quantities at step: 2880 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20193 Hartree a.u. kinetic energy = 7.86204 Hartree a.u. electrostatic energy = -22.95040 Hartree a.u. esr = 0.12925 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.43219 Hartree a.u. n-l pseudopotential energy = 4.52730 Hartree a.u. exchange-correlation energy = -4.20868 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.58 -8.36 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.905709E+00 0.877975E+00 0.625508E+00 H 0.388683E+00 -0.194083E+01 -0.300102E+00 O -0.389111E+00 -0.409543E+00 0.366570E+00 ATOMIC_VELOCITIES H 0.364230E-03 -0.176240E-03 -0.558830E-03 H 0.606107E-03 0.158894E-04 0.457894E-03 O -0.611299E-04 0.101019E-04 0.635885E-05 Forces acting on atoms (au): H 0.336083E-02 -0.184248E-02 0.865442E-02 H 0.956911E-04 0.130397E-02 -0.117563E-01 O -0.101272E-01 0.147473E-02 0.290897E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 101.86 2.0310 2 11.91 0.0157 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2880 0.00011 0.0 215.6 -17.20193 -17.20193 -17.20091 -17.55596 0.0000 0.0000 -0.0023 ******* writing restart file: .//cp_91.save restart file written in 0.809 sec. 2881 0.00011 0.0 213.7 -17.20197 -17.20197 -17.20095 -17.55602 0.0000 0.0000 -0.0024 ******* 2882 0.00010 0.0 211.9 -17.20201 -17.20201 -17.20100 -17.55609 0.0000 0.0000 -0.0024 ******* 2883 0.00010 0.0 210.2 -17.20205 -17.20205 -17.20105 -17.55615 0.0000 0.0000 -0.0024 ******* 2884 0.00010 0.0 208.6 -17.20208 -17.20208 -17.20109 -17.55621 0.0000 0.0000 -0.0025 ******* 2885 0.00010 0.0 207.1 -17.20212 -17.20212 -17.20113 -17.55627 0.0000 0.0000 -0.0025 ******* 2886 0.00010 0.0 205.6 -17.20215 -17.20215 -17.20118 -17.55633 0.0000 0.0000 -0.0025 ******* 2887 0.00009 0.0 204.2 -17.20219 -17.20219 -17.20122 -17.55639 0.0000 0.0000 -0.0026 ******* 2888 0.00009 0.0 202.8 -17.20222 -17.20222 -17.20126 -17.55644 0.0000 0.0000 -0.0026 ******* 2889 0.00009 0.0 201.4 -17.20225 -17.20225 -17.20130 -17.55650 0.0000 0.0000 -0.0026 ******* 2890 0.00009 0.0 200.0 -17.20228 -17.20228 -17.20133 -17.55655 0.0000 0.0000 -0.0027 ******* 2891 0.00009 0.0 198.5 -17.20231 -17.20231 -17.20137 -17.55661 0.0000 0.0000 -0.0027 ******* 2892 0.00009 0.0 197.1 -17.20234 -17.20234 -17.20141 -17.55666 0.0000 0.0000 -0.0028 ******* 2893 0.00009 0.0 195.6 -17.20237 -17.20237 -17.20144 -17.55671 0.0000 0.0000 -0.0028 ******* 2894 0.00008 0.0 194.1 -17.20240 -17.20240 -17.20148 -17.55676 0.0000 0.0000 -0.0028 ******* 2895 0.00008 0.0 192.5 -17.20243 -17.20243 -17.20151 -17.55681 0.0000 0.0000 -0.0029 ******* 2896 0.00008 0.0 191.0 -17.20245 -17.20245 -17.20154 -17.55686 0.0000 0.0000 -0.0029 ******* 2897 0.00008 0.0 189.3 -17.20248 -17.20248 -17.20158 -17.55691 0.0000 0.0000 -0.0029 ******* 2898 0.00008 0.0 187.6 -17.20250 -17.20250 -17.20161 -17.55696 0.0000 0.0000 -0.0030 ******* 2899 0.00008 0.0 185.9 -17.20252 -17.20252 -17.20164 -17.55701 0.0000 0.0000 -0.0030 ******* 2900 0.00008 0.0 184.1 -17.20255 -17.20255 -17.20167 -17.55706 0.0000 0.0000 -0.0030 ******* 2901 0.00008 0.0 182.3 -17.20257 -17.20257 -17.20170 -17.55711 0.0000 0.0000 -0.0031 ******* 2902 0.00008 0.0 180.4 -17.20259 -17.20259 -17.20173 -17.55715 0.0000 0.0000 -0.0031 ******* 2903 0.00008 0.0 178.4 -17.20261 -17.20261 -17.20176 -17.55720 0.0000 0.0000 -0.0032 ******* 2904 0.00008 0.0 176.4 -17.20263 -17.20263 -17.20179 -17.55725 0.0000 0.0000 -0.0032 ******* 2905 0.00007 0.0 174.4 -17.20265 -17.20265 -17.20182 -17.55729 0.0000 0.0000 -0.0032 ******* 2906 0.00007 0.0 172.3 -17.20267 -17.20267 -17.20185 -17.55734 0.0000 0.0000 -0.0033 ******* 2907 0.00007 0.0 170.2 -17.20268 -17.20268 -17.20187 -17.55738 0.0000 0.0000 -0.0033 ******* 2908 0.00007 0.0 168.1 -17.20270 -17.20270 -17.20190 -17.55742 0.0000 0.0000 -0.0033 ******* 2909 0.00007 0.0 165.9 -17.20272 -17.20272 -17.20193 -17.55747 0.0000 0.0000 -0.0034 ******* * Physical Quantities at step: 2910 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20273 Hartree a.u. kinetic energy = 7.85300 Hartree a.u. electrostatic energy = -22.94868 Hartree a.u. esr = 0.12360 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42052 Hartree a.u. n-l pseudopotential energy = 4.51764 Hartree a.u. exchange-correlation energy = -4.20416 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.47 -12.35 -8.51 -6.52 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.943570E+00 0.856489E+00 0.585973E+00 H 0.444589E+00 -0.193403E+01 -0.273698E+00 O -0.395019E+00 -0.408617E+00 0.367397E+00 ATOMIC_VELOCITIES H 0.415263E-03 -0.296511E-03 -0.345622E-03 H 0.583950E-03 0.154733E-03 0.188657E-03 O -0.629491E-04 0.893183E-05 0.988857E-05 Forces acting on atoms (au): H -0.515998E-02 -0.104625E-04 0.528489E-02 H -0.727965E-02 0.252959E-02 -0.365228E-02 O 0.543265E-02 -0.183614E-02 -0.109114E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 75.46 2.1158 2 12.71 0.0165 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2910 0.00007 0.0 163.6 -17.20273 -17.20273 -17.20195 -17.55751 0.0000 0.0000 -0.0034 ******* writing restart file: .//cp_91.save restart file written in 0.817 sec. 2911 0.00007 0.0 161.4 -17.20275 -17.20275 -17.20198 -17.55755 0.0000 0.0000 -0.0035 ******* 2912 0.00007 0.0 159.1 -17.20276 -17.20276 -17.20200 -17.55759 0.0000 0.0000 -0.0035 ******* 2913 0.00007 0.0 156.7 -17.20277 -17.20277 -17.20203 -17.55763 0.0000 0.0000 -0.0035 ******* 2914 0.00007 0.0 154.4 -17.20278 -17.20278 -17.20205 -17.55767 0.0000 0.0000 -0.0036 ******* 2915 0.00007 0.0 152.0 -17.20280 -17.20280 -17.20207 -17.55771 0.0000 0.0000 -0.0036 ******* 2916 0.00006 0.0 149.6 -17.20281 -17.20281 -17.20210 -17.55775 0.0000 0.0000 -0.0037 ******* 2917 0.00006 0.0 147.2 -17.20282 -17.20282 -17.20212 -17.55779 0.0000 0.0000 -0.0037 ******* 2918 0.00006 0.0 144.7 -17.20283 -17.20283 -17.20214 -17.55783 0.0000 0.0000 -0.0037 ******* 2919 0.00006 0.0 142.2 -17.20284 -17.20284 -17.20216 -17.55787 0.0000 0.0000 -0.0038 ******* 2920 0.00006 0.0 139.7 -17.20285 -17.20285 -17.20218 -17.55790 0.0000 0.0000 -0.0038 ******* 2921 0.00006 0.0 137.2 -17.20285 -17.20285 -17.20220 -17.55794 0.0000 0.0000 -0.0039 ******* 2922 0.00006 0.0 134.7 -17.20286 -17.20286 -17.20222 -17.55798 0.0000 0.0000 -0.0039 ******* 2923 0.00006 0.0 132.1 -17.20287 -17.20287 -17.20224 -17.55801 0.0000 0.0000 -0.0039 ******* 2924 0.00006 0.0 129.5 -17.20287 -17.20287 -17.20226 -17.55804 0.0000 0.0000 -0.0040 ******* 2925 0.00006 0.0 127.0 -17.20288 -17.20288 -17.20228 -17.55808 0.0000 0.0000 -0.0040 ******* 2926 0.00005 0.0 124.4 -17.20288 -17.20288 -17.20229 -17.55811 0.0000 0.0000 -0.0041 ******* 2927 0.00005 0.0 121.7 -17.20289 -17.20289 -17.20231 -17.55814 0.0000 0.0000 -0.0041 ******* 2928 0.00005 0.0 119.1 -17.20289 -17.20289 -17.20233 -17.55818 0.0000 0.0000 -0.0041 ******* 2929 0.00005 0.0 116.5 -17.20290 -17.20290 -17.20234 -17.55821 0.0000 0.0000 -0.0042 ******* 2930 0.00005 0.0 113.8 -17.20290 -17.20290 -17.20236 -17.55824 0.0000 0.0000 -0.0042 ******* 2931 0.00005 0.0 111.1 -17.20290 -17.20290 -17.20238 -17.55827 0.0000 0.0000 -0.0043 ******* 2932 0.00005 0.0 108.5 -17.20291 -17.20291 -17.20239 -17.55830 0.0000 0.0000 -0.0043 ******* 2933 0.00005 0.0 105.8 -17.20291 -17.20291 -17.20241 -17.55833 0.0000 0.0000 -0.0043 ******* 2934 0.00005 0.0 103.1 -17.20291 -17.20291 -17.20242 -17.55835 0.0000 0.0000 -0.0044 ******* 2935 0.00005 0.0 100.4 -17.20291 -17.20291 -17.20243 -17.55838 0.0000 0.0000 -0.0044 ******* 2936 0.00004 0.0 97.7 -17.20291 -17.20291 -17.20245 -17.55841 0.0000 0.0000 -0.0045 ******* 2937 0.00004 0.0 94.9 -17.20291 -17.20291 -17.20246 -17.55844 0.0000 0.0000 -0.0045 ******* 2938 0.00004 0.0 92.2 -17.20291 -17.20291 -17.20247 -17.55846 0.0000 0.0000 -0.0045 ******* 2939 0.00004 0.0 89.5 -17.20291 -17.20291 -17.20249 -17.55849 0.0000 0.0000 -0.0046 ******* * Physical Quantities at step: 2940 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20291 Hartree a.u. kinetic energy = 7.84855 Hartree a.u. electrostatic energy = -22.94382 Hartree a.u. esr = 0.12220 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41838 Hartree a.u. n-l pseudopotential energy = 4.51243 Hartree a.u. exchange-correlation energy = -4.20168 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.53 -12.20 -8.68 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.974535E+00 0.827975E+00 0.561040E+00 H 0.488429E+00 -0.191479E+01 -0.260744E+00 O -0.399731E+00 -0.408033E+00 0.368152E+00 ATOMIC_VELOCITIES H 0.265298E-03 -0.305498E-03 -0.211790E-03 H 0.381305E-03 0.236744E-03 0.106539E-03 O -0.407351E-04 0.433143E-05 0.663066E-05 Forces acting on atoms (au): H -0.595826E-02 0.453650E-02 0.451828E-02 H -0.815679E-02 -0.269518E-02 -0.231762E-02 O 0.511930E-02 -0.248384E-03 -0.692868E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 40.75 2.1573 2 5.29 0.0172 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2940 0.00004 0.0 86.8 -17.20291 -17.20291 -17.20250 -17.55851 0.0000 0.0000 -0.0046 ******* writing restart file: .//cp_91.save restart file written in 0.816 sec. 2941 0.00004 0.0 84.1 -17.20291 -17.20291 -17.20251 -17.55853 0.0000 0.0000 -0.0047 ******* 2942 0.00004 0.0 81.3 -17.20291 -17.20291 -17.20252 -17.55856 0.0000 0.0000 -0.0047 ******* 2943 0.00004 0.0 78.6 -17.20290 -17.20290 -17.20253 -17.55858 0.0000 0.0000 -0.0048 ******* 2944 0.00004 0.0 75.9 -17.20290 -17.20290 -17.20254 -17.55860 0.0000 0.0000 -0.0048 ******* 2945 0.00004 0.0 73.2 -17.20290 -17.20290 -17.20255 -17.55863 0.0000 0.0000 -0.0049 ******* 2946 0.00003 0.0 70.5 -17.20290 -17.20290 -17.20256 -17.55865 0.0000 0.0000 -0.0049 ******* 2947 0.00003 0.0 67.9 -17.20289 -17.20289 -17.20257 -17.55867 0.0000 0.0000 -0.0049 ******* 2948 0.00003 0.0 65.2 -17.20289 -17.20289 -17.20258 -17.55869 0.0000 0.0000 -0.0050 ******* 2949 0.00003 0.0 62.6 -17.20289 -17.20289 -17.20259 -17.55871 0.0000 0.0000 -0.0050 ******* 2950 0.00003 0.0 60.0 -17.20288 -17.20288 -17.20260 -17.55872 0.0000 0.0000 -0.0051 ******* 2951 0.00003 0.0 57.4 -17.20288 -17.20288 -17.20261 -17.55874 0.0000 0.0000 -0.0051 ******* 2952 0.00003 0.0 54.8 -17.20288 -17.20288 -17.20262 -17.55876 0.0000 0.0000 -0.0052 ******* 2953 0.00003 0.0 52.3 -17.20287 -17.20287 -17.20262 -17.55878 0.0000 0.0000 -0.0052 ******* 2954 0.00003 0.0 49.8 -17.20287 -17.20287 -17.20263 -17.55879 0.0000 0.0000 -0.0052 ******* 2955 0.00003 0.0 47.4 -17.20287 -17.20287 -17.20264 -17.55881 0.0000 0.0000 -0.0053 ******* 2956 0.00002 0.0 44.9 -17.20286 -17.20286 -17.20265 -17.55882 0.0000 0.0000 -0.0053 ******* 2957 0.00002 0.0 42.6 -17.20286 -17.20286 -17.20265 -17.55884 0.0000 0.0000 -0.0054 ******* 2958 0.00002 0.0 40.2 -17.20285 -17.20285 -17.20266 -17.55885 0.0000 0.0000 -0.0054 ******* 2959 0.00002 0.0 37.9 -17.20285 -17.20285 -17.20267 -17.55887 0.0000 0.0000 -0.0055 ******* 2960 0.00002 0.0 35.7 -17.20284 -17.20284 -17.20267 -17.55888 0.0000 0.0000 -0.0055 ******* 2961 0.00002 0.0 33.5 -17.20284 -17.20284 -17.20268 -17.55889 0.0000 0.0000 -0.0056 ******* 2962 0.00002 0.0 31.4 -17.20284 -17.20284 -17.20269 -17.55890 0.0000 0.0000 -0.0056 ******* 2963 0.00002 0.0 29.3 -17.20283 -17.20283 -17.20269 -17.55892 0.0000 0.0000 -0.0057 ******* 2964 0.00002 0.0 27.3 -17.20283 -17.20283 -17.20270 -17.55893 0.0000 0.0000 -0.0057 ******* 2965 0.00002 0.0 25.4 -17.20282 -17.20282 -17.20270 -17.55894 0.0000 0.0000 -0.0058 ******* 2966 0.00002 0.0 23.5 -17.20282 -17.20282 -17.20271 -17.55895 0.0000 0.0000 -0.0058 ******* 2967 0.00001 0.0 21.7 -17.20281 -17.20281 -17.20271 -17.55896 0.0000 0.0000 -0.0058 ******* 2968 0.00001 0.0 19.9 -17.20281 -17.20281 -17.20272 -17.55896 0.0000 0.0000 -0.0059 ******* 2969 0.00001 0.0 18.3 -17.20281 -17.20281 -17.20272 -17.55897 0.0000 0.0000 -0.0059 ******* * Physical Quantities at step: 2970 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20280 Hartree a.u. kinetic energy = 7.85178 Hartree a.u. electrostatic energy = -22.94221 Hartree a.u. esr = 0.12288 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42095 Hartree a.u. n-l pseudopotential energy = 4.51095 Hartree a.u. exchange-correlation energy = -4.20238 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.58 -12.11 -8.78 -6.56 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.991856E+00 0.807102E+00 0.547857E+00 H 0.513239E+00 -0.189839E+01 -0.254723E+00 O -0.402385E+00 -0.407751E+00 0.368603E+00 ATOMIC_VELOCITIES H 0.123311E-03 -0.136476E-03 -0.805921E-04 H 0.170924E-03 0.101024E-03 0.256122E-04 O -0.185364E-04 0.223344E-05 0.346366E-05 Forces acting on atoms (au): H -0.440778E-02 0.602091E-02 0.361514E-02 H -0.647546E-02 -0.502569E-02 -0.189938E-02 O 0.619862E-02 -0.299084E-03 -0.956193E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 7.78 2.1735 2 1.11 0.0176 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 2970 0.00001 0.0 16.7 -17.20280 -17.20280 -17.20272 -17.55898 0.0000 0.0000 -0.0060 ******* writing restart file: .//cp_91.save restart file written in 0.858 sec. 2971 0.00001 0.0 15.1 -17.20280 -17.20280 -17.20273 -17.55899 0.0000 0.0000 -0.0060 ******* 2972 0.00001 0.0 13.7 -17.20280 -17.20280 -17.20273 -17.55899 0.0000 0.0000 -0.0061 ******* 2973 0.00001 0.0 12.3 -17.20279 -17.20279 -17.20274 -17.55900 0.0000 0.0000 -0.0061 ******* 2974 0.00001 0.0 11.0 -17.20279 -17.20279 -17.20274 -17.55901 0.0000 0.0000 -0.0062 ******* 2975 0.00001 0.0 9.7 -17.20279 -17.20279 -17.20274 -17.55901 0.0000 0.0000 -0.0062 ******* 2976 0.00001 0.0 8.6 -17.20279 -17.20279 -17.20275 -17.55902 0.0000 0.0000 -0.0063 ******* 2977 0.00001 0.0 7.5 -17.20278 -17.20278 -17.20275 -17.55902 0.0000 0.0000 -0.0063 ******* 2978 0.00001 0.0 6.5 -17.20278 -17.20278 -17.20275 -17.55903 0.0000 0.0000 -0.0064 ******* 2979 0.00001 0.0 5.5 -17.20278 -17.20278 -17.20275 -17.55903 0.0000 0.0000 -0.0064 ******* 2980 0.00001 0.0 4.7 -17.20278 -17.20278 -17.20276 -17.55904 0.0000 0.0000 -0.0065 ******* 2981 0.00001 0.0 3.9 -17.20278 -17.20278 -17.20276 -17.55904 0.0000 0.0000 -0.0065 ******* 2982 0.00000 0.0 3.2 -17.20278 -17.20278 -17.20276 -17.55904 0.0000 0.0000 -0.0066 ******* 2983 0.00000 0.0 2.6 -17.20277 -17.20277 -17.20276 -17.55905 0.0000 0.0000 -0.0066 ******* 2984 0.00000 0.0 2.1 -17.20277 -17.20277 -17.20276 -17.55905 0.0000 0.0000 -0.0067 ******* 2985 0.00000 0.0 1.6 -17.20277 -17.20277 -17.20277 -17.55905 0.0000 0.0000 -0.0067 ******* 2986 0.00000 0.0 1.2 -17.20277 -17.20277 -17.20277 -17.55905 0.0000 0.0000 -0.0067 ******* 2987 0.00000 0.0 0.9 -17.20277 -17.20277 -17.20277 -17.55905 0.0000 0.0000 -0.0068 ******* 2988 0.00000 0.0 0.7 -17.20277 -17.20277 -17.20277 -17.55906 0.0000 0.0000 -0.0068 ******* 2989 0.00000 0.0 0.5 -17.20277 -17.20277 -17.20277 -17.55906 0.0000 0.0000 -0.0069 ******* 2990 0.00000 0.0 0.5 -17.20277 -17.20277 -17.20277 -17.55906 0.0000 0.0000 -0.0069 ******* 2991 0.00000 0.0 0.5 -17.20277 -17.20277 -17.20277 -17.55906 0.0000 0.0000 -0.0070 ******* 2992 0.00000 0.0 0.5 -17.20277 -17.20277 -17.20277 -17.55906 0.0000 0.0000 -0.0070 ******* 2993 0.00000 0.0 0.7 -17.20278 -17.20278 -17.20277 -17.55906 0.0000 0.0000 -0.0071 ******* 2994 0.00000 0.0 0.9 -17.20278 -17.20278 -17.20277 -17.55906 0.0000 0.0000 -0.0071 ******* 2995 0.00000 0.0 1.2 -17.20278 -17.20278 -17.20277 -17.55906 0.0000 0.0000 -0.0072 ******* 2996 0.00000 0.0 1.6 -17.20278 -17.20278 -17.20277 -17.55906 0.0000 0.0000 -0.0072 ******* 2997 0.00000 0.0 2.0 -17.20278 -17.20278 -17.20277 -17.55906 0.0000 0.0000 -0.0073 ******* 2998 0.00000 0.0 2.5 -17.20278 -17.20278 -17.20277 -17.55906 0.0000 0.0000 -0.0073 ******* 2999 0.00000 0.0 3.1 -17.20279 -17.20279 -17.20277 -17.55906 0.0000 0.0000 -0.0074 ******* * Physical Quantities at step: 3000 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20279 Hartree a.u. kinetic energy = 7.85052 Hartree a.u. electrostatic energy = -22.94295 Hartree a.u. esr = 0.12177 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41820 Hartree a.u. n-l pseudopotential energy = 4.50957 Hartree a.u. exchange-correlation energy = -4.20173 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.55 -12.08 -8.78 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.996340E+00 0.804669E+00 0.546356E+00 H 0.518550E+00 -0.189761E+01 -0.255589E+00 O -0.403003E+00 -0.407647E+00 0.368752E+00 ATOMIC_VELOCITIES H -0.303827E-04 0.765174E-04 0.445601E-04 H -0.592822E-04 -0.721281E-04 -0.380081E-04 O 0.564877E-05 -0.276517E-06 -0.412767E-06 Forces acting on atoms (au): H -0.306675E-02 0.275246E-02 0.173622E-02 H -0.417626E-02 -0.168911E-02 -0.361376E-03 O 0.867947E-02 -0.142258E-02 -0.175588E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1.83 2.1783 2 0.10 0.0177 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3000 0.00000 0.0 3.8 -17.20279 -17.20279 -17.20277 -17.55906 0.0000 0.0000 -0.0074 ******* writing restart file: .//cp_91.save restart file written in 0.792 sec. 3001 0.00000 0.0 4.5 -17.20279 -17.20279 -17.20277 -17.55906 0.0000 0.0000 -0.0075 ******* 3002 0.00000 0.0 5.3 -17.20280 -17.20280 -17.20277 -17.55906 0.0000 0.0000 -0.0075 ******* 3003 0.00000 0.0 6.1 -17.20280 -17.20280 -17.20277 -17.55906 0.0000 0.0000 -0.0076 ******* 3004 0.00000 0.0 7.0 -17.20280 -17.20280 -17.20277 -17.55906 0.0000 0.0000 -0.0076 ******* 3005 0.00000 0.0 8.0 -17.20281 -17.20281 -17.20277 -17.55907 0.0000 0.0000 -0.0077 ******* 3006 0.00000 0.0 9.0 -17.20281 -17.20281 -17.20277 -17.55907 0.0000 0.0000 -0.0077 ******* 3007 0.00000 0.0 10.1 -17.20281 -17.20281 -17.20276 -17.55907 0.0000 0.0000 -0.0077 ******* 3008 0.00000 0.0 11.3 -17.20282 -17.20282 -17.20276 -17.55907 0.0000 0.0000 -0.0078 ******* 3009 0.00000 0.0 12.5 -17.20282 -17.20282 -17.20276 -17.55907 0.0000 0.0000 -0.0078 ******* 3010 0.00000 0.0 13.8 -17.20282 -17.20282 -17.20276 -17.55907 0.0000 0.0000 -0.0079 ******* 3011 0.00000 0.0 15.1 -17.20283 -17.20283 -17.20276 -17.55907 0.0000 0.0000 -0.0079 ******* 3012 0.00000 0.0 16.5 -17.20283 -17.20283 -17.20276 -17.55907 0.0000 0.0000 -0.0080 ******* 3013 0.00000 0.0 17.9 -17.20284 -17.20284 -17.20275 -17.55907 0.0000 0.0000 -0.0080 ******* 3014 0.00000 0.0 19.4 -17.20284 -17.20284 -17.20275 -17.55907 0.0000 0.0000 -0.0081 ******* 3015 0.00000 0.0 21.0 -17.20285 -17.20285 -17.20275 -17.55907 0.0000 0.0000 -0.0081 ******* 3016 0.00000 0.0 22.6 -17.20285 -17.20285 -17.20274 -17.55908 0.0000 0.0000 -0.0082 ******* 3017 0.00000 0.0 24.2 -17.20286 -17.20286 -17.20274 -17.55908 0.0000 0.0000 -0.0082 ******* 3018 0.00000 0.0 25.9 -17.20286 -17.20286 -17.20274 -17.55908 0.0000 0.0000 -0.0083 ******* 3019 0.00000 0.0 27.6 -17.20287 -17.20287 -17.20274 -17.55908 0.0000 0.0000 -0.0083 ******* 3020 0.00001 0.0 29.4 -17.20287 -17.20287 -17.20273 -17.55909 0.0000 0.0000 -0.0084 ******* 3021 0.00001 0.0 31.2 -17.20288 -17.20288 -17.20273 -17.55909 0.0000 0.0000 -0.0084 ******* 3022 0.00001 0.0 33.1 -17.20288 -17.20288 -17.20272 -17.55909 0.0000 0.0000 -0.0085 ******* 3023 0.00001 0.0 35.0 -17.20289 -17.20289 -17.20272 -17.55910 0.0000 0.0000 -0.0085 ******* 3024 0.00001 0.0 36.9 -17.20289 -17.20289 -17.20272 -17.55910 0.0000 0.0000 -0.0085 ******* 3025 0.00001 0.0 38.9 -17.20290 -17.20290 -17.20271 -17.55910 0.0000 0.0000 -0.0086 ******* 3026 0.00001 0.0 40.9 -17.20290 -17.20290 -17.20271 -17.55911 0.0000 0.0000 -0.0086 ******* 3027 0.00001 0.0 42.9 -17.20291 -17.20291 -17.20270 -17.55911 0.0000 0.0000 -0.0087 ******* 3028 0.00001 0.0 44.9 -17.20291 -17.20291 -17.20270 -17.55912 0.0000 0.0000 -0.0087 ******* 3029 0.00001 0.0 47.0 -17.20291 -17.20291 -17.20269 -17.55913 0.0000 0.0000 -0.0088 ******* * Physical Quantities at step: 3030 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20292 Hartree a.u. kinetic energy = 7.84713 Hartree a.u. electrostatic energy = -22.94361 Hartree a.u. esr = 0.12115 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41579 Hartree a.u. n-l pseudopotential energy = 4.51019 Hartree a.u. exchange-correlation energy = -4.20083 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.53 -12.15 -8.72 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.985488E+00 0.818752E+00 0.555224E+00 H 0.502047E+00 -0.190847E+01 -0.260421E+00 O -0.401279E+00 -0.407850E+00 0.368498E+00 ATOMIC_VELOCITIES H -0.209970E-03 0.223233E-03 0.148518E-03 H -0.303140E-03 -0.155808E-03 -0.661881E-04 O 0.323252E-04 -0.424766E-05 -0.518665E-05 Forces acting on atoms (au): H 0.215591E-03 -0.141933E-02 -0.569495E-03 H 0.645044E-03 0.147238E-02 0.548321E-03 O 0.380179E-02 -0.513000E-03 -0.785610E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 22.87 2.1663 2 3.35 0.0175 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3030 0.00001 0.0 49.1 -17.20292 -17.20292 -17.20269 -17.55913 0.0000 0.0000 -0.0088 ******* writing restart file: .//cp_91.save restart file written in 0.802 sec. 3031 0.00001 0.0 51.2 -17.20292 -17.20292 -17.20268 -17.55914 0.0000 0.0000 -0.0089 ******* 3032 0.00001 0.0 53.3 -17.20293 -17.20293 -17.20267 -17.55914 0.0000 0.0000 -0.0089 ******* 3033 0.00001 0.0 55.5 -17.20293 -17.20293 -17.20267 -17.55915 0.0000 0.0000 -0.0089 ******* 3034 0.00001 0.0 57.6 -17.20294 -17.20294 -17.20266 -17.55916 0.0000 0.0000 -0.0090 ******* 3035 0.00001 0.0 59.8 -17.20294 -17.20294 -17.20266 -17.55917 0.0000 0.0000 -0.0090 ******* 3036 0.00001 0.0 62.0 -17.20294 -17.20294 -17.20265 -17.55918 0.0000 0.0000 -0.0091 ******* 3037 0.00002 0.0 64.2 -17.20295 -17.20295 -17.20264 -17.55918 0.0000 0.0000 -0.0091 ******* 3038 0.00002 0.0 66.4 -17.20295 -17.20295 -17.20264 -17.55919 0.0000 0.0000 -0.0092 ******* 3039 0.00002 0.0 68.5 -17.20295 -17.20295 -17.20263 -17.55920 0.0000 0.0000 -0.0092 ******* 3040 0.00002 0.0 70.7 -17.20296 -17.20296 -17.20262 -17.55921 0.0000 0.0000 -0.0093 ******* 3041 0.00002 0.0 72.9 -17.20296 -17.20296 -17.20261 -17.55922 0.0000 0.0000 -0.0093 ******* 3042 0.00002 0.0 75.1 -17.20296 -17.20296 -17.20261 -17.55923 0.0000 0.0000 -0.0093 ******* 3043 0.00002 0.0 77.2 -17.20296 -17.20296 -17.20260 -17.55925 0.0000 0.0000 -0.0094 ******* 3044 0.00002 0.0 79.4 -17.20297 -17.20297 -17.20259 -17.55926 0.0000 0.0000 -0.0094 ******* 3045 0.00002 0.0 81.5 -17.20297 -17.20297 -17.20258 -17.55927 0.0000 0.0000 -0.0095 ******* 3046 0.00002 0.0 83.6 -17.20297 -17.20297 -17.20257 -17.55928 0.0000 0.0000 -0.0095 ******* 3047 0.00002 0.0 85.7 -17.20297 -17.20297 -17.20256 -17.55930 0.0000 0.0000 -0.0096 ******* 3048 0.00002 0.0 87.8 -17.20297 -17.20297 -17.20255 -17.55931 0.0000 0.0000 -0.0096 ******* 3049 0.00002 0.0 89.8 -17.20297 -17.20297 -17.20254 -17.55932 0.0000 0.0000 -0.0096 ******* 3050 0.00003 0.0 91.8 -17.20297 -17.20297 -17.20253 -17.55934 0.0000 0.0000 -0.0097 ******* 3051 0.00003 0.0 93.8 -17.20297 -17.20297 -17.20252 -17.55935 0.0000 0.0000 -0.0097 ******* 3052 0.00003 0.0 95.8 -17.20297 -17.20297 -17.20251 -17.55937 0.0000 0.0000 -0.0098 ******* 3053 0.00003 0.0 97.7 -17.20297 -17.20297 -17.20250 -17.55939 0.0000 0.0000 -0.0098 ******* 3054 0.00003 0.0 99.6 -17.20297 -17.20297 -17.20249 -17.55940 0.0000 0.0000 -0.0099 ******* 3055 0.00003 0.0 101.4 -17.20297 -17.20297 -17.20248 -17.55942 0.0000 0.0000 -0.0099 ******* 3056 0.00003 0.0 103.2 -17.20296 -17.20296 -17.20247 -17.55944 0.0000 0.0000 -0.0099 ******* 3057 0.00003 0.0 105.0 -17.20296 -17.20296 -17.20246 -17.55945 0.0000 0.0000 -0.0100 ******* 3058 0.00003 0.0 106.7 -17.20296 -17.20296 -17.20245 -17.55947 0.0000 0.0000 -0.0100 ******* 3059 0.00003 0.0 108.3 -17.20295 -17.20295 -17.20244 -17.55949 0.0000 0.0000 -0.0101 ******* * Physical Quantities at step: 3060 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20295 Hartree a.u. kinetic energy = 7.84797 Hartree a.u. electrostatic energy = -22.94497 Hartree a.u. esr = 0.12267 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41824 Hartree a.u. n-l pseudopotential energy = 4.51423 Hartree a.u. exchange-correlation energy = -4.20195 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -12.30 -8.60 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.960185E+00 0.842806E+00 0.572404E+00 H 0.466346E+00 -0.192442E+01 -0.267763E+00 O -0.397436E+00 -0.408361E+00 0.367878E+00 ATOMIC_VELOCITIES H -0.335767E-03 0.301136E-03 0.229570E-03 H -0.469789E-03 -0.196184E-03 -0.102138E-03 O 0.507489E-04 -0.661186E-05 -0.802808E-05 Forces acting on atoms (au): H 0.516238E-02 -0.467447E-02 -0.289625E-02 H 0.703994E-02 0.293631E-02 0.745185E-03 O -0.545522E-02 0.112035E-02 0.107714E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 50.84 2.1360 2 8.24 0.0169 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3060 0.00003 0.0 109.9 -17.20295 -17.20295 -17.20243 -17.55951 0.0000 0.0000 -0.0101 ******* writing restart file: .//cp_91.save restart file written in 0.773 sec. 3061 0.00003 0.0 111.5 -17.20295 -17.20295 -17.20242 -17.55953 0.0000 0.0000 -0.0101 ******* 3062 0.00003 0.0 113.0 -17.20294 -17.20294 -17.20240 -17.55955 0.0000 0.0000 -0.0102 ******* 3063 0.00003 0.0 114.4 -17.20294 -17.20294 -17.20239 -17.55957 0.0000 0.0000 -0.0102 ******* 3064 0.00004 0.0 115.8 -17.20293 -17.20293 -17.20238 -17.55959 0.0000 0.0000 -0.0103 ******* 3065 0.00004 0.0 117.1 -17.20292 -17.20292 -17.20237 -17.55961 0.0000 0.0000 -0.0103 ******* 3066 0.00004 0.0 118.4 -17.20292 -17.20292 -17.20235 -17.55963 0.0000 0.0000 -0.0104 ******* 3067 0.00004 0.0 119.6 -17.20291 -17.20291 -17.20234 -17.55966 0.0000 0.0000 -0.0104 ******* 3068 0.00004 0.0 120.7 -17.20290 -17.20290 -17.20233 -17.55968 0.0000 0.0000 -0.0104 ******* 3069 0.00004 0.0 121.7 -17.20289 -17.20289 -17.20232 -17.55970 0.0000 0.0000 -0.0105 ******* 3070 0.00004 0.0 122.7 -17.20289 -17.20289 -17.20230 -17.55972 0.0000 0.0000 -0.0105 ******* 3071 0.00004 0.0 123.7 -17.20288 -17.20288 -17.20229 -17.55975 0.0000 0.0000 -0.0106 ******* 3072 0.00004 0.0 124.5 -17.20287 -17.20287 -17.20228 -17.55977 0.0000 0.0000 -0.0106 ******* 3073 0.00004 0.0 125.3 -17.20286 -17.20286 -17.20226 -17.55979 0.0000 0.0000 -0.0106 ******* 3074 0.00004 0.0 126.0 -17.20285 -17.20285 -17.20225 -17.55982 0.0000 0.0000 -0.0107 ******* 3075 0.00004 0.0 126.6 -17.20284 -17.20284 -17.20223 -17.55984 0.0000 0.0000 -0.0107 ******* 3076 0.00004 0.0 127.2 -17.20282 -17.20282 -17.20222 -17.55987 0.0000 0.0000 -0.0108 ******* 3077 0.00004 0.0 127.7 -17.20281 -17.20281 -17.20221 -17.55989 0.0000 0.0000 -0.0108 ******* 3078 0.00004 0.0 128.1 -17.20280 -17.20280 -17.20219 -17.55992 0.0000 0.0000 -0.0108 ******* 3079 0.00004 0.0 128.4 -17.20279 -17.20279 -17.20218 -17.55994 0.0000 0.0000 -0.0109 ******* 3080 0.00004 0.0 128.6 -17.20278 -17.20278 -17.20216 -17.55997 0.0000 0.0000 -0.0109 ******* 3081 0.00004 0.0 128.8 -17.20276 -17.20276 -17.20215 -17.55999 0.0000 0.0000 -0.0110 ******* 3082 0.00004 0.0 128.9 -17.20275 -17.20275 -17.20214 -17.56002 0.0000 0.0000 -0.0110 ******* 3083 0.00004 0.0 128.9 -17.20273 -17.20273 -17.20212 -17.56004 0.0000 0.0000 -0.0110 ******* 3084 0.00004 0.0 128.8 -17.20272 -17.20272 -17.20211 -17.56007 0.0000 0.0000 -0.0111 ******* 3085 0.00004 0.0 128.7 -17.20270 -17.20270 -17.20209 -17.56010 0.0000 0.0000 -0.0111 ******* 3086 0.00004 0.0 128.4 -17.20269 -17.20269 -17.20208 -17.56012 0.0000 0.0000 -0.0112 ******* 3087 0.00004 0.0 128.1 -17.20267 -17.20267 -17.20206 -17.56015 0.0000 0.0000 -0.0112 ******* 3088 0.00004 0.0 127.7 -17.20266 -17.20266 -17.20205 -17.56018 0.0000 0.0000 -0.0112 ******* 3089 0.00004 0.0 127.2 -17.20264 -17.20264 -17.20204 -17.56020 0.0000 0.0000 -0.0113 ******* * Physical Quantities at step: 3090 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20262 Hartree a.u. kinetic energy = 7.85025 Hartree a.u. electrostatic energy = -22.94784 Hartree a.u. esr = 0.12431 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42071 Hartree a.u. n-l pseudopotential energy = 4.51935 Hartree a.u. exchange-correlation energy = -4.20367 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.47 -12.47 -8.45 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.928703E+00 0.870732E+00 0.595840E+00 H 0.421703E+00 -0.194284E+01 -0.279928E+00 O -0.392640E+00 -0.408960E+00 0.367168E+00 ATOMIC_VELOCITIES H -0.342094E-03 0.302091E-03 0.286756E-03 H -0.498007E-03 -0.200356E-03 -0.174035E-03 O 0.529252E-04 -0.640916E-05 -0.710126E-05 Forces acting on atoms (au): H 0.879064E-02 -0.752980E-02 -0.516195E-02 H 0.117373E-01 0.501110E-02 0.174082E-02 O -0.120476E-01 0.140019E-02 0.204791E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 58.89 2.0964 2 8.88 0.0162 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3090 0.00004 0.0 126.7 -17.20262 -17.20262 -17.20202 -17.56023 0.0000 0.0000 -0.0113 ******* writing restart file: .//cp_91.save restart file written in 0.774 sec. 3091 0.00004 0.0 126.0 -17.20261 -17.20261 -17.20201 -17.56026 0.0000 0.0000 -0.0114 ******* 3092 0.00004 0.0 125.3 -17.20259 -17.20259 -17.20199 -17.56028 0.0000 0.0000 -0.0114 ******* 3093 0.00004 0.0 124.5 -17.20257 -17.20257 -17.20198 -17.56031 0.0000 0.0000 -0.0114 ******* 3094 0.00004 0.0 123.6 -17.20255 -17.20255 -17.20197 -17.56034 0.0000 0.0000 -0.0115 ******* 3095 0.00004 0.0 122.7 -17.20253 -17.20253 -17.20195 -17.56036 0.0000 0.0000 -0.0115 ******* 3096 0.00004 0.0 121.7 -17.20252 -17.20252 -17.20194 -17.56039 0.0000 0.0000 -0.0116 ******* 3097 0.00004 0.0 120.6 -17.20250 -17.20250 -17.20192 -17.56042 0.0000 0.0000 -0.0116 ******* 3098 0.00004 0.0 119.4 -17.20248 -17.20248 -17.20191 -17.56044 0.0000 0.0000 -0.0116 ******* 3099 0.00004 0.0 118.2 -17.20246 -17.20246 -17.20190 -17.56047 0.0000 0.0000 -0.0117 ******* 3100 0.00004 0.0 116.8 -17.20244 -17.20244 -17.20188 -17.56049 0.0000 0.0000 -0.0117 ******* 3101 0.00004 0.0 115.5 -17.20242 -17.20242 -17.20187 -17.56052 0.0000 0.0000 -0.0118 ******* 3102 0.00004 0.0 114.0 -17.20240 -17.20240 -17.20186 -17.56055 0.0000 0.0000 -0.0118 ******* 3103 0.00004 0.0 112.5 -17.20238 -17.20238 -17.20184 -17.56057 0.0000 0.0000 -0.0119 ******* 3104 0.00004 0.0 111.0 -17.20236 -17.20236 -17.20183 -17.56060 0.0000 0.0000 -0.0119 ******* 3105 0.00004 0.0 109.4 -17.20234 -17.20234 -17.20182 -17.56062 0.0000 0.0000 -0.0119 ******* 3106 0.00004 0.0 107.7 -17.20232 -17.20232 -17.20181 -17.56065 0.0000 0.0000 -0.0120 ******* 3107 0.00004 0.0 106.0 -17.20230 -17.20230 -17.20180 -17.56067 0.0000 0.0000 -0.0120 ******* 3108 0.00004 0.0 104.2 -17.20228 -17.20228 -17.20178 -17.56070 0.0000 0.0000 -0.0121 ******* 3109 0.00004 0.0 102.4 -17.20226 -17.20226 -17.20177 -17.56072 0.0000 0.0000 -0.0121 ******* 3110 0.00004 0.0 100.6 -17.20224 -17.20224 -17.20176 -17.56075 0.0000 0.0000 -0.0121 ******* 3111 0.00004 0.0 98.7 -17.20222 -17.20222 -17.20175 -17.56077 0.0000 0.0000 -0.0122 ******* 3112 0.00004 0.0 96.8 -17.20220 -17.20220 -17.20174 -17.56079 0.0000 0.0000 -0.0122 ******* 3113 0.00004 0.0 94.9 -17.20218 -17.20218 -17.20173 -17.56082 0.0000 0.0000 -0.0123 ******* 3114 0.00004 0.0 92.9 -17.20216 -17.20216 -17.20172 -17.56084 0.0000 0.0000 -0.0123 ******* 3115 0.00004 0.0 91.0 -17.20214 -17.20214 -17.20171 -17.56087 0.0000 0.0000 -0.0124 ******* 3116 0.00004 0.0 89.0 -17.20212 -17.20212 -17.20170 -17.56089 0.0000 0.0000 -0.0124 ******* 3117 0.00004 0.0 87.1 -17.20210 -17.20210 -17.20169 -17.56091 0.0000 0.0000 -0.0124 ******* 3118 0.00004 0.0 85.1 -17.20208 -17.20208 -17.20168 -17.56093 0.0000 0.0000 -0.0125 ******* 3119 0.00003 0.0 83.2 -17.20207 -17.20207 -17.20167 -17.56095 0.0000 0.0000 -0.0125 ******* * Physical Quantities at step: 3120 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20205 Hartree a.u. kinetic energy = 7.85015 Hartree a.u. electrostatic energy = -22.95044 Hartree a.u. esr = 0.12495 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42071 Hartree a.u. n-l pseudopotential energy = 4.52327 Hartree a.u. exchange-correlation energy = -4.20431 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.43 -12.59 -8.31 -6.52 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.902557E+00 0.892803E+00 0.623143E+00 H 0.381116E+00 -0.195647E+01 -0.300102E+00 O -0.388436E+00 -0.409492E+00 0.366719E+00 ATOMIC_VELOCITIES H -0.215203E-03 0.157162E-03 0.315279E-03 H -0.377005E-03 -0.728211E-04 -0.282009E-03 O 0.373083E-04 -0.531338E-05 -0.209595E-05 Forces acting on atoms (au): H 0.948934E-02 -0.866280E-02 -0.700981E-02 H 0.133150E-01 0.611632E-02 0.367452E-02 O -0.159534E-01 0.166765E-02 0.250251E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 38.43 2.0488 2 4.37 0.0156 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3120 0.00003 0.0 81.2 -17.20205 -17.20205 -17.20166 -17.56097 0.0000 0.0000 -0.0126 ******* writing restart file: .//cp_91.save restart file written in 0.796 sec. 3121 0.00003 0.0 79.3 -17.20203 -17.20203 -17.20165 -17.56099 0.0000 0.0000 -0.0126 ******* 3122 0.00003 0.0 77.5 -17.20201 -17.20201 -17.20164 -17.56101 0.0000 0.0000 -0.0127 ******* 3123 0.00003 0.0 75.7 -17.20200 -17.20200 -17.20164 -17.56103 0.0000 0.0000 -0.0127 ******* 3124 0.00003 0.0 73.9 -17.20198 -17.20198 -17.20163 -17.56105 0.0000 0.0000 -0.0127 ******* 3125 0.00003 0.0 72.2 -17.20196 -17.20196 -17.20162 -17.56107 0.0000 0.0000 -0.0128 ******* 3126 0.00003 0.0 70.6 -17.20195 -17.20195 -17.20161 -17.56109 0.0000 0.0000 -0.0128 ******* 3127 0.00003 0.0 69.0 -17.20193 -17.20193 -17.20160 -17.56111 0.0000 0.0000 -0.0129 ******* 3128 0.00003 0.0 67.6 -17.20192 -17.20192 -17.20160 -17.56113 0.0000 0.0000 -0.0129 ******* 3129 0.00003 0.0 66.2 -17.20190 -17.20190 -17.20159 -17.56114 0.0000 0.0000 -0.0130 ******* 3130 0.00003 0.0 65.0 -17.20189 -17.20189 -17.20158 -17.56116 0.0000 0.0000 -0.0130 ******* 3131 0.00003 0.0 63.9 -17.20188 -17.20188 -17.20157 -17.56118 0.0000 0.0000 -0.0131 ******* 3132 0.00003 0.0 63.0 -17.20186 -17.20186 -17.20157 -17.56120 0.0000 0.0000 -0.0131 ******* 3133 0.00003 0.0 62.2 -17.20185 -17.20185 -17.20156 -17.56121 0.0000 0.0000 -0.0131 ******* 3134 0.00003 0.0 61.5 -17.20184 -17.20184 -17.20155 -17.56123 0.0000 0.0000 -0.0132 ******* 3135 0.00003 0.0 61.1 -17.20183 -17.20183 -17.20154 -17.56124 0.0000 0.0000 -0.0132 ******* 3136 0.00003 0.0 60.8 -17.20182 -17.20182 -17.20153 -17.56126 0.0000 0.0000 -0.0133 ******* 3137 0.00002 0.0 60.8 -17.20181 -17.20181 -17.20153 -17.56127 0.0000 0.0000 -0.0133 ******* 3138 0.00002 0.0 61.0 -17.20181 -17.20181 -17.20152 -17.56129 0.0000 0.0000 -0.0134 ******* 3139 0.00002 0.0 61.5 -17.20180 -17.20180 -17.20151 -17.56130 0.0000 0.0000 -0.0134 ******* 3140 0.00002 0.0 62.2 -17.20179 -17.20179 -17.20150 -17.56132 0.0000 0.0000 -0.0134 ******* 3141 0.00002 0.0 63.2 -17.20179 -17.20179 -17.20149 -17.56133 0.0000 0.0000 -0.0135 ******* 3142 0.00002 0.0 64.6 -17.20178 -17.20178 -17.20148 -17.56134 0.0000 0.0000 -0.0135 ******* 3143 0.00002 0.0 66.2 -17.20178 -17.20178 -17.20147 -17.56136 0.0000 0.0000 -0.0136 ******* 3144 0.00002 0.0 68.2 -17.20178 -17.20178 -17.20145 -17.56137 0.0000 0.0000 -0.0136 ******* 3145 0.00002 0.0 70.6 -17.20178 -17.20178 -17.20144 -17.56139 0.0000 0.0000 -0.0137 ******* 3146 0.00002 0.0 73.4 -17.20177 -17.20177 -17.20143 -17.56140 0.0000 0.0000 -0.0137 ******* 3147 0.00002 0.0 76.7 -17.20177 -17.20177 -17.20141 -17.56141 0.0000 0.0000 -0.0138 ******* 3148 0.00002 0.0 80.4 -17.20178 -17.20178 -17.20139 -17.56143 0.0000 0.0000 -0.0138 ******* 3149 0.00002 0.0 84.5 -17.20178 -17.20178 -17.20138 -17.56144 0.0000 0.0000 -0.0138 ******* * Physical Quantities at step: 3150 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20178 Hartree a.u. kinetic energy = 7.85108 Hartree a.u. electrostatic energy = -22.95094 Hartree a.u. esr = 0.12597 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42266 Hartree a.u. n-l pseudopotential energy = 4.52569 Hartree a.u. exchange-correlation energy = -4.20496 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.44 -12.65 -8.27 -6.52 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.895444E+00 0.892490E+00 0.652101E+00 H 0.359937E+00 -0.195030E+01 -0.333500E+00 O -0.386654E+00 -0.409860E+00 0.366999E+00 ATOMIC_VELOCITIES H 0.985965E-04 -0.205443E-03 0.329153E-03 H -0.495334E-04 0.241714E-03 -0.488308E-03 O -0.309091E-05 -0.228501E-05 0.100265E-04 Forces acting on atoms (au): H 0.672493E-02 -0.481003E-02 -0.788990E-02 H 0.109041E-01 0.225696E-02 0.624301E-02 O -0.174678E-01 0.270286E-02 0.265760E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 44.44 1.9792 2 0.35 0.0153 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3150 0.00002 0.0 89.2 -17.20178 -17.20178 -17.20136 -17.56146 0.0000 0.0000 -0.0139 ******* writing restart file: .//cp_91.save restart file written in 0.785 sec. 3151 0.00003 0.0 94.5 -17.20178 -17.20178 -17.20133 -17.56147 0.0000 0.0000 -0.0139 ******* 3152 0.00003 0.0 100.3 -17.20179 -17.20179 -17.20131 -17.56149 0.0000 0.0000 -0.0140 ******* 3153 0.00003 0.0 106.7 -17.20179 -17.20179 -17.20129 -17.56150 0.0000 0.0000 -0.0140 ******* 3154 0.00003 0.0 113.8 -17.20180 -17.20180 -17.20126 -17.56152 0.0000 0.0000 -0.0141 ******* 3155 0.00003 0.0 121.6 -17.20180 -17.20180 -17.20123 -17.56153 0.0000 0.0000 -0.0141 ******* 3156 0.00003 0.0 130.1 -17.20181 -17.20181 -17.20119 -17.56155 0.0000 0.0000 -0.0141 ******* 3157 0.00003 0.0 139.4 -17.20182 -17.20182 -17.20116 -17.56157 0.0000 0.0000 -0.0142 ******* 3158 0.00003 0.0 149.5 -17.20183 -17.20183 -17.20112 -17.56159 0.0000 0.0000 -0.0142 ******* 3159 0.00003 0.0 160.4 -17.20184 -17.20184 -17.20108 -17.56160 0.0000 0.0000 -0.0143 ******* 3160 0.00004 0.0 172.3 -17.20185 -17.20185 -17.20104 -17.56163 0.0000 0.0000 -0.0143 ******* 3161 0.00004 0.0 185.0 -17.20187 -17.20187 -17.20099 -17.56165 0.0000 0.0000 -0.0143 ******* 3162 0.00004 0.0 198.8 -17.20188 -17.20188 -17.20093 -17.56167 0.0000 0.0000 -0.0144 ******* 3163 0.00004 0.0 213.7 -17.20189 -17.20189 -17.20088 -17.56170 0.0000 0.0000 -0.0144 ******* 3164 0.00005 0.0 229.6 -17.20191 -17.20191 -17.20081 -17.56172 0.0000 0.0000 -0.0144 ******* 3165 0.00005 0.0 246.7 -17.20192 -17.20192 -17.20075 -17.56175 0.0000 0.0000 -0.0145 ******* 3166 0.00005 0.0 265.1 -17.20193 -17.20193 -17.20068 -17.56178 0.0000 0.0000 -0.0145 ******* 3167 0.00006 0.0 284.7 -17.20195 -17.20195 -17.20060 -17.56181 0.0000 0.0000 -0.0145 ******* 3168 0.00006 0.0 305.6 -17.20196 -17.20196 -17.20051 -17.56185 0.0000 0.0000 -0.0146 ******* 3169 0.00007 0.0 328.0 -17.20198 -17.20198 -17.20042 -17.56188 0.0000 0.0000 -0.0146 ******* 3170 0.00007 0.0 351.8 -17.20200 -17.20200 -17.20032 -17.56192 0.0000 0.0000 -0.0146 ******* 3171 0.00008 0.0 377.2 -17.20201 -17.20201 -17.20022 -17.56196 0.0000 0.0000 -0.0146 ******* 3172 0.00008 0.0 404.1 -17.20203 -17.20203 -17.20011 -17.56201 0.0000 0.0000 -0.0147 ******* 3173 0.00009 0.0 432.7 -17.20204 -17.20204 -17.19999 -17.56206 0.0000 0.0000 -0.0147 ******* 3174 0.00009 0.0 463.1 -17.20206 -17.20206 -17.19986 -17.56211 0.0000 0.0000 -0.0147 ******* 3175 0.00010 0.0 495.3 -17.20207 -17.20207 -17.19972 -17.56216 0.0000 0.0000 -0.0147 ******* 3176 0.00011 0.0 529.4 -17.20208 -17.20208 -17.19957 -17.56222 0.0000 0.0000 -0.0148 ******* 3177 0.00011 0.0 565.4 -17.20209 -17.20209 -17.19941 -17.56229 0.0000 0.0000 -0.0148 ******* 3178 0.00012 0.0 603.5 -17.20210 -17.20210 -17.19924 -17.56235 0.0000 0.0000 -0.0148 ******* 3179 0.00013 0.0 643.6 -17.20211 -17.20211 -17.19906 -17.56243 0.0000 0.0000 -0.0148 ******* * Physical Quantities at step: 3180 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20212 Hartree a.u. kinetic energy = 7.85439 Hartree a.u. electrostatic energy = -22.94972 Hartree a.u. esr = 0.12607 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42472 Hartree a.u. n-l pseudopotential energy = 4.52345 Hartree a.u. exchange-correlation energy = -4.20552 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.47 -12.51 -8.39 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.930282E+00 0.846795E+00 0.683725E+00 H 0.382154E+00 -0.190606E+01 -0.396278E+00 O -0.390248E+00 -0.409769E+00 0.368961E+00 ATOMIC_VELOCITIES H 0.741562E-03 -0.874501E-03 0.389548E-03 H 0.605151E-03 0.796252E-03 -0.971606E-03 O -0.848411E-04 0.492959E-05 0.366688E-04 Forces acting on atoms (au): H -0.364830E-02 0.587300E-02 -0.794913E-02 H -0.423481E-04 -0.639089E-02 0.125258E-01 O -0.687938E-02 0.132553E-02 -0.587076E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 329.83 1.8690 2 26.30 0.0155 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3180 0.00014 0.0 686.0 -17.20212 -17.20212 -17.19886 -17.56250 0.0000 0.0000 -0.0148 ******* writing restart file: .//cp_91.save restart file written in 0.777 sec. 3181 0.00015 0.0 730.5 -17.20213 -17.20213 -17.19866 -17.56259 0.0000 0.0000 -0.0148 ******* 3182 0.00016 0.0 777.4 -17.20213 -17.20213 -17.19844 -17.56268 0.0000 0.0000 -0.0148 ******* 3183 0.00017 0.0 826.7 -17.20213 -17.20213 -17.19821 -17.56277 0.0000 0.0000 -0.0148 ******* 3184 0.00018 0.0 878.3 -17.20213 -17.20213 -17.19796 -17.56288 0.0000 0.0000 -0.0148 ******* 3185 0.00019 0.0 932.5 -17.20213 -17.20213 -17.19770 -17.56298 0.0000 0.0000 -0.0148 ******* 3186 0.00021 0.0 989.2 -17.20213 -17.20213 -17.19743 -17.56310 0.0000 0.0000 -0.0148 ******* 3187 0.00022 0.0 1048.5 -17.20212 -17.20212 -17.19714 -17.56323 0.0000 0.0000 -0.0148 ******* 3188 0.00024 0.0 1110.4 -17.20210 -17.20210 -17.19683 -17.56336 0.0000 0.0000 -0.0148 ******* 3189 0.00025 0.0 1175.0 -17.20209 -17.20209 -17.19650 -17.56350 0.0000 0.0000 -0.0147 ******* 3190 0.00027 0.0 1242.3 -17.20206 -17.20206 -17.19616 -17.56365 0.0000 0.0000 -0.0147 ******* 3191 0.00028 0.0 1312.2 -17.20204 -17.20204 -17.19581 -17.56381 0.0000 0.0000 -0.0147 ******* 3192 0.00030 0.0 1384.8 -17.20201 -17.20201 -17.19543 -17.56398 0.0000 0.0000 -0.0146 ******* 3193 0.00032 0.0 1460.1 -17.20197 -17.20197 -17.19504 -17.56416 0.0000 0.0000 -0.0146 ******* 3194 0.00034 0.0 1538.1 -17.20193 -17.20193 -17.19462 -17.56435 0.0000 0.0000 -0.0146 ******* 3195 0.00036 0.0 1618.6 -17.20188 -17.20188 -17.19419 -17.56456 0.0000 0.0000 -0.0145 ******* 3196 0.00038 0.0 1701.7 -17.20183 -17.20183 -17.19375 -17.56477 0.0000 0.0000 -0.0145 ******* 3197 0.00040 0.0 1787.2 -17.20177 -17.20177 -17.19328 -17.56500 0.0000 0.0000 -0.0144 ******* 3198 0.00043 0.0 1875.0 -17.20170 -17.20170 -17.19279 -17.56524 0.0000 0.0000 -0.0144 ******* 3199 0.00045 0.0 1965.1 -17.20162 -17.20162 -17.19229 -17.56550 0.0000 0.0000 -0.0143 ******* 3200 0.00048 0.0 2057.3 -17.20154 -17.20154 -17.19177 -17.56577 0.0000 0.0000 -0.0142 ******* 3201 0.00050 0.0 2151.4 -17.20145 -17.20145 -17.19123 -17.56606 0.0000 0.0000 -0.0141 ******* 3202 0.00053 0.0 2247.2 -17.20135 -17.20135 -17.19068 -17.56636 0.0000 0.0000 -0.0141 ******* 3203 0.00056 0.0 2344.5 -17.20124 -17.20124 -17.19011 -17.56668 0.0000 0.0000 -0.0140 ******* 3204 0.00059 0.0 2443.0 -17.20113 -17.20113 -17.18952 -17.56701 0.0000 0.0000 -0.0139 ******* 3205 0.00062 0.0 2542.6 -17.20100 -17.20100 -17.18892 -17.56736 0.0000 0.0000 -0.0138 ******* 3206 0.00065 0.0 2642.7 -17.20086 -17.20086 -17.18831 -17.56773 0.0000 0.0000 -0.0137 ******* 3207 0.00068 0.0 2743.3 -17.20072 -17.20072 -17.18769 -17.56812 0.0000 0.0000 -0.0135 ******* 3208 0.00071 0.0 2843.8 -17.20056 -17.20056 -17.18705 -17.56853 0.0000 0.0000 -0.0134 ******* 3209 0.00075 0.0 2944.0 -17.20040 -17.20040 -17.18641 -17.56896 0.0000 0.0000 -0.0133 ******* * Physical Quantities at step: 3210 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20022 Hartree a.u. kinetic energy = 7.84897 Hartree a.u. electrostatic energy = -22.94677 Hartree a.u. esr = 0.11903 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41033 Hartree a.u. n-l pseudopotential energy = 4.50859 Hartree a.u. exchange-correlation energy = -4.20067 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -11.96 -8.76 -6.50 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.103654E+01 0.722175E+00 0.726974E+00 H 0.474898E+00 -0.179310E+01 -0.520237E+00 O -0.402785E+00 -0.409034E+00 0.374046E+00 ATOMIC_VELOCITIES H 0.158252E-02 -0.193712E-02 0.607038E-03 H 0.140504E-02 0.178824E-02 -0.181193E-02 O -0.188212E-03 0.937933E-05 0.759065E-04 Forces acting on atoms (au): H -0.278046E-01 0.247995E-01 -0.760388E-02 H -0.252837E-01 -0.198577E-01 0.273792E-01 O 0.316827E-01 -0.414237E-02 -0.122246E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1458.34 1.7097 2 126.71 0.0170 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3210 0.00078 0.0 3043.4 -17.20022 -17.20022 -17.18576 -17.56940 0.0000 0.0000 -0.0132 ******* writing restart file: .//cp_91.save restart file written in 0.783 sec. 3211 0.00081 0.0 3141.6 -17.20003 -17.20003 -17.18511 -17.56987 0.0000 0.0000 -0.0130 ******* 3212 0.00085 0.0 3238.1 -17.19984 -17.19984 -17.18446 -17.57036 0.0000 0.0000 -0.0129 ******* 3213 0.00089 0.0 3332.6 -17.19963 -17.19963 -17.18380 -17.57087 0.0000 0.0000 -0.0127 ******* 3214 0.00092 0.0 3424.4 -17.19941 -17.19941 -17.18315 -17.57140 0.0000 0.0000 -0.0126 ******* 3215 0.00096 0.0 3513.3 -17.19919 -17.19919 -17.18250 -17.57195 0.0000 0.0000 -0.0124 ******* 3216 0.00099 0.0 3598.6 -17.19895 -17.19895 -17.18186 -17.57252 0.0000 0.0000 -0.0123 ******* 3217 0.00103 0.0 3680.0 -17.19871 -17.19871 -17.18123 -17.57312 0.0000 0.0000 -0.0121 ******* 3218 0.00107 0.0 3756.9 -17.19846 -17.19846 -17.18061 -17.57374 0.0000 0.0000 -0.0119 ******* 3219 0.00110 0.0 3828.8 -17.19819 -17.19819 -17.18001 -17.57438 0.0000 0.0000 -0.0117 ******* 3220 0.00114 0.0 3895.4 -17.19793 -17.19793 -17.17942 -17.57504 0.0000 0.0000 -0.0115 ******* 3221 0.00117 0.0 3956.3 -17.19765 -17.19765 -17.17886 -17.57572 0.0000 0.0000 -0.0114 ******* 3222 0.00121 0.0 4010.9 -17.19737 -17.19737 -17.17832 -17.57642 0.0000 0.0000 -0.0112 ******* 3223 0.00124 0.0 4059.1 -17.19708 -17.19708 -17.17780 -17.57715 0.0000 0.0000 -0.0110 ******* 3224 0.00127 0.0 4100.4 -17.19679 -17.19679 -17.17732 -17.57789 0.0000 0.0000 -0.0108 ******* 3225 0.00131 0.0 4134.5 -17.19650 -17.19650 -17.17686 -17.57866 0.0000 0.0000 -0.0106 ******* 3226 0.00134 0.0 4161.4 -17.19620 -17.19620 -17.17644 -17.57945 0.0000 0.0000 -0.0104 ******* 3227 0.00137 0.0 4180.7 -17.19590 -17.19590 -17.17605 -17.58025 0.0000 0.0000 -0.0102 ******* 3228 0.00139 0.0 4192.4 -17.19560 -17.19560 -17.17569 -17.58107 0.0000 0.0000 -0.0100 ******* 3229 0.00142 0.0 4196.4 -17.19531 -17.19531 -17.17537 -17.58190 0.0000 0.0000 -0.0098 ******* 3230 0.00144 0.0 4192.7 -17.19501 -17.19501 -17.17509 -17.58275 0.0000 0.0000 -0.0096 ******* 3231 0.00146 0.0 4181.4 -17.19471 -17.19471 -17.17485 -17.58362 0.0000 0.0000 -0.0094 ******* 3232 0.00148 0.0 4162.6 -17.19442 -17.19442 -17.17465 -17.58450 0.0000 0.0000 -0.0092 ******* 3233 0.00150 0.0 4136.4 -17.19413 -17.19413 -17.17448 -17.58539 0.0000 0.0000 -0.0090 ******* 3234 0.00151 0.0 4103.2 -17.19385 -17.19385 -17.17436 -17.58629 0.0000 0.0000 -0.0088 ******* 3235 0.00153 0.0 4063.0 -17.19357 -17.19357 -17.17427 -17.58720 0.0000 0.0000 -0.0086 ******* 3236 0.00154 0.0 4016.4 -17.19330 -17.19330 -17.17422 -17.58812 0.0000 0.0000 -0.0084 ******* 3237 0.00154 0.0 3963.7 -17.19304 -17.19304 -17.17421 -17.58904 0.0000 0.0000 -0.0082 ******* 3238 0.00155 0.0 3905.3 -17.19279 -17.19279 -17.17424 -17.58997 0.0000 0.0000 -0.0080 ******* 3239 0.00155 0.0 3841.6 -17.19255 -17.19255 -17.17430 -17.59090 0.0000 0.0000 -0.0078 ******* * Physical Quantities at step: 3240 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19232 Hartree a.u. kinetic energy = 7.82439 Hartree a.u. electrostatic energy = -22.93770 Hartree a.u. esr = 0.10694 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.37754 Hartree a.u. n-l pseudopotential energy = 4.48587 Hartree a.u. exchange-correlation energy = -4.18734 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.51 -11.21 -9.30 -6.50 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.117835E+01 0.517298E+00 0.798627E+00 H 0.594933E+00 -0.159238E+01 -0.705733E+00 O -0.419281E+00 -0.408772E+00 0.381218E+00 ATOMIC_VELOCITIES H 0.124333E-02 -0.232285E-02 0.100105E-02 H 0.913237E-03 0.244205E-02 -0.209710E-02 O -0.135861E-03 -0.750951E-05 0.690496E-04 Forces acting on atoms (au): H -0.441364E-01 0.445387E-01 -0.497374E-02 H -0.441512E-01 -0.378012E-01 0.373530E-01 O 0.688977E-01 -0.665003E-02 -0.246662E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1850.84 1.5364 2 71.48 0.0193 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3240 0.00155 0.0 3773.2 -17.19232 -17.19232 -17.17439 -17.59183 0.0000 0.0000 -0.0076 ******* writing restart file: .//cp_91.save restart file written in 0.774 sec. 3241 0.00155 0.0 3700.4 -17.19210 -17.19210 -17.17452 -17.59276 0.0000 0.0000 -0.0075 ******* 3242 0.00154 0.0 3624.0 -17.19189 -17.19189 -17.17468 -17.59369 0.0000 0.0000 -0.0073 ******* 3243 0.00154 0.0 3544.2 -17.19170 -17.19170 -17.17486 -17.59462 0.0000 0.0000 -0.0071 ******* 3244 0.00153 0.0 3461.8 -17.19152 -17.19152 -17.17507 -17.59554 0.0000 0.0000 -0.0070 ******* 3245 0.00151 0.0 3377.2 -17.19135 -17.19135 -17.17531 -17.59646 0.0000 0.0000 -0.0068 ******* 3246 0.00150 0.0 3291.0 -17.19119 -17.19119 -17.17556 -17.59737 0.0000 0.0000 -0.0066 ******* 3247 0.00148 0.0 3203.6 -17.19105 -17.19105 -17.17584 -17.59827 0.0000 0.0000 -0.0065 ******* 3248 0.00147 0.0 3115.5 -17.19093 -17.19093 -17.17613 -17.59916 0.0000 0.0000 -0.0064 ******* 3249 0.00145 0.0 3027.3 -17.19082 -17.19082 -17.17644 -17.60004 0.0000 0.0000 -0.0062 ******* 3250 0.00142 0.0 2939.3 -17.19073 -17.19073 -17.17676 -17.60091 0.0000 0.0000 -0.0061 ******* 3251 0.00140 0.0 2852.0 -17.19065 -17.19065 -17.17710 -17.60176 0.0000 0.0000 -0.0060 ******* 3252 0.00138 0.0 2765.7 -17.19058 -17.19058 -17.17744 -17.60260 0.0000 0.0000 -0.0058 ******* 3253 0.00135 0.0 2680.9 -17.19053 -17.19053 -17.17779 -17.60343 0.0000 0.0000 -0.0057 ******* 3254 0.00132 0.0 2597.9 -17.19049 -17.19049 -17.17815 -17.60424 0.0000 0.0000 -0.0056 ******* 3255 0.00130 0.0 2516.8 -17.19047 -17.19047 -17.17852 -17.60503 0.0000 0.0000 -0.0055 ******* 3256 0.00127 0.0 2438.1 -17.19046 -17.19046 -17.17888 -17.60581 0.0000 0.0000 -0.0054 ******* 3257 0.00124 0.0 2361.9 -17.19047 -17.19047 -17.17925 -17.60658 0.0000 0.0000 -0.0053 ******* 3258 0.00121 0.0 2288.4 -17.19049 -17.19049 -17.17962 -17.60732 0.0000 0.0000 -0.0052 ******* 3259 0.00119 0.0 2217.8 -17.19052 -17.19052 -17.17998 -17.60805 0.0000 0.0000 -0.0051 ******* 3260 0.00116 0.0 2150.2 -17.19056 -17.19056 -17.18035 -17.60876 0.0000 0.0000 -0.0051 ******* 3261 0.00113 0.0 2085.6 -17.19062 -17.19062 -17.18071 -17.60946 0.0000 0.0000 -0.0050 ******* 3262 0.00110 0.0 2024.3 -17.19069 -17.19069 -17.18107 -17.61013 0.0000 0.0000 -0.0049 ******* 3263 0.00107 0.0 1966.2 -17.19077 -17.19077 -17.18143 -17.61079 0.0000 0.0000 -0.0048 ******* 3264 0.00105 0.0 1911.3 -17.19086 -17.19086 -17.18178 -17.61144 0.0000 0.0000 -0.0048 ******* 3265 0.00102 0.0 1859.6 -17.19096 -17.19096 -17.18213 -17.61206 0.0000 0.0000 -0.0047 ******* 3266 0.00099 0.0 1811.1 -17.19107 -17.19107 -17.18247 -17.61268 0.0000 0.0000 -0.0046 ******* 3267 0.00097 0.0 1765.9 -17.19119 -17.19119 -17.18281 -17.61327 0.0000 0.0000 -0.0046 ******* 3268 0.00094 0.0 1723.7 -17.19132 -17.19132 -17.18314 -17.61385 0.0000 0.0000 -0.0045 ******* 3269 0.00092 0.0 1684.6 -17.19146 -17.19146 -17.18346 -17.61442 0.0000 0.0000 -0.0045 ******* * Physical Quantities at step: 3270 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19161 Hartree a.u. kinetic energy = 7.81508 Hartree a.u. electrostatic energy = -22.92859 Hartree a.u. esr = 0.10785 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.37800 Hartree a.u. n-l pseudopotential energy = 4.48307 Hartree a.u. exchange-correlation energy = -4.18318 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.67 -11.15 -9.53 -6.60 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.122765E+01 0.356190E+00 0.907232E+00 H 0.602275E+00 -0.140397E+01 -0.869051E+00 O -0.422849E+00 -0.410492E+00 0.384665E+00 ATOMIC_VELOCITIES H -0.101598E-03 -0.111970E-02 0.140058E-02 H -0.717129E-03 0.156360E-02 -0.151089E-02 O 0.515787E-04 -0.279653E-04 0.694962E-05 Forces acting on atoms (au): H -0.209543E-01 0.380830E-01 -0.400264E-02 H -0.220433E-01 -0.383452E-01 0.234522E-01 O 0.351117E-01 -0.354307E-03 -0.141716E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 818.86 1.3462 2 10.72 0.0194 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3270 0.00090 0.0 1648.4 -17.19161 -17.19161 -17.18378 -17.61497 0.0000 0.0000 -0.0044 ******* writing restart file: .//cp_91.save restart file written in 0.774 sec. 3271 0.00088 0.0 1615.1 -17.19176 -17.19176 -17.18409 -17.61551 0.0000 0.0000 -0.0044 ******* 3272 0.00085 0.0 1584.6 -17.19193 -17.19193 -17.18440 -17.61603 0.0000 0.0000 -0.0043 ******* 3273 0.00084 0.0 1556.7 -17.19209 -17.19209 -17.18470 -17.61654 0.0000 0.0000 -0.0043 ******* 3274 0.00082 0.0 1531.4 -17.19227 -17.19227 -17.18499 -17.61705 0.0000 0.0000 -0.0042 ******* 3275 0.00080 0.0 1508.4 -17.19245 -17.19245 -17.18529 -17.61754 0.0000 0.0000 -0.0042 ******* 3276 0.00078 0.0 1487.7 -17.19264 -17.19264 -17.18557 -17.61802 0.0000 0.0000 -0.0041 ******* 3277 0.00077 0.0 1469.1 -17.19283 -17.19283 -17.18585 -17.61848 0.0000 0.0000 -0.0041 ******* 3278 0.00075 0.0 1452.5 -17.19302 -17.19302 -17.18612 -17.61894 0.0000 0.0000 -0.0041 ******* 3279 0.00074 0.0 1437.8 -17.19322 -17.19322 -17.18639 -17.61939 0.0000 0.0000 -0.0040 ******* 3280 0.00072 0.0 1424.8 -17.19343 -17.19343 -17.18666 -17.61983 0.0000 0.0000 -0.0040 ******* 3281 0.00071 0.0 1413.4 -17.19363 -17.19363 -17.18692 -17.62027 0.0000 0.0000 -0.0039 ******* 3282 0.00070 0.0 1403.4 -17.19384 -17.19384 -17.18718 -17.62069 0.0000 0.0000 -0.0039 ******* 3283 0.00069 0.0 1394.7 -17.19405 -17.19405 -17.18743 -17.62111 0.0000 0.0000 -0.0039 ******* 3284 0.00068 0.0 1387.2 -17.19427 -17.19427 -17.18768 -17.62153 0.0000 0.0000 -0.0038 ******* 3285 0.00067 0.0 1380.7 -17.19449 -17.19449 -17.18793 -17.62193 0.0000 0.0000 -0.0038 ******* 3286 0.00066 0.0 1375.2 -17.19470 -17.19470 -17.18817 -17.62233 0.0000 0.0000 -0.0038 ******* 3287 0.00065 0.0 1370.4 -17.19492 -17.19492 -17.18841 -17.62273 0.0000 0.0000 -0.0037 ******* 3288 0.00064 0.0 1366.3 -17.19514 -17.19514 -17.18865 -17.62312 0.0000 0.0000 -0.0037 ******* 3289 0.00064 0.0 1362.8 -17.19536 -17.19536 -17.18889 -17.62351 0.0000 0.0000 -0.0037 ******* 3290 0.00063 0.0 1359.7 -17.19558 -17.19558 -17.18912 -17.62389 0.0000 0.0000 -0.0036 ******* 3291 0.00063 0.0 1356.9 -17.19580 -17.19580 -17.18935 -17.62427 0.0000 0.0000 -0.0036 ******* 3292 0.00062 0.0 1354.3 -17.19602 -17.19602 -17.18959 -17.62464 0.0000 0.0000 -0.0036 ******* 3293 0.00061 0.0 1351.9 -17.19624 -17.19624 -17.18981 -17.62501 0.0000 0.0000 -0.0035 ******* 3294 0.00061 0.0 1349.5 -17.19645 -17.19645 -17.19004 -17.62538 0.0000 0.0000 -0.0035 ******* 3295 0.00060 0.0 1347.1 -17.19667 -17.19667 -17.19027 -17.62575 0.0000 0.0000 -0.0035 ******* 3296 0.00060 0.0 1344.5 -17.19688 -17.19688 -17.19050 -17.62611 0.0000 0.0000 -0.0034 ******* 3297 0.00060 0.0 1341.7 -17.19709 -17.19709 -17.19072 -17.62647 0.0000 0.0000 -0.0034 ******* 3298 0.00059 0.0 1338.7 -17.19730 -17.19730 -17.19094 -17.62683 0.0000 0.0000 -0.0034 ******* 3299 0.00059 0.0 1335.2 -17.19751 -17.19751 -17.19117 -17.62718 0.0000 0.0000 -0.0033 ******* * Physical Quantities at step: 3300 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19771 Hartree a.u. kinetic energy = 7.83282 Hartree a.u. electrostatic energy = -22.93523 Hartree a.u. esr = 0.11551 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.39909 Hartree a.u. n-l pseudopotential energy = 4.49613 Hartree a.u. exchange-correlation energy = -4.19234 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.65 -11.60 -9.22 -6.60 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.118587E+01 0.311668E+00 0.104394E+01 H 0.495138E+00 -0.131718E+01 -0.986349E+00 O -0.413468E+00 -0.413155E+00 0.383441E+00 ATOMIC_VELOCITIES H -0.689672E-03 0.107952E-04 0.156440E-02 H -0.147123E-02 0.435166E-03 -0.113504E-02 O 0.136134E-03 -0.280949E-04 -0.270488E-04 Forces acting on atoms (au): H 0.249311E-03 0.147269E-01 -0.113360E-01 H 0.547213E-02 -0.202404E-01 0.131674E-01 O 0.982490E-02 0.309494E-02 -0.309857E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 634.90 1.1300 2 61.57 0.0172 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3300 0.00058 0.0 1331.4 -17.19771 -17.19771 -17.19139 -17.62754 0.0000 0.0000 -0.0033 ******* writing restart file: .//cp_91.save restart file written in 0.778 sec. 3301 0.00058 0.0 1327.0 -17.19792 -17.19792 -17.19161 -17.62789 0.0000 0.0000 -0.0033 ******* 3302 0.00058 0.0 1322.2 -17.19811 -17.19811 -17.19183 -17.62823 0.0000 0.0000 -0.0032 ******* 3303 0.00057 0.0 1316.7 -17.19831 -17.19831 -17.19205 -17.62858 0.0000 0.0000 -0.0032 ******* 3304 0.00057 0.0 1310.6 -17.19850 -17.19850 -17.19227 -17.62892 0.0000 0.0000 -0.0032 ******* 3305 0.00056 0.0 1303.9 -17.19869 -17.19869 -17.19249 -17.62926 0.0000 0.0000 -0.0031 ******* 3306 0.00056 0.0 1296.5 -17.19887 -17.19887 -17.19271 -17.62960 0.0000 0.0000 -0.0031 ******* 3307 0.00056 0.0 1288.4 -17.19905 -17.19905 -17.19293 -17.62994 0.0000 0.0000 -0.0031 ******* 3308 0.00055 0.0 1279.6 -17.19922 -17.19922 -17.19315 -17.63027 0.0000 0.0000 -0.0031 ******* 3309 0.00055 0.0 1270.0 -17.19939 -17.19939 -17.19336 -17.63060 0.0000 0.0000 -0.0030 ******* 3310 0.00054 0.0 1259.7 -17.19956 -17.19956 -17.19358 -17.63093 0.0000 0.0000 -0.0030 ******* 3311 0.00054 0.0 1248.6 -17.19972 -17.19972 -17.19379 -17.63125 0.0000 0.0000 -0.0030 ******* 3312 0.00053 0.0 1236.8 -17.19988 -17.19988 -17.19400 -17.63158 0.0000 0.0000 -0.0029 ******* 3313 0.00053 0.0 1224.2 -17.20003 -17.20003 -17.19422 -17.63190 0.0000 0.0000 -0.0029 ******* 3314 0.00052 0.0 1210.8 -17.20018 -17.20018 -17.19443 -17.63221 0.0000 0.0000 -0.0029 ******* 3315 0.00052 0.0 1196.7 -17.20032 -17.20032 -17.19464 -17.63253 0.0000 0.0000 -0.0029 ******* 3316 0.00051 0.0 1182.0 -17.20046 -17.20046 -17.19485 -17.63284 0.0000 0.0000 -0.0028 ******* 3317 0.00051 0.0 1166.5 -17.20059 -17.20059 -17.19505 -17.63315 0.0000 0.0000 -0.0028 ******* 3318 0.00050 0.0 1150.3 -17.20072 -17.20072 -17.19526 -17.63345 0.0000 0.0000 -0.0028 ******* 3319 0.00049 0.0 1133.5 -17.20084 -17.20084 -17.19546 -17.63375 0.0000 0.0000 -0.0028 ******* 3320 0.00049 0.0 1116.0 -17.20096 -17.20096 -17.19566 -17.63405 0.0000 0.0000 -0.0028 ******* 3321 0.00048 0.0 1098.0 -17.20108 -17.20108 -17.19586 -17.63434 0.0000 0.0000 -0.0027 ******* 3322 0.00047 0.0 1079.4 -17.20119 -17.20119 -17.19606 -17.63463 0.0000 0.0000 -0.0027 ******* 3323 0.00047 0.0 1060.2 -17.20129 -17.20129 -17.19625 -17.63491 0.0000 0.0000 -0.0027 ******* 3324 0.00046 0.0 1040.6 -17.20139 -17.20139 -17.19645 -17.63520 0.0000 0.0000 -0.0027 ******* 3325 0.00045 0.0 1020.5 -17.20149 -17.20149 -17.19664 -17.63547 0.0000 0.0000 -0.0027 ******* 3326 0.00045 0.0 1000.0 -17.20158 -17.20158 -17.19683 -17.63574 0.0000 0.0000 -0.0027 ******* 3327 0.00044 0.0 979.1 -17.20166 -17.20166 -17.19701 -17.63601 0.0000 0.0000 -0.0027 ******* 3328 0.00043 0.0 957.9 -17.20174 -17.20174 -17.19719 -17.63628 0.0000 0.0000 -0.0026 ******* 3329 0.00042 0.0 936.4 -17.20182 -17.20182 -17.19737 -17.63653 0.0000 0.0000 -0.0026 ******* * Physical Quantities at step: 3330 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20189 Hartree a.u. kinetic energy = 7.83780 Hartree a.u. electrostatic energy = -22.94500 Hartree a.u. esr = 0.11761 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40425 Hartree a.u. n-l pseudopotential energy = 4.50659 Hartree a.u. exchange-correlation energy = -4.19704 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.48 -12.07 -8.74 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.111864E+01 0.332875E+00 0.117219E+01 H 0.364488E+00 -0.130516E+01 -0.107185E+01 O -0.401002E+00 -0.415248E+00 0.380749E+00 ATOMIC_VELOCITIES H -0.755120E-03 0.335632E-03 0.120157E-02 H -0.133128E-02 -0.475490E-04 -0.731096E-03 O 0.131440E-03 -0.181488E-04 -0.296391E-04 Forces acting on atoms (au): H 0.641596E-02 -0.190106E-02 -0.179013E-01 H 0.158624E-01 -0.300339E-02 0.133271E-01 O 0.147545E-02 0.178304E-02 -0.112396E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 428.95 0.9677 2 56.75 0.0150 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3330 0.00042 0.0 914.7 -17.20189 -17.20189 -17.19755 -17.63679 0.0000 0.0000 -0.0026 ******* writing restart file: .//cp_91.save restart file written in 0.775 sec. 3331 0.00041 0.0 892.7 -17.20196 -17.20196 -17.19772 -17.63704 0.0000 0.0000 -0.0026 ******* 3332 0.00040 0.0 870.5 -17.20203 -17.20203 -17.19789 -17.63728 0.0000 0.0000 -0.0026 ******* 3333 0.00039 0.0 848.2 -17.20209 -17.20209 -17.19806 -17.63752 0.0000 0.0000 -0.0026 ******* 3334 0.00038 0.0 825.8 -17.20214 -17.20214 -17.19822 -17.63775 0.0000 0.0000 -0.0026 ******* 3335 0.00037 0.0 803.3 -17.20220 -17.20220 -17.19838 -17.63798 0.0000 0.0000 -0.0026 ******* 3336 0.00037 0.0 780.9 -17.20225 -17.20225 -17.19854 -17.63821 0.0000 0.0000 -0.0026 ******* 3337 0.00036 0.0 758.4 -17.20229 -17.20229 -17.19869 -17.63843 0.0000 0.0000 -0.0026 ******* 3338 0.00035 0.0 735.9 -17.20234 -17.20234 -17.19884 -17.63864 0.0000 0.0000 -0.0026 ******* 3339 0.00034 0.0 713.6 -17.20238 -17.20238 -17.19899 -17.63885 0.0000 0.0000 -0.0026 ******* 3340 0.00033 0.0 691.3 -17.20241 -17.20241 -17.19913 -17.63905 0.0000 0.0000 -0.0026 ******* in while: event_index 11 ======================================== EMPLOY RULES: CURRENT_NFI= 3341 event_index= 11 event_step== 3341 ======================================== RULE EVENT: isave 200 RULE EVENT: iprint 200 RULE EVENT: electron_damping 0.000000000000000E+000 in while after: event_index 12 3341 0.00032 0.0 669.2 -17.20245 -17.20245 -17.19927 -17.63925 0.0000 0.0000 -0.0026 ******* 3342 0.00031 0.0 647.2 -17.20248 -17.20248 -17.19940 -17.63944 0.0000 0.0000 -0.0026 ******* 3343 0.00030 0.0 625.5 -17.20251 -17.20251 -17.19953 -17.63963 0.0000 0.0000 -0.0027 ******* 3344 0.00030 0.0 603.9 -17.20253 -17.20253 -17.19966 -17.63982 0.0000 0.0000 -0.0027 ******* 3345 0.00029 0.0 582.6 -17.20255 -17.20255 -17.19979 -17.63999 0.0000 0.0000 -0.0027 ******* 3346 0.00028 0.0 561.6 -17.20257 -17.20257 -17.19991 -17.64017 0.0000 0.0000 -0.0027 ******* 3347 0.00027 0.0 540.8 -17.20259 -17.20259 -17.20002 -17.64033 0.0000 0.0000 -0.0027 ******* 3348 0.00026 0.0 520.4 -17.20261 -17.20261 -17.20014 -17.64050 0.0000 0.0000 -0.0027 ******* 3349 0.00025 0.0 500.2 -17.20262 -17.20262 -17.20025 -17.64065 0.0000 0.0000 -0.0027 ******* 3350 0.00025 0.0 480.4 -17.20263 -17.20263 -17.20035 -17.64081 0.0000 0.0000 -0.0028 ******* 3351 0.00024 0.0 460.9 -17.20264 -17.20264 -17.20045 -17.64095 0.0000 0.0000 -0.0028 ******* 3352 0.00023 0.0 441.8 -17.20265 -17.20265 -17.20055 -17.64110 0.0000 0.0000 -0.0028 ******* 3353 0.00022 0.0 423.1 -17.20266 -17.20266 -17.20065 -17.64123 0.0000 0.0000 -0.0028 ******* 3354 0.00021 0.0 404.8 -17.20266 -17.20266 -17.20074 -17.64137 0.0000 0.0000 -0.0028 ******* 3355 0.00021 0.0 386.8 -17.20267 -17.20267 -17.20083 -17.64150 0.0000 0.0000 -0.0029 ******* 3356 0.00020 0.0 369.3 -17.20267 -17.20267 -17.20092 -17.64162 0.0000 0.0000 -0.0029 ******* 3357 0.00019 0.0 352.1 -17.20267 -17.20267 -17.20100 -17.64174 0.0000 0.0000 -0.0029 ******* 3358 0.00018 0.0 335.4 -17.20267 -17.20267 -17.20108 -17.64186 0.0000 0.0000 -0.0029 ******* 3359 0.00018 0.0 319.1 -17.20267 -17.20267 -17.20115 -17.64197 0.0000 0.0000 -0.0030 ******* * Physical Quantities at step: 3360 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20267 Hartree a.u. kinetic energy = 7.83918 Hartree a.u. electrostatic energy = -22.94843 Hartree a.u. esr = 0.12063 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41015 Hartree a.u. n-l pseudopotential energy = 4.51628 Hartree a.u. exchange-correlation energy = -4.19955 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.43 -12.43 -8.43 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.105764E+01 0.358187E+00 0.125277E+01 H 0.266412E+00 -0.131057E+01 -0.111568E+01 O -0.390980E+00 -0.416502E+00 0.378433E+00 ATOMIC_VELOCITIES H -0.559062E-03 0.196688E-03 0.591459E-03 H -0.817388E-03 -0.325866E-04 -0.264266E-03 O 0.867144E-04 -0.103382E-04 -0.206127E-04 Forces acting on atoms (au): H 0.102501E-01 -0.513456E-02 -0.151071E-01 H 0.171742E-01 0.204082E-02 0.890509E-02 O -0.145074E-01 0.127063E-02 0.292762E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 139.26 0.8784 2 24.72 0.0136 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3360 0.00017 0.0 303.2 -17.20267 -17.20267 -17.20123 -17.64207 0.0000 0.0000 -0.0030 ******* writing restart file: .//cp_91.save restart file written in 0.778 sec. 3361 0.00016 0.0 287.8 -17.20266 -17.20266 -17.20129 -17.64218 0.0000 0.0000 -0.0030 ******* 3362 0.00016 0.0 272.8 -17.20266 -17.20266 -17.20136 -17.64227 0.0000 0.0000 -0.0031 ******* 3363 0.00015 0.0 258.2 -17.20265 -17.20265 -17.20142 -17.64237 0.0000 0.0000 -0.0031 ******* 3364 0.00014 0.0 244.0 -17.20264 -17.20264 -17.20149 -17.64246 0.0000 0.0000 -0.0031 ******* 3365 0.00014 0.0 230.3 -17.20264 -17.20264 -17.20154 -17.64254 0.0000 0.0000 -0.0032 ******* 3366 0.00013 0.0 217.0 -17.20263 -17.20263 -17.20160 -17.64262 0.0000 0.0000 -0.0032 ******* 3367 0.00012 0.0 204.1 -17.20262 -17.20262 -17.20165 -17.64270 0.0000 0.0000 -0.0032 ******* 3368 0.00012 0.0 191.7 -17.20261 -17.20261 -17.20170 -17.64278 0.0000 0.0000 -0.0033 ******* 3369 0.00011 0.0 179.7 -17.20260 -17.20260 -17.20175 -17.64285 0.0000 0.0000 -0.0033 ******* 3370 0.00011 0.0 168.1 -17.20260 -17.20260 -17.20180 -17.64292 0.0000 0.0000 -0.0033 ******* 3371 0.00010 0.0 157.0 -17.20259 -17.20259 -17.20184 -17.64298 0.0000 0.0000 -0.0034 ******* 3372 0.00010 0.0 146.3 -17.20258 -17.20258 -17.20188 -17.64304 0.0000 0.0000 -0.0034 ******* 3373 0.00009 0.0 136.0 -17.20257 -17.20257 -17.20192 -17.64310 0.0000 0.0000 -0.0035 ******* 3374 0.00009 0.0 126.1 -17.20256 -17.20256 -17.20196 -17.64315 0.0000 0.0000 -0.0035 ******* 3375 0.00008 0.0 116.6 -17.20255 -17.20255 -17.20199 -17.64321 0.0000 0.0000 -0.0035 ******* 3376 0.00008 0.0 107.5 -17.20254 -17.20254 -17.20203 -17.64326 0.0000 0.0000 -0.0036 ******* 3377 0.00007 0.0 98.9 -17.20253 -17.20253 -17.20206 -17.64330 0.0000 0.0000 -0.0036 ******* 3378 0.00007 0.0 90.6 -17.20252 -17.20252 -17.20209 -17.64335 0.0000 0.0000 -0.0037 ******* 3379 0.00006 0.0 82.8 -17.20251 -17.20251 -17.20211 -17.64339 0.0000 0.0000 -0.0037 ******* 3380 0.00006 0.0 75.3 -17.20250 -17.20250 -17.20214 -17.64343 0.0000 0.0000 -0.0038 ******* 3381 0.00006 0.0 68.3 -17.20249 -17.20249 -17.20217 -17.64346 0.0000 0.0000 -0.0038 ******* 3382 0.00005 0.0 61.6 -17.20248 -17.20248 -17.20219 -17.64350 0.0000 0.0000 -0.0038 ******* 3383 0.00005 0.0 55.3 -17.20247 -17.20247 -17.20221 -17.64353 0.0000 0.0000 -0.0039 ******* 3384 0.00005 0.0 49.3 -17.20246 -17.20246 -17.20223 -17.64356 0.0000 0.0000 -0.0039 ******* 3385 0.00004 0.0 43.8 -17.20246 -17.20246 -17.20225 -17.64358 0.0000 0.0000 -0.0040 ******* 3386 0.00004 0.0 38.6 -17.20245 -17.20245 -17.20227 -17.64361 0.0000 0.0000 -0.0040 ******* 3387 0.00004 0.0 33.8 -17.20244 -17.20244 -17.20228 -17.64363 0.0000 0.0000 -0.0041 ******* 3388 0.00003 0.0 29.3 -17.20244 -17.20244 -17.20230 -17.64365 0.0000 0.0000 -0.0041 ******* 3389 0.00003 0.0 25.2 -17.20243 -17.20243 -17.20231 -17.64367 0.0000 0.0000 -0.0042 ******* * Physical Quantities at step: 3390 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20243 Hartree a.u. kinetic energy = 7.84893 Hartree a.u. electrostatic energy = -22.95038 Hartree a.u. esr = 0.12549 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42154 Hartree a.u. n-l pseudopotential energy = 4.52475 Hartree a.u. exchange-correlation energy = -4.20418 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.44 -12.61 -8.30 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.102391E+01 0.367856E+00 0.128326E+01 H 0.219506E+00 -0.130948E+01 -0.112693E+01 O -0.385900E+00 -0.417180E+00 0.377221E+00 ATOMIC_VELOCITIES H -0.172968E-03 0.282337E-04 0.118631E-03 H -0.227545E-03 0.495092E-04 -0.304784E-04 O 0.252318E-04 -0.489769E-05 -0.555348E-05 Forces acting on atoms (au): H 0.100692E-01 -0.306478E-02 -0.870962E-02 H 0.135883E-01 0.763247E-03 0.253645E-02 O -0.203008E-01 0.179830E-02 0.598321E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 9.67 0.8395 2 2.12 0.0130 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3390 0.00003 0.0 21.5 -17.20243 -17.20243 -17.20232 -17.64369 0.0000 0.0000 -0.0042 ******* writing restart file: .//cp_91.save restart file written in 0.796 sec. 3391 0.00003 0.0 18.0 -17.20242 -17.20242 -17.20234 -17.64371 0.0000 0.0000 -0.0043 ******* 3392 0.00002 0.0 14.9 -17.20242 -17.20242 -17.20235 -17.64372 0.0000 0.0000 -0.0043 ******* 3393 0.00002 0.0 12.2 -17.20242 -17.20242 -17.20236 -17.64374 0.0000 0.0000 -0.0043 ******* 3394 0.00002 0.0 9.8 -17.20241 -17.20241 -17.20237 -17.64375 0.0000 0.0000 -0.0044 ******* 3395 0.00002 0.0 7.6 -17.20241 -17.20241 -17.20238 -17.64376 0.0000 0.0000 -0.0044 ******* 3396 0.00002 0.0 5.8 -17.20241 -17.20241 -17.20238 -17.64377 0.0000 0.0000 -0.0045 ******* 3397 0.00001 0.0 4.3 -17.20241 -17.20241 -17.20239 -17.64378 0.0000 0.0000 -0.0045 ******* 3398 0.00001 0.0 3.1 -17.20241 -17.20241 -17.20240 -17.64379 0.0000 0.0000 -0.0046 ******* 3399 0.00001 0.0 2.2 -17.20241 -17.20241 -17.20240 -17.64380 0.0000 0.0000 -0.0046 ******* 3400 0.00001 0.0 1.6 -17.20241 -17.20241 -17.20240 -17.64380 0.0000 0.0000 -0.0047 ******* 3401 0.00001 0.0 1.3 -17.20241 -17.20241 -17.20241 -17.64381 0.0000 0.0000 -0.0047 ******* 3402 0.00001 0.0 1.2 -17.20242 -17.20242 -17.20241 -17.64381 0.0000 0.0000 -0.0048 ******* 3403 0.00001 0.0 1.4 -17.20242 -17.20242 -17.20241 -17.64382 0.0000 0.0000 -0.0048 ******* 3404 0.00000 0.0 1.9 -17.20243 -17.20243 -17.20242 -17.64382 0.0000 0.0000 -0.0049 ******* 3405 0.00000 0.0 2.6 -17.20243 -17.20243 -17.20242 -17.64382 0.0000 0.0000 -0.0049 ******* 3406 0.00000 0.0 3.6 -17.20244 -17.20244 -17.20242 -17.64383 0.0000 0.0000 -0.0050 ******* 3407 0.00000 0.0 4.8 -17.20244 -17.20244 -17.20242 -17.64383 0.0000 0.0000 -0.0050 ******* 3408 0.00000 0.0 6.2 -17.20245 -17.20245 -17.20242 -17.64383 0.0000 0.0000 -0.0051 ******* 3409 0.00000 0.0 7.9 -17.20246 -17.20246 -17.20242 -17.64383 0.0000 0.0000 -0.0051 ******* 3410 0.00000 0.0 9.8 -17.20247 -17.20247 -17.20242 -17.64383 0.0000 0.0000 -0.0052 ******* 3411 0.00000 0.0 11.9 -17.20248 -17.20248 -17.20242 -17.64383 0.0000 0.0000 -0.0052 ******* 3412 0.00000 0.0 14.2 -17.20249 -17.20249 -17.20242 -17.64383 0.0000 0.0000 -0.0053 ******* 3413 0.00000 0.0 16.6 -17.20250 -17.20250 -17.20242 -17.64383 0.0000 0.0000 -0.0053 ******* 3414 0.00000 0.0 19.3 -17.20251 -17.20251 -17.20242 -17.64383 0.0000 0.0000 -0.0053 ******* 3415 0.00000 0.0 22.2 -17.20252 -17.20252 -17.20241 -17.64384 0.0000 0.0000 -0.0054 ******* 3416 0.00000 0.0 25.2 -17.20253 -17.20253 -17.20241 -17.64384 0.0000 0.0000 -0.0054 ******* 3417 0.00000 0.0 28.4 -17.20254 -17.20254 -17.20241 -17.64384 0.0000 0.0000 -0.0055 ******* 3418 0.00000 0.0 31.7 -17.20256 -17.20256 -17.20241 -17.64384 0.0000 0.0000 -0.0055 ******* 3419 0.00000 0.0 35.2 -17.20257 -17.20257 -17.20240 -17.64384 0.0000 0.0000 -0.0056 ******* * Physical Quantities at step: 3420 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20258 Hartree a.u. kinetic energy = 7.85456 Hartree a.u. electrostatic energy = -22.95181 Hartree a.u. esr = 0.12656 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42506 Hartree a.u. n-l pseudopotential energy = 4.52594 Hartree a.u. exchange-correlation energy = -4.20621 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.44 -12.58 -8.31 -6.52 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.102611E+01 0.364685E+00 0.127855E+01 H 0.222983E+00 -0.130273E+01 -0.112616E+01 O -0.386258E+00 -0.417405E+00 0.377469E+00 ATOMIC_VELOCITIES H 0.202251E-03 -0.957575E-04 -0.208269E-03 H 0.281327E-03 0.100757E-03 0.404842E-04 O -0.304648E-04 -0.314936E-06 0.105702E-04 Forces acting on atoms (au): H 0.396540E-02 -0.144594E-02 -0.367008E-02 H 0.573536E-02 0.155128E-03 0.101195E-02 O -0.122386E-01 0.119579E-02 0.380872E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 17.83 0.8368 2 3.19 0.0129 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3420 0.00000 0.0 38.9 -17.20258 -17.20258 -17.20240 -17.64384 0.0000 0.0000 -0.0056 ******* writing restart file: .//cp_91.save restart file written in 0.783 sec. 3421 0.00000 0.0 42.6 -17.20260 -17.20260 -17.20240 -17.64385 0.0000 0.0000 -0.0057 ******* 3422 0.00001 0.0 46.5 -17.20261 -17.20261 -17.20239 -17.64385 0.0000 0.0000 -0.0057 ******* 3423 0.00001 0.0 50.5 -17.20263 -17.20263 -17.20239 -17.64385 0.0000 0.0000 -0.0058 ******* 3424 0.00001 0.0 54.7 -17.20265 -17.20265 -17.20239 -17.64386 0.0000 0.0000 -0.0058 ******* 3425 0.00001 0.0 58.9 -17.20266 -17.20266 -17.20238 -17.64386 0.0000 0.0000 -0.0059 ******* 3426 0.00001 0.0 63.2 -17.20268 -17.20268 -17.20238 -17.64387 0.0000 0.0000 -0.0059 ******* 3427 0.00001 0.0 67.6 -17.20269 -17.20269 -17.20237 -17.64387 0.0000 0.0000 -0.0059 ******* 3428 0.00001 0.0 72.1 -17.20271 -17.20271 -17.20237 -17.64388 0.0000 0.0000 -0.0060 ******* 3429 0.00001 0.0 76.7 -17.20273 -17.20273 -17.20236 -17.64388 0.0000 0.0000 -0.0060 ******* 3430 0.00001 0.0 81.3 -17.20275 -17.20275 -17.20236 -17.64389 0.0000 0.0000 -0.0061 ******* 3431 0.00002 0.0 86.0 -17.20276 -17.20276 -17.20235 -17.64390 0.0000 0.0000 -0.0061 ******* 3432 0.00002 0.0 90.7 -17.20278 -17.20278 -17.20235 -17.64391 0.0000 0.0000 -0.0062 ******* 3433 0.00002 0.0 95.5 -17.20280 -17.20280 -17.20234 -17.64392 0.0000 0.0000 -0.0062 ******* 3434 0.00002 0.0 100.3 -17.20282 -17.20282 -17.20234 -17.64393 0.0000 0.0000 -0.0062 ******* 3435 0.00002 0.0 105.2 -17.20283 -17.20283 -17.20233 -17.64394 0.0000 0.0000 -0.0063 ******* 3436 0.00002 0.0 110.0 -17.20285 -17.20285 -17.20233 -17.64396 0.0000 0.0000 -0.0063 ******* 3437 0.00002 0.0 114.9 -17.20287 -17.20287 -17.20232 -17.64397 0.0000 0.0000 -0.0064 ******* 3438 0.00003 0.0 119.8 -17.20289 -17.20289 -17.20232 -17.64398 0.0000 0.0000 -0.0064 ******* 3439 0.00003 0.0 124.7 -17.20290 -17.20290 -17.20231 -17.64400 0.0000 0.0000 -0.0064 ******* 3440 0.00003 0.0 129.5 -17.20292 -17.20292 -17.20231 -17.64401 0.0000 0.0000 -0.0065 ******* 3441 0.00003 0.0 134.4 -17.20294 -17.20294 -17.20230 -17.64403 0.0000 0.0000 -0.0065 ******* 3442 0.00003 0.0 139.2 -17.20296 -17.20296 -17.20230 -17.64405 0.0000 0.0000 -0.0066 ******* 3443 0.00003 0.0 144.0 -17.20297 -17.20297 -17.20229 -17.64407 0.0000 0.0000 -0.0066 ******* 3444 0.00004 0.0 148.8 -17.20299 -17.20299 -17.20228 -17.64409 0.0000 0.0000 -0.0066 ******* 3445 0.00004 0.0 153.5 -17.20301 -17.20301 -17.20228 -17.64411 0.0000 0.0000 -0.0067 ******* 3446 0.00004 0.0 158.2 -17.20302 -17.20302 -17.20227 -17.64413 0.0000 0.0000 -0.0067 ******* 3447 0.00004 0.0 162.8 -17.20304 -17.20304 -17.20227 -17.64415 0.0000 0.0000 -0.0068 ******* 3448 0.00004 0.0 167.4 -17.20305 -17.20305 -17.20226 -17.64418 0.0000 0.0000 -0.0068 ******* 3449 0.00004 0.0 171.8 -17.20307 -17.20307 -17.20225 -17.64420 0.0000 0.0000 -0.0068 ******* * Physical Quantities at step: 3450 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20308 Hartree a.u. kinetic energy = 7.85238 Hartree a.u. electrostatic energy = -22.95002 Hartree a.u. esr = 0.12436 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42151 Hartree a.u. n-l pseudopotential energy = 4.52063 Hartree a.u. exchange-correlation energy = -4.20457 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.46 -12.41 -8.44 -6.52 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.105507E+01 0.350815E+00 0.124784E+01 H 0.264611E+00 -0.129054E+01 -0.111863E+01 O -0.390705E+00 -0.417300E+00 0.378930E+00 ATOMIC_VELOCITIES H 0.408560E-03 -0.209086E-03 -0.459976E-03 H 0.607290E-03 0.173702E-03 0.135494E-03 O -0.639972E-04 0.222917E-05 0.204419E-04 Forces acting on atoms (au): H -0.337652E-02 0.666798E-03 0.184125E-02 H -0.378581E-02 -0.613529E-03 0.762163E-03 O -0.106413E-02 0.122957E-03 -0.107795E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 81.19 0.8610 2 13.87 0.0134 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3450 0.00005 0.0 176.2 -17.20308 -17.20308 -17.20225 -17.64423 0.0000 0.0000 -0.0069 ******* writing restart file: .//cp_91.save restart file written in 0.775 sec. 3451 0.00005 0.0 180.6 -17.20310 -17.20310 -17.20224 -17.64426 0.0000 0.0000 -0.0069 ******* 3452 0.00005 0.0 184.8 -17.20311 -17.20311 -17.20223 -17.64429 0.0000 0.0000 -0.0069 ******* 3453 0.00005 0.0 188.9 -17.20312 -17.20312 -17.20223 -17.64431 0.0000 0.0000 -0.0070 ******* 3454 0.00005 0.0 193.0 -17.20314 -17.20314 -17.20222 -17.64434 0.0000 0.0000 -0.0070 ******* 3455 0.00005 0.0 196.9 -17.20315 -17.20315 -17.20221 -17.64438 0.0000 0.0000 -0.0071 ******* 3456 0.00005 0.0 200.7 -17.20316 -17.20316 -17.20221 -17.64441 0.0000 0.0000 -0.0071 ******* 3457 0.00006 0.0 204.4 -17.20317 -17.20317 -17.20220 -17.64444 0.0000 0.0000 -0.0071 ******* 3458 0.00006 0.0 207.9 -17.20318 -17.20318 -17.20219 -17.64447 0.0000 0.0000 -0.0072 ******* 3459 0.00006 0.0 211.3 -17.20319 -17.20319 -17.20219 -17.64451 0.0000 0.0000 -0.0072 ******* 3460 0.00006 0.0 214.6 -17.20320 -17.20320 -17.20218 -17.64454 0.0000 0.0000 -0.0072 ******* 3461 0.00006 0.0 217.7 -17.20321 -17.20321 -17.20217 -17.64458 0.0000 0.0000 -0.0073 ******* 3462 0.00006 0.0 220.7 -17.20322 -17.20322 -17.20217 -17.64462 0.0000 0.0000 -0.0073 ******* 3463 0.00007 0.0 223.5 -17.20322 -17.20322 -17.20216 -17.64466 0.0000 0.0000 -0.0073 ******* 3464 0.00007 0.0 226.1 -17.20323 -17.20323 -17.20215 -17.64470 0.0000 0.0000 -0.0074 ******* 3465 0.00007 0.0 228.6 -17.20323 -17.20323 -17.20215 -17.64474 0.0000 0.0000 -0.0074 ******* 3466 0.00007 0.0 230.9 -17.20323 -17.20323 -17.20214 -17.64477 0.0000 0.0000 -0.0074 ******* 3467 0.00007 0.0 233.1 -17.20324 -17.20324 -17.20213 -17.64481 0.0000 0.0000 -0.0075 ******* 3468 0.00007 0.0 235.0 -17.20324 -17.20324 -17.20212 -17.64486 0.0000 0.0000 -0.0075 ******* 3469 0.00007 0.0 236.8 -17.20324 -17.20324 -17.20212 -17.64490 0.0000 0.0000 -0.0075 ******* 3470 0.00007 0.0 238.4 -17.20324 -17.20324 -17.20211 -17.64494 0.0000 0.0000 -0.0076 ******* 3471 0.00007 0.0 239.7 -17.20324 -17.20324 -17.20210 -17.64499 0.0000 0.0000 -0.0076 ******* 3472 0.00008 0.0 240.9 -17.20324 -17.20324 -17.20210 -17.64503 0.0000 0.0000 -0.0076 ******* 3473 0.00008 0.0 241.9 -17.20324 -17.20324 -17.20209 -17.64508 0.0000 0.0000 -0.0077 ******* 3474 0.00008 0.0 242.7 -17.20324 -17.20324 -17.20209 -17.64512 0.0000 0.0000 -0.0077 ******* 3475 0.00008 0.0 243.3 -17.20323 -17.20323 -17.20208 -17.64517 0.0000 0.0000 -0.0077 ******* 3476 0.00008 0.0 243.6 -17.20323 -17.20323 -17.20207 -17.64522 0.0000 0.0000 -0.0078 ******* 3477 0.00008 0.0 243.8 -17.20323 -17.20323 -17.20207 -17.64526 0.0000 0.0000 -0.0078 ******* 3478 0.00008 0.0 243.7 -17.20322 -17.20322 -17.20206 -17.64531 0.0000 0.0000 -0.0078 ******* 3479 0.00008 0.0 243.5 -17.20321 -17.20321 -17.20206 -17.64536 0.0000 0.0000 -0.0079 ******* * Physical Quantities at step: 3480 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20321 Hartree a.u. kinetic energy = 7.85044 Hartree a.u. electrostatic energy = -22.94575 Hartree a.u. esr = 0.12256 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41922 Hartree a.u. n-l pseudopotential energy = 4.51398 Hartree a.u. exchange-correlation energy = -4.20265 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.52 -12.19 -8.66 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.109426E+01 0.328878E+00 0.119994E+01 H 0.325162E+00 -0.127222E+01 -0.110186E+01 O -0.396988E+00 -0.417072E+00 0.380891E+00 ATOMIC_VELOCITIES H 0.436084E-03 -0.260796E-03 -0.570953E-03 H 0.696427E-03 0.219999E-03 0.224391E-03 O -0.713466E-04 0.257015E-05 0.218329E-04 Forces acting on atoms (au): H -0.797874E-02 0.396907E-02 0.845786E-02 H -0.115570E-01 -0.319845E-02 -0.223748E-02 O 0.762440E-02 -0.229445E-03 -0.252247E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 112.94 0.9032 2 17.11 0.0141 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3480 0.00008 0.0 243.0 -17.20321 -17.20321 -17.20205 -17.64541 0.0000 0.0000 -0.0079 ******* writing restart file: .//cp_91.save restart file written in 0.804 sec. 3481 0.00008 0.0 242.3 -17.20320 -17.20320 -17.20205 -17.64546 0.0000 0.0000 -0.0079 ******* 3482 0.00008 0.0 241.4 -17.20319 -17.20319 -17.20204 -17.64551 0.0000 0.0000 -0.0080 ******* 3483 0.00008 0.0 240.3 -17.20318 -17.20318 -17.20204 -17.64556 0.0000 0.0000 -0.0080 ******* 3484 0.00008 0.0 238.9 -17.20317 -17.20317 -17.20203 -17.64561 0.0000 0.0000 -0.0080 ******* 3485 0.00008 0.0 237.4 -17.20315 -17.20315 -17.20203 -17.64566 0.0000 0.0000 -0.0081 ******* 3486 0.00008 0.0 235.6 -17.20314 -17.20314 -17.20202 -17.64571 0.0000 0.0000 -0.0081 ******* 3487 0.00008 0.0 233.7 -17.20313 -17.20313 -17.20202 -17.64576 0.0000 0.0000 -0.0081 ******* 3488 0.00008 0.0 231.5 -17.20311 -17.20311 -17.20201 -17.64581 0.0000 0.0000 -0.0082 ******* 3489 0.00008 0.0 229.1 -17.20310 -17.20310 -17.20201 -17.64586 0.0000 0.0000 -0.0082 ******* 3490 0.00008 0.0 226.6 -17.20308 -17.20308 -17.20201 -17.64591 0.0000 0.0000 -0.0083 ******* 3491 0.00008 0.0 223.8 -17.20307 -17.20307 -17.20200 -17.64596 0.0000 0.0000 -0.0083 ******* 3492 0.00008 0.0 220.8 -17.20305 -17.20305 -17.20200 -17.64601 0.0000 0.0000 -0.0083 ******* 3493 0.00008 0.0 217.7 -17.20303 -17.20303 -17.20200 -17.64606 0.0000 0.0000 -0.0084 ******* 3494 0.00008 0.0 214.3 -17.20302 -17.20302 -17.20200 -17.64611 0.0000 0.0000 -0.0084 ******* 3495 0.00008 0.0 210.8 -17.20300 -17.20300 -17.20200 -17.64616 0.0000 0.0000 -0.0084 ******* 3496 0.00008 0.0 207.1 -17.20298 -17.20298 -17.20199 -17.64621 0.0000 0.0000 -0.0085 ******* 3497 0.00008 0.0 203.2 -17.20296 -17.20296 -17.20199 -17.64626 0.0000 0.0000 -0.0085 ******* 3498 0.00008 0.0 199.2 -17.20294 -17.20294 -17.20199 -17.64631 0.0000 0.0000 -0.0085 ******* 3499 0.00008 0.0 195.0 -17.20292 -17.20292 -17.20199 -17.64635 0.0000 0.0000 -0.0086 ******* 3500 0.00008 0.0 190.7 -17.20289 -17.20289 -17.20199 -17.64640 0.0000 0.0000 -0.0086 ******* 3501 0.00008 0.0 186.2 -17.20287 -17.20287 -17.20199 -17.64645 0.0000 0.0000 -0.0086 ******* 3502 0.00008 0.0 181.6 -17.20285 -17.20285 -17.20199 -17.64649 0.0000 0.0000 -0.0087 ******* 3503 0.00007 0.0 176.9 -17.20283 -17.20283 -17.20199 -17.64654 0.0000 0.0000 -0.0087 ******* 3504 0.00007 0.0 172.1 -17.20281 -17.20281 -17.20199 -17.64658 0.0000 0.0000 -0.0088 ******* 3505 0.00007 0.0 167.1 -17.20278 -17.20278 -17.20199 -17.64663 0.0000 0.0000 -0.0088 ******* 3506 0.00007 0.0 162.1 -17.20276 -17.20276 -17.20199 -17.64667 0.0000 0.0000 -0.0088 ******* 3507 0.00007 0.0 156.9 -17.20274 -17.20274 -17.20199 -17.64671 0.0000 0.0000 -0.0089 ******* 3508 0.00007 0.0 151.7 -17.20271 -17.20271 -17.20199 -17.64676 0.0000 0.0000 -0.0089 ******* 3509 0.00007 0.0 146.4 -17.20269 -17.20269 -17.20199 -17.64680 0.0000 0.0000 -0.0089 ******* * Physical Quantities at step: 3510 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20267 Hartree a.u. kinetic energy = 7.85033 Hartree a.u. electrostatic energy = -22.94212 Hartree a.u. esr = 0.12134 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41779 Hartree a.u. n-l pseudopotential energy = 4.50830 Hartree a.u. exchange-correlation energy = -4.20138 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.58 -11.97 -8.86 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.112931E+01 0.307880E+00 0.115219E+01 H 0.382308E+00 -0.125443E+01 -0.108200E+01 O -0.402796E+00 -0.416869E+00 0.382648E+00 ATOMIC_VELOCITIES H 0.319676E-03 -0.181802E-03 -0.448746E-03 H 0.530875E-03 0.153285E-03 0.193249E-03 O -0.535835E-04 0.179654E-05 0.160960E-04 Forces acting on atoms (au): H -0.962659E-02 0.608839E-02 0.125578E-01 H -0.152805E-01 -0.518092E-02 -0.504366E-02 O 0.149774E-01 -0.422202E-03 -0.445748E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 65.69 0.9503 2 9.62 0.0149 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3510 0.00007 0.0 141.0 -17.20267 -17.20267 -17.20200 -17.64684 0.0000 0.0000 -0.0090 ******* writing restart file: .//cp_91.save restart file written in 0.828 sec. 3511 0.00006 0.0 135.6 -17.20264 -17.20264 -17.20200 -17.64688 0.0000 0.0000 -0.0090 ******* 3512 0.00006 0.0 130.1 -17.20262 -17.20262 -17.20200 -17.64691 0.0000 0.0000 -0.0091 ******* 3513 0.00006 0.0 124.6 -17.20260 -17.20260 -17.20200 -17.64695 0.0000 0.0000 -0.0091 ******* 3514 0.00006 0.0 119.1 -17.20257 -17.20257 -17.20201 -17.64699 0.0000 0.0000 -0.0091 ******* 3515 0.00006 0.0 113.6 -17.20255 -17.20255 -17.20201 -17.64702 0.0000 0.0000 -0.0092 ******* 3516 0.00006 0.0 108.1 -17.20253 -17.20253 -17.20201 -17.64706 0.0000 0.0000 -0.0092 ******* 3517 0.00005 0.0 102.6 -17.20250 -17.20250 -17.20202 -17.64709 0.0000 0.0000 -0.0093 ******* 3518 0.00005 0.0 97.1 -17.20248 -17.20248 -17.20202 -17.64712 0.0000 0.0000 -0.0093 ******* 3519 0.00005 0.0 91.6 -17.20246 -17.20246 -17.20203 -17.64715 0.0000 0.0000 -0.0094 ******* 3520 0.00005 0.0 86.3 -17.20244 -17.20244 -17.20203 -17.64719 0.0000 0.0000 -0.0094 ******* 3521 0.00005 0.0 80.9 -17.20242 -17.20242 -17.20203 -17.64721 0.0000 0.0000 -0.0094 ******* 3522 0.00004 0.0 75.6 -17.20240 -17.20240 -17.20204 -17.64724 0.0000 0.0000 -0.0095 ******* 3523 0.00004 0.0 70.5 -17.20238 -17.20238 -17.20204 -17.64727 0.0000 0.0000 -0.0095 ******* 3524 0.00004 0.0 65.4 -17.20236 -17.20236 -17.20205 -17.64729 0.0000 0.0000 -0.0096 ******* 3525 0.00004 0.0 60.4 -17.20234 -17.20234 -17.20206 -17.64732 0.0000 0.0000 -0.0096 ******* 3526 0.00004 0.0 55.5 -17.20233 -17.20233 -17.20206 -17.64734 0.0000 0.0000 -0.0097 ******* 3527 0.00004 0.0 50.8 -17.20231 -17.20231 -17.20207 -17.64736 0.0000 0.0000 -0.0097 ******* 3528 0.00003 0.0 46.2 -17.20229 -17.20229 -17.20207 -17.64739 0.0000 0.0000 -0.0097 ******* 3529 0.00003 0.0 41.8 -17.20228 -17.20228 -17.20208 -17.64741 0.0000 0.0000 -0.0098 ******* 3530 0.00003 0.0 37.6 -17.20226 -17.20226 -17.20208 -17.64742 0.0000 0.0000 -0.0098 ******* 3531 0.00003 0.0 33.5 -17.20225 -17.20225 -17.20209 -17.64744 0.0000 0.0000 -0.0099 ******* 3532 0.00003 0.0 29.6 -17.20224 -17.20224 -17.20210 -17.64746 0.0000 0.0000 -0.0099 ******* 3533 0.00002 0.0 25.9 -17.20223 -17.20223 -17.20210 -17.64747 0.0000 0.0000 -0.0100 ******* 3534 0.00002 0.0 22.5 -17.20221 -17.20221 -17.20211 -17.64749 0.0000 0.0000 -0.0100 ******* 3535 0.00002 0.0 19.3 -17.20221 -17.20221 -17.20211 -17.64750 0.0000 0.0000 -0.0101 ******* 3536 0.00002 0.0 16.3 -17.20220 -17.20220 -17.20212 -17.64751 0.0000 0.0000 -0.0101 ******* 3537 0.00002 0.0 13.6 -17.20219 -17.20219 -17.20212 -17.64753 0.0000 0.0000 -0.0102 ******* 3538 0.00002 0.0 11.1 -17.20218 -17.20218 -17.20213 -17.64754 0.0000 0.0000 -0.0102 ******* 3539 0.00001 0.0 8.9 -17.20218 -17.20218 -17.20214 -17.64755 0.0000 0.0000 -0.0103 ******* * Physical Quantities at step: 3540 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20217 Hartree a.u. kinetic energy = 7.84828 Hartree a.u. electrostatic energy = -22.94068 Hartree a.u. esr = 0.11989 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41452 Hartree a.u. n-l pseudopotential energy = 4.50464 Hartree a.u. exchange-correlation energy = -4.19990 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.59 -11.85 -8.96 -6.56 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.114761E+01 0.300118E+00 0.112589E+01 H 0.413389E+00 -0.124813E+01 -0.107049E+01 O -0.405907E+00 -0.416777E+00 0.383580E+00 ATOMIC_VELOCITIES H 0.636983E-04 0.282244E-04 -0.104568E-03 H 0.121943E-03 -0.288876E-04 0.504244E-04 O -0.116952E-04 0.417853E-07 0.341099E-05 Forces acting on atoms (au): H -0.800295E-02 0.483932E-02 0.108000E-01 H -0.130499E-01 -0.403963E-02 -0.442135E-02 O 0.181293E-01 -0.755372E-03 -0.568228E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 3.29 0.9794 2 0.46 0.0153 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3540 0.00001 0.0 7.0 -17.20217 -17.20217 -17.20214 -17.64755 0.0000 0.0000 -0.0103 ******* writing restart file: .//cp_91.save restart file written in 0.775 sec. in while: event_index 12 ======================================== EMPLOY RULES: CURRENT_NFI= 3541 event_index= 12 event_step== 3541 ======================================== RULE EVENT: isave 50 RULE EVENT: iprint 50 RULE EVENT: ion_dynamics NONE RULE EVENT: ion_temperature NOT_CONTROLLED in while after: event_index 13 3541 0.00001 0.0 0.0 -17.20213 -17.20213 -17.20213 -17.20212 0.0000 0.0000 -0.0104 ******* 3542 0.00001 0.0 0.0 -17.20213 -17.20213 -17.20213 -17.20212 0.0000 0.0000 -0.0104 ******* 3543 0.00001 0.0 0.0 -17.20214 -17.20214 -17.20214 -17.20213 0.0000 0.0000 -0.0104 ******* 3544 0.00001 0.0 0.0 -17.20214 -17.20214 -17.20214 -17.20213 0.0000 0.0000 -0.0104 ******* 3545 0.00001 0.0 0.0 -17.20214 -17.20214 -17.20214 -17.20214 0.0000 0.0000 -0.0104 ******* 3546 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20214 0.0000 0.0000 -0.0104 ******* 3547 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20214 0.0000 0.0000 -0.0104 ******* 3548 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3549 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3550 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3551 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3552 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3553 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3554 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3555 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3556 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3557 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3558 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3559 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3560 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3561 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3562 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3563 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3564 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3565 0.00000 0.0 0.0 -17.20215 -17.20215 -17.20215 -17.20215 0.0000 0.0000 -0.0104 ******* 3566 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20215 0.0000 0.0000 -0.0104 ******* 3567 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20215 0.0000 0.0000 -0.0104 ******* 3568 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3569 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* * Physical Quantities at step: 3570 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20216 Hartree a.u. kinetic energy = 7.84720 Hartree a.u. electrostatic energy = -22.94025 Hartree a.u. esr = 0.11989 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41412 Hartree a.u. n-l pseudopotential energy = 4.50453 Hartree a.u. exchange-correlation energy = -4.19951 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.60 -11.86 -8.97 -6.56 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.114778E+01 0.300216E+00 0.112560E+01 H 0.413729E+00 -0.124823E+01 -0.107035E+01 O -0.405940E+00 -0.416777E+00 0.383589E+00 ATOMIC_VELOCITIES H 0.522209E-04 0.370553E-04 -0.900147E-04 H 0.103989E-03 -0.364113E-04 0.448201E-04 O -0.104862E-04 -0.306203E-07 0.300122E-05 Forces acting on atoms (au): H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 O 0.000000E+00 0.000000E+00 0.000000E+00 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.9797 2 0.00 0.0153 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3570 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* writing restart file: .//cp_91.save restart file written in 0.852 sec. 3571 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3572 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3573 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3574 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3575 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3576 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3577 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3578 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3579 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3580 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3581 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3582 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3583 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3584 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3585 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3586 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3587 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3588 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3589 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* 3590 0.00000 0.0 0.0 -17.20216 -17.20216 -17.20216 -17.20216 0.0000 0.0000 -0.0104 ******* in while: event_index 13 ======================================== EMPLOY RULES: CURRENT_NFI= 3591 event_index= 13 event_step== 3591 ======================================== RULE EVENT: isave 2000 RULE EVENT: iprint 2000 RULE EVENT: ion_dynamics DAMP RULE EVENT: ion_temperature NOSE in while after: event_index 14 3591 0.00000 0.0 5.7 -17.20220 -17.20220 -17.20217 -17.64760 0.0000 0.0000 -0.0104 ******* 3592 0.00000 0.0 4.8 -17.20219 -17.20219 -17.20217 -17.64760 0.0000 0.0000 -0.0104 ******* 3593 0.00000 0.0 4.1 -17.20219 -17.20219 -17.20217 -17.64760 0.0000 0.0000 -0.0105 ******* 3594 0.00000 0.0 3.5 -17.20218 -17.20218 -17.20217 -17.64760 0.0000 0.0000 -0.0105 ******* 3595 0.00000 0.0 3.2 -17.20218 -17.20218 -17.20217 -17.64760 0.0000 0.0000 -0.0105 ******* 3596 0.00000 0.0 3.1 -17.20218 -17.20218 -17.20217 -17.64760 0.0000 0.0000 -0.0106 ******* 3597 0.00000 0.0 3.3 -17.20218 -17.20218 -17.20217 -17.64760 0.0000 0.0000 -0.0106 ******* 3598 0.00000 0.0 3.8 -17.20218 -17.20218 -17.20216 -17.64760 0.0000 0.0000 -0.0107 ******* 3599 0.00000 0.0 4.6 -17.20219 -17.20219 -17.20216 -17.64760 0.0000 0.0000 -0.0107 ******* * Physical Quantities at step: 3600 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20219 Hartree a.u. kinetic energy = 7.84700 Hartree a.u. electrostatic energy = -22.94094 Hartree a.u. esr = 0.11942 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41316 Hartree a.u. n-l pseudopotential energy = 4.50427 Hartree a.u. exchange-correlation energy = -4.19936 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.58 -11.85 -8.96 -6.56 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.114819E+01 0.302352E+00 0.112457E+01 H 0.414906E+00 -0.125021E+01 -0.106972E+01 O -0.406039E+00 -0.416788E+00 0.383614E+00 ATOMIC_VELOCITIES H -0.302083E-04 0.122624E-03 0.213507E-04 H -0.282516E-04 -0.110506E-03 0.324555E-06 O 0.368289E-05 -0.763393E-06 -0.136551E-05 Forces acting on atoms (au): H -0.618786E-02 0.364068E-02 0.829355E-02 H -0.101330E-01 -0.298786E-02 -0.329935E-02 O 0.169210E-01 -0.742802E-03 -0.535798E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2.84 0.9810 2 0.05 0.0153 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3600 0.00000 0.0 5.7 -17.20219 -17.20219 -17.20216 -17.64760 0.0000 0.0000 -0.0108 ******* writing restart file: .//cp_91.save restart file written in 0.777 sec. 3601 0.00000 0.0 7.2 -17.20219 -17.20219 -17.20216 -17.64760 0.0000 0.0000 -0.0108 ******* 3602 0.00000 0.0 9.1 -17.20220 -17.20220 -17.20216 -17.64760 0.0000 0.0000 -0.0109 ******* 3603 0.00000 0.0 11.4 -17.20221 -17.20221 -17.20216 -17.64760 0.0000 0.0000 -0.0109 ******* 3604 0.00000 0.0 14.1 -17.20222 -17.20222 -17.20215 -17.64760 0.0000 0.0000 -0.0110 ******* 3605 0.00000 0.0 17.2 -17.20223 -17.20223 -17.20215 -17.64760 0.0000 0.0000 -0.0110 ******* 3606 0.00000 0.0 20.8 -17.20224 -17.20224 -17.20214 -17.64760 0.0000 0.0000 -0.0111 ******* 3607 0.00000 0.0 24.8 -17.20225 -17.20225 -17.20214 -17.64760 0.0000 0.0000 -0.0111 ******* 3608 0.00000 0.0 29.3 -17.20227 -17.20227 -17.20213 -17.64761 0.0000 0.0000 -0.0112 ******* 3609 0.00000 0.0 34.3 -17.20228 -17.20228 -17.20212 -17.64761 0.0000 0.0000 -0.0112 ******* 3610 0.00000 0.0 39.8 -17.20230 -17.20230 -17.20211 -17.64761 0.0000 0.0000 -0.0113 ******* 3611 0.00000 0.0 45.8 -17.20232 -17.20232 -17.20210 -17.64761 0.0000 0.0000 -0.0113 ******* 3612 0.00000 0.0 52.3 -17.20233 -17.20233 -17.20209 -17.64761 0.0000 0.0000 -0.0113 ******* 3613 0.00001 0.0 59.3 -17.20235 -17.20235 -17.20207 -17.64761 0.0000 0.0000 -0.0114 ******* 3614 0.00001 0.0 66.9 -17.20237 -17.20237 -17.20206 -17.64762 0.0000 0.0000 -0.0114 ******* 3615 0.00001 0.0 75.0 -17.20239 -17.20239 -17.20204 -17.64762 0.0000 0.0000 -0.0115 ******* 3616 0.00001 0.0 83.7 -17.20241 -17.20241 -17.20202 -17.64763 0.0000 0.0000 -0.0115 ******* 3617 0.00001 0.0 92.9 -17.20244 -17.20244 -17.20200 -17.64763 0.0000 0.0000 -0.0116 ******* 3618 0.00001 0.0 102.7 -17.20246 -17.20246 -17.20197 -17.64764 0.0000 0.0000 -0.0116 ******* 3619 0.00001 0.0 113.1 -17.20248 -17.20248 -17.20194 -17.64765 0.0000 0.0000 -0.0116 ******* 3620 0.00002 0.0 124.1 -17.20251 -17.20251 -17.20192 -17.64765 0.0000 0.0000 -0.0117 ******* 3621 0.00002 0.0 135.6 -17.20253 -17.20253 -17.20188 -17.64766 0.0000 0.0000 -0.0117 ******* 3622 0.00002 0.0 147.8 -17.20255 -17.20255 -17.20185 -17.64768 0.0000 0.0000 -0.0118 ******* 3623 0.00002 0.0 160.6 -17.20258 -17.20258 -17.20181 -17.64769 0.0000 0.0000 -0.0118 ******* 3624 0.00003 0.0 174.0 -17.20260 -17.20260 -17.20178 -17.64770 0.0000 0.0000 -0.0118 ******* 3625 0.00003 0.0 188.0 -17.20263 -17.20263 -17.20173 -17.64772 0.0000 0.0000 -0.0119 ******* 3626 0.00003 0.0 202.6 -17.20265 -17.20265 -17.20169 -17.64774 0.0000 0.0000 -0.0119 ******* 3627 0.00004 0.0 217.8 -17.20267 -17.20267 -17.20164 -17.64776 0.0000 0.0000 -0.0120 ******* 3628 0.00004 0.0 233.7 -17.20270 -17.20270 -17.20159 -17.64778 0.0000 0.0000 -0.0120 ******* 3629 0.00004 0.0 250.2 -17.20272 -17.20272 -17.20153 -17.64780 0.0000 0.0000 -0.0120 ******* * Physical Quantities at step: 3630 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20274 Hartree a.u. kinetic energy = 7.84358 Hartree a.u. electrostatic energy = -22.94273 Hartree a.u. esr = 0.11908 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41090 Hartree a.u. n-l pseudopotential energy = 4.50619 Hartree a.u. exchange-correlation energy = -4.19888 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.53 -11.99 -8.84 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.112733E+01 0.327643E+00 0.114794E+01 H 0.384754E+00 -0.127205E+01 -0.107680E+01 O -0.402826E+00 -0.417005E+00 0.382588E+00 ATOMIC_VELOCITIES H -0.458957E-03 0.448327E-03 0.511814E-03 H -0.671453E-03 -0.380867E-03 -0.153522E-03 O 0.712143E-04 -0.424988E-05 -0.225719E-04 Forces acting on atoms (au): H 0.650764E-03 -0.280073E-02 -0.951744E-03 H 0.884620E-03 0.250739E-02 0.403314E-03 O 0.830611E-02 -0.220933E-03 -0.261571E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 125.05 0.9537 2 17.19 0.0149 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3630 0.00005 0.0 267.3 -17.20274 -17.20274 -17.20147 -17.64783 0.0000 0.0000 -0.0121 ******* writing restart file: .//cp_91.save restart file written in 0.773 sec. 3631 0.00005 0.0 285.0 -17.20277 -17.20277 -17.20141 -17.64786 0.0000 0.0000 -0.0121 ******* 3632 0.00006 0.0 303.4 -17.20279 -17.20279 -17.20135 -17.64789 0.0000 0.0000 -0.0121 ******* 3633 0.00006 0.0 322.4 -17.20281 -17.20281 -17.20128 -17.64792 0.0000 0.0000 -0.0121 ******* 3634 0.00007 0.0 342.0 -17.20283 -17.20283 -17.20120 -17.64796 0.0000 0.0000 -0.0122 ******* 3635 0.00007 0.0 362.3 -17.20285 -17.20285 -17.20113 -17.64800 0.0000 0.0000 -0.0122 ******* 3636 0.00008 0.0 383.1 -17.20286 -17.20286 -17.20104 -17.64804 0.0000 0.0000 -0.0122 ******* 3637 0.00008 0.0 404.6 -17.20288 -17.20288 -17.20096 -17.64809 0.0000 0.0000 -0.0122 ******* 3638 0.00009 0.0 426.6 -17.20289 -17.20289 -17.20087 -17.64814 0.0000 0.0000 -0.0123 ******* 3639 0.00009 0.0 449.3 -17.20291 -17.20291 -17.20077 -17.64819 0.0000 0.0000 -0.0123 ******* 3640 0.00010 0.0 472.5 -17.20292 -17.20292 -17.20067 -17.64824 0.0000 0.0000 -0.0123 ******* 3641 0.00011 0.0 496.3 -17.20292 -17.20292 -17.20057 -17.64830 0.0000 0.0000 -0.0123 ******* 3642 0.00011 0.0 520.6 -17.20293 -17.20293 -17.20046 -17.64836 0.0000 0.0000 -0.0123 ******* 3643 0.00012 0.0 545.5 -17.20294 -17.20294 -17.20035 -17.64843 0.0000 0.0000 -0.0124 ******* 3644 0.00013 0.0 570.9 -17.20294 -17.20294 -17.20023 -17.64850 0.0000 0.0000 -0.0124 ******* 3645 0.00013 0.0 596.8 -17.20294 -17.20294 -17.20010 -17.64858 0.0000 0.0000 -0.0124 ******* 3646 0.00014 0.0 623.2 -17.20294 -17.20294 -17.19998 -17.64866 0.0000 0.0000 -0.0124 ******* 3647 0.00015 0.0 650.1 -17.20293 -17.20293 -17.19984 -17.64874 0.0000 0.0000 -0.0124 ******* 3648 0.00016 0.0 677.3 -17.20292 -17.20292 -17.19970 -17.64883 0.0000 0.0000 -0.0124 ******* 3649 0.00016 0.0 705.0 -17.20291 -17.20291 -17.19956 -17.64893 0.0000 0.0000 -0.0124 ******* 3650 0.00017 0.0 733.1 -17.20290 -17.20290 -17.19941 -17.64903 0.0000 0.0000 -0.0124 ******* 3651 0.00018 0.0 761.5 -17.20288 -17.20288 -17.19926 -17.64913 0.0000 0.0000 -0.0124 ******* 3652 0.00019 0.0 790.2 -17.20285 -17.20285 -17.19910 -17.64924 0.0000 0.0000 -0.0124 ******* 3653 0.00020 0.0 819.2 -17.20283 -17.20283 -17.19894 -17.64935 0.0000 0.0000 -0.0124 ******* 3654 0.00021 0.0 848.4 -17.20280 -17.20280 -17.19877 -17.64947 0.0000 0.0000 -0.0124 ******* 3655 0.00022 0.0 877.8 -17.20277 -17.20277 -17.19860 -17.64959 0.0000 0.0000 -0.0124 ******* 3656 0.00022 0.0 907.4 -17.20273 -17.20273 -17.19842 -17.64972 0.0000 0.0000 -0.0124 ******* 3657 0.00023 0.0 937.1 -17.20269 -17.20269 -17.19824 -17.64986 0.0000 0.0000 -0.0124 ******* 3658 0.00024 0.0 966.8 -17.20264 -17.20264 -17.19805 -17.65000 0.0000 0.0000 -0.0124 ******* 3659 0.00025 0.0 996.6 -17.20259 -17.20259 -17.19786 -17.65014 0.0000 0.0000 -0.0124 ******* * Physical Quantities at step: 3660 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20253 Hartree a.u. kinetic energy = 7.84281 Hartree a.u. electrostatic energy = -22.94821 Hartree a.u. esr = 0.12099 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41164 Hartree a.u. n-l pseudopotential energy = 4.51517 Hartree a.u. exchange-correlation energy = -4.20066 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.43 -12.37 -8.49 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.106313E+01 0.383861E+00 0.121642E+01 H 0.292346E+00 -0.131953E+01 -0.109590E+01 O -0.392960E+00 -0.417555E+00 0.379477E+00 ATOMIC_VELOCITIES H -0.967946E-03 0.794719E-03 0.987564E-03 H -0.136708E-02 -0.671143E-03 -0.255328E-03 O 0.147103E-03 -0.778507E-05 -0.461299E-04 Forces acting on atoms (au): H 0.132021E-01 -0.118499E-01 -0.151483E-01 H 0.197392E-01 0.980979E-02 0.460156E-02 O -0.113197E-01 0.104705E-02 0.386463E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 476.59 0.8834 2 73.15 0.0136 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3660 0.00026 0.0 1026.3 -17.20253 -17.20253 -17.19766 -17.65029 0.0000 0.0000 -0.0124 ******* writing restart file: .//cp_91.save restart file written in 0.823 sec. 3661 0.00027 0.0 1056.0 -17.20247 -17.20247 -17.19746 -17.65045 0.0000 0.0000 -0.0124 ******* 3662 0.00028 0.0 1085.5 -17.20241 -17.20241 -17.19725 -17.65061 0.0000 0.0000 -0.0124 ******* 3663 0.00029 0.0 1114.8 -17.20234 -17.20234 -17.19704 -17.65078 0.0000 0.0000 -0.0123 ******* 3664 0.00030 0.0 1143.8 -17.20226 -17.20226 -17.19683 -17.65095 0.0000 0.0000 -0.0123 ******* 3665 0.00031 0.0 1172.6 -17.20218 -17.20218 -17.19661 -17.65113 0.0000 0.0000 -0.0123 ******* 3666 0.00032 0.0 1200.9 -17.20209 -17.20209 -17.19639 -17.65132 0.0000 0.0000 -0.0123 ******* 3667 0.00033 0.0 1228.8 -17.20200 -17.20200 -17.19617 -17.65151 0.0000 0.0000 -0.0122 ******* 3668 0.00034 0.0 1256.2 -17.20191 -17.20191 -17.19594 -17.65171 0.0000 0.0000 -0.0122 ******* 3669 0.00035 0.0 1283.0 -17.20181 -17.20181 -17.19571 -17.65191 0.0000 0.0000 -0.0122 ******* 3670 0.00036 0.0 1309.2 -17.20170 -17.20170 -17.19548 -17.65212 0.0000 0.0000 -0.0122 ******* 3671 0.00037 0.0 1334.7 -17.20158 -17.20158 -17.19524 -17.65233 0.0000 0.0000 -0.0121 ******* 3672 0.00038 0.0 1359.4 -17.20147 -17.20147 -17.19501 -17.65255 0.0000 0.0000 -0.0121 ******* 3673 0.00038 0.0 1383.2 -17.20134 -17.20134 -17.19477 -17.65278 0.0000 0.0000 -0.0121 ******* 3674 0.00039 0.0 1406.2 -17.20121 -17.20121 -17.19453 -17.65301 0.0000 0.0000 -0.0120 ******* 3675 0.00040 0.0 1428.2 -17.20107 -17.20107 -17.19429 -17.65324 0.0000 0.0000 -0.0120 ******* 3676 0.00041 0.0 1449.2 -17.20093 -17.20093 -17.19405 -17.65348 0.0000 0.0000 -0.0120 ******* 3677 0.00042 0.0 1469.1 -17.20079 -17.20079 -17.19381 -17.65373 0.0000 0.0000 -0.0119 ******* 3678 0.00043 0.0 1487.8 -17.20063 -17.20063 -17.19357 -17.65398 0.0000 0.0000 -0.0119 ******* 3679 0.00044 0.0 1505.3 -17.20048 -17.20048 -17.19333 -17.65424 0.0000 0.0000 -0.0118 ******* 3680 0.00044 0.0 1521.5 -17.20031 -17.20031 -17.19309 -17.65450 0.0000 0.0000 -0.0118 ******* 3681 0.00045 0.0 1536.4 -17.20015 -17.20015 -17.19285 -17.65477 0.0000 0.0000 -0.0117 ******* 3682 0.00046 0.0 1549.9 -17.19998 -17.19998 -17.19261 -17.65504 0.0000 0.0000 -0.0117 ******* 3683 0.00047 0.0 1562.0 -17.19980 -17.19980 -17.19238 -17.65532 0.0000 0.0000 -0.0117 ******* 3684 0.00047 0.0 1572.6 -17.19961 -17.19961 -17.19214 -17.65560 0.0000 0.0000 -0.0116 ******* 3685 0.00048 0.0 1581.7 -17.19943 -17.19943 -17.19191 -17.65588 0.0000 0.0000 -0.0116 ******* 3686 0.00048 0.0 1589.2 -17.19923 -17.19923 -17.19168 -17.65617 0.0000 0.0000 -0.0115 ******* 3687 0.00049 0.0 1595.2 -17.19904 -17.19904 -17.19146 -17.65646 0.0000 0.0000 -0.0115 ******* 3688 0.00049 0.0 1599.5 -17.19883 -17.19883 -17.19124 -17.65675 0.0000 0.0000 -0.0114 ******* 3689 0.00050 0.0 1602.2 -17.19863 -17.19863 -17.19102 -17.65705 0.0000 0.0000 -0.0114 ******* * Physical Quantities at step: 3690 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19842 Hartree a.u. kinetic energy = 7.84017 Hartree a.u. electrostatic energy = -22.95755 Hartree a.u. esr = 0.12265 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40781 Hartree a.u. n-l pseudopotential energy = 4.52892 Hartree a.u. exchange-correlation energy = -4.20216 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.27 -12.84 -7.97 -6.47 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.957083E+00 0.465433E+00 0.131529E+01 H 0.148461E+00 -0.138876E+01 -0.111700E+01 O -0.377214E+00 -0.418333E+00 0.374578E+00 ATOMIC_VELOCITIES H -0.133638E-02 0.961654E-03 0.111255E-02 H -0.172949E-02 -0.819989E-03 -0.164005E-03 O 0.193146E-03 -0.892467E-05 -0.597570E-04 Forces acting on atoms (au): H 0.258416E-01 -0.205843E-01 -0.276609E-01 H 0.372994E-01 0.172467E-01 0.799193E-02 O -0.335903E-01 0.184953E-02 0.103777E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 738.72 0.8155 2 125.74 0.0120 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3690 0.00050 0.0 1603.2 -17.19842 -17.19842 -17.19080 -17.65735 0.0000 0.0000 -0.0113 ******* writing restart file: .//cp_91.save restart file written in 0.794 sec. 3691 0.00051 0.0 1602.5 -17.19821 -17.19821 -17.19059 -17.65765 0.0000 0.0000 -0.0113 ******* 3692 0.00051 0.0 1600.2 -17.19799 -17.19799 -17.19039 -17.65795 0.0000 0.0000 -0.0112 ******* 3693 0.00051 0.0 1596.1 -17.19777 -17.19777 -17.19019 -17.65826 0.0000 0.0000 -0.0112 ******* 3694 0.00052 0.0 1590.4 -17.19755 -17.19755 -17.18999 -17.65857 0.0000 0.0000 -0.0111 ******* 3695 0.00052 0.0 1583.0 -17.19732 -17.19732 -17.18980 -17.65888 0.0000 0.0000 -0.0111 ******* 3696 0.00052 0.0 1573.9 -17.19709 -17.19709 -17.18962 -17.65919 0.0000 0.0000 -0.0110 ******* 3697 0.00052 0.0 1563.2 -17.19686 -17.19686 -17.18944 -17.65950 0.0000 0.0000 -0.0110 ******* 3698 0.00052 0.0 1550.8 -17.19663 -17.19663 -17.18926 -17.65981 0.0000 0.0000 -0.0109 ******* 3699 0.00052 0.0 1536.8 -17.19639 -17.19639 -17.18909 -17.66013 0.0000 0.0000 -0.0109 ******* 3700 0.00052 0.0 1521.2 -17.19616 -17.19616 -17.18893 -17.66044 0.0000 0.0000 -0.0109 ******* 3701 0.00052 0.0 1504.1 -17.19592 -17.19592 -17.18878 -17.66075 0.0000 0.0000 -0.0108 ******* 3702 0.00052 0.0 1485.5 -17.19568 -17.19568 -17.18863 -17.66106 0.0000 0.0000 -0.0108 ******* 3703 0.00052 0.0 1465.5 -17.19544 -17.19544 -17.18848 -17.66137 0.0000 0.0000 -0.0107 ******* 3704 0.00051 0.0 1444.0 -17.19520 -17.19520 -17.18835 -17.66168 0.0000 0.0000 -0.0107 ******* 3705 0.00051 0.0 1421.2 -17.19497 -17.19497 -17.18821 -17.66199 0.0000 0.0000 -0.0107 ******* 3706 0.00051 0.0 1397.1 -17.19473 -17.19473 -17.18809 -17.66230 0.0000 0.0000 -0.0106 ******* 3707 0.00050 0.0 1371.8 -17.19449 -17.19449 -17.18797 -17.66260 0.0000 0.0000 -0.0106 ******* 3708 0.00050 0.0 1345.4 -17.19425 -17.19425 -17.18786 -17.66290 0.0000 0.0000 -0.0106 ******* 3709 0.00049 0.0 1317.8 -17.19401 -17.19401 -17.18775 -17.66320 0.0000 0.0000 -0.0105 ******* 3710 0.00049 0.0 1289.2 -17.19377 -17.19377 -17.18765 -17.66350 0.0000 0.0000 -0.0105 ******* 3711 0.00048 0.0 1259.6 -17.19354 -17.19354 -17.18756 -17.66379 0.0000 0.0000 -0.0105 ******* 3712 0.00047 0.0 1229.2 -17.19331 -17.19331 -17.18747 -17.66408 0.0000 0.0000 -0.0104 ******* 3713 0.00047 0.0 1198.0 -17.19308 -17.19308 -17.18739 -17.66436 0.0000 0.0000 -0.0104 ******* 3714 0.00046 0.0 1166.0 -17.19285 -17.19285 -17.18731 -17.66464 0.0000 0.0000 -0.0104 ******* 3715 0.00045 0.0 1133.4 -17.19262 -17.19262 -17.18724 -17.66492 0.0000 0.0000 -0.0104 ******* 3716 0.00045 0.0 1100.3 -17.19240 -17.19240 -17.18717 -17.66519 0.0000 0.0000 -0.0103 ******* 3717 0.00044 0.0 1066.6 -17.19218 -17.19218 -17.18711 -17.66546 0.0000 0.0000 -0.0103 ******* 3718 0.00043 0.0 1032.5 -17.19196 -17.19196 -17.18706 -17.66572 0.0000 0.0000 -0.0103 ******* 3719 0.00042 0.0 998.1 -17.19175 -17.19175 -17.18701 -17.66598 0.0000 0.0000 -0.0103 ******* * Physical Quantities at step: 3720 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19154 Hartree a.u. kinetic energy = 7.83734 Hartree a.u. electrostatic energy = -22.96522 Hartree a.u. esr = 0.12578 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40600 Hartree a.u. n-l pseudopotential energy = 4.54542 Hartree a.u. exchange-correlation energy = -4.20308 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.18 -13.26 -7.52 -6.44 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.837655E+00 0.544694E+00 0.139640E+01 H 0.511834E-02 -0.145670E+01 -0.111660E+01 O -0.360660E+00 -0.419046E+00 0.369443E+00 ATOMIC_VELOCITIES H -0.121077E-02 0.741974E-03 0.590823E-03 H -0.131211E-02 -0.642441E-03 0.200602E-03 O 0.158938E-03 -0.627044E-05 -0.498587E-04 Forces acting on atoms (au): H 0.333885E-01 -0.214371E-01 -0.274336E-01 H 0.430174E-01 0.179393E-01 0.416632E-02 O -0.550373E-01 0.241982E-02 0.163519E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 439.06 0.7948 2 85.31 0.0110 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3720 0.00041 0.0 963.4 -17.19154 -17.19154 -17.18697 -17.66623 0.0000 0.0000 -0.0103 ******* writing restart file: .//cp_91.save restart file written in 0.777 sec. 3721 0.00040 0.0 928.6 -17.19134 -17.19134 -17.18693 -17.66648 0.0000 0.0000 -0.0103 ******* 3722 0.00039 0.0 893.6 -17.19114 -17.19114 -17.18689 -17.66672 0.0000 0.0000 -0.0103 ******* 3723 0.00038 0.0 858.6 -17.19094 -17.19094 -17.18686 -17.66696 0.0000 0.0000 -0.0103 ******* 3724 0.00037 0.0 823.7 -17.19075 -17.19075 -17.18683 -17.66718 0.0000 0.0000 -0.0103 ******* 3725 0.00036 0.0 788.9 -17.19056 -17.19056 -17.18681 -17.66741 0.0000 0.0000 -0.0103 ******* 3726 0.00035 0.0 754.3 -17.19037 -17.19037 -17.18679 -17.66763 0.0000 0.0000 -0.0103 ******* 3727 0.00034 0.0 720.0 -17.19020 -17.19020 -17.18678 -17.66784 0.0000 0.0000 -0.0103 ******* 3728 0.00033 0.0 686.0 -17.19002 -17.19002 -17.18676 -17.66804 0.0000 0.0000 -0.0103 ******* 3729 0.00032 0.0 652.4 -17.18985 -17.18985 -17.18675 -17.66824 0.0000 0.0000 -0.0103 ******* 3730 0.00031 0.0 619.3 -17.18969 -17.18969 -17.18675 -17.66843 0.0000 0.0000 -0.0103 ******* 3731 0.00030 0.0 586.8 -17.18953 -17.18953 -17.18675 -17.66861 0.0000 0.0000 -0.0103 ******* 3732 0.00029 0.0 554.9 -17.18938 -17.18938 -17.18675 -17.66879 0.0000 0.0000 -0.0103 ******* 3733 0.00028 0.0 523.7 -17.18924 -17.18924 -17.18675 -17.66897 0.0000 0.0000 -0.0103 ******* 3734 0.00027 0.0 493.2 -17.18910 -17.18910 -17.18676 -17.66913 0.0000 0.0000 -0.0104 ******* 3735 0.00026 0.0 463.6 -17.18897 -17.18897 -17.18676 -17.66929 0.0000 0.0000 -0.0104 ******* 3736 0.00025 0.0 434.8 -17.18884 -17.18884 -17.18677 -17.66945 0.0000 0.0000 -0.0104 ******* 3737 0.00023 0.0 407.1 -17.18872 -17.18872 -17.18678 -17.66959 0.0000 0.0000 -0.0104 ******* 3738 0.00022 0.0 380.3 -17.18860 -17.18860 -17.18680 -17.66973 0.0000 0.0000 -0.0104 ******* 3739 0.00021 0.0 354.6 -17.18850 -17.18850 -17.18681 -17.66987 0.0000 0.0000 -0.0105 ******* 3740 0.00020 0.0 330.1 -17.18840 -17.18840 -17.18683 -17.67000 0.0000 0.0000 -0.0105 ******* 3741 0.00019 0.0 306.9 -17.18830 -17.18830 -17.18685 -17.67012 0.0000 0.0000 -0.0105 ******* 3742 0.00018 0.0 284.9 -17.18822 -17.18822 -17.18686 -17.67024 0.0000 0.0000 -0.0106 ******* 3743 0.00017 0.0 264.3 -17.18814 -17.18814 -17.18688 -17.67035 0.0000 0.0000 -0.0106 ******* 3744 0.00017 0.0 245.1 -17.18806 -17.18806 -17.18690 -17.67045 0.0000 0.0000 -0.0106 ******* 3745 0.00016 0.0 227.5 -17.18800 -17.18800 -17.18692 -17.67055 0.0000 0.0000 -0.0107 ******* 3746 0.00015 0.0 211.4 -17.18794 -17.18794 -17.18694 -17.67064 0.0000 0.0000 -0.0107 ******* 3747 0.00014 0.0 197.1 -17.18789 -17.18789 -17.18695 -17.67073 0.0000 0.0000 -0.0107 ******* 3748 0.00013 0.0 184.4 -17.18785 -17.18785 -17.18697 -17.67082 0.0000 0.0000 -0.0108 ******* 3749 0.00012 0.0 173.7 -17.18781 -17.18781 -17.18699 -17.67089 0.0000 0.0000 -0.0108 ******* * Physical Quantities at step: 3750 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.18778 Hartree a.u. kinetic energy = 7.84911 Hartree a.u. electrostatic energy = -22.96838 Hartree a.u. esr = 0.13458 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42224 Hartree a.u. n-l pseudopotential energy = 4.56263 Hartree a.u. exchange-correlation energy = -4.20890 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.23 -13.54 -7.34 -6.47 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.759583E+00 0.595043E+00 0.141140E+01 H -0.650607E-01 -0.150240E+01 -0.108282E+01 O -0.351321E+00 -0.419339E+00 0.366370E+00 ATOMIC_VELOCITIES H -0.405957E-03 0.389538E-03 -0.279935E-03 H -0.136423E-03 -0.398147E-03 0.508368E-03 O 0.341692E-04 0.542373E-06 -0.143910E-04 Forces acting on atoms (au): H 0.321085E-01 -0.137668E-01 -0.134560E-01 H 0.337541E-01 0.109256E-01 -0.672012E-02 O -0.616962E-01 0.283000E-02 0.183868E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 80.31 0.8070 2 4.22 0.0107 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3750 0.00012 0.0 164.8 -17.18778 -17.18778 -17.18700 -17.67097 0.0000 0.0000 -0.0108 ******* writing restart file: .//cp_91.save restart file written in 0.785 sec. 3751 0.00011 0.0 158.0 -17.18776 -17.18776 -17.18701 -17.67104 0.0000 0.0000 -0.0109 ******* 3752 0.00010 0.0 153.4 -17.18775 -17.18775 -17.18702 -17.67110 0.0000 0.0000 -0.0109 ******* 3753 0.00010 0.0 150.9 -17.18775 -17.18775 -17.18703 -17.67116 0.0000 0.0000 -0.0110 ******* 3754 0.00009 0.0 150.8 -17.18775 -17.18775 -17.18703 -17.67122 0.0000 0.0000 -0.0110 ******* 3755 0.00008 0.0 153.1 -17.18776 -17.18776 -17.18703 -17.67127 0.0000 0.0000 -0.0110 ******* 3756 0.00008 0.0 158.0 -17.18778 -17.18778 -17.18703 -17.67132 0.0000 0.0000 -0.0111 ******* 3757 0.00008 0.0 165.5 -17.18781 -17.18781 -17.18702 -17.67137 0.0000 0.0000 -0.0111 ******* 3758 0.00007 0.0 175.9 -17.18784 -17.18784 -17.18701 -17.67142 0.0000 0.0000 -0.0111 ******* 3759 0.00007 0.0 189.2 -17.18789 -17.18789 -17.18699 -17.67146 0.0000 0.0000 -0.0112 ******* 3760 0.00007 0.0 205.5 -17.18794 -17.18794 -17.18697 -17.67150 0.0000 0.0000 -0.0112 ******* 3761 0.00006 0.0 225.0 -17.18800 -17.18800 -17.18693 -17.67154 0.0000 0.0000 -0.0113 ******* 3762 0.00006 0.0 247.9 -17.18807 -17.18807 -17.18690 -17.67158 0.0000 0.0000 -0.0113 ******* 3763 0.00006 0.0 274.3 -17.18815 -17.18815 -17.18685 -17.67161 0.0000 0.0000 -0.0113 ******* 3764 0.00006 0.0 304.3 -17.18824 -17.18824 -17.18679 -17.67165 0.0000 0.0000 -0.0114 ******* 3765 0.00006 0.0 338.1 -17.18833 -17.18833 -17.18673 -17.67169 0.0000 0.0000 -0.0114 ******* 3766 0.00007 0.0 375.8 -17.18844 -17.18844 -17.18665 -17.67173 0.0000 0.0000 -0.0114 ******* 3767 0.00007 0.0 417.7 -17.18855 -17.18855 -17.18656 -17.67176 0.0000 0.0000 -0.0114 ******* 3768 0.00007 0.0 463.8 -17.18867 -17.18867 -17.18647 -17.67181 0.0000 0.0000 -0.0115 ******* 3769 0.00008 0.0 514.3 -17.18880 -17.18880 -17.18635 -17.67185 0.0000 0.0000 -0.0115 ******* 3770 0.00008 0.0 569.4 -17.18893 -17.18893 -17.18623 -17.67190 0.0000 0.0000 -0.0115 ******* 3771 0.00009 0.0 629.3 -17.18908 -17.18908 -17.18609 -17.67195 0.0000 0.0000 -0.0115 ******* 3772 0.00010 0.0 694.1 -17.18923 -17.18923 -17.18593 -17.67200 0.0000 0.0000 -0.0115 ******* 3773 0.00011 0.0 763.9 -17.18939 -17.18939 -17.18576 -17.67206 0.0000 0.0000 -0.0115 ******* 3774 0.00012 0.0 838.8 -17.18956 -17.18956 -17.18558 -17.67212 0.0000 0.0000 -0.0115 ******* 3775 0.00013 0.0 919.1 -17.18974 -17.18974 -17.18537 -17.67219 0.0000 0.0000 -0.0115 ******* 3776 0.00014 0.0 1004.8 -17.18992 -17.18992 -17.18515 -17.67227 0.0000 0.0000 -0.0115 ******* 3777 0.00016 0.0 1095.9 -17.19011 -17.19011 -17.18490 -17.67236 0.0000 0.0000 -0.0115 ******* 3778 0.00018 0.0 1192.7 -17.19031 -17.19031 -17.18464 -17.67245 0.0000 0.0000 -0.0115 ******* 3779 0.00019 0.0 1295.1 -17.19051 -17.19051 -17.18436 -17.67256 0.0000 0.0000 -0.0114 ******* * Physical Quantities at step: 3780 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19072 Hartree a.u. kinetic energy = 7.86462 Hartree a.u. electrostatic energy = -22.97067 Hartree a.u. esr = 0.13808 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.43462 Hartree a.u. n-l pseudopotential energy = 4.56432 Hartree a.u. exchange-correlation energy = -4.21437 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.27 -13.39 -7.47 -6.45 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.786705E+00 0.618096E+00 0.134087E+01 H 0.218024E-02 -0.153426E+01 -0.103184E+01 O -0.357265E+00 -0.418784E+00 0.367601E+00 ATOMIC_VELOCITIES H 0.112161E-02 0.115152E-03 -0.135002E-02 H 0.176403E-02 -0.316673E-03 0.623688E-03 O -0.181791E-03 0.126955E-04 0.457577E-04 Forces acting on atoms (au): H 0.124303E-01 -0.961434E-02 0.204421E-02 H 0.850839E-02 0.927857E-02 -0.921791E-02 O -0.370722E-01 0.128705E-02 0.107330E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 647.43 0.8409 2 108.38 0.0110 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3780 0.00021 0.0 1403.2 -17.19072 -17.19072 -17.18405 -17.67267 0.0000 0.0000 -0.0114 ******* writing restart file: .//cp_91.save restart file written in 0.772 sec. 3781 0.00023 0.0 1517.0 -17.19093 -17.19093 -17.18373 -17.67280 0.0000 0.0000 -0.0114 ******* 3782 0.00026 0.0 1636.4 -17.19115 -17.19115 -17.18338 -17.67294 0.0000 0.0000 -0.0113 ******* 3783 0.00028 0.0 1761.4 -17.19138 -17.19138 -17.18301 -17.67309 0.0000 0.0000 -0.0113 ******* 3784 0.00031 0.0 1891.8 -17.19160 -17.19160 -17.18262 -17.67326 0.0000 0.0000 -0.0112 ******* 3785 0.00033 0.0 2027.5 -17.19184 -17.19184 -17.18221 -17.67344 0.0000 0.0000 -0.0111 ******* 3786 0.00036 0.0 2168.3 -17.19207 -17.19207 -17.18177 -17.67364 0.0000 0.0000 -0.0111 ******* 3787 0.00040 0.0 2313.9 -17.19231 -17.19231 -17.18132 -17.67386 0.0000 0.0000 -0.0110 ******* 3788 0.00043 0.0 2464.0 -17.19255 -17.19255 -17.18084 -17.67410 0.0000 0.0000 -0.0109 ******* 3789 0.00046 0.0 2618.2 -17.19279 -17.19279 -17.18035 -17.67435 0.0000 0.0000 -0.0108 ******* 3790 0.00050 0.0 2776.0 -17.19303 -17.19303 -17.17984 -17.67463 0.0000 0.0000 -0.0107 ******* 3791 0.00054 0.0 2936.9 -17.19327 -17.19327 -17.17932 -17.67493 0.0000 0.0000 -0.0105 ******* 3792 0.00058 0.0 3100.2 -17.19351 -17.19351 -17.17879 -17.67525 0.0000 0.0000 -0.0104 ******* 3793 0.00062 0.0 3265.4 -17.19375 -17.19375 -17.17824 -17.67560 0.0000 0.0000 -0.0103 ******* 3794 0.00067 0.0 3431.7 -17.19399 -17.19399 -17.17768 -17.67597 0.0000 0.0000 -0.0101 ******* 3795 0.00071 0.0 3598.3 -17.19422 -17.19422 -17.17713 -17.67637 0.0000 0.0000 -0.0099 ******* 3796 0.00076 0.0 3764.2 -17.19445 -17.19445 -17.17657 -17.67680 0.0000 0.0000 -0.0098 ******* 3797 0.00081 0.0 3928.6 -17.19467 -17.19467 -17.17601 -17.67725 0.0000 0.0000 -0.0096 ******* 3798 0.00086 0.0 4090.5 -17.19489 -17.19489 -17.17546 -17.67774 0.0000 0.0000 -0.0094 ******* 3799 0.00091 0.0 4248.7 -17.19510 -17.19510 -17.17492 -17.67825 0.0000 0.0000 -0.0092 ******* 3800 0.00096 0.0 4402.3 -17.19531 -17.19531 -17.17440 -17.67880 0.0000 0.0000 -0.0090 ******* 3801 0.00101 0.0 4550.1 -17.19551 -17.19551 -17.17390 -17.67938 0.0000 0.0000 -0.0088 ******* 3802 0.00107 0.0 4691.0 -17.19570 -17.19570 -17.17342 -17.67998 0.0000 0.0000 -0.0085 ******* 3803 0.00112 0.0 4823.9 -17.19589 -17.19589 -17.17297 -17.68062 0.0000 0.0000 -0.0083 ******* 3804 0.00117 0.0 4947.7 -17.19606 -17.19606 -17.17256 -17.68129 0.0000 0.0000 -0.0080 ******* 3805 0.00123 0.0 5061.3 -17.19623 -17.19623 -17.17219 -17.68200 0.0000 0.0000 -0.0078 ******* 3806 0.00128 0.0 5163.8 -17.19639 -17.19639 -17.17186 -17.68273 0.0000 0.0000 -0.0075 ******* 3807 0.00133 0.0 5254.1 -17.19654 -17.19654 -17.17158 -17.68350 0.0000 0.0000 -0.0073 ******* 3808 0.00138 0.0 5331.5 -17.19667 -17.19667 -17.17135 -17.68430 0.0000 0.0000 -0.0070 ******* 3809 0.00143 0.0 5395.1 -17.19680 -17.19680 -17.17118 -17.68512 0.0000 0.0000 -0.0067 ******* * Physical Quantities at step: 3810 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19693 Hartree a.u. kinetic energy = 7.84755 Hartree a.u. electrostatic energy = -22.96518 Hartree a.u. esr = 0.12060 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40409 Hartree a.u. n-l pseudopotential energy = 4.52841 Hartree a.u. exchange-correlation energy = -4.20361 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.22 -12.47 -8.10 -6.39 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.957128E+00 0.604324E+00 0.115956E+01 H 0.254437E+00 -0.154729E+01 -0.959819E+00 O -0.383893E+00 -0.417095E+00 0.374487E+00 ATOMIC_VELOCITIES H 0.234682E-02 -0.501466E-03 -0.257139E-02 H 0.351188E-02 0.150914E-03 0.105203E-02 O -0.369090E-03 0.220843E-04 0.957178E-04 Forces acting on atoms (au): H -0.319836E-01 -0.947721E-02 0.193459E-01 H -0.386024E-01 0.144896E-01 -0.571555E-03 O 0.328510E-01 -0.323401E-02 -0.965007E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2498.27 0.9808 2 447.85 0.0129 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3810 0.00148 0.0 5444.4 -17.19693 -17.19693 -17.17107 -17.68598 0.0000 0.0000 -0.0064 ******* writing restart file: .//cp_91.save restart file written in 0.778 sec. 3811 0.00152 0.0 5478.8 -17.19704 -17.19704 -17.17101 -17.68687 0.0000 0.0000 -0.0062 ******* 3812 0.00156 0.0 5498.0 -17.19714 -17.19714 -17.17103 -17.68778 0.0000 0.0000 -0.0059 ******* 3813 0.00160 0.0 5501.8 -17.19724 -17.19724 -17.17110 -17.68872 0.0000 0.0000 -0.0056 ******* 3814 0.00164 0.0 5490.1 -17.19732 -17.19732 -17.17125 -17.68968 0.0000 0.0000 -0.0053 ******* 3815 0.00167 0.0 5463.0 -17.19740 -17.19740 -17.17145 -17.69067 0.0000 0.0000 -0.0050 ******* 3816 0.00170 0.0 5420.7 -17.19748 -17.19748 -17.17173 -17.69167 0.0000 0.0000 -0.0048 ******* 3817 0.00173 0.0 5363.7 -17.19754 -17.19754 -17.17206 -17.69269 0.0000 0.0000 -0.0045 ******* 3818 0.00175 0.0 5292.4 -17.19760 -17.19760 -17.17246 -17.69373 0.0000 0.0000 -0.0042 ******* 3819 0.00176 0.0 5207.6 -17.19765 -17.19765 -17.17292 -17.69478 0.0000 0.0000 -0.0040 ******* 3820 0.00178 0.0 5109.9 -17.19770 -17.19770 -17.17343 -17.69584 0.0000 0.0000 -0.0037 ******* 3821 0.00179 0.0 5000.4 -17.19774 -17.19774 -17.17399 -17.69691 0.0000 0.0000 -0.0034 ******* 3822 0.00179 0.0 4879.9 -17.19778 -17.19778 -17.17460 -17.69798 0.0000 0.0000 -0.0032 ******* 3823 0.00179 0.0 4749.5 -17.19782 -17.19782 -17.17526 -17.69906 0.0000 0.0000 -0.0029 ******* 3824 0.00178 0.0 4610.3 -17.19785 -17.19785 -17.17595 -17.70013 0.0000 0.0000 -0.0027 ******* 3825 0.00177 0.0 4463.5 -17.19787 -17.19787 -17.17667 -17.70120 0.0000 0.0000 -0.0025 ******* 3826 0.00176 0.0 4310.1 -17.19790 -17.19790 -17.17743 -17.70227 0.0000 0.0000 -0.0023 ******* 3827 0.00174 0.0 4151.3 -17.19792 -17.19792 -17.17820 -17.70333 0.0000 0.0000 -0.0021 ******* 3828 0.00172 0.0 3988.2 -17.19794 -17.19794 -17.17900 -17.70437 0.0000 0.0000 -0.0019 ******* 3829 0.00169 0.0 3822.0 -17.19796 -17.19796 -17.17980 -17.70540 0.0000 0.0000 -0.0017 ******* 3830 0.00166 0.0 3653.6 -17.19797 -17.19797 -17.18061 -17.70642 0.0000 0.0000 -0.0015 ******* 3831 0.00162 0.0 3484.2 -17.19798 -17.19798 -17.18143 -17.70741 0.0000 0.0000 -0.0013 ******* 3832 0.00159 0.0 3314.6 -17.19799 -17.19799 -17.18225 -17.70839 0.0000 0.0000 -0.0012 ******* 3833 0.00155 0.0 3145.7 -17.19800 -17.19800 -17.18306 -17.70934 0.0000 0.0000 -0.0010 ******* 3834 0.00150 0.0 2978.4 -17.19801 -17.19801 -17.18386 -17.71027 0.0000 0.0000 -0.0009 ******* 3835 0.00146 0.0 2813.3 -17.19801 -17.19801 -17.18465 -17.71117 0.0000 0.0000 -0.0008 ******* 3836 0.00141 0.0 2651.2 -17.19801 -17.19801 -17.18542 -17.71205 0.0000 0.0000 -0.0007 ******* 3837 0.00136 0.0 2492.5 -17.19801 -17.19801 -17.18617 -17.71290 0.0000 0.0000 -0.0006 ******* 3838 0.00131 0.0 2337.9 -17.19801 -17.19801 -17.18691 -17.71372 0.0000 0.0000 -0.0005 ******* 3839 0.00126 0.0 2187.7 -17.19801 -17.19801 -17.18762 -17.71451 0.0000 0.0000 -0.0004 ******* * Physical Quantities at step: 3840 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19800 Hartree a.u. kinetic energy = 7.81883 Hartree a.u. electrostatic energy = -22.93914 Hartree a.u. esr = 0.10882 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.38292 Hartree a.u. n-l pseudopotential energy = 4.49325 Hartree a.u. exchange-correlation energy = -4.18802 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.48 -11.60 -9.02 -6.52 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.111847E+01 0.538839E+00 0.944193E+00 H 0.518781E+00 -0.150569E+01 -0.852908E+00 O -0.410711E+00 -0.415591E+00 0.381319E+00 ATOMIC_VELOCITIES H 0.954734E-03 -0.741491E-03 -0.182685E-02 H 0.189112E-02 0.600653E-03 0.113233E-02 O -0.179285E-03 0.887262E-05 0.437535E-04 Forces acting on atoms (au): H -0.386476E-01 0.908761E-02 0.348300E-01 H -0.534951E-01 -0.342859E-02 -0.103239E-01 O 0.506134E-01 -0.325010E-02 -0.138248E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 968.79 1.2334 2 104.80 0.0164 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3840 0.00121 0.0 2042.4 -17.19800 -17.19800 -17.18830 -17.71526 0.0000 0.0000 -0.0003 ******* writing restart file: .//cp_91.save restart file written in 0.801 sec. 3841 0.00116 0.0 1902.1 -17.19800 -17.19800 -17.18896 -17.71599 0.0000 0.0000 -0.0002 ******* 3842 0.00110 0.0 1767.2 -17.19799 -17.19799 -17.18959 -17.71668 0.0000 0.0000 -0.0002 ******* 3843 0.00105 0.0 1637.8 -17.19797 -17.19797 -17.19019 -17.71734 0.0000 0.0000 -0.0001 ******* 3844 0.00100 0.0 1514.0 -17.19796 -17.19796 -17.19077 -17.71797 0.0000 0.0000 -0.0001 ******* 3845 0.00095 0.0 1396.0 -17.19795 -17.19795 -17.19131 -17.71857 0.0000 0.0000 0.0000 ******* 3846 0.00090 0.0 1283.7 -17.19793 -17.19793 -17.19183 -17.71914 0.0000 0.0000 0.0000 ******* 3847 0.00085 0.0 1177.2 -17.19791 -17.19791 -17.19232 -17.71968 0.0000 0.0000 0.0000 ******* 3848 0.00080 0.0 1076.3 -17.19789 -17.19789 -17.19278 -17.72019 0.0000 0.0000 0.0001 ******* 3849 0.00075 0.0 981.2 -17.19787 -17.19787 -17.19321 -17.72066 0.0000 0.0000 0.0001 ******* 3850 0.00070 0.0 891.6 -17.19785 -17.19785 -17.19361 -17.72111 0.0000 0.0000 0.0001 ******* 3851 0.00066 0.0 807.5 -17.19783 -17.19783 -17.19399 -17.72153 0.0000 0.0000 0.0001 ******* 3852 0.00061 0.0 728.7 -17.19781 -17.19781 -17.19434 -17.72193 0.0000 0.0000 0.0001 ******* 3853 0.00057 0.0 655.2 -17.19778 -17.19778 -17.19467 -17.72229 0.0000 0.0000 0.0001 ******* 3854 0.00053 0.0 586.7 -17.19776 -17.19776 -17.19497 -17.72264 0.0000 0.0000 0.0001 ******* 3855 0.00049 0.0 523.1 -17.19774 -17.19774 -17.19526 -17.72295 0.0000 0.0000 0.0000 ******* 3856 0.00046 0.0 464.2 -17.19772 -17.19772 -17.19551 -17.72325 0.0000 0.0000 0.0000 ******* 3857 0.00042 0.0 409.9 -17.19770 -17.19770 -17.19575 -17.72352 0.0000 0.0000 0.0000 ******* 3858 0.00039 0.0 360.0 -17.19768 -17.19768 -17.19597 -17.72377 0.0000 0.0000 0.0000 ******* 3859 0.00036 0.0 314.4 -17.19766 -17.19766 -17.19617 -17.72401 0.0000 0.0000 0.0000 ******* 3860 0.00033 0.0 272.8 -17.19765 -17.19765 -17.19635 -17.72422 0.0000 0.0000 -0.0001 ******* 3861 0.00030 0.0 235.2 -17.19763 -17.19763 -17.19652 -17.72441 0.0000 0.0000 -0.0001 ******* 3862 0.00027 0.0 201.2 -17.19762 -17.19762 -17.19667 -17.72459 0.0000 0.0000 -0.0001 ******* 3863 0.00025 0.0 170.9 -17.19761 -17.19761 -17.19680 -17.72475 0.0000 0.0000 -0.0002 ******* 3864 0.00022 0.0 143.9 -17.19761 -17.19761 -17.19692 -17.72490 0.0000 0.0000 -0.0002 ******* 3865 0.00020 0.0 120.2 -17.19760 -17.19760 -17.19703 -17.72503 0.0000 0.0000 -0.0003 ******* 3866 0.00018 0.0 99.6 -17.19760 -17.19760 -17.19713 -17.72515 0.0000 0.0000 -0.0003 ******* 3867 0.00016 0.0 81.9 -17.19761 -17.19761 -17.19722 -17.72526 0.0000 0.0000 -0.0003 ******* 3868 0.00014 0.0 67.0 -17.19761 -17.19761 -17.19730 -17.72535 0.0000 0.0000 -0.0004 ******* 3869 0.00013 0.0 54.7 -17.19762 -17.19762 -17.19736 -17.72544 0.0000 0.0000 -0.0004 ******* * Physical Quantities at step: 3870 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19764 Hartree a.u. kinetic energy = 7.83856 Hartree a.u. electrostatic energy = -22.92861 Hartree a.u. esr = 0.11775 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40852 Hartree a.u. n-l pseudopotential energy = 4.49480 Hartree a.u. exchange-correlation energy = -4.19386 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.78 -11.45 -9.40 -6.64 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.114567E+01 0.502707E+00 0.852236E+00 H 0.596068E+00 -0.147338E+01 -0.783571E+00 O -0.417294E+00 -0.415350E+00 0.382744E+00 ATOMIC_VELOCITIES H -0.125105E-03 0.704618E-05 -0.292005E-03 H 0.635345E-04 0.158078E-04 0.355752E-03 O 0.387883E-05 -0.143977E-05 -0.401597E-05 Forces acting on atoms (au): H -0.106283E-01 0.171939E-01 0.256292E-01 H -0.241199E-01 -0.155899E-01 -0.170054E-01 O 0.176710E-01 -0.358330E-03 -0.437065E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 22.42 1.3368 2 0.10 0.0175 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3870 0.00011 0.0 44.9 -17.19764 -17.19764 -17.19742 -17.72551 0.0000 0.0000 -0.0005 ******* writing restart file: .//cp_91.save restart file written in 0.820 sec. 3871 0.00010 0.0 37.5 -17.19766 -17.19766 -17.19748 -17.72558 0.0000 0.0000 -0.0005 ******* 3872 0.00009 0.0 32.3 -17.19768 -17.19768 -17.19752 -17.72564 0.0000 0.0000 -0.0006 ******* 3873 0.00008 0.0 29.2 -17.19770 -17.19770 -17.19756 -17.72569 0.0000 0.0000 -0.0006 ******* 3874 0.00007 0.0 28.1 -17.19773 -17.19773 -17.19760 -17.72573 0.0000 0.0000 -0.0007 ******* 3875 0.00006 0.0 28.7 -17.19776 -17.19776 -17.19763 -17.72577 0.0000 0.0000 -0.0007 ******* 3876 0.00005 0.0 31.1 -17.19780 -17.19780 -17.19765 -17.72581 0.0000 0.0000 -0.0008 ******* 3877 0.00004 0.0 35.0 -17.19784 -17.19784 -17.19767 -17.72584 0.0000 0.0000 -0.0008 ******* 3878 0.00004 0.0 40.5 -17.19788 -17.19788 -17.19769 -17.72586 0.0000 0.0000 -0.0008 ******* 3879 0.00003 0.0 47.2 -17.19793 -17.19793 -17.19771 -17.72588 0.0000 0.0000 -0.0009 ******* 3880 0.00003 0.0 55.2 -17.19798 -17.19798 -17.19772 -17.72590 0.0000 0.0000 -0.0009 ******* 3881 0.00002 0.0 64.3 -17.19804 -17.19804 -17.19773 -17.72592 0.0000 0.0000 -0.0010 ******* 3882 0.00002 0.0 74.4 -17.19810 -17.19810 -17.19774 -17.72593 0.0000 0.0000 -0.0010 ******* 3883 0.00002 0.0 85.5 -17.19816 -17.19816 -17.19775 -17.72595 0.0000 0.0000 -0.0011 ******* 3884 0.00002 0.0 97.3 -17.19822 -17.19822 -17.19776 -17.72596 0.0000 0.0000 -0.0011 ******* 3885 0.00002 0.0 109.9 -17.19829 -17.19829 -17.19777 -17.72597 0.0000 0.0000 -0.0012 ******* 3886 0.00002 0.0 123.1 -17.19836 -17.19836 -17.19778 -17.72598 0.0000 0.0000 -0.0012 ******* 3887 0.00002 0.0 136.8 -17.19844 -17.19844 -17.19779 -17.72599 0.0000 0.0000 -0.0012 ******* 3888 0.00002 0.0 151.0 -17.19851 -17.19851 -17.19780 -17.72601 0.0000 0.0000 -0.0013 ******* 3889 0.00003 0.0 165.5 -17.19859 -17.19859 -17.19781 -17.72602 0.0000 0.0000 -0.0013 ******* 3890 0.00003 0.0 180.2 -17.19867 -17.19867 -17.19782 -17.72603 0.0000 0.0000 -0.0013 ******* 3891 0.00003 0.0 195.2 -17.19876 -17.19876 -17.19783 -17.72605 0.0000 0.0000 -0.0014 ******* 3892 0.00003 0.0 210.3 -17.19884 -17.19884 -17.19784 -17.72607 0.0000 0.0000 -0.0014 ******* 3893 0.00004 0.0 225.5 -17.19893 -17.19893 -17.19786 -17.72609 0.0000 0.0000 -0.0015 ******* 3894 0.00004 0.0 240.6 -17.19902 -17.19902 -17.19787 -17.72611 0.0000 0.0000 -0.0015 ******* 3895 0.00005 0.0 255.6 -17.19911 -17.19911 -17.19789 -17.72614 0.0000 0.0000 -0.0015 ******* 3896 0.00005 0.0 270.6 -17.19920 -17.19920 -17.19791 -17.72616 0.0000 0.0000 -0.0016 ******* 3897 0.00005 0.0 285.3 -17.19929 -17.19929 -17.19793 -17.72619 0.0000 0.0000 -0.0016 ******* 3898 0.00006 0.0 299.8 -17.19938 -17.19938 -17.19796 -17.72623 0.0000 0.0000 -0.0016 ******* 3899 0.00006 0.0 313.9 -17.19947 -17.19947 -17.19798 -17.72626 0.0000 0.0000 -0.0016 ******* * Physical Quantities at step: 3900 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19957 Hartree a.u. kinetic energy = 7.84922 Hartree a.u. electrostatic energy = -22.93757 Hartree a.u. esr = 0.11911 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41206 Hartree a.u. n-l pseudopotential energy = 4.49942 Hartree a.u. exchange-correlation energy = -4.19857 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.66 -11.59 -9.20 -6.57 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.111981E+01 0.534682E+00 0.869143E+00 H 0.564175E+00 -0.150131E+01 -0.782014E+00 O -0.413655E+00 -0.415605E+00 0.381581E+00 ATOMIC_VELOCITIES H -0.412654E-03 0.609142E-03 0.533705E-03 H -0.660643E-03 -0.550339E-03 -0.224623E-03 O 0.676162E-04 -0.370448E-05 -0.194717E-04 Forces acting on atoms (au): H -0.265826E-02 0.407228E-02 0.701538E-02 H -0.625547E-02 -0.391121E-02 -0.508954E-02 O 0.228398E-01 -0.951701E-03 -0.615388E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 156.27 1.3110 2 15.24 0.0169 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3900 0.00007 0.0 327.8 -17.19957 -17.19957 -17.19801 -17.72630 0.0000 0.0000 -0.0017 ******* writing restart file: .//cp_91.save restart file written in 0.830 sec. 3901 0.00007 0.0 341.3 -17.19966 -17.19966 -17.19804 -17.72634 0.0000 0.0000 -0.0017 ******* 3902 0.00008 0.0 354.3 -17.19976 -17.19976 -17.19807 -17.72638 0.0000 0.0000 -0.0017 ******* 3903 0.00008 0.0 366.9 -17.19985 -17.19985 -17.19811 -17.72643 0.0000 0.0000 -0.0018 ******* 3904 0.00009 0.0 379.1 -17.19994 -17.19994 -17.19814 -17.72648 0.0000 0.0000 -0.0018 ******* 3905 0.00009 0.0 390.7 -17.20004 -17.20004 -17.19818 -17.72654 0.0000 0.0000 -0.0018 ******* 3906 0.00010 0.0 401.8 -17.20013 -17.20013 -17.19822 -17.72659 0.0000 0.0000 -0.0018 ******* 3907 0.00010 0.0 412.4 -17.20022 -17.20022 -17.19826 -17.72665 0.0000 0.0000 -0.0019 ******* 3908 0.00011 0.0 422.4 -17.20032 -17.20032 -17.19831 -17.72671 0.0000 0.0000 -0.0019 ******* 3909 0.00011 0.0 431.8 -17.20041 -17.20041 -17.19836 -17.72678 0.0000 0.0000 -0.0019 ******* 3910 0.00012 0.0 440.6 -17.20050 -17.20050 -17.19841 -17.72684 0.0000 0.0000 -0.0019 ******* 3911 0.00012 0.0 448.9 -17.20059 -17.20059 -17.19846 -17.72692 0.0000 0.0000 -0.0019 ******* 3912 0.00013 0.0 456.6 -17.20068 -17.20068 -17.19851 -17.72699 0.0000 0.0000 -0.0020 ******* 3913 0.00013 0.0 463.6 -17.20077 -17.20077 -17.19857 -17.72707 0.0000 0.0000 -0.0020 ******* 3914 0.00014 0.0 470.1 -17.20085 -17.20085 -17.19862 -17.72715 0.0000 0.0000 -0.0020 ******* 3915 0.00014 0.0 475.9 -17.20094 -17.20094 -17.19868 -17.72723 0.0000 0.0000 -0.0020 ******* 3916 0.00014 0.0 481.2 -17.20103 -17.20103 -17.19874 -17.72731 0.0000 0.0000 -0.0020 ******* 3917 0.00015 0.0 485.8 -17.20111 -17.20111 -17.19880 -17.72740 0.0000 0.0000 -0.0021 ******* 3918 0.00015 0.0 489.9 -17.20119 -17.20119 -17.19886 -17.72749 0.0000 0.0000 -0.0021 ******* 3919 0.00015 0.0 493.4 -17.20127 -17.20127 -17.19893 -17.72758 0.0000 0.0000 -0.0021 ******* 3920 0.00016 0.0 496.3 -17.20135 -17.20135 -17.19899 -17.72767 0.0000 0.0000 -0.0021 ******* 3921 0.00016 0.0 498.6 -17.20143 -17.20143 -17.19906 -17.72776 0.0000 0.0000 -0.0021 ******* 3922 0.00016 0.0 500.4 -17.20150 -17.20150 -17.19913 -17.72786 0.0000 0.0000 -0.0022 ******* 3923 0.00016 0.0 501.7 -17.20158 -17.20158 -17.19920 -17.72795 0.0000 0.0000 -0.0022 ******* 3924 0.00017 0.0 502.4 -17.20165 -17.20165 -17.19926 -17.72805 0.0000 0.0000 -0.0022 ******* 3925 0.00017 0.0 502.7 -17.20172 -17.20172 -17.19933 -17.72815 0.0000 0.0000 -0.0022 ******* 3926 0.00017 0.0 502.4 -17.20179 -17.20179 -17.19940 -17.72825 0.0000 0.0000 -0.0022 ******* 3927 0.00017 0.0 501.6 -17.20186 -17.20186 -17.19948 -17.72835 0.0000 0.0000 -0.0022 ******* 3928 0.00017 0.0 500.4 -17.20192 -17.20192 -17.19955 -17.72846 0.0000 0.0000 -0.0023 ******* 3929 0.00017 0.0 498.7 -17.20199 -17.20199 -17.19962 -17.72856 0.0000 0.0000 -0.0023 ******* * Physical Quantities at step: 3930 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20205 Hartree a.u. kinetic energy = 7.83775 Hartree a.u. electrostatic energy = -22.94310 Hartree a.u. esr = 0.11616 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40286 Hartree a.u. n-l pseudopotential energy = 4.50232 Hartree a.u. exchange-correlation energy = -4.19616 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -11.89 -8.88 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107270E+01 0.593837E+00 0.927348E+00 H 0.490533E+00 -0.155427E+01 -0.806337E+00 O -0.406048E+00 -0.415995E+00 0.379446E+00 ATOMIC_VELOCITIES H -0.618160E-03 0.623324E-03 0.670970E-03 H -0.910839E-03 -0.545723E-03 -0.245750E-03 O 0.963248E-04 -0.488877E-05 -0.267883E-04 Forces acting on atoms (au): H 0.980617E-03 -0.660692E-02 -0.502734E-02 H 0.378719E-02 0.639295E-02 0.367406E-02 O 0.135086E-01 -0.840250E-03 -0.393440E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 232.93 1.2469 2 30.76 0.0157 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3930 0.00017 0.0 496.6 -17.20205 -17.20205 -17.19969 -17.72866 0.0000 0.0000 -0.0023 ******* writing restart file: .//cp_91.save restart file written in 0.799 sec. 3931 0.00017 0.0 494.1 -17.20211 -17.20211 -17.19977 -17.72877 0.0000 0.0000 -0.0023 ******* 3932 0.00017 0.0 491.1 -17.20217 -17.20217 -17.19984 -17.72887 0.0000 0.0000 -0.0023 ******* 3933 0.00018 0.0 487.8 -17.20223 -17.20223 -17.19991 -17.72898 0.0000 0.0000 -0.0024 ******* 3934 0.00018 0.0 484.1 -17.20228 -17.20228 -17.19998 -17.72908 0.0000 0.0000 -0.0024 ******* 3935 0.00018 0.0 480.0 -17.20234 -17.20234 -17.20006 -17.72919 0.0000 0.0000 -0.0024 ******* 3936 0.00018 0.0 475.6 -17.20239 -17.20239 -17.20013 -17.72929 0.0000 0.0000 -0.0024 ******* 3937 0.00017 0.0 470.8 -17.20244 -17.20244 -17.20020 -17.72940 0.0000 0.0000 -0.0024 ******* 3938 0.00017 0.0 465.8 -17.20248 -17.20248 -17.20027 -17.72950 0.0000 0.0000 -0.0024 ******* 3939 0.00017 0.0 460.4 -17.20253 -17.20253 -17.20034 -17.72961 0.0000 0.0000 -0.0025 ******* 3940 0.00017 0.0 454.8 -17.20257 -17.20257 -17.20041 -17.72971 0.0000 0.0000 -0.0025 ******* 3941 0.00017 0.0 448.9 -17.20262 -17.20262 -17.20049 -17.72982 0.0000 0.0000 -0.0025 ******* 3942 0.00017 0.0 442.7 -17.20266 -17.20266 -17.20056 -17.72992 0.0000 0.0000 -0.0025 ******* 3943 0.00017 0.0 436.3 -17.20270 -17.20270 -17.20062 -17.73002 0.0000 0.0000 -0.0026 ******* 3944 0.00017 0.0 429.6 -17.20273 -17.20273 -17.20069 -17.73012 0.0000 0.0000 -0.0026 ******* 3945 0.00017 0.0 422.8 -17.20277 -17.20277 -17.20076 -17.73023 0.0000 0.0000 -0.0026 ******* 3946 0.00017 0.0 415.7 -17.20280 -17.20280 -17.20083 -17.73033 0.0000 0.0000 -0.0026 ******* 3947 0.00016 0.0 408.5 -17.20284 -17.20284 -17.20090 -17.73042 0.0000 0.0000 -0.0026 ******* 3948 0.00016 0.0 401.1 -17.20287 -17.20287 -17.20096 -17.73052 0.0000 0.0000 -0.0027 ******* 3949 0.00016 0.0 393.5 -17.20290 -17.20290 -17.20103 -17.73062 0.0000 0.0000 -0.0027 ******* 3950 0.00016 0.0 385.8 -17.20292 -17.20292 -17.20109 -17.73072 0.0000 0.0000 -0.0027 ******* 3951 0.00016 0.0 378.0 -17.20295 -17.20295 -17.20115 -17.73081 0.0000 0.0000 -0.0027 ******* 3952 0.00015 0.0 370.0 -17.20297 -17.20297 -17.20121 -17.73090 0.0000 0.0000 -0.0028 ******* 3953 0.00015 0.0 362.0 -17.20300 -17.20300 -17.20128 -17.73100 0.0000 0.0000 -0.0028 ******* 3954 0.00015 0.0 353.8 -17.20302 -17.20302 -17.20134 -17.73109 0.0000 0.0000 -0.0028 ******* 3955 0.00015 0.0 345.6 -17.20304 -17.20304 -17.20139 -17.73118 0.0000 0.0000 -0.0028 ******* 3956 0.00014 0.0 337.3 -17.20305 -17.20305 -17.20145 -17.73126 0.0000 0.0000 -0.0029 ******* 3957 0.00014 0.0 328.9 -17.20307 -17.20307 -17.20151 -17.73135 0.0000 0.0000 -0.0029 ******* 3958 0.00014 0.0 320.5 -17.20309 -17.20309 -17.20157 -17.73144 0.0000 0.0000 -0.0029 ******* 3959 0.00014 0.0 312.0 -17.20310 -17.20310 -17.20162 -17.73152 0.0000 0.0000 -0.0030 ******* * Physical Quantities at step: 3960 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20311 Hartree a.u. kinetic energy = 7.83819 Hartree a.u. electrostatic energy = -22.94492 Hartree a.u. esr = 0.11939 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40916 Hartree a.u. n-l pseudopotential energy = 4.51099 Hartree a.u. exchange-correlation energy = -4.19821 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.48 -12.24 -8.62 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.101572E+01 0.639296E+00 0.980273E+00 H 0.411914E+00 -0.159273E+01 -0.821417E+00 O -0.397505E+00 -0.416436E+00 0.377062E+00 ATOMIC_VELOCITIES H -0.595248E-03 0.379703E-03 0.482716E-03 H -0.777965E-03 -0.308124E-03 -0.968064E-04 O 0.865105E-04 -0.450936E-05 -0.243118E-04 Forces acting on atoms (au): H 0.753049E-02 -0.705447E-02 -0.757567E-02 H 0.108548E-01 0.610267E-02 0.255605E-02 O -0.713667E-02 0.491601E-03 0.184042E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 139.36 1.1851 2 24.85 0.0146 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3960 0.00013 0.0 303.6 -17.20311 -17.20311 -17.20167 -17.73160 0.0000 0.0000 -0.0030 ******* writing restart file: .//cp_91.save restart file written in 0.795 sec. 3961 0.00013 0.0 295.1 -17.20313 -17.20313 -17.20173 -17.73168 0.0000 0.0000 -0.0030 ******* 3962 0.00013 0.0 286.6 -17.20314 -17.20314 -17.20178 -17.73176 0.0000 0.0000 -0.0030 ******* 3963 0.00013 0.0 278.1 -17.20315 -17.20315 -17.20183 -17.73184 0.0000 0.0000 -0.0031 ******* 3964 0.00012 0.0 269.6 -17.20316 -17.20316 -17.20187 -17.73191 0.0000 0.0000 -0.0031 ******* 3965 0.00012 0.0 261.2 -17.20316 -17.20316 -17.20192 -17.73199 0.0000 0.0000 -0.0031 ******* 3966 0.00012 0.0 252.8 -17.20317 -17.20317 -17.20197 -17.73206 0.0000 0.0000 -0.0032 ******* 3967 0.00011 0.0 244.4 -17.20317 -17.20317 -17.20201 -17.73213 0.0000 0.0000 -0.0032 ******* 3968 0.00011 0.0 236.1 -17.20318 -17.20318 -17.20206 -17.73220 0.0000 0.0000 -0.0032 ******* 3969 0.00011 0.0 227.9 -17.20318 -17.20318 -17.20210 -17.73227 0.0000 0.0000 -0.0033 ******* 3970 0.00011 0.0 219.7 -17.20318 -17.20318 -17.20214 -17.73233 0.0000 0.0000 -0.0033 ******* 3971 0.00010 0.0 211.6 -17.20319 -17.20319 -17.20218 -17.73240 0.0000 0.0000 -0.0033 ******* 3972 0.00010 0.0 203.6 -17.20319 -17.20319 -17.20222 -17.73246 0.0000 0.0000 -0.0034 ******* 3973 0.00010 0.0 195.7 -17.20319 -17.20319 -17.20226 -17.73252 0.0000 0.0000 -0.0034 ******* 3974 0.00009 0.0 187.9 -17.20319 -17.20319 -17.20229 -17.73258 0.0000 0.0000 -0.0035 ******* 3975 0.00009 0.0 180.2 -17.20318 -17.20318 -17.20233 -17.73263 0.0000 0.0000 -0.0035 ******* 3976 0.00009 0.0 172.6 -17.20318 -17.20318 -17.20236 -17.73269 0.0000 0.0000 -0.0035 ******* 3977 0.00009 0.0 165.2 -17.20318 -17.20318 -17.20240 -17.73274 0.0000 0.0000 -0.0036 ******* 3978 0.00008 0.0 157.9 -17.20318 -17.20318 -17.20243 -17.73279 0.0000 0.0000 -0.0036 ******* 3979 0.00008 0.0 150.7 -17.20317 -17.20317 -17.20246 -17.73284 0.0000 0.0000 -0.0036 ******* 3980 0.00008 0.0 143.6 -17.20317 -17.20317 -17.20249 -17.73289 0.0000 0.0000 -0.0037 ******* 3981 0.00007 0.0 136.7 -17.20317 -17.20317 -17.20252 -17.73293 0.0000 0.0000 -0.0037 ******* 3982 0.00007 0.0 130.0 -17.20316 -17.20316 -17.20254 -17.73298 0.0000 0.0000 -0.0038 ******* 3983 0.00007 0.0 123.4 -17.20316 -17.20316 -17.20257 -17.73302 0.0000 0.0000 -0.0038 ******* 3984 0.00007 0.0 117.0 -17.20315 -17.20315 -17.20259 -17.73306 0.0000 0.0000 -0.0038 ******* 3985 0.00006 0.0 110.7 -17.20314 -17.20314 -17.20262 -17.73310 0.0000 0.0000 -0.0039 ******* 3986 0.00006 0.0 104.6 -17.20314 -17.20314 -17.20264 -17.73314 0.0000 0.0000 -0.0039 ******* 3987 0.00006 0.0 98.6 -17.20313 -17.20313 -17.20266 -17.73317 0.0000 0.0000 -0.0040 ******* 3988 0.00006 0.0 92.9 -17.20313 -17.20313 -17.20268 -17.73321 0.0000 0.0000 -0.0040 ******* 3989 0.00005 0.0 87.3 -17.20312 -17.20312 -17.20270 -17.73324 0.0000 0.0000 -0.0041 ******* * Physical Quantities at step: 3990 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20311 Hartree a.u. kinetic energy = 7.84808 Hartree a.u. electrostatic energy = -22.94804 Hartree a.u. esr = 0.12411 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41994 Hartree a.u. n-l pseudopotential energy = 4.51987 Hartree a.u. exchange-correlation energy = -4.20309 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.47 -12.46 -8.44 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.973379E+00 0.663743E+00 0.101340E+01 H 0.357711E+00 -0.161226E+01 -0.827062E+00 O -0.391423E+00 -0.416746E+00 0.375331E+00 ATOMIC_VELOCITIES H -0.320552E-03 0.175347E-03 0.256899E-03 H -0.407020E-03 -0.140880E-03 -0.443900E-04 O 0.458360E-04 -0.217137E-05 -0.133877E-04 Forces acting on atoms (au): H 0.947465E-02 -0.490103E-02 -0.642414E-02 H 0.118073E-01 0.372927E-02 0.558445E-03 O -0.146234E-01 0.962514E-03 0.392343E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 37.42 1.1467 2 7.01 0.0138 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 3990 0.00005 0.0 81.9 -17.20311 -17.20311 -17.20272 -17.73327 0.0000 0.0000 -0.0041 ******* writing restart file: .//cp_91.save restart file written in 0.820 sec. 3991 0.00005 0.0 76.6 -17.20311 -17.20311 -17.20274 -17.73330 0.0000 0.0000 -0.0041 ******* 3992 0.00005 0.0 71.6 -17.20310 -17.20310 -17.20276 -17.73333 0.0000 0.0000 -0.0042 ******* 3993 0.00004 0.0 66.7 -17.20309 -17.20309 -17.20278 -17.73336 0.0000 0.0000 -0.0042 ******* 3994 0.00004 0.0 62.0 -17.20309 -17.20309 -17.20279 -17.73338 0.0000 0.0000 -0.0043 ******* 3995 0.00004 0.0 57.4 -17.20308 -17.20308 -17.20281 -17.73341 0.0000 0.0000 -0.0043 ******* 3996 0.00004 0.0 53.1 -17.20307 -17.20307 -17.20282 -17.73343 0.0000 0.0000 -0.0044 ******* 3997 0.00003 0.0 48.9 -17.20307 -17.20307 -17.20284 -17.73346 0.0000 0.0000 -0.0044 ******* 3998 0.00003 0.0 44.9 -17.20306 -17.20306 -17.20285 -17.73348 0.0000 0.0000 -0.0045 ******* 3999 0.00003 0.0 41.1 -17.20306 -17.20306 -17.20286 -17.73350 0.0000 0.0000 -0.0045 ******* 4000 0.00003 0.0 37.5 -17.20305 -17.20305 -17.20287 -17.73351 0.0000 0.0000 -0.0045 ******* 4001 0.00003 0.0 34.1 -17.20304 -17.20304 -17.20288 -17.73353 0.0000 0.0000 -0.0046 ******* 4002 0.00002 0.0 30.8 -17.20304 -17.20304 -17.20289 -17.73355 0.0000 0.0000 -0.0046 ******* 4003 0.00002 0.0 27.7 -17.20303 -17.20303 -17.20290 -17.73356 0.0000 0.0000 -0.0047 ******* 4004 0.00002 0.0 24.8 -17.20303 -17.20303 -17.20291 -17.73358 0.0000 0.0000 -0.0047 ******* 4005 0.00002 0.0 22.1 -17.20302 -17.20302 -17.20292 -17.73359 0.0000 0.0000 -0.0048 ******* 4006 0.00002 0.0 19.5 -17.20302 -17.20302 -17.20293 -17.73360 0.0000 0.0000 -0.0048 ******* 4007 0.00002 0.0 17.1 -17.20301 -17.20301 -17.20293 -17.73361 0.0000 0.0000 -0.0049 ******* 4008 0.00002 0.0 14.9 -17.20301 -17.20301 -17.20294 -17.73362 0.0000 0.0000 -0.0049 ******* 4009 0.00001 0.0 12.8 -17.20301 -17.20301 -17.20295 -17.73363 0.0000 0.0000 -0.0050 ******* 4010 0.00001 0.0 10.9 -17.20300 -17.20300 -17.20295 -17.73364 0.0000 0.0000 -0.0050 ******* 4011 0.00001 0.0 9.2 -17.20300 -17.20300 -17.20296 -17.73365 0.0000 0.0000 -0.0051 ******* 4012 0.00001 0.0 7.6 -17.20300 -17.20300 -17.20296 -17.73365 0.0000 0.0000 -0.0051 ******* 4013 0.00001 0.0 6.2 -17.20299 -17.20299 -17.20297 -17.73366 0.0000 0.0000 -0.0051 ******* 4014 0.00001 0.0 5.0 -17.20299 -17.20299 -17.20297 -17.73367 0.0000 0.0000 -0.0052 ******* 4015 0.00001 0.0 3.9 -17.20299 -17.20299 -17.20297 -17.73367 0.0000 0.0000 -0.0052 ******* 4016 0.00001 0.0 2.9 -17.20299 -17.20299 -17.20298 -17.73368 0.0000 0.0000 -0.0053 ******* 4017 0.00001 0.0 2.1 -17.20299 -17.20299 -17.20298 -17.73368 0.0000 0.0000 -0.0053 ******* 4018 0.00001 0.0 1.5 -17.20299 -17.20299 -17.20298 -17.73368 0.0000 0.0000 -0.0054 ******* 4019 0.00000 0.0 1.0 -17.20299 -17.20299 -17.20298 -17.73369 0.0000 0.0000 -0.0054 ******* * Physical Quantities at step: 4020 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20299 Hartree a.u. kinetic energy = 7.85196 Hartree a.u. electrostatic energy = -22.95052 Hartree a.u. esr = 0.12517 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42236 Hartree a.u. n-l pseudopotential energy = 4.52282 Hartree a.u. exchange-correlation energy = -4.20489 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.45 -12.51 -8.37 -6.52 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.958891E+00 0.671778E+00 0.102704E+01 H 0.339108E+00 -0.161908E+01 -0.830218E+00 O -0.389339E+00 -0.416822E+00 0.374670E+00 ATOMIC_VELOCITIES H -0.115710E-04 0.190209E-05 0.474630E-04 H -0.156095E-04 -0.779419E-05 -0.207827E-04 O 0.171234E-05 0.371194E-06 -0.168082E-05 Forces acting on atoms (au): H 0.576478E-02 -0.370236E-02 -0.474109E-02 H 0.757795E-02 0.305166E-02 0.104345E-02 O -0.110841E-01 0.618450E-03 0.286600E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.30 1.1348 2 0.02 0.0136 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4020 0.00000 0.0 0.6 -17.20299 -17.20299 -17.20299 -17.73369 0.0000 0.0000 -0.0055 ******* writing restart file: .//cp_91.save restart file written in 0.831 sec. 4021 0.00000 0.0 0.4 -17.20299 -17.20299 -17.20299 -17.73369 0.0000 0.0000 -0.0055 ******* 4022 0.00000 0.0 0.3 -17.20299 -17.20299 -17.20299 -17.73369 0.0000 0.0000 -0.0056 ******* 4023 0.00000 0.0 0.4 -17.20299 -17.20299 -17.20299 -17.73369 0.0000 0.0000 -0.0056 ******* 4024 0.00000 0.0 0.6 -17.20299 -17.20299 -17.20299 -17.73370 0.0000 0.0000 -0.0057 ******* 4025 0.00000 0.0 0.9 -17.20300 -17.20300 -17.20299 -17.73370 0.0000 0.0000 -0.0057 ******* 4026 0.00000 0.0 1.3 -17.20300 -17.20300 -17.20299 -17.73370 0.0000 0.0000 -0.0058 ******* 4027 0.00000 0.0 1.9 -17.20300 -17.20300 -17.20299 -17.73370 0.0000 0.0000 -0.0058 ******* 4028 0.00000 0.0 2.6 -17.20300 -17.20300 -17.20299 -17.73370 0.0000 0.0000 -0.0059 ******* 4029 0.00000 0.0 3.4 -17.20301 -17.20301 -17.20299 -17.73370 0.0000 0.0000 -0.0059 ******* 4030 0.00000 0.0 4.4 -17.20301 -17.20301 -17.20299 -17.73370 0.0000 0.0000 -0.0060 ******* 4031 0.00000 0.0 5.4 -17.20302 -17.20302 -17.20299 -17.73370 0.0000 0.0000 -0.0060 ******* 4032 0.00000 0.0 6.6 -17.20302 -17.20302 -17.20299 -17.73370 0.0000 0.0000 -0.0061 ******* 4033 0.00000 0.0 7.9 -17.20303 -17.20303 -17.20299 -17.73370 0.0000 0.0000 -0.0061 ******* 4034 0.00000 0.0 9.3 -17.20303 -17.20303 -17.20299 -17.73370 0.0000 0.0000 -0.0062 ******* 4035 0.00000 0.0 10.8 -17.20304 -17.20304 -17.20299 -17.73370 0.0000 0.0000 -0.0062 ******* 4036 0.00000 0.0 12.3 -17.20304 -17.20304 -17.20298 -17.73370 0.0000 0.0000 -0.0062 ******* 4037 0.00000 0.0 14.0 -17.20305 -17.20305 -17.20298 -17.73370 0.0000 0.0000 -0.0063 ******* 4038 0.00000 0.0 15.8 -17.20306 -17.20306 -17.20298 -17.73370 0.0000 0.0000 -0.0063 ******* 4039 0.00000 0.0 17.7 -17.20306 -17.20306 -17.20298 -17.73370 0.0000 0.0000 -0.0064 ******* 4040 0.00000 0.0 19.7 -17.20307 -17.20307 -17.20298 -17.73370 0.0000 0.0000 -0.0064 ******* 4041 0.00000 0.0 21.7 -17.20308 -17.20308 -17.20297 -17.73371 0.0000 0.0000 -0.0065 ******* 4042 0.00000 0.0 23.9 -17.20308 -17.20308 -17.20297 -17.73371 0.0000 0.0000 -0.0065 ******* 4043 0.00000 0.0 26.1 -17.20309 -17.20309 -17.20297 -17.73371 0.0000 0.0000 -0.0066 ******* 4044 0.00000 0.0 28.4 -17.20310 -17.20310 -17.20296 -17.73371 0.0000 0.0000 -0.0066 ******* 4045 0.00000 0.0 30.8 -17.20311 -17.20311 -17.20296 -17.73371 0.0000 0.0000 -0.0067 ******* 4046 0.00000 0.0 33.2 -17.20312 -17.20312 -17.20296 -17.73371 0.0000 0.0000 -0.0067 ******* 4047 0.00001 0.0 35.7 -17.20312 -17.20312 -17.20296 -17.73372 0.0000 0.0000 -0.0068 ******* 4048 0.00001 0.0 38.3 -17.20313 -17.20313 -17.20295 -17.73372 0.0000 0.0000 -0.0068 ******* 4049 0.00001 0.0 40.9 -17.20314 -17.20314 -17.20295 -17.73372 0.0000 0.0000 -0.0069 ******* * Physical Quantities at step: 4050 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20315 Hartree a.u. kinetic energy = 7.85100 Hartree a.u. electrostatic energy = -22.94992 Hartree a.u. esr = 0.12442 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42120 Hartree a.u. n-l pseudopotential energy = 4.52123 Hartree a.u. exchange-correlation energy = -4.20427 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.45 -12.45 -8.41 -6.52 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.968555E+00 0.663724E+00 0.102228E+01 H 0.352411E+00 -0.161292E+01 -0.829567E+00 O -0.390786E+00 -0.416703E+00 0.374929E+00 ATOMIC_VELOCITIES H 0.210851E-03 -0.179445E-03 -0.148334E-03 H 0.295519E-03 0.145218E-03 0.392460E-04 O -0.319006E-04 0.215629E-05 0.687241E-05 Forces acting on atoms (au): H 0.761114E-03 -0.119526E-02 -0.166677E-02 H 0.142071E-02 0.119505E-02 0.894987E-03 O -0.597062E-02 0.330836E-03 0.152421E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 20.17 1.1415 2 3.28 0.0138 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4050 0.00001 0.0 43.6 -17.20315 -17.20315 -17.20294 -17.73373 0.0000 0.0000 -0.0069 ******* writing restart file: .//cp_91.save restart file written in 0.796 sec. 4051 0.00001 0.0 46.4 -17.20316 -17.20316 -17.20294 -17.73373 0.0000 0.0000 -0.0069 ******* 4052 0.00001 0.0 49.2 -17.20317 -17.20317 -17.20294 -17.73374 0.0000 0.0000 -0.0070 ******* 4053 0.00001 0.0 52.0 -17.20318 -17.20318 -17.20293 -17.73374 0.0000 0.0000 -0.0070 ******* 4054 0.00001 0.0 54.9 -17.20319 -17.20319 -17.20293 -17.73375 0.0000 0.0000 -0.0071 ******* 4055 0.00001 0.0 57.8 -17.20320 -17.20320 -17.20292 -17.73375 0.0000 0.0000 -0.0071 ******* 4056 0.00001 0.0 60.8 -17.20321 -17.20321 -17.20292 -17.73376 0.0000 0.0000 -0.0072 ******* 4057 0.00001 0.0 63.8 -17.20322 -17.20322 -17.20291 -17.73377 0.0000 0.0000 -0.0072 ******* 4058 0.00001 0.0 66.8 -17.20323 -17.20323 -17.20291 -17.73377 0.0000 0.0000 -0.0073 ******* 4059 0.00001 0.0 69.9 -17.20324 -17.20324 -17.20290 -17.73378 0.0000 0.0000 -0.0073 ******* 4060 0.00002 0.0 72.9 -17.20325 -17.20325 -17.20290 -17.73379 0.0000 0.0000 -0.0073 ******* 4061 0.00002 0.0 76.0 -17.20325 -17.20325 -17.20289 -17.73380 0.0000 0.0000 -0.0074 ******* 4062 0.00002 0.0 79.1 -17.20326 -17.20326 -17.20289 -17.73381 0.0000 0.0000 -0.0074 ******* 4063 0.00002 0.0 82.2 -17.20327 -17.20327 -17.20288 -17.73382 0.0000 0.0000 -0.0075 ******* 4064 0.00002 0.0 85.3 -17.20328 -17.20328 -17.20288 -17.73383 0.0000 0.0000 -0.0075 ******* 4065 0.00002 0.0 88.4 -17.20329 -17.20329 -17.20287 -17.73384 0.0000 0.0000 -0.0076 ******* 4066 0.00002 0.0 91.4 -17.20330 -17.20330 -17.20286 -17.73386 0.0000 0.0000 -0.0076 ******* 4067 0.00002 0.0 94.5 -17.20331 -17.20331 -17.20286 -17.73387 0.0000 0.0000 -0.0076 ******* 4068 0.00002 0.0 97.6 -17.20331 -17.20331 -17.20285 -17.73388 0.0000 0.0000 -0.0077 ******* 4069 0.00002 0.0 100.6 -17.20332 -17.20332 -17.20284 -17.73390 0.0000 0.0000 -0.0077 ******* 4070 0.00003 0.0 103.6 -17.20333 -17.20333 -17.20284 -17.73391 0.0000 0.0000 -0.0078 ******* 4071 0.00003 0.0 106.6 -17.20334 -17.20334 -17.20283 -17.73393 0.0000 0.0000 -0.0078 ******* 4072 0.00003 0.0 109.6 -17.20334 -17.20334 -17.20282 -17.73394 0.0000 0.0000 -0.0079 ******* 4073 0.00003 0.0 112.5 -17.20335 -17.20335 -17.20282 -17.73396 0.0000 0.0000 -0.0079 ******* 4074 0.00003 0.0 115.4 -17.20336 -17.20336 -17.20281 -17.73397 0.0000 0.0000 -0.0079 ******* 4075 0.00003 0.0 118.2 -17.20336 -17.20336 -17.20280 -17.73399 0.0000 0.0000 -0.0080 ******* 4076 0.00003 0.0 121.0 -17.20337 -17.20337 -17.20279 -17.73401 0.0000 0.0000 -0.0080 ******* 4077 0.00003 0.0 123.7 -17.20337 -17.20337 -17.20278 -17.73403 0.0000 0.0000 -0.0081 ******* 4078 0.00003 0.0 126.4 -17.20338 -17.20338 -17.20278 -17.73405 0.0000 0.0000 -0.0081 ******* 4079 0.00003 0.0 129.0 -17.20338 -17.20338 -17.20277 -17.73407 0.0000 0.0000 -0.0081 ******* * Physical Quantities at step: 4080 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20338 Hartree a.u. kinetic energy = 7.85134 Hartree a.u. electrostatic energy = -22.94739 Hartree a.u. esr = 0.12385 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42135 Hartree a.u. n-l pseudopotential energy = 4.51771 Hartree a.u. exchange-correlation energy = -4.20370 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.32 -8.55 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.994427E+00 0.640881E+00 0.100219E+01 H 0.389261E+00 -0.159408E+01 -0.823475E+00 O -0.394737E+00 -0.416451E+00 0.375811E+00 ATOMIC_VELOCITIES H 0.351006E-03 -0.314320E-03 -0.282254E-03 H 0.503665E-03 0.260977E-03 0.894874E-04 O -0.538431E-04 0.336048E-05 0.121441E-04 Forces acting on atoms (au): H -0.373935E-02 0.294169E-02 0.267244E-02 H -0.509893E-02 -0.237274E-02 -0.671092E-03 O 0.294669E-03 0.507128E-05 -0.623350E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 61.07 1.1618 2 9.39 0.0143 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4080 0.00004 0.0 131.5 -17.20338 -17.20338 -17.20276 -17.73409 0.0000 0.0000 -0.0082 ******* writing restart file: .//cp_91.save restart file written in 0.801 sec. 4081 0.00004 0.0 134.0 -17.20339 -17.20339 -17.20275 -17.73411 0.0000 0.0000 -0.0082 ******* 4082 0.00004 0.0 136.4 -17.20339 -17.20339 -17.20274 -17.73413 0.0000 0.0000 -0.0083 ******* 4083 0.00004 0.0 138.7 -17.20339 -17.20339 -17.20273 -17.73416 0.0000 0.0000 -0.0083 ******* 4084 0.00004 0.0 140.9 -17.20340 -17.20340 -17.20273 -17.73418 0.0000 0.0000 -0.0083 ******* 4085 0.00004 0.0 143.1 -17.20340 -17.20340 -17.20272 -17.73420 0.0000 0.0000 -0.0084 ******* 4086 0.00004 0.0 145.1 -17.20340 -17.20340 -17.20271 -17.73423 0.0000 0.0000 -0.0084 ******* 4087 0.00004 0.0 147.1 -17.20340 -17.20340 -17.20270 -17.73425 0.0000 0.0000 -0.0085 ******* 4088 0.00004 0.0 148.9 -17.20340 -17.20340 -17.20269 -17.73428 0.0000 0.0000 -0.0085 ******* 4089 0.00004 0.0 150.7 -17.20340 -17.20340 -17.20268 -17.73431 0.0000 0.0000 -0.0085 ******* 4090 0.00005 0.0 152.3 -17.20339 -17.20339 -17.20267 -17.73433 0.0000 0.0000 -0.0086 ******* 4091 0.00005 0.0 153.9 -17.20339 -17.20339 -17.20266 -17.73436 0.0000 0.0000 -0.0086 ******* 4092 0.00005 0.0 155.3 -17.20339 -17.20339 -17.20265 -17.73439 0.0000 0.0000 -0.0086 ******* 4093 0.00005 0.0 156.6 -17.20339 -17.20339 -17.20264 -17.73442 0.0000 0.0000 -0.0087 ******* 4094 0.00005 0.0 157.8 -17.20338 -17.20338 -17.20263 -17.73444 0.0000 0.0000 -0.0087 ******* 4095 0.00005 0.0 158.9 -17.20338 -17.20338 -17.20262 -17.73447 0.0000 0.0000 -0.0088 ******* 4096 0.00005 0.0 159.8 -17.20337 -17.20337 -17.20261 -17.73450 0.0000 0.0000 -0.0088 ******* 4097 0.00005 0.0 160.6 -17.20337 -17.20337 -17.20260 -17.73453 0.0000 0.0000 -0.0088 ******* 4098 0.00005 0.0 161.3 -17.20336 -17.20336 -17.20260 -17.73456 0.0000 0.0000 -0.0089 ******* 4099 0.00005 0.0 161.9 -17.20335 -17.20335 -17.20259 -17.73460 0.0000 0.0000 -0.0089 ******* 4100 0.00005 0.0 162.3 -17.20335 -17.20335 -17.20258 -17.73463 0.0000 0.0000 -0.0090 ******* 4101 0.00005 0.0 162.6 -17.20334 -17.20334 -17.20257 -17.73466 0.0000 0.0000 -0.0090 ******* 4102 0.00005 0.0 162.8 -17.20333 -17.20333 -17.20256 -17.73469 0.0000 0.0000 -0.0090 ******* 4103 0.00005 0.0 162.8 -17.20332 -17.20332 -17.20255 -17.73472 0.0000 0.0000 -0.0091 ******* 4104 0.00005 0.0 162.7 -17.20331 -17.20331 -17.20254 -17.73475 0.0000 0.0000 -0.0091 ******* 4105 0.00005 0.0 162.5 -17.20330 -17.20330 -17.20253 -17.73479 0.0000 0.0000 -0.0091 ******* 4106 0.00006 0.0 162.1 -17.20329 -17.20329 -17.20252 -17.73482 0.0000 0.0000 -0.0092 ******* 4107 0.00006 0.0 161.6 -17.20328 -17.20328 -17.20251 -17.73485 0.0000 0.0000 -0.0092 ******* 4108 0.00006 0.0 160.9 -17.20327 -17.20327 -17.20250 -17.73489 0.0000 0.0000 -0.0093 ******* 4109 0.00006 0.0 160.1 -17.20325 -17.20325 -17.20249 -17.73492 0.0000 0.0000 -0.0093 ******* * Physical Quantities at step: 4110 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20324 Hartree a.u. kinetic energy = 7.85144 Hartree a.u. electrostatic energy = -22.94469 Hartree a.u. esr = 0.12254 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41988 Hartree a.u. n-l pseudopotential energy = 4.51256 Hartree a.u. exchange-correlation energy = -4.20268 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.54 -12.12 -8.72 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.102872E+01 0.610275E+00 0.975043E+00 H 0.438521E+00 -0.156871E+01 -0.814917E+00 O -0.400001E+00 -0.416121E+00 0.376982E+00 ATOMIC_VELOCITIES H 0.388715E-03 -0.346616E-03 -0.298062E-03 H 0.558917E-03 0.286670E-03 0.930683E-04 O -0.596995E-04 0.377649E-05 0.129143E-04 Forces acting on atoms (au): H -0.792675E-02 0.650477E-02 0.636148E-02 H -0.110877E-01 -0.534781E-02 -0.184768E-02 O 0.952395E-02 -0.606904E-03 -0.247996E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 73.82 1.1941 2 11.50 0.0150 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4110 0.00006 0.0 159.1 -17.20324 -17.20324 -17.20249 -17.73495 0.0000 0.0000 -0.0093 ******* writing restart file: .//cp_91.save restart file written in 0.846 sec. 4111 0.00006 0.0 158.0 -17.20323 -17.20323 -17.20248 -17.73499 0.0000 0.0000 -0.0094 ******* 4112 0.00006 0.0 156.8 -17.20321 -17.20321 -17.20247 -17.73502 0.0000 0.0000 -0.0094 ******* 4113 0.00006 0.0 155.4 -17.20320 -17.20320 -17.20246 -17.73506 0.0000 0.0000 -0.0095 ******* 4114 0.00006 0.0 153.9 -17.20318 -17.20318 -17.20245 -17.73509 0.0000 0.0000 -0.0095 ******* 4115 0.00006 0.0 152.3 -17.20317 -17.20317 -17.20245 -17.73512 0.0000 0.0000 -0.0095 ******* 4116 0.00006 0.0 150.5 -17.20315 -17.20315 -17.20244 -17.73516 0.0000 0.0000 -0.0096 ******* 4117 0.00006 0.0 148.6 -17.20314 -17.20314 -17.20243 -17.73519 0.0000 0.0000 -0.0096 ******* 4118 0.00006 0.0 146.5 -17.20312 -17.20312 -17.20242 -17.73522 0.0000 0.0000 -0.0096 ******* 4119 0.00006 0.0 144.4 -17.20310 -17.20310 -17.20242 -17.73526 0.0000 0.0000 -0.0097 ******* 4120 0.00006 0.0 142.1 -17.20308 -17.20308 -17.20241 -17.73529 0.0000 0.0000 -0.0097 ******* 4121 0.00005 0.0 139.6 -17.20307 -17.20307 -17.20240 -17.73532 0.0000 0.0000 -0.0098 ******* 4122 0.00005 0.0 137.1 -17.20305 -17.20305 -17.20240 -17.73536 0.0000 0.0000 -0.0098 ******* 4123 0.00005 0.0 134.5 -17.20303 -17.20303 -17.20239 -17.73539 0.0000 0.0000 -0.0098 ******* 4124 0.00005 0.0 131.7 -17.20301 -17.20301 -17.20239 -17.73542 0.0000 0.0000 -0.0099 ******* 4125 0.00005 0.0 128.8 -17.20299 -17.20299 -17.20238 -17.73545 0.0000 0.0000 -0.0099 ******* 4126 0.00005 0.0 125.8 -17.20297 -17.20297 -17.20237 -17.73548 0.0000 0.0000 -0.0100 ******* 4127 0.00005 0.0 122.8 -17.20295 -17.20295 -17.20237 -17.73551 0.0000 0.0000 -0.0100 ******* 4128 0.00005 0.0 119.6 -17.20293 -17.20293 -17.20236 -17.73555 0.0000 0.0000 -0.0100 ******* 4129 0.00005 0.0 116.3 -17.20291 -17.20291 -17.20236 -17.73558 0.0000 0.0000 -0.0101 ******* 4130 0.00005 0.0 113.0 -17.20289 -17.20289 -17.20236 -17.73561 0.0000 0.0000 -0.0101 ******* 4131 0.00005 0.0 109.6 -17.20287 -17.20287 -17.20235 -17.73564 0.0000 0.0000 -0.0102 ******* 4132 0.00005 0.0 106.1 -17.20285 -17.20285 -17.20235 -17.73566 0.0000 0.0000 -0.0102 ******* 4133 0.00005 0.0 102.6 -17.20283 -17.20283 -17.20235 -17.73569 0.0000 0.0000 -0.0103 ******* 4134 0.00005 0.0 99.0 -17.20281 -17.20281 -17.20234 -17.73572 0.0000 0.0000 -0.0103 ******* 4135 0.00004 0.0 95.3 -17.20279 -17.20279 -17.20234 -17.73575 0.0000 0.0000 -0.0103 ******* 4136 0.00004 0.0 91.6 -17.20277 -17.20277 -17.20234 -17.73578 0.0000 0.0000 -0.0104 ******* 4137 0.00004 0.0 87.9 -17.20276 -17.20276 -17.20234 -17.73580 0.0000 0.0000 -0.0104 ******* 4138 0.00004 0.0 84.1 -17.20274 -17.20274 -17.20234 -17.73583 0.0000 0.0000 -0.0105 ******* 4139 0.00004 0.0 80.3 -17.20272 -17.20272 -17.20234 -17.73585 0.0000 0.0000 -0.0105 ******* * Physical Quantities at step: 4140 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20270 Hartree a.u. kinetic energy = 7.84889 Hartree a.u. electrostatic energy = -22.94216 Hartree a.u. esr = 0.12056 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41596 Hartree a.u. n-l pseudopotential energy = 4.50723 Hartree a.u. exchange-correlation energy = -4.20070 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.57 -11.94 -8.87 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.105946E+01 0.582033E+00 0.953073E+00 H 0.483130E+00 -0.154536E+01 -0.807923E+00 O -0.404748E+00 -0.415813E+00 0.377926E+00 ATOMIC_VELOCITIES H 0.264444E-03 -0.260528E-03 -0.162837E-03 H 0.392077E-03 0.215561E-03 0.553019E-04 O -0.413599E-04 0.283283E-05 0.677456E-05 Forces acting on atoms (au): H -0.987279E-02 0.810203E-02 0.770006E-02 H -0.138615E-01 -0.665275E-02 -0.224882E-02 O 0.166798E-01 -0.107021E-02 -0.421888E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 35.55 1.2276 2 5.42 0.0157 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4140 0.00004 0.0 76.5 -17.20270 -17.20270 -17.20234 -17.73588 0.0000 0.0000 -0.0106 ******* writing restart file: .//cp_91.save restart file written in 0.809 sec. 4141 0.00004 0.0 72.7 -17.20268 -17.20268 -17.20234 -17.73590 0.0000 0.0000 -0.0106 ******* 4142 0.00004 0.0 68.9 -17.20266 -17.20266 -17.20234 -17.73592 0.0000 0.0000 -0.0106 ******* 4143 0.00004 0.0 65.1 -17.20265 -17.20265 -17.20234 -17.73594 0.0000 0.0000 -0.0107 ******* 4144 0.00003 0.0 61.4 -17.20263 -17.20263 -17.20234 -17.73597 0.0000 0.0000 -0.0107 ******* 4145 0.00003 0.0 57.6 -17.20261 -17.20261 -17.20234 -17.73599 0.0000 0.0000 -0.0108 ******* 4146 0.00003 0.0 53.9 -17.20260 -17.20260 -17.20234 -17.73601 0.0000 0.0000 -0.0108 ******* 4147 0.00003 0.0 50.3 -17.20258 -17.20258 -17.20234 -17.73603 0.0000 0.0000 -0.0109 ******* 4148 0.00003 0.0 46.7 -17.20256 -17.20256 -17.20234 -17.73604 0.0000 0.0000 -0.0109 ******* 4149 0.00003 0.0 43.2 -17.20255 -17.20255 -17.20234 -17.73606 0.0000 0.0000 -0.0110 ******* 4150 0.00003 0.0 39.8 -17.20254 -17.20254 -17.20235 -17.73608 0.0000 0.0000 -0.0110 ******* 4151 0.00003 0.0 36.4 -17.20252 -17.20252 -17.20235 -17.73609 0.0000 0.0000 -0.0110 ******* 4152 0.00002 0.0 33.2 -17.20251 -17.20251 -17.20235 -17.73611 0.0000 0.0000 -0.0111 ******* 4153 0.00002 0.0 30.1 -17.20250 -17.20250 -17.20236 -17.73612 0.0000 0.0000 -0.0111 ******* 4154 0.00002 0.0 27.1 -17.20249 -17.20249 -17.20236 -17.73614 0.0000 0.0000 -0.0112 ******* 4155 0.00002 0.0 24.2 -17.20248 -17.20248 -17.20236 -17.73615 0.0000 0.0000 -0.0112 ******* 4156 0.00002 0.0 21.5 -17.20247 -17.20247 -17.20236 -17.73616 0.0000 0.0000 -0.0113 ******* 4157 0.00002 0.0 18.9 -17.20246 -17.20246 -17.20237 -17.73617 0.0000 0.0000 -0.0113 ******* 4158 0.00002 0.0 16.5 -17.20245 -17.20245 -17.20237 -17.73618 0.0000 0.0000 -0.0114 ******* 4159 0.00001 0.0 14.3 -17.20244 -17.20244 -17.20237 -17.73619 0.0000 0.0000 -0.0114 ******* 4160 0.00001 0.0 12.3 -17.20244 -17.20244 -17.20238 -17.73620 0.0000 0.0000 -0.0115 ******* 4161 0.00001 0.0 10.5 -17.20243 -17.20243 -17.20238 -17.73621 0.0000 0.0000 -0.0115 ******* 4162 0.00001 0.0 8.9 -17.20243 -17.20243 -17.20238 -17.73622 0.0000 0.0000 -0.0116 ******* 4163 0.00001 0.0 7.5 -17.20242 -17.20242 -17.20239 -17.73622 0.0000 0.0000 -0.0116 ******* 4164 0.00001 0.0 6.4 -17.20242 -17.20242 -17.20239 -17.73623 0.0000 0.0000 -0.0117 ******* 4165 0.00001 0.0 5.5 -17.20242 -17.20242 -17.20239 -17.73623 0.0000 0.0000 -0.0117 ******* 4166 0.00001 0.0 5.0 -17.20242 -17.20242 -17.20240 -17.73624 0.0000 0.0000 -0.0117 ******* 4167 0.00001 0.0 4.6 -17.20242 -17.20242 -17.20240 -17.73624 0.0000 0.0000 -0.0118 ******* 4168 0.00001 0.0 4.6 -17.20242 -17.20242 -17.20240 -17.73625 0.0000 0.0000 -0.0118 ******* 4169 0.00000 0.0 4.9 -17.20242 -17.20242 -17.20240 -17.73625 0.0000 0.0000 -0.0119 ******* * Physical Quantities at step: 4170 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20243 Hartree a.u. kinetic energy = 7.84649 Hartree a.u. electrostatic energy = -22.94074 Hartree a.u. esr = 0.11968 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41373 Hartree a.u. n-l pseudopotential energy = 4.50498 Hartree a.u. exchange-correlation energy = -4.19943 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.58 -11.88 -8.94 -6.56 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.107129E+01 0.567252E+00 0.951032E+00 H 0.502115E+00 -0.153320E+01 -0.806713E+00 O -0.406689E+00 -0.415648E+00 0.377978E+00 ATOMIC_VELOCITIES H -0.264300E-04 -0.455341E-04 0.149374E-03 H -0.605334E-05 0.345370E-04 -0.414981E-04 O 0.204641E-05 0.692799E-06 -0.679601E-05 Forces acting on atoms (au): H -0.689880E-02 0.675639E-02 0.506702E-02 H -0.102024E-01 -0.570508E-02 -0.194759E-02 O 0.156148E-01 -0.975081E-03 -0.357274E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2.71 1.2402 2 0.16 0.0160 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4170 0.00000 0.0 5.6 -17.20243 -17.20243 -17.20240 -17.73625 0.0000 0.0000 -0.0119 ******* writing restart file: .//cp_91.save restart file written in 0.819 sec. 4171 0.00000 0.0 6.6 -17.20243 -17.20243 -17.20240 -17.73626 0.0000 0.0000 -0.0120 ******* 4172 0.00000 0.0 7.9 -17.20244 -17.20244 -17.20240 -17.73626 0.0000 0.0000 -0.0120 ******* 4173 0.00000 0.0 9.6 -17.20244 -17.20244 -17.20240 -17.73626 0.0000 0.0000 -0.0121 ******* 4174 0.00000 0.0 11.6 -17.20245 -17.20245 -17.20240 -17.73626 0.0000 0.0000 -0.0121 ******* 4175 0.00000 0.0 14.1 -17.20246 -17.20246 -17.20239 -17.73626 0.0000 0.0000 -0.0122 ******* 4176 0.00000 0.0 17.0 -17.20247 -17.20247 -17.20239 -17.73627 0.0000 0.0000 -0.0122 ******* 4177 0.00000 0.0 20.3 -17.20248 -17.20248 -17.20238 -17.73627 0.0000 0.0000 -0.0123 ******* 4178 0.00000 0.0 24.1 -17.20249 -17.20249 -17.20238 -17.73627 0.0000 0.0000 -0.0123 ******* 4179 0.00000 0.0 28.3 -17.20250 -17.20250 -17.20237 -17.73627 0.0000 0.0000 -0.0124 ******* 4180 0.00000 0.0 33.0 -17.20252 -17.20252 -17.20236 -17.73627 0.0000 0.0000 -0.0124 ******* 4181 0.00000 0.0 38.2 -17.20253 -17.20253 -17.20235 -17.73627 0.0000 0.0000 -0.0125 ******* 4182 0.00000 0.0 43.9 -17.20255 -17.20255 -17.20234 -17.73627 0.0000 0.0000 -0.0125 ******* 4183 0.00000 0.0 50.1 -17.20256 -17.20256 -17.20232 -17.73628 0.0000 0.0000 -0.0125 ******* 4184 0.00001 0.0 56.9 -17.20258 -17.20258 -17.20231 -17.73628 0.0000 0.0000 -0.0126 ******* 4185 0.00001 0.0 64.2 -17.20260 -17.20260 -17.20229 -17.73628 0.0000 0.0000 -0.0126 ******* 4186 0.00001 0.0 72.1 -17.20261 -17.20261 -17.20227 -17.73629 0.0000 0.0000 -0.0127 ******* 4187 0.00001 0.0 80.6 -17.20263 -17.20263 -17.20225 -17.73629 0.0000 0.0000 -0.0127 ******* 4188 0.00001 0.0 89.6 -17.20265 -17.20265 -17.20223 -17.73630 0.0000 0.0000 -0.0128 ******* 4189 0.00001 0.0 99.3 -17.20267 -17.20267 -17.20220 -17.73630 0.0000 0.0000 -0.0128 ******* 4190 0.00001 0.0 109.7 -17.20269 -17.20269 -17.20217 -17.73631 0.0000 0.0000 -0.0128 ******* 4191 0.00002 0.0 120.7 -17.20271 -17.20271 -17.20214 -17.73632 0.0000 0.0000 -0.0129 ******* 4192 0.00002 0.0 132.3 -17.20273 -17.20273 -17.20210 -17.73633 0.0000 0.0000 -0.0129 ******* 4193 0.00002 0.0 144.7 -17.20275 -17.20275 -17.20207 -17.73634 0.0000 0.0000 -0.0130 ******* 4194 0.00002 0.0 157.7 -17.20277 -17.20277 -17.20202 -17.73635 0.0000 0.0000 -0.0130 ******* 4195 0.00003 0.0 171.5 -17.20279 -17.20279 -17.20198 -17.73636 0.0000 0.0000 -0.0130 ******* 4196 0.00003 0.0 186.0 -17.20282 -17.20282 -17.20193 -17.73638 0.0000 0.0000 -0.0131 ******* 4197 0.00003 0.0 201.2 -17.20284 -17.20284 -17.20188 -17.73640 0.0000 0.0000 -0.0131 ******* 4198 0.00004 0.0 217.2 -17.20286 -17.20286 -17.20182 -17.73642 0.0000 0.0000 -0.0132 ******* 4199 0.00004 0.0 234.0 -17.20288 -17.20288 -17.20176 -17.73644 0.0000 0.0000 -0.0132 ******* * Physical Quantities at step: 4200 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20290 Hartree a.u. kinetic energy = 7.84581 Hartree a.u. electrostatic energy = -22.94269 Hartree a.u. esr = 0.12023 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41382 Hartree a.u. n-l pseudopotential energy = 4.50772 Hartree a.u. exchange-correlation energy = -4.19991 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.54 -12.02 -8.82 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.105054E+01 0.577569E+00 0.986026E+00 H 0.476094E+00 -0.154271E+01 -0.818027E+00 O -0.403742E+00 -0.415698E+00 0.376486E+00 ATOMIC_VELOCITIES H -0.459230E-03 0.290641E-03 0.662699E-03 H -0.603653E-03 -0.262301E-03 -0.223268E-03 O 0.669601E-04 -0.178539E-05 -0.276836E-04 Forces acting on atoms (au): H 0.124489E-02 0.540845E-03 -0.376272E-02 H 0.107660E-02 -0.547404E-03 0.809090E-03 O 0.658479E-02 -0.506601E-03 -0.634330E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 117.75 1.2113 2 16.13 0.0157 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4200 0.00004 0.0 251.6 -17.20290 -17.20290 -17.20170 -17.73646 0.0000 0.0000 -0.0132 ******* writing restart file: .//cp_91.save restart file written in 0.814 sec. 4201 0.00005 0.0 270.0 -17.20291 -17.20291 -17.20163 -17.73649 0.0000 0.0000 -0.0133 ******* 4202 0.00005 0.0 289.2 -17.20293 -17.20293 -17.20156 -17.73652 0.0000 0.0000 -0.0133 ******* 4203 0.00006 0.0 309.3 -17.20295 -17.20295 -17.20148 -17.73655 0.0000 0.0000 -0.0133 ******* 4204 0.00006 0.0 330.1 -17.20297 -17.20297 -17.20140 -17.73658 0.0000 0.0000 -0.0133 ******* 4205 0.00007 0.0 351.9 -17.20298 -17.20298 -17.20131 -17.73662 0.0000 0.0000 -0.0134 ******* 4206 0.00007 0.0 374.5 -17.20299 -17.20299 -17.20122 -17.73666 0.0000 0.0000 -0.0134 ******* 4207 0.00008 0.0 397.9 -17.20301 -17.20301 -17.20112 -17.73670 0.0000 0.0000 -0.0134 ******* 4208 0.00008 0.0 422.3 -17.20302 -17.20302 -17.20101 -17.73675 0.0000 0.0000 -0.0134 ******* 4209 0.00009 0.0 447.5 -17.20303 -17.20303 -17.20090 -17.73679 0.0000 0.0000 -0.0135 ******* 4210 0.00010 0.0 473.7 -17.20303 -17.20303 -17.20078 -17.73685 0.0000 0.0000 -0.0135 ******* 4211 0.00010 0.0 500.7 -17.20304 -17.20304 -17.20066 -17.73690 0.0000 0.0000 -0.0135 ******* 4212 0.00011 0.0 528.6 -17.20304 -17.20304 -17.20053 -17.73697 0.0000 0.0000 -0.0135 ******* 4213 0.00012 0.0 557.4 -17.20304 -17.20304 -17.20039 -17.73703 0.0000 0.0000 -0.0135 ******* 4214 0.00012 0.0 587.1 -17.20304 -17.20304 -17.20025 -17.73710 0.0000 0.0000 -0.0136 ******* 4215 0.00013 0.0 617.7 -17.20303 -17.20303 -17.20010 -17.73718 0.0000 0.0000 -0.0136 ******* 4216 0.00014 0.0 649.1 -17.20302 -17.20302 -17.19994 -17.73725 0.0000 0.0000 -0.0136 ******* 4217 0.00015 0.0 681.5 -17.20301 -17.20301 -17.19977 -17.73734 0.0000 0.0000 -0.0136 ******* 4218 0.00016 0.0 714.7 -17.20299 -17.20299 -17.19960 -17.73743 0.0000 0.0000 -0.0136 ******* 4219 0.00016 0.0 748.7 -17.20298 -17.20298 -17.19942 -17.73752 0.0000 0.0000 -0.0136 ******* 4220 0.00017 0.0 783.6 -17.20295 -17.20295 -17.19923 -17.73762 0.0000 0.0000 -0.0136 ******* 4221 0.00018 0.0 819.3 -17.20292 -17.20292 -17.19903 -17.73772 0.0000 0.0000 -0.0136 ******* 4222 0.00019 0.0 855.7 -17.20289 -17.20289 -17.19883 -17.73783 0.0000 0.0000 -0.0136 ******* 4223 0.00020 0.0 893.0 -17.20286 -17.20286 -17.19862 -17.73795 0.0000 0.0000 -0.0136 ******* 4224 0.00021 0.0 930.9 -17.20282 -17.20282 -17.19839 -17.73807 0.0000 0.0000 -0.0136 ******* 4225 0.00022 0.0 969.5 -17.20277 -17.20277 -17.19817 -17.73820 0.0000 0.0000 -0.0136 ******* 4226 0.00023 0.0 1008.8 -17.20272 -17.20272 -17.19793 -17.73833 0.0000 0.0000 -0.0136 ******* 4227 0.00025 0.0 1048.7 -17.20266 -17.20266 -17.19768 -17.73847 0.0000 0.0000 -0.0135 ******* 4228 0.00026 0.0 1089.2 -17.20260 -17.20260 -17.19743 -17.73862 0.0000 0.0000 -0.0135 ******* 4229 0.00027 0.0 1130.2 -17.20254 -17.20254 -17.19717 -17.73878 0.0000 0.0000 -0.0135 ******* * Physical Quantities at step: 4230 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20246 Hartree a.u. kinetic energy = 7.84313 Hartree a.u. electrostatic energy = -22.94937 Hartree a.u. esr = 0.12082 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41105 Hartree a.u. n-l pseudopotential energy = 4.51572 Hartree a.u. exchange-correlation energy = -4.20090 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.41 -12.38 -8.46 -6.51 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.983666E+00 0.619924E+00 0.107541E+01 H 0.388627E+00 -0.158128E+01 -0.847802E+00 O -0.394019E+00 -0.415937E+00 0.372731E+00 ATOMIC_VELOCITIES H -0.105328E-02 0.629413E-03 0.133552E-02 H -0.135319E-02 -0.580488E-03 -0.428897E-03 O 0.151604E-03 -0.308221E-05 -0.571157E-04 Forces acting on atoms (au): H 0.139593E-01 -0.107516E-01 -0.197678E-01 H 0.194076E-01 0.926166E-02 0.700027E-02 O -0.958729E-02 0.316581E-03 0.473211E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 545.53 1.1408 2 80.61 0.0145 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4230 0.00028 0.0 1171.7 -17.20246 -17.20246 -17.19690 -17.73894 0.0000 0.0000 -0.0135 ******* writing restart file: .//cp_91.save restart file written in 0.805 sec. 4231 0.00029 0.0 1213.5 -17.20238 -17.20238 -17.19662 -17.73911 0.0000 0.0000 -0.0135 ******* 4232 0.00030 0.0 1255.7 -17.20230 -17.20230 -17.19633 -17.73928 0.0000 0.0000 -0.0134 ******* 4233 0.00032 0.0 1298.2 -17.20221 -17.20221 -17.19604 -17.73946 0.0000 0.0000 -0.0134 ******* 4234 0.00033 0.0 1340.9 -17.20211 -17.20211 -17.19574 -17.73965 0.0000 0.0000 -0.0134 ******* 4235 0.00034 0.0 1383.6 -17.20200 -17.20200 -17.19543 -17.73985 0.0000 0.0000 -0.0134 ******* 4236 0.00036 0.0 1426.5 -17.20189 -17.20189 -17.19512 -17.74006 0.0000 0.0000 -0.0133 ******* 4237 0.00037 0.0 1469.3 -17.20177 -17.20177 -17.19479 -17.74027 0.0000 0.0000 -0.0133 ******* 4238 0.00038 0.0 1511.9 -17.20165 -17.20165 -17.19446 -17.74049 0.0000 0.0000 -0.0132 ******* 4239 0.00040 0.0 1554.3 -17.20151 -17.20151 -17.19413 -17.74072 0.0000 0.0000 -0.0132 ******* 4240 0.00041 0.0 1596.4 -17.20137 -17.20137 -17.19379 -17.74096 0.0000 0.0000 -0.0131 ******* 4241 0.00042 0.0 1638.1 -17.20122 -17.20122 -17.19344 -17.74120 0.0000 0.0000 -0.0131 ******* 4242 0.00044 0.0 1679.2 -17.20107 -17.20107 -17.19309 -17.74146 0.0000 0.0000 -0.0130 ******* 4243 0.00045 0.0 1719.7 -17.20091 -17.20091 -17.19274 -17.74172 0.0000 0.0000 -0.0130 ******* 4244 0.00046 0.0 1759.5 -17.20073 -17.20073 -17.19238 -17.74199 0.0000 0.0000 -0.0129 ******* 4245 0.00048 0.0 1798.3 -17.20056 -17.20056 -17.19201 -17.74227 0.0000 0.0000 -0.0129 ******* 4246 0.00049 0.0 1836.3 -17.20037 -17.20037 -17.19165 -17.74255 0.0000 0.0000 -0.0128 ******* 4247 0.00050 0.0 1873.1 -17.20018 -17.20018 -17.19128 -17.74284 0.0000 0.0000 -0.0128 ******* 4248 0.00052 0.0 1908.7 -17.19997 -17.19997 -17.19091 -17.74315 0.0000 0.0000 -0.0127 ******* 4249 0.00053 0.0 1943.0 -17.19977 -17.19977 -17.19054 -17.74346 0.0000 0.0000 -0.0126 ******* 4250 0.00054 0.0 1975.9 -17.19955 -17.19955 -17.19016 -17.74377 0.0000 0.0000 -0.0125 ******* 4251 0.00055 0.0 2007.2 -17.19933 -17.19933 -17.18979 -17.74410 0.0000 0.0000 -0.0125 ******* 4252 0.00057 0.0 2036.9 -17.19909 -17.19909 -17.18942 -17.74443 0.0000 0.0000 -0.0124 ******* 4253 0.00058 0.0 2064.8 -17.19886 -17.19886 -17.18905 -17.74477 0.0000 0.0000 -0.0123 ******* 4254 0.00059 0.0 2090.8 -17.19861 -17.19861 -17.18868 -17.74512 0.0000 0.0000 -0.0123 ******* 4255 0.00060 0.0 2114.9 -17.19836 -17.19836 -17.18831 -17.74547 0.0000 0.0000 -0.0122 ******* 4256 0.00061 0.0 2136.9 -17.19810 -17.19810 -17.18795 -17.74583 0.0000 0.0000 -0.0121 ******* 4257 0.00062 0.0 2156.8 -17.19784 -17.19784 -17.18759 -17.74620 0.0000 0.0000 -0.0120 ******* 4258 0.00063 0.0 2174.4 -17.19757 -17.19757 -17.18724 -17.74658 0.0000 0.0000 -0.0119 ******* 4259 0.00064 0.0 2189.7 -17.19729 -17.19729 -17.18689 -17.74696 0.0000 0.0000 -0.0118 ******* * Physical Quantities at step: 4260 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19701 Hartree a.u. kinetic energy = 7.83551 Hartree a.u. electrostatic energy = -22.95943 Hartree a.u. esr = 0.12102 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40180 Hartree a.u. n-l pseudopotential energy = 4.52935 Hartree a.u. exchange-correlation energy = -4.20065 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.22 -12.88 -7.88 -6.45 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.860532E+00 0.680149E+00 0.122081E+01 H 0.238065E+00 -0.163927E+01 -0.889385E+00 O -0.376777E+00 -0.416078E+00 0.366191E+00 ATOMIC_VELOCITIES H -0.163727E-02 0.607873E-03 0.180421E-02 H -0.189358E-02 -0.633799E-03 -0.439446E-03 O 0.222439E-03 0.163330E-05 -0.859780E-04 Forces acting on atoms (au): H 0.295392E-01 -0.204197E-01 -0.368866E-01 H 0.394817E-01 0.174831E-01 0.123635E-01 O -0.353569E-01 0.191575E-02 0.135241E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1014.03 1.0697 2 174.61 0.0131 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4260 0.00065 0.0 2202.7 -17.19701 -17.19701 -17.18655 -17.74735 0.0000 0.0000 -0.0118 ******* writing restart file: .//cp_91.save restart file written in 0.776 sec. 4261 0.00066 0.0 2213.1 -17.19672 -17.19672 -17.18621 -17.74774 0.0000 0.0000 -0.0117 ******* 4262 0.00067 0.0 2221.1 -17.19643 -17.19643 -17.18588 -17.74813 0.0000 0.0000 -0.0116 ******* 4263 0.00068 0.0 2226.6 -17.19613 -17.19613 -17.18556 -17.74854 0.0000 0.0000 -0.0115 ******* 4264 0.00068 0.0 2229.4 -17.19583 -17.19583 -17.18524 -17.74894 0.0000 0.0000 -0.0114 ******* 4265 0.00069 0.0 2229.7 -17.19553 -17.19553 -17.18494 -17.74935 0.0000 0.0000 -0.0113 ******* 4266 0.00070 0.0 2227.3 -17.19522 -17.19522 -17.18464 -17.74977 0.0000 0.0000 -0.0113 ******* 4267 0.00070 0.0 2222.3 -17.19491 -17.19491 -17.18435 -17.75019 0.0000 0.0000 -0.0112 ******* 4268 0.00071 0.0 2214.7 -17.19460 -17.19460 -17.18408 -17.75061 0.0000 0.0000 -0.0111 ******* 4269 0.00071 0.0 2204.4 -17.19428 -17.19428 -17.18381 -17.75103 0.0000 0.0000 -0.0110 ******* 4270 0.00071 0.0 2191.6 -17.19396 -17.19396 -17.18355 -17.75146 0.0000 0.0000 -0.0109 ******* 4271 0.00071 0.0 2176.3 -17.19364 -17.19364 -17.18330 -17.75189 0.0000 0.0000 -0.0108 ******* 4272 0.00072 0.0 2158.4 -17.19332 -17.19332 -17.18307 -17.75231 0.0000 0.0000 -0.0107 ******* 4273 0.00072 0.0 2138.1 -17.19300 -17.19300 -17.18284 -17.75274 0.0000 0.0000 -0.0107 ******* 4274 0.00072 0.0 2115.5 -17.19268 -17.19268 -17.18263 -17.75317 0.0000 0.0000 -0.0106 ******* 4275 0.00072 0.0 2090.5 -17.19235 -17.19235 -17.18242 -17.75360 0.0000 0.0000 -0.0105 ******* 4276 0.00071 0.0 2063.3 -17.19203 -17.19203 -17.18223 -17.75403 0.0000 0.0000 -0.0104 ******* 4277 0.00071 0.0 2034.0 -17.19171 -17.19171 -17.18205 -17.75446 0.0000 0.0000 -0.0104 ******* 4278 0.00071 0.0 2002.7 -17.19139 -17.19139 -17.18188 -17.75489 0.0000 0.0000 -0.0103 ******* 4279 0.00070 0.0 1969.4 -17.19108 -17.19108 -17.18172 -17.75531 0.0000 0.0000 -0.0102 ******* 4280 0.00070 0.0 1934.3 -17.19076 -17.19076 -17.18157 -17.75574 0.0000 0.0000 -0.0101 ******* 4281 0.00069 0.0 1897.6 -17.19045 -17.19045 -17.18144 -17.75616 0.0000 0.0000 -0.0101 ******* 4282 0.00069 0.0 1859.2 -17.19014 -17.19014 -17.18131 -17.75657 0.0000 0.0000 -0.0100 ******* 4283 0.00068 0.0 1819.4 -17.18983 -17.18983 -17.18119 -17.75699 0.0000 0.0000 -0.0100 ******* 4284 0.00067 0.0 1778.3 -17.18953 -17.18953 -17.18108 -17.75739 0.0000 0.0000 -0.0099 ******* 4285 0.00067 0.0 1735.9 -17.18923 -17.18923 -17.18099 -17.75780 0.0000 0.0000 -0.0098 ******* 4286 0.00066 0.0 1692.5 -17.18894 -17.18894 -17.18090 -17.75820 0.0000 0.0000 -0.0098 ******* 4287 0.00065 0.0 1648.2 -17.18865 -17.18865 -17.18082 -17.75859 0.0000 0.0000 -0.0097 ******* 4288 0.00064 0.0 1603.1 -17.18836 -17.18836 -17.18075 -17.75898 0.0000 0.0000 -0.0097 ******* 4289 0.00063 0.0 1557.3 -17.18808 -17.18808 -17.18069 -17.75936 0.0000 0.0000 -0.0096 ******* * Physical Quantities at step: 4290 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.18781 Hartree a.u. kinetic energy = 7.83134 Hartree a.u. electrostatic energy = -22.96786 Hartree a.u. esr = 0.12472 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.39888 Hartree a.u. n-l pseudopotential energy = 4.54886 Hartree a.u. exchange-correlation energy = -4.20126 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.12 -13.37 -7.37 -6.43 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.708745E+00 0.709173E+00 0.137618E+01 H 0.774800E-01 -0.168147E+01 -0.916479E+00 O -0.357098E+00 -0.415248E+00 0.358110E+00 ATOMIC_VELOCITIES H -0.157946E-02 -0.481891E-04 0.152125E-02 H -0.148333E-02 -0.255924E-03 -0.126394E-03 O 0.192952E-03 0.191587E-04 -0.878741E-04 Forces acting on atoms (au): H 0.401285E-01 -0.165259E-01 -0.395967E-01 H 0.470309E-01 0.140165E-01 0.943996E-02 O -0.631292E-01 0.291715E-02 0.203784E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 685.93 1.0562 2 139.13 0.0126 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4290 0.00062 0.0 1511.0 -17.18781 -17.18781 -17.18063 -17.75974 0.0000 0.0000 -0.0096 ******* writing restart file: .//cp_91.save restart file written in 0.795 sec. 4291 0.00061 0.0 1464.3 -17.18754 -17.18754 -17.18059 -17.76011 0.0000 0.0000 -0.0095 ******* 4292 0.00059 0.0 1417.3 -17.18728 -17.18728 -17.18055 -17.76048 0.0000 0.0000 -0.0095 ******* 4293 0.00058 0.0 1370.2 -17.18702 -17.18702 -17.18051 -17.76083 0.0000 0.0000 -0.0095 ******* 4294 0.00057 0.0 1323.1 -17.18677 -17.18677 -17.18049 -17.76118 0.0000 0.0000 -0.0094 ******* 4295 0.00056 0.0 1276.0 -17.18653 -17.18653 -17.18047 -17.76152 0.0000 0.0000 -0.0094 ******* 4296 0.00054 0.0 1229.2 -17.18629 -17.18629 -17.18045 -17.76186 0.0000 0.0000 -0.0094 ******* 4297 0.00053 0.0 1182.8 -17.18606 -17.18606 -17.18045 -17.76218 0.0000 0.0000 -0.0094 ******* 4298 0.00052 0.0 1136.8 -17.18584 -17.18584 -17.18044 -17.76250 0.0000 0.0000 -0.0093 ******* 4299 0.00050 0.0 1091.4 -17.18563 -17.18563 -17.18044 -17.76281 0.0000 0.0000 -0.0093 ******* 4300 0.00049 0.0 1046.7 -17.18542 -17.18542 -17.18045 -17.76311 0.0000 0.0000 -0.0093 ******* 4301 0.00048 0.0 1002.8 -17.18522 -17.18522 -17.18045 -17.76341 0.0000 0.0000 -0.0093 ******* 4302 0.00046 0.0 959.7 -17.18503 -17.18503 -17.18047 -17.76369 0.0000 0.0000 -0.0093 ******* 4303 0.00045 0.0 917.7 -17.18484 -17.18484 -17.18048 -17.76397 0.0000 0.0000 -0.0093 ******* 4304 0.00043 0.0 876.7 -17.18466 -17.18466 -17.18050 -17.76424 0.0000 0.0000 -0.0093 ******* 4305 0.00042 0.0 836.8 -17.18450 -17.18450 -17.18052 -17.76450 0.0000 0.0000 -0.0093 ******* 4306 0.00041 0.0 798.3 -17.18433 -17.18433 -17.18054 -17.76475 0.0000 0.0000 -0.0093 ******* 4307 0.00039 0.0 761.0 -17.18418 -17.18418 -17.18057 -17.76500 0.0000 0.0000 -0.0093 ******* 4308 0.00038 0.0 725.2 -17.18404 -17.18404 -17.18059 -17.76523 0.0000 0.0000 -0.0093 ******* 4309 0.00037 0.0 691.0 -17.18390 -17.18390 -17.18062 -17.76546 0.0000 0.0000 -0.0093 ******* 4310 0.00035 0.0 658.2 -17.18377 -17.18377 -17.18065 -17.76568 0.0000 0.0000 -0.0093 ******* 4311 0.00034 0.0 627.2 -17.18366 -17.18366 -17.18068 -17.76589 0.0000 0.0000 -0.0093 ******* 4312 0.00033 0.0 597.9 -17.18355 -17.18355 -17.18071 -17.76609 0.0000 0.0000 -0.0093 ******* 4313 0.00031 0.0 570.4 -17.18344 -17.18344 -17.18073 -17.76629 0.0000 0.0000 -0.0093 ******* 4314 0.00030 0.0 544.9 -17.18335 -17.18335 -17.18076 -17.76648 0.0000 0.0000 -0.0093 ******* 4315 0.00029 0.0 521.3 -17.18327 -17.18327 -17.18079 -17.76666 0.0000 0.0000 -0.0093 ******* 4316 0.00028 0.0 499.7 -17.18319 -17.18319 -17.18082 -17.76683 0.0000 0.0000 -0.0094 ******* 4317 0.00027 0.0 480.3 -17.18312 -17.18312 -17.18084 -17.76700 0.0000 0.0000 -0.0094 ******* 4318 0.00026 0.0 463.1 -17.18306 -17.18306 -17.18087 -17.76716 0.0000 0.0000 -0.0094 ******* 4319 0.00025 0.0 448.2 -17.18302 -17.18302 -17.18089 -17.76731 0.0000 0.0000 -0.0094 ******* * Physical Quantities at step: 4320 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.18297 Hartree a.u. kinetic energy = 7.84665 Hartree a.u. electrostatic energy = -22.97191 Hartree a.u. esr = 0.13581 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41938 Hartree a.u. n-l pseudopotential energy = 4.57032 Hartree a.u. exchange-correlation energy = -4.20864 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.19 -13.69 -7.17 -6.46 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.603978E+00 0.666479E+00 0.148536E+01 H -0.122339E-02 -0.168695E+01 -0.912809E+00 O -0.345539E+00 -0.412213E+00 0.351000E+00 ATOMIC_VELOCITIES H -0.612709E-03 -0.886786E-03 0.934739E-03 H -0.155706E-03 0.779653E-04 0.175246E-03 O 0.484091E-04 0.509546E-04 -0.699275E-04 Forces acting on atoms (au): H 0.385473E-01 -0.568261E-03 -0.257259E-01 H 0.362575E-01 0.176211E-02 0.540018E-03 O -0.697966E-01 0.214969E-02 0.164938E-01 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 202.75 1.0954 2 30.18 0.0134 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4320 0.00024 0.0 435.7 -17.18297 -17.18297 -17.18090 -17.76746 0.0000 0.0000 -0.0094 ******* writing restart file: .//cp_91.save restart file written in 0.813 sec. 4321 0.00023 0.0 425.6 -17.18294 -17.18294 -17.18092 -17.76760 0.0000 0.0000 -0.0095 ******* 4322 0.00022 0.0 418.0 -17.18292 -17.18292 -17.18094 -17.76774 0.0000 0.0000 -0.0095 ******* 4323 0.00021 0.0 413.1 -17.18291 -17.18291 -17.18095 -17.76787 0.0000 0.0000 -0.0095 ******* 4324 0.00020 0.0 410.9 -17.18290 -17.18290 -17.18095 -17.76800 0.0000 0.0000 -0.0095 ******* 4325 0.00020 0.0 411.5 -17.18291 -17.18291 -17.18096 -17.76812 0.0000 0.0000 -0.0096 ******* 4326 0.00019 0.0 415.1 -17.18292 -17.18292 -17.18095 -17.76824 0.0000 0.0000 -0.0096 ******* 4327 0.00018 0.0 421.6 -17.18295 -17.18295 -17.18095 -17.76835 0.0000 0.0000 -0.0096 ******* 4328 0.00018 0.0 431.2 -17.18298 -17.18298 -17.18093 -17.76846 0.0000 0.0000 -0.0096 ******* 4329 0.00017 0.0 444.0 -17.18303 -17.18303 -17.18092 -17.76857 0.0000 0.0000 -0.0096 ******* 4330 0.00017 0.0 460.1 -17.18308 -17.18308 -17.18089 -17.76867 0.0000 0.0000 -0.0097 ******* 4331 0.00017 0.0 479.6 -17.18314 -17.18314 -17.18086 -17.76877 0.0000 0.0000 -0.0097 ******* 4332 0.00017 0.0 502.6 -17.18321 -17.18321 -17.18083 -17.76887 0.0000 0.0000 -0.0097 ******* 4333 0.00016 0.0 529.2 -17.18329 -17.18329 -17.18078 -17.76897 0.0000 0.0000 -0.0097 ******* 4334 0.00016 0.0 559.6 -17.18339 -17.18339 -17.18073 -17.76907 0.0000 0.0000 -0.0097 ******* 4335 0.00016 0.0 593.7 -17.18349 -17.18349 -17.18067 -17.76917 0.0000 0.0000 -0.0097 ******* 4336 0.00017 0.0 631.8 -17.18360 -17.18360 -17.18060 -17.76927 0.0000 0.0000 -0.0098 ******* 4337 0.00017 0.0 673.9 -17.18372 -17.18372 -17.18052 -17.76937 0.0000 0.0000 -0.0098 ******* 4338 0.00017 0.0 720.1 -17.18385 -17.18385 -17.18043 -17.76947 0.0000 0.0000 -0.0098 ******* 4339 0.00018 0.0 770.5 -17.18399 -17.18399 -17.18033 -17.76957 0.0000 0.0000 -0.0098 ******* 4340 0.00018 0.0 825.2 -17.18413 -17.18413 -17.18021 -17.76967 0.0000 0.0000 -0.0098 ******* 4341 0.00019 0.0 884.2 -17.18429 -17.18429 -17.18009 -17.76978 0.0000 0.0000 -0.0098 ******* 4342 0.00020 0.0 947.7 -17.18446 -17.18446 -17.17996 -17.76990 0.0000 0.0000 -0.0098 ******* 4343 0.00021 0.0 1015.6 -17.18464 -17.18464 -17.17981 -17.77001 0.0000 0.0000 -0.0098 ******* 4344 0.00022 0.0 1088.1 -17.18482 -17.18482 -17.17965 -17.77014 0.0000 0.0000 -0.0097 ******* 4345 0.00023 0.0 1165.2 -17.18502 -17.18502 -17.17948 -17.77027 0.0000 0.0000 -0.0097 ******* 4346 0.00024 0.0 1246.8 -17.18522 -17.18522 -17.17930 -17.77040 0.0000 0.0000 -0.0097 ******* 4347 0.00026 0.0 1333.0 -17.18543 -17.18543 -17.17910 -17.77055 0.0000 0.0000 -0.0097 ******* 4348 0.00027 0.0 1423.7 -17.18565 -17.18565 -17.17889 -17.77070 0.0000 0.0000 -0.0096 ******* 4349 0.00029 0.0 1518.9 -17.18588 -17.18588 -17.17867 -17.77086 0.0000 0.0000 -0.0096 ******* * Physical Quantities at step: 4350 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.18612 Hartree a.u. kinetic energy = 7.86486 Hartree a.u. electrostatic energy = -22.97556 Hartree a.u. esr = 0.14028 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.43388 Hartree a.u. n-l pseudopotential energy = 4.57383 Hartree a.u. exchange-correlation energy = -4.21536 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.22 -13.56 -7.29 -6.43 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.619149E+00 0.549878E+00 0.155479E+01 H 0.660787E-01 -0.167829E+01 -0.888596E+00 O -0.350735E+00 -0.405413E+00 0.345101E+00 ATOMIC_VELOCITIES H 0.103002E-02 -0.174223E-02 0.635893E-03 H 0.172953E-02 0.861157E-04 0.387250E-03 O -0.173848E-03 0.104333E-03 -0.644566E-04 Forces acting on atoms (au): H 0.178428E-01 0.106113E-01 -0.178302E-01 H 0.109519E-01 -0.116416E-02 -0.427823E-04 O -0.429940E-01 0.157516E-03 0.953029E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 739.73 1.1930 2 138.96 0.0158 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4350 0.00031 0.0 1618.4 -17.18612 -17.18612 -17.17843 -17.77103 0.0000 0.0000 -0.0095 ******* writing restart file: .//cp_91.save restart file written in 0.819 sec. 4351 0.00033 0.0 1722.3 -17.18636 -17.18636 -17.17818 -17.77122 0.0000 0.0000 -0.0095 ******* 4352 0.00035 0.0 1830.2 -17.18661 -17.18661 -17.17792 -17.77142 0.0000 0.0000 -0.0094 ******* 4353 0.00037 0.0 1942.2 -17.18687 -17.18687 -17.17765 -17.77163 0.0000 0.0000 -0.0094 ******* 4354 0.00040 0.0 2057.8 -17.18714 -17.18714 -17.17736 -17.77185 0.0000 0.0000 -0.0093 ******* 4355 0.00042 0.0 2177.0 -17.18741 -17.18741 -17.17707 -17.77209 0.0000 0.0000 -0.0092 ******* 4356 0.00045 0.0 2299.3 -17.18769 -17.18769 -17.17676 -17.77234 0.0000 0.0000 -0.0091 ******* 4357 0.00048 0.0 2424.6 -17.18797 -17.18797 -17.17645 -17.77261 0.0000 0.0000 -0.0090 ******* 4358 0.00051 0.0 2552.2 -17.18826 -17.18826 -17.17613 -17.77290 0.0000 0.0000 -0.0089 ******* 4359 0.00054 0.0 2682.0 -17.18855 -17.18855 -17.17581 -17.77320 0.0000 0.0000 -0.0088 ******* 4360 0.00058 0.0 2813.3 -17.18884 -17.18884 -17.17548 -17.77353 0.0000 0.0000 -0.0087 ******* 4361 0.00061 0.0 2945.7 -17.18914 -17.18914 -17.17515 -17.77387 0.0000 0.0000 -0.0086 ******* 4362 0.00065 0.0 3078.6 -17.18944 -17.18944 -17.17482 -17.77424 0.0000 0.0000 -0.0085 ******* 4363 0.00068 0.0 3211.4 -17.18975 -17.18975 -17.17449 -17.77463 0.0000 0.0000 -0.0083 ******* 4364 0.00072 0.0 3343.4 -17.19005 -17.19005 -17.17417 -17.77504 0.0000 0.0000 -0.0082 ******* 4365 0.00076 0.0 3474.1 -17.19036 -17.19036 -17.17386 -17.77547 0.0000 0.0000 -0.0080 ******* 4366 0.00080 0.0 3602.6 -17.19067 -17.19067 -17.17356 -17.77593 0.0000 0.0000 -0.0078 ******* 4367 0.00084 0.0 3728.3 -17.19098 -17.19098 -17.17327 -17.77641 0.0000 0.0000 -0.0077 ******* 4368 0.00088 0.0 3850.4 -17.19128 -17.19128 -17.17299 -17.77691 0.0000 0.0000 -0.0075 ******* 4369 0.00093 0.0 3968.1 -17.19159 -17.19159 -17.17274 -17.77744 0.0000 0.0000 -0.0073 ******* 4370 0.00097 0.0 4080.7 -17.19189 -17.19189 -17.17251 -17.77800 0.0000 0.0000 -0.0071 ******* 4371 0.00101 0.0 4187.5 -17.19220 -17.19220 -17.17231 -17.77858 0.0000 0.0000 -0.0069 ******* 4372 0.00105 0.0 4287.6 -17.19250 -17.19250 -17.17213 -17.77919 0.0000 0.0000 -0.0067 ******* 4373 0.00109 0.0 4380.4 -17.19280 -17.19280 -17.17199 -17.77982 0.0000 0.0000 -0.0065 ******* 4374 0.00114 0.0 4465.1 -17.19309 -17.19309 -17.17188 -17.78047 0.0000 0.0000 -0.0063 ******* 4375 0.00118 0.0 4541.2 -17.19338 -17.19338 -17.17181 -17.78115 0.0000 0.0000 -0.0061 ******* 4376 0.00122 0.0 4608.0 -17.19367 -17.19367 -17.17178 -17.78186 0.0000 0.0000 -0.0058 ******* 4377 0.00125 0.0 4665.0 -17.19396 -17.19396 -17.17180 -17.78259 0.0000 0.0000 -0.0056 ******* 4378 0.00129 0.0 4711.8 -17.19424 -17.19424 -17.17186 -17.78334 0.0000 0.0000 -0.0054 ******* 4379 0.00133 0.0 4747.9 -17.19451 -17.19451 -17.17196 -17.78412 0.0000 0.0000 -0.0051 ******* * Physical Quantities at step: 4380 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19478 Hartree a.u. kinetic energy = 7.84762 Hartree a.u. electrostatic energy = -22.96964 Hartree a.u. esr = 0.12346 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40618 Hartree a.u. n-l pseudopotential energy = 4.53858 Hartree a.u. exchange-correlation energy = -4.20516 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.18 -12.73 -7.86 -6.38 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.777843E+00 0.348892E+00 0.158789E+01 H 0.300341E+00 -0.166389E+01 -0.829216E+00 O -0.375491E+00 -0.393658E+00 0.339274E+00 ATOMIC_VELOCITIES H 0.218076E-02 -0.260644E-02 -0.290650E-04 H 0.313953E-02 0.326441E-03 0.997829E-03 O -0.335171E-03 0.143637E-03 -0.610308E-04 Forces acting on atoms (au): H -0.227197E-01 0.190808E-01 -0.203898E-01 H -0.290185E-01 0.793892E-02 0.438332E-02 O 0.174655E-01 -0.113738E-01 0.820643E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 2176.73 1.4454 2 419.67 0.0209 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4380 0.00136 0.0 4773.1 -17.19478 -17.19478 -17.17211 -17.78492 0.0000 0.0000 -0.0049 ******* writing restart file: .//cp_91.save restart file written in 0.952 sec. 4381 0.00139 0.0 4787.2 -17.19505 -17.19505 -17.17231 -17.78573 0.0000 0.0000 -0.0047 ******* 4382 0.00142 0.0 4790.1 -17.19531 -17.19531 -17.17255 -17.78657 0.0000 0.0000 -0.0044 ******* 4383 0.00145 0.0 4781.7 -17.19556 -17.19556 -17.17285 -17.78742 0.0000 0.0000 -0.0042 ******* 4384 0.00147 0.0 4762.1 -17.19581 -17.19581 -17.17319 -17.78829 0.0000 0.0000 -0.0039 ******* 4385 0.00149 0.0 4731.5 -17.19605 -17.19605 -17.17358 -17.78918 0.0000 0.0000 -0.0037 ******* 4386 0.00151 0.0 4690.1 -17.19629 -17.19629 -17.17401 -17.79008 0.0000 0.0000 -0.0035 ******* 4387 0.00153 0.0 4638.4 -17.19652 -17.19652 -17.17449 -17.79098 0.0000 0.0000 -0.0032 ******* 4388 0.00154 0.0 4576.6 -17.19675 -17.19675 -17.17501 -17.79190 0.0000 0.0000 -0.0030 ******* 4389 0.00155 0.0 4505.4 -17.19697 -17.19697 -17.17557 -17.79283 0.0000 0.0000 -0.0028 ******* 4390 0.00155 0.0 4425.2 -17.19719 -17.19719 -17.17617 -17.79376 0.0000 0.0000 -0.0026 ******* 4391 0.00156 0.0 4336.8 -17.19739 -17.19739 -17.17679 -17.79469 0.0000 0.0000 -0.0024 ******* 4392 0.00155 0.0 4240.7 -17.19760 -17.19760 -17.17745 -17.79563 0.0000 0.0000 -0.0021 ******* 4393 0.00155 0.0 4137.7 -17.19779 -17.19779 -17.17814 -17.79656 0.0000 0.0000 -0.0019 ******* 4394 0.00154 0.0 4028.4 -17.19798 -17.19798 -17.17885 -17.79749 0.0000 0.0000 -0.0017 ******* 4395 0.00153 0.0 3913.7 -17.19817 -17.19817 -17.17958 -17.79842 0.0000 0.0000 -0.0016 ******* 4396 0.00152 0.0 3794.3 -17.19835 -17.19835 -17.18032 -17.79934 0.0000 0.0000 -0.0014 ******* 4397 0.00150 0.0 3671.0 -17.19852 -17.19852 -17.18108 -17.80025 0.0000 0.0000 -0.0012 ******* 4398 0.00148 0.0 3544.4 -17.19868 -17.19868 -17.18185 -17.80115 0.0000 0.0000 -0.0010 ******* 4399 0.00145 0.0 3415.3 -17.19884 -17.19884 -17.18262 -17.80204 0.0000 0.0000 -0.0009 ******* 4400 0.00143 0.0 3284.4 -17.19899 -17.19899 -17.18339 -17.80291 0.0000 0.0000 -0.0007 ******* 4401 0.00140 0.0 3152.3 -17.19914 -17.19914 -17.18416 -17.80377 0.0000 0.0000 -0.0006 ******* 4402 0.00137 0.0 3019.8 -17.19928 -17.19928 -17.18493 -17.80461 0.0000 0.0000 -0.0004 ******* 4403 0.00134 0.0 2887.3 -17.19941 -17.19941 -17.18569 -17.80544 0.0000 0.0000 -0.0003 ******* 4404 0.00130 0.0 2755.5 -17.19953 -17.19953 -17.18644 -17.80624 0.0000 0.0000 -0.0002 ******* 4405 0.00127 0.0 2624.8 -17.19965 -17.19965 -17.18718 -17.80702 0.0000 0.0000 -0.0001 ******* 4406 0.00123 0.0 2495.7 -17.19976 -17.19976 -17.18790 -17.80778 0.0000 0.0000 0.0000 ******* 4407 0.00119 0.0 2368.6 -17.19986 -17.19986 -17.18861 -17.80852 0.0000 0.0000 0.0001 ******* 4408 0.00115 0.0 2243.9 -17.19995 -17.19995 -17.18930 -17.80924 0.0000 0.0000 0.0002 ******* 4409 0.00111 0.0 2121.9 -17.20004 -17.20004 -17.18997 -17.80993 0.0000 0.0000 0.0003 ******* * Physical Quantities at step: 4410 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20013 Hartree a.u. kinetic energy = 7.82564 Hartree a.u. electrostatic energy = -22.94426 Hartree a.u. esr = 0.11350 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.39323 Hartree a.u. n-l pseudopotential energy = 4.50444 Hartree a.u. exchange-correlation energy = -4.19271 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.44 -11.96 -8.74 -6.51 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.934694E+00 0.135731E+00 0.154927E+01 H 0.537864E+00 -0.161633E+01 -0.724830E+00 O -0.400336E+00 -0.383225E+00 0.335131E+00 ATOMIC_VELOCITIES H 0.106734E-02 -0.183025E-02 -0.647068E-03 H 0.179263E-02 0.626284E-03 0.110571E-02 O -0.180174E-03 0.758484E-04 -0.288937E-04 Forces acting on atoms (au): H -0.311532E-01 0.292943E-01 -0.500021E-03 H -0.408786E-01 -0.380579E-03 -0.104916E-01 O 0.315514E-01 -0.133765E-01 0.427867E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 941.53 1.7791 2 119.89 0.0270 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4410 0.00107 0.0 2002.9 -17.20013 -17.20013 -17.19061 -17.81060 0.0000 0.0000 0.0004 ******* writing restart file: .//cp_91.save restart file written in 0.773 sec. 4411 0.00103 0.0 1887.2 -17.20020 -17.20020 -17.19124 -17.81124 0.0000 0.0000 0.0005 ******* 4412 0.00099 0.0 1774.9 -17.20027 -17.20027 -17.19184 -17.81186 0.0000 0.0000 0.0005 ******* 4413 0.00095 0.0 1666.1 -17.20033 -17.20033 -17.19242 -17.81245 0.0000 0.0000 0.0006 ******* 4414 0.00091 0.0 1561.1 -17.20039 -17.20039 -17.19298 -17.81302 0.0000 0.0000 0.0006 ******* 4415 0.00087 0.0 1460.0 -17.20044 -17.20044 -17.19351 -17.81357 0.0000 0.0000 0.0007 ******* 4416 0.00083 0.0 1362.7 -17.20049 -17.20049 -17.19401 -17.81408 0.0000 0.0000 0.0007 ******* 4417 0.00079 0.0 1269.4 -17.20053 -17.20053 -17.19450 -17.81458 0.0000 0.0000 0.0007 ******* 4418 0.00075 0.0 1180.0 -17.20056 -17.20056 -17.19495 -17.81505 0.0000 0.0000 0.0008 ******* 4419 0.00071 0.0 1094.7 -17.20059 -17.20059 -17.19539 -17.81550 0.0000 0.0000 0.0008 ******* 4420 0.00067 0.0 1013.3 -17.20061 -17.20061 -17.19580 -17.81592 0.0000 0.0000 0.0008 ******* 4421 0.00063 0.0 935.8 -17.20063 -17.20063 -17.19619 -17.81633 0.0000 0.0000 0.0008 ******* 4422 0.00060 0.0 862.2 -17.20065 -17.20065 -17.19655 -17.81671 0.0000 0.0000 0.0008 ******* 4423 0.00056 0.0 792.4 -17.20066 -17.20066 -17.19689 -17.81706 0.0000 0.0000 0.0008 ******* 4424 0.00053 0.0 726.3 -17.20066 -17.20066 -17.19721 -17.81740 0.0000 0.0000 0.0008 ******* 4425 0.00050 0.0 664.0 -17.20067 -17.20067 -17.19752 -17.81772 0.0000 0.0000 0.0008 ******* 4426 0.00047 0.0 605.2 -17.20067 -17.20067 -17.19780 -17.81802 0.0000 0.0000 0.0008 ******* 4427 0.00044 0.0 549.9 -17.20067 -17.20067 -17.19806 -17.81829 0.0000 0.0000 0.0008 ******* 4428 0.00041 0.0 498.0 -17.20067 -17.20067 -17.19830 -17.81855 0.0000 0.0000 0.0008 ******* 4429 0.00038 0.0 449.4 -17.20066 -17.20066 -17.19853 -17.81880 0.0000 0.0000 0.0007 ******* 4430 0.00035 0.0 404.0 -17.20065 -17.20065 -17.19873 -17.81902 0.0000 0.0000 0.0007 ******* 4431 0.00033 0.0 361.7 -17.20065 -17.20065 -17.19893 -17.81923 0.0000 0.0000 0.0007 ******* 4432 0.00030 0.0 322.4 -17.20064 -17.20064 -17.19911 -17.81943 0.0000 0.0000 0.0007 ******* 4433 0.00028 0.0 285.9 -17.20063 -17.20063 -17.19927 -17.81961 0.0000 0.0000 0.0006 ******* 4434 0.00026 0.0 252.3 -17.20061 -17.20061 -17.19942 -17.81978 0.0000 0.0000 0.0006 ******* 4435 0.00024 0.0 221.3 -17.20060 -17.20060 -17.19955 -17.81993 0.0000 0.0000 0.0006 ******* 4436 0.00022 0.0 192.9 -17.20059 -17.20059 -17.19968 -17.82007 0.0000 0.0000 0.0005 ******* 4437 0.00020 0.0 166.9 -17.20058 -17.20058 -17.19979 -17.82020 0.0000 0.0000 0.0005 ******* 4438 0.00018 0.0 143.2 -17.20057 -17.20057 -17.19989 -17.82032 0.0000 0.0000 0.0005 ******* 4439 0.00016 0.0 121.9 -17.20056 -17.20056 -17.19999 -17.82042 0.0000 0.0000 0.0004 ******* * Physical Quantities at step: 4440 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20056 Hartree a.u. kinetic energy = 7.84421 Hartree a.u. electrostatic energy = -22.93363 Hartree a.u. esr = 0.12025 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41525 Hartree a.u. n-l pseudopotential energy = 4.50182 Hartree a.u. exchange-correlation energy = -4.19771 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.71 -11.73 -9.15 -6.61 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.979768E+00 0.353074E-01 0.150709E+01 H 0.624659E+00 -0.157375E+01 -0.659409E+00 O -0.408643E+00 -0.379581E+00 0.333667E+00 ATOMIC_VELOCITIES H 0.102187E-03 -0.470144E-03 -0.182292E-03 H 0.317756E-03 0.249317E-03 0.296322E-03 O -0.264559E-04 0.139118E-04 -0.718373E-05 Forces acting on atoms (au): H -0.113056E-01 0.223240E-01 0.132837E-01 H -0.199924E-01 -0.967608E-02 -0.174929E-01 O 0.128062E-01 -0.523718E-02 0.112828E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 49.87 1.9260 2 2.90 0.0294 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4440 0.00015 0.0 102.6 -17.20056 -17.20056 -17.20007 -17.82052 0.0000 0.0000 0.0004 ******* writing restart file: .//cp_91.save restart file written in 0.773 sec. 4441 0.00013 0.0 85.4 -17.20055 -17.20055 -17.20014 -17.82061 0.0000 0.0000 0.0003 ******* 4442 0.00012 0.0 70.2 -17.20054 -17.20054 -17.20021 -17.82069 0.0000 0.0000 0.0003 ******* 4443 0.00011 0.0 56.8 -17.20054 -17.20054 -17.20027 -17.82076 0.0000 0.0000 0.0003 ******* 4444 0.00010 0.0 45.1 -17.20054 -17.20054 -17.20032 -17.82083 0.0000 0.0000 0.0002 ******* 4445 0.00008 0.0 35.1 -17.20054 -17.20054 -17.20037 -17.82088 0.0000 0.0000 0.0002 ******* 4446 0.00007 0.0 26.7 -17.20054 -17.20054 -17.20041 -17.82093 0.0000 0.0000 0.0001 ******* 4447 0.00007 0.0 19.8 -17.20054 -17.20054 -17.20044 -17.82098 0.0000 0.0000 0.0001 ******* 4448 0.00006 0.0 14.2 -17.20054 -17.20054 -17.20048 -17.82102 0.0000 0.0000 0.0000 ******* 4449 0.00005 0.0 9.9 -17.20055 -17.20055 -17.20050 -17.82105 0.0000 0.0000 0.0000 ******* 4450 0.00004 0.0 6.9 -17.20056 -17.20056 -17.20052 -17.82108 0.0000 0.0000 -0.0001 ******* 4451 0.00004 0.0 5.0 -17.20057 -17.20057 -17.20054 -17.82111 0.0000 0.0000 -0.0001 ******* 4452 0.00003 0.0 4.1 -17.20058 -17.20058 -17.20056 -17.82113 0.0000 0.0000 -0.0002 ******* 4453 0.00003 0.0 4.2 -17.20059 -17.20059 -17.20057 -17.82115 0.0000 0.0000 -0.0002 ******* 4454 0.00002 0.0 5.2 -17.20061 -17.20061 -17.20058 -17.82116 0.0000 0.0000 -0.0003 ******* 4455 0.00002 0.0 7.1 -17.20063 -17.20063 -17.20059 -17.82117 0.0000 0.0000 -0.0003 ******* 4456 0.00001 0.0 9.7 -17.20065 -17.20065 -17.20060 -17.82118 0.0000 0.0000 -0.0004 ******* 4457 0.00001 0.0 13.0 -17.20067 -17.20067 -17.20061 -17.82119 0.0000 0.0000 -0.0004 ******* 4458 0.00001 0.0 16.9 -17.20069 -17.20069 -17.20061 -17.82120 0.0000 0.0000 -0.0005 ******* 4459 0.00001 0.0 21.4 -17.20072 -17.20072 -17.20061 -17.82121 0.0000 0.0000 -0.0005 ******* 4460 0.00001 0.0 26.4 -17.20074 -17.20074 -17.20062 -17.82121 0.0000 0.0000 -0.0005 ******* 4461 0.00001 0.0 31.8 -17.20077 -17.20077 -17.20062 -17.82121 0.0000 0.0000 -0.0006 ******* 4462 0.00001 0.0 37.7 -17.20080 -17.20080 -17.20062 -17.82122 0.0000 0.0000 -0.0006 ******* 4463 0.00001 0.0 43.9 -17.20083 -17.20083 -17.20063 -17.82122 0.0000 0.0000 -0.0007 ******* 4464 0.00001 0.0 50.3 -17.20087 -17.20087 -17.20063 -17.82122 0.0000 0.0000 -0.0007 ******* 4465 0.00001 0.0 57.0 -17.20090 -17.20090 -17.20063 -17.82123 0.0000 0.0000 -0.0008 ******* 4466 0.00001 0.0 64.0 -17.20094 -17.20094 -17.20063 -17.82123 0.0000 0.0000 -0.0008 ******* 4467 0.00001 0.0 71.0 -17.20097 -17.20097 -17.20064 -17.82124 0.0000 0.0000 -0.0009 ******* 4468 0.00001 0.0 78.2 -17.20101 -17.20101 -17.20064 -17.82124 0.0000 0.0000 -0.0009 ******* 4469 0.00001 0.0 85.5 -17.20105 -17.20105 -17.20065 -17.82125 0.0000 0.0000 -0.0009 ******* * Physical Quantities at step: 4470 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20109 Hartree a.u. kinetic energy = 7.85209 Hartree a.u. electrostatic energy = -22.93896 Hartree a.u. esr = 0.12070 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41665 Hartree a.u. n-l pseudopotential energy = 4.50299 Hartree a.u. exchange-correlation energy = -4.20055 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.64 -11.73 -9.08 -6.57 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.972236E+00 0.316667E-01 0.151661E+01 H 0.621301E+00 -0.157047E+01 -0.665109E+00 O -0.407957E+00 -0.379559E+00 0.333427E+00 ATOMIC_VELOCITIES H -0.231923E-03 0.279222E-03 0.325224E-03 H -0.306779E-03 -0.120142E-03 -0.337497E-03 O 0.339374E-04 -0.100218E-04 0.773186E-06 Forces acting on atoms (au): H -0.450495E-02 0.829977E-02 0.503567E-02 H -0.745297E-02 -0.361067E-02 -0.679478E-02 O 0.193174E-01 -0.629857E-02 0.176703E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 44.48 1.9207 2 3.85 0.0293 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4470 0.00001 0.0 92.8 -17.20109 -17.20109 -17.20065 -17.82125 0.0000 0.0000 -0.0010 ******* writing restart file: .//cp_91.save restart file written in 0.774 sec. 4471 0.00001 0.0 100.1 -17.20113 -17.20113 -17.20066 -17.82126 0.0000 0.0000 -0.0010 ******* 4472 0.00002 0.0 107.5 -17.20118 -17.20118 -17.20067 -17.82127 0.0000 0.0000 -0.0011 ******* 4473 0.00002 0.0 114.7 -17.20122 -17.20122 -17.20067 -17.82128 0.0000 0.0000 -0.0011 ******* 4474 0.00002 0.0 122.0 -17.20126 -17.20126 -17.20068 -17.82129 0.0000 0.0000 -0.0012 ******* 4475 0.00002 0.0 129.1 -17.20131 -17.20131 -17.20069 -17.82130 0.0000 0.0000 -0.0012 ******* 4476 0.00002 0.0 136.1 -17.20135 -17.20135 -17.20070 -17.82131 0.0000 0.0000 -0.0012 ******* 4477 0.00003 0.0 143.0 -17.20139 -17.20139 -17.20071 -17.82133 0.0000 0.0000 -0.0013 ******* 4478 0.00003 0.0 149.7 -17.20144 -17.20144 -17.20073 -17.82134 0.0000 0.0000 -0.0013 ******* 4479 0.00003 0.0 156.2 -17.20148 -17.20148 -17.20074 -17.82136 0.0000 0.0000 -0.0014 ******* 4480 0.00003 0.0 162.6 -17.20153 -17.20153 -17.20076 -17.82138 0.0000 0.0000 -0.0014 ******* 4481 0.00004 0.0 168.8 -17.20158 -17.20158 -17.20077 -17.82140 0.0000 0.0000 -0.0014 ******* 4482 0.00004 0.0 174.8 -17.20162 -17.20162 -17.20079 -17.82142 0.0000 0.0000 -0.0015 ******* 4483 0.00004 0.0 180.6 -17.20167 -17.20167 -17.20081 -17.82145 0.0000 0.0000 -0.0015 ******* 4484 0.00004 0.0 186.1 -17.20171 -17.20171 -17.20083 -17.82147 0.0000 0.0000 -0.0015 ******* 4485 0.00005 0.0 191.4 -17.20176 -17.20176 -17.20085 -17.82150 0.0000 0.0000 -0.0016 ******* 4486 0.00005 0.0 196.5 -17.20180 -17.20180 -17.20087 -17.82153 0.0000 0.0000 -0.0016 ******* 4487 0.00005 0.0 201.4 -17.20185 -17.20185 -17.20089 -17.82155 0.0000 0.0000 -0.0017 ******* 4488 0.00005 0.0 206.0 -17.20189 -17.20189 -17.20092 -17.82159 0.0000 0.0000 -0.0017 ******* 4489 0.00006 0.0 210.4 -17.20194 -17.20194 -17.20094 -17.82162 0.0000 0.0000 -0.0017 ******* 4490 0.00006 0.0 214.5 -17.20198 -17.20198 -17.20096 -17.82165 0.0000 0.0000 -0.0018 ******* 4491 0.00006 0.0 218.3 -17.20203 -17.20203 -17.20099 -17.82168 0.0000 0.0000 -0.0018 ******* 4492 0.00006 0.0 222.0 -17.20207 -17.20207 -17.20102 -17.82172 0.0000 0.0000 -0.0018 ******* 4493 0.00006 0.0 225.3 -17.20211 -17.20211 -17.20104 -17.82176 0.0000 0.0000 -0.0019 ******* 4494 0.00007 0.0 228.4 -17.20216 -17.20216 -17.20107 -17.82180 0.0000 0.0000 -0.0019 ******* 4495 0.00007 0.0 231.3 -17.20220 -17.20220 -17.20110 -17.82183 0.0000 0.0000 -0.0019 ******* 4496 0.00007 0.0 233.9 -17.20224 -17.20224 -17.20113 -17.82188 0.0000 0.0000 -0.0020 ******* 4497 0.00007 0.0 236.3 -17.20228 -17.20228 -17.20116 -17.82192 0.0000 0.0000 -0.0020 ******* 4498 0.00007 0.0 238.4 -17.20232 -17.20232 -17.20119 -17.82196 0.0000 0.0000 -0.0020 ******* 4499 0.00007 0.0 240.3 -17.20236 -17.20236 -17.20122 -17.82200 0.0000 0.0000 -0.0021 ******* * Physical Quantities at step: 4500 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20240 Hartree a.u. kinetic energy = 7.84233 Hartree a.u. electrostatic energy = -22.94262 Hartree a.u. esr = 0.11794 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40816 Hartree a.u. n-l pseudopotential energy = 4.50407 Hartree a.u. exchange-correlation energy = -4.19802 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.53 -11.92 -8.88 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.940571E+00 0.692158E-01 0.155154E+01 H 0.579182E+00 -0.158445E+01 -0.704393E+00 O -0.403309E+00 -0.381043E+00 0.333701E+00 ATOMIC_VELOCITIES H -0.453924E-03 0.487342E-03 0.389497E-03 H -0.584351E-03 -0.146583E-03 -0.465976E-03 O 0.654099E-04 -0.214674E-04 0.481802E-05 Forces acting on atoms (au): H -0.642358E-03 -0.148859E-02 -0.328003E-02 H 0.818129E-04 0.193085E-02 0.285628E-02 O 0.131951E-01 -0.423670E-02 0.111124E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 113.66 1.8480 2 14.62 0.0282 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4500 0.00007 0.0 241.9 -17.20240 -17.20240 -17.20125 -17.82205 0.0000 0.0000 -0.0021 ******* writing restart file: .//cp_91.save restart file written in 0.773 sec. 4501 0.00008 0.0 243.4 -17.20244 -17.20244 -17.20128 -17.82209 0.0000 0.0000 -0.0021 ******* 4502 0.00008 0.0 244.5 -17.20248 -17.20248 -17.20131 -17.82214 0.0000 0.0000 -0.0022 ******* 4503 0.00008 0.0 245.5 -17.20251 -17.20251 -17.20135 -17.82218 0.0000 0.0000 -0.0022 ******* 4504 0.00008 0.0 246.2 -17.20255 -17.20255 -17.20138 -17.82223 0.0000 0.0000 -0.0022 ******* 4505 0.00008 0.0 246.7 -17.20259 -17.20259 -17.20141 -17.82228 0.0000 0.0000 -0.0023 ******* 4506 0.00008 0.0 247.0 -17.20262 -17.20262 -17.20145 -17.82233 0.0000 0.0000 -0.0023 ******* 4507 0.00008 0.0 247.1 -17.20265 -17.20265 -17.20148 -17.82238 0.0000 0.0000 -0.0023 ******* 4508 0.00008 0.0 246.9 -17.20269 -17.20269 -17.20151 -17.82243 0.0000 0.0000 -0.0024 ******* 4509 0.00008 0.0 246.6 -17.20272 -17.20272 -17.20155 -17.82248 0.0000 0.0000 -0.0024 ******* 4510 0.00008 0.0 246.0 -17.20275 -17.20275 -17.20158 -17.82253 0.0000 0.0000 -0.0024 ******* 4511 0.00008 0.0 245.3 -17.20278 -17.20278 -17.20162 -17.82258 0.0000 0.0000 -0.0025 ******* 4512 0.00009 0.0 244.4 -17.20281 -17.20281 -17.20165 -17.82263 0.0000 0.0000 -0.0025 ******* 4513 0.00009 0.0 243.3 -17.20284 -17.20284 -17.20168 -17.82268 0.0000 0.0000 -0.0025 ******* 4514 0.00009 0.0 242.0 -17.20287 -17.20287 -17.20172 -17.82273 0.0000 0.0000 -0.0026 ******* 4515 0.00009 0.0 240.5 -17.20289 -17.20289 -17.20175 -17.82278 0.0000 0.0000 -0.0026 ******* 4516 0.00009 0.0 238.8 -17.20292 -17.20292 -17.20178 -17.82283 0.0000 0.0000 -0.0026 ******* 4517 0.00009 0.0 237.0 -17.20294 -17.20294 -17.20182 -17.82288 0.0000 0.0000 -0.0027 ******* 4518 0.00009 0.0 235.1 -17.20297 -17.20297 -17.20185 -17.82294 0.0000 0.0000 -0.0027 ******* 4519 0.00009 0.0 232.9 -17.20299 -17.20299 -17.20188 -17.82299 0.0000 0.0000 -0.0027 ******* 4520 0.00009 0.0 230.7 -17.20301 -17.20301 -17.20192 -17.82304 0.0000 0.0000 -0.0028 ******* 4521 0.00009 0.0 228.3 -17.20303 -17.20303 -17.20195 -17.82309 0.0000 0.0000 -0.0028 ******* 4522 0.00008 0.0 225.7 -17.20306 -17.20306 -17.20198 -17.82314 0.0000 0.0000 -0.0028 ******* 4523 0.00008 0.0 223.0 -17.20307 -17.20307 -17.20202 -17.82319 0.0000 0.0000 -0.0029 ******* 4524 0.00008 0.0 220.2 -17.20309 -17.20309 -17.20205 -17.82324 0.0000 0.0000 -0.0029 ******* 4525 0.00008 0.0 217.3 -17.20311 -17.20311 -17.20208 -17.82329 0.0000 0.0000 -0.0029 ******* 4526 0.00008 0.0 214.2 -17.20313 -17.20313 -17.20211 -17.82334 0.0000 0.0000 -0.0030 ******* 4527 0.00008 0.0 211.0 -17.20314 -17.20314 -17.20214 -17.82339 0.0000 0.0000 -0.0030 ******* 4528 0.00008 0.0 207.8 -17.20316 -17.20316 -17.20217 -17.82344 0.0000 0.0000 -0.0030 ******* 4529 0.00008 0.0 204.4 -17.20317 -17.20317 -17.20220 -17.82349 0.0000 0.0000 -0.0031 ******* * Physical Quantities at step: 4530 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20319 Hartree a.u. kinetic energy = 7.84128 Hartree a.u. electrostatic energy = -22.94422 Hartree a.u. esr = 0.11987 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41140 Hartree a.u. n-l pseudopotential energy = 4.51019 Hartree a.u. exchange-correlation energy = -4.19903 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.50 -12.18 -8.68 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.896385E+00 0.111435E+00 0.158108E+01 H 0.524450E+00 -0.159373E+01 -0.741749E+00 O -0.397077E+00 -0.383118E+00 0.334193E+00 ATOMIC_VELOCITIES H -0.487008E-03 0.426527E-03 0.260784E-03 H -0.587022E-03 -0.634966E-04 -0.349064E-03 O 0.676624E-04 -0.228704E-04 0.556151E-05 Forces acting on atoms (au): H 0.510226E-02 -0.503251E-02 -0.416165E-02 H 0.642081E-02 0.143407E-02 0.499198E-02 O -0.233781E-02 0.740814E-03 -0.288075E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 92.60 1.7571 2 15.76 0.0267 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4530 0.00008 0.0 201.0 -17.20319 -17.20319 -17.20223 -17.82354 0.0000 0.0000 -0.0031 ******* writing restart file: .//cp_91.save restart file written in 0.774 sec. 4531 0.00008 0.0 197.4 -17.20320 -17.20320 -17.20226 -17.82359 0.0000 0.0000 -0.0032 ******* 4532 0.00008 0.0 193.8 -17.20321 -17.20321 -17.20229 -17.82364 0.0000 0.0000 -0.0032 ******* 4533 0.00008 0.0 190.1 -17.20322 -17.20322 -17.20232 -17.82368 0.0000 0.0000 -0.0032 ******* 4534 0.00008 0.0 186.3 -17.20323 -17.20323 -17.20235 -17.82373 0.0000 0.0000 -0.0033 ******* 4535 0.00008 0.0 182.5 -17.20324 -17.20324 -17.20238 -17.82378 0.0000 0.0000 -0.0033 ******* 4536 0.00007 0.0 178.6 -17.20325 -17.20325 -17.20240 -17.82382 0.0000 0.0000 -0.0033 ******* 4537 0.00007 0.0 174.7 -17.20326 -17.20326 -17.20243 -17.82387 0.0000 0.0000 -0.0034 ******* 4538 0.00007 0.0 170.7 -17.20327 -17.20327 -17.20245 -17.82391 0.0000 0.0000 -0.0034 ******* 4539 0.00007 0.0 166.7 -17.20327 -17.20327 -17.20248 -17.82395 0.0000 0.0000 -0.0035 ******* 4540 0.00007 0.0 162.7 -17.20328 -17.20328 -17.20251 -17.82400 0.0000 0.0000 -0.0035 ******* 4541 0.00007 0.0 158.6 -17.20328 -17.20328 -17.20253 -17.82404 0.0000 0.0000 -0.0035 ******* 4542 0.00007 0.0 154.5 -17.20329 -17.20329 -17.20255 -17.82408 0.0000 0.0000 -0.0036 ******* 4543 0.00007 0.0 150.4 -17.20329 -17.20329 -17.20258 -17.82412 0.0000 0.0000 -0.0036 ******* 4544 0.00006 0.0 146.3 -17.20330 -17.20330 -17.20260 -17.82416 0.0000 0.0000 -0.0036 ******* 4545 0.00006 0.0 142.1 -17.20330 -17.20330 -17.20262 -17.82420 0.0000 0.0000 -0.0037 ******* 4546 0.00006 0.0 138.0 -17.20330 -17.20330 -17.20265 -17.82424 0.0000 0.0000 -0.0037 ******* 4547 0.00006 0.0 133.9 -17.20330 -17.20330 -17.20267 -17.82427 0.0000 0.0000 -0.0038 ******* 4548 0.00006 0.0 129.8 -17.20330 -17.20330 -17.20269 -17.82431 0.0000 0.0000 -0.0038 ******* 4549 0.00006 0.0 125.7 -17.20331 -17.20331 -17.20271 -17.82435 0.0000 0.0000 -0.0038 ******* 4550 0.00006 0.0 121.6 -17.20331 -17.20331 -17.20273 -17.82438 0.0000 0.0000 -0.0039 ******* 4551 0.00006 0.0 117.5 -17.20331 -17.20331 -17.20275 -17.82441 0.0000 0.0000 -0.0039 ******* 4552 0.00005 0.0 113.5 -17.20331 -17.20331 -17.20277 -17.82445 0.0000 0.0000 -0.0040 ******* 4553 0.00005 0.0 109.5 -17.20330 -17.20330 -17.20278 -17.82448 0.0000 0.0000 -0.0040 ******* 4554 0.00005 0.0 105.5 -17.20330 -17.20330 -17.20280 -17.82451 0.0000 0.0000 -0.0040 ******* 4555 0.00005 0.0 101.6 -17.20330 -17.20330 -17.20282 -17.82454 0.0000 0.0000 -0.0041 ******* 4556 0.00005 0.0 97.7 -17.20330 -17.20330 -17.20284 -17.82457 0.0000 0.0000 -0.0041 ******* 4557 0.00005 0.0 93.9 -17.20330 -17.20330 -17.20285 -17.82460 0.0000 0.0000 -0.0042 ******* 4558 0.00005 0.0 90.1 -17.20330 -17.20330 -17.20287 -17.82463 0.0000 0.0000 -0.0042 ******* 4559 0.00004 0.0 86.4 -17.20329 -17.20329 -17.20288 -17.82466 0.0000 0.0000 -0.0043 ******* * Physical Quantities at step: 4560 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20329 Hartree a.u. kinetic energy = 7.84767 Hartree a.u. electrostatic energy = -22.94688 Hartree a.u. esr = 0.12325 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41880 Hartree a.u. n-l pseudopotential energy = 4.51719 Hartree a.u. exchange-correlation energy = -4.20246 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.37 -8.52 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.859234E+00 0.143771E+00 0.159920E+01 H 0.479872E+00 -0.159780E+01 -0.766756E+00 O -0.391928E+00 -0.384899E+00 0.334627E+00 ATOMIC_VELOCITIES H -0.315598E-03 0.286392E-03 0.146897E-03 H -0.380937E-03 -0.364046E-04 -0.208165E-03 O 0.438807E-04 -0.157489E-04 0.385983E-05 Forces acting on atoms (au): H 0.746260E-02 -0.553224E-02 -0.324074E-02 H 0.869255E-02 0.274549E-03 0.449328E-02 O -0.961005E-02 0.320169E-02 -0.767583E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 38.00 1.6866 2 6.72 0.0255 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4560 0.00004 0.0 82.7 -17.20329 -17.20329 -17.20290 -17.82468 0.0000 0.0000 -0.0043 ******* writing restart file: .//cp_91.save restart file written in 0.775 sec. 4561 0.00004 0.0 79.1 -17.20329 -17.20329 -17.20291 -17.82471 0.0000 0.0000 -0.0043 ******* 4562 0.00004 0.0 75.6 -17.20328 -17.20328 -17.20292 -17.82473 0.0000 0.0000 -0.0044 ******* 4563 0.00004 0.0 72.1 -17.20328 -17.20328 -17.20294 -17.82475 0.0000 0.0000 -0.0044 ******* 4564 0.00004 0.0 68.7 -17.20328 -17.20328 -17.20295 -17.82478 0.0000 0.0000 -0.0045 ******* 4565 0.00004 0.0 65.3 -17.20327 -17.20327 -17.20296 -17.82480 0.0000 0.0000 -0.0045 ******* 4566 0.00003 0.0 62.0 -17.20327 -17.20327 -17.20297 -17.82482 0.0000 0.0000 -0.0046 ******* 4567 0.00003 0.0 58.8 -17.20326 -17.20326 -17.20298 -17.82484 0.0000 0.0000 -0.0046 ******* 4568 0.00003 0.0 55.7 -17.20326 -17.20326 -17.20299 -17.82486 0.0000 0.0000 -0.0047 ******* 4569 0.00003 0.0 52.7 -17.20325 -17.20325 -17.20300 -17.82488 0.0000 0.0000 -0.0047 ******* 4570 0.00003 0.0 49.7 -17.20325 -17.20325 -17.20301 -17.82490 0.0000 0.0000 -0.0047 ******* 4571 0.00003 0.0 46.8 -17.20325 -17.20325 -17.20302 -17.82491 0.0000 0.0000 -0.0048 ******* 4572 0.00003 0.0 44.0 -17.20324 -17.20324 -17.20303 -17.82493 0.0000 0.0000 -0.0048 ******* 4573 0.00002 0.0 41.3 -17.20324 -17.20324 -17.20304 -17.82495 0.0000 0.0000 -0.0049 ******* 4574 0.00002 0.0 38.6 -17.20323 -17.20323 -17.20305 -17.82496 0.0000 0.0000 -0.0049 ******* 4575 0.00002 0.0 36.1 -17.20323 -17.20323 -17.20306 -17.82497 0.0000 0.0000 -0.0050 ******* 4576 0.00002 0.0 33.6 -17.20322 -17.20322 -17.20306 -17.82499 0.0000 0.0000 -0.0050 ******* 4577 0.00002 0.0 31.2 -17.20322 -17.20322 -17.20307 -17.82500 0.0000 0.0000 -0.0051 ******* 4578 0.00002 0.0 28.9 -17.20321 -17.20321 -17.20308 -17.82501 0.0000 0.0000 -0.0051 ******* 4579 0.00002 0.0 26.7 -17.20321 -17.20321 -17.20308 -17.82502 0.0000 0.0000 -0.0052 ******* 4580 0.00002 0.0 24.6 -17.20321 -17.20321 -17.20309 -17.82504 0.0000 0.0000 -0.0052 ******* 4581 0.00002 0.0 22.6 -17.20320 -17.20320 -17.20310 -17.82505 0.0000 0.0000 -0.0052 ******* 4582 0.00002 0.0 20.6 -17.20320 -17.20320 -17.20310 -17.82506 0.0000 0.0000 -0.0053 ******* 4583 0.00001 0.0 18.8 -17.20319 -17.20319 -17.20311 -17.82506 0.0000 0.0000 -0.0053 ******* 4584 0.00001 0.0 17.0 -17.20319 -17.20319 -17.20311 -17.82507 0.0000 0.0000 -0.0054 ******* 4585 0.00001 0.0 15.4 -17.20319 -17.20319 -17.20311 -17.82508 0.0000 0.0000 -0.0054 ******* 4586 0.00001 0.0 13.8 -17.20318 -17.20318 -17.20312 -17.82509 0.0000 0.0000 -0.0055 ******* 4587 0.00001 0.0 12.3 -17.20318 -17.20318 -17.20312 -17.82509 0.0000 0.0000 -0.0055 ******* 4588 0.00001 0.0 10.9 -17.20318 -17.20318 -17.20313 -17.82510 0.0000 0.0000 -0.0056 ******* 4589 0.00001 0.0 9.6 -17.20318 -17.20318 -17.20313 -17.82511 0.0000 0.0000 -0.0056 ******* * Physical Quantities at step: 4590 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20317 Hartree a.u. kinetic energy = 7.85071 Hartree a.u. electrostatic energy = -22.94913 Hartree a.u. esr = 0.12439 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42115 Hartree a.u. n-l pseudopotential energy = 4.52045 Hartree a.u. exchange-correlation energy = -4.20406 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.46 -12.45 -8.43 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.841242E+00 0.162306E+00 0.160754E+01 H 0.457711E+00 -0.160081E+01 -0.779032E+00 O -0.389399E+00 -0.385877E+00 0.334875E+00 ATOMIC_VELOCITIES H -0.854252E-04 0.122698E-03 0.342336E-04 H -0.110945E-03 -0.274928E-04 -0.608029E-04 O 0.123710E-04 -0.599780E-05 0.167383E-05 Forces acting on atoms (au): H 0.557697E-02 -0.482495E-02 -0.293778E-02 H 0.676466E-02 0.646495E-03 0.391294E-02 O -0.903713E-02 0.305939E-02 -0.705406E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 3.90 1.6525 2 0.59 0.0249 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4590 0.00001 0.0 8.4 -17.20317 -17.20317 -17.20313 -17.82511 0.0000 0.0000 -0.0057 ******* writing restart file: .//cp_91.save restart file written in 0.772 sec. 4591 0.00001 0.0 7.3 -17.20317 -17.20317 -17.20314 -17.82512 0.0000 0.0000 -0.0057 ******* 4592 0.00001 0.0 6.2 -17.20317 -17.20317 -17.20314 -17.82512 0.0000 0.0000 -0.0058 ******* 4593 0.00001 0.0 5.3 -17.20317 -17.20317 -17.20314 -17.82513 0.0000 0.0000 -0.0058 ******* 4594 0.00001 0.0 4.4 -17.20317 -17.20317 -17.20314 -17.82513 0.0000 0.0000 -0.0059 ******* 4595 0.00001 0.0 3.6 -17.20316 -17.20316 -17.20315 -17.82513 0.0000 0.0000 -0.0059 ******* 4596 0.00000 0.0 3.0 -17.20316 -17.20316 -17.20315 -17.82514 0.0000 0.0000 -0.0060 ******* 4597 0.00000 0.0 2.4 -17.20316 -17.20316 -17.20315 -17.82514 0.0000 0.0000 -0.0060 ******* 4598 0.00000 0.0 1.9 -17.20316 -17.20316 -17.20315 -17.82514 0.0000 0.0000 -0.0061 ******* 4599 0.00000 0.0 1.5 -17.20316 -17.20316 -17.20315 -17.82514 0.0000 0.0000 -0.0061 ******* 4600 0.00000 0.0 1.1 -17.20316 -17.20316 -17.20316 -17.82515 0.0000 0.0000 -0.0061 ******* 4601 0.00000 0.0 0.9 -17.20316 -17.20316 -17.20316 -17.82515 0.0000 0.0000 -0.0062 ******* 4602 0.00000 0.0 0.7 -17.20316 -17.20316 -17.20316 -17.82515 0.0000 0.0000 -0.0062 ******* 4603 0.00000 0.0 0.7 -17.20316 -17.20316 -17.20316 -17.82515 0.0000 0.0000 -0.0063 ******* 4604 0.00000 0.0 0.7 -17.20316 -17.20316 -17.20316 -17.82515 0.0000 0.0000 -0.0063 ******* 4605 0.00000 0.0 0.8 -17.20316 -17.20316 -17.20316 -17.82515 0.0000 0.0000 -0.0064 ******* 4606 0.00000 0.0 0.9 -17.20316 -17.20316 -17.20316 -17.82515 0.0000 0.0000 -0.0064 ******* 4607 0.00000 0.0 1.2 -17.20317 -17.20317 -17.20316 -17.82515 0.0000 0.0000 -0.0065 ******* 4608 0.00000 0.0 1.5 -17.20317 -17.20317 -17.20316 -17.82515 0.0000 0.0000 -0.0065 ******* 4609 0.00000 0.0 2.0 -17.20317 -17.20317 -17.20316 -17.82515 0.0000 0.0000 -0.0066 ******* 4610 0.00000 0.0 2.5 -17.20317 -17.20317 -17.20316 -17.82516 0.0000 0.0000 -0.0066 ******* 4611 0.00000 0.0 3.0 -17.20317 -17.20317 -17.20316 -17.82516 0.0000 0.0000 -0.0067 ******* 4612 0.00000 0.0 3.7 -17.20318 -17.20318 -17.20316 -17.82516 0.0000 0.0000 -0.0067 ******* 4613 0.00000 0.0 4.4 -17.20318 -17.20318 -17.20316 -17.82516 0.0000 0.0000 -0.0068 ******* 4614 0.00000 0.0 5.2 -17.20318 -17.20318 -17.20316 -17.82516 0.0000 0.0000 -0.0068 ******* 4615 0.00000 0.0 6.1 -17.20319 -17.20319 -17.20316 -17.82516 0.0000 0.0000 -0.0069 ******* 4616 0.00000 0.0 7.1 -17.20319 -17.20319 -17.20316 -17.82516 0.0000 0.0000 -0.0069 ******* 4617 0.00000 0.0 8.1 -17.20319 -17.20319 -17.20316 -17.82516 0.0000 0.0000 -0.0070 ******* 4618 0.00000 0.0 9.2 -17.20320 -17.20320 -17.20315 -17.82516 0.0000 0.0000 -0.0070 ******* 4619 0.00000 0.0 10.3 -17.20320 -17.20320 -17.20315 -17.82516 0.0000 0.0000 -0.0071 ******* * Physical Quantities at step: 4620 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20321 Hartree a.u. kinetic energy = 7.85066 Hartree a.u. electrostatic energy = -22.94918 Hartree a.u. esr = 0.12427 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42107 Hartree a.u. n-l pseudopotential energy = 4.52039 Hartree a.u. exchange-correlation energy = -4.20401 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.46 -12.44 -8.44 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.842899E+00 0.165705E+00 0.160459E+01 H 0.459173E+00 -0.160197E+01 -0.777077E+00 O -0.389595E+00 -0.386018E+00 0.334938E+00 ATOMIC_VELOCITIES H 0.115937E-03 -0.450141E-04 -0.101204E-03 H 0.137096E-03 0.447022E-05 0.104851E-03 O -0.159407E-04 0.255421E-05 -0.229767E-06 Forces acting on atoms (au): H 0.213787E-02 -0.261158E-02 -0.144054E-02 H 0.277910E-02 0.717211E-03 0.194988E-02 O -0.647474E-02 0.220394E-02 -0.611204E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 5.37 1.6520 2 0.80 0.0249 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4620 0.00000 0.0 11.5 -17.20321 -17.20321 -17.20315 -17.82516 0.0000 0.0000 -0.0071 ******* writing restart file: .//cp_91.save restart file written in 0.807 sec. 4621 0.00000 0.0 12.8 -17.20321 -17.20321 -17.20315 -17.82516 0.0000 0.0000 -0.0072 ******* 4622 0.00000 0.0 14.2 -17.20322 -17.20322 -17.20315 -17.82516 0.0000 0.0000 -0.0072 ******* 4623 0.00000 0.0 15.6 -17.20322 -17.20322 -17.20315 -17.82516 0.0000 0.0000 -0.0072 ******* 4624 0.00000 0.0 17.1 -17.20322 -17.20322 -17.20314 -17.82516 0.0000 0.0000 -0.0073 ******* 4625 0.00000 0.0 18.6 -17.20323 -17.20323 -17.20314 -17.82516 0.0000 0.0000 -0.0073 ******* 4626 0.00000 0.0 20.2 -17.20324 -17.20324 -17.20314 -17.82516 0.0000 0.0000 -0.0074 ******* 4627 0.00000 0.0 21.8 -17.20324 -17.20324 -17.20314 -17.82517 0.0000 0.0000 -0.0074 ******* 4628 0.00000 0.0 23.5 -17.20325 -17.20325 -17.20313 -17.82517 0.0000 0.0000 -0.0075 ******* 4629 0.00000 0.0 25.3 -17.20325 -17.20325 -17.20313 -17.82517 0.0000 0.0000 -0.0075 ******* 4630 0.00000 0.0 27.0 -17.20326 -17.20326 -17.20313 -17.82517 0.0000 0.0000 -0.0076 ******* 4631 0.00000 0.0 28.9 -17.20326 -17.20326 -17.20313 -17.82517 0.0000 0.0000 -0.0076 ******* 4632 0.00001 0.0 30.8 -17.20327 -17.20327 -17.20312 -17.82518 0.0000 0.0000 -0.0077 ******* 4633 0.00001 0.0 32.7 -17.20327 -17.20327 -17.20312 -17.82518 0.0000 0.0000 -0.0077 ******* 4634 0.00001 0.0 34.7 -17.20328 -17.20328 -17.20312 -17.82518 0.0000 0.0000 -0.0078 ******* 4635 0.00001 0.0 36.7 -17.20329 -17.20329 -17.20311 -17.82519 0.0000 0.0000 -0.0078 ******* 4636 0.00001 0.0 38.7 -17.20329 -17.20329 -17.20311 -17.82519 0.0000 0.0000 -0.0078 ******* 4637 0.00001 0.0 40.8 -17.20330 -17.20330 -17.20310 -17.82520 0.0000 0.0000 -0.0079 ******* 4638 0.00001 0.0 42.9 -17.20330 -17.20330 -17.20310 -17.82520 0.0000 0.0000 -0.0079 ******* 4639 0.00001 0.0 45.0 -17.20331 -17.20331 -17.20310 -17.82521 0.0000 0.0000 -0.0080 ******* 4640 0.00001 0.0 47.1 -17.20332 -17.20332 -17.20309 -17.82521 0.0000 0.0000 -0.0080 ******* 4641 0.00001 0.0 49.3 -17.20332 -17.20332 -17.20309 -17.82522 0.0000 0.0000 -0.0081 ******* 4642 0.00001 0.0 51.5 -17.20333 -17.20333 -17.20308 -17.82522 0.0000 0.0000 -0.0081 ******* 4643 0.00001 0.0 53.7 -17.20333 -17.20333 -17.20308 -17.82523 0.0000 0.0000 -0.0082 ******* 4644 0.00001 0.0 56.0 -17.20334 -17.20334 -17.20307 -17.82524 0.0000 0.0000 -0.0082 ******* 4645 0.00001 0.0 58.2 -17.20334 -17.20334 -17.20307 -17.82524 0.0000 0.0000 -0.0083 ******* 4646 0.00001 0.0 60.5 -17.20335 -17.20335 -17.20306 -17.82525 0.0000 0.0000 -0.0083 ******* 4647 0.00001 0.0 62.7 -17.20335 -17.20335 -17.20306 -17.82526 0.0000 0.0000 -0.0083 ******* 4648 0.00002 0.0 65.0 -17.20336 -17.20336 -17.20305 -17.82527 0.0000 0.0000 -0.0084 ******* 4649 0.00002 0.0 67.3 -17.20336 -17.20336 -17.20304 -17.82528 0.0000 0.0000 -0.0084 ******* * Physical Quantities at step: 4650 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20337 Hartree a.u. kinetic energy = 7.85133 Hartree a.u. electrostatic energy = -22.94764 Hartree a.u. esr = 0.12405 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42158 Hartree a.u. n-l pseudopotential energy = 4.51834 Hartree a.u. exchange-correlation energy = -4.20382 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.49 -12.35 -8.52 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.861034E+00 0.155277E+00 0.158989E+01 H 0.481025E+00 -0.160009E+01 -0.760892E+00 O -0.392114E+00 -0.385480E+00 0.334844E+00 ATOMIC_VELOCITIES H 0.280158E-03 -0.176916E-03 -0.218457E-03 H 0.338729E-03 0.340502E-04 0.246386E-03 O -0.389891E-04 0.900037E-05 -0.175952E-05 Forces acting on atoms (au): H -0.182080E-02 0.821236E-03 0.146551E-02 H -0.215969E-02 -0.677920E-04 -0.155141E-02 O -0.190791E-02 0.816083E-03 -0.294141E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 32.31 1.6792 2 4.93 0.0253 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4650 0.00002 0.0 69.5 -17.20337 -17.20337 -17.20304 -17.82529 0.0000 0.0000 -0.0085 ******* writing restart file: .//cp_91.save restart file written in 0.784 sec. 4651 0.00002 0.0 71.8 -17.20337 -17.20337 -17.20303 -17.82530 0.0000 0.0000 -0.0085 ******* 4652 0.00002 0.0 74.1 -17.20338 -17.20338 -17.20302 -17.82531 0.0000 0.0000 -0.0086 ******* 4653 0.00002 0.0 76.3 -17.20338 -17.20338 -17.20302 -17.82532 0.0000 0.0000 -0.0086 ******* 4654 0.00002 0.0 78.6 -17.20338 -17.20338 -17.20301 -17.82533 0.0000 0.0000 -0.0086 ******* 4655 0.00002 0.0 80.8 -17.20339 -17.20339 -17.20300 -17.82534 0.0000 0.0000 -0.0087 ******* 4656 0.00002 0.0 83.0 -17.20339 -17.20339 -17.20300 -17.82535 0.0000 0.0000 -0.0087 ******* 4657 0.00002 0.0 85.2 -17.20339 -17.20339 -17.20299 -17.82537 0.0000 0.0000 -0.0088 ******* 4658 0.00002 0.0 87.3 -17.20340 -17.20340 -17.20298 -17.82538 0.0000 0.0000 -0.0088 ******* 4659 0.00002 0.0 89.4 -17.20340 -17.20340 -17.20297 -17.82539 0.0000 0.0000 -0.0089 ******* 4660 0.00002 0.0 91.5 -17.20340 -17.20340 -17.20296 -17.82541 0.0000 0.0000 -0.0089 ******* 4661 0.00003 0.0 93.6 -17.20340 -17.20340 -17.20296 -17.82542 0.0000 0.0000 -0.0089 ******* 4662 0.00003 0.0 95.6 -17.20340 -17.20340 -17.20295 -17.82544 0.0000 0.0000 -0.0090 ******* 4663 0.00003 0.0 97.6 -17.20340 -17.20340 -17.20294 -17.82545 0.0000 0.0000 -0.0090 ******* 4664 0.00003 0.0 99.5 -17.20340 -17.20340 -17.20293 -17.82547 0.0000 0.0000 -0.0091 ******* 4665 0.00003 0.0 101.4 -17.20340 -17.20340 -17.20292 -17.82549 0.0000 0.0000 -0.0091 ******* 4666 0.00003 0.0 103.3 -17.20340 -17.20340 -17.20291 -17.82550 0.0000 0.0000 -0.0092 ******* 4667 0.00003 0.0 105.1 -17.20340 -17.20340 -17.20290 -17.82552 0.0000 0.0000 -0.0092 ******* 4668 0.00003 0.0 106.8 -17.20340 -17.20340 -17.20289 -17.82554 0.0000 0.0000 -0.0092 ******* 4669 0.00003 0.0 108.5 -17.20340 -17.20340 -17.20289 -17.82556 0.0000 0.0000 -0.0093 ******* 4670 0.00003 0.0 110.1 -17.20340 -17.20340 -17.20288 -17.82557 0.0000 0.0000 -0.0093 ******* 4671 0.00003 0.0 111.7 -17.20340 -17.20340 -17.20287 -17.82559 0.0000 0.0000 -0.0094 ******* 4672 0.00003 0.0 113.2 -17.20339 -17.20339 -17.20286 -17.82561 0.0000 0.0000 -0.0094 ******* 4673 0.00003 0.0 114.6 -17.20339 -17.20339 -17.20285 -17.82563 0.0000 0.0000 -0.0094 ******* 4674 0.00003 0.0 116.0 -17.20339 -17.20339 -17.20284 -17.82565 0.0000 0.0000 -0.0095 ******* 4675 0.00004 0.0 117.3 -17.20338 -17.20338 -17.20283 -17.82567 0.0000 0.0000 -0.0095 ******* 4676 0.00004 0.0 118.5 -17.20338 -17.20338 -17.20282 -17.82570 0.0000 0.0000 -0.0096 ******* 4677 0.00004 0.0 119.6 -17.20337 -17.20337 -17.20281 -17.82572 0.0000 0.0000 -0.0096 ******* 4678 0.00004 0.0 120.6 -17.20337 -17.20337 -17.20280 -17.82574 0.0000 0.0000 -0.0097 ******* 4679 0.00004 0.0 121.6 -17.20336 -17.20336 -17.20279 -17.82576 0.0000 0.0000 -0.0097 ******* * Physical Quantities at step: 4680 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20336 Hartree a.u. kinetic energy = 7.85152 Hartree a.u. electrostatic energy = -22.94555 Hartree a.u. esr = 0.12301 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.42053 Hartree a.u. n-l pseudopotential energy = 4.51426 Hartree a.u. exchange-correlation energy = -4.20306 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.52 -12.20 -8.66 -6.54 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.891380E+00 0.136232E+00 0.156684E+01 H 0.517577E+00 -0.159655E+01 -0.734730E+00 O -0.396329E+00 -0.384503E+00 0.334648E+00 ATOMIC_VELOCITIES H 0.377750E-03 -0.229824E-03 -0.284393E-03 H 0.453287E-03 0.412155E-04 0.322044E-03 O -0.523542E-04 0.118820E-04 -0.237199E-05 Forces acting on atoms (au): H -0.634316E-02 0.422005E-02 0.428894E-02 H -0.758559E-02 -0.663915E-03 -0.506066E-02 O 0.600843E-02 -0.152820E-02 0.284724E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 56.79 1.7291 2 8.87 0.0262 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4680 0.00004 0.0 122.5 -17.20336 -17.20336 -17.20278 -17.82579 0.0000 0.0000 -0.0097 ******* writing restart file: .//cp_91.save restart file written in 0.786 sec. 4681 0.00004 0.0 123.2 -17.20335 -17.20335 -17.20277 -17.82581 0.0000 0.0000 -0.0098 ******* 4682 0.00004 0.0 123.9 -17.20334 -17.20334 -17.20276 -17.82583 0.0000 0.0000 -0.0098 ******* 4683 0.00004 0.0 124.5 -17.20334 -17.20334 -17.20274 -17.82586 0.0000 0.0000 -0.0099 ******* 4684 0.00004 0.0 125.0 -17.20333 -17.20333 -17.20273 -17.82588 0.0000 0.0000 -0.0099 ******* 4685 0.00004 0.0 125.4 -17.20332 -17.20332 -17.20272 -17.82590 0.0000 0.0000 -0.0099 ******* 4686 0.00004 0.0 125.7 -17.20331 -17.20331 -17.20271 -17.82593 0.0000 0.0000 -0.0100 ******* 4687 0.00004 0.0 126.0 -17.20330 -17.20330 -17.20270 -17.82595 0.0000 0.0000 -0.0100 ******* 4688 0.00004 0.0 126.1 -17.20329 -17.20329 -17.20269 -17.82598 0.0000 0.0000 -0.0101 ******* 4689 0.00004 0.0 126.1 -17.20328 -17.20328 -17.20268 -17.82600 0.0000 0.0000 -0.0101 ******* 4690 0.00004 0.0 126.0 -17.20327 -17.20327 -17.20267 -17.82603 0.0000 0.0000 -0.0101 ******* 4691 0.00004 0.0 125.8 -17.20326 -17.20326 -17.20266 -17.82606 0.0000 0.0000 -0.0102 ******* 4692 0.00004 0.0 125.5 -17.20325 -17.20325 -17.20265 -17.82608 0.0000 0.0000 -0.0102 ******* 4693 0.00004 0.0 125.1 -17.20323 -17.20323 -17.20264 -17.82611 0.0000 0.0000 -0.0103 ******* 4694 0.00004 0.0 124.6 -17.20322 -17.20322 -17.20263 -17.82613 0.0000 0.0000 -0.0103 ******* 4695 0.00004 0.0 123.9 -17.20320 -17.20320 -17.20262 -17.82616 0.0000 0.0000 -0.0103 ******* 4696 0.00004 0.0 123.2 -17.20319 -17.20319 -17.20261 -17.82618 0.0000 0.0000 -0.0104 ******* 4697 0.00004 0.0 122.4 -17.20318 -17.20318 -17.20260 -17.82621 0.0000 0.0000 -0.0104 ******* 4698 0.00004 0.0 121.5 -17.20316 -17.20316 -17.20259 -17.82624 0.0000 0.0000 -0.0105 ******* 4699 0.00004 0.0 120.4 -17.20315 -17.20315 -17.20258 -17.82626 0.0000 0.0000 -0.0105 ******* 4700 0.00004 0.0 119.3 -17.20313 -17.20313 -17.20257 -17.82629 0.0000 0.0000 -0.0105 ******* 4701 0.00004 0.0 118.0 -17.20312 -17.20312 -17.20256 -17.82632 0.0000 0.0000 -0.0106 ******* 4702 0.00004 0.0 116.7 -17.20310 -17.20310 -17.20255 -17.82634 0.0000 0.0000 -0.0106 ******* 4703 0.00004 0.0 115.2 -17.20309 -17.20309 -17.20254 -17.82637 0.0000 0.0000 -0.0107 ******* 4704 0.00004 0.0 113.7 -17.20307 -17.20307 -17.20253 -17.82639 0.0000 0.0000 -0.0107 ******* 4705 0.00004 0.0 112.1 -17.20305 -17.20305 -17.20252 -17.82642 0.0000 0.0000 -0.0107 ******* 4706 0.00004 0.0 110.3 -17.20304 -17.20304 -17.20251 -17.82645 0.0000 0.0000 -0.0108 ******* 4707 0.00004 0.0 108.5 -17.20302 -17.20302 -17.20251 -17.82647 0.0000 0.0000 -0.0108 ******* 4708 0.00004 0.0 106.6 -17.20300 -17.20300 -17.20250 -17.82650 0.0000 0.0000 -0.0109 ******* 4709 0.00004 0.0 104.6 -17.20299 -17.20299 -17.20249 -17.82652 0.0000 0.0000 -0.0109 ******* * Physical Quantities at step: 4710 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20297 Hartree a.u. kinetic energy = 7.84954 Hartree a.u. electrostatic energy = -22.94310 Hartree a.u. esr = 0.12122 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41724 Hartree a.u. n-l pseudopotential energy = 4.50917 Hartree a.u. exchange-correlation energy = -4.20134 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.55 -12.02 -8.81 -6.55 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.925040E+00 0.117530E+00 0.154049E+01 H 0.557850E+00 -0.159318E+01 -0.705538E+00 O -0.400987E+00 -0.383537E+00 0.334469E+00 ATOMIC_VELOCITIES H 0.343917E-03 -0.161206E-03 -0.289524E-03 H 0.409920E-03 0.303657E-04 0.309733E-03 O -0.474907E-04 0.824278E-05 -0.127310E-05 Forces acting on atoms (au): H -0.968454E-02 0.634169E-02 0.646125E-02 H -0.115696E-01 -0.999469E-03 -0.761557E-02 O 0.136742E-01 -0.372285E-02 0.696946E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 47.67 1.7869 2 7.14 0.0271 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4710 0.00004 0.0 102.5 -17.20297 -17.20297 -17.20248 -17.82655 0.0000 0.0000 -0.0110 ******* writing restart file: .//cp_91.save restart file written in 0.774 sec. 4711 0.00004 0.0 100.3 -17.20295 -17.20295 -17.20248 -17.82657 0.0000 0.0000 -0.0110 ******* 4712 0.00004 0.0 98.1 -17.20293 -17.20293 -17.20247 -17.82660 0.0000 0.0000 -0.0110 ******* 4713 0.00004 0.0 95.8 -17.20292 -17.20292 -17.20246 -17.82662 0.0000 0.0000 -0.0111 ******* 4714 0.00004 0.0 93.4 -17.20290 -17.20290 -17.20246 -17.82665 0.0000 0.0000 -0.0111 ******* 4715 0.00004 0.0 90.9 -17.20288 -17.20288 -17.20245 -17.82667 0.0000 0.0000 -0.0112 ******* 4716 0.00004 0.0 88.4 -17.20286 -17.20286 -17.20244 -17.82669 0.0000 0.0000 -0.0112 ******* 4717 0.00004 0.0 85.8 -17.20285 -17.20285 -17.20244 -17.82672 0.0000 0.0000 -0.0113 ******* 4718 0.00004 0.0 83.2 -17.20283 -17.20283 -17.20243 -17.82674 0.0000 0.0000 -0.0113 ******* 4719 0.00004 0.0 80.6 -17.20281 -17.20281 -17.20243 -17.82676 0.0000 0.0000 -0.0113 ******* 4720 0.00004 0.0 77.9 -17.20279 -17.20279 -17.20242 -17.82679 0.0000 0.0000 -0.0114 ******* 4721 0.00004 0.0 75.1 -17.20278 -17.20278 -17.20242 -17.82681 0.0000 0.0000 -0.0114 ******* 4722 0.00003 0.0 72.4 -17.20276 -17.20276 -17.20242 -17.82683 0.0000 0.0000 -0.0115 ******* 4723 0.00003 0.0 69.6 -17.20274 -17.20274 -17.20241 -17.82685 0.0000 0.0000 -0.0115 ******* 4724 0.00003 0.0 66.8 -17.20273 -17.20273 -17.20241 -17.82687 0.0000 0.0000 -0.0116 ******* 4725 0.00003 0.0 64.0 -17.20271 -17.20271 -17.20241 -17.82689 0.0000 0.0000 -0.0116 ******* 4726 0.00003 0.0 61.2 -17.20269 -17.20269 -17.20240 -17.82691 0.0000 0.0000 -0.0116 ******* 4727 0.00003 0.0 58.4 -17.20268 -17.20268 -17.20240 -17.82693 0.0000 0.0000 -0.0117 ******* 4728 0.00003 0.0 55.6 -17.20266 -17.20266 -17.20240 -17.82694 0.0000 0.0000 -0.0117 ******* 4729 0.00003 0.0 52.8 -17.20265 -17.20265 -17.20240 -17.82696 0.0000 0.0000 -0.0118 ******* 4730 0.00003 0.0 50.1 -17.20263 -17.20263 -17.20240 -17.82698 0.0000 0.0000 -0.0118 ******* 4731 0.00003 0.0 47.4 -17.20262 -17.20262 -17.20240 -17.82699 0.0000 0.0000 -0.0119 ******* 4732 0.00003 0.0 44.8 -17.20261 -17.20261 -17.20239 -17.82701 0.0000 0.0000 -0.0119 ******* 4733 0.00002 0.0 42.2 -17.20259 -17.20259 -17.20239 -17.82702 0.0000 0.0000 -0.0120 ******* 4734 0.00002 0.0 39.7 -17.20258 -17.20258 -17.20239 -17.82704 0.0000 0.0000 -0.0120 ******* 4735 0.00002 0.0 37.2 -17.20257 -17.20257 -17.20239 -17.82705 0.0000 0.0000 -0.0121 ******* 4736 0.00002 0.0 34.9 -17.20256 -17.20256 -17.20239 -17.82707 0.0000 0.0000 -0.0121 ******* 4737 0.00002 0.0 32.7 -17.20255 -17.20255 -17.20239 -17.82708 0.0000 0.0000 -0.0121 ******* 4738 0.00002 0.0 30.5 -17.20254 -17.20254 -17.20239 -17.82709 0.0000 0.0000 -0.0122 ******* 4739 0.00002 0.0 28.5 -17.20253 -17.20253 -17.20239 -17.82710 0.0000 0.0000 -0.0122 ******* * Physical Quantities at step: 4740 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20252 Hartree a.u. kinetic energy = 7.84742 Hartree a.u. electrostatic energy = -22.94103 Hartree a.u. esr = 0.12009 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41481 Hartree a.u. n-l pseudopotential energy = 4.50581 Hartree a.u. exchange-correlation energy = -4.19990 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.58 -11.91 -8.91 -6.56 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.948433E+00 0.112593E+00 0.151733E+01 H 0.585246E+00 -0.159225E+01 -0.682654E+00 O -0.404186E+00 -0.383284E+00 0.334487E+00 ATOMIC_VELOCITIES H 0.149851E-03 0.875112E-04 -0.207837E-03 H 0.164064E-03 -0.205845E-04 0.174641E-03 O -0.197762E-04 -0.421629E-05 0.209133E-05 Forces acting on atoms (au): H -0.915534E-02 0.544947E-02 0.744571E-02 H -0.110963E-01 -0.131021E-02 -0.824511E-02 O 0.158260E-01 -0.393725E-02 0.632485E-03 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 12.68 1.8234 2 1.27 0.0276 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4740 0.00002 0.0 26.6 -17.20252 -17.20252 -17.20239 -17.82711 0.0000 0.0000 -0.0123 ******* writing restart file: .//cp_91.save restart file written in 0.796 sec. 4741 0.00002 0.0 24.9 -17.20251 -17.20251 -17.20240 -17.82712 0.0000 0.0000 -0.0123 ******* 4742 0.00002 0.0 23.3 -17.20251 -17.20251 -17.20240 -17.82713 0.0000 0.0000 -0.0124 ******* 4743 0.00001 0.0 21.9 -17.20250 -17.20250 -17.20240 -17.82714 0.0000 0.0000 -0.0124 ******* 4744 0.00001 0.0 20.7 -17.20250 -17.20250 -17.20240 -17.82715 0.0000 0.0000 -0.0125 ******* 4745 0.00001 0.0 19.7 -17.20249 -17.20249 -17.20240 -17.82716 0.0000 0.0000 -0.0125 ******* 4746 0.00001 0.0 18.9 -17.20249 -17.20249 -17.20240 -17.82717 0.0000 0.0000 -0.0126 ******* 4747 0.00001 0.0 18.3 -17.20248 -17.20248 -17.20240 -17.82718 0.0000 0.0000 -0.0126 ******* 4748 0.00001 0.0 17.9 -17.20248 -17.20248 -17.20240 -17.82718 0.0000 0.0000 -0.0127 ******* 4749 0.00001 0.0 17.8 -17.20248 -17.20248 -17.20240 -17.82719 0.0000 0.0000 -0.0127 ******* 4750 0.00001 0.0 18.0 -17.20248 -17.20248 -17.20240 -17.82720 0.0000 0.0000 -0.0127 ******* 4751 0.00001 0.0 18.4 -17.20248 -17.20248 -17.20239 -17.82720 0.0000 0.0000 -0.0128 ******* 4752 0.00001 0.0 19.2 -17.20248 -17.20248 -17.20239 -17.82721 0.0000 0.0000 -0.0128 ******* 4753 0.00001 0.0 20.3 -17.20249 -17.20249 -17.20239 -17.82721 0.0000 0.0000 -0.0129 ******* 4754 0.00001 0.0 21.7 -17.20249 -17.20249 -17.20239 -17.82722 0.0000 0.0000 -0.0129 ******* 4755 0.00001 0.0 23.5 -17.20249 -17.20249 -17.20238 -17.82722 0.0000 0.0000 -0.0130 ******* 4756 0.00001 0.0 25.6 -17.20250 -17.20250 -17.20238 -17.82723 0.0000 0.0000 -0.0130 ******* 4757 0.00001 0.0 28.1 -17.20251 -17.20251 -17.20237 -17.82723 0.0000 0.0000 -0.0131 ******* 4758 0.00001 0.0 31.1 -17.20251 -17.20251 -17.20237 -17.82724 0.0000 0.0000 -0.0131 ******* 4759 0.00001 0.0 34.4 -17.20252 -17.20252 -17.20236 -17.82724 0.0000 0.0000 -0.0132 ******* 4760 0.00001 0.0 38.2 -17.20253 -17.20253 -17.20235 -17.82724 0.0000 0.0000 -0.0132 ******* 4761 0.00001 0.0 42.5 -17.20254 -17.20254 -17.20234 -17.82725 0.0000 0.0000 -0.0133 ******* 4762 0.00001 0.0 47.3 -17.20255 -17.20255 -17.20233 -17.82725 0.0000 0.0000 -0.0133 ******* 4763 0.00001 0.0 52.6 -17.20256 -17.20256 -17.20231 -17.82726 0.0000 0.0000 -0.0133 ******* 4764 0.00001 0.0 58.4 -17.20258 -17.20258 -17.20230 -17.82726 0.0000 0.0000 -0.0134 ******* 4765 0.00001 0.0 64.7 -17.20259 -17.20259 -17.20228 -17.82727 0.0000 0.0000 -0.0134 ******* 4766 0.00001 0.0 71.7 -17.20260 -17.20260 -17.20226 -17.82728 0.0000 0.0000 -0.0135 ******* 4767 0.00001 0.0 79.2 -17.20262 -17.20262 -17.20224 -17.82728 0.0000 0.0000 -0.0135 ******* 4768 0.00001 0.0 87.4 -17.20263 -17.20263 -17.20222 -17.82729 0.0000 0.0000 -0.0136 ******* 4769 0.00001 0.0 96.2 -17.20265 -17.20265 -17.20219 -17.82730 0.0000 0.0000 -0.0136 ******* * Physical Quantities at step: 4770 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20266 Hartree a.u. kinetic energy = 7.84660 Hartree a.u. electrostatic energy = -22.94147 Hartree a.u. esr = 0.12014 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41433 Hartree a.u. n-l pseudopotential energy = 4.50633 Hartree a.u. exchange-correlation energy = -4.19980 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.57 -11.95 -8.89 -6.56 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.947441E+00 0.140996E+00 0.150624E+01 H 0.581065E+00 -0.159950E+01 -0.678813E+00 O -0.403860E+00 -0.384617E+00 0.334943E+00 ATOMIC_VELOCITIES H -0.199073E-03 0.594417E-03 -0.244312E-04 H -0.293808E-03 -0.157347E-03 -0.115506E-03 O 0.310508E-04 -0.275348E-04 0.881586E-05 Forces acting on atoms (au): H -0.369510E-02 -0.145465E-02 0.509346E-02 H -0.410418E-02 -0.365428E-04 -0.453486E-02 O 0.112201E-01 -0.144422E-02 0.663872E-04 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 50.09 1.8015 2 5.53 0.0272 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4770 0.00002 0.0 105.7 -17.20266 -17.20266 -17.20216 -17.82731 0.0000 0.0000 -0.0137 ******* writing restart file: .//cp_91.save restart file written in 0.812 sec. 4771 0.00002 0.0 115.9 -17.20268 -17.20268 -17.20213 -17.82732 0.0000 0.0000 -0.0137 ******* 4772 0.00002 0.0 126.8 -17.20270 -17.20270 -17.20210 -17.82733 0.0000 0.0000 -0.0137 ******* 4773 0.00002 0.0 138.5 -17.20272 -17.20272 -17.20206 -17.82734 0.0000 0.0000 -0.0138 ******* 4774 0.00002 0.0 151.0 -17.20273 -17.20273 -17.20202 -17.82735 0.0000 0.0000 -0.0138 ******* 4775 0.00003 0.0 164.2 -17.20275 -17.20275 -17.20197 -17.82737 0.0000 0.0000 -0.0139 ******* 4776 0.00003 0.0 178.3 -17.20277 -17.20277 -17.20192 -17.82738 0.0000 0.0000 -0.0139 ******* 4777 0.00003 0.0 193.3 -17.20279 -17.20279 -17.20187 -17.82740 0.0000 0.0000 -0.0139 ******* 4778 0.00004 0.0 209.1 -17.20280 -17.20280 -17.20181 -17.82742 0.0000 0.0000 -0.0140 ******* 4779 0.00004 0.0 225.9 -17.20282 -17.20282 -17.20175 -17.82744 0.0000 0.0000 -0.0140 ******* 4780 0.00004 0.0 243.6 -17.20284 -17.20284 -17.20168 -17.82746 0.0000 0.0000 -0.0140 ******* 4781 0.00005 0.0 262.3 -17.20286 -17.20286 -17.20161 -17.82749 0.0000 0.0000 -0.0141 ******* 4782 0.00005 0.0 282.0 -17.20287 -17.20287 -17.20153 -17.82752 0.0000 0.0000 -0.0141 ******* 4783 0.00006 0.0 302.7 -17.20289 -17.20289 -17.20145 -17.82755 0.0000 0.0000 -0.0141 ******* 4784 0.00006 0.0 324.5 -17.20290 -17.20290 -17.20136 -17.82758 0.0000 0.0000 -0.0142 ******* 4785 0.00006 0.0 347.4 -17.20292 -17.20292 -17.20127 -17.82762 0.0000 0.0000 -0.0142 ******* 4786 0.00007 0.0 371.4 -17.20293 -17.20293 -17.20117 -17.82766 0.0000 0.0000 -0.0142 ******* 4787 0.00008 0.0 396.5 -17.20294 -17.20294 -17.20106 -17.82770 0.0000 0.0000 -0.0142 ******* 4788 0.00008 0.0 422.8 -17.20295 -17.20295 -17.20094 -17.82774 0.0000 0.0000 -0.0143 ******* 4789 0.00009 0.0 450.4 -17.20296 -17.20296 -17.20082 -17.82779 0.0000 0.0000 -0.0143 ******* 4790 0.00009 0.0 479.1 -17.20297 -17.20297 -17.20069 -17.82784 0.0000 0.0000 -0.0143 ******* 4791 0.00010 0.0 509.2 -17.20297 -17.20297 -17.20055 -17.82790 0.0000 0.0000 -0.0143 ******* 4792 0.00011 0.0 540.4 -17.20297 -17.20297 -17.20041 -17.82796 0.0000 0.0000 -0.0143 ******* 4793 0.00012 0.0 573.0 -17.20297 -17.20297 -17.20025 -17.82803 0.0000 0.0000 -0.0143 ******* 4794 0.00012 0.0 607.0 -17.20297 -17.20297 -17.20009 -17.82810 0.0000 0.0000 -0.0144 ******* 4795 0.00013 0.0 642.2 -17.20296 -17.20296 -17.19991 -17.82817 0.0000 0.0000 -0.0144 ******* 4796 0.00014 0.0 678.8 -17.20296 -17.20296 -17.19973 -17.82825 0.0000 0.0000 -0.0144 ******* 4797 0.00015 0.0 716.8 -17.20294 -17.20294 -17.19954 -17.82833 0.0000 0.0000 -0.0144 ******* 4798 0.00016 0.0 756.2 -17.20293 -17.20293 -17.19934 -17.82842 0.0000 0.0000 -0.0144 ******* 4799 0.00017 0.0 797.0 -17.20291 -17.20291 -17.19912 -17.82852 0.0000 0.0000 -0.0144 ******* * Physical Quantities at step: 4800 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.20289 Hartree a.u. kinetic energy = 7.84445 Hartree a.u. electrostatic energy = -22.94634 Hartree a.u. esr = 0.12045 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.41232 Hartree a.u. n-l pseudopotential energy = 4.51178 Hartree a.u. exchange-correlation energy = -4.20046 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.47 -12.21 -8.63 -6.53 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.906686E+00 0.230031E+00 0.151339E+01 H 0.525190E+00 -0.162322E+01 -0.707236E+00 O -0.397773E+00 -0.388732E+00 0.336283E+00 ATOMIC_VELOCITIES H -0.745798E-03 0.144533E-02 0.166337E-03 H -0.988227E-03 -0.377703E-03 -0.526630E-03 O 0.109241E-03 -0.672590E-04 0.226980E-04 Forces acting on atoms (au): H 0.708487E-02 -0.177602E-01 -0.202309E-02 H 0.106289E-01 0.480895E-02 0.539563E-02 O -0.524392E-03 0.459073E-02 -0.115253E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 393.54 1.6873 2 52.11 0.0251 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4800 0.00018 0.0 839.2 -17.20289 -17.20289 -17.19890 -17.82862 0.0000 0.0000 -0.0144 ******* writing restart file: .//cp_91.save restart file written in 0.781 sec. 4801 0.00019 0.0 882.8 -17.20286 -17.20286 -17.19867 -17.82873 0.0000 0.0000 -0.0144 ******* 4802 0.00020 0.0 927.8 -17.20283 -17.20283 -17.19842 -17.82885 0.0000 0.0000 -0.0144 ******* 4803 0.00021 0.0 974.1 -17.20279 -17.20279 -17.19816 -17.82897 0.0000 0.0000 -0.0144 ******* 4804 0.00023 0.0 1021.9 -17.20275 -17.20275 -17.19790 -17.82910 0.0000 0.0000 -0.0144 ******* 4805 0.00024 0.0 1071.1 -17.20270 -17.20270 -17.19762 -17.82923 0.0000 0.0000 -0.0143 ******* 4806 0.00025 0.0 1121.6 -17.20265 -17.20265 -17.19732 -17.82937 0.0000 0.0000 -0.0143 ******* 4807 0.00026 0.0 1173.4 -17.20259 -17.20259 -17.19702 -17.82952 0.0000 0.0000 -0.0143 ******* 4808 0.00028 0.0 1226.5 -17.20253 -17.20253 -17.19670 -17.82968 0.0000 0.0000 -0.0143 ******* 4809 0.00029 0.0 1280.9 -17.20246 -17.20246 -17.19637 -17.82985 0.0000 0.0000 -0.0143 ******* 4810 0.00031 0.0 1336.5 -17.20238 -17.20238 -17.19603 -17.83002 0.0000 0.0000 -0.0142 ******* 4811 0.00032 0.0 1393.2 -17.20230 -17.20230 -17.19568 -17.83021 0.0000 0.0000 -0.0142 ******* 4812 0.00034 0.0 1451.1 -17.20220 -17.20220 -17.19531 -17.83040 0.0000 0.0000 -0.0142 ******* 4813 0.00035 0.0 1509.9 -17.20211 -17.20211 -17.19493 -17.83060 0.0000 0.0000 -0.0141 ******* 4814 0.00037 0.0 1569.8 -17.20200 -17.20200 -17.19454 -17.83082 0.0000 0.0000 -0.0141 ******* 4815 0.00039 0.0 1630.5 -17.20189 -17.20189 -17.19414 -17.83104 0.0000 0.0000 -0.0140 ******* 4816 0.00040 0.0 1691.9 -17.20177 -17.20177 -17.19373 -17.83127 0.0000 0.0000 -0.0140 ******* 4817 0.00042 0.0 1754.0 -17.20164 -17.20164 -17.19330 -17.83151 0.0000 0.0000 -0.0139 ******* 4818 0.00044 0.0 1816.7 -17.20150 -17.20150 -17.19287 -17.83176 0.0000 0.0000 -0.0139 ******* 4819 0.00046 0.0 1879.8 -17.20135 -17.20135 -17.19242 -17.83203 0.0000 0.0000 -0.0138 ******* 4820 0.00048 0.0 1943.2 -17.20120 -17.20120 -17.19197 -17.83230 0.0000 0.0000 -0.0137 ******* 4821 0.00049 0.0 2006.8 -17.20103 -17.20103 -17.19150 -17.83259 0.0000 0.0000 -0.0137 ******* 4822 0.00051 0.0 2070.4 -17.20086 -17.20086 -17.19102 -17.83288 0.0000 0.0000 -0.0136 ******* 4823 0.00053 0.0 2133.8 -17.20067 -17.20067 -17.19054 -17.83319 0.0000 0.0000 -0.0135 ******* 4824 0.00055 0.0 2196.9 -17.20048 -17.20048 -17.19005 -17.83351 0.0000 0.0000 -0.0134 ******* 4825 0.00057 0.0 2259.5 -17.20028 -17.20028 -17.18955 -17.83384 0.0000 0.0000 -0.0133 ******* 4826 0.00059 0.0 2321.4 -17.20007 -17.20007 -17.18905 -17.83419 0.0000 0.0000 -0.0132 ******* 4827 0.00061 0.0 2382.4 -17.19985 -17.19985 -17.18854 -17.83454 0.0000 0.0000 -0.0132 ******* 4828 0.00063 0.0 2442.4 -17.19962 -17.19962 -17.18802 -17.83491 0.0000 0.0000 -0.0131 ******* 4829 0.00065 0.0 2501.2 -17.19938 -17.19938 -17.18750 -17.83529 0.0000 0.0000 -0.0130 ******* * Physical Quantities at step: 4830 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.19914 Hartree a.u. kinetic energy = 7.83701 Hartree a.u. electrostatic energy = -22.95620 Hartree a.u. esr = 0.12003 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40293 Hartree a.u. n-l pseudopotential energy = 4.52321 Hartree a.u. exchange-correlation energy = -4.20023 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.27 -12.68 -8.09 -6.47 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.807430E+00 0.407577E+00 0.152678E+01 H 0.399901E+00 -0.166557E+01 -0.770930E+00 O -0.383627E+00 -0.397249E+00 0.339452E+00 ATOMIC_VELOCITIES H -0.146043E-02 0.246938E-02 0.349100E-04 H -0.175900E-02 -0.523172E-03 -0.834513E-03 O 0.202820E-03 -0.122608E-03 0.503739E-04 Forces acting on atoms (au): H 0.230679E-01 -0.425085E-01 -0.999122E-02 H 0.318753E-01 0.118321E-01 0.180527E-01 O -0.221710E-01 0.165047E-01 -0.303105E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1189.10 1.4775 2 180.23 0.0209 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4830 0.00067 0.0 2558.4 -17.19914 -17.19914 -17.18699 -17.83568 0.0000 0.0000 -0.0129 ******* writing restart file: .//cp_91.save restart file written in 0.813 sec. 4831 0.00069 0.0 2614.0 -17.19888 -17.19888 -17.18646 -17.83608 0.0000 0.0000 -0.0127 ******* 4832 0.00071 0.0 2667.7 -17.19862 -17.19862 -17.18594 -17.83650 0.0000 0.0000 -0.0126 ******* 4833 0.00073 0.0 2719.3 -17.19834 -17.19834 -17.18543 -17.83692 0.0000 0.0000 -0.0125 ******* 4834 0.00075 0.0 2768.7 -17.19806 -17.19806 -17.18491 -17.83736 0.0000 0.0000 -0.0124 ******* 4835 0.00077 0.0 2815.5 -17.19777 -17.19777 -17.18440 -17.83782 0.0000 0.0000 -0.0123 ******* 4836 0.00079 0.0 2859.6 -17.19747 -17.19747 -17.18389 -17.83828 0.0000 0.0000 -0.0122 ******* 4837 0.00081 0.0 2900.8 -17.19717 -17.19717 -17.18339 -17.83875 0.0000 0.0000 -0.0120 ******* 4838 0.00083 0.0 2939.0 -17.19685 -17.19685 -17.18289 -17.83923 0.0000 0.0000 -0.0119 ******* 4839 0.00084 0.0 2973.9 -17.19653 -17.19653 -17.18241 -17.83973 0.0000 0.0000 -0.0118 ******* 4840 0.00086 0.0 3005.4 -17.19621 -17.19621 -17.18193 -17.84023 0.0000 0.0000 -0.0117 ******* 4841 0.00088 0.0 3033.3 -17.19587 -17.19587 -17.18147 -17.84075 0.0000 0.0000 -0.0115 ******* 4842 0.00089 0.0 3057.5 -17.19554 -17.19554 -17.18101 -17.84128 0.0000 0.0000 -0.0114 ******* 4843 0.00091 0.0 3077.9 -17.19519 -17.19519 -17.18057 -17.84181 0.0000 0.0000 -0.0112 ******* 4844 0.00092 0.0 3094.4 -17.19485 -17.19485 -17.18015 -17.84235 0.0000 0.0000 -0.0111 ******* 4845 0.00093 0.0 3106.9 -17.19450 -17.19450 -17.17974 -17.84291 0.0000 0.0000 -0.0110 ******* 4846 0.00095 0.0 3115.3 -17.19414 -17.19414 -17.17934 -17.84347 0.0000 0.0000 -0.0108 ******* 4847 0.00096 0.0 3119.6 -17.19378 -17.19378 -17.17897 -17.84403 0.0000 0.0000 -0.0107 ******* 4848 0.00097 0.0 3119.8 -17.19343 -17.19343 -17.17861 -17.84461 0.0000 0.0000 -0.0106 ******* 4849 0.00098 0.0 3115.9 -17.19306 -17.19306 -17.17826 -17.84519 0.0000 0.0000 -0.0104 ******* 4850 0.00098 0.0 3107.9 -17.19270 -17.19270 -17.17794 -17.84577 0.0000 0.0000 -0.0103 ******* 4851 0.00099 0.0 3095.7 -17.19234 -17.19234 -17.17764 -17.84637 0.0000 0.0000 -0.0101 ******* 4852 0.00100 0.0 3079.6 -17.19198 -17.19198 -17.17735 -17.84696 0.0000 0.0000 -0.0100 ******* 4853 0.00100 0.0 3059.6 -17.19162 -17.19162 -17.17709 -17.84756 0.0000 0.0000 -0.0099 ******* 4854 0.00101 0.0 3035.8 -17.19126 -17.19126 -17.17684 -17.84816 0.0000 0.0000 -0.0097 ******* 4855 0.00101 0.0 3008.3 -17.19091 -17.19091 -17.17662 -17.84877 0.0000 0.0000 -0.0096 ******* 4856 0.00101 0.0 2977.3 -17.19055 -17.19055 -17.17641 -17.84937 0.0000 0.0000 -0.0095 ******* 4857 0.00101 0.0 2942.9 -17.19021 -17.19021 -17.17623 -17.84998 0.0000 0.0000 -0.0093 ******* 4858 0.00101 0.0 2905.2 -17.18986 -17.18986 -17.17606 -17.85059 0.0000 0.0000 -0.0092 ******* 4859 0.00101 0.0 2864.6 -17.18952 -17.18952 -17.17591 -17.85119 0.0000 0.0000 -0.0091 ******* * Physical Quantities at step: 4860 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.18918 Hartree a.u. kinetic energy = 7.82565 Hartree a.u. electrostatic energy = -22.96701 Hartree a.u. esr = 0.12011 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.38964 Hartree a.u. n-l pseudopotential energy = 4.54012 Hartree a.u. exchange-correlation energy = -4.19831 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.08 -13.19 -7.47 -6.41 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.658038E+00 0.646286E+00 0.149785E+01 H 0.233817E+00 -0.170429E+01 -0.840082E+00 O -0.363752E+00 -0.409848E+00 0.345632E+00 ATOMIC_VELOCITIES H -0.169273E-02 0.257350E-02 -0.779291E-03 H -0.170038E-02 -0.253280E-03 -0.593720E-03 O 0.213761E-03 -0.146171E-03 0.864978E-04 Forces acting on atoms (au): H 0.361155E-01 -0.571738E-01 -0.804649E-02 H 0.455274E-01 0.134655E-01 0.208685E-01 O -0.514666E-01 0.296813E-01 -0.544001E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 1296.19 1.2539 2 228.85 0.0155 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4860 0.00101 0.0 2821.2 -17.18918 -17.18918 -17.17578 -17.85180 0.0000 0.0000 -0.0090 ******* writing restart file: .//cp_91.save restart file written in 0.785 sec. 4861 0.00100 0.0 2775.2 -17.18886 -17.18886 -17.17567 -17.85240 0.0000 0.0000 -0.0088 ******* 4862 0.00100 0.0 2726.9 -17.18853 -17.18853 -17.17558 -17.85300 0.0000 0.0000 -0.0087 ******* 4863 0.00099 0.0 2676.4 -17.18822 -17.18822 -17.17551 -17.85360 0.0000 0.0000 -0.0086 ******* 4864 0.00098 0.0 2624.0 -17.18791 -17.18791 -17.17545 -17.85420 0.0000 0.0000 -0.0085 ******* 4865 0.00097 0.0 2569.9 -17.18761 -17.18761 -17.17540 -17.85479 0.0000 0.0000 -0.0084 ******* 4866 0.00096 0.0 2514.5 -17.18732 -17.18732 -17.17537 -17.85537 0.0000 0.0000 -0.0083 ******* 4867 0.00095 0.0 2457.9 -17.18703 -17.18703 -17.17536 -17.85595 0.0000 0.0000 -0.0082 ******* 4868 0.00094 0.0 2400.3 -17.18676 -17.18676 -17.17535 -17.85652 0.0000 0.0000 -0.0081 ******* 4869 0.00093 0.0 2342.1 -17.18649 -17.18649 -17.17537 -17.85709 0.0000 0.0000 -0.0080 ******* 4870 0.00092 0.0 2283.5 -17.18623 -17.18623 -17.17539 -17.85765 0.0000 0.0000 -0.0079 ******* 4871 0.00090 0.0 2224.6 -17.18599 -17.18599 -17.17542 -17.85820 0.0000 0.0000 -0.0078 ******* 4872 0.00089 0.0 2165.7 -17.18575 -17.18575 -17.17546 -17.85874 0.0000 0.0000 -0.0077 ******* 4873 0.00088 0.0 2107.1 -17.18552 -17.18552 -17.17551 -17.85928 0.0000 0.0000 -0.0077 ******* 4874 0.00086 0.0 2048.9 -17.18531 -17.18531 -17.17557 -17.85980 0.0000 0.0000 -0.0076 ******* 4875 0.00085 0.0 1991.3 -17.18510 -17.18510 -17.17564 -17.86032 0.0000 0.0000 -0.0075 ******* 4876 0.00083 0.0 1934.5 -17.18491 -17.18491 -17.17572 -17.86083 0.0000 0.0000 -0.0074 ******* 4877 0.00081 0.0 1878.8 -17.18472 -17.18472 -17.17580 -17.86133 0.0000 0.0000 -0.0074 ******* 4878 0.00080 0.0 1824.2 -17.18455 -17.18455 -17.17588 -17.86181 0.0000 0.0000 -0.0073 ******* 4879 0.00078 0.0 1771.0 -17.18438 -17.18438 -17.17597 -17.86229 0.0000 0.0000 -0.0072 ******* 4880 0.00077 0.0 1719.2 -17.18423 -17.18423 -17.17607 -17.86276 0.0000 0.0000 -0.0072 ******* 4881 0.00075 0.0 1669.1 -17.18409 -17.18409 -17.17616 -17.86322 0.0000 0.0000 -0.0071 ******* 4882 0.00073 0.0 1620.7 -17.18396 -17.18396 -17.17626 -17.86367 0.0000 0.0000 -0.0071 ******* 4883 0.00072 0.0 1574.1 -17.18384 -17.18384 -17.17636 -17.86411 0.0000 0.0000 -0.0070 ******* 4884 0.00070 0.0 1529.6 -17.18373 -17.18373 -17.17647 -17.86454 0.0000 0.0000 -0.0070 ******* 4885 0.00068 0.0 1487.1 -17.18363 -17.18363 -17.17657 -17.86496 0.0000 0.0000 -0.0069 ******* 4886 0.00067 0.0 1446.7 -17.18355 -17.18355 -17.17667 -17.86537 0.0000 0.0000 -0.0069 ******* 4887 0.00065 0.0 1408.6 -17.18347 -17.18347 -17.17678 -17.86577 0.0000 0.0000 -0.0069 ******* 4888 0.00064 0.0 1372.8 -17.18340 -17.18340 -17.17688 -17.86616 0.0000 0.0000 -0.0068 ******* 4889 0.00062 0.0 1339.4 -17.18335 -17.18335 -17.17698 -17.86654 0.0000 0.0000 -0.0068 ******* * Physical Quantities at step: 4890 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.18330 Hartree a.u. kinetic energy = 7.83181 Hartree a.u. electrostatic energy = -22.97053 Hartree a.u. esr = 0.12874 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.40289 Hartree a.u. n-l pseudopotential energy = 4.56059 Hartree a.u. exchange-correlation energy = -4.20227 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.14 -13.56 -7.22 -6.44 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.536687E+00 0.833797E+00 0.138314E+01 H 0.132163E+00 -0.170348E+01 -0.869584E+00 O -0.349703E+00 -0.421712E+00 0.354717E+00 ATOMIC_VELOCITIES H -0.845189E-03 0.153459E-02 -0.171055E-02 H -0.425136E-03 0.260429E-03 -0.995503E-04 O 0.800287E-04 -0.113084E-03 0.114034E-03 Forces acting on atoms (au): H 0.367434E-01 -0.413295E-01 0.724681E-02 H 0.379304E-01 0.505087E-02 0.815383E-02 O -0.680698E-01 0.228416E-01 -0.665080E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 604.77 1.0984 2 98.84 0.0114 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4890 0.00061 0.0 1308.4 -17.18330 -17.18330 -17.17709 -17.86691 0.0000 0.0000 -0.0068 ******* writing restart file: .//cp_91.save restart file written in 0.773 sec. 4891 0.00059 0.0 1279.9 -17.18327 -17.18327 -17.17719 -17.86728 0.0000 0.0000 -0.0067 ******* 4892 0.00058 0.0 1253.9 -17.18324 -17.18324 -17.17729 -17.86763 0.0000 0.0000 -0.0067 ******* 4893 0.00057 0.0 1230.4 -17.18323 -17.18323 -17.17738 -17.86798 0.0000 0.0000 -0.0067 ******* 4894 0.00055 0.0 1209.6 -17.18322 -17.18322 -17.17748 -17.86832 0.0000 0.0000 -0.0067 ******* 4895 0.00054 0.0 1191.4 -17.18323 -17.18323 -17.17757 -17.86865 0.0000 0.0000 -0.0066 ******* 4896 0.00053 0.0 1175.8 -17.18324 -17.18324 -17.17766 -17.86898 0.0000 0.0000 -0.0066 ******* 4897 0.00052 0.0 1162.8 -17.18327 -17.18327 -17.17775 -17.86929 0.0000 0.0000 -0.0066 ******* 4898 0.00051 0.0 1152.6 -17.18331 -17.18331 -17.17783 -17.86960 0.0000 0.0000 -0.0066 ******* 4899 0.00050 0.0 1145.0 -17.18335 -17.18335 -17.17791 -17.86991 0.0000 0.0000 -0.0066 ******* 4900 0.00049 0.0 1140.2 -17.18340 -17.18340 -17.17799 -17.87021 0.0000 0.0000 -0.0065 ******* 4901 0.00048 0.0 1138.0 -17.18347 -17.18347 -17.17806 -17.87050 0.0000 0.0000 -0.0065 ******* 4902 0.00047 0.0 1138.5 -17.18354 -17.18354 -17.17813 -17.87079 0.0000 0.0000 -0.0065 ******* 4903 0.00047 0.0 1141.7 -17.18362 -17.18362 -17.17820 -17.87108 0.0000 0.0000 -0.0065 ******* 4904 0.00046 0.0 1147.6 -17.18371 -17.18371 -17.17826 -17.87136 0.0000 0.0000 -0.0064 ******* 4905 0.00046 0.0 1156.2 -17.18382 -17.18382 -17.17833 -17.87164 0.0000 0.0000 -0.0064 ******* 4906 0.00045 0.0 1167.4 -17.18393 -17.18393 -17.17838 -17.87191 0.0000 0.0000 -0.0064 ******* 4907 0.00045 0.0 1181.2 -17.18405 -17.18405 -17.17844 -17.87218 0.0000 0.0000 -0.0064 ******* 4908 0.00045 0.0 1197.7 -17.18418 -17.18418 -17.17849 -17.87245 0.0000 0.0000 -0.0064 ******* 4909 0.00044 0.0 1216.7 -17.18431 -17.18431 -17.17853 -17.87272 0.0000 0.0000 -0.0063 ******* 4910 0.00044 0.0 1238.3 -17.18446 -17.18446 -17.17858 -17.87298 0.0000 0.0000 -0.0063 ******* 4911 0.00044 0.0 1262.4 -17.18461 -17.18461 -17.17862 -17.87325 0.0000 0.0000 -0.0063 ******* 4912 0.00044 0.0 1288.9 -17.18477 -17.18477 -17.17865 -17.87351 0.0000 0.0000 -0.0063 ******* 4913 0.00044 0.0 1317.8 -17.18495 -17.18495 -17.17869 -17.87378 0.0000 0.0000 -0.0062 ******* 4914 0.00044 0.0 1349.0 -17.18512 -17.18512 -17.17872 -17.87404 0.0000 0.0000 -0.0062 ******* 4915 0.00045 0.0 1382.5 -17.18531 -17.18531 -17.17875 -17.87431 0.0000 0.0000 -0.0062 ******* 4916 0.00045 0.0 1418.1 -17.18551 -17.18551 -17.17877 -17.87457 0.0000 0.0000 -0.0061 ******* 4917 0.00045 0.0 1455.8 -17.18571 -17.18571 -17.17880 -17.87484 0.0000 0.0000 -0.0061 ******* 4918 0.00046 0.0 1495.5 -17.18592 -17.18592 -17.17882 -17.87512 0.0000 0.0000 -0.0060 ******* 4919 0.00046 0.0 1537.0 -17.18614 -17.18614 -17.17884 -17.87539 0.0000 0.0000 -0.0060 ******* * Physical Quantities at step: 4920 from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 total energy = -17.18636 Hartree a.u. kinetic energy = 7.85800 Hartree a.u. electrostatic energy = -22.97132 Hartree a.u. esr = 0.13885 Hartree a.u. eself = 29.52173 Hartree a.u. pseudopotential energy = -2.43069 Hartree a.u. n-l pseudopotential energy = 4.57018 Hartree a.u. exchange-correlation energy = -4.21255 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.26 -13.55 -7.35 -6.46 CELL_PARAMETERS 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 0.00000000 0.00000000 0.00000000 10.00000000 System Density [g/cm^3] : 0.2019 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ATOMIC_POSITIONS H 0.524031E+00 0.934138E+00 0.120452E+01 H 0.166394E+00 -0.166306E+01 -0.872408E+00 O -0.351062E+00 -0.430580E+00 0.366147E+00 ATOMIC_VELOCITIES H 0.597705E-03 0.795393E-03 -0.218953E-02 H 0.116916E-02 0.619316E-03 -0.367450E-04 O -0.111310E-03 -0.891247E-04 0.140252E-03 Forces acting on atoms (au): H 0.223454E-01 -0.196234E-01 0.187316E-01 H 0.165124E-01 -0.612117E-03 -0.893971E-03 O -0.515844E-01 0.643699E-02 -0.302034E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 728.75 0.9959 2 122.81 0.0088 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 4920 0.00047 0.0 1580.3 -17.18636 -17.18636 -17.17886 -17.87567 0.0000 0.0000 -0.0060 ******* writing restart file: .//cp_91.save restart file written in 1.503 sec. espresso-5.1/CPV/examples/example02/0000755000175000017500000000000012341373043015345 5ustar mbambaespresso-5.1/CPV/examples/example02/README0000644000175000017500000000012412341373026016223 0ustar mbambaThis example shows how to use cp.x to perform molecular dynamics simulation of H2O. espresso-5.1/CPV/examples/example02/run_example0000755000175000017500000001377412341373026017627 0ustar mbamba#!/bin/sh # run from directory where this script is cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname EXAMPLE_DIR=`pwd` # check whether echo has the -e option if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi $ECHO $ECHO "$EXAMPLE_DIR : starting" $ECHO $ECHO "This example shows how to use cp.x to perform molecular dynamics" $ECHO "simulation of H2O." # set the needed environment variables . ../../../environment_variables # required executables and pseudopotentials BIN_LIST="cp.x" PSEUDO_LIST="O.blyp-mt.UPF H.blyp-vbc.UPF" $ECHO $ECHO " executables directory: $BIN_DIR" $ECHO " pseudo directory: $PSEUDO_DIR" $ECHO " temporary directory: $TMP_DIR" $ECHO " checking that needed directories and files exist...\c" # check for directories for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do if test ! -d $DIR ; then $ECHO $ECHO "ERROR: $DIR not existent or not a directory" $ECHO "Aborting" exit 1 fi done for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results" ; do if test ! -d $DIR ; then mkdir $DIR fi done cd $EXAMPLE_DIR/results # check for executables for FILE in $BIN_LIST ; do if test ! -x $BIN_DIR/$FILE ; then $ECHO $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" $ECHO "Aborting" exit 1 fi done # check for pseudopotentials for FILE in $PSEUDO_LIST ; do if test ! -r $PSEUDO_DIR/$FILE ; then $ECHO $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/null fi if test $? != 0; then $ECHO $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" $ECHO "Aborting" exit 1 fi done $ECHO " done" # how to run executables FPMD_COMMAND="$PARA_PREFIX $BIN_DIR/cp.x $PARA_POSTFIX" $ECHO $ECHO " running cp.x as: $FPMD_COMMAND" $ECHO # clean TMP_DIR $ECHO " cleaning $TMP_DIR...\c" rm -rf $TMP_DIR/cp* $ECHO " done" # molecular dynamics calculation cat > h2o-mol1.in << EOF &control title = ' Water Molecule ', calculation = 'cp', restart_mode = 'from_scratch', ndr = 51, ndw = 51, nstep = 50, iprint = 10, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-9, ekin_conv_thr = 1.d-4, prefix = 'h2o_mol' pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav = 14, celldm(1) = 12.0, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 3, ntyp = 2, nbnd = 4, ecutwfc = 80.0, input_dft = 'BLYP' / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', ortho_eps = 5.d-8, ortho_max = 15, electron_dynamics = 'sd', / &ions ion_dynamics = 'none', ion_radius(1) = 0.8d0, ion_radius(2) = 0.8d0, / &cell cell_dynamics = 'none', press = 0.0d0, / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.00d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (bohr) O 0.0099 0.0099 0.0000 0 0 0 H 1.8325 -0.2243 -0.0001 1 1 1 H -0.2243 1.8325 0.0002 1 1 1 EOF $ECHO " running the calculation with fixed ions...\c" $FPMD_COMMAND < h2o-mol1.in > h2o-mol1.out check_failure $? $ECHO " done" # molecular dynamics calculation cat > h2o-mol2.in << EOF &control title = ' Water Molecule ', calculation = 'cp', restart_mode = 'restart', ndr = 51, ndw = 51, nstep = 50, iprint = 10, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-9, ekin_conv_thr = 1.d-4, prefix = 'h2o_mol' pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav = 14, celldm(1) = 12.0, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 3, ntyp = 2, nbnd = 4, ecutwfc = 80.0, input_dft = 'BLYP' / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', ortho_eps = 5.d-8, ortho_max = 15, electron_dynamics = 'sd', / &ions ion_dynamics = 'none', ion_radius(1) = 0.8d0, ion_radius(2) = 0.8d0, / &cell cell_dynamics = 'none', press = 0.0d0, / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.00d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (bohr) O 0.0099 0.0099 0.0000 0 0 0 H 1.8325 -0.2243 -0.0001 1 1 1 H -0.2243 1.8325 0.0002 1 1 1 EOF $ECHO " running the calculation with fixed ions, restart...\c" $FPMD_COMMAND < h2o-mol2.in > h2o-mol2.out check_failure $? $ECHO " done" cat > h2o-mol3.in << EOF &control title = ' Water Molecule ', calculation = 'cp', restart_mode = 'restart', ndr = 51, ndw = 51, nstep = 50, iprint = 10, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-9, ekin_conv_thr = 1.d-4, prefix = 'h2o_mol' pseudo_dir='$PSEUDO_DIR/', outdir='$TMP_DIR/', / &system ibrav = 14, celldm(1) = 12.0, celldm(2) = 1.0, celldm(3) = 1.0, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 3, ntyp = 2, nbnd = 4, ecutwfc = 80.0, input_dft = 'BLYP' / &electrons emass = 400.d0, emass_cutoff = 2.5d0, orthogonalization = 'ortho', ortho_eps = 5.d-8, ortho_max = 15, electron_dynamics = 'verlet', electron_velocities = 'zero', electron_temperature = 'not_controlled', / &ions ion_dynamics = 'verlet', ion_radius(1) = 0.8d0, ion_radius(2) = 0.8d0, ion_velocities = 'zero', / &cell cell_dynamics = 'none', press = 0.0d0, / ATOMIC_SPECIES O 16.0d0 O.blyp-mt.UPF H 1.00d0 H.blyp-vbc.UPF ATOMIC_POSITIONS (bohr) O 0.0099 0.0099 0.0000 0 0 0 H 1.8325 -0.2243 -0.0001 1 1 1 H -0.2243 1.8325 0.0002 1 1 1 EOF $ECHO " running the calculation with ionic dynamics...\c" $FPMD_COMMAND < h2o-mol3.in > h2o-mol3.out check_failure $? $ECHO " done" $ECHO $ECHO "$EXAMPLE_DIR : done" espresso-5.1/CPV/examples/example02/reference/0000755000175000017500000000000012341373043017303 5ustar mbambaespresso-5.1/CPV/examples/example02/reference/h2o-mol1.out0000644000175000017500000004211412341373026021375 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.1 - Tue Jul 14 08:46:06 CEST 2009 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 8:51:21 14Jul2009 Serial Build Job Title: Water Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /scratch_local/acv0/espresso-serial/pseudo/O.blyp-mt.UPF file type is 20: UPF Type is NC and NONLOCAL. Local component is ..... : 1 Non local components are : 0 Pseudo charge : 6.000 Pseudopotentials Grid : Channels = 2, Mesh = 285 point radius vloc ( vnl - vloc ) 1 0.419328E-04 -0.183794E+02 0.551791E-03 71 0.138862E-02 -0.183768E+02 0.182728E-01 142 0.483426E-01 -0.175071E+02 0.635782E+00 285 0.615936E+02 -0.974127E-01 0.000000E+00 Atomic wavefunction Grid : Channels = 2, Mesh = 285 Channels occupation number : 2.0000 4.0000 point radius wavefunction 1 0.419328E-04 0.602268E-04 0.863639E-08 71 0.138862E-02 0.199444E-02 0.947092E-05 142 0.483426E-01 0.693972E-01 0.114230E-01 285 0.615936E+02 0.000000E+00 0.000000E+00 Warning XC functionals forced to be: BLYP Reading pseudopotential for specie # 2 from file : /scratch_local/acv0/espresso-serial/pseudo/H.blyp-vbc.UPF file type is 20: UPF Type is NC and LOCAL. Local component is ..... : 0 Pseudo charge : 1.000 Pseudopotentials Grid : Channels = 1, Mesh = 243 point radius vloc ( vnl - vloc ) 1 0.335463E-03 -0.647511E+01 60 0.640933E-02 -0.647310E+01 121 0.135335E+00 -0.566341E+01 243 0.603403E+02 -0.165727E-01 Atomic wavefunction Grid : Channels = 1, Mesh = 243 Channels occupation number : 1.0000 point radius wavefunction 1 0.335463E-03 0.554554E-03 60 0.640933E-02 0.105944E-01 121 0.135335E+00 0.215593E+00 243 0.603403E+02 0.000000E+00 Warning XC functionals forced to be: BLYP Main Simulation Parameters (from input) --------------------------------------- Restart Mode = -1 from_scratch Number of MD Steps = 50 Print out every 10 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 2493.41 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 12800 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.50E-07, max = 15 Electron dynamics with steepest descent Electron dynamics : the temperature is not controlled initial random displacement of el. coordinates with amplitude= 0.020000 Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: LEE, YANG, AND PARR Using Generalized Gradient Corrections with Exchange functional: BECKE Correlation functional: PERDEW AND WANG Exchange-correlation = BLYP (1313) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.832500 -0.224300 -0.000100 -0.224300 1.832500 0.000200 Ionic position read from input file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Constant VOLUME Molecular dynamics cell parameters are not allowed to move Potentials Parameters --------------------- Ewald sum over 3*3*3 cells Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 1837, nstw = 459, nsts = 1837 PEs n.st n.stw n.sts n.g n.gw n.gs 1 3673 917 3673 167037 20815 167037 0 3673 917 3673 167037 20815 167037 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nnrx ) = 373248 Number of x-y planes for each processors: nr3l = 72 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nnrx ) = 373248 Number of x-y planes for each processors: nr3sl = 72 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 83519 83519 83519 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 83519 83519 83519 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 10408 10408 10408 Estimated Sizes of the problem ------------------------------ dimension of the problem (byte/pe) : 51721784 System geometry initialization ------------------------------ Scaled positions from standard input O 0.825000E-03 0.825000E-03 0.000000E+00 H 0.152708E+00 -0.186917E-01 -0.833333E-05 H -0.186917E-01 0.152708E+00 0.166667E-04 Position components with 0 are kept fixed ia x y z 1 0 0 0 2 1 1 1 3 1 1 1 Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian Wave Initialization: random initial wave-functions Occupation number from init nbnd = 4 2.00 2.00 2.00 2.00 formf: eself= 18.94976 formf: vps(g=0)= -0.0063239 rhops(g=0)= -0.0034722 formf: sum_g vps(g)= -4.3546661 sum_g rhops(g)= -1.0540044 formf: vps(g=0)= -0.0011896 rhops(g=0)= -0.0005787 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 ESR (real part of Ewald sum) = 0.14127921D+00 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 1 4.84678 0.0 0.0 51.40805 51.40805 51.40805 56.25483 0.0000 0.0000 0.0000 0.0000 2 5.01286 0.0 0.0 41.21670 41.21670 41.21670 46.22956 0.0000 0.0000 0.0000 0.0000 3 4.73858 0.0 0.0 31.44001 31.44001 31.44001 36.17859 0.0000 0.0000 0.0000 0.0000 4 4.22617 0.0 0.0 22.65078 22.65078 22.65078 26.87695 0.0000 0.0000 0.0000 0.0000 5 3.64783 0.0 0.0 15.02912 15.02912 15.02912 18.67696 0.0000 0.0000 0.0000 0.0000 6 3.08554 0.0 0.0 8.55928 8.55928 8.55928 11.64482 0.0000 0.0000 0.0000 0.0000 7 2.57046 0.0 0.0 3.15356 3.15356 3.15356 5.72402 0.0000 0.0000 0.0000 0.0000 8 2.11434 0.0 0.0 -1.30580 -1.30580 -1.30580 0.80854 0.0000 0.0000 0.0000 0.0000 9 1.71310 0.0 0.0 -4.93531 -4.93531 -4.93531 -3.22221 0.0000 0.0000 0.0000 0.0000 10 1.35569 0.0 0.0 -7.82646 -7.82646 -7.82646 -6.47077 0.0000 0.0000 0.0000 0.0000 11 1.04148 0.0 0.0 -10.06156 -10.06156 -10.06156 -9.02009 0.0000 0.0000 0.0000 0.0000 12 0.77990 0.0 0.0 -11.74156 -11.74156 -11.74156 -10.96166 0.0000 0.0000 0.0000 0.0000 13 0.57592 0.0 0.0 -12.98324 -12.98324 -12.98324 -12.40731 0.0000 0.0000 0.0000 0.0000 14 0.42427 0.0 0.0 -13.89695 -13.89695 -13.89695 -13.47268 0.0000 0.0000 0.0000 0.0000 15 0.31419 0.0 0.0 -14.57213 -14.57213 -14.57213 -14.25795 0.0000 0.0000 0.0000 0.0000 16 0.23486 0.0 0.0 -15.07550 -15.07550 -15.07550 -14.84064 0.0000 0.0000 0.0000 0.0000 17 0.17758 0.0 0.0 -15.45498 -15.45498 -15.45498 -15.27740 0.0000 0.0000 0.0000 0.0000 18 0.13597 0.0 0.0 -15.74465 -15.74465 -15.74465 -15.60868 0.0000 0.0000 0.0000 0.0000 19 0.10553 0.0 0.0 -15.96873 -15.96873 -15.96873 -15.86320 0.0000 0.0000 0.0000 0.0000 20 0.08305 0.0 0.0 -16.14448 -16.14448 -16.14448 -16.06144 0.0000 0.0000 0.0000 0.0000 21 0.06631 0.0 0.0 -16.28433 -16.28433 -16.28433 -16.21802 0.0000 0.0000 0.0000 0.0000 22 0.05371 0.0 0.0 -16.39722 -16.39722 -16.39722 -16.34351 0.0000 0.0000 0.0000 0.0000 23 0.04414 0.0 0.0 -16.48968 -16.48968 -16.48968 -16.44554 0.0000 0.0000 0.0000 0.0000 24 0.03679 0.0 0.0 -16.56648 -16.56648 -16.56648 -16.52970 0.0000 0.0000 0.0000 0.0000 25 0.03106 0.0 0.0 -16.63113 -16.63113 -16.63113 -16.60007 0.0000 0.0000 0.0000 0.0000 26 0.02655 0.0 0.0 -16.68623 -16.68623 -16.68623 -16.65969 0.0000 0.0000 0.0000 0.0000 27 0.02294 0.0 0.0 -16.73373 -16.73373 -16.73373 -16.71079 0.0000 0.0000 0.0000 0.0000 28 0.02002 0.0 0.0 -16.77508 -16.77508 -16.77508 -16.75506 0.0000 0.0000 0.0000 0.0000 29 0.01762 0.0 0.0 -16.81141 -16.81141 -16.81141 -16.79379 0.0000 0.0000 0.0000 0.0000 30 0.01563 0.0 0.0 -16.84358 -16.84358 -16.84358 -16.82795 0.0000 0.0000 0.0000 0.0000 31 0.01395 0.0 0.0 -16.87224 -16.87224 -16.87224 -16.85829 0.0000 0.0000 0.0000 0.0000 32 0.01251 0.0 0.0 -16.89793 -16.89793 -16.89793 -16.88541 0.0000 0.0000 0.0000 0.0000 33 0.01128 0.0 0.0 -16.92105 -16.92105 -16.92105 -16.90977 0.0000 0.0000 0.0000 0.0000 34 0.01021 0.0 0.0 -16.94196 -16.94196 -16.94196 -16.93176 0.0000 0.0000 0.0000 0.0000 35 0.00926 0.0 0.0 -16.96093 -16.96093 -16.96093 -16.95166 0.0000 0.0000 0.0000 0.0000 36 0.00843 0.0 0.0 -16.97818 -16.97818 -16.97818 -16.96975 0.0000 0.0000 0.0000 0.0000 37 0.00769 0.0 0.0 -16.99391 -16.99391 -16.99391 -16.98622 0.0000 0.0000 0.0000 0.0000 38 0.00703 0.0 0.0 -17.00828 -17.00828 -17.00828 -17.00125 0.0000 0.0000 0.0000 0.0000 39 0.00644 0.0 0.0 -17.02142 -17.02142 -17.02142 -17.01499 0.0000 0.0000 0.0000 0.0000 40 0.00590 0.0 0.0 -17.03347 -17.03347 -17.03347 -17.02757 0.0000 0.0000 0.0000 0.0000 41 0.00542 0.0 0.0 -17.04453 -17.04453 -17.04453 -17.03911 0.0000 0.0000 0.0000 0.0000 42 0.00498 0.0 0.0 -17.05468 -17.05468 -17.05468 -17.04971 0.0000 0.0000 0.0000 0.0000 43 0.00458 0.0 0.0 -17.06402 -17.06402 -17.06402 -17.05944 0.0000 0.0000 0.0000 0.0000 44 0.00421 0.0 0.0 -17.07261 -17.07261 -17.07261 -17.06840 0.0000 0.0000 0.0000 0.0000 45 0.00388 0.0 0.0 -17.08051 -17.08051 -17.08051 -17.07664 0.0000 0.0000 0.0000 0.0000 46 0.00357 0.0 0.0 -17.08780 -17.08780 -17.08780 -17.08423 0.0000 0.0000 0.0000 0.0000 47 0.00329 0.0 0.0 -17.09451 -17.09451 -17.09451 -17.09122 0.0000 0.0000 0.0000 0.0000 48 0.00304 0.0 0.0 -17.10070 -17.10070 -17.10070 -17.09766 0.0000 0.0000 0.0000 0.0000 49 0.00280 0.0 0.0 -17.10641 -17.10641 -17.10641 -17.10361 0.0000 0.0000 0.0000 0.0000 50 0.00259 0.0 0.0 -17.11168 -17.11168 -17.11168 -17.10910 0.0000 0.0000 0.0000 0.0000 writing restart file: /scratch_local/acv0/tmp//h2o_mol_51.save restart file written in 0.104 sec. Averaged Physical Quantities accomulated this run ekinc : 0.75300 0.75300 (AU) ekin : 17.54193 17.54193 (AU) epot : -29.08017 -29.08017 (AU) total energy : -9.77839 -9.77839 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -9.77839 -9.77839 (AU) econs : -9.77839 -9.77839 (AU) pressure : 158.96982 158.96982 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 1.52s CPU main_loop : 34.08s CPU ( 50 calls, 0.682 s avg) formf : 0.35s CPU rhoofr : 6.43s CPU ( 51 calls, 0.126 s avg) vofrho : 23.70s CPU ( 51 calls, 0.465 s avg) dforce : 4.40s CPU ( 102 calls, 0.043 s avg) calphi : 0.03s CPU ( 51 calls, 0.001 s avg) ortho : 0.16s CPU ( 51 calls, 0.003 s avg) ortho_iter : 0.00s CPU ( 51 calls, 0.000 s avg) rsg : 0.01s CPU ( 51 calls, 0.000 s avg) rhoset : 0.03s CPU ( 51 calls, 0.001 s avg) updatc : 0.03s CPU ( 51 calls, 0.001 s avg) gram : 0.00s CPU calbec : 0.02s CPU ( 51 calls, 0.000 s avg) prefor : 0.00s CPU strucf : 0.01s CPU nlfq : 0.01s CPU ( 6 calls, 0.002 s avg) nlsm1 : 0.02s CPU ( 51 calls, 0.000 s avg) nlsm2 : 0.01s CPU ( 6 calls, 0.002 s avg) fft : 12.34s CPU ( 408 calls, 0.030 s avg) ffts : 1.70s CPU ( 51 calls, 0.033 s avg) fftw : 5.42s CPU ( 306 calls, 0.018 s avg) CP : 35.73s CPU time, 36.84s wall time This run was terminated on: 8:51:58 14Jul2009 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example02/reference/h2o-mol2.out0000644000175000017500000004713212341373026021403 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.1 - Tue Jul 14 08:46:06 CEST 2009 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 8:51:58 14Jul2009 Serial Build Job Title: Water Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /scratch_local/acv0/espresso-serial/pseudo/O.blyp-mt.UPF file type is 20: UPF Type is NC and NONLOCAL. Local component is ..... : 1 Non local components are : 0 Pseudo charge : 6.000 Pseudopotentials Grid : Channels = 2, Mesh = 285 point radius vloc ( vnl - vloc ) 1 0.419328E-04 -0.183794E+02 0.551791E-03 71 0.138862E-02 -0.183768E+02 0.182728E-01 142 0.483426E-01 -0.175071E+02 0.635782E+00 285 0.615936E+02 -0.974127E-01 0.000000E+00 Atomic wavefunction Grid : Channels = 2, Mesh = 285 Channels occupation number : 2.0000 4.0000 point radius wavefunction 1 0.419328E-04 0.602268E-04 0.863639E-08 71 0.138862E-02 0.199444E-02 0.947092E-05 142 0.483426E-01 0.693972E-01 0.114230E-01 285 0.615936E+02 0.000000E+00 0.000000E+00 Warning XC functionals forced to be: BLYP Reading pseudopotential for specie # 2 from file : /scratch_local/acv0/espresso-serial/pseudo/H.blyp-vbc.UPF file type is 20: UPF Type is NC and LOCAL. Local component is ..... : 0 Pseudo charge : 1.000 Pseudopotentials Grid : Channels = 1, Mesh = 243 point radius vloc ( vnl - vloc ) 1 0.335463E-03 -0.647511E+01 60 0.640933E-02 -0.647310E+01 121 0.135335E+00 -0.566341E+01 243 0.603403E+02 -0.165727E-01 Atomic wavefunction Grid : Channels = 1, Mesh = 243 Channels occupation number : 1.0000 point radius wavefunction 1 0.335463E-03 0.554554E-03 60 0.640933E-02 0.105944E-01 121 0.135335E+00 0.215593E+00 243 0.603403E+02 0.000000E+00 Warning XC functionals forced to be: BLYP Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 50 Print out every 10 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 2493.41 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 12800 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.50E-07, max = 15 Electron dynamics with steepest descent Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: LEE, YANG, AND PARR Using Generalized Gradient Corrections with Exchange functional: BECKE Correlation functional: PERDEW AND WANG Exchange-correlation = BLYP (1313) Ions Simulation Parameters -------------------------- Ions are not allowed to move Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.832500 -0.224300 -0.000100 -0.224300 1.832500 0.000200 Ionic position will be re-read from restart file Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Potentials Parameters --------------------- Ewald sum over 3*3*3 cells Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 1837, nstw = 459, nsts = 1837 PEs n.st n.stw n.sts n.g n.gw n.gs 1 3673 917 3673 167037 20815 167037 0 3673 917 3673 167037 20815 167037 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nnrx ) = 373248 Number of x-y planes for each processors: nr3l = 72 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nnrx ) = 373248 Number of x-y planes for each processors: nr3sl = 72 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 83519 83519 83519 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 83519 83519 83519 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 10408 10408 10408 Estimated Sizes of the problem ------------------------------ dimension of the problem (byte/pe) : 51721784 System geometry initialization ------------------------------ Scaled positions from standard input O 0.825000E-03 0.825000E-03 0.000000E+00 H 0.152708E+00 -0.186917E-01 -0.833333E-05 H -0.186917E-01 0.152708E+00 0.166667E-04 Position components with 0 are kept fixed ia x y z 1 0 0 0 2 1 1 1 3 1 1 1 ibrav = 14 cell parameters 12.00000 0.00000 0.00000 0.00000 12.00000 0.00000 0.00000 0.00000 12.00000 Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /scratch_local/acv0/tmp//h2o_mol_51.save restart file read in 0.030 sec. nprint_nfi= -2 nprint_nfi= 50 Occupation number from init nbnd = 4 2.00 2.00 2.00 2.00 MD PARAMETERS READ FROM RESTART FILE ------------------------------------ Cell variables From RESTART file Ions positions From RESTART file formf: eself= 18.94976 formf: vps(g=0)= -0.0063239 rhops(g=0)= -0.0034722 formf: sum_g vps(g)= -4.3546661 sum_g rhops(g)= -1.0540044 formf: vps(g=0)= -0.0011896 rhops(g=0)= -0.0005787 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV ESR (real part of Ewald sum) = 0.14127921D+00 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 51 0.00239 0.0 0.0 -17.11655 -17.11655 -17.11655 -17.11416 0.0000 0.0000 0.0000 0.0000 52 0.00221 0.0 0.0 -17.12105 -17.12105 -17.12105 -17.11884 0.0000 0.0000 0.0000 0.0000 53 0.00204 0.0 0.0 -17.12520 -17.12520 -17.12520 -17.12316 0.0000 0.0000 0.0000 0.0000 54 0.00188 0.0 0.0 -17.12904 -17.12904 -17.12904 -17.12715 0.0000 0.0000 0.0000 0.0000 55 0.00174 0.0 0.0 -17.13259 -17.13259 -17.13259 -17.13085 0.0000 0.0000 0.0000 0.0000 56 0.00161 0.0 0.0 -17.13587 -17.13587 -17.13587 -17.13426 0.0000 0.0000 0.0000 0.0000 57 0.00149 0.0 0.0 -17.13891 -17.13891 -17.13891 -17.13742 0.0000 0.0000 0.0000 0.0000 58 0.00138 0.0 0.0 -17.14172 -17.14172 -17.14172 -17.14034 0.0000 0.0000 0.0000 0.0000 59 0.00128 0.0 0.0 -17.14432 -17.14432 -17.14432 -17.14304 0.0000 0.0000 0.0000 0.0000 60 0.00118 0.0 0.0 -17.14673 -17.14673 -17.14673 -17.14555 0.0000 0.0000 0.0000 0.0000 61 0.00110 0.0 0.0 -17.14896 -17.14896 -17.14896 -17.14787 0.0000 0.0000 0.0000 0.0000 62 0.00102 0.0 0.0 -17.15103 -17.15103 -17.15103 -17.15001 0.0000 0.0000 0.0000 0.0000 63 0.00094 0.0 0.0 -17.15295 -17.15295 -17.15295 -17.15201 0.0000 0.0000 0.0000 0.0000 64 0.00087 0.0 0.0 -17.15473 -17.15473 -17.15473 -17.15385 0.0000 0.0000 0.0000 0.0000 65 0.00081 0.0 0.0 -17.15638 -17.15638 -17.15638 -17.15557 0.0000 0.0000 0.0000 0.0000 66 0.00075 0.0 0.0 -17.15791 -17.15791 -17.15791 -17.15715 0.0000 0.0000 0.0000 0.0000 67 0.00070 0.0 0.0 -17.15933 -17.15933 -17.15933 -17.15863 0.0000 0.0000 0.0000 0.0000 68 0.00065 0.0 0.0 -17.16064 -17.16064 -17.16064 -17.16000 0.0000 0.0000 0.0000 0.0000 69 0.00060 0.0 0.0 -17.16187 -17.16187 -17.16187 -17.16127 0.0000 0.0000 0.0000 0.0000 70 0.00056 0.0 0.0 -17.16300 -17.16300 -17.16300 -17.16245 0.0000 0.0000 0.0000 0.0000 71 0.00052 0.0 0.0 -17.16406 -17.16406 -17.16406 -17.16354 0.0000 0.0000 0.0000 0.0000 72 0.00048 0.0 0.0 -17.16504 -17.16504 -17.16504 -17.16456 0.0000 0.0000 0.0000 0.0000 73 0.00045 0.0 0.0 -17.16595 -17.16595 -17.16595 -17.16550 0.0000 0.0000 0.0000 0.0000 74 0.00042 0.0 0.0 -17.16679 -17.16679 -17.16679 -17.16638 0.0000 0.0000 0.0000 0.0000 75 0.00039 0.0 0.0 -17.16758 -17.16758 -17.16758 -17.16719 0.0000 0.0000 0.0000 0.0000 76 0.00036 0.0 0.0 -17.16831 -17.16831 -17.16831 -17.16795 0.0000 0.0000 0.0000 0.0000 77 0.00033 0.0 0.0 -17.16899 -17.16899 -17.16899 -17.16866 0.0000 0.0000 0.0000 0.0000 78 0.00031 0.0 0.0 -17.16962 -17.16962 -17.16962 -17.16931 0.0000 0.0000 0.0000 0.0000 79 0.00029 0.0 0.0 -17.17021 -17.17021 -17.17021 -17.16992 0.0000 0.0000 0.0000 0.0000 80 0.00027 0.0 0.0 -17.17076 -17.17076 -17.17076 -17.17049 0.0000 0.0000 0.0000 0.0000 81 0.00025 0.0 0.0 -17.17127 -17.17127 -17.17127 -17.17102 0.0000 0.0000 0.0000 0.0000 82 0.00023 0.0 0.0 -17.17175 -17.17175 -17.17175 -17.17151 0.0000 0.0000 0.0000 0.0000 83 0.00022 0.0 0.0 -17.17219 -17.17219 -17.17219 -17.17197 0.0000 0.0000 0.0000 0.0000 84 0.00020 0.0 0.0 -17.17260 -17.17260 -17.17260 -17.17240 0.0000 0.0000 0.0000 0.0000 85 0.00019 0.0 0.0 -17.17299 -17.17299 -17.17299 -17.17280 0.0000 0.0000 0.0000 0.0000 86 0.00018 0.0 0.0 -17.17334 -17.17334 -17.17334 -17.17317 0.0000 0.0000 0.0000 0.0000 87 0.00016 0.0 0.0 -17.17368 -17.17368 -17.17368 -17.17351 0.0000 0.0000 0.0000 0.0000 88 0.00015 0.0 0.0 -17.17399 -17.17399 -17.17399 -17.17383 0.0000 0.0000 0.0000 0.0000 89 0.00014 0.0 0.0 -17.17428 -17.17428 -17.17428 -17.17413 0.0000 0.0000 0.0000 0.0000 90 0.00013 0.0 0.0 -17.17455 -17.17455 -17.17455 -17.17441 0.0000 0.0000 0.0000 0.0000 91 0.00012 0.0 0.0 -17.17480 -17.17480 -17.17480 -17.17468 0.0000 0.0000 0.0000 0.0000 92 0.00012 0.0 0.0 -17.17504 -17.17504 -17.17504 -17.17492 0.0000 0.0000 0.0000 0.0000 93 0.00011 0.0 0.0 -17.17526 -17.17526 -17.17526 -17.17515 0.0000 0.0000 0.0000 0.0000 94 0.00010 0.0 0.0 -17.17546 -17.17546 -17.17546 -17.17536 0.0000 0.0000 0.0000 0.0000 95 0.00009 0.0 0.0 -17.17565 -17.17565 -17.17565 -17.17556 0.0000 0.0000 0.0000 0.0000 96 0.00009 0.0 0.0 -17.17583 -17.17583 -17.17583 -17.17574 0.0000 0.0000 0.0000 0.0000 97 0.00008 0.0 0.0 -17.17600 -17.17600 -17.17600 -17.17592 0.0000 0.0000 0.0000 0.0000 98 0.00008 0.0 0.0 -17.17615 -17.17615 -17.17615 -17.17608 0.0000 0.0000 0.0000 0.0000 99 0.00007 0.0 0.0 -17.17630 -17.17630 -17.17630 -17.17623 0.0000 0.0000 0.0000 0.0000 * Physical Quantities at step: 100 Simulated time t = 0.12094422D-01 ps from rhoofr: total integrated electronic density in g-space = 8.000000 in r-space = 8.000000 MAIN: EKINC (thr) DETOT (thr) MAXFORCE (thr) MAIN: 0.668913D-04 0.1D-03 0.135920D-03 0.1D-08 0.129678D-01 0.1D+11 MAIN: convergence NOT achieved for system relaxation total energy = -17.17643 Hartree a.u. kinetic energy = 12.57497 Hartree a.u. electrostatic energy = -18.18744 Hartree a.u. esr = 0.14128 Hartree a.u. eself = 18.94976 Hartree a.u. pseudopotential energy = -9.32006 Hartree a.u. n-l pseudopotential energy = 1.95546 Hartree a.u. exchange-correlation energy = -4.19938 Hartree a.u. average potential = 0.00000 Hartree a.u. Eigenvalues (eV), kp = 1 , spin = 1 -24.77 -12.77 -9.02 -6.81 Allocated memory (kb) = 44508 CELL_PARAMETERS 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 0.00000000 0.00000000 0.00000000 12.00000000 System Density [g/cm^3] : 0.1167 Center of mass square displacement (a.u.): 0.000000 Total stress (GPa) -0.10845583 0.07794465 -0.04082732 0.07794465 -0.28144187 0.12394384 -0.04082732 0.12394384 -0.41557917 ATOMIC_POSITIONS O 0.990000E-02 0.990000E-02 0.000000E+00 H 0.183250E+01 -0.224300E+00 -0.100000E-03 H -0.224300E+00 0.183250E+01 0.200000E-03 ATOMIC_VELOCITIES O 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 H 0.000000E+00 0.000000E+00 0.000000E+00 Forces acting on atoms (au): O -0.108569E+01 -0.987261E+00 -0.652445E-01 H -0.129678E-01 -0.145733E-02 0.338289E-02 H 0.132304E-02 0.152127E-02 -0.150399E-02 Partial temperatures (for each ionic specie) Species Temp (K) Mean Square Displacement (a.u.) 1 0.00 0.0000 2 0.00 0.0000 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 100 0.00007 0.0 0.0 -17.17643 -17.17643 -17.17643 -17.17637 0.0000 0.0000 0.0000 0.0000 writing restart file: /scratch_local/acv0/tmp//h2o_mol_51.save restart file written in 0.108 sec. Averaged Physical Quantities accomulated this run ekinc : 0.37682 0.00064 (AU) ekin : 15.03080 12.51967 (AU) epot : -30.36322 -31.64627 (AU) total energy : -13.46983 -17.16127 (AU) temperature : 0.00000 0.00000 (K ) enthalpy : -13.46983 -17.16127 (AU) econs : -13.46983 -17.16127 (AU) pressure : 79.29883 -0.37215 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 0.82s CPU main_loop : 34.83s CPU ( 50 calls, 0.697 s avg) formf : 0.35s CPU rhoofr : 7.00s CPU ( 50 calls, 0.140 s avg) vofrho : 22.77s CPU ( 50 calls, 0.455 s avg) dforce : 4.73s CPU ( 100 calls, 0.047 s avg) calphi : 0.04s CPU ( 50 calls, 0.001 s avg) ortho : 0.17s CPU ( 50 calls, 0.003 s avg) ortho_iter : 0.00s CPU ( 50 calls, 0.000 s avg) rsg : 0.00s CPU ( 50 calls, 0.000 s avg) rhoset : 0.04s CPU ( 50 calls, 0.001 s avg) updatc : 0.03s CPU ( 50 calls, 0.001 s avg) calbec : 0.03s CPU ( 51 calls, 0.001 s avg) prefor : 0.00s CPU strucf : 0.00s CPU nlfq : 0.01s CPU ( 5 calls, 0.001 s avg) nlsm1 : 0.03s CPU ( 51 calls, 0.001 s avg) nlsm2 : 0.01s CPU ( 5 calls, 0.001 s avg) fft : 13.11s CPU ( 400 calls, 0.033 s avg) ffts : 1.81s CPU ( 50 calls, 0.036 s avg) fftw : 5.66s CPU ( 300 calls, 0.019 s avg) CP : 35.80s CPU time, 37.31s wall time This run was terminated on: 8:52:36 14Jul2009 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/examples/example02/reference/h2o-mol3.out0000644000175000017500000004372412341373026021407 0ustar mbamba=------------------------------------------------------------------------------= CP: variable-cell Car-Parrinello molecular dynamics using norm-conserving and ultrasoft Vanderbilt pseudopotentials Version: 4.1 - Tue Jul 14 08:46:06 CEST 2009 Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car, Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti, Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others =------------------------------------------------------------------------------= This run was started on: 8:52:36 14Jul2009 Serial Build Job Title: Water Molecule Atomic Pseudopotentials Parameters ---------------------------------- Reading pseudopotential for specie # 1 from file : /scratch_local/acv0/espresso-serial/pseudo/O.blyp-mt.UPF file type is 20: UPF Type is NC and NONLOCAL. Local component is ..... : 1 Non local components are : 0 Pseudo charge : 6.000 Pseudopotentials Grid : Channels = 2, Mesh = 285 point radius vloc ( vnl - vloc ) 1 0.419328E-04 -0.183794E+02 0.551791E-03 71 0.138862E-02 -0.183768E+02 0.182728E-01 142 0.483426E-01 -0.175071E+02 0.635782E+00 285 0.615936E+02 -0.974127E-01 0.000000E+00 Atomic wavefunction Grid : Channels = 2, Mesh = 285 Channels occupation number : 2.0000 4.0000 point radius wavefunction 1 0.419328E-04 0.602268E-04 0.863639E-08 71 0.138862E-02 0.199444E-02 0.947092E-05 142 0.483426E-01 0.693972E-01 0.114230E-01 285 0.615936E+02 0.000000E+00 0.000000E+00 Warning XC functionals forced to be: BLYP Reading pseudopotential for specie # 2 from file : /scratch_local/acv0/espresso-serial/pseudo/H.blyp-vbc.UPF file type is 20: UPF Type is NC and LOCAL. Local component is ..... : 0 Pseudo charge : 1.000 Pseudopotentials Grid : Channels = 1, Mesh = 243 point radius vloc ( vnl - vloc ) 1 0.335463E-03 -0.647511E+01 60 0.640933E-02 -0.647310E+01 121 0.135335E+00 -0.566341E+01 243 0.603403E+02 -0.165727E-01 Atomic wavefunction Grid : Channels = 1, Mesh = 243 Channels occupation number : 1.0000 point radius wavefunction 1 0.335463E-03 0.554554E-03 60 0.640933E-02 0.105944E-01 121 0.135335E+00 0.215593E+00 243 0.603403E+02 0.000000E+00 Warning XC functionals forced to be: BLYP Main Simulation Parameters (from input) --------------------------------------- Restart Mode = 1 restart Number of MD Steps = 50 Print out every 10 MD Steps Reads from unit = 51 Writes to unit = 51 MD Simulation time step = 5.00 Electronic fictitious mass (emass) = 400.00 emass cut-off = 2.50 Simulation Cell Parameters (from input) external pressure = 0.00 [GPa] wmass (calculated) = 2493.41 [AU] ibrav = 14 alat = 12.00000000 a1 = 12.00000000 0.00000000 0.00000000 a2 = 0.00000000 12.00000000 0.00000000 a3 = 0.00000000 0.00000000 12.00000000 b1 = 0.08333333 0.00000000 0.00000000 b2 = 0.00000000 0.08333333 0.00000000 b3 = 0.00000000 0.00000000 0.08333333 omega = 1728.00000000 Energy Cut-offs --------------- Ecutwfc = 80.0 Ry, Ecutrho = 320.0 Ry, Ecuts = 320.0 Ry Gcutwfc = 17.1 , Gcutrho = 34.2 Gcuts = 34.2 NOTA BENE: refg, mmx = 0.050000 12800 Eigenvalues calculated without the kinetic term contribution Orthog. with lagrange multipliers : eps = 0.50E-07, max = 15 Electron dynamics with newton equations Electron dynamics : the temperature is not controlled Electronic states ----------------- Number of Electron = 8, of States = 4 Occupation numbers : 2.00 2.00 2.00 2.00 Exchange and correlations functionals ------------------------------------- Using Local Density Approximation with Exchange functional: SLATER Correlation functional: LEE, YANG, AND PARR Using Generalized Gradient Corrections with Exchange functional: BECKE Correlation functional: PERDEW AND WANG Exchange-correlation = BLYP (1313) Ions Simulation Parameters -------------------------- Ions are allowed to move Ions dynamics with newton equations the temperature is computed for 6 degrees of freedom ion dynamics with fricp = 0.0000 and greasp = 1.0000 Zero initial momentum for ions Ionic position (from input) sorted by specie, and converted to real a.u. coordinates Species 1 atoms = 1 mass = 29166.22 (a.u.), 16.00 (amu) rcmax = 0.80 (a.u.) 0.009900 0.009900 0.000000 Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.80 (a.u.) 1.832500 -0.224300 -0.000100 -0.224300 1.832500 0.000200 Ionic position will be re-read from restart file NOT all atoms are allowed to move indx ..x.. ..y.. ..z.. 1 F F F Ionic temperature is not controlled Cell Dynamics Parameters (from STDIN) ------------------------------------- internal stress tensor calculated Starting cell generated from CELLDM Cell parameters will be re-read from restart file Constant VOLUME Molecular dynamics cell parameters are not allowed to move Potentials Parameters --------------------- Ewald sum over 3*3*3 cells Verbosity: iprsta = 1 Simulation dimensions initialization ------------------------------------ unit vectors of full simulation cell in real space: in reciprocal space (units 2pi/alat): 1 12.0000 0.0000 0.0000 1.0000 0.0000 0.0000 2 0.0000 12.0000 0.0000 0.0000 1.0000 0.0000 3 0.0000 0.0000 12.0000 0.0000 0.0000 1.0000 Stick Mesh ---------- nst = 1837, nstw = 459, nsts = 1837 PEs n.st n.stw n.sts n.g n.gw n.gs 1 3673 917 3673 167037 20815 167037 0 3673 917 3673 167037 20815 167037 Real Mesh --------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nnrx ) = 373248 Number of x-y planes for each processors: nr3l = 72 Smooth Real Mesh ---------------- Global Dimensions Local Dimensions Processor Grid .X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z. 72 72 72 72 72 72 1 1 1 Array leading dimensions ( nr1x, nr2x, nr3x ) = 72 72 72 Local number of cell to store the grid ( nnrx ) = 373248 Number of x-y planes for each processors: nr3sl = 72 Reciprocal Space Mesh --------------------- Large Mesh PE Global(ngmt) Local(ngm) MaxLocal(ngmx) 1 83519 83519 83519 Smooth Mesh PE Global(ngst) Local(ngs) MaxLocal(ngsx) 1 83519 83519 83519 Wave function Mesh PE Global(ngwt) Local(ngw) MaxLocal(ngwx) 1 10408 10408 10408 Estimated Sizes of the problem ------------------------------ dimension of the problem (byte/pe) : 51721784 System geometry initialization ------------------------------ Scaled positions from standard input O 0.825000E-03 0.825000E-03 0.000000E+00 H 0.152708E+00 -0.186917E-01 -0.833333E-05 H -0.186917E-01 0.152708E+00 0.166667E-04 Position components with 0 are kept fixed ia x y z 1 0 0 0 2 1 1 1 3 1 1 1 ibrav = 14 cell parameters 12.00000 0.00000 0.00000 0.00000 12.00000 0.00000 0.00000 0.00000 12.00000 Pseudopotentials initialization ------------------------------- Common initialization Specie: 1 1 indv= 1 ang. mom= 0 dion 0.2253 Specie: 2 dion Short Legend and Physical Units in the Output --------------------------------------------- NFI [int] - step index EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics TEMPH [K] - Temperature of the fictitious cell dynamics TEMP [K] - Ionic temperature ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian) ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V ) ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian reading restart file: /scratch_local/acv0/tmp//h2o_mol_51.save restart file read in 0.030 sec. nprint_nfi= -2 nprint_nfi= 100 Electronic velocities set to zero Occupation number from init nbnd = 4 2.00 2.00 2.00 2.00 MD PARAMETERS READ FROM RESTART FILE ------------------------------------ Cell variables From RESTART file Ions positions From RESTART file Ions Velocities set to ZERO Electronic Velocities set to ZERO formf: eself= 18.94976 formf: vps(g=0)= -0.0063239 rhops(g=0)= -0.0034722 formf: sum_g vps(g)= -4.3546661 sum_g rhops(g)= -1.0540044 formf: vps(g=0)= -0.0011896 rhops(g=0)= -0.0005787 formf: sum_g vps(g)= -2.5239226 sum_g rhops(g)= -0.1756674 Delta V(G=0): 0.009308Ry, 0.253295eV WARNING setting to ZERO ions, electrons and cell velocities without setting to ZERO all velocities could generate meaningles trajectories ESR (real part of Ewald sum) = 0.14127921D+00 nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0 101 0.00002 0.0 0.0 -17.17656 -17.17656 -17.17656 -17.17655 0.0000 0.0000 0.0000 0.0000 102 0.00013 0.0 0.3 -17.17668 -17.17668 -17.17668 -17.17655 0.0000 0.0000 0.0000 0.0000 103 0.00035 0.0 0.7 -17.17691 -17.17691 -17.17690 -17.17655 0.0000 0.0000 0.0000 0.0000 104 0.00064 0.0 1.2 -17.17721 -17.17721 -17.17720 -17.17655 0.0000 0.0000 0.0000 0.0000 105 0.00097 0.0 1.8 -17.17754 -17.17754 -17.17752 -17.17655 0.0000 0.0000 0.0000 0.0000 106 0.00129 0.0 2.3 -17.17787 -17.17787 -17.17784 -17.17656 0.0000 0.0000 0.0000 0.0000 107 0.00155 0.0 2.6 -17.17814 -17.17814 -17.17811 -17.17656 0.0000 0.0000 0.0000 0.0000 108 0.00173 0.0 2.8 -17.17832 -17.17832 -17.17829 -17.17656 0.0000 0.0000 0.0000 0.0000 109 0.00181 0.0 2.7 -17.17839 -17.17839 -17.17836 -17.17656 0.0000 0.0000 0.0000 0.0000 110 0.00176 0.0 2.5 -17.17834 -17.17834 -17.17832 -17.17656 0.0000 0.0000 0.0000 0.0000 111 0.00161 0.0 2.2 -17.17819 -17.17819 -17.17817 -17.17656 0.0000 0.0000 0.0000 0.0000 112 0.00137 0.0 1.8 -17.17794 -17.17794 -17.17792 -17.17655 0.0000 0.0000 0.0000 0.0000 113 0.00108 0.0 1.5 -17.17764 -17.17764 -17.17763 -17.17655 0.0000 0.0000 0.0000 0.0000 114 0.00077 0.0 1.2 -17.17733 -17.17733 -17.17732 -17.17655 0.0000 0.0000 0.0000 0.0000 115 0.00049 0.0 1.0 -17.17704 -17.17704 -17.17703 -17.17654 0.0000 0.0000 0.0000 0.0000 116 0.00027 0.0 0.9 -17.17682 -17.17682 -17.17681 -17.17654 0.0000 0.0000 0.0000 0.0000 117 0.00014 0.0 0.9 -17.17669 -17.17669 -17.17668 -17.17654 0.0000 0.0000 0.0000 0.0000 118 0.00012 0.0 1.1 -17.17667 -17.17667 -17.17666 -17.17654 0.0000 0.0000 0.0000 0.0000 119 0.00020 0.0 1.5 -17.17676 -17.17676 -17.17674 -17.17654 0.0000 0.0000 0.0000 0.0000 120 0.00037 0.0 1.9 -17.17693 -17.17693 -17.17691 -17.17654 0.0000 0.0000 0.0000 0.0000 121 0.00060 0.0 2.4 -17.17717 -17.17717 -17.17715 -17.17654 0.0000 0.0000 0.0000 0.0000 122 0.00087 0.0 3.0 -17.17745 -17.17745 -17.17742 -17.17655 0.0000 0.0000 0.0000 0.0000 123 0.00114 0.0 3.5 -17.17772 -17.17772 -17.17768 -17.17655 0.0000 0.0000 0.0000 0.0000 124 0.00136 0.0 3.9 -17.17795 -17.17795 -17.17791 -17.17655 0.0000 0.0000 0.0000 0.0000 125 0.00152 0.0 4.2 -17.17812 -17.17812 -17.17808 -17.17655 0.0000 0.0000 0.0000 0.0000 126 0.00160 0.0 4.3 -17.17820 -17.17820 -17.17816 -17.17655 0.0000 0.0000 0.0000 0.0000 127 0.00159 0.0 4.1 -17.17819 -17.17819 -17.17814 -17.17655 0.0000 0.0000 0.0000 0.0000 128 0.00149 0.0 3.7 -17.17808 -17.17808 -17.17805 -17.17655 0.0000 0.0000 0.0000 0.0000 129 0.00133 0.0 3.2 -17.17791 -17.17791 -17.17788 -17.17655 0.0000 0.0000 0.0000 0.0000 130 0.00112 0.0 2.5 -17.17769 -17.17769 -17.17767 -17.17655 0.0000 0.0000 0.0000 0.0000 131 0.00089 0.0 1.7 -17.17746 -17.17746 -17.17744 -17.17655 0.0000 0.0000 0.0000 0.0000 132 0.00067 0.0 1.1 -17.17723 -17.17723 -17.17722 -17.17655 0.0000 0.0000 0.0000 0.0000 133 0.00050 0.0 0.6 -17.17705 -17.17705 -17.17705 -17.17655 0.0000 0.0000 0.0000 0.0000 134 0.00038 0.0 0.3 -17.17694 -17.17694 -17.17693 -17.17655 0.0000 0.0000 0.0000 0.0000 135 0.00034 0.0 0.2 -17.17689 -17.17689 -17.17689 -17.17655 0.0000 0.0000 0.0000 0.0000 136 0.00037 0.0 0.4 -17.17693 -17.17693 -17.17693 -17.17655 0.0000 0.0000 0.0000 0.0000 137 0.00047 0.0 0.7 -17.17703 -17.17703 -17.17703 -17.17655 0.0000 0.0000 0.0000 0.0000 138 0.00062 0.0 1.2 -17.17719 -17.17719 -17.17718 -17.17655 0.0000 0.0000 0.0000 0.0000 139 0.00081 0.0 1.7 -17.17738 -17.17738 -17.17736 -17.17655 0.0000 0.0000 0.0000 0.0000 140 0.00099 0.0 2.1 -17.17757 -17.17757 -17.17755 -17.17656 0.0000 0.0000 0.0000 0.0000 141 0.00116 0.0 2.5 -17.17774 -17.17774 -17.17772 -17.17656 0.0000 0.0000 0.0000 0.0000 142 0.00129 0.0 2.7 -17.17787 -17.17787 -17.17785 -17.17656 0.0000 0.0000 0.0000 0.0000 143 0.00137 0.0 2.7 -17.17795 -17.17795 -17.17792 -17.17655 0.0000 0.0000 0.0000 0.0000 144 0.00138 0.0 2.6 -17.17796 -17.17796 -17.17793 -17.17655 0.0000 0.0000 0.0000 0.0000 145 0.00133 0.0 2.3 -17.17791 -17.17791 -17.17789 -17.17655 0.0000 0.0000 0.0000 0.0000 146 0.00124 0.0 2.0 -17.17781 -17.17781 -17.17779 -17.17655 0.0000 0.0000 0.0000 0.0000 147 0.00110 0.0 1.6 -17.17767 -17.17767 -17.17765 -17.17655 0.0000 0.0000 0.0000 0.0000 148 0.00095 0.0 1.2 -17.17751 -17.17751 -17.17750 -17.17654 0.0000 0.0000 0.0000 0.0000 149 0.00081 0.0 0.9 -17.17736 -17.17736 -17.17735 -17.17654 0.0000 0.0000 0.0000 0.0000 150 0.00068 0.0 0.7 -17.17723 -17.17723 -17.17722 -17.17654 0.0000 0.0000 0.0000 0.0000 writing restart file: /scratch_local/acv0/tmp//h2o_mol_51.save restart file written in 0.107 sec. Averaged Physical Quantities accomulated this run ekinc : 0.25152 0.00093 (AU) ekin : 14.21951 12.59694 (AU) epot : -30.81929 -31.73144 (AU) total energy : -14.70572 -17.17750 (AU) temperature : 0.63224 1.89672 (K ) enthalpy : -14.70572 -17.17750 (AU) econs : -14.70572 -17.17748 (AU) pressure : 52.83831 -0.08273 (Gpa) volume : 1728.00000 1728.00000 (AU) initialize : 0.79s CPU main_loop : 34.99s CPU ( 50 calls, 0.700 s avg) formf : 0.32s CPU rhoofr : 7.43s CPU ( 50 calls, 0.149 s avg) vofrho : 22.32s CPU ( 50 calls, 0.446 s avg) dforce : 4.51s CPU ( 100 calls, 0.045 s avg) calphi : 0.04s CPU ( 50 calls, 0.001 s avg) ortho : 0.19s CPU ( 50 calls, 0.004 s avg) ortho_iter : 0.00s CPU ( 50 calls, 0.000 s avg) rsg : 0.00s CPU ( 50 calls, 0.000 s avg) rhoset : 0.05s CPU ( 50 calls, 0.001 s avg) updatc : 0.03s CPU ( 50 calls, 0.001 s avg) calbec : 0.03s CPU ( 51 calls, 0.001 s avg) prefor : 0.01s CPU ( 51 calls, 0.000 s avg) strucf : 0.23s CPU ( 51 calls, 0.004 s avg) nlfq : 0.11s CPU ( 50 calls, 0.002 s avg) nlsm1 : 0.03s CPU ( 51 calls, 0.001 s avg) nlsm2 : 0.11s CPU ( 50 calls, 0.002 s avg) fft : 12.48s CPU ( 400 calls, 0.031 s avg) ffts : 1.96s CPU ( 50 calls, 0.039 s avg) fftw : 5.67s CPU ( 300 calls, 0.019 s avg) CP : 35.94s CPU time, 37.17s wall time This run was terminated on: 8:53:13 14Jul2009 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------= espresso-5.1/CPV/Makefile0000644000175000017500000000036412341373026013376 0ustar mbamba# Makefile for CPV sinclude ../make.sys default: all all: ( cd src ; $(MAKE) all || exit 1 ) clean : ( cd src ; $(MAKE) clean ) doc: (cd Doc ; $(MAKE) all || exit 1 ) doc_clean: (cd Doc ; $(MAKE) clean ) distclean: clean doc_clean espresso-5.1/CPV/Doc/0000755000175000017500000000000012341373101012432 5ustar mbambaespresso-5.1/CPV/Doc/INPUT_CPPP.xml0000644000175000017500000001416512341373101014704 0ustar mbamba ============================================================================= CP Post-Processing code (cppp.x) ============================================================================= The cppp.x code is an utility that can be used to extract data from the CP restart and CP trajectory files. INPUT: ===== the program read the input parameters from the standard input or from any other file specified through the usual "-input" command line flag. The input parameters, in the input file, should be specified in the inputpp namelist follow: &INPUTPP ... cppp_input_parameter ... / 'cp' basename prepended to cp.x output filenames: cp.evp, cp.pos .... 'out' basename of the cppp.x output files 'xsf' a string describing the output format to be performed, allowed values: 'xsf', 'grd' xsf xcrysden format grd GRD gaussian 3D grid format './' directory containing the CP trajectory files (.evp .pos .cel ...) and restart files ( .save ) to be processed .false. This logical flag control the processing of charge density. .TRUE. generate output file containing charge density. The file format is controlled by the "output" parameter .FALSE. do not generate charge density file .false. This logical flag control the processing of forces. .TRUE. extract forces from trajectory files and write them to xcrysden file .FALSE. do not proces forces .false. This logical flag control the processing of atoms trajectory. .TRUE. process CP trajectory files and generate a trajectory file for xcrysden (.axsf) .FALSE. do not process trajectory .false. This logical flag control the generation of a pdb file. .TRUE. generate a pdb file containing positions and cell of the simulated system .FALSE. do not generate pdb file .false. This logical flag control the rotation of the cell .TRUE. rotate the system cell in space in order to have the a lattice parameter laying on the x axis, the b lattice parameter laying on the xy plane .FALSE. do not rotate cell 0 Dimensions of the charge density 3D grid. If ns1, ns2, ns3 are 0 or not specified, the dimensions of the grid in the CP run are assumed; otherwise chargedensity is re-sampled on the GRID specified with ns1,ns2,ns3 1 Number of replicas of atomic positions along cell parameters. If ns1, ns2, ns3 are 1 or not specified, cppp.x do not replicate atomi positions in space. If ns1 ns2 ns3 are > 1 cppp.x replicate the positions along a ns1 times, along b ns2 times and along c ns3 times. the atomic positions used in the simunation. 1 number of MD step to be read to build the trajectory 51 CP restart file number to post process 1 Specify the atomic number of the species in CP trajectory and restart file. atomic_number(1) specify the atomic number of the first specie atomic_number(2) specify the atomic number of the second specie .... 'full' specify the component of the charge density to plot, allowed values: 'full' print the full electronic charge 'spin' print the spin polarization (for LSD calculations) ' ' specify the Kohn-Sham state to plot, example: 'KS_1' .TRUE. specify the file format of the wave function files to be read and plotted espresso-5.1/CPV/Doc/INPUT_CP.txt0000644000175000017500000030534512341373101014466 0ustar mbamba*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: cp.x / CP / Quantum Espresso ------------------------------------------------------------------------ Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in HARTREE ATOMIC UNITS BEWARE: TABS, DOS CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE Comment lines in namelists can be introduced by a "!", exactly as in fortran code. Comments lines in ``cards'' can be introduced by either a "!" or a "#" character in the first position of a line. Do not start any line in ``cards'' with a "/" character. Structure of the input data: =============================================================================== &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / [ &IONS ... / ] [ &CELL ... / ] [ &WANNIER ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 [ CELL_PARAMETERS { bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ] ======================================================================== NAMELIST: &CONTROL +-------------------------------------------------------------------- Variable: calculation Type: CHARACTER Default: 'cp' Description: a string describing the task to be performed: 'cp', 'scf', 'nscf', 'relax', 'vc-relax', 'vc-cp', 'cp-wf' (vc = variable-cell). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: title Type: CHARACTER Default: 'MD Simulation ' Description: reprinted on output. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: verbosity Type: CHARACTER Default: 'low' Description: In order of decreasing verbose output: 'debug' | 'high' | 'medium' | 'low','default' | 'minimal' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: isave Type: INTEGER See: ndr See: ndw Default: 100 Description: Number of steps between successive savings of information needed to restart the run. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: restart_mode Type: CHARACTER Default: 'restart' Description: 'from_scratch' : from scratch 'restart' : from previous interrupted run 'reset_counters' : continue a previous simulation, performs "nstep" new steps, resetting the counter and averages +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nstep Type: INTEGER Description: number of ionic + electronic steps Default: 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: iprint Type: INTEGER Default: 10 Description: Number of steps between successive writings of relevant physical quantities to standard output and to files "fort.3?" or "prefix.???" depending on "prefix" parameter +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tstress Type: LOGICAL Default: .false. Description: Write stress tensor to standard output each "iprint" steps. It is set to .TRUE. automatically if calculation='vc-relax' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tprnfor Type: LOGICAL Default: .false. Description: print forces. Set to .TRUE. when ions are moving. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: dt Type: REAL Default: 1.D0 Description: time step for molecular dynamics, in Hartree atomic units (1 a.u.=2.4189 * 10^-17 s : beware, PW code use Rydberg atomic units, twice that much!!!) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: CHARACTER Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise Description: input, temporary, trajectories and output files are found in this directory. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: saverho Type: LOGICAL Description: This flag controls the saving of charge density in CP codes: If .TRUE. save charge density to restart dir, If .FALSE. do not save charge density. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: prefix Type: CHARACTER Default: 'cp' Description: prepended to input/output filenames: prefix.pos, prefix.vel, etc. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ndr Type: INTEGER Default: 50 Description: Units for input and output restart file. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ndw Type: INTEGER Default: 50 Description: Units for input and output restart file. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tabps Type: LOGICAL Default: .false. Description: .true. to compute the volume and/or the surface of an isolated system for finite pressure/finite surface tension calculations (PRL 94, 145501 (2005); JCP 124, 074103 (2006)). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: max_seconds Type: REAL Default: 1.D+7, or 150 days, i.e. no time limit Description: jobs stops after max_seconds CPU time. Used to prevent a hard kill from the queuing system. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: etot_conv_thr Type: REAL Default: 1.0D-4 Description: convergence threshold on total energy (a.u) for ionic minimization: the convergence criterion is satisfied when the total energy changes less than etot_conv_thr between two consecutive scf steps. See also forc_conv_thr - both criteria must be satisfied +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: forc_conv_thr Type: REAL Default: 1.0D-3 Description: convergence threshold on forces (a.u) for ionic minimization: the convergence criterion is satisfied when all components of all forces are smaller than forc_conv_thr. See also etot_conv_thr - both criteria must be satisfied +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ekin_conv_thr Type: REAL Default: 1.0D-6 Description: convergence criterion for electron minimization: convergence is achieved when "ekin < ekin_conv_thr". See also etot_conv_thr - both criteria must be satisfied. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: disk_io Type: CHARACTER Default: 'default' Description: 'high': CP code will write Kohn-Sham wfc files and additional information in data-file.xml in order to restart with a PW calculation or to use postprocessing tools. If disk_io is not set to 'high', the data file written by CP will not be readable by PW or PostProc. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: memory Type: CHARACTER Default: 'default' Description: 'small': memory-saving tricks are implemented. Currently: - the G-vectors are sorted only locally, not globally - they are not collected and written to file For large systems, the memory and time gain is sizable but the resulting data files are not portable - use it only if you do not need to re-read the data file +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: pseudo_dir Type: CHARACTER Default: value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise Description: directory containing pseudopotential files +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tefield Type: LOGICAL Default: .FALSE. Description: If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &SYSTEM +-------------------------------------------------------------------- Variable: ibrav Type: INTEGER Status: REQUIRED Description: Bravais-lattice index. If ibrav /= 0, specify EITHER [ celldm(1)-celldm(6) ] OR [ A,B,C,cosAB,cosAC,cosBC ] but NOT both. The lattice parameter alat is set to alat = celldm(1) (in a.u.) or alat = A (in Angstrom); see below for the other parameters. For ibrav=0 specify the lattice vectors in CELL_PARAMETER, optionally the lattice parameter alat = celldm(1) (in a.u.) or = A (in Angstrom), or else it is taken from CELL_PARAMETERS ibrav structure celldm(2)-celldm(6) or: b,c,cosab,cosac,cosbc 0 free crystal axis provided in input: see card CELL_PARAMETERS 1 cubic P (sc) v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1) 2 cubic F (fcc) v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0) 3 cubic I (bcc) v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1) 4 Hexagonal and Trigonal P celldm(3)=c/a v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a) 5 Trigonal R, 3fold axis c celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around the z-axis, the primitive cell is a simple rhombohedron: v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz) where c=cos(alpha) is the cosine of the angle alpha between any pair of crystallographic vectors, tx, ty, tz are: tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3) -5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around <111>. Defining a' = a/sqrt(3) : v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u) where u and v are defined as u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty and tx, ty, tz as for case ibrav=5 Note: if you prefer x,y,z as axis in the cubic limit, set u = tz + 2*sqrt(2)*ty, v = tz - sqrt(2)*ty See also the note in flib/latgen.f90 6 Tetragonal P (st) celldm(3)=c/a v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a) 7 Tetragonal I (bct) celldm(3)=c/a v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a) 8 Orthorhombic P celldm(2)=b/a celldm(3)=c/a v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c) 9 Orthorhombic base-centered(bco) celldm(2)=b/a celldm(3)=c/a v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c) -9 as 9, alternate description v1 = (a/2,-b/2,0), v2 = (a/2,-b/2,0), v3 = (0,0,c) 10 Orthorhombic face-centered celldm(2)=b/a celldm(3)=c/a v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2) 11 Orthorhombic body-centered celldm(2)=b/a celldm(3)=c/a v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2) 12 Monoclinic P, unique axis c celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c) where gamma is the angle between axis a and b. -12 Monoclinic P, unique axis b celldm(2)=b/a celldm(3)=c/a, celldm(5)=cos(ac) v1 = (a,0,0), v2 = (0,b,0), v3 = (c*sin(beta),0,c*cos(beta)) where beta is the angle between axis a and c 13 Monoclinic base-centered celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1 = ( a/2, 0, -c/2), v2 = (b*cos(gamma), b*sin(gamma), 0), v3 = ( a/2, 0, c/2), where gamma is the angle between axis a and b 14 Triclinic celldm(2)= b/a, celldm(3)= c/a, celldm(4)= cos(bc), celldm(5)= cos(ac), celldm(6)= cos(ab) v1 = (a, 0, 0), v2 = (b*cos(gamma), b*sin(gamma), 0) v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma), c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma) - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) ) where alpha is the angle between axis b and c beta is the angle between axis a and c gamma is the angle between axis a and b +-------------------------------------------------------------------- ///--- EITHER: +-------------------------------------------------------------------- Variable: celldm(i), i=1,6 Type: REAL See: ibrav Description: Crystallographic constants - see description of ibrav variable. Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both. Only needed celldm (depending on ibrav) must be specified alat = celldm(1) is the lattice parameter "a" (in BOHR) If ibrav=0, only celldm(1) is used if present; cell vectors are read from card CELL_PARAMETERS +-------------------------------------------------------------------- OR: +-------------------------------------------------------------------- Variables: A, B, C, cosAB, cosAC, cosBC Type: REAL Description: Traditional crystallographic constants: a,b,c in ANGSTROM cosAB = cosine of the angle between axis a and b (gamma) cosAC = cosine of the angle between axis a and c (beta) cosBC = cosine of the angle between axis b and c (alpha) The axis are chosen according to the value of ibrav. Specify either these OR celldm but NOT both. Only needed values (depending on ibrav) must be specified The lattice parameter alat = A (in ANGSTROM ) If ibrav = 0, only A is used if present; cell vectors are read from card CELL_PARAMETERS +-------------------------------------------------------------------- \\\--- +-------------------------------------------------------------------- Variable: nat Type: INTEGER Status: REQUIRED Description: number of atoms in the unit cell +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ntyp Type: INTEGER Status: REQUIRED Description: number of types of atoms in the unit cell +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nbnd Type: INTEGER Default: for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more) Description: number of electronic states (bands) to be calculated. Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tot_charge Type: REAL Default: 0.0 Description: total charge of the system. Useful for simulations with charged cells. By default the unit cell is assumed to be neutral (tot_charge=0). tot_charge=+1 means one electron missing from the system, tot_charge=-1 means one additional electron, and so on. In a periodic calculation a compensating jellium background is inserted to remove divergences if the cell is not neutral. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tot_magnetization Type: REAL Default: -1 [unspecified] Description: total majority spin charge - minority spin charge. Used to impose a specific total electronic magnetization. If unspecified, the tot_magnetization variable is ignored and the electronic magnetization is determined by the occupation numbers (see card OCCUPATIONS) read from input. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutwfc Type: REAL Status: REQUIRED Description: kinetic energy cutoff (Ry) for wavefunctions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutrho Type: REAL Default: 4 * ecutwfc Description: kinetic energy cutoff (Ry) for charge density and potential For norm-conserving pseudopotential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on forces and stress. If there are ultrasoft PP, a larger value than the default is often desirable (ecutrho = 8 to 12 times ecutwfc, typically). PAW datasets can often be used at 4*ecutwfc, but it depends on the shape of augmentation charge: testing is mandatory. The use of gradient-corrected functional, especially in cells with vacuum, or for pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately converged. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1, nr2, nr3 Type: INTEGER See: ecutrho Description: three-dimensional FFT mesh (hard grid) for charge density (and scf potential). If not specified the grid is calculated based on the cutoff for charge density. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1s, nr2s, nr3s Type: INTEGER Description: three-dimensional mesh for wavefunction FFT and for the smooth part of charge density ( smooth grid ). Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1b, nr2b, nr3b Type: INTEGER Description: dimensions of the "box" grid for Ultrasoft pseudopotentials must be specified if Ultrasoft PP are present +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: occupations Type: CHARACTER Description: a string describing the occupation of the electronic states. In the case of conjugate gradient style of minimization of the electronic states, if occupations is set to 'ensemble', this allows ensemble DFT calculations for metallic systems +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: degauss Type: REAL Default: 0.D0 Ry Description: parameter for the smearing function, only used for ensemble DFT calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: smearing Type: CHARACTER Description: a string describing the kind of occupations for electronic states in the case of ensemble DFT (occupations == 'ensemble' ); now only Fermi-Dirac ('fd') case is implemented +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nspin Type: INTEGER Default: 1 Description: nspin = 1 : non-polarized calculation (default) nspin = 2 : spin-polarized calculation, LSDA (magnetization along z axis) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecfixed Type: REAL Default: 0.0 See: q2sigma +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: qcutz Type: REAL Default: 0.0 See: q2sigma +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: q2sigma Type: REAL Default: 0.1 Description: ecfixed, qcutz, q2sigma: parameters for modified functional to be used in variable-cell molecular dynamics (or in stress calculation). "ecfixed" is the value (in Rydberg) of the constant-cutoff; "qcutz" and "q2sigma" are the height and the width (in Rydberg) of the energy step for reciprocal vectors whose square modulus is greater than "ecfixed". In the kinetic energy, G^2 is replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) ) See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: input_dft Type: CHARACTER Default: read from pseudopotential files Description: Exchange-correlation functional: eg 'PBE', 'BLYP' etc See Modules/functionals.f90 for allowed values. Overrides the value read from pseudopotential files. Use with care and if you know what you are doing! +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lda_plus_u Type: LOGICAL Default: .FALSE. Description: lda_plus_u = .TRUE. enables calculation with LDA+U ("rotationally invariant"). See also Hubbard_U. Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991); Anisimov et al., PRB 48, 16929 (1993); Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994); Cococcioni and de Gironcoli, PRB 71, 035105 (2005). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_U(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Status: LDA+U works only for a few selected elements. Modify CPV/ldaU.f90 if you plan to use LDA+U with an element that is not configured there. Description: Hubbard_U(i): parameter U (in eV) for LDA+U calculations. Currently only the simpler, one-parameter LDA+U is implemented (no "alpha" or "J" terms) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: vdw_corr Type: CHARACTER Default: 'none' Description: Type of Van der Waals correction. Allowed values: 'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d': semiempirical Grimme's DFT-D2. Optional variables: "london_s6", "london_rcut" S. Grimme, J. Comp. Chem. 27, 1787 (2006), V. Barone et al., J. Comp. Chem. 30, 934 (2009). 'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler': Tkatchenko-Scheffler dispersion corrections with first-principle derived C6 coefficients Optional variables: "ts_vdw_econv_thr", "ts_vdw_isolated" See A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009) 'XDM', 'xdm': Exchange-hole dipole-moment model. Optional variables: "xdm_a1", "xdm_a2" (implemented in PW only) A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007) A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 136, 174109 (2012) Note that non-local functionals (eg vdw-DF) are NOT specified here but in "input_dft" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london_s6 Type: REAL Default: 0.75 Description: global scaling parameter for DFT-D. Default is good for PBE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london_rcut Type: REAL Default: 200 Description: cutoff radius (a.u.) for dispersion interactions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ts_vdw Type: LOGICAL Default: .FALSE. Description: OBSOLESCENT, same as vdw_corr='TS' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ts_vdw_econv_thr Type: REAL Default: 1.D-6 Description: Optional: controls the convergence of the vdW energy (and forces). The default value is a safe choice, likely too safe, but you do not gain much in increasing it +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ts_vdw_isolated Type: LOGICAL Default: .FALSE. Description: Optional: set it to .TRUE. when computing the Tkatchenko-Scheffler vdW energy for an isolated (non-periodic) system. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: assume_isolated Type: CHARACTER Default: 'none' Description: Used to perform calculation assuming the system to be isolated (a molecule of a clustr in a 3D supercell). Currently available choices: 'none' (default): regular periodic calculation w/o any correction. 'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the total energy is computed. Theory: G.Makov, and M.C.Payne, "Periodic boundary conditions in ab initio calculations" , Phys.Rev.B 51, 4014 (1995) +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &ELECTRONS +-------------------------------------------------------------------- Variable: electron_maxstep Type: INTEGER Default: 100 Description: maximum number of iterations in a scf step +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: electron_dynamics Type: CHARACTER Default: 'none' Description: set how electrons should be moved 'none' : electronic degrees of freedom (d.o.f.) are kept fixed 'sd' : steepest descent algorithm is used to minimize electronic d.o.f. 'damp' : damped dynamics is used to propagate electronic d.o.f. 'verlet' : standard Verlet algorithm is used to propagate electronic d.o.f. 'cg' : conjugate gradient is used to converge the wavefunction at each ionic step. 'cg' can be used interchangeably with 'verlet' for a couple of ionic steps in order to "cool down" the electrons and return them back to the Born-Oppenheimer surface. Then 'verlet' can be restarted again. This procedure is useful when electronic adiabaticity in CP is lost yet the ionic velocities need to be preserved. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr Type: REAL Default: 1.D-6 Description: Convergence threshold for selfconsistency: estimated energy error < conv_thr +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: niter_cg_restart Type: INTEGER Default: 20 Description: frequency in iterations for which the conjugate-gradient algorithm for electronic relaxation is restarted +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: efield Type: REAL Default: 0.D0 Description: Amplitude of the finite electric field (in a.u.; 1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: epol Type: INTEGER Default: 3 Description: direction of the finite electric field (only if tefield == .TRUE.) In the case of a PARALLEL calculation only the case epol==3 is implemented +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: emass Type: REAL Default: 400.D0 Description: effective electron mass in the CP Lagrangian, in atomic units ( 1 a.u. of mass = 1/1822.9 a.m.u. = 9.10939 * 10^-31 kg ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: emass_cutoff Type: REAL Default: 2.5D0 Description: mass cut-off (in Rydberg) for the Fourier acceleration effective mass is rescaled for "G" vector components with kinetic energy above "emass_cutoff" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: orthogonalization Type: CHARACTER Default: 'ortho' Description: selects the orthonormalization method for electronic wave functions 'ortho' : use iterative algorithm - if it doesn't converge, reduce the timestep, or use options ortho_max and ortho_eps, or use Gram-Schmidt instead just to start the simulation 'Gram-Schmidt' : use Gram-Schmidt algorithm - to be used ONLY in the first few steps. YIELDS INCORRECT ENERGIES AND EIGENVALUES. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ortho_eps Type: REAL Default: 1.D-8 Description: tolerance for iterative orthonormalization meaningful only if orthogonalization = 'ortho' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ortho_max Type: INTEGER Default: 20 Description: maximum number of iterations for orthonormalization meaningful only if orthogonalization = 'ortho' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ortho_para Type: INTEGER Default: 0 Status: OBSOLETE: use command-line option " -nd XX" instead +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: electron_damping Type: REAL Default: 0.1D0 Description: damping frequency times delta t, optimal values could be calculated with the formula : SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) ) where E1, E2, E3 are successive values of the DFT total energy in a steepest descent simulations. meaningful only if " electron_dynamics = 'damp' " +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: electron_velocities Type: CHARACTER Description: 'zero' : restart setting electronic velocities to zero 'default' : restart using electronic velocities of the previous run +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: electron_temperature Type: CHARACTER Default: 'not_controlled' Description: 'nose' : control electronic temperature using Nose thermostat. See also "fnosee" and "ekincw". 'rescaling' : control electronic temperature via velocities rescaling. 'not_controlled' : electronic temperature is not controlled. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ekincw Type: REAL Default: 0.001D0 Description: value of the average kinetic energy (in atomic units) forced by the temperature control meaningful only with " electron_temperature /= 'not_controlled' " +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fnosee Type: REAL Default: 1.D0 Description: oscillation frequency of the nose thermostat (in terahertz) meaningful only with " electron_temperature = 'nose' " +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: startingwfc Type: CHARACTER Default: 'random' Description: 'atomic': start from superposition of atomic orbitals (not yet implemented) 'random': start from random wfcs. See "ampre". +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tcg Type: LOGICAL Default: .FALSE. Description: if .TRUE. perform a conjugate gradient minimization of the electronic states for every ionic step. It requires Gram-Schmidt orthogonalization of the electronic states. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: maxiter Type: INTEGER Default: 100 Description: maximum number of conjugate gradient iterations for conjugate gradient minimizations of electronic states +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: passop Type: REAL Default: 0.3D0 Description: small step used in the conjugate gradient minimization of the electronic states. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: n_inner Type: INTEGER Default: 2 Description: number of internal cycles for every conjugate gradient iteration only for ensemble DFT +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ninter_cold_restart Type: INTEGER Default: 1 Description: frequency in iterations at which a full inner cycle, only for cold smearing, is performed +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lambda_cold Type: REAL Default: 0.03D0 Description: step for inner cycle with cold smearing, used when a not full cycle is performed +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: grease Type: REAL Default: 1.D0 Description: a number <= 1, very close to 1: the damping in electronic damped dynamics is multiplied at each time step by "grease" (avoids overdamping close to convergence: Obsolete ?) grease = 1 : normal damped dynamics +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ampre Type: REAL Default: 0.D0 Description: amplitude of the randomization ( allowed values: 0.0 - 1.0 ) meaningful only if " startingwfc = 'random' " +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &IONS INPUT THIS NAMELIST ONLY IF CALCULATION = 'CP', 'RELAX', 'VC-RELAX', 'VC_CP' +-------------------------------------------------------------------- Variable: ion_dynamics Type: CHARACTER Description: Specify the type of ionic dynamics. For constrained dynamics or constrained optimisations add the CONSTRAINTS card (when the card is present the SHAKE algorithm is automatically used). 'none' : ions are kept fixed 'sd' : steepest descent algorithm is used to minimize ionic configuration 'cg' : conjugate gradient algorithm is used to minimize ionic configuration 'damp' : damped dynamics is used to propagate ions 'verlet' : standard Verlet algorithm is used to propagate ions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ion_positions Type: CHARACTER Default: 'default' Description: 'default ' : if restarting, use atomic positions read from the restart file; in all other cases, use atomic positions from standard input. 'from_input' : restart the simulation with atomic positions read from standard input, even if restarting. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ion_velocities Type: CHARACTER Default: 'default' See: tempw Description: initial ionic velocities 'default' : restart the simulation with atomic velocities read from the restart file 'change_step' : restart the simulation with atomic velocities read from the restart file, with rescaling due to the timestep change, specify the old step via tolp as in tolp = 'old_time_step_value' in au 'random' : start the simulation with random atomic velocities 'from_input' : restart the simulation with atomic velocities read from standard input - see card 'ATOMIC_VELOCITIES' BEWARE: works only if restart_mode='from_scratch', tested only with electrons_dynamics='cg' 'zero' : restart the simulation with atomic velocities set to zero +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ion_nstepe Type: INTEGER Default: 1 Description: number of electronic steps per ionic step. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: remove_rigid_rot Type: LOGICAL Default: .FALSE. Description: This keyword is useful when simulating the dynamics and/or the thermodynamics of an isolated system. If set to true the total torque of the internal forces is set to zero by adding new forces that compensate the spurious interaction with the periodic images. This allows for the use of smaller supercells. BEWARE: since the potential energy is no longer consistent with the forces (it still contains the spurious interaction with the repeated images), the total energy is not conserved anymore. However the dynamical and thermodynamical properties should be in closer agreement with those of an isolated system. Also the final energy of a structural relaxation will be higher, but the relaxation itself should be faster. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ion_temperature Type: CHARACTER Default: 'not_controlled' Description: 'nose' : control ionic temperature using Nose-Hoover thermostat see parameters "fnosep", "tempw", "nhpcl", "ndega", "nhptyp" 'rescaling' : control ionic temperature via velocities rescaling. see parameter "tolp" 'not_controlled' : ionic temperature is not controlled +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tempw Type: REAL Default: 300.D0 Description: value of the ionic temperature (in Kelvin) forced by the temperature control. meaningful only with " ion_temperature /= 'not_controlled' " or when the initial velocities are set to 'random' "ndega" controls number of degrees of freedom used in temperature calculation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fnosep Type: REAL Default: 1.D0 Description: oscillation frequency of the nose thermostat (in terahertz) [note that 3 terahertz = 100 cm^-1] meaningful only with " ion_temperature = 'nose' " for Nose-Hoover chain one can set frequencies of all thermostats ( fnosep = X Y Z etc. ) If only first is set, the defaults for the others will be same. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tolp Type: REAL Default: 100.D0 Description: tolerance (in Kelvin) of the rescaling. When ionic temperature differs from "tempw" more than "tolp" apply rescaling. meaningful only with " ion_temperature = 'rescaling' " and with ion_velocities='change_step', where it specifies the old timestep +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nhpcl Type: INTEGER Default: 1 Description: number of thermostats in the Nose-Hoover chain currently maximum allowed is 4 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nhptyp Type: INTEGER Default: 0 Description: type of the "massive" Nose-Hoover chain thermostat nhptyp=1 uses a NH chain per each atomic type nhptyp=2 uses a NH chain per atom, this one is useful for extremely rapid equipartitioning (equilibration is a different beast) nhptyp=3 together with nhgrp allows fine grained thermostat control NOTE: if using more than 1 thermostat per system there will be a common thermostat added on top of them all, to disable this common thermostat specify nhptyp=-X instead of nhptyp=X +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nhgrp(i), i=1,ntyp Type: INTEGER Default: 0 Description: specifies which thermostat group to use for given atomic type when >0 assigns all the atoms in this type to thermostat labeled nhgrp(i), when =0 each atom in the type gets its own thermostat. Finally, when <0, then this atomic type will have temperature "not controlled". Example: HCOOLi, with types H (1), C(2), O(3), Li(4); setting nhgrp={2 2 0 -1} will add a common thermostat for both H & C, one thermostat per each O (2 in total), and a non-updated thermostat for Li which will effectively make temperature for Li "not controlled" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fnhscl(i), i=1,ntyp Type: REAL Default: (Nat_{total}-1)/Nat_{total} Description: these are the scaling factors to be used together with nhptyp=3 and nhgrp(i) in order to take care of possible reduction in the degrees of freedom due to constraints. Suppose that with the previous example HCOOLi, C-H bond is constrained. Then, these 2 atoms will have 5 degrees of freedom in total instead of 6, and one can set fnhscl={5/6 5/6 1. 1.}. This way the target kinetic energy for H&C will become 6(kT/2)*5/6 = 5(kT/2). This option is to be used for simulations with many constraints, such as rigid water with something else in there +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ndega Type: INTEGER Default: 0 Description: number of degrees of freedom used for temperature calculation ndega <= 0 sets the number of degrees of freedom to [3*nat-abs(ndega)], ndega > 0 is used as the target number +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tranp(i), i=1,ntyp Type: LOGICAL See: amprp Default: .false. Description: If .TRUE. randomize ionic positions for the atomic type corresponding to the index. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: amprp(i), i=1,ntyp Type: REAL See: amprp Default: 0.D0 Description: amplitude of the randomization for the atomic type corresponding to the index i ( allowed values: 0.0 - 1.0 ). meaningful only if " tranp(i) = .TRUE.". +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: greasp Type: REAL Default: 1.D0 Description: same as "grease", for ionic damped dynamics. +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &CELL INPUT THIS NAMELIST ONLY IF CALCULATION = 'VC-RELAX', 'VC-CP' +-------------------------------------------------------------------- Variable: cell_parameters Type: CHARACTER Description: 'default' : restart the simulation with cell parameters read from the restart file or "celldm" if "restart = 'from_scratch'" 'from_input' : restart the simulation with cell parameters from standard input. ( see the card 'CELL_PARAMETERS' ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_dynamics Type: CHARACTER Default: 'none' Description: set how cell should be moved 'none' : cell is kept fixed 'sd' : steepest descent algorithm is used to optimise the cell 'damp-pr' : damped dynamics is used to optimise the cell ( Parrinello-Rahman method ). 'pr' : standard Verlet algorithm is used to propagate the cell ( Parrinello-Rahman method ). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_velocities Type: CHARACTER Description: 'zero' : restart setting cell velocity to zero 'default' : restart using cell velocity of the previous run +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_damping Type: REAL Default: 0.1D0 Description: damping frequency times delta t, optimal values could be calculated with the formula : SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) ) where E1, E2, E3 are successive values of the DFT total energy in a steepest descent simulations. meaningful only if " cell_dynamics = 'damp' " +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: press Type: REAL Default: 0.D0 Description: Target pressure [KBar] in a variable-cell md or relaxation run. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wmass Type: REAL Default: 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD Description: Fictitious cell mass [amu] for variable-cell simulations (both 'vc-md' and 'vc-relax') +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_factor Type: REAL Default: 1.2D0 Description: Used in the construction of the pseudopotential tables. It should exceed the maximum linear contraction of the cell during a simulation. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_temperature Type: CHARACTER Default: 'not_controlled' Description: 'nose' : control cell temperature using Nose thermostat see parameters "fnoseh" and "temph". 'rescaling' : control cell temperature via velocities rescaling. 'not_controlled' : cell temperature is not controlled. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: temph Type: REAL Default: 0.D0 Description: value of the cell temperature (in ???) forced by the temperature control. meaningful only with " cell_temperature /= 'not_controlled' " +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fnoseh Type: REAL Default: 1.D0 Description: oscillation frequency of the nose thermostat (in terahertz) meaningful only with " cell_temperature = 'nose' " +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: greash Type: REAL Default: 1.D0 Description: same as "grease", for cell damped dynamics +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_dofree Type: CHARACTER Default: 'all' Description: Select which of the cell parameters should be moved: all = all axis and angles are moved x = only the x component of axis 1 (v1_x) is moved y = only the y component of axis 2 (v2_y) is moved z = only the z component of axis 3 (v3_z) is moved xy = only v1_x and v2_y are moved xz = only v1_x and v3_z are moved yz = only v2_y and v3_z are moved xyz = only v1_x, v2_y, v3_z are moved shape = all axis and angles, keeping the volume fixed 2Dxy = only x and y components are allowed to change 2Dshape = as above, keeping the area in xy plane fixed +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &PRESS_AI INPUT THIS NAMELIST ONLY WHEN TABPS = .TRUE. +-------------------------------------------------------------------- Variable: abivol Type: LOGICAL Default: .false. Description: .true. for finite pressure calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: abivol Type: LOGICAL Default: .false. Description: .true. for finite surface tension calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: P_ext Type: REAL Default: 0.D0 Description: external pressure in GPa +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: pvar Type: LOGICAL Default: .false. Description: .true. for variable pressure calculations pressure changes linearly with time: Delta_P = (P_fin - P_in)/nstep +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: P_in Type: REAL Default: 0.D0 Description: only if pvar = .true. initial value of the external pressure (GPa) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: P_fin Type: REAL Default: 0.D0 Description: only if pvar = .true. final value of the external pressure (GPa) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Surf_t Type: REAL Default: 0.D0 Description: Surface tension (in a.u.; typical values 1.d-4 - 1.d-3) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: rho_thr Type: REAL Default: 0.D0 Description: threshold parameter which defines the electronic charge density isosurface to compute the 'quantum' volume of the system (typical values: 1.d-4 - 1.d-3) (corresponds to alpha in PRL 94 145501 (2005)) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: dthr Type: REAL Default: 0.D0 Description: thikness of the external skin of the electronic charge density used to compute the 'quantum' surface (typical values: 1.d-4 - 1.d-3; 50% to 100% of rho_thr) (corresponds to Delta in PRL 94 145501 (2005)) +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &WANNIER ONLY IF CALCULATION = 'CP-WF' Output files used by Wannier Function options are the following fort.21: Used only when calwf=5, contains the full list of g-vecs. fort.22: Used Only when calwf=5, contains the coeffs. corresponding to the g-vectors in fort.21 fort.24: Used with calwf=3,contains the average spread fort.25: Used with calwf=3, contains the individual Wannier Function Spread of each state fort.26: Used with calwf=3, contains the wannier centers along a trajectory. fort.27: Used with calwf=3 and 4, contains some general runtime information from ddyn, the subroutine that actually does the localization of the orbitals. fort.28: Used only if efield=.TRUE. , contains the polarization contribution to the total energy. Also, The center of mass is fixed during the Molecular Dynamics. BEWARE : THIS WILL ONLY WORK IF THE NUMBER OF PROCESSORS IS LESS THAN OR EQUAL TO THE NUMBER OF STATES. Nota Bene 1: For calwf = 5, wffort is not used. The Wannier/Wave(function) coefficients are written to unit 22 and the corresponding g-vectors (basis vectors) are written to unit 21. This option gives the g-vecs and their coeffs. in reciprocal space, and the coeffs. are complex. You will have to convert them to real space if you want to plot them for visualization. calwf=1 gives the orbital densities in real space, and this is usually good enough for visualization. +-------------------------------------------------------------------- Variable: wf_efield Type: LOGICAL Default: .false. Description: If dynamics will be done in the presence of a field +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wf_switch Type: LOGICAL Default: .false. Description: Whether to turn on the field adiabatically (adiabatic switch) if true, then nbeg is set to 0. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: sw_len Type: INTEGER Default: 1 Description: No. of iterations over which the field will be turned on to its final value. Starting value is 0.0 If sw_len < 0, then it is set to 1. If you want to just optimize structures on the presence of a field, then you may set this to 1 and run a regular geometry optimization. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: efx0, efy0, efz0 Type: REAL See: 0.D0 Description: Initial values of the field along x, y, and z directions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: efx1, efy1, efz1 Type: REAL See: 0.D0 Description: Final values of the field along x, y, and z directions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfsd Type: INTEGER Default: 1 Description: Localization algorithm for Wannier function calculation: wfsd=1 Damped Dynamics wfsd=2 Steepest-Descent / Conjugate-Gradient wfsd=3 Jocobi Rotation Remember, this is consistent with all the calwf options as well as the tolw (see below). Not a good idea to Wannier dynamics with this if you are using restart='from_scratch' option, since the spreads converge fast in the beginning and ortho goes bananas. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfdt Type: REAL Default: 5.D0 Description: The minimum step size to take in the SD/CG direction +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: maxwfdt Type: REAL Default: 0.3D0 Description: The maximum step size to take in the SD/CG direction The code calculates an optimum step size, but that may be either too small (takes forever to converge) or too large (code goes crazy) . This option keeps the step size between wfdt and maxwfdt. In my experience 0.1 and 0.5 work quite well. (but don't blame me if it doesn't work for you) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nit Type: INTEGER Default: 10 Description: Number of iterations to do for Wannier convergence. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nsd Type: INTEGER Default: 10 Description: Out of a total of NIT iterations, NSD will be Steepest-Descent and ( nit - nsd ) will be Conjugate-Gradient. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wf_q Type: REAL Default: 1500.D0 Description: Fictitious mass of the A matrix used for obtaining maximally localized Wannier functions. The unitary transformation matrix U is written as exp(A) where A is a anti-hermitian matrix. The Damped-Dynamics is performed in terms of the A matrix, and then U is computed from A. Usually a value between 1500 and 2500 works fine, but should be tested. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wf_friction Type: REAL Default: 0.3D0 Description: Damping coefficient for Damped-Dynamics. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nsteps Type: INTEGER Default: 20 Description: Number of Damped-Dynamics steps to be performed per CP iteration. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tolw Type: REAL Default: 1.D-8 Description: Convergence criterion for localization. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: adapt Type: LOGICAL Default: .true. Description: Whether to adapt the damping parameter dynamically. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: calwf Type: INTEGER Default: 3 Description: Wannier Function Options, can be 1,2,3,4,5 1. Output the Wannier function density, nwf and wffort are used for this option. see below. 2. Output the Overlap matrix O_i,j=. O is written to unit 38. For details on how O is constructed, see below. 3. Perform nsteps of Wannier dynamics per CP iteration, the orbitals are now Wannier Functions, not Kohn-Sham orbitals. This is a Unitary transformation of the occupied subspace and does not leave the CP Lagrangian invariant. Expectation values remain the same. So you will **NOT** have a constant of motion during the run. Don't freak out, its normal. 4. This option starts for the KS states and does 1 CP iteration and nsteps of Damped-Dynamics to generate maximally localized wannier functions. Its useful when you have the converged KS groundstate and want to get to the converged Wannier function groundstate in 1 CP Iteration. 5. This option is similar to calwf 1, except that the output is the Wannier function/wavefunction, and not the orbital density. See nwf below. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nwf Type: INTEGER Default: 0 Description: This option is used with calwf 1 and calwf 5. with calwf=1, it tells the code how many Orbital densities are to be output. With calwf=5, set this to 1(i.e calwf=5 only writes one state during one run. so if you want 10 states, you have to run the code 10 times). With calwf=1, you can print many orbital densities in a single run. See also the PLOT_WANNIER card for specifying the states to be printed. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wffort Type: INTEGER Default: 40 Description: This tells the code where to dump the orbital densities. Used only with CALWF=1. for e.g. if you want to print 2 orbital densities, set calwf=1, nwf=2 and wffort to an appropriate number (e.g. 40) then the first orbital density will be output to fort.40, the second to fort.41 and so on. Note that in the current implementation, the following units are used 21,22,24,25,26,27,28,38,39,77,78 and whatever you define as ndr and ndw. so use number other than these. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: writev Type: LOGICAL Default: .false. Description: Output the charge density (g-space) and the list of g-vectors This is useful if you want to reconstruct the electrostatic potential using the Poisson equation. If .TRUE. then the code will output the g-space charge density and the list if G-vectors, and STOP. Charge density is written to : CH_DEN_G_PARA.ispin (1 or 2 depending on the number of spin types) or CH_DEN_G_SERL.ispin depending on if the code is being run in parallel or serial G-vectors are written to G_PARA or G_SERL. +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== CARD: ATOMIC_SPECIES ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_SPECIES X(1) Mass_X(1) PseudoPot_X(1) X(2) Mass_X(2) PseudoPot_X(2) . . . X(ntyp) Mass_X(ntyp) PseudoPot_X(ntyp) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Mass_X Type: REAL Description: mass of the atomic species [amu: mass of C = 12] not used if calculation='scf', 'nscf', 'bands' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: PseudoPot_X Type: CHARACTER Description: File containing PP for this species. The pseudopotential file is assumed to be in the new UPF format. If it doesn't work, the pseudopotential format is determined by the file name: *.vdb or *.van Vanderbilt US pseudopotential code *.RRKJ3 Andrea Dal Corso's code (old format) none of the above old PWscf norm-conserving format +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal } ________________________________________________________________________ * IF calculation == 'bands' OR calculation == 'nscf' : Specified atomic positions will be IGNORED and those from the previous scf calculation will be used instead !!! * ELSE IF : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_POSITIONS { alat | bohr | angstrom | crystal } X(1) x(1) y(1) z(1) { if_pos(1)(1) if_pos(2)(1) if_pos(3)(1) } X(2) x(2) y(2) z(2) { if_pos(1)(2) if_pos(2)(2) if_pos(3)(2) } . . . X(nat) x(nat) y(nat) z(nat) { if_pos(1)(nat) if_pos(2)(nat) if_pos(3)(nat) } ///////////////////////////////////////// ENDIF ________________________________________________________________________ DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { alat | bohr | angstrom | crystal } Default: bohr (DEPRECATED) Description: alat : atomic positions are in cartesian coordinates, in units of the lattice parameter (either celldm(1) or A). bohr : atomic positions are in cartesian coordinate, in atomic units (i.e. Bohr). If no option is specified, 'bohr' is assumed; not specifying units is DEPRECATED and will no longer be allowed in the future angstrom: atomic positions are in cartesian coordinates, in Angstrom crystal : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice vectors as defined either in card CELL_PARAMETERS or via the ibrav + celldm / a,b,c... variables +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom as specified in ATOMIC_SPECIES +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: x, y, z Type: REAL Description: atomic positions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: if_pos(1), if_pos(2), if_pos(3) Type: INTEGER Default: 1 Description: component i of the force for this atom is multiplied by if_pos(i), which must be either 0 or 1. Used to keep selected atoms and/or selected components fixed in MD dynamics or structural optimization run. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: ATOMIC_VELOCITIES { a.u } OPTIONAL CARD, READS VELOCITIES (IN ATOMIC UNITS) FROM STANDARD INPUT when starting with ion_velocities="from_input" it is convenient to perform few steps (~5-10) with a smaller time step (0.5 a.u.) ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_VELOCITIES { a.u } V(1) vx(1) vy(1) vz(1) V(2) vx(2) vy(2) vz(2) . . . V(nat) vx(nat) vy(nat) vz(nat) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { a.u } +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: V Type: CHARACTER Description: label of the atom as specified in ATOMIC_SPECIES +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: vx, vy, vz Type: REAL Description: atomic velocities along x y and z direction +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: CELL_PARAMETERS { bohr | angstrom | alat } OPTIONAL CARD, NEEDED ONLY IF IBRAV = 0 IS SPECIFIED, IGNORED OTHERWISE ! ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// CELL_PARAMETERS { bohr | angstrom | alat } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { bohr | angstrom | alat } Description: 'bohr'/'angstrom': lattice vectors in bohr radii / angstrom. 'alat' / nothing specified: lattice vectors in units or the lattice parameter (either celldm(1) or a). Not specifing units is DEPRECATED and will not be allowed in the future. If nothing specified and no lattice parameter specified, 'bohr' is assumed - DEPRECATED, will no longer be allowed +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: v1, v2, v3 Type: REAL Description: Crystal lattice vectors: v1(1) v1(2) v1(3) ... 1st lattice vector v2(1) v2(2) v2(3) ... 2nd lattice vector v3(1) v3(2) v3(3) ... 3rd lattice vector +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: CONSTRAINTS OPTIONAL CARD, USED FOR CONSTRAINED DYNAMICS OR CONSTRAINED OPTIMISATIONS When this card is present the SHAKE algorithm is automatically used. ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// CONSTRAINTS nconstr { constr_tol } constr_type(1) constr(1)(1) constr(2)(1) [ constr(3)(1) constr(4)(1) ] { constr_target(1) } constr_type(2) constr(1)(2) constr(2)(2) [ constr(3)(2) constr(4)(2) ] { constr_target(2) } . . . constr_type(nconstr) constr(1)(nconstr) constr(2)(nconstr) [ constr(3)(nconstr) constr(4)(nconstr) ] { constr_target(nconstr) } ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: nconstr Type: INTEGER Description: Number of constraints. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_tol Type: REAL Description: Tolerance for keeping the constraints satisfied. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_type Type: CHARACTER Description: Type of constrain : 'type_coord' : constraint on global coordination-number, i.e. the average number of atoms of type B surrounding the atoms of type A. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'atom_coord' : constraint on local coordination-number, i.e. the average number of atoms of type A surrounding a specific atom. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'distance' : constraint on interatomic distance (two atom indexes must be specified). 'planar_angle' : constraint on planar angle (three atom indexes must be specified). 'torsional_angle' : constraint on torsional angle (four atom indexes must be specified). 'bennett_proj' : constraint on the projection onto a given direction of the vector defined by the position of one atom minus the center of mass of the others. ( Ch.H. Bennett in Diffusion in Solids, Recent Developments, Ed. by A.S. Nowick and J.J. Burton, New York 1975 ). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: constr(1), constr(2), constr(3), constr(4) Description: These variables have different meanings for different constraint types: 'type_coord' : constr(1) is the first index of the atomic type involved constr(2) is the second index of the atomic type involved constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'atom_coord' : constr(1) is the atom index of the atom with constrained coordination constr(2) is the index of the atomic type involved in the coordination constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'distance' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD 'planar_angle', 'torsional_angle' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD (beware the order) 'bennett_proj' : constr(1) is the index of the atom whose position is constrained. constr(2:4) are the three coordinates of the vector that specifies the constraint direction. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_target Type: REAL Description: Target for the constrain ( angles are specified in degrees ). This variable is optional. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: OCCUPATIONS OPTIONAL CARD, USED ONLY IF OCCUPATIONS = 'FROM_INPUT', IGNORED OTHERWISE ! ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// OCCUPATIONS f_inp1(1) f_inp1(2) . . . f_inp1(nbnd) [ f_inp2(1) f_inp2(2) . . . f_inp2(nbnd) ] ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: f_inp1 Type: REAL Description: Occupations of individual states (MAX 10 PER LINE). For spin-polarized calculations, these are majority spin states. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: f_inp2 Type: REAL Description: Occupations of minority spin states (MAX 10 PER LINE) To be specified only for spin-polarized calculations. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: PLOT_WANNIER OPTIONAL CARD, INDICES OF THE STATES THAT HAVE TO BE PRINTED (ONLY FOR CALF=1 AND CALF=5). ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// PLOT_WANNIER iwf(1) iwf(2) . . . iwf(nwf) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: iwf Type: INTEGER Description: These are the indices of the states that you want to output. Also used with calwf = 1 and 5. If calwf = 1, then you need nwf indices here (each in a new line). If CALWF=5, then just one index in needed. +-------------------------------------------------------------------- ===END OF CARD========================================================== espresso-5.1/CPV/Doc/INPUT_WFDD0000644000175000017500000001024012341373026014063 0ustar mbamba!=========================================================================! ! README.WANNIER ! ! Author: Manu Sharma ! ! msharma@alumni.Princeton.EDU ! !=========================================================================! ! INPUT FORMAT FOR WFDD.X ! !=========================================================================! ! This code was originally written by Yudong Wu and later modified by ! ! Manu Sharma. This is intended to be a post-processing code and the ! ! search for the appropriate Unitary transformation can be done using not ! ! only damped-dynamics, but also Steepest descent and conjugate gradient ! ! algorithms. The advantage ! ! is that SD/CG can serve as benchmarks to make sure that the DD is ! ! converging to the correct values (in deciding the parameters Q and DT ! ! for the DD). The disadvantage is that SD/CG schemes are slower than ! ! the DD. It is useful however, before using DD in production runs, to ! ! make sure that the parameters (Q and DT) give the same answer as the SD ! ! or CG. This code requires as input, the overlap matrix. This can be ! ! calculated from the CP code by setting CALWF to 2 in the &WANNIER ! ! namelist (The default value is 3, for Wannier dynamics. This option ! ! outputs the overlap matrix to unit 38, and wfdd.x reads it from the same! ! file. ! ! In addition to that, you need an input file of the following form. ! ! ! ! ! ! 1 0.3 0.5 100 10 CGORDD WFDT MAXWFDT NIT NSD ! ! 1500 5.0 0.3 .true. 100 1.0d-8 Q DT FRIC ADAPT NSTEPS TOLW ! ! .true. RESTART ! ! ! ! CGORDD : Whether to do SD/CG optimization of damped dynamics ! ! Can take the values 1 or 2. 1 means SD/CG and 2 means DD ! ! WFDT : Used when GCORDD=1. This is the step length you take in the ! ! direction of steepest descent. ! ! MAXWFDT: Used when CGORDD=1. This is the maximum step length you take ! ! in the direction if steepest descent. if WFDT or MAXWFDT are ! ! large, the calculation will not converge. The code uses the ! ! parabolic approximation to estimate the appropriate step length! ! and if it is less than WFDT, then WFDT is taken as the step ! ! length and if more than MAXWFDT then MAXWFDT is taken as the ! ! Step length. ! ! NIT : Used when CGORDD=1. This is the maxumum number of iterations ! ! to do. ! ! NSD : Used whdn CGORDD=1. This is the number of Steepest descent ! ! steps to do. If NSD = NIT then it is a pure SD optimization ! ! If NSD < NIT, then the code first does NSD Steepest descent ! ! steps and then NIT-NSD Conjugate gradient steps. ! ! RESTART: Use this option to continue a SD/CG/DD optimization. This ! ! option reads the Unitray transform from fort.39, written at the! ! end of the last run and continues from there. ! ! ! ! The other are used for the Damped dynamics and are defined ! ! in the INPUT_CP.* file in the Doc/ directory under NAMELIST &WANNIER. ! ! ! ! The program may be compiled by make wfdd.x and then run as follows ! ! ./wfdd.x < [input-filename] > [output-filename] & ! ! The output file will contain the inverse spread (which is the functional! ! that is actually maximized in the code rather than minimizing the ! ! spread) at each step of the optimization. ! ! ! ! Manu Sharma ! ! February 14th,2006 ! !=========================================================================! ! COPYRIGHT MANU SHARMA/YUDONG WU/NICOLA MARZARI/ROBERTO CAR ! !=========================================================================! espresso-5.1/CPV/Doc/INPUT_CP.html0000644000175000017500000057603012341373101014614 0ustar mbamba

    Input File Description

    Program: cp.x / CP / Quantum Espresso

    TABLE OF CONTENTS

    INTRODUCTION

    &CONTROL

    calculation | title | verbosity | isave | restart_mode | nstep | iprint | tstress | tprnfor | dt | outdir | saverho | prefix | ndr | ndw | tabps | max_seconds | etot_conv_thr | forc_conv_thr | ekin_conv_thr | disk_io | memory | pseudo_dir | tefield

    &SYSTEM

    ibrav | celldm | A | B | C | cosAB | cosAC | cosBC | nat | ntyp | nbnd | tot_charge | tot_magnetization | ecutwfc | ecutrho | nr1 | nr2 | nr3 | nr1s | nr2s | nr3s | nr1b | nr2b | nr3b | occupations | degauss | smearing | nspin | ecfixed | qcutz | q2sigma | input_dft | lda_plus_u | Hubbard_U | vdw_corr | london_s6 | london_rcut | ts_vdw | ts_vdw_econv_thr | ts_vdw_isolated | assume_isolated

    &ELECTRONS

    electron_maxstep | electron_dynamics | conv_thr | niter_cg_restart | efield | epol | emass | emass_cutoff | orthogonalization | ortho_eps | ortho_max | ortho_para | electron_damping | electron_velocities | electron_temperature | ekincw | fnosee | startingwfc | tcg | maxiter | passop | n_inner | ninter_cold_restart | lambda_cold | grease | ampre

    &IONS

    ion_dynamics | ion_positions | ion_velocities | ion_nstepe | remove_rigid_rot | ion_temperature | tempw | fnosep | tolp | nhpcl | nhptyp | nhgrp | fnhscl | ndega | tranp | amprp | greasp

    &CELL

    cell_parameters | cell_dynamics | cell_velocities | cell_damping | press | wmass | cell_factor | cell_temperature | temph | fnoseh | greash | cell_dofree

    &PRESS_AI

    abivol | abivol | P_ext | pvar | P_in | P_fin | Surf_t | rho_thr | dthr

    &WANNIER

    wf_efield | wf_switch | sw_len | efx0 | efy0 | efz0 | efx1 | efy1 | efz1 | wfsd | wfdt | maxwfdt | nit | nsd | wf_q | wf_friction | nsteps | tolw | adapt | calwf | nwf | wffort | writev

    ATOMIC_SPECIES

    X | Mass_X | PseudoPot_X

    ATOMIC_POSITIONS

    X | x | y | z | if_pos(1) | if_pos(2) | if_pos(3)

    ATOMIC_VELOCITIES

    V | vx | vy | vz

    CELL_PARAMETERS

    v1 | v2 | v3

    CONSTRAINTS

    nconstr | constr_tol | constr_type | constr(1) | constr(2) | constr(3) | constr(4) | constr_target

    OCCUPATIONS

    f_inp1 | f_inp2

    PLOT_WANNIER

    iwf

    INTRODUCTION

    Input data format: { } = optional, [ ] = it depends, | = or
    
    All quantities whose dimensions are not explicitly specified are in
    HARTREE ATOMIC UNITS
    
    BEWARE: TABS, DOS <CR><LF> CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE
    Comment lines in namelists can be introduced by a "!", exactly as in
    fortran code. Comments lines in ``cards'' can be introduced by
    either a "!" or a "#" character in the first position of a line.
    Do not start any line in ``cards'' with a "/" character.
    
    Structure of the input data:
    ===============================================================================
    
    &CONTROL
      ...
    /
    
    &SYSTEM
     ...
    /
    
    &ELECTRONS
    ...
    /
    
    [ &IONS
      ...
     / ]
    
    [ &CELL
      ...
     / ]
    
    [ &WANNIER
      ...
     / ]
    
    ATOMIC_SPECIES
     X  Mass_X  PseudoPot_X
     Y  Mass_Y  PseudoPot_Y
     Z  Mass_Z  PseudoPot_Z
    
    ATOMIC_POSITIONS { alat | bohr | crystal | angstrom }
      X 0.0  0.0  0.0  {if_pos(1) if_pos(2) if_pos(3)}
      Y 0.5  0.0  0.0
      Z O.0  0.2  0.2
    
    [ CELL_PARAMETERS { bohr | angstrom }
       v1(1) v1(2) v1(3)
       v2(1) v2(2) v2(3)
       v3(1) v3(2) v3(3) ]
    
    [ OCCUPATIONS
       f_inp1(1)  f_inp1(2)  f_inp1(3) ... f_inp1(10)
       f_inp1(11) f_inp1(12) ... f_inp1(nbnd)
     [ f_inp2(1)  f_inp2(2)  f_inp2(3) ... f_inp2(10)
       f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ]
    
    [ CONSTRAINTS
       nconstr  { constr_tol }
       constr_type(.)   constr(1,.)   constr(2,.) [ constr(3,.)   constr(4,.) ] { constr_target(.) } ]
       

    Namelist: CONTROL

    calculation CHARACTER
    Default: 'cp'
    a string describing the task to be performed:
       'cp',
       'scf',
       'nscf',
       'relax',
       'vc-relax',
       'vc-cp',
       'cp-wf'
    
       (vc = variable-cell).
             
    title CHARACTER
    Default: 'MD Simulation '
    reprinted on output.
             
    verbosity CHARACTER
    Default: 'low'
    In order of decreasing verbose output:
     'debug' | 'high' | 'medium' | 'low','default' | 'minimal'
             
    isave INTEGER
    Default: 100
    See: ndr
    See: ndw
    Number of steps between successive savings of
    information needed to restart the run.
             
    restart_mode CHARACTER
    Default: 'restart'
    'from_scratch'   : from scratch
    'restart'        : from previous interrupted run
    'reset_counters' : continue a previous simulation,
                       performs  "nstep" new steps, resetting
                       the counter and averages
             
    nstep INTEGER
    Default: 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases
    number of ionic + electronic steps
             
    iprint INTEGER
    Default: 10
    Number of steps between successive writings of relevant
    physical quantities to standard output and to files "fort.3?"
    or "prefix.???" depending on "prefix" parameter
             
    tstress LOGICAL
    Default: .false.
    Write stress tensor to standard output each "iprint" steps.
    It is set to .TRUE. automatically if
    calculation='vc-relax'
             
    tprnfor LOGICAL
    Default: .false.
    print forces. Set to .TRUE. when ions are moving.
             
    dt REAL
    Default: 1.D0
    time step for molecular dynamics, in Hartree atomic units
    (1 a.u.=2.4189 * 10^-17 s : beware, PW code use
     Rydberg atomic units, twice that much!!!)
             
    outdir CHARACTER
    Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise
    input, temporary, trajectories and output files are found
    in this directory.
             
    saverho LOGICAL
    This flag controls the saving of charge density in CP codes:
    If  .TRUE.        save charge density to restart dir,
    If .FALSE. do not save charge density.
             
    prefix CHARACTER
    Default: 'cp'
    prepended to input/output filenames:
    prefix.pos, prefix.vel, etc.
             
    ndr INTEGER
    Default: 50
    Units for input and output restart file.
             
    ndw INTEGER
    Default: 50
    Units for input and output restart file.
             
    tabps LOGICAL
    Default: .false.
    .true. to compute the volume and/or the surface of an isolated
    system for finite pressure/finite surface tension calculations
    (PRL 94, 145501 (2005); JCP 124, 074103 (2006)).
             
    max_seconds REAL
    Default: 1.D+7, or 150 days, i.e. no time limit
    jobs stops after max_seconds CPU time. Used to prevent
    a hard kill from the queuing system.
             
    etot_conv_thr REAL
    Default: 1.0D-4
    convergence threshold on total energy (a.u) for ionic
    minimization: the convergence criterion is satisfied
    when the total energy changes less than etot_conv_thr
    between two consecutive scf steps.
    See also forc_conv_thr - both criteria must be satisfied
             
    forc_conv_thr REAL
    Default: 1.0D-3
    convergence threshold on forces (a.u) for ionic
    minimization: the convergence criterion is satisfied
    when all components of all forces are smaller than
    forc_conv_thr.
    See also etot_conv_thr - both criteria must be satisfied
             
    ekin_conv_thr REAL
    Default: 1.0D-6
    convergence criterion for electron minimization:
    convergence is achieved when "ekin < ekin_conv_thr".
    See also etot_conv_thr - both criteria must be satisfied.
             
    disk_io CHARACTER
    Default: 'default'
    'high': CP code will write Kohn-Sham wfc files and additional
            information in data-file.xml in order to restart
            with a PW calculation or to use postprocessing tools.
            If disk_io is not set to 'high', the data file
            written by CP will not be readable by PW or PostProc.
             
    memory CHARACTER
    Default: 'default'
    'small': memory-saving tricks are implemented. Currently:
             - the G-vectors are sorted only locally, not globally
             - they are not collected and written to file
             For large systems, the memory and time gain is sizable
             but the resulting data files are not portable - use it
             only if you do not need to re-read the data file
             
    pseudo_dir CHARACTER
    Default: value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise
    directory containing pseudopotential files
             
    tefield LOGICAL
    Default: .FALSE.
    If .TRUE. a homogeneous finite electric field described
    through the modern theory of the polarization is applied.
             

    Namelist: SYSTEM

    ibrav INTEGER
    Status: REQUIRED
      Bravais-lattice index. If ibrav /= 0, specify EITHER
      [ celldm(1)-celldm(6) ] OR [ A,B,C,cosAB,cosAC,cosBC ]
      but NOT both. The lattice parameter alat is set to
      alat = celldm(1) (in a.u.) or alat = A (in Angstrom);
      see below for the other parameters.
      For ibrav=0 specify the lattice vectors in CELL_PARAMETER,
      optionally the lattice parameter alat = celldm(1) (in a.u.)
      or = A (in Angstrom), or else it is taken from CELL_PARAMETERS
    
    ibrav      structure                   celldm(2)-celldm(6)
                                         or: b,c,cosab,cosac,cosbc
      0          free
          crystal axis provided in input: see card CELL_PARAMETERS
    
      1          cubic P (sc)
          v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,1)
    
      2          cubic F (fcc)
          v1 = (a/2)(-1,0,1),  v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)
    
      3          cubic I (bcc)
          v1 = (a/2)(1,1,1),  v2 = (a/2)(-1,1,1),  v3 = (a/2)(-1,-1,1)
    
      4          Hexagonal and Trigonal P        celldm(3)=c/a
          v1 = a(1,0,0),  v2 = a(-1/2,sqrt(3)/2,0),  v3 = a(0,0,c/a)
    
      5          Trigonal R, 3fold axis c        celldm(4)=cos(alpha)
          The crystallographic vectors form a three-fold star around
          the z-axis, the primitive cell is a simple rhombohedron:
          v1 = a(tx,-ty,tz),   v2 = a(0,2ty,tz),   v3 = a(-tx,-ty,tz)
          where c=cos(alpha) is the cosine of the angle alpha between
          any pair of crystallographic vectors, tx, ty, tz are:
            tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)
     -5          Trigonal R, 3fold axis <111>    celldm(4)=cos(alpha)
          The crystallographic vectors form a three-fold star around
          <111>. Defining a' = a/sqrt(3) :
          v1 = a' (u,v,v),   v2 = a' (v,u,v),   v3 = a' (v,v,u)
          where u and v are defined as
            u = tz - 2*sqrt(2)*ty,  v = tz + sqrt(2)*ty
          and tx, ty, tz as for case ibrav=5
          Note: if you prefer x,y,z as axis in the cubic limit,
                set  u = tz + 2*sqrt(2)*ty,  v = tz - sqrt(2)*ty
                See also the note in flib/latgen.f90
    
      6          Tetragonal P (st)               celldm(3)=c/a
          v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,c/a)
    
      7          Tetragonal I (bct)              celldm(3)=c/a
          v1=(a/2)(1,-1,c/a),  v2=(a/2)(1,1,c/a),  v3=(a/2)(-1,-1,c/a)
    
      8          Orthorhombic P                  celldm(2)=b/a
                                                 celldm(3)=c/a
          v1 = (a,0,0),  v2 = (0,b,0), v3 = (0,0,c)
    
      9          Orthorhombic base-centered(bco) celldm(2)=b/a
                                                 celldm(3)=c/a
          v1 = (a/2, b/2,0),  v2 = (-a/2,b/2,0),  v3 = (0,0,c)
     -9          as 9, alternate description
          v1 = (a/2,-b/2,0),  v2 = (a/2,-b/2,0),  v3 = (0,0,c)
    
     10          Orthorhombic face-centered      celldm(2)=b/a
                                                 celldm(3)=c/a
          v1 = (a/2,0,c/2),  v2 = (a/2,b/2,0),  v3 = (0,b/2,c/2)
    
     11          Orthorhombic body-centered      celldm(2)=b/a
                                                 celldm(3)=c/a
          v1=(a/2,b/2,c/2),  v2=(-a/2,b/2,c/2),  v3=(-a/2,-b/2,c/2)
    
     12          Monoclinic P, unique axis c     celldm(2)=b/a
                                                 celldm(3)=c/a,
                                                 celldm(4)=cos(ab)
          v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0),  v3 = (0,0,c)
          where gamma is the angle between axis a and b.
    -12          Monoclinic P, unique axis b     celldm(2)=b/a
                                                 celldm(3)=c/a,
                                                 celldm(5)=cos(ac)
          v1 = (a,0,0), v2 = (0,b,0), v3 = (c*sin(beta),0,c*cos(beta))
          where beta is the angle between axis a and c
    
     13          Monoclinic base-centered        celldm(2)=b/a
                                                 celldm(3)=c/a,
                                                 celldm(4)=cos(ab)
          v1 = (  a/2,         0,                -c/2),
          v2 = (b*cos(gamma), b*sin(gamma), 0),
          v3 = (  a/2,         0,                  c/2),
          where gamma is the angle between axis a and b
    
     14          Triclinic                       celldm(2)= b/a,
                                                 celldm(3)= c/a,
                                                 celldm(4)= cos(bc),
                                                 celldm(5)= cos(ac),
                                                 celldm(6)= cos(ab)
          v1 = (a, 0, 0),
          v2 = (b*cos(gamma), b*sin(gamma), 0)
          v3 = (c*cos(beta),  c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),
               c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma)
                         - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) )
      where alpha is the angle between axis b and c
             beta is the angle between axis a and c
            gamma is the angle between axis a and b
             
    Either:

    celldm(i), i=1,6 REAL
    See: ibrav
    Crystallographic constants - see description of ibrav variable.
    Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both.
    Only needed celldm (depending on ibrav) must be specified
    alat = celldm(1) is the lattice parameter "a" (in BOHR)
    If ibrav=0, only celldm(1) is used if present;
    cell vectors are read from card CELL_PARAMETERS
                
    Or:

    A, B, C, cosAB, cosAC, cosBC REAL
    Traditional crystallographic constants: a,b,c in ANGSTROM
      cosAB = cosine of the angle between axis a and b (gamma)
      cosAC = cosine of the angle between axis a and c (beta)
      cosBC = cosine of the angle between axis b and c (alpha)
    The axis are chosen according to the value of ibrav.
    Specify either these OR celldm but NOT both.
    Only needed values (depending on ibrav) must be specified
    The lattice parameter alat = A (in ANGSTROM )
    If ibrav = 0, only A is used if present;
    cell vectors are read from card CELL_PARAMETERS
                
    nat INTEGER
    Status: REQUIRED
    number of atoms in the unit cell
             
    ntyp INTEGER
    Status: REQUIRED
    number of types of atoms in the unit cell
             
    nbnd INTEGER
    Default: for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more)
    number of electronic states (bands) to be calculated.
    Note that in spin-polarized calculations the number of
    k-point, not the number of bands per k-point, is doubled
             
    tot_charge REAL
    Default: 0.0
    total charge of the system. Useful for simulations with charged cells.
    By default the unit cell is assumed to be neutral (tot_charge=0).
    tot_charge=+1 means one electron missing from the system,
    tot_charge=-1 means one additional electron, and so on.
    
    In a periodic calculation a compensating jellium background is
    inserted to remove divergences if the cell is not neutral.
             
    tot_magnetization REAL
    Default: -1 [unspecified]
    total majority spin charge - minority spin charge.
    Used to impose a specific total electronic magnetization.
    If unspecified, the tot_magnetization variable is ignored
    and the electronic magnetization is determined by the
    occupation numbers (see card OCCUPATIONS) read from input.
             
    ecutwfc REAL
    Status: REQUIRED
    kinetic energy cutoff (Ry) for wavefunctions
             
    ecutrho REAL
    Default: 4 * ecutwfc
    kinetic energy cutoff (Ry) for charge density and potential
    For norm-conserving pseudopotential you should stick to the
    default value, you can reduce it by a little but it will
    introduce noise especially on forces and stress.
    If there are ultrasoft PP, a larger value than the default is
    often desirable (ecutrho = 8 to 12 times ecutwfc, typically).
    PAW datasets can often be used at 4*ecutwfc, but it depends
    on the shape of augmentation charge: testing is mandatory.
    The use of gradient-corrected functional, especially in cells
    with vacuum, or for pseudopotential without non-linear core
    correction, usually requires an higher values of ecutrho
    to be accurately converged.
             
    nr1, nr2, nr3 INTEGER
    See: ecutrho
    three-dimensional FFT mesh (hard grid) for charge
    density (and scf potential). If not specified
    the grid is calculated based on the cutoff for
    charge density.
             
    nr1s, nr2s, nr3s INTEGER
    three-dimensional mesh for wavefunction FFT and for the smooth
    part of charge density ( smooth grid ).
    Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default )
             
    nr1b, nr2b, nr3b INTEGER
    dimensions of the "box" grid for Ultrasoft pseudopotentials
    must be specified if Ultrasoft PP are present
             
    occupations CHARACTER
    a string describing the occupation of the electronic states.
    In the case of conjugate gradient style of minimization
    of the electronic states, if occupations is set to 'ensemble',
    this allows ensemble DFT calculations for metallic systems
             
    degauss REAL
    Default: 0.D0 Ry
    parameter for the smearing function, only used for ensemble DFT
    calculations
             
    smearing CHARACTER
    a string describing the kind of occupations for electronic states
    in the case of ensemble DFT (occupations == 'ensemble' );
    now only Fermi-Dirac ('fd') case is implemented
             
    nspin INTEGER
    Default: 1
    nspin = 1 :  non-polarized calculation (default)
    
    nspin = 2 :  spin-polarized calculation, LSDA
                 (magnetization along z axis)
             
    ecfixed REAL
    Default: 0.0
    See: q2sigma
    qcutz REAL
    Default: 0.0
    See: q2sigma
    q2sigma REAL
    Default: 0.1
    ecfixed, qcutz, q2sigma:  parameters for modified functional to be
    used in variable-cell molecular dynamics (or in stress calculation).
    "ecfixed" is the value (in Rydberg) of the constant-cutoff;
    "qcutz" and "q2sigma" are the height and the width (in Rydberg)
    of the energy step for reciprocal vectors whose square modulus
    is greater than "ecfixed". In the kinetic energy, G^2 is
    replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) )
    See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995)
             
    input_dft CHARACTER
    Default: read from pseudopotential files
    Exchange-correlation functional: eg 'PBE', 'BLYP' etc
    See Modules/functionals.f90 for allowed values.
    Overrides the value read from pseudopotential files.
    Use with care and if you know what you are doing!
             
    lda_plus_u LOGICAL
    Default: .FALSE.
    lda_plus_u = .TRUE. enables calculation with LDA+U
                      ("rotationally invariant"). See also Hubbard_U.
                      Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991);
                      Anisimov et al., PRB 48, 16929 (1993);
                      Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994);
                      Cococcioni and de Gironcoli, PRB 71, 035105 (2005).
             
    Hubbard_U(i), i=1,ntyp REAL
    Default: 0.D0 for all species
    Status: LDA+U works only for a few selected elements. Modify CPV/ldaU.f90 if you plan to use LDA+U with an element that is not configured there.
    Hubbard_U(i): parameter U (in eV) for LDA+U calculations.
    Currently only the simpler, one-parameter LDA+U is
    implemented (no "alpha" or "J" terms)
             
    vdw_corr CHARACTER
    Default: 'none'
    Type of Van der Waals correction. Allowed values:
    
       'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d': semiempirical Grimme's DFT-D2.
        Optional variables: "london_s6", "london_rcut"
        S. Grimme, J. Comp. Chem. 27, 1787 (2006),
        V. Barone et al., J. Comp. Chem. 30, 934 (2009).
    
        'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler': Tkatchenko-Scheffler
         dispersion corrections with first-principle derived C6 coefficients
         Optional variables: "ts_vdw_econv_thr", "ts_vdw_isolated"
         See A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009)
    
        'XDM', 'xdm': Exchange-hole dipole-moment model. Optional variables: "xdm_a1", "xdm_a2"
         (implemented in PW only)
         A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007)
          A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 136, 174109 (2012)
    
    Note that non-local functionals (eg vdw-DF) are NOT specified here but in "input_dft"
             
    london_s6 REAL
    Default: 0.75
    global scaling parameter for DFT-D. Default is good for PBE.
             
    london_rcut REAL
    Default: 200
    cutoff radius (a.u.) for dispersion interactions
             
    ts_vdw LOGICAL
    Default: .FALSE.
    OBSOLESCENT, same as vdw_corr='TS'
             
    ts_vdw_econv_thr REAL
    Default: 1.D-6
    Optional: controls the convergence of the vdW energy (and forces). The default value
    is a safe choice, likely too safe, but you do not gain much in increasing it
             
    ts_vdw_isolated LOGICAL
    Default: .FALSE.
    Optional: set it to .TRUE. when computing the Tkatchenko-Scheffler vdW energy
    for an isolated (non-periodic) system.
             
    assume_isolated CHARACTER
    Default: 'none'
    Used to perform calculation assuming the system to be
    isolated (a molecule of a clustr in a 3D supercell).
    
    Currently available choices:
    
    'none' (default): regular periodic calculation w/o any correction.
    
    'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the
             total energy is computed.
             Theory:
             G.Makov, and M.C.Payne,
             "Periodic boundary conditions in ab initio
             calculations" , Phys.Rev.B 51, 4014 (1995)
             

    Namelist: ELECTRONS

    electron_maxstep INTEGER
    Default: 100
    maximum number of iterations in a scf step
             
    electron_dynamics CHARACTER
    Default: 'none'
    set how electrons should be moved
    'none'    : electronic degrees of freedom (d.o.f.) are kept fixed
    'sd'      : steepest descent algorithm is used to minimize
              electronic d.o.f.
    'damp'    : damped dynamics is used to propagate electronic d.o.f.
    'verlet'  : standard Verlet algorithm is used to propagate
              electronic d.o.f.
    'cg'      : conjugate gradient is used to converge the
              wavefunction at each ionic step. 'cg' can be used
              interchangeably with 'verlet' for a couple of ionic
              steps in order to "cool down" the electrons and
              return them back to the Born-Oppenheimer surface.
              Then 'verlet' can be restarted again. This procedure
              is useful when electronic adiabaticity in CP is lost
              yet the ionic velocities need to be preserved.
             
    conv_thr REAL
    Default: 1.D-6
    Convergence threshold for selfconsistency:
    estimated energy error < conv_thr
             
    niter_cg_restart INTEGER
    Default: 20
    frequency in iterations for which the conjugate-gradient algorithm
    for electronic relaxation is restarted
             
    efield REAL
    Default: 0.D0
    Amplitude of the finite electric field (in a.u.;
    1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE.
             
    epol INTEGER
    Default: 3
    direction of the finite electric field (only if tefield == .TRUE.)
    In the case of a PARALLEL calculation only the case epol==3
    is implemented
             
    emass REAL
    Default: 400.D0
    effective electron mass in the CP Lagrangian, in atomic units
    ( 1 a.u. of mass = 1/1822.9 a.m.u. = 9.10939 * 10^-31 kg )
             
    emass_cutoff REAL
    Default: 2.5D0
    mass cut-off (in Rydberg) for the Fourier acceleration
    effective mass is rescaled for "G" vector components with
    kinetic energy above "emass_cutoff"
             
    orthogonalization CHARACTER
    Default: 'ortho'
    selects the orthonormalization method for electronic wave
    functions
    'ortho'        : use iterative algorithm - if it doesn't converge,
                     reduce the timestep, or use options ortho_max
                     and ortho_eps, or use Gram-Schmidt instead just
                     to start the simulation
    'Gram-Schmidt' : use Gram-Schmidt algorithm - to be used ONLY in
                     the first few steps.
                     YIELDS INCORRECT ENERGIES AND EIGENVALUES.
             
    ortho_eps REAL
    Default: 1.D-8
    tolerance for iterative orthonormalization
    meaningful only if orthogonalization = 'ortho'
             
    ortho_max INTEGER
    Default: 20
    maximum number of iterations for orthonormalization
    meaningful only if orthogonalization = 'ortho'
             
    ortho_para INTEGER
    Default: 0
    Status: OBSOLETE: use command-line option " -nd XX" instead
    
             
    electron_damping REAL
    Default: 0.1D0
    damping frequency times delta t, optimal values could be
    calculated with the formula :
             SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) )
    where E1, E2, E3 are successive values of the DFT total energy
    in a steepest descent simulations.
    meaningful only if " electron_dynamics = 'damp' "
             
    electron_velocities CHARACTER
    'zero'      : restart setting electronic velocities to zero
    'default'   : restart using electronic velocities of the
                previous run
             
    electron_temperature CHARACTER
    Default: 'not_controlled'
    'nose'            : control electronic temperature using Nose
                      thermostat. See also "fnosee" and "ekincw".
    'rescaling'       : control electronic temperature via velocities
                      rescaling.
    'not_controlled'  : electronic temperature is not controlled.
             
    ekincw REAL
    Default: 0.001D0
    value of the average kinetic energy (in atomic units) forced
    by the temperature control
    meaningful only with " electron_temperature /= 'not_controlled' "
             
    fnosee REAL
    Default: 1.D0
    oscillation frequency of the nose thermostat (in terahertz)
    meaningful only with " electron_temperature = 'nose' "
             
    startingwfc CHARACTER
    Default: 'random'
    'atomic': start from superposition of atomic orbitals
              (not yet implemented)
    
    
    'random': start from random wfcs. See "ampre".
             
    tcg LOGICAL
    Default: .FALSE.
    if .TRUE. perform a conjugate gradient minimization of the
    electronic states for every ionic step.
    It requires Gram-Schmidt orthogonalization of the electronic
    states.
             
    maxiter INTEGER
    Default: 100
    maximum number of conjugate gradient iterations for
    conjugate gradient minimizations of electronic states
             
    passop REAL
    Default: 0.3D0
    small step used in the  conjugate gradient minimization
    of the electronic states.
             
    n_inner INTEGER
    Default: 2
    number of internal cycles for every conjugate gradient
    iteration only for ensemble DFT
             
    ninter_cold_restart INTEGER
    Default: 1
    frequency in iterations at which a full inner cycle, only
    for cold smearing, is performed
             
    lambda_cold REAL
    Default: 0.03D0
    step for inner cycle with cold smearing, used when a not full
    cycle is performed
             
    grease REAL
    Default: 1.D0
    a number <= 1, very close to 1: the damping in electronic
    damped dynamics is multiplied at each time step by "grease"
    (avoids overdamping close to convergence: Obsolete ?)
    grease = 1 : normal damped dynamics
             
    ampre REAL
    Default: 0.D0
    amplitude of the randomization ( allowed values: 0.0 - 1.0 )
    meaningful only if " startingwfc = 'random' "
             

    Namelist: IONS

    input this namelist only if calculation = 'cp', 'relax', 'vc-relax', 'vc_cp'

    ion_dynamics CHARACTER
     Specify the type of ionic dynamics.
    
     For constrained dynamics or constrained optimisations add the
     CONSTRAINTS card (when the card is present the SHAKE algorithm is
                       automatically used).
    'none'    : ions are kept fixed
    'sd'      : steepest descent algorithm is used to minimize ionic
                configuration
    'cg'      : conjugate gradient algorithm is used to minimize ionic
                configuration
    'damp'    : damped dynamics is used to propagate ions
    'verlet'  : standard Verlet algorithm is used to propagate ions
             
    ion_positions CHARACTER
    Default: 'default'
    'default '  : if restarting, use atomic positions read from the
                  restart file; in all other cases, use atomic
                  positions from standard input.
    
    'from_input' : restart the simulation with atomic positions read
                  from standard input, even if restarting.
             
    ion_velocities CHARACTER
    Default: 'default'
    See: tempw
    initial ionic velocities
    'default'     : restart the simulation with atomic velocities read
                    from the restart file
    'change_step' : restart the simulation with atomic velocities read
                    from the restart file, with rescaling due to the
                    timestep change, specify the old step via tolp
                    as in tolp = 'old_time_step_value' in au
    'random'      : start the simulation with random atomic velocities
    'from_input'  : restart the simulation with atomic velocities read
                    from standard input - see card 'ATOMIC_VELOCITIES'
                    BEWARE: works only if restart_mode='from_scratch',
                    tested only with electrons_dynamics='cg'
    'zero'        : restart the simulation with atomic velocities set
                    to zero
             
    ion_nstepe INTEGER
    Default: 1
    number of electronic steps per ionic step.
             
    remove_rigid_rot LOGICAL
    Default: .FALSE.
    This keyword is useful when simulating the dynamics and/or the
    thermodynamics of an isolated system. If set to true the total
    torque of the internal forces is set to zero by adding new forces
    that compensate the spurious interaction with the periodic
    images. This allows for the use of smaller supercells.
    
    BEWARE: since the potential energy is no longer consistent with
    the forces (it still contains the spurious interaction with the
    repeated images), the total energy is not conserved anymore.
    However the dynamical and thermodynamical properties should be
    in closer agreement with those of an isolated system.
    Also the final energy of a structural relaxation will be higher,
    but the relaxation itself should be faster.
             
    ion_temperature CHARACTER
    Default: 'not_controlled'
    'nose'           : control ionic temperature using Nose-Hoover
                       thermostat  see parameters "fnosep", "tempw",
                       "nhpcl", "ndega", "nhptyp"
    'rescaling'      : control ionic temperature via velocities
                       rescaling. see parameter "tolp"
    'not_controlled' : ionic temperature is not controlled
             
    tempw REAL
    Default: 300.D0
    value of the ionic temperature (in Kelvin) forced by the
    temperature control.
    meaningful only with " ion_temperature /= 'not_controlled' "
    or when the initial velocities are set to 'random'
    "ndega" controls number of degrees of freedom used in
    temperature calculation
             
    fnosep REAL
    Default: 1.D0
    oscillation frequency of the nose thermostat (in terahertz)
    [note that 3 terahertz = 100 cm^-1]
    meaningful only with " ion_temperature = 'nose' "
    for Nose-Hoover chain one can set frequencies of all thermostats
    ( fnosep = X Y Z etc. ) If only first is set, the defaults for
    the others will be same.
             
    tolp REAL
    Default: 100.D0
    tolerance (in Kelvin) of the rescaling. When ionic temperature
    differs from "tempw" more than "tolp" apply rescaling.
    meaningful only with " ion_temperature = 'rescaling' "
    and with ion_velocities='change_step', where it specifies
    the old timestep
             
    nhpcl INTEGER
    Default: 1
    number of thermostats in the Nose-Hoover chain
    currently maximum allowed is 4
             
    nhptyp INTEGER
    Default: 0
    type of the "massive" Nose-Hoover chain thermostat
    nhptyp=1 uses a NH chain per each atomic type
    nhptyp=2 uses a NH chain per atom, this one is useful
    for extremely rapid equipartitioning (equilibration is a
    different beast)
    nhptyp=3 together with nhgrp allows fine grained thermostat
    control
    NOTE: if using more than 1 thermostat per system there will
    be a common thermostat added on top of them all, to disable
    this common thermostat specify nhptyp=-X instead of nhptyp=X
             
    nhgrp(i), i=1,ntyp INTEGER
    Default: 0
    specifies which thermostat group to use for given atomic type
    when >0 assigns all the atoms in this type to thermostat
    labeled nhgrp(i), when =0 each atom in the type gets its own
    thermostat. Finally, when <0, then this atomic type will have
    temperature "not controlled". Example: HCOOLi, with types H (1), C(2), O(3), Li(4);
    setting nhgrp={2 2 0 -1} will add a common thermostat for both H & C,
    one thermostat per each O (2 in total), and a non-updated thermostat
    for Li which will effectively make temperature for Li "not controlled"
             
    fnhscl(i), i=1,ntyp REAL
    Default: (Nat_{total}-1)/Nat_{total}
    these are the scaling factors to be used together with nhptyp=3 and nhgrp(i)
    in order to take care of possible reduction in the degrees of freedom due to
    constraints. Suppose that with the previous example HCOOLi, C-H bond is
    constrained. Then, these 2 atoms will have 5 degrees of freedom in total instead
    of 6, and one can set fnhscl={5/6 5/6 1. 1.}. This way the target kinetic energy
    for H&C will become 6(kT/2)*5/6 = 5(kT/2). This option is to be used for
    simulations with many constraints, such as rigid water with something else in there
             
    ndega INTEGER
    Default: 0
    number of degrees of freedom used for temperature calculation
    ndega <= 0 sets the number of degrees of freedom to
    [3*nat-abs(ndega)], ndega > 0 is used as the target number
             
    tranp(i), i=1,ntyp LOGICAL
    Default: .false.
    See: amprp
    If .TRUE. randomize ionic positions for the
    atomic type corresponding to the index.
             
    amprp(i), i=1,ntyp REAL
    Default: 0.D0
    See: amprp
    amplitude of the randomization for the atomic type corresponding
    to the index i ( allowed values: 0.0 - 1.0 ).
    meaningful only if " tranp(i) = .TRUE.".
             
    greasp REAL
    Default: 1.D0
    same as "grease", for ionic damped dynamics.
             

    Namelist: CELL

    input this namelist only if calculation = 'vc-relax', 'vc-cp'

    cell_parameters CHARACTER
    'default'      : restart the simulation with cell parameters read
                   from the restart file or "celldm" if
                   "restart = 'from_scratch'"
    'from_input'   : restart the simulation with cell parameters
                   from standard input.
                   ( see the card 'CELL_PARAMETERS' )
             
    cell_dynamics CHARACTER
    Default: 'none'
    set how cell should be moved
    'none'      : cell is kept fixed
    'sd'        : steepest descent algorithm is used to optimise the
                  cell
    'damp-pr'   : damped dynamics is used to optimise the cell
                  ( Parrinello-Rahman method ).
    'pr'        : standard Verlet algorithm is used to propagate
                  the cell ( Parrinello-Rahman method ).
             
    cell_velocities CHARACTER
    'zero'      : restart setting cell velocity to zero
    'default'   : restart using cell velocity of the previous run
             
    cell_damping REAL
    Default: 0.1D0
    damping frequency times delta t, optimal values could be
    calculated with the formula :
             SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) )
    where E1, E2, E3 are successive values of the DFT total energy
    in a steepest descent simulations.
    meaningful only if " cell_dynamics = 'damp' "
             
    press REAL
    Default: 0.D0
    Target pressure [KBar] in a variable-cell md or relaxation run.
             
    wmass REAL
    Default: 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD
    Fictitious cell mass [amu] for variable-cell simulations
    (both 'vc-md' and 'vc-relax')
             
    cell_factor REAL
    Default: 1.2D0
    Used in the construction of the pseudopotential tables.
    It should exceed the maximum linear contraction of the
    cell during a simulation.
             
    cell_temperature CHARACTER
    Default: 'not_controlled'
    'nose'            : control cell temperature using Nose thermostat
                        see parameters "fnoseh" and "temph".
    'rescaling'       : control cell temperature via velocities
                        rescaling.
    'not_controlled'  : cell temperature is not controlled.
             
    temph REAL
    Default: 0.D0
    value of the cell temperature (in ???) forced
    by the temperature control.
    meaningful only with " cell_temperature /= 'not_controlled' "
             
    fnoseh REAL
    Default: 1.D0
    oscillation frequency of the nose thermostat (in terahertz)
    meaningful only with " cell_temperature = 'nose' "
             
    greash REAL
    Default: 1.D0
    same as "grease", for cell damped dynamics
             
    cell_dofree CHARACTER
    Default: 'all'
    Select which of the cell parameters should be moved:
    
    all     = all axis and angles are moved
    x       = only the x component of axis 1 (v1_x) is moved
    y       = only the y component of axis 2 (v2_y) is moved
    z       = only the z component of axis 3 (v3_z) is moved
    xy      = only v1_x and v2_y are moved
    xz      = only v1_x and v3_z are moved
    yz      = only v2_y and v3_z are moved
    xyz     = only v1_x, v2_y, v3_z are moved
    shape   = all axis and angles, keeping the volume fixed
    2Dxy    = only x and y components are allowed to change
    2Dshape = as above, keeping the area in xy plane fixed
             

    Namelist: PRESS_AI

    input this namelist only when tabps = .true.

    abivol LOGICAL
    Default: .false.
    .true. for finite pressure calculations
             
    abivol LOGICAL
    Default: .false.
    .true. for finite surface tension calculations
             
    P_ext REAL
    Default: 0.D0
    external pressure in GPa
             
    pvar LOGICAL
    Default: .false.
    .true. for variable pressure calculations
    pressure changes linearly with time:
    Delta_P = (P_fin - P_in)/nstep
             
    P_in REAL
    Default: 0.D0
    only if pvar = .true.
    initial value of the external pressure (GPa)
             
    P_fin REAL
    Default: 0.D0
    only if pvar = .true.
    final value of the external pressure (GPa)
             
    Surf_t REAL
    Default: 0.D0
    Surface tension (in a.u.; typical values 1.d-4 - 1.d-3)
             
    rho_thr REAL
    Default: 0.D0
    threshold parameter which defines the electronic charge density
    isosurface to compute the 'quantum' volume of the system
    (typical values: 1.d-4 - 1.d-3)
    (corresponds to alpha in PRL 94 145501 (2005))
             
    dthr REAL
    Default: 0.D0
    thikness of the external skin of the electronic charge density
    used to compute the 'quantum' surface
    (typical values: 1.d-4 - 1.d-3; 50% to 100% of rho_thr)
    (corresponds to Delta in PRL 94 145501 (2005))
             

    Namelist: WANNIER

    only if calculation = 'cp-wf'

    Output files used by Wannier Function options are the following
    
          fort.21: Used only when calwf=5, contains the full list of g-vecs.
          fort.22: Used Only when calwf=5, contains the coeffs. corresponding
                   to the g-vectors in fort.21
          fort.24: Used with calwf=3,contains the average spread
          fort.25: Used with calwf=3, contains the individual Wannier
                   Function Spread of each state
          fort.26: Used with calwf=3, contains the wannier centers along a
                   trajectory.
          fort.27: Used with calwf=3 and 4,  contains some general runtime
                   information from ddyn, the subroutine that actually
                   does the localization of the orbitals.
          fort.28: Used only if efield=.TRUE. , contains the polarization
                   contribution to the total energy.
    
    Also, The center of mass is fixed during the Molecular Dynamics.
    
    BEWARE : THIS WILL ONLY WORK IF THE NUMBER OF PROCESSORS IS LESS THAN OR
             EQUAL TO THE NUMBER OF STATES.
    
    Nota Bene 1:   For calwf = 5, wffort is not used. The
                   Wannier/Wave(function) coefficients are written to unit 22
                   and the corresponding g-vectors (basis vectors) are
                   written to unit 21. This option gives the g-vecs and
                   their coeffs. in reciprocal space, and the coeffs. are
                   complex. You will have to convert them to real space
                   if you want to plot them for visualization. calwf=1 gives
                   the orbital densities in real space, and this is usually
                   good enough for visualization.
          
    wf_efield LOGICAL
    Default: .false.
    If dynamics will be done in the presence of a field
             
    wf_switch LOGICAL
    Default: .false.
    Whether to turn on the field adiabatically (adiabatic switch)
    if true, then nbeg is set to 0.
             
    sw_len INTEGER
    Default: 1
    No. of iterations over which the field will be turned on
    to its final value. Starting value is 0.0
    If sw_len < 0, then it is set to 1.
    If you want to just optimize structures on the presence of a
    field, then you may set this to 1 and run a regular geometry
    optimization.
             
    efx0, efy0, efz0 REAL
    See: 0.D0
    Initial values of the field along x, y, and z directions
             
    efx1, efy1, efz1 REAL
    See: 0.D0
    Final values of the field along x, y, and z directions
             
    wfsd INTEGER
    Default: 1
    Localization algorithm for Wannier function calculation:
    wfsd=1  Damped Dynamics
    wfsd=2  Steepest-Descent / Conjugate-Gradient
    wfsd=3  Jocobi Rotation
    Remember, this is consistent with all the calwf options
    as well as the tolw (see below).
    Not a good idea to Wannier dynamics with this if you are
    using restart='from_scratch' option, since the spreads
    converge fast in the beginning and ortho goes bananas.
             
    wfdt REAL
    Default: 5.D0
    The minimum step size to take in the SD/CG direction
             
    maxwfdt REAL
    Default: 0.3D0
    The maximum step size to take in the SD/CG direction
    The code calculates an optimum step size, but that may be
    either too small (takes forever to converge)  or too large
    (code goes crazy) . This option keeps the step size between
    wfdt and maxwfdt. In my experience 0.1 and 0.5 work quite
    well. (but don't blame me if it doesn't work for you)
             
    nit INTEGER
    Default: 10
    Number of iterations to do for Wannier convergence.
             
    nsd INTEGER
    Default: 10
    Out of a total of NIT iterations, NSD will be Steepest-Descent
    and ( nit - nsd ) will be Conjugate-Gradient.
             
    wf_q REAL
    Default: 1500.D0
    Fictitious mass of the A matrix used for obtaining
    maximally localized Wannier functions. The unitary
    transformation matrix U is written as exp(A) where
    A is a anti-hermitian matrix. The Damped-Dynamics is performed
    in terms of the A matrix, and then U is computed from A.
    Usually a value between 1500 and 2500 works fine, but should
    be tested.
             
    wf_friction REAL
    Default: 0.3D0
    Damping coefficient for Damped-Dynamics.
             
    nsteps INTEGER
    Default: 20
    Number of Damped-Dynamics steps to be performed per CP
    iteration.
             
    tolw REAL
    Default: 1.D-8
    Convergence criterion for localization.
             
    adapt LOGICAL
    Default: .true.
    Whether to adapt the damping parameter dynamically.
             
    calwf INTEGER
    Default: 3
    Wannier Function Options, can be 1,2,3,4,5
    
    1. Output the Wannier function density, nwf and wffort
       are used for this option. see below.
    2. Output the Overlap matrix O_i,j=<w_i|exp{iGr}|w_j>. O is
       written to unit 38. For details on how O is constructed,
       see below.
    3. Perform nsteps of Wannier dynamics per CP iteration, the
       orbitals are now Wannier Functions, not Kohn-Sham orbitals.
       This is a Unitary transformation of the occupied subspace
       and does not leave the CP Lagrangian invariant. Expectation
       values remain the same. So you will **NOT** have a constant
       of motion during the run. Don't freak out, its normal.
    4. This option starts for the KS states and does 1 CP iteration
       and nsteps of Damped-Dynamics to generate  maximally
       localized wannier functions. Its useful when you have the
       converged KS groundstate and want to get to the converged
       Wannier function groundstate in 1 CP Iteration.
    5. This option is similar to calwf 1, except that the output is
       the Wannier function/wavefunction, and not the orbital
       density. See nwf below.
             
    nwf INTEGER
    Default: 0
    This option is used with calwf 1 and calwf 5. with calwf=1,
    it tells the code how many Orbital densities are to be
    output. With calwf=5, set this to 1(i.e calwf=5 only writes
    one state during one run. so if you want 10 states, you have
    to run the code 10 times). With calwf=1, you can print many
    orbital densities in a single run.
    See also the PLOT_WANNIER card for specifying the states to
    be printed.
             
    wffort INTEGER
    Default: 40
    This tells the code where to dump the orbital densities. Used
     only with CALWF=1. for e.g. if you want to print 2 orbital
     densities, set calwf=1, nwf=2 and wffort to an appropriate
     number (e.g. 40) then the first orbital density will be
     output to fort.40, the second to fort.41 and so on. Note that
     in the current implementation, the following units are used
     21,22,24,25,26,27,28,38,39,77,78 and whatever you define as
     ndr and ndw. so use number other than these.
             
    writev LOGICAL
    Default: .false.
    Output the charge density (g-space) and the list of g-vectors
    This is useful if you want to reconstruct the electrostatic
    potential using the Poisson equation. If .TRUE. then the
    code will output the g-space charge density and the list
    if G-vectors, and STOP.
    Charge density is written to : CH_DEN_G_PARA.ispin (1 or 2
    depending on the number of spin types) or CH_DEN_G_SERL.ispin
    depending on if the code is being run in parallel or serial
    G-vectors are written to G_PARA or G_SERL.
             

    Card: ATOMIC_SPECIES

    Syntax:

    ATOMIC_SPECIES
     X(1)   Mass_X(1)   PseudoPot_X(1) 
     X(2)   Mass_X(2)   PseudoPot_X(2) 
     . . .
     X(ntyp)   Mass_X(ntyp)   PseudoPot_X(ntyp) 

    Description of items:

    
    
    X CHARACTER
     label of the atom
                      
    Mass_X REAL
    mass of the atomic species [amu: mass of C = 12]
    not used if calculation='scf', 'nscf', 'bands'
                      
    PseudoPot_X CHARACTER
    File containing PP for this species.
    
    The pseudopotential file is assumed to be in the new UPF format.
    If it doesn't work, the pseudopotential format is determined by
    the file name:
    
    *.vdb or *.van     Vanderbilt US pseudopotential code
    *.RRKJ3            Andrea Dal Corso's code (old format)
    none of the above  old PWscf norm-conserving format
                      

    Card: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal }

    IF calculation == 'bands' OR calculation == 'nscf' :
    Specified atomic positions will be IGNORED and those from the
    previous scf calculation will be used instead !!!
                
    ELSEIF :

    Syntax:

    ATOMIC_POSITIONS { alat | bohr | angstrom | crystal }
     X(1)   x(1)   y(1)   z(1)  {  if_pos(1)(1)   if_pos(2)(1)   if_pos(3)(1)  }
     X(2)   x(2)   y(2)   z(2)  {  if_pos(1)(2)   if_pos(2)(2)   if_pos(3)(2)  }
     . . .
     X(nat)   x(nat)   y(nat)   z(nat)  {  if_pos(1)(nat)   if_pos(2)(nat)   if_pos(3)(nat)  }

    Description of items:

    alat    : atomic positions are in cartesian coordinates,
              in units of the lattice parameter (either
              celldm(1) or A).
    
    bohr    : atomic positions are in cartesian coordinate,
              in atomic units (i.e. Bohr).
              If no option is specified, 'bohr' is assumed;
              not specifying units is DEPRECATED and will no
              longer be allowed in the future
    
    angstrom: atomic positions are in cartesian coordinates,
              in Angstrom
    
    crystal : atomic positions are in crystal coordinates, i.e.
              in relative coordinates of the primitive lattice
              vectors as defined either in card CELL_PARAMETERS
              or via the ibrav + celldm / a,b,c... variables
             
    X CHARACTER
     label of the atom as specified in ATOMIC_SPECIES
                            
    x, y, z REAL
     atomic positions
                            
    if_pos(1), if_pos(2), if_pos(3) INTEGER
    Default: 1
    component i of the force for this atom is multiplied by if_pos(i),
    which must be either 0 or 1.  Used to keep selected atoms and/or
    selected components fixed in MD dynamics or
    structural optimization run.
                               

    Card: ATOMIC_VELOCITIES { a.u }

    Optional card, reads velocities (in atomic units) from standard input

    when starting with ion_velocities="from_input" it is convenient
    to perform few steps (~5-10) with a smaller time step (0.5 a.u.)
          

    Syntax:

    ATOMIC_VELOCITIES { a.u }
     V(1)   vx(1)   vy(1)   vz(1) 
     V(2)   vx(2)   vy(2)   vz(2) 
     . . .
     V(nat)   vx(nat)   vy(nat)   vz(nat) 

    Description of items:

    
    
    V CHARACTER
     label of the atom as specified in ATOMIC_SPECIES
                      
    vx, vy, vz REAL
     atomic velocities along x y and z direction
                      

    Card: CELL_PARAMETERS { bohr | angstrom | alat }

    Optional card, needed only if ibrav = 0 is specified, ignored otherwise !

    Syntax:

    CELL_PARAMETERS { bohr | angstrom | alat }
     v1(1)   v1(2)   v1(3) 
     v2(1)   v2(2)   v2(3) 
     v3(1)   v3(2)   v3(3) 

    Description of items:

    'bohr'/'angstrom': lattice vectors in bohr radii / angstrom.
    'alat' / nothing specified: lattice vectors in units or the
    lattice parameter (either celldm(1) or a). Not specifing
    units is DEPRECATED and will not be allowed in the future.
    If nothing specified and no lattice parameter specified,
    'bohr' is assumed - DEPRECATED, will no longer be allowed
             
    v1, v2, v3 REAL
    Crystal lattice vectors:
        v1(1)  v1(2)  v1(3)    ... 1st lattice vector
        v2(1)  v2(2)  v2(3)    ... 2nd lattice vector
        v3(1)  v3(2)  v3(3)    ... 3rd lattice vector
                      

    Card: CONSTRAINTS

    Optional card, used for constrained dynamics or constrained optimisations

    When this card is present the SHAKE algorithm is automatically used.
          

    Syntax:

    CONSTRAINTS
    nconstr   { constr_tol   }
     constr_type(1)   constr(1)(1)   constr(2)(1)  [  constr(3)(1)    constr(4)(1)   ] {  constr_target(1)  }
     constr_type(2)   constr(1)(2)   constr(2)(2)  [  constr(3)(2)    constr(4)(2)   ] {  constr_target(2)  }
     . . .
     constr_type(nconstr)   constr(1)(nconstr)   constr(2)(nconstr)  [  constr(3)(nconstr)    constr(4)(nconstr)   ] {  constr_target(nconstr)  }

    Description of items:

    
    
    nconstr INTEGER
     Number of constraints.
                   
    constr_tol REAL
     Tolerance for keeping the constraints satisfied.
                      
    constr_type CHARACTER
    Type of constrain :
    
    'type_coord'      : constraint on global coordination-number, i.e. the
                        average number of atoms of type B surrounding the
                        atoms of type A. The coordination is defined by
                        using a Fermi-Dirac.
                        (four indexes must be specified).
    
    'atom_coord'      : constraint on local coordination-number, i.e. the
                        average number of atoms of type A surrounding a
                        specific atom. The coordination is defined by
                        using a Fermi-Dirac.
                        (four indexes must be specified).
    
    'distance'        : constraint on interatomic distance
                        (two atom indexes must be specified).
    
    'planar_angle'    : constraint on planar angle
                        (three atom indexes must be specified).
    
    'torsional_angle' : constraint on torsional angle
                        (four atom indexes must be specified).
    
    'bennett_proj'    : constraint on the projection onto a given direction
                        of the vector defined by the position of one atom
                        minus the center of mass of the others.
                        ( Ch.H. Bennett in Diffusion in Solids, Recent
                          Developments, Ed. by A.S. Nowick and J.J. Burton,
                          New York 1975 ).
                      
    constr(1), constr(2), constr(3), constr(4)
                          These variables have different meanings
                          for different constraint types:
    
                         'type_coord' : constr(1) is the first index of the
                                        atomic type involved
                                        constr(2) is the second index of the
                                        atomic type involved
                                        constr(3) is the cut-off radius for
                                        estimating the coordination
                                        constr(4) is a smoothing parameter
    
                         'atom_coord' : constr(1) is the atom index of the
                                        atom with constrained coordination
                                        constr(2) is the index of the atomic
                                        type involved in the coordination
                                        constr(3) is the cut-off radius for
                                        estimating the coordination
                                        constr(4) is a smoothing parameter
    
                           'distance' : atoms indices object of the
                                        constraint, as they appear in
                                        the 'ATOMIC_POSITION' CARD
    
    'planar_angle', 'torsional_angle' : atoms indices object of the
                                        constraint, as they appear in the
                                        'ATOMIC_POSITION' CARD (beware the
                                        order)
    
                       'bennett_proj' : constr(1) is the index of the atom
                                        whose position is constrained.
                                        constr(2:4) are the three coordinates
                                        of the vector that specifies the
                                        constraint direction.
                      
    constr_target REAL
    Target for the constrain ( angles are specified in degrees ).
    This variable is optional.
                         

    Card: OCCUPATIONS

    Optional card, used only if occupations = 'from_input', ignored otherwise !

    Syntax:

    OCCUPATIONS
     f_inp1(1)   f_inp1(2)   . . .  f_inp1(nbnd) 
    [    f_inp2(1)   f_inp2(2)   . . .  f_inp2(nbnd)    ]

    Description of items:

    
    
    f_inp1 REAL
    Occupations of individual states (MAX 10 PER LINE).
    For spin-polarized calculations, these are majority spin states.
                      
    f_inp2 REAL
    Occupations of minority spin states (MAX 10 PER LINE)
    To be specified only for spin-polarized calculations.
                         

    Card: PLOT_WANNIER

    Optional card, indices of the states that have to be printed (only for calf=1 and calf=5).

    Syntax:

    PLOT_WANNIER
     iwf(1) 
     iwf(2) 
     . . .
     iwf(nwf) 

    Description of items:

    
    
    iwf INTEGER
    These are the indices of the states that you want to output.
    Also used with calwf = 1 and 5. If calwf = 1, then you need
    nwf indices here (each in a new line). If CALWF=5, then just
    one index in needed.
                      
    This file has been created by helpdoc utility.
    espresso-5.1/CPV/Doc/INPUT_CPPP.def0000644000175000017500000001170612341373026014646 0ustar mbambainput_description -distribution {Quantum Espresso} -package CP -program cppp.x { toc {} intro { ============================================================================= CP Post-Processing code (cppp.x) ============================================================================= The cppp.x code is an utility that can be used to extract data from the CP restart and CP trajectory files. INPUT: ===== the program read the input parameters from the standard input or from any other file specified through the usual "-input" command line flag. The input parameters, in the input file, should be specified in the inputpp namelist follow: &INPUTPP ... cppp_input_parameter ... / } namelist INPUTPP { var prefix -type CHARACTER { default { 'cp' } info { basename prepended to cp.x output filenames: cp.evp, cp.pos .... } } var fileout -type CHARACTER { default { 'out' } info { basename of the cppp.x output files } } var output -type CHARACTER { default { 'xsf' } info { a string describing the output format to be performed, allowed values: 'xsf', 'grd' xsf xcrysden format grd GRD gaussian 3D grid format } } var outdir -type CHARACTER { default { './' } info { directory containing the CP trajectory files (.evp .pos .cel ...) and restart files ( .save ) to be processed } } var lcharge -type LOGICAL { default { .false. } info { This logical flag control the processing of charge density. .TRUE. generate output file containing charge density. The file format is controlled by the "output" parameter .FALSE. do not generate charge density file } } var lforces -type LOGICAL { default { .false. } info { This logical flag control the processing of forces. .TRUE. extract forces from trajectory files and write them to xcrysden file .FALSE. do not proces forces } } var ldynamics -type LOGICAL { default { .false. } info { This logical flag control the processing of atoms trajectory. .TRUE. process CP trajectory files and generate a trajectory file for xcrysden (.axsf) .FALSE. do not process trajectory } } var lpdb -type LOGICAL { default { .false. } info { This logical flag control the generation of a pdb file. .TRUE. generate a pdb file containing positions and cell of the simulated system .FALSE. do not generate pdb file } } var lrotation -type LOGICAL { default { .false. } info { This logical flag control the rotation of the cell .TRUE. rotate the system cell in space in order to have the a lattice parameter laying on the x axis, the b lattice parameter laying on the xy plane .FALSE. do not rotate cell } } vargroup -type INTEGER { var ns1 var ns2 var ns3 default { 0 } info { Dimensions of the charge density 3D grid. If ns1, ns2, ns3 are 0 or not specified, the dimensions of the grid in the CP run are assumed; otherwise chargedensity is re-sampled on the GRID specified with ns1,ns2,ns3 } } vargroup -type INTEGER { var np1 var np2 var np3 default { 1 } info { Number of replicas of atomic positions along cell parameters. If ns1, ns2, ns3 are 1 or not specified, cppp.x do not replicate atomi positions in space. If ns1 ns2 ns3 are > 1 cppp.x replicate the positions along a ns1 times, along b ns2 times and along c ns3 times. the atomic positions used in the simunation. } } var nframes -type INTEGER { default { 1 } info { number of MD step to be read to build the trajectory } } var ndr -type INTEGER { default { 51 } info { CP restart file number to post process } } dimension atomic_number -start 1 -end ntyp -type INTEGER { default { 1 } info { Specify the atomic number of the species in CP trajectory and restart file. atomic_number(1) specify the atomic number of the first specie atomic_number(2) specify the atomic number of the second specie .... } } var charge_density -type CHARACTER { default { 'full' } info { specify the component of the charge density to plot, allowed values: 'full' print the full electronic charge 'spin' print the spin polarization (for LSD calculations) } } var state -type CHARACTER { default { ' ' } info { specify the Kohn-Sham state to plot, example: 'KS_1' } } var lbinary -type LOGICAL { default { .TRUE. } info { specify the file format of the wave function files to be read and plotted } } } } espresso-5.1/CPV/Doc/user_guide.log0000644000175000017500000003371512341373066015313 0ustar mbambaThis is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=pdflatex 2013.10.8) 28 MAY 2014 16:44 entering extended mode restricted \write18 enabled. %&-line parsing enabled. **user_guide.tex (./user_guide.tex LaTeX2e <2011/06/27> Babel and hyphenation patterns for english, dumylang, nohyphenation, it alian, loaded. (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo File: size12.clo 2007/10/19 v1.4h Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf/tex/latex/html/html.sty (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty Package: hyperref 2012/05/13 v6.82q Hypertext links for LaTeX (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty Package: hobsub-hyperref 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty Package: hobsub-generic 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO) Package: hobsub 2012/05/28 v1.13 Construct package bundles (HO) Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO) Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO) Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO) Package ifluatex Info: LuaTeX not detected. Package: ifvtex 2010/03/01 v1.5 Detect VTeX and its facilities (HO) Package ifvtex Info: VTeX not detected. Package: intcalc 2007/09/27 v1.1 Expandable calculations with integers (HO) Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO) Package ifpdf Info: pdfTeX in PDF mode is detected. Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO) Package etexcmds Info: Could not find \expanded. (etexcmds) That can mean that you are not using pdfTeX 1.50 or (etexcmds) that some package has redefined \expanded. (etexcmds) In the latter case, load this package earlier. Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO) Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO) Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO ) Package pdftexcmds Info: LuaTeX not detected. Package pdftexcmds Info: \pdf@primitive is available. Package pdftexcmds Info: \pdf@ifprimitive is available. Package pdftexcmds Info: \pdfdraftmode found. Package: pdfescape 2011/11/25 v1.13 Implements pdfTeX's escape features (HO) Package: bigintcalc 2012/04/08 v1.3 Expandable calculations on big integers (HO ) Package: bitset 2011/01/30 v1.1 Handle bit-vector datatype (HO) Package: uniquecounter 2011/01/30 v1.2 Provide unlimited unique counter (HO) ) Package hobsub Info: Skipping package `hobsub' (already loaded). Package: letltxmacro 2010/09/02 v1.4 Let assignment for LaTeX macros (HO) Package: hopatch 2012/05/28 v1.2 Wrapper for package hooks (HO) Package: xcolor-patch 2011/01/30 xcolor patch Package: atveryend 2011/06/30 v1.8 Hooks at the very end of document (HO) Package atveryend Info: \enddocument detected (standard20110627). Package: atbegshi 2011/10/05 v1.16 At begin shipout hook (HO) Package: refcount 2011/10/16 v3.4 Data extraction from label references (HO) Package: hycolor 2011/01/30 v1.7 Color options for hyperref/bookmark (HO) ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) (/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO) ) \@linkdim=\dimen103 \Hy@linkcounter=\count87 \Hy@pagecounter=\count88 (/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2012/05/13 v6.82q Hyperref: PDFDocEncoding definition (HO) ) \Hy@SavedSpaceFactor=\count89 (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive ) Package hyperref Info: Hyper figures OFF on input line 4062. Package hyperref Info: Link nesting OFF on input line 4067. Package hyperref Info: Hyper index ON on input line 4070. Package hyperref Info: Plain pages OFF on input line 4077. Package hyperref Info: Backreferencing OFF on input line 4082. Package hyperref Info: Implicit mode ON; LaTeX internals redefined. Package hyperref Info: Bookmarks ON on input line 4300. \c@Hy@tempcnt=\count90 (/usr/share/texlive/texmf-dist/tex/latex/url/url.sty \Urlmuskip=\muskip10 Package: url 2006/04/12 ver 3.3 Verb mode for urls, etc. ) LaTeX Info: Redefining \url on input line 4653. \Fld@menulength=\count91 \Field@Width=\dimen104 \Fld@charsize=\dimen105 Package hyperref Info: Hyper figures OFF on input line 5773. Package hyperref Info: Link nesting OFF on input line 5778. Package hyperref Info: Hyper index ON on input line 5781. Package hyperref Info: backreferencing OFF on input line 5788. Package hyperref Info: Link coloring OFF on input line 5793. Package hyperref Info: Link coloring with OCG OFF on input line 5798. Package hyperref Info: PDF/A mode OFF on input line 5803. LaTeX Info: Redefining \ref on input line 5843. LaTeX Info: Redefining \pageref on input line 5847. \Hy@abspage=\count92 \c@Item=\count93 \c@Hfootnote=\count94 ) Package hyperref Message: Driver: hpdftex. (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def File: hpdftex.def 2012/05/13 v6.82q Hyperref driver for pdfTeX \Fld@listcount=\count95 \c@bookmark@seq@number=\count96 (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty Package: rerunfilecheck 2011/04/15 v1.7 Rerun checks for auxiliary files (HO) Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 82. ) \Hy@SectionHShift=\skip43 ) Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count97 \c@lchapter=\count98 \c@chapter=\count99 \c@lsection=\count100 \c@lsubsection=\count101 \c@lsubsubsection=\count102 \c@lparagraph=\count103 \c@lsubparagraph=\count104 \c@lsubsubparagraph=\count105 \ptrfile=\write3 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live ) Package graphics Info: Driver file: pdftex.def on input line 91. (/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX \Gread@gobject=\count106 )) \Gin@req@height=\dimen106 \Gin@req@width=\dimen107 ) (./user_guide.aux) \openout1 = `user_guide.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 27. LaTeX Font Info: ... okay on input line 27. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 27. LaTeX Font Info: ... okay on input line 27. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 27. LaTeX Font Info: ... okay on input line 27. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 27. LaTeX Font Info: ... okay on input line 27. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 27. LaTeX Font Info: ... okay on input line 27. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 27. LaTeX Font Info: ... okay on input line 27. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 27. LaTeX Font Info: ... okay on input line 27. \AtBeginShipoutBox=\box26 Package hyperref Info: Link coloring OFF on input line 27. (/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty Package: nameref 2010/04/30 v2.40 Cross-referencing by name of section (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/gettitlestring.sty Package: gettitlestring 2010/12/03 v1.4 Cleanup title references (HO) ) \c@section@level=\count107 ) LaTeX Info: Redefining \ref on input line 27. LaTeX Info: Redefining \pageref on input line 27. LaTeX Info: Redefining \nameref on input line 27. (./user_guide.out) (./user_guide.out) \@outlinefile=\write4 \openout4 = `user_guide.out'. (/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii [Loading MPS to PDF converter (version 2006.09.02).] \scratchcounter=\count108 \scratchdimen=\dimen108 \scratchbox=\box27 \nofMPsegments=\count109 \nofMParguments=\count110 \everyMPshowfont=\toks15 \MPscratchCnt=\count111 \MPscratchDim=\dimen109 \MPnumerator=\count112 \makeMPintoPDFobject=\count113 \everyMPtoPDFconversion=\toks16 ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO) ) Package grfext Info: Graphics extension search list: (grfext) [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE G,.JBIG2,.JB2,.eps] (grfext) \AppendGraphicsExtensions on input line 452. (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv e )) <../../Doc/quantum_espresso.pdf, id=64, 532.99126pt x 181.67876pt> File: ../../Doc/quantum_espresso.pdf Graphic file (type pdf) Package pdftex.def Info: ../../Doc/quantum_espresso.pdf used on input line 50. (pdftex.def) Requested size: 142.26378pt x 48.49115pt. <../../Doc/democritos.pdf, id=65, 262.9825pt x 76.285pt> File: ../../Doc/democritos.pdf Graphic file (type pdf) Package pdftex.def Info: ../../Doc/democritos.pdf used on input line 50. (pdftex.def) Requested size: 170.71652pt x 49.52296pt. LaTeX Font Info: External font `cmex10' loaded for size (Font) <14.4> on input line 50. LaTeX Font Info: External font `cmex10' loaded for size (Font) <7> on input line 50. (./user_guide.toc LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 4. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 4. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 4. LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <12> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 6. ) \tf@toc=\write5 \openout5 = `user_guide.toc'. [1 {/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map} <../../Doc/quantum_espresso .pdf> <../../Doc/democritos.pdf>] LaTeX Font Info: Try loading font information for OMS+cmr on input line 90. (/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 90. [2] Underfull \hbox (badness 10000) in paragraph at lines 197--201 [] [3] [4] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <17.28> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 276. [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] LaTeX Warning: Reference `SubSec:para' on page 15 undefined on input line 889. [15] Overfull \hbox (21.37143pt too wide) in paragraph at lines 951--959 \OT1/cmr/m/n/12 on the avail-able com-mu-ni-ca-tion hard-ware. For PC clus-ters , Open-MPI (\OT1/cmtt/m/n/12 http://www.openmpi.org/\OT1/cmr/m/n/12 ) [] Package atveryend Info: Empty hook `BeforeClearDocument' on input line 966. [16] Package atveryend Info: Empty hook `AfterLastShipout' on input line 966. (./user_guide.aux) Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 966. Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 966. Package rerunfilecheck Info: File `user_guide.out' has not changed. (rerunfilecheck) Checksum: F99CC8DE690178E52EBD72C07A930844;1003. LaTeX Warning: There were undefined references. Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 966. ) Here is how much of TeX's memory you used: 5323 strings out of 495048 78012 string characters out of 3181554 164920 words of memory out of 3000000 8453 multiletter control sequences out of 15000+200000 10262 words of font info for 37 fonts, out of 3000000 for 9000 14 hyphenation exceptions out of 8191 36i,6n,28p,223b,433s stack positions out of 5000i,500n,10000p,200000b,50000s Output written on user_guide.pdf (16 pages, 223159 bytes). PDF statistics: 226 PDF objects out of 1000 (max. 8388607) 189 compressed objects within 2 object streams 37 named destinations out of 1000 (max. 500000) 131 words of extra memory for PDF output out of 10000 (max. 10000000) espresso-5.1/CPV/Doc/user_guide.toc0000644000175000017500000000261312341373066015310 0ustar mbamba\contentsline {section}{\numberline {1}Introduction}{1}{section.1} \contentsline {section}{\numberline {2}Compilation}{2}{section.2} \contentsline {section}{\numberline {3}Input data}{3}{section.3} \contentsline {subsection}{\numberline {3.1}Data files}{4}{subsection.3.1} \contentsline {subsection}{\numberline {3.2}Format of arrays containing charge density, potential, etc.}{4}{subsection.3.2} \contentsline {section}{\numberline {4}Using \texttt {CP}}{5}{section.4} \contentsline {subsection}{\numberline {4.1}Reaching the electronic ground state}{6}{subsection.4.1} \contentsline {subsection}{\numberline {4.2}Relax the system}{7}{subsection.4.2} \contentsline {subsection}{\numberline {4.3}CP dynamics}{9}{subsection.4.3} \contentsline {paragraph}{ Varying the temperature }{10}{section*.2} \contentsline {paragraph}{ No\'se thermostat for electrons }{11}{section*.3} \contentsline {subsection}{\numberline {4.4}Advanced usage}{11}{subsection.4.4} \contentsline {subsubsection}{\numberline {4.4.1} Self-interaction Correction }{11}{subsubsection.4.4.1} \contentsline {subsubsection}{\numberline {4.4.2} ensemble-DFT }{12}{subsubsection.4.4.2} \contentsline {subsubsection}{\numberline {4.4.3}Free-energy surface calculations}{14}{subsubsection.4.4.3} \contentsline {subsubsection}{\numberline {4.4.4}Treatment of USPPs}{14}{subsubsection.4.4.4} \contentsline {section}{\numberline {5}Performances}{15}{section.5} espresso-5.1/CPV/Doc/user_guide.tex0000644000175000017500000011550412341373026015323 0ustar mbamba\documentclass[12pt,a4paper]{article} \def\version{5.1.0} \def\qe{{\sc Quantum ESPRESSO}} \usepackage{html} % BEWARE: don't revert from graphicx for epsfig, because latex2html % doesn't handle epsfig commands !!! \usepackage{graphicx} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm \def\pwx{\texttt{pw.x}} \def\cpx{\texttt{cp.x}} \def\phx{\texttt{ph.x}} \def\nebx{\texttt{neb.x}} \def\configure{\texttt{configure}} \def\PWscf{\texttt{PWscf}} \def\PHonon{\texttt{PHonon}} \def\CP{\texttt{CP}} \def\PostProc{\texttt{PostProc}} \def\make{\texttt{make}} \begin{document} \author{} \date{} \def\qeImage{../../Doc/quantum_espresso.pdf} \def\democritosImage{../../Doc/democritos.pdf} \begin{htmlonly} \def\qeImage{../../Doc/quantum_espresso.png} \def\democritosImage{../../Doc/democritos.png} \end{htmlonly} \title{ \includegraphics[width=5cm]{\qeImage} \hskip 2cm \includegraphics[width=6cm]{\democritosImage}\\ \vskip 1cm % title \Huge User's Guide for \CP\ \Large (version \version) } %\endhtmlonly \maketitle \tableofcontents \section{Introduction} This guide covers the usage of the \CP\ package, version \version, a core component of the \qe\ distribution. Further documentation, beyond what is provided in this guide, can be found in the directory \texttt{CPV/Doc/}, containing a copy of this guide. This guide assumes that you know the physics that \CP\ describes and the methods it implements. It also assumes that you have already installed, or know how to install, \qe. If not, please read the general User's Guide for \qe, found in directory \texttt{Doc/} two levels above the one containing this guide; or consult the web site:\\ \texttt{http://www.quantum-espresso.org}. People who want to modify or contribute to \CP\ should read the Developer Manual: \\ \texttt{Doc/developer\_man.pdf}. \CP\ can perform Car-Parrinello molecular dynamics, including variable-cell dynamics, and free-energy surface calculation at fixed cell through meta-dynamics, if patched with PLUMED. The \CP\ package is based on the original code written by Roberto Car and Michele Parrinello. \CP\ was developed by Alfredo Pasquarello (IRRMA, Lausanne), Kari Laasonen (Oulu), Andrea Trave, Roberto Car (Princeton), Nicola Marzari (Univ. Oxford), Paolo Giannozzi, and others. FPMD, later merged with \CP, was developed by Carlo Cavazzoni, Gerardo Ballabio (CINECA), Sandro Scandolo (ICTP), Guido Chiarotti (SISSA), Paolo Focher, and others. We quote in particular: \begin{itemize} \item Robert DiStasio et al. (Princeton) for Tkatchenko-Scheffler vdW corrections; \item Manu Sharma (Princeton) and Yudong Wu (Princeton) for maximally localized Wannier functions and dynamics with Wannier functions; \item Paolo Umari (Univ. Padua) for finite electric fields and conjugate gradients; \item Paolo Umari and Ismaila Dabo for ensemble-DFT; \item Xiaofei Wang (Princeton) for META-GGA; \item The Autopilot feature was implemented by Targacept, Inc. \end{itemize} This guide has been mostly writen by Gerardo Ballabio and Carlo Cavazzoni. \CP\ is free software, released under the GNU General Public License. \\ See \texttt{http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt}, or the file License in the distribution). We shall greatly appreciate if scientific work done using this code will contain an explicit acknowledgment and the following reference: \begin{quote} P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009), http://arxiv.org/abs/0906.2569 \end{quote} \section{Compilation} \CP\ is included in the core \qe\ distribution. Instruction on how to install it can be found in the general documentation (User's Guide) for \qe. Typing \texttt{make cp} from the main \qe\ directory or \make\ from the \texttt{CPV/} subdirectory produces the following codes in \texttt{CPV/src}: \begin{itemize} \item \cpx: Car-Parrinello Molecular Dynamics code \item \texttt{cppp.x}: postprocessing code for \cpx \item \texttt{wfdd.x}: utility code for finding maximally localized Wannier functions using damped dynamics. \end{itemize} Symlinks to executable programs will be placed in the \texttt{bin/} subdirectory. As a final check that compilation was successful, you may want to run some or all of the tests and examples. Please see the general User's Guide for their setup. Automated tests for \cpx\ are in directory \texttt{tests/} and can be run via the script \texttt{check\_cp.x.j} You may take the tests and examples distributed with \CP\ as templates for writing your own input files. Input files for tests are contained in \texttt{tests/} subdirectory with file type \texttt{*.in1}, \texttt{*.in2}, ... . Input file for examples are produced if you run the examples in the \texttt{results/} subdirectories, with names ending with \texttt{.in}. For general information on parallelism and how to run in parallel execution, please see the general User's Guide. \CP\ currently can take advantage of both MPI and OpenMP parallelization. The ``plane-wave'', ``linear-algebra'' and ``task-group'' parallelization levels are implemented. \section{Input data} Input data for \cpx\ is organized into several namelists, followed by other fields (``cards'') introduced by keywords. The namelists are \begin{tabular}{ll} \&CONTROL:& general variables controlling the run\\ \&SYSTEM: &structural information on the system under investigation\\ \&ELECTRONS: &electronic variables, electron dynamics\\ \&IONS : &ionic variables, ionic dynamics\\ \&CELL (optional): &variable-cell dynamics\\ \end{tabular} \\ The \texttt{\&CELL} namelist may be omitted for fixed-cell calculations. This depends on the value of variable \texttt{calculation} in namelist \&CONTROL. Most variables in namelists have default values. Only the following variables in \&SYSTEM must always be specified: \begin{tabular}{lll} \texttt{ibrav} & (integer)& Bravais-lattice index\\ \texttt{celldm} &(real, dimension 6)& crystallographic constants\\ \texttt{nat} &(integer)& number of atoms in the unit cell\\ \texttt{ntyp} &(integer)& number of types of atoms in the unit cell\\ \texttt{ecutwfc} &(real)& kinetic energy cutoff (Ry) for wavefunctions. \end{tabular} \\). Explanations for the meaning of variables \texttt{ibrav} and \texttt{celldm}, as well as on alternative ways to input structural data, are contained in files \texttt{Doc/INPUT\_CP.*}. These files are the reference for input data and describe a large number of other variables as well. Almost all variables have default values, which may or may not fit your needs. Comment lines in namelists can be introduced by a "!", exactly as in fortran code. After the namelists, you have several fields (``cards'') introduced by keywords with self-explanatory names: \begin{quote} ATOMIC\_SPECIES\\ ATOMIC\_POSITIONS\\ CELL\_PARAMETERS (optional)\\ OCCUPATIONS (optional)\\ \end{quote} The keywords may be followed on the same line by an option. Unknown fields are ignored. See the files mentioned above for details on the available ``cards''. Comments lines in ``cards'' can be introduced by either a ``!'' or a ``\#'' character in the first position of a line. \subsection{Data files} The output data files are written in the directory specified by variable \texttt{outdir}, with names specified by variable \texttt{prefix} (a string that is prepended to all file names, whose default value is: \texttt{prefix='pwscf'}). The \texttt{iotk} toolkit is used to write the file in a XML format, whose definition can be found in the Developer Manual. In order to use the data directory on a different machine, you need to convert the binary files to formatted and back, using the \texttt{bin/iotk} script. The execution stops if you create a file \texttt{prefix.EXIT} either in the working directory (i.e. where the program is executed), or in the \texttt{outdir} directory. Note that with some versions of MPI, the working directory is the directory where the executable is! The advantage of this procedure is that all files are properly closed, whereas just killing the process may leave data and output files in an unusable state. \subsection{Format of arrays containing charge density, potential, etc.} The index of arrays used to store functions defined on 3D meshes is actually a shorthand for three indices, following the FORTRAN convention ("leftmost index runs faster"). An example will explain this better. Suppose you have a 3D array \texttt{psi(nr1x,nr2x,nr3x)}. FORTRAN compilers store this array sequentially in the computer RAM in the following way: \begin{verbatim} psi( 1, 1, 1) psi( 2, 1, 1) ... psi(nr1x, 1, 1) psi( 1, 2, 1) psi( 2, 2, 1) ... psi(nr1x, 2, 1) ... ... psi(nr1x,nr2x, 1) ... psi(nr1x,nr2x,nr3x) etc \end{verbatim} Let \texttt{ind} be the position of the \texttt{(i,j,k)} element in the above list: the following relation \begin{verbatim} ind = i + (j - 1) * nr1x + (k - 1) * nr2x * nr1x \end{verbatim} holds. This should clarify the relation between 1D and 3D indexing. In real space, the \texttt{(i,j,k)} point of the FFT grid with dimensions \texttt{nr1} ($\le$\texttt{nr1x}), \texttt{nr2} ($\le$\texttt{nr2x}), , \texttt{nr3} ($\le$\texttt{nr3x}), is $$ r_{ijk}=\frac{i-1}{nr1} \tau_1 + \frac{j-1}{nr2} \tau_2 + \frac{k-1}{nr3} \tau_3 $$ where the $\tau_i$ are the basis vectors of the Bravais lattice. The latter are stored row-wise in the \texttt{at} array: $\tau_1 = $ \texttt{at(:, 1)}, $\tau_2 = $ \texttt{at(:, 2)}, $\tau_3 = $ \texttt{at(:, 3)}. The distinction between the dimensions of the FFT grid, \texttt{(nr1,nr2,nr3)} and the physical dimensions of the array, \texttt{(nr1x,nr2x,nr3x)} is done only because it is computationally convenient in some cases that the two sets are not the same. In particular, it is often convenient to have \texttt{nrx1}=\texttt{nr1}+1 to reduce memory conflicts. \section{Using \CP} It is important to understand that a CP simulation is a sequence of different runs, some of them used to "prepare" the initial state of the system, and other performed to collect statistics, or to modify the state of the system itself, i.e. modify the temperature or the pressure. To prepare and run a CP simulation you should first of all define the system: \begin{quote} atomic positions\\ system cell\\ pseudopotentials\\ cut-offs\\ number of electrons and bands (optional)\\ FFT grids (optional) \end{quote} An example of input file (Benzene Molecule): \begin{verbatim} &control title = 'Benzene Molecule', calculation = 'cp', restart_mode = 'from_scratch', ndr = 51, ndw = 51, nstep = 100, iprint = 10, isave = 100, tstress = .TRUE., tprnfor = .TRUE., dt = 5.0d0, etot_conv_thr = 1.d-9, ekin_conv_thr = 1.d-4, prefix = 'c6h6', pseudo_dir='/scratch/benzene/', outdir='/scratch/benzene/Out/' / &system ibrav = 14, celldm(1) = 16.0, celldm(2) = 1.0, celldm(3) = 0.5, celldm(4) = 0.0, celldm(5) = 0.0, celldm(6) = 0.0, nat = 12, ntyp = 2, nbnd = 15, ecutwfc = 40.0, nr1b= 10, nr2b = 10, nr3b = 10, input_dft = 'BLYP' / &electrons emass = 400.d0, emass_cutoff = 2.5d0, electron_dynamics = 'sd' / &ions ion_dynamics = 'none' / &cell cell_dynamics = 'none', press = 0.0d0, / ATOMIC_SPECIES C 12.0d0 c_blyp_gia.pp H 1.00d0 h.ps ATOMIC_POSITIONS (bohr) C 2.6 0.0 0.0 C 1.3 -1.3 0.0 C -1.3 -1.3 0.0 C -2.6 0.0 0.0 C -1.3 1.3 0.0 C 1.3 1.3 0.0 H 4.4 0.0 0.0 H 2.2 -2.2 0.0 H -2.2 -2.2 0.0 H -4.4 0.0 0.0 H -2.2 2.2 0.0 H 2.2 2.2 0.0 \end{verbatim} You can find the description of the input variables in file \texttt{Doc/INPUT\_CP.*}. \subsection{Reaching the electronic ground state} The first run, when starting from scratch, is always an electronic minimization, with fixed ions and cell, to bring the electronic system on the ground state (GS) relative to the starting atomic configuration. This step is conceptually very similar to self-consistency in a \pwx\ run. Sometimes a single run is not enough to reach the GS. In this case, you need to re-run the electronic minimization stage. Use the input of the first run, changing \texttt{restart\_mode = 'from\_scratch'} to \texttt{restart\_mode = 'restart'}. NOTA BENE: Unless you are already experienced with the system you are studying or with the internals of the code, you will usually need to tune some input parameters, like \texttt{emass}, \texttt{dt}, and cut-offs. For this purpose, a few trial runs could be useful: you can perform short minimizations (say, 10 steps) changing and adjusting these parameters to fit your needs. You can specify the degree of convergence with these two thresholds: \begin{quote} \texttt{etot\_conv\_thr}: total energy difference between two consecutive steps\\ \texttt{ekin\_conv\_thr}: value of the fictitious kinetic energy of the electrons. \end{quote} Usually we consider the system on the GS when \texttt{ekin\_conv\_thr} $ < 10^{-5}$. You could check the value of the fictitious kinetic energy on the standard output (column EKINC). Different strategies are available to minimize electrons, but the most used ones are: \begin{itemize} \item steepest descent: \texttt{electron\_dynamics = 'sd'} \item damped dynamics: \texttt{electron\_dynamics = 'damp'}, \texttt{electron\_damping} = a number typically ranging from 0.1 and 0.5 \end{itemize} See the input description to compute the optimal damping factor. \subsection{Relax the system} Once your system is in the GS, depending on how you have prepared the starting atomic configuration: \begin{enumerate} \item if you have set the atomic positions "by hand" and/or from a classical code, check the forces on atoms, and if they are large ($\sim 0.1 \div 1.0$ atomic units), you should perform an ionic minimization, otherwise the system could break up during the dynamics. \item if you have taken the positions from a previous run or a previous ab-initio simulation, check the forces, and if they are too small ($\sim 10^{-4}$ atomic units), this means that atoms are already in equilibrium positions and, even if left free, they will not move. Then you need to randomize positions a little bit (see below). \end{enumerate} Let us consider case 1). There are different strategies to relax the system, but the most used are again steepest-descent or damped-dynamics for ions and electrons. You could also mix electronic and ionic minimization scheme freely, i.e. ions in steepest-descent and electron in with damped-dynamics or vice versa. \begin{itemize} \item[(a)] suppose we want to perform steepest-descent for ions. Then we should specify the following section for ions: \begin{verbatim} &ions ion_dynamics = 'sd' / \end{verbatim} Change also the ionic masses to accelerate the minimization: \begin{verbatim} ATOMIC_SPECIES C 2.0d0 c_blyp_gia.pp H 2.00d0 h.ps \end{verbatim} while leaving other input parameters unchanged. {\em Note} that if the forces are really high ($> 1.0$ atomic units), you should always use steepest descent for the first ($\sim 100$ relaxation steps. \item[(b)] As the system approaches the equilibrium positions, the steepest descent scheme slows down, so is better to switch to damped dynamics: \begin{verbatim} &ions ion_dynamics = 'damp', ion_damping = 0.2, ion_velocities = 'zero' / \end{verbatim} A value of \texttt{ion\_damping} around 0.05 is good for many systems. It is also better to specify to restart with zero ionic and electronic velocities, since we have changed the masses. Change further the ionic masses to accelerate the minimization: \begin{verbatim} ATOMIC_SPECIES C 0.1d0 c_blyp_gia.pp H 0.1d0 h.ps \end{verbatim} \item[(c)] when the system is really close to the equilibrium, the damped dynamics slow down too, especially because, since we are moving electron and ions together, the ionic forces are not properly correct, then it is often better to perform a ionic step every N electronic steps, or to move ions only when electron are in their GS (within the chosen threshold). This can be specified by adding, in the ionic section, the \texttt{ion\_nstepe} parameter, then the \&IONS namelist become as follows: \begin{verbatim} &ions ion_dynamics = 'damp', ion_damping = 0.2, ion_velocities = 'zero', ion_nstepe = 10 / \end{verbatim} Then we specify in the \&CONTROL namelist: \begin{verbatim} etot_conv_thr = 1.d-6, ekin_conv_thr = 1.d-5, forc_conv_thr = 1.d-3 \end{verbatim} As a result, the code checks every 10 electronic steps whether the electronic system satisfies the two thresholds \texttt{etot\_conv\_thr}, \texttt{ekin\_conv\_thr}: if it does, the ions are advanced by one step. The process thus continues until the forces become smaller than \texttt{forc\_conv\_thr}. {\em Note} that to fully relax the system you need many runs, and different strategies, that you should mix and change in order to speed-up the convergence. The process is not automatic, but is strongly based on experience, and trial and error. Remember also that the convergence to the equilibrium positions depends on the energy threshold for the electronic GS, in fact correct forces (required to move ions toward the minimum) are obtained only when electrons are in their GS. Then a small threshold on forces could not be satisfied, if you do not require an even smaller threshold on total energy. \end{itemize} Let us now move to case 2: randomization of positions. If you have relaxed the system or if the starting system is already in the equilibrium positions, then you need to displace ions from the equilibrium positions, otherwise they will not move in a dynamics simulation. After the randomization you should bring electrons on the GS again, in order to start a dynamic with the correct forces and with electrons in the GS. Then you should switch off the ionic dynamics and activate the randomization for each species, specifying the amplitude of the randomization itself. This could be done with the following \&IONS namelist: \begin{verbatim} &ions ion_dynamics = 'none', tranp(1) = .TRUE., tranp(2) = .TRUE., amprp(1) = 0.01 amprp(2) = 0.01 / \end{verbatim} In this way a random displacement (of max 0.01 a.u.) is added to atoms of species 1 and 2. All other input parameters could remain the same. Note that the difference in the total energy (etot) between relaxed and randomized positions can be used to estimate the temperature that will be reached by the system. In fact, starting with zero ionic velocities, all the difference is potential energy, but in a dynamics simulation, the energy will be equipartitioned between kinetic and potential, then to estimate the temperature take the difference in energy (de), convert it in Kelvin, divide for the number of atoms and multiply by 2/3. Randomization could be useful also while we are relaxing the system, especially when we suspect that the ions are in a local minimum or in an energy plateau. \subsection{CP dynamics} At this point after having minimized the electrons, and with ions displaced from their equilibrium positions, we are ready to start a CP dynamics. We need to specify \texttt{'verlet'} both in ionic and electronic dynamics. The threshold in control input section will be ignored, like any parameter related to minimization strategy. The first time we perform a CP run after a minimization, it is always better to put velocities equal to zero, unless we have velocities, from a previous simulation, to specify in the input file. Restore the proper masses for the ions. In this way we will sample the microcanonical ensemble. The input section changes as follow: \begin{verbatim} &electrons emass = 400.d0, emass_cutoff = 2.5d0, electron_dynamics = 'verlet', electron_velocities = 'zero' / &ions ion_dynamics = 'verlet', ion_velocities = 'zero' / ATOMIC_SPECIES C 12.0d0 c_blyp_gia.pp H 1.00d0 h.ps \end{verbatim} If you want to specify the initial velocities for ions, you have to set \texttt{ion\_velocities ='from\_input'}, and add the IONIC\_VELOCITIES card, after the ATOMIC\_POSITION card, with the list of velocities in atomic units. NOTA BENE: in restarting the dynamics after the first CP run, remember to remove or comment the velocities parameters: \begin{verbatim} &electrons emass = 400.d0, emass_cutoff = 2.5d0, electron_dynamics = 'verlet' ! electron_velocities = 'zero' / &ions ion_dynamics = 'verlet' ! ion_velocities = 'zero' / \end{verbatim} otherwise you will quench the system interrupting the sampling of the microcanonical ensemble. \paragraph{ Varying the temperature } It is possible to change the temperature of the system or to sample the canonical ensemble fixing the average temperature, this is done using the Nos\'e thermostat. To activate this thermostat for ions you have to specify in namelist \&IONS: \begin{verbatim} &ions ion_dynamics = 'verlet', ion_temperature = 'nose', fnosep = 60.0, tempw = 300.0 / \end{verbatim} where \texttt{fnosep} is the frequency of the thermostat in THz, that should be chosen to be comparable with the center of the vibrational spectrum of the system, in order to excite as many vibrational modes as possible. \texttt{tempw} is the desired average temperature in Kelvin. {\em Note:} to avoid a strong coupling between the Nos\'e thermostat and the system, proceed step by step. Don't switch on the thermostat from a completely relaxed configuration: adding a random displacement is strongly recommended. Check which is the average temperature via a few steps of a microcanonical simulation. Don't increase the temperature too much. Finally switch on the thermostat. In the case of molecular system, different modes have to be thermalized: it is better to use a chain of thermostat or equivalently running different simulations with different frequencies. \paragraph{ No\'se thermostat for electrons } It is possible to specify also the thermostat for the electrons. This is usually activated in metals or in systems where we have a transfer of energy between ionic and electronic degrees of freedom. Beware: the usage of electronic thermostats is quite delicate. The following information comes from K. Kudin: ''The main issue is that there is usually some "natural" fictitious kinetic energy that electrons gain from the ionic motion ("drag"). One could easily quantify how much of the fictitious energy comes from this drag by doing a CP run, then a couple of CG (same as BO) steps, and then going back to CP. The fictitious electronic energy at the last CP restart will be purely due to the drag effect.'' ''The thermostat on electrons will either try to overexcite the otherwise "cold" electrons, or it will try to take them down to an unnaturally cold state where their fictitious kinetic energy is even below what would be just due pure drag. Neither of this is good.'' ''I think the only workable regime with an electronic thermostat is a mild overexcitation of the electrons, however, to do this one will need to know rather precisely what is the fictitious kinetic energy due to the drag.'' \subsection{Advanced usage} \subsubsection{ Self-interaction Correction } The self-interaction correction (SIC) included in the \CP\ package is based on the Constrained Local-Spin-Density approach proposed my F. Mauri and coworkers (M. D'Avezac et al. PRB 71, 205210 (2005)). It was used for the first time in \qe\ by F. Baletto, C. Cavazzoni and S.Scandolo (PRL 95, 176801 (2005)). This approach is a simple and nice way to treat ONE, and only one, excess charge. It is moreover necessary to check a priori that the spin-up and spin-down eigenvalues are not too different, for the corresponding neutral system, working in the Local-Spin-Density Approximation (setting \texttt{nspin = 2}). If these two conditions are satisfied and you are interest in charged systems, you can apply the SIC. This approach is a on-the-fly method to correct the self-interaction with the excess charge with itself. Briefly, both the Hartree and the XC part have been corrected to avoid the interaction of the excess charge with tself. For example, for the Boron atoms, where we have an even number of electrons (valence electrons = 3), the parameters for working with the SIC are: \begin{verbatim} &system nbnd= 2, total_magnetization=1, sic_alpha = 1.d0, sic_epsilon = 1.0d0, sic = 'sic_mac', force_pairing = .true., &ions ion_dynamics = 'none', ion_radius(1) = 0.8d0, sic_rloc = 1.0, ATOMIC_POSITIONS (bohr) B 0.00 0.00 0.00 0 0 0 1 \end{verbatim} The two main parameters are: \begin{quote} \texttt{force\_pairing = .true.}, which forces the paired electrons to be the same;\\ \texttt{sic='sic\_mac'}, which instructs the code to use Mauri's correction. \end{quote} Remember to add an extra-column in ATOMIC\_POSITIONS with "1" to activate SIC for those atoms. {\bf Warning}: This approach has known problems for dissociation mechanism driven by excess electrons. Comment 1: Two parameters, \texttt{sic\_alpha} and \texttt{sic\_epsilon'}, have been introduced following the suggestion of M. Sprik (ICR(05)) to treat the radical (OH)-H$_2$O. In any case, a complete ab-initio approach is followed using \texttt{sic\_alpha=1}, \texttt{sic\_epsilon=1}. Comment 2: When you apply this SIC scheme to a molecule or to an atom, which are neutral, remember to add the correction to the energy level as proposed by Landau: in a neutral system, subtracting the self-interaction, the unpaired electron feels a charged system, even if using a compensating positive background. For a cubic box, the correction term due to the Madelung energy is approx. given by $1.4186/L_{box} - 1.047/(L_{box})^3$, where $L_{box}$ is the linear dimension of your box (=celldm(1)). The Madelung coefficient is taken from I. Dabo et al. PRB 77, 115139 (2007). (info by F. Baletto, francesca.baletto@kcl.ac.uk) % \subsubsection{ Variable-cell MD } %The variable-cell MD is when the Car-Parrinello technique is also applied %to the cell. This technique is useful to study system at very high pressure. \subsubsection{ ensemble-DFT } The ensemble-DFT (eDFT) is a robust method to simulate the metals in the framework of ''ab-initio'' molecular dynamics. It was introduced in 1997 by Marzari et al. The specific subroutines for the eDFT are in \texttt{CPV/src/ensemble\_dft.f90} where you define all the quantities of interest. The subroutine \texttt{CPV/src/inner\_loop\_cold.f90} called by \texttt{cg\_sub.f90}, control the inner loop, and so the minimization of the free energy $A$ with respect to the occupation matrix. To select a eDFT calculations, the user has to set: \begin{verbatim} calculation = 'cp' occupations= 'ensemble' tcg = .true. passop= 0.3 maxiter = 250 \end{verbatim} to use the CG procedure. In the eDFT it is also the outer loop, where the energy is minimized with respect to the wavefunction keeping fixed the occupation matrix. While the specific parameters for the inner loop. Since eDFT was born to treat metals, keep in mind that we want to describe the broadening of the occupations around the Fermi energy. Below the new parameters in the electrons list, are listed. \begin{itemize} \item \texttt{smearing}: used to select the occupation distribution; there are two options: Fermi-Dirac smearing='fd', cold-smearing smearing='cs' (recommended) \item \texttt{degauss}: is the electronic temperature; it controls the broadening of the occupation numbers around the Fermi energy. \item \texttt{ninner}: is the number of iterative cycles in the inner loop, done to minimize the free energy $A$ with respect the occupation numbers. The typical range is 2-8. \item \texttt{conv\_thr}: is the threshold value to stop the search of the 'minimum' free energy. \item \texttt{niter\_cold\_restart}: controls the frequency at which a full iterative inner cycle is done. It is in the range $1\div$\texttt{ninner}. It is a trick to speed up the calculation. \item \texttt{lambda\_cold}: is the length step along the search line for the best value for $A$, when the iterative cycle is not performed. The value is close to 0.03, smaller for large and complicated metallic systems. \end{itemize} {\em NOTE:} \texttt{degauss} is in Hartree, while in \PWscf is in Ry (!!!). The typical range is 0.01-0.02 Ha. The input for an Al surface is: \begin{verbatim} &CONTROL calculation = 'cp', restart_mode = 'from_scratch', nstep = 10, iprint = 5, isave = 5, dt = 125.0d0, prefix = 'Aluminum_surface', pseudo_dir = '~/UPF/', outdir = '/scratch/' ndr=50 ndw=51 / &SYSTEM ibrav= 14, celldm(1)= 21.694d0, celldm(2)= 1.00D0, celldm(3)= 2.121D0, celldm(4)= 0.0d0, celldm(5)= 0.0d0, celldm(6)= 0.0d0, nat= 96, ntyp= 1, nspin=1, ecutwfc= 15, nbnd=160, input_dft = 'pbe' occupations= 'ensemble', smearing='cs', degauss=0.018, / &ELECTRONS orthogonalization = 'Gram-Schmidt', startingwfc = 'random', ampre = 0.02, tcg = .true., passop= 0.3, maxiter = 250, emass_cutoff = 3.00, conv_thr=1.d-6 n_inner = 2, lambda_cold = 0.03, niter_cold_restart = 2, / &IONS ion_dynamics = 'verlet', ion_temperature = 'nose' fnosep = 4.0d0, tempw = 500.d0 / ATOMIC_SPECIES Al 26.89 Al.pbe.UPF \end{verbatim} {\em NOTA1} remember that the time step is to integrate the ionic dynamics, so you can choose something in the range of 1-5 fs. \\ {\em NOTA2} with eDFT you are simulating metals or systems for which the occupation number is also fractional, so the number of band, \texttt{nbnd}, has to be chosen such as to have some empty states. As a rule of thumb, start with an initial occupation number of about 1.6-1.8 (the more bands you consider, the more the calculation is accurate, but it also takes longer. The CPU time scales almost linearly with the number of bands.) \\ {\em NOTA3} the parameter \texttt{emass\_cutoff} is used in the preconditioning and it has a completely different meaning with respect to plain CP. It ranges between 4 and 7. All the other parameters have the same meaning in the usual \CP\ input, and they are discussed above. \subsubsection{Free-energy surface calculations} Once \texttt{CP} is patched with \texttt{PLUMED} plug-in, it becomes possible to turn-on most of the PLUMED functionalities running \texttt{CP} as: \texttt{./cp.x -plumed} plus the other usual \texttt{CP} arguments. The PLUMED input file has to be located in the specified \texttt{outdir} with the fixed name \texttt{plumed.dat}. \subsubsection{Treatment of USPPs} The cutoff \texttt{ecutrho} defines the resolution on the real space FFT mesh (as expressed by \texttt{nr1}, \texttt{nr2} and \texttt{nr3}, that the code left on its own sets automatically). In the USPP case we refer to this mesh as the "hard" mesh, since it is denser than the smooth mesh that is needed to represent the square of the non-norm-conserving wavefunctions. On this "hard", fine-spaced mesh, you need to determine the size of the cube that will encompass the largest of the augmentation charges - this is what \texttt{nr1b}, \texttt{nr2b}, \texttt{nr3b} are. hey are independent of the system size, but dependent on the size of the augmentation charge (an atomic property that doesn't vary that much for different systems) and on the real-space resolution needed by augmentation charges (rule of thumb: \texttt{ecutrho} is between 6 and 12 times \texttt{ecutwfc}). The small boxes should be set as small as possible, but large enough to contain the core of the largest element in your system. The formula for estimating the box size is quite simple: \begin{quote} \texttt{nr1b} = $2 R_c / L_x \times$ \texttt{nr1} \end{quote} and the like, where $R_{cut}$ is largest cut-off radius among the various atom types present in the system, $L_x$ is the physical length of your box along the $x$ axis. You have to round your result to the nearest larger integer. In practice, \texttt{nr1b} etc. are often in the region of 20-24-28; testing seems again a necessity. The core charge is in principle finite only at the core region (as defined by some $R_{rcut}$ ) and vanishes out side the core. Numerically the charge is represented in a Fourier series which may give rise to small charge oscillations outside the core and even to negative charge density, but only if the cut-off is too low. Having these small boxes removes the charge oscillations problem (at least outside the box) and also offers some numerical advantages in going to higher cut-offs." (info by Nicola Marzari) \section{Performances} % \subsection{Execution time} % \subsection{Memory requirements} % \subsection{File space requirements} % \subsection{Parallelization issues} % \label{SubSec:badpara} \cpx\ can run in principle on any number of processors. The effectiveness of parallelization is ultimately judged by the ''scaling'', i.e. how the time needed to perform a job scales with the number of processors, and depends upon: \begin{itemize} \item the size and type of the system under study; \item the judicious choice of the various levels of parallelization (detailed in Sec.\ref{SubSec:para}); \item the availability of fast interprocess communications (or lack of it). \end{itemize} Ideally one would like to have linear scaling, i.e. $T \sim T_0/N_p$ for $N_p$ processors, where $T_0$ is the estimated time for serial execution. In addition, one would like to have linear scaling of the RAM per processor: $O_N \sim O_0/N_p$, so that large-memory systems fit into the RAM of each processor. As a general rule, image parallelization: \begin{itemize} \item may give good scaling, but the slowest image will determine the overall performances (''load balancing'' may be a problem); \item requires very little communications (suitable for ethernet communications); \item does not reduce the required memory per processor (unsuitable for large-memory jobs). \end{itemize} Parallelization on k-points: \begin{itemize} \item guarantees (almost) linear scaling if the number of k-points is a multiple of the number of pools; \item requires little communications (suitable for ethernet communications); \item does not reduce the required memory per processor (unsuitable for large-memory jobs). \end{itemize} Parallelization on PWs: \begin{itemize} \item yields good to very good scaling, especially if the number of processors in a pool is a divisor of $N_3$ and $N_{r3}$ (the dimensions along the z-axis of the FFT grids, \texttt{nr3} and \texttt{nr3s}, which coincide for NCPPs); \item requires heavy communications (suitable for Gigabit ethernet up to 4, 8 CPUs at most, specialized communication hardware needed for 8 or more processors ); \item yields almost linear reduction of memory per processor with the number of processors in the pool. \end{itemize} A note on scaling: optimal serial performances are achieved when the data are as much as possible kept into the cache. As a side effect, PW parallelization may yield superlinear (better than linear) scaling, thanks to the increase in serial speed coming from the reduction of data size (making it easier for the machine to keep data in the cache). VERY IMPORTANT: For each system there is an optimal range of number of processors on which to run the job. A too large number of processors will yield performance degradation. If the size of pools is especially delicate: $N_p$ should not exceed $N_3$ and $N_{r3}$, and should ideally be no larger than $1/2\div1/4 N_3$ and/or $N_{r3}$. In order to increase scalability, it is often convenient to further subdivide a pool of processors into ''task groups''. When the number of processors exceeds the number of FFT planes, data can be redistributed to "task groups" so that each group can process several wavefunctions at the same time. The optimal number of processors for "linear-algebra" parallelization, taking care of multiplication and diagonalization of $M\times M$ matrices, should be determined by observing the performances of \texttt{cdiagh/rdiagh} (\pwx) or \texttt{ortho} (\cpx) for different numbers of processors in the linear-algebra group (must be a square integer). Actual parallel performances will also depend on the available software (MPI libraries) and on the available communication hardware. For PC clusters, OpenMPI (\texttt{http://www.openmpi.org/}) seems to yield better performances than other implementations (info by Kostantin Kudin). Note however that you need a decent communication hardware (at least Gigabit ethernet) in order to have acceptable performances with PW parallelization. Do not expect good scaling with cheap hardware: PW calculations are by no means an "embarrassing parallel" problem. Also note that multiprocessor motherboards for Intel Pentium CPUs typically have just one memory bus for all processors. This dramatically slows down any code doing massive access to memory (as most codes in the \qe\ distribution do) that runs on processors of the same motherboard. \end{document} espresso-5.1/CPV/Doc/INPUT_CPPP.txt0000644000175000017500000002136612341373101014724 0ustar mbamba*** FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST *** ------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: cppp.x / CP / Quantum Espresso ------------------------------------------------------------------------ ============================================================================= CP Post-Processing code (cppp.x) ============================================================================= The cppp.x code is an utility that can be used to extract data from the CP restart and CP trajectory files. INPUT: ===== the program read the input parameters from the standard input or from any other file specified through the usual "-input" command line flag. The input parameters, in the input file, should be specified in the inputpp namelist follow: &INPUTPP ... cppp_input_parameter ... / ======================================================================== NAMELIST: &INPUTPP +-------------------------------------------------------------------- Variable: prefix Type: CHARACTER Default: 'cp' Description: basename prepended to cp.x output filenames: cp.evp, cp.pos .... +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fileout Type: CHARACTER Default: 'out' Description: basename of the cppp.x output files +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: output Type: CHARACTER Default: 'xsf' Description: a string describing the output format to be performed, allowed values: 'xsf', 'grd' xsf xcrysden format grd GRD gaussian 3D grid format +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: CHARACTER Default: './' Description: directory containing the CP trajectory files (.evp .pos .cel ...) and restart files ( .save ) to be processed +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lcharge Type: LOGICAL Default: .false. Description: This logical flag control the processing of charge density. .TRUE. generate output file containing charge density. The file format is controlled by the "output" parameter .FALSE. do not generate charge density file +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lforces Type: LOGICAL Default: .false. Description: This logical flag control the processing of forces. .TRUE. extract forces from trajectory files and write them to xcrysden file .FALSE. do not proces forces +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ldynamics Type: LOGICAL Default: .false. Description: This logical flag control the processing of atoms trajectory. .TRUE. process CP trajectory files and generate a trajectory file for xcrysden (.axsf) .FALSE. do not process trajectory +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lpdb Type: LOGICAL Default: .false. Description: This logical flag control the generation of a pdb file. .TRUE. generate a pdb file containing positions and cell of the simulated system .FALSE. do not generate pdb file +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lrotation Type: LOGICAL Default: .false. Description: This logical flag control the rotation of the cell .TRUE. rotate the system cell in space in order to have the a lattice parameter laying on the x axis, the b lattice parameter laying on the xy plane .FALSE. do not rotate cell +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: ns1, ns2, ns3 Type: INTEGER Default: 0 Description: Dimensions of the charge density 3D grid. If ns1, ns2, ns3 are 0 or not specified, the dimensions of the grid in the CP run are assumed; otherwise chargedensity is re-sampled on the GRID specified with ns1,ns2,ns3 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: np1, np2, np3 Type: INTEGER Default: 1 Description: Number of replicas of atomic positions along cell parameters. If ns1, ns2, ns3 are 1 or not specified, cppp.x do not replicate atomi positions in space. If ns1 ns2 ns3 are > 1 cppp.x replicate the positions along a ns1 times, along b ns2 times and along c ns3 times. the atomic positions used in the simunation. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nframes Type: INTEGER Default: 1 Description: number of MD step to be read to build the trajectory +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ndr Type: INTEGER Default: 51 Description: CP restart file number to post process +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: atomic_number(i), i=1,ntyp Type: INTEGER Default: 1 Description: Specify the atomic number of the species in CP trajectory and restart file. atomic_number(1) specify the atomic number of the first specie atomic_number(2) specify the atomic number of the second specie .... +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: charge_density Type: CHARACTER Default: 'full' Description: specify the component of the charge density to plot, allowed values: 'full' print the full electronic charge 'spin' print the spin polarization (for LSD calculations) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: state Type: CHARACTER Default: ' ' Description: specify the Kohn-Sham state to plot, example: 'KS_1' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lbinary Type: LOGICAL Default: .TRUE. Description: specify the file format of the wave function files to be read and plotted +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== espresso-5.1/CPV/Doc/user_guide.out0000644000175000017500000000175312341373066015336 0ustar mbamba\BOOKMARK [1][-]{section.1}{Introduction}{}% 1 \BOOKMARK [1][-]{section.2}{Compilation}{}% 2 \BOOKMARK [1][-]{section.3}{Input data}{}% 3 \BOOKMARK [2][-]{subsection.3.1}{Data files}{section.3}% 4 \BOOKMARK [2][-]{subsection.3.2}{Format of arrays containing charge density, potential, etc.}{section.3}% 5 \BOOKMARK [1][-]{section.4}{Using CP}{}% 6 \BOOKMARK [2][-]{subsection.4.1}{Reaching the electronic ground state}{section.4}% 7 \BOOKMARK [2][-]{subsection.4.2}{Relax the system}{section.4}% 8 \BOOKMARK [2][-]{subsection.4.3}{CP dynamics}{section.4}% 9 \BOOKMARK [2][-]{subsection.4.4}{Advanced usage}{section.4}% 10 \BOOKMARK [3][-]{subsubsection.4.4.1}{ Self-interaction Correction }{subsection.4.4}% 11 \BOOKMARK [3][-]{subsubsection.4.4.2}{ ensemble-DFT }{subsection.4.4}% 12 \BOOKMARK [3][-]{subsubsection.4.4.3}{Free-energy surface calculations}{subsection.4.4}% 13 \BOOKMARK [3][-]{subsubsection.4.4.4}{Treatment of USPPs}{subsection.4.4}% 14 \BOOKMARK [1][-]{section.5}{Performances}{}% 15 espresso-5.1/CPV/Doc/INPUT_CPPP.html0000644000175000017500000004735112341373101015053 0ustar mbamba

    Input File Description

    Program: cppp.x / CP / Quantum Espresso

    TABLE OF CONTENTS

    INTRODUCTION

    &INPUTPP

    prefix | fileout | output | outdir | lcharge | lforces | ldynamics | lpdb | lrotation | ns1 | ns2 | ns3 | np1 | np2 | np3 | nframes | ndr | atomic_number | charge_density | state | lbinary

    INTRODUCTION

    =============================================================================
                                CP Post-Processing code (cppp.x)
    =============================================================================
    
    The cppp.x code is an utility that can be used to extract data from the CP
    restart and CP trajectory files.
    
    INPUT:
    =====
    
    the program read the input parameters from the standard input or from
    any other file specified through the usual "-input" command line flag.
    The input parameters, in the input file, should be specified in the inputpp
    namelist follow:
    
    &INPUTPP
      ...
      cppp_input_parameter
      ...
    /
       

    Namelist: INPUTPP

    prefix CHARACTER
    Default: 'cp'
    basename prepended to cp.x output filenames: cp.evp, cp.pos ....
             
    fileout CHARACTER
    Default: 'out'
    basename of the cppp.x output files
             
    output CHARACTER
    Default: 'xsf'
    a string describing the output format to be performed,
    allowed values: 'xsf', 'grd'
    
        xsf     xcrysden format
        grd     GRD gaussian 3D grid format
             
    outdir CHARACTER
    Default: './'
    directory containing the CP trajectory files (.evp .pos .cel ...)
    and restart files ( .save ) to be processed
             
    lcharge LOGICAL
    Default: .false.
    This logical flag control the processing of charge density.
    
       .TRUE.  generate output file containing charge density.
               The file format is controlled by the "output" parameter
    
       .FALSE. do not generate charge density file
             
    lforces LOGICAL
    Default: .false.
    This logical flag control the processing of forces.
    
        .TRUE.  extract forces from trajectory files and write
                them to xcrysden file
    
        .FALSE. do not proces forces
             
    ldynamics LOGICAL
    Default: .false.
    This logical flag control the processing of atoms trajectory.
    
        .TRUE.  process CP trajectory files and generate a trajectory
                file for xcrysden (.axsf)
    
        .FALSE. do not process trajectory
             
    lpdb LOGICAL
    Default: .false.
    This logical flag control the generation of a pdb file.
    
        .TRUE.  generate a pdb file containing positions and cell
                of the simulated system
    
        .FALSE. do not generate pdb file
             
    lrotation LOGICAL
    Default: .false.
    This logical flag control the rotation of the cell
    
        .TRUE.  rotate the system cell in space in order to have
                the a lattice parameter laying on the x axis,
                the b lattice parameter laying on the xy plane
    
        .FALSE. do not rotate cell
             
    ns1, ns2, ns3 INTEGER
    Default: 0
    Dimensions of the charge density 3D grid.
    
    If ns1, ns2, ns3 are 0 or not specified, the dimensions
    of the grid in the CP run are assumed; otherwise chargedensity
    is re-sampled on the GRID specified with ns1,ns2,ns3
             
    np1, np2, np3 INTEGER
    Default: 1
    Number of replicas of atomic positions along cell parameters.
    
    If ns1, ns2, ns3 are 1 or not specified, cppp.x do not
    replicate atomi positions in space.
    
    If ns1 ns2 ns3 are > 1 cppp.x replicate the positions along
    a ns1 times, along b ns2 times and along c ns3 times.
    the atomic positions used in the simunation.
             
    nframes INTEGER
    Default: 1
    number of MD step to be read to build the trajectory
             
    ndr INTEGER
    Default: 51
    CP restart file number to post process
             
    atomic_number(i), i=1,ntyp INTEGER
    Default: 1
    Specify the atomic number of the species in CP trajectory and
    restart file.
    
    atomic_number(1)  specify the atomic number of the first specie
    atomic_number(2)  specify the atomic number of the second specie
    ....
             
    charge_density CHARACTER
    Default: 'full'
    specify the component of the charge density to plot,
    allowed values:
    
    'full'   print the full electronic charge
    'spin'   print the spin polarization (for LSD calculations)
             
    state CHARACTER
    Default: ' '
    specify the Kohn-Sham state to plot, example: 'KS_1'
             
    lbinary LOGICAL
    Default: .TRUE.
    specify the file format of the wave function files
    to be read and plotted
             
    This file has been created by helpdoc utility.
    espresso-5.1/CPV/Doc/input_xx.xsl0000777000175000017500000000000012341373100022004 2../../dev-tools/input_xx.xslustar mbambaespresso-5.1/CPV/Doc/user_guide.aux0000644000175000017500000000437612341373066015330 0ustar mbamba\relax \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined \global\let\oldcontentsline\contentsline \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global\let\oldnewlabel\newlabel \gdef\newlabel#1#2{\newlabelxx{#1}#2} \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\ifx\hyper@anchor\@undefined \let\contentsline\oldcontentsline \let\newlabel\oldnewlabel \fi} \fi} \global\let\hyper@last\relax \gdef\HyperFirstAtBeginDocument#1{#1} \providecommand\HyField@AuxAddToFields[1]{} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1}} \@writefile{toc}{\contentsline {section}{\numberline {2}Compilation}{2}{section.2}} \@writefile{toc}{\contentsline {section}{\numberline {3}Input data}{3}{section.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Data files}{4}{subsection.3.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Format of arrays containing charge density, potential, etc.}{4}{subsection.3.2}} \@writefile{toc}{\contentsline {section}{\numberline {4}Using \texttt {CP}}{5}{section.4}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Reaching the electronic ground state}{6}{subsection.4.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Relax the system}{7}{subsection.4.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}CP dynamics}{9}{subsection.4.3}} \@writefile{toc}{\contentsline {paragraph}{ Varying the temperature }{10}{section*.2}} \@writefile{toc}{\contentsline {paragraph}{ No\'se thermostat for electrons }{11}{section*.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Advanced usage}{11}{subsection.4.4}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.1} Self-interaction Correction }{11}{subsubsection.4.4.1}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.2} ensemble-DFT }{12}{subsubsection.4.4.2}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.3}Free-energy surface calculations}{14}{subsubsection.4.4.3}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.4.4}Treatment of USPPs}{14}{subsubsection.4.4.4}} \@writefile{toc}{\contentsline {section}{\numberline {5}Performances}{15}{section.5}} espresso-5.1/CPV/Doc/user_guide.pdf0000644000175000017500000066366712341373066015322 0ustar mbamba%PDF-1.5 % 82 0 obj << /Length 1525 /Filter /FlateDecode >> stream xXKs6WVjƄ8鸗:KMA'T. %*tii:.b3 ?6c\eLE|{pSOp ͖ͮW8Dks-S:9 A f%33.I -V3T4h#i:[,gDoZcAy˾XZfW8" \뙟"3cp#is٦- W ; 8y *1c]+XYGNFR OyR GS,Z4ё 02Ő#z+ʬ')9Gr߳w@hT̺SJӪԩԱThg1DJ% >E0_L*yI0SC0Gp|9OxT7^!YdsZ`nvYQ:M֬-ΗjsS/qu7yGYyW.!_OC#91DRc%z) R$<KyO$?ߵگm@w-m1[9Mge%I/@#GSH2pA{h;F!'"LE$"xmC&)Osm}&\-|RF ȕ)&*.s5PT(Ɔ9JS_Ocdԇz_,Eշۗ?KISWd;X6CHf!YﱪͷNm9xaBqj/Pۆg\bm|seK"‚u"Y*r+85j G0EOz~oC>N$fh݅U&zA*iAHHgUz%@&/~0[Zm{g^; Ҹ˜Ah \qaZ"7-0*Z42~MOͳ XcvU!?(]qä@~u]WS\^ ;礇qb ʺ)KPGᩆd$Hun-X!wP 4'o+CO};> 7p1O!T 4KHhp|r@G[mЛ[P&F<~nǮ>JDzhGJ/&s)X]+Kt6V:p\?rEz9}> af*~s3 Z%N0Xg?+q2,%% -?):Ƨqp2b!IcG'Y r0 Q: <e sB9.p: yXݗف^{갢ϦTSNh2=zxx mwmۚz)%G$@"R%KY endstream endobj 64 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (../../Doc/quantum_espresso.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 92 0 R /BBox [0 0 531 181] /Resources << /ProcSet [ /PDF /ImageB /ImageC /ImageI ] /XObject << /Im1 93 0 R >>>> /Length 53 /Filter /FlateDecode >> stream x+TT(TH-JN-()MQ( *NU5Tp endstream endobj 93 0 obj << /Length 94 0 R /Type /XObject /Subtype /Image /Width 531 /Height 181 /ColorSpace 95 0 R /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream xxTU'Bh*MAAlkWյ VA)R(IH%Hm~wWoE'aZ&r~4 @u:O>OS/lIb RO^&M" w촛%.$f> quA&M4itc{* L5zշ]u )s<.Sg뾳 M4i3u-lPaC`3Ԑ&M4i2/(\yFDպ4`b[/|M4itË^T`6[Ah1؄fhSu߹MԣI1@)xM4i'cRF;Ahc3f n^V %h-Xsb[kr}5t0c=@hI񄎌M4is,J &0Cg V-%rS!7hEki}7Rw겮iRCܘÍ4󴩀5rZJŶ2h'\ԉҤI&MWKV#֗ hj"1Yƴ/ğ 5Dnu{jv[U^D[1i-[HsmePƪ*UF+iRqT'ckţ]JrdZJ3LɆlϡ#uQ%f @JD-ºTUeu@d-[I8~hw0J;7ys_e[B8G0md`( <4ʵrm\B8#G@qX(9GfEQbQ4(FwƇDzxV~'@n2VL>],kuT2c=35QO ڝLg*pkh!/M4в}eCQ/wFjl^!nlV J$*K;:hE rh9ZF ~(p! Br!w;ײ@BPɍ㸡EiQZ.)2BHn-ڪHg=34q1;ecˌBBϫthФI_Jx~6Ë2Dl* /$c "_pETJ S?yG=iKƋpYu2w+xQ47.` @@dpno@K[3XO43727fڂv~ߍ@4)819q,'jI]iȣMYK .SQVv03M4D Аu6UN3h]ԟ|G24rPAXLkXC#WqT_LR ',XQ-{Yn7Y[&ܨ2)ή6[*ժktGU*j=3;AvB.wg"Y> pqgKXeTBmRUEY:Ȑ$ ]%Wd@4iҤ/%F UIxh_:IZ/(xMWS3e{_ v&ƽV%UP}*1aH ay !cK]ˍ9}641gnr:?jn;$u5:$} mq·()?ɀ\h) L AhL4ŏpvg ~T8 綳,k'SPkMw(NMmvaWB~dh+8CV `ch%Ǡ4.%F岩r8+՜y4i gD0ߋ]~TBۤ']+Q(!!OQ%m͘.IY +u%rJfف̃EGhiH '9mU\:-@9}lsNͥPW5P.W1]:.DÅC9pn )+ y;a3?՜4s w ع ۋxnG7)=Abx8Ju4sY,ic1a\bKwa8&Hf\N\*&,N/%gV`ZHY[v3 E˥'9YM*f&wɨbZf5NtM4r c w/dlU=9ZCp{!qxvd̽,mjȹ<{$&`KC9(? e$FxI{XP>;($.T:dz=)؏D!-=8Ǐk >K:6K>D!}-ZIij1/41U6ԛ+%;G+8],'p,iNMLX"qj 1pŷPJ4T$5c?.mQyurk-k[kCs>4! 1A]*LO0Y7b$ib9{Z Z|]:j21(ZF;&Tex4i.沴q-f?#H;Uv1fߏT>=ߔ^ݻduVH-煆,2^: E1!/%_83o#'.SVϘwּp,a*KXpU@kN*b-LJI n#eB+юZgg@WrlWi.0C6jR*!Rnf7CZÔI\BBJ\IN *eDhCۮI?Y\"+!it+)=vhD %DH‘7OMgױ?`¾)&x>}3w1 q)$,FWpj..u,{ b4 +17MtZrk̽fjd=܈ 疨TL3.+;"9ɢp)@IǠSy;!g3ⰠIK 9"H^߳͘ V* }jҠ!sN7ZoC&M] яhd? OBS8O!g?顷ĕ`TLmL_=lͨlWv>xBsb+,˒$iV9*bkza=t?C2HOO!泄ZNdn!982iR~4A%vP!U5u=n9]Q)CD wgsةE4N&gм(5"˘\&M7T.q+k6@jBrclݰz,|hX|,OW '@ rtfDh55BGkT P| GAN0Fֈ)K!-}+%$YNCPkhCTA{ E$'uXX[%i*H} I"q(܏XV:Gl8>N|,HeosȅZ|Ys!t\A%!TzQWV&MC!;ˏ:U Z~ i!yMX,ϩN c7_. a'GhNRئ"h&0upd"Q*KzG%C*;WcYoeTFvDŽxnrv%Z_Y;MfVQ ;ЗI¡T/I6iҤIӟ iǦ*8Hp)Z,")0*OTGüFD*Z,c3Vab_U2 b87k60?__'afj xRΚL*VoI?-8Ȫqfp웦C"qxk5_4(EG OԵpj1 }'>Kg8b.ݫLLl'חLrIIdzn~kQ$h5U|է+lwff#cC<,H wayYnl,.S Rws M4CUWzeHӲ>[HsWo48)́bfE[%19@N,?.=bkwJ&M<b`r ^Wb|"\zS9Cr;,ur^()<+h}6m.Z|Q0J(7vUܽk";H}F^.5OU8Ø;CB'p4g'GaVcChm&MX4֌-ppM`"IiZ.C8#; }A$G? >$_XmJK'em[+r cfdZ@!~P+U@hW"W%xդx()[pǩy4 z8>\^Hs[.#YyXDj&M4aNA/5iRi ) LvCvCgC&1JamŘѐ;^)*X*EWqݪ2PY [ `?)ԪJS!@vK gpJ134KLN]{vӢäXD:pؗ6n]&MO}eQ.( AOm`j"R ހ)X9S_a hv4:wo$^ \v~ > Z/KO$C9vO'0oNgasnE+oca4`p5<Jc^+N1~,p=89 QȅѤ 4dF z܉  jl9@` 8/6Jb4vydnY '\%GhqZsz9;D#dnTݐE&MZJO0,JR5pSX4Am

    f f ?>N"KFcjD!)d ̀ a)i%;2DC_/^!%`g_[ :qr0$FʿeFΎRRae/¾;7PAO@]:_+y!1P&M5rc:e(=lO]"|!6L~V:^/`zlr$ o FCN#aS y8&K~"{ң o NB&vTsMӪDh8meX!8ܕJ}*5—ou2~ -Ԑ-Uő&cz51t krrw͊@U 4WuU-|M4xKDs[+> {!w'0M[c,׷,qIZ:1 #G? ngo W~P҂;ף/#ựU6x OeGfB2\8}CR&^`2]"pHᘯlZv^X{S ÉOY7m҃PKVdʆ_dZ\&MfC"&Xe"?XahlUء=-BR)ļ ރCo\};捦_EwA${N_!rh$U mD7YWnhUI(85[,d2pp=gΎ`83L:(f+M4yJ<`j Mre )>]3ةos696~]x"v04x4,Pj dcWL sva%k#Ln ҥX!?L>b;f`u,?|0VjФIJ lO\)#f1y-Æ{a=X?4~+p(UUGɳGwÎDž@"ڎorik pZ7 E͒ZNJY q)?Kw v _b w$Ck,]u 4phҤw>1zI?ɹ0zBAc"c~KW%h|=ۅɆas!ggLmdtˮd>E](|*Y.؏ _Á7i$q}ȎI8,KBMGY$FB+C&M236L|8I^ h{ ~ЭcMwȫƱ%w⢍c1; 8G10,z.ycp|rvBQʁ FPWlV? Wä)L|l g2]XopC4sdb>O/2ʓC$ 84iOg?K0n& C'D> uNhw> ># =}43Tz}~g·a?kȁ*J_ݔTԤI#)FC>%+1$? KbN獀φçwC)ƍ5y@2m{u :^LgP#h81IZ eG9Zڥ/D0"\5?ĥpxyNt/N!fu Wb J;:5=פIHiV% $~6?[&'‚1Šn? op:H^O/ЗWAlz{8|8> oM!~KTV..;jp&5 ~VC #H mXtdqZٳ&M~ǡH0Dؾ@olDNz6`b?B>nbOOI7ӷs?o/ Ӹ?2Bw7~\R-E MOl}۠@ganxJ?M: $~#eNBkyJYM46p# ;c 8ˑhzk:^H & Gzzz>p? fOޏ=& DZ-p1ZzE38@ˁGJЀÐ/⑰2~;h2@a$4d6nOj5iڥMPm{#!ڭ8#nD@:&}a/vG|.6Η;ߛ=C& ?OOk](O:ĕ^_Jٿ?FY2rJ=r*n~3 wqѷ:{T e?qhФIop0BJx?C φ~}aܧ1^0ҝΆrh07os0Fa}"ecEǡ( T 8ӏ_ʲ6ZK鶗R]"Bs$[iL K_ oӵ'`5eEQ<=Z&M~8LK!lÃ򲻅9H ɤ!?6яxa 't|ɁuH77~0 )npQo,  y 4\u# d&7=G~諵ʎ,)+8.xH5X=H^~0NfG>ya.ʯ@&M~#8 (5%w×##A0fx'}6_ {B/wso'W[pA7Hoqe~t<;2]>TrIsʔ} Qe2jÝ vدDdfZb>~?$r]5ԇpF!MF ::Mu}8L.fMj@OM{(M9⅃rr9vc<6xg̼ V';eˎP}1@' 5i[ȡxŃc`D/6SCݡ;qc~Nf1lh̎%v`I,EwKۆbȹKXg^`"Oj(Mn>k.@WF}IۍJH9Ü@]ſ+5 I%̘AwryM==e{Py$ ~uA3|+lT^ Z;^ ei,gK3w-!l2DKJrs.vZ&M=āy 0s }2}OǛ#8p^PGkjkAttNGtʂ(wmtN诃i`S05ٸƓ^E @/~R*0s eP6)2aN:Ϟ\` [okWg>{vl]"m#]"{Dyy9{pcN$?aܖH@zdYTvwvV]P_ʯ¾?/qsRu6tPiҤ鷝J ,Kǿe0{/#tٓf V` XW nL1XcB' %HUIJj7z`J,JT&6Oy֋s;l7*9 }e9ciRKDqODyeHac{9faafbjfލu׮W__U}v7E9SB]}f㻳ϰf Ǐ rT9lz>BOޭ0NaN#Ӵ5rI aITiҤ7C=jd~8:q=a'E&:1󂳀Gnmm VVM+:A7"ߓw|Lj0F_4F(77fϜ;hkG]A#'SX';X1GBi'&j>[%yd8|v3ԭG{^'`ǽ~a>va~a!n{89qr vrฮN}NQn w;LmRk2AĜh("H\ 3G~~2g{>kФIo UJJbQp {cFہ8X0KfR\e\i5XRXb/O k'ѓL1cnv 1B7Ν:.!6Ǭ=­=ږ] X1U0Fdu0{nl>4ᱵV^ /,]#-ݣ|;;zrp߫s rgG~'gthmo^++7㈅P=ZGX:xrqyuCdĤEGT ,`=}͑lp?~Q&M~[k,Jq/ ew-܃,TjWQC>KKNgA//2kyd5dmAQVT&*8Z#zܲko^@O-A6.[ F#Uwpd4K {vއt^G[9E8pqᆀXgsc?vMcPy @ڀc?"nc2BMmG|bK/{N[?]n<8Y8FyDm3`(0nV`__Wa靰IzCNGFt5it# Eb%LrԐ =%pI hwu6Bl}]|=v<*A0*j6`4mtǜ}#\Ý"ݼw۸v8奆8XZEJZ*C[1b6&9DZisiߊ9(#s}^>ېwQ ՘Jot< x?]0 6 ^V h4iALX&$㾆o燳QnleMuVܕPbPȉaiam]]FŦB+s 1l '߽~ZYF8 rwtK|%hkc)8fI6.йg[k3wzw“6AukjSQ* Ezp['_XUn^N֎\\{࿊Bu]o x]@x&d8,+W XMVUI"DD06톽{vƦ *;uCWXX|e`"` spJ6aZ< tfuSNk`G} P* v8ncO0k(k/w`?1ǡNҭDo_\Өm//knimj,mHK9z('r#g&;6lyF3* bx í:؟= A+4y))?/M4iw jxb, cY?Wpg[fc_Iaiv554%X \tRg> UG@nbW zg>Xgu6 [Ֆcӷ 䇟sd53)smqUfhcx.v%AfKi{{G]]C{m]c}Cus륶KmuuS^{.{]í=E>|k l #þ@(f.n}. Czrco}.9l3inL 17\I~zup ttr 1`P] bJ]<_L4  tHT׬l7fPd z|BsCTIpb*׾, ׆'|Ʉ8v3eG=Zcïj8&KbCuֲmT&w^< R-?DHzT]Br:5Y + 2_⾆(@CG&\}\,Cm}E=1:d()-UI@_E(g$CccsMM7qT4U5ڀq.$ B͘F7 2O!KOQ.n6nuAzv,dx?9PL7Lddۡ!CIdeWpxogl7Ó q-s,8Dk Y)"WfC8QG^G1xtC=SYqr,‟ͻ?pPsģwK>[>T1B#&Bi ~-  kp7뛚ZD +3B8:ڕߣ(7ߞM-ogs.;g2@/nY *4iRD}c 飽>./ r$nvі9؂ j.wL<`Ð>G215 Q:odzph 4i[B4&5`uz>l '‡ׇD6xB?=ݰ1=htZΪ>(\}N%|yҍU~ QW& H35vg7 Ќuc@ܨ3\uIDDE+ehhh_،8yWff@/NV&bQIXI2/r3-Oߌ7}468@~/{&^H76g2n}rkkC[RkK̞7ל~^ܓ!ahF{ZSOu;<Ӹǟ|ӏ#)"kSG7mD9s5_Ojkkiknoxum]]]GG`4O|7/=T'վ=}ax|ÔNqF;cg_OIh5iteJ UA)a)L#~0&;'-`#\a3 teGqXЃome7k%ƏWBE^M;Ŋ-A[ݷכ6غm١s<'̱O.kO9ݶ׾Vg(+]7 qǺ cW3MMM*8Fkk {ȯecUo?j}wo@K '\{g7Lfoǰ YlVv2U)A[EI+O-e@O'ah5> o 37C=` {Z^Li3XMֲF88=CTFJu-H,"5<7ukbu:N=wxq8mss@-)г&׾t$w Uthii &_RC}ƓCDVR,u {ν::ٖx3tydz8W4+c4phҤW-bv8.OGq0g |< |L< }~pooƔ* |1F95985;+hs{xbhtɭf/v}oӃpQ_,UJ5I&MR&0N}QA賰>j"~,w;t8Ӈi}褾d:ԃY!8dKؾ,u;L} Xڸzx{xnw`mc=n'pgv=zD8r{_{8L`UݍE*8FP} K Mkl9yx9y-30^,-/[͑<焝784it t)RBld.`4|9f,=H~{bx~0ElHΖC`4tXȗ㡾@dP:)n?.s>E>WHG!Na=\|~~{Gm-Ĺ c0VWʍэ[qqTg'D"uDcB4";9~˻Os~[[ar;&vb%GC&M1ԦA6zj"^GaݰN?Cl9 oׇӻd:GjkǭO[ #dbD?CAMuoNvvyȹgvK`ۭ܂}ٺmsw斠uÈ`2Ꮓd2 jjL&J۹AY&,9R\k)(k^;H{ >]O:G@;a`H8*M4]- *Д!,GC$y8;&a:v=> >&${V`BtmhAlaCT6xqQFrS-6JyZ pid~;=9';8tu {=STx~>n'}:~CGsS;!_JY#¯M4Ds۫G::gGiUتH8 iҤIenH:$\ = ނi4x1^~<]=V^yᮎoGѦywȓ(C-L֢9dK[Nbk>4]f7^ ÊRʃ[;"k?]yzDx:xmtqﳧ@tW:XˢB|KijnkoVR7 tܫ#z=G k,U({߀*G?TNw.]ّxZzPه 8IK#d߉&MejzVN8|ނ iq㤧kDdtJam p?hbQY,%jGWG`+wݶ^l|J|}e}Z[(746WUs474֫3F;A;[#UUUF2P`9oS{W0+‘;aj^"UjҤJyH|J@NH]V3!z: ž=`c~q{̟燐tT$YZrp0+Jk ؔPqWߖ3)ܱ6{ȁwBE/M_PH`FeU Zeau5G#G:{GڨY_~a순lgwAk7C~t1`4phҤ'_Qg vAR8 B?ad~$ö`Ac7BqpN>Knܾ󢘴ӱowafbs1h݀&_/0U!S 鹗qǡBr]]+N?I4D;=`_?]^d2٨$L~1IKkҤ闱*Afhʣe>iY"9;>LATw9i"5\6`fEX9nPu7DQlkhim簨toV5D] ^P4yke1|=Q;| debM4phҤ骃*@_Aj2xKwu$y MKcgץCBTULVJӟ%$kdR14'1c'%Ɲ>,C\qyqݧsi\Rq9t=V8`-010UaUܱef):۔ڀkXyqbc_ 8JM42V̴SxZǠ !e$.S \8|88b>>Iaӽ _enLpk\Mes;]_79`lbͯ@˓GsssSSSCw"jkjjqeC5WB5vu@f\ a{CΞܷ;98{ZW|L}/`4`2]&Mz2v+C픺\tVѦ'؅H έ!iYpx'! CY#kɿ:{#'1cU8'\$L7Vzwf+y/Vu~*5T/_C'9'nhl掆}*(8y?v40No+0kA[r%Tx84i+~+I֚6$ZK C~dC.H&m!~pXs`8,1?:ߋ3q؁]q2Ԕn9&{.'7{Q]kmW/ 65 %<  tL51Ih)@BHBܛlY{\d[ͽWV_mo{Wb#/3z5sӾ',&WcO*Sֆ’$$ժ4ѓubhq R d X{vER0o;.o(_Ǯ\**);"v??yh[h ,&ݢ }++NjlxѤsU|Úm6d<|e|WTؔ#=\`П(\ pֈ<%YVhOJ^D+27HPMvKnFz+*Ԣ$뼌%9e\lCؖI?d?Z|f^7s*W"iv)󒑽$AF̃LuDvSN VBil^RE;Q e=Z-k1Ǩ Y_3yui"ixL>q}RNS0No_S8#IH;.jzQ{ȳf= 6t o𻲡+ʵ-?58;9| 8WJȉe|mT:*,^[F.1'j[Bu(8<˃*/>D]74X~1AM$ZI;ts"t}RIU U&ڟifx^ *jH1^U ^;׬"j0uUNêMk'w4  sdC\Yq"Gy#(q#J((8섯v493+: s/%ns U8eo-?ʘ@Rǝˑ?]tNАI٩ЇT&Dóu괌,[o-^ZV^yl/ZjufV2NwI]GNj%Y_2Qžqr`ւk+ïTMY6i:{ށ%T=}ӧ\KΉD=)EY>.WYN*V&_&${Yb ՗/+SOUi'$wZBI6MVe}*xY^,Udʘ' =?""9{%1ѴWz;ޭpf{?/LqQsxet#7ة*MxmN.3T[ĕh"~t7dt‰DB`,f}x,Q+:ٌ_|j6;."طQyH<<iTz;:;є@|ƼOj1b*s;v#TU21L_4Opq[GU5h_adfQ8g?~Ű,rfeE%)i3c j vTVV96 ;:p:'޵6 !q$0W0&93vRa|mL)q!.Sgu VOEC¡xO8EƄ4uRGsQEJ(ǯhDlP蓺>@yQ9.p$fZuuA"ԆqQn$DZh''' hq ,ឹX]VRҸ?WysQȴ'^ %m Q'Sب]2vފh%:)7.}/Qrf w}=h Ӥ&6b+I]C|<XP6<𸦰gܧS#j 1GRp#dw@##kfDB&zM8"DV&>/pU%҃6X8.cX,%!v$_`셀íU ZcnQG|H.;)p gZž7>.Y0Yg֊j.vuxJoo9;aW/YwߡfT~n.黁W&uU8贴 )jj-da;:Y<%eeZIi%>fQˀEv%AϏL-mea _@^4=98$͋FH,%*C3s%.3d}sW :ආZEҴ4%/ɿ[- 4X6C6VGN _B*kpb"!ye,-<^Qe⒆2U]z"АЖ=49Q%4RݡT0gW;T7Fq9Hd&ȢC.*Ð0%JL 7=P#p0ǰɌ؁o }zy$6~WF3 \}lP_aȏB4LbEcK{|8+G`sb=LoW4 y{nxѤ:!{;\6!;2_؅* ~ɊUKSR,vx<]T.㕗lۚGZ6 wM|" XI$ fM_G;BC*P]$J&N0?0!%.*v!HfvyY. ?FP+)Tj.gWF_|~VgF8C8+ɃT}Uq{g͒OG^!($atR`f5j1'$qsCt=mAf8^zE"Ci͟zy8{EkQA-]ܺKK]iVտ87y>)8!4b͟Ky~! " (M+W]jՆ5aɟIʪ 4M}SυEe9ǵ=o8 J}Dpzhz82 9ڄФۈ 8 v۞Y .vJW|>ySv*f pN%g4mtZ\X)OL Ӵ)22B41=bE4agB MbJn<)+|@X s3M$C+?7ibJ[g<階>`"qy"KLt_Av9~-/BPh~SXyN pd<[[xDyY?EĆ#f+av44, -6r{N73R|X8+gBǜ t 84,das"o\/Z!Uq׮}eUht8ؒ7 .c7[,!T^WP>CT"b?8e5?SM)*DqWf<ApY9k;?Eɍʛ;>WY'unr6)t{VZWEgX{EJ2\W- 5c%ϩP"pD&^b|לy`m$Q y04t -E|bU/wFKB,fอi~Ĕ 麘*URG: 4]TUwo8LZ"phH*zM!RUe_E (p铜2SQSYVEqY&FDۋ2GVFeL֦9E,D8 yZ}aU "_A='n(+9b.qc(o.!pXm.' ~Sq1Lr!14/ҿδusok;yJrK&m6tNR )ƒ%;a.iH{IS兪ٗ^S-ʗG*D|}F# ڂDdn TI}Cn^hjTz$*Fu +j&W$"ֽ0I4F(MHN!]|}e|⪰i ǷN<4!^̹HSZE-GiBƐm>07Nd y:(4L/)W+ (&v@` p!X0CVHC|Ec\8HF})g yڄ\J 8?pTV!pdAZzC 8P-#,G}qI4pKYa88J44v̙!jCz_@R` =_H%uEkUFrњtҞYsUU*k֨-FhXD潌]UK _xjhpLϒ>YX8>6'~cC=pPp #dfHA #3I I=(}PN.RŴ`8ubA~&~=ˉpM'G0c|!࠷"G5%kM筿r"1_E 9=pZ I1aWa'n(꛲۝2pCǷf lO8_p󍱛2LBY ^P1eqiFBL9e6M #9)C3]eΖg,7WɞVI0 p|+C`ΚrT)^/V>ݏwr=h8pl|uB;?C*?j8v ʟ`0C6W6슯<ށaa+5Z&_⠹8iCqD la3̹q,\l¥{P!>p 0WjPD&4XZWߌ Bb.Z6"]NA+{ DilYQĔ]r#GqMv읻@7'B޽'\[LX/-F[_LۧtK)^pěBs 5Oumj#Ӣ I+ zY89-{$[m%{x NI1ɣ]#S(iy͛rYqčoȬg1KxS^&ުWJ`7_/"t\Z 3CsՆ!{AR䕨Ok::7I* d0 n){ryh2ըkL/rD }Yf+7o^1'!m@Җ,ljj(02uV7HE `Kng{߱cgEy 8P2}GSxF0JQ4yEJVZd |/(a-[l yE~,B`2؛E-]lWn<4--p5YθhLu /nl+W','x]0ZPsc\"(2&Y5R^:wi[mLt'k#t:\ϊeщuDIy, FO^ݲB .$g!E8IHjJcw}y(=/9mAqyׂ[-?5+,gůa}w:W޹NPn T|J0xRCD ^Գh|B&B*G E/Ljƀcp4,rRNCWip4 _BR|5pЄ)3K#bjh^\@,v\Tgd:}V,$zoާrYv\,Ď@6Z)-ZXW Ξ=EU#LTU3]qIŅ Q8/_p/y֭[reZZj _,X@ dIϴ QXlgrŌÜ4$fԷ+g\C|@-Ja -B6k2?d8}}d$M`]9TU@h9چ?xV5ewroVM2&UZ|wW ]R!N B2_XO*jqrbQ9IÉiH1yNUB 0S)%v/3xF_MX6ti~~=\|pKtq]a"YA SIq-cn=i!:%D}V_>FCM)LY Tã* ci$5__|~8 U0!}c/Rai8ɤ43?)W$H;yue]ʰ∸s/(,EP_ +hN:s9'ްq j?+SRRp~dك2o޼Դ2Tv"pmmmhn;8JJoEpR֎MR+:3:ہ3sQhg@JAu xdedX8Bc70!,链ۨ]L -NGp* ߛWIT7_wߟ%_(\w_q% k6⪴u~px͆5×EIQ!0^Syo,8;VΊ-HYٚrclE&= =yyjCu%*IJn.rAxY~);QQ.+׊j9cdxȱ'7nڌP^Qwvw6~Pزm:C5Q6-iݾO;7w3ܶmMMMogaSNڵuGh sUUU&yI ;c̴aK6#[?p/>Xm>'+1BQy~7ד[1G۞zĪ|rn~@{%3*~SNdE}G Rp3rjij`0nP)ʊG K?q/=0^-yz;]_>hG!hcҕ!ʱ¼tmhy2EB@YJDĶ?r}OϾ_?l{+XXa{X 3n&EaM_{:1ڧh [- Sb˿c.uE h2k?h"- c AA?)#_⺑hkyBclZWڟA&lHY$HǷUPV#lz%: XU&0 d<-ߔ:t)2-8Q$ߞ(DJld^G8?7W'pI*"M5Cwݘ9/ߪC^rǺ^6 dOtVSV[|hN|_/>ehĀ~r/U|qĠ!\Z7|IՉo5Jc } LK&D{|>! 3P YcX #p9htb:4"&ӾI ,A&;VOfIfy(? 8DmVFjN nĽ4Q:xߞ3$٨"Zq E uϒ! EX*ZD&ŊmzIJ]m&. eE+uxûRH}@=J^0)1W>\M/CO?7NN#a)1[#wPu>4culTF],V%V͙'z憄Ze2ReR!|XvAcTO~gŊ5N  KuC?pu[r4Su2mDJ9 rhcC*?37dv q*aVƗn@ _>a\߅ᗡ -sl)ry&V[0Qd3P/urX[ FS9!1׉vQ SX/5B@A$lcgBdWQRXY"'YO{|%&HEZ{Bx+GOQC+[jQNwғpJ:Yʅwe׾@),j9a!gtڵ}AS%ʏL.VEk .-(~e:Aiw;ӓ;; .>0 g8ց z֣ug3J4F]eDBnOKD;!h dWfnl, ?;",%r~pJ&Μf#nM&7fBAԄ򫮄&30΢.-/n`a8\'@X0^<2n'1Ε`壴e̙[Cc3⌅qx5%[eH/p^ 8 t$96cF"pTz% 7_WWڂ[p AGAǫō`OW OM;F&=q= 1,u=Q-4F5UaƒsGnQ :\NV!>08KJaT؁XVF p =< ^496qn d7ʟ}`?#>1nܲnex|Exla5f {>YN`e<[_8$EجLۣ?AM9(񗙳7NqqCQʴs' ߸:QqX:9aڏZ1աI%S QպĔK-@XE/bbd:'>~`_gsf q=EMU'U849[DGƩ_F@#Y~+ad@`:I;McDh3HfҌL娩ZЬNJӗ%6]u{veW ccAC%fw2AcSLF(xeE$侭 e[P$d'ϿE~ZsIi2bt~ $8B`6?bxx-%e_9_Y"M4Dy-/Q984f.z^ ЏPgqlxs OR%(Aw#aŸx{?߽vgGIKٿ_ /]/Z%V)e8R/q̴^YͷLhp=iW-<|cbJXc`.p9%3ڇex đ QֿCV|dY4ME8<"1%19ؤL?ƧÞ͊0)C0(A M*v fAߡ(ǫ=nf([g }c56'.݇iB, foǖk*T%Qɹ2}B*վ(NY Lefw_ v|߿C"$'H&bhԱgTƚU]1>bJJOY\W tA ?(GtxOmvV6 uC|?]?k'/S0^(2'n.]c|-TZZүp|ШPH&U\IDjޖ^07vao.l JKg_wB@ʑRwb; rԶѢ9%;2vP<ѶrUjm\^dt.jY|2m̦l$=E3k>{@ف~0]$k){I`]W<~=gL&t;=X4B8yWs"&GŖG$VJN=}t?[^sag" p%(A&x4O>VC:tꞅ e?F(x6+^#l52JjIc5t$):we^4MBJ,)6_YhOSd']0نzFm#1`0F0O$$W⢊^ \ICNQv;=#kw`ijI[M(Dt 8,OzZ@M!aFM:.'t\' ⧠Uq;m\%(9 |fr υC3}'Xi ^}Ci],N턑 _dyԟYicSU?Uq8t )W~[?zY@龞#V,JV|]^}ŕ E i40?v1ȰN|Y~m㢛ˣS5<>":G \ K;_ɛl`?Fqxl:(hU=wɋf_+ngaߡ+E8C1Շ;HFs׬rUyҨ4ո*2@}y竿n]?l9}rp_k}v,@b}{zMgVw;R ) Ld.S o[jE{MP'x'+c JP-VdY`c9(}LY}ZXz3< o@GB8 &ƚAad놼ߚOn O(GkukU]|*2_xCW+;l - ]sX"l%n8!d ?mvTWos%c }aD즨%I1_.w,Ywu3o%zD}?FGKDE>j=mrsF1N|6IJåз l'efi"p.j^8!yﮈLȏXU$ڸ26zMdlAX\*H7ew~7պu$;H6IaDBU{8N9۾ƽ.)Y uqڨ]TVdLFxde%yژjUcCƋ(,ͽ)ASƗ֏e?W $.z nоD0K5rWYc(%4Fj_$ȒO7} 1%.97 X -:od"3tƌ,PU3#Ⲍ'\;os`և?|Ye;o5k S2Cuh\cul%ps+r2M&>(A JPc±N"w|zxX'M{ g@Ɲ[!s:>+lO{2rT*A% /-KqQ9ڿwopeMDdxmITAK@K,NDT! \c\!X-l“K&4%BMx~XXX)W8?:a+`;J3q/b7l>?P$vW r`QζJGareGJP/Lμ 7IK=7{I^(}[SrWJ$ƂJ,[@ }Gg'w-2LLM* -*6&tՆJ]Li$B_6hjt1_\S G󔎥$ê7P9Sλ[ȾCʽ _o΅"T8|Dr ))Y$G;QsJ#q6/OJ5%+ns{Sn%: st҈0Cuxd6TYkl!C_̍Q%W^47{SC8{*'׋JEuoz*+gC3*lt.г Gȯ%(߼({5vFe_c!_R nP"l])*N|GHV@쎱crrox Wѧx$+J=y(wo|GקLM7N3LO.TTM. / O('&eGN*pUU74cӕ ‘A2 a*> A}PɈhg‰V%(ߴ>VƁ$;hԕl KwCP h~ρ=҉l9m=h$f$DqSNsoD^ ր. z6sf츪8¿E =*}7e"*ʂP{ @H&I6 spwwC\16G~(!ս7!+w.C%pz+ R v JPr0 o[ OnCG* #Խ ŏ忄Wêc)(vr5ʪS3)V)hY2E`9)픏6c1lŒGJ3cew.epٲ|Rݡ(\%"\W|+\4/N<^NI%kV氞Z,SE/M޶^l|[;UyQhr80-@͖`FPZ$<e)o}Y)l%4N}^){J'v옯YGk@؏7 2O0H2>f6WEdvgicn -pAyߠq(!-alZ GVtLZ}D8q%(A}X".+C{3еvU6{ Ď_Ao`бDW$"Y{Hg#jiA!Ӓ}xb͇6d#ȇ%i&T!U=4Vsk (Sl=*72|*(A JP.:HoGPf8PHRm`?5zʟT:WK{qf S=;Hsse4! )xJ%{F$G??OkNU+iD}Y)p5!t{Po`>=%(?8l;w'#U5Dmy~T>'W> /Aй:g<= K%x|!ȒWFd[!Ux_U~4.maorP<^/~Iou JPX:KDͧM9GaO&t.m$6װO D=wI#{7i;H'[pf/O{"WѡQo:4!Cer[*wD9Y'C,)Kw9A JP.zL$Twq1LW'`Myʖw oAPoR|iW:,c3B2rTMSv{<òs@I=۔5v˭sa{J ͍o*( L г%TNyB*/7A JPƠ(#eзS9+ݙ鞚I'tIqxK+66v%wO%T2~nz睻;7y&H=wzo4gs!T{TrZ5BmaM(HF4η6T!wDeowfQv'5**b(Wf)l*>J'4wS϶G?6ΣW/@$GT%VqƦڤE444' YsR%&X\{yF?r'95;HJ{d!"W/խ&EJNIEX>~[Eu<@yPѠ\͚(Ģ[%)·AnM_GL f N)/5<2􌸆{&9]#u;z殑"N#b)~*5e.j- smEn6,X]xgzow+Q^ ϯUf^;*O*ZϢjS14:+yF{xZ̓QgV]xCA}$W̼V&*zhC M%9 RLihDcUU27ރZq|bOg6_tpXoѫ,<";)cr1f1W!7|~z V|*z%ܤ(Y Z͡hk{P՞㝿malu,-vAW@ Qv{?׫hbdPsߛ'fj\fq2kˮzϛ444>@lZXSkUz) &%&@8E&O/eUcVU*Vw\zW@ݾ$-V_[e36J g)x z+bNØ\ j9ƎY{Im೴d6ƲHS; 8twa;(+wA Q%_>#VH &?;CU2Y9Wôy2og1sChTUM$qH*r 6*?%KAUKFnNwDCCC=HiSQKvrJR*QjAuftI3d?B_ C=>wb@fZJsշj$,P;\Mumj3}+j9LuԄ0]&Xq&у,7g4-1;b?R1PK$`Lwc]jhh|JƥU\\6=11~7r'o?n*X%^̄MKR*|fVnDlhU5֬DV n샴 rQ .諠->_,UӴr>wv "hv}4}X\̴B(=˓/¤(MjVxpUp |nڢ`o ݥuSHO|A1rF%wE܏r)*=+,h$͵h.'9UV jMwNG/@5T~\FSdoD62-2_arM&ͅG&sb]Q޳iRm_(I+w9=R3>Y4Jd[bHg444>l@Z pEj<,"k{pd]F~Tھc`˹t~6 (3%jI_RTUi_͡0,QV 1*a TS{BlfhD=-+ aVO2T;jXOsdh@F\h181 mf2o.J^j2Ƈ N4a*Y Czd,1&=LW/aeZL} X&(܏qm+m*z!d!XW<Ȫ5e 6VUra}@&mcC̵<3YO$Z2!Yޑ)8K xbQ^)>caI7:CދJ1)xJ*?X(&U{*j]N ]vd$uQ6XT/Xl}wep9|O9I \@]C? .gל>m:OS!9 } r>sW&Xefh% ԰c?cH]FajUVﴽ][uW\*QK9e&)B.`\n:C~b;dvV^T ^ VFQ)!8X^Ȏ#?\yEPO=J C3YE&?ta+?O90qq:\h 9[3l<{h)<ve+[Y\h=/[;}Y rwIu foo *Z̘*EV%qelHZTqn>fg֎obf{()̉(m3p#(Uwf#?0{]F: ٤Kj"tu0]*ttJDdѯXYdq|BaGr_rQq|QK`zp/&8[j\h> stream x}OHQǿ%Be&RNW`oʶkξn%B.A1XI:b]"(73ڃ73{@](mzy(;>7PA+Xf$vlqd}䜛] UƬxiO:bM1Wg>q[ 2M'"()Y'ld4䗉2'&Sg^}8&w֚, \V:kݤ;iR;;\u?V\\C9u(JI]BSs_ QP5Fz׋G%t{3qWD0vz \}\$um+٬C;X9:Y^gB,\ACioci]g(L;z9AnI ꭰ4Iݠx#{zwAj}΅Q=8m (o{1cd5Ugҷtlaȱi"\.5汔^8tph0k!~D Thd6챖:>f&mxA4L&%kiĔ?Cqոm&/By#Ց%i'W:XlErr'=_ܗ)i7Ҭ,F|Nٮͯ6rm^ UHW5;?Ͱh endstream endobj 65 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (../../Doc/democritos.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 98 0 R /BBox [0 0 262 76] /Resources << /Font << /F0 99 0 R>> /XObject << /Im0 100 0 R >>/ProcSet [ /PDF /Text /ImageI ] >> /Length 39 >> stream q 262.047 0 0 76.2857 0 0 cm /Im0 Do Q endstream endobj 100 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [/FlateDecode] /Width 313 /Height 89 /ColorSpace 101 0 R /BitsPerComponent 8 /Length 102 0 R >> stream x|pUd_~{즊ԲQ7""6 *]ȈXhVk֗e %3 Q R/$H`E%1 ѐa Iȅ=}dz>s?(QQQQQQQQQQQot4]Ӭ2ۧ޵:#=Lepf2~NsgsIiuIq0 Ll x2="Gtrу-xB7gY}=>u8 5S=nq'qzwds8n^'#dKXDz<ҶنxOM,Qpy7#<~iu}Gp3#/x^)ۍUy?{DނrbX{a#-wڈH)a (tbWn(85X2xě۳ȼ(^nB,Eg2MhC;*M^W}nxZL)#RƈU܉ichN2h"S)cy1taBy*lݺ&RsQ1q#RG$yU:?\h4!T7u[\׮PugP5*. +9qH D⺋!q0p$J8=ìÞGۯc`%{L ]p=b3Ĭ&oέ/ٱH2aBs݀8,dU o>B!•,Ǖje)4B(pr Qwa>Vq=f9n}5D:ifˎR+4I{jvH<*p.V#prDHbxw$(| ڭ6"|Ns6>N;H4 D$#Ct4m"nb8vsё88x}ߪD>/k~;96n8cJw`hmU8MP28ՙc'cTi?/?~DɈCBgb Ct;`pcû#DJE8/V2{֩35}"ز<$)jֈ0ɭGСqޓc莩v:Uynh 1s7Ӕ*xLsݓ+RpkpEJx=%[)R<+7dW5IUC= 0Hgr k!Y)4ؘ:5#R."**l54LFR6` ov7@b$#ݞFb=BB/ 41MDDsqRe!5:]AKm6&sDw=~By0تTUdݸu"htce8#Gdnؐo#]9]a(vjOCQa8Lls'f_AdiT+$zYHHlUs9^5ODpwYؚb䛅AhN)n!SjaLLh%l̉" qo nQT4![h9~UqEUmWCc E G14E>>47 S+k1Z =̎;qYi' {' 'Y=M(t4SI6b#Isq%LO:q9L4rb ; I3%Se8ą=jNJE3Ýt wsƤaIŃD4M>1oQٗ-LF Y59Ks8|s}'Qq?P蓖8v"[`~/?nSݿ#jg'ㄉ5uǼs@w͛QDzıhYjg^AY4Re!B{Xy@E\fvv6;kM{QʖғGY#1($50ӉȮ,&Gs^pZ;'봄gTأ7y[AD>{9kg`)eg"B>^=4}SYU@9]x8u{t %ٕrnAlOS5o ݏdFGi²捘0Yc __8=7;wCQQ"pfIO{FMg؎]6Č{MMU\#egO/9KGy\='b*P<ٱĹNM>BB`Tɍ s$Ɓǘ$9-NjɯNՐJl#B EDH%VVI>]Rt nIҵ)G""{%6??j\\֥БRÏB5UV C6lo<أ__((x1ҡpiRI9a:B*oN}t˄wM%)-.//OP{jċWJk ?8P&;ebJl9ZÁo  ߽[ II꥽40߲Yag8 ZjRj4j@dHV'ɥh_:|- ?($Kp\N[qdA1,IPޠSZid F@OɕTwEVqdf5a3?ļ/ t߇ őZVc]=ز%˞M5~&vJnhh8NO͛RYPWT^u4ta3Yy_S0l_Wr%Ny༂ qJ bjڌ=YY' Lݑ7C/YQVHtKɂGOom%_Pd~ȼEl{a„ 7b,(~Ao^aQ_em]m6*.fGlȓ#b,Vkʎx[Rы=ғ_)S(Ze|?U@V*,23Z(S1EȊZ|*"_H4V*ȫRqk/U .S+F|>OڡU+ۢr9W{˅pd8 gX_G^w˿zeX+&n(n1CUvT.% U-I{Z`Ah&#?NCǤ]얛\~*C)WP\:"o|*t<,!wuUGjWSRo T{ZhSop0r1Ǵ;uÅ^=ς g1;Vz e5Tbc |BX\!%ʐn>~B IP!!zH{VJI] &WM@zE-ň81@))X3,Ѥm0J`Z2CR$xPٸ6|\Ilu*9>Pyۘ)w-Zv풢M=}z+dS=]+6m9WPv@܀RR޽|$}a+lWYDI:~- ߔx@~L+COїR9:IDI8[0`"N[5␎jyoކ* 9ȈSRU'{k‹Z:&4pL 2w^4f̘RUz|,BO q[qyS8;u ?-BwLh)wWeW#~RDR9VKwH.ݥ௠ZیP>6urTq WtK0KEZ|X^QW=אjgZg\3ZNID-Th佧V ?,joxNp ֲ@m8WN-ty3*d tu2ԟ q8;9X_/J8K"gzׄ qMtF[R%+>Eq1Zxn֢IChC>f,˓ʵNY-/A^D Q>܂[*)>EZ9f182dơJ-m=fJyǠ:/<'kl5Cos:+z#>lF_0uK{rf^ލ8W"nM ?Ȩ;@6TbU{)ԣ?[{'V;&ڨTl=C,ޅZ\ա*ӴU ݶ[۠{}*J#u+vCKŖn m[iv8iC·a :TR=J,r:?B#onӶmU SKw݋(*w}/B)N(U{4V8c9 \FĀ^Fc}jQGx(z̢hַ ^ MӏY,1Y 'etiZ4s-4Z DEΌ[+!"0\9&YSbqW'tm)h`>%evMB˜_1|/8q{5[֢!VGC%7|M9G}B A 4VWiqRi^\}];@ hX*oX#aR\ !g ;o9#J7:]?Yrj[ E.mrq P:ιZ>hJ#CG78/EW]+}Ъ{1ZN@LEU`mBwTmaQꕢŷ)ZHvr:މ &;|j n;lz /8@f|\fP04Fv\jU/5xVYm"#\Czo薾Ղ+H\*}GX9\87^tׂsbt#DrĐlv SOZV+hh{ wSzr*مWz^@<}`<[Z{SZQ тQq1 VmeU-'F"c:ЛA#K,kc;P'aDwXUQ%^#5 *巈F{ YxǨd/ɧ6T:D7ѣwH*K>JAemST79fZ _tK~{Z.fYt-rT&\v+.F/|)U:WW 0RB}TGi!Ic@Hj"_*gz`6^| i%Bc"m+fQHZjҬiD#:ClI/kURn 3V^ uih˚0"KogqeD|c"6 ~hg0ϓ @")~${I+ޔqy(K=̳ Sg@݂O+z+ P_z츕Wjz$,cЍf4ف B?(+)8AaWW] 3|lUZg 9_/b{Л_{zf.tЅ9ߧ`e6kkз 5O5C~=F:G:YL;I:Zi+AO08YWՈiӆ~@޴lډ\ߎiֺB!ldGE1>Pt©:c'ƪ*a_Yvtz.٨}]4w#GLY;/a)C֭%vYUI•t Y ^ e2իTVLt\ɍLP3e vz&|8dZ A4'F4\ .cWi(dn`vRe22L3F25I%`W~)ȿ!F/RI|gd2ȏ> stream 32f06i54h64i88g;;j?>nA@pEDuHGw HJt!OIuKMw( )!)OQ{$0RT~UV-1WY.2\Y0819_\3:b^:<;Aaefc=Che>D?EeiFLjnnnHNKOrrQWuuSXyxUZZ[}}\b_eydfz{fi|w}x~hpmrosptrvvxxz߀⃆ነ䋋㌒厔⑕唗留䙚曜眝¬鞟蟥ĭ褢礨馪ꧫ쩭͵魯ļϸ믱Ǿɽ endstream endobj 107 0 obj << /Length 2605 /Filter /FlateDecode >> stream xڭr8_,}R|U2vⱜnDB&nt:ޭʋ4@ 'kaM$0Ajn:'X^lj[E.4f%6OϴPifkho#PSy@O"양云9aSP-EN4k\>NjkL Њ!S/m7'S7 Ϋ4xێ.@3q'nٱOb?؟d?r&9,~8&Gvb2?ɀ7@!)e߈1DQ\'S'eŸ8;-YM4:.+AHb =5"V,07ǮU2k ?bxʬh)WQbQ)dpVQHd tr*KW`^Xu"4D$5 ,DC?7x9cqԬuծ4FLhh20zT ]rsqnEg}ƼL0p0V"%VsXBԆAZR4ؑyQe<]`36 F\ >3nahi4ӫ Ne 1ề5+d{+42tBעEYJYqBU~nvuVȀ-'B>;$l- L6U][>*ABKlp(?>?-]u$Q|וFP Lrry{sny^EzeCFg[.UĨ'FIm DbSzyJՋCJjߋ [Pg>]Ht 4s0~yin$tuv˲GV{VBWMvl{OS8?ڼ2eu?KBF< 3M 6 Q.~4^% _r?5Q.$;?,gjTd}p!.BD y+:C;CL/UWBʠRvkșEfT+Yi+IEckxuEFUlʲ< {P߯VǿRV>~7&ͦWW_-MUEհh Vj6lX06 rۜ"ʌR!}C!ޯϗ 9n"aPu}̄]f*'8RUap9nQҋE;'2j٠hd9AuKHЖyיէ/x<mE*Cfڳ]M}wzh֮괠 ͧ|-S3&߅k& д=)0O @푹Ɂ[VL&@ZeaZ*iVPyDl3cSc3QHrFPSbU -񮶦V :L+V#{Ȱ!i V R,q-MNY*d ,79GZ.L3kKqmZ:87De`]ּT[P'c |4+%$Z7S֎VL/]2 (^1b ҄DžV5/\/h0Zl(?JWefadp\0P]7Pcup㫶 903 [Eub7t;ARw^[+.s! .^ж7]3؈$'2&\ VVu4d\|hPMrB P0`ܣ0_m@0Ҭ#1fD]՘.gctҸD ; 30R~q!L _bB (@5|$|#'C>ɠp|kf·3%toJ*]{+ʦǿ$.wQ"|$tC@68$)T3UGp`*!NqJsR@UD,ޣH#;WŸR}v83ݹNoЖJ.Ys; r_6];dj[/鿒O endstream endobj 112 0 obj << /Length 2731 /Filter /FlateDecode >> stream xڵYKs8Wh}" >rs-Oű7Vjkjf \Sίnte:있gLJhVYY+*>ÓկoZhƁyauA(uP+ʢ[iTA<z^yCm`@UyQmMmZYZLNc^<0u_e]4Fv ۝ہْ9^J% JE Z'5|aӒۧmYTp@/}4YwЮ7MEYR q4DQ1;3~,E+'/Ev!XڞNˋd]<Ȇ"XgnS(iI = uwiGz+_.K[}]{ڻM~*W2"M_@[o [2 r:_3mS<~^~p~S54n Qؘ4V,ܚL}v;>m>qlIgZqic5lp!q @ݽiMD,ᔊ8KMwpjR$ mnt >u'Nm `ҳ0Y=Oo3OI<{K@ n+g':y8>Q@ |5ZgJ ?pE0 o{8Ħ$6RR//ڮ)Vgp&" ` .u\ܵJl>4EW nWFC~G"м]Q1 O|6A2h8c&鱇`S!.-*k?II]Uֱz6V2ֿoP,JNPODÃT Ⱡ K Hs 6=G/ pn$>#mŚcAXQU;YLOYyЖ44]1 Ӿq>پ'́7 !Â)bx-,J}9f (q45Ė*֔,- h;2<E߉} R0 AEI&Ͻ)#=qzE1iJ o^T~21ƐPFpazd!Ϳ.NmM pF᫛Kf #l ̗, P+{|zx(,9ӅuH䭥+ 4pFZn̗&=ŭ!4_n ) * /[ir~$?BZq$"n K)}= w!ҩ~(w:Vlf*(NѽhvlҊ84ٲ\HQaMCP"_  DHI  #d2o]O{HY)$k `_(n_ibC$pqWx |ȇ)4uUdep@6~t8MXgF;eZ>A<%,/t#Klz[p*-)O;wdWX M*N=րC8k6 ňVZKxڮ} @ɏSp|:f 4yn-҄\$ݝbHj檴1>,#+wuR;R*: ,wL?y%l%>l|V?+% ⼇s>=%w5LwhqCˎMV Th`CTXBh_|?Ly$ ߋE?Ӯė/W7 endstream endobj 116 0 obj << /Length 2436 /Filter /FlateDecode >> stream xڽYYs6~ׯxI40qJuTTڪTyHDCNxDҿ>@)qq6/4>A}yB+)Eju]EjD.o]oTb۵=pVW7y]h ~"eY"9o+^mT]lJJw&Kĉw$pk`a1`02bz6@73Kly  u0>IZz-1]Q@Z+lGт8m-%BLݣl^-vEZe&QJg$hږAoV=P qWY7p#CvcYc)}.pDX!S/ϢƢ4~:EFzcO.=&f⬎qHq _vjrci cWx+^n_ڥx+0 X˔:qJ0r-TcMu.|g=Onf񂔔 F`K81Ђy^5 {q餄6?1}GU%dx?b);$]+gL\ÄMNBN)wiHl'3 CxX%V'7cǞT't$xY4 1WU<]zu\8 rA'd*(dc{J?ncI4BWJ@9qcL8t~{,7xهزv7E#׬h0φlctx=}br|p{?Px-POL0݃(0-?9Ľ-m22xHP%UY@pfn2o<=#Ȋhں/sfe[|F56JDj(:[o8XHЎ@pwBN}Y|l1g2: Ovp`\1M>~!-v~acpLo>`G%Cڥ&e.{'!xGȮO=\wde We΅T4s\t=Bk>@ Q@b!*0j dۥX E4V. .8ÂV*HVq"blw*%Bwqrg|b#fu+(AϤz/|p_3 !bGBooU0ZB>= =9>@$B! RcӠ3 &< 9U~(0bFB_^DA &FEi@ eP endstream endobj 123 0 obj << /Length 1515 /Filter /FlateDecode >> stream xڥXKo60Q)R9t -ŢDpE*9m9&EἾG%VT(%l26xA8-fjG/"?׿nYvj!8Id8^+ebH'%%YBgD< $/({,DE<Ѭ.QIKh=Zq&BaY_GjQPY))؜pzD&XIJǼCOew NCqs ~Z$;5bTD^=-BH2BE |] H#] U ?I' 'DU-Y oR{8 *j7Fu- KG?wp6l5XhpSyp{Fɷ^U8[G8Z%G=.n*e]"nvq8;刦4C菱؉Tkƫ zRbe=Yq@SdXvﶉ\cYٳtWuC]- iRu Vs kXbFmLpATL?;T6[U ߘ Cde;4FwNg`\wQƴ_e7yq1~^gT67hxه `b \wMWɩŶ;¶mOrԠ_ESM_%Uk&8SA~HX8%߿|"a}neX*|W<ÝMSR-`=_lÃqG]>i$J7W+{UؤLXp>'#V!g<]uߗsöLX5vIRb^jxņl³pm^ 1st$Ow endstream endobj 127 0 obj << /Length 1270 /Filter /FlateDecode >> stream xڭWKs6WS@Cʴ[)LP$$q⨿(6 o~X,r#Y&$"&"s*J6$;.%C "D`l3w&-;8>mUeCwr}wN œ6e.jjxi_ \qywl g}=xED`hu>UkջcvLv@XPJqjzeURi;sLsOTՕzYv gsk!z<ƉO0Qf?/n~].W&Gt*&On7fsmm=lɮ}||4UmC'eC`{F|cc{GPzGL,-?5g y)kkK-RѳGظ-;dbi,C^s q@ۑێ0"xx<[吏C7M*L`3qUf7Sm٩Xwfm*4y*TN eIz# yjzb'W{aD>w8I@'-'_R'MЊqih$Ѭp?&;Бї[Ә _Y@.c|B*I>syEBi5A 7MWK:5F R`eΨ:7p# ;zȽ۪q.X7ui&)ܭݼ5…&ЯYo`̫I0sn{]eylZr=Axf.x]mV&C-" b=*6&Elf3̔a~?.C| o=l.O,jhc(+`o>d _ j}1 !~!aQ|a2n{6'~#"c?'5̂# Z(zO_ؖh\1p٠U3m WhI/M endstream endobj 131 0 obj << /Length 2628 /Filter /FlateDecode >> stream xڭYsܶ_q <ĮMR:qC8k~\R.v#^\Vꍔ~um:*L77g$ܪ0^]z4>^u3Yq)a}[ 4]iDP{{h7#Cq,;j_n+TD'A NA隬hi/oU ~k CYUD6!#M7j0?釡CeXwJUGrr$N6e Ot %? &Ң_&?nu'AJCm Zrp4: fA+;PGWfuCv Z%`n|Bfo>Ѷk}z+uٔu{֗- T^ha3zr~/sN0LǂV-Hdj@Dցr5 (Wh|; cRӯ5`t^uqp .\ x ~ı}_joXT4YvޗhKK JӗO8٪Lw<y̿n-OA&S:8ƃ9dbႅ/ W%$#$ gCy9K`5Dc|Y01XH?}-W,)1=6Y] -5h-H,=vRJSgTd5 ɩDN'JG H㧈&FCSA.V }J>go E !eRUT /O$I_8H5t-{R/=ZsLv`cnak!k]O>@ʾmޕ,;%\9-Pc:8}첼o;#DgA=uAdr˭wTo=| 8X;&#f%*t,"}a/09 95e}Ky^B '9CgrQH3oPY߂,%=e/)EԧtJ s<,pNXfnJ֖ҳD-՝ӕW)^`]K@?yY@݌ F*Ti^diP@.8b3] %@Ҁ_`vd2Dʺ; 91{}4`JދP<ҕ)kFyʿnZ]z$It"NvДk4OpE)m4 gm̿[ZPcPs3 Ck;l.dk8=Mo Y\s! ,Ԁ4pϨsǶS=ܽ밑RGtVTӖ. 1k:_o.YDnSȳd2,D:S,O-P?,P&Y5#HXM4yŒdqr> >* ٩EU P8i~ʪʡ?۩皁gGVf]g G]dkn9%qOy.uE $.EJ-!ǪzM kx3QSqe,b<2`tp_%IQS;Bϋ5[(qS{7ܹ,L7 tQh c8\F#1@gjmU Wc{ۑb7ͮm fّjcm۵.1SzbJ@y 6  2|Oh S7KI0Tt+= ZT.]Q]2fYlש"Zrp[*Smgp9`] y|B#9,INw\}ඬc!-s6ތ +4Q-T)y.LGLWYj E^j!qvn)a/v{(o9/yv^,tFκMs x(yyյ{]$mu<|+3PbO[={?b?@h<D^k endstream endobj 139 0 obj << /Length 2077 /Filter /FlateDecode >> stream xXݏ6߿bQ,r;]w)zI[S,fƨmM_H͌o4{')Q۫?d%ȓ$Zmw+J*s|V1JUЬe`uwu'aqz,5E7X*;Jt i7v46W1Ҡ\ magEM@C?M3&j㔖~&!)x.(#GgK$B~"JDz)mSW(_h^;pSSPs Gc03DPκ8xʸ"gSpv,C>bdQa{9Ii)d&I qA%lQ,BX[za=\8{[Lp`5M}SK3d5;ԨN]Q`fW[^"~psǒz/Y:h<[Cd3Sv=#+ i (JR-BWe{᪂I8P^;2AXzw.k϶Y. $i&p83]۩4!dA!@X:!Ҡ-Pq\ F3"a䉁YֻX3y_E?|"98l)tӘr\ ~uD:%GYݕ# E+pf.m1 b7ܮNvSϵcg%iyle g䀹2b0\Ŗ3oͻ_^]~n)خ},*P+on;.$D8,Fb> sx9\Ў@(*38_ez.0.;32ϥ>O3$N |9`Pʊ, uSrxY@vE%:P_u:'gt3vPB5*75ނΫ`S{-8# 'ǃ`),m߃A k"$䳻OrЄZ)xRy Y7L=I.xϫy;8T8.DBj/ MP||C;ئˆ[e vu3찉C`#O0.ЄeHlw^L2̌L &иKŢ~~d[QER WxayyOؒ|:hGxEijo߰C!MYkVږZ0vmJGףRK >E=TuE ^g׀߷o۟2:kxSbt~BQmE?qdQ2jbt?Vu o4QR!ksK)edLxyt!5%ZBƤv'$s)747ffpIkX2 _ 1|"Syj"H#1 ߔ"}R) saS:&t)g:ER%e@!J"Ob/>VK8^ P߰wvXY~ &#KX^X jCELh*pqg4^6OI]B̈D;|1@o%7qdLj7֍}oc-9Zhg]\;[B".@dPšIsZQE%%cXIU:oU@Z|$q.TJuJ/Pίm<^v-5^$3Ldi wLύsTe*ӟqºK6ѿ:gy$Ooqi;/l_[q! Wȳ0Qmo ! yHi*ѶPJjܺ'K߾^-/|/C5j 0im/E݀F3RJ/b endstream endobj 144 0 obj << /Length 2343 /Filter /FlateDecode >> stream xڕn6}b>!f7H v#^mSu"bX'qݿ|a8L|Wfu/;&epni-I9?<8w<҆d+Li`;gl?2 }#Es.{qfYӠǓm@̳hQ<ѭ>yTǐ'@Gр W:;kBq -?G "r$gA:sň 0$NOY^x|=N#pxSȃi]c/Gni+)K*ΈI[04 5Q93řn ̑/eI:GMPgD֟y2v"8Q(Y)A43_#c$VtZck՟d7U"N2:<xLrA"j REeZ(-[c̊05#RoV[Y D(vL|`Wvm9lFN@^_xlK0-g^,NI;Y᯹3GL#9df2GhN X>!8%H'xPuY`vh(Kb'Kxl@{p?E[Q 01.L=7B! !T,Ĩ: 'W )![[yiu@Q2h qf6<`ָs#S&+Fdܨ#\г9 0Ic{ͬmr#I<U.<쀻$='\IҳByy0%D8HdKR<>Kޅ-o;!.Lw$ ׁ)39䙤;`*|JP E3 B/7d$0ݺDBE4 *x/'oaT\-VxWno'5l4!LϒT9h%#Xډۉ\s\*T%+_BMC@!ry̢,L"AnjwuyVU1Ѡ2 SU6jp(J~*~ʡ{,+LM$%/PM[F 94 CozI+p$,%H1"oK]nʩ }G9ٿ ՋBvE d,\$RHK]_+ZOFWt-y![~x+$tj_DCKwI=,JGzGMt?xܓ\YMR gog>zEPΔ<Νv[~KoJ;?xP[Y^\=Y#CamV>j&0mpJg-[R,7Hk=l\FKS Xqo~{ endstream endobj 148 0 obj << /Length 1909 /Filter /FlateDecode >> stream xڵXYo6~ϯP_ذD] C7MQd}i@+ѱP$%GM 7C]]|L)EZ;2HEK'VP2uVy6շL #J*TĻP.~qJO^>+b WxzUC>鮽$9_L3_-\/o(t X`:lLls<y6bKυc]w|_vǓ=N^ZJ.`U`v6e*{Z #acv" Q:p²=׃1kAԏ16lHuqBªHG% $MDA" t_-B(&X^Fp@HNhygkn}*YC?cjחƭy8J/?Η{ms}.vnRn҈u <%S@% 4~W|zDvߴ౩<Jf̣Dm 9ËH}X6U)Ɔ1Sby9JޡX UWX)d|GF'C[ggfd/'C7㨘K4$%H3`^Ӆ~j@ѵ&p;]=!4FMxZH,_)*kxG/CbmY%|WA摗vg(OG*2q,qd6TJ)wK9L?Rкjj10`mS>,hiU\fܶ8o3$w4%i`NWG3n6Xw\ 7_ ChƦv UC77npS&4j ]qMFMimb ppg{*QS>k:!`C2rKI®+ $^j#;YP\ ZeI Ĝ_!N(1Q2uɃS*KޜǴL8%{5@3Re7gjHl:ag_36MSA?j/g8~uBd-~m! endstream endobj 153 0 obj << /Length 2417 /Filter /FlateDecode >> stream xڅr`D,ޏډc鐪8Cj"bק_\ȹ=====n^ݽm/4ZmWyYʓOruWi} xgz&7<~A v=iFWCߵv6LO/p08g,MTxь:Z=]cTcedI(\PYm \mOŘD:N(b}G;yⅪe&t-t-zƻO^6Z5/'şWjam[e<)'ݳh#<ӵB0T[3)mzkmy.PuQ]ib֡_@oev@Ѫ_3 14l蝦1ʴ`ୌ۾3|6֦s?Mϼn+%Bڑ!I!-1j$D[ /Z5j.x)2x(MT.{CV1C?"A@(}D .jv Ao\ՍM紲?Gբq[}`c>؞tTlFE':k6@kX 'vA~l/o hߘf^v\~0%֩ ǂXxNK^ W$ $9w&Ĝx crt)ѡ-qKQvno!t{A~5MÄau#,QO.>yg?*#zDK #r9|}t ^閔"yN!mAlwf/W!-z[\!gX  癅LWB?uY%bOS>&e3KF_Qg~!$%{\JVJ~Ȝ'3?\p̎i mB܄c#'=7wQ p&(az/,y}ܱG6VDfƇ nu@Av  B%'<"~bI(I7RifIM*`cS<Ӹp <.?,u4EB5ʺ q > }/潌$R`ͯf:tЇC)b l^ni`M >֘wK8 J?.LܢR1$+^iP?4ȼ-_ ϱZ@ DB-6Xbbt|ө;7djU:;ưBɡvre@RhnĂ" u8Psƒ3$'q]py(=7$*^vlỷ{=DJj"IQ]u= :rR$ ?!9|pE:KsN1Я>?CebĘ.Zf'"vCCI RZYBOK޷u˵aPr벦X4~,2Fr}ڳ'x,zH 2=GO/JT~2sԪe Lj3Z_@7}U犹\rw/yH"7w/d|T endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 790 /Length 1968 /Filter /FlateDecode >> stream xڵXmoF_1r_@b[k@Z80*I{Fcɲ,RKqggyfvfY҂K%)(D`HzğM"=)^Ƽf:*Қ yO&HҁLd$Y-ϻۀö&,py1<,#@A*HS0*q&YJ{^vÈ0Aaa K"hCHJM"p&ރ,yC8ak1o X@*QB vVZG(p蜁qM,{p>dF#G_FN)%|B%v7 ypZ%)Ȧ!gmp &5eVX~gY(.TExX8زf,g YDzr H=y.m2(8#'; $(sGc`2 8,J!7o(;CCʢ:ɫot`M5Οwo=>Dt#HU5. s,M;{j(oy{]Ҩn*He_뱛Ak9<}C~Vg^.cmꪠ붙#/7hRwיɆUsOit[瓪6,v%rD.^miٝt^^Wu_lh=s; )'[-zܖ.[U^Tb:e9 2' ?OOaa%e{QV/p0Qv\,M}));IvvłIvVvʹ.$rTt!E*d`de=-su@ui}6aaàa60 ZZ% Z.]L-OJ(42 ??fIt~ʖ^ >"sI}x7P]! e>^cl9*'MV}Gftun!sHO&*&nD";;gifQ-gȪzT~M?A.06ΧO~)D,CٯKWEdfI(g +[[9ʎ/UQ%#=pdwa,pM;*Y|$;EO^1G:zTtMZ"cGp`ܚEdDTr:58 Г(Pa2h:C*Ӹ#zP$tuVÅ4Hks#&S> Fړ1{C"+Rܛ15Ht P,vpb Eu|LAj'7CFY%"\[Fi7CcjqG"|CFz=F>hN4PfK@jJw*qRև-(4h qqՖޓr"u%q""ɜgA,tKsz:_S1A b>Á_fq{|\ n{߇g8P}2Vu2]b'ܫ71y fYCz&?K{b#7ft0k]$4*4jqE5pK+$ARnrDv5K,r=5/íav>#^ =ldґ\cvI.m?rJpn+]-qrAmz+2G4v^9K=^2]TjC|RDh],:~GYNGpQL[a)\S7^솸wuC2'6(+n̊Fhٮ[C:3;߄UܮgE0磥y)+vYBVk9: endstream endobj 159 0 obj << /Length 3022 /Filter /FlateDecode >> stream xڭYYoF~ׯEA66v 8XPdDDŽJίߪ&tOuU|u}`ia'Tt,vqPb[W݇wpD|i:h?n/BveQa=^-_ױ}^*q}g.J`q?- Y`/"Ⱥ6z:cELԑ‘qh⳿_q&L(bv:Y]^;0 `*MvviSL}8+5 О%,{1+%\cЍ&,TxxpWȒ;k)q&5L>tm3qÿѴ1zw>&Z2<##$hJ?Q`%Ksd4O̱eZZhXKݱwKfcW^]-cWMp<HfE: q}VcFJ~S+J#㑐fI - GOy(;/6G{A6V LmZֽ3 V6HᶮAhEękQDOԚ*E`!e2Q((ҀHSYYSx>8r~j R|85ؗUx QS@D$'1LC Jl<՘GUF=i8($GF|vNe{-ñ+碑/၅t\d.+Y9Ђu=gcv(@wZ82+CBPw^njj0vs =T3AzZ]Za\Yt_U;LhΟkl^_h"?A(ߺx'z4%LuأLo%7|ZÃ2옂*;Sͨ!faz.9+y;Q$0Nl+r0|jm׎M.i $PFGdpbW5I zL\N 2j%ߴ'rH~=oîĈ%'0|D1./P;'cE>.AIҥW+&EJ J9>!\,{Izpg!>!E0~hWL>CU6&1R00%<jFNѥ< 27UU%%,/ zRLrȅS)dC4qh `ڀ@Y|/KBGBDB4塊P t2jC2C5!ݣ7+l_*e` @/H7>vH'`Sy*M{10J40@-aKF! sx&mȅ/k$nlmgaOVdLnm{]3}k&YGOMVyu5H,H(c+4}Kͺ?t*w0Fʓ%y.t%v`B#R,*03$#Ze1 ~o.d2aI*w жgPhgk7„Ħ+$+YlWow*[Sgt/^*#cŊZ!p`6yj.6Bd;c3VW@n[E.e_,>CXk$t`06Sf _MqD`h='ZSaޕ>**L>6i'MO\whZ*bcDX ܘnvKJtdiU±(%|wÞJb1$pwl$hf oۘ.S/E_W޼Tꁡw 9.>̭`jH.p-ysTYuY׾3{"%:-3S Pq;WlY8BQCVa=Zq؊fCe <[G89}L49yYޟҸtZsپwKH^l`^(c*\dQ&`!Ne8POSiqz>'-[\%1^eOJll 6&lLz"2y$'? Wwl endstream endobj 163 0 obj << /Length 1494 /Filter /FlateDecode >> stream xڭWێ6}߯P^bXӤċl&ͺ($Xh%[tٍoP./E93gg˗>vA!c8AOAIBg8OK0 |`*Ң1($ހ{2_0tf8t۝T-p\ F#VQ*YLCiyoY[,sxB7) jK"orb#t7%gaX( leOL\S[T.mwqM[5#i'Ewġ,%n ]`aJ(uTlQ2bas"BP".[:X}9S`cƝ8?; ||`[ղ̹:왢~>, Q޶YiHDa{iG1ŲٕY_o猺Q _Klڲ:ZȨULmAY1.驞^=P)\{X|$VQ| ;<bOfChioK!‡gOxO\խ-Gq!O.3EA|]_:Y{yKc6.H)-C Wfli!X /*v\}! ؈2lƘ6~Tȍȼ6*5HdNX}55.&M}uewYoJ "R Y$p9?HtbZ 8FHiB0dUAVVzee=B5_˦T{iM_GB7m} =_5\AndYN@)|:5Sh~eL56 R]ω;{52geOSa_ɣ,8dQRT 7'e^efہ߹l{_ ĞvArO1(!&ʉF]XjPZG zйu`-'%7VHԦfѣG uak $,ӯ"#LcwߪΈV^>55]ɚ!at]?{۟#Ž#y{0J=;ٹQ]e"+6u_71K-Z W^)&h'dDrjL=pتԻY<ԙ{X5K$^ҾrfN+NVhYy|S IoveBLՅXfY!zV@s*ƽS o;7~ vܯXVf:0 d-E9jMB"`ǴjILSŊXɸk6%;"Y~\'iͪ9?1d&;&,nVJd9㋷A.N]-(KY:W.OJt){REQq<6N;5MY ք璱!.6@I endstream endobj 168 0 obj << /Length 2667 /Filter /FlateDecode >> stream xڭYKo8W4Q#R9d21ĻqNAKlztDɎoTdME_U?__ņsV\6]SEmv3VKz۲íb.qݫ8?u0/8$VrZI ʈXGթn+v_DD);h:;G_LQԤF8u"^MECgāq+`=Q+sBcg=tj76EǁߜQwv8hIÔ;|:>3Ӯj7fEL{@ryo"Y@7qnD\EH#(Qy=1uqXU;D4&vGkL8((+%[dHX#"S0[ *V}+QJШU`>-eѢf{ԴdjCZg2Z/EY8y=Gע „I]"Y*P sRMLE{"3-ڇ@/9%.N[7HiS+ )<-, 9y|tè|v+o'NAZxҺw!U !b9/Ov޸&R&c/{vX)l}yw 4ĈQ=mz%I`d%&2p}1P-4ZNP&A@DV<n)G h7B,6UwǟѦ9b`8M̲WOi$(3#g4T';1>h֪rwTkuNC DP]1ѯMw5t(Tk㗗%xV|xFE )/y@)Թ^Y~=ewWB&+NB"&i&L&WmxҴ89,{q[pQPA}Hq'+E'(}B@8XJy`r=e7%*e56@0^١C_xT-|v d . q1l[dbcEW\>H`Ŭ>,Bwso 8`7>1AwZ4_@R^eu!Sނ}S-H SFCWHbX !I3k 4")5j7;KS.S:y8K=G$/XO$prMp"'4PM 1?]]&KMrŬ] g%O9KĢZzװk~OLu #} t`@JW kyNM$)\3ٱG:h1z;;/!,l(s2hrqsDTTU;ˁfҖ`Kʑ !Afj#|6CwJmih0*Ăj7 4i)Pr1 ྲTEV^zlaڠS&ͱJ{&JTYFxrҨW򊠿Ըd?a?])X0&0셵\$5IPeyPxdx㚘Nؙ!m $*b"ӵNUNri[=Q=uqzA)hY9߹zCR DZ6~ Q$OP٧/a$ge/ک<9wb _,ԣ{9)?+~_V6¨ǒch%C¾5=HGڙ B9S*}zb_OnrzB Oq m8bF5&J/,~B8>4&R vy¬}3=ti>N"fƐvUT\B4qe*znE}^?תeWBAT!tU[P3P3gžcY"=K7x] l-B)RjC>cvXpsx|U?ߨ-053jO9ҪIKX#~ݞv c2 8h43 awKG÷[ }dbθyL`h VZ14{>M%VBTo?ͤ$>Լ~ACCTdoh[,+ҥe)b2]3+WYg$Pg7zdqy; FK o3x"!XQ?Kq endstream endobj 172 0 obj << /Length 2480 /Filter /FlateDecode >> stream xYݏ۸_aIbHQ_w(עAlrv7}g8#Yr4O}Hj4o߾L7R2M~MKe74ƣAcoU78M_ʗdDnb \y,˄2L$rEq#M]X&4ڞjI>lSUgof37݅'HQ(rxjuF'7MHIZ 5觀`J\*1R$qLEIb?9ZiLwLG|B<TS\{&yP tHzNlw:o  79gpIf0ҹ %$<Ur`Йj G{{%cX@tћ;V [V+%DdN .U4)'*3yG¬Oށl!Az7Z0sPcZEաm򨢕svEk>(00Q_gG`=5WwvY5O0KLZ0)>OwgfjpGWoM8Kr: &x0y))b`d "IAW:>JilmhDTNsk;1Qt ˼sAfj~ˊo)600fGGڊ՟":9%8uW'Q`%d6NG}O}pn>"rEQTc.I)D.v'Jw[f |2 V$_(̾B`5姇/s_:됂Y[ju'j*4)#&O1~k{ 3YtGd[tw$ybEňbQ;>»;/;ͫg`^sֆEjGδwߒ$ uB7 Pr$ BͮŘ#\IAɑ%Y$_|10щȍ ]H@_$.83‡h>i|_J[lrcٓaGm6Cx*j%.'EA>)jVS21nTm;q&W$䷹O m}B sOU ף0#SL@^(섖cmX,bqW5@旞$ɦej09 4<1bؘ߮lG̐w1E`@yCg^|OYSg>Pd D2Ze%7Cy7pXE94,Yw"pp_S8awFtu҅An\+Q-*\{~ ^LH늦DLRWw \},'}m\UXa]XGũ.ê? +C^>!>KuO4k%W/E {EYL:5؂U=Dl)B)9iR 0i*y`ɐ (AkHf*.&ힷIHЪ YО ]HͧI<_S@@8K,"K;7m[[WY"˟ff]Zi8 +-xzݕF&k 3u޽䲍SQE}Js߽!ݝ endstream endobj 176 0 obj << /Length 2439 /Filter /FlateDecode >> stream xڕYKsܸWtVI/ole[YOv+q0IʯO?C Fh4?tuZ$giy6gUK!J ߴ>[}N⿫\]!/4+%ezZ]de2jȪhM&3#?'y2fR扛͝5Sն;N-O7rR(7<{Xʂa%S7Fz Y-2yjZyR _vÃvH#͝hF`G=?)2{.vuZT[kemzn ;lP$44!7Xz=iΙD=7v &Or>tMp'Uċ**XEo_Q?L[tD!#'.{}q)N&өGmoavo65 [seZMeu5u,;[y} q45i=C' F:S4z32]g4kǨA`cB7zVZD7NYն|;=r-8{MN;&u='wplkyN_:-4LXƥt 67vLj@!K,tꞗ= ׀! .޹ %0 _n3,\!ղrBvE*Hwo>B?VH|aE!7׬U>xZsӌDa Vw f2< fq+3i߇[t t[egO|G&ӯmʣ.,[:+LRdcQJ1.k*JU9LYRA HRXTũ H iy(f\~m@,'"wP"BJ@$9cd_E86Yfl̖k^8+/_BBq ϑ*.IJ$%jrP-KT_Xj-EgI'Gl?7'; ;wŃ]/lu>-=" ʂ_,RIU hMlYǸEa;&3<48RΘI N'Q˨:,Aa{W4#W2yF. }s9/U{o:ws_t 4_SÁVٵK)EXQwC6Mq.8+s C qg΂+eB'@]eckXч.VJC|A>-_HE;`*Ps٢:B<{YT'"F]t'Ee Ǵ{ыѣ &9$˾ChMjG>Jf} Gs {7ԧ>Mgrccڂ9%P?2"0ˀ?:cXt ϛf =}zc 桥ZQhcXMp!72ݛUQjAH?gOt?utO>X$q-9[[9;<_({\i[2r'&> stream xڍP <],wwwN8J꽢 fuݫwT!XƉ XXؘXXX))U͝#Rmmxulb 7 @ d9y\,,Vmxb sc<@H)jk`njv>hh@.`s# @d~;ddkdvr4fNNv̮L kG&[SZ@vp PY- jf/'['Wf2788o>I6"ws@&;D6l@66s+0@QB͉1r}̭@oK$7h`nhnFҼYXlW}b`3r-ml]mAf??U_@E@7dveoAo~"3ߞ,Ŀ` 0Bo]9:;#bvٟj4ۙo671Voj@[}{rmd})V[vxηb^ǿ'O[P|+-ӟUdGKJtrG9 tGno3Fo_ ?Mo[76B\5 j&peܙrG#sɡ>[ÍpH/ʶ8͵2ɳaK=|hkrۣד~Ndp;BFU]g{/uK.l{gnTwnu?Bww8eJgբtf)s 3p0fo~`dM#zExjmy:vQiA_cMSy',xʄD7 tkHKG'7GqmO)oQՉ]U4 CtT{(8htŊ8Fs?t?is/wpg˫P"av' {rR!SJ9;Ќ48ScxR$zJbf]O!(PpY^jc^u9hѸT<f+c3*A)Z@!XcO|Rm)Rg'.Í}t*.=ب+3] [GK%pvتG-̎aڰmAi; M7 C(]g9EکYƼSFXϢ 8*b/yp?lTtlec,+@j£/tP _rS!!1~= @/{ {g_AʧRlRM=ƚ- Nd#~l(\2]{uD¡&j@@dlMp2f{KI z?,t5VJ壙x&͠{\] < ~1<&{)l3dMtjqb&tY]L$%+1τ v#\7rCZC>uCVmƩq^f))bNJwt<'3Q9jPq  ݞ~seF>Wݮ˭@-"%tZjyzE;M0'GvYkJ#f]RlA hG*XwD?ų=?y0kFe|_ җmH6K(\P7iۧ7!0e̋8uPd~HF^GV 0Ӓ,$K.^?(uɐh"/4R8,4)62_M$wn;0ERoIL2mՏ ne3zk BGNvxbyb3=g}3NWOa4#k.chJ3t^ G&W@R袄O6>ѾBt2tHeͿ}ML:>Cz߄Ks q6)kC\= XTnHq8)O|49y_y, -q^XT,g$WIƕ) vW*" ".+ŀI,-gi7Q"3o]j;ͷ6-ifձ/C mkxBA*JߘQ |Q| |O';=O͘ "q*W%(2LZ ѿCu銵R/Rq}&ͷR$p,'@n(oe2*Yl@sz8L MiPEPIz5n*[ybD"Xxa:RY&Oo-28d@_xĕSqԖqO/bw&PFPfSwY7Ou#$8D63'KvխnuJt 7(n>vҎ 1~QC?8\d(iVpI?lSۧX&~L 9bhCWO+~I[?ntݛq'6N{= At KsȻsbm-5 T;cU0_lQ0iyߞyX0& or(xrxy '|ihL}Ꚏ\!qfWJْ-MV#":).? ΞĻXc(lQ?7d$ `16὎eKꍕ[~]ADHmxYe4-' bd=:cLF< 78g~'b9C֜O9P_H=dER{/,f63rp6X?5o&< BПN5VH#1}pYeMK1 )SVe˵ڑR "i,qO(, ٗ/zVh+/$S6s!0S+|G0g|.;KI̥s) DGUKtKhH̳ !صғ!fuw@/+>&U^ӚB ^P2Bɨ fkTjr23bG#1ܚqrO۴xvpNW!G`vѶV8*ܟ^RX}5Ɂ6"ir,z]faxgqۡ7i4{stu[Rmӱ_z=jN}f##ic{ug^eB=C"El[+^HցP1P$#Nhu Qd !1ϔ0փ llU_Kϖ+B l'mG&G3hbm e4vkb"Y/u}Hr٠pcNT܁i #q~[s}Nuy骬M!%׾eStچaBFDXEJ 3jwoڝB0Nqk,z/ni V0Ӎe'poa6JȦM;) ]EZ&&wɊjAGU,u}D:R@ċg RZL|їhDl I6ڴ6Y &gk-Oπ辫5 \c!Fw= JSc68}YٲCl ț !7 Ҁ)=(+ƧMnXzf+iLh[lNoX4b>ljUg0ԡ+,w"TUĔ;mr.VOΎt( *ѱk)@7E=>.+Dm A|/8o $.NUȯ}0R Eؚg*hN]Q m?&q5y+˪[snj@C<-{{jp\LTNe 5Zm֡ϻ汝]+:ˆhNY/FU/K zn+.j&MuGJ]Nٚ+.+yw^ѩvεvYKs 4*C^4aBM)r8M$l\>)*䒿t#֌Q:Iͳm;2SRMpXyV!:rb_Ml<3nQsacVcFo.C `=3QnҡlI_SryP$iX$:ESqp.XM?J3mq 8|'--J5e8= >t*(\ˏi"5M^Y>sU&%nf:cKD<ߦm6CǤ'R&ݗ]\~F,31@WVJOEmI ӡ:])U-s3PM܅4#!chPs?J^0"QŐoygl! 7iduzcUJ(F~NhR2=򜦖g^]|ZϩwLz+n)[ se#){$m€ފאp5yCԗ5pWUQT*}Vt&-=GIk9"NZJb5xmlb9 1z/@x2LxMvXYɂZ=9Fltxv2 $% M,>&X19)uȖeOCHĊT|pE{ɑF+gh&m7% .ߛy&63Hx7,O.Nz֥SݪFF]a8 ;>]klci<,.5 pPI{3_63*/T2h]i"g~{ x a<1CʫW-u(ݕȂ l$H4/tu*1&ҸfAOcU3I󁍴 JL(#և)n0[5=AgGx!vs0D Xy>l@caţA*բFKP;=F( ix0}cUSHtDJX6p/q-@U)˓`GvhW yrzs!HAa\)d U2_ǰс)Mt3S?#FKb{i˗#gBt$osQx)%"ONڿvio_4G*v[9/s 5uĺfsNUvBސ{p^Q  m^nLk:;%y '2܏ǹ=VyST8fݙC9(lCE1֫ 3|8G WXuVSLQ?>+N4]a ݳW,ʳr;\[WR8ccղ+mW.UbzçѨ-!L MV~g܍)yWʀ|ըa\͵p]P~-OэA^eXvVuqXrd>=nj I{\/zDֹtip%ӤɘYoȢ :1ȑ,d*J(fj$C ~Jeq{DmKPۉ"$$r0'9z&R֯ SVmߟMYf8w8O3¯_`0AKgՖ[Kkt܆kYl~MO,KDBwKX TD~BL6ݡa KS !yg>LbaFNŦa׆H~$_σKPi􊒐FisF`P/әpvXdQ( q PjJ([J7;_&<ݗߺWd̲a|Տj DgKszO9qn?Rʁ6{烣|)ForKk{3 ܮEG_L55nS 0,mnFj5@p((=WYFEgMfKS%2C1n@Vx҅%sMPn(LL(I` * '@snޞ q}}͟lf-JJ°s0j :YXs4מO]E dߨ.Aߜ\O{@U]8>37,JR4e;`t h81IxñO<$Oi"+xՐs[pY3t6sT Wjl& :Z=Xsd$y&-Cq 7 f29\LyNt4Y%!ɣg*jAݮoX}uRa 6ZqA~;)D} 5K)n{ICW._Ppv CL`T=n VA b1#(\:Θa5 w>2*^vr!$E {Z C@d H&JU8B[v@~5)GxⶫY%Nd)SlBݹLwgI>>:3?gzhb"Ix|:gY3oW,OCa<ˉk !.訷?@{zx 󁪙}A[ |a@<%h[Z kVkɑNH+>zn2^f#X"xU3MfYx {j9 MڅaޭcRB&Zq 3cJBq5`ѹ|ZK=/D/j{^|⏗ g BOΑEwmTWH5d je=^4v=Fy $Nx66Zp<9cRk"㟌ip|qltDabCF%%53쐅AG/{"+hlT@٥f$X-e7(u!=_` eNJ)_j=@cYJ Sljt)2Y(47̙sK5rkbˈʜ_;BPgTK ]~n g'LWJ؍xF)0|ы1hp)J=K;BpA/%gY @ѤۭKR*7ٽE:5_[ӠSV+-PK%Xjr$~o"ԨBJSdlQQb6MRSt3l@kOpS/#S1~8wD:ŏ`GgkD qLE=OetJyԿTROpE6UԘUyV,N*,+Xታg1w2ob| æ qIV3X43(~ EuKC\*ň-bxV`.%.tm{ |\!KT yxdOmN&lhf&''[/IX6էq,[q;p>8 qq!ަ}r !@"f%x%^[k`-Cp| snf+r>$v/cP/Jpz&f7o RϜEҟ|4 P{um體E/d- Q}~U}"=*R:|I V'1]z榗!q2}B#}?h?Uo3!v(nj^ gŖS3*Fsղ. AӇ^#|58*__xԹmCK;>!2"kzE #ݞfl_nҖ-s| mJܩWHfɊy ȟ#:UCdl'w(CRWm*7kRY+ YqQsuF߱\v7ye!nddҋt"HXŽ*L =,B.i~Vn q9W&uDrJhgSI_ݠSuWfd#2f8FgvC0B8+$J_~u܅D# q[SRH`E;Rsu X4epm_h^Ts ^-ugQUͭ^:~"8~'8)~R9T/.趶Q!kcKwPmeX̰ g'`[CxNd`! ٟzVj;Ӣ){6R`s+(uL^ ƘN]˫0/wbS(bK;0^tQ1U g׊{Б֩L񤦨gNA%PuTډǘΩ˿t6e>SFEcB|&EUu!4Qy iR__٣aJ)deQȶ_}X sug{1Y_P3JujxPtH\*4فd!<;q ŸK?5<[ k,Yt2YCGP;omDMt&r0;l*5 !&Zy ?0~`&`* "+\{'AԚݔ Qt X{/[5s,@v;xmi3B FѰmbꕁP9*7ɬ$fwET2.Z.x@;j7]UKn$O}'|0u#Z aķ659z$HDg$V fxYlumݦXHQEG3*>O[И- Um0x}.#j1`Y<2J``G m:oF Xcd^A S߯ި>]dF-~[ۍLg[VAJNlN]t zjKxEjrOvw+`ha}c#qIOmK #5GW]hsQר/W(tf ۥN+C }b L]4CD]YqYsWb<Ί5I7E9*1 1}2^pq3SXFu!>gsXנu w:MZ]+OlL9y} ;F{a"p4)t7TE@CGp emfP`AF_hrCaL>KX.|Y0g~78|Ay oDf,p)=e}p`ݢ+#%Nd8Bwlw{^㊝ݏ4«vxO$~M!ľT]mb?P,x7u8R<#]N Ǜ%ђ*>a nZDwu196# CjB=,AL25@D'T|Mޙ"oɂ z)*w R_Y @^]"'jf,:ֱD[Gx+kT;Be5+]ݢg)d96bOȹT7Ӝ({]RlWh8 ]8 Os(P\Le2|TXJSȤ|Q&[|.Wyo*5Yxؾ{>̚lmC\IX>ȓUi764iZ@_~}g8(T3+g:^v2LnVa*_@B6to$mEx zf(,eUTt)gɿ 4~PH"7_㉕c,>oZrHXAb<+uxSEW_B%W endstream endobj 191 0 obj << /Length1 1561 /Length2 8130 /Length3 0 /Length 9155 /Filter /FlateDecode >> stream xڍT6LH,Hݒҝ..,4JJ Ht#ݭE+!''(F|OaP{_8!6@ܝp;T_;6[( .W =/go'/ ?g3Nf!q;?xy5` ~gF 0M /ϓݐApGoLVIQox^7  =w:V-0GB /w[ `ku]Bq7Pۿ+`Y}?/{$EwG nݑw [R :sw_ |(p[z sSyB!Z0ݟUܥwZ7دY;ܽ\.OnmAnZI>A!Ep7wHnP_D@?N» wɴvwuk ZLCX n<}>(vf=٩0jvYtsf 9̅CO U^' [ VnOǓ|NiԡыviEKCl;uYH||lJ`,TV ihj,|FE+jlխ.xI֊S\jYDgMK_{:ZTQ̡H2nڧsWYo}(d~@:(}lEK1i׻GŴ*(Z,+rLME^o(K "bJ*KD9bFlTXQٽ܇ ;ُ\riwup7m Tx`O4M˵'Tbj z6Ŀl WgXK2l x-ᣫ8{<c+.rxٶBzlMYcDZ:.U~S9<9Ít DE@d,⮝J9*XYl\Y/yM`+uE)'2lq(fF^Rn@`7)^3ȂsaYb@Bjg~[lהy Fu>o4fr!؅cۆVKkF,nƛ)Ёݾ;[G+[:<>=]o0fhb Pzlt5CϔigUa Cr_SH(67;HĿo qJC"AUNw`[$pm:p;6;ӑ\uȈVצ^$ziUsZi%~ТtC >KXCK˄(Ub):| toBؽ(%" ט]*c=¸'Ƿe}0{tX9F#r98)uܨ0/Y$1]YdlD׀ ȟ{^3F6'0Wi}ĥhLٖߪ!uQ`'eMS+ Y ֱ^v2!W= {dў,1hywW5=NNIPuX y1[=E*F4UZPDo pCa 4QYJ\=-,̧#'$ղ`rp 'PK2T#eh2qˉ a( T}C_`ﶁa% ۦuUEV1GwZ,f8/F)XwqX) ]ho9+}?u{v:u4aN & |m{"<8X~B*LxljlbLZył(#U&h&KUĸ.\8`bzu%6ۣ㬢;VH\9(YHNhxrKlP<N3]Qyr|{9o0~ant&Kg9\u9Ln٧w|Z-`C9Vjy)y1=  cWj}}ma_7U@2 N"A}6W~uk/~̺tɁ ',f#LV,&ȱn҇dqR͘uatM"=R8"Vݲv&).NwWRЈ-U&yM·_67[Jegl_[PYu[Q~{Rp=t&å}UyLa;qHݜRj"Zaԁػ.N9]twUdH5[`էw e)FɋP7h=Ib6Ǫ6ƨlL!fm{T"'u'}_:l TBk?p&~cU'"yJmZgRp=#:؀&CG9*w)/3&:+XJۄm 9׈omk"FO?ܬYa(+>m\bn,U3m}vlήl'K x1146ӉQOE?NV\=c0$d@{}>FP*v1߆KcG;UL Q:r,g԰ *MazNRrL3 Q3ekI]+J(?BN۳`>6Wd2z41\mTZAF 9pIEù\2'pg %<&vu–ZXp=֦-hBQYUNƅi]Qcn,m׶8 g5b4 {! K\,Y ?'u^?c4 %@G/sU=QK -[vnAI<}Vyuns3 Cx~,Lu{'Eba,aR~rt-!!IRh/qi8|7[S1tkX^@/-ۄ; L9nϥN0AZ'DP=**h)BZ8"PO5Pe麞ptߵ 슅OkJBrS߷dZV2$V}̑^֫h]}CD)cq/X%jyPLszYn VL橃QpS(Ic]7dm\=A>Cҭ1ؗ ܃yF?|lwQ9)c:J-㑮8-VvN }H#s^kdE*$lU*=?諒^Oo8 z}ʡTWĠzXFxC_K'+=#J[Ma;FA'0ED\d"oj5Gt֩ ~~lmhj ~Ջ_A駸TXcR>hiGb5H ;ǵ=7.RG7QmXz^ү%Oy'OSPכvAdSIU/:|G_nΒcZܚh&TaCc=mh8Ve!9%oR54&xeP",Cm._Kax&Mg&3۟0~3 <\u!ɻxUNbvYLd#R٠#O~ϧ4^`d+W"z(خrS#4L+:~thR^[Gx?7_{+@Wm4ҲQtj:!1z9AxiyɄ>֧f>6E{?wh.9'H8;sNIumc}H.heŽIpzqv탷Is ƎGyQOsSLQߊn/~:{Is|SHΫ0JGI ZBqr b 1y'FkDjm9KbdcזʬZ.GI5G;FO2Wk^Hfo&F-f NUqz,F@gPڄe,b{Xɰ?$CG\Sed೮WEf_[_+X`0čjw}apd'㧻fI)ч{|_5q)0˩ ^g̥|XoSOkA;YT].!/5aKgnXևV|NS4iIKHg~L pvԌY1%^7:2ӫ&+Z9nLN1!U[g}?aŊF*'+S /GE_?.8{3U.mh@P[ܖ_݆l8; >{ vP&i8 -~byֿ3|a /E[\lI1m.*M 3(G[$ɺ]@2?P"‰ȸW-u[XW'')>aV"G:Z̝9%h;ϣ8ͼȸqdH}0m`"%auh~&ui V2O諶Q38!{ѽܲ_N!JEE RcKˋ+6#{<5v_zċ52-k9 'wT=o~xq":2@mf ˀ>pȅ{J+"u;҉w<ƞBsPS@j t.Q&0n0 h]2Xɹ1괼L:Ok%jT 1QW%F{&AѪ.f(aʴ! I3s_3.?8OWWZ2܏m yX'"M$1 ${?`:TO[ lT6t)ޑ{`_^EEaZpwkGrT÷ ੘/f#UTLI ;a3JjMZenNܦRlgXtj@uɃ!37'(O!'l.f#`O~쒑m6;Át .d R0$JݘGb>aɿqE͖a~  ꟫3@х;M9P̩.$LA-˴Kg62?%%JE'a^WI.dK\M#LZHH@m'e 훷$ ƱVHp~1lh[  zYUEP`YDmzԗB%g̪$_㣐${աVo(# 5 0U](kh&= i#z2G9еtŀNۖlPý'GA^pSgC~9 Th^ɐnV61Bo6JW&, uzbFaM SOwDZ9zE0JR'ab6?q-PX, ??V{qpӉ_ufF3Ϩ-O>oP?/m:j2i-ڎ"c|Rޝj~FHX9Ϸ{d}CU2t_yܽ'?a y$vMdaqLU|jOQCʞ@vG,LY&  lgO J̑H _L}9Ibӓ`_S[Cgcq^>PV[ҡwB+5_$kM"ry >[t;4wo?^āʷ5}Y]\S'Ǡտmtcd1%MLUbjC^5c }5u(z7%̬^VR" * Ҽ燻Rj:}vBCJ[D ޢc/E#|df2\IUBr&RJh`Й&g/\<_=Sѱq&!| rT_/;/ NE~E[vJѤY.,GDŽ<LVlL/<Ȟs4jD~>xsO 22T-862t%A&4Kw8lզJLYѯ+' Ik;7c$Zl|BJX1i狑bp'wn4xj~l3gr |[sl.2\}:a"e'0D9Iv9_z'DH--&F+.D endstream endobj 193 0 obj << /Length1 1679 /Length2 10242 /Length3 0 /Length 11333 /Filter /FlateDecode >> stream xڍT. 4J"tw0C ) ]" )---%y˽ub~ɕ՘EL@Rv'fv6 ;Zd[B r a!:=$Nφ v #+`cQ tXvZlaO)=w-l N 猦@)_!,XY]]]YP;G az&+ ]@f-ZcA[*̝\ l @]!f Gsv<@XO&_/߁?v@;b0ۀJR,NnNL !jtm&Hlem~;%!fv w}`GYZ572CalϪ;8d$y+9x9x Ԓwuw{J<m(P  O#vv `CP,v=ӏ/gAl5cŬZ2r2RL `fqx?;??@_ձQbn.w'.Qw EgBt_ p#(WoER664聶`, | v'_S-П2;V |$g3sq)Cn 3ed{9lybcZ??.BƠS:$!vfott'7L?3~.`vfa\¿xP  dz_nx@ 7)`UU@u(+ˣkm\C$ ji rRRVmb+gd5\dR;d&_f.ab<)f0aH {`I0ۑߙYQcxVuŸҼ. lVlm(L%ǧX_L!'zso #Wo* KRX R6}F~248B*>Jxvl=%Uje >>FKvvO 'w?_BE'3e)Uֆ 6ǚR)=-K O?~U J,7efduc3jfOrK=Ml OR"@in>R~үV|bX%Xhl8|)m"FzֽDNO}4%;upqDsU11fU`Շ1c]zI|!\_|qs'3NRsI"7M[$Mo>}KF#1gҺfXh篐@~fLc³|ïٍ3kw=Y#@\.8"Er_F{psS Ez8.SCWB$~Z(JCc i;|9Iwe;Wr / %pS{O9s-!W:+9 "F4DcX%'V+2+Κ9Jb#ZdƘ2uXx M=J0I{.; Dq=2$y cǰ|?SZnw-Y~MdUUѠDVM{?q#Ai*> ~]U>a/fn0N+6P025t:`o6b$qwٳbaƏt1=-Va /+K{kwIE:ţO*񹎊Z54-\> G… }bDuݢuf;:as](ܿA[2L^@GFv^'8PBj,L&9W<@]greT"ͬ03QHÓhPgp / {Kcen{ 1= g<;Gpo{^1--ǏUD,Fxտ kQzLbX QrS#L5r+R,zTS;D8% W(;`GxcNk4Kb\~ɕ~]Ze_)pq}^:IQV 6j HSAH# r"i"txZflQ8kM8#'t*șZ@k"&ikd~VȬ{"pJ'AjȾWE]eX^>\Nmohr %\G#X+>'p%]uza}x]6(tqb5Zr]l'BpX.Nd^-"h7ݴHomPXWxYXD+͉'w3"IER6?YmQ_ˣq/"նQwǼ:_ݷq9_ )$љF>dSwO~aWm+p\&yd6S*i>yQ#}9ۼ͂ Gī=GL g f_P:, &N_ҰmJM2~1sg@v:$ H`n->(G><2eZD$ԜyuG?1p %=jQla7 \2ɿA9&UPX `CAo|;tjH0˜R$VVzU3dx˫jOnog1?RأIQv5 ɱ #o.|;%(jɼnmnWڣ_;^'Q;8;t򓕘qX@ZSm:7 hj߀ خJ\?05!{@L(~gۦ-D@{l@.ՅУqJΡ~8fNB˝Ua3&DKI%Nd^GG!ha xn1iA2ܶ<?,YPYo>U$Ї$ST"*҇`ޢ{!!w}-A:[-/>FDc42sD׿μs`"7*fG-ѲIh+uBrd7o,>}|@,Z) F1xx_T js=A4Xū<2WOVGb ~bs cv3!o ~ю0RK1Uhї?b ̠2u&En7XN<0Ytp6O"SA! :D9}q($pӽ2M[j_Ic֭i%n&`g0q]UQ$uI9fx#f {je_iq> tAN 4!)O NvSM-bTò]mƒ%ܳ]O" u+ۉ2_$0J\mV9Z~T w v۟b ާ(/#Z\u9RW)P4 h݅vz"t}y~{9"L" 3)c"5Ɣ4>"e`6 Nk4xR>F+,BkkQrqOm/WH Hh^_ZsF΋(HeaʲxeDՕ0&R.+'FYD-cRTj6 /NJkYЧ[a|B>zq8j>-ͣna&RCEn^fVֿz5Vݞ9y t.vy`$7o9C _- xṪ7:,3g ~! +/2y{~dI5#vZ0!odRmUcS֝W|}Ռ u{Lڵ e d>_ǽM@K>l?C(L>rx4a km 4]Iap4;@)ܒf ~-Z"A[tkI)&7S={9yLZ5Z/uÿI7aYPayuEl(V-h3fB\{)D}L{śnA5ǜ}fK9Y-^[Zm ̋m_ Dr\3Dž|J$M+'ٱ ssF>m5c>iLR튽|]a}vvxΗvͽSHV_B3zW%-UvYɊnt#J؏Cb:SvvY ?q܃,w8TWUqOW9S~,I0vӪ%8%'!Qk;߹=^Q _݆kƢpx42zdt%u&y[mWɕ|٧DvކQqJj_}&[}V/Vx|RL$Vy8#Oe8#?Wl'9U#+9L紟~edu׀@0)wcc}OykVG^#hƕK3XpyW1 iջ^]= 즈=>(^,gQo7* YsRڪzzZodOK6Uc$7Я.-7?W<! qm ~k8Qqq.u hSK%Ո#&0; x#1f/{Ϭ6E9d ٍqԨ $țJE?FZ7dRހ\a(z[Z7 ߑTHgJ#ŧou݁k"ku@o?o@We<&6~$tOGS V g٭`_8nL/drML'Ch`w (ud(\eI 'MOZA܃j_=Ng/}^uXk皔$sɤ+*bC۔h@(.F3QK(65@_Mai" 7+֥;Nz5Xy߯ݞ_~Cij'Ļ55_J( J&)ql|ܳό4Whk3L5a K_.,iH5+WƠ}LZ?[ig5E8dwTr!GTs7sB^d47&I2Q*UB%tFFPd~}Stnr e`un ܛp3ז~1gaa8UkYĹ\ʠy΂&hsٱȸN_]`?ZH+Oִ"${I* t~W*]"D,dL'O0eRs. cQaְYv?5=%}><8s]Lߍ?>Rۭ~&XDulEy!#%_i*=p=E(633K0e"@S7Cf.zu6ó?DɧhP9+OkZQ{9}FF52i13Vg}wX~ )2zQڄ*V(fZJ / F6ov:)^+nEjY q#pH ȶ%n^ΊJsx kf,;o| Ko89,1#ޭ^8 ڜ>H3A %`ַ,̄}y?tTxWgIWybٜ\b,8[Y|3;N\0 $FLDFk{".dTJF7)eޖ~Jxe2}UG #FpRG0i`ٷb*=rUbTn}6y(MO'4K\N-U4Ӿ1'«ɴj֠%*Ye+ÿ =O lTbDQ|uxgS W ;~[^GUޝ%/} f%W r\Hp1*|.Zn`YW4[4(Nr$Z#?7}+.Y)&o94Nqּh1Й΍ZIմp,=Myed'o,_ͣR$ECj|Qv3ъ/1=zEJQ9 ryΧ2aP<iY֞4qmIz!7[Yκw*RZ:u/OqVR!:c T{4yhHEBԔlCwoMyU@4(&';~[f-H OSx#qܥK'a#@3w;c錇zy 6;[5<ק&in-Cf'zDp١=RA6^֌2ߦ^$AwxoXE} a 43pԙ0H'zf`ED6>S{{Adߪ IN#lWm|erC 5Dob{~L3A+l%?&a<.JbϺ;m[КE}dZUnhJ&l@peVk:E(|~ 5{WsQF;751_siL&1ro4d9/cAMbX֮,y%+nv]~t![{{jS!%ο8: Kŧw)0MdwLIP3'@{v$C_7nd]Z:,KrllE;<3K~Ҿ ù˓q;yMfCV੭Ԛ9w}Nav=2kY ~9FG:&}2r>g7C&EӖ(yW`(YJA^B!PPoI{'w2^ڥ0/Eev=MO"J""IiNY 02\~~ﵬG" Qk[AkŴ*WtP= w)I6k-<={W;yETyY&ơObƼb7ưD+ BIcL{7q_ +.=FAȒw~| vNvZ>p̑c Eu#ۙaH9j\݁= x"LpF;~8Ħ?҄cUN8ȗ)*ZW~6Bl?N 3&ܩy!&mHJ !x5z^4foӤ)ZL ^*SJKѕzj|(ڪds\M+ryKǡoȯͳӣu%'u^uqZ`M5AO\ 묁'cPwB8rZ)I{; bzV)G)0cWW,t( ?0HNE]̉[ 'n6M|Wyقѡ@̐fV}d JK/*P;Ůe>K|w>WkAGt2`6]Wkr}][I9  k>WwK7&Ƃse]!AR|"L&LEKt\wֺ*E<D- Y1S|Ae/ sOIAƷ{'*/˸RbVl\aF=}&Mݠ5 ֊2h$ 5t;z'0| 9΋?52y~ k!!q ֌L?Dzu\N䈤Ͽ^ dt}&zz2dfڸeK s$r /w/9& qjfFZDyC4q%k`b)]QB.On4+3T _($b̨"*BL~USP`Sřhpʩ]E(>9XBY0O2Jy҄~YN9!8fiFӫ9,_0O3|鴤){;RmG;&a?Cq٬T00o: E%k$קF"k[N63pȌbN\۳3Z&rTN(yi2t\ׂhg+P%ؤsH\ӛyJeaԒ . "RG^\pצ68y/kYwlUuf_nMUz'qH<疏zU"s+mG-$Sd2\S¸ܚݒ mR[ɇx+uv8k6qn/ o4rA endstream endobj 195 0 obj << /Length1 1570 /Length2 8340 /Length3 0 /Length 9381 /Filter /FlateDecode >> stream xڍP.Lkq Kqn'S\;w(BqwBSå}{'3,{gg}3z$j5KA!NL@fV>, JJ B#@ rzI-rXYl :$@.VfEfRC,,#֔f;Z E%DS-@jjvrNN|,, ;3Bjd P.`3o%/f̨T K+_vu+ x2Z! gt8@]VlW#;w!+ȟd)qX̭le)f'7'Fb;d >\@V ?7DU'Ӄ:Z;aV).eI8 q#,Mux ̭ fI9۳hB GO_ 'Uo I9q ;+[Чo6]VY9W '39Y9[f*VN)_x: V¬~rXYv6Or`O;g1iSudAOxBOޚ :=8{̡`Qmx?bodXX bR@6V_MZGOmV PS@*Q"WQģ+6|CdI8EnuUSύZ:w &2d&1Ϧ=/g1rH{TH1Q,zԩ0tǻRKq(W+&_SslүyF@f!Y)\^5εso #Oe$?RR.]V^*4kuŜj (t?Xƣ`|M.&_sv$gMXy ,K~ Ŀ\@\ܰEkoMxoYV|=$nRaĬ Ʀw5eE, Lp?Ii Ӵ\r)$`"rutTX R)&Fֲ '[9+&0NG-9G3+J[³XYr鼜 .(iFi&B7L^D"0u5;2aB( 2~~Q#6a}`f\-}eK>軸sqmX2V!oF2T 䑰-ٻ=ͶXNU8J1Hii{G{wzΠ+pzftbe<' <ظY()t|O,ݖlp.$@!tA,x8`X)?rP]iN.I).kp1J)8t.nctۤDz)WzƩ#𽷤65U( e85DP[[Lx; 8+%rr9[+7r|])1BvѩeN)z|I^Z*!ChJe$C ebPɡYȔr4`b]3v56O uvDo#Ey?5ś zp1.Ρs3:ub.>}8zc! Aȶ8b{"^cMY]ɡ͜"Fcb#iO͸lexR`Nv)֝@]E50Ɓtf F92N"]W@\Ox7:o_ _"5Y7;4lXz>e/f bƤc-m< V aawzZ*ļDmBuEMPUZq/*KJ-h &l. #)>6w|ިŒS&}HH{ %uQ9TzxѺR C# {::X%* _&eD@"8n|DabDv\;K&Eǒ:m0 Op? C%p~v __uNX޵ty4FS6 -1bXU* ږr0Ӊ{䠺xE V|Smf_l̴ض/ ' mw 4^XAeﶷVkdԧfs{}{lWu6j.N겘:X<T4OaTuJҫ%2t E@{=uzB)JZwsW}9iRb]4wgXY%1D( ,Gt`*.nS5gV3m=4_MZY,˫yAWn?`Frq?a+8-> ja65N۸Lr7dQZNZ,L~Ʃ+my5xֲ+C^ecvÜXíaHy\JҨAmyrD/koQ[m+yt1b-~) &9^:>KGҝ7 H_ 1 5hJ{ALTru kl5 K߰)9 8 F}t:|b\;Izj(2gPډٷ4-z,΅JrFqDSP"yӴ6w+z[L_f,yǼLNX\[JfzV2OEc$e/W"X߶#doef,ǻڠ>S!a/[t0ޗ7_<^v7BFjtx $uF͛rjݦBGWxB(r~=OVF޺ZaabAjpq;_F!^LK'͎ݞV}r ?{6E`rlm-эyaYïxpS#.4Tb&\ eKA :@f_]5I&^5+X<X3G%ݤ_'zzc˒"㝑bU-bn뷟7uk!J[kI@WJf:Y4,a2a!O-4Mg5l|~8V-X擻ǂXc9'^]2^kgDDs=}]x=;zJѹ3͗Qgu;yo\H" ̇nkEv%n2ITn6E\Z)N@o&؄A?fW,>^Gp9%}M!%``XzeQ $5Dz"wřoi oNoYApDB ]0` ?oaF">?sZuV=|M&su!ZϛWFh) WK1%A|'nxX[ ~4Ov$Ԫs/D;#Ԟr0UueoSftj嬆%/*דiy:XLўF[7&^oppV |zb]YurOIkY4?/.E z,vMom J,䳸b#}4-v9 1m3l/C9>$/˯>k & !i|I^^δ:ko,ME!Z-,d k<ఆl9uWR}F4|"fxA(?3?yټc֑qv t5dx:pC N _;Z"+E!#N|P~^,.9p,#w~ܭt2Uv8ItڢrĘ? tk-8hKh $ ElDa=SH욉 Iėmo6M'a}"  RYe`> nRQ`=ڇ*G4"d>N΄J̛>@y8|g@cVEQdXR!6(A`h|СQLVAZr+/F@j)^K&Pa +UG]Zlêc)B4b6"[cgDh|<:i-TOIo\Y%.Z"ޣs{w=[Ј0>3 >0A ?f,rHTʝ`Z9'SiUAE:GBgôgldw]ʇ~XEdcc}Hi{BX^YΝ{{j5rэFdzD-9°ܨ3r2{ebE܇ҁ3}Q!a]+KHJ"qV]pjb@$~eͧ]|FVAU`x-iЩj|֤XG y칋UkK䧓߈掭8q?&!ɏh9 ̌{MB3?^~kMa$#Bi!_Wx!cNRTz-!H:S.yLS׹vϘC{ir0rs:5 ^E:aM>dn6Q1fgrajTnaAOI0 ]_p²b 8!5i,Znԧ.l$4ǠRπA@3/V_+OТ Av *eq{bxM-1ϳt+v5_Q(WB'r.?vhjw/ d~3a;:bi*Ωhl+onz>eoUtj#w#V֜-OriTa Ez@EHZrH g84^c[Ճv^qS| ͉KxHaV&AЋûĆbZ}QTX=1f&3^L$ayzVf K(#W&5V `'=hXViE3ZěNlw[ V.}EpST:A?Df2&"ul>]~Z7՞V>G+d/x35 ܹlJ(,F)/i?nFI]r  3#rhmmVHF0EŇd,]&"5}EiU|tٛ1\PDӬLpޔ+_*DC l&>jk2u˦Օ-;q8]X%.r7xh+mT)̙`5eJ|]"P.Ny|Q6qx-t_+wz4le ))F)āWV}Ar]eqnn T5wFv_BxAFd_ɨ4<kĝ ᨐCŏRB?REihLлrQS|x*VdMM#y;*swF DiNbҀ/m_2d%׌rqog똺QcOݯ{یJ#Ǝ#{6\[{d,C"gRnYPD]̣5?KuD]ikbh KaT4L;G _d}KIVtή/p Ӏ.k=HubR|6f)50sbj.R?Rzc8naNuǭ634o{)-Kx(e9/Y+hzO,\:as^l`g - T0%ݩ7EBlPq`cVlc*eT6F"Xۅ{fZEe:'d9\*JmT *Lb£Z}+DP]hmO("zHnCPyCHln 7G\0B/v^G~\at$3BNT1^+^@^b*5Mɽ67p2/!{tQxaXe-ZXiI|}# 0gT/RQwaWo܅U0 s|kMs8KOYdCbԈKJfu'I6m5P6CF"GG{mVY : GͱIt#l'OlJ͏ mۑ݇]#,}#ms,Jt6t4}49nJ?أ|`a1y0…Tr6m/5ɦDa۔<;yʺBBsv EGᛮ|FMTDü4NPV!"yåjOU5oǩ$:gt*vܦV?F/2|ޜ0,A(%52C}-&}{;D^W>ojjXP ;ca#XK dNZn-~Fcczژ5A+%^pɊ*A [UD-0d݁_v?b94+ %QaQh*L|{VWȩ`BZ&CR=mc[9iN;^ʦnEOQ:ת$2۔hyps/bTԮ:-ڢ74X~}+ \ں M#58Tu:nKC>: #~IlSF#46| Ociq(܃yx}S5Y.g~9 \eU|$na[&7Z51Bt]=KJ$1rMM;pִdv/DIp=B4cYv> stream xڌT Hw׀twwtwC CwwH#%HwwtHqۺ߷9zw^*ru&1s@i{ 3+?@BQʎHEab GHtra 4u$M]v - `ge?@ $<-\4 50:Y.V@;0-@V..,,̦vNtwk+4*dj2fD*ru{ wS' ,6 sLPS(;A+m76f+5/gS33{;S5`am (K+0x0LA Mmnֶoen S ^^+Q%U1'7@Ke: |V.V37!iW[ۿԴԦvֶ7|*gMdEʹO6Z;K[{U]̬^MTwuXY|ށgR鿔R 3{_玝`d ^/v..7=l 3 wB5Qn./߈"X$~#^o`X#6o`8,r'E77sQ(F\E\T~#0ofW]7kF`v̮uE|`KXgj^%`_S;u3Mp&.F f"./prA ^$? x S [//+&Qୱ5# ! Z\l8~AI6en;0XG>m9Gˉ 3\-Wiۯ8V9g-d8:g`b;dm{Ȝ8غ:,qE`6GW{[P*b_c2F r1.pgs]u5u#0ߴgEp ? xn@pf,$wrH^@s:|9#!,ڛ ԅt#rg,4GFz LWC,y}}GFt>-I8AmfqywhX~ICϓV;Vny$[o=nkBݹ@sb[ Eoɻxi"usrמOK#j)~Z|hlћmv%prFvX xꍪܸ@ .;쓲k@ Rfzej5/h~:rj52rxLL'd7uz5O'ȡ>j]%@H(tGН-9HIҭ):=YfAw(k.9[}5]ؚhsw'9ׂlr7Fo-]kwNqn٬1|IJ?@ɵS)߉f6qXBĻzDy Q,2hWB (~7#r870gOD57j@o`.0Nu{{YwF2 jLb%h|P0{Ed8ѲԳLc݌ns \ nu2CptCC[{/2Cp'z ͟> ?fh ezEaۑ1@2Q?D׋|N+@k ьz2+.1:aۣqrxT5:ncx| mŪ߬V@qcJI1LEgȸߪM6ƹI!8X7yGD[0KmIVDLÙH/Vp^8 \6"ܠ4m`6]v̼v'1w%NJ2Qw<JC{'QZcʹiOV/ωʅ(?{Ŋ'5t:G3Ӛvif9ToObU"nXJSv(O2<1^;N@mj5v n1ysje#z&)*Ћ<}ȍѺܥL,jg6[۽dprRz9!Lfc6\jJ^l8=Cب-w.ޓFΥe\YjP9ojy䡏jH2#2/wW Jc['L|KYsu1VfkL"4 [)W̨ MUL=a[PO|aLY#S;m3|c^&Bg)aҺsS;dH)$I.cٽJGˠjR j y'G] z1&b*oCØ@E .0#l-G瀥h)o̱f蕥Qj55 6lݺډ &($23I&h[c:VU'*; I-}e͌ 9L`@C&0'4r6u(2;7\!}_h(ldE=&ސ 6]h?@r. ȚWPHSWJRE-H-wvbZ1E-_VHCvdRӶKc6.Z1cnܩλ9q1iVҐa)3Jb ͫ sȪvY"z!pƀp2~}wMA| ndysE +$N<&F=I korl"6.4,r92pcQ0i( u~~fy, E4Wuyu|jr(u(9Epi:L$aRߏeXp2]Nyƿ3q7rd$N'ZJ *7P u'6Zp:O %Lu&O}(@g*n p$wݐ@mJl=mq{v2Za^4(pxn#J}JsI#E;~歠$ke})>Pm΃^ۋ# PEܥ[ko͜Z/ P(6A:l휡7$LJb,N<&'ha=^VsIkzW]x}rb%B>$EvguB} 0lIXbSDa:|Ro3[݁\F ᳉A. j-ޓDm»=Or/iyQxnh,rxHIˉ$I1 _ZSkϛ]S,1j⨐{fS>ʗ $ N3B+UD}.Bƭms#'.Bs4a,%=k۬0!9ctyIaWιb/L-9ŝj > U#,5I7&*=E师 "Ay$j୽we_7pZ!цBYu v1-.vNb=RYdr0oLyÐ8']e)O)cwbVN$o9_V3uO1K5ݟӛb,oDYJn ci8aO AY847%*94㚋өXۅ:>(Leeq&bUټJ, dy,ޠvN4<0Cdv)/[i'kϮJZܭ+lkB"h<7kO^n0g&ĆÆf 3m! cwU{DaK#pCdkWWvmZ5; WMChbWV? 1172|S[.quXC"&an* $F: (O8DqH=F}r3vdMUI`ne.L־cn>В0V =w1! |^;NRǕ G-"e/sZmMǃU U l*5Ld3džTTݴrm30ʚ/T}" }y< 8x3LpQ:{][:7oPH_0!%k珮tN)n0 M5RCgCR22*(m8#x~F'(+NR10J蠘yX>3d Z/ȃ_nöO`G{zg!BasS(vZW[˴F'ެ4ưɬzD}E8Ԩ-tgwP+sG y{IBx*/2cxmhB Dz],Sx8بn@kF#0FG[qsbX9r|=e$yZzZ:>(! >_55{1v`cnR7gh$Hvɬq }0 s;g}}3' Z6;vZ|Ỿ.YKLJ &G  %L>nԴ)1lbnݫm1T&?.Q\zM/F#r~4āh 5ZVkН.0|>weWz៨ <̢_ {*dykG08. >_^./d^3g1RuF% d'/PR찂c5"6n>(% QsE7#T pu"[כ4NBsYYh'[*Jo f(GZl䛄 pj;޽d"/l}̘lAy>iY{Ohyً#lG(V*pZ+wΛ@_ wCSaagԜԲ'ЦiKG\IPEɷUnVL[MIέzɜhYP΀h4Zz < 8(ôW(zRl>7t&`k\䜎hԊR;ewp|7}}t)fɱeC[Lٍk@I'mgK8W*_d!5zkT┡_J$fGXE:Q}RPi׼#gȟvF ü| uHB5jXd=~:B*a/ xȥQdj S܍HKzmxbt/{X)ՇwP)2?mC 2T^yD8rgN+[>seH,R|q@]P=fGj5QiƤ:62U8_@{'|*d4T#'%W z[!]N'Ȗљe6*JˮGYk2@x*H})&3.dgKo3V)a"1r,ie>-nRIqoLsU&gU@|Mi I/$ʟ2aЙSFgr񓭽*tޝi:v?5v *N?ͥ+:oa=i*;&+}&VZS<- <)J8r!ʧ:kQG7O' ^Υv<{Wg#TFY>|X;vvΖpے8/؇;ԍ_Gss阈Gknp%GU:R1)iq{i(=}ia ;!.u6k̶6]dnDț3NrIA{TYDbg5,{씐cᕝ83;O#UdEwD[=ͭG^ ʖ &o"-E6|nc\px-SP1jr%Uuc=Ftȸ0gQp7 z+oW!?guy-sʿDϹ}xЁYWI%՘9YX#V'21GKXN^T%. V@A 3EN(Xġdc~7/n gxQ J~қUǩc^^B#Je3.>^iE-AE8G% B?Wdj|?} ‰A= N]q[x[Ev.È]ty.ޘ^-n[IaߟWù-*柜x ts?Z`F7 ryCK,\=Rň=lG*="-DI1+{}ZhSA~K:wF'_~]ZۿlNwk~/؇+TH .╨sܾ@(ol@eIqrq?Ѣ[b(£.w͛Ckw9Rp}\0&V[4F06#GmS}kkNB3_*#+!Ɇo"%9҉ a3ou7) ?dlg1/^:Hw{&}fDxA=mY-Ad{؄rTS_-%F%BYNUfabklԸ9!#H٨`GV݅iU-E^$G 4kaqQG8]@ueeCHX1 ګ~SVaIQV$1pKI|8f5}wEfuKx]s*{ X,zf[I-j5(gXjW."hfVݗϡy^P4[եoSfQxlw">/=b?+VXv2"rY:_,ڏm``n[nJe]q7'Pc0V#$Cb3|xȨU}ep,"3g⥖!2<bL 1;c)K+ʚ6oml(dL0(OM?=|nd?ź5tAYw>*.O)3:PbYn^'E< jmiM B&ꏠ\܅aeZ)$ad jOgD%{/StPwIpf)6/Cukyd[3XM_Cn bXuԗUa~OKT" 2Avw#o` $l<ͫ&88 7i툛4YǙB끄wL 5[qbqϲuiˆ8io '-4!SWI Eמl~nRHU> c-w9h[Wg DBfc\600aV|$p;0VO;L o9UmfQP\:n%?[Vyϱ„ ZΗq:uߔ5C؉fةiZщ#,Ţv&vR9~+73w{M%/tOA >-Oev@ y ^;My5>vSB uWXR`/m[5rsqVI3}A%n^)p6~b`jF3 ORBfQ,x(gݐ"/|xxbiUb)Gj=DEus_Eۇ t=~ޯ%_{_*RyV:?pJQ mu7U۪6weB_8B0AG 6sE^_d=1,]3+2Z؎:S¥#˩:4 x)]ťKKȎ 5M"?2 I~<` )qrJ:L>XXR3_m䷋4do*\rN I@O.}16Y_;XGQp>zmU83 65dieAʜdHEeԼk}qmwl|.]XE+ULC7yskBGM(&[Tf;I1̩!{4&o_zԩX *VU5Abqk6_(*:1JRE$W2?fI5[ ( ֽjqr1MUCG|weh#,J\M,9RDG9cJr!? ~G_5p\]Ttq|ƯD%3dS9~p$H C9ëݴQ&뤥Gvp]/Eo ?-# lT|ݐW\g:a1nRsBն:ԗ8'ʒqφ]-=(kyf1&XwTVLrUH Xp0,sX&cž,RKlk 1ל (8ǵ%bc@zs\G\&zZ:ff5tryRK4UT;y^|`>En7vaj>5pӨb2c1*;yp.b}NCc*m dS7Ta\P(+5drnX G ʬ8*%d~3̂Í:K84lF^pe9lfW!a1=T> Zy<9Aޓ}]V3c O D$gF9D;, GMHs()γ`9rM\o2rNlCÏ_cE3 @޼-bp̍V}+F=38V\Roc9OsK6Ʉs@C?\8B7մUxaFG.6M}ɇA`%K_rvYR(y*nwl| H2b!%6`|K9Ӟ?nd_=1\hCV&_SjȐGj<^MzZ0M|21ԛQHr3dujd_X줹ЂaDBY@L=^UsVduDlHr_xp2/hM NvU"|bs ߱ʖVA?K4$xPtL(ߜ#tas' wPLc O|(:/Tg`Iql\8-/i8[hWT+lqcu3-RcQqg3fB 4Az%YgnL(4D4lM7鏹٪I2C:5 ðfM&oT/Ӑ@if~ ]n鹕~ C7eU+`Pzt&T9q9飏:z h#|&tFQH^qQGMs^̹d*4xu&Gn ½#j0b(I:p:7ȯϗl^eZ~;nnBaL}%GNPg ړֿdQoM:ߖM1WӼ,f8!V qƫ>2FcⓃv 7("S1qz.] rxٖ"X>zZ/]'}sDjti EKB Ԫ3_7hj!¿#]?Fzk(~N5%.*M.t]~74*0IA $b,'h'^6x49;m_ss'ѓtB.R"%]'NqŔI{#ȸm*p)G#GhpߛQ۔I(^h>TڦwRJ5:D>hH"0ePT<[ڥKq5WZfuznZ劒rY4"pe[WYUTSR{G,̮ ʁykdp&ιż1)1KU}rٷ<{$X~ +܂ ]?aj.3a -F)X;Gq˕ ;?x s#ũsWs q 'CbHܞ4 ]l"׾9ao'_+'-ܳ~ 8>8xҰb@DwsZt&;KLyUTjUupIjfcbidoGRڶJTM9 RKѾPA5!+" J J/YnOY5WV 1&Bw~L,-,Q{Iyo9=:g2 ͇T%7|H|qSAZR\=Y We9"fHLA:%D܃Xd(Ar,wBtsVDӨsB&S̱dNSl:Y25hyflN0i5V_F{ .c#wEzU2 癟 4ot Ԭ} 9^n.5ϟ(fƄ8ݭzsP`OhVR `+'A)/i? fXSI2XId%Mۑ8}ZǕ,] vT;iLSje%G=/a_<=_g)SQ+ )=M^o݅ &WTr/U&_H0k5읉S\2+e,#F$|YsM NaNms/yP>\_lK"zݱ=HءRXw+0I饂{#^ RbKdώcAT~k,t5CPιVbȾA5 b+^7,nz8pbX`i۞VZtp\`p8ҜLpnps-B+rtGS)h`u^#+ X1ӒΝ\5q!cs9":&:Qdw^hMd$P9Ecw™~갷yt}H\}W $DvJOh9c4F,.ιi39LJBé`I~pt9uEþ֖P\_)g@yP?"SAVGފ"7)#l򹻵wgG8=lyA ̄ JM5_ʄ/ZxБr|dd/P^fX%##!羳Ly8%A)uHЧECL%{ɑ1Өr`˖ j /QA,] -i|U/ I. Tj}3jŽ*eW.Qeڡ[B ?T< 3^**\e&gbM:y38Z SJwNlj{puI ̨#]Omvdou>C=g6a~-mJ3zB4C)lű$D gRE-⋌`#ew]/T!S ͦDthQU³ejWOGO1-G3H}7}彜T"()d~Sf%544ȟ5EgricϒsMzp;CF<3oi0Nh gtFڮ$zRv(J@MHD}jĒ@$]WTײJ}+{_{6c//w_^0 nۡ}txs{]lB53tua&?D +g8S[(ǹ(]8 VScCव^I)d ;yQ|1lH0$II@t_螚~ $E) nY %)r} @kTagQbvFB"u; APWyYGaS{=EЂЏ « {{M1~P]zgP{M.DѐR,q|ꎥ}`19s"5sH ]o3߄A4QHcy"G멨:^M$O [ōgVfQ;nl:JiS(C'|'LZPf(D)-wtKB !/ j]`\*5yq[9)LTލLZnOhU[*4d t;6co'nMx4FrTEYz5IkhhUu6XJgZs1̷X|S(P3kvR6I(Aàҧ ވ)n%P%B5,_Y!R aY L3e맛_VQwǚ҇ `}e v^ ~(!e؀l ç>74d)EeݻaĞD8AAIA6ZT^~ dQ9֔h[cW#`8"B/Q §gYoF?q,vk~%OM[쀹Ӑ%j>(. c2"8P$u# [E5$mֵH RKj' WwF[GY#ų½O23OaHtr%2 ==7GtwZFp':!z묁YW#i|k9zj_K?oqZy .C<+3`?W6du ]-F"!>!$ m) Љo-|!b[ x]DKU,$YvvE{N:Fx_b@p)~La4 np651?Zl8|DH<E˥͛<¯9UJŽ9- n\}C*]Lw96jO2D,ƾ^ FI ZdgRMXqUa4U3비St1a&™*>*-y(]NDMDRr5r'P^?̂\Dqͥ* Jڬ owf`1cDKp^@!2n:w;O-ILƻfF v,+-wtBVM~rtVp|[蹛N_vxzS-zj I#GpfÅ[/Zqo6Vm2c|[Sm|MP_NmlՆGVd=yCƾ{wn`Xib485K$[& \\U|L&8E*ǩp-(Mp@: r.(LJMR*׶a-$= T8زrk+K ~GWDP:V?37Wtf6\?_dLh\U4Lol>L HjNI9/x&Ǝ%Յΐ|h䟕7$t8u6禾gCv ߻ W[wS` b6`?W2⅛^ Ic,IP0ȿ"+~io '8zn? ۓK:lJUIyBɓ"M_( $0?3¾cU3n9(%g\ɥ`EFnT+ɪQ-H(Z'$Mʒ;@rQҬ`OD\:C{ 8 {=vlJk5>Ԗ4#(^W 5a nƍ!~ivҁ_!J\ ->;BGX[Ԍ l8P<u2E>j0u-MQRgAy~y}y'{(Y ?=;ۦcA"nSKgo& ?δ&yQкA.ACRI|p@ӅǕdbJM#ZuAj[,Em" R.8z[-P .NzNcIH !?)Gה}qlMˆM?:!17Se6- Q@Y7r }w|}⩥uGާZ3Jw܌@)NiOn+6ӊ[5dβ ʉ5E(w *]o) boYmƀ @Ww0x>[^]HSs=\ܟyɁ:fRC'%Ιgr20ThPۥVwG%;&|=CKcUe +b@&FTޯcxx*g'l]wXA[?]u<]ВRO2SoBl\a8U'0&Zo/L(m T@K J:3dܛd~5"I!n7& Eڤ],=:eiBwCeIQT~XUuػPƺW{*E|~ҷ sMg!#җ:4D+p4CQ,HsH/8:k 1Idșlt #R \<}pSSl$82eGĊܩ;⻮@鸊,u2-ȡMa lQJIދnfd0_y# ;M&H@[UpLыi71I%Eߝϯ"Wu (z$xOM\.Arnļ5ḩ ~0fڀ1Yީ"_J R!$ ^id b#vA]7$/N->ŷֱijFm L (TyE{3{V/@i%D復^:.!PMCH|4o|v2Y}k :nU찝ɜO38z: |gO=lED t}٪GXV 4氮0PvV oB[nTQLDbx9^ ՜}m{&rCE":}ߑA#0ٯEd~zc> СwZ$55uw}m& )ds 7r͝}b6F)ׅUW _䯭u^zc,fnQ(vWfьMKLX[ Di>a#˜ͻr?U@w:g糠OTj`fxk̿/ 1+ǢlBV'5Q]:v4bݲt[vޭdl}@q8yq ?In(qaSF L jQwx ,r P҈Fc }(% 8Pu*dQUd}6-P+uTX2nL59uhANhT|WRD(5Z` endstream endobj 199 0 obj << /Length1 1685 /Length2 8968 /Length3 0 /Length 10048 /Filter /FlateDecode >> stream xڍP\]-Jpw Npww 2&; NܝpI>߫Yk޽zסy$j1JALl̬|qE56n++3++;2 F Ew8?$Ly0@`{ `geqH9L#pYZ9?o+֌{9@23Mv;!f B X9;󱰸191C-n g+ 4*db2fd:x6؂̀`.`s#ys@ؘ_@ߋM v&``ݝ&`_D['zW3w&)QUsdwvbv*WSC`g'_IfGgm7ן6U=&lBf tprr˯N_ |!"> + `2s-A`?;zcf,/sIJȉ*1Q>11; ps|Ugn[@|v*h:wP/ `q3:z`)yn_E͐f!f֕7$nL;S4;tL^ -.wtekW["^ aMFj;McU=dHL"ޏZ60 /h\xUrqnܺݫzCgwTwȣ<O2hFLfR;3!ccL_^Mag=Q2 p|]gw;RNDMKHs=*@oPmMxJ$F(tci!Mp{U"~#trxՖ%g+zM5ΰ2Yhq<':Z]S&>ʒ3?<@W5+ j[N5f(LW5,IaњߑʪB>d &mWfȲ4]T;8Ϡ#ڨ .4Bq/3KZMV}KPqcgYQ֜{.>%'Ex=m3!Q3REl1J-Sџ7fy+XToYgE)ʌy~/XH[ A&4^\l_z(395¡w-ՂH٧n9rTv|0KIs㰨\'ŒUD1&/DF܄-;R ~|-3 .t88[UiG  tϖk| w:\MiLnG`?(5raa\$_4W5gL1Bh`Ԧ;>/@$h. P̘mܾ%kaciqx$UxVa](y%E 4_e3萟Bqk!Xm 6mTh3NB9c@+.8=]G1ܫn"s5ja)\tʙBu;+Ե񅜴 dG {QI8Y%ܬYIZcፓ@{F%n%d+ BfW0*!6ᵍ5)1[5VR j7`AwDŽF4P7 eKąe~T[Oo ^Q{ϽfjY(>JW8`!^Z1l׵16 Td#ϳv^ vɎs5ho^FM "͔kX󍹝9^PR%=$ԃ5\Xղf<~)2 i;TꩀkCO{C>w 3:jfu=Qh1dMUFe!4p keS* Z%:DJ2 uHhɮBc49 ;z=mC9de+K{#3׷H#lO}gq Ȇ N5S.J0%ਭV5^zߖʱ61 GQ![2͢ww_tc1j}XʏqӪ-QWm{Qb\Ǭ-B UD}P AUHx}U'2t%zxh6qoxһM֓$Sn+ ջiC-M|ތ&e6H"ou .`+ e*lq8eMPGlbׅ'jTTepM)ӗQmeUDj:(WKjXҌuRKxN}E<M=Q'ybE]čR .P@bW- r ޸t&S/+yZCvQQuO?V/bLRlӶ=eX?68z$|M,4X{ߨ3JZ9k<-rXZb5h'+$^qWХB<="亖oBP{$pA>OY9Cu5S's}vL6]'g{+=2~DqEft Y=xkD9xe)gw jU7B-RKTr1"a|;_?Z<(@>FcXGTWƁ?2?M-BqOE{D SSO!EeǴbzsh+rm(:lFS:u2YĮ+n6 ]ILS $Q@J@bo>Q!+]GI0߬Db3J#x,&_qwsq.oN|W-ᐰS¨8%h'PM T-F 5v Ճa(*%1c gF'iB ,^ʈ:ɍw_Qr~Zs+9r);A>?G!8p4 JhPpg> -BayiEZ)uݣPq2%l9i9#_YW{R(+(6?'C/_" %#]wgʧ` J>o*͑u*v iGڹb6LiQJGҰ쎧I^ *JC 'NcU}t:~O3GصܜZO}ll_ܺl!J52Ag24tYZM>sh,i^B vy~-׳9]mw(VNlX×Jl31dU _7sYHXz PsqI^lޖ Ӵs&o-31hPѠWnn٫&F72>A)ʷO2eja"*όG*Yõ;~SW]ÉJucThε 7( \5ZY.TwtkJo{276m}5ݗ +0PkAsusR %H:kKhxn?xiR:i0ZpEC#T=FSp [{H QM&"x9u͗{LZvO4AuaMt0'gkI(.,Jr=O=)j%novKQp!MՔH}HC!=sNќ$\滿{e>Pǟ_b?+}6뮳}[Kl{.aP&Pwt4^L?@?~q&R%[`k MMz4[Lkhݵ}GҔ4*[ GL6 3ESSh&7o7>DQ}J,MR:M֨D2UYcGUa eIrF fJH&{/<U=x6e_t,{cܚ0Zr2Q7ґ,7R)wFc=ĄoDK뺆U/e̚yfqG0$2hF޷[i3hCmlA/*ރz#ɐd+yl4qVi؅ÞIs*IiՅfaS[I8e$O%zCj5j,nHkâHa= ܠ,>^oŗ7,u p(24FR4a\ @ :"BJu\%G8ǘ.Q=3v+@rk",Ip/OD#gP;DbΏO*TE3r|`hw!v4DkoUƾNx ?7<( VNn!fzQ 0 L9?HH8d+a>x>CL5g9gHEHL9"Bne|Ma?l3]{Ǔ?vՓ;8Aޗ6aT>\p8m-$X?A!95239Vn>Kl7>8_* 14Bx=fymRUnHdsd ҽLe&1G:&n803>lOh1}sEau+3zisF}w.urcFF;?DPq|SuEW Cfr4fRo8vה6r5h*] H#ǪMg WݘMku"'aWxC̋k*rНЬ}2ė#8$j:t߄gWocX"2#A,=AL;OPYQG edhA<޵,($p42Lk9gbu𳡀M6PV؛C4q͐e^u5h/%My+_"+%U酩sx)c`0L g`R*Z#9:lk^cE2Q2a)tY+4U *p!tAK#0 UDjDrn/t-s|wr HH9 JVz ~>yԫzO9,$8rٶ-y.* w6O7axHK$JްR_W+dyli!u.ͼТAk)eԽU{SoŖ?(qUm$h_}*>Oyx`KZ9tޭG=/Cw81bFI0efJH.A0v6 y%tbt*ضֱxEsp=o5 c`orEņ}~$tz> stream xڍtT]6H#]HR!"] 30  ")!)! ҍ(ߨOk}ߚ9qucMN)+HEpxD2jO<<|\<<`e0e s5G `P EB"<<^ap+ PAAθ20G8<%ŒrP9<ЁYA`E Eܸ`pg70 r]AVt_ĸp`߰fl :#\V 8y6@GIvVj@. lni sp4z6k0АWB#8Pg2 1@:* /0G%prC~2yrP+pY,D޺CanPkk0'+GP HIO$fBxxxni3#FRA?\/gsWwx;\ `D,@6`(?ّ0y8`ȃ-+rk"IZp Rj 9ss8xND\P@X?)#DHp#n-q U _jBRkA0KvU+87'7_$rz›]. XXJ%}"ZXc9Z_x}m=وy{$Tu- =Z=j2cSsNMrA㜑# '-ҧ(1l$'$#wtʱ>{|^+QSmT Th'$cL^ox/(V!,&L#",ThdJ q0ݕ~[8shā4 BUG6cI΂[ 4k|$5mJa|/Q2K1^/*K&* jrk]SM3slDݘ;7[1BR}PIt^z=ml 1, mά(H|yL<Ȩ(h[4Ҡ#-ޢjPVwp~hN:}si5@"讜oC7VQAexA3+3=4e  ^s1`L@B~?xgnt qofkf "R=vYj_ 4#^~$9g@O-$;CqwmXtP{ Mj˥ -'Ѳ`]>_N'yY C6=#&T}cּau߅NC?Ghvhj>1˷쳯ap.& }y@8=L)״V;e2i>&D-,b%a]'L"#q$*E͓Mo3FxcYgڱ Ӿ UM; 9[OS;4s]6U]Tw^/Eq_(cNj g"V 1no!!Y!/@*{=p?1=uKu#8_2dwE-{9>(&vћ ma&'rKD|2ǵ*j:-mt;9}{"bT>_{:jLAU{aut 4I!ĢH?vgHn 9pj/_>>_Q{Wyse Hwqx|1L\dKM.%֗qn@NX'xM,/&g\?m8cJg;trA5.QDsʊ)TՒ"Bmz=7'3_\ށz̰9WQK im$Yl Ɉ&8Vztə{Nll})lQbHk7^N48h=+VPm Jq]W 4?b^e4;}~[TH w-R l(ڍiE'j0NJ7Tg poI^R;Ƭ})A'҇G5<%IE+fz=+H:Õb%M^"[EF# [OxA.\~$CnF3jpіʚ3%Qhhq+&`m*s^Bԓ܎|ޥWڣ {q;➪W~('_XUjEYCm6eɢF1 OEv9BoД x _mZhn?fV[8ݼz<%AO0r8fF87I}!η|M+*D+š$|})8e偪Z&}}ܬbJ/P9/;]@ly嵖7>tQComJK>{Y,<~a#mƴi˃ʵzO'py3m~lPҸAW[v>b@ ++)0ƒÿ 8v}ka 0Z{I,ZUC^bW-oߴ3E AqXR-IDwj˜&%ͣvHKb"V`i,d߭YU\Z1oײt5'%|ەԔ&KWMID -h c]% gɣ5 U?kjx_7Q$!2>1  y.<}<7ҬkJB4"P|I:0޳}/\QT-Y)쓙a3"L1v2].'*f.0hܧi.nrȌ&c??bJdԣF\}J (dfinrFr=%+Tˇu.,&9rd;Qݯ#PsYKH;FAtPqhHg1?Ry^PFCO/`v5uilh!*q,-97:@/=;ӖfR%Qe[O ( G21|R8(04evD2yP6`udf`nB:3#$PuR"O@'5oWS$&X.3@P[P[iNn K-+`Y v,_8!$ tbNV/NRjjȁf>Pvz TQkgv+T^ {Z MfXI Wv>8lpu Y`;7"Ջ1q yiħ4g @cu|͛,0-h\THvv<71C=fKAgGq/7]ξ}E$9T Ⱥ=G=wX{>?:L Sؓ#!I^ YU'S]nvp+{.iWK4Y{2$9ӳ8nj5fkk8C 8B h1vgJ Lj.bƻwHL6. =\p6i5 Hh%U*/]d^ve&Dt-lzvkV}$jq` X0[ZV >QްNޭ4*{AnMQ` 5[K/l޹N ȝJx[hw{ה4UG^gQL `jhlYHu`] OF&j~'C+$ 5`Naxr|dUR/⸹~Rg]B gxZFlAi'W ~Zaְ1Q>"ud(x&Ns%noRw43}CNvݫ$+- )_-yZ*pHr;@T֖hN?$"8NRA+`d@W>ފCm/bPWFdak}?ߦ(^OVH~(Z/ݿ8Tbh`ԧk |#m6 ]hB kiCZ}UuMl@AιXk|-6s<[j9b$Fθ06A 1E{^̴oktg/)>i'^i:_AKņ7j>_ u? ?zYmcͣZ>7حƦȼ2D=3Oo 0d\wVÉ>sq϶sp5 N^f[=S[{/ NY$XYYtHK<}}9Q=iB". p{ޚowHދt!+zp "mw<++㦌I~kjn6^y-T̠q4Y 37g !-2bO[&濔Tmp(kW(mۗ/l`ypRnL7}.Tu@L,h $ZeqkQr{oӊqʟ.wdZw۪/^ endstream endobj 203 0 obj << /Length1 1500 /Length2 6667 /Length3 0 /Length 7680 /Filter /FlateDecode >> stream xڍxT7"%HNm`lhAVRBRD@D:Dy~9\}]X y!H{ %چ YY`(8o C"$ƔPhEm$  VDzHa6@z*"<`N(t`NH\\9@!v('+:"0DaP߿\pH9Pn>>>|v|HGN 0zB=:v?` (;( a`(m⅀@=Cu-_ W,OKd)vd[m+}p=iPЫQG1&zt^1f7~B' pA <SߵS{YZva(L$U4\l =8ۈT\OJ)ӝ=QH S!f{}IIMEPusn΄`<,.UI 9 A#9#mL;I]3\}."&hi=߰=5,lKu5PBC|6e;<}xo&_mI ްy1i1OzKo'{ڶZ9! sx1)AMqe"rNϣgԡBRh3zQ{}>B\pZ1xAIDc,ɡ .HYg%J~_c|q8TE컷~3]~LB[qͅJO"[H fF n6lZV#ATS4vٻ;hۑW: SKZ1Ond|EizɨgTR='T/p{; øƩs]e\_ >YUFnkVM3ߍ{56ԴdVQ栗ǃ h)]ggAv[*ei]'bXUtESd5SꏒL&?ۆ 3$ԧޗLͭY (z\)-j`@1m+W_ hZΆ'or$Ӆ|[^R>g!> ;pXO!@s'mw5_$[~glb-R L!Zcx143d\-{Z'5.M4G% P%N+I>L1ڪshDr7VE?ME W%(J6A~r9 jšTiTj0 +Bl끅`"smȄyl~g!=z-n؊T ?Gkl&v'U_&)C: $vҮ1 c兏DI KYFxY uV8x'ӹgÈnݔCK f*uC1X=U|>`έQnnU,n uەg[`ۣ )N$"I?u{lJq >֋'o3]yHw!rF"}{`{Q܅4Q-MVihnLʝ84ZɱWUef 0ԥy:RlUg{Ρx;ޭn:&t֣ne*בkھB-"ק O#'{ U9Zj4OO83p~iڋsnhLpnOs&QeCEٕ:3 ,r0󰈾 F*R; A]zq 9gƭYI7_\1ƈ?]Ðo oQT=#LIXOv((/Ud큽9s=|k5hv䂞bgo̪"A%_Y5 _ǥrnrlŪUEC5LzKWe`4ptSE/7-OiZ(b%Twk0j9\‹N3"S)0 .dЋjx'8ta,FQ3^8E`O'zBY ?B*{Mdadd1'b2~FOCzM\?eӸ:*$$̿n˾%ݾe߇zԖԟ]dQRt1<'u.hÃT;ꈠW=uoq[0I<8d0\Á~_勆q) ?ȀD!+dX~V4ن1W{wc~M}Ǖn\ krPgc={uZ&1Nt%#b6~3>vy<0.g2YXmw/9>cC@.+xt?UK1 {vYç5^Λ}]/[<(bSz>4ͭFn5Cw2E-" UCLk[f#[ݪ滧lvΒ ;Ɏ\!f=K&M ' w_uf%.iiVXJxJ=[na:ju盰Iäq쮻^HTϸla@^lRͭ.|nG7< Qm|>P'Zn"ϡn_5 ruC~O ~ԧܭhrP\2Y,rYv EWzg Y;9_*;__{:)ԈU8RρY|ӍlEI+om?t4}Ju{3.xw/uhjsxʻTpm]vR4u&[F:+p}pb 8d[:zu]3V^Ș1uM ˍ)L2O(\>{B5-wEh[\W2pi( "iqWҾ$n2,<}H'+a:a0,Ay(Pjm(㢋qvBw*qT#?v/RYƟCݘl0K;6KtrTֱ3e0޽vj Ch.(?ֹi dxNeo!ü ƵkK%c%2IFaKt{ŽO|BhֳHX(LַhQ.,..,VB{5X`vE,t㑓3kʊ_/w;x(ŽKeR nj_7Wc4~lW h 46̦!΢R>]Mi؄Vo2*t{hBy漞S#,aNJxFSwHM]ܲB++f5;nWXl .?,{LQGš!*,d{}4Xs4 W{zUPv.i7 S{#H2>Jb+OSjF.)dT I˰dIwo^>x񓮉WȚO'QWgo/I>b>^+s/@/M"W4s-$1jo$XHy=wiqsUkzc엳~[})FqתqHGY2kcVl΋eh{oq8SJ6Gㅈ1~}QS$hW"Շw ,&2:R>`U O|P;xCbP'{An%ĨU޿SSML.kT a;gf PvK)27%(M8li=;X[`H$ .~j֪'3p<-!ۃJO149 (Z q1r).,1a{2Gʸ՜Β9G$H%C(}nV;˂ĉ[ǹ>㏢;pD>OQ ybc~ҍsSr3QY$xj7) ƟJ*X'薧~R+XhҼ>@3F=LkA}[yovjo1|qڼm[b}snͮn,/(ZܺhrEIꡫ Q%8a3i[7&{MT(?Ǹ]ԷLe҃ʛ$}Mʟm%̥ N&YRLk:cƛQs#E](~<` UK~S;xY_'I5nߩnu+ꤓ!Y1 jڋaegv K]5p^e`,`7G:I7f9Uő;ߎlɆJݒ3ZE5oo>s[ I;n or*9u~3ߌƸyh4@^?L˄Ǡ />2s ^.`hT& _r-zZݫk-=mNH Y}+C{ʻ<P)Rim*$9= ɇ")Z!Pfn}Ӷa7gIB\-'Jsq/{dY owyk*iףYVv| :?g1PT7j@ (8^! ۷*!-jCN1uvZ ݱ/j]Bs 2i%ޤ%{Xb~Q1#ە8I<îԳoԟ<~:xr/LVi=DI|}r;7lPPfEYn^F7RΓTfւٻB0mbLl+S??WSK/@jgr}/wY#tTG+Yq3kxڳlOY,z}Vڢ,Is2#bgEQiS *0lEш>+9Ӏ(ݬI)/a?fTԬ-2{Zm?|O%k쎡 ˝uʈ {̕_;2&@4 endstream endobj 205 0 obj << /Length1 1393 /Length2 5903 /Length3 0 /Length 6851 /Filter /FlateDecode >> stream xڍuT6-N etctJwH0@6`QB@$DJZi DAB;x~9{v02V#4((,T30 0X cĹ < F5 ԡ8|pED`,w #Tz"@PB`"7B{(Op7s'ocs@`Y)) Y 9,oi#sC H{z"8";}HxD7# 0{@lQ.>گ߈SUE{@aYII$PZZ2Y?SQeƀ8<Ђdp2m`K[RoYE/7/ᆺ"]|C-l#=\۫塂rS\XTmGb5sMWD!X7> /^u0g[_//@B1'~x޿ 8| 1h~ qE0NuB{h9q!!\Ttފ]]9Yq *ykDqVܟqoli1L3s8djs<$1ܞ *H:fz_]^f X^UgiɜO]#y爡ݝ׫8(s{ $ʬ֩Q]axChEףa)'d_R}Eͻl{ը)Y? 4z7;8U|L̉aU<'S20*emz(ns`&#o ]&"J_ݕm҉0&y'6NHb 2 eLz"vPRޞҳ뻞[񍞳N9OΓWo|㴮(H`8|p7Ω+w0UkwED`3 G7S P &j*'ȡC5_,67ŃKxv;Ivލ힐XPdnE  ѷi?Uwp6kyMATXW&qx!Hcc 4c1K$+KpIE›5vI:waw+5^q V y{ʩegJ%]`r\]HsKMVoN' tݜݶ.Ec!Gom;u79z_$WZ]%c|KY$>2HEJC7UZǣϦIBN?S%}v z"v"mtG#ȓ# S"q7N1AM['v(K ltCN*Gv%وj]Aj G5'I:j7 ~@Ї]ًLҫoܡ~>pذ㡁!J 2+y z\ aN7 [nZ! -@St2ƒ@^ek[{= ({HO[>trA;!d'!!\q@i<;&0.1\uۿsbֹǡ%h:\zF3;u#<LIi]QgEړ1_ϣB?۵HM YѮSXn[(=iJyShߟQ_BM$7R=" n "gξW˻=VLiR;L! 9X q[vZ殪⛊9aK{Ds'+οhI8Ǩ.xyuDt]UJHfu1"jt+AxN<+nvAS{}y ,HEkw!q ʭW[I/^خE,B J6_<1`@}\|85Rcgo2oGQk,7: WWv#l錜Q< wR\:Jft2f»RG;/Xmz)lwt4\l ?Hjr7h9 6H֗2MUtm:Q P}<°^y8!vufB'bo7ɝr DY [%@>sz{kԓlTDv$3߁15'Y/Ǐgi,#R"ؖYi &ܢ$>""kRjs)և'e*0[+> b".RaQ&b2S{|tx rL-*k9X+lrDrnzԘ0xM"Ԏ%@ߩݾ UڈGnϮDrKiG I:# H~?! bTBQ w!,oi=s8+6;)832φ{%@gpV1zp0?T;_`Jý'F`Ҥ2Ki2Drǣjr|vleP(^ O`ihw\hN3OM"a[xr0\-% %{DlYK2SQUf)W48 aSԁS풃1Az&SohArD Hň Jsy?rRO>_F4*dXc?'ΑHhLQKˁb9ߵPjdYY[;R6qqw!z>C|TnG?C'gYn!$ꎳ۶Ƌ[yzɛ2˹RzvRe[*/K,";ߔdֱxE9+o#e GLnj'QSqG?s2pX@9|n8]ayzK1jjS \2R k.aRl߮ÁmJW-_?M'd4]h6 HK2ӌʜT*pXWF=dOR0Az O}&AC17s+fM,/*Py6?%097[\ȠshĤy)q*mֳÜZuJ2Kxr7-w1CJ?iZ !RNC'CktIǩxM~ jO=[+HPIS!]&.ɹ;o;yv;SE-]+glr!yx@1П2r^7`ACJ4H1hY]~R5tR./46u׀>Dʸ;nՔy mZiWGԥΥ'sI6釣͹,`t -ʆ0>vouKr+HR5esRAkd6Qb ƭ)}ARϥs5 z.H!J`dĀM]9aR \l>:M]8HÁK3lJ&W\R>ZoƩZ!'wE^Nn8o]oڊ=aמn96P{mWV dkƜ3.Tu}lܵg59ͪ&c0JLfX{ga%ڮڂ6^2ጏ7Ɵ :A_sqd(H$]O9"vc?ߋygCCpu5|?,aQ+i1 :N-o{0zBv`xa9wJ 7 S[y>wk_ntwؘ'd*w ^&C%ZlUqA2B nP+fތ "/z(@>xߢ㯺o:]Z:R|@7trR |7n]nxRn^Ҽ[_BFuE9N 'گqS#}Y Yjȼ[f-UeTIÄ+dIt:Nߘ7;RFgղȧ ,pᘪ[ (TNgy8R/+vy'3w?| [_zh5KF (XvƽcUen ˃W/,mc4孿ʙhT>/yeIcמ }C|IkՇw([)fUkZgc/M(2 T]%'Q wYb] Y'{bujc-a;CA|Rkh3بPyQ]8YSo\sl9i'V\ Vj6kATR ۊ%vxs[ 5#)QwN^mL*3b+n"r5ۑז=s+'k1VIp0k$9\PuTC̀^}n8V %O!E 8h3*?ZĈup?}O/]i|+ahb15K ˲P]6Tuyi5ueCpgUƪٻs} >io{; e>|(􉻙6{OLݶ?3oQ~Kᙘh"j=h~ۭJ endstream endobj 207 0 obj << /Length1 1567 /Length2 8294 /Length3 0 /Length 9338 /Filter /FlateDecode >> stream xڍuT_.J RCt %43 0Cw7Hwt (-HJJw{׻ּ{gaa喵[0$7O xXXH~<`_yާ`jaUWP] nPk@#XN.P[ߟv+PLLt#jehX !`V]$Iݝw}p"!0 дpE" m.`j!S\a`}w.H ' <G l`3%u ` p@-,?nPX3D 9.s͊0ky#D^lu= ۲¬m~ӰvuՇA] 0.}`$@O_ v= y:9z;64P a ]\;Z!`[( n͟@=|~?|+s(T՟E- @>?ëeku|Vl?IDR_c{=%{Hiw{EJq G_{="gC~?!9`kGAH('PzH+ȟZ0{8@a`-8޹Y-##[A~!a'߽Y{!q/ Os]~WOK %" ׺=c #$ ׼^?};݃{H? +W+o[[I5_Ҹso >?:yH嶥$/yy,P=/=-r;{ >{ӯ> M6\>$RWԺ`ֶ:Od8(7gw%Y[kΫ!l{<hc؏DEB:d;je;Ä#ItJ;}Bk\ Nj'ٻOӷ SOX6+>~tnѕlщQOnu rR}vxad!6Q+t" $aLj,4`=β=@T`ed|_Cprp,h Wduj"=txϡ/-;i둻]oȬ )~ s*v焀 mtM}`(T ؊4OŜ]s$u.VZو"O.UNJC)ېE &=geJTCweX:O$~F)ON!ۊFJY=Pc,G3kjYW,jЭnȮO! X{:~a|ET.NIh2C vrA /Z;ʎ6ZaֲR$? j/-xrn;ɖ!,j kB^"s3y&|: rZSяcK#.Fͬ= r?/@ڧab 46z8S %D}Fr]\<|ƾG_A4dٖ{ltܶNKi&Per5C.55_o{f^uɆ*ݾ8S̫ʲ | XeȊx\) >+d\5Mٹjև\HͺaG $]I?x;V(pRVp $پR]kF,F|PQ<"';.`%)aO xyØΟQ,, ㅜHk7&R)79TL]so5ODlnZ7xcl?> %)x#7 lRy dS`atpF7#5L ҉JL,wțpkmӥ~|fPtۃ>O|dh7~,d᷻2%H,͒~Ah!qT{jа;W~cF!Dt{]8{ 'J7|k=1=6G$Zv+h:o}WoX6wAk?^+.zw|H)2y K%0%ճLy#/H~R F S&EQAu-@нݏ8,t8͠2;S0XE83%Nfxg߅9>'l~culxڰ$ZI%I 1w{ɫĕm2؅YoFKgiel O Gvtq c=kW,biҏl-%6?߻v; {?ξ{ƻ6JfK eԩI7wev4N͑luy7%FS3B%u듟C_;Uv9W@Z~b<W'Ae^PU*j:~ҟ׶7.6MV~ir8rXO%0ʼhɫM (J#Q:U&˞(|}o-RFpyBy>ySCԒJXw^mƋ:1MBKa/sl+ nŖTKl`^ُ@Lw{']Ε5%IFR)Bf8pcHks g@%f:,T|d,?HIaG~Ias#^Z2y6=2A֩cA񏎇)YWȭgξO74}vKu@`C,~IU4uF#R;75Z\XDR};X|b7]fxw*Cz05Kh*y4ag_5h0؄W Yk99|;Ux 4T~¤M~ kwyz<ӏd(E,Q/b~Q O!%,Ť_%Cq"0žqQow^l2g3_9nSv;7S״.u.r;Gܽ=:Pjb+Ԇ1[̓:9L.$4:)'g8~9 E* Gd ز.vOgޟ\(,J b^W*9x:053dE Xo`v2]۞N+HP&VFK~dW?t%hm0et-1t kF\@ "˜\U"1gw0Tպa}R8_:7T**wՀ@JaZ#!%2;@y <;G&FĘ&^$$<?UGYlbD[љO7QCqIzQQz/cBS̭SSd?-؄mgNʬ,? SnV w޾zPi4뭑M}1/|US{<*׵S7pRDY5%ȷF>pp끧ERDf57Y'm@4p-BO-p+8/4o##5t5iY)=1Qq2 ٠VuRctwh(O('B1V/0˰dgtҠW+/UK#&Lzz2<$k*\\}4:Ӧuu#HZ(Rmk_~tQrq(1sM=AWxϚNo\?7Hyf5d_XΚo&UMɍ~osK>LDrp=w\ dKsD;p}e}TVxæ 3n}nSpW~v`~){y1>Fo-ч K&eg{B-R?,` cP<9R9>~4o"[VH&k~$.ԓ0yUݸ1%,D|[Ǒ%,7)tL+CԐ #rCf7Psʂ1[:eҖClV]O d:M/qhӬ*n<0ա7ۑ A U6pvsh5}hUcdEkp")JCL-Sp$J⎈hs! u}=K̊XƾbNĥ_#gUȱm,˴'3FbnS2/~Uk:jqlŞQ\;jF"C%ɛE8P?©aRn m0~m 8 _\?8H@Z?h`"G {Vρ%IJd'G' F OYDzO,͈BKMt ѣOwcq4>i|ܦ(r e#Tј%a_D̛FD*>ׁg+]DݑֈR.{uOX%>ѕ=YU$z͏~xB4;ӋmWR 'w)+PIRQ 1MeǾidN( ~;[tdRB-"FG] @P 2&꺈H{Kϧ\%0Pϧzͮ?9yHU O|5< PHH~y|V!{`/nW=/4 7"/ʗ6ʔm4qs,rDOд#DS٥>%!{yҢFK [-E_0!CD9jgFxxeUB0„5jetcQGqT5"OMm(d\K0[.>%7FOrc$~mtjձ= Zru 4g ^;;A:mB&>z׍BYL\g$kب]1tsb."CNcch8\Mۗv_R) $dWDi~ycmM#(̪܁5WC iJq&#jABI*<<0hF g[&E(h;ijqp[*󫖸=g D_2jUǼ NBP5!ȴ&0wߝdW6Ի'D˝C+ &EQhb?Ikbg eiMC77*UFLh_HEɺtnB?aDPq?e5QBF}dXh;VGL>h" CD`'ײ@AO!VzgD> DYm/'zA "ArE_|SlOm|]mUbRWz% 2IDZW m3ifIr733י _u3tA$NLt:kx>."dQWq>ɃྲԣK9=5 "r7S!Li+ؗ΋> L OO}43P/L)e{ǻW3Hkֆme;C,Ž;*l>h]5:1kJoxVZRai].Tթޚi7{mY} ۡ.0US/}_j *%<HPy\tYvKhtk>tqJYɁRaPVLMXzgh&2ҿ\p/ZT5=6ho3eb^MoNBbXf_1X *ׅ8^D=˞,A4cm$JuT.E@ĴcbEy}akS`Dӎ2Jm Wģ 9bqq1 qh2p=3jZ}vdr4?OLܯ< Wde NVp @4T<jSQU6ySX\T(Pm9>]nV%q]|q" T|° +󋏖%Iu$r`ث_-Mo4U湔GodPg/(w~u6;^w~SG<nH-Dqp/):JN~F_GlOxm~y1%I GCAՏP/!N)FoыQ|[( BKd $́Nt5aD蒹1^an%y>Nn6bӹn?#=lmC<9dklAA* h.O h@`vzx EB.%A馢ҫ+eZ\Af!WI Pyg@(*vkW]a3f|4ka5,G<,2cosNtaD+@Q=Ezmֻ=È:gnUîя Ӧ>${n{TKPU_Vc&}"r>1M-۞TNў]n|3gD"ñgyO:*XJyL,7g.rCvӛ9K x#5W\t2Û;"0cHh~9Kh2/մnLa Xg/K?ICKUvz\{_8@ 9_&255) N0\@fܹkP'=˭HOOhA9p#ܻ~b=KS٭VG6OёTQUi52vjX&M`u>rP!=E\3J=Z?A 5{VOl3fbkZWt>f-zXmJN_\=OsJ5>(f ,FGlyjxO+~@ȍP^L={! &A۝-ف8;) <4|RG_ţ^⮲N}oʔh.T'41xњpG Z0a|yyuJ< lm:A^J^J/)}y? eiLє5֨ zԾdřLֱd5DŽNই~w=J2W}.FuǛJܪUb2*'PdNm7N0cᷖBVxdEɒ>IULRnDO jo2INBUPEia&5Do4DpJFYՉb՗ ȋ}Ubd"~.0zAK43XYGɽLs$> stream xڍTk6,)CHwwC Ht4HK ")R-Z߷fv\;&WVc1$!vNL,1uuV6 ;3  5:9 &a!;dN0C@`eea YZ b[X:/Δ;@,A65)_tNN@+#3j!Hp;YTA d-ҘQ`ǿjs'Wc(؀MAv0g;3P(ك6ۀOs̬l)lg0ۀJNnNc;߆61fWI1s46kYL bk srD8 2ZA\R.NPo>"nP(/f%+(@G<"X~aoX,0 sg0? ,OǬataD6[aºG<2s\`V213԰b02{d5j&,k!k0ca!O&VVX'+=0#IoX6Ǝ8Ryݶ@'K(# 8xx8B6y? ,{?FEu3;L:]rO@n Si)_UMPU+0zIֆ1SYɭ=km<keH^g&^87{l[rFvfx}gǛS;R4喇h" ޼aG,BZdbMDxguJZ|)#x5xw^,}W0yHh0A%A+.5ȟqP9\aY"fCzcЙ>w^&3漼(RE)V_I"lGԢb@RQ8[StxzFcݛO)S0p^AnճՓY{ Y~S5ݸ3dC9@]B:`~7W4fIP d%W(CJU\/G]+I*T R/;R3\9?A C &ћ<'!:uGn#E_0 th3U7a"cdUiW, ;pе*x_+\4c۫ a]3WQ'n|cUs*9͘-lc^Ц5M`."hS8twV =4M$ţM\FL m?s[o6~o꯮$w }K3#Q'Ix#if"19w͡l" z%5E=ˊ0^l}"=I2Ziy9{~~Mlʡ{,pe \.bӶgn䯖̳QJis ,RTXC;tޯ(KQTݸ0KkQ|3 0K~L&RPg$(~op:9HBL.i?ҦUS}.]U.s2H I.&IT#Ƽaʧ{1jp<( VD#yj? yJ r Igò4U#Yۛ1vBr@O5ZɟVq"IuֵePP*Em +T˕fhCv>xA@pp&h"KOm C6?2-5𤲭}B }Vaq^TKdrӼe*v <(ƄPNjĀҜZRщn~Os-b?&6ς[kOߪxQng",u2lKP-SH*~(0ckFLۃy Ƿ]3; jPUH\!HSfxDg/IVIJ1H['7G`yW^ U|r29u0=3 &/^ 2cV T~V f14F1~@;-Q_zI2(:c!;h@C˛8Zthk\' : k,W&p\̸6&x*29k]XlW~#my} ueT#3 VFF}Lmy2zg13> ?jΕ}w?{ߣ~ m]TX"Pi)ênv2Xf,֗{'81*J&08$~eP,"+6 ',Y*0 A͂Sp{_:_M[>g.iA8^+]R⯂]蝲>{[_H}**aZjHot \e% %=9 J2UIiT2Moʼn'+ %lgR.no9*ɜ8 -Ju)RL?,1RyXn&QU5ĚSSl{مE/m5|*4{艟rRUm|m'cHq5 ="C:+S<ᆬ.by/R{>G'iWk!Ut]͝t饧,գogQQҧTGlqY}eꂔ4nvHѓѢ6SjAU-ec-_NjB"O7Y Bρ.; !<YFf})Ye)[McUqpk'b#ޭ~\l8S-$aDxpRY˃S-McTs:[q )%}O&r(sZ5DDѨ^sݐ7J iߌSfLZb^ ji6^,2oGܚ/"PءIebƝ~xO1H-3b|h*&|ݮyD{GnHךy_~XBN_YP~퓡ɉx?:&LFZwNyq0e/ѽcg=2lEbPv&=sBb%w}MIȗ>aU3bd.jN2|>=ơc,l.bKRPBqe|\ I`>K-Px0ϔ|ezk~'m;$9Oj vN5h:哸'K$_IozS0̶yl|+y37G_Ƽ⊾$iCM^W .s^ Btbe (Df}MC*Em19k2Z#4Kj {rT޼seVA7tP-mϗuP3w.ZO u680ї*;!5h؊dH+&kdI}Ê!H=;o:2?O/B\b(̾a`.x'MxHC_v/J1<.B0o=ӾqX#Ig,8rk` /Bù߶>FxS/Of+x<]1Otcڠv0OH EBnڹ.?bqε~ڱiԂ>I1WRϻ\}>WDZU͹{?4^e~u:Y^XQH9" FɎZ4XmWeɺWAmߐǐYnz?,*(GUJi]c9<ʬ>ӷQ~pYu܈D?d#t<6?}H X _znܚ :Mb@ 8;][ʗ ލkt/`^er `-pn^VmUFr hraX!._~c]>,+ut!]/$DKG]p-X!kۧRYx =/>+>ΔNzi b'Yly|݉{fxL/&h)q- uNDbY7Jvkm RMe5좹lMzlUl]8XE Զe[Vdкҡ ޛ݊ dK1yGP~Ix -yY.%1 6!ɽ _%S*D^\Y!:QKb8]im|mf(&|$ғX=8Jd"gSåO3n& bV>Q9#Yq\AE6?  7U;AJZ 0=N<,f/3`cD<0ZU)Yrxy+3o)mɅ> UW&i|.^`Oas-d p)>ߢ7 "pjrDѥUF[^j_xQh^v-2\^x+kŷf)@9/I!I's_x4vk>D [RETR`kܨ &)''@S@ }q4l 7IϏ3Y9yNd ȤؘⵞN{Nsg#S&k\/#_8ra;LlKCkh;f-vul>K%5|f/}g^VU6R77iQ3HG(|݁ A֧D .!Ed"?R44fB7⣯(a?]j':F]DLbʘWȤd<.32%*yrykϤڈytL-M7pȬ !ʞ?Xwi3J37cJtm_a Cps QͶIrnGBJu _> _*!-9I~D֎m؟l랦xf8@_11+QgpZ?M dv{ ³oA9Z*%UEktt~a iy6AAC\s/ٯ[;d*ٸΜ!/[ "S_rg#%ka ݷ+\0O[M Q)f垁T?P4E[4۲罶/w`F *~"JI'߽is f4筍qMKl-[a?cըV2O2o޲I:_1 J^Hgt @2n;Z\KQq E@0X61|tݿ38@sGQ+Xޝj&k_e(᝵0}6+R(b̙WC1R?-ӭ$OjP.LNL=%p>V.Q ,s/ѱ/hdHN >T"$ BgySݿlܒ V?5v#}($ %C"֮}[Lz,73>l)74S߯yJFB $1l5x-_5lZh5%.|zFnu7g|S!-Rqv2Ğf,㰸sQJPưu؜) ,u۠oj.~=\-njX![PkZA):6ՈZ&TmmFiz }Rs.r½~kZ84E)6^դ twכ=Szu),(z(ªp4| 7N*FoUe 1;|νxH9)"?6RF7nЭ'^!Yq)ڑkѦd3?xslAwF~760S*5v zthr>tb#cíCAӚY"˻6P/ҥ gtpVmfAqz~=)pˡ T#]=K*~׏S'YLObJ(Sŵ>i~n!)r29q:%K}Yt)^5QU[ ߮{#Adիxk\6ʠ}vq/V遑Qӏ*K/!1-^P!~h N<=XlaJZBRh)@/l,kSm535x,譕iY}mCќCQtiH>?eDPE KJrcV8tESIDcQ{fcXAd/=Hh40\|Ngx|J+HNŕ߫vRjb%wNKF*[s[_2@0l` xY`$ D*F&4)\<9.NoN㔁0WPM;1p@ 8=M\՛y֦-waf̬{Ӆ{,oȗXsH>6]R/uJ8i.՝XÕӚ V4'<#}K\hw u'tdG#^ŝ= aZAsrx_r|LboE765>g;DL׻#otMcr@=oԼ LwAЖ A&V2i@A>|ӺI8s8+D*y3%q~i6jNB~UuBߜSf;hfI/>/߯5M|f:rrs%qѣ,5?AAn6TZh)؛#{CtP1(erQLn"Y48Ǯ#Q[& -)vՃ'Q0dIHX}TVf8Aw(WM+(u{F#?D?'z+}}:v{(:LpS"֭#W-=+LE+qTTgJ3Uu_G~jfk^|~b Pƞbg<226kOPO.PK;<`cf+sA_]:"`]qXu蛫Is)l @y8mBS/Fg>3R V|Ok߈|oT߬ n> |>%ī5邿sQTP4kZc%5qm 8б~,Ibvĝu›x{^ R7N1d7oO#{)iL \ e'2 gD5SC{^њ.HxG.T7cw 3pkR rG5N:&w^XBYh Ed)b@?}@dj % kg3GP%F=),Lt#_ mRlO;vY@:j|i::{> qiM$C8gSrcB4i_}ʣ3Y$i_ΛDBx=qG2ԿZONzCW*MWvFcAV{GhfbtlAmEgGm"v.r|Ԅ׋/iS8SS4]BKxz҇wM4k9=W6@#{[g|_"1(gG-fҔ3nΦ_8ca. cEPp&N=eRWζu5Tzgㄻ^/tZ0tJvn%-~oͺBno:`LD6!:2 G'xoAb%9ZI-T+ᓗ3^{Osm?#R"=xp`Ɵ{ZoΕ x MւMpt9f8]TUQtRS:ZaxY[IJN--~Z 皒؏#l/K2ի% 8߱\y5CsOߧ,f㐚Z䞭` tbk&:!7_La+(Gr)iʆb^(O|9ޮ~@rg.ٚdg!LS!VY2ʺ[M1Y/X\J#O)$Wp ;EDVED*|<}׸x4*adjZE8E n"O\'Qyd,])v̭ւվ]؜f06nI#,|5>T"}m?HU;>@[$4s'fO[YB1ĉ.'~q|aEcumhM9򛱘erhΝq=|Y Z$Vٞ]8הr'xp(ب,-BүC;f_:j:XGw;DO'c֒eR *AMV̰ ]m[Zt@Z™[R2wɆ/4>'3M0}j`{s@g{kP德-_rY0&tڜVC\,mvِ*A a[.Iϖ ҇&i";K.uۑӳ^mAt84Rnmu?K{ *#8H> ƾ+ 絙> endobj 156 0 obj << /Type /ObjStm /N 89 /First 786 /Length 3758 /Filter /FlateDecode >> stream x[isH޿B}]1|hlwnO,~̒%oAJUYyI@KJ+o5mi)@SZ*XK*x0W!)D =U4U$(P% xZQV7YHJ*@ˆ1U7 @D0+4- ïGJHK` i*pHF8pS9QR\&? VlҘ=Q,hbH=`')k$c5Xi D^$Q2Ol ~:%P1K`F?8;AY7oR.5L^fGn:8ݛq_s:K9`~~`<8Yr|1?Ywx~gUq>R_sv$^zq^/yГb:7\#..VcziXpyigة$ȱ){Xw4 H 皛f W8 `9 M-J3ҮX+tI 4;AA ZfY:G< cԏ&:8d9d1bG&Dh@CZBRKP6PjƓ$[&(#i I:a6"K;Vw(R ƐO>P;X|0''0F=u4( T8 m\eޚE~6f˶@+8(ܬ#m$3|JUE ^'' ]lm9 9pX =Y*ё6ϑ -ń69 zia ueEKX2/~N1=A=m#g=)P"ZrI^IbFOAœ1 J4yp[;H/%b9c`fx_[g:d9!4!s3u(/ ~gGE#EbJuM6 E9J)GNm!+},gY cxDe8:ixqxi o-WMT,-n + 6w&c+HR|O*ϵN]2eus?,!Q/0n[{XJB.&{h@,3 PMF0iq+SQZDHb'TF{^O+qb⹌PsKKYNk޲EhKQմTRN;T~6),˚#tw=6\Vk* WdJіxʫ~q%42MQPzHlˑJ:˾wY#=4Y[do\Bq}_ gzyެtr׿=~?ZiL&f{ęDӟK#qwyN |zzяEV嬮H\WHnYK<>N<+S@<OsBg7J.&br^8󫫉C1ſO q)>|Tĕs1ōs]/WXXE]տb->;Sh˖X>/+L(>}[ F@cwB Ľ<子-#⡅ ߜKXbmxB|sO?tNM&Wrr}!&&Y̰7)d&eLlPf;r )M/̘Ʉ|4뿬?As̓/J^bpLwr=!`r'KrҭC ge In6ۘן~+dϾ7lnYG@lb`hG?9l|fuSu'9}dE{Tzۯg̥izyUWg,vjǙuڜTt5!'K^qt~'ձSq9sP|?ZI@saŷ4M5p롤|d`XO0}z/U|JtrvPױg,0__:^J[W=麐>(tw|, 𭨳%TFuPVBps<.-|EC[g.pWgz^;M2dI"/Ӌe.E/5us_#B2e6~| wH+nvOrcf5ZlP]6A~K&3v ai5ՙl}QZ$b-X􎕦[)BO[Բ q<3 2[tkל>{lRnki:Fhhmw+w;>c4ėySAh/k[ٝ+Y1a!Kuy|dt>ݗyTzDڀ^ӳ 󓗫buʕd#<՝Jr@@N? E>{ bs Az5ѽ'HhЈ-GOňw??lFC:-nHU'Tɞ4Х@f ܩV(77ON_MMKN Rb,Hpr[vA*CmyH1j02n8 3V)R͚}dþIsj˨;4O|lh'!9:^'khPz8hK+)}?/ViUpBqZx.?YMfQ 7e[ݤied~Qߖ2|vS_e*I2Q endstream endobj 226 0 obj << /Type /XRef /Index [0 227] /Size 227 /W [1 3 1] /Root 224 0 R /Info 225 0 R /ID [<6825087B549C5C631F0BF0F357F5DC07> <6825087B549C5C631F0BF0F357F5DC07>] /Length 568 /Filter /FlateDecode >> stream x%oOQ:?mJ[ԫwwzԣڢQ&b`@b`3FbڄDRC 1`)Ms)SIPG#P;*U$(3xPe`58r95\;Z ցiTsxP5`=% 674NPւM*Sn[(P Sn(Zp\S9RփAt:)unzN ` 8Rrp8\F4tF~ 4+-VЦ橽vСNRl?b=?1J+c^ ]R3{0)U|7E Lɡ50+.xUnR}17pKw|WARafފF4%rx RSdTJS~@v~sD \J~s?RNY g h4K?AUUܪ]UV/zV)D%^n !,c0,cxdaYxdL5fUK*, $$file; \ rm -f /tmp/$$file; \ done @echo "" @echo "***" @echo "*** User's Guide created in user_guide/user_guide.html" @echo "***" @echo "" defs: link_input_xx INPUT_CP.html INPUT_CP.txt INPUT_CPPP.html INPUT_CPPP.txt link_on_main_doc INPUT_CP.html: %.html: %.def $(HELPDOC) $< INPUT_CP.txt: %.txt: %.def $(HELPDOC) $< INPUT_CPPP.html: %.html: %.def $(HELPDOC) $< INPUT_CPPP.txt: %.txt: %.def $(HELPDOC) $< link_input_xx: @(if test ! -f input_xx.xsl; then \ (if test -f ../../dev-tools/input_xx.xsl; then \ (ln -sf ../../dev-tools/input_xx.xsl input_xx.xsl) ; \ else \ echo ; \ echo " Sorry, can not find input_xx.xsl html style file !!!" ; \ echo ; \ fi) ; fi) link_on_main_doc: -@( cd ../../Doc ; ln -fs ../CPV/Doc/INPUT_CP.html . ; \ ln -fs ../CPV/Doc/INPUT_CP.xml . ; \ ln -fs ../CPV/Doc/INPUT_CP.txt . ; \ ln -fs ../CPV/Doc/INPUT_CPPP.html . ; \ ln -fs ../CPV/Doc/INPUT_CPPP.xml . ; \ ln -fs ../CPV/Doc/INPUT_CPPP.txt) espresso-5.1/CPV/Doc/INPUT_CP.xml0000644000175000017500000021332312341373101014441 0ustar mbamba Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in HARTREE ATOMIC UNITS BEWARE: TABS, DOS <CR><LF> CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE Comment lines in namelists can be introduced by a "!", exactly as in fortran code. Comments lines in ``cards'' can be introduced by either a "!" or a "#" character in the first position of a line. Do not start any line in ``cards'' with a "/" character. Structure of the input data: =============================================================================== &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / [ &IONS ... / ] [ &CELL ... / ] [ &WANNIER ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 [ CELL_PARAMETERS { bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ] 'cp' a string describing the task to be performed: 'cp', 'scf', 'nscf', 'relax', 'vc-relax', 'vc-cp', 'cp-wf' (vc = variable-cell). 'MD Simulation ' reprinted on output. 'low' In order of decreasing verbose output: 'debug' | 'high' | 'medium' | 'low','default' | 'minimal' ndr ndw 100 Number of steps between successive savings of information needed to restart the run. 'restart' 'from_scratch' : from scratch 'restart' : from previous interrupted run 'reset_counters' : continue a previous simulation, performs "nstep" new steps, resetting the counter and averages number of ionic + electronic steps 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases 10 Number of steps between successive writings of relevant physical quantities to standard output and to files "fort.3?" or "prefix.???" depending on "prefix" parameter .false. Write stress tensor to standard output each "iprint" steps. It is set to .TRUE. automatically if calculation='vc-relax' .false. print forces. Set to .TRUE. when ions are moving. 1.D0 time step for molecular dynamics, in Hartree atomic units (1 a.u.=2.4189 * 10^-17 s : beware, PW code use Rydberg atomic units, twice that much!!!) value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise input, temporary, trajectories and output files are found in this directory. This flag controls the saving of charge density in CP codes: If .TRUE. save charge density to restart dir, If .FALSE. do not save charge density. 'cp' prepended to input/output filenames: prefix.pos, prefix.vel, etc. 50 Units for input and output restart file. 50 Units for input and output restart file. .false. .true. to compute the volume and/or the surface of an isolated system for finite pressure/finite surface tension calculations (PRL 94, 145501 (2005); JCP 124, 074103 (2006)). 1.D+7, or 150 days, i.e. no time limit jobs stops after max_seconds CPU time. Used to prevent a hard kill from the queuing system. 1.0D-4 convergence threshold on total energy (a.u) for ionic minimization: the convergence criterion is satisfied when the total energy changes less than etot_conv_thr between two consecutive scf steps. See also forc_conv_thr - both criteria must be satisfied 1.0D-3 convergence threshold on forces (a.u) for ionic minimization: the convergence criterion is satisfied when all components of all forces are smaller than forc_conv_thr. See also etot_conv_thr - both criteria must be satisfied 1.0D-6 convergence criterion for electron minimization: convergence is achieved when "ekin < ekin_conv_thr". See also etot_conv_thr - both criteria must be satisfied. 'default' 'high': CP code will write Kohn-Sham wfc files and additional information in data-file.xml in order to restart with a PW calculation or to use postprocessing tools. If disk_io is not set to 'high', the data file written by CP will not be readable by PW or PostProc. 'default' 'small': memory-saving tricks are implemented. Currently: - the G-vectors are sorted only locally, not globally - they are not collected and written to file For large systems, the memory and time gain is sizable but the resulting data files are not portable - use it only if you do not need to re-read the data file value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise directory containing pseudopotential files .FALSE. If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. REQUIRED Bravais-lattice index. If ibrav /= 0, specify EITHER [ celldm(1)-celldm(6) ] OR [ A,B,C,cosAB,cosAC,cosBC ] but NOT both. The lattice parameter alat is set to alat = celldm(1) (in a.u.) or alat = A (in Angstrom); see below for the other parameters. For ibrav=0 specify the lattice vectors in CELL_PARAMETER, optionally the lattice parameter alat = celldm(1) (in a.u.) or = A (in Angstrom), or else it is taken from CELL_PARAMETERS ibrav structure celldm(2)-celldm(6) or: b,c,cosab,cosac,cosbc 0 free crystal axis provided in input: see card CELL_PARAMETERS 1 cubic P (sc) v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1) 2 cubic F (fcc) v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0) 3 cubic I (bcc) v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1) 4 Hexagonal and Trigonal P celldm(3)=c/a v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a) 5 Trigonal R, 3fold axis c celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around the z-axis, the primitive cell is a simple rhombohedron: v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz) where c=cos(alpha) is the cosine of the angle alpha between any pair of crystallographic vectors, tx, ty, tz are: tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3) -5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around <111>. Defining a' = a/sqrt(3) : v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u) where u and v are defined as u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty and tx, ty, tz as for case ibrav=5 Note: if you prefer x,y,z as axis in the cubic limit, set u = tz + 2*sqrt(2)*ty, v = tz - sqrt(2)*ty See also the note in flib/latgen.f90 6 Tetragonal P (st) celldm(3)=c/a v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a) 7 Tetragonal I (bct) celldm(3)=c/a v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a) 8 Orthorhombic P celldm(2)=b/a celldm(3)=c/a v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c) 9 Orthorhombic base-centered(bco) celldm(2)=b/a celldm(3)=c/a v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c) -9 as 9, alternate description v1 = (a/2,-b/2,0), v2 = (a/2,-b/2,0), v3 = (0,0,c) 10 Orthorhombic face-centered celldm(2)=b/a celldm(3)=c/a v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2) 11 Orthorhombic body-centered celldm(2)=b/a celldm(3)=c/a v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2) 12 Monoclinic P, unique axis c celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c) where gamma is the angle between axis a and b. -12 Monoclinic P, unique axis b celldm(2)=b/a celldm(3)=c/a, celldm(5)=cos(ac) v1 = (a,0,0), v2 = (0,b,0), v3 = (c*sin(beta),0,c*cos(beta)) where beta is the angle between axis a and c 13 Monoclinic base-centered celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1 = ( a/2, 0, -c/2), v2 = (b*cos(gamma), b*sin(gamma), 0), v3 = ( a/2, 0, c/2), where gamma is the angle between axis a and b 14 Triclinic celldm(2)= b/a, celldm(3)= c/a, celldm(4)= cos(bc), celldm(5)= cos(ac), celldm(6)= cos(ab) v1 = (a, 0, 0), v2 = (b*cos(gamma), b*sin(gamma), 0) v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma), c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma) - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) ) where alpha is the angle between axis b and c beta is the angle between axis a and c gamma is the angle between axis a and b ibrav Crystallographic constants - see description of ibrav variable. Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both. Only needed celldm (depending on ibrav) must be specified alat = celldm(1) is the lattice parameter "a" (in BOHR) If ibrav=0, only celldm(1) is used if present; cell vectors are read from card CELL_PARAMETERS Traditional crystallographic constants: a,b,c in ANGSTROM cosAB = cosine of the angle between axis a and b (gamma) cosAC = cosine of the angle between axis a and c (beta) cosBC = cosine of the angle between axis b and c (alpha) The axis are chosen according to the value of ibrav. Specify either these OR celldm but NOT both. Only needed values (depending on ibrav) must be specified The lattice parameter alat = A (in ANGSTROM ) If ibrav = 0, only A is used if present; cell vectors are read from card CELL_PARAMETERS REQUIRED number of atoms in the unit cell REQUIRED number of types of atoms in the unit cell for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more) number of electronic states (bands) to be calculated. Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled 0.0 total charge of the system. Useful for simulations with charged cells. By default the unit cell is assumed to be neutral (tot_charge=0). tot_charge=+1 means one electron missing from the system, tot_charge=-1 means one additional electron, and so on. In a periodic calculation a compensating jellium background is inserted to remove divergences if the cell is not neutral. -1 [unspecified] total majority spin charge - minority spin charge. Used to impose a specific total electronic magnetization. If unspecified, the tot_magnetization variable is ignored and the electronic magnetization is determined by the occupation numbers (see card OCCUPATIONS) read from input. REQUIRED kinetic energy cutoff (Ry) for wavefunctions 4 * ecutwfc kinetic energy cutoff (Ry) for charge density and potential For norm-conserving pseudopotential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on forces and stress. If there are ultrasoft PP, a larger value than the default is often desirable (ecutrho = 8 to 12 times ecutwfc, typically). PAW datasets can often be used at 4*ecutwfc, but it depends on the shape of augmentation charge: testing is mandatory. The use of gradient-corrected functional, especially in cells with vacuum, or for pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately converged. ecutrho three-dimensional FFT mesh (hard grid) for charge density (and scf potential). If not specified the grid is calculated based on the cutoff for charge density. three-dimensional mesh for wavefunction FFT and for the smooth part of charge density ( smooth grid ). Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default ) dimensions of the "box" grid for Ultrasoft pseudopotentials must be specified if Ultrasoft PP are present a string describing the occupation of the electronic states. In the case of conjugate gradient style of minimization of the electronic states, if occupations is set to 'ensemble', this allows ensemble DFT calculations for metallic systems 0.D0 Ry parameter for the smearing function, only used for ensemble DFT calculations a string describing the kind of occupations for electronic states in the case of ensemble DFT (occupations == 'ensemble' ); now only Fermi-Dirac ('fd') case is implemented 1 nspin = 1 : non-polarized calculation (default) nspin = 2 : spin-polarized calculation, LSDA (magnetization along z axis) 0.0 q2sigma 0.0 q2sigma 0.1 ecfixed, qcutz, q2sigma: parameters for modified functional to be used in variable-cell molecular dynamics (or in stress calculation). "ecfixed" is the value (in Rydberg) of the constant-cutoff; "qcutz" and "q2sigma" are the height and the width (in Rydberg) of the energy step for reciprocal vectors whose square modulus is greater than "ecfixed". In the kinetic energy, G^2 is replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) ) See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995) read from pseudopotential files Exchange-correlation functional: eg 'PBE', 'BLYP' etc See Modules/functionals.f90 for allowed values. Overrides the value read from pseudopotential files. Use with care and if you know what you are doing! .FALSE. lda_plus_u = .TRUE. enables calculation with LDA+U ("rotationally invariant"). See also Hubbard_U. Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991); Anisimov et al., PRB 48, 16929 (1993); Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994); Cococcioni and de Gironcoli, PRB 71, 035105 (2005). 0.D0 for all species LDA+U works only for a few selected elements. Modify CPV/ldaU.f90 if you plan to use LDA+U with an element that is not configured there. Hubbard_U(i): parameter U (in eV) for LDA+U calculations. Currently only the simpler, one-parameter LDA+U is implemented (no "alpha" or "J" terms) 'none' Type of Van der Waals correction. Allowed values: 'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d': semiempirical Grimme's DFT-D2. Optional variables: "london_s6", "london_rcut" S. Grimme, J. Comp. Chem. 27, 1787 (2006), V. Barone et al., J. Comp. Chem. 30, 934 (2009). 'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler': Tkatchenko-Scheffler dispersion corrections with first-principle derived C6 coefficients Optional variables: "ts_vdw_econv_thr", "ts_vdw_isolated" See A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009) 'XDM', 'xdm': Exchange-hole dipole-moment model. Optional variables: "xdm_a1", "xdm_a2" (implemented in PW only) A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007) A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 136, 174109 (2012) Note that non-local functionals (eg vdw-DF) are NOT specified here but in "input_dft" 0.75 global scaling parameter for DFT-D. Default is good for PBE. 200 cutoff radius (a.u.) for dispersion interactions .FALSE. OBSOLESCENT, same as vdw_corr='TS' 1.D-6 Optional: controls the convergence of the vdW energy (and forces). The default value is a safe choice, likely too safe, but you do not gain much in increasing it .FALSE. Optional: set it to .TRUE. when computing the Tkatchenko-Scheffler vdW energy for an isolated (non-periodic) system. 'none' Used to perform calculation assuming the system to be isolated (a molecule of a clustr in a 3D supercell). Currently available choices: 'none' (default): regular periodic calculation w/o any correction. 'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the total energy is computed. Theory: G.Makov, and M.C.Payne, "Periodic boundary conditions in ab initio calculations" , Phys.Rev.B 51, 4014 (1995) 100 maximum number of iterations in a scf step 'none' set how electrons should be moved 'none' : electronic degrees of freedom (d.o.f.) are kept fixed 'sd' : steepest descent algorithm is used to minimize electronic d.o.f. 'damp' : damped dynamics is used to propagate electronic d.o.f. 'verlet' : standard Verlet algorithm is used to propagate electronic d.o.f. 'cg' : conjugate gradient is used to converge the wavefunction at each ionic step. 'cg' can be used interchangeably with 'verlet' for a couple of ionic steps in order to "cool down" the electrons and return them back to the Born-Oppenheimer surface. Then 'verlet' can be restarted again. This procedure is useful when electronic adiabaticity in CP is lost yet the ionic velocities need to be preserved. 1.D-6 Convergence threshold for selfconsistency: estimated energy error < conv_thr 20 frequency in iterations for which the conjugate-gradient algorithm for electronic relaxation is restarted 0.D0 Amplitude of the finite electric field (in a.u.; 1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE. 3 direction of the finite electric field (only if tefield == .TRUE.) In the case of a PARALLEL calculation only the case epol==3 is implemented 400.D0 effective electron mass in the CP Lagrangian, in atomic units ( 1 a.u. of mass = 1/1822.9 a.m.u. = 9.10939 * 10^-31 kg ) 2.5D0 mass cut-off (in Rydberg) for the Fourier acceleration effective mass is rescaled for "G" vector components with kinetic energy above "emass_cutoff" 'ortho' selects the orthonormalization method for electronic wave functions 'ortho' : use iterative algorithm - if it doesn't converge, reduce the timestep, or use options ortho_max and ortho_eps, or use Gram-Schmidt instead just to start the simulation 'Gram-Schmidt' : use Gram-Schmidt algorithm - to be used ONLY in the first few steps. YIELDS INCORRECT ENERGIES AND EIGENVALUES. 1.D-8 tolerance for iterative orthonormalization meaningful only if orthogonalization = 'ortho' 20 maximum number of iterations for orthonormalization meaningful only if orthogonalization = 'ortho' 0 OBSOLETE: use command-line option " -nd XX" instead 0.1D0 damping frequency times delta t, optimal values could be calculated with the formula : SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) ) where E1, E2, E3 are successive values of the DFT total energy in a steepest descent simulations. meaningful only if " electron_dynamics = 'damp' " 'zero' : restart setting electronic velocities to zero 'default' : restart using electronic velocities of the previous run 'not_controlled' 'nose' : control electronic temperature using Nose thermostat. See also "fnosee" and "ekincw". 'rescaling' : control electronic temperature via velocities rescaling. 'not_controlled' : electronic temperature is not controlled. 0.001D0 value of the average kinetic energy (in atomic units) forced by the temperature control meaningful only with " electron_temperature /= 'not_controlled' " 1.D0 oscillation frequency of the nose thermostat (in terahertz) meaningful only with " electron_temperature = 'nose' " 'random' 'atomic': start from superposition of atomic orbitals (not yet implemented) 'random': start from random wfcs. See "ampre". .FALSE. if .TRUE. perform a conjugate gradient minimization of the electronic states for every ionic step. It requires Gram-Schmidt orthogonalization of the electronic states. 100 maximum number of conjugate gradient iterations for conjugate gradient minimizations of electronic states 0.3D0 small step used in the conjugate gradient minimization of the electronic states. 2 number of internal cycles for every conjugate gradient iteration only for ensemble DFT 1 frequency in iterations at which a full inner cycle, only for cold smearing, is performed 0.03D0 step for inner cycle with cold smearing, used when a not full cycle is performed 1.D0 a number <= 1, very close to 1: the damping in electronic damped dynamics is multiplied at each time step by "grease" (avoids overdamping close to convergence: Obsolete ?) grease = 1 : normal damped dynamics 0.D0 amplitude of the randomization ( allowed values: 0.0 - 1.0 ) meaningful only if " startingwfc = 'random' " Specify the type of ionic dynamics. For constrained dynamics or constrained optimisations add the CONSTRAINTS card (when the card is present the SHAKE algorithm is automatically used). 'none' : ions are kept fixed 'sd' : steepest descent algorithm is used to minimize ionic configuration 'cg' : conjugate gradient algorithm is used to minimize ionic configuration 'damp' : damped dynamics is used to propagate ions 'verlet' : standard Verlet algorithm is used to propagate ions 'default' 'default ' : if restarting, use atomic positions read from the restart file; in all other cases, use atomic positions from standard input. 'from_input' : restart the simulation with atomic positions read from standard input, even if restarting. 'default' tempw initial ionic velocities 'default' : restart the simulation with atomic velocities read from the restart file 'change_step' : restart the simulation with atomic velocities read from the restart file, with rescaling due to the timestep change, specify the old step via tolp as in tolp = 'old_time_step_value' in au 'random' : start the simulation with random atomic velocities 'from_input' : restart the simulation with atomic velocities read from standard input - see card 'ATOMIC_VELOCITIES' BEWARE: works only if restart_mode='from_scratch', tested only with electrons_dynamics='cg' 'zero' : restart the simulation with atomic velocities set to zero 1 number of electronic steps per ionic step. .FALSE. This keyword is useful when simulating the dynamics and/or the thermodynamics of an isolated system. If set to true the total torque of the internal forces is set to zero by adding new forces that compensate the spurious interaction with the periodic images. This allows for the use of smaller supercells. BEWARE: since the potential energy is no longer consistent with the forces (it still contains the spurious interaction with the repeated images), the total energy is not conserved anymore. However the dynamical and thermodynamical properties should be in closer agreement with those of an isolated system. Also the final energy of a structural relaxation will be higher, but the relaxation itself should be faster. 'not_controlled' 'nose' : control ionic temperature using Nose-Hoover thermostat see parameters "fnosep", "tempw", "nhpcl", "ndega", "nhptyp" 'rescaling' : control ionic temperature via velocities rescaling. see parameter "tolp" 'not_controlled' : ionic temperature is not controlled 300.D0 value of the ionic temperature (in Kelvin) forced by the temperature control. meaningful only with " ion_temperature /= 'not_controlled' " or when the initial velocities are set to 'random' "ndega" controls number of degrees of freedom used in temperature calculation 1.D0 oscillation frequency of the nose thermostat (in terahertz) [note that 3 terahertz = 100 cm^-1] meaningful only with " ion_temperature = 'nose' " for Nose-Hoover chain one can set frequencies of all thermostats ( fnosep = X Y Z etc. ) If only first is set, the defaults for the others will be same. 100.D0 tolerance (in Kelvin) of the rescaling. When ionic temperature differs from "tempw" more than "tolp" apply rescaling. meaningful only with " ion_temperature = 'rescaling' " and with ion_velocities='change_step', where it specifies the old timestep 1 number of thermostats in the Nose-Hoover chain currently maximum allowed is 4 0 type of the "massive" Nose-Hoover chain thermostat nhptyp=1 uses a NH chain per each atomic type nhptyp=2 uses a NH chain per atom, this one is useful for extremely rapid equipartitioning (equilibration is a different beast) nhptyp=3 together with nhgrp allows fine grained thermostat control NOTE: if using more than 1 thermostat per system there will be a common thermostat added on top of them all, to disable this common thermostat specify nhptyp=-X instead of nhptyp=X 0 specifies which thermostat group to use for given atomic type when >0 assigns all the atoms in this type to thermostat labeled nhgrp(i), when =0 each atom in the type gets its own thermostat. Finally, when <0, then this atomic type will have temperature "not controlled". Example: HCOOLi, with types H (1), C(2), O(3), Li(4); setting nhgrp={2 2 0 -1} will add a common thermostat for both H & C, one thermostat per each O (2 in total), and a non-updated thermostat for Li which will effectively make temperature for Li "not controlled" (Nat_{total}-1)/Nat_{total} these are the scaling factors to be used together with nhptyp=3 and nhgrp(i) in order to take care of possible reduction in the degrees of freedom due to constraints. Suppose that with the previous example HCOOLi, C-H bond is constrained. Then, these 2 atoms will have 5 degrees of freedom in total instead of 6, and one can set fnhscl={5/6 5/6 1. 1.}. This way the target kinetic energy for H&C will become 6(kT/2)*5/6 = 5(kT/2). This option is to be used for simulations with many constraints, such as rigid water with something else in there 0 number of degrees of freedom used for temperature calculation ndega <= 0 sets the number of degrees of freedom to [3*nat-abs(ndega)], ndega > 0 is used as the target number amprp .false. If .TRUE. randomize ionic positions for the atomic type corresponding to the index. amprp 0.D0 amplitude of the randomization for the atomic type corresponding to the index i ( allowed values: 0.0 - 1.0 ). meaningful only if " tranp(i) = .TRUE.". 1.D0 same as "grease", for ionic damped dynamics. 'default' : restart the simulation with cell parameters read from the restart file or "celldm" if "restart = 'from_scratch'" 'from_input' : restart the simulation with cell parameters from standard input. ( see the card 'CELL_PARAMETERS' ) 'none' set how cell should be moved 'none' : cell is kept fixed 'sd' : steepest descent algorithm is used to optimise the cell 'damp-pr' : damped dynamics is used to optimise the cell ( Parrinello-Rahman method ). 'pr' : standard Verlet algorithm is used to propagate the cell ( Parrinello-Rahman method ). 'zero' : restart setting cell velocity to zero 'default' : restart using cell velocity of the previous run 0.1D0 damping frequency times delta t, optimal values could be calculated with the formula : SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) ) where E1, E2, E3 are successive values of the DFT total energy in a steepest descent simulations. meaningful only if " cell_dynamics = 'damp' " 0.D0 Target pressure [KBar] in a variable-cell md or relaxation run. 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD Fictitious cell mass [amu] for variable-cell simulations (both 'vc-md' and 'vc-relax') 1.2D0 Used in the construction of the pseudopotential tables. It should exceed the maximum linear contraction of the cell during a simulation. 'not_controlled' 'nose' : control cell temperature using Nose thermostat see parameters "fnoseh" and "temph". 'rescaling' : control cell temperature via velocities rescaling. 'not_controlled' : cell temperature is not controlled. 0.D0 value of the cell temperature (in ???) forced by the temperature control. meaningful only with " cell_temperature /= 'not_controlled' " 1.D0 oscillation frequency of the nose thermostat (in terahertz) meaningful only with " cell_temperature = 'nose' " 1.D0 same as "grease", for cell damped dynamics 'all' Select which of the cell parameters should be moved: all = all axis and angles are moved x = only the x component of axis 1 (v1_x) is moved y = only the y component of axis 2 (v2_y) is moved z = only the z component of axis 3 (v3_z) is moved xy = only v1_x and v2_y are moved xz = only v1_x and v3_z are moved yz = only v2_y and v3_z are moved xyz = only v1_x, v2_y, v3_z are moved shape = all axis and angles, keeping the volume fixed 2Dxy = only x and y components are allowed to change 2Dshape = as above, keeping the area in xy plane fixed .false. .true. for finite pressure calculations .false. .true. for finite surface tension calculations 0.D0 external pressure in GPa .false. .true. for variable pressure calculations pressure changes linearly with time: Delta_P = (P_fin - P_in)/nstep 0.D0 only if pvar = .true. initial value of the external pressure (GPa) 0.D0 only if pvar = .true. final value of the external pressure (GPa) 0.D0 Surface tension (in a.u.; typical values 1.d-4 - 1.d-3) 0.D0 threshold parameter which defines the electronic charge density isosurface to compute the 'quantum' volume of the system (typical values: 1.d-4 - 1.d-3) (corresponds to alpha in PRL 94 145501 (2005)) 0.D0 thikness of the external skin of the electronic charge density used to compute the 'quantum' surface (typical values: 1.d-4 - 1.d-3; 50% to 100% of rho_thr) (corresponds to Delta in PRL 94 145501 (2005)) Output files used by Wannier Function options are the following fort.21: Used only when calwf=5, contains the full list of g-vecs. fort.22: Used Only when calwf=5, contains the coeffs. corresponding to the g-vectors in fort.21 fort.24: Used with calwf=3,contains the average spread fort.25: Used with calwf=3, contains the individual Wannier Function Spread of each state fort.26: Used with calwf=3, contains the wannier centers along a trajectory. fort.27: Used with calwf=3 and 4, contains some general runtime information from ddyn, the subroutine that actually does the localization of the orbitals. fort.28: Used only if efield=.TRUE. , contains the polarization contribution to the total energy. Also, The center of mass is fixed during the Molecular Dynamics. BEWARE : THIS WILL ONLY WORK IF THE NUMBER OF PROCESSORS IS LESS THAN OR EQUAL TO THE NUMBER OF STATES. Nota Bene 1: For calwf = 5, wffort is not used. The Wannier/Wave(function) coefficients are written to unit 22 and the corresponding g-vectors (basis vectors) are written to unit 21. This option gives the g-vecs and their coeffs. in reciprocal space, and the coeffs. are complex. You will have to convert them to real space if you want to plot them for visualization. calwf=1 gives the orbital densities in real space, and this is usually good enough for visualization. .false. If dynamics will be done in the presence of a field .false. Whether to turn on the field adiabatically (adiabatic switch) if true, then nbeg is set to 0. 1 No. of iterations over which the field will be turned on to its final value. Starting value is 0.0 If sw_len < 0, then it is set to 1. If you want to just optimize structures on the presence of a field, then you may set this to 1 and run a regular geometry optimization. 0.D0 Initial values of the field along x, y, and z directions 0.D0 Final values of the field along x, y, and z directions 1 Localization algorithm for Wannier function calculation: wfsd=1 Damped Dynamics wfsd=2 Steepest-Descent / Conjugate-Gradient wfsd=3 Jocobi Rotation Remember, this is consistent with all the calwf options as well as the tolw (see below). Not a good idea to Wannier dynamics with this if you are using restart='from_scratch' option, since the spreads converge fast in the beginning and ortho goes bananas. 5.D0 The minimum step size to take in the SD/CG direction 0.3D0 The maximum step size to take in the SD/CG direction The code calculates an optimum step size, but that may be either too small (takes forever to converge) or too large (code goes crazy) . This option keeps the step size between wfdt and maxwfdt. In my experience 0.1 and 0.5 work quite well. (but don't blame me if it doesn't work for you) 10 Number of iterations to do for Wannier convergence. 10 Out of a total of NIT iterations, NSD will be Steepest-Descent and ( nit - nsd ) will be Conjugate-Gradient. 1500.D0 Fictitious mass of the A matrix used for obtaining maximally localized Wannier functions. The unitary transformation matrix U is written as exp(A) where A is a anti-hermitian matrix. The Damped-Dynamics is performed in terms of the A matrix, and then U is computed from A. Usually a value between 1500 and 2500 works fine, but should be tested. 0.3D0 Damping coefficient for Damped-Dynamics. 20 Number of Damped-Dynamics steps to be performed per CP iteration. 1.D-8 Convergence criterion for localization. .true. Whether to adapt the damping parameter dynamically. 3 Wannier Function Options, can be 1,2,3,4,5 1. Output the Wannier function density, nwf and wffort are used for this option. see below. 2. Output the Overlap matrix O_i,j=<w_i|exp{iGr}|w_j>. O is written to unit 38. For details on how O is constructed, see below. 3. Perform nsteps of Wannier dynamics per CP iteration, the orbitals are now Wannier Functions, not Kohn-Sham orbitals. This is a Unitary transformation of the occupied subspace and does not leave the CP Lagrangian invariant. Expectation values remain the same. So you will **NOT** have a constant of motion during the run. Don't freak out, its normal. 4. This option starts for the KS states and does 1 CP iteration and nsteps of Damped-Dynamics to generate maximally localized wannier functions. Its useful when you have the converged KS groundstate and want to get to the converged Wannier function groundstate in 1 CP Iteration. 5. This option is similar to calwf 1, except that the output is the Wannier function/wavefunction, and not the orbital density. See nwf below. 0 This option is used with calwf 1 and calwf 5. with calwf=1, it tells the code how many Orbital densities are to be output. With calwf=5, set this to 1(i.e calwf=5 only writes one state during one run. so if you want 10 states, you have to run the code 10 times). With calwf=1, you can print many orbital densities in a single run. See also the PLOT_WANNIER card for specifying the states to be printed. 40 This tells the code where to dump the orbital densities. Used only with CALWF=1. for e.g. if you want to print 2 orbital densities, set calwf=1, nwf=2 and wffort to an appropriate number (e.g. 40) then the first orbital density will be output to fort.40, the second to fort.41 and so on. Note that in the current implementation, the following units are used 21,22,24,25,26,27,28,38,39,77,78 and whatever you define as ndr and ndw. so use number other than these. .false. Output the charge density (g-space) and the list of g-vectors This is useful if you want to reconstruct the electrostatic potential using the Poisson equation. If .TRUE. then the code will output the g-space charge density and the list if G-vectors, and STOP. Charge density is written to : CH_DEN_G_PARA.ispin (1 or 2 depending on the number of spin types) or CH_DEN_G_SERL.ispin depending on if the code is being run in parallel or serial G-vectors are written to G_PARA or G_SERL. label of the atom mass of the atomic species [amu: mass of C = 12] not used if calculation='scf', 'nscf', 'bands' File containing PP for this species. The pseudopotential file is assumed to be in the new UPF format. If it doesn't work, the pseudopotential format is determined by the file name: *.vdb or *.van Vanderbilt US pseudopotential code *.RRKJ3 Andrea Dal Corso's code (old format) none of the above old PWscf norm-conserving format
    alat | bohr | angstrom | crystal bohr (DEPRECATED) alat : atomic positions are in cartesian coordinates, in units of the lattice parameter (either celldm(1) or A). bohr : atomic positions are in cartesian coordinate, in atomic units (i.e. Bohr). If no option is specified, 'bohr' is assumed; not specifying units is DEPRECATED and will no longer be allowed in the future angstrom: atomic positions are in cartesian coordinates, in Angstrom crystal : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice vectors as defined either in card CELL_PARAMETERS or via the ibrav + celldm / a,b,c... variables Specified atomic positions will be IGNORED and those from the previous scf calculation will be used instead !!! label of the atom as specified in ATOMIC_SPECIES atomic positions component i of the force for this atom is multiplied by if_pos(i), which must be either 0 or 1. Used to keep selected atoms and/or selected components fixed in MD dynamics or structural optimization run. 1
    a.u when starting with ion_velocities="from_input" it is convenient to perform few steps (~5-10) with a smaller time step (0.5 a.u.) label of the atom as specified in ATOMIC_SPECIES atomic velocities along x y and z direction
    bohr | angstrom | alat 'bohr'/'angstrom': lattice vectors in bohr radii / angstrom. 'alat' / nothing specified: lattice vectors in units or the lattice parameter (either celldm(1) or a). Not specifing units is DEPRECATED and will not be allowed in the future. If nothing specified and no lattice parameter specified, 'bohr' is assumed - DEPRECATED, will no longer be allowed Crystal lattice vectors: v1(1) v1(2) v1(3) ... 1st lattice vector v2(1) v2(2) v2(3) ... 2nd lattice vector v3(1) v3(2) v3(3) ... 3rd lattice vector
    When this card is present the SHAKE algorithm is automatically used. Number of constraints. Tolerance for keeping the constraints satisfied. Type of constrain : 'type_coord' : constraint on global coordination-number, i.e. the average number of atoms of type B surrounding the atoms of type A. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'atom_coord' : constraint on local coordination-number, i.e. the average number of atoms of type A surrounding a specific atom. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'distance' : constraint on interatomic distance (two atom indexes must be specified). 'planar_angle' : constraint on planar angle (three atom indexes must be specified). 'torsional_angle' : constraint on torsional angle (four atom indexes must be specified). 'bennett_proj' : constraint on the projection onto a given direction of the vector defined by the position of one atom minus the center of mass of the others. ( Ch.H. Bennett in Diffusion in Solids, Recent Developments, Ed. by A.S. Nowick and J.J. Burton, New York 1975 ). These variables have different meanings for different constraint types: 'type_coord' : constr(1) is the first index of the atomic type involved constr(2) is the second index of the atomic type involved constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'atom_coord' : constr(1) is the atom index of the atom with constrained coordination constr(2) is the index of the atomic type involved in the coordination constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'distance' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD 'planar_angle', 'torsional_angle' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD (beware the order) 'bennett_proj' : constr(1) is the index of the atom whose position is constrained. constr(2:4) are the three coordinates of the vector that specifies the constraint direction. Target for the constrain ( angles are specified in degrees ). This variable is optional.
    Occupations of individual states (MAX 10 PER LINE). For spin-polarized calculations, these are majority spin states. Occupations of minority spin states (MAX 10 PER LINE) To be specified only for spin-polarized calculations.
    These are the indices of the states that you want to output. Also used with calwf = 1 and 5. If calwf = 1, then you need nwf indices here (each in a new line). If CALWF=5, then just one index in needed.
    espresso-5.1/CPV/Doc/README.AUTOPILOT0000644000175000017500000003552712341373026014713 0ustar mbambaREADME.AUTOPILOT -------------------------------------------------------------------------------- Copyright (c) Targacept, Inc. -------------------------------------------------------------------------------- Targacept, Inc., 200 East First Street, Suite 300, Winston-Salem, NC, USA 27101 atp@targacept.com -------------------------------------------------------------------------------- This file describes the Autopilot Feature Suite as introduced and used by Targacept, Inc. This documentation accompanies free software; The software is subject to the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the GNU General Public License at www.gnu.or/copyleft/gpl.txt for more details. This documentation, like the software it accompanies, is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY FOR A PARTICULAR PURPOSE. -------------------------------------------------------------------------------- AUTOPILOT DOCUMENTATION -------------------------------------------------------------------------------- The Autopilot Feature Suite is a user level enhancement for directing Car-Parrinello simulations based on CP.X packaged in ESPRESSO. The following features are incorporated: I. Auto Restart Mode II. Autopilot Course Configuration (Dynamic Rules) III. Autopilot Course Correction (Steering) -------------------------------------------------------------------------------- I. Auto Restart Mode -------------------------------------------------------------------------------- Auto Restart Mode is an extension of restart_mode declared in the CONTROL section of the input file. When restart mode is set to "auto", control determines if the current run is "from_scratch" or a valid "restart" based on the presence of a restart file associated with unit NDR. When NDR, the unit number for input, and NDW, the unit number for output, are the same, a simulation that is system terminated can be restarted without significant loss, providing that ISAVE, the parameter that indicates the frequency at which intermediate data are saved, is not large. Auto Restart Mode implements an effective "upto" mode and is also designed for use on remote machines where simulations may frequently be terminated and restarted. Auto Restart Mode is especially useful in connection with Autopilot's Dynamic Rules capability. When they are used together, only one segment of a simulation is necessary, thereby reducing run_script volume and errors, and placing more control with the user. restart_mode CHARACTER ( default = 'restart' ) from_scratch = from scratch. NEB only: the starting path is obtained with a linear interpolation between the images specified in the ATOMIC_POSITIONS card. Note that in the linear interpolation, periodic boundary conditions ARE NOT USED. restart = continue a previous simulation and perform "nstep" new steps. reset_counters = continue a previous simulation, perform "nstep" new steps, resetting the counter and averages. auto = automatically detect "from_scratch" or "restart"; continue any previous simulation, and stop when the counter value is equal to "nstep". -------------------------------------------------------------------------------- II. Autopilot Course Configuration (Dynamic Rules) -------------------------------------------------------------------------------- Autopilot Course Configuration (Dynamic Rules) is a method that allows select input parameters (Autopilot variables) to change during the course of a simulation. This method allows the user to create a more concise set of instructions that are easier to read and maintain and enables a more continuous execution on remote resources. Typically and historically, a user issues a run_script that creates a sequence of input files, each with fixed parameter values. This run_script then calls cp.x against each input file in the sequence, such that, after the first, each execution continues with the next input file as well as restart information from the previous execution. The Autopilot Course Configuration effectively consolidates multiple input files into one, allowing the user to specify at what time step a parameter should change along with its new value. Thus a run_script becomes much shorter, and the user can easily see the projected path of the simulation. The Autopilot Course Configuration feature is implemented by adding a new card type to the "CARDS" section of the input file. The Autopilot card must be placed after the "NAMELIST" section but otherwise may appear before or after any other card. A favorable place is as the first card. Sytnax is as follows: CARDS ... AUTOPILOT optional card : read dynamic rules to set parameters on an absolute timestep (iteration) from either standard input or mailbox (pilot.mb) Syntax: AUTOPILOT ON_STEP = ith_event_STEP : varname = value ON_STEP = jth_event_STEP : varname = value ON_STEP = jth_event_STEP : varname = value ... ON_STEP = nth_event_STEP : varname = value ENDRULES Description: ON_STEP LABEL, must be in numerical timestep order, otherwise rule is ignored ith_event_STEP INTEGER, iteration (NFI) when rule is to be employed varname Autopilot variable, currently limited to one of the following: isave,iprint,dt,emass, electron_dynamics, electron_damping, ion_dynamics, ion_damping, ion_temperature, tempw. value Must be valid value of variable type (for example: isave, iprint must have a value of type INTEGER, while dt must have a value of type REAL) ENDRULES Required only for input (STDIN) if other cards follow. The event specification (ON_STEP) should precede the variable assignment. The colon separator between the event assignment and the variable assignment is required, as are the equal signs. No semi-colon or comma should appear after the variable assignment. There can be multiple rules per event but only one variable assignment per rule (and only one rule per line). Within one event, there should be only one assignment per variable. If multiple assignments are made for the same variable for the same event, only the last assignment will be accepted. Rules for which event specifications are not in numerical order will be ignored. If syntax errors are present in the AUTOPILOT card during start-up, the execution will stop. Example Syntax: AUTOPILOT ON_STEP = 200 : tempw = 500.0 ON_STEP = 200 : dt = 3.0 ON_STEP = 250 : ISAVE = 50 ENDRULES Currently there is a maximum of 32 supported events and 10 supported Autopilot variables. Events that are out of timestep order are ignored. A user may establish up to 10 rules (one for each Autopilot variable) per event. Currently implemented Autopilot variables are: isave, iprint, dt, emass, electron_dynamics, electron_damping, ion_dynamics, ion_damping, ion_temperature, and tempw. If desired, users may implement other Autopilot variables. See Appendix below for an explanation of "Adding an Autopilot Variable". IMPORTANT: Variables should have values in accordance with their TYPE, or a runtime error may occur. -------------------------------------------------------------------------------- III. Autopilot Course Correction (Steering) -------------------------------------------------------------------------------- Autopilot Course Correction (Steering) provides a run-time method of changing Autopilot variables on the fly, after the simulation is underway. Autopilot Course Correction (Steering) can be applied through any of the following sub-features: New Course (power steering), Manual Steering, and Pause. Steering utilizes a new mailbox file: pilot.mb. This file can be created via the user's favorite text editor and can be "mailed" by placing the file in the "results" directory. The user can also very quickly implement a single course correction command with UNIX redirect to the pilot.mb file. When a pilot.mb mailbox file is detected, the current event table is cleared to prepare for the new course. The mailbox file is then parsed, and Autopilot processes the command(s) before deleting the mailbox file. If Autopilot cannot parse a command, it issues a warning and goes into PAUSE mode (see below). The Steering subfeatures, including pilot.mb syntax are described here: a) New Course or 'power steering' is implemented with the same syntax as the INPUT file card for Autopilot. Remember that ON_STEP represents an absolute iteration (NFI) step. For example: AUTOPILOT -required ON_STEP=400 : ISAVE = 50 -events must be ordered by step ON_STEP=400 : DT = 5.0 -use valid variable types (or die) ON_STEP = 600:IONS_TEMPERATURE='damped' -indention optional ON_STEP = 600: TEMPW=350.0 -white spaces are ignored ENDRULES -optional In this example, when NFI reaches 400, the value of ISAVE will be reset to 50 and the value of DT to 5.0. Then, when NFI reaches 600, IONS_TEMPERATURE and TEMPW will be reset to the indicated values. b) Manual Steering is implemented with a similar syntax except that the card type is PILOT instead of AUTOPILOT and the user specifies a timestep relative to the time the mailbox is read, rather than an absolute timestep. The relative timestep allows the user to set a rule for a near future event without having to judge the current absolute NFI value. The user may also pre-write multiple mailboxes using relative event steps without regard to absolute iteration (NFI) values. For example, assume mailbox contents are: NOW:ISAVE=50 NOW+100:TEMPW=600.0. Assume further that the mailbox is saved to the "results" directory and then read when the NFI is 380. Manual Steering will reset the value of ISAVE on the next event that is modulo 50, and an ISAVE event will occur twice (at 400 and again at 450) before TEMPW is reset to 600.0 on step 480. Compare this with the syntax that specifies an absolute timestep: ON_STEP=400:ISAVE=50 ON_STEP=500;TEMPW=600.0. In this example, if the NFI is less than 400 when the mailbox is read, ISAVE becomes 50 on step 400 and TEMPW becomes 600.0 on step 500, and ISAVE is performed twice before TEMPW is reset, just as in the previous example that uses relative indexing. However, if the user misjudges the momentary NFI, and it is 530 when the mailbox is read, then both rules are implemented immediately and simultaneously. Furthermore, the ISAVE rule takes effect after the NFI specified. Neither of these effects may have been intended by the user. Following is an example of a Manual Steering mailbox to change temperature from a relative iteration (NFI) step: Example syntax for a Manual Steering mailbox is as follows: PILOT -optional for single line NOW : ISAVE = 50 -events must be ordered NOW : DT = 5.0 -use valid variable types (or die) NOW+50 :IONS_TEMPERATURE='damped' -offsets from NOW are supported NOW + 150: TEMPW=350.0 -white spaces are ignored ENDRULES -optional Example format for a quick mailbox change using a single rule is as follows: -defaults to PILOT NOW + 250: TEMPW=450.0 -single line with NOW c) Pause is a steering sub-feature that allows the user to suspend the simulation until the user can decide on a future course. Pause is very helpful when the user knows that a change should be imposed but needs time to establish rules and create an appropriate mailbox. Steering then resumes as AUTOPILOT or PILOT upon receiving another pilot.mb mailbox. The syntax is a single line with one of the following: PAUSE SLEEP HOLD HOVER WAIT All of the above perform the same PAUSE mechanism. The user can issue the command quickly through UNIX redirect: >echo "PAUSE" > results/pilot.mb Any mailbox not correctly identified with a AUTOPILOT, PILOT, NOW, or a PAUSE command, will result in a warning to standard output (STDOUT), and the simulation will pause. -------------------------------------------------------------------------------- TESTING -------------------------------------------------------------------------------- The entire Autopilot Feature Suite issues directives to slave nodes under MPI, with the fewest broadcasted parameters. All features have been tested under Intel 8.1 with MKL 7.0.1 libraries on a Linux-32 single processor and under PGI 5.2 with MPI on Linux-64 with 1, 2 and 4 processors. -------------------------------------------------------------------------------- ADDING AN AUTOPILOT VARIABLE -------------------------------------------------------------------------------- See Autopilot.f90 for examples. * Select the input parameter from the list in file INPUT_CP * Identify parameter dependencies, initializations, assignments, etc * Edit autopilot.f90 to add the following, where VARNAME is the name of the new Autopilot variable: o VARTYPE :: rule_VARNAME(max_event_step) at module scope o LOGICAL :: event_VARNAME(max_event_step) at module scope * Remember to add to the PUBLIC block as well o event_VARNAME(:) = .false. to init_autopilot subroutine o rule_VARNAME(:) = VARDEFAULT to init_autopilot subroutine * Import VARNAME with USE to employ_rules subroutine * In employ_rules, add conditional clause on event_VARNAME to assign VARNAME: o ! VARNAME o if (event_VARNAME(event_index)) then o VARNAME = rule_VARNAME(event_index) o CALL init_other_VARNAME_dependent_variables( VARNAME) o write(*,*) 'RULE EVENT: VARNAME', VARNAME o endif * Import VARNAME with USE to assign_rule subroutine * In assign_rule, add condition clause matching the VARNAME create rule as so: o ELSEIF ( matches( "VARNAME", var ) ) THEN o read(value, *) VARTYPE_value o rule_VARNAME(event) = VARTYPE_value o event_VARNAME(event) = .true. * TEST WARNING: Some Autopilot variables may create "side-effects". For example, the inclusion of a rule for TEMPW rules invokes a side-effect call to ions_nose_init. The user is cautioned to be aware of possible side-effects when adding other Autopilot variables. Last modified: Tue Aug 09 16:01:00 EDT 2005 espresso-5.1/CPV/Doc/INPUT_CP.def0000644000175000017500000020755012341373026014412 0ustar mbambainput_description -distribution {Quantum Espresso} -package CP -program cp.x { toc {} intro { Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in HARTREE ATOMIC UNITS BEWARE: TABS, DOS CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE Comment lines in namelists can be introduced by a "!", exactly as in fortran code. Comments lines in ``cards'' can be introduced by either a "!" or a "#" character in the first position of a line. Do not start any line in ``cards'' with a "/" character. Structure of the input data: =============================================================================== &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / [ &IONS ... / ] [ &CELL ... / ] [ &WANNIER ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 [ CELL_PARAMETERS { bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ] } # # namelist CONTROL # namelist CONTROL { var calculation -type CHARACTER { default { 'cp' } info { a string describing the task to be performed: 'cp', 'scf', 'nscf', 'relax', 'vc-relax', 'vc-cp', 'cp-wf' (vc = variable-cell). } } var title -type CHARACTER { default {'MD Simulation '} info { reprinted on output. } } var verbosity -type CHARACTER { default {'low'} info { In order of decreasing verbose output: 'debug' | 'high' | 'medium' | 'low','default' | 'minimal' } } var isave -type INTEGER { see { ndr } see { ndw } default { 100 } info { Number of steps between successive savings of information needed to restart the run. } } var restart_mode -type CHARACTER { default { 'restart' } info { 'from_scratch' : from scratch 'restart' : from previous interrupted run 'reset_counters' : continue a previous simulation, performs "nstep" new steps, resetting the counter and averages } } var nstep -type INTEGER { info { number of ionic + electronic steps } default { 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases } } var iprint -type INTEGER { default { 10 } info { Number of steps between successive writings of relevant physical quantities to standard output and to files "fort.3?" or "prefix.???" depending on "prefix" parameter } } var tstress -type LOGICAL { default { .false. } info { Write stress tensor to standard output each "iprint" steps. It is set to .TRUE. automatically if calculation='vc-relax' } } var tprnfor -type LOGICAL { default {.false.} info { print forces. Set to .TRUE. when ions are moving. } } var dt -type REAL { default { 1.D0 } info { time step for molecular dynamics, in Hartree atomic units (1 a.u.=2.4189 * 10^-17 s : beware, PW code use Rydberg atomic units, twice that much!!!) } } var outdir -type CHARACTER { default { value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise } info { input, temporary, trajectories and output files are found in this directory. } } var saverho -type LOGICAL { info { This flag controls the saving of charge density in CP codes: If .TRUE. save charge density to restart dir, If .FALSE. do not save charge density. } } var prefix -type CHARACTER { default { 'cp' } info { prepended to input/output filenames: prefix.pos, prefix.vel, etc. } } var ndr -type INTEGER { default { 50 } info { Units for input and output restart file. } } var ndw -type INTEGER { default { 50 } info { Units for input and output restart file. } } var tabps -type LOGICAL { default {.false.} info { .true. to compute the volume and/or the surface of an isolated system for finite pressure/finite surface tension calculations (PRL 94, 145501 (2005); JCP 124, 074103 (2006)). } } var max_seconds -type REAL { default { 1.D+7, or 150 days, i.e. no time limit } info { jobs stops after max_seconds CPU time. Used to prevent a hard kill from the queuing system. } } var etot_conv_thr -type REAL { default { 1.0D-4 } info { convergence threshold on total energy (a.u) for ionic minimization: the convergence criterion is satisfied when the total energy changes less than etot_conv_thr between two consecutive scf steps. See also forc_conv_thr - both criteria must be satisfied } } var forc_conv_thr -type REAL { default { 1.0D-3 } info { convergence threshold on forces (a.u) for ionic minimization: the convergence criterion is satisfied when all components of all forces are smaller than forc_conv_thr. See also etot_conv_thr - both criteria must be satisfied } } var ekin_conv_thr -type REAL { default { 1.0D-6 } info { convergence criterion for electron minimization: convergence is achieved when "ekin < ekin_conv_thr". See also etot_conv_thr - both criteria must be satisfied. } } var disk_io -type CHARACTER { default { 'default' } info { 'high': CP code will write Kohn-Sham wfc files and additional information in data-file.xml in order to restart with a PW calculation or to use postprocessing tools. If disk_io is not set to 'high', the data file written by CP will not be readable by PW or PostProc. } } var memory -type CHARACTER { default { 'default' } info { 'small': memory-saving tricks are implemented. Currently: - the G-vectors are sorted only locally, not globally - they are not collected and written to file For large systems, the memory and time gain is sizable but the resulting data files are not portable - use it only if you do not need to re-read the data file } } var pseudo_dir -type CHARACTER { default { value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise } info { directory containing pseudopotential files } } var tefield -type LOGICAL { default { .FALSE. } info { If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. } } } # # NAMELIST &SYSTEM # namelist SYSTEM { var ibrav -type INTEGER { status { REQUIRED } info { Bravais-lattice index. If ibrav /= 0, specify EITHER [ celldm(1)-celldm(6) ] OR [ A,B,C,cosAB,cosAC,cosBC ] but NOT both. The lattice parameter alat is set to alat = celldm(1) (in a.u.) or alat = A (in Angstrom); see below for the other parameters. For ibrav=0 specify the lattice vectors in CELL_PARAMETER, optionally the lattice parameter alat = celldm(1) (in a.u.) or = A (in Angstrom), or else it is taken from CELL_PARAMETERS ibrav structure celldm(2)-celldm(6) or: b,c,cosab,cosac,cosbc 0 free crystal axis provided in input: see card CELL_PARAMETERS 1 cubic P (sc) v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1) 2 cubic F (fcc) v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0) 3 cubic I (bcc) v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1) 4 Hexagonal and Trigonal P celldm(3)=c/a v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a) 5 Trigonal R, 3fold axis c celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around the z-axis, the primitive cell is a simple rhombohedron: v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz) where c=cos(alpha) is the cosine of the angle alpha between any pair of crystallographic vectors, tx, ty, tz are: tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3) -5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around <111>. Defining a' = a/sqrt(3) : v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u) where u and v are defined as u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty and tx, ty, tz as for case ibrav=5 Note: if you prefer x,y,z as axis in the cubic limit, set u = tz + 2*sqrt(2)*ty, v = tz - sqrt(2)*ty See also the note in flib/latgen.f90 6 Tetragonal P (st) celldm(3)=c/a v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a) 7 Tetragonal I (bct) celldm(3)=c/a v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a) 8 Orthorhombic P celldm(2)=b/a celldm(3)=c/a v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c) 9 Orthorhombic base-centered(bco) celldm(2)=b/a celldm(3)=c/a v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c) -9 as 9, alternate description v1 = (a/2,-b/2,0), v2 = (a/2,-b/2,0), v3 = (0,0,c) 10 Orthorhombic face-centered celldm(2)=b/a celldm(3)=c/a v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2) 11 Orthorhombic body-centered celldm(2)=b/a celldm(3)=c/a v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2) 12 Monoclinic P, unique axis c celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c) where gamma is the angle between axis a and b. -12 Monoclinic P, unique axis b celldm(2)=b/a celldm(3)=c/a, celldm(5)=cos(ac) v1 = (a,0,0), v2 = (0,b,0), v3 = (c*sin(beta),0,c*cos(beta)) where beta is the angle between axis a and c 13 Monoclinic base-centered celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1 = ( a/2, 0, -c/2), v2 = (b*cos(gamma), b*sin(gamma), 0), v3 = ( a/2, 0, c/2), where gamma is the angle between axis a and b 14 Triclinic celldm(2)= b/a, celldm(3)= c/a, celldm(4)= cos(bc), celldm(5)= cos(ac), celldm(6)= cos(ab) v1 = (a, 0, 0), v2 = (b*cos(gamma), b*sin(gamma), 0) v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma), c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma) - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) ) where alpha is the angle between axis b and c beta is the angle between axis a and c gamma is the angle between axis a and b } } group { label { Either: } dimension celldm -start 1 -end 6 -type REAL { see { ibrav } info { Crystallographic constants - see description of ibrav variable. Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both. Only needed celldm (depending on ibrav) must be specified alat = celldm(1) is the lattice parameter "a" (in BOHR) If ibrav=0, only celldm(1) is used if present; cell vectors are read from card CELL_PARAMETERS } } label { Or: } vargroup -type REAL { var A var B var C var cosAB var cosAC var cosBC info { Traditional crystallographic constants: a,b,c in ANGSTROM cosAB = cosine of the angle between axis a and b (gamma) cosAC = cosine of the angle between axis a and c (beta) cosBC = cosine of the angle between axis b and c (alpha) The axis are chosen according to the value of ibrav. Specify either these OR celldm but NOT both. Only needed values (depending on ibrav) must be specified The lattice parameter alat = A (in ANGSTROM ) If ibrav = 0, only A is used if present; cell vectors are read from card CELL_PARAMETERS } } } var nat -type INTEGER { status { REQUIRED } info { number of atoms in the unit cell } } var ntyp -type INTEGER { status { REQUIRED } info { number of types of atoms in the unit cell } } var nbnd -type INTEGER { default { for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more) } info { number of electronic states (bands) to be calculated. Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled } } var tot_charge -type REAL { default { 0.0 } info { total charge of the system. Useful for simulations with charged cells. By default the unit cell is assumed to be neutral (tot_charge=0). tot_charge=+1 means one electron missing from the system, tot_charge=-1 means one additional electron, and so on. In a periodic calculation a compensating jellium background is inserted to remove divergences if the cell is not neutral. } } var tot_magnetization -type REAL { default { -1 [unspecified] } info { total majority spin charge - minority spin charge. Used to impose a specific total electronic magnetization. If unspecified, the tot_magnetization variable is ignored and the electronic magnetization is determined by the occupation numbers (see card OCCUPATIONS) read from input. } } var ecutwfc -type REAL { status { REQUIRED } info { kinetic energy cutoff (Ry) for wavefunctions } } var ecutrho -type REAL { default { 4 * ecutwfc } info { kinetic energy cutoff (Ry) for charge density and potential For norm-conserving pseudopotential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on forces and stress. If there are ultrasoft PP, a larger value than the default is often desirable (ecutrho = 8 to 12 times ecutwfc, typically). PAW datasets can often be used at 4*ecutwfc, but it depends on the shape of augmentation charge: testing is mandatory. The use of gradient-corrected functional, especially in cells with vacuum, or for pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately converged. } } vargroup -type INTEGER { see { ecutrho } var nr1 var nr2 var nr3 info { three-dimensional FFT mesh (hard grid) for charge density (and scf potential). If not specified the grid is calculated based on the cutoff for charge density. } } vargroup -type INTEGER { var nr1s var nr2s var nr3s info { three-dimensional mesh for wavefunction FFT and for the smooth part of charge density ( smooth grid ). Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default ) } } vargroup -type INTEGER { var nr1b var nr2b var nr3b info { dimensions of the "box" grid for Ultrasoft pseudopotentials must be specified if Ultrasoft PP are present } } var occupations -type CHARACTER { info { a string describing the occupation of the electronic states. In the case of conjugate gradient style of minimization of the electronic states, if occupations is set to 'ensemble', this allows ensemble DFT calculations for metallic systems } } var degauss -type REAL { default { 0.D0 Ry } info { parameter for the smearing function, only used for ensemble DFT calculations } } var smearing -type CHARACTER { info { a string describing the kind of occupations for electronic states in the case of ensemble DFT (occupations == 'ensemble' ); now only Fermi-Dirac ('fd') case is implemented } } var nspin -type INTEGER { default { 1 } info { nspin = 1 : non-polarized calculation (default) nspin = 2 : spin-polarized calculation, LSDA (magnetization along z axis) } } var ecfixed -type REAL { default { 0.0 }; see { q2sigma } } var qcutz -type REAL { default { 0.0 }; see { q2sigma } } var q2sigma -type REAL { default { 0.1 } info { ecfixed, qcutz, q2sigma: parameters for modified functional to be used in variable-cell molecular dynamics (or in stress calculation). "ecfixed" is the value (in Rydberg) of the constant-cutoff; "qcutz" and "q2sigma" are the height and the width (in Rydberg) of the energy step for reciprocal vectors whose square modulus is greater than "ecfixed". In the kinetic energy, G^2 is replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) ) See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995) } } var input_dft -type CHARACTER { default { read from pseudopotential files } info { Exchange-correlation functional: eg 'PBE', 'BLYP' etc See Modules/functionals.f90 for allowed values. Overrides the value read from pseudopotential files. Use with care and if you know what you are doing! } } var lda_plus_u -type LOGICAL { default { .FALSE. } info { lda_plus_u = .TRUE. enables calculation with LDA+U ("rotationally invariant"). See also Hubbard_U. Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991); Anisimov et al., PRB 48, 16929 (1993); Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994); Cococcioni and de Gironcoli, PRB 71, 035105 (2005). } } dimension Hubbard_U -start 1 -end ntyp -type REAL { default { 0.D0 for all species } status { LDA+U works only for a few selected elements. Modify CPV/ldaU.f90 if you plan to use LDA+U with an element that is not configured there. } info { Hubbard_U(i): parameter U (in eV) for LDA+U calculations. Currently only the simpler, one-parameter LDA+U is implemented (no "alpha" or "J" terms) } } var vdw_corr -type CHARACTER { default { 'none' } info { Type of Van der Waals correction. Allowed values: 'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d': semiempirical Grimme's DFT-D2. Optional variables: "london_s6", "london_rcut" S. Grimme, J. Comp. Chem. 27, 1787 (2006), V. Barone et al., J. Comp. Chem. 30, 934 (2009). 'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler': Tkatchenko-Scheffler dispersion corrections with first-principle derived C6 coefficients Optional variables: "ts_vdw_econv_thr", "ts_vdw_isolated" See A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009) 'XDM', 'xdm': Exchange-hole dipole-moment model. Optional variables: "xdm_a1", "xdm_a2" (implemented in PW only) A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007) A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 136, 174109 (2012) Note that non-local functionals (eg vdw-DF) are NOT specified here but in "input_dft" } } var london_s6 -type REAL { default { 0.75 } info { global scaling parameter for DFT-D. Default is good for PBE. } } var london_rcut -type REAL { default { 200 } info { cutoff radius (a.u.) for dispersion interactions } } var ts_vdw -type LOGICAL { default { .FALSE. } info { OBSOLESCENT, same as vdw_corr='TS' } } var ts_vdw_econv_thr -type REAL { default { 1.D-6 } info { Optional: controls the convergence of the vdW energy (and forces). The default value is a safe choice, likely too safe, but you do not gain much in increasing it } } var ts_vdw_isolated -type LOGICAL { default { .FALSE. } info { Optional: set it to .TRUE. when computing the Tkatchenko-Scheffler vdW energy for an isolated (non-periodic) system. } } var assume_isolated -type CHARACTER { default { 'none' } info { Used to perform calculation assuming the system to be isolated (a molecule of a clustr in a 3D supercell). Currently available choices: 'none' (default): regular periodic calculation w/o any correction. 'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the total energy is computed. Theory: G.Makov, and M.C.Payne, "Periodic boundary conditions in ab initio calculations" , Phys.Rev.B 51, 4014 (1995) } } } # # namelist ELECTRONS # namelist ELECTRONS { var electron_maxstep -type INTEGER { default { 100 } info { maximum number of iterations in a scf step } } var electron_dynamics -type CHARACTER { default { 'none' } info { set how electrons should be moved 'none' : electronic degrees of freedom (d.o.f.) are kept fixed 'sd' : steepest descent algorithm is used to minimize electronic d.o.f. 'damp' : damped dynamics is used to propagate electronic d.o.f. 'verlet' : standard Verlet algorithm is used to propagate electronic d.o.f. 'cg' : conjugate gradient is used to converge the wavefunction at each ionic step. 'cg' can be used interchangeably with 'verlet' for a couple of ionic steps in order to "cool down" the electrons and return them back to the Born-Oppenheimer surface. Then 'verlet' can be restarted again. This procedure is useful when electronic adiabaticity in CP is lost yet the ionic velocities need to be preserved. } } var conv_thr -type REAL { default { 1.D-6 } info { Convergence threshold for selfconsistency: estimated energy error < conv_thr } } var niter_cg_restart -type INTEGER { default { 20 } info { frequency in iterations for which the conjugate-gradient algorithm for electronic relaxation is restarted } } var efield -type REAL { default { 0.D0 } info { Amplitude of the finite electric field (in a.u.; 1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE. } } var epol -type INTEGER { default { 3 } info { direction of the finite electric field (only if tefield == .TRUE.) In the case of a PARALLEL calculation only the case epol==3 is implemented } } var emass -type REAL { default { 400.D0 } info { effective electron mass in the CP Lagrangian, in atomic units ( 1 a.u. of mass = 1/1822.9 a.m.u. = 9.10939 * 10^-31 kg ) } } var emass_cutoff -type REAL { default { 2.5D0 } info { mass cut-off (in Rydberg) for the Fourier acceleration effective mass is rescaled for "G" vector components with kinetic energy above "emass_cutoff" } } var orthogonalization -type CHARACTER { default { 'ortho' } info { selects the orthonormalization method for electronic wave functions 'ortho' : use iterative algorithm - if it doesn't converge, reduce the timestep, or use options ortho_max and ortho_eps, or use Gram-Schmidt instead just to start the simulation 'Gram-Schmidt' : use Gram-Schmidt algorithm - to be used ONLY in the first few steps. YIELDS INCORRECT ENERGIES AND EIGENVALUES. } } var ortho_eps -type REAL { default { 1.D-8 } info { tolerance for iterative orthonormalization meaningful only if orthogonalization = 'ortho' } } var ortho_max -type INTEGER { default { 20 } info { maximum number of iterations for orthonormalization meaningful only if orthogonalization = 'ortho' } } var ortho_para -type INTEGER { default { 0 } status { OBSOLETE: use command-line option " -nd XX" instead } info { } } var electron_damping -type REAL { default { 0.1D0 } info { damping frequency times delta t, optimal values could be calculated with the formula : SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) ) where E1, E2, E3 are successive values of the DFT total energy in a steepest descent simulations. meaningful only if " electron_dynamics = 'damp' " } } var electron_velocities -type CHARACTER { info { 'zero' : restart setting electronic velocities to zero 'default' : restart using electronic velocities of the previous run } } var electron_temperature -type CHARACTER { default { 'not_controlled' } info { 'nose' : control electronic temperature using Nose thermostat. See also "fnosee" and "ekincw". 'rescaling' : control electronic temperature via velocities rescaling. 'not_controlled' : electronic temperature is not controlled. } } var ekincw -type REAL { default { 0.001D0 } info { value of the average kinetic energy (in atomic units) forced by the temperature control meaningful only with " electron_temperature /= 'not_controlled' " } } var fnosee -type REAL { default { 1.D0 } info { oscillation frequency of the nose thermostat (in terahertz) meaningful only with " electron_temperature = 'nose' " } } var startingwfc -type CHARACTER { default { 'random' } info { 'atomic': start from superposition of atomic orbitals (not yet implemented) 'random': start from random wfcs. See "ampre". } } var tcg -type LOGICAL { default { .FALSE. } info { if .TRUE. perform a conjugate gradient minimization of the electronic states for every ionic step. It requires Gram-Schmidt orthogonalization of the electronic states. } } var maxiter -type INTEGER { default { 100 } info { maximum number of conjugate gradient iterations for conjugate gradient minimizations of electronic states } } var passop -type REAL { default { 0.3D0 } info { small step used in the conjugate gradient minimization of the electronic states. } } var n_inner -type INTEGER { default { 2 } info { number of internal cycles for every conjugate gradient iteration only for ensemble DFT } } var ninter_cold_restart -type INTEGER { default { 1 } info { frequency in iterations at which a full inner cycle, only for cold smearing, is performed } } var lambda_cold -type REAL { default { 0.03D0 } info { step for inner cycle with cold smearing, used when a not full cycle is performed } } var grease -type REAL { default { 1.D0 } info { a number <= 1, very close to 1: the damping in electronic damped dynamics is multiplied at each time step by "grease" (avoids overdamping close to convergence: Obsolete ?) grease = 1 : normal damped dynamics } } var ampre -type REAL { default { 0.D0 } info { amplitude of the randomization ( allowed values: 0.0 - 1.0 ) meaningful only if " startingwfc = 'random' " } } } # # NAMELIST IONS # namelist IONS { label { input this namelist only if calculation = 'cp', 'relax', 'vc-relax', 'vc_cp' } var ion_dynamics -type CHARACTER { info { Specify the type of ionic dynamics. For constrained dynamics or constrained optimisations add the CONSTRAINTS card (when the card is present the SHAKE algorithm is automatically used). 'none' : ions are kept fixed 'sd' : steepest descent algorithm is used to minimize ionic configuration 'cg' : conjugate gradient algorithm is used to minimize ionic configuration 'damp' : damped dynamics is used to propagate ions 'verlet' : standard Verlet algorithm is used to propagate ions } } var ion_positions -type CHARACTER { default { 'default' } info { 'default ' : if restarting, use atomic positions read from the restart file; in all other cases, use atomic positions from standard input. 'from_input' : restart the simulation with atomic positions read from standard input, even if restarting. } } var ion_velocities -type CHARACTER { default { 'default' } see { tempw } info { initial ionic velocities 'default' : restart the simulation with atomic velocities read from the restart file 'change_step' : restart the simulation with atomic velocities read from the restart file, with rescaling due to the timestep change, specify the old step via tolp as in tolp = 'old_time_step_value' in au 'random' : start the simulation with random atomic velocities 'from_input' : restart the simulation with atomic velocities read from standard input - see card 'ATOMIC_VELOCITIES' BEWARE: works only if restart_mode='from_scratch', tested only with electrons_dynamics='cg' 'zero' : restart the simulation with atomic velocities set to zero } } var ion_nstepe -type INTEGER { default { 1 } info { number of electronic steps per ionic step. } } var remove_rigid_rot -type LOGICAL { default { .FALSE. } info { This keyword is useful when simulating the dynamics and/or the thermodynamics of an isolated system. If set to true the total torque of the internal forces is set to zero by adding new forces that compensate the spurious interaction with the periodic images. This allows for the use of smaller supercells. BEWARE: since the potential energy is no longer consistent with the forces (it still contains the spurious interaction with the repeated images), the total energy is not conserved anymore. However the dynamical and thermodynamical properties should be in closer agreement with those of an isolated system. Also the final energy of a structural relaxation will be higher, but the relaxation itself should be faster. } } var ion_temperature -type CHARACTER { default { 'not_controlled' } info { 'nose' : control ionic temperature using Nose-Hoover thermostat see parameters "fnosep", "tempw", "nhpcl", "ndega", "nhptyp" 'rescaling' : control ionic temperature via velocities rescaling. see parameter "tolp" 'not_controlled' : ionic temperature is not controlled } } var tempw -type REAL { default { 300.D0 } info { value of the ionic temperature (in Kelvin) forced by the temperature control. meaningful only with " ion_temperature /= 'not_controlled' " or when the initial velocities are set to 'random' "ndega" controls number of degrees of freedom used in temperature calculation } } var fnosep -type REAL { default { 1.D0 } info { oscillation frequency of the nose thermostat (in terahertz) [note that 3 terahertz = 100 cm^-1] meaningful only with " ion_temperature = 'nose' " for Nose-Hoover chain one can set frequencies of all thermostats ( fnosep = X Y Z etc. ) If only first is set, the defaults for the others will be same. } } var tolp -type REAL { default { 100.D0 } info { tolerance (in Kelvin) of the rescaling. When ionic temperature differs from "tempw" more than "tolp" apply rescaling. meaningful only with " ion_temperature = 'rescaling' " and with ion_velocities='change_step', where it specifies the old timestep } } var nhpcl -type INTEGER { default { 1 } info { number of thermostats in the Nose-Hoover chain currently maximum allowed is 4 } } var nhptyp -type INTEGER { default { 0 } info { type of the "massive" Nose-Hoover chain thermostat nhptyp=1 uses a NH chain per each atomic type nhptyp=2 uses a NH chain per atom, this one is useful for extremely rapid equipartitioning (equilibration is a different beast) nhptyp=3 together with nhgrp allows fine grained thermostat control NOTE: if using more than 1 thermostat per system there will be a common thermostat added on top of them all, to disable this common thermostat specify nhptyp=-X instead of nhptyp=X } } dimension nhgrp -start 1 -end ntyp -type INTEGER { default { 0 } info { specifies which thermostat group to use for given atomic type when >0 assigns all the atoms in this type to thermostat labeled nhgrp(i), when =0 each atom in the type gets its own thermostat. Finally, when <0, then this atomic type will have temperature "not controlled". Example: HCOOLi, with types H (1), C(2), O(3), Li(4); setting nhgrp={2 2 0 -1} will add a common thermostat for both H & C, one thermostat per each O (2 in total), and a non-updated thermostat for Li which will effectively make temperature for Li "not controlled" } } dimension fnhscl -start 1 -end ntyp -type REAL { default { (Nat_{total}-1)/Nat_{total} } info { these are the scaling factors to be used together with nhptyp=3 and nhgrp(i) in order to take care of possible reduction in the degrees of freedom due to constraints. Suppose that with the previous example HCOOLi, C-H bond is constrained. Then, these 2 atoms will have 5 degrees of freedom in total instead of 6, and one can set fnhscl={5/6 5/6 1. 1.}. This way the target kinetic energy for H&C will become 6(kT/2)*5/6 = 5(kT/2). This option is to be used for simulations with many constraints, such as rigid water with something else in there } } var ndega -type INTEGER { default { 0 } info { number of degrees of freedom used for temperature calculation ndega <= 0 sets the number of degrees of freedom to [3*nat-abs(ndega)], ndega > 0 is used as the target number } } dimension tranp -start 1 -end ntyp -type LOGICAL { see { amprp } default { .false. } info { If .TRUE. randomize ionic positions for the atomic type corresponding to the index. } } dimension amprp -start 1 -end ntyp -type REAL { see { amprp } default { 0.D0 } info { amplitude of the randomization for the atomic type corresponding to the index i ( allowed values: 0.0 - 1.0 ). meaningful only if " tranp(i) = .TRUE.". } } var greasp -type REAL { default { 1.D0 } info { same as "grease", for ionic damped dynamics. } } } # # namelist CELL # namelist CELL { label { input this namelist only if calculation = 'vc-relax', 'vc-cp' } var cell_parameters -type CHARACTER { info { 'default' : restart the simulation with cell parameters read from the restart file or "celldm" if "restart = 'from_scratch'" 'from_input' : restart the simulation with cell parameters from standard input. ( see the card 'CELL_PARAMETERS' ) } } var cell_dynamics -type CHARACTER { default { 'none' } info { set how cell should be moved 'none' : cell is kept fixed 'sd' : steepest descent algorithm is used to optimise the cell 'damp-pr' : damped dynamics is used to optimise the cell ( Parrinello-Rahman method ). 'pr' : standard Verlet algorithm is used to propagate the cell ( Parrinello-Rahman method ). } } var cell_velocities -type CHARACTER { info { 'zero' : restart setting cell velocity to zero 'default' : restart using cell velocity of the previous run } } var cell_damping -type REAL { default { 0.1D0 } info { damping frequency times delta t, optimal values could be calculated with the formula : SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) ) where E1, E2, E3 are successive values of the DFT total energy in a steepest descent simulations. meaningful only if " cell_dynamics = 'damp' " } } var press -type REAL { default { 0.D0 } info { Target pressure [KBar] in a variable-cell md or relaxation run. } } var wmass -type REAL { default { 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD } info { Fictitious cell mass [amu] for variable-cell simulations (both 'vc-md' and 'vc-relax') } } var cell_factor -type REAL { default { 1.2D0 } info { Used in the construction of the pseudopotential tables. It should exceed the maximum linear contraction of the cell during a simulation. } } var cell_temperature -type CHARACTER { default { 'not_controlled' } info { 'nose' : control cell temperature using Nose thermostat see parameters "fnoseh" and "temph". 'rescaling' : control cell temperature via velocities rescaling. 'not_controlled' : cell temperature is not controlled. } } var temph -type REAL { default { 0.D0 } info { value of the cell temperature (in ???) forced by the temperature control. meaningful only with " cell_temperature /= 'not_controlled' " } } var fnoseh -type REAL { default { 1.D0 } info { oscillation frequency of the nose thermostat (in terahertz) meaningful only with " cell_temperature = 'nose' " } } var greash -type REAL { default { 1.D0 } info { same as "grease", for cell damped dynamics } } var cell_dofree -type CHARACTER { default { 'all' } info { Select which of the cell parameters should be moved: all = all axis and angles are moved x = only the x component of axis 1 (v1_x) is moved y = only the y component of axis 2 (v2_y) is moved z = only the z component of axis 3 (v3_z) is moved xy = only v1_x and v2_y are moved xz = only v1_x and v3_z are moved yz = only v2_y and v3_z are moved xyz = only v1_x, v2_y, v3_z are moved shape = all axis and angles, keeping the volume fixed 2Dxy = only x and y components are allowed to change 2Dshape = as above, keeping the area in xy plane fixed } } } # # namelist PRESS_AI # namelist PRESS_AI { label { input this namelist only when tabps = .true. } var abivol -type LOGICAL { default { .false. } info { .true. for finite pressure calculations } } var abivol -type LOGICAL { default { .false. } info { .true. for finite surface tension calculations } } var P_ext -type REAL { default { 0.D0 } info { external pressure in GPa } } var pvar -type LOGICAL { default { .false. } info { .true. for variable pressure calculations pressure changes linearly with time: Delta_P = (P_fin - P_in)/nstep } } var P_in -type REAL { default { 0.D0 } info { only if pvar = .true. initial value of the external pressure (GPa) } } var P_fin -type REAL { default { 0.D0 } info { only if pvar = .true. final value of the external pressure (GPa) } } var Surf_t -type REAL { default { 0.D0 } info { Surface tension (in a.u.; typical values 1.d-4 - 1.d-3) } } var rho_thr -type REAL { default { 0.D0 } info { threshold parameter which defines the electronic charge density isosurface to compute the 'quantum' volume of the system (typical values: 1.d-4 - 1.d-3) (corresponds to alpha in PRL 94 145501 (2005)) } } var dthr -type REAL { default { 0.D0 } info { thikness of the external skin of the electronic charge density used to compute the 'quantum' surface (typical values: 1.d-4 - 1.d-3; 50% to 100% of rho_thr) (corresponds to Delta in PRL 94 145501 (2005)) } } } # # namelist WANNIER # namelist WANNIER { label { only if calculation = 'cp-wf' } message { Output files used by Wannier Function options are the following fort.21: Used only when calwf=5, contains the full list of g-vecs. fort.22: Used Only when calwf=5, contains the coeffs. corresponding to the g-vectors in fort.21 fort.24: Used with calwf=3,contains the average spread fort.25: Used with calwf=3, contains the individual Wannier Function Spread of each state fort.26: Used with calwf=3, contains the wannier centers along a trajectory. fort.27: Used with calwf=3 and 4, contains some general runtime information from ddyn, the subroutine that actually does the localization of the orbitals. fort.28: Used only if efield=.TRUE. , contains the polarization contribution to the total energy. Also, The center of mass is fixed during the Molecular Dynamics. BEWARE : THIS WILL ONLY WORK IF THE NUMBER OF PROCESSORS IS LESS THAN OR EQUAL TO THE NUMBER OF STATES. Nota Bene 1: For calwf = 5, wffort is not used. The Wannier/Wave(function) coefficients are written to unit 22 and the corresponding g-vectors (basis vectors) are written to unit 21. This option gives the g-vecs and their coeffs. in reciprocal space, and the coeffs. are complex. You will have to convert them to real space if you want to plot them for visualization. calwf=1 gives the orbital densities in real space, and this is usually good enough for visualization. } var wf_efield -type LOGICAL { default { .false. } info { If dynamics will be done in the presence of a field } } var wf_switch -type LOGICAL { default { .false. } info { Whether to turn on the field adiabatically (adiabatic switch) if true, then nbeg is set to 0. } } var sw_len -type INTEGER { default { 1 } info { No. of iterations over which the field will be turned on to its final value. Starting value is 0.0 If sw_len < 0, then it is set to 1. If you want to just optimize structures on the presence of a field, then you may set this to 1 and run a regular geometry optimization. } } vargroup -type REAL { see { 0.D0 } var efx0 var efy0 var efz0 info { Initial values of the field along x, y, and z directions } } vargroup -type REAL { see { 0.D0 } var efx1 var efy1 var efz1 info { Final values of the field along x, y, and z directions } } var wfsd -type INTEGER { default { 1 } info { Localization algorithm for Wannier function calculation: wfsd=1 Damped Dynamics wfsd=2 Steepest-Descent / Conjugate-Gradient wfsd=3 Jocobi Rotation Remember, this is consistent with all the calwf options as well as the tolw (see below). Not a good idea to Wannier dynamics with this if you are using restart='from_scratch' option, since the spreads converge fast in the beginning and ortho goes bananas. } } var wfdt -type REAL { default { 5.D0 } info { The minimum step size to take in the SD/CG direction } } var maxwfdt -type REAL { default { 0.3D0 } info { The maximum step size to take in the SD/CG direction The code calculates an optimum step size, but that may be either too small (takes forever to converge) or too large (code goes crazy) . This option keeps the step size between wfdt and maxwfdt. In my experience 0.1 and 0.5 work quite well. (but don't blame me if it doesn't work for you) } } var nit -type INTEGER { default { 10 } info { Number of iterations to do for Wannier convergence. } } var nsd -type INTEGER { default { 10 } info { Out of a total of NIT iterations, NSD will be Steepest-Descent and ( nit - nsd ) will be Conjugate-Gradient. } } var wf_q -type REAL { default { 1500.D0 } info { Fictitious mass of the A matrix used for obtaining maximally localized Wannier functions. The unitary transformation matrix U is written as exp(A) where A is a anti-hermitian matrix. The Damped-Dynamics is performed in terms of the A matrix, and then U is computed from A. Usually a value between 1500 and 2500 works fine, but should be tested. } } var wf_friction -type REAL { default { 0.3D0 } info { Damping coefficient for Damped-Dynamics. } } var nsteps -type INTEGER { default { 20 } info { Number of Damped-Dynamics steps to be performed per CP iteration. } } var tolw -type REAL { default { 1.D-8 } info { Convergence criterion for localization. } } var adapt -type LOGICAL { default { .true. } info { Whether to adapt the damping parameter dynamically. } } var calwf -type INTEGER { default { 3 } info { Wannier Function Options, can be 1,2,3,4,5 1. Output the Wannier function density, nwf and wffort are used for this option. see below. 2. Output the Overlap matrix O_i,j=. O is written to unit 38. For details on how O is constructed, see below. 3. Perform nsteps of Wannier dynamics per CP iteration, the orbitals are now Wannier Functions, not Kohn-Sham orbitals. This is a Unitary transformation of the occupied subspace and does not leave the CP Lagrangian invariant. Expectation values remain the same. So you will **NOT** have a constant of motion during the run. Don't freak out, its normal. 4. This option starts for the KS states and does 1 CP iteration and nsteps of Damped-Dynamics to generate maximally localized wannier functions. Its useful when you have the converged KS groundstate and want to get to the converged Wannier function groundstate in 1 CP Iteration. 5. This option is similar to calwf 1, except that the output is the Wannier function/wavefunction, and not the orbital density. See nwf below. } } var nwf -type INTEGER { default { 0 } info { This option is used with calwf 1 and calwf 5. with calwf=1, it tells the code how many Orbital densities are to be output. With calwf=5, set this to 1(i.e calwf=5 only writes one state during one run. so if you want 10 states, you have to run the code 10 times). With calwf=1, you can print many orbital densities in a single run. See also the PLOT_WANNIER card for specifying the states to be printed. } } var wffort -type INTEGER { default { 40 } info { This tells the code where to dump the orbital densities. Used only with CALWF=1. for e.g. if you want to print 2 orbital densities, set calwf=1, nwf=2 and wffort to an appropriate number (e.g. 40) then the first orbital density will be output to fort.40, the second to fort.41 and so on. Note that in the current implementation, the following units are used 21,22,24,25,26,27,28,38,39,77,78 and whatever you define as ndr and ndw. so use number other than these. } } var writev -type LOGICAL { default { .false. } info { Output the charge density (g-space) and the list of g-vectors This is useful if you want to reconstruct the electrostatic potential using the Poisson equation. If .TRUE. then the code will output the g-space charge density and the list if G-vectors, and STOP. Charge density is written to : CH_DEN_G_PARA.ispin (1 or 2 depending on the number of spin types) or CH_DEN_G_SERL.ispin depending on if the code is being run in parallel or serial G-vectors are written to G_PARA or G_SERL. } } } # # card ATOMIC_SPECIES # card ATOMIC_SPECIES { syntax { table atomic_species { rows -start 1 -end ntyp { col X -type CHARACTER { info { label of the atom } } col Mass_X -type REAL { info { mass of the atomic species [amu: mass of C = 12] not used if calculation='scf', 'nscf', 'bands' } } col PseudoPot_X -type CHARACTER { info { File containing PP for this species. The pseudopotential file is assumed to be in the new UPF format. If it doesn't work, the pseudopotential format is determined by the file name: *.vdb or *.van Vanderbilt US pseudopotential code *.RRKJ3 Andrea Dal Corso's code (old format) none of the above old PWscf norm-conserving format } } } } } } # # card ATOMIC_POSITIONS # card ATOMIC_POSITIONS { flag atompos_unit -use optional { enum { alat | bohr | angstrom | crystal } default { bohr (DEPRECATED) } info { alat : atomic positions are in cartesian coordinates, in units of the lattice parameter (either celldm(1) or A). bohr : atomic positions are in cartesian coordinate, in atomic units (i.e. Bohr). If no option is specified, 'bohr' is assumed; not specifying units is DEPRECATED and will no longer be allowed in the future angstrom: atomic positions are in cartesian coordinates, in Angstrom crystal : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice vectors as defined either in card CELL_PARAMETERS or via the ibrav + celldm / a,b,c... variables } } choose { when -test "calculation == 'bands' OR calculation == 'nscf'" { message { Specified atomic positions will be IGNORED and those from the previous scf calculation will be used instead !!! } } elsewhen { syntax { table atomic_coordinates { rows -start 1 -end nat { col X -type CHARACTER { info { label of the atom as specified in ATOMIC_SPECIES } } colgroup -type REAL { info { atomic positions } col x col y col z } optional { colgroup -type INTEGER { info { component i of the force for this atom is multiplied by if_pos(i), which must be either 0 or 1. Used to keep selected atoms and/or selected components fixed in MD dynamics or structural optimization run. } default { 1 } col if_pos(1) col if_pos(2) col if_pos(3) } } } } } } } } # # ATOMIC_VELOCITIES # card ATOMIC_VELOCITIES { flag atomvel_type -use optional { enum { a.u } } label { Optional card, reads velocities (in atomic units) from standard input } message { when starting with ion_velocities="from_input" it is convenient to perform few steps (~5-10) with a smaller time step (0.5 a.u.) } syntax { table atomic_velocities { rows -start 1 -end nat { col V -type CHARACTER { info { label of the atom as specified in ATOMIC_SPECIES } } colgroup -type REAL { info { atomic velocities along x y and z direction} col vx col vy col vz } } } } } # # CELL_PARAMETERS # card CELL_PARAMETERS { flag lattice_type -use optional { enum { bohr | angstrom | alat } info { 'bohr'/'angstrom': lattice vectors in bohr radii / angstrom. 'alat' / nothing specified: lattice vectors in units or the lattice parameter (either celldm(1) or a). Not specifing units is DEPRECATED and will not be allowed in the future. If nothing specified and no lattice parameter specified, 'bohr' is assumed - DEPRECATED, will no longer be allowed } } label { Optional card, needed only if ibrav = 0 is specified, ignored otherwise ! } syntax { table lattice { cols -start 1 -end 3 { rowgroup -type REAL { info { Crystal lattice vectors: v1(1) v1(2) v1(3) ... 1st lattice vector v2(1) v2(2) v2(3) ... 2nd lattice vector v3(1) v3(2) v3(3) ... 3rd lattice vector } row v1 row v2 row v3 } } } } } # # CONSTRAINTS # card CONSTRAINTS { label { Optional card, used for constrained dynamics or constrained optimisations } message { When this card is present the SHAKE algorithm is automatically used. } syntax { line { var nconstr -type INTEGER { info { Number of constraints. } } optional { var constr_tol -type REAL { info { Tolerance for keeping the constraints satisfied. } } } } table constraints_table { rows -start 1 -end nconstr { col constr_type -type CHARACTER { info { Type of constrain : 'type_coord' : constraint on global coordination-number, i.e. the average number of atoms of type B surrounding the atoms of type A. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'atom_coord' : constraint on local coordination-number, i.e. the average number of atoms of type A surrounding a specific atom. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'distance' : constraint on interatomic distance (two atom indexes must be specified). 'planar_angle' : constraint on planar angle (three atom indexes must be specified). 'torsional_angle' : constraint on torsional angle (four atom indexes must be specified). 'bennett_proj' : constraint on the projection onto a given direction of the vector defined by the position of one atom minus the center of mass of the others. ( Ch.H. Bennett in Diffusion in Solids, Recent Developments, Ed. by A.S. Nowick and J.J. Burton, New York 1975 ). } } colgroup { col constr(1) col constr(2) conditional { col constr(3) col constr(4) } info { These variables have different meanings for different constraint types: 'type_coord' : constr(1) is the first index of the atomic type involved constr(2) is the second index of the atomic type involved constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'atom_coord' : constr(1) is the atom index of the atom with constrained coordination constr(2) is the index of the atomic type involved in the coordination constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'distance' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD 'planar_angle', 'torsional_angle' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD (beware the order) 'bennett_proj' : constr(1) is the index of the atom whose position is constrained. constr(2:4) are the three coordinates of the vector that specifies the constraint direction. } } optional { col constr_target -type REAL { info { Target for the constrain ( angles are specified in degrees ). This variable is optional. } } } } } } } # # card OCCUPATIONS # card OCCUPATIONS { label { Optional card, used only if occupations = 'from_input', ignored otherwise ! } syntax { table occupations_table { cols -start 1 -end nbnd { row f_inp1 -type REAL { info { Occupations of individual states (MAX 10 PER LINE). For spin-polarized calculations, these are majority spin states. } } conditional { row f_inp2 -type REAL { info { Occupations of minority spin states (MAX 10 PER LINE) To be specified only for spin-polarized calculations. } } } } } } } # # PLOT_WANNIER # card PLOT_WANNIER { label { Optional card, indices of the states that have to be printed (only for calf=1 and calf=5). } syntax { table state_index { rows -start 1 -end nwf { col iwf -type INTEGER { info { These are the indices of the states that you want to output. Also used with calwf = 1 and 5. If calwf = 1, then you need nwf indices here (each in a new line). If CALWF=5, then just one index in needed. } } } } } } } espresso-5.1/CPV/Doc/user_guide/0000755000175000017500000000000012341373100014564 5ustar mbambaespresso-5.1/CPV/Doc/user_guide/img12.png0000644000175000017500000000031312341373070016214 0ustar mbambaPNG  IHDRyi-PLTEMJK# b``mkkXUV856C@@wuvXtRNS@fLIDATc```(`@L6'f< L , k<4@Zp l^vC8U&JyIENDB`espresso-5.1/CPV/Doc/user_guide/img7.png0000644000175000017500000000041112341373071016140 0ustar mbambaPNG  IHDR#0PLTEMJK# b``mkkXUV856C@@wuv.*+ Ė`tRNS@fIDATc```d@ h QY.tH a`x 78`QM($!2l `)`cf ۅl V0#Bu00 9 n0A&3\ 0ϟ\IENDB`espresso-5.1/CPV/Doc/user_guide/node13.html0000644000175000017500000000550012341373100016543 0ustar mbamba About this document ... next
    up previous contents
    Up: User's Guide for The Previous: 5 Performances   Contents

    About this document ...

    Image quantum_espresso Image democritos
    User's Guide for CP (version 5.1.0)

    This document was generated using the LaTeX2HTML translator Version 2008 (1.71)

    Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
    Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

    The command line arguments were:
    latex2html -t 'User's Guide for The Quantum ESPRESSO Car-Parrinello Molecular Dynamics' -html_version 3.2,math -toc_depth 5 -split 5 -toc_stars -show_section_numbers -local_icons -image_type png user_guide.tex

    The translation was initiated by paolo giannozzi on 2014-05-28


    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/img2.png0000644000175000017500000000070312341373070016136 0ustar mbambaPNG  IHDR0=n0PLTEMJK# b``mkkXUV856C@@wuv.*+ Ė`tRNS@fAIDAT8c`v d,.. ``8iH@\ t 0 q8wz~Bmd Vыi;فXagC! A `.6,: m@Z)É ʑyP&a²p 8!V! .aI׆8t7 rB2cg!q9k}\_l /@PJ)`pfR@`(e? L4R|HQ``X 9${dP;G@aIENDB`espresso-5.1/CPV/Doc/user_guide/node3.html0000644000175000017500000001065012341373100016464 0ustar mbamba 2 Compilation next up previous contents
    Next: 3 Input data Up: User's Guide for The Previous: 1 Introduction   Contents

    2 Compilation

    CP is included in the core QUANTUM ESPRESSO distribution. Instruction on how to install it can be found in the general documentation (User's Guide) for QUANTUM ESPRESSO.

    Typing make cp from the main QUANTUM ESPRESSO directory or make from the CPV/ subdirectory produces the following codes in CPV/src:

    • cp.x: Car-Parrinello Molecular Dynamics code
    • cppp.x: postprocessing code for cp.x
    • wfdd.x: utility code for finding maximally localized Wannier functions using damped dynamics.
    Symlinks to executable programs will be placed in the bin/ subdirectory.

    As a final check that compilation was successful, you may want to run some or all of the tests and examples. Please see the general User's Guide for their setup. Automated tests for cp.x are in directory tests/ and can be run via the script check_cp.x.j

    You may take the tests and examples distributed with CP as templates for writing your own input files. Input files for tests are contained in tests/ subdirectory with file type *.in1, *.in2, ... . Input file for examples are produced if you run the examples in the results/ subdirectories, with names ending with .in.

    For general information on parallelism and how to run in parallel execution, please see the general User's Guide. CP currently can take advantage of both MPI and OpenMP parallelization. The ``plane-wave'', ``linear-algebra'' and ``task-group'' parallelization levels are implemented.


    next up previous contents
    Next: 3 Input data Up: User's Guide for The Previous: 1 Introduction   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/img6.png0000644000175000017500000000077212341373072016152 0ustar mbambaPNG  IHDR4=g^g0PLTEMJK# b``mkkXUV856C@@wuv.*+ Ė`tRNS@fxIDAT8c`>0ŀ l;?'B`dvt % ؄14{9؉ xZ6Wf͒L}8/LH<^v9RW1Ϝ  8b+׆uO`r1(Lnek@l^^a݀$ u| YB<ཀk^l``YcE 0~`оD[7S0/)_^vt0)&7KqB 4) lgh! X\=)8<ݤ e&b(Rv2ps?sDQ9QTToü`,+0 FB+q9IENDB`espresso-5.1/CPV/Doc/user_guide/quantum_espresso.png0000644000175000017500000011316612341373067020733 0ustar mbambaPNG  IHDRj pHYsddFtEXtRaw profile type app12 app12 15 4475636b79000100040000003c0000 u vpAgIDATxymYUǘZk7}PT H"*!1gQ_4jg>QIg)D SR@uf51s}O5*V[g֜kRU6=^ID *'Cd $JR_졯b_ Oeu'0h J՟d >BsO*}^&h. V̱ƒ=L%(L1zO= YW̱ +XAB8!zN ]Iݵ +Vq>S@=X5)X-D` P{9 +|6`+V?RsgF#e2cg +o k}0)! *$ CU{DDD-,"M@@lA e?VX3sL6Is"7,U~0狜s "r5S&"j.d+oC (CIsO9 .x"{x C2$#'H@ HV*i&$$$RUePED571\bd@, 6d@!j*`6 l01,)B ++ BTJ (xdW[_ (RDDXZB$";#CXX$db@>B5|^`a~(19M%1G5Ǽυ`Lttht+XaNJ9z rHT2Xb[MeZXm* TH,9T5'^s6PH(H *P9T*/d=Sr`32 Y%)u"XBXD`e){WXa1@G:HOY" "f)Wd>sޯk,S ɜ栒5H 9jHP4ŻT!PE>XG u(ٺ>)q`R rd4lZ#ĖۅaL@fjap)V+IbHZJ)r$Da&dj 6?ѢCTzHS$AsXd,$ 5G9̡ |Je}8wvoDeY_ 9P vrj[Lla-$@<"V1AA@=}+قs<SHF2@ 3` JD)Ң>" H 9$3!=$RM A9A稒He?΁e}~yC%`ia4DP&q`{bL@:v?nj`5(ю{b;v4Xzh&Va0d[;O9 T 9 #RPJSIrO](GL9F*^)H(=b*5\e h Fa#\쀘, UdҬ˓ 5Vقð d^'z df`F@h>b4%gfK"{fӨO Ф9j { I);NG!A ͚i"a,-[3(b|Q8QHdř$f dLQ([HqVI-)p$!oXf+)b(`rI.@2NOM?AE 5`q 7LTH4*=QBq(/ (N#e bHK#rO"ϑ{GaZ'AMD `E^,AD3,ܕkfBQ"TETKf>;"AH[fW85L%Tȸ&Fa݋aojWXa1 gSRSfKi L=Fq")\1h֔Eb@#RC:@$ͽ^I#k!c"d QE0 1e*v#&kPlRfw Ė9"' gT4kJj$J 856"pЬEU ҽ ++dq[p՜ I<#5&U(MM=l'&&۸8NjR PNii), i"H)$Xd2k%~ca=]BWʀ2Uyo o(/!R s! B!d*+P$HP Y5H{Mmxr5'Kedr[CI4cH0.Z +` A$sl52sΔI;hd+&IPB80o9G3) qN9dm(Ð1c`7la>s;^Ѓ0(QҫIbXp,se[AD4B9"gp_{ؓHk9*ܫe XҠSDb uD X=*/_a="*"'{vgI l@1 ٳ|y4A8ܛ{ aAJ>jk؊ب$"eGƩq0^%lDDظa2JD`/ X TP|V T`HFfz =E,$")HΜ3rDaJ A#INu  )+på sR95q.LӔ$" 2 J0p{o!O;s=3)H@Wn-PCl k`erׄ Uv%cL%c m([q2` Ed91a"dI#r@$=gt+ T{ɁrfI=r7DA:iʰ us\8dL̐D5t-r$ epNDJ`+r.bPr(kQ?4G!vHa퐧H3̞Lzr ZRb7URcEa%eK@ϣ>"y_ Q8pB"I$"ڋ$\q0=93gRjIze=r@"cfd [3JqbaEPIQCoRG1#0s&!X9B#[lak8- 0JUaرX6lCvW@Yd<%b,$vX$o((ϗKw.(2bb$Hf! B3RVi5LȤEQB#jiQ-Q^2tVq A-R ւ PkRK3A":0ư@CO%F 8h!E-B4EI&m}'`@Nhz՘݀LΓdFfȶ}5""f6|wo!{gx@a3RDZA,dJSo[Z_#'΂͆0BT+CURPR!*_\"lrX1E\֖NPTR1HHC"!͐f002VdjX&Sdd5l SzpXaAna4(@BB3B2RԮ DJ 1ZXq7V9.8HC 0/sD 3Ei9~Hn;6հ%b\xcًTk0 eb ,\#<;d59kJh jHG9J9%4* d J0 YQ UX1 m@N-aaJqJ簇#fŮZ5dkTc**H[{^D#A &,AA-u&/7&hE%#^SO*9W6I3HU# % @(b\+Ys<\PQ0R4AAE?AS H=a&)23WTP5`m﷨] &6d(\ 40e)$IUKCD< ]a2VC靧*"& џEC?E(ȽVR$2jkrkpCn6jruCClEvRJHq>@Fty",)]LN92ϕ.OւRQT9eŐIh-k U>p}Wx(R}S՜3l 4 g[#SѨd@uvh`P5"75`r8ܤMeNEU Qm j@0y6%"3$9GeD*3~%hgVE1;(%58Jb'DU֕dkF۸e|W{bdZha~ӾWJ [ c@-ڤ="EY(xS2#)AR(5ʕ1*KjZacE}馅v, S@SB,'x;=f6vz!9Fr{ M#7jKqɵD SPmn#5ӌM5ƹVPYbq!8Şp7)^t` VœBZVVt;$a[`2NB-Cub=h C>\j "wd &v#8ęRCgB־.۱b Y%CL9Ŏr; ]0toZ3)YYX%PF6@] {hwrGq91pVGQïsf_]PƙKYe;B3Qr|[A"  d Tx\1 @wk\aVqAHC {S)*uHLs@663v4OIHF3 z yuoffO0-[6Pm:咚B:Kؘ '!T"E @XKIÊ`!vLcKbYs\ttvS-Cj"Q@{GVpDF>RP$4U%UA(ǬCw{$hEÍT;7Bz ~ ~[AZHA!H6̖l b9Y ]4Дd Q sCdP#,ȒYU cb#̥$L"sS*a&"DzJB($pqD b(QA3[^˃CL 7Dz n [+[ -!@>l#ʲ Jq2k֜˘vF)q7dP{Py󰝱VX1ņ.VCG7Elg!R /D!"p P,9Glbޏ~$ |+H!srB kS|| "FhT:T({{&#p-:Zfc5NP+<b K\0~JiZS{H39dv9v$i}K hzFT RVp %5V0F-e14Yn]ixz'~qUf@s o=2oBѹ`{6B!.NxWƆݎBጶX `aÌ2 k^\+b R((~ơ[h_drk$Hla1I{|&"XbL9+5l;TUcm c +> 8a7eUS FӜ$"jgD܀cg3VMGvX1/,a vQj$ǜթȡ)r4338+ AQPj~~CpvwQ5T1"s-M B5(pDҀL[^ag+渠0A =”=vߥiGqJ)Dlۘ@Hf*n(9RunPo:z :\wN}("LD\B38Uhx@fz,SV Ba5gFE4GLJ,PdJ Ē{|UUQykz &&܆ ǨF(}fM/V%KȢbn&l*!j*pB,dVx` 1C$ &vy" H,HR" IA% *9j &M7k5`kU*;sէ RJqdX|6` y~{m ZW[ҪjWxX`e7r@?~=t;^gH=$MKȂ!x2~ 5[#TPmPzAv.fnvqiH]RIpq[1.h"g-R md{p S2Dd*jVq!EbR?7!Z%g=') BDbgɡE!PYx kC!~yeΐrҽ!*j8Wk@ʦc6ar# Z>cX1ɻɬwLn3wўd=0Q8e6@"@VTB =d4r$K9Td$h<=l_TitHG4ZxɁN+,A5w^(x՗U+IjbD37˱fU_q=Ie 25hw4iEEU܍{ +P ȿptL4H] b֐4ej"JQHADJE`3i`=#M%bYr' b&yr |[Ԏm%Sk%Θ|[:=+^!s\(`%r񬆳;v%)"Y!"YDJ }'1 gx 51Mi|οp:]c{Ɍ\ecSg v8v08\ mV r,ewПϢۦAt,B)qLhp֢wN &&&L`)kA5f8BKu&Zv /+< 0P#!lPPդ4kxeƨFdҴbbVq st;ܞnm.i@A(dʂ.,*RG!VdJC~ H6]׋e~ ZZ? (iԬ7y8² ;-ܘZ"ī+;Eb:#g0߁'-\noNJ9.tX$h瘷:L:M4O)z JNvHY3-ձY1 c1Q5&5#r(鷺/NU@mZCS7G\oO[ޱs{0v{觨WX1j{Srn(].Q')zhȒD@9k bg&"bff^&;asUo`r habˬn~+%[605UAz*#^I+mX- &[lcXډsA(>):2""Md g0F:o)-l t_s8WFw0hQEȒ RJ6D@5*Yʀ"90J UB N`#h  h!7 H"r@ 0BVvP">]/Ʉz 8naj:kݙ}3u4aHNṽU*T~n +j2z Dm"" D `Fv1P7dkؚMæ!< +yᴱ3# |LI"B HA1FkmXSη(6$[ٓz>q[w ;mh#f֏ Qz' N;`NW~ |}Bh}6PkP`f[Ι UC+PPc] dKh,t>k5VuU  "m0@hfj c2lxV:[čI@`, LFJ "95p虌Ax"Z+k>K?|`֒T.c]XTT;P9gOڹm5~%S_q>|{bQNmXz/HO9.Cnj;3a&'2F MsiƒŠ9.H3`T4&l",ܚO -̡5T# ;ұ->[Guh몰 tbe(T3<5>> {rm??:K gDIW̩5W]:ku)xqّE_pW^Ǎ}6Py0Z@Ȃo;{l$ 8?ݱw?=_߿U_*ң8]CSa<ޥi,TǨ`Ow!sХg §KkYy8Z,2r풛kAqI)4*!J0焏 00x1i0Np_u9grcqӾmiрdUL;$!(ZY)_/fTO|Ϥ2Z3XM6 G,&rסk%4͍P}VX[V9'8+Ad L)If"T腔x_GqNrcA `1\;G qi }QA!9+1:~>g{;Oۿ?}i: v!N僵O^cۑU_D]iVnVGuv.nhѫ i03@/gPTjqh9j….AiY71`siD18'ޥҥn4Csc~վ WLѭaD?_? U=@uV#C˟o?Qڒ˵AD3*윳v]'\e gO#o8z٨q7{G֦9z;7spt}6#B/ؙ>dH}s\ CeEN #,5@T"*ռX~`|!`86Եq5c)6 KI@- c}ΟvKqDӬ'>a>O"7?~MCu̴BgS+]# k$iٸ$%m6c.t6vk^?gM_׆);o՟؋e:`wit0Ӽv~~bX1Dž¾@PQCBJ PT({tFik [55frئYfե%Ya-bDGNk6Bl2'G< "v߻;ZUU3Q*>J&1U!뺮K)H3tͨ2Nc~sZL$ɴ1s&Sm}+VXc $h*Y{&FmB'Y*hU%̭R(|3;rG7yj%Q@]z&~Fy$uw_zÓz7I뱗1C?~ž+b .>5=ƖbD*Y]$#US Q*_!P(01!vdCK*E19D0 ZL +7}buZ5>=w/_kv)3@T؞wBH]}Ɔ3{ 0~!00| ~/]7qMu޳}4WE2:g;3݊9VxhR >lQ,0axscXъkjwԥ܇% -b߇VxP$7G5'Svvp\v2o%T:> "zASH9g;ӫ؞]583ѰvTKqU ^*\ 8\["Yu Btk_}ףLP4{?w|՗d?zvglӗ]oz5zZ~Ҷ83/]Ji6]df&sch84McA.*`?=oʿWybtW=9|˖NS'lڱvCdB0C+@F:xK3AGC@d6΀1ZP% !);\#t_τo̺jp_G_t_ f-[k?U7z~ ~bi1SU9gϷ0v/͟h,6|zo0ߨj M^5VgY޺x &í}a2醪$l@IgM (,*h(Ȣ^OyJ?\'j* ý$cXIsM/;_GݼGZ~zș>_=}_/&<}mGʺ/"!B AD9=^LD1#ٵѱu񊝄lKTw[Н;Yʳ]LN#%Wn? IaGkԛ~ӽCOߥW^ xDR]21{"KR|to ܛ9ߴG0>e [vS%9Bz +TU5\[]遌nLm:?֨Z:wjNOO11&h.5yq$bVXpɭ8W$;pGF]c9L0oAiejXwaukz0Q <ўF쵏Hl_rѹa$+؊u9%C3 d rGMMY5sWp/*F fHΙ1! 2)+HfPCYRt:N'O);:P fg<'2Reh]4@>fJ8咻+pX}T/O"8Ͼf_7}eTy큷;7ݜDfciQ`sm\aƥY}B S54qL@d X Y@o\G Pi]<^̡ԫvNv<Ιq'5M6[W\2T4/?-˽ZUK( ""yr`g>-ћ]41!Nn[!s\ r! ~zqtXl` LM-%5lY~9Ώdc!\)Vq-H† iQb2LBS*|A*$(֏%Y]!jB5k)օy$^S GާO6PZ8(?](A"w 1Xֲs]1SysݵnFI7Ȁ- @ vb߶V԰b R()kZU l8"U-yDLG dB 0v K1\%0ؔSf6n |fiVʵ??#Dz|%(S@Oc49kmUUq W<`s(>_u_ N"Ev +0.g֣qF 6Qmoz oQ ?jV. !0 ?ɛbM6&Xo9doc{{{gggooo2mB(f2}`pX/O61"躿UF I.ٳm k*zS%s\(`PX\M~;p!:5lΗEE"RX]8 _D+\쭣_κ:$)YC֦}Q ]>ɖ of4mlllmmmllFC =Z,\ Oj&Q]U s3y23,4CT `k$^2c(g fv>(YB(KpQ.GĔ1{ }+_H}_X.;sZVEi*2)iJj-b"CH1ff$8*(Ov}G gC :R"e1u3DZ7SR{DpbVd= #Yg ٜ0.٬Gst4@ ㄽӠvYjw\@@8)r +z7h{i}zZĻ!(XTnYbjuow &,YXНa"M!`󜱿_jj܎XvTO Q*B~pĝکFOirBdY է?"~oJ!A*'$%1,Wb@ܯ%$ ѡu{fCttƓN]go?tꜫj6]y7pÕW\vɓu]e/r-{ 7]B~m^ל>}:Uu΍F>=ɣ?2Ƭ7|C-oyG>fN~JsUzd:/'ֆ/zыN8a ->xM71w~׷ۛURի~vU9@z0~w۶F?}眿9POp[?<ˎ4MmphZC{:ņ=Dwىn:=m>\OˆLS=W»_Y mI|c-/;q}= w8hm2V3m 61U=?A'frcG_GC7VAS-=rw ͽO|~O#Vd|F R^oߩwLZk_gݺ e&|=~9={WNCwEx\rSV6r'j ՖVZmِf]ԬZG!Q9QK09'SU]p'[@15d%D5hdϊ{4ݧV}ަƽ;>H|죽(ȒR~UU1:ux_蝝m1ՋeϜ9u]1'O|BPuV*]/Tޔڔ}I@]9^ Bwuigzlrk EK҇_7-֭w]LI`x<F6 G2e?!l+ԉ?}P6=;t[WL'7-?~ `m/;USݳn9$kT9ƵNfX6Ĭ6/oO˳1O_5 /۷?{0sW? Dn?X;sxm3䴽wp79淼~A.+/EUU'(%sS>mΛg7ǐS2֖F]"φFl6wrYPv}Z&*[c5~1ƽ|4ͽ+sMӈ?g=hu]@|folۖo"j&%qvITZ+'\^/rkD0uִ֪j6ywԩj^ -53~3oT mzE"q?k:uϿcauson~;$B?gIoz^}3oۙ׾IX@!f_md@ΘZSV(Yd 4ʄ#z`2(KI _/GW_>ѵ׀ XOWN}).I)A?վyiDt+R*B>YqB1~W#/n#t܉E/P x\\l6; )GQ`)xo#0 +{?L]I{r|\q+vwwNb,XluAcYU m$"Re,-l2sG()m 1k( naqvc䪁V-dtC sv8:o uУ-9Kd6uǒ!GE* 4iu9l{W٦_ڰ AC-dFL E b " 5[Irs *qf+nUnեwnR  ``M3H0Wy|,w5 FN15l7K/ʖb ¬ޏO՗uGr@:+f._"*\٧VGׅtYC%cՔՄ$^ڟJj4l ˓PBwZjl;쾶㹢{W.afc%LV3Kkdh4:XdB_eJG1TL#٘,(F*Ƙ,3gō7X". ќH۬H wS:SWcLh TɢDk92d{B}`o}Neրzmnlu'M[{0w!`XV0fX"RF<ѭdooNS0&C]@}7&ܨȬ۱4Xud=@SC<2zT?yG\=9CH@H[aAG=]0?=iF0zf5L(PI ;2lBԭr.Q(t&Xc H ȁ/9dXļXD-y(Kg1"D|BŤw.|i|`̾IJȺ:g}7es]R@ۥ;{,>e屻;;{luؖPHnvMo>wxDXld^Ukߋ}ZBk8IՔDfr87 o=DD}CppUNs" b8{NUmg9iPT3tLm|p3`EIq@K;O#ic32$QY$py4o͛sXjqbKJثy=,c:gd(#!UgbBPWJ^,Ў $DY , LZrAq6M,*՗ǿBAI&ѬL$VRsv=uQ`E nSNGѲ>}[~7~[/x__?ݽ9Ò1tQOyk>6蕯ɧ>11@j礐l6s,A&ݮڅ౪TA)TOξ sUM!c'@'BHvyo__MI))P2:#g=jzԫo_?hv4L`?+_k'3ï+p˭S{c( (,ݒ0!32T1VX*Ƀ 0y18rI/ne%Xa'0GHF4w,NWwo1[L`pu$||+EDI#Dž 1c5{Pa IB1<3;9W/|;sC0YR&}C󮞄o?_n9uj>~ ۅy* !v[`zfˎzæx̋C$X+j!H~p/W\U/λ_}=3JTJO>[ng7_>kg}8% 4)Y"XAM^($"3_U3M $(-&YbOx?g~>%}Q\U9ݎEu!2{?v!rKn|>2^c2Mu]$8=n%J)y677|fwhx^ܸQ%@&g͕w竿_?|ӿou󇙀ʙk֏д{/c~omW#9 mٶ3>-NyY0*uԮ / Oi=j~ 5Pnr9?=xw_q?5_}40`[E4bk^? Kqgh雾+؍xh,7 Hل$XkFzmwtsc[qZ&-Thay2i/Ť|>Yp8F9p!eo䗁S"~xy`0(($ǽ"c\_ M /6S)5?rHIoɃgBkEg>ӞV_ef6!7[>6ؐQ]1C_abVP g>酯P ]v#c1I, 4؝!?9JEUwla9A26$ _ٯz6<>X.`@d*5\]{5?_nX,K8k5ƍe[Ec75H Rb4qhfcT*D̩'?A:* 8 RV)Iumۖզi6ҍ_X*|6pӚEI*Z(Jd ?( zTWW|;s'}4i":qNh6+㒆öhnAڜzF|`h42H)s2݅t-ŦF)PNEe`-rTRƁ4\"dU9%s`4$(g|2r3gkw?IEDpUW]SUUmllÇ/O\2.&&v b' .{X 8vAutRrW3*έoaTL ̨XvyL[yxojq_p}wĘ"T)B`0MQBlW{T(uṖIpv襵}T!y$~ {"#xLfo)"C4*L7y`Sys$clSv| *zl8 yT\3=sۧ6?[j?M<#*fvww۶` 5M5 WJuQg'CV41'H9xgHy|p:B=B.t0AS 2D&%)Kt|OKBr]ClJ¼p|yK!zEX f'b?,Č+rccR}L4:{TtIX*"eFS @E sNF âyFC?FtՕ3w4GL5 E2Ylȣ3yö m@FFh`G_9+i㺳Y# MOo Uۓp @]1 f* q8_լ}TH᪌ZFLm;0*HZj?Ox}勿UlQ$$X` Q߰g(kgǚfԑ5J8 EGíhVުKXǾF=C‰$;3o=dT?+ Yj,FbzjXr5/Q_XGwU 7~F|ƬmU:Ȣ {0j Z(|+8`>[ktVUs/\rFRLr. }o]JeO:e٬i=n_Ij[k暣GZka۶ׯ:@zmKݡ|C8ղ{/Y8ߍL"! M<01;C8' u |Dc\w\L H0zJ(P{8ծs¶E%׆d;@1؝s fԒv&g޵mx{ԍLs\`k[h8xؽINofz{:vGOu!AUIij64qG?u؞z%Pԟ^QL*m8皦4p@iH'"X_Ƿ߃< [BmzߺHGZyYS-"yc[pHD~{}^?k)@)73gqP11|b,-H({OĈ}q ,ONGЇ>4N_W;v,P.>ڐ, 967ח7;KS}Ĥre3>7/mI5_/y£LEEMW^};ٴs#/O_ 9MPRh\ !`v~ljF.ϣ}⣪Mz#oG|wRPRF%7Y1ɟՍl֟yO߿G%@DwӾt: WΦ{3| E?-6z|_xGgYΎj`ѥ(~ ί> >ݾnQCfYErFNwkxiC*`~4{dBMfx$d3"NӒ-:dLrIJ_u*²}G!:;wQNArE.Gҕ!U]_yUck;o[6"I!trK,˽嗟8|xkmm}ԩcǎ-IB1TziJmgEDR+E撦R o,5"u$F_~ȑibwq7LD]ve]VZ ,)")ѨGY[E #$ m<}[r ~߱W^5Mg]qW߶X>rSed R#̻t[ }= H1bzӄ`+ eOx\Ó=֡4ȑz1{rg?[^g=AP x Uf_5[Ϳ9|/b4 D@oSS<{mg'h_-P5$r _ũz=};oi4l|Ke9q)C@P~#zm2 p70žO D&o{~oxs:#|'rY/.{i{Z-ΥY?Jb؊U7r J`.5[G6~wq-²{gaUU!q{뭷>}sر/xh4q?~Y[[{#)"E@w9G9R;-~ss󪫮*>'V9>|nٹcUUmnn^s5ǎB*p8c N5[_gvxc8~աgoxU 5碻'˵G&" <<`oQ0ѵ_U" 3&K|78)˛qpX <_+?b.u//97(B_wӎ_Gk3v_krB*L\P_pË??~GgwI?yԑ9G_䇌lgd!?MNN /6 r/ST\!?jY_ͻ_?04s֝b!ιx<^4ѻ7&缷BY_[[[n_#$V]oGwޫK&>~~g 3Rl33;%d)WK@y6 ʒ RB{Z#5u618u; HlZ2]=ȯSB*sMIeR?8޶m)AU$ Q :R@ h>y ӔEq`)"x =cGE l+Dt 1x@'mH@>gpaA2fY8S0aH#YPz,>ČZJ _ z%1z !8X%DɎ;"( {DpB#@5AJ0m; Mۢ/+R,0 i\Zƨ2kǩ$lߎSsh^9Ԝɚ|ɏw4{FzӾt@9F2JaʹCj߱NƘt׃;Opb mI)|gl0`  1/JٱĢRXX˳ 0\*_TU&nF9gkpP`1χ[ k]์1)I)Dμ%kimC)I)I:# ".Q̮EHΏ8!a %XsֹӐ!8޻[_}ߵۯsϽtiI3}N8<`"ĨeYps;9m/]!"( \ hQ=VYB}'+07K PiB^ K C7eea,͋3ꝟoO<,&dg -A=J0ћoekMif  #DLB툎 >+͑S%$KyHI@hxT 4{GBQ1 fmns5kJLß9%#O1[u ]eS.?#OԔRow}]'tPnϑ zO@?lWuw<+UcixsQh7MYzhn޹d2z'V̞ԃ}wwi(L " ,FiX*V=/|io|ϾuP##_X SZT@s\gOh*]ꦏz|q'PKj=٬pʆa*[}wy7?YW֑0.Ͻ[yo {U?>vAU,_EwA890ta+.]x7Y"x'|D5ikK./7k} rذқBr¶6FcC1UJ>8phs8w&>)|Q$凿;3ko@kN>_}27Vx?i.GT.G8(n(g>g~eM3y7`WtFrF]9q^`4\и4~*xz/p &oi;Z#C(~{TKd|M,y^CjPVKCEN΂cauOHdp0b,}Hg݂z7@oF饛Ѝ|v10@ն 4n 0a3' ~_}_2|ߜo`c?##O$42d́!7Tףk9鼴lAD*FT0}3?Ղ&:^TͿ42r0*mu}bJS*7@QǛ6Z_%AbާS4gL孏w}-u T|G>Aٕ‘ :u6#m%Pfe5+7}koX]$3{E7MȺGu9qB_%JKU*pAF1kbvbglhS|/ݷoOʿh EBa`*X 7}z>"8#j f 'o}F@dg~{}4yi]Q ޠӓDyAF]gj KQڠrASP4p(s,h (㴌4%?pκti]oƺam."exCo *N?k*p>viP#!BKVIY- +.ZV{}/>}GV9Y{ydk3Vl4#Q9n[VCɂ= ʩ57ND3̎;ų:{%d <Ѧf2f-{>gF$PF009[ ǯۢ_$?4ɦ!X ^՝ذmX|gǖY^z.=gn@_5##sdࡳv)seJjBX"Bkg"-OIuԈ=w ?-\FJz(ݤO&h^Hiz]XsCC9uG/ex gИ4erV_J_?xeCx?͙/f uTnrGFϨ)@3D]Y+Π:rbUIIIQ`ѣ=~e̟^wąl^SL7+~>z:Ly;?B8(2QmuxRv_pXuɤK9HO_u;"Mګ쁷j&WirI2S 0C?C10BC;5B-I,y/KY#⢙P(cWADA=շ2AA F ڸ{>tΰH cO _mY]P_Y Α0&R3ί\B`n "#PMAI.&[UEDllGBO>끏֑4BEC~6=}z^Lߘm݇Elܓ%]iy>r2fnH!ȉ[9"hZ WB&$$ @0J;?~#_,—O艏||{߃M.HX`K5ˎ&hD,(SN͏Fl:μfB 0w G//B|oyy~o|Lh,y.yr&94Q9FN5r:2C;-i ma%vFF955DQ0@e@l?wƯѕ=ual?7;bz{&|ҾvirJ{{q@'r`I|LEҥ?^'TF$޿oHNyF-W?Tʽn&:nZ.}_HW7|ՄiWJ]NVKgA)DفxpZ(T,'JJrA4%.O_K?~?sqa+3>P󆷿G.b[SSazw~~4g0&oz8rB 4Y9u5}dj %9Q.3\fOf='*$;?P.l*ggՍτBsSC  @АÕˇIa$j/+IJP]~3??ēUS;ڝPSoo?׾5g_3F3N~>;\,$f٪󍌼MFn; NgI:>i˫xJGw Gl]C<'3ؼ9MHXS."δ'/^>鋓~g\p۔ỵ|=C\5Kyj9}뺜FU?gͿM=Qr U}yv.} Zij6vE-H::udTSjt!{8zVfOᓘ]%x~Vl1=^%L/Y ̙}t XF~)Y:|'݋W/}ퟣ.q_{׿}/wosE `0(Xw]Lq8|y1Ǯ|6"!yq^3ּ;GGFU{ -:svM_Vy5Y^|uYN X-1ȩfTSFN`9=a~Y0d8ϼm4ur Rnr:y 8;@2]G/?O5. f`,Y&XSS{'^<*(,Y]/| H 0e"cbP#>??2FrB>ffvfV`f I lVr }s5Y)iBS?G=}{st9,4)]]ccXc_ӗufا9{BbҬDɌa׳8*=xm ꖷ/n7.36*کdf6QlJbr/ȗ18u$3yem-v1De,JTsvPmbz hvؐpL&_le Stt'$``Rx[sM,R*s Lt3 V34ZYZR\_ (PyrCP"T* apGTFS !JfEVXЗy,u܇E-$063F@<2@ &V;:qtlZs{HC,by>7qR֨(S6 . 2ȝξS iEZ77"-ATIb=e[T]xiܢQݗswHUw<~Ap(PNPLoR܄Fh&`gA贔FF^r!!B4dSAԈqiu{nfCV*{Qc{;%9G%CK.C~0Tg(Q6&9lrآr|xO0K`T;2( !5ifؑ b;ZNh-ẅ X4*y ?fhBZg;@rGinҘ ѠEW#LQmQרoDMt\ :xTT*өEO0XKI %p F5ϡ0UR( {Ь}Gqi!w  Wk (J )&)xAW㚃݌qǐlP4E94jj3͙ \Ah01؝Ol8~nqAq88~iRgLGE?H/JV 3ܩqpAlq(!P_AknI]%OYR݄S6b)N\zn[+덩"33Jzhb9Rib1siA@׸Y9{ ̐\rP{j S-7ܢP2GFtF!7eȲFVAY4#PEj/W@LA @D:nNq;q|Mp5\IE-E_@VY##wrMB/Z`D.#;t wC#U ٛxv"FF+Nmoe愌a@#HKKKˑӂb8CxxD˽!85PC)5mڰ 2FNjD)Clp hR` B; =cJ(L`4C C!dqR6c?aHqDZRؒ&#J-=39mr(F}#EWڐ*7j_?1E5rW1*N|I-p809C/(".ab HRz  3lljaIyn39R"Hs4;@j?D\B3H [=:~„BI| >j#wr _b#K-GƁA\~3ԐڕXR\x) Ha |KS7 2ؐJ=rf9r~DZ`y 56IҘ4S+6(TjH9=Α#wr0z1UD`JE3@2Ŗb ˊl(וr0R.!ޜ@bdt@H;@9d#f8#.)/(.  L$‘+ S*6+x0_qCCW2`oUKCJ 5B%$H $ !1+3@t ۍ4e=RC{ʉ4RNZN-q~-ufX!B! K{@07vdZL tܹ=r˫zKGgshF[rԱvdP%+L sX8L@<有7q8s`v 9dun0ޖfrsIOh 04242zRsRK=$s#t shZē/͕"_X5,]Mnݎ1] h(&rD$1۽#4[7#{0WFg9 ))Q'"ȁ1]S_[S"]7~,XNf)%LM/ *rϚF"%RG 15ؑ \  $oK^w522Q9^\8bDY̌\T-Ui;X R W9 H 1/"a|p~h0:f3)icKh2˔j"jqIM#ҒsܓEt ܑJS18H )LJæ9 53Q9V r8MH\@*rsAZNz0/5C "`$DBD""0l1j# Ph6dR3a,[Δ{h"Sh6]%&bdjlL+R 4 \ OY[pa YcC j;MŨeYn)'hι[4Qi5GC[a|X\k]}dd]`kAX8ULșsSo\/L[>Ƙc: 3D"T IYBAzhLL74dl@`Ɗdg}]orsmP!HĘPCsIL<8%_ Hƿ V8X c!=(2L)!J$m fǩǕ?ohȘ`zVxb9LAvl~B h652cF!)PԠ=R"4B* 92TX_jc yM&CD?V 1}Ž؁Ac,AG,p@n\>2c: _A84Q!zb'ʐW!HZ'Ì+|l'@$2$6$ f8y# DbDw?3r+8)%& u)0%˖iȲY\lNO`_~qa|D4D?Ƭ06&XBنI*T%%8k1xxުHtg|=@W} 0ua),eޠ.®KUqX9#1(Hc C\B Oz@صvd0#7Nq 'DPB~g92r71*ȗ|ыs)?iK2[еOlWlddddu& 1 Introduction next up previous contents
    Next: 2 Compilation Up: User's Guide for The Previous: Contents   Contents

    1 Introduction

    This guide covers the usage of the CP package, version 5.1.0, a core component of the QUANTUM ESPRESSO distribution. Further documentation, beyond what is provided in this guide, can be found in the directory CPV/Doc/, containing a copy of this guide.

    This guide assumes that you know the physics that CP describes and the methods it implements. It also assumes that you have already installed, or know how to install, QUANTUM ESPRESSO. If not, please read the general User's Guide for QUANTUM ESPRESSO, found in directory Doc/ two levels above the one containing this guide; or consult the web site:
    http://www.quantum-espresso.org.

    People who want to modify or contribute to CP should read the Developer Manual:
    Doc/developer_man.pdf.

    CP can perform Car-Parrinello molecular dynamics, including variable-cell dynamics, and free-energy surface calculation at fixed cell through meta-dynamics, if patched with PLUMED.

    The CP package is based on the original code written by Roberto Car and Michele Parrinello. CP was developed by Alfredo Pasquarello (IRRMA, Lausanne), Kari Laasonen (Oulu), Andrea Trave, Roberto Car (Princeton), Nicola Marzari (Univ. Oxford), Paolo Giannozzi, and others. FPMD, later merged with CP, was developed by Carlo Cavazzoni, Gerardo Ballabio (CINECA), Sandro Scandolo (ICTP), Guido Chiarotti (SISSA), Paolo Focher, and others. We quote in particular:

    • Robert DiStasio et al. (Princeton) for Tkatchenko-Scheffler vdW corrections;
    • Manu Sharma (Princeton) and Yudong Wu (Princeton) for maximally localized Wannier functions and dynamics with Wannier functions;
    • Paolo Umari (Univ. Padua) for finite electric fields and conjugate gradients;
    • Paolo Umari and Ismaila Dabo for ensemble-DFT;
    • Xiaofei Wang (Princeton) for META-GGA;
    • The Autopilot feature was implemented by Targacept, Inc.
    This guide has been mostly writen by Gerardo Ballabio and Carlo Cavazzoni.

    CP is free software, released under the GNU General Public License.
    See http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt, or the file License in the distribution).

    We shall greatly appreciate if scientific work done using this code will contain an explicit acknowledgment and the following reference:

    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009), http://arxiv.org/abs/0906.2569


    next up previous contents
    Next: 2 Compilation Up: User's Guide for The Previous: Contents   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/next.png0000644000175000017500000000036512341373076016270 0ustar mbambaPNG  IHDR%wu PLTEooo[tRNS@fIDATxm1 0 EQF >k>B>N3=k?d M53kARM9Nl :C5tl]oD/ܡ_\lE6tU{Ccs=@uwzGB-RIENDB`espresso-5.1/CPV/Doc/user_guide/img1.png0000644000175000017500000000034512341373073016142 0ustar mbambaPNG  IHDR#$PLTEMJK# b``mkkXUVC@@< EtRNS@foIDATc````Є|F(`Q*րE1 FFwA;\]ZZ~W`eO#L P!e$f!{zW*v&% Ec0̢IENDB`espresso-5.1/CPV/Doc/user_guide/node8.html0000644000175000017500000001102612341373100016467 0ustar mbamba 4.1 Reaching the electronic ground state next up previous contents
    Next: 4.2 Relax the system Up: 4 Using CP Previous: 4 Using CP   Contents

    4.1 Reaching the electronic ground state

    The first run, when starting from scratch, is always an electronic minimization, with fixed ions and cell, to bring the electronic system on the ground state (GS) relative to the starting atomic configuration. This step is conceptually very similar to self-consistency in a pw.x run.

    Sometimes a single run is not enough to reach the GS. In this case, you need to re-run the electronic minimization stage. Use the input of the first run, changing restart_mode = 'from_scratch' to restart_mode = 'restart'.

    NOTA BENE: Unless you are already experienced with the system you are studying or with the internals of the code, you will usually need to tune some input parameters, like emass, dt, and cut-offs. For this purpose, a few trial runs could be useful: you can perform short minimizations (say, 10 steps) changing and adjusting these parameters to fit your needs. You can specify the degree of convergence with these two thresholds:

    etot_conv_thr: total energy difference between two consecutive steps
    ekin_conv_thr: value of the fictitious kinetic energy of the electrons.

    Usually we consider the system on the GS when ekin_conv_thr < 10-5. You could check the value of the fictitious kinetic energy on the standard output (column EKINC).

    Different strategies are available to minimize electrons, but the most used ones are:

    • steepest descent: electron_dynamics = 'sd'
    • damped dynamics: electron_dynamics = 'damp', electron_damping = a number typically ranging from 0.1 and 0.5
    See the input description to compute the optimal damping factor.


    next up previous contents
    Next: 4.2 Relax the system Up: 4 Using CP Previous: 4 Using CP   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/node11.html0000644000175000017500000003301712341373100016545 0ustar mbamba 4.4 Advanced usage next up previous contents
    Next: 5 Performances Up: 4 Using CP Previous: 4.3 CP dynamics   Contents

    Subsections

    4.4 Advanced usage

    4.4.1 Self-interaction Correction

    The self-interaction correction (SIC) included in the CP package is based on the Constrained Local-Spin-Density approach proposed my F. Mauri and coworkers (M. D'Avezac et al. PRB 71, 205210 (2005)). It was used for the first time in QUANTUM ESPRESSO by F. Baletto, C. Cavazzoni and S.Scandolo (PRL 95, 176801 (2005)).

    This approach is a simple and nice way to treat ONE, and only one, excess charge. It is moreover necessary to check a priori that the spin-up and spin-down eigenvalues are not too different, for the corresponding neutral system, working in the Local-Spin-Density Approximation (setting nspin = 2). If these two conditions are satisfied and you are interest in charged systems, you can apply the SIC. This approach is a on-the-fly method to correct the self-interaction with the excess charge with itself.

    Briefly, both the Hartree and the XC part have been corrected to avoid the interaction of the excess charge with tself.

    For example, for the Boron atoms, where we have an even number of electrons (valence electrons = 3), the parameters for working with the SIC are:

               &system
               nbnd= 2,
               total_magnetization=1,
               sic_alpha = 1.d0,
               sic_epsilon = 1.0d0,
               sic = 'sic_mac',
               force_pairing = .true.,
    
               &ions
               ion_dynamics = 'none',
               ion_radius(1) = 0.8d0,
               sic_rloc = 1.0,
    
               ATOMIC_POSITIONS (bohr)
               B 0.00 0.00 0.00 0 0 0 1
    
    The two main parameters are:
    force_pairing = .true., which forces the paired electrons to be the same;
    sic='sic_mac', which instructs the code to use Mauri's correction.
    Remember to add an extra-column in ATOMIC_POSITIONS with "1" to activate SIC for those atoms.

    Warning: This approach has known problems for dissociation mechanism driven by excess electrons.

    Comment 1: Two parameters, sic_alpha and sic_epsilon', have been introduced following the suggestion of M. Sprik (ICR(05)) to treat the radical (OH)-H2O. In any case, a complete ab-initio approach is followed using sic_alpha=1, sic_epsilon=1.

    Comment 2: When you apply this SIC scheme to a molecule or to an atom, which are neutral, remember to add the correction to the energy level as proposed by Landau: in a neutral system, subtracting the self-interaction, the unpaired electron feels a charged system, even if using a compensating positive background. For a cubic box, the correction term due to the Madelung energy is approx. given by 1.4186/Lbox -1.047/(Lbox)3, where Lbox is the linear dimension of your box (=celldm(1)). The Madelung coefficient is taken from I. Dabo et al. PRB 77, 115139 (2007). (info by F. Baletto, francesca.baletto@kcl.ac.uk)

    4.4.2 ensemble-DFT

    The ensemble-DFT (eDFT) is a robust method to simulate the metals in the framework of ''ab-initio'' molecular dynamics. It was introduced in 1997 by Marzari et al.

    The specific subroutines for the eDFT are in CPV/src/ensemble_dft.f90 where you define all the quantities of interest. The subroutine CPV/src/inner_loop_cold.f90 called by cg_sub.f90, control the inner loop, and so the minimization of the free energy A with respect to the occupation matrix.

    To select a eDFT calculations, the user has to set:

                calculation = 'cp'
                occupations= 'ensemble' 
                tcg = .true.
                passop= 0.3
                maxiter = 250
    
    to use the CG procedure. In the eDFT it is also the outer loop, where the energy is minimized with respect to the wavefunction keeping fixed the occupation matrix. While the specific parameters for the inner loop. Since eDFT was born to treat metals, keep in mind that we want to describe the broadening of the occupations around the Fermi energy. Below the new parameters in the electrons list, are listed.
    • smearing: used to select the occupation distribution; there are two options: Fermi-Dirac smearing='fd', cold-smearing smearing='cs' (recommended)
    • degauss: is the electronic temperature; it controls the broadening of the occupation numbers around the Fermi energy.
    • ninner: is the number of iterative cycles in the inner loop, done to minimize the free energy A with respect the occupation numbers. The typical range is 2-8.
    • conv_thr: is the threshold value to stop the search of the 'minimum' free energy.
    • niter_cold_restart: controls the frequency at which a full iterative inner cycle is done. It is in the range 1 ÷ninner. It is a trick to speed up the calculation.
    • lambda_cold: is the length step along the search line for the best value for A, when the iterative cycle is not performed. The value is close to 0.03, smaller for large and complicated metallic systems.
    NOTE: degauss is in Hartree, while in PWscfis in Ry (!!!). The typical range is 0.01-0.02 Ha.

    The input for an Al surface is:

                &CONTROL
                 calculation = 'cp',
                 restart_mode = 'from_scratch',
                 nstep  = 10,
                 iprint = 5,
                 isave  = 5,
                 dt    = 125.0d0,
                 prefix = 'Aluminum_surface',
                 pseudo_dir = '~/UPF/',
                 outdir = '/scratch/'
                 ndr=50
                 ndw=51
                /
                &SYSTEM
                 ibrav=  14,
                 celldm(1)= 21.694d0, celldm(2)= 1.00D0, celldm(3)= 2.121D0,
                 celldm(4)= 0.0d0,   celldm(5)= 0.0d0, celldm(6)= 0.0d0,
                 nat= 96,
                 ntyp= 1,
                 nspin=1,
                 ecutwfc= 15,
                 nbnd=160,
                 input_dft = 'pbe'
                 occupations= 'ensemble',
                 smearing='cs',
                 degauss=0.018,
                /
                &ELECTRONS
                 orthogonalization = 'Gram-Schmidt',
                 startingwfc = 'random',
                 ampre = 0.02,
                 tcg = .true.,
                 passop= 0.3,
                 maxiter = 250,
                 emass_cutoff = 3.00,
                 conv_thr=1.d-6
                 n_inner = 2,
                 lambda_cold = 0.03,
                 niter_cold_restart = 2,
                /
                &IONS
                 ion_dynamics  = 'verlet',
                 ion_temperature = 'nose'
                 fnosep = 4.0d0,
                 tempw = 500.d0
                /
                ATOMIC_SPECIES
                 Al 26.89 Al.pbe.UPF
    
    NOTA1 remember that the time step is to integrate the ionic dynamics, so you can choose something in the range of 1-5 fs.
    NOTA2 with eDFT you are simulating metals or systems for which the occupation number is also fractional, so the number of band, nbnd, has to be chosen such as to have some empty states. As a rule of thumb, start with an initial occupation number of about 1.6-1.8 (the more bands you consider, the more the calculation is accurate, but it also takes longer. The CPU time scales almost linearly with the number of bands.)
    NOTA3 the parameter emass_cutoff is used in the preconditioning and it has a completely different meaning with respect to plain CP. It ranges between 4 and 7.

    All the other parameters have the same meaning in the usual CP input, and they are discussed above.

    4.4.3 Free-energy surface calculations

    Once CP is patched with PLUMED plug-in, it becomes possible to turn-on most of the PLUMED functionalities running CP as: ./cp.x -plumed plus the other usual CP arguments. The PLUMED input file has to be located in the specified outdir with the fixed name plumed.dat.

    4.4.4 Treatment of USPPs

    The cutoff ecutrho defines the resolution on the real space FFT mesh (as expressed by nr1, nr2 and nr3, that the code left on its own sets automatically). In the USPP case we refer to this mesh as the "hard" mesh, since it is denser than the smooth mesh that is needed to represent the square of the non-norm-conserving wavefunctions.

    On this "hard", fine-spaced mesh, you need to determine the size of the cube that will encompass the largest of the augmentation charges - this is what nr1b, nr2b, nr3b are. hey are independent of the system size, but dependent on the size of the augmentation charge (an atomic property that doesn't vary that much for different systems) and on the real-space resolution needed by augmentation charges (rule of thumb: ecutrho is between 6 and 12 times ecutwfc).

    The small boxes should be set as small as possible, but large enough to contain the core of the largest element in your system. The formula for estimating the box size is quite simple:

    nr1b = 2Rc/Lx x nr1
    and the like, where Rcut is largest cut-off radius among the various atom types present in the system, Lx is the physical length of your box along the x axis. You have to round your result to the nearest larger integer. In practice, nr1b etc. are often in the region of 20-24-28; testing seems again a necessity.

    The core charge is in principle finite only at the core region (as defined by some Rrcut ) and vanishes out side the core. Numerically the charge is represented in a Fourier series which may give rise to small charge oscillations outside the core and even to negative charge density, but only if the cut-off is too low. Having these small boxes removes the charge oscillations problem (at least outside the box) and also offers some numerical advantages in going to higher cut-offs." (info by Nicola Marzari)


    next up previous contents
    Next: 5 Performances Up: 4 Using CP Previous: 4.3 CP dynamics   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/prev_g.png0000644000175000017500000000050712341373076016572 0ustar mbambaPNG  IHDR?JtRNS-Mc%IDATx͔u D?~5m9`D:p9cm.BBb$9db`HUI:Bu:ΓE-'} C|,t%}yFsP=T.+9dG+WZ~panP895il u9'ͩβ ֒_+xe U+i@iZfG-Κ6)nsU~!L,cwmP,vzSH=hyW:C>G'oi=Q)IENDB`espresso-5.1/CPV/Doc/user_guide/img10.png0000644000175000017500000000037612341373074016227 0ustar mbambaPNG  IHDR#-PLTEMJK# b``mkkXUV856wuv.*+stRNS@fIDATc```f@(\F AtH a`p| Xn&  &v @03y`RDp1X2 paF eL/pp6RR\s'3IENDB`espresso-5.1/CPV/Doc/user_guide/img11.png0000644000175000017500000000000012341373071025211 1espresso-5.1/CPV/Doc/user_guide/img7.pngustar mbambaespresso-5.1/CPV/Doc/user_guide/img5.png0000644000175000017500000000000012341373074025211 1espresso-5.1/CPV/Doc/user_guide/img10.pngustar mbambaespresso-5.1/CPV/Doc/user_guide/images.pl0000644000175000017500000000451412341373076016406 0ustar mbamba# LaTeX2HTML 2008 (1.71) # Associate images original text with physical files. $key = q/displaystyletau_{1}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle \tau_{1}^{}$|; $key = q/displaystyle{frac{{i-1}}{{nr1}}};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle {\frac{{i-1}}{{nr1}}}$|; $key = q/sim;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \sim$|; $key = q/tau_{i}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \tau_{i}^{}$|; $key = q/displaystyletau_{3}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle \tau_{3}^{}$|; $key = q/tau_{3}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \tau_{3}^{}$|; $key = q/le;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \le$|; $key = q/displaystyle{frac{{j-1}}{{nr2}}};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle {\frac{{j-1}}{{nr2}}}$|; $key = q/tau_{2}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \tau_{2}^{}$|; $key = q/displaystyle{frac{{k-1}}{{nr3}}};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle {\frac{{k-1}}{{nr3}}}$|; $key = q/tau_{1}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \tau_{1}^{}$|; $key = q/displaystyletau_{2}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle \tau_{2}^{}$|; 1; espresso-5.1/CPV/Doc/user_guide/images.aux0000644000175000017500000000001012341373067016553 0ustar mbamba\relax espresso-5.1/CPV/Doc/user_guide/labels.pl0000644000175000017500000000024012341373076016373 0ustar mbamba# LaTeX2HTML 2008 (1.71) # Associate labels original text with physical files. 1; # LaTeX2HTML 2008 (1.71) # labels from external_latex_labels array. 1; espresso-5.1/CPV/Doc/user_guide/user_guide.html0000644000175000017500000000721312341373100017610 0ustar mbamba User's Guide for The Quantum ESPRESSO Car-Parrinello Molecular Dynamics next up previous contents
    Next: Contents   Contents

    Image quantum_espresso Image democritos
    User's Guide for CP (version 5.1.0)





    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/node10.html0000644000175000017500000001714212341373100016545 0ustar mbamba 4.3 CP dynamics next up previous contents
    Next: 4.4 Advanced usage Up: 4 Using CP Previous: 4.2 Relax the system   Contents

    Subsections

    4.3 CP dynamics

    At this point after having minimized the electrons, and with ions displaced from their equilibrium positions, we are ready to start a CP dynamics. We need to specify 'verlet' both in ionic and electronic dynamics. The threshold in control input section will be ignored, like any parameter related to minimization strategy. The first time we perform a CP run after a minimization, it is always better to put velocities equal to zero, unless we have velocities, from a previous simulation, to specify in the input file. Restore the proper masses for the ions. In this way we will sample the microcanonical ensemble. The input section changes as follow:

               &electrons
                  emass = 400.d0,
                  emass_cutoff = 2.5d0,
                  electron_dynamics = 'verlet',
                  electron_velocities = 'zero'
               /
               &ions
                  ion_dynamics = 'verlet',
                  ion_velocities = 'zero'
               /
               ATOMIC_SPECIES
               C 12.0d0 c_blyp_gia.pp
               H 1.00d0 h.ps
    

    If you want to specify the initial velocities for ions, you have to set ion_velocities ='from_input', and add the IONIC_VELOCITIES card, after the ATOMIC_POSITION card, with the list of velocities in atomic units.

    NOTA BENE: in restarting the dynamics after the first CP run, remember to remove or comment the velocities parameters:

               &electrons
                  emass = 400.d0,
                  emass_cutoff = 2.5d0,
                  electron_dynamics = 'verlet'
                  ! electron_velocities = 'zero'
               /
               &ions
                  ion_dynamics = 'verlet'
                  ! ion_velocities = 'zero'
               /
    
    otherwise you will quench the system interrupting the sampling of the microcanonical ensemble.

    4.3.0.1 Varying the temperature

    It is possible to change the temperature of the system or to sample the canonical ensemble fixing the average temperature, this is done using the Nosé thermostat. To activate this thermostat for ions you have to specify in namelist &IONS:

               &ions
                  ion_dynamics = 'verlet',
                  ion_temperature = 'nose',
                  fnosep = 60.0,
                  tempw = 300.0
               /
    
    where fnosep is the frequency of the thermostat in THz, that should be chosen to be comparable with the center of the vibrational spectrum of the system, in order to excite as many vibrational modes as possible. tempw is the desired average temperature in Kelvin.

    Note: to avoid a strong coupling between the Nosé thermostat and the system, proceed step by step. Don't switch on the thermostat from a completely relaxed configuration: adding a random displacement is strongly recommended. Check which is the average temperature via a few steps of a microcanonical simulation. Don't increase the temperature too much. Finally switch on the thermostat. In the case of molecular system, different modes have to be thermalized: it is better to use a chain of thermostat or equivalently running different simulations with different frequencies.

    4.3.0.2 Nose thermostat for electrons

    It is possible to specify also the thermostat for the electrons. This is usually activated in metals or in systems where we have a transfer of energy between ionic and electronic degrees of freedom. Beware: the usage of electronic thermostats is quite delicate. The following information comes from K. Kudin:

    ''The main issue is that there is usually some "natural" fictitious kinetic energy that electrons gain from the ionic motion ("drag"). One could easily quantify how much of the fictitious energy comes from this drag by doing a CP run, then a couple of CG (same as BO) steps, and then going back to CP. The fictitious electronic energy at the last CP restart will be purely due to the drag effect.''

    ''The thermostat on electrons will either try to overexcite the otherwise "cold" electrons, or it will try to take them down to an unnaturally cold state where their fictitious kinetic energy is even below what would be just due pure drag. Neither of this is good.''

    ''I think the only workable regime with an electronic thermostat is a mild overexcitation of the electrons, however, to do this one will need to know rather precisely what is the fictitious kinetic energy due to the drag.''


    next up previous contents
    Next: 4.4 Advanced usage Up: 4 Using CP Previous: 4.2 Relax the system   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/node1.html0000644000175000017500000000607712341373100016472 0ustar mbamba Contents next up previous
    Next: 1 Introduction Up: User's Guide for The Previous: User's Guide for The


    Contents



    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/index.html0000644000175000017500000000000012341373100027223 1espresso-5.1/CPV/Doc/user_guide/user_guide.htmlustar mbambaespresso-5.1/CPV/Doc/user_guide/node9.html0000644000175000017500000002125612341373100016476 0ustar mbamba 4.2 Relax the system next up previous contents
    Next: 4.3 CP dynamics Up: 4 Using CP Previous: 4.1 Reaching the electronic   Contents

    4.2 Relax the system

    Once your system is in the GS, depending on how you have prepared the starting atomic configuration:

    1. if you have set the atomic positions "by hand" and/or from a classical code, check the forces on atoms, and if they are large ( $ \sim$ 0.1 ÷ 1.0 atomic units), you should perform an ionic minimization, otherwise the system could break up during the dynamics.
    2. if you have taken the positions from a previous run or a previous ab-initio simulation, check the forces, and if they are too small ( $ \sim$ 10-4 atomic units), this means that atoms are already in equilibrium positions and, even if left free, they will not move. Then you need to randomize positions a little bit (see below).

    Let us consider case 1). There are different strategies to relax the system, but the most used are again steepest-descent or damped-dynamics for ions and electrons. You could also mix electronic and ionic minimization scheme freely, i.e. ions in steepest-descent and electron in with damped-dynamics or vice versa.

    (a)
    suppose we want to perform steepest-descent for ions. Then we should specify the following section for ions:
     
             &ions
               ion_dynamics = 'sd'
             /
    
    Change also the ionic masses to accelerate the minimization:
     
             ATOMIC_SPECIES
              C 2.0d0 c_blyp_gia.pp
              H 2.00d0 h.ps
    
    while leaving other input parameters unchanged. Note that if the forces are really high (> 1.0 atomic units), you should always use steepest descent for the first ($ \sim$ 100 relaxation steps.
    (b)
    As the system approaches the equilibrium positions, the steepest descent scheme slows down, so is better to switch to damped dynamics:
     
             &ions
               ion_dynamics = 'damp',
               ion_damping = 0.2,
               ion_velocities = 'zero'
             /
    
    A value of ion_damping around 0.05 is good for many systems. It is also better to specify to restart with zero ionic and electronic velocities, since we have changed the masses.

    Change further the ionic masses to accelerate the minimization:

     
               ATOMIC_SPECIES
               C 0.1d0 c_blyp_gia.pp
               H 0.1d0 h.ps
    
    (c)
    when the system is really close to the equilibrium, the damped dynamics slow down too, especially because, since we are moving electron and ions together, the ionic forces are not properly correct, then it is often better to perform a ionic step every N electronic steps, or to move ions only when electron are in their GS (within the chosen threshold).

    This can be specified by adding, in the ionic section, the ion_nstepe parameter, then the &IONS namelist become as follows:

     
             &ions
               ion_dynamics = 'damp',
               ion_damping = 0.2,
               ion_velocities = 'zero',
               ion_nstepe = 10
             /
    
    Then we specify in the &CONTROL namelist:
     
               etot_conv_thr = 1.d-6,
               ekin_conv_thr = 1.d-5,
               forc_conv_thr = 1.d-3
    
    As a result, the code checks every 10 electronic steps whether the electronic system satisfies the two thresholds etot_conv_thr, ekin_conv_thr: if it does, the ions are advanced by one step. The process thus continues until the forces become smaller than forc_conv_thr.

    Note that to fully relax the system you need many runs, and different strategies, that you should mix and change in order to speed-up the convergence. The process is not automatic, but is strongly based on experience, and trial and error.

    Remember also that the convergence to the equilibrium positions depends on the energy threshold for the electronic GS, in fact correct forces (required to move ions toward the minimum) are obtained only when electrons are in their GS. Then a small threshold on forces could not be satisfied, if you do not require an even smaller threshold on total energy.

    Let us now move to case 2: randomization of positions.

    If you have relaxed the system or if the starting system is already in the equilibrium positions, then you need to displace ions from the equilibrium positions, otherwise they will not move in a dynamics simulation. After the randomization you should bring electrons on the GS again, in order to start a dynamic with the correct forces and with electrons in the GS. Then you should switch off the ionic dynamics and activate the randomization for each species, specifying the amplitude of the randomization itself. This could be done with the following &IONS namelist:

              &ions
                ion_dynamics = 'none',
                tranp(1) = .TRUE.,
                tranp(2) = .TRUE.,
                amprp(1) = 0.01
                amprp(2) = 0.01
              /
    
    In this way a random displacement (of max 0.01 a.u.) is added to atoms of species 1 and 2. All other input parameters could remain the same. Note that the difference in the total energy (etot) between relaxed and randomized positions can be used to estimate the temperature that will be reached by the system. In fact, starting with zero ionic velocities, all the difference is potential energy, but in a dynamics simulation, the energy will be equipartitioned between kinetic and potential, then to estimate the temperature take the difference in energy (de), convert it in Kelvin, divide for the number of atoms and multiply by 2/3. Randomization could be useful also while we are relaxing the system, especially when we suspect that the ions are in a local minimum or in an energy plateau.


    next up previous contents
    Next: 4.3 CP dynamics Up: 4 Using CP Previous: 4.1 Reaching the electronic   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/crossref.png0000644000175000017500000000022312341373076017131 0ustar mbambaPNG  IHDR  6tRNS-Mc%LIDATxm @ r܁!E BRcdWLTĐB1 <~ۻpjOGCIENDB`espresso-5.1/CPV/Doc/user_guide/node5.html0000644000175000017500000000547312341373100016475 0ustar mbamba 3.1 Data files next up previous contents
    Next: 3.2 Format of arrays Up: 3 Input data Previous: 3 Input data   Contents

    3.1 Data files

    The output data files are written in the directory specified by variable outdir, with names specified by variable prefix (a string that is prepended to all file names, whose default value is: prefix='pwscf'). The iotk toolkit is used to write the file in a XML format, whose definition can be found in the Developer Manual. In order to use the data directory on a different machine, you need to convert the binary files to formatted and back, using the bin/iotk script.

    The execution stops if you create a file prefix.EXIT either in the working directory (i.e. where the program is executed), or in the outdir directory. Note that with some versions of MPI, the working directory is the directory where the executable is! The advantage of this procedure is that all files are properly closed, whereas just killing the process may leave data and output files in an unusable state.



    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/images.log0000644000175000017500000001316612341373067016557 0ustar mbambaThis is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=latex 2013.10.8) 28 MAY 2014 16:44 entering extended mode restricted \write18 enabled. %&-line parsing enabled. **./images.tex (./images.tex LaTeX2e <2011/06/27> Babel and hyphenation patterns for english, dumylang, nohyphenation, it alian, loaded. (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo File: size12.clo 2007/10/19 v1.4h Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC) ) (/usr/share/texmf/tex/latex/html/html.sty Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count87 \c@lchapter=\count88 \c@chapter=\count89 \c@lsection=\count90 \c@lsubsection=\count91 \c@lsubsubsection=\count92 \c@lparagraph=\count93 \c@lsubparagraph=\count94 \c@lsubsubparagraph=\count95 \ptrfile=\write3 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live ) Package graphics Info: Driver file: dvips.def on input line 91. (/usr/share/texlive/texmf-dist/tex/latex/graphics/dvips.def File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) \Gin@req@height=\dimen103 \Gin@req@width=\dimen104 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/color.sty Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/color.cfg File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive ) Package color Info: Driver file: dvips.def on input line 130. (/usr/share/texlive/texmf-dist/tex/latex/graphics/dvipsnam.def File: dvipsnam.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) (/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty Package: inputenc 2008/03/30 v1.1d Input encoding file \inpenc@prehook=\toks15 \inpenc@posthook=\toks16 (/usr/share/texlive/texmf-dist/tex/latex/base/latin1.def File: latin1.def 2008/03/30 v1.1d Input encoding file )) \sizebox=\box26 \lthtmlwrite=\write4 (./images.aux) \openout1 = `images.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 142. LaTeX Font Info: ... okay on input line 142. latex2htmlLength hsize=349.0pt latex2htmlLength vsize=721.41339pt latex2htmlLength hoffset=0.0pt latex2htmlLength voffset=0.0pt latex2htmlLength topmargin=0.0pt latex2htmlLength topskip=0.00003pt latex2htmlLength headheight=0.0pt latex2htmlLength headsep=0.0pt latex2htmlLength parskip=0.0pt plus 1.0pt latex2htmlLength oddsidemargin=0.0pt latex2htmlLength evensidemargin=0.0pt LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 171. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 171. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 171. l2hSize :tex2html_wrap_inline913:8.25pt::8.25pt::9.92088pt. [1 ] l2hSize :tex2html_wrap_indisplay919:16.48517pt::16.48517pt::27.53748pt. [2 ] l2hSize :tex2html_wrap_indisplay920:8.25pt::8.25pt::10.4403pt. [3 ] l2hSize :tex2html_wrap_indisplay921:16.48517pt::16.48517pt::29.06525pt. [4 ] l2hSize :tex2html_wrap_indisplay922:8.25pt::8.25pt::10.4403pt. [5 ] l2hSize :tex2html_wrap_indisplay923:16.9514pt::16.9514pt::30.04291pt. [6 ] l2hSize :tex2html_wrap_indisplay924:8.25pt::8.25pt::10.4403pt. [7 ] l2hSize :tex2html_wrap_inline926:8.25pt::8.25pt::9.0842pt. [8 ] l2hSize :tex2html_wrap_inline928:8.25pt::8.25pt::10.4403pt. [9 ] l2hSize :tex2html_wrap_inline930:8.25pt::8.25pt::10.4403pt. [10 ] l2hSize :tex2html_wrap_inline932:8.25pt::8.25pt::10.4403pt. [11 ] l2hSize :tex2html_wrap_inline938:7.75pt::0.0pt::9.92088pt. [12 ] (./images.aux) ) Here is how much of TeX's memory you used: 1132 strings out of 495049 14538 string characters out of 3181577 57208 words of memory out of 3000000 4358 multiletter control sequences out of 15000+200000 6376 words of font info for 23 fonts, out of 3000000 for 9000 14 hyphenation exceptions out of 8191 25i,5n,19p,185b,147s stack positions out of 5000i,500n,10000p,200000b,50000s Output written on images.dvi (12 pages, 2852 bytes). espresso-5.1/CPV/Doc/user_guide/node6.html0000644000175000017500000001362312341373100016472 0ustar mbamba 3.2 Format of arrays containing charge density, potential, etc. next up previous contents
    Next: 4 Using CP Up: 3 Input data Previous: 3.1 Data files   Contents

    3.2 Format of arrays containing charge density, potential, etc.

    The index of arrays used to store functions defined on 3D meshes is actually a shorthand for three indices, following the FORTRAN convention ("leftmost index runs faster"). An example will explain this better. Suppose you have a 3D array psi(nr1x,nr2x,nr3x). FORTRAN compilers store this array sequentially in the computer RAM in the following way:

            psi(   1,   1,   1)
            psi(   2,   1,   1)
            ...
            psi(nr1x,   1,   1)
            psi(   1,   2,   1)
            psi(   2,   2,   1)
            ...
            psi(nr1x,   2,   1)
            ...
            ...
            psi(nr1x,nr2x,   1)
            ...
            psi(nr1x,nr2x,nr3x)
    etc
    
    Let ind be the position of the (i,j,k) element in the above list: the following relation
            ind = i + (j - 1) * nr1x + (k - 1) *  nr2x * nr1x
    
    holds. This should clarify the relation between 1D and 3D indexing. In real space, the (i,j,k) point of the FFT grid with dimensions nr1 ($ \le$nr1x), nr2 ($ \le$nr2x), , nr3 ($ \le$nr3x), is

    rijk = $\displaystyle {\frac{{i-1}}{{nr1}}}$$\displaystyle \tau_{1}^{}$ + $\displaystyle {\frac{{j-1}}{{nr2}}}$$\displaystyle \tau_{2}^{}$ + $\displaystyle {\frac{{k-1}}{{nr3}}}$$\displaystyle \tau_{3}^{}$

    where the $ \tau_{i}^{}$ are the basis vectors of the Bravais lattice. The latter are stored row-wise in the at array: $ \tau_{1}^{}$ = at(:, 1), $ \tau_{2}^{}$ = at(:, 2), $ \tau_{3}^{}$ = at(:, 3).

    The distinction between the dimensions of the FFT grid, (nr1,nr2,nr3) and the physical dimensions of the array, (nr1x,nr2x,nr3x) is done only because it is computationally convenient in some cases that the two sets are not the same. In particular, it is often convenient to have nrx1=nr1+1 to reduce memory conflicts.


    next up previous contents
    Next: 4 Using CP Up: 3 Input data Previous: 3.1 Data files   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/democritos.png0000644000175000017500000002310112341373067017453 0ustar mbambaPNG  IHDR9Yr-PLTE32f06i54h64i88g;;j?>nA@pEDuHGw HJt!OIuKMw( )!)OQ{$0RT~UV-1WY.2\Y0819_\3:b^:<;Aaefc=Che>D?EeiFLjnnnHNKOrrQWuuSXyxUZZ[}}\b_eydfz{fi|w}x~hpmrosptrvvxxz߀⃆ነ䋋㌒厔⑕唗留䙚曜眝¬鞟蟥ĭ褢礨馪ꧫ쩭͵魯ļϸ믱Ǿɽ{ pHYsVTbU vpAg9Y"IDATx|pUd}ӯi2"hԍ jsSQf.DdDW( q2,}\!*A $$RB0HHB.tխwnwtObj8J2}swϿWddrF*W\AnrF*W\AnrF*W\AnrF*W\Anr?#n,}졝N5v8 \:#})cW+Ǝelw/qv1ɲ*rKtWڌ{^hyPXA{D>㡏RriЃ ,ox\W7kO#>u Se1OXw7^D.S$ ߒ.2Ly͋l9u֮]`j&ű}e|xY;z!Kvnۉ.M97'f,yO#>c vCd<-Qߡw0< zQ+^≸y.&i%`{܂87 M67"nA6VqIc]8X}߭kE>w庤=5+ @6}ncNw`h%V8 ` ۇ3N 08_~𐣃9.$Bgǹinw#Gvzܼħpsldȼ;eQj=<3nǘpE<&q`i1A  bW[q97d9ɉ .k">S[[j/ '1ӔBΝJM\7n ZU᧐n 1lΡ 8׃b/@&'߁s m%4΋L{"BXTyd5= PuJ!gQualr2\Ρ'}ACH^艿>cRfJ Jks5҂ _Ĩd w)YMH\kyo<7ųS?\iЇw51VVǢii\ @9=&x`@{CHKΝ_ ]هRTwI/,/ s4T_L\ \,EbO|:>B6nݨ<СĴsCf&5w{*Svm,h^*ħ9:֭dn.A"#[X(I%o:xwFj4`&ǡ%|PY'Jh>;5pxvw'J .z0V6(Lttf8}Ns%BsmM 0Vf]Ӕp1c344r,%F[["]>7SjxV{H_"g9m"M3)$"DF7vԍc0kǻ9=8 )3^8q@v[¶h7DNG )FtR?ì>)Xm!8n!eJ<M)~Ufso;k5pwx7^1:pѬԛJqPXԜLA}h(l,na{[ph&VӄxvT1T0'ػ}p6kCf5bltz05vQT$G{/ s-hO6vBKぽ!/Fc"J{:/5GJT c6<A`l4Zs{5d3F;m\VIvN.gR p}BzjQŴu]'quq 17+EF{߳|;Fϟ!0vCqpxaeEu>K"/8V4\?pA.!$*{-? maaz 4+y[Gp>HwΡJ8XI,xTs,p{F<q|v\2lvdL"GBAμd`aʸ^*2D.Qg7rV85n{<եG-9 `'^"Y'XˉT-x-/;9a|ed*'Ų:-q!if014X4Ffӯe!l$NFiV+P9ά鰉 /Pbz2dbTZä'Z#;3a҃eՂĞ(ՒQa~:7=^(=f9i[r_[,0Nǭd.j79Zs(8SH&\j1Jq|r݇)kR@Ř#<~Ss3<:NV0V{ͣcgHS‚:Y(gc**UQ^? I"ʦ`o!Gp=uIGu3sK<6oGE|BEwN=Ty.AD>sYzV3zQZx{ oǿÇ Ѫz&[gG-a1fgm9 bŹ_|~to$ɺVnPxvĝ'TV/k egfOz*U5j#NW.51gqg{ި? PK k)8g9;Crh}7YD0F4SDBg˒';%_5Ubxs8w?E#DTݩ뉰PUո߇]}ˮ-U:=X4ek114˫Ch2fJ-4FIb.V7WJЈzITA4/?|?7%Ӻ t__,}. oIrse:B*iHu{'r˸+rp.Kd(:0BOQK?z )|uTk6D^U7.n J YxA|r!Ci γՠ02z MZ7@0:\A7E]hcZI7~P,(k(JKKs\N럎_apB>8d <{zYɑғrw ~q̨ mFގiRlUA9FyOÏ.]T{AA TQ[[{;,U(-CsWSyd)znu*|v^QGB/Q[\ ]80w UldEJ>T]8幡^mC-H; Zt\[ \dkǍwFb􍯘7Toծvtr'69RPvK'$9A)咻!%p,RBVXO) ڣz L䔊J }Y8%+YzPz{RH``QzTQV+jR )JTT<]0"]%X[ZR5"qU=׸\cGJszUǾ7[\ڀ"' p(|S5RQ9ni{o X+y!O6"ZBΡrAsV{VwcYF5>S^~R:*" H9nQFc|ᯐg ';1,w5@蔩-rȹrVfu5R@22V4)ejqUR5O?%sa\(OEw0Ðd( |XBʉ@, RlTx?A~p Mo<)UBH9LSV<#*9Iyjwas4Z8gUB3xxԟ r8;  S!IQc,^pq>.rABe/`pN>JKMǝdE13:h,l9藼^Iގ|0}QO*dyrw yvd?&*"GcqNLVYs RPqn+w(T"s^qF;\>DgX:SB(Ѝι{7\:`˙{6XPL9SjCjY5p]*gLNT4v[W4oiVlQ&k.-fVK7wiBaU;c71|Hz5Ƣ/ՠv.ŝNǽoЭӛuvH l"Tlҝ:h O kMP}o-rzɨLhBO/i`d:F`k^g: wzŞn4cZOTHSX`Ka0+DՏmuiZ88s Z$Gδ[WD`ry/߈dt+_HT5Ou|ߔC:RqnwVA# vqIBˆh.R= I!5o/)mZvt8^t {Qdmιt};tyg {)ց4Rrt3H?'}6,c#Z5 -S/l^[׶.֮%_E,ׯ0\\!g>g5< NָH1ynpA pΡ h_39.ppNVUcdtr3Zm_o 'Oyzj]R ꃴqEK'Rk%Fx'-SsGslwoaV19 e# szsTڴc$ 0QVn)!e=8Xtsd+ L"ћ^]S'8\;7\tp90W9G: vsU$TeQ]]{>r,O-y.w>ͭpNߜ >}»$Rk;k<+r6Jmi^mZa3M<QmwY$Y@3-#'r؟sȹޕ~pQUsiUlº( #FIn 9^s/ 9y׺F\~L>o+_yDV(JH-WV/)$_żb\8+/җ\D0"&J9 M2-Š@W6ɥJׁWn0 ytYT0(0_WΚK[cOH劲\r5W|yRVʣVjw"m6&s4j6DwLCq. K@{{+FJz%J9 )y*m@TJIlr.Hjve/fBwP&1ӳW.  oCB]"E V)VrA8(2?csIČGY}$1sh.9QNw;+tHi"+,"wI/eܮZ d9> >@F}`<[ {ZQB 9?Adu %y JzUxXͥsz ƽ ?3۠T^5314ӈ\/3,5ud‡7絋98ۅ(Mv:7jlv+8ҾsdQJys3t 5o>Awzu\ru{oӉ;F+&͚؛-AȒBJa.r_\@zFi0^6kC{YrV.e%}OTӧ,5ѭJ.MKu~+Sn@~ OsQizX^pɌ˟tyq4C+|]M=JM7"9$A9rceu՝J=K[BJ@uRsa[%]^o 4y cJ~ Kx~THI<챚"].%7' jx}T jI T)H1/{ܙYȢB fga{EqhfnL7-d퇶vOB_T4"MxQBU0A}AY;ܧH ΁V =WqzS0Dek.^ HT`DP#B {d;ҴhZWk$Oe[Mkqp:~qkU(7]W?qVoW;]Ji ӯLpK8L{W T5n`:BMaյXS3ik`~DU: l7v'im.Z=\Duu{f]q6_oڱ+ ?ѪLM|3>mKt{C aON :O4T >8{U% 'hKWʚ5kY;~|9 >NfC}7bB|Ț?J"Ia}#32K$kLb ,7tcG08L|Yq1yYrCP1Mٽрh!Th"&{a/YWFf#_TѩrO;a'hB>3<`}o j ". g]hIENDB`espresso-5.1/CPV/Doc/user_guide/WARNINGS0000644000175000017500000000053312341373067015754 0ustar mbambaNo implementation found for style `graphicx' ? brace missing for \ Substitution of arg to newlabelxx delayed. redefining command \ ? brace missing for \oldcontentsline ? brace missing for \oldnewlabel couldn't convert character sacute into available encodings ...set $ACCENT_IMAGES to get an image There is no author for this document. espresso-5.1/CPV/Doc/user_guide/contents.png0000644000175000017500000000042612341373076017145 0ustar mbambaPNG  IHDRAH PLTEooo[tRNS@fIDATx= 0 _jUTK>Yw:x *VK7Hϟd !xx8!2 *dqM #la"d2ʋz9mٺኝCSr-$𡡗BD`GR wAsV tGIENDB`espresso-5.1/CPV/Doc/user_guide/next_g.png0000644000175000017500000000042012341373076016566 0ustar mbambaPNG  IHDR%/[:tRNS-Mc%IDATx C?y2N6AKdуqHCudS. l`N#Q[O 5 Performances next up previous contents
    Next: About this document ... Up: User's Guide for The Previous: 4.4 Advanced usage   Contents

    5 Performances

    cp.x can run in principle on any number of processors. The effectiveness of parallelization is ultimately judged by the ''scaling'', i.e. how the time needed to perform a job scales with the number of processors, and depends upon:

    • the size and type of the system under study;
    • the judicious choice of the various levels of parallelization (detailed in Sec.[*]);
    • the availability of fast interprocess communications (or lack of it).
    Ideally one would like to have linear scaling, i.e. T $ \sim$ T0/Np for Np processors, where T0 is the estimated time for serial execution. In addition, one would like to have linear scaling of the RAM per processor: ON $ \sim$ O0/Np, so that large-memory systems fit into the RAM of each processor.

    As a general rule, image parallelization:

    • may give good scaling, but the slowest image will determine the overall performances (''load balancing'' may be a problem);
    • requires very little communications (suitable for ethernet communications);
    • does not reduce the required memory per processor (unsuitable for large-memory jobs).
    Parallelization on k-points:
    • guarantees (almost) linear scaling if the number of k-points is a multiple of the number of pools;
    • requires little communications (suitable for ethernet communications);
    • does not reduce the required memory per processor (unsuitable for large-memory jobs).
    Parallelization on PWs:
    • yields good to very good scaling, especially if the number of processors in a pool is a divisor of N3 and Nr3 (the dimensions along the z-axis of the FFT grids, nr3 and nr3s, which coincide for NCPPs);
    • requires heavy communications (suitable for Gigabit ethernet up to 4, 8 CPUs at most, specialized communication hardware needed for 8 or more processors );
    • yields almost linear reduction of memory per processor with the number of processors in the pool.

    A note on scaling: optimal serial performances are achieved when the data are as much as possible kept into the cache. As a side effect, PW parallelization may yield superlinear (better than linear) scaling, thanks to the increase in serial speed coming from the reduction of data size (making it easier for the machine to keep data in the cache).

    VERY IMPORTANT: For each system there is an optimal range of number of processors on which to run the job. A too large number of processors will yield performance degradation. If the size of pools is especially delicate: Np should not exceed N3 and Nr3, and should ideally be no larger than 1/2 ÷ 1/4N3 and/or Nr3. In order to increase scalability, it is often convenient to further subdivide a pool of processors into ''task groups''. When the number of processors exceeds the number of FFT planes, data can be redistributed to "task groups" so that each group can process several wavefunctions at the same time.

    The optimal number of processors for "linear-algebra" parallelization, taking care of multiplication and diagonalization of M x M matrices, should be determined by observing the performances of cdiagh/rdiagh (pw.x) or ortho (cp.x) for different numbers of processors in the linear-algebra group (must be a square integer).

    Actual parallel performances will also depend on the available software (MPI libraries) and on the available communication hardware. For PC clusters, OpenMPI (http://www.openmpi.org/) seems to yield better performances than other implementations (info by Kostantin Kudin). Note however that you need a decent communication hardware (at least Gigabit ethernet) in order to have acceptable performances with PW parallelization. Do not expect good scaling with cheap hardware: PW calculations are by no means an "embarrassing parallel" problem.

    Also note that multiprocessor motherboards for Intel Pentium CPUs typically have just one memory bus for all processors. This dramatically slows down any code doing massive access to memory (as most codes in the QUANTUM ESPRESSO distribution do) that runs on processors of the same motherboard.


    next up previous contents
    Next: About this document ... Up: User's Guide for The Previous: 4.4 Advanced usage   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/up.png0000644000175000017500000000032312341373076015730 0ustar mbambaPNG  IHDR5 PLTEooo[tRNS@fuIDATx]10 Ed&Cwr,'k7n)IT xOm'<Q1A BP+ :׊pۭYh/iO.c7Np_/11Ab$}IENDB`espresso-5.1/CPV/Doc/user_guide/node4.html0000644000175000017500000001333712341373100016472 0ustar mbamba 3 Input data next up previous contents
    Next: 3.1 Data files Up: User's Guide for The Previous: 2 Compilation   Contents

    3 Input data

    Input data for cp.x is organized into several namelists, followed by other fields (``cards'') introduced by keywords. The namelists are

    &CONTROL: general variables controlling the run
    &SYSTEM: structural information on the system under investigation
    &ELECTRONS: electronic variables, electron dynamics
    &IONS : ionic variables, ionic dynamics
    &CELL (optional): variable-cell dynamics

    The &CELL namelist may be omitted for fixed-cell calculations. This depends on the value of variable calculation in namelist &CONTROL. Most variables in namelists have default values. Only the following variables in &SYSTEM must always be specified:

    ibrav (integer) Bravais-lattice index
    celldm (real, dimension 6) crystallographic constants
    nat (integer) number of atoms in the unit cell
    ntyp (integer) number of types of atoms in the unit cell
    ecutwfc (real) kinetic energy cutoff (Ry) for wavefunctions.

    ).

    Explanations for the meaning of variables ibrav and celldm, as well as on alternative ways to input structural data, are contained in files Doc/INPUT_CP.*. These files are the reference for input data and describe a large number of other variables as well. Almost all variables have default values, which may or may not fit your needs.

    Comment lines in namelists can be introduced by a "!", exactly as in fortran code.

    After the namelists, you have several fields (``cards'') introduced by keywords with self-explanatory names:

    ATOMIC_SPECIES
    ATOMIC_POSITIONS
    CELL_PARAMETERS (optional)
    OCCUPATIONS (optional)
    The keywords may be followed on the same line by an option. Unknown fields are ignored. See the files mentioned above for details on the available ``cards''.

    Comments lines in ``cards'' can be introduced by either a ``!'' or a ``#'' character in the first position of a line.



    Subsections
    next up previous contents
    Next: 3.1 Data files Up: User's Guide for The Previous: 2 Compilation   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/images.tex0000644000175000017500000002114212341373067016567 0ustar mbamba\batchmode \documentclass[12pt,a4paper]{article} \RequirePackage{ifthen} \usepackage{html} \usepackage{graphicx} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm \usepackage[dvips]{color} \pagecolor[gray]{.7} \usepackage[latin1]{inputenc} \makeatletter \makeatletter \count@=\the\catcode`\_ \catcode`\_=8 \newenvironment{tex2html_wrap}{}{}% \catcode`\<=12\catcode`\_=\count@ \newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}% \newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}% \expandafter\renewcommand\csname #1\endcsname}% \newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}% \let\newedcommand\renewedcommand \let\renewedenvironment\newedenvironment \makeatother \let\mathon=$ \let\mathoff=$ \ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi \newbox\sizebox \setlength{\hoffset}{0pt}\setlength{\voffset}{0pt} \addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt} \addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt} \addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt} \addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt} \setlength{\textwidth}{349pt} \newwrite\lthtmlwrite \makeatletter \let\realnormalsize=\normalsize \global\topskip=2sp \def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float \def\@float{\let\@savefreelist\@freelist\real@float} \def\liih@math{\ifmmode$\else\bad@math\fi} \def\end@float{\realend@float\global\let\@freelist\@savefreelist} \let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float \let\@largefloatcheck=\relax \let\if@boxedmulticols=\iftrue \def\@dbflt{\let\@savefreelist\@freelist\real@dbflt} \def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}% \def\phantompar{\csname par\endcsname}\normalsize}% \def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}% \newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }% \newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }% \newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup % \let\ifinner=\iffalse \let\)\liih@math }% \newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}% \expandafter\box\next\egroup}% \newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}% \newcommand\lthtmllogmath{\dimen0\ht\sizebox \advance\dimen0\dp\sizebox \ifdim\dimen0>.95\vsize \lthtmltypeout{% *** image for \lthtmlmathenv\space is too tall at \the\dimen0, reducing to .95 vsize ***}% \ht\sizebox.95\vsize \dp\sizebox\z@ \fi \lthtmltypeout{l2hSize % :\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}% \newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist \lthtmlmathtype{#1}\lthtmlvboxmathA}% \newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}% \newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup \let\@savefreelist\@freelist \lthtmlhboxmathB}% \newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}% \newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox \global\let\@freelist\@savefreelist}% \newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}% \newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}% \newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}% \lthtmldisplayA{#1}\let\@eqnnum\relax}% \newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}% \newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB} \newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA \vrule height1.5ex width0pt }% \newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}% \newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}% \newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline} \newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath} \newcommand\lthtmlindisplaymathZ{\egroup % \centerinlinemath\lthtmllogmath\lthtmlsetmath} \def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{% \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{% \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt% \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt% \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\centerinlinemath{% \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1 \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax} \def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill \else\expandafter\vss\fi}% \providecommand{\selectlanguage}[1]{}% \makeatletter \tracingstats = 1 \providecommand{\Beta}{\textrm{B}} \providecommand{\Mu}{\textrm{M}} \providecommand{\Kappa}{\textrm{K}} \providecommand{\Rho}{\textrm{R}} \providecommand{\Epsilon}{\textrm{E}} \providecommand{\Chi}{\textrm{X}} \providecommand{\Iota}{\textrm{J}} \providecommand{\omicron}{\textrm{o}} \providecommand{\Zeta}{\textrm{Z}} \providecommand{\Eta}{\textrm{H}} \providecommand{\Omicron}{\textrm{O}} \providecommand{\Nu}{\textrm{N}} \providecommand{\Tau}{\textrm{T}} \providecommand{\Alpha}{\textrm{A}} \begin{document} \pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}% \makeatletter \if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}% \else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi% \lthtmltypeout{}% \makeatother \setcounter{page}{1} \onecolumn % !!! IMAGES START HERE !!! \stepcounter{section} \stepcounter{section} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline913}% $ \le$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay919}% $\displaystyle {\frac{{i-1}}{{nr1}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay920}% $\displaystyle \tau_{1}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay921}% $\displaystyle {\frac{{j-1}}{{nr2}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay922}% $\displaystyle \tau_{2}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay923}% $\displaystyle {\frac{{k-1}}{{nr3}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay924}% $\displaystyle \tau_{3}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline926}% $ \tau_{i}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline928}% $ \tau_{1}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline930}% $ \tau_{2}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline932}% $ \tau_{3}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline938}% $ \sim$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{section} \end{document} espresso-5.1/CPV/Doc/user_guide/img4.png0000644000175000017500000000076712341373074016156 0ustar mbambaPNG  IHDR2=j@0PLTEMJK# b``mkkXUV856C@@wuv.*+ Ė`tRNS@fuIDAT8c`^"X\\@)0PE An .6bu8?bR膲u1z>G,)&9` 4 Using CP next up previous contents
    Next: 4.1 Reaching the electronic Up: User's Guide for The Previous: 3.2 Format of arrays   Contents

    4 Using CP

    It is important to understand that a CP simulation is a sequence of different runs, some of them used to "prepare" the initial state of the system, and other performed to collect statistics, or to modify the state of the system itself, i.e. modify the temperature or the pressure.

    To prepare and run a CP simulation you should first of all define the system:

    atomic positions
    system cell
    pseudopotentials
    cut-offs
    number of electrons and bands (optional)
    FFT grids (optional)
    An example of input file (Benzene Molecule):
             &control
                title = 'Benzene Molecule',
                calculation = 'cp',
                restart_mode = 'from_scratch',
                ndr = 51,
                ndw = 51,
                nstep = 100,
                iprint = 10,
                isave = 100,
                tstress = .TRUE.,
                tprnfor = .TRUE.,
                dt    = 5.0d0,
                etot_conv_thr = 1.d-9,
                ekin_conv_thr = 1.d-4,
                prefix = 'c6h6',
                pseudo_dir='/scratch/benzene/',
                outdir='/scratch/benzene/Out/'
             /
             &system
                ibrav = 14,
                celldm(1) = 16.0,
                celldm(2) = 1.0,
                celldm(3) = 0.5,
                celldm(4) = 0.0,
                celldm(5) = 0.0,
                celldm(6) = 0.0,
                nat = 12,
                ntyp = 2,
                nbnd = 15,
                ecutwfc = 40.0,
                nr1b= 10, nr2b = 10, nr3b = 10,
                input_dft = 'BLYP'
             /
             &electrons
                emass = 400.d0,
                emass_cutoff = 2.5d0,
                electron_dynamics = 'sd'
             /
             &ions
                ion_dynamics = 'none'
             /
             &cell
                cell_dynamics = 'none',
                press = 0.0d0,
              /
              ATOMIC_SPECIES
              C 12.0d0 c_blyp_gia.pp
              H 1.00d0 h.ps
              ATOMIC_POSITIONS (bohr)
              C     2.6 0.0 0.0
              C     1.3 -1.3 0.0
              C    -1.3 -1.3 0.0
              C    -2.6 0.0 0.0
              C    -1.3 1.3 0.0
              C     1.3 1.3 0.0
              H     4.4 0.0 0.0
              H     2.2 -2.2 0.0
              H    -2.2 -2.2 0.0
              H    -4.4 0.0 0.0
              H    -2.2 2.2 0.0
              H     2.2 2.2 0.0
    
    You can find the description of the input variables in file Doc/INPUT_CP.*.



    Subsections

    paolo giannozzi 2014-05-28
    espresso-5.1/CPV/Doc/user_guide/img3.png0000644000175000017500000000000012341373073025136 1espresso-5.1/CPV/Doc/user_guide/img9.pngustar mbambaespresso-5.1/Makefile0000644000175000017500000002167412341373036012756 0ustar mbambasinclude make.sys default : @echo 'to install, type at the shell prompt:' @echo ' ./configure' @echo ' make target' @echo 'where target is one of the following:' @echo ' pw basic code for scf, structure optimization, MD' @echo ' ph phonon code, Gamma-only version and third-order derivatives' @echo ' pwcond ballistic conductance' @echo ' neb code for Nudged Elastic Band method' @echo ' pp postprocessing programs' @echo ' cp CP code: CP MD with ultrasoft pseudopotentials' @echo ' ld1 utilities for pseudopotential generation' @echo ' upf utilities for pseudopotential conversion' @echo ' tddfpt time dependent dft code' @echo ' gui Graphical User Interface ' @echo ' gwl GW with Lanczos chains ' @echo ' xspectra X-ray core-hole spectroscopy calculations ' @echo ' pwall same as "make pw ph pp pwcond neb"' @echo ' all same as "make pwall cp ld1 upf tddfpt gwl"' @echo ' gipaw NMR and EPR spectra' @echo ' w90 Maximally localised Wannier Functions' @echo ' want Quantum Transport with Wannier functions' @echo ' yambo electronic excitations with plane waves' @echo ' plumed Metadynamics plugin for pw or cp' @echo ' epw Electron-Phonon Coupling with wannier functions, EPW package' @echo ' gpu Download the latest QE-GPU package' @echo ' couple Library interface for coupling to external codes' @echo ' clean remove executables and objects' @echo ' veryclean revert distribution to the original status' @echo ' tar create a tarball of the source tree' @if test -d GUI/; then \ echo ' tar-gui create a standalone PWgui tarball from the GUI sources'; fi @echo ' doc build documentation' @echo ' links create links to all executables in bin/' ########################################################### # Main targets ########################################################### # The syntax "( cd PW ; $(MAKE) TLDEPS= all || exit 1)" below # guarantees that error code 1 is returned in case of error and make stops # If "|| exit 1" is not present, the error code from make in subdirectories # is not returned and make goes on even if compilation has failed # pw : bindir mods liblapack libblas libs libiotk if test -d PW ; then \ ( cd PW ; $(MAKE) TLDEPS= all || exit 1) ; fi cp : bindir mods liblapack libblas libs libiotk if test -d CPV ; then \ ( cd CPV ; $(MAKE) TLDEPS= all || exit 1) ; fi ph : bindir mods libs pw ( cd install ; $(MAKE) -f plugins_makefile phonon || exit 1 ) neb : bindir mods libs pw ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) tddfpt : bindir mods libs pw ph ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) pp : bindir mods libs pw if test -d PP ; then \ ( cd PP ; $(MAKE) TLDEPS= all || exit 1 ) ; fi pwcond : bindir mods libs pw pp ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) acfdt : bindir mods libs pw ph if test -d ACFDT ; then \ ( cd ACFDT ; $(MAKE) TLDEPS= all || exit 1 ) ; fi gwl : ph if test -d GWW ; then \ ( cd GWW ; $(MAKE) TLDEPS= all || exit 1 ) ; fi gipaw : pw ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) ld1 : bindir liblapack libblas mods libs ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) upf : mods libs liblapack libblas if test -d upftools ; then \ ( cd upftools ; $(MAKE) TLDEPS= all || exit 1 ) ; fi pw_export : libiotk bindir mods libs pw if test -d PP ; then \ ( cd PP ; $(MAKE) TLDEPS= pw_export.x || exit 1 ) ; fi xspectra : bindir mods libs pw ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) couple : pw cp if test -d COUPLE ; then \ ( cd COUPLE ; $(MAKE) TLDEPS= all || exit 1 ) ; fi gui : touch-dummy ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) pwall : pw neb ph pp pwcond acfdt all : pwall cp ld1 upf tddfpt gwl xspectra ########################################################### # Auxiliary targets used by main targets: # compile modules, libraries, directory for binaries, etc ########################################################### mods : libiotk libelpa ( cd Modules ; $(MAKE) TLDEPS= all || exit 1 ) libs : mods ( cd clib ; $(MAKE) TLDEPS= all || exit 1 ) ( cd flib ; $(MAKE) TLDEPS= $(FLIB_TARGETS) || exit 1 ) bindir : test -d bin || mkdir bin ############################################################# # Targets for external libraries ############################################################ libblas : touch-dummy cd install ; $(MAKE) -f extlibs_makefile $@ liblapack: touch-dummy cd install ; $(MAKE) -f extlibs_makefile $@ libelpa: touch-dummy cd install ; $(MAKE) -f extlibs_makefile $@ libiotk: touch-dummy cd install ; $(MAKE) -f extlibs_makefile $@ # In case of trouble with iotk and compilers, add # FFLAGS="$(FFLAGS_NOOPT)" after $(MFLAGS) ######################################################### # plugins ######################################################### w90: bindir libblas liblapack ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) want : touch-dummy ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) yambo: touch-dummy ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) plumed: touch-dummy ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) epw: touch-dummy ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) gpu: touch-dummy ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) touch-dummy : $(dummy-variable) ######################################################### # "make links" produces links to all executables in bin/ # while "make inst" INSTALLDIR=/some/place" links all # available executables to /some/place/ (must exist and # be writable), prepending "qe_" to all executables (e.g.: # /some/place/qe_pw.x). This allows installation of QE # into system directories with no danger of name conflicts ######################################################### inst : ( for exe in */*/*.x */bin/* ; do \ file=`basename $$exe`; if test "$(INSTALLDIR)" != ""; then \ if test ! -L $(PWD)/$$exe; then ln -fs $(PWD)/$$exe $(INSTALLDIR)/qe_$$file ; fi ; \ fi ; \ done ) links : bindir ( cd bin/ ; \ rm -f *.x ; \ for exe in ../*/*/*.x ../*/bin/* ; do \ if test ! -L $$exe ; then ln -fs $$exe . ; fi \ done \ ) ######################################################### # Other targets: clean up ######################################################### # remove object files and executables clean : doc_clean touch make.sys for dir in \ CPV Modules PP PW \ ACFDT COUPLE GWW XSpectra \ clib flib pwtools upftools \ dev-tools extlibs Environ \ ; do \ if test -d $$dir ; then \ ( cd $$dir ; \ $(MAKE) TLDEPS= clean ) \ fi \ done - @(cd install ; $(MAKE) -f plugins_makefile clean) - @(cd install ; $(MAKE) -f extlibs_makefile clean) - /bin/rm -rf bin/*.x tmp - cd PW/tests; /bin/rm -rf CRASH *.out *.out? ; cd - - cd CPV/tests; /bin/rm -rf CRASH *.out *.out? # remove configuration files too distclean veryclean : clean - @(cd install ; $(MAKE) -f plugins_makefile veryclean) - @(cd install ; $(MAKE) -f extlibs_makefile veryclean) - rm -rf install/patch-plumed - cd install ; rm -f config.log configure.msg config.status \ CPV/version.h ChangeLog* intel.pcl */intel.pcl - cd install ; rm -fr autom4te.cache - cd pseudo; ./clean_ps ; cd - - cd install; ./clean.sh ; cd - - cd include; ./clean.sh ; cd - - rm -f espresso.tar.gz - rm -rf make.sys tar : @if test -f espresso.tar.gz ; then /bin/rm espresso.tar.gz ; fi # do not include unneeded stuff find ./ -type f | grep -v -e /.svn/ -e'/\.' -e'\.o$$' \ -e'\.mod$$' -e'\.a$$' -e'\.d$$' -e'\.i$$' -e'\.F90$$' -e'\.x$$' \ -e'~$$' -e'\./GUI' -e '\./tempdir' | xargs tar rvf espresso.tar gzip espresso.tar ######################################################### # Tools for the developers ######################################################### tar-gui : @if test -d GUI/PWgui ; then \ cd GUI/PWgui ; \ $(MAKE) TLDEPS= clean svninit pwgui-source; \ mv PWgui-*.tgz ../.. ; \ else \ echo ; \ echo " Sorry, tar-gui works only for svn sources !!!" ; \ echo ; \ fi # NOTICE about "make doc": in order to build the .html and .txt # documentation in Doc, "tcl", "tcllib", "xsltproc" are needed; # in order to build the .pdf files in Doc, "pdflatex" is needed; # in order to build html files for user guide and developer manual, # "latex2html" and "convert" (from Image-Magick) are needed. doc : touch-dummy if test -d Doc ; then \ ( cd Doc ; $(MAKE) TLDEPS= all ) ; fi for dir in */Doc; do \ ( if test -f $$dir/Makefile ; then \ ( cd $$dir; $(MAKE) TLDEPS= all ) ; fi ) ; done doc_clean : if test -d Doc ; then \ ( cd Doc ; $(MAKE) TLDEPS= clean ) ; fi for dir in */Doc; do \ ( if test -f $$dir/Makefile ; then \ ( cd $$dir; $(MAKE) TLDEPS= clean ) ; fi ) ; done depend: @echo 'Checking dependencies...' - ( if test -x install/makedeps.sh ; then install/makedeps.sh ; fi) espresso-5.1/Doc/0000755000175000017500000000000012341373334012012 5ustar mbambaespresso-5.1/Doc/INPUT_BANDS.html0000777000175000017500000000000012341373334020436 2../PP/Doc/INPUT_BANDS.htmlustar mbambaespresso-5.1/Doc/INPUT_CPPP.xml0000777000175000017500000000000012341373334020065 2../CPV/Doc/INPUT_CPPP.xmlustar mbambaespresso-5.1/Doc/INPUT_pw2bgw.xml0000777000175000017500000000000012341373334021070 2../PP/Doc/INPUT_pw2bgw.xmlustar mbambaespresso-5.1/Doc/INPUT_pw2bgw.html0000777000175000017500000000000012341373334021400 2../PP/Doc/INPUT_pw2bgw.htmlustar mbambaespresso-5.1/Doc/INPUT_PP.xml0000777000175000017500000000000012341373334017306 2../PP/Doc/INPUT_PP.xmlustar mbambaespresso-5.1/Doc/INPUT_D3.html0000777000175000017500000000000012341373334020356 2../PHonon/Doc/INPUT_D3.htmlustar mbambaespresso-5.1/Doc/quantum_espresso.png0000644000175000017500000011316612341373034016142 0ustar mbambaPNG  IHDRj pHYsddFtEXtRaw profile type app12 app12 15 4475636b79000100040000003c0000 u vpAgIDATxymYUǘZk7}PT H"*!1gQ_4jg>QIg)D SR@uf51s}O5*V[g֜kRU6=^ID *'Cd $JR_졯b_ Oeu'0h J՟d >BsO*}^&h. V̱ƒ=L%(L1zO= YW̱ +XAB8!zN ]Iݵ +Vq>S@=X5)X-D` P{9 +|6`+V?RsgF#e2cg +o k}0)! *$ CU{DDD-,"M@@lA e?VX3sL6Is"7,U~0狜s "r5S&"j.d+oC (CIsO9 .x"{x C2$#'H@ HV*i&$$$RUePED571\bd@, 6d@!j*`6 l01,)B ++ BTJ (xdW[_ (RDDXZB$";#CXX$db@>B5|^`a~(19M%1G5Ǽυ`Lttht+XaNJ9z rHT2Xb[MeZXm* TH,9T5'^s6PH(H *P9T*/d=Sr`32 Y%)u"XBXD`e){WXa1@G:HOY" "f)Wd>sޯk,S ɜ栒5H 9jHP4ŻT!PE>XG u(ٺ>)q`R rd4lZ#ĖۅaL@fjap)V+IbHZJ)r$Da&dj 6?ѢCTzHS$AsXd,$ 5G9̡ |Je}8wvoDeY_ 9P vrj[Lla-$@<"V1AA@=}+قs<SHF2@ 3` JD)Ң>" H 9$3!=$RM A9A稒He?΁e}~yC%`ia4DP&q`{bL@:v?nj`5(ю{b;v4Xzh&Va0d[;O9 T 9 #RPJSIrO](GL9F*^)H(=b*5\e h Fa#\쀘, UdҬ˓ 5Vقð d^'z df`F@h>b4%gfK"{fӨO Ф9j { I);NG!A ͚i"a,-[3(b|Q8QHdř$f dLQ([HqVI-)p$!oXf+)b(`rI.@2NOM?AE 5`q 7LTH4*=QBq(/ (N#e bHK#rO"ϑ{GaZ'AMD `E^,AD3,ܕkfBQ"TETKf>;"AH[fW85L%Tȸ&Fa݋aojWXa1 gSRSfKi L=Fq")\1h֔Eb@#RC:@$ͽ^I#k!c"d QE0 1e*v#&kPlRfw Ė9"' gT4kJj$J 856"pЬEU ҽ ++dq[p՜ I<#5&U(MM=l'&&۸8NjR PNii), i"H)$Xd2k%~ca=]BWʀ2Uyo o(/!R s! B!d*+P$HP Y5H{Mmxr5'Kedr[CI4cH0.Z +` A$sl52sΔI;hd+&IPB80o9G3) qN9dm(Ð1c`7la>s;^Ѓ0(QҫIbXp,se[AD4B9"gp_{ؓHk9*ܫe XҠSDb uD X=*/_a="*"'{vgI l@1 ٳ|y4A8ܛ{ aAJ>jk؊ب$"eGƩq0^%lDDظa2JD`/ X TP|V T`HFfz =E,$")HΜ3rDaJ A#INu  )+på sR95q.LӔ$" 2 J0p{o!O;s=3)H@Wn-PCl k`erׄ Uv%cL%c m([q2` Ed91a"dI#r@$=gt+ T{ɁrfI=r7DA:iʰ us\8dL̐D5t-r$ epNDJ`+r.bPr(kQ?4G!vHa퐧H3̞Lzr ZRb7URcEa%eK@ϣ>"y_ Q8pB"I$"ڋ$\q0=93gRjIze=r@"cfd [3JqbaEPIQCoRG1#0s&!X9B#[lak8- 0JUaرX6lCvW@Yd<%b,$vX$o((ϗKw.(2bb$Hf! B3RVi5LȤEQB#jiQ-Q^2tVq A-R ւ PkRK3A":0ư@CO%F 8h!E-B4EI&m}'`@Nhz՘݀LΓdFfȶ}5""f6|wo!{gx@a3RDZA,dJSo[Z_#'΂͆0BT+CURPR!*_\"lrX1E\֖NPTR1HHC"!͐f002VdjX&Sdd5l SzpXaAna4(@BB3B2RԮ DJ 1ZXq7V9.8HC 0/sD 3Ei9~Hn;6հ%b\xcًTk0 eb ,\#<;d59kJh jHG9J9%4* d J0 YQ UX1 m@N-aaJqJ簇#fŮZ5dkTc**H[{^D#A &,AA-u&/7&hE%#^SO*9W6I3HU# % @(b\+Ys<\PQ0R4AAE?AS H=a&)23WTP5`m﷨] &6d(\ 40e)$IUKCD< ]a2VC靧*"& џEC?E(ȽVR$2jkrkpCn6jruCClEvRJHq>@Fty",)]LN92ϕ.OւRQT9eŐIh-k U>p}Wx(R}S՜3l 4 g[#SѨd@uvh`P5"75`r8ܤMeNEU Qm j@0y6%"3$9GeD*3~%hgVE1;(%58Jb'DU֕dkF۸e|W{bdZha~ӾWJ [ c@-ڤ="EY(xS2#)AR(5ʕ1*KjZacE}馅v, S@SB,'x;=f6vz!9Fr{ M#7jKqɵD SPmn#5ӌM5ƹVPYbq!8Şp7)^t` VœBZVVt;$a[`2NB-Cub=h C>\j "wd &v#8ęRCgB־.۱b Y%CL9Ŏr; ]0toZ3)YYX%PF6@] {hwrGq91pVGQïsf_]PƙKYe;B3Qr|[A"  d Tx\1 @wk\aVqAHC {S)*uHLs@663v4OIHF3 z yuoffO0-[6Pm:咚B:Kؘ '!T"E @XKIÊ`!vLcKbYs\ttvS-Cj"Q@{GVpDF>RP$4U%UA(ǬCw{$hEÍT;7Bz ~ ~[AZHA!H6̖l b9Y ]4Дd Q sCdP#,ȒYU cb#̥$L"sS*a&"DzJB($pqD b(QA3[^˃CL 7Dz n [+[ -!@>l#ʲ Jq2k֜˘vF)q7dP{Py󰝱VX1ņ.VCG7Elg!R /D!"p P,9Glbޏ~$ |+H!srB kS|| "FhT:T({{&#p-:Zfc5NP+<b K\0~JiZS{H39dv9v$i}K hzFT RVp %5V0F-e14Yn]ixz'~qUf@s o=2oBѹ`{6B!.NxWƆݎBጶX `aÌ2 k^\+b R((~ơ[h_drk$Hla1I{|&"XbL9+5l;TUcm c +> 8a7eUS FӜ$"jgD܀cg3VMGvX1/,a vQj$ǜթȡ)r4338+ AQPj~~CpvwQ5T1"s-M B5(pDҀL[^ag+渠0A =”=vߥiGqJ)Dlۘ@Hf*n(9RunPo:z :\wN}("LD\B38Uhx@fz,SV Ba5gFE4GLJ,PdJ Ē{|UUQykz &&܆ ǨF(}fM/V%KȢbn&l*!j*pB,dVx` 1C$ &vy" H,HR" IA% *9j &M7k5`kU*;sէ RJqdX|6` y~{m ZW[ҪjWxX`e7r@?~=t;^gH=$MKȂ!x2~ 5[#TPmPzAv.fnvqiH]RIpq[1.h"g-R md{p S2Dd*jVq!EbR?7!Z%g=') BDbgɡE!PYx kC!~yeΐrҽ!*j8Wk@ʦc6ar# Z>cX1ɻɬwLn3wўd=0Q8e6@"@VTB =d4r$K9Td$h<=l_TitHG4ZxɁN+,A5w^(x՗U+IjbD37˱fU_q=Ie 25hw4iEEU܍{ +P ȿptL4H] b֐4ej"JQHADJE`3i`=#M%bYr' b&yr |[Ԏm%Sk%Θ|[:=+^!s\(`%r񬆳;v%)"Y!"YDJ }'1 gx 51Mi|οp:]c{Ɍ\ecSg v8v08\ mV r,ewПϢۦAt,B)qLhp֢wN &&&L`)kA5f8BKu&Zv /+< 0P#!lPPդ4kxeƨFdҴbbVq st;ܞnm.i@A(dʂ.,*RG!VdJC~ H6]׋e~ ZZ? (iԬ7y8² ;-ܘZ"ī+;Eb:#g0߁'-\noNJ9.tX$h瘷:L:M4O)z JNvHY3-ձY1 c1Q5&5#r(鷺/NU@mZCS7G\oO[ޱs{0v{觨WX1j{Srn(].Q')zhȒD@9k bg&"bff^&;asUo`r habˬn~+%[605UAz*#^I+mX- &[lcXډsA(>):2""Md g0F:o)-l t_s8WFw0hQEȒ RJ6D@5*Yʀ"90J UB N`#h  h!7 H"r@ 0BVvP">]/Ʉz 8naj:kݙ}3u4aHNṽU*T~n +j2z Dm"" D `Fv1P7dkؚMæ!< +yᴱ3# |LI"B HA1FkmXSη(6$[ٓz>q[w ;mh#f֏ Qz' N;`NW~ |}Bh}6PkP`f[Ι UC+PPc] dKh,t>k5VuU  "m0@hfj c2lxV:[čI@`, LFJ "95p虌Ax"Z+k>K?|`֒T.c]XTT;P9gOڹm5~%S_q>|{bQNmXz/HO9.Cnj;3a&'2F MsiƒŠ9.H3`T4&l",ܚO -̡5T# ;ұ->[Guh몰 tbe(T3<5>> {rm??:K gDIW̩5W]:ku)xqّE_pW^Ǎ}6Py0Z@Ȃo;{l$ 8?ݱw?=_߿U_*ң8]CSa<ޥi,TǨ`Ow!sХg §KkYy8Z,2r풛kAqI)4*!J0焏 00x1i0Np_u9grcqӾmiрdUL;$!(ZY)_/fTO|Ϥ2Z3XM6 G,&rסk%4͍P}VX[V9'8+Ad L)If"T腔x_GqNrcA `1\;G qi }QA!9+1:~>g{;Oۿ?}i: v!N僵O^cۑU_D]iVnVGuv.nhѫ i03@/gPTjqh9j….AiY71`siD18'ޥҥn4Csc~վ WLѭaD?_? U=@uV#C˟o?Qڒ˵AD3*윳v]'\e gO#o8z٨q7{G֦9z;7spt}6#B/ؙ>dH}s\ CeEN #,5@T"*ռX~`|!`86Եq5c)6 KI@- c}ΟvKqDӬ'>a>O"7?~MCu̴BgS+]# k$iٸ$%m6c.t6vk^?gM_׆);o՟؋e:`wit0Ӽv~~bX1Dž¾@PQCBJ PT({tFik [55frئYfե%Ya-bDGNk6Bl2'G< "v߻;ZUU3Q*>J&1U!뺮K)H3tͨ2Nc~sZL$ɴ1s&Sm}+VXc $h*Y{&FmB'Y*hU%̭R(|3;rG7yj%Q@]z&~Fy$uw_zÓz7I뱗1C?~ž+b .>5=ƖbD*Y]$#US Q*_!P(01!vdCK*E19D0 ZL +7}buZ5>=w/_kv)3@T؞wBH]}Ɔ3{ 0~!00| ~/]7qMu޳}4WE2:g;3݊9VxhR >lQ,0axscXъkjwԥ܇% -b߇VxP$7G5'Svvp\v2o%T:> "zASH9g;ӫ؞]583ѰvTKqU ^*\ 8\["Yu Btk_}ףLP4{?w|՗d?zvglӗ]oz5zZ~Ҷ83/]Ji6]df&sch84McA.*`?=oʿWybtW=9|˖NS'lڱvCdB0C+@F:xK3AGC@d6΀1ZP% !);\#t_τo̺jp_G_t_ f-[k?U7z~ ~bi1SU9gϷ0v/͟h,6|zo0ߨj M^5VgY޺x &í}a2醪$l@IgM (,*h(Ȣ^OyJ?\'j* ý$cXIsM/;_GݼGZ~zș>_=}_/&<}mGʺ/"!B AD9=^LD1#ٵѱu񊝄lKTw[Н;Yʳ]LN#%Wn? IaGkԛ~ӽCOߥW^ xDR]21{"KR|to ܛ9ߴG0>e [vS%9Bz +TU5\[]遌nLm:?֨Z:wjNOO11&h.5yq$bVXpɭ8W$;pGF]c9L0oAiejXwaukz0Q <ўF쵏Hl_rѹa$+؊u9%C3 d rGMMY5sWp/*F fHΙ1! 2)+HfPCYRt:N'O);:P fg<'2Reh]4@>fJ8咻+pX}T/O"8Ͼf_7}eTy큷;7ݜDfciQ`sm\aƥY}B S54qL@d X Y@o\G Pi]<^̡ԫvNv<Ιq'5M6[W\2T4/?-˽ZUK( ""yr`g>-ћ]41!Nn[!s\ r! ~zqtXl` LM-%5lY~9Ώdc!\)Vq-H† iQb2LBS*|A*$(֏%Y]!jB5k)օy$^S GާO6PZ8(?](A"w 1Xֲs]1SysݵnFI7Ȁ- @ vb߶V԰b R()kZU l8"U-yDLG dB 0v K1\%0ؔSf6n |fiVʵ??#Dz|%(S@Oc49kmUUq W<`s(>_u_ N"Ev +0.g֣qF 6Qmoz oQ ?jV. !0 ?ɛbM6&Xo9doc{{{gggooo2mB(f2}`pX/O61"躿UF I.ٳm k*zS%s\(`PX\M~;p!:5lΗEE"RX]8 _D+\쭣_κ:$)YC֦}Q ]>ɖ of4mlllmmmllFC =Z,\ Oj&Q]U s3y23,4CT `k$^2c(g fv>(YB(KpQ.GĔ1{ }+_H}_X.;sZVEi*2)iJj-b"CH1ff$8*(Ov}G gC :R"e1u3DZ7SR{DpbVd= #Yg ٜ0.٬Gst4@ ㄽӠvYjw\@@8)r +z7h{i}zZĻ!(XTnYbjuow &,YXНa"M!`󜱿_jj܎XvTO Q*B~pĝکFOirBdY է?"~oJ!A*'$%1,Wb@ܯ%$ ѡu{fCttƓN]go?tꜫj6]y7pÕW\vɓu]e/r-{ 7]B~m^ל>}:Uu΍F>=ɣ?2Ƭ7|C-oyG>fN~JsUzd:/'ֆ/zыN8a ->xM71w~׷ۛURի~vU9@z0~w۶F?}眿9POp[?<ˎ4MmphZC{:ņ=Dwىn:=m>\OˆLS=W»_Y mI|c-/;q}= w8hm2V3m 61U=?A'frcG_GC7VAS-=rw ͽO|~O#Vd|F R^oߩwLZk_gݺ e&|=~9={WNCwEx\rSV6r'j ՖVZmِf]ԬZG!Q9QK09'SU]p'[@15d%D5hdϊ{4ݧV}ަƽ;>H|죽(ȒR~UU1:ux_蝝m1ՋeϜ9u]1'O|BPuV*]/Tޔڔ}I@]9^ Bwuigzlrk EK҇_7-֭w]LI`x<F6 G2e?!l+ԉ?}P6=;t[WL'7-?~ `m/;USݳn9$kT9ƵNfX6Ĭ6/oO˳1O_5 /۷?{0sW? Dn?X;sxm3䴽wp79淼~A.+/EUU'(%sS>mΛg7ǐS2֖F]"φFl6wrYPv}Z&*[c5~1ƽ|4ͽ+sMӈ?g=hu]@|folۖo"j&%qvITZ+'\^/rkD0uִ֪j6ywԩj^ -53~3oT mzE"q?k:uϿcauson~;$B?gIoz^}3oۙ׾IX@!f_md@ΘZSV(Yd 4ʄ#z`2(KI _/GW_>ѵ׀ XOWN}).I)A?վyiDt+R*B>YqB1~W#/n#t܉E/P x\\l6; )GQ`)xo#0 +{?L]I{r|\q+vwwNb,XluAcYU m$"Re,-l2sG()m 1k( naqvc䪁V-dtC sv8:o uУ-9Kd6uǒ!GE* 4iu9l{W٦_ڰ AC-dFL E b " 5[Irs *qf+nUnեwnR  ``M3H0Wy|,w5 FN15l7K/ʖb ¬ޏO՗uGr@:+f._"*\٧VGׅtYC%cՔՄ$^ڟJj4l ˓PBwZjl;쾶㹢{W.afc%LV3Kkdh4:XdB_eJG1TL#٘,(F*Ƙ,3gō7X". ќH۬H wS:SWcLh TɢDk92d{B}`o}Neրzmnlu'M[{0w!`XV0fX"RF<ѭdooNS0&C]@}7&ܨȬ۱4Xud=@SC<2zT?yG\=9CH@H[aAG=]0?=iF0zf5L(PI ;2lBԭr.Q(t&Xc H ȁ/9dXļXD-y(Kg1"D|BŤw.|i|`̾IJȺ:g}7es]R@ۥ;{,>e屻;;{luؖPHnvMo>wxDXld^Ukߋ}ZBk8IՔDfr87 o=DD}CppUNs" b8{NUmg9iPT3tLm|p3`EIq@K;O#ic32$QY$py4o͛sXjqbKJثy=,c:gd(#!UgbBPWJ^,Ў $DY , LZrAq6M,*՗ǿBAI&ѬL$VRsv=uQ`E nSNGѲ>}[~7~[/x__?ݽ9Ò1tQOyk>6蕯ɧ>11@j礐l6s,A&ݮڅ౪TA)TOξ sUM!c'@'BHvyo__MI))P2:#g=jzԫo_?hv4L`?+_k'3ï+p˭S{c( (,ݒ0!32T1VX*Ƀ 0y18rI/ne%Xa'0GHF4w,NWwo1[L`pu$||+EDI#Dž 1c5{Pa IB1<3;9W/|;sC0YR&}C󮞄o?_n9uj>~ ۅy* !v[`zfˎzæx̋C$X+j!H~p/W\U/λ_}=3JTJO>[ng7_>kg}8% 4)Y"XAM^($"3_U3M $(-&YbOx?g~>%}Q\U9ݎEu!2{?v!rKn|>2^c2Mu]$8=n%J)y677|fwhx^ܸQ%@&g͕w竿_?|ӿou󇙀ʙk֏д{/c~omW#9 mٶ3>-NyY0*uԮ / Oi=j~ 5Pnr9?=xw_q?5_}40`[E4bk^? Kqgh雾+؍xh,7 Hل$XkFzmwtsc[qZ&-Thay2i/Ť|>Yp8F9p!eo䗁S"~xy`0(($ǽ"c\_ M /6S)5?rHIoɃgBkEg>ӞV_ef6!7[>6ؐQ]1C_abVP g>酯P ]v#c1I, 4؝!?9JEUwla9A26$ _ٯz6<>X.`@d*5\]{5?_nX,K8k5ƍe[Ec75H Rb4qhfcT*D̩'?A:* 8 RV)Iumۖզi6ҍ_X*|6pӚEI*Z(Jd ?( zTWW|;s'}4i":qNh6+㒆öhnAڜzF|`h42H)s2݅t-ŦF)PNEe`-rTRƁ4\"dU9%s`4$(g|2r3gkw?IEDpUW]SUUmllÇ/O\2.&&v b' .{X 8vAutRrW3*έoaTL ̨XvyL[yxojq_p}wĘ"T)B`0MQBlW{T(uṖIpv襵}T!y$~ {"#xLfo)"C4*L7y`Sys$clSv| *zl8 yT\3=sۧ6?[j?M<#*fvww۶` 5M5 WJuQg'CV41'H9xgHy|p:B=B.t0AS 2D&%)Kt|OKBr]ClJ¼p|yK!zEX f'b?,Č+rccR}L4:{TtIX*"eFS @E sNF âyFC?FtՕ3w4GL5 E2Ylȣ3yö m@FFh`G_9+i㺳Y# MOo Uۓp @]1 f* q8_լ}TH᪌ZFLm;0*HZj?Ox}勿UlQ$$X` Q߰g(kgǚfԑ5J8 EGíhVުKXǾF=C‰$;3o=dT?+ Yj,FbzjXr5/Q_XGwU 7~F|ƬmU:Ȣ {0j Z(|+8`>[ktVUs/\rFRLr. }o]JeO:e٬i=n_Ij[k暣GZka۶ׯ:@zmKݡ|C8ղ{/Y8ߍL"! M<01;C8' u |Dc\w\L H0zJ(P{8ծs¶E%׆d;@1؝s fԒv&g޵mx{ԍLs\`k[h8xؽINofz{:vGOu!AUIij64qG?u؞z%Pԟ^QL*m8皦4p@iH'"X_Ƿ߃< [BmzߺHGZyYS-"yc[pHD~{}^?k)@)73gqP11|b,-H({OĈ}q ,ONGЇ>4N_W;v,P.>ڐ, 967ח7;KS}Ĥre3>7/mI5_/y£LEEMW^};ٴs#/O_ 9MPRh\ !`v~ljF.ϣ}⣪Mz#oG|wRPRF%7Y1ɟՍl֟yO߿G%@DwӾt: WΦ{3| E?-6z|_xGgYΎj`ѥ(~ ί> >ݾnQCfYErFNwkxiC*`~4{dBMfx$d3"NӒ-:dLrIJ_u*²}G!:;wQNArE.Gҕ!U]_yUck;o[6"I!trK,˽嗟8|xkmm}ԩcǎ-IB1TziJmgEDR+E撦R o,5"u$F_~ȑibwq7LD]ve]VZ ,)")ѨGY[E #$ m<}[r ~߱W^5Mg]qW߶X>rSed R#̻t[ }= H1bzӄ`+ eOx\Ó=֡4ȑz1{rg?[^g=AP x Uf_5[Ϳ9|/b4 D@oSS<{mg'h_-P5$r _ũz=};oi4l|Ke9q)C@P~#zm2 p70žO D&o{~oxs:#|'rY/.{i{Z-ΥY?Jb؊U7r J`.5[G6~wq-²{gaUU!q{뭷>}sر/xh4q?~Y[[{#)"E@w9G9R;-~ss󪫮*>'V9>|nٹcUUmnn^s5ǎB*p8c N5[_gvxc8~աgoxU 5碻'˵G&" <<`oQ0ѵ_U" 3&K|78)˛qpX <_+?b.u//97(B_wӎ_Gk3v_krB*L\P_pË??~GgwI?yԑ9G_䇌lgd!?MNN /6 r/ST\!?jY_ͻ_?04s֝b!ιx<^4ѻ7&缷BY_[[[n_#$V]oGwޫK&>~~g 3Rl33;%d)WK@y6 ʒ RB{Z#5u618u; HlZ2]=ȯSB*sMIeR?8޶m)AU$ Q :R@ h>y ӔEq`)"x =cGE l+Dt 1x@'mH@>gpaA2fY8S0aH#YPz,>ČZJ _ z%1z !8X%DɎ;"( {DpB#@5AJ0m; Mۢ/+R,0 i\Zƨ2kǩ$lߎSsh^9Ԝɚ|ɏw4{FzӾt@9F2JaʹCj߱NƘt׃;Opb mI)|gl0`  1/JٱĢRXX˳ 0\*_TU&nF9gkpP`1χ[ k]์1)I)Dμ%kimC)I)I:# ".Q̮EHΏ8!a %XsֹӐ!8޻[_}ߵۯsϽtiI3}N8<`"ĨeYps;9m/]!"( \ hQ=VYB}'+07K PiB^ K C7eea,͋3ꝟoO<,&dg -A=J0ћoekMif  #DLB툎 >+͑S%$KyHI@hxT 4{GBQ1 fmns5kJLß9%#O1[u ]eS.?#OԔRow}]'tPnϑ zO@?lWuw<+UcixsQh7MYzhn޹d2z'V̞ԃ}wwi(L " ,FiX*V=/|io|ϾuP##_X SZT@s\gOh*]ꦏz|q'PKj=٬pʆa*[}wy7?YW֑0.Ͻ[yo {U?>vAU,_EwA890ta+.]x7Y"x'|D5ikK./7k} rذқBr¶6FcC1UJ>8phs8w&>)|Q$凿;3ko@kN>_}27Vx?i.GT.G8(n(g>g~eM3y7`WtFrF]9q^`4\и4~*xz/p &oi;Z#C(~{TKd|M,y^CjPVKCEN΂cauOHdp0b,}Hg݂z7@oF饛Ѝ|v10@ն 4n 0a3' ~_}_2|ߜo`c?##O$42d́!7Tףk9鼴lAD*FT0}3?Ղ&:^TͿ42r0*mu}bJS*7@QǛ6Z_%AbާS4gL孏w}-u T|G>Aٕ‘ :u6#m%Pfe5+7}koX]$3{E7MȺGu9qB_%JKU*pAF1kbvbglhS|/ݷoOʿh EBa`*X 7}z>"8#j f 'o}F@dg~{}4yi]Q ޠӓDyAF]gj KQڠrASP4p(s,h (㴌4%?pκti]oƺam."exCo *N?k*p>viP#!BKVIY- +.ZV{}/>}GV9Y{ydk3Vl4#Q9n[VCɂ= ʩ57ND3̎;ų:{%d <Ѧf2f-{>gF$PF009[ ǯۢ_$?4ɦ!X ^՝ذmX|gǖY^z.=gn@_5##sdࡳv)seJjBX"Bkg"-OIuԈ=w ?-\FJz(ݤO&h^Hiz]XsCC9uG/ex gИ4erV_J_?xeCx?͙/f uTnrGFϨ)@3D]Y+Π:rbUIIIQ`ѣ=~e̟^wąl^SL7+~>z:Ly;?B8(2QmuxRv_pXuɤK9HO_u;"Mګ쁷j&WirI2S 0C?C10BC;5B-I,y/KY#⢙P(cWADA=շ2AA F ڸ{>tΰH cO _mY]P_Y Α0&R3ί\B`n "#PMAI.&[UEDllGBO>끏֑4BEC~6=}z^Lߘm݇Elܓ%]iy>r2fnH!ȉ[9"hZ WB&$$ @0J;?~#_,—O艏||{߃M.HX`K5ˎ&hD,(SN͏Fl:μfB 0w G//B|oyy~o|Lh,y.yr&94Q9FN5r:2C;-i ma%vFF955DQ0@e@l?wƯѕ=ual?7;bz{&|ҾvirJ{{q@'r`I|LEҥ?^'TF$޿oHNyF-W?Tʽn&:nZ.}_HW7|ՄiWJ]NVKgA)DفxpZ(T,'JJrA4%.O_K?~?sqa+3>P󆷿G.b[SSazw~~4g0&oz8rB 4Y9u5}dj %9Q.3\fOf='*$;?P.l*ggՍτBsSC  @АÕˇIa$j/+IJP]~3??ēUS;ڝPSoo?׾5g_3F3N~>;\,$f٪󍌼MFn; NgI:>i˫xJGw Gl]C<'3ؼ9MHXS."δ'/^>鋓~g\p۔ỵ|=C\5Kyj9}뺜FU?gͿM=Qr U}yv.} Zij6vE-H::udTSjt!{8zVfOᓘ]%x~Vl1=^%L/Y ̙}t XF~)Y:|'݋W/}ퟣ.q_{׿}/wosE `0(Xw]Lq8|y1Ǯ|6"!yq^3ּ;GGFU{ -:svM_Vy5Y^|uYN X-1ȩfTSFN`9=a~Y0d8ϼm4ur Rnr:y 8;@2]G/?O5. f`,Y&XSS{'^<*(,Y]/| H 0e"cbP#>??2FrB>ffvfV`f I lVr }s5Y)iBS?G=}{st9,4)]]ccXc_ӗufا9{BbҬDɌa׳8*=xm ꖷ/n7.36*کdf6QlJbr/ȗ18u$3yem-v1De,JTsvPmbz hvؐpL&_le Stt'$``Rx[sM,R*s Lt3 V34ZYZR\_ (PyrCP"T* apGTFS !JfEVXЗy,u܇E-$063F@<2@ &V;:qtlZs{HC,by>7qR֨(S6 . 2ȝξS iEZ77"-ATIb=e[T]xiܢQݗswHUw<~Ap(PNPLoR܄Fh&`gA贔FF^r!!B4dSAԈqiu{nfCV*{Qc{;%9G%CK.C~0Tg(Q6&9lrآr|xO0K`T;2( !5ifؑ b;ZNh-ẅ X4*y ?fhBZg;@rGinҘ ѠEW#LQmQרoDMt\ :xTT*өEO0XKI %p F5ϡ0UR( {Ь}Gqi!w  Wk (J )&)xAW㚃݌qǐlP4E94jj3͙ \Ah01؝Ol8~nqAq88~iRgLGE?H/JV 3ܩqpAlq(!P_AknI]%OYR݄S6b)N\zn[+덩"33Jzhb9Rib1siA@׸Y9{ ̐\rP{j S-7ܢP2GFtF!7eȲFVAY4#PEj/W@LA @D:nNq;q|Mp5\IE-E_@VY##wrMB/Z`D.#;t wC#U ٛxv"FF+Nmoe愌a@#HKKKˑӂb8CxxD˽!85PC)5mڰ 2FNjD)Clp hR` B; =cJ(L`4C C!dqR6c?aHqDZRؒ&#J-=39mr(F}#EWڐ*7j_?1E5rW1*N|I-p809C/(".ab HRz  3lljaIyn39R"Hs4;@j?D\B3H [=:~„BI| >j#wr _b#K-GƁA\~3ԐڕXR\x) Ha |KS7 2ؐJ=rf9r~DZ`y 56IҘ4S+6(TjH9=Α#wr0z1UD`JE3@2Ŗb ˊl(וr0R.!ޜ@bdt@H;@9d#f8#.)/(.  L$‘+ S*6+x0_qCCW2`oUKCJ 5B%$H $ !1+3@t ۍ4e=RC{ʉ4RNZN-q~-ufX!B! K{@07vdZL tܹ=r˫zKGgshF[rԱvdP%+L sX8L@<有7q8s`v 9dun0ޖfrsIOh 04242zRsRK=$s#t shZē/͕"_X5,]Mnݎ1] h(&rD$1۽#4[7#{0WFg9 ))Q'"ȁ1]S_[S"]7~,XNf)%LM/ *rϚF"%RG 15ؑ \  $oK^w522Q9^\8bDY̌\T-Ui;X R W9 H 1/"a|p~h0:f3)icKh2˔j"jqIM#ҒsܓEt ܑJS18H )LJæ9 53Q9V r8MH\@*rsAZNz0/5C "`$DBD""0l1j# Ph6dR3a,[Δ{h"Sh6]%&bdjlL+R 4 \ OY[pa YcC j;MŨeYn)'hι[4Qi5GC[a|X\k]}dd]`kAX8ULșsSo\/L[>Ƙc: 3D"T IYBAzhLL74dl@`Ɗdg}]orsmP!HĘPCsIL<8%_ Hƿ V8X c!=(2L)!J$m fǩǕ?ohȘ`zVxb9LAvl~B h652cF!)PԠ=R"4B* 92TX_jc yM&CD?V 1}Ž؁Ac,AG,p@n\>2c: _A84Q!zb'ʐW!HZ'Ì+|l'@$2$6$ f8y# DbDw?3r+8)%& u)0%˖iȲY\lNO`_~qa|D4D?Ƭ06&XBنI*T%%8k1xxުHtg|=@W} 0ua),eޠ.®KUqX9#1(Hc C\B Oz@صvd0#7Nq 'DPB~g92r71*ȗ|ыs)?iK2[еOlWlddddu& nhm for consistency with other names (those ending in x are static dimensioning) Parameter ipp no longer needed on input (still used internally): PP type assumed following the same logic as in PWscf (PG) 26-may-04 Most variables in module ncprm have been moved to a new module uspp_param, shared between PW and CP (in file Modules/uspp.f90) Remaining variables in ncprm moved to new module qrl_mod (PG) 28-apr-04 PP cleanup and merge: module "atom", common with PW, replaces "atomic_wfc" and part of "ncprm", ifpcor => nlcc, rscore => rho_atc as in PW 27-apr-04 PP cleanup and merge: vloc_at is v(r), not r*v(r) 26-apr-04 PP cleanup and merge: rucore => vloc_at 23-apr-04 PP cleanup and merge: mmaxx => ndmx 22-apr-04 Same logic (or lack of it) for DFT used as in PW 21-apr-04 Derivatives of ylm merged, variable cell works again (maybe). Indices of gx and gxb reversed, cleanup (PG) L=3 sort of implemented (untested). ng0 => gstart (PG) 19-apr-04 Next step in USPP harmonization: aainit, spherical harmonics merged - derivatives of ylm NOT YET, variable cell NOT WORKING (PG) 13-apr-04 First step in USPP harmonization: lx, lqx => lqmax, lix => lmaxx+1, variables in module "uspp.f90", common with PW, used (merge of aainit not yet done) invmat3 moved to flib/ and merged with invmat of PW Misc: dfloat => dble (PG) 29-mar-04 Various cleanup and code harmonization: date_and_tim moved to flib and used by all code, tictac substituted by start_clock/stop_clock celldm/alat/at input parameters in FPMD/CP read and set as in PW . (CC) 15-mar-04 Almost all neb routines moved to Modules (CC) New module check_stop used by all codes to check for exit conditions ( maximum time or EXIT file ) (CC) 11-mar-04 NEB works for CP as well (CC) 07-mar-04 Cleanup in CPV: no more SSUM and CSUM Modules/smallbox.f90 should work again 26-feb-04 Martin Hilgeman, SGI: - support for the SGI Altix class of machines, with Intel Itanium2 processors. These machines run Linux. Please find more information on http://www.sgi.com/servers/altix/. I have added an extra configure target named 'altix', as well as a '__ALTIX' pre-processor macro. The 'altix' target runs either serial or parallel with the SGI MPT MPI library, which is optimised for our low-latency, high-bandwidth NUMAflex interconnect which allows the use of shared memory. - modified Makeflags for the 'origin' target and added support for SCSL. - added support for 1-D, multiple 1-D and 3-D FFT routines from the SGI SCSL scientific library. SCSL is the successor of Complib (which is currently supported in CP). The two libraries have a different calling sequence.and the main advantage is that the same library is also supported (with the same calling sequence) on Altix systems. I have added a '__SCSL' macro for it and renamed the '__SGI' macro to '__COMPLIB' in 'Modules/fft_scalar.f90. - I also found a typo in 'CPV/cpr.f90', where all OPEN statements for external files had the same unit number. This bug was not in CP90 v1.3. - I had to change the comment character in the scaLAPACK routines, because this was causing problems with the Intel Compilers. This isn't used anyway. 25-feb-04 merging FPMD/CP added common subroutines (wave_steepest wave_verlet ) to advance wave_functions . FPMD friction parameter for electrons "gdelt" substituted with "frice" ------------------------------------------------------------------- Date: 24 Feb 2004 Version: 2.0 ------------------------------------------------------------------- 18-feb-04 Initial support for NEB and meta dynamics. I do not include NEB dynamics modules in this version, because I want to wait for common neb modules, to be built as soon as this version has been released (CC) 17-feb-04 outdir added to the path of the output and restart files, pseudopotential reading moved out from cprmain subroutine (CC) 16-feb-04 CPV has been "subroutinized" and is ready for NEB like dynamics. Note that iosys has been split into two subroutines: read_input_file and iosys. The first routine simply calls read_namelists and read_cards to read in the stdin, and does not perform any initialization. The second (iosys) does not read anythings but copies values from input_parameters to local variables. read_input_file is called from the new main program. iosys is called from the cprmain subroutine (the old main program). This is the scheme used in FPMD. i Deallocation statements added to CPV for neb like dynamics. (CC) 09-nov-03 Unit 6 replaced by stdout (module io_global) Wavefunctions are in module wavefunction_module 31-jul-03 Major input restructuring, now common with all codes 01-jul-03 Variable-cell is working again (call to sph_bes fixed) 25-jun-03 More merging of common routines (CC) 19-may-03 some cleanup for occupancy and empty state calculation 14-may-03 Bug: namelist &ions must be read in all cases Write charge density (if required) only at last step Documentation updated 21-apr-03 fft restructuring (Carlo) Exch_corr: gradr not deallocated in some cases 12-apr-03 rsg in ortho => rs 27-feb-03 Misc. installation changes 21-feb-03 "error" renamed to "errore", "rnd" to "rndx" bug in io_base fixed 11-feb-03 pseudo_dir implemented 10-feb-03 Some cleanup (ibrav, tau written at the end) support for intel compiler and linux re-added ------------------------------------------------------------------ First release ------------------------------------------------------------------ 2-feb-03 Ultrasoft UPF bug fixed, more small changes related to cpv => cp 1-feb-03 added check on dimension of pseudopotential arrays configure and example cpr.j fixed 10-jan-03 "make tar" or "make dist" produces a tar.gz file with a source distribution - Make.sample removed (PG) 05-jan-03 ggen: same ordering of PW and FPMD (using d(:) vector) interoperability with FPMD checked also in parallel 04-jan-03 file dimensions.f90 replaced by file parameters.f90 changes to restart file (CC): - io_base.f90 mp.f90 mp_global.f90 mp_wave.f90 updated - directory "arch" replaced by "system", file Machine.* replaced by Make.* 20-dec-02 Spin-polarized calculation at fixed cell possible again Error in core corrections fixed 16-dec-02 readpseudo.f90: yet another uninitialized variable fixed 11-dec-02 restart.f90: compilation warnings fixed readpseudo.f90: upf%tvanp always initialized 04-dec-02 __VARIABLECELL removed everywhere Small changes to UPF reading 01-dec-02 New writefile and readfile added same restart file layout as FPMD Program main alone in the file cpr.f90, all other subroutines moved to cprsub.f90 . Subroutine matinv moved to cplib.f90 para_mod.f90 compiled even if __PARA is not defined startup subroutine now appropriate also in the scalar code 30-nov-02 Module cell changed in cell_module function and types added from FPMD mill_l, bi1, bi2, bi3 added erroneus usage of twmass corrected 22-nov-02 Minor glitches, documentation updated 21-nov-02 Input updated (final), cpv removed 15-nov-02 cpr.x as fast as cpv.x for fixed-cell calculation (useless calls to formf removed) - cpv.f90 is obsolete 14-nov-02 More input changes New installation procedure (like FPMD) Double underscore prepended to all the CPP macro Added modules from FPMD used in the new output format bug fix to mp_get and mp_put routines (module "mp") Added old "nbeg=-1" option ( suggested by Vittadini) Moved calculation of center of mass (suggested by Varadha) 06-nov-02 Compilation error on sp4 04-nov-02 Copyright corrected Added possibility to read UPF pseudopotentials 21 oct-02 Compilation problems for cpr on parallel machines, gnu license, Make.sample updated, misc. 08-oct-02 More trouble from unitialized variables (variable-cell, intel compiler) fixed 11-sep-02 INPUT documentation updated 31-aug-02 New input layout with the namelists: CONTROL, SYSTEM, ELECTRONS, IONS, CELL . New ATOMIC_SPECIES card introduced, with the syntax: Label(is) pmass(is) psfile(is) ipp(is) with: character(len=2) label real(kind = 8) pmass character(len=*) psfile integer ipp New ATOMIC_POSITIONS card introduced, with the syntax label(ia) px(ia) py(ia) pz(ia) ..... with: character(len=2) label this label identify the atom and should match one of those present in ATOMIC_SPECIE, and could be optionally follewed by an index ( like Cu20 ), to be compliant with the XYZ format. real( kind=8 ) px, py, pz 16-aug-02 flag 'atomic_positions' properly (?) implemented fricp was incorrectly read more obvious format for units 77 and 78 Units f77 and f78 are flushed (at least for some compilers) 12-aug-02 Misc. changes for compatibility with other codes: iforce for each component, may be specified on input as before in spin-polarized case, nbnd = number of spin up states = number of spin down states, not their sum. Files are opened and closed during the run in order to preserve their content in case of crash; I/O-related useless crap removed 08-aug-02 New input - sort of working also in parallel PP files are now separated and called by name 06-aug-02 New input - sort of working (not in parallel) 17-jul-02 Start of the Grand Unification ------------------------------------------------------------------------- 24-apr-02 Readvan: check if nang=0 (Yudong) ------------------------------------------------------------------------- tag:cpr11 7-mar-02 Added check for consistency between US format and ipp (Seungwu) 28-feb-02 Format used in unit 78 increased (Andrea Trave) 27-feb-02 Initialization of Nose' variables not properly done in some cases (Xiaofei+Ralph) A few formats increased to avoid *** in the output 26-feb-02 More problems in variable-cell + Nose' in the parallel case: readpfile, writepfile modified (found by Andrea Trave) File format is once again not compatible with previous versions 25-feb-02 Serious (and stupid) bug in init1 if ibrav=0 and first basis vector had a component along z Found by Balazs Hetenyi 22-feb-02 Nose' bug in cpr fixed also when using steepest descent on ions Box grid unit vectors are written on output (both suggested by Andrea Trave) ------------------------------------------------------------------------- tag:cpr10 06-feb-02 fix problem with preprocessing on ibm introduced yesterday Remaining untyped variables explicitely typed 05-feb-02 added support for pgi compiler on a PC beowulf (Andrea Vittadini): minor changes, documentation update. Intel compiler: cpu_time does not work, replaced by etime 01-feb-02 cplib: subroutine rhoset was using uninitialized variables in spin-polarized case (found by Yudong). 30-jan-02 cpv: in subroutine ggenb, gxnb(1,*) must be set to zero (found by Yudong) 23-jan-02 Default mmx changed to 5000 (500 was too small in most cases) (Ralph) ------------------------------------------------------------------------- tag:cpr9 22-jan-02 More small changes for Compaq parallel machines (Yudong) Yet another serious Nose' bug in cpr (found by Ralph) 18-jan-02 Potential bug in Nose' dynamics fixed (some variables were not set to zero - the bug appeared with Intel compiler) More minor changes (timing routines, Make.sample) 17-jan-02 Added support for intel fortran compiler on linux PC (does not work for Nose') and for Compaq parallel machines (Thanks to Yudong Wu) (untested) Preprocessing simplified, documentation updated, minor changes here and there 15-jan-02 fixed bug in readpfile that caused serious trouble to Nose' dynamics when restarting from file in the parallel case (xnhpm was not broadcast to all nodes in readpfile) Thanks to Xiaofei Wang for remarking the bug 09-nov-01 memory message for origin fixed ------------------------------------------------------------------------- tag:cpr8 22-oct-01 serious bug in cpr when restarting from previous dynamics run fixed 18-oct-01 serious bug in drhov fixed (thanks to Ralph Gebauer): stress was wrong if no ultrasoft atoms were present 27-aug-01 Added memory and file size estimator ------------------------------------------------------------------------- tag:cpr7 25-aug-01 awful bug in newd (wrong forces in spin-polarized case) 14-aug-01 bug in new init for cpr fixed bug in parallel fft for boxes on ibm for n1rx=nr1+1 13-aug-01 more cleaning init1 for cpr heavily modified (calls other routines) 10-aug-01 cleaning of unused variables ------------------------------------------------------------------------- tag:cpr6 09-aug-01 merged file format and related routines (readfile/writefile) between cpr and cpv. NOTA BENE: files produced by previous versions of the code cannot be read by this version. Scalar and parallel files still have different formats Documentation update 08-aug-01 cpr: major cleanup of nlinit and newnlinit 19-jul-01 First attempt of a parallelization for boxes (routines rhov, drhov, newd, set_cc, force_cc) ------------------------------------------------------------------------- tag:cpr5 17-jul-01 Merge of vofrho in cpv and cpr More rhoofr and various other cleaning ------------------------------------------------------------------------- tag:cpr4 16-jul-01 Variables rhovan, drhovan use compact indices like qgb cpr: rhoofr simplified and merged with cpv rhoofr ------------------------------------------------------------------------- tag:cpr3 14-jul-01 Small box section heavily modified in order to make it parallel (parallelization to be finished): - newd works now in real space instead of g-space: slower in scalar, in parallel reduces communications to minimum - newd, rhov, drhov, set_cc, force_cc: common code extracted and put into subroutines (box2grid, box2grid2, boxdotgrid) - two fft at a time implemented in force_cc Timing (hopefully) more readable Case ibrav=0 works (again) Documentation update ------------------------------------------------------------------------- tag:cpr2 12-Jul-01 Yet another bug in force_cc for parallel execution 11-Jul-01 Rather serious bug in set_cc fixed 06-Jul-01 Added core corrections to cpv Documentation update 21-Jun-01 Documentation update 04-May-01 Out-of-bounds bug in atomic_wfc ------------------------------------------------------------------------- tag:cpr1 27-Apr-01 First merge of variable-cell calculation, major changes There are two executable, "cpr.x" and "cpv.x" NOTA BENE: input data for cpv.x changed wrt preceding version ------------------------------------------------------------------------- tag:cp90_16 19-Apr-01 Yet another bug in boxes (for nr odd) fixed printing of elapsed times on origin works (sort of) Bug in estimate of S(S+1) with Becke's formula in parallel case fixed dft is read from file in BHS pseudopotentials as well Minor changes to allow more than 64 processors Minor corrections here and there 07-Mar-01 Check on pseudopotential sanity added 21-feb-01 Added INPUT.HOWTO ------------------------------------------------------------------------- tag:cp90_15 09-feb-01 bug in wavefunction write/read for the parallel case fixed Make.sample updated for NEC sx-5 Estimate of S(S+1) added 27-jan-01 latgen modified (once again) so as to yield for ibrav=5 right-handed axis triplets. 26-jan-01 pseudopotential format converter "pw2us.f90" updated 23-jan-01 latgen modified again to yield more accurate lattices for ibrav=5. Also: calculation of shells in ggen and ggenb modified to be more numerically robust. 22-jan-01 latgen modified so as to yield for ibrav=7 and 10 right-handed axis triplets. Boxes for US PPs do not seem to work with the original (left-handed) axis triplets. INPUT updated. TODO: find what is wrong with the logic of boxes. 18-jan-01 INPUT completed, Make.sample updated for t3e 16-jan-01 checks on nqlc and nang modified so that local PPs work 12-dec-00 nec bug in good_fft_dimension fixed added support for nec sx-5 and updated Make.sample redefinition of grid in BHS case removed added definition of variable f as array in all fft routines 21-nov-00 parallel case for nproc=1 and nr3x=nr3+1 fixed ------------------------------------------------------------------------- tag:cp90_14 15-nov-00 added routine that reads PPs in Andrea Dal Corso's format 07-nov-00 deeq must be set to zero if non-us pp are to be used! Dynamical variables eigr, eigrb, ei1, ei2, ei3 are allocated to the actual maximum number "nas" of atoms of the same kind and no longer to fixed parameter nax. Static variables are still dimensioned as (nax,nsx) 06-nov-00 more energic stop in error for parallel case Removed hard-coded scratch directory for SP3 case: the scratch directory is read from value of SCRDIR environment variable 25-oct-00 bug in PW91 spin-polarised (finally) found ------------------------------------------------------------------------- tag:cp90_13 20-oct-00 added support for NEC SX-4 16-oct-00 fixed bug if number of atoms > numbers of states (relevant only for two molecules of H2 or similar cases) 03-oct-00 Make.sample update naux increased to 15000 in ibmfft ndr=ndw is now allowed (had problem on origin) 26-sep-00 bug in initbox fixed: numerical rounding could lead to rather large error for US pseudopotentials if an atom was very very close to a grid point. Limitation on nr1b,nr2b,nr3b even removed. Latgen for ibrav=9,10,11,13, fixed Minor corrections. ------------------------------------------------------------------------- tag:cp90_12 09-aug-00 slightly inconsistent calculation of box grid modified; exch-corr routines modified so as to be compatible with future introduction of cell dynamics. Note that the former version of PW91 is still present as "ggapwold". 28-jun-00 COPY is the real, not complex version: needs factor 2 when COPYing complex wavefunctions mysterious line "emaec=73" removed 21-jun-00 reduce was missing in ggapw 19-jun-00 PW91 spin-polarised added. NOTA BENE: since there are some differences wrt preceding (spin-unpolarised) results, the old routine "ggapwold" has been retained. Use "ggapw" instead (in exch_corr) for spin-polarized calculations. INPUT file updated 12-jun-00 ortho: test of floating-point error added ------------------------------------------------------------------------- tag:cp90_11 10-jun-00 very serious bug in sigset for spin-polarized case 08-Jun-00 parallel I/O finally (?) correct (??) 01-Jun-00 parallel I/O better implemented some comments added or updated ------------------------------------------------------------------------- tag:cp90_10 31-May-00 write wavefunctions on one file for parallel execution 29-May-00 write rho on one file for parallel execution 25-May-00 numerical problem in very special cases in LSDA fixed 22-May-00 lim2 in ggapbe was wrong 05-Apr-00 very stupid and serious bug with constraints fixed -------------------------------------------------------------------------- tag:cp90_9 14-Mar-00 calculation of forces in vofrho is done in separate routines direct and reciprocal lattices moved into modules more logical names for rhet (=>rhog) and rhoe (=>rhor) obvious PBE bug fixed 05-Mar-00 added PBE (written by Michele Lazzeri) -------------------------------------------------------------------------- tag:cp90_8 07-Feb-00 modules mass, pptype, rcmax_mod moved into ions module leng and spin moved into elct module control added many comments updated, added, displaced -------------------------------------------------------------------------- tag: cp90_7 06-Feb-00 modules eigrb_mod, irb_mod, teigr removed 05-Feb-00 modules becdr_mod, betae_mod, wbeta_mod, forc removed tau0, sfac, deeq, rhovan removed from modules -------------------------------------------------------------------------- tag: cp90_6 04-Feb-00 added support for absoft, Make.sample updated calphi, ortho cleaned 03-Feb-00 added support for origin prefor simplified -------------------------------------------------------------------------- tag: cp90_5 03-Feb-00 added index ish for easier indexing of bec and becdr iterative orthonormalization: redundant variables removed 02-Feb-00 indices of becdr rearranged in the same way as for bec -------------------------------------------------------------------------- tag: cp90_4 02-Feb-00 removed loop (no longer used) for constraints, gam, gamold => lambda, olambda eigs does no longer produce INF (produces 0.0 ...) on empty states major index rearrangements of bec and similar quantities: bec(nax,nx,nhx,nsp) => bec(nhsa,nx) 01-Feb-00 formf moved out of the main loop into initialization bec removed from modules and called explicitely some tictac's moved into subroutines -------------------------------------------------------------------------- tag: cp90_3 01-Feb-00 Argh! serious bug in formf corrected 31-Jan-00 blypnum removed 29-Jan-00 reversed order of indexes in sfac, rhops, vps (should be faster and more logical) -------------------------------------------------------------------------- tag: cp90_2 29-Jan-00 serious error fixed more extensive cleaning: phfac and nlpre merged strucf does no longer calculate eigr read, write, random initialization moved to separate routines 28-Jan-00 some minor cleaning -------------------------------------------------------------------------- tag: cp90_1 27-Jan-00 Initial release of f90 code. Main differences wrt f77 version: - dynamic allocation of memory - commons replaced by modules - some general cleanup espresso-5.1/Doc/INPUT_PP.html0000777000175000017500000000000012341373334017616 2../PP/Doc/INPUT_PP.htmlustar mbambaespresso-5.1/Doc/INPUT_CP.txt0000777000175000017500000000000012341373334017423 2../CPV/Doc/INPUT_CP.txtustar mbambaespresso-5.1/Doc/INPUT_PROJWFC.html0000777000175000017500000000000012341373334021204 2../PP/Doc/INPUT_PROJWFC.htmlustar mbambaespresso-5.1/Doc/democritos.pdf0000644000175000017500000003677212341373034014671 0ustar mbamba%PDF-1.3 1 0 obj << /Title (democritos_03.pdf) /CreationDate (D:20110323170410) /ModDate (D:20110323170410) /Producer (ImageMagick 6.2.8 10/20/10 Q16 file:/usr/share/ImageMagick-6.2.8/doc/index.html) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 4 0 R ] /Count 1 >> endobj 4 0 obj << /Type /Page /Parent 3 0 R /Resources << /Font << /F0 8 0 R >> /XObject << /Im0 9 0 R >> /ProcSet 7 0 R >> /MediaBox [0 0 313 89] /CropBox [0 0 262 76] /Contents 5 0 R /Thumb 12 0 R >> endobj 5 0 obj << /Length 6 0 R >> stream q 262.047 0 0 76.2857 0 0 cm /Im0 Do Q endstream endobj 6 0 obj 39 endobj 7 0 obj [ /PDF /Text /ImageI ] endobj 8 0 obj << /Type /Font /Subtype /Type1 /Name /F0 /BaseFont /Helvetica /Encoding /MacRomanEncoding >> endobj 9 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [ /FlateDecode ] /Width 313 /Height 89 /ColorSpace 11 0 R /BitsPerComponent 8 /Length 10 0 R >> stream x|pUd_~{즊ԲQ7""6 *]ȈXhVk֗e %3 Q R/$H`E%1 ѐa Iȅ=}dz>s?(QQQQQQQQQQQot4]Ӭ2ۧ޵:#=Lepf2~NsgsIiuIq0 Ll x2="Gtrу-xB7gY}=>u8 5S=nq'qzwds8n^'#dKXDz<ҶنxOM,Qpy7#<~iu}Gp3#/x^)ۍUy?{DނrbX{a#-wڈH)a (tbWn(85X2xě۳ȼ(^nB,Eg2MhC;*M^W}nxZL)#RƈU܉ichN2h"S)cy1taBy*lݺ&RsQ1q#RG$yU:?\h4!T7u[\׮PugP5*. +9qH D⺋!q0p$J8=ìÞGۯc`%{L ]p=b3Ĭ&oέ/ٱH2aBs݀8,dU o>B!•,Ǖje)4B(pr Qwa>Vq=f9n}5D:ifˎR+4I{jvH<*p.V#prDHbxw$(| ڭ6"|Ns6>N;H4 D$#Ct4m"nb8vsё88x}ߪD>/k~;96n8cJw`hmU8MP28ՙc'cTi?/?~DɈCBgb Ct;`pcû#DJE8/V2{֩35}"ز<$)jֈ0ɭGСqޓc莩v:Uynh 1s7Ӕ*xLsݓ+RpkpEJx=%[)R<+7dW5IUC= 0Hgr k!Y)4ؘ:5#R."**l54LFR6` ov7@b$#ݞFb=BB/ 41MDDsqRe!5:]AKm6&sDw=~By0تTUdݸu"htce8#Gdnؐo#]9]a(vjOCQa8Lls'f_AdiT+$zYHHlUs9^5ODpwYؚb䛅AhN)n!SjaLLh%l̉" qo nQT4![h9~UqEUmWCc E G14E>>47 S+k1Z =̎;qYi' {' 'Y=M(t4SI6b#Isq%LO:q9L4rb ; I3%Se8ą=jNJE3Ýt wsƤaIŃD4M>1oQٗ-LF Y59Ks8|s}'Qq?P蓖8v"[`~/?nSݿ#jg'ㄉ5uǼs@w͛QDzıhYjg^AY4Re!B{Xy@E\fvv6;kM{QʖғGY#1($50ӉȮ,&Gs^pZ;'봄gTأ7y[AD>{9kg`)eg"B>^=4}SYU@9]x8u{t %ٕrnAlOS5o ݏdFGi²捘0Yc __8=7;wCQQ"pfIO{FMg؎]6Č{MMU\#egO/9KGy\='b*P<ٱĹNM>BB`Tɍ s$Ɓǘ$9-NjɯNՐJl#B EDH%VVI>]Rt nIҵ)G""{%6??j\\֥БRÏB5UV C6lo<أ__((x1ҡpiRI9a:B*oN}t˄wM%)-.//OP{jċWJk ?8P&;ebJl9ZÁo  ߽[ II꥽40߲Yag8 ZjRj4j@dHV'ɥh_:|- ?($Kp\N[qdA1,IPޠSZid F@OɕTwEVqdf5a3?ļ/ t߇ őZVc]=ز%˞M5~&vJnhh8NO͛RYPWT^u4ta3Yy_S0l_Wr%Ny༂ qJ bjڌ=YY' Lݑ7C/YQVHtKɂGOom%_Pd~ȼEl{a„ 7b,(~Ao^aQ_em]m6*.fGlȓ#b,Vkʎx[Rы=ғ_)S(Ze|?U@V*,23Z(S1EȊZ|*"_H4V*ȫRqk/U .S+F|>OڡU+ۢr9W{˅pd8 gX_G^w˿zeX+&n(n1CUvT.% U-I{Z`Ah&#?NCǤ]얛\~*C)WP\:"o|*t<,!wuUGjWSRo T{ZhSop0r1Ǵ;uÅ^=ς g1;Vz e5Tbc |BX\!%ʐn>~B IP!!zH{VJI] &WM@zE-ň81@))X3,Ѥm0J`Z2CR$xPٸ6|\Ilu*9>Pyۘ)w-Zv풢M=}z+dS=]+6m9WPv@܀RR޽|$}a+lWYDI:~- ߔx@~L+COїR9:IDI8[0`"N[5␎jyoކ* 9ȈSRU'{k‹Z:&4pL 2w^4f̘RUz|,BO q[qyS8;u ?-BwLh)wWeW#~RDR9VKwH.ݥ௠ZیP>6urTq WtK0KEZ|X^QW=אjgZg\3ZNID-Th佧V ?,joxNp ֲ@m8WN-ty3*d tu2ԟ q8;9X_/J8K"gzׄ qMtF[R%+>Eq1Zxn֢IChC>f,˓ʵNY-/A^D Q>܂[*)>EZ9f182dơJ-m=fJyǠ:/<'kl5Cos:+z#>lF_0uK{rf^ލ8W"nM ?Ȩ;@6TbU{)ԣ?[{'V;&ڨTl=C,ޅZ\ա*ӴU ݶ[۠{}*J#u+vCKŖn m[iv8iC·a :TR=J,r:?B#onӶmU SKw݋(*w}/B)N(U{4V8c9 \FĀ^Fc}jQGx(z̢hַ ^ MӏY,1Y 'etiZ4s-4Z DEΌ[+!"0\9&YSbqW'tm)h`>%evMB˜_1|/8q{5[֢!VGC%7|M9G}B A 4VWiqRi^\}];@ hX*oX#aR\ !g ;o9#J7:]?Yrj[ E.mrq P:ιZ>hJ#CG78/EW]+}Ъ{1ZN@LEU`mBwTmaQꕢŷ)ZHvr:މ &;|j n;lz /8@f|\fP04Fv\jU/5xVYm"#\Czo薾Ղ+H\*}GX9\87^tׂsbt#DrĐlv SOZV+hh{ wSzr*مWz^@<}`<[Z{SZQ тQq1 VmeU-'F"c:ЛA#K,kc;P'aDwXUQ%^#5 *巈F{ YxǨd/ɧ6T:D7ѣwH*K>JAemST79fZ _tK~{Z.fYt-rT&\v+.F/|)U:WW 0RB}TGi!Ic@Hj"_*gz`6^| i%Bc"m+fQHZjҬiD#:ClI/kURn 3V^ uih˚0"KogqeD|c"6 ~hg0ϓ @")~${I+ޔqy(K=̳ Sg@݂O+z+ P_z츕Wjz$,cЍf4ف B?(+)8AaWW] 3|lUZg 9_/b{Л_{zf.tЅ9ߧ`e6kkз 5O5C~=F:G:YL;I:Zi+AO08YWՈiӆ~@޴lډ\ߎiֺB!ldGE1>Pt©:c'ƪ*a_Yvtz.٨}]4w#GLY;/a)C֭%vYUI•t Y ^ e2իTVLt\ɍLP3e vz&|8dZ A4'F4\ .cWi(dn`vRe22L3F25I%`W~)ȿ!F/RI|gd2ȏ> stream xXsTוojI%UT2Nl07I0`0`` &@@Sf@-Rwz{{oE{@[]O{9wճVz1x&GF(+49LyZ &TVȜ9phX1R!ˆ2sS-Ϧl71 rB̕$% hxEz_E8P*TEr>[ 1bn+Ҩt}3.9t'kf-cúdy2ӼwkHH܅akXZșV^XVYϧznB'2/\b]ڱnueybߞ}6y2#䭻`NHS$q&P `#?G^ jjVĵ  zjDsjwٮ>^-OUۯ} qdi/{JtݲPas֥x8,5c'd_a#%HT*]D^+z+rH$z[SX|hK=R!b`q2-KVF/|7^)gO {U#z7Uy -Ƣ@0 zшI<ԧ15/Z*gl _9῞ۑs K '[-K!t \z J> p3(x%m9"O>H[vd|=e!E.?I=`#՜c]՘Lu.J"z*%T:tv} -ʺ~A *[YC5K޼ Bp$xԦFծQ"7z96~=s9'׋|;66K?鴭l(xFGȪD*} &b3C/ 4}LM(+лsE6;zec"@et-KS~6GY/N5M1$,ӉBJ"2B'ݳ] ^ͳY3udl6/,YW6O~nC'+9 JlVhʾaS/Եr69w]RWҏM%(Ts1hR?Ҍސ\rbQT)&?r:5G{v~*޺l8u7ZNTkUU a^jxO؛C?ы߃?u9Kd޵?Ng_FwۅpS0tǺg={bԡSgjM RۑJ <tn6SRҏ;IJaJwhk/ùAT M&M x80X:dň^/!Tv c*Qi4CCr¦C&+ 8#[]i4;!C.5 } ‰| Ƣj[V(l^/|U*v;Hh7_$$Ӎ ipa}"h ,Xr0 p(!#Z=v1]f3/ C${lqkDZ\bM0֮mYe;47hxLfX[}١![vP>b^dnӴfF"lC&;Uq,Gza #d8D&mxl*1$&9iz)IfhFT_ڵcC2÷x9#7ط45&ʺl*OP)w(kvO8ʦ\GS Lf(Hh ;T%Nlb#oj'ןj5 G e#tV\:rFt=ňySD:0]nw^Ǔ{/%78 zP~ZP%Bi0«Q ds8@'T^ qK8ll >.N` @El_w&FjkGh%!ldzўK.2cvXe6+Ym}*d S?QݰV;0'gPPlm6nڀN\ypC <-+]OuczדA߼[f4(`|Bx I9.H(  YR˰+s,UE_xf> stream 32f06i54h64i88g;;j?>nA@pEDuHGw HJt!OIuKMw( )!)OQ{$0RT~UV-1WY.2\Y0819_\3:b^:<;Aaefc=Che>D?EeiFLjnnnHNKOrrQWuuSXyxUZZ[}}\b_eydfz{fi|w}x~hpmrosptrvvxxz߀⃆ነ䋋㌒厔⑕唗留䙚曜眝¬鞟蟥ĭ褢礨馪ꧫ쩭͵魯ļϸ믱Ǿɽ endstream endobj 15 0 obj 768 endobj xref 0 16 0000000000 65535 f 0000000010 00000 n 0000000211 00000 n 0000000260 00000 n 0000000319 00000 n 0000000521 00000 n 0000000612 00000 n 0000000630 00000 n 0000000668 00000 n 0000000776 00000 n 0000009799 00000 n 0000009820 00000 n 0000009871 00000 n 0000014603 00000 n 0000014624 00000 n 0000015447 00000 n trailer << /Size 16 /Info 1 0 R /Root 2 0 R >> startxref 15467 %%EOF espresso-5.1/Doc/constraints_HOWTO.pdf0000644000175000017500000037565212341373044016054 0ustar mbamba%PDF-1.5 % 3 0 obj << /Length 1878 /Filter /FlateDecode >> stream x]6~}3D̵ؒNB<΃cÑ]l9O-K"V+\<9UOR<6("qf6}*~\}C*EAi\&oo]I.]sqkS$*Zql隷G$=Zj~'@P 8 *56V"c=P:౾i]_&N,ܥjwwu|$bnE鲔,R&CY౹+X&A^ueKZ߶ŶD;2;k C c`4Y '[/A8jv^UY`6)'!v^-X?tFN7ljƒ2?95!Ζ!9>$^25,H,Rծ:e*۸z]FiiNSEJW㓫 >!bI"',YRQ2\Q"cV]aI5OX"8p"(J2.FD1,Q"usLP+%eO&ܣ]O!E PSP@0p 0>9`7gnE<27m+o2#OA=kqr2@i~TS~ "m,i_Bx)yY((RNm2iH4^HӌʥЪ'LZ"~#k,k} m[ꐇ~eGyDއlgeQ{#QfDPHA *mAExw`+S}۠_pu/UW Y- I@` §L`Ld@H)a`$.1kb((/~l[}u$SҬNl EÁ?+g) bד-N\$!*mݑ(Km`!LDR%% T4|s޼{z^l* ӭ9B1m"&RĭpV 0~w}XKX=ԫ܇CtCδh3 P; Ǻ'(tR?V`Sv.p̖1pyURQ)pt*=!S{aӡIL`h@=gvn->cQ=p <4 Oc'IFYHo#Jq7l22D+%NsiBBw]1F܏h,Ή/f6l˼X?}0xc'I . wJC^90iӓY) ·ݳ[W˿^t`bC 枖Tp% KhE1-W Lߴݐlq.Wފ d0NT endstream endobj 21 0 obj << /Length 2117 /Filter /FlateDecode >> stream xYOs SVy&+N39dsh?M$ fqx$@{w)EiJ)Q&3)):1=ur{0@M'ODݜ}76}G?z5 -/?}VgN2cߍӀ|7x#a(iM7?%5,~dBEXωmm|[u&5Ӈfoy $EFC&Mkbmu@QAF뒃8qiEJl5o@a|R3|aTSEg'? RQ_q{֥mۃv,DԀ!FZ_}!ɢE.ve|-̅hmҾD?ݪ\fOGJٰVMa].tD^*f^iῸ&<fNa 6<3$3gb2+:>=13]aqCyn7+@܁=@ nL(^{*WAVzx㗠//u3=`Sm `ԛ1"Q"BJ "R~ 5qipxU|15&y:,Kp)J| \a^d?;n@`_mM^2Mu L'NBS꼯prD:&4X{0 `y.TzRMe<-0x ӏ~AsƉqODfFE wF 6bCU7]n3.&+PWG4]R g!0 dL7`T{p&CEVCR 8@v2Ke%$RS\dN51(`LKc>1PwrZB':.B(*@+W}"qԭxíuʊ"D&< :)9ߎqb{‹پi v2o9Y)SRf$gY2si Hǩ S?xvHc\ΡGEv20׏_y0^' ".(CYD9ƑRhZ^c;,3&oC1 2ajjh O=7HӗQ \MjnuKKGCkHmG 0ѯ92Hgz1 ZӳYs`ؙZ&159ZqX]3Xē%W6D∐$U}u$Sdr"v8y #:  |r=Osq7RC,ϫڸ9<1 MJ6J% &Dhzz:h̉v<ss{gP*4KG{F0wZK <-̊J*V4W"],o sӴ {]3}U5 SXyo#m endstream endobj 37 0 obj << /Length1 1410 /Length2 5892 /Length3 0 /Length 6849 /Filter /FlateDecode >> stream xڍwP[5EAHkB*U @(tDRE)RJU@zHz{L{uZɦ/` AHT7 $4ca'F0DA1Cj"{@(,!"  %TzmB{H ]Pp{ nП@^ XZZRW9P@@M(悛hu#m0׿Z:`02X,VBxX8CP0[O@- 7!'+`(ph\;4ڮ0_`ߧ ng#8W1 Ex@;3 !۟@3z@Pkޡ@] G7A A ?I l;ge-C`ЀS`6sN$IUws)Bb0 P$-!!. a6?Gx~%?8>HWn|Prg+ `0{8Ow\f'h) '2[$[V0SPYEE'GPD((-VT(%"w_Q( 0-{i A6/JoI7@]^!8QcpDlo}_VD:wN Da XL$*WV{lu6p# @ AW s׿+#l?m(".PP/N8-ȁB$WQ!Q7 8BmB,KֿylSH[ ǯ8W LݿS$z:THi:spgg$mn38zaΡ-ʎ |zx(gN1geGLĪWdgţ  sf[ӳco]|p8v-s8~c|E''s"St5| źZ ob%OKKmFly' |LRrl+$%V}l|ɨt%<Խ{f)[e^[!A#rN *$UQ+C $X] *j M) _6$Flwz{dmM|c;ćq-jvxLnrҞ4OU$>R#/?F*~ˢ%hxABqSP߅T&M;$Gږit]gu+Akr-6qM:Ksp!Qd+_OyR}\(yKk}ӟmX&K^ΊB߭Gf<֜XU/.1ؚ-a<(jbS~`q=J!kT ^\xjO]Pn`B~ O/=ksFN^: ڂ[$_Koȸk+> [8f)h\>SnI0*V*N%x6%dolXexy`}*Ps!~IC&OTm?4ʩ eN( Y>@SiWn-j:z xkAڊ'k+3l#! Ɛ2-0-GZ Ȅy E&FtXL&wLQoM|8E[Sx[iq)Q)4 93GtE{6"`#zP $ax5c84QqxlGo/Zk>QX*WM"ٳ%d{8oINa5_!oo% kEUB&SrBRK!5 /1S62b}~vΆKç2Қx  I@ke/N9Ec%+2rK`+]÷mMvtƽpcYWsvA-@a{'^8rC Rl|tCc=Lc]4CBe2v u^:n$1v:4(\'ԠtMbBIRhwC[†̥<ٯK(z|؊|QIZx?=^uzQ|@4D~7oM/$( L'*Z-ضLRmQJ^[V`[MLWe!vѐ[3 bwxu(`}m! ]+r me(-: %uaҷϸo8eJN٨|/ . H, rR3|-THJ躢18O S=/ IsF2ԲZ r3q9ˑἃ9ef3OȚ 9֓s*z5Yk#@<ENACV5-w!~w$L]Fy(Lغ|fxBAIn:͌w]וpZ-GU}>"@jjnGn\ ;Er8p{?2Hg )b^)6q*d}?Cn?N@ojd6ێ{ð833k}@T@&۹W4Y [漣].{l7&jT\5 |zO7RDi\^}G]d?tUEbA].pY#+eڕnRq{Q1y15v r!c9RMYEM\vZLOy3g<>hJ yR>ba:eD s7b^>kzU,Nn&9Ȥڀez}bmLjZ5'ݻ䖌(}۾ͥ~5yƊv.?u|W1}r_j+_ ZF0,/CLa&jp| fVIU=vD'}k[F'jTdF~zAh@һZkocy:f8;+_4OeCg\afm3<.v;-J9j1 +VaNk;Y =_ " #)DQn/w=븉f5snu~n5GƉ8*d~[wK2/XDYPYt$^V| n-)xeqK59=.@Zt%d~p0~ i/\)˻qֳӏW"oܜf>}U<)O:Y(3ycg8]44%"n 1b9o?ݏ28/ߐ`4?bfwgٝS+)œDjT9q/ 2t$carR*qAV$+d8 Y(fϷ^w59&=_}wWNҵ$^,<}p]W&(r?$}=ifIm m 97hd3-cɁ- ߽.rc-zl 2ai2  wΒ7Lm{ Ǧ/j-G);D9>NhjMJrL.vw-m{dN> j笅3:.+V>}_,PI53 sSA@FFl$H[^Eio.nfY endstream endobj 39 0 obj << /Length1 1391 /Length2 6176 /Length3 0 /Length 7120 /Filter /FlateDecode >> stream xڍtTk6HJK<0tRC 30 -H(JtI7HHHt 7z c|uL04'ݟ_(A#Fb8?(A~!(/ >A NxCm5gyy!Q8Joqwq^¡@a_4`h7\Wod%$$'*`es x< xQzA|  ߎ($%H4p_gH?V~į?o a(X@MT? $+ d%IIi@^Vw:7Vc$Q wo">6ClWc vPC[Co+sF(o_qG kWVAۧvFF63F.-S'G!pcIJH9⅟o/BC1_ړ X,ğB`R@$^0> ,ů^M(%{C)&0둮"*8|ARA4dOÿ`Ԓ_M/h ߘ> \k&ۘdtrb s5w\9A7yޱ s#j lFcpVǯ]ѧEr9}ӢaPlg8U-?ڑzE(IJ|.1jgga"ڧ2X2A/:%aN)S6T30úQD05P^EegUI:Rx.1ĖYNwԝU{K 1 )19w Qa  nDtgH[V<ܔ|V,m#;ۦ',7^6¥jfF%*V/CƵ%F$oi57vsV`1\d'u^>+򱥦 <,mjJ?ţj#6;0okhJa qg0$㊼̋emDEz,YK+z_s{GݑdĴ&OI_ ;iSηM˄)"Lcig'R_ob vsYV1[<E?nxbl BQ[yƒRTTErfk "z$lnبTDo9wZ_ &V`I1:F %}"uԜ螎\:&IL.NŦxwFu ڼ J");\xo(\# /}]:GdB ,01k"&Y-*k zŭutv#ٌ)2N'QWGz9oqրT8= OO<\_r &OQ<#e:(.Ƥ_dLA2hM6CS\@)2TM=WFBzqU;8:4†˘NX1&bax Ȧ&+dipo1LQ9pVJ ٭OD]ɕPw>Lh i{˚O["So( :[`1GI~. #jy 6$7iqs7J쫛fAN+)ڽEQհ25PIGz$%>QKTbGLW+$ .B{D<_21Ǔ5M= gn’AR2T< +bmeGA (AƸoH&\V0~'ڦݸGaxKljq"$ IDbt(vPZ'(ϜmY0}*;r!a8kL0 QO::}khdX饗cX#"IXLkݞT%2חڐV);9EvU2bVL|6PN3BKX U n6q)J~N;Cevk fWSHn48IuUZE6tGNK-~r"#.Q܃- _Epr@/˩Ivig4V4 Lʹ%*1Dgϥ|?ܵ} j@{:]>uᤪgݴG! z>+:Ew=-{?s!~lXĵo?xn\\ۈDdvJƒ2j*c_~pSRY=^Wk&k/3C,7F NyWx_EdZ<pJTU}O>e[³{__ewrwKSNxi>]mQrpjKCx ݷI2,VS] *OjðpRZg[rJ F9:MͲF3ùZa3X=t^gc> oNQ(.@_1LOFe-.d='J3UddN}DӞޥֵ^]B  Ս}5fR 3ː;TsZ7oM 'aR#g8c$};8ӨTzG_֩厇n/ϗi[|l EmP:WЭGkP0M>zxO8-[xP]k5Hѐ.Ϳ4qd9xƳep2S<_D;=nd&!!N&#Œ`}1&#)вfag=,[D{.sl=Ck928/((.V͹tgQ<"w iZpC55ཱིלy#V/q;;KUW6w}MlEl=iAjBRSp[Vߢ):R{L"~QϚmۅSJ^ %!GGvIQCtCEkwێf|Y>(ly\7֍$ЊsN))w}mW6Ew+F],Ӏ]t<5y`kǥVS>joq5g`ԭ<$B篆y!" g*kŬSrt{4$ExF]M7U3_˻(FܟvD~$zcBN-c-s1{ F_45Igz qIQ=L^˰g8+VZ]iL$I DѮUԷ+_>]T+xMY`ɔzG'+gw.tyEӚ_ƎS`,s{4~V!.M-050[0:gX?G =\c#W~WR=w;#/!73+<*laY:vsߩKd:^RK9DS}(tf8!| ׼((\~SM&?G!҄8hSvZ'.M+LlK#> aIy{nLmon1%NwFI;@g8n'f:S͸/[&}531ЄXR=ez9s &ؑr6򬠇X JQ}|`T<֌钷HuJBzjH9T_q({”*#]#UZ$m q,$ʊY}3=eVUmmrg3G'r-V ?x R &Pz?{ endstream endobj 41 0 obj << /Length1 1383 /Length2 6181 /Length3 0 /Length 7121 /Filter /FlateDecode >> stream xڍW4WgMP Ħ7UZVMQJR6jը*EQ}=ޓsﳿy> =AZ @HBQ?j1a"FuJ`O {@@!H/G8P j0wE@P2v\@A 1_@y7j('hBPJ)B!G.^7ԇ !/='`6 ? hEP`VB 0$:fAŁj@w췳o^N'g"(W0Ba@+ɏA0`W$C]h_7U`4?v; ɏ(3 0{EB~O ء+{.07;a.`zxBԔUtP!@_Fj4@w; uHBxB@PhCm!Ph5᷌>wOd^/{8_1Uӽ7m p?OHNwK 蟌j08P7tg-8P p.C%HdW?_Rtueefz=QhZh 7iSC䐇9D(Rׅ~o_3@'w p$' M7;/ͦTNHDF ђ_O{ϯ (t .G~S\(SWZ;OͶ_cGKEmbI9ׅzmHOm ELomVj_YL>bA&C4y|2A;zͨ/\o"p6Xa(|MJmNEuL:_a+Crƿ8!r~FX}+ [^= "/`o?fosUNK`el'0-[$5gڰ֥+ƈ "iK*,;Z4Ӟ-`ooLܻ07ܖNҝ&+KjBO; Q|dʢɂN(iؾrQ ({xb)U),h97PvP%yt,dLV+>V!v8=齌hsfB{jb)Qwʃ,Ĝvf1`ob{UTK4L2MÛ#(?h]nݛnh< S[4fm˩QS^u|ƓkDc#Qi%xWiqt/tmI.- /[G^\o 8?Tɼnzn5c%/{k3.[OC-zNEĭWdǔSZ0g#nkgi)&])4%{lnW Ru~n1i1ǐqq0JEzwۆ.Kq֍{)73>/|]nZ 5-5s ]y}#Ʃv)hK=|̙d )w!5I%$Y(Y ?,^:=MK66MC`,(bXj]SIfGx] =h_i,]{OFܺvwVf N͞Gf ^J1@J|k"\<[aJyE !Dӣ!J65;#>F5^S^w?,Jw-pr`'tc7KŇR߿/ܐJf Iqx@s C POX.8`"(ceW)-Q)j99V:jX!ٱ4 {*M…TwSh3pV?QIROMXP ;_e~aI{pR路n٩^S{YN$-H@^6ك?Țew&&Z=de7|3]ra^qlUK^nU/^Z)y4Ue @[:-PYe=0UiGy1JsG\sSn$%̬ Xj@矧: + 7ݑ-*.pM1f7K<~Q~%h(jс'f{7wPm; "R6ڇbd꫸PW1TJn!ءKL㵋;)mS txYk^cZv{|:0T<Ţ~5h)f1]fd8a5=\Jnͫmv^:\rB]A*]/>"3֓o-2tofy9$eʕ9EoBeF,G'&n,՗>zMȼ\@Q%Ջ=I "͕UrގN>VM1j d[.Xg,q~Ġfmdsx.LkG y5u-5$,ıƗty:BT5khy-WpY6DX\:A7.6Ǟf>M(T;)gzZVf%u+'IxZwWs_(C/9p9aΧti̤)YơH s_hޖ/}t{'rL 6J]&Z ,I)'o6~|nr pȡ՗2Zȗ\Ӻ坖nF ͺ3zC,$\ |-{it1>ug.T[#²^N$is:bXPІ }wpj"B̊AJ$ۅR줮Dgŝ&kZ)T `},Ths0 o?`9!Q%D@*͸ *NO$1¶q2Z9X)w&LVq»0-%L=ɯw6fpDN-q۫H|sQI1v8Yc鉫fG˜khѩp?#%ؗ)dUt[cOX(0/L/x-y) n 3s=FE|by_ 8YHޭ\$gMR7T0RkU%ߠYBZg~Kq뼏xkMNNZCFAD߹FÌ Li6\,i]=xX*ЌDwDð7+/#=nc-O(҉!)nKkH[4ssקĬZ )o1v<3{_jd/9&9n{P)$58v/rbҳh@TD#PKpeQ9f!M s,){ѻ[)w^Uj#/0FfZĦnݏb"7RcdTgrܔͨ#^"8/I 7NjVyauĬjPL+uOVGzh6&әMG,푤cRO9euTFkU._sjv ca[S.|*X߉ʇikD0Hvq~Dޑ5G jݭD1Ïn:X+P?%7Ѭ)}&t{ὨlL_ $hG8|`lXUz7m.F-})'fa>˛iZ"JB>-D c(&ƮB*gc|ㄬDyҢr7#r/6iykT)ܹ%.z_{')Ѿ/+3oRd,O "i3ƌ GR\ 4EA/=EqDV`?>3;w\,s6[8v,Ɔ)3QEm;o/Ti\ 9οQT!wؓqxOpJ4y0/k@l5tJЮ!d ,@(*' TnrW=j' {mu|xZ~ǨZ^NHX:'A_#(M'C[<<gLe1J'xUIVB5rN|34I%]<YElahTt`Mԍ Ơ$ M$`'R3Ϳmlę87;NSO#[ϸl[6,{OHhYnyFu &p6 -K8ȉCj&Fz 9S#a뤝<y(s JBJIۤc0A]4Bߥku+ba;QzvN!bdXpKEtkG||ϕ;2C2lkn$["R,ǟ-|H?yG-]mWbxr@ơd^4X jyi{K6]$/ųUzPT"FgK,MOIhC#V3fg+_ ciYS@f䭍g\Boso/Xeuk7_H-c'4/b>|1kOioӕv|񾌿( Svm6 WGzo*'Žݯ*st:/1TS~i/e/|fe]z1d_6^]{斒 /U5ޥs$BJ&uŤ#N#Ȥ ۶M ˓RG,&Oξ1vqZ T.FOqz,1Ƶ[g܏g^}i5!rdG}gfXQ,5rf'>fV岛1.e[ "R%C`U, ?ů%ݸ?*k55{4I{=u&|eAiyg UR6{ÍMr!/N4P@Y5^+}tWΔ ]!i@9 3U$(cM$nXU]5eV &M)i\!!r;Ǘ{ I{@fdʎ침y'{FP5m~NA.wo_JJX?1P;`k2t*^W`F+HV ?VjJE b*^x:,WE*M#Ή_~Y5`4XK~gO(U` SeȾʷO .$ endstream endobj 43 0 obj << /Length1 1406 /Length2 5931 /Length3 0 /Length 6889 /Filter /FlateDecode >> stream xڍuT6U:ҋ {/"!%j轋HQt邂T))s>ֽ+k%;XPi@"Ђ ! @UWB@) NeCy@`4֦AcH$ IȀ$e@(7A|]!=$EʥG:?xp; B]掭P8  }u@C2 {n8 Jm:ACHO A}3\WG88!l{zô`&ۜ`h8PZDRB¿ {~;AXAKwaH1^a)pC{AX33v(]?'0v7XXG\E͜9UT~@PDZ$%EALMsHpDbmL|YA]hoB_ ~WuFnn<?]ho4VHD 5h]ZhV$'59P9`ӻ0; ˇ^N U?K#H_@P(?)vؓ8{B$ 8"Qf*{y~a~_nzPX^lϿ3SHlK]dIM_\y13vD cneu#OlGgV[IGm)4QZ 4 soǕ-EiPH{۫WW]ԪZ6yٸ`iMXW}$5 1͞4y=' N-X-$NUxflĂDnFe=GLi dG+MEc0w68>}ZJeP%}[ Lxg$Ӕ {7oQ6-;6&N A@5uqrpQ⨧}9 2w *+$`dE#>g<4_b$hQj Z=w {POi/EbLӝ ]:~JsŅzI?g\`TR".Uru&Qzbj{b[Rӧ4 “//9+n>20sIjܺ!wgzĕ nrOD;o|g,o,I)GS@ C3_pkя)V;oZ9} EtX}uīcP]%ʾv 0VDݺz(T{a`SuRc`[XfoW<-鷤5!6eJkSo~܍zQ;6挐p˰h%kץe~lKNP^筚/>*8f jO!3%d~2y!fHQB%sɎ/)b3 ˾7HM{Q}SQ}XAəc\Dam\^t-'ؤѼAocDu`t/p.kQ:5jôc Xrg#+_bl>Ib-~\!=N*n\Y(*|-vmz̸Ņ߫ۆZ+> 9 O}[t\]lx-R뎭Λo60d(*)Nվ JS SJ]'-tEdQTsN_{ӏ` 7OR>T[&ިdc|kXfP?h#rOW{.%vW2gҩo;? *UP8L_wQp4@7]!Di.*75ەb)*|8;=łe%Qx?Z|M/߷Y9-?޻ύI<75{\"ZYLΒ&UE`J$?%H&YgԩrURPHEEkKh3 w`@r6{x &ܐ:ՖSCIk 6iUY)2O OdBW|+stUe!˫ʘcN2<ԋ$74)Y~Q{fUl$᯸>&PNÄDjI'1ɮ)hmկ=_ujb.P5O1q|SMөSnwCv<Y&]r"f=nN dDbQJiiCZvXnnǝj46+)8fSH+` '& -z$eɓdfORFWH$\aTiHNd5.' r՚ώٷ81K I1%*қȚvdm3QN,kO:\H:yiwpqš3Z{;krz|*uuU 8J' ]Y{Lb\x/h߲xxKw@,ё9b&)ζHʀfcq6oحi.|jƃ,Hc f$ŠD\A{+N)[<Ӻ磰:f a,,w%o(vgg7hXJ kR\ꣀSԁKjR0pc)uHd }Lտ[S^*!8ᤒq]%m$+~-xF>, EF)qPs9#W k'9lT㫇vVFv&NwĖr>r(f\s_3/SQ.5K"[\K4zMlܽo6G4>rS]FLtc9z- v7,ud4YUq'x1jz=}5}G*ZOOqeAж9Qoj| D3ʒiF7hp%f顭Jkʛ[yF%g4f÷VT 0Uژ+&';lc]'q[#VdW.'MBJR:Dd5P2*a[,QMLnH6()%(D?E4GA; 23l~fO3NIH\t'&9~˴̛SVGpWCw-L0RZ3 W,i]?QǨ 砅We.}aʠZCy󊪪BXv"f@L f7r͙G@4gʪBWPlؗ~'ƕGD )խ̦-ya4,R7oUS 22FWʜݞ @mTfWwfۀK}{u\uEUExa)CDO)_"{5\Q=]?,1x]{=~0L[ycB *`%NGe^ ܯ'2U,[}hߊQ>y$D3`6 r .S{vlTuslr;6HҖd3BCJ5,6G>Q̌=_kPj)p_ab1N>)dNM]? Y}:1&d`Wg9M a nOFCvXNXث,338^Dh, ?iY|jĕXr4&'"E GxF̭{К4F<ꩤ.2Q+dJ٪pB ~E9&m6|{xV֪]!CM'|Btv "`WK8Zfv-^~sOȈw 5 *'{y77gH|diA#/%hF6I$嫗%I3jOžÃw e2rbZS16 =bD6W5PzrWd!x$6"Ou=[g7*~C(u qBFFLX\5&L|$!!/ z%ev\2x"ev^ fÕih@^[ -NZZS/fLc` ^?v%%͋>\-k8gOK\~\d)i6ޥ!̂+77Wx*8 Tf:H}4W=$=Lc8ǔB2#"(WXՋWE!\lfŏq$֒+D1^V6ͮ^_(n.I3xg aO NsQ,eNGrtvњ9B98ZG%^j̼U1.REfd ԜL-j/ʰT*Oj cUv%neNȱ'4-/ȧ.F0CsFW,*4_?2#(iqQMP(b@3p:_Χ}7f+_=zB*deɹKyPIwYL3)sqWSP-G'+嗭q`@d/u/>d_Y@4j zP8㨵Av:ZG'ɭ}el>+V#N3 1;7/+oI0sk9pʊKm]cpZViqL9CIqG~&oMP} endstream endobj 45 0 obj << /Length1 1419 /Length2 5958 /Length3 0 /Length 6919 /Filter /FlateDecode >> stream xڍuTk-HGAJД7E7A $қHR Q"4"w{WJޙ3gf70TCB4 PHD ss1 (4_U@Pwu@IY@TDDo % PBHMέtD0 ߏ0/(##%+A @Ap G1 `N}m'?a07Lw</We'ysK͎hUMIO29tY@TZ&$!1na;GئN1>Fqt}e}_ CuM祯fKÃK7T{ bvG[n|On19RX m*fޟ֎&Nӈ~6 M]-%yEOo4C^\Dt_SCIJOny@}ށbqo95ʖi3d {eqdO۸3ʨעM7I'*o&cՅ?XۡJ3HϷ8|~R'ja[%#*.^LK2M/3ޒ)…,n0M?χ3MqJ[?UJ[8+OcD(sNxM\%糍&b4ߜ,wA2'Cf%:HgpW{ReUrQwțƭ Pzf UbȎPJ ƋJ+qLgͷvu nJw&d;8w>'IБM)CO殹Ȱi򉴱8eW}[F3kLd~| j &UR*HLuqվjkS?NHY)ұ32mSOҔ(Qoyggf}d(U0;>nIGHnr ago70ӝ֧Fyqt&N,-2V4aD ^=%~3 sѐ%mNsW_~2wuwaE-+mvő)Ɵj].CiԶHËaj(w $BeEZ ud^F1K?oiݽ0fҬɋ%f>#4] W y~}F8޴2͇94ԳTN7#LDѺm7GQP,V9SfΘ?iJ[5&FgbsfAJhR TH߾rԚ^^҄z)w>gB"^"تظ M/+]( (ts΍xod?E\n 4p?у <JzyҤ0tEp]Y\V]1c}U7)C|A,(=xkL +Rk1졒[Y{X*5#CGwcA6&[4X57cf[L"&c/]7Ts>0}5?_X|-xgxb([dAf;S/ <,2c?Ɲ,UF6lv +ʍf3mN;SI}IE)  i6lM ͤKm釾Qj5>%;x@>p4c2gʸ>x m=fԊ4M9[ j$3p)Yԑ5gD&hi繮GJ&@5tHD{AD1q%s&#d _v\}&2V9lK`C{FW"SnWץ/ld uN -޿2fsX\FIs6bP"3&w];v,8kA@,wk.3ȍ \%eHTǒC71;cJUUVeWBl^X1bm^0Sf詒)̪ӰT8A = bY5-`nzI^إ;F`IKLhyƑvDpJX$}As5Fѐ|~$) 9^O?#@Ҥ@9GW[|mkRTwߑx_qD1eHz4`MO1[/=HIK3M տpD1JE4 }X}`';?3Gbo(IZUu8~k\n?%DI}=sjǨ2 '' z?)58:>h1ۇKnd֍x|{XOG+[{տ}p?۩P8B+;HU"!59PzMD0;Nz[j\xoB%e .r!k>ZakT~x~*bgHtr#qbu٪68F$tqnL9skB/zYC=*IٔJagKE>]_%bܐ7&AO9nwZE)=|G~)~2zۚB81DUxyO*+#Uٸ,ׇ~Aу8.i‡͞!3TwvyJA}sU?&KФhk۩}7/5]d i~̴>”Bcov\k_n "y#g}}))YHj.JW5W%,bi1([Y[xZp#EЬ잦da{u5tp\q^^m> @|9ѫWt JuCҿ; g? FQQ<%y,WrpYɤ"zU]H {:w0lKG (e?u_%fq+ϴ<2oΣ!ȉ֕a-sb*K3%OhUލȲ\hL =\b{czPRЮbJܴ6ep2M_wIZ <ݑf/ğU5n +{D4qv]I2Q/߽o'K?b@=ˣ xgUm^T`ٷʦMq|$t7+`BlG=?T),!U^[~!lɑuHh3LBN%,y¤~ԛ!RAvIOx_Qۡe>. .Kn: [~ Gkh29go&mbSsMP3?8 4ogxzT:K"4J6nwɄަ.(RԪ9\3p8!6Pi T`|C k3KHsRFexgr}jxZ.je= .F\;S\'S~!KOCCFp.m; `KU=ɏ6FU*ME>.F bo}e3k6kZE_7?T:X!=ao_u~(bӇwtrr Y@['Z֕.R\ ݛՉ37~ ZKS\ˬ1JF&J%@pnpAv+7][WjOG.=X^ܭ˹XrtܷX'wwBwGҕ!Nn '+Jkǘ`Ww>=+)gG"p噧}u+/&8Z9C1Ð*d[^ ˭̈́mxĶ=y?8 c1NYpLHU<;-U;{y3\Y,/d3%;eahR\uS~i*\Tz$뽲և½MG=yX';B~D0J/}s ӂqިֆĥnсz XDf7rO-fne3E _"#ϛ` huɑ-9@61MԱ׈yq.>'%|ww XUu,:Vzހ-;/E)RhIHƞwGWA~)GP)qI^i@Xٚ\BQW >{r=Qkx[dȄbr/m &-uzsHǚاᇆK/9ppT0+xI o;]}ӮOQf"VFVbtB7xh9_OcG=7 ֟bf0"PI-Us+> stream xڍtT7t3FJd( c0b1ZTÁRJ)AK@PJI Sg|w_}}s݂|w %$I E#  KM#hĺ0h堁EpD& Gb]w'XS+@)HoG V @!P @Fj`\(;{G\VPPsFbQpĊpG!qJ!lù(JJzzzan@ NET"ݐX$ 0@ H#0Gblq0,@T8H1@bC=m$q_wIWD(`qvQh;- p!<`(' w0D# rPN JJCe-4BDh~"k3YG4`B#l@HQHͿ\*tvH@tM^t y |]0.["Iuy 8;-р  PhH?2qXD>^ Ԃh6?6uuXSBJKɀă߿kP'` ^8<_+# w } H?Էɂ{~x+Y0ÜQN9#C\"2@;U#ڎHq $Gr;( qCzqQ و[w$*nĉ1܈+=_2dC ~m¼i JD~w$CD~[ ט Y$ꗎ_yX,o:-^y$ BBqzJ,*N;4| ׭5j`5sC8髻|xS5o̾/d͎&n>xוIz|ubl7Ko  WuN%z 1=6뷾z,KKds.hYvM8w96cex~ƕ[ʭG4 zzg/wqGz-x˥)CYi2[p$c#FQwW a!+>f co H=;~]/Byr7ݓQփs }h_ 7d?/{aCZ\hdb 4hSr* [%60Eqs`l&,D6;^G-ҩ87GT0)zGrUV)t0Z yZ0tCMװ>+2lmoL$7To %&}K0NqZS }2I0}B};Jf\%X+r|\!]9- M+:L9eP!?~/NOtӄPaBh'@W">abIT:5tL T$sjr̐H8xvm<ΖT_nnsKi<HNo5sM|ڷNbH'f{c T"Wq aW5[)bK!&?D䍘8J'\2{Am73) }a)Fc̕BY߈ H0Jy+)vmt;).5lqQ !@x{FP -;B?@ GZR Ū79 L1)sډBg)oe׷5ˡk_cܠ]IW)EYz1e(_&mH/=g~)Nc3뎧^Z.۟OTIL1VnRJT2\jy4^3KK!'_<h_,~ǍB|kxXN4mb\ˌ#γr3,[p?REGVse7*vȷ'>n c~fDύr|itTZqg2>`w3. K43H+<GMbH뒙2vp'M_@U %d=B4p黣s@=|OR7e_z$cת R?IB)r oqqVfh"o,m[Y=+4'1B݃3#z?BXe^/7_-<Fiدͩ*7Yh̔vp՟,VTߖ"웄TffK =^hWkag};\e_,|9W:F2M v nӒE)e1F"+$L„lbxcNcG+%t6>A+TlX! s5r'V|mIW J}糪l m5e͌{!bd~n,oo$'B8](R4lRbm<wǥ+d6Iɾ}PH b~{! :l=#ԏf8ꮵ67MףaݘhҤh6Pnr6, ǝ1Ln1U@r`i4"&$&EM[>޻6#YJV~Bu'2ʼ1`.ys#4tz20XgRkϠHlP+yc৮[GbU$"D;g48"vm B*7eA819yo!m;}Nb-zӯn!2mz-qi(&,>l~t5lE j!6&|2%S@g;O:댞ǡ򤙃 /3Cj)>;̿iQ{`*ucP`DXC=\A ~}$*\<~9]Z3г&TɱK@bZ4UzY_hpVdRN&lȹSgnbBPEcWb C%`:+߬HkYd|' =l6mX :ǮR\B?|} ܐ4b,.F1ۛ^\IǮܢ53{?A*Eo548S"6O(0z&א4ӋRrOs)6IUPy /z-eɇy~k?/G?* 8f]:L8 /-w+ IzU2+g'c㝜?iK<>InP׭;`,m>QbmFv z ΊyOO6T?z,8N~.ԃE~G ՆT^(;sGo8ױ6w.# Ce2 -/mtCؘx9b~n+J6wAnsg|תkKING5w5W#-WM>fښN ::BtBb7d\6TZ6Xr=i6S /|$L{MUS{I{vjb9=rZ7κ&aBԏܝY:k$F_˞ edVP EЅ})5=D'[ b#[Q}C![mLՒR]lB΍ph[4ne.%Iq)Mf~+.ƾ߂7X>Ae- {e=rqvu퇤)]l>KGZf_O؀Po/,'yR;+~[lgN_}TdQv=?{cyјi|1<}`4)bgp/z2_QjN1ב4fzL -1X .x뎛Y/NKa]7y|n*B&ͻC[*PlI#|/qgQau;F6VѲ6{rQ-f@=D;^Humغ湶2r/>TLwwyt^:󸈎%lm`BWu͓ɎrA ^ƙ1F)KjYAKb츓4ٟŘ[¼L1MKfWNfEhS73 }ev!f;\\h!o.oT!HpܕovC7̋sĹ>TC$&}%Á5ERg䱪~(&lK #GƝFħldh Oڽ~h%%^]HJ.~I 5 ~Iޗ]cINҫ$PMkOϵ4׫h 2}K/>}?t/"'e$PHOS6*kg"SfnZޖi+b),XYA˿tZj-1}s82߸+/u-5 ۯ7 ZU y2om=B[PX,z[F ΗfF\!?+菚*v3O s4eJTJ}u5j O>MvQ@jS1єxei>̷}%߀Eoߕh@*nFechg7]I=#qGMJ$s<-+%AoŌm@Wѕ=0YydA ;[u#ĥ)d)/|B4.^ϼ6tyMsP,\W;+o1WzVI-?\o<=k~2M,|nB҂;*ֵ71*/ u84,֦}-06ZV1z.lb$r)-Oh@7쭿>D~/G -=(5l/[9bC)%.\~fZ3F_T65{ ?^*#IՕ+m,iڻ}ɗwOTli㇇Ɲ90:; /h9ijNϛ5W X%o֋Pt֬N L*O&Nq–G'בּÑSW?̞OYbB}Y Oi  25(Ya)(Ofrguh_4kNG2eУ2㧂[x%y[|)os endstream endobj 49 0 obj << /Length1 1422 /Length2 6413 /Length3 0 /Length 7385 /Filter /FlateDecode >> stream xڍtTk.JK7CKt 3 -R!!J(*Ht {9kfw빯aa呱AYQH $ȩ+ /O¢ ` Y `h8 )\aP V'`QH@ XX A ѿQb<n*($ M"rrce>XTTw8 s[C:csV"]5W v { YÃEIrpp=C\a6/ /! gGl1PWU 0$ᆴ‮ CqV u7tEJGZ[H/8#`/ @64 uP+Ρ6 A_~޲FCbЄ¬gH/͙O wq)UaHDX@D0Ok{_a_j,_g3`°>h; |}! 1$';V #c _̰A!^/ ʢ<~A`0|?7Z-(@dTFڢl 7xp.’}Sd7w )!Gx(v ga6p7*cAa9 ъpOcmI[G´Ph' v֎gAa-w HkͯuPWW!X {kMx`C,f_Jk"/o |⿪XbMl ˿_fM8=qxp\%C: ~l3:Cab1I7;kFLqhФ!r3?RM_%xCnGo0qyxe [|TY:-hR6v,ď^M=`S(ڠ\UvFےU*%[S|ridFD aG%ǞYvږ@aR.yAJق%_3|3Pv$ۡ4=g"0rȊBCAƗ"{T@ډ5X$-w1.FbNQ'dx4B y==^h k^<y~;58M3^zc=p$@LH-m˒΃Z<1{nK[nb?<,_H溁}4edtTb l2%"3>Q~7ңo?xcCc$MLf [xp=9~ʕT,1`d7ٯ!q |MMH {f6O)4`ZҪ9:!""e_ 򜽗2v2WQ毟ט%Q{-ÕbNv\w4JMifY *L?~1~`3؇u%c,w)ȴ.4^+V.lu5 "!(!e,sw*K}~I6 .b$1YF~Nҝ%| hһ3-̚3+\'&cYrFcNIz_E,뻀35Đȗv3_l-߬5ֆ_mnDi*#L>l{ &ZgxmP?OVĬIEUv}ܙiAYh:~RC|f0ǷsJa/-jԑfEH䦺+C`#(dNjHlEԼwc`݆wO9͌Kݒ:Έj6"8 AZ[-6_Y2Vb_SH|<&N..dNsc.8>QhnƝkv&;m+h#J7OZdOC2K|-+-gU3Sd1g=!chP4sZ9;:kbM%VGTp`G|beTs5q^,CO|l=w_' )1_ZU)xP|gA'U7m r7ܯ=j(toVmeڬ'1˅VLjVR6dQ3 ||IBHryT>Lqοy_?*0I4H9aLK-Dhi<<-pҗ4/_n.V/= ,T$ZthsXt NW^7{0A1\BxY]adBqtV+_.ѓ }RUKumK!7'Il^S>f ~rB1i=g2~$x_$iU"څ1}[-YU Sv]Ni UmG7dgW0'};k SGt[o/{/K Xx&fs_vbB\CtҚG bT/C꫋< iMZba!PtV)zP 8|6p+L'M")Gա%eb8R!kwH48);oj9[9V̀SoCM#,@7e- mB9G/T_oE Od}J=SWJjxEL|ݻ?c#.]ito,MKaS\sz/.KtRyrZ@x6R8(t|ed7 r:jzuq ᗝqYY)~rU}bƭX~A=3ƺaH T&3Pg&)^}@X|p lY_Գp٬U 5]*ѭw犁i~! (]CgGѢrn,~m] KEHʍT#Ӈ]>ҲQw'Շ=xī{U}x+2dGqBkA([MboNa.G(v% %nlήnuw5)VdǪq6T}셃+1+%kWMłty*H:z:$1ٙaB7Hu:R/03'f4O^'[*-A .ndN KӞgY{"D2L_E#ucY i,)ʄCs+)j<]ǶSHRVXv6'Ύ0gj_/ Lml1*^HưXG 덑-.W-0S?Bm_-8_H/ o*ɅS /8Ukưp~iڣx[~"=1 9eQ̷=}6p-NM>r^hyW>8S{Vd@qHeZW*(X]h;yJmČDƳdbӁZMrgpT1wdvsӫVGbW<).XY\ >5|~k96K䫦wk#ب䊾sG$廳pU(|BS ,3(EljOA-QܔJjjׯ{gOh ]Yp,4ůkRz ,g -_Fp( ]6.omg=,OiPWkKxC )5"/.R*OȹgЕ~INR[m[dW&M }ɆyyCaaƜ#sՑ̧i&n+hbB ~ !zl--i*jɉϨS;""ro$rphO,އd |Jכ5;!U76˳W]ّ#dGڦ,*L0)Nc!^oylaVq#V&?%$QigO>Ҵ CIJ(7:Y>yyc}Yʳ Է(INuath @Cw}8,iss98;nza+!ٛ/jޮT: W#04%He0Mof;5?iaNjIdf!y2?,t}޶e•{bn1voU\s)"R~1]'Ij1{7䦁賥R9ޟ* <_Tf2JهhS%ffG"dY y~Hgo_fD39B3vX:!Uxң S5HOAꝁәqB"\Vb!RC`>DZgf-7$\wl52cJ;e3f ZiadO\c(e@wߴ2&07[TR)WMyn$wS}0FL}iHE2wzKL#C'w))ze'qoni߉N_& .1#t:z#B0.&<&igDGAƀ} * U i) m>ci]:{Ɲ"#A,w5E8nEo O<93vJV[;抛cG rvɐ.,SɻţULkažXKrGRo.Nqޔ3zXm{7 ^̴ǮԵS| HVy%lAɷ9/%ƺѵO]̞B> ctw Ly[66"2j}nxH=Xp5%,r o_osJZ8s$*}SrD%-rBEnņ5pn(lgFϓI~|⇛qG& }tAfW.>1ia|_ipڭK|-Ở^ As1 5nWRĒ;Wѭ.>[i_xk2꫚e]/{p^[zzEκ]#\ ]Ɓm>>[M\R :1Ζp-y?8݋*'dtWE zև WX۲HSymû́NiǦj sMv endstream endobj 51 0 obj << /Length1 1840 /Length2 13350 /Length3 0 /Length 14506 /Filter /FlateDecode >> stream xڍP\ Cp 2  |p.Cp'8A -}jzZTdLbv@i;[3+?@B+J#Si@v2p@^e&W;%;[3`ggeΑ i2(1lNTv K+khl||<Af&%5 ngBblblh)LpAN@G9e_̘V vWG Um^O8ۚr{_Ɗ0 >#퟇MlMlA PVdA&^ϛ&fnS#A7U5BO4{-;_dkj7ٚ[AٞE Upq5*2Xz,ȞN&.@o"d669 0Zl*Z_r豾 ^eіЕduvnO&NV;+!y}_7-)U5ܿ^(NS|ݧ )ekfgsqLMܑ_[ljts,̶v#Wz ;G?:`CH""^V? b|qXx,& ^?5׫ZHkTk ANտ+5пwkh+ /|]0׻ #e[W*~s`{M_5Q*/ZU kp?LkB?ut@7ܴ@uM`m{W -d:&96{ttkRWOMu!qj-^F_?m ώ VKDĤ! 6tW ͵mf'iތ.n1r$Wl1 džTs|[/^kuZX'׾&t|;=~d NjhMWҕ^J/lq?8 2C(q%$HLz>+./\71WYwyr$  %[Gi>qz0mNT痜h5`d@ j9d;b:YeLL@_VfK Wa8n_x@Pߵui!ik@ԚO`ΗYN*)2bo o6L)4]l157; ]K$h zC f% |E\5״B]J^0jh:{~'^]6c{f|xlpl\ JM6z"Dlָ*V7OT6r?+N#"+4W|z(W募H ʘ$l^)/-{6'u wVف+{UUi""<x(FCpz nlSB߷Ph)Mގ l{PpT:YHy؄;g3*_mNN24ܪGܟfXWKϕtXˆ]+x,;ǦdLrӧv)ZS3#}j))ވs` qJm/ј?2r=[@ݍtׁL|bM6-~q!#2N;;ʣћ>_ckkv%+ '9A qcix|z6tDs~we4ZQ -+u1DUem>P?M&Sܣ}ݴ = FlT_AOto#ڠ=\N_nhJ: GozГbq՝nRb'SWd,;.[ TxvR4~%G J 0k٣Oi}TGN {z"Isk oivaۍ $QT %J4;; Eʆ̨LӒMKix$,p])ypvVKVqqxg1 `w7@#Q |nw+&.cøFUY8?uKHK6"*L}s,H{׹>qzVꄨ_"HCkJ^OHYmQVM,T)+G&Өb5bQ>3$~gp/r ]3|.2يfj&#I/T rB2-ϖ4糠7)w`;齲8$ 2ֻ݆0xԥbP[U7N_٠l\}:i:\s۷kzl#)Gf\ʷ|%<-ON,0a-i/p!zq2N~( qCm+@a.{]E= ?edp)}]>^9 Cj)ǨSb;Cl| IM_9^vD.ɧyNLt1_"ZDLI61$VDծYTe!Cܐ{_uxD3ZUӖgugw.LԨ l$l^x(o;( !o7pqG++s~JP'VŖVc,6=ҌDr7̠De_Zca.P~DZ%&bdg 8fdynpXxs$ m'bX(9!L~|~oh驏4D񝜡#m? W}A"5.R3ru]%`rcFJď+E0PhL4 )դΗ 'E,,xl ]D{ bxfVz ƅ¸FZMUs53>^2Dhdo@qFqچ=j9"yE3C7Wg%蚌lmyvJPmPoXZaOywI?t# 3(MVW*ZemcÐ`uP<ҝWYc;AǃUV[< bƌbOҮ\h|lh7$[, L%18t&%V&9 )bh(|t-C_@;mK[.o%rf^V$_=$ױ5wŸD2=Mgq^v6v} wz1t.myalhCHٲ qJfGD{\' n="gR{9Q0Qu'/p*ivli>wIZEBkr`9R7MV }aͨ:nK%eo[[^p|d7,MM9O5uPդ'k]|F)>"k\|S2 ;IiX1O s%g_#&_PA!D$څ;^@#ەGe(Ԃ5%tERNC Ab ȷ44ׇ7w>Z2ӌ ;xNe2,uݰVeww$eQT VjZ֮Ҭ5RkL5ꑖWRsG oa?5wQ,$ƫz O*\OP|n@ytc8CE k@RMyEi4&CT1T}h"EWq:ֲ_AU|0IVg/8ˮNΨ[Fe"lPq~Zܹ(i %j2Uix6N&iZ7tpcL$AO(ʍRЗ7(:(]קg!G:k\ҟ:#`43i>ʈbhNC'M Y~2zx3 -Fp;-?a_~U-c5hc5. [؊&85oY^d]X1X4˺ cD;vŞ%| &[`>O, _`>jNT.Qh!KtZ6(0O2 /UǟdA(mo}mal ܠ68] tRwE /7,VUl {+`f UouAoiȭ88eoG;~q K^bFbL}2dyN՘6VL,m "aTOg7Wၟ5ypO񓾸ӪMF3Ifu8Vl|@dlT|wlV61l HBGKK${,rl<(}Xt.IBH*~< ԰n0i,q<흪6YWEziKfNyOxO#?ixy:9dk ~$daAec=eDI`Ō/pI'J6xBXāÑ5Hq<^qr-KH62YDu*iq%@jń"Z~f&JO-up`bg}͞# gbfAEua42,A>fp8Sͼ[Lx~ PXTܧȱڨ3fׁ|¢U%9:'%1OڻqauCND\l8$<wF&MrƆݹj$W.>;Sn3jrWiC<]=/]`.ͭĭ)F*:);`TJ4UK锊Ƭ5A_'#<:{?-5Vs穛ᓠ8+|CP' }0*ƻ2B3U$|/d9i)XNAn!Q.g13"AZ~p=v qːyT1vx,2uv8эݲ_Б(=ICXѰu}|ATsxAAŶ 1*trvXq1a6q$<,ݟnfLdq2c&Js#8XQLd\%Ljyt7#~6 ؖIfOQ[ہr񂀁8= d^EI@4תƏya ѥొ6Z~k:0k^,^\z H≍ʌoz\>?B"J1ѥT`| CB3cT%2nxsjmdZřbO94|q7u C%Q[cHb.%_+$>~YnTPd;ݾ0` W,OkwiW2k0aZ|&kan.vˎ80T䬁. c~{\sT%ҌGC{x#*6KԼOUd5y.KKwN1n7S[eK|4vDRamS¯Lr4 4/ǛZw9&wª$MtO3 N3c–Uz:Z16">s ǵz} ]v1;a!V:Xfϴ.a{/:} Zy A `^5I(hsǢaxهR !ɉP۸̜8-;d} Ba(%A-h,g_<$$kBo[šij2{Ec &9/U{ztS£l։lFM*GC%j$Ȭ5~h}#΀l>  ?1~?U ]y)uʷ1>aiZd\;+mdfДQ rD~_g2!m^4}RϵY ~KSeVb [k66'q eB_|ޒGYbapz'paC(^;J 1rYfnB >+]XHpCanI.G)J7p$o]J_BTܣy ZKMO $Y՗;%[-uQ 9Mg+A}v`Qx>VaNFO{4:a %%@nܯn/9b OH_v|h}rnp E+}6[.D֖sV-i<Չ-i Gj r#ԩqdz88U!SڸT`f BzJ<42*z":uX .UqeV:5ҲT&}zx;\RFtREjE=Q}TxHÏV.via~ Hb%^e񣿏,Bh 5#1Ǹ)f}B@R/X=QXOqG-hh\XkgR7\fG8S#C**@qwutVN')p`:iTӌ5m} o6hDW(Q*_Dז&c~3O S ym hy&jT]_\W}ai7iCeŌQ{goI1Tlf0Yxt=q0y0/_{ d‹QH+ʡغҞ ŷĔR͠gL*:]Du[y0Eu@M= Wr\x7ڎmFmFֿ~Nd'hhmH.ZUR*\<Ӑ2/]^2J,j[Aq/MnOMH6+be^i6V'\ D`]ִcP-׏+riR0@YE{d.=1Ab#n S4Yvs[AΟ|5=~!%ø+_mG6Yy[à `CFҷLTdei KY8~=;J&d~ܜ}E֑T_pC6Đ_vX{B -;߽3$?YfE]Bo`t9Hq=s}i^8`DP?hO*yҕ` + kX _{P,3[A%[c℺ʀJm*j4U7B4 oRc!DNJ.TڽP)C~U4>]ġD`%Fr4L#|>hQ*켙idžJt!T_;NjiIz"Pl@7apx!?GUjv|6X'ZGd$ !WO nsy{:+$9^_5Qqw+ڝZ.r5WN킎yГM#(ݝRhuߏgiuRJ~'@lWdCZ QE/w򭉹56h&tR˩e):+eJtΏT4\00QM[ޝng덂_LmL"lq.\ ui(wfsa"O(`8ȱ$naCi<+v6!>nh&xzT6 \CiLIzL&)tIooNA9[o)mf.Mچp,0p{W]r:ƐYdlƧS\)K글7m$E*:):[p.eg^m[6f~17xQ(޻Z;s}d2bN- ~Q ]if6٬}f:՞׸c3,>38+s{Ida`M7Ky~[vmY;4/_'1b"D/OvMdO^Sc &a;Hc]w "|f5RIé:/EXc{ܾh BMb6@moњ)[kO@(WDb"酷@yrU;(_Sn̲ΙO0`c #fDش8>;;*wj4U1!mgBS8Qʻ4/kT'!v/ٵ,(=1 ͟"m:F *jhvIW ϢU68Ns锛I iS( !K[[f&4y1OޛL4[PXpDm(0$ϗ]WClHM^f;Rѣ/RO.8*/V!VK,jci΂ˆўdiUy59kW%D*+SilFC5V*LC$8- }bhVG)fS.8(2,9-xd@}i^툻t;Z6ɩ߁bRIPRbNp('A2IN00)knL8D1÷δR6e l|w V}fΉ蒃 RU OsZ+|2 3~Lg1зv˯5M17ua(S$Bq={inn⁕ayFYc6i_h(-S/5*WWwHSA?clu/vWɸ@ڦd[ 8 jTسv !4)e"1c:֛@I|.'d\q}AD{Y\| ^鑦{M[YSs{w>5ѠVʼ2B(jɨZ>XO<עz#? p(axjshpWZ)¦sq @^Qb×9_1"(J}K_pG#kQS0zA T,|=bISql"Ei)Ax}q1ŀYdf\y)3lNWϺzIJ{@UJS]k tbU.gaOīRD JM([G *dوI҉9zPĭ!v3Ut˸qֳDzbrޘ*HɹWָNjf}I!Gxq[DqL蝸#!,O!#O&[H*!x<֔E@I$i\=Ft:t4>:.SF7P{Ģהd캯{=-(|l `.]x$u5b،QbqQN3 {[ 7Loھ&`Jع?~pE endstream endobj 53 0 obj << /Length1 2277 /Length2 16375 /Length3 0 /Length 17724 /Filter /FlateDecode >> stream xڌP w! ]!sޫbf{CA b` t202TYXl̬֮v)4. 9M\e&v   `ef3/@u])-\'ڌE;@lmf(Z3̬^ՑÃޅRajP݁怿MbOPv\xYA.n s3=9@MFX_p+5og33{G5`am(I3zL@ع8Xۙ] @RD`N\̜]]]W.K Wv݋_'k rXX-"aȤvrʈ]Gf tp033sN_ս+Y3qtpXY[߿}\L܁Wg7?YXfS5Ow1_=z`_ec2+u6v+  (KM]2 Ͽ(?4=fPtxe 3s0a<M-Ho5׿ '}+wMdʸomv+[Yks A@e 3ѽ}~V)%@f+' }X98>, j{L w;=?3_'`K/`xLE\&?$ 6AzϠq|JE|*{>?=`Ri#?=쿈]g`~,%y1=,_z'N Ytps;Sh+/G+ 2w$Y{@wv~19InC^kZi;˿N9_[_}-Ǒh;[?{wr[1r߷޳ gLPe9trT)\9T@Qhƕ-oOy7$:xql>;ޛ.xxD7S>i8>S=ӻX쎩UO. ))fxp 1ebb;Iason{\ru+%[)q5q"<7yRc5jFZa68"(#-Ǟp6'71[y%:z,s=N6I'68g( X$A #cly֨2J=t+$,qKwBƵj[ae;1Kf=_oYVɕ9O@="ǯp0KQs0B`X_W 4ljHa}UC`K8N17}aT,.AWŭy9RjnOdl'\ku3y@2~2%C͒q;K_ئ;6t0o)Ʌ핫h<(Y9}-PpfQa㬡^,/fa/4*p<粵gfer('\B*ú 4%tQ*T<+2\0E&܇T9I/&۳~̘oa! %[x5U$`gq0X҅B{!m̜~;vzbMZi@,$DkA}x;K]$q-50' ݅>Z)Vڗ͋mɧQ7 UE5$uqwj]%swgFb0UNFnYW7Oکb] KUH\@50*>M_;?HVgY-11ԇRp[=fRh: K>librf}6CWD{'E_Vꛝ0DQf6]]tfPk^wv#$6:ڄ1 7DQ )e 4F"y=zόmgzaPtW-c !|nk)6KWnR Iiݫ~ν  *1|9|%"Jk^);X`XUȡ1SU:&Xp"I2*`ҟ}q.H9i N$8PSk_Nq4Uɭp}HK3H@ziK6ĺJ;ƶalKJ] oCuAoZ槈,) /4VF"k帄Kl}ٷ FAĈA1өoPr_dXEjKS,m#㭥n3+AW!6^RՋU/JLR['s_] >wDAɵB:_dG0F8) f?%#x sD\3"DSVEp.{7J9DO-|4ĩyTE-%5A0Yh;hˉcg'`2U|Iy )>v؃vqyTd5#+2-hX?EKK%c>_kHv\I~Dճ`4ٜGSv@dV ELPQZ툸9~)yXxk0iKZ1yXF^ jowͮ$<>-\Q ܤzC.6Rٖ6^/m R: eXfR9WOj,똈[N)Sx{,dLv=oR;ęG(<*Ɔ3J"N\ ZJF,)'5(iJpH Vxv}<]F4 xSbYDtS pkO1JcfbƝ{Í:"#T'ɑ,Y4u&AB&NhEu?hѵ/ mip3K莺ҏ`bT[BJ$M5 2knQWڣtP0ɀ`gSfa;hAR뾰ȖlChqhm:ee׵%hԈ=?lSlO2'|i@Қ-qB:aVQ'wKHOvB@R?ZqE^jLwE;#34v,:ZGk# B! n^&X<5X1( $ηϼ/u]<}C2Peh@)>mEG4v S>$p8ywLXkS&+iPxx>}?0NOj5CE^D[Ojd0[%Qp߆A۷)e8+b-6%|&B/ 4Dj@rWn+>fW%Dd qBL!|u%Ĺ!ᶝk_%<j.#މKYͤ-Y!J19+Pw֧Ma͜3H:.דYD>n.XZ@IArDJb ؊"wxp,9~izNOQC{5Ir)_/ċO~JΈ*%# Jĝ؂h*7ҟ*:njW6f+MWݛ FDJ{@"셅xvp/}ΧCkB-0L^߆%˩*~;ټ1nuЄCq0ԕ4iP-,aĺ1`rAy: plZN.IaV`L~">ƧH~[JaH$FۦfM*PĔ vn+=ˋS{dPdiQz}1oAe)]kؐ$pGy#LiA/nZ=޾S2 ušXSfk sT9w\,4yΉD:ǢJﺜ̣:0m'#MT;$pDڛ¹ (aZ6nﳼ^fp {Fh8p!Z(dyh5c[kkj|UWcc?RwU7+5=0G!PGBMmdEQ~7ԪĊ%\fiw]1{Mf^aಚ9 suteX +RGR&r^!j`6KJo%XuA|9zh-MC'_H|  T2.JEkP@B>E-^!R~n _pL[+-L4d_b q'Y2?zCv6CӆL>*0wt.O8__wj/U뾂)^]2 =q_]m*@Wxj2GOX6Lv<ϙvm]+qPÇ!b6X4 VYob4e]r~|ӕcq,Ng>#Gߑ!K;[^%CB%~OPk&m;qm7̢<)bSV` a-py~Zu]ۓC8]US.1=9B`3Â{R\׺zm;<Ɯ齣]>1 D2g:G7xO"R$bd.yw4цY~ .ް%J58,)$r= rmx |]|ЬDfnA[ͤϔVn7`="䨱q ܴLC"OrHЎR'|"'}8=W50 S5 X  41PkRT[bIb+m|m*zѺەh6Y;:*$GbX3G07eBK`_*jEInUS`BJ*ɩ3v8+0 (~Zfvr ~ /^N6>C$-H6%E}X~-vdeܾi-c%07j),Oʹ D/3Ry w͜ISlY,? JdE2+}yܙ2-VrkJƪ՝QB hn13[NЩɟɿ# X򅦌нe@i#.n8,_FRύG$]؁jhEdkMd8A)9vJ·MF5-.wZJ`RRoJ9Ʌ b*S*.ak@GF5B}BJF'IovE&DCJH~peKh0gsB *,;""x̤_[/85L)nnVPu7?xlP=Ϙ+1ץlVdi+8}m%Lц|IkO?i9Vv^Ջ~I۴!+o뮄}_l<^ԶkI8d7%7v(Ȑ#ı]1XB΅7Ԧarqt_[,YH-Z]Vk\y"Z0 ['{U=][ Y\B̊YZq0{y]W4&g)>C OX?-*QU]}rqB|f=Lb֓ѨOcc1޾ 6j_TGXg0]:J]gB`~e$:Jzd˒ӡszw< g$xf=dIpܶ!^Ĭ bpZrr%aQL1DPk0-V]IzF=M ǂNja/OBO9JUGRVV%I&TH0ך/ڍE_{H DsseΥ gb]wl7#ѡ q -YwDʞg8w+馼m;ў_ d[97$+~u wKGCĮPݵt9m$1 @0X0u]:î+  ʚ ,w7 ,U 5_5̜̑'C6IĔKՔ̞v6 |.;:2LWkMGwCl|bc|_q.;}+.oj=/ʊvE?tW߄9D'xgz,wY~+\A}ZSqє̻Á7T{܌'Hmoyq,ɝn. }WƮ^il(.{x7N/Q) ^j%z8؂5 X[{8jkUVy$6Ȋ$ &a9x`I蜖F`M"*)@F!ߓ㼲Rj gҶ R|%ȏtM"Q/{o{0<]' T6ɖL|11,] 3)EI-(1 !rE1&d1g9j}O'&6xu|),DQFQ.:-`[ԝ-;#3ZoU+Зu,g.R$ƃR+Y1F4` ~;v}|,е;~]*|V٩:7}h y"pO>ɇ8Jכ¼(߬dmT7ZτKNq[ۣ=jo v#-MzRsiHSJ5 ml%M <7Ku?G Qc3_ TH1zT!ϻ(@/PPeC|hBop]x>ۡRYY9ŵz7ㅖ^g6u֞gPs}tR7bl.0d1\4'[v:ݎKid\tg!=56'TT1V),{%WHQʇ\[ZtjkQ[}S%r_cɞ%2rH:* 5ܨ]L[!L`U ײDR-^%=9I4z&j~N\i%UL]KBy1rCgC"56aV27֔i1< ,$$'-:|8'I " f‹ ySȼfV?3y B%@.^Xڄh`8[VQ$Zo69:^ | >9 '8`Pm wQ8)uDžcr2Q.eȌ+m㿻4[pܡJ6{Ǎ)(H_Ǯjuذ:|a/#Heut2b$yE,'w>aaRQLHw}9`SHvz+1G UJ8mJVk0Kʝ뒯ydҤXlyymZ;rMDMBidį5z X=MY)5 $ϧi~4*9iA$``N2eZ]zHc՛ss"QW~9Z$K}|C'2e涒( p"˭XcbQBfгʙ!i5b)lgz*-}c*)!Mj7l.Ry\Z AONAN=aiSA /Y۞Z|T$f|L A"+/+9@Z//yO8zoF8s1̊B&'f^ 3WE5r^ֱ1J>\I!y&tk>Wdh6=-X,amKLXI󳟣y}b5 & ^y.,Cᝲtsuk|LI? _?YU4@y9IDcGʰ`apXL!>uGɀWU[*B7Ҹ%[uK0S dxPx]>ұb&b#֚@ m BspHQUí0S αL/ # ߽[Glf2K0|<{YFc0ǤF k?QI:b&ӂK ")i*ޢfȂڈϫ/ZK-Mp22#dR^(@50ET yފ"z/Qt\bƝEGs*ji|VS ̺kůcbzבcM*]. [i/1k&YwGKb![A&O8h򺺭A{]!*cKȒӻ jG[[5Sf"ibJ4اIΚcqW]m? ml@޼´XW?peW9 V`s$ G&oc/EE" K44{FX^jeP8_%SU T=d_1Szq|ckcg0yi\'‡ק%a7rtV"(_3fg9lٹߏ ?0?]elΑRjf2p^YZBA?qZ|Cx]MYgy)%Z!FSq2qB&Y֔h\CU;gS<{qk';GzmmB]ǻҴudcQ cws6ݝ̢W)mJCQw E-G1I`=z{!Cl}0-GO?7H -鄺7;^ &F?s :|?x 1.V]hDf]Biݼ:Ņ'X,zrǐhj>l?!y^chD,3Xy5.SGM>L\lp,چū9/21jJٛG\H3>6 2>wEb CGR,ҕ O|c6e[ `\1OC:)򧉎M鲒X 6U&Ѹ9,&n&=X0Hfgo Kh*Yhգώzȸ}]%-$$8WnDm"gG zte}y.A/AgA&_.80tIWi<#vU>''XXO9{6~KZp)bykdʩ݋ sf U!9(#=m- })M30CQ:~Wԭ4e'(cqMد4DTҖNX.PtT/wŸFxH9s۾hؽl٦vc,谱7EQ9f[P>F Qj)nI "›iU|k|O(a/40re뱸Ol}|%i'U <1T;& LH~d#B}ͽ< h\Yq:Yyyݫo41!ERLn̫3>_!2W9ORZ ML%sp5nH n W&U?IP/dZj|1z-ڊ7V8* 5S°K2EECwVH NVvr+}e)??m9J6$ehNֳ)SQ˽ElQ/bVR,luw,U9|b |d7T6-K2F度d1`WZ%N^qZe9gQY+'iZ $6o+ҁzPy F{*#K.lͥLz~ -wntƵ'"Nh2}lkXG_~p\\V?ݏE}|x /%tȓ~A, jLƂ֝3y.M,X4rew0 (ǷXv'lVs M *s4s_MŴdUOoWYGA*aⲨ]cF&eHv0Y6K ΊU*g0˨@|bgECcIwwk {}K<$齬EJl3̹lhӭ]`xy 3C+ۑ[}x†Xg]d;QpPz6K~5|K$Em~LOr|K%^4UI!9:-2_v+<$:2RrJ'ER2J]/i ĭִ+;K 8g",s>e> D;ӓ_I\JtijZ*Dc8Z?`!u¾lK$x$8e͹95u߬wwWg ~ߖI濴V՗tq|U{؉ifBfdzI@`zQWi) ˲~vI\V(\qiMYxF}rϣD3s,|yΒwCq7vBN,u5 U5v9-ZJYKp $§{}A|yQԵ }]HA,XaVZ"YRjLW?b} Ǽa_kbf#? L`Qo5зT*l^tA^zٵ>MӇ) Ȕ#<ڶ͗m XmiR=0H9# =v*\>Npe6uMͿ"a', r0-=UOV__Y4]á8G`P'~LR7pFbeo2AuNyJ<<=ﳍ0ZaڂU60E 'v~RtQs-"5Db<mFvz\k^D r.T4bɚʽW1q8>x_{UnJMjrV \;<M}:ҚN|́$rO;tštس2JFtOR\̴veW`T%o͛YaDm(>M!##Mels d )qǂ1}?,PW" <:<<_%za|>rycA8sG[Qș\W*aޫz=_ 1DzIw;3%QkGmJ sb 8wrXtN b5Zx %"z=dAc0Nρ\1cv ھ8wK(`sg56GPfFupHR,Duj7V\0_A/n{>Q'4?p pjVk_,Y}N8ѷ 7v B~p[X(6XY W2uʕiX,n>;' 'Z:_puGgā;*7X&*[`D/B1)k5WyF_<->qGWbb XeNzL7gk}n`J' -jWE&wj(UΎ@ 4dufiumlhkrݱsM9žg`KJn^嚘A".= B*kvV Mg,BosI',U6^bYX@"¬CX>lmu]$ D.='5AE} nb=jY}T7U%~/*׈l9o#|Eϯd5& |x6d9O{cʪU͓q)(7D&bTW[a*/vyc4V9j 놼BM|E3eB'_rqTo  I7'fSj}8cFV3X.?ApZAmϢ'Q6قh+_d(}fB#0\rK_xk_}׸/+E6&R9 -w|d b2I sPy݁*8m&[VY QYMpu "%ͅS<[ Lf9YIoBC7 q`n1"ȨmnjʿDG/IL,DbPRپM 2[ l[aJz7CO?LD,r3v~mc>:\:Jv"`W^ӎPO8%m'?gï ]95(;D< f귤DzDz 2nA47ol4uK.m) T>>;ÿ2mY#?ࠍ%&bꐖ3hn7i'"" teXi34QՌG{]/Հ/-c4@lR%x4k9}8.Qgr}41c1CTcϨ;+~.'^ 9;[*4i'"T1Fa _xAҫWL)Ɗ$p/2:'L&YLO<{EKg*>(׎.wB5Ƥ^)܏e+g0$O׏HYa&TTC8%}&M-gzɱy_[P !CnEtwl>:ugTH7 }vos D "yәg,V3ỉD*}[ ͡6 ,$/%]kuYS#'ODCĉ{[^spFU2CB;iv_ }G`lq}kMK" d\M|~I5XđAwϲdi&xTt endstream endobj 55 0 obj << /Length1 1676 /Length2 9738 /Length3 0 /Length 10810 /Filter /FlateDecode >> stream xڍP\. '4hqww ;݃;3{uoZHAVl821pe t Ldd* G+_bx25l/a{LNlr02ٸٹL 1sD A&Y:O& u;'˜N h d ́֯ `cBP;:rӻZ;Ё(i. Gsh 4A gh <@\lbh @@W'=59@YR o XO_g`c;_v646[ڸl + @^LՑ`hc򇡡dehjrC"_At ?(EmL@G?_ݍZڀ]l< ?H8ҫڀ윀" 윬jlNGx7[o%W^`[+ p0t흀^V7gdF@3 ?_@?kAmc0:^&`+^PQZD]O넄Zff-+ (RC_1P _SAP;u&_yQo9YYVSԆ + ^'u+da?7Yhr_vژY} 1+Dhl @6@菻@?}3|O^{[|]N)jc 6cXn `|]Pـ_]`{?: C3%A:^W)#Nv?5߈uzп _ZͿk(kI,zDlzג_uNWxt/̂-[n+\hwFyvԓ)i=[`P_ eyKJ`㰱6)^Q?Vib~~o,P>瓝%T#dYBKkuopn94c$mj_4YQ 61#-ڙ+Z T,5Qs:S݌J C)6~֜G!'tݣ0y)" nQNXprW`p ܙXp \Įzk'o">8*vcTLaI\jZşh\:rD{9j4Q5/d]RHaoC^IM3ЇҌōds9+"0_(+fd{nMK5Sȸ]轮 :Q_5'{ia {Pf-_N]EcR.;rH> 6#m~4hv}eWAuJnzUd~yrkU0+׽H je"V)?>#\|f0y{N G4oc])5w,Y. R0:C DMLOC"sgDVQh=(6a$lY#|GYGjO[p%/58o+SHƓ^.֪,Y1vًwdž:1B4 &O);8I2Y={iADLb5.&9a]‚;! _P.PvOQ^d3G!Xt \[zQ=X|9Ѫ՞y`'wS"V LVL߸E<%N;bXv dd2Ȋ!jX#WjZ K0 ! \|ҭ?dHZ\TEGԟ댈l>ABХ@]Sk/`đ5,<'k13Y>y1*THrShbtO1X}ft=M6mdlfCBLZ0kNG.bm"; | , 8)FQ"`](| 9 ݡ P =$RP(>>t2pmy >=MV4MJuBT:fwB7#ABJ8$+0Hk!W ")%3T#T g m>lDpk |`oU w@t`VT4ݘ~tpj2}lGWd%O|WowqNl>pIMOz97$& raGC! 8K[3٬fc tVچ/:rb!԰!7>tRF=~Ɩjo4Y 栢h.:Hd;" zUULsnuS(bڠvo5 n):={B'=I0Rxabnqj)R@,jV`b\5(e1B҂vU լ ]KW88+Ei7' % &mp.# 6?^Ni:yvPlF@B t*`.`s}lR [WMN{fqQNP]!1>ʫ hemuAxNl= ѐ"+J^Ɇ ʺkN%Vۃ,& JGt?u(Z`r<8#YdqlxK@ylTRx{嗤LGLv[ٽt~|! LIAYDz&]A)1;CUXhdPuSݧ{I-'JCY9J %`h]Sm $ϝ {T6ONc ˅ Jֆ8:Ѐݕfe [nT+ܯ)lLX>shGO *U9Pߝ,lRo׷A7Tf*3t]*vKk7Z1m8Gjk$LtVOAѫݣl1SWPFyT 1_ͬl<~)8`1jt]=yTf' BEz600'U$+s|S1- ]9Ni ҵfS4Ɍ8\&LS%J9&pపxىmfB`ж_8GpTCv:ߠL43C,m|T E`7!H%ꕏa)\,KWij\/9ȄjtO_/Zh-~qZ+OB'ר!FYksvd;=UGd ^U)0kL5 lʹѦ@'%Jזw@y2U l4jΝ.!ϴ;6u2cEbOr?>Ci83vQqQc|߷h 5%[hBP⎣mmkKS b?.BOHom4]ĕpL䛼a;2kTqޑ|ط*Wd 3i) |> -FӵHfs(Ŏ)~|HXGqBr` CZBAH1:K(8$x91ͲMW{HoJI`$a L˫XTpQu֗0or%)% e'ݼa2+)-SbKm"칊< 䟙x ոlBn>9h{"[}Ncg _w#a,~o4XC窞)|Be(ʢ.kKoI-^VUO>1=nζ0%DpUnz섆|]cRR@|d4-ITzE3gf@kḶV<LS HIȦ?/4&6qY֬W(L\*KD| ?]lv"*bZ8#_۸.G!JQk"'ق4hj^nbU^p~^.ap|E\8*7]ƊAV->La#* \S= =$fG[9F@8ץ7pok5ѲIsO5AZw4$32J B-bVjOglb\6]K]G- }hfPkk =|n5Z (Tu"DAٮw~ЏA>2I?w3h"Փ3}ۤ.IQHV}9)IޛQ{qUjߥgTUm58ֳ$;ISژ{QRэ$s N|sn3F/Y?bjSRm,+F .-JNFͷd?(i"\'/@;((%Ȓyo썀{s(v+Tԭ١`({ >b/n-n@o&҈pvdG͐uFDS=Տ[$֫8c=[*ҥmKB&6ڻ %~|b*aş>YJƯQ}j\Gc }Li tx;v*@@ *c9Y9A qaAXZ% J{ʞt)or؊ɑޮ%68;ӨNR+1,ZDcLɰJ+/l';zy/?ȏW;EBV⥆b (OP^]'B )sL_ߜ.-jlƁ?3O3N "D) MԿUIXE~̦uc%BHݥf8B˞ڐЙŭ^ڀ*4zЙ6e@T-ܔ%Dq- rM6J$910IQ/Ls.\[qCG\i#)#z*iSƁWOdH9iV USa#铃{Xm4o˺)(2$ k El ^TYK gBș3>Ȟ%Uwc&ל7ZiaTЬ":ek$_]V'{Q煝P{ E=*V*(RuM)RaI,BvEn8TvDN8;VF4)GtE' )0369vܟ#nE0osʍ'9]NXN.H|&mJ@m鱍F`߉Ja%}ը6+ވk77L~DӗvT0s5V*' <$ }kC$j==.Զ u^Ly1EJ۵ @t%'rI^hHE޵xQU*اC_>hzMCoQ?8A޺Y"ϔ.>WFdVkXիT`+ZA㽽$l%4:_O֥*~'f G=aB~/] +@<|B_̌}۲>ԎGR]mXOE}d:(јKpɋ2̃^39w cn<8kVՂyA=Ɓc"7}GA~agAQ4sv/SzGx9U<*J7L]&K2f Z԰hf$]`: [zԮP{־Ͳ+9eIv)٢7rwAT9c"5Cyƨa/lQjcU#=H2zP\HAx rG(!w"uwߢ"cB݈Knr${LBaPq5)3:qk&Hں%~'oєKh/H-cP31aAmkB*kx;W)Lf:gk49._* !o9],<ؒ%㿟pƳ]\3D+_"$3H(Z&="uPvi+>crMJ5|l8^4Ԫ?y$\r%|-A0b.k[ WGb0J |W?=]ܪY󅷗>Vp,9agX|];ݪK;<݇+fng¨~_ 0Ge/^Vq Es<^f1XvdIˍQ آPpQڤL]ϠܷX vTkIwGN- (yxz!7BM[,>ӕhȉ0SYv6ԇd [>kT6 "GKr@/AW?|BU3_ﮣ*d쒬^թa:N&k&m#P?ӕD2>kO yL>{:.}wRR0ɱ qKm+G`q~E^eRe0ei oRB=m~טC2FvBIy^p GUt -doIjg8c #ָb?mi_:D2{^&&_c#ѻ 0խH8_|F_2 ߧ`*RmBSFRHOL-x5|fekK>E9n'iRvyG(PT$A4@i(xaJC#ə6x$·s5fE6g ͆bYj '!C'Dw@=F';>J0Rx41L'[]j6c]>`dLE›/ATm'n3ٵ$_ʅ1F&NLDӻ  t"@O3uF*tSza[ہ(hD<5GhiyaYuML+:CƋnsB`y@Z _.]/VoVSS=a?Gs *6%,zI"1m!NYW߱mqp/Q;O4JhnqeWtt|Kc?=|œ]ӢW6u|{i:I'UXS~f!;JRgqErhNKCU:B0^=,'KmRNt$.Ƚ%dzAӐ)UaF#-XehX:Mp$3SP2a69N=[DVFTYf'~B$MS%$ml(G_> +5@Ѓvtv1i㷢Ҳ^+uu9=R\M"P?)$x4LE-)ޮp`-$+[wTpHsh~Rs6,~- J0k3mTO"c&4 5ZW7ZDKBn7}5`}!NsEI}Kl2Lػ1X5n{ Üvxd|{{ ?tXCLd)Α~pV%Sx MS9UMava^ǷH4pZȉ[4?veV&m2;wPbt'-p.hvF{MuD6qyY:z'KCjlˆn+/9Ti `m Iի|l8T)-STdzG3UYຂC|Cj\BXۊi~BNSz)c/{U@VXoe8^[5LD쓤V+@}&ņꠢ'$硏*؛e-z4k#^گދ-yN UǪ(:,=!kIsR:R-]x()l[J8N1.#n~n! ÙU j'.sIqnq3*nU|s*oE3M[ @(0> QkEe4>I3s޽91kiƓMzz/ hɁ'3K6uU^x | #' ΛcJ(U܁O%Hv.h>qfe!{z畔'rz1u6-"hQ\R2yfuMR]__tV۱8Q_juebK8O3umdۨ6$0Bj#I^y6UC\,5Q&ɔ3hk`dp4HK!$< m Ib Di9@-zRzHd&!YP}6~74$ø2O6 WIѹ0¼h{Nߤ%-'e" f]z빽vC aiO 縱㪭x焚6Kzޥ*,U'kBN[6*1j8`O[kF.g] endstream endobj 57 0 obj << /Length1 1379 /Length2 5946 /Length3 0 /Length 6883 /Filter /FlateDecode >> stream xڍVPݳI HG~R*(WMZ$j&*HSAtE҉H"ERyѯ{=gﹻ{'M-$0 ' ( "#H-8V5ĠEpD Gt3Ơ*@啠 J (*Z@`,`&7DTQQAw8B`p0<(bF8\ȿ(DxpJ`pPP /zJAH'`G`n/ -L $ Xz"0[`qA0, |pڟvC`bnB@lP)tF"Bp A=wc$ I0/G? !}`D:fOup,/xh7M @AΧ"[.7vGIp [~}?=&?6@  _! xp/p'J@#pD8ށP $;ьpcO< \ @~}^9{ wqF ih` )-Pii@7j Cy6?hw %#Ϟs\Dg097m  C!}Bĉ]#N18tA17d?Q}8h/鯃 F"qp?}h)$`Y{b~C(;6q5sr '<8n} 1 1XЯz*`c1<%=D0/zy^:ObQI)*MyV vW=ザȎ$1~UlCYaؑsb#h|U* Rر_ oz\K {AUw1cfK iKޱJtQ<"xS'G-Ʋ8;̒3po, _#S?驥+='˻ xtx$c4 WBɗ^v_B[׋ЍLt,Q~—Lni}i?WRR艂ޫg# s++\Lޞ WJ87a0~Ap!od G #XUG4n)Nշx($AxhWy{y] ZiFF}A"eY5ồ89nQM\hvJm~V~>";K i.wզvYӦUS^Q}N]!x`7GVtmC^D5W1"n4Ȋ%ֽ}iJgX>NsҚYݦ]n%ZmEa~m.ڴ2q=Yh 3-7qfԻ\!t+%E s3C&WNr<-8+/7{T_JҘ%e`:ػ=6zd*~@3rdL;J%$X`4p̿͘NڞGف>Igjܠ _?>~hUs׊6iU\O*H""Tnk~=:j˽ ]it|jLٌQ|}/ iĝԍWa{Otymkz~ؼyB}0<^ֲ*7Dy>(oK >xgx`dAjUyZ]*?_[z;;Uy%wؓd0*DٍC&RՑʹ7j y;@b5}QQṔѤW*Έ[i 'OV6_P(q_P?#4V!.S5*Gg#kK !/iepJ򊵓9O /12->wv6ky51,Nx}P1[Fh:K) q|L{aWocrs b,/'1yj4?1~r .S|&[ ۦ:݋xLhi|4)~^n" ܛ؅i{*e/PTa% DAE;hcG4Sٹ2A_=U@:QMydl4HJ/>$riWH퉆tܳS% `';&[˰'W֤C&_-Uhz ri?Nv:+›OLx 6eq썋,b_k.U?/[sYٕ%BڻqkRc(Y%6 z>SyKҜ6IWtBjzn= fQeD/>9gαT#y,hWijԵoz^SےMj6vȹ]WLbQQ4Vp'Ø~E:3jJ()_p wp`?`3N`#,Un}YL^ےxҦ\@5%~q]H:&La뫱P\85݁Ԕreu'MC\_C@car͇fkֶٛiRE:oñ5!v8'GvG55Qkڻ5Cyۈҷ.W3| Wʗ<;7iANIjJ 3Ϝt$ڴ+I^h|֋$"OKPk>/zHrY`ս" m}_ja#}G{YjL󒛵ZEsM1b_K3C؏ seTRdHT8٪ޖq"c OQDQ\|ݯ2 G u/TD5S@yRiV]"wPTo;N.rK̠Okʭ+Am=5?4@em;OḟrNZh#7mRw6 {&6Uo*ܼk"}F'Fut?Kj̺}olZ9ΧAL^Ä$𲄝Z>i3Ql*lmÒ]?J8;eTGyn!X} aYܖQh?_?TmKAy r#|6$F' ɜ7f #ɸ]}i hfK/OZX3LR݉3SpI,׎Df_@ʃ$⋌}/_C|P7EK]qV)d[.{w[FDš8B[gFԡH-,\Yfj6󭀭GNkcn=+-Zh7U]ܴzyGWdxE"+;g=Iۻ%+fv%",5˱)stdgP="em`1WZS:(7-8jLNs8TW`)IIKĤ*YsƕyrUë Pؑgb zKBT^TE|FU?]#ˢ8E4& *nu:(To[%\X'wQ:S*2pf ԣ}LM@:MἵƲ޹\[(8b1\a^h` `,Պؕ|&%!\x+_Bn9*d,Wn-0(3# <~'1oqg&}EeTO"NegHţivK,՟MSZvw92Vl3yTL铋p$F]RdTZq|{pFG¨$뛱KD., ݔcLCJM|_ױS|>SZ:S`y|S31X`%?%0/ÒǜW,5#]7_C.X3JX9d>2ܓR.űAjU6zzK2& Ltd\V1A+3CVzIF/6gfLwي-@T6+ѻ ux̧PZvv6vzDZ  =jGGbI.YگԎA޼NQE/5= ӊ$7;)Տ)G.iڃN Pi;)1s}j`[=I2,lbih짌)5_:矀-c062s5ʄ]DBd:_\ur^Qb6ĉk[.Yֽ5ȑ>N=oߦsZW<'1+U۞S78P=MnP]|+ZO"γ]("?w.]`Po"m+j۰`ԩrՐV L2X§C紐>͟ Zb>[}GM.Xql `B?-Dz ]u+XN}^(xL,]w |vwSUS}˵,ME(|a䰢r]8?_>w7Z,CЗ>1rkzclH$(?(jj=Fyvoney _iN^q}_:;#4tXG6%ie#F^)ESOF*GSV z²Sz丠uN`0(HOװc`x /^:# QsO٫hܳjȋP^Qѝ$0ʒgu&ۤk`%L͡I U ByMUv\{Ew<]a:K{7X{蜢p$4F(җ΃Y-/K2Skx{- ~D|+K'F<]p}oG86tTrD K^Ky{oz4p#Ϋ{LN֤Y@, i-T4绖&_c< ";1VLb8}ܩ:휌린P[͚%UۦomEv[JiC&1S}}$* jWCYaDqbiU|Vo](U e|Rs0pb};2rZ[7IrA#~n{Y2^S^zﰷ1}D^8Ėw>$z H1VLӳ.4M[B$L:?|HCH7mO='THW.9?K&<]xư} );V_p LKoLLIݭcX?ݧvj1 3; SkQz6,fKV3osݵk)B|@ɁH:P,]Nj.2IA>keotՎSs7ɝ`ȓsq TGp}) W/69P*+O^?(yꅠW *NDqltFNc`FLH~Z/`h~}^#_yxi¿xQArb/`ɧt_l*άknj¢褹"W5bL '1&a:4Еۮ) F.Dƚ1.~$9Z`ݶwL &8A\3Y>eaޖ'UWLqsA]XHo yniV3`W?&J _Tf +  c/#=PTc* {ˀlFh7 endstream endobj 59 0 obj << /Length1 1414 /Length2 6287 /Length3 0 /Length 7247 /Filter /FlateDecode >> stream xڍtT[.HtHʀt) ) 303ttt yi?z|u~~IGWf RA@> c >+ 0 *p)X!Qn0(@  @1 ߎ0@l  >< w@ppb< 8 дB:Qm } W 'H?3#z  вr&Ƈ 0p#avH+8 ` pڂTm@YO_W_V660g+jC@m% >'`hAPVV`5J+!l`$b+ 0ggu>0du/mu<>P[_l\ `W7_( WƁWr/oou~? E}V ߆@- كdG ?S_QڲA!^n.o1<>B^AP@L Z;7cldTR@4_ w-J ?7A},y V_j xeG Mj. klnmUEZ&Cj%J`Oi*= _ ( _6Ԭ8SM ("fkEDVp>N[o]0$*SXz~#~oWm785:ylga6k_WynJMn>K]$sVe\&~ EDf[S=NXsn˕ef qdzy d|o\}0;X\䓟{({-nnU\MFOΞfF2rzON1%p ^x/U":iXhL0NȆ'|SSgF֜_!ޛZzlc4Q+*LهV50S~VYC$U$9<tu^i?WeGX/ӵat`$SihS6)>96iP4f!OJy/CW2O'[e%J3_d1 jŴH>f>ZU&1NL]%T66ǃiH@y{ׂ8!~彩641JXzL8cP"zD*hۘ,)87BPg GX-sII@RG式UF`?vӱzͮ{xP%%+˲sW ߛpT)*OWFxAM=ZpjVvD~y{y3DrkJ}"q-DCg`fN4?͈Lm{Z>fx]dt'r a{> OLI)Ej˞̈`G.E7Qlݣ/]H/"~k5,}Oh~;Mx{Az <]Kz1wO@2 *3GI2FM-{}u@4'^d&pJrIxFOn^ӷ8~dVWyt ;Ɯbg= ѶۜcN^8 :ճI4bQ̇D6̼%}׺0g&m1>L'xb=yc7|*+e<6CI֔!q5#.\嬤oN G |Zқqn^k!&gbvD߼g  oGJi n \.;sW?,KZN"JþR1aOkg YVe\,"K̈\ yϡ@.C.,&ކ(hKmˇ,F߯TLnrԫf'oZX,k3-1 6)BCXyw=m]Ÿ7J9y&^=.HRI ?UJP*I+Sݗ"=Zf>`v5F76 lǧ<I:ьM3zj4GEL >4nXJN!>7X&3a]T??/G4sH^Յ9]7{QX-QBc|dT^QS-Qɹ'` Q ;)>_p Bl 6%K@ ֛+h[߳QR=dh7>~SGբm#0ӎQksi>m2* Ŕ7W-"o>Tkp(?YnC&avc<5ia# /3^^Yv!J.bqA43ňƽ$f? y 9jFx_ٓuNftl();=3@7I:D5I[Ι5\9qnx\$. %0"^0>6va>uLܠi8նh(XS0Fg,{m9LLy%U%N}JwԤ -}f$ kD܉)TX\KYqRot]cݯn v14faÙ]ܕ |\X^R~Dּ,-z~Au8|)?X =J2`e-3 2U;18J)܊LgS{rXLA8=ijڿoN:>5˵8h.ԷzMjBWŎ!ӿjy040(f # ?ϸ3vއtYɼ&57)m/i'G+2fԚfs)rRѩQ5/d$GОGW_b*t}Ůw)C(>TB 6> 'PJ ej+/D :WSeM_ZKN;(W5Pc^X{Z~{+A딎]-p9l|x *1>RI$ nZ^*ƩЇHD;pjOV):g兮Q)wejwsrgYTƟ-L.L;x2Jחmys}TZ^}aQ#OI Y"+j 1MNff*fܠħuʾǂb6)'D(^T%zo Kp}1x.q5[Iz_3w>{G 6Lgy3w52tYUB;>7YM e 2^<_h({x-q]{<Os/ŻOKTBieSg@Ǖ>_HM i$-CFs s$UoVfkki>W\)K 'ڔZM0Ii~ x}p5b;O]Ea;~t=DP{Jlܨ"tY#[DzM`Š @?{e!鹸 Yrt8?,1+ˣ 1aKNkK0 tP~H &Ϫ1I)4_#FAbm6u%3f4DtHX,N~[B=az7"fb_S˾ <ڼz62Tű`z݃Mr 6yVYEMΰ+PK.,n}WCkW{   u75Լ#X<$ȬgOŽwPP/8j?89lI nzۋ!X  ,K+EdLN+)Q|9MNzu㧰Ьpbv.&/q ClBXߧ 8^KCp'uA#pz'Ӈ'R%͢۷,чv{)2Y'3a'Cwecjf>7uXt1 WV?Ohχ{ȓ69Z)W.U=6=lRz\L}(Ƅ8:]AvG(N$38Z=T缳;4H_WHvw3C&dR?#ZT0tR:t`b,*!&+3` ܖCގvur[Mő3}U l1|d*K~0dE,;ysg̵ (m f|j6U$3%/[l#_$۩ ooJ=pьBWLrj&Wn| &Y*ixF w7u_+I -b:}ylzyNԊm,Վ֝YJw_Dn oEn)M*3c"WkaѢ + jQq>ZΏ*u0 к q1LMDM;z% V7OG-p60h[ JuM%D;yݛZ4Dk֢NI.odsF/@IVsF8BZ)^VCj#/b30RHz]t.2yXD3kAS=N{Iw{IAਕǞ| N{h,F~}Y(|rwInGQ}z{܊|GI ~=PE> $ +F N"?`>9 Ylw$8YB0F#}BVRuyr^U7=r\"^դFtB/MveZ> bK&ǒiEQiZWٶ-%tcaM\}Ċ wGoճ*5vK?{/ V;>ydzpECD8/jC 7Ql>16{رo`mjnV_+h&Ι^껠I}Oح(LOgMŃ}G_?l,]ȉ 'fV[%TVtY-F0t"A6Ï~A'#fiuE{2Ol,)FTD6gRNn5y3K P;+e|q!^yd\\ )zOGuXlR޼w E @\Z_U&3!twD(~|݌w"jX *8P~'}A]s8"Z*:t|8H'Jz)=V+MdC桄K$ek |U74l2#ZHs)jøطe}AqJݽzN<9nql)bz+߄ջs7sP}G{Lk:gpm->c)wzF | *l7dcI& pMkQ.azn^q٠gC:0$2!aٍ{R|jLaΝt\zRpEݱLFd,{bEт9'K_<2- BF5v: TleѸ92WK^Q!].HjJUJ_}wrT+@M };T0^}cNw%y2Y?OeៜbXӣatWQc Zv!yU}ZDNW Oݞ}1V~mx_e,^ÞplM( y\Fg|4.&9@a^9ق1dO~K&Ϯm}c1vDRf]"\0*n6 {v›پGŬKw߫( /jZ+\ӡT|LL<4T=kKf>&yN2A `t@oU}ϟ}_˞@2c#ͦ)#?߿S jZ +j٪Y.6}Sv]b Mk@y[ap>{rQ덡O%Iƭ7c2yK8MlgmUMN[0"dֹ<_meܢR&~Zw[)a){IY,z󄎲KQAt[lYoK*Tf'ͱ6⛸V)W9 ҢIIr#a@eO |bK?~P r3X޹Ġg34Co5(S&jRMn[~G>E3)iHQF%aeM!_;dIz ~o'C]J-ˠ1Wt1z7kF¡qdf?! endstream endobj 61 0 obj << /Length1 1450 /Length2 6414 /Length3 0 /Length 7391 /Filter /FlateDecode >> stream xڍxT6%%9tw000twHw tH%t {y}k֚yu׾}{f >!xyyM}S~ pYX (oC l@b 6&P"@ @&P4yjpEqpD `qDd]n ip +l}8F#cGUˋŝ z`w'2@/. Anqܑ!0;YvrˁpJ'W"w wq@`{ VEx#60_6Pw82E:޺ @IV`d; pu@qẙ0;y p?Hߘ O`o#߯>0C+`؃~6`pv` vp Z#dT)+q/# ""B 7cȨ "# I2MnQxOlĩ(W_Xq$'ctt+KɈ-N1% /hdiᘊG:VнZ{!*. 0uHTy_=$[c>lKn3G2-65ģ$H^9әcAVO $|9o:*0m6ƤmZ2Lz3Ŗt}qLj;,>^jNj_$14o~)h+K֑ʧr B1`V1? h o$6SM0^Gf-2Eў9Xke>zZ>!_%zIOL{v,(jaF>Z+;l%.2M+2Q<ָشh_VWI"e_]\k1(d%΢`M̂2(Q< FsEo{RZ3ŗ|eqO>;`hJӂ8Wk,-*]"C+gUǽ}c7=VYc잱!α2/7} TEO>ƨ*A˖lH40.Nėo! 37d~lOmHcH˫(>YV{sz=O=<]G\*Y+!<.gx[{莬ꕎ%ZeCRi갊3;R0G}pȾjDŸ;uimg߾I¶,څ2{*a$Wu^~Ldndr4,Ӕ>oؓ^Ou$XL*S"dy,cAԾ=@[֦ވ_ ݞa! W+N}Izvf/jʒX" 7Klg>uVCf_XESa"O¨Qգo9kKR7rRn;$~n̈y2e #r5٩(4=qŽ5<-_Ɔ%G`3åu.}B/7(1Br@uۢI1uQ Bcàyb0CS\]k8ʿկfyiMD`g8kiMĿuH usj٣Ǔڤ8Ipwp8eS9wCL{>5.-s/&7te'}ИX#P;:j)5/=wc@/ ٪aԵ.JCBF{ӆOuB.of%rgzu0爝'l}Nĥrp ~+T% D,?*m/()s(+R9 p((Ds! ~ޚwq==T7odY m푣7:d>S,jHr}f! ^eҡlOãr_re˫Hֻ<%dX{: +>8i8g盝h_'T#'R&dw7mXZK9n4P]}Nr䃚 ]|;^1z2KKr|A]2}Z.+/L߹OFd&wL3F*_wK*O& kkt X xM,jAyEԬ_}gkNc-LJfɠnbT6{6ڮ,h^)= YZ&e&7ZqF]:3;;3[<ګ%8ٷ^ucgȜ|~խ}a^Nzt iҴ(9Y{"?V_s=!.Iƽ'lOM Pa4sqΧ|.TmEW>7kY*i;ukm;rU\snώ׎/_KQ ]ȓ޵qYVRgΡpjQg-ɗ{uo͵@'NH?PfܐʁQq3ϊ!~:龦f;nSC8AOڑKςZ(f ^:~uW:ϸxT>ˬWfxԡ>U9c !V_`Chhr4%ޒ$A_};#ٖVo|bTΖ?iCeȯ+lHt:R S#jiS,62U%ɎޡA(̋BeEdž@FV `yc {dziq7!֏ʊjl+z8XAOʃ7lj"σvO=w{΃?iή J/$WhZ|7 #dH ʺg!q/\!'̄4Wg]UBѠ8{ŝbbUXI)Bob݂5R>!݁]YB([@iłaZBTVCWBt|2>JgL1fjW|DiӢ'fX6>SM#%gc1)U "ꮽЩ2ϟq0i`h؜|V#ֱ-c.$L3!KJj sZwJě[Q O=@q^v16#I$@P{Rw9"YKhx КVWT"0Q}U0fjw?ŀL?GA s{!8OIF\SZU)3oꞻaU}JyYr+wΧR{L[Rx?Xk @G`X&LCj*pcn2k;ʗ\;o#-ޟ؄N7M^(kcQew/55 ܋WޒPVгghC;sYA(piE.yd3P5@_=c-큻6k)H 2يT@YۏTD?J+屵wm)+pğQ`csJտeZ_Jg=Q\vt7խYES`zo$BrUojuM%&,EpWR{)56Y}[ٷO;ѺϏ$N$*j_,O*@^Ru'Zd;7Xܛ`#bIMJ8)OhS t0»T&]aڷߦqjh9ҪLYo>..N&J>nzw-+Q]SM˓^Ƿqm#KYLj]W;o*g,);qXQ躋Yt3Mb|߮ M҃/7J\3<,e]P* xL]vp]ãPi8wT]EObPe=?N8OvŠܣIc5m(cvo4$+1[q],ɀqjExam쪬1=56D/_B (z=+N [A@)@?wX r2%J`׌0[ӧ}Rok I鋚P~e+n<~N_X]RJq}ALG3$I>$ Yn;PSS#şV8NiwP~'1 0 7=Z L3A ^i;|&1{CM5&lk, 1jO8yhCyS1jY]tT6(9i*'#Mv̤D.ܸ-VGE:ۑճlyҼX X{fKE+a/ ^^}7Vߑ0ݶoJsOq NeZRV endstream endobj 63 0 obj << /Length1 1907 /Length2 5954 /Length3 0 /Length 7102 /Filter /FlateDecode >> stream xڍT6N Jn)2%%%!HJ J#HK4gl>y]<f"'ussb<p]1x H`qqa E' M: G"[0~  sƠQ^1DL_GGjj PKb$*GO1O=]4?d K#!?pہ%0y~M*_FZ>(O?DO~7*:>AvA{Ho-?_DÍ1 LJ_9;M_OQab`|IJ:6Ecp.@`?TJ0BH_$-t @,2Ɉ ?_@"Y|MI;0(ca@ADA< ^:/ x|?L$ˏ ;{!O?hcڑRx3~30cxdQPo׿5pA|(':f ų\p?Fn px~X'0 &Ar'v&I նŸObeܭ.]zW4'Vx[GlQQriѴoWeXAk{a4gY[u~MhN)8QDjNsZH.z ݮ>1ٗ 3wYVV(=vsV2?wH19y;4OvG;y6N,`F4qFbkuޔ?R57]tMZW#|:'K4`-Ke~2JnU6ظ[~`H((r4(y{w$DqJs_W[LG!Y'L0brAa`ZUQM?sZXS0O5*Szȋ:[~2ML ` Sj?iHz=\6x0OceiďqmqϡMn+uYr춊RL24]YٽI̡OS;[mU9t^6ntT /ҿDzvv՜N*|cT ƄDVqXtGr6|MTisK-;OZb>,1ߓ fy7[+u~c0T(jnFNP8!{s;Y-jYىpf*y{Wh r?gB" +2@G/=fC.w/v`Nk}ӗ_ӵެՠ޹QaM5sh 4EךBf_UgT߰ͪ|{WSpzg"1孱F LplLe+j(.VH~EOh]E\#⛽=fuo}ofdZk_Ye훭3MB*4qI!oa)ېWaq|;y> , (rP}3 rm+ k]}M2p⽸ W&UuOoe59U!Pz¨n&[!+f=` s= eQ]uG]X#I.SqK}K6ە%'!Rj:1ߘkߊg1ޭb wY6;_iQuho8|Fus\))sbKd)E#ͭcQ ֹ";>_A^B\! ^ݒխ޻4.S]Ƀ2 ?:y?Rйa\,og[>$p D:r kcKv{}=+LǞP_ CyVӦ\lO[fxeJv@}APYo~((^(q4fd]C9K%mǶA{$`"FQ2ڳۛ9TiM[He9MYQh('w<_S(˵O:sX{b) Jg-X(HdL=u?n@0ۿ\Ϥ۾-4h؜ \JGc.H- eV:MlϠ8U{:z1wg ۫CW簄|৺s8rq)=zº #Snh/= Sn-̈́ ť>`{=N`5ERgٜfM/Hz[K-!i!Zz->s3n!OXZ1UK[OI]%3$YmBDdWI:3PB t$*k+kA8ŭVSK~UU!@kmޗs4`W^:K{%KT.l Ij)zׯ!)-6뽋r "j8qcjkثKٶ^p_zVo+ȡJ$#Paq4Hv ؊ `b4:C ;1Ԛmbą :F=y:sJwh3hn@DJBHhcFf:2! ڥ<)8Jxƛ[l5y&;cKRZ CJә gA{{ΫO]0 #7q LUWON<ڜ)gWVvyݎVFNBA|5LD|6DduE+JqAl6{w?ƵR{~z%SܬB{ٷ(ϕ;'n-1FAE;iDߜuVX̴>8MΔxmE{\_z[q~[㶑tV;(O#}8)f2ُ&zthކwM$zttV+7)Ӑ4T-Y_JBvP-cN=zOb_[4bOOPU~krV0>ɖ'>ZX%/i6+C2=[+d&9;>j!z`)Y5tъ/ZƮǴS#QEh)KGZ 4] ⴎć,c)w&`bd g>qvn&g_@8̲n,?7Ducmu%NLӼHNR Ӣ-3$ۉ9/*((M`5&}E F=M}hK6-ŽZI݀R59Xktϥ?g[X,:lLZ݀v,)S|v 3$r'cq~;w/ݿtbST4$Ga7__tTO2ek7+%B5'?j}9QaM^->,ߚyx0N"ϯFx|gHk[gPt»V@q=3mힽ89U"5Xލqv:UXϐTZpbKaϚMV|D֠ߤsn6|%B_b}[gY4޳()Ē-,ٴ#YxrU1Jyܨ^Z?.MciMQŎhtA@ )ߢ^J|S՝Aufh+} *Xi_;+|th]%-`(BI=? V˺}XJŠGॽn77ߨYNB%}bdj%QυOpCKfiuJXꎐuQn@  . k'ӝ%UPnserl.{!}$]i_$BhnQuwzl+kRWطuH>Ϛk+ƺ4a![a w[YP=R\Cԭ(?o!컠z]9 6zN:S!o֓0N>ծ%fا0s{ؙaWF0&UzSvͮ]|PN@шr'ӰRg?r_Jo߰t+ "i-[>PqJXJpGiT['’* A)҅0{k렜~\-4w2T0G΋ 7A7V0Y3_=G%bγR-k}5S yC/ <</A\[VV%s\+JQRO$o|zv$-@ܙ+/;͋b@%"E 5qd'PdNfx 3ژ6M:E^!VаG5hi|*Ev!˰b+wތyom$[WO+)ՏF9;D7̩T:X] 1/S+GOTl)_rg],[)UϟSO(/z+K5ӵ.'7QAIAL G^Ap˴;ezϛSZ%%u}>B#/ ?(G'H {,GH$ļx m;a9C0g5r߷[U>"| ˷" ħI$X(&7``fאh}h++2Dzu^o(i\1X㺼Z{{b@jj"Gb>Fߦ;Z Ʒen5%μs;MB%YWׄGםt9ɖ[ Dz,YVRe>9,JߕRUH}Z #Ά˃6: nUڙHzo[rO~1 qHp0l-LV':k3'z]K.p^ Mve`Evg>8涫wOBʍ5ikqFg\?"J1N-R8ӤQ(0VE yqׇJ,ZU-Xx%Dr"ln#Cb7:M~M}YE},3 endstream endobj 66 0 obj << /Producer (pdfTeX-1.40.13) /Creator (TeX) /CreationDate (D:20140528164348+02'00') /ModDate (D:20140528164348+02'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) kpathsea version 6.1.0) >> endobj 17 0 obj << /Type /ObjStm /N 48 /First 367 /Length 2259 /Filter /FlateDecode >> stream xY[S9~nmźߪRSe L!TLl3!;RVi O[`Z::G߹ȭ`Eϔ`*x)ì3LY&L9<%hAgRTSI=A2b`Z1Ck< F05H%iJ3)k<3XMd1d&0 f*fwL8aQJ(Nl{Rv0i+:/|:M E0?]=x  $mͻ)LWnWQt6J5g|&Kq*fJ[[+tZqĴJ5o%WM!͋۽ds4Ҍ4ژJG%է7Tynen7sy$T Hr J'!!j^D: )hyl'%9?8:whZ|/ΎqKo'3dČW߮S𯳫yُ˳ύrgO-
    ] /Length 190 /Filter /FlateDecode >> stream x%9rľkĖ1#8u sy?gwT=uQ .+>ɿ ċmM>!1 $/EVibk!fUXέrl'MqZXʪDNefU!SWr_W< endstream endobj startxref 129521 %%EOF espresso-5.1/Doc/INPUT_CP.html0000777000175000017500000000000012341373334017675 2../CPV/Doc/INPUT_CP.htmlustar mbambaespresso-5.1/Doc/plumed_quick_ref.toc0000644000175000017500000000244012341373046016037 0ustar mbamba\contentsline {section}{\numberline {1}Introduction}{2}{section.1} \contentsline {subsection}{\numberline {1.1}Overview}{2}{subsection.1.1} \contentsline {subsection}{\numberline {1.2}Collective variables}{3}{subsection.1.2} \contentsline {section}{\numberline {2}Step-by-step metadynamics calculations}{4}{section.2} \contentsline {subsection}{\numberline {2.1}Compile {\sc Quantum ESPRESSO}\ with \texttt {PLUMED} plugin}{4}{subsection.2.1} \contentsline {subsection}{\numberline {2.2}Running metadynamics in {\sc Quantum ESPRESSO}}{5}{subsection.2.2} \contentsline {subsection}{\numberline {2.3}Units in the input and output files}{5}{subsection.2.3} \contentsline {subsection}{\numberline {2.4}Postprocessing}{5}{subsection.2.4} \contentsline {section}{\numberline {3}First worked example: SN2 reaction}{6}{section.3} \contentsline {subsection}{\numberline {3.1}SN2 reaction in vacuum}{6}{subsection.3.1} \contentsline {subsection}{\numberline {3.2}Choice of CVs and simulation details}{6}{subsection.3.2} \contentsline {subsection}{\numberline {3.3}Metadynamics with Born-Oppenheimer molecular dynamics}{7}{subsection.3.3} \contentsline {subsubsection}{\numberline {3.3.1}Free energy reconstruction}{13}{subsubsection.3.3.1} \contentsline {section}{\numberline {4}Second worked example: H-H}{13}{section.4} espresso-5.1/Doc/plumed_quick_ref.aux0000644000175000017500000001005212341373046016045 0ustar mbamba\relax \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined \global\let\oldcontentsline\contentsline \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global\let\oldnewlabel\newlabel \gdef\newlabel#1#2{\newlabelxx{#1}#2} \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\ifx\hyper@anchor\@undefined \let\contentsline\oldcontentsline \let\newlabel\oldnewlabel \fi} \fi} \global\let\hyper@last\relax \gdef\HyperFirstAtBeginDocument#1{#1} \providecommand\HyField@AuxAddToFields[1]{} \citation{Bonomi:2009ul} \citation{Laio:2008wu} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}{section.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Overview}{2}{subsection.1.1}} \newlabel{EQ_prob}{{1}{2}{Overview\relax }{equation.1.1}{}} \newlabel{EQ_free_energy}{{2}{2}{Overview\relax }{equation.1.2}{}} \citation{Laio:2008wu} \citation{Laio:2002wm} \newlabel{EQ_vg}{{3}{3}{Overview\relax }{equation.1.3}{}} \newlabel{EQ_vgd}{{4}{3}{Overview\relax }{equation.1.4}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Collective variables}{3}{subsection.1.2}} \citation{QE:guide} \@writefile{toc}{\contentsline {section}{\numberline {2}Step-by-step metadynamics calculations}{4}{section.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Compile {\sc Quantum ESPRESSO}\ with \texttt {PLUMED} plugin}{4}{subsection.2.1}} \citation{PLUMED:manual} \citation{PLUMED:manual} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Running metadynamics in {\sc Quantum ESPRESSO}}{5}{subsection.2.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Units in the input and output files}{5}{subsection.2.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Postprocessing}{5}{subsection.2.4}} \citation{Ensing:2005p53} \@writefile{toc}{\contentsline {section}{\numberline {3}First worked example: SN2 reaction}{6}{section.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}SN2 reaction in vacuum}{6}{subsection.3.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Choice of CVs and simulation details}{6}{subsection.3.2}} \citation{PLUMED:manual} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces A sketch of SN2 reaction}}{7}{figure.1}} \newlabel{Fig_Reaction_sn2}{{1}{7}{A sketch of SN2 reaction\relax }{figure.1}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Metadynamics with Born-Oppenheimer molecular dynamics}{7}{subsection.3.3}} \newlabel{EQ_vwall}{{5}{8}{Metadynamics with Born-Oppenheimer molecular dynamics\relax }{equation.3.5}{}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces The time evolution of CVs}}{11}{figure.2}} \newlabel{FIG_sn2_cv}{{2}{11}{The time evolution of CVs\relax }{figure.2}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces The time population of CVs}}{12}{figure.3}} \newlabel{FIG_sn2_cvs}{{3}{12}{The time population of CVs\relax }{figure.3}{}} \citation{Bussi:2006gg} \citation{Barducci:2008ua} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.1}Free energy reconstruction}{13}{subsubsection.3.3.1}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Free energy surface of SN2 reaction}}{13}{figure.4}} \newlabel{FIG_sn2_fes}{{4}{13}{Free energy surface of SN2 reaction\relax }{figure.4}{}} \@writefile{toc}{\contentsline {section}{\numberline {4}Second worked example: H-H}{13}{section.4}} \citation{Barducci:2008ua} \citation{Laio:2008wu} \newlabel{EQ_wt}{{6}{14}{Second worked example: H-H\relax }{equation.4.6}{}} \newlabel{EQ_wt_v}{{7}{14}{Second worked example: H-H\relax }{equation.4.7}{}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Free energy surface}}{15}{figure.5}} \newlabel{FIG_hh_fes}{{5}{15}{Free energy surface\relax }{figure.5}{}} \bibcite{Bonomi:2009ul}{1} \bibcite{Laio:2008wu}{2} \bibcite{Laio:2002wm}{3} \bibcite{QE:guide}{4} \bibcite{PLUMED:manual}{5} \bibcite{Ensing:2005p53}{6} \bibcite{Bussi:2006gg}{7} \bibcite{Barducci:2008ua}{8} espresso-5.1/Doc/INPUT_Spectrum.html0000777000175000017500000000000012341373334023032 2../TDDFPT/Doc/INPUT_Spectrum.htmlustar mbambaespresso-5.1/Doc/plumed_quick_ref.pdf0000644000175000017500000210304712341373046016032 0ustar mbamba%PDF-1.5 % 75 0 obj << /Length 906 /Filter /FlateDecode >> stream xVKo8WHomm4ieUfl$lEvݞD qXvAUVdyI4,WɟS,儡V #Eu5k*a6q"}Y/8Kg[>x v}`;OXu*)eqkn}SIH+:l԰RguY~njWĉowG e綾З+̯:#xzQUz4jcֶm "'doc0GYIA[mSvzjJCO8e@E@,">X|eD2BC=|F#0x UΗgM endstream endobj 92 0 obj << /Length 2600 /Filter /FlateDecode >> stream xr8Б` A2S{p'x=3!TF"PN@h4g7g/ ,VGr x2Ig<>_p.Bu1kroڮ,o~9ɣ, CHB(&ο{ 1n%\~8_ae5}5}y  !)LJ6ז0B徻27RѴsm\DMq\ιW}‘ ܘfkLw5[Ш\v@z;Y M^'p߀Def UަYU%wD*"΀!Eȅ^]ZxX.o>q@L0jw?Kac2gwvn&YhϮ~;{5Q%y,9.@ۼgq=]squKnKջzMиJXč\_^@$@;X."id;3wz[(.߽~;\Č߿D S3_ )DNY͗B4ͯ;HAEΐޙ igRiwBgdvf;@'ueZG;ӘY xeD0w5Y0_Uʳ|yPɸenИ޶&Ku @CK7|檡k;`7#[rtg'$9;\V&5AjDPYs_ԟ?0ֵq^TCo$xr bxA߻1׋4ui ,-IEhbt<^"%dMAuHALz~&&Vv:>ykkRhm,5DЪ# LrKv‚P`*`qƔn-}xԆWnrVB!ҡ^ <ʲ(eO<6M``:Hav-kw|n<[VqgV7 GSX˂Rtq .Yl!GAf%1 c /lbljgsx7`5P5t2v7Ʈ"v4Mद)oٶ@|ʽT=cRQ̹vx/b<EIpprc!Khh~F 'iǣp"u+/Ц&|"1pf*4tEu;G>5V֣YΣAi߀m]B}nc@TsH&%‡,HwӮkǸzZ>$WD6M@TIQa"'KN*_O?S$Ӥq׷Ic㣔 {.FtF02HX;z?E~f0bN6[,y 6/'3~"Vl+hitIAb@mSS 0H'oe?(]5Pq~#°26^鶮3]n6,j|u?[{3p.^t濎^ endstream endobj 107 0 obj << /Length 2985 /Filter /FlateDecode >> stream xˎF>_=XׇMv8H 8RkDVu5)ny8^~VW׫o{,Z,n60nª)Y/%õkki$gi&)--* rr\aZ,9?Ҫ9_T"i;whRe*:tkžulwǺؕ r>\/xm")V]YQ{_ڮ?}w4Xtb,:(!4rbzt;g_Qp0]I${(M,Myaa=a#`kTX\!xZ %K&[T%֤ؿ%&¯X&-OK a'Ҡ8hGn`:[@jjKuZ*r&O^fe.LxxE/X DbB? /^rfc3]Js)Ã|8DkQ4ia;qU%MϢft*¯Dg ex zPc^us\_H#Ѧ`?@Ww&ZcmKw *׫_}-3S&&*,K7؞KC,jpv44Ze&U[?{&1 Z7goq:MsӵtTp\N޺K`k+ыmXЁ|_4,:poX۶,b[WmբDg12˳~ssݗn='5==7Ң^iGW>*xϹф__)@|B|mBnK<{7kf^8XޙTk1]hs$ ?-xƖ]sHlU*5p'pVxц@{NLJG\ǃcq}vq9Mrh?UXqO8AMa5l57>b"ybyRnfhwH ey I,744* &:HװVd)`nSVǦ萭"ˈۺwE/@rV;dG;Dn̯a[ hH At;~`]z4$INY Ғ&QL W{ϱu1n m8|nD[:OeQ+*NBG~(מ%`K‹L^(dR%z07 OVcJŭ*Nt (u;t$3c|̌LhkdFT ǾG"@x2)heن|*F`oroMbmUYX[VmS%rP-F[2 h6s^A+B#8m0A.n{Z_¨)0w4B!f&8+x8-5 `A(!RzێS, ,~?|8Yɤ⽴)Qj;-wRL Vݾa Gk=o}@bޤ 00rtSq$pxkDJ2\hqn.ʐl+TV|Ūg)PU%{YU)U :J*Mk}&&s*KÔWIz9+))^UY?.#lL)ƍ9{qŗ׹W_U2O&ML`C4Zpcgq0y398s܎h|R9&d NS  T}8bS!c%ӻ< ̏#C.Wb㟬(AI1|x#q/O~LFIut- 8E U{_9ΠHBrþP1.X!׹XfݡĐ}@.i/f kMcbQ5ƱP`֠ekWMZChQaQm$RêO\t‡T<|ZŢoxw"DB}HeBQa/qsL΅N~WDuIZ 9,n+͒zt+T, ;=NTGnGкx1 8}V&o6Z ]`P+@ ,<2dҵ Pt*c& LG endstream endobj 119 0 obj << /Length 2487 /Filter /FlateDecode >> stream xڭYKs6Wʂ_s[x!ɁCAbkteΫ* FCߟ+WYWO+ UWΔϋ_[Q1>aVc>4tܱpzhqIfB偕V|м_9=Je:K\,wY=̻ P~K{A09"?Rnÿz{9脱`fX&oŬ]ē.Rp,b0K0Pq|٠ll ^:{&0q݇@Eb |Qs^&29 T R>!fya8U~ ζ GyHdT48q;sX_Bp9p.A*jE_E u6r6 >3 wLPs]7sDѹLVTFs6#)zazw52,Kޥ!:BH崏?e ]Z6Wk̟v4.dZzv I|VBNr.i<f} Tv:ۇws NS1= 4)CO.jPš}@:qE`= DYUdF`a:WZzPcFg%*WėdC/3C2k#*KP],T }wb|3fǡJ+nR?Г*&xπj$=,Ck+j4MY?T endstream endobj 126 0 obj << /Length 2273 /Filter /FlateDecode >> stream xڥXYs6~ׯGN"$Sm9ɖr,9]ǵ`F\ ^mkO$xyur+YX]Wf<8JYn1U`cm5agd3*w<QxcZZT]ٯ&ʍ 6Seg!eJ.ܠ)AT\?M 4S{wTqxG9K|\$,J0lrl'u41 w7RrD2n-zxuԦik{!ArPE,LX*e*s?qWrsqw= RlfqeR yOHDKQl[W7!ʣ&ς ZKm'XA.YJ9V S),1 -ӒͫTB)Q=3A~d:)܀ų v]=,}8`/hn߉;vtJc~kh|>}iD7hrzo*ハ~|ŖD P8Yy!byUFΫ7; IK8!IF&.&$݀pM/ /9% .E ͯ 5D+a+3{E2۵o`3i۪8B]ӔKJkrs["W̅zL\i#o o^"U?xRE qT~(ջW mܫPGϻapFJͥ(k^ܛ"`K76h6Yz5pؒi}xZ3-7,HB|gNL($1K @ ځgwF&B}]ˉ0 DANLI˾ 4:)ǶX K{<3'Ve Wٺ))жxvktvy6ykeGcy~U]ҲD N~1R(;zfgQO)!8fpz ltTL$m\rGxg>d<ԙ'C}vpHK|!VeW\#`0ҷX(C[խv8x+~zA{6# [ endstream endobj 134 0 obj << /Length 1718 /Filter /FlateDecode >> stream xڭWo6޿e`fIvvHnIi1(m#wRI[_,x7w~}gJ$ jYU2gWբoPE K3>P]ĴvÔ"4Q۾Yj⏙-ZGucsJ4PҴ:mi֕W. "*) vHG*jQ`p8Bmp$w~er\Q*_Y={021"Y%:%^JEbL.fiQY_ hmqբ fHÊԷC;S]`#xN zP= ]t HD- .6L&L&B@>V{Cu,)mVyprsc!%| /I5gTi9k銫QNJclk[6?&G$;+H=^T5Go*E;-^ڶW_~GEN݊K+f&O lહ\ Grm/A!}asvEn|6tA-t5 үmʱ8&j¦;c0O)oMQۦ#*M*-mƪz Vٹde[`~\TlJ2y{MIa9YNbۦ1A QC ͗y{qi- i)?}"ڨH@G>+>+U=v7ҬK d BPQLR% RSUkLx:? Z&dz~K>71Ei%)Q,]^WnV/V>XOl^qľQVVC9v ܳ`o| pw'LJdk%mѯd]lXH\qf v5}ۮw ln"bC0r@F ?2)# Kxfzj85B;6zȻvq5U . :-gHb\c%`Ld') +)`-&0&7 tv ЁJ@fLo,;}tDjI\p~ x%Tz7 Z{_mu?b] ^wX.A8 N|Mm3C gaa qrh#hf\t t ;ti9ꋜֹ$v?ij(nv3quaAt%JP^p-:XI<`x~HX>d[.D*9#/ ̺V ,ڕVCqz4&Ehrƀ{9cr슸>,upRL+ma5[KhqT=v\*& j'o9k|ZJ! V ?ZC,[& }:+DaH8KG@RN^x[Li Syx%Znz1y5ęty^_;f`X5ۛd7˔ F$VE,~ν~r:Qf:*NDyh=;x?4j& endstream endobj 141 0 obj << /Length 1278 /Filter /FlateDecode >> stream xڵVn6}WۇE)Q}sgnuo- Ffbae+QIr"EQ0ə b^?1eI Є /ߌ<`jUms NѯU0Og,[{4ʸ'xLC{˕;9+FDŽ}Q(,~ÿdMo8N%s]/3Ϗʄ;k >! hD1A[sje&1kUh*aʦ)*U57u nX*)t_YJoJBT, T3릮 H "V7]mv8dhl;V(}*pRU[h &GXagKt(^p8zM1e|98&MJiKl/n V4dF]ȲEe U6Yf8r'ȶ?tU8sB[kٰ! ;~F,5ؖ#8 Em\խzZ`lVKsΆhC ͙ /2a rW.۟pvR7ykBZU1 CE.4gS'yخrޕڡǀݷmmfVR18y8ϣ̾`Apݘ -4k{#1ʌp{V`(-Fjڡvr>As@?/q `xz~:CȎrQc8FfLA#[X#q [gp婢"/)d.r|^<~:YN3U!o/'}ߊ#1򡏧zTv]$_ ~]e;D>ؑdP6Coϣ3Sߘ(+/ugWd !|Xf_˟ endstream endobj 131 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./pic/sn2_reaction.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 144 0 R /BBox [0 0 841 403.2] /Resources << /ProcSet [ /PDF /ImageC ] /ExtGState << /R7 145 0 R >>/XObject << /R80 146 0 R /R79 147 0 R /R78 148 0 R /R77 149 0 R /R76 150 0 R /R75 151 0 R /R74 152 0 R /R73 153 0 R /R72 154 0 R /R71 155 0 R /R70 156 0 R /R69 157 0 R /R68 158 0 R /R67 159 0 R /R66 160 0 R /R65 161 0 R /R64 162 0 R /R63 163 0 R /R62 164 0 R /R61 165 0 R /R60 166 0 R /R59 167 0 R /R58 168 0 R /R57 169 0 R /R56 170 0 R /R55 171 0 R /R54 172 0 R /R53 173 0 R /R52 174 0 R /R51 175 0 R /R50 176 0 R /R49 177 0 R /R48 178 0 R /R47 179 0 R /R46 180 0 R /R45 181 0 R /R44 182 0 R /R43 183 0 R /R42 184 0 R /R41 185 0 R /R40 186 0 R /R39 187 0 R /R38 188 0 R /R37 189 0 R /R36 190 0 R /R35 191 0 R /R34 192 0 R /R33 193 0 R /R32 194 0 R /R31 195 0 R /R30 196 0 R /R29 197 0 R /R28 198 0 R /R27 199 0 R /R26 200 0 R /R25 201 0 R /R24 202 0 R /R23 203 0 R /R22 204 0 R /R21 205 0 R /R20 206 0 R /R19 207 0 R /R18 208 0 R /R17 209 0 R /R16 210 0 R /R15 211 0 R /R14 212 0 R /R13 213 0 R /R12 214 0 R /R11 215 0 R /R10 216 0 R /R9 217 0 R /R8 218 0 R >>>> /Length 5403 /Filter /FlateDecode >> stream x\Ɏ$;rW/w:0Ox,@713wFeT1dAFgx?~~Ͽǿ>ӨiGsz ߏf_.MۡZ:j:Ƙ[xCl\qrz-S񗓍;,*eWW'Pqu\\mޑ;vl`lOlp8;UzC׎oڰu\|(_Gp 14FXV_aT_4׎}i1D׎}֎}[;H\$kG;;W;[W}`uִNpwQk{iLmڗu"jG7Fa9 &b Yڠ:K;UKG[0N"5%Gg)t҆} ֘:A^\YGxuv^Co8{{~x1LXX'+w'h'7&1 F- YNc ^>%ȡ78p m3uK L.o>/YhX5r$eWG{EV!#samJ1cqwE v1wuN8!k2!`I]v pE7z9Mi̶ 6so/ tw}Y}]8mGX'&ޙ|cj1CE #o33so!njdnĭ/v}Ź9,ꎰba [Z~ku'X̝`sGX'x #gXvtގkk6[NX;.֎X6,*G.#E{"5BX/޾-"=rQ٬#ņ#lcuZI֭hm>ZO㸏k;QN[1GgBǜ줏8;i-ΎmiGXvStҎi'Eچmbmwn&m_6o]ۻD#x۷p.vm)K nBN܎} kco{Nۆgs֎ଝaھfcm~Nَ-oLu饥u{ڝ)8aGPw|%:_'Pl ߅}[Gl:nuDquE[l/NZMc'm,NkGؘ;?.5֒y t2cKF'7&1F>G WT>sŒhØ_\F1hL53|@CU.b h;b\ãH)=ē<sz;5pLȀKc\z^aioFMFq[0W5?:gZqى]"Myk{ 03y# 6G菙M% P"Lf9ۙSu[O kfHfd]/09N&G $JX4; @TL?\g-O qSOJheXu$Ozt.N*9`R1x@h7f5g||Ⱥ!Jbt"7 8,*QL q X4sb*e`Rrй{V + n6lK*uU*CT (ft-\tKн%H\O`=|0\6c=a *`1"wDpq4+wj 톱zEp}颥 Ε]@ӵc2,qt3>H]G݆yHt!E3lMՙkqu3%P:aw=4 rG!x!@uxJo%aa%&Rׇ3H#%;y*d R9CPw X(1`>oc^hÌ7ܹcW1ȊK"܁mBȮAU!h@8=,wk9X5jڬP mȫ7-B/ I\:e=EMǦA:s #|f eSYEřee) LQ$ :j1kEyj/_]PVF0=ao4P}2.+' S該:'Ӂ)6UMj5z#1r9(&\d 㵓i೙4к+k "̍ag趣顝N{nqh@ |إ_4 呢yЎlf&m0c' ɤ-NZgSɾ#Y6H5o>eMAK鐼+ig5fb3nA^I'ך)JM˼:!3kv`^s6ɰ@QXV_lwrysE6Ĵ+r:g)20T~h}[nq#vLeː!?9)hט3pδ#tz-_ݒ")C'Or53qlq˷Δ"9䡳ٗR)|T0 j5OhFHjBKlAޅ*Zk3Hկ1Sb3 0AOZH|dZ9œ*0@S's/{}Ο:'܁W|xucv'Hrֻ'#Zn!a2aDIN~%#ԁ֯x.u%3ZBx:)¤0Uzs wDxj4Ь~YH%3ޤH.RW%dִ :m+ܙ!Q !6x MH;uUIYr}X=j r~0kLqJv)W¸/6d 4WxF^ta)A@i3KN H8E*K##<>w)U] 96zU=Sx'.RJ,Ǧa eva,ٹ~phSԥNR(XV5#AjxCJ(SY/QP"\9Vҝt#O9*pF\¢R4eKApÊ32| 7&e?>F1&P$B2).9TCk,C,Å2ap4en wnd}j ׀7_QChX{H7Jװ_ӞD_Wn&.~B7YXAKH2=ƙz,#}n窙ڪIɪR)1QX >7S}J5)sUCay6<΂}AJ0] C1 Osq3psA'"jYQ!|G4n ed]<}|4,24"}T!r :sXDXe20](ZJODt6gJ@՘ʕ|SM~ bCb=:.7MHŻY Ƭp@'x6d^U$)Ƌ|ĺg槗' 8^>Mܶ rѬZ.e`iܩ.'[FoL5 ao.mBFY[umqU0zeX@n?:ܰ| %Ut bUcٙ.#9*DPfȪ$587=z|aSmÃ!0k4t- &/Kld v2:DRh;}}U@Vĸ nY Ar89]!j:"a'u:>6DQh.S*'@4jtUh~/ cPъ Y`@1sZ-kQLUaX׈=ueW(Gc lJ:*:.)eh|DN3Hl#.@O5,;3\;\lizȗ[5wcڴ,3n^]r ^wTQLDW϶nF$LR_aKX|>? У_M:TZ~Cg W1yJzgt6S\w8R*CM)aFf1|=); %$sBRw=k[/%n.D 8}YuEQWأ}0+}9I,f"`I,#.|+z>T+G28cM8hC`ϓ(xI=:> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?7u ChjM׈b wJqv<ַ-RQh ƏpCހ;( ( ( ( ( (H=lgw>dzD}}(s!y㌌}zq먠((((((((((((((((((((((((((((((((((((((((((((((( endstream endobj 147 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 2042 >> stream x;k]לIbL "lURi^2 ?ANXB, Mry35{wLS 3sF萎f1|2$Ҧb:kPh&(NX׺w';xnnY +'Yl"dtC{ܹW ա5Ž]Y!bOf'YbLF0ʖ쮒,nUdnoŤ5ŌuUӧw2 QZŒcbm?`umHo"J)Z֜4K\6pq6ܲ5ƶLb>f7:ƍ_|Vż%ÝΡZB 6I⵵[nT#,~[nkVXR[>wggHR>}Bgff&+:u>Ybx+6b5+ӊ_~#GQDm9Q.QUS)]'V fgg=zaAB!Q`=)-%4-t8AaEKےq(F"_r rfBfll^S;Ȗul$?AAVVV]e() e;)KrQO7x8̐]bp dR<|puu]TI E/'P{~@+W̠C-onnrTH߿K정ki#C%hP(g={oknQʅMę3g-~ x̹s _ q&'t؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v/4 endstream endobj 148 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1082 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Ke!L^gJR+=W\wVkr^E !QzucyֽLz[1cLt<[5Lo&iQa)H9s OcӨQEQEQEQEzՋ{K+kgq9i̓ ->_~^tӹ> /Length 1121 >> stream xN@NYH I!@WIBoC:׳RU|Bf@$}[NN^;;;V$ݮMS$ul/tSپļ|o1e$Z2-ǍoYVkЭ emmʗ-AnnJRݮeW~"ˍƅ,azŇdz+Kos#sm+Qne5#Tƅ|6r+fMDWy&d:q~.~;ղ.hY:WFGvA\c(UAZd2^|4S = QAqOY\?|~h]k`Ցh\]ќկ/e0YIl-oF_v:HhIfY:?83ƝsqsXU1mVHJ!kg{['@6٤l'Hm+cD1Z+=im㻻W)gmBfjL1xѶm5ݽ=?i4E(pgʦɫRH@O'bhŵܮbŋ>;Kf.\1q'beT.1S2:蜒 #I|a\TƼ%֊;hp0Kg?g@u\FeW9 ⢩/妦K$l>ĐIѬs  GNSD:|t46ES*{oJW0VKk9%+'& EDxi݅1rYMVm08f^gyO &T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cp% endstream endobj 150 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 984 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( c.{Ӫ!+чjfHdGֵe$_#4( ( ( ( ( (#g$n 0P/4 ُ wVN Sn> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?_,0#lNӧ礼R4RG"0T^X^$ͧaO4nc'QK!Y*@} f)$T<,lC2'1ʍV#s'z]LL)|NrҠy*Ihd^)IY\մѣuyDVԚ6l*''j(oO60=.0 B3?:T PgU @z6_3nrsr~U 9o]5 Ozgk_-ݺ 92Տ:~(è9=fb?J+KU@gݗ'5:G𲩮5EqBJ"DoCWik::D DF1P0: KlFw:`~9]+Т*(((((-U2?+Ӧܢcn/ 6yQ~tiSptw-g6ڌo2~6R1 E5]XdQN((((( zqj9Fx> /Length 579 >> stream xJ@@,w"GA4$=(fL( QJf~0lb{]t]߶C9׷ժߕnnëohYL??wwyz_dlnrLë[8diQ997Mߖ旗e VḞ/e C]׻W~q0})z?!.Q-K_6׶];|,SxoaIٹ\xܼe7J_j㛱'_7A۶-o%.xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1O3 endstream endobj 153 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 1581 >> stream xnKEˎM`! lkQ>=9! | $ꩩI=2Cx3YV9~락=Nwd2t2d:Ջ~_+eN}hkY+3VMt*')~~ttd>Ol&1xl-O$BMDlb=V8ZmGrpxx}krC\-^M ݚ\""֬3%NdNc\tދkU ]*GG߾MlZ~Ctr1"6ԲA| +Cmrm֗UX,xW:[zxFzul]nVDzh3ijxum>4b9EugyкŕPFѾ"ĨM ][*tolu]Zz6qpkrWa{H_-kS$ݻ {QbӶf_Gr#"lW<7X-}1xuV|/ݢ9rb)D6<7b:S^ZS#Nl[GzUcDF7bK43Zzr ;iWvx\H)佋zB+ZW󋋴fi%FlI{d-hisYlجl--ZRݦNW߿oiw[}Z?.}bƥ.OAm!rU,9qPU1O>~߿q㳋wRzhlF N:Q9lUKujpgUlhL/NNO==jcc,WÚZ@{k- bGUl^\tJy{Z:5R⢌4Ё'o܆Hyvu 찄W)6./?~x-S+(|[И֊H/7$s .U_=n*|} Z͛=V"Ŏ)@ ݿm0=JzE{WQg-9 -/:RqD#$?9joHD6+ᵎ6zcNUo}[Qђc6TTy9w;o5(nQjWW?|SeJgN=áb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*/~ endstream endobj 154 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1542 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?M&F>ZÉ1!*68RCZk}59OBx?zsIk+wp MZ Y$U C~ 5В؟7= 4u4QEdvQ@Q@zPf)N]G.hQ@HM4ajijaX.iY&jEE)?xS:-d7I`]$Q-:IEV'QEQEy\9f5[uW KOPnu1jaj4!{5DMf\??t_皣+֏c3 v8H"LQQEdwQ@Q@G}ELb} ԛI E\j$ Lg]\&FKA Cؓ~# <h\M&e?!ǥCgM87hp((3HM3u!jl8a46zFjڑi U䒇zwK"B&fxHi6X&hz>3k͓|61련7JEP0((RZZ)'j(hZW5|.!=f+K"N> *YQQE"((( endstream endobj 155 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1557 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( (: .sL>Е)('wHGʃW;=גtQUYv\onNC]0GJػmn6qZQdϴRO<c|A+9@V SsPɥVsX4T[,utQEpRQEQEAyrv\I3W sy%O/V;(*56;(Lq|Ϗ?bVVqU9*ԪUZVNAjpzdX}WKu(S+@(|N7yc2zպ|wum wM+'.XrfgC1'S+55*n.Jz=SWӹl=8=TO Nw҆ԀMA cШ>(+c;I)jx-Tw1ӃT۫C9&j*RS3h8QZHYh` [ QS΍e(=P(,NJoשהx2x 0B=eU^&Xjx5YZSVrL Ԁ! ZLNWl@y <52Z:(\z(E{EP^u*գrHGSOҽi̶߿Nq~:Oh+l*rTԀ jE5FMN ~isL.ivhc袊B((4}~Aŵc8FZ~uX^/AGQL}XpU3ļRTg;Eiᩐ6hFuLEc٨((EI5% :h3*uj(G<(jxj(fE QE endstream endobj 156 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1431 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ((((((,k$lR;N V+OnVnj7 aޝXkrl= @ EPEPEPEP-kP0^<·\ ቖ=VHՇ?uvѴp*)^SW&6̩5,3i^%TWF/𬫗NjwvxPOEPEPEPEP/}lO5:Fܫ3n uv ֨A~GLtbY28Ybi &msPIs@IY7kwo kZ^VSb<@Q@Q@Q@Q@#pݫ\tN0\g5yR1E6yjMqUg\Oy5^NC'힃a5xC}SU~h$ʽN ( ( ( (<2$1?ƶ>YZ>jj2m3>A56MFHKݨ<EKh7")cif:LNtqSAqHbC׏NT*PA@(t,lPUdw'}MY((((dq1$q"hP:; }PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP endstream endobj 157 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1708 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?]`fnpX_coyd/#vUS`O5 zҪӴyOXsMU TlkDK($4fK簗4vS}cb>?NI5;락Лy-JOxǰ"lN0f!TքꦠM*G "y ?ϵdEjٻKuI3Z'η!MSv?QU֐n=1JƶKKt{x IVWĶ ar;4Mu([,x;s~U(XbMQPuJUazpzw'_}踹KU«n h 5cWmzt hr>V"KFr͚A6,nuAũ"bFjښPҹi4Uw~hsEj@j5"Pi`҃A6$.i4aL4ĻPM-ER+=BS $rENhr76P4EjRU4Y N N A6&QIBi PM0BԆ5 ="ޫ%+ZkjKkos,rS{-F&/ $2\ZB6{ sWi:mcj!by$EILQVi"@QL͡wQE1 PKS QE""f]袑Dp-Vi".qzs^?G9/MA pToQE endstream endobj 158 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1683 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYww" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ( +uXaO2ϰVrN.۝QPuQ@Q@Q@Q@Q@`xR0D,IW,5wpIcRڼk.d6O\͉.8TJVQErQEQEQEQEQEe}CZ=37%_ʆ&'U H?'E937&wS?ы΋Gsfoi͏?!K7 \sbTӛ?|~B??KtZ=3{Nl}0*^IG6`6V>.lh{ J&shxUuj5fuLu hoΗ-6)MZX['4}*}:O7WeLӏu$;|ho_W_:qdJqP[ٯSQWe7hoδGlOn?hF[ioo{Ə7Z2 v27?4#]6#w{zw92ƙ4qwp?J'F.eT#d209j5TGCbhE4S (=(((((ĵҵ6#ycn+ZjjX1p7i󍋊hTac( ( ( ( ( (+ZG}e=1̅=^#yg>5H[v#؎kݫԔj=[3A'+2x&Jj*rdQWs(:((((((3ׅjy2>f<19aОݾ (KH endstream endobj 159 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1733 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?zjdDRz,OsPwC,sIJDцA%qZ^toާu,jdaGq\ҍQ+ETQ@Q@Q@Q@Q@5m]g" :Vφ5_&qa;~CO ޟ; Q%s%tzVVe[oZuz\(QEQEQEQEpM1uC^ISjYMSk2Iy]y!#>N~b)hH2:V= c5x}QPtQ@Q@Q@Q@rZZZZ cP93T.%A(Fy8KƳ6ܑ(U-"M 1qIBI%8ۑ?%_ʁ;+?hPpuVc.z΃R^y_ʏY}S'H%})F/¹}GGE93:Y?%UIhz΄jEs?4Qh-L-Q5H{5@C5@H! Ok,u;<'^iD-ȡBkND?ioΏ7]O96~iOxǚxs2[/տB8JQxOF@x(`ioΏW: %?#BuuG8{SK|t}ή5ӜSJI!h`?ioΊ< #ͲFh>z1IU䒓f{mb I3jNp 8igr5s^Ofv.xzfθ+ )QEQEQEQEx5DC5BZiT\ |`<fԮ#o~H1=Kfщx3L}+vO$xϸG[QRlQEQEQEQEQEx+5W袭F4k6D/3;uN00Š* %Q@Š((((( endstream endobj 160 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1710 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( F`Y I=ȐHQFI=rz&-ª1r1YRZX59.hm?VKZ [<:n3WdTp@UvƄʜ(kܓuԻk-Q@Xy4ir+'R)!hQAV;J({P:v$TL,y?2kF̟j1Pp?\U#bIf9$5aZ"v[VUUjxzjpj,uWF..RUR怱6AҟFc$ W= rI:H>GVN)9WO횑&+'O]L$>W<7=Cl:7꒶*Uz.܇zvSN򓆧P)A-J F (4bLњfhL&gaѯdSX+^71^bsST!wU'R+f M2Z-+TYZVCE95~IUIy5/.1CvB9cxb]xFffnir%Wb\њubBhQ@u1Ny}k_!k$R>:^4sjKAjjvH*%4i ii9KMR[qjɱuIpijUwU`b}n7QXuj)U 2 x~ז!@WדNMs G?`ZjŌjmVգH B͢Pi@Ӂ.i4?u.4%F4UJ=Snhک 2$$?=٢=3r;$Qᕆ#aZmhrc}s\trUs%jRUX @&RV$!4ԅL&0!)4TlPUp+# i-cYamdnW@úMe09#$ d29h+1V@QLwRdBQ@ƖCDlQE" endstream endobj 161 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 716 >> stream xNQ0h4qW0Ӵ} \/ d3A_Nq$I'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1x_oo:ՒѨSkyo+._ǹK//xy߿h.V?X}8~=i ;nSd8lolh/~|.'rHÛ]8\oon^^dk^A\6X )'I8>wfs[YoOO*):@֝ҷGo(:sFmS'rH+sFGʋED (h焞:(\y_is}vݭEUAMt>10@NOOZmrfp73\S$W>AУA_ӕ!B endstream endobj 162 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 639 >> stream xQJQ;IP7ҵt9I)Hw6 @ΝIѶ? :MZ5I'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xIM>曣E3I6&9 WƍZbNO2kF! lJe`}ycPKl /pMn w7HNWc[F8n'_yP__7B@!݇(K,{zw׭ں P7}7Lw}糳FAws vXWW1qvnݼn"&qr7vq1 Ͱ&~cr7Of{r/?l> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?I$۟ڤ9T 9,Y.EG4EPEPEPEPEPEPEP e^3'·0>Ud۷-KhU~-ax^̷LO35@Q@Q@Q@Q@Q@Q@ԳVu)zm y ɾ}@zy5uU [^`IuQEQEQEQEQEQE\沯nB$+3jOS܉[/OQPxwNm/D*D|giEQEQEQEQEQEQExޓOnUmrտ3Ԋ/Nt17I$jkKX,cb1QzSPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP endstream endobj 164 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1724 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( k0\gJV!T$-G:R)(#hh((( ( (2u&O/^z(ijrd0@B~3֪$@w֬-v;z@k>zdz̊LՎ@Z(,*@3QUZJ(B(((:)^yk.h@#P =O皫n (zV|mVUZ+z[mݼ}+WJkf8=hOEf֊(((!XAmF.S9!\V]Ko:U(}B}Sv u=@QYWfi/h}T`Ɏ9]dހ,Ͻ$=n(((Srn#C}>ջEx7Z]ȶG#T܏Zrb y[skdӮ~T֝Z7MmZ6aN` vzynf=fklce˔^hJZ+~6V̊LOEvQEQEQEQP^\-cRqdp%7:īV3LusT`T&fbI'{@03PcJԼM R[G%JH ( ]/Ë6[k^'qd˜'IӬ}nSWh ( ( (H2naFiqTV[ꤓǫ7~R,us/iҿ?r?kzlIs_P7v:Xue/$̀k3$WЬYڄ7-^qYk;yW|*ZIl(׫EPEPUoV5% QETU݌IƛhŚ{_+$>vs8SWjʹSQEgSc6Z0s(l)hɵk7oaʫI'~Uh0}hZ")ͺOQE&EP endstream endobj 165 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 389 >> stream xIEQg!ĵ ٹQ҃č6#Z}XF]8Xa`_i." %J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\srs5e]z: 94w{Vh8|_x>OnU~~7|fsuSƄ$ endstream endobj 166 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 1016 >> stream xJP񓴵 A%+{(8_E^'P蕂mA64'$kK i'#4NJ! HH H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H gpxZZQԪV>=0h핕@g8{nZN.cE}qT*oPdD|wG`1O뫜V֪wg…$x~> /Length 286 >> stream xЁ 0 %\+`HϽ4,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y87:^6a$ endstream endobj 168 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1045 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvw" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?nA%Z$Ri@<Ծf+U29Fz(>]hGPN^\~cz.}oR}h(((((($n:bW%~2 x!+y@Z+m{N3?K#jpO=Gb} QEQEQEQEQEQECmopƽ5 *J(((((((((((((((((((((((((((((((((((((((((((((((( endstream endobj 169 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 1727 >> stream x횱NT[E*y;CA5Ɔ `(0!&BC&w QܟsV}f*ɞ0#?kYa8t:SSSf޽{x:66Ƣh4.!T#" y=P*o /_B1Ez+?ljzӧOSl0DNqeg~JZ%"4N^n-b# E)r,7-Q"*J|zSP =M[V%B\B!M+ w?*tݝv* ?|pD dEAѲQI1×/_ZJM-Ghk*w9Q\5 T ęjeѐ լ> /Length 784 >> stream xJAzP7-'"bx/sOE3U_ y1&i!?og?eYfVE}e<XT7"|>qg*c )W#kYW#|L&?ZdӚ56K O:qz_K'~.A]ɽYN!yq |x|pĎ[ߏ?)ޟkGGqfi8ԚQ!hُp-MQ6ו}c:v&o:]zKٷ2]va\ww;9.ߧd~W<3k ܧNn6vwFc?e_vv]Z3a ;dWiha,-GKclfqurGdS\Wd4|sUa0Hcarq}__YQc2f > /Length 1494 >> stream xn9Ϥ-BN!VH q3MwslO]6Q48%O^{Y<~޽nwW2u LNv "t <otk2m;靤( t ոﻛW?z4MѸ:m2k[,]=Ҹ4o'G"vk!U-Z֚BTfR<gfr.Wý՗[u[7܊bhyY+t2J >$jU>4 }>lSش& Y+55;8B,1rcj9̸y)]Kd.z(2VH-4◵FmWPRK~%ety1K QPv<}zE)X& \ڍԊstLoDDYEn\_obe>k4w3>:RMn˗憭DŽ_d\b(^7*{sp`<&lځq_^k{; $ssnj50%ٶ:XZ6cS qkbWFُP;/߿v%4.5k#5y23=^# *o6FK ˗zս:-wJ; ;TmF|U/仧s|||rW_Vܻ#fB©G1@G/ X}dL[pܶ[,-\Bz: !5Fs}E:Rڧv =rƫ4z冗Uqo:3Z,CER[bBtxV63, ,7lV[ VךKKr?J:*aBմoԫ7=2ӌp [f6Cs@:HYL)Dۮ wzыV;ٙzԁP1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cp?XP6 endstream endobj 172 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1321 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvw" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?7Ks%4WsQKV4/Rng4%K qi\]kF[1t;G=]< o?u3Q2H9~nbJW5Q^O%TjR((((([M.K{o<)EHV t51\8\׆Lj (|ߛWftjŶk/Kl~| 5ikH0aOQEQEQEQEQEQE7,,q&&щ> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( (9xJ-q~kA@d,t?o-ۦyǨ=USRl[So}MO=AS.)ԢJu_ii-xux =+fx)*4nX`s'z]LKN=܎R*ESh((((*ޟezTYXȫTPxI"E_Z:Q8+9s]'-.@8VjL)E-?7EBU${EQYEPEPEPEPEPL_^$~G_5Ϩ'VݠM'F[hTyEU (Q@Q@Q@Q@5fɧU]Izeۃ@ih9?Z5JqWOݠ w)'PEQEQEQEQIHOZuPX[v ,>`~W0%ʹJ2)Sz;1v·P$Tt?m?ʀ0?5Ԯ[%#do2h((()3¨$j{8E=(@yo^szJǽm -fjU Ue*IE7pEPEPEPY~ Tޔ@kR2 Pre.޲^*tmW"nAO3R(pj=63 R@n^̾h A7EQ} ( ( ( |lae<#Ί(BVGEi2Q@$;LQ@Q@ endstream endobj 174 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1274 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?A%Lߎā%{Oi{ $GBkӉۑSLP9(\e8 jA%U̜KUe;XH^J. IQ54QqrWD݂&$ͻU#)d^z/Q^E*<ᶡ+ftH?uZot;@stPUᵅa8b^Q ((((((((((((((((((((((((((((((((((((((((((((((((((( endstream endobj 175 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 326 >> stream x QyH$&;b2{o nxy~ 0MWvqW,n9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qNĹ/Ml endstream endobj 176 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1449 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?cQ5+Tl|E-Fk~xT'Һ->+7O*޸4[^c83єaYN |D;*74 <z>bY4QE ((((5h)^MYkURkfƠj) aI,2:20r2:WH2+f:PK¥W=? _Jkj[gMEVGpQEQEQEQEM&Bk5S-"' 1~#5#7JmgsU(e t4>Y?\QE ( ( (oǧ}k4sRrܻ׻[x#WdQ D_EToؖ(XQEQEQEQEl5V" vᶌHn(f=ú 嶷ne4=o̝j(5 ( ( ( ( (? endstream endobj 177 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1664 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( Ⱦ֒1[+ Gb6eq?>Vg'<$bI +9e#ba1&n"5/Z ɬa)ݼQn7KR*8W&FuKZJ2(-E5Ph;mQ\GӅcT6Td A+Y"b'<5?; R0GMTUمyGMČ+U4j^!ҵ<5VNL͢jv};7qr-,JV6' eGF״EsWmh%xO5QXijF/Rq~5F ^xT2OV2:#Ϯ\WU꒽J3p=8=TNNr҆E4hx54i(4L*9,236 Inx} ䷗?j,OY5lyjOJh&ŕ|ԪUN*Ujd4ZVJQExfFj¹`*茟흣\v)R拕8 LqҢTcb]T[,zE2ev6HS{SS<=5Gw'qV8pHVhq4XSj526JQO 5HPJ(%N8[եv%I\=.b>*P=R(c<Mc9yW J3ga㻍C=n~;OWDU&aR%52SVsX D 2$54&Fi47Q&{QX$I 2HA=kŵ*] VC>M^0}m7S-B<˛uKH>š&JzZv jVi"ҵ<5WVf8jvjԻb\њuHM3u!jaKQQ{eQYQE4l5kPϲh >z(FSD(j(0cSQE2E!jij(cKQE endstream endobj 178 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1713 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvw" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?RQqZcJj"e ̈Hj2ItR*ngt t` iXH"cϪQ׫Pr>(ٞ*n*MB(((3}\ӊj覷qbG#5.T ܏] {DS>l1::LvqzajEIQEQEQE QEjp-LfE"jG*YN^Zvo{X$ذ}T(((( endstream endobj 179 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1834 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ([RM>3ښW&RQWdv1Fqz.滐4Ӣm+3K+w9&S]GJCJͮ: 5CKd+["0QIq| gzFIPwW (PuYbmT[,utQEpRQEQEAyrv\Icθ[@9aʮxV77g06Ȭn+h+jyϕl(jRNA}V 3IP3[7hqh9=MXGjjEj/+2ѯDcaڲYV5i 8TV.wwm vCRhXV#֌EQEQEW㻍ڵ,y?a}^e) 4h?֪;VLjvⱫn<ҺX.1 }Mi,YݝtqV=2956rjt$ZKr+_!QP5S_잟Kch#]n}hO2tѱshMMys\QX> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ( ( *ajSvC)9GQW(wWAEP0((((((]k''G_*4 ZՋ  zT0QE&EPEPEPEPEPEPJryv5MnE#"vvMzIдy&?U/EPQEQEQEQEQEQE⓷kNǴ}?4ҤH 3PrkbE F(q:UHŠ(((((((] ZĚlh9?5U lKM(C`(PQEQEQEQEQEQESK,]$պ(((((((((((((((( endstream endobj 181 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1579 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?/5)Nqp{pŽQ XS+$>v7y3~$3MS1f I$N*1wRwR9KES S'q VO48xّFS)KTLi /YK{# &~>^}'"n,XonO>mQa : (; Z UU!zvw'7p'JU}ԹV:5hqQѧc5䐌)=.Q\mQ< Q"z%Yj&ir :@NI[i4p\0=ĶrZ,POZ&543Fj<њaI&Mj-E#h5Eq%HUSHJ"VVZNNjirqU5s]4W >yYͫ0۫ ų#us[gb]nQ6$-M-L-M-@9ffnh"Ox4dԊ4M 5,HXAKFO15}رuCKSKTeTLzHGnhTGP%p4a34f?u陦@X}iX4B^^ƢLPl J#NhrI75Q4@UZ Tf`5(j5852,K5] RLHZqjijijijCH Tl3TLԋHWCK#dUY\Qfc٬b^Ѵ[]@cM~c?miK>2ӧEAGQVs2@QT@wQEP15BEZWNyḬ'+-f.?)qxEK7QE? endstream endobj 182 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 2462 >> stream xkhTGfQBU*ZS|!j|Th46VT|VQDZ|Fb}/P 1o &~3w=sfu]ӏyso2R>|]8"U۫W8pKvv8/Z[+ⷠ@k+o88*q +(.!α>qB/quMM"!έ<K=4dݸ.\TS|\itUHq28]/ qtٳΝ|y\'z?B.bQ^3M։M׮źuS%G.!8k<}ڵׯ\(^s^-BB1!B]]?FPf9 +>x_%b΄8}}7̂vCm8 @ pnioB;;>ҼB WHwtvZý6 *ݲKق ;,6(Ed;7T6hbJwQTiS'R&@ 8>ZPZ[i4J#W>rD;6DNYE q`Si2P52puAª|| U)׫ er3X uōϪ*!#Ȃ] Q /մի?儊Pƴv r#UE Կ̊_(cǐ_ 5!Ķ)\t[N]D_TrTK ^&$a(DJuq2 5 _6 T1Hٳ!(NtpfC"Ħ͘wPfaD_D\ !jwە+a(XʢLM(5 \Qؠ{ ( /'lT.G•*4ccpahFZ ϟ_oav #+qcXG޽($1frȋ }S^ѡ;lxF!eOڌ&Ć.YatB+zkΝ՗/kw/Ql̋Yyм'k|ζ+ _w쨾xn`WLcf q*U=ۮ]A9.f8AԪokZVO~D1c aIԝ6z.Tu t6\BkbMlzyhKLOz8bMNu[(6Jc F$!sg…f=m}6=fV}njQ{h9|טpM?} ̧͋蹻PM7=C|Qk8d)zQƍUgθX-@\@E N6h: i 2~*3j_ A0ۋkBlȑPKі-x1UQT<|@,ئlL6(C|C'O#M԰, 3ҝ8G7Ge־jx0f)G26ce 2 ݌i4v3yu%+(ݥUCh8H>n769O5Xk5ufAE 2vcJj 4̌چq>eJ5~a{BBBcMki^g%ZBEnfFSkie做XGnL'A[4 qDu4H!(^mzΉ" xoNbkX%SH,(ZR{18wxš/@v FA]U8_HAkM;֭]Tq(2#^5 d5U q$UT8~GR@(je@.S{xu Eqt8. %{Qі _cIeizEAQ8y.B {vyu{T{Y2tdd}.YVVJ* &SBż q=8{qSymz(pgbT BރxLSW/ސLɋBBnݾ=fR{U(ݽ/[Wʮ,6$Rkqpu!:=DחHWAkB#SjGqNq~,IW\r]K|?hBC}YR!R!Ο}f^ǎom;Z/ endstream endobj 183 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 499 >> stream xAj@@a#("*<.mEmJ"˜tB7]~$EQ4,Nb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$K^1ndy~~lli#ZjmT᜵ZO}[l7R76z{'}z[|>t$/ɲŢ!]I/yWǼ~N~ikمZ6-?ewN~k_҈:"t8?˪gYWWˍ^ /O43 endstream endobj 184 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 888 >> stream xJQ5(GU/)J[;)7'ւH=.&'+k7a$EX ?o+'x|@Sʁ`4M/-dD޷pj&8\^}{6;$nLp:v{7d 848&'~_ۢ]m¬f67ֈ567=kjy,啟"g⃵'rGwt=::$NT5SM?j`&zj|)ιa no j6|ϕuvv1z:t$I:hY߶{b> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvw" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?JfH@ Yw b  ȺY8 рjah]`@ (((((R*Hg O%QN #TfЏ}^+=VmbW$:znB(((((8\ZCp=k9z"4^zF5RKzϹhko> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ˼raFcY;ksX䓒}hl(欬W##ր5=hȬCS@@QEQEQEQE9V="@O.ʣJN+#IekIU'z #ɉ֭F(j)+F&7g>cptE[ NJҊ٢((((s%Kשaqi!̅3u#TKk4LQǸ [V2 8n7 E. E@((((':QDc*sp;7~sJʎjs{xJ[*-1/qsv@/?6GSaܟA^i֐ Fcgq_z+1GnPQEQEQEQEQEVY.߳:uEy>4;-̐nĢ> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( *3+I^?TUc xf?ҭBLxPݚV a)3sV$-:*+t$~4>pr&4%GNMJ>WqjбĪ e)EE N3CҥΤWAEP0(+*$ g$_hq%E2&1Ey \($3HMP 1fF̌;+R7D*5WqngEDs9*'EW1Q@ endstream endobj 188 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 119 /Colors 3 >> /Length 470 >> stream xAʂP@?#h(جI7TfA8g N\>.6<ٗۨ 2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D+imځl.7Ms8RMkkq|<ݮ(T3Z8,T3W0 m$3Z5^]םTTybq:R Ml}.>qوgrI8_R-}<J8BG#n/{]uA=$ endstream endobj 189 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 372 >> stream x1EQߛuJ\ܻ+*b]ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļyNz5X:Z44MF,xP~<aBv|>q\.fv>+7z:vpx;O$ endstream endobj 190 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 13 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 52 >> stream x10ѩ CEq & endstream endobj 191 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 13 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 119 /Colors 3 >> /Length 53 >> stream xA0?ؽ rrrrrrrrrrrr<& endstream endobj 192 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1132 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?ޏޫDZ><jR@.n5xPs;#Wܒ?5_]GkiMq+mD^Aڽ{si:#LFK6=N=J(((((,3{O5f:^`u OYX@YdV/Tda 1gc^y9Ai q#*0랙#_^_B^ {=((((((%~Xy'9_8jZx+Bpcc{dqQq"(ª=>((((((((((((((((((((((((((((((((((((((((((((((( endstream endobj 193 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1097 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( y ]ºZ c 0`Zː98YWS躋Y]}# 7Va`s@(z֦ZZ((((((b#'eYhd$t>nj+˃[ı9G|3k3p߈@{Sjzi%{@p'GYs΢߽4QEQEQEQEQEQE}PrF$'%dSkfu6<* + ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (? endstream endobj 194 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1229 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?@}\/3?C};eUp.oZwNwoe!)9zazQƢLP#FjO@uobݘb݆w>=@~dRi}z1$=OdI+|7K I-rsF8ޯhz%e[%mwssMiT`(QEż7PahH-_{!GsTn]qJ쨠!j-$d@~>Z=Ɲw"fhX)ܞT||2cp'ϊ|p]M(i䕳H'x \9Q6Q[!?5i 'MNBsC 8xk(;#FΕv4sNآQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE endstream endobj 195 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 536 >> stream x=n@av1WHӄ&EN yf E(0݌\,u:N[bu:439yݽI/?a(UU> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?k2:V )Pxo#{X(qp ! U{W10jFjݎ2}y銤eQ,\Ĺ$"l:L]K;͢-o/UM2.=@ Sci5 gb rN:,oukma!R{ \FGm,Lt`}A?zYV! Տ=Iҹvw6wDfY=9<1fXQEg!qW^&:I Hy*JxU殞gT/7;p*[l5p =N;Wf|ys4bYRsgh?L$k*G=dwXA':@qܟ^{s{Ջo1SuKAOI>,r~m2C53Jƺ[{xm`XmW;R5 '<R@Š((#Qp )K#OՈiN?P-p׷Lq;ʛ21Ȩ$Ԏp3.!v hHyu7S[DG?#Pjk|nte%OPİpE;tQE"((((]r09Pv/W]N-$'\|)ڀ+ڞ"e|~5uO1i}ŒrI]uQEQEQEQEQEs,PیrK?kp+4 S.Lm=k8"u s6c+OED7 kBLN^Ԙl ?,PZik E98e9((((()"u 4zv@:rs-}1)[B :ZUn Rmi.7F~(e 2X7\$ةhF((((( D7eCyu꿝@JI85OP7ۇx~b5[{G9:Ƭ?Ҁ;z( ( ( ( (9E֔2Lph(\Lpjǃϙ?v-PuEPEPEPEPEP endstream endobj 197 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 1623 >> stream x=K3[g231FJ @SO!"vZXXF-4*v;gG٫&$yfeI4bmbububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububWj4z{{{yy!a6[76[dL&O=??wtt455bU*盛 qu||\(("18^wD4E^# ߶62m"~xx888(@Lp 114*=E|xxxww6"Q"2ߘG777{{{d[K4ſE GcSxccD6Y/y;ħGGGm8y|`¶2oY\oB;ěj7%bĚ;/;-h\>N;Dvxs>\.[srJMv1 0v@|~VkkkOOOhp2o6"Ab!3|?X__' 9  1YND 8 .J_"n3§2dM○ȿ> /Length 1071 >> stream xN@VUi`bA !Aމw!@؎J'f3w_]9eq y\U'I;tB8.63UU==ȅyc8xxqoo%Fҗ\D\kr5XJWi0MؤWAכ1]\D"YSi'_*NՔ=.7:-3}}ss3=@dejқS8y4*OKqv毭dpε+ x!y](^m%.ߖAѬfkNKi5XW#x:_!''hs+p)Y˶mK^zqߛ7\e,.nN#v`Egԩ%p8A\!wBJ8{ TfVKuB#b*tx语,ޖܹ--o1R#1I8Ax]iD[C暡Q֊|d9Yܺb.81WMmr [k޶ȷ݉km[e&S[ ڼn۴rg}Yynufi)s.sِ 3x=u{;~7,e>[mr~'d¼5 /"_&oE{^B.·\^D>onqNas{7Ե-a"ic_˷"1: %z[g4s{i~r;'%zxL vV_9ae^[P4\H[mM+kZH}լ:e1na!C(Ă]z 4)CP1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8Do endstream endobj 199 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 119 /Colors 3 >> /Length 1168 >> stream xKN@ENOL I @&!Ib!y]vKx+%#˲;&ҭj,KW0tC$IS=ğm]НVϊ>ofmÊZʟTcIXUlecH%;;inzم7A`6Ffa.PCꡢ݅S=fgUZ.PFRhYN+U,Y<.e \B7U}uq!B ec:^\PѪ[yT 9*:VǡlġWtwEv)VƢ$F%:V؋>llsf#יeZEKůiY-oen#-f qYQѭQI 0i4 eŊHEw˛CHrs'LK598HB3 =Л_Z4鄁ʭIrHg6jѬu )LU٭D~$mn;b`3)g!>21bn'vSJӴHc3tni{v6''ziOKmal3ݕY{8DDy; t 3^o> /Length 265 >> stream xA0?ؽ rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr<[d" endstream endobj 201 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1720 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?s*i }Tm%@ \__*n8F곚۩3Qo}bBi[#+/QHvBj/iah ԯZhdEt` ¹^|1-n_Oqb\}lvSQDWF 2<NP(CSUPs9K;wU}o,nuWFƶߚٖ6j"`ATq֦INMI\{)S&c+jd1A!jR-վp,sq':k˥\5wHcka]rZ(γ΃҇]W<.RzP5 404LV$f+&M&iF5E +K—X*mǣAc5RGhYІS+dtT6w ug‚TWFhXjZTxA(SV=(|3Nrؠ"m{Ft* +BwJnMnQ3HM3u4alh-Q3R-!jǭNUfn,(\>A24y=c|=[O&OP?SEb=8|(E=Z[k'V7l੬iᩒrMKYjjpj h7SRSKP;٩6jW)!]֤w?Zbҷ/_)(>⊵Ą\L`0-=$pӁZp晚\Ի除b]o3F %r6zQU+q|U Ks@TmzƋeZ*0 u'z<`p5jpjM3Qu&hGM&ZZRj2 CW574Q,_ u'!AO / vOʴ <zz }HHP*: tEX}QHÃSQEhq1wQE2Cu&(٪&j(ZD=6 /y5,p'QEK6=Eҭ]6++UPe27v>EIQE endstream endobj 202 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1750 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ԵsV*S\,d.zk!mug,IbI=I+sggEWEPEPEPEPX%6֋OYk\Gko$6&K.ytWvsb*rvYCSU5jZ|hպq/j!oAS~!VY+ș8]:97GI}x[d8>?*xWE7y_k4k]Ŀ٨O49?ss^~eWc_ n]@ψ5TseXU33?*ψs,gf=f<5VazTs@,)SRC$RE2a+ ( ( ( (> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?+HE܋orLG6B(XQEQEQEQEQEQEAwN̸>WQ-\#~eI;b uⷚr;tgQH` "=@((((((͞L2*%tʼnxCP^m&K\.}To#𮂸\nm8?]ss֤QE#@(((((Xi HUݫZye N^s_ѠW'%B|dqM ~@QWcp:O xҍNtO~Ĺ$'"SDb'4s;'iFr:O Os8oJ|),<߭v?VDhOp(ZI)ꤲqIsd:MU>F G^\í7z6AU3*(EQ@Q@Q@Q@Q@${Kk̅`2:gYLZGXVwbUFI'ús@yJn2qm&zRE#@((((((/aIp$E'^չQEQEQEQEQEQEQEQE endstream endobj 204 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1746 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?(-WZ3Z ZOAM&"HWgTͳyFKv_boy_tǹ9{MX¸'TOiUziXǩb:nYY]iHœ-qk(MPu]pJ*uVcΰImIkXLૄ5ZjpjYF꯾\\aUR9,uVb궋]j1R_늛;-QcQ102DLyE"C+’tfim`xRA#+uHwE5k tg&M n;M+:€ \3Fkc@X}&ij.R+=YW+?f#{YAjoA?J In=U)&Uù.æzšDJAknIθQT5 @ZnN4Q$!4ԅ &M!jajCHVjji?4Uw~hsNS> /Length 2311 >> stream x휽kTA{&nЈ66v`6ZAX)b!* % ba+AG6DB,#z}&j)~{rΝ;qTC#.G\8qp9r刃#.G\8qp9r刃#.G\8qp9r刃#.G\8qp9rIt)reKG^?~RiʕK(GF_|,===Kp∋pVݹ2~ZjGɊ%~#ӷo>|PTVXbgAݲibbV \A,prr-nssD1n[4eGW^T[%Yp {njjjppC8A7co__F9|q)KbhG7oH!!:(8vɃe,0Ҽ0Ki.;d^ pq5h*iN_vM a5PN@mKQ#yfO.bd "#^!S\ݻw~*4W ; :Nh|p?yD 4b3ęBB:ɐx_z /+_ljҥKRE`.pyAj 7i#B?~}E;`dS-]ih7R2c@@]A2tQ08XgqN۠|I|s0ӈ mc~6gǜu 85iͺۙ5Ȗxܹs&42 /ӣH@uijN#EӇꦥq1F('!]=Y2 +W>LRf"YHdRuvʺܨcC|O>>3nImHU?sؔ%5IaY-RTC|4}xvرvYA"XțkZtYMq1#b63..aPj'N?n%52o>A4|WP')%=ѠuP 5kąxzzŋ:3@ bXk 3.z]vzjW,0p@ B;.SSSY MS3.-Me1ƺѣ@l /yyu4QqƷq4adVH_u\< Ú5W=urqQlq'jCCq ©Z6ţ7n "[L Sj Zt!~:iқ"BGJ[?EwFV%fbzܺrjB#U^Һ¸8s7gfftWb}.)셍 =zԘw7\#4K[ fPힶɡRK|Xlۛ Y,fEbE%x)NĢ/^H,c;gE#xnBSСCR YVv'J,3],uȒW@c5[M"1b>ܵhÆ pqVh:-7i[0+"G,ڴiS__q?Ȃ bǩ1%Fb2S.SK36n(|bfiejKݥh] J[X`bM7.y[nis#nhbbbׯLO;=-t%;;Meu*+~ı͛K₩`7HdjA:QY3==4 p2A z2GΠTS|TٳC{Mβ-Rj?~q!T}I~/idpQNG˼> 4q/k b.F][js;w}3F3kmcSRwIh׮]z]\UboG?i|||޽2ᦏ\C=~0u./>}zdd!(q'N_@Obӣl'T;iG> /Length 264 >> stream x10ѩ CEϙd" endstream endobj 207 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1513 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?ILݚxd>^ ӜBBKS2jE$+5A#qCWl1%lXh#8!^^?7(X%{g# (((=o[]7L^glRK';Il1;?s]1ڠUR{p~5UxOm?6E,?kdQE ( ( @p'3Pټbt4QE#@(((KSKQEjp-QQE" WLQEK5='5<?((((( endstream endobj 208 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 119 /BitsPerComponent 8 /Filter /DCTDecode /Length 1595 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYww" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( }}[;:Z|Ir*[og2^*ꚲܱqw5䛦nEImIM\N@t6wc6Ebs+Q\QEp$ӏb$?ah2q?/ժ-ECTP!J) 2 8ihkV-fd`j O LiXsER Ej(d(<i I(5q-G{qʡJ:^yj~qg)!Bqz#*:MUF՜Pf 4`6$ffh,{QXQEW/Iy"աR|MOI;y`w*u` 5;Zn4-I.>eɌ UziDRUUPFMNB6%QX4T[,{EQXQEQE-^f&L8Gxmw mz? (ej(9);u( endstream endobj 209 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 1000 >> stream xJAٜx~ (x=;ji}6?T/ P jݾ3;1fϟ&ef (R Y@bt$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx!޼mdJ%%t腻L%O! " jPE/էz?68ٙhnӠRQ8je* *[v[khyc~n){r<ݺ( 6Nqy~^_;ׂz`>XY;i^ꅧܵ,sA;՚V_ML< {\\|>?CZXljrq]ȡ{*Xղ[u6=fj\c-UZ-\s|Bo^ ]q;dPfM9$. l*xmFp k6mLK|wkPYJϲUbd|, F> k|Y>}ՠę{00pSL奞\uai9B&q*:{P9*; Z[7,- Ũ`#7;3'Nݟŗ~;U2kϲ> /Length 276 >> stream x1 "f0T'Q%288888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888884g endstream endobj 211 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /DCTDecode /Length 1754 >> stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?*Oz^%=)܎.{sǷ]. l!Gq?jPEPEPEPEPmOZḪ}hz[΂,֗ީy7XOzϹsK$B^gASZ162# uuhn_Ė 6((((YHERH_ހ4>MkziHQ;.}>Wze<麻sFVk20vWS@Q@Q@Q@Q@mR+<\{6$@reފ3N$Yʹ G L܄=z x?QJ*Oe8?2f:2*k򫃑ToHd@V #-QEQEQEQEQEbx:;ʡPg?iy]J `2)k r?s> /Length 2125 >> stream x휽k]nd7hV? ?-Fb_M* XX ~5"ba &D#A=gDM|[sf]d? fgg,Fl6F9H?~P2Fz7t%-//~dd5v56{xCt}vm6aEJyO$뼭#- 1< c` .p`=v}={\&"FGԎ/s1, v%S"q2m?f/s`Oa^煀UWG%Xr  2oȎxUϟ?t:=)eu.DL:q͛VK"WjPTY%_v :fDsƋd]Q2CŦZlLqv hV:>ݭڹ/^0213!nW5GlP. W&F(I~Rsē(@VWƇ ֺ8TX>իWaPka&-r qɓ'333Xd*'{ݍ߯;[n-//s9X2PƇL[5Q{WtE.0|KPd^QW85K.q߈.}G.+Db"{PLMM=}n7d5G S"C42;úxaaƍ똧,䨠9fUKKKtqZofΚW@LΈ}=$1\ȱ3邽.x9{P>}j^#+o[@QG]c Ow_֠04A"XjOh_[(/vH%KE97FYuw' q4eiPKV^sY]c"3@V+6Bp.QEVxf_۷_z۠J-Vs*˫ÚWQyKLQ@^,пam_p˗/8U8ȚJʺ_|$*W˴g"omq۵8tfVYymM?22f8+PsħNC1W(VtZ[řɓ'?,6[Z%{?]Kݻ +̊j]Y׻w﬍y7o D־ſۂty0ݺu+A MtQkQQ=yU_]5G<33s1|m=1Mκ-8bӮ]6mٲG4rP? 2gFqJӳxU=rQt:8ʊ؋C!/_ap˗-%ŃtrMO]JE^>s+:|⢹݇dmt.:w|&y5ƹrīz8ޑ`X)"E8Fq88HVZ01f<kTF^s+vرm6G`afrr"_:x9iӦvYu?H9xPTo߾HYvllUU*  @4W4I]gܹsllhl8Ei 9:?ܹsnಀcI{ Z#:DXO!1fݦ 憻x]B2{yy9x]Yw)`NI&n En4vV5 {:zoLNNJe9߲F5ގx:{ǏoΈK@N:ݻw'''1:iחV#ސ,(,cP1 Sݶ\awz(k=GA6pgg/ڳg,_cJ=5vG#k>Ȏѝ;w&&& ۬)t޽3gd'qBy툓'#N.G\8qr9r刓'#N.G\8qr9r刓'#N.G\8qr9r刓'#N.G\8qr9r刓'#N.G\8qr9r刓'#N.G\8qr96!} endstream endobj 213 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 705 >> stream xMNP@k$BBA0v`T]J_B(#'Yxd<]?xFVHL'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xҏViaϊr!Wx4J9Fpmlw ?V\E5z8w>Ed}anɜ/ɫ{<jiJ7|zx֡3E54E:~^X&đELmdu>W˼tOvqp{pq{y-1$FٺZIs/-!ڸ7]4s6_1//~}yx;XfqD,Nj?z(?ENW[M[Yrmoξtͼ 4߈v1$htqƲ\p9l󺮬/zp9`B endstream endobj 214 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 119 /Colors 3 >> /Length 720 >> stream xJQ@LڛB}"HwP?L$'au'|le]ׅJT&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"ǸF?g85:~zJ*olr{?(ʦb0Hע˸F1 ;6~^N_c`8lY; tV7۵TkS/Ӑk o:' 49g9e|Zjr-[gU=}8=MZȠ^۩Yuwwt7(q~r]^eR `4*`MGͽiUI> /Length 438 >> stream x׻`ჀHh{۾] yF_P L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L31.#*˒XI[SH@I\׵YOw>MSUU:/q˲'F49C /q Z/m }۶qu]{%>/۟HP9- */+8da?p_ $ endstream endobj 216 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 384 >> stream xjBA@hIq#(Nh3ݝZ\'D9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I c:;%nr1+|n%t|>n?9u;<lu\fY, Kn>j2| %$ endstream endobj 217 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 118 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 118 /Colors 3 >> /Length 262 >> stream x10ѩ CEHa$ endstream endobj 218 0 obj << /Subtype /Image /ColorSpace /DeviceRGB /Width 119 /Height 118 /BitsPerComponent 8 /Filter /FlateDecode /DecodeParms << /Predictor 15 /Columns 119 /Colors 3 >> /Length 263 >> stream xA0?ؽ rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr2a$ endstream endobj 221 0 obj << /Length 2960 /Filter /FlateDecode >> stream xڥYms6_i%^pnst8D߳XIネ.XBϖ'_BJEZ,o2"jLUٖg: Sn\ݪ> |hPF_6GﺲvZ_`'gGERD-Bf7/F(Iu~3acR`i*=(LP0[I#rw-vjOY}]]uNdHN$yg >vP m\:4úMnѯQDpi/PT5y?lڝ0+ʠuȆf)wT,KdiѰZd$:( IaR[V=0[LXʹ:][E*heF07q|[-iH6TX0iQg"LF,&EJI*B=)>Geu.p;c 82L76u]%AeÂ{Au@}_9=3YJ~]9+ %#tؼupޘϚuː_h`d "RLe2 PB_B 8'(fr[wI`bo ;86){ßGEFqƀ.xOM۶cWnW8첷6T)ZAL[jU6gHx0rylj,\@ "qDfb9pQ `nhFۓ<e Bv呐mcPBynƆ ȷAgluЖm9+l9LH%TdN!w}y-'f-c z4yiC 2F-ՊSb 3(8b5',P M hogunsk69"ύR)6 17r5;znvqv8AJF@Sr>Be<O:`Ka4a,ԖwHD.D4EyEHUv(Xu2*J;*.G!9bUg 6?؄:XWu1a'K97֡RvGfR 5ƺCEry2՘|R}8HMɄLj8)d( hȽMu/[;\&=˻)66XU$@)7P$xF{Cfۇ% p;oS{}Ei?H=yݖya j:vftRxqvyK.1+},Sԭ9kṽ2]˃$qMɃj7qʔ(A;☘US J4ӣ^}{s1ޫGn*m1>T;G.ޯhjS-tPMJe$nulcW,(#A;UmvF cFrKiڨz.)Xln 1AwL;F_g):6.=Fa4"ׇXyoZ4Cp;jSf(:mb 3_\_{3b$)#:Aã9LSGi&iW 1'\Mb'5?޹>;3L -zUEy)| _W}|LB鐄h}e]ms!%8D;۷گ#ŭ;B\Ρ%8YC4&,[L,V5_ qh߳k"VW,(muRv?kXeSc^lNga%&RDL 00NntW<,:RЖaԾd@I&뫛gO|Κ Tь7uq'-U粞V"Jc ~ 3a"C4hy;2Y$"KBI c*RH24?Xֈ![boZfU93#%s5ĽӳDUH^V#FHB3vT*>K1,y5.3mG('xVS//=1$&Eacl1altNBF @c66c&*2Q˟Z"يovKMP0gȖ&Ro4@/ @i4d*lmqԩk'{L{}Fč._{5(CSSDܷ{\jQ!m'šypEA^!>ʡFҟ&ecظEѱ-}S~Z쑡Ey3[ܟ3YWI,t?zlH2"Coc#(g9$a6H,z[<1f4@/xR-,[.i ⌍M(ʈ^&Hc3ey1Khx]Ei4НC ߻mMhS" y6WRmvw2E:=,ߪN's~byZU䩯FT^ɦx[C Z6MQ?moݪO+wE[Qs6 ٳ -dGZnsp #˯}dr' pש>SR˺.6_8Hvn1y5!#ؒJ% endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 790 /Length 2369 /Filter /FlateDecode >> stream xڵZ]o}Mt@J@@%jw<8v]{;Ԍ vlc'6ГIuSU=H&eZ0nje`Q2TI?I?SJ0%k &aEc{LLf^zf^B9:F1%@8e GI,`kXpsY F8r#s 5FaA/d=I3a;ZZ`NFT^CCyh+bI1fZAXPkz9LXt0k{ft,ͤ54b9)`"mG p_®ƓZ"lpAd K"4pm6x cZՑuD&3a$Z6Ў0  au 6^hL?-;3$ \%%ᜠ)p'pDy0Q$awZ_:z ;Jfw=L㍠fu\=`dT_(OX7O=}^0ߧyy-|7yewӢȋe\ytڇ"m0֬W X9S\ vrR&lپy5]Y,}uSJls. 5>h97n˼X=Q{fe7N4͢/>+x۔RF%x+6\s-/X*RuA33tI|b'/W~D.&v_ljeɞE ] >dݼyyY}tF{0x:`a6iQX#r_3fPmB;}oW*]媳Ps'NyO'j˫e*{Wkf[J>pdj=e?xAӁbt4T#X)`oj.=(840:.-NmǢec=M]A9'`!ÔK5ZfSZN,d2l3"5bEJ*7^oǢEG%HJT;`T rMuKga XbX{ht iqQuXc۱j)`P8Gдi~;C"^a4<hF(*CW5ApB#㏏¥Y(HBݏ%y7H&Fi|닿4=?ʭPSwFj*}ȴ>D>7d@-訞p5ָ2kAm5 }*ڐ`D}> stream xڝVn6}Wi#1WQ i.]o'ht@i[nuemZ=X̙ )9xK AGɈ$'(Y2U O}{lgyG[SnSLԌ'xw̮q LmuWaB*ۘ2A@(X`|]i2}W;:  f(eu+{.:D PS' ]WmYf3hYyL;Ƚ~ȿǫ2Ӧ.RЋVŤ 5&>r ?f|6lNFӹҪZ:Jn] 2iު --8=er7z~|`M:5n7_Iu.=>l[Nu9*fp>!JQ{\[;LtɃ$eJס]Uˉko@nۿWw5^oz8Zw4ͩn.]k;tX|(E@bܾE$'nߟ endstream endobj 231 0 obj << /Length 1040 /Filter /FlateDecode >> stream xWnF}W ޗ"DL)KAh[,"-@>ܡLrIoEΞ9{fv8>I `)I'Òv$Sê.:8_ܳ0긘yz= ӳr!B]#iSƝ$k$.5O{i`W B1 1i8cws?.zSk 5H'5^dp0 adh=I6Ic% ^:%~&Eۛ[o#H;h^MZ5ԄItK`M'x2)a]pGpt怴` ?ݴͨGowvwρo=^蹫98[kp 1?} DUj8rH꾧;``p~mCN43M\K 2 +5xa`zh? /fԂq%}HJ*vYt]"Sfyy`֜m=<]]–|g0[g^eXh ׋ͯiVw|ڧ٦87l^5,3ӡgef>mkCKk1\z m27wIwƹAx~Nr@ָI9t6+PRÈHTim+0Ų(5 JVJ+1;xW2_[ID˻QQQ:N@2(jyK|'q!Y tW?آAc koF&oYamۇjՊ"OPUм/10;/ORv5-U@gwXWRM$OY(Lt[iP&>BRSnQ)BX 3ܤVbBApUPJ)S)DaA$B\(TY)-C>+ף =0~g endstream endobj 239 0 obj << /Length 1402 /Filter /FlateDecode >> stream xڵWKs6 Wh|d>E*qZw=лW=ܕ A+[x&"A}9y1R*ųMƨ$/3-K"Ymvٟ9PJWkAQTkQR&J/4󳲔BGoL*[3I,cRxDYU kC<[(&QE /06PwzZUsWǣkl!u34wk\:tdu܍ȸ~n:]qCLy]=6-YHhUc?FQԮsK(xoy@ر5Jʌ FcZK󫏟ϯ>,qr"Ɂ-Akz+$VJkRݍs >!xrǓz7O%{<]5T]k5Vk\Hw;V.^Z ܻq zhJW ؼ5 ,Vd$U"ðG"@ue#{>QP|oky~M IWTvv[py3Dl+AJΖ Kv=}ܡR><Ūgm?@$@*oE(p`D $y8&A,BmW!`xŚ0 c_]p,^G@PS)y >\~)FWpq=D/,01nJ̼{KQmi!"8[ {u5Gn}yLn&#v?D+vHOXp8>׆'Hxj;bTjd@~6MIػ)Rk3HBJ9&YeF >#,5q8>S>ĸJ`u"={\GbʟQ_vr9.Ҍe LL֧YmN9a Cr0 FˋgoOQH02) !z_՛ѓvIu#F `ZR8v}Jhq G` p0`T)XӋFev3#Di(al{(?{}6նG>#aKC͡RABkZ4n-s} endstream endobj 235 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./pic/sn2cv.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 242 0 R /BBox [0 0 354.9 210] /Resources << /ProcSet [ /PDF /ImageB ] /ExtGState << /R7 243 0 R >>>> /Length 69542 /Filter /FlateDecode >> stream x̽ YVPKwaP {s<04uD@ea,`my2c `h")*cĘ BM=6Zk k{s}>뺟;I}s_u_nsҶo}乿oG9?ȾGrk>7ښ\ji'֭T|Kj<,>ۿ~3#ʭϗoG=ܯxW|>/9|#'GwlyП_?}ߓ}γ?kK{K?o7Wx5⫶Ji?߳FOȞ}Oee'}cg?Ͼ>?O>c/}G>=c҇=g|糮EVLVFgd?gQ?陸Z/ONK T]?9J{]rM$1U͇'kʔ˃kWNUk%z%DAu_Qy~?/{]ou{u?>%o7g w?֗_?7>ܧ*S;ʣ!`562wV4~CŭuK[5X4fU~5c>}O>n>'~龦/N0Q3e<}evr/ONӪr)X/&y͛//?O~/| rڻ[_os)lf].jf= [d ޗBo?d~ozzןn?I;:@_j_m><"k?m홺kϻG?|??ξn?t P/=t{.^{O_I>)SC0={Ƶzefg1+yZSwky;㗽_}i#K^t.+%kbX]ߗcc͇~s!\\ZX*C*?U~֥UOVj?՟==e/eqPyMe{J====?t[eưG_}vz|x{PY!ߙ(ݱJz:>huC>cRht}J==>=x)Τ1»gwŮU'3,i9,O'u*?z͏y{W7?;RYA%Hr~O<~glzgҞxbO'U_ww|ֳ؏~/z}wwO>?5t&jo^?к~O7|}WoL4bdVt}#/ʟ|}ק}zk>wm{m|ܷ\ZP:KXA ˟]y{~{o/ /~^<)!VS؍ g_]_|P[o/?IU6=΅Sl>կ|_ݯW\uw^Swv?=?gG_V[tﯤվ'̷ˋoz3Ow}o8ʩoǃg uw~ףwd\NY>L_/jm܍Ͽ>]5~lA!UUxַ'd=#?v|3o{gl_g=pl̗".A'yӟ/?sWOgJ?|޽ %~/̛= rVKgY=zztƥ=减~_?𺻯?Ju}_q=3PKQ*yQ|K?=~?w}C7}?{}~gm'sj;~?zw]5˲frm?cy>hJ}gF`eIs5$ۿzpCO!7_c{Oܽyן~_iRmQ@ Hq9At?Y_/{ ~?_W[}̿",^^q»xm/|^y_^^_|un-םa} <}u={^=Ǟ?vw??|c˻xO|>ڏ#定,g|%(YhKWcn}x1&]sB#e Gyk:UdYإoD#w1ʸ/d,NsusbЩk;:Ip- 6S岅f Y/&쩚gOƨgLVN9f쟺8?\6ƁX3k1> T j+ƪYI`h/34ƺk[lȠdSn(z.M-agP!뻹hD/g1a I˂eL蹐1J=4u3TOJ7Vgl!(鲅N yfjC\^s!c|jWg@uwXr] \iN446/Q# iOӮqFj'](dϞPDL.ؓӠ%ƭaI7Vտ.YL*5]1-+v5޽PW<3J `::@5agXyV~A~6+q$K}f<5_\焪>U l#?0/c33(&'{ v6(PӒ?ӊ\DdM$hH<ńe8q/) p`ȡ 4fb$ʉ`f"ʡ\;g϶qZ)ZN0Gw, #q5yJJ^&#,jbZz'%mm qMW Ve t\MJ+xl8on^D=mD+"%aK=c0Vg\ Ũ1uGc19F _7VV-ʡ)ǯ]2kSDcUd YTBV/7Au0P % M.И]-X)jÞbij9-1oqfӑdL$S,SN1I4)3L9)j]ݾ j2*/ИLjl?%sK4jf[*T_UMTgr$Xu&άy:bhj]/XizQwC[T`L OA[h OqM 44o\ɞØwFc㩦f;{jwYPTjOvg8aXR*DcY"!z{<y^pU8ӊB-0h,J1̎VV<#*6Q< ]~o^Ie7!InފJ= 'Nbͣ(4#(L1i@* %%l)2G` _C0Te#8YO؎pN;;qbqƲ( NR/br@\Z%/obNKc*V5JdeIZ(n3]XXZMZ.Иl=#5El Q=Fgךh,~nJ6юznjJ0jn9mH4DrII_IT{c&hlQIlX sQ!ؽMPQ5S2DZQ-S2B/cœd3™$B@bWu|cU=[m;ھ:=UD`"no\Br@ZV]}l,m^עaBm6OLEbW.clEw"K\6ALʣ\>(QZmqe\6ƙB/gW)0U.)ĩd9=;NB7G/4y GwBC eӢ1xFϸtf)XA:<$bR Q1Z9.nM&ZދBI5OQec̜m'j9S*ƘfXNyiy [5hhմ8 7YŜ8m6_gv/1hR!Scc.dL. ì͵sLշS> 6Lt"RvW3'}Rz52ɚ KBƠ%%tXH!%N-VmwV6ƞADi/d,Rh,J2Vv5"9a.}!cRnjn ,J'fl@: 9<<7.[edO-kBƲ4fZ ũY_[CK.mGigh\6L N5/kmecL8Nybb|cukHr0h-fxkg/ɘpD67 㩅rc1<ጼei̖]6F߲ +g|{,/@SNb9Bv.+o i,d,RdZd mC1bӸJL]g ]!7V J'VXA V:}P:=׹‰ -4[0ARec4[I{jN,dBƢO`:'L5Ozɱb׆,7VV^'#Z;ma٦@:+K]#|O.XݩGR .uܱ::Zul}Tf/>"1Q?g={՗zTԛB2f첅Cx9kJfas0#5z 1ܤgzr ϵkSȱ6;k ,i4ֿi]!4/d .{1>g>4+.^ڽ^Ud6i(.VdP9jLjL; iL:kvYHJ7VgH/+$cc*\дf9ЊSa1 % }΋I!173#eci1 3f;JB¬[*QU득d ܳ@hܲPȬy^ 9/$o Vx,d G(ѪҏuS͸'c%û, pq4f͵1\[|ο]k>V$]ѱ#ִB@(v jvw+uj4Vi]7-d /;bEh}J7OցJ$exJYܟcHL\X SP)Y3UlO&y{Zcc S2Vl ٶ S)XmfwKWh}wB~2 o'+6=M B.W`F\TpV`RAʢb!;e)XKn R.]bO rHu64品єFei.EjMLKM,c!c=[k}1SO];;z]ɔ~r6b.?5z= j\j!.oMo}rGh\XߜGqD&%c3zӜVnE=d>Ʋs"E=WS)Yi'aîKZsCzq$E-h> dl瓬YZH(BirBYBvV[fE!ְb솽J7iB1wv~i=&BmMo[v?Cw_$4$4ǶS6COfYw컾&uF=7r Y랳 [0IsholwroKmcV7gֶqb=2ΫM:E i[ێ=q${:aBzN}(X_]ql,[GJO'v;v;vO;sW:4\J(|c,Jư0v!i(8_zyƲʼn9hYfEoTۤÿ87д7(7v7o.#qÝ) m_# ? ycvx_vx[Ӥi[6mSX- z#䖊Nu]@o#Rao˪kg3=9cQvb5y/Q L^Ȼ_D =C0f+K9p;j` Y[_u<-A;OQ ͔F%6F00P`A k%ί$Sz\oR~w/R:XT_0s0=)LhYIJ{~%yadrtYJJY`rcLs+IɒuVG0 ek6vF) `Mn RQ`=sc`+a5랸GY26M% M_0Vcu N&M`,ȍw8nSX2u_B Y.XL@/H4%z Bg ` D $c3qVưInS,]qB%Scʧ3φߋ )ITw2߱!f܇qb^CL݇@T-8BV&%ap(6 *nzS% m"+B@L@(| LCW17m[w] {`l v,bw}(*+S>|=571쾂1;7/{s Y4&FB0ͫ*OVS{V {aeVJwaߺvJQI󻣐3.[hZ ՔmHDNB۹nb +NY (w[Ozv5e3tKyխyŒ.Xm#y'ٕZw_XH;B11AcԹl,;cU̶%NUj+ׅuB 4 dy؉LSqu[ec̭WzNjy|2:?:?9iu*1LJ+1>&\_ډ yTr߅&<'a!yiXHB ]rN<:x%Xmn'c1XHΚa 7Cn ODn L3[6eVN&ELca2BW-ULX= g>w+ 7Cs^4ɤ1U2AhB!6u x쫖qq]pU5~V}IXX\sO.,߼CYPFMEq /knuI{e*DwX}Nܭ?qn?/J7ΙhMqFv]ktlA05I [SsD<<;8#9Jfi=f-hI67VK2[RJW_w` ΋9Gz`<|_!wE: *\tg׬>u`qyA"ڇF5߱ XHjrGC\:aUq Xk{;,2EɖuPZ qS,FYP xk[,zJ%vma(5zxCc)>%pU,=85Ts`,,]CVaVU)мjfij퇠x U)j[2[a ~ _}id{f|T .f t3mxJD7\s(4V_&j[^v6-Y"vHpv+ PI; i8k3떠<E05+%2LsXXceaw4A,.zƕ.k`;ֺstq\X{8fі&E0~[z#47K]BR=p:lն3v]~-XZMY-vg7M[Pcub}2TӘw`ZIar.!*ɡ,Uc 09d\Ubt%֭{ˁ1扯d%_UC3}{B#2oĺ':yxMS*'`6z+PWTN똠y-MD dxCʩ ܠ`6Λ(\!,$1#ɅK8 Y'PBf wruo rxe8C l[\BI虺 Xضt]#u~z$G dW` x (C9p&,D+\ ޞjQ笵sE-Jo+{@K]`|N^CSEZ+p˕U47n XYΡ{='XAZVIxY7$R{M5#yu)ϭ$vTU4Sq!M]Q' OϾx<|ŃQ#keНkH\ y48K]yCS}l 0ShxLRM?+R¹K|+{ $t˜f͡n?5 0/z:; ։X4 ֈQxLϚ@Gp>=,*M`Z1D /S4\՚cU`LI0S{. S-a8 ɭj=^wp&m%TYrm y }5+s{Al yJL7s3N 4N3q~;񴽤Vn>-n%S]nzɝlY3Lzf^)fIi 84O\e%;rz0+a^ dtL/L޹V#|i6䔰}AOtzd_ ΊMzVCAl^ ^<7p8pP֖or,`B%α1ecc/38ӹS\to۽)n/S EXTb½y v@,p!2U@J02%ߑBeł$dT8HEl!,$(.qU7"玷}N4u/n'uO=F(0:&*-n:lw( 5Q?w;ThhkD-Z'7QAfOr1y2*ު"EiYr֠' ]ҭف0EÓX 6knY⳪<2,TAkO LadWhdj&R~e0õx*܊9GR) ~<ulZYukK\TEO掠EmlZ5q,e)Gլͣx}y2|E:UK)uk͏ku֐\ֿldnl ȓUMpɡxJ ' ;s ؙv| : 䶲0Vq E:x2;x8JO,Q5[r 9#2;R;8"_:/S^:B\qKo[0":ʉ HzbK+6w*ܪ_n!ruw[,,S}&kxp{6iCnNuF6wj zjs+M/u1R{}bd YuZM|ϵ^<^qeGYCXp5-XWX<` 4Y\Tgl:` 4kqxu,p.o._5slS'+x@3FD1M7l`0؎r/X ؒ{H6il:Bh7CZhOEaGKVžOxnzI dlz<,t$kV'E]13W ĵ|7߭J\'*sAb['g-ƾzN/Iey}Fb\q)ݸ+oo%zfJ|+Ј8syA2u4.kŹ vROy}aXx%Ygwd#X%VB;RGQj[ V1l=RV7` ԿZ,9LJ;57h ƛs)F\ cՋei 3P RD[g; f3T7@ 49I臉c'G &Xm> 6f.5;*SE99)~i/< F 05|`oS \!0M[1:=j#Imz_9m acwS*RvSm_F wÅF>[^ u}.El`k6Џ5u6@=| &tIxThJyx=sO v7%ߠliXn3ڽ%1/LGIkI ³MN`5xkViYax~=z~q_(=qwd9\O݇Fx5Z JX R 9 B}U@`|J[זsKK˚}nCۖ.~o%[{l !19x4 _It:y- 剎cRug 6^4iI2~ZAnM#Z`0~?]&i6mrY]JNlhNE߷\MD8U|Zi)'f 0GOɛ5tS/ijk#)_Lh4kUĔBki25J&g;HA0NS+1FsF %%aF|um^`vS1ސ {w #B~{C 6)-&q|m?% OljG{`3>sٹc~``B7h-񲘜rׄfx@`jf˒&kҸ/7 smukGD?۩Amm `dx\<(sHswS>HoL#1գGsjrd mM黧&Smžs]iL>xV(5"paѾmy8~YJo[oG="Q A@<+T H%g|hĞ5HU2ګajjqgq3&&?-q⛫gK8n٨#wҸėNf 0'Q8U/4вmZ0޻&$iSXYv`sbv:ߤYfb\0pS.AQ|~ uvț] [و[0v~ؽdLK5ԜZF;VuGF 09S8R;%9wVc{3Xokյ5XKHlLDYjM+y2Vj[Dx%YS+G)8}֡;3%6ߓ~o*}_!̡R"S;4ȘSVY{/kƵҦOpÖ_0L{jXZ O={3ӽqt_ŭ-[e֬5Dqm W[Z2еk_t`k:_%k>HrX۱ѽGK)HI"ڑXNZ*;a|h۵w :{7|.N{`375A|~bKAْ5Sِ{9q]X;RnP <BShV}؂_d0ez웻3xSgnmv1b/vj.h_D|:R:Fk#^FL f{o%nByMB+Wy 3nUDlOj^0شX|r/(5(ʭoRx5g{s&ZΜ9L2t0ʟ$3Gno,~R\'&6nԏ $J^,?n"? %"7h#|' t8) #cC<`d!1xo9l;Rhvoe^6̽mkp |8VP@`2'Bkm!Ekn:ܟK6#Z) 7Հ,ܼQ]0شti9^-98_d09s!,~`fϴ"AEZID^.zdLRӅ#==k-Lϕq))x6Z*zK~ 6Z׽b;( d0D5U]C|ӧsۜIWvzN{(0rHlB}n>l2T^Ttl ܅JHھOߊ옕pmDڙ:nPq+pZ< O.:0eCZxR&սgЖs X3j5y|p4dz 0o-s&ZҟjAz&/cwˋ~QmCAվ Ka+/hcwphm^s;v`Y2`{tmϰf˝B41Dl2wJmwn{=S 3敝`/6n`υ=X̺ 2Clj[XFoފ[JaV K{lM4kT/sL>-0=nr;.^,O͗fO(--4Ohz#;wxn p5{k\{#T= v=%ʢet͑ #s_=GڪzPu3v T݆`Ӻq/Kd l E]0Ճ =4n+EvIkU.%O7m}51)u&6+S<".]m I٨[^VKwܐ]=Atyˠ*" \/|Wy_X2fy)2L³ YTCyCXC刂[ИKxe#0xv1]dz}|W=Cz] $0eR5`=9YϞBO 9NJ ފAS|mAc;u.Nq('f,f,=.=9ɭ폢¶>3-|YlY| +Xx\ꌺk8 ߾}A0z\sT]rf\r?A. ~4bzI2羞 9߰.22yv&\\fȥ%́@&I,=3s +WŽ+Kԝ䆝o:^[Nq*Ll@aVlU17_f 6H %lzw,Ԇ*U3B.1`OM\y|Vw]i:4;7f 0->:k){` ?\pyqWvY`V(/`J ^0غz%׫0klL3\zS\שg+hƉz`3d٢)lUl|+jUe1y:J`y%KYB)Rd0_̷.5WA+b"m+.j$_\Z9Ҷ!e)4eߗ<*+G *N"I''{ʴxl@`Z݀&7R >yE|]י]gky0hx+a3H>3-/{l+Սl_=߭P]fEZqdrvrg0v?ԙT꽎9ߴcʃg!i6Mv[lLjIk. }Ri?d0KOno8:Z&%:ɔk+T|;`4$e)޽u)3h 8u3] =8ΜḁMOWI`_NXv_85obZyȏgCՔ 8M`/1R2/̦z%f!*)1f5|-vJAopwz)V`K)V]G. f8 Z|C~`"W ̀)uw`6ɐ$C =+N+Af 0rZHA8ݠ5lrJth]>g&[S-+R .,/at T@`5/[G -)^0Jk)cR;?ؖz?l:)Q,2Ow|SuM|?bF~iBIDmنrozZUIcXŜ|`2#MiFu2'Y2-Vf<:9֎xOy: _F4d]0E}0>Y}^KLf,MS0 Oǟ8ޘbKt(:ɷ]\ڨ𽅚3s SGgV\e kQvgAo,X &]c}~ yRk(k $OW\7N?Cȓ|=J^_ߛz`RQbZbfhQg#H F3'Re(3VS\>SՃ|HRZy3/ろ)%"Vxc!Lo3YcH 9$BW;bi[ Sqsy i_*ݲ4[ 0epvNTLew2|'84G{ jI̺ON hf+]s\f돢&7G_{ 0,&6H͕Fw5wjg{ 2.Oo_dt7h иuyxHw@`1U<LY}KRZ1u,ծec^$G 0mU*C$Fʪ?.R{[tGs/E:ؒo6u+Oh,-? B˛1^us{3_jhv S4ɴ'DzKyN,),Kbh'K{^1sDm)z vL!楄lX Zdž'ɐkN/մ_0'-\tzO{ ;L,t1\9 f1{$NЁ;'[1mͿws30̞5Ye&--cb25pv2B[%i!s5ʖ{:'3Ѐ.&Q fcdU̓, !sVl''f ?9/BQ}b7'1fasR6KԊy%^̈́uE,`|N;a~IgLQ\N5CSDh;LmPKkT˔ ڮ6tpr(17:}8Fhd,h,\~_p=Ȍn~-=hy;\ d9GO@kSLlRxO܈0, zd9Lfq}n-}yT>& /zX#Lla&MpC^ÚE0 w<4,b0h6IP|$7|>-VuiK Yt m܅ciRì90ѷRa{Vzwg9|  bShlU%6n_2qI豹 XP>\ ʂ`f;0AD ̷`M(]goYE]c{ OϼZV^ | PVra˽\pR Dg6>ζ.Q>IF)XcJƁP)BrFΨ`I>Dz1XXX|k}_meP~2(VqqA ۆt?6` $Asw] +\Vzqj-hռtR1%\`NߓXgm3Ɨ,s -ھ̅ TByC݋Nv= O*kK=ᕹ*GL[ZQ'e~Ҋ[۽K%[]Pw7sZߺ홫u`2g븭J3%>͕C.1# #J#`0vᵻdg4yiZ8HI(81T\h1)- !Pd5mA3p[G}5Q)8I[8f9qBd*ΒB@`e.tQ:KYe 6OףgJҩ{"kHog)|s^1uZTiYPɗN;mdL`ehnDK^—em}7Y~hMij/#S 0J%ٓb<6T<ƚv4h#=Ph Q?G18r,8THD2p *8 `$NHB^ǪO /?3N! &V/n/> -Oi)Pf"hٰWZEeJ5 خr64}UmhkCQÐ9O5GXʹ]ۢVxyؖu mRBwRY~حRδM´L=pw~WeA[KժJ߫0an9_v}Xi/uvL~_Rf#i]6̫U00W^1SW㱭Ccn3|nñ-?k3 Yt|;3k/D)I8p0?8?nInnA4.S.o = \k}k kVS1y ynf<2Na&ީGtX~ft:cU;>ҸU@m.N X9L8USaB`5EX#gTsA0GijΑ\0[nHe6 |n?g}Zc.w.Ν1eMaElxX=G~m<9f3,AP7{h[EUřb? ~j=2!쭩F]oCà!iH2xG>_ Z [c4NEpc<iw]K]ɜy ^=|O֥-XO0/5KˤA+~.&?%O/0{{m=~1 nY-5n Ck%`5b<_;=69UD=(ҰI)&)Y\$689Oy*5l4ML1&2K7O;Gkk@*L< ԖmjD~xD8ת) U'WF1w3QR78TYkECXsti0<u<98%!tjc."cf+XY_~S}-,>Tv/m^5WzkAc_3 Â?/g; (w;/ ]AdT w%С|O ܦvgT%m}*__b%!{_Lο^8Ze4VoLi68YY= r ҭS~CWm``>VƙF,=խCQկǿ~NM >ehKx5KfM`[Kjm>UVkoKk*]pY=;%ּ̮]V{`aakqB,pӧX5Y=>QS3f*Av:3n緆[ns>~M`Ypìy,?sLpi0if|αw{D3ɢxg u:=P2 1UDoFWN&nx"sh[jC$=D7[cA0}[*Y4;Z>太z=[Lf n쪯;'L~c[Yj^ph&Sl^ĞM$ ۲@rru@E99B;W,Wnj\՚ŭ [w{ψkp -g-oc6 +X8"8Ċ*ݧ&[`y`ɇeIM5 uNTN郣AFOvCeINTݒ2 ə5 ]Wv__5F,Uo6>eV.# nQ˫8IttG9z!^]\q?=,6nfڣF5.QbfD`}KyI=)o\^ry.طk֎ǷTJ#d҃?`R+-`7N<$Z]Lpɚj10/f`dHY,oo# Oߧ>ʍW\&gjq]44yp; cvL.WkP#ZYT~x%Gȶ X?;y#;O*%l2i&Ncu.SV+79 ɠڜx>nס1U׵0sp7pS-NXGfirOOC䖃z&J9}|_{hOE.rB /pҸ$+xݘg˅x`\ _lnݦgukyQxnJƃ>Tc>ˬ~?o$mUCc˱^0Xc7K$5}Qb7jYDM^ئy` ί]{0,00,0m'MQ;$6B1߶۹ K6vqnkvn{,M˽CB:vIHoQZcO؋%j'V$n4TL0pE565;}2 "غ&}e, :JOp<[%y w`'UkvyvQnW5_832t4 Mt^̓,h7!9@-)YnےrC-%}3<ߕھoY .^O8=y;=HzB[56~۵&E֪7j<S+;r,ۄcC{E85swʌrj|jƧj }`;};%ڽd%Cj* 򿩵zx\`];؛Sɳ:O]+|jO \iQ:OkB?9k m8Tkc$2f\ a$*:uGclaZp15αܢJ"㗲S[D⃗D y(H4Xq&LF<5K"pr`4rQyX!Gݧp9ZN\q] ?]ܲN灉{9Fa+5'^)vwDF av[ 0y~캑f9L&@ 43Ih>Bۈ_PݝΦnLO¸l9AlTx(uwD` Fy0^bQx]-VSQ57]SQl;|G;#,]F{fD9ޣL,ܗ-DȻ\ͧhQ1;k"͇Ѳ`.} 2lW(Lġ%O/F_Oit)]w,,ZϤ'Rzdm^ mJ-KQ\=XEO`/o:y1cnMl5 TNU 6 6ƘTṲGGgKl66:W - 횼 fK&R;#zob*ٕ {C޹Jۤ''~p^Dg](-yv*<~qs+ օ8ř1{~葻++csl.?韨QƲL>3i( 9nTQ̑,˪ YWAUiOsllw~WO(TLN1<ff뜉}foUGrw ͑%&˶DV970鍯 >) &w^ol哓,=ۅI'?6mdkcQD0E22^+yaiSe?Zk$Zdo{{K==ʂ캏븞Q=7 Fs~A_a½{kdE 'Q:L{w¨2@_׏DBZƁ/Z q޳-mh0YxL"`ӆ6 ~˂p 懭47g<ߝ C 9t&ܮx_\Z5h150ؚsNϩ 4yw%VԻ㛄$;PIy[˒L=',M gPb*uly}ԋzo8~+uZC *ca}D`r.u`J;)zNe]CM6qғ\fzNGd{;׺ Lݕ*$/QocŞ9H/FV߯=?\Ko"}?34 ZGL>f4ό^yUPM"qE;X`UoNLF~ݙ}k`aRG4FT>,sQ=nfCi.v"IsdOI?`|V} 6s;p͕p,(1&D_uP=2tMg=6b* ^]LV՝G0v姼qWb^nl-J>q~ 7π3;cߙt&_h U$4jջ87F2zK(5#E0lljSyl@]&BgI6a+=g2C,JfW; f7WUYsڕo8mˢWkźZFY6 6<6^skn u>M ]fӇKl oد-&fD`Inք)U8f/|5i?qD`*m&n9KZNťӯ v;jv !kmAiZOŦ>6 &{;qFM/rD` H>r{0͘mNY7>E䛂 ) VX\n'a];mLl+k]Jα';r 4Q= MKõ(\Vfej۪R:[Fh8تjyh!, \Ιֆ]lk?SpXy]m(Mf~ -{lki]dL3߆7N?oh6j$+em`nvSom| w"0㮏|{jv]o{'SVp.8G1j CifΖ;G#}.TD`M$Mnh\#ZǍFk{HFB_8D+Ťei>C+MH,s;7 F|:瞰|8ZjGKUz]^;0s- U{ 5usDw%RTbG2t7|,yS{"O|BvJY/ҷwhp%;A[_J3ב̉~#s-0ٹZBNp׀ju$K|:7|{.M-]r`q x7%Bɖ&Y+-;O5\c|;1w_ޒġ~^rY+qʵt w :î3X]y?#,u) 8|cG3]F6 L&﹊It'sI^>cEmsH{6 6< ߫>1R[B`c8ؑ0ʨ*l+gb.X%|"eE+hyrlL~q{s-1E`f+uKy!^=ujWn&V+FZ]cX} 8vنj"ކVo&#`Q"(qC* V8ӽ Xޫ_hOk\qO,723|ZJUsED`[r )l鉞E}BƄ%9) v2n mA `j{eC1s^`~{MWK^ƇcgOfvz3<;+vMvsGM zOS6tr\cD_h=6NԎ-{EO&F՛75Qu͊q?BkmsO+0ƭae_@tc[i0j'nvGN陉#tM k"qz`_H6\^D`i1cTR)<=RD`v,wwkoԹpY#.%a\^7l$s.jeU5RZBXUk.Y*w͑,Y SX+:ZhYG\W57 lwZ4&Vf0YiK1y#vXŧ9ecbc30Y6T{/$+`E)XG` s!!njAz(TcʻFS5y6;H9ŔXf^f88}NO&r8׼-ճ0fbSpB$DWu ''JY ) WS6O2cŝpC՜`|d&(X 5 ^z /tI9DgݠuF g i frB v1 F#=廄~47g?q #1K] M&p5]Ik 9 < >fotl7J%x4j1 {KaȮg}4&:jyu)LΘ+574bF<,xNݸb0e<]$G5dfo?S8BsU4 %LD^ P:Wij/VK5+>@;KJ(t|H%d빾'qg%J_>bIfz*V{ZUSWb*~~9o-V 6\+%{O3.sl&O%VE<NhU&W-Dx,oTT] PP6,[ťs-c'8V0q,پWDSpiD+YU8ՕcFetˇ2jTxFjXG&Y`cȔ`LA*eVx%t 2éI0*S?Xci6ta3L cT1ro ~K dTdKEa2XҪb=\i?X]mb}ڭ"D53ϹM \Yh3zdB-gPn>=Rc|\6^eV*>IzT=U0p'g8m'MC 1{#=T,G5-ؼ®-ko˨xQyAznF2 8[ Hǩ:$~ 8a#j`rvʹU\pRln_ FhO&6-JևkY3|=( m! t5t!t`so=/D`췭ҙ:g-x1ulgw"0jr^q|÷`o`V;Z}nL17amt0Ctr ȴ5JF[i0 jOg-bȁNP"d5gu$G-@ŴmDæXi"35qyo?QBnToWW׿'ԿgSgQg_G=/_|Gןo;o+ݿ3g__ş?~7_[Sկkw~/l}H9| l-KoW~;o?Woo_o~|{{=BXNRq{JşW7?~o_o?_^/xwύtR3-rsK&yV:@[]6IxHk?! 8I -m`sXX+en( $ 2}Hv >hr◹=s44S"-7xo`t)`zS;[=s4 nw&! 6Wҗ%}<,e1eZqljSMnVsȳtG`R& OOrcGŇT*H\p PW'Id.ٛO5Jm!uTuQ/&Łt**$*#)lF,&A/KCQBZ6#j.&-L2v\8\/MLkҰsbz&jh$,ց+aQ/+AW%}ltIXleI49\R\ƛ8ԞMrl7 Ԋ$kjWV%& ,|r[aRrl`}*uT)R~r.n͛$o*x9ׇ4m[$p6vɵI7,J k23m$XX'8.K&jHe; 8:.?CO$n]%! nv\:̬ejE\K(wY0kZL% qJM7˂eM-ҦTB%MbXLnG5EI3*qӵ<>dm~ kio+ޞ;ɘLy#(emq 0AC[~_^Çen-`2נƦK5ʑa~. &2i嗕Uʽ>-Hi痕Vwh_VG1j$qEw^";F'D j|{˯+?+{㻢~xouC[1!,4!=xw[~]1:\# Y}dlm E76Qq )thG좇GȾɂy_CW[r" N&BdWl8 )|Q9}:} 꾹i3hTr,&+^ݜV5ZÌd|2pU5ʯc?glc*Ώ2U=ٕe,Z!\o)M$S9͔"Sz !T2u5iTPoSc"-a-ްU=W"wZisb/FSIƖ`qv0nMMplp,(I˼! n$Fr}?-[bJmh! vkp+%&  lTZz~H&p4IC`ɹI灭&E $97;=dVФD$& Bpʽ27JS9o__JM,F4@"'kI %& MJU%&yXPhBi5))$X4i&'2Li@&ܮc+dۣ[59N%eKZhԤcOրIxO-jQUR-mSZ>"7T%tvrk)`ˎl)`wԀa ʭi{rJ4a_-\$TER5sg%m QA]f!%m ލ5u7%m`a` f쒶Iu#:*8pܖooF|m?ioaMƵc!4%}벟`3.$X~G@Idݭܞo+&'gr3o`t.Zn" (aI/ݛ$Xu+ %u6nmi.嚹IXl}KطUr޷R#7Į$xpkApwf+`$Cb{Sw8d .h U= Hb;=' |1 -=QޠKlc?ydMx$X o`ř1Wf{(yqp/sX$v;8G&/̍})CI]8 OwIX;D:b9O:l( a 琥@JM QlXGFy| `ca@'0#st爀zZJMVkXG># gEnXrn`q@tɸk~Ji= w>>=37JW,Q"c~݇vRrn`^m3s<NO!}?ѯ$ƾr̍\>q8䨳IoJ)WL2(-^{|hCx-LdW澿is>$!}/ӣdǜܒQ:8aG>l`qhC|gWFi K& '5?Cf?#T Tn((}yʭ9}bzI geq}K& V/gx~aaǛΩ5R!n]}$s[Fi "m`y8t*IA=G#A?g@I$ol8.dm͸%7X6I&c7 v (ia񚦳/1M'_,$X|Jr}xK&y^)Y=stWVp+gny]7s!1`$Xdddc(V]Xrl`ˁۍॡ%{dnֳ֤7CU+ZCKiM&Bca%&yGMPbJMf3nay$s̍RN^/r̍ܥ78}6 ]iv+ށ X_dj( }+7J`I䲀oD:*=V^M,wS_*C4ط B;ӹ('^RQ}'1KMk!"06$X4 9ô@c' N0|feiCx4Ұ$WOkԙv d%#m%crn`ZMĬi+?%N[% D:ϕ>[CY&{_5hl[12C_L;\BR9duHs=|:w&E: Ycۘ67nFaRo^"żyQk}:3 %)@a ´p=OWnm˿V F]=þ) f8 )Epի'OOܷӃ0lòi嗕[< R+w'EgECVvaC$N17 ż(y?fμ(S5j:oV}. f)`5dW%|CyyQgX{M첇xH1:/J,"4LyR<شn*CWn(cxb(rkFiIe}ZZ?cx:=Cp7%uMÔo*&f}MFT ΉPأ@R-stT1%mafT4ؿavim`'9B5vI$os)\=s~.^ZKX7Iv! v;0p̍yX,S9˷0wI$o[tŤr{>9qעJ_婑-buq6 v <%kproQ֯ӷi$o`uϠ "[4QĚy*nQz"ҝTTX?`p2- Am| O`dCeQh:fl<6ypl KA^棈vd06 3] ]h7d.(oZlZP>%iA)DoXc.uvm2O! d>6^#Ps6 fI]3~d`򌉼#<~gN.tќ=?de5J4+T?de ?CV6[E'R|)yʯ-!2CV7.]~j.:7sj͌kY<2!) [AkYd`oK_I!2 P CQf`T`o[~|0|Yd`rD=y_}:FZ1` NzC7[C0G3Y{g <L ! 9.g/ K@kq-w/Q?Bz7lf>Lab{C?D)Cq6suޭP~]nwّ2[8Ϸ+M]odgئ@)Cɹ}Ace|a? Y rDKDK EGvQff;I!s$[iđah)H;_B%GM؆\`dž9fZ `p=w=)Wq>'aOv3b|a>˖d#H![-~M֨A=VY|f>]7esL"'d`>DmP?d&SzBI?d&{kȕَmJk.G9ٵE7i߰ >d&;^OM;ׇ|cXU],l`+rZ%W$+ ̘)iX*`p. 9?ˇ5?v܆l205ўUy/T̋="M&G7OuӾMΑmw&q#=[~|08ޜ)ܚ=sp&#$#$k˯HDU}z?ۇk+fv ZВM_L*mv|& kcl-y-55fu8`}q8ۺBM8 CZ(r&7TtTQí :֋/2%ۚurZ+ґ`5ȫPe^SMg s6ۤVp®pЈ2 F#@_NGWf]Jruy*]8.Oi`r1NʯX/O|=%W>ʔ36 ϾclDw1"\W]?2m\~5_ LZ6SXK4 u LOuZ~FSpn.c3v}Si埙Xz|-$ٹ,v E F ;~-[(e&{hqXow.Z=㔟r݃8Fk!Me&27)>oD.)ʽ819`B} .xCÃU]r- X5O6##+r,bOi^~ SZvcz?9ߎssXL}%+^M(JcM5lR}"5}2\u#ȅ]R;SYH::>FH}] v.iKv(,] 6dʴeҶKV.9,A weSzR}=2ӹ(ͣ쭊Zwɹ$z>M^ `I%yw'Ϊh ɵ$`L8:\KVLZLʽ1LGsik3S3SK%yat{vɵ$o뻻Oi٥`'~ƾKʒA'ZzXR6W}aKV%y)"%+^jq SZvi*>Lj#\bZ7'm$KVRx$oi5mw_?u> jΡؖȢC87C+n'n7ʉ (!k Lx GlJK>A,>3~9~F5qTM&`Pq5 2m`֬%JYdoRK_ |td&Tx_d6ګ#`p_ϊd}9xs_N+g#6"n8CZK'\~4{3fm*ujMf鳅J3eaCyFB;7D< }]~DŽGe"Xr$sd|5m5wKn_Q"-!_ Q,*g|i79~ { }3i7FkR˶y}]~& }zS.cMi4Q.ʵs2ڑwU6Q+м<@nwKEz5tnMQMVjiV@c董bXP~rB ?>:rZGqʻz;C_Qֿ.i̴Qp*(fqݖLJMar஋!;7m~N!;7Դ8}$!/'n2Jٹ9ML!d`ݝU̩{$Cvn`,d-|00.*90}-C_'aPl[AN/]^8Ӟfy~_r@ 'do(m9UD=jC_XWi(r6=2)/r'GDMfY*o%|P/O@#CV6Y0A!!]{˯ΑMh*;zAdu٠ֻ]~n20 lilE8[edQDyQGR͹( :WL:R;`Om}{d%E-~^Sv)xYlSvii<={fz7wI_r=zrG`I_k ]ܷG}aȻ] 661C]җӛ$;g=sv羿)3ܻ嘞tDOKP,Gp@@Hps ý$`ݯ[lyV<KP^o77_+ԍXux]nXoyaHI5.'T"rAN$Pb 7,{?c7o\h~P5DQh1Xܢx5OgR6Id>+t\KVy5Og9KV$ 뤧]L) HYOFU.[xaI-'s6 Vm!h /*z2R^;1}1}t\^j:0"QOKҒ[Hɱ$oJ2l(@mӰc)=v)n0竨_{8S(lt7AsI4Fr+}_`yyK%+jU|Zwɹ$`/mхET\aU=)\yLK}dA}o})T^l$NiDtqN/ ɵ$`['ޱ+r.Jw^ڄXr- X#\^YWm^}婻gKmZ7x@A+M.)KVMDΔ} -ep@MzMk{] vo,IYtPuwIY00R73:kIʒ>zYzrsQMc2RyiԞy %uIr5SZw)ذγҫ4fJ.{%0/%[F?77{WpI.S0#nܷwD`RLiۥ`k9Y] 0:Vns.JY3Q"-I5~Z߭y\ݹoCF^H`I_06S&= Rc~ܘ_'s% FhPݴ/ Xc  HI1#n ͳo%yCMo47b8T%n¡m@^$`PbkΓEw>~ߺ֠IXl,ϷgXI71X(6~`Èdxu&WcIp&p ʍx1<|oXۻ \Y@(n;Y!OTxVmT@s0%Jut̋L&q> l)ϖ9MMfD :s\,UW@ʹԒ7zyZټ%!n! sb"nmm,=TZX#فoX= rNvR4 B `W}z 6w1ВQ,`6{}uEGBj﷿(-T@FKy,680B# `cĕBq_tdm3dnW'h6o&iZB1PJ/(=Li%MCN. ul%$3!ny1 hHjJ ka`װˊ Ь+(A^c MG1vb1>iYy{􌌂{<'͆~ԋ]'- f81P5P7>_V3,RtXdG O!+l);!4Q6f"'1P 1}ؓ}x =1'ߚ^ºdIK9((ضQ-nUUuG;"Ea'}QXb>)c<G)5?N! PTUBjQ-3=RoG{K7X#q<#A{dtYqwDZ18ϛ@QV mQc۶M-,iH9ȣ8ޛ?u))N۹ tn# `خﶽӴ_@JO;,V-2tR]S$lPO]0ǞrGkdVph_09UZ3 vqZ ; Q8H=X2˶d?oJz : OL6 fH=;j.\ㅦkư=匌~^|GzhI%CTŃO{ ~,^ݽN5m>!׀z3 iu:.~>OVh(ظ=eNU7==1d"4]ۥ5>k\)WE{FmA'Qmb{q޷4GUjIT@GF'2- x @FɰS2/:2 $YpOx8ȣ~?cDă>aIA0#G{~ZWBlSP,̫r8_{q^xء bKnBhLiN~Z8zY̊^MKZX# b#A|$Vv6I- Gr1b "ndIET!P7>䧅Fp-3!0;ul3[y=. ,jrٲřUosߚ5~uχf}ϔv)Szr/*5mq)v̓E<WOܐ].@~fZkַv\yԯn{UN^7/OfJxvV_qk\?q׃iZFʔϿbWe}~+a>F~};a`$-%c¶Ѓ[^-Q{?80~m {lc!2% w,^"~p;*#*侐x7:?x8Ot+ Ti!WKՠ $᳣Y?x8d1Ũ'ۮSiz^=7ky.(UrɜL-yjVkyBc\?9k$mq!n~Mbk_/2 6\F@5Fv1ЖQ뱾|CX{AκeXZ-MK YO?s/=KS׵Ԅ@̬էӱtwBxm2MjalmXznB AB^kq V5l(@01ч2%zW ֣FZ &kK}MJ#A*m M6ތ^mtʸ y#[nCD^~:a&>XHRɆת@x;F~~yAABy,u\pa?/-wT4H9X)k !L'JVFAZ(m-5kH9X _da?ܻ=nez]2pgZO߮\AzpzF--+:>,%ܮ1_fa/ZhaUM8H=ڍEÒm xv ̓_/R !vجO>9huMZX7f\]^Z֔I_Ez5ΈpVIoU{je{ }ڷb }GAƕ2{ٻ:.-i=߁{:.-,@K7F]kO)g!\1:Uo/:2O6* 32V?g=!@F 94q732xCu(tdav\hu Z}O- GM)( ORwVn2m&KZ( HpL ZO۱tX)Vt`fԍؖGb Z7-- VBn_nzwgf ִScΐ5Nk|ZZhO<@g<%2NĶ}̃l$#܋,ƷYY|a g E:NˍIδ4 |0u!.WU|M^'jl}t{ibUW9@ŀu# p$8ra|e8)ri&Šb1?l֘ʜnT32roA Mg^C63.O3Bm{G}zV+)؃EKFnra+-šk0r}<ÿ?)5#Xr}y . `2,t;ka;K^J g+Z@O'4ďB 9Rw 3W+~+HMWz*?x}uuƉ`-a`2bMd%} =Of/>8vP% Lƪf;>CjDߍ^f%}=UEɨ{`48"X' Lwζ&#CwU5'|k[6t 3ٍFD\Rl$ L]T۾l$ #qUQ=58Z&4#`ڶ_5l$Y B}YtDm[R ss,p)8}z˚%mRsg={HYoL9Cp%e_+r+=m{6v=lZX`"AjjKr--i^?eݜaѼP&/߯ͯi0L M.ҧG.dGXt$=rI-]x\3_\p' Lo~{IO009Rⷕ$ v̞|A~)(Gmv\X+se+U2QbeQ}xv$_BFɁ+a`߭RYŶ4U+˥!N9?-:i:Gpl =v0ZYvgn؝00 YI xy};a{q}[K;`}Y|ދAE?oK x^ - I؝0c?͔>o1]_BGߞdzC|= ko] $ L;=޼=Kgf܍V00f!mҗЃO:u7)~~{RImc4eXMՎ#;LҜ(jcP+Մz9^WZ^j']Wp)`7X lĶK7;dvM|`-a`ŸqRzV?x8B_w\:XK+$>ޣocO`wiŝ8J l]jU#LljlK x~9i%첞^>8`9ga-җЃUbt%-;bWFiFwHk4]{I kS<2x^> H:%1;`|/O)rڙ.ƨ-!A{XXo2ri]`Mz+#AB:X+0 3rX Ƒtq"-oxqM{FAi7][uE[vH9Xp{!P_d;;ҾNRVr.{߿<]愻!RV^ɱ҈ɳЫ^QoEkFQ.wH)S"H=>>0b ;?2Rb,+|bkztm_$`f92Nc܄r zvC)ЯRugFA88oyIO|@X/q)Zx}bam/Q4zq"D=7)lJۥ5`=mZmHT /3jqy}~y6];Q ɥo}ا=h[|ztMiaL^O8XH[WhEʿN)jY%W\WEGFvz|{g\U߮hR DllӺآWf=V\aB`4>P_fh^W\Bdv&+7rl) K{^ Rj;clR>]uBW|xIVdUQ۱<̼]d=m]`V8pd1t3cny+PwYf'DʸY}?˾7\g$ũ) QBR_&扷e*a 1 u"_.;a=şn_vz0nE.{<w*A[+`d`N&z0M*R|+a`.ؕfq%V Ѓae"t񮷤CF <};a`"VTȳ6gvz0& 7QXJr :fXN);aƴXQeFReۮ/>?kx8BkݳR]=K#Iy9E/? SZ]lߪ)C`%aNV& bWCfٹXMsl9&qo~_: W[l ϷHz0RciIr,fioΙ-`0?YGj[whL?wg.)ҷЃaGXzYHI; Q:XK+4Mn|qeG֤k sXΤԝZ]qfc,z Jv}=]]Yf]_GWk벮&nS1?9FUZs`mY +8ߘk68/ɱ00mEVu~ )VEDH=5!OR`#a`nz'>I?B[lwQ;G(;ۙGOcNr(q>G1YZbVbҌ2onj1nQⷆ$ 3ebO:.q n2)q@1Yj^[[ ws?oU+u$3OmgЃ0N! };%?IhYcҙO9*.9斑n#RF3RⲟffhR_ԍc=aƱ3>vޡCd(ǽCw$c_,GOy 72*GoQȁ_G`31QcWlii[(] q>6>"§#J)+aOxi/91Ɂ_0Mx3׬r,풰;a`Zޯt7Z`w-M]8Δ؝ǽH)|LC( w #&$f\waT%awŒY0KoK |-ĶK=:nfH4րiPTR`%aOxkN{_00YaHiJ^ ,b"ۮ/U}嶪N?xv3UmnR`5a|zSk|0S>JszƩ85[ RG7`A|ԃrkn;;?XTux! `}YOi<2< M6iam>uiR[ݺh(8ض,18m>+W%ŅҪmţ_nsh(7YȾYS.-OӃ6=mKZǏ< rN>+# `j6ߕϕ~cvc42S)~ɕ\q# `U=5{8Ҏ{{qo1qn`C!OB `x:+>F@GFmuԡ.J2 5]i5 w^Z}8`cu&v.ahևb4gާ-_-)Y?,+l?sQ >6ߝ@1+w`d(v&7Xk+zuFn-|Xӵf]n|{7\:X8dG<=@$3 }h>֓'x*K%L7l\|P<{=v}DQF/(X?8n|2cC$ٗ|A:XX{s(Ge=Ls~ٺ+OբRQ6 XIjGWF^(4EU%r,s1E4jiRp JJd9u_XR$҈=a`2#}9;Jώr?O1̣M gZ.UU+9(dR_y% LIiѲ9]9n+p-x6s;eVuk}2o{"+rxz=g%fc`EgXIq^GJ+C?N\IɈYռ+)e%cqWyKl)$9v% L(jlץZT;R _Q1'cf蒰+a`NDȳPCWa?jJ~_&:f$@$9v' L[Wr|7C؝00}}CUf Ufk4D);aOxƁSSI*4&cb1g 4| fL?ǞcbMs&#fMw$^>8PD_^UOR`%aOxYӷxG05p$qV.ZyR`%a`nJŒiiqgH {A=\V&WbdeZ. 2'ulG[z09O_HjU>c5OxXaL僷#vtpk E}i.Wі ӽ1}`-a`NxqSϥ=1OoZx |G(ɆfXICF1|,|v a9E-}WXO͵. XE9Z'̘M76bKi9LH {gДۚowZ]xɁ#2^pj~ VZ@nߑ 3D/,XU90ZYݙ7Գ+\XѱrE$bԊiUk9/ #OG)YO&_ܯïi5V|%+YI"&KÛu{?c|>8дz |j3F˚ҋ9sU]YMm w^˲,=XB8$yd-t-6d?qW[qG [qG Jhy.ř͙eIJ]K-O{c]x%ܲxhkΪuh:wrm 9t!W,Uq u`WMsAnNXv{7g޳if^ܥ_+Taz1Vi~}p;q5/,.(vߟ9+&-. qΧ49P+;# `a?ޤUs.:2 Wj̵W]~vl - ICr냍9=\(Vdd5hkْw\2te.|P7>*©M٩&bfrxeEn X醂#4kvc9OGF#. u!X,f%H\ f~km"4-8tFBL18)_V3Ф+ѵ-ԍӯMcn:Ppf]5Y6uF]Klx] J^{E~VXhQߎڛv^}пqr}|Gn:ŞWs]h(kυ@A{di:H?X*\ CC<}7xОQaw/wdfX;q޷y파&B/Q/T˪Յ32G9q(ظkڸy3_.82ԍ~=N;# `rꬌiZ]+ Y?k9X?A~5?&=<XW'- y>kO)2>:{_F+x" *mSو}/ޯO|c ,f*c/~=f^ MгٽI k|cqh pP \6fZ5}Wr,M!- wP8b7dV sina: 2|g=TO8Ogqh h/iaml)z1/RE]k\=@{.E2Ѻ~EU ;3#AZZZϚk}%OA3R3rXjۧ}G 3&mEm_sym[zgwXAŤ3gAh}Zn/2r WVF+1ВQ;G!.df,W}\%EZX#5,F?܏H7xC5=# #g'zDfgtm-1?eɰH=XݳLMG~ kd,2㬱ԃRnZyMZXcP׈MFFA&%-ޯyMG}>cƧf, b\;# `5vxW {˝qo^zCWzw쌌} Dn/%^Wb uhJbs~P7霆q b&fS㦩wV7 H fCbgzWKGAƹ;#ͦ+ŇלXcfūcڻD,χ||f?J}'FW߮};`6qz7B zhtsҞr~zEoEKF'kZ}GP4-5 u?0| wr%`cěsМAtrla_+<"-O<˂O J5=]## o8 aCoM۷7## `_^W(R>BYg֌*&*C8H=ȣ~/x_yfaџlk3# `YTp6&-1H;X3*k^3#m~~/F@^SDN.ݿE[Fw\qAS~E};X@o􃀅 H2!~&yKDt>/ V+via&|!~/糰32V%`Us'쌌O}?dsed~2ˢ^3 `\핞>J/zqcYX>v b6ݓ;X?O{q1}Osjs*@sbBq&+IF:9]d@EVBܬ]5O MJgZ4A)z>,Y[ݡEueVqy-uhaؘ~tˏ7[qi9yKB`6O$VY!5-j7]y eSzށLJjaBb%}z+$BkQTsK#8U pT%Xye)ĩ'|P7}u(c-<|^Q+)r][c"=!A92^1$_1B AZb&}1A:X#ո{Gܿ/zeN,45H**\yZF<+B͎W2r0\Pꐽ--QװY 83 FL+u謣}пѼġ~EKF7mx^N4 `xQڐy?3Ψͷ!IÞrroA?}ђ8*- SfFZ#pG&]paߎ?[|߆i#6ųiAxjgFAH=԰/yR4Kf5B N벭_%q4m}ўч}y.VFAOo |)mD./\9XkX=&{.77G;uTHϛ1JȀҠk hǵ"wLm> 1MY+r_>1y'6C#F<#Uۢ4"jVb:bmw=*yHpJf(gZ6_JFha<%Gj=*N{4u=NU߃r*&0Њ⁠k=mEM2/ .#-1k`Z5TL-'\:ޏm^&0z\FSP1V}اJF%0[#q:0qe8p#4^C~.|Kh`{%= AؕIux{xG>{@=KZXVWP\B ABJPioE=߃mqmp/m@W[q+L/Hk=^#ڊTmשJW>UD);a`rՃKy8qZTs`w85'7R^kk#ۮCo OǶK0y-?5LBSV5a߳'} =3B*=wZ?XIYI_Bƹ +N?XI1 W_l#8{jGX %qP4jѸR`-a`6^m׷ЃRKXD/VaQ+Eg; -`,>s Xm%9 z"Jz0cy, XŸfece@"(IXOPmBJz0Iz h XO.γvwVê /KNz0nc,}Yr7i zirॹcɁ )}u;GQ\kDŵl~ {D7z׆ [o/ cX= b4iyoU\GZh^rw>Oj0-^rQKVu&Zc*qsYNXYXJ5m+?2{JVh`Ř;ixb4^ih;%c5s?;5Aμ؍U AXCP7>k(E>S\hb&f7Yod%͚FoYbBOFȚ^Ywr,Bx+`LVDyjX>oGeNIE#AQLoy teH_5e:n"eOy/}0iMioia9Ra𮘚}߻? kp es}R Y^k#?6}пVLw5F\ <ͽ;|j=іUK5j7}bjhfҤ=s&)kFjA eAZYPD# r G> RV59"dmֈs\# `J9PEViaͤOyS}؏#BEmkf,哽9?oI kܵ t1ЖQDB 1K64iyB `-YqMZX3N7uWi1V<˺=B >wo$=ؕ+v/X6|8v \B endstream endobj 247 0 obj << /Length 1334 /Filter /FlateDecode >> stream xڵWɎ6W,H:xK b7C:Z2OE4"KE^)PiHk6<b+*%j,2.ǯ"y^U7>]=~lJdwp$BdW$/+3T<ΤP:c|u`ޞ U۠Egv=1*X2I5J)F(m$ܲ 1"ZQ9%ƿ N%V+0(9Vش))S\inaLK&(D,3I1CٕOP])a\?P4ڲY㱉SsUML"O6 '̦#h Vh7(*ط@"t~C3\XH *GF3İeCp,=s \a*5uU\uWCYd$KBn5OoۺnC'H@7/MVJ:g1(F/=>GEhʼ&Ph+PڊP,< JΤ{KZ~uMzC\\/amf:KBirfa閼y~Ml3VNTʡ][$KlM&L H@&{ͤs5ji_VwᠮKWupդQ{'|ν|}ەbSvw8ǚ]bA;Ʈ4ɋ";H!`k+3]Qv~Ct^APP6[8!qaw/t*wu15 L/~|\Ȉ>3|+ o4(6<˂n|Ʉ GЀjW_U~63F"M~^eI1oxeU!zI@u)`P~1S> rCoWUSHKh\B)_T,Z~.Zt+>`tW5 Lf웄/% p%՟K8o {uU~;*@CV'}Mmb8p'l! gZЁj31]] K endstream endobj 236 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./pic/sn2cvs.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 249 0 R /BBox [0 0 351.4 210] /Resources << /ProcSet [ /PDF /ImageB ] /ExtGState << /R7 250 0 R >>>> /Length 39447 /Filter /FlateDecode >> stream x̽ wUX,2cG n8#a0S`:::.`-ZDg H-1ЫbK`I{hf?gy>归[7~gZZ.ٿwsſ_/vwrkG9ors'OwJm.4G?x. KŒ~oy^c΋__s/K/_v\~?ѣW|ŝ/^Wʟ?я='ЫϤ7/zƒ'>o}~-?-o\W_w]|j@|9]ӕ?qOKG%~[ x4{ݩ|gxٿ} >>ؿ~W-~ ^%?w=~|?Yy#4NQ#oU!'V􁇎 />׿{ԓw}ч}sūX/?kO^?/7R}jF^ڎ@_?/_(m-ڽR4ZӵZkm~Fe~ O7Gu?">.#gAο/G5_/;艏ۻo5?m/~^|Gny/wo} iKej{_h@o x?~C>Z[ߖ _ƪ}G\ww1'yyS}GzwGq}w>KOy4CLEJʼvO˗:͖] Vu?5#s#e;?`R2ۯVmǻ¿M")XJT! n/'|ogKc4{UZJy+Iy?49מM+UyO^z?gxƧ۝Gk'oҟh-T+:,^WTpߊ`^}Ӹ+oqwWxOi{,6~z Xi?웽a M7|n_~oGo܏~_܏}~ǫݾgև[cO/Myg{ɶvok1Nokmmoj׿w]|}s ~~-}gߗox>{5(gӫ77|[u_ֻ__}?yo>'^_/x~276iL֖ko^U{= 񙗟o./y^~[W%{į?p{=?/WWmϽg B37\'3k~/{׼~/}/ƽo}U_?=z=qe+ӱOkqb}>?'_|;~k^|oJ+Zٴ??C}4yCFW}뫮_3UgAj_8z|;d-]b[oxo׼e>_|/{s+H{oHѻW?;o=/G eLjy;X-{ꇟO=ʻo{GoC}c~e?O>/ow}O~{n_o=~?lZpH];O|{'MSbhݓ{gM7>|{o? GC7?Cw;zy?=r^?Cʳ^1=S}#woo{C_c/zſ?s?zoz7&bmyLKbyV^]^^{S药ʏy/}?E=|yMgs쥴8C'|s܈.7iXR#>Z|w|?O|X_=nȣ6HC}w_G~tG}"LogS$-ۛoۧZsz4^};}cƟ}2_K_u_oC?1tx~{>л~ݷ7~Syoz;g?u~_=xyLTi4oUiޏ&<Ǟzϓ77|䑟WG?ǟxO7=?yj{l[}֕7~W=tWogG/=?[}NKFdn-_}|__?5Dxe\t|m{߻O^}]G#_~OK^},U脖g,ڦmӯ.NGÓ+ʧ^mFw;0q;mKG֋<}VN ZaEUpO>vvp#ؑm`zjzz^E-{6fxګŠ\2ހ'h:Z6=QU3*xԨ{o;[XKm'xq*`yӏovu8jR# p|8jpv譾Qӿk*=MwbG-S;$3~ӻ@#{9VBe}^ţV6iB ܂_'ozeKʱܰX3~+}pԨ{`u {?&Y'Xg͒?s8j6o@ 7Z#@|agx)na1%j!9f-|y^k`Z?j܋O݃Z8jF7` vdu0֋QqZpjx~l֣V1Oɏ صw߭Wਉu7:{e&kw9naU|767ĐRl͹~vͯ1~ OY|eu]bwۯGM_#bE0b=nmə-V, OvW49ː'Ҩ>Uˆ('lw8 jejQ,v򜬁ns?a258FYiG[@k#·5~B&V;_d&ָK6XӖT).oh~ :6@Y=]scd[I48~j.I-@aɴyےcj{CR dm&c;~G'NjU~_6XZfzM^ c%3:*𚡴h%Vmtwd5fnw9)hJ#tQ$g&޾|VۧU]Zt'#1po یkحbzЮQ[ i;֖^Gu֋}U?+'.Ʒ4dwNU= Tmm'l]CMpcOQ\U;ݫ޶Ο(yAn֥F;eA熹ﺷñGmo9!N.<[V,өwVQ Lqs\Vbݧ`P (smA16mahiASrws8SlJŷ1|,pK6pWSF5n#Z5Z븺 \Fu;ݵoMCk]jb c|]V7Oq=g|.*}ZXY|tӞv {b:~\_~ޫv?N Pq@#$}ZmrĂ Q-_zF۬e>;f1յ~\;$oPӎh5[A~}l{{7 FwkMjo4qu@7> [Q]jIۂVgK X6V5;F +j_.`\7M|e;rX>-jw찣5*8~P劭Ɋ;Oڥ|)Vvs OmS3 X-_ k%+ކckQc2E:?f>5-#(l)J) X-ſ)WLe6|XRan.sWmewl Zm_hw{ݘ' @^Tf^B2]ٯuѽPHIvm|kXc6q oRz?ә3#'q&8-@IMke33P~?,{迶wYկ?le {CטpXpsdWw4; >;q'*9S X-Lo P $]bo9Fq9 w\PE3FWOeuӾFt\Yfbz7jlVofj;,3Zy͋j̊;2GY Ê-U+{PveBf` a?ŝ Ni"p+l%Ml Zߎ=jOWPs9C- 6}O8Q5K gA|:։!<ţi\B͞lm|WuQ'NTǹhp: X- eS-Λ5ӂwi#~&@M /b&e ]2[W%&.W2ƿ7vDD C{CaŪ{␸KV!H w{߀r!CQ *tZMjMzM)60աW> o$[V?}*@=NMVƘ^#{#VC~ț#IVJ&@9ڇ~$el`G%R'9.1*4FoVk%lcY` x-;BK7YXnG v 2p:ACjI S])NMI0PEYPcMu̟c(*fnLCwnM^km~-|jt85>`P!1Rz`o=8~cL08w^Z t h<:Swa:*`7:Xk'h5fBEi"w~h{YkC#H4}; v/(Izw'6},`5AU @ڶuvUKW=>~IvMy;)쎾nC݅ulEm$8aWm@,\CMSb*]t~h:PvNjin1Z6+BS쁬voGaM-oZVȟ7rlq;,)7eVr 4NnRe}%Jw)Q)7XgVehP+U@ Z<"m;Z]9d!ǒa:~HRieS5q+ǝҺ-lC\-;f(/V%Av=(}] ˯f;qN1fj9WZYBCWBKVn>sJwFcX>bܕ<'-'| +^)O :ͯn,5t:2"+݉^wP]=s1d|֧ȭh9d97[k+5n**Ye} X^nYbgv 4}ˁBaJ(tJV힃ie'/LJFvL8 QEnEqu2Qw `G-O!Gb\PcvNb{̱;髳hdc |Ys^jn K]'$84E# @mx"/xH"z`3}7p8jDhu2t:7$=F0=$#LoP[Gms>NQҺk]QֵKT^QTSy\4hũ ^HU"!Zʞ/a*6.)أM;wI8Waޑ7Jȯk_d*Nkg^1F߉X]5e_"߰b^GzZvNkhjlM9bԛ`tG/f  N݌x-ͩ@W5v;GʽE.;@ ߻%@,&umdZo\_if Vc-\kHIb^! Y8d@.ؘ _e gi^%^^aJp'dzS(Ugg\dt?K G'_k=aXv۾ \tSaq)բ+18+DU}B,)]=N0q_*<0AdIlβΆj|cWN.Z!?+r>|ƱUc/Yd߭[ę+kBLwL9})5E"Nsv@/.੶[lfzɋz%#b@]qqqŚWA-;!Un{Ģcv[s^ܾRcxGD8:TR)C=馲$\qPg JS}O'hz0< ƑIR2s@PTsuCM[f8M8|9 :r @1~MZ!܅iY+ >T]GXII+JHr왉w'Z~F¯wXM[9ч6%k< f?3J]=@ %jj>c0 X5X<bq5Q0r[h =&E'F<b" 8eIm{e&)hHŎ!}&L|$(2wwh-8(pa4#xMB΀!u9ÃɢYx EV4K2x>S뼨)l!)̀$K1Idm ?S,GJV׊Kk]W8vZަ+኶-='Ǥ5kqMʵ}A Y:Fx&4L^i y1x~+k]Y<^˂Ƣ+W>Ԡ&PC ^F;NM4(w1pfBAФ͗XA)Svq4PK]~`, hMjrkY9 WAvY'J{YmpBVyA0}HWOT"dU m]ʠ{g+5r@3BC|R N \Qf"7CfhK[PGHB +CTH,Ķ+" h ߿ym&ymA%+hE;E;ϊFک&9[Yfh^XrcdfX ?n~PẃdOV,r|5͉rwd8yV@2 8ct8'13UxQ*m2n1n !z&5-OkZ}[=}ilj-aF߾]mϋEZã/ަ%7,Z0^ˇ%9ӨgR:gt 3sЁC2@Q|+sl Z-p{ccQǢjA蜊,UY8'gkƺabX5+dLgM$Xd V8*d(0*,$GqdЋ&pղK@X̌X+|$d 0/bE ]NdN.dC ;X鶣 {ɍؾd9-V5ZJwe_ÑmdIMjX6ΰk0k6cӌe1 Y,hbK}_vL9apfЯF9GPĿ)7dŪg rG ChU<%ղd;cem`M>g|}`.xc*L[Z07B(wt8ab< iH9a4a xA\T4- +< VT-LT+;*R! ]wP z'Dqt]'}"JTIUz R`&Jc{Y>)FVzM~:C`X?nԽS3z(qLYUZgW\uZZUHznwlpxLpq<8nȍT EA{h #hC5E[, ^Di,^.EgB)a$v\&MrU !H`9Q d68]TNN⠏f- ip `Ip<ޭpH,ܩ6Et4%?it % if"Yeb"< ٛ A27#gj `3 8Nޓ>;EvQ[Ԗ"9)*pEB=/yqѶv y \jΆw\kͰِ$H ^rSB\RB0pRi7g֪Km+o*>Fn+ ,ncZzEwX^ۡ%?а;dĢIXC)#p(1IboɄ}^o90ap&l3yҶ3`ޜ@ם? =MȺЁ!SEJ+(|ʥaMTPrc;mOu{jȩH',7djw:)ɀ_.n_:@+uqi ;M@G%ҁ Ji 5Zgx&c 5(Q8m 9 nrN rc@Ch;O(@-N(`6 VMJ YGF ÐQT{ \ $Ǣd>'i'&*g {C5(\3Ǯ ][-Dbx#f`vnP ݱ  "BSȏGN̪FpqХ o,'$Hө3 JH_2053Vˠ܋DdFߢQ$ķp Qd ~q#Ţ=*ՋL5 }rNH8c/l&Md,֋Epn+Nyh5hPγ!gC?O 0~^T?ۧAi){Db),CP2녛op.O (doN.|s+3w8ó˳fu_/7,|]ԇAIA}kag3W}pQy&Ykk\z.W Piǯ0)g+tewhM{O 7= ]2T|*"~dzM}Gwl7b'ʃkH/ nu,^C =ҿ0B08fkfѾ-lEFڨvDF p<{!X>T~u4Q,r2@ll6|[\i%$l>Wp#WU0},fJ3uF\T5#]l9llCltST$vSχ$q^I\D wueQS+IrE< Mr*^~d[&ev[G(JkD]K 5>byG^Woi䃅”Hd9CC9]#ܕGf2a3-D)9ЊDR>ad#p؎!x"m# q}ˈADKP%GrDaT/+J3M1:>@@j8`x/My6 "󧠺F0:!)arCҩ]EyM1*b -#)1`iB6RN5"'\uWh $窱?׸29~k[DLl"&E6+>G|Us SYN`"2X`<"puol#ipZ1B!$t 0xwkŶ,)weI1)+K%zHZFb!VO]pb&*:3*: n.+cgp2(JFؾgbE Y,yNbZ5nuCX6V\{=)r_R p/,1,SL+8)_'+NJ?8!r/t/2u1Ԍ/gV]/\ ,gT XcY(ݏl|G/Vu(v"E4"*wj;Z7⪴ȝZ+ix>Xc_pzif s7   'FBF B 0@EqRVrg5ʞkpPzq.GIB B/c!r d"%8'qI@4vK^|ilG\(*xV元㴲92p2A82i5\r+C;j#3V˅e!:GK6Э͋rkC*ܕk؀;@uo(&)Y>Z<<g9y=%a֫,d).tAw񮊌MHۺ1ԳIxWeSDe vnG ~uO2+%n{֝(N^#\;i P}mZuۂ$j%PuD6KruzxRf٢m}8me6.r 0.j0ɝlMrW b]{5v8)6P_cpkYi]2svӴͮ}@[4gۜ:758dϴY¢g45AֶP-3T w") C Y,Uꐪհ&D؍.XW\=mLlju^druLyeBU}@%kr٪. p8`Jǟr8<%ӱn(g^H2싊 bUT`<LUT2?X(J(H%DŽNejF'mЖOsQ~,1tҏajDi &4&UFBJ'#1dD KHs"+f#|GWmur1׍+\!fFu櫧Om܏oQ!L;s+6[ S[=Q~QGB3"WVK\[w*k?Ǟ5nN5c4i%059-x99-OrZpO &0v(!u]3u꡾0 rSD3p$)GN:1J{sA4a~554= 3[F!!dpNotH==N;jx>/^7[z Pg2qQͬ@"p@ T&m h~h$m-\q>Jp*Jps2(v ^7 4=#IWVy.w.w-wOp- FGci>AqsܯJ[inQt?~}IFDo]_!./ /)ݲk-]ײkP }d{ z>AM9[!(kktÜip'x&m3 W5Y 7=0vr@p$82;YzTI̮eGi:hu0S؃-b6;9"|N_ih$Cw,^V1shāDŽFLy0Gxls-.!#N ³}lzN-x##ҭxk,]6Sw@Y6t(fT|v٬A w.| A+?7q/Uj ?Xk $fYew㕿udc܂n< 0a]H 3;\gbk!5c*ؤy^ѣ[gk ]rcv]pؿVD .GD'F (`;cbd׍e7dQd~Ѓ@ e`;gF2Kc>63:ڲLNF\,0DޔyVۥiSa cw sD^wVsH1` h\MzO8ؗs^ ,*2#>StB!9(w Er29A0tHƠj9_fҽbMވH&bDXH1ظ,  k YSj8 :P,%2hβU , a%oԠivT0'j& ;W_ Vz" J(cM3*۰`ɶw崣x2RO(2wvFPΘ+"R>!"5nc=~ۃ}ʹ 5ώ[ACZg] l6[榉l1w1PddlVKr67ؙ٨sz1JF8]y4g,;彌GBv8[zÇzZMpV1fPW Ğ͵IlMxfi (+X1 D R$ Ȋ6WF7c;L^T<]DԂ4S A8U ף|r/N7}ʶ X - =.LA C!&@yxI*ZĖ hZ̫VJT˂F-Z0 S/ Nf f@0Dj&~"%6 -+.Zmn"IK%PfY(2zAEQ!m3]fP6'2d O[iڊ]$`5Owг x*Ȱ*k_R&! QJ"I멶 X&j$ 2]3f"fDvlK"~ RL\X/=XRRgnf=ksbG|I7҇zҋKoK}'gAXc3 LooYsZ=fӖ`E|e=6*&^Б$ WP~b`ʺ2R/#|!.5elEDX] ֪5 `#k$ZNѺjCœ;6ݕ2W?UhS灑ۇt7 {I 3<.-"d=SuTYcEu wrϳZ=>VbV-HZ _V p?b5E4RWmio1mёcL[pNczCNقcȖ+^qqS\rOAܚ4:$nӷ!'wbNJ?P ]iWY~Z8ҩ,t?~Ïvٽyp-w1RuXr6衊epʋD>TlÒ8M zƔT 9rCmA{!gA0뻰 XMgcS o;{kH}n,FC-ĹN2<`c$)Ƽix ފb̵k~8-- qtc@Ǯdqp:?;='8%+(!c!^c1`[ǥl_/⠟e&w0!4^5r\ŒTӏ5"8N3(^!~4ʽVk8e3R fͻqb;V$Pg8K3) ^%M=XV](h:;cR»4xȐxReAa+ZȊv^4+Wfe+|eY-ھ-PZGK+Ҋ獽Yg=Ge[Q Id MޭZ[H F:ubLvV;r:DٳrQf~;kGhJݶ#}K쟂Rz<ofS}Wʂe0 nڡ)GД8 :Wٓޫ*qWJRbܕ1L#Aklg#K+`RE*pՌc,r25FG= I'ph94GۂV'Zf$;BYmzkCjv(!A7mgL$h䥤Dg,&|6EDȰ(da|1O@ `mسhmEk 2Χp^ՊjVŜH;nGl/CiP4˝X0"Y6e3S(@D̠.^%]Ϡ9. (+W" GmʻB|fʻ|(3M6sExEG nHZj2,Ps]A.E(89^TS8u3%SZ/RS`\3/>Upl3|`x/% _9馀U" pexVPW'/^MyN;/pi/M( NH+?{,?xQnC&╙琿)ugw4e 栯 &5勼P"\ N.Za`1yy%J2(L`iatDtC87FNQ\S"#j1#/ۜH/ۼL/ۋr/E7Ee7e7E\aW,LW(#Ȳ@`%2O]YCiJ]DOaqޮu̖U|g0kC.7+>hp.j5\ehRcO%HFHԐ;ۃ"fF'bE'¦c,g(kppjcé`ȩh)h14j zQk, 12! :2ѐ-aY,qu` YEךO.p=^ʜ:@FD`H6 ݔ( e&Ɩ?AG+, ՠD7x`E"-9HN mb5k`6 dC3LVTX&MD\y 62cQaw#">o,+k NƈLdb 3ab?]w8 .6Ngec>hnri_n%R`ȴN'j/q'5{8*"NH(=}QJٙSvӑ2pFuD^2=gD`̷=/¼!/s0?8Ye. {`xvpp7w#F1v7& ~C84 Aw\B]2&s&,֕ nqX=*Yr͑K\v oυ0BϬ^_Ui70J{:a 8a4Y"j5 =j:+81ZvmѪڔ  EB? .u;Ay|e.zK~4a@0e%0/cO]*n@x8>,!S яNwûb:S.g{"PȻ(IHj9ЎQCK=l2#VyAx:FĐI&%zd,pnU3gBw/\&;w-qmt=3:(6ĦN3mp&uǮS51jWv qqOXXx2P &±CtLӾB ak! "jyq>2NBt^;:A#"lzKWc yWPLɬ:D043F}RZmev,?zeA7СW3]v1Ơ&pu?ܳȯ45 ya?! dʚ%}R> cuӨVR~mA;E8<򊘒nR-%#ȿbeXj3W6ޗr1!An<18<ct^ҤQE E:'+rƝt#Ķfa46,Ģ:dE)d Y)8(!dN]<_@Y<J *eGkLg9ܰ(]#NGlȅ_M[f[_ O\xgtZ[kYt¹' JT@8`*@-2ٔ2wŚ\`_xm钡ۊ5Z*X׵G?˗`SGmj+`5o /M_ڀ(%+lpeXrc`]4KjFx/JVnvMnEmHyګslJ{S 柦Ą^P^Xj*bkl mAs(t6q"N(7- No٢f5{׎cw8qʄZ86-./\jJC앚Fi-3 05f3M_oQ7sj;W=|F;zWڂyOKB7ypQ{A'xk #vU^<ب mx񽆀lj @N wVcchݿ'Ek3gצ$}gd b_Æ \EjuԨsA#{ 0mu$Txu?Yd d-9^GF"hw$Keʚ ubUX0Zk^sX,lj߯eNf`_3&$+I.ҸjX cG6&>|1#,&@b620W-SE~F=6'yg ?'oW3=A(x~4ruEs1*쥨cNQ2b&vX“8ry@~ޙBrT;SMBd4&)QAK>a?ɡb m+[~S ?kZ.v=\ϻxhQ3clG 8B"}gC8@~4k hyEm'Bli>:.HNqPxV@Ɓȟuq&$1X\-Pa`/PS(.XZ"IyClaM$BJm 3#(#Esi^ ;w I,1Dn ;o3j=<+w/wf򔦑pr2]lLqR$~-|E$GxrrD JV&X=hL&D\sfCc~J#! kT]OWVzYvg˪j$v[>@+`n+mE,lg ^'dZs3~+@N`r0@ @@qLϗ_.p*c9'U8LqW̘eڸ;8C(#Iyh$#@݇ĩ_y5<6 ~ [uB2P(nTeƹI`ĜX ^T,},ePҎGpI{!GO//"$B= B#"`Y?'L%)" TI &$y4G\O'h7#YDmd*`r`iR _s|AR'xWs\0| _ G ^ 7VB5"X=00WL;Hm%x ~EdK0?$g$(Lߛas`WБJpbsQRhD>`$LÍbeA0G"ȦASM'h_=y0(NW`]. TqS"Tz>D `0ef#OC)n(M0_w}o,lhx(v%X~T;ֻ<<۽Zr#ϔl;le= cqƆJ0:W&01L~8{hͻ/hkv<cbiL}uP^"MuukXIVg T587Shϼ6"xU9q`9<;6!仃|MRɢHiJD$W$Dqg$ c웼I>O.bzdRA8L1;G-b_d$LFJ2 :ȽD TCU[=aw{)2YPj{ @ 9hg'KǵY:á3 :yBaNiOK m'8\6uS薻tu"i.)]Ͻq}%-^L~1 Rk-ҕx(kh.@#5Db$P+8@JSD-ݨY8&) m oÄFE~.Ԡ'T I{)˗((,mHi>ZzD3 Y\(,x?x׍eg[/,p}R$Ǟ'kq\W ]Mk@ )&$p>B5A%bz^F2zt@iPV“=іH[ 5<o. +nB"!%/BK9ҝ3{i`℘כ_m,o:5gdqj&͟Ols :`L1oLw9ݓ*qd.2ܲ]-դQTxS0V^&PVf&"79;SC'-b%Nu.%Nn}r/dқ$sb"ܩj4e7B~~,Aojr4)!hȗ v/50^NJI+Lz@{1cW0+L)Q;vٜÓmi7gOQq]>f;c>ZDfCv% D`z^3lg/1ќ~c: V̡C/yDvR6H]jIN V GJŹ~dguAlm$AD mTUަ*qi(X# ɄQW 5vh=IoW('uh`_yF h*Q+= sܥİPgQN>H7V>inhDW/L'Rt9>_Y>ҝb36d]~ńNp $w 1>iT~(*CLw:S|&uk[ukŞ5s+ITf|XՎ1v2AMg畼|Mf}ewWEm j-`ghXuJXT-2̈? ehnAQ=zEv Mg< ҿetPL)e2PeXw~`Ҧ/aւMPEj=@(\-ɣ)^y'ϫ0C2cܴ[h͒#ESlL/4ʦanZE.5'Db4W9QT5&Y.G& J$`Yw 8oeA,r~*#qM'\{ k*`;G>SoxXw,7'B,NC[ݕ q ]֟R۝hBT!,AJ5]AYj6f ܧ:`N4`W3>Ke2..0LF>ѳgd]xOI^*#s6}bdO]Ws{[E \]-#NuӢvq P7\cfI-Mm Y%xoc[Sc8F]W 3 ".ІXcH#~bkoyJjzqcs~ڇ>@s¦/ΞFWsKO m{&J0ŻYmcSUjQU|rTfy"Y$NyPd5A=D6#:Cֱ8Oُ<)AIvnEA( cQh~1~'{&дVQwD,_1Xl ßw϶}Fm00C*@f,(5=APOT3XW&z n=f~b)I Xg4U%TEdSHx&o6 3-@`/)<&_StDK;/DҗLPe0JݮX^%DC"#Y" v&qr99Vy7#roқQhL"륨Ҋ)Y30US@ 9=SjSᭊ J7Ķ"j9H }JꞗP@:wV6yf5LnWX*%A;9,Pא[7Y3ܑ1pm%ylc5Yksm.2 E7ODĢ+`uh  Ѽ3K J/~ zf)c'[ +O"ړ*q<mPbcYJV+R<HU=ݔ2bvS>DUO9ycCikPb!'Ț  v (*9ñ֥scK,'y.*R}QLDT4'A;5BF(gX9*Jh iNv1/^ s|(nahY^G}@G/%^tā?Ȉ'cGʣ]z? <.]".ee}Hu sAS 2)+ 0:ėřl"kYfZSo^nw'!]x覬PVQTQRQVŻRoOnMT|{U+0^>}gn3şoYe)έz_y]ʠkEu'xD,ā6_ߑqt\*Q>VQ?Os86N C?;zfG1لAD gztif=07g,ÚfϬI#sPh%^|ĺVhs9mtAFc4HRJH ͑3ruʢkmq`]btpL"KgE|dr"Zb&'*fr&'ԆVQ:֗fӉd*W*nCug(aF 6>V{Hk't`&M'#3&Gf=`m:kv6:u!7&-0ѾsE;.J NbؐYZ : 5Ag$> 1-:[Gk}-r]̪)Ǟ+2J'' eZ,7Si*%̿ZGִ3<IuǤ~>sTĉMbxSnE34 f[gD-7 m1fi=Y2<}PP4%EYw<e7pCFD _og aMS5H*؉*ZSAhD֓V-[,n)V@`XO]n]Kv~jW k0f]SSF| $t9 p)tѯtC:m*D W4dnH;D}Y 5vÒBeS$Qn!-PQ41Aӥ1hy46Hc;ڭ_ rS38"c\0X\jF88Z䊺%Pbi _K[/b/^y3pVjn)g3H[x'|`d54a!IHѳdSs TB.HxFN6't )C yRPw4Wf ",VDiRFUl'@t& tn:|2$wVZcj3TnL<x[DYsr?2>epT|7&5 7׼(Pjm6 OȋH*'z'~.Ņ#HQ%ocEY@Gԋn~aPծ+4bO3DU7T[ծ3Iy;PzL EȔw!wxl_E#)ݾzx{waКtckG)RoמRf,ž)XN~{l'ηc5CH+(^ߥ-AL[$~QH*7u_Ͷ=lH*w٠հfCkNv"bm5#g=KWEyeҝV6]2sշGM6) |qd9(WTP;xO &7س pvʅC8w~[W {ׁ56/emJ+`穒,+)ZJWSF Q(4h> h^;{W-)ץ=۾th*W\>YDG)4d^o^Bv\ \jco%uI ՚ytA o퉢'~DYktDprhR}&2źb1*}[mDⵢ# Y%B4Ij_\@=+rjfgD-KN{G28Op9P; m)MU1ITȢڂEDžc"-6buN-tљ6ggQ9[&>9ǕAjb:`GγJeh=Ć!O#G=!mZURZ@@&TN:Vs*.RyP395# %'G2^]᎛ws}W\RӼ?9%X~$+B)Jq;FO ta7D0 nwv y0D'`ɮ(Sz '򉚔?r[R^-gL&?5Œ'?iR%~=\>h;j,ݼՎ U,D[Z#?ukMj5_B9rSfJW\{E/W_be*uu7Ă(M֏Vg1*0Z-Džw2aš`D6N=Xd~[ *x}P-QǪoDOپAS@&̽. <;n!vqCٌM6DͭtdS9ل!^%X"W5TIA4cEͫ XKU7ցT_jLNe /[f43`PfYF  e2=Ȣ4dڂ,*b=b5b6 ݡBC53]p0)ThURjhUH^M Z0H?%0aN"e"rvh0IAI3L `rK6Fw{DFu]">ʔ`^&5ZRhNJ=;;)ӘQ[ 44w1,aв i3Vk #MEjgw&Ek,lɽddE3L]񦱥ExsX1˛ÊVl5ePԤƺPq!zTM)82P.A]7uO`rܝ4V7(>I$Ua["zm.wɌ 6!.o`Ñ2BZGe5v v$$B%H˂c]\J ,aY`3HFFDRi1 Tk i[lʔ^ ~r_#E{V߿ j), [Z6^|KHpiږ ^gY?nf0n sZl$&z/"Tд~'siAmJaYk^/{bQڷ"[-↗g"y&ژg"35?]ja0de'鑿;aA.`s:\'?%f\9}P 0qx.I% Q8.}síuߞsmk@ɸx/? a稶oq0&o] EK7?K@f10#`QtM8.*c(qp<Z0ؤFS=ޔwADP- 0(F2eV2ІBu^+Qy_-i"todx|&i\{sӶ=5v!Hʽ)n4XʛȤ)8RuTl: #GHkm^qY541̫DO&?2Na3 +WQ_W8Noջ l4) ] O|78G,5uϟejY 9 7d*~2 W Ͽ:0ěa6GCyp#ӡ5X?fh>8or7գLSOG&ӖǴo(Np4!8Gr4=C}%<$ j)f8wi4@oF_t'ch:̎#]3H@8Ê{k&,=da@i]+B.cO8DIߢ?v%xE;ӧ!_=|]ԯݥCUQqT$G ֭(Rh\|O>`<gL'1?lD-y rQ,ѯt˳zrg+/[<6 :k ހ|+ɶFn|(א*8㙂6 *n6k(ոOTRbi]XY he:"2bL]eul# fhj: bCCã %h`.^,[}/> ߤ E*N~c˲ӗӻO9?=G?a";@ۖ|; x@x/# U8Lp"p?*d6Vdw CQ" \13XdK ^9<\9p)FŽr`Yҳ=ݡR8I@MĐ|`glqg@g)^=31d^r8s;]&@wg"KkԘר1?-Q5-TcXi} i[9-ucy;+5!㾶JhV9~ ;L 8 ä]TV$3wQ^e{#`: K@UI ߔ'm4u-%]>0znIwH0iAں!uîF̜sUݴh.|ò\/ ~smҲ|u~v'HVl/O-&M&;G2wpmgv"LlnC6sM1^35h7|ދdr6W(P ^4f06s-LO3Tfqܭ^>*~Vީy*jh :3Nɢy1X Ka)AސS ,taRPJ pJXTgRЃO@Km=ֽff^9.a(>OjW3dG 6?-NWװ:W\K\RO"͏66Vv؅sp zVg0 k,Χ=CG}A/M_CQ*|[4>t'5YZXq`]*3<^N_n^Frsq̱$F).Y^j [A| I}r`C)*{tg:9(v)Z1!E37z">rq TOv4]&Sfu(\wYxh6> ΃=j"lEpL݀q_K3vn&_fo Sdzkފn~g0^D$Ej-4R н}/{g pvq{F}`u$2܇B 4"{QG X@Jr~VQKB?v} 1Ͽz0m;o8O/+( za32F(S\:,޺O+,_ˌ} 6aVaÀ9\ NSAږ b1" .ڢ-0w#FBKVr -Yo#9KWą LS6QjA6)e ٙgL6nS>#frnثDd_UJ*'}Y:<)+`'G$ZJ<h/QyVϼ_ gN q ^.#MX#"fR#GX7,Z tll{{3Vf$|wݝЋSvF4aň&h/3Td*FwD9%v:OD?)12Z\b4?f,eQ[s ,9-|)RT E%fYRp[;8ތA]\6f +#6*FKn[`ۮ079o!KpKiܒ "sZJHYN%@&!ypޯJ{Q6xli p[жL4vh;45}zK$`}yW]c9 @=Fb8222@@X^rX.o}Rn˓: }T'u4[MxE16 A'(VP>'8DŽ5>go heU!~:=C k"(kBP]z)EtDs:* 85HZ3@Uk4{)gy2DLFx3HfG~$=B&qƭfA6h:aj 1=d@r i ٿSÜdX^`L^3qCL:4þ.0*^(b E1Z6p0&GޠAn e+rXV5;QnV _4oW+]M/T.d|UYI$/Sj(Ysz4JK/Y1 Tjb &, &d86cSm96N!k c jJ[,D**r8K`ID$~yfoq :IApwV?[dt bv2yK\ wZt3wS!A0(Ytcܧڇszkm]Pno-s,d,\>\klcm WlkA{&*5рI(m@;Yϩ^Hx!iڅ.vSAG7; ?XіNXzK~ brbH9!7Z_;WAq58˫׮իILaaNۗ1/G b>_(A ?3gA2!_aS歖(|7ו`>}=^18"6i 4>3b@=ÌgNu],#u X}:0zM@s{>} O&\dA=gl4Ś+lDS5xlhwuvGS *a"hQK>لdcCjYm+?b3zX"GH c:A5%> f֬P[{xTaئn4L=wk {aٽ =.$1H$h 2}g ݾ{bݽ(BuVV3wʳSUS1 HD*Q5\l"2g7o4m4FΪn*PZPȀrZpeWTrcIk-ԕzd[SqxVBΌw ns"6ͣ\0:X_{Ő`2^> stream xڍWYo6~D#Rw&nR-/(h%:q}g8z7U>i8coF׻W7EHo,1Hvwȼ`A_Hv~$<)R/͟|޹w)O%kRt9O퓖YUOjM9gPNgɴҨK`S/XeƖ./ .D"q˴"a@J]-F^HQO3hd֊俾u#gZ=Lb7M#j+NNC/(&"qBȄE zmYtQ}7RCbJEѵs!kf:75sFM{~gݡ9A"BqP`h#յcw^{5=Nf:uws?ȓ7g(m'c Ѷa܃^oHRhU'y :ť%Nj&iKJ;Mf6cኞ{5:'fe:](eiZ5;1U.u5s˸W| -|1 aszMcfrv$ +$`ջW =4y{i󸈽 ,;ڭcw{ڢs"% WB4VMD1OS*A ` 2èML$-@ a^9bVe'e 1  {[헙{=J͎U/WN=X" Ć"IR\곳ANǍi@0Hy9W:n2Y7ZH)@n[H?40B^'(nF u"x32O&ÃUͬpiY]G;$NOܹ? w=1)S:U} ܜO ?|bWm ci_O8vlFpHkPw< g jvCF΀}QQ)"~4"uE= endstream endobj 253 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./pic/sn2_fes.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 261 0 R /BBox [0 0 345.2 151.8] /Resources << /ProcSet [ /PDF /ImageB ] /ExtGState << /R7 262 0 R >>>> /Length 147944 /Filter /FlateDecode >> stream x̽o}mVhIiRI;tBiEM(X]0#mƄ 5)IŠi}"NQyĖ&d6i`3?^<3gy}mOw7/v_;Nke_}z;TE_w\|my۫7͛qyc_z_S_Wc_{}7}6_cazk{i~>qsnR#w >o_x?v?'^ 7}Oի7^_||CCty|K}nqnr:lv]v;Ow_O!t ;O~իW_~_>+ϼ^?˟>?rO'9NvrZv4n$4>ɏ~Ͽy>wO~^+C|}?K?Oҫ_[?G~vyosP]|C|;}_W}#?7~oSG^Gѯ/wG>__no{;6}xG}ݲ>?|}~ïo|.fw;.uv;ڟm/뿡6Vx?UoyK}A3g|'/^^-?H?rqK/~fL햋~}?Y_+?_C;߯oߨCv펧G+/tx]%Gn]"^H+?F#.Gt~G^ž ~xϔlCumgr27g*C m}{w]9~|_^d=&N~їO3xkޫOW~>M#]owi|e?=>(_@{mvmv:svVmrD^O_6x{OJځx;1}[wcv[~"a,/Cs=w5mz}y}Tz8,w?mOO~wA7G{H{/y|_zKO3Lr—|^|c'?o{>7o?7;mΧj7v\aܿ?~WonCo|g=UG8&?[ǩO}<nˣǟp~qto85}ͤRv͙F5<w]R)B_/ɐma ǫ}u8t: nnjkB]^ը\->_3QQqYX刹^>[Lj(usrQ +>'PqrkkTxՏ\M(8(,&u刹w9ӨL[ۥH3!Wv=< չ)'Pn۞Jx?׻[M7Töf[Tcߛ9H Wߧc6#Un\3MusoSQ j{]}e4 Xm_x&5y&5(:>ǟ0-Q7{:-mRGЩ]mJ}Gq?;)ۤJ݇W7+Q |v I j`gTCZyI3 *ڕCOHD UPiIPE{5#vLM=T =fZ6%{J5йJ*Xk%MjxtSM>P8So2Mjt2s-ԑ7nokO&udfqL=Z6U=Qhn%{OF5U&5>dSs[DZ`++X㉾dQnXb?p9OJۢF PG cKA%ԑ*NAfTQ>ckF5:$Ut-U5'Ѥ'Jv dI-h Bz[( t [ %lvMȔ܊6!S-QhmBUQ|#hTAqW3-) dIMh Bzgbh{Դ#XܭՐAԐf!M(˳`23%r_]=,Qh~UP&uj_FBVRz$i5RcjVr*JVU.mF%wlݹ5Ryj\r*Je=%S3vncZ},QXd*;Rxdn&FU&QMj(u,NTj71L5!W QI4 Q OTQjvTÓ&U ͕d u&UJOMf#oFˤTcdnXelSy,#y$[ddTUQ*e#%֌qU'PCAǾ6*`w@jVR->Ҙ2 ahƈ)C:nfREkтL}0\)Bt/Si.AkTTQ@/V3pqfFUT6MI4 *؏ZgR>z5#6on2BUla ${[UUr} ^jfO6!G6/L}Τ\CT*v;&59{\WN;n$BlM0cI #m>\,CL7CYmgTEkzD4!W5AY!T+4piREsCSYfP-2P w?;߼P"ڰ%@ܲ!Jdir2D(p>jvQy7(X>U]S_. ~&7K.e{4>vʼq% Vw-܍rϞ[ _ ̝L(mMQ}skm`cTqCU@O{n ~-ԑkGM(Ҫ7d*04zLP+ݤR?Gw(mtl?mwBSus6"5V=a&T_˾0jUݫe_xҌ* p|3ቲbfI{b:Jt [ %lȣUgX&uFW(ͭe_XFUײ/ss̳Q|kqۣѐs|'DD.e0cv1ʡeV>pPemZ?"T6/8˳UmJ9̭*s+X)A ܸ)f37 i.ad(Rf3;T8wL>m%B ot}Q=0YխNjeJvVQGyRMjtnIә&UڍB˙F5dCfSOI 6WCvXӳI}d 2[j*S*L[Y&UJTe1S W27PGGb0+[r;ϛ<q;*H ouV&UʽyfQ j/67'x&5䪽[: ѨJof˓X$Azzܨ>I LlnV#H8vRt6x}uQho5SM(t9fF5RQ*+&< UJq.R3'ڷFIjVz0PG+-l'~{uh}aOϭs5w|5R~5w) v5]cV!'6ů^O\!x`VVc4`q˫hSsPA}ڰz9$p-{Z&Oaӡa(\H7Ħֆ1D`?L٪9v>4'm$^vǿ'}j!g>*)NO3ͭx=,C$Ukb0'>H ܪ>҆=} ~ldRCTuv ӤZk ~n!f<` ޭdBJ}j/wdȀ6^pn{q_]!m}o9L[p9SjXڵMr>ٓ,B l0h۾8O},9l+> oY97I,j'WGBܹ%v|2TНjs'i)Bhs2"Tȝ-bOB2᭫I.-iD1ז}&)҇ ۟"=s<:ybwůD.լ-㉭?qEH }L(ajb_r,x6;Mj(ufF5fu>y&5fD*A;F~VXdқԐͶ:j(Tnq>&5:\ u<ѻM(npGc(nrl:Ju ]\*R] ].D*r]VQ [lOQQ[>y&5(njGC][j+ߤRNg: m ZL;=R(tv:*Hnq>Y&5*7NgQ ʭm'ѤRv4ԙk'z7O&uke3B+L\:fd ӨL3,n'ϤJw+ICLsk}^^EC}PEm6Օ5 NL=2FN+#];%ƶ(7qfC=ڇMSf *%V^Om!u;=٦~3flRS bέm$BljҹYm9MΕC;UߧY"-ã[z:DֶzԬ~-"@HЬ68= vl<d0ҹUh{S`k֤%t^dBs7Nq9֍6GQ@i2)AۑMvndTCD4ҹuZ#?^u%Uvbws}o$aߝ[TQiA &;sMX+ 4V:-Q4н;J6"m\ɬ!nS>[Zk[1BwMCwbxdngeNž9;Q}xI1<4Hi'L} N}y&N/HQ;jF(+٤BkYޕzg )qv vz訇83 C]۔䫇 nwS}O$A }VK[_ =E([Kµa\{޳ѹՓ4ː#0Idaʐ#&NwS߶ds'azBA<в L*hK:5-26;Z,Dݸtmdv)C l3G;e(Xm~{ԵOn37c>VK6siߞZ߼勤}Ģ@xDwTQ* 5≶Yl3ըBՌv'Ϥ\g+hd?3Gof OQQF O<(W+&UZ£ d uj7ã t [ %L;J76[<̵PGm8J5"5{\l3 *xTD3Թ1Nf0j(unG3~R-TQjf-l'ՐWIYъg: m3يWQpVU)=6҇na++6S06@u]kѮ^.?)Ck4;;mˀ-<}n{q#0EqM >7S~7,)B`s~Ȍ;_G*/|Sg`jxQmd\ xS lGR $L$f$C }Z% Y}d109"BӅD]Nz]^`:=_k `6s$A aWf$B 4͞ /iWnXE'Xo+!ZSڌW H:O"[Z *4pф40FlR~(H 耲MH3M(tjHUnsh`Ҍ*n[_D遒PQ M|0BMP-| (ݤB }0դB,}0Ѩ\5 s3 t?F&B҃ Pjr>FIjbB{jۣdl pfml}zo)I)AEC[IsK{  rX[`{ Exf v$C 5F k?DX#$vOF H k!ǵȫlUr;ɫ$6,)w3I@;c9nۼvF1/0YNIVؐuYMm bP w~V Ahؚe_9Pǿ$B]m1neyyanse%f;%}~$d54Df' Ҡ-䰖Ԓl]NbЀ<,B<τBO!ftpb.2\&f#IH0ӤZ{r\L6zr. [/$B=&08BalW4f=4 )j x|9Lk*EX} U`6 OXra*Uб Iz߿U^a;Іh38B q\K|!n|1>0ɟe,A< 3(BZ?CwtG_J/otC,ÝOnV_ C@[> iL*ea(7"CiHʁP 4oNu7:$ES$l(P2жf ݛ.OЊR5b͞]") (̭Q+Udh@;ԑ7 )&1VsC@#T 6TW`I$ay~Qs?8`'nzM(a[T٤Bۂ;`Q 4n0i&5jU=I3 *tf8<(sM(>&[T{%H A`ԑ*AfTQZL4!WG &ͨB`Lj(unsF5~jR8l [  I1nd uกR(t-q3 Qx@eRC0ѨR L*JGPb@PnO&uЁ-Qh[ @#5#nFC4!ӌ &ϤJOC&U)D |[D({؁R5 N9ɭmҝ8O,CPcڮ}: X B@ݜdn@Hۅ ;A.N'у٬^DG?Жh~Ҡ">9ΧM4AMlS2K{S9']efz(P w>Ohz'P@˿9~j'}Hw>˿c`7!OZ"ڬvR@K$AurypҪی$/zbcװ AhZsy{GI9VX[}N*f(XhȑcH0T*f3 UT6*zo ﶾa} Bܮې;ᧅĩM]{1m-."r䘁Cܮr:o)%3Eȁo͗qr*%m4D^.<rCp"CzlOЦ@IPPzxӏdGL~G L \tG!64dUJ"d8?C6yp).-¢i$Y3Eȁ{s ҪK ;\1*_8SD6|p*`Kل:C&IR p ]eGeo𬂶S}I9nLY٨6*kT7}GŤlW,B 6% K/dhPv} +N#XOs0I= ^NtH0]<Tf w9\)B4)n{)!%8"W RضO@ĨDmT!0Y&5*&>oSIVn "C= -P+&v} )rKv  nUCmW#6o' ضO1n"z9^L"yN@4[})zi%\E^ѐCcy !5U avj6p:$czWB-c2UdU%HG uTc[AJ;ew$}ł|u p$rک[ܧ<I6&|Sm RvLكH/7vdJ3=fe4(~!אµ' Px,>)Aɋ-*{0=E(sNhCH|#'rbazxD?d;DS$JihP>pEï|Gd)"S(- p;nh"Ӝ MÞ359}>ȇr,l>S >DQ 0$0F5N\^i&a)A;pUώ4y US$B% LHiA&U>fN O8*m05xOLp5-;ЎKL-x”U[-drϽ2TPi<Ц;y&8|XH=MHZmgZܭNI 9 pp?7$ql|l F$pmAV2Or`y]΋)! !GJ} "D n1^I#hKctӌ rܶ5$5)0v$ DV,SLnM!p7IjOp108 oI PŷsUɡAkHpa  zJ3?OBB"'lS FPmNgyHs+`{$%h2(1_D1&FJU awQ;$LXߚK)lSmk@Han'3 7P/Kg!w2W[r@ 0жiTCi(LI 8<rUHNaҌ* @s 3UIֳ1d ujO Ĝ-l03SPI4L* ]KpBF5䪞¤U!nmH(LI O^Pj(uYZz^ fma CA,Fu($XD9$ pP#G I<%pi*0[CDyUlAS58HxAS  ஹl&ch%n Dfx[F U=/IW-1iupPAZwn{rQx5/֬vb\>\ic OQІ7D=٪tHl ܫ|Dt6\Z_DI HUCVbw r\i$U^}A'(PܧLi8|lo/Hx;{!&ůuBXxD ڴ5ihAAR>y¼s*rU\c !!z~Ar+O*d,ϓ2$XN-T ܥ7mBWz^êMx 7hpus%Dҿof9DZv ofzr_ơ9q9ᐠڿcaz2%^!ՠs!A>*mN6pz W %}>Ѕ'#rlLQE| \ŸKь&ilnD:vd(2<.a{1&[l,]%w8!oƔ-gU=Fe( xt*| FNB!Y#{|'2z3Yxx  \3 A*BbnThȁ{d5Jw"-JiE"J ?h :gN0$v 2hz>p¤Bb `Q 80iFDOfRC@ iTC*1(r!< A7THB@0B8T* ]&pb*=2!W hTC8B AL*JbbBGc$&uj$(-Q[,!!ma $O rHU-13!Uy@3!Uh!&ϨF'HX!&BO8D`Q=¶PGnP-7#/FULԐF,cL4ҍP!&ӤDSCLPGX G![$7PwPEtGYcEX|ne:mB䁻< 5L rIam  ;pp?w:|wV!i(З\nB P!YEak* b!4-CY @!B܆DҮr#"Bڲ6$2\V"ڰ~7Dqa}Z"BldJ Bճ R&A(/q֨^|G 1monf@DhX"Tf0lƳ=%aǴBpFRvKyx Bd{VaźglSr"B»;@hfd^;*EHyklӰAxl %fڃewO62ڔ #% _g9oN5#1#D7H5yFȃ ;p^f 5ʧi&p8` raiUfS#9@}|04}{dA"qf=2 L{EurTƝ A} 40,ԾNv>nmnK|H,Gq*_z%dqhcv-c[ewfrgJcpAڵm̾{dȠk;T9 9w~@Ɋ[zi,$0ZWjÚXO>p eGf&ap4<k6!cU`6klCD;ІSy"taK%j;f,ǧo1u}o'MKr sC~RB •'P蕖4*=!I2!W|gTCd&ѤR穀G`:=Q#0B%TB!-lD?3F\*RUK haLjU=%yՐF> gTZ@ɴP4l:Jgb(՞Qy[)ad4&uʖ0M(t-!I&Ր<II3 *DD<(=p*&UZ<-Q#(xBXHt: mKHA&U4jU#OyF䚑 iIPEm#(פBIM#07̭QZn :Ju892ېwY_\֨XFrSc&R[ԜFv!qp!A;(40ۄm.0@0$7 i6Nr $wI640[Փk\a`]Y=-PAAІVw rbVVO 2H7c 3"D ~Bbճ 9a=Wȱ5gB``!BBlUzA 9}j5X)VSԼ쎧9+\ѭ7. ݖ?Q4is퍑CN~?mSI o{*#!Iv6|)A9jSSbVVloS§πmj"P<$@{ U *D4ߠtnRoQ2d_>]q?C$BYCix F{Q! Y/C)XEfꑍHW Q-\洞Cw)$@49 Aauh>J ^=CQn&-(sي)B܎pYa֬f,U?j趟$͠ ~Cx 2^:.q0CbwE7$tj];x:!C%}k\ƃS =$Haè@ E]ۓO38 ؏Y'k<c;'ws-.|N]=M6HI_gg1^+u"8@ [6E6f^0\:PòϞik>^,w i4h'Od\}oD]Cܮ"3q)&2pi؎2_h kd[0Qu>GиSDq11NڜZV"a^BҭjF~-0'Ӓ݊}-: I ,F>@FbB[.]ٽB?}kC ls>fO/5&=vd?惺^ZmH -㷏y<*21)~9miIzlxTSҰe5,eJd#{k`;(];jC鼻.:.~>e1rMODl _XrN벛zW7RװsB9An2ySm4b1:DfCQiYP:Ll&-Yʦ#lnatݤJ$OKb Mq\yJdBb҉1Hpf> Y iWj (mO^9ҬwMZF̈m@jkĤî~xI<'&<YS)j& ٤}EJʂ WSl7!Vz2zxʼnՂ#뼆oq]&5j}`jyYvohnC[e3 tBc&:Ljx6&1kREDDbB1t [ sPIe#b(-!Y UQZFgTAh鈐Ø,r'#8!DJg"B(i e[ODM(՞i f[TdDb(H3!Y UZFBgRC Ic0ϨT5 QkM!1i'jDh"C&ujD4^ר:JuE,-lDS5"Ul0&Ϥ\Ib0ѨJbӤ*:P-Q= i %g %%#bcvPElIMb(5K\Q1"tn11;/uk~vA;,81)@:{ ]pr?Bxl _Ć79xBe_pÐhmy_p/I\v28C$r/?ܬ\"2:І辁dDMt,RJĐ CcmI!HHR+Q@ 1!F^h̐8iRKхCg- !@H$[hyh#f쫉kBCV'Q&F_$4e&<HsDŽdk'yLp##Cߏ1g4\%]$ M΢٩HD9\$`cihM/65y} jP^Gti!ui&BH70,B _Kc4ݓ> s4ڤcGh͓$C7ќw+I kpMn:gd9g1 n}!@< ]hP#ӬOJ2$G xkH40ml\`eJPO86ٓ@|fO.R*7f:,1햅@|k )܈"Z◷ȃ%:I`?f- 7 {<=Pƙ'X:fLB<@-l'nj#M(a[TpEs(H3dqUZBgRC1 t0Ϩ\5< bL U(-Pf E-41;d-rJSh;d54-Hҡk쁒}LlFCFo3aXbc6[q!9>Yr:'ʛEhr׆ah&5J{cJTC*hAmqnJܤ _!j֞dZ >Ҍ&[_&W*˿cc6 OaY8r9f:b9#fDprV3 pB&>g۶ 7ҜpÑDך %Abr$'$!4=nbed(9wjSVdK V3KH ͉ R?cw "91ZJL#LWkHVct2ݶ S )9ҳS՘*g45o3Pv@D6B7-ՠf׽|J.m' 9x$E+g5]A(U}&iٮm>:+:iuGM٢D6'vǕF7eaF.X^\ڬ!A ܮg1LȆ|sXiIlCV'67^N j(! }9k0ZdTɠw[e{)<(4pbۘv<؇~*=L<Ȁ{%AZci:\+R؞ jо3Ph))F=pc6em%:e%(ir_[4,3]VD ٍͯ:X3v.2=*j=5ڤRR\5+W>`|S2u 06׵6dH606U*3TnƟPHe+Hig}_THqxƸC}_w1]c39iT/ ȽKhۭI70M ǀ dd7|2]cy78' $g"880g2MF01U.QX27(*P"DYf/oPX DƍN2n`Xcoɤ5UF LDҞ3#暡s454$Xq xӲ%ca7bL:eƘGKeHI'KV|r%R<Έ 3 6n|̍4.LvƥUg:BJ,H'KT΂XIҪg)3|qiJYё|OBI d:14NY0&0&) &;QiX[דF%F:е"7h5ׁ9'Jw, 8Z*蠌܈p\2PqvT;u!dbSt`l$ tDTwM65vHEo0n=% 0vA:Kͷ@VZq" #ԨHzSf#Ee6Ȥ6;3oq Ds`j5rwEr@bc f3㡋Ls@Dmi9nru7Ht@X\W99J;&U2a^j TJP`lW7+sݭeq+ZsKWŤRJX?t Er7ۛlE-MY?c,kPvk4~}؟Etj{N JmS'5c};^fTj՛ag7ܩ}T72lFsdaHKm$a78[ZםAć@d8(]~~eRMO7<,  2|Z"7 FH5V s6>S&PaC(-0a#Ay+{) ~` IrFF|ؒ7s4M/] GI_;eG&Dps>0 +Hvdޙ2$` E*2zj@^@FIax^L*RLAqT6}?g#i:CL_Hf6m Rn$|ӻO30HvSU?D*3X YQs51p$DR]xc,XPI奔E<?V.̀Bar8ؙA2L[LT򞘁7" dsCv@*#oȓuH:C+0):\$G>A?Hcs4&~!rn0V0/6a *#ϭ|!Sq4N(sqiHsa_N;L<8" ?tI0'KUP"{qici v=aTX1@0NJ1Q 21UI 'I3@"zQiGd4tp0D ?i\Z@3Kb+eIRh@(xҘt:$ Ƥc4 u8yPTT"oBҪ @ +Žij݀9ӨZE"` $e`N^(P$+nEBjI6s"^@j+'%2A? Ig9Y 38~2-gьf`_H:×=f8wy/d9+ $Cw{"A򴷠t\Àf7B!nDŽgpA4C$he{! 0G-k]$acc!FDEY>혠,М)DWv=[4" w&H6T@qc40g%5ɤF;<0M%1Lb+ތ`4R-^/fj g"4"Cg@rdVϸ4,N`Oxd;lō O~ " fT 8R, 1ո!v)H&4 ӒʒT ;qi߃Rlw8_ TV] uVĐHm!ʀB]#ߦc@ΰ:np<L,i\zptd5Y6(I.F{|h9drӵȆ Y*îkA<'kH#30_Bf ޟA$wCǠ3ƤC-;)6]`҂$co(!gPk|UƗ>_?JeS1*N&aZ*_HOLf R;P'd*]Mb,oOH27 bz5Xq< V%5Ϩzbpu@3 7c-sbc{%}y?gP*C/B8sH(a Rcik(NW tt،je c`L9ޏ1RYE!? H{LӸBa!/0.U@#DR=ʍU9P&.01w%2&J;g.GHn7nWa q`{IoiFŠpvO,D9B"u{%J 6Wq4^eI L(8Z((#/Qqt]D$rF%t_A1Е8L~#`:$rbTA)2ǙƥU+%T;4.VI d21)5JJ0n'IRR ;aLj1He #rפ3eIҪLzi\Z`3!> $2Q)UH0~'IR)Hc cRt%N& "OJ#QiFGd.4.ZLeVr|¨4:e$ǓƤQ?D:0&dIcR딟Dyi\|H'J3sJbD&20"%xLipIҩ`.Bm4hv{3IK'I݅khv3B1 Ha Hgt`TEH^;;%V%D[o\B50.%DR>F40@ЁXeHv

    f f ?>N"KFcjD!)d ̀ a)i%;2DC_/^!%`g_[ :qr0$FʿeFΎRRae/¾;7PAO@]:_+y!1P&M5rc:e(=lO]"|!6L~V:^/`zlr$ o FCN#aS y8&K~"{ң o NB&vTsMӪDh8meX!8ܕJ}*5—ou2~ -Ԑ-Uő&cz51t krrw͊@U 4WuU-|M4xKDs[+> {!w'0M[c,׷,qIZ:1 #G? ngo W~P҂;ף/#ựU6x OeGfB2\8}CR&^`2]"pHᘯlZv^X{S ÉOY7m҃PKVdʆ_dZ\&MfC"&Xe"?XahlUء=-BR)ļ ރCo\};捦_EwA${N_!rh$U mD7YWnhUI(85[,d2pp=gΎ`83L:(f+M4yJ<`j Mre )>]3ةos696~]x"v04x4,Pj dcWL sva%k#Ln ҥX!?L>b;f`u,?|0VjФIJ lO\)#f1y-Æ{a=X?4~+p(UUGɳGwÎDž@"ڎorik pZ7 E͒ZNJY q)?Kw v _b w$Ck,]u 4phҤw>1zI?ɹ0zBAc"c~KW%h|=ۅɆas!ggLmdtˮd>E](|*Y.؏ _Á7i$q}ȎI8,KBMGY$FB+C&M236L|8I^ h{ ~ЭcMwȫƱ%w⢍c1; 8G10,z.ycp|rvBQʁ FPWlV? Wä)L|l g2]XopC4sdb>O/2ʓC$ 84iOg?K0n& C'D> uNhw> ># =}43Tz}~g·a?kȁ*J_ݔTԤI#)FC>%+1$? KbN獀φçwC)ƍ5y@2m{u :^LgP#h81IZ eG9Zڥ/D0"\5?ĥpxyNt/N!fu Wb J;:5=פIHiV% $~6?[&'‚1Šn? op:H^O/ЗWAlz{8|8> oM!~KTV..;jp&5 ~VC #H mXtdqZٳ&M~ǡH0Dؾ@olDNz6`b?B>nbOOI7ӷs?o/ Ӹ?2Bw7~\R-E MOl}۠@ganxJ?M: $~#eNBkyJYM46p# ;c 8ˑhzk:^H & Gzzz>p? fOޏ=& DZ-p1ZzE38@ˁGJЀÐ/⑰2~;h2@a$4d6nOj5iڥMPm{#!ڭ8#nD@:&}a/vG|.6Η;ߛ=C& ?OOk](O:ĕ^_Jٿ?FY2rJ=r*n~3 wqѷ:{T e?qhФIop0BJx?C φ~}aܧ1^0ҝΆrh07os0Fa}"ecEǡ( T 8ӏ_ʲ6ZK鶗R]"Bs$[iL K_ oӵ'`5eEQ<=Z&M~8LK!lÃ򲻅9H ɤ!?6яxa 't|ɁuH77~0 )npQo,  y 4\u# d&7=G~諵ʎ,)+8.xH5X=H^~0NfG>ya.ʯ@&M~#8 (5%w×##A0fx'}6_ {B/wso'W[pA7Hoqe~t<;2]>TrIsʔ} Qe2jÝ vدDdfZb>~?$r]5ԇpF!MF ::Mu}8L.fMj@OM{(M9⅃rr9vc<6xg̼ V';eˎP}1@' 5i[ȡxŃc`D/6SCݡ;qc~Nf1lh̎%v`I,EwKۆbȹKXg^`"Oj(Mn>k.@WF}IۍJH9Ü@]ſ+5 I%̘AwryM==e{Py$ ~uA3|+lT^ Z;^ ei,gK3w-!l2DKJrs.vZ&M=āy 0s }2}OǛ#8p^PGkjkAttNGtʂ(wmtN诃i`S05ٸƓ^E @/~R*0s eP6)2aN:Ϟ\` [okWg>{vl]"m#]"{Dyy9{pcN$?aܖH@zdYTvwvV]P_ʯ¾?/qsRu6tPiҤ鷝J ,Kǿe0{/#tٓf V` XW nL1XcB' %HUIJj7z`J,JT&6Oy֋s;l7*9 }e9ciRKDqODyeHac{9faafbjfލu׮W__U}v7E9SB]}f㻳ϰf Ǐ rT9lz>BOޭ0NaN#Ӵ5rI aITiҤ7C=jd~8:q=a'E&:1󂳀Gnmm VVM+:A7"ߓw|Lj0F_4F(77fϜ;hkG]A#'SX';X1GBi'&j>[%yd8|v3ԭG{^'`ǽ~a>va~a!n{89qr vrฮN}NQn w;LmRk2AĜh("H\ 3G~~2g{>kФIo UJJbQp {cFہ8X0KfR\e\i5XRXb/O k'ѓL1cnv 1B7Ν:.!6Ǭ=­=ږ] X1U0Fdu0{nl>4ᱵV^ /,]#-ݣ|;;zrp߫s rgG~'gthmo^++7㈅P=ZGX:xrqyuCdĤEGT ,`=}͑lp?~Q&M~[k,Jq/ ew-܃,TjWQC>KKNgA//2kyd5dmAQVT&*8Z#zܲko^@O-A6.[ F#Uwpd4K {vއt^G[9E8pqᆀXgsc?vMcPy @ڀc?"nc2BMmG|bK/{N[?]n<8Y8FyDm3`(0nV`__Wa靰IzCNGFt5it# Eb%LrԐ =%pI hwu6Bl}]|=v<*A0*j6`4mtǜ}#\Ý"ݼw۸v8奆8XZEJZ*C[1b6&9DZisiߊ9(#s}^>ېwQ ՘Jot< x?]0 6 ^V h4iALX&$㾆o燳QnleMuVܕPbPȉaiam]]FŦB+s 1l '߽~ZYF8 rwtK|%hkc)8fI6.йg[k3wzw“6AukjSQ* Ezp['_XUn^N֎\\{࿊Bu]o x]@x&d8,+W XMVUI"DD06톽{vƦ *;uCWXX|e`"` spJ6aZ< tfuSNk`G} P* v8ncO0k(k/w`?1ǡNҭDo_\Өm//knimj,mHK9z('r#g&;6lyF3* bx í:؟= A+4y))?/M4iw jxb, cY?Wpg[fc_Iaiv554%X \tRg> UG@nbW zg>Xgu6 [Ֆcӷ 䇟sd53)smqUfhcx.v%AfKi{{G]]C{m]c}Cus륶KmuuS^{.{]í=E>|k l #þ@(f.n}. Czrco}.9l3inL 17\I~zup ttr 1`P] bJ]<_L4  tHT׬l7fPd z|BsCTIpb*׾, ׆'|Ʉ8v3eG=Zcïj8&KbCuֲmT&w^< R-?DHzT]Br:5Y + 2_⾆(@CG&\}\,Cm}E=1:d()-UI@_E(g$CccsMM7qT4U5ڀq.$ B͘F7 2O!KOQ.n6nuAzv,dx?9PL7Lddۡ!CIdeWpxogl7Ó q-s,8Dk Y)"WfC8QG^G1xtC=SYqr,‟ͻ?pPsģwK>[>T1B#&Bi ~-  kp7뛚ZD +3B8:ڕߣ(7ߞM-ogs.;g2@/nY *4iRD}c 飽>./ r$nvі9؂ j.wL<`Ð>G215 Q:odzph 4i[B4&5`uz>l '‡ׇD6xB?=ݰ1=htZΪ>(\}N%|yҍU~ QW& H35vg7 Ќuc@ܨ3\uIDDE+ehhh_،8yWff@/NV&bQIXI2/r3-Oߌ7}468@~/{&^H76g2n}rkkC[RkK̞7ל~^ܓ!ahF{ZSOu;<Ӹǟ|ӏ#)"kSG7mD9s5_Ojkkiknoxum]]]GG`4O|7/=T'վ=}ax|ÔNqF;cg_OIh5iteJ UA)a)L#~0&;'-`#\a3 teGqXЃome7k%ƏWBE^M;Ŋ-A[ݷכ6غm١s<'̱O.kO9ݶ׾Vg(+]7 qǺ cW3MMM*8Fkk {ȯecUo?j}wo@K '\{g7Lfoǰ YlVv2U)A[EI+O-e@O'ah5> o 37C=` {Z^Li3XMֲF88=CTFJu-H,"5<7ukbu:N=wxq8mss@-)г&׾t$w Uthii &_RC}ƓCDVR,u {ν::ٖx3tydz8W4+c4phҤW-bv8.OGq0g |< |L< }~pooƔ* |1F95985;+hs{xbhtɭf/v}oӃpQ_,UJ5I&MR&0N}QA賰>j"~,w;t8Ӈi}褾d:ԃY!8dKؾ,u;L} Xڸzx{xnw`mc=n'pgv=zD8r{_{8L`UݍE*8FP} K Mkl9yx9y-30^,-/[͑<焝784it t)RBld.`4|9f,=H~{bx~0ElHΖC`4tXȗ㡾@dP:)n?.s>E>WHG!Na=\|~~{Gm-Ĺ c0VWʍэ[qqTg'D"uDcB4";9~˻Os~[[ar;&vb%GC&M1ԦA6zj"^GaݰN?Cl9 oׇӻd:GjkǭO[ #dbD?CAMuoNvvyȹgvK`ۭ܂}ٺmsw斠uÈ`2Ꮓd2 jjL&J۹AY&,9R\k)(k^;H{ >]O:G@;a`H8*M4]- *Д!,GC$y8;&a:v=> >&${V`BtmhAlaCT6xqQFrS-6JyZ pid~;=9';8tu {=STx~>n'}:~CGsS;!_JY#¯M4Ds۫G::gGiUتH8 iҤIenH:$\ = ނi4x1^~<]=V^yᮎoGѦywȓ(C-L֢9dK[Nbk>4]f7^ ÊRʃ[;"k?]yzDx:xmtqﳧ@tW:XˢB|KijnkoVR7 tܫ#z=G k,U({߀*G?TNw.]ّxZzPه 8IK#d߉&MejzVN8|ނ iq㤧kDdtJam p?hbQY,%jGWG`+wݶ^l|J|}e}Z[(746WUs474֫3F;A;[#UUUF2P`9oS{W0+‘;aj^"UjҤJyH|J@NH]V3!z: ž=`c~q{̟燐tT$YZrp0+Jk ؔPqWߖ3)ܱ6{ȁwBE/M_PH`FeU Zeau5G#G:{GڨY_~a순lgwAk7C~t1`4phҤ'_Qg vAR8 B?ad~$ö`Ac7BqpN>Knܾ󢘴ӱowafbs1h݀&_/0U!S 鹗qǡBr]]+N?I4D;=`_?]^d2٨$L~1IKkҤ闱*Afhʣe>iY"9;>LATw9i"5\6`fEX9nPu7DQlkhim簨toV5D] ^P4yke1|=Q;| debM4phҤ骃*@_Aj2xKwu$y MKcgץCBTULVJӟ%$kdR14'1c'%Ɲ>,C\qyqݧsi\Rq9t=V8`-010UaUܱef):۔ڀkXyqbc_ 8JM42V̴SxZǠ !e$.S \8|88b>>Iaӽ _enLpk\Mes;]_79`lbͯ@˓GsssSSSCw"jkjjqeC5WB5vu@f\ a{CΞܷ;98{ZW|L}/`4`2]&Mz2v+C픺\tVѦ'؅H έ!iYpx'! CY#kɿ:{#'1cU8'\$L7Vzwf+y/Vu~*5T/_C'9'nhl掆}*(8y?v40No+0kA[r%Tx84i+~+I֚6$ZK C~dC.H&m!~pXs`8,1?:ߋ3q؁]q2Ԕn9&{.'7{Q]kmW/ 65 %<  tL51Ih)@BHBܛlY{\d[ͽWV_mo{Wb#/3z5sӾ',&WcO*Sֆ’$$ժ4ѓubhq R d X{vER0o;.o(_Ǯ\**);"v??yh[h ,&ݢ }++NjlxѤsU|Úm6d<|e|WTؔ#=\`П(\ pֈ<%YVhOJ^D+27HPMvKnFz+*Ԣ$뼌%9e\lCؖI?d?Z|f^7s*W"iv)󒑽$AF̃LuDvSN VBil^RE;Q e=Z-k1Ǩ Y_3yui"ixL>q}RNS0No_S8#IH;.jzQ{ȳf= 6t o𻲡+ʵ-?58;9| 8WJȉe|mT:*,^[F.1'j[Bu(8<˃*/>D]74X~1AM$ZI;ts"t}RIU U&ڟifx^ *jH1^U ^;׬"j0uUNêMk'w4  sdC\Yq"Gy#(q#J((8섯v493+: s/%ns U8eo-?ʘ@Rǝˑ?]tNАI٩ЇT&Dóu괌,[o-^ZV^yl/ZjufV2NwI]GNj%Y_2Qžqr`ւk+ïTMY6i:{ށ%T=}ӧ\KΉD=)EY>.WYN*V&_&${Yb ՗/+SOUi'$wZBI6MVe}*xY^,Udʘ' =?""9{%1ѴWz;ޭpf{?/LqQsxet#7ة*MxmN.3T[ĕh"~t7dt‰DB`,f}x,Q+:ٌ_|j6;."طQyH<<iTz;:;є@|ƼOj1b*s;v#TU21L_4Opq[GU5h_adfQ8g?~Ű,rfeE%)i3c j vTVV96 ;:p:'޵6 !q$0W0&93vRa|mL)q!.Sgu VOEC¡xO8EƄ4uRGsQEJ(ǯhDlP蓺>@yQ9.p$fZuuA"ԆqQn$DZh''' hq ,ឹX]VRҸ?WysQȴ'^ %m Q'Sب]2vފh%:)7.}/Qrf w}=h Ӥ&6b+I]C|<XP6<𸦰gܧS#j 1GRp#dw@##kfDB&zM8"DV&>/pU%҃6X8.cX,%!v$_`셀íU ZcnQG|H.;)p gZž7>.Y0Yg֊j.vuxJoo9;aW/YwߡfT~n.黁W&uU8贴 )jj-da;:Y<%eeZIi%>fQˀEv%AϏL-mea _@^4=98$͋FH,%*C3s%.3d}sW :ආZEҴ4%/ɿ[- 4X6C6VGN _B*kpb"!ye,-<^Qe⒆2U]z"АЖ=49Q%4RݡT0gW;T7Fq9Hd&ȢC.*Ð0%JL 7=P#p0ǰɌ؁o }zy$6~WF3 \}lP_aȏB4LbEcK{|8+G`sb=LoW4 y{nxѤ:!{;\6!;2_؅* ~ɊUKSR,vx<]T.㕗lۚGZ6 wM|" XI$ fM_G;BC*P]$J&N0?0!%.*v!HfvyY. ?FP+)Tj.gWF_|~VgF8C8+ɃT}Uq{g͒OG^!($atR`f5j1'$qsCt=mAf8^zE"Ci͟zy8{EkQA-]ܺKK]iVտ87y>)8!4b͟Ky~! " (M+W]jՆ5aɟIʪ 4M}SυEe9ǵ=o8 J}Dpzhz82 9ڄФۈ 8 v۞Y .vJW|>ySv*f pN%g4mtZ\X)OL Ӵ)22B41=bE4agB MbJn<)+|@X s3M$C+?7ibJ[g<階>`"qy"KLt_Av9~-/BPh~SXyN pd<[[xDyY?EĆ#f+av44, -6r{N73R|X8+gBǜ t 84,das"o\/Z!Uq׮}eUht8ؒ7 .c7[,!T^WP>CT"b?8e5?SM)*DqWf<ApY9k;?Eɍʛ;>WY'unr6)t{VZWEgX{EJ2\W- 5c%ϩP"pD&^b|לy`m$Q y04t -E|bU/wFKB,fอi~Ĕ 麘*URG: 4]TUwo8LZ"phH*zM!RUe_E (p铜2SQSYVEqY&FDۋ2GVFeL֦9E,D8 yZ}aU "_A='n(+9b.qc(o.!pXm.' ~Sq1Lr!14/ҿδusok;yJrK&m6tNR )ƒ%;a.iH{IS兪ٗ^S-ʗG*D|}F# ڂDdn TI}Cn^hjTz$*Fu +j&W$"ֽ0I4F(MHN!]|}e|⪰i ǷN<4!^̹HSZE-GiBƐm>07Nd y:(4L/)W+ (&v@` p!X0CVHC|Ec\8HF})g yڄ\J 8?pTV!pdAZzC 8P-#,G}qI4pKYa88J44v̙!jCz_@R` =_H%uEkUFrњtҞYsUU*k֨-FhXD潌]UK _xjhpLϒ>YX8>6'~cC=pPp #dfHA #3I I=(}PN.RŴ`8ubA~&~=ˉpM'G0c|!࠷"G5%kM筿r"1_E 9=pZ I1aWa'n(꛲۝2pCǷf lO8_p󍱛2LBY ^P1eqiFBL9e6M #9)C3]eΖg,7WɞVI0 p|+C`ΚrT)^/V>ݏwr=h8pl|uB;?C*?j8v ʟ`0C6W6슯<ށaa+5Z&_⠹8iCqD la3̹q,\l¥{P!>p 0WjPD&4XZWߌ Bb.Z6"]NA+{ DilYQĔ]r#GqMv읻@7'B޽'\[LX/-F[_LۧtK)^pěBs 5Oumj#Ӣ I+ zY89-{$[m%{x NI1ɣ]#S(iy͛rYqčoȬg1KxS^&ުWJ`7_/"t\Z 3CsՆ!{AR䕨Ok::7I* d0 n){ryh2ըkL/rD }Yf+7o^1'!m@Җ,ljj(02uV7HE `Kng{߱cgEy 8P2}GSxF0JQ4yEJVZd |/(a-[l yE~,B`2؛E-]lWn<4--p5YθhLu /nl+W','x]0ZPsc\"(2&Y5R^:wi[mLt'k#t:\ϊeщuDIy, FO^ݲB .$g!E8IHjJcw}y(=/9mAqyׂ[-?5+,gůa}w:W޹NPn T|J0xRCD ^Գh|B&B*G E/Ljƀcp4,rRNCWip4 _BR|5pЄ)3K#bjh^\@,v\Tgd:}V,$zoާrYv\,Ď@6Z)-ZXW Ξ=EU#LTU3]qIŅ Q8/_p/y֭[reZZj _,X@ dIϴ QXlgrŌÜ4$fԷ+g\C|@-Ja -B6k2?d8}}d$M`]9TU@h9چ?xV5ewroVM2&UZ|wW ]R!N B2_XO*jqrbQ9IÉiH1yNUB 0S)%v/3xF_MX6ti~~=\|pKtq]a"YA SIq-cn=i!:%D}V_>FCM)LY Tã* ci$5__|~8 U0!}c/Rai8ɤ43?)W$H;yue]ʰ∸s/(,EP_ +hN:s9'ްq j?+SRRp~dك2o޼Դ2Tv"pmmmhn;8JJoEpR֎MR+:3:ہ3sQhg@JAu xdedX8Bc70!,链ۨ]L -NGp* ߛWIT7_wߟ%_(\w_q% k6⪴u~px͆5×EIQ!0^Syo,8;VΊ-HYٚrclE&= =yyjCu%*IJn.rAxY~);QQ.+׊j9cdxȱ'7nڌP^Qwvw6~Pزm:C5Q6-iݾO;7w3ܶmMMMogaSNڵuGh sUUU&yI ;c̴aK6#[?p/>Xm>'+1BQy~7ד[1G۞zĪ|rn~@{%3*~SNdE}G Rp3rjij`0nP)ʊG K?q/=0^-yz;]_>hG!hcҕ!ʱ¼tmhy2EB@YJDĶ?r}OϾ_?l{+XXa{X 3n&EaM_{:1ڧh [- Sb˿c.uE h2k?h"- c AA?)#_⺑hkyBclZWڟA&lHY$HǷUPV#lz%: XU&0 d<-ߔ:t)2-8Q$ߞ(DJld^G8?7W'pI*"M5Cwݘ9/ߪC^rǺ^6 dOtVSV[|hN|_/>ehĀ~r/U|qĠ!\Z7|IՉo5Jc } LK&D{|>! 3P YcX #p9htb:4"&ӾI ,A&;VOfIfy(? 8DmVFjN nĽ4Q:xߞ3$٨"Zq E uϒ! EX*ZD&ŊmzIJ]m&. eE+uxûRH}@=J^0)1W>\M/CO?7NN#a)1[#wPu>4culTF],V%V͙'z憄Ze2ReR!|XvAcTO~gŊ5N  KuC?pu[r4Su2mDJ9 rhcC*?37dv q*aVƗn@ _>a\߅ᗡ -sl)ry&V[0Qd3P/urX[ FS9!1׉vQ SX/5B@A$lcgBdWQRXY"'YO{|%&HEZ{Bx+GOQC+[jQNwғpJ:Yʅwe׾@),j9a!gtڵ}AS%ʏL.VEk .-(~e:Aiw;ӓ;; .>0 g8ց z֣ug3J4F]eDBnOKD;!h dWfnl, ?;",%r~pJ&Μf#nM&7fBAԄ򫮄&30΢.-/n`a8\'@X0^<2n'1Ε`壴e̙[Cc3⌅qx5%[eH/p^ 8 t$96cF"pTz% 7_WWڂ[p AGAǫō`OW OM;F&=q= 1,u=Q-4F5UaƒsGnQ :\NV!>08KJaT؁XVF p =< ^496qn d7ʟ}`?#>1nܲnex|Exla5f {>YN`e<[_8$EجLۣ?AM9(񗙳7NqqCQʴs' ߸:QqX:9aڏZ1աI%S QպĔK-@XE/bbd:'>~`_gsf q=EMU'U849[DGƩ_F@#Y~+ad@`:I;McDh3HfҌL娩ZЬNJӗ%6]u{veW ccAC%fw2AcSLF(xeE$侭 e[P$d'ϿE~ZsIi2bt~ $8B`6?bxx-%e_9_Y"M4Dy-/Q984f.z^ ЏPgqlxs OR%(Aw#aŸx{?߽vgGIKٿ_ /]/Z%V)e8R/q̴^YͷLhp=iW-<|cbJXc`.p9%3ڇex đ QֿCV|dY4ME8<"1%19ؤL?ƧÞ͊0)C0(A M*v fAߡ(ǫ=nf([g }c56'.݇iB, foǖk*T%Qɹ2}B*վ(NY Lefw_ v|߿C"$'H&bhԱgTƚU]1>bJJOY\W tA ?(GtxOmvV6 uC|?]?k'/S0^(2'n.]c|-TZZүp|ШPH&U\IDjޖ^07vao.l JKg_wB@ʑRwb; rԶѢ9%;2vP<ѶrUjm\^dt.jY|2m̦l$=E3k>{@ف~0]$k){I`]W<~=gL&t;=X4B8yWs"&GŖG$VJN=}t?[^sag" p%(A&x4O>VC:tꞅ e?F(x6+^#l52JjIc5t$):we^4MBJ,)6_YhOSd']0نzFm#1`0F0O$$W⢊^ \ICNQv;=#kw`ijI[M(Dt 8,OzZ@M!aFM:.'t\' ⧠Uq;m\%(9 |fr υC3}'Xi ^}Ci],N턑 _dyԟYicSU?Uq8t )W~[?zY@龞#V,JV|]^}ŕ E i40?v1ȰN|Y~m㢛ˣS5<>":G \ K;_ɛl`?Fqxl:(hU=wɋf_+ngaߡ+E8C1Շ;HFs׬rUyҨ4ո*2@}y竿n]?l9}rp_k}v,@b}{zMgVw;R ) Ld.S o[jE{MP'x'+c JP-VdY`c9(}LY}ZXz3< o@GB8 &ƚAad놼ߚOn O(GkukU]|*2_xCW+;l - ]sX"l%n8!d ?mvTWos%c }aD즨%I1_.w,Ywu3o%zD}?FGKDE>j=mrsF1N|6IJåз l'efi"p.j^8!yﮈLȏXU$ڸ26zMdlAX\*H7ew~7պu$;H6IaDBU{8N9۾ƽ.)Y uqڨ]TVdLFxde%yژjUcCƋ(,ͽ)ASƗ֏e?W $.z nоD0K5rWYc(%4Fj_$ȒO7} 1%.97 X -:od"3tƌ,PU3#Ⲍ'\;os`և?|Ye;o5k S2Cuh\cul%ps+r2M&>(A JPc±N"w|zxX'M{ g@Ɲ[!s:>+lO{2rT*A% /-KqQ9ڿwopeMDdxmITAK@K,NDT! \c\!X-l“K&4%BMx~XXX)W8?:a+`;J3q/b7l>?P$vW r`QζJGareGJP/Lμ 7IK=7{I^(}[SrWJ$ƂJ,[@ }Gg'w-2LLM* -*6&tՆJ]Li$B_6hjt1_\S G󔎥$ê7P9Sλ[ȾCʽ _o΅"T8|Dr ))Y$G;QsJ#q6/OJ5%+ns{Sn%: st҈0Cuxd6TYkl!C_̍Q%W^47{SC8{*'׋JEuoz*+gC3*lt.г Gȯ%(߼({5vFe_c!_R nP"l])*N|GHV@쎱crrox Wѧx$+J=y(wo|GקLM7N3LO.TTM. / O('&eGN*pUU74cӕ ‘A2 a*> A}PɈhg‰V%(ߴ>VƁ$;hԕl KwCP h~ρ=҉l9m=h$f$DqSNsoD^ ր. z6sf츪8¿E =*}7e"*ʂP{ @H&I6 spwwC\16G~(!ս7!+w.C%pz+ R v JPr0 o[ OnCG* #Խ ŏ忄Wêc)(vr5ʪS3)V)hY2E`9)픏6c1lŒGJ3cew.epٲ|Rݡ(\%"\W|+\4/N<^NI%kV氞Z,SE/M޶^l|[;UyQhr80-@͖`FPZ$<e)o}Y)l%4N}^){J'v옯YGk@؏7 2O0H2>f6WEdvgicn -pAyߠq(!-alZ GVtLZ}D8q%(A}X".+C{3еvU6{ Ď_Ao`бDW$"Y{Hg#jiA!Ӓ}xb͇6d#ȇ%i&T!U=4Vsk (Sl=*72|*(A JP.:HoGPf8PHRm`?5zʟT:WK{qf S=;Hsse4! )xJ%{F$G??OkNU+iD}Y)p5!t{Po`>=%(?8l;w'#U5Dmy~T>'W> /Aй:g<= K%x|!ȒWFd[!Ux_U~4.maorP<^/~Iou JPX:KDͧM9GaO&t.m$6װO D=wI#{7i;H'[pf/O{"WѡQo:4!Cer[*wD9Y'C,)Kw9A JP.zL$Twq1LW'`Myʖw oAPoR|iW:,c3B2rTMSv{<òs@I=۔5v˭sa{J ͍o*( L г%TNyB*/7A JPƠ(#eзS9+ݙ鞚I'tIqxK+66v%wO%T2~nz睻;7y&H=wzo4gs!T{TrZ5BmaM(HF4η6T!wDeowfQv'5**b(Wf)l*>J'4wS϶G?6ΣW/@$GT%VqƦڤE444' YsR%&X\{yF?r'95;HJ{d!"W/խ&EJNIEX>~[Eu<@yPѠ\͚(Ģ[%)·AnM_GL f N)/5<2􌸆{&9]#u;z殑"N#b)~*5e.j- smEn6,X]xgzow+Q^ ϯUf^;*O*ZϢjS14:+yF{xZ̓QgV]xCA}$W̼V&*zhC M%9 RLihDcUU27ރZq|bOg6_tpXoѫ,<";)cr1f1W!7|~z V|*z%ܤ(Y Z͡hk{P՞㝿malu,-vAW@ Qv{?׫hbdPsߛ'fj\fq2kˮzϛ444>@lZXSkUz) &%&@8E&O/eUcVU*Vw\zW@ݾ$-V_[e36J g)x z+bNØ\ j9ƎY{Im೴d6ƲHS; 8twa;(+wA Q%_>#VH &?;CU2Y9Wôy2og1sChTUM$qH*r 6*?%KAUKFnNwDCCC=HiSQKvrJR*QjAuftI3d?B_ C=>wb@fZJsշj$,P;\Mumj3}+j9LuԄ0]&Xq&у,7g4-1;b?R1PK$`Lwc]jhh|JƥU\\6=11~7r'o?n*X%^̄MKR*|fVnDlhU5֬DV n샴 rQ .諠->_,UӴr>wv "hv}4}X\̴B(=˓/¤(MjVxpUp |nڢ`o ݥuSHO|A1rF%wE܏r)*=+,h$͵h.'9UV jMwNG/@5T~\FSdoD62-2_arM&ͅG&sb]Q޳iRm_(I+w9=R3>Y4Jd[bHg444>l@Z pEj<,"k{pd]F~Tھc`˹t~6 (3%jI_RTUi_͡0,QV 1*a TS{BlfhD=-+ aVO2T;jXOsdh@F\h181 mf2o.J^j2Ƈ N4a*Y Czd,1&=LW/aeZL} X&(܏qm+m*z!d!XW<Ȫ5e 6VUra}@&mcC̵<3YO$Z2!Yޑ)8K xbQ^)>caI7:CދJ1)xJ*?X(&U{*j]N ]vd$uQ6XT/Xl}wep9|O9I \@]C? .gל>m:OS!9 } r>sW&Xefh% ԰c?cH]FajUVﴽ][uW\*QK9e&)B.`\n:C~b;dvV^T ^ VFQ)!8X^Ȏ#?\yEPO=J C3YE&?ta+?O90qq:\h 9[3l<{h)<ve+[Y\h=/[;}Y rwIu foo *Z̘*EV%qelHZTqn>fg֎obf{()̉(m3p#(Uwf#?0{]F: ٤Kj"tu0]*ttJDdѯXYdq|BaGr_rQq|QK`zp/&8[j\h> stream x}OHQǿ%Be&RNW`oʶkξn%B.A1XI:b]"(73ڃ73{@](mzy(;>7PA+Xf$vlqd}䜛] UƬxiO:bM1Wg>q[ 2M'"()Y'ld4䗉2'&Sg^}8&w֚, \V:kݤ;iR;;\u?V\\C9u(JI]BSs_ QP5Fz׋G%t{3qWD0vz \}\$um+٬C;X9:Y^gB,\ACioci]g(L;z9AnI ꭰ4Iݠx#{zwAj}΅Q=8m (o{1cd5Ugҷtlaȱi"\.5汔^8tph0k!~D Thd6챖:>f&mxA4L&%kiĔ?Cqոm&/By#Ց%i'W:XlErr'=_ܗ)i7Ҭ,F|Nٮͯ6rm^ UHW5;?Ͱh endstream endobj 10 0 obj 706 endobj 8 0 obj [ /ICCBased 9 0 R ] endobj 7 0 obj << /Type /Pages /MediaBox [0 0 531 181] /Count 1 /Kids [ 1 0 R ] >> endobj 11 0 obj << /Type /Catalog /Pages 7 0 R >> endobj 12 0 obj << /CreationDate (D:20090714182634+02'00') /ModDate (D:20090714182634+02'00') /Producer (Mac OS X 10.4.11 Quartz PDFContext) >> endobj xref 0 13 0000000000 00000 n 0000000167 00000 n 0000000022 00000 n 0000000271 00000 n 0000000149 00000 n 0000000360 00000 n 0000044727 00000 n 0000045611 00000 n 0000045576 00000 n 0000044748 00000 n 0000045556 00000 n 0000045694 00000 n 0000045744 00000 n trailer << /Size 13 /Root 11 0 R /Info 12 0 R /ID [ <23bcf38dd2cc9c24d4a1c1c8dd550325> <23bcf38dd2cc9c24d4a1c1c8dd550325> ] >> startxref 45888 %%EOF espresso-5.1/Doc/images/0000755000175000017500000000000012341373043013254 5ustar mbambaespresso-5.1/Doc/images/ofc_7.png0000644000175000017500000007117712341373034014774 0ustar mbambaPNG  IHDRRԆ oFFsxL~ pHYs  ~ vpAg8SxrIDATxnX~m5$4 $@ Y@.d9}0ށ1kFym ,} @dd]j2%<ϳt\.I>\Tu]uI} L a ISHB@0$)$!L a ISHB@0$)$!L a ISHB@0$)$!L a ISHB@0$)$!L a ISHB@0$)$!L a IS kt)@:B`t)ũ_Wկ0P>|kC o>Ǐ?~@ B?w}wY a @Aﺮ2@ BGP777?s{J̈́;IPvw}w??_ESm5 S|˗SLLi”'mG'4>YMș0`|ф)[GK4SR }'L(·?~QLKP&Fi2濛)뚘" S6/ݨ[”mdHSS SnnnnnnL""L(N|˗/)`Z K>'4_i”00 ÔfnJՑO1V5?{%L(ȇa|ltnn 0a @Aߖ+կ~_}MݒO24} 9Oӟ?///)?~cX+` a @њ"M|\ǧ6 w[޴ÔfV0e<x ̢UtÔvriwMT-S6(0huK)6$FiU%8V>7$&˗/_ki0\@u'4aJĔ-e}IR`*"*)0%)CrdeI \GPJwbJ[$Cb'ymssssssӷ6J SН֝r~Cumm3>I2obJw[oې=L;%w۫X.a @LLiGNL)mJJ1 'LX2Ĕnr>jeD$a @g%݉))) ~FI ,/NLi)OLr]혦O,a \ JڑG㻖ܔA@AOLnS|6mk!- }rMbsȇ)E8?77Rony*0?SV㺴ߪ;iG*ˮC!=f@j&aȬĔnr V&f@jt)}aJI<r Lظ!Rݞ']22/|f=,a Le%iMi8Oq#) }9 r-gc.-0=B=OI8ַ׭{ e S6&,'E2rL=Y翯|$S& Sڗ>DZ[URNԍ%(X=1eV>eg$S)\8Ow\=`)L>&MI} I+v6'm|Чm>S?s %)Lqnr~Caʶp|^|nLKYp/" 0%{V@)Y*NLnӽ!kE<% EO2hg<ksy&20č%تMډC7LMSJ%R'1sPo S22&>]Nds_z2mOKRH[bS0m2esۜR?%J#ȁ0瓂iaJ31}]}'e+Iʐ{#]!c1Pel֥Ov7){_rm1i G?V*P6a ]r~bJ;Rg+OU+}Y FyHg(4#tO!LظKÎvr~bJJ`M1=beK8cC[%Lؠ1K”tmȣ{*}e6siaV2Bn@ބ)㛩iG*}?:kKÑc7?{mV@6 6qә6rsssss]/_}?___?v3g{GY#=WIK SUZc22ʜOR)/_| G C$!+4OĦG8OK@#c8R?B[+RGّLcHFb79wlfn,\J82Mj֮ToJTA‘*00YIF!`E~F82dJl dd`.פ*Kgr Lpd-&# x?UiVSG2k`jRMdA22 =y GƲI ?[9%J3 FG2k @riG=Rr#LhU30a YLC8|*R L`X[LFXkR%J߫H V S6N82Y#%)f.g z?Ui@?a b$#פF@jR.%L%&50I K{}6@R2SeLm@d[ UҤ* @>)@iG W' ORJ`-IUf0 %K22$'PSmLّLC8LG{;6@R)p1X[LF` R5IU La#c5tMҸ$X{I00YIF!R`S*pYlR$ HGa Zb@Ey )aŬJbV *iR`6a ?>FYsP"`~5Jlo S 5v&\1p4l-aJARD=攘[<IUlܴ1 Sf ]” *FTJ]4. Vl$IOUf'LY11 lT*aj\4(0/R1{ aJ(mRVI4+)ٙj7|V xפ* U)Y6ؾJ6@@z”LPEg L2+1 lY)] T0e&1 Il5J`R l0%{__K~0[xKiL }ĔHU`)9Ji߆!pSS.iz}o+{Cr0OT:afu LE0IUȁ0%gf?O{=R/{Ta 0%;^>?O{]R`Y* -4SkSV#~W*0'Rq{)ovc.yTtj \ Ti8'LYX_OUNl kR%J߇ Vmb ۗy0&Pky@)MU!2VTa}x0Z U2tJKR? N)Zj ۓ=#U)[_~0,$ϩ$f׷IU7|nJ59)9a IUNl ysR{Teݬ{d,R)\Tya%U6RwMҸ$X*5+禤н^IJG6~ y OPˉnxnem*L+Y)bܼ4V䧜.S0?y OBl$U`*s{o4 {IZ_D+.ى)}/Wʑ"U#X༵ sn3@:oVirQ!yHg|"Oa:ȗ0e=4WR v~K y4U~vm(cDL S*FJ^/[ Vg'R S _”&>\Ep(g(e1i<S _”TDN!9uIU7W2kas_y+ s纗)}83>wL>w[)0eU4F%9B&L| S[ʳIJ),E2Ƶ1J0e{$/e뒔e4}^eHL ȗ0eB1J0u=%/0^KL}="L0%Ln)m&HU2=^SSL.T"L| S[Ja e rQڄ)@R @>l3`eؿ}^3 LML!Uh.FU0=A2`i'Ra[|ȗ0eP ϟS_Tb6a IR %钔3o!2OrBLgTǚc6a FR 0Ion2U[)/aXtG_IU.Ci SH^J!yLROnnyU}za@΄)S,Y)@yR#[i@(m _`-OR_{ZÔ.5)/ahTt4/LJ!|BSY6I ?nsvz`a  !J?q(UH{_{R䐤׷Socw?j@j&L&B晭"Um.FY3|SŔ8OsϜ=J57eĔ!LUy)/SVgڽUy~ϔa} <C?VLUcbhb dl* @SH͔H^yl PמjM;1egls)/aʸ{#L^}*ژK"L`H^Lw➚gvKcl0m)/[$s{k O^HQl[F~JEѷSn4$I~Hcbʸ峉l<IUߴ >‡?SsuS`~"bӆ>^uYW/m&p [>a fT!X-Bzl!Fy0DR yl/L'Ui|=c%L[>a O`ou<\B !y)W)mZ?Ui\h00e SqƑQ#L%y)KɯLɴV=7 Bo_IRBPtK^k{u Q\~<7 }` `oyuobip-Lyi2TKx!1-11J 1T%(l4z=(Vr™4%Uum2sSz|9yu &+aʵ 'L56@Rӵ'=,E4'L#yc{-*ͳ 3]"unWFùc&C9y X*U9]`d0(oQaRR2|:}y>FJ"LجyR%u&4.뎺!(@~0%E4˴1JUUUUAPnҰ <9(@֔PP2&F !b{ '`~”5v{k}5Zj φ>]1 @JӼ۞{-Y007,)sV&>V!GFQ2mb;` aĚs؞yR%Qm%ӧx?zwge S&\~γ TOȥKuO8B~ovxtDSXy{IB c6-vڠΑY{]ڬ뺮k30 'U9]*)KKGhl/YV!X vҌ)ݱM1 IFhGȟ0ef·l<IUȓ }Z`K#4# Lw,]"P*ZLAqoUR |=#b`{#4dUeu@}oͳ T"FE2Bì(S!p<-XɓuqQ!#4#@9)yR%^Ϙ0H#A20-a;NU?O{]ReuyBZJ2L IFhGJvǣp{k G۬l$Ua(pp6a(^TylLxIFhHFXf}]u][ X a lR+,OksJry< Go﫪ﴱ5~ظyR%(0\]y }G6@qNU?O{]RmsC1 LKº^fPBxy@)@[lTZ&>kC1P, pn;0WUUU5@y;YeJn柛2L1~ \PyR%XR b=jzxU1g[zwg-@!X>UUUUe 7 :BE@”nou)$!Ly r` 1g[Ueƫa @B:k$LؔpklU!``-)$QtbAtLLq{k r` g”^v(X#S Ո1g[ `) !ʘ|k L؈pkC@)UUUk؆ky21*@)o!1g[y?a ISVp8:ˋuN&<?[ؒ~*IBxy󫪪 @z8CB%L ͆)Ư,ȉ)x<) !0: p8ԵuEOIlG @ 0 )޺4~܇X~{[aG+(n+<~H0 71l`{JKlGa[5Qܷ_1]- GnFLLL07a9 !@@ ` ` Svugܙ&ZML !bb:1f0$):%!brS(Ã5Ԅ)$0[w3C;\ B!XGa@j1uh31`1l`K^___@0 ;P$^^C#L a |0ӂ[w0]!uLL )ZW c:t0c|~%wwKpk[B//!wR:XqrQuU/B)$0E c1Z>&$p@^___v<[0 71l`K{UUUKlh+g%!ԵضfBc[(V!X|HB=0[w$@n621%0se+$b:i0a álI!X6a IX1~_H؊n;\jSzsgno݅-V<9,+S ҍQ_ ! YVxM1>?[X? pb`P}c[ z~_ӧ~8Ե5mx}}}'FI٦<ţ JB//KPv P{aG+ S %I1@꺮Md4g<`.bk|oibI @̛1Vx\]1 s1uN[K1>?[H994>{}}}ױLá\QڟWe`y!b` `8S N)@&L@`\V[4xg6؊=Lkl ʼnܭ2LQڈQ\7LL@1>?[X׻;vxp0Ȑ]!X)C][xukW`2'Bqm+`>v7RI4_bUSnoactc+g?6]nby*H(#UMLO1>?[In~*vxGEB//ց>UUUUUu]V) 7 'M O٪1ckS`c"IkNh!/0k.ˉQJ&޺-S%)b|h0W0n;Pu]׵ܪՄ)1gzQ޷NA9MT+Uc!L %Hp8<`MzP_`!b8u0)c+80y~hibnS؎,&noIvǣ2+f@XV>`=d(p0 71lj3}. 0}p&F@LLp8 6PB//k&EsJ#LwOR(HQ<nw]u]Vتsc)LY)!xkK1>?[x} e1u`欖c LL`swwa*>x?u݅򲞟=KJLp8&F9 E_2!̑>l)`IU՞6)\VGu̳qO:) @\3u{[C"&,d$[RUC<ؐW fv2U"I M2&Iqpin"RG[B2MMו/FD2&i^8r >ldv.YS1g(:,k]sS!m/.[*Lp8-G@*!֮(}On2"@r~Lvǣ/I2kĔϟ(O_tb& "Ϲ)n6L$em,k)nB `(PM22& I󝂿l+ @Nb񭯋K5ɜ3Q\7+%B\”iM+i yky  oxbnʴ6m"=& g 0$޲`k^___\jy)d(`6F.)jg<<tsIJ2 SBGkvLyJjc $Livvl')<%6Xg/)0eRӵ VNȤ*LdL{Y4gRXʘiO-4ݴcIUNl K z%/.SHTJ)CtSm3y\ӵ^kF g auXHUC?vHq-M_hB+Hm2tYʘmz=PiZ!72<2[bu1ט&2eV @KÑ]\-N }+O(@)%U4?>"uf$}i~cwk`]ҝuRKj#L)Hߛ l$U`ͦyԦS&뙛ҽ/U SiTgם’OZJ),#ur\ P~0B< I=lY)%[Mb?9-]ܦ}ƛKs\R`Ϲd봴Ӓ1:x.} H2k׈ 31AIUNl :O4a;ST\hӚ5z?vߧr !K KqΟO%0Fn^-M϶qibŀ"Xj&Z5exh mHP\ =%G$)ĖH{?/u yG2^ö@d }-}4d])$Trv @ys^~)ViQ0=4R Se),`Ttfp'ckkie꾳dKE/,LWVIUA-`[)^eR+ۻ޽w}c} ӧfID)d<IU~6x)'W @ ѿigzPғ!swˋ5g-'ԝDr]r<_!QyfHU:/`9g}O g.NPK_ bߏb<X4R &zK*kLo3!y#ݳ'/yl:_<ր|HU`G\>a 4OrdUq9[OꖤNR{1G6XڦڃB/PXcfv{wy,!+Y@Z>|C߉YIE*0q0- T(ϸ'$)k>R`s{d+t߹uB_>2mb t}1JU)ކ&Rӵ Vٔ,?-ޡr`wwF_EeDB o3>@)Qib&1OrdUЗ cU]zXcn|_Iwxħﺥ=çHU!Ꮿ.&U(p8x@j'8%^^rumZw=c> S`}"H,gg;ey^[|nU4bHrGkTǏ?~l|˗/烕ԳUڗD>pݑ\/L晭"U0Yj y TO)oGMU?/sDJV~<ns+)0Rӵ V5Xx#XIuP-s5':і.|M:dV>Mz ʥ\Te$ns>I)zǣ!%Q4LkΗ7RF_8/(3K{ƞg2,#䕶 Q||<۹]_>՗tcG PTA0OSg[՗[{=g,}#tt(Lk/K9MRu>x?եݝj&8d*<}i9dTg+J,IU$e8a l2&R Vo$U!yS|v.xg d-,kHrzxӖ O?ݿ;$X*Ui V*Ãf}[+2}qrS3[ESle-ƿd%7v1rLU~~ݴׇLU+HtKFdVtsTrv ܴ<cyАW{ Ș{gH&zJۛuoJ}V*0S ̓.l 0|w70rKhe2Qr$Fr~bo3_z ÔfjOK@ӟ?5ggg|. %XM< ׵p) 4Fs6LLu5b V_oJP/fNs?Sg ]oV^(1OvqeQJɑy{y*l0XyfHUXJ{RH)40-gJJ kz+\c\p '`#JUN.X!ƥQH㺌6=lEo5)ɵ[06iQ$=a Y*K6[%Y%F9/8I+r04 *FF}6C?n H|)<;ȟiL3 \geaJPJO$P0sSIto$5K5g =&d ҉Q97Ԛ[|ްTrv'ܲyJ> d(vL V(i>HMs 2OrdUX?RXi;I`]'j㪺'1g/UK#ھoRQp8xebu:}~&׽p>=gQkab d¸y6϶>a=(# m,K Ô)@>HB־}Y)[M{sC*R䟌 Ѽo_Pr =m[V>?tb IϺc5)p7gI9F821 8 &>_C'ڙ662 LU9]*%v[&)1 0p$7ͽќCzt S276@6$O@)$#i{Ǵ朁 !4;cъ[ sn#@"LXRӵKm}ì㾻wZ):'#PI}tM8Vyl6LiN`8!iTtflט +po*}Gjx"=r`b @*gg8nlp>k0e}o<IUrpi$%\{}d6IF#:gb ߘgTeE˜/C(p>.c!ӧk!LK*kA4f[8r(%ac/\&Ii<ȁ0͓.l)p:ݥIRƒG8NRH-{US'6@[%OLiӪ*oR+&)ms8>rck'p(Y)ZIUNl0)xyxyX"F G蒌91Bxy)m╻R~޹>n陸kTDҜ\; z3[eKʐĤK=5_s*J'K2%H76eTtk 2D$>Ļld>֮;+.3Tm$L뺮몪*o?yR%:[e=}87/!*Ϗq= )G#֮9Wew}]}Oc/Op.c!훕~B?YjSHp8)G(k!p!Ih `8a DiTTrq{`Z$#_c||\OѝF`O7*'U9]Uݾb>|IZ4G,fT rGӔo'÷"#*@#֝2D\w!L\\yLZ9y?܏SDubp.64b1i59\JYKURd)RSRFE\Q(d>X”> zZGG;^ʐY)}ky{$sA8Bd3+()(uyM2q7UjvːelLO2BI'6u]uUU7uߌq}#P21 M(R3]pZnҷQ`+6\#]؞cai%ْY0R1'Cyk)/IR%cM8|yc%CĈ` SpZ}ĥȺMR*pS,"iG#JfV PBRK*kOGxQ&X&p/YԖё11<钧2->sphSɳR?M4 S꺮뺪ʩ[֙\f}בЯoIMRk) x soJ:#1ja 0-a 9gA8@Jkc||L00ȂT%E2SK;eIsFaJs!@~@n*CWI89m'11X̐S"CK9[o"rx0ÔfrgC;m{)P&s21ؠrߒ@>ܩQ>1x5цY)[;l' axNHԤ0D`Y`CN_:{/k7pf5Tcq4+4u]um`8a z&)@t7o<HA%LTذo+ː#:@l0DaJ3T $)Nڮ H=8gb 0!ϟ*I9ZS=/}TZU`Y1xۡ))bJ01@pa l  ,+bw+F~kP a 5I #_]˒n.*JR%,AC 9<ڧ%)t#ǟODXKl0*hbJӱVUUU;w:\?.㴹=S`AyJ3$u8bb 0-[Y@ [Qh5| GkSYx1 sSB$7I9A<< !c||S,O{?.RGĴJضi[>X6O; S>z>) Il۴ʶתkQu]S\XNs2 -c.gsS:>Z iXJ?/h_m_ƨZ_o榴i'r')lK]d!a3Gi)cQ 7<ʧ뺮$>f7x?D^^C~7:?2vnE)6l?)S(c!b5J0=C!L&s~Ane%8Q 5a <'2~˞YW1 !c||S紽lC o` s8d>$ۿYi!MzyOJ!) UKOMF`1xo\,22/tԬbl),Lo>(BOO`*7`ғiJ9?űkdb C D"QM1>>Z;fb IJ_D|gߟ6_o_˙K(%| OR9!ڷ@ddH2rE,G`~4$?$6=]1[!LLTHιuh2vz eyÅS1>>Zr@`b  hS.`A㵷遭= |" `a h `”o8 `:TB:ON;l]1xoӤ3+"L'^@[!<=Yx#L0+c||׹4F)$31 Ƶ4B5aǹu(h `N.PB"S`c}l(}Ǻ@ &ZfHR8/zCt=f["Iac||Su]ұϕIM1ol0WSVUUUTKc]%L`5&)Cjx0)!'p)a c1ZX0eOh1h$B%뺮k SI u)1{됣R)ӓuN@” cJc g@>)!x”A꺮:>0'a db:4)!'00:,K2c:@ b:'L`#|r#L@]u][(A!`L,Cn|'L a B:'LR1>>Zr LX1h)뺮k%!@|x$LH"P2a g">,EpBxz})$!LI"cPc||8Cr%;@9B!p)a +f=LP1[LQB:䩮뺮,E@”h1G&L$B:F2] S1{F0Bxzs1Lu]׵ue S@9b:4)$!LApPB:x'a Lb:0`2!dR1O0c||”vQu]r L8PB:'LU1[ir&L a B:S1"LJP7kL2뺶PB:Ùȍ0`1xom0 Bxz'L ab1F%1G03,FQB!%LI뺮<< Sc*a @B!d2 SXZSc1Z(A1>>Z4^”꺮:@ B!&LXX1[0L@B:,,cPc||;0$)u]׵uB`*f Sca dn=Oc!drS2; lO1>>Z7 g<%B2@YGkkdbLTȟab)N}!X `)Me `Lmte A!<=Y1RUbbJvHb )1lSU`1hm31eźy$16@6`b:eb 3g}HG*-4+\Ì.4a#a cX#Sجy4lS:l)LU`BxzS`'U 1h2yV>y{mIn#G0#iY{F )9S6JV*s(?O;Y/Zsηsbb 5@a *U)+H)m9}Sx<|'L)p6Ja W_;q_+8~QzTLLN6kLUS~ƺpV LY$UShUJ!Xh)oRt@~9N;)m)Zb x<XZ*T9)?6SU Uuxr=`eF`_IU kfbcm61hC"kIUҶ9`tVڬORB%wp0+a p6Ja @K;R`gNm~9__+8O9|7w k01X*HfDD=SRDK)ms)*r~wSSڬ܄)V*@IK|)UW*`8"oRt@o)?&U)VS2EDK)m9}ĿV&L8>U)ڬkk1J~06UJa6zv@oL>NNpkŬ0#R5euNJ)}~~1 >Y$UJr֟&FSfTRJۖs{:+FI\ LVT0[(U~;iф) @+641 p0`imIU 0lL j/1 po&xM= y')r~=?bb /j3U=5h2 )k3[EL\E-,'D@&lSUʬ‘b=SB*`QlG+RF0*{L)msV{fP@K&0!kj#311E(_Ԛı=)SXT%"X1Us5BpSڬM8BpS_\԰'j"Rj\Ҷ9+`5n`D& LU)e5`hl|_@a5MR#GY Sb@?,aO2a tG{fP#0PfmHj#+f7[;J{GҶ9+ƒ Mkh& S`\fPY_dǥ*2k=!LHU5Bpz LWTV#F8+UmfV V Kjؓgp#n ОTȃÔR6ߙs0k9()ɤ*ў?$} @apc6kLU;Kjؓ$L?̬j#3*U)+ϙ5ždif2kpi%.U3U9@:w :_‘5 jLLS{f *0Kjؓ@Si=[cuSY# #21f\b P#)B*$#U)jk# fP#f*OU$)mg{>1Cڬf5&MRkp:)6U9󿗌 p ^\LW`t.HUF4<'LT@)Ø)U.V L޹Y) L 0BS!L 0BS!L 0BS!L 0BS!L 0-\fIENDB`espresso-5.1/Doc/images/hex.png0000644000175000017500000004271612341373034014560 0ustar mbambaPNG  IHDRA oFFsBA pHYs  ~ vpAg8SxEVIDATxݎ$G᪞k152Ҷ@b_ؾFyKXN/O}qvDGx4TWOVVOO^~/<8@OdQM DMπ~W^z@TR(М_Wr4 GhGZ?OKӢ~hfZ3# Mׯ_^SH@pRh+ g\!-qN/o;o- P!ДE=D" I)4*@A*2R(Є~5]iP#M׿ooo͛7o޼O~$]ݻw޵yLɣCĐ )yд@nc5Sjd*hT{B;%ǽR(ЄITh-s'5"} {dR(P^ B)y 4?Ov S )nza~ w c~PQv M騹GQ T,gzړ..NָL:~PGhS?YTV' S{ݻw 1vLHPQa %g! j}ttN6ſm`~ }իWrBXBnA8PQc N:=Z㎡{A8P 0r Js)P8ן }1L^nx)0M:696ers^9 &7vykG;_  ,`팅 ]9T(\^fC\*.a1 OnkSsShPAs0d*h} gB0s3*k͂PfŜ`ُc BZY|"֞s"E :6 :=-*u\O؏ 4gE5;JkHl?^mp?=` )h<𒇁Cyְ1ɰͣ'P :>0'h sHpXvJx$]u]{OI` |D,v_ҿCsI)'sl%,),%fLZ.9S}|7|ף #r̹$7F8dp,Hۑ a?/iK 5B*  *[97&>_LR(d6$]u˷?:@TB)-W(4M8d-ɰaI$CxR!J #Py&v'`)) ˒)%G2%`R(dO(`)Wr(H%M[?)I͒K #`]H@O 1H@X'{2OIrH@( Nj`OR(P1s¢ǓBȟSr(HzI@OZ6odI͒BBɟ0͢ӤP R)8O8˖t~"MN M %@Nj( N, E v!@kJ)I 6& ۼEwv'5K mB}Yt؏ GJ5P#OL[4;)L ^ ;YRH cM>ҟ߾G`]h 2 PEQ8^ɡT"Ph P<(Py&NjB!8^fC2I P"Bk pK[4;)QIP%sL.lfICR(TC .Bh'@TSr(H8 ő?Z2odI͒p$)& u1 ɢ#iOs̆E(FR(IJ ]2@ ibwRPؑ @_ħP y%`;R(lL`ofC, ޤP)|IVr(Hj!BO]2-l;YRZHŲ2CO Q'{/"F ȟlk"8Җt~"MN -)VOsY&v'5K P)F˟>؂` EwJ&pL.@J))Oa\[t7nwR@ PB?(H @>lE zk ZP4/ `P:?&v'!R7owR@P %PB{hZnmYtJ 'PerؖP K dk @R4 @ N L OjPZ4 @ ܝT"vHβFi.>DR(?`o t@TR(?hS12$)UOxDG؛ Bm^4 @\y0- @ ry~v$5R(a[ˉG~v6[h OHL[w J8׶ B#ɟޤЦɟ'`#ɟ˟>h[iPFk !g[d( OLRh'G?I?8 E ̼)|/ֱ)k K -OXs?I|v70 D"Ge IB 2s۷ח˟4vk(-?H?`es #@tgO~?_ wooMnkgu?[>-0#ss]zz#DO>)tc',sLAzɟc ȟYsx ovǖD( C ]HeȟC(?BgX?OZ. @YO@ e)u3 9}lK ԟ?Q G ?`s(7@>Pi#}< ` p_A\g믾 B{NӄROB߻ p5Sv&H*):͢uϟ>87 (~O^>+Ph71K PYD VI=iB)~3B?A`.% ztsn_|1cB5B)Pm].9AM'H,Tr(Hr˟g >DkIsviv`=)]R@ 򃐹O{ cгٝeoQ^Sszܺ3^*)G -۹T":ՒB?ւ -?9笓BUȥ%r,KqȟE zc4J5OQVvR( \'GIU׍/+%?(JJ)PrsM,rsiD#YI0I8Xn D=ȟz{COz^/Oo7i1tP k~dֹN3Sk|e릃gr)?rރ~&@O"[#&)G eR8ҹy3ó?fODdh @.ʢO~4Inۮ\, ' EKP c,{ y \R(T@(>u(q'Bz%Rx3ח?i @ˤPk]>iYn'$R(4ʢ)?x5 ȟ0$/.ǰ-O,{ 9P`6 gD BXt1'Aȟ D(hͺ)|~Q(]?`+R(PĐ?};^Jw ǐ?`R(PɲP9˂(p )Ew'B?f15KI'.Znɟ P4ȗ?O`2gC̓0mM>dR(@N -3 Oh I!(IA<( mBc] -7Ȧ*@ O@ ݅ȟ@m>DfDPf.'C|(*g̚)|@lR(.e1 B؝P ȟ2R(';)ɟ@;޾}͜c @O@ hv'F'@_)7h)m*!F"}R(U.Y?O v{.AXC2dHId]f`>A& ^_͇:&N+́sM~˟Cu]y0DAHj ˼WsT(Ew?!a<&Dk~IVꫯ3  YGP`AT8xJKL@nrǹKJ9Mjb2  dcS@.T(nl,Y,{ -=|Sq죧( )Nc#ɟК=2[kVRd.'@J$R{mM+mϹ{OP4K2BJ#R9v=qJ{l-DH/JQIJ˟^JNC9qPTعW﷿="/_}geKIА4g]0 W3`9qHDE]T?FP)CiNZח˟%&ᒏۦ=9|ssnjmaẠu] &)rp5X9%tkv.Ojh ,Xh5tx4cw5rVJjGC)FR(5tY5 в R(9};= @"&NNet˷V?*|VQV2Q{Tao=^l+AUnB>ӷv6tnk\NknnG  tAtog;p9u; t͹Atxc# K9A=naa iJT8ڵ^ 2VG4*E7vn{wTxgo;}scP@c{G2A39H?`hRK#ersH>L33sD,rn\AnA 636gN7>̹.Pv - VJ !Mkrf?3HP޿턺Nh]5 R(9Z~Q$ ڲwl#vd\}9ߕ[}ײj\ Ogdzm8ɹtsO3M]i{[rV:sO;WyիWҟ(ș?{P>NxE؋Kkl[ ˱P47moGe?c1;Jώ?K#hr:wx]ezׯy2'43 zyϗì?(|y9><=====޽{ݻ%RNGÚ<>>>>a"77ʢkΫ;$Ͼ~(ޑ{閷Zdlt,ڿdQfF;%L#9ZgO_ʴ@sg~9{NG?rHm?.g6&DŽ+"k3c:"}uY(?M8kGMPؐɚWyϮ/._lz8̍9IsNNKt챍=P㙜Lu:PXh_O'aD'K٤a-͛7o޼^>_K<<<<<<}i1ӏ|ʢ!.fRXpD_fY9afhT3\w^{Fs.yիW_;-OQ3~|MP8 |k2ӷẢ]>nfC)tGӟDzزh}PxA}ג8 }=e9&?UNo$͕sX _784)>04]2 钱~g@iD5R[9IrW/;KsΏgl16J ĒD>^oM *RN.ˮ~zzzzzO>?ScK򦣚Rآ@ )É:ш3vz6T\:7ɷ&A\:ix%)dv_~~M 8 on_|[X 0ǼhdʓPRc&VsfCswN'"[_2g0ߋO?OnkGP nYc :)A" o5t"X4M?~KR/_ootK  6 PH3)ah]P(T r1>ևOYHr('vF"@eRV%G}ȟs SvHDP&²s.Z$y" 'SEP,J>Bd ֏'e|`x;YC fAJxvcěϠtΌG 8P R0;Z;gq0' GK z^W#=84$#iFh- 3 AYmȥΊ^`HڤB̗IZK_-O}LOr| |@%9fNdAlRNb@.ALDP^"@T)N- 6i MA5'%'Jz^eBrQ:}9-ZcRJ@^޿piNT(4G%k?Ae8!G8a=)A5-0Ehw:u@.4aٞGo5KjL@p"(1tݏ)|c3]0 aDPQ #hܧ cBRHIPA%)|sD8 Y7n`x-'TȟQ$@Xs#zѼ8 / 9Ph$ Z; I\R(@Q'OO.( lᲷ>2Y@YP躮:&Co(N!$jZ୴ԥS+ s >lRwL@<jB,h`?9euu, u?/%Oei)]d*` 0׏?\}>`R(0 : GB r2dA'4?!ؗB.DsfIKiЭJ?K- P,v x)oanԕHO5W_}@P)cSGgP!@9P̚5 2Eu^"(A2&%BkΙKoE!2R(G%&JHo\R(P5s9 O *,.ɟ!#@ Piv z/?3jwACFR(v WwMQ.R(.CN(kG2~I2:y^~-B6,Dac9?uW  4j3vk)}ve|\eoD X%М%s͆{d+'c+?Z'yprd~ݱ&zGdh SmA!b.#`[R( {DPHg>u[4]~cS5P9oOP|-{!|`j J,{ G2 -)`=Aq/@]\&{G Xvh=F 27H;xGxw13AY?'e?EPvPc(޹7`?B#???MвsgC- -S@0LohD-gxP;)#(}U4>C8W<(P,9A-{E '#ɱp%@P̝ 5K8o{ e XC vs- ӏd6|oO(~8 4h41䧲ad]g9~Q㟻 )`s 99縝O،){B6-ǖ^vQ8YO~Z`oR(ViQmhY:=2o}_7_ǜ?R(Шeil2G aV~Uԟ+5 px-?(nߵ']fC"(l:^LBvw䤠(ϟC)8T(toM { ̓g@sjl6ҸgB N9AGu1Q~\vyX hQ*sa:s(P #T f|'^Zvz9B8r@]I5G@HB Phk -BȟzR(p뺮\.e CR(p~{BȟP`Gv"?H*]u]w\.nA ( d?H(~Bȟ@ R(4뺮.y-ȟ@Ph]?Hh ah ȟ 뺮ry~^v ' '@)* %@O5P(Ț)|Ip뺮\.e BP'1О?=xRr쫷9OsI3L[?Om5B_$zn{B)@k PFBEBD P+D%'@Q- ɟBJY?OH(9J]?bBO`wRȟB b]=MRh5, O@ ¢k Ew 4)iB)P|R(N ,#Iȟ'1ˬɟ'CR(.IĢ P*`]]?8JR( @ P;)cM>؃JN kȟL Xtr\݂ P͢îK Ytɟ A, @ @ :q0s>+=@BC5n8 Ɔ3Л;K!c励q 6c9+Ɩ#QmS1-c߿bl'?sh` 2k8!KJ=N,x  i4z52Ķ5T\bL<@Kcmr+qPqnҘh b@43Z)*Ū+!%0@,קaIcL2[osU* c؞)̭-1Z۔obl016džCl`J04T\nXה=6o*`c\3l?biDSko[W|@ T)Bi؞i[ǪeGbj!cӺ5R{mєH cɸblM*6ilLk=zڮgD励mh݅v*aqgB=NL*cקQh<~7ū `?cr6uƒ錱{N'g(% cMH<646n-kuFbLeL18\XxCŖC0?Xc㺱IcH t㱞+iT6w[X&ֆX㊱i>m?k>5aĢ"D^jRlqt}ݳZ1B bVx,<70 ֆd"1iфWwU0ilm5`!$*f.LضXK@,Z)еXj\ 5[CEI0LC(k\76 1 |HիW^@\1&$cs )=,=Tb*$k~,C+.|?׿hz2jb,qm9hD)[ˑ@l [1ck?Њ-^Xu>ϟWܧz; nmTc h-Xk=<\or8AwQK{}XHhUB;Xar$EE PZA߁V]ԊA9^nM -@kV jŠ^Ɉbi+O0\!ZKUHLzAXT&$~)ZĠvִ^TO@j 4l'B^`Z-ʡV rlbJ.V˴3@k-uQ+QO=PZ-z^'EeB2(` LZk 4xAKדi J&ZpEbWt14K@ }"˭C֋ۿ=L?#ZK,'$j^&ȪK,De/ד ¢2!Y[}%$~$&xZ1Xִ^TOOiŖyer$7 S"ׄ? e1=?-r:~zPjrlb DV$tV7y?>B2)P/d-#@cI,Okix>2ɞ`]'yl >(aDkŮ9N/6${z2WqkDb@iדiS=Y O(ѭZn8W+b[T6&*"Q;5ݶǝ)R+6}N+5>2a߅Vl{°1!C-{F6w' ` @ʈj'-V 1`qQƀ *&u=bՄ-!\z+$`L0tDV '#| T!\iEe=2QH\ۢR4H 'c! l=W` =b]wk– ƀeB}pd1#"1De9V+6.=_°1P^s!B8P;K d}:N/-$;|^Tֆq0bmǞ;A"@]rO ] Dc3Q!`T&$cfSԄ0yzQc[Qzm F0h,H!nBکK=4H@kg}+˟&޽{'uc% 2Q<ԓGÜk& `?ֲV,o߾}((` 膉b>EeGP+N@kQVr\ヲM1Qr'{UsG;" A"ֲ6Xr\}WQ0QmʖÕxɤDb!kLD`@k@7OxL[Ex>~t1g[ţ"285ayݹ=PV+К'b?m%>I ^TҬ zdk?6$+3ID$Z&Ђi[sx .P-aqH6XMOOSO*5aKL {r\x .P4 QYaKL۷smc8 edGm!5Hlu'>@k@ (|>Ӷp (KT6gmN V2\i<Џ39{ƀhu RDb°<61c@AO64H,}[hhK[Ec@Dbжޢ0L }hhD@\1`&AoZ Ʉa@k@ 91XcLjzk(Z& 5mb>*9$&LL@]ԍ' DY!ZL<` D1`!`.* |߼FZ\<<2b@\2-PSh G@Z i` HN$z2N[EpwH'd@:㯤Z@~ȴL<0HD1LspRɻP#mBƀ$O4}#"~*,q2n }P1De@yUƀLbbZ0H<@01Q *=;(P\m ƀHL@U&f mc@c5ŀ.FY[0L<@]*K02Q e*#'𜶊@K,P&pkQVC[r@TAGLd%1c ZiA0]0Q Uj'izC[EH0>b9iK0Zn(z`@:*5AL "uA7L cƠ)&1] A#L ?`@cP=(@c(8@cP1ŀ.P2m2 ƠJ&q *AeL*ALT51 'TD1t1MJ6V 'TD1j"PD1Z"p,TD1j"pD1)ڠ"pD1z"` bVI03Q v v1uc@\1(bLhc@18b0p` cLi#˜(@ߴULg@) + @\1D1XK[E .D1xr[EN0ə(b͵U'LXUA&@ *{ # mmcb.2mmcZ1HLDHI[E ` "~ H `&P1o=,a@Q3r\}wb 62Q `|i '+U2c@ES!O/ ya8 k m/~uuc1XMDOsXwgsSg5;bDP*x>_pݻw}wN b (HVquuc'`M[E`L0/0Q [sM GѠ`b@KB j7 cp,m\a@j` (F5j(rgb9.F9@Ɇro5*&Z*b"I0&@U`b[X@φz k&en&䧭"C0FLzr i=9*@,ܘ(h,5jrߏ;\n8I1Q P>SU*肉b@o. .z;1B3Q 77uLH]2Q jԄa6=\.k5u "Y&ftlɯ2 U6hHLzvTV:j¨yj@U hb=ԄQi&-_n+iHLH)u ,U4u JbF(P=Š%I%smz& ڛ.sm_.˵2b&Z`F0FsLE UZƨb0] ,P70cʘ(0r Ju>׾4\ݻw]:%P1F5Lʧ"L0FL853ǴUciHLX6$sMr]m(*(G޸, Jb iOH3xlmzW m/~uuc`B]:jj׶ǝO*@9R8&JzxJ  &m*N|0`ibx RQ`Xn(t,2Q {)ޭ?)0w2R m/j@*8b@ϴUTQxNm+{w=>>>:*Tqcq Mq5V:@j*j}H ={P ~Yr]uc121Q `e~*8bPydfIL m/j@\*HD1.q--Q7{HD1.{h)HD1\pq D1v SǦ_W7k ƈD1~0:ƈD1~#9޽{9ģ"'#1|0U=c$c@O1uc`]LGH91K[EF0F&c.~ rVbS%6n Vb|p:Nwcr[E XD1~,׊-G_?2VD1~BU1^`@?Nh9iclb@Ԋi9isc2Q y'Q7qisc\a@?rFb*@N*`gLGb!c?K[ED1 @DbxLqDGQ7q:&tH,co8S(Џ&V Ƙ0Q ?NS7@ V :e@?Jk홈 .mӝ%%"$ C[r}8(<-*Ƹ>5NS7~(V:rPF$Пkcl#fx ƺ`@?Zj#e9t#2GeC[E@kbmP7f`8A *R[.wM .iЖz'"||>RPzx i,Q+"䤭"R1@Kzk8GцOƾ>30E .mh?`-j:PB$p}Gk8@\sm.P;"hCB,~U%1hY\@\[_]@5L }Ս@\Mcs?`)s4QHl.Z+h` fPc(` *fX:ڝ:8=q?gP'%hßLUMF.|>/5VZu@eԊYuctae`XzV6 '"H쫯*d*!-| "@^5V e@=L;1R9BƉZi@cP45OPXiԍ6a"1~i@c Ҩd&K[EB°O.V jŬ3@Db\"@&'Bz-Eb=Vrƪd@]DbeV S[/1 ƚb@iL+x<kZA]2P*J'èMcnS"1.잋ǴU 5$}b]ԍ#eN{|||_bUt1%3w*S$:S ;KJ`=8r?p㣪)bR1kR7qV #U X5榋ip,XۼVquuc"LCĥ" F1kx =c}@Nsm`XL(H9 .mHA0ALc"䤭"q b^qRUv*` ^}"k0Ć "+bL[ET0ڤ" 'J"}*>'XZj(Ix-xp\.uce/5-vYa:I<}"ۨ _`P'c?KH$6|v -Oa<bT$<^MZ7&Xh` ^Vی1`+\"ctMDe*XqLC$@ DbN춊F0@wL#'uczC&-U`` Q+FJ<| DbD[E6@>z&+b(1UxD 8(0ctM=T"1n1 $+?)hHԍADb fV'R m%;jŨk@::9F0@SOYt1z&;kR~+HکHM0V(™(FKc8b_X> J5w|:x";b{x rP.D1:Gz{: ?1V޶juc%;`WLU` jhHcp! Gb1(Kb*M0v i'XAL2Q ©+^=DbmP13c%^XDb^MhP(ab@}構N[=hXVs\A 0&ԍA! B0@ALU§_*G0@5Ԋb@/4T` "hLv.@c.0G$hDbv*D0aLcH "@cJ1>RS7F0L$-;jm%gH rѓ0iϰ^ vg D1# FP+G_a І]5T` O;ϰ2)t1 ZbBˑ6KTbP&ucR1ԊA |>۷o>>Zz .a^ ک 2Gjbm%a'D[EX"@cD`1Xt_X HNO`j` ]O8@iʙ."@]c.C$Vh(m|>/# 2b\3.*☆EƈGCCE 3] h'DbG0@jxN$HO) xS&l[M>95MP6_ Xv"1 |!ax @,A:@2Q 05p81VS+澫n'"17T4i (@XDb@*5M/ 8m魬@0aWM$П)bN: cIZb@ JCEx`,q< +N05XcH$St1%t1v"1 'ucl"z)XdJ(b?UsV1Q+睤*P/@GOJnlH Hb*J0t1@Db@~*Zp9.` q&tM"@yc>(1ڜ."@c+.B$I<.ǝ%hb)y|z8fNS1b@ ԍ@in }"P@ʜ.vooon"R+\}ic0] (H bB-^|>Or_CV˧`Уw)e*(b@ԍ3dTBɦӅ1sEbв1'jcR+B< UGw4'EbHuTID=޻^2 hٱŎB$7=N\nnL$wݘ0 ,kƎhe.R%6%4;m \[H<[s}w=xW%e8I=5V hHlDb@2olkCEbu'.E&$R>`S*@ j.Vq_CEb4N !KH=H YmEbJVq9 H,`q7!{xL$о嶊a m*[vg x*NfFOyNӗ_ZU Z1=3]l[on >b ɦT2N[ME@Dkڪ?],/-nG@0d['$ɠ7"1e=M*dP76Na/{1BVL1}V V+b mhQXk#z2 Z1Db@.\EbVQ1z3JQf z}"6;|>`޾}k/rն5%gXHݘ@:r*cAT|%Ou3nO>U`8}-0 BqEq{>܏VlkNEZ1ǵUmS5߻p϶gſ oIaOWޞ g 5TnPKJ2&z[i{H xl_M[[9I.o=w?Qb5⋛hm]F ƒ(b8!H vZX+]&˴1%nE!}2Q XO0>x Rزu+h<^ɗK-CCE ;@]mcdjR+߸fKm C 覆tz:4//yzTɼ+ve3:U0mibdOz[[~s3>bNj_N}4P#cq<'jb;˿J]m&#2铉b)m`,U ǖOSm66 co5prtjyW'F04q[/ ɨu/P+jωZ{7 '=:Ԉt>۝n\ackq-S0M é'='Đ; Q7x +gkzw+l#B<<ϟ3O~ETFNg%1zH|mKnus?l}d'G(_T<Rچ7ߗе~~XHqpYm",xQchB=5&qJHmm?fi3.\ {9G(ٞKTF[TS0qʨuU+nn}uc|L)f LU~Kɧ-t1^իW^MoDec.+)!=Q9,[n{^O}mC'}h'Ň>~;!P\t1o-Z25NR+iz2r"1"%"!繺y{ȡ#s?\Ulj6)*Mib@=s#+nL$z°S[Eo2acm_}1Q~?裏>hu\-=|!L0lL0v ˧[RU%U8ƻwm`U>?o9w߈rmc𕻻ۆdO JV#;-z}D1JHO8k({lw:>V۷o}0X0lsGk3#+mU_W 93uBCƹʳfG)H0QO(fblzؾbO6HZrJ3CkWr90-$<*~}\s6G5gQczҔ>q@Ԋaߎ0,ucc!{ #\Тm.ٳ=Y tZs6g_~ll+*cL0V {=.W$6}A1ڵ=#'2a娽n|R?=XcW~ 0|}ZOߑ!`!JCEĭ'{OQK ɖP Cl.F]Rf{=;zxljөfíg?~a=??3{ecPdOzqǫM) "9mxTH KHbJuiKV^"Z+<ЊsLerϴZO&|{"j;e+.#g**Z- }QL|ד(FO\~uclygS K[Ժ-D h-P(߭ʹa1sꍒ>t1UHXxlʎk܏>]Zk Rk'{x8?<'==+"1Sba^*ƀ]Jn(p|)jx0:'Z-{X?q@f+U"hHK^>i護Uǰ li@{Zk zژjzvz:0hhXҋ1iHK^\Vf$>1QyZ)Naזc,C@6T öZsO(1U]A "?n3wt[oc9*a-!<0 h%ТU sFbL7Q:)٢`-PQYq4#6+)m `}cQ}|8Ѭn HG@ \ز c՘BH ZZVR/@k-H옺1 +0Z-ȓ4b9ўb",W\ZX/c0%ZK5 o8_%.d12uck#8-mTQ-}O?=P7%h%Ђ~=Vh.PXe4TZ~ .Z- .(`P*²VAi[ r<=h%J34T,7P2bNt.a1>C8P.P>X4TxyJzMOxznn-OU$'֖=TbMCEد䶊"1ݧ;Jq!_2i2֖}Jp4 H31ZD?e)0=kV" hoPqؤ`鼄1R jx+c05^/=h옢LSXZ3@R˱mwB2$g~hDmhmZo $(` hPI9W7V1'79J0,UZk 8ʇAOucPy4TMrU\Bq=kmo[ʏo(ZK@^lb l*ƪ"n@q=a%PWk+T -%"12 Tԧ=hiܽ9{m]ʯuKѬHFBh@:ucmTF c0cGM ZNccG1{䩄r'$h`2*s$[MÒτԴ9C2aЈr!$.@ <<ϟ^NXic@G׍Bm|5{ DK!8 cH0 !Dx&< ]2Br^! ږ"{! ~(GF:Vm4R(kz}F5kmm"1H (}}G#Z)MЩm^c|&%-oK*À=Zm "K-CW XKPn|wgzt1z *6;T8LpȤj a0GDFبxt1"׍ 3#kkRDbsnW  ܇cR=C 7t1*%\P֚ǞBjńa@ڃ)Q|>z|dj}ܧ+Ɯk(iq-W֞9m-ocVmO)$6[_GqO=ǶU='G \ҭUuUkDbO>oh@]c]Ph86W Z2jHl18Zkm=uEC/LC@嘹(($̛.`uhVLpL? Ɩçu]sDm|^:8 TA@w#JNobԍ@ߝ%pU1c؃Ɔ+k =b@O(Z1k?ɐZSI$μ1|>u .Xw'$ ). 'XcZ]C؀N94'c}"@R*. Q+J$IcP/B!낺1HMX mio :"c/k q}4 +h` xk[[H&OWёbmuGKX,דF0)1k^FH&" M9I-BK{6c]S7ROSz'h_)GMH?Q~wǖ˖ƆSbܯȵ~t' r<짭b XO0@Nät߬kiH!^*@Ԋp>wM?r 11u R[nL*KN@Lh`+c3Q,'bP:`ԍ=s@N.9 .UԍljԊy̝W =1^ c>1'"~Ch` ^ I$L9 AԍAjx9("1R'wO!t_@Ԋ ct:o[sC+EgMZug `Jģ91rzDQ#~H΁&X&h#: 81 c12VRS7+z0m@nv'at:/V h}:篿/1] w*hH #*Bj*}bI0acx `L@L08shZI0ԍԍcA<i{s\ Qié`J0F5ԍALPX|=Qm!5mzg Q(W@j*uBcTI˜V EjDb cM[EHM[E|'l91pE&$ |$c1n # b%*BjƀZD1Q&}"L`EZ1 ƨ1HMwBh~1*&c@ Ԋ}"xr<, ԊN0FԍԍۈO$Z1!ԴUb@HA0 *D1ucp,U 2eihx RVXK$@6"1,J@a9!L R792D1r8m!5mm"1(@.1 R{H b'uc &pVRS7,S+bK0Fwcx }"L81vxD1J S 5ucЃ}Y&P]Aj1@$7(` L bD0 9uc,!LL1x RA/{Z1(@cd%>e&P>e&@j1+ 5e$Ʃ8&@1h1RmWjf$ 5O`b` 2Lc uc1aE0Aj1l3jfK0,cCD(%AԍԍyEb<1Q &. 5m bPD"?ԊD1(` :n WS$bP&tG<i6ƠS!5m# P2p1ȱXڢV O0]VRV 'D1` p$'H |rƀ$ Pm!5ucj}"H0<#c>PZ1(` "1B,_6* ƀ+ԍAjJcaN0Ajⱚ^)b}3Q }"L ƀԍE$@%1 x Rd=aG0Y*蛉b*18:k(b"x RV1!L ƀ|ԴUE@1 ucc/ĠV 1`m!5m>P&@c@>$@jⱵ !LƀԍQ+b''D1` Uuxl.b+1 r0Q Ihjf0 5,3Q UD11H1"a0%2Aj*>Z1(@Si2e1 +ucpzDb2Q ' Zjh!LBYmU|ՊD1 ` 818VX'D1`-p0Vc[ELEqRb0Q F0T@jԊ`` (ZmO`b~18JDb2Q G0TFG(KLbVR+3T+7c@cQ,3Q HA0d%`?b61 PZ1`?Pucpuc"1B,ƀ* mM b@N1`VOV o& ƀcՄi@(c@cZx[E!L"(K0tAK&%MVR["1&G R Db L!n ƀfim@?L$'8b@yc@7&%]P7hD1|1#1Lj!P&5Q7)h'ƀN0Q ` HNCE(K0tMĥ"@/L$1Q ` >Aj*D1 1 -1Q h` m~D11+|t4Tb@{c*D1U1Y*1Q h` 4T(b@ce*D11 *2Q ` `ĥ"Lz#P\&=n b@c  r2Q ` DCEc( Eb@c`? >` P 'cѨz#L<{hH ` 2a(0G0puc@ &,$"l"v&̻uHmOj1GoBtӟ@BYLCQ0G$N+EL|=XI"2R14 o8POF{mX bk8ȶ{POY>̹uPdSɨɝtӟb{?$(\<&(<23>`<&"1}T4EEj"|d Z8#֓Dc"1Rh֋xLhyL`-cQOF믭 b3c OFi"XiV@E8H 5"ePhby z2* S1F`a@\Ham=ٔz2˧NOJ@LO0@&2c@B&9cVd"<AEPO2 6hp,cA=@Db%fzR`m=4pb䡕"UzO*5:篿339i@^8ѦH ?֋D12AJ`@T8d}N?yucGbju FeSNO>6jԄ9Pc$Ŷl|EH_@k?@9T ԓi䗺1EɁV,νC0+J"@k[ʤ"0=6*B9 qDDl * "hS1HH<4Td  !^ZOF=Y,*0&Z˙!Pv|ROom ƧՓ@k-ETC=2 h4N0Mi@O@+E֋uh%R1곞LCE Z>ie@z 4T h i]\MO.k#ZKB4T2h WiZ-:i\"B@ g*j'P c@%Ge*gN%$Z)hHZk1 c4T@k-G0G0 Tb~@jZ)Bqb\=3P2c@qRԓPQ#a荊18qCT.:Eg '6@bEeާ(kI+Ez[/>y@G@c@Sbds0&WcT Б!#+ Q#"8 @>@0@ctA0@ctA0@ctA0@ctA0@ctA0@ctA0@ctA0@ctA0@ctۊ&(IENDB`espresso-5.1/Doc/images/ofc_9.png0000644000175000017500000006434012341373034014770 0ustar mbambaPNG  IHDRS` oFFsHJG" pHYs  ~ vpAg8SxhhIDATxˎֽ>lARb;qd[ Е6g^2:8BSbxX:裏>4,=yɓ'կ~_Y@jb@a......¿Co~7ݏpmF+.//// Nh O?OO>}i>mK  ͛7o<~ǡb߀Z?]I(F7O31 HBh1 KHG(X~1lsP:1 H!Z۷ovcݰKP`*,ׄtGy&+9,nBPˎ萋 XP~"YcZ,L#1ݏNY ?ooo?O?O>OõB.m@1AEwDH7fqّLPPBHig[ffja}kL(x0۷o߾,CyP1 C?Y144$YݘEbIbG܈Y;Hk,􇆔e<][@),B!p7ؒ6 B!Dtso6.(m鴘b>B_xCCG7oIHȚP1 6G6/ "V2u*'z}R* UY4iВ, aebFR_^b Bݗc^%2-vY۽@ۏYtkIעe19y,bhn5??_׿ucǛshR<显q~ vhVn3Ē!WWWWWWCw=1bs@3uB -0L}h<$D"mA͢cqG;,c.=/[ܺ+rxVZݎsi6 T\H7^fw⣏>裏 w7|7o =m ),Lr\Оki+01r_ u6?֕:`oq[\?1 &*úa^bza˞PExR_- ,X@D.h!TB`"^|`b-K #BCC7uYM6,^8,HBD:[҈^+\Pk!%V0D#"@}\{"r6Y4ADmmr@Y,"0O`Xbݖ@,J@{G.EJnx@D.ؒS L"&f$["D.HA"0O` 7"E"*OT|׿|?K\x%'0ArPċ [c͍sG."]ζMFTb* r@ 1 XDru.r !@"@.-rt\Ȱx_-gy,yn:?"Sƿ^tXu)@#  1 |؇@W|r"@.*x(`q_;"@k&1?q<8"]s{&0I?ݚ Pm{ rgP -@Y,Z|B A!@D.( ][%[%Ea @;X9NYsE fA\z,-r,w!n+qKZ.>|زbY<#4hyε\t9G^L`e9Xj͂pǀ h(AkQ ][&uO\r [ȁ@КtZ.a -kbl*{D.:6(D؞ XBǺ@tpmۏ gIWXۖ=)1Ϫcs{<ϹE90[jBJY-^؇E-,H" ,o._0 ""\tXP1 k-@D.!~%z\H1 J'6c"K̂sn,`9!r@Y,8B!D.hE1 ȁ0֊q\?1 W=KVL'f޹suY0r豠 "Ib1 `-bb8rbc!f1 &S/3Bk5_b/c&bl-p쳡:O@N`1J҉Ypg|ȇh&b-6:83Xu/BQ 񗥍!:hE }L-?CXNmy -0t)zjr^ljV-["fѨ `Nj\@k&bL_` 1 \y?EnCؒhP:Qqe\bmC\z pk90D],O%6D+Z1tK@>_/q!@Ö\kbq!ϤOżВ-*L[`t6Fte@D N }%xz,hȧb%0CN YI[.r XL-^,ܺ\X[ݣCD+M1tKe1:|elƅ,|HObB~FLV<_l/@;hEi/Xĸ5*=r9."kD+TD%bCeb`z,9r1/0$Eag3&bH'=8Pk1=,׽$rѽ`iHǖmwV@D y f`YG'Z&bO87r^*B`"ZA&p8>lG̢)b\{hu[YF̢IkE.R"ZA&bLp6`htH<<@M,~y,s"bl780JbysfBڔsbgn{J"jB@, T>@bz,X;ah R0:nbcЦ{,,JR:8Z܊on!69ǥ`YHc&1ytK0g[(@M0^/MFJ" ƅɸJ_?Gbt@.-(q!87HbgڤǂgY@ˌSL5bY3.tϞ={Cy Pk`/ZF˴CI^XS< ^p8, iȔ Bj q!f=mcABEY9mP.C`h@ xfؗ!uȎq!˅BL!@P2!(Nt:, <)om2.Vs034d&ayիnt9G%A;![f=mc[ ъybHB$f@X@b @jL& cLJ{/d?O FlC{ hq!`;([!f1T#tZ }֭ˉY%@59>] 51 #5Ջ_[k" P F#fQo RZAt-qFJd\Ў%A5p6 =mr<4a@H!26 (f  CB˗φNt:,+Y(Ch{ߡ5F`]P BMS-=1DEߎaatg5@k.f`>1=wƽs{!ZYǁ&0 60:`9m,f\*qK|gῖZtZ,DA!@C%Y8(q!+ҩ<вcǸ`_atLK4Ĥegt-xk֥X CY` Ci+2f!! &=U3.`{:-0f x:-9u]ӕh/^~ŋׯ-#:->t:YV@ݪj(q!@ pTG,}& <@PL 66ꕥ@zP,( [b^ŋgϾr atg0 2R3:$7݀űÒ3?N1xkK9PW6lRSyr_tsssţGb$gJPiq{blYrwwwet:,+>Y c&=x\}Z;@ˊo,z,XK88 -Q=i)6qN0:rȁ X~6e0.M|#j" hECC$dJd\p^& 6k(Qr{{{PA n<hCCC \B`t0.܄N ` !+ C>IF1 Ymr8?{*4~BJ&Iץj~7Uɴdꕥ{#ѹ02'$ {~H%l,,*ɸeFIFCCfȸC81GM@mNtQ 6tZ@{B_@.L}K2, UZfQ,8"KN/ \d,/.v$o2]}F@ip 7^PK>YYPBxY,XJ(P1 ʒ]@X,F޾~mi9Npp8, 4Y DF@~R,KheVɱ'BN BT2Y3<]E.g 0 UDת-`KY a@\J-FS贸{p%( ,xZwϴ@ z, Cnooo_4 =re !Ē"@@M6iѧ g.#aFPk+6\g? 0:r|ȡߡI(Ev1Kz#ݟR".8SbE d.J!C:|[ṥoԦ!1D.HA@U'C(]L(0E1[i{a{L2HB˗φW.Pk5%["[|\c0:kKl{% ág=~AkՐ.n3w1`kXWmZ}"%tW)m>b[zohX1;-D.yKN8:$>l&%:>X˥Euӱq*P {-|!{ (~^D.X~y^A?ױ7==[ )_ O,ª#3NZ{vϞ={wwww/_?[` \t*G.-rYwKywtH8ts*@*1`ĩcOdK,YK1_:_ȍhIr{{{= [gwk#v6?y |DC.V@Wc^}514DED.`-z,4et^)b[#=Cy#.6}E&;wey?W|p5^rt,yc $F.{]Z~^rY IgϞ=⋡Ϻ'yNtϤ)T&"6e\@/:cq h!{! ?_}ܩ'PSСߥ!!%2Xmtsџ|<>z/}$H_Xtcof 䫦b{axļ"Ӵiq{ۯu,@[4"b*{/\Y<\71~PYu!rAXgl?1O~EЦ=2vTe*l`Y@KgN!8™?-ݺ1"4l9"K/˓RBʔ8p8>yw6 홥ġB萡Jߊ/z,=Z{}[YCCtZCЉ#;W,O`o)΢xHۜ|S}czcte`vC-,ŽO. OqG&أFR/s`_z9:8S贸{pe!˫.B^%۲o[DWmu#DŽbUBJ"- Cnooo_.g %X VX>;[ڤRtZ@M1ߡ fڠy%nAM,!X .-Ђ>M׺o@۽=~݋1ъ &BڔcF0ez,Ak/JpXc)}B.xAn亃X+sxku2u X_}M=HS落cK1lgА-, LZ?Cw#ƛ-F.~vMƯ/imo}nhhN Rr>kKżMEso䬆h\`D:\qїDžt=/Z15C~bmJuim(f[`QhM|"|fh!9 &,6s̸?Oӟz"5sh\>Rd^ /Wo*fw5h.& ewZwVh|t2 r5䧟~駟^ӡr|)GZcuĬK-k.fat`uɸiϵ"7:-tSw<L8CY9Տ); Eƣ@Z~آ/x|ԏ䲣E7f>?3U-i6 (E}$)A!lo_y`&,^aқˈHc~zm~MO|w}]?N1nDC-8ChUv,0(*,`-S LSս7 X,Ot?;Ρɓ'O<.ծ~~OFx#xA,Ό"[g/cٗN L(q!ǚ֕p9{CFĘ@FLDǏ?Caś7o޼y4C^iTnyׅePkk N JL%07;ֺޏeI0bj"anE0Ÿr⧎`lI"!AWlRi^ː9/u'*A,=Pn/B:{e{n`bcݯ ma(I?믿ɟό5"9'a k=8[3:` Q&HY8`?1??~ӧOo62,=!f\d Wz,#ZQCbL oNKw =OJ!f1!@bia "Z@& LPB.mn5NM֍\ȓӉV 7S L&7;EYLӂ6-\v4]|#[ CL!HA,Ɖ\ PhG_^\NS L@j^ 2KXȅt [0(x!x@)`*1v"ƅ~EMLM#ITb*  Z,)%\g͂):-5OhNb?zLg퀖 R6,j\? rӏJ[hjU2pO`"8q ؗ"FT R djFT"'B_A,0:ҩ5r%iQ=}`ԾFB/x@)vtNJ$f\-ƅP"aًmXot"*1P?=@~>bQtZ  :[{'*Чؗ FZݑ =lo݀N-?$TRqChTKl8YH-ȅ߰X}tq!f575ynK:0ֽd^r/7[hW_[#ϟRiؙN `~Ko| 7ƅ@{,-J9{,/ޏ? ۼKxy Xt?vtB̢F}G~c1J'fPvqqqqqai@֊=lj/iXԼ&[5B`gae)\ si( u{5nsƅcEEF|&,<7˱yԥ:JEa–n:| .l  hEvj Ez~8ϸFbɳbrcy+0D+3PkD p`~lb˨Ė@`{ {z,ziȔM`ܒ#ߋc#@nX-T>5^N۷EZ豈j%fQ0``}?>`~kuٯN"k:q^Du6-hǵEPpp`]a^mj7 E"ƣ16 [lq!=@Y(0nj`jС,%ZvZ?üCF*ZL̢FK!Z~kuٯ{,Аb8ƹ 2(IkڸeP+02}jyV ju.zx\@, # 5@D%.1 鴀@jbp P71"9HƵi`]mWus@tZZa\^=1-ZL @ 6֢"hB{MEZtkmXK a\@`[K B `{  R 1WzBHX| )00eBE' Cia$ ͢ :-nFZ95^X l BD84p ͥ% ^xO:-Y!/D+<4.d ( Y4mLhm\Hs3K&/0U=YTEc 1 1z`s,*$G 3:qu c&f(yd! i!lWn`KL1ScsL!x!3.kepJTJA'xb ⋋ K w6|вDž, U7EaУ_ 8TNc ƅCXL%fhXA =CC`t0?.$(%d @y B?iu3:MƅCG̢!rtc1 ~gثC{, N̂KY4Ggc0@stZM``kpB,@}Xǿ-#<nu, Nh{6 鴀[Q$DCX6&øh 5Y0H<@)!z,%fn@Z,PiK1 tZTHW1@ bDq8P"Buz,&fRƞ9t,9HÂȟ ,؍N !]egJ"fAB8= !"eyƅĈ)(@,HN>oeƅ@XF$F cP.1 M=%`# qjbg\@,ȈN !΂N̂MIa h Y)@!z, fAvjtb@0ν@ (;0:h_Y)o<cP 1 v0N>P +`#fAּ @@M,ؙN `{āGP1 v^ZYPoH cP.1 M0N-?%`mcB(iu3:YPcɸhpf_҉Yo0D.5*Ch:N@,Ωc#\@G8ϸډY5 hN ,@Ĉb\93.Z bIPl>#@k,(z,qmPnb#.@XmTkyEr' $fAD.\ec1 #ri` qVeb4MJȍ 6YD.@pq!\@\Rs1 8CatBuz,&f\@C D. O.@V r[2:HAH 8ϸ,`u"K8G@$$rd\NYFD. Oo!'f;mt ,`g"!@jƅ@ }b ؒ`sk L\Z\Fc@3qD.!TXgƅ1 (Y]R`1 (:-c01 m qN bP- xxvyqb at0D 8ϸι57Sparx,i[.]@q!:=~&rAM4]UgJx-pXO8Cr ` 1 ` Y3\PwCˌ `:1 `"h0'V&r@X0p;آ\bFD.ؗ!sJ,'f@<Z`\NˈY;`K:-nRgX gb@D.؋-׸hq!A(2:\ #rTz,!z,J(Vtg{DžTb@%N=GF0ՅJ4K%ZDjnnnn>ܲ|6 Bnc5X87<ЂyvWS ȸɒlIh@ X 0@ "-3:fXYuwK8+,~eFP},'fu#6XP%%H@jL|H r'CԸʤ[b*ȓ6 \Ƌa+ =D%L"[& L@`h x!Vi\l0,`eZ.'`PxmrQ6Bl=(Ssʢ`#Z.mLkHCDB@Tb Q Rh -rƅ&xT \ĴYӶᘅ rvP`}DP:m<@8C`-z,ȇnxL3D. uZlIT0\t鴀-2BZ["lI֍\t]ƅC`"x5/rWJ"xxYȍD֌ hQ8`@X^& Leha!c!fK5YPZ. nxK پB-ocAn)D,h-:-hS̸}-GTֈYШD< ah'`Chq!FJRf_\B "0G`$fg,/"`:ߧ LO`jbh̴x.C(WLEn876 iyE_B0NT,`e)Z.`-mz,bn8{ʊ\#Q7B>\%~(lD"5ac["@;,`"%+B`"w-^BE)b" s-Q)&RfkǼq!FX0s P1 b3b?hc`؈Ǻ=1 pD @),pT @ ,\Z1,YD"fE @1 (bQ,YDi_ ^IENDB`espresso-5.1/Doc/images/bcc_bi.png0000644000175000017500000004700312341373034015167 0ustar mbambaPNG  IHDR7By oFFs_Ԩ pHYs  ~ vpAg8SxMIDATxݻr6`MU.&:Y߆B ;uM~ތ#L?h zN=}x@EAûow^.rLze ( ( ( ( ( ( ( ( ( ( ( ( ( ( k_׿H!JH!JNo4 ( Ǐ?XmvP# :ko޼yV\.Ž@-k>}ӶQJ+ ~_~%tӶalSGFZiЩo(۷o߾L@~7~իW^m@<@KDiБ8 YJXG-r:_ׯ_~:O.iK K; !J{jDiЩ=4@@8i0 eǏ?~?_|_vOۣSK ???LGfupGJMGTH8|͛7o޼oL~ae@*9ma5P2QtgyVڶ 2 6( 3s<2<t6 8( 5 gqPyn7kz(&>4ΫW^z53bϭF9h( VnV;@DiНxp?8J#DpP Q4h:.J QFQtg3^idcn@wN  aܶ޲@mM@:QtgzSvL*vt؏VT/= >s3V8h0MIRZiPs5@GGi:\c?$3eDiБ8)|OiG.WV\4ز0P\ˎig?90q:rJ1-87ؖVtaD[ ec =@Y8P 6Kaܥc!t$j`cE^iPׯ_J׿8@pdS^i@OH"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4mr\.m[y14hT7_V4k,;N~ >-6rgZiРm+/2@My>曩l?@M@o,Mv:NS {NӇ|~oqf'}Jm9wŸoMO h@wCkvx@{2hcnzj(ZiP#-J]_zj@ nh[݇X-.5e'j# -|}psڡɳa\/^ Hlߴo'@m98JmnOKnhD+ =:wuuFO W>M)_:6b/~pL- E4:2ھ7v>524P xG e.~J@)P ԮZU@{,YBr^~j}h#UicSs@@KDi4‘^Sh( 9Rvmtb׳NO bvCWKgzVUn|fO+ %uӮS{P B(VpΑ~vi1H@)Q͍ J'JPӻ ѶUxM{^S((#iϏWq(z6҂ǑռOHé ?a)nZ(y8ИfߴQ {C@NB4J| ZlE+ L\iKFLO `O`GR(pLZi‘lE7mlG+ M&D+9b4Z-Qq@JԆ|>߽s77ׁ @LvC*+i x@Qc47mQ ħ;^+ĴM-SH vCi9FXO 9Zi$A?ƈx#(3=sX@M0d74 e ?#@ !uo1c\j^[mJ3){j#X hVB4v}Jԑr.?㬡 ݙ:wO֫VQmY}C‰ϝiz:Hb=gus|&Vjd4. ~7%4xE B+ qB4~mJhnZP48RP#4F8Rt껿 hCZxDzbB4x7v>]h[i'pTnh2A ?2hTÑnZPC+ `Mm%ݴ6gV@ѦwC^ODi˾i}5` 4Ѡi(W@VrP,;AtSiHMCO H'JnhB4q;ȼ{gq\&V,ؘ#0D:ӓkĹV)@hct\n'Р=iL @ߴA?tPhf74nDO z0 FđЛm'S jІ{C0nh}>xXY,zy"x 73'Jxnhl@MO i3!0M7mfxO+s(c)@׮{:EnnPJ:e74hf~馱ߕeW! P7O-~@ Ҁ ؊n.=5(Ҁ.uK~jP4qSG XFzjOjVРOhzjF JH ?4uzjp'x==OS,P=!P4zj?{ M@OyhP24JO=5؎Ҁj`[mW$󧁚`O@{Զ[4Jޟj@:4hB4C\ÞZl+ViZi@nO=5O+ ( =5X!J D7wF<>~?L=G@,f74myRߌ_x@ϴҀр^QS溡3Qp#h@[,Qk'<nh@-֙l'Jv'DXGk3YO ^i;@lxAFݳZO hA@ڜzjDl̑P#LOjv@M@Di^" j:=>Zչ:P j^i*Xƾi2ԼF4`!7 Di<P@,fǾiA+ nh{Mߙ@mҀ8R ?4z@Di(G a<sX rX +!ʏ?Y J.#߇xҠB4JB:XF7 iAٗM_s[f[u]4(#(XdFt؊( Hr'<]WM`kJ`74W\{VLzu,B7 0S a4AV`?tӜIYׅnA&(nˈ`wӻ Vnnhh{]Qȑ@|60aKnh@!Ǩ63hzu|u= lnh@߽3L7 4h|>:ԏp.}1iue !=v| @L+ fZU_}u: ?9w{\.~1q7XWZܾ>|Ż','u҉೭vFf4jLOoC4e B|@~Pi@LF,ϐ5@F t89hxJajI7 @t8VϦ?j@ (n{{v,>{vn4:RN4(~ e:Q]+9Mrr/(PkH4~Mi!np,Bm[D6S^<,4W'i~Nў# і=5'Q*sgit|mn@ODitޠJ7 !XklgF=5Q nssDJ&Vi}єuM`h~-8Q34~hD{!nc^:Rm&Pi\.@PTDi4ў[s:N?~l~x/|{NӇwNsD+]M 姧Ft%Jbm6;ih5D.c }Z"J)hiQ}z6QWni-QVwFK7 ؊@bH jE7 4*K4`?aJ0jI7 U4htӀeNq,5ڠP;Q7-ꢛQYzNOzy} Pr\ NP:' ?N~22e^?'Dme%O~=R>_^ FZiJ@K8R)/S.i5Q !Zʘ84{y)XQm.DG["'P^EFA,\F7 4hQ4J&D[)3r0< P@~CeO+" hBtӀv$)q,4z8!J P[>n)`Qg>q kc81<%DkHFAc\hS1)%P748{MVx3D,) ؊n@]DideQ'uHṯ{f,@L42姛Fޅ1ό%r@{M((tzj3QSM?n@hGO= i^KFƎ,|)@43i)@_R5)tJ&Jc'{!Ac?)Q@ %Jcc>1+npZF.zjP&Q3@zԄhEO Zr{\.`dQgUoO駟 Вm?WXmNӇF+_>(T(%0Vjb5(bQg-4G ?Ia4rXH@i`P!ZtӀ3#K1F7 4f(P飱@MҘ~%<3Y-PnDi"Ds?TùQً@ J J#.KtӀrY1P@0|5(xJxt> y%7=5nny(QvF#MH@##L7 ?Q3ˀko%):rSn@.4,tӠ=H ?OG jb$J :qyt)]NZkt'J3!)tӀmH}j=MC(!RHQ9i{*fMH gB4Z%JE0AM7 `4N7 H!DZ詵M7 `+N JhL3ChP@MV>4Һ(j>RZzh|>N}G /K7 `E؊nz>hk54 Z( ,ٖ\ׁ V4mY 5h߿k!P;NXi;r\@:f p.Y mHKY'S+nVDiLG xf-jb `.QZ<nд ]v4DiMyfja<@:QZh5tӠ^rYnF ?G#ܳP=UMxEP:=,#JXŅB4Zi|T0M!eC4(M뻡<3BR5tU'E,3}mj\wcDiZA9!Z#uBj970WO 9ce_@t:>|0bM+bB4ji hކ4<* th3苞J+EA7 赉KOmiӴ*#D 6L рǺaC-S`[Zi~#Dvi MʣZ:41x`jGV;4XCn544!QZфhB45؊(>ۡ7i"\hzn@Lv0:@ 荞ˈ#D!48j!g>!΋ @M0gCS=K Di LMÜz:R@ (44QZVuG 5c p=5ƈ&D1i6;R6ԆbtӀ~2>AotІaV߅<!J۝g` 4ڞBD@4O ru!p<Ʈ~#4'n5X!Zό@ z“!t^3h[JrA1:a?i8?KΑhS'ji@?Di\;ԢjB4w=.MZ'Jۑ F-~Q?AnZMEiM{IS*oٵ psOOM7 u;m0_F9Α/pZ|D1!hOK4J^On2~>䧛QsLR{ji@DiyI@~)An6=K7m z@j+Z|>!fLPG6[J ZS{d ^n (m3iӰf's Q=54G#Q!8 tЮG#ٚ^+o-xdٿКyʭG/j77p-Mj@ JUMX7m~Fo~B_f0ACsͻ!t~scs1p0\T~-QZwned7zų(~$xՕj`U:z1?_RGϣ) ?FHEVar<~( {Rǭ~C{O96y~6( TӳW^z*=&sG-A7 Vfk8Rqk{GwL`%~1ZQDiB`Is8&ïgl\X= V:j~jno߾}0JK"6ڱ⫻TV48ֱqk5DkV~򹧅>@N?Vl}ˏMt%"iUXڙ}=43j?uqCqL&2Úp a??O>9}WbFikbڱ/U@7 rJKZ!0A/}@}~=Ȏ7iv#3x__G(QFz؃pKo}<R_F\9àJyb8Jm;n#%LQZ5t  {(V{A<7xqേBe߿LK%{v_򗿌ϯ^zp"88ՄkgE Ҋ(iPeW]B4 KGbmMgA.?OS-#8tDlC ʹ* Om\q<,1Djr#W]RB4B//,]-p)ӧOǏZ&QZt(?87OSJц>ĻM ZsZ-^k[S!7777p!2{vˢ7=Dil(|Owy͛7o߾}mp// AQZtӠ =B6G+kῚ,! ^émMGis#yx;-? ;ą6&JAD7 JM[n\f-ti+xIF۲8D[&QZt wj -~L_ lx/{y7!7xZƑ( L7 6KQlïgg3{Ϗ_ۿ+xQ)1$J99;mjemΛGhljekb/ NWYu:sF*/34ŶgnN;HxQXG>O%5C јwfrKnݝUm#ެ16 x>L.Ҷjŷ?|T#>{~m^~#%D{|tg4XIwlfC+Ji^hZzmõ:R@|v@Uӻ==%Lf&7 rMdnh q>=.=DfQ'l[:1#Jn1,[& >szO%' ^6(A"m~Hk@m̬(@gyhY'UO7-3 aY735p s^gȲ1;Sp!EɼbVHgzfNΐ5ݴІo8vTM3=/1Jn}lV О[=)PFAK!ӗS/^O񏛛c hZyzcFA~ۆh5JkDi6ok}G)hK@@B4( v;ۓ~tq=Şքhׄh@+Di M;t<΄rZx@f7рV`LpX7mv6^/MZl=A,ݴքh^R^K1A\h( V C弘&zmfQ'QZtc9'c!E"5P;4(^!Sh@{Digxon@ nhWDuuA7m?i}3dxkK[=BkB4 #F9r"cu+k90sMfg4O>1.i.՘e8bImg߮/җjg-,e`s9-f'09GQ6SgQx),PR#J}r۹; Қq\9mmG>%P mpl%nh1!+Q<~tGkޜVtog@O htf|`Zh(Siy,Z_9]g 84g?.Oo!glu>'Q$#1/M4q|>cx™eJtJ8o hUbvFK+ 5<tV)}BtlvMƱ<7-GZN{REҢh{;;j!gllg4:jB@ ` ؛V[L#4 `Qg`~ZyiQ'@^Zil6AO -&D8( hnzhHQ;( ? k{3Zu}@ :R fg4rҀ*Yu@hqLA"D{7uzp,4zB4xLO  hMcSh̝@? -fQ'@ɴҀ ј@!5!@y馱0J3H-Czj-}!gllQwmJ@=56=%D(( #jj9Dl(m3g87c~bB4hnk3j63%J "`%=5Z3fg4zinc,(zje%D64`B4Jh5D&Dӭn|WD'}Fife̘jHѼ#Vp{)y=%DVGOAݴ.YIK6SѼ VP!R=5t=hN+2&nZ7a>zjC=h>@+ҀLhGO 9B4ꢕFIQ7QB4z1=57g1;M+ 8Vg@ D3Z%J RZ=HR5ЪC#JvaQ'X >Qlj3Ъގ"Dý!4%D0 7('>3@ҨnZKfg4("uO@ih,(=B^55XBNDi{n¶R5#buz观i:rӱ,cga:FL) rI6EV5MVݴb 4{ ԀehCc;y34%K %S%D3cҨmĢN Ԁ]uV"&?!OO H7A'#! sAfx,VY9mlg4ҨPBNAoh@:QM=hP DǢN^roWx3vA0(f;Htu0V M3z=5h#Y 2*hd*iZTsY !=5,`4]~h=5m9!h@>ިՠ4Bz4;EƾGǚhcVFھi ,RI !>[hlK+ #DM,`Q'GA h@]Osz,X iz?5m?B4ʧC4:bzj'DwE[ @Dip1 Ƥtuj1vm (( ^EjvFHƶtr_B4j`4(M`'5 s=h0( "@-cvCuDi唰oX @-h5VWB4؂( ,`~zjB|BN؎( j,j6}m#D &V`6b5DAKN"jB|nh?QwXXMo Q} X@M~AdԂ<#rB48( ʻ,X䨞Z{VA@ ErjB| 4B~-߽&DҠU"jB|PQyXdYH J%J/`j:h !M_ƓZ V`h:P#D~A[jBYA@ E5!ck!'I_b5 j@ۦ_/%@{  ~>/zc}nh4莞E Zd4!`r'@O =B}BNhVt=5і@oDig5xr,i3Ţ-GO+ Xlz'@O (B-GO<p@@iQmވ x,(Gݵ#&DiSϢε#f!'4`zj9 ֎ Hd;-+!0ǽ!oQF0QVpZ VfQQ+ 8%2=zs b 9h24`5<6۱( X9o|hDi@j1!Z ؓ( X ` фh@~J*`?5g^G hnzj@,|yL%J*f'*!c"D JhϏ+ ^8vjqeJd'P#: 9ҀƉՀZX)Dg'8 ?y,JEvCjtGO (߅h@=ҀM7=5`}f!'P;4kQEA@ [:h@K,`+hvCZ0JO ؏ F`ZoS4Cr=JAO HϢN!Ql)X O~MЛt=J؀FMpEzj+I7ZiShW@ZhCxde'EvC&J8tՠdB4>Y p酟PBG*ވ&PtU `. <c?5(SK:hˈ %P B4g'@w):GkM4jA~/괐`[4LjX 0d'@e~~hz7c=vZC 1@x4~jF:h9$PZ Ѽ؏( qb5H1҄h 9vq(iu]B4citdяZu ZiDƾGO &J@?çr b'9nh%J3=5&D`=4FђaVBf74h0JO69Wh5J tC-S4e.괐^4f ؃f'5޽!`8@O s46F Y)Dh؅oy4vFN%(!@tC-Scu> rN@V~cC4OJYi'؛( \"c#P1 4&P#Q:)@`4c?5,@+ 驑bz>!Dijz)#HY @5,MEvC VHY6!P酟@vyЄhOggK^i74ZhObgKR @L@#f‘lO`g[y}|XC@G@!؛t$eo, ?"D|4:%P;ʶcHr>޶]HJ[L@.bq3ŁZA(VS[oN!W$I-SyQ IʉzjӄhN ԦG P2 <`?YlQVl@OM@`ԆQڲ+J觧6wP/4tC-6wQ4Ȫ):@K,Xs hVZʢN*48X-=5!h@qMHz JBM5^~ ։hӁZ_&D( 67D8vqB4ۣy@obԄh0M+ y@DiРt4ht sc5`ȱЅhLcSÞW0MI,$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$_\kmIENDB`espresso-5.1/Doc/images/ofc_16.png0000644000175000017500000005657112341373034015055 0ustar mbambaPNG  IHDR;lm oFFs]v_s pHYs  ~ vpAg8Sx]IDATxKnٵaD$lp/ aT`v T(6Nl(ƝPUaZmlTdwdeYJf&sux||||| 7T d d d d @Ӿ믿SI,Mӟ?SI,M?SI,:!ŋ/2 |! дW^|KXvsssss_׿u*Mٵe/wp~㣏H,馎ꫯJ4.JWAaM{xxxxxxׯ[z/PS,MK%ie (b 2дX9$M -o޼yMb'4*ͬ\wjgFEDžmsP(Ш/_|Ǐ?~L?N%$&I*>|ChyիW+P Q)t|ssssssp+Q/;6Y 4*eqa)t C`PLҝ_IPDž`Ш_׿~_~_~7yׯSzla2Xώ7o޼y#rŲo' -GbV~`H$uO=v̹ Uˋa?$ TO,[XkX3->~ǔX&9?SGG_H,4%mdyիW:(W.{; vf|e2'*l @sge踰e -KObJaC%/_v{@| @sI4˗/_.5Œdb @sƧXRbN,;2^uFt 2S,O,)-6L%T"?E ZRPY̲:؆М’-,9Eh 9C"֝b~# Bbhȡ'|XX..9_tނxS?X,_}K @;$ǒYḛ޾9~rМFK7L]z15D`{ @愁vCKَǞq& Yzybcj@աc܋a< NodY6̉SN)&Ibhx -1 WZ0"1/2~FeSG\ @CN ~u-,>笝zל[L\ 1AaCDžõom\X2F >ΎnmK kX sE?5'~\ А],ݝ+};NlL+&Wd @ J>|[fƧ[b(i<0t\XAaLuL}?$&~\'7 ]oM\hЄPX}KIN8WZf @C)Y4"0 @2W?:Rt X2ZwCKMe$&\W -Fbh],i@$_>M5>MP\3G25wtgY~駟~6|_!@N2AaI,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,] v81ޓGX)LYY+.`cG] )1RV,Q$8ƏV0*۲e2_z?y3ޒ~D*u/.Zk~ px2̹G߾TLgrcv:owex@L,n)>H).%OŹez JbXReqK%{ZR $eIH,aX$4RƄ:-< />y#veژkX%I,ČW`εH,$P]u$qEb$1vvD8LS\KYNbXQΔIki%?/Y6L{|=}Xw$ka#W&GZ=+OnnM<>]Ή+LKN?ǚo#',7_'ߗsQGá%Xn D/o<{!]]}w]< I,qk!q$WcDj2u%XnJ!'Rvw8D?ג8F (Uq$& H:_s-@$ؔ#Zr-.X\ \ȑ\g~s-@$D2aY[f~kJ!P-[L؋`>s-@| E./aiSWD0$PqE2aM99D2˜kIsGb-/[#fX@.lGM=FLhM@|W~?{,ejN{:o"wuU-)Vw><)%|~oZ[qʼn%So۷)πB Jb`'O+%?F{[ѲғGc+P7Q8,Ħ帰JSqP1%by唯6XXE;qh\ up%jmdI2~)όB Cb`aŕ}-.NP!&$nhI-_j=[k_WtsKnk縰-՛UyC2)7ߤ~0)VVZ ͵(gY)݆Y@$p.E//!_;&0r7tPH?︰q dںvĕb㹥{ 8_ }9YEP)#)}dĒXll{оt84?-oNdKOw;K\X1dW&tDXΟ?Fl3ykDžYS?E{;H&p<}.F2b`qeKs--3/GreYϡEXb raS,}㹥YYe9Xǫ sRL qe)s[չMH.(>ߝeI_I, ~I%bNO2Z&@d^0eYZr>G>.9[LthX鳺 "3ĕ|sUedO/5ͩ2_6 -P pB\a=dX~xxxxWhXD\)QL޾]~%_2Q8( ѵK-Bвk/~-C}8؟,[̩H& z0X&2Tk`tˏG=D} -(q-&> Z 9 C%Fw6E2Y#.@ivӯ|e[X#c`,q,b ^ kH{S?yX)ʉ+_y/ٻ݆۳bZ r6LSSfY`] 4m`K H,2Br{{{eZ2Z z$+lc($B ^?כeI,Wwʜ  Z`Y @XWZ*0,B ,Eb $6 I `frEhsbX$,e9MV 5H,WȷfYb; Ab(784 &`YnYkϩ8+:~qVh,۷gox||8S,p89 6eKаs0%&P7`/| @P bίB ^($JbZ{ŏ+e$BXkϩJf`/ H,8ƕB ^C-IbA\54m_Xv&YbrH,֞|u6,˖/e; X֞S-{:c+#`hmrEh+"lJ\qԝe9}-cvI,WfY=4ܯ -HbXWrB ^mXvb=ĕj`/ bH,+r89ĕqngYZ!B\mes -ObXB>+S@k$؁r @Li%4ef b̯C\oV2a~]hN r"vZ#"+bB ^ 9l=n=̲V$lvh@ $̯C\Ch؋@$ v$j"dWg~e_na,˹_1@$g+W3P D0ܯ -Dbd~JdB @LuTz%P. qj"tԝe9}e2H,'_Y84 I,+Oĕ94 nhT(0i~qtB @Lb$E\@Ló,B I,@, ^;4Lh hB>+rh@LWb I,@s' ӏO_e Z{$ thع_Z؟4`W3YLb 9Wk$Wg~>@χ@tfYFbe=?ͲO#@4 k9%p:BZNÊv$B#BYb$*  4rW̲k7Pq|WXVe{s#P<=<޾}|zz}xS,@' ܯh`- P)k9% ZRLT؆`WX{@LY׉fYXI\"3as-B KXˆ+3S?Xx$kK\aKB @Lo1$pW8%.,KJ*,B sI,@Fq̲{hع"p9M\0%"A+3B4B @Lwwwwߧ4%$ &{ @Lа<i$ +W(]Yc Ђv -X@> RX`*A\!J SwY';W'P{^,XϷ@u1 WhAЦvB I,n̯C\>}^>>U#;WBe`lJ\!Zm; CNgY>X+OHC+Y+ $ m &8X!x+ZrJhh,Z{+p_hKլ2؄W @LYLbp0r+,{v*Xhh,@\XCb@$`q|W` +Ӊ,X YkO>qSwvvH,甸[2,&Z&9 ǡa1y% @\C{h),X, ̯SfY=4,Cj%ϰ֞| D#Z.@b.b=ؗ,1!IX r89# 4˒^Ye!vhuP:8! HhK;)< W >Yb& 0Z{N+PJ, (8, [=>v]h(MWZܡaB >%*?}m.D'@_:-1u_{β q Sv$hr+Цoq;l%Z"X! 9 P Z1ZIb&+, ۡ_Z}n &*'`Ц^,_ZXWAfY=4,%Ӱ"Obj_!<=] > Iax<)ݽﶂ!ZI=ڕ{pczxz0UWg~ Pv鵿C!@%+ qΚf~ܯ -[;<>(* zQ}ҊCTLjI)璘}S,Pqؗ6b= >,{og9=:LhKbpFqơa1uCK:CXX+NhՄCX q|W<d; $ؙW:eK;K"\Fb甸ȡa1 }#0q89tB @Lwwwwߟ,$؁@k$a.grCX`S ̯0>YX`#ړO\qYothu֞S f1eJb9 Кg6,{qhT H\ gh 'B g B\!`_~Vc=s?;+} ,l|=t+g<0NbM_ᔸg; , K`q89 xq Qxg h0^jq<Cww߻(Yn |b~ @dCfY(q0 %rhP7hBT+77J'XhB>+rŕ=-E’WrI,4|\y"%3+?˒O++xJ* 5:4Db9#mh,@$"@lga?)+0|﷝(B_pe rhP.YkO>qefYX84 (B甸&q.'%X!Ihai ,Wj@Y$*$9tO, P +38,<''phP JXkO>q.1[x.ObjsJ\`R#,:6;mH,`W3s;nXOIb` %,<.z#P$q|Wʡa1 !Pk'0؞B甸aGyD P C\`KfYb; B`_ v`_ +3|6ɡa^$| [b`/ "P+WFh؋lOb!c<x<GTd; %@b~ G7- &YmH, `, ^lCb!C"IXZv4Bq;;8x,ړO\Znf; %0W`Yng(,@" C\L CA @|fY0@b q|W` IhI,֞| lOhvhBk9%|ih;3X`W >,{:4XW0CbiB>+v,PQ^ґO\|FvBN+PfY,vC\M94l(->4meX"o(^šaP ̯@>k?<}aB Hb>WBo؂,PrW!@novWBׄ[ TK\!x\Jyxh`/ I,WX(CojshNbB>@]RV9WZ2ZZ .#@]ƳJ9Zb; Hbr+Piq˟y Y,K\Wre؋,P` ̯@-+ v(R$q| "g%lg$ȉ+sym,R+W[ĕfYb; D&C\h>qša1=؇Rq|Wv[Zbb!6"I\K\mlg8$=ͯ@"@RP7,{"$Fqy(`^0x\$p`[^]w/Z1XWg~؞84 %`= &,{Z`/K`sJ\"ph@LA'`Wh, lIbٍ@BYF`)_%e(<]Z`˦'v3+%k9%%* &Y`=FFq-{&So?B>,{#N\E*ݸ"|ɡa1kXV$ &L#d; ,Mk'I+c?x<?#Ͳ<<<<}t5ѭ9LlZ{N+[N\.g`/YƿmXp0r+$4ZbǕK-1 og1ϓX DW˫XfR| ēYXV`~S cʞ0r!C\xĕ(޿YX&W$DNbrhX&Wg~"WJe`/@&@$Jo'p$ w/ dqJ[3YqU$@W Tk*xlgnKƝ *?D2%?!|"@tŭ=[X$+L`~`/4tD^M'Uq.q brhq&fYb;]_-Qn' @sYJ7'fr"ܒOiP ,.,# s=.1u-21xhXevjǜgB/=s>'4a%sݲ!?ÛbY%1ײ+u,eN>, ,+Zd`/ 1;+s::-ϘkW`6D˜}}wuƕ|ˀ"">f޿w+l/]QOrkryPr39{4X&[j%kH&[nѽ mT  +*3$CױoΥmr42er)j0C}kk^э%ޒvjgȜqYXbP[ ݥ|YTwP~RJ/PВ~>[plf^?luk♴40}ru%u[,xU"M}$kuZ~)Z<|~CK"xNSk\.|YO)+Ӗ(/;'GslEhKrX=gc6麔@/wS)=b"w?"ѷcd#?R~S{9(l_kw [z3?˒v̺{h+ĕ5ޟmbYRߣ\1y-kvibtA%eZ=-־z=rrhPxmH, 5g_ @."Z|o־۷ww77[ޟX޴@|B [XvZ̯A[Xɟtˠ.R.?|ޱYR#x<˰mH, --,}E\ZhZ||>}~~_ڗ]%5?v;4l~6`g*Annnn7,1ӿ§"/srdqbHxh>Xwc+==r_!ly\c3۽zI>og`gx쇖$1YtH,XVvs- TCYgZЂo&w yI)gWvq%K %XVvkXo K-Kι:'ߟA绡ϭ[kgȶͭ,v9׋{ŋ/|CkJ)C$=ҕ[֞k1u$,,K{ O~;l8-~KE6sوvZsY>]aiKז%=Flqj5~ )أ+g} -{ߧZ/ -pZfYZ@[H"0Yx Yjg2^;^BKoZ(QcWǕn8^Xֹ}<" =B?4uA[]<;m[\*i; ꫯ꫏?~1݇?"{Os(#`,C֛kW 9C\YC*%Ph1˲#KRKu޳Un6d.իW^PnvƯ^] ]Z3yej+ξ//kIjcĀRr,5"̽??}~wKsAo1dqP?S,Ϥe(.QBbаܹ-W>ReaG~v[4fY`?{}κ<8m۹WZ[L=0?{x.-{uŹ3Ȕ1.BCKsWcg=$X2ud<,;2w613>y_E=ZɅ`/k|[S,cɤ'sKp[d2b !v*ĐP'Q6{Bͩ۰iْK^I&*%O^|ˡ3Ż>|q=ǤK)״syhJ,v8I/ Pǂ-k`C6to$e5acv%bI bŋ/^cLq߾<&;F7I\Y)R,˜;2P,@|陪_q0%5iyv'}XV:ttcL}-ݟ^D(H,Ae}ΙkIk]x.eBɡa@u$s~+ĕeen߫n>9=,ҍ.I2хBxk2Z\(y=-u8Կﲿ7º> *{x? -T'X2՗0OkeI;[ovGg(fꦍ M2yxxxxx:v}eb)RCrs,P !v82 J,Ksn~l)儥nf栗r>9ׯ_~:.taw>H"Kc.ž 7f΅sRʜlzO֞b97絜Cv c, N26ѦΛ7o޼yh?WI 0wvܝnwǿ:o|X Pv$]=ޏs}GOj *@klg9+>qu/KΟwuKNW^z_6Lǟ~駟~g<tb(?4l(84 2~#2mĕ~3؋+z7s%Tv oQпw9}Lb7Ë+}C, LZ6~e>fgb<=KCb)a/Q&@)k(sn3z+q`:b>"7$",̻Xo\(3+CP-wnL.Lc; 2_zF;ܟJKb,@rA<;'稨ϟ 2lg!>Ʉh8ۓX VaXol{T9!=uk/Z3Lz?rbo؂,lI2, m*9^wXg; #w- wy <@|B 9r!C} 9xJ,k+@㟃8 &@WqG>wj?B #k[׾5ϱ9H;HhYF\!ۄ28yyHTxbX S=)g <-xCh!@VpX\ゥGLxyT6Tgʲs6%ϟ-<>._iO=-mgLW G~huKOCOIВޫВhtQcP#fk}/ <-6RZ`=F`=XZ`h˟Mlexc)nDiA'¡a 0@dX2>D Ў˒!L^ߥn])}κlE2$' {=whԨ4kl-v&ғXMAa~}?wCS,'ȤH_ ƙrL X,B ԭ0lPa!x_X$`*qH,TZ\@#mϜ)X@$0@Y?s '@ z&`Jsˠ@4UX l J'%,K2Z|90_$h'P6NhuǕw}\ 5X8v4QW|tJ$0vs At_I,\ȡas+@|V ph@hE\h@| uX"7+-h!_҉+M@p8Z= (W7xuev+@|ŤP%O_@ <3'x :kp]gt%rhn,Jw78 …lgm^>+Ibar_$xi'tWqEhZ&r˛e`_mNe$02C+S,'khbj=4Lh`Km`H,,lTClg`_-f B\.M}+P"q$Va; g= XXQYYnZ{8%e`>9 I,vZp+]`{ X؈,f\)w~%ohl);áe>M]pа-)D -M,߲ۇh ;+ZO\$Bshe־d=,Eb!rϲ-cuYkH,"P.+km`>$±+W >q PYC\>{ш+@d^Z#Znί24/9 *YPfnnoooG,6'l̙kY*L}^3:E\mbx Wؒ)J̲$'ZSĕvb\ l u; @>" d~ EbB0'$ 6b1rh?4LhؗҲ],\ (]zx8CYy -G\iԔ2na{_E+%S,Tvtn~w7Pztex}X >@4X,L%+B}qy> I,4fY"YkI,TˡaZ{JbrB ]WXh,+@| EbY*'+P"84 5 P.-Dd=FbQ t a; @ >q 4D\W& T{hC\#'C/gf; @IZH,v̯9 j% YJ!+P7Ψu; @ >qZ dng1N\!r 'lZ{ϰ +@|H,v+@| Ib84 ` -X`l rX -2b~Z%lgX$ v >qX`'+@ ZZ#blg `K\Wq ,̡a >q!*j=4LhWƿ1N\$XЋ @h >SI,:Y+@| p6Rv! !bWX Yf=p)v`; P++@|"nlgj"+$v Ab{h8Z YkGblgX$vWMbb84 @\WmH,C >qؒA -@ $vi"@lgf~`^$(C+@| /QaB D#+@ fK+@|qH,PYVXkMb", h$(XY-+@| ūo;Y؆'I,P9Y>qZ{ >*a; P'k$,8+@|J!@Clg+@| P*Ta'%XZ>oGb 1D`~(Msh`@| P:0h'uX!B M\WH,YX@̯_#@uWV 4Mhr+@| P7 #ÖAba; ps+uXO_s88QaB W5 p? +@| &v؆g=2d; Z{= Z@dW , 1+@| @"Y=4l@ %kWXlgvYkDb0g~`C$B 9 >q`"T Cb`; W'c=s$`1 !W0,Lh.qO\vW9$`P7qZ{$`E 謵CÄ̯9 `) /f; 9 >q`Y ,K\W +@|~3@| Z@\W&o;Yv_s8$ (YI\W!;R+@| $ YH,@lg`_W̯lOb)аqB @ >q`/ ,D +Xlg`/ 7+ېX"94 ϯ ͡al X-M\WXb >q &,L%YkơaZ{x$H&l X }a0Y"+Xj@'Ebg;  >kJ$u; m Pe %  P:,-W:H,@lghg=@M$Q'k'+аqB @ >Gb`; @ >qV Yj"+uX>qh@) >kZ qh۱^ (DWh,WH,lg@\W$84 (qZ{I,-\Z{H,'lg X&`m @"0+@| ] Z Zh+X.d; @>qO\`*`YƉ+@| XV0e 5qq Ps+0NbX_s8I, h'`SW%¡a@; >kX" kX:YZ_s8Xvf; P3D 6`#  +lCbT -qZ{$`Z{'c; P֣ ؞Y >qH,;u; P:qO\`_ @mg1W g=Xؗ >, >qh$84 )+$0`m D&&\]Yk@D @lge~`'v`ǝD P  W"FhWD @lgd=X*d; 2Dp0%̡ae#q@\t @j=4Lhˈ+@| uX*1t1"aP" @+t+@lWPYM @}$ պWj%T,fY !+Mbh,0P9Y>W̯ @ >qvH,q!"YWP"BM̯_I,Ρa`@|I,lDhD {Xؔ,B\W`_ @)$v0"3g~"XM -WCb`gCf;KM >qXvH+@ ؋@ͯ{X,d~`@1b%}I\bW >p=4l +P lgaY PlgE@ $ 0W%X(Cø'@^Pp8OCS?.yk+@l  ɹsvm+@|@$ZJ0Yk%X(X - &vPM-IclgYW)R\,+@| JbB3͹} kn ?b; @@s"k%V2p0h)yv?" 0Z̲M 6qZc͵ΒW6] ^k^J[o%+`3Ēr强 3l}i8Mb,kim;̱^2,h;BhW#+,hkChA| $ ̲\K}EbR *\KM+Xr2 %\KE\u_m1 +fCX#u&t/&%C2W()zs-f~8 M f9+‘\X`g[¾$ @ K8, kݯl1`o SShXxb2I,ܲWhW$ ^hY#+5q$ X0mfYĕȞ%dy$(R"lϑ\k7{az oFFscuF pHYs  ~ vpAg8Sxf7IDATxݻrֽa4Ei:.U).;S vlPE'' N|;؉]v'X DpY|_09r\.bwT HT HT dGؖT dt:N'ؖT dO?O`[R)n7o~󛻻;dl@f~~}>cr8G#S@f޼y͛~駟~B !'˟v,2M@=,͝Դ)G*2]'ER;}?v-VkثHZ>裏ttRT~ѥ>|Ko޼y` ]RiM?O>d,٥&h$iOJ!ϏTj>*l#iRmXC*O?O??//駟~ vRa$əN??'y]%Yt;n; &~*Mg6\ƾNp,p͛7o޼~w8w2tIY8T $d,M]yO>O>I+= GS]*/3V΍B*T);S_U+q _R)ESG}Gu4cz_3J Si}TlH %J Ow,3H@s2tN eR)p8=UڿKК03Sv,2H@BJ:-tH@1n,,~s쎥ï?1 ,Jݥtl~ kv,ޥtqώm& wg:%1m0fG*8l@T dfx^}e}vh|G.67ql}ȟF*@8HZH.C>H sI@T;J")l^@ҦSe>|[/g݃`[R)ػ#X*a^c|LbH;?NGc^sT $-KcSX8GRJDc_K? 'FcB &;Y6?UciG )N@Ʀ&g$h #w{ ɣI R Q!j 3A3"'ѭYzqLs\;/7XF*6=U:v'0 @*{~6 CR)a$ -Γ-;@lkltN>|3 l"d` RJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJwu:N>r|FȃR,ERja`g8=m>gFT P9y|+")<3U ܴ6DsIx0T)0aHZxR$L p"\fKg%-On5gXMȋw[M*vc1>ΤT 伭T <\kn$R)8>")lC*!?Jfu`K0nMr9S@HaM L>Kˢ=;P23h:r+Coy<]T @ֆ($ LKrlFcg%B*0]sJNJl:/W^CLP"m{|<Ѷm۶|>!q6$Ŏ]el,8y @H8YsG?Md#_}^'(R ~T$utN9o|ntay 775/ŎƎʹΝ=z6v#RŝS{/Y# lbknS0snk/+0T WLe,QM.q΍]WaCuw OSς)R7w~tbjs+pec+N*re5F043x]j]0eoS0m_}4M:L&PҺ"<2f]_mtH:8sh۶w]8MSIPpo}cHb*/LSHTeZ77t$]Dz,YPG)9RoGC17: ˦HTyҭO*eJ96^OWNnKR)H9TjϹѐ)jM-ݜiSHow, ?437:[\/ ,guzl% 3~%co4/Ŷ[g.#=>uLu6jR)E c|=O}->أ=-0:Lf>śӋ^q{Okn}>sΣ.ݒ.~U<SKj EZrlG=/Gtr W#c>R)XIvhG 4I{CZ*&;VkiRH`M$8}?ܻws(vB^'鼬*,s6L%" hwұ0FJsF es['~wn>7?v3_g#v=N_#c>2Ϸ~խJ!\cɩiۖ΍pϛcއytk ݹꫦLJ y4 ^~ys [ϿgN0(T lFcz=fK%D* Aq]G_.~0sѳm|9}wi !o eR)s;mɣ[bn4O?{<)@ʤR $n%1hyI0iSHdonȣc̍n<Sxq@ c'0i*@08T "i۶?3^ڗO{;{6[RytǟR)?z.{i ['#6ׯ7oYLS|[JN$VIty{ϯT ` `;xDmRJ| a+XmO\?#cϽLJB$GMK޶=÷/=}VSHlL$%}fKj۶Ζ ǟ` [IISw-k ]0={iw|^zYi׻>L46vuG3 KS|//ϑLHځlsbҔ/ڄ9S>DRU*`ӂ[?JA$T[ֽ͖\0 RGqC\~ H :þ[0[yk;:J@mRF۹B #snQ!pHJ ^G'fKޥt =SVR)/K)%SRLeSlR)IgƮRo1ligIӸPs_|yS&R)@DRr#ϝ-K#-wSR)@DҔ٥4fKznH*H#cl)sfK8sn(w!י>11msӼ45H FL`r\. ȋR*nbt;AN\3iҜ)&LHIbҔssqnrא*4W!T6r!K$-]J#eC_-/Zw\/OLII!}fK;k>N)/(")lm뿳.bR΢` F*(H {:viU0-`O@ڤR쉤epCϖ;aoM>f^^#% R)@DҲ5؟{,I?r Cؽs)iJ$͖λLJa-/qt;ʦQnm\$>%Nv|nݻdn~)>?i~w\.#T)@6DR٥h"|uDҗgڄ)y^2a I*ȀHZnsϯgb"鼣A~C8P$ O_,IYVHa۾~:*HH {}k'ݾ>0}֝׵[?9J@ J".̻Z^ X&LK<݄i7cS@LJ ұKi^Ζre&LHIqld-r`*II 1gK#&sv4Dž` aRإ9ߵIƏKK?N:;˘*ؕHʘyq>e&]N:R)NDRn"cb2ϴ[?[JIfK<'v/L :R)@D")@Ӛδ` ,%D!2 j1Lk9ӷl IIUQ SzܹSڞ~SO*،H xrfo5[ZYL[R @8iֳ.RUDR٥N??igL x",$]Jkf4ǣKr'G j#&syfH js/ORDR`[fKSb1~V0MR)@5RJsE.gI0?i~I7`R̖8{iST 0J$bYliׁ` 5JI-M<]`OP.۷AS[~r wR)~yV$e7t|.G.3&"@٤RHz-g2n?v)J*&X7[liWí`*@^N")ctći޿owﺷvm1jxz^:y*:ݫr\1HR:")K)̖{^k{qm>HʱR >^ʳNH limVH* '_)C*%rl)=W` 9J.g~>SƯ[T6cI@QDR fKvO\t?iW` GJB@ ̖JSHT dO$%v)e[fK8s*L R)1٥t[zЖL YIz--Kxu'G J̈{)sp\.Ł'^೭5ֶmwLgyևgkJLtS@DRNli^ʜkIӸ%IIɗyRboiy^ʼgbJD̖,nSC*#cP Yz[?R !")9K){>4[YLYl :R)إ4N_$)K Iœ2KSXG*#5nĺV0M`T @$ v)%fK>y4'SJ].SS#;{!Ck-KYC0R)t$u|ݕn/I@D")1[T6 _R)pH cRJ^- i޿owﺷvp,)i7/gݫr\ L)>vOs#) l)ӤRH").1~'raR:R)D$\إ4ecr1[JؕRB-MR^J!:@0%k?-@*DRj`߽4^5["/%1zIy1짤 eJa3") Yϸ\w/]v)bTnuhNR)l@$z,j ) :{I D7[ڶf(X05=nycw^_.(T),$B b}eWM!L@.RM$þܒz0*:^-R) @8Ys|T0͋[<C* ")ll)49Mi̖L*DR(]JaW5Ղ}aR)Iv)-%LCLS^yfK#")lwO_A{7aZeJd߽-T Ilv)T}T޻RJA$J٥, t\"iioR%BSY{iHgӱyrdTR)I 1[Ζ΍(N*("))(2|։{)<|3[ /B;ĻS ĽC@DRH@Ф5y} YL{q7t|nݻYs.X{m|>w~N\.QȅTJDR`8 @R TJDRtsPB|ӟ''9Ζ7al)͖{rN$r{QleغI^> /JɆH Z]1{)2[ ; ]JK96u#y 9[44W_)l-r!4=JM+^}ҽ|^e̖^$J$uQr,M7:gѶuYmfRI$G$2@BزLf#,n}S+ YOBDR` E;`tkڽx[ 2S$A$5[Go[Js!4[l)@>Lr0sZޏn14RSll)@R#04OpTSy;| XܖկvO2G0UʮDR 7t:m{=Yz1\yGF]E1UJ21Z@͝)_5͍p']EfK!jJ6!lvLKhGb|* R)хGY#MJȗ_<:`ʺl)@UatH`OO,ugzt>!Ye2{>7癴u|^ 0UJDc.:}&PUK)2Fc{)뮞y9lXJ"<->oԒ}uϖ1 1UJ̖BmDR`[2Nh^l)@JLe͖s٥N_nk?wߥ̍) Sl&ƿ|-™KƔ1en4s80l)@:Ly`kfdV`x!rY\F`Rr\D%ѢEcƖᷭ;wL]1OCO׌dU, Od!GhLV3` O6'3[ ˎM׎g4Rl慩燱ҝ;[: "0Z~0u~b̖T) ŋsJxןfZRlXSluY(KZGyNR™-؇Z^:R0Ց؆?`]BX*]o4c"z{)׊R}*e6GxTll6t}4gsaR3[ 'Y\.ER@g.Îp -GY=>]Kv/ֵb`/JȘlvSĞȚ:([{)˙-+aJJ6RJt*wWy}ϖʣyUڽWRLrC;v?e1v vL,a OܺDKfKNv)ɱSeÚbqB^V5aa &SNfKN"),vSfc0M%*4_}5 0d`[R)WIa8[ !6峱8co^ {=[itIl)dl S)G]v/qmpl)VrYtij_EҾSǐ#ti~ɲ[!R~K$;_O_ kLh/'1Ho){l) R)GkׄRIU+#-:#iwT6e_)%R,;7tmI֜){)ےJ+Uޢ{n ŋs?`^^ H)5}fKT{F,yy5\-`.I?`^SX0TZݛ-2إB$ ){Ly̖#VΤ@R I?`ʞ!R dJr$ J`*=t-XJ*-yR _DWeΔXufKBHl).@'H:LI0u-XB*yR /v)ڔIÿf^JiRi,[-ԔIÿ~8^ 0[ 0TZBHwLb|^# ;Hrs| A0ܛ-#¢e,Çtf:pBlS-Jp yqC'(H:[3enT/`T=-}SvOkl)@T1t'Lًu3[ pT 2[ GK)M$]F0e/i}l)84KIs ev)ey1I| fF$l)'nK0%>w32-J ILb|j'f<̖>R\ct!T6e3m%4"il$.#tݱ5gJlv/6R)2[ DaҚR:II3O I$M`J2|NRiD[]J!_"iSL8fKRaRHH 8-j#&<̖H#xTfK҄@jD܅Sٔ9FfKzHpRIKҝ5slbϮRVRi̓pC'HHZ6u1[ @*=H27t"y1uLٖKcT HZ)-ؽ.fKI1O glbrϫR&R+\,ÇRzk_YC$% LkZTRiBL/:;PQDRƄSٔ[r-J'ʢ- /")!)l)Pt'A _"),e\fKrI`٥%`RiYl)P:4:zv)}lK0e)/60͖HJ.SX3[ B*݀yR!7tDRr$F0-R GR*")!l)t Iɝ`J43gȟT 4s2-".d1fK؊HJBlZ7{̙-r&&LK)Qt׳9SY_@.Rl)٥BLI)`84sfȓT:yR Bvl)>4H20Lke<ϙR 7R)2|JeR'4k,/R eR IYBR C")LF0͓R R(̖F$eSL9O~6[ I*5Ia`*B̖iJ0Oʞ̖M$mus<1[y2[ @*}A$%6rC'I!6')ېJ! fK):Q3$D0 u#/ϑR R̓'@DR8`J0@Կ_t5")@0e컃ҴΐR UR(s ]JA$X2URIRrgR!BBlZ:4scHOԓ/H L{)!,<)\ufK$BZٽ4ssm(եRbRj#BZY+A*$- v)T")G0`Y1[ TjK$ L`_T$%fK~. aHfR&BBlZ{ʃR`ORl)9K)eInδ&w>̖)6Pv`,siYԙ-a>$J؇H LLkc-R`*5OJ,؊H L`ԙ-b+*KjЉ22i,OL-e>dl)pC'" uLeTjIm uLSb/T*R3!DR `*c?ݛ-b8]JɑH {>1gZ.8'RbRR&GL%}l),SHJ\DR iSY0[ ^X5[J=R:៫iS "qX$ |Բߨ_[I='-2Ic {eB0H Pܜir߽tn03GF6rLb Zy9cҍRj>CGGTqxR?1׶ns|~i޽5MeyG{t<-R&/cnJ{}")CE=y(CՔ~n۶}<*eag~0-cms")電K?;CfHOJH>,v-5sr?[e`^?4[ "`c!ultMl-z*Y,rcgP̖BbD3tT-;nwwmS`HMPbKg5M|}̓B*Ma;* eq 5\^_IS94Lύvy#Rs!(QS*5[ y- cRutožCzRUe&- S4_}eG۶m^)B^R ?2;C- +nTa*Ki%4tV4} i)|n뜏ϣLn|4gKn, ?'%Oۦҭn41?>7Į ͖B^̖ByDҹq_;CGG5K`M 4Բ,DRJ1,lk186[ y1[ZS>oGxy4kcTi-ip̲ t)OΝ* ɣ/KesP9NfK!/fK!w"iN MGy?Rs9Dk4Gt:n47N?ER`>/==!/]|1[7tq:|p2/ p诠) _lZa yx-'tv$k(wG}bȋ(k#u _mVGKy24{ 7\6oHu4_}W_ޕe=o~'-o:x1ҔTil)l)}<=1 `)vG{nѾm_G碮6b}28=I{; *Uƛi J[ yo)q $e@ |)Lݻ`Z6tn kXt>裏>GGH>leXrMv̖B^̖.=^tzy#tɫ^_~s`:׼uì轜=nI~?N}{ݎi-E. eyOːdH2إ47q"|! 5>>6Mێ)F0=µm b;;?otn=&Zt>>J-!O|aԄOy:][7")LޞtQ[yǖwin8ߡ~q{9:ʢ}ukl0 ?O|t)f-4-rI4TM4OޣH:v uk,v̙]?3isT;q-~wt*l:mlԙpy^L$'vI|7MP9Ӻny9h Y{=Sÿ JlGiJRHSCsk"Qӝ+H VS$5ULBLΣ1c!#vRiI9Rc~0ǭӑ4#l.#eSXYa[LC!sS$Lvr6]GYV?m{ }ÝFNk"$io޼yo]6?~^Xߝ_׿u|zB a, "|_S䓰?х?"Dұ(鞺<:]NvLϿp,e}>cyۿ& /nLʹL ?H J!0~,'=bhܫϾcOOt>;TH t%Gf]]GEVR}K!/[FOezLg6R/M}5,g.2ޫϾc6Șh}{u.//~4gY<ݧ-hPel)(n 9ĭ^K{/I>&<,2aw7g:L?ZV΢{s^{ٷ=u;[N0-z<ER~=ϐHjY2UAlR)|"RSliA^r}Uso17%y~$JҎP=f-]C-=3zsx*")J!\GYâܭbsISbo2}ȑ,ct>%cJ$`elcGݖE%)y>= ͖B^ҟ-[t?4L%q")rsc7wI(e0U pöѳ=ҼH >r>D=YtTj=xXcӟ- O-Qc_$XJ_r"T)lF/O1,?z<#E$#\OLo=<s_FR@:JfK!/)ϖ͖ƛW}zF]rsJER`OڌNI.n9FR\*a}v,i1~X,៦DR@ܟpIKl)إ4tfK]ƞZ0YγH )/!ܥI]:* H9 kv,_Ȼl}-|?BI9OD$RVl*5[J\}{Ζ}hIɋp?Ro$-E@>LNMvt{.rOiұ#^~Iه|?$gJfKa59=>{7V{9?EZ .򊤥Rj=JJ)2}MOIT 1^̽j|&I$_OP$i6E@HfKٟHb[U?sɗ{.=\30(C{-%u5q~rGX~7_>gJJο(4(IEl)˄57hY[CqAvEmH#|?g?|Oj{$-uҦ(KBco4|ҖG8~L= {1S[i0_νhY weLw)}J)'U|leDHIG)+9tEt=k:Yn(U{ٷ5\957cce}.\[LH:TJ͖b]J۾Ị{:6!JQʋeR&N@L`]Kǧ,βzs&L>j$=vaz,jPu*5[2:ژM1嗂)r9̝[δZtTsuWKY׏^h~[o'oE@=RbY !@?}T {3?l)A?iˑ53=7 '4}uJe_]{eco*PE0}ۊߢ{fR)筙r?`jn,@ uF=w)~E@}̖2&?k~#{+eL`+&IdoeT  '{~m%?l>(k/i߲)I_$5O J*l)1, ގ\z?BDR♾P$-yRfR Ip97wnGh(O04GH ضW] ȣA0N"i %4|Cj̓m<:$LeS T$u^R*fKg,h{?>4A[ K$v4wo^(T:Cjs:[{>k}wfOKaG'jXOmPٙo]9P?ϞHHEjнC0Wd,Byl4Aʺ,~~X0~L!_!1tGP9HW") 7#'izv5M 4tTBfKLBy~R I1U1i WRJת S'+yR T )e`>t3[JƮ.M+7OZw) z͙?$'coO!PD0`"iI,؊Tp̩HZ&F$]5J`h^$ZTG` 4<`8 qЭ)&LK$-E۱W[J.R' NtDRYtqe$l:K#|^IKe=@lJP#ׄ)@mDZXtT+I I!w)"i,؇ToZCuIf=V<)LJ"Ţ{[Dz$m왼ˣ"i,؟Tz&g::>e[t@lRN3O <eS5zI\ St:N÷m۶VDR`|>>>>>~np,S X @*M}K}-'S8R|#XF0HHZwHTE0HHZ;&B̓[L"Ei8y >Nim۶u|&7L:Vkur{4*Ŝ)@<")Mc=@Z҃}Kfؓ` -fL*̈QSDҚ=@$- )2"),HT 0O C0'b RiB̖2F$$LIq{H*!T6j#E9J_3O {^2g ұ GRi6,w;")>HJǢ{|IM @=DR 7Rif̖|͓9LYt;4iF J%I Riژ' eIb=@Τ wXtC0%2d=@IҌ-uLeS ")CG*͆o1O Ԡ{3g L$6J!fLbyN$$Ic=@ @S ")cPfK8_I:)pP/#2H+ ` I$eE5J4l)LDRYtPvb``*sc=@Nܳ?tm۶m17ߌ:Jc~(R Kˈ,a=@ٷ4eIbLp")_[tPI$DR¹=@ͤB-실f=@}RؘyRc ]$eEHE-X")@:Bl Iˢ{:Ri,N]05g 5'PM*-ܟyR PǯH4I1[QI$BIDRxJiT$TZ,`` IْEI!>DR2I 0F*DdSG$e+")kHJ gf)lK$e+")IpELLa=lE*Bl cGHJmI<)cL!HV"Q`.jfKC")SXvkHL!I 'TRD!HVDR!R5S$=Il)#RO*RI؟`JDR"po6\,NK۶mۖIH|>>>>>~DDR"p,S b0gJDR"+J}9b4 H$e+")J!R B$e+")J O0%e")[IHTly͖' G)IيH @ʤRn%H @SR I,ᆬ`*HVDRr!$1I(O]̜)IيH @^RVImT$)lE$ GR)3xYLٖHVDR%fK͓P'DR";쉤 HVDR 2˝-IيH @IR2fBlZ3G*ecgKM.3%I(TJQ̓`HVDR&2iDR"PlXt IيH @=R6p쾥I`.l")[ITJ,lE$NR) r$A$e+")5;Ɨt:oo۶m۹<)|>f}ֱJHʖ")u3Uƶz!%Ls!:R);qzȋ`2u\@5Bn80_$eP$Ht P;lsՉ' %&P/IYO$ܙ*Kb´c2EER]]")O* "!T$e%@),@Φ䋤I f1") *)Ƣ{\3") &SH﹬fDRT LxF$R`zmI E̻ZDR~8g`O")0`;N߻k۶m[G 2OJu"*%z@v%C$J)aWH 'aSK$"KIpz'/ t:m۶m+jckC$ BΉl*PkC$c>$NcDR &P3\*DR 2 PWH $B6SN")2s;^\' {J!K?H$ J!c!| /")pPCt:Nm۶m%Rc+Z$3 SP~ /")WH M* @.DR R)K0 eIIHP8Ԍ}IDR R)Tv06|I$Rv{؟Ni=ڶmֱ`[~ER mJ:aa>[")*&k͓M$")Yt_yIHS{4")xA0`KD$r'WזR@ǢϸH O*FMxlj&%9y;Nݵm۶P3uk(R`;0F$\@R`6$eJS:Ik9")P:XE0HZYI:Hnk?H)IHfpLJb+9yp:N{ݵm۶c+2U Dqv2R)` P%Y@*v#K$-̊OR`W)@$J0OZ9IJ~8`"iT$'Aݜ)!8yyt:Nww׶m۶@|p %C*N0> D*؉` lYI J0n<>DRIL-f_$T phbjIj%s=,̇Xt> !)Ƣ#H KR)@rSxDRHLlI9")R Pc.pT Zv@$ DN4wwm۶mXAj̓}ERJ26MSHHI|O$`  {)<~Y$` bI>C${l2v ܽCP. \O)!Lkj´kKG b0O呔G؋T P8$=z(DZpSKYNQa:n1' =Jacz}HLa+"cnXP>tiC0GȑRLBI0 @R~%B8T<Km/+1PS\15a1gJ'57 @mLpE?ytOVGRʛ'57 }R)3ԩH* ,ɧ,/™*`! yRsT *SI_~(\"Q؊2$̙v̍@ Jؘ.yRybJB0%GDR` $BQ8R3aJ'57 J؉`JF eKm/+J"@.Lp nO0%@R3L|b62XahjapFKZ*G07 2U @Bnϙ.sw7OHZ6Ojnj X46A6ms#< ^xw0 *:NcN%N%>{oy&@uގ(D*,I S윍.IXT f 0F*եXv~xh@*JJJJiXbIENDB`espresso-5.1/Doc/images/st.png0000644000175000017500000004721112341373034014415 0ustar mbambaPNG  IHDR oFFsgvW\ pHYs  ~ vpAg8SxNIDATxn%I*Wj!Ԁ7ũ-zswa$z[IXq7H4ꖘEV;̈Y}lϱ]~q (K0¤k (L0'np ?:ǐx/~_p $]x߿_~N!]_|_۷o߾uMܤk_/1&H<ݻw}W_}?7+35xqUpM1Zy͛7?~I@n.0]OvZakӸ;1zs8t c駟~VI<1py #]\t-@[kNM8]u6I)POuS@[k>0] @5z-kqZ$]tg. Stnv5Itl H%`fb a_R2u БFk\-@k>~?׿_Wկ޿vgvҲ0'/ooooootݏP=ytkfg]:\'~n7kI]XNL;Fimmxa&< Ycsuۚs O<~ t l GKomS,Y[^6ZLTt pr1utt]jEmZk^?׃O_~Tl t @9ֆ=ZTkڶL;|1ʎ ڽ3C2MӅeO[5O`V8u=0kZ!]p[>᭬ f5 Y=zgIz ]uxtzyo7`[g16LkKˋvx$f:N]ksp<Tfpaܲjt 'ӥ٣cN6 g%]tmnfzi^>^Y(me~"]Th=. ^uj[צt"]tmuu-Uh׭KT[8^OuilGo}k6SL]Ӆө2m=XEgrwu çz9{oKR]>aW9kH÷.Zt @nm92ܖƢ5&]4H&Ҙ[J{>{;7G.Z@Z5/'[?z.Ӧͷ&Z@.@\.;:w߇פ0 5=u ڒ6U0K^/O8ǯR>k5@Ϲ0]l1u:}yvY+κl'^ﹶ{³h @k[d åk;Eh$]4#)s< t>cˤz8'3v21M]O^%a@@ 9h)N -<7u-]8e.6Nonaxv֦x5ZK@gmtauVޖHl$/?##,=ulk[O_׿,+T`N\}x>~R1 "]zƼ0 0tuDq5Pt ];2WIoE65Pt 9k>( ?65Pt ]'Ϝt "] LI9eI@)5\M)x+O (E՜( 8(EՐ4 g9t "]@jJ[oCS5Pt 1W [߳k W5[q5Pt @?D#t ړj)Q , #s[:Qo,)kcH\ @=Ft;WJ&68a~^X-.`;Z(^ ],$?t Op>;O4/qI Wd^k:'W 1DG8It\5@,Q(MjR̋?2/GTjsH4O`?KԟD8t @cjZd^yq%5 `(HITJ,QuI"r5ü# ]Pܺ_kDG8퐮8j]?g:Hd'W0/ȼ8@k!?j%]̞\-T,QJ`#sf^yqkV8Q(Ar5G8%]jd̋Hy(%Hc,Q']tD̋2jm̋?O8=ZMd4t Mk: ht \ rs=5.r5[@oz4n `5`Yx,Z9@k({rP _̼5.^`Y@HDmOܤkkr5@Zi[@Uk;r5@50mkjj`?8!]NҒz Z@)檁ܤkar5[G#I@cj@=jjj5PxB5P'\ (+槑|j~5P̞\-TЮp.i\ EbёӷhTmj]5\ @͖rޟ61jt $&W0'lUg%] ,!Z/P6r5XMlBr5"W%i &W=Yr5{1oB5\ \ 0Gvj)Kr6-r5@ cs*h]?`- Wp [г=Zj$ZsiIp*r5g%N /KG >*˖^K!]Ccj8Ѻ6N8t Y=s~! IjHP)*@?쫙\ P*.W PΞ,=%TCt ŘFcsZ!]áj8=ynb;]Fht nUHcijy9xr59HאŞ\-TP/dǐ_ ̑GUp1:7Qr6{MjÇǟZ?~\3}tBȧ瀽'W ma~{6fOaSyqULW0Z;=}=1;m_~?k#&W0 ^; ðm&60D|/sjk`Ocv| i\w4/ΥBr5ˤk:%W@:6y~y2Ӿ8N`.r5b.I\GsHh?JU=fD軻v 2uB5fx3٭\,QOljR1u͹`S[)ݝV=9unx?9O֙:yr5l~*NOlhP 1k$WyY0NGQZ}-Q\ , \ 0<{6 Z%pn{\M?, :IsaͳF=GHpDv#Tj$]Ckjz8PX_̆RϾ:x_ ϻ[ߓjA:Iה~PuGd8,( \5LIP';*uth&z%W]3&sDe5I&Lf_xl i zs&r5{HP<,[~ @}D6^q_jܑ>5Lr54O~y-gP M5GfHS\Dlz%9r5xfIPZI{lD6~1-WCgt y!b:"]zb6@DSq5G楇\ 4ކ|ߋj>kt燂\ Hׇ_a3!koaCr5"]C?r5t]jnx񿗕!$]WHu]3i|ejM:Ig u 1ŧߣUC_kt}O\ l$]ٱ`0|ˎxˇ5!]Cn]sna~j 0 _OVLWeuj}g쑘 {왮2;t sK3%M/cЛi^|֑&W~l3m:|j~ @Z=U-,%]WAXir+ H'LHivj5L>\ z^a>o"=?b8m#\j(KHF7q42Z^\ e5~ w L痴`綝Z\ W>efxͶ\=\ -yxxxVŋ!ZzWnzTQdH8+ssյ~|0 ?^.wwI>P99DYAY֣_{ϥqflM)kܤ˗Eq c=aGr5 ](@dlxSmV/)W@uwf_7 0R+q=?-{9#1n x񹺵S_g]C]Ig]C}L]'0|/ږ~G;=\5Ln@4.8^_0lZ eaxeZ\LmzZ|d8g5*#TRZ畳0zNZ1uMż8p^d,'Wit5LIBc8Zmda8mWӪU ^׀C]I á> ż8*L痴`4WzmHED8y\f|tæsV@ kx+EG_4f?26{lKkyvj(\g-WI@1ż8񼷧 e1}&]0n&Tj5pZ[!p.gG$1cLOYEXMo%LȂqJ6]\ju5@E,Qoyqֳ`\<z0=tcrSI1/ QRi yl8׀[ޮk\ P?DVuK3%-'pj53Y 'a&lΩ^L777/;.Q8вa#-{!Bp㞽/9sڕlsrwQOeD-K`L66>8<]=&a4] t D%X0ޗcfo7\mt a޳\t da^qi|Σ}Łdu&ֆ߳8j3ƈ⭰DHzK/ ƭ@~7a.Kg^4 i4 =U60#3ZN&0 ?^.wwϟMP99YAYb^šMx>R7rj5YL.2ǟZ^>e 83u ='M]C}$]]xv>2o4ιȘS|O&W7{NJP:2I@Ny?Q8uHc18Fd}sj5|&]C}IkNp8ue='{i٩rSz#] oI)d(H\MaS'{B{yTt 1/ =/3ٟ_LSA.[y>ÇgeorFkk`K[azAx/!c/?fsuxjg1kj[a^<|fgǷ8{ʩ%][~O?=k  1K[Qb3٣| ~r5ǐc^{ 4'/dOQq'R_z2pIdgh= t @̋Yt ڍsz^["]@G1ZK@Y5I&]Pt @a.]׫5I&]Pt @a5I&]Pt @a.aa~^׫c¤k (Y|LkS&]Pt @a5I&]Pt @a5I&]Pt @a5I&]PحKha_0, KRL]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5ݺۯW5I|r^O'`a8OL]Pt @a5I&]Pt @a5I&]Pt @a5I&]PحKha[zueL]0kr(L0g]RL]Pt @a5I&]Pt @a5Iv0 K_׫c¤k (L0¤k (L0¤k (L0¤k (L0¤k (L0¤k (L0¤k (L0¤k (L0¤k (L0z^_ [jh(L0¤k (%`4 0 ۯzu}|L]Pt @a59Oi b¤k (L0¤k (L0¤k (L0¤k u  0 z^] S&]Pt ,Xvsssss:H=~-`b[_5dSi iʲ0d.`/dg¤k Y˫!)פ"]Pt @a5\s$X)פ%]Pt @a5S9ޭKuq~ޓoS5P oF̅f{#]@k/޿;k%8+ _KФRyx@h.Z?LVH@5 >3-L!]@bqj{P1YLv?kh1[s?aJvmB5Dk@Azsbsn5Jڀ-ZsҮSOa)δ&Nhlyk toIEڶ<\YM5`y8Ipr3歡7kO_kd6BZ6{ܺiˉ:&k^5 hYj`K&k6Ug ӓCRE1`K']P|i\XGta֞,[=:~&&mQ䦹z>`62`{@:fZt3|{' :5u5ĦIGJXIJ<&f{m{Tgox{کtF5@œR~YK>M2\j9#(=PyϦOht аea_m |R%gH%>EO_rvq 4Z{(íW~#"m R̷]kĬk"T[s3U\%s,e?k#S']4Y~|H^X%@re4{{hZu5ZڶTgYҸg"@ۖω^/Gܴt+kl[2w\##Hh˝ZnD~tٿ$|psi9m܍_^[T6]t Prv}^駷¤]~ -u_VlwZR*! Pcq~,=YNdνm|uh^|W$`cz[@>5@ۖ眫ޟuk?}u3(-ִy[>p"]peDŽ>2 ?ﶾ~ϲ_ڻ#?֩Yn0<t]>Sk ]by 8k8L>=@sCumXn4ZOokYoKsfެ~0iMV?kS=iߟ)as:%l#IɈ-~ƞޒ^WnO-|׋J @KƅBM|ס5Щ G[gz Xz5 ךK7}}==S9&[<&m1#wduf 0]&oNm.W/Y#:nJr!frv}']vf_]}!`8o߾}!0>래-c7%r}<8iDKBG\m=aw޽{a}|Ҟd"8ihMpKQ|ޚcaoKa^-ao>jֵG^iW`dU|O{oM(>f9)RnooooovaҎ'fܙskkv/lȹgxMoS4ťW-9ӲƼukրsFg@^9:CY&7o޼yfeemI{..c^Wt hMܧY0Y@;_\}|Q 7s'O\_7y.i-"fն3EI@a1R-F~a-WɼxnaHoYӰ߾}3=#6f2[t 4 ٖ-b6ǽÇh̖(>ZW-禷e-?O?cr̶ˏg5bsqZ>o, mrQi+0Zumo _fcf{H@1k[, ^4.|=ꫯ*enJuy y9Zۣۧq3||IAfÀ-ZCmڗn<LZb>(^1܎Y< s5>_>&i5' 1oss۷ehb6"]Y g7> O_"Wypz=zT쵳s߿~~ܩyne654ZWf\MmkuL`ym:oM_fzo޼y//xX<=^w޽{nY̆9509O`ON_kw}0}O6|Ŀ|L؞;3{//=A>7j-f - -T}9i/|8=}=Nro7o>\TJok`À-fXր~gʢ~,cN˦O5k0bրX#fמ\-Tuat ݙ[R[0 #Vg N5d1 ?.z~kFupM4#].1 +>[H"@]j5ODki#f}<h\ eIѸ[h98? A]Ϋ^NNŬo%b6@檡-c>"Yht \v}<:߃G {Ē#8ird<'WI3s50gnwj}d eOfֆk PNj50 ǏݶחD %]K5 *kg{fi -.79 Цl_ہ󐫁\#IS~| &_pj5Lʒ NތI[`?j%5̊Y>ba8km찜p]507K-Tl \ t 8dj|k3]=6] @ wdCoZ t ]7쿟lw{2ysN"]@b/#colZb 83vq}:|6Lec F5T$f%xXy*_e%B5pV5d?kbj(f&w@S^']@a:fZϔրX@|׃ZXt _ܝj}4K-T@?^&W!]@aK%s~\\ t B>>Ɇht +D1żd2b?c$-&f& E5$ƹi[S8PMJNht )E:Lk8T:qz3.!<87jNς\ 4fص!]@ic^|Nԗg=Oc^c&Fr5@kT|ԜK1PDs2\ m O>S\kPy e({u5,{}j9U̖0W t \KkIj5Rl{;e5RC6=9|=P Tdl{\ @<Sì{hc/~CۓjIP:m2G%nnnnnnr\sbf[?^/m/W0`Nn-.yz.Z|fXO~pr`Tk5< y.ƿuQkj?9[ 7 [s/_3o/W .$.'/j$]#"Ɯ~-^I`S^&wvj5%I#Tٖh-WgL1{~&\5'Y]{#WV[fj$]QNQIb9~{kr5IЅ#C1ǼiΝǏp1{[Kx541xz-&s5[7׿3ur5eIpZmZ]㒫hG㗋\ @Mky0Z1f9bs/-WP'NksQy.W/Z81cKZfo\r9^͓7@ L]Ʌ9yZ=֞yk3#{bs+gWO۽{XT-f:EY}8 {z3}\u~Dge81~=O**Lr @zM]pLVoizce6H@uƔCFUMf1™q)pVNf8l֝llj`8i m2[#]UO8{-t tȘ-WIt tm.0oKr5ϼ59H/ khkIVt $։H#t $sU ]Pt 4#6o p&5kht @a5PkM']Us66@k Y$7YI&] g[t dvm8#]Pt $~ڪpH&]1o '8 t @a5PlHsݺ;}#g{0 p S@10,5PX\9lH5s\8&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5s 6.g5 0 \ 8auH4oO~xxxxxp ,&ퟮ5 jP 5\ 5'j@=ZΩ2,I$#WH"WIj Wrx\ I(Eڞ\-THarvr5t prրNH"]SvIMrj5p&5@3J\ @\ F(̩5@r5@H85skj5@b{rP IũIYt EG%WCĩH@U@#WF WLNkO$]'1 0 rwjRkaրt 4F8hSMjH@t #W0CLI@FN t $&Wt $` 8{HFr5H {rP j!]OXk@0:%WPjj&]i5\ @kh\ @khS8 Wpn5Tp!]@Ej$]@a{rP 9Hp(Vt YˤkBx5$#W65ljHEU@5Bܤkx\ G=Z=k:5 0 rwjHE#ր@kNNI\ mhSu5M2W g"] Jjr5@"N>I׻ 0z^$WuR%98Pkt݅|i\:͍e{rP W!INuhSmP%e^ROn( Q@Z5@SDj ̋¼8!VGi( QRkx%ꭰD`?t oyqj65( Q8ޞ\-TI@K[a:0arvr5p$yVYKNNo(9HY K8V#]Tʼx+̋SH[!p75Ɉ⭰DNr538Y-#̋7CZj95d$u  t MD-7ր%]/0/ Q!W!][a:ؓjt %m1/@Z t żx+DqҲ5@ax+,Q\ p<,Qoyqjk62/ Q`ʩ( Kt @G,Qoyq`?5$c^8\ " u(eOj ]@,Qoyq 0 rm65yVps&⭰D=j~HOXj>I2/ QN`$]( K`Jż8P'e5o(%WODVXy.;kX/s ]@űBG\ @j5tDo%ID-ʼn}lB5kI@̋Bos7 rwWH@DVXZ@k,,QoK?r5u&!QsQlؖ sp!p~p!/˧~駟^@*8}'|Vd8 z.e>SrG>__Årg87 !ý~֐Søgx pa.dY |@syK |//??駟~駟}g}&\uBE~駟~d\9Xz( sa.\O>O}+n2p gVs87\5KKeP: zmR)9J#y..,M=h Y2\XW6)q} @id8`4~.,M>m lz.8z :}-hcSiB ! VN6+#b\륦,Ah K9+\JnRs*P;6ᆋR@d8Z…ώM a^l&nFu!@RQzgzD)y.|scWh 6,ƬR}W%lS2 a qjl2o`x&Mj5dkrԔ2z@S *,\- qkco)L@צgƦ9C0]ZaX&i8ZNÅ>l+G& fH O 7>8j$@SϘ63gW=\ʶi@SG5>goIN= Yj)g#EЩs7JNZ[}oXCF̍Mi[WL@r Ť(N? plEͽheJx))mٔz˂È68j3d8p9jJDZd8޲Ecϱi` Z&6Lg۲+?Ӗ gz@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@vm`}@L@vh,Vۚ=@ d8I2Y @稭' p4#A'S4pspE1f6p4rTJ$ ,! l;fp,Dw2z/8< @_d8 spp%;3@d8pmSu@6m2hkz3@L]c-|<}b.K`i8;8┥pi8X`}.n3PFf ERː*gΞgJrFCǦ1h:חR2̶Jl91F$z|||;m|s>r?'PoR(Qkk~>n]t~t;s(w: s\X2l(Uc?aSnsw,zw[/=]?KMǵ3\nHrIfR2tzpcݖ( 9o?λ 7oʝK!p,X=~οˏ;TIr0  8ۭ8n>fId8y T$F>~I~I[d8عކ?g|u+Hr< ,d g*ýcu[Hr} oy|r~6O6ý/-}@K^[}{>?0v׿U͛oϽ|E?G9rh&ϷÀ@d8@j( n|/qMIr4cQ*&{i'[:,VuOٶzfp/7u$9Y I֟mKW2m W'9l.#ÙR$P#R-&Ŷ^zԢԩb-e*@d8 wz ^!v1 &91nj{S8Et-un̚s ?^^>meꜭ/_phmtlzc8].'g>{z/'O Sr۲(n.\t˯njR.߂ŢT.,qqb\v;\UK ETrގYvzǛ@meGՇ[ fQ*UJ%ٷtC.pm᜜d8*S˲Qp^cыq$p @Jo3\%O{;/S1d8U˲1X3qmʒ;+9b\%ĸ=$Mm2--VͿ%9?2i)ʟ9[p{pl~z ZpA]epdjYǪ$MVz}VpNc\͛k_q{샧WW]}%I8+5"o?0./l|oޜN|.8hczĆ}+,J`>ic94gKN?ɝNGӡ6.ːBKNb\{EfQ*wXvJm{™NoX/\ n-\ ,_r0  Rܚ -c&nz:ZǕL{xFKr!1n6JC 6[eH!-fOG#ƕ$9`k2@5z]Sŷ?+MocI8Ir|2@GRO7.#ĭ~ַ0'id8.}JeH!ƭ~Oǘ$%`n~=ib\OpMIYvz>F˵j-n}ajOa->f뽘z{/Jr&C-Bz=M\^._>seӛ77ğ{g/>9Ujf27 LåޣɸŪKSr\=]a w_1.ϞX='@k,J(Ze[`;GㅫpűBNju皆޻{b6)9hi8"5pdzm;nuLp2.0W5%0 p0L=]!wW2?:s\ؔ4O+8[yZpGp\9}lJjc`'QcM]3M@d85;]X-@Id8,z:_[w/q=9.^[`po?*m'>srpL\bU^/_7m[_RK7q~xJ.p45o=sY[ʝ{]+hq8n9p@w̾1Wom?sޏSr tAz=O-P=joXJsVRf}?cQR"UX @Od8Aƴ[WG2J=8RIֽ 6Hoлpo?qGwn{sf}-[嫓)9$U222\ĸQ[b%/m[4$@d8k,CoĸZ0]sn, oҢ`Ip@Ѥ7b7_Ο-.JWOSqMge-,PW6P8`ׇUӛ77ğ[%k[>ñ RiL\cָ,V nj:_|t}tL/!vK[ /'Jca2|O\pkVΔp,;eceOb\{,IۊsMr%JMofe6c\INjKrO8%Yv L\-^:E{jlrMuq'YHorTq=g[ԩc{rဍ9e5 H}=={qqSV8֓(pNK1 p=v=׿?W{rZۄ-_W~`XHzLm<;Ø>3Z,ո'^ ^>c\K[ȣJ` 20Cr 㘃c 1= ƽ$-9d8 I̾Q2p%Ƶ?[*s$q#7b-.ݫO91n| <[{5+w=\U60i8z,XmʪcƢ%GO|AVL cD% *sjg[}'2GaQ*tӐ~AMYc}۷Ï].ծŪ9ܶc*spoQf3>6b\{I_8ym@ۤd67T '|D7aRx@5Y~~rLu%)ĸ#'L44ȲS57RY^?@&ھ*[1Sp olf:o tϯ-b\?9Ū_Gz\ܺtm:s\PK] ls1b87T=uY)cWr)g[n%}BqOz=7k pGr8j,;5F}@u,+Mϟ~g )9Jl95 zmo)Q7k=1OWV]Mm;vsw^]!~EP(ҔyeR%ϗ?4u~j0D= TzeQ*S[>>>>>J0 Xv ˌͯk~@ݖ)8/&ArI}F3PsgJVn󎔧Gqܚ1@kd8i܀u:~ۤ|62~^ޞf5U{ze@fҝ /<>mKc!h텳)gZU{a*@ =oMN/5 xln{`;=K+Oϑwmғ֞}"Vݖ;dܱ{\8n?~(Etan?>q!1 r4ud8v,VE\(E4nYKa*g+k/2ze;nۨ{ݬehΑ{sTؓ:olqkns.$h68[lk4l5熫g? Oi>=mșܯP*V.&z5.G!ůofk|U3&k/ÍWߩq%12qp1DzV1.%ĘwTK?(k( GA.f& pii*?*ӷcľ]8hM\6$Ƶ/8pvbb5p%!obGm gޭci[Z QaZXz ] niI~S$Q]3^t82p}bbL[eľ-r.qH9,V{8 GfU.`9v}[y̻n>'Gq2ecd8}K?]I*<ŸZp2 gߦqNoMPvy+~hލ5Uksbd8> p11sppKwo|\MLؗ q_.e`Oc w|ӑNc1$մ8p{uކ8zf.Um Ir96-Vioq GnѥpB}tW_}?1Ͼ*_|ז'|>?s WﯔKN#\#hrTjaLώĶs\c0ɉqOXϢTXۈTi娰5So߿{G~t{ߚf*)rŪ' T0 i)Rނ)Lɱ.bycIɥh98X#Gz[6 7ƔOZ2p~ƶЛg|ǔ۹rҙ؂i8:f6e26]4 ti1q%3q[0 lNcO<%WV-u8[d8L/> 5,Ph[]N"ɱŪ1`RwHo@ݺ,m}K_j*bRDN2U9L1J;8Z:mz246)9X=;R27p@2@o[n6X=a*|t(HoE@ZW?m{0Vڢ,X}:iL!U8NaJ4L&BLN, s=X$Ϸ?1;g۪b̾Io{%܏q\ޭ73q1#fjgCz$-ub\ޭo*8 \K,P.@^8sq]Ekŧmb=9sќ- oq Az$ǓŪk;[s2\SاrTjUO,Vw[[ D@iӛ׏xwIE8цrIo \.rx0:.p:}C!_So/|8ݻ[l|>-֊ryt_{ƾb?eog=0 W%{d8[rXvVLb;o2\5,> ϲScjk*+RkIXVn-GuEY=X5 ?w,P`hkX 'e٩7aJ'ܲ&〞p؊RoLŪ&(rT$Q^:q q/VcŪ|=- Y 4\8r3²SZ2X5+Wb-ٚ&'1t.p:}kːCJz 7%ɵ˙ޚb.gۊ8;JOo-Ztq& %pYr\yU؎~32NۉGiusY֓ $U؂m2^|H!U 7g|e$V_j߂b γY7*t\/5 Շ2x`^|w_~mZ{roN;Jr\.ߟNso_[- |k`[ NqE* 1|Mx>N+CXzMJq qbv>1@-,J݀ŧQ ,#җZZUn5 TYnIo4Zj_>oNzE}J_jJ ^g@=L-$6n^\jaJ682lz0gai,<[ A$zX:gK EiIzcrT[+,Je5X5mY @88Nb\d8^>ӥpv}'6Lrbuq@dM#ג[tzvZ'1Wz qiHJp 8f*,<8  WKrj%ld7B2li8 r0W娦Z{>Jocx`9jAq2Gfmvjes pв3\ʰ[1W>g\pr9In;ĸŸ2j6Ù}qeZ{}~VDL/Vm#]¼rTz`b\idS~nA|ܾ+y[#ө+ pPQ-e(_N^p W3W\B+ֹ?^4&Wk\w%JMO1Δ|q\O1Ջ9z׹~bݘT43鎝}()s1W#W?[wU|nElqu>_9yqqn8\r9?sXwnnL8spл 'APq[X)So0fٔY4yWc^Ip ,C7%8\3ǵ?[\55 LQ\(L9G;lq^!|ug:p8&@|>Oĵd5-mE4 #rXIS{9cnzn_>2P(1n+s}$Csxd[6vÏ;JHzh$cnU8⫽Nyr2gy{Q:J[^v?Tm߿v_ p_uW:޼>r;ܭ؃[߬SR{f(Q^gngq~{nʪ垶K pK p@d8bewYv @ w1.>.Y=rӋpc[}zD!ƍ/PwBYʞ&aJnYM-VMr~dXb(d\&.p ۷_lKr7מt?g x4Pqs0؇ss>cWS kG-}z#Te2Q%2}ٞ3wO,GY Ti.0$PW;+\=3]M/Va_}>7~X4NܟGmLݻ:j|e՗q/V]b[R1rԱn zNze]uU/T)aꚉզ2P.Iz$l6\la>r\|1nIz_Nt[ sP ^?1n͛rrcVuyiK/ry8b w[Ԡn2Ј޿Yr&zy>G^K̾жI.Hʪs[2@z,?\Srk NǸnsp@S޼y@5_ kA{e`+rm%1.yuJE7`[2РlqX 5].. p@.PV/ jLrWe2eMz$T2HoPZ\8XC[ʩHm޼ހc 8(! pPS8gqHr.nFq! 'ǟ=OUF\n-GLvԨ)"ӺOQD(:ո%o#@-%`M"H7+MFzڥ' }VNt!Ti}ހ>pX}o#@?$1*ZĽGŸ[e8޾=v+Io@I.&=q-fx>6D7O2@ʹ,ֳ8I?&W6@0RT{^! ; ; ; ; ;.d8&1%ed86g\K'Ga f#ӷmp p Ʈed8Nd8M@޿\5{ϜuOբv 1d863vq5$'еx-}2n\,`aM_Y5lq2|,ɭ37z1=~.7l1ﶌG/ p m7+M/,ҹ/ gZ {6_/U;,P5G_\px%2$ɳ@-HB.`u T-D_m636'Po1Nęd8w?ǟhXDn=Ǹ`r̹|>j#Y ͽj}i[sy>ϗr嚎qA3[l,JL#^kmPanYkoIiM1kiz1j5pǾɸ-ǂV2LN"ϲ G< _awK&Z 0J8O ]/lO}såkX|o'ekH}!M/mک2Ti,ܚEvM @O]蚾LuWA aqb/H}c-ߙC2hךL_BL3asg͜G2@K!{rՔ{pQ<]kmkr;Gt.KEO.A_.s_?&eHr|d8_o+r,Sy{^9a{"#5 4\펊nC2,+V3f|ukVx6]Kw||_.oޜr:N}\G}Goǁ#%;@ڷoL ]sL+e({z%uN]ׯ?t6焹ڕe8BJ[hŒ+m[vw9~r矇in: sJp@5&Φ9guKқHo{,WyV8R ssp@bZ~8l-yMni;No].ݴIf[ qn繹-6XUBFŸ5Mk)lw?mݎB~OpgnmЯ믿?;9u֖.Ǹ8 p=i@i^^vnz W5 [<+QpqϲG8a.V̩ 4eUghp?^߸;%z~^ mWpO-s|_[/2 3GGE9d8AǒxꚦPn?}ׂ~g}Ypө.Ν~~s c1gޭ{Ғ\wR{Ÿ%#G\XT8?>E5@Zˮf@F@z+Si}!N;py&>?89|"̕F~8spw|wp/Sn97nsR\t+)mYzӏUdx~駟~>?O׿?;"p{wK ܖt(;Kg-g駟~)x|&;{v2|0~ėܽF) TŸcw_J CK)Rn+ 3K_Jf5b믾?޽{8؊VMmpf62гrl=(f;@6p0s-y}0#?9 juQppX3 Tz̹g}Dnʒeo-)䶞p@spL\lm[h(?Q hƐ 4+%Y5۪F(vQ23kjs\6]jjj,z[)wnen'PٶLt+߶g؊ 8+\{ϲ>l< ܗQLD[O,{s6!MYv&/Pf!Iڟ(L y.=9OWdƱd8[-)mqbꍖaÀcZ%Q[匣Ya&nn@tQl@:M֟nxsNuf\5ND1c-M}pt?k>n q˾Jl<7<ƿD1V/M=pЭrcyr۶!Os;6= C,5=>Sfe,5.p~ymڰr ے`Y8ǡ(?Q 1I$s\?J9o=vbp̏{EZs#wfrppǚ 81ۜݼ۷ϯ޳,|EJQ{|lbV8`[sp᳖ZL8:$Op:=>ϳ8ac#t:}L%> \s:`+C%b[2X`[SX2:Gn#ƵmYtK9r {X#|/ +!RXXK'[G4 hCi Q- p%' مkFWy]97nX?'2JO<ӷM~<ڐ/m{ h?;vŸm7l^p:=>>>ڧ=+ܞ{ mϑ-Kth՞L 3_aWҿϭX7^Tq@榷e3k_exKq2l`BeyhϨܶ߉@id8lRX*lm63kf 8 GwM6\߳~d8h܋BEtvl8%r}RTspP#0L]kWspPp}o@d8(Be\387 D8{ XmmXJw}ތ*pP8MǵsdW4ݗ_.,@?LaI7J&Mݯffc p@?LD2X4t98 rh pЩ;h 8 3Y8Z%w8&lM 2҆yNtg21WJd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nprةi81TBW4X3@9Y*P.*p2P,P4.J(G(Ahcup8ݢT197di3k ĸ!Ɲl+0:w0$!0r\[!}06Azt p@ =c*e- wЧ5-&C2lb@K7`2(ghV-&)d;,P~ᒈqX6&p3qeZ3~8 l^ާ$f&`P;n!1  pdU8Noׯ"G8>[  {NyMz;G{op@`mo( 11ݻw2{@"JZuTz ̾hOJ7 2@hձ-pىq@75^arQc p뙆[ mve*P2 R`*P8dÈqӛE)g-HD6ps8 [` EE@A(i֫16b0}dR[  lq7lq@P@zfb&m! pm*k-i\>4=xYl\U(yկv?Hopu61 ~$%VuTL7g%4\;L`MzpzRz F Nqpf3&@-Jo7dVv;~$I?)A6e_=&ڛ}  c'&>jLo7=p-T16RZ$9VN`2\VERVocQ[ Ek}qٷKLp q>!a[ Cc7z~1I> p 88NϾm$9& .l IrpGՐ$@]R[ -o&Ho$@} P/(n:$P[` ^2bM1I=v2OGBL fBPᨐW~Irg ZpIhp#Ñ ` >/bP2Nz`2{jb\8XLcIo)~W`[2{j#.r$Aΐ$Cz 8"ñg&xmߌMN+>ˆ$9` o8!Aiϻ!IH!e8sCIoPqHb[ P>A3qg$=7"QƁ(B1Iz *Mpt8qHo3:&AK(6"A$5JIo7P Jn5o(fJyjW$p}q ̾c$9(e@?d8j8LŸNr} G 7 k'@W*zc A>[` .cCp pyv8(%Yv d8IrpxXR p@?$9J#?+kp{p̾L8lEC'%ɱNzp~8$9%Yv %@7|A Ho >d8z:38`OR[`o?bp,I7 'A"Ioe$@ d8z=g8\ۤ|( GO'Kk'@d8qc7Ir5ҏ[|2p@K$'-N"ӓ!!p䎕o޽@d8x0=InOfߤ7 OI{\[:D$=In Nӏ"U2Hrݓҙ}@uO!I{ܐ~Tx7`$н~ x} SK^z s ,9@{Krқe\2Wo =$9R[`j` e<%9̾Iod8(i)t$'od8()*t/w4};{ !A=OWI4'M'9o'j~'9IUsżO%A+OfI{sƜ-Gؒ@ғ7}p\t~=p^hZJ~"AO~I!fߦo/P*gp3I.S Jcm@d8 $pGfOKIow@d8`I oC޵Hr}y D!Io@d8`'aNa-})68$`-^ Lzvp@A$9U)qWGx L %m0&@ 7ed82PVZv TLa10MaJ{NzA$h)Iop@$9`[fXF:"k}` $k#Ioǒ$9~[=!@n23` d8;Ü$=Io%f=)gevfؓ IRo%lL2ջTzh $%0@ d8Hr*I.``lx ,c p E-Nz@$1 p@d8Ir'0MhJz(_J:HH'4K^%Ͼ,b2@$9jQ{ 12@w$9JSS p]8Vo {7y227HrSZ؇ I.@`I8d8VN( $9 plLS .%?$X2;ZrA p&=Ir8vͲS%PI|8j( @q$rTz%2Er@d8!co@J\{8 pTO[cOh @Sғ\s7p4K#͍n!C \ ͻz&НޒVμ!еg "m$p6n 7Ԙ;Io(?ɥ8 "la._K_|*@ d8Xe$슥c}pIn?O,MrkP[7h {~@d88̚$'8E"L'9?v2d&d8Nd8Nd8N&eC>IENDB`espresso-5.1/Doc/images/ofc_13.png0000644000175000017500000006370312341373034015045 0ustar mbambaPNG  IHDRxzп. oFFsmsjR pHYs  ~ vpAg8SxgKIDATxOrXv7l13݃nG8y9T;ao@ 4$*a^k;=a;:lWK(!@ ދTg+uJ ~<.rսS"`3Bk6#`3Bk6#`3Bk6#`3BkpPu^ZIh ku^~>|A5&M]w}wj45 ޽{?4^xMr\.*ӟ?w~\GHNkvtZ=(Nk~_~ ^6jeZH7C~!^K ;5opw@`H7[RP*5ow4Z;Սqu:ZAh v8݌O9f5 5 Mێ9FZ_ mX؝ /-:Z|Dh &n܄Gxm@^y:Eh p폤3$Bk쾈}˶ѵ(7/w~Ғȑӟ?ʫ0G 0/5 3]*sm}Q\iDZMh݌ ozzx6^`Bnu ۬6#uz5m{'Z C5kvwk Bk`׆7@ o:cû|}-5P%:]7o @h ȹihn[=.ruO \Kh )tZSwBh5Si;_GGKˍL_ `JA M0tKwCnthByy}/w>Fc՚K>+()'mq2??}bl`AdA2xk a6P65@o'b솞llBk 'P_߃F#vD<84|?NC'aC6@  $7-c8qA ]i A6q20Z@o'C mH8; `ٚ #< @8md`>z֌l`:5I$%N!H @A<8ؐ Fh 1qd /zrd85"o'p1q52ZXqj.g=K%n-Z 'dHp!1hq16Gh A<8 ֐1qXdȓkؐ 98}EZk֏c!muM:I5#N~[ArC 5G Bk2 fJ Hpl IT~A1ӌaC6DhJ>}} ف2ѵ8`:#X >5g.zِ 98i&r`xwww-uK:ơ{\`oِ I _7rJ%6\h ˅ٮgƃB_7^tɆlXNk;(_~ZdKǺ-i͎,ד`1qr_q }Z'I6ec.-Pq_n0Z}Z 6d,!͑57d7pliZ1vhq`^FOBkw< ږ c)fcC6@`C6ȘS}6LBkзi)w ȿm3&2ؐ Jo<aUC6Z(kHⰌs5yZClʠRf8iZq߽ @-.&g~Ϟ4$Ww#}1.160^ #W{c_y|cw]3ZUJRվn9Q:fd_T贆ِ ] K!=LcC6z-)_\1va6A^Fɒx  :a^ƞoClhva6@^$IlaC6mƃ!ai3Z(&)V EBk;l.ȝr!ƦBkJhvкhnr\pe+5|B]Z'ۥd` 5DMК>۬3ZHhqR"lw !ׄF͹WK?:ԉَZ'JFKy:MpXEh _ ⰳ͚kQO(mbl!lq Y@׵AǏww/ܓs'$F3Za'fEblاt굾_q2'k+5[vY[zyM;}ZPc6/ni!tK|4"{u8I`Gc2Z|o .7Sǒz+ƃb8NkXu@P @^kؐc:Ϲ6do!N._|ɪ*Q 5bCv [6$ܱ絈s]=R N.O7HnXbZ^-K qryc4S-m`cCǣM`抱juEǖ:>fToyu\;oַ5|@5,Άڐ}-y4ȕ8qr{x;T=Z=eYs`^tW; ƃ3axp50Z|3ېjoi fn쯷';j eH6k@5W{:\Ovf8vֶSs'dc8nvU6DOv{oӍķ{Rވ#N`MBkp<Znx_bՐArP^]~1U =ZMy?~P%6d7]Է Αn#N.8XGѐpJ"ѽ󜻱cB|N dHК5StmD}c)6H[/5'G AUU먯 QS.4YPR`5!vٖݷ!{ե'd6[P5:]2` ?׿{}b|^k7d/MP-qryBs@5@h BӇȘ{ KQQqrE3۳r Z3vF؏5c_q0Z\*uTGh pc6dO^?'$=2' VsF7  c }A~վ'o\45s1/rQ %f&ǣ |еh&nbiR N!YMh 1v&n>&xx;T6֍}av;='a5eZsf?::->86UUU5nƅ'MrxU@)[idǣa#й.!yzx;T2Ȟతn >@֌DQ%` @lFh c|~Vj6[@Lp<ڡ0,9oUY"`3Bku]_.!{r8iOhZ$-=<ZsQ -Ah͍G"R]@^<aUUU)\G  K8P5@bY {B|>X @.lFh+RVu}Rq GBkȘNh c|~V3Y xTa!p>' fkr#F]ti: _Bk^`XUU05@BbY%R&`3BkF8mCBs*#@.뺾\aȑКh0*먮&5Z$!9l @ :m@BsZu]!`3Bku]_.cp8)Z >}:1gu`)j@ʄwww! $gAhM BsHA Tu}KD 6ֻtêʸj5Z@, }Bk:{&x;a!p>]X" @ lFh EUUUU^ÃGw 6c@ 9JWǣg1c#Q !Y`.:y%9hPH !u]ח:mKIh;vx.SUU;VciQgMrtZ5wwwwwǣa!p><?i wx`X!ϥ}G 5ZlrQq8:.8VUU:*lAh c|~VlEh ;B!Zt`X!ޭ`Bku]_.кp׊-UUU6l` Bktj5҄ 1gu뺾\`[UUUz5 e` YV1gu X^!Y`B9 xm6[5꺮/uh d*Q_cZ'Zh` Bk:!ލPa!p>Wj҄ Xк(@꺮/uVUU5p TKh 0c|~V;p<B8ujrֻB!㹶 :뺾\l \օpr0uTH`1fk!zl ҄E;L !Y`+BkF`S8RVu}\GT y &1gul!:uG'B|V,` 5K뺾\~O'؋cQl>TtZg̸a>}:bJ Q1>?ƃ@Gvn7f>r8':s<0,gufV׺؇5`:u+Ч^m`^Bk`6ڮj1P"8dc},$!p>Ü֧Jpv՜E05l꺮/u *; ƃgp8l2D0jrx{7oi pc|~Vp<B8a)jmօ0: tBku]/5aBl0uTȍ\Oh 0J1>?tl BN&5pk~B u)뺾\`[UUU@o1gua!:p-uGʏ?VW5HY!0#`36u]ח:@Ib1G75O'`NH~p-5@c|~V]8 c zA`%&%,}ZT G!p>Oh pETjÃ0Lh(RHmnJ70xC_\Oи@1K99 T`B8!-fI%Z"j`M#V1ƨZ\m`9Cs/?}sJbur%^D> \@Ch B1>?[ӵw#xp_7n>Bi?d}%!YR|\\`6g5B 0uT(XQZ&`5};"B:@r)RVu}9Ǫzz^ WU5 :01xxPBkc|~VzP BAhZ'xTW@yB|V2X OvZ';xP\O_טHh ЫkǀT5O'37f WGUUU@:quTtY @wm\ 73JFhѻWB8r'=yxP=ZoxHY]lg8r\fZ@F\B~|P`bYHNh B8ա46[^뺾\`[1:7p8:CsewΧO>}Bk`wbYXR_P-o `Fbii`o8șB:ȺBWQu}׸6v)zUp8@*Qyu65#1\O_5N'po'Eh j5k GBk`꺮/uXXx[o g[^ ӧO?s Bk1kv_fk|PFwX a}uzaǣ\/; B|Vb'@^tZ뺾\Ve鴞wl@=9I\ ̩uTZ\+q5y Bk {12ck53' BNW:B|V35@Z\ @l%JUu}hfIO^7,r\\EܚzCX.wƃ1gus p<B8) .z u=<ͥBh ))_1P>dZ|| %FUU먤U} ,:[U"ژDfk|gu<ڙ,O\ -gu`90۬SA rpp<贾 kJ#SUU:*q~;6[Yxp 1@Dm83{\lE<*Nk(ʘws%_{&7Fh=ؼWK% dq` S1Gh dx)~W] ,mCKڷFh=ٖ/^TUUFW?}45,"j5[Jyh܊OZãY@1>?*4vTx#MZMoaZ}-ǣg^0V6d~h% trmPb{m戫/=6Bk cu]N^WUUerY[<س%Nh}Ł kuP)ޡ:5Bk i1@\ 'csib[\&OA`ʨp#A F!׿ Cpa6kBsN')Z/B KvZ L5~Suj/`Nco:s lq`Fh16S|\s4UUU'uK|k?i&We`nMĻ^tgEc ӥcps֓,1HDO64 Fh]ݿT]6l:Z%AL]Xz\aƙ~N}xW@EuA^\o9zLȚ֓ _|~\ s]_,nF.u_|ITkk S۟n퍾ZBUclRux-nά ˎ *o{;Z.UUUN#7rDmu>~ 7\dCqoGaj]%T90lLkb1{?9oa-Mh=ʚsm "~|9G{?溽-_[NjyY"[6D}_wD2]Blؐ tro?"5ko_{X^" OpA mc-[h=^ې _o/Woɥ}xӼ~r-. ڻ!o_'ceɣ}wƾ4zo GczEh]8Zߙ!Ps;nKN09B-xno{ uvUUU{r^z{ W:pScC6i[Q<~+!gK<KTqtR(I #X#VbC6*L>s |#ح~FI^5t#t:5l32w!Ɔܟq{Xr !Y(p<> -6k\lRu]ϰ=Acbo&d}g؃y۱t^&x>WuCȅ֋{`8@M/ .ϣk7*EXךVlEh"חѩww_kkλXgyUtD+>%Zn>F0oY[~#[_I?zllblotZ/Ҷk_}wiYv>Cy>~|1`p^k[=ȑКؐ UtB.mMc-=ۿ=􍉥N6 ؔzlF>:lسk/6`}gP}hEy{گ{OA|G\ˆic^ǿz6[/͆l 5gPtKf{Ku#}s ϹZS8?y=W8oKǎ*S7blR0*Z/x&xuL<틇uh#)kBKK1]{le1Vh 6d$KkyqKKgx戫3tw}w__/fIiZ/h;,͆l`]jR92imsOsz???~Ç+ֆbl6[k{:puIKP 4绻өnVgԎ\Wk;S#@}ܦy †l)޲16gY5\`Wgy \QK/(;|.}vsd6}wzF'w6dg . HVܽn>6n246Mݻw޽|v`7+Ɔ֋ٚ 5=:tTk[[3QV?N! t#Vl]Bk، }꺮׼yQP @Zoyj?Ǐ_ǿ&Xz>-7QU09>}AuzݐxL}mptѲ}V5$Ćl4mޠ6ˍ/A> }ݿr av㇇mV͵?J=ֳٚ%ؐ o&)z,J wZݓqum5>cjkS=|ÇEڿttɑvĆlBP C դCh%%"n--_:bl'ٵ!Fk}npȑ3.C.qxwZuo~-ݏtv?vMؤFh*ɅBP {6Q\ln[9ڞ鹾vnޜ=rnnyJa8n>tTBH7TC >l|\\=3u;Zc1??6 I-.-Tkr%ܭ^v|xW???x3~ca5{fC6pkd=jx]UUUW5tͻ{Hߚِ t ~i>wjQ1~|ww:EN>K}al&_??ǏޟÔ&=rvp~eKn}s[1vʫZ !²1%pZI!Դ{rdkOwpX؆`:4e88/qP Ya.n~*c!񘯾m8fkg#2" Q\s,QEUUU̩ A5U/. H.HftZo%W ٤cy.j6g WO`<4{&eC6[]78ǚ[X&f:abi#vĆlR3otǚM*1+A5 x1$ܱZ/Pb쯷'{Ə ]َ6k۩Nü/ؐͼrW\]u>OgdָYP KMjm>.4)R;B2 e˝K5&6rΥǺo:7sz9u|{ue߿#_Ou@ tZȆl0~Tڟoj/A5k6=KC!as +{)>R_~^64A5o:j!,Z@lȦkLt=Dz(ZP ~'O*i(: 2-Hp!N^GS&TQ~`\;*K5؞89}k$&5^7 BkD`pwǿyk5'G!<=?c֫͟†lX gzOj$5tR2gCvƏ SR Nރmd`<uC|vZs1\J;ӟ y?fkR:V/;i F W_ܚWG 'KX1vmblVGZ'O?xG]%CbCv.r﷦xgu]uRCL GGDy{9 ӄC6[X.zkzmWE۬{yJq~!m&MYNh lȞW7nз٤f7 :=$ú=@Ɔ%4ptmTxt|.L=' 7c56dR뺮zO!NZuy]W@jʆƵq~kT'L' 5K<ؐ=^:wd~{$7ǶwMdF1߇ltRHT >Ul^μ `+'иǺykq@d# sF/J8 0^_\l7h^6O V(ڨpȅzcͻEyCv꺮S׳!wwt'w1{-1plo:i6[\+ F=ӏ8uU\ƍ1YUC"羯8|k][O,N l}@ āޖ:ڐt\ΨTsj%w'J\ۅ<9w ۟39݇k?gL<>N''@;TBk`yukTs}[<ܩK~!|?g}d'#io@yc6d/nmr,xFr&4&`n}9<9}u+.$0 wln>. м#pxmOmx>lJ=‡7NgTx*@'nӗܽ Ǿovw7\1q2/!~B 4h'/1m}['M_Y [W@ل̼ ִ\O9ۘM}î }w'/6p.=J57[ W:9rC-vϲb)~ӧ?Ǯ>M*kԼ{t*X7N޾':ȯ\?W3b?[zCvח_cq1鷿Q!Nc!L`K;Ä;KoȾV;սZ' |`lPBn:SQ'G\ Se512m(k'ycsf qos0ݾ5-N'55 M(='mKsM:Jh&Tѱy_W0L1Z3X"͹6g<WT=Zy4G E AyAtm\֎ ցuL9ȇXjV#sA#Fp8T }S矛DZPCxz1߆vw~hȑк:Xx_9nT1x~tMNGEcݽS`^FnNL]lWO:EtH;ҧzf:N4Ձ%wرJ ܅ӓ:0WF5pd=z`.6[ÄEi"1 [qᶰ_uTy}q_ڄ@}Ƽ[Z; s o+T/4f8cgBk`3sZK˜u-leX1:;޳`I Zgr\.p8Tu,m.qӻ|~L2:uKϓBxzR 4}{uEϥ{#.֬omcxgߜx4Rc!woS _^So[-_KH:[i bLxm\͚+?+`:c6[4tյic"l P=o:ZLo)9~kA5Nb~{i;}N]N 1{u-X_r۸:@4>ʼn:84Z hv=#SXZ7\.&gѷW_Zn;Be1Gu(O!<=0N5h?SAh6[{t:m:vmZjsn`?\;@h 5qA5+@u!C0F̹bT3b5@lQ$B"vx-/iw!&b%c/%v5SSbm#NᴠHT )0tR J5cm76[fk\Mh PROu@لֻs6\: 8Bk _=Z9aBbio=zp1Gu(O!<=Þv @zlRG5O _݈7߷ʠi k RA\R`ό/ @#jl P*6;hqq5@N'5` 5h,c9c!p>FIL^as;K3H`HP @pwJc||Tӓ:Bk HNZru:  05[Ih#@l(e)lFhoHM1߫CNN'5ZBk !6[@I` 5Zc||Tӓ:> yfk 56[踪 4Bk6#B!tRn#2c5@l.r\.Br@h+b1Fuc#J2sZ`0zl _1 !'uȗ+\KhM/Hl Z5BA t0/51Je5Кr\NjtBk` cWh6Bk 6[Jh b6'KZc[W1>>@yBIlBkdN'5`.BkF1>fy0F!%Z0T6[n##\?@^\;:tR%`3Bk 3!:@ ,`:5p@bQBOOZ=mr\ 05%`m5P sA`ir 'J"F::YOׁXB:y+<6[ouc%(6[@^Lc1p5=`^Xr\.u G1 !'uX,Mh Rc0/ N,Ah f@!B!u)L`}Bk` T6[@@Chl Rc0I,Gh fk،К@bQBOO0lEh̜R&ZN'5`MBk@!:tVF457r@l(#5Z1ƨlEh"1{ubl 9 W\.,Mh$NYW1>>@yBI Bkd5lMh f@B!u!53|l P*p5 ،Кc#R vfkhn@:lFhl.rQrcPBxzR!-5+1jH]ړX !=31fkRl )Z.Nj@ ֬ 51xh5;6[Ch f,cPBxzs,p MBk6H5Ch T!`#Z ':fkRl Z@b1Fu MBk6$ HM1߫Ih Fh ;u\.:-5s@bQBOO)Z1Ԕ5X'`3BkBA(Ih Je5@hJ.rQf @:$!cT 1x45ol$ȅY-)+BCiZfku،КD@bQBOOȑF)c5FhMv 5@BAȝuLh p#sAJfkȋКyyg5 Z @$icW r:yZ!BPrdE#ZM+(ꋮkj6[n )P7c@'Q0v0Sx;r&ip8鷬RӚ\:CV1>>@yB)t:y\ȝК-c71x}X),xp wZf8Fh͎ؐ pLq0*^<%f3Z 9c!p>/uۯC_v鴆nwJ.=ءc_+|鴆ِ @fkR`08Zl֌lrg<8,h cPBxzZ+@ְ*`l 3`C60Dh ! /OQS.X `MƃC6lȗZ5G5d/6Z\@F@ b>穷c2"Z.,c7d4lvhqmn9v671 !W`+:7ؐ S̵J%fC6B@h lg ci ,Ȇl.JfI(Nk`U6dttZ[':@Nk 96de)`?@6-.X@Ɩ-{90c||Tӓ:xBk(6d[6[N@ٌ gC6%YU%vʆl`O' \1va6phm@bB8UUPnx]zuCcok(Nkؐ  TBkEc7@XrCFCbQBOO?UIh lfk(1Z`N'5`?X.ntl16,yf|X60 KFCyl(յ`otZe⺱! e1xwww`wlȆml &ok;95oOv!'U(O1>>wx𗡵kNk`C6RXWBk&!Bh lȆ1vxH8i flihK:، }ؐ {# i6dS6dibl`.޸ ][1(ռŻeE!<=rny{=bِ K3N%`Gl1^a8c<8p-qr\`o0l { N`<`&NA2Ih 7!`ɂ܈`ό-x6[ }2485C A5$dl1v.//ȝ8y?\wO5$dl0Ld ik a6'8`-7T!^[ RrK,H΍,Mh Ų!;_CS` q@bِ];m(f܅b)q[(\sCNDkbC6;rr9v#Z@ud&?99 .!~|؁ h LWg199;׃l939YHFHNƆl2CN؍fk993 L5Qy̚NXlȞq&CN;ؔ S9dBxwn&[Ɔ4rr9a5@6d٣KΏo39YH)d38IT1×#6dFN!'݉@("'琓p=8\-njrrA0i w ''l&fLjZNNuLZ|ͺ0Ci6B]wN><<<<<@ \⑿H oH oH oH oH oH o.޺@?o.:q5~]կ~_u!t/~ 3@?\͛7oLCÃpa_O~o??~駟~ioXwwwwww7>>xO-?Y.Ob7oqy<=_soa_zի #4i\ xn7NL0=,{}L4O_;s2{0 В\>LVr7@cn^ru:pq~)o#d{O&ogxwY(f!4cmN!zիW6ߝpEhїs߭XٷMox8F}~X? #Ӏjd x8>%j. "9t %S:PBYIw){>'ˏ<6LOZg |n|ܯnBsYxvz jkgoG~t|8[ !v_62Z!-Ns_7%Ӷz;1;玾7=@L$wǘ,\_M#[?n|Z!|̹xB9P:gDi]~fCh ĶS:MZ/?aMwzGz-ζ iiƿߎl~w.@͖'!R0>>{͛7o>?|Xo~6ɭئ=oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH o%8yÃo΍52 pmc7@{ 'Y0 )w7v7tj.vۮf tv$>+{ݚ߲t> BYr\zuEJE=s/=/ykQ~F{@<74fJvwIgԔzy%ЀsWpr޿}o3vl1*J{w3o߾\[6A*,u~ޖhcrl=pgp;β|;k ܓ}6o% sd۷77K O")g]d/(&Jd ?2_<ï {>:`Y31M/BC^NJ`=+M {[%f V+dJo{ʼ$c{/ oX$Jb3 s̰sT^+M9w;סrCosOz7 _ Ep]7&ۈuʽhaP.풿蚕&` 5ߓVzH#w/Q~TD;o-Y/aǿG NsLGv7Onq~m>gPZ9\绪s6_wKr$$89ߝ^By>yNߚٳdh @YDmQ?B=c=߽m@ko`IDbw$$PP)+MUs3/zNwGebw}on>aXiC[{G;mi1y 3Cꫛn PXi[ 9r?V?27 @QVQ&| p(oA^RjEg @Fkpn%ܦWizE]mI-Dp>73}.>[wYw#J=Dp67k |Ǐo]QOy{W &)H꒚?Owq퐦o_W ̑8?%e,bNdo9˓Sy^3§.X|?̀Dp 7Yk]Y[2 ?d`6ӏTq;78 Ϭ4iE(yNmCN8#+oYi<g{?A~!%ݱҤ]ufna];p%yLʐdĕs>+MڒYi X{G?LnOhn8KGVL_Nj^Sw|_}us#ǐ.y[$7AYia| G1w):K̥&g{\#:N{iu߫wOwXNhL ]kf([iqHj{QA.goɛ GhF*|?/~jxaIǴ 9ͺE0i2{$#&r G>:&7{XOZz%&Y7)|eupd%?G=-0%T*;w zn5uGVnSkݔ{ 27@ZxZGvykz#+)8~z/oɛ3"8:7cf#o  kb7"80OMyY W2[MǧYw7n >2Ep)d7lq{{s嗏0Gחi;D{4>} }N K\sk7@8M߰4|qɛ~|yU^'axl[.vE ߰_ɵ',g=qaJ8"5 -~Αӆg'Jݹ|ĥ ̭=ϖGtaHꫛ><[ 4#w^.y#]~Mp,kO`z}"oxc D%AYz]zy `7%{AC<%@oäAKp%u^K p7E"8#d!^˜8pI(o]lfV6"8 l$|C~:N#8P?`5G\P'M@^O#p B:| x"8C8 %9Ҭ\,Z#,b7Юk`-7 o8C/f W+((n73G\>p[L&=%@o'ߢFL%p`?B@|ҏ!?P 3ܬ@|Dp |p0j ]s%¡tG瑿N÷#.(Pg\~U:9@wlOA-"pA:"|Clܬ@3 tA/ .}ĥ:j_(@N7VG\BmzYNް @>7SoFo !^eT w87 0Gf +P"8,'A8e7L=F3÷iG㧣ǩ[@Oohp.+P6"8l#e ֒&9'`h 8jf , 4#}ĥ@o"p@q p%QA"8<% :f q> K0%!6^tpM,Dx TGXm` I=Kbse 7Po`ˈ{Q-+o![]V@/D%'e΀Dp⑿oܬpNNK8@otv,OeAǸ@\7PzK D *(ĦoY:@o ;Khn@F7f '2"}ĥ<"8m ;k6~~ z|ԋL 30f7Db &.8M@n\`H6 ^?~\_.w߹2g[zvq%K(Џ>& lߎ?]2 LҬ=8"85lX} |  ,"|S S"8t}l~X#8!s"pʐ30@Y7 =z @@)7 u5<ogq%"8% VS"8eܹгJ q1zw+ۘᇗmz x~$8{)G\%Y=FP"8(ɡr"8ǒ##.](^V8 ]p%Vˉ'CLf5Clb7pt97%|uf.` 9O%7ߎrp%'πc}}<H?zvq5δJ` 3o˚6h"8i74@~ 8&|Ea MJq0vq58n"= q%P3[m@H A{Og"8@ohM@ %=7P^9X#I Gz#CROjK`-/g!CuO' t aB @$s 8@ 7TĦo7ub 7.[@Jxɤ 's%]'\⑿4K~  :9( ,"8@ w.g7%ya>"_vo(J"q%p,ψ:_H6 P3 ce IG\>"CF>6p%P'B`-+Pڈ! z 0j&o z}iA{O\.s5zf8`o@MYyc Q,?#6}'?D@7]r%@V# x@O&/t}bV} ( o:Gbh{@mK=(uJskOe seI^?k~zӟ '}1SR=@@!D=]ZK%G1Vޑ3ӭL4d 8^ `^!n@+WJj;5 K@[Z$ڹg"8P;3@D74ơe_|_|"8P?u &wo_G:p/="8P?+Pof ǚ{$|/"8P`Q )8(@o$-~mDp1y˄kB9\'\ο'Z@$7PổLYIno olg p.jHa ]&\%[ @ul"1j*%^h7E.q peC+Dp`;#]0o,E"8De /r1\׫]'|]*C$VG0?2 @+[Nr7dK7(@>}G#@ F&6bO]@r%]F\~xB?Dp`}s }{Zg +x1Xo6 =f]V{I@ l#"8D>!Xo "8 X7fB9"8DbFq(m3#z K jc8o| ۈ:+Po8(C/߰p &oX"8 8 x:]'\>>@"8&`| ~Fa"Cͬ@ #[o(6VK߻Ɲ@.Ilv%WL^qce 56Vp^yje'E M~.Yn,Khk&ҿ ^KP?PVk߳};O"8 ` X9Z$P/,!uL0K`-Z'ù@4[o‹%HDpIX`J~7zK`547X!+P號uXN~o?[iu5)}m>PY#%Y=O"8gq x +P`.ν.I>?EpONۉo80D}(cFơr70 {\A;OKBQ9Xn3p ޮ@7bp%I%0g9ܿMj^ r&ǿ3Ҝxw7rAlq E2@!-v) &u7#ï{m]l~ #Q@!? |Ou E!]~swo(P(O`?)|Ev%9]eU#VЃ9x~yFJaq5 K[nN>NH̚A+zIMƱ$JLq9suR ɶ]Yi{mj&nߖeAbs'gn ^qvs ?%}Ou00M?5|^!^.w߹VD8ob+{ 19z(}mi~6zS~*\.@-7~Mߔz_u!a8q']KsS&2O)3oQ._+?8oeq8oRoF?gqyǴ{t?Jl-kwj{oXB%zlx`\f9Lg#wr߁5/9h+M0 i QS  -Y=_NxM6vJAy7qm{9g:>oscf(P^2ϋul<Nj%6)J<~ ˏ,릿6fmS{bV1'׼e+ܕ&'$|QoyړR^6UudM >~aKģ胣={nL1pl.1m N;š^bwoȦoɱLQl?w8vNsq5h 2p!>7ulL~}.}X|sG& W~ɪ@Zdg[>>>"Ej.L?uwc/@ݦ2-BQG\ryɒN9澏3L䥅m>s?+0oO}fPBy~ǵJ[ j>4ΚϷř^sVʬΘkߦ+ܣz^'7<xޖo}%HoE9bK&onnn7]bzf[-澏駟~?O?02@e [۱mV#.}wc<_Ld uo{|v؝;v,C-p(u >G^[_}ܷz^}bukhhs{y,.GV~rѭ@-V}z:9俐c}}4sl?VN#M_~Hy?Fϛ+K"< [Nkh @C/W}G\dxX9ߟѳ&n3ˏLtß28x _n ZeבO?~ xqUvp]?uׇիW^ __& ׯ_ǢQm^XbYg>0 ǡ9ˬIS^T28:x/Yr?ܜe)%%(pw__i]"|A?J][>Α#g_x{,??8}?2Roh#S)[[YK8N"6ۖy /%yI֡L4|Ň{fV"+Pl{Nv8v"xZu;zҔvsӿsܯ|22q"ះaN^ ~*O"=l+Jחb:}kC/X03>?Op?-{L$+P<}axg$ɛuo4+w G񡔃c֗,HYߦϜq:WÿfC͛7o~~aA- J@-Ve_~Kw#.ZC7}䵍weoɬ_~a6w~_/o{wTլ@ġy*R7@$"]jK᥅߿ϫ g套~%ocڍb70%sN^t[B[@=z=r_}w)(m.!yQhKNM ZF \?wܑd>мV,v3ԣ[>KxBL7]=`sW7@oc .]@$o;=?3ߖ rGp+Mb4wG!VL̓CIGc%oJݟ4:*wdnrW? @-eV,a7^[G0}-K1M#˹XЖ\U#%|0$}bwK}"sSW.DebyȌu F [nlG!5N7~:Yb+:[o!|Gz|JnHZ # c7*M\=jq >ww E Z4&SC/姈@`?;&kOYBKj澅H}璿rve'/*v6 2 8Vfz]dg* ~MDb =ɸ\.?yޯd|)ocj^7Vf#.e8}`Ւ\N 5d]gY؏;7 !gd =[OX_vbӞn^Xǰ_澁QkO򾇥wO&o/h1~s#|S+$|30 E>($|\}>7O?O/͗_?x o"UC>=dp/L61Hn羗h/sJ=c;}6雧%<:#.{6',~r0^#(^[!U/'XCww I>(WH)9e~:S󑪗uw_=jbIj dGɛw53ˬ)_"U/'UClߓ~ߊP;e)]"ݾk~,Ȋ%%{ojfIV8I,[koߖsߒV%rǏ`;-U/!GIo}3's}EgtWב߽{=yWkzf؟H;R^Nf叩mwԒ^e-G\20 Oyqo?/%gj^Jp_;RwYe"u?Εwϳ7L۝ 򓌬@!=r˒B+/!Կ^߽y[(?ޗE1W mͩlG<]=_?j#=o>t6 H̀tϟ>Ħ[X{<ģY9WDq#OO#xnB=qIoN7P4}ז̀a4Ӷ|}8|O'18ױ37cs$gg Gs3?=k,-ɝc$t~= 24?WS(#.~\̥Lgg%?ym?kx;pqqƄ8~ oIE0ݧa P3$u>8m+e$vÜKb8~-Rw}yKľ.)6wnn޿aX<0D/0C -167/3 7P4-XV[5>kva|rg/BLC͖π l#|37:E _s0U$}dcwfSScC[xc\vQt9I>g7gx|Yr±R澁6U 2sؽ_E(PƇD67p30o n[tα<Sga5%[<1 gHπ|3uᛏZf RJZ]bO6vyJJFq[>s_},r,Y~bA i6}8IXsFHm9V /÷mYN'CE}V/%!{?*ބ9pZ7Ns"81֛gj$F=az+ˣxqJm%L3MmInV tIK~6͘.xX>f{5|np Wr.uͷ}KJ.BY"8˱E& h\^_ɻEhHw,CӅ's 8S6}o *d`(kv+\L9v|!mZg |o RV7ɱe]-ñY7 1cj>?71 r̀gZ2 D$Wkܒpf"8qlj9澁U÷}ߴ{oఖ' |o ."^_퇵'Qt-!CӖ3m=m<69.sS[u_. /ߖ8˹(i GKg/0J|{BIiz̈́oxܷFc4||[V>|MT&Efs&,wfxunaL {XBNwoWBuL 0e6d?]1|Hc;m92dP|J!|.>nfp`ʦo3 I((2lن2Dp%og艣/3RZHL97G1 L}"8{b]5ҟ}oIVQS7{z%C֞"8)78}8e0+PmDp * ; wo=zn~> /۝K1~ 7@?+|s$kOnnnE>`_\.9 %MLu|>CV~P@[o1 EpPzf7;8_yhP8Bf)9M3ob Mn/cS"8P?\}L֞̓`Lq%XN}@DpX#}DnWwׅo1 (eohKg`NZ7g1 /xDp` o5@q % Iosf`~6M}S7XOkr%0&G@V]`9X{ 0 'Y{f7Qox70%ClGod`;, K7e8+P^sM}ADphMm} 4ZI}G(pZKd  Cۏ_8q%p,d7I9PᛚY{M}y^i'y1@ys 8E}! s@=D:(2M}$@vA:(IN_P}!ioo~ p,V(OkటG 2 Pݩ^[6ImqI[}E <|4 7@Y79hK ,'w͏YFMͬ=83b@1 K%M>3P)(}$Ko >msߴA8ͬ+PbB><>oj} PP}=1N$6}"G\Ig$N'=,|SM߾ Z_b6pqҢ@&ވKZ!/miWzE 7@oyq"8-gZ=~*|@ DpZKZ47z%|L|6 0%S39]7+8^"8q"G\NIAN3MoofrNwMo߬v sۈg7-r%@$7/ 2oZ4풿٨c0}ߴ(v4\76ZKo%7R&˥GU} "]Ld; ooj  ld7-⑿YSs%,'|ӢM7@T7p(%@$"8iZ>o*e\"8k?澩S:|Mf5O!> 7@mDplE@$|"G\0٨s!|"G\0&s=+PZ@n"xl>LF"x<鏚o |.G=p%@D^>7zR),1Mߜ7@$s̀LEsooK>"_K(7@T( f0%Y~Ԅo'|a?0 66}"G\Mv(@Mq 7U0 ,7-r%, IpD\OZK"S [ 7ߜ\sZ=N A& OMXN?Mߴh'}w 71 M6} 'qehQKO&#\(}/ QoN3 sܤ Z 79dz6"7L]f$BDp |Zfi+Q 7i@Z+ooj @o~$r%-y4C`~ Mq @[orߙsJF߄9E7MJ=z^`ιo7uhMDpHL6Fy"8۔6}"G\: DpoZ4D-7l# ߴ("6GEa?G\MX"8k6D!6ǮCwF7tA`ܦoZ4ݐ @ 7IGp9&oj6[ =^ou}Њ O-澩S:| N؉l#|>tHL}O7p$O ;J@$cUG\ o&,oZWSoE"8PMoz&""8@}]ܦooXA>a5s}Si77La'CDpu;7K0[߀47GKG\#}@ 77 .x@T~,oq ='X$] }z"+}{0r; 8@=羅o AK9-77@m6} ' @o3G\}""8÷o F3v7 L G\i7euw#.@F"8r% d'is}Ol^"@so`(J`;XCNq|<7!|Kii6~-<oR"8fԽ1`98Yz~G#.c@Dp臹o^&|G;=>@uR/@}]ܳ;O*%6["U 77/<8 4@޿w Hoso"8@7 4F8;@Y7$" fq%p.hPG\5 }H#}C5M8z@GDpw Yo X"86} o ##18s_[}q\7\HL鞤÷o7  tDwG@ o;"86"`?s}}q F&9h j{$|~&=>6Ofsyo-73-|-$ v?>1>}1w骓ݹ ?-?Œ=v/四-c7:OVwGMf`'r\\+c-v(5 @ kg`$&&oo sߵ|wle&HG1 p09J8Ip |7@7@"8O(OH-skOr%DZ{` @Y7@v"8|7@moB\~$oZUrϮIh˭b=?@I_>7@L $8mmddIׯ @>nL,}$ ǒz`"&(Ϲo+Mzc"&(#P^o1R"89̭=i2+M@cXїH-=kKGVof'u?,ghRj:@)}K`IIV,Xr\P++M7ψ0]^ԭogg qzvyh LuDv謹o+Mo2v`+7T R:9ґchRf}[c8, Nˑ=5/V]D-G>; @z'2:+{7r G oH oH oH ozsW:UIENDB`espresso-5.1/Doc/images/ofc_4.png0000644000175000017500000005707412341373034014771 0ustar mbambaPNG  IHDRb oFFs_d&cO pHYs  ~ vpAg8Sx]IDATx?ra(UR@e F8tK>!;.؉Y%Qx`{Lؘ ~x~קt:] NL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL(~w@9to:CL(Η_~_ r}}}}}}sssss3kP18ɓ'O<[(KP~~կ~_*]?NG蓘P4k^a/K&ݻwŎ-=cg}g9&2΃?}ӧ|'|r==t(P'cRr#y:1Χ?{ٳgmKX'd?O?4&qs <߿;deFb:@A1}ܜ>r 2ѣx1]BL(41-t ?c;cR_aٖ0%ˉ>@n\Ҍ?;1a-0R^q}\#W&'a KIfAvuּa}2}cH󾇗tt"OOcz]3:@L$zӧO>M?~YFL(Oǘ~31[އi70%a=?yɓ'i6sb:@1}C-{ٻj`$De8{>iԞyde/5HL(dh9=#IL(zycߡibFLh{z_r\2>:a9}|j|m޽{g}g}gϞ={6=?51߿G #U5Ob:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!7.u|:N/a@2[8JL:&-xOEA.!$6F=9oKy=eH{\ޟP>&>c6kKeLt/^FJ yb:Un+IL:'pptq8Jx'~[y=|L{ t4Oa_k @t[Gb=?üv*P1`f˚ swwwww20 /@O=&EFqekْiǽ)UQ^x(z{@tfԛcߛj~MLXqG??o/O_Z&@Qg͆_cz'=]/a}c=Ov}v~м# F֟'L,|F7!0vܒz~$ok+ݸЖy|mdqiBa=128=|[F#Rt'a9[42zϯ湹2zS~ {zT s)|H-ݲu27yb=[t*VJyRF GY"֓ґ>m!9tȦ#%ax,]/;X sa?om2:D'.M4bkgMS a.B@ .1`rgSbs]-G6Լiq %1tM(O!º @t|&CE*ՑzPz^p$pv1 0z>" [Sb:ڒ[X %n3P;a:rmNdu[T{am4h|6@iZ,?mtk.lv푌>7jmN6G 룲6>n?I 13Rf~z1}{h^~m>jgn^ؙEg/iz&]%ϟ_]x߶>aU1p)5X!=iX9´KQ=}7L9Y#4OG%LvLt|zqm>qa @ L@}۳1x٣]c%'}o}[i(GuJ&z3\a=/{ҷ_%Riߢ|>%@S}NX\k"K_Ǩs/}}}! ag:@3w/s1fkܙ~i@ukg:m~Lt>qb}1btϫ]̞Ö[s IL`>w$߿p:a5Ό/,b̞C/ᄏݽ~W_M_\NLt =ԏLZ SRRn|o߾}%uT#m4W5\5Ϟۙg>fK0O#_=\G)SVffkI 4NFO#WX*sz2=__oQjtf蹔6\Lvq8 {iKy,K!\FLhY'=a}>f[`6aI WW]b:BR`JL(mZoIiPIэKPm~ y[oxK !q^gaIoA%׹,qVd:@AdtRZ|707~'u=x@FFTW4Kt\;6L:vX#IU~ /ooet aaL:@KLd @K"OIQςؖͧHLlc,xmYVF٢P;1 2XIj'!r0KL8A@Xӌ.CL P#1B2:5&N,x->NɅBFK1d:@ƵNo߾}O}POOF(I'ooetJc @L P21"2:I$,ZߐF&(R# ^ZE]RHOLx@F!CLN{,xh!%dtg @L tMFb @.b:Щ/8etjg @lQELEN],xiWIWWW]J"k $!,ͤ[!]Y4NFKآ4KFUK ^ܪӁ@<%Z>o K޼y|{~oš̍_~W/N*lg2hZFi҂Xb @(&Ӂ,zo"_?V~X7>ao߾}r3To}C:Rf-N)u-tb%ނ>;Ӂ*d -Y&t22:,x%Րщgѣފ/0ߢ>%̉@ֿ.#l'E[VF'4 ^s*-tB2:}L NL !B)y[:',Ӂ8hX@̉@Adtʑw[/`R(Ni,f9ׯ_&Ӂdtr+[@.L٬&W5/{/iL_~WѝN*m3dooetʻ-W>-@t2:/^-{@?L=E聘D!S2@L @L[bIF- ^mӁ`2/(Ym07  PӁdtL:ϙ>@ҡmK_Z#h-@Kt@KOtr!dtj}}y2Y_}5/,0 ۷/_Nפ@-L,ͺhҳD@-n\`;-͛OL˯X_3ULS@t`Z\ʒ# ^FI(5/?x+vf``RFb:h˘[#֓:@it`],xx ҂1իk r&(t\lQJf2'-xa2 ۷o_a\L2:DX~0)u 1&P&E҈Щ_@<ngcM@zb:tg [B#|6(\]]ub:td}C:/p%C4 ) ^N'WELtO8@zb:4KFǍ'_~\+ %1$CJNRPlQRӡ)_0RFΤ/mN IHCLF}p{+C$u3^ 61&C{W,ͧa9GLoHZwwww?5aY C4 )[^RRgz[{+آ CdtH)TFBRP$u ,1*#CJ2ߕ ϐPt)F;,q0)pX/CX)N/b:mia[^آ!Cdt菤Het(t 3ߖOӡ8%]荃It()ѷ ,IBL"R}#@XtLF[HIub:dt\Fj&4<ZFji-IPzô-LPҁgk'@#1q(A{IIRoR:a:LL(dtHR}!0Rѷͧ@X@otfIa藑 @ot`)[x!]gҙ [b:bC:de\HCRp!Rяs0)a:JLdtHIFOCRPL aRcEXO@tDFd$uHc+P#1X+CX2zJ'`Rh֞萒ښOlQډ鰓qϤ8j'#7aYR[KG|+-q0)t:N'~K8hj5y3 ~; hi+ҷ}e2?!%%s @]t!)&4lQZܸLFdI`իr{gZ6~1 wo߾}OǯY,~LSS2:%M72:İ[@qt0)p-&a`R(t!tgxdtr0)IL#ҁviI尗/P1.8hR{ @l@it'CJ2:#IBb:͒!%OYIB @LA2:$ i8iH’7~=!)+_ 1F=q!,}IBEriPIB =1oH2&=zrMXRөF!%* @b:U!%#lQ4|t*#CJ2:H-N5dtHIF'%IB 1 萒N<&4|1m}nDKF' %HN֞萒Iەt W^WWYTj tGRlQPtcC:d % I))1"萒NPIu&ˈd&CJ2:E}>³FFdt"x.`:%2’i,`;1֞萒NRI_b:k}&j?1I`ݍK@6CJVОv; ӗaxۗ/ U?6~Mw:N@L)Pa^u].t"!%LCxI}/7{0 w߽}ORO&ӉBFdtz`RW{{1| )LR4L #1`֟Hnb:=y!%a)I虘N42:ı>IU@tYߐe E08@t.QHIF$uݫW_Wd:MFdt{iUHCLgR8B=3bJf:=DFdtHCR2<>>&/xJ`Rz s’![ԡTK]<τ'u΢~{+CJ2:ľIꐖ-[j|:IF8gҁP|k rѡ&=b:Xߐe `RAF٢@Ktp($C$uMF~9LFdt(-zFz`R #CR2:FR?W;]!%J>Y<KL’ѡ&dt<[ޝ&2:%CK$u8GFr0)5ӹ-갟\ELt ,3P;IсL @-.8hRѡ%p*9鍓!%Z`R{qآ@f萒= Dž_ls0)%>NɅh*CB2:so ÷sV}|GK?5 0 o߾}O 3RѡO&4| @iF @&bz֞@萒#-@Loԇ.@X3@$u@L 鐒.e$uER /1J2:$[85/镑!%gH'WCFdt[ +_HIL)@(:f:)E[!,HIRP$u `{+CJ2:pI)0 cW&WEF8gma"/& 18ҁvREҰ8hRс\$uRYIh- AFdtdo߾}݄k~2:Օ@hbzf2:$p0)q5萒‘8 etKFg:[YbzRkϷ2:$OFu C3uyHFeD7aY#a 4 )@|12:@x&`;1="Rсآ2:@\:[Q萒MR-!%@RoIX'*CX2:кCI{?Y%@\~`aHIF7 : [K2^sWOLj tآUH>VJ! j&²`JRocWrET@FKRP=t:5JVR#'‘9>b!~  LL#\gHHCR蓘/ppI FLFKFHCRP=lj EXODLĂtx$uHc OhBEFHgTHmӁ dtL iآ*10 ^`L:`RV;x#dtآ0 _WWcGY>b:PI=Zo`R;Y`RlQȃzbR7u `$-2:;TROLw}-xu2:@M2:eY>ԵOLvXImm}TF\&(/` 0@lQ(/0'0WgR_PFL\%D%4oѷ noͤ'-Z9=JNze7[HAL8?=|5?:ydt({@}­|9Np}+) ,xdtf{;j`R\t3pf&B I =1f 1r0)O$XBdtbhi,L:N>t}HuHcel@(&ӡ#2:HٟN @b/KFd:xj>Nc!P2c1_b1ʂڴ>y٢xH{jj!@zeLCSdt6 0 e ^8n 0$ueK?o`c/LFhLֵ%6&X̧\DF~ AR?鲿ld<@Tu0)y75ӗj 52@Ͷdǟy4̧s)T@FulQ%{OLg1݂j#P?~iI^yȫ٘n _Ȍ-ͧ[Ě(@fth&ޚI|2:K7.Џxkk0tOdtz( g M y2o$[t-xl3j=O~LR^ŀ47p>j3%'3-ptP5/@OK-Nt ܴgY0 ÷hP\[Ϡz58*AK&З42LdtHʺΚNF2I%PJ`:uƊQ1wDIt)k^ t F)}M-.P>P2JS6 :<OYP#[(_9 ^̧4-x!j'Pq̧C[|Kl*c0%%`[^2ԡ{ {Ъq|o?N ~7a-ͤ^0|"Ms6mmK|o`ob͋/AFl0 ~V:{}k,QYLIgT.E<~w?wCOse͡,K{k^,x!6:=c=}ZO&f>}NF15_ML_ 0 )@FEERKz>Js$~Ƙ|67}I} k\~{w#T O_nL|7Л̍I͛a륗ρ-qּϧ/s&ڙ(&¾Ζ>&{?|:mz_K/s؟UL_7M&[e&򴿆e|k]03aou 2qUӪ({]z{dtћ7a[[|귿v,`#7m,V?Kzcvwwu՟<}+_ނ}GW-au)no(}M/k'P5gBŰa@__|wa@Ih҈O_·*PDY3ӗ3.?KuE:G5Է`۷o_&Ko{@}a2}d>uY{O4dzdth4;.prޮܢJs/K1_]]]%Fw_JǍ>L@GBcBÆrV}L7>'CFF/׿ysu?Obsbo84u?o<͂-ӁjHv<ƿd 'Co+Y¾ͣۇ]NfRǍaInk sWm˳\ROh"NӁz4L /in=GAFv'鏽g-(!m}O}k/Ǹ-ſe7sm+4ng8&ͶQ#1}Ii̟[L:Y4&tm{;f)AI=05x|a\U˴9Tt%6C|v!vY={ߺe뗽Ҧ ci>}_R/c>-܋5*יZچw|w{^|a}/W{, u%i[y3 _oZqɓ'O<:KwzrE&w[^~:5f=OQxkė6-=,%r:빿P}}Ni57bg-Z5OB\ob}_=vi<@l A^_'q-`Rw;_ρWo}GJӧO>}'})}M>kCI;sXс|ֺiP6M$ux9}^>i}6|駟~߿?&O#zdיQ}h68>OX)ilI}2UDžjPYz|CK?l}WaٳgϞ=>5lAޒ\Idz57}BO.AmKWŢ?:c=nv5o~wwWW/^n>#>0ߙ]^oI,cxLoc>}noX)sn#Uض|1^b#, kI vOo_,}}%*0|ugg/o~Ac\[&StpPSջ$j =I=L}a|.S3y:Oc¤h]Əx0.b-G^/|zG-Ǯ|RuZtޓ-8װw:@XՃׯ/u^%0z^# ǯRέO?Oݟai^5/=SW{i}jO{>%M[K(3$oXс4\ROirqU@$u\t{'Uc5Iӿdb}߽{ݻwzz%_aJetnXRʭzq9 cz-=/>wdct_//\zmߙ޷eN_f)>]k`/]p'|ba]Fr~ݞ3#ZZ[~1bKoskDçeoL1{^燩bzz_|_\vI}l_f>>wΙ2i&ECz0 ư%R[? +_r!y'x(_/Ơ|}>þ L f;XԛO?O?|V}'|'L#ކNc[ \l/et_&#s-i,ͤΗf9|?&xqZ}5/31?{ٳg3^~~?_׿ݪb2M#Ү2{v7ϧvkwt҂)g).YKğacR_/_2Fvuͧ_沰.Rgtb82?ʗ˾Z`@<{z.5BnH廛p5VlyBgКG-m_c@![¥m7 šOM -o{ŋڭ|y|- AoZB޿rD-861(GՍ$uj7yxJu|yx+E]?O#/qۦ%>.̧_f}I=m8#*/*?=tbXzd1"-rƂ;҂ݩmmO2g2GԩvKåd l`R2pwww_50 0aԡv9ۉyOk=C,{!*׶\ԭ|ħ)J&i5/]^YJB$>%3ڿe˷=ʾuZs6t ^zVښ:b3LJ|0e.ݞYŹ @iL j!uIOL/:aK}GSqa/A7Ո?͛a/;}[^%Z%f>8Rmuv(d7o+59sG?,K{k҂zsd,U..v@G~0Nc`-p־=Kו9a_T#mG%k܃|>Of-{o+`[:t `2֧!\3w{3sS+OlouZsxZ7򅰷8SK=7N0홏>=02OOb)O'ҹj&}:--%g-cKc.9PRl8=>CMv?6d:EJۧӼ5~83}q0iq'MF\m7Y:Haa9\-?QryV5nrOj|O<&-e)69Oaa35LfҁGR'P! FV)z,Qm|qfá=M/-x聝/ ٢N[ױmQ8&ˮjz{ˇ=P;|}9>q|>}ěI#oݶtg&)Ҕt߮3zL%:{/_+&oWe)@(q7K/ﯹ/k9rڿ|kw[=c'u~%߯? OfÁ޼x>}*Lb2L:t*`:qo]qn9n=|kQ' +a2~OOΔ:||t{{M]3>K@?\{v&)XRd{!}̤LS)uhz,ac]Fޘe*$uAG1{1Omcܶ{IM&y]2 wwum3@t$uhI~3P/}0I־`-/z_́oKvO\lmqiAKYeO:C-gҗX0%g 絾E]RYeu>3Ӂ#z9l!g㻻y9޿ru}d>goR?L:sbzf&uHq/iwḑǭ'i!;>P ܵOE| uK ŽoϷ+B)?xS.Лߢgi4KEs7.A Ƈ>>I까_dw@iL:ssǯR8y)Ir0)mJ3qn?M=IX"ǃV^~h ǙX|i KB94/1Jz:.KauKUӋfz$u|2:k,xCLI=^bz5U^&j!kjQ` 12&u^2:@Ķ'WIRKRH(o :%P3ۉ __iYЧK ^NLIr0)P=%ҁ\|>(^=?I\d,x'%7lQR3`3 ^Bӛ"%,ͤH\JFGFr|/`ҼL $!m UcRv5o]fqۏсZL?wwwwֵüg e).cw :PyL1}>!Գzې> @K p{u勤I9ht4@`R`e1SKI|z#?\xIy-%uv_;S?"I=].b:&u.b& %1yKR"'-y9Z%#$L -EFKLg7I=2:%Y`ҼlQz"CL yIPPdt҈lbz^&`$"Idfe}&\t_Irj`ҼlQr"OLBz^:%P 1C<`RHOF .b:84/@2:5ӉNR%u8FF ^b:آ-@(2:@t ,>@tL Y@(VAL'"`R@(2:@KtӐ`;PdtDgz$u"JL'I=/Pdt$C^&)Pdtd`ҼlQu2:-)@<L:-I jB7b:Iy9~"ILj`R&3184/[h@(2:b:ՐӐh@(2:#1آ^2I"0%S(I=/dtt J^&. #Se:P̤DLz^:eEF`N#$_R -PdtөIr0)%EF`;1*yBIEF t*fz^@(2:ө@l2:!8I=l!`Rb0@(3NSL`RBjBi-y٢2:%,I=/IdtBALSz/@(2:4y9u2:&OEF 1آzRKF ,1Hy93>aKj锃IE72:"5Oz @^b:آIZ%@ tIZ"@9tDR%u"P1p0i^JF \tx'gyI5Pg 1٢Ija X@t8CR%EF|b:":@2:BLML-EF.b: %%@tL @(2:B&%EF|b:D!:@>L:OLClQuxv ]hHyIa"1D0/'@{ty922:JL$_RxHF -y٢@(2:=!"I=/I22:CL<}s84/v 3FL"HiH@dtB蓘I٢^2Ih@(2:=!I=/EF1t3/mEF94/[ԁ"EӐԁ6"EEd:dtz&CA$L L:Ϥ@t(YL EF ]`r0i^EF-t(IF ӡbz/i"^b:Ty9(@(2:\FLjxRI\dtB1*cz^ӡJz^:tBYIӡAz/b "CLIdtB ,1Ip^&BEFth-y٢!I=/IKF bӡ#z/"@b:4y98BF ӡY:`R`oL:E=/[ԁ}3lg 'C$$u@F rI/CqdtKL84/BodtBb:tS$u职@(2:CLN٢zR%ӡkz^&2:!,_IgL:843[ԡvV.P21yIP#Pdt(<`z^&Z"@-tz^&"@]t`7I=ԡ{v2:HL94/[ԡ2:P/18CRKR2:P;1ēL #1y9RP̤@t I=!IF`;Z"٢-@(2:GL.$%CX2:*18y9EF@&pPdt聘D':_l'@?t [E2:GLatBYI#Q0'.'1y9etgb:NdtB1IyۖNFFb:I里@(2:0%I#/6Pdt`NL2p0i^\FF@q$4$uZb&Pg@6LR۪vVt 3I=/R/Pdt` 1(/Qr0)uEFӁ84/[)@(2:GRKRL2:et2z/SҭNF`;8BL `ҼLJRdt` 1(/lr0)y Ϥl!E=/[IjBEL!%@(2:4BR%ubފdtt2& #UP^&%Pdt 61-y٢2:@b:P=I=/I(dt ,1hKUL:@Xb:`RPvӁ)/DF ELdz^.%͒ԑEFJ _I׏v2:P1hIr0iodtB҈@|v2:P&1-y'uj"ML#`X@(fHKF`;(ty٢^;Pdtb:5_%HF `zf&@(2:P#1gz^&-@(2:P/1`I=˻2:@tL-_%L:ϤBLXdz^&EF ]gHy94%Pdt=b:!z/ǿ2:@tML-"mvÒEFz  ¼Lz@(2:1B&@2:1 I=]bZIhp-y٢.b '1 I=/I}@(2:31 _@`9Pdt1 0`-^dtFI]F `JLetBt$LzdtB3&m#<ϤLLHyEjB`PI=@(2:b:@R.W"%dԼ:TF 2b:@f&ͫ-2:GEӨ`RPdt-t"آ^\IQ(L:[*`R]jPt6"%yߢ.P4I=4I]F  1bz,"&Ty8TF  1+2:)E=[a #TIR벤n IHOLh?2:\{P?MgGu!t9˾]!P1=l'CLhzRNF(I'ILhْzlK0 edttf>@^b:@lQ|:YP>1 :IFtu:`R(P#1;DO|:#^b:@lQdtډ]S2P 1E:>@-tLt~X1B#-iOh*1GH61$P̧AF聘":b:gH깘O1MDxPt#IsmJc @t}XO7Pgb:٢@odtt.$ǰ40R\dtFb:JF`S@B^ӵi\d:Ei}|:edt0@έX`NF81j룥a?bftێue2X@F tu@־*ڍK@eKXfO=Ƿ8d:];>*3Oď#|@(&މ4XjW~@X&`QͧCoZMsr /Ȧuv=q)ڙLJX_Or!c8ILC 떽@{Ǥp蕘ײ4J ºt Md (^J̆2IX9~ky d:$wb}dn̆`2{b|z]qҘL"âMr&@{L@έ/uۙ `d:T`uFP&kO,rLXOl8m0 ;>5Oq%@㎄Zx>@lb:t9 %S1ºJL3NL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8 /IENDB`espresso-5.1/Doc/images/ofco_1.png0000644000175000017500000007034212341373034015136 0ustar mbambaPNG  IHDRuB6/ oFFsq pHYs  ~ vpAg8SxpjIDATxݽǹ!H!Ǒ 4xd]RHIazETuVUfVf 1~}z^p\ Ap p% K7.n\ Ap p%t:N+%~駟:@@~tG &ag}g1#+u4.@@a~+2'K?>~/^x{Hݻw޽οhHz^???m?Ev=:R|0?>ۘ< h &01/^x⅙cRKh:-fRQ`Lp ,0)!lw9d\TO?O۽]}8%Iy9pbփ˴:%IH-C\'|' hMmq  c٥p4K`rx82@&ÌrR .'S?\Z Np l2)p)c\+ٖ> ӏ, &Ǒp04|p<v .BdbO?O?~;f^:n@|&Y}۷!駟~//勁Wlg:0&w޽{_~_<0~ |}bi)0&.!@|$R˧KXi8s.^,Dp $3R>>>>>Z,@2S.PƣC,5|\N-e1|:y8[ $G8O1%|5#BGxx0Op 4z8rL|xc8>Gu*T@n>OOOOOOÕr9,] GX퍣3ss\.eі`plK lo&RAD "s!uX4!0i17΀CaOvzҲ30  ..xTN?)DO)l~c\lN/DO)uL\L.e?b|)2 Rɱ,L VW)D "l. #K82udV><<<<<| D1֑P%t|8L0tR b9\@Qqޮa2p9RDpe.Z|+KeH]֑/%֩p|^lx+ \] "ռ\ %D{W .,|׿.ٺ~[򶗿Dr[`֑:=DI,5E8϶ .͘k$Kědl9`1Az "Xr\d<~$bq>K{ĦG:֑.I$\DL%Õe=)'2'@I֑؁ rOރ:S.m)[..Ͷb9.g"$Doud_#552fx=eWo-;wV.%`%AHúr_N-_הK-$%@{D "/SS~a9R<& ^Lcܢ 7\F'A U&‹.v9mP|ͥںe:|LyC\=&u. "t R Ӻ`b~81`>ߖ@Sj @*̠:r &P% rOHA$@:SÈ2Fآd]smZagȧu1ph= "m_T/>zLeuiVRKe9pLKrHA${*tJ-Z[1kC+EXGVDO)w>..k_Ni[J(]֑9DO)`?gT#S^xŋ#ߑ_׿{ݻw޽_~嗧o3}=#,u{PsOLyKv#ܟ R QrZ. .߾}a^?駟~Y㾫6m;%-K0K'ܟ R e]4Yd'ܟ R 6oޤY\qw"Z5.h%uPYБQ&$DP#A|vi!@*C̡ <.Yฑ R uL0`ڈ,H0rTN+5 #<#}d)D=sYLLp, +@BFra BL#7^ .빆RK .bx .jSѸsI^_%i"3 \o,rkn\ .vrL -Tzx 1{JGHtsF ?}>|[G>ojO_!&\Na!BL`7q Ǘ![CL &\.f&p_}>mttOE%CphxeH-Lm\M!`/,j^G.`%c-[n{8 u9&ul6fa> iy'}tG3r9L9 .䙚'$=\G@Ց`PEeH9Lė/OEM0G!lRE_}w՛7>cml˩7)>Sp pˆ 1He{d=)'!Uj9un^V (vֽ$k7,s93$[O)~(Jp9S0#-A-? : H;r<{,%ɥ@m˃!Ĕ`$˽~KpĔ=.,G @+~6L6gϒ$K\fa$gd~)I NR1r.wͧ~O([G"%$؞W"!e>fsR8r϶ܗs]p9&$#\lNJt#l˩K{F؟8>oKbwd9$dˣ禠)'@2eMiԧ.Q GƉ^ rLu5E0/cޠs@9>&i^MMz]1xX .)Lx-D&\9)A Tr%ΫQK[m?9={r &@&\RT[>Op ֌=#vԞrYٜ@f[n?n$S[.ٙu,w֬"|J+:ͧ̿ʑ]?TttS Jq`9ГeɟǭYN9Hٖ%l9213m֑ͧe% 0h]/%pfs"| RFfaZG&a#qe.`Zױgs :zcxr\0pKd )59=eRNM}?IBFO0o*ZjI0|DiՖ n_u~29ӓrz^/7=kxm/okx&I0DsR>>=/`6g.-M!@K̶$i\\Lo"KۆRj#9ӓr>wLڰ?h?82%l2N0!ԏ:BL'K03AslN Z U%úpJ3[8?P{}wLYIK .a7֑@n"Kϱf1f?_<٢Ddߣc&#[%@O̹͙cb6'ܑ|>~g% .L"8Ł#13=AslN}{8D!.ILLd @Yfs'|IY&N̠|9-Dl9~O|{=Y+90hT|ٜI9;&fsq$`/K8 &5ҭVEٜ :;&=\zjg$[)13=)s${Κ,  W"KʐZ@E1I5\Rd % &@DLj Gb6gzRIoBNx~@E f`9@ D%{Hl\ :EJ. %{@ٜL9FkYLp 4I p4vCgܖs,R03VLrٚrΧ"KV.NԼ\ Cw%y#`^Ɂ9le0p)h\ 0 !iS.!,Ҧ18gs,Z':rrFJғZJ0rsK &9%i cCF E\ϯ_q@p ؋^.آTd  .yҀGx#~K, . aԯP3%G]p4"K\:rT4Gs+%oP%@E$Z"KNv %\Tm`֑G`}$G YP3%@z*4͈<#Ky%%\tB D4IDC"KZ$V%@=D!ȥA09K!sU\P5 &2qHxYьE;PzfCk_|oorpK3N0ȡE>&-%?Y:eAmADrQAd _1.Yp43gSws%eu`DJG![L)DYз2b.%Gcڥei_Wӆ}mِ-6~qvyIѵ!)iD#Ș ï"H0!-ŗ#>$\P~B𔚗e8Z7sxH`Lp 'u7/HN^!gh|v9.ѕYϲuuGxِ (Op 2 592\n|,hhl;"K8a%'D "S,26!`)%"RCKBui u̶?6-{mR^ 3|W#!q~8[ P%faMGŧn㶣*9„ȴיфH"XGΔ;"KxBpvNl7aiB${\+I0Rۄȥs.['9< 21ho52D%8 #--.Y{3> )dlH`Lp dgf,,8 gK' e226F @IK`^<"K{6|As{dc\D[pDK ֑Szo,n8S DZhO_7!l %P50dxGXd p'Dφ g^D~U(Cp 4F5/Yj>aBJjq̓'',h-s/Y+b5!2h7qڵ~\2@ fP>'ak!fL;O]"KLq,DŽaǧ%p fan=qJ5Td lZ7LBܶ% "ǗsA5|˗&DP84 foQxK Qd fߕc9H)dn2&\D2~BdJ(Cp +֑u:WqVfee=?A8"Dp ,LYBWfo7>ܭU+Op RO fee-օCigCƜOAdi-:1|xH S0{sQqϣ21RZ9][`6]= cL)\d4N0!8p Y1{ePO+Ӧ^ 2ĎS9@yKY'%5?[K8#iWf=NaHK*H03WKɕTvWfoW+Hn_=]SAx.*ey>"c |3ϳ ̴zl9 2ղ` r%@c\j{^,?r dngO̎'DK#ȡ^'DGK8͓`,2qs}nev|"iev>SӚZ$P%""2qZ-M;-eVf);N.#z%8faNEB̶"2+c"KFSs7Z[MRKoKCkqyr{)7!rh*Lu仿.1eS:E . eTS "G2wqlA0s2Cp S+b˄1~JbAP{Ssߊ[eH@p Jefasu)^gnŖ#?""Ȑ6.M$W} .H&mnXߋS٩eH8]@v @p @F[֑SeIi'qN޾,;D˥j P3%;9^)Ԝqdu\Pa<> A7|" 8R 7%M 0'`{'Yn_/4`W/4K%&\/% 0} .h Kp @L$%S- e.hFj9_(Cp @3L`/Ka%{\.(Op @cL<%14ƄK\.(Op @cL<%14ƄK\P&\PO4TDŽKj#:&\P%1. Fp @uL6Kc%\P.p @mTDŽKj#:1.$%Չp % . Fp @uL6Kc%\P.p @mTDŽKj#:&\P%1. Fp @ṵ6K3?R @yK3TZ)@yKc%\P.p @mTDŽKj#:&\P%1.h '1&\PƘp @yKc% .h '1&\PƘp P|v\.j2]2~<:ńK+p @cL<%14ƄK{th \.ex|>ώ .h Kp @cLhƘp P1%p4K`|>8@L'K`Rj !WG`% K7.n\ 1׫c@iKs:9&1&\PƘp @yKc% .h '1&\PƘp @yKc% .h '1&\PƘp @yKc% .h \.2|>;J@L1"SG#Ap ,v>Xi>e=yt-p p% K7.n\ Ap p%^J\И14%14ƄK{th \.N?gG 4ƄKL1 %1bJX4ƄK\ Ap p% K7.n\ Ap pGc:Niߺ^;%ZT˜tHjIZKtz^ϓV<:*&|&\ Ap A/YMN7.n\ pNtr'1׫cs^>Dp @s3\ @Nf=\3zu7.nxto\.^u_}>~%NSKN2q +׫L .nRqx0"v٫d@KH|UϺRX )mПZYh^'+I-eHRH)_xJH=p bJj @z.aGs)v1uºs#7%4oivK%˔O.q>_5>݋RP@iS%ͧK\@'zY/>m @pZ$CkaTzM.5\@W͹#RqKjy\@Z[/n8{Z2J-m\Qzq 5*?ղ0Op jaΥ5!_j9u>ǿKr9Ǒi-Gyq?Fp <#vi%OZ Np5J-%,BjɘTjZH-"Y72]vi8ys%dB4hJ-{t.e:gj\5%+Bj%ȺKr!L.yɊ g^/\7,-Nڳ42= M-qBc\)񸍿|kВR@B)<{x/ĂR#~M'L` K4 pp"GGsM9_:<]T @e|Lip o,/}G9e9nzw9&Тi}3"_6,sg=vǞ%H0rN->s\72-1%KR!ZK77qM)'ЧKO|vixЙ0Kw!+13\8;l>=k0'K!}s, WZgm5Q4_Ə4)ݺRj \iY%tb*ӹsaQTòxݷ,? %Y ]i3wzBz)ݤWhd=*>5)sYp Zx~is*kf&e*2GQ~f9?s2kr\@uOHO4?|#1~t-7-{,2ƈSc+k#Hsto.^+ڐ;HZʤ;gOGm;KlKp&bвbGڰ}:&(v"3H+j*]&8v>„Kd*4&2Ȫ1V?ٖ9. eT2C<ah򽣨-LK\"!pt$jRK RK'wO>?}K5$Ĕ/';4ֈY&=~oJoœrٖJ|?c!9ǧgF2&gh82zz}\?{i>֩ ,hZ1ܣM\PfbqK%  G0]#QfK"Z?T.(L 9t% f8|Q@pJ0;r~^i ? ?zTŋ/^q|9O"Ϳzgϧ?Kf%)yRKmTwyܟF[-~30a> 1”`¾̰\P5%rRFǃhl˩bJ0?k\5.j&\B|@y?/:v{-/\S_9uJY_5\P5%Gd @|>1im׊yo}_ry*#G6L<3m"i%lz̶*j&\BD^a%LEe\.)͏RNhLv9>|ɗ#n'i?ȜyFeK9T?O-qd(31 &329\rǐCZd}4DvK@dUcɔn1%P_K,&E@&qd),IqLͶwseJel#\mBd wruᬓ;1|T.ǏTkǧ.g'$8%, "Rd (odS5\.Wfs3;2U|= $Mj[!:V|9[Y-*Y|o9{/2){0˩-=OOOOOOfaJ09|..:4N-S 4jRKdYRSɐٜ{ݻwSyifa9GM0s,L &Z,uۣ]p pP1KE@rEu%M#?jH+朲4.9<="| ԤGzLeyAp pÛ7[miR"5Mɋ"˒%RN<rgI!-{%2An.GcKX#4ڌMʦͦW-;pȝ:)H?asSi`N!O W &mBp Pٴk>N'CL"_ FdI椌R|2y)!}rc~x|N`B7Lν;JṥVCj)J}"KNxx=/%\Si(3fY /: .V[BƒR^ y Z#YoQLp_Ge&e|X3&0t]9N6\$bܓ/]_HMd 0$ޘ͙C"w99o1BNX۷oNMރ1P%@bmeVj {M<%8lq[3sq`X<>J9s4%%@BX>pZBNkSE"Kv5\RYn?>[{i`><<<<< `Qmfr_ % .X7rr|݃`Ld pw- Vϟ1aB%f@s*njYDnO>O_B*Kj^/sh`NR^ S|j3ΰ,s=s̐9_q9{p7_~o߾}m%@urϹF\{y>2DjjnRr%N1+9Dae ?~᧟~駟Bտ^\j KM=c³|3H)/%d39K%y9 uGx8y4?! _~_qCKBjX/n80QJ- .jΥ5P8hIOAdIÙ1ىr3!R\Uzq% ].?+T5E.% ;(^q7N-?]SY 򨆫ns.E%h9ֈü2#-"$ad9&P'%nʯZRs.G\o^=J` I%Hp ŭTh+&".4si8G5ܙZ}>C[υ. $d_H8a%a1ť+>,[<]m P } "J \Tdzqk9\sy%A$DeH*K[/>u>K#C<0 "ٗ J Qt:OJX{ `%@F< 7^,~"ٗ xryjkGhGp P-ŏ{D/A$.:L%mX涄K]5V .&be/DmH"jo6 PC!ixQ:L LlStXd DA$P"ù.Ͷ t:|[ܧ@+ 0r.! "ً GL>=d,)/e5Ve+>.ӜK.qj_ǣ~H!ٗ `hVEy%9J#45O ٥}"ٗ ~'"K -a%pdKyx`eOd"KnD/A$@ι _W8=p9\J*.6Z!fs.M<%@oK 1I-hfJuM]'\R2"]S"KXH%H-"^/ne$Q"ٗ mΥ`_K,M-_V+8 |QmH%Z@p P rzVp7xaUs $kGpi%q "ٗ -],>&hpbVe]/a4{HIɾ%@նȻ Y'd_H8s.\d۲5+Ad Aɾl!hp-PzR˶֋8r;% } "-s9[@[r>KsVv^\jWr8:A$DpdKZI-ƒs.p95ox]YBKK Њ0ӜK.,ZɝV--?}.<:&<K ЫuhaC5dio J%"ٗ uG 8`ˤ%oQ̥.A$DP-m\Ѐ.l"ٗ O-g?}> S/aK ޖW%z lɗGsQ{twwT .4i^K=rͫhx (=D/aЮTCEo>dHT Dp 9ЇTݫi=Kkw绌wa(#_jӜK%+% X;2l'g ҺDr|SK)'Ldy:ݽ|)q3+Wji%@V>ze]8PzRKuS2 :'G'-ζ wO,oiYm8%j9u>Z;ZЊrTh%X)PISb)O^7Tg@J-„KNJeRK'&YGmį6znbqVp 9%Ϣp e|O\r#=\w+2$%@)0dQ8iՖ]Gz*!RLN %@օPRK`xikG=rx%Ē8}\tBj LYq)X}[(82%s9e|-̘]Np Эan%=sJpdi1!&CuKH,^,()wv9f)9P%TKP->s.+J\4l*ZcY>YP}@| $8O̼z,=H2Av sԣ*,=`ٗ9xpH+dԐ~2I뒩Ĕ%rʼVvd i%pKřzT;#V)gwW|V5 -\OjIuZ .vPm>9nX<&%@d^tOgSZ@m _+}<7=1.*WtxiZ̭/Lg9[.v3B$WO%D8>`zpMT b8@_lg%p4RK$%p8TH%$#@C19K18KͶ\@kJqxJ1fGp @ji%pL12BNE.]S.r\Pytic̱(i>[S\{Mp @E烹D-cW>i .If[5[Ly%P%U0ےuG8&; &zr{HwH{δLI,cB9YCg8@y&\Pqj9,/]7&:uXzf[Jq*59pKiV%Kp @cKm /% Kp\@,%Tl,\ lK` %T2񴤖vKx"$:KhsBp M` Gp ݚ  1@nK8faJ-2@c (Op <Sj Ep DJK`,r>ǔT\I*>;7.n\ Ap p% K7.n\ Ap p% K7.n\ Ap ڻ8 hУy+R/轠nEF.G'"3YzjUG܀ .K .K .K .K .K .K .K .K .K .K .K .K .K .۶m ˷7t`,w˗BL o-L'ϗߖ wf_I0,ߜo`6BL\gPq 8u/-z9Pk7&PY'(\*ϑK0`n{*F s>#5apٓ`G,\1G .  & |Z9r &\Apy 0b #9.o% . fc\&!.Vy\ Lp O0!&#\.9!\'>l̑[ iLV#%'Bna f#qKne .I&>% fc,K&Y L =L`\KPf`6BL,9q07%&xXv fcX@p Os XQ.L`.Y\%*ϑK0,ݶ [U'!x#q]d)V r$YDg\T̑m۶+^Yd Lp s e#h0 &@d p?%L'%EU'%@K7sP&%K Y'f%8["Ky%%$Ј, nbul۶_"K,K [%PD\`P`eK`H{}1 \Sq D$lDK |(9@Hr "@iL \H`MK`0{_#DK p%0 0 "%%$ XH9r &cDK %na f#{D0%#jHr "YKH0V#$ \|^aHr "`5K "%%II.A$0%@sLCI.A$WKB*F =A$w\fDK 0%`$DI.A$\ o/2GqHr "Cp 0-0W $ u." :#^| @/+|ϟ?WDųEp CFI0,|\e; .86#Q @EiO?O???g}g5wcQ׿o??|8Ljv4H {c$,Uk/۫aO-)ʦu{9 T-Ev\LիW^?M!֫}DY7ʛl{xUsB @nj#hqv߽ ( @ԴV;`lf0c*50vmo 옱 eT_m_ k8(0Ǹbv?X ㉲T*ؾV6y˗/Z1;9-!Pv^ 7J?wՍ-!Pv{(N/Gܩ~#ue(И}cVv|o|3 ܈Tjx8IlߘqQ@>DY*5<`ڷӘr(8@:Xyw~le&KO gZYTLA.jk Q꤀:&.fہ9>v#Xep3BWB,Y+ @!lOcXkXDY3uޗݯY#.k Ā1?;16SC?Q Ghq={ׅXg3` @x׭Z/L=JșVt 1߮#+ @yDYe͟]F}XeN;l{̸eY_:>v# @,,]#wW&Gr;&C @\,/keHwx#yZ8DY2c'y,0T %9}x ee؝b`Qךcd,2T upG!ZY*a-C+ .RӾS,;Sk0 Q`DYx:%2>. yewLȇcu2߾{~WsT ,z>vy_޾}rh ,xM5_x<@+^ kߛii⇯l꫾SҭC@DϷ|iii>~o+@HSSd8zga'0{9{AT; |he!:ckeא6z|6>OZYL!O]O =xk:7`/2b<߾Mfc6 dz8sz 1q{xLiۃ3\` 6e:k?EiqJǯ_heV7}M+h|<\ zZh|*ő_CM?`Y, e])$0ϧ`YZYX-0nO۽%ƳV`Y[=t-~4A>IO 0!ކ*Oɴg`#İ4ZY^bl 䣧!΍[ku41` byFcP'@ՌVO  ӯJyri㱽|E?\-@ DY"Vl6MӜ9zӶ6F!Him=-@=@C=e!;Z|www#To=-@ !.WE D+ !:e{'ʗ^n1@IDY +`)=xO{:=}>cXDY +`cmZY SVh1{ ش@vh1{( d1z{ȝc`7F-ǒsO; ;0B ~ /,#ꉸQA>1"# 3ZL,־ Ӿ_{ /QX1ZL=nZO Q XcRӞN?~MqDZY`2+`OKmM+ L`Ԡ=x=,Ka`smQ0` \`c<`>,6о<`Q0B $ 3` 2BzXvi{|nk{ V*b g}=mwXO BBQi!Է6{xPl]kea=ힶg-Pbrc'y=;C{=mb(Vbx{l(<,d XJ^n|R3]V QIO@DB B,|mtzcؙbxyi"V{\xF ;Zr|]O>+yFB @n@\,1%))r=RzڧI{ FU!G!Hߛ޽;zZ 7v0؅"r=B}rG ]BVR O<ȇc BW}ZO=xR&VRRzӥU77c=-6Qa@A>=@ A^F`zڲsʍj><$C7~_-( 0@h?ȧփ| S)+``m{wx8UqY=KߧO:Fah p|~oI?i?%v?Ql'O@K]|Qh1zڤ:gQv~+ԟVbY ש)iO` GRv(R#Ct`Y+쩽z>-0LF zڏO+Z@%0òj-]xVO da'`_yia֣ru776BDYfr<@ eɎ iI_)BDY2b,lh1WwmZ! !Xڌӏ?Yܴ8VPQ,6NC-1(hqNO eeɌ&3&-D$ʲ6`/zi(KF4B[=ݽZȟ(K6ΏF _i!Q{1Z շeɂb؋bz]Sm?Gdh1O 0^!ʲ>mf` , {7!ʲ7o^\}k6DYVmჭlJ#~(^SlVO@i!`=}=9 0(*^ {e%heYeB(B-R@(dXab},@KfAeX e=?؋Փn h1@|QtJeoh @~n\['ȅn<[bX߇zR43Z|'ue%l{VO_=Z|n:Li޽sKǶi.@+K/w`/" >}ln:heh1h1}m"zfR.,-8gx ,efmtGQ?ZOn$,#cRQG^lEn= ŰQ3Z ed,VOnR| b .},Eb؋b<,=oaFa}>cb8Zܥ$,xmto"c=Z%>Q},Y}l҂2Usb rz(#6/Nh1K҆3GyŗfITMʝ9F)Xj R" q},z-țnhDxctX(&j->(7/؍b(-L7KlǶ7Ejh1%m([5`/F) =|>|h!7l.K3Z AK-Xyx ,uꤏmtcԨ)B4Mw9ȍ([%},c76R7{:NDb_RyDUs8\fZr`lu6Gb3cil}{>EV bBƛ7Fn܈{Y(Ctv0>a'})GɞA+[[=pw޿w(>v>5 9h1쥻DluY-{f0Bs&e q5Z SFlVb3Z{QX6l]; PC9ك([(},tl˶Oyb_tQ h>vY9ok2؆bxJ7VD-8Ӗ*lI ].K)XJ:htO-ț7/Hن(;[OhtI-_ [=Q.ŔhG;<Qz8L7RDY?0Jw'yuC h1h10Z lM=|lpFa}zC7-S_7+2(FRVWǖbZ(b(խC>e1 l!0 .o*lNtrO+ ؋b(X((b؆bXu,E h1"R0(5w`/⻻-D7˵DP޼q 6elܑ 2(V [=e8S.ӉAhR` 2fB͎D 7@\^A,S.l?,㈲3ZL4M},@F˦a&OwX[~]3t:N ZLEF)K7y1$lM7~or},qxlDyFQ֥ b{ @ZfD̛7F)I_a̸{GY%S!ʺ`O8ܬ!$}ݬO5eD!cmb ea'ʕ1h1%ҥM݁2hܭ~(<glS}bE7K"fh1uطM78Jg-e7սW%]X Fٺ:{RY/Fn)Dm4w9n!؋֞1)cK7[n|`"F"ߓd}jVv'F *@l2t5eWm6㻻-s4JMDͽy2#wo"(btueW䲁36LMWb3Z̲ܶ(҂g lwmDe(l6Z|҉m:9oUDzR 6lh1]{9ca+X`Y7/Ϝ%V]cXJ>Ӥac"^uB4kl5=_)bx4Dcl ep:5l=Q},QX -dx},!˃|@6ޒV#.#; D3;biXSݏ(;h191B\'nÀ''+Wپ@>`Ohe9)g9';lO+-f[TzZ`KnXiݬnv}Z SaKV2؞b|][vcYa֠F\C7[Y[=%+`ْ׈nv}v1{1x {50n1Zr1p`njYV;"1s-kfap8o-:SKƜ#;'e(.K_)<\׾K.ZYwJ0vM4(Ckh1̹]Zƶz9VR=- .(Da*#zZ@ K]Mi*q:U-K }qwy;Z Ot:N'Gc*Z}bΌzڥ@\ R*]+%1B ױjҍV,c}lݴ3ZL$n<4Na oe 1B k3x<9OtcU-ǘpVDx9*F}}=xlHLLqeF|}!" ĢVO^!|Zwe-nFPeҾs亞SbO>-wߘb+` x+B i\*٤m X`@ dM|A>.rRF!vakh1_A7j-مٔ{yky₩oxpqm(_hi?~Ck{L9g>6IלS~ MOl# -^":?i8ЦkX˒M }"nF_RM|OKDFKՍ}RtG!97Ci"[c 0l=0gQ9 yʈSOc_Xd̻@ eHB얆%K(ks ie-ꞁXwk,妥uVh0#I?hZ`K c'h% MUD/NHR\**bӏ6VhVQxN <6>*U}<j'z:Z<Q@6`|-ge]VmT=-pj8ƆdRSX8iekcDeN9F;F >շՓ`?FHDMc 7cgvj_mslͣv!2Awo9*~0n6-GeucNۖ-}Oke-iuc9o˥_kZ_>V v߉\!٘nv~od<`\J+09D͵9.V6o+ahS1k!._}8OS!F^k4嬙zi@1]h1%_w^xŧ窜Z__r:݈v &Փbꔂ@;Ƈ?L0aF'TOc?<2LJGv~_ooooo?nW~ptA4_R:n4_}־ǽsjvq.u{s_=G{&Q?vؾmOM9'+fu11֞Fw>GȫöxW!ǐT~l]]S9[MիW^JQ4(}ix6VO$(hZv#p$x"˿ۿǏi׿&C\|˗ݖt1?5yۜdxv?-2} n/ЎfYKy?ޭ7m~4|%@u"rWH{(JP:__:5'룳hó~k |L6n,WqL#8 ϧ*wn_'mPrnçbm Fs7o\zBl=?p}\vWv3k#=`l9%5>>_~#7-i m;A:\Y/?ZZ5Ru_5=mƯ5T\k­wLqw8&zZ93cu?ke_|_jEn+??|}|>c(hbS_7釼|B۽bxK"۹?O}kߣ*36Oozm(pαz]cX|Y)^ xUJ u=C>Ǽ-g.v{E>Slg)v>=R.O?Sz??ຜ[7o>:1gGiLZ=-,\s/˻w_3 sGv״$?mqDb]_t](NO9+5oN3T?x۴1DtlMc~:|dHz5 5Xݦ&v 츭t V̀qW5- \CO;>v_D|׽)eP욞>G:cXi=i+\إlv?B!TlxMCk\;nQӲ̉صmeϣ+2x)/=m׹,+]#'o}1s̉}?5fkCp`ɍvTSX{?* b>ci ?Fb2x9DVX,NIe=Fδ5mرJijiŚ.kޘqkh6PصDKf-UӖJp>v}GYq9Ưb׹.v1l|~@m ){VOӫWvʤsmVVKFN:e _MK|篑k-P0ZŢlzW'mȬaw7{V 5lJlK=-r-ejdnKWnqcSJg,+nO[h k[8ʎf SҹĒgFMc [(;Zl+-Υlv46v_+F1f Oϖ7MJ_ׇßd`t75u&6bڇ/uÏ9j0'Np;cӾp5F!C,eM,kQvbmeE-ls>ZkK~Se GrwunoJKEY!d'K-FE-e155e~M~Xz_3yvrY.ܬӮbWȁ>67[ӥX[›¼7\*Ďcjk:74}FY4OMQv{;?Wv.{Ln ^_׮} 1sQz\!c 6i=:SύΟ9a{A:7{z53ED~κ>ӖaֻfNkrxί cй)#HO jh lq95G\DzuWȓrST|]c4sϮkXk\qz{Hl%BlnvoYO5js>WϺ?^ ۲z6:scL3vN{|"t7֦iG\JQvn6 Sä%+Bybd]xQ6LgNYdD ށ'y,D7S2@@v}zǺ.2؇_q}z"'xl޲0{2'1 e\6i޾M*|Blno#-uF_az[V6٦m@Io8'Sm;Nϕ͡mӲ(H@毀E k0Z}ziO1{ A v _z#V}Ͷiȟ}lml-?!6gaʶ3n=-۝i ]۬]ϼpջe hZ942VBFYV 1xZ<߶B,1sc.Y},hq^+=\7i<^[rP.ˮS1,OM;_f1gC`o>Dg=ؾWb}laZmӲ"TYCI൲myc(h G0l)Qh=:M%.XXX ieP:#s]j'ESG26=-*!:Ko:°y6lDgܝ9TT:^Jb8`k}HxwO @>k=yֈEbkVOlDSˇb-_CwBl\DپͦWR7cR!v{=uҟAQT+hK`{PD yÔSdSŶOeQ6sAyں!Ba+hqlM +`rcRxy~0lÇU_}f:-CQ zlZΌobշM@*jez6=-}|_ >hfa<[=ֹn$v!p;f_\m͒T&uvmzZ:!u9cF)>\n6p.:M3SBuCSE1eu?=bb-@ތ^vAߊ{<^%k< ;}ǰ1@\S#1lTJ^>yzZ(_}+]BT ?kw1 l _O1_F >"N{' X΄Xeh([J짿nv7~-Rt\>+f!(]c5<콧1uE<#eVutڅi3B5nW>>KiX> m+˟Qo @ٴ]`b`X:}6,~n?WP6쥃ݐ(b?up۵nlZQvmO eFϛ3VOCF7=-|LRm},v0.@z{ O|}ie;@ i!&yh1gZgfsn Z=- gBlʹn636fg,eɞ"˙(;`83e{Hq^[= `=[^qÁ@һK C͘O|3_7K3VO\"N?da=-%u;cs\#w譛elwi_)sh11`-c[13B tyg`>C+ e"=-s#rt=O,M+30Sib!;y Yf2tnX O7gȲ4Q6Ce6c؋=|V-f$ #֖D|"&IJl~/nEi}9p&cYmpc6MT,_5!AfXͲ=mW1n[=6Q6hEYbHƞƵFY`cm{^ύ{,3N AuScK۰ux GxeC9+P.uFي.@ j"~>@; @ X֣Rfىv#ibV__},ʆe/z9W$IJ6lL7Kcbt%"˶D٘/͒X[[_ZQ6i=xO!D>rA7zLDٲ^N<_rcOb`D_+f'IJl/nimn6EKN@vi=D < K-Pʘ r3&vêb3c0.5fLܔ {Z-&?Zbf)ucXXoL%AM_C qm ʓfhe+$JwSFP~bǒQ tS:+e$YRf׷Cn:f`>$ɍ(nfJݚ>qG:f` %Q|mfJݞ"$,tuJ7;>hDY>qz@ttoLH,YQ,@mtP*QGOtfdzщ@ut͎aXDY.R/,@|ٱD&F7p|#>Q^Yjp9f͎gDY᭍:5M|PY[=QQ+f)I߰1f)-KeosI7 P*f!:QYtD7 Pn@kLNYsщ,@7KItRQãNY"V>QQf)nTBDY~uꉲ,L7KIt)UEPQY!R',@fKeYJMn'1j ʲ,uu>QQ#HItz,>ꤛ(CݬOhJeuYJ:Jy'QA@tqYFL7 Pݬb&ʲ ,RQJYvc(ˊtK7 _ ϛDYYY(Q>ݬ(tԠ/]nh1eو7Vꤛ(U.ݬ>ZL7KItf >A(˦tI7 |ʢ6,YpgfJC7k'HDYv!u(KFtD7 PBDYv"up&ʒ,%*nV1@DYv,R6,@Zp&ʒ .,@mf ʒSKG7 PY@%CcXKDYfm}DY2Y2l-D%=-%fcQ0w [%:,@m毛5Z m,i)n 9ݬ` QBiH7 PY},te@ YQziɓn akeac=-;n zZ>@>z)Ďttiea%eCY=iea1ߊG7 [B >Q`mhrcbֹ "}heazZ&CnŦeQYm'Qc@x_:_!l/} p"p^_!r<.E=-3fS qhe! zZgBtW(V2eYnFTZYsiCz,Mh2B7Њ@ W b fM4~8iZ!jczfRY Plfh_D/l=--Y 15!B᠛b2B 56@,O;K!v8lZYVL7 X`*,TDO[37)x0V~ VF7 @|eO{\{_e#zfmxkeGzbhegiKeؒ( L`=my_0&0x\iou>@+ \qI.߆K &u?GG@bfB,kexOtPwrVH7 ^W Q؈!=P5ϊ@DY`Sz(FZ(Y+ lz(PX G+ LO3,pj_ieis&ҴB,P2,=mnt:_:@{{CW GhsD&a<΁nt}ATiq/D+ ݋nDYnɺYXb#EnI7 K^G+,P,=t0_%ӮM7 \)B,as򌉯 0V@O,:XX+ `=t X}ie. 9tnk_f,JXYb2B ',(zکF=ux Q`DM ,1X o,cfw i͒9)Da<xuiq`sCt,LOG7s;i\( "i۬e1@YDYitlwe6Ͳy%A؁V7g P;Ǘ4fbbiePnk+,@Vjqwwwww;j XC pn࣏>裏Ww}:~-@={ٳg@/^xa3208 {YVm  ŀ@('>J)x? j^gϟ/P;zaŋ/^sXO j {ӧOه(@ c<@? ?s Q0ٳgϞV=~5BOXc EY, ?>?_Wl[&T,T~m_/~ӟ?ګ?EI h޼y͛ϟ?>^PXk ~> uq0h0WG-`45Ɓ`_?k_m Mox:}#ÕM(!͛7o޼N#G!ra}TO{FJ%6 @cg#Z2`P"!R%O`=z Kl0e߷ [6𞿆~N#2R ˧5Ry@1 }bɱX@0d> pPE *O (mkj+C ?fɀ[ٞ cVh1qCPX6>_rir7apiAu+&a_MCP+ׇR(q0u?{4h0L[=` O-}}p. PA jj=u;{8uËF ~8a,`xk-0 N*ޟjZ2`%E ZF R )KL< @exɀ!(@]4Xs006-?ݚ0@>%b(}-./ @n@eR%!q @Ov@P%d;m[f-ەMeYCTOedtndX@qvMCP%30^8`Sz`o& ! ' @eRc!QC`@9F1Qn l5/؟% ާbԒ4ICPeK QoXq`dL X!(@LC(@P2@P#Jp@jC@@_ojг6G $  @A h@4H $  @A h@4H $  @A h@4H $ t:mukwwwwww*K P{"53 @-ed'z͏l}ޡߡV 8d@<:n}}}}}.ryo6@xUP+P/blrom}D *&+~@0Oe(@Pz p8 E رCT=[ *>`8X\!Tq~`@PW3ԧU @:JMC>j}L _ PdqH%M/ޯ7Ο>v P#!řꯑɽxlw.6 L(hM 7_#0>?6쳴r3UlRP?Pz$> 0U7sc{m ޅoqᫀp5q\?ĩ~n1@0O5O]r<P vb+9vYMDrP?UCcnQ=1Oϕ[LP; P%CT p@p8~*C6~%Z0~ "@2G7 P2Cd1&@I|aP7 {<,. @* ngewJ"6fPzY&` Pe{N{5dK2ԧ7 ؊pG(CXN eP eqުwO\,3·}ͲI~@v rKy_P?>*@`?-^%舡~Лnzz=R(Gz'P1CT1,ЛeO("l-Q5} ֡PfqKK `c5 eJ`qz l(>[L1r,. @F [VV)aC}(@K@և[(b׮,Hx8 @N u|ѓ'O~/wG ODtmj~qY\___=u\.qŘc`/.0h= R= p_ #˄p0"`6|zJ uU  b2̡q,`Y8?% xs@`q8o `㰵R| ՚ppAhb:^Z.0ʙbfmxOm?i@0&z߆OO)N*K<" q,`Y8IvX ) h`I/%gq<,uTK `H8O8`;P,#@A SDh@=R>CtM pO1h@9x@A GDƄW ?ӄ>|W7 G: 7l@xj~A`= rszc ؟p[Z IG`W&;G@@6 (p@9RCWdR65ჵ(_@DJ?F[ּ p,A`AʱL F n i b ?x@8Q6@cb  'Ъ~A԰IW{ }ǒp@,Q~`x15{ ULJAʾ!K h| @U M6 HrD<|_ Vw7@t żBCCu:=#m" Z̏<pD(;0$p ?=L#E h@-f)㢖@@?,ˈ@iFp@{xh)@5.; uO8vQ5vn˒^9% t@eI=`+BPVkObp,b `È)B ^?T1>Or\.^z cy;TL cY\4iX fjߟcd˗S_u!(%lKC9(@ QEƧ>EbLu2Ը31J͍J"T&J?1 !jaV[COC epBP?V@i`W۲X1bPBOoǚP?@@̘VB[\.ڞ@) c˩:' uI P?>|>N>g,@93=? Дap~ 10-I;JlO^ aۣIOI (nVWjW"D ḻ-`/R@ANj\\`b19&vP/ 7O3ԇ6\.28c [!ؖhp,Cyؓ@p0@ j j!!`[ Wù=7d,+cA(Mj=%3 oG|&FjtTD`(!,h5ԟfa' pְdP('4c 3TO` ok(`HO@nBV6ԟfAC+Qhհ9 Xi7/-|!8?>@@\ߒCwI c+0~2|X/fP-o:QӒ1 zv\.TO@|&^x_>%=1 X&'[g ;@aD`eYdl}8 ~'`ֻ%Xo00X7777/_N}YM!d$ ,77ƖE,zh ~ C}eXϒ@,.9PЧy,tk >y1=[1~ C}XFO!8bcD4>"B}0ԏak0">6Xv1 F|' c(LLL+xTB1ԏa}yrs@ F?FjD`>Piq! c.r !KblXf@?267ԏa)߸\.@S#m cu Xnnnnl x,n=[5\_L@ =~^yY>b =(?PKP6b@onnnn^3 ,$Q!CyG臞'$ U7=0E H&0#0z&0dJOL*3C}}''D;,;z ^#؇X ]@n\___OῧeF Kx;|@8!@?a|Y\P @C@AhP _`n|wdSϾ|{k@ =& M`hx܅ 1,3rp1X& (|q' TI,b ? ϲe{x|{;U=J " Ϛgz#Du̲n믾%`=<el5 ~@tg7\.vb Dʤ' b@ g?@t'e@C &L@>{FbnG,b8@dxw,N}UO )a)'`&;`|W^}ݝm@-4TLOlE@tSr7P x@0UPh( 8[@KtFO@A)y=gNh@@Scz j'M Oh'Z΢P;|=8۩ dЈngj$ճL@>/' 5蚞'@tS{7@L uf O{#v=OO*tLL7@V\@-2 ȧe=OO ' O.p|%ȧg$`nV T2 @,Oo,' 4]zl@t 'r@Dؖly!ʼn`k~w=OO%X& Q@ p(@FVvzM  9 x(PQ'$[qnbXF7@nz 'LDl%ؓ<O hPL7['8n|,-[q= e>' `+(Xp}@A|GҜW@$ebؓg,ebV @d %`+@<| ˡ' `[EL7t' ؊ Hؖ@l2X&d[^OV؉XĈD,Gr>ϷkND1g tLL75`c xzXF ,5`+.8`XH7@>' @d! l'R @n ЪGMO@<H`|D 1g؉Hl|>oom @`HOij|`OTY) #bXF7S?-@0E &Y&X_ 3TL z1uiq7z2xɵ/g.16 0$G7k@pJ,@ # },@(eb 'L@F TFO3 a83@>ƽ' ӕM@bX&br|X|>bC`_|hMƶ艆c|,@|VO@{؊n%n|t[j~Ha?@`~h# >@<== 1, [.`,c.@L@> LztMez'mTFЄX@ M fG7J N# @9{Xp U4(eb`O(LvR |>N}UO@lZb|,@BOMj=V^z㯆owwwwww@4P=a؊%@Khn|tІ`;@0UB .@S`+ΧA tnڣ' @LDg@ۜ[@n'^TI7@> 1{Xp ^4Kxr>ϷS_P&* IOij|@]h(@>{"@5bX&ڦ' @L@> d؊sq xz'@t>٫`+O )=zjtM|˗O[h Pnj15 ؇vJ&@q,e9WE & (TTT`(@ nr\;m(_-Rȹ;P '1yz rPnb`+.(@L@> m xzJ ?` xE>e0 kzHIO((@>XcƜ8@`n @]b Ds])z`W 2?== !Qx؟@Lr0 ,B ]C7@>X'`uލcX_zÿ7(A xg E@DV ؓ@tn(G ʑo?a'`sgHa2LD 1u\._~ikk'/xH<͍mRL7|FO@Y2P> !@nLr>˻ XC G7EOij|@lFXz9s@T ('`[l@7@> 9`+"lK Py2ik@OVXE7@>.G\.8 Pg"@F޸c5zp\.@'B1, K,! P'@2ch kO|q>=3 'SZ@@7@>=Y}-[ |It:,#f)XZ'`e!gX H%@n%ǚ(@\J GX& 8=) ;u, ;.O'$>z=1XH QX7!bŜ 1, M!`|peLOO}e)p tB<%LSn|t 0IS E a !p`L n ' e%  `+g @1C=OO@ )X&G,bĜ z L ; COij|3K'3@L7y\.?z> tA7@> R25 } ^'|>ooN2%z矏.6hhn|tLlr˹P7] <`[*'V,# =S_ 6͊`nYB)\(%@ A 2<)H@S@@=@ @9s@iz FE`zV 4"eb'Lh{r1*Y& 'ڵ,<ĒڎL_biŚx G b 3}Ϣp|.r 7F=,=0,A J1, P&q%|M6T2X&A=.!؛v%h8~O`o.j'P z' %QĘ`+ξ@L7z' j$P4# yL,b8 H '[9۩ J#P(,B [qP G7<=r''zDX@X|{;U= 21+'`*D+\p8eL2?7^xLfQHޑ J +X$uș^ #. : %n 20XY& 3'}Y(BbGP"GH7@>ṔV[(|>N}UO@aD1ؓ=]9tLL7 ArRxyCA[hCTƶ1c0=OO lec>6 8''M `'A 1@bXF7@{@<=@>X& Qډ@ |`+|{;U=봈U;_ n hr<'۰|mX?,D臐V 2wwwwwwzbXF7@I1P;r$LDJYBs6Me$@b- 8U `=(L@K ²(n0zclEz'y=:@|0O,`Ԙ_G=aR?K `@t0ϫ'@p>ϷS_u]f[  =oG\,Y@? 'Y>=fs8@ `r\.lY x"b֗gk'@M cSbw/2'Pװ|̙z-ю$X_X!cb{ş/sD$0g<3Z%?Q88nrz x={* O@@A;Ƕ":[#D^l>@@=S,.B7ۚ 0.(Vs$ QJ(O8^Ye ( =2Z0v= P#e|>oo{K^>_S#m[FYv֡m"@ `ߞ!f~n/^S,@-.@Kʈ Ђm0Bq $wOpnJsso}{oY(|@^ߋ we }__z (@>*gMtJ'@}zҴ R+՘^stnrF~ yn%NlPrپp%X<' ^v؞ףlBO@;8,~,࣏OQÓBpf{YvuW̙=ͿU[=KCaJ M %5Hm`xI7Z1~K ,#p[c, Q @ lEB@ @K,@-V,rMp`{bۺ Jzx5- ?#oI'|)ֶ-% =^=ܶ᷋U V׎WaAo]w>K$~=\___O+ؖnj'Oɓ"߇]-w77775?]/Kd_Q'/zZ-e_A jat*ua=< Svۭ!`W=mpf8-yg|@Kw=AGP|SOk+P}Ob.?#5vLkkr|w}=Z9?Խ> zpVu G7^)ݟU+@ay~?LxKǬiڛ/v-pOx:gp0ܞ(3Pr\zPizz.ztJhlK@7of3G"zG7|O@iW@y?[x^:`jS uyUWNv֣<[ [r=v(Ժ0w@wߖ1g j6\J# PPN9亍x H %@Kb&k=\?+ͭ '@CJnW Wvs7Jkqp-`w"}x M:(W% myO|re'իW>|0p "Wp =4ˮ(@imL CBҶkk@ޔvqr LJ[XWLMQsk",W ,+@{n(%ǃǾ  \GKke 1`5h' hk`mU'X?Q '>zϧp,N6/O?_~;{;B۵g|Ϻ;<.,5U~ '?kX22XY-Z;{ꑃ'OǘX=>8;~ ?*4lM`nK:پך|@@G@puǯN(SCvW>|'}X2 #xm[}駟/S Gv#P4[ x /꿍u ^|}EuX]<% roJssssWM%O>}i:\>mv̿qaɀ(Zг0J72]ws'L|0{(iaGp1d|{; @@Ԣ#t2 5..`'Wn1=cGu}\sPX>|~㤽9]izxK0G3UX>ի '?O~ٳgϞ y͛7#tol^kyaq@(-ɷ|@ QK-U+zw̒߃2\dJs3Ay#q?OҼ|˗PX~ٱH,AGg,?@`tx '4,{hrĖI{A@i^xŋw̏< DpG$eS,lIx% ߞ1mo#_L6QR˷FnngxۨrLućgж#>e`/O zE.ۼ77_%ҏoC nc{jlJS6_(ng#==;ꂙybo_=ϮRr~x/ XQ:()Gb \ݳ*΄mDE=X@XCƯKmyv-g-3?>> 3^#507Sအ=3N @@Gik=eG}duZ&Cʚ90P  e[{xӧOǡSy}>P{ kF_jĥ7 ~|s|,zRw~ocS怡~~ C 0[쾭9t%71,.&l mR7 zi.kG9r;Ͽ P?^P(@? 8.~_׿cw|u+a`r?RNY>4l l9 \`ྩ޻)g/P-Q#~_x?O>dj?z_}60-bb￈ehV51޿RJBhڦń0ԏWP?Vͣ,H$|OS_+b&Y?^?I "@'5xZGe;P83OPIA`{K,cS{jÞ%Caׯ_1 P `,P / k% ;R?}~1ӫ>SK O'\ #@% >?8~zd=~ƴzm^niqn6(U(a̿?h,2V-@>k 8J\ aF?g? C,?舞JM8@p@?@>nMO@i‹BIOP?>,٣g?p 13 QTQr_޾W j؏؇~*C} ޲r"W^( SSPǣG tE@\+ɶ]&` ay   i(@ϊK Iz(SVQ@O0Oek2 tMOk9@d=?g P/=P?>,csuzx/]_UD N LO"c= 21% YLWF,X>`ۣpͿ@Ob-1Oe 3 2m j{DR|oY>. 4d@ Iя Lzm~2ܪ ű߫^{ aHO SSbJ`Sg>'Vc ST`|;¬QQLy[mz' ~*C}`[ J9 Xm˱@xoMU%[>`;-c٫mi?P?>O-]-` <|ˆqR+؟?ZϿF !Bzxo6"VV>~}-?{'`P`3@ Iz`޲#& sGa5` ۭ'Hg8`nv9?P2VA|8 o{ fU+x"@='_ߤxŇ-@ 2ЛXg@bl=RX .GɅob|~P(شbl<2=0~mrD#i;^ñ,G1ԏg6c&@=C=W9^ vg')YñfKB'CTlK7&'@,bm×1Do掝>{\.Cb^IPCTr\穯@4JO>Nx|6GOG1_rP3X D=` Ѓch} `CT2@k;0?XsգXm>DOW6k71 ^8;?-CDzPo1> 0x ȷmmxPQ菆؍"-,խո}b<9v"-~*C}hn虆6'rp5HOPZO@H͘mfgA 0fP&' 8vtx{O-&WrT6&k&Q!d  (yUo[ǂPAs?@?,= `'Tm)#Q--w' eDO,9j E&e`M$R!U zc C @< GO,9j ^O: iJf24poI!ULD樱W^ @rßЛn! -v3n1!g 0ޞBƽHB}yD!@| yosJ),歪X2H5L?AR 8nM@7@KWL7 B*=[nɇÿASoa+!L@o\lE x+ c5FAP?Wj,l&4t:Nl% '-x=eLnm PUCТ\75>GDn KP(om!׋@ tM C,>Bؚ@s%4i (@j@P;9|(ZLeHeTL,̫<}@o,&@Tz4 se?@n4BO,9j\mnzz؇@R  ('czhg? I@70= PXA,%a4n@P Y&؟@ 1 }d1Jr{R8@^QvPz`LOu% 06(p'K=*? P= ;$p+څt:N=>~r~TXDn,@C]0%Gۿ?@heu0ECvٺ? @O Br1 X/w S[A7P2 t5F 2cx(̱Vh-Ҝ,cF7P>=D7|g@-7ߐJO P& ^ E x#9*@ܣ', H xS9 %=j#@ߠ 1= ؟@`7@ͼ ؊e 5o!Ze ǎ ]0/ A!믾5dk,: ACxDdhI%_g((P?. 5 3mhuwt1 ZbQHNdkV,@LL @:,@\&=/Z%s'P H6 czؓC @b1`@,$5 {  %G`H U|lTz؟(}|,@Oj0`H 6#`<<؉|c' =a ?Z 1=lK7ιLK=xE>,|̀TzgH%KW@F>r@a 1O7Χ!==leR @aLO@, Nd!W@t,#X'F7H' %Ghsekd!`2 @daQ']J # bzj![ 12'rp)(xP=0'vL@P3bJO@D`=(3P#-t#Kc'2X&$őwTzFr* %G`H`P(x ULOX@D |@i '(?>, 1=P | Tz D%R ((@o\phWϫ Y&XP }X&J# c׳t@  n& p4h|Dz@9bԐx3L@iq0'`=@z1jHWL et0Q@GFOLs dikH' n,P>6@AאXj!c @*Qr@|гn! 1=n,P#@,5z@ ِJO3'tK XrmLDJ& R g1L GOm e Q r & 5',J !-N9uLM 6 czhn %Glx(@[ mqA@(>’FOPN Y&m|TzX&z#$cWP&=1r N H',K7C x 8'؟g,`?Yr2@X,9j\ tI xJOp,G7D!$rz1C Xh>' e2 %G` @\9'<n %GQJg|TzX/ ;c=n,@ `3>dBb@ Q`L ؕ|0O0!6'`))@=0'yH%F,5znB QH'! U@p0haQ'2!dC)}L-z`l>b`=`'>BbϱG#DOY>3$lE ؕ:'2lK 8W)xL@P(XrԸNA 8JOA7`k@FO@= `*'@,ʤ!@PIy|E؟@PiwAO@tz`LOO7 ? >Bz$g>c3 2`2O X,9j@IDBIC*=Ptpbz`QcH Ge h>C}t@>@`L%*1'$ O h`H7QY,RdB#H7p2JO>tPAz`Q'>jtHUR 8Q82 Q5z@ P2b>NCNXst!4NOY>`=O ֐H="tH ]cz`ˣI'3P 1{!p0d"4GnH'X&@=q47H hߐJO aF 蔞 wG(@OC^@d!2N 蚌?Y>>Y&h@89}U@t==C7~@b>@*=@{%@G!ڦ!{\K=H@Y~H'0V <@OWeH% @N09uz Lc^L=='x$'P!t(b1P7*C*=@]tz`Q'R=OP~+ N  `O7t389R>@Bz`@9t@$' =_(}x =0'IQ@h%GKl20$H',0O `3z`Qn` `L JO9ap@|,@Oo=I$sU T yY:, H%Pb@ C `XpzHcv%G!>S@< ,@8 n,6e='5#@0E!@@Fc>`0Jnd'SL70$? Pt:ߎvj7v+[G_7oY&P @'W#@ϴ\I!ݍ,Zbxۣ`lLzO`['op:N11믾j}|u(!CD%@0%'@,`Qcn(@`9X&Tp$@ڣJwX*8I>ޜNv\}^`W_JoC} F?pueЛ 5 2څQXjK #<.X[Xu@ ,/. Pөzb X+uhI'D'ehdဣ Jrj'K,3b?%`ɵ s{ck2(e8!2[g wqP@GU,Q]h?|Ϊ7BВP?JPB!P%ߡϷP G Zsd TpL YZrwɺYYh$H` BL~@;u("}A%^ r@3P {B(>pd$XzA,Lm 9X䎯UAm' ˉ`c!f?ܼ;!/}ԳKۿj)5C_Nϲr'sD_{BPDE`oZ*8?ʳ?ɑ@ ľFF%,UV^s'6ГP?38Г倳N0~P +GyVtPT`|B(ϳtpPQ < #Xc9੝SK`Lckc׳"0Np3gBoB}|,Cq?TP?3wqd0}HVSǓ-(B}F`!Hb; %,Iz'5 k~2j,=pNmLQY @r. PO_IPr$Uapo (}92և BcJ:~ЮP^ X ԏrP(R_w6R@>hM! kUEDgGBkXMrB}>g  0&w-(t`4  [pwF!@> B$ )@B B$ )@B B$ )@B ?29IENDB`espresso-5.1/Doc/images/ofc_6.png0000644000175000017500000005425312341373034014767 0ustar mbambaPNG  IHDR@}euR% oFFsPjI= pHYs  ~ vpAg8SxX3IDATxݿi%ٴ`Hi8Хx}00Х()|:0 АlkNP<-.=ӳ;}t\.#@Fd$@Fd$@Fd$@Fd$@Fd$@Fd$@Fd$@Fd$@Fpӈ@{8|'|8(o~7"|!g}g\.V.G}G8&p& D[l& 3p?? Q??1%p$Z Wկ~+#8p/_--p~駟~ Wa/~_"p(?zp4.,Ah,l>8>N6n?O>d\ c pN!,~O?O_׿3q&ܧÄo!ÅWgm2)80E>裏> 2MZlɪ <8LHWӰ\۟}o5΂Bҗp'n5Mo;IJZ 5,A-'-};pp q ~a.tMn`)p@FkhI[m*f> 5}oS؊&,Aeh}g!*#. .V "Y\mZla+5Rn9f<[Y؊`b Qn1<1)1"X2Jp gp-s%n[z_4`4 5W+aiJhRY;KPcwf3[}V`=Zj'RӽPjRAMzh%@Ѧ Qk&8 j=ͬIcDO-翺n9v;%X  t׀Ƴo4zsl7<i"MʏSk[P>UJPs$Uf)}+r@KljӅ%u?1_5m0j>S]Wh[hj.CnKYzMt鳔Y*|LBT[P8m׀Jp0&7md_ b|k>+.*)k>, _W8J,X  p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pѽCN)_. NX'4f▆턷p@M8 :=ێoul& WIo%Pp@ne"N,G &SNJ n㈹ؒ635[dtkҶW+p(%0s%܏s x&`XQ2XòSjb_Rw[xJO p44ݧ>L'nSH9n%Ǽ3A;RYGsfj`?$iMG *'HBܳyz<}:O@Y8{1(٥t Ѐ4wFmG[VN+AoܳV p@̩Czj%@E,L'8wo Nn[zdĚǷy:"[j)2vB|VRa}3eI.(-vs[1CfV+ly)z8-=9v__/uUSjs[?g٭=돪Z(p KP`kvAiSZ!o25 d|>zf{0 ^KV1#f\'@^ulkk.ֶ$w߭mKA `]l*޽mpvd2{0 dXFCO/[?_v--1 gP.ݖ̎w-qSIUu]/\-},Y-^13=n]er+vCk1Mqa( %M1?ekXhe8A >]_n[y0O_Q9<0=5g<rpt'/amI^xzyo<j|IT*,Mr1Ut+ki-ρB6|\nܖ{X+x^#? &Ь-m$I6=/:wo~&EAX[9_[Rsp-?pВZ[p>_}{nv3n{!={ٷ>>ׯ_?>=d8m Fm0n1p"P[̶Initv&E12@>'Mݶjj5+ @zNo1u%kώ#lK2fij$gʬ]P d8 ԵiBDsH˗oT>p(-GB[vn@&= lKXC86X!P`H'P ',%Pm+ŧfAHgTKoN)LpIoG1 0O`Ws/ȥY|gϞ=Գ;ʛ 0& r.>ؓ 0&vǖr2@>l@d8IoDze;l%D7 0 wwo߾}r\.G h 8V9<~S+OC _f4p[~g)>a< h 8ʛh48  `Lfߨ],2P;$ J [9,>2О{{SZga[4g'50s>ގc> 𳹗[y̾Uޤ7 2P/k6X(ŧ0&5:%իŧÈ2P;[-̾<ŽC{ 0۷o~yr\. 88{R>Czp@,AhV/O6e4w7NB:(,lE!4Bzk7XCJ TOz'*&SMr(DX| 9ao߾{ór\.p8<~i8`O~P[O;^~ ghsWyhGXc·i8`=P6X聍D7J#9pőzf$Gg F(PʽCP{ PpnNh۶hR8i70Mzk^2p`WsWyze)qp@,D pIo6^p@  # 20!ަxz2ׯ_?>~{p\.}2Io֓ {-o@n;0 ۷o~ex{v\.%3t4}~ z p@^Hopws=wwқRbdh[l 8`0 0^ JchQ7`O}x( FHop,Jv)66+]!gi7r(_l.0̽l8ŧ@d8(Tc*o}j$@ 86XLf߀Zpp,([(P(rX|~рd8؟Gz|`OPXz 6L}_/_.XѦO; .ְ8(]Mz 6^$@+,P/O~p-؉u`+F]l0&zO,nP{nSjoT1l4}eқFo,>(Ax6~o?\.(P/pБIo@L*0cF̾I=4n*oP*p,,@`)@d8 A7g)@]d8j'AS73z;{B o _~gr\%Jc*vy> hi8"A~S>pB]Mz8OZ%P>׀j`cysLًW_sfpT@zXk-fa2Io`:enpFB۔ d)l)c2 ry> ٳgϾvvRؓEPz}|>C߿q~8%p0Wy̾sl3 pw۷_~nQ*Ho(Ie3 88[pI]Ioŧ؇;$M XzݨKmnyoŧfX #As/hQ<{TؘxZ Rlf*od)92\ T؀ h+vkn[X @ V,}ㅿoLp;58%6j4 %ݝOl2q 8X,#l+}np,eoaX(P#p3OM`i8Rp5w7 E`W`d8b8x@zҗogy7O ]P!D7ְS*{z}nb3qoy| s/y[sia. m jv==] xaLP2p1G7hi8p4NzL2@?8%A]bO--zp ڐtzŷqU8~F ^.|phJ,nP2o@JFO'S/U՛˗ޠNK7^bpਘmedN4{>~\b4w7 a)͆ۢmS P/jHoopFޠ=z5֘}t2@]l@bMtz7/ `lP>p4}ltr x晆(GA~Dޠf+~+/R2@80w7 ۚd8XJ(l홏nW`)4ޠ=K[{e8XJ(7hϚ2,%@cW{JoP[ߒ`)XٝF P-d8XJ8GFsȥ7Y~k2,%O#IoPXz l6{e86ϟ? z#Icc6X6Ld8ؖ HoО=`[2@nޠ=eAd8|8Vޠ=姷Gb\ bd88nKoG RWzKd8XJؖﳷ)Ԭyp@` p[H2-VzmZKz~pec⸐C,p.rq >D\ S¼ۛ7W㷼x; (Gͦ p.,+晀#Jz4i8VճgϞ} p\!A{zKo_ KW2@:KPyޠ9e}^?va۷orv4LM7QSo}զ`׵ Kim 5*R:5PzIoKp>2\XZ;sǧm5z} t7Yk=}$]!ε` | \wb}ޠFݶej~OJ`Q*= NN[>2cQpPm2ޏw ޿7P '=:Nz۟ ǣZtKo\ xMŧPX2\c;ĢA$u1V.} F9PXz Hz; 1~p] |zsJ 7h @koWP KMk$Vp3_'36^Ho 'op@fZ"֤7W[r\ @7(*bh /@p7/i~oS=2,'p@x|zs&Vd8^@rp3&>D?gp@L٘}Io,p"y ?c F"5 /2lEj!5·8R2φ0G'5 5d8  LVd8؊ I`O![(`+3\9>r['5 y7!Vd]2Ki؇d8Jp/_|.Uu\.?cOD\Cl[8 ʓ&\!Q]H%U Fd8ؖ Ik` `[ gC`[\e6r;7J#. ؊W9/BtOo%`+{ p@w,5% xSspz\5؊W!oFzg2Io@Rg<4h~oS~p|~ی>[+.D('f߼LeXGŧpBc Ђ޿ [ pT)7XJ|;G7xHz5d83`8spP "ÑFzZt`p8~1 -Kpų7 w>aݔz0ce^K p; -B,`[xGzڷ 4\̾+np3y`[~d[ Dzr7}̾,!oH@z2p=naH!Sz"Ad8jw(yVIoP]f߀^pW9K~vzȫ9 F+_8-Kz j!õ}: @{xwO#D(Aӹ W=)l0% RS @ cxG;]z Ad8J,d8@+7Z"K30pJ& BzRz/Qo?sp3OJz>pÚ'!8M9a᫯o˗/Q65R'r\܏6pb!IoRG OV/WNO=R#KMd8R׃pހmpPж .;ONz;/P ؇ R0+7`2kl8 edj$ǒax'1vdJ[,'g5u\~_A-̻%b -].l@y7$s'e~ӹ#W5Pn5olMzGnS+A 8(2ٷԣd[0eQ*p+X|7rg81 Ϯ뙃 pI=Lx'@9> ijVAݑHwƷŧ5SFR N$fv_898ؚ ;/Oz(yx|dd8g'o5zY{rϾ]z᫯o/t_|s%~ -X0 sQ{,A)mZX|h`QBۤ7nUL`O`'l +:(z`x"iZ}/0d8c-r N d8`azc[ҝfȱ Czg2p,OA6oCnQ@ sp̻L8&AgpRS>}Hcr 3 ^Y^oyNz薗 ~4L}7In{2y l@A7Gr0ݝ98xZΩ^# !-spL3t0gi6 XO3qM8w-BtOo&kX|C|'̾RS( lM؉%tfߘ{lc뫿F=&mߵ@zZ0 _}5~{p/_|г7o_s /^ܞ/k5Ba=fXjָCpAz ai8Y_XbK8'p7 LY|ƚyٷǏc1HK_c#KP3v4 wۃE'=&'ԶavV mN{%XzizKل Kow қ_b06Vzz-qt-y7 p6ĤD_uCpKzfߎ'AۜkGZ7R؂98xoː pNcIoAz+ }&1웡ͷ[x0&AKX:ܜ98D wdn1V:Z>;*r6fH?_ueNߟqpSk-h~b\p6^)0%AGs[aZ8av&}GnQ ?ou᠅ؼvί6%{fʘ}ۖ:xs[3qgg;K/V=MW6xa;^Cٷ50ʽ(e5[.P/zs_V*7j;~ epƱ'OYcƦY-iP[ض͈Hoc.i^0 _}5}o/_|}nb/ۣ7mfְ)eX=b=}#&ٷ魕V5g̻A޼5݋O?ŋܶ`AgnU,{T1>+n=/­=zpPʙh}s[POsB֓ހ>s[n[|O}wevmkNL\ޠa~L2v{SzR-2r=Y|ڃmCUӑ6ah}dަ_*q.y[h-_f<=׆d[|^,>g8/Fz'ޥ5 {|U-J3̷4Vଁxq>ݛ7߷ՙ}(e^-(~ Oހ5 TƷ/^yزdzD_]{ОZp4\y;'O>7ŧfS9ob:GښPPRu?zӒGr>3w,q9в2-Bgچ%_z[CS#!'=8D7Zx Us_kY(P[4-nqrm`KlPmajsO&6I^9F*؄amQR/n߿p]vrw.r!1t**'k֐wNз>,>e/%D??~VHr5>bI]P)'ўL\ ̾L* W16s!m_/3Xj_Fyo!Ir#)Quw[l{>Nzu[kڧ`j>2\}gn[k|/|?q}XGEPB?bn)p8 @֤pOHVqVRkqK#Z&ñ#jM8JG}GL1U[P\~K3 8~^,yc>Ù}+|Y6kۋe=2=w>זgG`[|j+ypݷےm~駟{%}Oy K_:~t>-7W#e~) Q xxඍD-}yz6J_rߥrҍnKo!#vۣ4R㳲MVt>d5D7>,KHO#2pwoK,h7J=!l mIn$|bK؍x%Ǚwg.[^6npYq[Uo, UapԤ[9ҏ_N_}r,Sid>Ս[é-v)rە '9 \㫿l˰mi~KRnI#מd8Z2 p]V"g}g||1.cyit ud,A]?U ( vG] )C=Ė }̾=4%Gi/̾JBJaHpADX 7\?#pkyޞJVC9ߒm7x|F:ΩtٷjN wؕK9cg#hK?o-͸k隶cO>OJnKfM8#C 1~?U Cln~[5ǥ+2v)ar w-n4ԢmB04]|#󭙰q??O?4o]S5p^6%smo5QmgYmg WgsЖ~ѡǨi8j[|ZV[PZ[H[bc͚yd M,Fzu-|O-}Z'H薞Bn?V4=Uuz]#}j R[ޜ_c뗝r+~p RQ،[boe30j%kj 9fW)g|J76~]Sq> 4--{zʌ[6 qrϾqcٷm6n\8 _=f BnZtam<7mU j%{N]JaTգ.(utXJ`[M-A}Mj(/Ao?>LI[ǶgPTގWHGEwS3nܦŧP\ ޏ{[J??r3I2CT߅ݭ syp}8b/pF/9@v5m)m}Z]~^r.Re2Gd8r}K)294 CTRKE<>#n}Y[Vr[.ǟËkwj?KpFl>D7uȧU~Y3k W˦+G-=jK;XKd8n6 rii(MKP"+ܘEXui-Lum@#bgJ;Gm}o6b)EK`G7;>l.u"@+l[)B:/@nʷe8/)LY@s[ I~'íQ{2|>z5 7.o3zvӺқZ"E p='3Kcǘ9u~ d8YyrRf+3̂lnj98r<,>d8h|\[4}KU c"6۾ י%l ֧p ?c&F׶;Oa_p*;^{{Ҟ 1 d8,;:Ij/p-<>틺#\{kXo? =?1p߹.Ť7m( P>F=2sqb?^z3#6%6^25I;N^/ajT8{w~2S8`E\lFU?/bhHMWr[Gb#뵵o:Q,A]m,JzcmLb=>-Gm47HoQ:n1spc2*鍖뇍L܍p@K7ZfJ+@Xsp .sKn[}rS)3 oPnIRӛ eqnU P>. O|2P>KM|nŋrrp-C Izmzc(Gv2P~dHٷ}p17O%m%o\L.hb.D7DfߠlIo0GC9m6Zp3B1ouS/dBSt:NFLp4~P>篿v̻30rj|Jd ]3qݷ~6$Hߖc} pyKp ̓z|7wsp12N?Fz\3W}%dJk|r7WzNo_Mt,HsUWgBbLc3xenm&@zc;spfߠN&v6wݤ7UoP'.BބQ#P2yf p0 =J+וP ~NVIoP9k.O;L2\:Z"A%05ਞ ޠ@w0sp[F(vnp۲Z"Vd8ަWP;t:NӷG%b%ؓy7hgw9>ko^CLēL@97hw^-B 2Kz~}׃xG+l 73z+6^V p0 ހ1m {֓  z;efߠm`[7h)]t:NKŦ 2 0|w#pΫuh xG,h) y ŧb 7` ׃Ka#USd8ހ<32g. ؖ99*2c.Ioz+8H" ȭ98/@o*; @bBtހĞ=,G ,> p}bQؒ7 sphx$Uϓd8%G Fk9=pEzg\#@|P9^A?ƙ۟ @7-}^t:M C ׎)Pao|>Sǡ& #p%|$AoŞ-G= ,5j{v}9@kߨF 7 ]T^A; @ж̾\vL2[ހe:A d8֐ހ~=8гt:M@)Dm coo9+sW3pPp 77@HIrrpLYj ,,Wz|2P|( 3 `98OwN!Fz)90@ uM  6e}8djpҕh  W %gRzHwJ@ dZp QW SWpb)@Klj!Ozȡ98o@dZper\ O# W 'Iz8V98O8jp) ' `>Z| XL M7m;g ǍdZp/ f߀prj!lEz(Y98O586#BXCz H'12R@]3' W  Pf߀82j!m*+߾S']pt}>0z>_(m3Ъao|>n->:X}2 Wp@Ϥ7,ހp@+ Fz-2x؂adp@7J̾kpL+ Jz-sp؄h(-6Homǻ;/[2GALÕ4P; IoLQC4\Lu7 spx 'QT+ ̼)be`+R4RgQ*P& e~;G2\d8޿V"G-JH'Շkd :2\%d8`)ݼ:*YZX(؊@ 8 8i8`[&0&%h,UB0@: (%4¢ZX Fz F)2\-d8 @: (%(1bk^?eJp@ n@-,Aq¢T 嬗7.&nsZzހ p*!A/gy7Ho@,A;¢Th@: GdZp tKPjX -ibkXF;dJpP+?Io@+8xxJpᠦUz)ms 8xjpP> p?=LU4xV^Koc:IdJpp9h 4KP ¢T8@: IdZp' t3KPaicQj%,JS<0y5 C[OH ĸrp9%nch4V7RHoS&`4\%Lε&0&p$UB3żi7yf,JE0Oz Bp`_z`LzHg *<,JE .޼ i&UBGS̻a *dgQj-,J7)7LiJG&0&lE#N<b=ͻFzؖ%pRk1C-M788 W zIo8-JEXHKo^-lENH2?>7 ';-eJpxs 8(kµ(@ (&S4\%LqcZz%A ' W iH#TE(ܤ7Io2\-d8rH'T,M(ͣHz)x޼82\d8nHo<ż@,A~(@ &࠭S4\L#Zz"A' W<Ǐnjd *4ȢYJ}-0&Kfpz&Nz%ǩnQj,J뾖HKo^ENxx2\S̻TE(U)7V^O~p3 x-nIom'Õ{w KPk"D-J-@:  UC+@: 7XZ R˺/7қem+dZp <~-GdZps Xj @p@kµ$Bz`4\-L=қ, BHw @%¢7IodZpH'T`RkaQjQxӛWXL pdZpsGFz)%,JEKv @z` pL4\,nIo'Yp-Ùw V,A(,JH'-HENz @;(--JHKo^1JENz y7a *+RkQT {24\-j7 1 pb.Qf3@: X l]KSQڢT t"p(!Io(%@q,JR7қW@O %b 'w% 2p@dZp),5d͵jp)7giZ7 1 Zp@edZ,pH'PKPXZE7jdiZF7Ƥ7%Փj7;7e4B|̻׀pC'h W ) V p@dz 0| p@d@z8Fz  WUvqhɽC#@:NŀEe6@̻3p@wLÕinrTIo d%еkp0P 8p0P/ 8d(12\ ep/$/dr]`O(@p t:NӷZ>b|>_r|d),e i862Qg[7XCXL;`=F2\9 V8UdMzm`3vJݓ}Qyaz0p{ۖX[6&ڂ),5}pYp-@{2*{7؟ wspcE؉ 98 %J۟98gvq oG9Niv\]c aL QHoP&`2\I7QVIoP22|@Adm&@-8p۲ "JPXz8JPh2VF7G J&T@PMz: pՐֳ-P Wyp&@{8*pk$@8pkؖ(m'm' zpM%t:k+f++GsMu&2L\:sp@ݤ7 nm+` @8fp۸R pY ,'.*7`L 98 L pݑRˈ}:Qgt:+Br|>zwRiy$#8d\z%8~&d8F`JzB2}8d)2@?b2()8 å0]Oo@nqtp, 3$ m`Y.@z!p#nε@97`OpsspBy7`Ls!G9QNtPKGV8 8sG >z]<,5J"]oEz$p %U?.6'7|0 '8cN4}{KWR|~cn?m aζ ?"n @\zpzXj L mg8spA8MÙ]z'PV3\l\Vpik!:QZN4}{Ve|~=N?bO@LPl@φ; h@ezXj[8Io@8R3G?\ @ڞ3GK7gk#ÙU@#Z3Gݏ^ @1g G]71S*).#Лht:Nӷ͵X.&`'ZZl+~d9NYR۲dp 2 #2 #2 bhvIENDB`espresso-5.1/Doc/images/fcc_bi.png0000644000175000017500000006566412341373034015210 0ustar mbambaPNG  IHDR)-d# oFFsMgCPR pHYs  ~ vpAg8Sxk>vNӟ?'|'@ B0inG^|KH_o~&9/rq@M80#oom !U}w}?/^pDf4@~'?IE dX 4d/_|82!P;dO>O>y9rW!fH?>ώa:0M84G?я~d. p!<r0 pi& x1|$hYZ&擑q1Mo???OLGȟ r0?oQ'ddX<\2.mIkH88O?av1_wj/#/( pi>o0Ms BHh\!|˗qDnZ %N0 :a@D !z2g OB0 !xUCN_qm gB0 BFC Ɵk>zd>B0@v9ŎW,@ `<֤ӁV(uN<b<)xn_9#DR.7O ^2nLl)R'<<8t@`,O李5^dX Nrq? bO])!s9;Cft/^xEK}>"g@ ?(KJhBڭ4&F4tW\2ȱ kW|`Zεg~21CH\{ Ax\:|Z] !Ǔ2 y틿 l9f ]->a"xn3|ZF@@8r?{"r\'TfϪ oE0h*Mjxz˂/Ŋ`0@`6&` _B0@#bZ #p6 b LB0@Su98( 3 0@hPH̕B0OHP!0@hr䕀B0WMD*&hUȚsWݻZr1 q9b9>a۸c*ߛ4 @݄`V@VɹWt,r6^h"lոk#UΊ`rl6~ vm:nRTیsm?];76\x:YA6{ᾛ~UJL\$Ʒ4}PkK7 s=D gB0dgsj~qum\ǏP.JCʛ];kAjHOqpkrm\GMmz?eȇPs2ڹ[mfӘu׷ضmI)*.C@zVml^<7ȈXj`56\bvjHV_\I 낟O`+*WR-{umyZXkIn[ĵj`jJrme_kH0k ڞE^6XvZrÏWu?>>Kw@¬R 7}ccy4%\_/, MOW!e.Jl3C4  P?qi88΅`7i5B0@&9pMâ0@n`"Jsaar#&u# br K(Y x4R6L#r0&4 2 p6!%9pM5Vb^N㏄.w O?]Oϓ%dR +w]pH~/Ca*=ϑ20!{gsRװ4 p[M5 OSU KW/fkk~_aص4<`ʊ`H?U!/Z5\W1IV eE0@$pkTix9>ƽ[[X5 Ί`Ik]_#WמY j  p 8i8|X  p x{J L(kCג}6Jm"PYC5Y=*!wgtq9(H OSǤqČb7-BOk~!Gc8"$'+4\m(ֆ`k~armjΧR Iضw_YK9wwww?}{{݋ӏ;'$!CwEP\{4>|xfԄ`G$`Lxa.˵`,/m Lqok(߿hDRp #sc"[058 h !/؇۷Cˆgǯ h u]q1#Ü"E۷/vdX6EX4DxV@:B0 K] $  Ւ!tpr0@ wwׇZǸ IsC![``?d@U$`ȁ  d   1G 0x0ĵm(Ĝ`m\D P0 Ju]'%k9$~B\#'t!C!}M`  C:@ r0P :v(ur0@ wwׇr\.6' RC!߹X ȧ>y3[&+nLIƜ\ّ!B̑Z@kVx;.Z Ȃ __&l3 p*Lc<⚮:9 .9Z$ 8 9q >9Rx0P<@ r0 &Bc['lICx`XK"Iy: V@a$`he⒃`r\l(*Cæ!PR߹X w?:e֤@$`r__fu06."8I뺮⒃`-') .r0@|r0sّel) !`Ȉ І!2' 2n׃  sf$` R>GeN0409 XZ1p Xf(D``sRm h cl8HLﯯ_q9p"I@8C!NKeN! ! PM)H{E>; !{MHr\.[ XEI6BER:v8mh$` .C!R>G&N  #q Gr0usH~B  @ݜ$F0ZP. @n` \N ` P⺿~Mfwt`JHNKN0p$ӁAOtN` 1>zO\B0\!Þ1." @#0pC!HGH9<9HoFkxޖ(r\.6M? $`@sC!Hsw.lÇoLy79I@$`gu0@\ȟ}%_gq9rHYBy``H@n r0@|r0qXO$`xR`9|TNr`(h]0r09p@O$` gB  S! R>G 5TErc(J`JH@) `s`s0Ik`̝X @ ) Pju} p I׬r^``RsNa$`\3/9 >9tS  >9` e1ָ@ r0q94'k0PC!h !9tP sC!8VO( + eq9`9^)], O|YPB@}`sC9yY+hP9 .9/mxj5i>2ӉC~; WV=@ vԷ:غf\."33{,ĨjE09 Or<-VĵX8Z`(y*\79 M 9Pﯯ_q9t6Nj"Q``p7%K@޽le `:0op4!!~5`P\g]DZ`΂iíI-{i+Ӂ 'nҝ9[?|urn@ˬ9Bԧ-xcEpEtMܚ_wBY M2h>f08Rr[ 0!~)h0PC!.gК6A+^ 6 dmޝ~ܚb#k*]MZk0Цu" B-0O\;}+< bXJu\. MnYNww?޼a O{B ˤʖZb(@&!k[XN q@{UP$׵ x.kվk~EaxBh t`\7ÇE<} t"oLU¯ A) ۤq\Wﺮ^ /{pf ́d8 "(E5*ꕗ4Bx.ֽGw[s3$X4 ;z: m\.ņ(|B%m`C!||kz\7 83L#{JzahC!ZJ %p=ܴxkuC/g00H7W.& U6ͭ~8^~CM_ λX\w  au0Z# [Xr9hܛǬGQs ǭR7"g.,0Dxpl~q@*ɋЎ xLb)ebg96"emu]?2@M&[3,ئ,?!P|B}W_ Oy ^@M^[p3!:C$V&9~7(xg m*5 {y2;PRۼ6,˜_;g^]^.`\E,= <9bl: b%w ʗ"/߂1 !{ kn3SH@Ir Z&ka(Pt 8`r,-HEռ!VD8CJd4D9w@EI׿aЮGĈsόӈ/s/mb!pB<}v0 (e(PW:qEg xyĸamg0Dvp8|V WN:C 9jęSC_z=vG 3u^l('t)/V[3Kܖ.|x?&s8RW9/r0($N%8F9x|"pq@D)`Q# jHd97D>J P"Y"PAsDcƖXw5D6w8@dP o%&Ӻ`# B8N[w_= )JO!߳S# |Lpˠ-NC$ڣ̡sr`"S~(EM 8x獀'KmȠrv '@@P ?&E&̙VU[daT뱓t,Xsy4}LrKs l総!Կ9:J!;^0C~F9bcDAȯEl+C$=n/r!2K&!esnK[o۷>y֞e*G{˼#z g+8S[JFJX~ _)<ު-gu%9~ȍxr#ϱ`rF@p49x y3";P mumX10%rp_!OiD  ͘$\DY"A{aC! rfEpwա^y $نVG!H~YZj9f;> }ׯ[l]0'fJ$bu0 B Iֱ^_jje{p|_|a;Ŋ<'+"ݶV򻿬k{{|O?+0C!Hmg9Iޏyk."w6C$jxtw_e|Z~xį4G΁aԡiǓsJ"rg3Du-x92k$-o[9\s4y~orpE03 =/M%|,s.4=G-mBiC·mNZfq98= x_낁yq͆@lp涿ucBΛ!s$[Wy<Cׅׯ M_}5|D  ,V0+qRpOami ]p$/A.̹jhs({"QG,oDyիW܂{Ik8bZ`B2Db 5/x'Ff6.'C$(ajMpO@8 eý}w8$;*oCۊ={WSL/5|4Dᛛ8'}iHxO-7cD|edr6@\Ob(Ff4}<ք[m-+p+3Ffޟr_M6\2wJ?oaU{-88]%jup֭D*y?%< F@pE)P@[nxig?;曾 @P`R6,k4`![~mLm8P&!C!p'` XoNq_Rho+Kƶ(|fYئ*q98L:ǯ"&c/Ex!٫@^yZ$`bY[T_C<{($_̑I-^$|mlf̞N>C$bl-p=څt`?,09(J!O.C$%`r^._爾YS'C$`-yq1n~bh)}{ 6߮5޼ 7=Y>b>{x:2Iq[Dxyk\_iu0[3D |JbC$`r?K{<ٗr N&u @<M"YV.3b\vKY`ӶDaY |bpP'b@9)1*ȝ! @B~!S|fǺΑ'F@ة [Fz#TC$J@+x]0Z֓y6Hky0;SF@wAP?9"a(Dn^2Dr/b8I4M>9{_="ᘁHgx:D"9r8`+  [>pgx~Te-ps߿`r3 iqo!{8;o v?BXOs/q`]0ȼ;iYvn!5p;55ChV(C Hz?<Zgj~)Ə9a udl.n0~}}_^7,a>A=}蔰J%Q*eB0#0.6O3kiBX.)^Dꕧ`( ̚O[# 9:jn6HKq@0w9VMI8hKm(s뺯h]0@R5 e9͛OMr0 Lf(I<=:xoi r0G u]g]pY,bF͑!Gڋȝ%}%#\!sPJ׬ bA$`H[)5iӏ`rccv0!1r!rt]ـ|h2 @$`89%gP'lNހyr0GgjUǫ x҄IpcrpCn2e<+ȅ M6ș r_n2vg_ >-<|ij!J+ _}eOze@$`nhH$% Gsu<ۄ x/\8,~p OP r?ܱ_(Sɍ{Mx{Rt$`xq3a1gr0͑Ӷ|s7]uh=$` |ß_~y=jGfĹH.soy"4~}w?=|{ʑ[connnjq3[k.R툡 cOY\nJST! . "rcD!ϙ#q?s]\pBDH4FWc 5rw1%.8$nKsjOm˸uPBʒg&/0U|]ur0uX"u)wn]03tlYs/ $`\%K~ 8뽒{p캮 >W\cEs7aw?/ 0Pilv0Vޔ"Z/W#49<[xN:^yj0Pr8D9l-0m\."wl0؅8A2/3$`V3X9X~&s(a(S\8w%׺{ aHAaYZ0Ђ8. M{ְ؅HoM`C!` f<9NG/B.N]s_8.յﰶqϱ؎t+/#0вq;d8ZtwP+ġ?5XKN]; C N%`Zf?Lt]p>Bx <8dK/Bc0Ա9D`spu x+ۀԼB$`ex։5꺮ozVژv5G>rD\5bVCɠ q3vJ< A֎ض8 ˌIH\͛|L? 9qv/<ΎB2)ؽ/O:bxVD6C ˑwm Fͯ^950@\CQ|Ӌ >G icWI ڞ-~2Mքf̀6iw(TqcxoW\^\J aE0bM[xĩ/1w W_QV0@\7Ӌ > ,V wAv0+5^A֢nmCc"$`61:akeEsa s=M?6s~up?ӽjE1BO>y3L|}sؓkb[^{_K>z]ڵs{d"Xfɼkoml-_ \C% S eCxoq77xsu]77bz;|ss G" k."֞ZԲ?i{kDo-p7CCnn:0b.8ָ 'N)֚f5iRէ\= 8W ~ᵐ<e/"wY2ӿtڬm!s=߿t"uA躮{4;ҡ105GG+tA8isILYe m )mxuX+'|1Jmfqg)/'X뫃K\mE8؞e 6l[[eͭR4l0g0 v9 /yZ5p|ܶ.C u^ u?qm QCpGnp4L$`B൦&'k[0^SjضFxWycZCu$Ĵ5%A.MZrlo%`bX?W&/s;~|Nv麛~|[Қ_7y.._X[= ˠ#k? Ȟ{Gmd0G&ź` <:;:O@;|sss}"I`V[GNS?a|syvcyYi/_|'|' L?>w;V d -ߵNIA&!/qD9kz;u7iA޿l =Kgoto!-@= k/k4\5׹,~L;=BMWկ~w}wӟ.%>o"f9 ߀ȅZY׍K;Ͷ=^Yz\ԡm 1\&nӍMxmgi8^FGC=p ޑ9Oȼ`[k^Y9m!{E|n_k꼘̑{ϵ`"O.[no:>-?spm4/d_&< b-$`c-0녾vH)W;z4Euo5%k~kr֢pkãoV"^jx.6s?4̜CZI璀9W /qy_s7]+x#ţʳXD_׳[^!:O/qi,C$ZGs ğ}g}6cߍ|駟~x H uˤ( LD77{,' sܐu)Vk=<i|u;;x|{z-KDxLp s!xZ^ ,?_qȾC&Dvg?~_׿h:b<" %s<1+7/rp>{c"ҥ\/_Ǔ4o~捭A=rx^>'(e(5)$7g*G/~_ o?Ͽ_ "YLަ1Q>ok~^>\U#|L-a-4xΖ 7R$Ú `?z7$/Aݿo;hL}`VOV0Gz瘵"]{0]<gee~R/%yH[qF \=#ytBVY KFݽoތ?>- G&BjlzϟϾOLG7m'AF u,{ְI59.Z6kυ붼OB3 .4|6L}{3 y.0ǚ{~7 y1k~IG@ȺrIòy6'=tJA>݋_~)2jrPk~8 +)ɸVO֖436.Yx+ wӏ܄&`p糦 A h͐Ԗ.bʲ˟yc|!Rf)R`JtV SO3z/q ] (X?xymmG{c` =0튛kǦGgr)Ϯ/) ,#.9Gim{vjoǹ<~5)x#si=~N׿~u?{4n`RﱆB`Xa.[lm%ٿ ǐ/5&߹g[{޼im+kb9kk>cRzwh㆛aY;V1C[1:aגX''a@:,bpDRQr~e q-?H7Գi A0e@ p΄`"ZO;!mNoyZm_ ̑BpZۄͅ`"xCVupV'd]0D Y{OHԤM4\ 낙c( xk?iGl9DXkxs^ s}k h%e~Bi<\+noKYck-00r3 >mF|m1MΎu!ˉ@$`j?ZL 4YL rc! Ӏ c"߶)yEΔO8# K SDP+X&C 0lc]G Â0Ӂ4,ERswa!1%ry>oV&~\ƒ{ k 9X^&À뺯5"8##7( )ۤqsS!ׂu`Epa\8Ԭȍ \X\8.Pt"@`-d]0r0@J0Py @kY?KԄ``ܺ  08\ r.90P낭ëF/p!`^<8r` `q'˿c@\D . tP Bp xr0~0ЦBf][;p!HFH^Yrw# {"gI@7F"I@MK ..G)o MPa]A><]>䏮뺷om%50Pn;mG^q^:υZ DX6Eŀvzp.xHoKX M gu]u_mˤ׆B1u` ZIȺ#IY` !ӁvH@΄y/`낁:HeɺBEF#,%W :HΫ@kYL`\0u3 "64ȏ\) E>^!7`r&huqY@&璀- #W;hn]@'k}\ gBpC  p Dg!Z^l(Y$`Z.C!\ ͱ.R$`c]pVr M&I@ ~Oȍ\UR9HAW@J'ŐX$` VyR !@{8$7̀ܫ` 3 \BpC'IM``LmJ.3(uLIus,r&[@$`1!9ޟV."<%`X˫甡@`~`@ue0ɀ1 E`h y=(#S9Z Z[l(P.!i9j%K 납 5 7- ( C%V 8@`{IC`ș hEZP Jڀ˪ Y@$`YņB%yuE O0u΋:r0dDwj <2bOZ ù$`(ktk'<"$` OL's_r9!@yv Kf" CǑ u0  B0 sr0l#@jz7j9bMu X ( d9$`s <{0"r )PVB0A`!c@ L/{0% !] 9|'@ &u0G r ! L$``R[D8Lk{ P^B0ͽ#j]0 ? @&2/0 ĒC!l(`9CY$``܏ j'H!Q: Hu1`!S" hO@`!L)$` A&29BLZpj:0!$`! 8FBu4Gvm{[ۇ#@ {ŸGV@yǻxEB͊`::s1 H# C!6 Ly9$`@mp@ `*@0dx73%`B J&h #C! /@l]0HP#V3 )!ӸOM~IR9 !`Zl(L`!NJ( !Bf >vm9) F&;r0!V2 @ۄ`2%òu9%0PG/"B0EB9 hGBm˳ L$`l+L<1@r0pvHo\."L1&hLa\DB387wk^0@;`$C90o< L`!KVŝ< s #C!`'C9,0@" TB=R Xc|4x 92`L`̭ ~x瑀G`C!B0UY~a FƏTH9cHk# LZ~BY$` oxm{ TE |$ <u~&` C985 -G2gxޭ_vqRalm뺷om-Sg{r[HO[`̊`cu0:8 8h w~L"VCo7 (@QuLYLӬ=޶e$`=$`m`%`y5$`=$`=`xpALHGO)    k ."'V7~YHKK 0@:0@ FC c"`lZKH 9B%`t$`Ԅ`"CZs  p !Vas  p$!VaK0@:0`LA9XHG8 -0Xґ%.r0"r0@:0@` 3KH!`    7B0D&Css  '!!9XHGș ,#O`cґJ!`̭ ~x0@:0@Y`8a X9XHG( !r^&#K8<k/"'#NӸ0@:0@n=eCԓi -'C`pP> `C@Zf]0P m`h=ߺ`40{9J$ ͑i@$`bQr0L .!&RH `Zϭ   ``59 !L=ـ`= < Fˇr0e.O gB0Lݬ BHO"phK ֒( D"rʺ``J,B0 @$`J$Iˀ` @` !9-( $'S" @` r0u.!P!Ȃ @>$`#Z>h܀*JVB0p9\;9%P7!8iJqP7 \DrpNB09Y 5h dDD@Y$`$ّHAeB0)9<%@$>i@G dm\,@$`º`ȁ SB0P ƺ`ȍ s`0."G IL$0  L&DY$`'œɓ k @%`e]0Cm`*r0.b`!h P"  - 37 ^H TK&/N_90%s\8 !hȑe0# 9uNԄ`9r0.$`8 4J8 Gf@LIpI`Z @`GuF|W̑ >0F%%@`ge@ gB0@9 \0OXA& VIǺ`J!@Y``n0Hh$G&܀y\B0.r0\;HP:! '?qL:Ѹqp璀&B0@dr0X @>$` L,p$ j%$$nB0@rr0 x0@8D  3f]0I!P˧Ur0ˬ `? $@'@˄`8b܀o 's9vS00 3DžFƄ`s8H 9)!s`L. ,&$`  P095D0&`, XK(:L cj0s  !Iƺ`vH~B0@`Bb'@}$` .!rp  Te90 D0έ ކUu[ 0 P9xL.܊o9 g0p6@iRi⑀#Y 4s}]~ȇ ϊ`Y5܊!4w&g"gX5\"ȍ K`5i8. ȁ @p 8 C i8Erbq$2tIdE0'س^x 3 03!,H O Sp\ (4uqI@Y^2ֶH@*{V J C&&ӓ4|}UH@9V pЎ-〮9ΧR\6 M\3),B0\B.X\s(DB0/ [ krN qɵkɵ{X єjzjxh OV@4Lipr-@kCj؅8\α:pҰ W,k WB0d4l]pp{h 8& [\cT\.or=ȓPXK!چsP=ixj[k9*!{~gB04-|8GLÎC!Ұcr9 nB0@` *'TN P9!rB0@` *'TN P9!rB0@` *'TN P09\|?IENDB`espresso-5.1/Doc/images/ofc_8.png0000644000175000017500000004141012341373034014760 0ustar mbambaPNG  IHDR: oFFsBg pHYs  ~ vpAg8SxBIDATxݿn$ǽ6ja|/θ|"Kb<15!90 ؖꮪ<,s!o\.r + pppppppppppppppppppppnF %\PG?я%\P>>sp@~'?qk >?g?~#rZ៟{m&WlW}w}իW@>裏>_2~/%\p@fVC!O>O58ظ8++8͛7o޼&c8i۲ߌ8>B`W4lb1D+ rFj/-3ħ{[}4hWdl|~??Oӟ~駟~0*yUa W_׿oo_ fbqM WfHb0Ui`L0seW Z_]F g-GqJwX_hL0sso 2W V[ g9V ]L\ro.\ {NնrjiPp`  ͛7o޼߃ Wf.ތW^ *bF\ x&Wdjyr5Ek{[*088\Wpz$p>!\p[ qu(pjs*wm~5S%H,<*̽4\]yn $\ k̟bϱ{!@L(xr5 WOr⃍ BMˁ:2u.X(B Tc*(䑗w.VE`W=W8&b@+v8ZbK}zsy8Ojd@.Oӏk̽ q.G1X&Wjm-pޟ=@`W!\*=#\p5]w4]sUj @i+lZ{C2Iw8i峡 CU+V#35WokڠW^m>{?cxLWmh{[M 0 ,=4̯ZWG`54\ysBjuņDY3s!j9gV_8>❝hZ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@^/qU&W \pն)4 Wʢ@VfVBgf%V T5W$gfE]bnkG`3+R3W5j[{q|qRky [i/*{Fݬeys'֘ 1 #H %Vao@$?<_zU `S;Yѧ3pQZ Wl2g %\l0wiXݿ \.0ybܸdfNڟnhU׎C{Yk/e ~ Pp稆a5MA+:zA_:V].~xN#?K?KO4~#r[>B^C?M ۢݝsϟ?۷ww[YKG//0s\'\ѬJb~XROW_W16QuĠ_0bO1U|yǤyc:fV*R[J_9XXB9жP"jqPr90GP*:VX2pE*J3<*.bզ__Ƅ+Wc;KRjvZ5o:(э](<-}0NHYnyc罩|ǰpaӰϯ¯wFոoyk'ךqs:8 sܘ9;EcO RŰ}a餭#^.F|ީRIy/_"f5zB +Gr;@Jzl_6w=Rr[9Z cRKJz'\Q(\Hq*m{䱺.4N^ZR_9zo\yc~5mjanuG&ZO߭GH1bs4+OnW{;͚E,Z䦌̪ sO/ʹP3z}zNzpry2fr=sWGQF umy.H:"J]?#}\"OWG-"):bhdׁ9kp<䊣OVmiqN{sչMJm{{q\ኣOA@v5D뿙弅ϲ^7+RK矏?Z]huwD5?%K!u_Nʁ䊣O&W ê0|~)m Wʁ\/U 0lkk~[W(_@› b~-׿ݻ6>ӎUВW:p4V hpXuWas hpE\&B/_QWj'\pVipE) ]~mbjB9z Wp3hW6Z"\q(@`H+vb_WkrFQp_╼Um(r 58V4ܭ>Oi(R~kUWf&u1(VWBH@" r eHj+`iXʁEb#ۯCjw \ ф+QJ+VR{zFH@ LW[~gIY7I"V@9p @i!`-Rq >+XmᬶYmz\p F)/ ׇV[@ 9(pF0@ [k%\4@"\B P'@x gu Vi)'ռHA8xV[H~!ንjԻ1"'Y;: 0@j+@p@IK"B P3@r]gu ׏ʇT+XmᬶYmغ! .)pE)OۯCjw5x>}q_?+rW5@}IC@ ?(\.`-+~g lijz !-Y^n ׁxV[I9+xFm+fXmᩭc~E ۯ V[lXm*@PHa׏:~UX&\pi(rp%@tWlijz#\u gU˔yN4:c@ @L WͲ:}Α~_ʁ<p3m{&\uC! qWWMr~gu` \uA ~gnvI(ʁ XmpW)xV[1f!•'9xV[q:)Kt!\5 PdPτ+OltB O!)G{ \5J!8:D}.:j+Qp wJ V@<xۄ+閷UXmG*6++ۯ񦫭F9Ud! @}t9|qz`~Sgݍ8*cj+SlpHjpjm62_p_~\[$\ \UN!6G~:A9-UpV["77k'\n_BV@+#*`ugU}JĢ_XʁYmU"7(CP@-0\.ѨUO*au6S+OϏt^7pU<@e@%bP+ F@<+ƒ WE YmijڊIzWP2 W mzWE{9_MW[)R WP%WER9ͦ Ws~guZX*8I@8xV[Q;7!\@5܈/pUXQlᦫnooo߽sdJƬl߾R4lNۆkr\\Ur3q! MO_ @[LRx>&W zK ~ ҳ:py, N@)IF}, x*;XgJ,`>B8ᵑgVvWvg@N>SMUz9_MW[)3 W4b/fRL~b ׮r8+X=X|hB ˔0JƎ+=r됊r`*&WYmᬶYmϔ*5 *E.,'B ̙}Α~) \s3awj?U [ T{r3-*d֗_됋r` *1LW[~9"ᬶ6&W5TL `|v7mL6 M kYmsŻpq*ڊGfVlgN#\#vJZxj+C!NJ~A!>+[+h N90p唂,lij p^bj+8a2  8AZUr`*t*ۯ񦫭ʁs+`B8j@z@<ۯC-\'O WB8xV[A)D/`ʁ󄫕GʁcՊ0LW[޾{sN9 :z RpL!QWNbu ס.ʁs'ۯ񬶂QWjSU`r#ۯC8x_\db-(bLZW-) W&Gs߳G_yu-\W=̙RYmu?]9 W@2}V[@ʁ•ViZ)Q2iVЪr`+j^bynP? X)&\MXm[\:\M3B ̱:oJ! Hϡp5pКʁ+ۯC8ۯl ھ7Vj+ V3k~- Jdr`w='-:w>\)+vllij:0Tlw~j+gj+m\i_q v9peu7]mu{{{#:V+@nFwKW]+@RU}kx::@گ޻\)8A8ۯwenpVʁ+l WV[A8( w}ij+gj+`ˁ\ũ`k P=j_u1R9V @<@Oj@*v W_p_Ym죖'WV[A8xV[꽆 (RmÕVЊˁV9_Q(tB Vj@)6E%W_p_~S]'WV[A8xV[{hP2kͅ+-OݴW+ۯC8ۯlL-Ri•B r`M_JVN:hdre gp*T^9pe@ݦ Xr`en;GR ^buLe@舛@kJ*VGǖ W_=~(_i'W N0g@> :~}o =<;^&?Op5|]ZC`{Giɕg{ tACnvDʾdy*|T|IiUÿ\9nѨ8 +k/Iʴϙ9~\HMgׯ_ Tӏ^?HoqkOWή=VsKk{~'gs!U[gx޿2=gsX2\ڠ5IF{+ۯCjwҜ]Z^I/tK]Gmyl T>O?tnwEjǏ\#@({>wSXLY=; ]כ~~!OC`?7nܪwJ! wV%ځi},or?mx𝮗㼚V7o޼yf\\n?xvܪk Y:@[Go MvKoNbfS%H]pm0:sxa_o22N`t+r#⢪o9fS-1 qR k}ct7QOF}lj+Tw7-[Kpei7%X-ڪfSmړerᬶ:z$KMyǬ2mtIRmR}puh2q$ک fŲē+o~>#er+ٔP xA(>2m13uV[ +@/U=6Itx;2cLg'D~TJxV[ClrCZCY[\GtV[ڞ~sՌ:(5l ri8*[mEힿioȖ T$JA~۝m5Ra6H**ұ1:PV_W ey~5XVXoDZj"\~OGͬl혭|~=Pɕ ) hؚܫM=۸~ MA-ܽ;[Ku.kv8MA~},ˆ(1"V/uzſoX$J5 OǮØJ~ݻkק)C޶_WM 45`~:կ֛F{j1Tl c+Ր/WP9b:bTslIkuf58M.;>*bX mhcu5?O ݣ^dꈥ YaF|l>~y. TW[MK(Vr`2.>#i.&;{Cl Xcj1-1Ryc`Oߧ\7.aͦopRQ MLί#Pp>+3hFsZѡ>lgmx#om:"xD =*`l Hr`IU\~:+[vfSzY U-*pˈaigM"Y{N܁~]؇Z`jakرmX㐧{#Wd Wʁ(v8"6l깳7YNfS@ Ur +a֛7 ((ԢVT?p̶V[Mo1<7~̭X5W_ TK#>U/tsGy =bP_K/\ UPfV?rZJɰg UsOLa!O?G},?gP2AؗgG*qlqlyOsWS953ÿϴ?s!a{iosiM@P*_90f=qF=9>3#h4|<dNo")+B8sϯvpʁm8 \g @{̬p_=\ŔivΔv@ ;joq4`vi;(,U8j噕@j\6Zė%LT%8)^jyPxrȜdy8eQljky:g(*\B~}Y}j1(9V=KoOV 9;YPqJu!^3-Wsk ~#%L~}_ﰟߣr F-̬mlbp{ȥxH/qi)$,fǧ(eIҲjjZ`̻]- USšc.ZP\m;ႾsrQc(fV@ /ued%og(j~3~=aZ+ISes g+3+=U[6[2M>Q.sxxpdpicS\%`>*Jo5ij?m(:xC| kkqL onit?̈O*uW =Wr F-{U@ ݊=}=):4u.EL/̬*L95C9Ю@ZV[mu-L@P 7"4DH?p1̬UP*JcҲ@`a~L /*O@L@[|uiR(KwJ?\`N[%Ve(ZL-W&[9nb)qj'VAKlUƗi r{l^o.ʹm( sZ\U)~L‡}xpdpl͕sb))zreIo9qB~=/jʁC97%فpsU+=bPZF~ӝ2%s ,UM0P[  1@<*FJ9B`Մ+><өh~EK}~=•_9l -ʁZʁk$\)@ ׉WeROn")WשBϯ r W8\_'7xʁsUDNjP4@ r 0Ǹ"ÕDp%m'|S_O-*xʁE͆+@a~J#JOʁZW4^ 4%ʁZV[ɚ+@9:OSʉBrbrHKu`2On"gkɹYsU>zxpdpʁiui6\z'7xʁ³GP ).\xw)BW@<@h׏iRWW:}R2u-(@l^k(BQrz'@`-@mLir K!h݅++&O9}n~ &WЍpir : WFM r |zILYWʁʁP#c Wϸluw)L\AlnSXmU&jd_A9tJ \9r 2j-Q6(L(±!\9)r r ʁD9 +&O9xYmU6 8NÃcS F >-QA=&O9R,p>RP}LoI:,w)}k6)B>_pq̯  WN_B9X @` 6RʁcWAI9XK9p(V0mau(k)BZnBJ@9(l#\}r$\W\_=<82@8@X2>~W@lnSZ%\lnS_op3ezR5r  xr @* @V[DJ@9>)k)Bז22%ʁ˄dcmB`++ r r -'7k'\z)s>Sj'\]_=<82@8@zfV W?96W-xʁ@+`#[B`])@+Z>m.*#Oe~A( (@@Z;m:*;@Ho\%G:-QvlH;['\)k)ۯC*Rz&\] &O9(p$v}~i{#\]zLm<`'6)%,lnS = !̯,u]0ʁI9X6pdC*!2P3f@L~W2%ʁ@"((k)R2*yBvRo+O?8@<@GH&\U}}M4$\S>K`s r Pʁ7ۯH*r }R24z&\QZ"\UF9B(@ WE3VOʁZʁL W<^ʁ@ ({B)k)ۯ3Gj S^zF +OZ(@<@`PGF:˄x'[܄+86)!̯~~WUROʁZWz) (r P)ʁB9Aa4}RR$V~ )P7#\yz@+JʁZʁlHYʁD9M4X&\5S>SRj\_=<82@8@ qeuHlnSd,BW@elnSr!̯xzUr S_'pTI9(p@l#\5>)k)2:_@qyQm+AʁZʁN :HKauR>S W@#ϯ r C@lNZUG铛@<~^"p4E9l#\>1jB W1O Xmn.p4;_7B9#\uʽۯp3WD9n:p5/%r 0%\QRBW\HKXmEnʁtM r`\pt)˄+fF!+~`,ND);zjʇ+#ʁ@<@`p Wp3F;_I㝯xʁr+|+(@@p'@`-:(̯hr @l+fymO3ʁZʁ@b5@Zۯs('7xʁp=>+Ã#S+6r_(B GbND)}mq+(gQW w()pw)Ma'\r P W>}R2W$c~EKja QU GVPR~W$HKJHi+'7xʁ92X ϯ r @" pEFM rf(qWd>06W$}WP< cڋq{rWd!v{D̯=;1%ʁ: Q zW(k)BK+vHKHل+22On"?<_@Gm8G";{&O9EH@9M[J&\qhpNgO {9P!zWx+ rH`ʁP>]D̯FE0%ʁ1lN+`~Yt@-+(k)B]+ HK71On"Z-ZmE+ϯ \@bpEqFsG>kḦ́+xm~Fr_W)䝯x}0I؉wW:-(r hi~B+ Ŕ>)kWP2 _@) _6umN{+"(k)Bi^;bdEVZrcJ'MG(pgU /{RjgrEG§.mÃ#ʁW* \Qڴs&0HxN cr rtWCWA'ơ>`ZӈUZr-JK/L WZH ;6 İ wͯC%jpP@ ^@ۯ+8:"9hpPGr V|5)b1 ?5y^W)uD_͆@Hk.v*kExrILRjv6%V6+PNJ`gJ涵6`pT:wm+n[1ڒSGHl b\y./~gZg>R,дn[M_e5@<ͥvS߿u@R,Аaf駟~n!@@rbu ]@kXij.v}q|TXQ-]}#iI@imOj=bFu[Y?7o~_׿r|ݴ[bSRs6߰~ݚ=[oј5̚][J!$ObSc?j,c*hҩwu iKXO8b3 4dzA08bϲӟ?:]@CNcOG;;? X cspWl?Ŷ1XG .}'aƎ-(ubl%ӈ2T!P+b"Ma``U)o70Ц ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) wkNi?>>>>SZa#xpt:v{WT, džNP) x"w HIIͨXS`#Y(;u:Jlf'sxI] -w饑bcb I?3_֒zGQҝ<|>z^9sޣ,ytԿjXk%@>.SbcH:a{b`tx|ZSc)vϜ7) -Lsh;?67yO/[lo?r{9=>XUGxFեtiƍzϯ]ꝳ1Ϯ;wö{?h;˯iuur:|ܯOtL|.ymwJ]sekI$@u< /8vݎgi߄/I$Шc+uw>y- :R,Mv ۏU'e؝6vYw pKu92S p,)jɯehg[z9~uCǖ^ITځnj9ⱟq s5}ZgX f:1;I\>s ZnY @a״G@slsJd_wW`p̽=֑h2|-;w\u`pbL_o[A9&S iTfkoX.*)~ݝ Yuor.{'Li#}eTݮ˯#l_GؗOP SkLð%9J8 R|ӯs? Y)%9oeb86,6wHL~mt-%.}.//w/9 hX6Y^;FoG?ZY;1! G`1sk:>O#?zz{dxp,k-m^h2m@l9ֱ,5R+ ڙ`_?|xy? wwgɡ0! Ng^)CB*/ljM%Pik;rDñ$Ȏ__ c3GcϥgR:(YYT,@s 髼>3;=:96_\Lur^d'2VQ}G'MΖ.y >⑔_SI@X ɯ Y"sigO_7^8‚,P2)+ogCh9uZ=f1Sz1d2IE^Yj,v5ځ|j3Ik F(wq[*4Eyq+ƽ@9Xba!M~MD=SZDJ w%~ĉccu!_* @|R,@hS~K6zvzK{^ J۪qAl/ʯdȤXR|>swȑLi_^y;gvm覎AIwү+.c9}?sތN~mdHXpDn^w"؅vʯ<Y ) So Iia욟Axey"GbBaIkK>.di;`w)dHar^|larRoY A8X/)՜ԻEԻ_^M'@%aby;Rk ( !, R7[b9Rj8Y` 0ӧ{ EH/n-R,J",%Ȭ)Y>bF K;Z{q&D)L,Бbna:jA&<#2)g",hgMudMR,KCaeq;Lg -bM=ɹw|hAo bFMGX 5GHψXS@[g b Kl( bgK, P)h P:ش{ P ) P7@:H@DXKm$@XBSOE<[b8LQZ @9X*xO~ҴP")h e(3 ,F*a3,ιJ$@)Xx",]ƚZ&@|R,P0]ĭ=ܾ^ I#@LR,Pi@GhXSO%vx)^ߜPH@#=9l5fcaHcI@DX GH@h60`FH@P",cK,YSYؓ #BZN8sO;,'UZ&@nR, o]ԾZYS  la;8\^ƃ#ARbeXv iIa7>k `ARb @nS uJmX`W",2 [ D|l`O,#ى?[b^YXB2aɚHEX { q-d5R,@  ӤX ",gKRGKߚHM1R,Ͱ@YU#'sR, h8o~ -AX`bKl*GM@n,tX`%%p?G^Y&l,CeR,C{9Y$۱@Y&D& DfZJ ¾acMOR, a!>o/XGAI(= Mnah5p,AZI3",DfK,>^7Y"?aDnwq4d L>w|Z AR,0!/@rnZ?̘C @ɤXhR1"%6sXF\R,4fX(-LDR,4G1 @9Xh XS B&0G(+ atް dLjM=ܼw|\ް bMB &)s7Hk @$R,Thj) @KYb*6BMl) D B%DXh-9\{ ܓBmhAHP<`X( QX( -dс®",TmlKpu|>ޑI|u=_ -SPW 1YSu0! >X_ dIbL-%a A|X(Ͱ5PAXM֌a{ah. A@vYRb!JdMM`;)a ZR,0 u0 -dXG%vGYb`SK DXWdO p,/z5A9Nza-@Yח|{GZ5~7baW",0 2! )v"@k) Iԃ{U`HO#LYY؛ |2] X"rR <ݣ<S.zk/,6z ]P:k icu3 y{.mlvg fc>m2 Ɉ-^@mLFDX`)[bYK-rGh @*z]b(η/t!AR,4`( xT,!MŦ#Ӄ'mb!ǖh=e}ןޞ ɖm֋\^r%=>>>>>:G1KUDX&fcjb*J*)ώEw.1T,a:h-%RD a5: )"MGX%@4ް oJ*",K]{ Z`MQX c3,ȯwZS,gM@J!BnPK붵n_#`KlY]Z%׿^nUa*Ц:-{ aML 5F|T [Sp>h=.Hc?S%B dv쫈@|ؓK8ShS֖X`O DR,LGX[&U5u Dꫯ I@:&O6YSfM>XB蛞'd:똍8DX`_tR,a-ƚ`M@nR,aJ\V`ؓ5:OeW",I>GR,Y\p $] &bYɯ=֦Z=}p>`;)ߵѠ3ܚ`9k rbYk@)̫2m_YJWǚv>6 x>KG۸:ܻck kKl}\˨U.@9̷nMGƜo5u[rKp^wF1T,'JϦ*Pr_k]5똊ewv [Sp>8TlXmLŲnMȖXDC}c+ZSt-ߞXʂYʵ@L{)j-bnM_Z{ =* )>juSD+tC<4)ro1 S"rw?K"/D`M5[Hb?,so?|KskYs5 l,R,䘇`Sy^jb6`OR,7kMq^޶w=)XGgÚ J =֯{)\/-Śin"t* Rlya5 4aVKjNq~Jk g.ݪ cLŒ}v5cw=Se H뫯)x ZS9S{Xw>wȘf汦`۴cab%~1Up ?vb<`[x'LyiOZS?)QZSܲw5[R@ YlaRXXÜa*=*tmMӳOk 4>Sͱ`-6ސ>X }R,퇵<,I;۟}A 7A;JL?NuAqx+G`HmQѾZvq4laҰ laQ@Gm=_ila?~}Ax1Rl5ZSvEZ.N eMsRlJdvhP퓰,b&@v -jz5, ;cACmHyXlj -b+TX`O%'̂,gM@Ӧ?*,0l,&)*uܙ sa|EAO\MYӚ -[brʼns XSБb+Q/wgK,_;;d!k HP~CHb7*bSֵѠDqao,ɚ)Ь) K 4k vHkm oE=&a|ς,l,2)"YS Zvq4;dHEjmcF9? -hK5i!Yh5@ -@L-,b) `K,p[@"Y5@XeM`K,6A`MP+)69Vi1 P+@XXLObf67k <( 岦KU$lcK,t5 5({{%G-d!2@MX -l E=yI V,ΚDR, 1 -%=/ v,šRϖX`)5,)j R"lY(5@Y؝Ú=Fk X"² qJ$fa@laIE֑bi%aA)"b3 ߀!7AeMP)KfX#)J!&`J䞺>",qX )Fy @hK%&Ab71[k ,", k X&Ca RAbMyXhaoP.Ar3 D& @La) mb3[NV)"b(-&a 9XS$&`V@)l@H uIKkYzXR&] DXZ&B*Hx [bhDDDXd!'H+u*xd&R+VFǓC _~Qg [XS!.IK{hDXs肬, K'Ŏr ͰC1^v"bpÍ5poaa Aֳ8{yX:;D \","v wls^}uRA~ݗ_;V=z\׎ 'Sx59)DẌ́,g*ayzy.h-ޟN߮ιu\/ažL:`㣣c*gaYK8-|}yXDŽ,L{^QaLa!uM!CZ@nRZfJfGfXA8D7泦%}\{4SxY_)<,Kp,[bY[a~da!>A |L>#@; #BYYs5.Ҳ\Gc)%K-IRb un2$A12-bk>ͥX@|ް "aD,x /`bM8 vA|",}-dZ80R X%a,) @ZMOJi`6A6YSD*@)lhDXh UHѩX8QDX`ε^؋nQyGr[AXSTFW0K4A6ź(-qYZ`ȡX7llaK, ;$cYZaM%6 SyX"ex-Ͱ,f&b2`̹]RduN=cҦR) AhXl5hU>kg7|.[b!MFhܞW/}X*X",'AXSc1VTD(z: )#XEOnɋuiDGX>Y,/.hU8+$n׸OC'R:k ۜ-[&aMvw@]j ]Pf3,Sw+~? DgxO[T5k@3! P"vj߶ "DX,,%zuJ~ kÐ-DR@Y N+ˮSp5 P[bK?ׁ̯~( KY҂ǁdpAXJ:WMa~x(bNu?GLήX؉5a6a!#ǬY%Eт-:R|ҙi5Ē8'y<3K v{PAȞv4(XQGӈ_+fv*zRKZ],wƒͰ3Ӷg}m!GحM|hMw~?ܾ||>c:kfֱ!Zҭm2'Qj~5"R)–=[zt|>{aR=굾WUSb]KBݟ?%vEأnқ&dYgi ,Wa*V> e{ ]m[3rDѶFN:&dc0¾dn9a븮5+^-b8@ֽV{h<š%ږȏdU-iierWe8Ӻ.tNX9SͷLXk 5 rɘ[z~6I7Ae9"91GSt_n=c ~ߖ< ~՝to_=7v3cMG޲1J5-[(Տ%N[bݶ\:&Ϗ E[3MSGdkyƲcNMP:uӁ}HeSwZSP7g[w^kljJ;"!MZSkP'a)YIg_?",-}7Zl$ma#IPw&Wy5K))h[OM  ˎ D6}g}vw=c͛7oy+0k-8 LdOJ@)(MD|ec%GfXغc:rX6OLx:vzv'sO?S;13{vx)֚b^A`-kPI3vA%Y6k J4bNßZM{ nkA>Ʀ=r O֍NkA7z덼݋~wa0{V/`{튅)hA^'5ؿĹiyBz[uKAǾ؛8ufsCS]wn36b)tMAĦ3ŘuxN KgkX:V"Qբ/bO:eO#bvlBXh3͓JaMA}gYj-%_}Vyw˂kXPsԷ@~]7[?Ϸ|oKG7=se6v{_WmM R k yQ:k VO S!To(~,;~~nB f?>4ٺ EꦱƖklvoN`K~0FsfXdש#sp ,9Gro;c)vzmeWկ~o~?`M4R3˟44ƾ:}~ؗ @ +.↓%HR h9R2I7x$bn9[:om^W.]yrYsۙ(b+}vf<*$Fj!9`;dm}<,I'Ŏ^ts9[mk xI8La9Y518a;) e჉.o1Blks&yf) K?yX^#fMN9oE:s"z&ǵ@ ;yX88 k (yأl*%C[z ",9k.a#{j6͖ [=P< 'b\D!<,P)v%k |>?|:/VRsn-*?#HXe(X(̜-뢪ҧz:7SS/$®#ɦǞKs%Ka2I XS@co%:+t;g`-w>%O1RREXOb4a~XRb pMKe93F]./ϷW-5wOZSae>ٴ7Ԫ}QJfW7bƒϜOY6bsz"`w? zEXObԖslc3lL5b8)OLq3'E~%|JLsY0g 3WiEdcAvy+²'6Aa DdM{c[b_~O+,Kϊ.֚S= ![O# GM[xqaJ[(QW"=}=r4'W۷_ݵę˯ASdgaG-@-MƒۖSrdoc;cez߸l[I lyk/{هyXVR,l:Y\0eaa#3Qrw(3m,'oolyXreJq̙ؿ]S|s>>w:̱!\ځᄣ7b¶ ;vKҘrVK m:šO)V!]t0Uosn}ۺ 6}oȦj_-%X"l\aINõjJ}u>ؙ?,<,9 [ aHj}-ۿb?_9ZGY(ͰE-yX^Rl2^c>m?Y~ž׿/Gk ǭ Ӝee1 Cl,Z[?'vN=ݟt7D4Y(Wraf !N1J\cuM\.wwOLOe DaH ~b؞톟agj=*:!-A⛟YYr;_@؝XSR`8z hCY(Em7yXMR,L?ODA6mݞ_\.S;d!j6-DؒZ"f!ٰE P~juX8 ɩqVeͰh+k p><&%6jZ}xG 1\-+`>tOσb3tXw;3G7rcMdalLG@;X8@Ð1U|\s$>u ؒM-+`[R)`yal˯y+,ifW1D-yX>)v'^c<,@,LjZ-bfRҥL1=D ac`C=oY@~,mK >~%p@myXSrI#|?.(uل,v"lbC!y.%QA 5ƒ:R @^&_3[-!dRqY7ӤX؉TYRץd4[+H}'7t=|v|56+ͻ$ZbnϽ~@o0d)Aa5>Sq ,˯^ 5! 0&yXH~XfD 0W-dDؖ#]Tt~r( aa`))6(itaa΋RBZ&b` 气@Z㖭5a֑bCaMdLߚmgsHt@;.rq IyX-@X:05Fc3,dba1#uad`;)_|a!xO%g`))6wfpMrw66@YDؖHEM '2d`)1j%1 ؠyXr^/ǁ@&\` )0^t̡>Í2Ao.¶ XX<, Ql%H;ׁX Iy@>Rl5<,cMdDXn3 [w{Fra< 7)f1 @*",S!+*rd-J0y>bx5(aaO6|,tn3ݝyXXׁ( 7?a[y<,q\cY`Ͱ<,@~Rla) gC4:,0/yJM<,@KzIY`.yXH4M†9(A4σ"k.;~ aY<,تxmӱ e<XRlnyX&ByXn3 pw:0r^/3{yy>.Çz\ُ?~; J7",x j"B&d6òƧyXg*xݯNhLV2a Y(|cσ&؟X %Zz/WPM5syX(rwgc?FX x,Bl",KFRn6ky^, 1le )rfclv"|k9 1ƱyXX v~!2)GcMUe.HU gyX5$QReyXȤ&XS<1(2da/6ÒyXx y<,ywْ>.9Uqfab(pMrw EDXR2 ې}vaJ!V˝. [g 6)J.rqoK, (ۜ-nO9=1YcѸyX3 P)r-jda7ܾ,aDRlUbda/²yXrH<,`MA nadalaY<,@&K"2^FOBmZk 1)R&Aֈ%Am;iݝ[4YZ ’ P)˜l=[bEKZcrI( KMQe<š(ۜrK].85 p-u[ȯ.]s@%g=",@ML69˽,,%h YaIkl3gm9qo?Nƚk}Airt1`| Y'’ STEr%DX6۴n~l6XaڶtuxaY#Xba,klqP oQyXQ#yXH7 lgMAP[/1CeO|s<aBh4tl%qm'7|*l=Ka-+|pww:P dYJ%-o@C u)\A], DXL3kJ6gu-fcݶ@LȲKZ",cL8m&dYJ%-iR,<,!֋:9Y&,s8Hk,@,fc[ ݤjyUM,cٚe<šO0aY"² kXnc|p( e-²p ~5E Sl2MP5dy|'@=L$’fXX@<,p˞o5ӭ\aCl",iI%@ 6?.UN'Y\-DXa؟N9 ?G",&Ų&d>K-k^(yXaM%anJ[_BRra8J9YbDA%HddJ[,#Ȧ"’oO"l V[5V(R,L={J;cJdc, KZ",1Id8@@4j ۟% ;KZ",!d:Nc3e, _s_-%vΜ,?_kLh)5ײ[/%7&dH@>&d+-DXbIL#N",<=aM% A_'_RAV%-Hd$y=آ +’س ȤXdl;jZ",i= @|R,;d}|if> +’ @N8;Nߝ pz\>\_@^tO۟Ǐ?~]B%B|b9 Y >8JuP")c[Y`GXH`,P9d-% ",b Ab ~aIKVR,@)dEX{/P)pY XA_ +’sD%(AF86Ȋ%)Y Ac +’ @kX @oFM",M, ql<šnR,dhY ARzz.)" @4,G +’ R,dh糣@=g +’#sHO SQ'6%AV%ah] UЧtSn`oyN'fB_e&sb Y rwhBaYN1R,dY(K,7aKY dcLYl<šKY AcQ3JqR,Md8Y DXO!, Dc?0F9, z^/ǁgѭa`KY A8yXa` ) @,yX?",l#ł "{2cXJ @,yXxaRR,<#q@>aѯ )Hp ![e#@jR,d8Y L{+vR,Bdò朹\",",, c1",CY Aceg {ba1AC0Xba%AC:aYy5 H !Cazz*XH@dMa{p)d8Y<,}cEEXؓ @,<,!ޞKI !Bka )2d8q62]󰌝",#Bv, [`jc D NY Av[c9S2y5 H+AC鑤 QIpACY!@ X8 Z2۲G",$Y k gía 2)Bd8Y(y6P.)d8Y<,Og­ BpY Ab2ۚkJ!BP, G1K",LY A"0ۚ{",O@,<,",Gb@,R,O ]jp|`)ua>R,TBQ1a['@X !aLHP!AL>-^",Jj @o%mak5KvHP9A@!m]ַޞKHA@ia#}R,4D"dgG R-͝Xkyز.[y?SLB~KG\b]'do7 2T, Yt };O1!#k-[bټyGsFalNGm%.%({ds1}kh 0J4Í;g+{ 0{,),-ͬs>r1f{~ҟdEXXYYZ9kay} 0Rt: |K<5b[]._t5F??n+)6~-<3 Y8ڜ['syﻻOUGXI#̏5GIAu"`p?q,(Ho{^aA//2}T,@&d툰_b2ddݢ>[_bbd9!),5j':A6< :R,@1Ƃ_/"8Jlyؗ# PA6w_H_?yAyXs )n3/R86q'?+ ШckGd鿐zҎK!wgV~`OR,YH#2ccG^5l oVxXR,EzGd.OkilyX8XAkuCTy jV~ &) !>ݥnVxR,THԛ&. KaWJ$Ic_zfAv< @X ,wY\n=ٱyػ^( 4Dy}=NvV~.R,PL?JY9o8y @Xp()v#Ur^>s~W bKR?zjR\*{~5N l."QM K%~R,-vll{xb.;Vy9<^`  ^s"t-әy\R,ID%~lcau ͯ34I-*2Tvgp6:)dzBR>DR8|VZsg)|;)%2|JKv.Zu>0]!kLK JxR,J?nYJ0?Fϒ vz|lLt`yt&@,vItع9SՖ{v@٤X8sBx'w&@R,P1(Xbӱ ,wM9iՔ+Ϻ9_9 P3SMg{Qax $#oΫK0/B2YrG1acTT? P?bƲi46pG^v3,mb$jd; F6 ?GJ@zvO]1#,ei9.hg3R,Pp@e%J8C؃XZ;ᵻco\L?2\W9?`=)r_OϙgR,.ˮXXHnh Zjsz| r?9@LVf؋ .SIIIIIIIIIIIIIItIENDB`espresso-5.1/Doc/images/ofc_2.png0000644000175000017500000005066312341373034014764 0ustar mbambaPNG  IHDR+ -% oFFsWfB pHYs  ~ vpAg8SxQ;IDATxݽ$y&r8$@=Уߞ\Fܽљ{{ٛ#ȫt:h 8FLdD?;c YUYo~r@P/b D`' 8N@p"0 D`' 8N@p"0 D`' 8P_׿?q`=P;D`@qnoooooc"0hfXJP__G?~_%r\. @L#T,! 2o棏>裏.<@l"0h~~ŋ/v|2j' W ?>`  (N{~D`D$PVx}w}˗/_|ĔˈW  (0w|@l"0di4,?`D`@q>`."|_W_}W_?ӟ?鑛}-je㧿/_?O'?O~m֚6~ܵ Pp//!` wP>Tꃤ?~ e{& 8X`4]0싐C=LX@6Idz uȽgr¯|! #YZ5$( (0KaY 8V:!lDX "+B^|>{ŋ/N#@D`@A^lzKP/P)=6j!MOZ 7]~l#@ "0 Etb O!]?IF`@ca?S!:/c#عR~xg ` ["Xrr g,_sm*t@}7?)09S`W罿iYD%0$v4wUa3=6>No?Wz/5D`@50;rlU^k` "!~9 `?"W-O ~LD`.4cPi$Nm=u "$pDξ]`ӗPO=y +AX-R۾K&9D`nG ?' })7M<[;5X]˞c,cpt+8,ulP"P:6 IR"0`3*_gAkfn'Mi ]`r4ZG1ŭC:2, @p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0swnooo7S`g ȴlb2x)0Y{U 8 &~p4EH`sʏ@;6D`Uʏ>>u\\;P-GZ2upLƾO<'lUnML=G쮖kh s-zާsW x ~-,##@.iP~Rñٱs=姗zZ!oT ^9ּOeSbT #[hl_GFT[]~V(Bf_9ާrY46V|Z0ОBeT|_G0[ܐ_vj'XkڄnqMx%u7!IDcP1GFKKo<¯YߚD<1yGzias؈d* m3v`FU-XT% ?5(Yx݊`6zv " M4ùuœ%4Qӧ>W:Ȉhh "0]"0xF"jh.g͂ ƾzs^}q"]"6깝lq̳v90Fg_pUD`q !+VXms^ϟYl>b#3r YeX]_DcxmAL+XOF@/Xc*>m|bHa% --Ʀ>s !L3EիWӟsO?kl=XFFSY ژq6E16y6$؊ObTE468}׳[]Ei3M!XOFͧWC:Q S)?3&fL!S4hL:O%"lB=A2"09Y_@hKB0NS0ӑؑ)3Mz0|"0>A_(&0"0J=5_xv3yGHyaD`t:”T,!#Q/-Qyߡ{ !\/R}5/^z ݝCY_[`>K'&€֘/.Gz8 0"Pdwb/(j$2S`Dg0IƎ~H@ hC aϵG^2 կ(0"0"@@lAX8_ww6D`" 0Z0\P/P.I#@ma@$"06!P;[J0ϫK cw,~CNT  AP/3€،_u@-`*0FEƎp իWҿ[ ;__"0R@L-`L r\( AKJ&€؁-`u]M@*~iK@y-9 1[10,"06 O>g"=z"0f -`3@P9F1/ v0Hώ 1-`@D`d L@@i$g cEqUڈ $P;[uF]fM"02@pK/^` G ('-lI& #@-`*Imx 10 uHh $IZ\O!{]Qav@lsy-uHhmPpwT0-6U¯vu]u{QH@pa%1 TN#۝1Tv0H$Y;C!%;QUv|駷 s=>4 D` X"0FH?WH"Q!؎һHvʏ-`u_w0!Ju]uÏx 3. ؁l`O^41"]h\ H@B$0h!)EȃHƑ, v ; $p鸪۱wruпu]嗎D`[Zei: ۜ-`@-`*@jl -`۝m&~DQQ!S`; sywH? $-`!il3靈 $P;[ 6[Zgfhl7*e꺮s'~z{h:$mPt $%6^Кt dk!A [}WЎ;`{zз.EL4-@1HZID`[T q٪56\@t"I)[uHZ"[Ș(P;[m^-`*L e e@vPFM(,a T,@FM!)[X:)jg f P4Nu](Pǁ`J6` pa%WLv0H(-`*ȳoa {8!)F8/s*V !g4/@B!)AsXzSjg [o X0;c!))0Sx\G`2@4(MC-`u:$ehz L& 001YT }@:':|x@!9[1Kv0H(V(-`*y:kt (&spJpm p੾嗎dz hi$@B;!9R,9jg f 5%Qa#07!v@l0HZY -`De5@@ p<V ].ޏdx]Lʼ>Wl^r\\.kC/-`@ll+P C6V X2UF`Nwv0H0X~Qd A$ 뺮suH  /Ac.V Hl=~^eX R~ RwP=ï\)h2EeSy0hcf̢;vW^zxpdۢ! Plj~ ʹ-: P/C36S1CL3l#@P 2hT=+i P-`|C?A `Kk/j嗎Ɔ T 窎/!Z뺮Q\/ Zc:|,[+_\ $Kcpj@j,{[bK?^rXDf MKU ꍢ1{ss֎>*_b/J3~M+w #MRi Rk¯Z\g }7eH~]F:PreZerؗ-` -3AY05trnH`ƶJa X 2E Z zM@l9򧺔f zF! kd \?ݹة5VxjKT (激#[T as/_kz ; Mi4f:h*KMcѥR[<{{Ayy s,3-`@!DX1@= $@´4~Q>;5l{Pi'D`鏭 0<&޲Y08Rs 0hHkg7^htfkoH[),sOrg~Y3b(-ʵU5]E6<9Zd k'ǡXwZc ,cB%1\/|wޭEQX+ 0?&#A:y L-`&hI~s%_q?.+:}zGc V>Z=@@ZGPV꿫%?(clƮs/HZl`.7c>VzzF-\_L,=뫈UE`Kͭ@BCT뱶3*(Zqg öAӦBl{/Ѻ;Pj1m3zF}-Wڛӭ+t Hu󂘱v>m0 V;f)0+cS`0j9>'x%~o3{#F/^xe`F'BҤS9vݍۭ#0[RW/.WFYgc[~5(8~??^|4H~(&+XL#c Raxnw t ذ}E/M$2wwwwwӱWy13b%Hk9.ۑ?-`@iïon_%x׽ wzzN^ 7/z_r\%.J濆ΙL~]ؑG{=#0H$yAǜg`LOJzߌ77_~gYcmWkM~$on?ud:|9ïal{}޻3ГkKGV ۱ilEko_q:8*a"ozw]7>sZG6J egsݟ=-'/m؆ܠ?sïosy1+zQbKsV=5Za^l4|Ʊߟ{GQg+bK!WΟΈMGcG̈+mnrYS4lk8Ly.+h7r=-%bg?ߦkԧyL67|7rpLNxG-xsol1 YxfYgpi͜WDl>裏>UxM$-`ÿ] #??o',+ӡػƀ ү+|yY]P&[/w};dYlns9ØS6>>\8믿m+އ>=>XMY ¯ׯ_ئ0AXg|u9z1N&b??qoa^- qW_}W_o6̜{+[45̽E?ޮϘf"sQ/ "'V^m?AB_??_׿ΖzBw+ ~m;Oa"l]:^GEo5>!vjߚ285ݚ+̚{9jI뉺WAr+sgjpktI77ws!:& ؋ӗ-̂ JsZ6m> ,zxa-]wo|:qbH+LxA>QW-CnE4zϖ͂_t{Wm#;R/{ bh-aÏLb+g0{: VG![#.g'+#`u뻟w*eb/艺thVor=,;{ׯs/mX| Vg!KϔyGOжt X;H%{)Xвhlh}R_rae.?VvE¼ockנkRk؋D];,Xc3}ò_dۆ_%3ğx@.?| Y'S[c۩kD4j޶wuL¯r?Q&~_tW؋Hɾ^짠'ۃZ%Wa{GTeF`G lx4~KĨ@ MƑN{GHu#YϹ_kۺu]|rYb/u]0U K\~ۚ+G_n5{Wx|1 漠gO8hmnۅ_sgڽ3'c[` 'G`u}~j roGaz/iPs("$w1G\LvA9 Q zb/a g-m![*]G_g-/!s%9vR^ w,ELC昩ǯ% ǹ_Jnqa87^# @9 yԨ)ᅰ$3Fo۩dzK496~DZ lYڧ޿CW^zxxzm:(~9/J׽k21!M6}B2Uy"<:c"PvI)B!Uj::oW$b/(MS`f Z*x2UәupׯsmgΝ`y+{:&4sIwz\3fΫ.1&q8 # p 'F9K{A.|긮#*s^u_g_cas)3A@lKRQX'"̜WbL~ CPAz/ʤfsM(on8Jxk[ny#*vq}u a#0sNo^X >2x~+k}axZ2c~KN/ÚK{9_h6`s)Y yayw[寏Ֆ-kIdX>q8^ ek&䵦 {~ZsG\dAXi__뎈_ ̻C#?9{(=J9׸9m~H@GQIּ7}T=ۜww[@$a?Q&vCoY x଄q算׻ @STT(A)0um!q=NNAr/(ozGH`,;}GҎɶs^sԱ29/k^l^a#0=6心a9{[~sz#0G7hh خZ_Ώۆ_e=߄_aiXN_g(As9|G񌛺47FˆX8e櫜kD4׶/jhUuokkS6O7v/ t]} &H_D?k[/M cF! <&ڛ $\MQS`cTpFե0/_ uHv E`Rjv{{{ۿ{Pj߂w?m L7cT _S`7o‘a¯ _t1\Bn[;}t쭄d|ײ#LuN.[ɻCm"|jn ͕'-O ^/ OsS`,)0JǤXvab/(_: f _=c%. jFYҎ[a/we/j?Y0*4ksc'„_P#`{F,FnP*^ˎQa/s5ɰga/Gg-`P;S`@C „_`|D`WCBla%]Nh,@]D`lhԶA/osڢID"0i01(##D"qZ uHZ'0oyz9C}΁ѯ-`e ,hD~@!GSxD`n LmF"0gO@T NEIgQD% u]I."0,͠ LSsk mRrC@!ij`bf Z 0 P3@8,@D`]{֑|&B&>iB;re%, @T il4uH:>y"59q6CI:$%m@g`0Z%Mȡ -S|!J&ی:$0M,"9!eꐔ06f Z @t&*8!'؝:$L@l'2uH Y08Ǟ>3de" ref%Yovd^Ul0xGuH 2uH+vd5>@ D`SC=HxJ1å@uHh:$I0i""C!@6PC<HCPuHr-"cCVuH`:$2"2uH  lD`QC{KN ȡ -SXOV(`2uH Y0|""refZ80XJP`o:2D`E3LS!+!CKMe˟'`XL|!#rt]}mRKPuHz[UC!+6 :$L  ˈ* LSp [Mȡ -Sl熰Jfes* R $lM:$L2c$":$La '!#Yo2XC!i@T"9!eǰ J h:$@ ,D`QCCZyH8 9H[8,"FC!HD`M:CZ &kY0h:$,?۲ kY0 pZfl?D`M> #D" u%T $"rX-S\#2, J j| 8SC5 .CZ9`-`PSؖ('!i@D`MCZ  uHlB9MJ#]3EZ N(`2uHyT l"0g K2 $`uHh:$P/PC9̂] pZf0 g\{֑2R%0M(+vZys 5j|^ڒ1F1:$0M(Q^rC@!ZAhc30!i!g"0ȡ -S'`6uH."0RECEȡ -kYE*fe@-D`U`8uHH C@! CB!V51W<qhYkYo^/:1P/ rX-S!`3Ve1uH`ZuH[ C9!e1ꐞ@D`lL(]CJC@B,"06`$ȡ - `@9D`HVC1،` :$:KAD"0vg Z (s%@jYD"`wg޾ud@B\"0bvV2}؅_@eD`j|,"0 L; 0NƎꐂ0`HZVZRJa:$p<zwH *c!e!mֈ8 PJc &40`:$'!UG!U %"0 6CKe@B D`D!D`GC@ˎwH"0 %vC9ς=> #h0h[:Y0["0* \{֑Q A QAj|hVu $FFaD`TLmZ@kD`TO-PmS &# LuQb /3AD  Rm@D`%کCk<>  b˯C-AD -SAHXNxGFsaϰ>WD`4JSCsh j _F0[(lj0)|O> # A#+.  4V@ˬr0(\"0"2̓ `AL<"0M%P6=>[}`!A)'r1"0XEQx_z"0؀ ΢ =%fan0׭;u{{{{~ a,ho#S` ap$2NM;|/"0؝ q}ڃi/H"08 z8 %Mp$E'~tZup40b ( N&cC_@iD`PAlKb=P&d:P2ݺBooRcoz @-D`PMtfA`=P;J6|,0 )0fzRlH4F<P/Ľy`@ְ"$5@dBeO@ mz1ʡ xD`@JbPi/ *h\/{ bQ2`0d]_4 h)08Lh (hC2EHh Ll;5E @ _=c!ʪ{!EH *H_)S`,o:$1(<L&Gz r(B}*؝CP۾F4VuH'XF4 @>XO@6 @il؊ zmCPD`86Y_~A(4`-/q-Zs75hek˘]TzԘ@$e4135mX%v4 3ϡj * L6S`1uHZ:h "l !ُx gQ*{jL ˉ&fR1Ju|s)0*v2'2<`.S`4dceg@l"0e?):8 FC"0Zx@p/b D`' 8N@p"0 D`' 8n4mIENDB`espresso-5.1/Doc/images/tri_1.png0000644000175000017500000005614012341373034015006 0ustar mbambaPNG  IHDR^t{ oFFsDtBF pHYs  ~ vpAg8Sx[IDATxKnٹLFmhaH#P*8 A3lÿov߈#".ӨRRELɗߊu\.p8Wh    `x< tssssscȏ}~yCr%LP_׿g?&G4իW^ov1|r\.s!du: Zr .d(d؞ A믿tM4o:v SqhU˖ or5C"Lv7|7@o[W6 ' ʢ!9`: j'[/w5C%LP{>7y3`L?1kJ42x<^w_>]eAyCѰnz= #@ZDC !3W6-ɅC+n,@~4UMquc5@ZL hgt3-(Ȥ!PgQޞNe|VS߫Bt4x\KړuFkkoY% u! sXW6 9y ! gSxMuۇC+#5 BM&lbF ٬ @L D ¡hUKSg J#Ź.oO8ej R' |[q;\0 _"/럞O )@DCӵg(˅K:י:ߘ whr*dp&:CdžץPBb&6d{eq(s+Xkt0$kֹ~<86@ӓ '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!7Hxe~rݿcYOn/p2P:┳=3'rsrKH;Gt:Ryo13? |7`oZ[.ᬪ/_q I h@tB3ב֬YǏ_f5O4̛Psz2; M{tYɆr!\$Hcc$E !; ;u݌!H@9DCV'e$CIȉh*BbK2q,`DF1YG؈\iYlS-Cr%);z@< /ɣx5IqpR ȕIC{]:̙[_"=n9M+SuDC~R%C!R:L-qBRE+ckQIJ&DH̲-nˮPwNR gm3ǖCRԉY)5H 'R-`TMR)x INu^/ɅL57)Ě5 BQ} 8%Ex"DG"\\H8 ϖIQ@ u!@5L CpO>%6C_[C%@"ovTB>|@U#.`#B؋IKL&o%Hh&F&wR`j(ak7 E!bB8g~F9+&9/N4o(Jf !kD9IB)zY%ᅩݿPor:_ѿHXop[{.@DC °"KD}US|lP-g 0o@DCAsXPUU_u:)d,هiR(a<"(U\88P\b^KUUU 0dB?R%{xݪ2bcc(N۷O{H̗k\߾t(_g֐z(}3u@ DCubx.4H8eLck"9%BHh CH[J7kJ@_iм! (ص oo<y~RR\*mE}6Dw?Zk,ᗫ*Ǥ!Pxra͔b:%=@}9%oB1ҡhcQ( ؃hdh($BRLDGFP41'rOIlK4"ARPG@pG2200N:`+!@R\D#=t(nHOC' ITѮu50áI`Y!J6 u޼qf.c0Ս%"B[D\@lgnO].KcN4V&9[J}YtP2X3r!<M3L!0\Hdo|t@\I. ؐ +l詡\J6޻wK r+tuq' S`-!@ DC Sk0lVeX LC< s-G5B͛gcۻ;6A4"Ve\ #~|p=|6y֤C3BX2[\}#@2:' !yr!+%@4Ʌ@#PvuR%K4$ =U P:`m!$f,}k}d _[c`m!$clU *lO4B[-U-><&lI4ɅI+U!BBg2:˺ȅq`_frqe_yLBtB`%U#BDB` L:XhQzB# agc[u o %nƞZ:+.@9C\hK209e}`ȟt0hѐ `9C!llg2:P!DC؈\l Ve눆:ؗoPX Rq><\!T!h)\. ]!@8V1 j hȕh )ȃ\.!DCXx.%/m!8V&lW8Ca!,@@n:(hȅ͛g;@Ɇ7J&•Bȉm!L6A.w><1!@M4 raR6 Crd犷HÃ3sz r\hK2')/jU(hW ߻xr ><xtI4AGW2I@in,Ʌ@~lL^ͤ!tȅ͛g; 'C_BM:J h.t)%y )ؗ[J )x.%Uk1oN48r!`Y* p8ȅ@]1><XtPT˅@|>~oDT_TUUշ߿&@DC 1'יmL͛gӅ ;NG˪+\._dnh#\k<_bq{UL@мtB4$[cз~ _vڿ΅0N: 2$qRu/|e+$'u9 HhHVƾZ`/

    BȕtVe N!˅`߫ ϲ,O:b#/P:؞hHs-=<8h47); (yC`{! P$T-Vc:J5[X|d5 r( P{.Wt`M& \G-O_d 6DD.M'ky=( ̷d@KoL-Z8Htldv0 mI0I~xC? 0Іe4$r!o|Ώ !ѐM96o.5"[lD.J6Bo( u!ѐɅt? Io(\G4dEC?ג bCos6&_j̼!pѐUB/Ob\u x1wg *K,kK?hKoU}kb,f<ڒ =39X rr><|: Y\\ar!0,sXJ}f+8Y=f2p"Ve`*?Uڇ\',o^?#0Uy@2=<|x8NG+yhz:@IC&I\ ~oCSmic0RaH=Q8zU6ѐ c׹>/UUU٤ 9q@ 0N4Жdb uC`h Lp>ϟ?Cr5L$@޼o?潍/K7<CBTU3Ѽ_H@hH\@>K:5Pu!A:j,5L۷dKߩ% ejƽ{~ص ~җ JcnE˅OS'@9lKg\UUݝur7{k}IP&Ѱ8ЖdjS!BiDC\ˆ!Ѱ G Ã3sP !?aBr20Ve(h95H70[CBOo_{O߇Ğ7oϟCf2G4x.4KiUڤCȉh5+,8MH0yG`YaB\: !uaB'BD }b tz:˒!Ea2roX'ٮChZe$Fm<ڒ ͛g;Le2B4L\.kE:r>2Ĭj|6y ,O:ё  fB!% #"'g 2oq1Tkk3}rqeؖIÝ·oۻ51&OXChOyxr쩛-;υ;xƙlmb%pSr!9lU}  a/Ft&vu`CXh:`#H. '><<~mت [ W1 K.9C؆h\ W.O2W)amb>1ZCɡr υ$@N3sSUUuwg7Xȅ/_ f/tx\.UL|dJs><bd%^I.~6b(SɅ0h8Чr|ubf2'˅oZr"`7?SyL3apx.PN4H.Ju`HUUݝu

    2%mr!0/<2k y2i].J!x"m?Cl\ r۷5TB'[ h4(Kqp<q~*O_:ix8Bݻw 0ߛ7ց!UUUwwRWD4  \P.&O O]P.!?V]O1){{.~.tz֪B.p)l'w9-BU=A3Ia~7L~~ݞ:,P8)@N! ) &;& HջwBªh:D0Τ!0l:&hx\.e2iLp<C#><<~me 'EFOp@NA(etz:0)@DCt:Y!p7o˘;;k UUUUSX c`&O EDrq#ǪVHk!PKq<\ֿZ: ooOKkx<O\̓jțhu !u+3)1s!Ez;?޾1nr?5IUUt:=>Z HEѓUUUUA[1q6!"8rB^`/1u|A /rq:MM{R PB= רt-6x GOQQ$P:PxMt*鹄kzobOjICM? N}CogtX˥? 'E sPte9N=dDb8 =/7y={g O4"՞iD2+yC2o8ǡ:9 ˙qzJǮH^8HI4"5}J@?ʞ>q(~n-AH[q'GǨ!Ep{;Zt+ a$Tx 6&/5c8ĆߧB7i*if u y.|dAsxm a8@꽉>EADC u +( Rrt:}[U[)Q?_pߵ[O46-+$u![ۯ# 0t:NUUU[ hsMC GT%]?޽fHKC!Z˯KvG\p8yk%x'w>Nj@L7u9Dpfo!'&&밞v.ʈ42DdI|>?~xq =N::R'ⱽdri3@VLHzێCۜ2[Yk0h57e?j2\ǣM42a}RIg6ό!R$Jcr;:`Gc>SMy+g9#Ϊ޿P3id+t!zd.o-6`Rytw%-7s!kx{}VҸ!P~0뮄[ BJ`V}mduoVU/Ƿ\ ^UUU[  y_@ Jxp8Cf{2ʙŃC97قAUUUYIg8VƼ!L&y:9#9 "t}Cb:P^n5 oth`)d6~jF[It:C487\n ۬':9_>{Ç_ǏhR!p0yy2ovF9D OHeKE/ n9NN笪O&mļ!zobOjP1oڶY眝NM\SWsg%7YoɌ~ fJBiXce oQ~"' ~ sg?~Bt|\H~c_P_0o8_{By}Lυi%Q}:yW^.J%Es} @rͧulU}Cs@io}\xe>lC4x:Y6ӅCh4#NmI@LcQ':b ļaLsoi럛 s7-p0()n [Ux<ցr S`1C.!^DC@ )p15C`{QS: &s}^J%Lbސr!%U%@R&t  ՀI6Ѱr\.79ġ\k%BH#\M8(Aȩyi!Bߐ?&R7D󆥫#Qx*aQ.|y}X Ve`+xq1 Ƽ!})߻(0o@Dɪ7<52n(i( 泩pȁF4ؙyCsandNzʅ!F:G> \XyCrυydCY_RO!@.km(.l 50oHаU嗊Kؙ*Dļa µWC_Ͱ\X vcް4rګKD` !$eh6onO4yȅ1"wA04(̼a­?; ʈnN.̏hxm.ʅ/< 6,E:Y5raM4yÜB3}H:a؋yÜȅ162Ǫru' eD " S 1ü!@l.=CYN: g0o?0}"[%obM>Jv7'b$hj@y:(tPsn ȅ߿M{># }ˆecbkIQH_!q59E4yØɅ%]|ð7s_OyQ !Ec~yh8'k(5in|>ت W3>>9vRl[vsޖzosls[1e>޿N*t:B~w~\/}4Hyxȅ13Gs1 Pg|Rھ y{իWAFF,R\ht˼z5%RW/^-%HNꫯAPFޏ 's +~(.>}3Q$|7|ssssssS¯z^D%1f˞ y ]obBj˘rK>}_u;á8!2`5yDÅ'ϭ\J>9A_pm+H:]á 82^Tz&#U劄SX`WU}yvyO1gp/ĶQzL'-~ߵf؞&:%!I?cD5 W?=-7Rȅׯ[Da\D\2g֞ZܳѰeb-ӕӭhmCB9H^q$4>c6_C㛔]a`gwA(K-!o9NЌk47,~j_;`.+: ?8e5|qScb;_RC05 Խ^׽rᴵzc k3k>*Dc.~_W{vFlvph<7z&p%¡Y寬ޤCz4a_ݩgO}ymv:u/2:J㣤17/:5y)(P:Dh6ۿ!oQbHd믿a_-777777J1f!@Ɠ_&Cȅf aMHiq==a  mvwbupo1/k?w}w<{%XҧOX,wX _n"<(W4q 9ѦרO?Z'@u_/_???Oӟ߭rJ/_?ׯ_ys_!@KYizMq-}h#N:]vDCr>}?M]qvr>h_s޽kNh`=u " 0ix.SOI~vq>Ƿ% W_;b:  y)F/OˮMK.[a.H4ԛ&oIc7qnj*p&orp+V=C)@tP26]L .d'ȥbˏ= u>~ W!@D)-C~pYBBQ ^oB'| J#fSG-)xV岹,!~ [:x Dp<@=L>C!!@ZҿW/g!:9@3=Nޙ"deHE#/0U*5W9$G{c򧯕: 0i0l=Ya9%\;l^<`B$CO%SaNe֏RP*C4ħO^rNqpGZ=ue(SVe鐼՗5O`43Cq^"vobrr"I4&X\EqdˀM( ҐPt9 ՐtE44'm?5d雗Dxc:10oHn!!0ADyυׅBa !Ve*+qj踏״˒ ~C`=7׎}ukgO2ʅta={x8TpwWu%4\Q!)^ӂ!Mmؼ 3o0h$lMel^٪ ,ps>Y7ʙ_3[r2L:$-"E!ڸ-et0h5W0_edHhD7p,h<l^m7$^~L DToa\ !u#?{Y[cɰO NH" Ux@Zfh}qX=} UfIyF6/<wc  žm?=Ilphz޼|8TI.X[Uټ!@[-torl9{9YJE%y@lUf^w{rM!6'DG.,% v q2lɳ/y9 ;eސ-xFDCȅa2Ve>p7ͥO>B`2G:h V$` !@M4܈ӡ4C`2,`aЌ!yb@4էOr"`>-hh:}ټ sH@DC8M߼, R?*̢ױ#tL4E.$E~K1o\k+Jr!yCU(h +#8(t@4@.6/@\.:@r!eʼ!O)g2+0>YH\Hl^>鐥hh0 a&9 !T6/Lu:Nu N!@\sؼ EG4\ ߼, HhQ  aMf2t@цr!(E) wp\.u}BO`m6/ͼ!3C.ټ @ lU"F'kpC@:$x<ց}@ABH1/`>hA.tټ t:N'@lDC sr!ecސ/yCLNm韽B0RB(AH"v멪翢N~Ċ 2idh(y<:,G}gߍ%K'"sCU;֛z|41@d0A3!Pe5t*Sii3K(02>Y+}6/"[N/~\HlDC yr!0n"c6ut:>/'4&S!i6&BGOb&I bU{w__Lu:NLYs_ 3 w@tzXO(%ġu0w yCp]">h(4Η?BL!lUuu Bap;7ix8 Pυf 'fM5+,s[⚆;?e<CNqCŖBra0hh!3c'_ƶ˿].$/awPG.Re -%}Ca>ȅH4n E.Rˢ!@JH1$/ߟraMo!uiDD.jaW? %ϙab {%;0R/`2r!ؼ\@`=utKe0D8F.$_'q7,zzHZBim^= uimUN+63r! c3MC$EDoPh8az܁'D4.Ht:}Iji"ې jqD 't}4L76\HyDXt8$ERaK2@[lECl?oz""R*0;h8NR$r!fECs ͿH.law pB !@J%/ušB9D IZ[n^DC\ͿQ.'a:wUpcC.Xڳ!@ Ba 5 K4L8ILr!!@9aCᗫQ*0;,yHʅ=N,y JsJ_\ Ӽ۲KC$/`?gECҌG\Caow>2  SIC$[p]@ 1ve|Cao %awaW9܆j˅yY4(\ܖ ah]Xu$%WR.HAH@ r"6Bxh).JR ]% MQ4ȃ\v  ;MHr!@NhyIMqawt\t(\ ȅ0h*F,ݤ8 ׷\.P.D|Z0Aq&E mD`0#{%E[ ras[.yD2f0kk9r!D.ln˅Ѱ;E,BɅmsc JVz6~n?Bqras{ 0Ir[ 6pCq`*|dX+KPO&蓒X\߻5BXhX(Lc觚z\ݲf BXhHY74o(.#VeIW0ln;""2tTf0\ܖ a[!?!6B؃hLf#6[ 0oH8%6 { ytH8!fw[  2H:$P:5a=>Cb"ü!L.}(@4J U¹asѐ *N: Ϋ%-Bn,Ox<_^wU;ǃ dA fras[.4d2Йü!R$6q Y2lU`=C뗷k}Ʌm#C:DC*ʱ Mi)#R'2tH8r4=>Æ\i Yt=ch1Rsa\) M7`*[ar!H4d1 'gʅ@Zӌ\ YtH8:} \p<cTDǃ @ӂ@\y1iȊ|`q+1b#6y8: 74ox:FC 2Ĥ!;Upr6:\ܖ <& !h`؆\ܖ T& ٙC ras{ PHG.ln; yCI, x"p!5k<>C tH80\%5ѐHB  m# IyClU \ܖ a!QUp!\D4$!Cv!!0`*|d` ѐ7ϼ!Shȅt!Up!@[֌\\K4$I!CɅ]r!0hH¤C G "7ț\ܖ %$ϼ!CȅmXhH&CIy O ɊtHt@udȗI0oB`K!1oHh?>Æ\O4$[*N:HC.F."9p!@\rXhHCH\~1 m b 6B`!1oH8`/ras{C-G:$t%`o! 7XJB N!E9$0cؐ ٪ ,Yh*3t$K.!OC¹!2h '[!< aS!!Rg-kP. a0yC`Ira5"bސ>[5as a7*N:"6Ba!L:$sȅm%!D0o O"Bg2N.ln;` "b2C`\!BDCtH8k7>>Æ\p-"%0\ج\0h<@C. #BN:94c(!BCIP-,G4dHJ@N\4is7<ȅ',E4L7Veг>%BlU&tyh=w>rYB0prυeʅ[ !y*1yCH\90DCȖyClU8|dm [ '@\"N:8Ʌm`?!dH:H\xDC7ȅm#A4l7$t{ܬ!D4I`K5c(G4"HJ. !ē00oKqb% y-M4تL8"6BP(p!!63槻 GHh<ü!}  gS  M!`2H0yݲf BOCI0F. R$!u\|d\ɼ!\ xyCIL.ln˅y A!CJ#6xtHt9 Gȗh9h*F4f1oHyf r!@DC`[ 'RsaLO.(hL&N: u`\PtM.ln?ʅ XyC"6BR, '?-M4 N: Nras{ e HJB3% yC$0cؐ  7$E.lV@.9! p! BDC`E!\m8|d< e,E.ln˅D4vcސ>[X\ܖ #Up!K O`hlJ:$trasL';xFѐ h@Ʌ-kP.`؍yCI B#; '0 G` !pC2Ʌm分@D! Oü!>BX@g2\r؈@VlU&t=4c('ȐtH8W9؆\ܖ Hhdq0oݽ!L4cސ>[ 6x@jDC s*N:XJ_gB E '|m}|n 3 @ACX\ج\@9r7O{V C9 BIƕ OC} I΅ተ{+r⚆@\pR2@[j9BKr!CWl(GN,! ='*VeLC# B!tHr ZP"븦!@NJJb.t]BϤ!W9d[W04Kk -{47O̹P(A>[YR̃t!\gח``"m!xrYB׍%oIqIͅf  6& vfJ1W T @DCI5l44Ki &)B:bM.4KrMCb*_O- @NLʔ1X f  W!ϐ#{ @9DC&-Ʌf L! ӡh,kj.4KDC6%)7 }!)3)J*ϝ|8ŗ/1Kt$#(BKDC2GR9$}vc PΫp30 #L@tS )2lȔ7p!`(C2c s0IqH~pp&/-b]k gXɏrA4H<5vRuXht@ht@ht@ht@ht}ҹ:IENDB`espresso-5.1/Doc/images/ofc_5.png0000644000175000017500000005247012341373034014765 0ustar mbambaPNG  IHDRt oFFs=t)O pHYs  ~ vpAg8SxTIDATxݽr$י&`I*B?PuXMGڼ@6=֌.ahPB5-$T&NVy~hh4ʷ|>o*!%*&*&*&*&*&*&:@DН_׿ ~gt>?sGh:2n裏>/^xbݦ |>_Wկ~e? w}w}~N])~~?OgϞ={9H}qFh`^@w+Ghcn6h3^emX Kwm<c!%qߏݍqhh:2c'?OFl{m@GhĸR ^ hVUqpqmN8n@]DБq?2_/e vt/_ƀc{er!6A4hck#Z8 {hcOPC\Gk:uq>PHEC>裏>̵_y>sm!BR)1k8ρrRֆ ta={٣hcnX#jG]Xx4[ .,<c1ߊ߃HKXQϙFXK]X޵c+/Wn` t!+1nחch )s|?ϱ.Ty@)aL..-;Ob#u.LR7cvQ?iGP;t60贵1 8¯Pϸho@ @bNΗCiF1nگveKk:O׈*s|ÜZ_o@6qs A?YH{>,{Nk}[&:~T!6JkWf}tzLto]SLab|Qj@{ @bic_%]Zи0ژ;[tum@֞O[sFAu{@ Tf 4Xk]v_pGxL%C+P/ \wc1ݍr~hPj'>sژ*s,e9Ԉ ,Tc(J悀sb.{ #lm@ngVoƇ hhv %\&:ݾx5j\$ hg(Pc.0`a.ˆiXLR?vz|TH*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*!my>ώ,=m GEB0hI%8hhĿs|B8:Nܽ. 8hhm;!7VѻTP@_D4f[¢?]A@_D@$}o =2@jC3-E[nn6NS_ǭ@Dn}EiC~[6R8aXaja7qO.D<֯꒻q:NۿΛ7O^LU@ w;z,khh , {0 }a.#x[= 0%hˡui#-EsDA˗#9oެ wܾ^)@D纎v]T-1b E*ƕj26(QƲOqmqm1p#OHT^A@9D鵠Oq]1 m((hÔn{1fy6ݽ~9go߾KWSp$ȱi&_Pm'6ITREqc_}+ zhlիW~kDv 8! ۉ?6v4OIj6k<"HA@bOxpQ @p-tˆk~iPe1iim ƺysc~˷%J1A&؇h,M+1ٵ@pǧEiMt4 8 -kn(աRm𣥎rPH&ή t4v5&B5AK`Ǭ trP(MO{45E;1lRgF͍Ql0@ϴ6%ԀaO_%h )*&m4鎆%S(le o~TZ(V[pLy@{ T `MFPh*kl ?,_2Qvֈ  `1[5:o8@A\ FQ(MGPAf@K  X0*FT(_Wh8J5 GQ߱~A€FJd `'.'u63xBiaq`M@ @.ڛpաa~HA$(@b. g.[hm$c9h޼>]Vݟo߾^[? M,EAol4/h={xp >6V`*\ }c6t4Eߠ mzF l`f .x9sK?Tknx*4xDG5`82jtb0`9(@v6qk:X <۷o?,We =0Z9v~PE@< xf~+Pgٵ4\Iw_zO@*ˏ&8X&P$Vp)@t4H+\ ckimpWd}==l@O6hmnH J:( &6t4c5> 82TkLкU6 hB k@z=myzg Ow4,%?C^6qɮ .JɌ@]lpp 78z `e2m `':( &V6\rq˧@yxE%1}ph]f(@6\6EU%zP/)&hPpE_z;ҠAr6+t4%e@- ++-:a@D@'( 0&Hf+LP& pmFQ{^z{m+}2\&6A#l8 VAO.JgFQ6.;  - 莎L 5lؓh:'8a Z+\E4 0 o߾}gG&Cr6~ ZewNt4`?j蓁\=AR[vimX5 @ $f@0zxqiPeEKh%h] ±QrF6qڀ+h@<2 3z3>[0~nꢵ+,u4FB 떹DO(h+&E:`gQP2~:]w+!L+DŽHaա(Q <tD#c(^GQt7x 2F&=m0=1E=E)I5 . {=*2ihG@QU43G(m0az"ʄ}gkݠU)Ojʛ7[s|y:w{~e 5} DB?6-*E:[ҳ:4os Mf\bm"W6E=JNk;aF @ǙHw6gu( U_( Nŧ%-o@zFQs&\r30= 66fZe*P: Z%QQjdeR eJ=l?B[6:e*'GQ^v˼!JD]2=ePpE_#-{7hhqW 3jdFg {Tbn%E:Y6nP3 MrQ=<Kݠ.Z 5`OƇ&a_ աГQ?QE9um4.ߥd8C@-}.xGQD5ƻ|>ʤ(ГQO?ueFZM1L3QnP\.C.(׎!"hQȣ-!/A aw GQ5)@O187NhQU(P(ա5ݠl "9=׀E)v)emT/LL=@c0@l1 @N~6au(3Ԙ;spPcQ-@>s !8bCGc u[8h=CQ(F*J{d; m:/Et4a/~tpzշ:byt`l5v7|v4imt -=qpԣQE!Kw5D;=$`Oz{2B}Xݍim$kq]ac4HwZXJ[C ϙ[=HPZ'&Ђq,嫯OwZY R=5 -q.'FFQ R/GQzϋ?gEx}Dxx Z"=JGà11Bkg}ODBtrPZ01t7 H( 5h5hGPyO_Vy+I=py8 AwuD%LG 8׀RxOz!Vh@=/իourh4B?W_8ٱjayI Hit4 Y[DYJ\paJy ػ" "; Pʣ( }&j]TIđew-ZEB S{=!tiA[mD1B ,TYC_Jgػ ƕ|rP(G^DZbU8&/a䪯ٻQ?'$' AnjPqD+߻듃=P/qרymVo=FGZw3O?F5m 3-wwRqWhrj 8x7oL)umD: @? [f9m )HHKGz6>kƓSǧQX5Sj( zQ[mG3Z{Ӏ7!)QGO( l}iC&. lqD1^u_`k@( hp[J]ouecdwh9wlZ30eؓóùaDA8@^ݸP/ڸpwɡC%(|y}fW+{7 ;JInmXHG2Ғ-HV;;sƲ) M@% 1-M0 0_j@ʄQ>3Wh 8/DP e]` #c-Ѻm:mmEPh՚Cw~ pZ}F^lԢ񓐁Ei xjP>sʔ!HQ-D777FQd9(гm(^k+_`-j 5FEFQz0JmOxB_#FQFa=ݷ6AG`ΚMP"C[= 8/H+E)@4[RN^qx|,;qm s fרW|GCZppFZ}:GQqk:h"Eu)PWJF˱.]DVAG wϟcǛ82N_% F9gsqFwx;鴵aHӎFnĴ9b*tmEQdֳWN!GQb 5mE@9P;()i{xם(JIua"pzշ:VEkjE i 1IGclk(JɄm5T}m[5F9 E)mp@;pps Wk-("t6QO:[fxza~tzϛ (3gmD=i0 } q^6a1o?]q{o쭿w޼ C_Q:hmX/ #}Mq:Fc˱( 0|I9MV#N̦ C%)|}tcϲ>+r?(c 5@[j3o#NØc 8=^26wow1\N.^5 IvE.swta%'@nN>=5#8ǀ:jvmqh!1u޼O>yFß??ӓۘt;l9nGR4mEٓ͛'Q1^|<~/Ku%->v?TSUl[c1= C?\%fcb)6VSLKGyss>g1a=K{Wh7(*iW)\ߢzHze۾1.ы/^x1['1aGfpe C66{F*:dX~}TD߰s1HA{{$_kt̻ys}߼yx}w}wߝgy]x0>ݎFQ/c[T0c݀5 / 4{NQ=tkQpvDOp=1ELnsT1jn E_c=Hp<:zާ^ʗuf(g-xjxc1-לWE}<+1i9Rk/ϋOb}:nusatݩ5;2\ٳgϞ{bL??Ư{7Dbq8ZB a#FW\o0^,S)ݩb[ρ #paDws̅[OË@DTO 5Z}Ԇˏ.dAL9b<Ɔ<܎|Θ~t.Y|Fy̅ /(Gцա?h , ~8J^EAmWHzVCYpTP8?myL~O6cc2oBqFZ^h>Tךnk&g;**3RO?'m8c.X6< ݐ?g<Ɵnv>.ȡh(%:%GbS鈕u]GoAe G*1axˡupey7~}G}4E??o1vlWYa%iEQrmQWNq [YFQR3Ȩ?OmC>:9䗿/1 _׿u >ܯU02g}2Fqآģ'> 2mm" ]!WB +PF([3hExO5\gt:~osW j&ȠFQzHQKwc; c - _M^YҳCj;,9dЛJ_7Zv;O1c]H!Ԩډw_C! gYawcT E8N˽ospk2 GW.(1'NV{jY{K[b_уl2`pxEk7ZE[c"n ^3"ȀxB>5k15s8%.6 ҃ P_wC(3=9 6D}mTĉΚE%?7}9[(=s!U!΀0l'`[d}Ho'!)pkn%&dvLٵQ18b|0 _~yo 8 1`]D?5\ZC hPc K{a5˴)жpa!ڀ8(m<"xh8k_e#UdSK\'GZ3(?\8m0h'ǜzk^ #5R]oP=(G̳[-gw͛a{_6~E)p]26DI}xKۢuyg BnO>YpE1?[P gS˱Nr۵( ?\QNL1P6fkhl99"˷S{7X%PcP6ݍz6ݣq]1R51m=jW`WX#A2p0[5:JuPjgha0OĄ'֜ 8xPe]AU0g=r-٤$xD4~TѧZnw" .*V2,b\ \rv+t7h!IƠ !5TO<>=mCVXCkEa ,ݍ-lPF!jXf,o P/gdmM<9-eեk@5 `٘:[\04pt m#r# (!cەM,7Rt:lj`Դ\(⡥4C" nH #Ea&ires*ӗN_qOrѠ'N}Y1Y>Uؓ [ Wyf>d[hh#{7Rp RSAo( )6V4~TZOUB4ordt7rX8̉h8$Xg1Pވ6$SܓAhP}/_ZPJYh#,(Q㐻1ۉ6<+#`r̝35p}-9Eנ\&Bw#Ubh`.X+ 8v7נ|ΒGƱ8Q>FYnp}]™ܺ3%;/xr|:NP#qur*45gPlT^8˹}A\1,pµNʱ|-bz9/|}. -Tw0z5j\guB\K$ { :%-t7JP'gPrsXu7P& ݠ{BJer-Ҹ+F΃Q<=hNj{/8%3Gv|_c|}hmû z@?t4ǩ%qÞDwFm. e2r  K x,j8=FQ8Fqt7u|>U8PHOaOU+w==kDh(S✅r66P 呮pkDK1#Ec(?{4GŢV8>svQ6z39Wߨjp,FA̰JGC-$ڀ 8t4)KۮBI(wc6qq` rݯG()G@< UZe<3/]EqFI 6h@j[nPrhmp#n0>-A{P̹$ڀq@?\Gwu֠ ̥bz&hiy -} J#ڀ 8=:t7xu(Ʈn`L>ru4ػ{㫢8LZ3”EG(P;Fep@\8gb} (hP'@t7XMVJ!݀4#鉖M8(FSt7X{j5( 5mTL%8 7AZx."'h1@Kt7zAmn%pܐލW-b6qcG/ܻq:N|u4✑im4Kw8  BO:"e͍Qje srSxx,3>]pJQEk)H4~4jH{7Π qW){7Ze/6A>f9(s]ϜMP#FGt7HEA{t4bneF8X,j(9X8J[{4.R[(3Dj r.B -t7Z%Ԡ^yzbOJGC0YeV Ft7GAit4rݨs.@[D]`1v:xlj'蚼}q'pؓFFGdKAn:y]֦s @w] 8HKGnt𷷷?Y>|õt%.sa韜N782^+ǣ(i?(z(F]D)OdF2p(g] XFw[( Cг݀cM0n* Z JM{6@wrqFG eנu T@6AjYLް fy*4hMw4ԤUvm#{7MGc>hm JQ@u7נm G3x@>NepKY>,}[hjr7O#?z<⼏ٵnP/8JZ'P=0 nP*{rW$`|68rGJ07=m5p)V%mO4~4tA\Rf rEأ$`L{l]im"2L5hmA48?hFxw6HFwVp<X~ HzfWwԾC@ZZ$Aq5(>1!ѳAkyM ݠPJHvg n,A|8k/?wti9hm}ڳǡ@PF SA聽3H!]jrSYq=S(`Jky-%m@bÄcEt7OQ} (5af( ,UqșCk3BpC5ڀ}rTKwV; F=T( 8DKG` cP6f 5Y*ԀZ6`O@T7O (nP2 h]P&g%GF@m@L{r 77O/ n A? S{(:Ql(Ř, -{4T̠ 0GkZy0kpP bhm@#lB4Rj6݇:q 4&"8`-pm@ vRAvRGHKkz!>/ rhim@48m. sP؇%E㘞q@\؟9n\6 Gw~rW .KZ} .hkxMAw1 G ؓnEG(]j6q@y@6M48BwL .Z&;χ NJXj5mTav{ \+/zUƗM x@~:@6,48'؟kDX8ʲt:>NGh=ڦ@9hvB 7Z@8NGk(S,xÿ|͍Ph(e/P# @Ȯ 6q =s6 qLtLG hoq{7v+@<PGt7~X ]@l臽@t4A 6hp@w@ZZ@S48z ꥣ8=VnMkhGR@: 4?/8Vhmh@ ( ^6qAw8VrPG  kzmB/onGm8p F#Gt7|t4Jf,8jd Ok`GDNv͍҉6 h@ ph .Z:kJ6q `=mGL hm$Q2 g hm$Q2 h@z݀u. ,8J#N~+@oD 87 嗎? ݀ 2Ɣ:k6q h,8%t7ǠimMcB"8imTF# @ ZG0 5Akb9n@cu6*HRy!  qiA hG*b Xk/j@<Dž p@n !hÄc\(5ݱj:aa(=Gk;URq~.T N 8ֺg?كY @- #*1.>Ckp ꡵8At4hp,ݠ{5 knP Z@=cu4hQ8bnPmmcj!O T @o64t7(} hCwhHklxh@Hk,Trj[\cR(0ܜN矻'p=j~QgZ줟Ml7˗_5`h]j4'R8ܠJ݇01 XO@Za#'p-)A{7?ۣ6(H?8A@q%pnlҳk ލh>6@*=imPǨAwU:p9ʉ<€CQ/pc6ڀ#䡻Q; (hl9Bݍ 54 Pf䡻Qo)'P$>FGYwm (hfyH"-/3wz]aNO}W+\(^Ekɱ7c=ym@v"ymaʏ,К'޽{ݻa.2ӾW_}Wge_`i_V_xŋ?z^Ƿ1;Z#qN^mw&)ӾGރ ON&ǁu<[g;E5}x\L<g?&-}x8 Y9 6i)t}iqڏL)K[Ά\ǻҹXξc{d-[}?KsL?[hډݾ-A]q6}QƖd_)v+a)khnEyɾzz0MeZ/@sr-[\-mÖGL/ҷo? wx;sy|8 <:57eC};v\3G鳺i~fS/@C.[XN qo'`-YssYsa[8?鳽v'9M>N sT/G2 Є-1%^ح3"+=Ⱦ'|9]0u񱯽@ d_f]0uv㵿 s)K˾{k yi_[0M[qsnwnÖ#0k.3iߨvɾܰe|f~Dn..gܔ9_/ꫯ˗/_駟~w޽{_߿޳{bo.yJc@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(ON@ r=z^*I(o=eeB"5wy>_rKV u]usRmϬ7y( PySd\Yd_ Pʹـ9/B([&Y9?{KZȾ'}uʹf?/B8y^'+N/B8Klr.%l&@-d_]XyʹlOZȾ٘zʹJ l")d\ )d_nt\VK{2Mxy^OY9%MVȾ7HS}?y#[<9V7kޓ{f%+Ber.2@-d_!R/{sr}n Y9Yh b֒srȾ@^( }Xʹ T#sa/42ʹʴI@VEVL/4AHr.YY fLn 6Yɾy^ȥ,r/*&@};?l'B5nx֦ޮ4/sȔ E3 y7֒}8R/D"r<Nfu#r.N`"y) z ɾ  ZȾy^dmH@M^"/ d_`Y9R/ EsiyY؃ 4MVykpH5d_V뺮sN`l.J @q"¹CSpR/!dȻ}ůmY/qb` ^ 4xt mɾd|_\Yɾd|_c}Ą/FNkҜח#{ɾ+{}Xau]7#V=}d_>޷:C`Qty7F`~ـ؎@./IW ]?}rnf~ @2Loj|=9z!0۷˛7#HgiuMZ)d_F|  М&|] ֒}m 5nf~  _h V{{}Z|?#>'><L`~ـl 5qy7X&Dꅒk"}Hubh}+o_/ ҉PV/<Ӿ|kw{}o 术U TbK*K/@.c/@r_/@qr^pnf~h Pmog~5/YgتZ"fbK-h [Cu.@d_LS ؛ @r~pz L=˻ON^ ɴ/߳ݞd_]?;V= [ jh [2w/@/P`/fx}b#-pӾ_DXa;g֪}|w؛3 @d/+#0˻ @6* @h˞brܾ_jNg_L|p^*= }N;|~UX@d_i_|k hyr1Ⱦ@sJ}ɾ@C;|wnf~ 4A!|_œSDu^5w_w;̴/+#%3K=}H"R \ ɾ$:SoNȾЍ8CeO/fɾ@_)˱n@d_2/ez@Md_VFZ;v~zν򡮯Y3Ⱦ&_hd_jjw{vȾpC+|!&!g_ @d_@x\ MON|^Lд'|ܾ_d_% @s_=g~J!/UQɾЏ .$[K|\ /I-|h Hɟ 0D"JmG Wָ= @ /|r  ۔ȾTEno{@g9Z@Yd_>#n#|ry7rȾ| ɾlXvnf~'4MMc/5}% LݞH/@s~e/@V=Ih|K,6l$4aJ[ w8˓S[qSo{EP>Ӿah[>/}n_/d_mƑW>/@(o>/@.g~؏  @]z؏ P=WǑ}*&Pw8 P%#TFf/f //B@9p/wؗ P҂g\z؏ PV:t]YCd`//@qJۍ}^:؃ PmAu/@_Zu]g /do>ssvG4o>/@|I8MqX p((j7@/A,v/v/_X"H&_t]יB؅{,s Yۏo.D;]wD Joi|i4^Gڙ흒}u#w.F˻IDv\u&/X&|r=BȆۃo X|Kbt]Mg~Ksim𝾷`k.W݇ -v|/m2;}\؁,o>/{|(Kɗw۲/6'v} R00,} 2ݾ[- ,v2{J5Kl[}S;#U|c/=[aR TF- kW;sOlڽL ;7`ᖹ໼zb#5l{zss e8J3viǖ#|ܹ}} G#\DZe}zm־GؒPFƔ 9?_=pn}}{|\pisbs=+˾@q=ŵpz\Xu]uCn?f.._hn\<],y "~Arev\ljP _@y/)&_9zm`}k2i_o^ǫ =o:~ ~;^sЮc&j-|t\׶_8Ž['Օx.8jA/A?n=PkZѐPknL,'K9)ȏ(6нg]}|&맫0b풆 [ˏo旺MuC )0EJ.~}|,r-5!bB`ջle|o`>Yr}h'f|Xcݹ{.rB}Bpj\ >g#n}31-|RȾd. &Y/K}^{_ΕiܽJz9</|FKw_ 1m|ls[B0ީֿFy}>Hqz3)ݒe~翪;-+s@{e?Ի7H;w%`XCM_w.~\{|4{r4Mx)3Bp;Pr}ސ3{32qnB[P-Yn\s;վ_3{|׿_OOOOOOב׉b?` Fsy;}_wo]/8 g {L2cFȯ__.1w4COt{o9BƷ,^՞BbXͻ g8vuq!`hyw]^~ g3|{U{:m#͜}8)߾<=mGV~'ZF9g1ۚyŋ/ҳ(~ g[>[Μ@2߽|] ,ڣ}SM_g4| i/=.wc\\kS )scuTo{+GHw_Υyg\˅G[Sk\innMS/UJ||RcU8,mh<Ӿ۷{ӣ|o9mpnFR_ɾ%17C$ϱb/9֦&O=\a"%o{xo|92R{k9E;x$98ΖԻ3v|7|ݻwgnϻb\?#oɾ5J3{ (u 0uꆼHvCoMn_mqa1ֵ\d_*fs[r|w9dDb}Тsyck!+gd˛^׆qxnnw}_5ݻǙXGJ(Yުq|/Dhs jz-XMꍡa;}3$q=Y!zիW;N_??O @e7{ʹ<[UZl8-R@Z[@.)Y~w{oJML!xC嗿/a7#Bp]d_|](o^.?XW!0gpK@Yr9w{/R˕1-/_|?^Ke}}jL:o#ʗsSᲃk|ZR/eoY}|[ΞO3fR=W Yw}(v=G# a%Fxti߽MP߹=CITP |Iɻ d_ll.W-gCvyɳ`_Ku=R>w7o_d_pok yo b|CLya?Cu f~ CI:R/ę8^Ee?/ nwd]Xg~ ӈ.r[g-!}HBǬzw9 ֦-뾏XvtBy^h;wJdv) @ٽ>wLpS I,}Wޥ/;2s_؛PK.ȾIlLۃoy/gig/&r.5Fah & )"2) ޴ %@Nh5V7pȾ C>^u>Mn_"P1 LLy}%ˎxw}-f~˗|6e{kg}Ϥ>R/d_;-ٹK 7.y.^.~{+p| al/ІfdV7 ٖ+3|׼_]s!Fe-d_l҃tض+aR8&?\d_ R/S_H.ג A5w1v-O\_o۷ȭrM/j/{^9rBr.2Y`j"P2N) XmYHr-G*+CB9ZX@Md_ ּXy{$Y#!-w<;,+"+u "/ɾJOE wxz^Wd庎WV~NeR/̑}2-sĵ#4y%8&Sڰ\UqAY/\= au =` 3˵i=Yy,b6~:R/m}>Gzj!+rGei^v/@KO5R/ʵח˷z󗒓z /PӤ= y|ǩWHr#\~1=gJ4/@5{\&R/-?o"/KFJҝ^nᵤ^+RVz wf^>Y˟U_)(ӐhB{ Jp$ӾHu`$[G2 @q޾[3#5Zv$ G2 @qfcsjMPӾ6^( y^Eh QɾM!e$"/@Ŭnd_ʘɾzt/@qn}`E8 A8 1d_'d&}6( y^d/@ p @d_1Ⱦ@Ӥ^ hH}_.˛7J"Z#I@d_zV7ɾ@̑}jH)d_PV7G b`;8 Wٷ\Ouݟ XӾ)ix Yҙ8%w` p C O @]n(GeӾ{f +"+Pr.21n }7d_ʹPWy^Z"#Y9Yzh @d\de"nd_%+"+I|˗}ەĔ&ᯘ8)_W;^z+a  F?矒@<G~~obG(/KQ>>@$LO|"| yЄq7.~+ˀ+P;FS}g=Jv8@rȱ)#ꏧׯ_~O>OrXn@pXJ<~~>>ܸp],<挓AFիW^?H4g[0(ۗ~|A+S ?8sL}f=I oh:%yАᒖ);z#<hpcj/wv 1eˬGzLHy{w P; c >y g=*RRH1K9xn]11\ޒc/|a S @Ly=7R&YC _xc~i̾`钖#yPuS/Sgzb<hHzD8f>7 ?|#S'Ը+LyАc/Gm!Sl쾱v?![<ƋA_7$()*@֡T0y+2-2!+@$%}֤= [hed-g=eDDb*-}1?<^lbZb R$0N'Oy_ErH4$}yK@;zLeqXE"yЄ˄(syi1ʬ )[{Sob @O SA擇MCJ&yPuK3Lȧ `^Jb$z}駟~'.*@cH<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<n]u\.~Ļ;5<LyPuS#;eB;hrbh Y#yPYx@;xO";H%yp}'2w=Vi5$*e9Ų$ d1 [IT|$|ivITa|:Bج=ID<(֓<8,"yp|Y,F0;ǭKrLa1#gpS>ǔ$yI4r\."W v/ qHD?eUH45%Y u<b)~.# 尗K}? ]uӿ7}>{ߣEjDu]u7|q^z}>5 2o^cHmKcGoaߝ sgH8@3|z*vWx} yH`9YLuc=B 0O 3Ж{lagHdtd51vdxqE$vcWtK7+]sA#ysSF{~V%1hbdK&u <Ǒ~8u^קGɦCSd|ψ @9Ly4Q|Xiۚu3Il@sbLs>v׸vQ=cHM(Wtew>vJ"yccJc_G"v;\j $9z,f"|<eD`2vHW|Xˋ\]%؃Pv8>1&|b"Pc(f_Cc1'yA=1~,|"@$Ӵ+G܇ў;3>][Z%yGs9W{&̱TJ _1 P3`g2wYRʣ @$ؕc;Ƅj#y,f#ܛH(Al@#󄏚)J"yL9a#Q&y$q$sKqLI ,fYG ͭKr2w0߿8~*|P#;A i"LyM9Q|k|њ-b@$ ,rJ/ { $ r;jx Tr867ყ VI@ed9sa}2&Tr3c"5Ϙ@=$cv`{I6p#6C 5N!"eVSbSA4x@;&F(>V+cz DEI̱XJ?wĎ"@$hoW͎ ÏRNPpm \3@]n]h9i tqDOxxz~A== 6 @$K8R5Q."{mGwYZp /PH!;oz?*p6SP=rc~#"wxo_纻̏P?x2P*cJ-risc}9~1E_9"1ae?>eT1_>(EE(#y@v2zDݬskE(PLdaW*!|8|r^(Pv`W510ZoJ$|M,Wa8#  [rH1X`e?O峔1[%-A%<v  l‡A"3ܺ0#crzy-K;Wzqwwwww* yY)eݍǓATvǔKݛ㡩 `_0)|Dnnq&>h`?1ݲ 9էF!}gO Nr9υ~vLyPibs-&> yPucm\O0A]>ֳṉO-uȅHj>Ahw^.-,!yPƍ9s cI,ݣy)|g1xZyӎo?u' f[S$rg%| N8ZY,s,gߩ>Iu01APaG!<-$E.LH!y*8s +,w7 L'y-UUȅ9Q=%3[HɃ=n3ǘA-7+W3T)_[%e(xd 0E`SF>(bǙW4}>Z.# [$4f: |-ڿch,"P"{i7JccL6+5)chsIZ|s7Gcy.bZ4sy}oz|w޾}Dx @$2,s -c(=y |f @$؈t_g1AZ0ZRXK(҂E.=2H{\DKWؕhy/sA(r㱻P2c텓9Lbeg}ǖ9r<" |e}2%pmF[3z={]9`>O 6F-l298lc0Q+wrs3I!yjdgQɣM"Hid @9Q <QɃRj:y %sm9HLAb pA9Q&Y=dHA$|sH- ۳863(eז#r{M [x8iHoK#Xzyzɔq mkZW0V?( :rd~h<0\jbrAv$yl=ȶܯJ!s`o r*j9h"|@l4j]Lz6O1}m}}'AIМ#0|;ձ9H'@$h1cq>^*RZ)1KIЄh>dG9ֵۚY[H|71Vy.wؕ"y@Ďr_o2 y@X9vϩA5aJ9YD%x)JxYa}X:!vXǔokӳ&>=rG D[f^"sEMܿ{1ڕJ&y@wP;ba@<]wwOǺheM*t|<֝)s>m|]9MP뺮K C[6p>s9 Z\H^@_ǎ>sLP;S@\]c{uDѿ(\xuw-@`L<$ Lb <=Y`Tɬ0O<hz^@<;b<n].Y-/e뺮s2TFRH@Y)P%<H*cI B*cI Bx`;j*$1bGOwH-38F]wu]׹&@Mv?ba}˘<ŋ= [h6[F<̟2z>Ly@Ӣ!y@(SSrHdIosYS=X<<D0q#y@m&: "?"ns^Ozu0t0{@#2<A֧myCKBgͱ@H)c?I ɖo2 [ľQc钖HT>,s4}+^\+)u'K?@NF̞̿%^!?YfX,#$*05#/eܔe|m=|a2IK c_dNE/t=)sz,#8RztJ(%gI1mʱ'^:YI'1R^F)<8ؚvϽ:b1^py]U;ٽQxŋ/_|@/zEZ/ֽKS})_qr`seD^1>Zu 2&lcHs^r;h}v%2% lq{{{{{;eH9KI'?@ 3xR>k*}۩R/ˈ9ș|pIKS3c~iCF.)`:LE(>!-'Ms3GwHċ_ /K8JFً ѵEwX;޽{ݻ?5ަt?,}Aqc-[Vp#3#Ai;hޑJ|Q'~cx,`ҧ?;|{;_hCMszxܡ%/W_}W珥s_Yj* c@f?rO΍,}>?p87#$%WEHjj_usȳMۣk%FG(=>1fx>?x5LHދa(II!~ܿ믿GrDsIA͋uZn Y/wL-} 'W`D> G}xUώ$JjlhǿNI KZOuh6Yd{^zG}G{)??^~__No<*bQ౔ɠ|Ie~ޤHM/"/"#yPxِ֞#Do j/25"sl'ybq-Ku_A(S"C%U[–g@H1&%P~x͛wtʐ9h_}P&i4YԿ_oo#/o~܍Do~@>y챫A- |;m{CJ!I@ i#Ƀ*h[b#7o~u`)i#6Ƀʤǎ.HTG-lz/Ib IsIm<(B.pֽogJKo!1sA7M{-lY{SB(Ly\ֽ8Ц!mNbcw]D"߁^x%g/Ƀj`,mcjqJs&I7~[ڣIIwț7?ocP`_'cwV`|_,3["1b/3;lة!p@nEGe [2Uy5$[wHb!yohuw75"p81L'p$ɃL-xXwmZY( 7 xO-rI $N3Gi8j̿_ź(Pf92pH@-[ߏ G<nݤ퇿;ɗr&S-^HgJ yĖ[^,}&ޥ.@XɃ2ؾ-cP.kZt#>v9ֿCT)n\+l0Aϋǎ{OQSab~mg8hYz0Hx9/B1J! l_ 4"؛cgm2.P>S@X9DE\<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$zuvM' P;S19KE.1HO>v$%y$|@$g̟"|@$$H j!y,&|@$(䱉e<2>,d xɄA8lHǡd ǐs{AlG9zb@(l ݺ!v@;Q=zMv8eG@h55K,Z$ Ķ.sd`-՘Zbw.m @ S1@q,](K7}@9Q1pr LyTiǐ #|dFG({9#=>u]uC8shzq @ $d X!v尰%88SLJ&y4X:!sQ]|j!>bo޼y㏮9$Vxცl}F *`/|P| kݮ[Fb<~g5>8^ʏbSwI21dhSһQF2^$o\8ܖ|q@>2@o̎?)"[lٕcH"ym!|2v^s=<96+slZ m7stHo#z)"@T2@9$EBH3<^{1$sl'yvۯ<L98z2$.GdWops3GKI,i+*gJGm,r!LGUd6yR&Ƀn&O/%ʽ\g#RI}K 9Xz?A9zf:'yƲT6"%2Err!.9o/pf:8.'< pA-\ғ9b<8V>v%sP}8E敶+ǐj!yp '|l s."@\2gfI{9e!=<&@l2Iq dSD]əOHwY2b u(]98ٷ`Cuϋy"r!yPƍX9 dzfI1t9<+<( >lD e>㦈 0ϮE򠼛2y.f:g<Y@$J5+ 2A0E ɃoB@T5ܦZ ]9hA=7FB,WMݲ3ۣR2$q3XG\v!Ƀ:o @"+һϙKws9 la <&^>lD FaHDgw9 ؕҞ*"<ĮP>yDy-Dr@$I! @j @$ @J>(W$8';7x*h^bWh>9EywIg<4o"s@lA-2CXOihFJz+LOrab<T%=@l$s@<-)Dr=!s@l0IWN3NAes2D֑9$`gGۈT$ ;ZVBIN @ ]bXJ @ 2P(92I@5D(Y-@:r{mDj8$t$ ",%sam:5d/P>>G}G `PJw޽{n~~2Z L ndͲ9 ~l5.@ 6_ ` Ř&ݷo߾}v+.ۑ?i@>_`C}3b@ 0s L _?G~??C ʷ3Y`?(8~7|͐?O>䣏>裏RSI~/P!a۷<Gl#Y[;!~|AE?w!E˩;^?n ӟ3kZ !EZ^ݻwޥ0hLl6;ߔݹeCt߾}! /p,(߹{ @4$7o޼y^+S}|@vBN뎝*_HsuX{;pmߖB4_0ǧ#} ˟92 q~nc4`4_ #~s?0.(/PSm=L ?2?(߱#k'AwY{4m (;MBV>57TzԶu@ 3Ns x:wM(4_?vb:`H :] aX; bwJd/Pߵ I8+ܹ.!8Y쉴۾;vMn,;7 !˚sΝ;M _sۻ- +pqQ؟( b;s_m.˦1iM W:]~Cc}"I ӕu=e Z`Pq o&'?6a/O;VD@_{֟Lioq _ k'smJݧX1qY@1ng,iCz әM~~wX_ jC?LG"oP(4mnC)‰@oHݶWJ'I-O杳}BLǟ'ȍ ӄq~ߎO>O_?vvZkc*$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TC=};k@,Ck~_ L-_,ͺ=%e6hG]߇~+v`,HV>Kͦa"FvRI9}-1_8ڷ0MHyks3|Y9.ޭ[-Z@{T9>v|{!=Q3:|} 4w}?z;w%/@r\R]u]|-1e^;;Gk珍cwFhº17}=˱_ۗ}9?UkڄQ go P6ZC=em87[\7_ S᫘CV(ۥ~GPG( P0k{s-.m_'OZ.L߱R9і}/E8mIeI)vh:0@._-?nK`Z&1Go$4֝&63HFIxecEHRbfK. i_h>rޥc'!M}S)yb۪sLy kww9fߗ p4h {C7 5qmou˄*Fe/uӏݽ\_O0@_9/7k[IǑc] /vu[XO"Qrtds|u'昩w{Jm&Ⱦp~9{:2N  ;n ' J%x?/+׎10I@R^4aPߚHbߥsR.Y THȁU/Fi5KU<0*d/Đߴ߁mMez<;;@ˬ"BJgg_H'|s]$oWٙX CA=-_Nvi$@_x/9}! t;2wcXA@ac7J)@G@8 ")YJ&})O9'0P.8n>0PHj9 e/-$`,/ %3zmCu]~?u[%`/p2M؞;w77m E' Wsu$1 J@_ "m}%`f9?>8Z y(d_(iҵɿ_H7w|䖊Xs([*0A7OLM-} 05s? X:^Ϗgy_ (8 f pV!_hSQ˚_MWQy/4Gre GM!9>Pi@YNe LЄpߑcc'_ L z&I [~X/@ 7 A;LgGPVP/`}7G^$`h U}Y{q%/Tbyc7j_[w%`h [ξ6v6 5en\IP; &LjaGSzP/O8 * K=nn$` {-@cY 'B1d_`~n?LY{ J'B7vs|.L/dm9 3Z?ˌ{ٛOB0ILɾk.Q0F,?h}pB;L}dD,@ _(y 'BF"˾2~5!k r%Bd_Xww77_|8@k \0I-o[` 3 94n2 ?NF@>0AȾQL O0@ʾ~wwVBL ! ޶ L._HdA lc0Xb?]V%`HKd_ =qї "Ze/ Xξ6ví+m_Y{9 &&ppy 0Le_ =7= b!:ob3xԱ˙8/`a'`u 9(/") lcCC=|H -oiݹ8-;0l%jn@Z\&\&;bK 뉿 [zV$`XC %e_ 6~LHN]8ݝ`G)GGH^1*6` d_ >2H0G+7vs|co gH_xf9 ȁi@8Xp_%`x$d_^c rΓ /ܼOb/ɿQyh MG5~'!Xn/M{ '~ H|0mi `'`=[0-in~Jgo$`q}M\݀|_c-r|#s}xy~ѻ;G8s6y @ /P:b Tn `qlW򙓀Klɴ_ 6c[z$`"Rge1B&/}2hF@$`'R g>rINn꺮{':Jy(P&ɾ@L-j90),`-SD0e1e18GM鏷-90%))O`ȟuȟKad_2!&[xF%`r%RaDgT ?/Xξ6ve/#M09ɚ @JA%Sd_V07%[G /D<:O?jo=gW ㈿$%-3+|' P:c V<!n2~H!r@μC+spw_3[ν zb}LXC~xy>w ɵϹ\zaLngx}+IJ(ɿgKW4N{%*`Xl´_ã][wo `0Ⱦp2;gۿ"U,9 0Ǵ_V?!-8r p.9>Swwn!84osԚc!$`_6Zξ6v(wt~K #d_OGEdS_$`_$ _ș 6vέ%P6J9Keb>P7 /-?Nh+d_ |H^ qM47۷[W%`HCrcjLe@LG6v GuXb ?&"Dd/9>bj¤ 4vɾ =PJ1 \D _Jۨ 7sY9(l/V}v]׍?#ņ`r0Ⱦ|Y|,&wޤ2 sͰK([0  ɭYu cۣkH_߰=_ȟ) 72@ط"nn̄;M (`[KZ]us'@>9e L c>l;V{\aR};7#P`[g0=|?onr:fto!18i (8n z"!I͂5)폹t6ߩr_5$` m]MuׯqX[mZsk{ɾ>`ш7T&Z P+O2@M֦ҹ_;|D m46 x[Muˇ]G =7S+]u]hl?.oZ67>X#0 kE_>1&b5[kʗ0:+Τ[Z՝s^aDX[%J;%Qy( mb PrlUPqM.yl-jf'Y{w%22(C̎_\zt-x M3h>!p OV&m7RSc~@ƷG]u~ Ē7jpnx}?<*uH F<'۳w81 inbmV%J +7+,k.?櫯>J3#|ÐkhmoK- ?Ķ/_.s9}Abߘ{ϗn_܈ \E@9!ƥ}5 1r f"_&1 1ÑB1 ގOV_; 1ᄳL#~zbn!.Bvz[2[+j\u]M:YSr`oD6y]˃U?G K`?Kfb 9-k{:Q șMI)H̹麮pp HOo@4!1 1y$|%E p.7k~I)'JV.[ wM8anɿq۱K37+^onZJ1LM}" z]u=Oíeo 8UǛf!#Ms@YLVbC>ڼ+4LI3`/pV9Wp9{z8X P /˾:ŻnoryifsҐD(Vk0/Re/1.@IoP0a@>]rm ݙ#ջ?)O_Skp^8[ P9p ?'Lș[}?_n-`Q)X@ʾVn![ p [u$`ej9ofH.4 Ka/@J/M0V݄c\7ouZ+K\>,Q8{L owkg \gW()^Ya/@JiowkgD HCKm3| P+w) @L-X\/s:sgxC L}* ^0@(5 0Ǵ_}WXh wE0}\甀kdD% ô_cՑ}f VF@HE]* 0f@ %f_G;ngAYm#pB]U?u3(-dKi<=Z^. pOmɿocm$v˰bn1)wo-pwϲiF L-$W# @A oѐcoz?K;Z[ˈ̭}H1Qp8^ugYCP~y(pl@=>ԥkm8nsGO.g2((@L}Ӑa-i:z-q[j%'ߴL8*P~}:pgSL͂-g$Q:0[+R5~8:ȾY>p |n5qx9?g0RswnoJg/J!Լs`+i@dI%9Zp]*P ٷtpM=p⯷̑L|I2"4W-\R5m@YL!M.=QvH9j4Z2h$c V}a %J+ȟi@d_ϸ28$V_mOuV΃-_pVP ~v̭} $Hyk(ZӺ@ |#N.k==֫0z%r;Hyg2+Hn'p]=_!6yi@d_%pGAֳȇi@d_⑀seXAG,/i.K0u0`Y%=@ |3W% 8?f6/gs=/T L&o1(Ɂ[BFnFΉ0 `NWi@d_r&S.w.o]#R 8ne/k} WV NKL8K6y Osk~e_'_] b05~9d_ 5Gj߷V`^%ך_|G,ȚUX5\";p?\׍8s s!t1cJHɾA>-Ž%󊉿6y˙:G1ȟK$|X{Dp&)].˄cYd_\%8l'x4W5yGV) z?{L h{ GxmX&e 8)2,-08 |.x'1@tq%6p*?.(p(\# .|B L`!|@۸@ L |혔UZxď>/Ĺ^vvrL&?' 8U|O7k׵4bnnq{{s}rsBJ vm#)u(l2vZMs~Η@ZaO=j A9؇?.4y8}SZq옋i'%wfA |F@MA`i>w3 F͙弇VbtspY-Nn&|TM5iB 0mnݿ~.][˾5(cg˴AS+57M_6\Gǡ^[m(Ko\}yfzgŸxM7?3[u|DzԽ xg+哕? |׶:4./+Rҵrrļ^ۚ/j؏jL_NWe0Dvr5Rz,߹.\g_k~i1fFgi{!|&[>.mYk2bo,ycDZҼ> 8G[Or a,s\.W.ϗ۷o>^]95,~"@!=~r yo]G{9=c2}N]*m[;N!Z-ܶrSnA3x܊ڐ0v512u2./жRr~J[wx:1mp6j sk~Շ~!~=')C`/G1ڣrWt>϶U(ɾa'ܖ^w|_駟~sw9]b߸ ?[Ka Mk{v)1 /_P??Z~A]wsd]u_~0Wq ! xm^ څg۳.:sȪ%B\W<צW;+F2tLۂosǤG ך_?LT6c.'_#ӆQWկ~xCrZ$,_B\~>yۜ補eZ1|<$`+t;/Ⱦfp8֝Tp۱+Wo޼y Y(Z'sda[k~|cg \Ce_c؊s{CJ!C&1-c۷o߾};W!!xl4Rĸus] U&R9z npVߵwmۻ==Ϝ[Ӻ<'_9ɿcooIy8JU|c+SVf[c.y/iWΙ>kcm/ ϔZ[ߐϙ[;< oFg?g}g /˿sfD筻aۂ&ʾ\67;y%mIR8WBIu&v1/6vhOt{rj9+>Jtje/D7`0J퍤Ͼ///@Mkͽ|Ⱦ!k/s=7VjoہwH|ʾgk!wY[ jʾEJXK%  Osw90Cn1_R.Heߚ@DޖM0ͩ'_sCR_b糯5@k<-gxk~kfqÿ;+y/.Le X ګQ\? %[>ږ}HY~'e;t.kY0&ksY~2|]gy*) ˾Y[Ɔ}?~dd5Q?_rmIyf+|݀ZH7t\\6bsFrɻg/aJmߚy6e_`tK>&̾~T |HE^Εi5c0״ߺ597߳ R/%q-06}[+ϱ9+l(ki&qV+Oan)ݠ--˾mysKE^Jd 9vV>㳜rV/}!%Yξ9Gee  gG3s)|lΖ|5ϐz kmKe_,32oگMހ6Y Y[%ixٶ5fy:g<!R+AY`}ӿ-eiO |ZRdL?>w p$札˺agS%g-xS?P;+!zC9P8Lk{8G;d_e-bnok5@{ &nsMoˀU>ltɾ unJ̾NY ֗Qʥtg._ǫ,C>߫3[[b^{N5ner T.5ko]ZZ!B ZȾx9ayԩ2YJߪ+$l\+MbX!O{S{f 9n-{eߒN=|Xw+Jٜ{q֊_uyPZ1zďѡki=9۲Zܦjێ@YG)9@W ]e(Gg_ }>ؓF`X,BnG}ӿcqڱ{6nm]Yr޾ y"i/sξc1t*@庑cf_-1tY~s-SylG\'`v>0_2%2opr-z`[{{{{{= p6|noouC&ǗUo!'wwGԲi/VR q˾GYX*`6}O?.| VhUr, 6v;Mp;*`ɾqdjPg9O^~ֲ@kdߔ,P$`=&o51rYqY/mn-n_wZξjWzHYdA(Vùes29[~";že/j=,2 co}g>unv{{{{{;Wt#s!vݽ~|g@ltگ5T"u/Ue}Ӱ} ; =V \QȾk{1g&9X}}) wsi 9% pQ,g_k~28Mu¹HZbt:,'!F g+oJg/@vlpexlO|X S˫$`c 4a$;KO=Mb3Y IȾ0 ZT2u]79[63OK8r𝒀X7 ˃x/Y֒o,ȟ.S0@-WkMkIk}k 7/I5ݚ +ni7`? ڴBٷ&;I  Z}@-e7jϚ_` Z`cP7Ho`. }[c@_N#CMdߺ D. s=<dA-_7 '5@0b}o |(36yr C_eξ5%  ClN]W8mI|ȾPHp.ײ a`/ [fY[?J&bf1P Ґ}DF%C< DdVξ50}'@9߃5B0e"&ow.К_\0!Z k^0ǚ_҉QH璀!uv V/?2 ./A=@Yo*h cd_u#*%Z @A2j$6Ě_ ]e_Ƭ{wi˔MZ 6e0-pI0l90ZZ2Cm5c05} e@߃J5$`J_e5aJ!SjL#60eLʾ\g@(rxˌWtɟKIm5He-hTո ˛5==C|}h +HK%Qsj$`[~ҥqͯ 2LJ}///m` .E/cך_6ѥ[k@01Ⱦ}#a$`/ω=ך_H| 旱畲/׈Ļ@$`֒} 7LP`L$`B,/}Y<}OgݮMJ!%Gn0%@"0]el9Z 7wOf\˾ɾ!&o[ zo\6IY>2?ٗK_mߌl`/@}$}_?˲/7vmb  tsgJel9Z i܅B.K ,ù` 8es-k~{z'{mwLٗK @ o֬`{s$k~e_3%B>K 0>0%7wTe_Ɩ5&f]>IiȾ}ȁ[ k~!豅 y_|#f/cOk~e_&fC%﷼Kȥs="@$m}ʾ<<_sX^q$d_B,oʰ p 2} o$`⑀/c/&1d_&@  xw旱_/%!O xQKȥE goa$`i'ٗ痖\+?H0񴐀e_B,o &O x'}[ξP x0Ԕe_BȾD @<'Z7#.ݺN?-/,ӟi5\l˾j=@ =JYW%"P:r01䜀Ǻ}rٗ痖\+P 01䙀e_B,ou0S>3 x`"00 x.7˾,]VM^V6gls*`ٗ/%CsD o$`bH5==}h @cTٗK @ _~$ñ xx\}{ɾ<<_v<#Q X%n+$`bؓVel9Z @k_fIİ6˾}`J01$=.a9/+k~y|D_V!<˾=}`  @ Xely/0H ٗ1@8]$`#.!/F0 ۈFX> kL`-y!z/QHa/sd_' 2 yR|/N%: ac78K"0! |h 1$%0؏#r )k~['_N##=^^d_Cd0fq ɂ 2ڱ<8KF$`yD?QKv$`vX") &977/&5 j _ ==J}} =H @z/E7ϵQIp.r&R< DTBȇG_m} W/U ղ/FB0Yl}\+@_%Q'y p.k~Kgc7(K$`<ʾPHB:4G8Mj&@_%#aJ$4  k~K47Ar lR\/H56v &oAj$0}/̒Y[j'+$`1;w/J 0 @_XAZfQ@_XM 6v_ب <ɾ@H@<)Lɾ6# p0P~d_h Q,'`!̍z}"Z~-%7~_NJQJIgDŽ_O‰ sɾZ/@rHd_ RX{G/LI@><<}/dA`ly/@2"1!=G!;09GLIMIb!k0Gy}㈿P Vsd_`?!iܨ8 xˑ>(/Ib76)P0  'B$`ɾY_ aC / Uepe_ *$anԃ $B$``̽9_ ܈ 2(/'"@˧;/#O#B$`hV!B$`F=Ⱦ@n_@_܈$`ӄ_/ 0&+$`(={ɾ@i_` ю I^!@]k EH?5/P"XAj@_`5 rc# @-_`# ( Mv O#5Hp{ K#{L"IM5/P+B򱼱@_ " Rwj9Z MX=%h $"}V@R0auGI&'EȾ@_40g`n¯ LN&@G@$``k/ dD)~Ld_k_ ;0J'`577/_ ko%`.hȾs_0in¯ L #]?G=L$@ݖ5!_`0hgͯ p(r({'/>/P'H@e_#@U$`h` @ڼ+'Ւ(]k~7v`? @Z?ZξE @d__!07 >h @>ڹyMe_T_Q0yoܽ  4M,-M}$`8n!H\u |Xξ!NvxB{\.c6WHփ09s x 4wH8b/U1 Prn+Kxr!M#R&:Hc9||c/ kV1 `z/@ݬ(Ĝ Ú_k{Zc/@<-b9wͯ-"1!1{X 4GbNCbA/s9V1a3ĸH &1!1Qk~_ fsV12c6WHiH[ }"1!1 |_Ii䙘Vp P$9y8 ,96Gd%fHC g%f8 S q#TH P!B/@_ *$TH P!B/@V"ΦIENDB`espresso-5.1/Doc/images/fcc_sc.png0000644000175000017500000005675212341373034015221 0ustar mbambaPNG  IHDR oFFs`s̓ pHYs  ~ vpAg8Sx]rIDATx=rֽarH%\ rՑwqКL'úkxu*G5`&F7п>t:NWM        p{XN~87|7 p͛7o޼W3__ׯ_+'777777 g~_~/_߿ͻt:N' W3>|_Voۗ_~_z+KL\W_}W1k8c wVsW` /'tԋeWjݴׯ_~c( I^?~߼y͛G e_>wQ_>ikU_Jsj; \ n~mS6`M}ȯ|Ç??~~_ua_g__׿//w~)! jWZ{. kXL~8 _|E;v^O/H I?vWy͛7Wh?}H Td6wܬ;`O;XH p!vf_Nn !uhݮ{%~l5ƿס@~>殎%UO5XJ"\޾ةS_Vy_^>НFصݐ",K~ /.N_ky=-ȯ_`[/ȅ Vک?ϒ pI W|:[,C.`B~5uW^z*>CĈP_6,;|:u+ɯbwk`<2|x$hwI)dW@pj^rR  _`2`ߟy\` `PC_# lUxW(SWľag|թ \ Tc< %8ZxLl䫞&.Կ_._W~JCzv bאկ_:>6-9 N~*u=`oהkg; :6U` !J'ˆSkc`-+y3dk?>N L~*5o@Ml +PQCW ܍M䮻.5_OmǏ?_kSh~g@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@76K\_____/t:ْG~H&P !)G1?!A G+d5Fex4MӿUN[RS E-5ͥ${)9 5+RiݑtK,_ ʏ77I$  d%in$m_}>A4F$ g%)S +囦JI @ W !N%RAɯlJ$J$-_,_d2i8 . {"i8J` `S9RAp+FbW`o,CWҪT n|guAt+@DKW,?mU\^+ک@ mi~(c}ҸAY=@W!,E~%Qȟ u ې_I}dE~XA:DWcYɯl^H~%}XH 0S:u s5+ kz,VWCYx1"R~.lE~ :D珈,WW,:W !,)Jxţ,t+ CYYyWAkyA( B~@x 'dW3r,-A@~DxG%_, R,@IYl+P55M4? i~_H TJxM 46k4ɯ@u| @mʋyuF~*"GR 9-m_5ZAuP=+^ҏ\",2( ˴ %DKro/(A}C~Ťs"龏_H Hxe*ACYD!'W!E^Y >{HzHʜGӥ=(Jl,O{HzHJj\ H dOxe/lHzHJmDX`_+1sHz7DX`/+%\dE!")E'^] +@ lI~!R%A<&amȯ@Wj~I5M4۷zE~&Bk^IƉ@l76&?~h;,ўQ4M<<#l{6"Kȯ@rW2v4[<@ GmMCxֽ0z $AxR 2ؙ CX Wx ؍ JX`9؁ X =XB~6%9ayW`#+  _WX-",N~"^@8Bxyȅ Lxu;2ɯjWN",0D~V rNW`1v`{MmL%]+0 0DZ+0 2vTп]z\NdC!W_(I;W"Y ^iϔ:ɯ WzGXT+0Hx;P3(k`T+p Лm",G~ ca+ =&+$WP*&CȯP)b+ 9_:+؁4M4=a +TDx ",/ BWHL< r'BWH>+z\/%H 9_@+"@^W( 0v%DXȅ ^j#@WȞ )3vDXH ^!Gp8<^NP3x}P~~5v:߿+MhY rI.'+`0D~ +aO~8S_K. 0 -.^>S_`*W8#п]+|"@  @W^;ˉI~j+00slj#R)6%JuW  @ W*";a(ۍM@ WB8"쥍 gt:JW ';۳ȯKxelp8H~@+=ca(JQW`9c ",e_) ce<@W'@نꭁ }+^u;)< @W$@DX"ؒ&\ȯdCx`M4Mc;O }+^L}iO^EX\L~%i+c /п]`_+^^Xy[ 5קt:$S X j<>>>}WlW")^ w^;$\ ȯLx24v( Wv#1vJ%DX')HP3-ɯlDxRfF`+ @ ZW"^;tJDX_Bxra}M4Mc;c<++^W7zb ,KȯFxRf%X W=f9~L`-+@L}e-Wf^,!2 W`9yW&^2;s8EXȯ^>",W^ 2vA (Z& +@`(DXȯ|"e3vMO~ExODXת @yR В_+%0v؋ MP8p8<<<>>>}۽}uv:NP*_+"e3vHSjZ P6 +P'ctu_ 'ë0ȯ^z;%!HxH P(+@W ",@BaJ%Jx`+P59>Pp 9O1v@~ݍ_t;ɺW^u `ܺTr[S_;oj]74?puuu}k`Ot݀x;Px?,3uSY J~M@ i8F>(O;v-ۙXȯ2vZ^#50|`Wu0v\8.@cl4 5;P؁GX ׍8ݻkP/_w@ j4Mӿ , c.eP*_wr{ku2v(gm,Pб|t`@Ij`Pu!X }K (;PpxxXݻ)VRdI@ E];.S_Rxs er9u۔w5v7Y߽{||WeX`{&؎@L}5oGئiۏ Bgm$޹% MmBwt:@n^z<Se^YepB##lb)JcXP*'au j`Pgws#6bY S_] (S."2v{l͟:$|N"`sSOk`R8,v})z@<@7ѻ<^5oCk`ri5> ihݫC^ma1@rt}:N ¦|v0v(]+a/uiݻǷo_ sCTJ[M4߽Ej& ]v+a|c gmrhzL ]",@WxwI))56b/f%^iq@}.GR7ʑ؁izEr]nom$VJX>Hc%Θ(վuϡp{lKF LK5¶)ti93|`3v(z{^G`i>41F:`qfL)ͱ]-eHWeu;D׾\>??{ϘIjc- L^CK c,Ji'Kc Gx ۄq@\Ck]Ltއ>ڟG)?v@>cc<^+a5^]O=S ?; '%PP}kȿ(s95DsQҘQ޺q^ir"PtkXO]}s$ל.|ml7 Pہ\8X֓> ar8#l5),e9B.+^EX`kXG}Ǎ)Crר6 =OzlXvv46t.߁t8X m9אX ꌰݽ˜h9؆Z^C~f/R'ncMјsX8ic @.J !? *'\[E}1L$ky Nf1vHO5waYє,QY;eLL;yi@j!:UM^znu^>P^؁\ HSxRV[x EXOplW%l+c קt:_oe}^oc%x_50~۷[Zk(~?Uե~~؋w_' } ῵߯Wi]r?nUۖ=ڲm?S3u-֏@oipP75i@yRp"zX[=#r.`o N%Jy6c Hc/,}ET@ /nu  P(.cLg , 1$EX[ Em1Ù<0v؊ .&n) -?4'|GQ| ,6Ot!>m@Mxn;ot-uꇳ4'ؖiݻǷoClk $--Msuuu}vU{;^S`%,}1%1qISB uŲ*`Vog_{b^-nwuuR+aS{|uOj<Rb n'}og+aklMmG l%l:b笍V?<`mk:ls mh6=ʘ򀂡pi@<&ih[ qXZ 6mRls™ @:<D'OiO8gGx]G^Ḱ1Ժ_Z  ya!Stqlo!ޥʘ184;Ax͗ [>l:RD|;c reHI`ekDXXT ^k^QRakbL &  =+Zʛ;n2 5v`vsV;W<+K͏9Vc H5z`(^]]]>=&8c ^| }?M;  ޼?ka֞矯 ^0ea07;7)]weNUy8#cm)pI.^bLq*g*>z2W2@ 5$$0)pFd  ]eZ OMݵ@8A0Dx%6{GaY1 ]KgUy0v^ٖKr ²Lc ?ֽpRTGxe/",iRgvaYOc #켄[{}/Q鈏]+)aA7ʎn˱Le E;g4 t:NzϞ Z goGI=K;JW?ԝei޽{||5mxЛ_ 36-VvW>0P8ᕔY KJWЮXm, 6ԩL.LqS/^E7W¶JX3^4mܩ{gWv#l:ڣ*@kCx$V²Ny[Xbꮊ6v8H>v.`jooP|^tm7Aeo,;|R <SwD t*)RP*ZKr\%ԥ۝/M V)y~ kduo}}J DQz !R ^G% Okc̓5O,{Ie.#eb6ok(OW\O)noPDXbSBI/CQ K<-:_ *d~( !%=;䰧 |9Q*i@҄W;?:%eFC`H w+,!YQpŎlC5|L9#BGKwO1Y EXr<G}a_+/#{bk+pu%B\ j؊ xؒ[ު|.k`Sf98&18gW Dmr EK[ciOK$z>lOxaݖ[26{pxx.²5L2dr6vb^%D%[Nx.9G$) HJ U^Pi/%"l>cPmIΆm@ ",e(푒 2x!d=Kxba!ǫ=e lhw.(K[wExR(a؁ҹ O5'–z m05j`]n?S @ R.M K֮e`]K2Zc` &g6g/B+OY/_+ݟ/čxk9XH ,Kr8@ۡWBcr|,0Ww^ZEXyBDXBk`u-'אT Vs+@߶֤WC+Epexx6 6v-`aL$ǣ6-geǾ47ٚl0Dx>+6Muoo#?^8m41^HpW66ûwovC A;য়V\YL#e8u-}i>"n`vKIGkkUm0HSVZS_[C|fxN~4#쮇[>5^zIvxo/7Z.e"x:^J^ǽWcKxXܕ+)vlm{Q pӵתw 3v|MJ0ol:v>rIx!<¶g S{Xuy7 Ϸvv: }ֱgӤrj5ihHOSio3l4 ƽuKmWuYF1acN"8n~}-2'gcm|{B?;vi{6A5__K;`+֚rgc_kW^)x<7J%vKr -xWͣb>k0Rcj}̭חAxXbl}kz=V®w?C:~>ݗoVݻz5~}\;uK l<W~yyה>AK֡8?'~pxx, ! Oi_N癟_ڼ뱰]g_6uIx>}iFXcG&hH?f 䲯>oW^JcB?yu_Տoƌ|XUJӖKm3C~2=iqקaײЀ2g)?:4Y%[c}¥[Y V)RNhŗb~]GqlZE.u{j0ok._['%,^,ߺ"XZyER,kCCȯ[?'Ky1v`H?h<" dk y}m|BdI 0$9?_[#쾣ϋDX1ol?_y9k;o Qt[fԏ e L{H_Z2 YoW+/X4V{J y Mi˾׾$tڏ`dY5欻Hbkk`V Jo}?[Z +zR>fx9-?|? ˯{RկQw ljsTsڎ{׮y yJ~akQtݗgV )~wi\Vÿ);.]4lm_[ V-qakkCu薒.D߼kGf 8+d@}ʺ1q(]KkSeSX[3_93GKmwZ95ג?o\ql:_t+{sٯCk`d, oh}kw}S ah%i5AmiW{n|;Y;؁^-㷏٩3gIA^?j)gl̈́Weo}wtwlliLeii9o[{]k[l׮mIxk?cۅ֩/d1?O&7e/@y.6cngeac-sc(j{BcZӟ?uu^fǏ?~(e|%rf~}z:]- g8UE?[bc[Cf;#~xm徾rv@//n?8;NV]KHܷ &95d uN~mL~e'(uk[[1&6͜pP;vׯ_no鶠U٩z(u2o[%8dSwW gַoᯆ]Z^WXJ݋jίSkIyo~kV#-?XίR_: +[oᯆn16{m}G<c/k_m@:[kS[o曩ׯOCki[^zU{Cn[G_dI(=Hy)nW ַ:mKƽνr+ּֽ55mj5Ssg<_}W_}' _otl7o޼yͯ]Ç>t [ kΗl*5)¦txJڣ˯ַ_{@B/к%9]fx+KlaK;`}k.ȯ!Ϳ5oE%dm7voou__??C"G]K>A6t+^CP[_]EukA@Gt?ۻַͯ;-k<{'$WN)(ÍMQ +?fL.="Cqf@軻yxG6NiWTe~hO 5H;Ǟ5`5+x1+eyxhE'v><SwwCX\^!CejO?є=[zX>oMq: oljco-[mcZK. 9!I,^mV>{>?k~o 6#lAۇWr!2U_X. +piO4 %uON!+B\[FxVjyy-XYW>F$#͑^Q^WޏFaKܣƕcrɭ9v+* VAV /o\ %{%AC+amJص«}e9|eA + d}߮+"Ada#j˂ ,j l.>"$ 6X]"lM۸;޽{||{P;V8;T2+9`ُklL'^چQ6Un/\-2ߒ HGϯ!coe~Y׾#RޞnzAVLUWXk_ayi i=#ʖ_oe=vVUזܥ-6wkUmy|~p,JX^G}' Ca5Ē+\2\icPm_Jˍu ϲ)׽vVOWۜe~a كϨ&Y]+k1x5uv]vfP`sC`[Vb&,֍]3Wr1^?mVb;ԦKou W #,uӟ=S St~v=5KlI cW~w4iixaZ 5*0Rk 츩Ֆdԛd0P= =~ww8\| R}kEIG%xٯalV֓CZ6 z",[a|`ҽ^K~קFtk ,Kc~:ɯTm=DXyU$ WF$7_iiO̜~ϐ<^[Du.>+$~ez֋:aC6{ }:K !{ KIpUreI]+wmUqYy"~-_^a*ᕾgxtwv?}U_xlGRamIyf^: ^a*ᕩ&䣢.EAtdS+L%"2\cXSsdկ-k`l[lԸd wKy;<+L%\w xuwvd0D~ ERM 6WJxT_ޏq"SR/_>#BW7ᕩWC1vW@/ 0UH??u8@ZU_=9|k\Z?9>W. ,x`_A@8NݯI^a*-;pkc鮭zL5e=|""BxTm'g-ۖ~u<>}?$;z_ʯ 0 e}ɇNx.5Xe-!k`) _a+E-@WXb(Z `:ջUFe>c K, 2s 3 OcvYȓ 0، \@8Ok(Jqw'h =Xg;%XaXN+XkG5 w ȯg%v9ŦdEa@xDZVscp\____o g0P  w+k<5F`R5x4" {|~#zV~e]",@yWXWyytVA~_/Oy eXPkch?o[{.!_+ I0  w+e֮>́eCC+ "H @9kkc%,@.W( ,'DX s,%.2\&Fx` J~4v`9uk`ً _W` ,",@L+6}`k_!Ck`[",@ + u2/`+kqHϳɯ͖#,Kl4YtK~1)pI.u 8.cוYDXWb [w > !#%G+S؋ Nx J~WӒ)S_xiaWRx׈ Sj">##{eih lKj &Ǡ;lO~XR u^ȑ5[ M~GX@ וyߌ$P6 ]^׍A@jDX<+)`kɅ Ax wV_7e ,ia| u~׈%/",8~G~݁5L'Pk`e%@%s;G~λjhh lK'Pǵ)u7o<lCxY lO~݈xe,9ҭ`oά%",%X @l+Ϥ{_75t}9"17t +0 ExW |䁒+pL\kp`_kB ̽Z.^`9#'odh lKWQr@XKDX` 1X;IJ' + Ix${q%G S9z;L~MA %#,u!&Pbs<ȅ4k`) 5^`_5vHk` ^`{_3` ,a$+96_䈰PƣUx`659ީCk`[",Lxty9Q k6Z( y^  H( j3a9_3c ,esI.H *o @^W 9",Cx@פ BG DXؗ 9:F6 +4'izZd+5>F",lCx2szH1# BǑ e0`{k6Ck`[",#@J:;K~͞5FP2ZB~4aq+6x\ ^6ߍr'j&BweI@^,9@ CW`/kQ|/;A~͘50Ds=@BKN+0U.s`-Br$am^;O~лBkh #E%+.sgȯsЂKW`-) 0vȗZC  y^%R?[0v(ZB"w+Ͼk`-#4X!’#eF@bB%+YDs`"N",)^#KrAW }I"rF",@ZkP DX!Nxr,`9A",a'1WT+/aa ֽ?U@W0nh #E dݳ"ȯZ",+PF;M~e KWlk;D~e2B$W=Wfk`Z$2@l+^W5_Y% [yZs`#Be^zzmh+PՈB͗ Z~cPB͋ >(DXXB^ ; ZCk`)"~Wy;F~%ê -65+k_NmS #;В_و@ڋ U!P'M$a$, `DX!&nDX!  B] _ڿWf+Ia! km .;oKW^W!Bkh #E ++@EXhWxWp+a!x  0J!Kr++<+pI.Qs^^_Ɇ !j+@<+r+a!D VxGxXJDXQj^^%11 1ȯdOqCk`)9DX  ‰7 ɯb@xM  "Kr [_)f^^'R,DX `/+a!ľVxGxؗJDX}^^R RBlaWxWtȯTG%GX  5+a52= i_ɇ "  2b<Ž^^'2\+@<+@.W% DH^^r.<0/6g++@~ oHK_a !# ;^ ^ Bƙ $+@Gn;^#;",X 0 P*&aa*k`e_a&A+@ WX%q+@=WX ! ^j#jDXKx +aa5@mWɯ ȯ C#< W؍D.ȝ @ э`eɯ..Ox` rEͬ#0N~$<r#B~݈#p+L6F^J~$`2yWHK=r! ae?H r+$g4N؄W"BDXj04Ex`]+$ WȀKrQ6% ap &BfDXJe ,%mȯ%zX Kx`K+dLp+ۓ_!{",%1Ax`/+N=`:}ɯPGX ,'"R6k`+_@N()5T+_X.EW$BDX&2 ’/#!+_"",%1j& #’#k` @^WKzH~.aH @WKjFWT+_"\zIKx +SXr2\P6ȯ"_.^( \ ’>k`$+_A",9"P6x @ +5_ ",i2r$PXKȯ'",{'P'L%@ Wj&39Q&5@jW_E\Y ^%+ah %aIW`e",i2^` D!²/k``+_DXRc ,Ex+ G+_OEXA`yWJ~6"’K/!+#rj\ ^` ؁Krq+,'aْ5NxȯDXe ,t .H /b_f  $Ge{FP'b_̈,g , HIK P$Ix6+lO~2`,[Ȇ 0 _̈J%@ W K",A@WH dLe-PR#aXr!@Wp",P6R&i!bh4 >(K,^^Wȅ Kp.R&@^WX.ź\ } #(<%UaY5lIxɯ@EDX +A~#'@IWR",KA@ +G~@Xb^T+P3",㬁`9&W 9A 0 _θ$s\z }+F~@ep0 u_s.P3",}BxW ",!%-`']+jDA@ ɯ|a16+0D~K)ZLxɯk`&!WX P'Fo ,@)W`*`e",Gx_ad@yW`  + rNbVP׏ۖH E~%hhu 2X׍M {y ^~H幼uCx !V֢}y؛ f+@f͑pFx!dOMpCx$HM5^ɯUdS` ,^W`/.PN+/_X6%Ȇ3`+ x Mx!D]51@jWfd`]+W6z~g-0ZW eVђ5Jk`^d/OGbȇկ Y1g̥:ī 5+ɩ-A&v$ M+!Z Lc$+ e+Y*/Z I (Ko%%N%bBr_bx2Tl`_VPrVȶH~%7"i8TVP4WȺ [I9s`*Τd]bH {_{Yk`s$s @ Wl k l<"T`ʹWD{&/_ V2@* !FپyV$  XN~, _ !뮐M N+$m `]+d W6@ +@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@RkIENDB`espresso-5.1/Doc/images/ofc_1.png0000644000175000017500000005622512341373034014763 0ustar mbambaPNG  IHDR oFFsfk pHYs  ~ vpAg8Sx\IDATx;r$׵.`MPH(Ơ`\Fu6\4' "$ql\$:k'wMT2\k]_M BQ!(@B !BD!BQ!(@B !B^z+>B?P!~˗/m !8g}gBp~&ċ/^*>p߿^S&O_׿s{S >?HsKBp//|駟~ix@M@1par<8P!/$5\|'|2O:BӇ}0ZE@fAm޿% PG/_|en!LBaN%0}CB_zիW)Q@v2i !8%/@=@~ow>صד<@D4g ~_~L=Q($>x9xT`B2@gЂ߿~!!D>BI%QL/+ E>胇aSmox& }1CU`! ч'Ci4'~Y@d_auA `gsTBydBpBb`\ o<7:B " SAS !~N@R#JaS!诡 =HE,% Pm Ҹ87YzBpq#damD{̄NW~rX" }>@S*!Cվih@@F'C&$R!Hjb܎)d>̉D&[Ǻ b!0r8Àus[ B.ϩcOYd/mѺ 1`P%DKߟ9(l' zMZ6,-@nc`i4 !FHi*!p1}|i8Z!c΄tx?@,! sSO_g!/!Y=:g[P@zB8>"u혆RVou p,!YW=i lU4ntc0s1_.fȟJ[ڈ)Ԏm%VQC@Fi2o]2E@>c O1W 1{p !eKmcZW QA(vL`MWB [ 7B] UB2 '% J9현 yB0iGR1- 1Q `9H`R!!*!z_׿zDrv0қ}BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !ōMt}}}}}ms8H w ' !d`y_[ߥV,1\{ @z垟.(sD$LPc˧gB J|>>t]u% &!@Ŏ_o+ (V `XSDoI8S!*& ؗ0Z yoe` Sl @,[!cx`"s׹6 p,`>!Pv ۮw{{>3} ]u/?]ȓ  ue郁wwÃ8:hӸF1?o<KcHU /U+[~5xj43p ! v#^ 󩁀BV }m`eDoḮX!Ȃ` B@@ SLh{K @  ' 6- 7Z9RCݖ! #ȟ`Z9AZq{A@(VNxDx_(2!j '<VZ9:.Br'i7 5S5Q3GEP!4M@@Jj X"OUr$'3? 9a86%DJ.1c+!$ `?Z0 )yB@Dy 1 '<0v>[`x5&LӴrh8?h[K< iI+'jaOGB7u8KPwˡQ3!fi0|>vxX@uP3L}㇐q,[Nhs '!l&~fu0#?'ȋ"8˱~eт `H+'T D;Z+'jK0 "} ŇM-iL,p45nE 1{fb2Mia|O!%LCȖVNc҈?, &hOSa)* {#Ў fi3~i Ц8M[#FRH%߇_CL9s#}B@,B?O+'96Bt8}XbV$Ļ۵^>}f!?>fVNbG{֋؇Vw}C uĂpu_^YV˟c ؋Kb׹K!Cө5 jX0mm߻7Ns^;-P[hZ='H㨭$ !j A,A<+ -oqпچrx-+PƚB|d"]_|Z0M7 uiOP0st<@JZ9O@,BDfc?0xRB<-rXԾHN,AJأ]sj !JQU 3\ !EA;lhD<=ݣ:LB0g8r@_,qÐZ H}Q,GBP+~Lԧ%%4YOl!H_ !e@,QCι'yn^$Kli04\r=l2R~F]r\zQ!GuwK!Ux@:cg]8xu,kԫs{__//]_XK!Ř?@k&ֶrR3Q7CmijXN G:{nӮp!( q,S3HI#|j\ 1@R !ȚJfej lԚЩ-{I<\uB)N,[!ZekhA`5gd#(0)И-XDh;^]Ѿ=d:mx뻻gopʢLJDYb%n1!884o߾E"(-r/hY=1OۯXbzq|KTCE[\U7Ú#;t:Q'880!cGԂ XE+y?y&K[бhC|L7} UEX BCNY2Pp:l( A0S"(v>pbi q줇!Z|fJ01!k!8b?K,FatGaxum_ A0@L,76)|/Kd &ȇ`za- /Bl X.-o 'd J'8 @#k}/Ȉ%Rjj hvL,p4=m]A^H '`̔' N&~OۯXb;#59 9G|8hi,z<7 teV'!qv,@Xby  Hoo"8w)*-s@ fY =!L]K y pk@*Bۙ.S_+7P A0@  B؍@*pZ@nb`5Bm?dXbNW` 7SօI]GP뺮!<4DEFPu5{RXZ3%rʟ`h(,].6 'h@JB.B捣o߾^4xas֦{W?8Hũ$!`56A鍣THXB,S#'r"؋XI ?@s `hO1F}a`5˨` Zb$5@;ڨv}Ms[B 5V os"uȑJ`1#Zܻ֪"RFB3 Ajͤ-s!< te5S""`%&0 ewB,`@;L _ wNL`>!L V#!P5x뻻KEpu%fRtXu)b@;L`)B0is0& ã-BC&9 "{)DXC%iŔzB&NFR<E_V!4 p{OkBpZ `/DIAi04;EP!i-0"DBpׯ_^5@}A[t@\@i\`@;LX_.EM4 P+!YEZ3K9!DcN'#rP!D-s"&@ hBP|ӟl< !FR9BTrQdZ7LMpcp뺮^v&*! FR !Bv@;揤5e 6!DUL2!d$5?!DLh#ϑԚ2l!ɖe$5@;@B(i@)1 AЎlP N-B@FLA@IS@LhQF+4_ṿR@%dׯlDBȚiBd@;=|rmzB,\~Y:l\FR B@޾}vi "Ȕ.v@;Im2SB4zB !d4(c{mM1 Auc{-@%*!2cВ>~ 4TBF! +̩P@)+~6Z2b&-pB*&p g4C8P. B@@O6օ! AжD(jcB,#ax4 @4eB$uterI @B372!4a$e&CB$bP &BaLv<6֔ h0A4aCB4BD^)@p r|s}kkp,B@DA B$w:I 4BDdI@}i90Bi!2 FRP )!D_*N'[5n@,B @@zBHHjY)@nl4LhiE<IOL@TB4뺮ׯl I :B `Q@;&4QZyw]5eJ": a0 91 il!,ra[!3 b?4bЎ 8Ҕ (J؁icB hil'4dAb# Ǟ_}5'!lb@f1 v^NFRS]u; ʥ)P !,9A 8J}HҴGVTBJFR<?cDyץLB=vI p8!3.?eN v;)I @Bu]'z(Q W<BbA@29B,Q@;LGP2@  !Di ~i$.R%є ȓ0 yBLhia4Bf?48͍M0Sld~_ﺿ`HK%bRBx4a !f8teDkײL4!B<"g9A(_jҍM04vI ԫ%@jTB|pydPq,@XBX(lP  #u“!.؛"4ve:~.uFR4!~i@?S4e" LNqi0 (2 #APASo!L`!TTBAy?%B( hiE1p:@BW4y\Ӕ ?S*%9eP /!@L`j߸Ԕ `_BLhԐr9fB\~= GE> O*!(`$5ШdM4׎i4v%ޝ#ACAqk@δc@^4eB4 i:0 Ay}@>!Lhg 5e&(]|l ˙ @L?BP9 #8it2 7ޡ|AOh2婫ϩ|&'GP7nfGƾ7 A13!Xi!m}u %){L !Lt¾׶moUBqgz L,նc1 Kop#(T(ToFLs lPa!1݈ cI @* !.' `HjJ)&B e0뺮_O@ !L8i:!(B@^L LӴcO4!0 JԟK78kTBp, R/y? @L75qA7 [AnS~O}S{`]1{:TB=rj ⪺ip+4 LDQ4V?P6 e?5}rJ(}nTZ q:I [P/%1 :BWXG-?S3ǣ۷22g$_54r'ǚ~۟Q>u'oWa%i3 "Hjv1Pp%.]DHjLLd@|r @OnJ04T54L]}^v{r:@lEVB4j94, (i{Uv=yK;'ej@<ӍLZn/09t.AJAlsD%!i{Y~k:ޣ-躮{z4!AH@y Øa3mFUc2 ~ar(igѿ!4B;re}~J@l)'.\ Gtsm`jgnA;&b-(FIha\0|VB>?P3 r& u2Qq0?f+<8VQ-Z0AzðutD; !$},@^T'h?0T`j2 bi7j5'C fBP54rک}MWBЎ#U0@9r1]1G}cǺn&c4!:TB\~O'@|NFRk:>i}(rtؒmn K)94jel/CMmB-Q '5|n_|˅cr3-FU%53 Z=ښimoTێiN%C@#q&9I#^-Deb//oYL@ΦP=(s.?{9zěSK+S7Oh۬)"Ў";I+'翰"`qw[4{Z[wDW^z߿Xzmӿ%h 1%ud}ʕC0ES"Hyl[mGs^|Vm{kxH}0 QK-4eGY;%?!`}o 㲟_~s{q.wwg?,vݗ_.۞=R8ƗXq`uB"i#n3x#a/],'[b9@"uxo,wG =<:){6X?] no_s(Bsw-'~Ov_2.Kw=7~X_|sl=Nk#Қj z*!*t3S" Om}tw:&*9bcPxJ@bN9ox:)1xB4G+' <'@!hup9 -^b/ezkli)SBj aq^|."b9z !BYGH/!~0%˂CȡGM1{}o9K;$bN8//KBĜ򉽗^p/}72"=s&c?mc&ҭD]ګnAſL+>Mp&㱌ҵ?!o][!шIXhx.B^ڈ9?s=nnnnnnį~_WӁĿ_J0L@ㇺX]xB j֡55bZ > =pba:ÆmIW^zWQ_۹%?X5B& ÑѷWW[r۞Dfd9O@DKc̜!5u~駟~_|_|_o[QjUI)SMr|͖Z03Wu{2PZ88Q?-oOTBP 5r{{yS! UCԶ4,W褁`j1滮h͖p#dQĜKoo" #4[3"nۧ{t56]#uτ(e$߱?̄hmAy$"Ԕ֨!EoϚK/]]/-/X ed5I^ ,D;&!Ka<~.Lk`r?~k\hg12FMk! KjzKE$~x֜.x`i&,%'LP5ל~NÑZ3=2tˏ57Ai,cbrP`'!Dc5O#PaX/~g0Vmq`@{ u MHBhD<OiZ^γŴr,}l->>NۚՒ#V: !l\B؍VNf:~ BBtA;-?/Ef?[p0 '1Ӈ?OS&)p//oi1}kizzx~)кq;퍘`܎Жz[֨ Z0=X}y:$x OXJ%rtk&1 ! b 5ݚiԱgf9F @x@@;) Mw.(-R3qhKyAċ"B#E !(JCE"T JhZVN"CaoTulzD@w;bmŸ]u? !'mLc\g_"fZv|=ךׯsQX&e$oRt,vJj(PS&`ʭSzDsp?x{;"g@ƃ+h|>]uuݛ7[d$5fB|M̙{тio--0ƭ|/^( Qbx0_1  E!(i@<1/ӗfb$N06Y_kǮ8! Z ňOJ LǗ8I?'}! +%ۖcn;HSaKT5S9¹ET(_кۭ#<Gb/Li1uݗ_{{>׶gֈ I%$ZکH|})L[٩Xqz`5uň[ /ݥmN`0_;UP/+t`>!dJ]Nh;K !J ڑ&6eR A^{fiiaG%``mrC䵵}03}Vuڅ 9f F 6!$nyN@Z.xXǞPJ1"68R18y8dɁ=5%Fkr㍔`׿/{l0 HK E 3R9)G)kjW1XO ! ;aCʊ"9>o!.Д}h=Nu7Y*XHj kO7M3 !zYj邲}='ͲZ2@ 'Cޞ/s'4@*! #ךIP>0,RL䢏lB2A<{ DhTD- 'ZMV@^K֫ZnlپqT4~#FYOU&ш HI%f<6N*bBC[{ȶ(ko7t"LC@ i)@TE0o< jCy?2a:P#l HCPy`QF7RR{it݃(Is'M  xsZ35:϶QO Jzi#~P]\uݛ7LiTk 1 HO|0g~"˺k+/9z$? "vċ"`ji@>cEJ^<~imbbʿVQ?̡Ntk}񵩁 |亟96"Ͽ} Cq.$^7Z 2 Puc !`g/y97m=_"JbLk&V}<]>[㟴ۤp!d_h>TyOιf⇥Q[rcè`N03TF@____?ڨ)sCo?)g(P@MBBtU-Օ@.Pa5^hΡ:!vHr"֕y\D.麮 A@)^uâ6~oDc ~Xjzꃱ0iTB,)Km+װ&)k BCε[4VG;,芭!tL8BB!7esi@Ncv ĸz`x&KR"KRMnzn:*hgľCL8(ӂ hbgz^Z5by>h(?0Oaߔa '9B@C=lbwGG=>Ga?wwG=4 oBɒt qyӶN[m.{6 !6 -ejD$OOex|EBМw|ai7{nlh ƹ*ktoUq-(A@4 *!v [}Y ?RCL#R!" D1g;bSMS&#2"ˁ)v^B5C 7B5 b/40R!vʙ$<!~Cg@ބ@WV1 [!4 OBO;=acv(&Z0$x]HlQB@<[>C[z˵?>' y2y$mcN?ĠSL@J`]̈́a5!~G;WS&ӡNQRhvLi&U4B r&`Sͯ !DDRuʕO!~HIn[3E(Wjuݗ_>-3 ȟ6%B4\B4eڔÔ v!~>2P"!<%\AB](B P !1 j-ζ]FReB-0< !HjL5AeB$)@o{!~ȟì k(QMjxҪi@Ʉ,E @CqFZ0E!m!~M2Ɖ@ddP !Μ(B?!aBt2L?wL@B]uo>0dKY0 `2P+!YӔ MД c ! SABj%ȂBMPS&Jb$5P!30! ;AuBdDS&X&2Ph2L3 B2y2)@MT;(TABQ!2*l/Ԕ BPo>0d<GIC5M(is&Ch@lB8i@"PM! E j 2q #6!0#h MQ LI@%B!4edM1 hBQ]`h 2y2f{g=e!HBMPS&؋t]׽yc;4!b3h0 @Q0Mșj&ChC21 hx^rc@OQ-!zLL Q&C&$DeLS& !hBh2L0d2ĞB! @n-B4A/BL0LE;x< 4B !DB}5e腚2CL0>00b>#i!Bji4*4BS& MД 93 zBy4iBF Лjyh:Bx6B`HфЋf#XWC!޼}g2eFR !( є  ƄL0L'J!9&CL 5eBM`H s9Hj!bRBFi@lB 4BS& Mh)cBX4iBy4u\`2@o)Ix)!BX;``!LFBMJg` !u M&Cyc'CI !Y4eZcvB؁L0Gh2ıMd L؟4e`>!E2CLGbCDc&CN2`/BVb dJ B)!H)4BS& Mȧ) !؁)@4݈ؗ"R9_7ՔI( 4e( m@D@ntwAADD2CL1G0u]L(DLh,"L ) &CՔ@zBHFR"0DMAD@}BMMtkML0,"xLHKAF@DAv  ) @OAD@LG9BL(9>Cޠ|"YDQB!4e5ӟyBD@n?_!~ș.r ~(L1Ք35?A+Yrq#{] !D@J]uoބ,BE#55"Q 7}zBbV^ v&9-BJDGє MD8/>kD;0%昮?Gщ"BM O6 !`7D90L"?M; z}h0%]{҇l 8lRz֣qc@<(bt(l! 9Q ru]M6iiQb `roj&#ɴ'~@ !7KzBT L(06gjwۙ|*!xj&HCRBX}XG;&h)@+'LE*!ij& ?0xB,㧹w?0vLJZ9A.1&~`_B`7b ȍ,eҎ MpbjT871!̙șxcģ)!bS dA+'Bz"?{7}iO+'nyvHO%P<`ç}GTK+'E;& h8lZ8j8& @;& r%~ BY'~ 71L+')@}I%δrq)~c ! ͛w@p,2)]ю '(pL( B;&3EP$F@cVNLӔ C yR P95PeB4G,躮{&]ӎ ڡ)@nA%Aj& "=eB@Ϻpb{':'~D1VN%\c4P.!%g2P.HD+'c r&fVBf5Ц@O0`ӎ h唒LL@c@YTBPe ! "ȟ`ȁvL4AC.G21M0?!hXb{ bxcQZ9L0?@ L$:1brҔ Z> iŴrV Br 'hIIS&J$ȟO" Z&ȟ`ؗ`G P Ƕrlh` E! 'Z >  O1@l$(q5BPXbO~L$pܾhM۷x?@bH%p(X%B,Q @B !BD!BQ!(@jJk@I S__H!2S裏># N_?Ǜg8)K a8=LOqˁ>P9h@o߾}>O>S('v@9 w}w?_ߖtDg(@h~LJ~} Sa P4k~~Dg LF ?5\ b-* ?3t﷓裏>裩<)(@4L- ۣ%?~%P@ y6L?G%P@^xŋ /_|r(%J!P@+BgG "P,02Ia@- x>sx$% b@$ǓXao Kvg+@ ȰBaj #*C^hĒ3  UM^X>d'P@2rI S?պ_FL}#P@OP8nBzˑq@|<9⹯\͘T[ǒJ ʂa0PX2q`϶m!u?pAKr aBns48:* --gMR8z((@qNa]KԿZ>`q%vdIn4ubϹWE @BX0_0:l!%1C ExS# R%w-Xsgj  %SGֲdU@7^6O %aC- w%̺kPXM}\W,0PK$v*qKZzev9c @B0JaXP$LjT0C$M P|pw[ %< @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2CyR$SJ)zPE۲%':"JA&9:j GM(@E`J!Pl`!P&PCeQZ5gZB( Nwno[B.w)R%5n@ƻ)6ګAlu\0G@1nUQ¿[o%nU**YU 6g~v];& ]u]M /`{]#l) |ZQws],?Wۮ{{ߧ}}!PhygX1KE)5J+1nX̦ XRQB W q(@Ů c2x?m =@ۖ<{/qX7s 0O?>߶~7!-%T<7Ae%@} `7NlgL_ezWﺮ-c@+偱SR}&y< pEǩUhs 'N|Z8 P'P*˸ag x@Ӻ~=txGBK1-O/٭"=7Ŝ&n`x3?nH!s׸.v`d;ٯ:O c7Tg  ~x@rjkve@ T(K⽷Pf_o#E-q * U~4;CІSj2uǢvRQ'( bI|gJ$[[~-ixRN4;48)/?"{[vzhV7TId<"Rq4B GZ|0|N/x|XFڤ~  ۭ0"/C@!c*`7\7$H8`5)Pˉm_g,’f<>\G1\6זv{ ]7)^ήA}-Hucvywd^_s=7@-T(ԷU$?a6O븟O3ufE:wτ&8@ D=5;W}<;\QN|p\(gj ,@T Ka|7Rqt)es02߶h̥u$Vï5AO}[EBaYON;r.zBpSz'8,Y`:AZBx' pjZAxј,dwwwwol:f~_|;pNzP h_h|h"A<'G[F >7F 5OO꫾mX/&T(,q"  :P"Q [h"y7=!zUu  U$3=8 4@4;l `/"]޼qdZ:=a $!@ƙ}J  nk h :[E?nB G4; i| 4S?гU$i|-^9ϐґT((5wT_a U2= 'ۂu To{ILO`+;>@ `@昞P[E>~U,#Pb2ci<=A@~bzr hfUdO,'P&%)@**虞Vu{KXB0AL(jvV4>@xl @~`@yXpLfz*gzVє6=A=,L(P [E=8xJLf5=6V#P_i<=GUMO  EdE4>@ U$@jovP@L*rh@xM@U4;Ԭ"S%1= z'绞!&((Fq 5koB-Q (LbOO@M4>@ }dD PxjV`Dl MU$3=6h|mh| W2=]GTGhuT}r\. ZB"(lyaC2}y^%D p4ϴ@ "lJM.(P$u&U`D Pdz'&KZ"P0jfz[&P4Yi<=GUѦ'\ (\[kAp\m(P u,:xzfh@(z<0J+Żbj'P:h!|U}r\.uQLO##ҥyJLO :Op2@SP3[EJ6D 1'hvG@e`M8"P$jf`vaHhLOXOu(p8[E=` Bau]׽/x٦N l:'P@!&[ED P +`L5(*2?5L@F'@l  OC!l LO54>P@4>P&Yhv 9v&=޼qdZezB(@IXl(G4O h"6!7Jn`=[EqL x|GN8f*d(@LO`Hf8$P%P'VeRLi l"4;@>(@M '78@]iv"(VјP.MJz'@ 4>@2nQ;1=f! b*Vm=].6/rq48 v .|N3P @VQ@*h"1=XB@[E=8@As4hv -Q;L~nBL wwwwo822=EJPpsk!''U$@4;F( %R@V麮: 9@dʨj7 < $P3[EƢ# xwLOC(0itM'dzB<y^(NX*2&hG2Ki<=AC{(\Z&" X@@lA"1=!.Gz'@BK,Zu]@lu؃@)vlwY @I =4V1ڌF@2.(`z@K4;PQ bOOU$p8 S (VrZknjv%&}×_:q*6nvaz.rq4Z%Phr~DdzK}B׋.,*"1C=?;>DBQ'Pc!"iƇPhu [Ey}S@!Phf*n@2;c5> P" @)GO⋏?1(bz麮sVIC^95R,1*#Ω~ROݽyP~-s\.Q; PP@U:m8"iƇ `zVј@4qAdzӈ(8 ^-iv DvP41=LB+ M\@$':N^j@*hxzf"B$vxzfUV=5z5}/zPf*i|@8i|@Idz 8Ƈ: bz@l Kh|@%V@4%Pp@Cm P3[EB*U(V0=޿"lu (V@J&PN*9J&P( 53=PBAdo"1=RY+IP4hj!PNaz[i|(@`'@ly|Izqiv4>F bz98+T .i|(@Hh 8r\ LO,7=];^#J%PpE0=`ƇZ cz@4;vuJ!8D bOO@<* bzrnӞKP 5U$MCi<dbH:nUrp Nr\.G#' Ïx1[1ZlZ `zg+^l % NqU$%( <Siv ~_w*J*<'l B1=r_q*#PV@i|8@h|Cpjfz[B^ &[E Dcz@'P ~ 0JPGi4;@4>'Ph"%Sp8 ģsh0I Ƈ 2P3^Ǐ Pp1= kSe Nh@'IÑ DB- Y@,} J |ď&Pؙ bOOP (N*P"P8f*jxW * z݌f4;@L'OvØP3[EB(8l Pmz8M`뺧:@Ƈ/t$Pp5U$D|@2[EDczvEۃ@a[E=cLJm j P+ 2=TQ7  V]ALhƇ o 'au  ;1=ZgHxJ=Z<5;L{RLO^Q r\)@]rP嗎Z6P3) L3LO{K!PpLO;>,c( hBaj6P@a Qh|x@a%@n3 VP3[EB^Bp"1=N4<[.~-ߋLE }pFB [3US0;jij'@ՖJÀf*}L˧'lT(* n6QB@j0n8 ]+ & EkpS]uqa$!J('P1=QX*<)F˧'D.PU$dH`*&v$B  Y'V(S[Er}4Mhɒ=" u.0^SCCU$3=˸NAK,}FqZAm[Lg+4;Qoy J`j^|@gC@V"1="uzv1AiV(3_}6!`5 G"f(P@ƍ [Z K0U$lz}\ea=`{DΦ 0oXЂ&j JM腫P0=i?+z |Tβ$XSÈ-q0H:~wE>'Gx|#J# ]'O%KߣgT"XvLOVB}Az Cb2=v-YĖw'_[iybX 7[\iPɀ*h Hjq;%99Ϋs7%?GP:0 ]wl y^ʋ_/ x7|oŋ/^ KqWqB95  4;P˙L1Vܣ9RRS1\\5l_}v΂իW^ ?"b2V!*PwiWs{^a#H}k~^ &_/_||#_)1" b4E 8ӰSS[En q* kTd0/j kvGGܚC*e:Noj3-_l _cH+;_j+oSX4Q~Z(!Uߢ@V@J]Z" ֜ׯ-Wq;ѿwk17>\=%Z$ҕ0BߋkMXJixZ̳dֲo& վ S~~a11 s6(~mx}?`+܉_Oa:+Y(,@a. ?'b(h,'l$PU$dH:(ƬDXjxb p>}ZXᇁ<˟POl ,3Npi:m)>ܑa},O>OۑLJ飇{橍Bo߾}VDiP S0IoIKRm^|Xuv*PP?aTBe+|?5bڥ4 '@lIo#,9B9![!Y$( |qË>J?އ ~~869 _ǥխ"R}`HgzOE>-gY[|7~ߩ`K0ʈa0?>>oۿ|sss.h`;-4cy >ȣ.ua#{'Gh.Pød@u0=vj(M_QVu8PU$4pwww#ahڶ,ca kBɵߢqp,5EX3($< Qf5(Ud{@ FE BA9{JY]|eZ2,&L͍"!}j lyf2ZhCh+~ES{[Au7}A@KƵCj_J{Z0 rSaLW+KSB) :PʅۃM 1Ϩ30V0 'WB_2qQ@m~QB!؋""r'Au h_M=?[ez % g t=p&cU(7>aITaeZ͡~랑,,lx~rq'n`TPnSᚖp܀MOPy'hv8N37>GK%j(6A@>jU(o|8Ԩq’tx>2zSe"D3U$yhyRyN kMp0>wwwwoޔsM]ky5=A 0dzBNMkhLJԥ;ۏ:% mоu q,5PX(A Ph,E L2h!p+YCCIncϯ0WϜ_Ssu9duQP9TNXb<=AC ^8m.Q[ηW=Ag(.JuCM&T(4by0[K>ϫ5:l4:[E.WNrK'hp YwĹ[֩6F`;:Pa׹ \(+_jiǺ3|] C͝+a PFY~,,ܰ6(AfxzK/-060KJv°z_^ 4>Ejo| ciu`"k!Ppbh|]BrJSޗ?Mڄ>h2 I\fTTyx|fG9k hZm }W_9J&PxƇ xɷ|; ќB"\١FqGw~9='9}棿׾Q`Da_}ڍ1ZEB֙_a ԅT( $PPKj<-Rt_C~TV3q׋x4;8Md YX#8 (@?ǫ:l55a0Ƚ)fa큳IJ_(|>(bKXg:8>6Ibgʸ2\D ags9{9u\"p&sJsD J(wUd{<иT-jף P27hkg(рF(qL5_1E\9V"Pe@#@ ƕnʶA;>$P؍ '(:(zUd /!xQuQ 4>DhL4>@N1=!!4> Y%G:8$si|FEC @8j3~Vk E\`q)<<82qh|8@p84>!P2`_FPπF4>@~&Pp!4H @hQ@d 'ѨSDc 'z'BA)נH4>l!P8Υ pQ P+"(TpYǹ^ġ`dx9i|؋@ *@K8h|-T^$Pp`;$ѨSXNP4h)@*(DP % 9i|F;(2\(T|=<8qh|'P(Υ  *)j/fx4>DS(P ɺ^v(4;p@J '@3VL(TE % +i|F@b 'ѨS 2[E@X0&PD@4zi|4>D4;BeAD{@lrf/{  *\0&P؍Z!^$@ѧx4>D񁶩f@ " ;뺮{qmi| h@-æ'NP=9i|  (B@4h 9i|F@:B#$Ʒ!,XNp h|(4N @d(O2* !X84>P#'I%PDL@4 ʢفm X@N4>DrL[EB<)FUu׎(r2u6* 'z- ':=4>@NQ@4;B 2[Eri4>Dh@!4h4>m( $cH#Pb ġs^ xsi|F*@ P?)h|D918@!(9i|VKPׯ8)(ɀFX8@!4%O9i| mB9@8H 'ѨS P@4V$P(h4>p9@I 'h|j'PGK(hHف\ v*3B@Nؗ!PFu׎@ Hr0ف3P 'rÏs * , 9 H&4>DN@g84*i|F$?+i|4>D(@EP&g( tNC'P )%K, ?;4>!:A@2%U9i|79(4k u  Ftr(*4>DfH$Phh4>%(3h)(dr@y ƇY[ER*9i|FP;BD{G,f u  @Z{4mI F@N~V#8 @ L!@N(u]:iG d"g7>.u @~!CT.@4>DvnQ2Yi|4>DI( uTe@X@N84>N(:4>b|;gj!PM8 ^ d| '%U$(pu]:2F] AtvS PW@ H@4<򶊤~ r`_N#@'4>D!ѶU$(Ph4>F.(p2OP& br^ġ!B@)!?7h@IqTvf19i|@@hr"i@gt]׽~8ġNhn9]o|]u G^ P>h|F>%P 'h|C5.-(P(O%(@@4@ TF {kUK{ .I@*Y@N84>c*N '[*8 Vp{V  @jHvrfb(Iu׎@掌"D@4>@Nh:`@HyJ P`ѰU$hI@4R%U p.ƇGG@S4>@N0' (VD=*qh tNC$Pz2`4>l Vh"Ͳ4>(y0@N꺮{q#B (8ڥNZ 4S9@ 4;@ 4>@N0~WB 4: d ;>@d9i|[E˜@fi|2hw P zÃ#h@IrjA<%P4P [EAi| h@G@Rd 8hSU$(I@4){!x؋@i|0M +!,!P  A@4u G '`HXN@P֠L=J}#L(3:G P/ɛrq`@@~'@*\r22T<xJA@4>Ds~fH!PI 'єS0~ק(l,'Ph)s@#0&Pgh|4>Dsnロ"a < 2a9,Nο5>D'P89A%P+A [EvH`19]Sxxpd%(q;w +tWt"a/xF_p{{{{{+,b:ա ':XdefK0נ0'PMlqG@4G)niNq/ @T7@4>@9 @8&8D u-<$RQ&ь@ajHkؗ dZ*.8 T7g*QЪI ~sc#KPY2Ѫ8Z*`/8@25 [*J4>Dsw8hc _J+P][z#P A]q:8K ^cҁ@P 5SKu @N 'nկư(P|q{-Z%Pm4 pHYs  ~ vpAg8Sx^IDATx;$Y툪,3Z@Y0-338:B駵[@0c`f 3=ok<4YyvNTC9 r0@`&M 4Ah 9 r0@`&M 4Aw@u>W_}W_9@ `io~8@ `i__& nв~~Ç&ovs1s_:vȁ=@z>~G 4ӧO>}ǯꫯA6@C7} 9hT~,ljM?s'Ш{sG0?~caq M&Cic|E[c@! ʙj%N"pwQ Tnvß=կ~_}7|??t ,'_׿_/믿:y7gk>b``9cAx#>DzIa` Tk,giÿsBWȾ:r0М~Ngt[;t@s0|ӧO{M_0?/s@3!u,0M*4pߧ #J'\ 9<ُ?~1lU?FR2 4g"ߊP U5o8C>#`!!~Ç"m L.5`/r0А 8b9vc @r0Pvz!C0p, o {_Cc:g+#t0Аe+#3u$ѥB0D2g:8ǞN?ގc( o +#Rۤc7 9,޶aW?Os';?.](!@}`!~xiƍwz@M``&tOoY%m P79hI99x\s &9hȜ t{B Dr0Pi<0omY? l0!Z0'ḲßzlJ/t0Мs!xui. M.Ncc98u¬ w臁R,s!cw0Єa2bÿ?C/0d:h1%N @#9gYD@C𜽺e2(m`f篌8?8J'?mΩjb: r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah Єb:=>v9la: d\L%^\o؟ K4MOYk/`p1 SmD []o@ r0pxKVOc.` 9('ɟO[,JMV%lYAdoi GDX!c.R޾ 9ȊA[@ ""S(UƾVsw@` @ݦ4 @=`pDNi_oF%Id֮{r0!ss)N'98HFSm "2@m -'n5VO db{ؒ^7f$q ^;J̰׵.kr P39 K?r 9k1gO`inߕ *??t/P9ޏᆱ8oX׿ N:Ll r뺮G4Z{V0&{^D5} r0 Sc繇L]C`x\.Üg8r0k@=`!Nn(f.`F Wbtπr>]i`^y'(g9W`Zu_?^OpBD5br`].ZS0` LӞSc` 4!&: :P.9QB0&uDүX r0@sBr8jM{1 Ŏ{}yoChLˬ [rs׽&Ea3B0-^]G?N P s6xKԋG!>֘O!x)Fn |}-?y_Ea` 0dM^ttxK( 9}j@`" m^1o M( ӬUN0@`b5Qx8#pQ XbI AȚ YA;7 3o4 P9 SB0lgMm&|ǗH0@`쌽`B0c78G;@`L`XA<:,/I"dA}Y㷎mCN:P90sUB0a.m~7-( pB0lqNXfqۿo@`^?> [캷n)D0@ `D&m-&mƂo~{;mtD"%D$ƶuC[G\N:+9 !wMl(t 'r0΄`HohǼmCN:9`7B0ڶ2s tˌDhr0`HÚHeo?%G6XDVFRV{~QW} cMxhNqN xk4D"!'f!-.∷_ 8`wL Y{YA/]~zN:9`K!ǖ~Mmkw0.6_ m`W^F>> R5og^{xݤ\q6kvCTi s^k"]wmr:OOoo{~xV;b^`9h yJ&Ñ#~N:0N%CY}A/(sCr0!rf.bH2~>gD 4D]K?#g@ MdnK/G,&D@liWF|ܢwfОK#^ k?}\u{s QN缾=0 P:k" <1X;D( |oȓ`YyQD( @\Mϼ0P9Ț -q =@3o@` SB0ʚG~;K]gp9 Wr0!ZqkDaK$@F`q+#*q%@>` B0S~+#^៖5#D8 LYoyK$a 98؋0$YQ_~ƗH0/98tv|>D{cp)@RB0X)ᱸmB'b_u.x: D4BEXip_+Q `_r0 &rVct}ۄ_.H{My|悁&DFv~ hz:=>:P\WF/x["! Cr0!ǽs[-yڊ/?@``!&8V ۄtOV>Hm~'bB0) }-.x;p , ӬAO [",B0N9k"܏AZ&r0ptv|9Yq: OIwDƗH0!``r%`hYOOώFw%^,vn7G e:x``tz|tnmMsP/96T^2u 5ުk{V`q{GOnBFM=}|9J?}(yv:P9~6UJ^2H@`h lQ^r @`h ˚Fe^J#C` k"eu/'r<8P+!4-¿}vn7G b:*$XԻAOiFxDr%CU` DtkcgGJ@lC( ܦꌤ0sݳIP'9` tz|tMmbFxu 8 _o80#;8r0IRqB0ޕ(4/ iP'B0R駏6὏@*r0` >3[KH@|r0dMUm,yd-8`G!85ocYK$`or0dG@NQ&eG@>Xu]O-?O3#QD! B0DvV 8"Q6/ kp0!#! ;` 9#y^OGG`)ۄp9O@i/,eG x I @8}Z{,8[" Ax쨈wK$b{@kB~z:>v4Govn2  @)bk{eD`p0u! !(5L# tVSRxQ3Q8KIh ;~(9&Hʈa&='r0l"& ۄ<,vr04DQhq8"K j$b{S& 'p%E`nDi <6_"! ?9f R2b.%( @&-^OG aqDםNOOOC^/piϐ_t]ׅ{:vn7ia:F @KܧY: st;`VD(DpIwTooyV8Dat0"q8 ៖5#.?O: Q` @J]%7 $h3,B0Pk"< Dۄ 9M`5@zee)^MQB0eae/Da⑃iB0P+k"Y\=ۄ۽,r0M~"%&8g_KۄktT`*'-3 Ў o֥z{ kCZS!QtN=wq m6|[Z !>`/vib\>р| —Km/8N!MǢp}wJvn7Gu~^[ؗL` dYk"Ƽ={;@r}@Tr/^_La`htnsq#S !S>D5AxoM vr0 aӜ +kMP Sңp\xcedm:;>`KaFɔ tz|t)2"%3%A1TFr36NJtm݅ u_0#us6evt]=_^` i#lM&r? >ޓ uńఫD~|t8`_Qß〜M{1y޽H¼˩NK*9Ls! 0̲ě]`NB0'swZ`Mv]9l1Ț5ȸ#G,|9_~{9WLVFLRB0Pܢ9DaH)Y=?O E&!IQV]ft/NtFᵟ 2H?^3}nb%:c)MVngy=ߜXz |Kd%tt]׽>L3LDB0@D%rU#؇ ,! .@:@36/}6g?ZQ.#TיnqzLߣn leKo8am9A{9<):~ }>^e 0Mo #gD'cnh;[2 e}ĩc䧾\.NDv "dz.xoYoir ??;CVFeUoG&a:謌;6խ`˄(ܟ&5+#'3HchYeD߷gZRDw_ @,`5R-[POeCڟ∼x@n 0ƚe6(}[޲ 핉-տ'w156aȇ K4_EtR +#.pG9\ "n[6푃Y Ω2_h lu׷<]w:gEG?Ʈ0mp$ Udd.xƖE l;d-/#:˾kW8EOL|;?DOupFر(ǻt0A%lNι]EvĻ%`Asۄ 59Ŷ0U5Zt= _N掱`bl@t<\aD)pVF]?o_G98-"HO^cᲈ`k1N? t9VFt02^yAz=IŘtsnއmyG)]K_¼OIJG`~b_0@N)<9lHoxA5r0 .;4 lYt~D7p::1p9D=7AZ%7;oK^H+##ʱ{5]Q8of` 9QeMx!xy Lޓ׉-IΓ62рnC, ~^:n-VFu^OG!70rK<"0 ȯRqqrK%8bVFMnHVFe&"G2oΔnHF^~<D&Sq8wkDil^αh܄` KOK$rfFx>+#j%ά {fq%7ܹ`Y,e i8c^!ZP;9ru;D/#X& h-:'Af P9Zu?l[š5-?%G8⽣cxvrpC}h B]NK~+yҳ&h<%^.܄Zk ɚu= Y"ۄh\߳;;p,suaͭFƼp,wDB(77 P#9b z=x Mrp%悽8r.g!sy\ bAr0ś~Y5@;,8m¯Kj$WoOJ9}\i¾`[ɽ<'Y%G85uv`0ܻU`'%K$ (@ 9?ke5@݄9V^OG(&K$8t2P&9c&dRq A8ڊ^{AxYKfx["ضHAq@`Y" [P9\Of>M2E2< vDe¼/F(5sI@Dy sf?axy& $Sr$Fo:;>c6-n6P 98SJbe5@`ҰDbGT(\ p,k",%kվMB 1 p,s@&_"! ;zSg';q"'KM<{lq? C&N:Dm#^^ZP9 :D)%ԾMY5q@zB0Dr&geVF9%gF@YLy@u %S7K$յ8a3 'k"4`aĸ: { '98;fZc뺮:8L/_,^B>wJwX'k{KQa+#&gĻ*k"Z`;ܳ:G9r`.,X H<K/@n`5=z=`_!u67 ?#3''5a``G +9X j{D ۄȇ|0SDz2>i HM\x/41%-}F&ҳ&ؗ jo^K\0@άhY7#C;\Qثc0`YkK$r&y3Or<ɚyt`!J\G0MNKM|X` %jcDy# NK[`CK$vȍL<)vX#C}Zw yw66,>Ú` -q^m~(r02 ,%Ckj<\yۄHI\pYl] =@j\"W~y]leUQCoDۄ8pk"9``L-K$r&l =9xce < ,eq)Qxsyq8`HM ȍ58_B0:s&5@Jr̙D :Xkd` 2煏&U3{يs Zi}` 2O:+# O(5,G+sDNۄHE^ll.XLȍ5,aYD- %9l;i@B0rHM@Qxsi^OGZ 9+gq#lHK^[;P?!(K K$&u7@lr&&Iaeɚh y4ۄs}M^ȋ @U>&5u^mVF" 7c!xΜ@r=#sn1`dMc:;>@r]"qLo@=`Xaș5P!hSK$m~VF#(+# `HM8` cMi/S/oe@ `Xȍ5P:!`Db}~YWʈ9! 9ABjs~ۄVR 9 D\#91HX8"᜷CL<1Z5#~ncA`_"1/ &l`fMx>!慷n2"'r!άtľv'0&IfvflMp$9,Xo#JZa"ȑ \_8@JB0l["v>Dw #9!l_"t Kךxr0Da0gMK K$eF\<8]xRu]uCGr-Xi4yzzzroϋ#tzz:>~]?\c',:HoɼmWFt0D^l_.۵t.xTg.e֚Ho,Kq&yQ?)ۙkZg:vS+R v9\OY#y'eFxI`βB`ruGa!͉UX\ʈ9c,gY@ܹ=׎%:&j5b;0eD"¿K_ug֭puZW!rY"Fn"lfhK/[An`Ӝ(<` 6& =!Z͟~^a.92.th( 92e!Oܰ/!6, ŃCCpk?in-_`?==== &'[EE &-6``i!"Bc`>h' -`Xt0490w>^kL`ʈ뺮s4Zox m~DiJrѿggXLDWӟ9&7`βir0Ƽp bGM(B0ŲiEt::BGWș` 87nͽ3H>[)9V ֚&@96(K H4hc2 IYQx!- %0ͩ6@HD2!30M,dpg%ε3g`5 }B0%Lm,aeDu]9%>tz|tm5B03Q)[xSg[;B0?هg`!#AJ!!rcG(`8L 8H<݋B۾t_ >" ;g/Ú4v/-@ Q؄#'9f%蜃v>XAݷ!fjYVM%@3P!j1u3g_Xf<Ț ٹ\.o]wv<-ެ5jx{(@J5B0} |}\r0TeKJOtuٕmkagӭ(\ y[Ff dt O0Zzk(gɆH p_` zϭwzuCy^"-4YؗKnmYDmFv#e'KZ/Q8h}"Z^..rڛ59^cc``Zt;6@bkxZ^Y@\#uȟePȻ4i>#Q[n#͹Njn#!ڸcQxgk7e>-ےTƧJn2_LsɆP}Si\p 駍睤c[b߳( oi׈qy׮C'f:( Y=ޘ ,zm} 'oo~}oGr}lpwsr޿\9 G]s`a^7ᄋl>a/?F f( 9 ӟr^.u1?U\y1/,Ǒ5rbF^JNszq^\ڸ:'l:ϯpR/_.pxCn5޺]c(?~so?lq}Ʋo!8t:}dFXk̽#rz/?.lx^g:v}ӧO?4\eן^^r0@Rc/= 4S9%{l[)O??d:dL|,9 !XzFXjKqL= dHd/$Eko>|0-c>=G,il5KQ(˒_͖XgYL%/ͬw%264OױK22=#bLXX!fh|wqҙbr5LH]_ O%36yZ?9 xnq󹧬 P~DK67"Rvǒn>҄9n,m0ekx f?r0@. |K}- -Z1~ooSK9Q8{%ޢ%dm6as%XAHɌv,yᱏ K*¿/ ~{ų Ӿ͋/#RuGJU80ӧO0?=e5 Ab IPa8<ֺ<'ɿÿoſ/~_k8~_urן ƶ ӄ] ~'I! }Őüpت?? ĥ`]~\׷G H@8.[-KMOC(r0iNMc'c۟@k]ӯ<: , O.P -o G8u0l!L(Xf_tMeH n0o;wz 8Krw)kEe)95\(A "!x6XC g/{7 A)6#K ۿ~/ ?/إuoZTbvr|>)#Olrpwv<V/ǒ`ʂ-E\F_r&rckp.Sғo؇ @ƢK(&Fv`:&k"xW5 /"IuXA۶8xf-|u_qu}=-Pa`ʜ; o <(̱hGȟRsWA=Vy? >0 <HOnr04a:o_=kze;^$]\ c״`UDrl&ulI3<,1K?$0KݗW0czwNGa!%` Z$œ( !C^NtJnIRo2NإV@;(kUļF{i N]`(<':Vљr P+#4 Ln,|k#)P9i3i¥\eW"aȟ ¤1 vc/(ܚ|pzs?QY҅vy{q+bwceyme .[{GR$ C%93­I9[`ytStYQ8#6GEUPkt+ @YA;DSi]r/uHÒ. Yے/X(9糍}|֜滕!x%C愿-'yDzV+lZ[v:<r b͔!8&[Q LΆKg~?f~5n#S/OOϰe+n2 Ya"=#\pxcȍend 3$`GJ4w2ƾY``/rpDVF]\Xwy_p %  Ybn.. 5 6^x>8|!5o.(K,۟  Ž]o;ݐX1B0ݺLAY?7 hfa!r8Rv SlȻ?˵#`VJi`(^o b:0VFPܹW-e.XZOEN$8Ѡ\/@!T p9(}@JVFPmqjbYĢ9(LYsf@M']4lXFN*lvVB0!#)e\0F4`-, Kc1zc0'\iAz|>gGҏ_3 90Ȧ B0 vo~6 02r\.G/K@ך#12%K!79N3 0 5/Ӱ?`ǚc\0Rrpv^r2wЦ9!\0^,8 &vmz"80 ` !oKΔ<AX1&1L:lM,Ȃ-awmX&` ?q`_B[c:Q'f.`;YAl/MΈ9(We&{`s\px\.-_^TOo"80 /98;|>gGM]u\.ou ҐxK:3@J&|Y\0@ rp1k m [\0p'=!(vt`!-k"Ⓝ3epi&[f`x!x5p|"(Yxns9 HE. µ2c3{K_3 5+#$ α~^ )Cjsi α~^8cہ`4p F(Xs9u-D缮f^/_K 4L4ʤsפ3P&! %96\0{c]v3l_0@`ίClsYngwp9 $0䭣edžs Lʈ;|k^&`k"&CR悁c΢0!=+0 p"J(ؓ^GgQZہNEtpa( cRY1B0>8/rs_8 4dN(EHOr WDjΗ5s, vݾv_ r&{%(J FdJ!& RD5y+$P\0@} RY!xgȓ +m2/ @<>A.w\a.N:y 393 @`ە_^ (\-RDjκ|>?`_cqoΛcЦ\J Vg:`gHhM!x P 9rVFf.iN:@PG/tr0")u"80 P9*S2 :H v-1 ,U}!-k"Jv6OZz>៛f]gIb~z^|qr66^!#sJd:Bb.,(W!-s哃asf@YZ B(e^VFl06ޜVJ Bc`%\`^ 7mN^iNWKLj( P'H\0@?H`d@`su+rJd@<&+js%9w?uk.c^&e.qr0񾱹`ya`` f.sP:!8WFx @1, `كw|y>K悭mzű悽``(%]HBp<^0MeHHtv|b_0,éۜ>f^ ҅c `9Q<0 9Bv}[;#S Ozu,Yrr0eY"{ !8bD0L{Du `-9w>``;K$`>!8OXJ&k,-!8WFFf%%0sf.u`fITc,7[f^| `_r0sIΟ`$sQ,BpnLvl%ds3\0=8| f2lB\^/_1r6%ࣼW1 Ls@Y,\BpnC`"x\0?',Bpn`RY,s@ |[ryB0d\0P.'#!8n۷޿ ]./_ 9ݬ5  %|!`V4`>K$H)\@0csDDئ?BQ`!@RH'!l.`s@k,`;!8OB0ydݓ3/:BpBQ(r0Y0 f!8O! r0Q IXw Gyy @ Oq|^w?S{[=zہ(`1 %-s#P*v2L.l.`9oXs Ff+er0viX.mMLEOҳD>Bpn`jb:R3fc^Kvݾv_\nMB03 U1/\!8 BfgO1y(|,!8 Ų\FVFGD"!^6"P#98W ¢0Qp #qL̫dINO. P;9W2Q cH&q^#P79W8K$d^8!k @K`ڙȘy2B0푃9*h^ Ks> @`"Ȓ(<W90@,#~]LWMK$d^o,K\?`xM&+ya,BpI!)j* d4,~ `LiWYK$Tw?v} \`xLW\sBp1!摃)Jl^ K e\`XBya,ǶBp.%! - d,%Bp!֒m@˸LWqY' e\CCװLWtQ cGa! iJo@RFa! {io^ cN:'~Y 1`^ S _B0'0@Ga!8TT`x}2tXs`HK%Y3/y16r8nv``8yauƞ#Yh P>9sIZ'X\` D`gA 5!;Ha.x/B0CY"Nc+@`(%}悷Mr0c ig5) -H6 B`(&Ur0T `*ayc.rq܌mM# Y"2!c:ڸ 1|\g)p`hya l9nB00 q9悧9M @cy`h%@-`'HyvX rr0% ^`K$  %0_sB0@ p%W⣞ 0t4`|>?r\. spsB0Me= `t$aY&HP78s[12 %p!`)9`HЂ|_UCyp^-GaK$Soa `( Pc炅`͉09Hؗ P悅``, O<D bfQFHCȂ%IH @|r\+{1͚! =2/ @`p9҈=,K(B0@`X"@ BG4% J0]ųD-b<,A%L(Rlȏ P!K$c`( P-`M0/ ` q9֌ݫoY!Kh%#Nh%Y7,A u-D'Hm\ P9;,(g!Vr0 a\ P79Y o 9t,sB,K|>Ï/rq)ם*@}`6 `, ǐfXtr_j)@KΞQ3؛d5`:lI md@B0`b~95|c?,g: Eg3ΐO`t0ɤs 3e #DDg o^]598\9X=r099炅`c悅`#Ft!<5gxEngKt=` Dx>|r0ժ;:{&Rr0l>:{:r0 DgJ&|pZ 4Ah 9 r0@`&M 4Ah 9 r0@`&M,GYoF-@, TCx{իWJcI //Z[+380ŋ/gs!To'ߤ,~806 =Nrdp_~uKͮoF#%pu7zLadp ݈P; $Crg7 I]@6~{˗/L!$7!3p%(Z"$bb<&D~8[ `L~H|իW~_/q+mchCF߿?? { )nqmMu1pqXҐ߆+Sn@7[Ґ{ _HԱK~Hno/F~G>fYȹ$?+-2O 7$frk\~OtL74#u-̸/]Gxj$$7mnr38J[]; `L~isa܆kֲ0%$4K,ⓥ7~<:7"$td%(<5omKŢ~Lp5o m~/AYp[@7~N-1\e'?0mjLV뗦hqx+y#GqK} @~HboKaq|*ysۑۙNEe@Bo/V1wg `{`#]2~[c5emȽ L$7ym&ܦ#|a Ǒix7NqmgqB;򛦞Xf q(Z~KeK 0o7H15Y#l_roI fKPN#ܾ{)ʊ8c%g>0[`7>C 0HZzX-ݬ4AFo:sA H!k.|˗wf:羄7 oG'3p%Gkxs<#7$8M-Aخ?p> Qf|;sqhߦn%oe'k壱 o@{ 5OMpuO>G@Bk'8ge 8䢹6p%1\|}u< }K#N޶]g6n}0^s3"$~o6֚'hcP> g^Lo¬{ZP GQ{p{\ަf%wDikο&rmYs~.=7A{2~_~Yo@#v2^:g˜'C~*v$u]uݾrC~*+C{cґC~vdcۙF~ (Nm~uo@$7M!pF.^^;ppq^.%F~ HHrX^.$\$HZ"$7`O~6$Pa//#Hnu {sALiY}?<-a ½CIng/g^XF3ɽo&#5=`L~˱ {y {P# .FKt7h5 {y { @S$7HGKT.na//aXT|pMT@rJ#%L~BIn5 {y {oP]Ѽ. r=a 1s{{@i78V^.@Vo@@7f7 / os{y {;Ina//aol%%p> f ( 0 %N~ $^^97.Jrh0&p vq`a//a@̷P2a//aHG~){y {@$78]=^^Ē6`ԟ { w& BIn@"Q2 Hna/tao ]@6vq8oJrhyW ,) m2HA~ $k`IIvU;In0}?ٮ뺯83Y/ ,) cǓc ϐ`Lrc3%7 ml%`7xBr ,) @޽t޼麿ų5܈"\oP#ɍ7In08ʜHM~h]`p,7(7of j$P% o!@97(F7B L,8 W Q |L52soCrv@ƂFK73f bmM~H|̽9$7C~#@]ք7sop5oHn* @~.n N@ 70Wc InL~xZ{`o?m$7G~..n7 \6&so0Gr7q\ٚv|m|/1w8 5 h$Cr3o@LYp>g?0Ub%U2a 8\*HqܠP X#߃/ؼée߀Inz>* $7(.n@:X \i6d&x( zN~2$eMxKQ@, Z"'{vܠU%%Ο?3b\rD͢In;"HnpMp%%IbPzvofIn"@lo3RHOr֓߀o1 G~K`Lrr$7܀X4.nx|nw~c;(b 2Pi`"ۉ"W gߠ@ E%oP1 []YGu}e-Gfy܀oP #.ͽO?ӥgabP& f N{/'E>ۏGIn@7(Pi+;{5W[@$7.Ar(6ʄ:GO   [ :^#ۏGb Nb Ma/ {u܀VoP]` aW'%W A0 h\ #$-7|@9$7W3Jncw|"]"Pa/r^:ה.{InBxr5.`Pm@&r2%֐Gvq(KIأdY4>KӝW_ b>/mh=Y|8s k3Hn%y7I_y%78 <9ӅA yOCrHG~Avq(@>v#]p佽gpFo(@넽m;$77*&.nG˩'@~2@ ̷@mR= 4E@9$79^>36soGr(#}4x%7so%p u!ō?3KnHnyod#@rsxqZ&OI,) PKJ`xW~aqr{vyv{֑(FB:-ޛ7]#9o%7tmnmCrO]t7YR(ǚ%% o@9$7\#K/Ǘn})n]#7 aoGBkIk y](Р޾e+aJfΒ@ ^l:"x'a8FrR!=?]]Υ8efNnEYj2o2]Rxe [w}R.jkc O\(c~QT@8=NMX| ]Α"\l.z@Rk[[#ēKee>ZJ~j-jnߴ\K3v~8hXu#w>8`rvhHFv8'JNݦmRg|عtalzo+Kny(S?TGOu}f 9b{#)@ `SfhyT&υ2ϥ4Jq׾u#<?9 qSsG~!9+vkTos.w3\xG.}&QgtYEͽ7ࢦail_ShC{̽.ZG X汮]g@Ζag˟;$E[N\k=οǁ4ٶc %\{·WJ[+7hk^rų7=~iNXqy;>)c8~RݲƑ윅WK7jt7 uu4&yUwʁP3cXi᭴]P=gI2{}=]|j{@fB (o1=%>9V)lop]s} _w]}cB eή'ܖ;p21i˱?"wW3osrVrP Ly?4E֚fglfJ}{%gʿޙsos{yq:{$k8VdI6 -i88G&rf|@{b'oD5YlϢXWxo@6OwW\޳cH!\׫W^z80\gynߜ ǜ֟{4[\k<݁N{\r~[r rSNNJ~vƶҥۢ- c^}?)׷~8ߖ#);VZ>њG4Q\Rݻ%>t~h9a9m r/Eq-9[-om^[xj0|5MM[ yŒwn'An.ˍ}hUXmL~>C(KzΉmgJ3Ne%5skp6d W7>Z]m Hlļ/z.Uj/9[oK^|uͥi{$AN+%%Ko .Hr(őǜ=ZdՒVސg齌/12ٸ߿~yjl\iښop)›~’v\ =Jk鲓csm5d0Ĺan֧qf9ALo]7hV۶D4 F|[-g?Ϧؚe'~v򭗌t7 r,7͐,Am @s6HWKn jBښt6xq-LSr.1\Jc;1G4kĹOn~XO~]OM[Û7ױ{=17uϱ3pW.n̰7}mپl;w/G^L-Y9r|_9A]Rr3p%f(F hJ(-kIMض%InQ̅( 57rMÛ7b|VboK(=#DK~b!JcĶkf"=Or+wT-8ː/Q2 h֑(-8s K~>9D88Nr%Bd=oMg,8ɚX2q`Z?RߎW! hܑ(+X"`dQ3pq2!>9VװmimӉ73iInuY MfHAr F57ṖS˻  K o$7& 7vqn7 Z|0%fy׷Yo[^a{Vr$76 rIr֓(KoݻoJ7r52od.'ۖҙλwQe "ok4^/Hn@ ōkl%Q$7 5 lbÛhGg͛!]jp6 :^/ř.{y̷you׷Ll3YK) (IL꙼s~ a//aHn@7h^^a//avq 8Z{nla//amot$N@KgF:^^@.P; ̅ 5NKod6$13Ϸ}?,5=.* $B\HGr6{y {@wnoE~`嘱+p=K9j=h5n  #);ڵ( (S#:>|'&P3pr$웺+VxB9`n/a]HnoT)EXZjgk92kn?(C%c7%?7:v7Z"en6u75l]rל ?\:yClnGKkh\#wl%7J&%919aTx_kr_߯_KnAK.n7Vq׷5'9j {$757k--9L[L^^޵{%7-73ĒSrYS?_@K `/ C'6Ώ4d\Pr% і͉m7VFp2tZ{:  '"ؙsoMrH-:Y~lĭgR$7& fͽIn@UlT;sY(s-]r%( ObGgKK'7& o$7yjͭ-_| b8_ٸM﫴#0 omMns?;lGnLܖmܛ@:ˑldSn@7پ*@i<ۚf̽}vd[mj h y̲@7(‘7e'ڐb^ * 23@9p$a k 3 򥛊%О{J0p.J)(pePCo-sPY4;a 1JcpFZh˻ppMI8 `L~r@ۆ~ɹkr5op lk \&xd%p/HeQI4 .6 NZbI6F8 ` `n*n}iO8v KVj'pmo (]ܨ|$7Z"HnJ~!Io7 pc]`|6XO~!># )op! 5 '7hoP=A976(Րܠ|MroPA7|D~ $7h' 7HHr L}n۷[Vl6op6`L~$7`Hn<.n>|pIn@, ˑ܀t7g7L 2" (@$74հP> o"P @$7  hI̷W \@0 2 C0&69Hnko̒].|@, r$7t7K!4.no0P b@i7Hn%f7o1P/ @7l$7o&$}֟j$3pe@ ]XC~e 7'$7$7o t7̷p h7)yo@@i72(T@rP( o@@7 mG~N%6 HNr:䷄t]ώ-W&e&#p&m0ߚ%S {W&2-7 wwwwwwa4vqS{!-3GorIp o|=  RFKC~A^^|O~ =XCr7(@$7(H.nP2 IKmP (P j$"%!@7^^P; Z"MKRv{vϊmP> ࢄ=mp=($P a//a֐ W[&P/S$gn/a̷7K7J#o3@rS {y {sDF{y {@̷)o!%$7 5 a//aCr$4HK%s̷(@$7L%`'a//a H~{y {yoj'{y {s$7%@Kj$ {y {@!\yoWyoG~H^. JnorIu:$77~$enU̓HNK#,2@ń_ `; !%<1JKh ڝJ2a/#a/67 ` F+ώ {G `žOboE83D  qC)90/"@ oF~0 a7#@ oF~0 a7//IENDB`espresso-5.1/Doc/images/tri_2.png0000644000175000017500000004477712341373034015024 0ustar mbambaPNG  IHDR<~E oFFsGjWe7 pHYs  ~ vpAg8SxIIDATxݻՀn^L\R)vPΜr~ "Wgprrd] p.k9 Mr> /r98Oh6H@h6H@h6H@h6H@h6H@h6H@h6H@h6H@hu]u9`; v>9H!}Çr@hݻw9p,)}˗/?l].5&`믿wvj*,!@a+L]x`LhVG߼yNm0mP߿>,ڦ8Z&@BVoԕXVGÔ۷o߆YBz(B)_~_~ -{ThmP׆m>|֡`筷ai4LY mP06mG$68E/_|%$ꫯ*?x6E D?oo믿->b#S?\Bdm>?]Wj']yx@Bzs|m̯PmP\[h;OlP+ 2555Dۇ>|g2?6IrNhŒ6h w .6]F<NhL`\ (  a+ct޾}0Ѷ,CBdg>6?,}&F[x&ڦr><@6(0f [xƷDHkɢ@k6(̒ah.x-g@;6Ȓ,5LJk@ϿTVs30Û!L尩Ж5,s8!@aƁi|#9-}Kޛ6(yB{.r+[ Bޣ]mَV y~Jhb,qå=Զvq-&ASg_e mД&: HHn]B4B`[B6Z$@̲6`g mPcgǬ     *v ȱ< mB+uYV; % ?AK~%@#"|8YpMY>S6LiW ;~YqTBpZ?6mA(P' 5^ bnw0|ЖwϔB’0-WW>׀FܒSKDkDlNB;a: m@!G4 F@L@B$ @UT |>/yK6?ϧ~?`kBlmP7S};%j]#}ß[xvf%NO>>>mӧ]vg+& x^{)cBUծmmP7m]u?~&8==[HoNmvh>|, p@k6x&66@Gg m4*~{g)͵|۩+-ne6QZkBWG13n߯@{6*BV[@zׅGisˏ!P; ⵙզk{Slm#j*|uqm_э@ 62eNmv-3n?KW|`_BjfãsXz`KBeh{q\)]?vQ mUʵVnn{ m{͵>ZxTJүJz5B@dn3<) 7"vuu@ۄ6 _UMPqãZg@K6ScCmS mƱf3Gn}.->lN@y9y_F랞t}tz!OhȂ95Zum0_{7Y8ƱrZ }yG-_mrmM nGo16d⯪&B3 ̸G7[؞ sjNnkٗRըO9GrVWz#<y?Y܍C=Z^GڀS^~-# `v #)TLV%J^ X)噐m@\U ? ̸Ho@60 gsv#s2 m@d5uhO (dDV҆m nuHhU5A P{h}EW|#3wm<p4 HLVҵ1+RZ*ڀů^OVn_wxdƭ- m"Ԡ--#s6Y huՇGr[翵S`= Հ;m/+!Km >j#<2휐6mN fm|<#燛-@ۄ6,揍R^?K7hh?'Ao@mĿ~O'kP ~S&n\kG(o)^o]wk@Lw?'# u<7v ف%uͩ$ u<[Ƅ6ZX݄J)lӧ Mm%w( >Q3n\Cj$ue |o^!t#- 9=u*U=5P"̩L mRZʄυ&؇Rz d5،v2iPV8UddM=Y Hr5= A3np7F,6sjgr`,U-@,̗Rju_3HTD@o+zS Y mmt̸}HTꨬ WpY (śھnē y/IQ܆?7 mN|PUd:'7^ uυܮm3W6U5/ +ӧOf`#W`_խe@6+pUa4Bp|`θ .6э=- CRmF,Dp\R+k)@962W܄Bֱ@ PjCRs7xHd 8R;koBsX [)GZUJ)e 7U6P. :ƹ-X۞Mr<}7T&+# j"Y >݈cWIxCn؎R|T|@+biC@Bn:﯏0\p|=ACh@ 2F:s+{rҲ@ r\.E~?HC} O$:agYx4n ~~PwYsWp ,;w IR(Rtm9ܥϿ߱@ p,m@\λHnҐD7b M6 P J)%H` ԏZ %31<)$yz꺟~r8FHH6 P lkG@ mP7T$c;kɵϷy"3nh;}],> ~^8s7r 4r\.E~?082ojL 񺸙Gt[ οg{(PH'JJٿNZ{zӮRG~fZ d=s`g0ݲ><} sm[km+@8wv\ 860kHK*GΎ[=sU[&9c> ڞ ewcB_~ \cX ZjUL0˖ af툅xVJ LEz1LmƙuR6,Eh) ɅxSGh;\gmkan1g#,lGhے+@)*ϧ6XZ3kkϧ65}6t[O1ڸڶgc:"`mRrfQt(L=FHBs7R@ c 0 $[׻ oSD躹0d%,u_9¼~< miYƤyBs8߇Gx8F̱@ %@ #;V^RL=z7P?Itt+ؒ6!SѡHdf!ݮ7Zu?Ǐ/.ګ9 mX GhۉR$l>KvJig+)@`utCH؇q+u}NRQ@ 6(F|P Lf p[)݃R然]Y `9sjIzJ,XݜRՎ9歮5W|JwZ)ML-\hj( +fqHX hYWpێReVGwb{y-gu)6xvSoznG0vYk,m@ PY kmN78+bh]Y ȟsmug)GwᑕuG)6m4 'jWS8#+X fmW㉶gn `{5MݟCm5=,Or?%sm@;X Z|P r^CWzc3+Bۺ m̸Ch }NϚ?=N>m;-:z0 @d5r9sgGxd)mlNV3zpJ8Y)@2A-ՀNClY~+Y Zbu4 HSs(G`WҺsR&XDVHexrY:}+Jin!M2 m!iW|jJR VG3b؟ }yRf S-6<{җ߁z,D@C̩l^1b,cop=l6Nyf£rWJX 3󀽙h8@|P d5g sf <35@*{bX _1APHlo!-}vBmWpwt[_ ѬY R_juQp }?^& nG,ig co04L뺮 7LʘqqqB[a,±#Цf Lޖ){tRd)3-ҭB~laLz'ҽH-{0 QS>\rf Sb9mH݂؏'n_6x5%QǙr@Cx4}n;~t?vSVm@ʱ^{:[0\;ۑWp[ j*$6t:Z4 sj@-G>ۮu\;6^(DpG|P d5 K'f SkAoۯ@k_;${A넶X %̉yfӒ؀,PW|o4HHcHlduHy䜑ՠm1tQ~Lm,>?r{$VhjuB[N ]uaƭn@:uvJ|JbpU5hou4hj0aϔm1}f rg dN %6f ]-'rKhjX~y-nt;>r(pcu*Hye5Yf @u?JG0򩷡aZ3J-`'eix<ŷeR:n{RziggMRY\Y oVGRZ;]x ptWy>Kc@` @V\ٷ0o|t:}4^)p# `3N?~SH Nnk5*Vh !Y ]KVTmf ! W?>4~c mY 4u8Il@n7Ԁ:ܿPӘ-Chxt 98Z6LVͧ7 ȇFUd5P1@ktw 'B[s1B|P d5tChҘS'Y (֨|He5B[rX uU5nB0FhkZRY @hkHRY `LhcІ$ 5'pwxG"0OhA  el7P" !@B$ @B$ @B$ @B$ P1r!}GΑ5$y0 mPY6ȁ B$ @B$ @B$ @B\ B; B$!}GΑOD؀< mP;@.6 f ȇ@aw6Ch0}{l ȇ@aLy(p (Qo2 m@nLP ȓ@a3n(ɢ(-N!m@LPm@6 3hȁ@aLy(6 B3Ch`&ڀ|m@(Q (Q}뺮Zc ȇ6 f ȇ6ϟO~Hޟe&ڀ|mP$un#ZaMnr ̸ͧөiK{5v"㷙q F `r@ m@>6H@h`VG|mY@ 0( h!dmV &ڀ|mDw?u]uLf ` m@>6HlDǽeRkUhH սA%6$6 BɢhM5:mHf@k ˗I㮣$0Z:[ @B$ PVHh`m\ rl@L(6 BYZA-;O!?u]u 9X~uq\HYWy^scou?zlm ß KmB %ƉmѬ( @Y[6I?ⵐ 毳6~%qmxc*jNPk񫭕;f ^ >. PϠl, m@qE||:ÿ4*N\-gKg==N!M! `hZhsmB2-X>Gc06gDBpq]Lmۏ5e6e-85Sw*6clϚM})÷3="&Mc~ƭ>BjI{,UI,l*Ϧ=ۖO,zK[xl]8? IoKlcy.Un k!][^ mW鍲~y~N?pMtp'qG,If cKi]3NhM%-h[|n=g秧\kڰ O]m6kBygÙk@RUfʲ"kqY-F 6|G_~rvH>e݊8mϧǏ5|Nϖ`=Kf;n]|#k8 ysds~16HfME\׾L\g7[(Zo76&n6-&`ǾQTk~1W|[r9nE u  2c=enߴyyS7'mqg|@k6#߸.;,y#k&I=>Gm7%_t%$ۑIOڴG(˒2~͹@ܸ`ז-\;m3(mJ:l!WoNwkM~٫1g"A޼y͛xSV| YmZhɫ92LÏo@>}|&r F޽{e e{J4m6- -m}E)vZWI׿I=X&xmh[FtMxv?[?Bժwmq<:^)ŸI͟ __bÏe-gaێ܄6/R[z*VsiunR>0\ӟ?x,-y_%lgGh }86]ui̽kN.׉`kM _si+7/^mxcHNMQ__G= BlbIbֽkU-zŹ))IֲTh>nm2[N{m k&}Na=SױZzo߾}g<䱬6c-չ7?+ 61^5K쫆Z;͍Gƻ;?gr qvmq//mz9 ,C(5,y{W|fof:Ϛzq[ƓnS-˗/_|1V. 6756wf>uT T<Ϳ7#q07>|Ç_¤^x߿~8'Ih #&נW񻦺Zy..m?Tn{ { YBh﫯ꫯ¯ ?.@h ;'d5`{b-km*.uXU6o3~˯믿N (%3 \v Ђ/Xa1k׿ v|E9&\{ߚY:qyyԚ[g~PGB*|mP}2dm['0i86mRP%e[KIo@n m5˧w]R~x/i}|:-3ݵj"JhM_;~41>8Iimz@>ƉMJ#uqwކ]~Cױe#&mab|s5\~ӆ[;|>|,ǜyBLb#jke>o)3z@<)xBdі'\m =ۯm`=桮m隹6Am[˓76r%[躮WmsFABOz9`'ntV畫8a7j44SQ{۠NB@bc{jē`{!mP? jkؚa6Hf٦~l@n7ZmDtc9dn@˄68@HiJMfhb6U*U%*Y" =L| m㋁ږo3#_*c8ʒ[F))g%m ;9mE=}&Ez8Nh{tq^~5ڀd̲ijv P. k[k-{WmڀX Ih4 p,7[f ؏$&rmf6} ȍ$3Y97 `p-5 ȇlhndy7 BuT(f&lAzXBh2Xz>qLA6 k"@Y)< mvz:}h& ȍR ŧ7mdgtF C@)B;OCbȇ m m m m m m m m m m m m m m m m m@U=v\.X* mH_)9: T,JBReu糣9q[~G~1` Io,#%HjK?=B[ ^wUz Nzhж ܱY-Ĥj!%`+%=X;hl"m ʚZ&m)iN-- B[2Hhk ն}NoY؋ж9 ͫ@Y,P sj%r&@dZIovb=j-"m)Ԉycn  mP Ybf`LhەR؟SBۆ,D|P d5 ,'̩Q: `v h-B,CV mAs)Pm'6 0ۑmǒr m4MVIo@)]Y 85qS OBՠMs Khxm؎v joe LS!mdAVf cX Z&%r`5nN!-;ڀrjLh;xChA- j%e)psj>,^,X "EhhP: r&e)WUh2bx9578PY قcB[,Bjl#f}N`LhˎRh@@ `9Hׯ@-7"e)(>e dN lq{ȕV pOV8fЖ5 pY !P h(V$ kGVHoBh+Rxf 6xA-t1os @<`Hi7,c= mŰ@Jd5 - m@Fd5`mų@J筫r#)%2'j@;0$iNr&)]Vh $0Ez8Yf *a{r68@n*g-g!.G','Ue@̩P7 `Qd5 HSIY ^}NoYr%UiX Y r5Eh@V j@6*!@)Z,p$mͩ_d5(Ch\ /?j@62Y fN `Lh0B[rX c66!@56jP Y `kB[CHe5(?I/>@L{7%[33'>" jY ,VGyJg\Uj%q=&95vmL$Lhc"F $A %69fbjA7ȁF'-4LV OBf#PzOn (ht!P_Z;'-`K}NFd571 Izj |Io@̩@*BCj x)Y $A/Nob@hr^p:d5ȕ%7hڠŊjQ6E.@̩@}6h/d5hFzTd5hL` m -yBEzVl"&Io)>^ mN̾sjv60[= m@F7bj6 kcIh #ƜP PY (TKzȟDh"EPZ M m֒ `'ujd 956d7\@< `C'Y ` B7`O6,OV8)oup㽛X*XX"fPX_S`)_\1BNw{ݻwVn$0`#M ll[ rS`Iz˶J aH`bS`m?|g7vς/,{ke2޼wKT,g*DʕKk~{ l`+ye[/8$0`qN3N`fʿƥc &BqrNFҟw{^-}K_@43Y{#ޱIh,p[K"|Jh,{UoBUV@|4*x)~nllnrkk  Xah&d^  X$M-~K-M6K}2@$0`5TvYi̺+0vD# ̧i, & X<v|* [@dt5!dϗ\yn+ ^Wu'؏)ف35, .Pd^9Koqp ?z@w_N@$0m'R|x&>.?mY,snSr $DBH'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh{7؏x\.nwe ƙ&-:~ #@3\%Ѐ5*7%~ GH` hr#}+.~GTjۉ-_Lܖ/ :g I`< s#y#@ d H`ИtKJtbŏBuB\'@,w4 7ŏ"uj.~I`$s[DJ7e H`И@;޻ 6JL8S`D6I`P q!$h@.DRwwwwwwODc (RI8$i-[p *X@<pt?0OF^^_%g>aOfg:%MBG}H`е Sa aD @JW><<<|]8)_k濦0"@^_uWtkJxж۲׶_SOor\.A3Z?5~k{6V$0hКW~$0hʶ_~_5&]`P<90ys\.>R;XTlnkI9rk*ڑ&XJ*m{c&PBk\M3 G<5%p Vݗ65[?Ŭ`濦LPNp5kJjJL. aH`Y_I_K! gi_uWN a|3-)08ޫ˭F0aPg]TneA5M`-Zv; r|0~f v-~l~"\@]\_caH_'¬h)0XU&G$fνౄ)! l Z26 V?*!:|X,{_YS`@U&ݛ[D@]$0(G_j'+j50n0! > j_濎[/Df><y}9[oY>@L~DOj17%}/ #?kDBHxהuܥsGǒZh0$0:Wb+! &Hŗ[?>8)007UO108$0j$D Ь}ME:r7 D8@#F^m_mL~%ڸH a{T c<k'2#ڑ^5`[X۾'2DV$0C7!LXC2}N~%z as? =꾥a3¦0rmncO&"T>>~,`_K&$0N ~3mI! 85fm6 ay{&3zBuH15 r|0=+a ]_KbExBfįۘB3 U/g0Op#k=_%,|v[_K"&a@?$0b8ҙ;&0 Eįۘ.B* ,`ZBP/BZ˭̷,)0cV"_g>a@|ц\K0 2 SVax+=Ye k?fa/s&)0_>j!tA:/!I`f ! LhU2EcK,XH/ fv?G2+ rIa$0_dz m cH`0%0,u{ײzj!m!==Az18)7aV\ P+_ܥ $H`_[ٶTif?"7%^g0/+pS`܍ϫk6_a$0fj{ǖ_p! ؖp2۾b sN[k:D#kH`'h5~kD>0`pVWݷėBtSH`kiz5Nr+0`JQ?۾a?3ZWa j$%$0]x6Ż09 6&~f]ik-W8S.%B콛`Uo^e uS\.ƿ/rq[@?Lb}ALc\X!?濠BH`_I@~a8`濠mQ:w a6 w#//DI1_iU A0{7 mucz?{5_T a0 p\.>rvzc Hr+M@L|"~WJGa7oL@KL]>#Ә/ g~"\H:e\o M.%BE۴*激rBA:"~EKi[]i ؊._k~?激50׵5TĶהdCǵ+7%m-nޘ3aj䘟 S`@_ozSj&qap< Ī{~Wv! C#I`@.xdUgK apr2y/Ưa[^axgsara~n5L'WMnXm\Aޗ&` 8Tɶ/7%kM a@BlKb择f a@-Rn `) ؝Ya@B_LE_Q` ؘUL~=! | ΋+[:&{=>÷ߎ==__P paa\.|3l@b*Wgh" #71 XEbU a@B_LJ>s!~KyUL_u!9~ a9@ ًW.0+s)KOW_LE_{"dpU#?BEn^sBH Kbɯ۾^€8rQޥCnڅ0 ¦„0z Xu~z_[#BGne@$0`vGV0u! @o$0蚙/į0!L%tJbJBG.%Bm;Sބ0 >! I`xB@$0hUL:'Оr\m拉V0|-u|-3?<|]]GV:e\ξa\.0 2DX sa)~M>~m~Zb" 6H`)+{P"Mo65rOU! \ 3?t~VMo٫ !w.uE{r>C,.k\LAJVݻzcv&€Z(?@D1I`P%<2%~Dj&Z%Oj_L_=€Ż09 sw@dV3%{i|NWoY>УIzrag+8)0ʪ{/ka@DǓ <2%~Q~ a@BqH`Ŕ0 ًǗ5e{:p\.>@Lͪ{/h[:s粉0 0saH`G/"_&!  p// aI`"~1f=Pr a@B@d'+/7%K> au2E_0$0Nc)3_@ !Э@G //`&E u a1].NbBba[9}J@@yL۾WVC{#0 \77 e/{e=wN_sa@-R^ )Gcf2Cj&AccSp! O؃bf2E%ŔK!!گ/I`6a@|&֓Ȳ)V͇09 v\.ey$0)? a@ロnvdÀRϘb! E&EqI`|"~1%~=>a+Q a $BHa$)LH$NYu{۾/U!e 7oXu;3_%ag|#}^'{IXj~*ֲ| \Kaq&F$pֽϓ_nވ_AabP #a_۪?_оc'":f'Vͥ@|B3 j a濠GB' K ~e>aNz#5η>_?޺@ ロg@K$ΘjMf N&57~Xu_&~K!lz@$nj/4EnSKkoK=uF3BZ"uW[/ UƿR&~k͇09 ~&~ь?~763n ag"@|wr!;_|1U? J<>÷ߎVx|T_t~6ara˟cL5¿GӞa a@$F!O0.X|kiغ,sNk:_̇}V,3"x&^KrS[2`KO?g-^ 8)mGEyEoXOjBIhI`M0U m a@-r„0HXe|~0Bp;+^|{0Gz|| Yvaawk?Q w=K` mgIerkLq&}=H`2fw{p$  $> '0! j `[XE"~bLMd/jCMWfY>p >=3&XXUMva€L[n`[XP濢80 _7KSCgIX%GUB/! ؖ8/C=$z~ h͇09 gvA $Z_uo/mœ~֘*lH`Ezfh#!  nM_kn= * _\0濶eM>D"ed=@"G1ɇh$b?x?Jﶵ&bhH?hc,CX/0LMhF/ǹom! !=C@ !68bc& ͪs˪{&~=!6j_g޻ 6/ cwa!V!Ɣ>7=3\.ŭ2Q8OVruQ$\/8F|ZXǐ&%Qk+2`O]'UPmB8j[oPmc l$/KǿGFW-st:/Za1k [1͛_@S}4׵`BX.?.`!~A.6OEUBuڸm-t"?@N0 a`b_83=+A.Ẋ g!L_*w/[_)/n9p/[5TpXQ5TgS`gW5,lpw_,%115=Xn$u3vBp kvOi88y|GJqoBw߹zK=\8 p˭tǽcmq? Ðٸ:˪{X'C;060Y1k kr;4^Ln.DXzJr)j~JkOcdOagҳQDPl>~^rid{sKu/0HOgĬGI~h# X !zk7w5aim)}/Bnna0և{8į>U>i_&R{ĩyjSr_嚛nuUgcV_SBX&&9'Z f #[]Yŏ]rXNCS`[_5 !ѳ6v؝͑.?)U /#Q,X_"\/JoዸuKaϷXkzxxH͛%ۿUz>7!*=.es[ђr+}ZZ~?a>-}M5AGZeS`[_z=V<>y?9%~AD&js$/HrO{afS`/``Ö~CDOw&"Aw˿j/fI+wEDVNʥ |ZsY0 濠&trL{v,7U[jW+B.2Lij8K0E^?=TnS/@=g/ݧv aq _scNxR+{m~(ŽV8[i;.#k>b!:7ppۿ9^fl7vait񶰵9WU a-Vc6% ͿJ׎\1Um8x$h+^lˣJiKգ7?[xGBq/c *{>e [}/tc}G0, /e~(|s+ m,9V-8p l~Ki>_5(_ɾef l5Ȟr\DB^/cs\<%~( Q+wQ$ɦ i)ʚYk>k/s|0փ1r7bd`IB{J.<> 'G97ugV., J~x=k|?F ? CGǜ{Kooq+?F8~Tqi❭g?N aۡ[[~~ᡞXy׻w޽{7Xj4 au o> &hflۣo߉wQ YC16[\vH0Ŷǿ/bC|"KN`%)~Z{GEq-=;֟C=L\BV3[ʭΘ/ˏ?~qqC/kzCX_ dK #X.~ۏWl,~lTЪ}R^#LmbcK߿iJQ,JXnH%d ɯmwl𚾟?n/7@f/}[s,yLO58cWկ~t!e\ -bG=JM`Xq^-3?5"_?^{Jg"<^{叓="߿y{;ydz>۷o߾};M`wܲvQ6K_24Zi@<.%kE/{m=ʅ $-?Vss/'9̣7f;c+y;2kU.ߒ gG[cU %ON`7Dc"l,X.~+j"lA$xtn?ׅŦ&r9HŖj ~N3,?muZ팔k5 У5W=>ޒ^{41/_[?@ac??0~?|.:1aY<{xv"^a"4{=<}>B+?/k=tfzWNzE˔_IJ`E>=< a:>Tž(){}^Q?e[F0XBjms^uxSc?{4{O5jKk$~_~ezKzX]]Yrz|€-_Gc}SkRWyZԦk !Ҹ偱Ό>R z/&^u>+Ʀ(_kizwf-o8bDp1wtg|]?<5/E@{\̉_Ȗ|ǥm??>y?8 uqBX-_6yܞBH! #{+'NJ>m2Pcצ\OX*DX/s^-k[R]җD€)-?9Mg~)Wr?ەo9,7u|?߿ў/}>~ W~X"59&漘gX6M`G/6r<|} LCGz4 \O6Ž2{kl&rƁ%[K/sy^JOmekl}8ReOw?](hY>Ւ-]`2\G%$o[? ^\W?`E$y)~ a@4%xgԫ €Or7糎ܽ֩  w!|dm^&O_P#qK1OWJ濖f/G/8J "=IOv,xWnM;>͇i9h uK0 &ګ=)y$xQK-K0W` n|=[/8KG ,ds%ً Lct>}BDL3\ׂr\&O_!yt`?}X{ԙH`Ek! 9#*v1 !G/8[ MP< 6am;y`%ߺ$0n9$7ж9#'{-~|gao[_h bx&Hr@_x-5RZֿY0f~W\V ʃmn jLNh63Ɏy5mįqj?drkA a"! VokϧFNLr=v2]4r"I>^kad/B^'0ϗ%9w"c ׋7*#-.B1A{$|$~)2?}k/g/]`5IlKhڽYlMj{G_ J`{v5}n>+z^}ְ&<LIeO0?f ('E/yK#9WahOFPNm/4̳%,?9ree@yn 3Fo'G΅"Y0 (!@aB ^?G akH`,'%Bp 激r7~_vulqYe@9 n9kY?M`Kc&_p=&[edBL_/6ž>! `;[͂%#! O=qQ/` 9Pˬ̏,2Z'{gܒ5/^5Lqa@:&/`= C aY/8Ke ̇#s= ۶bgaIMav@/{n^6+ lD|\ؖ ! a[Ma./ G#! /o3D=4] svs?Y* Lž>9 W2-~A37<3&Q*@|AgnpF[caOMa5 j=s/  a j=s/ BRHhVQI` a3ת{ 6 VLKaBzF[trcz_@=ç)h̷, j=s/6h6_P9k=P3 q! °j=s'ǁ.|Ag VH`tWž>9 _P+~m0! "~AgH@_P9k: 0؀UP+~} M|Ag u@6?0J!~Ag\;1¼v0b3Wz%A’\8}H`I"=3WLSEKf3YEP2߲|"~Agp a@Z\ υpH#~A}m_e$0D8!xNZ\ ` ;0"~Ag  6#ΎǦ0_P+~J aD&~Ag !ḁ!~A}m_ۑ`,kG a3WؚGlaBXaB@/u#>gSa3Wؓ؏\ ~.`#wp, > 0n"{Agp bB/u#y$0wZfrXa3W8uNǠ8>+"~Ag)0}}#A ' j=s/$0t: ~Ag b6kG a3WuaBXaB@ j=s/zH`P ,TNY۾$AP j=s/I`,'~Ag Mmk~urm@/Z!AS0h/BHh$\ ȧ@[/ ]q a3@\ ]ȧ@/ AG0=_P+~Da[3W]`C@fGXr0;€_P9k=@$0@("{Ag/$0 aI. a/.0l # 8I`3B@"~Ag5.\ IYxBz {Ag/H`'=}>rPFZ\ %@gGcS j=s/3DP/ ;g۾k'a@]/-H`0 2 j=s]v$0`3q^;R /ؚuf$=ree0"DX p& =wZu$0`GBp9.~A]UEv'Ѳxc.Ύ$_P+~p 8lEZ\ 8M8F>}>./$0dBl\DB€磙/u#8ΎǦ0؟QI`@ B ~Ag@l.]yK#sMY&A۬Z\T NKr9Le瑙/u#u q6%/TCډ_P+~P?BUri$EY۾hTLȬZ\ I`@#r9,N{|0Zg j=s]@<ΎǦ0%~Ag@$0)BEZ\ >hK##\Y۾4Ng3WW! <|Ag t$’#sF/@:'%&|& sֶ/F&Ъ{ O`t\<k޺ ̯C.m/)0+rsaq&ž>sa?/` Kmw^! j=s/XG("Q; j=s][HiFeO,9*/{_ `!_P+~\ pܥɑH4Gu}$0Uℰ$Ä^P+~$0 aKZ\<Q8kK،Ƒ/ .؅K#sֶ/8#!-; j@ O̷, j=s/)0LGY۾@hBXd/5mq!$@h.HV j=s/h !@2ΥOOOH_P+~@$0 aq_P9k=Dv j=s|@^ [aOO+/W@#c_P+~@\ РܥɑHti5DhVrX&~A]$0 ac@gG5y@HJ;.9_Pm_r1 SBV8!"^P#<k@caOϺMaH֓&~A/`+...V{Ȫ=_PH`"kG0 jG`oEj as_1$0’&~ALp$ j aDc=p  agU޺ S6v!g}zyA`8!lnVlp!$] U#] G.0U@d; VrO}6XuB`w熰0 ށŅ*wid.-#  0U@\ *)̆2xK8Y!lnl ɪ{%'¬۾H` A*eӧm_n%vg~KɧU Ў aH`T B6IB!~=*V,ߚ|e@b *OY`)0K 3 F-\0e ?j"v0r$0!3 ` !hޗF5Fr ۾ʙA{OPNX;k",{p#m$0:aB_k2~FZzz/i0m_@9 N.6Vl.0eG`~̸`kЉ0;/}gramsa&xd .&OVO+ asȱ(.Wl{i"GsW3fM~/$0("{7g)y/Lr9|",XK/Ȭ VOY_/<g 6`"O@-$0=- ..]4E1P/ v a|j'z vC/k"~D a-JoU .vi"c@$08/NsۥmE)0$7f"l[@oL@ bV/>'̂ͳ B0@BHHk>Ta>l '_LI`P|On9v@r;’zf=%$0X!\ [sid/2_ԲAL6Іn arR۾_cS`Ь9,v0؊1mY[]/~ pK_? XY25Vp S;f=GkLJ0<p<ki| H`I\.)4HCX¬  Z\@LP_y#~,P26' "IK S`a~ &S`K 2S`4h@$0'8 I`4Nq;IENDB`espresso-5.1/Doc/images/ofco_2.png0000644000175000017500000005603612341373034015143 0ustar mbambaPNG  IHDR?7x> oFFs+ pHYs  ~ vpAg8Sx[IDATxnGaMqCz3_bN~O1^6D /0:̌Ȍ- DVq^h`)b+ŤWI^,&XLz `1b+ŤWI^,&XLz `1b+ŤWI^,&XLz `1b+ŤWI^,&XLz `1b+ŤWI^,&XLz `1b+ŤWIXt:N'@ϤW$gw^zիz^}^_|_\ @&_}W_}_~֤[`F}ׯ_~a>JJ{QW,[k|vSWD.o߾}?=D_n崤]P/ 1Ljs]鈺 7}g}YHJH=DT~牺Rv >?~~K{)DTGS|>ur+HRvP>/íCz5aDʱUi׹k{+QHXl8իW^ VkUN5FTa/i+5i@?Wٞ Va֑?O$em"jU/iy]@2&]޽{]zuX_<ߗl*J#(B-[IWBf_=>>>>>^G]u9r7Vي1 Rv^$VKD4|! ~黶%͗:_pcҮtD]QWZRl L pwIrC9lŘӑvSW@ɧ܇_2z5p4]jnViו %!Jk>A5LUZcҮtD] 8*=?//ꫯ꫿_͛7o޼ |>~ ScbLG+`U*{S۽/⋰`}UO15 7bLü.1^Q4* ixx5Wa#`=>>>>>zd`+4jH'eX@z QR{D[8ݻwޅ*BҫLbL#u%+(Q0NEc=%Vxg+=+ND*! ֒^oԝv2, DTij, ^+-X{l8|?)?+:ND%bGӫ1LyaP@ϤWTOD! UxTӫ:Đa3Q"b0*:~7 Z[ HHBDӏԫaz5zUOɰ I"DTa* 5!{y#vD@W]Q%O Spc-?iiݜ- 寧@@Wi'OAo7NƩUU`Ъ`2,!8*cԫہm̶\ϻu2ɰ U*"*(s0XM]}@?dXEz^kq xɺIKSSƳWSs]4^ɘ1 ɰ( h*-p5|ݻw簾^[ZuR]@ K+h"DT:W1^RDW9XEz줝J>jj|zU/ vEz,&JEDe|*fU85ɧFW{n 9,%`+蚈*гjhox2ߤ+ `+^K[8܈j5?j81|WHGK{ŜX " DD `éWje]@{dX%,DTȧZ7jumx1t55qP%ȰNz/h'2 <^9v0T&ȰXGz@GDTz6~=O܇!{) dXò!@W;_Z"*ԫqb`Sք,`H6b"DTP?ƧW[lZ 7@{W@DTi4HC}WWk- g_̓aAz4BD| pphԫy۶o\aU=@dX^i'2 hE|5qu`}iM]ʖp$0HEP*p:2ҫTSv}Mɰ'^`#DTP-㦢mog0h)&G]-!N) dXG^AGDTi x'8vi(3l]M/jZ 0@dX%^DTȧ-otks??>??3 Rݾ[ּ+8 (+H *tUm_>j0y+ƈ@*2,=I"TDT@KgJ6mwEKB2!R6,_%W4F~ib?MyWi#aش|rO]C/gX`,'"DT94<)۳ |e;BWJD GW:6`Z7Ital!b%U*)ryU`h*ODW@9dXKIh(2 >w;U5)9[2,ҫRQciRK+󮎺Z&H2,)ҫ/-}'*3*9` `Hz*-= ۉdXҫ("DTOϛ 2%_teB } к+U*)G+c&]{z~V ZTqzNDe EyT]dX@HDT gJw<Ъd镍Q@̻b(jyW@| JDciteITWz92 (ۂJD|ʼ+ 3,eJRFW)dT GnJ]>wE0br׬˰DWdX@vL~>ΰDT@]H+DT 8 (1Ï_= l|=:P>PSGG|bM]bf#d2%֐ w[U ď^]@灧S4L8k %K0 (ac2, dNEWϏ]@dpȆnM o8jV`P/ v0 XvIa ZeAMlwEʰޔ6*\S a{2,mK&X2,k -˰@DWP3%^ ͰWv~6u?ra;B[Ր hyWPT^ ɰO]@dXгҫ!P@dXЛ6~ǘr\0: :yWж\ ?au^׫uEPFҫ!?)2,/[W#S1lJ4:jޕ8 J1 @z54,X6caAƏ)#psԫ)`a@j#elnӰC[.wizݎ0ac]1dXR`@NdX@9RFW]@dX*_TB$H!d_ w`cr\.s`϶6?Jn=;r?auñT-^-/`@J^c7C{p r^62 c'l7r!XDT@]?r2a4`mɣϼO-^%&!|N1Cbc@Z}SOWۦb,ħG.lJ8dSBys] `+dX@W*^VҫɰZH2,^VXﰾV8s8`c8 X[cULJciiXazU)iX:s;x!-2i`=j>ӰSSZI$P ]Q)m%"'z2, rr=I`\E)W@JҫͰXЛ>s=I HW͒a1V77]n( 2HW]aCGVҮ]%8+ %UwdXЧrVRԕ g2,%R^uMmے[ r6L)[Mڕ .2,^)IxOmȓ[O|1l~"JI HWA@Z̭W@ZK\Z%j HIzEqdXԥjHz1QW|z5'( -+ %EaPr!@ɞ3ZJUiR2IWTCzͭWz)58L N+ %UaǤWI^p ˕gu'J#ê HIzEdX%&OKk^WI+=i1 V)W@Jwڅ/Uu j ra-'^zEM`En[1ne^WI##(WӰdXɭe@}J)u\@ڟmjWJ0 9^^$@VǑ^ԧJvqlc{˰J"(2,cέ|~YGzP2k%HX3IѤW `rHSZz%c+FzHpl"HKnU6@}JHl,ͼ.֨UI'$#XGnU@}ϞֽIXfW=@n+B0OnU'@}#c+Fal#dXʭ O9 ??Η˻w?N FzՑam'@ixυVVk9~}<UZS+!TLl!J&M*I2,󩇃+pcpjծ{ID| =+h [Nݷ"JEDu|@z͓a@VOwDT]+ 8V|`A([]x9| ̓O%`+T8$= dXpUKP/UZ"2<Ňǔ5 x J Z֒ !-Q"W dX'@Z,(*G^onnnNOO+`| Z5? &&1q>)Vv}N=ɧQ@WJi3,sܪ[TkV BiDTiWC+ Đ[ͼ+jWYp!*-ĐaHdX@ W_;BKxrZnSNi={3+55Q{OA.͍ @zd%Or+`sN3 RU P"W\rzoeH+5=ET@;WdXж8±xrn-?DTi|&#@KL TiXv'O"TS^EKȰx܊臈*ж0꥽sZ&!Â!& _#`;mQ"VC+J2,(0~'9 8|*-H˰X-[~"Q%X+)i3,s($Q"l5hA@z4K0!˭Vsr<ŧDTȧ mr+{{-8*8]k :E饁~h{5$â7s_J˥{`ܽEn})Iltz~;N HKD Toԯ69SiMn>63wS,Si8V`%HޓaABF j]r+HhjjC"*j ^mdQAD I2V "3VqO:}2ϥ&̢ODT i`= ?mGW=L[\³Q% +ɰX]mvSVɌ(GD J&h 1?V <k%]AD| VN #3Pqݺ܊zynDT!@rdX1u*C"TDTv+˰}kuZy?J@Si`OaJHDV-]* F"DTP{+Dz$֞l'@9DTiaU'QB%K#MD|  ǧ_.wYHbȭQ"Ynt%^$k;QW݊Qn%YL?k=Q"( 勺iWJV@n[Зyc].?y"*^]+xxWN!8X|_f߷ #/{mET=^l؆ao!WlbzJ.KgG5OD@<4˼>_I⯭ {Q!؇?^+I*j+M*G/zn/%뮛rRQP2PZbbr*Z/*s^k%꓈*@ofr+;ӹkK]9~6ܩ^iW>O|>@{§+Dz}+w.nC%v[DTK'Q].u 87E%^T&m5bO8vS?źM!_ 6ysui*`;?`A!s|ڵ6Ү|aVl_uMӮT0| "`'G]9y]vSDTȗv=s_>iW] |Jz/8v+SQԱѕ HKz˝vJDT@ WиiwiW|h%z;+`u8zJZWb׫5z'^p>[OI^,&XLzr^,&XLz,v:Yw+ŤWIŮWkNz|^,&XLz@' HSq YZ͍W.OO9 ;b+ŤWI^] xl >%`r\=VS_@SH,z#XLz,v:Yw+_M,$Vz `1b+`^/8WI^,&XLz,v:Yw+5 `1b+ŤWb׫5z'^p>[OI^,vg w\.|=1 (SU̿@{Wb5z'XLz@|>[Vd`C\uu;z@J@_WIŮWkNz|^,vg `Ot:O^WCzLTGU 8 -H]Q#H`%T,0r0g>)aLXLzqaWb HN'kNkgW 7 ^aU\'Wt:I['XLz^:Kz xb t:N֡wQ)hS*(Wxv׫+`1l8|~mpG&g4 >Q[r ph2Cpi#0[  4Z _Yc@8@_r$P1Ӷ_#JKL)X4{v+XK2$ 5{Lupun -|iT,% _c uW@ca2!; 2Ks"-UkAR+$09@/#rm!^ps]ʟ}5DXfs $SfeA3sm'h]-+@\6e;K;˼^q96wУq,|RQLVAexٞ XOi'T!s^&j h, aPu"Ms|j׋jwg Hr\R|>[YW?1 ^&`F*u6Вvgk|2UKW|jmTʟ7,h8re7+f!?/*i Ў:?F&4`5g@΃ʙ*5^ 7ry65 H+L^s/Qx~Ҡ*|9X%^t%mn'<5MEW?^/Y ]|8(>7x^|&RU/@rV}c.>"; @zzI1MDzKRǮVȼʈJS>RRe+xFm`Q[KPfI"!H"=s?*Zմ&^7)|S^tNh-zm4m16I^.{>yN1 pݶyZۯm C f+acʩ32LfïIaM] PgH`NLrd+lrH35f*q &7ipe>:|V5ye\@Jcg&h r?R9&9jJvwDQ]n}U~upҷEZ5Sε^dCaX}o}]+L,%z`Y/uc*\9ѧʙ6[Ч`xU@D/G>u*I2YCu{f+*cŹ5Zt^1 =PuQyWW V{>4s>hȒrO-ƤWp>̘@ } 3uusH( *mRM6d\JzBڃ^ RO-Zfj /)v_ej&@*FElr˙4v'1*_XՐgm%OY ЂN.F1L*f}6(E S6a<㹕 vS3Lږ;N|p>}Mkޘ r+(M|W[6>Kǻ5SӞɱ׭{@]nm_=X*o-Mj6j5ΞlW:H4lA5h[i^z7熃Í)ٞ5ɗvy 쭞 %P]&:59Βuwy_H0|gWNt]s},@pAwS+x՞ ְ2_mmV<-@$Z|)]Klʱnex 9ƜXoP +)s9S-,,Ku컧6>f^Z;RfVʰ2IFp [wph[t @n+6z1PЅv޸-)?߲nwPT ( hQr컴{.s9s?NSq*cA _ScYz+m6yZPŸCG`G_7Sg^ C 1%N Y[X1_Y;pqZSǷUjSjL=޾{ݻwvX]LVjtHC=\!GiW)p.Jyˆx\ .WmȆLJ;K,k5T^Ue%ǧ]=e}:jq9k0}ME{>w[6 \'XIXG _c?oj}󼿿?'uTᔥbUOUfDU&iݲ2__=QԚ<42b&cĚ?eί}UE>{+8_`YCQ.acQWz۷oߎ[ԫs+>>l5aM'YS?uO*"紶+77s*S6臈*-iE{cL ^LV/37+fVLVr*cqG\W@–9uCfYU*)a^ܾ_~y #9})ab_XSe{Gآ{ :29Ŝsp+qH[R`"TDTpDKou*~T5Iǁx+}*uSEWӗ5EGJb*0$0J{̟=rzW\ YY3޼y͛) |AW3X&Q`=kk꧈¬ Zb,!!m9r+}"DTK9k]zjFW+<5j-s 0kxߛ77c T0ji[/UZ"*6vXgZzK,L{MV'݅Vï5ܚpc xA9VuɭROۺիW^:DTK7Lu1a |͛7o~ |e0%k[6( 3dX@zDY`y:"mt% JED@Kʙz13YU̹MX+_j a_ן?Ͽ?Ooo}۷b,#H;j|hKJn'JED崑Mea3NN ~_5Rׯ_~:/?lzI|&ry>ZMɭ'DTFV!;vATt 'JKDpAm^٭}eAzJnQ%(Ċ>Im>hAt>t"TS5W dͻLS|"TDTXA<W6 !Xq%b涯w_J$JEDq"ؾM)toKhŞ#.=XC> qCz$vA8ZlȲ.VQ0Obǒ^DWgAPUZ"*!:NjZOe^}ϭl)9"TS zI,X] RQ?Gz@'rl&(`=U*"*!Hξ _iȭK> ZH@zd'b_r+Q% It:{ݎ<H]ɭj%JKD@Uv+ yW28+@YDTȧ8J $V@>+h,.r9Rr+=RQ 8 h<*DT`ѳ]m%XoiD%"g_2I,㪥W=VSQɭȡQ@KbEzdN HgUTKhBD rW-^Mm2he؋ *- H&~~ՐW@|4 L}J JE>Lztja@Jպghg`("TDT@{W@%VR6\`Q6@YDT,LxO%Bz4+lM%ml>Xϴ"DT^ I@Rm28eK[yډQBztL,آ>gʭD"TS=^ LEW'MnQ"` d{1 Pn[RQyԤ? z&xAؚ:@]ٓW˙nyɧ5ޘ20$^&Sl>GJn@/i(1}':uT zqldȭ* =f̯L30&&7}5Mm*DTDT_wɪI&mKnGW615/Y.w~C#JE,BrDW3DK^]Ӻ8kø*| >9{bH,igY -w̔OyBC⃴DTPHĐ^@ro v~ǣF -S 'x(Sn5~f 1Y+25ϳ@Dȧ4Gm2 FOSbF |P2U* )+#S_GK}DW|*"*+ɭLHE> h # ӭ9yQ% 0&AŢ@/NKDɳ=P#Ѕ%G:(xz*)=fJ5^d. %>9(C㩈WϜ@9Wm%Nr~z/V6*)@LWmOsXPr 18avANKDP2rHmA瓩 x_?ɗv`)UZ HV]A/z`^=Q 7@n7JW)RZ]N>DT8(@V0z;@n+Ԟѕ dSlU*fP}b@*+Yl'zȭ秘>yQNDicHCuU,Ly9sr4ҮVՒvɧr ֑^ Ut5uVQ\[n'i9ns]s %z]HO9XGnU|iZ8X HoRPc_nJvLϾ ZZ=3eyo+-ȕ[k2+J%fXW+T[Qb SR%YvCS ߠ jzʭ N 󺆡xa|%Yf_+VP).z %pTI z&25jG 8NlSĐ^Lc~5PْO]$lrUȭDW@*O^ ⳪`AU)>xڇ XЈT)Uy Lj X `Lz0)U,^Ӣ>S!֞&:ěgtr^YFXjKHO%r[glغjaA`LzWݚBK16[RP/P6Q  ֑B*ˌr 7BmJیox}t=OXJzemNϊ='_FW8IniK[+ %GE4j]'_Y&zVsϕ[um>Ĩe[ua^fTKtuRBn%JSr5uBn%O@L*VKujLVװ1_T1V@KZ}%r̿ }2 ;},,ylIL(P÷0dP&и3RUϻɭ9|+xeX^g+_[ҜNn+Xg-`ʝ%j}^R!?JuۧU!@gGD-F?x]v|ѕWp++'i{U[Ptԫ䃠ff:9^aEW@ Sf6*1*OZZ4uց[^7^U̕vC+ OJi+Q&`=^Tc>e`SV˖`SѕyW%hCL2? ԺYV+ 0 2.@ L0PUMmV8aj]I`O+\eV;￷X@ WTü+W¼+Ԯ-%^@l509R*(WTVFz y+h!hL+hyW1~o HTJ`OwZ#r<cpM!2 `~zx"qSRI +:U|,>短CzcɭJ&I{nV(租:iI`-I YU̹ٔW `OfYǺKzTLXLz `1b+ŒWrXP^],.Ъ|g= |i7߬ogkDWzNbdX['VS1l8iSBv7>k4,&Q@in}u U1 Haَ(mڳa=w2,U\ h)jw{˰ݖsUdX@- JRX H*H;+a^ ɰrT^ ɰcU^ ɰU^ ˰Qҫ9XPՐ HjHl]z5$:aWϐaW/acҫdX@ Z)UȰ.ҫM dXP>U22,* Mz] QWJaG^F^Au^G^Me^UC^UIǒ^UO^5%UȰ`Ai`2,^5N9H:"TWa+2fXVIH ,Z%b H"!ɰ@z&2,$"^ IN@{W*UȰ8ȰؓɰȰB˰-I@ ,^Q%^Q1G^{^ Ih WtD@*+:%` ܤ @W^9X U+x y+x 1,  ^J2,k P>$62 |+HLЃ;K t:0: <<<<|u"Ȱr^dX:"*rH`2,蓈 v+( j$ 2V y-^-@@DTiɪH2,z#JKD $."TS^AdXID v+hJ KU*"*>IYi3,s$JKD@<tAP>UZ"*r^AwdXQP&tM0OD| HdX@DT ^ϐa%Q"-W dX@DT? Q%ZH‡V Q@ۤW&i`2,ND| "a@"TDT@Z+ RQ%^˰XO> U ,Q%z## U*)x+2,U*"*ܤW@qdXmQ"( ( XDT-^Րal!JKD 虈*-HɰzRO?Д+V ≨RQP РsCD IɰODT0&:"Q@*+S2,؟*-Kz1`*U*) #i3,s(*Fz0I@]DT+(2,!JKD#XL@ UZ"*4+MdX=Q% HFP>U*)@2,DT֑^d''JED'/X (|*-@WH;+aQJzp0*-C+Ȱ)"TS"(T KQ"X+ ͰTDT 22,HK> ~H*&!UZ"*'h Q@+˰`)U*)( qi3,z&JEDm^tD@ JED=^t*_u\.}:߻TZ"*`)2?+_HQ^]v"DT@ɤW`*  Z%"TDTIH&I3u]9ROR+HXET`' QLz@5]'/h ޓvg( ^@v24l!vDEz`g.+n-R+ŤWI^,&XLz `1b+?k7IENDB`espresso-5.1/Doc/images/ofc_12.png0000644000175000017500000005235712341373034015047 0ustar mbambaPNG  IHDRJ| I oFFsTu}q pHYs  ~ vpAg8SxTwIDATxݻn$ɝa"A# $SKȓYֺhbM]K ,s_A~?LA̵C1Un6&t:ʼq NTJJwP)*%@;`~駟~:w\XC2/KWM|kw&o͛7ozWֽs -|_۷o߾}= s4?aķ~/=N4x/w_F~lɸ|9- O?O?O>>Lm| l"X+; `~;/.;w*۷o߾ ?B矛| dۉp`).,/~_vFnu믿o/⋐sS~{xl., g.-xdv?4ޕnYLOM(vH77Kh֚l'P&$7o޼ys5Fa;m14۝.xxdtn!ޅ-tdxds?Q2vJ/t}3qxݱ%w@6ɻ_}۷oC›ܶ4?hxd3=r4ZM: Y6 E?Crt ic&c6vnnԫg  ٕN[vR?c5#&/x$<b,dosj!²YHvAlWRŤ]?` w9qR:-‹c @Dmc?683wsHKkG<Y6 WԜ*ۢrrZ_w𓚃eZ!ep-Bs.-;JsvrΙ;"Z#P؉FqRYLaSYKeٚ#\{x8u2ϥͺ*ė-;6<\ N5\l|lG;Mhxz=b)gG<:w%=fCj $<ݟN$?Fznk-.x<,۫^^t!S#@I&P|WDsiSx{0y&,N6+zRYwmrjbvV>w~.Z |Q\ܙ;Υ={K`XuW-İTHx5Q9\ fj\< YjxbNc /HŮvarZ-޳lG;|P@t:N'9-Mv}KůU4JÇ6 )`)w̲q)i%<`ll"vֵן%Oz8;\6;QH'zK^ :2g').Ix0Ghf+AsΗӺz@;v)Rv[ߏQJ $<wNhL<]+=>O!/DZHΥ.u.-#wͰ]2sv),Sx93Nhv)nHx{Q<j!}&ۥ(c'9Zr.Ho5C+cR] }FBs$"VTĜ]svkxvgP Hy掳j@dt/Mg G)ZLw3A؄]ҍm$<Ix@k;٥3gygG<`o@6]:n Oᡮx|>_ՏO/m)*(Rd{h9K<6lWR y$<&]dQ<᝟K{?yw-Yvݹ`'ەP KDf.9:Ix9wWXNygG< l®v- s Avk]5 9 >~s.--]ҙ도yJeyl:ٮoy$<`0.]FOxB>Gw~.MΉwY;eW999svّZKxIx@-.l]ƒ(=F?H;gW;RHx9JIx?NɅZ'إz|<߿øWx|y5ou%x~B3_.}zb'ۥX/~.Q\ Mv%AH^#]:ڱwwCUןx;?6 #hF,}aµJ vviQO$<x4]:svŹ9sP5.lG $<'<;@;:wyZ?.jgy,{9~}+QZ $<xT$eN QBiѓK #*XNEJx9KHxؙl"_+ AH;]ҥ;OxB>Gw~.a'4Ϯv)jysiHxpIYNӏXj^$<XG&v)j<~)dןgG<8'A3jήv@^sdeQJ $<xr:N U?쒙c ӟyxp/,^>}w;w~x9 W|צ i\;lNJK@s?60LAl 잯l:&n{:/Ş?[Sxu>fL:k;쒙$gs?R7eP.lɡ9J?Mvd;~y$<x"'^lw.;hyP %AQ`W *%v@$<$@Gb.9;' xo?&?GA82IxKvd;o^+缨9œx]:v<'IxKy v;`dox|~ӄHkϯ܇Ͽv_NP?wlNjQ*:K, .lpI=G=Fw N;.~#8$=X*s@ ;X,eN ,% =) /x XNX#>,`Q~q.-m l"_P$As_K Gw~.4@_;6gyl:9z%ޱ!.]菄y# jήvMƒGw~ĻX*;GbG<-9~*6RY s$%<xWMiʮv@$<'?BܙG艄ygG<`l]eF=B?Aٹs ?G) /QݟN?svlx|~3v^:_]Ǐ>GafÇ6]Hr|?O_gn]}b =GsxQwi@ Oȃ(wE2̝lÎx9Zr.DUKeC1Ix9Z xW]y?{ݝNӒJ6Rٔ`'05cj"Ix9J?:wټXCڻ =C-ZwTVOyR^ ?_}/fZv`v?CeدHϯǏ>Go^t!S]3/wT֮v>nWz\ZRY~PJշTV`xRԙ7eG'^`)Jk 6sǖwC-5ۭoxw_u QnW{X#Eq<9;#џ-ʦ>MC-;Kw?x 2$<4jD޹-x|~!Ǐuk<}t:N'#0e~Kee;?6d5)<񮞥u Ӕ#3y7Qvlv't^U{] C-XCFaz9;x<\'Agʎx0[*+-{$YiZVЊNͮ3g,!AHRټkZHxЊ]ޙ;g,l+q n{P pW)jyMW/RY(ǎxcʖx^KxBԩe˗bW3ޞ^o{)y+(d:O_~~:N+۩zz6s2g'@ZoMkVԲkSX cn m#T{4ޥO!vЧ>ΥKY:wm/<`;ŻRd;`<ܶwmW٧vV/1z`'\qMhWE.v_:;` KeaD^]l@^Oޅ;ZvyF|W b˕d;3wyUvЦDݵ %ښśv;ǻRsv퀻vKp{e֏SVӹe;3wRfd;^=dlNT‹RYUl֮v@ ߛԜ؂\9U;S 3'm=wYNOWpt pNHOx[$w[lhq R-坿 M(O;zS&dw(IQ)n*;XcH i;UHxә5nYK $ޖ˛* Pxm /״]=d;;M'\.WTnwkwKx!m7m7'RYڈw@GK2IswaTx|>-o[.,3w@mR\xߊw ߨ$?y\,()./';jv`{0w8߭/?sz“ŭӷq,vXY\ o)KeExV˕TGO.ehR~-;dl^L'ٮH7G4]x}~02 o ~W&-mtd, HUuBYh̥Kw[gyFt!Y$;R}nnq`|~{wKx; Qoi<}햲lfij+3wkHvK.$T*H9^r-5sG9+v=,]$Kk,/%|{1i.ᙿ ;t_[ <8RYX*e;3dY* PB<ᙹ:3w+] IʯM@Fn;3w[1Kea鴗zBG]kd;F$R;nS][ olX:sO;/<@.\X>sg_\\ʁr.]~ϧ Rv7]ӷcN«nmOjwA0%.wevq=mh-ꕼlsw>q<+^~^]ۂϏvmM4/%-mKJ oc-%oD[*WycJxquu.4]w4gg mlۯ;mp8&6kztl׺ʚ;O3LuR'qI~-Jj'psQiu|k>Vst٥i&T>MW|un{bq\^{?-E[?ggR]5K@n;aKxwPVN3=>mX.[x͛7o.O2{iZ4Z!T$]mz yЍ6o-̓k|"{6_N_ۣ̔"Ѓw޽{۷o߾=M_=]|ڕhk{e;Ƥ,mc,mA{ ˟BIyZ=_+aUjg\ԓ?'4l3-Z*m-F1׷y iSDQjo=??=˸~_WO>q~1jJ;͘jr^j{;,]`w[^;+

    > mv֋5כ׿MW8>ϦA0|!\~_~__O;@&8L1Mx閞Wt77@NR¦m'ʹt<7o>O>?ݍu3w5LU6fl[(hӏ?F+;~#oio<9wٺ1{-Ѯ];*U\zv7I5_`Jr<WGηS[yw-5ƻ <}Y Ke]Uǻx3sW'Keu Ļ@e4 9N>ܷp8^``L C-m{dy@zݔ)<jk  ;`Z r/$|:X6YW ie]{kf6!)߳km,fK]jw3㱜vuTxxWrKx^sv>B;mqUi,-j/b i`4gr[^wXBA< yзV]G%lDzٽ_Їv[XH{u3s,'2HxЩ}vB^U[Y6[_@v)w#dhgXϲٺ_@mznuvz5åĻ^$ *6ڜ]5OxWߐgEk祒2]UiOZ{K nbc$rtĜ%1M'@d;Jc M(qY x-Վrwl9jz %<9;Jcv`x=T@=fW;^#A;(qY @~D%<(®vd;U͘=fW;n%AkLȓ`)َ]XG6] V(qY @[N ;iwc,@lG{X%ſL9;z%Qؒ;6RÕlG;X'AQ |@^;v,`})i/< Q؏;7@jG;ͮvM{;,svj@M;hlG{Xc;T P;Pَl@L](wwO$<j`Ύ]hx\\Zʓ(qY @ky\1ū؂lG{LM&W` vܝfW;Z&I@.(q^wkv,/R%1cxH ήvd;%Hx\2gG{̮vAq.-%10LlG{X#F QNxlȎx(qY wwo\`;/SN!6%1 1Ю"ۑN<Ήw@Q@[Q |;`@d;Jck;`gΥlG{L4P `_vܝfW;XB*"gΎ]VP;!Q<y) 8َl9f  QN# 0gG{̮v hlG{Xؒx4ɹq%1' jG;ͮvPx4rZsvj{NHxd;Jc~;+0َ7萄ʮvd;xtKzbΎ]>9 hlG{̮vP+\ȓ:v,wp$Վrw]k; Ix.svjF؜-%1c4@!O=fy,xP4XN؁50gG{̮v:n$<؋lG{̮v@@K ev,*"jG;Mr#A.(qؒxP);%1&R%1cR;Hx'Q<؃x .v,%hE[Ĕ4'%1؛;9ѤDjَwЉ(;wСі^wЭ͞wЭwē;BOSxv` 'j=®vIA2gy,#`h5'wwxvKpEv90kgy,ݎx0y$Y?gy,,%B޵C-d;x(eXXCV'9AJU,Y x6&R&RTJJwP)*%@;xRTJJwP)*%@;xRTrIENDB`espresso-5.1/Doc/images/bco_5.png0000644000175000017500000005233512341373034014761 0ustar mbambaPNG  IHDRCn  oFFsSz] pHYs  ~ vpAg8SxTeIDATxݻơ.`\|Ç߿>wt@:"9(8 R_T)8~_|_X -@q~Q$q[akE8℉Had.rH *㖜dC詅?k0s??_׿_Wկ_!+3@<$ngͅHn.r1 "9(8 XX}5QW86 s0G$Vs>}ӧ^eBDrP`ka\k ޽{Z~g#&cn1 Ƒ\;ńqi @ -9j6w/0XK$?L@F_QnKWR Pa. \pm[ M#i9ؗHw޽{nn߿?WX6$:m/B$E.! -ޭ}8;@:"9H.Y6-]:k[M@ DrP{Ʌnr5FTs#u@;bӖ\Eߵ#c? @oBKnm$.r_>~9ӏvZrntq$A:Z^\b8 jL_?~\#9V`1!ڸ5rt. %[o(~Pln鉽!3@iDr\ 5v}10ޘ [޽>O;msK:L_˻9"98X|4nɭʕ+P;)jZM%rabydLkv"9(BL4mɍ㹹,=ny06`ӎXL4j+HŽt!Q`|_ai@$1M{cY'=iҏy[m8%obDoF`x+ W@@ឦ:a  1"9j vt:No|{M{t{?d"9vƝN_ZΫ?K3y9\u0n׃rOnm8Gxn} UhH;Չ+4cHy)WjHtRFr2^B?s@DrDщKgWZ$C;~7fv(C2ø=|>_Fr{ލ>, S#!hM÷'% bǖ}x^qzsFK8*6ו{|eko7@ގWa\ sK:yv0W#B<@j"9ĕѪ[xDrщ+~\N+<]yW>w{4|N#  -+4k92X-9C _y|Cs5d6zif+@.r1-_*xtXeywt:n}< _}z9x?yǜIK Fg–ʽvs@ʹЉͭ~0<=鸕oY4^W9hL'g¸Zm]~=P-9lnI%MWs_@I6щcJ׆=r1ׯ@{$"9޾d aIQuf* b8n-W`I3z݋rMh}LnEK :qЏ\ͯzsפ=,1sn*mՕ~% ^޴^Љ^e =7޷%11tp]Vbc*ǽV{y&-9k:ql";#==~7殯r|׹V{No`ЩKļ֨C~4 눮;?{6^w%tN08)q]ڬ+17{ CKNZe՞ӋiW.}K1uk%4N'nqG58-~>Ԙ{^ҒǾ]_KA{蕖85:+ژ{^}8gq=+`n<9&Ñ\?N$u7ߌ~$}*h&y!cDz+uM>,(HN9XVjWzs?EӉ#[a\=J]_^f0w}96"9P:qE?xew宯yn9{EP*+v*ǚ[!Vx.P>Ym+Ex;_qwD?N W[`nm׉vqŮ'gƽxθ@Drе FQrcmc@DrНx8`n^@Dr8z38 OOF2Օ sE!-"9hE%{;%틽"D0h~"9hVL'NG,@Z4c*:):q0ǒ,s⹭#+z|01q!tNZ|!;G0|([}|as0>\.@ZrP18Gz]`ʄִ=A'WnL0wsPTC'M>>ӓvz x# cV0{sH Zt:_ޒ^ݕA`@zVVS[j0ukʪ#Ϸv`}{<ƫ^t_c/ $fQqp3:soq7_{ђB8@?͍\)[b:V{LiatXgܨh̕%w n`J$YYr7 OOF\yc.{I<`LY7I}O_}=6m, hAB:q% Е{1W, ϴ ͡%d虮\Ms\YI{` `~H~X5~ŸLh]6ƌOW{x>`I'Џ@W.~ŸspdX!H=xt ~"EOn!rkF+`n.@|lzsM$8V7 OO!h靾ɱʭނۣM<@{ Q iI`]>ŸYuKwn?+-9x Y<; Ҳ,ӕ2rm7Grmϭ=@`۝8qAtNS?u ˧k!3 c~E} R9"A s-n/PsG$G,@hQ̵EǽxθHNtqpaxz22z-ssLzC$GGtfM;NtVs]ly/K@.] [] |8:Qϟ᫯W~8u_V{v>v@ Zr4K' tRhhsq93 '-9ZܭpTe-8ؗ\q Zmƺr%G#t`Y{; ׋XKW.ݸ?ؘ ږXƜ3FВX Gj>j49ƶIW.ZccnjmvcNWԴ䨒Ně i ]ԣ=>wxuIH,pN``|̍-s,r.@<xՏ'#S2f]jߕR5 E[{)+爆|t(%cm~*7҉0 [ t`_ xm4JXN|ͅ2[b@C0w>\5<3jU8r VE :9Ug*[<\.b 8`ӉEs}d>۾K?kOBg9e.l{c?n̥x)Fi}Frt=}8NTN#3j s{sHAWdyaЉB6GqqdA{Ru.к^o[kZw 91뾵JK$2h>9s門3F3^X'# tbµilRN?gi9>f``a]J'v״Za ;pϊqLLܳ `r1KO},Mp=_9Z+DrlZɤqPǦV׽su+1DrNKnOꜢ`6+w;H'cqdd#h{m>̕LWe"9{Cjv!nwFXr%cEKPⱿ>'MGHDW9"9n ^% [BzsmOY=0/aseѕ H=7%F85uЕ`J$Ѕ.Z=o{i{.ʢ+@ ww?Y6xGz¿ꝲ6݅`|ϟ᫯jr\"9fø|6VPMC1߭~0<=s'cМJwOk0 _s<¹y+@ ZL7GW6);w0lzj B@\9t0uMr"9DڽM[MJ6NaܘP:?yԗ q]9ڼakB?JrB2s>po;NTV= #n,aix nOr뙇o[c s]tw{}d ^Ә;ֺr}ɵQ37WzRޒ}s`nᨵ}. \Qv_9ڜ;#>-!/?RL_ߪ++\+0.Е׏koc[ۃ91\ V0v|uz%ƍAzǵG}k[WNWsž+\0ADr!G]G}]91\ǵ#+\0nLWs+p|Ɵ~?Ngk]9\Kǝ`nՕHVdA{r dQ#Ɵou:.s{@ODrmø1]9h%%6_MøYV0A$WϦ$ t qЖleɍm_+>+\ 5Uҕzv"1\{A`nԕh;CPzø9˧@ɄqTL<CQS8/=Na_vY HJq 1rʗ_o?xn=F0ECZ"+T]w[KWJvqddbM<tZ"+N{aQ Ľ-[\sNW]"݌ҕ-iN\<\s{ҕhH=qrP#K:@oRwZ$wtZ$;qA x⹶,sx#j';V;erP 8A9xVҕhH}qt^:B=N\<\ ѕH qrPaxz22ÑrߪO>ӓcIH:qx.s/߯@9DroC 6eI(U8ⷾxn9g%ƕOWYӉ#pV0wp&6k[W<"qe2C?e35^9geɽ ,ӏ<,@ zjD$?j!:q$K`Y4@iDroq~tBWSV@ :qK:qC1>8(x9gyT] ѕF)ddNLCzJ'/~r9]9튎q+4ϻ։>r9]9 օtDo:eq YԘsEqǺ0tt(O?Zlz?Wxn)KY>"9x9Yҁc887us`ޜ2+GqB' - jE%(rGitt]9OTujs+O$+ʱt0<=]ܑ9]9)ҕ#fO' Rpֱ6>ߣGjrǒC' 㹜9]91AWt,@N˝@Zy\`}NrӏX110 |9]9@$Qtؗ~%39e<0WjW]`]94:qZ)]K07+77*q!+Z)ddؗN@{ֺg0}cq&~`r!eO:q=8.[ ʉހ++G K:N@ώܖ\]w[wHv+2K:Ncy믥Ӝ}t嘣G :q,m ڽ8X}&1}a曹O8椏o&r@ ![1RssGtENC$Ii:eq 1m]xn\m]5e%ʱwOυsڬ㿛 꼯\4〭Dr\?,Zϝ0ݻ/c@j)-m]qd=~#1fIp8_<̵):"9HNWmq @]oە Xo|n叜j1& Y~#t:}s0w>WoC0x:},:cZ%f.U?^iն+@,-9H\L?nm4{y|'p#7`.sr@DrU\?zƵҏGcqi17 ŸݸЕ\ڸk[Low֘ kRg5qt ĭB6<1>k tBkIܾܳt8w(흸}z=wa\sz]9M7J$~_-aS{a\^q}`xn$ 8hp`;b*'>̙ @K2+7]Atx6l11q_{vZrpҺr[qh;axz*5nj|;Z=*qΚőt债 Vok3 b8ac9A꽯\xl9Hb="98@]堪~iӉ%kKq~\oGNHSoW5UjF$)+wl{M%w##!c\qٖ?>ӓ=|1vɝ81@K UNW.E1GhaQZ/2-9(B]N?gHgblڻO`&tʽ@Xju-`I\P2W %bø)ZiAʍm ꍺJ; V EKsTW.ŝn[*baT#y¸݊驍='O {0hPvtX0N 0&Fԕ˹̂%p8)Ti+gqAT-Drjmq)0 H(T8QBO$M9N9}dtv}&1}DrR|Smo?8Dr@?sK"^O/ژ+HG$P}Pwr@V"9J$Y +d%DrH@V"9J$Y +t:a_= t:N'ҒDrH@V"9J$Y +d%DrP b8H r:Nq}0PMK@V"9J$Y +d%DrH@@kDrP1!`/\.bdDr6ޖ)3qҒ`im77%Y +d%`w[K$Y +dЊwWkkQ.ri-+{A=GKm_-9Z9;kWoa[7}Lm;-9.}_n]FbM1-[{0nZ%s)a<ø%WZ.-F\ w9VkpD]8)-9|6~0^,EGKlKp t[Gf\qnEby"9u_f*9Z1$D[G]'K w>{:NYx%V8;n9tKo AL0?n"98D(m՞Ntٶ<M?ҊYuy ^%dp_7jF]Q ˖r8=KJsWcS$Ij-(OvU-E)rsmM-HTZs۝:>z[W}DrɚE97&[ [¸rt"94>n7oqYj.r;MG]~Vwv,ˆi$q;4l>ҭc.g(mc<~/Zr/گ!|trl -^Gh&΋ }lP/ƚ[G$@^ئUOө1*K#f)w+mH܍w]m]Lǣ&cSzk=Fė.繧 K$@魋ͺ.A 1B㮌0Z6=Ni 7-.rH S`:~é׳~h{}٦JSƶ5t*H˳/\=xn-ٞGl)S͔xNw޽{.~!];GE'@a\ V|ßO^~qYfIG >y~.JZe`.[qLݦ8~eJHW{++;EoFEN=q#9>Hi>K8@/Ç>|X.3y7m-wJئ"98?+GK^`[AUO{Q~v7Ǐ?~?1Hn9ӡ+1qhPɪ󏟞:ikn/F 5{y=߿bGt*gK䀄 .{㮜6ݚ\3Xmikܷ%\DwӔ.r㭰ee}B\;\Wnm0y1k.l}HoG_~%7m#` ˿=o_-0-Xc AR]\QLvѦ[ޞ"}Fi9ZiW}חק^{~;o¸z_F@Di Jxo~<ÌߎI7wDua\ѡ+ܗHH"~ɪ.*5Q/߲?{sN[\"& _ \x_?? kH8\WN?T1} zZmgilWO \; _Ǐq^"9 IGrdx+dp%JRFVbZrk\T7c>/+NHW r0'M4.s3cӧO~?sM%5EqI|{֮JN P2Q'],O4"9&n^#HM}đmqp/끕UrL"J 5[DraǙtvz+w|>7@MP [Dr@rs+ĺ=1Q%JFB7䀄¸WLh1n5Fp@YDiXK$$sruQkz=%74J"H\jss=%Pm4BF"9`g˓U:uý< ]XGkmʉ8H@Ik1u9%I YU @KpE$GEvN8y=P;X^RQ}+~ҨeDrTl9>R0lwY.{-DrTi9`o8"J-otDrl]Ə>FNYQ=KѳF^9 ?X MٿS4q@|7.<5O$hkb8a.aϟo[~|kHH$a"ֽy%ƭv(0{Y 54Drmڤq7քY׏';V{v j=Q z냳-?&p&0X\s'{pe-a( `-̵5-{=6tDrT`k-DĄ}e.C1l]ԃx"9H;M>2k^z+HE.뙋6K1z?۟:҃kϖXL]}MJ&A10nY1]7̶azpm0&7w+ԃôwV ϳ5ZFDјk}ߦoiטzp-dy21P#+ҊZKvT?nqM?aP/vnNES/fJ8="9ګtѩAtq@ƅNǜa0hHNG}J G~~0hHl_u[Ӻ{mӜ0{ %[zS[Y>gc`vu]}w0HL߮}$c 1=*Eoq*fo]xY DrpZq׶ ҅q%3qp@-Dr^p@L\N#NSVIÝ0`0nM=9ZrPc;t8CK C'DrP!0E AGpnDrF? wZMr@ +-9p-9J$Yh`2U۬ FKҒJn@ +d%DrH@V"9J$Y +dUP$w>M@.rMqWuh)ty]9ZUD$+@? mrHNWݒ thIqm%ІB#9]9ZUMK.ЕvEGrr\+@*thI-@WUІ[ru,ӕvշ]9jQe$+@irHNW5Ւ t(Yui%PF"9]9jlK.Е4MErr\+@9t(Y-@W4PZr ].~q]K.Е(rVE@or 6tڒ tJ`*Л.Zr@9pq@Knr9 |EhDW  :|vߢ ׀hɽ+}@H=^ct:@%w@N\㖯&|0߉L~`4!.~0虉L_b:q0nJ%]9-8a2-7bhɽ+i}q҉ \1%pĄqϰƹc M,ӒGВ}8wB$$104&@RLPE$w'=t:}qhr J +GFxnH4V L$+G~Nn-{p/72Pt`ӵ$Zr+Q哭"]9ƑsZK0^r9 ȳ,GxKlwکnp,-=QWԲ)Uf  -ʱ02@9.0 '-RWhi@PBq=`%0)Ya@Dr{Jx3AUP&\aՕc0{x6Ӊ q%ɥV]9f=xh5U'K9r`XP:q0"+0 8XtL(Gi1Uj!K?ĺreJ<@~evƄquɥb]. 4% ;q0F Aj~&>JF.b 0tr \8_Ssܧ.NK.?&{sk IK.p5ʝ㠴oJoZb`+;tk6DS9qK$wĠ5A5S9~֠s9U#;nu%6)@č Z%;nu*$V)@8}0G ?J9Jl||\/suz%wЕ+E-=c92މ qВ;\q=P;q9ђ+c3ɝ92щ ָ^h\tJ#G@ MK+WaC{ 8wHM2 Ayi'@$W&ѕΚ^s{6\FW. aUsA0&+u%&Лg"W e ֣}Y`r h\ٛGW.8%Оzv'.LKhrОzC'.0@K+0О:qcq HMe ֻzzىO$WϦҕ[ɚ@Ks@-z8նt"〶|8aնt" C<N\`MUչtf〞瀜qs ":7܄0`L<s 7f*ۉjxr0"8"yuߕ%Ƅq!W?/);,?2\ǬG7& -7ag]0N?`ОVD¸5}0 's\?q~s]0-щ2'ԴZِt9 'wYs^DrmmF`K<-щ# '\[049N\ w '\0|9(N28"kqVޕH<Љ!XV\mPkZ ^+K'nrhɵi-9}![&4Zrͪ+7vsnY̯qEK \|WΝ=[P>\5Xq9![@]Dr}lºr8`JL'ztqѳ. J'ډz؇v嬩 9 ɳwq%> sB'nٻr&mЉr^"^7|0 toP#9IxN'nVpn-*2 "9Zs-n:oiwNNngNI$Gxv6U'Ɂxv6I"9xyH`ȩ矛:qHDŏI<z&CE<3q11 F<0F#p `!$K¸qs L`I<@3αe"9Ōk HR`zs4A'%\xj|8aH8sT0΢ @j"98 P$aܔ3g`/"9(P88 ?zpN7<HG$59gMU8"9+a\I$596k{NP&r0X090p,x`XjB$9F AOxc8r׃_<ЍTA\ 0L"9'zs-i)hpxvm9N'hHxx.q:q@Dr 99kZ"$(GaN'QZ 㜣m;Q㚪:qHHH<B{a3R7"9 ^j0G$@<p68"9`98䀂pkBq)yMU6l'9Fq**)3ӉHA$TO<;#"jTNHhx(_-a3F}.ҔE$tG<0!@j"9k9 cTՉ(H'9 8gn:j0L"97-qb8VqI<YF"9瀠09@Dr;A򬩪@\ z9H 99hU0N'U"9sВtwӉhH09W0N'"9"8gkG<e7ӉHh9(A0ι@DrA~* TI<ƉTO<)l*`H)9nKgb%҅qθtA< tH;9K9`Hk9zvMU8"`E0ݾa)=@:"9fh0ιۉ"vaN9XMϥ#+0ZȪx._HP1^jqE$o%E94"9(/9I$!sn@DrΎ P P9FNd wr@V"9J$Y +d%Drvi4#SIENDB`espresso-5.1/Doc/images/bco_2.png0000644000175000017500000006057212341373034014760 0ustar mbambaPNG  IHDRzH& oFFsIqY pHYs  ~ vpAg8SxaIDATxKn$י$U%2@ MxP;Q/@T#ax *+2'.Ĺ<@.XDD/?~yw^ ];)ȯIȯIȯIȯIȯIȯIȯIȯIȯIȯIȯ79+{8c/_~Ǐ BX;_~o޼y%`%'n>wmz:GP>n:S? Vɯ7_|_|&aӽ/Ӭ*g)Էo߾}?k80^C~-aE8 u_nӯ 0)̽\ACxǏ?~<JXqE~xa@kXDp7j$@ȯaRB0?Wе2%!Hɯ/O?_׿|W_}U3.z7WWe~1UWS19:۷oߦ^A~/@~x!a//(~F~xa<f{ +ݩ:v _^u_ l9[j 6)>>4Pӯ?Z)0~< u_~6̝ב: O+H~:v`+ͽ.2ɯ?_>|pb4+_C۽>҃Yɯ? /Щ}_>N",K~)u>5-O%QWLy?~ l` lnoy`L~|pNg4[+rT3Z̼g2T9~?9a~ Zud 0E~8hk vR|sځ2~ W(9Вk]rݒtOvھv` ue{LUxuLn:ap1sK̖zf`qd uaf})TvR_~6`jub=QG &N+Р)pi@X#^_z#_aqj:YOO~x c"6ȎW #TR;|;|+> 0O~.}ky+Đ_|BOֻ &8NMŽ8\@ +Ј-Khĺ_ St^,!Z2arTx] ua?~G C1bX> (]u^8W9Q t+@֥RWX[SëW @>+Ptsȯ@'̽ɯ@3̽e_x-Do )" I~mx0H^)PR~$lx+h{ oA:<,8Mi  @RkN+z: TGsxVuW >ck̿a`)OTMs7t:O]S 97Z5aO:y7r>ӓ?Or]9}K_ Ҙ~ͯ )*VY/g-<>~:wi(a 5a'}gY",_ ұڼuuYr}o7_V- @WTkkuyuD҈F~ cw9sȑ\bkezN"0)ɯФZV~="adc;Жq /o5Mx]|>N?iwEn9^)~flOH9I]Oӯ[%3 @N+4ZJx[[aK& (1֖\#–O Aͱul6b:",{_JC)B`/n2Çzk:p:O{|\~{XYgko5O"@LB` bBS+5o3lMׄyX3 `5;5 [93 r_ ixaM_o/]%axWl+{2 [3 kL@צTDjq6k<,/~N-;/{1 [3 K+t%}7YE=9h@?W| ٽ DV΢yXɯи:|96E\DV΢yX^ɯР} <m0 6*>5#a[z^Wbu{~\n?m|>ଥt\.ӻwAG3:~yfg*sԒ$lg<,@WKsIm P'hyf]Sl}h~v&W(TKbXDP0 5 P za[?M~"̺~:ﶇ[_A(ݯpc :62 әh_ p=iG3 YZ9_3%1 6 WȤG-`/^&ab ?k@Z\DؾN 8+$zu8֓g`{=/"lD) ;+m[_[;aso?,~LZ2PNxT'am{_`Kɸ<3"l~X=ȯR̒5[ f~kɯX-Kk sa,'@ͺ lDXqjX2@ 8",ˮ@W*`kZD Cec( @,X߭/6Z:",[sw^׫@9b 8JS.I|>?|uup&Ow>oGxy o/## ӯĒR 3iWyX+dXBec?, ab g)²2 'pK8az a_2 l!%@",]IK X{Z̒Giځyv> tVo?cDt<[WGR@ ӯ$dQӋnj9I<,ˮ$OA~`g Gaz$]ZK2^>`uA\u&~` ej+KYD \yUȯd@̽-",i*aȯ,d@xF3\;g8Iek<,p 3$²exI~K׼n=wv>maIN; %_==GRKg铭=<8w si<:~">vIX^ga?+?dW`",3a'+QPkR3~e@WY2DvK<,K~%qDX@[<&@?̺nj].|>}?}睔_^{tP2ӯ]^[%"ϼIXr_saf+@,HCk~X РYOi:",\yav4ŒVZ>`;a9Jez IxM2h}RɯdRX\-"@~X( P%K -?aa)*4 e?L K̺eځZREa_*` ,k$,\a+@,z REa /8? K֍5a)4 P `_vRui?,+@WhEx]ɯd^΂DXJ.X>p̛j@.r"l[[xmߵWWW^[bSx60WyXXK~HΒ∰p KX>YW/0W'x:/%T `W$Wֹ^OsdZeWOEWyX&ƒH5w @+~XE~A̬맳!Os?q'+& z#s?q`Kmy՚W+ %J a5 @W( 9_)O",]a 0ɒFk<,_ndcJ`KKWyXZ$`PKKWp=d_NJWYDk$= e_X2@q*_cU|GP2BvW@ 'N`@WI~geo}vDX_Aaee_fY2j9J_Ph%@oeu$ V3%^P6h%bv#yYD@yWz P;[_ٓEle',u^P*%cd'+ʽj-"<+PKYDWSv>b"–" հdJn#sd)z]@ez%c_m}-r<֯3>c5x:{7|is{EU]++֣`r2 ʒh+L_g," 5U$^ll,"8+PKg{;nO"lMWE жWVYD@+k WEUjR-"_Y2@ג kK," ݕ5 5'K," /8%@ϭE",o7mDرkAMרE +K荵"R__O9Ia4So\LX2J ," Ts͓Y[cɯ@r "Ri9iȯ@w_Ò:L,Iī3\/L}ɯ,`j+"\eOGEXYD@+K`L%UdKHI~6dX߂'j纴4zu b 8J~ ygmZ\.oZgغ \O|Mz +YWʿ9ʯE%o]::~_\j"5juW x%ܖLtʝ^iJ+.i;K<ᵗ+R`vY2 __'--WPɸŅ? jLHڣW#,ed%~kW<uݥ ˮB3lcxnk)$ |3 sWa:|}1<_Y2@N;8&p'R XCua:UuB/"v ݓ~o/.OΗ@| -"`W%)]x4_Zӎf0Oo: dȯK 3E[&MGL-՘*’E >":J451%\O~_~ԏ^;FnqEϷ[il{L޾ӟ4uHykkLBb DN evO7&Et@ӹ\"ɯ,KGeVr*J@ +ʒ(8Z;{޾^K`v{η;7#lיXW(% eaa C++^",93oo(%*|\r, pyC\虰0 dJ&Yw ?z[x"OE+ ,@W8%P97{}F?eV+txھr8 a#LB9VG|Xqקw>7J~kxSƿf|<5 -.k̷%’2 2y}966]~rd-O4lyx:{7Ilxބ1۞2R֧c]UK~ݚ{=Α}=|.n.)jZgm|# _agS?^^BOr%Gnocں}=hݯi:f,kɻRavx cv*mb',_OB~=nHk0_ߋ4i^wo_K a=ק2/"²_Z!-R[@ím ȓE^(n%W8燇$l\^COWQx!nX{^,"n=V۵ >/_2| e5jtp5 k$,@WX~9(@NkjVwKSFX󭤾~EX_=+@WXr94Ԧ~%_&nz ;'WuzDX:ɯwS)&N+s-wjaͷRU,²aj#k7" )ȯ["sK+aY{ȯ_aQ|x WHA~% 3[[T~]zVꢄ ",k+ܺaT^DX؋L}E\5׍ P^$* C",lg`9ͭN;_~>{,je,bWq =ewƇ;9Sotz|c%\OA-/a}Ŝ_1F(ǽC-שyjG'|/{Tx ߇:?@ L)|o/z>e$,K[b@~;WQ>.{M,V,"(JGxa!x_LrKyX6aXn{yp.X5,e+׬k v DXJ"8u5 Q]2yXj&wXDPf  @N c:=GXayEǑ_i ijr:j5yX|VaW"0 l}}d`F"ȯ4Bx]J Җ ,eڈı / Pf]c",WEG^ՁWxr\._]㭯w ҧWEYbk?"_=|ɷȻ~.ßOw˫BH+U^e o ,UuR"W*#)[2@5a@.+^S3K?k`>8V\EupN_Mh"% ۯ1 b+ijG~J-% _lw-òsih8ě de={,¶p.EX]kWO/K 5A\kW`8%yX -_"vW(yXa?",+ЛWk’(yXa(Z=1 3Z"lg , b+aX252Z"lgN'VIxz6^;,6e9cȯ^ ,cì+<,ˉu33@js͋%,!yDXNkWXJ,>e ע 0ϭ7ì+{aa;[f`ȯ^!E=]xnay[azȯ^a_",|d2kDX'Dx-F7f]udZbAl}ex[^e\b:O",P6`+ _2ppmav;",1# =3-"l g ,P*+a %a9 [aȯY kږwf<,/=߷a!f"PSayI-ܘJ"&'B B]2yXe( abkY2yX5iyȯI)@{"–{Vn=6 $Lx򙁅,z`ܳbpu7+E<,do"l,"zl'6u~{0ž[+#r tz.]xzz:v_7^vf`kak-,bW&az'$BKDXΒJ-LO  ^`Ȭ+:+R DXK Z1dAyEX`;yz,Ka'"?mE~W0 P2}a{]^_&K% )"lO^?J@`@,"%K}ԉsڠM[x,+dV~:Si:"0J@?,(HKZj~zƛ[Gpwmɬ@[LEo}dJP<m>O†^ͷm3 Д0s[Œ(Myө-N>1dV7+@A?];p'E<a,%X:*I@WvVWPO5X:eߜZځtz|~f`*3p-[)eL`jځ-څ;~y/ݷ$|+{Kc:Ŀ\W~z+NyX-1 Јf`*95 *ӯM)al꭯1AYx>k(ȯTì+Ppd*a%W6X>РKxJlOb@{L4+"ׇ-j3Ȭ=_:5ÐmsuJ@":x[Ú{_P>[_S|qS$`{xJs7_0`[’LMgٽOo'{VghMtd< ;&e3*c>w晙  u*5 ,4+YuL0 Нm o_x`^^!|x5:E~O(躭 T$ꉿ`ץ/ НOkf]Haj-]5pq ~h֖j+1B 淾?1W, α-f]Ha>{^S|'*p,k^b 14|>/O'jDWrX,cv/_x!D׹#YH+1 [_[~`(Q}),9pGqr /1 O~"v} }_̪@<K'0ijl RkIqhWKK _Z b+Y[ʑuDސbD@ mf`!ޖ9?ZL~ SfYk+i*_rPIn[ oaq 5eǒ_x[a=x787}g1wj%g J7gʩKɯBrfkMgj};YYaQ`ט'7.-yM k*'ݎDѱLj(YrOo-k5̡ou% 6v.% kY2GR\in[g:[M=AufkWH4C1oFZ:1Ģi _c_X |[G-R'ט%N}<,Z#[ΰ5Чȯb|oz _K5ƅZ7~qJyOfED~{H[mӸA#Y_'ɚXzL~zxӻ'C_{xX>[xW_6.=d|mS|x1Am;W^ꄻ7v2%r{VۥZkT෾,hhՖ\0J 76&W ګCF`J+n}O)[sg}g C[xud1嬨1WX>Ы5q=`/ _RR,jX}Ho޼y*5[_>$h՞bW^16g@̮Z\ѐ۶;}co_K3%Q-Ӗ%uAWojb(}'x:}%Oi%Sf϶'YV=Ԫ3U# ǭw^ļa~91ssdqrJ}rIvt[៧ΧǏ??*AXG"4b{ޝb@$WhC2\j?[ Gf>Nyya-+[ P:)"5\ y|\ 'FH=ZԿ^]Nꫯ꫷o߾}vqrg)Qm/ɯL%`^ǯ?6!"s$}yw@XP0^٩8 ^9_nju^p2L]-*F95=e5vo~ļ0Ŏ_2jl_S0ί?O?4eL_x=Y>pe~SZsr/u%^~1Avm6D]:v׆?+D'd{&a~6>¾#xbKck "Oyu{]Y~ /~_ou_y( P-R/^[zͷs̷0DލϯK0ۆ?s_|_a*//?Sm P}^IyWk͙Hl*/V"D~_Wo߾}_rj'g"t ,H:ob+0Gl.=OwN}aM6P1R/^xnIŸӯ+0Grɬ_4"qu1j$2$-fVx=̝'B-dVbȯ5.>gVv\.ɕX9~?f-Wꍟ- EnSdJ# vo+Y`*¾V"Bϙ>ů6mv"Է%vW>/?_Q {Y) I`if5 *3w&q\uJ]W(TfaFXv6c@Y  ALYi E!)7ױ mQ :{|󗿤{߻`JW+:;>zn#u;ۖ:t@WӾ,K~\0$wMȯY80E-;&w?ny 1g׽mW=HMk]wdLBζ < kԭIZD>^8^9SxMAr[qɯK1Z}ȧ?Fɕމm;x4rɯg-`׽ukbÏPlHBgNU!.ͦØ+l!$Wa;RKζ )5+K~M=ҭcolNJ8~_k5y,mr'13+@ [Uny*=zU7zζɝ%X>5_zsԬ|-W\녫1't@ޯ^`_KW_+:]>`gW8{{~o)T ^"NlWᕜ^ IrnkS[-@ 3+@Nz % _Q};=br].6s:ʯf`i:'ZIRןb}=R^\xM~֑ _Eu4扭@qӘJjlxuYG@o$0A ,scKrvSkJJ}[ގ u=*RqVs" <1JbT#IJf)A$Wl6?ɠe`ir< ,>c6rz{B« k*k]l-6DXjXjgy5 c9=>؃ Z쥭wVTr ƖשV W`_ f`A|ڛq-aY[tV*yjj{ͷ~+7boAzR,aHb%Wץ9k{ߘ l!Xz%F[n{x/Ǯ H7z} @J$3guua\KZ lW =",?mcK|??akS g`O߻ "m}]co3) kilݒGWuSR^(f`Igur qr-y2ks #. ’ξ׏qp_wˑ`*8 $׏(ͽһ_+=[\X62ВnIЧ@9uXDd|s=k|x=Lc+Pӯ@-sNr5@KoO|xXZx$nb= SsԾW ^O^Rɯ;aiCV d Ox`_oQu8p^(Y `+YMqԦC(^'wYD@1WZa@-WR_9_)J?W YZac R^+e\&aHx5?f`K"W#+}2 B̬^8WJ 1!S, Wʻ(EXv%[ǐ X2P#ȯwQʯDx!)Y W3u(& L`LxG +e_&aYHxԷ!@{,w.|8W+<,ЛYW+$P2ӯpe ֆ5d^+_ba^ݐ ϒ B~U~e@xoCR,P^ݯTcꎔ6 Z;~ $lWv:dɒ6K~ W~ mfDX 5n,_a; B!)ؗZ;D~Xm =ܢDX` K /b9+ybxk,m+\"lWp{ay ά+=_ia%#CkW!-VHx 3Kjg}_ia+!SX`Ȭk̺г{L݁y0O+0/AP;v+~݋{b6pg(+yX%dWZ-"( l'B̺ά+ɯq^XhZ;ȯq[DpHMzY2P;K JO،W ?)jaֵvf] ޽C@?<\' %L̴Z;2JIW4a Β+(yX8V̬{ %u^`WLxbdv ^WaW^z%dR_A~]LxZ"vf]k'@:+<D+*^kg&˛;Ax!Zz_Mx u1 o6Yp 5Er%P/x+@9DXr^kgj'¶PVx(K 1K-qP ݄ ί+@-DXbֵ@]WTX^%Ųmߣ6 ݜ +@DXbX25 ݜͯ+@X̺pH 7VxK }[ #BV+I%=r=.Vɯ榕8 =0#2h )o` " [Gav+DY2-/ of RRl]̺p $B۪+[>[G[ yorVx`_Rl9,6qȯ&_Waeֵ[GX G&"<KLB ؽmj<ȯp/:zH@:aӱdۈS<EWCݗYnI1W8F8a=< ?)v ߣ'`)ʸ)0"lT8h , PsxD~VbOxmyT!։yiR`Hxm @L1 @ k{g-H L`/k{gͣ7+ :k{gO+ @<ᵥxL~b"t< c1s4Dxm| C_ƙ <_"^8SM̓_Hm^8SGĐ_B^k?GGWR,@ϑG ;@bLZ9^0 T<,@zNv+P1Lkgǣ}ɯ@#X R_G^kpU+@r",p,#~8@WX '#8@?W@jki %gw(P ᵄ,WFV }f֑_"BKcl'4Kz a؋ 8"ulؗ )J&ul {1!f: ؗzԱ^H+@±G5p&=_#{EuO5ŽU+tj]^!@#'YL@ /Qɯ@  {            .NqIENDB`espresso-5.1/Doc/images/ofc_10.png0000644000175000017500000005375712341373034015052 0ustar mbambaPNG  IHDR= oFFsNc pHYs  ~ vpAg8SxWwIDATx;v$ǹm/l%qђ![&!ВchtNChWQFdHKlHG""ȸ<Y(~q{\. dK@)Dm!jP QbC6( @1Dm!jP QbC6( @1Dm!jP QbC6( @1DmM~wV?sW Q`>>s6y۷o]ۮ^[~r\. P+;'o@!$ތX˗/_Ǐ_vUhvpmS`ׯ_~۩g?Y,g-W^zIE/^x|7o޼y=qǞIX}AX6?ik6,˗/_~駟JV??vO>O!1Mh ҫW^z !Gm`63BH -Dm>t@~?&k 7xLr o۷o_׿ͼd?[Xl:~׹}߹y{|AJ]&ي@DmŦspw\'|'gyDr&j,?2N㨽Ǟ9Ci>6zNQ)/_|2q.jw;{9 Z#j,܏i@;Dm'ަ .gBAyީNYyZu{q(j  p[S;V\Ys7@MDmI=ڡڝ=){BXv$KK)[ƕ~ @tީzRo ,\v+94S3{~SJ.=`);.׎vW`.l9BEw(m>2%j,4NOK C{ح"` QhҔ<=j!Y潯 HELNmF=ڡ̽% O c浜 !j,tƋ!${os5FO~7w#1 ,Ͳ=뎋 l %Q`ۑ3i{߿ ?s^@kq~?q\U;-%C鶟o4Ov6,dql GfQ{|[擀&5@CWqLf /\U|+0K(gIԞBN~\[ 4dhԟ{.ju6P>bSu(>e:e'1=j\Dm0ӯhຑ ׂt:111ښ`)Qa G j|儧r׻Km՗ .g/rjR#6I-t1\kʺm&jAT=ú !p]8N73`=m:gBj@ gi` onnnʕQ #XGHf l!j!Ba:v^[mhۯ a6nL˭+X`ͅr܈Ia ){Oh}>۩ ׈~mnoonf69?uQFpbdCQULGgI56Պp>۩ #4dZv\.q&@IDm*,g S)޴h DM6Uy>gvqT==YZmF @Dm*1gwvS>Q]/_C۔]Uڧ÷<5Tٹ 6D]<~'dݡ7777W_ @ Dm 6ܣcFXgi<6Ř3A{<{+-,r;fˍ"wwqm 4A{]No>eX.curըskj)@ k;vIMlkc|lcJr,ѤmJ&jP9;C~mCE%`=zGx( @vws<雛~ek B9r-joBOqPbn;ދ,SG^>i{(]۾#,vj49> !NzЮmSh lCHa.v ]~\C5"Sh @f۝݅uCH<pŮ`)V߁k/)]O<Իچ蘲 @KDmuF. qB=Ge6b:Kۡy2~J?ri\ra#)\EkL>6䙳9]l/RH$ !놐Fk+XulE1e.ݙS]1WMh,mQl{`M L~GpQ7uD__|#}`MNL69%W~i{j_k L|\>r$W a]̠.; ?'N ߷[W_u6)lRh4}{Z>?ic6)p XG&Oݣ95)Ц.mO_n6%jICvxaxGNݰuiQTK`1BRn6~> @*fj![OQ{K{n>Sh)Nmf1AX%ف-L 76ٔo(nw˦?ײ߾fa6%xFYCl%SOiND#1KĿ#L o6AHn=&a-i;D Q+Ikcr62ec<@HZcז90eLiO=M.wDQ$61ā0=k&`(A r6qlrEnʶ#j4 ڰH^:k#Lh6@ =e{&;"֔6ٰޜ=?Rٔ"Δ0 B|>-_ΦDl Bvx\.߻>xG @Z6@ q=H(0eTDm9 mٚ6 @\6@clgkwbW,H؟ P-B±a9)aX;D`QB|_.ߏsv-a)G!(q _bzW陲 6@% 98nnL%l#L >QR&hCjC)%j!MЦF9Co4mCL Q`xE/]ӃAצ{ɔm@H877]Bi~md6ۉq $<^sҶiGQ$6@{Dm9/{on `~׶!$'k(#jÁF?aBvB2>MevW "Y7e~m@Hߜ]x}vML`W.@LІN/\ދq>.m} e꾢uC|.tO믗~kr\.0@MDmٰ.mY}ݔ.m{DhG!j?oĻۯW'@TYClpRl0MȎ!5)ea6a6@F -axG\KIu0S m7sx-߽3\ 2;$gCG0#"r\\Mz_n19H1Mw|\.k}7P";Sm9c6 SQmt"D6@R_w)m%gH0#֎"J'j$Rց!r6IڦMlI؝!X܉0)v@H`F0e%6. Mچk 7Q 9HKڦMF7Q 2BV8Vhɺ)kFƁQ"a6@Dm @چki 6&J!mӦ8SkQ *w4ǔm+u H`xG P Q`1BaxG P>Q`B5i)fq $P.w=EP.Q`B1wQ$6Dmg8 ;”m҈Au c6@Dm+Lf6 k?E?Q`9 ;”mO5A;DΆ4YCivmS&jārR3 ϔm6a׶Q$0#Lȕ 4́}6 XHmxDm9 LڦMWF 4ʁ![`,4dݔm1A[rf S j i6@6 XSHK@ i6ř_DmIr6}ֿ3e(6P9Bb S jr $ml%jr $i5i`lA@H4Q!"m0e`O6P<B0e`;Q(!a6 k?E ɁyaxG  TmH۴ɔmDm0ei6&r0)K@1 PH`xG  咶axG d́@#R6m 2e6PB3!Fm6QȔ!c Sq $Ђӈk2Iп#N@FL@ڦMlkM getD-a̔m9Dm K#ma S#js $P& ;&iw)a6pB0ML gT3`L2 g(kGH@Dm &h{axG @c Ɣm56&h0#מl P2Qؑ!Nچa66QHH 6i6 Lv@H M"s $1w)@{Dm B ;”m%6!ȇMBLȓ @`a,4dݔm<&XF0e @H!mX;e;D!j9H۴iݔ~m| ga̔m>6 @~"a6PQŁEچa6P Qx!ML jAt~ cF+ @M"v @f0AI0#L$jOu {0eș ā~mk6HE @smlx@ c]ھը7Żw|>\.wit:z^m^.bة 8 vqyL!jC HX۝;”m o64!VGTn8I ӵ&;”m W64mϜ2wͤ햵Bm09 9Wx*4dݔmDmhBYC0v#Lr"jC H0#NuDm!`?6mZ7e;_`Q*@H4=F|%1Sc9`v݌"a6pQ@H؏ ;”m6T r6Pӈk2i6 'jCj #X3HIԆ9b Hm`)Q*"g@Z6 SP$BPSXDm(! 7k_{>Q$56Á3iw)>Dm(!t6}|su75e؃  W|lڐ5B@"a6 r $Nچa6 q $@Y|vXJnSwww>vBfLZ#jCF P~Ζ 5BHMٶ_Z#jCLZEB6l[ڐ4A`@r:G"m@ Dm8!uq5NڮO;ilk-06ap~?Z^ǔm`r\\Hz98߿sGCjs~慎7\.ߧ<޽(_{le(N_y} S2@Hh)0#Lc6 dNxMfJvW>ܛҢЏvwmۯ -S@Hž !~` c)Ml@Dm؝ 5(kGHP7Q0iw)S6쨬 !r6yNۡ@Dm؅!-׆qm}gH|6D@H i;O|suMl6D@H %i;xXϔm@Ԇ@ :m߽{̩}h !B{3SSU6lRm9J!m2=f l@{DmX @^{o LԆ W)g.4dݔm g6l&gG0$x]2S 6,@H 7ZseeklHQfq $P"icFnvh6Q@H ~t=SV69(Q$arvw)P#QfH-g#Lڈp!ZCvGn)PQp $PV_ٗ-g( ?q $PF3¼;b(i!j!՞ll@Dm1AhIi[fUe6MԦiei6EBl歞k?Ei4ʁ@jE?Qf1eJ#jBx$<ϔm(MC Z3er#j0Bmq l#L4!6 S o6@HH۴)e˔m Qj 00EnʶM3lb*<X"a6GԦBeMJ"sSʖG"m6Uq $GiMM!8|>Ϯv3er jS<Bp~ΖQ$0#LTGMچa6GԦ` e}Z u2e"jS:&h;^HشȔmHOԦ05M(QxCw)M1 Ӵc;”mHGԦXr613b6 S Q8 Üگ m2ɚ!0;;? l%m0eFm6Kچ>Shn @$l؋c0#"Dm"p $qE;b(il@Hғi)Ymug6D`F0e,V9,6 Sh O6m }/e6OfB`,4dݔmȟ3 |>?5"a6-YHXCŽOچv @Dm } i6]wy jsElh9[Bë>3eSȓ]-B,!g(lPQ&h u![n ;”mJ jW!Mr%gNڦMM vU Mru?(Sȁ] B,OB` <#L Wv H0#NGԮ!`6mZ7eI(]0Bq|^Sqlۯ v8Jw>jb Sȃ] %iwD)m 'gqmg~mXJ.FYCljrqMXxʔm"jH`xG D9r#m0eDL9J$mC)A. 9ZwQ$"jgǁP H`xGE"m0:&h6+MڦMl7Q; 5MX.m`cg6ۉs $жl]50w)CΌ BΦN6 SM>!VٴKڦMl}B@=kr6j3eD \𿕳Q$0#L Q;BBMmFH"g@N#Ƀ9!iVn.E@D9h}^^QSQ$lۯ Q{GZ"g"a6ˉڻp $9axGĚ@!68"mӦ8SkP7Q{g&h9U7 v4ei6ܜ}r6,c Sx!3axG @!p sA{vd9_GïCG1S̙=!g!_uM`=*KI0#j[,!G]UgB%a깷klP.m}j@O WnW_wq*7;` ِҒYk4C|:NQzڣ nyg\r6S}?.}.RmS!wKsxo#<pnBH Y{릟Ӗfu+j϶d t K{qt$%k(l8dNx6Oєhqທt:eвPt7[3j#GBWzi]c8\k݇-rt[|U;PR  .`=o^`z lvϖ_>Iq>s-k6-W9yi^ꕇa/!$r6@s8gmMС1}rmΖ=!c3~ OuH=ܵ !yد y#9 d:g#m_0sϺױ.ЦPkEBwD5 @OmM{guB8ak;3Ҝ]4c!fjג2y RԎeNJsW5L;הm)ڝB̳Ǐ~u;cC#G=OvZm kal#\b>gn4e Mٞz[Vvup:s9g.jO.C9.$Mӟ{%gXGة6m@r2+')Huzŋ/Iueۃډ)}svp.VoHrH\I8˿9y^~q3\=͝'8$4펨 7yo~u}-RGx~}i )ww>u<)'#qj 3g6͛7oތvwr~k4&}Q{G6G<k3jj~iǜ}X֎PJ~}zviO?O?>O>O>w7=|II{cHz|}av)99Zisoƽ;݁oz?zoxf>oql˽b:)NCOΆ9CwMvaqޔmHB;CG/t缿^.Ir`v\uu@Hwv}kZ ;I"t-H´¨^5ԁL m]:ة`6fK|>ecN^:Iد-XJMЦw_+0"@HԮ1 ]EW'Ozt՗zVMjJ6?`rڕul؟;>;{H"(=5=k1t|9y\d9ot1k [(>06@Dеtu#Ĥ_Bj,بN!2}`L(]#@R/4m lg6;m/؏ڙ2eXlVk }tT"gSҳS(bk׋uۜJcnn 1ARiݺ(ym¥ܾFd^uUI}]ԖCΦ]w)fZl6@n&UR&3r ov 4C&J% g[?1q'hQ`hYM9[k94vm>lZc!r&jWNjb6 PQu@H{]c(]Hr9ḱ+$mei61BBn 䣾mvḱu 3P:vgM-L]9H9dDI5@Hr"jS iB&s $Ɏ4I @Dm2e ٤fɚ sb6) @;I5&gPQx @l s $)Q$mR1BPQH g#CȎ ڤXc&hP&Q"ٯ @lR1(Mmju,)X8gۣ @)Dm[J@HR1BP Qy@l3AT(Jd6)֘!MUmJ5*)֘!MC|@L&s $hI&s $Q$B&>Mmr@HR1BQIkNR1BQ&؛@z&hb @{Dmb i٤Xcm-i Ql⓳h OHl@HR1B6QFy@\Gb9Dmg ۙM5@Hx j Jr6)֘!)Q 29lx jO`>Bb9 ii^b9DmX70-3AḱQb>9ḱ0 AF0M&>9#j3m9ḱ HJḱ %I kڰQ$-XNԆŤmZM5f6l#jCd6@lR19ba%/=`S)֘! Q61\$s $&jC6@Ml3raw6@nL&3A!jC4^φR1`O6Df @L& l` Qv!mC&s $"jmg6OԆy p,Bb9awF)֘!6̷[qM5f6GԆD؛M5FDmH(l⓳86@ˁXc<ڐi`>H 90tla6)֘! ?6(lR1B@DmȂ M|r6GԆHBb9&jCFPc~R1B@ DmȎQ$}&hb9!jCm9ḱPQ$m-Orڐ5/69ḱP&Q ` pH %6P7I 6P+9P/M5f6BԆ"EA&.6TH )֘!F6D$s $KԆEA&>#GF6TBg6)֘ P;Q mjkmh Uȍ ڤXc2GԆ E@&s $GԆjI@l3AZ"jCm`?$s $JԆyYXcHM5@H@ԆHlR1BDm'6M|&h64K Bb9xJԆFEl5)֘!kDmh ,e6)֘ @ I@M5F׈ڀoMl⓳0QQ$@!I #jH&H ,!jO tL&s $ \a L&s $ I@M|r6 $m@}I5@H`Qxo0~\M5@H Q( ڤXcmMjF1@46A&=b 9kL!j+E%ḱDm`iJa6)֘!mȟM|F{|93Akm Q(ȍM5f6 D&m@|% l{@R9ḱqDm`g6pQؑQ$ ڤXc&j _UI AvgmR1B9D"lR1Bm؛M|&h9H0!I J!XI Mc g6)֘ @ Dm`6LI9 o65iBl⓳@|c$s $PQȈQ$ḱ@Dm ;6-3Aḱ@Dm06I O2*'g%E@ I5@H6PiZZF5@H.6P<9M5@HF6P zP9ḱ@Dm0FP+9lF6Pi9ḱ@DmH1,~J5@H 6P0Hȟ ڤXcZ"jœ(M|FmImR1@%|@>lR1V@U"Xbs- I@HR1B@mRmm6P- ڤXcx j3jB5@HDm 6qM5@HkDmilR1B@C|~l3AQhQ$@HR1BI Q`i&hb9`O6@6@lR1BOXOؓ Q$eq $)֘!RV9ḱiQe6)֘! jl[Vg@Z6@FmR1#jD#mK&&j$"ms,)֘! jDf@J$s $@NDm]Ep,9ȃ pi`;ILȏ #ILȕ ;Hb1Ak, 6@"6r6)֘!J jdAXG&>&j$cI5@Hr0`ϊXc( pi mR1$jdJ$gbs#g9l⓳$jd(Bb9|6@FmMH P QPI PQ ;Z gb9F6@"$g PQ k6PBb9^6@m,H P;Qv3Aḱma P"9ḱ- #muOh .I5@HE_ș"R1BJ( mR1BM C&>#GZ%jϷ@L&3AQFGIlUp9)QZF{0AkmDmI@,7HL96@$*`I9mDm&:r6)֘!XBhQ$@,r6 <6@sm`Bb9DmXc`-QQc&hb9mDmE̹l1B g6ۈMs $)֘!G'kCkݤXc 6Q'mh ڤXc&hQm.9bBt'gQ H&$s $x sb9TDm6ˠ;m1B ,E&s $GX((M|r6i,&mCI5@H#j >j^ch6+ّ0AḱA`HXr69Dm"!7r6 @nDmv'mC;K&ȏ @42EXc W6E1AḱM`6$g#J( ڤXc&hPQٯ ٤Xc&hPQI۰{k, O6`}a6q֘!( @" l'g F )H` ڤXcd65@H'jikm1BP Q( gb9(mj!ji8ḱH63,[c^6M5f6ȎQ$G&l#G @mZ g @Dm$mSZ @KDm&P.?z!s $(Q$mR1B*QbHO&s $mv'g @Dm c6yr $)֘!@P6H n\{:N_~*k]Gnn^ :i g~ lZf6mك \_`{`W jPi->1Vo;?@)m}=5F*lK}k#T(b1r$GDVTNf 9k.Xa6E"m"guUk`3),@mS٩ @C"a!_{4GP"Q昲X}9[je61e'h @iF, ڂ54QnږKtT3~69vxzق5@vjOLٞܘ@H 76O>O6 ; }駟~н 樿yڢ0޸Nj]`@q1-?я~Y:@n ~V_363.V0&udh`Flr]x4 Ç% 7fXm.?o 2!㱱VLt`4B ?Oӟ////w^SDV_/?M`炊 ӷCH=܀ Ûi$36e.%זLCU + e HߺlNBڏPtѥZM +E]Cecc˫\Ch @oD^Ys ~>.04*0^?DwX IL?^ʬx)y3!$eTl.6,Gm1cR+ @D.kI1Mt ɰe˸{ч @D Hgƛ1 )Dޭ}St+^j n綀g`byC30)g|oF @P9z.]1$@T -Ot脾Dp6$ˡE@ @ HD @-#4ɓ[hCbIt脾Df;$. @B 5]fH v.iH$} ]"oH]oZH!1l@.@Z7 i]D @t ݝpO>'@ O*~1NM,}>kl#ta]P qoq_b x$%@Ń^e.x~ߤ|X&4"_P\._zve01ÿ1!- *Ö?%!G Mcr\.>|,b @DJ_bX9^!#0GtBA<19I p-͟y3@.DUr9kc%d7[m1f %=wMzRb @, FFhRXq>!щ.7=Q=?b @D )+UԷn P30Rxz @DYzcj#TϨX:1 -ۈ1g]0*[c Z P)AXctcR.@Q"T94ގ{EY~cZ`5з`c6`Ld!iB>eZ`qte) ^%Q1KӁ.@A%:bb +c N)mкO*ҷ*kci]S d[3fkJGtq뒥1 ֫-^<ޜ[=b|?1Ǜ;Ӧo=F*P`ZUm5Zu?p$ p} !ҽ3х -qؔyIt:ў #ר.j }˘3 ]|| }]I|X~Wх[V[%Gnӽ:х*8ҞV+S\4.TJOQ߷@lei>aio#ҍ~߶zzuKBu%=~ ѷGbֽ*х8ҞVb- q^ DiiV.||`Y=}ߕ (Bt N|.]8">%B Pk<ǨPm"]8@ǨP'7M&:хB,ͧ=}-Ӻ_ =E[ >х[hO}^Kt`'aE\]Ψ4>*{!"х=L, [LeiD2\ݡ= :Btǥ&ǨS\t/Ot'DcT hZ.o!2} 秸i25]8@i{T ]ܷ^a,ͧ=F} Ct!#bǨ ]F@FI=D 홎[7F>{l YB@~Sх],ͧ=%#p0WehQ1KtP0*3.l$E{,n%7M Q""]X|ci>oٲt/%p} 1*]M@FŎ{$хhtT{[aTmhDvq^ Do)ABN I,ͧ=ox # Qf}˱ـlqz=;opz^Wۆ=.lo b%A> o0J{,` G]X@i29.̲4X[ .х\={X -aT #pk!|ؙ[^<ׅ$FŰWo{5_P[4u/y/օW,ͧ=^J\=w\.sgi[hWкH@F"ѽ ci>`TLc jlIзD5t/cÅz^m.XO,-1^#7Mf х\O=@t Qt/]fTAD^1*F{OB х} [7Q1}Kt.LtѷD{ѥ;bQ6^xMt dT,ry'?aJt鞾-LFZfi~t/<]:bi>=з7mZj^h&3&X.]4Z^]FmK-Doa*c{Ati[7FzMJtqoi%.Ͳ4c0O^b`8!.b5[-"z2t/|3z^M{.зQ1R,KzҞ騘~eT%>h]Q[XM!4|ci>oK-ǨS.MӷQ1`Wh=Fز^%tp1-L?-˻V.YO{,-Cui+ ǨX?~m`r^`+LB޽M]; cK-@\iQ1΢{Nt ơE{,)Da3Iy^"^]°4X㈭}IY3X4C*bi>^]ҷQ1Bp,K?40*F]t/.!BBBBt| [{|j],]*eTc sQ1Ku/]H b\WšE *D[L4\ѥ =Z{9bi>ps.'49.1*F{YD[L1*$|zo]RoK%.'4-NRykr<w˕!T@D2+{Q1X{It)K{bMBDFXн$N!ģoTߑ.,K}=u/,KiQ1vDtde0*FYOXGtIoٷ^.(߳gv+ɨEt|LJ3o])S݋֨#[#o~v̢K/?bؽ.-aT z]ty{tTLY{pbлeQ1az|ML-T{fEKYm9|@h{]nзb9n,L[x<*6׽J2*bi>40*Lѽh]f^TM|U1K)kE,޽h]&/$¨yLI˻w-b>Q1Ѻ,K;I/QzbZ/Q1L -o5\^뵶ﴣ|Β/Y[=b]uqembOyS;^uj{x!-{r.,+ӓU,u1*Ɯ ;ncjh(bi>4з}uqeKs|EKu/5,[(܇Tm0*0͑-g*sFe)_|гZb=;Y+C{5J0`bi>SeƷ}K} @+Ӵ|7D} qTt4X4{Q1"Z^ÇͰV} Fĵm -u/*} X: *˿ύC1@lU_޽\ 1fy=H>6ʺϼ\^͔ùxE`bT<,2= 1f P(`دo!ܽ61f!a+^Vз ]br3u1heʹ`91اf|BFK9V^el?[~~gF5Һ#]?Ae%ưnq&y #@l,XO ~b P OPMXGbi>`ccʨ@Q~U=E.A%m1f b.GhxfGH1*FŨXtz~1o8J6*L_S1V]-Prko͂.WBxGx33]JhCJ~e𲼯_UMz=>Z@cSS0*1u.-\hqEK?\ Q+1{7=h]\MBDbL@>G}#PbT],c IbU.u1*ӫ`R *{*vc(׹R pJ[}`U]-U b?~!G}۝̷ny(^ >VrY~('GKo HZƟ#W]ۨ03r\۩=dzz]} v5-Xf| D$<GQ|9Nl#@mB UԺڷ*1m<-}3.-7bLⲿ{ZXڳCsKKK`cz|xk"0cBOKQ1`ڣ>= --)Ƅ0sZKթht4_P_[oh^)B}lڪm_=KR[`@nb J=ʏ^jə_e+kCcO;sc,1irkm7yB 4،yf˹ .,7iz?ƫvZۓ{Qþr[#Nk]ʌ=(/,TwӂV8\"M`\?)/{t)41WD> %=B)NXlb 荧DF0ͱcmR()Hz@uY31&2{ K[G19t/2FF*)Ęr9ڷv/~8/uZܳ 9E[Q1A`?1\ˡ~o,}Q5xYKzb m1fsnG=Ccǔq ?+?v SZqߢW8Kzdҭ]C{M߲b6˶[{yc߿}mlK-| }k#Ĵ{Z69=/?8K31>7ÿߊ1-ncً@K7{zܝɶ@+x͑:Mob~3TvThV3W. @Lܯ,ei~0 'Вw~˟9Āt!u# +zc`.w~Ϭ> cmHBn0D!%$iW.,zZ ?2.C\.nrڧǴJt`@sscRƩ@n6 92Yc^9f%-r<>Fx{na~srDm *kߔ/}3:gޭ 0Gw0cB?]w{qVhAtVA3^!3@AT2:2|:o 3sG|P @ -GݯlnTl700W{+}ٺ7R_j]_ -c @qwcS(*6k"cxc}g}6 $ݡ0#%۲s%{[ioV\P[]O?O?N>3Lt ~xpe꫗i\#ŖMg,?gO1A_Bu=#y}w|tdZ(FŦf~xQ0 g}|c1DgV#b9k[L/G6___׿̞a8cE0י,eV]aޛ߿Qwk#bT<~3g><<<<< >qh??ÇO4! 3{Lo{}хjK}o_J1{si#ö2yqG b?ŏew2{~?O~d?f.0`u}giխ;#-BxG,sTP98<{V}xcTmDxCzօ9ݶ2!wwoY"Z Dx<<ѷ5a|P'A "Z5/]m_^Yhi2]\y=6>c.Xτj[KFˋA!i"po IPED)e ̽kpvM\(DԿ4LtY)fXD+R9*Iu D 뷰z -q6HPEcKVh%cpʓqAj$IPiI}@t$.tMTg ]p KDN%˵}% -ZѺp'e ѹ1F|εoqe蝾cRrLh" ,_&pqcַG1*6&PmFh4?Bg=mٷ ߕ4-Zqq5 ei~n<m mcsp2l軻QCb TP?Kת葔zoY%,oAfekN2.)FOe N9K=}d| O߲Y_xxٖ#.ڝȡL\gtڛ&Om1/V Mz3TU 0*_сTz9FW&_0Z: 0oc96,} CE{Y)3S] p4K ]5w4b г2Jw{oɧm^v4b жzM|DANl Ї~ %: ;D1@jUhC7\2"j5^m,/ebԽLicE8ВCխ˫o41Y e. 9Yr{i2b%U=06}L To`eBK>aZoeJ0w^[-i]ƻBԶ6 3.Jm{nZr ֺ<}ӺEmvc Q/º5K ]9cXmc3bgi* ԃ-b uUjxVtZ]~-b >6:_-]ocXK.O?|ۏ2JNt柧Xc`q$ 0QoTlGsA1ޏ`n FTtyt/෈1rDU|u/ÑoCe 8">/0t/1oCӽ~xfWcyѽ@Ǹu( ҇CܽW}FFj6Rs2A1%ƌ,1$kkZ"ӽT  o2<m4ۺwivG\靌6=ZjxC^Bp^ds@ D?-ͯOG`cHOj'E{UGv^`DWxzKD'L,bL^{&CURƗOir,oB{&CBKmk]~lK1Q_5`^ԨX:.O?u/MK1/0Sѫ>o |@tѽtA9 *{M}K]GM{Sb C8D V *~0Po;Mslؕ_Z PyC^Ƽl`ҽǠQh.vS c=1zz#OrkXϢA,͏ sc0eL\._ 0cZM{asA"ҽ@̨XdZYƼ5aJ -h]@Ƽicmӽ@N8%m31k *{A#Dͤ{=aFP {L.Y+)#}+0oni>}b@#nI}`-}K\;z l. j:_mh^..:%Gѽ@gfR;н@t/ttX"%ۡGӽ@g lsD0nӷHtUpn=hy6 T`LsOk蒑9{Zp{4ua {!b.UнP{^^».Uss:7M^)ѥ""PVcjKt/:7Mb]さ{FŘ#t/ 3*@t v^M8eK\cn ӽP']Br|t/MZ.@-t/+ %1bEti ^3t˔Yz{!/} o]ss:7M^(cNZ.8)+1 pѥt/:7M&KYKt +)O@nKX&^rѷ4,g%<:pdh8,WG4,gѥj{^^{҉.s|t/@6]0}Å-]d9{&Ct/+k.Npt/|?XD^8gӽ@4\feѥYXIynӷpN=нpw.ӽP&0Ǩ{.]pn ӽ[D N> ɼB*.qʠ/&*8^3?#tGByz{Etk$׹i2NKMt灕op,хWt/^un } 9.]Jӽ;]*^~# 'pd6XOI O\n ӽ; ]x{n !+%BҽDzQBWGt/pDnp꡼Fҽ[8 s^:Kt.zR,!J`L.{᜽Ns\ oJӽDaFD @R'} 5]H{<7MDVpn ӽS p|t/MfTz.{\ pхø N> {9:.l 0~}yo%p0W9gsdh]J`LkZO}Dнp^{ֹiY\ Jӽo>  @Lt0sd\n ӽ|'P{nˑFt! ';j{^^зP7х\' ~нl.d y`%0{I65]8s: MѷB!XIy9~tG=нeT.{<7M4DNpdh%D!PWG4yLBL qZ^Wu/.BuXGt/H, 'sҤF{46.TUp4Z{tHD Up<^-'P5 uh]?7M.T+)OƤq.7^mw/х^(M[NtRNMu-w/"{4YV.TMB-t/Ы6ֽ}JDBr=|t/ rbi>m]"ʻ`t/Ы݋ߡDt!0W9gsdh]K^% anDyX ܽ ^8gӽ@4%?#VR~.^} ]IByn ]U%jк:bFtAz?}dhBxNB*߽[B\' ~{q!.4)n *^ .хƹ 9{&C^3х^(+݋}Ct t/кsnoW JӽM[zP+= Z^40@@tqeC9n +ٽO ]H9ŋ1Er4Y ],C.նo"]Cn 灕Fb 0Uzbi>L.Cn =8{ѷ⁕XjoDH"Ɛz~VcFlcT  "ưzҽXD8̶#MtsH@.`.{P k> D({ȉ10^w V> l(iKh9̌z; Z8=z"2`` j=8G˴1m^c|_ .@c:`>|D .c{vߴ] ,4GQVA]Yij?* Dhcӽ@G^&@`偕p'@}M7c<vX G0i]׃_rMzF2^3ژ^- G`mt/1-]71pdX:"*:XA9&c߂ Gt6c΢{ cJҽ^-.Ę2t/"1^ *z P`3 GHJۑ!y`%gЫi]icӽp^'i]M,mL* 1@TBtQzl M9fT.@Hb7Mf~b @tct/WUhD)b@Gt%^a t{i^t`ir3~3c|VIm%kWxMdp9̴^#uHBK-[z jc&‚ D]"7M.U Mt8L{9r *.Yct/۷03.ct/[Fp6bvT#`vd`y$%ioSbL`J @tZƴԽ*ѺTgz9mc"t/zu&B(݋^7 @`bLm7MT]ql9]tT)ٽUX&4nO׽*%td[߽`?Sk3`*Kt`Gyi@n oc6 e8 a]> .@  .@  .@ m/툻 IENDB`espresso-5.1/Doc/user_guide.log0000644000175000017500000003637312341373046014664 0ustar mbambaThis is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=pdflatex 2013.10.8) 28 MAY 2014 16:43 entering extended mode restricted \write18 enabled. %&-line parsing enabled. **user_guide.tex (./user_guide.tex LaTeX2e <2011/06/27> Babel and hyphenation patterns for english, dumylang, nohyphenation, it alian, loaded. (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo File: size12.clo 2007/10/19 v1.4h Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf/tex/latex/html/html.sty (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty Package: hyperref 2012/05/13 v6.82q Hypertext links for LaTeX (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty Package: hobsub-hyperref 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty Package: hobsub-generic 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO) Package: hobsub 2012/05/28 v1.13 Construct package bundles (HO) Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO) Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO) Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO) Package ifluatex Info: LuaTeX not detected. Package: ifvtex 2010/03/01 v1.5 Detect VTeX and its facilities (HO) Package ifvtex Info: VTeX not detected. Package: intcalc 2007/09/27 v1.1 Expandable calculations with integers (HO) Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO) Package ifpdf Info: pdfTeX in PDF mode is detected. Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO) Package etexcmds Info: Could not find \expanded. (etexcmds) That can mean that you are not using pdfTeX 1.50 or (etexcmds) that some package has redefined \expanded. (etexcmds) In the latter case, load this package earlier. Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO) Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO) Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO ) Package pdftexcmds Info: LuaTeX not detected. Package pdftexcmds Info: \pdf@primitive is available. Package pdftexcmds Info: \pdf@ifprimitive is available. Package pdftexcmds Info: \pdfdraftmode found. Package: pdfescape 2011/11/25 v1.13 Implements pdfTeX's escape features (HO) Package: bigintcalc 2012/04/08 v1.3 Expandable calculations on big integers (HO ) Package: bitset 2011/01/30 v1.1 Handle bit-vector datatype (HO) Package: uniquecounter 2011/01/30 v1.2 Provide unlimited unique counter (HO) ) Package hobsub Info: Skipping package `hobsub' (already loaded). Package: letltxmacro 2010/09/02 v1.4 Let assignment for LaTeX macros (HO) Package: hopatch 2012/05/28 v1.2 Wrapper for package hooks (HO) Package: xcolor-patch 2011/01/30 xcolor patch Package: atveryend 2011/06/30 v1.8 Hooks at the very end of document (HO) Package atveryend Info: \enddocument detected (standard20110627). Package: atbegshi 2011/10/05 v1.16 At begin shipout hook (HO) Package: refcount 2011/10/16 v3.4 Data extraction from label references (HO) Package: hycolor 2011/01/30 v1.7 Color options for hyperref/bookmark (HO) ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) (/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO) ) \@linkdim=\dimen103 \Hy@linkcounter=\count87 \Hy@pagecounter=\count88 (/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2012/05/13 v6.82q Hyperref: PDFDocEncoding definition (HO) ) \Hy@SavedSpaceFactor=\count89 (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive ) Package hyperref Info: Hyper figures OFF on input line 4062. Package hyperref Info: Link nesting OFF on input line 4067. Package hyperref Info: Hyper index ON on input line 4070. Package hyperref Info: Plain pages OFF on input line 4077. Package hyperref Info: Backreferencing OFF on input line 4082. Package hyperref Info: Implicit mode ON; LaTeX internals redefined. Package hyperref Info: Bookmarks ON on input line 4300. \c@Hy@tempcnt=\count90 (/usr/share/texlive/texmf-dist/tex/latex/url/url.sty \Urlmuskip=\muskip10 Package: url 2006/04/12 ver 3.3 Verb mode for urls, etc. ) LaTeX Info: Redefining \url on input line 4653. \Fld@menulength=\count91 \Field@Width=\dimen104 \Fld@charsize=\dimen105 Package hyperref Info: Hyper figures OFF on input line 5773. Package hyperref Info: Link nesting OFF on input line 5778. Package hyperref Info: Hyper index ON on input line 5781. Package hyperref Info: backreferencing OFF on input line 5788. Package hyperref Info: Link coloring OFF on input line 5793. Package hyperref Info: Link coloring with OCG OFF on input line 5798. Package hyperref Info: PDF/A mode OFF on input line 5803. LaTeX Info: Redefining \ref on input line 5843. LaTeX Info: Redefining \pageref on input line 5847. \Hy@abspage=\count92 \c@Item=\count93 \c@Hfootnote=\count94 ) Package hyperref Message: Driver: hpdftex. (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def File: hpdftex.def 2012/05/13 v6.82q Hyperref driver for pdfTeX \Fld@listcount=\count95 \c@bookmark@seq@number=\count96 (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty Package: rerunfilecheck 2011/04/15 v1.7 Rerun checks for auxiliary files (HO) Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 82. ) \Hy@SectionHShift=\skip43 ) Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count97 \c@lchapter=\count98 \c@chapter=\count99 \c@lsection=\count100 \c@lsubsection=\count101 \c@lsubsubsection=\count102 \c@lparagraph=\count103 \c@lsubparagraph=\count104 \c@lsubsubparagraph=\count105 \ptrfile=\write3 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live ) Package graphics Info: Driver file: pdftex.def on input line 91. (/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX \Gread@gobject=\count106 )) \Gin@req@height=\dimen106 \Gin@req@width=\dimen107 ) (./user_guide.aux) \openout1 = `user_guide.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 28. LaTeX Font Info: ... okay on input line 28. \AtBeginShipoutBox=\box26 Package hyperref Info: Link coloring OFF on input line 28. (/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty Package: nameref 2010/04/30 v2.40 Cross-referencing by name of section (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/gettitlestring.sty Package: gettitlestring 2010/12/03 v1.4 Cleanup title references (HO) ) \c@section@level=\count107 ) LaTeX Info: Redefining \ref on input line 28. LaTeX Info: Redefining \pageref on input line 28. LaTeX Info: Redefining \nameref on input line 28. (./user_guide.out) (./user_guide.out) \@outlinefile=\write4 \openout4 = `user_guide.out'. (/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii [Loading MPS to PDF converter (version 2006.09.02).] \scratchcounter=\count108 \scratchdimen=\dimen108 \scratchbox=\box27 \nofMPsegments=\count109 \nofMParguments=\count110 \everyMPshowfont=\toks15 \MPscratchCnt=\count111 \MPscratchDim=\dimen109 \MPnumerator=\count112 \makeMPintoPDFobject=\count113 \everyMPtoPDFconversion=\toks16 ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO) ) Package grfext Info: Graphics extension search list: (grfext) [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE G,.JBIG2,.JB2,.eps] (grfext) \AppendGraphicsExtensions on input line 452. (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv e )) File: quantum_espresso.pdf Graphic file (type pdf) Package pdftex.def Info: quantum_espresso.pdf used on input line 61. (pdftex.def) Requested size: 142.26378pt x 48.49115pt. File: democritos.pdf Graphic file (type pdf) Package pdftex.def Info: democritos.pdf used on input line 61. (pdftex.def) Requested size: 170.71652pt x 49.52296pt. LaTeX Font Info: External font `cmex10' loaded for size (Font) <14.4> on input line 61. LaTeX Font Info: External font `cmex10' loaded for size (Font) <7> on input line 61. (./user_guide.toc LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 2. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 2. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 2. ) \tf@toc=\write5 \openout5 = `user_guide.toc'. [1 {/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map} <./quantum_espresso.pdf> <. /democritos.pdf>] LaTeX Font Info: Try loading font information for OMS+cmr on input line 77. (/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 77. Overfull \hbox (3.32571pt too wide) in paragraph at lines 94--97 []\OT1/cmtt/m/n/12 PWgui\OT1/cmr/m/n/12 : a Graph-i-cal User In-ter-face, pro-d uc-ing in-put data files for \OT1/cmtt/m/n/12 PWscf \OT1/cmr/m/n/12 and some \O T1/cmtt/m/n/12 PostProc [] [2] [3] Overfull \hbox (4.77907pt too wide) in paragraph at lines 224--228 \OT1/cmr/m/n/12 help, etc., please send a mes-sage to the de-vel-op-ers' mail-i ng list: \OT1/cmtt/m/n/12 q-e-developers@qe-forge.org\OT1/cmr/m/n/12 . [] [4] [5] [6] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <14.4> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 421. Overfull \hbox (37.16194pt too wide) in paragraph at lines 456--468 [][] [] [7] [8] [9] Underfull \hbox (badness 10000) in paragraph at lines 602--603 [] [10] [11] [12] Overfull \hbox (15.46945pt too wide) in paragraph at lines 840--849 []\OT1/cmr/m/n/12 Working Fortran-95 and C com-pil-ers are needed in or-der to com-pile \OT1/cmr/m/sc/12 Quan-tum ESPRESSO\OT1/cmr/m/n/12 . [] [13] [14] [15] Overfull \hbox (64.60745pt too wide) in paragraph at lines 1017--1023 \OT1/cmr/m/n/12 the in-ter-nal BLAS and LA-PACK rou-tines (us-ing the \OT1/cmtt /m/n/12 --with-internal-blas \OT1/cmr/m/n/12 and \OT1/cmtt/m/n/12 --with-intern al-lapack [] [16] Overfull \hbox (9.35583pt too wide) in paragraph at lines 1068--1077 \OT1/cmtt/m/n/12 http://developer.amd.com/cpu/open64/pages/default.aspx\OT1/cmr /m/n/12 ) can be freely down-loaded from [] Overfull \hbox (1.89284pt too wide) in paragraph at lines 1080--1091 \OT1/cmtt/m/n/12 http://software.intel.com/en-us/articles/intel-software-develo per-support\OT1/cmr/m/n/12 . Since [] [17] [18] Overfull \hbox (9.75371pt too wide) in paragraph at lines 1238--1245 \OT1/cmr/m/n/12 Next step is \OT1/cmr/m/sc/12 Quan-tum ESPRESSO \OT1/cmr/m/n/12 it-self. Sadly, the Ap-ple sup-plied op-ti-mized BLAS/LAPACK [] [19] [20] LaTeX Font Info: External font `cmex10' loaded for size (Font) <5> on input line 1323. [21] [22] [23] [24] Package atveryend Info: Empty hook `BeforeClearDocument' on input line 1643. [25] Package atveryend Info: Empty hook `AfterLastShipout' on input line 1643. (./user_guide.aux) Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 1643. Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 1643. Package rerunfilecheck Info: File `user_guide.out' has not changed. (rerunfilecheck) Checksum: 910DBC207B0425438D3CEE3D341C5DA3;1839. LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right. Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 1643. ) Here is how much of TeX's memory you used: 5397 strings out of 495048 78892 string characters out of 3181554 166526 words of memory out of 3000000 8478 multiletter control sequences out of 15000+200000 10562 words of font info for 38 fonts, out of 3000000 for 9000 14 hyphenation exceptions out of 8191 36i,8n,28p,223b,433s stack positions out of 5000i,500n,10000p,200000b,50000s Output written on user_guide.pdf (25 pages, 285038 bytes). PDF statistics: 381 PDF objects out of 1000 (max. 8388607) 332 compressed objects within 4 object streams 86 named destinations out of 1000 (max. 500000) 227 words of extra memory for PDF output out of 10000 (max. 10000000) espresso-5.1/Doc/INPUT_PP.txt0000777000175000017500000000000012341373334017344 2../PP/Doc/INPUT_PP.txtustar mbambaespresso-5.1/Doc/qe-on-win7.jpg0000644000175000017500000031524212341373034014421 0ustar mbambaJFIF``C  !"$"$C" W !1AQ"a#2TVqt6BRr347Ubs$S5CD %&Ecd'= 1Q!ARa2Sq"#3Bb$4TCc ?WZ*SپkVZSk_H"&g({STDgR->J?&MSo5ɏT{i_yBQ\>=Sod] ~hQu*܍u>T5nc.OKſjZ(Ӝr$zc>;jϪ?ƫsHX(Y+W4Ꞇo#h??G7n}(rPjᚽk#~?&SQsyW5js`?&Sw[=G4s950nֿN+Ba0koR4h뭿&SwkpZ1~o4|`%}*ƽR+Y>ƽNG;U5 ~(yAȫůc~o@#˝nc~E9LrptWZucv? Pg wC R Ns]pr5wc=n?j}{iN18n+\SY <95#)ocpWͺꉉGu9JEdu8+)ITki_ӏYpn娪ѫMMڧUԦ Q>XP_576X597WV5ho nY}y `բ{.k@pQ8s!+BAf2 jZH1X~s 6DWxz _Tο~mow+o}پ1c1U/N?>T?ҜV߁1YmO=QHDZZB_JM5NUSY=f(F1J;IOUAmzoin=(f(G1]{_ښ[p|7ي;QW^st\e:"pJUTRlp| 7ي;QVZ8ӎ p|7ي;QVSGN8R߸[(f+N-SM8mK~n ow w}8)p6p| 7ي;QVZ8qږf(F1ZqMSM8mK~now w8qM4ふ-1Q-b8qږ(f(G1Zqhij[ wc}[i4qM4ふ-QQ-b4ӎԷ1Gp| 7يӊhij[ w}[iţi o-bno̽GM8Ӹ[(f+7q];1Q-btqtӎr-bnύGM8g.f(F1\޺8޺i9tF1Gp| ?يƣ릜p3ۀGq\VpRpOZV籏iͮ ȋ!҈Ǧ:69 WѢ)8#GKxqݦ[F8i=yo'GC "$pv63\bD#gsC[cF?ݦJ3TG|Vl %m9(PXܸĚu- TMh$TJ-ޣfU}Yt+(eo}n9Gt<>_f_KDeKU, dZҰ:9޵JO+# 4TdV(TwŵCrKБynmqB3םOor')< WSf5C p|U$`rItQ[VBQ%WٳEvi]mT↹eCyBz\aWg뭘dN*~* #65L,^\iK2ŵ*!Om*1ci{܋\e,*d~2ү]Q}-Zn͑6J+e+/hX&ONwcGv>U?Z?+>+/iISӝQݏyc֏Zjiv>Twc^cXc֚u=9ݏW+>+/hX&ONwcGv>U?Z?+>+/iISӝQݏyc֏Zjiv>Twc^cXc֚u=9ݏW+>+/hX&ONwcGv>U?Z?+>+/iISӝQݏyc֏Zjiv>Twc^cXc֚u=9ݏW+>+/hX&ONwcGv>U?Z?+>+/iISӝQݏyc֏Zjiv>Twc^cXc֚u=9ݏW+>+/hX&ONwcGv>U?Z?+>+/iISӝQݏyc֏Zjiv>Twc^cXc֚u=9ݏW+>+/hX&ONwcGv>U?Z?+>+/iISӝS\q0^YkIXYVtQnTդөȥ!Nfj=u{+;4\=_ ,SVжǕ-7>Ttj$4lTTDf2L |)ULӨe TqǕlBB\5cZsSB. gGmLumԣ\dǝLQ٬`YyvwVRx[6WGʚqiU (S.g~Ξ?]uEֶÉ Gu=Gg0Pe0 *y5{8m[Qyg5i ӫA%A9±tDo2*}u7ZOIHC=qZ͍n'i ^E5hӯ,O<-9>,eia`:hdJ~U1H61\l*η_5*`''O5yZ8W D][짆p287%h}u9=ERԵ R$dX{ʸ'8էup)˝ )8>Ʋۜ>{pj㩐JFqNMl;:.))E[ SV0:J ܋YܧsqX?}gى2Q>K6ӑZ)la<齾!K)#$V0W$:̀T R)TdB9q%DF.vqa9h$(8sʕ;ʂ;Aʩ^θ^GU30kkqP{NvUTzB@Ar7+9JS^8i *85Vݔv?9EYSB23ym ^R`R@G@ZA)ԪM>]QO>ok<Դ$D  dz Ї,$)c<% %-YzVDB7K#[fGшF韥3V7˴R5gDr^*>Dvk*66 ]C mڮFEH4]B3--TJ`R+M!o6FRy+= BMT&o1pi]X #ꭗ٬!K i**>>/Z[!'sjEK~2͕{R1nWA IMӲcظ0JCo` #AFp{?E. 3M]X?HkJX֞ V^m)mġ8}As)]nM:>tG&Pllu!^8NLhV!Ikɷar52v-Zw].um$0XRq HIsOqL&TFr\渝RDK SqU%$ztƎ_c.K;Zl%E] d@5~TMQy ܤ@z._qd=m4=}!rij_Sduh =+vjrTWV*Y>sΖ8fM%A DlmzdH25;*lz_{{ 㴰JSﱏ CZT9ygE3cu)Ovhqrm2 *d6TRa4lޤRǝh/Bzm&tgکHiqs[o,M)ϛ>Y7Z`]v4*RN4VғU1$#ă!RTKFb)%Mqv( b( (( *ObѓvWiB:Gͳii6y͊=y҂5E>iK7m2Y>@xSAQݥ`,!}%tIQYPڢb02oqL8Iؒ IFj_iՓVY \$&:^qXIH䒯4bi ̨2f+v3B;P$HY)d!ń$Z4QwsS*yn1ԼsۖYf\4G[k!*+#ϝx0#˝k,lWgm҈RE$TPO-H3 oRR s5^458vld-)G1A( C*ajriXڒr7t*ԁMvkefJe^t XQ*\a~j7ՙ7iB3}Jm.%1$r¿JVKܑ JkZ h2qSdh6\swxIK)S_Ea]\#s!Jo<޻E]0(<SS)?D~@ѫ"Ğ;RV[(P4u`rfynS?!jpKHS,JR "iCeVľ%\bv_-u>Ezr$> FFU>Tmo*u:W?mүc4tx <(Zp9:n#o1Qc'#h*i|1*ok8Ǖ%(=oe=='ފQcXV@9oM<@Mt t}5駊(5_y_=5駚(5_y_=5駚(5{c;kO4P3{c;kG34E735lg| iolg| hwhfwMA>BN2/n הc~MeUik!lMٞٗ;+m K?-'g/%6DrۜuJd^J,}k2 B:}U#ӺǤ;e55sM|c8}k`Tp<>6-е'ƽ#9ח3܏^{^ kۡOUYnz)>]C mڮ27l^AttӬΦ TF KICQHtnɖq{gp}hB'=#`u4R0nBZJBGBVމ]t \chIxօ3X/~\zvJ0"+BNv/ƴ)42{CD(8D_ UN, Glܑ2c&hNᏒN+҄E]c%nA ݴ'fL\9/4=< 6? HLS-)ĭyp+De]I;G ӡMeav0RB-ߥxN]&+Kj_h{~Z Ac #++8X2tdHَ됳z'*#[tF#K Pp`Q'K2tdHَ됳z'*#[tF#K Pp`Q'S9ii|he!'Jun܄AP@G'fjZ_`psI?ҷ};U͔PJK}OC˦h4ft ] n"z ϥv[QH<9+Nz11&f$?k#Na?Od&Z\fc%HXq 'Pw6{^2D#raJJd3 ch-FeCNq`'E4i C 1kJvG[*a dGq7s;e/w<&CvZ^d/cG֬rp-6XPLe4JR9ݹ]Ź-F[pRb 3a8S@}նSu\,SuߵM%ɶjkeiVO#ʦ 1orn,).8' N|*ڻŐ#KF;y΂EPQEEPXZ>!ҘG#:*F.%]_ٗ6ۯ2Q#RzBv]b$95iU:F\}":5D)dl X>.[&tqR-{QGvM7rf;ޞYʂQ'αYh5 90 \[zԓTRcCմ繫]U D]K/!GDs5Rt7ѧ\Hk(Z`Xڝ2ܨ< I!IۄuEB\ZЏ +G>W:%Q@WHd6 ɮu0=fE;rT IuotKyu y )}_|=Tvm.O.-:N6]_7˧qǛ+-$LnZ!8q XSII|$lIwB/IO?~|OjW<έwl3ۄDwK[Rʏ}uT(( (鯱_4*RU 5S8p#8݃TW鯚 vJlJxg#$OoYDv zF`&qRáJmyJ|Fjµgjs XP w+V-+}Pbòle\RO,cƥר׫;@Zmi[G5%zm_QK2pyVQ.*ԴCJRTז0j F絗vV-+R<J]U:xEBp|U'5jKS5L4\K,9]Wn6X7-u@)9>ZnR`W-A[DXm{e8OZlD.lMGaR@>GSK}/ 'ڿhoYst.ZgUū@wK\RiJ1J*Q쯷λ#IG lݷTvʋhUң~#uEL+6S#!mELa YJ=0禭L_irҮXy4xbQhǯ[Hٗ\g(At7|}bg4u?lI-:@X8*;R[}+:"$?;F.0^Zf):9kծeNCW!Kq\3bTe9;ϒֺ=aUшpP*;?(^[wƓqSnJOyc ve{˅*cwlr0:kJGkW[D7O6tڇ0yzA,!QﰡJ[Nz=;.EMpMdDEpX/fpINbtK, R JNъIoDؘygw{䮨Z()' 5FEɮUh:lX낔DV}+jaߊ1L9fBj(zd$3"d4BkdHan-=R2>}E͝e٭7m;+d}Υ=ia2L:eݨa?$NW,Am1GhTU*4N BnPR69+H%yI}n;wB7mKa% ,ofͪS(Z߲^:JCZ^x)ے8;kYȄ?OP 3)F@J&}gfb[sVum6q5ɨ횋@vuah,\/HڙzJ("ӿ=UD1pmIvèAr 5 ꯚ'xٱWnQQ)e,Hc΢iςճL\5TdKlIZk{0'VKj dkan)˃YI!)sޜmFjonO6Wݱ4;0i虉ս&f'[@tuG׃ǶIz^դ^T=Ș@J)+i$/8^Ls"V<i;7otvoZuSU!*pz68۱ xr44H%i;7otvoۣks?؊!]7q @R|X+_'%]GA㵿{IٿkۣkíŰNX*G.b$@IMdzR6 Kɝ5Uͼ>GvZs8_]]ps>IٿhnN;@t|]W?/Er_i;7{Iٿhn\W?/룊tK0'f}?֏i;7ˊtq\xpz~C}G'f}?־yq\x+Ӣ~W9/ovZ=G.+st^%} r'ΏкJ¾|XYBj G}G[nQL0\t+o, R93 i{)fb$nΤtBXC(m5"Bn2vJﯥ6eO0G~|պ8\d ]LE{X+C=7 h#G5ʕG&Hk7l+^~>b~IO5a˧/>ﰩIv/mLmu6'{XLVҴGBK>a6&-9'EBV;PԮͽ JK¹g`b |.)wZA`/ineR#ݜ zyC]y.%E=0?F('T&\iR$NPVRy`\4dZK+u)+>PJ(2zQEۮdðǶmT1FЬ=M jOj.P`4lI!$ulAυ;[9}4`d'8@@=8Ewhp"Oyy(90ŴN$s}HUwE)WqMʸn%4TyO2M읽iQ![z`tqLQHPPEiE][zKI 8p' {l#nmPf(AA0sindɌOvp(zV +y;t1Vy$tHtPQEEPQERyT,;7B +JB*/(yz1ELj6I&ӆ@)kH,ihQ#^em6W\΢Pd((=$[ĴA:)$zwie?ohIyp()qLPKn6t[Z[$H>4.ڢ %tmlH9xS=z- ;&s =q |{XӍ1:6!q.pK()2:ނܭĻ{q!hIA1MWW%kQ͇!`4\NNë+f3[0[n)#$'FVsWQ~.\GuOG| տ.J?o˟:ҾwTASG1{G?ݤ%Ɯ)'*[yۜ씅{I o~1k.Mӄ>Ϸ_1uoc/ØGw 4|Mo.1ߘ>M[8 =?MAhᦏ{es]4u>cqJbAmf4wlDY$Ҏi9`eqJDl6YPH3N~P~;jf}s(N=9og?w 5>&q}tӫ?u%vIV](P `Mx&6 &3=i VIku᣻Gڎˤ/թf]Lma#=rj|ϹU|?OҀ:)JH3Y;rVa/G>ƽ"|wzmڮ˶WP}Ckw~7 ń\WKZx  BRIk^9kܹ&M]JӃ vʺtEH'r)C=) ׇɅ pm9XkO^݊ZZ8S`)q"8RsR;IkiI%Pll/>/hs\@mN-œ$d7*"gy qA8<9^,^ɒ[eXPO5\"Xe h$J3ssEAB]5 eiR_<}YMfxA2RGq:T}L6Ƕ6h8t>9yPApJHHrfuzq9TOh.̽i:܇ݗB9+<-nZS"3'^t QEKl\FB7 M"YMJv*$j$􎆁WX ESAN +z}4l%vK.:``d+֧o74Biķdgj@4Wtts&Dym=)&?`rRIB();m-6 )Rgǝt"R&6eH8RS*Hi3-ېQJ94ۮdıGMT1FЬ=Ms^[6s6}\-d¢΁vfu]_ -nA"kC0} ޛ !npʆԧ~Z]މePT j'S]n4dX[KV뭼r l2!0'6 ~re4]R\N=3/h^\~8 -w Sz]k.!RRrs5f;n9B=%M;*%;RO-V ޕ9u@Nyr5OCyO%KD rފ+%oۤgV;ö\\TBO_^\%#|@J`yS{:XX(J - 9440?rY&nI-Ayzw[xyD/)+E LahTqG<^ߴ~ˍrCڷ%Nݣ:x/eBRiX^703^.*+⓷cBXQJT:T̷B& y9x9֮ȜFˆ;\k0;%S+J5D00)e*kUC+R@Q+BV$`dY0em9+jCMiF>8;4pviW*u҇?f`>4[,6)PA8 #Mi4٧Ƙ?GンO0znQMi4٧Ƙ?GンO0zo-BPrPGLޣ٧Ƙ?_7mTR8H*1d*% V8 |&>8;4pviWݦuE-K 򦴚PALޣ٧Ƙ?_7(PGLޣ٧Ƙ?_7+[j) CCMi4{٧Ƙ?GンO0znWhqLY[,(@4֓JG|i~8;4y C8ROPkL+hVSZM(}"pviQLޯSZM(}#pviQLޯSZM(}#pviQLޯSZM(}#pviQLޯSZM(}#pviQLޯSZM(}#pviQLޯSZM(}O./Q~>D-Mܔ*J+ rW*9-̅mfⓑ]ҷ8 'ֱOg!,>zyz47.ĭ75)zGk1q)@IWQ]\׾ i py hoJ]LU-2[R;lLWI U9N8N@q$%\קJq $-ACA5m4^s'VDMyW4f=p(B{v)lB)uC qg5)J5kvVuW佛7:> hu(( ((ؿ?8G fڋT-|p~p~Z+Wdr-}+er>j|ϹnRWjj?58y #ϕg xd5*A{ :#ן&#׷ONxzR=j' ,#+y R]C7,V -mN:?]Fti@NEEZm;u.IvX~V7f)Ztq|zFCFuom2% x{8 GLSno0#9!E#Υ6)L7=$/_ nò5vhaǔJi}wK54)%[^>jO^ٚ]Ahu[\#*Qlp˛(6uH_ 1íha1 ݌pm9Z rp͒ uYȹ28xlJ\ZXR3x󦸺7Kd;;K+jԏ렬#8l4p֖gSI{ GΤJ~FvbYP6D`+vpKPCS &x1U([PYA46{{[K%%@ڢm֘[uCrCnVyȞu(V#jP?nm1&Cp)tR6E'g0C\دs J$*nsu<lkd-*R3%+H}-*u)AI9&~r2w<YۃVk.v2VZA9R>ڜĶX) S!#vUxTLZݳ͝mM8Iu4 '#@0lo.NEaI!@Ҕt~&)e%ygY2lݬ &MT)iZqzVQm1岥_|GA@as䠡TR1[7ol"+. OHGsRzή;Mdr23Hר\U]mr#r7A`EVK mKFJ;tK,nU;.XLN2`R=.k| 9,+s? 4 l38q)7a$iC-'r֠2jO=sMy-U)맘N&5{B@F9~A\!OUb]2]&kX1<4(cgQ& 4 sn%IGRO@}T*]1eΣHd98u:!nľGY~) ( H8QOtX&]6:DWRښ';3R֓j wXfe%ۉ)D~>j(( (( (( (X{55kWX~SW+^)% |[X&z\`r DeK2b[yĸ ֓M B|DTG1( PHʈ*,uK%+q1Z)R/ +p#ȌV[n6KC@R?KqRKJj;K(l\!E*(|(,GwШm n"`P?D˝!]5u$,wA#ÝWPI u&%EH>?;2ՙwiqp<[n!A+BO0tD72[Nm ڡ[.!HLn%z* W\NB"C6xeXsT{ ㅢ`g먲/6v7 Kqo2 d)?QءaB V9 R+ o6›a%L7MyE;R,ygZQA6m.hլ5y.RVrE@#Mڛn䤖YP^A˥VA EЅ$(-5_4r6nVәhY]FW[}5} )!'z/@<*&n:Х FyV!QU),mSrʂwoƍ|㴥:ww h'or?N2N8 %*A󪢊 'JMl76JPd%H-sy:D2T2w4TTn8S6Ȑ֐!EPPNҮnZr-il[@-3Q(,is4C SےۨIh#u~Jf4cg'#ϮJ R)G-13e) 8M$I ;djȗ䰷U%w ꨬҚu>*"PJ53NۢǍ!RR먽vD Ze-PtQYRT$ $+WUGy1!M(2xH(9QY'ۉ(ZN#PkE=9PzoK r2dv+ >LvIPgwv pFN1֢LjW9S3JYNh4)M%~~CZ\7# sdvFxEZ[VP szRf$0WƼ~]oDuGˬ.$ˣX[u!Q\q)B]r8}0er>j|ͺ*$~꯼ժ?4ٜOI-j󮁴np\Vqb:* + 5˸S+^ˠOYٟe9XTmڮ˶WP}Cky#rs$&]Kh[,A=Yf76 "jTNyXɖq{gp}hB'=#bf[cZ@J˽&Yn[Kl?%hfC KKc'r+J7qdښlmZqż, e4UƋn $"DV"GNJ1xakp-d EI6wߠLܹ%ℕᴣw}uaIb}#]f0VPO*\AY9Թ/:sNVj"$o62AG%L RTpwIZkSe+P@B/]o>urpbGi)JmJ<wg rmZM봋zˍGx2y)J@>4 ݣˈaGixARӃƫʱ5rlr{<WNjʫ;mMu,蓚5/M=PH:ឤUMINϗ<׋6C"Tz@كK7j RҢ}c<_2L#NXe8隯4z2 ̬Dqj=@UC\$两7Rh@/Dz5>VfS"^\A^S=-wTtMXe2G*ZKqdtI-LBӝlfBWs5.ǡ7sbCW6KeHjF9Wkޚ䡉t% I7|nsePSp`O31Q>Ly#&,ShA;PR Re9uydJJ]҂, "TXCRTx_,3TrK䩉m/Tӗ*[/]G/ }SCҵ] B\$'.T ^Ķ݆>mE6,Ȍ%%I0Y+#12?RAN@Hxlɋ COJDSKENV^ Z,(n<9Ie >6 Iٹb\GqT?}yW[buvL8ͲR i9.xgZym9AIR8>՟;Xlm:84s)ƶv(S-]C iEױe`PP4+Rlu ]W\ZxEJJ}F4W-)HHR9>4vD[;mf Рc r&뎡U6[KxvGf:&Щ8T}QPVQEEPQEEPQEEPQE^ kkk`殰oVSK%bM$J4ˆdqEq85j_\cMEU奒ŸAAJ@F+{B˷Z^TfxJJw)e]b:jO?mSM_ J9s6k[D%Nq$xsUr(Cz22"qEA$7[}ȘPZ F֤ҮVenn iv@ Ҋ EӲ?) ĺEA*9qkiݚHDHbF֕/|<꟮XzTGڝuõH'ʂҏtz$P\p[l 8}uEi}=ԦVl')}qnJwr8e?{}ͲRЄ(F~ + o6›a%L7MyE;R,ygZ3a [dU 8Qw[EP.݌WwfQk\Xj%<]a.XyԋF7I-gJV!㶧]pB2I򠳕|pu$oA[Ne[md=u]mף!KL} kBWpd%c449R[uu sJr<"!+St/.{SsWT[ ) JrW6yWET".9DnjlǕ8_Kڀy;΢Ȑ+q-'rG$3\h&+nx_f|^+RH@pΝtScWqJSWZAbjy%Z,{L(@qy!'JhK=#J zZduH]Jۘf!NX>u83D;`1-*R?HsE:iǛ!;k@NG]B\-mꊐ1NEy$iĉ;7G5]QA6ihIخx yrP.ZIȑ`ɷ_ VR^XQ8'㩠A٧35ZݫJG-5#;^f~lqm>㎠)# yʫIQEw% Ah]>om,<@Aҳ{E~qp\ozAWu[-hRBRH=U\%߮lY p[i"_jiTv2G_a EЅ$(=[.#Fp' hR2vU(a÷MKZ8w#-Ef~ {3ԃQ)HP-G>uP!4 @$V\5 +RYmx0^XTҜ(wjk͘(yuE}N뚈TbqIꔧ4-kh C|\yh}%nqԷ!R#E'يV{qmXp'h>]7Kr!'~Y{C{$%> C*:Kg]8鎕6݊4൛⯧Ex9v(A8F<]K2b7G-m TfOJؿE~P|%G*ujwox9PqniPP'P\E>N1Fn8_Q85#KuĿd,c/)+ )VUZeIk~n~ A{ :?}agۇRU?<_Q8Qd͔[8p dv/=%&lKw&Hm$+ycrIթ,}zL<ֶ8Ax&Ȱ8[6!#qTNjgnCiO8pB ΐ [Ɵv=q.fB;|}^BMJ"l#nc\R]n{N0YzWVm91˥E\ͮ 9!HS{*Y&騖 ۦiEIJVT}tM175S,R/eTTuv, I洩ydO.nJ4aI%@!C1[v&,UGQ:DNd"CZՇT @ Ӛ 6>(sOQ[&Fy!J[Ϟ3M6}3cusZzҞθկ[_qnv(#:Dl&b":!;1ikzvU\JK(QFO SX2P#$-A>Õ7:ܻ衷a% >FZ%i԰ '<3IrZT2ҧÏ@c_vd$;*VюgK\)()Õ|C=3#ÎAq7UmO+W~껼fJ @+j67~TMQy ܤl9ΥscmI() RJ>@ww P2DZ:eh} .V N>Q].u m$·ƐSkq[(Qvqy,dshZfj[TC%] Ҍ<.u&&Mf-&B7/bg*kզ.2\qۅtgiA)FG.Ň^ $hf@?ÊGKnjZ R֯k:K-2Ҥ[P)=r:ċK Bfs6[JTy*1*⫋P- GwkDS/If;|/>'1=2"݈ࡰ@tu >TMDћ궠N>ZQB9%ЫhYS)l)3c0j;Իҽ!' ckTdR䂅 P cOC|+|Q@QEQ@QEQ@W=_}z5?`)s?u8_\cME;6RK>hBq-h']Dc=3o.2R"sVruKtW/ZQ6 Cn+ t0!ܜa>%7BIJ uD'HSJ8NHzzwҳ5Zqo> Fyu MӲ=) ĺ}/Uݬ"MqX̝4EZXqq{ eekuE`=:S:iY4-% ZVF)s˝StPY֏m ^~q P6O2|1PYwEڎ ;Rϯ3LA$Kĺ #ΒZu 7-x G)84PX:eF\C2 6nREbU希ȊUyT>x-~n([}_^jMڔ";qJ@)r* BRI I#Vm;tƑ^PjLp'~y?ʼn\GJӏKq5 lr,gC)⒜3I$$v>9];2Le> aTkV;m~_6q)H@Rz@}4"Ivq띕BRێ)aJr%䙽iaQSAh䓟GBZ\ѐ)-Rܔ=*/YBT (wFPrٞ$I+.!mJZ3H`;CyZZUnEPR TeDaR;ju!#$*\R֡y S7G"9`{w [GcA/njnsY -*UxQra<`:䅣n!h[8;90g9@^-pNI'ƽ!h[~HZ;-knͻ~dՋvsӧ,!!h[~HZ;-h+ߒG䅣nx䅣n!h[!!h[~HZ;-ho~HZ;-A+ߒG䅣nx䅣n!h[!!h[~HZ;-ho~H:?-Aa_Q۠r A B}Tlob>!ۺoPsWs]@4EEO (9ZOeO0G5|Ⱥg+U.-]KS( pM|99z>?i?aMbǨH׷B>~JT;G{ioJ1:^Z'MIY<U ƸKIl: w1տ]LXM<[E>QqUi7-EIS|+w~7;Oڡw^RZ !gsttbFp8Xݟe ׶ cKF%Ch"M6qH()$KPZ('뵊MhQBʳxSiDKEK/rQ'>=F|Zip[Nέ]xoq:.(@( g zMnty-LKZ#K֋]8fIYAFr~5]7bdCQ8.p펈M\^LPRy"W9qa 5!'r J1˪􃚎yAJ[eJs J:u-n3Hi ]*J2xx/k$WJPAHJT◸$a#ꠎ;gu>(L<x}M+Ֆ.'*q 2YKGn꧋ KϴWJ9`gEn֙b,j 7skPqg =BǵBv1fHJZsriHu| 2Zpag?O*-]p.ImE!%M{1 ~jÔP9s)wB[ٍT̒>iڒxIiB"J*=/-ń!%J=&N-BҠ}"ǩ<0=rV ܭy<bʓU]kUE:# ޓYF0=X:wi^=dj&LmZS jLyi%k(hG9p9q|z3^m7KwѧFqMnN}5t'}{Ph {˥eG'),ɇ>10spTӊGz 1 zy2[ Fm2\׶c`<*!e\l:nY3RElƙbjZ=0OQRdupf\ [QHmISGČsꠊ/OFӵh; MG6ݣQ% ))ppIR}Z}ps1#s=,5l7:˯S[ڝy #-A#5*Zip[N΂G~2-7iķ!%$g+bbH%NµG /M=PH:ឤS7e)ܤ;%)x MمQd̸԰B J:]sWgN&"wq(<3V.p펈M\^LPRy9 [gӨ$Te##h񠂷ٱ[IWhJ=#uIn-5͉C60ڏƧ!WHƂ/q8I(GEM%e[w+I3C?ӜژTpϢK>LIb]ᶐRXqI6u1-َS-jRO4º6JU7 k.*G/Z/my4TBӢkn6}f( (( (( kWX~S^OX{5u5{~ҵyRp>rnKp˟i* INwg:ִQd ;="!_[ڌ!%JTM$vVy1D|^oxݸ~*܆ggW< 9V3-5-Ĺ f1uiX9iD}$͜mR3˝/jVr4GJA,!/q3Qx5dTZҔ6<ҒA4.U!T[ml;_0|(uj} ޹ie (}t١.Z%e`4a z|{{D7Ct0 <Ǟ)dYݚĈE)͡%HrhM@݋l@Ẁơp0mJ-$cR[b൨Yq$ʒ>?EM.Aʷ9=(FO>^fK<"݆\pi+?^/]M xemxY$`nI`-Dx2ztH^XD#P(9xviH"i)+} $:ٷsɈ XH()mL.:av*zI*)nh=luɥKͨ{zxSK=,Hnj%%t t33T!LRs*S)'%>Ҋ=t9!7 C!QIV6(2.4ESj܅ tqys/"liXiEsxySU)s p)A< W.&0KA+b$m(KJTΫu Y7|,j\ċ :SɌqfvuX áid6Ԡ% $c{'Znr%q.-2BE@{7)rRPzmtG5'Oܻ4MD[jpNi?_U!f9t@W&hi1?mƝp/>c܍;y77 1mӍRCnC v2MdMfk-#,)ZQsB$beQ% P¶qMWR\8AEGG y8ZOFVɮ,b0ZF>Jʣ2 0Qѹ- XQzWCմy-@B@=yPpT%J$>5Ye [6m` \Pk'%)H$e@Vհ3Z3&DwݖƹPO3ʖ%.69#5Ae'"Uk˞>~"a(ƼOCD{θo73QX1RJQ9ݞvԳSaEkpj'KzP4X)+'ʡvҗX vYYI-ANF2>(:rD d\7~TMQy ܤp@2fqkY R&mGfhjm͹.sp?MJ/MKIzg'ç6N׳)67aFc +$#*!Oڂ+M-,E,Deҳfwv\% tOi׫LYī~ :Y@ tWk5w_C4*q^':YӑDt f2֕lϥt,4H:ݙ) qk##Ι.:ۊDLB< MjPZYydz+J[;\=TM\ -5C)ZTԥg;pS9@y|ܟ2'zSKS!rO44٨ |\സC2OA Tj&ntFq !ÿ *uֻfTCs$xPK'g,Ȍu&ԗR.bЫc2]a_Ҧ^Q TFgAܴĘ[S҃m(8H#zWgJp8@VI#FcS$ƅ&+Ϭ\Rqcr^YT:)P))]q^fTrZ*ٓ.2(X.8;;A⫅$%8_yNp[RhףÎ[T@c4w?c Sb4zmHKNrR9L6SIVTP}(ժu3[9攵2A3WE40Pq兩9(}C7،Y=O?%a19 )1iBO_Gh jf ѹ:U^p2OAxW{Zkn7d8mG0JJiomi.CY+AJ[RG3TMܢi{v!Q*K([IRtyM vݶչ%@#99)_mq۰J]ZQ34p>۩[QMVB k=9xsK{Nj(M:m+ Aԏ2/AIm2pb!ŶJ呜x* D{jxw8Tvrv̤ĥ}>OCֲ͝BYS% S N0S]i0ڗ6lʄ-IHHwz6r8fISS%mvt-(dˋ}E9$(~se))JRrqG,Gf3UrS)t9V[@׭Rg:,Pd Բ]Mw GCG@QEQ@QEQ@W=_}z5?`)s?u8_\cMEQ@QYRT$ Zq.$I :SS8n*PL=CyGU̧A*OK fCݹvԒR=('i1^mۍ!K^H1]4\-N+#iP[M(F ԦD(z\/-+[wQ O3^"TUaYݷR}Y)B(mTT }Cƚ,;]77.p8R=͡>BmڂƌRrOO4'6-v%1 -9i)CaZ84컇eid9A+sr,z~՛fDG) 2xGϫ#頍 ,ȊaTi S>"pwMwt6JPIJiDYٝt$'r.%Nг =;q` wgFhݥnEdxdDBm)V@QnZ\}ՔyѰٴW$ NC#mCG5'U^tM`giww)`PC56J$mBIRF0HE=hYc.#ȊZZ $[Hö 8GuU w }-_C. <ZCv{IG펈֔RMM;KPTquu?w9㻽.<mG0:`_.;hPcCu:LGgjhqQO8?ƒ6]/\mpYo%;26}j vb9i&* z*\5CKC)tw"Lz+ ie4:6sVQo6Z)M'b*"2[;s8v<%pwlߎYTԫoЪU&{I&bTW.FۭC-y Oғ[:($KΔh5qdD{)`4ԫoݪ~T\[kA H@M{ Bٴu4 @$G#3E5*hX;n;q((+jA #S}[2h6HO\ ,m8e%[S,)H&(XpRwx暕q4mzwnڕj&Rq⢵$mrwR7zW+Ii1O\BYmĔ-'+* @Қq4m\t1IGW!.1et?M7~P]h{V.EV- J#MJ-O ~_C߸*ۈJT)!c)$ujUзhP]h{nϲeN >󪢺F폾q4-}B697-3m&u/H@)T !2:{j%† kye_*hcsoS]]}j͚:SvjUwGQWmZ?>3jUvh6|l;Pԏ)R`թTI>TMS;ע4T+<וgB 9F)Re#*{t\"5!yHiws3c6amG߃בWo(.֗aPJ%NWk:m\lE`JS)DvzWa$q )YT|nE袊(TOGeÅv>uj^~{t֑q@*Dt =H(Qv>9\w` pOwTT++O0s kL6-)x韖 5 6[ǀ#¤O1\ :6RT1'N`!Gn)&4=.e.e'$(x jl<ڛS~8«KhK{Dh^mnq瞃Ҟiݰܔ!%aYwuǪsEUK!ĥygΝu S-rdÎ,!'s ![|(%.Dzͩ-Vy'%)*x^򑁜{7\,ppZ/]n20Zh6$G$ՉZe[a[hXZTcsUIĐSN*OPjMchrwYJOL@kg\gPNqRxQ$X 7!:EIKҵ'~χ:VhZN}ïFxA+K``cI3A;}NTyO7 ˑ99:KLvTY)23"\eex>~T#@R)dyM5}6(ʘ[$cXBN26x[RV0%JR>AL~3h)q8/(mHzw~hv JQte?$U<lJM R׺X렟DFǾnv\DVw(8j^OۆߙI%#Bvyᨢ#)Y fOhWi[vmI W,c#TVBoq$Q+/_ L1nxJZQE!^G6+LeA6*O( ;rdjzK(ms\JZO=PO4VʬlF^CeM)ԠJ*XrT[gCXSrJ}U;hՒ-3&ԐHURs!Ov q%\LkG/*b[KtʘPdܝm-n)OAMQ@QEQ@QEz5?`)'׬=_򚽿iZ<8n9s7S|4TXWhl"SL4@s\iGbߩee॒<(%XYHmE7QHy)>Q}V`HeE!a !YNjeiԺu.4} D9MVۥ:Nfqz]r@u G<|=Tr8a}+Pi*T+N[eE!~(n2Zy1c7Ɇ;%p/qRJ9U2bZe% 4=Mؒn*"ڀuyY*(VҜfj- \߽<]Ê5gʤ)vzdy2cga׉#qOA8ޜQPڊ*JϐV|q]uJleNHO|ksM #'?iB ^>8] >43d5JRwp:Tpb&Bwhm|z{&C1ozo7W;Z ;r\ug-aIԞ^2'7l4,6d:[J %Ipe)5+7xN]_rSK:nmB HY('c{="ΐ]o~t=<0Z}C;2|F(nZ1nwbZiAyl_%tILVbcH*ǰ9Orjqg(F3QEp҂-P,yR E.!`Cr؁26 2BEeJ1וqӗ#THMb)JJyn)DN7rR[B.:w LRRȞT }Џ[PjQRr˦hpLZ9xRL\6oV4yNZmQugyN;kL[lEI lT},AF%-T<6G+{DjyyA!H O*T :&4[ II yZ$sK'Ҋ=:gt4nBmq2Kd/ >#:WO.L'T%8ڋHt΢p.Le]*S] :RyjΏj[ IS'hZ F{~[w^ei1{K<Ss=23XbFa. !ʉpl9 KlKq3T)*lTu Uȱ@26y5n"Ò!ҍ>#9bTMŎiIަIփa%&1gzZ !4txoHd=H-%,$]+9ꪮ 7gWvK۳&ۉ1B7gycjcؒK'$kdxPYh>RZ[ OqM23In#r#1I!Դ`sBiˬ[B!RjuTxQ{ݭtaa(˅7HApPT`yc@o !y\.XsʐQAfǟD/G&Y IEHΚ]KmŻ6NR2S ڋH^.̮Zn*sT⤶rGCq޴#vXOZE\Լ~weDsUAfVohn2 . B*Wޤi'&?k$EPk$&(&p,Ifr~2䃎^wO%0YDzQJ(,NёIS S~znB4cqϖ*E]#Yk\o-~>vye_*icsoc{/̚QU?Ks}^jxVyT,+ VxˠjX '!YʳɣǐͤS0= IIUͭ4G_o۟̏TAL1.2?}aޥo~x2U?<_PºEh%Aqa d:̦HP9f: XGyQeA)RKdpS,a[RRI8@)gUݱ <.jKKJ]܂ @@EL$vwj@R*[>5 ˕5-<朸 MI2B? b KKᓂhMN5qoIJxgXErVy;a҂PڊtLϴWl< \Jp렫uu6mGZwel:bx[ag/c=CΦ2n7;|"gwSמ}TD=c30pgjۓe}ѷJKJJy'tItnŪXq2`8l)8‡0ztD+xfCQKXP*)ΨȺT pK):Tܴu`Y)RaCg\4T%"+Qmn!:B6aJOA[T$I N.w *vc!H,'l7Q4*E)mQ E\:\yDÂ~.cR ܻju#K#+3@EYw }-_C. <Zm6)JWH(+L4Twu+j])Ip{ٛP4-J.`xPD(og Ɍ#{|yRJƏ)M# l#o2\ tUmqQ6asCj%y57C7KD[Xgڒ9׊ Џ[PjQRr˦iY5 M=%Dt,,%J$' ہJJLy)HmU~H 襴D+2ĖWQ[>4ۊZ!pr#[n{@s݋gey;մZD rD l,FPUvEvmnSm BJ|b5!E 'j/J#fzt4I޶tZ-0JC$cM5ˢeZeKhʺ >ŸD1RPqXH9S叴wme$ٳuBd- DJXsVsMi9~EQt mxQx&5|G)r#?%>i=m|ޒ2\iL^9x&N%Rdd% dPܴɜ[.%;F}Sg;>.Qc3*:iłSι4֛RN RHWA҂R=i$ypM]:4Bb/lRթ/gļ̢<,)#8ι4 5t)l9RVĞ3\T4K9i]ɕB*/(yzUE5=6nJP)Oϑn1ցrjꇙKC ('I>Cd՗"u⣏I'Ok֟ʎSy P+8UԖy6+D)hACFAfAD+=[F1Mv*x1ӆq!|Dr}>TwKGBcRKV6-.ZDvCrnKp˟i#XZQ@S;6Q/,-ƒ6.=<'v#I.nDXފ*求B>EtȢsBPfBԟ#'{:obZuiAD%8꓏A3#^tDRRZF|OLR;R90I jChSgg$ `42ё <5qn[B)l7Q4*E)mQ G·dH\8M719 *>nG +ܝOBGKDL2\HL19 ~UR"EӴՆ箮S5"ҥ4˙zWKCfQ[`y=ѳ'gS7Q6~ܚs"ڔ(OIR؆ %C%J!'> P 'ANdT-NJ6e#`><}r\&0*CCq>3L{8Z i,6e}* ۃT^4 q٘Aoϥ΃zy֋ēlk\6G ?*ܻ=fj)[T0JK{J܏5=cm-ZRB$ov3 %Q `$\t-IBpA" IB(6^BN:fVohn2 . B*Wy8Rw,G2vЌD(0v7)>D[jFmJ/(n=v]Ye8jW>ϙ oaѰ \gB>\{d)a%m(yp悳ZTpAIRNRC7JżH' n>rhT9̋jR d?M$2OAVgh(!yRIϣ4҇te9wr\kl!aCq>3A_ۉ(ZN#V%"d;~|c-AHOQ((((((((((((((F폾H}\&UQ'S'!Y$6Œ6x{UbrpS~;ΨꮉBQԹָRDSNp˝sR$ PLU.{q Q[``yѧ.;I'=kBAs[y f(,! zPitdD*#ךv,rXNy uihb=F Quf39e#Zb21t֔,-3!҅1]9ťw串XmM[66ۭ8RsG2ι\VG T<9}Td˳Oyɷ2^),’Ś.lFӠaNe;T ruk2 >);׽^ʐ JIJw$QOLfr=-g)Q'zJLtקn@Z/{)Zp9z4K"\kP@܌nҕ~<*zc/0m T=jةBSLo! 6յD8՟;Xlm:84s)Ƃ*2왱">q޴Pl+ƻ3)-8HAH*#IةEV +\$)~ƚ;Ic-hPi1uG9PAWEQ@QEQ@QEQ@QEz5?`)'׬=_򚽿iZ<8n9s7S|4TXVP-aJ':i78:?FI(ܭw i@ qGVMl]on>|N/c qKJ T87ʐ8)EMMPܴT=KC7z/-Tq%HRD˝dpB[X iV4֞{M*p@SD[}$sPSLDCVҧRG2@H! KQJUDW#կ:W.Ǐ),9dIgH&GƋ-sc*A#}VtUuV-ca+T @$҉f@Z2;)i HX 7 Œ3j[=o*=Q.Z\譥 )Xl$΂?EXA/F&M٘:d8Ade;}':d?mTEBڃ)݇|JEn[F{ab@mӽmi 2@6?-M-SHNKn:VUhZf;s[족j;^s$Q%iYh? Cl 5w S!>IhNG.6S)q) )95-ڶJDaIqĂZ#Udw2Ϳ] ?}Oec*=;2H+BxRWӗ:ҝDU| +`t%Z-";}5dk7FD>& ="?*J?aIm3rzU$uRdMsP'' \ ؂: 07rfG?%ِqxe/8:^%jIwwqYeaLjGdfa3Eysy1"-U^]j?WP}Cjeo~xxaL;;Bwq94K2p2Еr|%zI2cJVA|EȂzut()qPEZۄ"CA+ XQ]#'] m0`s"wmɻBmD+oEkfѩ|k8Cam>%\AY9Թ/:sNVj"$o62POĻh];.K%╸ on?PeSr^+Qq#*;vKn.Ql[=)MG#anMIvoRVq]%)Hgƛ2CQ[Q Bg9*~J_j3%2P5%*OB}tMOg] ;IڠVU]yUwN7KaĈKLI)%Dsʭxoq:.(@( gQy_˷v o[Ix!g}=ZTV"zD䞠zs*!MpirxV\RKg5VX K]LPP6<)PPɽ̘2l^cpiZsMݽhR {f֗\b&lHjlH>^ܵ9v{liJ eE)nz[Zn>O9'T}׮m#[۝Rv${POb\GqT?}yW[buvL8ͲR i9.xgZ u2<F`cm-rI WL݊4tn%šQDuYX;CKdW,^;8/\K,ޱű ؅lgkiTd].X0y%G"̉2KKn%Jˍ! H DyZUx˖c\r):ș.Ѥ[. Idf"1]ZBK 8Mtъr93BP*'1\$S%$Ps uhiasLI %,! in=1zQySl4EN~#:n:j+1m $|fj:x6mR6dr-3Jb+GA=D͖*f,6W߸#0!zDCTV™IϤΟpѬY#88ih@FЎeΊP•I|$ɱ[m'"#o7(ڕGCMҦSh>ސnӒP#5h֫;뎩qɦ1+Orřkm}:&[seHn!Ĵ8$pvkZ-ކjuҸB`DR\G̐eJ'K y Qi:Y70?H4J=9APR zQw}QK%,T&UOYԤ>($8􊉨&u62Bq f}X$F-6R7-tɓdYqL1Ky{Tݓ;<"ak6sV3i Aa2w/ >5`smNJCgb )3%4ŲF3RKmUFT H\a@-s˖:┝q#\,4\>=&ղH!'(A$& #{m1 c*=v˱i@uIgw*1K,m789$zhԚ]d%*'vEGXZyvyAj9R;.y,ڜqg JFI50f)2bt=ffX8Kx>+<^Tw[նv,RNd>Tb娧ϊ RМtċ́zE6n! i>Ef䭕 Y"Ra28ACn)CǥXVE; ҕlq *U /Rw)mה M#mnAZpM,Y\ /ޕAEPQEEPQEEPQEEP7l}κF폾̬3oE8S?GQ;2G}g}m[㶤mIkk{;'~X|/Xgli-STD0Y15Ǚ 5֮{~TkDQ|{ ur艅=w&w1;L\]=Q`S%jWR#TA#*<nͺg4^V[) g$'^֩\xUmfcd.:VyQVrnW'ڔcGSICN~]ܮ--\|5zTH*tpKqmR xIAE+]1 Ai ,)Nr&բL +?2RdRz T$QX##B_[$gwZ]R%;!P+N_7w7 HakPT +.8@ y J͢L;5ZV뮨3cÝt .\#.!'YwJ%NC-P5CjD)GrRz1ڐq2T@tI>%:6槟e]RBC̛W1!,!ʺTNbgx̐YKSR:}qa ]i }_NΤ}1#82  'ʱnE&MLtʒ+P;<9uٖ'e2$2AzJ7%tqKn4Ih(q e;Ɲnjt'-Tɬi$&zw+ĥ$JQ3R90 q{XbJp dPU뒜\<hzWZniݘ/ϡIvkxhojqRyP`ϸ]%s=y4 0;b<Ϲ:Nޟ=tm$8'$bW~eϛh\pQp9'ʤ=]uX>KXY||#K<d%RHP$dz ucM Pڤ`ԓZ]bu6=\K >size݊k]c.LIb]ᶐRXqI6uQKZ/my4( (( (X{5u5kWX~SW+^5/ .1qԿ7ƛ wѳ|ױJԬt4V6㮥G JFI45NUDe]yI`v/8qyIuzXf>-V+g=c=*Z6!7oF+O8'Tw2҃+QJWD1Uw&]Ec8Ny;P;?g$_mFPrۑ˟Zht"CߢKǼNG?*ˍ:d9%nB#ح͸ܬP*(,eiWu277h; yW=Wy-V+d *u A!(oUv~4Vm Y\Cۓi0NV<ۏgR%q t4zr9Pꦢ܍tѴIi]Sb9J|SInQ˩q2՞ b-KwLDRN{#ZQΊZ5a@J*+ 8ۤ(s+ph,Up/w[aGnrP8n()JSP&uD'n/6T/.)H=T$2OA[-iM8 H矒kfiI}DƞVHd'Ý0ە&^{lύ2G b=@ A]@Kqm3I=m%?!RcAoN*  ph,XCBUp<i" B`?]=ɼh!G-%mTWI8XS CKR# uRL$@Pv@ UE^ړکőaak$L*"fn)*P2j@8Ϯv-X¤R:j&mOA-ټq@>V@$IvSd]"$l 穥xzM?wmFМ}σ2ЉaKHZB Ƹ-BPrink]HGZm!ۡfK}N,ATUJmE!@(ckE=9Pb((Č:AʊҤ,@PQEEt˲K,YRMm,V[dq (P!@kta}s7c{;QN~M:w2Ϳ?o'5nx_ixwDTT˵&\uS S#묨VVF9_@ .INY \QU %ks~R2! A)G5+m'I5*Lj {t OT)oLk˟̏T?Y bgty0}ң⫎o7[kkK(% tTq6߮ofb i)s=GPk``ي8{w܋E QE1枎ˇ U|׋6C"TzU;$Q> }sR vmsI/$,<3@tJn7).Ŏ| )JqS,\d.-M~Lj6I&ӆ@)kH,iӴ.܃ EB9}E +Ey!Kx@RuJdm#>^5*IҔ8R8' %HhZdL0Z.ϝ$^BuqmyTSyPXW74Tomin3ܯk$rSM%2Y7նͪn֠LzFi'aJ\J].'=i%˳ĴaS\e< l-RRT#֮.`9N1E85̨\;DH4%}tQ)[;G@ ($G$ՉZe[a[hXZTcsUIĐSN*OPjMchrwYJOL@kUE:# ޓYF0=X:wi^=dj&LmZS?"L̗^ EceIOhQr ,-0BR3Aar{g)G6ڗVTqyʊ̘ss 77 uM8 @wrSr2.ؕ(bQs9wyv0Y^m%J儃Q[$1X"ZAy7rL|l-RRT#jR,iISE2zU(kQwiIS{J61ʂіßܽA>cygKgA`!f]|GiaD$Mw\Z2\RTR#AZU<lJM R׺X렵sltBmRb6:ƹR&=@%Ҥ)Gϗ@vj- )_:(=?y,>VB k=9xsA7 ~Et4N){I@>.oh6./>f3^wu*H偞'Q*ڶ)E;<*ܝt~))q)tOS[_%@[1Je-JI1[:xWF۸4J-eHsy>\FAbXb3$)s RHd:2Zež`|h"z*!ji[ٵHVT>MRg:,Pd Q@QEQ@QEz5?`)'׬=_򚽿iZ<8n9s7S|4TXR;(BC] JwmٓWX1uӲRYh !NkEDM2Ԥp6╻LTb>2 }Ҙ%@ʞҲV6n!2KD/<fɳЭ0Fm/ )N#ihwOg6$-ՈTUzEnhZ\h!A䯗mBwXKp֔!9N9 Ygjath6VPw@timN#Ki؊Ä6ҀW)zE)۲BH-%\s*hV\m4]u)PJT| :m1.FSq^V+q($#ϝ7NZUkocRXq *ʒ_Χmˣ( }*gђ6rOKQPtJUC]؎۞\ |\4$"KOPSA$2A.u&qۤ=sj ;BIwgǭWtC)Sf_nx5V8kvV$;͊ݭ%PcIMI>tݜkP @I%ʁFq6iW_ Zq#4K؋t6 K[%/>I,W[J*T)YF9pρU+qJM"`!9jn܅-}|2 $cΠUZ Q7*lT-ֱ 8YݟGTN ^DHfGmL!)>׵9bTMŎiIަI֡tPN4*rwf0BK <:k"( l%}"jEvwMϻFm6Ԃ@|| )thw[%(2[G.))¶BwO;dD,mMR23phb%2* ` Ҋ}X~aХ! J7 Œ3j[=o*=U.Z\譥 )Xl$Μ4t-!pڐu:*PTڜ1*tqeS$P(, ;E3QxBmde84lJYP:')O 1yT2 J96!FJڞwm'QOn4ss$%E9IVv)>꺢oˏoZu !*T?D&ahz$>2]i*9gZrJ#'8HQzKu HQW 2ytފ og Ɍ#{|yRJƏ)M# l#o2\Ed蘈$MJJRҸs>QM%p6l˂Í[ڒx蠳4 vMɘC A鷕i7 vn m%.+qPst#Ib- o5*oa}s7c{+QN~MuCgcm(yi?qogssK}ўbb>;T7GiǮ ȥC>gTܷ3 2r@YK)GH!ըgj\kNp|ËφkU%C $ b |iUrO} ś]ʆ|c:vJ8|*mU;ԥ]vabHw2F?؏T8VU6 뛐?}eHwczmڮ˶WP}Ckw~7 ("(((((((((((((((((((((+]aMy>a?J׹ Kp˟iu/ .1Š+(J(;M382"qE@QEnn:Х FyPiEPQ[-BPrJ+;U+izrGyĕhEPVT$I (lr,gC)⒜3@((((((((((((((((((((F폾HZ}T0blRܚ?+!2"% ݞ~c~dơw7>wve+MBB=unq|-(RlЯgk뗯E34Z(ΟN\u9l)tUo_#ʀ!u¢yUo$ipAҗ4 C[%! IRIAJ-^s*lh,gI9*`],PoL)\\E;cySboUΕh\,1v;N+)|A jzvݶJa],ru&#i[*53EP Mⰶ)(O]ԗނ+Q.sȘKkQ.tq CQJ|:-u2c:inDgV}9nTF}fRwb-Q$-IFyAhC6TFSm}V֜ZII-<U5N*6%Rmpc 4ݧ?IIARgȚ bBҐHPʞg];K#nZ{uY-88AJ5,v) ] (-}7vKFiū#9)%jvvګV cR?svsnt) i Q '4rf۴Q{@` ]RbŽ+BIin%i6Tb_tXe^ihi*M?Zb&RXԟsJA$@dXo1ᙏd+iqH gʕ@ҷ7PL㟍LzP;"ޕř)[\*$ xySUU\Yż KiеV:ʂ)] xVҢ~<`.f 8mONN]>[WBR %WRVghVGt#%8 ¹xsAwNܗ-r˃(YAZ@^gSI{ GάkNnN~6Ҷ̅m"+[6.ӯ%2FlR:`PUnSNHZN0Ai&L2F)ŭH8UE>i]:: 1]yͅX7d; s!ȉ'݂T Suf}+Zp viPZ+D&i'ik4KqV#0iuGjD|; oK\U R߿-8^rSlYA)R:6QO+z\[$BFktR-2$)hᜀz)nC5z~:T1:Lz -sQ$dg S=/q]rɎAFi+]aMy>a?J׹ Kp˟iu/ .1œ4`_a̐4Tݕ!.N#zI2<'ދüGKNR}9~JlKG:Qv3C*ca?/:@w ΞQe(;K;|+3Xˁ|!Z Ļgj۷y#<@sgW(?nIuZ wXu |jVǢ112\WϦ=uD3w4im/%^yiMrQqT]+iG{x9KwsU&x ^yT;Ç}܎5N 2-#IFW#M8O/u[FrhvPv*hI639bRB k0Z}QaS>GJ_V[@ >4d5JRwp:7a;6mH$`ٖn9mCxX<<+639bRB h%ehg!ZЃz  H#vT;Ç}܎/\:`4ȴbBT HxxPJfqBd[R[%`0Ak{5n-C i+Mk I k+>yZYRdoqr8\'I+G&'y 4wLTL.ԈZr'?iuE-K Ҋ&:d)VEr(HDx\;P|l.!%Hq+Sj) CC\ (=[}0_?4( (( +v]Ye8kEHQJ  QEQ@QEV EЅ$Ҋ!!ڊBP#*((`Xd;|I ցTse>'4( _>]#YkAs{/̚QX?֢>Y&V5ֶ;5[_Q{n/Z^F=uE*꫒Z؂?UjFXֈ tN*"Zn`Z2akcMKUJ0|tc8I0#gkc "h$9z]_y3>>J5ȕp3p;zmڮ˶WP}Ckw~7 3%RB€U)q T%iD՚Tzu)d NDQ!إqun b4hpx>YS;T^Q%L;QKRCJaI Y?=5,)HmeqG R I#zdV6w)ĕ9: yPOu]6x[2[qGa<)q1|ŋ YCzxV'-p3nC):q`y IB~2(! O!JOJ =RjŲleT> ՐF>uKϳoqʣJʋVsu5юФ& ?i֒@m^s'F%]T d‚Ax{rGQbTɮ2HE(L)A)ܑȚEl!Mc_mqvg'-?& vޤ@;HPTpfT<,)XWR/:Q/7FuqВPTTb&X^C@w *m$-e)a-j 9 l[~EeČ#w\ծW5]j؈mۛx!0#ց]]T fTVV(ڝ-JQתcft<:nm,ēU,z#@q@QSS o{xv|Ghuĭl36Nn^cIyȤoǠ},xrcQiӧb!W:Pҭܬx›څKrL\.oHks %\RQ8GOlI;0p76wkH b{ض4).,NOeKJ W0I ڰsAhu&rӱt۬6FJQNSf-́*6rCmJRT1U~FU+;qo/#]n:d At$ :\5'^X[)^|FX/ӲXQl#)I%uS̎_y7Z BgSП]765!RO":}Ul4?.8K)sy^CzD 0(rW=lmBBÄ( sV"önpxcơq*siq풡diW;r,rXe;P3N+veicEx~ .9m)(^ JG#mK*!is‰ ֊ 0wsRkަ.RY)$ gФ& ?i֒@m^s'El7'm7&Sl8gA/F.vh''KD-C)ϕi'_12܁8%ƸBB0Q4ݬۇ2s1)Խ)+Oz5x&{JVd'6m5 =#!NN}jw=[}rJ]t~皭H^])!(+)#A`R>}4I}nM9Tͥ}dac(]KZFIW)#Z֭ݹs "?K=iͩ=ùAeA$ւݺ"m-j\'!(c*.aa qIJ:z]k{I|Fv Ywu>[Y2cݜ z0̦Î3pi]{e8x$~=UbNwO]JyL ia;O$AyvpD1{)}TJ\t½D }Ra7I&oV"j_\cM8n9s7UC&>}w6s MNCAywzɧu/xq%A[j0xhYr]VCMJ uF!' ; TpwVLW, .6YmE@3ҕE٤XjhR^(P9#A?LUABZSJq<%q=1N~Gs̨)/j>d_+]G3ʹHɴ67uXrHGG(+Eiʄ8-D(-[ӳmS uHS/ﲢysrw VuN%JHSdljU#Y$m9z|I}^pxT 4M }aTMIXo #N#TkNŒ('V z2] I[(ߎjo$eHmEHq)$d@٤kb;$E Nfl8$qiP)FF1Vj2re n*!q·zEGbؓcjXL5 )QFPFŏsO!i%<[RRxi֍"nu,mQeRX'ʫ*ztY~dVw6<8€(۠Mc9!gjt䫅L7rui#֢ݞ. o+Mm⑜a3V=XٚRě\Ҽpu?--H{fsDIɑ& ŢQXZ*Η}nf CAIW9]#YkAs{/̚QX?֢>Y&V5ֶ㲾/dL먰O& oj< ,v9DxPA(jjT<1ZGȦѲI<sVqEIly&(6T hx}((w,?Ty =L3xlayWP}Cjeo~x;;e)*PJFI8$GQPK^mw(86JJ4}Cs`:ҡ2u+N|)q֫7X7#%p%vq]jqPmù9px3u'4KOoVԣ)N:QDč BrӦ1lokG3tb1&[3-wX Np)Hӷ\8U5B }* 8P)}ղ4hVlIJ'A zRꝎ҂%>G^aϕBkɚs:ښ짒RJ:xR 1}6diq8!OAȠDͶ['YCz R-g]h +|l|Wc<v8Wdٮ& >b)[RDi^25-}*Giݭߋѧ\JԼY<(W]e-2ҷ Gʄ9ZeHR95._jSYd{ 4.)$_^Tv%HR 0=Вg@7M]?HkJ5a (a83u5#jݭ2 ʆ2 } 4黪D !Rڎ(6sDIy2r7PahR] RF>U?kvc6[KE@I=sPk'翀`d8troz#~CiqdmnFr;է%:f`$NݿN|fAZQ2;)C -8tf)bFXCz qzV2K O\XߛdYZ}/@iZ~Bz7nG8)J5SDуf*HRQEEPH!ƵKue1RB<뎬F"cS0Hd;A@=2 vjRzm)A82rAG"Y3CD* P|| bi9ieڎI $6T\Sˠ%w}~&}" jUҋ ^izL_4)mv[s]ƞ?18.($EbPE*^ÀGL :%5-37% IHsMrfT.$ʸo4륦ka QDpU(ֺM F #WJϮQ@QEz5?`)'׬=_򚽿iZ<8n9s7S|4TXQEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@WHZ:_>~c~dơg_5E8}Ƶ ?9]D<@jqڄBЯkk~ZnHEqKmD4{a &Tɷ/ ?.*6d͛A(V 8r[H ;;?Fpv Ʉҿ|ݻ\O}fqӄ$ _%.bɹIu#yǪm$<2ӊFʁ4r\<ܴsN*"$R8u pW_BmYBfB$HVIKń8BT@#ѭXK\ӬCiũa?J׹ Kp˟iu/ .1ºGe%[S,)H&ƋJ[}*Y# HQJ  ZzVS@vpaՄ!%`zBMѯÛp„ڜ^ A-r)< T@H$Ti.5vKmi-spySV 2ZqFR҅m("F:TǑ t,ES%j\ tn[Zݷ(ItC2,ope2Cn (IV9VC2tՙwiqpI9VۈJT)!c)$uIRNTS-=)bi!Dpm->"#J-Ʉ eN6u󠮨R/C5c2 I%a*Kx#.uW AW, h' I+x!jqŜ%)$t9Q4*E)mQ ZZfkhXduw\>U1ElJZ0@EPWXߔug BI4%,#[;$9#7[\x2ԧJ̟*twM_y\Kg`t lWn")Aۏ:ݽ=|[\3Ճ><}LܔX]m~F1UTQEEPQEEPQEEPQEEPQEEPQEEP7l}κF폾g_5E8}Ƴ=M(jQqmogss]Ëz_L`8?v[ ?@ WSc6±|U Y5 ;[u¹oO\$nߖ޲=dJ&H"ʂ>|R{vY5 ?"3sԕ) R%\z ^UrmXo!Kp1֖[t~&)e%yg//)uirTF㕩g8"rof:};9Q.z'|(*X IpH+S>=kF,g*{V z5)qgVܥ3d:ZV[0I4y$'NFm#*ڄ:eu0?=▜Jt' HAZ8\5 PurmhB QIJq)Τ΄FxߤM&eDVGry~",'z\ݢsa0$>B21t;d?dKq;S8K+ޟ->HD{dg6TVB_Grb<]i9W,`%1`;m$  ueq9bu/AhHwc7//N4d;sKqf%qWS_XBJ$ug?UMړUBQE*G .;VLmN%O(д~_ eK.p%Me#'8I#. s^r23Cjpҭ#2 >yHr5d=9%ە3g*$ienvdRl7ETuDqJw S76%q'-#_)V ?[Zj,Kg0z:Z]ͦTHe6d3A $e>iݕ[֝zӬm2S)#][;sVLjІԲ**j2&Y)9$x~mVW"co7G=E&Z]7R%;!P+NuS^!޸XJo1tut6/-Q#ߥ >=to!” OBO3k'_nZNž%q.S!>)Z,kcHvo~2p-87Ezj"q0bu-1tFSQhN$6rNl7t q Mr0y/v6L:wgJfD5z~2ǔ1(y5iZaZH 4K'ʜ%j&Yo ]<<=)d֘cj7ԸU|(")Įܔ(**Rr-RVi#"SwjBR="W]LBlJyаQ6q&d {T0QxӫӺ9"&QqNϣADW-9?KsuO[r2[g@fh&mA6$'gaڤo-\Amq8=*gfh&m16$ga’ystVg6dcS*> Ob;Je RpxMz.ZVTBQ/j175̤H5KEwl 1u>F6/f7 Cbv*I饏J=M1AdAW*( QZyPXCWB7>oZ]4R Rۉ94]Alhur v Q63 s$)g><]fb*+ѢKYHI{b$MVwEMJF\Dy˥GV!fm"ӊ V+ӷHLiݥ᭧1$OQY/̲렱$=umQWu ݤ8yYfVwZ.p.#p[NWNEV- J#Ah;Εr}mIlH$QWHMv,AnM_$ cIn%:5pҭu>Xduw\>U4JZ0@lJZ0@[ێB%)$֔ʾ*tÃݱC7N-ҧKAP1V=ܜ{VťX$cCI"j]=mݚC,0d񕌭G1Ii8cGCL0qmjܢ="ںtw[iLȷ"DeǥutYĐʃ+ؽw+Y z`U>-ٝ榐<2.LZiseżCd

    gZ+81iVݣ;`ݢybVVRzSYg/Q01KqRT.xu7tiqƥ J澛,S1vCe8JR2I UhP%S&: Ko$9gXv}N;gaRH *S*4y.E(*NB| N|LDGS}-AF6Zg߭#f 26!a WKviHrXKd<x>3,;ZP=ZqAS}vӐ'3)>Z c** QEEPQEEPQEEPQEEP7l}κF폾g_5E8}Ƴ=M(jQqmogssݦH#]R9J_/+Ԝԫ{sNk˅Jɖ6:KlOީ̧V|\ܺ,8D8ꑊFUɦFT;PRG]_XZTRG5$Ze)ɩZNV;'(y5,<ӊ*o-( kIgm*뫓ؠIß3XYSQ-o6/mLmu6X+W 2u)ܤ,(<[yUBV CN#!V^G':҉Gt62^]"#Qi;t10Kõd tk?%pc~R$58@vgNr֙: U8%+M59+x$T[MKR\"2b3<$c'sʸLiU֐#/!J NO:2>ۨn%HgnBX6כrY-KP Jd9L]ܱ۞ԩ*A8#>5ך#&,wb!@F&ШT(ÜB6Ҟ. wbZW. Q;F1AjPufoƀ$$!@~0VY&>#.Y&ƷJV 4Ғҡ4^RH)h‚TTm=YզcJq IHZ}"B|NR^"~ًӱD2 t4PXE p~* N:JźSDv$o)Ͱ)Q$1 Fdn!dyrS_fXv@gc)%P%#H叔iqPBrLe@{$kI_.6E$c1ւEPQEEPQEEPQEEPQEEPQEEPQE]#Yk\o-~>vye_+_k=~c~dơw7<mwF;4rO$T_$gvj_L{:1\5o:~P1V6~ 'P"=)ye9X(Hms˕(-T²db/bY?:CsKxI!F+jrU?<_Pڙv/mzSVRdXAu =^troz#~CiqdGߤ7=F*!R'—jur0_]Q'nUvu;;9WRsAdJk;J2oxtK|:\L8='-:a#+$x 7K}+pSh,9Ϫ qސ[^;|1;ص,~ÎZcQ D)PXR ONb[#Foi6ʛ.Dy 4ǡKe.!-(!ST| .iPZ+D&=C߈ݩy/Hu+$@c fL֗11Lenrz%:'G.N2ۖyS 􏪔۵ PŽ+SQ!.SbHr Y>l;M%HۨTp$z){c)Z>┗`GAd#”2ӌFm.e:'Ggej{s$!5}fEAIONT.'qFq‘TZ4H,=6b!^+騽EPQE>!+lΎẅ>Ink,8BgNl;=lC]9XW '֯3mi[,0K)J\g Z E  '@(2LqHJ2N)ū&YrBP^E 1xv{bR'[IϮcO_Fmr}PQ֢x1W([dP/a#¦{Psҙतr9Zv*Ce\7NyȚrn(܎"qR*k]^T+ܥgQz((a?ד]aM^ߴ{`Կ7ƛRp>rn,)]QuԗA<%-ޡq/$-8Fy ĉ2KKn%Jˍ! H Dyw?HLWcDB$Mr74Jmi! Cdj;2I>HokyүD P 4|IQ9,n<1A^TH^,V2ZۻӮsW *Si^Ϋdn</*yrZAi[|۫n[.<|$҂JZ0@lJZ0@EPWXߔug BI40:bdQKQHh5oƋ"aPS`SЯ+" .8\e+(J?K<*CN!7mێy%mZBxg+eift5v^-_tl.xzzm6ELH8gѫUه{/v9KM`YUtQN0lwy2C$V unA0Eb( (( (( (( (( (cu7l}W;<DzɯCj/5?12kEcPZpkk{;HסWli}1%C ~׉β|}2 }mA3BO$ USMFkKVnG UJK^ VSqZۀ$zB}4d[W}-9N浼o~x2U?<_P'{cp%J H']b4NPK^mw(86JJ4}Cs`:ҡ2u+N|*orMKrLS˗$v=j 1pFrUŲ]@r|{|bJqַZ%G.&cPdcTǨ֝&ƙtGۏdϑ$xQ&ݡ`F2QRNO<|`ZnwU-6/-, sIa/a#H^.6]RF V:tS&Ӱre)m>Zx4XZeϧʲ3\6EԤ(g0 O5ݷ̑ddUc x`sݟb)7w$KIRwOO_G;{) Xڒr$ˏe DuVM`T ~<(I)qe^A)T{EIr 8.n!Khvyr't;m$FJOOZ)Żw(TLg%8iuGakZZqh!'z0QN 0cۤ>bCB3妷[[NP-' I kKmvkE# R*h7_U7‘ C.}lp:St\_\lVK0TyuqZW2{LJtAe`! ^u3k0Q-!*BR.şJ\&?-߬9+Je7?V[|.JNq3GO* B ]-~CR{:5ne,`46_G!7$?}"aRnV/mɘJ))@9wkbɺ[ g ({ޣͮMOIer1DG9J`*+ LGc"S:хff#J@'qB v_"ZTZO[d'[ʹN6VTp0멝B ˍQiq \/9m/#뺂֛;0ڍ-RVOAAwDDbTRoj\&,+ʘ4˸$K+U̺ļn\>XiG!T*;iޭ+Rþ鴫hr@hj+.")\^l881ΘBqMjտoo=6V$Ӛ${ÜpCύ:(( (X{5u5kWX~SW+^5/ .1qԿ7ƛ _j- i)gΐR "W$CA<#M\5KcyrVJ 0-!ڃPP+EmEwދl4EIRrJ 8MsTR{GO~m|1 _9s %* ҂IR\)JG;[r=#іć6^y)t{#,ރ`$z= *ī[jȴ?ٱca$w^ѤJw6U SҠޞC +<4T۽öA1WwzPџv!g w"vӈ&:C|vJ"OB(Zb1Ek K R[B0f\UnJQ9piLυ~Ҥ|g0f\UnJQ9ph30M;նEak![Twn9/VHjӸS)9yӮCr٦TŹ(;^Чơv Ք4ǖh#tQER}!x[jnN}\4o/]F*O/+t-]mm렍:RV$Hr<M7se#nҤ(! s83MZ?pĎqf୥c&C0JrUI.+hPUMVF fhyZVB[QHT wK[qC)=Ңu,HKFqRO$cN( (( (( (( (( (cu7l}W;<DzɯCj/5?12kEcPZpkk{;Jרݬn'|Rz|!j?l I_Liu*K,T UЙ ' NM)%GZEW69] X.>&Uފ2r2\ ye!<i4lV1UtTkY3Bփ H SB+)IV_mڮ˶WP}Ck՝ºqLiԧr<5ʷa2N7!AC>w`;2.RfHӛIOךzjKnC\8gx VM.sg@يr1ʛ_H\=%K=1ʁS*u1:x42tȮGe@x5jzVdB].DIR|2>Vg˯͝grݯ1ȵ:t`TM4I6(o"ZA(Yݜs-a؝m$g I#OBmi^=scʙm73 6,B6֢g*'4ݩVg w y/:2 zR} 7 AY G Z۲)[nͧdI5ֱ[d$L Dy%8)ǕBե" ;qZ KN$$(G#Mz.-ԢZe $חzQȝصMI"=WBJ,[:rs4Šuzn _[p*N<3Ko:ˢTԦTNpS8ߵ*9.!k$юy>X ԉ(l-D֏k%E<NkZV|`pU]ULc%M;Ȕ*MGC =ͧIg*8!iSxxoιşܕK))[pkn}MZw)øy .MI.:|M,gowRW)( vxnReK ) x^4MRd%^AmW\I4 .*ECq.IZS}qIwօTBAʴ(EP?Z,0ߺ#EVGy^rR\%ܟ)hAWe[ϽU5#zI2cJVA 5#T͉* sq2RHZ?w1&*XRX =>p}nlL[q/A rN*N'+oa/:dR@I=Ɉn7dVHֱ/iSxi뭽-N?HD*'hlԻnڐ/+{[TA5{$ZYRA51F۴w$sJLzqd(I4EQ@QEz5?`)'׬=_򚽿iZ<8n9s7S|4TXR "W$CHiM. wn\ҕKt)'J*Ҽsx8;tqPaRTϢG]W ʶM{8ijsnY~ayB\^T'EތT]y->IsX>db5C"+iR?D˝1~Z\A +'b4}MG- փ=?qJ[mT˛oDr>({|x[{jt(9˘"R5kpDT܇>ʺ蹑bHJZ)VM~Hqi⥑Qkh#jofh&mA6$'gaڤo-\rMc7VSDf Qٸ*r\S- GO* %i-^ Ҭ Ƣ[!'p8PWs! K+Q-:Xduw\>UcBPej)JȑTH^,V2ZۻӮsW *AtNIIQ y ֶtNIIQ y ր(De.p S|g&HJ nO%hb޴7noYx)CaE%g(BҰ<ʇǮ;, ~4zӹ҂做Uޡӓpu (Y-nRZXp9(IDI(84PQEEA$Pym v1EPQEEPQEEPQE]#Yk\o-~>vye_+_k=~c~dơw7ŀ'n#=k,,}m,9JgVOmڮ˶WP}CkѝŠ+fZd,j:n^pN~O?\ӷ`ǷH}ćRgoS@Y%$Y]KeAJY>})=RJ)[xttX/*I,78K-?P͓ _m2ӋA <֗nvn49*KqԳS7S3NCy>[Je=>CJ,w]$۸$Hğ[=|OWB=^nR2um-+Q-$Soa^R#6 mBIOBG2fۘmӞKN:SNԓ JY.[~U:N!8`gRhB#FkM_Z]om &x"Bae RA#ʷnqDg StHݢsa0$>B2=?hZn2Y62P(>,f"12ZiBϊOJby7gNˏ!)y+zc=0`;m$  ueq9bu/AhHwc7//N4d;sKqf%qWS_XBJ$ug?UMړUBQE*G .;VLmN%O(д~_ eK.p%Me#'8I#. s^r23Cjpҭ#2 >yHr5d=9%ە3g*$ienvdRl7ETuDqJw S76%q'-#_)V ?[Zj,Kg0z:Z]ͦTHe6d3A $e>iݕ[֝zӬm2S)#][;sVLjІԲ**j2&Y)9$x~mVW"co7G=E&Z]7R%;!P+NuS^!޸XJo1tut6/-Q#ߥ >=to!” OBO3k'_nZNž%q.S!>)Z,kcHvo~2p-87Ezj"q0bu-1tFSQhN$6rNl7t q Mr0y/v6L:wgJfD5z~2ǔ1(y5iZaZH 4K'ʜ%j&Yo ]<<=)d֘cj7ԸU|(")Įܔ(**Rr-RVi#"SwjBR="W]LBlJyаQ6q&d {T0QxӫӺ9"<|}N0lwy2C$VrM9IaIqĂZ 6pv!@Sʛ_$mW\q=)KrO * B.m o6;sT*݇4dMXi{6Iakpm$8lCΧbhv};%㕸0Ϣkumʼw')*-#q\_I2<ܤZr[0V @K5踬 hBT L6i2C"ImBGZtmڮLxՄ6WQ# NڧDv̙L%ʉmca`qCn3ʬNN=-3ܸ' ny#Σn[*YK)=O{}ߖb. 5/JTW%J@Hh!QEEPQE]#Yk\o-~>vye_+_k=~c~d %ɅW"#a伌-Ug9Fܪ(y^eZ6W q 느yTw)J<ɬ9 U;SmӱDSg>x)ʔ8~rQϝW&! R|sY*WToǮ<6nqy\z$fT@ʅ[5rG[iZDž\^cӴryט`nRJHNu i6JVB kA5c]%Q'5ԼZKIJs#\$knS )y*@QxUDht7L4۪FAB~ml/1W-65 BƤ٧۴xfOHIұ5LG@ÒJA"ZؘbK/-.cPBӘRȲ1q.i'%qQ:(, i;RbdrGt]ٌ*y[+i)q6 h~b [6ziZkGMEe`03ED(((((((a?ד]aM^ߴ{`Կ7ƛRp>rn,(XU $t_5و_eekm#VenoR._XgҒ9׊@ʭ2~ܦDTp@R}!ϧ!ʂY-nRZXp9(*;Ɏ iA+"GQSXɶ'֧[ >< j1CpM--#ALNj"B\S Ķ)`9xply|耞J TZ]1Z-жw}Uٴ-ťIRpɥw+UgCz8peiiF=MojqIRR2HυOE1vy xJS< dA\7;n9 ߾(N@wA/<p8Xe6:WQJqK 4q$wHKNYQPVp01Z IzvaVAFP+Ÿi+gA>]dVXvOK+r#z•lnmO2$(QpmJ*F9cMI7CFC pJ˥'b;VK{}"Ȯ-Gy;m)Om|ƒ 6&%Jج#:} 'Nĺ8T7'&zS)JZ<6c\+(P!@].f)YZ7<Չ CĀn (8)JjhJܕnkSL \By‚&sSBA44{J^i_tSIAFvye_*FI^EM;<Dzɯ C ){*~_>ڏ<zOB+BD(V % Jv֖O)gS#2MhSi`\ 2Fn8ytZoD1l (=*+'rr?ETaZSj\l.")`ʹݦqWXzj+[.z>[ [u gJ2D'5f0̈́!X=Oךq>)ZFS|>߅益1uZgZ'ީDur/՗]*!y U??h8V34ָJ:z<ֽcq j;z$Q۷ xSf;橇0HNݮo:=j_hO5:G OA;Zy`X[*(9ǘyVi {BrjNXkuH7ꚉ(Tϱ6ljC𖴭ezgƣZrpYW;j:BvNޏ6 )5l-DڲMk߾5U~8MdjQ;M:FvNޏ7?J?|kڛ̷F3y#ƻ*JD_jktk\NN5-c)kߏ3~o%Q߾5TuG?oS\׺ji;V==GvU]Qd`j+?)uW3GݔGXn<]G~o%S{UҖo^i5J5 $5򽊾z7ǚI߾5T~GvU5#[䶔PO'M ZWjj6;z1n<ο]G~o%TmyBՆtj_\cM8n9s7W./1rIT0/4 J7C7KF3mIl4; !̍,.^A3&3db|:$GJ?ҦhDD{VM6-ҀF ⩐ z ˈ[k-0EuP[)DdMKN2R2|[R?bވ[i-%.z X<׌ud2#sGOgj; U"0( al>~]*+xzM?wmFМ}(*Yٽd殎Q&>焨FHUcM$XͶ6@}C4k]7oj4 )mIXPc5PG"B\S Ĵ)8UkpMͷ;(! xXѯtW%][|wy ފPJP::Eޯ&R㺐rq[;lnl's!xJ ˻˔vZG&EEP7l}κF폾g_5SS.?12kEC} s=8ȩ|Xj>0JUUpVB[ Ҏ~>ǩ9JEyqނ E2G++|+ EsSg(v\㤫jFqGx$a)9hHW?}N W9LZyFPR(χȎ~V+ d9"ryy }/E3sWs&Y:oki Ǎ!qҵ`W5nʲTvSDSzD⺡ s[$g*2%d°OsRꫲW\yt:RJʅi\3SVw`Ӌ!)'$Rbjj))հDV*˪:W$4 OZr)KiJ )Zi6sʴNy 4wer gf3U&v;c0BKc穧غRgַvdz ,!ҫ7tnpVG*UZ;ilŞjH2|iIK-E8f+׃5/ .1j57B,B:FH|Qê}./1rIT0/5"XvF?|Qê]LǺ jsPF U*urEicƱT~,;@wUѧ,(6Y&~+[ {ЄB ?Ňhna:}Ԣ6(Gô7uPL.2T-2 Vtێ4puߏ# sc:óir_qd;yJq$ vAۤۡ3`u(Qm$$~Q,PP MO. +uap]q+GvP*_O*thb#mJ̴ u(+[$])| RKjmduywJ;n6۰Zg E$"jϵQOF]eԴ'@wumwM$rϟZ N6KK%-! )ZlϭGAJrc[Ҝu!!>F;>кϩؙ;G];죰$}7 ۥn sA~XiF9ɴGZη3iBe8K*Jt؝ ?i#<50zS!F3ep;ҞKg?HI-VwO]#̇1N.*\A@3΂!<ȷ834҉W,G7hK^֤ M zEWVۻl6SEaY0\פAgvtqԥu1,jy₼kˋy!O@AP]Z_6C6*xHNyנݳ'ۆhnMͷ;09XQaR 04 8*XƂxȴ=.ch˭$x%- ATT{@TltedH4PR’n8$c٩ԽJ%+\ >iu?FqV1Lm7t oLgc*ʂ#嚎%m3C/G .eGiGAZ _7TV:W/hKO3^NOܙpiB-JCa+ P1Z:/Nl*(8uTi]Iem/CMkٗRZd6ZٕO:BK3I]0!]?1AUQSŇhna:!Ta:XvF}0XvF?|QêEL?|QêŇhnꠇSŇhna:!Ta:XvF}0XvF?|Qê]#YkRŇhnc:FXA{/̚QPd΋_ȩNJFz1  ;G#Qod F,Sj4|a6䵷,6sTlO^s DsbAI)He?Ml#$#'&$g -/+e[> L̙Smg#\ש:T^Ns ۙ!c5!GGBU)#VցNЗq&T6kW"h/0yG\WNUj͸7TG\b@^tJ1y)A]\0#hW]L1rbwKοXuc[˥Zԓ>d=?ZA$n!V>2OjBW=6ٵUοO.ܮy-JxKjEa-W@ }JF(I6ŷ&~¨ez|-i9+]]tӳW lU 2؎@@*к]dBBضP*c=մקR/xZXIT|m5iͦ,%9BlrK O쩏ᶙYH.$WpJG:gT~$kex-B-=1WCITHzZI-gZhZ)?uY0[IsS\}|7z5u/>=Z^ŧ tPӣ k?J=|7 z=$z<'k[k׮|7 =|7 rgO%gVstiM{ګg#}J=w$Lz9' 4CSJ[i?_6dڛg|_VG~GB MruV@-k^[>?Jq6*}Y~Qo@fl\-D k~!+p/%Uj0vk'XQ_l?HuK۩sN+XI/w!I ߟGltg`۠?bz?]s&iڅ0"vyaiڢBI,cmOX1]ؿ}o?R2ڍ7|d#dOt`zd^?aa0n$nLx8о.+" 9+ ~A:Fh4f>7?L+'v·o3%?УSl1A[X1T~+?:G?TntJ,k 2]Q]1S^18TIO5*GQ׵v1Gv1HWD ~A۽#ĎOʻv|n57f+>['Y^Lr/T(&\W Twc{Wn oW:K?Rm3~Cqߎ;To5'1G>ي-is xUUQ8~u{]l}ciO9;5uguƤAf(1SO \o_Y~ي=6>SJ97ݑGz5"1G~ي:8#QGI q>S >O|Ok W&3 ]2V2vr* dԟ18Guݯ71qarX5\c5a0yR^Guݫtn7/0G(`~]YXvnB!d.裺F;*x?L5<Z urߵL's<~~裹;_)ј?L/Ҝ7NDxFMCmz43g'Z.~ [qҿar'uayUhd5#uUX[~[>oGc8/q .ֈTQ:zڊE1Hj0#lV#f*тy"yC<=݂Lo֮wGh]l}bHOs(rm{eGHo V=*~cڻwcwHOs恞o|`ʭ)ɱG*[-r5N 9F49#wqA&9G' > o?tUy |xBe=+Dar@%D !*)SIJPP{G<3{gu2^j{1 PV$ʶZB7G,Ci9 \&&a*=|@鎞9{U8Dg6?я=JQھh{U؏ n!$$v #jl95̶7U側D[%9#`> m招RU=9mLyY\5pԇ'9 qqJ(]֔%* 0!JoWT겉ckaoSfb'KLXPp ,xR8љ`I<ωyqҗ<ұtZM7S]jj3VϲZ T1LY!(qG.4jm:Qu!/^xZ⚪fssMuL,f8#tΓYDѪn HJYZxӳd>8@#o82ϋz*=-@\"A>ٞJ(8 F| sr;n2X%?-/rU&zwǜ݈٢2r*Yq%$mie(u(eSSu Zpw V kj7GJMʶ{ȝ;@E J-8r*/e*yܸ2IB<5쇯o)EjJ=Ik?~:DbֱL E1 GĠϧc 4j4zсV^e !-%(ʆđԎsQVTQEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QEQ@QE;ҙ4JgxJ`3ƑPaD䥓Y/vEv [T}yEPu3L3I}/OTW|O4-'\t4iYsl'98D꣇|zTpݩrZ@Co))\-1TpU-y$$k,fX9?tW3ӿ{˙i8bLT_TGyruʰ9f,I犭Q0espresso-5.1/Doc/user_guide.toc0000644000175000017500000000757212341373046014667 0ustar mbamba\contentsline {section}{\numberline {1}Introduction}{2}{section.1} \contentsline {subsection}{\numberline {1.1}People}{3}{subsection.1.1} \contentsline {subsection}{\numberline {1.2}Contacts}{4}{subsection.1.2} \contentsline {subsection}{\numberline {1.3}Guidelines for posting to the mailing list}{4}{subsection.1.3} \contentsline {subsection}{\numberline {1.4}Terms of use}{5}{subsection.1.4} \contentsline {section}{\numberline {2}Installation}{5}{section.2} \contentsline {subsection}{\numberline {2.1}Download}{6}{subsection.2.1} \contentsline {subsection}{\numberline {2.2}Prerequisites}{7}{subsection.2.2} \contentsline {subsection}{\numberline {2.3}\texttt {configure}}{7}{subsection.2.3} \contentsline {subsubsection}{\numberline {2.3.1}Manual configuration}{9}{subsubsection.2.3.1} \contentsline {subsection}{\numberline {2.4}Libraries}{10}{subsection.2.4} \contentsline {paragraph}{BLAS and LAPACK}{10}{section*.2} \contentsline {paragraph}{FFT}{10}{section*.3} \contentsline {paragraph}{MPI libraries}{11}{section*.4} \contentsline {paragraph}{Other libraries}{11}{section*.5} \contentsline {paragraph}{If optimized libraries are not found}{11}{section*.6} \contentsline {subsection}{\numberline {2.5}Compilation}{11}{subsection.2.5} \contentsline {subsection}{\numberline {2.6}Running tests and examples}{12}{subsection.2.6} \contentsline {subsection}{\numberline {2.7}Installation tricks and problems}{14}{subsection.2.7} \contentsline {subsubsection}{\numberline {2.7.1}All architectures}{14}{subsubsection.2.7.1} \contentsline {subsubsection}{\numberline {2.7.2}Cray XE and XT machines}{14}{subsubsection.2.7.2} \contentsline {subsubsection}{\numberline {2.7.3}IBM AIX}{15}{subsubsection.2.7.3} \contentsline {subsubsection}{\numberline {2.7.4}IBM BlueGene}{15}{subsubsection.2.7.4} \contentsline {subsubsection}{\numberline {2.7.5}Linux PC}{15}{subsubsection.2.7.5} \contentsline {paragraph}{Linux PCs with Portland compiler (pgf90)}{16}{section*.7} \contentsline {paragraph}{Linux PCs with Pathscale compiler}{16}{section*.8} \contentsline {paragraph}{Linux PCs with gfortran}{16}{section*.9} \contentsline {paragraph}{Linux PCs with g95}{17}{section*.10} \contentsline {paragraph}{Linux PCs with Sun Studio compiler}{17}{section*.11} \contentsline {paragraph}{Linux PCs with AMD Open64 suite}{17}{section*.12} \contentsline {paragraph}{Linux PCs with Intel compiler (ifort)}{17}{section*.13} \contentsline {paragraph}{Linux PCs with MKL libraries}{18}{section*.14} \contentsline {paragraph}{Linux PCs with ACML libraries}{18}{section*.15} \contentsline {subsubsection}{\numberline {2.7.6}Linux PC clusters with MPI}{18}{subsubsection.2.7.6} \contentsline {subsubsection}{\numberline {2.7.7}Mac OS}{19}{subsubsection.2.7.7} \contentsline {paragraph}{Detailed installation instructions for Mac OS X 10.6}{19}{section*.16} \contentsline {paragraph}{Compilation with GNU compilers}{19}{section*.17} \contentsline {paragraph}{Compilation with Intel compilers}{20}{section*.18} \contentsline {section}{\numberline {3}Parallelism}{21}{section.3} \contentsline {subsection}{\numberline {3.1}Understanding Parallelism}{21}{subsection.3.1} \contentsline {subsection}{\numberline {3.2}Running on parallel machines}{21}{subsection.3.2} \contentsline {subsection}{\numberline {3.3}Parallelization levels}{22}{subsection.3.3} \contentsline {paragraph}{About communications}{23}{section*.19} \contentsline {paragraph}{Choosing parameters}{23}{section*.20} \contentsline {paragraph}{Massively parallel calculations}{23}{section*.21} \contentsline {subsubsection}{\numberline {3.3.1}Understanding parallel I/O}{24}{subsubsection.3.3.1} \contentsline {subsection}{\numberline {3.4}Tricks and problems}{24}{subsection.3.4} \contentsline {paragraph}{Trouble with input files}{24}{section*.22} \contentsline {paragraph}{Trouble with MKL and MPI parallelization}{25}{section*.23} \contentsline {paragraph}{Trouble with compilers and MPI libraries}{25}{section*.24} espresso-5.1/Doc/developer_man.out0000644000175000017500000000601212341373044015360 0ustar mbamba\BOOKMARK [1][-]{section.1}{Introduction}{}% 1 \BOOKMARK [2][-]{subsection.1.1}{Who should read \(and who should write\) this guide}{section.1}% 2 \BOOKMARK [2][-]{subsection.1.2}{Who may read this guide but will not necessarily profit from it}{section.1}% 3 \BOOKMARK [2][-]{subsection.1.3}{How to contribute to Quantum ESPRESSO as a user}{section.1}% 4 \BOOKMARK [1][-]{section.2}{Quantum ESPRESSO as a distribution}{}% 5 \BOOKMARK [1][-]{section.3}{How to become a developer}{}% 6 \BOOKMARK [2][-]{subsection.3.1}{About qe-forge.org}{section.3}% 7 \BOOKMARK [2][-]{subsection.3.2}{Quantum ESPRESSO on qe-forge.org}{section.3}% 8 \BOOKMARK [2][-]{subsection.3.3}{Contributing new developments}{section.3}% 9 \BOOKMARK [2][-]{subsection.3.4}{Hints, Caveats, Do's and Dont's for developers}{section.3}% 10 \BOOKMARK [2][-]{subsection.3.5}{Guidelines for reporting bugs}{section.3}% 11 \BOOKMARK [1][-]{section.4}{Stable releases and development cycle}{}% 12 \BOOKMARK [1][-]{section.5}{Structure of the distribution}{}% 13 \BOOKMARK [2][-]{subsection.5.1}{Installation Mechanism}{section.5}% 14 \BOOKMARK [3][-]{subsubsection.5.1.1}{Preprocessing}{subsection.5.1}% 15 \BOOKMARK [3][-]{subsubsection.5.1.2}{How to edit the configure script}{subsection.5.1}% 16 \BOOKMARK [3][-]{subsubsection.5.1.3}{How to add support for a new architecture}{subsection.5.1}% 17 \BOOKMARK [2][-]{subsection.5.2}{Libraries}{section.5}% 18 \BOOKMARK [1][-]{section.6}{Algorithms}{}% 19 \BOOKMARK [2][-]{subsection.6.1}{Gamma tricks}{section.6}% 20 \BOOKMARK [2][-]{subsection.6.2}{Restart}{section.6}% 21 \BOOKMARK [1][-]{section.7}{Format of arrays containing charge density, potential, etc.}{}% 22 \BOOKMARK [1][-]{section.8}{Parallelization}{}% 23 \BOOKMARK [2][-]{subsubsection.8.0.1}{Usage of \043ifdef \137\137MPI}{section.8}% 24 \BOOKMARK [2][-]{subsection.8.1}{Tricks and pitfalls}{section.8}% 25 \BOOKMARK [2][-]{subsection.8.2}{Data distribution}{section.8}% 26 \BOOKMARK [1][-]{section.9}{File Formats}{}% 27 \BOOKMARK [2][-]{subsection.9.1}{Data file\(s\)}{section.9}% 28 \BOOKMARK [3][-]{subsubsection.9.1.1}{Rationale}{subsection.9.1}% 29 \BOOKMARK [3][-]{subsubsection.9.1.2}{General structure}{subsection.9.1}% 30 \BOOKMARK [3][-]{subsubsection.9.1.3}{Structure of file "data-file.xml"}{subsection.9.1}% 31 \BOOKMARK [3][-]{subsubsection.9.1.4}{Sample}{subsection.9.1}% 32 \BOOKMARK [2][-]{subsection.9.2}{Restart files}{section.9}% 33 \BOOKMARK [1][-]{section.10}{Modifying/adding/extending Quantum ESPRESSO}{}% 34 \BOOKMARK [2][-]{subsection.10.1}{Programming style \(or lack of it\)}{section.10}% 35 \BOOKMARK [2][-]{subsection.10.2}{Adding or modifying input variables}{section.10}% 36 \BOOKMARK [1][-]{section.11}{Using SVN}{}% 37 \BOOKMARK [2][-]{subsection.11.1}{SVN operations}{section.11}% 38 \BOOKMARK [2][-]{subsection.11.2}{Removing conflicts}{section.11}% 39 \BOOKMARK [2][-]{subsection.11.3}{Merging branch and trunk}{section.11}% 40 \BOOKMARK [2][-]{subsection.11.4}{Including a repository into the trunk}{section.11}% 41 \BOOKMARK [1][-]{section.12}{Bibliography}{}% 42 espresso-5.1/Doc/INPUT_NEB.html0000777000175000017500000000000012341373334020055 2../NEB/Doc/INPUT_NEB.htmlustar mbambaespresso-5.1/Doc/INPUT_PH.html0000777000175000017500000000000012341373334020460 2../PHonon/Doc/INPUT_PH.htmlustar mbambaespresso-5.1/Doc/INPUT_LD1.txt0000777000175000017500000000000012341373334020403 2../atomic/Doc/INPUT_LD1.txtustar mbambaespresso-5.1/Doc/INPUT_pw_export.txt0000777000175000017500000000000012341373334022564 2../PP/Doc/INPUT_pw_export.txtustar mbambaespresso-5.1/Doc/brillouin_zones.log0000644000175000017500000004600012341373046015732 0ustar mbambaThis is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=pdflatex 2013.10.8) 28 MAY 2014 16:43 entering extended mode restricted \write18 enabled. %&-line parsing enabled. **brillouin_zones.tex (./brillouin_zones.tex LaTeX2e <2011/06/27> Babel and hyphenation patterns for english, dumylang, nohyphenation, it alian, loaded. (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo File: size12.clo 2007/10/19 v1.4h Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live ) Package graphics Info: Driver file: pdftex.def on input line 91. (/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO) ) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ltxcmds.sty Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO) ) \Gread@gobject=\count87 )) \Gin@req@height=\dimen103 \Gin@req@width=\dimen104 ) (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty Package: amssymb 2009/06/22 v3.00 (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty Package: amsfonts 2009/06/22 v3.00 Basic AMSFonts support \@emptytoks=\toks15 \symAMSa=\mathgroup4 \symAMSb=\mathgroup5 LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' (Font) U/euf/m/n --> U/euf/b/n on input line 96. )) (./brillouin_zones.aux) \openout1 = `brillouin_zones.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 40. LaTeX Font Info: ... okay on input line 40. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 40. LaTeX Font Info: ... okay on input line 40. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 40. LaTeX Font Info: ... okay on input line 40. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 40. LaTeX Font Info: ... okay on input line 40. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 40. LaTeX Font Info: ... okay on input line 40. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 40. LaTeX Font Info: ... okay on input line 40. (/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii [Loading MPS to PDF converter (version 2006.09.02).] \scratchcounter=\count88 \scratchdimen=\dimen105 \scratchbox=\box26 \nofMPsegments=\count89 \nofMParguments=\count90 \everyMPshowfont=\toks16 \MPscratchCnt=\count91 \MPscratchDim=\dimen106 \MPnumerator=\count92 \makeMPintoPDFobject=\count93 \everyMPtoPDFconversion=\toks17 ) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/pdftexcmds.sty Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO ) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifluatex.sty Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO) Package ifluatex Info: LuaTeX not detected. ) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifpdf.sty Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO) Package ifpdf Info: pdfTeX in PDF mode is detected. ) Package pdftexcmds Info: LuaTeX not detected. Package pdftexcmds Info: \pdf@primitive is available. Package pdftexcmds Info: \pdf@ifprimitive is available. Package pdftexcmds Info: \pdfdraftmode found. ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/kvdefinekeys.sty Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO) )) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/kvsetkeys.sty Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/etexcmds.sty Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO) Package etexcmds Info: Could not find \expanded. (etexcmds) That can mean that you are not using pdfTeX 1.50 or (etexcmds) that some package has redefined \expanded. (etexcmds) In the latter case, load this package earlier. ))) Package grfext Info: Graphics extension search list: (grfext) [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE G,.JBIG2,.JB2,.eps] (grfext) \AppendGraphicsExtensions on input line 452. (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv e )) LaTeX Font Info: Try loading font information for U+msa on input line 51. (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd File: umsa.fd 2009/06/22 v3.00 AMS symbols A ) LaTeX Font Info: Try loading font information for U+msb on input line 51. (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd File: umsb.fd 2009/06/22 v3.00 AMS symbols B ) [1 {/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <14.4> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 102. File: images/cubic_bi.png Graphic file (type png) Package pdftex.def Info: images/cubic_bi.png used on input line 119. (pdftex.def) Requested size: 213.39566pt x 206.09853pt. [2] File: images/fcc_sc.png Graphic file (type png) Package pdftex.def Info: images/fcc_sc.png used on input line 140. (pdftex.def) Requested size: 213.39566pt x 209.90521pt. File: images/fcc_bi.png Graphic file (type png) Package pdftex.def Info: images/fcc_bi.png used on input line 141. (pdftex.def) Requested size: 213.39566pt x 207.26317pt. [3 <./images/cubic_bi.png (PNG copy)>] File: images/bcc_bi.png Graphic file (type png) Package pdftex.def Info: images/bcc_bi.png used on input line 164. (pdftex.def) Requested size: 213.39566pt x 216.24292pt. [4 <./images/fcc_sc.png (PNG copy)> <./images/fcc_bi.png (PNG copy)>] File: images/hex.png Graphic file (type png) Package pdftex.def Info: images/hex.png used on input line 186. (pdftex.def) Requested size: 213.39566pt x 143.466pt. [5 <./images/bcc_bi.png (PNG copy)> <./images/hex.png (PNG copy)>] File: images/tri_1.png Graphic file (type png) Package pdftex.def Info: images/tri_1.png used on input line 220. (pdftex.def) Requested size: 213.39566pt x 218.83601pt. File: images/tri_2.png Graphic file (type png) Package pdftex.def Info: images/tri_2.png used on input line 225. (pdftex.def) Requested size: 213.39566pt x 230.40334pt. [6 <./images/tri_1.png (PNG copy)>] File: images/st.png Graphic file (type png) Package pdftex.def Info: images/st.png used on input line 245. (pdftex.def) Requested size: 213.39566pt x 145.67273pt. [7 <./images/tri_2.png (PNG copy)> <./images/st.png (PNG copy)>] File: images/stc1.png Graphic file (type png) Package pdftex.def Info: images/stc1.png used on input line 267. (pdftex.def) Requested size: 213.39566pt x 262.392pt. File: images/stc2_sc.png Graphic file (type png) Package pdftex.def Info: images/stc2_sc.png used on input line 271. (pdftex.def) Requested size: 213.39566pt x 197.50583pt. File: images/stc2.png Graphic file (type png) Package pdftex.def Info: images/stc2.png used on input line 272. (pdftex.def) Requested size: 213.39566pt x 207.82387pt. [8 <./images/stc1.png (PNG copy)>] Overfull \hbox (33.00586pt too wide) in paragraph at lines 274--277 \OT1/cmr/m/n/12 The fig-ure has been ob-tained with $\OML/cmm/m/it/12 c=a \OT1/ cmr/m/n/12 = 1\OML/cmm/m/it/12 :\OT1/cmr/m/n/12 4$ ($\OML/cmm/m/it/12 a < c$\OT 1/cmr/m/n/12 ). La-bels cor-re-spond-ing to $[]$ [] File: images/so.png Graphic file (type png) Package pdftex.def Info: images/so.png used on input line 294. (pdftex.def) Requested size: 213.39566pt x 164.64041pt. [9 <./images/stc2_sc.png (PNG copy)> <./images/stc2.png (PNG copy)> <./images/ so.png (PNG copy)>] File: images/ofco_2.png Graphic file (type png) Package pdftex.def Info: images/ofco_2.png used on input line 316. (pdftex.def) Requested size: 213.39566pt x 97.28363pt. File: images/ofco_1.png Graphic file (type png) Package pdftex.def Info: images/ofco_1.png used on input line 317. (pdftex.def) Requested size: 184.9429pt x 92.56459pt. [10 <./images/ofco_2.png (PNG copy)> <./images/ofco_1.png (PNG copy)>] File: images/ofc_1.png Graphic file (type png) Package pdftex.def Info: images/ofc_1.png used on input line 378. (pdftex.def) Requested size: 213.39566pt x 182.58781pt. File: images/ofc_2.png Graphic file (type png) Package pdftex.def Info: images/ofc_2.png used on input line 379. (pdftex.def) Requested size: 184.9429pt x 206.1477pt. File: images/ofc_13.png Graphic file (type png) Package pdftex.def Info: images/ofc_13.png used on input line 387. (pdftex.def) Requested size: 213.39566pt x 144.6422pt. File: images/ofc_14.png Graphic file (type png) Package pdftex.def Info: images/ofc_14.png used on input line 388. (pdftex.def) Requested size: 156.49014pt x 200.33107pt. [11 <./images/ofc_1.png (PNG copy)> <./images/ofc_2.png (PNG copy)>] File: images/ofc_7.png Graphic file (type png) Package pdftex.def Info: images/ofc_7.png used on input line 395. (pdftex.def) Requested size: 184.9429pt x 106.50496pt. File: images/ofc_8.png Graphic file (type png) Package pdftex.def Info: images/ofc_8.png used on input line 396. (pdftex.def) Requested size: 113.81102pt x 181.88936pt. File: images/ofc_3.png Graphic file (type png) Package pdftex.def Info: images/ofc_3.png used on input line 407. (pdftex.def) Requested size: 213.39566pt x 166.31387pt. File: images/ofc_4.png Graphic file (type png) Package pdftex.def Info: images/ofc_4.png used on input line 408. (pdftex.def) Requested size: 213.39566pt x 195.79178pt. [12 <./images/ofc_13.png (PNG copy)> <./images/ofc_14.png (PNG copy)> <./image s/ofc_7.png (PNG copy)> <./images/ofc_8.png (PNG copy)>] File: images/ofc_15.png Graphic file (type png) Package pdftex.def Info: images/ofc_15.png used on input line 415. (pdftex.def) Requested size: 213.39566pt x 140.38007pt. File: images/ofc_16.png Graphic file (type png) Package pdftex.def Info: images/ofc_16.png used on input line 416. (pdftex.def) Requested size: 213.39566pt x 172.60703pt. File: images/ofc_9.png Graphic file (type png) Package pdftex.def Info: images/ofc_9.png used on input line 423. (pdftex.def) Requested size: 213.39566pt x 114.25487pt. File: images/ofc_10.png Graphic file (type png) Package pdftex.def Info: images/ofc_10.png used on input line 424. (pdftex.def) Requested size: 213.39566pt x 198.048pt. [13 <./images/ofc_3.png (PNG copy)> <./images/ofc_4.png (PNG copy)> <./images/o fc_15.png (PNG copy)> <./images/ofc_16.png (PNG copy)> <./images/ofc_9.png (PNG copy)> <./images/ofc_10.png (PNG copy)>] File: images/ofc_5.png Graphic file (type png) Package pdftex.def Info: images/ofc_5.png used on input line 434. (pdftex.def) Requested size: 184.9429pt x 227.37932pt. File: images/ofc_6.png Graphic file (type png) Package pdftex.def Info: images/ofc_6.png used on input line 435. (pdftex.def) Requested size: 213.39566pt x 229.03777pt. File: images/ofc_17.png Graphic file (type png) Package pdftex.def Info: images/ofc_17.png used on input line 442. (pdftex.def) Requested size: 156.49014pt x 218.48466pt. File: images/ofc_18.png Graphic file (type png) Package pdftex.def Info: images/ofc_18.png used on input line 443. (pdftex.def) Requested size: 213.39566pt x 234.97366pt. File: images/ofc_11.png Graphic file (type png) Package pdftex.def Info: images/ofc_11.png used on input line 452. (pdftex.def) Requested size: 142.26378pt x 235.53351pt. File: images/ofc_12.png Graphic file (type png) Package pdftex.def Info: images/ofc_12.png used on input line 453. (pdftex.def) Requested size: 213.39566pt x 226.06258pt. [14 <./images/ofc_5.png (PNG copy)> <./images/ofc_6.png (PNG copy)> <./images/o fc_17.png (PNG copy)> <./images/ofc_18.png (PNG copy)>] File: images/bco_4.png Graphic file (type png) Package pdftex.def Info: images/bco_4.png used on input line 484. (pdftex.def) Requested size: 213.39566pt x 204.09145pt. File: images/bco_5.png Graphic file (type png) Package pdftex.def Info: images/bco_5.png used on input line 485. (pdftex.def) Requested size: 213.39566pt x 224.3837pt. [15 <./images/ofc_11.png (PNG copy)> <./images/ofc_12.png (PNG copy)>] File: images/bco_2.png Graphic file (type png) Package pdftex.def Info: images/bco_2.png used on input line 493. (pdftex.def) Requested size: 213.39566pt x 207.11267pt. File: images/bco_3.png Graphic file (type png) Package pdftex.def Info: images/bco_3.png used on input line 494. (pdftex.def) Requested size: 199.16928pt x 212.5578pt. File: images/bco_1.png Graphic file (type png) Package pdftex.def Info: images/bco_1.png used on input line 502. (pdftex.def) Requested size: 213.39566pt x 209.37077pt. File: images/bco_6.png Graphic file (type png) Package pdftex.def Info: images/bco_6.png used on input line 503. (pdftex.def) Requested size: 213.39566pt x 204.29808pt. [16 <./images/bco_4.png (PNG copy)> <./images/bco_5.png (PNG copy)> <./images/b co_2.png (PNG copy)> <./images/bco_3.png (PNG copy)>] [17 <./images/bco_1.png ( PNG copy)> <./images/bco_6.png (PNG copy)>] (./brillouin_zones.aux) ) Here is how much of TeX's memory you used: 2005 strings out of 495048 28338 string characters out of 3181554 78972 words of memory out of 3000000 5140 multiletter control sequences out of 15000+200000 13962 words of font info for 54 fonts, out of 3000000 for 9000 14 hyphenation exceptions out of 8191 37i,7n,24p,247b,192s stack positions out of 5000i,500n,10000p,200000b,50000s Output written on brillouin_zones.pdf (17 pages, 1022408 bytes). PDF statistics: 149 PDF objects out of 1000 (max. 8388607) 78 compressed objects within 1 object stream 0 named destinations out of 1000 (max. 500000) 191 words of extra memory for PDF output out of 10000 (max. 10000000) espresso-5.1/Doc/user_guide.tex0000644000175000017500000022307312341373034014673 0ustar mbamba\documentclass[12pt,a4paper]{article} \def\version{5.1} \def\qe{{\sc Quantum ESPRESSO}} \usepackage{html} % BEWARE: don't revert from graphicx for epsfig, because latex2html % doesn't handle epsfig commands !!! \usepackage{graphicx} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm \def\pwx{\texttt{pw.x}} \def\cpx{\texttt{cp.x}} \def\phx{\texttt{ph.x}} \def\nebx{\texttt{neb.x}} \def\configure{\texttt{configure}} \def\PWscf{\texttt{PWscf}} \def\PHonon{\texttt{PHonon}} \def\CP{\texttt{CP}} \def\PostProc{\texttt{PostProc}} \def\NEB{\texttt{PWneb}} % to be decided \def\make{\texttt{make}} \begin{document} \author{} \date{} \def\qeImage{quantum_espresso.pdf} \def\democritosImage{democritos.pdf} \begin{htmlonly} \def\qeImage{quantum_espresso.png} \def\democritosImage{democritos.png} \end{htmlonly} \title{ \includegraphics[width=5cm]{\qeImage} \hskip 2cm \includegraphics[width=6cm]{\democritosImage}\\ \vskip 1cm % title \Huge User's Guide for \qe\ \smallskip \Large (version \version) } %\endhtmlonly %\latexonly %\title{ % \epsfig{figure=quantum_espresso.png,width=5cm}\hskip 2cm % \epsfig{figure=democritos.png,width=6cm}\vskip 1cm % % title % \Huge User's Guide for \qe \smallskip % \Large (version \version) %} %\endlatexonly \maketitle \tableofcontents \section{Introduction} This guide gives a general overview of the contents and of the installation of \qe\ (opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization), version \version. The \qe\ distribution contains the core packages \PWscf\ (Plane-Wave Self-Consistent Field) and \CP\ (Car-Parrinello) for the calculation of electronic-structure properties within Density-Functional Theory (DFT), using a Plane-Wave (PW) basis set and pseudopotentials. It also includes other packages for more specialized calculations: \begin{itemize} \item \NEB: energy barriers and reaction pathways through the Nudged Elastic Band (NEB) method. \item \PHonon: vibrational properties with Density-Functional Perturbation Theory. \item \PostProc: codes and utilities for data postprocessing. \item \texttt{PWcond}: ballistic conductance. \item \texttt{XSPECTRA}: K-edge X-ray adsorption spectra. \item \texttt{TD-DFPT}: spectra from Time-Dependent Density-Functional Perturbation Theory. \end{itemize} The following auxiliary packages are included as well: \begin{itemize} \item \texttt{PWgui}: a Graphical User Interface, producing input data files for \PWscf\ and some \PostProc\ codes. \item \texttt{atomic}: atomic calculations and pseudopotential generation. \item \texttt{QHA}: utilities for the calculation of projected density of states (PDOS) and of the free energy in the Quasi-Harmonic Approximation (to be used in conjunction with \PHonon). \item \texttt{PlotPhon}: phonon dispersion plotting utility (to be used in conjunction with \PHonon). \end{itemize} A copy of required external libraries is also included. Finally, several additional packages that exploit data produced by \qe\ or patch some \qe\ routines can be installed as {\em plug-ins}: \begin{itemize} \item \texttt{Wannier90}: maximally localized Wannier functions. \item \texttt{WanT}: quantum transport properties with Wannier functions. \item \texttt{YAMBO}: electronic excitations within Many-Body Perturbation Theory: GW and Bethe-Salpeter equation. \item \texttt{PLUMED}: calculation of free-energy surface through metadynamics. \item \texttt{GIPAW} (Gauge-Independent Projector Augmented Waves): NMR chemical shifts and EPR g-tensor. \item \texttt{GWL}: electronic excitations within GW Approximation. \end{itemize} Documentation on single packages can be found in the \texttt{Doc/} or \texttt{doc/} directory of each package. A detailed description of input data is available for most packages in files \texttt{INPUT\_*.txt} and \texttt{INPUT\_*.html}. The \qe\ codes work on many different types of Unix machines, including parallel machines using both OpenMP and MPI (Message Passing Interface) and GPU-accelerated machines. \qe\ also runs on Mac OS X and MS-Windows machines: see section \ref{Sec:Installation}. A GPU-enabled version of most important codes is available on GitHub: \texttt{https://github.com/fspiga/QE-GPU}. Further documentation, beyond what is provided in this guide, can be found in: \begin{itemize} \item the \texttt{Doc/} directory of the \qe\ distribution; \item the \qe\ web site \texttt{www.quantum-espresso.org}; \item the archives of the mailing list: See section \ref{SubSec:Contacts}, ``Contacts'', for more info. \end{itemize} People who want to contribute to \qe\ should read the Developer Manual: \texttt{Doc/developer\_man.pdf}. This guide does not explain the basic Unix concepts (shell, execution path, directories etc.) and utilities needed to run \qe; it does not explain either solid state physics and its computational methods. If you want to learn the latter, you should first read a good textbook, such as e.g. the book by Richard Martin: {\em Electronic Structure: Basic Theory and Practical Methods}, Cambridge University Press (2004); or: {\em Density functional theory: a practical introduction}, D. S. Sholl, J. A. Steckel (Wiley, 2009); or {\em Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods}, J. Kohanoff (Cambridge University Press, 2006). Then you should consult the documentation of the package you want to use for more specific references. All trademarks mentioned in this guide belong to their respective owners. \subsection{People} The maintenance and further development of the \qe\ distribution is promoted by the DEMOCRITOS National Simulation Center of IOM-CNR under the coordination of Paolo Giannozzi (Univ.Udine, Italy) and Layla Martin-Samos (Univ.Nova Gorica) with the strong support of the CINECA National Supercomputing Center in Bologna under the responsibility of Carlo Cavazzoni. Main contributors to \qe, in addition to the authors of the paper mentioned in Sect.\ref{SubSec:Terms}, are acknowledged in the documentation of each package. An alphabetic list of further contributors who answered questions on the mailing list, found bugs, helped in porting to new architectures, wrote some code, contributed in some way or another at some stage, follows: \begin{quote} {\AA}ke Sandgren, Audrius Alkauskas, Alain Allouche, Francesco Antoniella, Uli Aschauer, Francesca Baletto, Gerardo Ballabio, Mauro Boero, Pietro Bonf\`a, Claudia Bungaro, Paolo Cazzato, Gabriele Cipriani, Ismaila Dabo, Jiayu Dai, Cesar Da Silva, Alberto Debernardi, Gernot Deinzer, Marco Govoni, Thomas Gruber, Martin Hilgeman, Yosuke Kanai, Konstantin Kudin, Nicolas Lacorne, Stephane Lefranc, Sergey Lisenkov, Kurt Maeder, Andrea Marini, Giuseppe Mattioli, Nicolas Mounet, William Parker, Pasquale Pavone, Mickael Profeta, Guido Roma, Kurt Stokbro, David Strubbe, Sylvie Stucki, Paul Tangney, Pascal Thibaudeau, Antonio Tilocca, Jaro Tobik, Malgorzata Wierzbowska, Vittorio Zecca, Silviu Zilberman, Federico Zipoli, \end{quote} and let us apologize to everybody we have forgotten. \subsection{Contacts} \label{SubSec:Contacts} The web site for \qe\ is \texttt{http://www.quantum-espresso.org/}. Releases and patches can be downloaded from this site or following the links contained in it. The main entry point for developers is the QE-forge web site: \texttt{http://qe-forge.org/}, and in particular the page dedicated to the \qe\ project: \texttt{qe-forge.org/gf/project/q-e/}. The recommended place where to ask questions about installation and usage of \qe, and to report problems, is the \texttt{pw\_forum} mailing list: \texttt{pw\_forum@pwscf.org}. Here you can obtain help from the developers and from knowledgeable users. You have to be subscribed (see ``Contacts'' section of the web site) in order to post to the \texttt{pw\_forum} list. Please read the guidelines for posting, section \ref{SubSec:Guidelines}! NOTA BENE: only messages that appear to come from the registered user's e-mail address, in its {\em exact form}, will be accepted. Messages "waiting for moderator approval" are automatically deleted with no further processing (sorry, too much spam). In case of trouble, carefully check that your return e-mail is the correct one (i.e. the one you used to subscribe). Since \texttt{pw\_forum} has a sizable traffic, an alternative low-traffic list, \texttt{pw\_users@pwscf.org}, is provided for those interested only in \qe-related news, such as e.g. announcements of new versions, tutorials, etc.. You can subscribe (but not post) to this list from the web site, ``Contacts'' section. If you need to contact the developers for {\em specific} questions about coding, proposals, offers of help, etc., please send a message to the developers' mailing list: \texttt{q-e-developers@qe-forge.org}. Do not post general questions: they will be ignored. \subsection{Guidelines for posting to the mailing list} \label{SubSec:Guidelines} Life for subscribers of \texttt{pw\_forum} will be easier if everybody complies with the following guidelines: \begin{itemize} \item Before posting, {\em please}: browse or search the archives -- links are available in the ``Contacts'' section of the web site. Most questions are asked over and over again. Also: make an attempt to search the available documentation, notably the FAQs and the User Guide(s). The answer to most questions is already there. \item Reply to both the mailing list and the author or the post, using ``Reply to all'' (not ``Reply'': the Reply-To: field no longer points to the mailing list). \item Sign your post with your name and affiliation. \item Choose a meaningful subject. Do not use "reply" to start a new thread: it will confuse the ordering of messages into threads that most mailers can do. In particular, do not use "reply" to a Digest!!! \item Be short: no need to send 128 copies of the same error message just because you this is what came out of your 128-processor run. No need to send the entire compilation log for a single error appearing at the end. \item Avoid excessive or irrelevant quoting of previous messages. Your message must be immediately visible and easily readable, not hidden into a sea of quoted text. \item Remember that even experts cannot guess where a problem lies in the absence of sufficient information. One piece of information that must {\em always} be provided is the version number of \qe. \item Remember that the mailing list is a voluntary endeavor: nobody is entitled to an answer, even less to an immediate answer. \item Finally, please note that the mailing list is not a replacement for your own work, nor is it a replacement for your thesis director's work. \end{itemize} \subsection{Terms of use} \label{SubSec:Terms} \qe\ is free software, released under the GNU General Public License. See \texttt{http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt}, or the file License in the distribution). We shall greatly appreciate if scientific work done using \qe\ distribution will contain an explicit acknowledgment and the following reference: \begin{quote} P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009), http://arxiv.org/abs/0906.2569 \end{quote} Note the form \qe\ for textual citations of the code. Please also see package-specific documentation for further recommended citations. Pseudopotentials should be cited as (for instance) \begin{quote} [ ] We used the pseudopotentials C.pbe-rrjkus.UPF and O.pbe-vbc.UPF from\\ \texttt{http://www.quantum-espresso.org}. \end{quote} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Installation} For machines with GPU acceleration, see the page \texttt{qe-forge.org/gf/project/q-e-gpu/} and the file \texttt{README.GPU} in the GPU-enabled distribution for more specific information. \subsection{Download} \label{SubSec:Download} Presently, \qe\ is distributed in source form; some precompiled executables (binary files) are provided for \texttt{PWgui}. Packages for the Debian Linux distribution are however made available by \texttt{debichem} developers. Stable releases of the \qe\ source package (current version is \version) can be downloaded from the Download section of \texttt{www.quantum-espresso.org}. If you plan to run on GPU machines, download the GPU-enabled version, also reachable from the same link. Uncompress and unpack the base distribution using the command: \begin{verbatim} tar zxvf espresso-X.Y.Z.tar.gz \end{verbatim} (a hyphen before "zxvf" is optional) where \texttt{X.Y.Z} stands for the version number. If your version of \texttt{tar} doesn't recognize the "z" flag: \begin{verbatim} gunzip -c espresso-X.Y.Z.tar.gz | tar xvf - \end{verbatim} A directory \texttt{espresso-X.Y.Z/} will be created. Additional packages that are not included in the base distribution will be downloaded on demand at compile time, using \texttt{make} (see Sec.\ref{SubSec:Compilation}). Note however that this will work only if the computer you are installing on is directly connected to the internet and has either \texttt{wget} or \texttt{curl} installed and working. If you run into trouble, manually download each required package into subdirectory \texttt{archive/}, {\em not unpacking or uncompressing it}: command \texttt{make} will take care of this during installation. Package \texttt{GWL} needs a manual download and installation: please follow the instructions given at \texttt{gww.qe-forge.org}. % Occasionally, patches for the current version, fixing some errors and bugs, % may be distributed as a "diff" file. In order to install a patch (for % instance): % \begin{verbatim} % cd espresso-X.Y.Z/ % patch -p1 < /path/to/the/diff/file/patch-file.diff % \end{verbatim} %If more than one patch is present, they should be applied in the correct order. % Daily snapshots of the development version can be downloaded from the %developers' site \texttt{qe-forge.org}: follow the link ''Quantum ESPRESSO'', %then ''SCM''. The bravest may access the development version via anonymous access to the Subversion (SVN) repository: \texttt{qe-forge.org/gf/project/q-e/scmsvn}, link ''Access Info'' on the left. See also the Developer Manual (\texttt{Doc/developer\_man.pdf}), section ''Using SVN''. Beware: the development version is, well, under development: use at your own risk! The \qe\ distribution contains several directories. Some of them are common to all packages: \begin{tabular}{ll} \texttt{Modules/} & source files for modules that are common to all programs\\ \texttt{include/} & files *.h included by fortran and C source files\\ \texttt{clib/} & external libraries written in C\\ \texttt{flib/} & external libraries written in Fortran\\ \texttt{install/} & installation scripts and utilities\\ \texttt{pseudo}/ & pseudopotential files used by examples\\ \texttt{upftools/}& converters to unified pseudopotential format (UPF)\\ \texttt{Doc/} & general documentation\\ \texttt{archive/} & contains plug-ins in .tar.gz form\\ \end{tabular} \\ while others are specific to a single package: \begin{tabular}{ll} \texttt{PW/} & \PWscf\ package\\ \texttt{NEB/} & \NEB\ package\\ \texttt{PP/} & \PostProc\ package\\ \texttt{PHonon/} & \PHonon\ package\\ \texttt{PWCOND/} & \texttt{PWcond}\ package\\ \texttt{CPV/} & \CP\ package\\ \texttt{atomic/} & \texttt{atomic} package\\ \texttt{GUI/} & \texttt{PWGui} package\ \end{tabular} Finally, directory \texttt{COUPLE/} contains code and documentation that is useful to call \qe\ programs from external codes. \subsection{Prerequisites} \label{Sec:Installation} To install \qe\ from source, you need first of all a minimal Unix environment: basically, a command shell (e.g., bash or tcsh) and the utilities \make, \texttt{awk}, \texttt{sed}. MS-Windows users need to have Cygwin (a UNIX environment which runs under Windows) installed: see \texttt{http://www.cygwin.com/}. Note that the scripts contained in the distribution assume that the local language is set to the standard, i.e. "C"; other settings may break them. Use \texttt{export LC\_ALL=C} (sh/bash) or \texttt{setenv LC\_ALL C} (csh/tcsh) to prevent any problem when running scripts (including installation scripts). Second, you need C and Fortran-95 compilers. For parallel execution, you will also need MPI libraries and a parallel (i.e. MPI-aware) compiler. For massively parallel machines, or for simple multicore parallelization, an OpenMP-aware compiler and libraries are also required. Big machines with specialized hardware (e.g. IBM SP, CRAY, etc) typically have a Fortran-95 compiler with MPI and OpenMP libraries bundled with the software. Workstations or ``commodity'' machines, using PC hardware, may or may not have the needed software. If not, you need either to buy a commercial product (e.g Portland) or to install an open-source compiler like gfortran or g95. Note that several commercial compilers are available free of charge under some license for academic or personal usage (e.g. Intel, Sun). \subsection{\configure} To install the \qe\ source package, run the \configure\ script. This is actually a wrapper to the true \configure, located in the \texttt{install/} subdirectory. \configure\ will (try to) detect compilers and libraries available on your machine, and set up things accordingly. Presently it is expected to work on most Linux 32- and 64-bit PCs (all Intel and AMD CPUs) and PC clusters, SGI Altix, IBM SP and BlueGene machines, NEC SX, Cray XT machines, Mac OS X, MS-Windows PCs, and (for experts!) on several GPU-accelerated hardware. Detailed installation instructions for some specific HPC machines can be found in files \texttt{install/README.}{\em sys}, where {\em sys} is the machine name. Instructions for the impatient: \begin{verbatim} cd espresso-X.Y.Z/ ./configure make all \end{verbatim} Symlinks to executable programs will be placed in the \texttt{bin/} subdirectory. Note that both C and Fortran compilers must be in your execution path, as specified in the PATH environment variable. Additional instructions for special machines: \begin{tabular}{ll} \texttt{./configure ARCH=crayxt4}& for CRAY XT machines \\ \texttt{./configure ARCH=necsx} & for NEC SX machines \\ \texttt{./configure ARCH=ppc64-mn}& PowerPC Linux + xlf (Marenostrum) \\ \texttt{./configure ARCH=ppc64-bg}& IBM BG/P (BlueGene) \end{tabular} \noindent \configure\ generates the following files: \begin{tabular}{ll} \texttt{make.sys} & compilation rules and flags (used by \texttt{Makefile})\\ \texttt{install/configure.msg} & a report of the configuration run (not needed for compilation)\\ \texttt{install/config.log} & detailed log of the configuration run (may be needed for debugging)\\ \texttt{include/fft\_defs.h} & defines fortran variable for C pointer (used only by FFTW)\\ \texttt{include/c\_defs.h} & defines C to fortran calling convention\\ & and a few more definitions used by C files\\ \end{tabular}\\ NOTA BENE: unlike previous versions, \configure\ no longer runs the \texttt{makedeps.sh} shell script that updates dependencies. If you modify the sources, run \texttt{./install/makedeps.sh} or type \texttt{make depend} to update files \texttt{make.depend} in the various subdirectories. You should always be able to compile the \qe\ suite of programs without having to edit any of the generated files. However you may have to tune \configure\ by specifying appropriate environment variables and/or command-line options. Usually the tricky part is to get external libraries recognized and used: see Sec.\ref{Sec:Libraries} for details and hints. Environment variables may be set in any of these ways: \begin{verbatim} export VARIABLE=value; ./configure # sh, bash, ksh setenv VARIABLE value; ./configure # csh, tcsh ./configure VARIABLE=value # any shell \end{verbatim} Some environment variables that are relevant to \configure\ are: \begin{tabular}{ll} \texttt{ARCH}& label identifying the machine type (see below)\\ \texttt{F90, F77, CC} &names of Fortran 95, Fortran 77, and C compilers\\ \texttt{MPIF90} & name of parallel Fortran 95 compiler (using MPI)\\ \texttt{CPP} & source file preprocessor (defaults to \$CC -E)\\ \texttt{LD} & linker (defaults to \$MPIF90)\\ \texttt{(C,F,F90,CPP,LD)FLAGS}& compilation/preprocessor/loader flags\\ \texttt{LIBDIRS}& extra directories where to search for libraries\\ \end{tabular}\\ For example, the following command line: \begin{verbatim} ./configure MPIF90=mpf90 FFLAGS="-O2 -assume byterecl" \ CC=gcc CFLAGS=-O3 LDFLAGS=-static \end{verbatim} instructs \configure\ to use \texttt{mpf90} as Fortran 95 compiler with flags \texttt{-O2 -assume byterecl}, \texttt{gcc} as C compiler with flags \texttt{-O3}, and to link with flag \texttt{-static}. Note that the value of \texttt{FFLAGS} must be quoted, because it contains spaces. NOTA BENE: do not pass compiler names with the leading path included. \texttt{F90=f90xyz} is ok, \texttt{F90=/path/to/f90xyz} is not. Do not use environmental variables with \configure\ unless they are needed! try \configure\ with no options as a first step. If your machine type is unknown to \configure, you may use the \texttt{ARCH} variable to suggest an architecture among supported ones. Some large parallel machines using a front-end (e.g. Cray XT) will actually need it, or else \configure\ will correctly recognize the front-end but not the specialized compilation environment of those machines. In some cases, cross-compilation requires to specify the target machine with the \texttt{--host} option. This feature has not been extensively tested, but we had at least one successful report (compilation for NEC SX6 on a PC). Currently supported architectures are: \begin{tabular}{ll} \texttt{ia32}& Intel 32-bit machines (x86) running Linux\\ \texttt{ia64}& Intel 64-bit (Itanium) running Linux\\ \texttt{x86\_64}& Intel and AMD 64-bit running Linux - see note below\\ \texttt{aix}& IBM AIX machines\\ \texttt{solaris}& PC's running SUN-Solaris\\ \texttt{sparc}& Sun SPARC machines\\ \texttt{crayxt4}& Cray XT4/XT5/XE machines\\ \texttt{mac686}& Apple Intel machines running Mac OS X\\ \texttt{cygwin}& MS-Windows PCs with Cygwin\\ \texttt{mingw32}& Cross-compilation for MS-Windows, using mingw, 32 bits\\ \texttt{mingw64}& As above, 64 bits\\ \texttt{necsx}& NEC SX-6 and SX-8 machines\\ \texttt{ppc64}& Linux PowerPC machines, 64 bits\\ \texttt{ppc64-mn}&as above, with IBM xlf compiler\\ \texttt{ppc64-bg}&IBM BlueGene\\ \texttt{arm} &ARM machines (with gfortran) \end{tabular}\\ {\em Note}: \texttt{x86\_64} replaces \texttt{amd64} since v.4.1. Cray Unicos machines, SGI machines with MIPS architecture, HP-Compaq Alphas are no longer supported since v.4.2; PowerPC Macs are no longer supported since v.5.0. Finally, \configure\ recognizes the following command-line options:\\ \begin{tabular}{ll} \texttt{--enable-parallel}& compile for parallel (MPI) execution if possible (default: yes)\\ \texttt{--enable-openmp}& compile for OpenMP execution if possible (default: no)\\ \texttt{--enable-shared}& use shared libraries if available (default: yes;\\ & "no" is implemented, untested, in only a few cases)\\ \texttt{--enable-debug}& compile with debug flags (only for selected cases; default: no)\\ \texttt{--disable-wrappers}& disable C to fortran wrapper check (default: enabled)\\ \texttt{--enable-signals}& enable signal trapping (default: disabled)\\ \end{tabular}\\ and the following optional packages:\\ \begin{tabular}{ll} \texttt{--with-internal-blas}& compile with internal BLAS (default: no)\\ \texttt{--with-internal-lapack}& compile with internal LAPACK (default: no)\\ \texttt{--with-scalapack=no}& do not use ScaLAPACK (default: yes)\\ \texttt{--with-scalapack=intel}& use ScaLAPACK for Intel MPI (default:OpenMPI)\\ \end{tabular}\\ If you want to modify the \configure\ script (advanced users only!), see the Developer Manual. \subsubsection{Manual configuration} \label{SubSec:manconf} If \configure\ stops before the end, and you don't find a way to fix it, you have to write working \texttt{make.sys}, \texttt{include/fft\_defs.h} and \texttt{include/c\_defs.h} files. For the latter two files, follow the explanations in \texttt{include/defs.h.README}. If \configure\ has run till the end, you should need only to edit \texttt{make.sys}. A few sample \texttt{make.sys} files are provided in \texttt{install/Make.}{\em system}. The template used by \configure\ is also found there as \texttt{install/make.sys.in} and contains explanations of the meaning of the various variables. Note that you may need to select appropriate preprocessing flags in conjunction with the desired or available libraries (e.g. you need to add \texttt{-D\_\_FFTW} to \texttt{DFLAGS} if you want to link internal FFTW). For a correct choice of preprocessing flags, refer to the documentation in \texttt{include/defs.h.README}. NOTA BENE: If you change any settings (e.g. preprocessing, compilation flags) after a previous (successful or failed) compilation, you must run \texttt{make clean} before recompiling, unless you know exactly which routines are affected by the changed settings and how to force their recompilation. \subsection{Libraries} \label{Sec:Libraries} \qe\ makes use of the following external libraries: \begin{itemize} \item BLAS (\texttt{http://www.netlib.org/blas/}) and \item LAPACK (\texttt{http://www.netlib.org/lapack/}) for linear algebra \item FFTW (\texttt{http://www.fftw.org/}) for Fast Fourier Transforms \end{itemize} A copy of the needed routines is provided with the distribution. However, when available, optimized vendor-specific libraries should be used: this often yields huge performance gains. \paragraph{BLAS and LAPACK} \qe\ can use the following architecture-specific replacements for BLAS and LAPACK:\\ \begin{quote} MKL for Intel Linux PCs\\ ACML for AMD Linux PCs\\ ESSL for IBM machines\\ SCSL for SGI Altix\\ SUNperf for Sun \end{quote} If none of these is available, we suggest that you use the optimized ATLAS library: see \\ \texttt{http://math-atlas.sourceforge.net/}. Note that ATLAS is not a complete replacement for LAPACK: it contains all of the BLAS, plus the LU code, plus the full storage Cholesky code. Follow the instructions in the ATLAS distributions to produce a full LAPACK replacement. Sergei Lisenkov reported success and good performances with optimized BLAS by Kazushige Goto. The library is now available under an open-source license: see the GotoBLAS2 page at \\ \texttt{http://www.tacc.utexas.edu/tacc-software/gotoblas2/}. \paragraph{FFT} \qe\ has an internal copy of an old FFTW version, and it can use the following vendor-specific FFT libraries: \begin{quote} IBM ESSL\\ SGI SCSL\\ SUN sunperf\\ NEC ASL \end{quote} \configure\ will first search for vendor-specific FFT libraries; if none is found, it will search for an external FFTW v.3 library; if none is found, it will fall back to the internal copy of FFTW. If you have recent versions (v.10 or later) of MKL installed, you may use the FFTW3 interface provided with MKL. This can be directly linked in MKL distributed with v.12 of the Intel compiler. In earlier versions, only sources are distributed: you have to compile them and to modify file \texttt{make.sys} accordingly (MKL must be linked {\em after} the FFTW-MKL interface). \paragraph{MPI libraries} MPI libraries are usually needed for parallel execution (unless you are happy with OpenMP multicore parallelization). In well-configured machines, \configure\ should find the appropriate parallel compiler for you, and this should find the appropriate libraries. Since often this doesn't happen, especially on PC clusters, see Sec.\ref{SubSec:LinuxPCMPI}. \paragraph{Other libraries} \qe\ can use the MASS vector math library from IBM, if available (only on AIX). \paragraph{If optimized libraries are not found} The \configure\ script attempts to find optimized libraries, but may fail if they have been installed in non-standard places. You should examine the final value of \texttt{BLAS\_LIBS, LAPACK\_LIBS, FFT\_LIBS, MPI\_LIBS} (if needed), \texttt{MASS\_LIBS} (IBM only), either in the output of \configure\ or in the generated \texttt{make.sys}, to check whether it found all the libraries that you intend to use. If some library was not found, you can specify a list of directories to search in the environment variable \texttt{LIBDIRS}, and rerun \configure; directories in the list must be separated by spaces. For example: \begin{verbatim} ./configure LIBDIRS="/opt/intel/mkl70/lib/32 /usr/lib/math" \end{verbatim} If this still fails, you may set some or all of the \texttt{*\_LIBS} variables manually and retry. For example: \begin{verbatim} ./configure BLAS_LIBS="-L/usr/lib/math -lf77blas -latlas_sse" \end{verbatim} Beware that in this case, \configure\ will blindly accept the specified value, and won't do any extra search. \subsection{Compilation} \label{SubSec:Compilation} There are a few adjustable parameters in \texttt{Modules/parameters.f90}. The present values will work for most cases. All other variables are dynamically allocated: you do not need to recompile your code for a different system. At your choice, you may compile the complete \qe\ suite of programs (with \texttt{make all}), or only some specific programs. \texttt{make} with no arguments yields a list of valid compilation targets: \begin{itemize} \item \texttt{make pw} compiles the self-consistent-field package \PWscf \item \texttt{make cp} compiles the Car-Parrinello package \CP \item \texttt{make neb} downloads \NEB\ package from \texttt{qe-forge} unpacks it and compiles it. All executables are linked in main \texttt{bin} directory \item \texttt{make ph} downloads \PHonon\ package from \texttt{qe-forge} unpacks it and compiles it. All executables are linked in main \texttt{bin} directory \item \texttt{make pp} compiles the postprocessing package \PostProc \item \texttt{make pwcond} downloads the balistic conductance package \texttt{PWcond} from \texttt{qe-forge} unpacks it and compiles it. All executables are linked in main \texttt{bin} directory \item \texttt{make pwall} produces all of the above. \item \texttt{make ld1} downloads the pseudopotential generator package \texttt{atomic} from \texttt{qe-forge} unpacks it and compiles it. All executables are linked in main \texttt{bin} directory \item \texttt{make xspectra} downloads the package \texttt{XSpectra} from \texttt{qe-forge} unpacks it and compiles it. All executables are linked in main \texttt{bin} directory \item \texttt{make upf} produces utilities for pseudopotential conversion in directory \texttt{upftools/} \item \texttt{make all} produces all of the above \item \texttt{make plumed} unpacks \texttt{PLUMED}, patches several routines in \texttt{PW/}, \texttt{CPV/} and \texttt{clib/}, recompiles \PWscf\ and \CP\ with \texttt{PLUMED} support \item \texttt{make w90} downloads \texttt{wannier90}, unpacks it, copies an appropriate \texttt{make.sys} file, produces all executables in \texttt{W90/wannier90.x} and in \texttt{bin/} \item \texttt{make want} downloads \texttt{WanT} from \texttt{qe-forge}, unpacks it, runs its \configure, produces all executables for \texttt{WanT} in \texttt{WANT/bin}. \item \texttt{make yambo} downloads \texttt{yambo} from \texttt{qe-forge}, unpacks it, runs its \configure, produces all \texttt{yambo} executables in \texttt{YAMBO/bin} \item \texttt{make gipaw} downloads \texttt{GIPAW} from \texttt{qe-forge}, unpacks it, runs its \configure, produces all \texttt{GIPAW} executables in \texttt{GIPAW/bin} and in main \texttt{bin} directory. \end{itemize} For the setup of the GUI, refer to the \texttt{PWgui-X.Y.Z /INSTALL} file, where X.Y.Z stands for the version number of the GUI (should be the same as the general version number). If you are using the SVN sources, see the \texttt{GUI/README} file instead. If \texttt{make} refuses for some reason to download additional packages, manually download them into subdirectory \texttt{archive/}, {\em not unpacking or or uncompressing them}, and try \texttt{make} again. Also see Sec.(\ref{SubSec:Download}). \subsection{Running tests and examples} \label{SubSec:Examples} % You should first of all ensure that you have downloaded % and correctly unpacked the package containing examples (since v.4.1 in a % separate package): % \begin{verbatim} % tar -zxvf /path/to/package/espresso-X.Y.Z-examples.tar.gz % \end{verbatim} % will unpack several subdirectories into \texttt{espresso-X.Y.Z/}. As a final check that compilation was successful, you may want to run some or all of the examples. There are two different types of examples: \begin{itemize} \item automated tests. Quick and exhaustive, but not meant to be realistic, implemented only for \PWscf\ and \CP. \item examples. Cover many more programs and features of the \qe\ distribution, but they require manual inspection of the results. \end{itemize} Instructions for the impatient: \begin{verbatim} cd PW/tests/ ./check_pw.x.j \end{verbatim} for \PWscf; \texttt{PW/tests/README} contains a list of what is tested. For \CP: \begin{verbatim} cd CPV/tests/ ./check_cp.x.j \end{verbatim} Instructions for all others: edit file \texttt{environment\_variables}, setting the following variables as needed. \begin{quote} BIN\_DIR: directory where executables reside\\ PSEUDO\_DIR: directory where pseudopotential files reside\\ TMP\_DIR: directory to be used as temporary storage area \end{quote} The default values of BIN\_DIR and PSEUDO\_DIR should be fine, unless you have installed things in nonstandard places. TMP\_DIR must be a directory where you have read and write access to, with enough available space to host the temporary files produced by the example runs, and possibly offering high I/O performance (i.e., don't use an NFS-mounted directory). NOTA BENE: do not use a directory containing other data: the examples will clean it! If you have compiled the parallel version of \qe\ (this is the default if parallel libraries are detected), you will usually have to specify a launcher program (such as \texttt{mpirun} or \texttt{mpiexec}) and the number of processors: see Sec.\ref{Sec:para} for details. In order to do that, edit again the \texttt{environment\_variables} file and set the PARA\_PREFIX and PARA\_POSTFIX variables as needed. Parallel executables will be run by a command like this: \begin{verbatim} $PARA_PREFIX pw.x $PARA_POSTFIX -i file.in > file.out \end{verbatim} For example, if the command line is like this (as for an IBM SP): \begin{verbatim} poe pw.x -procs 4 -i file.in > file.out \end{verbatim} you should set PARA\_PREFIX="poe", PARA\_POSTFIX="-procs 4". Furthermore, if your machine does not support interactive use, you must run the commands specified above through the batch queuing system installed on that machine. Ask your system administrator for instructions. For execution using OpenMP on N threads, you should set PARA\_PREFIX to \texttt{"env OMP\_NUM\_THREADS=N ... "}. Notice that most tests and examples are devised to be run serially or on a small number of processors; do not use tests and examples to benchmark parallelism, do not try to run on too many processors. To run an example, go to the corresponding directory (e.g. \texttt{PW/examples/example01}) and execute: \begin{verbatim} ./run_example \end{verbatim} This will create a subdirectory \texttt{results/}, containing the input and output files generated by the calculation. Some examples take only a few seconds to run, while others may require several minutes depending on your system. In each example's directory, the \texttt{reference/} subdirectory contains verified output files, that you can check your results against. They were generated on a Linux PC using the Intel compiler. On different architectures the precise numbers could be slightly different, in particular if different FFT dimensions are automatically selected. For this reason, a plain diff of your results against the reference data doesn't work, or at least, it requires human inspection of the results. The example scripts stop if an error is detected. You should look {\em inside} the last written output file to understand why. \subsection{Installation tricks and problems} \subsubsection{All architectures} \begin{itemize} \item Working Fortran-95 and C compilers are needed in order to compile \qe. Most ``Fortran-90'' compilers actually implement the Fortran-95 standard, but older versions may not be Fortran-95 compliant. Moreover, C and Fortran compilers must be in your PATH. If \configure\ says that you have no working compiler, well, you have no working compiler, at least not in your PATH, and not among those recognized by \configure. \item If you get {\em Compiler Internal Error} or similar messages: your compiler version is buggy. Try to lower the optimization level, or to remove optimization just for the routine that has problems. If it doesn't work, or if you experience weird problems at run time, try to install patches for your version of the compiler (most vendors release at least a few patches for free), or to upgrade to a more recent compiler version. \item If you get error messages at the loading phase that look like {\em file XYZ.o: unknown / not recognized/ invalid / wrong file type / file format / module version}, one of the following things have happened: \begin{enumerate} \item you have leftover object files from a compilation with another compiler: run \texttt{make clean} and recompile. \item \make\ did not stop at the first compilation error (it may happen in some software configurations). Remove the file *.o that triggers the error message, recompile, look for a compilation error. \end{enumerate} If many symbols are missing in the loading phase: you did not specify the location of all needed libraries (LAPACK, BLAS, FFTW, machine-specific optimized libraries), in the needed order. If only symbols from \texttt{clib/} are missing, verify that you have the correct C-to-Fortran bindings, defined in \texttt{include/c\_defs.h}. Note that \qe\ is self-contained (with the exception of MPI libraries for parallel compilation): if system libraries are missing, the problem is in your compiler/library combination or in their usage, not in \qe. \item If you get an error like {\em Can't open module file global\_version.mod}: your machine doesn't like the script that produces file \texttt{version.f90} with the correct version and revision. Quick solution: copy \texttt{Modules/version.f90.in} to \texttt{Modules/version.f90}. \item If you get mysterious errors ("Segmentation faults" and the like) in the provided tests and examples: your compiler, or your mathematical libraries, or MPI libraries, or a combination thereof, is very likely buggy, or there is some form of incompatibility (see below). Although the presence of subtle bugs in \qe\ that are not revealed during the testing phase can never be ruled out, it is very unlikely that this happens on the provided tests and examples. \end{itemize} \subsubsection{Cray XE and XT machines} For Cray XE machines: \begin{verbatim} $ module swap PrgEnv-cray PrgEnv-pgi $ ./configure --enable-openmp --enable-parallel --with-scalapack $ vim make.sys \end{verbatim} then manually add \texttt{-D\_\_IOTK\_WORKAROUND1} at the end of \texttt{DFLAGS} line. ''Now, despite what people can imagine, every CRAY machine deployed can have different environment. For example on the machine I usually use for tests [...] I do have to unload some modules to make QE running properly. On another CRAY [...] there is also Intel compiler as option and the system is slightly different compared to the other. So my recipe should work, 99\% of the cases. I strongly suggest you to use PGI, also for a performance point of view.'' (Info by Filippo Spiga, Sept. 2012) For Cray XT machines, use \texttt{./configure ARCH=crayxt4} or else \configure\ will not recognize the Cray-specific software environment. Older Cray machines: T3D, T3E, X1, are no longer supported. \subsubsection{IBM AIX} v.4.3.1 of the CP code, Wannier-function dynamics, crashes with ``segmentation violation'' on some AIX v.6 machines. Workaround: compile it with \texttt{mpxlf95} instead of \texttt{mpxlf90}. (Info by Roberto Scipioni, June 2011) On IBM machines with ESSL libraries installed, there is a potential conflict between a few LAPACK routines that are also part of ESSL, but with a different calling sequence. The appearance of run-time errors like {\em ON ENTRY TO ZHPEV PARAMETER NUMBER 1 HAD AN ILLEGAL VALUE} is a signal that you are calling the bad routine. If you have defined \texttt{-D\_\_ESSL} you should load ESSL before LAPACK: see variable LAPACK\_LIBS in make.sys. \subsubsection{IBM BlueGene} The current \configure\ is tested and works on the machines at CINECA and at J\"ulich. For other sites, you may need something like \begin{verbatim} ./configure ARCH=ppc64-bg BLAS_LIBS=... LAPACK_LIBS=... \ SCALAPACK_DIR=... BLACS_DIR=..." \end{verbatim} where the various *\_LIBS and *\_DIR "suggest" where the various libraries are located. \subsubsection{Linux PC} Both AMD and Intel CPUs, 32-bit and 64-bit, are supported and work, either in 32-bit emulation and in 64-bit mode. 64-bit executables can address a much larger memory space than 32-bit executable, but there is no gain in speed. Beware: the default integer type for 64-bit machine is typically 32-bit long. You should be able to use 64-bit integers as well, but it is not guaranteed to work and will not give any advantage anyway. Currently the following compilers are supported by \configure: Intel (ifort), Portland (pgf90), gfortran, g95, Pathscale (pathf95), Sun Studio (sunf95), AMD Open64 (openf95). The ordering approximately reflects the quality of support. Both Intel MKL and AMD acml mathematical libraries are supported. Some combinations of compilers and of libraries may however require manual editing of \texttt{make.sys}. It is usually convenient to create semi-statically linked executables (with only libc, libm, libpthread dynamically linked). If you want to produce a binary that runs on different machines, compile it on the oldest machine you have (i.e. the one with the oldest version of the operating system). If you get errors like {\em IPO Error: unresolved : \_\_svml\_cos2} at the linking stage, your compiler is optimized to use the SSE version of sine, cosine etc. contained in the SVML library. Append \texttt{-lsvml} to the list of libraries in your \texttt{make.sys} file (info by Axel Kohlmeyer, oct.2007). \paragraph{Linux PCs with Portland compiler (pgf90)} \qe\ does not work reliably, or not at all, with many old versions ($< 6.1$) of the Portland Group compiler (pgf90). Use the latest version of each release of the compiler, with patches if available (see the Portland Group web site, \texttt{http://www.pgroup.com/}). \paragraph{Linux PCs with Pathscale compiler} Version 3.1 and version 4 (open source!) of the Pathscale EKO compiler work (info by Cezary Sliwa, April 2011, and Carlo Nervi, June 2011). In case of mysterious errors while compiling \texttt{iotk}, remove all lines like: \begin{verbatim} # 1 "iotk_base.spp" \end{verbatim} from all \texttt{iotk} source files. \paragraph{Linux PCs with gfortran} Only recent versions (at least v.4.4) of gfortran properly compile \qe. Older versions often produce nonfunctional phonon executables (segmentation faults and the like); other versions miscompile iotk (the executables work but crash with a mysterious iotk error when reading from data files). "There is a known incompatibility problem between the calling convention for Fortran functions that return complex values: there is the convention used by g77/f2c, where in practice the compiler converts such functions to subroutines with a further parameter for the return value; gfortran instead produces a normal function returning a complex value. If your system libraries were compiled using g77 (which may happen for system-provided libraries in not-too-recent Linux distributions), and you instead use gfortran to compile \qe, your code may crash or produce random results. This typically happens during calls to \texttt{zdotc}, which is one the most commonly used complex-returning functions of BLAS+LAPACK. For further details see for instance this link:\\ \texttt{http://www.macresearch.org/lapackblas-fortran-106\#comment-17071}\\ or read the man page of gfortran under the flag \texttt{-ff2c}. If your code crashes during a call to \texttt{zdotc}, try to recompile \qe\ using the internal BLAS and LAPACK routines (using the \texttt{--with-internal-blas} and \texttt{--with-internal-lapack} parameters of the configure script) to see if the problem disappears; or, add the \texttt{-ff2c} flag" (info by Giovanni Pizzi, Jan. 2013). Note that a similar problem with complex functions exists with MKL libraries as well: if you compile with gfortran, link \texttt{-lmkl\_gf\_lp64}, not \texttt{-lmkl\_intel\_lp64}, and the like for other architectures. Since v.5.1, you may use the following workaround: add preprocessing option \texttt{-Dzdotc=zdotc\_wrapper} to \texttt{DFLAGS}. If you experience problems in reading files produced by previous versions of \qe: ``gfortran used 64-bit record markers to allow writing of records larger than 2 GB. Before with 32-bit record markers only records $<$2GB could be written. However, this caused problems with older files and inter-compiler operability. This was solved in GCC 4.2 by using 32-bit record markers but such that one can still store $>$2GB records (following the implementation of Intel). Thus this issue should be gone. See 4.2 release notes (item ``Fortran") at \texttt{http://gcc.gnu.org/gcc-4.2/changes.html}." (Info by Tobias Burnus, March 2010). ``Using gfortran v.4.4 (after May 27, 2009) and 4.5 (after May 5, 2009) can produce wrong results, unless the environment variable GFORTRAN\_UNBUFFERED\_ALL=1 is set. Newer 4.4/4.5 versions (later than April 2010) should be OK. See\\ \texttt{http://gcc.gnu.org/bugzilla/show\_bug.cgi?id=43551}." (Info by Tobias Burnus, March 2010). \paragraph{Linux PCs with g95} g95 v.0.91 and later versions (\texttt{http://www.g95.org}) work. The executables that produce are however slower (let us say 20\% or so) that those produced by gfortran, which in turn are slower (by another 20\% or so) than those produced by ifort. \paragraph{Linux PCs with Sun Studio compiler} ``The Sun Studio compiler, sunf95, is free (web site: \texttt{http://developers.sun.com/sunstudio/} and comes with a set of algebra libraries that can be used in place of the slow built-in libraries. It also supports OpenMP, which g95 does not. On the other hand, it is a pain to compile MPI with it. Furthermore the most recent version has a terrible bug that totally miscompiles the iotk input/output library (you'll have to compile it with reduced optimization).'' (info by Lorenzo Paulatto, March 2010). \paragraph{Linux PCs with AMD Open64 suite} The AMD Open64 compiler suite, openf95 (web site: \texttt{http://developer.amd.com/cpu/open64/pages/default.aspx}) can be freely downloaded from the AMD site. It is recognized by \configure\ but little tested. It sort of works but it fails to pass several tests (info by Paolo Giannozzi, March 2010). "I have configured for Pathscale, then switched to the Open64 compiler by editing make.sys. "make pw" succeeded and pw.x did process my file, but with "make all" I get an internal compiler error [in CPV/wf.f90]" (info by Cezary Sliwa, April 2011). \paragraph{Linux PCs with Intel compiler (ifort)} The Intel compiler, ifort, is available for free for personal usage (\texttt{http://software.intel.com/}). It produces fast executables, at least on Intel CPUs, but not all versions work as expected. ifort versions $<9.1$ are not recommended, due to the presence of subtle and insidious bugs. In case of trouble, update your version with the most recent patches, available via Intel Premier support (registration free of charge for Linux): \texttt{http://software.intel.com/en-us/articles/intel-software-developer-support}. Since each major release of ifort differs a lot from the previous one, compiled objects from different releases may be incompatible and should not be mixed. If \configure\ doesn't find the compiler, or if you get {\em Error loading shared libraries} at run time, you may have forgotten to execute the script that sets up the correct PATH and library path. Unless your system manager has done this for you, you should execute the appropriate script -- located in the directory containing the compiler executable -- in your initialization files. Consult the documentation provided by Intel. The warning: {\em feupdateenv is not implemented and will always fail}, showing up in recent versions, can be safely ignored. Warnings on "bad preprocessing option" when compiling iotk and complains about ``recommanded formats'' should also be ignored. {\bf ifort v.12}: release 12.0.0 miscompiles iotk, leading to mysterious errors when reading data files. Workaround: increase the parameter BLOCKSIZE to e.g. 131072*1024 when opening files in \texttt{iotk/src/iotk\_files.f90} (info by Lorenzo Paulatto, Nov. 2010). Release 12.0.2 seems to work and to produce faster executables than previous versions on 64-bit CPUs (info by P. Giannozzi, March 2011). {\bf ifort v.11}: Segmentation faults were reported for the combination ifort 11.0.081, MKL 10.1.1.019, OpenMP 1.3.3. The problem disappeared with ifort 11.1.056 and MKL 10.2.2.025 (Carlo Nervi, Oct. 2009). \paragraph{Linux PCs with MKL libraries} On Intel CPUs it is very convenient to use Intel MKL libraries. They can be also used for AMD CPU, selecting the appropriate machine-optimized libraries, and also together with non-Intel compilers. Note however that recent versions of MKL (10.2 and following) do not perform well on AMD machines. \configure\ should recognize properly installed MKL libraries. By default the non-threaded version of MKL is linked, unless option \texttt{configure --with-openmp} is specified. In case of trouble, refer to the following web page to find the correct way to link MKL:\\ \texttt{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}. Recent MKL versions also contain optimized FFT routines and a FFTW interface. For parallel (MPI) execution on multiprocessor (SMP) machines, set the environmental variable OMP\_NUM\_THREADS to 1 unless you know what you are doing. See Sec.\ref{Sec:para} for more info on this and on the difference between MPI and OpenMP parallelization. \paragraph{Linux PCs with ACML libraries} For AMD CPUs, especially recent ones, you may find convenient to link AMD acml libraries (can be freely downloaded from AMD web site). \configure\ should recognize properly installed acml libraries, together with the compilers most frequently used on AMD systems: pgf90, pathscale, openf95, sunf95. \subsubsection{Linux PC clusters with MPI} \label{SubSec:LinuxPCMPI} PC clusters running some version of MPI are a very popular computational platform nowadays. \qe\ is known to work with at least two of the major MPI implementations (MPICH, LAM-MPI), plus with the newer MPICH2 and OpenMPI implementation. \configure\ should automatically recognize a properly installed parallel environment and prepare for parallel compilation. Unfortunately this not always happens. In fact: \begin{itemize} \item \configure\ tries to locate a parallel compiler in a logical place with a logical name, but if it has a strange names or it is located in a strange location, you will have to instruct \configure\ to find it. Note that in many PC clusters (Beowulf), there is no parallel Fortran-95 compiler in default installations: you have to configure an appropriate script, such as mpif90. \item \configure\ tries to locate libraries (both mathematical and parallel libraries) in the usual places with usual names, but if they have strange names or strange locations, you will have to rename/move them, or to instruct \configure\ to find them. If MPI libraries are not found, parallel compilation is disabled. \item \configure\ tests that the compiler and the libraries are compatible (i.e. the compiler may link the libraries without conflicts and without missing symbols). If they aren't and the compilation fails, \configure\ will revert to serial compilation. \end{itemize} Apart from such problems, \qe\ compiles and works on all non-buggy, properly configured hardware and software combinations. In some cases you may have to recompile MPI libraries: not all MPI installations contain support for the fortran-90 compiler of your choice (or for any fortran-90 compiler at all!). If \qe\ does not work for some reason on a PC cluster, try first if it works in serial execution. A frequent problem with parallel execution is that \qe\ does not read from standard input, due to the configuration of MPI libraries: see Sec.\ref{SubSec:badpara}. If you are dissatisfied with the performances in parallel execution, see Sec.\ref{Sec:para} and in particular Sec.\ref{SubSec:badpara}. \subsubsection{Mac OS} Newer Mac OS-X machines (10.4 and later) with Intel CPUs are supported by \configure, with gcc4+g95, gfortran, and the Intel compiler ifort with MKL libraries. Parallel compilation with OpenMPI also works. Mysterious crashes, occurring when \texttt{zdotc} is called, are due to the same incompatibility of complex functions with some optimized BLAS as reported in the "Linux PCs with gfortran" paragraph. Workaround: add preprocessing option \texttt{-Dzdotc=zdotc\_wrapper} to \texttt{DFLAGS}. \paragraph{Detailed installation instructions for Mac OS X 10.6} (Instructions for 10.6.3 by Osman Baris Malcioglu, tested as of May 2010) Summary for the hasty: \begin{itemize} \item GNU fortran: Install macports compilers, Install MPI environment, Configure \qe\ using \begin{verbatim} ./configure CC=gcc-mp-4.3 CPP=cpp-mp-4.3 CXX=g++-mp-4.3 F77=g95 FC=g95 \end{verbatim} \item Intel compiler: Use Version $>11.1.088$, Use 32 bit compilers, Install MPI environment, install macports provided cpp (optional), Configure \qe\ using \begin{verbatim} ./configure CC=icc CXX=icpc F77=ifort F90=ifort FC=ifort CPP=cpp-mp-4.3 \end{verbatim} \end{itemize} \paragraph{Compilation with GNU compilers}. The following instructions use macports version of gnu compilers due to some issues in mixing gnu supplied fortran compilers with apple modified gnu compiler collection. For more information regarding macports please refer to: \texttt{http://www.macports.org/} First install necessary compilers from macports \begin{verbatim} port install gcc43 port install g95 \end{verbatim} The apple supplied MPI environment has to be overridden since there is a new set of compilers now (and Apple provided mpif90 is just an empty placeholder since Apple does not provide fortran compilers). I have used OpenMPI for this case. Recommended minimum configuration line is: \begin{verbatim} ./configure CC=gcc-mp-4.3 CPP=cpp-mp-4.3 CXX=g++-mp-4.3 F77=g95 FC=g95 \end{verbatim} of course, installation directory should be set accordingly if a multiple compiler environment is desired. The default installation directory of OpenMPI overwrites apple supplied MPI permanently!\\ Next step is \qe\ itself. Sadly, the Apple supplied optimized BLAS/LAPACK libraries tend to misbehave under different tests, and it is much safer to use internal libraries. The minimum recommended configuration line is (presuming the environment is set correctly): \begin{verbatim} ./configure CC=gcc-mp-4.3 CXX=g++-mp-4.3 F77=g95 F90=g95 FC=g95 \ CPP=cpp-mp-4.3 --with-internal-blas --with-internal-lapack \end{verbatim} \paragraph{Compilation with Intel compilers}. Newer versions of Intel compiler (>11.1.067) support Mac OS X 10.6, and furthermore they are bundled with intel MKL. 32 bit binaries obtained using 11.1.088 are tested and no problems have been encountered so far. Sadly, as of 11.1.088 the 64 bit binary misbehave under some tests. Any attempt to compile 64 bit binary using v.$<11.1.088$ will result in very strange compilation errors. Like the previous section, I would recommend installing macports compiler suite. First, make sure that you are using the 32 bit version of the compilers, i.e. \begin{verbatim} . /opt/intel/Compiler/11.1/088/bin/ifortvars.sh ia32 \end{verbatim} \begin{verbatim} . /opt/intel/Compiler/11.1/088/bin/iccvars.sh ia32 \end{verbatim} will set the environment for 32 bit compilation in my case. Then, the MPI environment has to be set up for Intel compilers similar to previous section. The recommended configuration line for \qe\ is: \begin{verbatim} ./configure CC=icc CXX=icpc F77=ifort F90=ifort FC=ifort CPP=cpp-mp-4.3 \end{verbatim} MKL libraries will be detected automatically if they are in their default locations. Otherwise, mklvars32 has to be sourced before the configuration script. Security issues: MacOs 10.6 comes with a disabled firewall. Preparing a ipfw based firewall is recommended. Open source and free GUIs such as "WaterRoof" and "NoobProof" are available that may help you in the process. \newpage \section{Parallelism} \label{Sec:para} \subsection{Understanding Parallelism} Two different parallelization paradigms are currently implemented in \qe: \begin{enumerate} \item {\em Message-Passing (MPI)}. A copy of the executable runs on each CPU; each copy lives in a different world, with its own private set of data, and communicates with other executables only via calls to MPI libraries. MPI parallelization requires compilation for parallel execution, linking with MPI libraries, execution using a launcher program (depending upon the specific machine). The number of CPUs used is specified at run-time either as an option to the launcher or by the batch queue system. \item {\em OpenMP}. A single executable spawn subprocesses (threads) that perform in parallel specific tasks. OpenMP can be implemented via compiler directives ({\em explicit} OpenMP) or via {\em multithreading} libraries ({\em library} OpenMP). Explicit OpenMP require compilation for OpenMP execution; library OpenMP requires only linking to a multithreading version of mathematical libraries, e.g.: ESSLSMP, ACML\_MP, MKL (the latter is natively multithreading). The number of threads is specified at run-time in the environment variable OMP\_NUM\_THREADS. \end{enumerate} MPI is the well-established, general-purpose parallelization. In \qe\ several parallelization levels, specified at run-time via command-line options to the executable, are implemented with MPI. This is your first choice for execution on a parallel machine. Library OpenMP is a low-effort parallelization suitable for multicore CPUs. Its effectiveness relies upon the quality of the multithreading libraries and the availability of multithreading FFTs. If you are using MKL,\footnote{Beware: MKL v.10.2.2 has a buggy \texttt{dsyev} yielding wrong results with more than one thread; fixed in v.10.2.4} you may want to select FFTW3 (set \texttt{CPPFLAGS=-D\_\_FFTW3...} in \texttt{make.sys}) and to link with the MKL interface to FFTW3. You will get a decent speedup ($\sim 25$\%) on two cores. Explicit OpenMP is a recent addition, still under development, devised to increase scalability on large multicore parallel machines. Explicit OpenMP can be used together with MPI and also together with library OpenMP. Beware conflicts between the various kinds of parallelization! If you don't know how to run MPI processes and OpenMP threads in a controlled manner, forget about mixed OpenMP-MPI parallelization. \subsection{Running on parallel machines} Parallel execution is strongly system- and installation-dependent. Typically one has to specify: \begin{enumerate} \item a launcher program (not always needed), such as \texttt{poe}, \texttt{mpirun}, \texttt{mpiexec}, with the appropriate options (if any); \item the number of processors, typically as an option to the launcher program, but in some cases to be specified after the name of the program to be executed; \item the program to be executed, with the proper path if needed; \item other \qe-specific parallelization options, to be read and interpreted by the running code. \end{enumerate} Items 1) and 2) are machine- and installation-dependent, and may be different for interactive and batch execution. Note that large parallel machines are often configured so as to disallow interactive execution: if in doubt, ask your system administrator. Item 3) also depend on your specific configuration (shell, execution path, etc). Item 4) is optional but it is very important for good performances. We refer to the next section for a description of the various possibilities. \subsection{Parallelization levels} In \qe\ several MPI parallelization levels are implemented, in which both calculations and data structures are distributed across processors. Processors are organized in a hierarchy of groups, which are identified by different MPI communicators level. The groups hierarchy is as follow: \begin{itemize} \item {\bf world}: is the group of all processors (MPI\_COMM\_WORLD). \item {\bf images}: Processors can then be divided into different "images", each corresponding to a different self-consistent or linear-response calculation, loosely coupled to others. \item {\bf pools}: each image can be subpartitioned into "pools", each taking care of a group of k-points. \item {\bf bands}: each pool is subpartitioned into "band groups", each taking care of a group of Kohn-Sham orbitals (also called bands, or wavefunctions) (still experimental) \item {\bf PW}: orbitals in the PW basis set, as well as charges and density in either reciprocal or real space, are distributed across processors. This is usually referred to as "PW parallelization". All linear-algebra operations on array of PW / real-space grids are automatically and effectively parallelized. 3D FFT is used to transform electronic wave functions from reciprocal to real space and vice versa. The 3D FFT is parallelized by distributing planes of the 3D grid in real space to processors (in reciprocal space, it is columns of G-vectors that are distributed to processors). \item {\bf tasks}: In order to allow good parallelization of the 3D FFT when the number of processors exceeds the number of FFT planes, FFTs on Kohn-Sham states are redistributed to "task" groups so that each group can process several wavefunctions at the same time. \item {\bf linear-algebra group}: A further level of parallelization, independent on PW or k-point parallelization, is the parallelization of subspace diagonalization / iterative orthonormalization. Both operations required the diagonalization of arrays whose dimension is the number of Kohn-Sham states (or a small multiple of it). All such arrays are distributed block-like across the ``linear-algebra group'', a subgroup of the pool of processors, organized in a square 2D grid. As a consequence the number of processors in the linear-algebra group is given by $n^2$, where $n$ is an integer; $n^2$ must be smaller than the number of processors in the PW group. The diagonalization is then performed in parallel using standard linear algebra operations. (This diagonalization is used by, but should not be confused with, the iterative Davidson algorithm). The preferred option is to use ScaLAPACK; alternative built-in algorithms are anyway available. \end{itemize} Note however that not all parallelization levels are implemented in all codes! \paragraph{About communications} Images and pools are loosely coupled and processors communicate between different images and pools only once in a while, whereas processors within each pool are tightly coupled and communications are significant. This means that Gigabit ethernet (typical for cheap PC clusters) is ok up to 4-8 processors per pool, but {\em fast} communication hardware (e.g. Mirynet or comparable) is absolutely needed beyond 8 processors per pool. \paragraph{Choosing parameters}: To control the number of processors in each group, command line switches: \texttt{-nimage}, \texttt{-npools}, \texttt{-nband}, \texttt{-ntg}, \texttt{-ndiag} or \texttt{-northo} (shorthands, respectively: \texttt{-ni}, \texttt{-nk}, \texttt{-nb}, \texttt{-nt}, \texttt{-nd}) are used. As an example consider the following command line: \begin{verbatim} mpirun -np 4096 ./neb.x -ni 8 -nk 2 -nt 4 -nd 144 -i my.input \end{verbatim} This executes a NEB calculation on 4096 processors, 8 images (points in the configuration space in this case) at the same time, each of which is distributed across 512 processors. k-points are distributed across 2 pools of 256 processors each, 3D FFT is performed using 4 task groups (64 processors each, so the 3D real-space grid is cut into 64 slices), and the diagonalization of the subspace Hamiltonian is distributed to a square grid of 144 processors (12x12). Default values are: \texttt{-ni 1 -nk 1 -nt 1} ; \texttt{nd} is set to 1 if ScaLAPACK is not compiled, it is set to the square integer smaller than or equal to half the number of processors of each pool. \paragraph{Massively parallel calculations} For very large jobs (i.e. O(1000) atoms or more) or for very long jobs, to be run on massively parallel machines (e.g. IBM BlueGene) it is crucial to use in an effective way all available parallelization levels. Without a judicious choice of parameters, large jobs will find a stumbling block in either memory or CPU requirements. Note that I/O may also become a limiting factor. Since v.4.1, ScaLAPACK can be used to diagonalize block distributed matrices, yielding better speed-up than the internal algorithms for large ($ > 1000\times 1000$) matrices, when using a large number of processors ($> 512$). You need to have \texttt{-D\_\_SCALAPACK} added to DFLAGS in \texttt{make.sys}, LAPACK\_LIBS set to something like: \begin{verbatim} LAPACK_LIBS = -lscalapack -lblacs -lblacsF77init -lblacs -llapack \end{verbatim} The repeated \texttt{-lblacs} is not an error, it is needed! \configure\ tries to find a ScaLAPACK library, unless \texttt{configure --with-scalapack=no} is specified. If it doesn't, inquire with your system manager on the correct way to link it. A further possibility to expand scalability, especially on machines like IBM BlueGene, is to use mixed MPI-OpenMP. The idea is to have one (or more) MPI process(es) per multicore node, with OpenMP parallelization inside a same node. This option is activated by \texttt{configure --with-openmp}, which adds preprocessing flag \texttt{-D\_\_OPENMP} and one of the following compiler options: \begin{tabular}{ll} ifort& \texttt{-openmp}\\ xlf& \texttt{-qsmp=omp}\\ PGI& \texttt{-mp}\\ ftn& \texttt{-mp=nonuma}\\ \end{tabular} OpenMP parallelization is currently implemented and tested for the following combinations of FFTs and libraries: \begin{tabular}{ll} internal FFTW copy &requires \texttt{-D\_\_FFTW}\\ ESSL& requires \texttt{-D\_\_ESSL} or \texttt{-D\_\_LINUX\_ESSL}, link with \texttt{-lesslsmp}\\ \end{tabular} Currently, ESSL (when available) are faster than internal FFTW. \subsubsection{Understanding parallel I/O} In parallel execution, each processor has its own slice of data (Kohn-Sham orbitals, charge density, etc), that have to be written to temporary files during the calculation, or to data files at the end of the calculation. This can be done in two different ways: \begin{itemize} \item ``distributed'': each processor writes its own slice to disk in its internal format to a different file. \item ``collected'': all slices are collected by the code to a single processor that writes them to disk, in a single file, using a format that doesn't depend upon the number of processors or their distribution. \end{itemize} The ``distributed'' format is fast and simple, but the data so produced is readable only by a job running on the same number of processors, with the same type of parallelization, as the job who wrote the data, and if all files are on a file system that is visible to all processors (i.e., you cannot use local scratch directories: there is presently no way to ensure that the distribution of processes across processors will follow the same pattern for different jobs). Currently, \CP\ uses the ``collected'' format; \PWscf\ uses the ``distributed'' format, but has the option to write the final data file in ``collected'' format (input variable \texttt{wf\_collect}) so that it can be easily read by \CP\ and by other codes running on a different number of processors. In addition to the above, other restrictions to file interoperability apply: e.g., \CP\ can read only files produced by \PWscf\ for the $k=0$ case. The directory for data is specified in input variables \texttt{outdir} and \texttt{prefix} (the former can be specified as well in environment variable ESPRESSO\_TMPDIR): \texttt{outdir/prefix.save}. A copy of pseudopotential files is also written there. If some processor cannot access the data directory, the pseudopotential files are read instead from the pseudopotential directory specified in input data. Unpredictable results may follow if those files are not the same as those in the data directory! {\em IMPORTANT:} Avoid I/O to network-mounted disks (via NFS) as much as you can! Ideally the scratch directory \texttt{outdir} should be a modern Parallel File System. If you do not have any, you can use local scratch disks (i.e. each node is physically connected to a disk and writes to it) but you may run into trouble anyway if you need to access your files that are scattered in an unpredictable way across disks residing on different nodes. You can use input variable \texttt{disk\_io} to reduce the the amount of I/O done by \pwx. Since v.5.1, the dafault value is \texttt{disk\_io='low'}, so the code will store wavefunctions into RAM and not on disk during the calculation. Specify \texttt{disk\_io='medium'} only if you have too many k-points and you run into trouble with memory; choose \texttt{disk\_io='none'} if you do not need to keep final data files. For very large \cpx\ runs, you may consider using \texttt{wf\_collect=.false.}, \texttt{memory='small'} and \texttt{saverho=.false.} to reduce I/O to the strict minimum. \subsection{Tricks and problems} \label{SubSec:badpara} \paragraph{Trouble with input files} Some implementations of the MPI library have problems with input redirection in parallel. This typically shows up under the form of mysterious errors when reading data. If this happens, use the option \texttt{-i} (or \texttt{-in}, \texttt{-inp}, \texttt{-input}), followed by the input file name. Example: \begin{verbatim} pw.x -i inputfile -nk 4 > outputfile \end{verbatim} Of course the input file must be accessible by the processor that must read it (only one processor reads the input file and subsequently broadcasts its contents to all other processors). Apparently the LSF implementation of MPI libraries manages to ignore or to confuse even the \texttt{-i/in/inp/input} mechanism that is present in all \qe\ codes. In this case, use the \texttt{-i} option of \texttt{mpirun.lsf} to provide an input file. \paragraph{Trouble with MKL and MPI parallelization} If you notice very bad parallel performances with MPI and MKL libraries, it is very likely that the OpenMP parallelization performed by the latter is colliding with MPI. Recent versions of MKL enable autoparallelization by default on multicore machines. You must set the environmental variable OMP\_NUM\_THREADS to 1 to disable it. Note that if for some reason the correct setting of variable OMP\_NUM\_THREADS does not propagate to all processors, you may equally run into trouble. Lorenzo Paulatto (Nov. 2008) suggests to use the \texttt{-x} option to \texttt{mpirun} to propagate OMP\_NUM\_THREADS to all processors. Axel Kohlmeyer suggests the following (April 2008): "(I've) found that Intel is now turning on multithreading without any warning and that is for example why their FFT seems faster than FFTW. For serial and OpenMP based runs this makes no difference (in fact the multi-threaded FFT helps), but if you run MPI locally, you actually lose performance. Also if you use the 'numactl' tool on linux to bind a job to a specific cpu core, MKL will still try to use all available cores (and slow down badly). The cleanest way of avoiding this mess is to either link with \begin{quote} \texttt{-lmkl\_intel\_lp64 -lmkl\_sequential -lmkl\_core} (on 64-bit: x86\_64, ia64)\\ \texttt{-lmkl\_intel -lmkl\_sequential -lmkl\_core} (on 32-bit, i.e. ia32 ) \end{quote} or edit the \texttt{libmkl\_'platform'.a} file. I'm using now a file \texttt{libmkl10.a} with: \begin{verbatim} GROUP (libmkl_intel_lp64.a libmkl_sequential.a libmkl_core.a) \end{verbatim} It works like a charm". UPDATE: Since v.4.2, \configure\ links by default MKL without multithreaded support. \paragraph{Trouble with compilers and MPI libraries} Many users of \qe, in particular those working on PC clusters, have to rely on themselves (or on less-than-adequate system managers) for the correct configuration of software for parallel execution. Mysterious and irreproducible crashes in parallel execution are sometimes due to bugs in \qe, but more often than not are a consequence of buggy compilers or of buggy or miscompiled MPI libraries. \end{document} espresso-5.1/Doc/INPUT_bgw2pw.txt0000777000175000017500000000000012341373334021126 2../PP/Doc/INPUT_bgw2pw.txtustar mbambaespresso-5.1/Doc/INPUT_pw2bgw.txt0000777000175000017500000000000012341373334021126 2../PP/Doc/INPUT_pw2bgw.txtustar mbambaespresso-5.1/Doc/INPUT_PWCOND.txt0000777000175000017500000000000012341373334021145 2../PWCOND/Doc/INPUT_PWCOND.txtustar mbambaespresso-5.1/Doc/INPUT_LD1.html0000777000175000017500000000000012341373334020655 2../atomic/Doc/INPUT_LD1.htmlustar mbambaespresso-5.1/Doc/ChangeLog.old0000644000175000017500000005466312341373034014354 0ustar mbamba--------------------------------------------------------------------------- NO LONGER UPDATED - Please use the web-svn interface: http://qe-forge.org/scm/browser.php?group_id=10 --------------------------------------------------------------------------- 08 Feb 2005 Added to the atomic code the generation of Projector Augmented Wave setups. Experimental. (GF) 13 Dec 2004 sph_bes.f90 in flib was incorrect for some high value of l (SdG) 1 Dec 2004 Hubbard forces were wrong in the case npsin.eq.1 (SdG) Added new example (contributed by Yosuke Kanai) on using cp.x with the string method (SMD) to find minimum energy path (MEP). [Gerardo] Added "cvs2cl.pl" script as suggested by Axel to produce a detailed ChangeLog from CVS commit message (PG) 29 Nov 2004 Documentation updated (PG) 26 Nov 2004 Cleanup of the pwscf molecular dynamics stuff. Velocity rescaling fully implemented. Documentation updated. Unused variables and routines removed. (CS) - more CP/FPMD merging - CP/FPMD specific modules moved back from Modules to CPV (CC) 25 Nov 2004 workaround for configure problem with systems where you can't run interactively [Gerardo] All files in FPMD/ moved to CPV/ (CC) Documentation updated (PG) 24 Nov 2004 - complete experimental common CP/FPMD XML-like restart . CP and FPMD are now linked to a common XML-like restart subroutine (see Module/cp_restart.f90 ) - sph_bes.f90 fix for parallel compilation - CPV/input.f90 workaround for xlf internal compiler error - imported iotk version 3.1 - pw_export updated (CC) Fixed a bug in the way the bessel functions were called. Now example10 works again. (C.S.) Fixed a bug in the convergence check (highlighted by Nicola Bonini). (C.S.) iotk_config.h: Added definitions for lahey compiler. (C.S.) Installation mecanism: added F90FLAGS_NOOPT flag [Gerardo] 23 Nov 2004 ion_radius input parameter now specify the real space spread of the pseudocharge gaussian in both cp and fpmd code (CC) 23 Nov 2004 Incorrect call to v_of_rho in pw2casino Check on occupancy in lsda calculations re-introduced Documentation updated (PG) 22 Nov 2004 use "sort -d" to obtain machine-independent results, update dependencies [Gerardo] Minor compilation and format problems with g95 (PG) 19 Nov 2004 punch_plot can now write the charge density of each state in the noncollinear case (ADC) XML like restart for CP/FPMD: Modules/cp_restart.f90 (CC) PW/input.f90 cleanup, fixed vc-md bug (PC) Routines moved to flib no longer in Makefiles Minor problems in parallel compilation (PG) 18 Nov 2004 Reduction in memory requirements for phonon calculation with uspp (routine dvanqq) - courtesy of N. Mounet Memory leak in Raman code fixed (PG). 17 Nov 2004 Cleanup and merge of spherical bessel function routines (C.S.) added script to compute dependencies of a subroutine [Gerardo] 16 Nov 2004 Some non-declared variables explicitly declared (C.S.) 15 Nov 2004 punch_plot can now write the charge density, the total potential and V_bare+V_H also in the noncollinear case. (ADC) Small update of the documentation in example02. (ADC) 14 Nov 2004 - more FPMD/CP merging - new module for merged FPMD/CP restart subroutines - starting work on XML restart/punchx (cp_restart.f90) 5 Nov 2004 Fixed a bug in the way tetrahedra variables were read/written on the restart file: since tetra is not alway allocated, the read_restart_tetra() and write_restart_tetra() can be called with all the arguments IF AND ONLY IF ltetra is true. otherwise read_restart_tetra() and write_restart_tetra() must be called with only the I/O unit. For further comments on this see the documentation contained in Modules/io_base.f90 (C.S.) 4 Nov 2004 Old parallel variables (such as me mypool) removed everywhere Missing GPL headers added to Raman (CS) nspin imported twice in force_hub.f90 (Axel) Makefiles use now $(MAKE) and $(MFLAGS) as proposed by Axel - should allow for the use of GNU make in system having broken makefile - please test (PG) added autoconf check for make [Gerardo] 3 Nov 2004 path optimization: 1) cleanup of the output format (more informative) 2) some cleanup of internal routines 3) added a couple of input variables and changed the default value of ds from 1.5 to 1.0. BFGS optimization: 1) implemented a mixed BFGS + Murtag-Sargent update of the inverse hessian which is generally faster than the pure BFGS 2) trust_radius_max increased to 0.8 bohr 3) some cleanup of internal routines (CS) Old parallel variables (such as me mypool) removed from PH and PP (CS) vc-relax was not working: variables lmd and ldamped not set (PC) 1 Nov 2004 more CP/FPMD merging, cleanup (CC) Calculation of LDA+U contribution to forces modified: should be faster (SdG) Example 22 uses the same pseudo generated in atomic/gen-pseudo (ADC) Makefile and ChangeLog cleanup (PG) Electron-phonon coefficient calculation should work also after a restart - to be tested (PG) 30 Oct 2004 - pwcond can now deal with spinor wavefunctions and with fully relativistic PPs with spin-orbit. Initial implementation (still quite experimental). (ADC) Added an example to calculate the complex band structure of Pt with spin-orbit. (ADC) Several improvements to the pwcond code. Now much faster. (ADC) 26 Oct 2004 Patches from Axel Kohlmayer: - iotk_scan in iotk_module had a mixed up 'intent' statement. - sun ultra fire 3 compiler warnings - cleanup in filename lenght (brought to 256) - cleanup in include files Added lapack_atlas for Mac/OS (Pascal Thibadeau) 25 Oct 2004 removed call to check() workarounds for g95 bug [Gerardo] Print correct CPU time for runs of more than 100h (PG) Wrong routine (elphon instead of elphel) called in solve_linter: electron-phonon calculation would not work if called directly after a phonon calculation (PG) 19 Oct 2004 Minor format changes: examples updated (GB) 15 Oct 2004 - small cleanup in FPMD - added XML-like library module (iotk_module version 2.4) written by Giovanni Bussi - added pw_export PP utility to convert restart/punch file to portable XML format, still experimental, to compile it: make export (for the time being is not included among the "all", make all does not compile it) - memory usage optimized when using SIC - bug fix in SIC calculation (CC) 14 Oct 2004 - ncpp2upf.f90 and cpmd2upf.f90: patch from Axel applied - newd.f90 in the PWNC moved to PW. The merging was already done. (AdC) - work on FPMD for the merging with CP ( grid dimension ) - bug fix ( ion randomization ) - SIC updated (CC) 13 Oct 2004 - small manual fixes (AdC) - small output changes (CS) - Several improvements of the string dynamics. Added a use_multistep input variable that allows fourier modes to be gradually included. Added a langevin opt_scheme in which the string performs a langevin dynamics in the path space. In the langevin scheme a canonical sampling of the initial and final configurations can also be done "on the fly" setting first_last_opt=.TRUE. (C.S.) - Fixed some small bugs in the reset history procedure (C.S.) 11 Oct 2004 bug fix for projected-DOS calculation in lda+U case (SF) BUG FIXED in NON COLLINEAR case: in non collinear case the inversion symmetry is not always present because of the presence of magnetic field in the Hamiltonian. So in case of nosym the generation of points in -K (recipr. space) must not be excluded (AMC) 10 Oct 2004 - Add an extra input variable rc for PAW calculation (in efg.x) to be able to specify the radius of the augmentation region for atom type i and orbital momentum l rc(i,l) Add the variable atomwfc%label%rc and label%nrc to store the radius and the indice of this radius in r() array Correct a Bug when an atom has no non-local part in init_paw_1 that I forgot to submit (MP) 07 Oct 2004 - a new utility virtual.x has been added to upftools that can combine two pseudopotentials in UPF format to produce a third one (in the same format) for the virtual atom Vvirt = x * V1 + (1-x) V2 . For the time being it has only limited functionality as the two pseudos need to be defined on the same radial grid. (SdG) - a new utility initial_state.x has been added to PP that can computed the core level shift in the initial state approximation... in practice the first order derivative of the total energy with respect to DeltaV=V(excited)-V(GS). It is the analogue (via Janak theorem) of the core eigenvalue in the pseudopotential framework where the core electrons do not exist. In the present status it require both V(excited) and V(GS) to be defined in the preceeding SCF calculation. (SdG) 06 Oct 2004 confuigure: revert default to dynamic linking [Gerardo] 28 Sep 2004 release.sh script updated: Raman/ added (PG) SUN compilation problem in mp.f90 (PG) More cleanup of parallel variables and pwcom/phcom references. (C.S.) 27 Sep 2004 Documentation updated (PG) 27 Sep 2004 XLF workarounds no longer needed (the bug in the compiler has been fixed). Added a serial fft driver for FFTW needed by parallel PWCOND. (C.S.) 27 Sep 2004 Atoms are refolded using PBC in "cubefile" format. Several minor problems emerged with multiple compilations: - CPV/compute_scf.f90 / FPMD/compute_scf.f90: tcpu was used but not initialized in compute_scf(). - CPV/wf.f90: need to include 'f_defs.h' to get MPI_REAL8 - Modules/wave_base.f90: include "f_defs.h" instead of "../include/f_defs.h" to be consistent with other files (and allow out-of-place compilation). - flib/transto.f90: include "opt_param.h" instead of "../include/opt_param.h" to be consistent with other files (and allow out-of-place compilation). - include/c_defs.h: set correct underscoring for alpha machines running linux (discriminated from regular alpha by __LINUX64). - configure.ac: fix f90 compilation rule for platforms that need explicit preprocessing and make it compatible to builds using VPATH. support for alpha-linux with compaq compiler (Axel Kohlmeyer) 27 Sep 2004 Bug in Modules/cell_base.f90 (dt2 not defined) fixed Bug in CPV/wf.f90 (iss2 not defined) temporarily fixed shmem_include only used if __SHMEM macro is defined More mergings between CPV and FPMD (init, grids setup) (CC) 27 Sep 2004 References to para module replaced (everywhere in PW ) by references to mp_global, pfft, pffts. Old parallel variables me and mypool have been replaced by me_pool ( = ( me - 1 ) ) and my_pool_id ( = ( mypool - 1) ), defined in mp_global. The old combination ( me == 1 .AND. mypool == 1 ) used in the I/O should be replaced by the logical variable ionode. All parallel variables (communicators included) are properly defined in the serial case too, so that "#ifdef __PARA" is not needed. (C.S.) Fourier String Method Dynamics improved: the number of fourier modes used to represent the path are gradually included (starting from one up to num_of_images-2), so that the overall number of scf loops needed to reach convergence is considerably reduced (of a factor of 2-3). (C.S.) matdyn.f90, q2r.f90 modified to work in a parallel environment (only the first cpu does the job). (C.S.) Cleanup in phonon: variable max_time replaced by max_seconds. Doc updated (C.S.) 24 Sep 2004 atomic_number : patch from Axel, fixes the case of atomic symbols with one letter 23 Sep 2004 "make tar" was not saving atomic_doc Misc. Alpha compilation errors and warning (PG) 22 Sep 2004 chdens: changes in the calculation of the makov-payne correction. Now the MP term and the dipole are calculated using the same box and the same logic (PC) added case ifc7 on linux64 [Gerardo] ------------------------------------------------------------------- Date: 20 Sep 2004 Version: pw-2-1 ------------------------------------------------------------------- 20 Sep 2004 Major improvement of PWgui (TK) chdens can produce "cubefile" format (Gaussian) (contributed by Axel Kohlmeyer) 15 Sep 2004 All examples updated (CC) added mpf90, mpcc for Mac, support for ifort 8.1, ARCH variable to configure [Gerardo] Setup: inequivalent k-points not generated in berry or band-structure calculations.(C.S.) Path optimizations: added the possibility to write the prefix.save file (logical varible write_save) relative to each image (needed for post-processing). (C.S.) Berry phase in parallel is implemented only along z. 14 Sep 2004 Allocation of evc when starting from atomic wavefunctions modified so that evc contain only the real number bands and not all the atomic wfcs (they can be much more than the number of bands). unified setup.f90 for both collinear and noncollinear case. (CS) Pseudo-random wave functions initialization, independent from number of procs and architecture (CC) Fixes for intel compiler 7.1: - pstickset arguments; - dummy argument to an external subroutine with implicit dimensions ( i.e. a(:,:) ..... CALL sub( a, ... ) replaced with a(:,:) ..... CALL sub( a(1,1), .... ) ) (CC) Raman with finite differences disabled (doesn't work any longer) Misc minor fixes (PG) 13 Sep 2004 Merge of cell dynamics (CC): - same cell dynamics subroutines used in CP and FPMD - input pressure in GPa ( both code ) - Output stress in GPa ( both code ) - Output layout made more similar: energies, positions, forces, cell displayed in the same way - Zero velocities after a restart implemented in CP - Nose and damped dynamics for cell implemented in FPMD like in CP - CP main subroutine simplified Various GUI changes (TK) Minor output format change, examples updated (PG) DIIS: small bug-fix and general clean-up of the code. ionode substituted by meta_ionode (this because in neb and smd all images have an ionode, but only one image, the one identified by meta_ionode, can check stop). (CS) 8 Sep 2004 configure.old, documentation for configure updated [Gerardo] moved install/README.install to README.install_old [Gerardo] 7 Sep 2004 File diis_module split into three separate files, each containing a module with the same name. Fixed some severe bugs. (CS) Changed name par2.x to fpmd.x in examples (PG) configure: don't try f77 as f90, won't work anyway [Gerardo] 6 Sep 2004 Example 9 updated (PG) changed name par2.x to fpmd.x, documentation updated [Gerardo] 4 Sep 2004 PWgui updated (TK) 3 Sep 2004 Manual update, Makefile restructuring (GB) Fixed a bug in constrained dynamics (CS) dynmat.x: more sensible names for input variables (PG) 2 Sep 2004 Wrong format in cp fixed (PG). INPUT_PW updated, GUI updated to new pwscf version, example 17 updated, minor changes to string method dynamics (C.S.) Replicated code caused problems with dependencies, fixed; added support for efc (alias ifort); README,install updated [GB] Examples 12, 13, 22 updated (SF) Bug fix: The dipole correction was not working with a non-tetragonal cell. (Contributed by N. Bonini). 1 Sep 2004 The error message is no longer written on /dev/stderr (on linux clusters), but only on unit *. (C.S.) missing ZSYRK and ZSYR2K subroutines added to the local copy of blas (PC) Small configure fix for Mac; examples, minor fix (GB) Makefile makes links as well - documentation updated. dynmat.x may calculate Raman cross sections as well (PG) 30 Aug 2004 Some cleanup of the path code, fixed a small bug in the prefix.dat file. (CS) 27 Aug 2004 Misc Alpha fixes (CS) Z* are written on output in a consistent way (Gernot) More merging between CP and FPMD: - initialization (both code uses the same ggen) - now FPMD initializes the small-boxes too (required for USPP) - print out (CC) 26 Aug 2004 Example 16 updated, misc cleanup, dynmat updated (PG) Changes to use of "fildrho" in phonon, d3, Raman calculationi calculation of nonlinear susceptibility fixed, example 15 updated (Gernot) 25 Aug 2004 Fixed some errors in constrained dynamics. "Fixed atoms" and explicit constraints are now compatible when they do not involve the same atoms. Fixed a bug in the definition of the tangent in the Fourier string method dynamics. (CS) Makefiles, examples 8-11 updated. Old Raman code renamed "phcg.f90" in order to avoid confusion with new code (PG) 24 Aug 2004 Fixed a bug in the way the prefix.dat file was written. Cleanup of debug code (C.S.) Examples 1-7 updated (PG) 23 Aug 2004 Fixed several bugs in the routines for "path-optimization": "reset_vel" input variable was read but not used parallelization on images was not properly working cleanup in the way ATOMIC_POSITIONS card is readi. Minor fixes to compute_scf.f90 (C.S.) Minor Mac OS-X fix . 20 Aug 2004 Manuals for PW and CP/FPMD merged [Gerardo] bugfix for configure on AIX [Gerardo] Added calculation of the Chemical shift tensor (NMR) Reconstruction with GIPAW method Totally experimental for the moment (MP) Example for electric-field gradient calculation (MP) 19 Aug 2004 Manual update (PHG) . Examples: changed default path from $HOME/O-sesame to $HOME/espresso [Gerardo] efg.f90: typos corrected in the printout of various tensors units added to final results sign of off-diagonal terms corrected (MP) DIIS: fixed some bugs in the diis procedure. Davidson: minor cleanup. (CS) 18 Aug 2004 Duplicated routines "matches", "capital" removed, unused case calculation='dispersion' removed (PG) Various missing README added, minor manual changes [Gerardo] 18 Aug 2004 NEB code reorganization. All the routines involved in "path" optimization are grouped into modules starting with "path_". The output has been slightly restyled. In the pwscf code (only) has been implemented a version of the string method (calculation='smd') in which the path is represented in Fourier components and the optimization procedure is done on these components (still to be optimized, but working). BFGS: Interpolation of the "accepted" bfgs step disabled (not yet safe). (CS) 17 Aug 2004 Initialization of startingpot in the "raman" case fixed Documentation update (PG) 16 Aug 2004 The fix for the problem "PBE on hydrogen atom" (see commit 10-05-2004) has been moved from gradcorr.f90 to lsda_functionals.f90 so that both pwscf and the atomic code share the same fix (CS) 13 Aug 2004 Documentation for Raman updated (PG) 11 Aug 2004 Manual update and cleanup (GB, PG). Added RANLIB=echo to old Make.* (PG) 9 Aug 2004 Support for mac-osx added (contributed by Pascal Thibaudeau) Extensive documentation update and reshuffling : pwdocs and cpdocs merged into Doc (PG) 9-Aug-2004 NEB restart file modified again: with the current implementation of quick-min pos_old and grad_old need not to be saved in the restart file. Logical variables for reset_vel and frozen images have been moved from "ENERGIES, POSITIONS AND GRADIENTS" to "QUICK-MIN FIELDS". Old restart files can be easily converted removing in the "ENERGIES, POSITIONS AND GRADIENTS" field all logical variables and removing all the "QUICK-MIN FIELDS". (CS) 1 Aug 2004 same variable accessed from 2 different modules, some compilers complain, fixed (CC) ChangeLog for the espresso code - starting Aug. 2004 See ChangeLog.pw and ChangeLog.cp for changes before that date espresso-5.1/Doc/INPUT_PH.txt0000777000175000017500000000000012341373334020206 2../PHonon/Doc/INPUT_PH.txtustar mbambaespresso-5.1/Doc/INPUT_PW.html0000777000175000017500000000000012341373334017643 2../PW/Doc/INPUT_PW.htmlustar mbambaespresso-5.1/Doc/plumed_quick_ref.log0000644000175000017500000005250612341373046016043 0ustar mbambaThis is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=pdflatex 2013.10.8) 28 MAY 2014 16:43 entering extended mode restricted \write18 enabled. %&-line parsing enabled. **plumed_quick_ref.tex (./plumed_quick_ref.tex LaTeX2e <2011/06/27> Babel and hyphenation patterns for english, dumylang, nohyphenation, it alian, loaded. (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo File: size12.clo 2007/10/19 v1.4h Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty Package: amssymb 2009/06/22 v3.00 (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty Package: amsfonts 2009/06/22 v3.00 Basic AMSFonts support \@emptytoks=\toks14 \symAMSa=\mathgroup4 \symAMSb=\mathgroup5 LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' (Font) U/euf/m/n --> U/euf/b/n on input line 96. )) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks15 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live ) Package graphics Info: Driver file: pdftex.def on input line 91. (/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO) ) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ltxcmds.sty Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO) ) \Gread@gobject=\count87 )) \Gin@req@height=\dimen103 \Gin@req@width=\dimen104 ) (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty Package: hyperref 2012/05/13 v6.82q Hypertext links for LaTeX (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty Package: hobsub-hyperref 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty Package: hobsub-generic 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO) Package: hobsub 2012/05/28 v1.13 Construct package bundles (HO) Package hobsub Info: Skipping package `infwarerr' (already loaded). Package hobsub Info: Skipping package `ltxcmds' (already loaded). Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO) Package ifluatex Info: LuaTeX not detected. Package: ifvtex 2010/03/01 v1.5 Detect VTeX and its facilities (HO) Package ifvtex Info: VTeX not detected. Package: intcalc 2007/09/27 v1.1 Expandable calculations with integers (HO) Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO) Package ifpdf Info: pdfTeX in PDF mode is detected. Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO) Package etexcmds Info: Could not find \expanded. (etexcmds) That can mean that you are not using pdfTeX 1.50 or (etexcmds) that some package has redefined \expanded. (etexcmds) In the latter case, load this package earlier. Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO) Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO) Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO ) Package pdftexcmds Info: LuaTeX not detected. Package pdftexcmds Info: \pdf@primitive is available. Package pdftexcmds Info: \pdf@ifprimitive is available. Package pdftexcmds Info: \pdfdraftmode found. Package: pdfescape 2011/11/25 v1.13 Implements pdfTeX's escape features (HO) Package: bigintcalc 2012/04/08 v1.3 Expandable calculations on big integers (HO ) Package: bitset 2011/01/30 v1.1 Handle bit-vector datatype (HO) Package: uniquecounter 2011/01/30 v1.2 Provide unlimited unique counter (HO) ) Package hobsub Info: Skipping package `hobsub' (already loaded). Package: letltxmacro 2010/09/02 v1.4 Let assignment for LaTeX macros (HO) Package: hopatch 2012/05/28 v1.2 Wrapper for package hooks (HO) Package: xcolor-patch 2011/01/30 xcolor patch Package: atveryend 2011/06/30 v1.8 Hooks at the very end of document (HO) Package atveryend Info: \enddocument detected (standard20110627). Package: atbegshi 2011/10/05 v1.16 At begin shipout hook (HO) Package: refcount 2011/10/16 v3.4 Data extraction from label references (HO) Package: hycolor 2011/01/30 v1.7 Color options for hyperref/bookmark (HO) ) (/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO) ) \@linkdim=\dimen105 \Hy@linkcounter=\count88 \Hy@pagecounter=\count89 (/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2012/05/13 v6.82q Hyperref: PDFDocEncoding definition (HO) ) \Hy@SavedSpaceFactor=\count90 (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive ) Package hyperref Info: Hyper figures OFF on input line 4062. Package hyperref Info: Link nesting OFF on input line 4067. Package hyperref Info: Hyper index ON on input line 4070. Package hyperref Info: Plain pages OFF on input line 4077. Package hyperref Info: Backreferencing OFF on input line 4082. Package hyperref Info: Implicit mode ON; LaTeX internals redefined. Package hyperref Info: Bookmarks ON on input line 4300. \c@Hy@tempcnt=\count91 (/usr/share/texlive/texmf-dist/tex/latex/url/url.sty \Urlmuskip=\muskip10 Package: url 2006/04/12 ver 3.3 Verb mode for urls, etc. ) LaTeX Info: Redefining \url on input line 4653. \Fld@menulength=\count92 \Field@Width=\dimen106 \Fld@charsize=\dimen107 Package hyperref Info: Hyper figures OFF on input line 5773. Package hyperref Info: Link nesting OFF on input line 5778. Package hyperref Info: Hyper index ON on input line 5781. Package hyperref Info: backreferencing OFF on input line 5788. Package hyperref Info: Link coloring OFF on input line 5793. Package hyperref Info: Link coloring with OCG OFF on input line 5798. Package hyperref Info: PDF/A mode OFF on input line 5803. LaTeX Info: Redefining \ref on input line 5843. LaTeX Info: Redefining \pageref on input line 5847. \Hy@abspage=\count93 \c@Item=\count94 \c@Hfootnote=\count95 ) Package hyperref Message: Driver (autodetected): hpdftex. (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def File: hpdftex.def 2012/05/13 v6.82q Hyperref driver for pdfTeX \Fld@listcount=\count96 \c@bookmark@seq@number=\count97 (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty Package: rerunfilecheck 2011/04/15 v1.7 Rerun checks for auxiliary files (HO) Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 82. ) \Hy@SectionHShift=\skip43 ) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty Package: amsmath 2000/07/18 v2.13 AMS math features \@mathmargin=\skip44 For additional information on amsmath, use the `?' option. (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty Package: amstext 2000/06/29 v2.01 (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty File: amsgen.sty 1999/11/30 v2.0 \@emptytoks=\toks16 \ex@=\dimen108 )) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty Package: amsbsy 1999/11/29 v1.2d \pmbraise@=\dimen109 ) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty Package: amsopn 1999/12/14 v2.01 operator names ) \inf@bad=\count98 LaTeX Info: Redefining \frac on input line 211. \uproot@=\count99 \leftroot@=\count100 LaTeX Info: Redefining \overline on input line 307. \classnum@=\count101 \DOTSCASE@=\count102 LaTeX Info: Redefining \ldots on input line 379. LaTeX Info: Redefining \dots on input line 382. LaTeX Info: Redefining \cdots on input line 467. \Mathstrutbox@=\box26 \strutbox@=\box27 \big@size=\dimen110 LaTeX Font Info: Redeclaring font encoding OML on input line 567. LaTeX Font Info: Redeclaring font encoding OMS on input line 568. \macc@depth=\count103 \c@MaxMatrixCols=\count104 \dotsspace@=\muskip11 \c@parentequation=\count105 \dspbrk@lvl=\count106 \tag@help=\toks17 \row@=\count107 \column@=\count108 \maxfields@=\count109 \andhelp@=\toks18 \eqnshift@=\dimen111 \alignsep@=\dimen112 \tagshift@=\dimen113 \tagwidth@=\dimen114 \totwidth@=\dimen115 \lineht@=\dimen116 \@envbody=\toks19 \multlinegap=\skip45 \multlinetaggap=\skip46 \mathdisplay@stack=\toks20 LaTeX Info: Redefining \[ on input line 2666. LaTeX Info: Redefining \] on input line 2667. ) (./plumed_quick_ref.aux) \openout1 = `plumed_quick_ref.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 15. LaTeX Font Info: ... okay on input line 15. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 15. LaTeX Font Info: ... okay on input line 15. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 15. LaTeX Font Info: ... okay on input line 15. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 15. LaTeX Font Info: ... okay on input line 15. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 15. LaTeX Font Info: ... okay on input line 15. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 15. LaTeX Font Info: ... okay on input line 15. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 15. LaTeX Font Info: ... okay on input line 15. (/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii [Loading MPS to PDF converter (version 2006.09.02).] \scratchcounter=\count110 \scratchdimen=\dimen117 \scratchbox=\box28 \nofMPsegments=\count111 \nofMParguments=\count112 \everyMPshowfont=\toks21 \MPscratchCnt=\count113 \MPscratchDim=\dimen118 \MPnumerator=\count114 \makeMPintoPDFobject=\count115 \everyMPtoPDFconversion=\toks22 ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO) ) Package grfext Info: Graphics extension search list: (grfext) [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE G,.JBIG2,.JB2,.eps] (grfext) \AppendGraphicsExtensions on input line 452. (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv e )) \AtBeginShipoutBox=\box29 Package hyperref Info: Link coloring OFF on input line 15. (/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty Package: nameref 2010/04/30 v2.40 Cross-referencing by name of section (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/gettitlestring.sty Package: gettitlestring 2010/12/03 v1.4 Cleanup title references (HO) ) \c@section@level=\count116 ) LaTeX Info: Redefining \ref on input line 15. LaTeX Info: Redefining \pageref on input line 15. LaTeX Info: Redefining \nameref on input line 15. (./plumed_quick_ref.out) (./plumed_quick_ref.out) \@outlinefile=\write3 \openout3 = `plumed_quick_ref.out'. LaTeX Font Info: Try loading font information for U+msa on input line 22. (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd File: umsa.fd 2009/06/22 v3.00 AMS symbols A ) LaTeX Font Info: Try loading font information for U+msb on input line 22. (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd File: umsb.fd 2009/06/22 v3.00 AMS symbols B ) (./plumed_quick_ref.toc) \tf@toc=\write4 \openout4 = `plumed_quick_ref.toc'. [1 {/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] Underfull \hbox (badness 10000) in paragraph at lines 39--40 [] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <12> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 41. LaTeX Font Info: Try loading font information for OMS+cmr on input line 44. (/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 44. [2] [3] Underfull \hbox (badness 10000) in paragraph at lines 107--108 [] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <14.4> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 122. [4] Overfull \hbox (6.91164pt too wide) in paragraph at lines 149--150 \OT1/cmr/m/n/12 To run the meta-dy-nam-ics cal-cu-la-tions, you will need to pr e-pare the in-put file \OT1/cmtt/m/n/12 plumed.dat [] Overfull \hbox (52.98253pt too wide) in paragraph at lines 204--204 []\OT1/cmtt/m/n/12 sum_hills.x -file HILLS -out fes.dat -ndim 3 -ndw 1 2 -kt 0. 6 -ngrid 100 100 100[] [] [5] Overfull \hbox (9.7575pt too wide) in paragraph at lines 204--204 []\OT1/cmtt/m/n/12 [-cutoff_s 6.25 ] (the hills are cutoff at 6.25 standard de viations from[] [] Overfull \hbox (28.28252pt too wide) in paragraph at lines 204--204 []\OT1/cmtt/m/n/12 [-2pi x ] ([0;2pi] periodicity on the x CV, if -fix is not used 2pi[] [] Overfull \hbox (34.45752pt too wide) in paragraph at lines 204--204 []\OT1/cmtt/m/n/12 [-pi x ] ([-pi;pi] periodicity on the x CV, if -fi x is not used 2pi[] [] Overfull \hbox (59.15753pt too wide) in paragraph at lines 204--204 []\OT1/cmtt/m/n/12 [-bias ] (writing output the bias for a well tempe red metadynamics run)[] [] <./pic/sn2_reaction.pdf, id=131, 844.15375pt x 404.712pt> File: ./pic/sn2_reaction.pdf Graphic file (type pdf) Package pdftex.def Info: ./pic/sn2_reaction.pdf used on input line 214. (pdftex.def) Requested size: 441.01772pt x 211.43951pt. [6] Overfull \hbox (2.78009pt too wide) in paragraph at lines 234--234 []\OT1/cmr/bx/n/14.4 Metadynamics with Born-Oppenheimer molec-u-lar dy-nam- [] [7 <./pic/sn2_reaction.pdf>] [8] [9] Overfull \hbox (15.93251pt too wide) in paragraph at lines 363--363 []\OT1/cmtt/m/n/12 1-DISTANCE: (1st SET: 1 ATOMS), (2nd SET: 1 ATOMS); PBC ON SIGMA 0.300000[] [] Overfull \hbox (15.93251pt too wide) in paragraph at lines 363--363 []\OT1/cmtt/m/n/12 2-DISTANCE: (1st SET: 1 ATOMS), (2nd SET: 1 ATOMS); PBC ON SIGMA 0.300000[] [] Overfull \hbox (34.45752pt too wide) in paragraph at lines 363--363 []\OT1/cmtt/m/n/12 |-WALL ON COLVAR 1: UPPER LIMIT = 7.000000, KAPPA = 100.0000 00, EXPONENT = 4,[] [] Overfull \hbox (34.45752pt too wide) in paragraph at lines 363--363 []\OT1/cmtt/m/n/12 |-WALL ON COLVAR 1: LOWER LIMIT = 2.500000, KAPPA = 100.0000 00, EXPONENT = 4,[] [] Overfull \hbox (34.45752pt too wide) in paragraph at lines 363--363 []\OT1/cmtt/m/n/12 |-WALL ON COLVAR 2: UPPER LIMIT = 7.000000, KAPPA = 100.0000 00, EXPONENT = 4,[] [] Overfull \hbox (34.45752pt too wide) in paragraph at lines 363--363 []\OT1/cmtt/m/n/12 |-WALL ON COLVAR 2: LOWER LIMIT = 2.500000, KAPPA = 100.0000 00, EXPONENT = 4,[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 381--381 [] \OT1/cmtt/m/n/12 0.000 3.470115309 5.828643634 0.00000000 0 0.000000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 381--381 [] \OT1/cmtt/m/n/12 20.000 3.476912892 5.822800771 0.00000000 0 0.000000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 381--381 [] \OT1/cmtt/m/n/12 40.000 3.483516729 5.817608411 0.00100000 0 0.000000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 381--381 [] \OT1/cmtt/m/n/12 60.000 3.490411466 5.812574439 0.00099960 0 0.000000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 381--381 [] \OT1/cmtt/m/n/12 80.000 3.498291622 5.807005696 0.00199817 0 0.000000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 381--381 [] \OT1/cmtt/m/n/12 100.000 3.507739014 5.800326723 0.00199435 6 0.000000000[] [] [10] Missing character: There is no in font cmr12! <./pic/sn2cv.pdf, id=235, 356.23087pt x 210.7875pt> File: ./pic/sn2cv.pdf Graphic file (type pdf) Package pdftex.def Info: ./pic/sn2cv.pdf used on input line 387. (pdftex.def) Requested size: 441.01772pt x 260.96532pt. <./pic/sn2cvs.pdf, id=236, 352.71774pt x 210.7875pt> File: ./pic/sn2cvs.pdf Graphic file (type pdf) Package pdftex.def Info: ./pic/sn2cvs.pdf used on input line 395. (pdftex.def) Requested size: 441.01772pt x 263.577pt. Overfull \hbox (40.63252pt too wide) in paragraph at lines 416--416 [] \OT1/cmtt/m/n/12 40.000 3.483516729 5.817608411 0.30000000 0 0.300000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 416--416 [] \OT1/cmtt/m/n/12 80.000 3.498291622 5.807005696 0.30000000 0 0.300000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 416--416 [] \OT1/cmtt/m/n/12 120.000 3.519061248 5.792237732 0.30000000 0 0.300000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 416--416 [] \OT1/cmtt/m/n/12 160.000 3.547107311 5.772092610 0.30000000 0 0.300000000[] [] Overfull \hbox (40.63252pt too wide) in paragraph at lines 416--416 [] \OT1/cmtt/m/n/12 200.000 3.578429291 5.750272190 0.30000000 0 0.300000000[] [] [11 <./pic/sn2cv.pdf>] Overfull \hbox (40.63252pt too wide) in paragraph at lines 416--416 [] \OT1/cmtt/m/n/12 240.000 3.606928115 5.732241302 0.30000000 0 0.300000000[] [] Overfull \hbox (13.80449pt too wide) in paragraph at lines 430--431 []\OT1/cmr/m/n/12 In or-der to restart a meta-dy-nam-ics run, the flag \OT1/cmt t/m/n/12 RESTART \OT1/cmr/m/n/12 must be added to \OT1/cmtt/m/n/12 plumed.dat [] [12 <./pic/sn2cvs.pdf>] <./pic/sn2_fes.pdf, id=253, 346.4945pt x 152.36925pt> File: ./pic/sn2_fes.pdf Graphic file (type pdf) Package pdftex.def Info: ./pic/sn2_fes.pdf used on input line 453. (pdftex.def) Requested size: 441.01772pt x 193.94852pt. [13 <./pic/sn2_fes.pdf>] [14] <./pic/hh_fes.pdf, id=276, 350.10799pt x 210.7875pt> File: ./pic/hh_fes.pdf Graphic file (type pdf) Package pdftex.def Info: ./pic/hh_fes.pdf used on input line 523. (pdftex.def) Requested size: 441.01772pt x 265.52933pt. [15 <./pic/hh_fes.pdf>] Underfull \hbox (badness 10000) in paragraph at lines 541--542 []\OT1/cmr/m/n/12 User's Guide for \OT1/cmr/m/sc/12 Quan-tum ESPRESSO\OT1/cmr/m /n/12 : \OT1/cmtt/m/n/12 espresso/Doc/\OT1/cmr/m/n/12 ; [] Package atveryend Info: Empty hook `BeforeClearDocument' on input line 553. [16] Package atveryend Info: Empty hook `AfterLastShipout' on input line 553. (./plumed_quick_ref.aux) Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 553. Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 553. Package rerunfilecheck Info: File `plumed_quick_ref.out' has not changed. (rerunfilecheck) Checksum: E7F3F0526D38DAED2177284630659586;1052. Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 553. ) Here is how much of TeX's memory you used: 5966 strings out of 495048 85328 string characters out of 3181554 171489 words of memory out of 3000000 9040 multiletter control sequences out of 15000+200000 14507 words of font info for 56 fonts, out of 3000000 for 9000 14 hyphenation exceptions out of 8191 29i,7n,29p,1811b,438s stack positions out of 5000i,500n,10000p,200000b,50000s Output written on plumed_quick_ref.pdf (16 pages, 558631 bytes). PDF statistics: 352 PDF objects out of 1000 (max. 8388607) 239 compressed objects within 3 object streams 53 named destinations out of 1000 (max. 500000) 138 words of extra memory for PDF output out of 10000 (max. 10000000) espresso-5.1/Doc/brillouin_zones.aux0000644000175000017500000000313612341373046015751 0ustar mbamba\relax \@writefile{toc}{\contentsline {section}{\numberline {1}Brillouin zone}{2}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}\texttt {ibrav=1}, simple cubic lattice}{2}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}\texttt {ibrav=2}, face centered cubic lattice}{3}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3}\texttt {ibrav=3}, body centered cubic lattice}{4}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.4}\texttt {ibrav=4}, hexagonal lattice}{5}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.5}\texttt {ibrav=5}, trigonal lattice}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.6}\texttt {ibrav=6}, simple tetragonal lattice}{7}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.7}\texttt {ibrav=7}, centered tetragonal lattice}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.8}\texttt {ibrav=8}, simple orthorhombic lattice}{9}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.9}\texttt {ibrav=9}, one-face centered orthorhombic lattice}{10}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.10}\texttt {ibrav=10}, face centered orthorhombic lattice}{10}} \newlabel{uno}{{1}{11}} \newlabel{due}{{2}{11}} \newlabel{tre}{{3}{11}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.11}\texttt {ibrav=11}, body centered orthorhombic lattice}{15}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.12}\texttt {ibrav=12,13,14}, monoclinic, base centered monoclinic, triclinic}{17}} \@writefile{toc}{\contentsline {section}{\numberline {2}Bibliography}{17}} espresso-5.1/Doc/developer_man/0000755000175000017500000000000012341373066014634 5ustar mbambaespresso-5.1/Doc/developer_man/img12.png0000644000175000017500000000054312341373063016260 0ustar mbambaPNG  IHDR2=j@-PLTEMJK# b``mkkXUV856C@@.*+k/tRNS@fIDAT8c`.~dPAN-`CUb<޽ Bdc!r A ЄI7b~+gllS D@f H1Q `R8@P\YdN.2 sAXʆ!accpI XCB2  D`r fFP@yC q#3'r޽':iIENDB`espresso-5.1/Doc/developer_man/img15.png0000644000175000017500000000041112341373060016252 0ustar mbambaPNG  IHDR#0PLTEMJK# b``mkkXUV856C@@wuv.*+ Ė`tRNS@fIDATc```d@ h QY.tH a`x 78`QM($!2l `)`cf ۅl V0#Bu00 9 n0A&3\ 0ϟ\IENDB`espresso-5.1/Doc/developer_man/img7.png0000644000175000017500000000122212341373057016202 0ustar mbambaPNG  IHDRb/J20PLTEMJK# b``mkkXUV856C@@wuv.*+ Ė`tRNS@fIDATHTjP$ٺ#S:tx$HN*![P8K%Af!KK1Z蔞+rbr!~sι{d&Du G71MOVh&y c;BN܃֬)(}*$EѸW'BI\ehtoФ5-We0(pxFx-!"4쓐nNU$kbnxIUa@n[WmQC״}orHt4'Uf^QIg)D SR@uf51s}O5*V[g֜kRU6=^ID *'Cd $JR_졯b_ Oeu'0h J՟d >BsO*}^&h. V̱ƒ=L%(L1zO= YW̱ +XAB8!zN ]Iݵ +Vq>S@=X5)X-D` P{9 +|6`+V?RsgF#e2cg +o k}0)! *$ CU{DDD-,"M@@lA e?VX3sL6Is"7,U~0狜s "r5S&"j.d+oC (CIsO9 .x"{x C2$#'H@ HV*i&$$$RUePED571\bd@, 6d@!j*`6 l01,)B ++ BTJ (xdW[_ (RDDXZB$";#CXX$db@>B5|^`a~(19M%1G5Ǽυ`Lttht+XaNJ9z rHT2Xb[MeZXm* TH,9T5'^s6PH(H *P9T*/d=Sr`32 Y%)u"XBXD`e){WXa1@G:HOY" "f)Wd>sޯk,S ɜ栒5H 9jHP4ŻT!PE>XG u(ٺ>)q`R rd4lZ#ĖۅaL@fjap)V+IbHZJ)r$Da&dj 6?ѢCTzHS$AsXd,$ 5G9̡ |Je}8wvoDeY_ 9P vrj[Lla-$@<"V1AA@=}+قs<SHF2@ 3` JD)Ң>" H 9$3!=$RM A9A稒He?΁e}~yC%`ia4DP&q`{bL@:v?nj`5(ю{b;v4Xzh&Va0d[;O9 T 9 #RPJSIrO](GL9F*^)H(=b*5\e h Fa#\쀘, UdҬ˓ 5Vقð d^'z df`F@h>b4%gfK"{fӨO Ф9j { I);NG!A ͚i"a,-[3(b|Q8QHdř$f dLQ([HqVI-)p$!oXf+)b(`rI.@2NOM?AE 5`q 7LTH4*=QBq(/ (N#e bHK#rO"ϑ{GaZ'AMD `E^,AD3,ܕkfBQ"TETKf>;"AH[fW85L%Tȸ&Fa݋aojWXa1 gSRSfKi L=Fq")\1h֔Eb@#RC:@$ͽ^I#k!c"d QE0 1e*v#&kPlRfw Ė9"' gT4kJj$J 856"pЬEU ҽ ++dq[p՜ I<#5&U(MM=l'&&۸8NjR PNii), i"H)$Xd2k%~ca=]BWʀ2Uyo o(/!R s! B!d*+P$HP Y5H{Mmxr5'Kedr[CI4cH0.Z +` A$sl52sΔI;hd+&IPB80o9G3) qN9dm(Ð1c`7la>s;^Ѓ0(QҫIbXp,se[AD4B9"gp_{ؓHk9*ܫe XҠSDb uD X=*/_a="*"'{vgI l@1 ٳ|y4A8ܛ{ aAJ>jk؊ب$"eGƩq0^%lDDظa2JD`/ X TP|V T`HFfz =E,$")HΜ3rDaJ A#INu  )+på sR95q.LӔ$" 2 J0p{o!O;s=3)H@Wn-PCl k`erׄ Uv%cL%c m([q2` Ed91a"dI#r@$=gt+ T{ɁrfI=r7DA:iʰ us\8dL̐D5t-r$ epNDJ`+r.bPr(kQ?4G!vHa퐧H3̞Lzr ZRb7URcEa%eK@ϣ>"y_ Q8pB"I$"ڋ$\q0=93gRjIze=r@"cfd [3JqbaEPIQCoRG1#0s&!X9B#[lak8- 0JUaرX6lCvW@Yd<%b,$vX$o((ϗKw.(2bb$Hf! B3RVi5LȤEQB#jiQ-Q^2tVq A-R ւ PkRK3A":0ư@CO%F 8h!E-B4EI&m}'`@Nhz՘݀LΓdFfȶ}5""f6|wo!{gx@a3RDZA,dJSo[Z_#'΂͆0BT+CURPR!*_\"lrX1E\֖NPTR1HHC"!͐f002VdjX&Sdd5l SzpXaAna4(@BB3B2RԮ DJ 1ZXq7V9.8HC 0/sD 3Ei9~Hn;6հ%b\xcًTk0 eb ,\#<;d59kJh jHG9J9%4* d J0 YQ UX1 m@N-aaJqJ簇#fŮZ5dkTc**H[{^D#A &,AA-u&/7&hE%#^SO*9W6I3HU# % @(b\+Ys<\PQ0R4AAE?AS H=a&)23WTP5`m﷨] &6d(\ 40e)$IUKCD< ]a2VC靧*"& џEC?E(ȽVR$2jkrkpCn6jruCClEvRJHq>@Fty",)]LN92ϕ.OւRQT9eŐIh-k U>p}Wx(R}S՜3l 4 g[#SѨd@uvh`P5"75`r8ܤMeNEU Qm j@0y6%"3$9GeD*3~%hgVE1;(%58Jb'DU֕dkF۸e|W{bdZha~ӾWJ [ c@-ڤ="EY(xS2#)AR(5ʕ1*KjZacE}馅v, S@SB,'x;=f6vz!9Fr{ M#7jKqɵD SPmn#5ӌM5ƹVPYbq!8Şp7)^t` VœBZVVt;$a[`2NB-Cub=h C>\j "wd &v#8ęRCgB־.۱b Y%CL9Ŏr; ]0toZ3)YYX%PF6@] {hwrGq91pVGQïsf_]PƙKYe;B3Qr|[A"  d Tx\1 @wk\aVqAHC {S)*uHLs@663v4OIHF3 z yuoffO0-[6Pm:咚B:Kؘ '!T"E @XKIÊ`!vLcKbYs\ttvS-Cj"Q@{GVpDF>RP$4U%UA(ǬCw{$hEÍT;7Bz ~ ~[AZHA!H6̖l b9Y ]4Дd Q sCdP#,ȒYU cb#̥$L"sS*a&"DzJB($pqD b(QA3[^˃CL 7Dz n [+[ -!@>l#ʲ Jq2k֜˘vF)q7dP{Py󰝱VX1ņ.VCG7Elg!R /D!"p P,9Glbޏ~$ |+H!srB kS|| "FhT:T({{&#p-:Zfc5NP+<b K\0~JiZS{H39dv9v$i}K hzFT RVp %5V0F-e14Yn]ixz'~qUf@s o=2oBѹ`{6B!.NxWƆݎBጶX `aÌ2 k^\+b R((~ơ[h_drk$Hla1I{|&"XbL9+5l;TUcm c +> 8a7eUS FӜ$"jgD܀cg3VMGvX1/,a vQj$ǜթȡ)r4338+ AQPj~~CpvwQ5T1"s-M B5(pDҀL[^ag+渠0A =”=vߥiGqJ)Dlۘ@Hf*n(9RunPo:z :\wN}("LD\B38Uhx@fz,SV Ba5gFE4GLJ,PdJ Ē{|UUQykz &&܆ ǨF(}fM/V%KȢbn&l*!j*pB,dVx` 1C$ &vy" H,HR" IA% *9j &M7k5`kU*;sէ RJqdX|6` y~{m ZW[ҪjWxX`e7r@?~=t;^gH=$MKȂ!x2~ 5[#TPmPzAv.fnvqiH]RIpq[1.h"g-R md{p S2Dd*jVq!EbR?7!Z%g=') BDbgɡE!PYx kC!~yeΐrҽ!*j8Wk@ʦc6ar# Z>cX1ɻɬwLn3wўd=0Q8e6@"@VTB =d4r$K9Td$h<=l_TitHG4ZxɁN+,A5w^(x՗U+IjbD37˱fU_q=Ie 25hw4iEEU܍{ +P ȿptL4H] b֐4ej"JQHADJE`3i`=#M%bYr' b&yr |[Ԏm%Sk%Θ|[:=+^!s\(`%r񬆳;v%)"Y!"YDJ }'1 gx 51Mi|οp:]c{Ɍ\ecSg v8v08\ mV r,ewПϢۦAt,B)qLhp֢wN &&&L`)kA5f8BKu&Zv /+< 0P#!lPPդ4kxeƨFdҴbbVq st;ܞnm.i@A(dʂ.,*RG!VdJC~ H6]׋e~ ZZ? (iԬ7y8² ;-ܘZ"ī+;Eb:#g0߁'-\noNJ9.tX$h瘷:L:M4O)z JNvHY3-ձY1 c1Q5&5#r(鷺/NU@mZCS7G\oO[ޱs{0v{觨WX1j{Srn(].Q')zhȒD@9k bg&"bff^&;asUo`r habˬn~+%[605UAz*#^I+mX- &[lcXډsA(>):2""Md g0F:o)-l t_s8WFw0hQEȒ RJ6D@5*Yʀ"90J UB N`#h  h!7 H"r@ 0BVvP">]/Ʉz 8naj:kݙ}3u4aHNṽU*T~n +j2z Dm"" D `Fv1P7dkؚMæ!< +yᴱ3# |LI"B HA1FkmXSη(6$[ٓz>q[w ;mh#f֏ Qz' N;`NW~ |}Bh}6PkP`f[Ι UC+PPc] dKh,t>k5VuU  "m0@hfj c2lxV:[čI@`, LFJ "95p虌Ax"Z+k>K?|`֒T.c]XTT;P9gOڹm5~%S_q>|{bQNmXz/HO9.Cnj;3a&'2F MsiƒŠ9.H3`T4&l",ܚO -̡5T# ;ұ->[Guh몰 tbe(T3<5>> {rm??:K gDIW̩5W]:ku)xqّE_pW^Ǎ}6Py0Z@Ȃo;{l$ 8?ݱw?=_߿U_*ң8]CSa<ޥi,TǨ`Ow!sХg §KkYy8Z,2r풛kAqI)4*!J0焏 00x1i0Np_u9grcqӾmiрdUL;$!(ZY)_/fTO|Ϥ2Z3XM6 G,&rסk%4͍P}VX[V9'8+Ad L)If"T腔x_GqNrcA `1\;G qi }QA!9+1:~>g{;Oۿ?}i: v!N僵O^cۑU_D]iVnVGuv.nhѫ i03@/gPTjqh9j….AiY71`siD18'ޥҥn4Csc~վ WLѭaD?_? U=@uV#C˟o?Qڒ˵AD3*윳v]'\e gO#o8z٨q7{G֦9z;7spt}6#B/ؙ>dH}s\ CeEN #,5@T"*ռX~`|!`86Եq5c)6 KI@- c}ΟvKqDӬ'>a>O"7?~MCu̴BgS+]# k$iٸ$%m6c.t6vk^?gM_׆);o՟؋e:`wit0Ӽv~~bX1Dž¾@PQCBJ PT({tFik [55frئYfե%Ya-bDGNk6Bl2'G< "v߻;ZUU3Q*>J&1U!뺮K)H3tͨ2Nc~sZL$ɴ1s&Sm}+VXc $h*Y{&FmB'Y*hU%̭R(|3;rG7yj%Q@]z&~Fy$uw_zÓz7I뱗1C?~ž+b .>5=ƖbD*Y]$#US Q*_!P(01!vdCK*E19D0 ZL +7}buZ5>=w/_kv)3@T؞wBH]}Ɔ3{ 0~!00| ~/]7qMu޳}4WE2:g;3݊9VxhR >lQ,0axscXъkjwԥ܇% -b߇VxP$7G5'Svvp\v2o%T:> "zASH9g;ӫ؞]583ѰvTKqU ^*\ 8\["Yu Btk_}ףLP4{?w|՗d?zvglӗ]oz5zZ~Ҷ83/]Ji6]df&sch84McA.*`?=oʿWybtW=9|˖NS'lڱvCdB0C+@F:xK3AGC@d6΀1ZP% !);\#t_τo̺jp_G_t_ f-[k?U7z~ ~bi1SU9gϷ0v/͟h,6|zo0ߨj M^5VgY޺x &í}a2醪$l@IgM (,*h(Ȣ^OyJ?\'j* ý$cXIsM/;_GݼGZ~zș>_=}_/&<}mGʺ/"!B AD9=^LD1#ٵѱu񊝄lKTw[Н;Yʳ]LN#%Wn? IaGkԛ~ӽCOߥW^ xDR]21{"KR|to ܛ9ߴG0>e [vS%9Bz +TU5\[]遌nLm:?֨Z:wjNOO11&h.5yq$bVXpɭ8W$;pGF]c9L0oAiejXwaukz0Q <ўF쵏Hl_rѹa$+؊u9%C3 d rGMMY5sWp/*F fHΙ1! 2)+HfPCYRt:N'O);:P fg<'2Reh]4@>fJ8咻+pX}T/O"8Ͼf_7}eTy큷;7ݜDfciQ`sm\aƥY}B S54qL@d X Y@o\G Pi]<^̡ԫvNv<Ιq'5M6[W\2T4/?-˽ZUK( ""yr`g>-ћ]41!Nn[!s\ r! ~zqtXl` LM-%5lY~9Ώdc!\)Vq-H† iQb2LBS*|A*$(֏%Y]!jB5k)օy$^S GާO6PZ8(?](A"w 1Xֲs]1SysݵnFI7Ȁ- @ vb߶V԰b R()kZU l8"U-yDLG dB 0v K1\%0ؔSf6n |fiVʵ??#Dz|%(S@Oc49kmUUq W<`s(>_u_ N"Ev +0.g֣qF 6Qmoz oQ ?jV. !0 ?ɛbM6&Xo9doc{{{gggooo2mB(f2}`pX/O61"躿UF I.ٳm k*zS%s\(`PX\M~;p!:5lΗEE"RX]8 _D+\쭣_κ:$)YC֦}Q ]>ɖ of4mlllmmmllFC =Z,\ Oj&Q]U s3y23,4CT `k$^2c(g fv>(YB(KpQ.GĔ1{ }+_H}_X.;sZVEi*2)iJj-b"CH1ff$8*(Ov}G gC :R"e1u3DZ7SR{DpbVd= #Yg ٜ0.٬Gst4@ ㄽӠvYjw\@@8)r +z7h{i}zZĻ!(XTnYbjuow &,YXНa"M!`󜱿_jj܎XvTO Q*B~pĝکFOirBdY է?"~oJ!A*'$%1,Wb@ܯ%$ ѡu{fCttƓN]go?tꜫj6]y7pÕW\vɓu]e/r-{ 7]B~m^ל>}:Uu΍F>=ɣ?2Ƭ7|C-oyG>fN~JsUzd:/'ֆ/zыN8a ->xM71w~׷ۛURի~vU9@z0~w۶F?}眿9POp[?<ˎ4MmphZC{:ņ=Dwىn:=m>\OˆLS=W»_Y mI|c-/;q}= w8hm2V3m 61U=?A'frcG_GC7VAS-=rw ͽO|~O#Vd|F R^oߩwLZk_gݺ e&|=~9={WNCwEx\rSV6r'j ՖVZmِf]ԬZG!Q9QK09'SU]p'[@15d%D5hdϊ{4ݧV}ަƽ;>H|죽(ȒR~UU1:ux_蝝m1ՋeϜ9u]1'O|BPuV*]/Tޔڔ}I@]9^ Bwuigzlrk EK҇_7-֭w]LI`x<F6 G2e?!l+ԉ?}P6=;t[WL'7-?~ `m/;USݳn9$kT9ƵNfX6Ĭ6/oO˳1O_5 /۷?{0sW? Dn?X;sxm3䴽wp79淼~A.+/EUU'(%sS>mΛg7ǐS2֖F]"φFl6wrYPv}Z&*[c5~1ƽ|4ͽ+sMӈ?g=hu]@|folۖo"j&%qvITZ+'\^/rkD0uִ֪j6ywԩj^ -53~3oT mzE"q?k:uϿcauson~;$B?gIoz^}3oۙ׾IX@!f_md@ΘZSV(Yd 4ʄ#z`2(KI _/GW_>ѵ׀ XOWN}).I)A?վyiDt+R*B>YqB1~W#/n#t܉E/P x\\l6; )GQ`)xo#0 +{?L]I{r|\q+vwwNb,XluAcYU m$"Re,-l2sG()m 1k( naqvc䪁V-dtC sv8:o uУ-9Kd6uǒ!GE* 4iu9l{W٦_ڰ AC-dFL E b " 5[Irs *qf+nUnեwnR  ``M3H0Wy|,w5 FN15l7K/ʖb ¬ޏO՗uGr@:+f._"*\٧VGׅtYC%cՔՄ$^ڟJj4l ˓PBwZjl;쾶㹢{W.afc%LV3Kkdh4:XdB_eJG1TL#٘,(F*Ƙ,3gō7X". ќH۬H wS:SWcLh TɢDk92d{B}`o}Neրzmnlu'M[{0w!`XV0fX"RF<ѭdooNS0&C]@}7&ܨȬ۱4Xud=@SC<2zT?yG\=9CH@H[aAG=]0?=iF0zf5L(PI ;2lBԭr.Q(t&Xc H ȁ/9dXļXD-y(Kg1"D|BŤw.|i|`̾IJȺ:g}7es]R@ۥ;{,>e屻;;{luؖPHnvMo>wxDXld^Ukߋ}ZBk8IՔDfr87 o=DD}CppUNs" b8{NUmg9iPT3tLm|p3`EIq@K;O#ic32$QY$py4o͛sXjqbKJثy=,c:gd(#!UgbBPWJ^,Ў $DY , LZrAq6M,*՗ǿBAI&ѬL$VRsv=uQ`E nSNGѲ>}[~7~[/x__?ݽ9Ò1tQOyk>6蕯ɧ>11@j礐l6s,A&ݮڅ౪TA)TOξ sUM!c'@'BHvyo__MI))P2:#g=jzԫo_?hv4L`?+_k'3ï+p˭S{c( (,ݒ0!32T1VX*Ƀ 0y18rI/ne%Xa'0GHF4w,NWwo1[L`pu$||+EDI#Dž 1c5{Pa IB1<3;9W/|;sC0YR&}C󮞄o?_n9uj>~ ۅy* !v[`zfˎzæx̋C$X+j!H~p/W\U/λ_}=3JTJO>[ng7_>kg}8% 4)Y"XAM^($"3_U3M $(-&YbOx?g~>%}Q\U9ݎEu!2{?v!rKn|>2^c2Mu]$8=n%J)y677|fwhx^ܸQ%@&g͕w竿_?|ӿou󇙀ʙk֏д{/c~omW#9 mٶ3>-NyY0*uԮ / Oi=j~ 5Pnr9?=xw_q?5_}40`[E4bk^? Kqgh雾+؍xh,7 Hل$XkFzmwtsc[qZ&-Thay2i/Ť|>Yp8F9p!eo䗁S"~xy`0(($ǽ"c\_ M /6S)5?rHIoɃgBkEg>ӞV_ef6!7[>6ؐQ]1C_abVP g>酯P ]v#c1I, 4؝!?9JEUwla9A26$ _ٯz6<>X.`@d*5\]{5?_nX,K8k5ƍe[Ec75H Rb4qhfcT*D̩'?A:* 8 RV)Iumۖզi6ҍ_X*|6pӚEI*Z(Jd ?( zTWW|;s'}4i":qNh6+㒆öhnAڜzF|`h42H)s2݅t-ŦF)PNEe`-rTRƁ4\"dU9%s`4$(g|2r3gkw?IEDpUW]SUUmllÇ/O\2.&&v b' .{X 8vAutRrW3*έoaTL ̨XvyL[yxojq_p}wĘ"T)B`0MQBlW{T(uṖIpv襵}T!y$~ {"#xLfo)"C4*L7y`Sys$clSv| *zl8 yT\3=sۧ6?[j?M<#*fvww۶` 5M5 WJuQg'CV41'H9xgHy|p:B=B.t0AS 2D&%)Kt|OKBr]ClJ¼p|yK!zEX f'b?,Č+rccR}L4:{TtIX*"eFS @E sNF âyFC?FtՕ3w4GL5 E2Ylȣ3yö m@FFh`G_9+i㺳Y# MOo Uۓp @]1 f* q8_լ}TH᪌ZFLm;0*HZj?Ox}勿UlQ$$X` Q߰g(kgǚfԑ5J8 EGíhVުKXǾF=C‰$;3o=dT?+ Yj,FbzjXr5/Q_XGwU 7~F|ƬmU:Ȣ {0j Z(|+8`>[ktVUs/\rFRLr. }o]JeO:e٬i=n_Ij[k暣GZka۶ׯ:@zmKݡ|C8ղ{/Y8ߍL"! M<01;C8' u |Dc\w\L H0zJ(P{8ծs¶E%׆d;@1؝s fԒv&g޵mx{ԍLs\`k[h8xؽINofz{:vGOu!AUIij64qG?u؞z%Pԟ^QL*m8皦4p@iH'"X_Ƿ߃< [BmzߺHGZyYS-"yc[pHD~{}^?k)@)73gqP11|b,-H({OĈ}q ,ONGЇ>4N_W;v,P.>ڐ, 967ח7;KS}Ĥre3>7/mI5_/y£LEEMW^};ٴs#/O_ 9MPRh\ !`v~ljF.ϣ}⣪Mz#oG|wRPRF%7Y1ɟՍl֟yO߿G%@DwӾt: WΦ{3| E?-6z|_xGgYΎj`ѥ(~ ί> >ݾnQCfYErFNwkxiC*`~4{dBMfx$d3"NӒ-:dLrIJ_u*²}G!:;wQNArE.Gҕ!U]_yUck;o[6"I!trK,˽嗟8|xkmm}ԩcǎ-IB1TziJmgEDR+E撦R o,5"u$F_~ȑibwq7LD]ve]VZ ,)")ѨGY[E #$ m<}[r ~߱W^5Mg]qW߶X>rSed R#̻t[ }= H1bzӄ`+ eOx\Ó=֡4ȑz1{rg?[^g=AP x Uf_5[Ϳ9|/b4 D@oSS<{mg'h_-P5$r _ũz=};oi4l|Ke9q)C@P~#zm2 p70žO D&o{~oxs:#|'rY/.{i{Z-ΥY?Jb؊U7r J`.5[G6~wq-²{gaUU!q{뭷>}sر/xh4q?~Y[[{#)"E@w9G9R;-~ss󪫮*>'V9>|nٹcUUmnn^s5ǎB*p8c N5[_gvxc8~աgoxU 5碻'˵G&" <<`oQ0ѵ_U" 3&K|78)˛qpX <_+?b.u//97(B_wӎ_Gk3v_krB*L\P_pË??~GgwI?yԑ9G_䇌lgd!?MNN /6 r/ST\!?jY_ͻ_?04s֝b!ιx<^4ѻ7&缷BY_[[[n_#$V]oGwޫK&>~~g 3Rl33;%d)WK@y6 ʒ RB{Z#5u618u; HlZ2]=ȯSB*sMIeR?8޶m)AU$ Q :R@ h>y ӔEq`)"x =cGE l+Dt 1x@'mH@>gpaA2fY8S0aH#YPz,>ČZJ _ z%1z !8X%DɎ;"( {DpB#@5AJ0m; Mۢ/+R,0 i\Zƨ2kǩ$lߎSsh^9Ԝɚ|ɏw4{FzӾt@9F2JaʹCj߱NƘt׃;Opb mI)|gl0`  1/JٱĢRXX˳ 0\*_TU&nF9gkpP`1χ[ k]์1)I)Dμ%kimC)I)I:# ".Q̮EHΏ8!a %XsֹӐ!8޻[_}ߵۯsϽtiI3}N8<`"ĨeYps;9m/]!"( \ hQ=VYB}'+07K PiB^ K C7eea,͋3ꝟoO<,&dg -A=J0ћoekMif  #DLB툎 >+͑S%$KyHI@hxT 4{GBQ1 fmns5kJLß9%#O1[u ]eS.?#OԔRow}]'tPnϑ zO@?lWuw<+UcixsQh7MYzhn޹d2z'V̞ԃ}wwi(L " ,FiX*V=/|io|ϾuP##_X SZT@s\gOh*]ꦏz|q'PKj=٬pʆa*[}wy7?YW֑0.Ͻ[yo {U?>vAU,_EwA890ta+.]x7Y"x'|D5ikK./7k} rذқBr¶6FcC1UJ>8phs8w&>)|Q$凿;3ko@kN>_}27Vx?i.GT.G8(n(g>g~eM3y7`WtFrF]9q^`4\и4~*xz/p &oi;Z#C(~{TKd|M,y^CjPVKCEN΂cauOHdp0b,}Hg݂z7@oF饛Ѝ|v10@ն 4n 0a3' ~_}_2|ߜo`c?##O$42d́!7Tףk9鼴lAD*FT0}3?Ղ&:^TͿ42r0*mu}bJS*7@QǛ6Z_%AbާS4gL孏w}-u T|G>Aٕ‘ :u6#m%Pfe5+7}koX]$3{E7MȺGu9qB_%JKU*pAF1kbvbglhS|/ݷoOʿh EBa`*X 7}z>"8#j f 'o}F@dg~{}4yi]Q ޠӓDyAF]gj KQڠrASP4p(s,h (㴌4%?pκti]oƺam."exCo *N?k*p>viP#!BKVIY- +.ZV{}/>}GV9Y{ydk3Vl4#Q9n[VCɂ= ʩ57ND3̎;ų:{%d <Ѧf2f-{>gF$PF009[ ǯۢ_$?4ɦ!X ^՝ذmX|gǖY^z.=gn@_5##sdࡳv)seJjBX"Bkg"-OIuԈ=w ?-\FJz(ݤO&h^Hiz]XsCC9uG/ex gИ4erV_J_?xeCx?͙/f uTnrGFϨ)@3D]Y+Π:rbUIIIQ`ѣ=~e̟^wąl^SL7+~>z:Ly;?B8(2QmuxRv_pXuɤK9HO_u;"Mګ쁷j&WirI2S 0C?C10BC;5B-I,y/KY#⢙P(cWADA=շ2AA F ڸ{>tΰH cO _mY]P_Y Α0&R3ί\B`n "#PMAI.&[UEDllGBO>끏֑4BEC~6=}z^Lߘm݇Elܓ%]iy>r2fnH!ȉ[9"hZ WB&$$ @0J;?~#_,—O艏||{߃M.HX`K5ˎ&hD,(SN͏Fl:μfB 0w G//B|oyy~o|Lh,y.yr&94Q9FN5r:2C;-i ma%vFF955DQ0@e@l?wƯѕ=ual?7;bz{&|ҾvirJ{{q@'r`I|LEҥ?^'TF$޿oHNyF-W?Tʽn&:nZ.}_HW7|ՄiWJ]NVKgA)DفxpZ(T,'JJrA4%.O_K?~?sqa+3>P󆷿G.b[SSazw~~4g0&oz8rB 4Y9u5}dj %9Q.3\fOf='*$;?P.l*ggՍτBsSC  @АÕˇIa$j/+IJP]~3??ēUS;ڝPSoo?׾5g_3F3N~>;\,$f٪󍌼MFn; NgI:>i˫xJGw Gl]C<'3ؼ9MHXS."δ'/^>鋓~g\p۔ỵ|=C\5Kyj9}뺜FU?gͿM=Qr U}yv.} Zij6vE-H::udTSjt!{8zVfOᓘ]%x~Vl1=^%L/Y ̙}t XF~)Y:|'݋W/}ퟣ.q_{׿}/wosE `0(Xw]Lq8|y1Ǯ|6"!yq^3ּ;GGFU{ -:svM_Vy5Y^|uYN X-1ȩfTSFN`9=a~Y0d8ϼm4ur Rnr:y 8;@2]G/?O5. f`,Y&XSS{'^<*(,Y]/| H 0e"cbP#>??2FrB>ffvfV`f I lVr }s5Y)iBS?G=}{st9,4)]]ccXc_ӗufا9{BbҬDɌa׳8*=xm ꖷ/n7.36*کdf6QlJbr/ȗ18u$3yem-v1De,JTsvPmbz hvؐpL&_le Stt'$``Rx[sM,R*s Lt3 V34ZYZR\_ (PyrCP"T* apGTFS !JfEVXЗy,u܇E-$063F@<2@ &V;:qtlZs{HC,by>7qR֨(S6 . 2ȝξS iEZ77"-ATIb=e[T]xiܢQݗswHUw<~Ap(PNPLoR܄Fh&`gA贔FF^r!!B4dSAԈqiu{nfCV*{Qc{;%9G%CK.C~0Tg(Q6&9lrآr|xO0K`T;2( !5ifؑ b;ZNh-ẅ X4*y ?fhBZg;@rGinҘ ѠEW#LQmQרoDMt\ :xTT*өEO0XKI %p F5ϡ0UR( {Ь}Gqi!w  Wk (J )&)xAW㚃݌qǐlP4E94jj3͙ \Ah01؝Ol8~nqAq88~iRgLGE?H/JV 3ܩqpAlq(!P_AknI]%OYR݄S6b)N\zn[+덩"33Jzhb9Rib1siA@׸Y9{ ̐\rP{j S-7ܢP2GFtF!7eȲFVAY4#PEj/W@LA @D:nNq;q|Mp5\IE-E_@VY##wrMB/Z`D.#;t wC#U ٛxv"FF+Nmoe愌a@#HKKKˑӂb8CxxD˽!85PC)5mڰ 2FNjD)Clp hR` B; =cJ(L`4C C!dqR6c?aHqDZRؒ&#J-=39mr(F}#EWڐ*7j_?1E5rW1*N|I-p809C/(".ab HRz  3lljaIyn39R"Hs4;@j?D\B3H [=:~„BI| >j#wr _b#K-GƁA\~3ԐڕXR\x) Ha |KS7 2ؐJ=rf9r~DZ`y 56IҘ4S+6(TjH9=Α#wr0z1UD`JE3@2Ŗb ˊl(וr0R.!ޜ@bdt@H;@9d#f8#.)/(.  L$‘+ S*6+x0_qCCW2`oUKCJ 5B%$H $ !1+3@t ۍ4e=RC{ʉ4RNZN-q~-ufX!B! K{@07vdZL tܹ=r˫zKGgshF[rԱvdP%+L sX8L@<有7q8s`v 9dun0ޖfrsIOh 04242zRsRK=$s#t shZē/͕"_X5,]Mnݎ1] h(&rD$1۽#4[7#{0WFg9 ))Q'"ȁ1]S_[S"]7~,XNf)%LM/ *rϚF"%RG 15ؑ \  $oK^w522Q9^\8bDY̌\T-Ui;X R W9 H 1/"a|p~h0:f3)icKh2˔j"jqIM#ҒsܓEt ܑJS18H )LJæ9 53Q9V r8MH\@*rsAZNz0/5C "`$DBD""0l1j# Ph6dR3a,[Δ{h"Sh6]%&bdjlL+R 4 \ OY[pa YcC j;MŨeYn)'hι[4Qi5GC[a|X\k]}dd]`kAX8ULșsSo\/L[>Ƙc: 3D"T IYBAzhLL74dl@`Ɗdg}]orsmP!HĘPCsIL<8%_ Hƿ V8X c!=(2L)!J$m fǩǕ?ohȘ`zVxb9LAvl~B h652cF!)PԠ=R"4B* 92TX_jc yM&CD?V 1}Ž؁Ac,AG,p@n\>2c: _A84Q!zb'ʐW!HZ'Ì+|l'@$2$6$ f8y# DbDw?3r+8)%& u)0%˖iȲY\lNO`_~qa|D4D?Ƭ06&XBنI*T%%8k1xxުHtg|=@W} 0ua),eޠ.®KUqX9#1(Hc C\B Oz@صvd0#7Nq 'DPB~g92r71*ȗ|ыs)?iK2[еOlWlddddu&0ŀ l;?'B`dvt % ؄14{9؉ xZ6Wf͒L}8/LH<^v9RW1Ϝ  8b+׆uO`r1(Lnek@l^^a݀$ u| YB<ཀk^l``YcE 0~`оD[7S0/)_^vt0)&7KqB 4) lgh! X\=)8<ݤ e&b(Rv2ps?sDQ9QTToü`,+0 FB+q9IENDB`espresso-5.1/Doc/developer_man/img8.png0000644000175000017500000000117712341373063016211 0ustar mbambaPNG  IHDRb/J20PLTEMJK# b``mkkXUV856C@@wuv.*+ Ė`tRNS@fIDATHTN@}/bD#4]UtDˡ) G:BPH(RQ]R*2{3Eʓ흝;3;3^'B1))k$9I`RͲe,[ш6 yf%z$\緆R- 2фPƷr+4>G`ˀ#~Bƈ621;GΫOfΛp?ȐwtXbbJn~Ãw ۠ yt[R=S>ŗJUt (K2R =\D6U_T1?lܐEL ^!-jY."Wz {~ ZaI~L3%ٵ$|@?%K@.?IiWzD`IŹΨ[ ɲnO A!t}],wɮ ^uKbM`oВ^wuJ='~5E vư(wEJյ8ߎIENDB`espresso-5.1/Doc/developer_man/img9.png0000644000175000017500000000034512341373054016206 0ustar mbambaPNG  IHDR#$PLTEMJK# b``mkkXUVC@@< EtRNS@foIDATc````Є|F(`Q*րE1 FFwA;\]ZZ~W`eO#L P!e$f!{zW*v&% Ec0̢IENDB`espresso-5.1/Doc/developer_man/up_g.png0000644000175000017500000000034712341373066016300 0ustar mbambaPNG  IHDRtRNS-Mc%IDATx} C(ke%؀5hCKk ;DjQ)Aj`UqR%BdqR*["愎2$Z ɼ\Sc%2Lhy%@lhz30br۽,b[.i(1AK].bMS>GB-RIENDB`espresso-5.1/Doc/developer_man/img1.png0000644000175000017500000000025412341373056016177 0ustar mbambaPNG  IHDR!PLTE# MJKmkkXUV856wuv@PtRNS@f9IDATc`.(Cp.2  b` #\-4XbUb`WpSIaIENDB`espresso-5.1/Doc/developer_man/prev_g.png0000644000175000017500000000050712341373066016626 0ustar mbambaPNG  IHDR?JtRNS-Mc%IDATx͔u D?~5m9`D:p9cm.BBb$9db`HUI:Bu:ΓE-'} C|,t%}yFsP=T.+9dG+WZ~panP895il u9'ͩβ ֒_+xe U+i@iZfG-Κ6)nsU~!L,cwmP,vzSH=hyW:C>G'oi=Q)IENDB`espresso-5.1/Doc/developer_man/internals.pl0000644000175000017500000000162512341373066017174 0ustar mbamba# LaTeX2HTML 2008 (1.71) # Associate internals original text with physical files. $key = q/SubSec:Inst/; $ref_files{$key} = "$dir".q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:propedit/; $ref_files{$key} = "$dir".q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:conf/; $ref_files{$key} = "$dir".q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Conflicts/; $ref_files{$key} = "$dir".q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Bugs/; $ref_files{$key} = "$dir".q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:CPP/; $ref_files{$key} = "$dir".q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/Sec:SVN/; $ref_files{$key} = "$dir".q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Merge/; $ref_files{$key} = "$dir".q|developer_man.html|; $noresave{$key} = "$nosave"; 1; espresso-5.1/Doc/developer_man/img17.png0000644000175000017500000000034212341373062016261 0ustar mbambaPNG  IHDR#'PLTE# MJKmkkXUV856wuv=tRNS@fiIDATc````@R h Ł ftH `dp$ B܂EU7o*))@X ,N@@lΤ{ ǥ4IENDB`espresso-5.1/Doc/developer_man/img10.png0000644000175000017500000000070312341373054016254 0ustar mbambaPNG  IHDR0=n0PLTEMJK# b``mkkXUV856C@@wuv.*+ Ė`tRNS@fAIDAT8c`v d,.. ``8iH@\ t 0 q8wz~Bmd Vыi;فXagC! A `.6,: m@Z)É ʑyP&a²p 8!V! .aI׆8t7 rB2cg!q9k}\_l /@PJ)`pfR@`(e? L4R|HQ``X 9${dP;G@aIENDB`espresso-5.1/Doc/developer_man/img11.png0000644000175000017500000000000012341373062025364 1espresso-5.1/Doc/developer_man/img17.pngustar mbambaespresso-5.1/Doc/developer_man/img5.png0000644000175000017500000000043712341373055016205 0ustar mbambaPNG  IHDR# 3-PLTEMJK# b``mkkXUV856C@@wuvXtRNS@fIDATc`v ~@<` 6y+b{:mуȲi/fp&(xx  8T1hz.D"ClXg ^Pĝp|; $key = q/Phi;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \Phi$|; $key = q/displaystyletau_{1}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle \tau_{1}^{}$|; $key = q/psi^{*}_{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \psi^{*}_{}$|; $key = q/tau_{i}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \tau_{i}^{}$|; $key = q/displaystyletau_{3}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle \tau_{3}^{}$|; $key = q/tau_{3}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \tau_{3}^{}$|; $key = q/displaystyle{frac{{j-1}}{{nr2}}};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle {\frac{{j-1}}{{nr2}}}$|; $key = q/displaystyle{frac{{k-1}}{{nr3}}};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle {\frac{{k-1}}{{nr3}}}$|; $key = q/{Phi(G)-Phi^*(-G)over2i};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ {\Phi(G) - \Phi^*(-G)\over 2i}$|; $key = q/displaystyletau_{2}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle \tau_{2}^{}$|; $key = q/psi;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \psi$|; $key = q/displaystyle{frac{{i-1}}{{nr1}}};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$\displaystyle {\frac{{i-1}}{{nr1}}}$|; $key = q/{Phi(G)+Phi^*(-G)over2};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ {\Phi(G) + \Phi^*(-G)\over 2}$|; $key = q/Gamma;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \Gamma$|; $key = q/le;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \le$|; $key = q/psi_{j}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \psi_{j}^{}$|; $key = q/tau_{2}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \tau_{2}^{}$|; $key = q/tau_{1}^{};MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \tau_{1}^{}$|; 1; espresso-5.1/Doc/developer_man/images.aux0000644000175000017500000000001012341373053016603 0ustar mbamba\relax espresso-5.1/Doc/developer_man/labels.pl0000644000175000017500000000343012341373066016433 0ustar mbamba# LaTeX2HTML 2008 (1.71) # Associate labels original text with physical files. $key = q/SubSec:Inst/; $external_labels{$key} = "$URL/" . q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:propedit/; $external_labels{$key} = "$URL/" . q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:conf/; $external_labels{$key} = "$URL/" . q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Conflicts/; $external_labels{$key} = "$URL/" . q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Bugs/; $external_labels{$key} = "$URL/" . q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:CPP/; $external_labels{$key} = "$URL/" . q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/Sec:SVN/; $external_labels{$key} = "$URL/" . q|developer_man.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Merge/; $external_labels{$key} = "$URL/" . q|developer_man.html|; $noresave{$key} = "$nosave"; 1; # LaTeX2HTML 2008 (1.71) # labels from external_latex_labels array. $key = q/SubSec:Inst/; $external_latex_labels{$key} = q|5.1|; $noresave{$key} = "$nosave"; $key = q/SubSec:propedit/; $external_latex_labels{$key} = q|11.4|; $noresave{$key} = "$nosave"; $key = q/SubSec:conf/; $external_latex_labels{$key} = q|5.1.2|; $noresave{$key} = "$nosave"; $key = q/SubSec:Conflicts/; $external_latex_labels{$key} = q|11.2|; $noresave{$key} = "$nosave"; $key = q/SubSec:Bugs/; $external_latex_labels{$key} = q|3.5|; $noresave{$key} = "$nosave"; $key = q/SubSec:CPP/; $external_latex_labels{$key} = q|5.1.1|; $noresave{$key} = "$nosave"; $key = q/Sec:SVN/; $external_latex_labels{$key} = q|11|; $noresave{$key} = "$nosave"; $key = q/SubSec:Merge/; $external_latex_labels{$key} = q|11.3|; $noresave{$key} = "$nosave"; 1; espresso-5.1/Doc/developer_man/index.html0000644000175000017500000027275012341373066016646 0ustar mbamba Developer's Manual for Quantum-ESPRESSO next_inactive up previous


    Image quantum_espresso Image democritos
    Developer's Manual for QUANTUM ESPRESSO(v.5.1.0)


    Contents

    1 Introduction

    1.1 Who should read (and who should write) this guide

    The intended audience of this guide is everybody who wants to:

    • know how QUANTUM ESPRESSO works internally;
    • modify/customize/add/extend/improve/clean up QUANTUM ESPRESSO;
    • know how to read and use data produced by QUANTUM ESPRESSO.
    The same category of people should also write this guide, of course.

    1.2 Who may read this guide but will not necessarily profit from it

    People who want to know about the capabilities of QUANTUM ESPRESSO, or who want just to use it, should read the User Guide instead of (or in addition to) this guide. In addition to the general User Guide, there are also package-specific guides.

    People who want to know about the methods or the physics behind QUANTUM ESPRESSO should read first the relevant literature (some pointers in the User Guide).

    1.3 How to contribute to QUANTUM ESPRESSO as a user

    You can contribute to a better QUANTUM ESPRESSO, even as an ordinary user, by:

    • Answering other people's questions on the mailing list (correct answers are strongly preferred to wrong ones).
    • Porting to new/unsupported architectures or configurations: see Sect. 5.1, "Installation mechanism". You should not need to add new preprocessing flags, but if you do, see Sect. 5.1.1, "Preprocessing".
    • Pointing out bugs in the software and in the documentation (reports of real bugs are strongly preferred to reports of nonexistent bugs). See Sect. 3.5, "Guidelines for reporting bugs".
    • Improving the documentation (generic complaints or suggestions that "there should be this and that" do not qualify as improvements).
    • Suggesting changes: note however that suggestions requiring a significant amount of work are welcome only if accompanied by implementation or by a promise of future implementation (fulfilled promises are strongly preferred to forgotten ones).
    • Adding new features to the code. If you like to have something added to QUANTUM ESPRESSO, contact the developers via the q-e-developers[.at.]qe-forge[.dot.]org mailing list. Unless there are technical reasons not to include your changes, we will try to make you happy (no warranty that we will actually succeed).

    2 QUANTUM ESPRESSO as a distribution

    QUANTUM ESPRESSO is not organized as a monolithic code, but rather as a distribution (integrated suite) of ``packages'', with varying degrees of integration, that can be installed on demand, or sometimes independently. There is a ``shell'' structure, with at the center the core distribution, including

    • scripts, installation tools, libraries, common source files;
    • basic packages
      • PWscf: self-consistent calculations, structural optimization, molecular dynamics on the ground state;
      • CP: Car-Parrinello molecular dynamics;
      • PostProc: data analysis and plotting (requires PWscf).
    Note that some libraries are downloaded on demand from the web during the installation of the core distribution. Then comes a first outer shell of additional packages, that can be downloaded and installed from the core distribution using make:
    • atomic: pseudopotential generation
    • PHonon: Density-Functional Perturbation Theory
    • NEB: reaction pathways and energy barriers
    • PWCOND: ballistic conductance
    • XSPECTRA: calculation of X-Ray spectra
    • TDDFPT: Time-dependent DFPT (requires PHonon)
    All these packages use routines from the core distribution.

    A second shell of additional packages, also downloaded and installed on demand from the core distribution, includes

    • GIPAW: calculation of NMR coefficients and chemical shifts,
    • EPW: electron-phonon (under development, requires PHonon).
    The only difference between the ''first'' and ''second'' shell is that the latter are stored in separate SVN repositories.

    In a third shell of additional packages we find

    • GWL: GW calculations using Lanczos chains.
    This also uses routines from QUANTUM ESPRESSO, but it must be separately downloaded and installed.

    There is then a shell of external packages, which typically read data produced by QUANTUM ESPRESSO but do not need it to work. Some of them (notably Yambo and WanT) can be automatically downloaded and installed from the core distribution using make.

    Finally there are plugins: these modify QUANTUM ESPRESSO packages, adding new functionalities. The only plugin currently released is Plumed (metadynamics), but other may come soon.

    3 How to become a developer

    If you want to get involved as a developer and contribute serious or nontrivial stuff (or even simple and trivial stuff), you should first of all register on qe-forge.org as a developer for the QUANTUM ESPRESSO project.

    3.1 About qe-forge.org

    qe-forge.org is the portal for QUANTUM ESPRESSO developers, contributors, and for anybody else wanting to develop a project in the field of atomistic simulations. qe-forge.org provides for each project a repository, mailing lists, a wiki, upload space, a bug tracking facility, various other tools that are useful for developers.

    Once you have obtained an account (please follow the instructions and introduce yourself when you register: the site administrator has to be sure that you are a real person!) you may open your own project, retaining all rights on it (including the right not to release anything): at the end of the "projects" page, click on the link "add new project", fill the form (note that the Unix name given to the project cannot be modified). You have the choice between a repository using CVS, SVN, git, plus other choices.

    You may as well register as a developer in an existing project: go to the project page, click on button ''Request to become a developer'' under the ''Activity'' graph on the top of the column at the right, to obtain the permission from the administrator of the project.

    You need to register your SSH keys in order to have read-write access the repository (if you have such permissions). Generate keys on your work machine if you haven't already, using command ssh-keygen -t rsa. The keys are typically found in file .ssh/id-rsa.public. Then

    1. login to your qe-forge.org account
    2. click on My stuff (menu on top line)
    3. click on My account (menu on the left)
    4. click on Edit SSH Keys, add your keys (be careful not to add blanks, breaks, etc.).

    3.2 QUANTUM ESPRESSO on qe-forge.org

    Currently QUANTUM ESPRESSO uses the following development tools:

    • SVN server (with web interface to browse the repository)
    • Bug Tracking facility
    • Upload space (with download counter)
    • Mailing lists, currently
      • pw_users (low traffic): for announcements. Restricted: only a few developers can post messages here.
      • pw_forum (high traffic): for ordinary users, requests for help, problems, discussions, etc.. Only registered users can post.
      • q-e-gpgpu (low traffic): specific to GPU-based architectures. Only registered users can post.
      • q-e-developers (low traffic): for communications among developers and people interested in the development of QUANTUM ESPRESSO. Only registered users can post but messages from unregistered users are monitored and approved if relevant.
      • q-e-commits(medium traffic): for automatic commit messages. Note that replies to commit messages go to the mailing list: in case of doubts or questions or remarks over a specific commit, feel free to reply.
    Everybody is encouraged to explore other capabilities of qe-forge.org.

    All QUANTUM ESPRESSO developer are strongly invited to subscribe to the two mailing lists q-e-developers and q-e-commits. Those who don't lose i) the opportunity to follow what is going on, ii) the right to complain if something has gone into a direction they don't like. Note that subscription to mailing lists is not automatic when you register: you should subscribe using the links in http://www.qe-forge.org/gf/project/q-e/mailman/. Please also consider subscribing to the bug tracker: select the "Tracker" item on the left, then select "Bugs", then click on "Start monitoring". You will receive an e-mail every time a bug is filed.

    3.3 Contributing new developments

    Various procedures can be followed to contribute new developments. It is possible to contribute:

    • a small (or large) piece of code to an existing package; or
    • a new package that uses QUANTUM ESPRESSO as a library; or
    • a ``plugin'' that modifies QUANTUM ESPRESSO, adding a new functionality; or
    • a new ``external'' package that just reads data file produced by QE.
    The ideal procedure depends upon the kind of project you have in mind. In all cases, you should learn how to use SVN: see Sect.11, "Using SVN". The three typical cases are:
    a)
    If your project involves changes or additions affecting only a small part of QUANTUM ESPRESSO, it is usually convenient to work directly on the main SVN repository (the "trunk").
    b)
    If your project involves major or extensive changes to the core of QUANTUM ESPRESSO, it may be a good idea to make a SVN "branch" and work on it. Note that your branch will necessarily be public, since the SVN trunk is public.
    c)
    If your project involves a major new addition (e.g. a new package), or if you do not want it to be public during its development, it may be a good idea to register it as a new qe-forge.org project with a separate SVN repository. It is possible to restrict access to selected QUANTUM ESPRESSO developers; or to keep it private; or to have two repositories, one public and one private. It is possible to have the public repository automatically downloaded into the SVN copy of QUANTUM ESPRESSO (see Sect.11.4).

    For case a), you should from time to time update your copy (using command svn update), verify if changes made meanwhile by other developers conflict with your changes. Conflicts are in most cases easy to solve: see Sect. 11.2 for hints on how to remove conflicts and on how to figure out what went wrong. Once you are happy with your modified version, you can commit your changes, or ask one of the expert developers to do this if you do not feel confident enough.

    For case b), you should from time to time align your branch with the trunk. See Sect. 11.3 for hints on how to do this.

    For case c): if your project is ``loosely coupled'' to QUANTUM ESPRESSO, that is, it just uses the QUANTUM ESPRESSO installation procedure and/or data files, there shouldn't be any major problems, since major incompatible changes are very rare (note however that the files produced by the phonon code change more frequently). If your project is ``tightly bound'', i.e. it uses routines from QUANTUM ESPRESSO, it is prudent to notify the other developers.

    3.4 Hints, Caveats, Do's and Dont's for developers

    • Before doing anything, inquire whether it is already there, or under development. In particular, check (and update) the "Road Map" page www.quantum-espresso.org/road-map, send a message to q-e-developers.
    • Before starting writing code, inquire whether you can reuse code that is already available in the distribution. Avoid redundancy: the only bug-free software line is the one that doesn't exist.
    • When you make some changes:
      • Check that are not spoiling other people's work. In particular, search the distribution for codes using the routine or module you are modifying and change its usage or its calling arguments everywhere. Use the commit message to notify all developers if you introduce any ``dangerous'' change (i.e. susceptible to break some features or packages, including external packages using QUANTUM ESPRESSO).
      • Do not forget that your changes must work on many different combinations of hardware and software, in both serial and parallel execution.
      • Do not forget that your changes must work for a wide variety of different case: if you implement something that works only in some selected cases, that's ok, as long as the code stops (or at least, issues a warning) in all other cases. There is something worse than no results: wrong results.
      • Do not forget that your changes must work on systems of wildly different computational size: a piece of code that works fine for crystal silicon may gobble a disproportionate amount of time and/or memory in a 1000-atom cell.
    • Document your contributions:
      • If you modify what a code can do, or introduce incompatibilities with previous versions (e.g. old data file no longer readable, old input no longer valid), please report it in file Doc/release-notes.
      • If you add/modify/remove input variables, document it in the appropriate INPUT_*.def file; if you remove an input variable, update tests and examples accordingly.
      • All newly introduced features or variables must be accompanied by an example or a test or both (either a new one or a modified existing test or example).
    • Please do not include files (any kind, including pseudopotential files) with DOS ^M characters or tabulators ^I.
    • When you modify the program sources, run the install/makedeps.sh script or type make depend to update files make.depend in the various subdirectories. These files are under SVN as well; if modified they should be committed.

    3.5 Guidelines for reporting bugs

    • Before deciding that a problem is due to a bug in the codes, verify if it is reproducible on different machines/architectures/phases of the moon: erratic or irreproducible problems, especially in parallel execution, are often an indication of buggy compilers or libraries
    • Bug reports should preferably be filed using the bug tracking facility at qe-forge.org:
      http://qe-forge.org/gf/project/q-e/tracker
    • Bug reports should include enough information to be reproduced: the error message alone is seldom a sufficient piece of information. Typically, one should report
      • version number, hardware/software combination(s) for which the problem arises
      • whether it happens in serial or parallel execution or both (if in parallel only, how executed),
      • an output for a test case showing the presumed bug
      • all the needed info and data to re-run the test case showing the bug
      The provided input should be simple and quick to execute.
    • If a bug is found in a stable (released) version of QUANTUM ESPRESSO, it must be reported in the Doc/release-notes file.

    4 Stable releases and development cycle

    When a sufficient number of new features or improvements are available, a stable release is packaged. There is no well-defined procedure or rule to decide when it is time to package a new release: the decision is taken after informal discussions of developers on the mailing list. Note what open-source conventional wisdom says: release early, release often.

    When the decision is made, development of new stuff is temporarily stopped: nothing new or potentially ''dangerous'' is added, and all attention is dedicated to fix bugs and to stabilize the distribution. This phase should last a few weeks or so, a few months at most.

    Releases are labelled as N.M.p, where N=major, M=minor, p=bugfix. The logic goes more or less as follows:

    • Major: when something really important changes, e.g.
      v.1
      First public release of PWscf
      v.2
      Conversion from f77 to f90
      v.3
      Merge with the CP and FPMD codes (beginning of QUANTUM ESPRESSO)
      v.4
      New XML-based data file format
      v.5
      Major package and directory reorganization
      (the above numbers are a slightly idealized versions of how things have gone until now)
    • Minor: when some important new functionality is being added
    • Bugfix: only bug fixes; occasionally, minor new functionalities that don't break any existing one are allowed to sneak into a bugfix release.
    It may be convenient to make a SVN branch at release N.M.0: this allows to go on with the development while keeping track of bug fixes.

    Releases are stored to qe-forge.org. Given the size of the complete distribution, the release is split into a ``core'' distribution and ``add-ons'', additional packages, that can be downloaded and installed on demand from the core distribution. ``External'' packages can be independently released, as long as there is no compatibility problem.

    The automatic downloading of packages from the web suffers a catch-22: the core distribution must know the location of all packages it downloads, but these are known only after packages are uploaded to qe-forge.org. The workaround is that the core distribution looks for generic names, written in file install/plugins_list. These names are translated by qe-forge.org into specific names. After all packages have been uploaded, file /var/lib/gforge/archives/index.php, residing on qe-forge.org, must be edited and links updated. Only the sys.adm. can do this.

    4.0.0.1 Preparing a release

    to be written

    4.0.0.2 Updating web site

    After the release has been uploaded to qe-forge.org, the online documentation must be copied to directory /var/www/quantum_wp_db/wordpress-3.1.4/wp-content/uploads/Doc on the web site (only the sys.adm. can do this).

    5 Structure of the distribution

    Since v.5, the directory structure of QUANTUM ESPRESSO reflects its organization into packages. Each package is stored into a specific subdirectory. In addition, there is a set of directories, common to all packages, containing common code, libraries, installation utilities, general documentation.

    Common files and directories in the espresso/ directory are:

       install/                 configure
       include/                 make.sys
       archive/                 Makefile
       dev-tools/               License
       pseudo/                  README
       Doc/                     environment_variables
       clib/                    flib/
       Modules/                 upftools/
    
    Apart from License and README whose meaning is obvious, the other files and directories are related to
    • Installation (i.e. compilation and linking):
      install/, dev-tools/, archive/, configure, .sys
    • Testing (running tests and examples):
      pseudo/, environment_variables
    • General documentation (not package-specific): Doc/
    • C and Fortran Libraries, modules (F95): clib/, flib/, Modules/

    The core distribution also contains the three package-specific directories PW/, PP/, CPV/, for PWscf, PostProc, CP, respectively. Typical subdirectory structure of a directory containing a package (e.g. PW/):

       Makefile
       examples/
       tests/
       Doc/
       src/
    
    Note that:
    • tests/ contains automated post-installation tests (only in PW/ and CPV/) while examples/ are not suitable for automated checks;
    • other packages may have a slightly different structure (in particular, PHonon has three directories for sources and none is called src/ ).

    5.1 Installation Mechanism

    Let us review the files related to compilation and linking:

    -
    install/: documentation and utilities for compilation and linking
    -
    configure: wrapper for install/configure script
    -
    .sys: produced by configure, contains machine-specific compilation and linking options
    -
    Makefile: contains dependencies and targets used by command make.
    -
    include/: files to be included into sources, to be pre-processed.
    ./configure options runs install/configure, produces file .sys. Its behavior can be changed by modifying file install/configure.ac (see Sec.5.1.2 for more details) and running (in install/) command autoconf. This produces a new version of install/configure.

    make target checks for dependencies, recursively goes into subdirectories executing make again. The behavior of make is thus determined by many Makefile's in the various directories. The most important files are Makefile's in the directories containing sources, e.g. Modules/Makefile, PW/src/Makefile.

    Dependencies of Fortran files are contained in make.depend files in each source directory. These files must be updated if you change the sources, running script install/makedeps.sh or using command make depend.

    5.1.0.1 make.sys

    This file is produced by configure using the template in install/make.sys.in and contains all system-specific information on
    • C and Fortran compilers name, pre-processing and compilation options
    • whether the Fortran compiler performs C-style preprocessing or not
    • whether compiling for parallel or serial execution
    • available optimized mathematical libraries, libraries to be downloaded
    • Miscellanous stuff
    The .sys file is included into all Makefile's, using the corresponding syntax. The best documentation for the .sys file is the file itself. Note that if you want to change something or to add more documentation into this file, you may need to modify the template file install/make.sys.in.

    5.1.0.2 Makefile

    The top-level Makefile contains the instructions to download, unpack, compile and link what is required. Sample contents (comments in italic):
    include make.sys
    
    Contains machine- and QUANTUM ESPRESSO-specific definitions
    default :
       @echo 'to install, type at the shell prompt:'
       ...
    
    If no target specified, ask for one, giving a list of possibilities
    pw : bindir mods liblapack libblas libs libiotk libenviron
        if test -d PW ; then \
        ( cd PW ; $(MAKE) TLDEPS= all || exit 1) ; fi
    
    Target pw: first check the list of dependencies bindir mods ... etc., do what is needed; then go into PW/ and give command make all. Note the use of exit 1, which is required to forward the exit status of the sub-directory make to this makefile, since the section in parenthesis is run in a subshell and the if / fi block will otherwise ``hide'' its the return status and make will continue in case of errors.
    neb : bindir mods libs pw
        ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 )
    
    Target neb: do all of the above, then go into directory install/ where make neb using plugins_makefile as Makefile will check if NEB is there, download from the network if not, compile and link it
    libblas : touch-dummy
         cd install ; $(MAKE) -f extlibs_makefile $@
    
    Target libblas: this is an external library, that may or may not be needed, depending upon what is written in make.sys. If needed, go into directory install/ where make libblas using extlibs_makefile as Makefile will check if BLAS are there, download from the network if not, compile and build the library

    5.1.0.3 PW/Makefile

    Second-level Makefile contains only targets related to a given subdirectory or package. Sample contents:
    sinclude ../make.sys
    default : all
    all: pw pwtools
    pw:     
        ( cd src ; $(MAKE) all || exit 1 )
    
    pwtools: pw
        ( cd tools ; $(MAKE) all || exit 1 )
    
    ...
    
    Target pw: go into src/ if it exists, and (apart from make wizardry) give command make pw. It is important to note that pwtools has to depend on pw or else this makefile will break when calling parallel make using make -j# Other targets are quite similar: go into a subdirectory, e.g. Doc/ and 'make something', e.g. make clean.

    5.1.0.4 PW/src/Makefile

    The most important and most complex Makefile is the one in the source directory. It is also the one you need to modify if you add something.
    include ../../make.sys
    
    Contains machine- and QUANTUM ESPRESSO-specific definitions
    MODFLAGS= $(MOD_FLAG)../../iotk/src
              $(MOD_FLAG)../../Modules $(MOD_FLAG).
    
    Location of needed modules; MOD_FLAG is defined in make.sys
    PWOBJS = \
    pwscf.o
    
    Object file containing main program (this is actually redundant)
    PWLIBS = \
    a2fmod.o \
    ...
    wannier_enrg.o
    
    List of objects - add here new objects, or delete from this list. Do not forget the backslash! It ensure continuation of the line
    QEMODS=../../Modules/libqemod.a
    
    Objects from Modules/ are available from the above archive. The directory where F95 modules are must also be specified to the compiler!
    TLDEPS=bindir mods libs liblapack libblas libenviron
    
    TLDEPS=Top-Level DEPendencieS: a machinery to ensure proper compilation with correct dependencies also if compiling from inside a package directory and not from top level
    LIBOBJS = ../../flib/ptools.a ../../flib/flib.a
              ../../clib/clib.a   ../../iotk/src/libiotk.a
    
    All needed QE-specific libraries
    all : tldeps pw.x generate_vdW_kernel_table.x
    
    Targets that will be build - add here new executables
    pw.x : $(PWOBJS) libpw.a $(LIBOBJS) $(QEMODS)
         $(LD) $(LDFLAGS) -o $@ \
         $(PWOBJS) libpw.a $(QEMODS) $(LIBOBJS) $(LIBS)
       - ( cd ../../bin; ln -fs ../PW/src/$@ . )
    
    Target pw.x - produces executable with the same name. It also produces a link to the executable in espresso/bin/. Do not forget tabulators even if you do not see them! All variables (introduced by $) are either defined locally in Makefile or imported from make.sys
    libpw.a : $(PWLIBS)
            $(AR) $(ARFLAGS) $@ $?
            $(RANLIB) $@
    
    This builds the library libpw.a - again, do not forget tabulators
    tldeps:
           test -n "$(TLDEPS)" && ( cd ../.. ;
           $(MAKE) $(TLDEPS) || exit 1) || :
    
    second part of the TLDEPS machinery
    clean :
        - /bin/rm -f *.x *.o *.a *~ *.F90 *.d *.mod *.i *.L
    
    There should always be a ''clean'' target, removing all compiled (*.o) or preprocessed (*.F90) stuff - compiled F95 modules may have different filenames: the four last items cover most cases
    include make.depend
    
    Contains dependencies of objects upon other objects. Sample content of file make.depend (can be produced by install/makedep.sh):
    a2fmod.o : ../../Modules/io_global.o
    a2fmod.o : ../../Modules/ions_base.o
    a2fmod.o : ../../Modules/kind.o
    a2fmod.o : pwcom.o
    a2fmod.o : start_k.o
    a2fmod.o : symm_base.o
    
    tells us that the listed objects must have been compiled prior to compilation of a2fmod.o - make will take care of this.

    BEWARE: the Makefile system is in a stable but delicate equilibrium, resulting from many years of experiments on many different machines. Handle with care: what works for you may break other cases.

    5.1.1 Preprocessing

    Fortran-95 source code contains preprocessing option with the same syntax used by the C preprocessor cpp. Most F95 compilers understand preprocessing options -D ... or some similar form. Some compilers however do not support or do not implement properly preprocessing. In this case the preprocessing is done using cpp. Normally, configure takes care of this, by selecting the appropriate rule @f90rule@ below, in this section of file make.sys.in:

    .f90.o:
    	@f90rule@
    
    and producing the appropriate file .sys.

    Preprocessing is useful to

    • account for machine dependency in a unified source tree
    • distinguish between parallel and serial execution when they follow different paths (i.e. there is a substantial difference between serial execution and parallel execution on a single processor)
    • introduce experimental or special-purpose stuff
    Use with care and only when needed. See file include/defs.README for a list of preprocessing options. Please keep that list updated.

    Note: include/f_defs.h is obsolete and must not be used any longer.

    The following capabilities of the C preprocessor are used:

    • assign a value to a given expression. For instance, command #define THIS that, or the option in the command line: -DTHIS=that, will replace all occurrences of THIS with that.
    • include file (command #include)
    • expand macros (command #define)
    • execute conditional expressions such as
        #ifdef __expression
          ...code A...
        #else
          ...code B...
        #endif
      
      If __expression is defined (with a #define command or from the command line with option -D__expression), then ...code A... is sent to output; otherwise ...code B... is sent to output.

    In order to make preprocessing options easy to see, preprocessing variables should start with two underscores, as __expression in the above example. Traditionally ''preprocessed'' variables are also written in uppercase.

    5.1.2 How to edit the configure script

    The configure script is generated from its source file configure.ac by the GNU autoconf utility (http://www.gnu.org/software/autoconf/). Don't edit configure directly: whenever it gets regenerated, your changes will be lost. Instead, go to the install/ directory, edit configure.ac, then run autoconf to regenerate configure. If you want to keep the old configure, make a copy first.

    GNU autoconf is installed by default on most Unix/Linux systems. If you don't have it on your system, you'll have to install it. You will need a recent version (e.g. v.2.65) of autoconf, because our configure.ac file uses recent syntax.

    configure.ac is a regular Bourne shell script (i.e., "sh" - not csh!), except that:

    -
    capitalized names starting with "AC_" are autoconf macros. Normally you shouldn't have to touch them.
    -
    square brackets are normally removed by the macro processor. If you need a square bracket (that should be very rare), you'll have to write two.

    You may refer to the GNU autoconf Manual for more info.

    make.sys.in is the source file for .sys, that configure generates: you might want to edit that file as well. The generation procedure is as follows: if configure.ac contains the macro "AC_SUBST(name)", then every occurrence of "@name@" in the source file will be substituted with the value of the shell variable "name" at the point where AC_SUBST was called.

    Similarly, configure.msg is generated from configure.msg.in: this file is only used by configure to print its final report, and isn't needed for the compilation. We did it this way so that our configure may also be used by other projects, just by replacing the QUANTUM ESPRESSO-specific configure.msg.in by your own.

    configure writes a detailed log of its operation to config.log. When any configuration step fails, you may look there for the relevant error messages. Note that it is normal for some checks to fail.

    5.1.3 How to add support for a new architecture

    In order to support a previously unsupported architecture, first you have to figure out which compilers, compilation flags, libraries etc. should be used on that architecture. In other words, you have to write a .sys that works: you may use the manual configuration procedure for that (see the User Guide). Then, you have to modify configure so that it can generate that .sys automatically.

    To do that, you have to add the case for your architecture in several places throughout configure.ac:

    1. Detect architecture

      Look for these lines:

        if test "$arch" = ""
        then
                case $host in
                        ia64-*-linux-gnu )      arch=ia64   ;;
                        x86_64-*-linux-gnu )    arch=x86_64 ;;
                        *-pc-linux-gnu )        arch=ia32   ;;
                        etc.
      
      Here you must add an entry corresponding to your architecture and operating system. Run config.guess to obtain the string identifying your system. For instance on a PC it may be "i686-pc-linux-gnu", while on IBM SP4 "powerpc-ibm-aix5.1.0.0". It is convenient to put some asterisks to account for small variations of the string for different machines of the same family. For instance, it could be "aix4.3" instead of "aix5.1", or "athlon" instead of "i686"...

    2. Select compilers

      Look for these lines:

        # candidate compilers and flags based on architecture
        case $arch in
        ia64 | x86_64 )
              ...
        ia32 )
              ...
        aix )
              ...
        etc.
      

      Add an entry for your value of $arch, and set there the appropriate values for several variables, if needed (all variables are assigned some reasonable default value, defined before the "case" block):

      - "try_f90" should contain the list of candidate Fortran 90 compilers, in order of decreasing preference (i.e. configure will use the first it finds). If your system has parallel compilers, you should list them in "try_mpif90".

      - "try_ar", "try_arflags": for these, the values "ar" and "ruv" should be always fine, unless some special flag is required (e.g., -X64 With sp4).

      - you should define "try_dflags" if there is any "#ifdef" specific to your machine: for instance, on IBM machines, "try_dflags=-D__AIX" . A list of such flags can be found in file include/defs.h.README.

      You shouldn't need to define the following: - "try_iflags" should be set to the appropriate "-I" option(s) needed by the preprocessor or by the compiler to locate *.h files to be included; try_iflags="-I../include" should be good for most cases

      For example, here's the entry for IBM machines running AIX:

         aix )
              try_mpif90="mpxlf90_r mpxlf90"
              try_f90="xlf90_r xlf90 $try_f90"
              try_arflags="-X64 ruv"
              try_arflags_dynamic="-X64 ruv"
              try_dflags="-D__AIX -D__XLF"
              ;;
      
      The following step is to look for both serial and parallel fortran compilers:
        # check serial Fortran 90 compiler...
        ...
        AC_PROG_F77($f90)
        ...
              # check parallel Fortran 90 compiler
        ...
              AC_PROG_F77($mpif90)
        ...
        echo setting F90... $f90
        echo setting MPIF90... $mpif90
      
      A few compilers require some extra work here: for instance, if the Intel Fortran compiler was selected, you need to know which version because different versions need different flags.

      At the end of the test,

      - $mpif90 is the parallel compiler, if any; if no parallel compiler is found or if -disable-parallel was specified, $mpif90 is the serial compiler

      - $f90 is the serial compiler

      Next step: the choice of (serial) C and Fortran 77 compilers. Look for these lines:

        # candidate C and f77 compilers good for all cases
        try_cc="cc gcc"
        try_f77="$f90"
      
        case "$arch:$f90" in
        *:f90 )
              ....
        etc.
      
      Here you have to add an entry for your architecture, and since the correct choice of C and f77 compilers may depend on the fortran-90 compiler, you may need to specify the f90 compiler as well. Again, specify the compilers in try_cc and try_f77 in order of decreasing preference. At the end of the test,

      - $cc is the C compiler

      - $f77 is the Fortran 77 compiler, used to compile *.f files (may coincide with $f90)

    3. Specify compilation flags.

      Look for these lines:

        # check Fortran compiler flags
        ...
        case "$arch:$f90" in
        ia64:ifort* | x86_64:ifort* )
              ...
        ia64:ifc* )
              ...
        etc.
      
      Add an entry for your case and define:

      - "try_fflags": flags for Fortran 77 compiler.

      - "try_f90flags": flags for Fortran 90 compiler. In most cases they will be the same as in Fortran 77 plus some others. In that case, define them as "$(FFLAGS) -something_else".

      - "try_fflags_noopt": flags for Fortran 77 with all optimizations turned off: this is usually "-O0". These flags must be used for compiling flib/dlamch.f (part of our version of Lapack): it won't work properly with optimization.

      - "try_ldflags": flags for the linking phase (not including the list of libraries: this is decided later).

      - "try_ldflags_static": additional flags to select static compilation (i.e., don't use shared libraries).

      - "try_dflags": must be defined if there is in the code any #ifdef specific to your compiler (for instance, -D__INTEL for Intel compilers). Define it as "$try_dflags -D..." so that pre-existing flags, if any, are preserved.

      - if the Fortran 90 compiler is not able to invoke the C preprocessor automatically before compiling, set "have_cpp=0" (the opposite case is the default). The appropriate compilation rules will be generated accordingly. If the compiler requires that any flags be specified in order to invoke the preprocessor (for example, "-fpp " - note the space), specify them in "pre_fdflags".

      For example, here's the entry for ifort on Linux PC:

        ia32:ifort* )
                try_fflags="-O2 -tpp6 -assume byterecl"
                try_f90flags="\$(FFLAGS) -nomodule"
                try_fflags_noopt="-O0 -assume byterecl"
                try_ldflags=""
                try_ldflags_static="-static"
                try_dflags="$try_dflags -D__INTEL"
                pre_fdflags="-fpp "
                ;;
      
      Next step: flags for the C compiler. Look for these lines:
        case "$arch:$cc" in
        *:icc )
              ...
        *:pgcc )
              ...
        etc.
      
      Add an entry for your case and define:

      - "try_cflags": flags for C compiler.

      - "c_ldflags": flags for linking, when using the C compiler as linker. This is needed to check for libraries written in C, such as FFTW.

      - if you need a different preprocessor from the standard one ($CC -E), define it in "try_cpp".

      For example for XLC on AIX:

        aix:mpcc* | aix:xlc* | aix:cc )
                try_cflags="-q64 -O2"
                c_ldflags="-q64"
                ;;
      
      Finally, if you have to use a nonstandard preprocessor, look for these lines:
        echo $ECHO_N "setting CPPFLAGS... $ECHO_C"
        case $cpp in
              cpp) try_cppflags="-P -traditional" ;;
              fpp) try_cppflags="-P"              ;;
              ...
      
      and set "try_cppflags" as appropriate.

    4. Search for libraries

      To instruct configure to search for libraries, you must tell it two things: the names of libraries it should search for, and where it should search.

      The following libraries are searched for:

      - BLAS or equivalent. Some vendor replacements for BLAS that are supported by QUANTUM ESPRESSO are:

      MKL on Linux, 32- and 64-bit Intel CPUs
      ACML on Linux, 64-bit AMD CPUs
      essl on AIX
      SCSL on sgi altix
      SUNperf on sparc
      Moreover, ATLAS is used over BLAS if available.

      - LAPACK or equivalent. Some vendor replacements for LAPACK that are supported by QUANTUM ESPRESSO are:

      mkl on linux SUNperf on sparc

      - FFTW (version 3) or another supported FFT library. The latter include:

      essl on aix ACML on Linux, 64-bit AMD CPUs SUNperf on sparc

      - the MASS vector math library on aix

      - an MPI library. This is often automatically linked by the compiler

      If you have another replacement for the above libraries, you'll have to insert a new entry in the appropriate place.

      This is unfortunately a little bit too complex to explain. Basic info:
      "AC_SEARCH_LIBS(function, name, ...)" looks for symbol "function" in library "libname.a". If that is found, "-lname" is appended to the LIBS environment variable (initially empty). The real thing is more complicated than just that because the "-Ldirectory" option must be added to search in a nonstandard directory, and because a given library may require other libraries as prerequisites (for example, Lapack requires BLAS).

    5.2 Libraries

    Subdirectory flib/ contains libraries written in fortran77 (*.f) and in fortran-90 (*.f90). The latter should not depend on any module, except for modules kinds and constants.

    Subdirectory clib/ contains libraries written in C (*.c). There are currently two different ways to ensure that fortran can call C routines. The new and recommanded way use the fortran-95 intrinsic iso_c_binding module: see flib/wrappers.f90 for an example of usage.

    The old way uses macros in C routines:

    1. F77_FUNC (func,FUNC) for function func, not containing underscore(s) in name
    2. F77_FUNC_(f_nc,F_NC) for function f_nc, containing underscore(s) in name
    These macros are defined in file include/c_defs.h, included by all *.c files, and are automagically generated by configure. The goal of these macros is to choose the correct case (lowercase or uppercase, the latter probably obsolete) and the correct number of underscores. See file include/defs.h.README for more info.

    6 Algorithms

    6.1 Gamma tricks

    In calculations using only the $ \Gamma$ point (k=0), the Kohn-Sham orbitals can be chosen to be real functions in real space, so that $ \psi$(G) = $ \psi^{*}_{}$(- G). This allows us to store only half of the Fourier components. Moreover, two real FFTs can be performed as a single complex FFT. The auxiliary complex function $ \Phi$ is introduced: $ \Phi$(r) = $ \psi_{j}^{}$(r) + i$ \psi_{{j+1}}^{}$(r) whose Fourier transform $ \Phi$(G) yields

    $ \psi_{j}^{}$(G) = $ {\Phi(G) + \Phi^*(-G)\over 2}$,$ \psi_{{j+1}}^{}$(G) = $ {\Phi(G) - \Phi^*(-G)\over 2i}$.

    A side effect on parallelization is that G and - G must reside on the same processor. As a consequence, pairs of columns with Gn'1, n'2, n'3 and G-n'1,-n'2, n'3 (with the exception of the case n'1 = n'2 = 0), must be assigned to the same processor.

    6.2 Restart

    The two main packages, PWscf and CP, support restarting from interrupted calculations, Restarting is trivial in CP: it is sufficient to save from time to time a restart file containing wavefunctions, orthogonality matrix, forces, atomic positions, at the current and previous time step.

    Restarting is much more complicated in PWscf. Since v.5.1. restarting from interrupted calculations is possible ONLY if the code has been explicitly stopped by user. It is not practical to try to restart from any possible case, such as e.g. crashes. This would imply saving lots of data all the time. With modern machines, this is not a good idea. Restart in PWscf currently works as follows:

    • Each loop calls check_stop_now just before the end. If a user request to stop is found, create a small file restart_*, containing only loop-specific local variables; close and save files used by the loop if any; set variable conv_elec to false; return
    • After each routine containing a loop has been called, check if the code was either stopped there or no convergence was achieved; if so, save data (if needed) for the current loop as well, return.
    • Return after return, exit all loops and go to main program, which must save needed global variables to file. The only difference with normal exit is that temporary files are kept, while files in portable format are not saved.
    • if variable restart is set in input:
      • starting potential and wavefunctions are read from file
      • each routine containing a loop checks for the existence of a restart_* file before starting its loop
    As of April 2013 only the electronic loop is organized ths way. Loops on nuclear positions will be organized in the same manner once their re-organization is completed. To be done:
    • wg and et should be read from data file
    • rho(+paw/U/metagga info) should be written to and read from unformatted data file similar to the file used in mix_rho; portable format should be written only at convergence.

    7 Format of arrays containing charge density, potential, etc.

    The index of arrays used to store functions defined on 3D meshes is actually a shorthand for three indices, following the FORTRAN convention ("leftmost index runs faster"). An example will explain this better. Suppose you have a 3D array psi(nr1x,nr2x,nr3x). FORTRAN compilers store this array sequentially in the computer RAM in the following way:
            psi(   1,   1,   1)
            psi(   2,   1,   1)
            ...
            psi(nr1x,   1,   1)
            psi(   1,   2,   1)
            psi(   2,   2,   1)
            ...
            psi(nr1x,   2,   1)
            ...
            ...
            psi(nr1x,nr2x,   1)
            ...
            psi(nr1x,nr2x,nr3x)
    etc
    
    Let ind be the position of the (i,j,k) element in the above list: the following relation
            ind = i + (j - 1) * nr1x + (k - 1) *  nr2x * nr1x
    
    holds. This should clarify the relation between 1D and 3D indexing. In real space, the (i,j,k) point of the FFT grid with dimensions nr1 ($ \le$nr1x), nr2 ($ \le$nr2x), , nr3 ($ \le$nr3x), is

    rijk = $\displaystyle {\frac{{i-1}}{{nr1}}}$$\displaystyle \tau_{1}^{}$ + $\displaystyle {\frac{{j-1}}{{nr2}}}$$\displaystyle \tau_{2}^{}$ + $\displaystyle {\frac{{k-1}}{{nr3}}}$$\displaystyle \tau_{3}^{}$

    where the $ \tau_{i}^{}$ are the basis vectors of the Bravais lattice. The latter are stored row-wise in the at array: $ \tau_{1}^{}$ = at(:, 1), $ \tau_{2}^{}$ = at(:, 2), $ \tau_{3}^{}$ = at(:, 3).

    The distinction between the dimensions of the FFT grid, (nr1,nr2,nr3) and the physical dimensions of the array, (nr1x,nr2x,nr3x) is done only because it is computationally convenient in some cases that the two sets are not the same. In particular, it is often convenient to have nrx1=nr1+1 to reduce memory conflicts.

    8 Parallelization

    In parallel execution (MPI only), N independent processes are started (do not start more than one per processor!) that communicate via calls to MPI libraries. Each process has its own set of variables and knows nothing about other processes' variables. Variables that take little memory are replicated, those that take a lot of memory (wavefunctions, G-vectors, R-space grid) are distributed.

    8.0.1 Usage of #ifdef __MPI

    Calls to MPI libraries require variables contained into a mpif.h file that is usually absent on serial machines. In order to prevent compilation problems on serial machines, the following rules must be followed:

    • All direct calls to MPI library routines must either be #ifdef'ed, or wrapped into calls to routines like those in module mp.f90.
    • Routines that are used only in parallel execution may be either called and #ifdef'ed inside, or not called (via an #ifdef) and not compiled (via an #ifdef again) in the serial case. Note that some compilers do not like empty files or modules containing nothing!
    • Other #ifdef __MPI may be needed when the flux of parallel execution is different from that of the serial case.
    • All other #ifdef __MPI are not needed, may be removed if already present
    • #ifdef __PARA is obsolescent: it should be removed from existing code, it must not be used in new developments.

    8.1 Tricks and pitfalls

    • Replicated calculations may either be performed independently on each processor, or performed on one processor and broadcast to all others. The first approach requires less programming, but it is unsafe: in principle all processors should yield exactly the same results, if they work on the same data, but sometimes they don't (depending on the machine, compiler, and libraries). Even a tiny difference in the last significant digit can eventually cause serious trouble if allowed to build up, especially when a replicated check is performed (in which case the code may ''hang'' if the check yields different results on different processors). Never assume that the value of a variable produced by replicated calculations is exactly the same on all processors: when in doubt, broadcast the value calculated on a specific processor (the ''root'' processor) to all others.
    • Routine errore should be called in parallel by all processors, or else it will hang
    • I/O operations: file opening, closing, and so on, are as a rule performed only on processor ionode. The correct way to check for errors is the following:
      IF ( ionode ) THEN
         OPEN ( ..., IOSTAT=ierr )
         ...
      END IF
      CALL mp_bcast( ierr, ... , intra_image_comm )
      CALL errore( 'routine','error', ierr )
      
      The same applies to all operations performed on a single processor, or a subgroup of processors: any error code must be broadcast before the check.

    8.2 Data distribution

    Quantum ESPRESSO employ arrays whose memory requirements fall into three categories.

    • Fully Scalable: Arrays that are distributed across processors of a pool. Fully scalable arrays are typically large to very large and contain one of the following dimensions:
      • number of plane waves, npw (or max number, npwx)
      • number of Gvectors, ngm
      • number of grid points in the R space, dfft%nnr
      Their size decreases linearly with the number of processors in a pool.

    • Partially Scalable: Arrays that are distributed across processors of the ortho or diag group. Typically they are much smaller than fully scalable array, and small in absolute terms for moderate-size system. Their size however increases quadratically with the number of atoms in the system, so they have to be distributed for large systems (hundreds to thousands atoms). Partially scalable arrays contain none of the dimensions listed above, two of the following dimensions:
      • number of states, nbnd
      • number of atomic states, natomwfc
      • number of projectors, nkb
      Their size decreases linearly with the number of processors in a ortho or diag group.

    • Nonscalable: All the remaining arrays, that are not distributed across processors. These are typically small arrays, having dimensions like for instance:
      • number of atoms, nat
      • number of species of atoms, nsp
      The size of these arrays is independent on the number of processors.

    9 File Formats

    9.1 Data file(s)

    QUANTUM ESPRESSO restart file specifications: Paolo Giannozzi scripsit AD 2005-11-11, Last modified by Andrea Ferretti 2006-10-29

    9.1.1 Rationale

    Requirements: the data file should be

    • efficient (quick to read and write)
    • easy to read, parse and write without special libraries
    • easy to understand (self-documented)
    • portable across different software packages
    • portable across different computer architectures
    Solutions:
    • use binary I/O for large records
    • exploit the file system for organizing data
    • use XML
    • use a small specialized library (iotk) to read, parse, write
    • ensure the possibility to convert to a portable formatted file
    Integration with other packages:
    • provide a self-standing (code-independent) library to read/write this format
    • the use of this library is intended to be at high level, hiding low-level details

    9.1.2 General structure

    Format name: QEXML
    Format version: 1.4.0

    The "restart file" is actually a "restart directory", containing several files and sub-directories. For CP/FPMD, the restart directory is created as "$prefix_$ndw/", where $prefix is the value of the variable "prefix". $ndw the value of variable ndw, both read in input; it is read from "$prefix_$ndr/", where $ndr the value of variable ndr, read from input. For PWscf, both input and output directories are called "$prefix.save/".

    The content of the restart directory is as follows:

    data-file.xml          which contains:
                           - general information that doesn't require large data set: 
                             atomic structure, lattice, k-points, symmetries,
                             parameters of the run, ...
                           - pointers to other files or directories containing bulkier
                             data: grids, wavefunctions, charge density, potentials, ...
      
    charge_density.dat     contains the charge density
    spin_polarization.dat  contains the spin polarization (rhoup-rhodw) (LSDA case)
    magnetization.x.dat    
    magnetization.y.dat    contain the spin polarization along x,y,z 
    magnetization.z.dat    (noncollinear calculations)
    lambda.dat             contains occupations (Car-Parrinello dynamics only)
    mat_z.1                contains occupations (ensemble-dynamics only)
    
    <pseudopotentials>     A copy of all pseudopotential files given in input
        
    <k-point dirs>         Subdirectories K00001/, K00002/, etc, one per k-point.
    
    Each k-point directory contains:
        evc.dat                wavefunctions for spin-unpolarized calculations, OR
        evc1.dat
        evc2.dat               spin-up and spin-down wavefunctions, respectively, 
                               for spin polarized (LSDA) calculations;
        gkvectors.dat          the details of specific k+G grid;
        eigenval.xml           eigenvalues for the corresponding k-point
                               for spin-unpolarized calculations, OR
        eigenval1.xml          spin-up and spin-down eigenvalues,
        eigenval2.xml          for spin-polarized calculations;
    
    in a molecular dynamics run, also wavefunctions at the preceding time step:
        evcm.dat               for spin-unpolarized calculations OR
        evcm1.dat
        evcm2.dat              for spin polarized calculations;
    

    • All files "*.xml" are XML-compliant, formatted file;
    • Files "mat_z.1", "lambda.dat" are unformatted files, containing a single record;
    • All other files "*.dat", are XML-compliant files, but they contain an unformatted record.

    9.1.3 Structure of file "data-file.xml"

    XML Header: whatever is needed to have a well-formed XML file
    
    Body: introduced by <Root>, terminated by </Root>. Contains first-level tags
          only. These contain only other tags, not values. XML syntax applies.
    
    First-level tags: contain either
         second-level tags, OR
         data tags:   tags containing data (values for a given variable), OR
         file tags:   tags pointing to a file
    
    data tags syntax ( [...] = optional ) :
          <TAG type="vartype" size="n" [UNIT="units"] [LEN="k"]>
          values (in appropriate units) for variable corresponding to TAG:
          n elements of type vartype (if character, of length k)
          </TAG>
    
    where TAG describes the variable into which data must be read;
    "vartype" may be "integer", "real", "character", "logical";
    if type="logical", LEN=k" must be used to specify the length of the variable character; size="n" is the dimension.
    Acceptable values for "units" depend on the specific tag.

    Short syntax, used only in a few cases:

          <TAG attribute="something"/> .
    
    For instance:
          <FFT_GRID nr1="NR1" nr2="NR2" nr3="NR3"/>
    
    defines the value of the FFT grid parameters nr1, nr2, nr3 for the charge density

    9.1.4 Sample

    Header:
     <?xml version="1.0"?>
     <?iotk version="1.0.0test"?>
     <?iotk file_version="1.0"?>
     <?iotk binary="F"?>
    
    These are meant to be used only by iotk (actually they aren't)

    First-level tags:

      - <HEADER>         (global information about fmt version)
      - <CONTROL>        (miscellanea of internal information)
      - <STATUS>         (information about the status of the CP simulation)
      - <CELL>           (lattice vector, unit cell, etc)
      - <IONS>           (type and positions of atoms in the unit cell etc)
      - <SYMMETRIES>     (symmetry operations)
      - <ELECTRIC_FIELD> (details for an eventual applied electric field)
      - <PLANE_WAVES>    (basis set, cutoffs etc)
      - <SPIN>           (info on spin polarizaztion)
      - <MAGNETIZATION_INIT>     (info about starting or constrained magnetization)
      - <EXCHANGE_CORRELATION>
      - <OCCUPATIONS>    (occupancy of the states)
      - <BRILLOUIN_ZONE> (k-points etc)
      - <PHONON>         (info for phonon calculations)  
      - <PARALLELISM>    (specialized info for parallel runs)
      - <CHARGE-DENSITY>
      - <TIMESTEPS>      (positions, velocities, nose' thermostats)
      - <BAND_STRUCTURE_INFO>    (dimensions and basic data about band structure)
      - <EIGENVALUES>    (eigenvalues and related data)
      - <EIGENVECTORS>   (eigenvectors and related data)
    
      
    * Tag description
    
      <HEADER> 
         <FORMAT>    (name and version of the format)
         <CREATOR>   (name and version of the code generating the file)
      </HEADER>
    
      <CONTROL>
         <PP_CHECK_FLAG>    (whether the file can be used for post-processing)
         <LKPOINT_DIR>      (whether kpt-data are written in sub-directories)
         <Q_REAL_SPACE>     (whether augmentation terms are used in real space)
      </CONTROL>
    
      <STATUS>  (optional)
         <STEP>   (number $n of steps performed, i.e. we are at step $n)
         <TIME>   (total simulation time)
         <TITLE>  (a job descriptor)
         <ekin>   (kinetic energy)
         <eht>    (hartree energy)
         <esr>    (Ewald term, real-space contribution)
         <eself>  (self-interaction of the Gaussians)
         <epseu>  (pseudopotential energy, local)
         <enl>    (pseudopotential energy, nonlocal)
         <exc>    (exchange-correlation energy)
         <vave>   (average of the potential)
         <enthal> (enthalpy: E+PV)
      </STATUS>
    
      <CELL>
         <BRAVAIS_LATTICE>
         <LATTICE_PARAMETER>
         <CELL_DIMENSIONS>  (cell parameters)
         <DIRECT_LATTICE_VECTORS>
            <UNITS_FOR_DIRECT_LATTICE_VECTORS>
            <a1>
            <a2>
            <a3>
         <RECIPROCAL_LATTICE_VECTORS>
            <UNITS_FOR_RECIPROCAL_LATTICE_VECTORS>
            <b1>
            <b2>
            <b3>
      </CELL>
    
      <IONS>
         <NUMBER_OF_ATOMS>
         <NUMBER_OF_SPECIES>
         <UNITS_FOR_ATOMIC_MASSES>
         For each $n-th species $X:
            <SPECIE.$n>
               <ATOM_TYPE>
               <MASS>
               <PSEUDO>
            </SPECIE.$n>
         <PSEUDO_DIR>
         <UNITS_FOR_ATOMIC_POSITIONS>
         For each atom $n of species $X:
            <ATOM.$n SPECIES="$X">
      </IONS>
    
      <SYMMETRIES>
         <NUMBER_OF_SYMMETRIES>
         <INVERSION_SYMMETRY>
         <NUMBER_OF_ATOMS>
         <UNITS_FOR_SYMMETRIES>
         For each symmetry $n:
            <SYMM.$n>
               <INFO>
               <ROTATION>
               <FRACTIONAL_TRANSLATION>
               <EQUIVALENT_IONS>
            </SYMM.$n>
      </SYMMETRIES>
    
      <ELECTRIC_FIELD>  (optional)
         <HAS_ELECTRIC_FIELD> 
         <HAS_DIPOLE_CORRECTION>
         <FIELD_DIRECTION>
         <MAXIMUM_POSITION>
         <INVERSE_REGION>
         <FIELD_AMPLITUDE>
      </ELECTRIC_FIELD>  
    
      <PLANE_WAVES>
         <UNITS_FOR_CUTOFF>
         <WFC_CUTOFF>
         <RHO_CUTOFF>
         <MAX_NUMBER_OF_GK-VECTORS>
         <GAMMA_ONLY>
         <FFT_GRID>
         <GVECT_NUMBER>
         <SMOOTH_FFT_GRID>
         <SMOOTH_GVECT_NUMBER>
         <G-VECTORS_FILE>       link to file "gvectors.dat"
         <SMALLBOX_FFT_GRID>
      </PLANE_WAVES>
    
      <SPIN>
         <LSDA>
         <NON-COLINEAR_CALCULATION>
         <SPIN-ORBIT_CALCULATION>
         <SPIN-ORBIT_DOMAG>
      </SPIN>
    
      <EXCHANGE_CORRELATION>
         <DFT>
         <LDA_PLUS_U_CALCULATION>
         if LDA_PLUS_U_CALCULATION
            <NUMBER_OF_SPECIES>
            <HUBBARD_LMAX>
            <HUBBARD_L>
            <HUBBARD_U>
            <HUBBARD_ALPHA>
         endif
      </EXCHANGE_CORRELATION>
    
      if hybrid functional
          <EXACT_EXCHANGE>
            <x_gamma_extrapolation>
            <nqx1>
            <nqx2>
            <nqx3>
            <exxdiv_treatment>
            <yukawa>
            <ecutvcut>
            <exx_fraction>
            <screening_parameter>
          </EXACT_EXCHANGE>
      endif 
    
      <OCCUPATIONS>
         <SMEARING_METHOD>
         if gaussian smearing
            <SMEARING_TYPE>
            <SMEARING_PARAMETER>
         endif
         <TETRAHEDRON_METHOD>
         if use tetrahedra
            <NUMBER_OF_TETRAHEDRA>
            for each tetrahedron $t
               <TETRAHEDRON.$t>
         endif
         <FIXED_OCCUPATIONS>
         if using fixed occupations
            <INFO>
            <INPUT_OCC_UP>
            if lsda
               <INPUT_OCC_DOWN>
            endif
         endif
      </OCCUPATIONS>
    
      <BRILLOUIN_ZONE>
         <NUMBER_OF_K-POINTS>
         <UNITS_FOR_K-POINTS>
         <MONKHORST_PACK_GRID>
         <MONKHORST_PACK_OFFSET>
         For each k-point $n:
            <K-POINT.$n>
      </BRILLOUIN_ZONE>
    
      <PHONON> 
         <NUMBER_OF_MODES>
         <UNITS_FOR_Q-POINT>
         <Q-POINT>
      </PHONON>
    
      <PARALLELISM>
         <GRANULARITY_OF_K-POINTS_DISTRIBUTION>
      </PARALLELISM>
    
      <CHARGE-DENSITY>
          link to file "charge_density.rho"
      </CHARGE-DENSITY>
    
      <TIMESTEPS>  (optional)
         For each time step $n=0,M
           <STEP$n>
              <ACCUMULATORS>
              <IONS_POSITIONS>
                 <stau>
                 <svel>
                 <taui>
                 <cdmi>
                 <force>
              <IONS_NOSE>
                 <nhpcl>
                 <nhpdim>
                 <xnhp>
                 <vnhp>
              <ekincm>
              <ELECTRONS_NOSE>
                 <xnhe>
                 <vnhe>
              <CELL_PARAMETERS>
                 <ht>
                 <htve>
                 <gvel>
              <CELL_NOSE>
                 <xnhh>
                 <vnhh>
              </CELL_NOSE>
      </TIMESTEPS>
    
      <BAND_STRUCTURE_INFO>
         <NUMBER_OF_BANDS>
         <NUMBER_OF_K-POINTS>
         <NUMBER_OF_SPIN_COMPONENTS>
         <NON-COLINEAR_CALCULATION>
         <NUMBER_OF_ATOMIC_WFC>
         <NUMBER_OF_ELECTRONS>
         <UNITS_FOR_K-POINTS>
         <UNITS_FOR_ENERGIES>
         <FERMI_ENERGY>
      </BAND_STRUCTURE_INFO>
    
      <EIGENVALUES>
         For all kpoint $n:
             <K-POINT.$n>
                 <K-POINT_COORDS>
                 <WEIGHT>
                 <DATAFILE>                  link to file "./K$n/eigenval.xml"
             </K-POINT.$n>
      </EIGENVALUES>
    
      <EIGENVECTORS>
         <MAX_NUMBER_OF_GK-VECTORS>
         For all kpoint $n:
             <K-POINT.$n>
                 <NUMBER_OF_GK-VECTORS>
                 <GK-VECTORS>                link to file "./K$n/gkvectors.dat"
                 for all spin $s
                    <WFC.$s>                 link to file "./K$n/evc.dat"
                    <WFCM.$s>                link to file "./K$n/evcm.dat" (optional)
                                             containing wavefunctions at preceding step
             </K-POINT.$n>
      </EIGENVECTORS>
    

    9.2 Restart files

    10 Modifying/adding/extending QUANTUM ESPRESSO

    10.1 Programming style (or lack of it)

    There are currently no strict guidelines for developers. You should however try to follow at least the following loose ones:

    • Preprocessing options should be capitalized and start with two underscores. Examples: __AIX, __LINUX, ...
    • Fortran commands should be capitalized: CALL something( )
    • Variable names should be lowercase: foo = bar/2
    • Indent DO's and IF's with three white spaces (editors like emacs will do this automatically for you)
    • Do not write crammed code: leave spaces, insert empty separation lines
    • Use comments (introduced by a !) to explain what is not obvious from the code. Remember that what is obvious to you may not be obvious to other people. It is especially important to document what a routine does, what it needs on input, what it produces on output. A few words of comment may save hours of searches into the code for a piece of missing information.
    • do not use machine-dependent extensions or sloppy syntax. Am example: Standard f90 requires that a & is needed both at end of line AND at the beginning of continuation line if there is a character variable (inside ' ' or " ") spanning two lines. Some compilers do not complain if the latter & is missing, others do.
    • use "dp" (defined in module ''kinds'') to define the type of real and complex variables
    • all constants should be defined to be of kind "dp". Preferred syntax: 0.0_dp.
    • use "generic" intrinsic functions: SIN, COS, etc.
    • conversions should be explicitely indicated. For conversions to real, use DBLE, or else REAL(...,KIND=dp). For conversions to complex, use CMPLX(...,...,KIND=dp). For complex conjugate, use CONJG. For imaginary part, use AIMAG. IMPORTANT: Do not use REAL or CMPLX without KIND=dp, or else you will lose precision (except when you take the real part of a double precision complex number).
    • Do not use automatic arrays (e.g. REAL(dp) :: A(N) with N defined at run time) unless you are sure that the array is small in all cases: large arrays may easily exceed the stack size, or the memory size,
    • Do not use pointers unless you have a good reason to: pointers may hinder optimization. Allocatable arrays should be used instead.
    • If you use pointers, nullify them before performing tests on their status.
    • Beware fancy constructs like structures: they look great on paper, but they also have the potential to make a code unreadable, or inefficient, or not working because some compiler gets confused.
    • Be careful with F90 array syntax and in particular with array sections: the compiler might decide that a copy is needed, thus silently increasing the memory footprint.
    • Do not pass unallocated arrays as arguments, even in those cases where they are not actually used inside the subroutine: some compilers don't like it.
    • Do not use any construct that is susceptible to be flagged as out-of-bounds error, even if no actual out-of-bound error takes place.
    • Always use IMPLICIT NONE and define all local variables. All variables passed as arguments to a routine should be defined as INTENT (IN), (OUT), or (INOUT). All variables from modules should be explicitly specified via USE module, ONLY : variable

    10.2 Adding or modifying input variables

    New input variables should be added to ''Modules/input_parameters.f90'', then copied to the code internal variables in the ''input.f90'' subroutine. The namelists and cards parsers are in ''Modules/read_namelists.f90'' and ''Modules/read_cards.f90''. Files ''input_parameters.f90'', ''read_namelists.f90'', ''read_cards.f90'' are shared by all codes, while each code has its own version of ''input.f90'' used to copy input values into internal variables

    EXAMPLE: suppose you need to add a new input variable called ''pippo'' to the namelist control, then:

    1. add pippo to the input_parameters.f90 file containing the namelist control
                    INTEGER :: pippo = 0
                    NAMELIST / control / ....., pippo
      
      Remember: always set an initial value!

    2. add pippo to the control_default subroutine (contained in module read_namelists.f90 )
                     subroutine control_default( prog )
                    ...
                    IF( prog == 'PW' ) pippo = 10
                    ...
                    end subroutine
      
      This routine sets the default value for pippo (can be different in different codes)

    3. add pippo to the control_bcast subroutine (contained in module read_namelists.f90 )
                      subroutine control_bcast( )
                      ...
                      call mp_bcast( pippo, intra_image_comm )
                      ...
                      end subroutine
      


    11 Using SVN

    QUANTUM ESPRESSOis maintained in a Subversion (SVN) repository. Developers can have read-write access when needed. Note that the latest (development) version may not work properly, and sometimes not even compile properly. Use at your own risk.

    Subversion, also known as SVN, is a software that allows many developers to work and maintain a single copy of a software in a central location (repository). It is installed by default on many Unix machines, or otherwise it can be very easily installed. For the end user, SVN is rather similar to CVS: if no advanced features are used, the basic commands are the same. More information on SVN can be found here: http://subversion.apache.org/.

    Current organization:

    • trunk: development goes on here - open read-only to everybody
    • branches: major new developments, disruptive changes, very experimental features, things that have a long time before being released (if ever) ... - branches may or may not be public
    • external: packages that are be developed in a separate SVN trunk can be downloaded into the main QE trunk - access may be restricted to specific (usually expert) developers.

    Follow the instructions in http://qe-forge.org/gf/project/q-e/scmsvn, under `Access Info'', to check out (i.e. download) the SVN repository in either read-write or anonymous mode. The distribution will appear in directory trunk/espresso/. Branches (i.e. sub-versions) will appear as separate directories.

    11.1 SVN operations

    To update the code to the current version:

      svn update
    
    in the directory containing the distribution. To see the difference between the current version and your modified copy:
      svn diff
    
    To save your modified version into the repository: (read-write access only):
      svn commit
    
    Please explain in a few words what your commit is about! Use option -m"comment" or the editor of your choice (set it using the SVN_EDITOR environment variable). If you want to add a new file, or a new directory, before commiting give command
      svn add
    
    To remove a file/directory (if empty):
      svn delete
    
    You can move a file (a directory, a group of files, ...) into a different directory using command
      svn mv
    


    11.2 Removing conflicts

    When you update your working copy of the repository, you may encounter two types of conflicts:
    1. Somebody else has changed the same lines that you have modified.
    2. Somebody else has changed something that has broken one or more functionalities of your modified version.
    Here we are concerned with kind 1. of conflicts, those that are noticed by SVN and produce, in addition to a message with a "C" in the first column before the conflicting file name:
    • conflicting-file containing an attempted merge of your version with the SVN version, with conflicting sections indicated by
         <<<<<<<
           (your version)
         =======
           (SVN version)
         >>>>>>>
      
    • conflicting-file.mine containing your version
    • two conflicting-file.rXXXXX containing the two most recent versions (XXXXX is the revision number) in SVN.
    Look into the conflicting section(s): in most cases, conflicts are trivial (format changes, white spaces) or easily solved (the part of the code you were modifying has been moved to another place, or a variable has meanwhilke changed name, for instance). Edit conflicting-file, remove all other copies of conflicting-file.*, commit.

    Sometimes, the conflict is not so easy to solve. In this case, you can selectively update your repository at a given date, or at a given revision number, using command (XXXXX=revision number)

      svn update -r XXXXX
    
    You can also select a date, using {"date"} instead of the revision number. In this way you can locate which change(s) is (are) the culprit(s). The web-SVN interface:
       http://qe-forge.org/gf/project/q-e/scmsvn
    
    will also be very helpful in locating the problem. Of course, communication with other developers will also help. The above paragraph applies as well to case 2. os conflicts, in presence or in absence of explicit SVN conflicts. If the reason for malfunctioning is not evident, you have to figure out when the problem started. Once this is done, itis usually straightforward to figure out why.


    11.3 Merging branch and trunk

    Let us assume that you have created a branch and that you are working in the directory of your branch. The simplest way to keep it aligned with the trunk is the following command:
      svn merge ^/trunk/espresso
    
    The caret (^) syntax is a shorthand for the entire URL of the trunk. Then you have to remove conflicts that can arise from incompatible changes made in the trunk. Then you can commit your "aligned" branch (beware: the commit message is very large in size if you haven't merged recently; if so, it may never reach the q-e-commits mailing list).

    In order to merge a branch back into the trunk, the simplest procedure is to align first the branch with the trunk and commit it, as above; then, in a clean, not locally modified, trunk:

      svn merge --reintegrate ^/branches/my-espresso-branch
    
    then, commit.

    Note the following very useful property: SVN can merge anything with anything! The following web page may be useful: http://www.math-linux.com/spip.php?article118


    11.4 Including a repository into the trunk

    It is possible to download other repositories into the main QUANTUM ESPRESSO repository. Currently, this is possible for GIPAW, GPU, EPW (you need to be authorized by the authors of these packages, though). From the trunk/ subdirectory (the one containing espresso/), type ``svn propedit svn:externals espresso''. An editor will open. Type the name of the subdirectory of ``espresso/'' where you want the repository to be downloaded, followed by the address of the repository, exit (not quit!) the editor. Example:
    GPU http://qeforge.qe-forge.org/svn/q-e-gpu/trunk/GPU
    GIPAW http://qeforge.qe-forge.org/svn/qe-gipaw/trunk
    EPW http://qeforge.qe-forge.org/svn/epw-public/trunk/EPW
    

    12 Bibliography

    Fortran books:

    • M. Metcalf, J. Reid, Fortran 95/2003 Explained, Oxford University Press (2004)
    • S. J. Chapman, Fortran 95/2003 for Scientists and Engineers, McGraw Hill (2007)
    • J. C. Adams, W. S. Brainerd, R. A. Hendrickson, R. E. Maine, J. T. Martin, B. T. Smith, The Fortran 2003 Handbook, Springer (2009)
    • W. S. Brainerd, Guide to Fortran 2003 Programming, Springer (2009)
    On-line tutorials:
    • Fortran: http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/fortran.html
    • Make: http://en.wikipedia.org/wiki/Make_(software)
    • Configure script: http://en.wikipedia.org/wiki/Configure_script
    (info courtesy of Goranka Bilalbegovic)

    About this document ...

    Image quantum_espresso Image democritos
    Developer's Manual for QUANTUM ESPRESSO(v.5.1.0)

    This document was generated using the LaTeX2HTML translator Version 2008 (1.71)

    Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
    Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

    The command line arguments were:
    latex2html -t 'Developer's Manual for Quantum-ESPRESSO' -html_version 3.2,math -toc_depth 3 -split 3 -toc_stars -show_section_numbers -local_icons -image_type png developer_man.tex

    The translation was initiated by paolo giannozzi on 2014-05-28



    next_inactive up previous
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/developer_man/images.log0000644000175000017500000001421712341373053016605 0ustar mbambaThis is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=latex 2013.10.8) 28 MAY 2014 16:43 entering extended mode restricted \write18 enabled. %&-line parsing enabled. **./images.tex (./images.tex LaTeX2e <2011/06/27> Babel and hyphenation patterns for english, dumylang, nohyphenation, it alian, loaded. (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo File: size12.clo 2007/10/19 v1.4h Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC) ) (/usr/share/texmf/tex/latex/html/html.sty Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count87 \c@lchapter=\count88 \c@chapter=\count89 \c@lsection=\count90 \c@lsubsection=\count91 \c@lsubsubsection=\count92 \c@lparagraph=\count93 \c@lsubparagraph=\count94 \c@lsubsubparagraph=\count95 \ptrfile=\write3 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live ) Package graphics Info: Driver file: dvips.def on input line 91. (/usr/share/texlive/texmf-dist/tex/latex/graphics/dvips.def File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) \Gin@req@height=\dimen103 \Gin@req@width=\dimen104 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/color.sty Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/color.cfg File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive ) Package color Info: Driver file: dvips.def on input line 130. (/usr/share/texlive/texmf-dist/tex/latex/graphics/dvipsnam.def File: dvipsnam.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) (/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty Package: inputenc 2008/03/30 v1.1d Input encoding file \inpenc@prehook=\toks15 \inpenc@posthook=\toks16 (/usr/share/texlive/texmf-dist/tex/latex/base/latin1.def File: latin1.def 2008/03/30 v1.1d Input encoding file )) \sizebox=\box26 \lthtmlwrite=\write4 (./images.aux) \openout1 = `images.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 140. LaTeX Font Info: ... okay on input line 140. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 140. LaTeX Font Info: ... okay on input line 140. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 140. LaTeX Font Info: ... okay on input line 140. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 140. LaTeX Font Info: ... okay on input line 140. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 140. LaTeX Font Info: ... okay on input line 140. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 140. LaTeX Font Info: ... okay on input line 140. latex2htmlLength hsize=349.0pt latex2htmlLength vsize=749.86615pt latex2htmlLength hoffset=0.0pt latex2htmlLength voffset=0.0pt latex2htmlLength topmargin=0.0pt latex2htmlLength topskip=0.00003pt latex2htmlLength headheight=0.0pt latex2htmlLength headsep=0.0pt latex2htmlLength parskip=0.0pt plus 1.0pt latex2htmlLength oddsidemargin=0.0pt latex2htmlLength evensidemargin=0.0pt LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 190. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 190. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 190. l2hSize :tex2html_wrap_inline2273:8.2pt::0.0pt::7.92912pt. [1 ] l2hSize :tex2html_wrap_inline2275:8.83331pt::8.83331pt::8.65688pt. [2 ] l2hSize :tex2html_wrap_inline2276:8.83331pt::8.83331pt::13.40694pt. [3 ] l2hSize :tex2html_wrap_inline2278:8.2pt::0.0pt::9.07355pt. [4 ] l2hSize :tex2html_wrap_inline2281:8.83331pt::8.83331pt::12.62491pt. [5 ] l2hSize :tex2html_wrap_inline2282:8.83331pt::8.83331pt::23.48618pt. [6 ] l2hSize :tex2html_wrap_inline2287:12.09998pt::12.09998pt::59.29044pt. [7 ] l2hSize :tex2html_wrap_inline2289:12.09998pt::12.09998pt::59.29044pt. [8 ] l2hSize :tex2html_wrap_inline2298:8.25pt::8.25pt::9.92088pt. [9 ] l2hSize :tex2html_wrap_indisplay2304:16.48517pt::16.48517pt::27.53748pt. [10 ] l2hSize :tex2html_wrap_indisplay2305:8.25pt::8.25pt::10.4403pt. [11 ] l2hSize :tex2html_wrap_indisplay2306:16.48517pt::16.48517pt::29.06525pt. [12 ] l2hSize :tex2html_wrap_indisplay2307:8.25pt::8.25pt::10.4403pt. [13 ] l2hSize :tex2html_wrap_indisplay2308:16.9514pt::16.9514pt::30.04291pt. [14 ] l2hSize :tex2html_wrap_indisplay2309:8.25pt::8.25pt::10.4403pt. [15 ] l2hSize :tex2html_wrap_inline2311:8.25pt::8.25pt::9.0842pt. [16 ] l2hSize :tex2html_wrap_inline2313:8.25pt::8.25pt::10.4403pt. [17 ] l2hSize :tex2html_wrap_inline2315:8.25pt::8.25pt::10.4403pt. [18 ] l2hSize :tex2html_wrap_inline2317:8.25pt::8.25pt::10.4403pt. [19 ] (./images.aux) ) Here is how much of TeX's memory you used: 1141 strings out of 495049 14656 string characters out of 3181577 57654 words of memory out of 3000000 4367 multiletter control sequences out of 15000+200000 6376 words of font info for 23 fonts, out of 3000000 for 9000 14 hyphenation exceptions out of 8191 25i,5n,19p,185b,147s stack positions out of 5000i,500n,10000p,200000b,50000s Output written on images.dvi (19 pages, 4452 bytes). espresso-5.1/Doc/developer_man/democritos.png0000644000175000017500000002310112341373052017502 0ustar mbambaPNG  IHDR9Yr-PLTE32f06i54h64i88g;;j?>nA@pEDuHGw HJt!OIuKMw( )!)OQ{$0RT~UV-1WY.2\Y0819_\3:b^:<;Aaefc=Che>D?EeiFLjnnnHNKOrrQWuuSXyxUZZ[}}\b_eydfz{fi|w}x~hpmrosptrvvxxz߀⃆ነ䋋㌒厔⑕唗留䙚曜眝¬鞟蟥ĭ褢礨馪ꧫ쩭͵魯ļϸ믱Ǿɽ{ pHYsVTbU vpAg9Y"IDATx|pUd}ӯi2"hԍ jsSQf.DdDW( q2,}\!*A $$RB0HHB.tխwnwtObj8J2}swϿWddrF*W\AnrF*W\AnrF*W\AnrF*W\Anr?#n,}졝N5v8 \:#})cW+Ǝelw/qv1ɲ*rKtWڌ{^hyPXA{D>㡏RriЃ ,ox\W7kO#>u Se1OXw7^D.S$ ߒ.2Ly͋l9u֮]`j&ű}e|xY;z!Kvnۉ.M97'f,yO#>c vCd<-Qߡw0< zQ+^≸y.&i%`{܂87 M67"nA6VqIc]8X}߭kE>w庤=5+ @6}ncNw`h%V8 ` ۇ3N 08_~𐣃9.$Bgǹinw#Gvzܼħpsldȼ;eQj=<3nǘpE<&q`i1A  bW[q97d9ɉ .k">S[[j/ '1ӔBΝJM\7n ZU᧐n 1lΡ 8׃b/@&'߁s m%4΋L{"BXTyd5= PuJ!gQualr2\Ρ'}ACH^艿>cRfJ Jks5҂ _Ĩd w)YMH\kyo<7ųS?\iЇw51VVǢii\ @9=&x`@{CHKΝ_ ]هRTwI/,/ s4T_L\ \,EbO|:>B6nݨ<СĴsCf&5w{*Svm,h^*ħ9:֭dn.A"#[X(I%o:xwFj4`&ǡ%|PY'Jh>;5pxvw'J .z0V6(Lttf8}Ns%BsmM 0Vf]Ӕp1c344r,%F[["]>7SjxV{H_"g9m"M3)$"DF7vԍc0kǻ9=8 )3^8q@v[¶h7DNG )FtR?ì>)Xm!8n!eJ<M)~Ufso;k5pwx7^1:pѬԛJqPXԜLA}h(l,na{[ph&VӄxvT1T0'ػ}p6kCf5bltz05vQT$G{/ s-hO6vBKぽ!/Fc"J{:/5GJT c6<A`l4Zs{5d3F;m\VIvN.gR p}BzjQŴu]'quq 17+EF{߳|;Fϟ!0vCqpxaeEu>K"/8V4\?pA.!$*{-? maaz 4+y[Gp>HwΡJ8XI,xTs,p{F<q|v\2lvdL"GBAμd`aʸ^*2D.Qg7rV85n{<եG-9 `'^"Y'XˉT-x-/;9a|ed*'Ų:-q!if014X4Ffӯe!l$NFiV+P9ά鰉 /Pbz2dbTZä'Z#;3a҃eՂĞ(ՒQa~:7=^(=f9i[r_[,0Nǭd.j79Zs(8SH&\j1Jq|r݇)kR@Ř#<~Ss3<:NV0V{ͣcgHS‚:Y(gc**UQ^? I"ʦ`o!Gp=uIGu3sK<6oGE|BEwN=Ty.AD>sYzV3zQZx{ oǿÇ Ѫz&[gG-a1fgm9 bŹ_|~to$ɺVnPxvĝ'TV/k egfOz*U5j#NW.51gqg{ި? PK k)8g9;Crh}7YD0F4SDBg˒';%_5Ubxs8w?E#DTݩ뉰PUո߇]}ˮ-U:=X4ek114˫Ch2fJ-4FIb.V7WJЈzITA4/?|?7%Ӻ t__,}. oIrse:B*iHu{'r˸+rp.Kd(:0BOQK?z )|uTk6D^U7.n J YxA|r!Ci γՠ02z MZ7@0:\A7E]hcZI7~P,(k(JKKs\N럎_apB>8d <{zYɑғrw ~q̨ mFގiRlUA9FyOÏ.]T{AA TQ[[{;,U(-CsWSyd)znu*|v^QGB/Q[\ ]80w UldEJ>T]8幡^mC-H; Zt\[ \dkǍwFb􍯘7Toծvtr'69RPvK'$9A)咻!%p,RBVXO) ڣz L䔊J }Y8%+YzPz{RH``QzTQV+jR )JTT<]0"]%X[ZR5"qU=׸\cGJszUǾ7[\ڀ"' p(|S5RQ9ni{o X+y!O6"ZBΡrAsV{VwcYF5>S^~R:*" H9nQFc|ᯐg ';1,w5@蔩-rȹrVfu5R@22V4)ejqUR5O?%sa\(OEw0Ðd( |XBʉ@, RlTx?A~p Mo<)UBH9LSV<#*9Iyjwas4Z8gUB3xxԟ r8;  S!IQc,^pq>.rABe/`pN>JKMǝdE13:h,l9藼^Iގ|0}QO*dyrw yvd?&*"GcqNLVYs RPqn+w(T"s^qF;\>DgX:SB(Ѝι{7\:`˙{6XPL9SjCjY5p]*gLNT4v[W4oiVlQ&k.-fVK7wiBaU;c71|Hz5Ƣ/ՠv.ŝNǽoЭӛuvH l"Tlҝ:h O kMP}o-rzɨLhBO/i`d:F`k^g: wzŞn4cZOTHSX`Ka0+DՏmuiZ88s Z$Gδ[WD`ry/߈dt+_HT5Ou|ߔC:RqnwVA# vqIBˆh.R= I!5o/)mZvt8^t {Qdmιt};tyg {)ց4Rrt3H?'}6,c#Z5 -S/l^[׶.֮%_E,ׯ0\\!g>g5< NָH1ynpA pΡ h_39.ppNVUcdtr3Zm_o 'Oyzj]R ꃴqEK'Rk%Fx'-SsGslwoaV19 e# szsTڴc$ 0QVn)!e=8Xtsd+ L"ћ^]S'8\;7\tp90W9G: vsU$TeQ]]{>r,O-y.w>ͭpNߜ >}»$Rk;k<+r6Jmi^mZa3M<QmwY$Y@3-#'r؟sȹޕ~pQUsiUlº( #FIn 9^s/ 9y׺F\~L>o+_yDV(JH-WV/)$_żb\8+/җ\D0"&J9 M2-Š@W6ɥJׁWn0 ytYT0(0_WΚK[cOH劲\r5W|yRVʣVjw"m6&s4j6DwLCq. K@{{+FJz%J9 )y*m@TJIlr.Hjve/fBwP&1ӳW.  oCB]"E V)VrA8(2?csIČGY}$1sh.9QNw;+tHi"+,"wI/eܮZ d9> >@F}`<[ {ZQB 9?Adu %y JzUxXͥsz ƽ ?3۠T^5314ӈ\/3,5ud‡7絋98ۅ(Mv:7jlv+8ҾsdQJys3t 5o>Awzu\ru{oӉ;F+&͚؛-AȒBJa.r_\@zFi0^6kC{YrV.e%}OTӧ,5ѭJ.MKu~+Sn@~ OsQizX^pɌ˟tyq4C+|]M=JM7"9$A9rceu՝J=K[BJ@uRsa[%]^o 4y cJ~ Kx~THI<챚"].%7' jx}T jI T)H1/{ܙYȢB fga{EqhfnL7-d퇶vOB_T4"MxQBU0A}AY;ܧH ΁V =WqzS0Dek.^ HT`DP#B {d;ҴhZWk$Oe[Mkqp:~qkU(7]W?qVoW;]Ji ӯLpK8L{W T5n`:BMaյXS3ik`~DU: l7v'im.Z=\Duu{f]q6_oڱ+ ?ѪLM|3>mKt{C aON :O4T >8{U% 'hKWʚ5kY;~|9 >NfC}7bB|Ț?J"Ia}#32K$kLb ,7tcG08L|Yq1yYrCP1Mٽрh!Th"&{a/YWFf#_TѩrO;a'hB>3<`}o j ". g]hIENDB`espresso-5.1/Doc/developer_man/WARNINGS0000644000175000017500000000036612341373052016007 0ustar mbambaNo implementation found for style `graphicx' ? brace missing for \ Substitution of arg to newlabelxx delayed. redefining command \ ? brace missing for \oldcontentsline ? brace missing for \oldnewlabel There is no author for this document. espresso-5.1/Doc/developer_man/img13.png0000644000175000017500000000000012341373053025367 1espresso-5.1/Doc/developer_man/img18.pngustar mbambaespresso-5.1/Doc/developer_man/img19.png0000644000175000017500000000000012341373060025370 1espresso-5.1/Doc/developer_man/img15.pngustar mbambaespresso-5.1/Doc/developer_man/developer_man.css0000644000175000017500000000157312341373066020174 0ustar mbamba/* Century Schoolbook font is very similar to Computer Modern Math: cmmi */ .MATH { font-family: "Century Schoolbook", serif; } .MATH I { font-family: "Century Schoolbook", serif; font-style: italic } .BOLDMATH { font-family: "Century Schoolbook", serif; font-weight: bold } /* implement both fixed-size and relative sizes */ SMALL.XTINY { font-size : xx-small } SMALL.TINY { font-size : x-small } SMALL.SCRIPTSIZE { font-size : smaller } SMALL.FOOTNOTESIZE { font-size : small } SMALL.SMALL { } BIG.LARGE { } BIG.XLARGE { font-size : large } BIG.XXLARGE { font-size : x-large } BIG.HUGE { font-size : larger } BIG.XHUGE { font-size : xx-large } /* heading styles */ H1 { } H2 { } H3 { } H4 { } H5 { } /* mathematics styles */ DIV.displaymath { } /* math displays */ TD.eqno { } /* equation-number cells */ /* document-specific styles come next */ espresso-5.1/Doc/developer_man/img16.png0000644000175000017500000000036212341373061016261 0ustar mbambaPNG  IHDR#w*PLTEMJK# b``mkkXUV856wuv[[tRNS@fvIDATc```d@ L(|d737vYlJ\v ($!1$I^sp@]Pfllf1 fKzb`rq&MXI~RGI4JlߝZ4Fvb'¤o9}fy7[OF7ƍXXPHDWu7܊җ[|#:W" 2è' b "N±D&.Q{y)Z#CŨ[X*mٌ="9b]nF;ݜvzz_cy"6G:IENDB`espresso-5.1/Doc/developer_man/images.tex0000644000175000017500000002443012341373052016621 0ustar mbamba\batchmode \documentclass[12pt,a4paper]{article} \RequirePackage{ifthen} \textwidth = 17cm \textheight = 25cm \topmargin =-1 cm \oddsidemargin = 0 cm \usepackage{html} \usepackage{graphicx} \usepackage[dvips]{color} \pagecolor[gray]{.7} \usepackage[latin1]{inputenc} \makeatletter \makeatletter \count@=\the\catcode`\_ \catcode`\_=8 \newenvironment{tex2html_wrap}{}{}% \catcode`\<=12\catcode`\_=\count@ \newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}% \newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}% \expandafter\renewcommand\csname #1\endcsname}% \newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}% \let\newedcommand\renewedcommand \let\renewedenvironment\newedenvironment \makeatother \let\mathon=$ \let\mathoff=$ \ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi \newbox\sizebox \setlength{\hoffset}{0pt}\setlength{\voffset}{0pt} \addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt} \addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt} \addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt} \addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt} \setlength{\textwidth}{349pt} \newwrite\lthtmlwrite \makeatletter \let\realnormalsize=\normalsize \global\topskip=2sp \def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float \def\@float{\let\@savefreelist\@freelist\real@float} \def\liih@math{\ifmmode$\else\bad@math\fi} \def\end@float{\realend@float\global\let\@freelist\@savefreelist} \let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float \let\@largefloatcheck=\relax \let\if@boxedmulticols=\iftrue \def\@dbflt{\let\@savefreelist\@freelist\real@dbflt} \def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}% \def\phantompar{\csname par\endcsname}\normalsize}% \def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}% \newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }% \newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }% \newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup % \let\ifinner=\iffalse \let\)\liih@math }% \newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}% \expandafter\box\next\egroup}% \newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}% \newcommand\lthtmllogmath{\dimen0\ht\sizebox \advance\dimen0\dp\sizebox \ifdim\dimen0>.95\vsize \lthtmltypeout{% *** image for \lthtmlmathenv\space is too tall at \the\dimen0, reducing to .95 vsize ***}% \ht\sizebox.95\vsize \dp\sizebox\z@ \fi \lthtmltypeout{l2hSize % :\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}% \newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist \lthtmlmathtype{#1}\lthtmlvboxmathA}% \newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}% \newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup \let\@savefreelist\@freelist \lthtmlhboxmathB}% \newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}% \newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox \global\let\@freelist\@savefreelist}% \newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}% \newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}% \newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}% \lthtmldisplayA{#1}\let\@eqnnum\relax}% \newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}% \newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB} \newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA \vrule height1.5ex width0pt }% \newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}% \newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}% \newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline} \newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath} \newcommand\lthtmlindisplaymathZ{\egroup % \centerinlinemath\lthtmllogmath\lthtmlsetmath} \def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{% \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{% \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt% \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt% \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\centerinlinemath{% \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1 \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax} \def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill \else\expandafter\vss\fi}% \providecommand{\selectlanguage}[1]{}% \makeatletter \tracingstats = 1 \providecommand{\Beta}{\textrm{B}} \providecommand{\Mu}{\textrm{M}} \providecommand{\Kappa}{\textrm{K}} \providecommand{\Rho}{\textrm{R}} \providecommand{\Epsilon}{\textrm{E}} \providecommand{\Chi}{\textrm{X}} \providecommand{\Iota}{\textrm{J}} \providecommand{\omicron}{\textrm{o}} \providecommand{\Zeta}{\textrm{Z}} \providecommand{\Eta}{\textrm{H}} \providecommand{\Omicron}{\textrm{O}} \providecommand{\Nu}{\textrm{N}} \providecommand{\Tau}{\textrm{T}} \providecommand{\Alpha}{\textrm{A}} \begin{document} \pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}% \makeatletter \if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}% \else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi% \lthtmltypeout{}% \makeatother \setcounter{page}{1} \onecolumn % !!! IMAGES START HERE !!! \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{section} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2273}% $ \Gamma$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2275}% $ \psi$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2276}% $ \psi^{*}_{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2278}% $ \Phi$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2281}% $ \psi_{j}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2282}% $ \psi_{{j+1}}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2287}% $ {\Phi(G) + \Phi^*(-G)\over 2}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2289}% $ {\Phi(G) - \Phi^*(-G)\over 2i}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} \stepcounter{section} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2298}% $ \le$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay2304}% $\displaystyle {\frac{{i-1}}{{nr1}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay2305}% $\displaystyle \tau_{1}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay2306}% $\displaystyle {\frac{{j-1}}{{nr2}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay2307}% $\displaystyle \tau_{2}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay2308}% $\displaystyle {\frac{{k-1}}{{nr3}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay2309}% $\displaystyle \tau_{3}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2311}% $ \tau_{i}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2313}% $ \tau_{1}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2315}% $ \tau_{2}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2317}% $ \tau_{3}^{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} \stepcounter{subsubsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \end{document} espresso-5.1/Doc/developer_man/img4.png0000644000175000017500000000033212341373060016172 0ustar mbambaPNG  IHDR/-PLTEMJK# b``mkkXUV856wuv.*+stRNS@f[IDATc` J8 ` %, ;:pz^ ID,ob:"f0`pd`)`Cm6tIENDB`espresso-5.1/Doc/developer_man/developer_man.html0000644000175000017500000000000012341373066030015 1espresso-5.1/Doc/developer_man/index.htmlustar mbambaespresso-5.1/Doc/developer_man/img3.png0000644000175000017500000000041412341373057016200 0ustar mbambaPNG  IHDR#! *PLTEMJK# b``mkkXUVC@@wuvtRNS@fIDATc`v!. O A"WN x&00,`Ѐ'l @n,˰640fx+Xf^b8(ӓkCL^F(`"d&P[AkIENDB`espresso-5.1/Doc/INPUT_CPPP.txt0000777000175000017500000000000012341373334020123 2../CPV/Doc/INPUT_CPPP.txtustar mbambaespresso-5.1/Doc/ChangeLog.pw0000644000175000017500000024625412341373034014223 0ustar mbambaSee file ChangeLog.old for changes after aug. 2004 28 Jul 2004 Workaround for a bug of the PGI compiler (5.1-5) (C.S.) 27 Jul 2004 PP/projwfc.f90: on input, degauss1, ngauss1 => degauss, ngauss Documentation for atomic code updated (PG) Various minor format changes in output (GB) 23 Jul 2004 Fixed a small bug in the way preprocessor flags were used (CS). Workaround for a strange bug in spin-orbit case with norm-conserving PP in PWNC/newd.f90 (AdC). 22 Jul 2004 Two bugs fixed. Now PWCOND is working as before. Bugs introduced when 0:ndm => ndmx (23 Apr) and to correct another problem (31 May). (ADC) NEB examples updated. Strange initialization fixed (CS) 21 Jul 2004 Removed input variable VEC_scheme (no longer used). INPUT_PW updated (CS). some examples regenerated (GB). 20 Jul 2004 Fixed some bugs in NEB. Added a new field in the neb restart file. To use old restart files the following gawk-script can be used: BEGIN{ level = 0 } { if ( $1 == "Image:" ) { print ; if ( $2 > level ) { level = $2 ; getline ; printf "%2s, F \n", $1 ; } } else { print } } C.S. 16 Jul 2004 Fixed a bug (spotted by Guido) in the diagonalization with occupation-dependent thresholds: now occupations are also computed at the end of the the wfcs initialization so that wg is always initialized. (CS) 15 Jul 2004 Several minor bugs fixed in the lbfgs algorithm. Added an, hopefully safe, interpolation for the "step accepted" case of the standard bfgs which can give some speedup in the minimization (it can be disabled commenting a line inside the file). (CS) 14 Jul 2004 added (partial) support for Cray X1 (contributed by Roberto Ansaloni). Small changes in phonon output and in the scripts processing it. [Gerardo] 9 Jul 2004 make_pointlists was not working with very strange atomic positions. Small changes in get_locals and report_mag (AdC) 2 Jul 2004 Misc. cleanup; a few redundant routines moved to flib; added example for phonon DOS; version number increased (PG) 1 Jul 2004 Added the possibility to make a spin-orbit calculation with zero magnetization. (Still to be cleaned) (ADC) Removed the routine to calculate k - -k needed just in this case. (ADC) 30 Jun 2004 Calculation of DOS and of Projected DOS have the same kind of input and yield comparable results, at least with gaussian broadening (PDOS with tetrahedra still not implemented) Beware changes in input and possible problems. (PG) Cleanup: 'dispersion' removed from PW, is now entirely in PH module disp moved from pwcom to phcom variable nqx changed to nqmax (Gernot) 28 Jun 2004 Calculation of the dynamical matrices for the dispersion is now within ph.x possible. New input variables: lnscf: if .true. the nscf and phonon run are done in one single run ldisp: if .true. calculation of dyn. matrices for dispersion nq1, nq2, nq3: q-point mesh. (GD) 28 Jun 2004 Bug fix: spin orbit + US-PP were not working in low symmetry cases. (ADC) Added a routine to calculate k and -k in the spin-orbit case, because they are no more equivalent. (ADC) 26 Jun 2004 diis_module.f90 recoded. The following variant of the DIIS Residual Minimization Method, based on three steps, has been implemented : 1) At the first "scf" step of the first "ionic" step, the diagonalization starts with an initialization procedure. Two (or more) sweeps on all the bands are performed. A sweep consists in two (or more if required) unconstrained trial steps (steepest descent steps) followed by a subspace rotation. If convergence is not achieved in this phase a final trial step is done. In all the other cases the initialization procedure consists in a subspace rotation followed by a trial step. 2) Diagonalization based on the DIIS algorithm is performed on the lowest ( nbnd - 2 ) bands. Orthogonalization of the eigenvectors is done at each step. The possibility of orthogonalizing a given band only to those inside an energy window is also implemented. 3) The topmost two bands are converged using a standard conjugate-gradient procedure. This ensures that eventual holes left by the DIIS algorithm can be identified and filled. If two holes have been found this procedure is repeated on the topmost two bands (previously optimized with the DIIS algorithm). (CS) 25 Jun 2004 Machine-dependent definitions are now contained in two different files (both in /include): 1) f_defs.h for definitions to be included in FORTRAN files ONLY 2) c_defs.h for definitions to be included in C files ONLY (CS) Many small changes to fix compilation on T3E (PG) 24 Jun 2004 Calculation of Makov-Payne correction added to chdens (contributed by Giovanni Cantele) (PG) 22 Jun 2004 Cleanup and some minor modification of the output format in molecular dynamics runs. (CS) No need to have a spin index in dvan (PG) 21 Jun 2004 Added support for Opteron (contributed by Davide Ceresoli) [GB] First clean-up of parallelism. Fixed a bug in the way temporary files were labelled when nproc > 10 and npool > 1 (CS). More T3E glitches: getarg must be preprocessed || instead of | in clib/cp.h (PG) 17 Jun 2004 Direct references to mpif.h replaced (in fft_base.f90 and ptoolkit.f90) by USE parallel_include. Small change in the output: also the forces on fixed atoms are printed (previously they were set to zero before the print-out). (CS) 16 Jun 2004 stm image should work also for magnetic systems (SdG) 16 Jun 2004 NLCC for Fritz-Haber to UPF format converter (thanks to from Frederic Bouyer and Katalin Gaal-Nagy) Some calls to blas routines were incorrect for T3E (PG) 16 Jun 2004 Fixed a bug (highlighted by Tone) in the way the path-length was computed. (CS) 15 Jun 2004 Example22 added. It makes a calculation of fcc-Pt including spin-orbit effects (ADC). 14 Jun 2004 io_base : added read and write of jchi and jjj (ADC) PP : added the possibility to plot the magnetization in the noncolinear case (ADC) PWNC : clean up. openfil, restart, punch, read_conf_from_file, write_conf_to_file, restart_in_electrons, merged with those in PW. (ADC) io_base : noncolin, lspinorb saved in restart file.(ADC) cpmd2upf wrote an incorrect DFT if converting BLYP PPs. (PG) 13 Jun 2004 Some changes to newd.f90 (PG) 12 Jun 2004 Modules becmod, rbecmod (one variable each) merged into a single module (with two variables...) More USPP merge (PG) 11 Jun 2004 Cleanup of the molecular dynamics routines. Some debug messages removed. Some duplicated variables (fixatom and if_pos) removed from pwcom (already present in ions_base). A logical variable lfixatom added in control_flags. The output of a molecular dynamics run has been slightlychanged to be (hopefully) clearer. Fixed a couple of ambiguities: flib/rranf.f90: variable irand was not initialized. PW/v_of_rho.f90: at line 146 the following call has been changed CALL xc( arhox, ex, ec, vx, vc ) => CALL xc( arhox, ex, ec, vx(1), vc(1) ) (CS) 10 Jun 2004 pw_examples, cp_examples => examples (Gerardo) Several small bugs in restart, found by AdC and David Prendergast (PG) Fixes for cry-t3e compilation. Fix for Gamma compilation (PG) 8 Jun 2004 More uspp variables rearrangement: qq_spinorb moved into Modules/uspp.f90 as qq_so dvan => dvan + dvan_so (for spin-orbit only) PW/clean_pw.f90 replaces PWNC/clean_pw.f90 (PG) 8 Jun 2004 First step to calculate all dyn. matrices needed for the entire dispersion in one step with pw. A new calculation is possible called 'dispersion' in the phonon card new input parameters are: nq1, nq2, nq3 : number of q points in the direction tr2_ph : threshold for the phonon calculation (see also INPUT_PH) UP TO NOW ONLY THE Q POINTS FOR THE DYN. MATRICES ARE CALCULATED AND PRINTED. (Gernot) 7 Jun 2004 Some bugs fixed in NEB: 1) Modules/neb_base.f90: the neb error is computed as done in structural optimizations (convergence when the largest component of the force vector is less than a threshold). The rescaling of the elstic constants has been modified so that they can not be smaller than a minimum value (set to 0.05). 2) PW/compute_scf.f90: a bug in the way startingpot and startingwfc were used inside neb has been fixed (now scf should be faster). 3) PW/pwscf.f90: cleanup of module-dependencies. 4) pwdocs/INPUT_PW: documentation updated (a detailed explanation of how to specify initial configurations has been added). 5) PW/neb_routines.f90: file no longer needed (CS) 2 Jun 2004 More USPP-related variable rearrangement (PG) Quantities of a LDA+U calculation are again written on file ".save", similarly to what was previously done by the "saveall" routine but according to the new format. Two subroutines have been added to "io_base" (write_restart_ldaU, read_restart_ldaU) which are called by "restart". (SF) 31 May 2004 PWCOND: Bug fix, now should work also for nrx1 or nrx3 different from nr1 or nr3 (contributed by A. Smogunov) PH: cleanup of cgsolve_all in order to reduce memory use, zstar, epsilon and dynamical matrices written with 8 digits only (it should not make any significant difference and it should be easier to spot differences in dynmat files if 0.123456789E-10 is treated as zero) Symmetrization is applied already to drho (not anymore to dvscf) (SdG) PWNC cleanup (AdC) More USPP_related variables moved to Modules/uspp.f90 Note that lqx => lmaxq for consistency with other names (those ending in x are static dimensioning) (PG) 28 May 2004 NEB: added the possibility of specifying one or several intermediate images in the input file (see INPUT_PW). Back-compatible with the old input files. (CS) 27 May 2004 Raman calculation with 2n+1 theorem added (Gernot) Small changes in noncolinear symmetrization (AMC) Added support for "ph.x -in input" [Gerardo] 26 May 2004 Part of the variables for ultrasoft pseudopotentials have been moved into a new module uspp_param, shared between PW and CP (in file Modules/uspp.f90) The flag newpseudo is no longer used to decide whether states with oc=0 are bound or not: for those states, and only for the old RRKJ format, oc is set to a negative value, and this signals that they are not bound. Not elegant but simpler than it used to be. The converter to UPF format did not include those states anyway. Beware unexpected side effects! (PG) 25 May 2004 Changes in pw to calculate the Raman tensor via the 2n+1 theorem. A new calculation called 'raman' is now available. For each k point additional points at k+b will be generated and a nscf calculation will be performed. The b vectors are small vectors either in cartesian coordinates or along the direction along to the nearest neighbours. A new input card named raman is introduced. New variables: b_length: the length of the b vectors lcart: if .true. cartesian direction (default) if .false. in direction to the nearest neighbours 24 May 2004 density/potential mixing procedure in presence of an electric field has been changed. - Density mixing is now available. - Explicit mixing of the dipole moment in potential mixing has been removed (in my opinion it was spurious). If anybody experiences bad convergence with the present scheme please let me know. (SdG) 21 May 2004 Merged noncolinear and colinear symmetries (routines sgama, irrek). Variable degspin removed, constant degspin=2 left. Please check for unintended effects! 21 May 2004 A new check has been added in move_ions in the case of BFGS+LSDA: if when the convergence is achieved the absolute magnetization (computed in electrons and now saved in the module lsda_mod) is less than 1.D-8 a new scf cycle is performed starting from atomic potential and wcfs and the BFGS convergence is checked again. Removed some unused variables from pwscf. Again a couple of errors highlighted by Tone in the format of the NEB restart file (file prefix.neb) at lines 369 and 377. (CS) 20 May 2004 Fixed an error highlighted by Tone in the format of the NEB restart file (file prefix.neb): ELSATIC vs ELASTIC (CS) 19 May 2004 Functions "capital" and "matches" taken out of module "parser" and added to flib; duplicated routines removed. Manual update (PG) 18 May 2004 Set value of gamma_only=lgamma after read_restart_header in restart.f90 (SdG) Removed obsoleted compiler flag -DHAS_ZHEGVX (GB) 17 May 2004 Several minor bugs in the NEB machinery (mainly related to the restart procedure) have been fixed: this required a partial reorganization of the restart-file (prefix.neb) that is no longer compatible with the previous one. Now the restart mechanism is much more robust. In coset.f90 division by zero without any check: added an error message. Cleanup of openfil.f90 routine. In read_cards.f90 module kinds was USEd two times. (CS) 14 May 2004 Fixed a couple of bugs in error.f90 and move_ions.f90 (CS). Updated functionals and installation mechanisms, ready for addition of atomic code. Doc update (PG) 13 May 2004 keyword "revPBE" recognized by which_dft Beware: potential for trouble with PBE and the like... More noncolinear merge (PG) 13 May 2004 Some cleanup in the NEB machinery (CS). Fixed a serious bug in the mixing of spin polarized systems with the local-TF screening (SdG, CS). 12 May 2004 pw2casino: incorrect calculation of eloc (G=0 term missing) (found by Dario Alfe') 11 May 2004 becp = allocated only when needed (except in phonon where it is still allocated at the beginning) 11 May 2004 Yet another version of the DIIS algorithm (replacing the previous one). This version is slower (but not dramatically) than davidson for small systems, faster for large systems (the cross-over is around 300 bands), but there is space for further improvements. A gamma-point version is also implemented (previously missing). An "holes-sniffer" is implemented to prevent holes in the eigenvalues spectrum. (C.S.) 10 May 2004 Added a cut-off: -1.0 + 1.D-6 < zeta < 1.0 - 1.D-6 to prevent the divergences of the correlation part of the PBE potential. (C.S.) 10 May 2004 Fixed some bugs in the cg and diis routines of the noncollinear code. Now these routines work also with NC-PPs. (ADC) 09 May 2004 Cleanup of duplicated or unimplemented routines in PWNC/ (PG) 08 May 2004 Cleanup: pwcom no longer used in PP/, qgm is now a local variable as it should be (PG) 07 May 2004 New punch routine. If the wf_collect flag is true, it collects all wavefunctions in a single file. (PC) Fixed a in local-TF screening (division by zero) that was present since version 1.2.0 (CS) 06 May 2004 Fixed several bugs in the part that supports spin-orbit, and a bug in the symmetrization of the magnetization in the parallel case. (ADC) Support for g95 added (GB) 04 May 2004 Bug in cpmd2upf.f90 fixed (thanks to Dariusz Chrobak) 03 May 2004 Added support for spin-orbit pseudo-potentials. Support for both NC and US PP. (Still experimental) (ADC) NEB: cleanup of bfgs stuff 1) a backup copy of the restart file is written at each iteration on the scratch directory. 2) velocities can be reset (reset_vel keyword) when restarting from file. (C.S.) 30 Apr 2004 Started the work to provide support for pseudopotentials with spin-orbit. Now PW can read a spin-orbit pseudopotential, but not use it (ADC) DIRECT_IO_FACTOR for intel compiler reverted to 8, compiler option used instead. Lowdin charges are printed for each spin component (PG) 28 Apr 2004 Pseudopotential cleanup and merge: module "atom" (common with CP) moved to Modules/ index nhtom (m) replaced by nhtolm (combined lm index) (as in CP) (PG) 27 Apr 2004 More pseudopotential cleanup (PG) Fixed some bugs in the NEB machinery. In particular the error was not properly computed and overestimated the real error. Some improvements in output format of a NEB calculation (C.S.) 26 Apr 2004 The correct value of DIRECT_IO_FACTOR for intel compiler version 8 is 2, not 8: wavefunction files were 4 times larger than needed! (CC) 25 Apr 2004 pseudopotential cleanup: vnl => vloc_at (PG) 23 Apr 2004 ndm, mmaxx => ndmx ; 0:ndm => ndmx (no longer needed) (PG) 22 Apr 2004 funct.f90 and which_dft moved to Modules/functionals.f90 (PG) 21 Apr 2004 cleanup: zv moved to module "basis", documentation updated (PG) 20 Apr 2004 dylmr2.f90 moved to flib/ (PG) 19 Apr 2004 Bug fix: non-collinear code was not working with insulators and nbnd > nelec/2 (AdC) 15 Apr 2004 Fixed multiple writes to file in parallel execution when calculating electron-phonon coefficients (thanks to Xianghju) (PG) 14 Apr 2004 Fixed a couple of bugs in the lbfgs algorithm. (CS) On parallel LINUX machines the error message is written opening unit "0" on /dev/stderr (as is automatically done on AIX). (CS) The exit_file is no longer a parameter (set in io_files.f90 to "EXIT"), but an internal variable set in input.f90 to "prefix.EXIT". This is necessary to allow the user to stop the "correct" job when several jobs are running on the same working directory. (CS) read_recon subroutine moved inside paw module for future use in nmr calculation (MP) 13 Apr 2004 First steps in USPP harmonization: nqfm => nqfx, some us variables and aainit moved to Modules/uspp.f90 (new) invmat moved to flib/ and merged with invmat3 of CP/FPMD, rndm and ylmr2 moved to flib/ in rranf.f90 7 Apr 2004 relativistic exchange introduced in case of pseudo generated with relativistic exchange Added support for HP workstation with Itanium CPU 3 Apr 2004 Cleanup: integer conversion to real performed with "dble" everywhere, minor things here and there 2 Apr 2004 A new (experimental) feature is added to LDA+U method. The +U part of the functional can be built using for the projection on localized orbitals some simple Wannier functions generated by the post-processing code poormanwannier.f90 (pmw.x) from the LDA band structure. (SdG) 2 Apr 2004 Cleanup: dsum deleted (PG) Default value for the neb-time-step (ds) updated. Corrected some other small errors in the INPUT_PW file (CS) 2 Apr 2004 References to brilz replaced everywhere by cell_base (CS) Again an improvement of the optimization procedure in neb calculations: the new version of quick-min estimates the optimal time step on the basis of the approximate force constant along the displacement vector (this is only done after some optimization steps). In all test cases the algorithm is at least two times faster. Nevertheless the algorithm is not yet optimal (CS) Cleanup: all references to varie replaced by references to control_flags (also when varie is indirectly called by pwcom). Fake module varie has been removed from pwcom (CS). 1 Apr 2004 Incorrect preconditioning in LBFGS (CS) 31 Mar 2004 Compilation problems with __NEW_PUNCH fixed Fixed a bug in neb when lda_plus_u is true (CS) 29 Mar 2004 Various cleanup: error, date_and_tim, clib, harmonization with CP and FPMD. Now in case of severe error, errore writes its message also to the file 'CRASH' that is closed before aborting, this to avoid information loss in those systems that do not flush open streams, when the code is stopped through a call to MPI_ABORT (CC) General cleanup: NEB 1) units for activation energy and errors are printed in the output file 2) elastic constants are automatically rescaled so that "spring" forces have the same magnitude as "external-potential" forces: this permits a larger time step in NEB optimization (the default will be changed later) 3) fixed a bug in the way istep and istep_neb were set (CS) General cleanup: parser 1) the subroutine delete_if_present has a logical optional input argument to require a warning message when a file is removed 2) check_stop: the function check_stop_now has an optional input argument to assign an output unit different from stdout (CS) 24 Mar 2004 Implemented experimental parallelization of NEB images. This required deep modifications of the parallelism in PWscf. - There are two new communicators: intra_image_comm and inter_image_comm. - #ifdef __PARA is no longer needed because all "parallel" variables are always initialized for a serial run and all parallel routines are, in the case of a serial run, dummy routines. - The wrappers to MPI routines used only by PWscf are in file PW/para.f90. - The others (mp_***) are in the Modules/mp.f90. - All explicit referencies to mpif.h should be replaced by a "USE parallel_include" (in a serial run parallel_include is simply a dummy module). The extrapolation of both potential and wavefunctions has been rewritten in order to be smarter than before: on the basis of the required extrapolation order, on the basis of the history and on the basis of which files are really present on the disk, the algorithm chooses the extrapolation order. All algorithms in which ions are moved can use the extrapolation. Both features are unstable: I need the help of everybody in order to test them. (C.S.) 24 Mar 2004 Crashes in raman and planar average calculation fixed 19 Mar 2004 Yet another bug in phonon + k-points parallelization in routine phq_readin (found by Nicolas Mounet) 17 Mar 2004 Obsolete parallelization routines removed (CS) Missing routines added to local lapack copy (MP) 16 Mar 2004 All references to mpif.h and to subroutine check.f90 removed by the PWscf and related codes (CS) 15 Mar 2004 Makefile cleanup. In upftools executable are *.x (PG) Problems in parallel version of PWNC and PWCOND fixed, other refernces to mpif.h removed. (CS) wfcs extrapolation extended to NEB. (CS) In rdiaghg and cdiaghg #ifdef HAS_ZHEGVX removed (that routine is present in all lapack distributions). 15 mar 2004 Two instances of the same variable in efg.f90 (AT) Cleanup, doc, workaround for yet another ifc8 bug (PG) Almost all neb routines moved to Modules (CC) New module check_stop used by all codes to check for exit conditions ( maximum time or EXIT file ) (CC) General cleanup of parallelization routines: they have all been moved in the para.f90 file, all includes of mpif.h replaced by USE include_parallel. (C.S.) 12 mar 2004 more postprocessing is working at Gamma point (AT, PG) Several compilation and Makefile glitches (PG) Manual updated (PG) Options startingwfc and startingpot are no longer ignored in a restart calculation (found by K.Kudin) (CS) 09 mar 2004 ewald_dipole did not reduce g-tensor check efg in parallel (minor changes) call to poolbcast() should include a test to npool /=1 (MP) 08 mar 2004 Calls to broadcast() and poolbcast() replaced everywhere by calls to mp_bcast(*,MPI_COMM_POOL) and mp_bcast(*,MPI_COMM_ROW) respectively. Files PW/broadcast.f90 PW/poolbcast.f90 removed (CS) 08 mar 2004 cleaning and documentation of paw related routines (MP) 08 mar 2004 neb basic routines moved to Modules, to be shared among codes basic cell and ionic variables moved from pwcom to cell_base and ions_base . cell_base modules and ions_base modules should be initialized through the use of cell_base_init and ions_base_init, this after having read the namelists and the cards . IN THE FUTURE NONE OF THE VARIABLES IN THE BASIC MODULES SHOULD BE SET IN THE MAIN CODES, BUT THROUGH A CALL TO SOME INIT FUNCTIONS CONTAINED IN THE BASIC MODULE ITSELF. THE IDEA IS THAT THE BASIC VARIABLES SHOULD BE USED AS READ-ONLY. UNFORTUNATELY IN F90 THERE IS NO POSSIBILITY TO SET A READ ONLY ATTRIBUTE. (CC) 07 mar 2004 Cleanup in PH/ and D3/, setv removed (PG) Calls to broadcast replaced by calls to mp_bcast everywhere. All kinds of ionic dynamics are done by a single cpu (see move_ions.f90). After the ions are moved the new positions (and other information) are broadcast to all other cpus. C.S. 04 mar 2004 Excessive check in PP/punch_plot.f90 if gamma_only (Antonio Tilocca) 01 mar 2004 calculation of NMR parameter Cq and eta in efg some output formatting (MP) 27 feb 2004 Fixed a serious bug in the path interpolator (spotted by Nicola Bonini) C.S. More cleanup in examples (GB) 26 feb 2004 Porting to SGI Altix by Martin Hilgeman, SGI (see cpdocs/ChangeLog for detailed log) 26 feb 2004 wfc-extrapolation extended to all "relax" algorithms. Molecular Dynamics based algorithm partially rewritten: both standard and damped MD are performed with the velocity Verlet scheme (with or without constrains). Renata's subroutines are used only in the framework of variable cell. constrain.f90 file is no longer needed: cnstrains are set in the input file (see CONSTRAINTS CARD) with the same input format used in FPMD. An arbitrary number of constrains can be set. In the case of constrained relaxation the damped MD algorithm is used instead of BFGS. When restart_mode = "from_scratch" many restart files are removed from the scratch directory. Several other modifications here and there. (C.S.) 26 feb 2004 Remove use of setv in symz (MP) Several minor errors in the manual (PC) 25 feb 2004 PWgui documentation updated (Tone) Serious bug in phonon + pools (again) fixed: double call to init_pool in PH/phq_readin.f90 (spotted by Gernot) Useless clib/c_getenv.c removed (PG) Minor updates to examples (CS, AdC) Added --disable-parallel and --disable-shared flags to "configure" (GB) Electric field gradient calculation with PAW reconstruction (MP) ------------------------------------------------------------------- Date: 24 Feb 2004 Version: pw-2-0 ------------------------------------------------------------------- 19 feb 2004 more fixes to pw2casino (MP), examples and doc (PG) 18 feb 2004 more installation fixes (GB) and doc updates (PG) Fixed another bug in the path interpolator script (CS) GUI added to the repository - see the GUI/README file (Tone) Berry-Phase calculation in parallel fixed for npool = 1, program stops if npool /= 1 (PG) pw2casino works in parallel if npool=1 (MP) 17 feb 2004 check_constrain weirdness fixed - maybe Misc documentation updates (PG) F77 syntax for dist.f (GR) 16 feb 2004 Various updates to documentation (Tone, GB) and to installation (GB) Fixed a bug in the path interpolator script (CS) Use only potential mixing with dipolar field (AdC) 14 feb 2004 LDA+U: variable starting_ns_eigenvalue has been added in order to allow to specify how to fill starting ns occupation matrices. Useful when the default choice takes the wrong (or not desired) path. (SdG) As gamma_only is not working yet with LDA+U in forces and stress a call to errore is added to prevent mis-use (SdG). 13 feb 2004 Noncolinear example updated (AMC) README.configure added (PG) Installation instructions rewritten (GB) Updated XCRYSDEN utilities in pwtools/ (Tone) 12 feb 2004 Misc updates and fixes to examples (PG, SF, GB) PP/bands.f90 stops if pools are present (PG) Small bug fix in pseudo_types.f90 (AdC) INPUT_CHDENS: fix description for XCRYSDEN format (Tone) Implementation of LDA+U gamma_only calculations (SF) 11 feb 2004 Missing lapack routines added (PG) Case nks=1 in new_ns fxed (SF) pw2casino: formatted output for G vect, correct nonlocal energy, now correct in NC case (MP) The minimization procedure has been refined in order to be more robust when the starting configuration is close to the minimum: if (and only in this case) the trust_radius is too long and the step fails to reduce the energy (Enew>Eold), then the new trust_radius is obtained with a quadratic interpolation (line search) that is guaranteed to have a good minimum (previously the trust_radius was simply halved). For test purpose a precompiler flag (OLDRECIPE) can be defined. summary.f90: format was causing trouble with 'f' projectors (SF) 10 feb 2004 Cleanup in check_example (GB), PW/rotate_wfc*.f90 (CS) Singular Value Decomposition used in extrapolate_wfc: avoids numerical instabilities (Paolo Cazzato) 9 feb 2004 The new bfgs minimization scheme is now the default. In order to use the old scheme, the keyword ion_dynamics must be set to "old-bfgs" (C.S.) pw2casino: correct kinetic energy (tpiba2 was inside the k-loop) write out only G vectors uses to describe wavefunctions still not working in parallel (MP) 6 feb 2004 Example documentation updated (SF) Stress units explicitly written on output (SdG) Examples updated, misc. (PG) Example checker rewritten using awk (GB) Added a tool to generate a new path (what is actually generated is the restart file) starting from an old one. The new path is obtained through interpolation (cubic splines). The new path can be discretized with a different number of images (this is its main purpose), images are equispaced and the interpolation can be also performed on a subsection of the old path. A self explanatory shell script is also included: it permits an easier manipulation of the input file. Fixed a couple of bugs affecting the "reset bfgs" procedure (C.S.). 5 feb 2004 Fixes for 64-bit HP compilations (thanks to Sergei Lisenkov) Better example checker (GB). Minor cleanup of tabulators (PG) 4 feb 2004 D3 code updated to work with max_irr_dim != 3, some cleanup. D3example added. (Gernot Deinzer) Fixed a bug in the parallel version of neb: a bcast was missing (CS). 3 feb 2004 Documentation updated, some changes to output in dynamics and in summary as requested by Tone - examples updated configure => configure.old, configure.new => configure (PG) Added some experimental stuff (not compiled if __LANGEVIN is not defined) to neb_routines (CS) Added preliminary version of interface with QMC code CASINO: PP/pw2casino.f90 (Mickael Profeta) 2 feb 2004 projwfc works also with the gamma_only version (Guido Fratesi) Restored the check on diagonalization also at the first scf iteration. Module miscellany removed. Cleanup (CS). 29 Jan 2004 Fixed a bug and a potential name conflict in module basic_algebra_routines (CS). Fixed bug in noncolinear case with k-point parallelization (AMC+CS) Sloppy code in variable-cell code leading to overflow (PG) Small changes to "memory" to prevent integer overflow (PG) 28 Jan 2004 flib.a is only redone when necessary (GB) PWCOND: missing ionode_id added (AdC) Fixed a bug in the restart mode of neb (CS) Manual updated (CS, PG) example6/run_example modified to prevent SP4 weirdness (PG) Workaround in PW/h_psi.f90 for ifc v.8 (PG) Misc cleanup, empty workspace module removed (PG) 27 Jan 2004 Miscellaneous cleanup Missing IMPLICIT NONE in PH/solve_ph.f90 was causing problems: iunres was not declared and unit -1073746312 was opened (CS) Recently introduced bugs in PP/projwfc.f90 and in PW/dynamics.f90 fixed (PG) 24 Jan 2004 Speedup in LDA+U and stress calculation (SdG) IBM xlf workaround (CC) Module pwcom removed from PW/ (PG) 23 Jan 2004 Extensive module cleanup: DP moved from wrong place (parameters) to the correct place (kinds); module "varie" replaced by "control_flags" (not yet in pwcom, though) - many files changed. (PG) 64-bit cpus (Opteron, maybe Itanium) should now work if __LINUX64 is defined (PG) The diagonalization threshold can now be read by the input file (diago_thr_init). In the case of a phonon calculation it is ignored and a warning message issued. (CS) 22 Jan 2004 More fixes for the case of local potentials only (CS) Bug fixed in phonon calculation with nosym=.true. : minus_q and related variables where not properly set minus_q was always .false. while instead it may be .true. for some value of q (gamma for instance) (SdG). Contribution to the stress from derivative of the bessel function is obtained from the already available interpolation table: non-local stress calculation is much faster (SdG). STM images can be obtained from a calculation at "gamma"; gamma_only variable is written/read by saveall (Guido Fratesi) Cell parameters written on output for variable-cell dynamics as requested by Tone (PG) Misc cleanup 21 Jan 2004 An old bug of PWscf was still there in the noncolinear code: if lscf=.false. the calculation now starts from potential (AdC). More tweaking on ethr threshold (CS). Renamed reference outputs in pw_examples/example1 from "file" to "file.out", edited run_example accordingly (GB) machine.h: #define ZHETRD ZHETRD confuses pgi compiler (PG) Case of local potentials only fixed (?) once again (PG) 20 Jan 2004 The threshold for diagonalization (ethr) is now fixed to 1.D-5 at the first scf iteration (iter=1). A check is performed to verify that the resulting density is adeguate (dr2/nelec > ethr). If it is not the diagonalization goes on with a smaller ethr. For iter > 1 ethr is updated with the old recipe. Added a warning in update_pot that indicates "problems" in wfc extrapolation. This problem has not yet been fixed. More pwcom modules splitting (CS) Fixed occupation in noncolinear code...fixed! (AdC) 14 Jan 2004 out-of-bound error in Berry Phase calculation (PG) Automatic checker for examples added (GB) 09 Jan 2004 phonon did not work on 4-dim irreps (PG) configure.new updated to work with intel v.8 (GB) (which gives internal compiler error anyway) 08 Jan 2004 examples (output) updated 06 Jan 2004 Check on undefined variables, out-of-bound arrays Several implicit none re-added, pwcom modules split (PG) 05 Jan 2004 Tabs removed (again) NEB/ removed from makedeps.sh plotrho: added possibility to have contour lines of various type A few undefined variables defined (again) (PG) 05 Jan 2004 Cleanup of Gamma/ directory: obsolete files removed (CS) Gamma/ now contains only Gamma-only version of the phonon code 29 Dec 2003 kpoint_grid: - Bug fixed. Array wk(:) was temporarily used beyond its range and in some cases, with very large number of k-points, the code dumped or gave totally wrong numbers. - Symmetry k-point reduction algorithm exploits now the knowledge of the ordering of points in the list. It is much faster, in particular for large grids (as those needed for el-ph interaction for instance). 16 Dec 2003 Berry-phase bugs fixed (Oswaldo) Added trick by FA to allow reading from file 15 Dec 2003 Fixed non-colinear version with GGA+NLCC spin-unpolarized 11 Dec 2003 Merge of Gamma and NEB versions into PW ------------------------------------------------------------------- Intermediate version: pw-1-3-1 ------------------------------------------------------------------- 4 Dec 2003 NEB at gamma (NEB/pwgneb.x) is now available. Problem with starting_magnetization in NEB code fixed Misc documentation updates chdens : fixed XCRYSDEN output (Tone) 2 Dec 2003 spin-polarized calculations: at least one value for starting_magnetization must be explicitly set in input. Workaround for xlf compilation problem in new BFGS <1 Dec 2003 Added two new implementations of BFGS (experimental: can be tested using NEB code). Noncolinear speedup 21 Nov 2003 Fixed bug in Gamma+doublegrid Doc update, misc. cleanup in NEB and installation 20 Nov 2003 NEB added 19 Nov 2003 misc improvements in Makefile and configure.new 14 Nov 2003 PW/memory.f90 cleanup, icc problems in c_mkdir.c 11 Nov 2003 some pointers converted to allocatable (Michele) new script to find dependencies 9 Nov 2003 bug (alpha compiler) reported by Sergey has been fixed new lapack subroutine, called from PWCOND, added to lib/lapack.f and lib/lapack_ibm.f Wavefunctions arrays moved to module wavefunctions_module, common to all codes - required to reduce duplicated subroutine Module filnam in pwcom moved to io_files module Module units in pwcom moved to io_file From now on, all file names and their units and attributes (i.e. reclen) should be defined in Modules/io_files.f90 7 Nov 2003 Doc updated, example 5 and some Make.* files corrected 3-6Nov 2003 "stdout" and "stderr" units introduced and used everywhere in the code (needed in NEB for simple output redirection). Merge of colinear and noncolinear versions of input.f90 and addusforce.f90. Version number updated to 1.3.1 1? Nov 2003 Tag "pwsafe" added. 29 Oct 2003 Merge of several Gamma-specific routines into PW/ -D__LAM was not working in some cases (Michele) 29 Oct 2003 Gamma code cleanup: becp is allocated when used and then deallocated, obsolete module gamma removed 28 Oct 2003 PGI compiler doesn't like "external ::" Minor changes to examples for noncolinear 24 Oct 2003 Speed-up of Z* calculation 21 Oct 2003 Input documentation (sort of) for PP/projwfc.f90 Added template for developers' guide (pwdocs/refman.tex) 16 Oct 2003 bfgs modified to work with arbitrary components of the atomic positions kept fixed (Carlo Sbraccia) "Total force" now prints a more sensible quantity: \sqrt(\sum_{i,n} f_i(n)^2) instead of \sum_{i,n} |f_i(n)| Cleanup in several routines and in modules. 16 Oct 2003 US effective charges now available in the phonon code. Contributed by Gernot Deinzer 15 Oct 2003 phonon: added comments to remind why dbecsum is summed over processors; various calls to setv removed Second occurrence of wsinit and wsweight removed Unit number cleanup (solves problem with conflicting units) 8 Oct 2003 Two bugs due to atomic-unit mess: PW/input.f90: lattice parameter a converted to wrong units if input is given as a,b,c,cos(ab),cos(ac),cos(bc) instead of celldm(:); upftools/cpmd2upf.f90: wrong conversion due to Rydberg-Hartree mess. Minor cleanup here and there. Band plotting may output data in xmgr-readable format 3 Oct 2003 Non-colinear version of PW added (PWNC/) Cleanup of PP and other routines Band plotting simplified Support for HP PA-Risc (re-)added 17 Sep 2003 Wrong coordinates written if atomic_positions='crystal' (thanks to Francois Willaime) Errors in makefiles for cygwin and hp Various compilation problems for t3e, alpha ------------------------------------------------------------------- Date: 9 Sep 2003 Version: pw-1-3-0 ------------------------------------------------------------------- 09 Sep 2003 Fix for a nasty bug: if one performs two band structure calculations one after the other, the first spoils the charge density and the second yields wrong results. Temporary fix (AdC): start nonscf calculations from potential instead of rho. Added consistency check for DFT read from PP files. 02 Sep 2003 Parallel version of DIIS diagonalization Bug fix in the dielectric constant with US-PP. A factor i was not needed. Small differences with previous results. (Found by G. Deinzer). io_base logic simplified. Variable wf_collect added to the control namelist. This logical variable will be used in pw to collect wave functions at the end of a parallel run. Integer overflow in memory.x fixed (Adriano MC) 01 Sep 2003 Example outputs updated. Manual updated. Added scripts from Tone, Makefile for cygwin. 29 Aug 2003 Version number centralized in Modules/version.f90, updated to 1.3.0 Auxiliary programs in pwtools/: equation of state (ev.x), distances/angles (dist.x), k-point generation (kpoints.x). D3 fixes (maybe). Misc cleanup. 21 Aug 2003 occupations can be read from file. sp3 fix (allocation with zero length). Manual updates. Gamma: fixed occupations, electric fields, cleanup. 20 Aug 2003 punch_band.f90 works in parallel. Misc cleanup. nelec, nelup, neldw may have noninteger values 11 Aug 2003 PP/start_postproc.f90 cleanup. Manual updated. Some error messages clarified. Example for Berry phase updated (BEWARE: space needed between card and option after last changes to input!!! K_POINT{automatic} => K_POINT {automatic} ) 31 Jul 2003 More input merging (Carlo): All namelists and cards moved to Modules/input_parameters.f90 . From now on, all new input variables should be added to this module, and then copied to the code internal variables in the input.f90 subroutine The namelists and cards parsers are in : Modules/read_namelists.f90 and Modules/read_cards.f90 files input_parameters.f90 read_namelists.f90 read_cards.f90 are shared by all codes, while each code has its own version of input.f90 ( used to copy input values into internals variables ). EXAMPLE: suppose you need to add a new input variable called "pippo" to the namelist control, then: 1) add pippo to the input_parameters.f90 file containing the namelist control INTEGER :: pippo = 0 NAMELIST / control / ....., pippo remember: always set an initialization value! 2) add pippo to the control_default subroutine (contained in module read_namelists.f90 ) subroutine control_default( prog ) ... IF( prog == 'PW' ) pippo = 10 ... end subroutine this routine set the default value for pippo, that could vary with the code 3) add pippo to the control_bcast subroutine (contained in module read_namelists.f90 ) subroutine control_bcast( ) ... call mp_bcast( pippo ) ... end subroutine 30 Jul 2003 indexing of the occupation matrices (ns,nsnew, etc) used in LDA+U has been redefined in a more natural order: ns(na,is,ldim,ldim) -> ns(ldim,ldim,is,na) 28 Jul 2003 cell parameters in the case ibrav=0 back to previous convention (as documented in INPUT_PP) Misc. cleanup, manual updated 25 Jul 2003 el-ph calculation in the US case should work properly. An US term in the calculation of deltaV * psi_v needed in elphon.f90 was missing. This was giving wrong number in version 1.2.0, while US case was not implemented in previous versions. 23 Jul 2003 clean_pw cleaned symmetries are always applied in non-scf calculations (excepted for Berry-phase calculation): use nosym=.true. to prevent generation of additional points Example for STM added 21 Jul 2003 Fixed recently introduced memory leak, some cleanup, removed useless "include mpif.h" 11 Jul 2003 Atomic positions are written in a relaxation run in the same units used in input The unit cell can be given using crystallographic parameters a, b, c, (all in A), cosab cosac, cosbc Misc. cleanup 08 Jul 2003 Cleanup: latgen, punch_band (algorithm improved) Minor changes to bp_c_phase to avoid compiler warnings Options for LAM MPI added (as suggested by Cangiani) 01 Jul 2003 Example for conjugate-gradient diagonalization added 30 Jun 2003 Energy and forces with a finite electric field. Added the possibility to subtract the dipole field for slab or molecule calculation. (See Bengtsson PRB 59, 12 301 (1999) and Meyer and Vanderbilt, PRB 63, 205426 (2001).) 30 Jun 2003 Bug fix in add_zstar_ue. The routine was not working with one k point. average.f90 extended. 25 Jun 2003 More files names dimensioned to 80 recips.f90 moved to flib and used by all codes, all Makefiles modified accordingly Examples updated, new example for band structure calculation added 20 Jun 2003 PW/startup.f90: longer character variable np needed Band extraction moved out of PP/pp.x, into PP/bands.x Band plotting program (PP/plotband.f90) added Misc corrections 18 Jun 2003 minor glitches in PW/readpp.f90, PP/plotrho.f90 fixed 12 Jun 2003 Installation cleanup; fftw are compiled by default All Makefiles updated for addition of Berry phase code iargc, getenv, getarg preprocessed Missing Blas/Lapack sources for pw added 11 Jun 2003 New and modified routines added for the calculation of the electric polarization in crystalline solids using Berry phase theory (dieguez@physics.rutgers.edu). 29 May 2003 memory estimator should work for parallel machines as well Manual updated 29 May 2003 Bug in diropn: tmp file name too short startup: more general mechanism too catch npool (both contributed by Serguei Patchkovskii) 28 May 2003 Minor cleanup 22 May 2003 Davidson modified to use less memory in non-US calculations (involves changes in several routines) Option "nooverlap" for Davidson removed 19 May 2003 New DIIS added (Stefano Fabris) Removed obsolete "scf in/out correction" 12 may 2003 MKL problem fixed (maybe) Manual updated 8 may 2003 PP/chdens.f90 rewritten, different input 5 may 2003 Some cleanup in ggen, __OLD_GGEN stuff removed, same code (almost) for PW and Gamma versions version number updated, manual updated Lahey installation 24 apr 2003 More FFT restructuring (CC) Updates to manual 22 apr 2003 CERNFFT, option NOPENCILS removed, misc changes Make.ibmsp modified to work (hopefully) without modifications for all codes 22 apr 2003 All setv statements in PW replaced by f90 constructs. Minor changes in PW & PH (code readability). 21 apr 2003 More FFT restructuring (CC) Makefile fixes (PP, PH, D3, Gamma) Calls to allocate_fft, ggen moved out of setup.f90 Minor change in mix_rho to reduce memory use 15 apr 2003 Doc and install files updated (MKL problem) 12 apr 2003 All filenames => 80 char All directories=> 80 char Filenames + directories + other => 256 10 apr 2003 Minor changes 09 apr 2003 beginning of parallel FFT restructuring (CC) 08 apr 2003 evc is dimensioned (npwx, nbnd) - various routines changed (extensive changes to wfcinit, rotate_wfc, ccginitg). Residual wrong dimension et(nbndx,nkstot) removed. Common efield_0 in PW renamed extfield to avoid name clash with common efield in PH (PGI compiler) 08 apr 2003 g_psi, g_psi_mod: new preconditioning (better behaved when hdiag-e*sdiag is close to zero) used in cegterg. This removes most of the warning messages when using Davidson diagonalization. Although the overall performance (number of h_psi performed) does not seem to change very much in small tests, except pathological cases like ni.band.in in example1, it should be wise to have a more stable preconditioning. cegterg: use always GEMM instead of GEMV in the update. electrons: in a relaxation run perform accurately the first iteration after ionic move but reset the diagonalization threshold according to the actual self-consistence for the following ones. 07 apr 2003 D3/Makefile : missing add_efield added cegterg, regterg: use GEMM instead of GEMV, do not require any longer evc, et to be dimensioned nbndx (et is now dimensioned (nbnd,nkstot)) - misc. cleanup 03 apr 2003 chdens now can compute the dipole moment of a localized charge. (ADC) A new routine (add_efield) has been added to add a finite electric field with a sawlike potential: see PRB 34, 7146 (1986). (by J. Tobik) 27 mar 2003 Do not restart bfgs from previous results if restart_mode='from_scratch' (this time correct) tmp_dir => outdir in reading, everywhere misc. cleaning 24 mar 2003 calls to mpi_bcast replaced by calls to interface mp_bcast Electron-phonon with Vanderbilt according to MW (untested) 21 mar 2003 - call to dvqpsi_us in PH/elphon.f90 updated with recent changes (could cause core dump) - local_dos.f90 compilation error in parallel case - more mpi_bcast => mp_bcast, misc. cleaning 20 mar 2003 - relaxation using damped dynamics can be used keeping fixed last fixatom atoms (with the same input procedure as the bfgs minimization). - LDA+U part has been modified in order run also in the not spin-polarized case (some testing still neeeded). - Davidson diagonalization returns best estimate for eigenvalues and eigenvectors also in the case that not all roots have converged. This is more consistent and should somehow alleviate the problem of WARNING messages in scf and band structure run. - Number of beta function in pseudopotentials increased to 8. 19 mar 2003 fix for problem when reading local potential fixed again Make.pc_abs fixed, minor documentation update Wrong call to sgama in PH/star_q.f90 fixed 14 mar 2003 data for preprocessing on parallel machines can be read from standard input problem when reading local potential on ibm-sp3 fixed 13 mar 2003 obsolete core-charge only term (etxcc) removed from bfgs.f90 and set_rhoc.f90 direct calls to mpi_bcast replaced by calls to mp_bcast Misc. minor changes 11 mar 2003 Startup subroutines of all codes now calls mp_start and mp_env mp module subroutines instead of mpi_... directly. This is a first step in the direction of hiding the communications within a few basic modules. 10 mar 2003 "configure" bug for pc cluster and intel 6 Make.rules_cpp => Rules.cpp, Make.rules_nocpp => Rules.nocpp lapack_mkl.f added, __MKL removed Make.{fujutsu,sxcross}, compile error in restart.f90 (Guido) electrons, punch_band, plot_bands: use the same format for reading and writing eigenvalues 3 mar 2003 PP/dos.f90: density of state is written in #state/eV vs eV (it was written in #state/ryd vs eV) . PP/projwave.f90: pwojwfc.x writes on standard output projections on atomic states in a "human-readable" format, it writes atomic-projected dos on files with self-explanatory names ( such as 'prefix'.pdos_atm#1(Ni)_wfc#2(d) in example8 ). A variable io_choice= {'standard' | 'files' | 'both'} in the namelist specifies where output is written. example8: generation of pdos added to the example. example1-9: modified so that 'cd results' statement is executed before 'rm -f $TMP_DIR' one ... Otherwise defining the current directory as TMP_DIR would result in removal of all files in the example directory. 28 feb 2003 filemd => 'prefix'.md, filebfgs => 'prefix'.bfgs Misc. T3E fixes 27 feb 2003 Misc. installation changes 27 feb 2003 Bug in PW/new_ns.f90 (Lixin He) fixed Symmetrization of occupation matrix ns needed for LDA+U calculations used incorrectly d2 matrices instead of their transponse. Similar error corrected also in PP/projwave.f90 24 feb 2003 Bug in Gamma/raman.f90 (Xhongjun) fixed Bug in PP/work_function.f90 (Pingo) fixed (sort of) LIB, LIBS => LIBS in all Makefiles 21 feb 2003 Support for lahey compiler added (Verissimo-Alves): "error" renamed to "errore", "rnd" to "rndx" bug in io_base fixed PARA => __PARA cinterpolate moved into interpolate 11 feb 2003 Support for nec sx6 added (Guido Roma) 10 feb 2003 Support for sun completed Better checks for q2r.f90 10 feb 2003 lda+u stuff modified in order to work also for non-d localized orbitals. Hubbard_l=0,1,2,3 are now possible. It has been tested that calculations done for Hubbard_l=2 are reproduced. More testing on non-d material needed. 7 feb 2003 module allocate, calls to mallocate, mfree removed pointers replaced by allocatable whenever possible ------------------------------------------------------------------- Date: 29 Jan 2003 Version: pw-1-2-0 ------------------------------------------------------------------- 29 Jan 2003 Variable-cell dynamics: if the simulation starts from scratch, remove existing files (e, eal, ave, avec, p, tv) from previous simulations, give a warning. 28 Jan 2003 More manual and examples updating, license added where missing bug in Z* and in dynmat.f90 fixed. New chdens from Tone. 27 Jan 2003 More manual updating, minor Makefile changes. merge of constants.f90 with CPV/FPMD. phcom.f90: variable max_irr_dim introduced (max dimension allowed for irreps: replaces "iswitch=-3") 26 Jan 2003 Manual added and (partially) updated 25 Jan 2003 Makefiles modified to work if some directory is missing INSTALL file added, pwdocs/INSTALL.obsolete obsoleted, README worth reading, misc. cleaning 24 Jan 2003 More changes to installation files small change in input.f90 to allow use of debugger Do not (yet) use UPF format to write PPs in restart file: other types of PP will not work Documentation of examples, PP in UPF format updated 23 Jan 2003 Misc changes to installation files and module finder, missing file added to PH - PG + CC 20 Jan 2003 Added dielectric tensor calculation with USPP (experimental) - AdC 19 Jan 2003 NEW DIRECTORY STRUCTURE, O-SESAME, NEW CVS SERVER 15 Jan 2003 Two small bugs in the recover fixed (SdG and ADC) if disk_io=low or restart_mode=from_scratch remove existing restart file if present. Recovering with disk_io=high from a disk_io=low run is possible. Also the opposite is possible. More information on the restarting procedure is echoed to the output file. Relaxation and dynamics echo the atomic coordinates in the output file in the same format used in input. When doing damped dynamics relaxation, do not issue a warning about dynamics and symmetry. In this case the use of symmetry is legitimate. 13 Jan 2003 More output format fixes (CC): - bug fix for the old style punch (when compiling without __NEW_PUNCH ): now it seems to work - variables pseudo_dir and pseudop moved to module "io" - new module upf_to_internal added - in the restart file now the pseudopotentials are stored in the upf format. Therefore the code phonon restarts from the upf and re-computes the internal variables. It seems to work but more check are needed. With this new feature we are close to compute phonons using the CP codes restart file, this is not yet possible because the charge density is still missing in restart file, UPF converters: error in format (variable "rel") (found by David Vanderbilt) 10 Jan 2003 Gamma adapted to recent changes in I/O, misc cleaning A bug and alpha compilation problems fixed in chdens (PG) 07 Jan 2003 bug fix in io_base.F90, parameters.f90 (CC) : - maximum number of k point in read_restart_header - check on pseudo dimension modified when reading and writing restart 04 Jan 2003 new restart and output files (CC) - bug fixes, problems with pools fixed - io_base changed, a lot of check and a new wave functions writing procedure added. The goal is to have a layout independent from i the number of processors and pools and compatible with the CP90 and FPMD-N code - parameters.f90 and dimensions.F90 merged now parameters.f90 is common to the three codes. - restart.F90: the possibility of specifing the amount of data to be written has been added. in writefile_new one could specify 'dim' or 'all' (more will be implemented soon ), in readfile_new one could specify 'dim', 'nowave', 'all' - new vector igk_l2g ( read igk local to global ) with the mapping of g+k vector added ( required to collect all wave functions from different processors and pools ) - __NEW_PUNCH macro temporarily added: without defining this macro the saveall procedure is still used to communicate with phonon * NOTE * with __NEW_PUNCH active, every time the punch is called, the subroutine collect all wavefunctions from different pools and dumps everythings in the ".save" file that is independent from the procs geometry. * NOTE * with __NEW_PUNCH active the PHONON code try to read wave function from the "*.wfc" files, if they are not present PHONON tries then to read wave functions from the ".save" file. For the time being this is the way to proceed if we want to calculate phonon with a different processor geometry with respect the SCF calculation. 03 Jan 2003 bug fixing (SdG): - configuration read from file when needed or required. - stress calculation in the LDA+U case is now working properly . - pool management in parallel case works with the new mp_global module. Writing of the pwscf.save file still gives some problem. More small changes to the LDA+U stuff, more pointers transformed into allocatable allays, some formatting changes. UPF specifications updated (PG) 28 Dec 2002 More Gamma merging (PG) 27 Dec 2002 Beginning of Gamma merging (PG) 20 Dec 2002 matdyn can do phonon DOS Added tools/lambda.f90 for electron-phonon calculation removed tools/dos.f90 (obsolete) Minor changes in Gamma forces and stresses NC to UPF converter: wrong core corr for analytical PP 18 Dec 2002 PG: Minor change in input suggested by Tone: ngauss => smearing ('gaussian', 'methfessel-paxton' etc) call to "system" (alpha only) removed to prevent conflict with namelist "system" (Guido Roma) matdyn modified to handle phonons at q=0 CC: array ig_l2g, that will be used to map local and global g vector index, added to pwcom. This array is required to collect wave functions across processors following a well defined g vector orders, the same order as in CP90 and FPMD-N variable ngm_g, ngms_g, ngm_l and ngms_l added to store local and global number of g vectors. pool-related globally accessible variables added to the module mp_global global and local number of g vectors computed in data_structure ggen modified to build local to global g vectors index map! To be tested in parallel execution with processor pools active!! 17 Dec 2002 LDA+U forces and stress implemented. Atomic wavefunctions used in the definition of LDA+U projector are NOT orthogonalized in order to simplify the computation of the above quantities. "nosym" option should now work also for automatically generated k-point grids. Misc cleanup. Initialization of starting_magnetization fixed 12 Dec 2002 Behavior of "nosym" option changed: if nosym = .true. do not force k-points to cover the entire BZ. Misc cleanup. 9 Dec 2002 Converters updated to recent UPF changes 6 Dec 2002 Fixed Gamma-only forces for US case (addusforce was wrong) Fixed confusing error message if tmp_dir does not exist Max l for Q functions dynamically calculated 5 Dec 2002 mixing modified so as to mix also LDA+U stuff. 4 Dec 2002 Minor changes to UPF format Minor bug in UPF reading fixed (upf%typ was not defined properly if not US). Small changes in LDA+U. 3 Dec 2002 clean-up: iprint -> iverbosity, kwrite -> iprint Restart from files (configuration,potential,wfc) should work. In order to do so the code writes pot/rho files at each iteration and wfc at convergence even if disk_io='default'. If disk_io='high' the code attempts to restart from detailed history of the interrupted run. Files old1pot, old2pot in update_pot renamed 'prefix'.oldrho and 'prefix'.oldrho2 in similarity to 'prefix'.oldwfc and 'prefix'.oldwfc2 2 Dec 2002 Added Gamma-only scf and phonon code (experimental) 29 Nov 2002 Added support for Hitachi. Indentation and cleanup. ecut(:) removed in data_structure as well. 28 Nov 2002 clean-up: iswitch.gt.4 removed everywhere; input_pot and output_pot removed, use prefixed filenames; rename beta(:)->mixing_beta, and ecut(:)->ecutwfc everywhere. File prefix.config and variable startingconfig='file'|'input' introduced in order to allow to restart from an interrupted relaxation or dynamics even when disk_io.ne.'high'... Restart still to be changed accordingly. 26 Nov 2002 Variable "becp" put in a separate module (needed for inclusion of Gamma-point version). Convergence thresholds for minimization also apply to damped (Beeman) dynamics that now stops if they are fulfilled before completing all nstep ionic steps. 25 Nov 2002 input_pot variable suppressed. Feature replaced by startingpot='atomic' or 'file' Starting diagonalization threshold (ethr) modified accordingly: when startingpot=='atomic' ethr is initially loose; when startingpot=='file' (always for nscf and phonon) starting potential is expected to be good and ethr is tight from the beginning. 22 Nov 2002 atomic labels are set to (len=3) everywhere Version number updated 21 Nov 2002 use of input variable calculation, ion_dynamics and cell_dynamics modified. calculation define more specifically the kind of computation to be performed (scf,nscf,phonon, relax,md,vc-relax,vc-md) and the other variables provide possibilities for additional tuning. see INPUT_PW for details. length of character variables atm and atom_label incresed to 3. freq_pw renamed to gauss_freq (a less pw-centered name). Variables psi(:,np) and aux(:,:) explicitely zeroed before use in order to avoid ZGEMV and ZGEMM to return garbage if they are undefined. 14 Nov 2002 CELL_PARAMETER card should be correct Added support for sun machines POINTER => C_POINTER 13 Nov 2002 INPUT_PW updated sp4 problems: freq renamed to freq_pw (name used by hardware performance monitor) Makefiles changed to allow loader different from compiler *.f90 allowed also by ibm with appropriate flag cegterg: change pointers to allocatable 12 Nov 2002 More (extensive) input changes 07 Nov 2002 Serious numerical problem with spherical harmonics Converter from CP format to UPF fixed 04 Nov 2002 UPF reading recast in a more portable (to other codes) way. addusforce: don't do anything if there aren't any US PP 21 Oct 2002 Variables for lda+U added to new input Serious bug in conjugate-gradient diagonalization (cinitcgg.F90) fixed bcast_input did not compile on parallel machines some cleaning here and there 21 Oct 2002 Variable Hubbard_alpha added. It is used in the calculation of Hubbard_U. Minor typographical changes in some routines 16 Oct 2002 input: dynamics + constraints, isolve suppressed 15 Oct 2002 unexpected energy window plotted by pplib/dos.x . sph_bes and qvan2 modified for L=3 pseudopotentials 10 Oct 2002 Missing input variables added to input.F90 Fixed a mismatch between where the potential is and where it is read from. Bug in pplib/chdens.F90, pplib/average.F90 fixed Makefile, other minor changes in pslib/ 1 Oct 2002 L=3 pseudopotentials should work for both NC and US PP: ylmr2 and d_matrix rewritten, init_us_1 modified. read_pseudo_pswfc now reads properly atomic wavefunctions in the UPF format. 20 Set 2002 Minor changes preliminary to l=3 implementation in US PP 19 Set 2002 New input - works also in parallel ------------------------------------------------------------------- Tag: pw-newmix 23 Aug 2002 Memory leak in mix_rho (rhoutsave not deallocated) fixed Compilation problems in electrons with old xlf compiler fixed Documentation update 22 Aug 2002 ibrav=0 case added to postprocessing "call remove" has been removed 21 Aug 2002 new charge density mixing schemes added. Four (4) mixing schemes are available according to the value of the variable mixing_style in the namelist. mixing_style='potential' (default): the same as before mixing_style='plain': charge density mixing where a step (of lenght beta) in the delta_rho=rho_out-rho_in direction is taken. mixing_style='TF': charge density mixing where delta_rho is screened with a homogeneous TF model. mixing_style='local-TF': charge density mixing where delta_rho is screened with a local-density dependent TF model. The scf accuracy control variable dr2 should now provide a fairly good estimate of the error in the energy due to lack of selfconsistency. The scf threshold tr2 has therefore to be set accordingly. Setting of threshold ethr also revisited. Force scf correction should be ok, as well as relaxation settings (possibly being more strict than really needed). No effort was made yet to recover form interrupted runs or treat properly restart from potential/charge of previous similar runs. Date: 20 Aug 2002 Version: pw-1-1-2 Changes with respect to version pw-1-1-1 : ------------------------------------------------------------------- more UPF converter and miscellaneous cleanup added support (maybe) for beowulf clusters with intel compiler 19 Aug 2002 Added possibility to calculate DOS from Emin to Emax (Tone) Some cleanup of converters to UPF 17 Aug 2002 new PP_FORMAT implemented in PWSCF. Tested on: Al.vbc, As.gon, Pb.bhs3, (Analytical NC: minor differences due to conversion of the local potential to numerical form) Fecc.mt, (Numerical NC: no differences) CuUS.RRKJ3,FeUS.RRKJ3,NiUS.RRKJ3 (New US: no differences) Au.vdb, (original US: no differences) Test on more pseudopotentials welcome. PP converters in pslib now produce pseudo in the new format. Some fixing was needed but now things seems to work. More testing welcome. More sensible layout of PP_INFO field and of PP information printed by PWSCF needed. 29 Jul 2002 bugs in new version of projwave (both scalar and parallel case) fixed 23 Jul 2002 projection on atomic states moved from postproc to a separate program "projwfc.x". More readable output. More Makefile fixes (origin) 19 Jul 2002 obsolete system/Makedeps* removed. BUGS file updated. Misc. fixes (thanks to Palaiseau people): kfac was not deallocated in stres_knl, tmp_dir too short in bcast_input, various Makefile fixes (to be verified). 12 Jul 2002 Fast 3d plot in pplib/chdens available Check presence of argument "-npool N" in para/startup (some PC compilers give an error otherwise) 10 Jul 2002 Only one "filpun" file is written in the parallel case (but the wavefunction file is still distributed): pwlib/openfil, saveall, punch, read_file modified, documentation updated. Error in phlib/stop_ph due to use of uninitialized variable (iunres instead of iunrec) fixed 09 Jul 2002 pwlib/gen_us_dj: the definition of the first point for which the spherical bessel functions are computed is now consistent with the check performed in sph_bes.F90. (Problem pointed out by Shobhana Narasimhan) 09 Jul 2002 pplib/plot_io : read/write also atom name, type, charge, use nr3 and not nrx3 to write/read pplib/chdens, average, modified accordingly, various cleanup sph_dhar removed and replaced by dylmr2, gen_us_dy modified accordingly 08 Jul 2002 sph_har removed and replaced by ylmr2 init_us_2, gen_us_dj, atomic_wfc updated accordingly restart=.false. by default (documentation updated) Misc. cleaning and indenting New version of aainit: should be easier to generalize to higher l (SdG) 02 Jul 2002 machine.h, Make.* modified : all preprocessing options can be given directly in the Make.* file, no need to make changes in the code - documentation updated More cleaning and indenting 28 Jun 2002 Support for Fujitsu added (Guido Roma) Various Alpha fixes (Francesco Antoniella and others): Make.alpha updated (correct preprocessing options), pwlib/cft_3.F90 for dxml/cxml libraries, pwlib/scnds.F90, uninitialized variable in pwlib/read_pseudo.F90 (scan_begin) pplib/elf.F90, pplib/voronoy.F90 compilation problems pplib/punch_band.F90 modified to write an output that can be read by new file tools/band_plot.f90 (Francesco Antoniella) KIND => kind everywhere readin: tests for lsda are needed only by scf calculations nh statically dimensioned some obsolete variables removed Make.t3e updated (CINECA-specific stuff removed) 3 Jun 2002 Fixed a problem with restart file introduced by the last changes. klen, dircls, remove removed. 31 May 2002 Doc update, more readin.F90 cleaning Non-lscf calculation closes correctly files (small changes to electrons, pwscf, ions) No more node number added to sequential files for the first processor in parallel execution (seqopn); diropn cleaned 30 May 2002 ltetra is now distributed in bcast_input 30 May 2002 INPUT_PW, Make.pc_abs updated, cleanup of readin.f90 15 May 2002 Documentation update, problems in Makedeps 10 May 2002 added directory Doc/ containing web pages some variables moved from module para.f90 to data_structure.F90 Date: 7 May 2002 Version: pw-1-1-1 Changes with respect to version pw-1-1-0 : ------------------------------------------------------------------- add input check on presence of gaussian broadening for LSDA restart_in_ions : do not destroy vnew, it is needed in force calculation (scf correction term) 18 Apr. 2002 gradcorr, dgradcorr: two FFTs spared cgracsc moved to pplib/ (not used in any other place) file BUGS added fixed bug in stres_us for non-us PP and one k-point (same problem of force_us, see 5 Apr.) newd does not waste cpu time if no US PP's are present projection on atomic wavefunctions (projwave.F90) now works also for atoms with semicore states. dynmat.x: added calculation of IR cross sections, write correct displacement patterns in "molden" format. Misc. indentation and cleaning indexes, indeces => "indices" 8 Apr. 2002 same changes as in the f77 version in order to fix a few problems in the parallel version of d3tot: klen function is declared external whenever is used; reading/writing of fildrho is performed by the first node of each pool; npwq is defined in d0rhod2v.F also when lgamma is .true.; routine symd0rho is called by psymd0rho even if nsymq=1. A couple of more partial contributions to d3mat are written on disk if wraux=.true. 5 Apr. 2002 force_us did not work for non-us PP and one k-point (as a consequence of a change introduced in sum_band) 27 Mar. 2002 Make.rules.ibm corrected (again) pplib/stm.F: stm_wfc_matching was incorrect (thanks to Maria Peressi) pwlib/cegterg.F90: removed spurious \ introduced yesterday 26 Mar. 2002 Indentation and cleaning of several routines. phlib/dynmatcc.F90 heavily modified. Only pseudopotential arrays including structure factors are now used: the meaning of variables nkb and vkb has changed (they replace variables nkbtot and allvkb), many routines (mostly in d3lib/) changed accordingly, pwlib/apply_phase.F90 deleted. system/Make.alpha, pwlib/readin.F90 modified, added system/Make.alphaMPI (Guido Roma, Giovanni Cantele). pwlib/cegterg.F90: useless operations not performed at the end, aux is as big as needed (and not any more) 21 Mar. 2002 h_1psi, s_1psi replaced by wrapper routines that call h_psi, s_psi ; add_1vuspsi deleted, misc. cleaning 20 Mar. 2002 fixed compilation error in tools/dynmat (thanks to B.R.Sahu) Make.rules.ibm corrected Warnings in include/error_handler and tools/q2r fixed 19 Mar. 2002 various Makefiles fixes dgradcorr not called if gradient corrections absent (Portland compiler did not like it) Date: 15 March 2002 Version: pw-1-1-0 ------------------------------------------------------------------- 12 Mar. 2002 More complex(16) fixed, misc. cleaning 8 Mar. 2002 Fixed bug in dvpsi_e.F that could yield bad dielectric tensors and effective charges (there was an inconsistency in indexing of pseudopotential arrays) 6 Mar. 2002 Potential problem in 2N+1 fixed: Patterns are now written by phonon and read (and not generated again) by d3tot. This should guarantee consistency between the two sets. 6 Mar. 2002 More compilation errors for parallel machines Function "capital" replaced with one that PG compiler likes 5 Mar. 2002 Small changes to compile on SP3 the phonon program Support for PGI compiler added Bug in mallocate fixed 4 Mar. 2002 ported changes to dos.f from 1.0.2 1 Mar. 2002 Updated README.INSTALL 14 Feb. 2002 changes parallel to those made in 1.0.2 are introduced pwlib/readin.F90: / / => // 12 Feb. 2002 changes parallel to those made in 1.0.2 are introduced 25 Jan. 2002 tools converted Synchronization with latest f77 version Support for Intel compiler Misc. cleaning 20 Dec. 2001 d3lib completely converted, misc. cleaning 19 Dec. 2001 Added pplib (untested), d3lib (does not work) Misc. cleaning, removed spurious files 18 Dec. 2001 Initial f90 release espresso-5.1/Doc/INPUT_pw_export.xml0000777000175000017500000000000012341373334022526 2../PP/Doc/INPUT_pw_export.xmlustar mbambaespresso-5.1/Doc/brillouin_zones.tex0000644000175000017500000005034512341373034015755 0ustar mbamba\documentclass[12pt,a4paper]{article} \def\version{5.1.0} \def\qe{{\sc Quantum ESPRESSO}} \def\qeforge{\texttt{qe-forge.org}} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm %\usepackage{html} % BEWARE: don't revert from graphicx for epsfig, because latex2html % doesn't handle epsfig commands !!! \usepackage{graphicx} \usepackage{amssymb} % \def\htmladdnormallink#1#2{#1} \def\configure{\texttt{configure}} \def\configurac{\texttt{configure.ac}} \def\autoconf{\texttt{autoconf}} \def\qeImage{../../Doc/quantum_espresso.pdf} \def\democritosImage{../../Doc/democritos.pdf} %\begin{htmlonly} %\def\qeImage{../../Doc/quantum_espresso.png} %\def\democritosImage{../../Doc/democritos.png} %\end{htmlonly} \def\pwx{\texttt{pw.x}} \def\phx{\texttt{ph.x}} \def\configure{\texttt{configure}} \def\PWscf{\texttt{PWscf}} \def\PHonon{\texttt{PHonon}} \def\make{\texttt{make}} \begin{document} \author{} \date{} \title{ % \includegraphics[width=5cm]{\qeImage} \hskip 2cm % \includegraphics[width=6cm]{\democritosImage}\\ \vskip 1cm % title \Huge Points inside the Brillouin zone \\ \Large Notes by Andrea Dal Corso } \maketitle \newpage \section{Brillouin zone} \qe\ (QE) support for the definition of high symmetry lines inside the Brillouin zone (BZ) is still rather limited. However QE can calculate the coordinates of the vertexes of the BZ and of particular points inside the BZ. These notes show the shape and orientation of the BZ used by QE. The principal direct and reciprocal lattice vectors, as implemented in the routine \texttt{latgen}, are illustrated here together with the labels of each point. These labels can be given as input in a band or phonon calculation to define paths in the BZ. This feature is available with the option \texttt{tpiba\_b} or \texttt{crystal\_b} in a \texttt{'bands'} calculation or with the option \texttt{q\_in\_band\_form} in the input of the \texttt{matdyn.x} code. Lines in reciprocal space are defined by giving the coordinates of the starting and ending points and the number of points of each line. The coordinates of the starting and ending points can be given explicitly with three real numbers or by giving the label of a point known to QE. For example: \begin{verbatim} X 10 gG 25 0.5 0.5 0.5 1 \end{verbatim} indicate a path composed by two lines. The first line starts at point $X$, ends at point $\Gamma$, and has $10$ {\bf k} points. The second line starts at $\Gamma$, ends at the point of coordinates \texttt{(0.5,0.5,0.5)} and has $25$ {\bf k} points. Greek labels are prefixed by the letter \texttt{g}: \texttt{gG} indicates the $\Gamma$ point, \texttt{gS} the $\Sigma$ point etc. Subscripts are written after the label: the point $P_1$ is indicated as \texttt{P1}. In the following section you can find the labels of the points defined in each BZ. There are many convention to label high symmetry points inside the BZ. The variable \texttt{point\_label\_type} selects the set of labels used by QE. The default is \texttt{point\_label\_type='SC'} and the labels have been taken from W. Setyawan and S. Curtarolo, Comp. Mat. Sci. {\bf 49}, 299 (2010). Other choices can be more convenient in other situations. The names reported in the web pages \texttt{http://www.cryst.ehu.es/cryst/get\_kvec.html} are available for some BZ. You can use them by setting (\texttt{point\_label\_type='BI'}), others can be added in the future. This option is available only with \texttt{ibrav$\ne$0} and for all positive \texttt{ibrav} with the exception of the simple monoclinic (\texttt{ibrav=12}), base centered monoclinic (\texttt{ibrav=13}), and triclinic (\texttt{ibrav=14}) lattices. In these cases you have to give all the coordinates of the {\bf k}-points. \subsection{\texttt{ibrav=1}, simple cubic lattice} The primitive vectors of the direct lattice are: \begin{eqnarray} {\bf a}_1 &=& a (1, 0, 0), \nonumber \\ {\bf a}_2 &=& a (0, 1, 0), \nonumber \\ {\bf a}_3 &=& a (0, 0, 1), \nonumber \nonumber \end{eqnarray} while the reciprocal lattice vectors are: \begin{eqnarray} {\bf b}_1 &=& {2\pi \over a} (1, 0, 0), \nonumber \\ {\bf b}_2 &=& {2\pi \over a} (0, 1, 0), \nonumber \\ {\bf b}_3 &=& {2\pi \over a} (0, 0, 1). \nonumber \nonumber \end{eqnarray} The Brilloin zone is: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/cubic_bi.png} \end{center} \texttt{X$_1$} is available only with $\texttt{point\_label\_type='BI'}$. \subsection{\texttt{ibrav=2}, face centered cubic lattice} The primitive vectors of the direct lattice are: \begin{eqnarray} {\bf a}_1 &=& {a \over 2} (-1, 0, 1), \nonumber \\ {\bf a}_2 &=& {a \over 2} (0, 1, 1), \nonumber \\ {\bf a}_3 &=& {a \over 2} (-1, 1, 0), \nonumber \nonumber \end{eqnarray} while the reciprocal lattice vectors are: \begin{eqnarray} {\bf b}_1 &=& {2\pi \over a} (-1, -1, 1), \nonumber \\ {\bf b}_2 &=& {2\pi \over a} (1, 1, 1), \nonumber \\ {\bf b}_3 &=& {2\pi \over a} (-1, 1, -1). \nonumber \nonumber \end{eqnarray} The Brillouin zone is: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/fcc_sc.png} \hspace{1.cm} \includegraphics[width=7.5cm,angle=0]{images/fcc_bi.png} \end{center} Labels corresponding to $\texttt{point\_label\_type='SC'}$ and to $\texttt{point\_label\_type='BI'}$ are shown on the left and on the right, respectively. \subsection{\texttt{ibrav=3}, body centered cubic lattice} The primitive vectors of the direct lattice are: \begin{eqnarray} {\bf a}_1 &=&{a \over 2} (1, 1, 1), \nonumber \\ {\bf a}_2 &=&{a \over 2} (-1, 1, 1), \nonumber \\ {\bf a}_3 &=&{a \over 2} (-1, -1, 1), \nonumber \nonumber \end{eqnarray} while the reciprocal lattice vectors are: \begin{eqnarray} {\bf b}_1 &=&{2\pi \over a} (1, 0, 1), \nonumber \\ {\bf b}_2 &=&{2\pi \over a} (-1, 1, 0), \nonumber \\ {\bf b}_3 &=&{2\pi \over a} (0, -1, 1). \nonumber \nonumber \end{eqnarray} \begin{center} \includegraphics[width=7.5cm,angle=0]{images/bcc_bi.png} \end{center} \texttt{H$_1$} is available only with $\texttt{point\_label\_type='BI'}$. \subsection{\texttt{ibrav=4}, hexagonal lattice} The primitive vectors of the direct lattice are: \begin{eqnarray} {\bf a}_1 &=& a (1, 0, 0), \nonumber \\ {\bf a}_2 &=& a (-{1 \over 2}, {\sqrt{3} \over 2}, 0), \nonumber \\ {\bf a}_3 &=& a (0, 0, {c\over a}), \nonumber \nonumber \end{eqnarray} while the reciprocal lattice vectors are: \begin{eqnarray} {\bf b}_1 &=& {2\pi \over a} (1, {1 \over \sqrt{3}}, 0), \nonumber \\ {\bf b}_2 &=& {2\pi \over a} (0, {2 \over \sqrt{3}}, 0), \nonumber \\ {\bf b}_3 &=& {2\pi \over a} (0, 0, {a\over c}). \nonumber \nonumber \end{eqnarray} The BZ is: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/hex.png} \end{center} The figure has been obtained with ${c/a}=1.4$. \subsection{\texttt{ibrav=5}, trigonal lattice} The primitive vectors of the direct lattice are: \begin{eqnarray} {\bf a}_1 &=& a ({\sqrt{3}\over 2}\sin{\theta}, -{1\over 2} \sin{\theta}, \cos{\theta}), \nonumber \\ {\bf a}_2 &=& a (0, \sin{\theta}, \cos{\theta}), \nonumber \\ {\bf a}_3 &=& a (-{\sqrt{3}\over 2} \sin{\theta}, -{1\over 2} \sin{\theta}, \cos{\theta}), \nonumber \\ \nonumber \end{eqnarray} while the reciprocal lattice vectors are: \begin{eqnarray} {\bf b}_1 &=& {2\pi \over a} ({\sqrt{3}\over 2} \sin{\theta}, -{1 \over 2} \sin{\theta}, \cos{\theta}), \nonumber \\ {\bf b}_2 &=& {2\pi \over a} (0, \sin{\theta}, \cos{\theta}), \nonumber \\ {\bf b}_3 &=& {2\pi \over a} (-{\sqrt{3}\over 2} \sin{\theta}, -{1 \over 2} \sin{\theta}, \cos{\theta}), \nonumber \end{eqnarray} where $\sin{\theta}=\sqrt{2\over 3}\sqrt{1-\cos{\alpha}}$ and $\cos{\theta}=\sqrt{1\over 3}\sqrt{1 + 2 \cos{\alpha}}$ and $\alpha$ is the angle between any two primitive direct lattice vectors. There are two possible shapes of the BZ, depending on the value of the angle $\alpha$. For $\alpha < 90^\circ$ we have: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/tri_1.png} \end{center} The figure has been obtained with $\alpha=70^\circ$. For $90^\circ < \alpha < 120^\circ$ we have: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/tri_2.png} \end{center} The figure has been obtained with $\alpha=110^\circ$. \subsection{\texttt{ibrav=6}, simple tetragonal lattice} The primitive vectors of the direct lattice are: \begin{eqnarray} {\bf a}_1 &=& a (1, 0, 0), \nonumber \\ {\bf a}_2 &=& a (0, 1, 0), \nonumber \\ {\bf a}_3 &=& a (0, 0, {c\over a}), \nonumber \nonumber \end{eqnarray} while the reciprocal lattice vectors are: \begin{eqnarray} {\bf b}_1 &=& {2\pi \over a} (1, 0, 0), \nonumber \\ {\bf b}_2 &=& {2\pi \over a} (0, 1, 0), \nonumber \\ {\bf b}_3 &=& {2\pi \over a} (0, 0, {a\over c}). \nonumber \nonumber \end{eqnarray} \begin{center} \includegraphics[width=7.5cm,angle=0]{images/st.png} \end{center} The figure has been obtained with $c/a=1.4$. \subsection{\texttt{ibrav=7}, centered tetragonal lattice} The primitive vectors of the direct lattice are: \begin{eqnarray} {\bf a}_1 &=& {a \over 2} (1, 1, {c\over a}), \nonumber \\ {\bf a}_2 &=& {a \over 2} (1, -1, {c\over a}), \nonumber \\ {\bf a}_3 &=& {a \over 2} (-1, -1, {c\over a}), \nonumber \nonumber \end{eqnarray} while the reciprocal lattice vectors are: \begin{eqnarray} {\bf b}_1 &=& {2\pi \over a} (1, -1, 0), \nonumber \\ {\bf b}_2 &=& {2\pi \over a} (0, 1, {a\over c}), \nonumber \\ {\bf b}_3 &=& {2\pi \over a} (-1, 0, {a\over c}). \nonumber \nonumber \end{eqnarray} In this case there are two different shapes of the BZ depending on the $c/a$ ratio. For $c/a<1$ we have: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/stc1.png} \end{center} The figure has been obtained with $c/a=0.5$ ($a>c$). For $c/a>1$ we have: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/stc2_sc.png} \hspace{1cm} \includegraphics[width=7.5cm,angle=0]{images/stc2.png} \end{center} The figure has been obtained with $c/a=1.4$ ($aa$). \subsection{\texttt{ibrav=10}, face centered orthorhombic lattice} The direct lattice vectors are: \begin{eqnarray} {\bf a}_1 &=& {a \over 2} (1, 0, {c \over a}), \nonumber \\ {\bf a}_2 &=& {a \over 2} (1, {b \over a}, 0), \nonumber \\ {\bf a}_3 &=& {a \over 2} (0, {b \over a}, {c \over a}). \nonumber \nonumber \end{eqnarray} while the reciprocal lattice vectors are \begin{eqnarray} {\bf b}_1 &=& {2\pi \over a} (1, -{a \over b}, {a \over c}), \nonumber \\ {\bf b}_2 &=& {2\pi \over a} (1, {a \over b}, -{a \over c}), \nonumber \\ {\bf b}_3 &=& {2\pi \over a} (-1, {a \over b}, {a \over c}). \nonumber \nonumber \end{eqnarray} In this case there are three different shapes that can be rotated in different ways depending on the relative sizes of $a$, $b$, and $c$. If $a$ is the shortest side, there are three different shapes according to \begin{equation} {1\over a^2} \lesseqqgtr {1\over b^2} + {1\over c^2}, \label{uno} \end{equation} if $b$ is the shortest side there are three different shapes according to \begin{equation} {1\over b^2} \lesseqqgtr {1\over a^2} + {1\over c^2}, \label{due} \end{equation} and if $c$ is the shortest side there are three different shapes according to \begin{equation} {1\over c^2} \lesseqqgtr {1\over a^2} + {1\over b^2}. \label{tre} \end{equation} For each case there are two possibilities. If $a$ is the shortest side, we can have $bc$, if $b$ is the shortest side, we can have $ac$, and finally if $c$ is the shortest side we can have $ab$. In total we have $18$ distinct cases. Not all cases give different BZ. All the cases with the $<$ sign in Eqs.~\ref{uno}, \ref{due}, \ref{tre} give the same shape of the BZ that differ for the relative sizes of the faces. All the cases with the $>$ sign in Eqs.~\ref{uno}, \ref{due}, \ref{tre} give the same shape with faces of different sizes and oriented in different ways. Finally the particular case with the $=$ sign in Eqs.~\ref{uno}, \ref{due}, \ref{tre} give another shape with faces of different size and different orientations. We show all the 18 possibilities and the labels used in each case. We start with the case in which $a$ is the shortest side and show on the left the case $bc$. The first possibility is that ${1\over a^2} < {1\over b^2} + {1\over c^2}$: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/ofc_1.png} \hspace{1cm} \includegraphics[width=6.5cm,angle=0]{images/ofc_2.png} \end{center} The figures have been obtained with $b/a=1.2$ and $c/a=1.4$ (left part $bc$). The second possibility is that ${1\over a^2} = {1\over b^2} + {1\over c^2}$: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/ofc_13.png} \hspace{1cm} \includegraphics[width=5.5cm,angle=0]{images/ofc_14.png} \end{center} The figures have been obtained with $b/a=1.2$ and $c/a=1.80906807$ (left part $bc$). The third possibility is that ${1 \over a^2} > {1\over b^2} + {1\over c^2}$: \begin{center} \includegraphics[width=6.5cm,angle=0]{images/ofc_7.png} \hspace{1cm} \includegraphics[width=4.0cm,angle=0]{images/ofc_8.png} \end{center} The figures have been obtained with $b/a=1.2$ and $c/a=2.4$ (left part $bc$). Then we consider the cases in which $b$ is the shortest side and show on the left the case in which $ac$. We have the same three possibilities as before. The first possibility is that ${1 \over b^2} < {1\over a^2} + {1\over c^2}$: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/ofc_3.png} \hspace{1cm} \includegraphics[width=7.5cm,angle=0]{images/ofc_4.png} \hspace{1cm} \end{center} The figures have been obtained with $b/a=0.9$ and $c/a=1.2$ (left part $ac$). The second possibility is that ${1 \over b^2}={1\over a^2} + {1\over c^2}$: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/ofc_15.png} \hspace{1cm} \includegraphics[width=7.5cm,angle=0]{images/ofc_16.png} \end{center} The figures have been obtained with $b/a=0.8$ and $c/a=1.33333333333$ (left part $ac$). The third possibility is than ${1\over b^2}>{1\over a^2} + {1\over c^2}$: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/ofc_9.png} \hspace{1cm} \includegraphics[width=7.5cm,angle=0]{images/ofc_10.png} \end{center} The figures have been obtained with $b/a=0.8$ and $c/a=2.0$ (left part $ac$). Finally we consider the case in which $c$ is the shortest side and show on the left the case in which $ab$. The first possibility is that ${1\over c^2}<{1\over a^2} + {1\over b^2}$: \begin{center} \includegraphics[width=6.5cm,angle=0]{images/ofc_5.png} \hspace{1cm} \includegraphics[width=7.5cm,angle=0]{images/ofc_6.png} \end{center} The figures have been obtained with $b/a=1.2$ and $c/a=0.85$ (left part $ab$). The second possibility is that ${1\over c^2}={1\over a^2} + {1\over b^2}$: \begin{center} \includegraphics[width=5.5cm,angle=0]{images/ofc_17.png} \hspace{1cm} \includegraphics[width=7.5cm,angle=0]{images/ofc_18.png} \end{center} The figures have been obtained with $b/a=1.333333333$ and $c/a=0.8$ (left part $ab$). Finally the third possibility is that ${1\over c^2} >{1\over a^2} + {1\over b^2}$: \begin{center} \includegraphics[width=5.0cm,angle=0]{images/ofc_11.png} \hspace{1cm} \includegraphics[width=7.5cm,angle=0]{images/ofc_12.png} \end{center} The figures have been obtained with $b/a=2.0$ and $c/a=0.8$ (left part $ab$). \subsection{\texttt{ibrav=11}, body centered orthorhombic lattice} The direct lattice vectors are: \begin{eqnarray} {\bf a}_1 &=& {a \over 2} (1, {b \over a}, {c \over a}), \nonumber \\ {\bf a}_2 &=& {a \over 2} (-1, {b \over a}, {c \over a}), \nonumber \\ {\bf a}_3 &=& {a \over 2} (-1, -{b \over a}, {c \over a}). \nonumber \nonumber \end{eqnarray} \begin{eqnarray} {\bf b}_1 &=& {2\pi \over a} (1, 0, {a \over c}), \nonumber \\ {\bf b}_2 &=& {2\pi \over a} (-1, {a \over b}, 0), \nonumber \\ {\bf b}_3 &=& {2\pi \over a} (0, -{a \over b}, {a \over c}). \nonumber \nonumber \end{eqnarray} In this case the BZ has one shape that can be rotated in different ways depending on the relative sizes of $a$, $b$, and $c$. Similar orientations and BZ that differ only for the relative sizes of the faces are obtained for the cases that have in common the longest side. Therefore we distinguish the cases in which $a$ is the longest side and $bc$, the cases in which $b$ is the longest side and $ac$ and the cases in which $c$ is the longest side and $ab$. We have $6$ distinct cases. First we take $a$ as the longest side and show on the left the case $bc$: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/bco_4.png} \hspace{1.0cm} \includegraphics[width=7.5cm,angle=0]{images/bco_5.png} \end{center} The figures have been obtained with $b/a=0.7$ and $c/a=0.85$ (left part $bc$). Then we take $b$ as the longest side and show on the left the case in which $ac$: \begin{center} \includegraphics[width=7.5cm,angle=0]{images/bco_2.png}\hspace{1cm} \includegraphics[width=7.cm,angle=0]{images/bco_3.png} \end{center} The figures have been obtained with $b/a=1.4$ and $c/a=1.2$ (left part $ac$). Finally we take $c$ as the longest side and show on the left the case in which $a Babel and hyphenation patterns for english, dumylang, nohyphenation, it alian, loaded. (/usr/share/texlive/texmf-dist/tex/latex/base/report.cls Document Class: report 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo File: size12.clo 2007/10/19 v1.4h Standard LaTeX file (size option) ) \c@part=\count79 \c@chapter=\count80 \c@section=\count81 \c@subsection=\count82 \c@subsubsection=\count83 \c@paragraph=\count84 \c@subparagraph=\count85 \c@figure=\count86 \c@table=\count87 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty Package: inputenc 2008/03/30 v1.1d Input encoding file \inpenc@prehook=\toks14 \inpenc@posthook=\toks15 (/usr/share/texlive/texmf-dist/tex/latex/base/latin1.def File: latin1.def 2008/03/30 v1.1d Input encoding file )) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty Package: amsmath 2000/07/18 v2.13 AMS math features \@mathmargin=\skip43 For additional information on amsmath, use the `?' option. (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty Package: amstext 2000/06/29 v2.01 (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty File: amsgen.sty 1999/11/30 v2.0 \@emptytoks=\toks16 \ex@=\dimen103 )) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty Package: amsbsy 1999/11/29 v1.2d \pmbraise@=\dimen104 ) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty Package: amsopn 1999/12/14 v2.01 operator names ) \inf@bad=\count88 LaTeX Info: Redefining \frac on input line 211. \uproot@=\count89 \leftroot@=\count90 LaTeX Info: Redefining \overline on input line 307. \classnum@=\count91 \DOTSCASE@=\count92 LaTeX Info: Redefining \ldots on input line 379. LaTeX Info: Redefining \dots on input line 382. LaTeX Info: Redefining \cdots on input line 467. \Mathstrutbox@=\box26 \strutbox@=\box27 \big@size=\dimen105 LaTeX Font Info: Redeclaring font encoding OML on input line 567. LaTeX Font Info: Redeclaring font encoding OMS on input line 568. \macc@depth=\count93 \c@MaxMatrixCols=\count94 \dotsspace@=\muskip10 \c@parentequation=\count95 \dspbrk@lvl=\count96 \tag@help=\toks17 \row@=\count97 \column@=\count98 \maxfields@=\count99 \andhelp@=\toks18 \eqnshift@=\dimen106 \alignsep@=\dimen107 \tagshift@=\dimen108 \tagwidth@=\dimen109 \totwidth@=\dimen110 \lineht@=\dimen111 \@envbody=\toks19 \multlinegap=\skip44 \multlinetaggap=\skip45 \mathdisplay@stack=\toks20 LaTeX Info: Redefining \[ on input line 2666. LaTeX Info: Redefining \] on input line 2667. ) (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty Package: amsfonts 2009/06/22 v3.00 Basic AMSFonts support \symAMSa=\mathgroup4 \symAMSb=\mathgroup5 LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' (Font) U/euf/m/n --> U/euf/b/n on input line 96. ) (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty Package: amssymb 2009/06/22 v3.00 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks21 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live ) Package graphics Info: Driver file: dvips.def on input line 91. (/usr/share/texlive/texmf-dist/tex/latex/graphics/dvips.def File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) \Gin@req@height=\dimen112 \Gin@req@width=\dimen113 ) (./constraints_HOWTO.aux) \openout1 = `constraints_HOWTO.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 14. LaTeX Font Info: ... okay on input line 14. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 14. LaTeX Font Info: ... okay on input line 14. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 14. LaTeX Font Info: ... okay on input line 14. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 14. LaTeX Font Info: ... okay on input line 14. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 14. LaTeX Font Info: ... okay on input line 14. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 14. LaTeX Font Info: ... okay on input line 14. (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/pdftexcmds.sty Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO ) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO) ) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifluatex.sty Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO) Package ifluatex Info: LuaTeX not detected. ) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ltxcmds.sty Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO) ) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifpdf.sty Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO) Package ifpdf Info: pdfTeX in PDF mode is detected. ) Package pdftexcmds Info: LuaTeX not detected. Package pdftexcmds Info: \pdf@primitive is available. Package pdftexcmds Info: \pdf@ifprimitive is available. Package pdftexcmds Info: \pdfdraftmode found. ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/kvdefinekeys.sty Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO) )) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/kvsetkeys.sty Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/etexcmds.sty Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO) Package etexcmds Info: Could not find \expanded. (etexcmds) That can mean that you are not using pdfTeX 1.50 or (etexcmds) that some package has redefined \expanded. (etexcmds) In the latter case, load this package earlier. ))) Package epstopdf Warning: Drivers other than `pdftex.def' are not supported. ) LaTeX Font Info: Try loading font information for U+msa on input line 18. (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd File: umsa.fd 2009/06/22 v3.00 AMS symbols A ) LaTeX Font Info: Try loading font information for U+msb on input line 18. (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd File: umsb.fd 2009/06/22 v3.00 AMS symbols B ) LaTeX Font Info: Try loading font information for OMS+cmr on input line 24. (/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 24. Overfull \hbox (9.15565pt too wide) in paragraph at lines 26--28 []\OT1/cmr/m/n/12 the an-a-lyt-i-cal ex-pres-sion for the gra-di-ents of the co n-straint $[][]\OML/cmm/m/it/12 ^^[\OT1/cmr/m/n/12 (\OMS/cmsy/m/n/12 f\OT1/cmr/ bx/n/12 R[]\OMS/cmsy/m/n/12 g\OT1/cmr/m/n/12 )$ [] LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <10> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 39. [1 {/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] [2] (./constraints_HOWTO.aux) ) Here is how much of TeX's memory you used: 1982 strings out of 495048 25756 string characters out of 3181554 77641 words of memory out of 3000000 5132 multiletter control sequences out of 15000+200000 15693 words of font info for 60 fonts, out of 3000000 for 9000 14 hyphenation exceptions out of 8191 37i,8n,22p,243b,205s stack positions out of 5000i,500n,10000p,200000b,50000s
    Output written on constraints_HOWTO.pdf (2 pages, 129962 bytes). PDF statistics: 67 PDF objects out of 1000 (max. 8388607) 48 compressed objects within 1 object stream 0 named destinations out of 1000 (max. 500000) 1 words of extra memory for PDF output out of 10000 (max. 10000000) espresso-5.1/Doc/README0000644000175000017500000000340112341373034012665 0ustar mbambaThis directory contains the general Quantum ESPRESSO documentation. Package-specific documentation is available in the Doc/ subdirectories of each package, or in the web site http://www.quantum-espresso.org The following files are always present in the repository: release-notes What is new in the current release + list of fixed bugs (only those that were present in some official release) user-guide.tex User guide developer-man.tex Developers' manual brillouin_zone.tex Pictures of the labels defined inside the Brillouin zones. plumed_quick_ref.tex An introduction to the usage of PLUMED with QE constraints_HOWTO.tex Documentation for constraints ChangeLog.old ChangeLog for the Quantum-ESPRESSO suite after aug. 2004 NO LONGER UPDATED ChangeLog.pw ChangeLog before aug 2004 for PWscf ChangeLog.cp ChangeLog before aug 2004 for CP Printable versions of the *tex files are present in the released version: user-guide.pdf developer-man.pdf plumed_quick_ref.pdf brillouin_zone.pdf All the material included in this distribution is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. These programs are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. espresso-5.1/Doc/INPUT_BANDS.txt0000777000175000017500000000000012341373334020164 2../PP/Doc/INPUT_BANDS.txtustar mbambaespresso-5.1/Doc/user_guide.out0000644000175000017500000000345712341373046014707 0ustar mbamba\BOOKMARK [1][-]{section.1}{Introduction}{}% 1 \BOOKMARK [2][-]{subsection.1.1}{People}{section.1}% 2 \BOOKMARK [2][-]{subsection.1.2}{Contacts}{section.1}% 3 \BOOKMARK [2][-]{subsection.1.3}{Guidelines for posting to the mailing list}{section.1}% 4 \BOOKMARK [2][-]{subsection.1.4}{Terms of use}{section.1}% 5 \BOOKMARK [1][-]{section.2}{Installation}{}% 6 \BOOKMARK [2][-]{subsection.2.1}{Download}{section.2}% 7 \BOOKMARK [2][-]{subsection.2.2}{Prerequisites}{section.2}% 8 \BOOKMARK [2][-]{subsection.2.3}{configure}{section.2}% 9 \BOOKMARK [3][-]{subsubsection.2.3.1}{Manual configuration}{subsection.2.3}% 10 \BOOKMARK [2][-]{subsection.2.4}{Libraries}{section.2}% 11 \BOOKMARK [2][-]{subsection.2.5}{Compilation}{section.2}% 12 \BOOKMARK [2][-]{subsection.2.6}{Running tests and examples}{section.2}% 13 \BOOKMARK [2][-]{subsection.2.7}{Installation tricks and problems}{section.2}% 14 \BOOKMARK [3][-]{subsubsection.2.7.1}{All architectures}{subsection.2.7}% 15 \BOOKMARK [3][-]{subsubsection.2.7.2}{Cray XE and XT machines}{subsection.2.7}% 16 \BOOKMARK [3][-]{subsubsection.2.7.3}{IBM AIX}{subsection.2.7}% 17 \BOOKMARK [3][-]{subsubsection.2.7.4}{IBM BlueGene}{subsection.2.7}% 18 \BOOKMARK [3][-]{subsubsection.2.7.5}{Linux PC}{subsection.2.7}% 19 \BOOKMARK [3][-]{subsubsection.2.7.6}{Linux PC clusters with MPI}{subsection.2.7}% 20 \BOOKMARK [3][-]{subsubsection.2.7.7}{Mac OS}{subsection.2.7}% 21 \BOOKMARK [1][-]{section.3}{Parallelism}{}% 22 \BOOKMARK [2][-]{subsection.3.1}{Understanding Parallelism}{section.3}% 23 \BOOKMARK [2][-]{subsection.3.2}{Running on parallel machines}{section.3}% 24 \BOOKMARK [2][-]{subsection.3.3}{Parallelization levels}{section.3}% 25 \BOOKMARK [3][-]{subsubsection.3.3.1}{Understanding parallel I/O}{subsection.3.3}% 26 \BOOKMARK [2][-]{subsection.3.4}{Tricks and problems}{section.3}% 27 espresso-5.1/Doc/INPUT_NEB.xml0000777000175000017500000000000012341373334017545 2../NEB/Doc/INPUT_NEB.xmlustar mbambaespresso-5.1/Doc/INPUT_DOS.txt0000777000175000017500000000000012341373334017560 2../PP/Doc/INPUT_DOS.txtustar mbambaespresso-5.1/Doc/plumed_quick_ref.tex0000644000175000017500000007351612341373034016063 0ustar mbamba\documentclass[12pt,a4paper]{article} \def\qe{{\sc Quantum ESPRESSO}} \usepackage{amssymb} \usepackage{graphicx} \usepackage{hyperref} \usepackage{amsmath} \pagestyle{plain} \textwidth = 15.5 cm \textheight = 23.5 cm \topmargin =-1.0 cm \oddsidemargin = 0.5 cm \listparindent=0pt \itemsep=5pt \begin{document} \title{Quick reference guide on \texttt{PLUMED} with \qe} \author{{\em Changru Ma}\\ SISSA, Trieste\\ } \date{March 30, 2011} \maketitle \tableofcontents \newpage \section{Introduction} \texttt{PLUMED}\cite{Bonomi:2009ul} is a plugin for free energy calculation in molecular systems which works together with some of the most popular molecular dynamics engines, including classical (GROMACS, NAMD, DL\_POLY, AMBER and LAMMPS), GPU-accelerated (ACEMD) and ab-initio (\qe) codes. Free energy calculations can be performed as a function of many order parameters with a particular focus on biological problems using state of the art methods such as metadynamics\cite{Laio:2008wu}, umbrella sampling and Jarzynski-equation based steered MD. The software, written in ANSI-C language, can be easily interfaced with both fortran and C/C++ codes. The \texttt{PLUMED} user guide can be downloaded here \href{https://sites.google.com/site/plumedweb/documentation}{https://sites.google.com/site/plumedweb/documentation} and \texttt{PLUMED} tutorial can be found here \href{http://sites.google.com/site/plumedtutorial2010/}{http://sites.google.com/site/plumedtutorial2010/}. \\ {\bf All the features in \texttt{PLUMED} are compatible with \qe\ but:} \begin{itemize} \item variable cell calculations \item non-orthorhombic cell \item energy related collective variables \end{itemize} \subsection{Overview} A system described by a set of coordinates $x$ and a potential $V(x)$ evolving under the action of a dynamics whose equilibrium distribution is canonical at a temperature $T$. We explore the properties of the system as a function of a finite number of CVs $S_{\alpha}(x), ~\alpha ~= ~1, ~d$. The equilibrium behavior of these variables is defined by the probability distribution \begin{equation} P(s)~=~\frac{exp(-(1/T)F(s))}{\int{ds~exp(-(1/T)F(s))}} \label{EQ_prob} \end{equation} where $s$ denotes the d dimensional vector $(s_{1},..., ~s_{d})$ and the free energy is given by \begin{equation} F(s) ~= ~T ~ln(\int{dx ~exp(-\frac{1}{T}V(x))} ~\delta(s-S(x))) \label{EQ_free_energy} \end{equation} Here capital $S$ is used for denoting the function of the coordinates $S(x)$, while lower case s is used for denoting the value of the CVs. In metadynamics the free energy is reconstructed recursively, starting from the bottom of the well by a history-dependent random walk that explores a larger and larger portion of configuration space. A small repulsive Gaussian potential is added every $\tau_{G}$ MD steps. The external ('metadynamics') potential acting on the system at time $t$ is given by \begin{equation} V_{G}(S(x), ~t) ~= ~\omega ~\sum_{\substack{t' ~= ~\tau_{G}, ~2\tau_{G},...\\t' pw.out \end{verbatim} for Car-Parrinello Molecular Dynamics, \begin{verbatim} cp.x -plumed < cp.in > cp.out \end{verbatim} \subsection{Units in the input and output files} There are several output files for the simulation with \texttt{PLUMED}, e.g. \texttt{PLUMED.OUT}, \texttt{COLVAR} and \texttt{HILLS}. All the units in the input and output files for \texttt{PLUMED} adopt the internal units of the main code, say Rydberg atomic units in \texttt{pw.x} and Hartree atomic units in \texttt{cp.x}. But there are two exceptions, for distance it is always Bohr and for energy it is always Rydberg. \subsection{Postprocessing} There is a \texttt{sum\_hills.f90} code (in espresso/PLUMED/utilities/sum\_hills/) performing post-processing task to estimate the free energy after a metadynamics run. The program \texttt{sum\_hills.f90} is a tool for summing up the Gaussians laid during the metadynamics trajectory and obtaining the free energy surface. As \texttt{sum\_hills.f90} is a simple fortran 90 program, the installation is straight- forward so long as you have a fortran compiler available on your machine. As an example, with the gnu g95 compiler one would compile sum hills.f90 using the following command: \begin{verbatim} g95 -O3 sum_hills.f90 serial.f90 -o sum_hills.x \end{verbatim} For post processing of large HILLS files it is recommended to use a parallel version. The \texttt{sum\_hills.x} program takes its input parameters from the command line. If run without options, this brief summary of options is printed out. Detail descriptions of the following options can be found in the manual\cite{PLUMED:manual} of \texttt{PLUMED}. \begin{verbatim} USAGE: sum_hills.x -file HILLS -out fes.dat -ndim 3 -ndw 1 2 -kt 0.6 -ngrid 100 100 100 [-ndim 3 ] (number of collective variables NCV) [-ndw 1 ... ] (CVs for the free energy surface) [-ngrid 50 ... ] (mesh dimension. DEFAULT :: 100) [-dp ... ] (size of the mesh of the output free energy) [-fix 1.1 ... ] (define the region for the FES, if omitted this is automatically calculated) [-stride 10 ] (how often the FES is written) [-cutoff_e 1.e-6 ] (the hills are cutoff at 1.e-6) [-cutoff_s 6.25 ] (the hills are cutoff at 6.25 standard deviations from the center) [-2pi x ] ([0;2pi] periodicity on the x CV, if -fix is not used 2pi is assumed) [-pi x ] ([-pi;pi] periodicity on the x CV, if -fix is not used 2pi is assumed) [-kt 0.6 ] (kT in the energy units) [-grad ] (apply periodicity using degrees) [-bias ] (writing output the bias for a well tempered metadynamics run) [-file HILLLS ] (input file) [-out fes.dat ] (output file) [-hills nhills ] (number of gaussians that are read) \end{verbatim} \section{First worked example: SN2 reaction} \subsection{SN2 reaction in vacuum} In this section, we will show a very simple chemical reaction done with \qe\ code with \texttt{PLUMED} plugin. The goal of this example is to study the free energy for the reaction depicted in Fig. \ref{Fig_Reaction_sn2}. This SN2 reaction between Cl$^{-}$ and CH3Cl shows the symmetric transition state and the CH3 conversion of configuration known as the Walden inversion\cite{Ensing:2005p53}. \begin{figure*}[htbp] \begin{center} \includegraphics[width=\textwidth]{./pic/sn2_reaction.pdf} \caption{A sketch of SN2 reaction} \label{Fig_Reaction_sn2} \end{center} \end{figure*} \subsection{Choice of CVs and simulation details} The first thing you should decide is the collective variables (CVs) to be used: \begin{itemize} \item Distance? \item Does the angle matter? \item Torsion? \item Coordination number? \item Anything else? \end{itemize} Here we choose the bond length of C-Cl as CV1 and the bond length of C-Cl$^{-}$ as CV2. The simulation will be performed using the Born-Oppenheimer molecular dynamics (BO-MD) algorithm as implemented in the \qe\ program (\texttt{pw.x}) and then Car-Parrinello molecular dynamics (CP-MD) (\texttt{cp.x}). The electronic structure is computed within density functional theory (DFT) using the PBE exchange-correlation functional. Ultra-soft pseudo-potentials are used for the valence electrons, and the wave function is expanded in a plane waves basis set up to an kinetic energy cutoff of 25 Ry and charge density cutoff of 200 Ry. An orthorhombic P supercell of 18 * 12 * 12 a.u.$^{3}$ is used. The temperature of the system is 300 K via "soft" velocity rescaling in BO-MD and Nose-Hoover thermostat in CP-MD. \subsection{Metadynamics with Born-Oppenheimer molecular dynamics} For Metadynamics a possible input \texttt{plumed.dat} can be \begin{verbatim} # switching on metadynamics and Gaussian parameters HILLS HEIGHT 0.001 W_STRIDE 2 # instruction for CVs printout PRINT W_STRIDE 1 # the distance between C-Cl' and C-Cl DISTANCE LIST 1 3 SIGMA 0.3 DISTANCE LIST 2 3 SIGMA 0.3 # WALLS: prevent to depart the two mols UWALL CV 1 LIMIT 7.0 KAPPA 100.0 LWALL CV 1 LIMIT 2.5 KAPPA 100.0 UWALL CV 2 LIMIT 7.0 KAPPA 100.0 LWALL CV 2 LIMIT 2.5 KAPPA 100.0 # end of the input ENDMETA \end{verbatim} Here we describe briefly the syntax used in the \texttt{PLUMED} input file. For the detail introduction, please have a look at the \texttt{PLUMED} manual\cite{PLUMED:manual}. The symbol \# allows the user to comment any line in the input file. The \texttt{HILLS} turns on the standard Metadynamics and the \texttt{HEIGHT 0.001} means the height of the Gaussians is 0.001 Rdy. Pay attention: in this code distances are in Bohr (1 Bohr = 0.529177249 \AA) and the energies in Rydberg (1 Rydberg = 13.60569 eV). The frequency for add Gaussians is controlled by \texttt{W\_STRIDE} followed by a number that represents the number of steps between one MD step and the other which is 2 here. The line that starts with the keyword \texttt{PRINT W\_STRIDE} control the frequency for the main \texttt{PLUMED} output file which is called \texttt{COLVAR}. This file contains the data regarding the collective variable positions, the constraint positions, the energy of hills and energy of constraints and other useful informations that will be introduced time by time during the tutorial. All the informations are appended in the \texttt{COLVAR} file and overwritten if an old \texttt{COLVAR} file already exists. The \texttt{DISTANCE LIST 1 3} shows that our CV1 is the distance between atom 1 and atom 3, the \texttt{SIGMA 0.3} indicates the width of the Gaussians is 0.3 Bohr. In order to prevent to depart the two molecules, we add the wall potentials on CV1 and CV2, for both of them the upper limit wall and the lower limit wall. The \texttt{UWALL} and \texttt{LWALL} keywords define a wall for the value of the CV s which limits the region of the phase space accessible during the simulation. The restraining potential starts acting on the system when the value of the CV is greater (in the case of \texttt{UWALL}) or lower (in the case of \texttt{LWALL}) than a certain limit \texttt{LIMIT}. The functional form of this potential is the following: \begin{equation} V_{wall}(s) = KAPPA (\frac{s - LIMIT + OFF}{EPS})^{EXP} \label{EQ_vwall} \end{equation} where \texttt{KAPPA} is an energy constant in internal unit of the code, \texttt{EPS} a rescaling factor and \texttt{EXP} the exponent determining the power law. By default: \texttt{EXP} = 4, \texttt{EPS} = 1.0, \texttt{OFF} = 0. The termination of the input for \texttt{PLUMED} is marked with the keyword \texttt{ENDMETA}. Whatever it follows is ignored by \texttt{PLUMED}. You can introduce blank lines. They are not interpreted by \texttt{PLUMED}. Here is the input file pw.in for pw.x: \begin{verbatim} &control title = 'ch3cl', calculation='md' restart_mode='from_scratch', pseudo_dir = './', outdir = './tmp', dt=20, nstep=2000, prefix = 'md', / &system ibrav = 8, celldm(1) = 18.d0, celldm(2) = 0.666666d0, celldm(3) = 0.666666d0, nat = 6, ntyp = 3, tot_charge = -1, ecutwfc = 25.0, ecutrho = 100.0, nr1b = 24, nr2b = 24, nr3b = 24, nosym = .true. / &electrons conv_thr = 1.0d-8 mixing_beta = 0.7 / &ions pot_extrapolation='second-order' wfc_extrapolation='second-order' ion_temperature='berendsen' tempw= 300. nraise=20 / ATOMIC_SPECIES Cl 35.4527d0 Cl.blyp-mt.UPF C 12.0107d0 C.blyp-mt.UPF H 1.00794d0 H.blyp-vbc.UPF ATOMIC_POSITIONS bohr Cl 12.880706242 6.000000000 5.994035868 Cl 3.581982751 6.000000000 5.989431927 C 9.410606817 6.000000000 6.004535337 H 8.743333410 4.313700292 5.030609604 H 8.743333410 7.686299708 5.030609604 H 8.746264064 6.000000000 7.952930073 K_POINTS gamma \end{verbatim} In this example, we perform a 2000 steps NVT MD to reconstruct the free energy profile for the SN2 reaction. To run the metadynamics simulation, simply type \begin{verbatim} pw.x -plumed < pw.in > pw.out \end{verbatim} After the execution of the program, you will get a brunch of interesting stuff. First of all, you will get a \texttt{PLUMED.OUT} file that contains some printout from \texttt{PLUMED} so you may check whether the input was correctly read: \begin{verbatim} ::::::::::::::::: READING PLUMED INPUT ::::::::::::::::: |-HILLS: |--HEIGHT 0.001000 WRITING STRIDE 2 DEPOSITION RATE 0.000025 |-PRINTING ON COLVAR FILE EVERY 1 STEPS |-INITIAL TIME OFFSET IS 0.000000 TIME UNITS 1-DISTANCE: (1st SET: 1 ATOMS), (2nd SET: 1 ATOMS); PBC ON SIGMA 0.300000 |- DISCARDING DISTANCE COMPONENTS (XYZ): 000 |- 1st SET MEMBERS: 1 |- 2nd SET MEMBERS: 3 2-DISTANCE: (1st SET: 1 ATOMS), (2nd SET: 1 ATOMS); PBC ON SIGMA 0.300000 |- DISCARDING DISTANCE COMPONENTS (XYZ): 000 |- 1st SET MEMBERS: 2 |- 2nd SET MEMBERS: 3 |-WALL ON COLVAR 1: UPPER LIMIT = 7.000000, KAPPA = 100.000000, EXPONENT = 4, REDUX = 1.000000, OFFSET = 0.000000 |-WALL ON COLVAR 1: LOWER LIMIT = 2.500000, KAPPA = 100.000000, EXPONENT = 4, REDUX = 1.000000, OFFSET = 0.000000 |-WALL ON COLVAR 2: UPPER LIMIT = 7.000000, KAPPA = 100.000000, EXPONENT = 4, REDUX = 1.000000, OFFSET = 0.000000 |-WALL ON COLVAR 2: LOWER LIMIT = 2.500000, KAPPA = 100.000000, EXPONENT = 4, REDUX = 1.000000, OFFSET = 0.000000 |-HILLS ACTIVE ON COLVAR 1 |-HILLS ACTIVE ON COLVAR 2 \end{verbatim} This tells you that everything is going fine. The index of atoms are parsed correctly and the printout is correctly understood. Now what you get is a \texttt{COLVAR} file that consists in the time evolution of the CVs. Its format looks something like this: \begin{verbatim} #! FIELDS time cv1 cv2 vbias vwall vext 0.000 3.470115309 5.828643634 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 20.000 3.476912892 5.822800771 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 40.000 3.483516729 5.817608411 0.001000000 0.000000000 0.000000000 0.000000000 0.000000000 60.000 3.490411466 5.812574439 0.000999600 0.000000000 0.000000000 0.000000000 0.000000000 80.000 3.498291622 5.807005696 0.001998170 0.000000000 0.000000000 0.000000000 0.000000000 100.000 3.507739014 5.800326723 0.001994356 0.000000000 0.000000000 0.000000000 0.000000000 \end{verbatim} In the first line there is a simple remainder to the elements that you have in each column. Namely time first (in a.u. by default in \qe), then the value of the two CVs followed by the various additional potential energies introduced by \texttt{PLUMED}. The fourth column is the bias potential, the wall potential is in the fifth column and the external potential is in the last. Now you can plot the evolution of the CVs with gnuplot by using the command \texttt{p "./COLVAR" u 1:2 t "CV1" ,"" u 1:3 t "CV2"} and youll get something like Fig. \ref{FIG_sn2_cv}. If you want to understand how the CVs are related then you may use the command \texttt{p "./COLVAR" u 2:3} with gnuplot that results in a plot like that in Fig. \ref{FIG_sn2_cvs}. \begin{figure*}[htbp] \begin{center} \includegraphics[width=\textwidth]{./pic/sn2cv.pdf} \caption{The time evolution of CVs} \label{FIG_sn2_cv} \end{center} \end{figure*} \begin{figure*}[htbp] \begin{center} \includegraphics[width=\textwidth]{./pic/sn2cvs.pdf} \caption{The time population of CVs} \label{FIG_sn2_cvs} \end{center} \end{figure*} Beside the usual \texttt{COLVAR} file, when you run a metadynamics calculation you get an additional file called \texttt{HILLS} which contains a list of the Gaussians deposited during the simulation. In the example above, this file looks like: \begin{verbatim} 40.000 3.483516729 5.817608411 0.300000000 0.300000000 0.001000000 0.000 80.000 3.498291622 5.807005696 0.300000000 0.300000000 0.001000000 0.000 120.000 3.519061248 5.792237732 0.300000000 0.300000000 0.001000000 0.000 160.000 3.547107311 5.772092610 0.300000000 0.300000000 0.001000000 0.000 200.000 3.578429291 5.750272190 0.300000000 0.300000000 0.001000000 0.000 240.000 3.606928115 5.732241302 0.300000000 0.300000000 0.001000000 0.000 \end{verbatim} where: \begin{itemize} \item the first column contains the time \texttt{t} (in internal unit of the MD code which is \texttt{a.u.} here in BOMD) at which the Gaussian was deposited; \item the following 2 columns contain the centroid of the Gaussian, $S_{i}(R(t))$, one for each CV $i$; \item the following 2 columns contain the Gaussian sigma $\sigma_{i}$, one for each CV $i$; \item the last but one column contains the value of $W$; \item the last column is meaningful only in well-tempered metadynamics simulations (see the next example). \end{itemize} This file will be used to calculate the estimate of the free energy at the end of our metadynamics calculation. In order to restart a metadynamics run, the flag \texttt{RESTART} must be added to \texttt{plumed.dat} after flag \texttt{HILLS}. This allows a metadynamics simulation to be restarted after an interruption or after a run has finished. The \texttt{HILLS} files will be read at the beginning of the simulation and the bias potential applied to the dynamics. Note that the presence of the \texttt{RESTART} flag only affects the metadynamics part of the simulation, and thus the usual procedure for restarting a MD run must be followed. \subsubsection{Free energy reconstruction} In the long-time limit, the bias potential of metadynamics converges to the free energy changed in sign\cite{Bussi:2006gg}. At any time during the simulation we can sum the Gaussians deposited so far and obtain the current estimate of the free energy surface (FES) using the utility \texttt{sum\_hills} as we compiled in the previous section. \begin{verbatim} sum_hills.x -file HILLS -out fes.dat -ndim 2 -ngrid 100 100 \end{verbatim} The file in output \texttt{fes.dat} contains the estimate of the free energy calculated on a regular grid whose dimension is specified by \texttt{-ngird}. These parameters should be chosen with care. To calculate accurately the potential in a given point of the CV space, a practical rule is to choose the bin size to be half the Gaussian sigma. As usual, you can plot the 3D FES with gnuplot: \begin{verbatim} set pm3d sp "fes.dat" w pm3d \end{verbatim} and you will get a plot like that in Fig. \ref{FIG_sn2_fes} \begin{figure*}[htbp] \begin{center} \includegraphics[width=\textwidth]{./pic/sn2_fes.pdf} \caption{Free energy surface of SN2 reaction} \label{FIG_sn2_fes} \end{center} \end{figure*} \section{Second worked example: H-H} In this example, well-tempered (WT) metadynamics\cite{Barducci:2008ua} will be employed to reconstruct the FES of the hydrogen molecule within Born-Oppenheimer approximation (with \texttt{pw.x}). In WT metadynamics, the Gaussian height $W$ is automatically rescaled during the simulations following: \begin{equation} W = W_{0} \exp{-\frac{V(S, t)}{k_{B}\Delta T}} \label{EQ_wt} \end{equation} where $W_{0}$ is the initial Gaussian height and $\Delta T$ a parameter with the dimension of a temperature. The use of Eq. \ref{EQ_wt} guarantees that the bias potential converges in a single simulation and does not oscillate around the FES value, causing the problem of overfilling as what we got in Fig. \ref{FIG_sn2_fes}. \begin{equation} V(S, t\to \infty) = -\frac{\Delta T}{T + \Delta T} F(S) + C \label{EQ_wt_v} \end{equation} where $T$ is the temperature of the system and $C$ a constant. The quantity $T + \Delta T$ is often referred as the (fictitious) CV temperature, while the ratio $(T + \Delta T) / T$ as bias factor. For the details of WT metadynamics, please see references\cite{Barducci:2008ua, Laio:2008wu}. To perform a WT metadynamics simulation with \texttt{PLUMED} you have to use the directive \texttt{WELLTEMPERED} and specify one of the parameters described above using either the keyword \texttt{CV\_TEMPERTURE} or \texttt{BIASFACTOR}. In addition, the temperature of the system must be specified explicitly with \texttt{SIMTEMP}. Here are some practical rules to choose wisely the parameters in WT metadynamics simulations: \begin{itemize} \item The bias factor (or equivalently the CV temperature) regulates how fast the amount of bias potential added decreases with simulation time and eventually controls the extent of exploration. The choice of these parameters depends on the typical free-energy barriers involved in the process under study. Note that this parameter can be changed on-the-fly as needed. \item The optimal choice of the initial Gaussian height $W_{0}$ is less crucial and at the same time less trivial. It is irrelevant in the long time regime and affects only the transient part of the simulation. A short initial filling period can be desirable if the transverse degrees of freedom relax quickly, otherwise a moderate initial energy rate is a better choice. \end{itemize} The following is an example of input file for this WT metadynamics simulation at 300 K with a bias factor 10 and an initial Gaussian height of 0.005. \begin{verbatim} PRINT W_STRIDE 5 HILLS HEIGHT 0.005 W_STRIDE 10 WELLTEMPERED SIMTEMP 300 BIASFACTOR 10 DISTANCE LIST 1 2 SIGMA 0.2 ENDMETA \end{verbatim} In WT metadynamics, the Gaussians height as written in the \texttt{HILLS} file is multiplied by the factor $(T + \Delta T) / \Delta T$. This guarantees that when you sum the Gaussians (by means for example of the \texttt{sum\_hills} code) you get directly the FES. The last column of the \texttt{HILLS} file contains the value of the bias factor used in the WT metadynamics simulation. For this example, the \texttt{HILLS} file looks like: \begin{verbatim} 200.000 1.433853674 0.200000000 0.005555556 10.000 400.000 1.431075271 0.200000000 0.004147748 10.000 600.000 1.431419655 0.200000000 0.003334619 10.000 800.000 1.509148410 0.200000000 0.002937840 10.000 1000.000 1.683639369 0.200000000 0.003660780 10.000 1200.000 1.680674151 0.200000000 0.002997952 10.000 \end{verbatim} Then you can sum up the Gaussians and plot it with gnuplot. \begin{verbatim} sum_hills.x -ndim 1 -ndw 1 -file HILLS -out fes.dat \end{verbatim} The \texttt{sum\_hills} code could also be used to check the convergence of a metadynamics simulation. This can be easily achieved by calculating the estimate of the FES at regular interval in time using the \texttt{-stride} option and then evaluating the free energy at different time steps. Just run \texttt{sum\_hills}: \begin{verbatim} sum_hills.x -out fes.dat -ndim 1 -ndw 1 -stride 150 \end{verbatim} and you will get \texttt{fes.dat}, the FES for the whole simulation and \texttt{fes.dat.1}, \texttt{fes.dat.2} ..., one every \texttt{stride} Gaussians. You can plot free energy estimate at different time steps as shown in Fig. \ref{FIG_hh_fes}. \begin{figure*}[htbp] \begin{center} \includegraphics[width=\textwidth]{./pic/hh_fes.pdf} \caption{Free energy surface} \label{FIG_hh_fes} \end{center} \end{figure*} From the Fig. \ref{FIG_hh_fes}, we can see that the lowest saddle point is at 1.43 Bohr, which is the bond length of the hydrogen molecule and it takes 0.113 Hartree = 3.09 eV to break this bond. \newpage \begin{thebibliography}{10} \bibitem{Bonomi:2009ul} M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R.A. Broglia and M. Parrinello, Comp. Phys. Comm. {\bf 180}, 1961 (2009). \bibitem{Laio:2008wu} A. Laio and F. L. Gervasio, Rep. Prog. Phys., {\bf 71}, 126601 (2008). \bibitem{Laio:2002wm} A. Laio and M. Parrinello, PNAS, {\bf 99}, 12562 (2002). \bibitem{QE:guide} User's Guide for \qe: \texttt{espresso/Doc/}; \href{http://www.quantum-espresso.org/wp-content/uploads/Doc/user\_guide/}{http://www.quantum-espresso.org/wp-content/uploads/Doc/user\_guide} \bibitem{PLUMED:manual} \texttt{PLUMED} manual: \href{https://sites.google.com/site/plumedweb/documentation}{https://sites.google.com/site/plumedweb/documentation} \bibitem{Ensing:2005p53} B. Ensing, A. Laio, M. Parrinello, and M. L. Klein, J. Phys. Chem. B {\bf 109}, 6676 (2005). \bibitem{Bussi:2006gg} G. Bussi, A. Laio and M. Parrinello, PRL {\bf 96}, 090601 (2006). \bibitem{Barducci:2008ua} A. Barducci, G. Bussi and M. Parrinello, PRL {\bf 100},20603 (2008) \end{thebibliography} \end{document} espresso-5.1/Doc/INPUT_PROJWFC.txt0000777000175000017500000000000012341373334020732 2../PP/Doc/INPUT_PROJWFC.txtustar mbambaespresso-5.1/Doc/INPUT_Lanczos.xml0000777000175000017500000000000012341373334022140 2../TDDFPT/Doc/INPUT_Lanczos.xmlustar mbambaespresso-5.1/Doc/INPUT_D3.txt0000777000175000017500000000000012341373334020104 2../PHonon/Doc/INPUT_D3.txtustar mbambaespresso-5.1/Doc/release-notes0000644000175000017500000013574312341373034014515 0ustar mbambaNew in 5.1 version: * "Cold restart" for Car-Parrinello dynamics * Calling QE from external codes made easier: see new subdirectory COUPLE * PW: Hybrid functionals for USPP and PAW (experimental) * PW: partial support to the use of k-point labels in the Brillouin zone * PW: Langevin dynamics with Smart Monte Carlo * CP and PW: Tkatchenko-Scheffler vdW correction (experimental) * GWW replaced by GWL (using Lanczos chains) * turboTDDFT: pseudo_Hermitian Lanczos algorithm and Davidson-like diagonalization added * PWCOND with DFT+U * New functionals: gau-pbe, PW86 (unrevised), B86B, XDM (exchange-hole dipole moment) model of dispersions, vdW-DF3, vdW-DF4 (Klimes et al), rVV10, optB86b-vdW, rev-vdW-DF2 * PHonon: Calculation of phonon dispersions using the finite displacements supercell approach. See subdirectory FD/ in PHonon. * dynmat.x can calculate phonon contribution to dielectric tensor * turboTDDFT now supports hybrid functionals (only with norm-conserving pseudopotentials) * "image" parallelization re-introduced in pw.x: see code "manypw.x" Incompatible changes in 5.1 version: * Initialization of MPI modified in order to simplify usage of QE routines from external codes. It is now possible to run an instance of QE into a mpi communicator passed by the external routine. Changes affect a few MPI initialization routines (e.g. mp_start) and some MPI related modules; the communicator must be explicitly specified when calling mp_* interfaces to low-level MPI libraries. * Input variable "london" should be replaced by " vdw_corr='Grimme-D2' " * Routine "electrons" doesn't deal any longer with non-scf cases; use routine "non_scf" instead. For hybrid functionals, the loops over the charge density and over the exchange potential have been separated. * Restart mechanism of pw.x changed a lot. It works ONLY if you stop the code cleanly with the prefix.EXIT file, or by setting "max_seconds"; disk_io='high' no longer needed (use it ONLY if tight with memory) Restarting from hard crashes is no longer supported. * Major restructuring of DFT+U and related modules in PW: related variables moved to module ldaU, "swfcatom" moved to module "basis" * Definition of "nwordwfc" in PP/ follows the same logic as in PW/ * Calls to "find_equiv_sites" and "writemodes" changed (fixed dimension "nax" removed) * Call to "open_buffer" changed: unit must be a valid fortran unit > 0; max number of records is no longer specified; a new flag explicitly specifies if writing to RAM buffer is required. Functionalities of Modules/buffers.f90 have been considerably modified and extended. Fixed in 5.1 version: * PHonon: G=0 component of the deformation potential at q=0 was incorrect (the contribution from the average coulomb potential, i.e. the integral of the Coulomb contribution on the unit cell, was missing). For more details, see M. Calandra et al. Phys. Rev. B 82 165111 , section III B. * PWscf: spin-polarized HSE for PAW was incorrectly implemented * PHonon: Gamma-specific code wasn't properly restarting in parallel * PHonon: epsil + paw was not working with k-point parallelization. * PHonon: problem with the symmetry analysis in D_6h. The problem appeared in special cases after the symmetry reshuffling made by the phonon code. * PWscf: starting with uniform charge worked only for non-spin-polarized calculations. Not a big deal unless one used HGH or other pseudopotentials without atomic charge information * PWscf: Forces with finite electric field (lelfield=.true.) and US PP were incorrect in parallel execution * D3: bug when the crystal has symmetry but the small group of the q-point has no symmetry. * Bogus "file not found" error in pp.x when extracting quantities not requiring wave functions if these were "collected" - v.5.0.2 only * Some quantities calculated in real space (including the charge itself when tqr=.true.) were not always accurately computed in parallel execution if the number of planes wasn't the same for all processors * Bogus symmetry error in NEB due to missing re-initialization of fractional translations Fixed in 5.0.3 version: * PW, PP, PHonon: files for DFT+U produced by previous versions could no longer be read * PHonon: restart with convt=.true. was not working with PAW * PHonon: in matdyn.x, displacement patterns were no longer correct if eigenvectors of the dynamical matrix were also written to file * PHonon: compatibility with files produced by previous releases was broken if pools were used * VERY NASTY PHonon bug: symmetry Sq=-q+G introduced in v.5.0.2 could lead to bad phonons in some cases and has been disabled * PHonon: effective charges eu + PAW were not accurate with pools; effective charges eu + US PP + spin-orbit nonmagnetic were not working in parallel. * Bug fix for NC pseudos with GIPAW info, for upf version 2 only: Pseudo local potential was incorrectly written and read. * divide_class: wrong check for T_h * PP: incorrect check yielding bogus error in bands.f90 (v.5.0.2 only) * CP wasn't working properly with USPP having distinct Q functions for each value of l, due to the never ending l/l+1 problem New in 5.0.2 version: * DFT+U with on-site occupations from pseudopotential projectors; DFT+U+J (both experimental) * Calculation of orbital magnetization (experimental) Fixed in 5.0.2 version: * the random-number generator wasn't checking for incorrect seeding; under some unlikely circumstances this might lead to strange errors * k-point parallelization in v.5.0 and 5.0.1 was affected by a subtle problem: the distribution of plane waves was not always the same on all pools of processors. While results were still correct, strange problems (e.g. lockups) could result. Also: there are more and more machines that are not able to produce the same results starting from the same data on different processors. Charge-density mixing is now performed on one pool, broadcast to all others, to prevent trouble. * upftools: fhi2upf converter of v.5 introduced a small error in some cases * Small error in the calculation of rPW86 functional, due to a mismatch between its previous definition (Slater exchange contained in GGA) and the check on the rho=>0, grad rho=>0 limits. Note that a similar problem might also affect hcth, olyp, m06l functionals. The new PBEQ2D functional (introduced in 5.0.1) was also not correct. * NEB calculation can get stuck if the code tries to read &ions namelist in the PWscf-related input section * NEB: spurious blank character appearing in lines longer than 80 characters with Intel compiler (same problem that was previously fixed in PWscf) * PH: bug in symmetrization in some special cases (supercells of graphene) * PH: bug in restart when the code stops during self consistency * PH: ph.x with images wasn't working any longer * PH: electron_phonon='simple' wasn't working together with ldisp=.true. * PH: images with a single q point were not collecting properly the files. * PH: grid splitting of irrep + single q point + wf_collect=.true. was not working New in 5.0.1 version * vdW-DF functional and DFT-D extended to CP (experimental) * PWscf: Noncollinear/spin-orbit Berry Phases (experimental) * New functionals: SOGGA, M06L (courtesy of Yves Ferro), PBEQ2D (courtesy of Letizia Chiodo) Incompatible changes in 5.0.1 version: * Variable "amconv" removed from constants.f90, use "amu_ry" instead * ld1.x no longer generates pseudopotentials into UPF v.1 Fixed in 5.0.1 version * Funny frequencies from matdyn.x if masses were read from file * Stress calculation in parallel execution was wrong in the Gamma-only case when ScaLAPACK was present (v.5.0 only) * Misc compilation problems with old compilers New in 5.0 version * More ways of calculating electron-phonon coefficients. * Full DFT+U scheme (with J and additional parameters) implemented. Should work also for fully-relativistic calculations. * band parallelization for Green function sum in EXX (memory replication). Incompatible changes in 5.0 version: * Postprocessing codes dos.x, bands.x, projwfc.x, now use namelist &dos, &bands, &projwfc respectively, instead of &inputpp * Directory reorganization: whole packages into subdirectories, almost nothing is in the same directory where it used to be. * atomic masses in the code are in amu unless otherwise stated * Options 'cubic'/'hexagonal' to CELL_PARAMETERS removed: it is no longer useful, the code will anyway find the correct sym.ops. * Options 'bohr'/'angstrom'/'alat' to CELL_PARAMETERS implemented * -DEXX no longer required for exact exchange or hybrid functionals * PHonon: input variable 'elph' replaced by 'electron_phonon' Fixed in 5.0 version * Missing checks for unimplemented cases with electric fields * CP with electric fields wasn't working any longer in parallel due to an unallocated variable * VERY NASTY bug: exchange-correlation keyword 'PW91' was incorrectly interpreted (PZ LDA instead of PW) in all 4.3.x versions * A few glitches when the standard input is copied to file * PW: LDA+U crash in the final step of a vc-relax run, due to a premature deallocation of a variable * PW: constraint 'atomic direction' on noncolinear magnetization wasn't working properly * PW: tetrahedra were not working with magnetic symmetries, and not yet working in the noncolinear case as well. * Velocity rescaling in variable-cell MD wasn't really working * Workaround for frequent crashes in PAW with vc-relax * In some cases spin-polarized HSE was yielding NaN's * Two instances of an array not always allocated passed as variable to routine (init_start_k and dynmatrix.f90) - harmless but not nice * disk_io='low' or 'none' wasn't working if a wavefunction file from a previous run was found * CP + OpenMP without MPI wasn't working with ultrasoft pseudopotentials * Bug in CASINO to UPF converter * Bug in k-point generation in the noncollinear case * ESM with spin polarization fixed * Weird problem with irreps in PHonon * Bug in turbo_lanczos.x . Restarts of polarizations other than ipol=1 or ipol=4 were not working properly due to buggy test_restart routine. New in 4.3.2 version * A few crystal lattices can be specified using the traditional crystallography parameter (labelled with negative ibrav values) * A few extensions to PP format converters, conversion to UPF v.2 * C09 GGA Exchange functional, courtesy of Ikutaro Hamada Fixed in 4.3.2 version * Bugfix for pw2casino: total energies should now agree with pwscf total energies for any number of nodes/k-points, also for hybrid functionals. Note: bwfn files produced before and after this patch will differ! * Funny results in the last step of variable-cell optimization, due to bad symmetrization in presence of fractional translations * OpenMP crash with PAW * Removed lines in iotk that confused some preprocessors * More glitches with new xc functionals, compatibility with previous cases: HF, OEP, PZ * Variable-cell optimization at fixed volume broke hexagonal symmetry * NEB: possible problem in parallel execution (if command-line arguments are not available to all processors) avoided by broadcasting arguments * PWGui documentation updated to reflect cvs to svn switch * Some formats increased to fit printout of large cells * PW: the cell volume omega must be positive definite even when the lattice vectors form a left-handed set * PW: a bad initialization (of becsum) in the paw spin/orbit case made the convergence more difficult * PW: couldn't read any longer data files written by previous versions * PHonon: problem with the D_4h group when the matrices of the group are not in the same order as in the routine cubicsym * Yet another LDA+CPU+U fix: forces were wrong in spin-polarized case * PW was not stopping anymore when two inconsistent dft were given * atomic: default for non-local correlation is set to " " AND upf%dft is trimmed before being written by write_upf_v2.f90. Therefore older versions of pw will still work if no vdW is present * inlc label for vdw-df is set as VDW1, consistently with the comment and needed to avoid matching conflict with VDW2 New in 4.3.1 version: * New, improved version of GIPAW (available as a separate package) * Effective Screening Medium (Otani and Sugino PRB 73 115407 (2006). * CP: faster implementation of LDA+U Fixed in 4.3.1 version: * atomic: behavior of which_augfun='PSQ' made consistent with documentation * CP: LDA+U buggy; PLUMED wasn't working * Misc compilation and configure problems: line exceeding 132 characters, syntax not accepted by some compilers, pathscale+mpif90 not recognized, etc. * PW: nasty out-of-bound bug leading to mysterious crashes or incorrect results in some variable-cell calculations. Also in variable-cell: last scf step could crash due to insufficient FFT grid if the final cell was larger than the initial one * PW: minor bug in damped dynamics (hessian matrix incorrectly reset) * PW: bug in LDA+U forces for the Gamma-only case * Electron-Phonon code wasn't working any longer in serial execution * PH with input variable "fildrho" and D3 were not working due to inconsistencies in the calls to io_pattern * PWCOND: fixed bug when the write/read option is used for the case of different leads. * NEB + nonlocal exchange (DF-vdW) or hybrid functionals wasn't working * NEB: incorrect parsing of intermediate images fixed * HSE numerical problems in function expint * XSPECTRA wasn't working any longer due to missing updates to read_file_xspectra.f90 * epsilon.f90: the term 1 must be added to diagonal components only! New in 4.3 version: * CP only, experimental: parallelization over Kohn-Sham states * Dispersion interactions (van der Waals) with nonlocal functional * Additions to projwfc: k-resolved DOS, LDOS integrated in selected real-space regions * Constant-volume variable-cell optimization * Non-colinear and spin-orbit PAW * Penalty functional technique in DFT+U calculations (CP only) Incompatible changes in 4.3 version: * pw.x no longer performs NEB calculations. NEB is now computed by a separate code, NEB/neb.x . NEB-specific variables are no longer read by pw.x; they are read by neb.x after all pw.x variables * NEB for cp.x no longer available * iq1,iq2,iq3 removed from input in ph.x; use start_q, last_q instead * Several global variables having the same meaning and different names in CP and in all the other codes (PW) have been given a common name. Calls to fft also harmonized to the CP interface fwfft/invfft: Old (CP) New (PW) Old (PW) New (CP) nnr/nnrx nrxx nrx[123] nr[123]x nnrs/nnrsx nrxxs nrx[123]s nr[123]sx ngml ngl ig[123] mill (replaces mill_l) ngmt ngm_g ngs ngms cft3/cft3s fwfft/invfft ngst ngms_g g gg gx g gcuts gcutms ecutp ecutrho ecutw ecutwfc gzero/ng0 gstart np, nm nl, nlm nps, nms nls, nlsm Fixed in 4.3 version: * CP: Input external pressure is in KBar and not in GPa like it was formerly in CP. Input value for variable "press" in cell namelist should be given in KBar as stated in the documentation! * CP: incorrect stress calculated in the spin-polarized case * CP: memory leak in LDA+U calculations * CPPP: spurious line in all versions since 4.2 was causing an error * PW: LSDA + Gamma tricks + task groups = not working. Also: pw.x -ntg 1 was activating task groups (harmless) * PW: corrected an old bug for Berry's phase finite electric field calculations with non-orthorhombic simulation cells. Also fixed an old but minor bug on averaging of Berry phases between strings * PW: problem with symmetrization in the noncollinear case * PW: tetrahedra+noncolinear case fixed (courtesy of Yurii Timrov) * option -D__USE_3D_FFT wasn't working any longer in v.4.2.x * PP: calculation of ILDOS with USPP wasn't working in v.4.2.x * PH: elph=.true. and trans=.false. was not working any longer. * PH: electron-phonon data file for q2r.x was not properly written in some cases (-q not in the star of q). Also: questionable syntax for formats in lambda.f90 was not accepted by gfortran * D3: k-point parallelization fixed again Fixed in version 4.2.1: * CP: problem in electronic forces with OpenMP parallelization * real-space Q functions (tqr=.true.) not working in noncollinear case * XC potential in CP was not initialized when condition (rho > 10^(-30)) was not satisfied; this is usually harmless but potentially dangerous * CP could not read data written from PW in spin-polarized cases * In at least some cases, cpmd2upf.x was yielding incorrect PPs * support for MKL incomplete (only in packaged version, not in cvs) * glitch in pw2wannier if / missing at the end of outdir * linking error when compiling qexml * misc problems in plotband.f90 * the new G-space symmetrization was not working properly for the magnetization in the noncollinear case * CP: incorrect results in parallel execution if the card K_POINTS was present in input and contained a point different from Gamma * D3: Fermi energy shift was only symmetrized on the sub-set of the symmetry operations that leave q unchanged. * plot_io.f90: for large celldm(1), there was no space between ibrav and celldm. Courtesy of E. Li. * A problem in projwfc in the spin-orbit case introduced in version 4.1.3. Courtesy of R. Mazzarello. New in version 4.2: * Removal of duplicated and unused routines * Major reorganization of the distribution itself: external packages no longer in the repository * New package GWW for GW calculations with Wannier functions * Grid parallelization for the phonon code, code cleanup * Better OpenMP+MPI parallelization * Real-space PP non-local projectors (experimental) * Martyna-Tuckerman algorithm for isolated systems * Better q=>0 limit for Exact-Exchange calculations * HSE functional * Bug fixes and output cleanup for cp.x autopilot * Parallel symmetrization in G-space Fixed in version 4.2: * A few occurrences of uninitialized variables and of incorrect INTENT * The value of DFT set in input (instead of DFT read from PP files) was ignored by all codes using the data file (phonon, postprocessing, etc) * PW: glitches in restart (now it works also with exact exchange) * D3: real-space contribution to the Ewald term was incorrect, since the initial release. Since such term is usually very small, the error was also very small. Also: preconditioning was not properly implemented, causing unnecessary slow convergence Incompatible changes in version 4.2: * changed defaults: startingwfc='atomic+random' in pw.x (instead of 'atomic') * calculations 'fpmd', 'fpmd-neb' removed from CP: use 'cp' or 'neb' instead * calculation 'metadyn' and related variables removed from PW and CP: use the "plumed" plugin for QE to perform metadynamics calculations * nelec, nelup, neldw, multiplicity variables removed from input: use tot_charge and tot_magnetization instead * calculation of empty Kohn-Sham states, and related variables, removed from cp.x: use option disk_io='high' in cp.x to save the charge density, read the charge density so produced with pw.x, specifying option "calculation='nscf'" or "calculation='bands'" * "xc_type" input variable in cp.x replaced by "input_dft" (as in pw.x) * ortho_para variable removed from input (CP); diagonalization='cg-serial', 'david-serial', 'david-para', 'david-distpara', removed as well Use command-line option "-ndiag N" or "-northo N" to select how many processors to use for linar-algebra (orthonormalization or subspace diagonalization) parallelization. Note that the default value for ndiag/northo has changed as well: 1 if ScaLAPACK is not compiled, Nproc/2 if Scalapack is compiled * "stm_wfc_matching" removed from pp.x Fixed in version 4.1.3: * CP: electric enthalpy wasn't working properly with spin polarization * PWCOND: Bug fix in automatic generation of 2D k-points * bug in PAW negatively affected convergence (but not the results) * possible out-of-bound errors in divide_class and divide_class_so * non initialized variables in PAW charge density plotting Fixed in version 4.1.2: * fixed nonstandard C construct in memstat.c that picky compilers didn't like * PBEsol keyword wasn't properly recognized * call to invsym with overlapping input and output matrix could result in bogus error message * cp.x: update of dt with autopilot wasn't working * for some magnetic point groups, having rotation+time reversal symmetries, the k-point reduction was not correctly done * wavefunctions for extrapolation written to wfcdir and not to outdir * Some constraints were not working in solids, due to an incorrect estimate of the maximum possible distance between two atoms * Parallel execution of D3 wasn't working in at least some cases (e.g. with k-point parallelization) since a long time * restart of phonon code with PAW wasn't working Fixed in version 4.1.1: * newly added DFT-D wasn't working properly with k-point parallelization * Gamma-only phonon code wasn't working any longer if pseudopotentials with nonlinear core correction were used * Check of lspinorb flag consistency between left/right lead and scattering region in pwcond.x was not working properly; wrong print-out of E-Ef when Nchannels=0 also fixed. * Check on convergence of variable-cell damped dynamics was not working as expected in the presence of constraints * Velocity rescaling in CP was not working, and it was performed also if not required when ion velocities were set to 'random' * ESPRESSO_TMPDIR is caught by gipaw.x as well * Phonon calculation could not be performed with only local PPs * Small error in the definition of the saw-tooth potential for slab calculations with E-field: the "physical" dimensions of the R-space grid are nr1,nr2,nr3 NOT nrx1,nrx2,nrx3 * Misc compilation problem for: gfortran v.4.1 (casino2upf), pathscale 3.2 (mp_base), xlf 12.1 (buggy compilation of iotk) * Possible memory leak in PW/update_pot.f90 * Spin-polarized calculations in CP had a bug since v.4.1 when using parallel distributed diagonalization ("ortho" group) * FFT glitches: Nec SX routines were not properly called, OpenMP was not compatible with all FFTs * augmentation charges in real space (tqr=.true.) and k-point parallelization (pools) was not working due to bogus check * fhi2upf.x : fixed segmentation fault in some cases with ifort * OLYP XC functional was incorrectly flagged as Meta-GGA (courtesy of Latevi Max Lawson Daku) * Minor corrections and extensions to the documentation New in version 4.1: * New exchange-correlation functionals: PBEsol and WC (courtesy of Willam Parker, Ohio State U.) LDA with finite-size corrections (Kwee, Zhang, Krakauer, courtesy of Ester Sola and Dario Alfe) * Dispersion calculation with DFT-D (Grimme) * mixed openMP-MPI parallelization (very experimental) Fixed in version 4.1: * the sum of all nuclear forces is no longer forced to zero in Car-Parrinello dynamics. Forcing them to zero was not completely correct -- only the sum of nuclear plus "electronic" forces should be exactly zero -- and was causing loss of ergodicity in some cases. * symmetry analysis for spin-orbit case: a few signs in the character tables of C_3 and S_6 have been changed so that they agree with the Koster-Dimmock-Wheeler-Statz tables. * a problem in the plotting routine plotband.f90 could yield wrong band plots even when the symmetry classification was correct. * serious bug in plotting code pp.x: all plots requiring Fourier space interpolation, i.e.: 1d, 2d, user-supplied 3d grid, spherical average, were yielding incorrect results if performed on data produced by pw.x (and cp.x) using Gamma-only option. Workaround introduced, but it works (around) only if the desired data is first saved to file, then plotted. * stop_run was not properly deleting files in the case of path calculations * Coulomb pseudopotentials in UPF v.2 format were not working (courtesy of Andrea Ferretti) * electron-phonon calculation on a uniform grid of q-points + Delta Vscf and dynamical matrices read from file should be fine now: the Delta Vscf saved to file are no longer overwritten at each q-point. Also: the xml file written by pw.x is no longer overwritten by ph.x. * nasty problem with C routines receiving fortran strings as arguments. The way it was done may lead to stack corruption and all kinds of unexpected and mysterious problems under some circumstances. Now fortran strings are converted to integer arrays, that can be safely passed to C, and converted back in Modules/wrappers.f90 * USPP generated with ld1.x may have been incorrectly written to UPF format v.2 in all 4.0.x versions . The error may have been small enough to go unnoticed but may be not negligible. All USPP in UPF format tagged as version 2.0.0 should be regenerated. Fixed in version 4.0.5: * option calwf=1 (CP with Wannier functions) was not working * more problems in symmetry analysis in special cases for C_4h and D_2h symmetry * various small memory leaks or double allocations in special cases * problem with effective charges d Force / d E in the noncollinear+NLCC case * calculation of ionic dipole, used for calculations with sawtooth potential, used wrong reference point assuming the field parallel to z axis (while it can be parallel to any reciprocal basis vector). All relax calculation in non-orthorhombic cells, and all calculations with option tefield and edir/=3, were completely wrong. Non-relax calculation in the same cathegory were correct, apart from a constant, but system-dependent, addictive factor in total energy. * generation of supercells in matdyn was not working (since a long time) * PWCOND: two more small bug fixed (in CVS since june) Fixed in version 4.0.4: * Structural optimization with external sawtooth potential was not working correctly (electric field disappeared after first run). All versions after october 2005 affected. * problem in FFTW v.3 driver in parallel execution (Davide) * option maxirr disabled * memory leak in pw_readfile in parallel * the phonon code was not working when wf_collect=.true. and either ldisp=.true. or lnscf=.true. * incorrect make.sys produced by configure on some IBM machines * rigid.f90: the fix introduced in v. 4.0.1 to improve convergence wasn't really correct Fixed in version 4.0.3: * CP: array qv allocated in newd wasn't deallocated in all cases, leading to either a crash or a memory leak (Ralph) * Task groups bug fix: array tg_rho was not cleared at every k point cycle. This was causing problems with some combinations of "-npool" and "-ntg". * PWCOND: a bug with some array bounds fixed (A. Smogunov) * Problem with the generation of the atomic wavefunctions in the projwfc code when a scalar relativistic PP is used with lspinorb=.true. * Bug fix in symmetry analysis for the case S_6 (reported by Marino Vetuschi Zuccolini) and also in: S_4, T_h, C_3h, C_4h, C_6h. Fixed in version 4.0.2: * Nuclear masses not correctly displayed for variable-cell calculations * Probably all results for EFG (electric field gradients) were wrong, due to an incorrect multiplication of "r" with "alat" inside a loop (should have been outside: routine PW/ewald_dipole.f90) * Calculation with fixed magnetization and nspin=2 (using 2 fermi levels) was not working in v. 4.0.1 * non linear core correction was not detected in FPMD run * effective charges + US PP + spin-orbit not correct in noncubic cases. * symm_type was not properly set by pw_restart (used in various post-processing including phonons) when using free lattice (ibrav=0) and symm_type=hexagonal. * CP: conjugate gradient had a bug in some cases of parallel execution. Also: default max number of iterations was not what was promised in the documentation (100) * phonon: alpha_pv depended on the number of unoccupied bands in insulators (harmless). * fpmd was using wrong forces propagate cell variables in variable-cell calculations. Also: interpolation tables were a little bit too small for variable cell simulation (not really a bug but it could be annoying) * Minor glitch in configure for pathscale compiler. Note that in the machine that has been tested, compilation of iotk fails for mysterious reasons if CPP = pathcc -E, while it works with CPP = /lib/cpp -P --traditional Fixed in version 4.0.1: * Some scripts used in tests/ and in examples were not posix-compliant and could fail in some cases * In cg calculations with cp, the case of no spin multiplicity (i.e. nspin=1) with odd number of bands was yielding an error "c second dimension too small" * rigid.f90: sum over G-space in long-range term, used in q2r.x and matdyn.x, wasn't really converged for sufficiently large cells * too many automatic arrays in "set_asr" called in matdyn.f90, causing a mysterious crash for systems larger than a few atoms * incorrect call to "sgama" in matdyn.f90 could lead to failures with strange messages when calculating phonon DOS * c_mkdir is explicitly defined as integer*4 in order to prevent problems in 64-bit machines with default 64-bit integers * PP/chdens.f90: incorrect orthogonality test for axis * GIPAW: 10^3 factor missing in conversion * GIPAW: paw_recon[]%paw_betar[] was not initialised and caused NaN's with IBM compilers. Courtesy of Christos Gougoussis (IMPMC, Paris). * Minor glitches in PWgui * cppp.x was not working in v.4.0 * Workaround for bluegene weirdness extended to complex hamiltonians * PP/projwfc.f90: Problems with file names in systems > 1000 atoms * Workaround for ATLAS bug causing random crashes * Minor bug in helpdoc: adding syntaxFlush to linecard * Incorrect dimensions in PW/local.f90 (courtesy of Zhiping) Fixed in version 4.0: * Unpredictable results when the output from a spin-polarized CP calculation was used for post-processing. This was due to an incorrect treatment of the case where the number of up and down states are not the same. There was also an inconsistency in the treatment of the number of up and down electrons, that can be in principle real, unlike the number of states that is integer * In MD calculations with PWscf, there was the possibility of an out-of-bound error, with unpredictable consequences, including in at least one case hanging of parallel jobs * Due to a bad dimensioning of variable hubbard_l, DFT+U results could be wrong if atomic type N with U term has N > L=maximum hubbard L * a few symmetries were confusing the symmetry finder * serious bugs in Berry's phase calculation. It affected only the US case and only some terms, so the error was small but not negligible. There were three different bugs, one introduced when the spherical harmonics were modified in the rest of the code, two that I think have been there from the beginning. * various glitches with wf_collect option in the noncollinear case * mix_rho was not working properly for lsda with data saved to file and double grid Fixed in version 3.2.1-3.2.3: * CP in parallel execution had a serious bug if the third dimension of FFT arrays (nr3x/nr3sx) was not the same as FFT order (nr3/nr3s) * restart of pw.x in parallel could go bananas under some not-so-unusual circumstances, due to bad setting of a variable * various phonon glitches: pools and lsda, pools and dispersions, option lnscf, were not working * incorrect exchange-correlation contribution to the electro-optical coefficient * check for stop condition was unsafe with pools and could hang pw.x * fixed occupations in parallel: array not allocated on all processors * Yet another problem of poor accuracy of routines calculating spherical bessel functions - harmless except in some cases of pseudopotential generation * DOS EOF characters present in some files could cause trouble during installation * restart in phonon calculations was not always properly working * possible divide-by-zero error in dV_xc/dz (spin polarized case) * gamma_gamma symmetry was not working for open-shell molecules * T_h group not correctly identified in postprocessing * missing initialization of rho could lead to serious trouble if the physical and true dimensions of FFT grid did not coincide * Ewald real-space term could have been incorrectly calculated if an atom was far away from the unit cell * Some variables were used before they were initialized - this could lead to crashes or unpredictable behaviour on some machines * lattice parameters a,b,c,cosab,cosac,cosbc were not properly copied to the celldm in the case of triclinic lattice Fixed in version 3.2: * In same cases the energy under an external sawtooth potential simulating an electric field was not correct * Case ibrav=13 fixed for good this time!!! * Bug in PH/clinear.f90 for cells having nr1 /= nr2 may have affected new electron-phonon algorithm * Poor accuracy of routines calculating spherical bessel functions for high l and small q - harmless except in very special cases * LDA+U with variable-cell dynamics/relaxation was wrong due to missing rescaling of the integrals of atomic wavefunctions. This bug has been present since at least 3.0 * Parallel subspace diagonalization could occasionally fail; replaced by a new algorithm that is much more stable * Restart problems in parallel run for two cases: 1) with pools, 2) with local filesystems Fixed in version 3.1.1: * Methfessel-Paxton broadening was hardcoded in the calculation of the electron-phonon coefficients (ngauss1=1 in PH/elphon.f90). There is no good reason to use this instead of simple gaussian (ngauss1=0), which, moreover, guarantees positive definite results. Fixed in version 3.1: * various problems in stress calculation, both in PW and in CP * in phonon dispersion calculation, the threshold for diagonalization was not always what was expected to be. Minor numerical differences could result. * the new algorithm for electron-phonon calculation removes a serious bug in the old algorithm, present in v.2.1 to 3 included: when electron-phonon coefficients were calculated together with the dynamical matrix, the symmetrization of coeffcients was incorrect. Results from separate calculations were correct. Fixed in version 3.0: * latgen.f90 : case ibrav=13 bad * kpoints.f : case ibrav=5 bad Fixed in version 2.1.5: * bad forces and stresses with LDA+U in spin-unpolarised case * bad printout of Lowdin charges in projwfc * FPMD had a problem with some types of UPF PPs Fixed in version 2.1.4: * Incorrect initial guess for occupancies in LDA+U (init_ns) * bogus error in postprocessing with local pseudopotentials only * several errors in third-order energy derivatives (D3/) * checks on several unimplemented cases were missing Fixed in version 2.1.3: * case ibrav=0 in CP was not properly working * forces in CP with core corrections were wrong (reported by Giacomo Saielli) * damped variable-cell dynamics in PWscf was not working properly * lambda.x could yield NaN's on negative frequencies * option "write_save" was not working in parallel * diagonalization of (0,0) matrix in init_paw_1 * out-of-bound error in readnewvan.f90 fixed * FPMD: bug with UPF PP when betas are not ordered as l=0,1,2,... * Possible out-of-bound error with US PP in some cases * Martins-Troullier norm-conserving PP generation had a small error when rcloc > rcut(l) * the default for relativistic vs nonrelativistic calculation in the atomic code was the opposite of what was intended * electron-phonon calculation was not working properly if called after a restart * Parallel execution on local filesystems (i.e. not visible to all processors) could hang due to a bad check in charge extrapolation * When imposing hermiticity in matdyn.x and dynmat.x codes in pwtools routine dyndiag was actually computing the complex conjugate of the dynamical matrix. Eigenvectors were therefore wrong, while eigenvalues were fine. (thanks to Nicolas Mounet) Fixed in version 2.1.2: * The phonon code was yielding incorrect results when 4-dimensional irreps were present (i.e. A point in graphite) and ultrasoft PP used (reported by Nicolas Mounet) * in some cases ld1 was writing a bad UPF file * in some cases the charge density was not conserved during the charge mixing * various problems with potential extrapolation in neb and smd * variable-cell dynamics and optimization was not working in parallel * Berry phase calculation in parallel should have been disabled * bug in readfile_config when restarting without a "*.save" file * crash in pw2casino due to bad call to v_of_rho Fixed in version 2.1.1: * memory leak in Raman code * disproportionate memory requirement in phonon code with USPP * dangerous calls to read_restart_tetra and write_restart_tetra when restarting with no allocated tetrahedra * vc-relax was not working * projwfc failed with lda+U * incorrect automatic generation of k-points in the non colinear case: inversion symmetry is not always present because of the presence of a magnetic field in the Hamiltonian * electron-phonon calculation was not working if called directly after a phonon calculation * PWCOND + FFTW + parallel execution = not good * cell minimization with steepest descent was not working (CP/FPMD) * various Alpha, IBM, SGI, SUN, PGI compilation problems Fixed in version 2.1: * various T3E compilation problems * cpmd2upf was yielding incorrect DFT if converting BLYP PPs * some variables not properly written and read in restart file * The value of gamma_only was not correctly set when restarting or reading from file with option __NEW_PUNCH enabled * Incorrect calculation of eloc in pw2casino * Two serious bugs in the local-TF screening : possible occurrence of division by zero (present since v1.2), wrong mixing of spin polarized systems * cpmd2upf failed with some files due to bad check * Intel compiler v.8: wavefunction files four times bigger than needed * compilation problems on some version of SGI compiler * non-collinear code was not working with insulators and nbnd > nelec/2 * multiple writes to file in parallel execution when calculating electron-phonon coefficients * various bugs in LBFGS * NEB + LDA+U = crash * compilation problems with __NEW_PUNCH * planar average crashed if used with a cubic system * Gamma-only phonon code not working for Raman calculations in some cases * yet another bug in phonon and k-point parallelization when reading namelist (phq_readin) * options startingwfc and startingpot were ignored if restarting from a previous calculation * pw2casino interface didn't work properly in spin-polarized case and didn't use variable "outdir" * minor bug in pwtools/pwo2xsf.sh * serious bug in the path interpolator * phonon, post_processing, various other auxiliary codes were not working with k-point parallelization (pools) due to double call to init_pool Fixed in version 2.0 : * wrong results when running Berry-phase calculation in parallel execution: it was not implemented but no warning was issued * variable-cell code was subject to overflow and floating-point errors * phonon + nosym=.true. was not properly done * out-of-bound error in Berry Phase calculation * out-of-bound errors in phonon if 4-dimensional irreps were present (also d3.x was not working properly in this case) * Berry-phase calculation had problems in low-symmetry cases * phonon with k-point parallelization (pools) was yielding wrong results in some cases (since v. 1.2 included) * upftools/cpmd2upf.f90: wrong conversion due to Rydberg-Hartree mess * PW/input.f90: lattice parameter a converted to wrong units if input is given as a,b,c,cos(ab),cos(ac),cos(bc) instead of celldm(:) * Wrong coordinates written if atomic_positions='crystal' (thanks to Francois Willaime) Fixed in version 1.3.0 : * PH/elphon.f90 : el-ph calculation in the US case was not correctly working in v.1.2.0 (it was not implemented in previous versions). An US term in the calculation of deltaV * psi_v was missing. Fixed by M. Wierzbowska and SdG * various problems caused by too short file names fixed: file and directory names up to 80 characters are allowed (thanks to Serguei Patchkovskii and others) * LAPACK routines DSYTRF and DYSTRI require some character arguments (like 'U', 'L'). While most LAPACK implementations accept both lowercase and uppercase arguments, the standard is uppercase only. Various anomalies in self-consistency were caused by lowercase arguments. * Incorrect Make.pc_abs fixed * PGI compiler v.3.3-2 on Linux: PP/chdens.x coredump fixed * various T3E glitches in v.1.2.0 fixed * PP/work_functions.f90 : STM maps did not work in version 1.2.0 (undefined variable lscf was used, call to sum_band no longer needed) * PP/projwave.f90: symmetrization of projected dos was incorrectly performed using d1,d2,or d3 instead of their transponse. (affects all previous versions) * PW/new_ns.f90: symmetrization of occupation matrix ns needed for LDA+U calculations used incorrectly d2 matrices instead of their transponse. Thanks to Lixin He for finding out the problem and the solution. (affects all previous versions) Fixed in version 1.2.0 (f90) : * dynmat.f90: out-of-bound error fixed * pplib/chdens.F90, pplib/projwave.F90 : compilation problems for alpha (found by Giovanni Cantele) * postprocessing routines: problems with unallocate pointers passed to subroutine plot_io fixed (found by various people) * postprocessing with ibrav=0 was not working properly * rather serious bug in cinitcgg (used by conjugate-gradient diagonalization) could produce mysterious crashes. The bug appeared in version 1.1.1. * pplib/dos.f90 was not plotting the expected energy window * pplib/chdens.F90, pplib/average.F90 : wrong call to setv could cause an out-of-bound error Fixed in version 1.1.2 (f90) : * a check on the number of arguments to command line in parallel execution was added - Intel compiler crashes if attempting to read a nonexistent argument * tmp_dir was incorrectly truncated to 35 characters in parallel execution * variable "kfac" was not deallocated in stres_knl. A crash in variable-cell MD could result. * an inconsistent check between the calling program (gen_us_dj) and the routine calculating j_l(r) (sph_bes) could result in error stop when calculating stress or dielectric properties * errors at file close in pw.x and phonon.x in some cases * tetrahedra work for parallel execution (ltetra is now distributed in bcast_input) * fixed some problems in automatic dependencies (Giovanni Cantele) Fixed in version 1.1.1 (f90) and 1.0.3 (f77) : * LSDA calculations need either gaussian broadening or tetrahedra but no input check was performed * restarting from a run interrupted at the end of self-consistency yielded wrong forces * projwave.F (projection over atomic functions) was not working with atoms having semicore states (found by Seungwu Han) * stm.F : option stm_wfc_matching was not working properly if symmetry was present (no symmetrization was performed) * dynmat.x : displacement patterns in "molden" format were incorrectly divided by the square root of atomic masses * d3: misc. problems in parallel execution fixed Fixed in version 1.1.0 (f90) and 1.0.2 (f77) : * an inconsistency in the indexing of pseudopotential arrays could yield bad dielectric tensors and effective charges if atoms where not listed as first all atoms of type 1, then all atoms of type 2, and so on (found by Nathalie Vast) * phonon with ibrav=0 was not working (info on symm_type was lost: found by Michele Lazzeri) * the generation of the two random matrices needed in the calculation of third order derivatives was incorrect because the random seed was not reset. This produced crazy results for q<>0 calculations. * the check on existence of tmp_dir did not work properly on Compaq (formerly Dec) alphas (thanks to Guido Roma and Alberto Debernardi). * a system containing local pseudopotentials only (i.e. H) produced a segmentation fault error * getenv was incorrectly called on PC's using Absoft compiler: the default pseudopotential directory was incorrect * out-of-bound bug in pplib/dosg.f fixed. It could have caused mysterious crashes or weird results in DOS calculations using gaussian broadening. Thanks to Gun-Do Lee for fixing the bug. * a missing initialization to zero in gen_us_dy.F could have yielded a wrong stress in some cases * phonons in an insulator did not work if more bands (nbnd) were specified than filled valence band only * electron-phonon calculation was incorrect if nonlocal PPs were used (that is, almost always) * Real space term in third order derivative of ewald energy was missing (not exactly a bug, but introduced a small error that could be not negligible in some cases) * bad call in dynmat.f corrected * compilation problems for PC clusters fixed (thanks to Nicola Marzari) Fixed in version 1.0.1: * recovering from a previous run in pw.x did not work on PC's * recovering from a previous run in pw.x did not work for stress calculation * poolrecover did not compile on some machines (thanks to Eric Wu) * PC with absoft compiler (and maybe other cases as well): bad type conversions for REAL and CMPLX resulted in poor convergence in some test cases. DCMPLX, DREAL used instead. * Asymptotic high- and low-density formulae used in PW91 and PBE unpolarized functionals gave a small but not negligible error, leading to bad convergence of structural optimization espresso-5.1/Doc/INPUT_BANDS.xml0000777000175000017500000000000012341373334020126 2../PP/Doc/INPUT_BANDS.xmlustar mbambaespresso-5.1/Doc/constraints_HOWTO.aux0000644000175000017500000000001012341373044016045 0ustar mbamba\relax espresso-5.1/Doc/democritos.png0000644000175000017500000002310112341373034014662 0ustar mbambaPNG  IHDR9Yr-PLTE32f06i54h64i88g;;j?>nA@pEDuHGw HJt!OIuKMw( )!)OQ{$0RT~UV-1WY.2\Y0819_\3:b^:<;Aaefc=Che>D?EeiFLjnnnHNKOrrQWuuSXyxUZZ[}}\b_eydfz{fi|w}x~hpmrosptrvvxxz߀⃆ነ䋋㌒厔⑕唗留䙚曜眝¬鞟蟥ĭ褢礨馪ꧫ쩭͵魯ļϸ믱Ǿɽ{ pHYsVTbU vpAg9Y"IDATx|pUd}ӯi2"hԍ jsSQf.DdDW( q2,}\!*A $$RB0HHB.tխwnwtObj8J2}swϿWddrF*W\AnrF*W\AnrF*W\AnrF*W\Anr?#n,}졝N5v8 \:#})cW+Ǝelw/qv1ɲ*rKtWڌ{^hyPXA{D>㡏RriЃ ,ox\W7kO#>u Se1OXw7^D.S$ ߒ.2Ly͋l9u֮]`j&ű}e|xY;z!Kvnۉ.M97'f,yO#>c vCd<-Qߡw0< zQ+^≸y.&i%`{܂87 M67"nA6VqIc]8X}߭kE>w庤=5+ @6}ncNw`h%V8 ` ۇ3N 08_~𐣃9.$Bgǹinw#Gvzܼħpsldȼ;eQj=<3nǘpE<&q`i1A  bW[q97d9ɉ .k">S[[j/ '1ӔBΝJM\7n ZU᧐n 1lΡ 8׃b/@&'߁s m%4΋L{"BXTyd5= PuJ!gQualr2\Ρ'}ACH^艿>cRfJ Jks5҂ _Ĩd w)YMH\kyo<7ųS?\iЇw51VVǢii\ @9=&x`@{CHKΝ_ ]هRTwI/,/ s4T_L\ \,EbO|:>B6nݨ<СĴsCf&5w{*Svm,h^*ħ9:֭dn.A"#[X(I%o:xwFj4`&ǡ%|PY'Jh>;5pxvw'J .z0V6(Lttf8}Ns%BsmM 0Vf]Ӕp1c344r,%F[["]>7SjxV{H_"g9m"M3)$"DF7vԍc0kǻ9=8 )3^8q@v[¶h7DNG )FtR?ì>)Xm!8n!eJ<M)~Ufso;k5pwx7^1:pѬԛJqPXԜLA}h(l,na{[ph&VӄxvT1T0'ػ}p6kCf5bltz05vQT$G{/ s-hO6vBKぽ!/Fc"J{:/5GJT c6<A`l4Zs{5d3F;m\VIvN.gR p}BzjQŴu]'quq 17+EF{߳|;Fϟ!0vCqpxaeEu>K"/8V4\?pA.!$*{-? maaz 4+y[Gp>HwΡJ8XI,xTs,p{F<q|v\2lvdL"GBAμd`aʸ^*2D.Qg7rV85n{<եG-9 `'^"Y'XˉT-x-/;9a|ed*'Ų:-q!if014X4Ffӯe!l$NFiV+P9ά鰉 /Pbz2dbTZä'Z#;3a҃eՂĞ(ՒQa~:7=^(=f9i[r_[,0Nǭd.j79Zs(8SH&\j1Jq|r݇)kR@Ř#<~Ss3<:NV0V{ͣcgHS‚:Y(gc**UQ^? I"ʦ`o!Gp=uIGu3sK<6oGE|BEwN=Ty.AD>sYzV3zQZx{ oǿÇ Ѫz&[gG-a1fgm9 bŹ_|~to$ɺVnPxvĝ'TV/k egfOz*U5j#NW.51gqg{ި? PK k)8g9;Crh}7YD0F4SDBg˒';%_5Ubxs8w?E#DTݩ뉰PUո߇]}ˮ-U:=X4ek114˫Ch2fJ-4FIb.V7WJЈzITA4/?|?7%Ӻ t__,}. oIrse:B*iHu{'r˸+rp.Kd(:0BOQK?z )|uTk6D^U7.n J YxA|r!Ci γՠ02z MZ7@0:\A7E]hcZI7~P,(k(JKKs\N럎_apB>8d <{zYɑғrw ~q̨ mFގiRlUA9FyOÏ.]T{AA TQ[[{;,U(-CsWSyd)znu*|v^QGB/Q[\ ]80w UldEJ>T]8幡^mC-H; Zt\[ \dkǍwFb􍯘7Toծvtr'69RPvK'$9A)咻!%p,RBVXO) ڣz L䔊J }Y8%+YzPz{RH``QzTQV+jR )JTT<]0"]%X[ZR5"qU=׸\cGJszUǾ7[\ڀ"' p(|S5RQ9ni{o X+y!O6"ZBΡrAsV{VwcYF5>S^~R:*" H9nQFc|ᯐg ';1,w5@蔩-rȹrVfu5R@22V4)ejqUR5O?%sa\(OEw0Ðd( |XBʉ@, RlTx?A~p Mo<)UBH9LSV<#*9Iyjwas4Z8gUB3xxԟ r8;  S!IQc,^pq>.rABe/`pN>JKMǝdE13:h,l9藼^Iގ|0}QO*dyrw yvd?&*"GcqNLVYs RPqn+w(T"s^qF;\>DgX:SB(Ѝι{7\:`˙{6XPL9SjCjY5p]*gLNT4v[W4oiVlQ&k.-fVK7wiBaU;c71|Hz5Ƣ/ՠv.ŝNǽoЭӛuvH l"Tlҝ:h O kMP}o-rzɨLhBO/i`d:F`k^g: wzŞn4cZOTHSX`Ka0+DՏmuiZ88s Z$Gδ[WD`ry/߈dt+_HT5Ou|ߔC:RqnwVA# vqIBˆh.R= I!5o/)mZvt8^t {Qdmιt};tyg {)ց4Rrt3H?'}6,c#Z5 -S/l^[׶.֮%_E,ׯ0\\!g>g5< NָH1ynpA pΡ h_39.ppNVUcdtr3Zm_o 'Oyzj]R ꃴqEK'Rk%Fx'-SsGslwoaV19 e# szsTڴc$ 0QVn)!e=8Xtsd+ L"ћ^]S'8\;7\tp90W9G: vsU$TeQ]]{>r,O-y.w>ͭpNߜ >}»$Rk;k<+r6Jmi^mZa3M<QmwY$Y@3-#'r؟sȹޕ~pQUsiUlº( #FIn 9^s/ 9y׺F\~L>o+_yDV(JH-WV/)$_żb\8+/җ\D0"&J9 M2-Š@W6ɥJׁWn0 ytYT0(0_WΚK[cOH劲\r5W|yRVʣVjw"m6&s4j6DwLCq. K@{{+FJz%J9 )y*m@TJIlr.Hjve/fBwP&1ӳW.  oCB]"E V)VrA8(2?csIČGY}$1sh.9QNw;+tHi"+,"wI/eܮZ d9> >@F}`<[ {ZQB 9?Adu %y JzUxXͥsz ƽ ?3۠T^5314ӈ\/3,5ud‡7絋98ۅ(Mv:7jlv+8ҾsdQJys3t 5o>Awzu\ru{oӉ;F+&͚؛-AȒBJa.r_\@zFi0^6kC{YrV.e%}OTӧ,5ѭJ.MKu~+Sn@~ OsQizX^pɌ˟tyq4C+|]M=JM7"9$A9rceu՝J=K[BJ@uRsa[%]^o 4y cJ~ Kx~THI<챚"].%7' jx}T jI T)H1/{ܙYȢB fga{EqhfnL7-d퇶vOB_T4"MxQBU0A}AY;ܧH ΁V =WqzS0Dek.^ HT`DP#B {d;ҴhZWk$Oe[Mkqp:~qkU(7]W?qVoW;]Ji ӯLpK8L{W T5n`:BMaյXS3ik`~DU: l7v'im.Z=\Duu{f]q6_oڱ+ ?ѪLM|3>mKt{C aON :O4T >8{U% 'hKWʚ5kY;~|9 >NfC}7bB|Ț?J"Ia}#32K$kLb ,7tcG08L|Yq1yYrCP1Mٽрh!Th"&{a/YWFf#_TѩrO;a'hB>3<`}o j ". g]hIENDB`espresso-5.1/Doc/INPUT_Lanczos.txt0000777000175000017500000000000012341373334022176 2../TDDFPT/Doc/INPUT_Lanczos.txtustar mbambaespresso-5.1/Doc/INPUT_PROJWFC.xml0000777000175000017500000000000012341373334020674 2../PP/Doc/INPUT_PROJWFC.xmlustar mbambaespresso-5.1/Doc/INPUT_CPPP.html0000777000175000017500000000000012341373334020375 2../CPV/Doc/INPUT_CPPP.htmlustar mbambaespresso-5.1/Doc/pic/0000755000175000017500000000000012341373043012562 5ustar mbambaespresso-5.1/Doc/pic/sn2_reaction.pdf0000644000175000017500000032370712341373034015657 0ustar mbamba%PDF-1.4 %쏢 5 0 obj <> stream x\Ɏ$;rW/w:0Ox,@713wFeT1dAFgx?~~Ͽǿ>ӨiGsz ߏf_.MۡZ:j:Ƙ[xCl\qrz-S񗓍;,*eWW'Pqu\\mޑ;vl`lOlp8;UzC׎oڰu\|(_Gp 14FXV_aT_4׎}i1D׎}֎}[;H\$kG;;W;[W}`uִNpwQk{iLmڗu"jG7Fa9 &b Yڠ:K;UKG[0N"5%Gg)t҆} ֘:A^\YGxuv^Co8{{~x1LXX'+w'h'7&1 F- YNc ^>%ȡ78p m3uK L.o>/YhX5r$eWG{EV!#samJ1cqwE v1wuN8!k2!`I]v pE7z9Mi̶ 6so/ tw}Y}]8mGX'&ޙ|cj1CE #o33so!njdnĭ/v}Ź9,ꎰba [Z~ku'X̝`sGX'x #gXvtގkk6[NX;.֎X6,*G.#E{"5BX/޾-"=rQ٬#ņ#lcuZI֭hm>ZO㸏k;QN[1GgBǜ줏8;i-ΎmiGXvStҎi'Eچmbmwn&m_6o]ۻD#x۷p.vm)K nBN܎} kco{Nۆgs֎ଝaھfcm~Nَ-oLu饥u{ڝ)8aGPw|%:_'Pl ߅}[Gl:nuDquE[l/NZMc'm,NkGؘ;?.5֒y t2cKF'7&1F>G WT>sŒhØ_\F1hL53|@CU.b h;b\ãH)=ē<sz;5pLȀKc\z^aioFMFq[0W5?:gZqى]"Myk{ 03y# 6G菙M% P"Lf9ۙSu[O kfHfd]/09N&G $JX4; @TL?\g-O qSOJheXu$Ozt.N*9`R1x@h7f5g||Ⱥ!Jbt"7 8,*QL q X4sb*e`Rrй{V + n6lK*uU*CT (ft-\tKн%H\O`=|0\6c=a *`1"wDpq4+wj 톱zEp}颥 Ε]@ӵc2,qt3>H]G݆yHt!E3lMՙkqu3%P:aw=4 rG!x!@uxJo%aa%&Rׇ3H#%;y*d R9CPw X(1`>oc^hÌ7ܹcW1ȊK"܁mBȮAU!h@8=,wk9X5jڬP mȫ7-B/ I\:e=EMǦA:s #|f eSYEřee) LQ$ :j1kEyj/_]PVF0=ao4P}2.+' S該:'Ӂ)6UMj5z#1r9(&\d 㵓i೙4к+k "̍ag趣顝N{nqh@ |إ_4 呢yЎlf&m0c' ɤ-NZgSɾ#Y6H5o>eMAK鐼+ig5fb3nA^I'ך)JM˼:!3kv`^s6ɰ@QXV_lwrysE6Ĵ+r:g)20T~h}[nq#vLeː!?9)hט3pδ#tz-_ݒ")C'Or53qlq˷Δ"9䡳ٗR)|T0 j5OhFHjBKlAޅ*Zk3Hկ1Sb3 0AOZH|dZ9œ*0@S's/{}Ο:'܁W|xucv'Hrֻ'#Zn!a2aDIN~%#ԁ֯x.u%3ZBx:)¤0Uzs wDxj4Ь~YH%3ޤH.RW%dִ :m+ܙ!Q !6x MH;uUIYr}X=j r~0kLqJv)W¸/6d 4WxF^ta)A@i3KN H8E*K##<>w)U] 96zU=Sx'.RJ,Ǧa eva,ٹ~phSԥNR(XV5#AjxCJ(SY/QP"\9Vҝt#O9*pF\¢R4eKApÊ32| 7&e?>F1&P$B2).9TCk,C,Å2ap4en wnd}j ׀7_QChX{H7Jװ_ӞD_Wn&.~B7YXAKH2=ƙz,#}n窙ڪIɪR)1QX >7S}J5)sUCay6<΂}AJ0] C1 Osq3psA'"jYQ!|G4n ed]<}|4,24"}T!r :sXDXe20](ZJODt6gJ@՘ʕ|SM~ bCb=:.7MHŻY Ƭp@'x6d^U$)Ƌ|ĺg槗' 8^>Mܶ rѬZ.e`iܩ.'[FoL5 ao.mBFY[umqU0zeX@n?:ܰ| %Ut bUcٙ.#9*DPfȪ$587=z|aSmÃ!0k4t- &/Kld v2:DRh;}}U@Vĸ nY Ar89]!j:"a'u:>6DQh.S*'@4jtUh~/ cPъ Y`@1sZ-kQLUaX׈=ueW(Gc lJ:*:.)eh|DN3Hl#.@O5,;3\;\lizȗ[5wcڴ,3n^]r ^wTQLDW϶nF$LR_aKX|>? У_M:TZ~Cg W1yJzgt6S\w8R*CM)aFf1|=); %$sBRw=k[/%n.D 8}YuEQWأ}0+}9I,f"`I,#.|+z>T+G28cM8hC`ϓ(xI=:> /Contents 5 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 4 0 R ] /Count 1 >> endobj 1 0 obj <> endobj 7 0 obj <>endobj 81 0 obj <> endobj 82 0 obj <> endobj 80 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?7u ChjM׈b wJqv<ַ-RQh ƏpCހ;( ( ( ( ( (H=lgw>dzD}}(s!y㌌}zq먠((((((((((((((((((((((((((((((((((((((((((((((( endstream endobj 79 0 obj <>/Length 2042>>stream x;k]לIbL "lURi^2 ?ANXB, Mry35{wLS 3sF萎f1|2$Ҧb:kPh&(NX׺w';xnnY +'Yl"dtC{ܹW ա5Ž]Y!bOf'YbLF0ʖ쮒,nUdnoŤ5ŌuUӧw2 QZŒcbm?`umHo"J)Z֜4K\6pq6ܲ5ƶLb>f7:ƍ_|Vż%ÝΡZB 6I⵵[nT#,~[nkVXR[>wggHR>}Bgff&+:u>Ybx+6b5+ӊ_~#GQDm9Q.QUS)]'V fgg=zaAB!Q`=)-%4-t8AaEKےq(F"_r rfBfll^S;Ȗul$?AAVVV]e() e;)KrQO7x8̐]bp dR<|puu]TI E/'P{~@+W̠C-onnrTH߿K정ki#C%hP(g={oknQʅMę3g-~ x̹s _ q&'t؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v' bwB;؝PN(v/4 endstream endobj 78 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?Ke!L^gJR+=W\wVkr^E !QzucyֽLz[1cLt<[5Lo&iQa)H9s OcӨQEQEQEQEzՋ{K+kgq9i̓ ->_~^tӹ>/Length 1121>>stream xN@NYH I!@WIBoC:׳RU|Bf@$}[NN^;;;V$ݮMS$ul/tSپļ|o1e$Z2-ǍoYVkЭ emmʗ-AnnJRݮeW~"ˍƅ,azŇdz+Kos#sm+Qne5#Tƅ|6r+fMDWy&d:q~.~;ղ.hY:WFGvA\c(UAZd2^|4S = QAqOY\?|~h]k`Ցh\]ќկ/e0YIl-oF_v:HhIfY:?83ƝsqsXU1mVHJ!kg{['@6٤l'Hm+cD1Z+=im㻻W)gmBfjL1xѶm5ݽ=?i4E(pgʦɫRH@O'bhŵܮbŋ>;Kf.\1q'beT.1S2:蜒 #I|a\TƼ%֊;hp0Kg?g@u\FeW9 ⢩/妦K$l>ĐIѬs  GNSD:|t46ES*{oJW0VKk9%+'& EDxi݅1rYMVm08f^gyO &T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cp% endstream endobj 76 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( c.{Ӫ!+чjfHdGֵe$_#4( ( ( ( ( (#g$n 0P/4 ُ wVN Sn>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?_,0#lNӧ礼R4RG"0T^X^$ͧaO4nc'QK!Y*@} f)$T<,lC2'1ʍV#s'z]LL)|NrҠy*Ihd^)IY\մѣuyDVԚ6l*''j(oO60=.0 B3?:T PgU @z6_3nrsr~U 9o]5 Ozgk_-ݺ 92Տ:~(è9=fb?J+KU@gݗ'5:G𲩮5EqBJ"DoCWik::D DF1P0: KlFw:`~9]+Т*(((((-U2?+Ӧܢcn/ 6yQ~tiSptw-g6ڌo2~6R1 E5]XdQN((((( zqj9Fx>/Length 579>>stream xJ@@,w"GA4$=(fL( QJf~0lb{]t]߶C9׷ժߕnnëohYL??wwyz_dlnrLë[8diQ997Mߖ旗e VḞ/e C]׻W~q0})z?!.Q-K_6׶];|,SxoaIٹ\xܼe7J_j㛱'_7A۶-o%.xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1O3 endstream endobj 73 0 obj <>/Length 1581>>stream xnKEˎM`! lkQ>=9! | $ꩩI=2Cx3YV9~락=Nwd2t2d:Ջ~_+eN}hkY+3VMt*')~~ttd>Ol&1xl-O$BMDlb=V8ZmGrpxx}krC\-^M ݚ\""֬3%NdNc\tދkU ]*GG߾MlZ~Ctr1"6ԲA| +Cmrm֗UX,xW:[zxFzul]nVDzh3ijxum>4b9EugyкŕPFѾ"ĨM ][*tolu]Zz6qpkrWa{H_-kS$ݻ {QbӶf_Gr#"lW<7X-}1xuV|/ݢ9rb)D6<7b:S^ZS#Nl[GzUcDF7bK43Zzr ;iWvx\H)佋zB+ZW󋋴fi%FlI{d-hisYlجl--ZRݦNW߿oiw[}Z?.}bƥ.OAm!rU,9qPU1O>~߿q㳋wRzhlF N:Q9lUKujpgUlhL/NNO==jcc,WÚZ@{k- bGUl^\tJy{Z:5R⢌4Ё'o܆Hyvu 찄W)6./?~x-S+(|[И֊H/7$s .U_=n*|} Z͛=V"Ŏ)@ ݿm0=JzE{WQg-9 -/:RqD#$?9joHD6+ᵎ6zcNUo}[Qђc6TTy9w;o5(nQjWW?|SeJgN=áb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*/~ endstream endobj 72 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?M&F>ZÉ1!*68RCZk}59OBx?zsIk+wp MZ Y$U C~ 5В؟7= 4u4QEdvQ@Q@zPf)N]G.hQ@HM4ajijaX.iY&jEE)?xS:-d7I`]$Q-:IEV'QEQEy\9f5[uW KOPnu1jaj4!{5DMf\??t_皣+֏c3 v8H"LQQEdwQ@Q@G}ELb} ԛI E\j$ Lg]\&FKA Cؓ~# <h\M&e?!ǥCgM87hp((3HM3u!jl8a46zFjڑi U䒇zwK"B&fxHi6X&hz>3k͓|61련7JEP0((RZZ)'j(hZW5|.!=f+K"N> *YQQE"((( endstream endobj 71 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( (: .sL>Е)('wHGʃW;=גtQUYv\onNC]0GJػmn6qZQdϴRO<c|A+9@V SsPɥVsX4T[,utQEpRQEQEAyrv\I3W sy%O/V;(*56;(Lq|Ϗ?bVVqU9*ԪUZVNAjpzdX}WKu(S+@(|N7yc2zպ|wum wM+'.XrfgC1'S+55*n.Jz=SWӹl=8=TO Nw҆ԀMA cШ>(+c;I)jx-Tw1ӃT۫C9&j*RS3h8QZHYh` [ QS΍e(=P(,NJoשהx2x 0B=eU^&Xjx5YZSVrL Ԁ! ZLNWl@y <52Z:(\z(E{EP^u*գrHGSOҽi̶߿Nq~:Oh+l*rTԀ jE5FMN ~isL.ivhc袊B((4}~Aŵc8FZ~uX^/AGQL}XpU3ļRTg;Eiᩐ6hFuLEc٨((EI5% :h3*uj(G<(jxj(fE QE endstream endobj 70 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ((((((,k$lR;N V+OnVnj7 aޝXkrl= @ EPEPEPEP-kP0^<·\ ቖ=VHՇ?uvѴp*)^SW&6̩5,3i^%TWF/𬫗NjwvxPOEPEPEPEP/}lO5:Fܫ3n uv ֨A~GLtbY28Ybi &msPIs@IY7kwo kZ^VSb<@Q@Q@Q@Q@#pݫ\tN0\g5yR1E6yjMqUg\Oy5^NC'힃a5xC}SU~h$ʽN ( ( ( (<2$1?ƶ>YZ>jj2m3>A56MFHKݨ<EKh7")cif:LNtqSAqHbC׏NT*PA@(t,lPUdw'}MY((((dq1$q"hP:; }PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP endstream endobj 69 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?]`fnpX_coyd/#vUS`O5 zҪӴyOXsMU TlkDK($4fK簗4vS}cb>?NI5;락Лy-JOxǰ"lN0f!TքꦠM*G "y ?ϵdEjٻKuI3Z'η!MSv?QU֐n=1JƶKKt{x IVWĶ ar;4Mu([,x;s~U(XbMQPuJUazpzw'_}踹KU«n h 5cWmzt hr>V"KFr͚A6,nuAũ"bFjښPҹi4Uw~hsEj@j5"Pi`҃A6$.i4aL4ĻPM-ER+=BS $rENhr76P4EjRU4Y N N A6&QIBi PM0BԆ5 ="ޫ%+ZkjKkos,rS{-F&/ $2\ZB6{ sWi:mcj!by$EILQVi"@QL͡wQE1 PKS QE""f]袑Dp-Vi".qzs^?G9/MA pToQE endstream endobj 68 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYww" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ( +uXaO2ϰVrN.۝QPuQ@Q@Q@Q@Q@`xR0D,IW,5wpIcRڼk.d6O\͉.8TJVQErQEQEQEQEQEe}CZ=37%_ʆ&'U H?'E937&wS?ы΋Gsfoi͏?!K7 \sbTӛ?|~B??KtZ=3{Nl}0*^IG6`6V>.lh{ J&shxUuj5fuLu hoΗ-6)MZX['4}*}:O7WeLӏu$;|ho_W_:qdJqP[ٯSQWe7hoδGlOn?hF[ioo{Ə7Z2 v27?4#]6#w{zw92ƙ4qwp?J'F.eT#d209j5TGCbhE4S (=(((((ĵҵ6#ycn+ZjjX1p7i󍋊hTac( ( ( ( ( (+ZG}e=1̅=^#yg>5H[v#؎kݫԔj=[3A'+2x&Jj*rdQWs(:((((((3ׅjy2>f<19aОݾ (KH endstream endobj 67 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?zjdDRz,OsPwC,sIJDцA%qZ^toާu,jdaGq\ҍQ+ETQ@Q@Q@Q@Q@5m]g" :Vφ5_&qa;~CO ޟ; Q%s%tzVVe[oZuz\(QEQEQEQEpM1uC^ISjYMSk2Iy]y!#>N~b)hH2:V= c5x}QPtQ@Q@Q@Q@rZZZZ cP93T.%A(Fy8KƳ6ܑ(U-"M 1qIBI%8ۑ?%_ʁ;+?hPpuVc.z΃R^y_ʏY}S'H%})F/¹}GGE93:Y?%UIhz΄jEs?4Qh-L-Q5H{5@C5@H! Ok,u;<'^iD-ȡBkND?ioΏ7]O96~iOxǚxs2[/տB8JQxOF@x(`ioΏW: %?#BuuG8{SK|t}ή5ӜSJI!h`?ioΊ< #ͲFh>z1IU䒓f{mb I3jNp 8igr5s^Ofv.xzfθ+ )QEQEQEQEx5DC5BZiT\ |`<fԮ#o~H1=Kfщx3L}+vO$xϸG[QRlQEQEQEQEQEx+5W袭F4k6D/3;uN00Š* %Q@Š((((( endstream endobj 66 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( F`Y I=ȐHQFI=rz&-ª1r1YRZX59.hm?VKZ [<:n3WdTp@UvƄʜ(kܓuԻk-Q@Xy4ir+'R)!hQAV;J({P:v$TL,y?2kF̟j1Pp?\U#bIf9$5aZ"v[VUUjxzjpj,uWF..RUR怱6AҟFc$ W= rI:H>GVN)9WO횑&+'O]L$>W<7=Cl:7꒶*Uz.܇zvSN򓆧P)A-J F (4bLњfhL&gaѯdSX+^71^bsST!wU'R+f M2Z-+TYZVCE95~IUIy5/.1CvB9cxb]xFffnir%Wb\њubBhQ@u1Ny}k_!k$R>:^4sjKAjjvH*%4i ii9KMR[qjɱuIpijUwU`b}n7QXuj)U 2 x~ז!@WדNMs G?`ZjŌjmVգH B͢Pi@Ӂ.i4?u.4%F4UJ=Snhک 2$$?=٢=3r;$Qᕆ#aZmhrc}s\trUs%jRUX @&RV$!4ԅL&0!)4TlPUp+# i-cYamdnW@úMe09#$ d29h+1V@QLwRdBQ@ƖCDlQE" endstream endobj 65 0 obj <>/Length 716>>stream xNQ0h4qW0Ӵ} \/ d3A_Nq$I'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1x_oo:ՒѨSkyo+._ǹK//xy߿h.V?X}8~=i ;nSd8lolh/~|.'rHÛ]8\oon^^dk^A\6X )'I8>wfs[YoOO*):@֝ҷGo(:sFmS'rH+sFGʋED (h焞:(\y_is}vݭEUAMt>10@NOOZmrfp73\S$W>AУA_ӕ!B endstream endobj 64 0 obj <>/Length 639>>stream xQJQ;IP7ҵt9I)Hw6 @ΝIѶ? :MZ5I'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xIM>曣E3I6&9 WƍZbNO2kF! lJe`}ycPKl /pMn w7HNWc[F8n'_yP__7B@!݇(K,{zw׭ں P7}7Lw}糳FAws vXWW1qvnݼn"&qr7vq1 Ͱ&~cr7Of{r/?l>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?I$۟ڤ9T 9,Y.EG4EPEPEPEPEPEPEP e^3'·0>Ud۷-KhU~-ax^̷LO35@Q@Q@Q@Q@Q@Q@ԳVu)zm y ɾ}@zy5uU [^`IuQEQEQEQEQEQE\沯nB$+3jOS܉[/OQPxwNm/D*D|giEQEQEQEQEQEQExޓOnUmrտ3Ԋ/Nt17I$jkKX,cb1QzSPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP endstream endobj 62 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( k0\gJV!T$-G:R)(#hh((( ( (2u&O/^z(ijrd0@B~3֪$@w֬-v;z@k>zdz̊LՎ@Z(,*@3QUZJ(B(((:)^yk.h@#P =O皫n (zV|mVUZ+z[mݼ}+WJkf8=hOEf֊(((!XAmF.S9!\V]Ko:U(}B}Sv u=@QYWfi/h}T`Ɏ9]dހ,Ͻ$=n(((Srn#C}>ջEx7Z]ȶG#T܏Zrb y[skdӮ~T֝Z7MmZ6aN` vzynf=fklce˔^hJZ+~6V̊LOEvQEQEQEQP^\-cRqdp%7:īV3LusT`T&fbI'{@03PcJԼM R[G%JH ( ]/Ë6[k^'qd˜'IӬ}nSWh ( ( (H2naFiqTV[ꤓǫ7~R,us/iҿ?r?kzlIs_P7v:Xue/$̀k3$WЬYڄ7-^qYk;yW|*ZIl(׫EPEPUoV5% QETU݌IƛhŚ{_+$>vs8SWjʹSQEgSc6Z0s(l)hɵk7oaʫI'~Uh0}hZ")ͺOQE&EP endstream endobj 61 0 obj <>/Length 389>>stream xIEQg!ĵ ٹQ҃č6#Z}XF]8Xa`_i." %J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\s%J̕+1Wb\srs5e]z: 94w{Vh8|_x>OnU~~7|fsuSƄ$ endstream endobj 60 0 obj <>/Length 1016>>stream xJP񓴵 A%+{(8_E^'P蕂mA64'$kK i'#4NJ! HH H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H gpxZZQԪV>=0h핕@g8{nZN.cE}qT*oPdD|wG`1O뫜V֪wg…$x~>/Length 286>>stream xЁ 0 %\+`HϽ4,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y8gq9s,Y87:^6a$ endstream endobj 58 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvw" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?nA%Z$Ri@<Ծf+U29Fz(>]hGPN^\~cz.}oR}h(((((($n:bW%~2 x!+y@Z+m{N3?K#jpO=Gb} QEQEQEQEQEQECmopƽ5 *J(((((((((((((((((((((((((((((((((((((((((((((((( endstream endobj 57 0 obj <>/Length 1727>>stream x횱NT[E*y;CA5Ɔ `(0!&BC&w QܟsV}f*ɞ0#?kYa8t:SSSf޽{x:66Ƣh4.!T#" y=P*o /_B1Ez+?ljzӧOSl0DNqeg~JZ%"4N^n-b# E)r,7-Q"*J|zSP =M[V%B\B!M+ w?*tݝv* ?|pD dEAѲQI1×/_ZJM-Ghk*w9Q\5 T ęjeѐ լ>/Length 784>>stream xJAzP7-'"bx/sOE3U_ y1&i!?og?eYfVE}e<XT7"|>qg*c )W#kYW#|L&?ZdӚ56K O:qz_K'~.A]ɽYN!yq |x|pĎ[ߏ?)ޟkGGqfi8ԚQ!hُp-MQ6ו}c:v&o:]zKٷ2]va\ww;9.ߧd~W<3k ܧNn6vwFc?e_vv]Z3a ;dWiha,-GKclfqurGdS\Wd4|sUa0Hcarq}__YQc2f >/Length 1494>>stream xn9Ϥ-BN!VH q3MwslO]6Q48%O^{Y<~޽nwW2u LNv "t <otk2m;靤( t ոﻛW?z4MѸ:m2k[,]=Ҹ4o'G"vk!U-Z֚BTfR<gfr.Wý՗[u[7܊bhyY+t2J >$jU>4 }>lSش& Y+55;8B,1rcj9̸y)]Kd.z(2VH-4◵FmWPRK~%ety1K QPv<}zE)X& \ڍԊstLoDDYEn\_obe>k4w3>:RMn˗憭DŽ_d\b(^7*{sp`<&lځq_^k{; $ssnj50%ٶ:XZ6cS qkbWFُP;/߿v%4.5k#5y23=^# *o6FK ˗zս:-wJ; ;TmF|U/仧s|||rW_Vܻ#fB©G1@G/ X}dL[pܶ[,-\Bz: !5Fs}E:Rڧv =rƫ4z冗Uqo:3Z,CER[bBtxV63, ,7lV[ VךKKr?J:*aBմoԫ7=2ӌp [f6Cs@:HYL)Dۮ wzыV;ٙzԁP1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cp?XP6 endstream endobj 54 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvw" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?7Ks%4WsQKV4/Rng4%K qi\]kF[1t;G=]< o?u3Q2H9~nbJW5Q^O%TjR((((([M.K{o<)EHV t51\8\׆Lj (|ߛWftjŶk/Kl~| 5ikH0aOQEQEQEQEQEQE7,,q&&щ>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( (9xJ-q~kA@d,t?o-ۦyǨ=USRl[So}MO=AS.)ԢJu_ii-xux =+fx)*4nX`s'z]LKN=܎R*ESh((((*ޟezTYXȫTPxI"E_Z:Q8+9s]'-.@8VjL)E-?7EBU${EQYEPEPEPEPEPL_^$~G_5Ϩ'VݠM'F[hTyEU (Q@Q@Q@Q@5fɧU]Izeۃ@ih9?Z5JqWOݠ w)'PEQEQEQEQIHOZuPX[v ,>`~W0%ʹJ2)Sz;1v·P$Tt?m?ʀ0?5Ԯ[%#do2h((()3¨$j{8E=(@yo^szJǽm -fjU Ue*IE7pEPEPEPY~ Tޔ@kR2 Pre.޲^*tmW"nAO3R(pj=63 R@n^̾h A7EQ} ( ( ( |lae<#Ί(BVGEi2Q@$;LQ@Q@ endstream endobj 52 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?A%Lߎā%{Oi{ $GBkӉۑSLP9(\e8 jA%U̜KUe;XH^J. IQ54QqrWD݂&$ͻU#)d^z/Q^E*<ᶡ+ftH?uZot;@stPUᵅa8b^Q ((((((((((((((((((((((((((((((((((((((((((((((((((( endstream endobj 51 0 obj <>/Length 326>>stream x QyH$&;b2{o nxy~ 0MWvqW,n9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qNĹ/Ml endstream endobj 50 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?cQ5+Tl|E-Fk~xT'Һ->+7O*޸4[^c83єaYN |D;*74 <z>bY4QE ((((5h)^MYkURkfƠj) aI,2:20r2:WH2+f:PK¥W=? _Jkj[gMEVGpQEQEQEQEM&Bk5S-"' 1~#5#7JmgsU(e t4>Y?\QE ( ( (oǧ}k4sRrܻ׻[x#WdQ D_EToؖ(XQEQEQEQEl5V" vᶌHn(f=ú 嶷ne4=o̝j(5 ( ( ( ( (? endstream endobj 49 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( Ⱦ֒1[+ Gb6eq?>Vg'<$bI +9e#ba1&n"5/Z ɬa)ݼQn7KR*8W&FuKZJ2(-E5Ph;mQ\GӅcT6Td A+Y"b'<5?; R0GMTUمyGMČ+U4j^!ҵ<5VNL͢jv};7qr-,JV6' eGF״EsWmh%xO5QXijF/Rq~5F ^xT2OV2:#Ϯ\WU꒽J3p=8=TNNr҆E4hx54i(4L*9,236 Inx} ䷗?j,OY5lyjOJh&ŕ|ԪUN*Ujd4ZVJQExfFj¹`*茟흣\v)R拕8 LqҢTcb]T[,zE2ev6HS{SS<=5Gw'qV8pHVhq4XSj526JQO 5HPJ(%N8[եv%I\=.b>*P=R(c<Mc9yW J3ga㻍C=n~;OWDU&aR%52SVsX D 2$54&Fi47Q&{QX$I 2HA=kŵ*] VC>M^0}m7S-B<˛uKH>š&JzZv jVi"ҵ<5WVf8jvjԻb\њuHM3u!jaKQQ{eQYQE4l5kPϲh >z(FSD(j(0cSQE2E!jij(cKQE endstream endobj 48 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvw" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?RQqZcJj"e ̈Hj2ItR*ngt t` iXH"cϪQ׫Pr>(ٞ*n*MB(((3}\ӊj覷qbG#5.T ܏] {DS>l1::LvqzajEIQEQEQE QEjp-LfE"jG*YN^Zvo{X$ذ}T(((( endstream endobj 47 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ([RM>3ښW&RQWdv1Fqz.滐4Ӣm+3K+w9&S]GJCJͮ: 5CKd+["0QIq| gzFIPwW (PuYbmT[,utQEpRQEQEAyrv\Icθ[@9aʮxV77g06Ȭn+h+jyϕl(jRNA}V 3IP3[7hqh9=MXGjjEj/+2ѯDcaڲYV5i 8TV.wwm vCRhXV#֌EQEQEW㻍ڵ,y?a}^e) 4h?֪;VLjvⱫn<ҺX.1 }Mi,YݝtqV=2956rjt$ZKr+_!QP5S_잟Kch#]n}hO2tѱshMMys\QX>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ( ( *ajSvC)9GQW(wWAEP0((((((]k''G_*4 ZՋ  zT0QE&EPEPEPEPEPEPJryv5MnE#"vvMzIдy&?U/EPQEQEQEQEQEQE⓷kNǴ}?4ҤH 3PrkbE F(q:UHŠ(((((((] ZĚlh9?5U lKM(C`(PQEQEQEQEQEQESK,]$պ(((((((((((((((( endstream endobj 45 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?/5)Nqp{pŽQ XS+$>v7y3~$3MS1f I$N*1wRwR9KES S'q VO48xّFS)KTLi /YK{# &~>^}'"n,XonO>mQa : (; Z UU!zvw'7p'JU}ԹV:5hqQѧc5䐌)=.Q\mQ< Q"z%Yj&ir :@NI[i4p\0=ĶrZ,POZ&543Fj<њaI&Mj-E#h5Eq%HUSHJ"VVZNNjirqU5s]4W >yYͫ0۫ ų#us[gb]nQ6$-M-L-M-@9ffnh"Ox4dԊ4M 5,HXAKFO15}رuCKSKTeTLzHGnhTGP%p4a34f?u陦@X}iX4B^^ƢLPl J#NhrI75Q4@UZ Tf`5(j5852,K5] RLHZqjijijijCH Tl3TLԋHWCK#dUY\Qfc٬b^Ѵ[]@cM~c?miK>2ӧEAGQVs2@QT@wQEP15BEZWNyḬ'+-f.?)qxEK7QE? endstream endobj 44 0 obj <>/Length 2462>>stream xkhTGfQBU*ZS|!j|Th46VT|VQDZ|Fb}/P 1o &~3w=sfu]ӏyso2R>|]8"U۫W8pKvv8/Z[+ⷠ@k+o88*q +(.!α>qB/quMM"!έ<K=4dݸ.\TS|\itUHq28]/ qtٳΝ|y\'z?B.bQ^3M։M׮źuS%G.!8k<}ڵׯ\(^s^-BB1!B]]?FPf9 +>x_%b΄8}}7̂vCm8 @ pnioB;;>ҼB WHwtvZý6 *ݲKق ;,6(Ed;7T6hbJwQTiS'R&@ 8>ZPZ[i4J#W>rD;6DNYE q`Si2P52puAª|| U)׫ er3X uōϪ*!#Ȃ] Q /մի?儊Pƴv r#UE Կ̊_(cǐ_ 5!Ķ)\t[N]D_TrTK ^&$a(DJuq2 5 _6 T1Hٳ!(NtpfC"Ħ͘wPfaD_D\ !jwە+a(XʢLM(5 \Qؠ{ ( /'lT.G•*4ccpahFZ ϟ_oav #+qcXG޽($1frȋ }S^ѡ;lxF!eOڌ&Ć.YatB+zkΝ՗/kw/Ql̋Yyм'k|ζ+ _w쨾xn`WLcf q*U=ۮ]A9.f8AԪokZVO~D1c aIԝ6z.Tu t6\BkbMlzyhKLOz8bMNu[(6Jc F$!sg…f=m}6=fV}njQ{h9|טpM?} ̧͋蹻PM7=C|Qk8d)zQƍUgθX-@\@E N6h: i 2~*3j_ A0ۋkBlȑPKі-x1UQT<|@,ئlL6(C|C'O#M԰, 3ҝ8G7Ge־jx0f)G26ce 2 ݌i4v3yu%+(ݥUCh8H>n769O5Xk5ufAE 2vcJj 4̌چq>eJ5~a{BBBcMki^g%ZBEnfFSkie做XGnL'A[4 qDu4H!(^mzΉ" xoNbkX%SH,(ZR{18wxš/@v FA]U8_HAkM;֭]Tq(2#^5 d5U q$UT8~GR@(je@.S{xu Eqt8. %{Qі _cIeizEAQ8y.B {vyu{T{Y2tdd}.YVVJ* &SBż q=8{qSymz(pgbT BރxLSW/ސLɋBBnݾ=fR{U(ݽ/[Wʮ,6$Rkqpu!:=DחHWAkB#SjGqNq~,IW\r]K|?hBC}YR!R!Ο}f^ǎom;Z/ endstream endobj 43 0 obj <>/Length 499>>stream xAj@@a#("*<.mEmJ"˜tB7]~$EQ4,Nb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$ƓOb<$K^1ndy~~lli#ZjmT᜵ZO}[l7R76z{'}z[|>t$/ɲŢ!]I/yWǼ~N~ikمZ6-?ewN~k_҈:"t8?˪gYWWˍ^ /O43 endstream endobj 42 0 obj <>/Length 888>>stream xJQ5(GU/)J[;)7'ւH=.&'+k7a$EX ?o+'x|@Sʁ`4M/-dD޷pj&8\^}{6;$nLp:v{7d 848&'~_ۢ]m¬f67ֈ567=kjy,啟"g⃵'rGwt=::$NT5SM?j`&zj|)ιa no j6|ϕuvv1z:t$I:hY߶{b>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvw" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?JfH@ Yw b  ȺY8 рjah]`@ (((((R*Hg O%QN #TfЏ}^+=VmbW$:znB(((((8\ZCp=k9z"4^zF5RKzϹhko>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ˼raFcY;ksX䓒}hl(欬W##ր5=hȬCS@@QEQEQEQE9V="@O.ʣJN+#IekIU'z #ɉ֭F(j)+F&7g>cptE[ NJҊ٢((((s%Kשaqi!̅3u#TKk4LQǸ [V2 8n7 E. E@((((':QDc*sp;7~sJʎjs{xJ[*-1/qsv@/?6GSaܟA^i֐ Fcgq_z+1GnPQEQEQEQEQEVY.߳:uEy>4;-̐nĢ>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( *3+I^?TUc xf?ҭBLxPݚV a)3sV$-:*+t$~4>pr&4%GNMJ>WqjбĪ e)EE N3CҥΤWAEP0(+*$ g$_hq%E2&1Ey \($3HMP 1fF̌;+R7D*5WqngEDs9*'EW1Q@ endstream endobj 38 0 obj <>/Length 470>>stream xAʂP@?#h(جI7TfA8g N\>.6<ٗۨ 2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D*L2D+imځl.7Ms8RMkkq|<ݮ(T3Z8,T3W0 m$3Z5^]םTTybq:R Ml}.>qوgrI8_R-}<J8BG#n/{]uA=$ endstream endobj 37 0 obj <>/Length 372>>stream x1EQߛuJ\ܻ+*b]ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļy"E̋1/b^ļyNz5X:Z44MF,xP~<aBv|>q\.fv>+7z:vpx;O$ endstream endobj 36 0 obj <>/Length 52>>stream x10ѩ CEq & endstream endobj 35 0 obj <>/Length 53>>stream xA0?ؽ rrrrrrrrrrrr<& endstream endobj 34 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?ޏޫDZ><jR@.n5xPs;#Wܒ?5_]GkiMq+mD^Aڽ{si:#LFK6=N=J(((((,3{O5f:^`u OYX@YdV/Tda 1gc^y9Ai q#*0랙#_^_B^ {=((((((%~Xy'9_8jZx+Bpcc{dqQq"(ª=>((((((((((((((((((((((((((((((((((((((((((((((( endstream endobj 33 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( y ]ºZ c 0`Zː98YWS躋Y]}# 7Va`s@(z֦ZZ((((((b#'eYhd$t>nj+˃[ı9G|3k3p߈@{Sjzi%{@p'GYs΢߽4QEQEQEQEQEQE}PrF$'%dSkfu6<* + ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (? endstream endobj 32 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?@}\/3?C};eUp.oZwNwoe!)9zazQƢLP#FjO@uobݘb݆w>=@~dRi}z1$=OdI+|7K I-rsF8ޯhz%e[%mwssMiT`(QEż7PahH-_{!GsTn]qJ쨠!j-$d@~>Z=Ɲw"fhX)ܞT||2cp'ϊ|p]M(i䕳H'x \9Q6Q[!?5i 'MNBsC 8xk(;#FΕv4sNآQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE endstream endobj 31 0 obj <>/Length 536>>stream x=n@av1WHӄ&EN yf E(0݌\,u:N[bu:439yݽI/?a(UU>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?k2:V )Pxo#{X(qp ! U{W10jFjݎ2}y銤eQ,\Ĺ$"l:L]K;͢-o/UM2.=@ Sci5 gb rN:,oukma!R{ \FGm,Lt`}A?zYV! Տ=Iҹvw6wDfY=9<1fXQEg!qW^&:I Hy*JxU殞gT/7;p*[l5p =N;Wf|ys4bYRsgh?L$k*G=dwXA':@qܟ^{s{Ջo1SuKAOI>,r~m2C53Jƺ[{xm`XmW;R5 '<R@Š((#Qp )K#OՈiN?P-p׷Lq;ʛ21Ȩ$Ԏp3.!v hHyu7S[DG?#Pjk|nte%OPİpE;tQE"((((]r09Pv/W]N-$'\|)ڀ+ڞ"e|~5uO1i}ŒrI]uQEQEQEQEQEs,PیrK?kp+4 S.Lm=k8"u s6c+OED7 kBLN^Ԙl ?,PZik E98e9((((()"u 4zv@:rs-}1)[B :ZUn Rmi.7F~(e 2X7\$ةhF((((( D7eCyu꿝@JI85OP7ۇx~b5[{G9:Ƭ?Ҁ;z( ( ( ( (9E֔2Lph(\Lpjǃϙ?v-PuEPEPEPEPEP endstream endobj 29 0 obj <>/Length 1623>>stream x=K3[g231FJ @SO!"vZXXF-4*v;gG٫&$yfeI4bmbububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububububWj4z{{{yy!a6[76[dL&O=??wtt455bU*盛 qu||\(("18^wD4E^# ߶62m"~xx888(@Lp 114*=E|xxxww6"Q"2ߘG777{{{d[K4ſE GcSxccD6Y/y;ħGGGm8y|`¶2oY\oB;ěj7%bĚ;/;-h\>N;Dvxs>\.[srJMv1 0v@|~VkkkOOOhp2o6"Ab!3|?X__' 9  1YND 8 .J_"n3§2dM○ȿ>/Length 1071>>stream xN@VUi`bA !Aމw!@؎J'f3w_]9eq y\U'I;tB8.63UU==ȅyc8xxqoo%Fҗ\D\kr5XJWi0MؤWAכ1]\D"YSi'_*NՔ=.7:-3}}ss3=@dejқS8y4*OKqv毭dpε+ x!y](^m%.ߖAѬfkNKi5XW#x:_!''hs+p)Y˶mK^zqߛ7\e,.nN#v`Egԩ%p8A\!wBJ8{ TfVKuB#b*tx语,ޖܹ--o1R#1I8Ax]iD[C暡Q֊|d9Yܺb.81WMmr [k޶ȷ݉km[e&S[ ڼn۴rg}Yynufi)s.sِ 3x=u{;~7,e>[mr~'d¼5 /"_&oE{^B.·\^D>onqNas{7Ե-a"ic_˷"1: %z[g4s{i~r;'%zxL vV_9ae^[P4\H[mM+kZH}լ:e1na!C(Ă]z 4)CP1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8T P1*Cpáb8Do endstream endobj 27 0 obj <>/Length 1168>>stream xKN@ENOL I @&!Ib!y]vKx+%#˲;&ҭj,KW0tC$IS=ğm]НVϊ>ofmÊZʟTcIXUlecH%;;inzم7A`6Ffa.PCꡢ݅S=fgUZ.PFRhYN+U,Y<.e \B7U}uq!B ec:^\PѪ[yT 9*:VǡlġWtwEv)VƢ$F%:V؋>llsf#יeZEKůiY-oen#-f qYQѭQI 0i4 eŊHEw˛CHrs'LK598HB3 =Л_Z4鄁ʭIrHg6jѬu )LU٭D~$mn;b`3)g!>21bn'vSJӴHc3tni{v6''ziOKmal3ݕY{8DDy; t 3^o>/Length 265>>stream xA0?ؽ rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr<[d" endstream endobj 25 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?s*i }Tm%@ \__*n8F곚۩3Qo}bBi[#+/QHvBj/iah ԯZhdEt` ¹^|1-n_Oqb\}lvSQDWF 2<NP(CSUPs9K;wU}o,nuWFƶߚٖ6j"`ATq֦INMI\{)S&c+jd1A!jR-վp,sq':k˥\5wHcka]rZ(γ΃҇]W<.RzP5 404LV$f+&M&iF5E +K—X*mǣAc5RGhYІS+dtT6w ug‚TWFhXjZTxA(SV=(|3Nrؠ"m{Ft* +BwJnMnQ3HM3u4alh-Q3R-!jǭNUfn,(\>A24y=c|=[O&OP?SEb=8|(E=Z[k'V7l੬iᩒrMKYjjpj h7SRSKP;٩6jW)!]֤w?Zbҷ/_)(>⊵Ą\L`0-=$pӁZp晚\Ի除b]o3F %r6zQU+q|U Ks@TmzƋeZ*0 u'z<`p5jpjM3Qu&hGM&ZZRj2 CW574Q,_ u'!AO / vOʴ <zz }HHP*: tEX}QHÃSQEhq1wQE2Cu&(٪&j(ZD=6 /y5,p'QEK6=Eҭ]6++UPe27v>EIQE endstream endobj 24 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( ( ( ( ԵsV*S\,d.zk!mug,IbI=I+sggEWEPEPEPEPX%6֋OYk\Gko$6&K.ytWvsb*rvYCSU5jZ|hպq/j!oAS~!VY+ș8]:97GI}x[d8>?*xWE7y_k4k]Ŀ٨O49?ss^~eWc_ n]@ψ5TseXU33?*ψs,gf=f<5VazTs@,)SRC$RE2a+ ( ( ( (>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?+HE܋orLG6B(XQEQEQEQEQEQEAwN̸>WQ-\#~eI;b uⷚr;tgQH` "=@((((((͞L2*%tʼnxCP^m&K\.}To#𮂸\nm8?]ss֤QE#@(((((Xi HUݫZye N^s_ѠW'%B|dqM ~@QWcp:O xҍNtO~Ĺ$'"SDb'4s;'iFr:O Os8oJ|),<߭v?VDhOp(ZI)ꤲqIsd:MU>F G^\í7z6AU3*(EQ@Q@Q@Q@Q@${Kk̅`2:gYLZGXVwbUFI'ús@yJn2qm&zRE#@((((((/aIp$E'^չQEQEQEQEQEQEQEQE endstream endobj 22 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?(-WZ3Z ZOAM&"HWgTͳyFKv_boy_tǹ9{MX¸'TOiUziXǩb:nYY]iHœ-qk(MPu]pJ*uVcΰImIkXLૄ5ZjpjYF꯾\\aUR9,uVb궋]j1R_늛;-QcQ102DLyE"C+’tfim`xRA#+uHwE5k tg&M n;M+:€ \3Fkc@X}&ij.R+=YW+?f#{YAjoA?J In=U)&Uù.æzšDJAknIθQT5 @ZnN4Q$!4ԅ &M!jajCHVjji?4Uw~hsNS>/Length 2311>>stream x휽kTA{&nЈ66v`6ZAX)b!* % ba+AG6DB,#z}&j)~{rΝ;qTC#.G\8qp9r刃#.G\8qp9r刃#.G\8qp9r刃#.G\8qp9rIt)reKG^?~RiʕK(GF_|,===Kp∋pVݹ2~ZjGɊ%~#ӷo>|PTVXbgAݲibbV \A,prr-nssD1n[4eGW^T[%Yp {njjjppC8A7co__F9|q)KbhG7oH!!:(8vɃe,0Ҽ0Ki.;d^ pq5h*iN_vM a5PN@mKQ#yfO.bd "#^!S\ݻw~*4W ; :Nh|p?yD 4b3ęBB:ɐx_z /+_ljҥKRE`.pyAj 7i#B?~}E;`dS-]ih7R2c@@]A2tQ08XgqN۠|I|s0ӈ mc~6gǜu 85iͺۙ5Ȗxܹs&42 /ӣH@uijN#EӇꦥq1F('!]=Y2 +W>LRf"YHdRuvʺܨcC|O>>3nImHU?sؔ%5IaY-RTC|4}xvرvYA"XțkZtYMq1#b63..aPj'N?n%52o>A4|WP')%=ѠuP 5kąxzzŋ:3@ bXk 3.z]vzjW,0p@ B;.SSSY MS3.-Me1ƺѣ@l /yyu4QqƷq4adVH_u\< Ú5W=urqQlq'jCCq ©Z6ţ7n "[L Sj Zt!~:iқ"BGJ[?EwFV%fbzܺrjB#U^Һ¸8s7gfftWb}.)셍 =zԘw7\#4K[ fPힶɡRK|Xlۛ Y,fEbE%x)NĢ/^H,c;gE#xnBSСCR YVv'J,3],uȒW@c5[M"1b>ܵhÆ pqVh:-7i[0+"G,ڴiS__q?Ȃ bǩ1%Fb2S.SK36n(|bfiejKݥh] J[X`bM7.y[nis#nhbbbׯLO;=-t%;;Meu*+~ı͛K₩`7HdjA:QY3==4 p2A z2GΠTS|TٳC{Mβ-Rj?~q!T}I~/idpQNG˼> 4q/k b.F][js;w}3F3kmcSRwIh׮]z]\UboG?i|||޽2ᦏ\C=~0u./>}zdd!(q'N_@Obӣl'T;iG>/Length 264>>stream x10ѩ CEϙd" endstream endobj 19 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYwv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?ILݚxd>^ ӜBBKS2jE$+5A#qCWl1%lXh#8!^^?7(X%{g# (((=o[]7L^glRK';Il1;?s]1ڠUR{p~5UxOm?6E,?kdQE ( ( @p'3Pټbt4QE#@(((KSKQEjp-QQE" WLQEK5='5<?((((( endstream endobj 18 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYww" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?( ( ( }}[;:Z|Ir*[og2^*ꚲܱqw5䛦nEImIM\N@t6wc6Ebs+Q\QEp$ӏb$?ah2q?/ժ-ECTP!J) 2 8ihkV-fd`j O LiXsER Ej(d(<i I(5q-G{qʡJ:^yj~qg)!Bqz#*:MUF՜Pf 4`6$ffh,{QXQEW/Iy"աR|MOI;y`w*u` 5;Zn4-I.>eɌ UziDRUUPFMNB6%QX4T[,{EQXQEQE-^f&L8Gxmw mz? (ej(9);u( endstream endobj 17 0 obj <>/Length 1000>>stream xJAٜx~ (x=;ji}6?T/ P jݾ3;1fϟ&ef (R Y@bt$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx$Gbx!޼mdJ%%t腻L%O! " jPE/էz?68ٙhnӠRQ8je* *[v[khyc~n){r<ݺ( 6Nqy~^_;ׂz`>XY;i^ꅧܵ,sA;՚V_ML< {\\|>?CZXljrq]ȡ{*Xղ[u6=fj\c-UZ-\s|Bo^ ]q;dPfM9$. l*xmFp k6mLK|wkPYJϲUbd|, F> k|Y>}ՠę{00pSL奞\uai9B&q*:{P9*; Z[7,- Ũ`#7;3'Nݟŗ~;U2kϲ>/Length 276>>stream x1 "f0T'Q%288888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888884g endstream endobj 15 0 obj <>stream AdobedC  $, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYvv" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?*Oz^%=)܎.{sǷ]. l!Gq?jPEPEPEPEPmOZḪ}hz[΂,֗ީy7XOzϹsK$B^gASZ162# uuhn_Ė 6((((YHERH_ހ4>MkziHQ;.}>Wze<麻sFVk20vWS@Q@Q@Q@Q@mR+<\{6$@reފ3N$Yʹ G L܄=z x?QJ*Oe8?2f:2*k򫃑ToHd@V #-QEQEQEQEQEbx:;ʡPg?iy]J `2)k r?s>/Length 2125>>stream x휽k]nd7hV? ?-Fb_M* XX ~5"ba &D#A=gDM|[sf]d? fgg,Fl6F9H?~P2Fz7t%-//~dd5v56{xCt}vm6aEJyO$뼭#- 1< c` .p`=v}={\&"FGԎ/s1, v%S"q2m?f/s`Oa^煀UWG%Xr  2oȎxUϟ?t:=)eu.DL:q͛VK"WjPTY%_v :fDsƋd]Q2CŦZlLqv hV:>ݭڹ/^0213!nW5GlP. W&F(I~Rsē(@VWƇ ֺ8TX>իWaPka&-r qɓ'333Xd*'{ݍ߯;[n-//s9X2PƇL[5Q{WtE.0|KPd^QW85K.q߈.}G.+Db"{PLMM=}n7d5G S"C42;úxaaƍ똧,䨠9fUKKKtqZofΚW@LΈ}=$1\ȱ3邽.x9{P>}j^#+o[@QG]c Ow_֠04A"XjOh_[(/vH%KE97FYuw' q4eiPKV^sY]c"3@V+6Bp.QEVxf_۷_z۠J-Vs*˫ÚWQyKLQ@^,пam_p˗/8U8ȚJʺ_|$*W˴g"omq۵8tfVYymM?22f8+PsħNC1W(VtZ[řɓ'?,6[Z%{?]Kݻ +̊j]Y׻w﬍y7o D־ſۂty0ݺu+A MtQkQQ=yU_]5G<33s1|m=1Mκ-8bӮ]6mٲG4rP? 2gFqJӳxU=rQt:8ʊ؋C!/_ap˗-%ŃtrMO]JE^>s+:|⢹݇dmt.:w|&y5ƹrīz8ޑ`X)"E8Fq88HVZ01f<kTF^s+vرm6G`afrr"_:x9iӦvYu?H9xPTo߾HYvllUU*  @4W4I]gܹsllhl8Ei 9:?ܹsnಀcI{ Z#:DXO!1fݦ 憻x]B2{yy9x]Yw)`NI&n En4vV5 {:zoLNNJe9߲F5ގx:{ǏoΈK@N:ݻw'''1:iחV#ސ,(,cP1 Sݶ\awz(k=GA6pgg/ڳg,_cJ=5vG#k>Ȏѝ;w&&& ۬)t޽3gd'qBy툓'#N.G\8qr9r刓'#N.G\8qr9r刓'#N.G\8qr9r刓'#N.G\8qr9r刓'#N.G\8qr9r刓'#N.G\8qr96!} endstream endobj 13 0 obj <>/Length 705>>stream xMNP@k$BBA0v`T]J_B(#'Yxd<]?xFVHL'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xI'1xҏViaϊr!Wx4J9Fpmlw ?V\E5z8w>Ed}anɜ/ɫ{<jiJ7|zx֡3E54E:~^X&đELmdu>W˼tOvqp{pq{y-1$FٺZIs/-!ڸ7]4s6_1//~}yx;XfqD,Nj?z(?ENW[M[Yrmoξtͼ 4߈v1$htqƲ\p9l󺮬/zp9`B endstream endobj 12 0 obj <>/Length 720>>stream xJQ@LڛB}"HwP?L$'au'|le]ׅJT&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"T&RHe"ǸF?g85:~zJ*olr{?(ʦb0Hע˸F1 ;6~^N_c`8lY; tV7۵TkS/Ӑk o:' 49g9e|Zjr-[gU=}8=MZȠ^۩Yuwwt7(q~r]^eR `4*`MGͽiUI>/Length 438>>stream x׻`ჀHh{۾] yF_P L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L318L31.#*˒XI[SH@I\׵YOw>MSUU:/q˲'F49C /q Z/m }۶qu]{%>/۟HP9- */+8da?p_ $ endstream endobj 10 0 obj <>/Length 384>>stream xjBA@hIq#(Nh3ݝZ\'D9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I8'qN9s$I c:;%nr1+|n%t|>n?9u;<lu\fY, Kn>j2| %$ endstream endobj 9 0 obj <>/Length 262>>stream x10ѩ CEHa$ endstream endobj 8 0 obj <>/Length 263>>stream xA0?ؽ rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr2a$ endstream endobj 83 0 obj <>stream 2011-05-23T16:35:10+02:00 2011-05-23T16:35:10+02:00 GPL Ghostscript 870 \(epswrite\) Untitled endstream endobj 2 0 obj <>endobj xref 0 84 0000000000 65535 f 0000005725 00000 n 0000106486 00000 n 0000005666 00000 n 0000005508 00000 n 0000000015 00000 n 0000005488 00000 n 0000005790 00000 n 0000104613 00000 n 0000104151 00000 n 0000103566 00000 n 0000102927 00000 n 0000102006 00000 n 0000101100 00000 n 0000098773 00000 n 0000096872 00000 n 0000096395 00000 n 0000095193 00000 n 0000093451 00000 n 0000091791 00000 n 0000091326 00000 n 0000088813 00000 n 0000086920 00000 n 0000084959 00000 n 0000083062 00000 n 0000081195 00000 n 0000080729 00000 n 0000079359 00000 n 0000078086 00000 n 0000076261 00000 n 0000074257 00000 n 0000073520 00000 n 0000072144 00000 n 0000070900 00000 n 0000069621 00000 n 0000069369 00000 n 0000069118 00000 n 0000068545 00000 n 0000067874 00000 n 0000066638 00000 n 0000065020 00000 n 0000063464 00000 n 0000062375 00000 n 0000061675 00000 n 0000059011 00000 n 0000057285 00000 n 0000056025 00000 n 0000054044 00000 n 0000052184 00000 n 0000050373 00000 n 0000048777 00000 n 0000048250 00000 n 0000046829 00000 n 0000045226 00000 n 0000043758 00000 n 0000042062 00000 n 0000041077 00000 n 0000039148 00000 n 0000037956 00000 n 0000037469 00000 n 0000036251 00000 n 0000035661 00000 n 0000033790 00000 n 0000032505 00000 n 0000031665 00000 n 0000030748 00000 n 0000028891 00000 n 0000027011 00000 n 0000025181 00000 n 0000023326 00000 n 0000021748 00000 n 0000020044 00000 n 0000018355 00000 n 0000016572 00000 n 0000015792 00000 n 0000013834 00000 n 0000012704 00000 n 0000011381 00000 n 0000010152 00000 n 0000007908 00000 n 0000006681 00000 n 0000005831 00000 n 0000005861 00000 n 0000105076 00000 n trailer << /Size 84 /Root 1 0 R /Info 2 0 R /ID [<3A635871418227F578A22E74E4B26F13><3A635871418227F578A22E74E4B26F13>] >> startxref 106652 %%EOF espresso-5.1/Doc/pic/sn2_fes.pdf0000644000175000017500000044545512341373034014635 0ustar mbamba%PDF-1.4 %쏢 5 0 obj <> stream x̽o}mVhIiRI;tBiEM(X]0#mƄ 5)IŠi}"NQyĖ&d6i`3?^<3gy}mOw7/v_;Nke_}z;TE_w\|my۫7͛qyc_z_S_Wc_{}7}6_cazk{i~>qsnR#w >o_x?v?'^ 7}Oի7^_||CCty|K}nqnr:lv]v;Ow_O!t ;O~իW_~_>+ϼ^?˟>?rO'9NvrZv4n$4>ɏ~Ͽy>wO~^+C|}?K?Oҫ_[?G~vyosP]|C|;}_W}#?7~oSG^Gѯ/wG>__no{;6}xG}ݲ>?|}~ïo|.fw;.uv;ڟm/뿡6Vx?UoyK}A3g|'/^^-?H?rqK/~fL햋~}?Y_+?_C;߯oߨCv펧G+/tx]%Gn]"^H+?F#.Gt~G^ž ~xϔlCumgr27g*C m}{w]9~|_^d=&N~їO3xkޫOW~>M#]owi|e?=>(_@{mvmv:svVmrD^O_6x{OJځx;1}[wcv[~"a,/Cs=w5mz}y}Tz8,w?mOO~wA7G{H{/y|_zKO3Lr—|^|c'?o{>7o?7;mΧj7v\aܿ?~WonCo|g=UG8&?[ǩO}<nˣǟp~qto85}ͤRv͙F5<w]R)B_/ɐma ǫ}u8t: nnjkB]^ը\->_3QQqYX刹^>[Lj(usrQ +>'PqrkkTxՏ\M(8(,&u刹w9ӨL[ۥH3!Wv=< չ)'Pn۞Jx?׻[M7Töf[Tcߛ9H Wߧc6#Un\3MusoSQ j{]}e4 Xm_x&5y&5(:>ǟ0-Q7{:-mRGЩ]mJ}Gq?;)ۤJ݇W7+Q |v I j`gTCZyI3 *ڕCOHD UPiIPE{5#vLM=T =fZ6%{J5йJ*Xk%MjxtSM>P8So2Mjt2s-ԑ7nokO&udfqL=Z6U=Qhn%{OF5U&5>dSs[DZ`++X㉾dQnXb?p9OJۢF PG cKA%ԑ*NAfTQ>ckF5:$Ut-U5'Ѥ'Jv dI-h Bz[( t [ %lvMȔ܊6!S-QhmBUQ|#hTAqW3-) dIMh Bzgbh{Դ#XܭՐAԐf!M(˳`23%r_]=,Qh~UP&uj_FBVRz$i5RcjVr*JVU.mF%wlݹ5Ryj\r*Je=%S3vncZ},QXd*;Rxdn&FU&QMj(u,NTj71L5!W QI4 Q OTQjvTÓ&U ͕d u&UJOMf#oFˤTcdnXelSy,#y$[ddTUQ*e#%֌qU'PCAǾ6*`w@jVR->Ҙ2 ahƈ)C:nfREkтL}0\)Bt/Si.AkTTQ@/V3pqfFUT6MI4 *؏ZgR>z5#6on2BUla ${[UUr} ^jfO6!G6/L}Τ\CT*v;&59{\WN;n$BlM0cI #m>\,CL7CYmgTEkzD4!W5AY!T+4piREsCSYfP-2P w?;߼P"ڰ%@ܲ!Jdir2D(p>jvQy7(X>U]S_. ~&7K.e{4>vʼq% Vw-܍rϞ[ _ ̝L(mMQ}skm`cTqCU@O{n ~-ԑkGM(Ҫ7d*04zLP+ݤR?Gw(mtl?mwBSus6"5V=a&T_˾0jUݫe_xҌ* p|3ቲbfI{b:Jt [ %lȣUgX&uFW(ͭe_XFUײ/ss̳Q|kqۣѐs|'DD.e0cv1ʡeV>pPemZ?"T6/8˳UmJ9̭*s+X)A ܸ)f37 i.ad(Rf3;T8wL>m%B ot}Q=0YխNjeJvVQGyRMjtnIә&UڍB˙F5dCfSOI 6WCvXӳI}d 2[j*S*L[Y&UJTe1S W27PGGb0+[r;ϛ<q;*H ouV&UʽyfQ j/67'x&5䪽[: ѨJof˓X$Azzܨ>I LlnV#H8vRt6x}uQho5SM(t9fF5RQ*+&< UJq.R3'ڷFIjVz0PG+-l'~{uh}aOϭs5w|5R~5w) v5]cV!'6ů^O\!x`VVc4`q˫hSsPA}ڰz9$p-{Z&Oaӡa(\H7Ħֆ1D`?L٪9v>4'm$^vǿ'}j!g>*)NO3ͭx=,C$Ukb0'>H ܪ>҆=} ~ldRCTuv ӤZk ~n!f<` ޭdBJ}j/wdȀ6^pn{q_]!m}o9L[p9SjXڵMr>ٓ,B l0h۾8O},9l+> oY97I,j'WGBܹ%v|2TНjs'i)Bhs2"Tȝ-bOB2᭫I.-iD1ז}&)҇ ۟"=s<:ybwůD.լ-㉭?qEH }L(ajb_r,x6;Mj(ufF5fu>y&5fD*A;F~VXdқԐͶ:j(Tnq>&5:\ u<ѻM(npGc(nrl:Ju ]\*R] ].D*r]VQ [lOQQ[>y&5(njGC][j+ߤRNg: m ZL;=R(tv:*Hnq>Y&5*7NgQ ʭm'ѤRv4ԙk'z7O&uke3B+L\:fd ӨL3,n'ϤJw+ICLsk}^^EC}PEm6Օ5 NL=2FN+#];%ƶ(7qfC=ڇMSf *%V^Om!u;=٦~3flRS bέm$BljҹYm9MΕC;UߧY"-ã[z:DֶzԬ~-"@HЬ68= vl<d0ҹUh{S`k֤%t^dBs7Nq9֍6GQ@i2)AۑMvndTCD4ҹuZ#?^u%Uvbws}o$aߝ[TQiA &;sMX+ 4V:-Q4н;J6"m\ɬ!nS>[Zk[1BwMCwbxdngeNž9;Q}xI1<4Hi'L} N}y&N/HQ;jF(+٤BkYޕzg )qv vz訇83 C]۔䫇 nwS}O$A }VK[_ =E([Kµa\{޳ѹՓ4ː#0Idaʐ#&NwS߶ds'azBA<в L*hK:5-26;Z,Dݸtmdv)C l3G;e(Xm~{ԵOn37c>VK6siߞZ߼勤}Ģ@xDwTQ* 5≶Yl3ըBՌv'Ϥ\g+hd?3Gof OQQF O<(W+&UZ£ d uj7ã t [ %L;J76[<̵PGm8J5"5{\l3 *xTD3Թ1Nf0j(unG3~R-TQjf-l'ՐWIYъg: m3يWQpVU)=6҇na++6S06@u]kѮ^.?)Ck4;;mˀ-<}n{q#0EqM >7S~7,)B`s~Ȍ;_G*/|Sg`jxQmd\ xS lGR $L$f$C }Z% Y}d109"BӅD]Nz]^`:=_k `6s$A aWf$B 4͞ /iWnXE'Xo+!ZSڌW H:O"[Z *4pф40FlR~(H 耲MH3M(tjHUnsh`Ҍ*n[_D遒PQ M|0BMP-| (ݤB }0դB,}0Ѩ\5 s3 t?F&B҃ Pjr>FIjbB{jۣdl pfml}zo)I)AEC[IsK{  rX[`{ Exf v$C 5F k?DX#$vOF H k!ǵȫlUr;ɫ$6,)w3I@;c9nۼvF1/0YNIVؐuYMm bP w~V Ahؚe_9Pǿ$B]m1neyyanse%f;%}~$d54Df' Ҡ-䰖Ԓl]NbЀ<,B<τBO!ftpb.2\&f#IH0ӤZ{r\L6zr. [/$B=&08BalW4f=4 )j x|9Lk*EX} U`6 OXra*Uб Iz߿U^a;Іh38B q\K|!n|1>0ɟe,A< 3(BZ?CwtG_J/otC,ÝOnV_ C@[> iL*ea(7"CiHʁP 4oNu7:$ES$l(P2жf ݛ.OЊR5b͞]") (̭Q+Udh@;ԑ7 )&1VsC@#T 6TW`I$ay~Qs?8`'nzM(a[T٤Bۂ;`Q 4n0i&5jU=I3 *tf8<(sM(>&[T{%H A`ԑ*AfTQZL4!WG &ͨB`Lj(unsF5~jR8l [  I1nd uกR(t-q3 Qx@eRC0ѨR L*JGPb@PnO&uЁ-Qh[ @#5#nFC4!ӌ &ϤJOC&U)D |[D({؁R5 N9ɭmҝ8O,CPcڮ}: X B@ݜdn@Hۅ ;A.N'у٬^DG?Жh~Ҡ">9ΧM4AMlS2K{S9']efz(P w>Ohz'P@˿9~j'}Hw>˿c`7!OZ"ڬvR@K$AurypҪی$/zbcװ AhZsy{GI9VX[}N*f(XhȑcH0T*f3 UT6*zo ﶾa} Bܮې;ᧅĩM]{1m-."r䘁Cܮr:o)%3Eȁo͗qr*%m4D^.<rCp"CzlOЦ@IPPzxӏdGL~G L \tG!64dUJ"d8?C6yp).-¢i$Y3Eȁ{s ҪK ;\1*_8SD6|p*`Kل:C&IR p ]eGeo𬂶S}I9nLY٨6*kT7}GŤlW,B 6% K/dhPv} +N#XOs0I= ^NtH0]<Tf w9\)B4)n{)!%8"W RضO@ĨDmT!0Y&5*&>oSIVn "C= -P+&v} )rKv  nUCmW#6o' ضO1n"z9^L"yN@4[})zi%\E^ѐCcy !5U avj6p:$czWB-c2UdU%HG uTc[AJ;ew$}ł|u p$rک[ܧ<I6&|Sm RvLكH/7vdJ3=fe4(~!אµ' Px,>)Aɋ-*{0=E(sNhCH|#'rbazxD?d;DS$JihP>pEï|Gd)"S(- p;nh"Ӝ MÞ359}>ȇr,l>S >DQ 0$0F5N\^i&a)A;pUώ4y US$B% LHiA&U>fN O8*m05xOLp5-;ЎKL-x”U[-drϽ2TPi<Ц;y&8|XH=MHZmgZܭNI 9 pp?7$ql|l F$pmAV2Or`y]΋)! !GJ} "D n1^I#hKctӌ rܶ5$5)0v$ DV,SLnM!p7IjOp108 oI PŷsUɡAkHpa  zJ3?OBB"'lS FPmNgyHs+`{$%h2(1_D1&FJU awQ;$LXߚK)lSmk@Han'3 7P/Kg!w2W[r@ 0жiTCi(LI 8<rUHNaҌ* @s 3UIֳ1d ujO Ĝ-l03SPI4L* ]KpBF5䪞¤U!nmH(LI O^Pj(uYZz^ fma CA,Fu($XD9$ pP#G I<%pi*0[CDyUlAS58HxAS  ஹl&ch%n Dfx[F U=/IW-1iupPAZwn{rQx5/֬vb\>\ic OQІ7D=٪tHl ܫ|Dt6\Z_DI HUCVbw r\i$U^}A'(PܧLi8|lo/Hx;{!&ůuBXxD ڴ5ihAAR>y¼s*rU\c !!z~Ar+O*d,ϓ2$XN-T ܥ7mBWz^êMx 7hpus%Dҿof9DZv ofzr_ơ9q9ᐠڿcaz2%^!ՠs!A>*mN6pz W %}>Ѕ'#rlLQE| \ŸKь&ilnD:vd(2<.a{1&[l,]%w8!oƔ-gU=Fe( xt*| FNB!Y#{|'2z3Yxx  \3 A*BbnThȁ{d5Jw"-JiE"J ?h :gN0$v 2hz>p¤Bb `Q 80iFDOfRC@ iTC*1(r!< A7THB@0B8T* ]&pb*=2!W hTC8B AL*JbbBGc$&uj$(-Q[,!!ma $O rHU-13!Uy@3!Uh!&ϨF'HX!&BO8D`Q=¶PGnP-7#/FULԐF,cL4ҍP!&ӤDSCLPGX G![$7PwPEtGYcEX|ne:mB䁻< 5L rIam  ;pp?w:|wV!i(З\nB P!YEak* b!4-CY @!B܆DҮr#"Bڲ6$2\V"ڰ~7Dqa}Z"BldJ Bճ R&A(/q֨^|G 1monf@DhX"Tf0lƳ=%aǴBpFRvKyx Bd{VaźglSr"B»;@hfd^;*EHyklӰAxl %fڃewO62ڔ #% _g9oN5#1#D7H5yFȃ ;p^f 5ʧi&p8` raiUfS#9@}|04}{dA"qf=2 L{EurTƝ A} 40,ԾNv>nmnK|H,Gq*_z%dqhcv-c[ewfrgJcpAڵm̾{dȠk;T9 9w~@Ɋ[zi,$0ZWjÚXO>p eGf&ap4<k6!cU`6klCD;ІSy"taK%j;f,ǧo1u}o'MKr sC~RB •'P蕖4*=!I2!W|gTCd&ѤR穀G`:=Q#0B%TB!-lD?3F\*RUK haLjU=%yՐF> gTZ@ɴP4l:Jgb(՞Qy[)ad4&uʖ0M(t-!I&Ր<II3 *DD<(=p*&UZ<-Q#(xBXHt: mKHA&U4jU#OyF䚑 iIPEm#(פBIM#07̭QZn :Ju892ېwY_\֨XFrSc&R[ԜFv!qp!A;(40ۄm.0@0$7 i6Nr $wI640[Փk\a`]Y=-PAAІVw rbVVO 2H7c 3"D ~Bbճ 9a=Wȱ5gB``!BBlUzA 9}j5X)VSԼ쎧9+\ѭ7. ݖ?Q4is퍑CN~?mSI o{*#!Iv6|)A9jSSbVVloS§πmj"P<$@{ U *D4ߠtnRoQ2d_>]q?C$BYCix F{Q! Y/C)XEfꑍHW Q-\洞Cw)$@49 Aauh>J ^=CQn&-(sي)B܎pYa֬f,U?j趟$͠ ~Cx 2^:.q0CbwE7$tj];x:!C%}k\ƃS =$Haè@ E]ۓO38 ؏Y'k<c;'ws-.|N]=M6HI_gg1^+u"8@ [6E6f^0\:PòϞik>^,w i4h'Od\}oD]Cܮ"3q)&2pi؎2_h kd[0Qu>GиSDq11NڜZV"a^BҭjF~-0'Ӓ݊}-: I ,F>@FbB[.]ٽB?}kC ls>fO/5&=vd?惺^ZmH -㷏y<*21)~9miIzlxTSҰe5,eJd#{k`;(];jC鼻.:.~>e1rMODl _XrN벛zW7RװsB9An2ySm4b1:DfCQiYP:Ll&-Yʦ#lnatݤJ$OKb Mq\yJdBb҉1Hpf> Y iWj (mO^9ҬwMZF̈m@jkĤî~xI<'&<YS)j& ٤}EJʂ WSl7!Vz2zxʼnՂ#뼆oq]&5j}`jyYvohnC[e3 tBc&:Ljx6&1kREDDbB1t [ sPIe#b(-!Y UQZFgTAh鈐Ø,r'#8!DJg"B(i e[ODM(՞i f[TdDb(H3!Y UZFBgRC Ic0ϨT5 QkM!1i'jDh"C&ujD4^ר:JuE,-lDS5"Ul0&Ϥ\Ib0ѨJbӤ*:P-Q= i %g %%#bcvPElIMb(5K\Q1"tn11;/uk~vA;,81)@:{ ]pr?Bxl _Ć79xBe_pÐhmy_p/I\v28C$r/?ܬ\"2:І辁dDMt,RJĐ CcmI!HHR+Q@ 1!F^h̐8iRKхCg- !@H$[hyh#f쫉kBCV'Q&F_$4e&<HsDŽdk'yLp##Cߏ1g4\%]$ M΢٩HD9\$`cihM/65y} jP^Gti!ui&BH70,B _Kc4ݓ> s4ڤcGh͓$C7ќw+I kpMn:gd9g1 n}!@< ]hP#ӬOJ2$G xkH40ml\`eJPO86ٓ@|fO.R*7f:,1햅@|k )܈"Z◷ȃ%:I`?f- 7 {<=Pƙ'X:fLB<@-l'nj#M(a[TpEs(H3dqUZBgRC1 t0Ϩ\5< bL U(-Pf E-41;d-rJSh;d54-Hҡk쁒}LlFCFo3aXbc6[q!9>Yr:'ʛEhr׆ah&5J{cJTC*hAmqnJܤ _!j֞dZ >Ҍ&[_&W*˿cc6 OaY8r9f:b9#fDprV3 pB&>g۶ 7ҜpÑDך %Abr$'$!4=nbed(9wjSVdK V3KH ͉ R?cw "91ZJL#LWkHVct2ݶ S )9ҳS՘*g45o3Pv@D6B7-ՠf׽|J.m' 9x$E+g5]A(U}&iٮm>:+:iuGM٢D6'vǕF7eaF.X^\ڬ!A ܮg1LȆ|sXiIlCV'67^N j(! }9k0ZdTɠw[e{)<(4pbۘv<؇~*=L<Ȁ{%AZci:\+R؞ jо3Ph))F=pc6em%:e%(ir_[4,3]VD ٍͯ:X3v.2=*j=5ڤRR\5+W>`|S2u 06׵6dH606U*3TnƟPHe+Hig}_THqxƸC}_w1]c39iT/ ȽKhۭI70M ǀ dd7|2]cy78' $g"880g2MF01U.QX27(*P"DYf/oPX DƍN2n`Xcoɤ5UF LDҞ3#暡s454$Xq xӲ%ca7bL:eƘGKeHI'KV|r%R<Έ 3 6n|̍4.LvƥUg:BJ,H'KT΂XIҪg)3|qiJYё|OBI d:14NY0&0&) &;QiX[דF%F:е"7h5ׁ9'Jw, 8Z*蠌܈p\2PqvT;u!dbSt`l$ tDTwM65vHEo0n=% 0vA:Kͷ@VZq" #ԨHzSf#Ee6Ȥ6;3oq Ds`j5rwEr@bc f3㡋Ls@Dmi9nru7Ht@X\W99J;&U2a^j TJP`lW7+sݭeq+ZsKWŤRJX?t Er7ۛlE-MY?c,kPvk4~}؟Etj{N JmS'5c};^fTj՛ag7ܩ}T72lFsdaHKm$a78[ZםAć@d8(]~~eRMO7<,  2|Z"7 FH5V s6>S&PaC(-0a#Ay+{) ~` IrFF|ؒ7s4M/] GI_;eG&Dps>0 +Hvdޙ2$` E*2zj@^@FIax^L*RLAqT6}?g#i:CL_Hf6m Rn$|ӻO30HvSU?D*3X YQs51p$DR]xc,XPI奔E<?V.̀Bar8ؙA2L[LT򞘁7" dsCv@*#oȓuH:C+0):\$G>A?Hcs4&~!rn0V0/6a *#ϭ|!Sq4N(sqiHsa_N;L<8" ?tI0'KUP"{qici v=aTX1@0NJ1Q 21UI 'I3@"zQiGd4tp0D ?i\Z@3Kb+eIRh@(xҘt:$ Ƥc4 u8yPTT"oBҪ @ +Žij݀9ӨZE"` $e`N^(P$+nEBjI6s"^@j+'%2A? Ig9Y 38~2-gьf`_H:×=f8wy/d9+ $Cw{"A򴷠t\Àf7B!nDŽgpA4C$he{! 0G-k]$acc!FDEY>혠,М)DWv=[4" w&H6T@qc40g%5ɤF;<0M%1Lb+ތ`4R-^/fj g"4"Cg@rdVϸ4,N`Oxd;lō O~ " fT 8R, 1ո!v)H&4 ӒʒT ;qi߃Rlw8_ TV] uVĐHm!ʀB]#ߦc@ΰ:np<L,i\zptd5Y6(I.F{|h9drӵȆ Y*îkA<'kH#30_Bf ޟA$wCǠ3ƤC-;)6]`҂$co(!gPk|UƗ>_?JeS1*N&aZ*_HOLf R;P'd*]Mb,oOH27 bz5Xq< V%5Ϩzbpu@3 7c-sbc{%}y?gP*C/B8sH(a Rcik(NW tt،je c`L9ޏ1RYE!? H{LӸBa!/0.U@#DR=ʍU9P&.01w%2&J;g.GHn7nWa q`{IoiFŠpvO,D9B"u{%J 6Wq4^eI L(8Z((#/Qqt]D$rF%t_A1Е8L~#`:$rbTA)2ǙƥU+%T;4.VI d21)5JJ0n'IRR ;aLj1He #rפ3eIҪLzi\Z`3!> $2Q)UH0~'IR)Hc cRt%N& "OJ#QiFGd.4.ZLeVr|¨4:e$ǓƤQ?D:0&dIcR딟Dyi\|H'J3sJbD&20"%xLipIҩ`.Bm4hv{3IK'I݅khv3B1 Ha Hgt`TEH^;;%V%D[o\B50.%DR>F40@ЁXeHv

    >( >M3"١!~+÷h80 Fb2L!oԆ6 yQ0h[lj!8gֹ\"YQ+ Bf6|>F!i`N)ju6!+i`Ҙ c7:0]+y}f"3"cr5]sg;\!Ve.2kP+ @30cfMϪΌTm5HR3z~9fqeD́A$lD֕з1ٍUT; SW JcWcD"[K՛TjSkە fTJ21J*lb& m8ZynGaPF,NQsRnkPyϏ^[e.XvՖ=l,ǒ}z2g'A?](B-W 2WԒ@B+ᐌs@+?NHV; P%ݯ҇V MWTa\+vX01)TӍpPr4bPhuD$= M?&GϡI.ԞVDyxV: JR*G%C"< wAvT#i?H~< E_EL(-g::5Tj[Ȍ {(:4vĵ[7XEw=<-)>EDjGD{xLه@j 1ں`PHe57~F^#cärA4p Ƭuv-2!I{xշ@oD~ P&#20.":"cʤ3_, WI|4Ŭ؋U>82멑H%EY1GKF3*bĎw-<:%\$Fkp%Zd"'vĈ\b.o%'KT&/OH ߲e nZS"A<`xz;]tV*fbt>G{ĊA G6uhk{\\3l嘿tT-o ve`[ t֋4"u7hBP,Mw q ֶQ*kx r̯ !cA+TRmI X mvG4k0ToXH$ eƀ,ma$r.h*XQTfO+\A  XGuywP*;%2A7ևQ$ϸB/:F2҂J7R;I> S[ԋ!TWDQrT@~@Z`Jy(B"'+M([\7Ԟouc'hWhq6NtTgx"b +*L4G7FiC2(!cje[Z9$wuU 8|F(r<_{tѲF2Pi<23#er ; n#.X?@,K0.xqfG t#¥RzD@H)HjCۊþPK $)rԅlFnhTLf?o_@myKyQeR&h@3)`#BکtHcf/c#-896Jvl80A 2GK뤏*%l)NoAraY1 8ӸoHXG(2_A A/9iLj5 AƤV9PH0"wM*②<ӨPX{4.ƥU+>R }OR wҘ4*E4!ƤT8J`lDT# yQ64qi ƥ*84.v.'I Ic;@y4*rn8VF-_Ihf4* 0'JB. k|P A04xi]b<p^֬ᆇ`_D!B2Lw{)'B +dJi|=gNfERd\ ʤ2ܴ "(n"-ȋ`_z%x Y9{뿑aCX6XHQ  B"7}K%*d}'A|3/aLܐ'j~Zi5g2),cE(") W)Q̂PIm<0!H<`'DcT"IG Q 1TVs:" 4vĊ`$R)-Q. h{ǠYkǺpʲQ鼻Cd _\eA͓%\9JI6fF8K5^pJ*b@Jr9"0&ohd3,+,BvSεXM_o2a}@8``%r @R];z4ZJmV@P?,EZ*_6)2૱)Qe'#4pPb<' ܭԃ .γ̐C,t_Zw%"=VRydF01tȓ8GmGD*YB hxzk;DWse2\ 'q82tZA8=)uh8WS!g=hD(PUyI”R9[g8"@LXKPg6 Hjy)xc9 QiO;jiH$6 G~60T VÓpTDy8i#wJi͚Հ8(ձƄr3&5jD^>]p{螒@J.t5-{<*П=4 NdZ2K)nW؀qQ5 Tv; ۀl#1yT>,3 zy@$V*y Q 4 5ش&5MNl7of^t2Ew|yKJDcIb7Rd9(D>_M6 Lg $K@${|a~X#K/dK0iCB$ܸ L[X&#okgC$A !JKd#bEIiH8QE8Z~#'!8""\& /?;\uD~DcR:;M韭Ձx1DRi; Fɘs"cO3ГժS$@-{]\(.S) K<7܉dž @eC7ymqfgFH۫'sy[HmenfGM `qf@:yT*m< Ѓ]{-DRۍ&CmP$u! v$"tJ9^5It@.Q#߾z @;(I/9EC Bm~2#c޹~ɞ7 Xj>`C"qJRZ?`<8ƶg=cQ& iIؗy;êc6t;N8,պ}ooߌ|@:h_hQFj7H& Y~D< }ȴGh"i,""A{pNq錫,"Fu# G I:B&ev3Q7,B:]3Y̋O)FL/`c 4 fB%}i<xDH3ƃ eBFB$gA~`#& cNw::7>{8 #p>#9 t$UvI04*D'a"6bp!0&nΧg \4*֠$3!? `(OVhFALh`}OB y˜HO8H4&.0 B1ith$0$`F",„9A ٭z!Fòug/!8"(oxC07-WȰނ|VH 9E`.#ݢ@@̰/G5v]hH]Dsq:>C׺2-d4\ZL*ˏ^&:ڙ> an]|F}&&st(쌃L(a%Z[sm̄@rZpc1L4u[7kJ]'BG{\X5@XZ3!]j!ݤRXP!(ģ.Aіf[ُø6^@p+^Lte|Fٓ x.r7Ѫ׉ 5An=Z)\ Pg4V "gHf+dA|(s{D-%s Jm9@LƵYBA<{l(@ #C7JGQlG@Ο3&& : w_HcEUN9$3+ʩDb :CBf5TBD &s+Q)$o"4˪9&8(Fδ;`ܸЎj߻{]D*@LN7\pf qk;w ض-ۀHjC]bL†Qd4Rĉ@W\Vqd6ƈD oB,tDpB9/,^tud L{V(" _~0%a:h/0jw(CE4#H*;JĀEqE4]Q$GIfD0,- HXic%E [-EäG>(K$d+%F+p{I ~GK<$ &)!ƤT;Pp<5Vy ( HLC='xR'K '!3KV#$LGHa=aTJIcR@OFh$yҘu\㆓^Ih b}OV9'+!凗 PI(C%yҨ:H VG-V 3NR^& q9pF{xId+UT3EtX aSHNnI$=P$Wx'M8B)G‘ ͜IDů3KTZΕ̝p`Ȥ3}Y5O0KnVHI1_[@".#{BAƼŠתAN / jӫoi̕<.1?ukd$ R'/t%r1>lnA|'DY]^B1iAJX1Ԇ(b iB">FDH=3Kd(DP$oZ4s/ [^AiC\?Q%RXQ IC|Ξ~>!nx},*Ϧv*vR9 (F6u[d%s|2r9\ImDŽ/Z84U1Б.yI24ƊRANP:SoH 2S(΅dtӫnM5R֙!FFUb'.s"@n TxF/ wm.d2#$5'i@J AԶ %{'L{M#rTm׵YǙq1m`qlϹz B ՜eb{gɽL4vs)/o\"'S&Uv5 iQ@q f~oJYnI6H1o`BWh40.kL5\0eaOag`1'04B f f%@N x/#M* IW 1|:<(i*X@L8h*|ԋEJmi 쀘D?jNn~xҰƅRZ1@^Gj|gB)-b a&]c.a`li2@URY9VP)srcP̡ezqS~V^})̼"&4}6x6#JqDռNB 440 = c?uhRBN(k{EHv({YHJSD ODRZ_Lp܈𲹳n21-M׶ &tֺ/QȤ3}2i)L廘yðfyb`WH @EcHevhǙPP;Y2-*@k2B$) 2uY$B%p} ˫`9@2lgFkX&|ҸP+>RGK4'o i\:`$yH/ T@+A͂? 3J.k:YP"6C w74J CB"HX (P t$(Hj;['\ `ɤK lHmWFDTք0$Ҷ'.˨S$,EISZavm#)tA\bimCBS8Ufg^|xS00g\$#L )'R4vQO 񮉹u% )7㓉bQ պ!)޾L3&Q`n_$_b jf݀A՞&s)4(n_bbS0HUOss@3D^v\"C73nf]g#FydJ kol99OIqJY^DϠ~gP4=D#HLT0iB}?/g>v |P( j'B]"R/2\gٙYnve r*÷Z!mUxW9Oӭ,2=Ki~1YkqJ,s`Ί.sR? E<=JK6] 1+\ʭ6IքTJ].ZIʧ|)j;=[0+U‰VmrF %}3҆ZD f?dDpFs{.>pS(%6- lÆ݊RY1S+%JifgW L L 0sqOjű1T^WkQ$-qyIDR D)RfTv)Pey) =<↑D ؎Ich͈^Ih͜.tBՈ/u@jfr?VTwZU_EKa^A7mtQV5pбJi!3 !Lif }"]?&*tf{=Hi6>̪@ȍt/.Jy;?͛wȍ 4eٔ~dqyqURE~+7Hzb0ϱ#wPK_VW0quT\"ծRV f8k4Ft߆sXjc+W Ңb Ƈ?@^{J=nka|@1W(TnU%mXjc;#l5M .3!÷hJ  U\"~q>b%s{qtn`ҞqIg=X0JAI4[-+swԳ'ҙ FfQTeR^ HpNZ@HL!>H7r%)kIgycW8.MnIgh~W % zn50_cW)C/22-k*i=矕8̫8ZzI̩(8ZJ/|T5Ӟ(ܝQWqiJ"¾ĻGWV!e?6F$+6Rtp;rTƍ!a~٘ƥU+Et>Ӹ4ZeI[aߓƥ:OB z0&Y&W1itB'JUʄt=iTʒ0'J4tx;VZeK2gF4+Zq$q^Ȕ09'JTFkAx*)Ihi|7+%1ܬ Dِ!AHzSpL:ݞwFZ02]F Y2La#] Ԁ[0cK\ ٦2A-" c-)J@%,BL e7{Cq KцdҙںA-aJY"wat~$4ulnIgT `IiLY&")Y(,l˙[uh'`-)oۏ;ڸHj@N6xx%lQ0> U~ek+$8;vן Z(~A*MkBa@ß5!Ka_K+W$.,A[ nd{bƞBV6rԆ̘ D}zDt6Gˬ *2| LwWH pfƻcdyqq Ӂ^K!"]8I׿(. څz$r7Ҧ̺xp6;zu r8FXl)I7M+FG6[ 1iuJ~kHY#%T? &Hifm }롺t3gZ4%`[禺Haca,LYMR[J1ucAByGR1(^3 2zN$8^*y#O $S\&Fy>!Ϸ%tڟ S&RXOơJT`trJuRw0T e@[3!RWo3q|Y@,w%2Bzg*Vȴ/myP#a A+5:37^\$&jt`s9i0Pi2;ŞgV gXϊq5纼+]Q$$[n#jt `R{ݱ 06 :>Q%DRxW0~Et5̯`OCuIg[W0nՓq~x[ LZSEcm@&gvYb24"4\xp`Bim_aCBqn\[(-xt^,S0q|UľxVʜ0pTeH cҨ91~g"_.b)6IZ9R4A}OR -wҘLjAƤ9c,%jހHjˏq s1geZԙ9+8dfN`԰MWkB*'k񄈋'H)ύsvxKueRE"%4)ʖud2qTr @/PJI": @@*ŀoK\*l[X [C0Bhw7@L&(ήTw?UCG}zlή?@B,,!ԶΛ"dL V^^RVcF\ R!ݜ z~"Ȁ DE\B-kV H}\-v HUOTKL\(S@tZrml(@.:etɁ5q/=4%Ҙ'hLQ8/`{7D81=" `16uU&" 28Lեhc(ibiFe>Yp;zBa݉@K,iDJbHbN^Xc GwXbIIgPPT/S"պx>Fj?&i4]Q&5@DNuFΫ!@d98ki Rm23ly* RIcqZ)qJj-Hݽ& 24 ;L2uR:F$3.Y^WV #QWJi[ @.[-} Ke t2ʏ.ҚfTZ` }Tj[;20C#VM @,0Bf R]@*ŌPmH$E)rS֍qTvZ=24=:g>t RS:ҸoPÄ *n󻝓IqFd QmIJ^ѳϓ\u !H뗞Ǧ Tom/F'yt+%wl398ѵ~g " cx)Ii7_f0FŜ7l4T$T.zigQ3`qŐQw]Yw G̯fg *?sD,z~7S"yZAv yWQ=" 3\]Tѻ {M2Ÿ3BΙXjc/C w'Lg@ZjMk$2GȬR?QQR#4?UIi+؈ 1F…1g_Cn;Qz\ H0=w.źv ,mџ;TJ*?qzן˂sx45|gusX9^dh( hIH"vj=CIiw$:k,!4NB:7EnL$`_ER vff\T@Ѥ4=C$+7vaifz%F:GcᴴpJ(&h"S n+DTZr*4(TO 2uhB&^K XeXڋ (2)M3Š3~ӝ`/p8VZ#S G` crW.u#i•j8j?fVsnP|iӒ NnngƓj}=_벽Mwm>$";EɁ LK @db[lvsxաlPZ'Y_RP,5=i3t";D! &4MRL5 v<^Ԃҙ Ćb '9ze0nsu@!?XjĆ"5eG߄ bl!>bR*OE2[i?IegnLPT4" qZefH%7IV<$j(fej@#-SCI TA~U%')[p ԰o."5~j.h3c)IP! M\ զbi D?E'(HP 9/#Ԫ/c{ R`j41Ԯ@?@Pf)v;0<)q @uPJ H;-޴qg['Æg~ÆTZ%H. * >BC4( ЦQI6ZeU g" MD[Hi.FRx<^juq"#3Tl@:;n _R^sYÁ:+ZTvKLhͼs3cK'' 8^M{gDP/`Io ڒǫՔǬ Lc,2-aymBLzؙ ƥEOWc i4%3SUq2&E?Z~0@qGoN % 1҅pDB|{n8B<.z~T'"4נ cҨY2A9xvsA8{T#^C cua&H ʤ]S5m toq8G\1?-+&'x̏Ϫ|]a9#j(L!lR9@;4BJ*O9 ̕ }T"2"i"%&&Rhokgs|mDj0k;UeC"gT Ң:0$o& pXJ0Ϻ0IYû*H )v 4NR^z}ޝ+55[T[$~P*eLQ dP rB 8޵ CfKi[EFi(tT٭4zJqfGL(N *0;Rmg2h(b&0Tvbv&zd%R'MH*Ë/(] NF*7%tǤ'uFj? 1"7Fn sqǤS*L 99?rj"gǤR YI 4L3\*?-B1L*fLxWEo+`͜/L +p AW efq4F !,rlJ"i FnMcE*Ca(3Zsoa l~"6-"AgHLĪS&vFVH7KJgT"W+PBoYr3^TV] Evt`5S,a?C @kDnf"A+S ]W pTFqЕh7@ #/֒9$EY%5r^471NLԖv}әAS7/BlNQi= `67$>+ēs'u4.5 1:>'H+Hjñ*S+=jLj}~2BX3NdҙV&+)4juPzV r!p(Yv5EjAV8,F/Ia +Uc?+_*q>ia7 ǪTLoeQ:U`Ԗ4fvK4\d1x*,7MfQYY9 9=>FgKa.l`ܘJWW@o.lUP @- T ]/gn$˱P@\|ܨHjC#eliv[L&Xۏ(*ҢO{1=Q:S=߯R=!PlMF/svA|3_ح|Bp:LDF;|R{) (D@g0Fvp0BN 0vt.39H8V>fdNS*^dh88;LZ {2AgVk?tp0eҸjd2CgNmp"p"\\e9ӒX tNd\4.zhI'JI7&\+Ffh8q)Ճ*sR;-Q3qGhi|,wf0eQ$\'r~1&daDDLOȀD:PPOɸDj9AȄD:;7 KAk|O@$-AqD:>_g"oUNB<'xca>^$R$tg"/D 3 $e=@$ݺ )Ե{+#XϜڪ-W>C^% t/>"+(V?G DDQImi2:q|;y g:qL\2㕀Ðg8oGkt[X&HRE21] lrXК;a:!RtBzN!՘xqj"34+(c34皋u8f)"g, @-x@ +3iI BQ@%7PB/Te՞y.!6u$Hr?,M,Hm3NZ筀x]!7\oȌH/U4CIg]+d\,S5eq$Ru0e(?M;<3\{+9xR+nz^@S4r~2m,^M^W/zIieR(p'$rL܊@qEЩj5Rr ԆWd|*'HjC[ ŵpY|Q/u0J"/R;%= )ݾAh (=n|ݛLh8pdu,uQ?T*KmHHMD;kD+Z=GgFx`D ?>bEwn8@nID1)dM>41\1+ =HX}6f1%47}oJK[E=<9xn+&=b`{(1AI:ՔȞWD`ҘdkzqNW"RtXWXOPiև1PND:'x&Ҋ޳> 13]P߸3k![Xy-{h0KqK6uh"&oAaPHa?9,7W.𙽶JC=%?Q \"_@PZ=npq0PR8 `Fђ|A ݩ| ;xG~d008LCUn6|EFo 2kKH7HfǥU[]$3!0ƥvClL890sҸj72{Ҩ497¸ 4*?c}8Z'62() K ᜪM/:!*|:4&Ҋ*LH&B_THe`Na>~fLDTaHۨhde0b@t~oĸ{({TLPV3Lj˧qHb`! 4p7Ñ|5K5^L$ݢ 3OP&!lv!rc`'k7&j(f"oIf zdY)m4Uff"Jq}u7&1tHa<"+%6 *3o mZ؞dO2\>Z$x ӻ=W陟vA+Ge0GY-N57z$HߺmGt~OK4U䄕0DY)-e0jO쎚HD՘`9qF&rxOs!'HUbIqhAkgH%a z,\>!l^t2ٞcb:x/ h#|^-#;Cqc*kl\-qu?dnƣtocDҰIa=d2/a#Aaj %e1`2Ca@ RR _}7@*5PuPPxm\7Wx?a0c ?:V*+J I%wG'3ojjI` ${ v~(6E[J:~-ŦLX}DDT y Jw~ePKxL~@B4FdVC?X*c@D_3Pe{ĥƺ|kn}_!25ߵPqvHK d Y8ۏpblYٛ?R07ע$n,1vCA#WIg07 &Z8j V*`'@n()VĴҸ4jme ʡ|Q>jiZ`9hLYh f[` 'B~BZ}_#J+R2sj <b%TiRm"0↿08L*vAb0M϶Q! `ޔFi]+LJ>C`8J 96.vQ.39`t D7!uf>X@ Zt vn1jR[oBs fxdžY9,!Ii.O(ĥWN tv[MDι>yImW1ӹx1\ޙ @҅;J2gt(]`ԖIqb 6kAb_P$n_@ZfE 6H[C"Lcf'bڥMHmujAiM{Q$!8`cs(Ic8ALPX isQ+Ga2LGHD J ׂСL𤤓ƥTF!CcJrPkIU&ŀ Du0!1I)"1l B HB2Axd 妏85bw(RWHa ȁ.N NWn1TIy!+ ű[^+9kXm(^r1kqxIiiu0q, p5ԄDR3v|#ex c;[O?D-ՎY';7oE_Imi+7^#M ,xas!?߂Q&_Fť}2sEHjY_ %K6{(N4P w+Ntv0g̲\鿮URZ~Q;ŻwCK&3(;uYO%#؏e[4!·?Ʊ dʦ*E%)5$ӍD>rԁҒ} "i,F8-M1EMZmz  K n! CXdO+3d= ] CXz̾ Fb$"Ӧx.}ڢSZ>5]u2s㉊)t'AW&$n8PK˼ѐ녿7r , $*lP׽~AtCY5w,Rj8n\wzĕ:>~Ϥn IPyKMT*˧b*@pݠ 2|ګȍʦLxrzWi tR;>-v䆲ڗ&VMԖƏ f(FJmy*5"P )8Hy?$sd{="J㫕O|tZuf3fYXj]ln('+SDe'k|Ym0OdVqTN&)V*ؓ@bUF{x E:KX*[cG8ZR@ϋ46k_)c ,š-:8ﬞV&YIawڗh;)ݝqt 175濪i ;2a]nmW%7q"hN/07׶sΔ2&(} (t],pwU -b݀ڴt\mۋMDk)!JSFn (A5[$қ@rTnB&7 F&f;8hhL7 要2)M5 ~lL"31 D/MH34 8Z /nй@k΄PNr. hIka8Lq0Jހ/K6 &8}qԎ0Kv$QthT<.^i\Zb'9_|! 2 sѨ4:CcA׋F~ A ׉ѮO x^CK+t ߤ/V2 MtL"l88a,^WX$,ui‰",_TUťRȤ}`X5fbx.AO7^w%kT"hgz$Rm|j"i 4cFo0Y6 k?ZF`5V0t"7:NJ$fP1'c!6Ϸ7OHy֑FN(J˛- G`X(!dp8Rfk+HjgAHiC9:G2AT!٩LDHQ ,5V;Yaea{)f#ٯP*@PH):4gmtC:iB.}X!n"-$ֶ2rÑ+Xj( o P;dSIW/{PKlK @/}?'2<ŃL" D w忾#^FEז"†|F-_f] u\Nꬫ@nei@o0$~+o TF-&&"f6,0>!)@vWfABa?|eHed?n<@ CTJ0rf6}Nv~!RT-E );E iλ1RqR`\|3tnXmV0A҆SuDRB1?+I:9 S@S"UK $C5ٴgl0m7DXno F.!y1Vn&tdK6t/kD]fgp T8]ZRx ImwPAl(bAo{JS[f&EC-wDa/Qi:[GeӚ:>(RDDQIc yPՐ1*%s6Reqc҆+NE^5?4K1rFN^T kS(6u71)Ҫ _)y~ѸZ`2}WVm, 8}ѸjelAߋF%^AϋȜ/Yq66щA1iTs*w!oJimƟhH;Z:'[Q!&2*NǎC͔MepXi\6ߞC"57`D:;x v &'*Đ #|fNI!c{+}"ngnk0 {FJ/]$-H"W931j0Oٙ_뢸T*S$R; E6m|lM){9xڰ~e㽽qH2}cϦ2м _qKmH!\*H1`aHo+يӄP(ДJen5sF1hBY&BP  1T*S[c"k x^!;XJCH oP,$m(RϯeA) GԼgW-hO%z~kv4i Od҅RF!JQ|4 +R[Ha2.Җ0}r (He1՝+@;ks;F|JNCcrl") O#2Qa=vC(Iix*\ Eh#9=9\e7!`k fjg/lRm8FD3E(Hm/-R53Q&TRh[F}%J0z3 ]Qc !?ips^ ?V^'15ǫ0h^DDŽ݊p^BlVlB$^RQ ~NveRĀ M14vNh"z`+a'`FرR06$c>XyzHfyJ7} _m!2v4vex&4*P$+!",$ƥ:Q[<.Fgqi`BEaHe {56Եbf8JT3THJ\Q.Foga ynVp"1t\*uv"ԓR @e"LQ}10s)cT)26PdRwFe0m@xoC yð:`0VMgHf'e ixZmwpoHmq2>[)$R `gh@yfЫ2sb 5Qd81_pwkB+l5C&ʮI xޯ;{.*cnh d$ 3D*]B;ʧ_~Ď$]'0jx'B ~Z,a @] Pw\q84'L6'!0n-́;ht׷ ȟV0`1J  6ԺU|q. ԎݏTz]a"<V*W;/eGįH- {d^(S閲itrzvĺeEkAԶq‘KPB.B*dy:(JY< .C$~(T* b\DƠ˗9̑9Mf4*vqA]+Ǝgqa%21q$,2#ׂG/^}0߂I{{(ұ``FAs'Ik C.H(ֆ2,mC2a.w@mdq:E  (fV ȘHj;]%%bK<,RtKD('ݗvﰊ)͢ R.$KQ2$9)Ӈeldp@$%2̅X,[jS]0APZ 9Cq x]XH%'Uq%%;h%^l2Q.v7@2<̿-5& f!Oo/|2)OM 'Vt>'oY[#? h%P'Ń/B) CmB-VT |Xykc=}p/|K]%RN"*/|XW {a=2L00/qF$~sʋݮ_PpkS)a1~"å0ĸp >1~j3aX=8C); O1SNlw'ud0v d.k)ҙ A.8E݄JRӳvҤTti TZٔH[r>#D@'[Zr,~N8 čKQ;DR> :)Y6'2Ivcm[/ĂCKlE,"Ff)B-mZ*1b)~>C>[Á vH=KCC-2oe)N{%bfMsb\ M$RCYrR:JdDRƼu[9oqD eK"|r/25̣x034BbԴo^B7e\&RҌ~QB6E qDy6+.V[> 3)0ْi/Le"]RH6{W zĨJ(e0,0ۑXI;*&:D y@`T҈",aXRIchL&f0bxij&d-J!b2*"&Ge08LZ cWA ƤypҨZV2/W:BJ$W^_4.{e^4.z^昙IKV~hTX7_aZ=/V 2y4*a ƤQMbl"ü0"FGcaVFybcȳjhi2R5v>ZK'1Qa£vr%C1ؐ O؅j2-_61a|+0gFw9[#c /B41(1Cq-^" mI c0ŘD e"Hav27o+H˞xD0HiFD$tsaVrs}c*Mͤ 3 h%vT Xc|9") ]Q&RPH*M$CA="T$r}qfGRXH iWk6xY|旻!3y @:3801ch71P9 Ǭ 1kT ϧvΉ|Mb괜bm.IsRO{wnws;tn%"tQ5#XTL`_P*Co:RPHy>mrZӂPK;a{9 u^qHeFb{8zOv'yEH,B)-[D(~_@j+oE@B,Ka ORNFS]gVK:` f3k5 `wC(Y26R64>H XJcgHH+RMVt ԥ=KϔJmk182ZvDàn8M~xnd+0_;胭<: zc\~KZEE) bg O)gJF3TOove )0t $3]S'$Rmmf~bb!0=1 >/ܬ ;͒*@B,Pe̪ԳkSJ?Df01)UUnNJx)|Nc<$Rڽ; )z5o!ЖI6sH/ǣn&qNN$PrR59:B ) ;R;cd _`PKĿO!)e0P}oG$&$RJ,0,1ŀX*I.C_C, a\y`#$2wrc i0͂U8Zpb*^%n +K2HL/*p&-&Ҵb%dImx\:3%̲Eҩ*a/FIXJh*A]/FLEcҨ)a~/VaA ƤQD 8^4&(İƥD;DE˗x캸 ,HTJ-xOL`NQih1B)GKtJbY(/;àLz[+MW72iMoVY0011y eR[jB/L:8Ԃq--"nq PgHv27`VKjHM׆eKB2)-gNK#N޺#pgR`cI`CDjMDPڙ00ds7a5y p ?Ά@ܬv}_9Τ}!p67#*/α`N "}q^,eRY:Q4 {f]B%!%ȴ@NO@12!:|`mÏMx,Λ޸JeZ1ı@1V-19O̵0<&;̒RjWc9UBY^V[0,qۨZ)}_ڥNR%RN 躳S[/lL"սa DYh,Ɂy!3}aE!f7X)̼A+ӃO!LkXeį@r*eIg,c,JYER)` eT~blaW(T.@T?[ E2:GG)Rl VМ P Զؙj+|JQX^)N̷j%լR;F'i-r? qԶE M@*iW SHe5 @/2RY-r%\: )9| ̢~1CuVc|)2RZYOĦxr43'3`5] S af S B%RYL qu([;H$]L^SvL"8t'ܶpS 'MPBHx)Cԯ3*VNOfHf^fJףD#(c%tFa?3‘:g[zʤ3}ZU0P|H@$v[@Sj]D2LZQ"#LvUJ"-=O 06PTZکr23PXT"EȔ =hAN0‘K6V0*GKȬ)R4K)X2H/$^hX1iug|}4.>$ƥ:HrҸjI_aƥ*P z^0&IsEƌEc'Ax/F( +wј4*H]AϋFDhTj0ep|4.ڸE^h˗xLb<0+Q@b*k;$X*%_IV0hGKV'*^wX&32"9 PJ/ P@S#$IeWٔj\Ig+HDpXHj D 1o*cFTےDFRܽ\Mij'rFS8}$t&)3VE:uKPx,ѥ ~o/b)4GĊD#4&4V} A$ԷtW&hƊb6'DΎ{efL&"(&tt)DX0):Xu 4nIx-i!x?H0|?*x4\zWlƤRY>@ÆC*n"ú%}vnq57(6_nѼ nʼogu-=韠N9~3S,{D4 :`O=$ZRuP DQQ}\a4K}ٍ(8BfZ5C)VC4%MAJY5C0r* fhdЌʆ;֑SX(BOt{$4|m"` vJ!6CXjc;&>c;E]9̿WeJb;Y_Hgj:j{E)hR,Vk8Sem9]<FX?RJ0Q-N< Hv6t )"Vsp4{P4Q<N/DJ3@1IVAl7 yHi)R NNCTVO:1!\$1A#+JטD ML-D 0Jkk/I7&&YB*-a,1Dj $)r(51~o+G &){&!|A Wѻ0Blc(,Y(lxي@/SYnw'`f@eݜ Ȥ3h ‘ :7۬0¡b;m8<|yMY0l)" U j,")-Ǻ  KW^XBDLV64KBJװD)gP+0 YHLx<^;gl-y4*eLg ƤQ)a< :^4*Z1iuFd%\4*Zqƭ$/FSa"KJgcZ& $e*%i'BQ .D!N^Bݷ'*Hѫ'8^0PVojf1BIj^r4FQxjZ춴xn$nROH צv]̨hs6j^b]_Ie-2BQmYySʥVm}@pɭ3nhYdW Ks|bTB CrMqk!.SI%MpRLĎ )x:ҩMԦ(%?8J^n}#f4l!\2SIw(Y~~#A+P9/N8b،b\#;$sٚKi|*ã)J`js 9dV<صP5O#OcAfM}i2t xZO@teY3AT@P$yזRPB$E SHS+?@*#=$^CEM_gsڃ + 41%RY͒3xD%O{<hNe @H$V nVyIDefb&)i3@  I?S צ@V\ŃtHRaH}'URѭTR[n(ά,;6 x̔HݞF5ddœ =ALt$ S+zS3b~_BF1I:yS"t=+!+4bu PR3DRm7Z(ESû̊) F s49o'%cE Q 12[!X2mA+)txy% f[t7 d$BB#K1`.vض#fߙ}m.Ÿ 12?ռ^bx E&hD2- d(^V0./Gfj`j Yq-LB-d^*H ']3AUVr&!d Y1+a}ј*FWAϋF:7´ ^4*R̩ƥю/<*z4:M'N/Fq*xѨJeGUA ƤQ5¤J8^4&Θ̪ƥ5´ {_4.ֹ̪ƥU+´ ;_4.V&\" .l:ɼq_$`*%I $S0j1dJKNDzࣥqҿq.xv9|j!U-8$Rَ;&Q(eQ$hI =QHfjYzkM3QEZZ?`>)(l2k'.c;KVa-" 1`xB+:3?qe;")UIiw a:硏lȌД|rԆN1i>~$1[bP7~@3v*,{I8_{(t=lVQ [P%om@ EvZU m@m}ͼg$ffI{?HL(rՆqHe&pXC1I|Q{N`g$}Y#`--k@f^^)JtjuGHmf̤xp64w)+-l,#)6Ƴ/^7Eh*S[C0Q0f!0c- $VM716Kd7)px+qГZc=ݚvF}BQ U5Z4yO FѦ@!'1\mǧ/2Hg\0Y82c^ R&s$uN T|0_Yʑ +2m=F0_CSHJ$(&4b\˄Wç @^rkLRm_Jxfa,& 0>݀lU-C&°]Q*M8qwLnCЖI4=&$(R)L E*Tr۠ϧ{9ŦdT.f͘N(Ŭ;KegM0n+oXWp̡KK pa X9C)N K:ʮ8S vQ2Kkx)|YĆHЇK0;'#QcDIeg̗PpH:C40V:cG{BB ݽd!̈ .΁5_)s1!&Y;V~M? PJ94Rm7'"bZp"Cxj9DZ{͍y Igoqfuu2-w%w602fMaBjAڄstRN0C$wJqDM8JMD`C0;0"!H`X;!iMk m1x[`tEt^+3 vZ;^L0H9xH{*h 6d ǵsU؃钔$ m@-8G=3EOK0,$M9$y!dK"(HgȗK2R'3%Ѡt\HB&Ja+$i̜ Shŋ*$TJ}HI_)äPBh\ U!=/JHBߕFQ* ^4.V$M1I+$$.V7.3DcҨhQ&wј4*c>3!ϋF ^4*iLƥS; {_4.ZLQɺ &yѨJG6=+$/.p5DgD rѨtJ'F-AߊJ4 L24f\b55Dj3}>Hx #a/VOILL0(!(b YOfn_EY:I[Բ34DK",ݿߜbgx ꣍Y[Q[]v1eR<`\MioMHt LY%dR[jĖ`X DF_LӍkUI:g"3IinQA8b)4!&)}1G :7։m(=;aBo)@kۤm91R9> Nq.fd 2Mȗ?,ON[Z)J)_Bp=Z\uLPV$WHr϶y>s%keYIgy"+ĖPRsWs|3qahDJ 'P$ng̕PD"b]BaݶҎjf3`A٪;nwՕb2Ba2X`dP0jyOK(d&0'3>X&|Q$%PbX_R(`(8yc DŽDj;[zcQ7|v݀<oO R NO/1,~o[bœ~cN\!׼.1)JV+R^e)5?'%-7f}f^n0Qý耣䁚yZ5־ȤPH)z-I6U.(<6'yI (9R)LģP!/4/͏APșT<} 1FgRM3)azMV4Q(Pɓ잟bl1)7h:tކxI <@*ʺJTE!C"٩]I_)d3yPjPtqMUyT>yg(k2kDjBQʆom2P2V#z{4 $0dL0>7$V"'(")+s)ϞDJL FUUhD P XaeEZ!(9&z!n;ID5,Pg@xo>MzJ[K ͱ; t6)$֫rֳ &'K#I'ubFH(.=~]6[ .$SXDι`X0J1HQ:=WUdQCOk %1XW@ ~JĒ`Vf=ӝtQ~0EI꽮wY[$%MbH jvf TNf7!Up 8]Ǜ q^uD9úJ]B+$D]O}nUd`Ie7NBA槿o{H*;)uǢ DJTꇰζbbf/,l5}Mp}PkeT""CʏkhWp<D]XqBkf(\ēx3\{^Ysry!BN]C~QlwXP^ c".MƷsحHedK|Dp-@j+Bq, >i]sfyJ!U3LcRY v'G+?Z7:P$"P|d 2|ycE<%Ev14eFA7?_}ѫ&4(pOV,@HQZ[D\LHHJO+C#C`0+eʤܽJ $Ȁ.擜.S# gI0I'] lT¡$vk&XQZ,I(y]UlD, e|W>DL~iymI0L LX;uY%8W/*uY #(iu=+dqcqknͬ1\H"%8P"d5,pb_VFq)wIm7M3DQLpLno"..2>aP3gt^L zjeBizG`c"q.㡸; aҊJEtp 1 Kq4ff$&EHH$pXHj;!c]!ϪN "&kܡG YB,lRA,GKX*͏C{kTu0<ۀcҨƒ:$w4*h ]0"IqPG1iut @IRhLERj`}/ZGGJҩ`|/VH#{Ѩdap2Ž0G%; $Q|W4ayQK#{pHX1/\!H3^-,g3 P//+aI&IJ{iJ<0+M,o3 cquh]DmA|Rz{fA pdIjLd; 2V~bJY^&$z×P+Ax PXt6߾"a6%V2@־xpj(xgC%rWlם^ @.ۗD ];1! XB*'] c;x-Rv ] @8f8e_Xs.e\ 3FGD ϹB+c){9jM~b )F~ k[!d5JkQFA RDYCP-iT4ERٝ17邃*&/Idd; WJd5y.!\he|c1A0=QB8O/bUw5Ha֛A3V ģR)LoٔTc-ʥ3:C Ŏl2lŋv loFЊYlߺrDJ&2RA9+_)nژy׶ 8> Sň"$Ra]rpt3 HJ6wB6He`He]!=Ё"Y ہ_)ia[|A~^5Ab;]T$yDHxO08A1#^ŒG(j9GJ7:Ty`xgS\"v|MG@"v0̪fLZI* |PImgM< XT- tf _x Hgb oa`#b~,B"݄"(b,):6ԋw`M ƓCԎM%b 6ͼ9(5/<8( n" 'kWX&aTIJDưEZj<8#dR[5$*#h\ ÏEȄ!YplK%ѿM:M_zdQ8L*]0J"x4*E/ ΑphLZycҨƢ7Cwј4*. NjFUv^0&ΐ zF:r;_4.ڡ F=Qi ]d]4.V g2A4}$@tc<8t7Ϊ` 6վΨ#y:ah)@;r(cP>eR[/֮aH;C!(^~2R~lͷԭB Lz`/4G3?1aͱ#P:Dz&tG-81cG'3QޣQGD$:|փW* a 3!B-*'1!GŲ/ocLu(*ʬҒT<'57v${ O+P14U6B"d@` oއTB"i+A FKER>Vքbg. \97fQ޺NѕHeLPp.&}~s&Q1)BqLw >/R9 +AHa" ܬ# b BD ؠ6ܭP#)C\$kP (MT`iH6/ `f$b~BB"$f~!BL"~4!"D|&DRZ~'X Kf 2nTfvZ(RPA",!OMOb2-#GJhΌ<ϠXlvbRDzC!T$q^ZrrA0eXjX@R`wH2)L$GIdR[B`\z$V"8~æ6vIj5)C /G=SAuuf7X[0H$b-;H(i_1ZԎ6L lj?J{x@(oD5F&2RY:@$槮vfB),߶"Q59krkBi#`YE݆)F@XsI64M1 >"bt41Vi@ 2|˦0!J(`$Uٍˆ?i BA%"R:i󚄁x0}=>(|u+ b~?Pѽ覮 ʝ8 !Jm۾<4h?>!{jRWjtZ 9Rdpl3" n~e#@ n":cw]DE}L:bƉCaQBD;v;\ _}u (NQKB(h|2Rڌ1c!7aPJa/:Te4ղl")֦ ޟ+F|RJ&CdGJҪ."$9W%_(a7ƅwĊRq&q4.ZI)LJ@$ݞ%aJjc^=|$B$Z$ҙnBA?&HjC렍dECڹԊNVf8`!?>HJ^=p%LJϗe cD{Q"g`@Ø0 _'`,MϦhY: yİXexi&C0.Y;Ճ_9_=~@&Ӻ^o-V|_rދa<@B Rc&|8 ,@Gk˾ k(d:YlɂwuHi#D@R .M$Bz8;$3 _pIgip~/} |");ș^οUxuo6L1(R`g+E\ᤞ`*5: ?;ma/!s}, jɿ t!+й[?q!؏l x)Aef 1Fltl%ʕpN9s$|^ktRP}\C[T}/銓R"}Xhۚ2n{҄V .Ae/w@H ,Bgi_ 8>^3Ҡ[|!V3c!4WhNjbЙZӌĂh`Z&2[V~n) TcYq6})AB5fۄYg* IīXD"2ANP.APvwnWq|<gfA4^ZG'&A<؎MMO~Ng*jS9 6s&LMVTA0NCyRC2NTCRRCĕ!UJ'4 A5:g32#UjTztJ3 Q!uEhd*GU\:Z_BsP Y}< !!5:4 A54*3 !5:g32¾#QP.DQkvN eB{Hڨ%BwHΈ!HرFB' &%) 3&=Ǣ; HHP 4ze(m>YF&NIg*$83[ڋ4.ֱ(IԗrIRj1IHk%ُٚE$ߕNY}1*˓]Q%Cl^-ZhKG#!m F|p#Bg f'8Bd6 ژI?]a!Kq]KP e`Ccӹe&=ClƝ*?E|NN/H],N{$?4F4*4OfD/y4c$dJQY`F?V>48t퍩̇dmgݝmtM3{dbdϗ?"A|P`XAk!Ee=(nKv6n0D65,N= I\& Qy_N-C;`:=5ndb D5fcl@2DvP33E?$Ю[!Bm8ڄ}P;{M2"R6 jmg@fŴc?8j]Iٔ)Cg1@b=fCS#vWp 0ґyzzuQ $6s5q>$  &A8/ j$NfJE΋R $flN?8,1eRG;r5!#7]"Tf%vPY6sW8u/.BmgAfƻp7  }p..J/\xv0#D%[2ftI۳$CzCdL AG < ;\pm3Qi"&s f=Gp\G8WMI~\&tZ?~arῙJDۉ1Y BWt b+>jt2Bvy)Οพ zG'Ka pPtvJ*JF$D-љ$ KLH$D( O62!Na&W@&਴:?'bV*`#B;x]\$A67C@(1n,vd6,aR#~^ J/'m=և&$k$ kP޶w<{ (}~y bofV%_}aI Io\.P?<pPyg *3[EX9zYps;;H bMsZbM+ɱ"3%7.&ۖݴ.GgO*./-$g@Tfu+,Bmxr?!Be ),e":'{B v966/O8(XTf>9 @m:]}{>>_kO<]u&bZz0a'v?|+,Biףr+m͎L_noP%m0½bXQ'9t>.A&lAkAq[dw|?V )j[k2{cdZ$K>Ut Mw&+li Dqp1 9U*#"Y-`ga~) 2 mSW 44Iܷ ?.j1& <+Y5ܐX`ba/lNnH:]dBvV[b3ÀJ'θۦrdP[޼Äpgdmz?*K|+<௏yz#}^)^sR;[$CCְM5(GjOH<9QRt콿y m R!|4:/JĆ&@!Ck:SGPEҎtZYڮb54jKg}kp\B>hhP[.D##jE)BgoǮF :ӹ L&;#&[XNnB Sʒ ^Z =| p * ݈[]1&Wo?gC?"\&F8VFG07^|mƉMsE8V;(!Dg:_qPܶ4ݭk|&gメM vL̀<}6axp7PyBMsPhkmx-)!7S 1*[q%}< 5党ؒ)jZlbNi:vtևNYM YP6;VÅG'`do[%r'$ٗ`dlǾ>.tf7A1Ct qVJ6 j+&bfJPYݤbom+̻g(AA=m]-0OAi[q{%WB ∴-`XX{Bsh!T D( c3ep9„֗QTIl9Ĩs#r!UHQN6%*Ĩl< RԦ~H smܘcg)Ա"6ߘry16K`):ݖRvι7Btpf=5A̐Рri uHf^7X"T?o_H` 2z`I ٸv$^5R6y{4~so 蠤n)P{&Yύu%]vA,D f*lrs0LqHQ Й)Pa5Ւ 'ukp wDh 8SN}c)mr6跶l ֮&+ZmF78H9ы?0%5#lR[/զw dCx%Bm_PrPT5YQ&v ,%^"Cgjˡ=<{cU9)G(; 5BJG!Baz](QFP~\d-,!Ck\Xt4vNbC(DCh^q|ōE&78b3x4^NQ(IC8PBqkψXMM vTCAG RC2" TCy >m*ZsLoZבhNPdvCG:QJo:js;v㩃OVmdyHx b7sP Y#/!5:c)`A54*(!5:'(2#QPzCQkq# )kf,C19Q&CzdLF1(q-d, 18H*̈6^*1i K8D %|.ˆ0E9lKOyrTgec04.UĈ Qgp)V>KZ`nYvm?11: ɇ}., 1醸9Ƹ{t*хP@0$Ǵ9ړ%|(+fی(,.ωk+~!uߴuwɩ0(tۄ6$<-fJ1)j'Yn")b" be7WQ",9.Vf^ N"Dɞ~ů َ_[]Hv#/[ƠD2ݷ)4qhI36u_<澋AHQZk4(/Ңr;63A}z/ =In0Ylf&Ko5Hdg 6}!<$ bQ UhsTQJ[ըm##hm)/dm_ecmUc(Ls}}޹'aot@'r,+Eeiox!$Eej_? xH\BE|peQؾb6b~kuq!vvzyc . :/s\@WEj2AQPڑH3Xv*?oMB2tWqv"|^2fp2\Ķ@]WQ[#X(eP XX0Z0G>V[b j;hJW4d-6g|^49R ݌_ztM z'.+3Öf>5b H./2!aFt<-DX+n?eCmunsSGv=J}h$9Zd H.r .% GYn -!$#b1 .7(Qfo+I/8"n>8/cD,SScvh3|y$`ƫ ]C>8J M;b6A ׽)/joP>8p :;#bp42l&CRa|4'/М Q%C C#'P$s=h]d#\X,xLCpRC2TC>A$œZ(nCjhuajhT_(q))QCs"C;R >{Hv` PCѪ P}Tu˰SP A54*C0 !54*/`!UhPTj;TG^b=N=! >wHZ(Cht!jhTo +)! |ېZ }Z|ppAȬzx(JR!qDHPʉM0XI|Ɨ73$C Y~1vIPYx;(&ݭe{Q|%]㪖$Bmh[ mM"TvyCڬoeiP \Jڶ#d.cJ/_L%6)*" +c̐lXŷ'E-jC9y3f21!FiP p)3Ėj?YK: 4fx 9Zi_Q]m;_P(vwbj9Ūdpg@E9z꠴EKppFʳ-[4;JT9FIJ7FDthbK5٢$O6-jW{v4}#`q_R3%ǧSsKEϮbiQ>F9(OvhQy2\hQfL5:K|@ E8VBӦ엃dɗχY/D0@l*BD( W4'9(H5erd5H^v!$pp&63MrpP6kazE=?'jB2Ԗs|Bg#~-dh,kanB1hb_B*AQhXս15KGZLnD `78J+uB%*;o J9ppP:#jՅ&%"tmGphrS&?i84]$jGRTCay4Ivi<vl6'{kG98*"P;Nͪȍ[(}}`S4~tɅz=+Rޘm*I*!/'_H| U*H 2!YT1~PjRJoj*`A54**n۠ [dz#܆'DvTC>~CjhT+ z@<h4>H hOgIBδd"Cgʘ w#\"v׊tw IP ̝ y&4v~_*áe48+]->$Bi0];‘X.({ț¾R:/*MUF˫v~@ Iե}^$Bgx-gpT$vJgDȶ]Y TNސ83yOzA"T?/oi,= .28=-gm}9~rLcÐ8#Fv#h&3MrM cE)R+Ywԇ{çQ},Fek(1eJQY.t$+ζ8sd%jW $R_: AAl͑2)B^i솾 ,jE J9bttߛ";kdD֢rXh^K}jQm}f,"LN(' @E+(ohVKϿSU+}2 %*G{)KAYVTb, n|qC}XYa^L*%$EmRh!v6# gQ#8n_ڳChHӊTPSVO-oZRپ0+(=9]^?.˵M<})i!ao ,(?yu6v}ъЃ,Aen ;_3W6faP Rʔ3=jj6:Nņ1awTfkD$ bI U[fsɢB мֶCOyw )!SE7J 8_2?)8- J+:HAA<_zlFLzd5V<:h%Jh%*"&XT*"nߙh((O͞g$E:(]Cu!BP&@| TlEx Q| QmOF+4ĄkhT;(]ChN;0cjhuN%:Rv~$"{tJCꨵ|)0:1LX*LWߠ B:R(YnCjhu:0[jhTN9(YCjhud}GtERG]C*y::P!u4Zc`A5#!54*홪`A54*!54:IT{@딍hL[XdA*8nn>OZlYf'UH+T!a[@=%D-E]LU[w kC2>RHx6ÑEk{vRPf?;.}m^Їg[Afl;| )(OA6!K #bmއM]dm?4YBԖ=a;]s$]d>?Aqn/*M![<*YcQFiHр2[_7Cӿ4V/Sy+V2gmuH0S+堽k8>m^<1dLak)Ei0E \H**%@`9)l :xn V2~B9PAY@3{|(%(c1Ũ}{ 40:_h1p밌;0}]쇄RHgڝ>'b?^Tkx0cQBb;&, J$b ͸[Dp 04\ߗ(؛<ĘX2wYWq8*wa_LM( ODUD]ؽz5ɶ%!D1a77:>6z?k` H)(8`5kB $B`4\XD3Qu$ q8IA:`\L{X9( RVPeB-aQ6Wltb+q!Agg+z(%%fO<|qeLc(8LW3X"t^L)q#J%D-}*q2hGkK1q/F);ec1Ԯo ) 4B@Wq8.;oø!} C0檻1L!AzrmabX'jd2Ϩ)M4J>"Yn.oTHX˂T<&s,>ՍCdLҞȊ. W6A!+8 8mp JSQr㘄3Uhkk;[sD /Y芈%놺>l8_Xw\Er4N[X[ڽ BWhPoǏg]+]AAJt"$Amv/A^v쇭,ֆ, "tc+80VdL_>K$2,Ciɹ&,4p;oED%Xd%hf"bu$ޮaI /` : &+NZ7N;WF+*#W8,@F빯&`Yj]\VM TC2 Y +QD.~Z=_^ߐ _*B(ChAd*;NP0{Hz_*J5+QT BШY^ߐ^*Z `ZCבhAdBG: `:j!2|#h aB]U !U,B rRC3( vTCrBpRCs"C;RP0{Hv`ԆY$Ch !tC<+Tь(WPB5X$ЅU6iFHИYLYpTNd(L1a ְāLTcg櫺YPPO݅Zog!Az NRHA," PK)u`P"b 0GǶOm99Vp\&;< ĭiwIt1,B]q M4@B2ԖV!q}tRk PYeM76 \S]n+C>`ot/ TPQm{Dx؁+$<*(nhܔ5ĥ,}iT 3:ztbf[.DcibEYLb!{@ b8?L?B4!(2 hPqVc@l83 -Kp 1&(M}۞ +AnO] +{sDh Ă@d{+n[X挨PՠDx P}>ՊKPX=OpĊB$í>mbt6^ mɷFĨlgGP_ ,Fe$$Ҿ@/z n'c;<ퟁIp<'j]{Y$..焍}=5.^?s"\\煊X!vzz),*u\&"f#.&~ڊmW{+olWB>]s>jX1ڎs@oRsiڔ/VD/P?AF4ym!vY Ip\8K" }YQ +](` (ZNGبr9 uώ6n!3gǮY|oT&d``BUQ&D TƠDx Q QCă'rP jL;USa&uP хMHUZG24#ҁ6CꨵbU&rhP&uPP&oPYA=22nCjhu4jhT/02Cjhu.dh}G؄z.t!KZ L*/(8Ch/dhGS/A RGB;RgP8FgJ` ⻡m@':vXcVǣuA;4BӊSWQtbl&04vDDL8E6DpLlIP1DIH$ vZc6c; 6{۶-{VCȻ?[NܝcZ!X!nD~|EZhl&0@iF5qA9ɇecn~ֶ>17=|-|oycl3sγ$f Q>>) 1PFVTۨc{01?>(YǦCBDu5jmB+kaj>o)*ӫ3g{٩V-AH] XnDHo<9@k8lfbF=e*P8M?Uؙf'¾`Cʘ_.DehgXQ;tCj)*S襤ݧ$\'Z"mFJ.c[̤Ċ/Ӝ2|\hq/(Ǽug +Q9Np6 ND[6c Jj~ Drs6I((?uWOf J]OlgzwL: oq_=E.Av܄&fwfאi؞!<|q\WjOH\J"4g)&1?0 :;R #( ;6le߷yC'"JሉM *wLF "1xYRnw'K7"Cg';BC0ao;=`Z; PHu4ZPAU4:%Adż`^p@ F+ms}PRBѹͶऊQ{YKM$4倰p;D.@et#"GVWp\!lc(f #"$2Ka 0 H"go p)]q{6 (]w )+A(a]!BKKOEɗGa}l$Bgh܉0jlL"Toxbqr=֐mW`&߉[ĿSFeaQUD( _9E={BE:X!y[}[߷Dr.Jnߛ 3k Q19{|& ~> ٹ*mMzcuڀzf"VLKV)>2bZ|Ovf,PWq@!4#X,)jS_W8Y,):[a+;ģ> Q[^wH\ĊCW = tQNEY"Tv'cCHPXy #vjhTSvLJ.lS>z)!5k-EHhK3nxy_lzN7t|;QxjeWӖ",g;/_Zd,@C6_q~NR5$HV? Bqwo4Q[҈JHv><)AiF+GOL \҄B$(=9UcJP~jX(?Q X"vv⚰ ـK )㞐 Ko89"4g2MPY 1*G%(BUFn a2tNDkQB2tHbTk9>xI+8|8im; PqxԿ]v`G!*tM< B6?XS7^Iod+KAAbYia#R2Ԗs_?wLtD$TCVC-zmzh r>!5ȼFj#|(n~N= &;4[q0Cq mPY!!5&Шab"qH "uHZg`!UZ'2ЩRGvJ!=NmgJF*J D* E'*"ШSP*T*R`6]OdDTE#g1Fd!uI*(#hW`2B]UX`2"UApRCsVTCsJ!:RGHGt J!>ZBf#y::dHCh+0j(5F+(nCjhTo/d QWL"*qbG6c3 ?jQ|8*Tzf"$h̶Y8怛p j0!-7#lȗ=D5tv~uNMau@NC 4RA"TfN %ЉPxNk"b#u=j+Q]$HsgF}@" z"T=e eSD^ۻ*%P; נ;&5v3.Aau/A5̷(CS`mg {иtI|z8smj+ z8kaRDh\$AiX3Ym6!)>քSBr;p"tɸC8_ t2CHAU/ؑ9<X"4jpj;yNC,I|w}I( *h:ىq-1cSwlCdT,k)T @TE\SN23aL&M iTAv'J:אcAШGEYRCr2AiRŁeyHɃDVPBV3Ű r;PB bཀbgq ;P\b)jSuߛ@{/t0t0&@Y{ZW~\o{,%j׵OSȷ2B@ _a[/R&)j۳D 1:cCp?pYRT7S#t? qgaz) jlRԦ)6cH}{I. >Ou!f 2r:z9.UrB(k;/o, yl1~c63 U(fs$.o ߳)$@ߛ]wb>@0| ِ8 e]_3RΚ*YځF sOe>p 66| 'S2^2l>p vm9]օ撠6D>D]6TٿPd D8. 958;@Fʅ.BgiwC%!vE{HinX<]`u6 x!D} !Bki tUJ@k@v6VY% :?:ށ*EcLrP t,Y t8&V qtG`8o S.!s,,g׃!uJ#s`!U4:v`A54*cvA$Ń)$!܆W9VAu*ZvP@Ć>ZL:HutI(ChF0j(OZ:S0:Zsvߑ8;{ԃU;{N{Hz2<*JQJ;*`ШUs&oH J'z`!UZ2#Ѫ;ătJyP!uI dށ}GăC +6V q9V\Cu*Z| .8 #*>G@C%ǡPۥ?#xxf$ lQDҷ3堑z* _i^ȵL-nX"v2Q"Bmhs09o$]18Lrp yD9pam  $,cD( WW$V;ڿ}|ݐDn'_ !&20Fn!*~Zh@PYb{0FP;^smew2y%;Sm}XSyH 8]'~7;$-17cv]\:AWɗ' QZ>~>3mjN crg|Dg(<>[{lq_)*GQP%Eez=PX۲Bf?@ahְMtË;fMΕ|?Kl\;RTIq%*٤AN;HnjB@3wC }^3wCvm䰇k+Kvh@Ah㱤La$Ɓ'vVHTƙg$D8 #'Ĩip;tRT@j)f3m_;ha&Lg~k a~2*ܾ,{X99OPZmsa\u}l#+N0mgWO0C]ΐ?'7&?j vsM~sנvhE(iv>bltv9WY߂1\r=pXBmH60;kN?g lrmG#G{(t?2 f܁pmu0_fW֗tFMd BzD( 7 A13 t@5V=_/;l H"}\~WsLS{ͪCxD umv:{ND R^3~/נ4[-2Qb,$Au9'F m3aƒ:hC(3GIl ANݍk^uZNXCښw\==oIPyԄ4p-Hih ,`K c5ի- %8Ψ[WX83 S%hzə##[>`"=Zn. :CyJ49kI6kv ,Ca(4i*CKH!X:h@DH+JxEMBX W٫W/;/ػZf!>iЃ ЙC RG5TC1 AqpRC2 TC<\xШ?P=Tqu@vREu CvN^}myLye$)KV3@1w1~O/.LVS,A"m5w&.n0~B(pK<ͪ^n6DB1e۶D-ZfJ3pBHQY^3 ׵DMD^\_D^2I\!bogweXAB %*ϓ2H^ D GR u*, *3Tbh%Aid~byk_#^\CzbرYp=/HT\CA^Xic>!Dmy1jJm\)L!*+YŠjlg>{KSZ0(=NHQB }hWZ@q[B1C^aRL/NhN=樹6|s aӰ?^ܮbCm2@QFV#/H͖`Xt|Ij!ZG(?& *7Tء ˼m\Sx h7'MИXô{rO-S,+(ݰ@ 2BDMoob )'IүeBi;ZAiNf^ _5mZ$Q *d%:SJŕ35: 0aM'+~PåBp !Ai6sA-@t~܂c$ht^s> S'c/NyO}$M0̰TG%±*8">0@BӔ~<8RG. *<ɤ*fXAШ ! XU ;_ 6V 9V@.<mq4 Qr7)7 M`Bhֹ_*~wO~rI؝K([v]#_gB"ԆW#HK0Izھ>X?o$,A lr;\e!d;_!@az7sanh-tc aEp`/VeK|K8+jB@V Z콰%Eeaf́}xC(nK=Gt^Js]ھ.@u5SR"*ou& NsDB8e3}n~" ޶K$lgkvBꐄY7eVXOXFiOPTr0jmMF0lKgDHK {7ШzkIPgAo`jC'2Hq9_|Cݙ2 A43ӵs{ba I7vx"| ta1hH24wd̀p5q נ[[ DVı66(s{PfAaZql;;phң_wbng :m3hhtZ;3n#Qk'Yg oP F kH 2n~jhTA8w:ЁU{::8P!u 0nj(5(n{foڪmP.HBpF#Ѩ@yh`w!HQNa`o-teCwl?0@ZDV/$c P9}>ODЌQh ͛ nf!8f 9 o<0T9(5>)"N6j69 &s $Ae6f 8f[ٴM|[\X# 26W;:~guf' "9|}nB0Dj; HR>]_ ^ xok[UJP W=Al}y- 觭e:*6I.&%xW=1*[_$EJ 1j ;@j읽.aJQ7^b "kDKv`{ۅD9` }mGZPb U$jp'A qp jiPPTOgbs ꄁC[%Dm)8׷P;^4XJK7iφێv0ynđk^ f8"0|NooϓT IQQ/I B4.4d74@yvrErFo ,s]cm/=Coƒ~^"OjmA w{Zq{K&H{h&1(6ÛH0-ID myL0Pm:T0-AS6l_([ٕy~h%^ $me8O1sn8o]$ !e$ d^D,2)2]4]p_S\ IoA@:q_ @UU :˗*(?ItO @h=4&em瞻2YqN^7Few{@54*߽Wb=Tq-`!UyᓙqV;H#ҁ>5Cꨵs?{ u4Zgf@]Ul'TAVpSD ېZ7`j=#ITE} $@C;J :jc;Rv++ChϤ{!kI+'~Cjhu0-jhTΑ(-Cjhuΐ$^@|G@ $!uj߹ϼ{TG :jgZ=Pjl_IpRC]|oP ~mPY!7+-~Cj8P=;V;`hվkiu?k^iRG;J *QL ` 0y! ` Ej>_XWFO(¬ݾ}^[G5/+( vcwNt^װD ޗ8/@1v~v {ipO}?0 pF"^@yX@3h_GAe!kt1^Xlh]Jt)!Ciy^C62@F!؅j13u;) |ƇFw~n`T"a2,;}RCi-s't'j˧$Hq2HEs'zMڅK#'^5T,@](tx k;CWA״]{6"׼x"` cQH t䈌5^M2g?nDV6yUlvTC~F mPIq(!5:g=|c?#wN UZHztJOP~ y:: 9?9[%tm8F Zog}G@'+P!ujLR #ѩ yHvn3Pj(5 A Q>7F $!54*W=TqM} yH HujLLG: yR ~ sH6&`A54*g Utk~F mH η)`A5:o5pVP"{#P:>C}Hvng}G-~ t&?7Ra5Fu츿4Xqm3;@dBđ_ؿ@h^5 -t >8{F]ٶ_#?jBh D,-dJEƂ@87hpwh сl0娘(sd;@TfA7V26@};z (_ZUFljXS罯 p30)2x ]f>]>Iab,ߏߏsN4D 77ohgx>M P<oF^sk!t8wXa@s|<|!egbA_iكaiPZ/-e-2?A a1!Cf@CnA H+Өn ~*l1V gX8][Ƞ*[+(CAƛOf.H}q R?z3JwAlph9K⻶78m@ڵ~\ p2P/ {,#{|._J=_<*u@ZN]| *4~a4C v|x\Ay`79cǸG`܃nqp}r=o$AxaS?ık5@! ȇ,3npE!Ln(G}<}y(oOL>VAgih@AWht26 u= zF@v*ԙߜh8gޝ v#n *wCMPqWNܬ;DH{o 4Z7mWs o~!Hm7h8O }Ne4A٥A~O(ը!wiUP5ͤ1w| dF5 :QD\:S\+u\\MLA uLu@&uLi/[f kREy&IC-?MѨ!u@}a㾗H` S2ڧxH7I=Ơb_= 8 j'va#5;:C;OHy[G--fJE%qbK*K?2 ͕NH)q^r`'Q1 qlr|g& ^dao"ݗ0Aiwg' Oy% ~L?axo;*ܪ|<~#`:O ЕhKu۔)اZXEC8VlO!0xZ A7dzܲt:Aʽ}߀Bh?:|=>s|;T7;cͩB[N29PZ7(3X̀t񩃗+#)v e^-ԇ|D=>u? p#8'ƿkGu[:,e!Vuߟ3XSjt%(3I1?{20 Hvaj4,{:>s5؞gO4|-sjw< ܪ6gٴշ<^ G=j1AOJaOP3~dp:9o؀_<bHˣKsdb'lls|>Q4םOXsԬzS k3u? Pa^e_V'v/Ĺ77 YžU9!A6rq_}p?u`ه0}2 ]V|k.'on|˖[ΡVmn|Yg P*'D}}#t|}мa|_ІGÍ23Zoy Pgh'u`8ߨ#S 7&\x@Ц7/C@ϊ: ^Wk=D K# *yB\:kb[E L\'3_AF0~n?̑Wo-P4N,{V&#?' d=o'P䃈{ &WUߢg+(@6h=E;'Qm5.\ˠc٪L H[\ ^MAW3EDʽ 2CM=䡙\0IWʼ@^V[cȺ)U1@*(e@LjH_ce&UYgl1FL+ndu@&uesg9U1 @* ^_Ljs5)&0b6DhRØ2 \+u\,@19f[cJ//sJ6.7S4͸ 0jR0b*DiRE6|٤1.0Jc:||P+nM 3MryF5 )<4 jby$ϤdLDPjsDQT1f׉e[-Ff^gnRG]n0J}vzPQC=$Ϩ6{J@LjRDJ4a̅iZb̆ʶr.yo&bh/A3?W%'W`]T:EPa~9i4G8 mʆ~2&M(||BGV{hOtG7RMތՔ¸x?6m3PAcGud&-kݎ}/mjv9߻3fKwAv2p?v=aX?)xAmg1}}@F~C:F`}a;߈߿U?iB 4n4nq0;~O\·GbDD?5OC~}By쑄W Bˣ~jϧo=Z{Q4:"u?*-FaFOT(WBw=9?~"z1lz|~/!=T"}}A/:!$>5^?4pzfdװ*?vcaGQN4; ƹTI٨蘎TNdAnOw:v~8 (kטg467׶ wOʼZBOQ'{t7 ĄMqߔwQ -j݁~~˟ oz\=>= $o/L@G*~ޔ2 KJ>(9D ]N?irA*6ؽ0Dj}nw?C~XFDoaک@hxgqS3@ף%s.2"[l?70b̺gLjFګOI c.;f0»WT+Uٰ+ WboRǘ *:2b ٤>,<~ffOI C<~03aH{WL*.a3٤13Jc:?/t+W%j ۤ.,~fT1ijgQ C=<UP־0¾gQ cn=ON?V1Qa[-F]g{VWQC<U&ܾOI C*<~&0»W۟T+U٘_V!f@Ic:{q¶Rǔ^^MógQ m=~ާkR3Ϩ!*8gd'Ja_&u0jm1}_뼀қ  ?t@u?4Sq%A-?|_2W<!tݗV|so)<}c ~n?rك'@C ׁ sҾ %n5O~#ýA-_[>yK-xީFz'F:_DK#JzaA0-_:m`3:~p_[ո]Ng?ͷ9 Hfn w[V7K2pLsEp} SbB# cO e Om|gZG-RwtP0gol :?[\l`U>7r^>̌,Ѡ79~cƍGUpAugAnW]9׿oa{3Nr[5n44poи)_.k&fIfV=7|,>~bi񹘜6xoGYe}Ʒ}a.CNjlUmz|~VƄ~R/M 2D5y鿗qw8X++ ˼uNF$OM湺T7+x=.~V;?_wpF~}ܤ `?C=l{U0hs~P}wϗߣG-*?;],&jMd%S6xs3V֏{x=7Hw3TƎS_~F|r_iw=.^?S+qkVhU%4++cڲ|S2 NR[w!4Zgۦݢ~N:վոJ7Nu>Aeө ] 茅3`}aد,Hcz̈WQc2j0BW\+u\CWIc:d{̶Rǘ^Eҭ\p ^DM.U Ӥ!DjRY'ͨfRØ ΪF5U'Jc6d{ʶrZ~g]?sg]/T*wR3&h{I3a_L4aHrW͟D\*k|wJ7cLI3JSŻB6.N_F5fRÐrΚyF5 ,gT9SWџL+U\CWIc:T{̶Rǘяn [hwmRG\]0MrY3Ѩ!5Ҍ*^5LjHt&UU3Jc:6t_V@KmM':(f,'ڰO͎_,kh3ǁd uдP'Wvsi=Je=_.#9P,)>{n2ާ1 m<`hQÓ&z;$!#`ǽuD>{n㰂7O<0: ta|5Gb09[A`IןOVhvF=#EFN8WnGA"f.|y^oa uxxZʴ&\w* Ѳ6t4\:}fwեK#*o1'b   v(GlQd:2b&R+⫸"hP?^5y6AFDKxgpt;+f'Sn0s+7rR~{_LA Ő6ޱAzTPQ8)_b &ܧ,Mw:߯Ւgy;&ɠ.Ւk7OC<{bBrߔ2~YZ㱞ŘsC?3{qkq||PP1ba|?cjZף'}A]y(rA6ŕs(Os& US.'my!L]=4ϴ_pGɵeYPlUcnح1.^Q'YW U_^!_ 7ba"ͅkR)*kы6:.U+ݤ1sf[cL\V@KϕnRG]jsZ.\FU 9`m< jW4'I c:Q C*4$0BaWy\+u\Cb@WIc:4v̶Rǔ^2[幒MKh:gQ m*T'ͤ!#΅gTÐZ]ΉhRØ &U\dCdDgIc6$vLRǘ]ҭ\pB[M~ssfT1|jRIͨU'Ϥdl5b̆ʮVӡFW+nU+ݤ>v̵RGu-]FU 9 N< ڄ+m2aHfD\Гj1*te[P_|:!$Йl>>WI}+R+ؤFUͫpl/\o[!ɛ3YW%UgWc -n 3FA@KM_NM< P"pZ楍ܬS w-XlQ/& v_ ^u?٠˹޾[?n$5Nl"+S OhUfKBqurn>>to$>⮬rj_FaqiI(w QՏg(>ϖ"h8w_߶\zo-Oξ|7q<6` 0s唀mwF GNIP9-V ChޤCp?t:6ʴsɐ+Ѳs,T4uB/GzWGNk(7pnŏM,?Y&г⣮ rc\CZ'i]n= .ċጣkzpn3XEh-Bf KAף^ہ_>}zK+Ёen0O_0PϿӛJ47-}|? ߏ1^'߫zg|FMqEcUk f?'HK/G=8oj#bQ=ޣs h}Rν>OPH110^7RZjj]„f87XTaAbP x6g5b8pm8/)zo+_K .Gyf>ch0Gܮ[KWۑ%WTO{|=&Hy^u( ""RO*.16J\&uQ1CJ!^V!ĴJq1CMW!l+uL%U+٤>$5pff\Q OI C5p0߯2ׂzQܪȽ)vg-Mt}Ot^?䷴лJ1FGoUweȓ6!l_ׅUE Omw߼:uz`F|/W%t0?honBmw.Nweﯿͷ6R%~+6 _ KCߍ{-D:QgiߧHy~ ewt/6? aB>[9c'%;{fsqM ;B[[i˅y_8 8r?]sB{ ⻅q]$&)4 P>H' .{Lkb[SvB=r +{[ʹl2t_δ׬7o$w>U|%۟\cBnnf9+ Of< M'nfjbh(&-\lb=W*ojT6Pn›=~hs0!RQnzCy27+@i%֦exN)ḼOVs Է([Ϋ) K}syu`;Fͺp#]Hoщ$Q\v\;IxNI C*|3{n&0B8Wٝx+UUu+ ᢻoRǘ:t(確 h ne%~VL*+hVL4aHf՝4 jW[ѝ4\hg4aCUIRŘ h GewgtVK=VQC3KUP.*0B;fQ c.sUIRŘᇪm \bBtw1C:-l+uL饞Uu+٤>3nff\?NI C3n0BdZ"" ۤ1na[cLp[V@Km[&ut%Ur3Ӥ!E7jRYt'ͨEt'Ϥd @FIc6F:tH碻 h Uw+ۤ.jnfT疀fD쯖fTA5ƓeZ%]=5ymk2*boZC겕H ѷĹwk0^?^%ڨIګwtW]bSq5:Уd$5@x6)?|bUTN۾2鞘1=D[v6?>c濝Yes+L(@6;[o6wEaM |ZsH)Уlj瞶7.@ZR5v(~zWĹFak;o巭?^k#z5; lUU+ﶊv: -2 ots;q=$^|8TvYM.͌j#jɓh)raVŗg3G,Wi{B!gQk 0:F ċO"ѹ:); /lҩvq=*gYbѩG}) Lfw^!LHi\:7z\< un/߯HcՍ:umocoEChq;l$Ͼs~E=tn4[s aBV.5ϓ8+ˋOfșS߮lէk7h^H=/&ەDH =N]4Hk(0AC" /g#p/Bi>Bh7ֹ]@ĬK8{mlܫI{8>=VHVl:t8ۙm1λv[-޻wg|W.\+uɴQC 8UPVϞ4zogQ c.d0|W\+u\}wWIc:/sg:S^&uɸ Ө6\m{LjRٸ3Ϩ![{Mjsasg:.aջ+ݤ1޻:wf[cL,FuJrZ-:6K..]&U 9wܙhTÐr=iFDYЭ=y&5\$À{gIc6w5LRǘMyW+ޏj ۤ.wBRG]}Rrٷ'Ϩ6\]{LjRaٸ3Ѩ1޻Zb̆]V!0^|:\]V˂o/T*ۓgTAp =Y&5 )ۙgTÐZ3U~ڮ{Ur>.TQ7_ƪ֙߬vr!upgby EEsy;(umTQ.\&gJrn7~Z-eer{bɹ]DJΏS'z'u9W!m}>UN=T1f!{BaP&ID'g-lP77*;)>mB g^-?zq vyޞ>#hP%-S:ZRBhqa Kv6eGn*߄黪Ѹ0"/.l{~qΨsU=?B-M^Eho8]~ip3hi>8߯[)=5ŊgߣՆ3Jm6VUZ/5ܭL|*ŹIc Q Cn=4a=)cL5b>֚u̜w KI~QZXYsNcK`oWJ_PEǭӊ fka5Ek 2x=%. 7=S [4,V C}MۏBQ =2dvv7cOoro|VeFbg"Ƴ֓#8ֲiVp abƹl)ՋK2KgK =O/W0L3ܤ1Z pM᧫Z[W+oSWI]rju4bȹf/DM^8jR>-AVhFIJaŊϤd85b̆nVaW+nSWI]rju4-[VF5 )x4 ڄOJ'I C*5yq!0{W/T+U 99ues]_KgAݲsb)2h5 cx*›T]xG >.J?$Pnִ8>C77׶g-ʟ͸f"hpoG‡FR+m9K`-'ꛚN/]sjקV.+3lff\0NI C2l0B,NI c.Ff:.1 JMӡ:uʶrmeUJ6K.&U 9W̬hTÐr*;iFԄ,|*;y&5\$cA6sM1P1C+]V@KmB[&utɥUd3Ӥ>3l&0\1NQmjd03Ed6js1Pd6QT1fC(]V!oRǘv\U6g`fT*R̬gTAp;Y&5 )̬gTÐцW3YR"F&*.!EgIcz=CN2٦?{WlJ~S ~ܲ.Z|v+h~{L쵰ΟIZ eMbKF~8~&<;l7+ZbCЬC1,m˼_|D06=zkheE! $s͍$;t[g6k6ϟj{p ->"'ox_s$0MJZ[_{A틸&zãjF ]V6COB<A_3lU&\.NI C2l0B*NI c.rU̵RE>l1c5~U̶RǘEe+KUمmRG\zY563MrYe3Ѩ!zUvҌ*ZUvLjHRV\*l䪲l1 Ue+h x*MK*I}nieL4aHVf}4 ڄ eU2aHLfD\h*j1 le[jP|:ƴ;}-d+u%I_Q}nie3MTVu,Ke:5 ,gT9O;VH{U6cLC¶Rǘv\ua[McUѥTVu<ke3aHO"gT)+NI ʪkRŘQ*l1 Ed+ޏgj66g;fܸ6sj̲M,%-:Y̏͏g⩅w[ߓsћ8A/:|3_մv+<_j"o:im4n 4%]zKq揵x[_q꿬r-p ~?֢6 ;1?Hqn4.;UM9p!EO7|OB awN%6onS #6z3{?Yh(N~=<3^9w OV賮Y4QC0fUPVY5sLjs~Y73Ө1ҷZb̆YV!į*g1]Vd+uYW"jTEs ̲xF W"eRÐr̲yF5 gT9S%WݜL+U\CpVIc:o̶Rǘv[UsWfUѥf0\lQ C0UPe}p 9rM}rf:tߪn [ߢmRGtY&U%I6 Ѩ! Ҍ*hU5'ͤ1W3SM!~rf:t*n \BxVIcrf:/ cY]FWC^tybI2`L-,晉5 C ef^#Z gq MnB}vd;oWb`u$>o (YMk/z&.X׿A6/֛쏹ո"UM5]fR;nv,+oRD I[mrǯтo)kK*;dZO+u4iBOSƗMNF52C}j08bfOj;qq'*l9AQc:$m̶RǘvU[尲\&ʖrRKڪNI CGX3Ϩ!cfTAMgRE2djbT1fCVId+uPU+h -lU+ۤ.afT疶e=DNQmGD ˤ!jsi N*lH*m \B~^MӮkf:쒶jTEsm+z8yF 5L,T[B4a̅} Lι,CVA\+u\CҪ"VIc:$m̶RǘvU[尲\& rRfQ3_7% 1{f 2'ʹ!߂ꇕjZǘ>/yaZf֮ 'HwrÅ%E!v͒-ca&lIolR n%̍}uV^n,>;k5$Fn\tB!L[o 9(6;!4c-}he#8p₩x]"pW'FN!"Ѩ (Eߵan4n0*!LFŰ63ͭa&0ꢈh\C{?XߓT³KӪ%"M_~c~']02˼dOЧf_ЧVsѾɛEIrxa+*6X[/)}Ɋ݂ZcȖσD G,iΠd’>sd<=W{w.vElP]HXaƾX6 g Cqrj^k+! Voi7L)ʪW9Vˍj {tJ7Ɖ9P;}צp^Oʙ,rOyC9O*ު/ \?u>To|0\MI }j X3O-ˢ7iF *yeRÐrʢyF5 *zhRØ[Oe:.]uo1C+l+uiU*h^Y*ר.ԫ*0\eQ C+KޤUPHp /W&UE Jc:TkJrZm W6K.r&U]Y2Ѩ!ڕnҌ*h.\U&ˤ!ʟ/js%*lH"x  jUɫ|:ƴ֪wl>+]Uve< ڄKWU2aHM"xhTØ ϒ7F3ڶJ^bZ"U4oa1CVl+ui׭U*h]?GQ]jWջ3aHxe<z6MQ̏VHn[&u鐭U2Jc:tkJrZmKW6K.&UrY2Ѩ!+Y '6e"Qui+2Êeq Cο2Ӵ!<~WUr[Ԋeq :}O-f||{ !~ʛ!V5hs)5̻~u9̣Yp^w@ע<_jcq5jqɇ@W6WPG3ج#-^ wXm2ȎZRlcI1yۛhQjaɸIBhpa5jZI5ЦqN a.k-jKV,MrqYeW'c)9YaˌMd1+}LrX2Ө)Ɛm*8g*ihRE2f'T\VTR`ąҕYǷJr;>TJfu(!LHҩm-$?o`qAE}sj[Ѽ0"Vm71 pյr 1вxWm9kL}YrY{#޶5SH Z4Bu_XRNƕb͚N浓 ڕ;tb5q-ZkRŐ ;(ռ#gz]sʏ{V*{]S Cʏ*D*m PB4,5i&5 )WZgTÐrɪ5iFDYê5y&5\$CyneIc6tgULRǘ^oNUV@KTZ&ut%>E Ӥ>'KV&0\~dMQ5!+XU&ͤ1ړU+3js!uklnf9=ObM3v,MNc*-?;|9_J ƛZ4*7<)Ŕ&XK4eU&ͤ1(3js'M*l*Fm \BQUIc5eբLRGuY)ZTFU9וEgTApU)JX&5 )EgTÐ EZ4&5ГU2JГ*GnRǘ=Y(1}qբʶr-d%k5K-])Rx&5 ),FgTÐr]b4iFDYb4y&5\$CS eIc6eգLRǘIYҭ\p UYM.+U Ӥ>%Q!0\WMQm"4jѤ0BQeIc6dULRǘ=Yըҭ\ BHʟ IcڥyLRGu]bPsKX%QmeJd0BUeQ c.$4ᜓ5g5\+u\COUIc:V W1l+uiE+o[V-\*ҕ*EgRÐr]byF5 ПFgT9D:+dS#k=wͿHŸ0T?*L*ZT*TUIwdIgY[49 ai5 ꔼ(,+ ,Evc,ftaH3}Tޅ]3%gc~pBQŸ&bWɼFh9fͩ7C(=jk`\5tl3+YNq ]oΒ:W0dՉ*97ƗN-]Irj2"7e\YZ',+2LqMfo2] &LkɭXLNO!`zMeZŐ N\9O{ol:'d:ld|#\:,fu%SMhsL4bſ$3gѶ#pf2[p='RFRܬuw˒r]ZţvrEЧc4 .Z1Y&5 jQxF5 |hRØ W"sqŧQ&uP|U.2JcE_Uʶrm ?V5K-b1y&5 ),gTÐrLrhFDY(rx&5\$C`dIc6_LRǘWҭ\pۢO墲MKTdI}uhE&0\;V$QmbUH4\>4a̅r1V!\T+pAͧQ&uiW}U-2J}v ?VJ5Ϲ< ڄ gъ2aH#(D\h>Ջ4+\d:.!T/*ݤ1Ef[cLbQV@m3rR.VLI C3E0B\$Q̽qr1VHSŨl:tH*m1}|~8Ee[MEE%%]L*>֊B4aH#H4 DH>I3a̅ϨT*! +2Ѹ6slX\".Zw[H-y.5ʹ6ⶇkh\rCrnTh\&4aI6aR$W5bq C]%3E IO.Vk< e+r|8V,*ܱ_@%WY*y5hY,-yU\'Ei͸?şsʹsѤܪ۶jTÔZT%Ѥ9cQ sn=bŗD _huyl\O&+Z46U+ ~MyǵNճFET1fςOJ;+DV!ʰ<; hy!3uv7biRŘKI Ө!L$LjRT1Ѥ&y5j2KKI C:0\KQ5kKI N&UِeE Jc:tYuJrZmK3u6K.m&UX1Ѩ!]Ҍ* ^wW]LjsnY1Ө1ʶ:Zb̆,+\ B(3u7cL6VKSQ}n3t3M:SE,U+F5PiR9WVY'\+u\CSIc:Yu̶RǘvqVU\&UrRKKI C:0BKQ献VH8_Mӡͪc:tn gmRG\MU3MsKcQ COK3MUU4\H\vB5b̆2+NV!ͪS+pApN&u YgjRE[EjSKKQmWKI C*-:!0B#I 眿[*:Z"#E)៿s2n^Yx:6UNUtBNh4n q+h">tLM,V\Lkr-vNu%)ײ!u6qrI3M ;1˸.XݦZJc-8bЦ}i5sAW2 J7aHjߘg\C65J3EO !pOfn'c7y!"-H$LvpL׿U ~(˸1%gY%ߒf\9-1\cec}ěmJ髩O'/kmߋ2gm4ͅ]VaԻ)ۤ1^z6f7>HH vr._%aJ-"G1mUWEW!Z+=:Ws͆/j Zny`1d=V",7S`Ɯ.iL4aHR<4&T$oaئ Ѩ.x4Чb<.6iI3&dz0mOcQ c.ViIRŘ]/'l+W^ZթIcViBRG]mRsrMKQm d0oMcQ C*̖ڴ$0jU\+u\íSSIc:ji¶RǘvUlZa[M4UѥR<[.i3aHb< ]jv2jɴRE:-iF[jӒfRØ N&Upը1Jc:k1jn \m/&ui[է1J}vY.iJ5->-yF w\ҒeRÐ FF5p[?Ӥsnը1J0 ݤ1f4![cȺR\:m[.i4,˥.-i&5 )\ӘgTÐ F-yF3dԒitUjmRǘkV1)X]VcUg\9Kkh3o K5fYV&ICa_P+SK}Tcq CnӘiZŐoYUj5IoFjM5nD%ɸ.LDӌkrkUc4YVPKJ#%]*5)ګJcq Cg%Ș>cq ]JZ3VcFLy5kjlz/цB%eWrˠN+L*rhE1մ!LZ]'f^&pt"5]W0Z4H1۲6q5lI*M9,n}P&֞x;)Ѥsn)>:.*ܞ-ݤ1]ڣa[cLWvoV@K7h&q)eJd0b 'i3aa#{Fh Ι%sb5$p\OZgL5a̭jQg4a̭'igL5"b%SjR.T%Ϥ>jKjSXͨ6ZKLjR.X1Ϩ!:KZMjsDc:.T)ݤ1*J4f[cL"ĪДm 4[-VhkTEZjKLjR.X1Ϩ!^D%Ϩs,SD.!T1פ124&[cLΪ"M_ugkYu%/ P1ԤefLA`3K:p}f|%}j$$CÀHԘDŤmI\FAP2=׽gg2ז\?k޿ρ #"Ƴ(9-eSQ9EKaeEh! -B0 >8FTLz=Ȋ!MHǤۃtZ:"i<IūBc({"-Jsh"DAag! ZD &}gq2i8BYt`:&f6h4"^U#x%CGZY2A-B0 . (>y@4L<Т-Qp)׿b2!Rqۣ,x60nbF!164@h<(GjQQQr9rX3DÄB-BEY4`&}dqFSz4 I@) 215KNpƜ0B81#o؎[ &!h< çL&\Qvjp$2_8q3\E#gRcUL8W3RUQvZE̓ఽEa  Vj4 á/BPc@}E0&W1#5 TńQTX&P .(Vcy@5Fk RYD,g! .x"PNB@5]8> MaAi4 , V)>cY@5zFK1$,f4 ] L*&v1xF3j(Mbh< c < &t[R1 *Jx*e#V< ˪8 Y4L\06FhyZ1 IS!jS<|1*fc4"n˩b2Ƴ!j*Jx.%#V<`&\XQ6FhpyrJXh'#89cdQ60nObBF!1*&d<(&zZ t1 LEec4 }DA)#c$ ITT`*&Pt&CcULx:D-pJeUŔt`:&Wq2FS(l&Pv9fEXH谼sLÄRBX" >ϩD&0 >m<ͅH)~Ϩ8tL-MHDŽײ*x.0'VL JG8 i4L,3l01D'z+c$"=⌌g1*&d4"n˪b>Ƴ!j+x.%_<`ʮ}א433׏(S?w\fvM5nF̧.Yw٧G_/̬j6R%ά3.86ͬdE]]bf]o\pe'KL׌FWO짪-};R>ӟZ+/ ?9?ӎ]QӏJQqRT+E=OyhS7}jeO^0yş[Ze7e[~Ɖ՟==|bx拧[\xs졹g=O68ƪz$Ek7;5k.A.+ޗD]eE6j5q~倠\jڞTn9ANhٟO \[fI/Ҹf@ݼ(}/on j6})GhoT ZyR̈́dS ?oΫoiWjҬWnn׫8Ȫ.kmKsNРTn7*֙]Q_eS}"g<'6آ*2י&k6@=juF?6khr]eKyNuKwb~Wu:Y~]TƖNYΐJ3A[uEDFiƑOZ/ٵXwe^Tj2g9j, u֑-2f8t*ZrgYu>1Uq5m*Btiϫ,)#[[#hYו&N/H4S`o?} m^yiu׆/n_:SDG'o٩mU;^QYɤv@61ߑ1JnHWy;m͸ʻk#scjYjH~qP/eCi^l V|#OUUh#?ɚ0LOjf=˶jus#iUekv Ӱ{@RKx n2elpЉq'[@ 7nQ'PWv髑zimSd#u^jۢ醓q#ݵ:d-j/'GS~K`kY^q2+K6+.ujڝ)h JVꤚhˤVt#Z_&/ZiW m躊_݌Nij:A檽ޙg߼Mm9K. ^VۺY+zp;y*nj(@ tꠚ5Nu-XkZQ'nRC#5wF ;R/zHI 굅ޙjIelgYU1 nJVcaB-0?]kj(+%|!͘v/(ysqQNe |pEO aZ5$$á<'Z?:k?dS-m/> л+ׂ9M{jbŠJf22K|uCZW<ә,4fpEOBi fzaց⊶ o:"iS*Pݾgo/?BheNgM_lCHPoB,,i{l*-̩C_t1w@;*uPpU/*sG˳텖[Q0uQXu.R={)v=APn.3yg uZVU+^eֿ|讗>í˻72l|#L=1ɛ8##;?xǬ9mLJ D~}$nWۦGtq_{.m߶^[nPzvs}'mkwdy~k7y[8Ůb^7]陼[]@ڭ3']mnak7ѿjڽ;cy2? O߿3ߛ}+C]}y}7mrݯ承DWۦkG3>}qמo[G_yG^܃,?m\n˾tg3y`~wyf>Z*åjT?Syڅ.MA+ݾ:}ġv_rţxRa5̨r{DXuK6)ʼJu})|u7nCu[W jI-f^zo\3jendstream endobj 6 0 obj 147944 endobj 4 0 obj <> /Contents 5 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 4 0 R ] /Count 1 >> endobj 1 0 obj <> endobj 7 0 obj <>endobj 8 0 obj <> endobj 9 0 obj <>stream 2011-05-23T16:37:03+02:00 2011-05-23T16:37:03+02:00 GPL Ghostscript 870 \(epswrite\) Untitled endstream endobj 2 0 obj <>endobj xref 0 10 0000000000 65535 f 0000148253 00000 n 0000149796 00000 n 0000148194 00000 n 0000148051 00000 n 0000000015 00000 n 0000148029 00000 n 0000148317 00000 n 0000148358 00000 n 0000148387 00000 n trailer << /Size 10 /Root 1 0 R /Info 2 0 R /ID [<5BD1045DE6560459BFF8B37ACB0DDDCD><5BD1045DE6560459BFF8B37ACB0DDDCD>] >> startxref 149962 %%EOF espresso-5.1/Doc/pic/sn2cvs.pdf0000644000175000017500000012153012341373034014475 0ustar mbamba%PDF-1.4 %쏢 5 0 obj <> stream x̽ wUX,2cG n8#a0S`:::.`-ZDg H-1ЫbK`I{hf?gy>归[7~gZZ.ٿwsſ_/vwrkG9ors'OwJm.4G?x. KŒ~oy^c΋__s/K/_v\~?ѣW|ŝ/^Wʟ?я='ЫϤ7/zƒ'>o}~-?-o\W_w]|j@|9]ӕ?qOKG%~[ x4{ݩ|gxٿ} >>ؿ~W-~ ^%?w=~|?Yy#4NQ#oU!'V􁇎 />׿{ԓw}ч}sūX/?kO^?/7R}jF^ڎ@_?/_(m-ڽR4ZӵZkm~Fe~ O7Gu?">.#gAο/G5_/;艏ۻo5?m/~^|Gny/wo} iKej{_h@o x?~C>Z[ߖ _ƪ}G\ww1'yyS}GzwGq}w>KOy4CLEJʼvO˗:͖] Vu?5#s#e;?`R2ۯVmǻ¿M")XJT! n/'|ogKc4{UZJy+Iy?49מM+UyO^z?gxƧ۝Gk'oҟh-T+:,^WTpߊ`^}Ӹ+oqwWxOi{,6~z Xi?웽a M7|n_~oGo܏~_܏}~ǫݾgև[cO/Myg{ɶvok1Nokmmoj׿w]|}s ~~-}gߗox>{5(gӫ77|[u_ֻ__}?yo>'^_/x~276iL֖ko^U{= 񙗟o./y^~[W%{į?p{=?/WWmϽg B37\'3k~/{׼~/}/ƽo}U_?=z=qe+ӱOkqb}>?'_|;~k^|oJ+Zٴ??C}4yCFW}뫮_3UgAj_8z|;d-]b[oxo׼e>_|/{s+H{oHѻW?;o=/G eLjy;X-{ꇟO=ʻo{GoC}c~e?O>/ow}O~{n_o=~?lZpH];O|{'MSbhݓ{gM7>|{o? GC7?Cw;zy?=r^?Cʳ^1=S}#woo{C_c/zſ?s?zoz7&bmyLKbyV^]^^{S药ʏy/}?E=|yMgs쥴8C'|s܈.7iXR#>Z|w|?O|X_=nȣ6HC}w_G~tG}"LogS$-ۛoۧZsz4^};}cƟ}2_K_u_oC?1tx~{>л~ݷ7~Syoz;g?u~_=xyLTi4oUiޏ&<Ǟzϓ77|䑟WG?ǟxO7=?yj{l[}֕7~W=tWogG/=?[}NKFdn-_}|__?5Dxe\t|m{߻O^}]G#_~OK^},U脖g,ڦmӯ.NGÓ+ʧ^mFw;0q;mKG֋<}VN ZaEUpO>vvp#ؑm`zjzz^E-{6fxګŠ\2ހ'h:Z6=QU3*xԨ{o;[XKm'xq*`yӏovu8jR# p|8jpv譾Qӿk*=MwbG-S;$3~ӻ@#{9VBe}^ţV6iB ܂_'ozeKʱܰX3~+}pԨ{`u {?&Y'Xg͒?s8j6o@ 7Z#@|agx)na1%j!9f-|y^k`Z?j܋O݃Z8jF7` vdu0֋QqZpjx~l֣V1Oɏ صw߭Wਉu7:{e&kw9naU|767ĐRl͹~vͯ1~ OY|eu]bwۯGM_#bE0b=nmə-V, OvW49ː'Ҩ>Uˆ('lw8 jejQ,v򜬁ns?a258FYiG[@k#·5~B&V;_d&ָK6XӖT).oh~ :6@Y=]scd[I48~j.I-@aɴyےcj{CR dm&c;~G'NjU~_6XZfzM^ c%3:*𚡴h%Vmtwd5fnw9)hJ#tQ$g&޾|VۧU]Zt'#1po یkحbzЮQ[ i;֖^Gu֋}U?+'.Ʒ4dwNU= Tmm'l]CMpcOQ\U;ݫ޶Ο(yAn֥F;eA熹ﺷñGmo9!N.<[V,өwVQ Lqs\Vbݧ`P (smA16mahiASrws8SlJŷ1|,pK6pWSF5n#Z5Z븺 \Fu;ݵoMCk]jb c|]V7Oq=g|.*}ZXY|tӞv {b:~\_~ޫv?N Pq@#$}ZmrĂ Q-_zF۬e>;f1յ~\;$oPӎh5[A~}l{{7 FwkMjo4qu@7> [Q]jIۂVgK X6V5;F +j_.`\7M|e;rX>-jw찣5*8~P劭Ɋ;Oڥ|)Vvs OmS3 X-_ k%+ކckQc2E:?f>5-#(l)J) X-ſ)WLe6|XRan.sWmewl Zm_hw{ݘ' @^Tf^B2]ٯuѽPHIvm|kXc6q oRz?ә3#'q&8-@IMke33P~?,{迶wYկ?le {CטpXpsdWw4; >;q'*9S X-Lo P $]bo9Fq9 w\PE3FWOeuӾFt\Yfbz7jlVofj;,3Zy͋j̊;2GY Ê-U+{PveBf` a?ŝ Ni"p+l%Ml Zߎ=jOWPs9C- 6}O8Q5K gA|:։!<ţi\B͞lm|WuQ'NTǹhp: X- eS-Λ5ӂwi#~&@M /b&e ]2[W%&.W2ƿ7vDD C{CaŪ{␸KV!H w{߀r!CQ *tZMjMzM)60աW> o$[V?}*@=NMVƘ^#{#VC~ț#IVJ&@9ڇ~$el`G%R'9.1*4FoVk%lcY` x-;BK7YXnG v 2p:ACjI S])NMI0PEYPcMu̟c(*fnLCwnM^km~-|jt85>`P!1Rz`o=8~cL08w^Z t h<:Swa:*`7:Xk'h5fBEi"w~h{YkC#H4}; v/(Izw'6},`5AU @ڶuvUKW=>~IvMy;)쎾nC݅ulEm$8aWm@,\CMSb*]t~h:PvNjin1Z6+BS쁬voGaM-oZVȟ7rlq;,)7eVr 4NnRe}%Jw)Q)7XgVehP+U@ Z<"m;Z]9d!ǒa:~HRieS5q+ǝҺ-lC\-;f(/V%Av=(}] ˯f;qN1fj9WZYBCWBKVn>sJwFcX>bܕ<'-'| +^)O :ͯn,5t:2"+݉^wP]=s1d|֧ȭh9d97[k+5n**Ye} X^nYbgv 4}ˁBaJ(tJV힃ie'/LJFvL8 QEnEqu2Qw `G-O!Gb\PcvNb{̱;髳hdc |Ys^jn K]'$84E# @mx"/xH"z`3}7p8jDhu2t:7$=F0=$#LoP[Gms>NQҺk]QֵKT^QTSy\4hũ ^HU"!Zʞ/a*6.)أM;wI8Waޑ7Jȯk_d*Nkg^1F߉X]5e_"߰b^GzZvNkhjlM9bԛ`tG/f  N݌x-ͩ@W5v;GʽE.;@ ߻%@,&umdZo\_if Vc-\kHIb^! Y8d@.ؘ _e gi^%^^aJp'dzS(Ugg\dt?K G'_k=aXv۾ \tSaq)բ+18+DU}B,)]=N0q_*<0AdIlβΆj|cWN.Z!?+r>|ƱUc/Yd߭[ę+kBLwL9})5E"Nsv@/.੶[lfzɋz%#b@]qqqŚWA-;!Un{Ģcv[s^ܾRcxGD8:TR)C=馲$\qPg JS}O'hz0< ƑIR2s@PTsuCM[f8M8|9 :r @1~MZ!܅iY+ >T]GXII+JHr왉w'Z~F¯wXM[9ч6%k< f?3J]=@ %jj>c0 X5X<bq5Q0r[h =&E'F<b" 8eIm{e&)hHŎ!}&L|$(2wwh-8(pa4#xMB΀!u9ÃɢYx EV4K2x>S뼨)l!)̀$K1Idm ?S,GJV׊Kk]W8vZަ+኶-='Ǥ5kqMʵ}A Y:Fx&4L^i y1x~+k]Y<^˂Ƣ+W>Ԡ&PC ^F;NM4(w1pfBAФ͗XA)Svq4PK]~`, hMjrkY9 WAvY'J{YmpBVyA0}HWOT"dU m]ʠ{g+5r@3BC|R N \Qf"7CfhK[PGHB +CTH,Ķ+" h ߿ym&ymA%+hE;E;ϊFک&9[Yfh^XrcdfX ?n~PẃdOV,r|5͉rwd8yV@2 8ct8'13UxQ*m2n1n !z&5-OkZ}[=}ilj-aF߾]mϋEZã/ަ%7,Z0^ˇ%9ӨgR:gt 3sЁC2@Q|+sl Z-p{ccQǢjA蜊,UY8'gkƺabX5+dLgM$Xd V8*d(0*,$GqdЋ&pղK@X̌X+|$d 0/bE ]NdN.dC ;X鶣 {ɍؾd9-V5ZJwe_ÑmdIMjX6ΰk0k6cӌe1 Y,hbK}_vL9apfЯF9GPĿ)7dŪg rG ChU<%ղd;cem`M>g|}`.xc*L[Z07B(wt8ab< iH9a4a xA\T4- +< VT-LT+;*R! ]wP z'Dqt]'}"JTIUz R`&Jc{Y>)FVzM~:C`X?nԽS3z(qLYUZgW\uZZUHznwlpxLpq<8nȍT EA{h #hC5E[, ^Di,^.EgB)a$v\&MrU !H`9Q d68]TNN⠏f- ip `Ip<ޭpH,ܩ6Et4%?it % if"Yeb"< ٛ A27#gj `3 8Nޓ>;EvQ[Ԗ"9)*pEB=/yqѶv y \jΆw\kͰِ$H ^rSB\RB0pRi7g֪Km+o*>Fn+ ,ncZzEwX^ۡ%?а;dĢIXC)#p(1IboɄ}^o90ap&l3yҶ3`ޜ@ם? =MȺЁ!SEJ+(|ʥaMTPrc;mOu{jȩH',7djw:)ɀ_.n_:@+uqi ;M@G%ҁ Ji 5Zgx&c 5(Q8m 9 nrN rc@Ch;O(@-N(`6 VMJ YGF ÐQT{ \ $Ǣd>'i'&*g {C5(\3Ǯ ][-Dbx#f`vnP ݱ  "BSȏGN̪FpqХ o,'$Hө3 JH_2053Vˠ܋DdFߢQ$ķp Qd ~q#Ţ=*ՋL5 }rNH8c/l&Md,֋Epn+Nyh5hPγ!gC?O 0~^T?ۧAi){Db),CP2녛op.O (doN.|s+3w8ó˳fu_/7,|]ԇAIA}kag3W}pQy&Ykk\z.W Piǯ0)g+tewhM{O 7= ]2T|*"~dzM}Gwl7b'ʃkH/ nu,^C =ҿ0B08fkfѾ-lEFڨvDF p<{!X>T~u4Q,r2@ll6|[\i%$l>Wp#WU0},fJ3uF\T5#]l9llCltST$vSχ$q^I\D wueQS+IrE< Mr*^~d[&ev[G(JkD]K 5>byG^Woi䃅”Hd9CC9]#ܕGf2a3-D)9ЊDR>ad#p؎!x"m# q}ˈADKP%GrDaT/+J3M1:>@@j8`x/My6 "󧠺F0:!)arCҩ]EyM1*b -#)1`iB6RN5"'\uWh $窱?׸29~k[DLl"&E6+>G|Us SYN`"2X`<"puol#ipZ1B!$t 0xwkŶ,)weI1)+K%zHZFb!VO]pb&*:3*: n.+cgp2(JFؾgbE Y,yNbZ5nuCX6V\{=)r_R p/,1,SL+8)_'+NJ?8!r/t/2u1Ԍ/gV]/\ ,gT XcY(ݏl|G/Vu(v"E4"*wj;Z7⪴ȝZ+ix>Xc_pzif s7   'FBF B 0@EqRVrg5ʞkpPzq.GIB B/c!r d"%8'qI@4vK^|ilG\(*xV元㴲92p2A82i5\r+C;j#3V˅e!:GK6Э͋rkC*ܕk؀;@uo(&)Y>Z<<g9y=%a֫,d).tAw񮊌MHۺ1ԳIxWeSDe vnG ~uO2+%n{֝(N^#\;i P}mZuۂ$j%PuD6KruzxRf٢m}8me6.r 0.j0ɝlMrW b]{5v8)6P_cpkYi]2svӴͮ}@[4gۜ:758dϴY¢g45AֶP-3T w") C Y,Uꐪհ&D؍.XW\=mLlju^druLyeBU}@%kr٪. p8`Jǟr8<%ӱn(g^H2싊 bUT`<LUT2?X(J(H%DŽNejF'mЖOsQ~,1tҏajDi &4&UFBJ'#1dD KHs"+f#|GWmur1׍+\!fFu櫧Om܏oQ!L;s+6[ S[=Q~QGB3"WVK\[w*k?Ǟ5nN5c4i%059-x99-OrZpO &0v(!u]3u꡾0 rSD3p$)GN:1J{sA4a~554= 3[F!!dpNotH==N;jx>/^7[z Pg2qQͬ@"p@ T&m h~h$m-\q>Jp*Jps2(v ^7 4=#IWVy.w.w-wOp- FGci>AqsܯJ[inQt?~}IFDo]_!./ /)ݲk-]ײkP }d{ z>AM9[!(kktÜip'x&m3 W5Y 7=0vr@p$82;YzTI̮eGi:hu0S؃-b6;9"|N_ih$Cw,^V1shāDŽFLy0Gxls-.!#N ³}lzN-x##ҭxk,]6Sw@Y6t(fT|v٬A w.| A+?7q/Uj ?Xk $fYew㕿udc܂n< 0a]H 3;\gbk!5c*ؤy^ѣ[gk ]rcv]pؿVD .GD'F (`;cbd׍e7dQd~Ѓ@ e`;gF2Kc>63:ڲLNF\,0DޔyVۥiSa cw sD^wVsH1` h\MzO8ؗs^ ,*2#>StB!9(w Er29A0tHƠj9_fҽbMވH&bDXH1ظ,  k YSj8 :P,%2hβU , a%oԠivT0'j& ;W_ Vz" J(cM3*۰`ɶw崣x2RO(2wvFPΘ+"R>!"5nc=~ۃ}ʹ 5ώ[ACZg] l6[榉l1w1PddlVKr67ؙ٨sz1JF8]y4g,;彌GBv8[zÇzZMpV1fPW Ğ͵IlMxfi (+X1 D R$ Ȋ6WF7c;L^T<]DԂ4S A8U ף|r/N7}ʶ X - =.LA C!&@yxI*ZĖ hZ̫VJT˂F-Z0 S/ Nf f@0Dj&~"%6 -+.Zmn"IK%PfY(2zAEQ!m3]fP6'2d O[iڊ]$`5Owг x*Ȱ*k_R&! QJ"I멶 X&j$ 2]3f"fDvlK"~ RL\X/=XRRgnf=ksbG|I7҇zҋKoK}'gAXc3 LooYsZ=fӖ`E|e=6*&^Б$ WP~b`ʺ2R/#|!.5elEDX] ֪5 `#k$ZNѺjCœ;6ݕ2W?UhS灑ۇt7 {I 3<.-"d=SuTYcEu wrϳZ=>VbV-HZ _V p?b5E4RWmio1mёcL[pNczCNقcȖ+^qqS\rOAܚ4:$nӷ!'wbNJ?P ]iWY~Z8ҩ,t?~Ïvٽyp-w1RuXr6衊epʋD>TlÒ8M zƔT 9rCmA{!gA0뻰 XMgcS o;{kH}n,FC-ĹN2<`c$)Ƽix ފb̵k~8-- qtc@Ǯdqp:?;='8%+(!c!^c1`[ǥl_/⠟e&w0!4^5r\ŒTӏ5"8N3(^!~4ʽVk8e3R fͻqb;V$Pg8K3) ^%M=XV](h:;cR»4xȐxReAa+ZȊv^4+Wfe+|eY-ھ-PZGK+Ҋ獽Yg=Ge[Q Id MޭZ[H F:ubLvV;r:DٳrQf~;kGhJݶ#}K쟂Rz<ofS}Wʂe0 nڡ)GД8 :Wٓޫ*qWJRbܕ1L#Aklg#K+`RE*pՌc,r25FG= I'ph94GۂV'Zf$;BYmzkCjv(!A7mgL$h䥤Dg,&|6EDȰ(da|1O@ `mسhmEk 2Χp^ՊjVŜH;nGl/CiP4˝X0"Y6e3S(@D̠.^%]Ϡ9. (+W" GmʻB|fʻ|(3M6sExEG nHZj2,Ps]A.E(89^TS8u3%SZ/RS`\3/>Upl3|`x/% _9馀U" pexVPW'/^MyN;/pi/M( NH+?{,?xQnC&╙琿)ugw4e 栯 &5勼P"\ N.Za`1yy%J2(L`iatDtC87FNQ\S"#j1#/ۜH/ۼL/ۋr/E7Ee7e7E\aW,LW(#Ȳ@`%2O]YCiJ]DOaqޮu̖U|g0kC.7+>hp.j5\ehRcO%HFHԐ;ۃ"fF'bE'¦c,g(kppjcé`ȩh)h14j zQk, 12! :2ѐ-aY,qu` YEךO.p=^ʜ:@FD`H6 ݔ( e&Ɩ?AG+, ՠD7x`E"-9HN mb5k`6 dC3LVTX&MD\y 62cQaw#">o,+k NƈLdb 3ab?]w8 .6Ngec>hnri_n%R`ȴN'j/q'5{8*"NH(=}QJٙSvӑ2pFuD^2=gD`̷=/¼!/s0?8Ye. {`xvpp7w#F1v7& ~C84 Aw\B]2&s&,֕ nqX=*Yr͑K\v oυ0BϬ^_Ui70J{:a 8a4Y"j5 =j:+81ZvmѪڔ  EB? .u;Ay|e.zK~4a@0e%0/cO]*n@x8>,!S яNwûb:S.g{"PȻ(IHj9ЎQCK=l2#VyAx:FĐI&%zd,pnU3gBw/\&;w-qmt=3:(6ĦN3mp&uǮS51jWv qqOXXx2P &±CtLӾB ak! "jyq>2NBt^;:A#"lzKWc yWPLɬ:D043F}RZmev,?zeA7СW3]v1Ơ&pu?ܳȯ45 ya?! dʚ%}R> cuӨVR~mA;E8<򊘒nR-%#ȿbeXj3W6ޗr1!An<18<ct^ҤQE E:'+rƝt#Ķfa46,Ģ:dE)d Y)8(!dN]<_@Y<J *eGkLg9ܰ(]#NGlȅ_M[f[_ O\xgtZ[kYt¹' JT@8`*@-2ٔ2wŚ\`_xm钡ۊ5Z*X׵G?˗`SGmj+`5o /M_ڀ(%+lpeXrc`]4KjFx/JVnvMnEmHyګslJ{S 柦Ą^P^Xj*bkl mAs(t6q"N(7- No٢f5{׎cw8qʄZ86-./\jJC앚Fi-3 05f3M_oQ7sj;W=|F;zWڂyOKB7ypQ{A'xk #vU^<ب mx񽆀lj @N wVcchݿ'Ek3gצ$}gd b_Æ \EjuԨsA#{ 0mu$Txu?Yd d-9^GF"hw$Keʚ ubUX0Zk^sX,lj߯eNf`_3&$+I.ҸjX cG6&>|1#,&@b620W-SE~F=6'yg ?'oW3=A(x~4ruEs1*쥨cNQ2b&vX“8ry@~ޙBrT;SMBd4&)QAK>a?ɡb m+[~S ?kZ.v=\ϻxhQ3clG 8B"}gC8@~4k hyEm'Bli>:.HNqPxV@Ɓȟuq&$1X\-Pa`/PS(.XZ"IyClaM$BJm 3#(#Esi^ ;w I,1Dn ;o3j=<+w/wf򔦑pr2]lLqR$~-|E$GxrrD JV&X=hL&D\sfCc~J#! kT]OWVzYvg˪j$v[>@+`n+mE,lg ^'dZs3~+@N`r0@ @@qLϗ_.p*c9'U8LqW̘eڸ;8C(#Iyh$#@݇ĩ_y5<6 ~ [uB2P(nTeƹI`ĜX ^T,},ePҎGpI{!GO//"$B= B#"`Y?'L%)" TI &$y4G\O'h7#YDmd*`r`iR _s|AR'xWs\0| _ G ^ 7VB5"X=00WL;Hm%x ~EdK0?$g$(Lߛas`WБJpbsQRhD>`$LÍbeA0G"ȦASM'h_=y0(NW`]. TqS"Tz>D `0ef#OC)n(M0_w}o,lhx(v%X~T;ֻ<<۽Zr#ϔl;le= cqƆJ0:W&01L~8{hͻ/hkv<cbiL}uP^"MuukXIVg T587Shϼ6"xU9q`9<;6!仃|MRɢHiJD$W$Dqg$ c웼I>O.bzdRA8L1;G-b_d$LFJ2 :ȽD TCU[=aw{)2YPj{ @ 9hg'KǵY:á3 :yBaNiOK m'8\6uS薻tu"i.)]Ͻq}%-^L~1 Rk-ҕx(kh.@#5Db$P+8@JSD-ݨY8&) m oÄFE~.Ԡ'T I{)˗((,mHi>ZzD3 Y\(,x?x׍eg[/,p}R$Ǟ'kq\W ]Mk@ )&$p>B5A%bz^F2zt@iPV“=іH[ 5<o. +nB"!%/BK9ҝ3{i`℘כ_m,o:5gdqj&͟Ols :`L1oLw9ݓ*qd.2ܲ]-դQTxS0V^&PVf&"79;SC'-b%Nu.%Nn}r/dқ$sb"ܩj4e7B~~,Aojr4)!hȗ v/50^NJI+Lz@{1cW0+L)Q;vٜÓmi7gOQq]>f;c>ZDfCv% D`z^3lg/1ќ~c: V̡C/yDvR6H]jIN V GJŹ~dguAlm$AD mTUަ*qi(X# ɄQW 5vh=IoW('uh`_yF h*Q+= sܥİPgQN>H7V>inhDW/L'Rt9>_Y>ҝb36d]~ńNp $w 1>iT~(*CLw:S|&uk[ukŞ5s+ITf|XՎ1v2AMg畼|Mf}ewWEm j-`ghXuJXT-2̈? ehnAQ=zEv Mg< ҿetPL)e2PeXw~`Ҧ/aւMPEj=@(\-ɣ)^y'ϫ0C2cܴ[h͒#ESlL/4ʦanZE.5'Db4W9QT5&Y.G& J$`Yw 8oeA,r~*#qM'\{ k*`;G>SoxXw,7'B,NC[ݕ q ]֟R۝hBT!,AJ5]AYj6f ܧ:`N4`W3>Ke2..0LF>ѳgd]xOI^*#s6}bdO]Ws{[E \]-#NuӢvq P7\cfI-Mm Y%xoc[Sc8F]W 3 ".ІXcH#~bkoyJjzqcs~ڇ>@s¦/ΞFWsKO m{&J0ŻYmcSUjQU|rTfy"Y$NyPd5A=D6#:Cֱ8Oُ<)AIvnEA( cQh~1~'{&дVQwD,_1Xl ßw϶}Fm00C*@f,(5=APOT3XW&z n=f~b)I Xg4U%TEdSHx&o6 3-@`/)<&_StDK;/DҗLPe0JݮX^%DC"#Y" v&qr99Vy7#roқQhL"륨Ҋ)Y30US@ 9=SjSᭊ J7Ķ"j9H }JꞗP@:wV6yf5LnWX*%A;9,Pא[7Y3ܑ1pm%ylc5Yksm.2 E7ODĢ+`uh  Ѽ3K J/~ zf)c'[ +O"ړ*q<mPbcYJV+R<HU=ݔ2bvS>DUO9ycCikPb!'Ț  v (*9ñ֥scK,'y.*R}QLDT4'A;5BF(gX9*Jh iNv1/^ s|(nahY^G}@G/%^tā?Ȉ'cGʣ]z? <.]".ee}Hu sAS 2)+ 0:ėřl"kYfZSo^nw'!]x覬PVQTQRQVŻRoOnMT|{U+0^>}gn3şoYe)έz_y]ʠkEu'xD,ā6_ߑqt\*Q>VQ?Os86N C?;zfG1لAD gztif=07g,ÚfϬI#sPh%^|ĺVhs9mtAFc4HRJH ͑3ruʢkmq`]btpL"KgE|dr"Zb&'*fr&'ԆVQ:֗fӉd*W*nCug(aF 6>V{Hk't`&M'#3&Gf=`m:kv6:u!7&-0ѾsE;.J NbؐYZ : 5Ag$> 1-:[Gk}-r]̪)Ǟ+2J'' eZ,7Si*%̿ZGִ3<IuǤ~>sTĉMbxSnE34 f[gD-7 m1fi=Y2<}PP4%EYw<e7pCFD _og aMS5H*؉*ZSAhD֓V-[,n)V@`XO]n]Kv~jW k0f]SSF| $t9 p)tѯtC:m*D W4dnH;D}Y 5vÒBeS$Qn!-PQ41Aӥ1hy46Hc;ڭ_ rS38"c\0X\jF88Z䊺%Pbi _K[/b/^y3pVjn)g3H[x'|`d54a!IHѳdSs TB.HxFN6't )C yRPw4Wf ",VDiRFUl'@t& tn:|2$wVZcj3TnL<x[DYsr?2>epT|7&5 7׼(Pjm6 OȋH*'z'~.Ņ#HQ%ocEY@Gԋn~aPծ+4bO3DU7T[ծ3Iy;PzL EȔw!wxl_E#)ݾzx{waКtckG)RoמRf,ž)XN~{l'ηc5CH+(^ߥ-AL[$~QH*7u_Ͷ=lH*w٠հfCkNv"bm5#g=KWEyeҝV6]2sշGM6) |qd9(WTP;xO &7س pvʅC8w~[W {ׁ56/emJ+`穒,+)ZJWSF Q(4h> h^;{W-)ץ=۾th*W\>YDG)4d^o^Bv\ \jco%uI ՚ytA o퉢'~DYktDprhR}&2źb1*}[mDⵢ# Y%B4Ij_\@=+rjfgD-KN{G28Op9P; m)MU1ITȢڂEDžc"-6buN-tљ6ggQ9[&>9ǕAjb:`GγJeh=Ć!O#G=!mZURZ@@&TN:Vs*.RyP395# %'G2^]᎛ws}W\RӼ?9%X~$+B)Jq;FO ta7D0 nwv y0D'`ɮ(Sz '򉚔?r[R^-gL&?5Œ'?iR%~=\>h;j,ݼՎ U,D[Z#?ukMj5_B9rSfJW\{E/W_be*uu7Ă(M֏Vg1*0Z-Džw2aš`D6N=Xd~[ *x}P-QǪoDOپAS@&̽. <;n!vqCٌM6DͭtdS9ل!^%X"W5TIA4cEͫ XKU7ցT_jLNe /[f43`PfYF  e2=Ȣ4dڂ,*b=b5b6 ݡBC53]p0)ThURjhUH^M Z0H?%0aN"e"rvh0IAI3L `rK6Fw{DFu]">ʔ`^&5ZRhNJ=;;)ӘQ[ 44w1,aв i3Vk #MEjgw&Ek,lɽddE3L]񦱥ExsX1˛ÊVl5ePԤƺPq!zTM)82P.A]7uO`rܝ4V7(>I$Ua["zm.wɌ 6!.o`Ñ2BZGe5v v$$B%H˂c]\J ,aY`3HFFDRi1 Tk i[lʔ^ ~r_#E{V߿ j), [Z6^|KHpiږ ^gY?nf0n sZl$&z/"Tд~'siAmJaYk^/{bQڷ"[-↗g"y&ژg"35?]ja0de'鑿;aA.`s:\'?%f\9}P 0qx.I% Q8.}síuߞsmk@ɸx/? a稶oq0&o] EK7?K@f10#`QtM8.*c(qp<Z0ؤFS=ޔwADP- 0(F2eV2ІBu^+Qy_-i"todx|&i\{sӶ=5v!Hʽ)n4XʛȤ)8RuTl: #GHkm^qY541̫DO&?2Na3 +WQ_W8Noջ l4) ] O|78G,5uϟejY 9 7d*~2 W Ͽ:0ěa6GCyp#ӡ5X?fh>8or7գLSOG&ӖǴo(Np4!8Gr4=C}%<$ j)f8wi4@oF_t'ch:̎#]3H@8Ê{k&,=da@i]+B.cO8DIߢ?v%xE;ӧ!_=|]ԯݥCUQqT$G ֭(Rh\|O>`<gL'1?lD-y rQ,ѯt˳zrg+/[<6 :k ހ|+ɶFn|(א*8㙂6 *n6k(ոOTRbi]XY he:"2bL]eul# fhj: bCCã %h`.^,[}/> ߤ E*N~c˲ӗӻO9?=G?a";@ۖ|; x@x/# U8Lp"p?*d6Vdw CQ" \13XdK ^9<\9p)FŽr`Yҳ=ݡR8I@MĐ|`glqg@g)^=31d^r8s;]&@wg"KkԘר1?-Q5-TcXi} i[9-ucy;+5!㾶JhV9~ ;L 8 ä]TV$3wQ^e{#`: K@UI ߔ'm4u-%]>0znIwH0iAں!uîF̜sUݴh.|ò\/ ~smҲ|u~v'HVl/O-&M&;G2wpmgv"LlnC6sM1^35h7|ދdr6W(P ^4f06s-LO3Tfqܭ^>*~Vީy*jh :3Nɢy1X Ka)AސS ,taRPJ pJXTgRЃO@Km=ֽff^9.a(>OjW3dG 6?-NWװ:W\K\RO"͏66Vv؅sp zVg0 k,Χ=CG}A/M_CQ*|[4>t'5YZXq`]*3<^N_n^Frsq̱$F).Y^j [A| I}r`C)*{tg:9(v)Z1!E37z">rq TOv4]&Sfu(\wYxh6> ΃=j"lEpL݀q_K3vn&_fo Sdzkފn~g0^D$Ej-4R н}/{g pvq{F}`u$2܇B 4"{QG X@Jr~VQKB?v} 1Ͽz0m;o8O/+( za32F(S\:,޺O+,_ˌ} 6aVaÀ9\ NSAږ b1" .ڢ-0w#FBKVr -Yo#9KWą LS6QjA6)e ٙgL6nS>#frnثDd_UJ*'}Y:<)+`'G$ZJ<h/QyVϼ_ gN q ^.#MX#"fR#GX7,Z tll{{3Vf$|wݝЋSvF4aň&h/3Td*FwD9%v:OD?)12Z\b4?f,eQ[s ,9-|)RT E%fYRp[;8ތA]\6f +#6*FKn[`ۮ079o!KpKiܒ "sZJHYN%@&!ypޯJ{Q6xli p[жL4vh;45}zK$`}yW]c9 @=Fb8222@@X^rX.o}Rn˓: }T'u4[MxE16 A'(VP>'8DŽ5>go heU!~:=C k"(kBP]z)EtDs:* 85HZ3@Uk4{)gy2DLFx3HfG~$=B&qƭfA6h:aj 1=d@r i ٿSÜdX^`L^3qCL:4þ.0*^(b E1Z6p0&GޠAn e+rXV5;QnV _4oW+]M/T.d|UYI$/Sj(Ysz4JK/Y1 Tjb &, &d86cSm96N!k c jJ[,D**r8K`ID$~yfoq :IApwV?[dt bv2yK\ wZt3wS!A0(Ytcܧڇszkm]Pno-s,d,\>\klcm WlkA{&*5рI(m@;Yϩ^Hx!iڅ.vSAG7; ?XіNXzK~ brbH9!7Z_;WAq58˫׮իILaaNۗ1/G b>_(A ?3gA2!_aS歖(|7ו`>}=^18"6i 4>3b@=ÌgNu],#u X}:0zM@s{>} O&\dA=gl4Ś+lDS5xlhwuvGS *a"hQK>لdcCjYm+?b3zX"GH c:A5%> f֬P[{xTaئn4L=wk {aٽ =.$1H$h 2}g ݾ{bݽ(BuVV3wʳSUS1 HD*Q5\l"2g7o4m4FΪn*PZPȀrZpeWTrcIk-ԕzd[SqxVBΌw ns"6ͣ\0:X_{Ő`2^> /Contents 5 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 4 0 R ] /Count 1 >> endobj 1 0 obj <> endobj 7 0 obj <>endobj 8 0 obj <> endobj 9 0 obj <>stream 2011-05-23T16:36:53+02:00 2011-05-23T16:36:53+02:00 GPL Ghostscript 870 \(epswrite\) Untitled endstream endobj 2 0 obj <>endobj xref 0 10 0000000000 65535 f 0000039753 00000 n 0000041296 00000 n 0000039694 00000 n 0000039553 00000 n 0000000015 00000 n 0000039532 00000 n 0000039817 00000 n 0000039858 00000 n 0000039887 00000 n trailer << /Size 10 /Root 1 0 R /Info 2 0 R /ID [] >> startxref 41462 %%EOF espresso-5.1/Doc/pic/hh_fes.pdf0000644000175000017500000001637212341373034014522 0ustar mbamba%PDF-1.4 %쏢 5 0 obj <> stream xWu(h 3Tt0q&qD*8v+ Aad:jǎM*؆1&dWVt1fddu Pv_=[+)w{{O5X;oC/vFk\&ǂ]mR;ۤ2&}oo s{ۢT .9k:{㶎k:ipe#_5m^88R/;JEw Tᖒ7Tp+|o5cncf8se?̋l=؜/ {C)oٷ(mr承ƍL1Yipgܫ&qlt'݉ӭ zS#L͔laD.7y]]g55WQ",OELgn;i-)khOAJ;D?FEw#i1-8}8N5}n`#}oF_p7QE40I51ύsJ6vKߟh7u\Gӊ7NT0i|'c[fV_-=[.>@ѻ~P_O[ѵ} ޶X׽c_ݴi['ڮR>fIL[ Nذ۰7ZlXfG6҆16i|ఴ[v@౩kS t8v`oOow#/nZlNMԚf!٩uh6ZfG6a9̇HbBN,2X$tƺ!9m>):.0lITeDQKq}H>DO*}F`!e3E'/ظ}^a8c/5f6KIGt- ٲeɡ~t6cruYC3}K&9/}9e̢FZOȤϑs&aPB`vi}~wRT#'Τ%yYGڑqlS85urtw`VQ =oaڰa1F-gL8Uq27+*)y TLq|镢?84"~5-I"t+ 4s㎞ggorL%4W#'+wx׿זWFϏܻlsߖn~~[?5 b=醓n\| t?nrO|wO1J syӢ2ۊqR%==;Wl9_8i-"C.zք^p߶w'P5Nf/|xk]G5vҌii쉉_p3M8+L9wFiS:;355*#`ZHy⚳k|sq+>n5x5v.{kwgQn\4-Ƒ÷bK5_ꉍC{o_ )[HFf|Ҭj~ysv͊?>k泛ͽ躿qPs뒬Nƺl|;->ο< C^6,ܰ'tjXM1eZ35l?gnڲ  ?WzƎZ[ݳsNʃ,x7X E'C+܅CvFHPMw<ɖB?V[?m_&}M?g,'vqȿ_Ήm4rje Oxw@E_vŕjf/#+GБi]GꫝkWNluse[ނGǽzm?h93O_~l] !wam:<f#E d7n)ر7Nݗ/ZEOoˇ6!kHVuBk۳bc9JumrٸHҭ+or4,_k_\=[ucEצvm6[۶ߴ0tN 18hLi4^{ֵo8:8cEOC|f2+([bW?_<߿?,޽/]7u<ݽBJvF-9RѻQKȋaC[zѝ軖1w#[~ń \gu`7KO8#)_0=ݟAo=e=2%s0s}f;~XOY/o4уsxI;tu1}4TVNCbi ! E DmITA0 2o 3 Zz3gb0W5&&^̒w$)NCkw@=CAKD΍!̋kÉy1Lĺ#b8tR&9␞xo {61%BI дD|7 TPq.M^ 4t% ]$M̠y] wA4aÂx.3&q=e+=)4u hRrNjqP0"Z XsՖX|0!" J:XiNGn'FEjaiaBH=]+ B= W:ulgH<05,P %GTJa:xS=I $lh580SNxХF)sp.9c3T^ӳUp!ѱAVS 1oNx5L'"^\ rU24XJb+rA.06`1˓]g9h9hN0xYb Qa֧GGz "z+zZT'jyDڰZHffruA" !m e-,cm28:cTYoD.W#q5dvJ![MD\HIug"q̉KFH\7c]րI,6P7iE] spr[7:1$uulH5.P8Kf%uI@,2R$eI@e2J?^/, %T>ϑ=f_0ڹa\*_rI?O!1*y }>}N }gM,W,{%9BGYI@ժBuBG9p \ J;|u,E@;?碤''ޕNZ|vNR$ēFU;{S.c9Lΐo8<`%D: sjѥW:FRtYd:n+ҥHY'kgX'6cH2ҙas9R]#|G@ўFHW2P T"e0 yT>NC@Z}QdIЏ> P -}&=gR0gƔ:ϊB= /-ϙ$!Lz4 ZOp]O$q'=ȧ4+Yʝ#g0$Dȩgz`gY Ax$Bp a"i% Z]J@#d@< (tOjLS0DZC8D@cІvArE!|*eTjWDN:~ˊbDHg"5A !P i , qoBC<!l&%} j|U' LKuľ<)rL-*/yHTaў?F `cO3cc`5{kk%@X9Q%yHG %)I c@ ` :Qvbj}TGRԏUВ^U% Yy.,_FR^Ih]0FԒa pPբTG"K!Z| b0mrrHAl KP1F)Z,Wa 5Ր#S(@>v#d`Yd@>yQPe;tgWۜ1И,!n\g nsI@lmNM7'!"0OS9~ l*B' J5BMfY`a,AH7rbBB]"Nb9] 8Y^ @DphpCL6oۜbMT &ёhlICѐ*&: :*#d$8L̩7Aԉmό=_⠡^WgƜX1]FAFz̩瓺̉NgN? ,Dba{B^^3ͳ5fWdz$6@S9'iUE Xs"¯.pOsӯ~n?;Tm pendstream endobj 6 0 obj 5051 endobj 4 0 obj <> /Contents 5 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 4 0 R ] /Count 1 >> endobj 1 0 obj <> endobj 7 0 obj <>endobj 8 0 obj <> endobj 9 0 obj <>stream 2011-05-23T16:37:12+02:00 2011-05-23T16:37:12+02:00 GPL Ghostscript 870 \(epswrite\) Untitled endstream endobj 2 0 obj <>endobj xref 0 10 0000000000 65535 f 0000005356 00000 n 0000006899 00000 n 0000005297 00000 n 0000005156 00000 n 0000000015 00000 n 0000005136 00000 n 0000005420 00000 n 0000005461 00000 n 0000005490 00000 n trailer << /Size 10 /Root 1 0 R /Info 2 0 R /ID [] >> startxref 7065 %%EOF espresso-5.1/Doc/pic/sn2cv.pdf0000644000175000017500000021434712341373034014323 0ustar mbamba%PDF-1.4 %쏢 5 0 obj <> stream x̽ YVPKwaP {s<04uD@ea,`my2c `h")*cĘ BM=6Zk k{s}>뺟;I}s_u_nsҶo}乿oG9?ȾGrk>7ښ\ji'֭T|Kj<,>ۿ~3#ʭϗoG=ܯxW|>/9|#'GwlyП_?}ߓ}γ?kK{K?o7Wx5⫶Ji?߳FOȞ}Oee'}cg?Ͼ>?O>c/}G>=c҇=g|糮EVLVFgd?gQ?陸Z/ONK T]?9J{]rM$1U͇'kʔ˃kWNUk%z%DAu_Qy~?/{]ou{u?>%o7g w?֗_?7>ܧ*S;ʣ!`562wV4~CŭuK[5X4fU~5c>}O>n>'~龦/N0Q3e<}evr/ONӪr)X/&y͛//?O~/| rڻ[_os)lf].jf= [d ޗBo?d~ozzןn?I;:@_j_m><"k?m홺kϻG?|??ξn?t P/=t{.^{O_I>)SC0={Ƶzefg1+yZSwky;㗽_}i#K^t.+%kbX]ߗcc͇~s!\\ZX*C*?U~֥UOVj?՟==e/eqPyMe{J====?t[eưG_}vz|x{PY!ߙ(ݱJz:>huC>cRht}J==>=x)Τ1»gwŮU'3,i9,O'u*?z͏y{W7?;RYA%Hr~O<~glzgҞxbO'U_ww|ֳ؏~/z}wwO>?5t&jo^?к~O7|}WoL4bdVt}#/ʟ|}ק}zk>wm{m|ܷ\ZP:KXA ˟]y{~{o/ /~^<)!VS؍ g_]_|P[o/?IU6=΅Sl>կ|_ݯW\uw^Swv?=?gG_V[tﯤվ'̷ˋoz3Ow}o8ʩoǃg uw~ףwd\NY>L_/jm܍Ͽ>]5~lA!UUxַ'd=#?v|3o{gl_g=pl̗".A'yӟ/?sWOgJ?|޽ %~/̛= rVKgY=zztƥ=减~_?𺻯?Ju}_q=3PKQ*yQ|K?=~?w}C7}?{}~gm'sj;~?zw]5˲frm?cy>hJ}gF`eIs5$ۿzpCO!7_c{Oܽyן~_iRmQ@ Hq9At?Y_/{ ~?_W[}̿",^^q»xm/|^y_^^_|un-םa} <}u={^=Ǟ?vw??|c˻xO|>ڏ#定,g|%(YhKWcn}x1&]sB#e Gyk:UdYإoD#w1ʸ/d,NsusbЩk;:Ip- 6S岅f Y/&쩚gOƨgLVN9f쟺8?\6ƁX3k1> T j+ƪYI`h/34ƺk[lȠdSn(z.M-agP!뻹hD/g1a I˂eL蹐1J=4u3TOJ7Vgl!(鲅N yfjC\^s!c|jWg@uwXr] \iN446/Q# iOӮqFj'](dϞPDL.ؓӠ%ƭaI7Vտ.YL*5]1-+v5޽PW<3J `::@5agXyV~A~6+q$K}f<5_\焪>U l#?0/c33(&'{ v6(PӒ?ӊ\DdM$hH<ńe8q/) p`ȡ 4fb$ʉ`f"ʡ\;g϶qZ)ZN0Gw, #q5yJJ^&#,jbZz'%mm qMW Ve t\MJ+xl8on^D=mD+"%aK=c0Vg\ Ũ1uGc19F _7VV-ʡ)ǯ]2kSDcUd YTBV/7Au0P % M.И]-X)jÞbij9-1oqfӑdL$S,SN1I4)3L9)j]ݾ j2*/ИLjl?%sK4jf[*T_UMTgr$Xu&άy:bhj]/XizQwC[T`L OA[h OqM 44o\ɞØwFc㩦f;{jwYPTjOvg8aXR*DcY"!z{<y^pU8ӊB-0h,J1̎VV<#*6Q< ]~o^Ie7!InފJ= 'Nbͣ(4#(L1i@* %%l)2G` _C0Te#8YO؎pN;;qbqƲ( NR/br@\Z%/obNKc*V5JdeIZ(n3]XXZMZ.Иl=#5El Q=Fgךh,~nJ6юznjJ0jn9mH4DrII_IT{c&hlQIlX sQ!ؽMPQ5S2DZQ-S2B/cœd3™$B@bWu|cU=[m;ھ:=UD`"no\Br@ZV]}l,m^עaBm6OLEbW.clEw"K\6ALʣ\>(QZmqe\6ƙB/gW)0U.)ĩd9=;NB7G/4y GwBC eӢ1xFϸtf)XA:<$bR Q1Z9.nM&ZދBI5OQec̜m'j9S*ƘfXNyiy [5hhմ8 7YŜ8m6_gv/1hR!Scc.dL. ì͵sLշS> 6Lt"RvW3'}Rz52ɚ KBƠ%%tXH!%N-VmwV6ƞADi/d,Rh,J2Vv5"9a.}!cRnjn ,J'fl@: 9<<7.[edO-kBƲ4fZ ũY_[CK.mGigh\6L N5/kmecL8Nybb|cukHr0h-fxkg/ɘpD67 㩅rc1<ጼei̖]6F߲ +g|{,/@SNb9Bv.+o i,d,RdZd mC1bӸJL]g ]!7V J'VXA V:}P:=׹‰ -4[0ARec4[I{jN,dBƢO`:'L5Ozɱb׆,7VV^'#Z;ma٦@:+K]#|O.XݩGR .uܱ::Zul}Tf/>"1Q?g={՗zTԛB2f첅Cx9kJfas0#5z 1ܤgzr ϵkSȱ6;k ,i4ֿi]!4/d .{1>g>4+.^ڽ^Ud6i(.VdP9jLjL; iL:kvYHJ7VgH/+$cc*\дf9ЊSa1 % }΋I!173#eci1 3f;JB¬[*QU득d ܳ@hܲPȬy^ 9/$o Vx,d G(ѪҏuS͸'c%û, pq4f͵1\[|ο]k>V$]ѱ#ִB@(v jvw+uj4Vi]7-d /;bEh}J7OցJ$exJYܟcHL\X SP)Y3UlO&y{Zcc S2Vl ٶ S)XmfwKWh}wB~2 o'+6=M B.W`F\TpV`RAʢb!;e)XKn R.]bO rHu64品єFei.EjMLKM,c!c=[k}1SO];;z]ɔ~r6b.?5z= j\j!.oMo}rGh\XߜGqD&%c3zӜVnE=d>Ʋs"E=WS)Yi'aîKZsCzq$E-h> dl瓬YZH(BirBYBvV[fE!ְb솽J7iB1wv~i=&BmMo[v?Cw_$4$4ǶS6COfYw컾&uF=7r Y랳 [0IsholwroKmcV7gֶqb=2ΫM:E i[ێ=q${:aBzN}(X_]ql,[GJO'v;v;vO;sW:4\J(|c,Jư0v!i(8_zyƲʼn9hYfEoTۤÿ87д7(7v7o.#qÝ) m_# ? ycvx_vx[Ӥi[6mSX- z#䖊Nu]@o#Rao˪kg3=9cQvb5y/Q L^Ȼ_D =C0f+K9p;j` Y[_u<-A;OQ ͔F%6F00P`A k%ί$Sz\oR~w/R:XT_0s0=)LhYIJ{~%yadrtYJJY`rcLs+IɒuVG0 ek6vF) `Mn RQ`=sc`+a5랸GY26M% M_0Vcu N&M`,ȍw8nSX2u_B Y.XL@/H4%z Bg ` D $c3qVưInS,]qB%Scʧ3φߋ )ITw2߱!f܇qb^CL݇@T-8BV&%ap(6 *nzS% m"+B@L@(| LCW17m[w] {`l v,bw}(*+S>|=571쾂1;7/{s Y4&FB0ͫ*OVS{V {aeVJwaߺvJQI󻣐3.[hZ ՔmHDNB۹nb +NY (w[Ozv5e3tKyխyŒ.Xm#y'ٕZw_XH;B11AcԹl,;cU̶%NUj+ׅuB 4 dy؉LSqu[ec̭WzNjy|2:?:?9iu*1LJ+1>&\_ډ yTr߅&<'a!yiXHB ]rN<:x%Xmn'c1XHΚa 7Cn ODn L3[6eVN&ELca2BW-ULX= g>w+ 7Cs^4ɤ1U2AhB!6u x쫖qq]pU5~V}IXX\sO.,߼CYPFMEq /knuI{e*DwX}Nܭ?qn?/J7ΙhMqFv]ktlA05I [SsD<<;8#9Jfi=f-hI67VK2[RJW_w` ΋9Gz`<|_!wE: *\tg׬>u`qyA"ڇF5߱ XHjrGC\:aUq Xk{;,2EɖuPZ qS,FYP xk[,zJ%vma(5zxCc)>%pU,=85Ts`,,]CVaVU)мjfij퇠x U)j[2[a ~ _}id{f|T .f t3mxJD7\s(4V_&j[^v6-Y"vHpv+ PI; i8k3떠<E05+%2LsXXceaw4A,.zƕ.k`;ֺstq\X{8fі&E0~[z#47K]BR=p:lն3v]~-XZMY-vg7M[Pcub}2TӘw`ZIar.!*ɡ,Uc 09d\Ubt%֭{ˁ1扯d%_UC3}{B#2oĺ':yxMS*'`6z+PWTN똠y-MD dxCʩ ܠ`6Λ(\!,$1#ɅK8 Y'PBf wruo rxe8C l[\BI虺 Xضt]#u~z$G dW` x (C9p&,D+\ ޞjQ笵sE-Jo+{@K]`|N^CSEZ+p˕U47n XYΡ{='XAZVIxY7$R{M5#yu)ϭ$vTU4Sq!M]Q' OϾx<|ŃQ#keНkH\ y48K]yCS}l 0ShxLRM?+R¹K|+{ $t˜f͡n?5 0/z:; ։X4 ֈQxLϚ@Gp>=,*M`Z1D /S4\՚cU`LI0S{. S-a8 ɭj=^wp&m%TYrm y }5+s{Al yJL7s3N 4N3q~;񴽤Vn>-n%S]nzɝlY3Lzf^)fIi 84O\e%;rz0+a^ dtL/L޹V#|i6䔰}AOtzd_ ΊMzVCAl^ ^<7p8pP֖or,`B%α1ecc/38ӹS\to۽)n/S EXTb½y v@,p!2U@J02%ߑBeł$dT8HEl!,$(.qU7"玷}N4u/n'uO=F(0:&*-n:lw( 5Q?w;ThhkD-Z'7QAfOr1y2*ު"EiYr֠' ]ҭف0EÓX 6knY⳪<2,TAkO LadWhdj&R~e0õx*܊9GR) ~<ulZYukK\TEO掠EmlZ5q,e)Gլͣx}y2|E:UK)uk͏ku֐\ֿldnl ȓUMpɡxJ ' ;s ؙv| : 䶲0Vq E:x2;x8JO,Q5[r 9#2;R;8"_:/S^:B\qKo[0":ʉ HzbK+6w*ܪ_n!ruw[,,S}&kxp{6iCnNuF6wj zjs+M/u1R{}bd YuZM|ϵ^<^qeGYCXp5-XWX<` 4Y\Tgl:` 4kqxu,p.o._5slS'+x@3FD1M7l`0؎r/X ؒ{H6il:Bh7CZhOEaGKVžOxnzI dlz<,t$kV'E]13W ĵ|7߭J\'*sAb['g-ƾzN/Iey}Fb\q)ݸ+oo%zfJ|+Ј8syA2u4.kŹ vROy}aXx%Ygwd#X%VB;RGQj[ V1l=RV7` ԿZ,9LJ;57h ƛs)F\ cՋei 3P RD[g; f3T7@ 49I臉c'G &Xm> 6f.5;*SE99)~i/< F 05|`oS \!0M[1:=j#Imz_9m acwS*RvSm_F wÅF>[^ u}.El`k6Џ5u6@=| &tIxThJyx=sO v7%ߠliXn3ڽ%1/LGIkI ³MN`5xkViYax~=z~q_(=qwd9\O݇Fx5Z JX R 9 B}U@`|J[זsKK˚}nCۖ.~o%[{l !19x4 _It:y- 剎cRug 6^4iI2~ZAnM#Z`0~?]&i6mrY]JNlhNE߷\MD8U|Zi)'f 0GOɛ5tS/ijk#)_Lh4kUĔBki25J&g;HA0NS+1FsF %%aF|um^`vS1ސ {w #B~{C 6)-&q|m?% OljG{`3>sٹc~``B7h-񲘜rׄfx@`jf˒&kҸ/7 smukGD?۩Amm `dx\<(sHswS>HoL#1գGsjrd mM黧&Smžs]iL>xV(5"paѾmy8~YJo[oG="Q A@<+T H%g|hĞ5HU2ګajjqgq3&&?-q⛫gK8n٨#wҸėNf 0'Q8U/4вmZ0޻&$iSXYv`sbv:ߤYfb\0pS.AQ|~ uvț] [و[0v~ؽdLK5ԜZF;VuGF 09S8R;%9wVc{3Xokյ5XKHlLDYjM+y2Vj[Dx%YS+G)8}֡;3%6ߓ~o*}_!̡R"S;4ȘSVY{/kƵҦOpÖ_0L{jXZ O={3ӽqt_ŭ-[e֬5Dqm W[Z2еk_t`k:_%k>HrX۱ѽGK)HI"ڑXNZ*;a|h۵w :{7|.N{`375A|~bKAْ5Sِ{9q]X;RnP <BShV}؂_d0ez웻3xSgnmv1b/vj.h_D|:R:Fk#^FL f{o%nByMB+Wy 3nUDlOj^0شX|r/(5(ʭoRx5g{s&ZΜ9L2t0ʟ$3Gno,~R\'&6nԏ $J^,?n"? %"7h#|' t8) #cC<`d!1xo9l;Rhvoe^6̽mkp |8VP@`2'Bkm!Ekn:ܟK6#Z) 7Հ,ܼQ]0شti9^-98_d09s!,~`fϴ"AEZID^.zdLRӅ#==k-Lϕq))x6Z*zK~ 6Z׽b;( d0D5U]C|ӧsۜIWvzN{(0rHlB}n>l2T^Ttl ܅JHھOߊ옕pmDڙ:nPq+pZ< O.:0eCZxR&սgЖs X3j5y|p4dz 0o-s&ZҟjAz&/cwˋ~QmCAվ Ka+/hcwphm^s;v`Y2`{tmϰf˝B41Dl2wJmwn{=S 3敝`/6n`υ=X̺ 2Clj[XFoފ[JaV K{lM4kT/sL>-0=nr;.^,O͗fO(--4Ohz#;wxn p5{k\{#T= v=%ʢet͑ #s_=GڪzPu3v T݆`Ӻq/Kd l E]0Ճ =4n+EvIkU.%O7m}51)u&6+S<".]m I٨[^VKwܐ]=Atyˠ*" \/|Wy_X2fy)2L³ YTCyCXC刂[ИKxe#0xv1]dz}|W=Cz] $0eR5`=9YϞBO 9NJ ފAS|mAc;u.Nq('f,f,=.=9ɭ폢¶>3-|YlY| +Xx\ꌺk8 ߾}A0z\sT]rf\r?A. ~4bzI2羞 9߰.22yv&\\fȥ%́@&I,=3s +WŽ+Kԝ䆝o:^[Nq*Ll@aVlU17_f 6H %lzw,Ԇ*U3B.1`OM\y|Vw]i:4;7f 0->:k){` ?\pyqWvY`V(/`J ^0غz%׫0klL3\zS\שg+hƉz`3d٢)lUl|+jUe1y:J`y%KYB)Rd0_̷.5WA+b"m+.j$_\Z9Ҷ!e)4eߗ<*+G *N"I''{ʴxl@`Z݀&7R >yE|]י]gky0hx+a3H>3-/{l+Սl_=߭P]fEZqdrvrg0v?ԙT꽎9ߴcʃg!i6Mv[lLjIk. }Ri?d0KOno8:Z&%:ɔk+T|;`4$e)޽u)3h 8u3] =8ΜḁMOWI`_NXv_85obZyȏgCՔ 8M`/1R2/̦z%f!*)1f5|-vJAopwz)V`K)V]G. f8 Z|C~`"W ̀)uw`6ɐ$C =+N+Af 0rZHA8ݠ5lrJth]>g&[S-+R .,/at T@`5/[G -)^0Jk)cR;?ؖz?l:)Q,2Ow|SuM|?bF~iBIDmنrozZUIcXŜ|`2#MiFu2'Y2-Vf<:9֎xOy: _F4d]0E}0>Y}^KLf,MS0 Oǟ8ޘbKt(:ɷ]\ڨ𽅚3s SGgV\e kQvgAo,X &]c}~ yRk(k $OW\7N?Cȓ|=J^_ߛz`RQbZbfhQg#H F3'Re(3VS\>SՃ|HRZy3/ろ)%"Vxc!Lo3YcH 9$BW;bi[ Sqsy i_*ݲ4[ 0epvNTLew2|'84G{ jI̺ON hf+]s\f돢&7G_{ 0,&6H͕Fw5wjg{ 2.Oo_dt7h иuyxHw@`1U<LY}KRZ1u,ծec^$G 0mU*C$Fʪ?.R{[tGs/E:ؒo6u+Oh,-? B˛1^us{3_jhv S4ɴ'DzKyN,),Kbh'K{^1sDm)z vL!楄lX Zdž'ɐkN/մ_0'-\tzO{ ;L,t1\9 f1{$NЁ;'[1mͿws30̞5Ye&--cb25pv2B[%i!s5ʖ{:'3Ѐ.&Q fcdU̓, !sVl''f ?9/BQ}b7'1fasR6KԊy%^̈́uE,`|N;a~IgLQ\N5CSDh;LmPKkT˔ ڮ6tpr(17:}8Fhd,h,\~_p=Ȍn~-=hy;\ d9GO@kSLlRxO܈0, zd9Lfq}n-}yT>& /zX#Lla&MpC^ÚE0 w<4,b0h6IP|$7|>-VuiK Yt m܅ciRì90ѷRa{Vzwg9|  bShlU%6n_2qI豹 XP>\ ʂ`f;0AD ̷`M(]goYE]c{ OϼZV^ | PVra˽\pR Dg6>ζ.Q>IF)XcJƁP)BrFΨ`I>Dz1XXX|k}_meP~2(VqqA ۆt?6` $Asw] +\Vzqj-hռtR1%\`NߓXgm3Ɨ,s -ھ̅ TByC݋Nv= O*kK=ᕹ*GL[ZQ'e~Ҋ[۽K%[]Pw7sZߺ홫u`2g븭J3%>͕C.1# #J#`0vᵻdg4yiZ8HI(81T\h1)- !Pd5mA3p[G}5Q)8I[8f9qBd*ΒB@`e.tQ:KYe 6OףgJҩ{"kHog)|s^1uZTiYPɗN;mdL`ehnDK^—em}7Y~hMij/#S 0J%ٓb<6T<ƚv4h#=Ph Q?G18r,8THD2p *8 `$NHB^ǪO /?3N! &V/n/> -Oi)Pf"hٰWZEeJ5 خr64}UmhkCQÐ9O5GXʹ]ۢVxyؖu mRBwRY~حRδM´L=pw~WeA[KժJ߫0an9_v}Xi/uvL~_Rf#i]6̫U00W^1SW㱭Ccn3|nñ-?k3 Yt|;3k/D)I8p0?8?nInnA4.S.o = \k}k kVS1y ynf<2Na&ީGtX~ft:cU;>ҸU@m.N X9L8USaB`5EX#gTsA0GijΑ\0[nHe6 |n?g}Zc.w.Ν1eMaElxX=G~m<9f3,AP7{h[EUřb? ~j=2!쭩F]oCà!iH2xG>_ Z [c4NEpc<iw]K]ɜy ^=|O֥-XO0/5KˤA+~.&?%O/0{{m=~1 nY-5n Ck%`5b<_;=69UD=(ҰI)&)Y\$689Oy*5l4ML1&2K7O;Gkk@*L< ԖmjD~xD8ת) U'WF1w3QR78TYkECXsti0<u<98%!tjc."cf+XY_~S}-,>Tv/m^5WzkAc_3 Â?/g; (w;/ ]AdT w%С|O ܦvgT%m}*__b%!{_Lο^8Ze4VoLi68YY= r ҭS~CWm``>VƙF,=խCQկǿ~NM >ehKx5KfM`[Kjm>UVkoKk*]pY=;%ּ̮]V{`aakqB,pӧX5Y=>QS3f*Av:3n緆[ns>~M`Ypìy,?sLpi0if|αw{D3ɢxg u:=P2 1UDoFWN&nx"sh[jC$=D7[cA0}[*Y4;Z>太z=[Lf n쪯;'L~c[Yj^ph&Sl^ĞM$ ۲@rru@E99B;W,Wnj\՚ŭ [w{ψkp -g-oc6 +X8"8Ċ*ݧ&[`y`ɇeIM5 uNTN郣AFOvCeINTݒ2 ə5 ]Wv__5F,Uo6>eV.# nQ˫8IttG9z!^]\q?=,6nfڣF5.QbfD`}KyI=)o\^ry.طk֎ǷTJ#d҃?`R+-`7N<$Z]Lpɚj10/f`dHY,oo# Oߧ>ʍW\&gjq]44yp; cvL.WkP#ZYT~x%Gȶ X?;y#;O*%l2i&Ncu.SV+79 ɠڜx>nס1U׵0sp7pS-NXGfirOOC䖃z&J9}|_{hOE.rB /pҸ$+xݘg˅x`\ _lnݦgukyQxnJƃ>Tc>ˬ~?o$mUCc˱^0Xc7K$5}Qb7jYDM^ئy` ί]{0,00,0m'MQ;$6B1߶۹ K6vqnkvn{,M˽CB:vIHoQZcO؋%j'V$n4TL0pE565;}2 "غ&}e, :JOp<[%y w`'UkvyvQnW5_832t4 Mt^̓,h7!9@-)YnےrC-%}3<ߕھoY .^O8=y;=HzB[56~۵&E֪7j<S+;r,ۄcC{E85swʌrj|jƧj }`;};%ڽd%Cj* 򿩵zx\`];؛Sɳ:O]+|jO \iQ:OkB?9k m8Tkc$2f\ a$*:uGclaZp15αܢJ"㗲S[D⃗D y(H4Xq&LF<5K"pr`4rQyX!Gݧp9ZN\q] ?]ܲN灉{9Fa+5'^)vwDF av[ 0y~캑f9L&@ 43Ih>Bۈ_PݝΦnLO¸l9AlTx(uwD` Fy0^bQx]-VSQ57]SQl;|G;#,]F{fD9ޣL,ܗ-DȻ\ͧhQ1;k"͇Ѳ`.} 2lW(Lġ%O/F_Oit)]w,,ZϤ'Rzdm^ mJ-KQ\=XEO`/o:y1cnMl5 TNU 6 6ƘTṲGGgKl66:W - 횼 fK&R;#zob*ٕ {C޹Jۤ''~p^Dg](-yv*<~qs+ օ8ř1{~葻++csl.?韨QƲL>3i( 9nTQ̑,˪ YWAUiOsllw~WO(TLN1<ff뜉}foUGrw ͑%&˶DV970鍯 >) &w^ol哓,=ۅI'?6mdkcQD0E22^+yaiSe?Zk$Zdo{{K==ʂ캏븞Q=7 Fs~A_a½{kdE 'Q:L{w¨2@_׏DBZƁ/Z q޳-mh0YxL"`ӆ6 ~˂p 懭47g<ߝ C 9t&ܮx_\Z5h150ؚsNϩ 4yw%VԻ㛄$;PIy[˒L=',M gPb*uly}ԋzo8~+uZC *ca}D`r.u`J;)zNe]CM6qғ\fzNGd{;׺ Lݕ*$/QocŞ9H/FV߯=?\Ko"}?34 ZGL>f4ό^yUPM"qE;X`UoNLF~ݙ}k`aRG4FT>,sQ=nfCi.v"IsdOI?`|V} 6s;p͕p,(1&D_uP=2tMg=6b* ^]LV՝G0v姼qWb^nl-J>q~ 7π3;cߙt&_h U$4jջ87F2zK(5#E0lljSyl@]&BgI6a+=g2C,JfW; f7WUYsڕo8mˢWkźZFY6 6<6^skn u>M ]fӇKl oد-&fD`Inք)U8f/|5i?qD`*m&n9KZNťӯ v;jv !kmAiZOŦ>6 &{;qFM/rD` H>r{0͘mNY7>E䛂 ) VX\n'a];mLl+k]Jα';r 4Q= MKõ(\Vfej۪R:[Fh8تjyh!, \Ιֆ]lk?SpXy]m(Mf~ -{lki]dL3߆7N?oh6j$+em`nvSom| w"0㮏|{jv]o{'SVp.8G1j CifΖ;G#}.TD`M$Mnh\#ZǍFk{HFB_8D+Ťei>C+MH,s;7 F|:瞰|8ZjGKUz]^;0s- U{ 5usDw%RTbG2t7|,yS{"O|BvJY/ҷwhp%;A[_J3ב̉~#s-0ٹZBNp׀ju$K|:7|{.M-]r`q x7%Bɖ&Y+-;O5\c|;1w_ޒġ~^rY+qʵt w :î3X]y?#,u) 8|cG3]F6 L&﹊It'sI^>cEmsH{6 6< ߫>1R[B`c8ؑ0ʨ*l+gb.X%|"eE+hyrlL~q{s-1E`f+uKy!^=ujWn&V+FZ]cX} 8vنj"ކVo&#`Q"(qC* V8ӽ Xޫ_hOk\qO,723|ZJUsED`[r )l鉞E}BƄ%9) v2n mA `j{eC1s^`~{MWK^ƇcgOfvz3<;+vMvsGM zOS6tr\cD_h=6NԎ-{EO&F՛75Qu͊q?BkmsO+0ƭae_@tc[i0j'nvGN陉#tM k"qz`_H6\^D`i1cTR)<=RD`v,wwkoԹpY#.%a\^7l$s.jeU5RZBXUk.Y*w͑,Y SX+:ZhYG\W57 lwZ4&Vf0YiK1y#vXŧ9ecbc30Y6T{/$+`E)XG` s!!njAz(TcʻFS5y6;H9ŔXf^f88}NO&r8׼-ճ0fbSpB$DWu ''JY ) WS6O2cŝpC՜`|d&(X 5 ^z /tI9DgݠuF g i frB v1 F#=廄~47g?q #1K] M&p5]Ik 9 < >fotl7J%x4j1 {KaȮg}4&:jyu)LΘ+574bF<,xNݸb0e<]$G5dfo?S8BsU4 %LD^ P:Wij/VK5+>@;KJ(t|H%d빾'qg%J_>bIfz*V{ZUSWb*~~9o-V 6\+%{O3.sl&O%VE<NhU&W-Dx,oTT] PP6,[ťs-c'8V0q,پWDSpiD+YU8ՕcFetˇ2jTxFjXG&Y`cȔ`LA*eVx%t 2éI0*S?Xci6ta3L cT1ro ~K dTdKEa2XҪb=\i?X]mb}ڭ"D53ϹM \Yh3zdB-gPn>=Rc|\6^eV*>IzT=U0p'g8m'MC 1{#=T,G5-ؼ®-ko˨xQyAznF2 8[ Hǩ:$~ 8a#j`rvʹU\pRln_ FhO&6-JևkY3|=( m! t5t!t`so=/D`췭ҙ:g-x1ulgw"0jr^q|÷`o`V;Z}nL17amt0Ctr ȴ5JF[i0 jOg-bȁNP"d5gu$G-@ŴmDæXi"35qyo?QBnToWW׿'ԿgSgQg_G=/_|Gןo;o+ݿ3g__ş?~7_[Sկkw~/l}H9| l-KoW~;o?Woo_o~|{{=BXNRq{JşW7?~o_o?_^/xwύtR3-rsK&yV:@[]6IxHk?! 8I -m`sXX+en( $ 2}Hv >hr◹=s44S"-7xo`t)`zS;[=s4 nw&! 6Wҗ%}<,e1eZqljSMnVsȳtG`R& OOrcGŇT*H\p PW'Id.ٛO5Jm!uTuQ/&Łt**$*#)lF,&A/KCQBZ6#j.&-L2v\8\/MLkҰsbz&jh$,ց+aQ/+AW%}ltIXleI49\R\ƛ8ԞMrl7 Ԋ$kjWV%& ,|r[aRrl`}*uT)R~r.n͛$o*x9ׇ4m[$p6vɵI7,J k23m$XX'8.K&jHe; 8:.?CO$n]%! nv\:̬ejE\K(wY0kZL% qJM7˂eM-ҦTB%MbXLnG5EI3*qӵ<>dm~ kio+ޞ;ɘLy#(emq 0AC[~_^Çen-`2נƦK5ʑa~. &2i嗕Uʽ>-Hi痕Vwh_VG1j$qEw^";F'D j|{˯+?+{㻢~xouC[1!,4!=xw[~]1:\# Y}dlm E76Qq )thG좇GȾɂy_CW[r" N&BdWl8 )|Q9}:} 꾹i3hTr,&+^ݜV5ZÌd|2pU5ʯc?glc*Ώ2U=ٕe,Z!\o)M$S9͔"Sz !T2u5iTPoSc"-a-ްU=W"wZisb/FSIƖ`qv0nMMplp,(I˼! n$Fr}?-[bJmh! vkp+%&  lTZz~H&p4IC`ɹI灭&E $97;=dVФD$& Bpʽ27JS9o__JM,F4@"'kI %& MJU%&yXPhBi5))$X4i&'2Li@&ܮc+dۣ[59N%eKZhԤcOրIxO-jQUR-mSZ>"7T%tvrk)`ˎl)`wԀa ʭi{rJ4a_-\$TER5sg%m QA]f!%m ލ5u7%m`a` f쒶Iu#:*8pܖooF|m?ioaMƵc!4%}벟`3.$X~G@Idݭܞo+&'gr3o`t.Zn" (aI/ݛ$Xu+ %u6nmi.嚹IXl}KطUr޷R#7Į$xpkApwf+`$Cb{Sw8d .h U= Hb;=' |1 -=QޠKlc?ydMx$X o`ř1Wf{(yqp/sX$v;8G&/̍})CI]8 OwIX;D:b9O:l( a 琥@JM QlXGFy| `ca@'0#st爀zZJMVkXG># gEnXrn`q@tɸk~Ji= w>>=37JW,Q"c~݇vRrn`^m3s<NO!}?ѯ$ƾr̍\>q8䨳IoJ)WL2(-^{|hCx-LdW澿is>$!}/ӣdǜܒQ:8aG>l`qhC|gWFi K& '5?Cf?#T Tn((}yʭ9}bzI geq}K& V/gx~aaǛΩ5R!n]}$s[Fi "m`y8t*IA=G#A?g@I$ol8.dm͸%7X6I&c7 v (ia񚦳/1M'_,$X|Jr}xK&y^)Y=stWVp+gny]7s!1`$Xdddc(V]Xrl`ˁۍॡ%{dnֳ֤7CU+ZCKiM&Bca%&yGMPbJMf3nay$s̍RN^/r̍ܥ78}6 ]iv+ށ X_dj( }+7J`I䲀oD:*=V^M,wS_*C4ط B;ӹ('^RQ}'1KMk!"06$X4 9ô@c' N0|feiCx4Ұ$WOkԙv d%#m%crn`ZMĬi+?%N[% D:ϕ>[CY&{_5hl[12C_L;\BR9duHs=|:w&E: Ycۘ67nFaRo^"żyQk}:3 %)@a ´p=OWnm˿V F]=þ) f8 )Epի'OOܷӃ0lòi嗕[< R+w'EgECVvaC$N17 ż(y?fμ(S5j:oV}. f)`5dW%|CyyQgX{M첇xH1:/J,"4LyR<شn*CWn(cxb(rkFiIe}ZZ?cx:=Cp7%uMÔo*&f}MFT ΉPأ@R-stT1%mafT4ؿavim`'9B5vI$os)\=s~.^ZKX7Iv! v;0p̍yX,S9˷0wI$o[tŤr{>9qעJ_婑-buq6 v <%kproQ֯ӷi$o`uϠ "[4QĚy*nQz"ҝTTX?`p2- Am| O`dCeQh:fl<6ypl KA^棈vd06 3] ]h7d.(oZlZP>%iA)DoXc.uvm2O! d>6^#Ps6 fI]3~d`򌉼#<~gN.tќ=?de5J4+T?de ?CV6[E'R|)yʯ-!2CV7.]~j.:7sj͌kY<2!) [AkYd`oK_I!2 P CQf`T`o[~|0|Yd`rD=y_}:FZ1` NzC7[C0G3Y{g <L ! 9.g/ K@kq-w/Q?Bz7lf>Lab{C?D)Cq6suޭP~]nwّ2[8Ϸ+M]odgئ@)Cɹ}Ace|a? Y rDKDK EGvQff;I!s$[iđah)H;_B%GM؆\`dž9fZ `p=w=)Wq>'aOv3b|a>˖d#H![-~M֨A=VY|f>]7esL"'d`>DmP?d&SzBI?d&{kȕَmJk.G9ٵE7i߰ >d&;^OM;ׇ|cXU],l`+rZ%W$+ ̘)iX*`p. 9?ˇ5?v܆l205ўUy/T̋="M&G7OuӾMΑmw&q#=[~|08ޜ)ܚ=sp&#$#$k˯HDU}z?ۇk+fv ZВM_L*mv|& kcl-y-55fu8`}q8ۺBM8 CZ(r&7TtTQí :֋/2%ۚurZ+ґ`5ȫPe^SMg s6ۤVp®pЈ2 F#@_NGWf]Jruy*]8.Oi`r1NʯX/O|=%W>ʔ36 ϾclDw1"\W]?2m\~5_ LZ6SXK4 u LOuZ~FSpn.c3v}Si埙Xz|-$ٹ,v E F ;~-[(e&{hqXow.Z=㔟r݃8Fk!Me&27)>oD.)ʽ819`B} .xCÃU]r- X5O6##+r,bOi^~ SZvcz?9ߎssXL}%+^M(JcM5lR}"5}2\u#ȅ]R;SYH::>FH}] v.iKv(,] 6dʴeҶKV.9,A weSzR}=2ӹ(ͣ쭊Zwɹ$z>M^ `I%yw'Ϊh ɵ$`L8:\KVLZLʽ1LGsik3S3SK%yat{vɵ$o뻻Oi٥`'~ƾKʒA'ZzXR6W}aKV%y)"%+^jq SZvi*>Lj#\bZ7'm$KVRx$oi5mw_?u> jΡؖȢC87C+n'n7ʉ (!k Lx GlJK>A,>3~9~F5qTM&`Pq5 2m`֬%JYdoRK_ |td&Tx_d6ګ#`p_ϊd}9xs_N+g#6"n8CZK'\~4{3fm*ujMf鳅J3eaCyFB;7D< }]~DŽGe"Xr$sd|5m5wKn_Q"-!_ Q,*g|i79~ { }3i7FkR˶y}]~& }zS.cMi4Q.ʵs2ڑwU6Q+м<@nwKEz5tnMQMVjiV@c董bXP~rB ?>:rZGqʻz;C_Qֿ.i̴Qp*(fqݖLJMar஋!;7m~N!;7Դ8}$!/'n2Jٹ9ML!d`ݝU̩{$Cvn`,d-|00.*90}-C_'aPl[AN/]^8Ӟfy~_r@ 'do(m9UD=jC_XWi(r6=2)/r'GDMfY*o%|P/O@#CV6Y0A!!]{˯ΑMh*;zAdu٠ֻ]~n20 lilE8[edQDyQGR͹( :WL:R;`Om}{d%E-~^Sv)xYlSvii<={fz7wI_r=zrG`I_k ]ܷG}aȻ] 661C]җӛ$;g=sv羿)3ܻ嘞tDOKP,Gp@@Hps ý$`ݯ[lyV<KP^o77_+ԍXux]nXoyaHI5.'T"rAN$Pb 7,{?c7o\h~P5DQh1Xܢx5OgR6Id>+t\KVy5Og9KV$ 뤧]L) HYOFU.[xaI-'s6 Vm!h /*z2R^;1}1}t\^j:0"QOKҒ[Hɱ$oJ2l(@mӰc)=v)n0竨_{8S(lt7AsI4Fr+}_`yyK%+jU|Zwɹ$`/mхET\aU=)\yLK}dA}o})T^l$NiDtqN/ ɵ$`['ޱ+r.Jw^ڄXr- X#\^YWm^}婻gKmZ7x@A+M.)KVMDΔ} -ep@MzMk{] vo,IYtPuwIY00R73:kIʒ>zYzrsQMc2RyiԞy %uIr5SZw)ذγҫ4fJ.{%0/%[F?77{WpI.S0#nܷwD`RLiۥ`k9Y] 0:Vns.JY3Q"-I5~Z߭y\ݹoCF^H`I_06S&= Rc~ܘ_'s% FhPݴ/ Xc  HI1#n ͳo%yCMo47b8T%n¡m@^$`PbkΓEw>~ߺ֠IXl,ϷgXI71X(6~`Èdxu&WcIp&p ʍx1<|oXۻ \Y@(n;Y!OTxVmT@s0%Jut̋L&q> l)ϖ9MMfD :s\,UW@ʹԒ7zyZټ%!n! sb"nmm,=TZX#فoX= rNvR4 B `W}z 6w1ВQ,`6{}uEGBj﷿(-T@FKy,680B# `cĕBq_tdm3dnW'h6o&iZB1PJ/(=Li%MCN. ul%$3!ny1 hHjJ ka`װˊ Ь+(A^c MG1vb1>iYy{􌌂{<'͆~ԋ]'- f81P5P7>_V3,RtXdG O!+l);!4Q6f"'1P 1}ؓ}x =1'ߚ^ºdIK9((ضQ-nUUuG;"Ea'}QXb>)c<G)5?N! PTUBjQ-3=RoG{K7X#q<#A{dtYqwDZ18ϛ@QV mQc۶M-,iH9ȣ8ޛ?u))N۹ tn# `خﶽӴ_@JO;,V-2tR]S$lPO]0ǞrGkdVph_09UZ3 vqZ ; Q8H=X2˶d?oJz : OL6 fH=;j.\ㅦkư=匌~^|GzhI%CTŃO{ ~,^ݽN5m>!׀z3 iu:.~>OVh(ظ=eNU7==1d"4]ۥ5>k\)WE{FmA'Qmb{q޷4GUjIT@GF'2- x @FɰS2/:2 $YpOx8ȣ~?cDă>aIA0#G{~ZWBlSP,̫r8_{q^xء bKnBhLiN~Z8zY̊^MKZX# b#A|$Vv6I- Gr1b "ndIET!P7>䧅Fp-3!0;ul3[y=. ,jrٲřUosߚ5~uχf}ϔv)Szr/*5mq)v̓E<WOܐ].@~fZkַv\yԯn{UN^7/OfJxvV_qk\?q׃iZFʔϿbWe}~+a>F~};a`$-%c¶Ѓ[^-Q{?80~m {lc!2% w,^"~p;*#*侐x7:?x8Ot+ Ti!WKՠ $᳣Y?x8d1Ũ'ۮSiz^=7ky.(UrɜL-yjVkyBc\?9k$mq!n~Mbk_/2 6\F@5Fv1ЖQ뱾|CX{AκeXZ-MK YO?s/=KS׵Ԅ@̬էӱtwBxm2MjalmXznB AB^kq V5l(@01ч2%zW ֣FZ &kK}MJ#A*m M6ތ^mtʸ y#[nCD^~:a&>XHRɆת@x;F~~yAABy,u\pa?/-wT4H9X)k !L'JVFAZ(m-5kH9X _da?ܻ=nez]2pgZO߮\AzpzF--+:>,%ܮ1_fa/ZhaUM8H=ڍEÒm xv ̓_/R !vجO>9huMZX7f\]^Z֔I_Ez5ΈpVIoU{je{ }ڷb }GAƕ2{ٻ:.-i=߁{:.-,@K7F]kO)g!\1:Uo/:2O6* 32V?g=!@F 94q732xCu(tdav\hu Z}O- GM)( ORwVn2m&KZ( HpL ZO۱tX)Vt`fԍؖGb Z7-- VBn_nzwgf ִScΐ5Nk|ZZhO<@g<%2NĶ}̃l$#܋,ƷYY|a g E:NˍIδ4 |0u!.WU|M^'jl}t{ibUW9@ŀu# p$8ra|e8)ri&Šb1?l֘ʜnT32roA Mg^C63.O3Bm{G}zV+)؃EKFnra+-šk0r}<ÿ?)5#Xr}y . `2,t;ka;K^J g+Z@O'4ďB 9Rw 3W+~+HMWz*?x}uuƉ`-a`2bMd%} =Of/>8vP% Lƪf;>CjDߍ^f%}=UEɨ{`48"X' Lwζ&#CwU5'|k[6t 3ٍFD\Rl$ L]T۾l$ #qUQ=58Z&4#`ڶ_5l$Y B}YtDm[R ss,p)8}z˚%mRsg={HYoL9Cp%e_+r+=m{6v=lZX`"AjjKr--i^?eݜaѼP&/߯ͯi0L M.ҧG.dGXt$=rI-]x\3_\p' Lo~{IO009Rⷕ$ v̞|A~)(Gmv\X+se+U2QbeQ}xv$_BFɁ+a`߭RYŶ4U+˥!N9?-:i:Gpl =v0ZYvgn؝00 YI xy};a{q}[K;`}Y|ދAE?oK x^ - I؝0c?͔>o1]_BGߞdzC|= ko] $ L;=޼=Kgf܍V00f!mҗЃO:u7)~~{RImc4eXMՎ#;LҜ(jcP+Մz9^WZ^j']Wp)`7X lĶK7;dvM|`-a`ŸqRzV?x8B_w\:XK+$>ޣocO`wiŝ8J l]jU#LljlK x~9i%첞^>8`9ga-җЃUbt%-;bWFiFwHk4]{I kS<2x^> H:%1;`|/O)rڙ.ƨ-!A{XXo2ri]`Mz+#AB:X+0 3rX Ƒtq"-oxqM{FAi7][uE[vH9Xp{!P_d;;ҾNRVr.{߿<]愻!RV^ɱ҈ɳЫ^QoEkFQ.wH)S"H=>>0b ;?2Rb,+|bkztm_$`f92Nc܄r zvC)ЯRugFA88oyIO|@X/q)Zx}bam/Q4zq"D=7)lJۥ5`=mZmHT /3jqy}~y6];Q ɥo}ا=h[|ztMiaL^O8XH[WhEʿN)jY%W\WEGFvz|{g\U߮hR DllӺآWf=V\aB`4>P_fh^W\Bdv&+7rl) K{^ Rj;clR>]uBW|xIVdUQ۱<̼]d=m]`V8pd1t3cny+PwYf'DʸY}?˾7\g$ũ) QBR_&扷e*a 1 u"_.;a=şn_vz0nE.{<w*A[+`d`N&z0M*R|+a`.ؕfq%V Ѓae"t񮷤CF <};a`"VTȳ6gvz0& 7QXJr :fXN);aƴXQeFReۮ/>?kx8BkݳR]=K#Iy9E/? SZ]lߪ)C`%aNV& bWCfٹXMsl9&qo~_: W[l ϷHz0RciIr,fioΙ-`0?YGj[whL?wg.)ҷЃaGXzYHI; Q:XK+4Mn|qeG֤k sXΤԝZ]qfc,z Jv}=]]Yf]_GWk벮&nS1?9FUZs`mY +8ߘk68/ɱ00mEVu~ )VEDH=5!OR`#a`nz'>I?B[lwQ;G(;ۙGOcNr(q>G1YZbVbҌ2onj1nQⷆ$ 3ebO:.q n2)q@1Yj^[[ ws?oU+u$3OmgЃ0N! };%?IhYcҙO9*.9斑n#RF3RⲟffhR_ԍc=aƱ3>vޡCd(ǽCw$c_,GOy 72*GoQȁ_G`31QcWlii[(] q>6>"§#J)+aOxi/91Ɂ_0Mx3׬r,풰;a`Zޯt7Z`w-M]8Δ؝ǽH)|LC( w #&$f\waT%awŒY0KoK |-ĶK=:nfH4րiPTR`%aOxkN{_00YaHiJ^ ,b"ۮ/U}嶪N?xv3UmnR`5a|zSk|0S>JszƩ85[ RG7`A|ԃrkn;;?XTux! `}YOi<2< M6iam>uiR[ݺh(8ض,18m>+W%ŅҪmţ_nsh(7YȾYS.-OӃ6=mKZǏ< rN>+# `j6ߕϕ~cvc42S)~ɕ\q# `U=5{8Ҏ{{qo1qn`C!OB `x:+>F@GFmuԡ.J2 5]i5 w^Z}8`cu&v.ahևb4gާ-_-)Y?,+l?sQ >6ߝ@1+w`d(v&7Xk+zuFn-|Xӵf]n|{7\:X8dG<=@$3 }h>֓'x*K%L7l\|P<{=v}DQF/(X?8n|2cC$ٗ|A:XX{s(Ge=Ls~ٺ+OբRQ6 XIjGWF^(4EU%r,s1E4jiRp JJd9u_XR$҈=a`2#}9;Jώr?O1̣M gZ.UU+9(dR_y% LIiѲ9]9n+p-x6s;eVuk}2o{"+rxz=g%fc`EgXIq^GJ+C?N\IɈYռ+)e%cqWyKl)$9v% L(jlץZT;R _Q1'cf蒰+a`NDȳPCWa?jJ~_&:f$@$9v' L[Wr|7C؝00}}CUf Ufk4D);aOxƁSSI*4&cb1g 4| fL?ǞcbMs&#fMw$^>8PD_^UOR`%aOxYӷxG05p$qV.ZyR`%a`nJŒiiqgH {A=\V&WbdeZ. 2'ulG[z09O_HjU>c5OxXaL僷#vtpk E}i.Wі ӽ1}`-a`NxqSϥ=1OoZx |G(ɆfXICF1|,|v a9E-}WXO͵. XE9Z'̘M76bKi9LH {gДۚowZ]xɁ#2^pj~ VZ@nߑ 3D/,XU90ZYݙ7Գ+\XѱrE$bԊiUk9/ #OG)YO&_ܯïi5V|%+YI"&KÛu{?c|>8дz |j3F˚ҋ9sU]YMm w^˲,=XB8$yd-t-6d?qW[qG [qG Jhy.ř͙eIJ]K-O{c]x%ܲxhkΪuh:wrm 9t!W,Uq u`WMsAnNXv{7g޳if^ܥ_+Taz1Vi~}p;q5/,.(vߟ9+&-. qΧ49P+;# `a?ޤUs.:2 Wj̵W]~vl - ICr냍9=\(Vdd5hkْw\2te.|P7>*©M٩&bfrxeEn X醂#4kvc9OGF#. u!X,f%H\ f~km"4-8tFBL18)_V3Ф+ѵ-ԍӯMcn:Ppf]5Y6uF]Klx] J^{E~VXhQߎڛv^}пqr}|Gn:ŞWs]h(kυ@A{di:H?X*\ CC<}7xОQaw/wdfX;q޷y파&B/Q/T˪Յ32G9q(ظkڸy3_.82ԍ~=N;# `rꬌiZ]+ Y?k9X?A~5?&=<XW'- y>kO)2>:{_F+x" *mSو}/ޯO|c ,f*c/~=f^ MгٽI k|cqh pP \6fZ5}Wr,M!- wP8b7dV sina: 2|g=TO8Ogqh h/iaml)z1/RE]k\=@{.E2Ѻ~EU ;3#AZZZϚk}%OA3R3rXjۧ}G 3&mEm_sym[zgwXAŤ3gAh}Zn/2r WVF+1ВQ;G!.df,W}\%EZX#5,F?܏H7xC5=# #g'zDfgtm-1?eɰH=XݳLMG~ kd,2㬱ԃRnZyMZXcP׈MFFA&%-ޯyMG}>cƧf, b\;# `5vxW {˝qo^zCWzw쌌} Dn/%^Wb uhJbs~P7霆q b&fS㦩wV7 H fCbgzWKGAƹ;#ͦ+ŇלXcfūcڻD,χ||f?J}'FW߮};`6qz7B zhtsҞr~zEoEKF'kZ}GP4-5 u?0| wr%`cěsМAtrla_+<"-O<˂O J5=]## o8 aCoM۷7## `_^W(R>BYg֌*&*C8H=ȣ~/x_yfaџlk3# `YTp6&-1H;X3*k^3#m~~/F@^SDN.ݿE[Fw\qAS~E};X@o􃀅 H2!~&yKDt>/ V+via&|!~/糰32V%`Us'쌌O}?dsed~2ˢ^3 `\핞>J/zqcYX>v b6ݓ;X?O{q1}Osjs*@sbBq&+IF:9]d@EVBܬ]5O MJgZ4A)z>,Y[ݡEueVqy-uhaؘ~tˏ7[qi9yKB`6O$VY!5-j7]y eSzށLJjaBb%}z+$BkQTsK#8U pT%Xye)ĩ'|P7}u(c-<|^Q+)r][c"=!A92^1$_1B AZb&}1A:X#ո{Gܿ/zeN,45H**\yZF<+B͎W2r0\Pꐽ--QװY 83 FL+u謣}пѼġ~EKF7mx^N4 `xQڐy?3Ψͷ!IÞrroA?}ђ8*- SfFZ#pG&]paߎ?[|߆i#6ųiAxjgFAH=԰/yR4Kf5B N벭_%q4m}ўч}y.VFAOo |)mD./\9XkX=&{.77G;uTHϛ1JȀҠk hǵ"wLm> 1MY+r_>1y'6C#F<#Uۢ4"jVb:bmw=*yHpJf(gZ6_JFha<%Gj=*N{4u=NU߃r*&0Њ⁠k=mEM2/ .#-1k`Z5TL-'\:ޏm^&0z\FSP1V}اJF%0[#q:0qe8p#4^C~.|Kh`{%= AؕIux{xG>{@=KZXVWP\B ABJPioE=߃mqmp/m@W[q+L/Hk=^#ڊTmשJW>UD);a`rՃKy8qZTs`w85'7R^kk#ۮCo OǶK0y-?5LBSV5a߳'} =3B*=wZ?XIYI_Bƹ +N?XI1 W_l#8{jGX %qP4jѸR`-a`6^m׷ЃRKXD/VaQ+Eg; -`,>s Xm%9 z"Jz0cy, XŸfece@"(IXOPmBJz0Iz h XO.γvwVê /KNz0nc,}Yr7i zirॹcɁ )}u;GQ\kDŵl~ {D7z׆ [o/ cX= b4iyoU\GZh^rw>Oj0-^rQKVu&Zc*qsYNXYXJ5m+?2{JVh`Ř;ixb4^ih;%c5s?;5Aμ؍U AXCP7>k(E>S\hb&f7Yod%͚FoYbBOFȚ^Ywr,Bx+`LVDyjX>oGeNIE#AQLoy teH_5e:n"eOy/}0iMioia9Ra𮘚}߻? kp es}R Y^k#?6}пVLw5F\ <ͽ;|j=іUK5j7}bjhfҤ=s&)kFjA eAZYPD# r G> RV59"dmֈs\# `J9PEViaͤOyS}؏#BEmkf,哽9?oI kܵ t1ЖQDB 1K64iyB `-YqMZX3N7uWi1V<˺=B >wo$=ؕ+v/X6|8v \Bendstream endobj 6 0 obj 69542 endobj 4 0 obj <> /Contents 5 0 R >> endobj 3 0 obj << /Type /Pages /Kids [ 4 0 R ] /Count 1 >> endobj 1 0 obj <> endobj 7 0 obj <>endobj 8 0 obj <> endobj 9 0 obj <>stream 2011-05-23T16:36:49+02:00 2011-05-23T16:36:49+02:00 GPL Ghostscript 870 \(epswrite\) Untitled endstream endobj 2 0 obj <>endobj xref 0 10 0000000000 65535 f 0000069848 00000 n 0000071391 00000 n 0000069789 00000 n 0000069648 00000 n 0000000015 00000 n 0000069627 00000 n 0000069912 00000 n 0000069953 00000 n 0000069982 00000 n trailer << /Size 10 /Root 1 0 R /Info 2 0 R /ID [] >> startxref 71557 %%EOF espresso-5.1/Doc/INPUT_PWCOND.html0000777000175000017500000000000012341373334021417 2../PWCOND/Doc/INPUT_PWCOND.htmlustar mbambaespresso-5.1/Doc/INPUT_PW.txt0000777000175000017500000000000012341373334017371 2../PW/Doc/INPUT_PW.txtustar mbambaespresso-5.1/Doc/INPUT_Spectrum.txt0000777000175000017500000000000012341373334022560 2../TDDFPT/Doc/INPUT_Spectrum.txtustar mbambaespresso-5.1/Doc/INPUT_bgw2pw.html0000777000175000017500000000000012341373334021400 2../PP/Doc/INPUT_bgw2pw.htmlustar mbambaespresso-5.1/Doc/plumed_quick_ref.out0000644000175000017500000000203412341373046016060 0ustar mbamba\BOOKMARK [1][-]{section.1}{Introduction}{}% 1 \BOOKMARK [2][-]{subsection.1.1}{Overview}{section.1}% 2 \BOOKMARK [2][-]{subsection.1.2}{Collective variables}{section.1}% 3 \BOOKMARK [1][-]{section.2}{Step-by-step metadynamics calculations}{}% 4 \BOOKMARK [2][-]{subsection.2.1}{Compile Quantum ESPRESSO with PLUMED plugin}{section.2}% 5 \BOOKMARK [2][-]{subsection.2.2}{Running metadynamics in Quantum ESPRESSO}{section.2}% 6 \BOOKMARK [2][-]{subsection.2.3}{Units in the input and output files}{section.2}% 7 \BOOKMARK [2][-]{subsection.2.4}{Postprocessing}{section.2}% 8 \BOOKMARK [1][-]{section.3}{First worked example: SN2 reaction}{}% 9 \BOOKMARK [2][-]{subsection.3.1}{SN2 reaction in vacuum}{section.3}% 10 \BOOKMARK [2][-]{subsection.3.2}{Choice of CVs and simulation details}{section.3}% 11 \BOOKMARK [2][-]{subsection.3.3}{Metadynamics with Born-Oppenheimer molecular dynamics}{section.3}% 12 \BOOKMARK [3][-]{subsubsection.3.3.1}{Free energy reconstruction}{subsection.3.3}% 13 \BOOKMARK [1][-]{section.4}{Second worked example: H-H}{}% 14 espresso-5.1/Doc/INPUT_Lanczos.html0000777000175000017500000000000012341373334022450 2../TDDFPT/Doc/INPUT_Lanczos.htmlustar mbambaespresso-5.1/Doc/brillouin_zones.pdf0000644000175000017500000371471012341373046015737 0ustar mbamba%PDF-1.5 % 3 0 obj << /Length 181 /Filter /FlateDecode >> stream x-;  F^1Zq`35H@AE:ݓm]9&Brm4$K4׺!'7zeBb>f+hS}@/e;aHf@CL)zvw42r-bٯG6~J~]4Ni"(2 f\<| endstream endobj 11 0 obj << /Length 3285 /Filter /FlateDecode >> stream xZYs6~ׯPU'Az/v9^oV╪6ず4,ϐYۍx *Nq6WgϿV|%,ʕ9"_]nW?$|-4ɫSU5ɯM]tX.VBj-S&3Cߟ?:ϒ77N:4YݺpVYҝIؓ'MKCƶ ]W}\]ue׾ˎDmTؖԋ{u o-4_nʒ<'R{O=IQjn*Rv?VU}SЖu ϖ)*(h L9ch/grn𦷵ߪaL 4 ]/bf g"t W2O]F&6ʙaC7DY0mq_Q66v;hB )jhm׏3h#f=-xO JcJx]4 btòrL>2pvz$:Jg׎@CJ~?eath]iBeFnpa0CQr Fs@Jfڠz?F I#|@ R )6H<8Gd<̀+o|sf ;\PƱuQcH厸2#%'Cxњ2a=~ϲ`frb3<]Ϫ3\$.p&>A-u\6j47{LұWo$+\ud75e2\*X475MnÝo8rqz(mn+6?@0pb _ƪ)e=U4?@GVLDF&*zߺT,?4 %G 0@OߔX!Ϙ Xyf,n/4/>Z]j'^R۽8akKુSCl<.54sԕT's9LJqU/16sIe2Jj~^V`,4s p8eǒ{.持DN2?[ ==nK|SqLdSjq!0UM˧ tLYbBwRMw*ќ2=-~pf\Ƌ ~e>Rp@yY|c Wjy=ʰ<D*>Pcˏ=3vtA@w/uWhAK%8,3R=*.pلixZ`x9@CՂ(zj;?;yG4# څ43bQTmXԮ!90q|/2iSP6"Iyq,`3NaJWvL`=sA01`ŪT.DPK:zgG"\{sByc3OP1+@N{xlh뮋yۗ{5nN]2E2z-!YOC4c\J'^Ɗ'5⁺j9э0ODhcR VQcE1^Czcr,B i'gO[?1S[mogo(~/|:sr,J7n+c99߳X2K3??T2$JIJ5`2/^h;z!Y.P_Qځ -/c5!ǚc!>1 @4 )]{PUgOe*˿c@Jt 4M^\?\DU}xβ 2D endstream endobj 22 0 obj << /Length 906 /Filter /FlateDecode >> stream x՗MO@{#7V[*d kb7@0-,xvgv6q  sEkY}奭\7w.}?ݦߴx2* ^kdsfi);J~O&d$o6nrEU~=N%$MnZ%Y^dŬ~.//⾝@@]-yF_&D*JC<(ѣCAz*K&ZV=rT$jB1ϊ}(߫5X+Ey5OlA(Q= KT2IQ#XYJI#bWRK/?]f{US4V'tVX-ggi>EV9Y:J: A"r/2 GzZ.yIټt/z\Yd*nSn:"6Ն Ռ׬eu̐IÝmمMrjthSvE]ںq_#gUlQP1h ,xcy^їect:tc⠔zc$#k^WSk"[n D>4!(3 !tnl=7͋k6ioS\KSnJgBmHa@z+E:wys&4yX$1LaLt=&RrC%pTIO*~̥y}rŤ7JGLގ=x!5ؿF譆\u@֋p'RHAp ls>7a >h0 d :z؁Tbk3ĭh^QDz2/M> yn R1#µVjb1pA\ߎ endstream endobj 8 0 obj << /Type /XObject /Subtype /Image /Width 937 /Height 905 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 16574 /Filter/FlateDecode /DecodeParms<> >> stream xAnعᒬ@d?.,i2nVLCqdw:q\6LExHtR$JLJz^/D"""""""""""""""""""""""""""Ã%}XիW^rL/׿<@d_Vx|||||կ~_2ɾ$ir>,К'޽{ݻa.2ӾW_}Wge_`i_V_xŋ?z^Ƿ1;Z#qN^mw&)ӾGރ ON&ǁu<[g;E5}x\L<g?&-}x8 Y9 6i)t}iqڏL)K[Ά\ǻҹXξc{d-[}?KsL?[hډݾ-A]q6}QƖd_)v+a)khnEyɾzz0MeZ/@sr-[\-mÖGL/ҷo? wx;sy|8 <:57eC};v\3G鳺i~fS/@C.[XN qo'`-YssYsa[8?鳽v'9M>N sT/G2 Є-1%^ح3"+=Ⱦ'|9]0u񱯽@ d_f]0uv㵿 s)K˾{k yi_[0M[qsnwnÖ#0k.3iߨvɾܰe|f~Dn..gܔ9_/ꫯ˗/_駟~w޽{_߿޳{bo.yJc@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(/@(ON@ r=z^*I(o=eeB"5wy>_rKV u]usRmϬ7y( PySd\Yd_ Pʹـ9/B([&Y9?{KZȾ'}uʹf?/B8y^'+N/B8Klr.%l&@-d_]XyʹlOZȾ٘zʹJ l")d\ )d_nt\VK{2Mxy^OY9%MVȾ7HS}?y#[<9V7kޓ{f%+Ber.2@-d_!R/{sr}n Y9Yh b֒srȾ@^( }Xʹ T#sa/42ʹʴI@VEVL/4AHr.YY fLn 6Yɾy^ȥ,r/*&@};?l'B5nx֦ޮ4/sȔ E3 y7֒}8R/D"r<Nfu#r.N`"y) z ɾ  ZȾy^dmH@M^"/ d_`Y9R/ EsiyY؃ 4MVykpH5d_V뺮sN`l.J @q"¹CSpR/!dȻ}ůmY/qb` ^ 4xt mɾd|_\Yɾd|_c}Ą/FNkҜח#{ɾ+{}Xau]7#V=}d_>޷:C`Qty7F`~ـ؎@./IW ]?}rnf~ @2Loj|=9z!0۷˛7#HgiuMZ)d_F|  М&|] ֒}m 5nf~  _h V{{}Z|?#>'><L`~ـl 5qy7X&Dꅒk"}Hubh}+o_/ ҉PV/<Ӿ|kw{}o 术U TbK*K/@.c/@r_/@qr^pnf~h Pmog~5/YgتZ"fbK-h [Cu.@d_LS ؛ @r~pz L=˻ON^ ɴ/߳ݞd_]?;V= [ jh [2w/@/P`/fx}b#-pӾ_DXa;g֪}|w؛3 @d/+#0˻ @6* @h˞brܾ_jNg_L|p^*= }N;|~UX@d_i_|k hyr1Ⱦ@sJ}ɾ@C;|wnf~ 4A!|_œSDu^5w_w;̴/+#%3K=}H"R \ ɾ$:SoNȾЍ8CeO/fɾ@_)˱n@d_2/ez@Md_VFZ;v~zν򡮯Y3Ⱦ&_hd_jjw{vȾpC+|!&!g_ @d_@x\ MON|^Lд'|ܾ_d_% @s_=g~J!/UQɾЏ .$[K|\ /I-|h Hɟ 0D"JmG Wָ= @ /|r  ۔ȾTEno{@g9Z@Yd_>#n#|ry7rȾ| ɾlXvnf~'4MMc/5}% LݞH/@s~e/@V=Ih|K,6l$4aJ[ w8˓S[qSo{EP>Ӿah[>/}n_/d_mƑW>/@(o>/@.g~؏  @]z؏ P=WǑ}*&Pw8 P%#TFf/f //B@9p/wؗ P҂g\z؏ PV:t]YCd`//@qJۍ}^:؃ PmAu/@_Zu]g /do>ssvG4o>/@|I8MqX p((j7@/A,v/v/_X"H&_t]יB؅{,s Yۏo.D;]wD Joi|i4^Gڙ흒}u#w.F˻IDv\u&/X&|r=BȆۃo X|Kbt]Mg~Ksim𝾷`k.W݇ -v|/m2;}\؁,o>/{|(Kɗw۲/6'v} R00,} 2ݾ[- ,v2{J5Kl[}S;#U|c/=[aR TF- kW;sOlڽL ;7`ᖹ໼zb#5l{zss e8J3viǖ#|ܹ}} G#\DZe}zm־GؒPFƔ 9?_=pn}}{|\pisbs=+˾@q=ŵpz\Xu]uCn?f.._hn\<],y "~Arev\ljP _@y/)&_9zm`}k2i_o^ǫ =o:~ ~;^sЮc&j-|t\׶_8Ž['Օx.8jA/A?n=PkZѐPknL,'K9)ȏ(6нg]}|&맫0b풆 [ˏo旺MuC )0EJ.~}|,r-5!bB`ջle|o`>Yr}h'f|Xcݹ{.rB}Bpj\ >g#n}31-|RȾd. &Y/K}^{_ΕiܽJz9</|FKw_ 1m|ls[B0ީֿFy}>Hqz3)ݒe~翪;-+s@{e?Ի7H;w%`XCM_w.~\{|4{r4Mx)3Bp;Pr}ސ3{32qnB[P-Yn\s;վ_3{|׿_OOOOOOב׉b?` Fsy;}_wo]/8 g {L2cFȯ__.1w4COt{o9BƷ,^՞BbXͻ g8vuq!`hyw]^~ g3|{U{:m#͜}8)߾<=mGV~'ZF9g1ۚyŋ/ҳ(~ g[>[Μ@2߽|] ,ڣ}SM_g4| i/=.wc\\kS )scuTo{+GHw_Υyg\˅G[Sk\innMS/UJ||RcU8,mh<Ӿ۷{ӣ|o9mpnFR_ɾ%17C$ϱb/9֦&O=\a"%o{xo|92R{k9E;x$98ΖԻ3v|7|ݻwgnϻb\?#oɾ5J3{ (u 0uꆼHvCoMn_mqa1ֵ\d_*fs[r|w9dDb}Тsyck!+gd˛^׆qxnnw}_5ݻǙXGJ(Yުq|/Dhs jz-XMꍡa;}3$q=Y!zիW;N_??O @e7{ʹ<[UZl8-R@Z[@.)Y~w{oJML!xC嗿/a7#Bp]d_|](o^.?XW!0gpK@Yr9w{/R˕1-/_|?^Ke}}jL:o#ʗsSᲃk|ZR/eoY}|[ΞO3fR=W Yw}(v=G# a%Fxti߽MP߹=CITP |Iɻ d_ll.W-gCvyɳ`_Ku=R>w7o_d_pok yo b|CLya?Cu f~ CI:R/ę8^Ee?/ nwd]Xg~ ӈ.r[g-!}HBǬzw9 ֦-뾏XvtBy^h;wJdv) @ٽ>wLpS I,}Wޥ/;2s_؛PK.ȾIlLۃoy/gig/&r.5Fah & )"2) ޴ %@Nh5V7pȾ C>^u>Mn_"P1 LLy}%ˎxw}-f~˗|6e{kg}Ϥ>R/d_;-ٹK 7.y.^.~{+p| al/ІfdV7 ٖ+3|׼_]s!Fe-d_l҃tض+aR8&?\d_ R/S_H.ג A5w1v-O\_o۷ȭrM/j/{^9rBr.2Y`j"P2N) XmYHr-G*+CB9ZX@Md_ ּXy{$Y#!-w<;,+"+u "/ɾJOE wxz^Wd庎WV~NeR/̑}2-sĵ#4y%8&Sڰ\UqAY/\= au =` 3˵i=Yy,b6~:R/m}>Gzj!+rGei^v/@KO5R/ʵח˷z󗒓z /PӤ= y|ǩWHr#\~1=gJ4/@5{\&R/-?o"/KFJҝ^nᵤ^+RVz wf^>Y˟U_)(ӐhB{ Jp$ӾHu`$[G2 @q޾[3#5Zv$ G2 @qfcsjMPӾ6^( y^Eh QɾM!e$"/@Ŭnd_ʘɾzt/@qn}`E8 A8 1d_'d&}6( y^d/@ p @d_1Ⱦ@Ӥ^ hH}_.˛7J"Z#I@d_zV7ɾ@̑}jH)d_PV7G b`;8 Wٷ\Ouݟ XӾ)ix Yҙ8%w` p C O @]n(GeӾ{f +"+Pr.21n }7d_ʹPWy^Z"#Y9Yzh @d\de"nd_%+"+> stream xWKoFW-$Pwf |I z)[tL@TY>,Qle@-曙% ? c(=Ru-_tCm^|!fJڃӡ;D=lj(DP*̔B`ٞoh"+Hrӥ9$_ݦF,6enzY IIN?^W)V=m7źr?C (˖=HkJEoⱕ-`XjdƱ<ھ~_UMj+HQKƉGK I8j2DZ0o?Q=X Qo7)nψL3 "C ZFxN32p*:qȸN&e:]9䋪rzJM$CAi[{+5=@Pt落RS1/g/Ր:`G$\ Mt/Y7{|cg^,jVU"B7жM;,eqStQ7[zQmEugܽEehJ8NbM0UTPL lĨ!s=}+)q p{o=BcoBcj:@Ci$lRo7@ *1l]9=POm eIi{1 <)yvdFj{u> >> stream x=rֽarH%\ rՑwqКL'úkxu*G5`&F7п>t:NWM        p{XN~87|7 p͛7o޼W3__ׯ_+'777777 g~_~/_߿ͻt:N' W3>|_Voۗ_~_z+KL\W_}W1k8c wVsW` /'tԋeWjݴׯ_~c( I^?~߼y͛G e_>wQ_>ikU_Jsj; \ n~mS6`M}ȯ|Ç??~~_ua_g__׿//w~)! jWZ{. kXL~8 _|E;v^O/H I?vWy͛7Wh?}H Td6wܬ;`O;XH p!vf_Nn !uhݮ{%~l5ƿס@~>殎%UO5XJ"\޾ةS_Vy_^>НFصݐ",K~ /.N_ky=-ȯ_`[/ȅ Vک?ϒ pI W|:[,C.`B~5uW^z*>CĈP_6,;|:u+ɯbwk`<2|x$hwI)dW@pj^rR  _`2`ߟy\` `PC_# lUxW(SWľag|թ \ Tc< %8ZxLl䫞&.Կ_._W~JCzv bאկ_:>6-9 N~*u=`oהkg; :6U` !J'ˆSkc`-+y3dk?>N L~*5o@Ml +PQCW ܍M䮻.5_OmǏ?_kSh~g@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@76K\_____/t:ْG~H&P !)G1?!A G+d5Fex4MӿUN[RS E-5ͥ${)9 5+RiݑtK,_ ʏ77I$  d%in$m_}>A4F$ g%)S +囦JI @ W !N%RAɯlJ$J$-_,_d2i8 . {"i8J` `S9RAp+FbW`o,CWҪT n|guAt+@DKW,?mU\^+ک@ mi~(c}ҸAY=@W!,E~%Qȟ u ې_I}dE~XA:DWcYɯl^H~%}XH 0S:u s5+ kz,VWCYx1"R~.lE~ :D珈,WW,:W !,)Jxţ,t+ CYYyWAkyA( B~@x 'dW3r,-A@~DxG%_, R,@IYl+P55M4? i~_H TJxM 46k4ɯ@u| @mʋyuF~*"GR 9-m_5ZAuP=+^ҏ\",2( ˴ %DKro/(A}C~Ťs"龏_H Hxe*ACYD!'W!E^Y >{HzHʜGӥ=(Jl,O{HzHJj\ H dOxe/lHzHJmDX`_+1sHz7DX`/+%\dE!")E'^] +@ lI~!R%A<&amȯ@Wj~I5M4۷zE~&Bk^IƉ@l76&?~h;,ўQ4M<<#l{6"Kȯ@rW2v4[<@ GmMCxֽ0z $AxR 2ؙ CX Wx ؍ JX`9؁ X =XB~6%9ayW`#+  _WX-",N~"^@8Bxyȅ Lxu;2ɯjWN",0D~V rNW`1v`{MmL%]+0 0DZ+0 2vTп]z\NdC!W_(I;W"Y ^iϔ:ɯ WzGXT+0Hx;P3(k`T+p Лm",G~ ca+ =&+$WP*&CȯP)b+ 9_:+؁4M4=a +TDx ",/ BWHL< r'BWH>+z\/%H 9_@+"@^W( 0v%DXȅ ^j#@WȞ )3vDXH ^!Gp8<^NP3x}P~~5v:߿+MhY rI.'+`0D~ +aO~8S_K. 0 -.^>S_`*W8#п]+|"@  @W^;ˉI~j+00slj#R)6%JuW  @ W*";a(ۍM@ WB8"쥍 gt:JW ';۳ȯKxelp8H~@+=ca(JQW`9c ",e_) ce<@W'@نꭁ }+^u;)< @W$@DX"ؒ&\ȯdCx`M4Mc;O }+^L}iO^EX\L~%i+c /п]`_+^^Xy[ 5קt:$S X j<>>>}WlW")^ w^;$\ ȯLx24v( Wv#1vJ%DX')HP3-ɯlDxRfF`+ @ ZW"^;tJDX_Bxra}M4Mc;c<++^W7zb ,KȯFxRf%X W=f9~L`-+@L}e-Wf^,!2 W`9yW&^2;s8EXȯ^>",W^ 2vA (Z& +@`(DXȯ|"e3vMO~ExODXת @yR В_+%0v؋ MP8p8<<<>>>}۽}uv:NP*_+"e3vHSjZ P6 +P'ctu_ 'ë0ȯ^z;%!HxH P(+@W ",@BaJ%Jx`+P59>Pp 9O1v@~ݍ_t;ɺW^u `ܺTr[S_;oj]74?puuu}k`Ot݀x;Px?,3uSY J~M@ i8F>(O;v-ۙXȯ2vZ^#50|`Wu0v\8.@cl4 5;P؁GX ׍8ݻkP/_w@ j4Mӿ , c.eP*_wr{ku2v(gm,Pб|t`@Ij`Pu!X }K (;PpxxXݻ)VRdI@ E];.S_Rxs er9u۔w5v7Y߽{||WeX`{&؎@L}5oGئiۏ Bgm$޹% MmBwt:@n^z<Se^YepB##lb)JcXP*'au j`Pgws#6bY S_] (S."2v{l͟:$|N"`sSOk`R8,v})z@<@7ѻ<^5oCk`ri5> ihݫC^ma1@rt}:N ¦|v0v(]+a/uiݻǷo_ sCTJ[M4߽Ej& ]v+a|c gmrhzL ]",@WxwI))56b/f%^iq@}.GR7ʑ؁izEr]nom$VJX>Hc%Θ(վuϡp{lKF LK5¶)ti93|`3v(z{^G`i>41F:`qfL)ͱ]-eHWeu;D׾\>??{ϘIjc- L^CK c,Ji'Kc Gx ۄq@\Ck]Ltއ>ڟG)?v@>cc<^+a5^]O=S ?; '%PP}kȿ(s95DsQҘQ޺q^ir"PtkXO]}s$ל.|ml7 Pہ\8X֓> ar8#l5),e9B.+^EX`kXG}Ǎ)Crר6 =OzlXvv46t.߁t8X m9אX ꌰݽ˜h9؆Z^C~f/R'ncMјsX8ic @.J !? *'\[E}1L$ky Nf1vHO5waYє,QY;eLL;yi@j!:UM^znu^>P^؁\ HSxRV[x EXOplW%l+c קt:_oe}^oc%x_50~۷[Zk(~?Uե~~؋w_' } ῵߯Wi]r?nUۖ=ڲm?S3u-֏@oipP75i@yRp"zX[=#r.`o N%Jy6c Hc/,}ET@ /nu  P(.cLg , 1$EX[ Em1Ù<0v؊ .&n) -?4'|GQ| ,6Ot!>m@Mxn;ot-uꇳ4'ؖiݻǷoClk $--Msuuu}vU{;^S`%,}1%1qISB uŲ*`Vog_{b^-nwuuR+aS{|uOj<Rb n'}og+aklMmG l%l:b笍V?<`mk:ls mh6=ʘ򀂡pi@<&ih[ qXZ 6mRls™ @:<D'OiO8gGx]G^Ḱ1Ժ_Z  ya!Stqlo!ޥʘ184;Ax͗ [>l:RD|;c reHI`ekDXXT ^k^QRakbL &  =+Zʛ;n2 5v`vsV;W<+K͏9Vc H5z`(^]]]>=&8c ^| }?M;  ޼?ka֞矯 ^0ea07;7)]weNUy8#cm)pI.^bLq*g*>z2W2@ 5$$0)pFd  ]eZ OMݵ@8A0Dx%6{GaY1 ]KgUy0v^ٖKr ²Lc ?ֽpRTGxe/",iRgvaYOc #켄[{}/Q鈏]+)aA7ʎn˱Le E;g4 t:NzϞ Z goGI=K;JW?ԝei޽{||5mxЛ_ 36-VvW>0P8ᕔY KJWЮXm, 6ԩL.LqS/^E7W¶JX3^4mܩ{gWv#l:ڣ*@kCx$V²Ny[Xbꮊ6v8H>v.`jooP|^tm7Aeo,;|R <SwD t*)RP*ZKr\%ԥ۝/M V)y~ kduo}}J DQz !R ^G% Okc̓5O,{Ie.#eb6ok(OW\O)noPDXbSBI/CQ K<-:_ *d~( !%=;䰧 |9Q*i@҄W;?:%eFC`H w+,!YQpŎlC5|L9#BGKwO1Y EXr<G}a_+/#{bk+pu%B\ j؊ xؒ[ު|.k`Sf98&18gW Dmr EK[ciOK$z>lOxaݖ[26{pxx.²5L2dr6vb^%D%[Nx.9G$) HJ U^Pi/%"l>cPmIΆm@ ",e(푒 2x!d=Kxba!ǫ=e lhw.(K[wExR(a؁ҹ O5'–z m05j`]n?S @ R.M K֮e`]K2Zc` &g6g/B+OY/_+ݟ/čxk9XH ,Kr8@ۡWBcr|,0Ww^ZEXyBDXBk`u-'אT Vs+@߶֤WC+Epexx6 6v-`aL$ǣ6-geǾ47ٚl0Dx>+6Muoo#?^8m41^HpW66ûwovC A;য়V\YL#e8u-}i>"n`vKIGkkUm0HSVZS_[C|fxN~4#쮇[>5^zIvxo/7Z.e"x:^J^ǽWcKxXܕ+)vlm{Q pӵתw 3v|MJ0ol:v>rIx!<¶g S{Xuy7 Ϸvv: }ֱgӤrj5ihHOSio3l4 ƽuKmWuYF1acN"8n~}-2'gcm|{B?;vi{6A5__K;`+֚rgc_kW^)x<7J%vKr -xWͣb>k0Rcj}̭חAxXbl}kz=V®w?C:~>ݗoVݻz5~}\;uK l<W~yyה>AK֡8?'~pxx, ! Oi_N癟_ڼ뱰]g_6uIx>}iFXcG&hH?f 䲯>oW^JcB?yu_Տoƌ|XUJӖKm3C~2=iqקaײЀ2g)?:4Y%[c}¥[Y V)RNhŗb~]GqlZE.u{j0ok._['%,^,ߺ"XZyER,kCCȯ[?'Ky1v`H?h<" dk y}m|BdI 0$9?_[#쾣ϋDX1ol?_y9k;o Qt[fԏ e L{H_Z2 YoW+/X4V{J y Mi˾׾$tڏ`dY5欻Hbkk`V Jo}?[Z +zR>fx9-?|? ˯{RկQw ljsTsڎ{׮y yJ~akQtݗgV )~wi\Vÿ);.]4lm_[ V-qakkCu薒.D߼kGf 8+d@}ʺ1q(]KkSeSX[3_93GKmwZ95ג?o\ql:_t+{sٯCk`d, oh}kw}S ah%i5AmiW{n|;Y;؁^-㷏٩3gIA^?j)gl̈́Weo}wtwlliLeii9o[{]k[l׮mIxk?cۅ֩/d1?O&7e/@y.6cngeac-sc(j{BcZӟ?uu^fǏ?~(e|%rf~}z:]- g8UE?[bc[Cf;#~xm徾rv@//n?8;NV]KHܷ &95d uN~mL~e'(uk[[1&6͜pP;vׯ_no鶠U٩z(u2o[%8dSwW gַoᯆ]Z^WXJ݋jίSkIyo~kV#-?XίR_: +[oᯆn16{m}G<c/k_m@:[kS[o曩ׯOCki[^zU{Cn[G_dI(=Hy)nW ַ:mKƽνr+ּֽ55mj5Ssg<_}W_}' _otl7o޼yͯ]Ç>t [ kΗl*5)¦txJڣ˯ַ_{@B/к%9]fx+KlaK;`}k.ȯ!Ϳ5oE%dm7voou__??C"G]K>A6t+^CP[_]EukA@Gt?ۻַͯ;-k<{'$WN)(ÍMQ +?fL.="Cqf@軻yxG6NiWTe~hO 5H;Ǟ5`5+x1+eyxhE'v><SwwCX\^!CejO?є=[zX>oMq: oljco-[mcZK. 9!I,^mV>{>?k~o 6#lAۇWr!2U_X. +piO4 %uON!+B\[FxVjyy-XYW>F$#͑^Q^WޏFaKܣƕcrɭ9v+* VAV /o\ %{%AC+amJص«}e9|eA + d}߮+"Ada#j˂ ,j l.>"$ 6X]"lM۸;޽{||{P;V8;T2+9`ُklL'^چQ6Un/\-2ߒ HGϯ!coe~Y׾#RޞnzAVLUWXk_ayi i=#ʖ_oe=vVUזܥ-6wkUmy|~p,JX^G}' Ca5Ē+\2\icPm_Jˍu ϲ)׽vVOWۜe~a كϨ&Y]+k1x5uv]vfP`sC`[Vb&,֍]3Wr1^?mVb;ԦKou W #,uӟ=S St~v=5KlI cW~w4iixaZ 5*0Rk 츩Ֆdԛd0P= =~ww8\| R}kEIG%xٯalV֓CZ6 z",[a|`ҽ^K~קFtk ,Kc~:ɯTm=DXyU$ WF$7_iiO̜~ϐ<^[Du.>+$~ez֋:aC6{ }:K !{ KIpUreI]+wmUqYy"~-_^a*ᕾgxtwv?}U_xlGRamIyf^: ^a*ᕩ&䣢.EAtdS+L%"2\cXSsdկ-k`l[lԸd wKy;<+L%\w xuwvd0D~ ERM 6WJxT_ޏq"SR/_>#BW7ᕩWC1vW@/ 0UH??u8@ZU_=9|k\Z?9>W. ,x`_A@8NݯI^a*-;pkc鮭zL5e=|""BxTm'g-ۖ~u<>}?$;z_ʯ 0 e}ɇNx.5Xe-!k`) _a+E-@WXb(Z `:ջUFe>c K, 2s 3 OcvYȓ 0، \@8Ok(Jqw'h =Xg;%XaXN+XkG5 w ȯg%v9ŦdEa@xDZVscp\____o g0P  w+k<5F`R5x4" {|~#zV~e]",@yWXWyytVA~_/Oy eXPkch?o[{.!_+ I0  w+e֮>́eCC+ "H @9kkc%,@.W( ,'DX s,%.2\&Fx` J~4v`9uk`ً _W` ,",@L+6}`k_!Ck`[",@ + u2/`+kqHϳɯ͖#,Kl4YtK~1)pI.u 8.cוYDXWb [w > !#%G+S؋ Nx J~WӒ)S_xiaWRx׈ Sj">##{eih lKj &Ǡ;lO~XR u^ȑ5[ M~GX@ וyߌ$P6 ]^׍A@jDX<+)`kɅ Ax wV_7e ,ia| u~׈%/",8~G~݁5L'Pk`e%@%s;G~λjhh lK'Pǵ)u7o<lCxY lO~݈xe,9ҭ`oά%",%X @l+Ϥ{_75t}9"17t +0 ExW |䁒+pL\kp`_kB ̽Z.^`9#'odh lKWQr@XKDX` 1X;IJ' + Ix${q%G S9z;L~MA %#,u!&Pbs<ȅ4k`) 5^`_5vHk` ^`{_3` ,a$+96_䈰PƣUx`659ީCk`[",Lxty9Q k6Z( y^  H( j3a9_3c ,esI.H *o @^W 9",Cx@פ BG DXؗ 9:F6 +4'izZd+5>F",lCx2szH1# BǑ e0`{k6Ck`[",#@J:;K~͞5FP2ZB~4aq+6x\ ^6ߍr'j&BweI@^,9@ CW`/kQ|/;A~͘50Ds=@BKN+0U.s`-Br$am^;O~лBkh #E%+.sgȯsЂKW`-) 0vȗZC  y^%R?[0v(ZB"w+Ͼk`-#4X!’#eF@bB%+YDs`"N",)^#KrAW }I"rF",@ZkP DX!Nxr,`9A",a'1WT+/aa ֽ?U@W0nh #E dݳ"ȯZ",+PF;M~e KWlk;D~e2B$W=Wfk`Z$2@l+^W5_Y% [yZs`#Be^zzmh+PՈB͗ Z~cPB͋ >(DXXB^ ; ZCk`)"~Wy;F~%ê -65+k_NmS #;В_و@ڋ U!P'M$a$, `DX!&nDX!  B] _ڿWf+Ia! km .;oKW^W!Bkh #E ++@EXhWxWp+a!x  0J!Kr++<+pI.Qs^^_Ɇ !j+@<+r+a!D VxGxXJDXQj^^%11 1ȯdOqCk`)9DX  ‰7 ɯb@xM  "Kr [_)f^^'R,DX `/+a!ľVxGxؗJDX}^^R RBlaWxWtȯTG%GX  5+a52= i_ɇ "  2b<Ž^^'2\+@<+@.W% DH^^r.<0/6g++@~ oHK_a !# ;^ ^ Bƙ $+@Gn;^#;",X 0 P*&aa*k`e_a&A+@ WX%q+@=WX ! ^j#jDXKx +aa5@mWɯ ȯ C#< W؍D.ȝ @ э`eɯ..Ox` rEͬ#0N~$<r#B~݈#p+L6F^J~$`2yWHK=r! ae?H r+$g4N؄W"BDXj04Ex`]+$ WȀKrQ6% ap &BfDXJe ,%mȯ%zX Kx`K+dLp+ۓ_!{",%1Ax`/+N=`:}ɯPGX ,'"R6k`+_@N()5T+_X.EW$BDX&2 ’/#!+_"",%1j& #’#k` @^WKzH~.aH @WKjFWT+_"\zIKx +SXr2\P6ȯ"_.^( \ ’>k`$+_A",9"P6x @ +5_ ",i2r$PXKȯ'",{'P'L%@ Wj&39Q&5@jW_E\Y ^%+ah %aIW`e",i2^` D!²/k``+_DXRc ,Ex+ G+_OEXA`yWJ~6"’K/!+#rj\ ^` ؁Krq+,'aْ5NxȯDXe ,t .H /b_f  $Ge{FP'b_̈,g , HIK P$Ix6+lO~2`,[Ȇ 0 _̈J%@ W K",A@WH dLe-PR#aXr!@Wp",P6R&i!bh4 >(K,^^Wȅ Kp.R&@^WX.ź\ } #(<%UaY5lIxɯ@EDX +A~#'@IWR",KA@ +G~@Xb^T+P3",㬁`9&W 9A 0 _θ$s\z }+F~@ep0 u_s.P3",}BxW ",!%-`']+jDA@ ɯ|a16+0D~K)ZLxɯk`&!WX P'Fo ,@)W`*`e",Gx_ad@yW`  + rNbVP׏ۖH E~%hhu 2X׍M {y ^~H幼uCx !V֢}y؛ f+@f͑pFx!dOMpCx$HM5^ɯUdS` ,^W`/.PN+/_X6%Ȇ3`+ x Mx!D]51@jWfd`]+W6z~g-0ZW eVђ5Jk`^d/OGbȇկ Y1g̥:ī 5+ɩ-A&v$ M+!Z Lc$+ e+Y*/Z I (Ko%%N%bBr_bx2Tl`_VPrVȶH~%7"i8TVP4WȺ [I9s`*Τd]bH {_{Yk`s$s @ Wl k l<"T`ʹWD{&/_ V2@* !FپyV$  XN~, _ !뮐M N+$m `]+d W6@ +@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@+@ endstream endobj 19 0 obj << /Type /XObject /Subtype /Image /Width 940 /Height 913 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 27452 /Filter/FlateDecode /DecodeParms<> >> stream x=rmr4W)#;b]xɔy .1ydeFXw$Գ!Y  88cIo^.r@^u*'TN P9!rB0@` *'TN P9!rB0@` *'TN pg?l !d?@:B0>>vNӟ?'|'@ B0inG^|KH_o~&9/rq@M80#oom !U}w}?/^pDf4@~'?IE dX 4d/_|82!P;dO>O>y9rW!fH?>ώa:0M84G?я~d. p!<r0 pi& x1|$hYZ&擑q1Mo???OLGȟ r0?oQ'ddX<\2.mIkH88O?av1_wj/#/( pi>o0Ms BHh\!|˗qDnZ %N0 :a@D !z2g OB0 !xUCN_qm gB0 BFC Ɵk>zd>B0@v9ŎW,@ `<֤ӁV(uN<b<)xn_9#DR.7O ^2nLl)R'<<8t@`,O李5^dX Nrq? bO])!s9;Cft/^xEK}>"g@ ?(KJhBڭ4&F4tW\2ȱ kW|`Zεg~21CH\{ Ax\:|Z] !Ǔ2 y틿 l9f ]->a"xn3|ZF@@8r?{"r\'TfϪ oE0h*Mjxz˂/Ŋ`0@`6&` _B0@#bZ #p6 b LB0@Su98( 3 0@hPH̕B0OHP!0@hr䕀B0WMD*&hUȚsWݻZr1 q9b9>a۸c*ߛ4 @݄`V@VɹWt,r6^h"lոk#UΊ`rl6~ vm:nRTیsm?];76\x:YA6{ᾛ~UJL\$Ʒ4}PkK7 s=D gB0dgsj~qum\ǏP.JCʛ];kAjHOqpkrm\GMmz?eȇPs2ڹ[mfӘu׷ضmI)*.C@zVml^<7ȈXj`56\bvjHV_\I 낟O`+*WR-{umyZXkIn[ĵj`jJrme_kH0k ڞE^6XvZrÏWu?>>Kw@¬R 7}ccy4%\_/, MOW!e.Jl3C4  P?qi88΅`7i5B0@&9pMâ0@n`"Jsaar#&u# br K(Y x4R6L#r0&4 2 p6!%9pM5Vb^N㏄.w O?]Oϓ%dR +w]pH~/Ca*=ϑ20!{gsRװ4 p[M5 OSU KW/fkk~_aص4<`ʊ`H?U!/Z5\W1IV eE0@$pkTix9>ƽ[[X5 Ί`Ik]_#WמY j  p 8i8|X  p x{J L(kCג}6Jm"PYC5Y=*!wgtq9(H OSǤqČb7-BOk~!Gc8"$'+4\m(ֆ`k~armjΧR Iضw_YK9wwww?}{{݋ӏ;'$!CwEP\{4>|xfԄ`G$`Lxa.˵`,/m Lqok(߿hDRp #sc"[058 h !/؇۷Cˆgǯ h u]q1#Ü"E۷/vdX6EX4DxV@:B0 K] $  Ւ!tpr0@ wwׇZǸ IsC![``?d@U$`ȁ  d   1G 0x0ĵm(Ĝ`m\D P0 Ju]'%k9$~B\#'t!C!}M`  C:@ r0P :v(ur0@ wwׇr\.6' RC!߹X ȧ>y3[&+nLIƜ\ّ!B̑Z@kVx;.Z Ȃ __&l3 p*Lc<⚮:9 .9Z$ 8 9q >9Rx0P<@ r0 &Bc['lICx`XK"Iy: V@a$`he⒃`r\l(*Cæ!PR߹X w?:e֤@$`r__fu06."8I뺮⒃`-') .r0@|r0sّel) !`Ȉ І!2' 2n׃  sf$` R>GeN0409 XZ1p Xf(D``sRm h cl8HLﯯ_q9p"I@8C!NKeN! ! PM)H{E>; !{MHr\.[ XEI6BER:v8mh$` .C!R>G&N  #q Gr0usH~B  @ݜ$F0ZP. @n` \N ` P⺿~Mfwt`JHNKN0p$ӁAOtN` 1>zO\B0\!Þ1." @#0pC!HGH9<9HoFkxޖ(r\.6M? $`@sC!Hsw.lÇoLy79I@$`gu0@\ȟ}%_gq9rHYBy``H@n r0@|r0qXO$`xR`9|TNr`(h]0r09p@O$` gB  S! R>G 5TErc(J`JH@) `s`s0Ik`̝X @ ) Pju} p I׬r^``RsNa$`\3/9 >9tS  >9` e1ָ@ r0q94'k0PC!h !9tP sC!8VO( + eq9`9^)], O|YPB@}`sC9yY+hP9 .9/mxj5i>2ӉC~; WV=@ vԷ:غf\."33{,ĨjE09 Or<-VĵX8Z`(y*\79 M 9Pﯯ_q9t6Nj"Q``p7%K@޽le `:0op4!!~5`P\g]DZ`΂iíI-{i+Ӂ 'nҝ9[?|urn@ˬ9Bԧ-xcEpEtMܚ_wBY M2h>f08Rr[ 0!~)h0PC!.gК6A+^ 6 dmޝ~ܚb#k*]MZk0Цu" B-0O\;}+< bXJu\. MnYNww?޼a O{B ˤʖZb(@&!k[XN q@{UP$׵ x.kվk~EaxBh t`\7ÇE<} t"oLU¯ A) ۤq\Wﺮ^ /{pf ́d8 "(E5*ꕗ4Bx.ֽGw[s3$X4 ;z: m\.ņ(|B%m`C!||kz\7 83L#{JzahC!ZJ %p=ܴxkuC/g00H7W.& U6ͭ~8^~CM_ λX\w  au0Z# [Xr9hܛǬGQs ǭR7"g.,0Dxpl~q@*ɋЎ xLb)ebg96"emu]?2@M&[3,ئ,?!P|B}W_ Oy ^@M^[p3!:C$V&9~7(xg m*5 {y2;PRۼ6,˜_;g^]^.`\E,= <9bl: b%w ʗ"/߂1 !{ kn3SH@Ir Z&ka(Pt 8`r,-HEռ!VD8CJd4D9w@EI׿aЮGĈsόӈ/s/mb!pB<}v0 (e(PW:qEg xyĸamg0Dvp8|V WN:C 9jęSC_z=vG 3u^l('t)/V[3Kܖ.|x?&s8RW9/r0($N%8F9x|"pq@D)`Q# jHd97D>J P"Y"PAsDcƖXw5D6w8@dP o%&Ӻ`# B8N[w_= )JO!߳S# |Lpˠ-NC$ڣ̡sr`"S~(EM 8x獀'KmȠrv '@@P ?&E&̙VU[daT뱓t,Xsy4}LrKs l総!Կ9:J!;^0C~F9bcDAȯEl+C$=n/r!2K&!esnK[o۷>y֞e*G{˼#z g+8S[JFJX~ _)<ު-gu%9~ȍxr#ϱ`rF@p49x y3";P mumX10%rp_!OiD  ͘$\DY"A{aC! rfEpwա^y $نVG!H~YZj9f;> }ׯ[l]0'fJ$bu0 B Iֱ^_jje{p|_|a;Ŋ<'+"ݶV򻿬k{{|O?+0C!Hmg9Iޏyk."w6C$jxtw_e|Z~xį4G΁aԡiǓsJ"rg3Du-x92k$-o[9\s4y~orpE03 =/M%|,s.4=G-mBiC·mNZfq98= x_낁yq͆@lp涿ucBΛ!s$[Wy<Cׅׯ M_}5|D  ,V0+qRpOami ]p$/A.̹jhs({"QG,oDyիW܂{Ik8bZ`B2Db 5/x'Ff6.'C$(ajMpO@8 eý}w8$;*oCۊ={WSL/5|4Dᛛ8'}iHxO-7cD|edr6@\Ob(Ff4}<ք[m-+p+3Ffޟr_M6\2wJ?oaU{-88]%jup֭D*y?%< F@pE)P@[nxig?;曾 @P`R6,k4`![~mLm8P&!C!p'` XoNq_Rho+Kƶ(|fYئ*q98L:ǯ"&c/Ex!٫@^yZ$`bY[T_C<{($_̑I-^$|mlf̞N>C$bl-p=څt`?,09(J!O.C$%`r^._爾YS'C$`-yq1n~bh)}{ 6߮5޼ 7=Y>b>{x:2Iq[Dxyk\_iu0[3D |JbC$`r?K{<ٗr N&u @<M"YV.3b\vKY`ӶDaY |bpP'b@9)1*ȝ! @B~!S|fǺΑ'F@ة [Fz#TC$J@+x]0Z֓y6Hky0;SF@wAP?9"a(Dn^2Dr/b8I4M>9{_="ᘁHgx:D"9r8`+  [>pgx~Te-ps߿`r3 iqo!{8;o v?BXOs/q`]0ȼ;iYvn!5p;55ChV(C Hz?<Zgj~)Ə9a udl.n0~}}_^7,a>A=}蔰J%Q*eB0#0.6O3kiBX.)^Dꕧ`( ̚O[# 9:jn6HKq@0w9VMI8hKm(s뺯h]0@R5 e9͛OMr0 Lf(I<=:xoi r0G u]g]pY,bF͑!Gڋȝ%}%#\!sPJ׬ bA$`H[)5iӏ`rccv0!1r!rt]ـ|h2 @$`89%gP'lNހyr0GgjUǫ x҄IpcrpCn2e<+ȅ M6ș r_n2vg_ >-<|ij!J+ _}eOze@$`nhH$% Gsu<ۄ x/\8,~p OP r?ܱ_(Sɍ{Mx{Rt$`xq3a1gr0͑Ӷ|s7]uh=$` |ß_~y=jGfĹH.soy"4~}w?=|{ʑ[connnjq3[k.R툡 cOY\nJST! . "rcD!ϙ#q?s]\pBDH4FWc 5rw1%.8$nKsjOm˸uPBʒg&/0U|]ur0uX"u)wn]03tlYs/ $`\%K~ 8뽒{p캮 >W\cEs7aw?/ 0Pilv0Vޔ"Z/W#49<[xN:^yj0Pr8D9l-0m\."wl0؅8A2/3$`V3X9X~&s(a(S\8w%׺{ aHAaYZ0Ђ8. M{ְ؅HoM`C!` f<9NG/B.N]s_8.յﰶqϱ؎t+/#0вq;d8ZtwP+ġ?5XKN]; C N%`Zf?Lt]p>Bx <8dK/Bc0Ա9D`spu x+ۀԼB$`ex։5꺮ozVژv5G>rD\5bVCɠ q3vJ< A֎ض8 ˌIH\͛|L? 9qv/<ΎB2)ؽ/O:bxVD6C ˑwm Fͯ^950@\CQ|Ӌ >G icWI ڞ-~2Mքf̀6iw(TqcxoW\^\J aE0bM[xĩ/1w W_QV0@\7Ӌ > ,V wAv0+5^A֢nmCc"$`61:akeEsa s=M?6s~up?ӽjE1BO>y3L|}sؓkb[^{_K>z]ڵs{d"Xfɼkoml-_ \C% S eCxoq77xsu]77bz;|ss G" k."֞ZԲ?i{kDo-p7CCnn:0b.8ָ 'N)֚f5iRէ\= 8W ~ᵐ<e/"wY2ӿtڬm!s=߿t"uA躮{4;ҡ105GG+tA8isILYe m )mxuX+'|1Jmfqg)/'X뫃K\mE8؞e 6l[[eͭR4l0g0 v9 /yZ5p|ܶ.C u^ u?qm QCpGnp4L$`B൦&'k[0^SjضFxWycZCu$Ĵ5%A.MZrlo%`bX?W&/s;~|Nv麛~|[Қ_7y.._X[= ˠ#k? Ȟ{Gmd0G&ź` <:;:O@;|sss}"I`V[GNS?a|syvcyYi/_|'|' L?>w;V d -ߵNIA&!/qD9kz;u7iA޿l =Kgoto!-@= k/k4\5׹,~L;=BMWկ~w}wӟ.%>o"f9 ߀ȅZY׍K;Ͷ=^Yz\ԡm 1\&nӍMxmgi8^FGC=p ޑ9Oȼ`[k^Y9m!{E|n_k꼘̑{ϵ`"O.[no:>-?spm4/d_&< b-$`c-0녾vH)W;z4Euo5%k~kr֢pkãoV"^jx.6s?4̜CZI璀9W /qy_s7]+x#ţʳXD_׳[^!:O/qi,C$ZGs ğ}g}6cߍ|駟~x H uˤ( LD77{,' sܐu)Vk=<i|u;;x|{z-KDxLp s!xZ^ ,?_qȾC&Dvg?~_׿h:b<" %s<1+7/rp>{c"ҥ\/_Ǔ4o~捭A=rx^>'(e(5)$7g*G/~_ o?Ͽ_ "YLަ1Q>ok~^>\U#|L-a-4xΖ 7R$Ú `?z7$/Aݿo;hL}`VOV0Gz瘵"]{0]<gee~R/%yH[qF \=#ytBVY KFݽoތ?>- G&BjlzϟϾOLG7m'AF u,{ְI59.Z6kυ붼OB3 .4|6L}{3 y.0ǚ{~7 y1k~IG@ȺrIòy6'=tJA>݋_~)2jrPk~8 +)ɸVO֖436.Yx+ wӏ܄&`p糦 A h͐Ԗ.bʲ˟yc|!Rf)R`JtV SO3z/q ] (X?xymmG{c` =0튛kǦGgr)Ϯ/) ,#.9Gim{vjoǹ<~5)x#si=~N׿~u?{4n`RﱆB`Xa.[lm%ٿ ǐ/5&߹g[{޼im+kb9kk>cRzwh㆛aY;V1C[1:aגX''a@:,bpDRQr~e q-?H7Գi A0e@ p΄`"ZO;!mNoyZm_ ̑BpZۄͅ`"xCVupV'd]0D Y{OHԤM4\ 낙c( xk?iGl9DXkxs^ s}k h%e~Bi<\+noKYck-00r3 >mF|m1MΎu!ˉ@$`j?ZL 4YL rc! Ӏ c"߶)yEΔO8# K SDP+X&C 0lc]G Â0Ӂ4,ERswa!1%ry>oV&~\ƒ{ k 9X^&À뺯5"8##7( )ۤqsS!ׂu`Epa\8Ԭȍ \X\8.Pt"@`-d]0r0@J0Py @kY?KԄ``ܺ  08\ r.90P낭ëF/p!`^<8r` `q'˿c@\D . tP Bp xr0~0ЦBf][;p!HFH^Yrw# {"gI@7F"I@MK ..G)o MPa]A><]>䏮뺷om%50Pn;mG^q^:υZ DX6Eŀvzp.xHoKX M gu]u_mˤ׆B1u` ZIȺ#IY` !ӁvH@΄y/`낁:HeɺBEF#,%W :HΫ@kYL`\0u3 "64ȏ\) E>^!7`r&huqY@&璀- #W;hn]@'k}\ gBpC  p Dg!Z^l(Y$`Z.C!\ ͱ.R$`c]pVr M&I@ ~Oȍ\UR9HAW@J'ŐX$` VyR !@{8$7̀ܫ` 3 \BpC'IM``LmJ.3(uLIus,r&[@$`1!9ޟV."<%`X˫甡@`~`@ue0ɀ1 E`h y=(#S9Z Z[l(P.!i9j%K 납 5 7- ( C%V 8@`{IC`ș hEZP Jڀ˪ Y@$`YņB%yuE O0u΋:r0dDwj <2bOZ ù$`(ktk'<"$` OL's_r9!@yv Kf" CǑ u0  B0 sr0l#@jz7j9bMu X ( d9$`s <{0"r )PVB0A`!c@ L/{0% !] 9|'@ &u0G r ! L$``R[D8Lk{ P^B0ͽ#j]0 ? @&2/0 ĒC!l(`9CY$``܏ j'H!Q: Hu1`!S" hO@`!L)$` A&29BLZpj:0!$`! 8FBu4Gvm{[ۇ#@ {ŸGV@yǻxEB͊`::s1 H# C!6 Ly9$`@mp@ `*@0dx73%`B J&h #C! /@l]0HP#V3 )!ӸOM~IR9 !`Zl(L`!NJ( !Bf >vm9) F&;r0!V2 @ۄ`2%òu9%0PG/"B0EB9 hGBm˳ L$`l+L<1@r0pvHo\."L1&hLa\DB387wk^0@;`$C90o< L`!KVŝ< s #C!`'C9,0@" TB=R Xc|4x 92`L`̭ ~x瑀G`C!B0UY~a FƏTH9cHk# LZ~BY$` oxm{ TE |$ <u~&` C985 -G2gxޭ_vqRalm뺷om-Sg{r[HO[`̊`cu0:8 8h w~L"VCo7 (@QuLYLӬ=޶e$`=$`m`%`y5$`=$`=`xpALHGO)    k ."'V7~YHKK 0@:0@ FC c"`lZKH 9B%`t$`Ԅ`"CZs  p !Vas  p$!VaK0@:0`LA9XHG8 -0Xґ%.r0"r0@:0@` 3KH!`    7B0D&Css  '!!9XHGș ,#O`cґJ!`̭ ~x0@:0@Y`8a X9XHG( !r^&#K8<k/"'#NӸ0@:0@n=eCԓi -'C`pP> `C@Zf]0P m`h=ߺ`40{9J$ ͑i@$`bQr0L .!&RH `Zϭ   ``59 !L=ـ`= < Fˇr0e.O gB0Lݬ BHO"phK ֒( D"rʺ``J,B0 @$`J$Iˀ` @` !9-( $'S" @` r0u.!P!Ȃ @>$`#Z>h܀*JVB0p9\;9%P7!8iJqP7 \DrpNB09Y 5h dDD@Y$`$ّHAeB0)9<%@$>i@G dm\,@$`º`ȁ SB0P ƺ`ȍ s`0."G IL$0  L&DY$`'œɓ k @%`e]0Cm`*r0.b`!h P"  - 37 ^H TK&/N_90%s\8 !hȑe0# 9uNԄ`9r0.$`8 4J8 Gf@LIpI`Z @`GuF|W̑ >0F%%@`ge@ gB0@9 \0OXA& VIǺ`J!@Y``n0Hh$G&܀y\B0.r0\;HP:! '?qL:Ѹqp璀&B0@dr0X @>$` L,p$ j%$$nB0@rr0 x0@8D  3f]0I!P˧Ur0ˬ `? $@'@˄`8b܀o 's9vS00 3DžFƄ`s8H 9)!s`L. ,&$`  P095D0&`, XK(:L cj0s  !Iƺ`vH~B0@`Bb'@}$` .!rp  Te90 D0έ ކUu[ 0 P9xL.܊o9 g0p6@iRi⑀#Y 4s}]~ȇ ϊ`Y5܊!4w&g"gX5\"ȍ K`5i8. ȁ @p 8 C i8Erbq$2tIdE0'س^x 3 03!,H O Sp\ (4uqI@Y^2ֶH@*{V J C&&ӓ4|}UH@9V pЎ-〮9ΧR\6 M\3),B0\B.X\s(DB0/ [ krN qɵkɵ{X єjzjxh OV@4Lipr-@kCj؅8\α:pҰ W,k WB0d4l]pp{h 8& [\cT\.or=ȓPXK!چsP=ixj[k9*!{~gB04-|8GLÎC!Ұcr9 nB0@` *'TN P9!rB0@` *'TN P9!rB0@` *'TN P09\ endstream endobj 30 0 obj << /Length 1156 /Filter /FlateDecode >> stream xXMF+t3).[I*-N XlTd7F0"VBjt~1L0 ZLI]6=,"Y݃~ٌno9F8Ȧ2#2%$hNdg68Ɗ7V\Ů,h) :/c%ZբY6WO~ǹ!-%Tnۍ~m(us臏,3lT>dVٟU!b^j$?)v1ysM li%M 㲂PS:Gƨhfq"S^mtkШ|Y"wa-HN ^@zգ'L\]`6}](wc ŰC$>G|BG;3ucʔ'4Z;O:b $=odkRNXhOu.,rexW;Ecɘ'IUr%+IS֝J4GhIFw/u`IG ƻE]($mީ &$DCK% 4Ldgи[tN!D 7$I8#d$RK_I+()0 f3>; AWT 1;ΕޫG00[X>-vN i17B|^oM/_N Ypq]PFn*hzS; I9ۧf2@vlUkvfӄ֞2Mh^Wُ8 {ĝT+x_$UGR'EY /F׃h HL{BFBgtӞ]O3pSt';%ОыW=~_&~9N{Z%_8H#Xqc# u[yz4ӥCMz u9_S}is'eQMs^ W9/;^֏@0:0S"ωșr'!1.? ڲ ׌F5px1ۗzqXE^]bs'IR:A%3'WI^_!Mji endstream endobj 23 0 obj << /Type /XObject /Subtype /Image /Width 823 /Height 834 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 19851 /Filter/FlateDecode /DecodeParms<> >> stream xݻr6`MU.&:Y߆B ;uM~ތ#L?h zN=}x@EAûow^.rLze ( ( ( ( ( ( ( ( ( ( ( ( ( ( k_׿H!JH!JNo4 ( Ǐ?XmvP# :ko޼yV\.Ž@-k>}ӶQJ+ ~_~%tӶalSGFZiЩo(۷o߾L@~7~իW^m@<@KDiБ8 YJXG-r:_ׯ_~:O.iK K; !J{jDiЩ=4@@8i0 eǏ?~?_|_vOۣSK ???LGfupGJMGTH8|͛7o޼oL~ae@*9ma5P2QtgyVڶ 2 6( 3s<2<t6 8( 5 gqPyn7kz(&>4ΫW^z53bϭF9h( VnV;@DiНxp?8J#DpP Q4h:.J QFQtg3^idcn@wN  aܶ޲@mM@:QtgzSvL*vt؏VT/= >s3V8h0MIRZiPs5@GGi:\c?$3eDiБ8)|OiG.WV\4ز0P\ˎig?90q:rJ1-87ؖVtaD[ ec =@Y8P 6Kaܥc!t$j`cE^iPׯ_J׿8@pdS^i@OH"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4mr\.m[y14hT7_V4k,;N~ >-6rgZiРm+/2@My>曩l?@M@o,Mv:NS {NӇ|~oqf'}Jm9wŸoMO h@wCkvx@{2hcnzj(ZiP#-J]_zj@ nh[݇X-.5e'j# -|}psڡɳa\/^ Hlߴo'@m98JmnOKnhD+ =:wuuFO W>M)_:6b/~pL- E4:2ھ7v>524P xG e.~J@)P ԮZU@{,YBr^~j}h#UicSs@@KDi4‘^Sh( 9Rvmtb׳NO bvCWKgzVUn|fO+ %uӮS{P B(VpΑ~vi1H@)Q͍ J'JPӻ ѶUxM{^S((#iϏWq(z6҂ǑռOHé ?a)nZ(y8ИfߴQ {C@NB4J| ZlE+ L\iKFLO `O`GR(pLZi‘lE7mlG+ M&D+9b4Z-Qq@JԆ|>߽s77ׁ @LvC*+i x@Qc47mQ ħ;^+ĴM-SH vCi9FXO 9Zi$A?ƈx#(3=sX@M0d74 e ?#@ !uo1c\j^[mJ3){j#X hVB4v}Jԑr.?㬡 ݙ:wO֫VQmY}C‰ϝiz:Hb=gus|&Vjd4. ~7%4xE B+ qB4~mJhnZP48RP#4F8Rt껿 hCZxDzbB4x7v>]h[i'pTnh2A ?2hTÑnZPC+ `Mm%ݴ6gV@ѦwC^ODi˾i}5` 4Ѡi(W@VrP,;AtSiHMCO H'JnhB4q;ȼ{gq\&V,ؘ#0D:ӓkĹV)@hct\n'Р=iL @ߴA?tPhf74nDO z0 FđЛm'S jІ{C0nh}>xXY,zy"x 73'Jxnhl@MO i3!0M7mfxO+s(c)@׮{:EnnPJ:e74hf~馱ߕeW! P7O-~@ Ҁ ؊n.=5(Ҁ.uK~jP4qSG XFzjOjVРOhzjF JH ?4uzjp'x==OS,P=!P4zj?{ M@OyhP24JO=5؎Ҁj`[mW$󧁚`O@{Զ[4Jޟj@:4hB4C\ÞZl+ViZi@nO=5O+ ( =5X!J D7wF<>~?L=G@,f74myRߌ_x@ϴҀр^QS溡3Qp#h@[,Qk'<nh@-֙l'Jv'DXGk3YO ^i;@lxAFݳZO hA@ڜzjDl̑P#LOjv@M@Di^" j:=>Zչ:P j^i*Xƾi2ԼF4`!7 Di<P@,fǾiA+ nh{Mߙ@mҀ8R ?4z@Di(G a<sX rX +!ʏ?Y J.#߇xҠB4JB:XF7 iAٗM_s[f[u]4(#(XdFt؊( Hr'<]WM`kJ`74W\{VLzu,B7 0S a4AV`?tӜIYׅnA&(nˈ`wӻ Vnnhh{]Qȑ@|60aKnh@!Ǩ63hzu|u= lnh@߽3L7 4h|>:ԏp.}1iue !=v| @L+ fZU_}u: ?9w{\.~1q7XWZܾ>|Ż','u҉೭vFf4jLOoC4e B|@~Pi@LF,ϐ5@F t89hxJajI7 @t8VϦ?j@ (n{{v,>{vn4:RN4(~ e:Q]+9Mrr/(PkH4~Mi!np,Bm[D6S^<,4W'i~Nў# і=5'Q*sgit|mn@ODitޠJ7 !XklgF=5Q nssDJ&Vi}єuM`h~-8Q34~hD{!nc^:Rm&Pi\.@PTDi4ў[s:N?~l~x/|{NӇwNsD+]M 姧Ft%Jbm6;ih5D.c }Z"J)hiQ}z6QWni-QVwFK7 ؊@bH jE7 4*K4`?aJ0jI7 U4htӀeNq,5ڠP;Q7-ꢛQYzNOzy} Pr\ NP:' ?N~22e^?'Dme%O~=R>_^ FZiJ@K8R)/S.i5Q !Zʘ84{y)XQm.DG["'P^EFA,\F7 4hQ4J&D[)3r0< P@~CeO+" hBtӀv$)q,4z8!J P[>n)`Qg>q kc81<%DkHFAc\hS1)%P748{MVx3D,) ؊n@]DideQ'uHṯ{f,@L42姛Fޅ1ό%r@{M((tzj3QSM?n@hGO= i^KFƎ,|)@43i)@_R5)tJ&Jc'{!Ac?)Q@ %Jcc>1+npZF.zjP&Q3@zԄhEO Zr{\.`dQgUoO駟 Вm?WXmNӇF+_>(T(%0Vjb5(bQg-4G ?Ia4rXH@i`P!ZtӀ3#K1F7 4f(P飱@MҘ~%<3Y-PnDi"Ds?TùQً@ J J#.KtӀrY1P@0|5(xJxt> y%7=5nny(QvF#MH@##L7 ?Q3ˀko%):rSn@.4,tӠ=H ?OG jb$J :qyt)]NZkt'J3!)tӀmH}j=MC(!RHQ9i{*fMH gB4Z%JE0AM7 `4N7 H!DZ詵M7 `+N JhL3ChP@MV>4Һ(j>RZzh|>N}G /K7 `E؊nz>hk54 Z( ,ٖ\ׁ V4mY 5h߿k!P;NXi;r\@:f p.Y mHKY'S+nVDiLG xf-jb `.QZ<nд ]v4DiMyfja<@:QZh5tӠ^rYnF ?G#ܳP=UMxEP:=,#JXŅB4Zi|T0M!eC4(M뻡<3BR5tU'E,3}mj\wcDiZA9!Z#uBj970WO 9ce_@t:>|0bM+bB4ji hކ4<* th3苞J+EA7 赉KOmiӴ*#D 6L рǺaC-S`[Zi~#Dvi MʣZ:41x`jGV;4XCn544!QZфhB45؊(>ۡ7i"\hzn@Lv0:@ 荞ˈ#D!48j!g>!΋ @M0gCS=K Di LMÜz:R@ (44QZVuG 5c p=5ƈ&D1i6;R6ԆbtӀ~2>AotІaV߅<!J۝g` 4ڞBD@4O ru!p<Ʈ~#4'n5X!Zό@ z“!t^3h[JrA1:a?i8?KΑhS'ji@?Di\;ԢjB4w=.MZ'Jۑ F-~Q?AnZMEiM{IS*oٵ psOOM7 u;m0_F9Α/pZ|D1!hOK4J^On2~>䧛QsLR{ji@DiyI@~)An6=K7m z@j+Z|>!fLPG6[J ZS{d ^n (m3iӰf's Q=54G#Q!8 tЮG#ٚ^+o-xdٿКyʭG/j77p-Mj@ JUMX7m~Fo~B_f0ACsͻ!t~scs1p0\T~-QZwned7zų(~$xՕj`U:z1?_RGϣ) ?FHEVar<~( {Rǭ~C{O96y~6( TӳW^z*=&sG-A7 Vfk8Rqk{GwL`%~1ZQDiB`Is8&ïgl\X= V:j~jno߾}0JK"6ڱ⫻TV48ֱqk5DkV~򹧅>@N?Vl}ˏMt%"iUXڙ}=43j?uqCqL&2Úp a??O>9}WbFikbڱ/U@7 rJKZ!0A/}@}~=Ȏ7iv#3x__G(QFz؃pKo}<R_F\9àJyb8Jm;n#%LQZ5t  {(V{A<7xqേBe߿LK%{v_򗿌ϯ^zp"88ՄkgE Ҋ(iPeW]B4 KGbmMgA.?OS-#8tDlC ʹ* Om\q<,1Djr#W]RB4B//,]-p)ӧOǏZ&QZt(?87OSJц>ĻM ZsZ-^k[S!7777p!2{vˢ7=Dil(|Owy͛7o߾}mp// AQZtӠ =B6G+kῚ,! ^émMGis#yx;-? ;ą6&JAD7 JM[n\f-ti+xIF۲8D[&QZt wj -~L_ lx/{y7!7xZƑ( L7 6KQlïgg3{Ϗ_ۿ+xQ)1$J99;mjemΛGhljekb/ NWYu:sF*/34ŶgnN;HxQXG>O%5C јwfrKnݝUm#ެ16 x>L.Ҷjŷ?|T#>{~m^~#%D{|tg4XIwlfC+Ji^hZzmõ:R@|v@Uӻ==%Lf&7 rMdnh q>=.=DfQ'l[:1#Jn1,[& >szO%' ^6(A"m~Hk@m̬(@gyhY'UO7-3 aY735p s^gȲ1;Sp!EɼbVHgzfNΐ5ݴІo8vTM3=/1Jn}lV О[=)PFAK!ӗS/^O񏛛c hZyzcFA~ۆh5JkDi6ok}G)hK@@B4( v;ۓ~tq=Şքhׄh@+Di M;t<΄rZx@f7рV`LpX7mv6^/MZl=A,ݴքh^R^K1A\h( V C弘&zmfQ'QZtc9'c!E"5P;4(^!Sh@{Digxon@ nhWDuuA7m?i}3dxkK[=BkB4 #F9r"cu+k90sMfg4O>1.i.՘e8bImg߮/җjg-,e`s9-f'09GQ6SgQx),PR#J}r۹; Қq\9mmG>%P mpl%nh1!+Q<~tGkޜVtog@O htf|`Zh(Siy,Z_9]g 84g?.Oo!glu>'Q$#1/M4q|>cx™eJtJ8o hUbvFK+ 5<tV)}BtlvMƱ<7-GZN{REҢh{;;j!gllg4:jB@ ` ؛V[L#4 `Qg`~ZyiQ'@^Zil6AO -&D8( hnzhHQ;( ? k{3Zu}@ :R fg4rҀ*Yu@hqLA"D{7uzp,4zB4xLO  hMcSh̝@? -fQ'@ɴҀ ј@!5!@y馱0J3H-Czj-}!gllQwmJ@=56=%D(( #jj9Dl(m3g87c~bB4hnk3j63%J "`%=5Z3fg4zinc,(zje%D64`B4Jh5D&Dӭn|WD'}Fife̘jHѼ#Vp{)y=%DVGOAݴ.YIK6SѼ VP!R=5t=hN+2&nZ7a>zjC=h>@+ҀLhGO 9B4ꢕFIQ7QB4z1=57g1;M+ 8Vg@ D3Z%J RZ=HR5ЪC#JvaQ'X >Qlj3Ъގ"Dý!4%D0 7('>3@ҨnZKfg4("uO@ih,(=B^55XBNDi{n¶R5#buz观i:rӱ,cga:FL) rI6EV5MVݴb 4{ ԀehCc;y34%K %S%D3cҨmĢN Ԁ]uV"&?!OO H7A'#! sAfx,VY9mlg4ҨPBNAoh@:QM=hP DǢN^roWx3vA0(f;Htu0V M3z=5h#Y 2*hd*iZTsY !=5,`4]~h=5m9!h@>ިՠ4Bz4;EƾGǚhcVFھi ,RI !>[hlK+ #DM,`Q'GA h@]Osz,X iz?5m?B4ʧC4:bzj'DwE[ @Dip1 Ƥtuj1vm (( ^EjvFHƶtr_B4j`4(M`'5 s=h0( "@-cvCuDi唰oX @-h5VWB4؂( ,`~zjB|BN؎( j,j6}m#D &V`6b5DAKN"jB|nh?QwXXMo Q} X@M~AdԂ<#rB48( ʻ,X䨞Z{VA@ ErjB| 4B~-߽&DҠU"jB|PQyXdYH J%J/`j:h !M_ƓZ V`h:P#D~A[jBYA@ E5!ck!'I_b5 j@ۦ_/%@{  ~>/zc}nh4莞E Zd4!`r'@O =B}BNhVt=5і@oDig5xr,i3Ţ-GO+ Xlz'@O (B-GO<p@@iQmވ x,(Gݵ#&DiSϢε#f!'4`zj9 ֎ Hd;-+!0ǽ!oQF0QVpZ VfQQ+ 8%2=zs b 9h24`5<6۱( X9o|hDi@j1!Z ؓ( X ` фh@~J*`?5g^G hnzj@,|yL%J*f'*!c"D JhϏ+ ^8vjqeJd'P#: 9ҀƉՀZX)Dg'8 ?y,JEvCjtGO (߅h@=ҀM7=5`}f!'P;4kQEA@ [:h@K,`+hvCZ0JO ؏ F`ZoS4Cr=JAO HϢN!Ql)X O~MЛt=J؀FMpEzj+I7ZiShW@ZhCxde'EvC&J8tՠdB4>Y p酟PBG*ވ&PtU `. <c?5(SK:hˈ %P B4g'@w):GkM4jA~/괐`[4LjX 0d'@e~~hz7c=vZC 1@x4~jF:h9$PZ Ѽ؏( qb5H1҄h 9vq(iu]B4citdяZu ZiDƾGO &J@?çr b'9nh%J3=5&D`=4FђaVBf74h0JO69Wh5J tC-S4e.괐^4f ؃f'5޽!`8@O s46F Y)Dh؅oy4vFN%(!@tC-Scu> rN@V~cC4OJYi'؛( \"c#P1 4&P#Q:)@`4c?5,@+ 驑bz>!Dijz)#HY @5,MEvC VHY6!P酟@vyЄhOggK^i74ZhObgKR @L@#f‘lO`g[y}|XC@G@!؛t$eo, ?"D|4:%P;ʶcHr>޶]HJ[L@.bq3ŁZA(VS[oN!W$I-SyQ IʉzjӄhN ԦG P2 <`?YlQVl@OM@`ԆQڲ+J觧6wP/4tC-6wQ4Ȫ):@K,Xs hVZʢN*48X-=5!h@qMHz JBM5^~ ։hӁZ_&D( 67D8vqB4ۣy@obԄh0M+ y@DiРt4ht sc5`ȱЅhLcSÞW0MI,$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$4H"J$_\ endstream endobj 27 0 obj << /Type /XObject /Subtype /Image /Width 1239 /Height 833 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 17750 /Filter/FlateDecode /DecodeParms<> >> stream xݎ$G᪞k152Ҷ@b_ؾFyKXN/O}qvDGx4TWOVVOO^~/<8@OdQM DMπ~W^z@TR(М_Wr4 GhGZ?OKӢ~hfZ3# Mׯ_^SH@pRh+ g\!-qN/o;o- P!ДE=D" I)4*@A*2R(Є~5]iP#M׿ooo͛7o޼O~$]ݻw޵yLɣCĐ )yд@nc5Sjd*hT{B;%ǽR(ЄITh-s'5"} {dR(P^ B)y 4?Ov S )nza~ w c~PQv M騹GQ T,gzړ..NָL:~PGhS?YTV' S{ݻw 1vLHPQa %g! j}ttN6ſm`~ }իWrBXBnA8PQc N:=Z㎡{A8P 0r Js)P8ן }1L^nx)0M:696ers^9 &7vykG;_  ,`팅 ]9T(\^fC\*.a1 OnkSsShPAs0d*h} gB0s3*k͂PfŜ`ُc BZY|"֞s"E :6 :=-*u\O؏ 4gE5;JkHl?^mp?=` )h<𒇁Cyְ1ɰͣ'P :>0'h sHpXvJx$]u]{OI` |D,v_ҿCsI)'sl%,),%fLZ.9S}|7|ף #r̹$7F8dp,Hۑ a?/iK 5B*  *[97&>_LR(d6$]u˷?:@TB)-W(4M8d-ɰaI$CxR!J #Py&v'`)) ˒)%G2%`R(dO(`)Wr(H%M[?)I͒K #`]H@O 1H@X'{2OIrH@( Nj`OR(P1s¢ǓBȟSr(HzI@OZ6odI͒BBɟ0͢ӤP R)8O8˖t~"MN M %@Nj( N, E v!@kJ)I 6& ۼEwv'5K mB}Yt؏ GJ5P#OL[4;)L ^ ;YRH cM>ҟ߾G`]h 2 PEQ8^ɡT"Ph P<(Py&NjB!8^fC2I P"Bk pK[4;)QIP%sL.lfICR(TC .Bh'@TSr(H8 ő?Z2odI͒p$)& u1 ɢ#iOs̆E(FR(IJ ]2@ ibwRPؑ @_ħP y%`;R(lL`ofC, ޤP)|IVr(Hj!BO]2-l;YRZHŲ2CO Q'{/"F ȟlk"8Җt~"MN -)VOsY&v'5K P)F˟>؂` EwJ&pL.@J))Oa\[t7nwR@ PB?(H @>lE zk ZP4/ `P:?&v'!R7owR@P %PB{hZnmYtJ 'PerؖP K dk @R4 @ N L OjPZ4 @ ܝT"vHβFi.>DR(?`o t@TR(?hS12$)UOxDG؛ Bm^4 @\y0- @ ry~v$5R(a[ˉG~v6[h OHL[w J8׶ B#ɟޤЦɟ'`#ɟ˟>h[iPFk !g[d( OLRh'G?I?8 E ̼)|/ֱ)k K -OXs?I|v70 D"Ge IB 2s۷ח˟4vk(-?H?`es #@tgO~?_ wooMnkgu?[>-0#ss]zz#DO>)tc',sLAzɟc ȟYsx ovǖD( C ]HeȟC(?BgX?OZ. @YO@ e)u3 9}lK ԟ?Q G ?`s(7@>Pi#}< ` p_A\g믾 B{NӄROB߻ p5Sv&H*):͢uϟ>87 (~O^>+Ph71K PYD VI=iB)~3B?A`.% ztsn_|1cB5B)Pm].9AM'H,Tr(Hr˟g >DkIsviv`=)]R@ 򃐹O{ cгٝeoQ^Sszܺ3^*)G -۹T":ՒB?ւ -?9笓BUȥ%r,KqȟE zc4J5OQVvR( \'GIU׍/+%?(JJ)PrsM,rsiD#YI0I8Xn D=ȟz{COz^/Oo7i1tP k~dֹN3Sk|e릃gr)?rރ~&@O"[#&)G eR8ҹy3ó?fODdh @.ʢO~4Inۮ\, ' EKP c,{ y \R(T@(>u(q'Bz%Rx3ח?i @ˤPk]>iYn'$R(4ʢ)?x5 ȟ0$/.ǰ-O,{ 9P`6 gD BXt1'Aȟ D(hͺ)|~Q(]?`+R(PĐ?};^Jw ǐ?`R(PɲP9˂(p )Ew'B?f15KI'.Znɟ P4ȗ?O`2gC̓0mM>dR(@N -3 Oh I!(IA<( mBc] -7Ȧ*@ O@ ݅ȟ@m>DfDPf.'C|(*g̚)|@lR(.e1 B؝P ȟ2R(';)ɟ@;޾}͜c @O@ hv'F'@_)7h)m*!F"}R(U.Y?O v{.AXC2dHId]f`>A& ^_͇:&N+́sM~˟Cu]y0DAHj ˼WsT(Ew?!a<&Dk~IVꫯ3  YGP`AT8xJKL@nrǹKJ9Mjb2  dcS@.T(nl,Y,{ -=|Sq죧( )Nc#ɟК=2[kVRd.'@J$R{mM+mϹ{OP4K2BJ#R9v=qJ{l-DH/JQIJ˟^JNC9qPTعW﷿="/_}geKIА4g]0 W3`9qHDE]T?FP)CiNZח˟%&ᒏۦ=9|ssnjmaẠu] &)rp5X9%tkv.Ojh ,Xh5tx4cw5rVJjGC)FR(5tY5 в R(9};= @"&NNet˷V?*|VQV2Q{Tao=^l+AUnB>ӷv6tnk\NknnG  tAtog;p9u; t͹Atxc# K9A=naa iJT8ڵ^ 2VG4*E7vn{wTxgo;}scP@c{G2A39H?`hRK#ersH>L33sD,rn\AnA 636gN7>̹.Pv - VJ !Mkrf?3HP޿턺Nh]5 R(9Z~Q$ ڲwl#vd\}9ߕ[}ײj\ Ogdzm8ɹtsO3M]i{[rV:sO;WyիWҟ(ș?{P>NxE؋Kkl[ ˱P47moGe?c1;Jώ?K#hr:wx]ezׯy2'43 zyϗì?(|y9><=====޽{ݻ%RNGÚ<>>>>a"77ʢkΫ;$Ͼ~(ޑ{閷Zdlt,ڿdQfF;%L#9ZgO_ʴ@sg~9{NG?rHm?.g6&DŽ+"k3c:"}uY(?M8kGMPؐɚWyϮ/._lz8̍9IsNNKt챍=P㙜Lu:PXh_O'aD'K٤a-͛7o޼^>_K<<<<<<}i1ӏ|ʢ!.fRXpD_fY9afhT3\w^{Fs.yիW_;-OQ3~|MP8 |k2ӷẢ]>nfC)tGӟDzزh}PxA}ג8 }=e9&?UNo$͕sX _784)>04]2 钱~g@iD5R[9IrW/;KsΏgl16J ĒD>^oM *RN.ˮ~zzzzzO>?ScK򦣚Rآ@ )É:ш3vz6T\:7ɷ&A\:ix%)dv_~~M 8 on_|[X 0ǼhdʓPRc&VsfCswN'"[_2g0ߋO?OnkGP nYc :)A" o5t"X4M?~KR/_ootK  6 PH3)ah]P(T r1>ևOYHr('vF"@eRV%G}ȟs SvHDP&²s.Z$y" 'SEP,J>Bd ֏'e|`x;YC fAJxvcěϠtΌG 8P R0;Z;gq0' GK z^W#=84$#iFh- 3 AYmȥΊ^`HڤB̗IZK_-O}LOr| |@%9fNdAlRNb@.ALDP^"@T)N- 6i MA5'%'Jz^eBrQ:}9-ZcRJ@^޿piNT(4G%k?Ae8!G8a=)A5-0Ehw:u@.4aٞGo5KjL@p"(1tݏ)|c3]0 aDPQ #hܧ cBRHIPA%)|sD8 Y7n`x-'TȟQ$@Xs#zѼ8 / 9Ph$ Z; I\R(@Q'OO.( lᲷ>2Y@YP躮:&Co(N!$jZ୴ԥS+ s >lRwL@<jB,h`?9euu, u?/%Oei)]d*` 0׏?\}>`R(0 : GB r2dA'4?!ؗB.DsfIKiЭJ?K- P,v x)oanԕHO5W_}@P)cSGgP!@9P̚5 2Eu^"(A2&%BkΙKoE!2R(G%&JHo\R(P5s9 O *,.ɟ!#@ Piv z/?3jwACFR(v WwMQ.R(.CN(kG2~I2:y^~-B6,Dac9?uW  4j3vk)}ve|\eoD X%М%s͆{d+'c+?Z'yprd~ݱ&zGdh SmA!b.#`[R( {DPHg>u[4]~cS5P9oOP|-{!|`j J,{ G2 -)`=Aq/@]\&{G Xvh=F 27H;xGxw13AY?'e?EPvPc(޹7`?B#???MвsgC- -S@0LohD-gxP;)#(}U4>C8W<(P,9A-{E '#ɱp%@P̝ 5K8o{ e XC vs- ӏd6|oO(~8 4h41䧲ad]g9~Q㟻 )`s 99縝O،){B6-ǖ^vQ8YO~Z`oR(ViQmhY:=2o}_7_ǜ?R(Шeil2G aV~Uԟ+5 px-?(nߵ']fC"(l:^LBvw䤠(ϟC)8T(toM { ̓g@sjl6ҸgB N9AGu1Q~\vyX hQ*sa:s(P #T f|'^Zvz9B8r@]I5G@HB Phk -BȟzR(p뺮\.e CR(p~{BȟP`Gv"?H*]u]w\.nA ( d?H(~Bȟ@ R(4뺮.y-ȟ@Ph]?Hh ah ȟ 뺮ry~^v ' '@)* %@O5P(Ț)|Ip뺮\.e BP'1О?=xRr쫷9OsI3L[?Om5B_$zn{B)@k PFBEBD P+D%'@Q- ɟBJY?OH(9J]?bBO`wRȟB b]=MRh5, O@ ¢k Ew 4)iB)P|R(N ,#Iȟ'1ˬɟ'CR(.IĢ P*`]]?8JR( @ P;)cM>؃JN kȟL Xtr\݂ P͢îK Ytɟ A, @ @> stream xYMs6WHMCX|i32iX%GRaR(RNN}|+m]|aӁk5In/>fr'Qaǟ:[ʙl)n֫ٲvռ- cR{g9֕N.st$mbW|˪jlˆ]}\,fua+f "6 OԏKxP'WtvvTF(NO5uݘ80/={aCӏ3/p&P OÚ<=DY@;N&` ,tt.` Q:.iPdm&=R";QdW@~@dQ<[Q/`U?c@`C *FNUzf9յ#entku=DܡE9ڨ:)# elKc9(,)mhs)5_-QߐM  iqa}}0RL- J<843í!7ΜQҝǤnz|":uƫxu:12u8s)e}[hcw2Wc=G hzkg]8DR\uM#.W+맹*%L+ efYexp?%l.{]N{tXqR*-uv]4Qos<4g X'gC{p&nee]lREPٻ?_TsWbuSY!A}gmֺA@1/cA#v!V&{?M/ HKW9yM1U B-7C{7Th|>gL߲o}\2lB+)(iRQ~`dJʧ﯂O/5c6-=eS5R}Y|eRͷMŬJ#CLnVץ}[#zE|p>F i.h`,pћ~-/ڃ)'q64OR/QlF,B?,@ud+Cr- endstream endobj 31 0 obj << /Type /XObject /Subtype /Image /Width 862 /Height 884 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 23528 /Filter/FlateDecode /DecodeParms<> >> stream xKnٹLFmhaH#P*8 A3lÿov߈#".ӨRRELɗߊu\.p8Wh    `x< tssssscȏ}~yCr%LP_׿g?&G4իW^ov1|r\.s!du: Zr .d(d؞ A믿tM4o:v SqhU˖ or5C"Lv7|7@o[W6 ' ʢ!9`: j'[/w5C%LP{>7y3`L?1kJ42x<^w_>]eAyCѰnz= #@ZDC !3W6-ɅC+n,@~4UMquc5@ZL hgt3-(Ȥ!PgQޞNe|VS߫Bt4x\KړuFkkoY% u! sXW6 9y ! gSxMuۇC+#5 BM&lbF ٬ @L D ¡hUKSg J#Ź.oO8ej R' |[q;\0 _"/럞O )@DCӵg(˅K:י:ߘ whr*dp&:CdžץPBb&6d{eq(s+Xkt0$kֹ~<86@ӓ '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!7Hxe~rݿcYOn/p2P:┳=3'rsrKH;Gt:Ryo13? |7`oZ[.ᬪ/_q I h@tB3ב֬YǏ_f5O4̛Psz2; M{tYɆr!\$Hcc$E !; ;u݌!H@9DCV'e$CIȉh*BbK2q,`DF1YG؈\iYlS-Cr%);z@< /ɣx5IqpR ȕIC{]:̙[_"=n9M+SuDC~R%C!R:L-qBRE+ckQIJ&DH̲-nˮPwNR gm3ǖCRԉY)5H 'R-`TMR)x INu^/ɅL57)Ě5 BQ} 8%Ex"DG"\\H8 ϖIQ@ u!@5L CpO>%6C_[C%@"ovTB>|@U#.`#B؋IKL&o%Hh&F&wR`j(ak7 E!bB8g~F9+&9/N4o(Jf !kD9IB)zY%ᅩݿPor:_ѿHXop[{.@DC °"KD}US|lP-g 0o@DCAsXPUU_u:)d,هiR(a<"(U\88P\b^KUUU 0dB?R%{xݪ2bcc(N۷O{H̗k\߾t(_g֐z(}3u@ DCubx.4H8eLck"9%BHh CH[J7kJ@_iм! (ص oo<y~RR\*mE}6Dw?Zk,ᗫ*Ǥ!Pxra͔b:%=@}9%oB1ҡhcQ( ؃hdh($BRLDGFP41'rOIlK4"ARPG@pG2200N:`+!@R\D#=t(nHOC' ITѮu50áI`Y!J6 u޼qf.c0Ս%"B[D\@lgnO].KcN4V&9[J}YtP2X3r!<M3L!0\Hdo|t@\I. ؐ +l詡\J6޻wK r+tuq' S`-!@ DC Sk0lVeX LC< s-G5B͛gcۻ;6A4"Ve\ #~|p=|6y֤C3BX2[\}#@2:' !yr!+%@4Ʌ@#PvuR%K4$ =U P:`m!$f,}k}d _[c`m!$clU *lO4B[-U-><&lI4ɅI+U!BBg2:˺ȅq`_frqe_yLBtB`%U#BDB` L:XhQzB# agc[u o %nƞZ:+.@9C\hK209e}`ȟt0hѐ `9C!llg2:P!DC؈\l Ve눆:ؗoPX Rq><\!T!h)\. ]!@8V1 j hȕh )ȃ\.!DCXx.%/m!8V&lW8Ca!,@@n:(hȅ͛g;@Ɇ7J&•Bȉm!L6A.w><1!@M4 raR6 Crd犷HÃ3sz r\hK2')/jU(hW ߻xr ><xtI4AGW2I@in,Ʌ@~lL^ͤ!tȅ͛g; 'C_BM:J h.t)%y )ؗ[J )x.%Uk1oN48r!`Y* p8ȅ@]1><XtPT˅@|>~oDT_TUUշ߿&@DC 1'יmL͛gӅ ;NG˪+\._dnh#\k<_bq{UL@мtB4$[cз~ _vڿ΅0N: 2$qRu/|e+$'u9 HhHVƾZ`/

    BȕtVe N!˅`߫ ϲ,O:b#/P:؞hHs-=<8h47); (yC`{! P$T-Vc:J5[X|d5 r( P{.Wt`M& \G-O_d 6DD.M'ky=( ̷d@KoL-Z8Htldv0 mI0I~xC? 0Іe4$r!o|Ώ !ѐM96o.5"[lD.J6Bo( u!ѐɅt? Io(\G4dEC?ג bCos6&_j̼!pѐUB/Ob\u x1wg *K,kK?hKoU}kb,f<ڒ =39X rr><|: Y\\ar!0,sXJ}f+8Y=f2p"Ve`*?Uڇ\',o^?#0Uy@2=<|x8NG+yhz:@IC&I\ ~oCSmic0RaH=Q8zU6ѐ c׹>/UUU٤ 9q@ 0N4Жdb uC`h Lp>ϟ?Cr5L$@޼o?潍/K7<CBTU3Ѽ_H@hH\@>K:5Pu!A:j,5L۷dKߩ% ejƽ{~ص ~җ JcnE˅OS'@9lKg\UUݝur7{k}IP&Ѱ8ЖdjS!BiDC\ˆ!Ѱ G Ã3sP !?aBr20Ve(h95H70[CBOo_{O߇Ğ7oϟCf2G4x.4KiUڤCȉh5+,8MH0yG`YaB\: !uaB'BD }b tz:˒!Ea2roX'ٮChZe$Fm<ڒ ͛g;Le2B4L\.kE:r>2Ĭj|6y ,O:ё  fB!% #"'g 2oq1Tkk3}rqeؖIÝ·oۻ51&OXChOyxr쩛-;υ;xƙlmb%pSr!9lU}  a/Ft&vu`CXh:`#H. '><<~mت [ W1 K.9C؆h\ W.O2W)amb>1ZCɡr υ$@N3sSUUuwg7Xȅ/_ f/tx\.UL|dJs><bd%^I.~6b(SɅ0h8Чr|ubf2'˅oZr"`7?SyL3apx.PN4H.Ju`HUUݝu

    2%mr!0/<2k y2i].J!x"m?Cl\ r۷5TB'[ h4(Kqp<q~*O_:ix8Bݻw 0ߛ7ց!UUUwwRWD4  \P.&O O]P.!?V]O1){{.~.tz֪B.p)l'w9-BU=A3Ia~7L~~ݞ:,P8)@N! ) &;& HջwBªh:D0Τ!0l:&hx\.e2iLp<C#><<~me 'EFOp@NA(etz:0)@DCt:Y!p7o˘;;k UUUUSX c`&O EDrq#ǪVHk!PKq<\ֿZ: ooOKkx<O\̓jțhu !u+3)1s!Ez;?޾1nr?5IUUt:=>Z HEѓUUUUA[1q6!"8rB^`/1u|A /rq:MM{R PB= רt-6x GOQQ$P:PxMt*鹄kzobOjICM? N}CogtX˥? 'E sPte9N=dDb8 =/7y={g O4"՞iD2+yC2o8ǡ:9 ˙qzJǮH^8HI4"5}J@?ʞ>q(~n-AH[q'GǨ!Ep{;Zt+ a$Tx 6&/5c8ĆߧB7i*if u y.|dAsxm a8@꽉>EADC u +( Rrt:}[U[)Q?_pߵ[O46-+$u![ۯ# 0t:NUUU[ hsMC GT%]?޽fHKC!Z˯KvG\p8yk%x'w>Nj@L7u9Dpfo!'&&밞v.ʈ42DdI|>?~xq =N::R'ⱽdri3@VLHzێCۜ2[Yk0h57e?j2\ǣM42a}RIg6ό!R$Jcr;:`Gc>SMy+g9#Ϊ޿P3id+t!zd.o-6`Rytw%-7s!kx{}VҸ!P~0뮄[ BJ`V}mduoVU/Ƿ\ ^UUU[  y_@ Jxp8Cf{2ʙŃC97قAUUUYIg8VƼ!L&y:9#9 "t}Cb:P^n5 oth`)d6~jF[It:C487\n ۬':9_>{Ç_ǏhR!p0yy2ovF9D OHeKE/ n9NN笪O&mļ!zobOjP1oڶY眝NM\SWsg%7YoɌ~ fJBiXce oQ~"' ~ sg?~Bt|\H~c_P_0o8_{By}Lυi%Q}:yW^.J%Es} @rͧulU}Cs@io}\xe>lC4x:Y6ӅCh4#NmI@LcQ':b ļaLsoi럛 s7-p0()n [Ux<ցr S`1C.!^DC@ )p15C`{QS: &s}^J%Lbސr!%U%@R&t  ՀI6Ѱr\.79ġ\k%BH#\M8(Aȩyi!Bߐ?&R7D󆥫#Qx*aQ.|y}X Ve`+xq1 Ƽ!})߻(0o@Dɪ7<52n(i( 泩pȁF4ؙyCsandNzʅ!F:G> \XyCrυydCY_RO!@.km(.l 50oHаU嗊Kؙ*Dļa µWC_Ͱ\X vcް4rګKD` !$eh6onO4yȅ1"wA04(̼a­?; ʈnN.̏hxm.ʅ/< 6,E:Y5raM4yÜB3}H:a؋yÜȅ162Ǫru' eD " S 1ü!@l.=CYN: g0o?0}"[%obM>Jv7'b$hj@y:(tPsn ȅ߿M{># }ˆecbkIQH_!q59E4yØɅ%]|ð7s_OyQ !Ec~yh8'k(5in|>ت W3>>9vRl[vsޖzosls[1e>޿N*t:B~w~\/}4Hyxȅ13Gs1 Pg|Rھ y{իWAFF,R\ht˼z5%RW/^-%HNꫯAPFޏ 's +~(.>}3Q$|7|ssssssS¯z^D%1f˞ y ]obBj˘rK>}_u;á8!2`5yDÅ'ϭ\J>9A_pm+H:]á 82^Tz&#U劄SX`WU}yvyO1gp/ĶQzL'-~ߵf؞&:%!I?cD5 W?=-7Rȅׯ[Da\D\2g֞ZܳѰeb-ӕӭhmCB9H^q$4>c6_C㛔]a`gwA(K-!o9NЌk47,~j_;`.+: ?8e5|qScb;_RC05 Խ^׽rᴵzc k3k>*Dc.~_W{vFlvph<7z&p%¡Y寬ޤCz4a_ݩgO}ymv:u/2:J㣤17/:5y)(P:Dh6ۿ!oQbHd믿a_-777777J1f!@Ɠ_&Cȅf aMHiq==a  mvwbupo1/k?w}w<{%XҧOX,wX _n"<(W4q 9ѦרO?Z'@u_/_???Oӟ߭rJ/_?ׯ_ys_!@KYizMq-}h#N:]vDCr>}?M]qvr>h_s޽kNh`=u " 0ix.SOI~vq>Ƿ% W_;b:  y)F/OˮMK.[a.H4ԛ&oIc7qnj*p&orp+V=C)@tP26]L .d'ȥbˏ= u>~ W!@D)-C~pYBBQ ^oB'| J#fSG-)xV岹,!~ [:x Dp<@=L>C!!@ZҿW/g!:9@3=Nޙ"deHE#/0U*5W9$G{c򧯕: 0i0l=Ya9%\;l^<`B$CO%SaNe֏RP*C4ħO^rNqpGZ=ue(SVe鐼՗5O`43Cq^"vobrr"I4&X\EqdˀM( ҐPt9 ՐtE44'm?5d雗Dxc:10oHn!!0ADyυׅBa !Ve*+qj踏״˒ ~C`=7׎}ukgO2ʅta={x8TpwWu%4\Q!)^ӂ!Mmؼ 3o0h$lMel^٪ ,ps>Y7ʙ_3[r2L:$-"E!ڸ-et0h5W0_edHhD7p,h<l^m7$^~L DToa\ !u#?{Y[cɰO NH" Ux@Zfh}qX=} UfIyF6/<wc  žm?=Ilphz޼|8TI.X[Uټ!@[-torl9{9YJE%y@lUf^w{rM!6'DG.,% v q2lɳ/y9 ;eސ-xFDCȅa2Ve>p7ͥO>B`2G:h V$` !@M4܈ӡ4C`2,`aЌ!yb@4էOr"`>-hh:}ټ sH@DC8M߼, R?*̢ױ#tL4E.$E~K1o\k+Jr!yCU(h +#8(t@4@.6/@\.:@r!eʼ!O)g2+0>YH\Hl^>鐥hh0 a&9 !T6/Lu:Nu N!@\sؼ EG4\ ߼, HhQ  aMf2t@цr!(E) wp\.u}BO`m6/ͼ!3C.ټ @ lU"F'kpC@:$x<ց}@ABH1/`>hA.tټ t:N'@lDC sr!ecސ/yCLNm韽B0RB(AH"v멪翢N~Ċ 2idh(y<:,G}gߍ%K'"sCU;֛z|41@d0A3!Pe5t*Sii3K(02>Y+}6/"[N/~\HlDC yr!0n"c6ut:>/'4&S!i6&BGOb&I bU{w__Lu:NLYs_ 3 w@tzXO(%ġu0w yCp]">h(4Η?BL!lUuu Bap;7ix8 Pυf 'fM5+,s[⚆;?e<CNqCŖBra0hh!3c'_ƶ˿].$/awPG.Re -%}Ca>ȅH4n E.Rˢ!@JH1$/ߟraMo!uiDD.jaW? %ϙab {%;0R/`2r!ؼ\@`=utKe0D8F.$_'q7,zzHZBim^= uimUN+63r! c3MC$EDoPh8az܁'D4.Ht:}Iji"ې jqD 't}4L76\HyDXt8$ERaK2@[lECl?oz""R*0;h8NR$r!fECs ͿH.law pB !@J%/ušB9D IZ[n^DC\ͿQ.'a:wUpcC.Xڳ!@ Ba 5 K4L8ILr!!@9aCᗫQ*0;,yHʅ=N,y JsJ_\ Ӽ۲KC$/`?gECҌG\Caow>2  SIC$[p]@ 1ve|Cao %awaW9܆j˅yY4(\ܖ ah]Xu$%WR.HAH@ r"6Bxh).JR ]% MQ4ȃ\v  ;MHr!@NhyIMqawt\t(\ ȅ0h*F,ݤ8 ׷\.P.D|Z0Aq&E mD`0#{%E[ ras[.yD2f0kk9r!D.ln˅Ѱ;E,BɅmsc JVz6~n?Bqras{ 0Ir[ 6pCq`*|dX+KPO&蓒X\߻5BXhX(Lc觚z\ݲf BXhHY74o(.#VeIW0ln;""2tTf0\ܖ a[!?!6B؃hLf#6[ 0oH8%6 { ytH8!fw[  2H:$P:5a=>Cb"ü!L.}(@4J U¹asѐ *N: Ϋ%-Bn,Ox<_^wU;ǃ dA fras[.4d2Йü!R$6q Y2lU`=C뗷k}Ʌm#C:DC*ʱ Mi)#R'2tH8r4=>Æ\i Yt=ch1Rsa\) M7`*[ar!H4d1 'gʅ@Zӌ\ YtH8:} \p<cTDǃ @ӂ@\y1iȊ|`q+1b#6y8: 74ox:FC 2Ĥ!;Upr6:\ܖ <& !h`؆\ܖ T& ٙC ras{ PHG.ln; yCI, x"p!5k<>C tH80\%5ѐHB  m# IyClU \ܖ a!QUp!\D4$!Cv!!0`*|d` ѐ7ϼ!Shȅt!Up!@[֌\\K4$I!CɅ]r!0hH¤C G "7ț\ܖ %$ϼ!CȅmXhH&CIy O ɊtHt@udȗI0oB`K!1oHh?>Æ\O4$[*N:HC.F."9p!@\rXhHCH\~1 m b 6B`!1oH8`/ras{C-G:$t%`o! 7XJB N!E9$0cؐ ٪ ,Yh*3t$K.!OC¹!2h '[!< aS!!Rg-kP. a0yC`Ira5"bސ>[5as a7*N:"6Ba!L:$sȅm%!D0o O"Bg2N.ln;` "b2C`\!BDCtH8k7>>Æ\p-"%0\ج\0h<@C. #BN:94c(!BCIP-,G4dHJ@N\4is7<ȅ',E4L7Veг>%BlU&tyh=w>rYB0prυeʅ[ !y*1yCH\90DCȖyClU8|dm [ '@\"N:8Ʌm`?!dH:H\xDC7ȅm#A4l7$t{ܬ!D4I`K5c(G4"HJ. !ē00oKqb% y-M4تL8"6BP(p!!63槻 GHh<ü!}  gS  M!`2H0yݲf BOCI0F. R$!u\|d\ɼ!\ xyCIL.ln˅y A!CJ#6xtHt9 Gȗh9h*F4f1oHyf r!@DC`[ 'RsaLO.(hL&N: u`\PtM.ln?ʅ XyC"6BR, '?-M4 N: Nras{ e HJB3% yC$0cؐ  7$E.lV@.9! p! BDC`E!\m8|d< e,E.ln˅D4vcސ>[X\ܖ #Up!K O`hlJ:$trasL';xFѐ h@Ʌ-kP.`؍yCI B#; '0 G` !pC2Ʌm分@D! Oü!>BX@g2\r؈@VlU&t=4c('ȐtH8W9؆\ܖ Hhdq0oݽ!L4cސ>[ 6x@jDC s*N:XJ_gB E '|m}|n 3 @ACX\ج\@9r7O{V C9 BIƕ OC} I΅ተ{+r⚆@\pR2@[j9BKr!CWl(GN,! ='*VeLC# B!tHr ZP"븦!@NJJb.t]BϤ!W9d[W04Kk -{47O̹P(A>[YR̃t!\gח``"m!xrYB׍%oIqIͅf  6& vfJ1W T @DCI5l44Ki &)B:bM.4KrMCb*_O- @NLʔ1X f  W!ϐ#{ @9DC&-Ʌf L! ӡh,kj.4KDC6%)7 }!)3)J*ϝ|8ŗ/1Kt$#(BKDC2GR9$}vc PΫp30 #L@tS )2lȔ7p!`(C2c s0IqH~pp&/-b]k gXɏrA4H<5vRuXht@ht@ht@ht@ht} endstream endobj 41 0 obj << /Length 862 /Filter /FlateDecode >> stream xWMo0 W3+[rmXnmN6si2ˊ,M8 n(ôDpRzkBk*ްz儫&Ϋvڲaqttq!Z=inϦ vM8D:h<˳qL4}Yd颶z͊nz}q% Ǫ=ZfC_SդÊKS;H:PU`qP5yg^.MG*&=P;_ֱtf~RŪЅ:BREL4WP1 '@2yʰlդ&oڈf1PrѼHo'UK5g:T62M=r&61R ^9iL—b)iK RlwL3GˈSA{}dSD~a%_s08sDPI'0 Bjps@)tt!5Ry3~!lǝnI^AF)cӍn+M;{{!Q?F`ѧ"mFxĹuJw$u݆j@{mu endstream endobj 32 0 obj << /Type /XObject /Subtype /Image /Width 828 /Height 894 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 18823 /Filter/FlateDecode /DecodeParms<> >> stream xݻՀn^L\R)vPΜr~ "Wgprrd] p.k9 Mr> /r98Oh6H@h6H@h6H@h6H@h6H@h6H@h6H@h6H@hu]u9`; v>9H!}Çr@hݻw9p,)}˗/?l].5&`믿wvj*,!@a+L]x`LhVG߼yNm0mP߿>,ڦ8Z&@BVoԕXVGÔ۷o߆YBz(B)_~_~ -{ThmP׆m>|֡`筷ai4LY mP06mG$68E/_|%$ꫯ*?x6E D?oo믿->b#S?\Bdm>?]Wj']yx@Bzs|m̯PmP\[h;OlP+ 2555Dۇ>|g2?6IrNhŒ6h w .6]F<NhL`\ (  a+ct޾}0Ѷ,CBdg>6?,}&F[x&ڦr><@6(0f [xƷDHkɢ@k6(̒ah.x-g@;6Ȓ,5LJk@ϿTVs30Û!L尩Ж5,s8!@aƁi|#9-}Kޛ6(yB{.r+[ Bޣ]mَV y~Jhb,qå=Զvq-&ASg_e mД&: HHn]B4B`[B6Z$@̲6`g mPcgǬ     *v ȱ< mB+uYV; % ?AK~%@#"|8YpMY>S6LiW ;~YqTBpZ?6mA(P' 5^ bnw0|ЖwϔB’0-WW>׀FܒSKDkDlNB;a: m@!G4 F@L@B$ @UT |>/yK6?ϧ~?`kBlmP7S};%j]#}ß[xvf%NO>>>mӧ]vg+& x^{)cBUծmmP7m]u?~&8==[HoNmvh>|, p@k6x&66@Gg m4*~{g)͵|۩+-ne6QZkBWG13n߯@{6*BV[@zׅGisˏ!P; ⵙզk{Slm#j*|uqm_э@ 62eNmv-3n?KW|`_BjfãsXz`KBeh{q\)]?vQ mUʵVnn{ m{͵>ZxTJүJz5B@dn3<) 7"vuu@ۄ6 _UMPqãZg@K6ScCmS mƱf3Gn}.->lN@y9y_F랞t}tz!OhȂ95Zum0_{7Y8ƱrZ }yG-_mrmM nGo16d⯪&B3 ̸G7[؞ sjNnkٗRըO9GrVWz#<y?Y܍C=Z^GڀS^~-# `v #)TLV%J^ X)噐m@\U ? ̸Ho@60 gsv#s2 m@d5uhO (dDV҆m nuHhU5A P{h}EW|#3wm<p4 HLVҵ1+RZ*ڀů^OVn_wxdƭ- m"Ԡ--#s6Y huՇGr[翵S`= Հ;m/+!Km >j#<2휐6mN fm|<#燛-@ۄ6,揍R^?K7hh?'Ao@mĿ~O'kP ~S&n\kG(o)^o]wk@Lw?'# u<7v ف%uͩ$ u<[Ƅ6ZX݄J)lӧ Mm%w( >Q3n\Cj$ue |o^!t#- 9=u*U=5P"̩L mRZʄυ&؇Rz d5،v2iPV8UddM=Y Hr5= A3np7F,6sjgr`,U-@,̗Rju_3HTD@o+zS Y mmt̸}HTꨬ WpY (śھnē y/IQ܆?7 mN|PUd:'7^ uυܮm3W6U5/ +ӧOf`#W`_խe@6+pUa4Bp|`θ .6э=- CRmF,Dp\R+k)@962W܄Bֱ@ PjCRs7xHd 8R;koBsX [)GZUJ)e 7U6P. :ƹ-X۞Mr<}7T&+# j"Y >݈cWIxCn؎R|T|@+biC@Bn:﯏0\p|=ACh@ 2F:s+{rҲ@ r\.E~?HC} O$:agYx4n ~~PwYsWp ,;w IR(Rtm9ܥϿ߱@ p,m@\λHnҐD7b M6 P J)%H` ԏZ %31<)$yz꺟~r8FHH6 P lkG@ mP7T$c;kɵϷy"3nh;}],> ~^8s7r 4r\.E~?082ojL 񺸙Gt[ οg{(PH'JJٿNZ{zӮRG~fZ d=s`g0ݲ><} sm[km+@8wv\ 860kHK*GΎ[=sU[&9c> ڞ ewcB_~ \cX ZjUL0˖ af툅xVJ LEz1LmƙuR6,Eh) ɅxSGh;\gmkan1g#,lGhے+@)*ϧ6XZ3kkϧ65}6t[O1ڸڶgc:"`mRrfQt(L=FHBs7R@ c 0 $[׻ oSD躹0d%,u_9¼~< miYƤyBs8߇Gx8F̱@ %@ #;V^RL=z7P?Itt+ؒ6!SѡHdf!ݮ7Zu?Ǐ/.ګ9 mX GhۉR$l>KvJig+)@`utCH؇q+u}NRQ@ 6(F|P Lf p[)݃R然]Y `9sjIzJ,XݜRՎ9歮5W|JwZ)ML-\hj( +fqHX hYWpێReVGwb{y-gu)6xvSoznG0vYk,m@ PY kmN78+bh]Y ȟsmug)GwᑕuG)6m4 'jWS8#+X fmW㉶gn `{5MݟCm5=,Or?%sm@;X Z|P r^CWzc3+Bۺ m̸Ch }NϚ?=N>m;-:z0 @d5r9sgGxd)mlNV3zpJ8Y)@2A-ՀNClY~+Y Zbu4 HSs(G`WҺsR&XDVHexrY:}+Jin!M2 m!iW|jJR VG3b؟ }yRf S-6<{җ߁z,D@C̩l^1b,cop=l6Nyf£rWJX 3󀽙h8@|P d5g sf <35@*{bX _1APHlo!-}vBmWpwt[_ ѬY R_juQp }?^& nG,ig co04L뺮 7LʘqqqB[a,±#Цf Lޖ){tRd)3-ҭB~laLz'ҽH-{0 QS>\rf Sb9mH݂؏'n_6x5%QǙr@Cx4}n;~t?vSVm@ʱ^{:[0\;ۑWp[ j*$6t:Z4 sj@-G>ۮu\;6^(DpG|P d5 K'f SkAoۯ@k_;${A넶X %̉yfӒ؀,PW|o4HHcHlduHy䜑ՠm1tQ~Lm,>?r{$VhjuB[N ]uaƭn@:uvJ|JbpU5hou4hj0aϔm1}f rg dN %6f ]-'rKhjX~y-nt;>r(pcu*Hye5Yf @u?JG0򩷡aZ3J-`'eix<ŷeR:n{RziggMRY\Y oVGRZ;]x ptWy>Kc@` @V\ٷ0o|t:}4^)p# `3N?~SH Nnk5*Vh !Y ]KVTmf ! W?>4~c mY 4u8Il@n7Ԁ:ܿPӘ-Chxt 98Z6LVͧ7 ȇFUd5P1@ktw 'B[s1B|P d5tChҘS'Y (֨|He5B[rX uU5nB0FhkZRY @hkHRY `LhcІ$ 5'pwxG"0OhA  el7P" !@B$ @B$ @B$ @B$ P1r!}GΑ5$y0 mPY6ȁ B$ @B$ @B$ @B\ B; B$!}GΑOD؀< mP;@.6 f ȇ@aw6Ch0}{l ȇ@aLy(p (Qo2 m@nLP ȓ@a3n(ɢ(-N!m@LPm@6 3hȁ@aLy(6 B3Ch`&ڀ|m@(Q (Q}뺮Zc ȇ6 f ȇ6ϟO~Hޟe&ڀ|mP$un#ZaMnr ̸ͧөiK{5v"㷙q F `r@ m@>6H@h`VG|mY@ 0( h!dmV &ڀ|mDw?u]uLf ` m@>6HlDǽeRkUhH սA%6$6 BɢhM5:mHf@k ˗I㮣$0Z:[ @B$ PVHh`m\ rl@L(6 BYZA-;O!?u]u 9X~uq\HYWy^scou?zlm ß KmB %ƉmѬ( @Y[6I?ⵐ 毳6~%qmxc*jNPk񫭕;f ^ >. PϠl, m@qE||:ÿ4*N\-gKg==N!M! `hZhsmB2-X>Gc06gDBpq]Lmۏ5e6e-85Sw*6clϚM})÷3="&Mc~ƭ>BjI{,UI,l*Ϧ=ۖO,zK[xl]8? IoKlcy.Un k!][^ mW鍲~y~N?pMtp'qG,If cKi]3NhM%-h[|n=g秧\kڰ O]m6kBygÙk@RUfʲ"kqY-F 6|G_~rvH>e݊8mϧǏ5|Nϖ`=Kf;n]|#k8 ysds~16HfME\׾L\g7[(Zo76&n6-&`ǾQTk~1W|[r9nE u  2c=enߴyyS7'mqg|@k6#߸.;,y#k&I=>Gm7%_t%$ۑIOڴG(˒2~͹@ܸ`ז-\;m3(mJ:l!WoNwkM~٫1g"A޼y͛xSV| YmZhɫ92LÏo@>}|&r F޽{e e{J4m6- -m}E)vZWI׿I=X&xmh[FtMxv?[?Bժwmq<:^)ŸI͟ __bÏe-gaێ܄6/R[z*VsiunR>0\ӟ?x,-y_%lgGh }86]ui̽kN.׉`kM _si+7/^mxcHNMQ__G= BlbIbֽkU-zŹ))IֲTh>nm2[N{m k&}Na=SױZzo߾}g<䱬6c-չ7?+ 61^5K쫆Z;͍Gƻ;?gr qvmq//mz9 ,C(5,y{W|fof:Ϛzq[ƓnS-˗/_|1V. 6756wf>uT T<Ϳ7#q07>|Ç_¤^x߿~8'Ih #&נW񻦺Zy..m?Tn{ { YBh﫯ꫯ¯ ?.@h ;'d5`{b-km*.uXU6o3~˯믿N (%3 \v Ђ/Xa1k׿ v|E9&\{ߚY:qyyԚ[g~PGB*|mP}2dm['0i86mRP%e[KIo@n m5˧w]R~x/i}|:-3ݵj"JhM_;~41>8Iimz@>ƉMJ#uqwކ]~Cױe#&mab|s5\~ӆ[;|>|,ǜyBLb#jke>o)3z@<)xBdі'\m =ۯm`=桮m隹6Am[˓76r%[躮WmsFABOz9`'ntV畫8a7j44SQ{۠NB@bc{jē`{!mP? jkؚa6Hf٦~l@n7ZmDtc9dn@˄68@HiJMfhb6U*U%*Y" =L| m㋁ږo3#_*c8ʒ[F))g%m ;9mE=}&Ez8Nh{tq^~5ڀd̲ijv P. k[k-{WmڀX Ih4 p,7[f ؏$&rmf6} ȍ$3Y97 `p-5 ȇlhndy7 BuT(f&lAzXBh2Xz>qLA6 k"@Y)< mvz:}h& ȍR ŧ7mdgtF C@)B;OCbȇ m m m m m m m m m m m m m m m m m@U=v\.X* mH_)9: T,JBReu糣9q[~G~1` Io,#%HjK?=B[ ^wUz Nzhж ܱY-Ĥj!%`+%=X;hl"m ʚZ&m)iN-- B[2Hhk ն}NoY؋ж9 ͫ@Y,P sj%r&@dZIovb=j-"m)Ԉycn  mP Ybf`LhەR؟SBۆ,D|P d5 ,'̩Q: `v h-B,CV mAs)Pm'6 0ۑmǒr m4MVIo@)]Y 85qS OBՠMs Khxm؎v joe LS!mdAVf cX Z&%r`5nN!-;ڀrjLh;xChA- j%e)psj>,^,X "EhhP: r&e)WUh2bx9578PY قcB[,Bjl#f}N`LhˎRh@@ `9Hׯ@-7"e)(>e dN lq{ȕV pOV8fЖ5 pY !P h(V$ kGVHoBh+Rxf 6xA-t1os @<`Hi7,c= mŰ@Jd5 - m@Fd5`mų@J筫r#)%2'j@;0$iNr&)]Vh $0Ez8Yf *a{r68@n*g-g!.G','Ue@̩P7 `Qd5 HSIY ^}NoYr%UiX Y r5Eh@V j@6*!@)Z,p$mͩ_d5(Ch\ /?j@62Y fN `Lh0B[rX c66!@56jP Y `kB[CHe5(?I/>@L{7%[33'>" jY ,VGyJg\Uj%q=&95vmL$Lhc"F $A %69fbjA7ȁF'-4LV OBf#PzOn (ht!P_Z;'-`K}NFd571 Izj |Io@̩@*BCj x)Y $A/Nob@hr^p:d5ȕ%7hڠŊjQ6E.@̩@}6h/d5hFzTd5hL` m -yBEzVl"&Io)>^ mN̾sjv60[= m@F7bj6 kcIh #ƜP PY (TKzȟDh"EPZ M m֒ `'ujd 956d7\@< `C'Y ` B7`O6,OV8)o> >> stream xn%I*Wj!Ԁ7ũ-zswa$z[IXq7H4ꖘEV;̈Y}lϱ]~q (K0¤k (L0'np ?:ǐx/~_p $]x߿_~N!]_|_۷o߾uMܤk_/1&H<ݻw}W_}?7+35xqUpM1Zy͛7?~I@n.0]OvZakӸ;1zs8t c駟~VI<1py #]\t-@[kNM8]u6I)POuS@[k>0] @5z-kqZ$]tg. Stnv5Itl H%`fb a_R2u БFk\-@k>~?׿_Wկ޿vgvҲ0'/ooooootݏP=ytkfg]:\'~n7kI]XNL;Fimmxa&< Ycsuۚs O<~ t l GKomS,Y[^6ZLTt pr1utt]jEmZk^?׃O_~Tl t @9ֆ=ZTkڶL;|1ʎ ڽ3C2MӅeO[5O`V8u=0kZ!]p[>᭬ f5 Y=zgIz ]uxtzyo7`[g16LkKˋvx$f:N]ksp<Tfpaܲjt 'ӥ٣cN6 g%]tmnfzi^>^Y(me~"]Th=. ^uj[צt"]tmuu-Uh׭KT[8^OuilGo}k6SL]Ӆө2m=XEgrwu çz9{oKR]>aW9kH÷.Zt @nm92ܖƢ5&]4H&Ҙ[J{>{;7G.Z@Z5/'[?z.Ӧͷ&Z@.@\.;:w߇פ0 5=u ڒ6U0K^/O8ǯR>k5@Ϲ0]l1u:}yvY+κl'^ﹶ{³h @k[d åk;Eh$]4#)s< t>cˤz8'3v21M]O^%a@@ 9h)N -<7u-]8e.6Nonaxv֦x5ZK@gmtauVޖHl$/?##,=ulk[O_׿,+T`N\}x>~R1 "]zƼ0 0tuDq5Pt ];2WIoE65Pt 9k>( ?65Pt ]'Ϝt "] LI9eI@)5\M)x+O (E՜( 8(EՐ4 g9t "]@jJ[oCS5Pt 1W [߳k W5[q5Pt @?D#t ړj)Q , #s[:Qo,)kcH\ @=Ft;WJ&68a~^X-.`;Z(^ ],$?t Op>;O4/qI Wd^k:'W 1DG8It\5@,Q(MjR̋?2/GTjsH4O`?KԟD8t @cjZd^yq%5 `(HITJ,QuI"r5ü# ]Pܺ_kDG8퐮8j]?g:Hd'W0/ȼ8@k!?j%]̞\-T,QJ`#sf^yqkV8Q(Ar5G8%]jd̋Hy(%Hc,Q']tD̋2jm̋?O8=ZMd4t Mk: ht \ rs=5.r5[@oz4n `5`Yx,Z9@k({rP _̼5.^`Y@HDmOܤkkr5@Zi[@Uk;r5@50mkjj`?8!]NҒz Z@)檁ܤkar5[G#I@cj@=jjj5PxB5P'\ (+槑|j~5P̞\-TЮp.i\ EbёӷhTmj]5\ @͖rޟ61jt $&W0'lUg%] ,!Z/P6r5XMlBr5"W%i &W=Yr5{1oB5\ \ 0Gvj)Kr6-r5@ cs*h]?`- Wp [г=Zj$ZsiIp*r5g%N /KG >*˖^K!]Ccj8Ѻ6N8t Y=s~! IjHP)*@?쫙\ P*.W PΞ,=%TCt ŘFcsZ!]áj8=ynb;]Fht nUHcijy9xr59HאŞ\-TP/dǐ_ ̑GUp1:7Qr6{MjÇǟZ?~\3}tBȧ瀽'W ma~{6fOaSyqULW0Z;=}=1;m_~?k#&W0 ^; ðm&60D|/sjk`Ocv| i\w4/ΥBr5ˤk:%W@:6y~y2Ӿ8N`.r5b.I\GsHh?JU=fD軻v 2uB5fx3٭\,QOljR1u͹`S[)ݝV=9unx?9O֙:yr5l~*NOlhP 1k$WyY0NGQZ}-Q\ , \ 0<{6 Z%pn{\M?, :IsaͳF=GHpDv#Tj$]Ckjz8PX_̆RϾ:x_ ϻ[ߓjA:Iה~PuGd8,( \5LIP';*uth&z%W]3&sDe5I&Lf_xl i zs&r5{HP<,[~ @}D6^q_jܑ>5Lr54O~y-gP M5GfHS\Dlz%9r5xfIPZI{lD6~1-WCgt y!b:"]zb6@DSq5G楇\ 4ކ|ߋj>kt燂\ Hׇ_a3!koaCr5"]C?r5t]jnx񿗕!$]WHu]3i|ejM:Ig u 1ŧߣUC_kt}O\ l$]ٱ`0|ˎxˇ5!]Cn]sna~j 0 _OVLWeuj}g쑘 {왮2;t sK3%M/cЛi^|֑&W~l3m:|j~ @Z=U-,%]WAXir+ H'LHivj5L>\ z^a>o"=?b8m#\j(KHF7q42Z^\ e5~ w L痴`綝Z\ W>efxͶ\=\ -yxxxVŋ!ZzWnzTQdH8+ssյ~|0 ?^.wwI>P99DYAY֣_{ϥqflM)kܤ˗Eq c=aGr5 ](@dlxSmV/)W@uwf_7 0R+q=?-{9#1n x񹺵S_g]C]Ig]C}L]'0|/ږ~G;=\5Ln@4.8^_0lZ eaxeZ\LmzZ|d8g5*#TRZ畳0zNZ1uMż8p^d,'Wit5LIBc8Zmda8mWӪU ^׀C]I á> ż8*L痴`4WzmHED8y\f|tæsV@ kx+EG_4f?26{lKkyvj(\g-WI@1ż8񼷧 e1}&]0n&Tj5pZ[!p.gG$1cLOYEXMo%LȂqJ6]\ju5@E,Qoyqֳ`\<z0=tcrSI1/ QRi yl8׀[ޮk\ P?DVuK3%-'pj53Y 'a&lΩ^L777/;.Q8вa#-{!Bp㞽/9sڕlsrwQOeD-K`L66>8<]=&a4] t D%X0ޗcfo7\mt a޳\t da^qi|Σ}Łdu&ֆ߳8j3ƈ⭰DHzK/ ƭ@~7a.Kg^4 i4 =U60#3ZN&0 ?^.wwϟMP99YAYb^šMx>R7rj5YL.2ǟZ^>e 83u ='M]C}$]]xv>2o4ιȘS|O&W7{NJP:2I@Ny?Q8uHc18Fd}sj5|&]C}IkNp8ue='{i٩rSz#] oI)d(H\MaS'{B{yTt 1/ =/3ٟ_LSA.[y>ÇgeorFkk`K[azAx/!c/?fsuxjg1kj[a^<|fgǷ8{ʩ%][~O?=k  1K[Qb3٣| ~r5ǐc^{ 4'/dOQq'R_z2pIdgh= t @̋Yt ڍsz^["]@G1ZK@Y5I&]Pt @a.]׫5I&]Pt @a5I&]Pt @a.aa~^׫c¤k (Y|LkS&]Pt @a5I&]Pt @a5I&]Pt @a5I&]PحKha_0, KRL]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5ݺۯW5I|r^O'`a8OL]Pt @a5I&]Pt @a5I&]Pt @a5I&]PحKha[zueL]0kr(L0g]RL]Pt @a5I&]Pt @a5Iv0 K_׫c¤k (L0¤k (L0¤k (L0¤k (L0¤k (L0¤k (L0¤k (L0¤k (L0¤k (L0z^_ [jh(L0¤k (%`4 0 ۯzu}|L]Pt @a59Oi b¤k (L0¤k (L0¤k (L0¤k u  0 z^] S&]Pt ,Xvsssss:H=~-`b[_5dSi iʲ0d.`/dg¤k Y˫!)פ"]Pt @a5\s$X)פ%]Pt @a5S9ޭKuq~ޓoS5P oF̅f{#]@k/޿;k%8+ _KФRyx@h.Z?LVH@5 >3-L!]@bqj{P1YLv?kh1[s?aJvmB5Dk@Azsbsn5Jڀ-ZsҮSOa)δ&Nhlyk toIEڶ<\YM5`y8Ipr3歡7kO_kd6BZ6{ܺiˉ:&k^5 hYj`K&k6Ug ӓCRE1`K']P|i\XGta֞,[=:~&&mQ䦹z>`62`{@:fZt3|{' :5u5ĦIGJXIJ<&f{m{Tgox{کtF5@œR~YK>M2\j9#(=PyϦOht аea_m |R%gH%>EO_rvq 4Z{(íW~#"m R̷]kĬk"T[s3U\%s,e?k#S']4Y~|H^X%@re4{{hZu5ZڶTgYҸg"@ۖω^/Gܴt+kl[2w\##Hh˝ZnD~tٿ$|psi9m܍_^[T6]t Prv}^駷¤]~ -u_VlwZR*! Pcq~,=YNdνm|uh^|W$`cz[@>5@ۖ眫ޟuk?}u3(-ִy[>p"]peDŽ>2 ?ﶾ~ϲ_ڻ#?֩Yn0<t]>Sk ]by 8k8L>=@sCumXn4ZOokYoKsfެ~0iMV?kS=iߟ)as:%l#IɈ-~ƞޒ^WnO-|׋J @KƅBM|ס5Щ G[gz Xz5 ךK7}}==S9&[<&m1#wduf 0]&oNm.W/Y#:nJr!frv}']vf_]}!`8o߾}!0>래-c7%r}<8iDKBG\m=aw޽{a}|Ҟd"8ihMpKQ|ޚcaoKa^-ao>jֵG^iW`dU|O{oM(>f9)RnooooovaҎ'fܙskkv/lȹgxMoS4ťW-9ӲƼukրsFg@^9:CY&7o޼yfeemI{..c^Wt hMܧY0Y@;_\}|Q 7s'O\_7y.i-"fն3EI@a1R-F~a-WɼxnaHoYӰ߾}3=#6f2[t 4 ٖ-b6ǽÇh̖(>ZW-禷e-?O?cr̶ˏg5bsqZ>o, mrQi+0Zumo _fcf{H@1k[, ^4.|=ꫯ*enJuy y9Zۣۧq3||IAfÀ-ZCmڗn<LZb>(^1܎Y< s5>_>&i5' 1oss۷ehb6"]Y g7> O_"Wypz=zT쵳s߿~~ܩyne654ZWf\MmkuL`ym:oM_fzo޼y//xX<=^w޽{nY̆9509O`ON_kw}0}O6|Ŀ|L؞;3{//=A>7j-f - -T}9i/|8=}=Nro7o>\TJok`À-fXր~gʢ~,cN˦O5k0bրX#fמ\-Tuat ݙ[R[0 #Vg N5d1 ?.z~kFupM4#].1 +>[H"@]j5ODki#f}<h\ eIѸ[h98? A]Ϋ^NNŬo%b6@檡-c>"Yht \v}<:߃G {Ē#8ird<'WI3s50gnwj}d eOfֆk PNj50 ǏݶחD %]K5 *kg{fi -.79 Цl_ہ󐫁\#IS~| &_pj5Lʒ NތI[`?j%5̊Y>ba8km찜p]507K-Tl \ t 8dj|k3]=6] @ wdCoZ t ]7쿟lw{2ysN"]@b/#colZb 83vq}:|6Lec F5T$f%xXy*_e%B5pV5d?kbj(f&w@S^']@a:fZϔրX@|׃ZXt _ܝj}4K-T@?^&W!]@aK%s~\\ t B>>Ɇht +D1żd2b?c$-&f& E5$ƹi[S8PMJNht )E:Lk8T:qz3.!<87jNς\ 4fص!]@ic^|Nԗg=Oc^c&Fr5@kT|ԜK1PDs2\ m O>S\kPy e({u5,{}j9U̖0W t \KkIj5Rl{;e5RC6=9|=P Tdl{\ @<Sì{hc/~CۓjIP:m2G%nnnnnnr\sbf[?^/m/W0`Nn-.yz.Z|fXO~pr`Tk5< y.ƿuQkj?9[ 7 [s/_3o/W .$.'/j$]#"Ɯ~-^I`S^&wvj5%I#Tٖh-WgL1{~&\5'Y]{#WV[fj$]QNQIb9~{kr5IЅ#C1ǼiΝǏp1{[Kx541xz-&s5[7׿3ur5eIpZmZ]㒫hG㗋\ @Mky0Z1f9bs/-WP'NksQy.W/Z81cKZfo\r9^͓7@ L]Ʌ9yZ=֞yk3#{bs+gWO۽{XT-f:EY}8 {z3}\u~Dge81~=O**Lr @zM]pLVoizce6H@uƔCFUMf1™q)pVNf8l֝llj`8i m2[#]UO8{-t tȘ-WIt tm.0oKr5ϼ59H/ khkIVt $։H#t $sU ]Pt 4#6o p&5kht @a5PkM']Us66@k Y$7YI&] g[t dvm8#]Pt $~ڪpH&]1o '8 t @a5PlHsݺ;}#g{0 p S@10,5PX\9lH5s\8&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5I&]Pt @a5s 6.g5 0 \ 8auH4oO~xxxxxp ,&ퟮ5 jP 5\ 5'j@=ZΩ2,I$#WH"WIj Wrx\ I(Eڞ\-THarvr5t prրNH"]SvIMrj5p&5@3J\ @\ F(̩5@r5@H85skj5@b{rP IũIYt EG%WCĩH@U@#WF WLNkO$]'1 0 rwjRkaրt 4F8hSMjH@t #W0CLI@FN t $&Wt $` 8{HFr5H {rP j!]OXk@0:%WPjj&]i5\ @kh\ @khS8 Wpn5Tp!]@Ej$]@a{rP 9Hp(Vt YˤkBx5$#W65ljHEU@5Bܤkx\ G=Z=k:5 0 rwjHE#ր@kNNI\ mhSu5M2W g"] Jjr5@"N>I׻ 0z^$WuR%98Pkt݅|i\:͍e{rP W!INuhSmP%e^ROn( Q@Z5@SDj ̋¼8!VGi( QRkx%ꭰD`?t oyqj65( Q8ޞ\-TI@K[a:0arvr5p$yVYKNNo(9HY K8V#]Tʼx+̋SH[!p75Ɉ⭰DNr538Y-#̋7CZj95d$u  t MD-7ր%]/0/ Q!W!][a:ؓjt %m1/@Z t żx+DqҲ5@ax+,Q\ p<,Qoyqjk62/ Q`ʩ( Kt @G,Qoyq`?5$c^8\ " u(eOj ]@,Qoyq 0 rm65yVps&⭰D=j~HOXj>I2/ QN`$]( K`Jż8P'e5o(%WODVXy.;kX/s ]@űBG\ @j5tDo%ID-ʼn}lB5kI@̋Bos7 rwWH@DVXZ@k,,QoK?r5u&!QsQ> stream xŘMs683Op2mf[:5΁3l %R%J#'rX<}ٻT ob;X/ &375b43YgK:F'bJEUH]U1rY\ΩӺ8*i\3/Y\Oe]HIڡpK~&Veu7scW~U41X91䭥$:ø7̨"N Ff`TdXʬ9s1>H2$9-'IO/_YOQe,ym,WW{0, i cTvO%rwL3 cJ_cT(YDhj@ 29R*21s5D[|ô g1M81_1M%sׁ,Ӕ11veQ움dS./K^FAơ<ΡNP+yB5BsBͨEBtE1d|b A. 4i64kIq.̭~ҏWLA8/:V $sd'F %BD]k qd.9I20kptD"$l4c1K4̲c;͑R!n5Smphwx+>yV#2xXp9C68ίFHW%%T gw٤yySIwB-I5g3koel9xCCdJ+.Rϥv~%BI< -4iuh-SfBz'HA y>QČrޮ[Yt%\-*`]Ծ₩`*0: g(iqfUnZ>Ze/o\ _+v,Uy]ni:GOM>V$*J2)E3N~M %^UV2Wxam ]>̬sMN3 O mD.͍|ɑ?;9`5un Z[wvش4_<&e6%h!kũ݃Ҧ3a8l> >> stream x[nFa-['L'pf(2E d= C r_0)Q"zӶ @ /\ H<$ H<$ H<$'|'@<\.//] x$_|@<M{ׯ [}駟~/^xݻwmr@ LyМ>I|˗}ەĔ&ᯘ8)_W;^z+a  F?矒@<G~~obG(/KQ>>@$LO|"| yЄq7.~+ˀ+P;FS}g=Jv8@rȱ)#ꏧׯ_~O>OrXn@pXJ<~~>>ܸp],<挓AFիW^?H4g[0(ۗ~|A+S ?8sL}f=I oh:%yАᒖ);z#<hpcj/wv 1eˬGzLHy{w P; c >y g=*RRH1K9xn]11\ޒc/|a S @Ly=7R&YC _xc~i̾`钖#yPuS/Sgzb<hHzD8f>7 ?|#S'Ը+LyАc/Gm!Sl쾱v?![<ƋA_7$()*@֡T0y+2-2!+@$%}֤= [hed-g=eDDb*-}1?<^lbZb R$0N'Oy_ErH4$}yK@;zLeqXE"yЄ˄(syi1ʬ )[{Sob @O SA擇MCJ&yPuK3Lȧ `^Jb$z}駟~'.*@cH<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<n]u\.~Ļ;5<LyPuS#;eB;hrbh Y#yPYx@;xO";H%yp}'2w=Vi5$*e9Ų$ d1 [IT|$|ivITa|:Bج=ID<(֓<8,"yp|Y,F0;ǭKrLa1#gpS>ǔ$yI4r\."W v/ qHD?eUH45%Y u<b)~.# 尗K}? ]uӿ7}>{ߣEjDu]u7|q^z}>5 2o^cHmKcGoaߝ sgH8@3|z*vWx} yH`9YLuc=B 0O 3Ж{lagHdtd51vdxqE$vcWtK7+]sA#ysSF{~V%1hbdK&u <Ǒ~8u^קGɦCSd|ψ @9Ly4Q|Xiۚu3Il@sbLs>v׸vQ=cHM(Wtew>vJ"yccJc_G"v;\j $9z,f"|<eD`2vHW|Xˋ\]%؃Pv8>1&|b"Pc(f_Cc1'yA=1~,|"@$Ӵ+G܇ў;3>][Z%yGs9W{&̱TJ _1 P3`g2wYRʣ @$ؕc;Ƅj#y,f#ܛH(Al@#󄏚)J"yL9a#Q&y$q$sKqLI ,fYG ͭKr2w0߿8~*|P#;A i"LyM9Q|k|њ-b@$ ,rJ/ { $ r;jx Tr867ყ VI@ed9sa}2&Tr3c"5Ϙ@=$cv`{I6p#6C 5N!"eVSbSA4x@;&F(>V+cz DEI̱XJ?wĎ"@$hoW͎ ÏRNPpm \3@]n]h9i tqDOxxz~A== 6 @$K8R5Q."{mGwYZp /PH!;oz?*p6SP=rc~#"wxo_纻̏P?x2P*cJ-risc}9~1E_9"1ae?>eT1_>(EE(#y@v2zDݬskE(PLdaW*!|8|r^(Pv`W510ZoJ$|M,Wa8#  [rH1X`e?O峔1[%-A%<v  l‡A"3ܺ0#crzy-K;Wzqwwwww* yY)eݍǓATvǔKݛ㡩 `_0)|Dnnq&>h`?1ݲ 9էF!}gO Nr9υ~vLyPibs-&> yPucm\O0A]>ֳṉO-uȅHj>Ahw^.-,!yPƍ9s cI,ݣy)|g1xZyӎo?u' f[S$rg%| N8ZY,s,gߩ>Iu01APaG!<-$E.LH!y*8s +,w7 L'y-UUȅ9Q=%3[HɃ=n3ǘA-7+W3T)_[%e(xd 0E`SF>(bǙW4}>Z.# [$4f: |-ڿch,"P"{i7JccL6+5)chsIZ|s7Gcy.bZ4sy}oz|w޾}Dx @$2,s -c(=y |f @$؈t_g1AZ0ZRXK(҂E.=2H{\DKWؕhy/sA(r㱻P2c텓9Lbeg}ǖ9r<" |e}2%pmF[3z={]9`>O 6F-l298lc0Q+wrs3I!yjdgQɣM"Hid @9Q <QɃRj:y %sm9HLAb pA9Q&Y=dHA$|sH- ۳863(eז#r{M [x8iHoK#Xzyzɔq mkZW0V?( :rd~h<0\jbrAv$yl=ȶܯJ!s`o r*j9h"|@l4j]Lz6O1}m}}'AIМ#0|;ձ9H'@$h1cq>^*RZ)1KIЄh>dG9ֵۚY[H|71Vy.wؕ"y@Ďr_o2 y@X9vϩA5aJ9YD%x)JxYa}X:!vXǔokӳ&>=rG D[f^"sEMܿ{1ڕJ&y@wP;ba@<]wwOǺheM*t|<֝)s>m|]9MP뺮K C[6p>s9 Z\H^@_ǎ>sLP;S@\]c{uDѿ(\xuw-@`L<$ Lb <=Y`Tɬ0O<hz^@<;b<n].Y-/e뺮s2TFRH@Y)P%<H*cI B*cI Bx`;j*$1bGOwH-38F]wu]׹&@Mv?ba}˘<ŋ= [h6[F<̟2z>Ly@Ӣ!y@(SSrHdIosYS=X<<D0q#y@m&: "?"ns^Ozu0t0{@#2<A֧myCKBgͱ@H)c?I ɖo2 [ľQc钖HT>,s4}+^\+)u'K?@NF̞̿%^!?YfX,#$*05#/eܔe|m=|a2IK c_dNE/t=)sz,#8RztJ(%gI1mʱ'^:YI'1R^F)<8ؚvϽ:b1^py]U;ٽQxŋ/_|@/zEZ/ֽKS})_qr`seD^1>Zu 2&lcHs^r;h}v%2% lq{{{{{;eH9KI'?@ 3xR>k*}۩R/ˈ9ș|pIKS3c~iCF.)`:LE(>!-'Ms3GwHċ_ /K8JFً ѵEwX;޽{ݻ?5ަt?,}Aqc-[Vp#3#Ai;hޑJ|Q'~cx,`ҧ?;|{;_hCMszxܡ%/W_}W珥s_Yj* c@f?rO΍,}>?p87#$%WEHjj_usȳMۣk%FG(=>1fx>?x5LHދa(II!~ܿ믿GrDsIA͋uZn Y/wL-} 'W`D> G}xUώ$JjlhǿNI KZOuh6Yd{^zG}G{)??^~__No<*bQ౔ɠ|Ie~ޤHM/"/"#yPxِ֞#Do j/25"sl'ybq-Ku_A(S"C%U[–g@H1&%P~x͛wtʐ9h_}P&i4YԿ_oo#/o~܍Do~@>y챫A- |;m{CJ!I@ i#Ƀ*h[b#7o~u`)i#6Ƀʤǎ.HTG-lz/Ib IsIm<(B.pֽogJKo!1sA7M{-lY{SB(Ly\ֽ8Ц!mNbcw]D"߁^x%g/Ƀj`,mcjqJs&I7~[ڣIIwț7?ocP`_'cwV`|_,3["1b/3;lة!p@nEGe [2Uy5$[wHb!yohuw75"p81L'p$ɃL-xXwmZY( 7 xO-rI $N3Gi8j̿_ź(Pf92pH@-[ߏ G<nݤ퇿;ɗr&S-^HgJ yĖ[^,}&ޥ.@XɃ2ؾ-cP.kZt#>v9ֿCT)n\+l0Aϋǎ{OQSab~mg8hYz0Hx9/B1J! l_ 4"؛cgm2.P>S@X9DE\<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$ H<$zuvM' P;S19KE.1HO>v$%y$|@$g̟"|@$$H j!y,&|@$(䱉e<2>,d xɄA8lHǡd ǐs{AlG9zb@(l ݺ!v@;Q=zMv8eG@h55K,Z$ Ķ.sd`-՘Zbw.m @ S1@q,](K7}@9Q1pr LyTiǐ #|dFG({9#=>u]uC8shzq @ $d X!v尰%88SLJ&y4X:!sQ]|j!>bo޼y㏮9$Vxცl}F *`/|P| kݮ[Fb<~g5>8^ʏbSwI21dhSһQF2^$o\8ܖ|q@>2@o̎?)"[lٕcH"ym!|2v^s=<96+slZ m7stHo#z)"@T2@9$EBH3<^{1$sl'yvۯ<L98z2$.GdWops3GKI,i+*gJGm,r!LGUd6yR&Ƀn&O/%ʽ\g#RI}K 9Xz?A9zf:'yƲT6"%2Err!.9o/pf:8.'< pA-\ғ9b<8V>v%sP}8E敶+ǐj!yp '|l s."@\2gfI{9e!=<&@l2Iq dSD]əOHwY2b u(]98ٷ`Cuϋy"r!yPƍX9 dzfI1t9<+<( >lD e>㦈 0ϮE򠼛2y.f:g<Y@$J5+ 2A0E ɃoB@T5ܦZ ]9hA=7FB,WMݲ3ۣR2$q3XG\v!Ƀ:o @"+һϙKws9 la <&^>lD FaHDgw9 ؕҞ*"<ĮP>yDy-Dr@$I! @j @$ @J>(W$8';7x*h^bWh>9EywIg<4o"s@lA-2CXOihFJz+LOrab<T%=@l$s@<-)Dr=!s@l0IWN3NAes2D֑9$`gGۈT$ ;ZVBIN @ ]bXJ @ 2P(92I@5D(Y-@:r{mDj8$t$ ",%s> stream xXK6 -L%wҽmfߒЮ5c[f Eْk+Yg 8 @dM6_} Qpƒ}y~ <~H~PQahS]pq,0ٸ;PsJa6 fJ&&S>Y1?s#E&ff򱬗/Dd 3i#9ʴBwސ! uSCD ٮJ:8׭1k7OzGӞ}2bԮB ȫURUnﶸ{Wȏr1H&y ~Y(Ə e_/Ͱ^V($,GhŰÔnZKɸG B3ۻ_lJ+mMm[CoT/Uьa#7oWӺ.E2Dd>_vW˺Y_5y]'\; qU (CX|Zy! p)*0d hjM0M#v̓1<ФHɌkZu_n'f+800`DlZjwTZTr'w3j:ZƇh١奞h9f!g;Zha> >> stream x?r%Ǖa(IBnGsMcA ϑÙ;,[rd&g;PB%_fe>Ci6B]wN><<<<<@ \⑿H oH oH oH oH oH o.޺@?o.:q5~]կ~_u!t/~ 3@?\͛7oLCÃpa_O~o??~駟~ioXwwwwww7>>xO-?Y.Ob7oqy<=_soa_zի #4i\ xn7NL0=,{}L4O_;s2{0 В\>LVr7@cn^ru:pq~)o#d{O&ogxwY(f!4cmN!zիW6ߝpEhїs߭XٷMox8F}~X? #Ӏjd x8>%j. "9t %S:PBYIw){>'ˏ<6LOZg |n|ܯnBsYxvz jkgoG~t|8[ !v_62Z!-Ns_7%Ӷz;1;玾7=@L$wǘ,\_M#[?n|Z!|̹xB9P:gDi]~fCh ĶS:MZ/?aMwzGz-ζ iiƿߎl~w.@͖'!R0>>{͛7o>?|Xo~6ɭئ=oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH oH o%8yÃo΍52 pmc7@{ 'Y0 )w7v7tj.vۮf tv$>+{ݚ߲t> BYr\zuEJE=s/=/ykQ~F{@<74fJvwIgԔzy%ЀsWpr޿}o3vl1*J{w3o߾\[6A*,u~ޖhcrl=pgp;β|;k ܓ}6o% sd۷77K O")g]d/(&Jd ?2_<ï {>:`Y31M/BC^NJ`=+M {[%f V+dJo{ʼ$c{/ oX$Jb3 s̰sT^+M9w;סrCosOz7 _ Ep]7&ۈuʽhaP.풿蚕&` 5ߓVzH#w/Q~TD;o-Y/aǿG NsLGv7Onq~m>gPZ9\绪s6_wKr$$89ߝ^By>yNߚٳdh @YDmQ?B=c=߽m@ko`IDbw$$PP)+MUs3/zNwGebw}on>aXiC[{G;mi1y 3Cꫛn PXi[ 9r?V?27 @QVQ&| p(oA^RjEg @Fkpn%ܦWizE]mI-Dp>73}.>[wYw#J=Dp67k |Ǐo]QOy{W &)H꒚?Owq퐦o_W ̑8?%e,bNdo9˓Sy^3§.X|?̀Dp 7Yk]Y[2 ?d`6ӏTq;78 Ϭ4iE(yNmCN8#+oYi<g{?A~!%ݱҤ]ufna];p%yLʐdĕs>+MڒYi X{G?LnOhn8KGVL_Nj^Sw|_}us#ǐ.y[$7AYia| G1w):K̥&g{\#:N{iu߫wOwXNhL ]kf([iqHj{QA.goɛ GhF*|?/~jxaIǴ 9ͺE0i2{$#&r G>:&7{XOZz%&Y7)|eupd%?G=-0%T*;w zn5uGVnSkݔ{ 27@ZxZGvykz#+)8~z/oɛ3"8:7cf#o  kb7"80OMyY W2[MǧYw7n >2Ep)d7lq{{s嗏0Gחi;D{4>} }N K\sk7@8M߰4|qɛ~|yU^'axl[.vE ߰_ɵ',g=qaJ8"5 -~Αӆg'Jݹ|ĥ ̭=ϖGtaHꫛ><[ 4#w^.y#]~Mp,kO`z}"oxc D%AYz]zy `7%{AC<%@oäAKp%u^K p7E"8#d!^˜8pI(o]lfV6"8 l$|C~:N#8P?`5G\P'M@^O#p B:| x"8C8 %9Ҭ\,Z#,b7Юk`-7 o8C/f W+((n73G\>p[L&=%@o'ߢFL%p`?B@|ҏ!?P 3ܬ@|Dp |p0j ]s%¡tG瑿N÷#.(Pg\~U:9@wlOA-"pA:"|Clܬ@3 tA/ .}ĥ:j_(@N7VG\BmzYNް @>7SoFo !^eT w87 0Gf +P"8,'A8e7L=F3÷iG㧣ǩ[@Oohp.+P6"8l#e ֒&9'`h 8jf , 4#}ĥ@o"p@q p%QA"8<% :f q> K0%!6^tpM,Dx TGXm` I=Kbse 7Po`ˈ{Q-+o![]V@/D%'e΀Dp⑿oܬpNNK8@otv,OeAǸ@\7PzK D *(ĦoY:@o ;Khn@F7f '2"}ĥ<"8m ;k6~~ z|ԋL 30f7Db &.8M@n\`H6 ^?~\_.w߹2g[zvq%K(Џ>& lߎ?]2 LҬ=8"85lX} |  ,"|S S"8t}l~X#8!s"pʐ30@Y7 =z @@)7 u5<ogq%"8% VS"8eܹгJ q1zw+ۘᇗmz x~$8{)G\%Y=FP"8(ɡr"8ǒ##.](^V8 ]p%Vˉ'CLf5Clb7pt97%|uf.` 9O%7ߎrp%'πc}}<H?zvq5δJ` 3o˚6h"8i74@~ 8&|Ea MJq0vq58n"= q%P3[m@H A{Og"8@ohM@ %=7P^9X#I Gz#CROjK`-/g!CuO' t aB @$s 8@ 7TĦo7ub 7.[@Jxɤ 's%]'\⑿4K~  :9( ,"8@ w.g7%ya>"_vo(J"q%p,ψ:_H6 P3 ce IG\>"CF>6p%P'B`-+Pڈ! z 0j&o z}iA{O\.s5zf8`o@MYyc Q,?#6}'?D@7]r%@V# x@O&/t}bV} ( o:Gbh{@mK=(uJskOe seI^?k~zӟ '}1SR=@@!D=]ZK%G1Vޑ3ӭL4d 8^ `^!n@+WJj;5 K@[Z$ڹg"8P;3@D74ơe_|_|"8P?u &wo_G:p/="8P?+Pof ǚ{$|/"8P`Q )8(@o$-~mDp1y˄kB9\'\ο'Z@$7PổLYIno olg p.jHa ]&\%[ @ul"1j*%^h7E.q peC+Dp`;#]0o,E"8De /r1\׫]'|]*C$VG0?2 @+[Nr7dK7(@>}G#@ F&6bO]@r%]F\~xB?Dp`}s }{Zg +x1Xo6 =f]V{I@ l#"8D>!Xo "8 X7fB9"8DbFq(m3#z K jc8o| ۈ:+Po8(C/߰p &oX"8 8 x:]'\>>@"8&`| ~Fa"Cͬ@ #[o(6VK߻Ɲ@.Ilv%WL^qce 56Vp^yje'E M~.Yn,Khk&ҿ ^KP?PVk߳};O"8 ` X9Z$P/,!uL0K`-Z'ù@4[o‹%HDpIX`J~7zK`547X!+P號uXN~o?[iu5)}m>PY#%Y=O"8gq x +P`.ν.I>?EpONۉo80D}(cFơr70 {\A;OKBQ9Xn3p ޮ@7bp%I%0g9ܿMj^ r&ǿ3Ҝxw7rAlq E2@!-v) &u7#ï{m]l~ #Q@!? |Ou E!]~swo(P(O`?)|Ev%9]eU#VЃ9x~yFJaq5 K[nN>NH̚A+zIMƱ$JLq9suR ɶ]Yi{mj&nߖeAbs'gn ^qvs ?%}Ou00M?5|^!^.w߹VD8ob+{ 19z(}mi~6zS~*\.@-7~Mߔz_u!a8q']KsS&2O)3oQ._+?8oeq8oRoF?gqyǴ{t?Jl-kwj{oXB%zlx`\f9Lg#wr߁5/9h+M0 i QS  -Y=_NxM6vJAy7qm{9g:>oscf(P^2ϋul<Nj%6)J<~ ˏ,릿6fmS{bV1'׼e+ܕ&'$|QoyړR^6UudM >~aKģ胣={nL1pl.1m N;š^bwoȦoɱLQl?w8vNsq5h 2p!>7ulL~}.}X|sG& W~ɪ@Zdg[>>>"Ej.L?uwc/@ݦ2-BQG\ryɒN9澏3L䥅m>s?+0oO}fPBy~ǵJ[ j>4ΚϷř^sVʬΘkߦ+ܣz^'7<xޖo}%HoE9bK&onnn7]bzf[-澏駟~?O?02@e [۱mV#.}wc<_Ld uo{|v؝;v,C-p(u >G^[_}ܷz^}bukhhs{y,.GV~rѭ@-V}z:9俐c}}4sl?VN#M_~Hy?Fϛ+K"< [Nkh @C/W}G\dxX9ߟѳ&n3ˏLtß28x _n ZeבO?~ xqUvp]?uׇիW^ __& ׯ_ǢQm^XbYg>0 ǡ9ˬIS^T28:x/Yr?ܜe)%%(pw__i]"|A?J][>Α#g_x{,??8}?2Roh#S)[[YK8N"6ۖy /%yI֡L4|Ň{fV"+Pl{Nv8v"xZu;zҔvsӿsܯ|22q"ះaN^ ~*O"=l+Jחb:}kC/X03>?Op?-{L$+P<}axg$ɛuo4+w G񡔃c֗,HYߦϜq:WÿfC͛7o~~aA- J@-Ve_~Kw#.ZC7}䵍weoɬ_~a6w~_/o{wTլ@ġy*R7@$"]jK᥅߿ϫ g套~%ocڍb70%sN^t[B[@=z=r_}w)(m.!yQhKNM ZF \?wܑd>мV,v3ԣ[>KxBL7]=`sW7@oc .]@$o;=?3ߖ rGp+Mb4wG!VL̓CIGc%oJݟ4:*wdnrW? @-eV,a7^[G0}-K1M#˹XЖ\U#%|0$}bwK}"sSW.DebyȌu F [nlG!5N7~:Yb+:[o!|Gz|JnHZ # c7*M\=jq >ww E Z4&SC/姈@`?;&kOYBKj澅H}璿rve'/*v6 2 8Vfz]dg* ~MDb =ɸ\.?yޯd|)ocj^7Vf#.e8}`Ւ\N 5d]gY؏;7 !gd =[OX_vbӞn^Xǰ_澁QkO򾇥wO&o/h1~s#|S+$|30 E>($|\}>7O?O/͗_?x o"UC>=dp/L61Hn羗h/sJ=c;}6雧%<:#.{6',~r0^#(^[!U/'XCww I>(WH)9e~:S󑪗uw_=jbIj dGɛw53ˬ)_"U/'UClߓ~ߊP;e)]"ݾk~,Ȋ%%{ojfIV8I,[koߖsߒV%rǏ`;-U/!GIo}3's}EgtWב߽{=yWkzf؟H;R^Nf叩mwԒ^e-G\20 Oyqo?/%gj^Jp_;RwYe"u?Εwϳ7L۝ 򓌬@!=r˒B+/!Կ^߽y[(?ޗE1W mͩlG<]=_?j#=o>t6 H̀tϟ>Ħ[X{<ģY9WDq#OO#xnB=qIoN7P4}ז̀a4Ӷ|}8|O'18ױ37cs$gg Gs3?=k,-ɝc$t~= 24?WS(#.~\̥Lgg%?ym?kx;pqqƄ8~ oIE0ݧa P3$u>8m+e$vÜKb8~-Rw}yKľ.)6wnn޿aX<0D/0C -167/3 7P4-XV[5>kva|rg/BLC͖π l#|37:E _s0U$}dcwfSScC[xc\vQt9I>g7gx|Yr±R澁6U 2sؽ_E(PƇD67p30o n[tα<Sga5%[<1 gHπ|3uᛏZf RJZ]bO6vyJJFq[>s_},r,Y~bA i6}8IXsFHm9V /÷mYN'CE}V/%!{?*ބ9pZ7Ns"81֛gj$F=az+ˣxqJm%L3MmInV tIK~6͘.xX>f{5|np Wr.uͷ}KJ.BY"8˱E& h\^_ɻEhHw,CӅ's 8S6}o *d`(kv+\L9v|!mZg |o RV7ɱe]-ñY7 1cj>?71 r̀gZ2 D$Wkܒpf"8qlj9澁U÷}ߴ{oఖ' |o ."^_퇵'Qt-!CӖ3m=m<69.sS[u_. /ߖ8˹(i GKg/0J|{BIiz̈́oxܷFc4||[V>|MT&Efs&,wfxunaL {XBNwoWBuL 0e6d?]1|Hc;m92dP|J!|.>nfp`ʦo3 I((2lن2Dp%og艣/3RZHL97G1 L}"8{b]5ҟ}oIVQS7{z%C֞"8)78}8e0+PmDp * ; wo=zn~> /۝K1~ 7@?+|s$kOnnnE>`_\.9 %MLu|>CV~P@[o1 EpPzf7;8_yhP8Bf)9M3ob Mn/cS"8P?\}L֞̓`Lq%XN}@DpX#}DnWwׅo1 (eohKg`NZ7g1 /xDp` o5@q % Iosf`~6M}S7XOkr%0&G@V]`9X{ 0 'Y{f7Qox70%ClGod`;, K7e8+P^sM}ADphMm} 4ZI}G(pZKd  Cۏ_8q%p,d7I9PᛚY{M}y^i'y1@ys 8E}! s@=D:(2M}$@vA:(IN_P}!ioo~ p,V(OkటG 2 Pݩ^[6ImqI[}E <|4 7@Y79hK ,'w͏YFMͬ=83b@1 K%M>3P)(}$Ko >msߴA8ͬ+PbB><>oj} PP}=1N$6}"G\Ig$N'=,|SM߾ Z_b6pqҢ@&ވKZ!/miWzE 7@oyq"8-gZ=~*|@ DpZKZ47z%|L|6 0%S39]7+8^"8q"G\NIAN3MoofrNwMo߬v sۈg7-r%@$7/ 2oZ4풿٨c0}ߴ(v4\76ZKo%7R&˥GU} "]Ld; ooj  ld7-⑿YSs%,'|ӢM7@T7p(%@$"8iZ>o*e\"8k?澩S:|Mf5O!> 7@mDplE@$|"G\0٨s!|"G\0&s=+PZ@n"xl>LF"x<鏚o |.G=p%@D^>7zR),1Mߜ7@$s̀LEsooK>"_K(7@T( f0%Y~Ԅo'|a?0 66}"G\Mv(@Mq 7U0 ,7-r%, IpD\OZK"S [ 7ߜ\sZ=N A& OMXN?Mߴh'}w 71 M6} 'qehQKO&#\(}/ QoN3 sܤ Z 79dz6"7L]f$BDp |Zfi+Q 7i@Z+ooj @o~$r%-y4C`~ Mq @[orߙsJF߄9E7MJ=z^`ιo7uhMDpHL6Fy"8۔6}"G\: DpoZ4D-7l# ߴ("6GEa?G\MX"8k6D!6ǮCwF7tA`ܦoZ4ݐ @ 7IGp9&oj6[ =^ou}Њ O-澩S:| N؉l#|>tHL}O7p$O ;J@$cUG\ o&,oZWSoE"8PMoz&""8@}]ܦooXA>a5s}Si77La'CDpu;7K0[߀47GKG\#}@ 77 .x@T~,oq ='X$] }z"+}{0r; 8@=羅o AK9-77@m6} ' @o3G\}""8÷o F3v7 L G\i7euw#.@F"8r% d'is}Ol^"@so`(J`;XCNq|<7!|Kii6~-<oR"8fԽ1`98Yz~G#.c@Dp臹o^&|G;=>@uR/@}]ܳ;O*%6["U 77/<8 4@޿w Hoso"8@7 4F8;@Y7$" fq%p.hPG\5 }H#}C5M8z@GDpw Yo X"86} o ##18s_[}q\7\HL鞤÷o7  tDwG@ o;"86"`?s}}q F&9h j{$|~&=>6Ofsyo-73-|-$ v?>1>}1w骓ݹ ?-?Œ=v/四-c7:OVwGMf`'r\\+c-v(5 @ kg`$&&oo sߵ|wle&HG1 p09J8Ip |7@7@"8O(OH-skOr%DZ{` @Y7@v"8|7@moB\~$oZUrϮIh˭b=?@I_>7@L $8mmddIׯ @>nL,}$ ǒz`"&(Ϲo+Mzc"&(#P^o1R"89̭=i2+M@cXїH-=kKGVof'u?,ghRj:@)}K`IIV,Xr\P++M7ψ0]^ԭogg qzvyh LuDv謹o+Mo2v`+7T R:9ґchRf}[c8, Nˑ=5/V]D-G>; @z'2:+{7r G oH oH oH ozs endstream endobj 45 0 obj << /Type /XObject /Subtype /Image /Width 919 /Height 895 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 25270 /Filter/FlateDecode /DecodeParms<> >> stream xݽ$וfKB$hn _hY¸Ǒ5D|^oX2DįXSQQw{?tWOdߛVC            4hHw߿#o8H@Ӻ_|_|hs6u[M}'{2 4۷o߾׿͛7od|teR,дzrXS2 &dsa5- -0 4>y./~gZg>R,дn[M_e5@<ͥvS߿u@R,Аaf駟~n!@@rbu ]@kXij.v}q|TXQ-]}#iI@imOj=bFu[Y?7o~_׿r|ݴ[bSRs6߰~ݚ=[oј5̚][J!$ObSc?j,c*hҩwu iKXO8b3 4dzA08bϲӟ?:]@CNcOG;;? X cspWl?Ŷ1XG .}'aƎ-(ubl%ӈ2T!P+b"Ma``U)o70Ц ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) ;) wkNi?>>>>SZa#xpt:v{WT, džNP) x"w HIIͨXS`#Y(;u:Jlf'sxI] -w饑bcb I?3_֒zGQҝ<|>z^9sޣ,ytԿjXk%@>.SbcH:a{b`tx|ZSc)vϜ7) -Lsh;?67yO/[lo?r{9=>XUGxFեtiƍzϯ]ꝳ1Ϯ;wö{?h;˯iuur:|ܯOtL|.ymwJ]sekI$@u< /8vݎgi߄/I$Шc+uw>y- :R,Mv ۏU'e؝6vYw pKu92S p,)jɯehg[z9~uCǖ^ITځnj9ⱟq s5}ZgX f:1;I\>s ZnY @a״G@slsJd_wW`p̽=֑h2|-;w\u`pbL_o[A9&S iTfkoX.*)~ݝ Yuor.{'Li#}eTݮ˯#l_GؗOP SkLð%9J8 R|ӯs? Y)%9oeb86,6wHL~mt-%.}.//w/9 hX6Y^;FoG?ZY;1! G`1sk:>O#?zz{dxp,k-m^h2m@l9ֱ,5R+ ڙ`_?|xy? wwgɡ0! Ng^)CB*/ljM%Pik;rDñ$Ȏ__ c3GcϥgR:(YYT,@s 髼>3;=:96_\Lur^d'2VQ}G'MΖ.y >⑔_SI@X ɯ Y"sigO_7^8‚,P2)+ogCh9uZ=f1Sz1d2IE^Yj,v5ځ|j3Ik F(wq[*4Eyq+ƽ@9Xba!M~MD=SZDJ w%~ĉccu!_* @|R,@hS~K6zvzK{^ J۪qAl/ʯdȤXR|>swȑLi_^y;gvm覎AIwү+.c9}?sތN~mdHXpDn^w"؅vʯ<Y ) So Iia욟Axey"GbBaIkK>.di;`w)dHar^|larRoY A8X/)՜ԻEԻ_^M'@%aby;Rk ( !, R7[b9Rj8Y` 0ӧ{ EH/n-R,J",%Ȭ)Y>bF K;Z{q&D)L,Бbna:jA&<#2)g",hgMudMR,KCaeq;Lg -bM=ɹw|hAo bFMGX 5GHψXS@[g b Kl( bgK, P)h P:ش{ P ) P7@:H@DXKm$@XBSOE<[b8LQZ @9X*xO~ҴP")h e(3 ,F*a3,ιJ$@)Xx",]ƚZ&@|R,P0]ĭ=ܾ^ I#@LR,Pi@GhXSO%vx)^ߜPH@#=9l5fcaHcI@DX GH@h60`FH@P",cK,YSYؓ #BZN8sO;,'UZ&@nR, o]ԾZYS  la;8\^ƃ#ARbeXv iIa7>k `ARb @nS uJmX`W",2 [ D|l`O,#ى?[b^YXB2aɚHEX { q-d5R,@  ӤX ",gKRGKߚHM1R,Ͱ@YU#'sR, h8o~ -AX`bKl*GM@n,tX`%%p?G^Y&l,CeR,C{9Y$۱@Y&D& DfZJ ¾acMOR, a!>o/XGAI(= Mnah5p,AZI3",DfK,>^7Y"?aDnwq4d L>w|Z AR,0!/@rnZ?̘C @ɤXhR1"%6sXF\R,4fX(-LDR,4G1 @9Xh XS B&0G(+ atް dLjM=ܼw|\ް bMB &)s7Hk @$R,Thj) @KYb*6BMl) D B%DXh-9\{ ܓBmhAHP<`X( QX( -dс®",TmlKpu|>ޑI|u=_ -SPW 1YSu0! >X_ dIbL-%a A|X(Ͱ5PAXM֌a{ah. A@vYRb!JdMM`;)a ZR,0 u0 -dXG%vGYb`SK DXWdO p,/z5A9Nza-@Yח|{GZ5~7baW",0 2! )v"@k) Iԃ{U`HO#LYY؛ |2] X"rR <ݣ<S.zk/,6z ]P:k icu3 y{.mlvg fc>m2 Ɉ-^@mLFDX`)[bYK-rGh @*z]b(η/t!AR,4`( xT,!MŦ#Ӄ'mb!ǖh=e}ןޞ ɖm֋\^r%=>>>>>:G1KUDX&fcjb*J*)ώEw.1T,a:h-%RD a5: )"MGX%@4ް oJ*",K]{ Z`MQX c3,ȯwZS,gM@J!BnPK붵n_#`KlY]Z%׿^nUa*Ц:-{ aML 5F|T [Sp>h=.Hc?S%B dv쫈@|ؓK8ShS֖X`O DR,LGX[&U5u Dꫯ I@:&O6YSfM>XB蛞'd:똍8DX`_tR,a-ƚ`M@nR,aJ\V`ؓ5:OeW",I>GR,Y\p $] &bYɯ=֦Z=}p>`;)ߵѠ3ܚ`9k rbYk@)̫2m_YJWǚv>6 x>KG۸:ܻck kKl}\˨U.@9̷nMGƜo5u[rKp^wF1T,'JϦ*Pr_k]5똊ewv [Sp>8TlXmLŲnMȖXDC}c+ZSt-ߞXʂYʵ@L{)j-bnM_Z{ =* )>juSD+tC<4)ro1 S"rw?K"/D`M5[Hb?,so?|KskYs5 l,R,䘇`Sy^jb6`OR,7kMq^޶w=)XGgÚ J =֯{)\/-Śin"t* Rlya5 4aVKjNq~Jk g.ݪ cLŒ}v5cw=Se H뫯)x ZS9S{Xw>wȘf汦`۴cab%~1Up ?vb<`[x'LyiOZS?)QZSܲw5[R@ YlaRXXÜa*=*tmMӳOk 4>Sͱ`-6ސ>X }R,퇵<,I;۟}A 7A;JL?NuAqx+G`HmQѾZvq4laҰ laQ@Gm=_ila?~}Ax1Rl5ZSvEZ.N eMsRlJdvhP퓰,b&@v -jz5, ;cACmHyXlj -b+TX`O%'̂,gM@Ӧ?*,0l,&)*uܙ sa|EAO\MYӚ -[brʼns XSБb+Q/wgK,_;;d!k HP~CHb7*bSֵѠDqao,ɚ)Ь) K 4k vHkm oE=&a|ς,l,2)"YS Zvq4;dHEjmcF9? -hK5i!Yh5@ -@L-,b) `K,p[@"Y5@XeM`K,6A`MP+)69Vi1 P+@XXLObf67k <( 岦KU$lcK,t5 5({{%G-d!2@MX -l E=yI V,ΚDR, 1 -%=/ v,šRϖX`)5,)j R"lY(5@Y؝Ú=Fk X"² qJ$fa@laIE֑bi%aA)"b3 ߀!7AeMP)KfX#)J!&`J䞺>",qX )Fy @hK%&Ab71[k ,", k X&Ca RAbMyXhaoP.Ar3 D& @La) mb3[NV)"b(-&a 9XS$&`V@)l@H uIKkYzXR&] DXZ&B*Hx [bhDDDXd!'H+u*xd&R+VFǓC _~Qg [XS!.IK{hDXs肬, K'Ŏr ͰC1^v"bpÍ5poaa Aֳ8{yX:;D \","v wls^}uRA~ݗ_;V=z\׎ 'Sx59)DẌ́,g*ayzy.h-ޟN߮ιu\/ažL:`㣣c*gaYK8-|}yXDŽ,L{^QaLa!uM!CZ@nRZfJfGfXA8D7泦%}\{4SxY_)<,Kp,[bY[a~da!>A |L>#@; #BYYs5.Ҳ\Gc)%K-IRb un2$A12-bk>ͥX@|ް "aD,x /`bM8 vA|",}-dZ80R X%a,) @ZMOJi`6A6YSD*@)lhDXh UHѩX8QDX`ε^؋nQyGr[AXSTFW0K4A6ź(-qYZ`ȡX7llaK, ;$cYZaM%6 SyX"ex-Ͱ,f&b2`̹]RduN=cҦR) AhXl5hU>kg7|.[b!MFhܞW/}X*X",'AXSc1VTD(z: )#XEOnɋuiDGX>Y,/.hU8+$n׸OC'R:k ۜ-[&aMvw@]j ]Pf3,Sw+~? DgxO[T5k@3! P"vj߶ "DX,,%zuJ~ kÐ-DR@Y N+ˮSp5 P[bK?ׁ̯~( KY҂ǁdpAXJ:WMa~x(bNu?GLήX؉5a6a!#ǬY%Eт-:R|ҙi5Ē8'y<3K v{PAȞv4(XQGӈ_+fv*zRKZ],wƒͰ3Ӷg}m!GحM|hMw~?ܾ||>c:kfֱ!Zҭm2'Qj~5"R)–=[zt|>{aR=굾WUSb]KBݟ?%vEأnқ&dYgi ,Wa*V> e{ ]m[3rDѶFN:&dc0¾dn9a븮5+^-b8@ֽV{h<š%ږȏdU-iierWe8Ӻ.tNX9SͷLXk 5 rɘ[z~6I7Ae9"91GSt_n=c ~ߖ< ~՝to_=7v3cMG޲1J5-[(Տ%N[bݶ\:&Ϗ E[3MSGdkyƲcNMP:uӁ}HeSwZSP7g[w^kljJ;"!MZSkP'a)YIg_?",-}7Zl$ma#IPw&Wy5K))h[OM  ˎ D6}g}vw=c͛7oy+0k-8 LdOJ@)(MD|ec%GfXغc:rX6OLx:vzv'sO?S;13{vx)֚b^A`-kPI3vA%Y6k J4bNßZM{ nkA>Ʀ=r O֍NkA7z덼݋~wa0{V/`{튅)hA^'5ؿĹiyBz[uKAǾ؛8ufsCS]wn36b)tMAĦ3ŘuxN KgkX:V"Qբ/bO:eO#bvlBXh3͓JaMA}gYj-%_}Vyw˂kXPsԷ@~]7[?Ϸ|oKG7=se6v{_WmM R k yQ:k VO S!To(~,;~~nB f?>4ٺ EꦱƖklvoN`K~0FsfXdש#sp ,9Gro;c)vzmeWկ~o~?`M4R3˟44ƾ:}~ؗ @ +.↓%HR h9R2I7x$bn9[:om^W.]yrYsۙ(b+}vf<*$Fj!9`;dm}<,I'Ŏ^ts9[mk xI8La9Y518a;) e჉.o1Blks&yf) K?yX^#fMN9oE:s"z&ǵ@ ;yX88 k (yأl*%C[z ",9k.a#{j6͖ [=P< 'b\D!<,P)v%k |>?|:/VRsn-*?#HXe(X(̜-뢪ҧz:7SS/$®#ɦǞKs%Ka2I XS@co%:+t;g`-w>%O1RREXOb4a~XRb pMKe93F]./ϷW-5wOZSae>ٴ7Ԫ}QJfW7bƒϜOY6bsz"`w? zEXObԖslc3lL5b8)OLq3'E~%|JLsY0g 3WiEdcAvy+²'6Aa DdM{c[b_~O+,Kϊ.֚S= ![O# GM[xqaJ[(QW"=}=r4'W۷_ݵę˯ASdgaG-@-MƒۖSrdoc;cez߸l[I lyk/{هyXVR,l:Y\0eaa#3Qrw(3m,'oolyXreJq̙ؿ]S|s>>w:̱!\ځᄣ7b¶ ;vKҘrVK m:šO)V!]t0Uosn}ۺ 6}oȦj_-%X"l\aINõjJ}u>ؙ?,<,9 [ aHj}-ۿb?_9ZGY(ͰE-yX^Rl2^c>m?Y~ž׿/Gk ǭ Ӝee1 Cl,Z[?'vN=ݟt7D4Y(Wraf !N1J\cuM\.wwOLOe DaH ~b؞톟agj=*:!-A⛟YYr;_@؝XSR`8z hCY(Em7yXMR,L?ODA6mݞ_\.S;d!j6-DؒZ"f!ٰE P~juX8 ɩqVeͰh+k p><&%6jZ}xG 1\-+`>tOσb3tXw;3G7rcMdalLG@;X8@Ð1U|\s$>u ؒM-+`[R)`yal˯y+,ifW1D-yX>)v'^c<,@,LjZ-bfRҥL1=D ac`C=oY@~,mK >~%p@myXSrI#|?.(uل,v"lbC!y.%QA 5ƒ:R @^&_3[-!dRqY7ӤX؉TYRץd4[+H}'7t=|v|56+ͻ$ZbnϽ~@o0d)Aa5>Sq ,˯^ 5! 0&yXH~XfD 0W-dDؖ#]Tt~r( aa`))6(itaa΋RBZ&b` 气@Z㖭5a֑bCaMdLߚmgsHt@;.rq IyX-@X:05Fc3,dba1#uad`;)_|a!xO%g`))6wfpMrw66@YDؖHEM '2d`)1j%1 ؠyXr^/ǁ@&\` )0^t̡>Í2Ao.¶ XX<, Ql%H;ׁX Iy@>Rl5<,cMdDXn3 [w{Fra< 7)f1 @*",S!+*rd-J0y>bx5(aaO6|,tn3ݝyXXׁ( 7?a[y<,q\cY`Ͱ<,@~Rla) gC4:,0/yJM<,@KzIY`.yXH4M†9(A4σ"k.;~ aY<,تxmӱ e<XRlnyX&ByXn3 pw:0r^/3{yy>.Çz\ُ?~; J7",x j"B&d6òƧyXg*xݯNhLV2a Y(|cσ&؟X %Zz/WPM5syX(rwgc?FX x,Bl",KFRn6ky^, 1le )rfclv"|k9 1ƱyXX v~!2)GcMUe.HU gyX5$QReyXȤ&XS<1(2da/6ÒyXx y<,ywْ>.9Uqfab(pMrw EDXR2 ې}vaJ!V˝. [g 6)J.rqoK, (ۜ-nO9=1YcѸyX3 P)r-jda7ܾ,aDRlUbda/²yXrH<,`MA nadalaY<,@&K"2^FOBmZk 1)R&Aֈ%Am;iݝ[4YZ ’ P)˜l=[bEKZcrI( KMQe<š(ۜrK].85 p-u[ȯ.]s@%g=",@ML69˽,,%h YaIkl3gm9qo?Nƚk}Airt1`| Y'’ STEr%DX6۴n~l6XaڶtuxaY#Xba,klqP oQyXQ#yXH7 lgMAP[/1CeO|s<aBh4tl%qm'7|*l=Ka-+|pww:P dYJ%-o@C u)\A], DXL3kJ6gu-fcݶ@LȲKZ",cL8m&dYJ%-iR,<,!֋:9Y&,s8Hk,@,fc[ ݤjyUM,cٚe<šO0aY"² kXnc|p( e-²p ~5E Sl2MP5dy|'@=L$’fXX@<,p˞o5ӭ\aCl",iI%@ 6?.UN'Y\-DXa؟N9 ?G",&Ų&d>K-k^(yXaM%anJ[_BRra8J9YbDA%HddJ[,#Ȧ"’oO"l V[5V(R,L={J;cJdc, KZ",1Id8@@4j ۟% ;KZ",!d:Nc3e, _s_-%vΜ,?_kLh)5ײ[/%7&dH@>&d+-DXbIL#N",<=aM% A_'_RAV%-Hd$y=آ +’س ȤXdl;jZ",i= @|R,;d}|if> +’ @N8;Nߝ pz\>\_@^tO۟Ǐ?~]B%B|b9 Y >8JuP")c[Y`GXH`,P9d-% ",b Ab ~aIKVR,@)dEX{/P)pY XA_ +’sD%(AF86Ȋ%)Y Ac +’ @kX @oFM",M, ql<šnR,dhY ARzz.)" @4,G +’ R,dh糣@=g +’#sHO SQ'6%AV%ah] UЧtSn`oyN'fB_e&sb Y rwhBaYN1R,dY(K,7aKY dcLYl<šKY AcQ3JqR,Md8Y DXO!, Dc?0F9, z^/ǁgѭa`KY A8yXa` ) @,yX?",l#ł "{2cXJ @,yXxaRR,<#q@>aѯ )Hp ![e#@jR,d8Y L{+vR,Bdò朹\",",, c1",CY Aceg {ba1AC0Xba%AC:aYy5 H !Cazz*XH@dMa{p)d8Y<,}cEEXؓ @,<,!ޞKI !Bka )2d8q62]󰌝",#Bv, [`jc D NY Av[c9S2y5 H+AC鑤 QIpACY!@ X8 Z2۲G",$Y k gía 2)Bd8Y(y6P.)d8Y<,Og­ BpY Ab2ۚkJ!BP, G1K",LY A"0ۚ{",O@,<,",Gb@,R,O ]jp|`)ua>R,TBQ1a['@X !aLHP!AL>-^",Jj @o%mak5KvHP9A@!m]ַޞKHA@ia#}R,4D"dgG R-͝Xkyز.[y?SLB~KG\b]'do7 2T, Yt };O1!#k-[bټyGsFalNGm%.%({ds1}kh 0J4Í;g+{ 0{,),-ͬs>r1f{~ҟdEXXYYZ9kay} 0Rt: |K<5b[]._t5F??n+)6~-<3 Y8ڜ['syﻻOUGXI#̏5GIAu"`p?q,(Ho{^aA//2}T,@&d툰_b2ddݢ>[_bbd9!),5j':A6< :R,@1Ƃ_/"8Jlyؗ# PA6w_H_?yAyXs )n3/R86q'?+ ШckGd鿐zҎK!wgV~`OR,YH#2ccG^5l oVxXR,EzGd.OkilyX8XAkuCTy jV~ &) !>ݥnVxR,THԛ&. KaWJ$Ic_zfAv< @X ,wY\n=ٱyػ^( 4Dy}=NvV~.R,PL?JY9o8y @Xp()v#Ur^>s~W bKR?zjR\*{~5N l."QM K%~R,-vll{xb.;Vy9<^`  ^s"t-әy\R,ID%~lcau ͯ34I-*2Tvgp6:)dzBR>DR8|VZsg)|;)%2|JKv.Zu>0]!kLK JxR,J?nYJ0?Fϒ vz|lLt`yt&@,vItع9SՖ{v@٤X8sBx'w&@R,P1(Xbӱ ,wM9iՔ+Ϻ9_9 P3SMg{Qax $#oΫK0/B2YrG1acTT? P?bƲi46pG^v3,mb$jd; F6 ?GJ@zvO]1#,ei9.hg3R,Pp@e%J8C؃XZ;ᵻco\L?2\W9?`=)r_OϙgR,.ˮXXHnh Zjsz| r?9@LVf؋ .SIIIIIIIIIIIIIIt endstream endobj 49 0 obj << /Type /XObject /Subtype /Image /Width 1173 /Height 905 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 18250 /Filter/FlateDecode /DecodeParms<> >> stream xMY,b} !]w]ş]XH:Z-1dbvm9Q@)++3+2Οsoa/"@ oF~0 a7#@ oF~0 a7#@ oկ~_qhp_/VoOӟqhpw4Z%˗/_t4#~7Vo?sG=@jîoׯ_~߿?\>,GYoF-@, TCx{իWJcI //Z[+380ŋ/gs!To'ߤ,~806 =Nrdp_~uKͮoF#%pu7zLadp ݈P; $Crg7 I]@6~{˗/L!$7!3p%(Z"$bb<&D~8[ `L~H|իW~_/q+mchCF߿?? { )nqmMu1pqXҐ߆+Sn@7[Ґ{ _HԱK~Hno/F~G>fYȹ$?+-2O 7$frk\~OtL74#u-̸/]Gxj$$7mnr38J[]; `L~isa܆kֲ0%$4K,ⓥ7~<:7"$td%(<5omKŢ~Lp5o m~/AYp[@7~N-1\e'?0mjLV뗦hqx+y#GqK} @~HboKaq|*ysۑۙNEe@Bo/V1wg `{`#]2~[c5emȽ L$7ym&ܦ#|a Ǒix7NqmgqB;򛦞Xf q(Z~KeK 0o7H15Y#l_roI fKPN#ܾ{)ʊ8c%g>0[`7>C 0HZzX-ݬ4AFo:sA H!k.|˗wf:羄7 oG'3p%Gkxs<#7$8M-Aخ?p> Qf|;sqhߦn%oe'k壱 o@{ 5OMpuO>G@Bk'8ge 8䢹6p%1\|}u< }K#N޶]g6n}0^s3"$~o6֚'hcP> g^Lo¬{ZP GQ{p{\ަf%wDikο&rmYs~.=7A{2~_~Yo@#v2^:g˜'C~*v$u]uݾrC~*+C{cґC~vdcۙF~ (Nm~uo@$7M!pF.^^;ppq^.%F~ HHrX^.$\$HZ"$7`O~6$Pa//#Hnu {sALiY}?<-a ½CIng/g^XF3ɽo&#5=`L~˱ {y {P# .FKt7h5 {y { @S$7HGKT.na//aXT|pMT@rJ#%L~BIn5 {y {oP]Ѽ. r=a 1s{{@i78V^.@Vo@@7f7 / os{y {;Ina//aol%%p> f ( 0 %N~ $^^97.Jrh0&p vq`a//a@̷P2a//aHG~){y {@$78]=^^Ē6`ԟ { w& BIn@"Q2 Hna/tao ]@6vq8oJrhyW ,) m2HA~ $k`IIvU;In0}?ٮ뺯83Y/ ,) cǓc ϐ`Lrc3%7 ml%`7xBr ,) @޽t޼麿ų5܈"\oP#ɍ7In08ʜHM~h]`p,7(7of j$P% o!@97(F7B L,8 W Q |L52soCrv@ƂFK73f bmM~H|̽9$7C~#@]ք7sop5oHn* @~.n N@ 70Wc InL~xZ{`o?m$7G~..n7 \6&so0Gr7q\ٚv|m|/1w8 5 h$Cr3o@LYp>g?0Ub%U2a 8\*HqܠP X#߃/ؼée߀Inz>* $7(.n@:X \i6d&x( zN~2$eMxKQ@, Z"'{vܠU%%Ο?3b\rD͢In;"HnpMp%%IbPzvofIn"@lo3RHOr֓߀o1 G~K`Lrr$7܀X4.nx|nw~c;(b 2Pi`"ۉ"W gߠ@ E%oP1 []YGu}e-Gfy܀oP #.ͽO?ӥgabP& f N{/'E>ۏGIn@7(Pi+;{5W[@$7.Ar(6ʄ:GO   [ :^#ۏGb Nb Ma/ {u܀VoP]` aW'%W A0 h\ #$-7|@9$7W3Jncw|"]"Pa/r^:ה.{InBxr5.`Pm@&r2%֐Gvq(KIأdY4>KӝW_ b>/mh=Y|8s k3Hn%y7I_y%78 <9ӅA yOCrHG~Avq(@>v#]p佽gpFo(@넽m;$77*&.nG˩'@~2@ ̷@mR= 4E@9$79^>36soGr(#}4x%7so%p u!ō?3KnHnyod#@rsxqZ&OI,) PKJ`xW~aqr{vyv{֑(FB:-ޛ7]#9o%7tmnmCrO]t7YR(ǚ%% o@9$7\#K/Ǘn})n]#7 aoGBkIk y](Р޾e+aJfΒ@ ^l:"x'a8FrR!=?]]Υ8efNnEYj2o2]Rxe [w}R.jkc O\(c~QT@8=NMX| ]Α"\l.z@Rk[[#ēKee>ZJ~j-jnߴ\K3v~8hXu#w>8`rvhHFv8'JNݦmRg|عtalzo+Kny(S?TGOu}f 9b{#)@ `SfhyT&υ2ϥ4Jq׾u#<?9 qSsG~!9+vkTos.w3\xG.}&QgtYEͽ7ࢦail_ShC{̽.ZG X汮]g@Ζag˟;$E[N\k=οǁ4ٶc %\{·WJ[+7hk^rų7=~iNXqy;>)c8~RݲƑ윅WK7jt7 uu4&yUwʁP3cXi᭴]P=gI2{}=]|j{@fB (o1=%>9V)lop]s} _w]}cB eή'ܖ;p21i˱?"wW3osrVrP Ly?4E֚fglfJ}{%gʿޙsos{yq:{$k8VdI6 -i88G&rf|@{b'oD5YlϢXWxo@6OwW\޳cH!\׫W^z80\gynߜ ǜ֟{4[\k<݁N{\r~[r rSNNJ~vƶҥۢ- c^}?)׷~8ߖ#);VZ>њG4Q\Rݻ%>t~h9a9m r/Eq-9[-om^[xj0|5MM[ yŒwn'An.ˍ}hUXmL~>C(KzΉmgJ3Ne%5skp6d W7>Z]m Hlļ/z.Uj/9[oK^|uͥi{$AN+%%Ko .Hr(őǜ=ZdՒVސg齌/12ٸ߿~yjl\iښop)›~’v\ =Jk鲓csm5d0Ĺan֧qf9ALo]7hV۶D4 F|[-g?Ϧؚe'~v򭗌t7 r,7͐,Am @s6HWKn jBښt6xq-LSr.1\Jc;1G4kĹOn~XO~]OM[Û7ױ{=17uϱ3pW.n̰7}mپl;w/G^L-Y9r|_9A]Rr3p%f(F hJ(-kIMض%InQ̅( 57rMÛ7b|VboK(=#DK~b!JcĶkf"=Or+wT-8ː/Q2 h֑(-8s K~>9D88Nr%Bd=oMg,8ɚX2q`Z?RߎW! hܑ(+X"`dQ3pq2!>9VװmimӉ73iInuY MfHAr F57ṖS˻  K o$7& 7vqn7 Z|0%fy׷Yo[^a{Vr$76 rIr֓(KoݻoJ7r52od.'ۖҙλwQe "ok4^/Hn@ ōkl%Q$7 5 lbÛhGg͛!]jp6 :^/ř.{y̷you׷Ll3YK) (IL꙼s~ a//aHn@7h^^a//avq 8Z{nla//amot$N@KgF:^^@.P; ̅ 5NKod6$13Ϸ}?,5=.* $B\HGr6{y {@wnoE~`嘱+p=K9j=h5n  #);ڵ( (S#:>|'&P3pr$웺+VxB9`n/a]HnoT)EXZjgk92kn?(C%c7%?7:v7Z"en6u75l]rל ?\:yClnGKkh\#wl%7J&%919aTx_kr_߯_KnAK.n7Vq׷5'9j {$757k--9L[L^^޵{%7-73ĒSrYS?_@K `/ C'6Ώ4d\Pr% і͉m7VFp2tZ{:  '"ؙsoMrH-:Y~lĭgR$7& fͽIn@UlT;sY(s-]r%( ObGgKK'7& o$7yjͭ-_| b8_ٸM﫴#0 omMns?;lGnLܖmܛ@:ˑldSn@7پ*@i<ۚf̽}vd[mj h y̲@7(‘7e'ڐb^ * 23@9p$a k 3 򥛊%О{J0p.J)(pePCo-sPY4;a 1JcpFZh˻ppMI8 `L~r@ۆ~ɹkr5op lk \&xd%p/HeQI4 .6 NZbI6F8 ` `n*n}iO8v KVj'pmo (]ܨ|$7Z"HnJ~!Io7 pc]`|6XO~!># )op! 5 '7hoP=A976(Րܠ|MroPA7|D~ $7h' 7HHr L}n۷[Vl6op6`L~$7`Hn<.n>|pIn@, ˑ܀t7g7L 2" (@$74հP> o"P @$7  hI̷W \@0 2 C0&69Hnko̒].|@, r$7t7K!4.no0P b@i7Hn%f7o1P/ @7l$7o&$}֟j$3pe@ ]XC~e 7'$7$7o t7̷p h7)yo@@i72(T@rP( o@@7 mG~N%6 HNr:䷄t]ώ-W&e&#p&m0ߚ%S {W&2-7 wwwwwwa4vqS{!-3GorIp o|=  RFKC~A^^|O~ =XCr7(@$7(H.nP2 IKmP (P j$"%!@7^^P; Z"MKRv{vϊmP> ࢄ=mp=($P a//a֐ W[&P/S$gn/a̷7K7J#o3@rS {y {sDF{y {@̷)o!%$7 5 a//aCr$4HK%s̷(@$7L%`'a//a H~{y {yoj'{y {s$7%@Kj$ {y {@!\yoWyoG~H^. JnorIu:$77~$enU̓HNK#,2@ń_ `; !%<1JKh ڝJ2a/#a/67 ` F+ώ {G `žOboE83D  qC)90/"@ oF~0 a7#@ oF~0 a7// endstream endobj 57 0 obj << /Length 1702 /Filter /FlateDecode >> stream xZKsH+t'Y!U[j}KrlH0F#! $!@D_?ћ%OH1Hn+>>} _}H8S%Od#qu;8z_*p.1P:p# \sjp$y]65%& JPv(QT"h5 8mSLcFR1V0) 14M.2PLkY3I{ᵘ{s%y$3MW%JS\<Ӎ<iD/ܩH%NuT jGf7M>jN$cI@A50gaCqv}lHn?sI3O"!ӄ&Dd jeןZvRTqFV1qնn{>H|e"o(apn@H ôvx*U`{FQ̴K Tz 8bPxWcl0YHyEzspft\b9lwb^߄$RFHplSWJT&> Ȱ5]*2 8GA2tdyB"?׀2XcV=F\cqZ;tg8*v֊ C@vm5IcC>d.W٪wOy%&7D t&98D DY ]|G;m+Nv~~wͶyC*q{7ʍ(MeDn[಴ ~q0V@hJyRºVG%`"ˑQ1(ďf ldM12 όźxӾW)޾wGY_zƵ[%?KfM0?۲עx8١ϔ..#=fnuv5}W ^:Y`U5D=MrX,NXѸcӓG}jLEW!" ^(@{gY@Htz?4| ^nO1D/V0VjK74!)!4sK74'Yى7[ךe!&koaԌѵ.Fi̮4|Z5wF}R[a:&:iyFk"$&A1PS!-y5C`GDXb!*bO$A5Ft5L8F kHLcM9n%j~% !ˣ*ހ腱d2v^?6 endstream endobj 53 0 obj << /Type /XObject /Subtype /Image /Width 1599 /Height 729 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 23462 /Filter/FlateDecode /DecodeParms<> >> stream xnGaMqCz3_bN~O1^6D /0:̌Ȍ- DVq^h`)b+ŤWI^,&XLz `1b+ŤWI^,&XLz `1b+ŤWI^,&XLz `1b+ŤWI^,&XLz `1b+ŤWI^,&XLz `1b+ŤWIXt:N'@ϤW$gw^zիz^}^_|_\ @&_}W_}_~֤[`F}ׯ_~a>JJ{QW,[k|vSWD.o߾}?=D_n崤]P/ 1Ljs]鈺 7}g}YHJH=DT~牺Rv >?~~K{)DTGS|>ur+HRvP>/íCz5aDʱUi׹k{+QHXl8իW^ VkUN5FTa/i+5i@?Wٞ Va֑?O$em"jU/iy]@2&]޽{]zuX_<ߗl*J#(B-[IWBf_=>>>>>^G]u9r7Vي1 Rv^$VKD4|! ~黶%͗:_pcҮtD]QWZRl L pwIrC9lŘӑvSW@ɧ܇_2z5p4]jnViו %!Jk>A5LUZcҮtD] 8*=?//ꫯ꫿_͛7o޼ |>~ ScbLG+`U*{S۽/⋰`}UO15 7bLü.1^Q4* ixx5Wa#`=>>>>>zd`+4jH'eX@z QR{D[8ݻwޅ*BҫLbL#u%+(Q0NEc=%Vxg+=+ND*! ֒^oԝv2, DTij, ^+-X{l8|?)?+:ND%bGӫ1LyaP@ϤWTOD! UxTӫ:Đa3Q"b0*:~7 Z[ HHBDӏԫaz5zUOɰ I"DTa* 5!{y#vD@W]Q%O Spc-?iiݜ- 寧@@Wi'OAo7NƩUU`Ъ`2,!8*cԫہm̶\ϻu2ɰ U*"*(s0XM]}@?dXEz^kq xɺIKSSƳWSs]4^ɘ1 ɰ( h*-p5|ݻw簾^[ZuR]@ K+h"DT:W1^RDW9XEz줝J>jj|zU/ vEz,&JEDe|*fU85ɧFW{n 9,%`+蚈*гjhox2ߤ+ `+^K[8܈j5?j81|WHGK{ŜX " DD `éWje]@{dX%,DTȧZ7jumx1t55qP%ȰNz/h'2 <^9v0T&ȰXGz@GDTz6~=O܇!{) dXò!@W;_Z"*ԫqb`Sք,`H6b"DTP?ƧW[lZ 7@{W@DTi4HC}WWk- g_̓aAz4BD| pphԫy۶o\aU=@dX^i'2 hE|5qu`}iM]ʖp$0HEP*p:2ҫTSv}Mɰ'^`#DTP-㦢mog0h)&G]-!N) dXG^AGDTi x'8vi(3l]M/jZ 0@dX%^DTȧ-otks??>??3 Rݾ[ּ+8 (+H *tUm_>j0y+ƈ@*2,=I"TDT@KgJ6mwEKB2!R6,_%W4F~ib?MyWi#aش|rO]C/gX`,'"DT94<)۳ |e;BWJD GW:6`Z7Ital!b%U*)ryU`h*ODW@9dXKIh(2 >w;U5)9[2,ҫRQciRK+󮎺Z&H2,)ҫ/-}'*3*9` `Hz*-= ۉdXҫ("DTOϛ 2%_teB } к+U*)G+c&]{z~V ZTqzNDe EyT]dX@HDT gJw<Ъd镍Q@̻b(jyW@| JDciteITWz92 (ۂJD|ʼ+ 3,eJRFW)dT GnJ]>wE0br׬˰DWdX@vL~>ΰDT@]H+DT 8 (1Ï_= l|=:P>PSGG|bM]bf#d2%֐ w[U ď^]@灧S4L8k %K0 (ac2, dNEWϏ]@dpȆnM o8jV`P/ v0 XvIa ZeAMlwEʰޔ6*\S a{2,mK&X2,k -˰@DWP3%^ ͰWv~6u?ra;B[Ր hyWPT^ ɰO]@dXгҫ!P@dXЛ6~ǘr\0: :yWж\ ?au^׫uEPFҫ!?)2,/[W#S1lJ4:jޕ8 J1 @z54,X6caAƏ)#psԫ)`a@j#elnӰC[.wizݎ0ac]1dXR`@NdX@9RFW]@dX*_TB$H!d_ w`cr\.s`϶6?Jn=;r?auñT-^-/`@J^c7C{p r^62 c'l7r!XDT@]?r2a4`mɣϼO-^%&!|N1Cbc@Z}SOWۦb,ħG.lJ8dSBys] `+dX@W*^VҫɰZH2,^VXﰾV8s8`c8 X[cULJciiXazU)iX:s;x!-2i`=j>ӰSSZI$P ]Q)m%"'z2, rr=I`\E)W@JҫͰXЛ>s=I HW͒a1V77]n( 2HW]aCGVҮ]%8+ %UwdXЧrVRԕ g2,%R^uMmے[ r6L)[Mڕ .2,^)IxOmȓ[O|1l~"JI HWA@Z̭W@ZK\Z%j HIzEqdXԥjHz1QW|z5'( -+ %EaPr!@ɞ3ZJUiR2IWTCzͭWz)58L N+ %UaǤWI^p ˕gu'J#ê HIzEdX%&OKk^WI+=i1 V)W@Jwڅ/Uu j ra-'^zEM`En[1ne^WI##(WӰdXɭe@}J)u\@ڟmjWJ0 9^^$@VǑ^ԧJvqlc{˰J"(2,cέ|~YGzP2k%HX3IѤW `rHSZz%c+FzHpl"HKnU6@}JHl,ͼ.֨UI'$#XGnU@}ϞֽIXfW=@n+B0OnU'@}#c+Fal#dXʭ O9 ??Η˻w?N FzՑam'@ixυVVk9~}<UZS+!TLl!J&M*I2,󩇃+pcpjծ{ID| =+h [Nݷ"JEDu|@z͓a@VOwDT]+ 8V|`A([]x9| ̓O%`+T8$= dXpUKP/UZ"2<Ňǔ5 x J Z֒ !-Q"W dX'@Z,(*G^onnnNOO+`| Z5? &&1q>)Vv}N=ɧQ@WJi3,sܪ[TkV BiDTiWC+ Đ[ͼ+jWYp!*-ĐaHdX@ W_;BKxrZnSNi={3+55Q{OA.͍ @zd%Or+`sN3 RU P"W\rzoeH+5=ET@;WdXж8±xrn-?DTi|&#@KL TiXv'O"TS^EKȰx܊臈*ж0꥽sZ&!Â!& _#`;mQ"VC+J2,(0~'9 8|*-H˰X-[~"Q%X+)i3,s($Q"l5hA@z4K0!˭Vsr<ŧDTȧ mr+{{-8*8]k :E饁~h{5$â7s_J˥{`ܽEn})Iltz~;N HKD Toԯ69SiMn>63wS,Si8V`%HޓaABF j]r+HhjjC"*j ^mdQAD I2V "3VqO:}2ϥ&̢ODT i`= ?mGW=L[\³Q% +ɰX]mvSVɌ(GD J&h 1?V <k%]AD| VN #3Pqݺ܊zynDT!@rdX1u*C"TDTv+˰}kuZy?J@Si`OaJHDV-]* F"DTP{+Dz$֞l'@9DTiaU'QB%K#MD|  ǧ_.wYHbȭQ"Ynt%^$k;QW݊Qn%YL?k=Q"( 勺iWJV@n[Зyc].?y"*^]+xxWN!8X|_f߷ #/{mET=^l؆ao!WlbzJ.KgG5OD@<4˼>_I⯭ {Q!؇?^+I*j+M*G/zn/%뮛rRQP2PZbbr*Z/*s^k%꓈*@ofr+;ӹkK]9~6ܩ^iW>O|>@{§+Dz}+w.nC%v[DTK'Q].u 87E%^T&m5bO8vS?źM!_ 6ysui*`;?`A!s|ڵ6Ү|aVl_uMӮT0| "`'G]9y]vSDTȗv=s_>iW] |Jz/8v+SQԱѕ HKz˝vJDT@ WиiwiW|h%z;+`u8zJZWb׫5z'^p>[OI^,&XLzr^,&XLz,v:Yw+ŤWIŮWkNz|^,&XLz@' HSq YZ͍W.OO9 ;b+ŤWI^] xl >%`r\=VS_@SH,z#XLz,v:Yw+_M,$Vz `1b+`^/8WI^,&XLz,v:Yw+5 `1b+ŤWb׫5z'^p>[OI^,vg w\.|=1 (SU̿@{Wb5z'XLz@|>[Vd`C\uu;z@J@_WIŮWkNz|^,vg `Ot:O^WCzLTGU 8 -H]Q#H`%T,0r0g>)aLXLzqaWb HN'kNkgW 7 ^aU\'Wt:I['XLz^:Kz xb t:N֡wQ)hS*(Wxv׫+`1l8|~mpG&g4 >Q[r ph2Cpi#0[  4Z _Yc@8@_r$P1Ӷ_#JKL)X4{v+XK2$ 5{Lupun -|iT,% _c uW@ca2!; 2Ks"-UkAR+$09@/#rm!^ps]ʟ}5DXfs $SfeA3sm'h]-+@\6e;K;˼^q96wУq,|RQLVAexٞ XOi'T!s^&j h, aPu"Ms|j׋jwg Hr\R|>[YW?1 ^&`F*u6Вvgk|2UKW|jmTʟ7,h8re7+f!?/*i Ў:?F&4`5g@΃ʙ*5^ 7ry65 H+L^s/Qx~Ҡ*|9X%^t%mn'<5MEW?^/Y ]|8(>7x^|&RU/@rV}c.>"; @zzI1MDzKRǮVȼʈJS>RRe+xFm`Q[KPfI"!H"=s?*Zմ&^7)|S^tNh-zm4m16I^.{>yN1 pݶyZۯm C f+acʩ32LfïIaM] PgH`NLrd+lrH35f*q &7ipe>:|V5ye\@Jcg&h r?R9&9jJvwDQ]n}U~upҷEZ5Sε^dCaX}o}]+L,%z`Y/uc*\9ѧʙ6[Ч`xU@D/G>u*I2YCu{f+*cŹ5Zt^1 =PuQyWW V{>4s>hȒrO-ƤWp>̘@ } 3uusH( *mRM6d\JzBڃ^ RO-Zfj /)v_ej&@*FElr˙4v'1*_XՐgm%OY ЂN.F1L*f}6(E S6a<㹕 vS3Lږ;N|p>}Mkޘ r+(M|W[6>Kǻ5SӞɱ׭{@]nm_=X*o-Mj6j5ΞlW:H4lA5h[i^z7熃Í)ٞ5ɗvy 쭞 %P]&:59Βuwy_H0|gWNt]s},@pAwS+x՞ ְ2_mmV<-@$Z|)]Klʱnex 9ƜXoP +)s9S-,,Ku컧6>f^Z;RfVʰ2IFp [wph[t @n+6z1PЅv޸-)?߲nwPT ( hQr컴{.s9s?NSq*cA _ScYz+m6yZPŸCG`G_7Sg^ C 1%N Y[X1_Y;pqZSǷUjSjL=޾{ݻwvX]LVjtHC=\!GiW)p.Jyˆx\ .WmȆLJ;K,k5T^Ue%ǧ]=e}:jq9k0}ME{>w[6 \'XIXG _c?oj}󼿿?'uTᔥbUOUfDU&iݲ2__=QԚ<42b&cĚ?eί}UE>{+8_`YCQ.acQWz۷oߎ[ԫs+>>l5aM'YS?uO*"紶+77s*S6臈*-iE{cL ^LV/37+fVLVr*cqG\W@–9uCfYU*)a^ܾ_~y #9})ab_XSe{Gآ{ :29Ŝsp+qH[R`"TDTpDKou*~T5Iǁx+}*uSEWӗ5EGJb*0$0J{̟=rzW\ YY3޼y͛) |AW3X&Q`=kk꧈¬ Zb,!!m9r+}"DTK9k]zjFW+<5j-s 0kxߛ77c T0ji[/UZ"*6vXgZzK,L{MV'݅Vï5ܚpc xA9VuɭROۺիW^:DTK7Lu1a |͛7o~ |e0%k[6( 3dX@zDY`y:"mt% JED@Kʙz13YU̹MX+_j a_ן?Ͽ?Ooo}۷b,#H;j|hKJn'JED崑Mea3NN ~_5Rׯ_~:/?lzI|&ry>ZMɭ'DTFV!;vATt 'JKDpAm^٭}eAzJnQ%(Ċ>Im>hAt>t"TS5W dͻLS|"TDTXA<W6 !Xq%b涯w_J$JEDq"ؾM)toKhŞ#.=XC> qCz$vA8ZlȲ.VQ0Obǒ^DWgAPUZ"*!:NjZOe^}ϭl)9"TS zI,X] RQ?Gz@'rl&(`=U*"*!Hξ _iȭK> ZH@zd'b_r+Q% It:{ݎ<H]ɭj%JKD@Uv+ yW28+@YDTȧ8J $V@>+h,.r9Rr+=RQ 8 h<*DT`ѳ]m%XoiD%"g_2I,㪥W=VSQɭȡQ@KbEzdN HgUTKhBD rW-^Mm2he؋ *- H&~~ՐW@|4 L}J JE>Lztja@Jպghg`("TDT@{W@%VR6\`Q6@YDT,LxO%Bz4+lM%ml>Xϴ"DT^ I@Rm28eK[yډQBztL,آ>gʭD"TS=^ LEW'MnQ"` d{1 Pn[RQyԤ? z&xAؚ:@]ٓW˙nyɧ5ޘ20$^&Sl>GJn@/i(1}':uT zqldȭ* =f̯L30&&7}5Mm*DTDT_wɪI&mKnGW615/Y.w~C#JE,BrDW3DK^]Ӻ8kø*| >9{bH,igY -w̔OyBC⃴DTPHĐ^@ro v~ǣF -S 'x(Sn5~f 1Y+25ϳ@Dȧ4Gm2 FOSbF |P2U* )+#S_GK}DW|*"*+ɭLHE> h # ӭ9yQ% 0&AŢ@/NKDɳ=P#Ѕ%G:(xz*)=fJ5^d. %>9(C㩈WϜ@9Wm%Nr~z/V6*)@LWmOsXPr 18avANKDP2rHmA瓩 x_?ɗv`)UZ HV]A/z`^=Q 7@n7JW)RZ]N>DT8(@V0z;@n+Ԟѕ dSlU*fP}b@*+Yl'zȭ秘>yQNDicHCuU,Ly9sr4ҮVՒvɧr ֑^ Ut5uVQ\[n'i9ns]s %z]HO9XGnU|iZ8X HoRPc_nJvLϾ ZZ=3eyo+-ȕ[k2+J%fXW+T[Qb SR%YvCS ߠ jzʭ N 󺆡xa|%Yf_+VP).z %pTI z&25jG 8NlSĐ^Lc~5PْO]$lrUȭDW@*O^ ⳪`AU)>xڇ XЈT)Uy Lj X `Lz0)U,^Ӣ>S!֞&:ěgtr^YFXjKHO%r[glغjaA`LzWݚBK16[RP/P6Q  ֑B*ˌr 7BmJیox}t=OXJzemNϊ='_FW8IniK[+ %GE4j]'_Y&zVsϕ[um>Ĩe[ua^fTKtuRBn%JSr5uBn%O@L*VKujLVװ1_T1V@KZ}%r̿ }2 ;},,ylIL(P÷0dP&и3RUϻɭ9|+xeX^g+_[ҜNn+Xg-`ʝ%j}^R!?JuۧU!@gGD-F?x]v|ѕWp++'i{U[Ptԫ䃠ff:9^aEW@ Sf6*1*OZZ4uց[^7^U̕vC+ OJi+Q&`=^Tc>e`SV˖`SѕyW%hCL2? ԺYV+ 0 2.@ L0PUMmV8aj]I`O+\eV;￷X@ WTü+W¼+Ԯ-%^@l509R*(WTVFz y+h!hL+hyW1~o HTJ`OwZ#r<cpM!2 `~zx"qSRI +:U|,>短CzcɭJ&I{nV(租:iI`-I YU̹ٔW `OfYǺKzTLXLz `1b+ŒWrXP^],.Ъ|g= |i7߬ogkDWzNbdX['VS1l8iSBv7>k4,&Q@in}u U1 Haَ(mڳa=w2,U\ h)jw{˰ݖsUdX@- JRX H*H;+a^ ɰrT^ ɰcU^ ɰU^ ˰Qҫ9XPՐ HjHl]z5$:aWϐaW/acҫdX@ Z)UȰ.ҫM dXP>U22,* Mz] QWJaG^F^Au^G^Me^UC^UIǒ^UO^5%UȰ`Ai`2,^5N9H:"TWa+2fXVIH ,Z%b H"!ɰ@z&2,$"^ IN@{W*UȰ8ȰؓɰȰB˰-I@ ,^Q%^Q1G^{^ Ih WtD@*+:%` ܤ @W^9X U+x y+x 1,  ^J2,k P>$62 |+HLЃ;K t:0: <<<<|u"Ȱr^dX:"*rH`2,蓈 v+( j$ 2V y-^-@@DTiɪH2,z#JKD $."TS^AdXID v+hJ KU*"*>IYi3,s$JKD@<tAP>UZ"*r^AwdXQP&tM0OD| HdX@DT ^ϐa%Q"-W dX@DT? Q%ZH‡V Q@ۤW&i`2,ND| "a@"TDT@Z+ RQ%^˰XO> U ,Q%z## U*)x+2,U*"*ܤW@qdXmQ"( ( XDT-^Րal!JKD 虈*-HɰzRO?Д+V ≨RQP РsCD IɰODT0&:"Q@*+S2,؟*-Kz1`*U*) #i3,s(*Fz0I@]DT+(2,!JKD#XL@ UZ"*4+MdX=Q% HFP>U*)@2,DT֑^d''JED'/X (|*-@WH;+aQJzp0*-C+Ȱ)"TS"(T KQ"X+ ͰTDT 22,HK> ~H*&!UZ"*'h Q@+˰`)U*)( qi3,z&JEDm^tD@ JED=^t*_u\.}:߻TZ"*`)2?+_HQ^]v"DT@ɤW`*  Z%"TDTIH&I3u]9ROR+HXET`' QLz@5]'/h ޓvg( ^@v24l!vDEz`g.+n-R+ŤWI^,&XLz `1b+?k endstream endobj 54 0 obj << /Type /XObject /Subtype /Image /Width 1768 /Height 885 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 28778 /Filter/FlateDecode /DecodeParms<> >> stream xݽǹ!H!Ǒ 4xd]RHIazETuVUfVf 1~}z^p\ Ap p% K7.n\ Ap p%t:N+%~駟:@@~tG &ag}g1#+u4.@@a~+2'K?>~/^x{Hݻw޽οhHz^???m?Ev=:R|0?>ۘ< h &01/^x⅙cRKh:-fRQ`Lp ,0)!lw9d\TO?O۽]}8%Iy9pbփ˴:%IH-C\'|' hMmq  c٥p4K`rx82@&ÌrR .'S?\Z Np l2)p)c\+ٖ> ӏ, &Ǒp04|p<v .BdbO?O?~;f^:n@|&Y}۷!駟~//勁Wlg:0&w޽{_~_<0~ |}bi)0&.!@|$R˧KXi8s.^,Dp $3R>>>>>Z,@2S.PƣC,5|\N-e1|:y8[ $G8O1%|5#BGxx0Op 4z8rL|xc8>Gu*T@n>OOOOOOÕr9,] GX퍣3ss\.eі`plK lo&RAD "s!uX4!0i17΀CaOvzҲ30  ..xTN?)DO)l~c\lN/DO)uL\L.e?b|)2 Rɱ,L VW)D "l. #K82udV><<<<<| D1֑P%t|8L0tR b9\@Qqޮa2p9RDpe.Z|+KeH]֑/%֩p|^lx+ \] "ռ\ %D{W .,|׿.ٺ~[򶗿Dr[`֑:=DI,5E8϶ .͘k$Kědl9`1Az "Xr\d<~$bq>K{ĦG:֑.I$\DL%Õe=)'2'@I֑؁ rOރ:S.m)[..Ͷb9.g"$Doud_#552fx=eWo-;wV.%`%AHúr_N-_הK-$%@{D "/SS~a9R<& ^Lcܢ 7\F'A U&‹.v9mP|ͥںe:|LyC\=&u. "t R Ӻ`b~81`>ߖ@Sj @*̠:r &P% rOHA$@:SÈ2Fآd]smZagȧu1ph= "m_T/>zLeuiVRKe9pLKrHA${*tJ-Z[1kC+EXGVDO)w>..k_Ni[J(]֑9DO)`?gT#S^xŋ#ߑ_׿{ݻw޽_~嗧o3}=#,u{PsOLyKv#ܟ R QrZ. .߾}a^?駟~Y㾫6m;%-K0K'ܟ R e]4Yd'ܟ R 6oޤY\qw"Z5.h%uPYБQ&$DP#A|vi!@*C̡ <.Yฑ R uL0`ڈ,H0rTN+5 #<#}d)D=sYLLp, +@BFra BL#7^ .빆RK .bx .jSѸsI^_%i"3 \o,rkn\ .vrL -Tzx 1{JGHtsF ?}>|[G>ojO_!&\Na!BL`7q Ǘ![CL &\.f&p_}>mttOE%CphxeH-Lm\M!`/,j^G.`%c-[n{8 u9&ul6fa> iy'}tG3r9L9 .䙚'$=\G@Ց`PEeH9Lė/OEM0G!lRE_}w՛7>cml˩7)>Sp pˆ 1He{d=)'!Uj9un^V (vֽ$k7,s93$[O)~(Jp9S0#-A-? : H;r<{,%ɥ@m˃!Ĕ`$˽~KpĔ=.,G @+~6L6gϒ$K\fa$gd~)I NR1r.wͧ~O([G"%$؞W"!e>fsR8r϶ܗs]p9&$#\lNJt#l˩K{F؟8>oKbwd9$dˣ禠)'@2eMiԧ.Q GƉ^ rLu5E0/cޠs@9>&i^MMz]1xX .)Lx-D&\9)A Tr%ΫQK[m?9={r &@&\RT[>Op ֌=#vԞrYٜ@f[n?n$S[.ٙu,w֬"|J+:ͧ̿ʑ]?TttS Jq`9ГeɟǭYN9Hٖ%l9213m֑ͧe% 0h]/%pfs"| RFfaZG&a#qe.`Zױgs :zcxr\0pKd )59=eRNM}?IBFO0o*ZjI0|DiՖ n_u~29ӓrz^/7=kxm/okx&I0DsR>>=/`6g.-M!@K̶$i\\Lo"KۆRj#9ӓr>wLڰ?h?82%l2N0!ԏ:BL'K03AslN Z U%úpJ3[8?P{}wLYIK .a7֑@n"Kϱf1f?_<٢Ddߣc&#[%@O̹͙cb6'ܑ|>~g% .L"8Ł#13=AslN}{8D!.ILLd @Yfs'|IY&N̠|9-Dl9~O|{=Y+90hT|ٜI9;&fsq$`/K8 &5ҭVEٜ :;&=\zjg$[)13=)s${Κ,  W"KʐZ@E1I5\Rd % &@DLj Gb6gzRIoBNx~@E f`9@ D%{Hl\ :EJ. %{@ٜL9FkYLp 4I p4vCgܖs,R03VLrٚrΧ"KV.NԼ\ Cw%y#`^Ɂ9le0p)h\ 0 !iS.!,Ҧ18gs,Z':rrFJғZJ0rsK &9%i cCF E\ϯ_q@p ؋^.آTd  .yҀGx#~K, . aԯP3%G]p4"K\:rT4Gs+%oP%@E$Z"KNv %\Tm`֑G`}$G YP3%@z*4͈<#Ky%%\tB D4IDC"KZ$V%@=D!ȥA09K!sU\P5 &2qHxYьE;PzfCk_|oorpK3N0ȡE>&-%?Y:eAmADrQAd _1.Yp43gSws%eu`DJG![L)DYз2b.%Gcڥei_Wӆ}mِ-6~qvyIѵ!)iD#Ș ï"H0!-ŗ#>$\P~B𔚗e8Z7sxH`Lp 'u7/HN^!gh|v9.ѕYϲuuGxِ (Op 2 592\n|,hhl;"K8a%'D "S,26!`)%"RCKBui u̶?6-{mR^ 3|W#!q~8[ P%faMGŧn㶣*9„ȴיфH"XGΔ;"KxBpvNl7aiB${\+I0Rۄȥs.['9< 21ho52D%8 #--.Y{3> )dlH`Lp dgf,,8 gK' e226F @IK`^<"K{6|As{dc\D[pDK ֑Szo,n8S DZhO_7!l %P50dxGXd p'Dφ g^D~U(Cp 4F5/Yj>aBJjq̓'',h-s/Y+b5!2h7qڵ~\2@ fP>'ak!fL;O]"KLq,DŽaǧ%p fan=qJ5Td lZ7LBܶ% "ǗsA5|˗&DP84 foQxK Qd fߕc9H)dn2&\D2~BdJ(Cp +֑u:WqVfee=?A8"Dp ,LYBWfo7>ܭU+Op RO fee-օCigCƜOAdi-:1|xH S0{sQqϣ21RZ9][`6]= cL)\d4N0!8p Y1{ePO+Ӧ^ 2ĎS9@yKY'%5?[K8#iWf=NaHK*H03WKɕTvWfoW+Hn_=]SAx.*ey>"c |3ϳ ̴zl9 2ղ` r%@c\j{^,?r dngO̎'DK#ȡ^'DGK8͓`,2qs}nev|"iev>SӚZ$P%""2qZ-M;-eVf);N.#z%8faNEB̶"2+c"KFSs7Z[MRKoKCkqyr{)7!rh*Lu仿.1eS:E . eTS "G2wqlA0s2Cp S+b˄1~JbAP{Ssߊ[eH@p Jefasu)^gnŖ#?""Ȑ6.M$W} .H&mnXߋS٩eH8]@v @p @F[֑SeIi'qN޾,;D˥j P3%;9^)Ԝqdu\Pa<> A7|" 8R 7%M 0'`{'Yn_/4`W/4K%&\/% 0} .h Kp @L$%S- e.hFj9_(Cp @3L`/Ka%{\.(Op @cL<%14ƄK\.(Op @cL<%14ƄK\P&\PO4TDŽKj#:&\P%1. Fp @uL6Kc%\P.p @mTDŽKj#:1.$%Չp % . Fp @uL6Kc%\P.p @mTDŽKj#:&\P%1. Fp @ṵ6K3?R @yK3TZ)@yKc%\P.p @mTDŽKj#:&\P%1.h '1&\PƘp @yKc% .h '1&\PƘp P|v\.j2]2~<:ńK+p @cL<%14ƄK{th \.ex|>ώ .h Kp @cLhƘp P1%p4K`|>8@L'K`Rj !WG`% K7.n\ 1׫c@iKs:9&1&\PƘp @yKc% .h '1&\PƘp @yKc% .h '1&\PƘp @yKc% .h \.2|>;J@L1"SG#Ap ,v>Xi>e=yt-p p% K7.n\ Ap p%^J\И14%14ƄK{th \.N?gG 4ƄKL1 %1bJX4ƄK\ Ap p% K7.n\ Ap pGc:Niߺ^;%ZT˜tHjIZKtz^ϓV<:*&|&\ Ap A/YMN7.n\ pNtr'1׫cs^>Dp @s3\ @Nf=\3zu7.nxto\.^u_}>~%NSKN2q +׫L .nRqx0"v٫d@KH|UϺRX )mПZYh^'+I-eHRH)_xJH=p bJj @z.aGs)v1uºs#7%4oivK%˔O.q>_5>݋RP@iS%ͧK\@'zY/>m @pZ$CkaTzM.5\@W͹#RqKjy\@Z[/n8{Z2J-m\Qzq 5*?ղ0Op jaΥ5!_j9u>ǿKr9Ǒi-Gyq?Fp <#vi%OZ Np5J-%,BjɘTjZH-"Y72]vi8ys%dB4hJ-{t.e:gj\5%+Bj%ȺKr!L.yɊ g^/\7,-Nڳ42= M-qBc\)񸍿|kВR@B)<{x/ĂR#~M'L` K4 pp"GGsM9_:<]T @e|Lip o,/}G9e9nzw9&Тi}3"_6,sg=vǞ%H0rN->s\72-1%KR!ZK77qM)'ЧKO|vixЙ0Kw!+13\8;l>=k0'K!}s, WZgm5Q4_Ə4)ݺRj \iY%tb*ӹsaQTòxݷ,? %Y ]i3wzBz)ݤWhd=*>5)sYp Zx~is*kf&e*2GQ~f9?s2kr\@uOHO4?|#1~t-7-{,2ƈSc+k#Hsto.^+ڐ;HZʤ;gOGm;KlKp&bвbGڰ}:&(v"3H+j*]&8v>„Kd*4&2Ȫ1V?ٖ9. eT2C<ah򽣨-LK\"!pt$jRK RK'wO>?}K5$Ĕ/';4ֈY&=~oJoœrٖJ|?c!9ǧgF2&gh82zz}\?{i>֩ ,hZ1ܣM\PfbqK%  G0]#QfK"Z?T.(L 9t% f8|Q@pJ0;r~^i ? ?zTŋ/^q|9O"Ϳzgϧ?Kf%)yRKmTwyܟF[-~30a> 1”`¾̰\P5%rRFǃhl˩bJ0?k\5.j&\B|@y?/:v{-/\S_9uJY_5\P5%Gd @|>1im׊yo}_ry*#G6L<3m"i%lz̶*j&\BD^a%LEe\.)͏RNhLv9>|ɗ#n'i?ȜyFeK9T?O-qd(31 &329\rǐCZd}4DvK@dUcɔn1%P_K,&E@&qd),IqLͶwseJel#\mBd wruᬓ;1|T.ǏTkǧ.g'$8%, "Rd (odS5\.Wfs3;2U|= $Mj[!:V|9[Y-*Y|o9{/2){0˩-=OOOOOOfaJ09|..:4N-S 4jRKdYRSɐٜ{ݻwSyifa9GM0s,L &Z,uۣ]p pP1KE@rEu%M#?jH+朲4.9<="| ԤGzLeyAp pÛ7[miR"5Mɋ"˒%RN<rgI!-{%2An.GcKX#4ڌMʦͦW-;pȝ:)H?asSi`N!O W &mBp Pٴk>N'CL"_ FdI椌R|2y)!}rc~x|N`B7Lν;JṥVCj)J}"KNxx=/%\Si(3fY /: .V[BƒR^ y Z#YoQLp_Ge&e|X3&0t]9N6\$bܓ/]_HMd 0$ޘ͙C"w99o1BNX۷oNMރ1P%@bmeVj {M<%8lq[3sq`X<>J9s4%%@BX>pZBNkSE"Kv5\RYn?>[{i`><<<<< `Qmfr_ % .X7rr|݃`Ld pw- Vϟ1aB%f@s*njYDnO>O_B*Kj^/sh`NR^ S|j3ΰ,s=s̐9_q9{p7_~o߾}m%@urϹF\{y>2DjjnRr%N1+9Dae ?~᧟~駟Bտ^\j KM=c³|3H)/%d39K%y9 uGx8y4?! _~_qCKBjX/n80QJ- .jΥ5P8hIOAdIÙ1ىr3!R\Uzq% ].?+T5E.% ;(^q7N-?]SY 򨆫ns.E%h9ֈü2#-"$ad9&P'%nʯZRs.G\o^=J` I%Hp ŭTh+&".4si8G5ܙZ}>C[υ. $d_H8a%a1ť+>,[<]m P } "J \Tdzqk9\sy%A$DeH*K[/>u>K#C<0 "ٗ J Qt:OJX{ `%@F< 7^,~"ٗ xryjkGhGp P-ŏ{D/A$.:L%mX涄K]5V .&be/DmH"jo6 PC!ixQ:L LlStXd DA$P"ù.Ͷ t:|[ܧ@+ 0r.! "ً GL>=d,)/e5Ve+>.ӜK.qj_ǣ~H!ٗ `hVEy%9J#45O ٥}"ٗ ~'"K -a%pdKyx`eOd"KnD/A$@ι _W8=p9\J*.6Z!fs.M<%@oK 1I-hfJuM]'\R2"]S"KXH%H-"^/ne$Q"ٗ mΥ`_K,M-_V+8 |QmH%Z@p P rzVp7xaUs $kGpi%q "ٗ -],>&hpbVe]/a4{HIɾ%@նȻ Y'd_H8s.\d۲5+Ad Aɾl!hp-PzR˶֋8r;% } "-s9[@[r>KsVv^\jWr8:A$DpdKZI-ƒs.p95ox]YBKK Њ0ӜK.,ZɝV--?}.<:&<K ЫuhaC5dio J%"ٗ uG 8`ˤ%oQ̥.A$DP-m\Ѐ.l"ٗ O-g?}> S/aK ޖW%z lɗGsQ{twwT .4i^K=rͫhx (=D/aЮTCEo>dHT Dp 9ЇTݫi=Kkw绌wa(#_jӜK%+% X;2l'g ҺDr|SK)'Ldy:ݽ|)q3+Wji%@V>ze]8PzRKuS2 :'G'-ζ wO,oiYm8%j9u>Z;ZЊrTh%X)PISb)O^7Tg@J-„KNJeRK'&YGmį6znbqVp 9%Ϣp e|O\r#=\w+2$%@)0dQ8iՖ]Gz*!RLN %@օPRK`xikG=rx%Ē8}\tBj LYq)X}[(82%s9e|-̘]Np Эan%=sJpdi1!&CuKH,^,()wv9f)9P%TKP->s.+J\4l*ZcY>YP}@| $8O̼z,=H2Av sԣ*,=`ٗ9xpH+dԐ~2I뒩Ĕ%rʼVvd i%pKřzT;#V)gwW|V5 -\OjIuZ .vPm>9nX<&%@d^tOgSZ@m _+}<7=1.*WtxiZ̭/Lg9[.v3B$WO%D8>`zpMT b8@_lg%p4RK$%p8TH%$#@C19K18KͶ\@kJqxJ1fGp @ji%pL12BNE.]S.r\Pytic̱(i>[S\{Mp @E烹D-cW>i .If[5[Ly%P%U0ےuG8&; &zr{HwH{δLI,cB9YCg8@y&\Pqj9,/]7&:uXzf[Jq*59pKiV%Kp @cKm /% Kp\@,%Tl,\ lK` %T2񴤖vKx"$:KhsBp M` Gp ݚ  1@nK8faJ-2@c (Op <Sj Ep DJK`,r>ǔT\I*>;7.n\ Ap p% K7.n\ Ap p% K7.n\ Ap ڻ8 hУy+R/轠nEF.G'"3YzjUG܀ .K .K .K .K .K .K .K .K .K .K .K .K .K .۶m ˷7t`,w˗BL o-L'ϗߖ wf_I0,ߜo`6BL\gPq 8u/-z9Pk7&PY'(\*ϑK0`n{*F s>#5apٓ`G,\1G .  & |Z9r &\Apy 0b #9.o% . fc\&!.Vy\ Lp O0!&#\.9!\'>l̑[ iLV#%'Bna f#qKne .I&>% fc,K&Y L =L`\KPf`6BL,9q07%&xXv fcX@p Os XQ.L`.Y\%*ϑK0,ݶ [U'!x#q]d)V r$YDg\T̑m۶+^Yd Lp s e#h0 &@d p?%L'%EU'%@K7sP&%K Y'f%8["Ky%%$Ј, nbul۶_"K,K [%PD\`P`eK`H{}1 \Sq D$lDK |(9@Hr "@iL \H`MK`0{_#DK p%0 0 "%%$ XH9r &cDK %na f#{D0%#jHr "YKH0V#$ \|^aHr "`5K "%%II.A$0%@sLCI.A$WKB*F =A$w\fDK 0%`$DI.A$\ o/2GqHr "Cp 0-0W $ u." :#^| @/+|ϟ?WDųEp CFI0,|\e; .8> stream xYIϯ K/d Xr`x^n4iu"(ޯ6).$aX5wQxx*-7S<wnό(ojGŞpĹ(6K}nͿw6g힬Woو9B)bLh'kJD+1*x(5s˪=1q!'M t\v{y*72 [H0Қ%uB]nI=BoE2ZHT-GVd"-LP<Qڹ5aOw?}pA 4P$bV+. qOn{i\xݽu }^4 QG$2V(P,&",~4(7`+Ǭ>,``WXY +ق (k1KdB7N}`C,5j#EEQ#T *P/QST6Dg LΥDQzco #9-N 8-N/%g4TN"e='Oj k6JbY6[9sJ:D #P/+E%!wM)oҜoB-%b"jNlr]KלTX|$52zIxހqZa)j-po17n2RX_RiNӲsSɿkGѫ`XͮtG'uk؜[S_Ć5Hq$7_^3"]Dʞ5t9Aa ÞYP l[ pDw B)x棶 4~Y) W#V aվVXi*c`*\#V=K! *LPm*D$MzIɶ.Q p~&ϰbn /`؏><T88-$‘l$ 9J;8cҬ2eb"2T^(B˴c:! 'wEBcs5gml$hίMmN>7شо OҜF (Kɏ/2V#u61DhE̘*3_]R4% ,J0Vk_℻DSwbty҈x:JPSu:8V=jc ⾛#y$@̱'/p$@#Y'vH mtyyi0SCmm4uij ]{+΅ϞpSm0U[sx.`z K\;Fbq@,#X<"|l_Ɣx jnҳl+؋u RpB*v:(e :OgBI#H~>JR9W>::S&NA R0?뼁n0(0S6IPqt$7 aI A_CYF]ks/ "ؐbd74;S[ ZvE 3]!> >> stream x;r$׵.`MPH(Ơ`\Fu6\4' "$ql\$:k'wMT2\k]_M BQ!(@B !BD!BQ!(@B !B^z+>B?P!~˗/m !8g}gBp~&ċ/^*>p߿^S&O_׿s{S >?HsKBp//|駟~ix@M@1par<8P!/$5\|'|2O:BӇ}0ZE@fAm޿% PG/_|en!LBaN%0}CB_zիW)Q@v2i !8%/@=@~ow>صד<@D4g ~_~L=Q($>x9xT`B2@gЂ߿~!!D>BI%QL/+ E>胇aSmox& }1CU`! ч'Ci4'~Y@d_auA `gsTBydBpBb`\ o<7:B " SAS !~N@R#JaS!诡 =HE,% Pm Ҹ87YzBpq#damD{̄NW~rX" }>@S*!Cվih@@F'C&$R!Hjb܎)d>̉D&[Ǻ b!0r8Àus[ B.ϩcOYd/mѺ 1`P%DKߟ9(l' zMZ6,-@nc`i4 !FHi*!p1}|i8Z!c΄tx?@,! sSO_g!/!Y=:g[P@zB8>"u혆RVou p,!YW=i lU4ntc0s1_.fȟJ[ڈ)Ԏm%VQC@Fi2o]2E@>c O1W 1{p !eKmcZW QA(vL`MWB [ 7B] UB2 '% J9현 yB0iGR1- 1Q `9H`R!!*!z_׿zDrv0қ}BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !BD!BQ!(@B !ōMt}}}}}ms8H w ' !d`y_[ߥV,1\{ @z垟.(sD$LPc˧gB J|>>t]u% &!@Ŏ_o+ (V `XSDoI8S!*& ؗ0Z yoe` Sl @,[!cx`"s׹6 p,`>!Pv ۮw{{>3} ]u/?]ȓ  ue郁wwÃ8:hӸF1?o<KcHU /U+[~5xj43p ! v#^ 󩁀BV }m`eDoḮX!Ȃ` B@@ SLh{K @  ' 6- 7Z9RCݖ! #ȟ`Z9AZq{A@(VNxDx_(2!j '<VZ9:.Br'i7 5S5Q3GEP!4M@@Jj X"OUr$'3? 9a86%DJ.1c+!$ `?Z0 )yB@Dy 1 '<0v>[`x5&LӴrh8?h[K< iI+'jaOGB7u8KPwˡQ3!fi0|>vxX@uP3L}㇐q,[Nhs '!l&~fu0#?'ȋ"8˱~eт `H+'T D;Z+'jK0 "} ŇM-iL,p45nE 1{fb2Mia|O!%LCȖVNc҈?, &hOSa)* {#Ў fi3~i Ц8M[#FRH%߇_CL9s#}B@,B?O+'96Bt8}XbV$Ļ۵^>}f!?>fVNbG{֋؇Vw}C uĂpu_^YV˟c ؋Kb׹K!Cө5 jX0mm߻7Ns^;-P[hZ='H㨭$ !j A,A<+ -oqпچrx-+PƚB|d"]_|Z0M7 uiOP0st<@JZ9O@,BDfc?0xRB<-rXԾHN,AJأ]sj !JQU 3\ !EA;lhD<=ݣ:LB0g8r@_,qÐZ H}Q,GBP+~Lԧ%%4YOl!H_ !e@,QCι'yn^$Kli04\r=l2R~F]r\zQ!GuwK!Ux@:cg]8xu,kԫs{__//]_XK!Ř?@k&ֶrR3Q7CmijXN G:{nӮp!( q,S3HI#|j\ 1@R !ȚJfej lԚЩ-{I<\uB)N,[!ZekhA`5gd#(0)И-XDh;^]Ѿ=d:mx뻻gopʢLJDYb%n1!884o߾E"(-r/hY=1OۯXbzq|KTCE[\U7Ú#;t:Q'880!cGԂ XE+y?y&K[бhC|L7} UEX BCNY2Pp:l( A0S"(v>pbi q줇!Z|fJ01!k!8b?K,FatGaxum_ A0@L,76)|/Kd &ȇ`za- /Bl X.-o 'd J'8 @#k}/Ȉ%Rjj hvL,p4=m]A^H '`̔' N&~OۯXb;#59 9G|8hi,z<7 teV'!qv,@Xby  Hoo"8w)*-s@ fY =!L]K y pk@*Bۙ.S_+7P A0@  B؍@*pZ@nb`5Bm?dXbNW` 7SօI]GP뺮!<4DEFPu5{RXZ3%rʟ`h(,].6 'h@JB.B捣o߾^4xas֦{W?8Hũ$!`56A鍣THXB,S#'r"؋XI ?@s `hO1F}a`5˨` Zb$5@;ڨv}Ms[B 5V os"uȑJ`1#Zܻ֪"RFB3 Ajͤ-s!< te5S""`%&0 ewB,`@;L _ wNL`>!L V#!P5x뻻KEpu%fRtXu)b@;L`)B0is0& ã-BC&9 "{)DXC%iŔzB&NFR<E_V!4 p{OkBpZ `/DIAi04;EP!i-0"DBpׯ_^5@}A[t@\@i\`@;LX_.EM4 P+!YEZ3K9!DcN'#rP!D-s"&@ hBP|ӟl< !FR9BTrQdZ7LMpcp뺮^v&*! FR !Bv@;揤5e 6!DUL2!d$5?!DLh#ϑԚ2l!ɖe$5@;@B(i@)1 AЎlP N-B@FLA@IS@LhQF+4_ṿR@%dׯlDBȚiBd@;=|rmzB,\~Y:l\FR B@޾}vi "Ȕ.v@;Im2SB4zB !d4(c{mM1 Auc{-@%*!2cВ>~ 4TBF! +̩P@)+~6Z2b&-pB*&p g4C8P. B@@O6օ! AжD(jcB,#ax4 @4eB$uterI @B372!4a$e&CB$bP &BaLv<6֔ h0A4aCB4BD^)@p r|s}kkp,B@DA B$w:I 4BDdI@}i90Bi!2 FRP )!D_*N'[5n@,B @@zBHHjY)@nl4LhiE<IOL@TB4뺮ׯl I :B `Q@;&4QZyw]5eJ": a0 91 il!,ra[!3 b?4bЎ 8Ҕ (J؁icB hil'4dAb# Ǟ_}5'!lb@f1 v^NFRS]u; ʥ)P !,9A 8J}HҴGVTBJFR<?cDyץLB=vI p8!3.?eN v;)I @Bu]'z(Q W<BbA@29B,Q@;LGP2@  !Di ~i$.R%є ȓ0 yBLhia4Bf?48͍M0Sld~_ﺿ`HK%bRBx4a !f8teDkײL4!B<"g9A(_jҍM04vI ԫ%@jTB|pydPq,@XBX(lP  #u“!.؛"4ve:~.uFR4!~i@?S4e" LNqi0 (2 #APASo!L`!TTBAy?%B( hiE1p:@BW4y\Ӕ ?S*%9eP /!@L`j߸Ԕ `_BLhԐr9fB\~= GE> O*!(`$5ШdM4׎i4v%ޝ#ACAqk@δc@^4eB4 i:0 Ay}@>!Lhg 5e&(]|l ˙ @L?BP9 #8it2 7ޡ|AOh2婫ϩ|&'GP7nfGƾ7 A13!Xi!m}u %){L !Lt¾׶moUBqgz L,նc1 Kop#(T(ToFLs lPa!1݈ cI @* !.' `HjJ)&B e0뺮_O@ !L8i:!(B@^L LӴcO4!0 JԟK78kTBp, R/y? @L75qA7 [AnS~O}S{`]1{:TB=rj ⪺ip+4 LDQ4V?P6 e?5}rJ(}nTZ q:I [P/%1 :BWXG-?S3ǣ۷22g$_54r'ǚ~۟Q>u'oWa%i3 "Hjv1Pp%.]DHjLLd@|r @OnJ04T54L]}^v{r:@lEVB4j94, (i{Uv=yK;'ej@<ӍLZn/09t.AJAlsD%!i{Y~k:ޣ-躮{z4!AH@y Øa3mFUc2 ~ar(igѿ!4B;re}~J@l)'.\ Gtsm`jgnA;&b-(FIha\0|VB>?P3 r& u2Qq0?f+<8VQ-Z0AzðutD; !$},@^T'h?0T`j2 bi7j5'C fBP54rک}MWBЎ#U0@9r1]1G}cǺn&c4!:TB\~O'@|NFRk:>i}(rtؒmn K)94jel/CMmB-Q '5|n_|˅cr3-FU%53 Z=ښimoTێiN%C@#q&9I#^-Deb//oYL@ΦP=(s.?{9zěSK+S7Oh۬)"Ў";I+'翰"`qw[4{Z[wDW^z߿Xzmӿ%h 1%ud}ʕC0ES"Hyl[mGs^|Vm{kxH}0 QK-4eGY;%?!`}o 㲟_~s{q.wwg?,vݗ_.۞=R8ƗXq`uB"i#n3x#a/],'[b9@"uxo,wG =<:){6X?] no_s(Bsw-'~Ov_2.Kw=7~X_|sl=Nk#Қj z*!*t3S" Om}tw:&*9bcPxJ@bN9ox:)1xB4G+' <'@!hup9 -^b/ezkli)SBj aq^|."b9z !BYGH/!~0%˂CȡGM1{}o9K;$bN8//KBĜ򉽗^p/}72"=s&c?mc&ҭD]ګnAſL+>Mp&㱌ҵ?!o][!шIXhx.B^ڈ9?s=nnnnnnį~_WӁĿ_J0L@ㇺX]xB j֡55bZ > =pba:ÆmIW^zWQ_۹%?X5B& ÑѷWW[r۞Dfd9O@DKc̜!5u~駟~_|_|_o[QjUI)SMr|͖Z03Wu{2PZ88Q?-oOTBP 5r{{yS! UCԶ4,W褁`j1滮h͖p#dQĜKoo" #4[3"nۧ{t56]#uτ(e$߱?̄hmAy$"Ԕ֨!EoϚK/]]/-/X ed5I^ ,D;&!Ka<~.Lk`r?~k\hg12FMk! KjzKE$~x֜.x`i&,%'LP5ל~NÑZ3=2tˏ57Ai,cbrP`'!Dc5O#PaX/~g0Vmq`@{ u MHBhD<OiZ^γŴr,}l->>NۚՒ#V: !l\B؍VNf:~ BBtA;-?/Ef?[p0 '1Ӈ?OS&)p//oi1}kizzx~)кq;퍘`܎Жz[֨ Z0=X}y:$x OXJ%rtk&1 ! b 5ݚiԱgf9F @x@@;) Mw.(-R3qhKyAċ"B#E !(JCE"T JhZVN"CaoTulzD@w;bmŸ]u? !'mLc\g_"fZv|=ךׯsQX&e$oRt,vJj(PS&`ʭSzDsp?x{;"g@ƃ+h|>]uuݛ7[d$5fB|M̙{тio--0ƭ|/^( Qbx0_1  E!(i@<1/ӗfb$N06Y_kǮ8! Z ňOJ LǗ8I?'}! +%ۖcn;HSaKT5S9¹ET(_кۭ#<Gb/Li1uݗ_{{>׶gֈ I%$ZکH|})L[٩Xqz`5uň[ /ݥmN`0_;UP/+t`>!dJ]Nh;K !J ڑ&6eR A^{fiiaG%``mrC䵵}03}Vuڅ 9f F 6!$nyN@Z.xXǞPJ1"68R18y8dɁ=5%Fkr㍔`׿/{l0 HK E 3R9)G)kjW1XO ! ;aCʊ"9>o!.Д}h=Nu7Y*XHj kO7M3 !zYj邲}='ͲZ2@ 'Cޞ/s'4@*! #ךIP>0,RL䢏lB2A<{ DhTD- 'ZMV@^K֫ZnlپqT4~#FYOU&ш HI%f<6N*bBC[{ȶ(ko7t"LC@ i)@TE0o< jCy?2a:P#l HCPy`QF7RR{it݃(Is'M  xsZ35:϶QO Jzi#~P]\uݛ7LiTk 1 HO|0g~"˺k+/9z$? "vċ"`ji@>cEJ^<~imbbʿVQ?̡Ntk}񵩁 |亟96"Ͽ} Cq.$^7Z 2 Puc !`g/y97m=_"JbLk&V}<]>[㟴ۤp!d_h>TyOιf⇥Q[rcè`N03TF@____?ڨ)sCo?)g(P@MBBtU-Օ@.Pa5^hΡ:!vHr"֕y\D.麮 A@)^uâ6~oDc ~Xjzꃱ0iTB,)Km+װ&)k BCε[4VG;,芭!tL8BB!7esi@Ncv ĸz`x&KR"KRMnzn:*hgľCL8(ӂ hbgz^Z5by>h(?0Oaߔa '9B@C=lbwGG=>Ga?wwG=4 oBɒt qyӶN[m.{6 !6 -ejD$OOex|EBМw|ai7{nlh ƹ*ktoUq-(A@4 *!v [}Y ?RCL#R!" D1g;bSMS&#2"ˁ)v^B5C 7B5 b/40R!vʙ$<!~Cg@ބ@WV1 [!4 OBO;=acv(&Z0$x]HlQB@<[>C[z˵?>' y2y$mcN?ĠSL@J`]̈́a5!~G;WS&ӡNQRhvLi&U4B r&`Sͯ !DDRuʕO!~HIn[3E(Wjuݗ_>-3 ȟ6%B4\B4eڔÔ v!~>2P"!<%\AB](B P !1 j-ζ]FReB-0< !HjL5AeB$)@o{!~ȟì k(QMjxҪi@Ʉ,E @CqFZ0E!m!~M2Ɖ@ddP !Μ(B?!aBt2L?wL@B]uo>0dKY0 `2P+!YӔ MД c ! SABj%ȂBMPS&Jb$5P!30! ;AuBdDS&X&2Ph2L3 B2y2)@MT;(TABQ!2*l/Ԕ BPo>0d<GIC5M(is&Ch@lB8i@"PM! E j 2q #6!0#h MQ LI@%B!4edM1 hBQ]`h 2y2f{g=e!HBMPS&؋t]׽yc;4!b3h0 @Q0Mșj&ChC21 hx^rc@OQ-!zLL Q&C&$DeLS& !hBh2L0d2ĞB! @n-B4A/BL0LE;x< 4B !DB}5e腚2CL0>00b>#i!Bji4*4BS& MД 93 zBy4iBF Лjyh:Bx6B`HфЋf#XWC!޼}g2eFR !( є  ƄL0L'J!9&CL 5eBM`H s9Hj!bRBFi@lB 4BS& Mh)cBX4iBy4u\`2@o)Ix)!BX;``!LFBMJg` !u M&Cyc'CI !Y4eZcvB؁L0Gh2ıMd L؟4e`>!E2CLGbCDc&CN2`/BVb dJ B)!H)4BS& Mȧ) !؁)@4݈ؗ"R9_7ՔI( 4e( m@D@ntwAADD2CL1G0u]L(DLh,"L ) &CՔ@zBHFR"0DMAD@}BMMtkML0,"xLHKAF@DAv  ) @OAD@LG9BL(9>Cޠ|"YDQB!4e5ӟyBD@n?_!~ș.r ~(L1Ք35?A+Yrq#{] !D@J]uoބ,BE#55"Q 7}zBbV^ v&9-BJDGє MD8/>kD;0%昮?Gщ"BM O6 !`7D90L"?M; z}h0%]{҇l 8lRz֣qc@<(bt(l! 9Q ru]M6iiQb `roj&#ɴ'~@ !7KzBT L(06gjwۙ|*!xj&HCRBX}XG;&h)@+'LE*!ij& ?0xB,㧹w?0vLJZ9A.1&~`_B`7b ȍ,eҎ MpbjT871!̙șxcģ)!bS dA+'Bz"?{7}iO+'nyvHO%P<`ç}GTK+'E;& h8lZ8j8& @;& r%~ BY'~ 71L+')@}I%δrq)~c ! ͛w@p,2)]ю '(pL( B;&3EP$F@cVNLӔ C yR P95PeB4G,躮{&]ӎ ڡ)@nA%Aj& "=eB@Ϻpb{':'~D1VN%\c4P.!%g2P.HD+'c r&fVBf5Ц@O0`ӎ h唒LL@c@YTBPe ! "ȟ`ȁvL4AC.G21M0?!hXb{ bxcQZ9L0?@ L$:1brҔ Z> iŴrV Br 'hIIS&J$ȟO" Z&ȟ`ؗ`G P Ƕrlh` E! 'Z >  O1@l$(q5BPXbO~L$pܾhM۷x?@bH%p(X%B,Q @B !BD!BQ!(@j> >> stream xݽ$y&r8$@=Уߞ\Fܽљ{{ٛ#ȫt:h 8FLdD?;c YUYo~r@P/b D`' 8N@p"0 D`' 8N@p"0 D`' 8P_׿?q`=P;D`@qnoooooc"0hfXJP__G?~_%r\. @L#T,! 2o棏>裏.<@l"0h~~ŋ/v|2j' W ?>`  (N{~D`D$PVx}w}˗/_|ĔˈW  (0w|@l"0di4,?`D`@q>`."|_W_}W_?ӟ?鑛}-je㧿/_?O'?O~m֚6~ܵ Pp//!` wP>Tꃤ?~ e{& 8X`4]0싐C=LX@6Idz uȽgr¯|! #YZ5$( (0KaY 8V:!lDX "+B^|>{ŋ/N#@D`@A^lzKP/P)=6j!MOZ 7]~l#@ "0 Etb O!]?IF`@ca?S!:/c#عR~xg ` ["Xrr g,_sm*t@}7?)09S`W罿iYD%0$v4wUa3=6>No?Wz/5D`@50;rlU^k` "!~9 `?"W-O ~LD`.4cPi$Nm=u "$pDξ]`ӗPO=y +AX-R۾K&9D`nG ?' })7M<[;5X]˞c,cpt+8,ulP"P:6 IR"0`3*_gAkfn'Mi ]`r4ZG1ŭC:2, @p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0 D`' 8N@p"0swnooo7S`g ȴlb2x)0Y{U 8 &~p4EH`sʏ@;6D`Uʏ>>u\\;P-GZ2upLƾO<'lUnML=G쮖kh s-zާsW x ~-,##@.iP~Rñٱs=姗zZ!oT ^9ּOeSbT #[hl_GFT[]~V(Bf_9ާrY46V|Z0ОBeT|_G0[ܐ_vj'XkڄnqMx%u7!IDcP1GFKKo<¯YߚD<1yGzias؈d* m3v`FU-XT% ?5(Yx݊`6zv " M4ùuœ%4Qӧ>W:Ȉhh "0]"0xF"jh.g͂ ƾzs^}q"]"6깝lq̳v90Fg_pUD`q !+VXms^ϟYl>b#3r YeX]_DcxmAL+XOF@/Xc*>m|bHa% --Ʀ>s !L3EիWӟsO?kl=XFFSY ژq6E16y6$؊ObTE468}׳[]Ei3M!XOFͧWC:Q S)?3&fL!S4hL:O%"lB=A2"09Y_@hKB0NS0ӑؑ)3Mz0|"0>A_(&0"0J=5_xv3yGHyaD`t:”T,!#Q/-Qyߡ{ !\/R}5/^z ݝCY_[`>K'&€֘/.Gz8 0"Pdwb/(j$2S`Dg0IƎ~H@ hC aϵG^2 կ(0"0"@@lAX8_ww6D`" 0Z0\P/P.I#@ma@$"06!P;[J0ϫK cw,~CNT  AP/3€،_u@-`*0FEƎp իWҿ[ ;__"0R@L-`L r\( AKJ&€؁-`u]M@*~iK@y-9 1[10,"06 O>g"=z"0f -`3@P9F1/ v0Hώ 1-`@D`d L@@i$g cEqUڈ $P;[uF]fM"02@pK/^` G ('-lI& #@-`*Imx 10 uHh $IZ\O!{]Qav@lsy-uHhmPpwT0-6U¯vu]u{QH@pa%1 TN#۝1Tv0H$Y;C!%;QUv|駷 s=>4 D` X"0FH?WH"Q!؎һHvʏ-`u_w0!Ju]uÏx 3. ؁l`O^41"]h\ H@B$0h!)EȃHƑ, v ; $p鸪۱wruпu]嗎D`[Zei: ۜ-`@-`*@jl -`۝m&~DQQ!S`; sywH? $-`!il3靈 $P;[ 6[Zgfhl7*e꺮s'~z{h:$mPt $%6^Кt dk!A [}WЎ;`{zз.EL4-@1HZID`[T q٪56\@t"I)[uHZ"[Ș(P;[m^-`*L e e@vPFM(,a T,@FM!)[X:)jg f P4Nu](Pǁ`J6` pa%WLv0H(-`*ȳoa {8!)F8/s*V !g4/@B!)AsXzSjg [o X0;c!))0Sx\G`2@4(MC-`u:$ehz L& 001YT }@:':|x@!9[1Kv0H(V(-`*y:kt (&spJpm p੾嗎dz hi$@B;!9R,9jg f 5%Qa#07!v@l0HZY -`De5@@ p<V ].ޏdx]Lʼ>Wl^r\\.kC/-`@ll+P C6V X2UF`Nwv0H0X~Qd A$ 뺮suH  /Ac.V Hl=~^eX R~ RwP=ï\)h2EeSy0hcf̢;vW^zxpdۢ! Plj~ ʹ-: P/C36S1CL3l#@P 2hT=+i P-`|C?A `Kk/j嗎Ɔ T 窎/!Z뺮Q\/ Zc:|,[+_\ $Kcpj@j,{[bK?^rXDf MKU ꍢ1{ss֎>*_b/J3~M+w #MRi Rk¯Z\g }7eH~]F:PreZerؗ-` -3AY05trnH`ƶJa X 2E Z zM@l9򧺔f zF! kd \?ݹة5VxjKT (激#[T as/_kz ; Mi4f:h*KMcѥR[<{{Ayy s,3-`@!DX1@= $@´4~Q>;5l{Pi'D`鏭 0<&޲Y08Rs 0hHkg7^htfkoH[),sOrg~Y3b(-ʵU5]E6<9Zd k'ǡXwZc ,cB%1\/|wޭEQX+ 0?&#A:y L-`&hI~s%_q?.+:}zGc V>Z=@@ZGPV꿫%?(clƮs/HZl`.7c>VzzF-\_L,=뫈UE`Kͭ@BCT뱶3*(Zqg öAӦBl{/Ѻ;Pj1m3zF}-Wڛӭ+t Hu󂘱v>m0 V;f)0+cS`0j9>'x%~o3{#F/^xe`F'BҤS9vݍۭ#0[RW/.WFYgc[~5(8~??^|4H~(&+XL#c Raxnw t ذ}E/M$2wwwwwӱWy13b%Hk9.ۑ?-`@iïon_%x׽ wzzN^ 7/z_r\%.J濆ΙL~]ؑG{=#0H$yAǜg`LOJzߌ77_~gYcmWkM~$on?ud:|9ïal{}޻3ГkKGV ۱ilEko_q:8*a"ozw]7>sZG6J egsݟ=-'/m؆ܠ?sïosy1+zQbKsV=5Za^l4|Ʊߟ{GQg+bK!WΟΈMGcG̈+mnrYS4lk8Ly.+h7r=-%bg?ߦkԧyL67|7rpLNxG-xsol1 YxfYgpi͜WDl>裏>UxM$-`ÿ] #??o',+ӡػƀ ү+|yY]P&[/w};dYlns9ØS6>>\8믿m+އ>=>XMY ¯ׯ_ئ0AXg|u9z1N&b??qoa^- qW_}W_o6̜{+[45̽E?ޮϘf"sQ/ "'V^m?AB_??_׿ΖzBw+ ~m;Oa"l]:^GEo5>!vjߚ285ݚ+̚{9jI뉺WAr+sgjpktI77ws!:& ؋ӗ-̂ JsZ6m> ,zxa-]wo|:qbH+LxA>QW-CnE4zϖ͂_t{Wm#;R/{ bh-aÏLb+g0{: VG![#.g'+#`u뻟w*eb/艺thVor=,;{ׯs/mX| Vg!KϔyGOжt X;H%{)Xвhlh}R_rae.?VvE¼ockנkRk؋D];,Xc3}ò_dۆ_%3ğx@.?| Y'S[c۩kD4j޶wuL¯r?Q&~_tW؋Hɾ^짠'ۃZ%Wa{GTeF`G lx4~KĨ@ MƑN{GHu#YϹ_kۺu]|rYb/u]0U K\~ۚ+G_n5{Wx|1 漠gO8hmnۅ_sgڽ3'c[` 'G`u}~j roGaz/iPs("$w1G\LvA9 Q zb/a g-m![*]G_g-/!s%9vR^ w,ELC昩ǯ% ǹ_Jnqa87^# @9 yԨ)ᅰ$3Fo۩dzK496~DZ lYڧ޿CW^zxxzm:(~9/J׽k21!M6}B2Uy"<:c"PvI)B!Uj::oW$b/(MS`f Z*x2UәupׯsmgΝ`y+{:&4sIwz\3fΫ.1&q8 # p 'F9K{A.|긮#*s^u_g_cas)3A@lKRQX'"̜WbL~ CPAz/ʤfsM(on8Jxk[ny#*vq}u a#0sNo^X >2x~+k}axZ2c~KN/ÚK{9_h6`s)Y yayw[寏Ֆ-kIdX>q8^ ek&䵦 {~ZsG\dAXi__뎈_ ̻C#?9{(=J9׸9m~H@GQIּ7}T=ۜww[@$a?Q&vCoY x଄q算׻ @STT(A)0um!q=NNAr/(ozGH`,;}GҎɶs^sԱ29/k^l^a#0=6心a9{[~sz#0G7hh خZ_Ώۆ_e=߄_aiXN_g(As9|G񌛺47FˆX8e櫜kD4׶/jhUuokkS6O7v/ t]} &H_D?k[/M cF! <&ڛ $\MQS`cTpFե0/_ uHv E`Rjv{{{ۿ{Pj߂w?m L7cT _S`7o‘a¯ _t1\Bn[;}t쭄d|ײ#LuN.[ɻCm"|jn ͕'-O ^/ OsS`,)0JǤXvab/(_: f _=c%. jFYҎ[a/we/j?Y0*4ksc'„_P#`{F,FnP*^ˎQa/s5ɰga/Gg-`P;S`@C „_`|D`WCBla%]Nh,@]D`lhԶA/osڢID"0i01(##D"qZ uHZ'0oyz9C}΁ѯ-`e ,hD~@!GSxD`n LmF"0gO@T NEIgQD% u]I."0,͠ LSsk mRrC@!ij`bf Z 0 P3@8,@D`]{֑|&B&>iB;re%, @T il4uH:>y"59q6CI:$%m@g`0Z%Mȡ -S|!J&ی:$0M,"9!eꐔ06f Z @t&*8!'؝:$L@l'2uH Y08Ǟ>3de" ref%Yovd^Ul0xGuH 2uH+vd5>@ D`SC=HxJ1å@uHh:$I0i""C!@6PC<HCPuHr-"cCVuH`:$2"2uH  lD`QC{KN ȡ -SXOV(`2uH Y0|""refZ80XJP`o:2D`E3LS!+!CKMe˟'`XL|!#rt]}mRKPuHz[UC!+6 :$L  ˈ* LSp [Mȡ -Sl熰Jfes* R $lM:$L2c$":$La '!#Yo2XC!i@T"9!eǰ J h:$@ ,D`QCCZyH8 9H[8,"FC!HD`M:CZ &kY0h:$,?۲ kY0 pZfl?D`M> #D" u%T $"rX-S\#2, J j| 8SC5 .CZ9`-`PSؖ('!i@D`MCZ  uHlB9MJ#]3EZ N(`2uHyT l"0g K2 $`uHh:$P/PC9̂] pZf0 g\{֑2R%0M(+vZys 5j|^ڒ1F1:$0M(Q^rC@!ZAhc30!i!g"0ȡ -S'`6uH."0RECEȡ -kYE*fe@-D`U`8uHH C@! CB!V51W<qhYkYo^/:1P/ rX-S!`3Ve1uH`ZuH[ C9!e1ꐞ@D`lL(]CJC@B,"06`$ȡ - `@9D`HVC1،` :$:KAD"0vg Z (s%@jYD"`wg޾ud@B\"0bvV2}؅_@eD`j|,"0 L; 0NƎꐂ0`HZVZRJa:$p<zwH *c!e!mֈ8 PJc &40`:$'!UG!U %"0 6CKe@B D`D!D`GC@ˎwH"0 %vC9ς=> #h0h[:Y0["0* \{֑Q A QAj|hVu $FFaD`TLmZ@kD`TO-PmS &# LuQb /3AD  Rm@D`%کCk<>  b˯C-AD -SAHXNxGFsaϰ>WD`4JSCsh j _F0[(lj0)|O> # A#+.  4V@ˬr0(\"0"2̓ `AL<"0M%P6=>[}`!A)'r1"0XEQx_z"0؀ ΢ =%fan0׭;u{{{{~ a,ho#S` ap$2NM;|/"0؝ q}ڃi/H"08 z8 %Mp$E'~tZup40b ( N&cC_@iD`PAlKb=P&d:P2ݺBooRcoz @-D`PMtfA`=P;J6|,0 )0fzRlH4F<P/Ľy`@ְ"$5@dBeO@ mz1ʡ xD`@JbPi/ *h\/{ bQ2`0d]_4 h)08Lh (hC2EHh Ll;5E @ _=c!ʪ{!EH *H_)S`,o:$1(<L&Gz r(B}*؝CP۾F4VuH'XF4 @>XO@6 @il؊ zmCPD`86Y_~A(4`-/q-Zs75hek˘]TzԘ@$e4135mX%v4 3ϡj * L6S`1uHZ:h "l !ُx gQ*{jL ˉ&fR1Ju|s)0*v2'2<`.S`4dceg@l"0e?):8 FC"0Zx@p/b D`' 8N@p"0 D`' 8n4 endstream endobj 74 0 obj << /Length 1129 /Filter /FlateDecode >> stream xWM6Fj.glr(ͭd[ صSCRly  p捁 ܀cEb_g=elo~tQ9nqDA\6$oJoLjϥlVy~s4q^kd{fiitWd3t~]ݦ麚3E; IIb_5zfO~=4N>-A-T9(#h&l&0쏣3QCڬIl< Nj{587 /6@~f_~hu?τ.=5?Gr1t3:6ŕ2$s+ e\IOKh(-QߎE(`f(%dnv%mECv4m62VCyc[ <_j& T4V.[ѻLpEqW,Q"f>T*К`H rF8tҴq *Y⨹c 䖐3ZuaT2\ 0<2#BȒ(FA뮠brq)<ʖ_g:()+,$~DZNV(e՟4 %iYa|mjBm W2:,HtJR4ȴe:22UiF, O:4 9֜jXq'p'/*|0;[aEa0 u'26A0QK M %ܳo4K(b'L)m0-vSm7Gߧ ),L@&KTR4&~v:PW旲.$7!IGW_> >> stream xOrXv7l13݃nG8y9T;ao@ 4$*a^k;=a;:lWK(!@ ދTg+uJ ~<.rսS"`3Bk6#`3Bk6#`3Bk6#`3BkpPu^ZIh ku^~>|A5&M]w}wj45 ޽{?4^xMr\.*ӟ?w~\GHNkvtZ=(Nk~_~ ^6jeZH7C~!^K ;5opw@`H7[RP*5ow4Z;Սqu:ZAh v8݌O9f5 5 Mێ9FZ_ mX؝ /-:Z|Dh &n܄Gxm@^y:Eh p폤3$Bk쾈}˶ѵ(7/w~Ғȑӟ?ʫ0G 0/5 3]*sm}Q\iDZMh݌ ozzx6^`Bnu ۬6#uz5m{'Z C5kvwk Bk`׆7@ o:cû|}-5P%:]7o @h ȹihn[=.ruO \Kh )tZSwBh5Si;_GGKˍL_ `JA M0tKwCnthByy}/w>Fc՚K>+()'mq2??}bl`AdA2xk a6P65@o'b솞llBk 'P_߃F#vD<84|?NC'aC6@  $7-c8qA ]i A6q20Z@o'C mH8; `ٚ #< @8md`>z֌l`:5I$%N!H @A<8ؐ Fh 1qd /zrd85"o'p1q52ZXqj.g=K%n-Z 'dHp!1hq16Gh A<8 ֐1qXdȓkؐ 98}EZk֏c!muM:I5#N~[ArC 5G Bk2 fJ Hpl IT~A1ӌaC6DhJ>}} ف2ѵ8`:#X >5g.zِ 98i&r`xwww-uK:ơ{\`oِ I _7rJ%6\h ˅ٮgƃB_7^tɆlXNk;(_~ZdKǺ-i͎,ד`1qr_q }Z'I6ec.-Pq_n0Z}Z 6d,!͑57d7pliZ1vhq`^FOBkw< ږ c)fcC6@`C6ȘS}6LBkзi)w ȿm3&2ؐ Jo<aUC6Z(kHⰌs5yZClʠRf8iZq߽ @-.&g~Ϟ4$Ww#}1.160^ #W{c_y|cw]3ZUJRվn9Q:fd_T贆ِ ] K!=LcC6z-)_\1va6A^Fɒx  :a^ƞoClhva6@^$IlaC6mƃ!ai3Z(&)V EBk;l.ȝr!ƦBkJhvкhnr\pe+5|B]Z'ۥd` 5DMК>۬3ZHhqR"lw !ׄF͹WK?:ԉَZ'JFKy:MpXEh _ ⰳ͚kQO(mbl!lq Y@׵AǏww/ܓs'$F3Za'fEblاt굾_q2'k+5[vY[zyM;}ZPc6/ni!tK|4"{u8I`Gc2Z|o .7Sǒz+ƃb8NkXu@P @^kؐc:Ϲ6do!N._|ɪ*Q 5bCv [6$ܱ絈s]=R N.O7HnXbZ^-K qryc4S-m`cCǣM`抱juEǖ:>fToyu\;oַ5|@5,Άڐ}-y4ȕ8qr{x;T=Z=eYs`^tW; ƃ3axp50Z|3ېjoi fn쯷';j eH6k@5W{:\Ovf8vֶSs'dc8nvU6DOv{oӍķ{Rވ#N`MBkp<Znx_bՐArP^]~1U =ZMy?~P%6d7]Է Αn#N.8XGѐpJ"ѽ󜻱cB|N dHК5StmD}c)6H[/5'G AUU먯 QS.4YPR`5!vٖݷ!{ե'd6[P5:]2` ?׿{}b|^k7d/MP-qryBs@5@h BӇȘ{ KQQqrE3۳r Z3vF؏5c_q0Z\*uTGh pc6dO^?'$=2' VsF7  c }A~վ'o\45s1/rQ %f&ǣ |еh&nbiR N!YMh 1v&n>&xx;T6֍}av;='a5eZsf?::->86UUU5nƅ'MrxU@)[idǣa#й.!yzx;T2Ȟతn >@֌DQ%` @lFh c|~Vj6[@Lp<ڡ0,9oUY"`3Bku]_.!{r8iOhZ$-=<ZsQ -Ah͍G"R]@^<aUUU)\G  K8P5@bY {B|>X @.lFh+RVu}Rq GBkȘNh c|~V3Y xTa!p>' fkr#F]ti: _Bk^`XUU05@BbY%R&`3BkF8mCBs*#@.뺾\aȑКh0*먮&5Z$!9l @ :m@BsZu]!`3Bku]_.cp8)Z >}:1gu`)j@ʄwww! $gAhM BsHA Tu}KD 6ֻtêʸj5Z@, }Bk:{&x;a!p>]X" @ lFh EUUUU^ÃGw 6c@ 9JWǣg1c#Q !Y`.:y%9hPH !u]ח:mKIh;vx.SUU;VciQgMrtZ5wwwwwǣa!p><?i wx`X!ϥ}G 5ZlrQq8:.8VUU:*lAh c|~VlEh ;B!Zt`X!ޭ`Bku]_.кp׊-UUU6l` Bktj5҄ 1gu뺾\`[UUUz5 e` YV1gu X^!Y`B9 xm6[5꺮/uh d*Q_cZ'Zh` Bk:!ލPa!p>Wj҄ Xк(@꺮/uVUU5p TKh 0c|~V;p<B8ujrֻB!㹶 :뺾\l \օpr0uTH`1fk!zl ҄E;L !Y`+BkF`S8RVu}\GT y &1gul!:uG'B|V,` 5K뺾\~O'؋cQl>TtZg̸a>}:bJ Q1>?ƃ@Gvn7f>r8':s<0,gufV׺؇5`:u+Ч^m`^Bk`6ڮj1P"8dc},$!p>Ü֧Jpv՜E05l꺮/u *; ƃgp8l2D0jrx{7oi pc|~Vp<B8a)jmօ0: tBku]/5aBl0uTȍ\Oh 0J1>?tl BN&5pk~B u)뺾\`[UUU@o1gua!:p-uGʏ?VW5HY!0#`36u]ח:@Ib1G75O'`NH~p-5@c|~V]8 c zA`%&%,}ZT G!p>Oh pETjÃ0Lh(RHmnJ70xC_\Oи@1K99 T`B8!-fI%Z"j`M#V1ƨZ\m`9Cs/?}sJbur%^D> \@Ch B1>?[ӵw#xp_7n>Bi?d}%!YR|\\`6g5B 0uT(XQZ&`5};"B:@r)RVu}9Ǫzz^ WU5 :01xxPBkc|~VzP BAhZ'xTW@yB|V2X OvZ';xP\O_טHh ЫkǀT5O'37f WGUUU@:quTtY @wm\ 73JFhѻWB8r'=yxP=ZoxHY]lg8r\fZ@F\B~|P`bYHNh B8ա46[^뺾\`[1:7p8:CsewΧO>}Bk`wbYXR_P-o `Fbii`o8șB:ȺBWQu}׸6v)zUp8@*Qyu65#1\O_5N'po'Eh j5k GBk`꺮/uXXx[o g[^ ӧO?s Bk1kv_fk|PFwX a}uzaǣ\/; B|Vb'@^tZ뺾\Ve鴞wl@=9I\ ̩uTZ\+q5y Bk {12ck53' BNW:B|V35@Z\ @l%JUu}hfIO^7,r\\EܚzCX.wƃ1gus p<B8) .z u=<ͥBh ))_1P>dZ|| %FUU먤U} ,:[U"ژDfk|gu<ڙ,O\ -gu`90۬SA rpp<贾 kJ#SUU:*q~;6[Yxp 1@Dm83{\lE<*Nk(ʘws%_{&7Fh=ؼWK% dq` S1Gh dx)~W] ,mCKڷFh=ٖ/^TUUFW?}45,"j5[Jyh܊OZãY@1>?*4vTx#MZMoaZ}-ǣg^0V6d~h% trmPb{m戫/=6Bk cu]N^WUUerY[<س%Nh}Ł kuP)ޡ:5Bk i1@\ 'csib[\&OA`ʨp#A F!׿ Cpa6kBsN')Z/B KvZ L5~Suj/`Nco:s lq`Fh16S|\s4UUU'uK|k?i&We`nMĻ^tgEc ӥcps֓,1HDO64 Fh]ݿT]6l:Z%AL]Xz\aƙ~N}xW@EuA^\o9zLȚ֓ _|~\ s]_,nF.u_|ITkk S۟n퍾ZBUclRux-nά ˎ *o{;Z.UUUN#7rDmu>~ 7\dCqoGaj]%T90lLkb1{?9oa-Mh=ʚsm "~|9G{?溽-_[NjyY"[6D}_wD2]Blؐ tro?"5ko_{X^" OpA mc-[h=^ې _o/Woɥ}xӼ~r-. ڻ!o_'ceɣ}wƾ4zo GczEh]8Zߙ!Ps;nKN09B-xno{ uvUUU{r^z{ W:pScC6i[Q<~+!gK<KTqtR(I #X#VbC6*L>s |#ح~FI^5t#t:5l32w!Ɔܟq{Xr !Y(p<> -6k\lRu]ϰ=Acbo&d}g؃y۱t^&x>WuCȅ֋{`8@M/ .ϣk7*EXךVlEh"חѩww_kkλXgyUtD+>%Zn>F0oY[~#[_I?zllblotZ/Ҷk_}wiYv>Cy>~|1`p^k[=ȑКؐ UtB.mMc-=ۿ=􍉥N6 ؔzlF>:lسk/6`}gP}hEy{گ{OA|G\ˆic^ǿz6[/͆l 5gPtKf{Ku#}s ϹZS8?y=W8oKǎ*S7blR0*Z/x&xuL<틇uh#)kBKK1]{le1Vh 6d$KkyqKKgx戫3tw}w__/fIiZ/h;,͆l`]jR92imsOsz???~Ç+ֆbl6[k{:puIKP 4绻өnVgԎ\Wk;S#@}ܦy †l)޲16gY5\`Wgy \QK/(;|.}vsd6}wzF'w6dg . HVܽn>6n246Mݻw޽|v`7+Ɔ֋ٚ 5=:tTk[[3QV?N! t#Vl]Bk، }꺮׼yQP @Zoyj?Ǐ_ǿ&Xz>-7QU09>}AuzݐxL}mptѲ}V5$Ćl4mޠ6ˍ/A> }ݿr av㇇mV͵?J=ֳٚ%ؐ o&)z,J wZݓqum5>cjkS=|ÇEڿttɑvĆlBP C դCh%%"n--_:bl'ٵ!Fk}npȑ3.C.qxwZuo~-ݏtv?vMؤFh*ɅBP {6Q\ln[9ڞ鹾vnޜ=rnnyJa8n>tTBH7TC >l|\\=3u;Zc1??6 I-.-Tkr%ܭ^v|xW???x3~ca5{fC6pkd=jx]UUUW5tͻ{Hߚِ t ~i>wjQ1~|ww:EN>K}al&_??ǏޟÔ&=rvp~eKn}s[1vʫZ !²1%pZI!Դ{rdkOwpX؆`:4e88/qP Ya.n~*c!񘯾m8fkg#2" Q\s,QEUUU̩ A5U/. H.HftZo%W ٤cy.j6g WO`<4{&eC6[]78ǚ[X&f:abi#vĆlR3otǚM*1+A5 x1$ܱZ/Pb쯷'{Ə ]َ6k۩Nü/ؐͼrW\]u>OgdָYP KMjm>.4)R;B2 e˝K5&6rΥǺo:7sz9u|{ue߿#_Ou@ tZȆl0~Tڟoj/A5k6=KC!as +{)>R_~^64A5o:j!,Z@lȦkLt=Dz(ZP ~'O*i(: 2-Hp!N^GS&TQ~`\;*K5؞89}k$&5^7 BkD`pwǿyk5'G!<=?c֫͟†lX gzOj$5tR2gCvƏ SR Nރmd`<uC|vZs1\J;ӟ y?fkR:V/;i F W_ܚWG 'KX1vmblVGZ'O?xG]%CbCv.r﷦xgu]uRCL GGDy{9 ӄC6[X.zkzmWE۬{yJq~!m&MYNh lȞW7nз٤f7 :=$ú=@Ɔ%4ptmTxt|.L=' 7c56dR뺮zO!NZuy]W@jʆƵq~kT'L' 5K<ؐ=^:wd~{$7ǶwMdF1߇ltRHT >Ul^μ `+'иǺykq@d# sF/J8 0^_\l7h^6O V(ڨpȅzcͻEyCv꺮S׳!wwt'w1{-1plo:i6[\+ F=ӏ8uU\ƍ1YUC"羯8|k][O,N l}@ āޖ:ڐt\ΨTsj%w'J\ۅ<9w ۟39݇k?gL<>N''@;TBk`yukTs}[<ܩK~!|?g}d'#io@yc6d/nmr,xFr&4&`n}9<9}u+.$0 wln>. м#pxmOmx>lJ=‡7NgTx*@'nӗܽ Ǿovw7\1q2/!~B 4h'/1m}['M_Y [W@ل̼ ִ\O9ۘM}î }w'/6p.=J57[ W:9rC-vϲb)~ӧ?Ǯ>M*kԼ{t*X7N޾':ȯ\?W3b?[zCvח_cq1鷿Q!Nc!L`K;Ä;KoȾV;սZ' |`lPBn:SQ'G\ Se512m(k'ycsf qos0ݾ5-N'55 M(='mKsM:Jh&Tѱy_W0L1Z3X"͹6g<WT=Zy4G E AyAtm\֎ ցuL9ȇXjV#sA#Fp8T }S矛DZPCxz1߆vw~hȑк:Xx_9nT1x~tMNGEcݽS`^FnNL]lWO:EtH;ҧzf:N4Ձ%wرJ ܅ӓ:0WF5pd=z`.6[ÄEi"1 [qᶰ_uTy}q_ڄ@}Ƽ[Z; s o+T/4f8cgBk`3sZK˜u-leX1:;޳`I Zgr\.p8Tu,m.qӻ|~L2:uKϓBxzR 4}{uEϥ{#.֬omcxgߜx4Rc!woS _^So[-_KH:[i bLxm\͚+?+`:c6[4tյic"l P=o:ZLo)9~kA5Nb~{i;}N]N 1{u-X_r۸:@4>ʼn:84Z hv=#SXZ7\.&gѷW_Zn;Be1Gu(O!<=0N5h?SAh6[{t:m:vmZjsn`?\;@h 5qA5+@u!C0F̹bT3b5@lQ$B"vx-/iw!&b%c/%v5SSbm#NᴠHT )0tR J5cm76[fk\Mh PROu@لֻs6\: 8Bk _=Z9aBbio=zp1Gu(O!<=Þv @zlRG5O _݈7߷ʠi k RA\R`ό/ @#jl P*6;hqq5@N'5` 5h,c9c!p>FIL^as;K3H`HP @pwJc||Tӓ:Bk HNZru:  05[Ih#@l(e)lFhoHM1߫CNN'5ZBk !6[@I` 5Zc||Tӓ:> yfk 56[踪 4Bk6#B!tRn#2c5@l.r\.Br@h+b1Fuc#J2sZ`0zl _1 !'uȗ+\KhM/Hl Z5BA t0/51Je5Кr\NjtBk` cWh6Bk 6[Jh b6'KZc[W1>>@yBIlBkdN'5`.BkF1>fy0F!%Z0T6[n##\?@^\;:tR%`3Bk 3!:@ ,`:5p@bQBOOZ=mr\ 05%`m5P sA`ir 'J"F::YOׁXB:y+<6[ouc%(6[@^Lc1p5=`^Xr\.u G1 !'uX,Mh Rc0/ N,Ah f@!B!u)L`}Bk` T6[@@Chl Rc0I,Gh fk،К@bQBOO0lEh̜R&ZN'5`MBk@!:tVF457r@l(#5Z1ƨlEh"1{ubl 9 W\.,Mh$NYW1>>@yBI Bkd5lMh f@B!u!53|l P*p5 ،Кc#R vfkhn@:lFhl.rQrcPBxzR!-5+1jH]ړX !=31fkRl )Z.Nj@ ֬ 51xh5;6[Ch f,cPBxzs,p MBk6H5Ch T!`#Z ':fkRl Z@b1Fu MBk6$ HM1߫Ih Fh ;u\.:-5s@bQBOO)Z1Ԕ5X'`3BkBA(Ih Je5@hJ.rQf @:$!cT 1x45ol$ȅY-)+BCiZfku،КD@bQBOOȑF)c5FhMv 5@BAȝuLh p#sAJfkȋКyyg5 Z @$icW r:yZ!BPrdE#ZM+(ꋮkj6[n )P7c@'Q0v0Sx;r&ip8鷬RӚ\:CV1>>@yB)t:y\ȝК-c71x}X),xp wZf8Fh͎ؐ pLq0*^<%f3Z 9c!p>/uۯC_v鴆nwJ.=ءc_+|鴆ِ @fkR`08Zl֌lrg<8,h cPBxzZ+@ְ*`l 3`C60Dh ! /OQS.X `MƃC6lȗZ5G5d/6Z\@F@ b>穷c2"Z.,c7d4lvhqmn9v671 !W`+:7ؐ S̵J%fC6B@h lg ci ,Ȇl.JfI(Nk`U6dttZ[':@Nk 96de)`?@6-.X@Ɩ-{90c||Tӓ:xBk(6d[6[N@ٌ gC6%YU%vʆl`O' \1va6phm@bB8UUPnx]zuCcok(Nkؐ  TBkEc7@XrCFCbQBOO?UIh lfk(1Z`N'5`?X.ntl16,yf|X60 KFCyl(յ`otZe⺱! e1xwww`wlȆml &ok;95oOv!'U(O1>>wx𗡵kNk`C6RXWBk&!Bh lȆ1vxH8i flihK:، }ؐ {# i6dS6dibl`.޸ ][1(ռŻeE!<=rny{=bِ K3N%`Gl1^a8c<8p-qr\`o0l { N`<`&NA2Ih 7!`ɂ܈`ό-x6[ }2485C A5$dl1v.//ȝ8y?\wO5$dl0Ld ik a6'8`-7T!^[ RrK,H΍,Mh Ų!;_CS` q@bِ];m(f܅b)q[(\sCNDkbC6;rr9v#Z@ud&?99 .!~|؁ h LWg199;׃l939YHFHNƆl2CN؍fk993 L5Qy̚NXlȞq&CN;ؔ S9dBxwn&[Ɔ4rr9a5@6d٣KΏo39YH)d38IT1×#6dFN!'݉@("'琓p=8\-njrrA0i w ''l&fLjZNNuLZ|ͺ0> >> stream x=ƕ6&R(9 nAEO z#YZ,0 z Z9%5y?P ?Jk@I S__H!2S裏># N_?Ǜg8)K a8=LOqˁ>P9h@o߾}>O>S('v@9 w}w?_ߖtDg(@h~LJ~} Sa P4k~~Dg LF ?5\ b-* ?3t﷓裏>裩<)(@4L- ۣ%?~%P@ y6L?G%P@^xŋ /_|r(%J!P@+BgG "P,02Ia@- x>sx$% b@$ǓXao Kvg+@ ȰBaj #*C^hĒ3  UM^X>d'P@2rI S?պ_FL}#P@OP8nBzˑq@|<9⹯\͘T[ǒJ ʂa0PX2q`϶m!u?pAKr aBns48:* --gMR8z((@qNa]KԿZ>`q%vdIn4ubϹWE @BX0_0:l!%1C ExS# R%w-Xsgj  %SGֲdU@7^6O %aC- w%̺kPXM}\W,0PK$v*qKZzev9c @B0JaXP$LjT0C$M P|pw[ %< @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2L$( @2CyR$SJ)zPE۲%':"JA&9:j GM(@E`J!Pl`!P&PCeQZ5gZB( Nwno[B.w)R%5n@ƻ)6ګAlu\0G@1nUQ¿[o%nU**YU 6g~v];& ]u]M /`{]#l) |ZQws],?Wۮ{{ߧ}}!PhygX1KE)5J+1nX̦ XRQB W q(@Ů c2x?m =@ۖ<{/qX7s 0O?>߶~7!-%T<7Ae%@} `7NlgL_ezWﺮ-c@+偱SR}&y< pEǩUhs 'N|Z8 P'P*˸ag x@Ӻ~=txGBK1-O/٭"=7Ŝ&n`x3?nH!s׸.v`d;ٯ:O c7Tg  ~x@rjkve@ T(K⽷Pf_o#E-q * U~4;CІSj2uǢvRQ'( bI|gJ$[[~-ixRN4;48)/?"{[vzhV7TId<"Rq4B GZ|0|N/x|XFڤ~  ۭ0"/C@!c*`7\7$H8`5)Pˉm_g,’f<>\G1\6זv{ ]7)^ήA}-Hucvywd^_s=7@-T(ԷU$?a6O븟O3ufE:wτ&8@ D=5;W}<;\QN|p\(gj ,@T Ka|7Rqt)es02߶h̥u$Vï5AO}[EBaYON;r.zBpSz'8,Y`:AZBx' pjZAxј,dwwwwol:f~_|;pNzP h_h|h"A<'G[F >7F 5OO꫾mX/&T(,q"  :P"Q [h"y7=!zUu  U$3=8 4@4;l `/"]޼qdZ:=a $!@ƙ}J  nk h :[E?nB G4; i| 4S?гU$i|-^9ϐґT((5wT_a U2= 'ۂu To{ILO`+;>@ `@昞P[E>~U,#Pb2ci<=A@~bzr hfUdO,'P&%)@**虞Vu{KXB0AL(jvV4>@xl @~`@yXpLfz*gzVє6=A=,L(P [E=8xJLf5=6V#P_i<=GUMO  EdE4>@ U$@jovP@L*rh@xM@U4;Ԭ"S%1= z'绞!&((Fq 5koB-Q (LbOO@M4>@ }dD PxjV`Dl MU$3=6h|mh| W2=]GTGhuT}r\. ZB"(lyaC2}y^%D p4ϴ@ "lJM.(P$u&U`D Pdz'&KZ"P0jfz[&P4Yi<=GUѦ'\ (\[kAp\m(P u,:xzfh@(z<0J+Żbj'P:h!|U}r\.uQLO##ҥyJLO :Op2@SP3[EJ6D 1'hvG@e`M8"P$jf`vaHhLOXOu(p8[E=` Bau]׽/x٦N l:'P@!&[ED P +`L5(*2?5L@F'@l  OC!l LO54>P@4>P&Yhv 9v&=޼qdZezB(@IXl(G4O h"6!7Jn`=[EqL x|GN8f*d(@LO`Hf8$P%P'VeRLi l"4;@>(@M '78@]iv"(VјP.MJz'@ 4>@2nQ;1=f! b*Vm=].6/rq48 v .|N3P @VQ@*h"1=XB@[E=8@As4hv -Q;L~nBL wwwwo822=EJPpsk!''U$@4;F( %R@V麮: 9@dʨj7 < $P3[EƢ# xwLOC(0itM'dzB<y^(NX*2&hG2Ki<=AC{(\Z&" X@@lA"1=!.Gz'@BK,Zu]@lu؃@)vlwY @I =4V1ڌF@2.(`z@K4;PQ bOOU$p8 S (VrZknjv%&}×_:q*6nvaz.rq4Z%Phr~DdzK}B׋.,*"1C=?;>DBQ'Pc!"iƇPhu [Ey}S@!Phf*n@2;c5> P" @)GO⋏?1(bz麮sVIC^95R,1*#Ω~ROݽyP~-s\.Q; PP@U:m8"iƇ `zVј@4qAdzӈ(8 ^-iv DvP41=LB+ M\@$':N^j@*hxzf"B$vxzfUV=5z5}/zPf*i|@8i|@Idz 8Ƈ: bz@l Kh|@%V@4%Pp@Cm P3[EB*U(V0=޿"lu (V@J&PN*9J&P( 53=PBAdo"1=RY+IP4hj!PNaz[i|(@`'@ly|Izqiv4>F bz98+T .i|(@Hh 8r\ LO,7=];^#J%PpE0=`ƇZ cz@4;vuJ!8D bOO@<* bzrnӞKP 5U$MCi<dbH:nUrp Nr\.G#' Ïx1[1ZlZ `zg+^l % NqU$%( <Siv ~_w*J*<'l B1=r_q*#PV@i|8@h|Cpjfz[B^ &[E Dcz@'P ~ 0JPGi4;@4>'Ph"%Sp8 ģsh0I Ƈ 2P3^Ǐ Pp1= kSe Nh@'IÑ DB- Y@,} J |ď&Pؙ bOOP (N*P"P8f*jxW * z݌f4;@L'OvØP3[EB(8l Pmz8M`뺧:@Ƈ/t$Pp5U$D|@2[EDczvEۃ@a[E=cLJm j P+ 2=TQ7  V]ALhƇ o 'au  ;1=ZgHxJ=Z<5;L{RLO^Q r\)@]rP嗎Z6P3) L3LO{K!PpLO;>,c( hBaj6P@a Qh|x@a%@n3 VP3[EB^Bp"1=N4<[.~-ߋLE }pFB [3US0;jij'@ՖJÀf*}L˧'lT(* n6QB@j0n8 ]+ & EkpS]uqa$!J('P1=QX*<)F˧'D.PU$dH`*&v$B  Y'V(S[Er}4Mhɒ=" u.0^SCCU$3=˸NAK,}FqZAm[Lg+4;Qoy J`j^|@gC@V"1="uzv1AiV(3_}6!`5 G"f(P@ƍ [Z K0U$lz}\ea=`{DΦ 0oXЂ&j JM腫P0=i?+z |Tβ$XSÈ-q0H:~wE>'Gx|#J# ]'O%KߣgT"XvLOVB}Az Cb2=v-YĖw'_[iybX 7[\iPɀ*h Hjq;%99Ϋs7%?GP:0 ]wl y^ʋ_/ x7|oŋ/^ KqWqB95  4;P˙L1Vܣ9RRS1\\5l_}v΂իW^ ?"b2V!*PwiWs{^a#H}k~^ &_/_||#_)1" b4E 8ӰSS[En q* kTd0/j kvGGܚC*e:Noj3-_l _cH+;_j+oSX4Q~Z(!Uߢ@V@J]Z" ֜ׯ-Wq;ѿwk17>\=%Z$ҕ0BߋkMXJixZ̳dֲo& վ S~~a11 s6(~mx}?`+܉_Oa:+Y(,@a. ?'b(h,'l$PU$dH:(ƬDXjxb p>}ZXᇁ<˟POl ,3Npi:m)>ܑa},O>OۑLJ飇{橍Bo߾}VDiP S0IoIKRm^|Xuv*PP?aTBe+|?5bڥ4 '@lIo#,9B9![!Y$( |qË>J?އ ~~869 _ǥխ"R}`HgzOE>-gY[|7~ߩ`K0ʈa0?>>oۿ|sss.h`;-4cy >ȣ.ua#{'Gh.Pød@u0=vj(M_QVu8PU$4pwww#ahڶ,ca kBɵߢqp,5EX3($< Qf5(Ud{@ FE BA9{JY]|eZ2,&L͍"!}j lyf2ZhCh+~ES{[Au7}A@KƵCj_J{Z0 rSaLW+KSB) :PʅۃM 1Ϩ30V0 'WB_2qQ@m~QB!؋""r'Au h_M=?[ez % g t=p&cU(7>aITaeZ͡~랑,,lx~rq'n`TPnSᚖp܀MOPy'hv8N37>GK%j(6A@>jU(o|8Ԩq’tx>2zSe"D3U$yhyRyN kMp0>wwwwoޔsM]ky5=A 0dzBNMkhLJԥ;ۏ:% mоu q,5PX(A Ph,E L2h!p+YCCIncϯ0WϜ_Ssu9duQP9TNXb<=AC ^8m.Q[ηW=Ag(.JuCM&T(4by0[K>ϫ5:l4:[E.WNrK'hp YwĹ[֩6F`;:Pa׹ \(+_jiǺ3|] C͝+a PFY~,,ܰ6(AfxzK/-060KJv°z_^ 4>Ejo| ciu`"k!Ppbh|]BrJSޗ?Mڄ>h2 I\fTTyx|fG9k hZm }W_9J&PxƇ xɷ|; ќB"\١FqGw~9='9}棿׾Q`Da_}ڍ1ZEB֙_a ԅT( $PPKj<-Rt_C~TV3q׋x4;8Md YX#8 (@?ǫ:l55a0Ƚ)fa큳IJ_(|>(bKXg:8>6Ibgʸ2\D ags9{9u\"p&sJsD J(wUd{<иT-jף P27hkg(рF(qL5_1E\9V"Pe@#@ ƕnʶA;>$P؍ '(:(zUd /!xQuQ 4>DhL4>@N1=!!4> Y%G:8$si|FEC @8j3~Vk E\`q)<<82qh|8@p84>!P2`_FPπF4>@~&Pp!4H @hQ@d 'ѨSDc 'z'BA)נH4>l!P8Υ pQ P+"(TpYǹ^ġ`dx9i|؋@ *@K8h|-T^$Pp`;$ѨSXNP4h)@*(DP % 9i|F;(2\(T|=<8qh|'P(Υ  *)j/fx4>DS(P ɺ^v(4;p@J '@3VL(TE % +i|F@b 'ѨS 2[E@X0&PD@4zi|4>D4;BeAD{@lrf/{  *\0&P؍Z!^$@ѧx4>D񁶩f@ " ;뺮{qmi| h@-æ'NP=9i|  (B@4h 9i|F@:B#$Ʒ!,XNp h|(4N @d(O2* !X84>P#'I%PDL@4 ʢفm X@N4>DrL[EB<)FUu׎(r2u6* 'z- ':=4>@NQ@4;B 2[Eri4>Dh@!4h4>m( $cH#Pb ġs^ xsi|F*@ P?)h|D918@!(9i|VKPׯ8)(ɀFX8@!4%O9i| mB9@8H 'ѨS P@4V$P(h4>p9@I 'h|j'PGK(hHف\ v*3B@Nؗ!PFu׎@ Hr0ف3P 'rÏs * , 9 H&4>DN@g84*i|F$?+i|4>D(@EP&g( tNC'P )%K, ?;4>!:A@2%U9i|79(4k u  Ftr(*4>DfH$Phh4>%(3h)(dr@y ƇY[ER*9i|FP;BD{G,f u  @Z{4mI F@N~V#8 @ L!@N(u]:iG d"g7>.u @~!CT.@4>DvnQ2Yi|4>DI( uTe@X@N84>N(:4>b|;gj!PM8 ^ d| '%U$(pu]:2F] AtvS PW@ H@4<򶊤~ r`_N#@'4>D!ѶU$(Ph4>F.(p2OP& br^ġ!B@)!?7h@IqTvf19i|@@hr"i@gt]׽~8ġNhn9]o|]u G^ P>h|F>%P 'h|C5.-(P(O%(@@4@ TF {kUK{ .I@*Y@N84>c*N '[*8 Vp{V  @jHvrfb(Iu׎@掌"D@4>@Nh:`@HyJ P`ѰU$hI@4R%U p.ƇGG@S4>@N0' (VD=*qh tNC$Pz2`4>l Vh"Ͳ4>(y0@N꺮{q#B (8ڥNZ 4S9@ 4;@ 4>@N0~WB 4: d ;>@d9i|[E˜@fi|2hw P zÃ#h@IrjA<%P4P [EAi| h@G@Rd 8hSU$(I@4){!x؋@i|0M +!,!P  A@4u G '`HXN@P֠L=J}#L(3:G P/ɛrq`@@~'@*\r22T<xJA@4>Ds~fH!PI 'єS0~ק(l,'Ph)s@#0&Pgh|4>Dsnロ"a < 2a9,Nο5>D'P89A%P+A [EvH`19]Sxxpd%(q;w +tWt"a/xF_p{{{{{+,b:ա ':XdefK0נ0'PMlqG@4G)niNq/ @T7@4>@9 @8&8D u-<$RQ&ь@ajHkؗ dZ*.8 T7g*QЪI ~sc#KPY2Ѫ8Z*`/8@25 [*J4>Dsw8hc _J+P][z#P A]q:8K ^cҁ@P 5SKu @N 'nկư(P|q{-Z%P> >> stream xnX~m5$4 $@ Y@.d9}0ށ1kFym ,} @dd]j2%<ϳt\.I>\Tu]uI} L a ISHB@0$)$!L a ISHB@0$)$!L a ISHB@0$)$!L a ISHB@0$)$!L a ISHB@0$)$!L a IS kt)@:B`t)ũ_Wկ0P>|kC o>Ǐ?~@ B?w}wY a @Aﺮ2@ BGP777?s{J̈́;IPvw}w??_ESm5 S|˗SLLi”'mG'4>YMș0`|ф)[GK4SR }'L(·?~QLKP&Fi2濛)뚘" S6/ݨ[”mdHSS SnnnnnnL""L(N|˗/)`Z K>'4_i”00 ÔfnJՑO1V5?{%L(ȇa|ltnn 0a @Aߖ+կ~_}MݒO24} 9Oӟ?///)?~cX+` a @њ"M|\ǧ6 w[޴ÔfV0e<x ̢UtÔvriwMT-S6(0huK)6$FiU%8V>7$&˗/_ki0\@u'4aJĔ-e}IR`*"*)0%)CrdeI \GPJwbJ[$Cb'ymssssssӷ6J SН֝r~Cumm3>I2obJw[oې=L;%w۫X.a @LLiGNL)mJJ1 'LX2Ĕnr>jeD$a @g%݉))) ~FI ,/NLi)OLr]혦O,a \ JڑG㻖ܔA@AOLnS|6mk!- }rMbsȇ)E8?77Rony*0?SV㺴ߪ;iG*ˮC!=f@j&aȬĔnr V&f@jt)}aJI<r Lظ!Rݞ']22/|f=,a Le%iMi8Oq#) }9 r-gc.-0=B=OI8ַ׭{ e S6&,'E2rL=Y翯|$S& Sڗ>DZ[URNԍ%(X=1eV>eg$S)\8Ow\=`)L>&MI} I+v6'm|Чm>S?s %)Lqnr~Caʶp|^|nLKYp/" 0%{V@)Y*NLnӽ!kE<% EO2hg<ksy&20č%تMډC7LMSJ%R'1sPo S22&>]Nds_z2mOKRH[bS0m2esۜR?%J#ȁ0瓂iaJ31}]}'e+Iʐ{#]!c1Pel֥Ov7){_rm1i G?V*P6a ]r~bJ;Rg+OU+}Y FyHg(4#tO!LظKÎvr~bJJ`M1=beK8cC[%Lؠ1K”tmȣ{*}e6siaV2Bn@ބ)㛩iG*}?:kKÑc7?{mV@6 6qә6rsssss]/_}?___?v3g{GY#=WIK SUZc22ʜOR)/_| G C$!+4OĦG8OK@#c8R?B[+RGّLcHFb79wlfn,\J82Mj֮ToJTA‘*00YIF!`E~F82dJl dd`.פ*Kgr Lpd-&# x?UiVSG2k`jRMdA22 =y GƲI ?[9%J3 FG2k @riG=Rr#LhU30a YLC8|*R L`X[LFXkR%J߫H V S6N82Y#%)f.g z?Ui@?a b$#פF@jR.%L%&50I K{}6@R2SeLm@d[ UҤ* @>)@iG W' ORJ`-IUf0 %K22$'PSmLّLC8LG{;6@R)p1X[LF` R5IU La#c5tMҸ$X{I00YIF!R`S*pYlR$ HGa Zb@Ey )aŬJbV *iR`6a ?>FYsP"`~5Jlo S 5v&\1p4l-aJARD=攘[<IUlܴ1 Sf ]” *FTJ]4. Vl$IOUf'LY11 lT*aj\4(0/R1{ aJ(mRVI4+)ٙj7|V xפ* U)Y6ؾJ6@@z”LPEg L2+1 lY)] T0e&1 Il5J`R l0%{__K~0[xKiL }ĔHU`)9Ji߆!pSS.iz}o+{Cr0OT:afu LE0IUȁ0%gf?O{=R/{Ta 0%;^>?O{]R`Y* -4SkSV#~W*0'Rq{)ovc.yTtj \ Ti8'LYX_OUNl kR%J߇ Vmb ۗy0&Pky@)MU!2VTa}x0Z U2tJKR? N)Zj ۓ=#U)[_~0,$ϩ$f׷IU7|nJ59)9a IUNl ysR{Teݬ{d,R)\Tya%U6RwMҸ$X*5+禤н^IJG6~ y OPˉnxnem*L+Y)bܼ4V䧜.S0?y OBl$U`*s{o4 {IZ_D+.ى)}/Wʑ"U#X༵ sn3@:oVirQ!yHg|"Oa:ȗ0e=4WR v~K y4U~vm(cDL S*FJ^/[ Vg'R S _”&>\Ep(g(e1i<S _”TDN!9uIU7W2kas_y+ s纗)}83>wL>w[)0eU4F%9B&L| S[ʳIJ),E2Ƶ1J0e{$/e뒔e4}^eHL ȗ0eB1J0u=%/0^KL}="L0%Ln)m&HU2=^SSL.T"L| S[Ja e rQڄ)@R @>l3`eؿ}^3 LML!Uh.FU0=A2`i'Ra[|ȗ0eP ϟS_Tb6a IR %钔3o!2OrBLgTǚc6a FR 0Ion2U[)/aXtG_IU.Ci SH^J!yLROnnyU}za@΄)S,Y)@yR#[i@(m _`-OR_{ZÔ.5)/ahTt4/LJ!|BSY6I ?nsvz`a  !J?q(UH{_{R䐤׷Socw?j@j&L&B晭"Um.FY3|SŔ8OsϜ=J57eĔ!LUy)/SVgڽUy~ϔa} <C?VLUcbhb dl* @SH͔H^yl PמjM;1egls)/aʸ{#L^}*ژK"L`H^Lw➚gvKcl0m)/[$s{k O^HQl[F~JEѷSn4$I~Hcbʸ峉l<IUߴ >‡?SsuS`~"bӆ>^uYW/m&p [>a fT!X-Bzl!Fy0DR yl/L'Ui|=c%L[>a O`ou<\B !y)W)mZ?Ui\h00e SqƑQ#L%y)KɯLɴV=7 Bo_IRBPtK^k{u Q\~<7 }` `oyuobip-Lyi2TKx!1-11J 1T%(l4z=(Vr™4%Uum2sSz|9yu &+aʵ 'L56@Rӵ'=,E4'L#yc{-*ͳ 3]"unWFùc&C9y X*U9]`d0(oQaRR2|:}y>FJ"LجyR%u&4.뎺!(@~0%E4˴1JUUUUAPnҰ <9(@֔PP2&F !b{ '`~”5v{k}5Zj φ>]1 @JӼ۞{-Y007,)sV&>V!GFQ2mb;` aĚs؞yR%Qm%ӧx?zwge S&\~γ TOȥKuO8B~ovxtDSXy{IB c6-vڠΑY{]ڬ뺮k30 'U9]*)KKGhl/YV!X vҌ)ݱM1 IFhGȟ0ef·l<IUȓ }Z`K#4# Lw,]"P*ZLAqoUR |=#b`{#4dUeu@}oͳ T"FE2Bì(S!p<-XɓuqQ!#4#@9)yR%^Ϙ0H#A20-a;NU?O{]ReuyBZJ2L IFhGJvǣp{k G۬l$Ua(pp6a(^TylLxIFhHFXf}]u][ X a lR+,OksJry< Go﫪ﴱ5~ظyR%(0\]y }G6@qNU?O{]RmsC1 LKº^fPBxy@)@[lTZ&>kC1P, pn;0WUUU5@y;YeJn柛2L1~ \PyR%XR b=jzxU1g[zwg-@!X>UUUUe 7 :BE@”nou)$!Ly r` 1g[Ueƫa @B:k$LؔpklU!``-)$QtbAtLLq{k r` g”^v(X#S Ո1g[ `) !ʘ|k L؈pkC@)UUUk؆ky21*@)o!1g[y?a ISVp8:ˋuN&<?[ؒ~*IBxy󫪪 @z8CB%L ͆)Ư,ȉ)x<) !0: p8ԵuEOIlG @ 0 )޺4~܇X~{[aG+(n+<~H0 71l`{JKlGa[5Qܷ_1]- GnFLLL07a9 !@@ ` ` Svugܙ&ZML !bb:1f0$):%!brS(Ã5Ԅ)$0[w3C;\ B!XGa@j1uh31`1l`K^___@0 ;P$^^C#L a |0ӂ[w0]!uLL )ZW c:t0c|~%wwKpk[B//!wR:XqrQuU/B)$0E c1Z>&$p@^___v<[0 71l`K{UUUKlh+g%!ԵضfBc[(V!X|HB=0[w$@n621%0se+$b:i0a álI!X6a IX1~_H؊n;\jSzsgno݅-V<9,+S ҍQ_ ! YVxM1>?[X? pb`P}c[ z~_ӧ~8Ե5mx}}}'FI٦<ţ JB//KPv P{aG+ S %I1@꺮Md4g<`.bk|oibI @̛1Vx\]1 s1uN[K1>?[H994>{}}}ױLá\QڟWe`y!b` `8S N)@&L@`\V[4xg6؊=Lkl ʼnܭ2LQڈQ\7LL@1>?[X׻;vxp0Ȑ]!X)C][xukW`2'Bqm+`>v7RI4_bUSnoactc+g?6]nby*H(#UMLO1>?[In~*vxGEB//ց>UUUUUu]V) 7 'M O٪1ckS`c"IkNh!/0k.ˉQJ&޺-S%)b|h0W0n;Pu]׵ܪՄ)1gzQ޷NA9MT+Uc!L %Hp8<`MzP_`!b8u0)c+80y~hibnS؎,&noIvǣ2+f@XV>`=d(p0 71lj3}. 0}p&F@LLp8 6PB//k&EsJ#LwOR(HQ<nw]u]Vتsc)LY)!xkK1>?[x} e1u`欖c LL`swwa*>x?u݅򲞟=KJLp8&F9 E_2!̑>l)`IU՞6)\VGu̳qO:) @\3u{[C"&,d$[RUC<ؐW fv2U"I M2&Iqpin"RG[B2MMו/FD2&i^8r >ldv.YS1g(:,k]sS!m/.[*Lp8-G@*!֮(}On2"@r~Lvǣ/I2kĔϟ(O_tb& "Ϲ)n6L$em,k)nB `(PM22& I󝂿l+ @Nb񭯋K5ɜ3Q\7+%B\”iM+i yky  oxbnʴ6m"=& g 0$޲`k^___\jy)d(`6F.)jg<<tsIJ2 SBGkvLyJjc $Livvl')<%6Xg/)0eRӵ VNȤ*LdL{Y4gRXʘiO-4ݴcIUNl K z%/.SHTJ)CtSm3y\ӵ^kF g auXHUC?vHq-M_hB+Hm2tYʘmz=PiZ!72<2[bu1ט&2eV @KÑ]\-N }+O(@)%U4?>"uf$}i~cwk`]ҝuRKj#L)Hߛ l$U`ͦyԦS&뙛ҽ/U SiTgם’OZJ),#ur\ P~0B< I=lY)%[Mb?9-]ܦ}ƛKs\R`Ϲd봴Ӓ1:x.} H2k׈ 31AIUNl :O4a;ST\hӚ5z?vߧr !K KqΟO%0Fn^-M϶qibŀ"Xj&Z5exh mHP\ =%G$)ĖH{?/u yG2^ö@d }-}4d])$Trv @ys^~)ViQ0=4R Se),`Ttfp'ckkie꾳dKE/,LWVIUA-`[)^eR+ۻ޽w}c} ӧfID)d<IU~6x)'W @ ѿigzPғ!swˋ5g-'ԝDr]r<_!QyfHU:/`9g}O g.NPK_ bߏb<X4R &zK*kLo3!y#ݳ'/yl:_<ր|HU`G\>a 4OrdUq9[OꖤNR{1G6XڦڃB/PXcfv{wy,!+Y@Z>|C߉YIE*0q0- T(ϸ'$)k>R`s{d+t߹uB_>2mb t}1JU)ކ&Rӵ Vٔ,?-ޡr`wwF_EeDB o3>@)Qib&1OrdUЗ cU]zXcn|_Iwxħﺥ=çHU!Ꮿ.&U(p8x@j'8%^^rumZw=c> S`}"H,gg;ey^[|nU4bHrGkTǏ?~l|˗/烕ԳUڗD>pݑ\/L晭"U0Yj y TO)oGMU?/sDJV~<ns+)0Rӵ V5Xx#XIuP-s5':і.|M:dV>Mz ʥ\Te$ns>I)zǣ!%Q4LkΗ7RF_8/(3K{ƞg2,#䕶 Q||<۹]_>՗tcG PTA0OSg[՗[{=g,}#tt(Lk/K9MRu>x?եݝj&8d*<}i9dTg+J,IU$e8a l2&R Vo$U!yS|v.xg d-,kHrzxӖ O?ݿ;$X*Ui V*Ãf}[+2}qrS3[ESle-ƿd%7v1rLU~~ݴׇLU+HtKFdVtsTrv ܴ<cyАW{ Ș{gH&zJۛuoJ}V*0S ̓.l 0|w70rKhe2Qr$Fr~bo3_z ÔfjOK@ӟ?5ggg|. %XM< ׵p) 4Fs6LLu5b V_oJP/fNs?Sg ]oV^(1OvqeQJɑy{y*l0XyfHUXJ{RH)40-gJJ kz+\c\p '`#JUN.X!ƥQH㺌6=lEo5)ɵ[06iQ$=a Y*K6[%Y%F9/8I+r04 *FF}6C?n H|)<;ȟiL3 \geaJPJO$P0sSIto$5K5g =&d ҉Q97Ԛ[|ްTrv'ܲyJ> d(vL V(i>HMs 2OrdUX?RXi;I`]'j㪺'1g/UK#ھoRQp8xebu:}~&׽p>=gQkab d¸y6϶>a=(# m,K Ô)@>HB־}Y)[M{sC*R䟌 Ѽo_Pr =m[V>?tb IϺc5)p7gI9F821 8 &>_C'ڙ662 LU9]*%v[&)1 0p$7ͽќCzt S276@6$O@)$#i{Ǵ朁 !4;cъ[ sn#@"LXRӵKm}ì㾻wZ):'#PI}tM8Vyl6LiN`8!iTtflט +po*}Gjx"=r`b @*gg8nlp>k0e}o<IUrpi$%\{}d6IF#:gb ߘgTeE˜/C(p>.c!ӧk!LK*kA4f[8r(%ac/\&Ii<ȁ0͓.l)p:ݥIRƒG8NRH-{US'6@[%OLiӪ*oR+&)ms8>rck'p(Y)ZIUNl0)xyxyX"F G蒌91Bxy)m╻R~޹>n陸kTDҜ\; z3[eKʐĤK=5_s*J'K2%H76eTtk 2D$>Ļld>֮;+.3Tm$L뺮몪*o?yR%:[e=}87/!*Ϗq= )G#֮9Wew}]}Oc/Op.c!훕~B?YjSHp8)G(k!p!Ih `8a DiTTrq{`Z$#_c||\OѝF`O7*'U9]Uݾb>|IZ4G,fT rGӔo'÷"#*@#֝2D\w!L\\yLZ9y?܏SDubp.64b1i59\JYKURd)RSRFE\Q(d>X”> zZGG;^ʐY)}ky{$sA8Bd3+()(uyM2q7UjvːelLO2BI'6u]uUU7uߌq}#P21 M(R3]pZnҷQ`+6\#]؞cai%ْY0R1'Cyk)/IR%cM8|yc%CĈ` SpZ}ĥȺMR*pS,"iG#JfV PBRK*kOGxQ&X&p/YԖё11<钧2->sphSɳR?M4 S꺮뺪ʩ[֙\f}בЯoIMRk) x soJ:#1ja 0-a 9gA8@Jkc||L00ȂT%E2SK;eIsFaJs!@~@n*CWI89m'11X̐S"CK9[o"rx0ÔfrgC;m{)P&s21ؠrߒ@>ܩQ>1x5цY)[;l' axNHԤ0D`Y`CN_:{/k7pf5Tcq4+4u]um`8a z&)@t7o<HA%LTذo+ː#:@l0DaJ3T $)Nڮ H=8gb 0!ϟ*I9ZS=/}TZU`Y1xۡ))bJ01@pa l  ,+bw+F~kP a 5I #_]˒n.*JR%,AC 9<ڧ%)t#ǟODXKl0*hbJӱVUUU;w:\?.㴹=S`AyJ3$u8bb 0-[Y@ [Qh5| GkSYx1 sSB$7I9A<< !c||S,O{?.RGĴJضi[>X6O; S>z>) Il۴ʶתkQu]S\XNs2 -c.gsS:>Z iXJ?/h_m_ƨZ_o榴i'r')lK]d!a3Gi)cQ 7<ʧ뺮$>f7x?D^^C~7:?2vnE)6l?)S(c!b5J0=C!L&s~Ane%8Q 5a <'2~˞YW1 !c||S紽lC o` s8d>$ۿYi!MzyOJ!) UKOMF`1xo\,22/tԬbl),Lo>(BOO`*7`ғiJ9?űkdb C D"QM1>>Z;fb IJ_D|gߟ6_o_˙K(%| OR9!ڷ@ddH2rE,G`~4$?$6=]1[!LLTHιuh2vz eyÅS1>>Zr@`b  hS.`A㵷遭= |" `a h `”o8 `:TB:ON;l]1xoӤ3+"L'^@[!<=Yx#L0+c||׹4F)$31 Ƶ4B5aǹu(h `N.PB"S`c}l(}Ǻ@ &ZfHR8/zCt=f["Iac||Su]ұϕIM1ol0WSVUUUTKc]%L`5&)Cjx0)!'p)a c1ZX0eOh1h$B%뺮k SI u)1{됣R)ӓuN@” cJc g@>)!x”A꺮:>0'a db:4)!'00:,K2c:@ b:'L`#|r#L@]u][(A!`L,Cn|'L a B:'LR1>>Zr LX1h)뺮k%!@|x$LH"P2a g">,EpBxz})$!LI"cPc||8Cr%;@9B!p)a +f=LP1[LQB:䩮뺮,E@”h1G&L$B:F2] S1{F0Bxzs1Lu]׵ue S@9b:4)$!LApPB:x'a Lb:0`2!dR1O0c||”vQu]r L8PB:'LU1[ir&L a B:S1"LJP7kL2뺶PB:Ùȍ0`1xom0 Bxz'L ab1F%1G03,FQB!%LI뺮<< Sc*a @B!d2 SXZSc1Z(A1>>Z4^”꺮:@ B!&LXX1[0L@B:,,cPc||;0$)u]׵uB`*f Sca dn=Oc!drS2; lO1>>Z7 g<%B2@YGkkdbLTȟab)N}!X `)Me `Lmte A!<=Y1RUbbJvHb )1lSU`1hm31eźy$16@6`b:eb 3g}HG*-4+\Ì.4a#a cX#Sجy4lS:l)LU`BxzS`'U 1h2yV>y{mIn#G0#iY{F )9S6JV*s(?O;Y/Zsηsbb 5@a *U)+H)m9}Sx<|'L)p6Ja W_;q_+8~QzTLLN6kLUS~ƺpV LY$UShUJ!Xh)oRt@~9N;)m)Zb x<XZ*T9)?6SU Uuxr=`eF`_IU kfbcm61hC"kIUҶ9`tVڬORB%wp0+a p6Ja @K;R`gNm~9__+8O9|7w k01X*HfDD=SRDK)ms)*r~wSSڬ܄)V*@IK|)UW*`8"oRt@o)?&U)VS2EDK)m9}ĿV&L8>U)ڬkk1J~06UJa6zv@oL>NNpkŬ0#R5euNJ)}~~1 >Y$UJr֟&FSfTRJۖs{:+FI\ LVT0[(U~;iф) @+641 p0`imIU 0lL j/1 po&xM= y')r~=?bb /j3U=5h2 )k3[EL\E-,'D@&lSUʬ‘b=SB*`QlG+RF0*{L)msV{fP@K&0!kj#311E(_Ԛı=)SXT%"X1Us5BpSڬM8BpS_\԰'j"Rj\Ҷ9+`5n`D& LU)e5`hl|_@a5MR#GY Sb@?,aO2a tG{fP#0PfmHj#+f7[;J{GҶ9+ƒ Mkh& S`\fPY_dǥ*2k=!LHU5Bpz LWTV#F8+UmfV V Kjؓgp#n ОTȃÔR6ߙs0k9()ɤ*ў?$} @apc6kLU;Kjؓ$L?̬j#3*U)+ϙ5ždif2kpi%.U3U9@:w :_‘5 jLLS{f *0Kjؓ@Si=[cuSY# #21f\b P#)B*$#U)jk# fP#f*OU$)mg{>1Cڬf5&MRkp:)6U9󿗌 p ^\LW`t.HUF4<'LT@)Ø)U.V L޹Y) L 0BS!L 0BS!L 0BS!L 0BS!L 0-\ endstream endobj 69 0 obj << /Type /XObject /Subtype /Image /Width 570 /Height 911 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 17040 /Filter/FlateDecode /DecodeParms<> >> stream xݿn$ǽ6ja|/θ|"Kb<15!90 ؖꮪ<,s!o\.r + pppppppppppppppppppppnF %\PG?я%\P>>sp@~'?qk >?g?~#rZ៟{m&WlW}w}իW@>裏>_2~/%\p@fVC!O>O58ظ8++8͛7o޼&c8i۲ߌ8>B`W4lb1D+ rFj/-3ħ{[}4hWdl|~??Oӟ~駟~0*yUa W_׿oo_ fbqM WfHb0Ui`L0seW Z_]F g-GqJwX_hL0sso 2W V[ g9V ]L\ro.\ {NնrjiPp`  ͛7o޼߃ Wf.ތW^ *bF\ x&Wdjyr5Ek{[*088\Wpz$p>!\p[ qu(pjs*wm~5S%H,<*̽4\]yn $\ k̟bϱ{!@L(xr5 WOr⃍ BMˁ:2u.X(B Tc*(䑗w.VE`W=W8&b@+v8ZbK}zsy8Ojd@.Oӏk̽ q.G1X&Wjm-pޟ=@`W!\*=#\p5]w4]sUj @i+lZ{C2Iw8i峡 CU+V#35WokڠW^m>{?cxLWmh{[M 0 ,=4̯ZWG`54\ysBjuņDY3s!j9gV_8>❝hZ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@^/qU&W \pն)4 Wʢ@VfVBgf%V T5W$gfE]bnkG`3+R3W5j[{q|qRky [i/*{Fݬeys'֘ 1 #H %Vao@$?<_zU `S;Yѧ3pQZ Wl2g %\l0wiXݿ \.0ybܸdfNڟnhU׎C{Yk/e ~ Pp稆a5MA+:zA_:V].~xN#?K?KO4~#r[>B^C?M ۢݝsϟ?۷ww[YKG//0s\'\ѬJb~XROW_W16QuĠ_0bO1U|yǤyc:fV*R[J_9XXB9жP"jqPr90GP*:VX2pE*J3<*.bզ__Ƅ+Wc;KRjvZ5o:(э](<-}0NHYnyc罩|ǰpaӰϯ¯wFոoyk'ךqs:8 sܘ9;EcO RŰ}a餭#^.F|ީRIy/_"f5zB +Gr;@Jzl_6w=Rr[9Z cRKJz'\Q(\Hq*m{䱺.4N^ZR_9zo\yc~5mjanuG&ZO߭GH1bs4+OnW{;͚E,Z䦌̪ sO/ʹP3z}zNzpry2fr=sWGQF umy.H:"J]?#}\"OWG-"):bhdׁ9kp<䊣OVmiqN{sչMJm{{q\ኣOA@v5D뿙弅ϲ^7+RK矏?Z]huwD5?%K!u_Nʁ䊣O&W ê0|~)m Wʁ\/U 0lkk~[W(_@› b~-׿ݻ6>ӎUВW:p4V hpXuWas hpE\&B/_QWj'\pVipE) ]~mbjB9z Wp3hW6Z"\q(@`H+vb_WkrFQp_╼Um(r 58V4ܭ>Oi(R~kUWf&u1(VWBH@" r eHj+`iXʁEb#ۯCjw \ ф+QJ+VR{zFH@ LW[~gIY7I"V@9p @i!`-Rq >+XmᬶYmz\p F)/ ׇV[@ 9(pF0@ [k%\4@"\B P'@x gu Vi)'ռHA8xV[H~!ንjԻ1"'Y;: 0@j+@p@IK"B P3@r]gu ׏ʇT+XmᬶYmغ! .)pE)OۯCjw5x>}q_?+rW5@}IC@ ?(\.`-+~g lijz !-Y^n ׁxV[I9+xFm+fXmᩭc~E ۯ V[lXm*@PHa׏:~UX&\pi(rp%@tWlijz#\u gU˔yN4:c@ @L WͲ:}Α~_ʁ<p3m{&\uC! qWWMr~gu` \uA ~gnvI(ʁ XmpW)xV[1f!•'9xV[q:)Kt!\5 PdPτ+OltB O!)G{ \5J!8:D}.:j+Qp wJ V@<xۄ+閷UXmG*6++ۯ񦫭F9Ud! @}t9|qz`~Sgݍ8*cj+SlpHjpjm62_p_~\[$\ \UN!6G~:A9-UpV["77k'\n_BV@+#*`ugU}JĢ_XʁYmU"7(CP@-0\.ѨUO*au6S+OϏt^7pU<@e@%bP+ F@<+ƒ WE YmijڊIzWP2 W mzWE{9_MW[)R WP%WER9ͦ Ws~guZX*8I@8xV[Q;7!\@5܈/pUXQlᦫnooo߽sdJƬl߾R4lNۆkr\\Ur3q! MO_ @[LRx>&W zK ~ ҳ:py, N@)IF}, x*;XgJ,`>B8ᵑgVvWvg@N>SMUz9_MW[)3 W4b/fRL~b ׮r8+X=X|hB ˔0JƎ+=r됊r`*&WYmᬶYmϔ*5 *E.,'B ̙}Α~) \s3awj?U [ T{r3-*d֗_됋r` *1LW[~9"ᬶ6&W5TL `|v7mL6 M kYmsŻpq*ڊGfVlgN#\#vJZxj+C!NJ~A!>+[+h N90p唂,lij p^bj+8a2  8AZUr`*t*ۯ񦫭ʁs+`B8j@z@<ۯC-\'O WB8xV[A)D/`ʁ󄫕GʁcՊ0LW[޾{sN9 :z RpL!QWNbu ס.ʁs'ۯ񬶂QWjSU`r#ۯC8x_\db-(bLZW-) W&Gs߳G_yu-\W=̙RYmu?]9 W@2}V[@ʁ•ViZ)Q2iVЪr`+j^bynP? X)&\MXm[\:\M3B ̱:oJ! Hϡp5pКʁ+ۯC8ۯl ھ7Vj+ V3k~- Jdr`w='-:w>\)+vllij:0Tlw~j+gj+m\i_q v9peu7]mu{{{#:V+@nFwKW]+@RU}kx::@گ޻\)8A8ۯwenpVʁ+l WV[A8( w}ij+gj+`ˁ\ũ`k P=j_u1R9V @<@Oj@*v W_p_Ym죖'WV[A8xV[꽆 (RmÕVЊˁV9_Q(tB Vj@)6E%W_p_~S]'WV[A8xV[{hP2kͅ+-OݴW+ۯC8ۯlL-Ri•B r`M_JVN:hdre gp*T^9pe@ݦ Xr`en;GR ^buLe@舛@kJ*VGǖ W_=~(_i'W N0g@> :~}o =<;^&?Op5|]ZC`{Giɕg{ tACnvDʾdy*|T|IiUÿ\9nѨ8 +k/Iʴϙ9~\HMgׯ_ Tӏ^?HoqkOWή=VsKk{~'gs!U[gx޿2=gsX2\ڠ5IF{+ۯCjwҜ]Z^I/tK]Gmyl T>O?tnwEjǏ\#@({>wSXLY=; ]כ~~!OC`?7nܪwJ! wV%ځi},or?mx𝮗㼚V7o޼yf\\n?xvܪk Y:@[Go MvKoNbfS%H]pm0:sxa_o22N`t+r#⢪o9fS-1 qR k}ct7QOF}lj+Tw7-[Kpei7%X-ڪfSmړerᬶ:z$KMyǬ2mtIRmR}puh2q$ک fŲē+o~>#er+ٔP xA(>2m13uV[ +@/U=6Itx;2cLg'D~TJxV[ClrCZCY[\GtV[ڞ~sՌ:(5l ri8*[mEힿioȖ T$JA~۝m5Ra6H**ұ1:PV_W ey~5XVXoDZj"\~OGͬl혭|~=Pɕ ) hؚܫM=۸~ MA-ܽ;[Ku.kv8MA~},ˆ(1"V/uzſoX$J5 OǮØJ~ݻkק)C޶_WM 45`~:կ֛F{j1Tl c+Ր/WP9b:bTslIkuf58M.;>*bX mhcu5?O ݣ^dꈥ YaF|l>~y. TW[MK(Vr`2.>#i.&;{Cl Xcj1-1Ryc`Oߧ\7.aͦopRQ MLί#Pp>+3hFsZѡ>lgmx#om:"xD =*`l Hr`IU\~:+[vfSzY U-*pˈaigM"Y{N܁~]؇Z`jakرmX㐧{#Wd Wʁ(v8"6l깳7YNfS@ Ur +a֛7 ((ԢVT?p̶V[Mo1<7~̭X5W_ TK#>U/tsGy =bP_K/\ UPfV?rZJɰg UsOLa!O?G},?gP2AؗgG*qlqlyOsWS953ÿϴ?s!a{iosiM@P*_90f=qF=9>3#h4|<dNo")+B8sϯvpʁm8 \g @{̬p_=\ŔivΔv@ ;joq4`vi;(,U8j噕@j\6Zė%LT%8)^jyPxrȜdy8eQljky:g(*\B~}Y}j1(9V=KoOV 9;YPqJu!^3-Wsk ~#%L~}_ﰟߣr F-̬mlbp{ȥxH/qi)$,fǧ(eIҲjjZ`̻]- USšc.ZP\m;ႾsrQc(fV@ /ued%og(j~3~=aZ+ISes g+3+=U[6[2M>Q.sxxpdpicS\%`>*Jo5ij?m(:xC| kkqL onit?̈O*uW =Wr F-{U@ ݊=}=):4u.EL/̬*L95C9Ю@ZV[mu-L@P 7"4DH?p1̬UP*JcҲ@`a~L /*O@L@[|uiR(KwJ?\`N[%Ve(ZL-W&[9nb)qj'VAKlUƗi r{l^o.ʹm( sZ\U)~L‡}xpdpl͕sb))zreIo9qB~=/jʁC97%فpsU+=bPZF~ӝ2%s ,UM0P[  1@<*FJ9B`Մ+><өh~EK}~=•_9l -ʁZʁk$\)@ ׉WeROn")WשBϯ r W8\_'7xʁsUDNjP4@ r 0Ǹ"ÕDp%m'|S_O-*xʁE͆+@a~J#JOʁZW4^ 4%ʁZV[ɚ+@9:OSʉBrbrHKu`2On"gkɹYsU>zxpdpʁiui6\z'7xʁ³GP ).\xw)BW@<@h׏iRWW:}R2u-(@l^k(BQrz'@`-@mLir K!h݅++&O9}n~ &WЍpir : WFM r |zILYWʁʁP#c Wϸluw)L\AlnSXmU&jd_A9tJ \9r 2j-Q6(L(±!\9)r r ʁD9 +&O9xYmU6 8NÃcS F >-QA=&O9R,p>RP}LoI:,w)}k6)B>_pq̯  WN_B9X @` 6RʁcWAI9XK9p(V0mau(k)BZnBJ@9(l#\}r$\W\_=<82@8@X2>~W@lnSZ%\lnS_op3ezR5r  xr @* @V[DJ@9>)k)Bז22%ʁ˄dcmB`++ r r -'7k'\z)s>Sj'\]_=<82@8@zfV W?96W-xʁ@+`#[B`])@+Z>m.*#Oe~A( (@@Z;m:*;@Ho\%G:-QvlH;['\)k)ۯC*Rz&\] &O9(p$v}~i{#\]zLm<`'6)%,lnS = !̯,u]0ʁI9X6pdC*!2P3f@L~W2%ʁ@"((k)R2*yBvRo+O?8@<@GH&\U}}M4$\S>K`s r Pʁ7ۯH*r }R24z&\QZ"\UF9B(@ WE3VOʁZʁL W<^ʁ@ ({B)k)ۯ3Gj S^zF +OZ(@<@`PGF:˄x'[܄+86)!̯~~WUROʁZWz) (r P)ʁB9Aa4}RR$V~ )P7#\yz@+JʁZʁlHYʁD9M4X&\5S>SRj\_=<82@8@ qeuHlnSd,BW@elnSr!̯xzUr S_'pTI9(p@l#\5>)k)2:_@qyQm+AʁZʁN :HKauR>S W@#ϯ r C@lNZUG铛@<~^"p4E9l#\>1jB W1O Xmn.p4;_7B9#\uʽۯp3WD9n:p5/%r 0%\QRBW\HKXmEnʁtM r`\pt)˄+fF!+~`,ND);zjʇ+#ʁ@<@`p Wp3F;_I㝯xʁr+|+(@@p'@`-:(̯hr @l+fymO3ʁZʁ@b5@Zۯs('7xʁp=>+Ã#S+6r_(B GbND)}mq+(gQW w()pw)Ma'\r P W>}R2W$c~EKja QU GVPR~W$HKJHi+'7xʁ92X ϯ r @" pEFM rf(qWd>06W$}WP< cڋq{rWd!v{D̯=;1%ʁ: Q zW(k)BK+vHKHل+22On"?<_@Gm8G";{&O9EH@9M[J&\qhpNgO {9P!zWx+ rH`ʁP>]D̯FE0%ʁ1lN+`~Yt@-+(k)B]+ HK71On"Z-ZmE+ϯ \@bpEqFsG>kḦ́+xm~Fr_W)䝯x}0I؉wW:-(r hi~B+ Ŕ>)kWP2 _@) _6umN{+"(k)Bi^;bdEVZrcJ'MG(pgU /{RjgrEG§.mÃ#ʁW* \Qڴs&0HxN cr rtWCWA'ơ>`ZӈUZr-JK/L WZH ;6 İ wͯC%jpP@ ^@ۯ+8:"9hpPGr V|5)b1 ?5y^W)uD_͆@Hk.v*kExrILRjv6%V6+PNJ`gJ涵6`pT:wm+n[1ڒSGHl b\> stream xڽWM7+trU[.ۇT* 7`julW{FAfr@5GPib (Xtj}?{6˧QC=ӛwo?MR;0hSӰ^ѥhʌ2ܚ:D5/ܼE!zo"P-nՇbͭ ӿ4_7jJrfhmfxIOV.߼gaDuXzLQ琌Mz-E?՝+1Gvf 8|ɕn*exJX ƫM`[0^/;ZԖ|掴(9ߐl{ wGL P9z)I{}V,0MahbDHuB9lS(ϲجH_cp8Vݱ:!Eˌ*H HAAO~_TB' F4Gne:^RUĝSdV& TIsi sK Ԇ gHps:j).7$H"b4lZz/ǜ(m9jJ/8i8 /#U9UqGG/2vǗ}ΒPi {t%֥!X@0RBiʄ,+.7?vgg̟1̕?Ӵ i2g چaݗ> ^?[(<]^p<^/uj<>6WVM4VYeiO'$oG(=gwq{ww4␪[(`}7D.tՙmg)ug~~Ip AgΩJOsf[rp+EFuqșT%>gQJ}b|>f#uݹ&+ukE'_ل|yty]1 j9[MܟQS>t1^ endstream endobj 70 0 obj << /Type /XObject /Subtype /Image /Width 1156 /Height 901 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 25992 /Filter/FlateDecode /DecodeParms<> >> stream xݽrֵ6`RY.W.נ8fD٨ :q0s>+=@BC5n8 Ɔ3Л;K!c励q 6c9+Ɩ#QmS1-c߿bl'?sh` 2k8!KJ=N,x  i4z52Ķ5T\bL<@Kcmr+qPqnҘh b@43Z)*Ū+!%0@,קaIcL2[osU* c؞)̭-1Z۔obl016džCl`J04T\nXה=6o*`c\3l?biDSko[W|@ T)Bi؞i[ǪeGbj!cӺ5R{mєH cɸblM*6ilLk=zڮgD励mh݅v*aqgB=NL*cקQh<~7ū `?cr6uƒ錱{N'g(% cMH<646n-kuFbLeL18\XxCŖC0?Xc㺱IcH t㱞+iT6w[X&ֆX㊱i>m?k>5aĢ"D^jRlqt}ݳZ1B bVx,<70 ֆd"1iфWwU0ilm5`!$*f.LضXK@,Z)еXj\ 5[CEI0LC(k\76 1 |HիW^@\1&$cs )=,=Tb*$k~,C+.|?׿hz2jb,qm9hD)[ˑ@l [1ck?Њ-^Xu>ϟWܧz; nmTc h-Xk=<\or8AwQK{}XHhUB;Xar$EE PZA߁V]ԊA9^nM -@kV jŠ^Ɉbi+O0\!ZKUHLzAXT&$~)ZĠvִ^TO@j 4l'B^`Z-ʡV rlbJ.V˴3@k-uQ+QO=PZ-z^'EeB2(` LZk 4xAKדi J&ZpEbWt14K@ }"˭C֋ۿ=L?#ZK,'$j^&ȪK,De/ד ¢2!Y[}%$~$&xZ1Xִ^TOOiŖyer$7 S"ׄ? e1=?-r:~zPjrlb DV$tV7y?>B2)P/d-#@cI,Okix>2ɞ`]'yl >(aDkŮ9N/6${z2WqkDb@iדiS=Y O(ѭZn8W+b[T6&*"Q;5ݶǝ)R+6}N+5>2a߅Vl{°1!C-{F6w' ` @ʈj'-V 1`qQƀ *&u=bՄ-!\z+$`L0tDV '#| T!\iEe=2QH\ۢR4H 'c! l=W` =b]wk– ƀeB}pd1#"1De9V+6.=_°1P^s!B8P;K d}:N/-$;|^Tֆq0bmǞ;A"@]rO ] Dc3Q!`T&$cfSԄ0yzQc[Qzm F0h,H!nBکK=4H@kg}+˟&޽{'uc% 2Q<ԓGÜk& `?ֲV,o߾}((` 膉b>EeGP+N@kQVr\ヲM1Qr'{UsG;" A"ֲ6Xr\}WQ0QmʖÕxɤDb!kLD`@k@7OxL[Ex>~t1g[ţ"285ayݹ=PV+К'b?m%>I ^TҬ zdk?6$+3ID$Z&Ђi[sx .P-aqH6XMOOSO*5aKL {r\x .P4 QYaKL۷smc8 edGm!5Hlu'>@k@ (|>Ӷp (KT6gmN V2\i<Џ39{ƀhu RDb°<61c@AO64H,}[hhK[Ec@Dbжޢ0L }hhD@\1`&AoZ Ʉa@k@ 91XcLjzk(Z& 5mb>*9$&LL@]ԍ' DY!ZL<` D1`!`.* |߼FZ\<<2b@\2-PSh G@Z i` HN$z2N[EpwH'd@:㯤Z@~ȴL<0HD1LspRɻP#mBƀ$O4}#"~*,q2n }P1De@yUƀLbbZ0H<@01Q *=;(P\m ƀHL@U&f mc@c5ŀ.FY[0L<@]*K02Q e*#'𜶊@K,P&pkQVC[r@TAGLd%1c ZiA0]0Q Uj'izC[EH0>b9iK0Zn(z`@:*5AL "uA7L cƠ)&1] A#L ?`@cP=(@c(8@cP1ŀ.P2m2 ƠJ&q *AeL*ALT51 'TD1t1MJ6V 'TD1j"PD1Z"p,TD1j"pD1)ڠ"pD1z"` bVI03Q v v1uc@\1(bLhc@18b0p` cLi#˜(@ߴULg@) + @\1D1XK[E .D1xr[EN0ə(b͵U'LXUA&@ *{ # mmcb.2mmcZ1HLDHI[E ` "~ H `&P1o=,a@Q3r\}wb 62Q `|i '+U2c@ES!O/ ya8 k m/~uuc1XMDOsXwgsSg5;bDP*x>_pݻw}wN b (HVquuc'`M[E`L0/0Q [sM GѠ`b@KB j7 cp,m\a@j` (F5j(rgb9.F9@Ɇro5*&Z*b"I0&@U`b[X@φz k&en&䧭"C0FLzr i=9*@,ܘ(h,5jrߏ;\n8I1Q P>SU*肉b@o. .z;1B3Q 77uLH]2Q jԄa6=\.k5u "Y&ftlɯ2 U6hHLzvTV:j¨yj@U hb=ԄQi&-_n+iHLH)u ,U4u JbF(P=Š%I%smz& ڛ.sm_.˵2b&Z`F0FsLE UZƨb0] ,P70cʘ(0r Ju>׾4\ݻw]:%P1F5Lʧ"L0FL853ǴUciHLX6$sMr]m(*(G޸, Jb iOH3xlmzW m/~uuc`B]:jj׶ǝO*@9R8&JzxJ  &m*N|0`ibx RQ`Xn(t,2Q {)ޭ?)0w2R m/j@*8b@ϴUTQxNm+{w=>>>:*Tqcq Mq5V:@j*j}H ={P ~Yr]uc121Q `e~*8bPydfIL m/j@\*HD1.q--Q7{HD1.{h)HD1\pq D1v SǦ_W7k ƈD1~0:ƈD1~#9޽{9ģ"'#1|0U=c$c@O1uc`]LGH91K[EF0F&c.~ rVbS%6n Vb|p:Nwcr[E XD1~,׊-G_?2VD1~BU1^`@?Nh9iclb@Ԋi9isc2Q y'Q7qisc\a@?rFb*@N*`gLGb!c?K[ED1 @DbxLqDGQ7q:&tH,co8S(Џ&V Ƙ0Q ?NS7@ V :e@?Jk홈 .mӝ%%"$ C[r}8(<-*Ƹ>5NS7~(V:rPF$Пkcl#fx ƺ`@?Zj#e9t#2GeC[E@kbmP7f`8A *R[.wM .iЖz'"||>RPzx i,Q+"䤭"R1@Kzk8GцOƾ>30E .mh?`-j:PB$p}Gk8@\sm.P;"hCB,~U%1hY\@\[_]@5L }Ս@\Mcs?`)s4QHl.Z+h` fPc(` *fX:ڝ:8=q?gP'%hßLUMF.|>/5VZu@eԊYuctae`XzV6 '"H쫯*d*!-| "@^5V e@=L;1R9BƉZi@cP45OPXiԍ6a"1~i@c Ҩd&K[EB°O.V jŬ3@Db\"@&'Bz-Eb=Vrƪd@]DbeV S[/1 ƚb@iL+x<kZA]2P*J'èMcnS"1.잋ǴU 5$}b]ԍ#eN{|||_bUt1%3w*S$:S ;KJ`=8r?p㣪)bR1kR7qV #U X5榋ip,XۼVquuc"LCĥ" F1kx =c}@Nsm`XL(H9 .mHA0ALc"䤭"q b^qRUv*` ^}"k0Ć "+bL[ET0ڤ" 'J"}*>'XZj(Ix-xp\.uce/5-vYa:I<}"ۨ _`P'c?KH$6|v -Oa<bT$<^MZ7&Xh` ^Vی1`+\"ctMDe*XqLC$@ DbN춊F0@wL#'uczC&-U`` Q+FJ<| DbD[E6@>z&+b(1UxD 8(0ctM=T"1n1 $+?)hHԍADb fV'R m%;jŨk@::9F0@SOYt1z&;kR~+HکHM0V(™(FKc8b_X> J5w|:x";b{x rP.D1:Gz{: ?1V޶juc%;`WLU` jhHcp! Gb1(Kb*M0v i'XAL2Q ©+^=DbmP13c%^XDb^MhP(ab@}構N[=hXVs\A 0&ԍA! B0@ALU§_*G0@5Ԋb@/4T` "hLv.@c.0G$hDbv*D0aLcH "@cJ1>RS7F0L$-;jm%gH rѓ0iϰ^ vg D1# FP+G_a І]5T` O;ϰ2)t1 ZbBˑ6KTbP&ucR1ԊA |>۷o>>Zz .a^ ک 2Gjbm%a'D[EX"@cD`1Xt_X HNO`j` ]O8@iʙ."@]c.C$Vh(m|>/# 2b\3.*☆EƈGCCE 3] h'DbG0@jxN$HO) xS&l[M>95MP6_ Xv"1 |!ax @,A:@2Q 05p81VS+澫n'"17T4i (@XDb@*5M/ 8m魬@0aWM$П)bN: cIZb@ JCEx`,q< +N05XcH$St1%t1v"1 'ucl"z)XdJ(b?UsV1Q+睤*P/@GOJnlH Hb*J0t1@Db@~*Zp9.` q&tM"@yc>(1ڜ."@c+.B$I<.ǝ%hb)y|z8fNS1b@ ԍ@in }"P@ʜ.vooon"R+\}ic0] (H bB-^|>Or_CV˧`Уw)e*(b@ԍ3dTBɦӅ1sEbв1'jcR+B< UGw4'EbHuTID=޻^2 hٱŎB$7=N\nnL$wݘ0 ,kƎhe.R%6%4;m \[H<[s}w=xW%e8I=5V hHlDb@2olkCEbu'.E&$R>`S*@ j.Vq_CEb4N !KH=H YmEbJVq9 H,`q7!{xL$о嶊a m*[vg x*NfFOyNӗ_ZU Z1=3]l[on >b ɦT2N[ME@Dkڪ?],/-nG@0d['$ɠ7"1e=M*dP76Na/{1BVL1}V V+b mhQXk#z2 Z1Db@.\EbVQ1z3JQf z}"6;|>`޾}k/rն5%gXHݘ@:r*cAT|%Ou3nO>U`8}-0 BqEq{>܏VlkNEZ1ǵUmS5߻p϶gſ oIaOWޞ g 5TnPKJ2&z[i{H xl_M[[9I.o=w?Qb5⋛hm]F ƒ(b8!H vZX+]&˴1%nE!}2Q XO0>x Rزu+h<^ɗK-CCE ;@]mcdjR+߸fKm C 覆tz:4//yzTɼ+ve3:U0mibdOz[[~s3>bNj_N}4P#cq<'jb;˿J]m&#2铉b)m`,U ǖOSm66 co5prtjyW'F04q[/ ɨu/P+jωZ{7 '=:Ԉt>۝n\ackq-S0M é'='Đ; Q7x +gkzw+l#B<<ϟ3O~ETFNg%1zH|mKnus?l}d'G(_T<Rچ7ߗе~~XHqpYm",xQchB=5&qJHmm?fi3.\ {9G(ٞKTF[TS0qʨuU+nn}uc|L)f LU~Kɧ-t1^իW^MoDec.+)!=Q9,[n{^O}mC'}h'Ň>~;!P\t1o-Z25NR+iz2r"1"%"!繺y{ȡ#s?\Ulj6)*Mib@=s#+nL$z°S[Eo2acm_}1Q~?裏>hu\-=|!L0lL0v ˧[RU%U8ƻwm`U>?o9w߈rmc𕻻ۆdO JV#;-z}D1JHO8k({lw:>V۷o}0X0lsGk3#+mU_W 93uBCƹʳfG)H0QO(fblzؾbO6HZrJ3CkWr90-$<*~}\s6G5gQczҔ>q@Ԋaߎ0,ucc!{ #\Тm.ٳ=Y tZs6g_~ll+*cL0V {=.W$6}A1ڵ=#'2a娽n|R?=XcW~ 0|}ZOߑ!`!JCEĭ'{OQK ɖP Cl.F]Rf{=;zxljөfíg?~a=??3{ecPdOzqǫM) "9mxTH KHbJuiKV^"Z+<ЊsLerϴZO&|{"j;e+.#g**Z- }QL|ד(FO\~uclygS K[Ժ-D h-P(߭ʹa1sꍒ>t1UHXxlʎk܏>]Zk Rk'{x8?<'==+"1Sba^*ƀ]Jn(p|)jx0:'Z-{X?q@f+U"hHK^>i護Uǰ li@{Zk zژjzvz:0hhXҋ1iHK^\Vf$>1QyZ)Naזc,C@6T öZsO(1U]A "?n3wt[oc9*a-!<0 h%ТU sFbL7Q:)٢`-PQYq4#6+)m `}cQ}|8Ѭn HG@ \ز c՘BH ZZVR/@k-H옺1 +0Z-ȓ4b9ўb",W\ZX/c0%ZK5 o8_%.d12uck#8-mTQ-}O?=P7%h%Ђ~=Vh.PXe4TZ~ .Z- .(`P*²VAi[ r<=h%J34T,7P2bNt.a1>C8P.P>X4TxyJzMOxznn-OU$'֖=TbMCEد䶊"1ݧ;Jq!_2i2֖}Jp4 H31ZD?e)0=kV" hoPqؤ`鼄1R jx+c05^/=h옢LSXZ3@R˱mwB2$g~hDmhmZo $(` hPI9W7V1'79J0,UZk 8ʇAOucPy4TMrU\Bq=kmo[ʏo(ZK@^lb l*ƪ"n@q=a%PWk+T -%"12 Tԧ=hiܽ9{m]ʯuKѬHFBh@:ucmTF c0cGM ZNccG1{䩄r'$h`2*s$[MÒτԴ9C2aЈr!$.@ <<ϟ^NXic@G׍Bm|5{ DK!8 cH0 !Dx&< ]2Br^! ږ"{! ~(GF:Vm4R(kz}F5kmm"1H (}}G#Z)MЩm^c|&%-oK*À=Zm "K-CW XKPn|wgzt1z *6;T8LpȤj a0GDFبxt1"׍ 3#kkRDbsnW  ܇cR=C 7t1*%\P֚ǞBjńa@ڃ)Q|>z|dj}ܧ+Ɯk(iq-W֞9m-ocVmO)$6[_GqO=ǶU='G \ҭUuUkDbO>oh@]c]Ph86W Z2jHl18Zkm=uEC/LC@嘹(($̛.`uhVLpL? Ɩçu]sDm|^:8 TA@w#JNobԍ@ߝ%pU1c؃Ɔ+k =b@O(Z1k?ɐZSI$μ1|>u .Xw'$ ). 'XcZ]C؀N94'c}"@R*. Q+J$IcP/B!낺1HMX mio :"c/k q}4 +h` xk[[H&OWёbmuGKX,דF0)1k^FH&" M9I-BK{6c]S7ROSz'h_)GMH?Q~wǖ˖ƆSbܯȵ~t' r<짭b XO0@Nät߬kiH!^*@Ԋp>wM?r 11u R[nL*KN@Lh`+c3Q,'bP:`ԍ=s@N.9 .UԍljԊy̝W =1^ c>1'"~Ch` ^ I$L9 AԍAjx9("1R'wO!t_@Ԋ ct:o[sC+EgMZug `Jģ91rzDQ#~H΁&X&h#: 81 c12VRS7+z0m@nv'at:/V h}:篿/1] w*hH #*Bj*}bI0acx `L@L08shZI0ԍԍcA<i{s\ Qié`J0F5ԍALPX|=Qm!5mzg Q(W@j*uBcTI˜V EjDb cM[EHM[E|'l91pE&$ |$c1n # b%*BjƀZD1Q&}"L`EZ1 ƨ1HMwBh~1*&c@ Ԋ}"xr<, ԊN0FԍԍۈO$Z1!ԴUb@HA0 *D1ucp,U 2eihx RVXK$@6"1,J@a9!L R792D1r8m!5mm"1(@.1 R{H b'uc &pVRS7,S+bK0Fwcx }"L81vxD1J S 5ucЃ}Y&P]Aj1@$7(` L bD0 9uc,!LL1x RA/{Z1(@cd%>e&P>e&@j1+ 5e$Ʃ8&@1h1RmWjf$ 5O`b` 2Lc uc1aE0Aj1l3jfK0,cCD(%AԍԍyEb<1Q &. 5m bPD"?ԊD1(` :n WS$bP&tG<i6ƠS!5m# P2p1ȱXڢV O0]VRV 'D1` p$'H |rƀ$ Pm!5ucj}"H0<#c>PZ1(` "1B,_6* ƀ+ԍAjJcaN0Ajⱚ^)b}3Q }"L ƀԍE$@%1 x Rd=aG0Y*蛉b*18:k(b"x RV1!L ƀ|ԴUE@1 ucc/ĠV 1`m!5m>P&@c@>$@jⱵ !LƀԍQ+b''D1` Uuxl.b+1 r0Q Ihjf0 5,3Q UD11H1"a0%2Aj*>Z1(@Si2e1 +ucpzDb2Q ' Zjh!LBYmU|ՊD1 ` 818VX'D1`-p0Vc[ELEqRb0Q F0T@jԊ`` (ZmO`b~18JDb2Q G0TFG(KLbVR+3T+7c@cQ,3Q HA0d%`?b61 PZ1`?Pucpuc"1B,ƀ* mM b@N1`VOV o& ƀcՄi@(c@cZx[E!L"(K0tAK&%MVR["1&G R Db L!n ƀfim@?L$'8b@yc@7&%]P7hD1|1#1Lj!P&5Q7)h'ƀN0Q ` HNCE(K0tMĥ"@/L$1Q ` >Aj*D1 1 -1Q h` m~D11+|t4Tb@{c*D1U1Y*1Q h` 4T(b@ce*D11 *2Q ` `ĥ"Lz#P\&=n b@c  r2Q ` DCEc( Eb@c`? >` P 'cѨz#L<{hH ` 2a(0G0puc@ &,$"l"v&̻uHmOj1GoBtӟ@BYLCQ0G$N+EL|=XI"2R14 o8POF{mX bk8ȶ{POY>̹uPdSɨɝtӟb{?$(\<&(<23>`<&"1}T4EEj"|d Z8#֓Dc"1Rh֋xLhyL`-cQOF믭 b3c OFi"XiV@E8H 5"ePhby z2* S1F`a@\Ham=ٔz2˧NOJ@LO0@&2c@B&9cVd"<AEPO2 6hp,cA=@Db%fzR`m=4pb䡕"UzO*5:篿339i@^8ѦH ?֋D12AJ`@T8d}N?yucGbju FeSNO>6jԄ9Pc$Ŷl|EH_@k?@9T ԓi䗺1EɁV,νC0+J"@k[ʤ"0=6*B9 qDDl * "hS1HH<4Td  !^ZOF=Y,*0&Z˙!Pv|ROom ƧՓ@k-ETC=2 h4N0Mi@O@+E֋uh%R1곞LCE Z>ie@z 4T h i]\MO.k#ZKB4T2h WiZ-:i\"B@ g*j'P c@%Ge*gN%$Z)hHZk1 c4T@k-G0G0 Tb~@jZ)Bqb\=3P2c@qRԓPQ#a荊18qCT.:Eg '6@bEeާ(kI+Ez[/>y@G@c@Sbds0&WcT Б!#+ Q#"8 @>@0@ctA0@ctA0@ctA0@ctA0@ctA0@ctA0@ctA0@ctA0@ctۊ endstream endobj 71 0 obj << /Type /XObject /Subtype /Image /Width 994 /Height 912 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 24004 /Filter/FlateDecode /DecodeParms<> >> stream x?ra(UR@e F8tK>!;.؉Y%Qx`{Lؘ ~x~קt:] NL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL(~w@9to:CL(Η_~_ r}}}}}}sssss3kP18ɓ'O<[(KP~~կ~_*]?NG蓘P4k^a/K&ݻwŎ-=cg}g9&2΃?}ӧ|'|r==t(P'cRr#y:1Χ?{ٳgmKX'd?O?4&qs <߿;deFb:@A1}ܜ>r 2ѣx1]BL(41-t ?c;cR_aٖ0%ˉ>@n\Ҍ?;1a-0R^q}\#W&'a KIfAvuּa}2}cH󾇗tt"OOcz]3:@L$zӧO>M?~YFL(Oǘ~31[އi70%a=?yɓ'i6sb:@1}C-{ٻj`$De8{>iԞyde/5HL(dh9=#IL(zycߡibFLh{z_r\2>:a9}|j|m޽{g}g}gϞ={6=?51߿G #U5Ob:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!b:!7.u|:N/a@2[8JL:&-xOEA.!$6F=9oKy=eH{\ޟP>&>c6kKeLt/^FJ yb:Un+IL:'pptq8Jx'~[y=|L{ t4Oa_k @t[Gb=?üv*P1`f˚ swwwww20 /@O=&EFqekْiǽ)UQ^x(z{@tfԛcߛj~MLXqG??o/O_Z&@Qg͆_cz'=]/a}c=Ov}v~м# F֟'L,|F7!0vܒz~$ok+ݸЖy|mdqiBa=128=|[F#Rt'a9[42zϯ湹2zS~ {zT s)|H-ݲu27yb=[t*VJyRF GY"֓ґ>m!9tȦ#%ax,]/;X sa?om2:D'.M4bkgMS a.B@ .1`rgSbs]-G6Լiq %1tM(O!º @t|&CE*ՑzPz^p$pv1 0z>" [Sb:ڒ[X %n3P;a:rmNdu[T{am4h|6@iZ,?mtk.lv푌>7jmN6G 룲6>n?I 13Rf~z1}{h^~m>jgn^ؙEg/iz&]%ϟ_]x߶>aU1p)5X!=iX9´KQ=}7L9Y#4OG%LvLt|zqm>qa @ L@}۳1x٣]c%'}o}[i(GuJ&z3\a=/{ҷ_%Riߢ|>%@S}NX\k"K_Ǩs/}}}! ag:@3w/s1fkܙ~i@ukg:m~Lt>qb}1btϫ]̞Ö[s IL`>w$߿p:a5Ό/,b̞C/ᄏݽ~W_M_\NLt =ԏLZ SRRn|o߾}%uT#m4W5\5Ϟۙg>fK0O#_=\G)SVffkI 4NFO#WX*sz2=__oQjtf蹔6\Lvq8 {iKy,K!\FLhY'=a}>f[`6aI WW]b:BR`JL(mZoIiPIэKPm~ y[oxK !q^gaIoA%׹,qVd:@AdtRZ|707~'u=x@FFTW4Kt\;6L:vX#IU~ /ooet aaL:@KLd @K"OIQςؖͧHLlc,xmYVF٢P;1 2XIj'!r0KL8A@Xӌ.CL P#1B2:5&N,x->NɅBFK1d:@ƵNo߾}O}POOF(I'ooetJc @L P21"2:I$,ZߐF&(R# ^ZE]RHOLx@F!CLN{,xh!%dtg @L tMFb @.b:Щ/8etjg @lQELEN],xiWIWWW]J"k $!,ͤ[!]Y4NFKآ4KFUK ^ܪӁ@<%Z>o K޼y|{~oš̍_~W/N*lg2hZFi҂Xb @(&Ӂ,zo"_?V~X7>ao߾}r3To}C:Rf-N)u-tb%ނ>;Ӂ*d -Y&t22:,x%Րщgѣފ/0ߢ>%̉@ֿ.#l'E[VF'4 ^s*-tB2:}L NL !B)y[:',Ӂ8hX@̉@Adtʑw[/`R(Ni,f9ׯ_&Ӂdtr+[@.L٬&W5/{/iL_~WѝN*m3dooetʻ-W>-@t2:/^-{@?L=E聘D!S2@L @L[bIF- ^mӁ`2/(Ym07  PӁdtL:ϙ>@ҡmK_Z#h-@Kt@KOtr!dtj}}y2Y_}5/,0 ۷/_Nפ@-L,ͺhҳD@-n\`;-͛OL˯X_3ULS@t`Z\ʒ# ^FI(5/?x+vf``RFb:h˘[#֓:@it`],xx ҂1իk r&(t\lQJf2'-xa2 ۷o_a\L2:DX~0)u 1&P&E҈Щ_@<ngcM@zb:tg [B#|6(\]]ub:td}C:/p%C4 ) ^N'WELtO8@zb:4KFǍ'_~\+ %1$CJNRPlQRӡ)_0RFΤ/mN IHCLF}p{+C$u3^ 61&C{W,ͧa9GLoHZwwww?5aY C4 )[^RRgz[{+آ CdtH)TFBRP$u ,1*#CJ2ߕ ϐPt)F;,q0)pX/CX)N/b:mia[^آ!Cdt菤Het(t 3ߖOӡ8%]荃It()ѷ ,IBL"R}#@XtLF[HIub:dt\Fj&4<ZFji-IPzô-LPҁgk'@#1q(A{IIRoR:a:LL(dtHR}!0Rѷͧ@X@otfIa藑 @ot`)[x!]gҙ [b:bC:de\HCRp!Rяs0)a:JLdtHIFOCRPL aRcEXO@tDFd$uHc+P#1X+CX2zJ'`Rh֞萒ښOlQډ鰓qϤ8j'#7aYR[KG|+-q0)t:N'~K8hj5y3 ~; hi+ҷ}e2?!%%s @]t!)&4lQZܸLFdI`իr{gZ6~1 wo߾}OǯY,~LSS2:%M72:İ[@qt0)p-&a`R(t!tgxdtr0)IL#ҁviI尗/P1.8hR{ @l@it'CJ2:#IBb:͒!%OYIB @LA2:$ i8iH’7~=!)+_ 1F=q!,}IBEriPIB =1oH2&=zrMXRөF!%* @b:U!%#lQ4|t*#CJ2:H-N5dtHIF'%IB 1 萒N<&4|1m}nDKF' %HN֞萒Iەt W^WWYTj tGRlQPtcC:d % I))1"萒NPIu&ˈd&CJ2:E}>³FFdt"x.`:%2’i,`;1֞萒NRI_b:k}&j?1I`ݍK@6CJVОv; ӗaxۗ/ U?6~Mw:N@L)Pa^u].t"!%LCxI}/7{0 w߽}ORO&ӉBFdtz`RW{{1| )LR4L #1`֟Hnb:=y!%a)I虘N42:ı>IU@tYߐe E08@t.QHIF$uݫW_Wd:MFdt{iUHCLgR8B=3bJf:=DFdtHCR2<>>&/xJ`Rz s’![ԡTK]<τ'u΢~{+CJ2:ľIꐖ-[j|:IF8gҁP|k rѡ&=b:Xߐe `RAF٢@Ktp($C$uMF~9LFdt(-zFz`R #CR2:FR?W;]!%J>Y<KL’ѡ&dt<[ޝ&2:%CK$u8GFr0)5ӹ-갟\ELt ,3P;IсL @-.8hRѡ%p*9鍓!%Z`R{qآ@f萒= Dž_ls0)%>NɅh*CB2:so ÷sV}|GK?5 0 o߾}O 3RѡO&4| @iF @&bz֞@萒#-@Loԇ.@X3@$u@L 鐒.e$uER /1J2:$[85/镑!%gH'WCFdt[ +_HIL)@(:f:)E[!,HIRP$u `{+CJ2:pI)0 cW&WEF8gma"/& 18ҁvREҰ8hRс\$uRYIh- AFdtdo߾}݄k~2:Օ@hbzf2:$p0)q5萒‘8 etKFg:[YbzRkϷ2:$OFu C3uyHFeD7aY#a 4 )@|12:@x&`;1="Rсآ2:@\:[Q萒MR-!%@RoIX'*CX2:кCI{?Y%@\~`aHIF7 : [K2^sWOLj tآUH>VJ! j&²`JRocWrET@FKRP=t:5JVR#'‘9>b!~  LL#\gHHCR蓘/ppI FLFKFHCRP=lj EXODLĂtx$uHc OhBEFHgTHmӁ dtL iآ*10 ^`L:`RV;x#dtآ0 _WWcGY>b:PI=Zo`R;Y`RlQȃzbR7u `$-2:;TROLw}-xu2:@M2:eY>ԵOLvXImm}TF\&(/` 0@lQ(/0'0WgR_PFL\%D%4oѷ noͤ'-Z9=JNze7[HAL8?=|5?:ydt({@}­|9Np}+) ,xdtf{;j`R\t3pf&B I =1f 1r0)O$XBdtbhi,L:N>t}HuHcel@(&ӡ#2:HٟN @b/KFd:xj>Nc!P2c1_b1ʂڴ>y٢xH{jj!@zeLCSdt6 0 e ^8n 0$ueK?o`c/LFhLֵ%6&X̧\DF~ AR?鲿ld<@Tu0)y75ӗj 52@Ͷdǟy4̧s)T@FulQ%{OLg1݂j#P?~iI^yȫ٘n _Ȍ-ͧ[Ě(@fth&ޚI|2:K7.Џxkk0tOdtz( g M y2o$[t-xl3j=O~LR^ŀ47p>j3%'3-ptP5/@OK-Nt ܴgY0 ÷hP\[Ϡz58*AK&З42LdtHʺΚNF2I%PJ`:uƊQ1wDIt)k^ t F)}M-.P>P2JS6 :<OYP#[(_9 ^̧4-x!j'Pq̧C[|Kl*c0%%`[^2ԡ{ {Ъq|o?N ~7a-ͤ^0|"Ms6mmK|o`ob͋/AFl0 ~V:{}k,QYLIgT.E<~w?wCOse͡,K{k^,x!6:=c=}ZO&f>}NF15_ML_ 0 )@FEERKz>Js$~Ƙ|67}I} k\~{w#T O_nL|7Л̍I͛a륗ρ-qּϧ/s&ڙ(&¾Ζ>&{?|:mz_K/s؟UL_7M&[e&򴿆e|k]03aou 2qUӪ({]z{dtћ7a[[|귿v,`#7m,V?Kzcvwwu՟<}+_ނ}GW-au)no(}M/k'P5gBŰa@__|wa@Ih҈O_·*PDY3ӗ3.?KuE:G5Է`۷o_&Ko{@}a2}d>uY{O4dzdth4;.prޮܢJs/K1_]]]%Fw_JǍ>L@GBcBÆrV}L7>'CFF/׿ysu?Obsbo84u?o<͂-ӁjHv<ƿd 'Co+Y¾ͣۇ]NfRǍaInk sWm˳\ROh"NӁz4L /in=GAFv'鏽g-(!m}O}k/Ǹ-ſe7sm+4ng8&ͶQ#1}Ii̟[L:Y4&tm{;f)AI=05x|a\U˴9Tt%6C|v!vY={ߺe뗽Ҧ ci>}_R/c>-܋5*יZچw|w{^|a}/W{, u%i[y3 _oZqɓ'O<:KwzrE&w[^~:5f=OQxkė6-=,%r:빿P}}Ni57bg-Z5OB\ob}_=vi<@l A^_'q-`Rw;_ρWo}GJӧO>}'})}M>kCI;sXс|ֺiP6M$ux9}^>i}6|駟~߿?&O#zdיQ}h68>OX)ilI}2UDžjPYz|CK?l}WaٳgϞ=>5lAޒ\Idz57}BO.AmKWŢ?:c=nv5o~wwWW/^n>#>0ߙ]^oI,cxLoc>}noX)sn#Uض|1^b#, kI vOo_,}}%*0|ugg/o~Ac\[&StpPSջ$j =I=L}a|.S3y:Oc¤h]Əx0.b-G^/|zG-Ǯ|RuZtޓ-8װw:@XՃׯ/u^%0z^# ǯRέO?Oݟai^5/=SW{i}jO{>%M[K(3$oXс4\ROirqU@$u\t{'Uc5Iӿdb}߽{ݻwzz%_aJetnXRʭzq9 cz-=/>wdct_//\zmߙ޷eN_f)>]k`/]p'|ba]Fr~ݞ3#ZZ[~1bKoskDçeoL1{^燩bzz_|_\vI}l_f>>wΙ2i&ECz0 ư%R[? +_r!y'x(_/Ơ|}>þ L f;XԛO?O?|V}'|'L#ކNc[ \l/et_&#s-i,ͤΗf9|?&xqZ}5/31?{ٳg3^~~?_׿ݪb2M#Ү2{v7ϧvkwt҂)g).YKğacR_/_2Fvuͧ_沰.Rgtb82?ʗ˾Z`@<{z.5BnH廛p5VlyBgКG-m_c@![¥m7 šOM -o{ŋڭ|y|- AoZB޿rD-861(GՍ$uj7yxJu|yx+E]?O#/qۦ%>.̧_f}I=m8#*/*?=tbXzd1"-rƂ;҂ݩmmO2g2GԩvKåd l`R2pwww_50 0aԡv9ۉyOk=C,{!*׶\ԭ|ħ)J&i5/]^YJB$>%3ڿe˷=ʾuZs6t ^zVښ:b3LJ|0e.ݞYŹ @iL j!uIOL/:aK}GSqa/A7Ո?͛a/;}[^%Z%f>8Rmuv(d7o+59sG?,K{k҂zsd,U..v@G~0Nc`-p־=Kו9a_T#mG%k܃|>Of-{o+`[:t `2֧!\3w{3sS+OlouZsxZ7򅰷8SK=7N0홏>=02OOb)O'ҹj&}:--%g-cKc.9PRl8=>CMv?6d:EJۧӼ5~83}q0iq'MF\m7Y:Haa9\-?QryV5nrOj|O<&-e)69Oaa35LfҁGR'P! FV)z,Qm|qfá=M/-x聝/ ٢N[ױmQ8&ˮjz{ˇ=P;|}9>q|>}ěI#oݶtg&)Ҕt߮3zL%:{/_+&oWe)@(q7K/ﯹ/k9rڿ|kw[=c'u~%߯? OfÁ޼x>}*Lb2L:t*`:qo]qn9n=|kQ' +a2~OOΔ:||t{{M]3>K@?\{v&)XRd{!}̤LS)uhz,ac]Fޘe*$uAG1{1Omcܶ{IM&y]2 wwum3@t$uhI~3P/}0I־`-/z_́oKvO\lmqiAKYeO:C-gҗX0%g 絾E]RYeu>3Ӂ#z9l!g㻻y9޿ru}d>goR?L:sbzf&uHq/iwḑǭ'i!;>P ܵOE| uK ŽoϷ+B)?xS.Лߢgi4KEs7.A Ƈ>>I까_dw@iL:ssǯR8y)Ir0)mJ3qn?M=IX"ǃV^~h ǙX|i KB94/1Jz:.KauKUӋfz$u|2:k,xCLI=^bz5U^&j!kjQ` 12&u^2:@Ķ'WIRKRH(o :%P3ۉ __iYЧK ^NLIr0)P=%ҁ\|>(^=?I\d,x'%7lQR3`3 ^Bӛ"%,ͤH\JFGFr|/`ҼL $!m UcRv5o]fqۏсZL?wwwwֵüg e).cw :PyL1}>!Գzې> @K p{u勤I9ht4@`R`e1SKI|z#?\xIy-%uv_;S?"I=].b:&u.b& %1yKR"'-y9Z%#$L -EFKLg7I=2:%Y`ҼlQz"CL yIPPdt҈lbz^&`$"Idfe}&\t_Irj`ҼlQr"OLBz^:%P 1C<`RHOF .b:84/@2:5ӉNR%u8FF ^b:آ-@(2:@t ,>@tL Y@(VAL'"`R@(2:@KtӐ`;PdtDgz$u"JL'I=/Pdt$C^&)Pdtd`ҼlQu2:-)@<L:-I jB7b:Iy9~"ILj`R&3184/[h@(2:b:ՐӐh@(2:#1آ^2I"0%S(I=/dtt J^&. #Se:P̤DLz^:eEF`N#$_R -PdtөIr0)%EF`;1*yBIEF t*fz^@(2:ө@l2:!8I=l!`Rb0@(3NSL`RBjBi-y٢2:%,I=/IdtBALSz/@(2:4y9u2:&OEF 1آzRKF ,1Hy93>aKj锃IE72:"5Oz @^b:آIZ%@ tIZ"@9tDR%u"P1p0i^JF \tx'gyI5Pg 1٢Ija X@t8CR%EF|b:":@2:BLML-EF.b: %%@tL @(2:B&%EF|b:D!:@>L:OLClQuxv ]hHyIa"1D0/'@{ty922:JL$_RxHF -y٢@(2:=!"I=/I22:CL<}s84/v 3FL"HiH@dtB蓘I٢^2Ih@(2:=!I=/EF1t3/mEF94/[ԁ"EӐԁ6"EEd:dtz&CA$L L:Ϥ@t(YL EF ]`r0i^EF-t(IF ӡbz/i"^b:Ty9(@(2:\FLjxRI\dtB1*cz^ӡJz^:tBYIӡAz/b "CLIdtB ,1Ip^&BEFth-y٢!I=/IKF bӡ#z/"@b:4y98BF ӡY:`R`oL:E=/[ԁ}3lg 'C$$u@F rI/CqdtKL84/BodtBb:tS$u职@(2:CLN٢zR%ӡkz^&2:!,_IgL:843[ԡvV.P21yIP#Pdt(<`z^&Z"@-tz^&"@]t`7I=ԡ{v2:HL94/[ԡ2:P/18CRKR2:P;1ēL #1y9RP̤@t I=!IF`;Z"٢-@(2:GL.$%CX2:*18y9EF@&pPdt聘D':_l'@?t [E2:GLatBYI#Q0'.'1y9etgb:NdtB1IyۖNFFb:I里@(2:0%I#/6Pdt`NL2p0i^\FF@q$4$uZb&Pg@6LR۪vVt 3I=/R/Pdt` 1(/Qr0)uEFӁ84/[)@(2:GRKRL2:et2z/SҭNF`;8BL `ҼLJRdt` 1(/lr0)y Ϥl!E=/[IjBEL!%@(2:4BR%ubފdtt2& #UP^&%Pdt 61-y٢2:@b:P=I=/I(dt ,1hKUL:@Xb:`RPvӁ)/DF ELdz^.%͒ԑEFJ _I׏v2:P1hIr0iodtB҈@|v2:P&1-y'uj"ML#`X@(fHKF`;(ty٢^;Pdtb:5_%HF `zf&@(2:P#1gz^&-@(2:P/1`I=˻2:@tL-_%L:ϤBLXdz^&EF ]gHy94%Pdt=b:!z/ǿ2:@tML-"mvÒEFz  ¼Lz@(2:1B&@2:1 I=]bZIhp-y٢.b '1 I=/I}@(2:31 _@`9Pdt1 0`-^dtFI]F `JLetBt$LzdtB3&m#<ϤLLHyEjB`PI=@(2:b:@R.W"%dԼ:TF 2b:@f&ͫ-2:GEӨ`RPdt-t"آ^\IQ(L:[*`R]jPt6"%yߢ.P4I=4I]F  1bz,"&Ty8TF  1+2:)E=[a #TIR벤n IHOLh?2:\{P?MgGu!t9˾]!P1=l'CLhzRNF(I'ILhْzlK0 edttf>@^b:@lQ|:YP>1 :IFtu:`R(P#1;DO|:#^b:@lQdtډ]S2P 1E:>@-tLt~X1B#-iOh*1GH61$P̧AF聘":b:gH깘O1MDxPt#IsmJc @t}XO7Pgb:٢@odtt.$ǰ40R\dtFb:JF`S@B^ӵi\d:Ei}|:edt0@έX`NF81j룥a?bftێue2X@F tu@־*ڍK@eKXfO=Ƿ8d:];>*3Oď#|@(&މ4XjW~@X&`QͧCoZMsr /Ȧuv=q)ڙLJX_Or!c8ILC 떽@{Ǥp蕘ײ4J ºt Md (^J̆2IX9~ky d:$wb}dn̆`2{b|z]qҘL"âMr&@{L@έ/uۙ `d:T`uFP&kO,rLXOl8m0 ;>5Oq%@㎄Zx>@lb:t9 %S1ºJL3NL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8CL3t8 endstream endobj 75 0 obj << /Type /XObject /Subtype /Image /Width 1368 /Height 900 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 29505 /Filter/FlateDecode /DecodeParms<> >> stream xݻ.`69dǒm8VW+\V7..K,XZ$ΰ ߋw yj@{A h@4H $  @A h@4H $  @FNd;@ 47o~|'|b;@ 4_׿/zt:=mŋ/^<{ٳg??5@ h?nk@Pt:?O_oQ}|@#/_ٳgϞ=;ꞜGF|˗߼y͛q>qwwwww;j XC pn࣏>裏Ww}:~-@={ٳg@/^xa3208 {YVm  ŀ@('>J)x? j^gϟ/P;zaŋ/^sXO j {ӧOه(@ c<@? ?s Q0ٳgϞV=~5BOXc EY, ?>?_Wl[&T,T~m_/~ӟ?ګ?EI h޼y͛ϟ?>^PXk ~> uq0h0WG-`45Ɓ`_?k_m Mox:}#ÕM(!͛7o޼N#G!ra}TO{FJ%6 @cg#Z2`P"!R%O`=z Kl0e߷ [6𞿆~N#2R ˧5Ry@1 }bɱX@0d> pPE *O (mkj+C ?fɀ[ٞ cVh1qCPX6>_rir7apiAu+&a_MCP+ׇR(q0u?{4h0L[=` O-}}p. PA jj=u;{8uËF ~8a,`xk-0 N*ޟjZ2`%E ZF R )KL< @exɀ!(@]4Xs006-?ݚ0@>%b(}-./ @n@eR%!q @Ov@P%d;m[f-ەMeYCTOedtndX@qvMCP%30^8`Sz`o& ! ' @eRc!QC`@9F1Qn l5/؟% ާbԒ4ICPeK QoXq`dL X!(@LC(@P2@P#Jp@jC@@_ojг6G $  @A h@4H $  @A h@4H $  @A h@4H $ t:mukwwwwww*K P{"53 @-ed'z͏l}ޡߡV 8d@<:n}}}}}.ryo6@xUP+P/blrom}D *&+~@0Oe(@Pz p8 E رCT=[ *>`8X\!Tq~`@PW3ԧU @:JMC>j}L _ PdqH%M/ޯ7Ο>v P#!řꯑɽxlw.6 L(hM 7_#0>?6쳴r3UlRP?Pz$> 0U7sc{m ޅoqᫀp5q\?ĩ~n1@0O5O]r<P vb+9vYMDrP?UCcnQ=1Oϕ[LP; P%CT p@p8~*C6~%Z0~ "@2G7 P2Cd1&@I|aP7 {<,. @* ngewJ"6fPzY&` Pe{N{5dK2ԧ7 ؊pG(CXN eP eqުwO\,3·}ͲI~@v rKy_P?>*@`?-^%舡~Лnzz=R(Gz'P1CT1,ЛeO("l-Q5} ֡PfqKK `c5 eJ`qz l(>[L1r,. @F [VV)aC}(@K@և[(b׮,Hx8 @N u|ѓ'O~/wG ODtmj~qY\___=u\.qŘc`/.0h= R= p_ #˄p0"`6|zJ uU  b2̡q,`Y8?% xs@`q8o `㰵R| ՚ppAhb:^Z.0ʙbfmxOm?i@0&z߆OO)N*K<" q,`Y8IvX ) h`I/%gq<,uTK `H8O8`;P,#@A SDh@=R>CtM pO1h@9x@A GDƄW ?ӄ>|W7 G: 7l@xj~A`= rszc ؟p[Z IG`W&;G@@6 (p@9RCWdR65ჵ(_@DJ?F[ּ p,A`AʱL F n i b ?x@8Q6@cb  'Ъ~A԰IW{ }ǒp@,Q~`x15{ ULJAʾ!K h| @U M6 HrD<|_ Vw7@t żBCCu:=#m" Z̏<pD(;0$p ?=L#E h@-f)㢖@@?,ˈ@iFp@{xh)@5.; uO8vQ5vn˒^9% t@eI=`+BPVkObp,b `È)B ^?T1>Or\.^z cy;TL cY\4iX fjߟcd˗S_u!(%lKC9(@ QEƧ>EbLu2Ը31J͍J"T&J?1 !jaV[COC epBP?V@i`W۲X1bPBOoǚP?@@̘VB[\.ڞ@) c˩:' uI P?>|>N>g,@93=? Дap~ 10-I;JlO^ aۣIOI (nVWjW"D ḻ-`/R@ANj\\`b19&vP/ 7O3ԇ6\.28c [!ؖhp,Cyؓ@p0@ j j!!`[ Wù=7d,+cA(Mj=%3 oG|&FjtTD`(!,h5ԟfa' pְdP('4c 3TO` ok(`HO@nBV6ԟfAC+Qhհ9 Xi7/-|!8?>@@\ߒCwI c+0~2|X/fP-o:QӒ1 zv\.TO@|&^x_>%=1 X&'[g ;@aD`eYdl}8 ~'`ֻ%Xo00X7777/_N}YM!d$ ,77ƖE,zh ~ C}eXϒ@,.9PЧy,tk >y1=[1~ C}XFO!8bcD4>"B}0ԏak0">6Xv1 F|' c(LLL+xTB1ԏa}yrs@ F?FjD`>Piq! c.r !KblXf@?267ԏa)߸\.@S#m cu Xnnnnl x,n=[5\_L@ =~^yY>b =(?PKP6b@onnnn^3 ,$Q!CyG臞'$ U7=0E H&0#0z&0dJOL*3C}}''D;,;z ^#؇X ]@n\___OῧeF Kx;|@8!@?a|Y\P @C@AhP _`n|wdSϾ|{k@ =& M`hx܅ 1,3rp1X& (|q' TI,b ? ϲe{x|{;U=J " Ϛgz#Du̲n믾%`=<el5 ~@tg7\.vb Dʤ' b@ g?@t'e@C &L@>{FbnG,b8@dxw,N}UO )a)'`&;`|W^}ݝm@-4TLOlE@tSr7P x@0UPh( 8[@KtFO@A)y=gNh@@Scz j'M Oh'Z΢P;|=8۩ dЈngj$ճL@>/' 5蚞'@tS{7@L uf O{#v=OO*tLL7@V\@-2 ȧe=OO ' O.p|%ȧg$`nV T2 @,Oo,' 4]zl@t 'r@Dؖly!ʼn`k~w=OO%X& Q@ p(@FVvzM  9 x(PQ'$[qnbXF7@nz 'LDl%ؓ<O hPL7['8n|,-[q= e>' `+(Xp}@A|GҜW@$ebؓg,ebV @d %`+@<| ˡ' `[EL7t' ؊ Hؖ@l2X&d[^OV؉XĈD,Gr>ϷkND1g tLL75`c xzXF ,5`+.8`XH7@>' @d! l'R @n ЪGMO@<H`|D 1g؉Hl|>oom @`HOij|`OTY) #bXF7S?-@0E &Y&X_ 3TL z1uiq7z2xɵ/g.16 0$G7k@pJ,@ # },@(eb 'L@F TFO3 a83@>ƽ' ӕM@bX&br|X|>bC`_|hMƶ艆c|,@|VO@{؊n%n|t[j~Ha?@`~h# >@<== 1, [.`,c.@L@> LztMez'mTFЄX@ M fG7J N# @9{Xp U4(eb`O(LvR |>N}UO@lZb|,@BOMj=V^z㯆owwwwww@4P=a؊%@Khn|tІ`;@0UB .@S`+ΧA tnڣ' @LDg@ۜ[@n'^TI7@> 1{Xp ^4Kxr>ϷS_P&* IOij|@]h(@>{"@5bX&ڦ' @L@> d؊sq xz'@t>٫`+O )=zjtM|˗O[h Pnj15 ؇vJ&@q,e9WE & (TTT`(@ nr\;m(_-Rȹ;P '1yz rPnb`+.(@L@> m xzJ ?` xE>e0 kzHIO((@>XcƜ8@`n @]b Ds])z`W 2?== !Qx؟@Lr0 ,B ]C7@>X'`uލcX_zÿ7(A xg E@DV ؓ@tn(G ʑo?a'`sgHa2LD 1u\._~ikk'/xH<͍mRL7|FO@Y2P> !@nLr>˻ XC G7EOij|@lFXz9s@T ('`[l@7@> 9`+"lK Py2ik@OVXE7@>.G\.8 Pg"@F޸c5zp\.@'B1, K,! P'@2ch kO|q>=3 'SZ@@7@>=Y}-[ |It:,#f)XZ'`e!gX H%@n%ǚ(@\J GX& 8=) ;u, ;.O'$>z=1XH QX7!bŜ 1, M!`|peLOO}e)p tB<%LSn|t 0IS E a !p`L n ' e%  `+g @1C=OO@ )X&G,bĜ z L ; COij|3K'3@L7y\.?z> tA7@> R25 } ^'|>ooN2%z矏.6hhn|tLlr˹P7] <`[*'V,# =S_ 6͊`nYB)\(%@ A 2<)H@S@@=@ @9s@iz FE`zV 4"eb'Lh{r1*Y& 'ڵ,<ĒڎL_biŚx G b 3}Ϣp|.r 7F=,=0,A J1, P&q%|M6T2X&A=.!؛v%h8~O`o.j'P z' %QĘ`+ξ@L7z' j$P4# yL,b8 H '[9۩ J#P(,B [qP G7<=r''zDX@X|{;U= 21+'`*D+\p8eL2?7^xLfQHޑ J +X$uș^ #. : %n 20XY& 3'}Y(BbGP"GH7@>ṔV[(|>N}UO@aD1ؓ=]9tLL7 ArRxyCA[hCTƶ1c0=OO lec>6 8''M `'A 1@bXF7@{@<=@>X& Qډ@ |`+|{;U=봈U;_ n hr<'۰|mX?,D臐V 2wwwwwwzbXF7@I1P;r$LDJYBs6Me$@b- 8U `=(L@K ²(n0zclEz'y=:@|0O,`Ԙ_G=aR?K `@t0ϫ'@p>ϷS_u]f[  =oG\,Y@? 'Y>=fs8@ `r\.lY x"b֗gk'@M cSbw/2'Pװ|̙z-ю$X_X!cb{ş/sD$0g<3Z%?Q88nrz x={* O@@A;Ƕ":[#D^l>@@=S,.B7ۚ 0.(Vs$ QJ(O8^Ye ( =2Z0v= P#e|>oo{K^>_S#m[FYv֡m"@ `ߞ!f~n/^S,@-.@Kʈ Ђm0Bq $wOpnJsso}{oY(|@^ߋ we }__z (@>*gMtJ'@}zҴ R+՘^stnrF~ yn%NlPrپp%X<' ^v؞ףlBO@;8,~,࣏OQÓBpf{YvuW̙=ͿU[=KCaJ M %5Hm`xI7Z1~K ,#p[c, Q @ lEB@ @K,@-V,rMp`{bۺ Jzx5- ?#oI'|)ֶ-% =^=ܶ᷋U V׎WaAo]w>K$~=\___O+ؖnj'Oɓ"߇]-w77775?]/Kd_Q'/zZ-e_A jat*ua=< Svۭ!`W=mpf8-yg|@Kw=AGP|SOk+P}Ob.?#5vLkkr|w}=Z9?Խ> zpVu G7^)ݟU+@ay~?LxKǬiڛ/v-pOx:gp0ܞ(3Pr\zPizz.ztJhlK@7of3G"zG7|O@iW@y?[x^:`jS uyUWNv֣<[ [r=v(Ժ0w@wߖ1g j6\J# PPN9亍x H %@Kb&k=\?+ͭ '@CJnW Wvs7Jkqp-`w"}x M:(W% myO|re'իW>|0p "Wp =4ˮ(@imL CBҶkk@ޔvqr LJ[XWLMQsk",W ,+@{n(%ǃǾ  \GKke 1`5h' hk`mU'X?Q '>zϧp,N6/O?_~;{;B۵g|Ϻ;<.,5U~ '?kX22XY-Z;{ꑃ'OǘX=>8;~ ?*4lM`nK:پך|@@G@puǯN(SCvW>|'}X2 #xm[}駟/S Gv#P4[ x /꿍u ^|}EuX]<% roJssssWM%O>}i:\>mv̿qaɀ(Zг0J72]ws'L|0{(iaGp1d|{; @@Ԣ#t2 5..`'Wn1=cGu}\sPX>|~㤽9]izxK0G3UX>ի '?O~ٳgϞ y͛7#tol^kyaq@(-ɷ|@ QK-U+zw̒߃2\dJs3Ay#q?OҼ|˗PX~ٱH,AGg,?@`tx '4,{hrĖI{A@i^xŋw̏< DpG$eS,lIx% ߞ1mo#_L6QR˷FnngxۨrLućgж#>e`/O zE.ۼ77_%ҏoC nc{jlJS6_(ng#==;ꂙybo_=ϮRr~x/ XQ:()Gb \ݳ*΄mDE=X@XCƯKmyv-g-3?>> 3^#507Sအ=3N @@Gik=eG}duZ&Cʚ90P  e[{xӧOǡSy}>P{ kF_jĥ7 ~|s|,zRw~ocS怡~~ C 0[쾭9t%71,.&l mR7 zi.kG9r;Ͽ P?^P(@? 8.~_׿cw|u+a`r?RNY>4l l9 \`ྩ޻)g/P-Q#~_x?O>dj?z_}60-bb￈ehV51޿RJBhڦń0ԏWP?Vͣ,H$|OS_+b&Y?^?I "@'5xZGe;P83OPIA`{K,cS{jÞ%Caׯ_1 P `,P / k% ;R?}~1ӫ>SK O'\ #@% >?8~zd=~ƴzm^niqn6(U(a̿?h,2V-@>k 8J\ aF?g? C,?舞JM8@p@?@>nMO@i‹BIOP?>,٣g?p 13 QTQr_޾W j؏؇~*C} ޲r"W^( SSPǣG tE@\+ɶ]&` ay   i(@ϊK Iz(SVQ@O0Oek2 tMOk9@d=?g P/=P?>,csuzx/]_UD N LO"c= 21% YLWF,X>`ۣpͿ@Ob-1Oe 3 2m j{DR|oY>. 4d@ Iя Lzm~2ܪ ű߫^{ aHO SSbJ`Sg>'Vc ST`|;¬QQLy[mz' ~*C}`[ J9 Xm˱@xoMU%[>`;-c٫mi?P?>O-]-` <|ˆqR+؟?ZϿF !Bzxo6"VV>~}-?{'`P`3@ Iz`޲#& sGa5` ۭ'Hg8`nv9?P2VA|8 o{ fU+x"@='_ߤxŇ-@ 2ЛXg@bl=RX .GɅob|~P(شbl<2=0~mrD#i;^ñ,G1ԏg6c&@=C=W9^ vg')YñfKB'CTlK7&'@,bm×1Do掝>{\.Cb^IPCTr\穯@4JO>Nx|6GOG1_rP3X D=` Ѓch} `CT2@k;0?XsգXm>DOW6k71 ^8;?-CDzPo1> 0x ȷmmxPQ菆؍"-,խո}b<9v"-~*C}hn虆6'rp5HOPZO@H͘mfgA 0fP&' 8vtx{O-&WrT6&k&Q!d  (yUo[ǂPAs?@?,= `'Tm)#Q--w' eDO,9j E&e`M$R!U zc C @< GO,9j ^O: iJf24poI!ULD樱W^ @rßЛn! -v3n1!g 0ޞBƽHB}yD!@| yosJ),歪X2H5L?AR 8nM@7@KWL7 B*=[nɇÿASoa+!L@o\lE x+ c5FAP?Wj,l&4t:Nl% '-x=eLnm PUCТ\75>GDn KP(om!׋@ tM C,>Bؚ@s%4i (@j@P;9|(ZLeHeTL,̫<}@o,&@Tz4 se?@n4BO,9j\mnzz؇@R  ('czhg? I@70= PXA,%a4n@P Y&؟@ 1 }d1Jr{R8@^QvPz`LOu% 06(p'K=*? P= ;$p+څt:N=>~r~TXDn,@C]0%Gۿ?@heu0ECvٺ? @O Br1 X/w S[A7P2 t5F 2cx(̱Vh-Ҝ,cF7P>=D7|g@-7ߐJO P& ^ E x#9*@ܣ', H xS9 %=j#@ߠ 1= ؟@`7@ͼ ؊e 5o!Ze ǎ ]0/ A!믾5dk,: ACxDdhI%_g((P?. 5 3mhuwt1 ZbQHNdkV,@LL @:,@\&=/Z%s'P H6 czؓC @b1`@,$5 {  %G`H U|lTz؟(}|,@Oj0`H 6#`<<؉|c' =a ?Z 1=lK7ιLK=xE>,|̀TzgH%KW@F>r@a 1O7Χ!==leR @aLO@, Nd!W@t,#X'F7H' %Ghsekd!`2 @daQ']J # bzj![ 12'rp)(xP=0'vL@P3bJO@D`=(3P#-t#Kc'2X&$őwTzFr* %G`H`P(x ULOX@D |@i '(?>, 1=P | Tz D%R ((@o\phWϫ Y&XP }X&J# c׳t@  n& p4h|Dz@9bԐx3L@iq0'`=@z1jHWL et0Q@GFOLs dikH' n,P>6@AאXj!c @*Qr@|гn! 1=n,P#@,5z@ ِJO3'tK XrmLDJ& R g1L GOm e Q r & 5',J !-N9uLM 6 czhn %Glx(@[ mqA@(>’FOPN Y&m|TzX&z#$cWP&=1r N H',K7C x 8'؟g,`?Yr2@X,9j\ tI xJOp,G7D!$rz1C Xh>' e2 %G` @\9'<n %GQJg|TzX/ ;c=n,@ `3>dBb@ Q`L ؕ|0O0!6'`))@=0'yH%F,5znB QH'! U@p0haQ'2!dC)}L-z`l>b`=`'>BbϱG#DOY>3$lE ؕ:'2lK 8W)xL@P(XrԸNA 8JOA7`k@FO@= `*'@,ʤ!@PIy|E؟@PiwAO@tz`LOO7 ? >Bz$g>c3 2`2O X,9j@IDBIC*=Ptpbz`QcH Ge h>C}t@>@`L%*1'$ O h`H7QY,RdB#H7p2JO>tPAz`Q'>jtHUR 8Q82 Q5z@ P2b>NCNXst!4NOY>`=O ֐H="tH ]cz`ˣI'3P 1{!p0d"4GnH'X&@=q47H hߐJO aF 蔞 wG(@OC^@d!2N 蚌?Y>>Y&h@89}U@t==C7~@b>@*=@{%@G!ڦ!{\K=H@Y~H'0V <@OWeH% @N09uz Lc^L=='x$'P!t(b1P7*C*=@]tz`Q'R=OP~+ N  `O7t389R>@Bz`@9t@$' =_(}x =0'IQ@h%GKl20$H',0O `3z`Qn` `L JO9ap@|,@Oo=I$sU T yY:, H%Pb@ C `XpzHcv%G!>S@< ,@8 n,6e='5#@0E!@@Fc>`0Jnd'SL70$? Pt:ߎvj7v+[G_7oY&P @'W#@ϴ\I!ݍ,Zbxۣ`lLzO`['op:N11믾j}|u(!CD%@0%'@,`Qcn(@`9X&Tp$@ڣJwX*8I>ޜNv\}^`W_JoC} F?pueЛ 5 2څQXjK #<.X[Xu@ ,/. Pөzb X+uhI'D'ehdဣ Jrj'K,3b?%`ɵ s{ck2(e8!2[g wqP@GU,Q]h?|Ϊ7BВP?JPB!P%ߡϷP G Zsd TpL YZrwɺYYh$H` BL~@;u("}A%^ r@3P {B(>pd$XzA,Lm 9X䎯UAm' ˉ`c!f?ܼ;!/}ԳKۿj)5C_Nϲr'sD_{BPDE`oZ*8?ʳ?ɑ@ ľFF%,UV^s'6ГP?38Г倳N0~P +GyVtPT`|B(ϳtpPQ < #Xc9੝SK`Lckc׳"0Np3gBoB}|,Cq?TP?3wqd0}HVSǓ-(B}F`!Hb; %,Iz'5 k~2j,=pNmLQY @r. PO_IPr$Uapo (}92և BcJ:~ЮP^ X ԏrP(R_w6R@>hM! kUEDgGBkXMrB}>g  0&w-(t`4  [pwF!@> B$ )@B B$ )@B B$ )@B ?2 endstream endobj 76 0 obj << /Type /XObject /Subtype /Image /Width 1083 /Height 876 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 23809 /Filter/FlateDecode /DecodeParms<> >> stream xKnٵaD$lp/ aT`v T(6Nl(ƝPUaZmlTdwdeYJf&sux||||| 7T d d d d @Ӿ믿SI,Mӟ?SI,M?SI,:!ŋ/2 |! дW^|KXvsssss_׿u*Mٵe/wp~㣏H,馎ꫯJ4.JWAaM{xxxxxxׯ[z/PS,MK%ie (b 2дX9$M -o޼yMb'4*ͬ\wjgFEDžmsP(Ш/_|Ǐ?~L?N%$&I*>|ChyիW+P Q)t|ssssssp+Q/;6Y 4*eqa)t C`PLҝ_IPDž`Ш_׿~_~_~7yׯSzla2Xώ7o޼y#rŲo' -GbV~`H$uO=v̹ Uˋa?$ TO,[XkX3->~ǔX&9?SGG_H,4%mdyիW:(W.{; vf|e2'*l @sge踰e -KObJaC%/_v{@| @sI4˗/_.5Œdb @sƧXRbN,;2^uFt 2S,O,)-6L%T"?E ZRPY̲:؆М’-,9Eh 9C"֝b~# Bbhȡ'|XX..9_tނxS?X,_}K @;$ǒYḛ޾9~rМFK7L]z15D`{ @愁vCKَǞq& Yzybcj@աc܋a< NodY6̉SN)&Ibhx -1 WZ0"1/2~FeSG\ @CN ~u-,>笝zל[L\ 1AaCDžõom\X2F >ΎnmK kX sE?5'~\ А],ݝ+};NlL+&Wd @ J>|[fƧ[b(i<0t\XAaLuL}?$&~\'7 ]oM\hЄPX}KIN8WZf @C)Y4"0 @2W?:Rt X2ZwCKMe$&\W -Fbh],i@$_>M5>MP\3G25wtgY~駟~6|_!@N2AaI,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,] v81ޓGX)LYY+.`cG] )1RV,Q$8ƏV0*۲e2_z?y3ޒ~D*u/.Zk~ px2̹G߾TLgrcv:owex@L,n)>H).%OŹez JbXReqK%{ZR $eIH,aX$4RƄ:-< />y#veژkX%I,ČW`εH,$P]u$qEb$1vvD8LS\KYNbXQΔIki%?/Y6L{|=}Xw$ka#W&GZ=+OnnM<>]Ή+LKN?ǚo#',7_'ߗsQGá%Xn D/o<{!]]}w]< I,qk!q$WcDj2u%XnJ!'Rvw8D?ג8F (Uq$& H:_s-@$ؔ#Zr-.X\ \ȑ\g~s-@$D2aY[f~kJ!P-[L؋`>s-@| E./aiSWD0$PqE2aM99D2˜kIsGb-/[#fX@.lGM=FLhM@|W~?{,ejN{:o"wuU-)Vw><)%|~oZ[qʼn%So۷)πB Jb`'O+%?F{[ѲғGc+P7Q8,Ħ帰JSqP1%by唯6XXE;qh\ up%jmdI2~)όB Cb`aŕ}-.NP!&$nhI-_j=[k_WtsKnk縰-՛UyC2)7ߤ~0)VVZ ͵(gY)݆Y@$p.E//!_;&0r7tPH?︰q dںvĕb㹥{ 8_ }9YEP)#)}dĒXll{оt84?-oNdKOw;K\X1dW&tDXΟ?Fl3ykDžYS?E{;H&p<}.F2b`qeKs--3/GreYϡEXb raS,}㹥YYe9Xǫ sRL qe)s[չMH.(>ߝeI_I, ~I%bNO2Z&@d^0eYZr>G>.9[LthX鳺 "3ĕ|sUedO/5ͩ2_6 -P pB\a=dX~xxxxWhXD\)QL޾]~%_2Q8( ѵK-Bвk/~-C}8؟,[̩H& z0X&2Tk`tˏG=D} -(q-&> Z 9 C%Fw6E2Y#.@ivӯ|e[X#c`,q,b ^ kH{S?yX)ʉ+_y/ٻ݆۳bZ r6LSSfY`] 4m`K H,2Br{{{eZ2Z z$+lc($B ^?כeI,Wwʜ  Z`Y @XWZ*0,B ,Eb $6 I `frEhsbX$,e9MV 5H,WȷfYb; Ab(784 &`YnYkϩ8+:~qVh,۷gox||8S,p89 6eKаs0%&P7`/| @P bίB ^($JbZ{ŏ+e$BXkϩJf`/ H,8ƕB ^C-IbA\54m_Xv&YbrH,֞|u6,˖/e; X֞S-{:c+#`hmrEh+"lJ\qԝe9}-cvI,WfY=4ܯ -HbXWrB ^mXvb=ĕj`/ bH,+r89ĕqngYZ!B\mes -ObXB>+S@k$؁r @Li%4ef b̯C\oV2a~]hN r"vZ#"+bB ^ 9l=n=̲V$lvh@ $̯C\Ch؋@$ v$j"dWg~e_na,˹_1@$g+W3P D0ܯ -Dbd~JdB @LuTz%P. qj"tԝe9}e2H,'_Y84 I,+Oĕ94 nhT(0i~qtB @Lb$E\@Ló,B I,@, ^;4Lh hB>+rh@LWb I,@s' ӏO_e Z{$ thع_Z؟4`W3YLb 9Wk$Wg~>@χ@tfYFbe=?ͲO#@4 k9%p:BZNÊv$B#BYb$*  4rW̲k7Pq|WXVe{s#P<=<޾}|zz}xS,@' ܯh`- P)k9% ZRLT؆`WX{@LY׉fYXI\"3as-B KXˆ+3S?Xx$kK\aKB @Lo1$pW8%.,KJ*,B sI,@Fq̲{hع"p9M\0%"A+3B4B @Lwwwwߧ4%$ &{ @Lа<i$ +W(]Yc Ђv -X@> RX`*A\!J SwY';W'P{^,XϷ@u1 WhAЦvB I,n̯C\>}^>>U#;WBe`lJ\!Zm; CNgY>X+OHC+Y+ $ m &8X!x+ZrJhh,Z{+p_hKլ2؄W @LYLbp0r+,{v*Xhh,@\XCb@$`q|W` +Ӊ,X YkO>qSwvvH,甸[2,&Z&9 ǡa1y% @\C{h),X, ̯SfY=4,Cj%ϰ֞| D#Z.@b.b=ؗ,1!IX r89# 4˒^Ye!vhuP:8! HhK;)< W >Yb& 0Z{N+PJ, (8, [=>v]h(MWZܡaB >%*?}m.D'@_:-1u_{β q Sv$hr+Цoq;l%Z"X! 9 P Z1ZIb&+, ۡ_Z}n &*'`Ц^,_ZXWAfY=4,%Ӱ"Obj_!<=] > Iax<)ݽﶂ!ZI=ڕ{pczxz0UWg~ Pv鵿C!@%+ qΚf~ܯ -[;<>(* zQ}ҊCTLjI)璘}S,Pqؗ6b= >,{og9=:LhKbpFqơa1uCK:CXX+NhՄCX q|W<d; $ؙW:eK;K"\Fb甸ȡa1 }#0q89tB @Lwwwwߟ,$؁@k$a.grCX`S ̯0>YX`#ړO\qYothu֞S f1eJb9 Кg6,{qhT H\ gh 'B g B\!`_~Vc=s?;+} ,l|=t+g<0NbM_ᔸg; , K`q89 xq Qxg h0^jq<Cww߻(Yn |b~ @dCfY(q0 %rhP7hBT+77J'XhB>+rŕ=-E’WrI,4|\y"%3+?˒O++xJ* 5:4Db9#mh,@$"@lga?)+0|﷝(B_pe rhP.YkO>qefYX84 (B甸&q.'%X!Ihai ,Wj@Y$*$9tO, P +38,<''phP JXkO>q.1[x.ObjsJ\`R#,:6;mH,`W3s;nXOIb` %,<.z#P$q|Wʡa1 !Pk'0؞B甸aGyD P C\`KfYb; B`_ v`_ +3|6ɡa^$| [b`/ "P+WFh؋lOb!c<x<GTd; %@b~ G7- &YmH, `, ^lCb!C"IXZv4Bq;;8x,ړO\Znf; %0W`Yng(,@" C\L CA @|fY0@b q|W` IhI,֞| lOhvhBk9%|ih;3X`W >,{:4XW0CbiB>+v,PQ^ґO\|FvBN+PfY,vC\M94l(->4meX"o(^šaP ̯@>k?<}aB Hb>WBo؂,PrW!@novWBׄ[ TK\!x\Jyxh`/ I,WX(CojshNbB>@]RV9WZ2ZZ .#@]ƳJ9Zb; Hbr+Piq˟y Y,K\Wre؋,P` ̯@-+ v(R$q| "g%lg$ȉ+sym,R+W[ĕfYb; D&C\h>qša1=؇Rq|Wv[Zbb!6"I\K\mlg8$=ͯ@"@RP7,{"$Fqy(`^0x\$p`[^]w/Z1XWg~؞84 %`= &,{Z`/K`sJ\"ph@LA'`Wh, lIbٍ@BYF`)_%e(<]Z`˦'v3+%k9%%* &Y`=FFq-{&So?B>,{#N\E*ݸ"|ɡa1kXV$ &L#d; ,Mk'I+c?x<?#Ͳ<<<<}t5ѭ9LlZ{N+[N\.g`/YƿmXp0r+$4ZbǕK-1 og1ϓX DW˫XfR| ēYXV`~S cʞ0r!C\xĕ(޿YX&W$DNbrhX&Wg~"WJe`/@&@$Jo'p$ w/ dqJ[3YqU$@W Tk*xlgnKƝ *?D2%?!|"@tŭ=[X$+L`~`/4tD^M'Uq.q brhq&fYb;]_-Qn' @sYJ7'fr"ܒOiP ,.,# s=.1u-21xhXevjǜgB/=s>'4a%sݲ!?ÛbY%1ײ+u,eN>, ,+Zd`/ 1;+s::-ϘkW`6D˜}}wuƕ|ˀ"">f޿w+l/]QOrkryPr39{4X&[j%kH&[nѽ mT  +*3$CױoΥmr42er)j0C}kk^э%ޒvjgȜqYXbP[ ݥ|YTwP~RJ/PВ~>[plf^?luk♴40}ru%u[,xU"M}$kuZ~)Z<|~CK"xNSk\.|YO)+Ӗ(/;'GslEhKrX=gc6麔@/wS)=b"w?"ѷcd#?R~S{9(l_kw [z3?˒v̺{h+ĕ5ޟmbYRߣ\1y-kvibtA%eZ=-־z=rrhPxmH, 5g_ @."Z|o־۷ww77[ޟX޴@|B [XvZ̯A[Xɟtˠ.R.?|ޱYR#x<˰mH, --,}E\ZhZ||>}~~_ڗ]%5?v;4l~6`g*Annnn7,1ӿ§"/srdqbHxh>Xwc+==r_!ly\c3۽zI>og`gx쇖$1YtH,XVvs- TCYgZЂo&w yI)gWvq%K %XVvkXo K-Kι:'ߟA绡ϭ[kgȶͭ,v9׋{ŋ/|CkJ)C$=ҕ[֞k1u$,,K{ O~;l8-~KE6sوvZsY>]aiKז%=Flqj5~ )أ+g} -{ߧZ/ -pZfYZ@[H"0Yx Yjg2^;^BKoZ(QcWǕn8^Xֹ}<" =B?4uA[]<;m[\*i; ꫯ꫏?~1݇?"{Os(#`,C֛kW 9C\YC*%Ph1˲#KRKu޳Un6d.իW^PnvƯ^] ]Z3yej+ξ//kIjcĀRr,5"̽??}~wKsAo1dqP?S,Ϥe(.QBbаܹ-W>ReaG~v[4fY`?{}κ<8m۹WZ[L=0?{x.-{uŹ3Ȕ1.BCKsWcg=$X2ud<,;2w613>y_E=ZɅ`/k|[S,cɤ'sKp[d2b !v*ĐP'Q6{Bͩ۰iْK^I&*%O^|ˡ3Ż>|q=ǤK)״syhJ,v8I/ Pǂ-k`C6to$e5acv%bI bŋ/^cLq߾<&;F7I\Y)R,˜;2P,@|陪_q0%5iyv'}XV:ttcL}-ݟ^D(H,Ae}ΙkIk]x.eBɡa@u$s~+ĕeen߫n>9=,ҍ.I2хBxk2Z\(y=-u8Կﲿ7º> *{x? -T'X2՗0OkeI;[ovGg(fꦍ M2yxxxxx:v}eb)RCrs,P !v82 J,Ksn~l)儥nf栗r>9ׯ_~:.taw>H"Kc.ž 7f΅sRʜlzO֞b97絜Cv c, N26ѦΛ7o޼yh?WI 0wvܝnwǿ:o|X Pv$]=ޏs}GOj *@klg9+>qu/KΟwuKNW^z_6Lǟ~駟~g<tb(?4l(84 2~#2mĕ~3؋+z7s%Tv oQпw9}Lb7Ë+}C, LZ6~e>fgb<=KCb)a/Q&@)k(sn3z+q`:b>"7$",̻Xo\(3+CP-wnL.Lc; 2_zF;ܟJKb,@rA<;'稨ϟ 2lg!>Ʉh8ۓX VaXol{T9!=uk/Z3Lz?rbo؂,lI2, m*9^wXg; #w- wy <@|B 9r!C} 9xJ,k+@㟃8 &@WqG>wj?B #k[׾5ϱ9H;HhYF\!ۄ28yyHTxbX S=)g <-xCh!@VpX\ゥGLxyT6Tgʲs6%ϟ-<>._iO=-mgLW G~huKOCOIВޫВhtQcP#fk}/ <-6RZ`=F`=XZ`h˟Mlexc)nDiA'¡a 0@dX2>D Ў˒!L^ߥn])}κlE2$' {=whԨ4kl-v&ғXMAa~}?wCS,'ȤH_ ƙrL X,B ԭ0lPa!x_X$`*qH,TZ\@#mϜ)X@$0@Y?s '@ z&`Jsˠ@4UX l J'%,K2Z|90_$h'P6NhuǕw}\ 5X8v4QW|tJ$0vs At_I,\ȡas+@|V ph@hE\h@| uX"7+-h!_҉+M@p8Z= (W7xuev+@|ŤP%O_@ <3'x :kp]gt%rhn,Jw78 …lgm^>+Ibar_$xi'tWqEhZ&r˛e`_mNe$02C+S,'khbj=4Lh`Km`H,,lTClg`_-f B\.M}+P"q$Va; g= XXQYYnZ{8%e`>9 I,vZp+]`{ X؈,f\)w~%ohl);áe>M]pа-)D -M,߲ۇh ;+ZO\$Bshe־d=,Eb!rϲ-cuYkH,"P.+km`>$±+W >q PYC\>{ш+@d^Z#Znί24/9 *YPfnnoooG,6'l̙kY*L}^3:E\mbx Wؒ)J̲$'ZSĕvb\ l u; @>" d~ EbB0'$ 6b1rh?4LhؗҲ],\ (]zx8CYy -G\iԔ2na{_E+%S,Tvtn~w7Pztex}X >@4X,L%+B}qy> I,4fY"YkI,TˡaZ{JbrB ]WXh,+@| EbY*'+P"84 5 P.-Dd=FbQ t a; @ >q 4D\W& T{hC\#'C/gf; @IZH,v̯9 j% YJ!+P7Ψu; @ >qZ dng1N\!r 'lZ{ϰ +@|H,v+@| Ib84 ` -X`l rX -2b~Z%lgX$ v >qX`'+@ ZZ#blg `K\Wq ,̡a >q!*j=4LhWƿ1N\$XЋ @h >SI,:Y+@| p6Rv! !bWX Yf=p)v`; P++@|"nlgj"+$v Ab{h8Z YkGblgX$vWMbb84 @\WmH,C >qؒA -@ $vi"@lgf~`^$(C+@| /QaB D#+@ fK+@|qH,PYVXkMb", h$(XY-+@| ūo;Y؆'I,P9Y>qZ{ >*a; P'k$,8+@|J!@Clg+@| P*Ta'%XZ>oGb 1D`~(Msh`@| P:0h'uX!B M\WH,YX@̯_#@uWV 4Mhr+@| P7 #ÖAba; ps+uXO_s88QaB W5 p? +@| &v؆g=2d; Z{= Z@dW , 1+@| @"Y=4l@ %kWXlgvYkDb0g~`C$B 9 >q`"T Cb`; W'c=s$`1 !W0,Lh.qO\vW9$`P7qZ{$`E 謵CÄ̯9 `) /f; 9 >q`Y ,K\W +@|~3@| Z@\W&o;Yv_s8$ (YI\W!;R+@| $ YH,@lg`_W̯lOb)аqB @ >q`/ ,D +Xlg`/ 7+ېX"94 ϯ ͡al X-M\WXb >q &,L%YkơaZ{x$H&l X }a0Y"+Xj@'Ebg;  >kJ$u; m Pe %  P:,-W:H,@lghg=@M$Q'k'+аqB @ >Gb`; @ >qV Yj"+uX>qh@) >kZ qh۱^ (DWh,WH,lg@\W$84 (qZ{I,-\Z{H,'lg X&`m @"0+@| ] Z Zh+X.d; @>qO\`*`YƉ+@| XV0e 5qq Ps+0NbX_s8I, h'`SW%¡a@; >kX" kX:YZ_s8Xvf; P3D 6`#  +lCbT -qZ{$`Z{'c; P֣ ؞Y >qH,;u; P:qO\`_ @mg1W g=Xؗ >, >qh$84 )+$0`m D&&\]Yk@D @lge~`'v`ǝD P  W"FhWD @lgd=X*d; 2Dp0%̡ae#q@\t @j=4Lhˈ+@| uX*1t1"aP" @+t+@lWPYM @}$ պWj%T,fY !+Mbh,0P9Y>W̯ @ >qvH,q!"YWP"BM̯_I,Ρa`@|I,lDhD {Xؔ,B\W`_ @)$v0"3g~"XM -WCb`gCf;KM >qXvH+@ ؋@ͯ{X,d~`@1b%}I\bW >p=4l +P lgaY PlgE@ $ 0W%X(Cø'@^Pp8OCS?.yk+@l  ɹsvm+@|@$ZJ0Yk%X(X - &vPM-IclgYW)R\,+@| JbB3͹} kn ?b; @@s"k%V2p0h)yv?" 0Z̲M 6qZc͵ΒW6] ^k^J[o%+`3Ēr强 3l}i8Mb,kim;̱^2,h;BhW#+,hkChA| $ ̲\K}EbR *\KM+Xr2 %\KE\u_m1 +fCX#u&t/&%C2W()zs-f~8 M f9+‘\X`g[¾$ @ K8, kݯl1`o SShXxb2I,ܲWhW$ ^hY#+5q$ X0mfYĕȞ%dy$(R"lϑ\k7{az> >> stream xˎֽ>lARb;qd[ Е6g^2:8BSbxX:裏>4,=yɓ'կ~_Y@jb@a......¿Co~7ݏpmF+.//// Nh O?OO>}i>mK  ͛7o<~ǡb߀Z?]I(F7O31 HBh1 KHG(X~1lsP:1 H!Z۷ovcݰKP`*,ׄtGy&+9,nBPˎ萋 XP~"YcZ,L#1ݏNY ?ooo?O?O>OõB.m@1AEwDH7fqّLPPBHig[ffja}kL(x0۷o߾,CyP1 C?Y144$YݘEbIbG܈Y;Hk,􇆔e<][@),B!p7ؒ6 B!Dtso6.(m鴘b>B_xCCG7oIHȚP1 6G6/ "V2u*'z}R* UY4iВ, aebFR_^b Bݗc^%2-vY۽@ۏYtkIעe19y,bhn5??_׿ucǛshR<显q~ vhVn3Ē!WWWWWWCw=1bs@3uB -0L}h<$D"mA͢cqG;,c.=/[ܺ+rxVZݎsi6 T\H7^fw⣏>裏 w7|7o =m ),Lr\Оki+01r_ u6?֕:`oq[\?1 &*úa^bza˞PExR_- ,X@D.h!TB`"^|`b-K #BCC7uYM6,^8,HBD:[҈^+\Pk!%V0D#"@}\{"r6Y4ADmmr@Y,"0O`Xbݖ@,J@{G.EJnx@D.ؒS L"&f$["D.HA"0O` 7"E"*OT|׿|?K\x%'0ArPċ [c͍sG."]ζMFTb* r@ 1 XDru.r !@"@.-rt\Ȱx_-gy,yn:?"Sƿ^tXu)@#  1 |؇@W|r"@.*x(`q_;"@k&1?q<8"]s{&0I?ݚ Pm{ rgP -@Y,Z|B A!@D.( ][%[%Ea @;X9NYsE fA\z,-r,w!n+qKZ.>|زbY<#4hyε\t9G^L`e9Xj͂pǀ h(AkQ ][&uO\r [ȁ@КtZ.a -kbl*{D.:6(D؞ XBǺ@tpmۏ gIWXۖ=)1Ϫcs{<ϹE90[jBJY-^؇E-,H" ,o._0 ""\tXP1 k-@D.!~%z\H1 J'6c"K̂sn,`9!r@Y,8B!D.hE1 ȁ0֊q\?1 W=KVL'f޹suY0r豠 "Ib1 `-bb8rbc!f1 &S/3Bk5_b/c&bl-p쳡:O@N`1J҉Ypg|ȇh&b-6:83Xu/BQ 񗥍!:hE }L-?CXNmy -0t)zjr^ljV-["fѨ `Nj\@k&bL_` 1 \y?EnCؒhP:Qqe\bmC\z pk90D],O%6D+Z1tK@>_/q!@Ö\kbq!ϤOżВ-*L[`t6Fte@D N }%xz,hȧb%0CN YI[.r XL-^,ܺ\X[ݣCD+M1tKe1:|elƅ,|HObB~FLV<_l/@;hEi/Xĸ5*=r9."kD+TD%bCeb`z,9r1/0$Eag3&bH'=8Pk1=,׽$rѽ`iHǖmwV@D y f`YG'Z&bO87r^*B`"ZA&p8>lG̢)b\{hu[YF̢IkE.R"ZA&bLp6`htH<<@M,~y,s"bl780JbysfBڔsbgn{J"jB@, T>@bz,X;ah R0:nbcЦ{,,JR:8Z܊on!69ǥ`YHc&1ytK0g[(@M0^/MFJ" ƅɸJ_?Gbt@.-(q!87HbgڤǂgY@ˌSL5bY3.tϞ={Cy Pk`/ZF˴CI^XS< ^p8, iȔ Bj q!f=mcABEY9mP.C`h@ xfؗ!uȎq!˅BL!@P2!(Nt:, <)om2.Vs034d&ayիnt9G%A;![f=mc[ ъybHB$f@X@b @jL& cLJ{/d?O FlC{ hq!`;([!f1T#tZ }֭ˉY%@59>] 51 #5Ջ_[k" P F#fQo RZAt-qFJd\Ў%A5p6 =mr<4a@H!26 (f  CB˗φNt:,+Y(Ch{ߡ5F`]P BMS-=1DEߎaatg5@k.f`>1=wƽs{!ZYǁ&0 60:`9m,f\*qK|gῖZtZ,DA!@C%Y8(q!+ҩ<вcǸ`_atLK4Ĥegt-xk֥X CY` Ci+2f!! &=U3.`{:-0f x:-9u]ӕh/^~ŋׯ-#:->t:YV@ݪj(q!@ pTG,}& <@PL 66ꕥ@zP,( [b^ŋgϾr atg0 2R3:$7݀űÒ3?N1xkK9PW6lRSyr_tsssţGb$gJPiq{blYrwwwet:,+>Y c&=x\}Z;@ˊo,z,XK88 -Q=i)6qN0:rȁ X~6e0.M|#j" hECC$dJd\p^& 6k(Qr{{{PA n<hCCC \B`t0.܄N ` !+ C>IF1 Ymr8?{*4~BJ&Iץj~7Uɴdꕥ{#ѹ02'$ {~H%l,,*ɸeFIFCCfȸC81GM@mNtQ 6tZ@{B_@.L}K2, UZfQ,8"KN/ \d,/.v$o2]}F@ip 7^PK>YYPBxY,XJ(P1 ʒ]@X,F޾~mi9Npp8, 4Y DF@~R,KheVɱ'BN BT2Y3<]E.g 0 UDת-`KY a@\J-FS贸{p%( ,xZwϴ@ z, Cnooo_4 =re !Ē"@@M6iѧ g.#aFPk+6\g? 0:r|ȡߡI(Ev1Kz#ݟR".8SbE d.J!C:|[ṥoԦ!1D.HA@U'C(]L(0E1[i{a{L2HB˗φW.Pk5%["[|\c0:kKl{% ág=~AkՐ.n3w1`kXWmZ}"%tW)m>b[zohX1;-D.yKN8:$>l&%:>X˥Euӱq*P {-|!{ (~^D.X~y^A?ױ7==[ )_ O,ª#3NZ{vϞ={wwww/_?[` \t*G.-rYwKywtH8ts*@*1`ĩcOdK,YK1_:_ȍhIr{{{= [gwk#v6?y |DC.V@Wc^}514DED.`-z,4et^)b[#=Cy#.6}E&;wey?W|p5^rt,yc $F.{]Z~^rY IgϞ=⋡Ϻ'yNtϤ)T&"6e\@/:cq h!{! ?_}ܩ'PSСߥ!!%2Xmtsџ|<>z/}$H_Xtcof 䫦b{axļ"Ӵiq{ۯu,@[4"b*{/\Y<\71~PYu!rAXgl?1O~EЦ=2vTe*l`Y@KgN!8™?-ݺ1"4l9"K/˓RBʔ8p8>yw6 홥ġB萡Jߊ/z,=Z{}[YCCtZCЉ#;W,O`o)΢xHۜ|S}czcte`vC-,ŽO. OqG&أFR/s`_z9:8S贸{pe!˫.B^%۲o[DWmu#DŽbUBJ"- Cnooo_.g %X VX>;[ڤRtZ@M1ߡ fڠy%nAM,!X .-Ђ>M׺o@۽=~݋1ъ &BڔcF0ez,Ak/JpXc)}B.xAn亃X+sxku2u X_}M=HS落cK1lgА-, LZ?Cw#ƛ-F.~vMƯ/imo}nhhN Rr>kKżMEso䬆h\`D:\qїDžt=/Z15C~bmJuim(f[`QhM|"|fh!9 &,6s̸?Oӟz"5sh\>Rd^ /Wo*fw5h.& ewZwVh|t2 r5䧟~駟^ӡr|)GZcuĬK-k.fat`uɸiϵ"7:-tSw<L8CY9Տ); Eƣ@Z~آ/x|ԏ䲣E7f>?3U-i6 (E}$)A!lo_y`&,^aқˈHc~zm~MO|w}]?N1nDC-8ChUv,0(*,`-S LSս7 X,Ot?;Ρɓ'O<.ծ~~OFx#xA,Ό"[g/cٗN L(q!ǚ֕p9{CFĘ@FLDǏ?Caś7o޼y4C^iTnyׅePkk N JL%07;ֺޏeI0bj"anE0Ÿr⧎`lI"!AWlRi^ː9/u'*A,=Pn/B:{e{n`bcݯ ma(I?믿ɟό5"9'a k=8[3:` Q&HY8`?1??~ӧOo62,=!f\d Wz,#ZQCbL oNKw =OJ!f1!@bia "Z@& LPB.mn5NM֍\ȓӉV 7S L&7;EYLӂ6-\v4]|#[ CL!HA,Ɖ\ PhG_^\NS L@j^ 2KXȅt [0(x!x@)`*1v"ƅ~EMLM#ITb*  Z,)%\g͂):-5OhNb?zLg퀖 R6,j\? rӏJ[hjU2pO`"8q ؗ"FT R djFT"'B_A,0:ҩ5r%iQ=}`ԾFB/x@)vtNJ$f\-ƅP"aًmXot"*1P?=@~>bQtZ  :[{'*Чؗ FZݑ =lo݀N-?$TRqChTKl8YH-ȅ߰X}tq!f575ynK:0ֽd^r/7[hW_[#ϟRiؙN `~Ko| 7ƅ@{,-J9{,/ޏ? ۼKxy Xt?vtB̢F}G~c1J'fPvqqqqqai@֊=lj/iXԼ&[5B`gae)\ si( u{5nsƅcEEF|&,<7˱yԥ:JEa–n:| .l  hEvj Ez~8ϸFbɳbrcy+0D+3PkD p`~lb˨Ė@`{ {z,ziȔM`ܒ#ߋc#@nX-T>5^N۷EZ豈j%fQ0``}?>`~kuٯN"k:q^Du6-hǵEPpp`]a^mj7 E"ƣ16 [lq!=@Y(0nj`jС,%ZvZ?üCF*ZL̢FK!Z~kuٯ{,Аb8ƹ 2(IkڸeP+02}jyV ju.zx\@, # 5@D%.1 鴀@jbp P71"9HƵi`]mWus@tZZa\^=1-ZL @ 6֢"hB{MEZtkmXK a\@`[K B `{  R 1WzBHX| )00eBE' Cia$ ͢ :-nFZ95^X l BD84p ͥ% ^xO:-Y!/D+<4.d ( Y4mLhm\Hs3K&/0U=YTEc 1 1z`s,*$G 3:qu c&f(yd! i!lWn`KL1ScsL!x!3.kepJTJA'xb ⋋ K w6|вDž, U7EaУ_ 8TNc ƅCXL%fhXA =CC`t0?.$(%d @y B?iu3:MƅCG̢!rtc1 ~gثC{, N̂KY4Ggc0@stZM``kpB,@}Xǿ-#<nu, Nh{6 鴀[Q$DCX6&øh 5Y0H<@)!z,%fn@Z,PiK1 tZTHW1@ bDq8P"Buz,&fRƞ9t,9HÂȟ ,؍N !]egJ"fAB8= !"eyƅĈ)(@,HN>oeƅ@XF$F cP.1 M=%`# qjbg\@,ȈN !΂N̂MIa h Y)@!z, fAvjtb@0ν@ (;0:h_Y)o<cP 1 v0N>P +`#fAּ @@M,ؙN `{āGP1 v^ZYPoH cP.1 M0N-?%`mcB(iu3:YPcɸhpf_҉Yo0D.5*Ch:N@,Ωc#\@G8ϸډY5 hN ,@Ĉb\93.Z bIPl>#@k,(z,qmPnb#.@XmTkyEr' $fAD.\ec1 #ri` qVeb4MJȍ 6YD.@pq!\@\Rs1 8CatBuz,&f\@C D. O.@V r[2:HAH 8ϸ,`u"K8G@$$rd\NYFD. Oo!'f;mt ,`g"!@jƅ@ }b ؒ`sk L\Z\Fc@3qD.!TXgƅ1 (Y]R`1 (:-c01 m qN bP- xxvyqb at0D 8ϸι57Sparx,i[.]@q!:=~&rAM4]UgJx-pXO8Cr ` 1 ` Y3\PwCˌ `:1 `"h0'V&r@X0p;آ\bFD.ؗ!sJ,'f@<Z`\NˈY;`K:-nRgX gb@D.؋-׸hq!A(2:\ #rTz,!z,J(Vtg{DžTb@%N=GF0ՅJ4K%ZDjnnnn>ܲ|6 Bnc5X87<ЂyvWS ȸɒlIh@ X 0@ "-3:fXYuwK8+,~eFP},'fu#6XP%%H@jL|H r'CԸʤ[b*ȓ6 \Ƌa+ =D%L"[& L@`h x!Vi\l0,`eZ.'`PxmrQ6Bl=(Ssʢ`#Z.mLkHCDB@Tb Q Rh -rƅ&xT \ĴYӶᘅ rvP`}DP:m<@8C`-z,ȇnxL3D. uZlIT0\t鴀-2BZ["lI֍\t]ƅC`"x5/rWJ"xxYȍD֌ hQ8`@X^& Leha!c!fK5YPZ. nxK پB-ocAn)D,h-:-hS̸}-GTֈYШD< ah'`Chq!FJRf_\B "0G`$fg,/"`:ߧ LO`jbh̴x.C(WLEn876 iyE_B0NT,`e)Z.`-mz,bn8{ʊ\#Q7B>\%~(lD"5ac["@;,`"%+B`"w-^BE)b" s-Q)&RfkǼq!FX0s P1 b3b?hc`؈Ǻ=1 pD @),pT @ ,\Z1,YD"fE @1 (bQ,YDi endstream endobj 78 0 obj << /Type /XObject /Subtype /Image /Width 974 /Height 904 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 22391 /Filter/FlateDecode /DecodeParms<> >> stream x;v$ǹm/l%qђ![&!ВchtNChWQFdHKlHG""ȸ<Y(~q{\. dK@)Dm!jP QbC6( @1Dm!jP QbC6( @1Dm!jP QbC6( @1DmM~wV?sW Q`>>s6y۷o]ۮ^[~r\. P+;'o@!$ތX˗/_Ǐ_vUhvpmS`ׯ_~۩g?Y,g-W^zIE/^x|7o޼y=qǞIX}AX6?ik6,˗/_~駟JV??vO>O!1Mh ҫW^z !Gm`63BH -Dm>t@~?&k 7xLr o۷o_׿ͼd?[Xl:~׹}߹y{|AJ]&ي@DmŦspw\'|'gyDr&j,?2N㨽Ǟ9Ci>6zNQ)/_|2q.jw;{9 Z#j,܏i@;Dm'ަ .gBAyީNYyZu{q(j  p[S;V\Ys7@MDmI=ڡڝ=){BXv$KK)[ƕ~ @tީzRo ,\v+94S3{~SJ.=`);.׎vW`.l9BEw(m>2%j,4NOK C{ح"` QhҔ<=j!Y潯 HELNmF=ڡ̽% O c浜 !j,tƋ!${os5FO~7w#1 ,Ͳ=뎋 l %Q`ۑ3i{߿ ?s^@kq~?q\U;-%C鶟o4Ov6,dql GfQ{|[擀&5@CWqLf /\U|+0K(gIԞBN~\[ 4dhԟ{.ju6P>bSu(>e:e'1=j\Dm0ӯhຑ ׂt:111ښ`)Qa G j|儧r׻Km՗ .g/rjR#6I-t1\kʺm&jAT=ú !p]8N73`=m:gBj@ gi` onnnʕQ #XGHf l!j!Ba:v^[mhۯ a6nL˭+X`ͅr܈Ia ){Oh}>۩ ׈~mnoonf69?uQFpbdCQULGgI56Պp>۩ #4dZv\.q&@IDm*,g S)޴h DM6Uy>gvqT==YZmF @Dm*1gwvS>Q]/_C۔]Uڧ÷<5Tٹ 6D]<~'dݡ7777W_ @ Dm 6ܣcFXgi<6Ř3A{<{+-,r;fˍ"wwqm 4A{]No>eX.curըskj)@ k;vIMlkc|lcJr,ѤmJ&jP9;C~mCE%`=zGx( @vws<雛~ek B9r-joBOqPbn;ދ,SG^>i{(]۾#,vj49> !NzЮmSh lCHa.v ]~\C5"Sh @f۝݅uCH<pŮ`)V߁k/)]O<Իچ蘲 @KDmuF. qB=Ge6b:Kۡy2~J?ri\ra#)\EkL>6䙳9]l/RH$ !놐Fk+XulE1e.ݙS]1WMh,mQl{`M L~GpQ7uD__|#}`MNL69%W~i{j_k L|\>r$W a]̠.; ?'N ߷[W_u6)lRh4}{Z>?ic6)p XG&Oݣ95)Ц.mO_n6%jICvxaxGNݰuiQTK`1BRn6~> @*fj![OQ{K{n>Sh)Nmf1AX%ف-L 76ٔo(nw˦?ײ߾fa6%xFYCl%SOiND#1KĿ#L o6AHn=&a-i;D Q+Ikcr62ec<@HZcז90eLiO=M.wDQ$61ā0=k&`(A r6qlrEnʶ#j4 ڰH^:k#Lh6@ =e{&;"֔6ٰޜ=?Rٔ"Δ0 B|>-_ΦDl Bvx\.߻>xG @Z6@ q=H(0eTDm9 mٚ6 @\6@clgkwbW,H؟ P-B±a9)aX;D`QB|_.ߏsv-a)G!(q _bzW陲 6@% 98nnL%l#L >QR&hCjC)%j!MЦF9Co4mCL Q`xE/]ӃAצ{ɔm@H877]Bi~md6ۉq $<^sҶiGQ$6@{Dm9/{on `~׶!$'k(#jÁF?aBvB2>MevW "Y7e~m@Hߜ]x}vML`W.@LІN/\ދq>.m} e꾢uC|.tO믗~kr\.0@MDmٰ.mY}ݔ.m{DhG!j?oĻۯW'@TYClpRl0MȎ!5)ea6a6@F -axG\KIu0S m7sx-߽3\ 2;$gCG0#"r\\Mz_n19H1Mw|\.k}7P";Sm9c6 SQmt"D6@R_w)m%gH0#֎"J'j$Rց!r6IڦMlI؝!X܉0)v@H`F0e%6. Mچk 7Q 9HKڦMF7Q 2BV8Vhɺ)kFƁQ"a6@Dm @چki 6&J!mӦ8SkQ *w4ǔm+u H`xG P Q`1BaxG P>Q`B5i)fq $P.w=EP.Q`B1wQ$6Dmg8 ;”m҈Au c6@Dm+Lf6 k?E?Q`9 ;”mO5A;DΆ4YCivmS&jārR3 ϔm6a׶Q$0#Lȕ 4́}6 XHmxDm9 LڦMWF 4ʁ![`,4dݔm1A[rf S j i6@6 XSHK@ i6ř_DmIr6}ֿ3e(6P9Bb S jr $ml%jr $i5i`lA@H4Q!"m0e`O6P<B0e`;Q(!a6 k?E ɁyaxG  TmH۴ɔmDm0ei6&r0)K@1 PH`xG  咶axG d́@#R6m 2e6PB3!Fm6QȔ!c Sq $Ђӈk2Iп#N@FL@ڦMlkM getD-a̔m9Dm K#ma S#js $P& ;&iw)a6pB0ML gT3`L2 g(kGH@Dm &h{axG @c Ɣm56&h0#מl P2Qؑ!Nچa66QHH 6i6 Lv@H M"s $1w)@{Dm B ;”m%6!ȇMBLȓ @`a,4dݔm<&XF0e @H!mX;e;D!j9H۴iݔ~m| ga̔m>6 @~"a6PQŁEچa6P Qx!ML jAt~ cF+ @M"v @f0AI0#L$jOu {0eș ā~mk6HE @smlx@ c]ھը7Żw|>\.wit:z^m^.bة 8 vqyL!jC HX۝;”m o64!VGTn8I ӵ&;”m W64mϜ2wͤ햵Bm09 9Wx*4dݔmDmhBYC0v#Lr"jC H0#NuDm!`?6mZ7e;_`Q*@H4=F|%1Sc9`v݌"a6pQ@H؏ ;”m6T r6Pӈk2i6 'jCj #X3HIԆ9b Hm`)Q*"g@Z6 SP$BPSXDm(! 7k_{>Q$56Á3iw)>Dm(!t6}|su75e؃  W|lڐ5B@"a6 r $Nچa6 q $@Y|vXJnSwww>vBfLZ#jCF P~Ζ 5BHMٶ_Z#jCLZEB6l[ڐ4A`@r:G"m@ Dm8!uq5NڮO;ilk-06ap~?Z^ǔm`r\\Hz98߿sGCjs~慎7\.ߧ<޽(_{le(N_y} S2@Hh)0#Lc6 dNxMfJvW>ܛҢЏvwmۯ -S@Hž !~` c)Ml@Dm؝ 5(kGHP7Q0iw)S6쨬 !r6yNۡ@Dm؅!-׆qm}gH|6D@H i;O|suMl6D@H %i;xXϔm@Ԇ@ :m߽{̩}h !B{3SSU6lRm9J!m2=f l@{DmX @^{o LԆ W)g.4dݔm g6l&gG0$x]2S 6,@H 7ZseeklHQfq $P"icFnvh6Q@H ~t=SV69(Q$arvw)P#QfH-g#Lڈp!ZCvGn)PQp $PV_ٗ-g( ?q $PF3¼;b(i!j!՞ll@Dm1AhIi[fUe6MԦiei6EBl歞k?Ei4ʁ@jE?Qf1eJ#jBx$<ϔm(MC Z3er#j0Bmq l#L4!6 S o6@HH۴)e˔m Qj 00EnʶM3lb*<X"a6GԦBeMJ"sSʖG"m6Uq $GiMM!8|>Ϯv3er jS<Bp~ΖQ$0#LTGMچa6GԦ` e}Z u2e"jS:&h;^HشȔmHOԦ05M(QxCw)M1 Ӵc;”mHGԦXr613b6 S Q8 Üگ m2ɚ!0;;? l%m0eFm6Kچ>Shn @$l؋c0#"Dm"p $qE;b(il@Hғi)Ymug6D`F0e,V9,6 Sh O6m }/e6OfB`,4dݔmȟ3 |>?5"a6-YHXCŽOچv @Dm } i6]wy jsElh9[Bë>3eSȓ]-B,!g(lPQ&h u![n ;”mJ jW!Mr%gNڦMM vU Mru?(Sȁ] B,OB` <#L Wv H0#NGԮ!`6mZ7eI(]0Bq|^Sqlۯ v8Jw>jb Sȃ] %iwD)m 'gqmg~mXJ.FYCljrqMXxʔm"jH`xG D9r#m0eDL9J$mC)A. 9ZwQ$"jgǁP H`xGE"m0:&h6+MڦMl7Q; 5MX.m`cg6ۉs $жl]50w)CΌ BΦN6 SM>!VٴKڦMl}B@=kr6j3eD \𿕳Q$0#L Q;BBMmFH"g@N#Ƀ9!iVn.E@D9h}^^QSQ$lۯ Q{GZ"g"a6ˉڻp $9axGĚ@!68"mӦ8SkP7Q{g&h9U7 v4ei6ܜ}r6,c Sx!3axG @!p sA{vd9_GïCG1S̙=!g!_uM`=*KI0#j[,!G]UgB%a깷klP.m}j@O WnW_wq*7;` ِҒYk4C|:NQzڣ nyg\r6S}?.}.RmS!wKsxo#<pnBH Y{릟Ӗfu+j϶d t K{qt$%k(l8dNx6Oєhqທt:eвPt7[3j#GBWzi]c8\k݇-rt[|U;PR  .`=o^`z lvϖ_>Iq>s-k6-W9yi^ꕇa/!$r6@s8gmMС1}rmΖ=!c3~ OuH=ܵ !yد y#9 d:g#m_0sϺױ.ЦPkEBwD5 @OmM{guB8ak;3Ҝ]4c!fjג2y RԎeNJsW5L;הm)ڝB̳Ǐ~u;cC#G=OvZm kal#\b>gn4e Mٞz[Vvup:s9g.jO.C9.$Mӟ{%gXGة6m@r2+')Huzŋ/Iueۃډ)}svp.VoHrH\I8˿9y^~q3\=͝'8$4펨 7yo~u}-RGx~}i )ww>u<)'#qj 3g6͛7oތvwr~k4&}Q{G6G<k3jj~iǜ}X֎PJ~}zviO?O?>O>O>w7=|II{cHz|}av)99Zisoƽ;݁oz?zoxf>oql˽b:)NCOΆ9CwMvaqޔmHB;CG/t缿^.Ir`v\uu@Hwv}kZ ;I"t-H´¨^5ԁL m]:ة`6fK|>ecN^:Iد-XJMЦw_+0"@HԮ1 ]EW'Ozt՗zVMjJ6?`rڕul؟;>;{H"(=5=k1t|9y\d9ot1k [(>06@Dеtu#Ĥ_Bj,بN!2}`L(]#@R/4m lg6;m/؏ڙ2eXlVk }tT"gSҳS(bk׋uۜJcnn 1ARiݺ(ym¥ܾFd^uUI}]ԖCΦ]w)fZl6@n&UR&3r ov 4C&J% g[?1q'hQ`hYM9[k94vm>lZc!r&jWNjb6 PQu@H{]c(]Hr9ḱ+$mei61BBn 䣾mvḱu 3P:vgM-L]9H9dDI5@Hr"jS iB&s $Ɏ4I @Dm2e ٤fɚ sb6) @;I5&gPQx @l s $)Q$mR1BPQH g#CȎ ڤXc&hP&Q"ٯ @lR1(Mmju,)X8gۣ @)Dm[J@HR1BP Qy@l3AT(Jd6)֘!MUmJ5*)֘!MC|@L&s $hI&s $Q$B&>Mmr@HR1BQIkNR1BQ&؛@z&hb @{Dmb i٤Xcm-i Ql⓳h OHl@HR1B6QFy@\Gb9Dmg ۙM5@Hx j Jr6)֘!)Q 29lx jO`>Bb9 ii^b9DmX70-3AḱQb>9ḱ0 AF0M&>9#j3m9ḱ HJḱ %I kڰQ$-XNԆŤmZM5f6l#jCd6@lR19ba%/=`S)֘! Q61\$s $&jC6@Ml3raw6@nL&3A!jC4^φR1`O6Df @L& l` Qv!mC&s $"jmg6OԆy p,Bb9awF)֘!6̷[qM5f6GԆD؛M5FDmH(l⓳86@ˁXc<ڐi`>H 90tla6)֘! ?6(lR1B@DmȂ M|r6GԆHBb9&jCFPc~R1B@ DmȎQ$}&hb9!jCm9ḱPQ$m-Orڐ5/69ḱP&Q ` pH %6P7I 6P+9P/M5f6BԆ"EA&.6TH )֘!F6D$s $KԆEA&>#GF6TBg6)֘ P;Q mjkmh Uȍ ڤXc2GԆ E@&s $GԆjI@l3AZ"jCm`?$s $JԆyYXcHM5@H@ԆHlR1BDm'6M|&h64K Bb9xJԆFEl5)֘!kDmh ,e6)֘ @ I@M5F׈ڀoMl⓳0QQ$@!I #jH&H ,!jO tL&s $ \a L&s $ I@M|r6 $m@}I5@H`Qxo0~\M5@H Q( ڤXcmMjF1@46A&=b 9kL!j+E%ḱDm`iJa6)֘!mȟM|F{|93Akm Q(ȍM5f6 D&m@|% l{@R9ḱqDm`g6pQؑQ$ ڤXc&j _UI AvgmR1B9D"lR1Bm؛M|&h9H0!I J!XI Mc g6)֘ @ Dm`6LI9 o65iBl⓳@|c$s $PQȈQ$ḱ@Dm ;6-3Aḱ@Dm06I O2*'g%E@ I5@H6PiZZF5@H.6P<9M5@HF6P zP9ḱ@Dm0FP+9lF6Pi9ḱ@DmH1,~J5@H 6P0Hȟ ڤXcZ"jœ(M|FmImR1@%|@>lR1V@U"Xbs- I@HR1B@mRmm6P- ڤXcx j3jB5@HDm 6qM5@HkDmilR1B@C|~l3AQhQ$@HR1BI Q`i&hb9`O6@6@lR1BOXOؓ Q$eq $)֘!RV9ḱiQe6)֘! jl[Vg@Z6@FmR1#jD#mK&&j$"ms,)֘! jDf@J$s $@NDm]Ep,9ȃ pi`;ILȏ #ILȕ ;Hb1Ak, 6@"6r6)֘!J jdAXG&>&j$cI5@Hr0`ϊXc( pi mR1$jdJ$gbs#g9l⓳$jd(Bb9|6@FmMH P QPI PQ ;Z gb9F6@"$g PQ k6PBb9^6@m,H P;Qv3Aḱma P"9ḱ- #muOh .I5@HE_ș"R1BJ( mR1BM C&>#GZ%jϷ@L&3AQFGIlUp9)QZF{0AkmDmI@,7HL96@$*`I9mDm&:r6)֘!XBhQ$@,r6 <6@sm`Bb9DmXc`-QQc&hb9mDmE̹l1B g6ۈMs $)֘!G'kCkݤXc 6Q'mh ڤXc&hQm.9bBt'gQ H&$s $x sb9TDm6ˠ;m1B ,E&s $GX((M|r6i,&mCI5@H#j >j^ch6+ّ0AḱA`HXr69Dm"!7r6 @nDmv'mC;K&ȏ @42EXc W6E1AḱM`6$g#J( ڤXc&hPQٯ ٤Xc&hPQI۰{k, O6`}a6q֘!( @" l'g F )H` ڤXcd65@H'jikm1BP Q( gb9(mj!ji8ḱH63,[c^6M5f6ȎQ$G&l#G @mZ g @Dm$mSZ @KDm&P.?z!s $(Q$mR1B*QbHO&s $mv'g @Dm c6yr $)֘!@P6H n\{:N_~*k]Gnn^ :i g~ lZf6mك \_`{`W jPi->1Vo;?@)m}=5F*lK}k#T(b1r$GDVTNf 9k.Xa6E"m"guUk`3),@mS٩ @C"a!_{4GP"Q昲X}9[je61e'h @iF, ڂ54QnږKtT3~69vxzق5@vjOLٞܘ@H 76> stream xڽXKs6W(M+7b bdKY%lv6\M {ܞn9cfߌiev^o7vb6;vCX~ݹ}rCĦsPޅl"4~ęaP,'R*:2|_?cm9?1|9ab?]pD''wNΰ^_&]Հ7BVa* {iaW= ?HeE\]Z{^̼?^G 1f`6uqnkiSǩM:g4u9Φ`PSk -v7g4-FƕM[Ξ@b'.!=7X^Z /=B$iHOb춵b'4RyN;*%tHiܦCMPh=NM(!rhʈҾX x%I0Ri_F÷fl=BWB Ŕ+ݡǟy ,:*DZnA $ɞuCP5BkLIw0nObn5NWj#ˬa+J1z.8*#-E~y%%5g7PNeT&,{`踭%J^ύ$jH1HJ"{WL==p!.j! 3TS-\͙}FŰ_̣aQbRq/ g@KD^ endstream endobj 83 0 obj << /Type /XObject /Subtype /Image /Width 719 /Height 884 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 21696 /Filter/FlateDecode /DecodeParms<> >> stream xݽr$י&`I*B?PuXMGڼ@6=֌.ahPB5-$T&NVy~hh4ʷ|>o*!%*&*&*&*&*&*&:@DН_׿ ~gt>?sGh:2n裏>/^xbݦ |>_Wկ~e? w}w}~N])~~?OgϞ={9H}qFh`^@w+Ghcn6h3^emX Kwm<c!%qߏݍqhh:2c'?OFl{m@GhĸR ^ hVUqpqmN8n@]DБq?2_/e vt/_ƀc{er!6A4hck#Z8 {hcOPC\Gk:uq>PHEC>裏>̵_y>sm!BR)1k8ρrRֆ ta={٣hcnX#jG]Xx4[ .,<c1ߊ߃HKXQϙFXK]X޵c+/Wn` t!+1nחch )s|?ϱ.Ty@)aL..-;Ob#u.LR7cvQ?iGP;t60贵1 8¯Pϸho@ @bNΗCiF1nگveKk:O׈*s|ÜZ_o@6qs A?YH{>,{Nk}[&:~T!6JkWf}tzLto]SLab|Qj@{ @bic_%]Zи0ژ;[tum@֞O[sFAu{@ Tf 4Xk]v_pGxL%C+P/ \wc1ݍr~hPj'>sژ*s,e9Ԉ ,Tc(J悀sb.{ #lm@ngVoƇ hhv %\&:ݾx5j\$ hg(Pc.0`a.ˆiXLR?vz|TH*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*!my>ώ,=m GEB0hI%8hhĿs|B8:Nܽ. 8hhm;!7VѻTP@_D4f[¢?]A@_D@$}o =2@jC3-E[nn6NS_ǭ@Dn}EiC~[6R8aXaja7qO.D<֯꒻q:NۿΛ7O^LU@ w;z,khh , {0 }a.#x[= 0%hˡui#-EsDA˗#9oެ wܾ^)@D纎v]T-1b E*ƕj26(QƲOqmqm1p#OHT^A@9D鵠Oq]1 m((hÔn{1fy6ݽ~9go߾KWSp$ȱi&_Pm'6ITREqc_}+ zhlիW~kDv 8! ۉ?6v4OIj6k<"HA@bOxpQ @p-tˆk~iPe1iim ƺysc~˷%J1A&؇h,M+1ٵ@pǧEiMt4 8 -kn(աRm𣥎rPH&ή t4v5&B5AK`Ǭ trP(MO{45E;1lRgF͍Ql0@ϴ6%ԀaO_%h )*&m4鎆%S(le o~TZ(V[pLy@{ T `MFPh*kl ?,_2Qvֈ  `1[5:o8@A\ FQ(MGPAf@K  X0*FT(_Wh8J5 GQ߱~A€FJd `'.'u63xBiaq`M@ @.ڛpաa~HA$(@b. g.[hm$c9h޼>]Vݟo߾^[? M,EAol4/h={xp >6V`*\ }c6t4Eߠ mzF l`f .x9sK?Tknx*4xDG5`82jtb0`9(@v6qk:X <۷o?,We =0Z9v~PE@< xf~+Pgٵ4\Iw_zO@*ˏ&8X&P$Vp)@t4H+\ ckimpWd}==l@O6hmnH J:( &6t4c5> 82TkLкU6 hB k@z=myzg Ow4,%?C^6qɮ .JɌ@]lpp 78z `e2m `':( &V6\rq˧@yxE%1}ph]f(@6\6EU%zP/)&hPpE_z;ҠAr6+t4%e@- ++-:a@D@'( 0&Hf+LP& pmFQ{^z{m+}2\&6A#l8 VAO.JgFQ6.;  - 莎L 5lؓh:'8a Z+\E4 0 o߾}gG&Cr6~ ZewNt4`?j蓁\=AR[vimX5 @ $f@0zxqiPeEKh%h] ±QrF6qڀ+h@<2 3z3>[0~nꢵ+,u4FB 떹DO(h+&E:`gQP2~:]w+!L+DŽHaա(Q <tD#c(^GQt7x 2F&=m0=1E=E)I5 . {=*2ihG@QU43G(m0az"ʄ}gkݠU)Ojʛ7[s|y:w{~e 5} DB?6-*E:[ҳ:4os Mf\bm"W6E=JNk;aF @ǙHw6gu( U_( Nŧ%-o@zFQs&\r30= 66fZe*P: Z%QQjdeR eJ=l?B[6:e*'GQ^v˼!JD]2=ePpE_#-{7hhqW 3jdFg {Tbn%E:Y6nP3 MrQ=<Kݠ.Z 5`OƇ&a_ աГQ?QE9um4.ߥd8C@-}.xGQD5ƻ|>ʤ(ГQO?ueFZM1L3QnP\.C.(׎!"hQȣ-!/A aw GQ5)@O187NhQU(P(ա5ݠl "9=׀E)v)emT/LL=@c0@l1 @N~6au(3Ԙ;spPcQ-@>s !8bCGc u[8h=CQ(F*J{d; m:/Et4a/~tpzշ:byt`l5v7|v4imt -=qpԣQE!Kw5D;=$`Oz{2B}Xݍim$kq]ac4HwZXJ[C ϙ[=HPZ'&Ђq,嫯OwZY R=5 -q.'FFQ R/GQzϋ?gEx}Dxx Z"=JGà11Bkg}ODBtrPZ01t7 H( 5h5hGPyO_Vy+I=py8 AwuD%LG 8׀RxOz!Vh@=/իourh4B?W_8ٱjayI Hit4 Y[DYJ\paJy ػ" "; Pʣ( }&j]TIđew-ZEB S{=!tiA[mD1B ,TYC_Jgػ ƕ|rP(G^DZbU8&/a䪯ٻQ?'$' AnjPqD+߻듃=P/qרymVo=FGZw3O?F5m 3-wwRqWhrj 8x7oL)umD: @? [f9m )HHKGz6>kƓSǧQX5Sj( zQ[mG3Z{Ӏ7!)QGO( l}iC&. lqD1^u_`k@( hp[J]ouecdwh9wlZ30eؓóùaDA8@^ݸP/ڸpwɡC%(|y}fW+{7 ;JInmXHG2Ғ-HV;;sƲ) M@% 1-M0 0_j@ʄQ>3Wh 8/DP e]` #c-Ѻm:mmEPh՚Cw~ pZ}F^lԢ񓐁Ei xjP>sʔ!HQ-D777FQd9(гm(^k+_`-j 5FEFQz0JmOxB_#FQFa=ݷ6AG`ΚMP"C[= 8/H+E)@4[RN^qx|,;qm s fרW|GCZppFZ}:GQqk:h"Eu)PWJF˱.]DVAG wϟcǛ82N_% F9gsqFwx;鴵aHӎFnĴ9b*tmEQdֳWN!GQb 5mE@9P;()i{xם(JIua"pzշ:VEkjE i 1IGclk(JɄm5T}m[5F9 E)mp@;pps Wk-("t6QO:[fxza~tzϛ (3gmD=i0 } q^6a1o?]q{o쭿w޼ C_Q:hmX/ #}Mq:Fc˱( 0|I9MV#N̦ C%)|}tcϲ>+r?(c 5@[j3o#NØc 8=^26wow1\N.^5 IvE.swta%'@nN>=5#8ǀ:jvmqh!1u޼O>yFß??ӓۘt;l9nGR4mEٓ͛'Q1^|<~/Ku%->v?TSUl[c1= C?\%fcb)6VSLKGyss>g1a=K{Wh7(*iW)\ߢzHze۾1.ы/^x1['1aGfpe C66{F*:dX~}TD߰s1HA{{$_kt̻ys}߼yx}w}wߝgy]x0>ݎFQ/c[T0c݀5 / 4{NQ=tkQpvDOp=1ELnsT1jn E_c=Hp<:zާ^ʗuf(g-xjxc1-לWE}<+1i9Rk/ϋOb}:nusatݩ5;2\ٳgϞ{bL??Ư{7Dbq8ZB a#FW\o0^,S)ݩb[ρ #paDws̅[OË@DTO 5Z}Ԇˏ.dAL9b<Ɔ<܎|Θ~t.Y|Fy̅ /(Gцա?h , ~8J^EAmWHzVCYpTP8?myL~O6cc2oBqFZ^h>Tךnk&g;**3RO?'m8c.X6< ݐ?g<Ɵnv>.ȡh(%:%GbS鈕u]GoAe G*1axˡupey7~}G}4E??o1vlWYa%iEQrmQWNq [YFQR3Ȩ?OmC>:9䗿/1 _׿u >ܯU02g}2Fqآģ'> 2mm" ]!WB +PF([3hExO5\gt:~osW j&ȠFQzHQKwc; c - _M^YҳCj;,9dЛJ_7Zv;O1c]H!Ԩډw_C! gYawcT E8N˽ospk2 GW.(1'NV{jY{K[b_уl2`pxEk7ZE[c"n ^3"ȀxB>5k15s8%.6 ҃ P_wC(3=9 6D}mTĉΚE%?7}9[(=s!U!΀0l'`[d}Ho'!)pkn%&dvLٵQ18b|0 _~yo 8 1`]D?5\ZC hPc K{a5˴)жpa!ڀ8(m<"xh8k_e#UdSK\'GZ3(?\8m0h'ǜzk^ #5R]oP=(G̳[-gw͛a{_6~E)p]26DI}xKۢuyg BnO>YpE1?[P gS˱Nr۵( ?\QNL1P6fkhl99"˷S{7X%PcP6ݍz6ݣq]1R51m=jW`WX#A2p0[5:JuPjgha0OĄ'֜ 8xPe]AU0g=r-٤$xD4~TѧZnw" .*V2,b\ \rv+t7h!IƠ !5TO<>=mCVXCkEa ,ݍ-lPF!jXf,o P/gdmM<9-eեk@5 `٘:[\04pt m#r# (!cەM,7Rt:lj`Դ\(⡥4C" nH #Ea&ires*ӗN_qOrѠ'N}Y1Y>Uؓ [ Wyf>d[hh#{7Rp RSAo( )6V4~TZOUB4ordt7rX8̉h8$Xg1Pވ6$SܓAhP}/_ZPJYh#,(Q㐻1ۉ6<+#`r̝35p}-9Eנ\&Bw#Ubh`.X+ 8v7נ|ΒGƱ8Q>FYnp}]™ܺ3%;/xr|:NP#qur*45gPlT^8˹}A\1,pµNʱ|-bz9/|}. -Tw0z5j\guB\K$ { :%-t7JP'gPrsXu7P& ݠ{BJer-Ҹ+F΃Q<=hNj{/8%3Gv|_c|}hmû z@?t4ǩ%qÞDwFm. e2r  K x,j8=FQ8Fqt7u|>U8PHOaOU+w==kDh(S✅r66P 呮pkDK1#Ec(?{4GŢV8>svQ6z39Wߨjp,FA̰JGC-$ڀ 8t4)KۮBI(wc6qq` rݯG()G@< UZe<3/]EqFI 6h@j[nPrhmp#n0>-A{P̹$ڀq@?\Gwu֠ ̥bz&hiy -} J#ڀ 8=:t7xu(Ʈn`L>ru4ػ{㫢8LZ3”EG(P;Fep@\8gb} (hP'@t7XMVJ!݀4#鉖M8(FSt7X{j5( 5mTL%8 7AZx."'h1@Kt7zAmn%pܐލW-b6qcG/ܻq:N|u4✑im4Kw8  BO:"e͍Qje srSxx,3>]pJQEk)H4~4jH{7Π qW){7Ze/6A>f9(s]ϜMP#FGt7HEA{t4bneF8X,j(9X8J[{4.R[(3Dj r.B -t7Z%Ԡ^yzbOJGC0YeV Ft7GAit4rݨs.@[D]`1v:xlj'蚼}q'pؓFFGdKAn:y]֦s @w] 8HKGnt𷷷?Y>|õt%.sa韜N782^+ǣ(i?(z(F]D)OdF2p(g] XFw[( Cг݀cM0n* Z JM{6@wrqFG eנu T@6AjYLް fy*4hMw4ԤUvm#{7MGc>hm JQ@u7נm G3x@>NepKY>,}[hjr7O#?z<⼏ٵnP/8JZ'P=0 nP*{rW$`|68rGJ07=m5p)V%mO4~4tA\Rf rEأ$`L{l]im"2L5hmA48?hFxw6HFwVp<X~ HzfWwԾC@ZZ$Aq5(>1!ѳAkyM ݠPJHvg n,A|8k/?wti9hm}ڳǡ@PF SA聽3H!]jrSYq=S(`Jky-%m@bÄcEt7OQ} (5af( ,UqșCk3BpC5ڀ}rTKwV; F=T( 8DKG` cP6f 5Y*ԀZ6`O@T7O (nP2 h]P&g%GF@m@L{r 77O/ n A? S{(:Ql(Ř, -{4T̠ 0GkZy0kpP bhm@#lB4Rj6݇:q 4&"8`-pm@ vRAvRGHKkz!>/ rhim@48m. sP؇%E㘞q@\؟9n\6 Gw~rW .KZ} .hkxMAw1 G ؓnEG(]j6q@y@6M48BwL .Z&;χ NJXj5mTav{ \+/zUƗM x@~:@6,48'؟kDX8ʲt:>NGh=ڦ@9hvB 7Z@8NGk(S,xÿ|͍Ph(e/P# @Ȯ 6q =s6 qLtLG hoq{7v+@<PGt7~X ]@l臽@t4A 6hp@w@ZZ@S48z ꥣ8=VnMkhGR@: 4?/8Vhmh@ ( ^6qAw8VrPG  kzmB/onGm8p F#Gt7|t4Jf,8jd Ok`GDNv͍҉6 h@ ph .Z:kJ6q `=mGL hm$Q2 g hm$Q2 h@z݀u. ,8J#N~+@oD 87 嗎? ݀ 2Ɣ:k6q h,8%t7ǠimMcB"8imTF# @ ZG0 5Akb9n@cu6*HRy!  qiA hG*b Xk/j@<Dž p@n !hÄc\(5ݱj:aa(=Gk;URq~.T N 8ֺg?كY @- #*1.>Ckp ꡵8At4hp,ݠ{5 knP Z@=cu4hQ8bnPmmcj!O T @o64t7(} hCwhHklxh@Hk,Trj[\cR(0ܜN矻'p=j~QgZ줟Ml7˗_5`h]j4'R8ܠJ݇01 XO@Za#'p-)A{7?ۣ6(H?8A@q%pnlҳk ލh>6@*=imPǨAwU:p9ʉ<€CQ/pc6ڀ#䡻Q; (hl9Bݍ 54 Pf䡻Qo)'P$>FGYwm (hfyH"-/3wz]aNO}W+\(^Ekɱ7c=ym@v"ymaʏ> >> stream xݿi%ٴ`Hi8Хx}00Х()|:0 АlkNP<-.=ӳ;}t\.#@Fd$@Fd$@Fd$@Fd$@Fd$@Fd$@Fd$@Fd$@Fpӈ@{8|'|8(o~7"|!g}g\.V.G}G8&p& D[l& 3p?? Q??1%p$Z Wկ~+#8p/_--p~駟~ Wa/~_"p(?zp4.,Ah,l>8>N6n?O>d\ c pN!,~O?O_׿3q&ܧÄo!ÅWgm2)80E>裏> 2MZlɪ <8LHWӰ\۟}o5΂Bҗp'n5Mo;IJZ 5,A-'-};pp q ~a.tMn`)p@FkhI[m*f> 5}oS؊&,Aeh}g!*#. .V "Y\mZla+5Rn9f<[Y؊`b Qn1<1)1"X2Jp gp-s%n[z_4`4 5W+aiJhRY;KPcwf3[}V`=Zj'RӽPjRAMzh%@Ѧ Qk&8 j=ͬIcDO-翺n9v;%X  t׀Ƴo4zsl7<i"MʏSk[P>UJPs$Uf)}+r@KljӅ%u?1_5m0j>S]Wh[hj.CnKYzMt鳔Y*|LBT[P8m׀Jp0&7md_ b|k>+.*)k>, _W8J,X  p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pѽCN)_. NX'4f▆턷p@M8 :=ێoul& WIo%Pp@ne"N,G &SNJ n㈹ؒ635[dtkҶW+p(%0s%܏s x&`XQ2XòSjb_Rw[xJO p44ݧ>L'nSH9n%Ǽ3A;RYGsfj`?$iMG *'HBܳyz<}:O@Y8{1(٥t Ѐ4wFmG[VN+AoܳV p@̩Czj%@E,L'8wo Nn[zdĚǷy:"[j)2vB|VRa}3eI.(-vs[1CfV+ly)z8-=9v__/uUSjs[?g٭=돪Z(p KP`kvAiSZ!o25 d|>zf{0 ^KV1#f\'@^ulkk.ֶ$w߭mKA `]l*޽mpvd2{0 dXFCO/[?_v--1 gP.ݖ̎w-qSIUu]/\-},Y-^13=n]er+vCk1Mqa( %M1?ekXhe8A >]_n[y0O_Q9<0=5g<rpt'/amI^xzyo<j|IT*,Mr1Ut+ki-ρB6|\nܖ{X+x^#? &Ь-m$I6=/:wo~&EAX[9_[Rsp-?pВZ[p>_}{nv3n{!={ٷ>>ׯ_?>=d8m Fm0n1p"P[̶Initv&E12@>'Mݶjj5+ @zNo1u%kώ#lK2fij$gʬ]P d8 ԵiBDsH˗oT>p(-GB[vn@&= lKXC86X!P`H'P ',%Pm+ŧfAHgTKoN)LpIoG1 0O`Ws/ȥY|gϞ=Գ;ʛ 0& r.>ؓ 0&vǖr2@>l@d8IoDze;l%D7 0 wwo߾}r\.G h 8V9<~S+OC _f4p[~g)>a< h 8ʛh48  `Lfߨ],2P;$ J [9,>2О{{SZga[4g'50s>ގc> 𳹗[y̾Uޤ7 2P/k6X(ŧ0&5:%իŧÈ2P;[-̾<ŽC{ 0۷o~yr\. 88{R>Czp@,AhV/O6e4w7NB:(,lE!4Bzk7XCJ TOz'*&SMr(DX| 9ao߾{ór\.p8<~i8`O~P[O;^~ ghsWyhGXc·i8`=P6X聍D7J#9pőzf$Gg F(PʽCP{ PpnNh۶hR8i70Mzk^2p`WsWyze)qp@,D pIo6^p@  # 20!ަxz2ׯ_?>~{p\.}2Io֓ {-o@n;0 ۷o~ex{v\.%3t4}~ z p@^Hopws=wwқRbdh[l 8`0 0^ JchQ7`O}x( FHop,Jv)66+]!gi7r(_l.0̽l8ŧ@d8(Tc*o}j$@ 86XLf߀Zpp,([(P(rX|~рd8؟Gz|`OPXz 6L}_/_.XѦO; .ְ8(]Mz 6^$@+,P/O~p-؉u`+F]l0&zO,nP{nSjoT1l4}eқFo,>(Ax6~o?\.(P/pБIo@L*0cF̾I=4n*oP*p,,@`)@d8 A7g)@]d8j'AS73z;{B o _~gr\%Jc*vy> hi8"A~S>pB]Mz8OZ%P>׀j`cysLًW_sfpT@zXk-fa2Io`:enpFB۔ d)l)c2 ry> ٳgϾvvRؓEPz}|>C߿q~8%p0Wy̾sl3 pw۷_~nQ*Ho(Ie3 88[pI]Ioŧ؇;$M XzݨKmnyoŧfX #As/hQ<{TؘxZ Rlf*od)92\ T؀ h+vkn[X @ V,}ㅿoLp;58%6j4 %ݝOl2q 8X,#l+}np,eoaX(P#p3OM`i8Rp5w7 E`W`d8b8x@zҗogy7O ]P!D7ְS*{z}nb3qoy| s/y[sia. m jv==] xaLP2p1G7hi8p4NzL2@?8%A]bO--zp ڐtzŷqU8~F ^.|phJ,nP2o@JFO'S/U՛˗ޠNK7^bpਘmedN4{>~\b4w7 a)͆ۢmS P/jHoopFޠ=z5֘}t2@]l@bMtz7/ `lP>p4}ltr x晆(GA~Dޠf+~+/R2@80w7 ۚd8XJ(l홏nW`)4ޠ=K[{e8XJ(7hϚ2,%@cW{JoP[ߒ`)XٝF P-d8XJ8GFsȥ7Y~k2,%O#IoPXz l6{e86ϟ? z#Icc6X6Ld8ؖ HoО=`[2@nޠ=eAd8|8Vޠ=姷Gb\ bd88nKoG RWzKd8XJؖﳷ)Ԭyp@` p[H2-VzmZKz~pec⸐C,p.rq >D\ S¼ۛ7W㷼x; (Gͦ p.,+晀#Jz4i8VճgϞ} p\!A{zKo_ KW2@:KPyޠ9e}^?va۷orv4LM7QSo}զ`׵ Kim 5*R:5PzIoKp>2\XZ;sǧm5z} t7Yk=}$]!ε` | \wb}ޠFݶej~OJ`Q*= NN[>2cQpPm2ޏw ޿7P '=:Nz۟ ǣZtKo\ xMŧPX2\c;ĢA$u1V.} F9PXz Hz; 1~p] |zsJ 7h @koWP KMk$Vp3_'36^Ho 'op@fZ"֤7W[r\ @7(*bh /@p7/i~oS=2,'p@x|zs&Vd8^@rp3&>D?gp@L٘}Io,p"y ?c F"5 /2lEj!5·8R2φ0G'5 5d8  LVd8؊ I`O![(`+3\9>r['5 y7!Vd]2Ki؇d8Jp/_|.Uu\.?cOD\Cl[8 ʓ&\!Q]H%U Fd8ؖ Ik` `[ gC`[\e6r;7J#. ؊W9/BtOo%`+{ p@w,5% xSspz\5؊W!oFzg2Io@Rg<4h~oS~p|~ی>[+.D('f߼LeXGŧpBc Ђ޿ [ pT)7XJ|;G7xHz5d83`8spP "ÑFzZt`p8~1 -Kpų7 w>aݔz0ce^K p; -B,`[xGzڷ 4\̾+np3y`[~d[ Dzr7}̾,!oH@z2p=naH!Sz"Ad8jw(yVIoP]f߀^pW9K~vzȫ9 F+_8-Kz j!õ}: @{xwO#D(Aӹ W=)l0% RS @ cxG;]z Ad8J,d8@+7Z"K30pJ& BzRz/Qo?sp3OJz>pÚ'!8M9a᫯o˗/Q65R'r\܏6pb!IoRG OV/WNO=R#KMd8R׃pހmpPж .;ONz;/P ؇ R0+7`2kl8 edj$ǒax'1vdJ[,'g5u\~_A-̻%b -].l@y7$s'e~ӹ#W5Pn5olMzGnS+A 8(2ٷԣd[0eQ*p+X|7rg81 Ϯ뙃 pI=Lx'@9> ijVAݑHwƷŧ5SFR N$fv_898ؚ ;/Oz(yx|dd8g'o5zY{rϾ]z᫯o/t_|s%~ -X0 sQ{,A)mZX|h`QBۤ7nUL`O`'l +:(z`x"iZ}/0d8c-r N d8`azc[ҝfȱ Czg2p,OA6oCnQ@ sp̻L8&AgpRS>}Hcr 3 ^Y^oyNz薗 ~4L}7In{2y l@A7Gr0ݝ98xZΩ^# !-spL3t0gi6 XO3qM8w-BtOo&kX|C|'̾RS( lM؉%tfߘ{lc뫿F=&mߵ@zZ0 _}5~{p/_|г7o_s /^ܞ/k5Ba=fXjָCpAz ai8Y_XbK8'p7 LY|ƚyٷǏc1HK_c#KP3v4 wۃE'=&'ԶavV mN{%XzizKل Kow қ_b06Vzz-qt-y7 p6ĤD_uCpKzfߎ'AۜkGZ7R؂98xoː pNcIoAz+ }&1웡ͷ[x0&AKX:ܜ98D wdn1V:Z>;*r6fH?_ueNߟqpSk-h~b\p6^)0%AGs[aZ8av&}GnQ ?ou᠅ؼvί6%{fʘ}ۖ:xs[3qgg;K/V=MW6xa;^Cٷ50ʽ(e5[.P/zs_V*7j;~ epƱ'OYcƦY-iP[ض͈Hoc.i^0 _}5}o/_|}nb/ۣ7mfְ)eX=b=}#&ٷ魕V5g̻A޼5݋O?ŋܶ`AgnU,{T1>+n=/­=zpPʙh}s[POsB֓ހ>s[n[|O}wevmkNL\ޠa~L2v{SzR-2r=Y|ڃmCUӑ6ah}dަ_*q.y[h-_f<=׆d[|^,>g8/Fz'ޥ5 {|U-J3̷4Vଁxq>ݛ7߷ՙ}(e^-(~ Oހ5 TƷ/^yزdzD_]{ОZp4\y;'O>7ŧfS9ob:GښPPRu?zӒGr>3w,q9в2-Bgچ%_z[CS#!'=8D7Zx Us_kY(P[4-nqrm`KlPmajsO&6I^9F*؄amQR/n߿p]vrw.r!1t**'k֐wNз>,>e/%D??~VHr5>bI]P)'ўL\ ̾L* W16s!m_/3Xj_Fyo!Ir#)Quw[l{>Nzu[kڧ`j>2\}gn[k|/|?q}XGEPB?bn)p8 @֤pOHVqVRkqK#Z&ñ#jM8JG}GL1U[P\~K3 8~^,yc>Ù}+|Y6kۋe=2=w>זgG`[|j+ypݷےm~駟{%}Oy K_:~t>-7W#e~) Q xxඍD-}yz6J_rߥrҍnKo!#vۣ4R㳲MVt>d5D7>,KHO#2pwoK,h7J=!l mIn$|bK؍x%Ǚwg.[^6npYq[Uo, UapԤ[9ҏ_N_}r,Sid>Ս[é-v)rە '9 \㫿l˰mi~KRnI#מd8Z2 p]V"g}g||1.cyit ud,A]?U ( vG] )C=Ė }̾=4%Gi/̾JBJaHpADX 7\?#pkyޞJVC9ߒm7x|F:ΩtٷjN wؕK9cg#hK?o-͸k隶cO>OJnKfM8#C 1~?U Cln~[5ǥ+2v)ar w-n4ԢmB04]|#󭙰q??O?4o]S5p^6%smo5QmgYmg WgsЖ~ѡǨi8j[|ZV[PZ[H[bc͚yd M,Fzu-|O-}Z'H薞Bn?V4=Uuz]#}j R[ޜ_c뗝r+~p RQ،[boe30j%kj 9fW)g|J76~]Sq> 4--{zʌ[6 qrϾqcٷm6n\8 _=f BnZtam<7mU j%{N]JaTգ.(utXJ`[M-A}Mj(/Ao?>LI[ǶgPTގWHGEwS3nܦŧP\ ޏ{[J??r3I2CT߅ݭ syp}8b/pF/9@v5m)m}Z]~^r.Re2Gd8r}K)294 CTRKE<>#n}Y[Vr[.ǟËkwj?KpFl>D7uȧU~Y3k W˦+G-=jK;XKd8n6 rii(MKP"+ܘEXui-Lum@#bgJ;Gm}o6b)EK`G7;>l.u"@+l[)B:/@nʷe8/)LY@s[ I~'íQ{2|>z5 7.o3zvӺқZ"E p='3Kcǘ9u~ d8YyrRf+3̂lnj98r<,>d8h|\[4}KU c"6۾ י%l ֧p ?c&F׶;Oa_p*;^{{Ҟ 1 d8,;:Ij/p-<>틺#\{kXo? =?1p߹.Ť7m( P>F=2sqb?^z3#6%6^25I;N^/ajT8{w~2S8`E\lFU?/bhHMWr[Gb#뵵o:Q,A]m,JzcmLb=>-Gm47HoQ:n1spc2*鍖뇍L܍p@K7ZfJ+@Xsp .sKn[}rS)3 oPnIRӛ eqnU P>. O|2P>KM|nŋrrp-C Izmzc(Gv2P~dHٷ}p17O%m%o\L.hb.D7DfߠlIo0GC9m6Zp3B1ouS/dBSt:NFLp4~P>篿v̻30rj|Jd ]3qݷ~6$Hߖc} pyKp ̓z|7wsp12N?Fz\3W}%dJk|r7WzNo_Mt,HsUWgBbLc3xenm&@zc;spfߠN&v6wݤ7UoP'.BބQ#P2yf p0 =J+וP ~NVIoP9k.O;L2\:Z"A%05ਞ ޠ@w0sp[F(vnp۲Z"Vd8ަWP;t:NӷG%b%ؓy7hgw9>ko^CLēL@97hw^-B 2Kz~}׃xG+l 73z+6^V p0 ހ1m {֓  z;efߠm`[7h)]t:NKŦ 2 0|w#pΫuh xG,h) y ŧb 7` ׃Ka#USd8ހ<32g. ؖ99*2c.Ioz+8H" ȭ98/@o*; @bBtހĞ=,G ,> p}bQؒ7 sphx$Uϓd8%G Fk9=pEzg\#@|P9^A?ƙ۟ @7-}^t:M C ׎)Pao|>Sǡ& #p%|$AoŞ-G= ,5j{v}9@kߨF 7 ]T^A; @ж̾\vL2[ހe:A d8֐ހ~=8гt:M@)Dm coo9+sW3pPp 77@HIrrpLYj ,,Wz|2P|( 3 `98OwN!Fz)90@ uM  6e}8djpҕh  W %gRzHwJ@ dZp QW SWpb)@Klj!Ozȡ98o@dZper\ O# W 'Iz8V98O8jp) ' `>Z| XL M7m;g ǍdZp/ f߀prj!lEz(Y98O586#BXCz H'12R@]3' W  Pf߀82j!m*+߾S']pt}>0z>_(m3Ъao|>n->:X}2 Wp@Ϥ7,ހp@+ Fz-2x؂adp@7J̾kpL+ Jz-sp؄h(-6Homǻ;/[2GALÕ4P; IoLQC4\Lu7 spx 'QT+ ̼)be`+R4RgQ*P& e~;G2\d8޿V"G-JH'Շkd :2\%d8`)ݼ:*YZX(؊@ 8 8i8`[&0&%h,UB0@: (%4¢ZX Fz F)2\-d8 @: (%(1bk^?eJp@ n@-,Aq¢T 嬗7.&nsZzހ p*!A/gy7Ho@,A;¢Th@: GdZp tKPjX -ibkXF;dJpP+?Io@+8xxJpᠦUz)ms 8xjpP> p?=LU4xV^Koc:IdJpp9h 4KP ¢T8@: IdZp' t3KPaicQj%,JS<0y5 C[OH ĸrp9%nch4V7RHoS&`4\%Lε&0&p$UB3żi7yf,JE0Oz Bp`_z`LzHg *<,JE .޼ i&UBGS̻a *dgQj-,J7)7LiJG&0&lE#N<b=ͻFzؖ%pRk1C-M788 W zIo8-JEXHKo^-lENH2?>7 ';-eJpxs 8(kµ(@ (&S4\%LqcZz%A ' W iH#TE(ܤ7Io2\-d8rH'T,M(ͣHz)x޼82\d8nHo<ż@,A~(@ &࠭S4\L#Zz"A' W<Ǐnjd *4ȢYJ}-0&Kfpz&Nz%ǩnQj,J뾖HKo^ENxx2\S̻TE(U)7V^O~p3 x-nIom'Õ{w KPk"D-J-@:  UC+@: 7XZ R˺/7қem+dZp <~-GdZps Xj @p@kµ$Bz`4\-L=қ, BHw @%¢7IodZpH'T`RkaQjQxӛWXL pdZpsGFz)%,JEKv @z` pL4\,nIo'Yp-Ùw V,A(,JH'-HENz @;(--JHKo^1JENz y7a *+RkQT {24\-j7 1 pb.Qf3@: X l]KSQڢT t"p(!Io(%@q,JR7қW@O %b 'w% 2p@dZp),5d͵jp)7giZ7 1 Zp@edZ,pH'PKPXZE7jdiZF7Ƥ7%Փj7;7e4B|̻׀pC'h W ) V p@dz 0| p@d@z8Fz  WUvqhɽC#@:NŀEe6@̻3p@wLÕinrTIo d%еkp0P 8p0P/ 8d(12\ ep/$/dr]`O(@p t:NӷZ>b|>_r|d),e i862Qg[7XCXL;`=F2\9 V8UdMzm`3vJݓ}Qyaz0p{ۖX[6&ڂ),5}pYp-@{2*{7؟ wspcE؉ 98 %J۟98gvq oG9Niv\]c aL QHoP&`2\I7QVIoP22|@Adm&@-8p۲ "JPXz8JPh2VF7G J&T@PMz: pՐֳ-P Wyp&@{8*pk$@8pkؖ(m'm' zpM%t:k+f++GsMu&2L\:sp@ݤ7 nm+` @8fp۸R pY ,'.*7`L 98 L pݑRˈ}:Qgt:+Br|>zwRiy$#8d\z%8~&d8F`JzB2}8d)2@?b2()8 å0]Oo@nqtp, 3$ m`Y.@z!p#nε@97`OpsspBy7`Ls!G9QNtPKGV8 8sG >z]<,5J"]oEz$p %U?.6'7|0 '8cN4}{KWR|~cn?m aζ ?"n @\zpzXj L mg8spA8MÙ]z'PV3\l\Vpik!:QZN4}{Ve|~=N?bO@LPl@φ; h@ezXj[8Io@8R3G?\ @ڞ3GK7gk#ÙU@#Z3Gݏ^ @1g G]71S*).#Лht:Nӷ͵X.&`'ZZl+~d9NYR۲dp 2 #2 #2 bh endstream endobj 85 0 obj << /Type /XObject /Subtype /Image /Width 631 /Height 881 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 20540 /Filter/FlateDecode /DecodeParms<> >> stream x=ǹ.` B],8t -&Ctd܈EP(E蘚2Ǡ(pW]o_fݜNt ^8"q(DYe˗/_x  ߰wݫW^zh@DYV~g}_|_ly-`[R?q_eie?wwwwww'O+ J6Ee7:Nө#2̧RHocbq&7o~hӃyș( Zp_e_~ƌ|:5E4ZF+k,,Kj)d6EٴnQ܈T%e @|j)Ħ>6#Q @EiO?O???g}g5wcQ׿o??|8Ljv4H {c$,Uk/۫aO-)ʦu{9 T-Ev\LիW^?M!֫}DY7ʛl{xUsB @nj#hqv߽ ( @ԴV;`lf0c*50vmo 옱 eT_m_ k8(0Ǹbv?X ㉲T*ؾV6y˗/Z1;9-!Pv^ 7J?wՍ-!Pv{(N/Gܩ~#ue(И}cVv|o|3 ܈Tjx8IlߘqQ@>DY*5<`ڷӘr(8@:Xyw~le&KO gZYTLA.jk Q꤀:&.fہ9>v#Xep3BWB,Y+ @!lOcXkXDY3uޗݯY#.k Ā1?;16SC?Q Ghq={ׅXg3` @x׭Z/L=JșVt 1߮#+ @yDYe͟]F}XeN;l{̸eY_:>v# @,,]#wW&Gr;&C @\,/keHwx#yZ8DY2c'y,0T %9}x ee؝b`Qךcd,2T upG!ZY*a-C+ .RӾS,;Sk0 Q`DYx:%2>. yewLȇcu2߾{~WsT ,z>vy_޾}rh ,xM5_x<@+^ kߛii⇯l꫾SҭC@DϷ|iii>~o+@HSSd8zga'0{9{AT; |he!:ckeא6z|6>OZYL!O]O =xk:7`/2b<߾Mfc6 dz8sz 1q{xLiۃ3\` 6e:k?EiqJǯ_heV7}M+h|<\ zZh|*ő_CM?`Y, e])$0ϧ`YZYX-0nO۽%ƳV`Y[=t-~4A>IO 0!ކ*Oɴg`#İ4ZY^bl 䣧!΍[ku41` byFcP'@ՌVO  ӯJyri㱽|E?\-@ DY"Vl6MӜ9zӶ6F!Him=-@=@C=e!;Z|www#To=-@ !.WE D+ !:e{'ʗ^n1@IDY +`)=xO{:=}>cXDY +`cmZY SVh1{ ش@vh1{( d1z{ȝc`7F-ǒsO; ;0B ~ /,#ꉸQA>1"# 3ZL,־ Ӿ_{ /QX1ZL=nZO Q XcRӞN?~MqDZY`2+`OKmM+ L`Ԡ=x=,Ka`smQ0` \`c<`>,6о<`Q0B $ 3` 2BzXvi{|nk{ V*b g}=mwXO BBQi!Է6{xPl]kea=ힶg-Pbrc'y=;C{=mb(Vbx{l(<,d XJ^n|R3]V QIO@DB B,|mtzcؙbxyi"V{\xF ;Zr|]O>+yFB @n@\,1%))r=RzڧI{ FU!G!Hߛ޽;zZ 7v0؅"r=B}rG ]BVR O<ȇc BW}ZO=xR&VRRzӥU77c=-6Qa@A>=@ A^F`zڲsʍj><$C7~_-( 0@h?ȧփ| S)+``m{wx8UqY=KߧO:Fah p|~oI?i?%v?Ql'O@K]|Qh1zڤ:gQv~+ԟVbY ש)iO` GRv(R#Ct`Y+쩽z>-0LF zڏO+Z@%0òj-]xVO da'`_yia֣ru776BDYfr<@ eɎ iI_)BDY2b,lh1WwmZ! !Xڌӏ?Yܴ8VPQ,6NC-1(hqNO eeɌ&3&-D$ʲ6`/zi(KF4B[=ݽZȟ(K6ΏF _i!Q{1Z շeɂb؋bz]Sm?Gdh1O 0^!ʲ>mf` , {7!ʲ7o^\}k6DYVmჭlJ#~(^SlVO@i!`=}=9 0(*^ {e%heYeB(B-R@(dXab},@KfAeX e=?؋Փn h1@|QtJeoh @~n\['ȅn<[bX߇zR43Z|'ue%l{VO_=Z|n:Li޽sKǶi.@+K/w`/" >}ln:heh1h1}m"zfR.,-8gx ,efmtGQ?ZOn$,#cRQG^lEn= ŰQ3Z ed,VOnR| b .},Eb؋b<,=oaFa}>cb8Zܥ$,xmto"c=Z%>Q},Y}l҂2Usb rz(#6/Nh1K҆3GyŗfITMʝ9F)Xj R" q},z-țnhDxctX(&j->(7/؍b(-L7KlǶ7Ejh1%m([5`/F) =|>|h!7l.K3Z AK-Xyx ,uꤏmtcԨ)B4Mw9ȍ([%},c76R7{:NDb_RyDUs8\fZr`lu6Gb3cil}{>EV bBƛ7Fn܈{Y(Ctv0>a'})GɞA+[[=pw޿w(>v>5 9h1쥻DluY-{f0Bs&e q5Z SFlVb3Z{QX6l]; PC9ك([(},tl˶Oyb_tQ h>vY9ok2؆bxJ7VD-8Ӗ*lI ].K)XJ:htO-ț7/Hن(;[OhtI-_ [=Q.ŔhG;<Qz8L7RDY?0Jw'yuC h1h10Z lM=|lpFa}zC7-S_7+2(FRVWǖbZ(b(խC>e1 l!0 .o*lNtrO+ ؋b(X((b؆bXu,E h1"R0(5w`/⻻-D7˵DP޼q 6elܑ 2(V [=e8S.ӉAhR` 2fB͎D 7@\^A,S.l?,㈲3ZL4M},@F˦a&OwX[~]3t:N ZLEF)K7y1$lM7~or},qxlDyFQ֥ b{ @ZfD̛7F)I_a̸{GY%S!ʺ`O8ܬ!$}ݬO5eD!cmb ea'ʕ1h1%ҥM݁2hܭ~(<glS}bE7K"fh1uطM78Jg-e7սW%]X Fٺ:{RY/Fn)Dm4w9n!؋֞1)cK7[n|`"F"ߓd}jVv'F *@l2t5eWm6㻻-s4JMDͽy2#wo"(btueW䲁36LMWb3Z̲ܶ(҂g lwmDe(l6Z|҉m:9oUDzR 6lh1]{9ca+X`Y7/Ϝ%V]cXJ>Ӥac"^uB4kl5=_)bx4Dcl ep:5l=Q},QX -dx},!˃|@6ޒV#.#; D3;biXSݏ(;h191B\'nÀ''+Wپ@>`Ohe9)g9';lO+-f[TzZ`KnXiݬnv}Z SaKV2؞b|][vcYa֠F\C7[Y[=%+`ْ׈nv}v1{1x {50n1Zr1p`njYV;"1s-kfap8o-:SKƜ#;'e(.K_)<\׾K.ZYwJ0vM4(Ckh1̹]Zƶz9VR=- .(Da*#zZ@ K]Mi*q:U-K }qwy;Z Ot:N'Gc*Z}bΌzڥ@\ R*]+%1B ױjҍV,c}lݴ3ZL$n<4Na oe 1B k3x<9OtcU-ǘpVDx9*F}}=xlHLLqeF|}!" ĢVO^!|Zwe-nFPeҾs亞SbO>-wߘb+` x+B i\*٤m X`@ dM|A>.rRF!vakh1_A7j-مٔ{yky₩oxpqm(_hi?~Ck{L9g>6IלS~ MOl# -^":?i8ЦkX˒M }"nF_RM|OKDFKՍ}RtG!97Ci"[c 0l=0gQ9 yʈSOc_Xd̻@ eHB얆%K(ks ie-ꞁXwk,妥uVh0#I?hZ`K c'h% MUD/NHR\**bӏ6VhVQxN <6>*U}<j'z:Z<Q@6`|-ge]VmT=-pj8ƆdRSX8iekcDeN9F;F >շՓ`?FHDMc 7cgvj_mslͣv!2Awo9*~0n6-GeucNۖ-}Oke-iuc9o˥_kZ_>V v߉\!٘nv~od<`\J+09D͵9.V6o+ahS1k!._}8OS!F^k4嬙zi@1]h1%_w^xŧ窜Z__r:݈v &Փbꔂ@;Ƈ?L0aF'TOc?<2LJGv~_ooooo?nW~ptA4_R:n4_}־ǽsjvq.u{s_=G{&Q?vؾmOM9'+fu11֞Fw>GȫöxW!ǐT~l]]S9[MիW^JQ4(}ix6VO$(hZv#p$x"˿ۿǏi׿&C\|˗ݖt1?5yۜdxv?-2} n/ЎfYKy?ޭ7m~4|%@u"rWH{(JP:__:5'룳hó~k |L6n,WqL#8 ϧ*wn_'mPrnçbm Fs7o\zBl=?p}\vWv3k#=`l9%5>>_~#7-i m;A:\Y/?ZZ5Ru_5=mƯ5T\k­wLqw8&zZ93cu?ke_|_jEn+??|}|>c(hbS_7釼|B۽bxK"۹?O}kߣ*36Oozm(pαz]cX|Y)^ xUJ u=C>Ǽ-g.v{E>Slg)v>=R.O?Sz??ຜ[7o>:1gGiLZ=-,\s/˻w_3 sGv״$?mqDb]_t](NO9+5oN3T?x۴1DtlMc~:|dHz5 5Xݦ&v 츭t V̀qW5- \CO;>v_D|׽)eP욞>G:cXi=i+\إlv?B!TlxMCk\;nQӲ̉صmeϣ+2x)/=m׹,+]#'o}1s̉}?5fkCp`ɍvTSX{?* b>ci ?Fb2x9DVX,NIe=Fδ5mرJijiŚ.kޘqkh6PصDKf-UӖJp>v}GYq9Ưb׹.v1l|~@m ){VOӫWvʤsmVVKFN:e _MK|篑k-P0ZŢlzW'mȬaw7{V 5lJlK=-r-ejdnKWnqcSJg,+nO[h k[8ʎf SҹĒgFMc [(;Zl+-Υlv46v_+F1f Oϖ7MJ_ׇßd`t75u&6bڇ/uÏ9j0'Np;cӾp5F!C,eM,kQvbmeE-ls>ZkK~Se GrwunoJKEY!d'K-FE-e155e~M~Xz_3yvrY.ܬӮbWȁ>67[ӥX[›¼7\*Ďcjk:74}FY4OMQv{;?Wv.{Ln ^_׮} 1sQz\!c 6i=:SύΟ9a{A:7{z53ED~κ>ӖaֻfNkrxί cй)#HO jh lq95G\DzuWȓrST|]c4sϮkXk\qz{Hl%BlnvoYO5js>WϺ?^ ۲z6:scL3vN{|"t7֦iG\JQvn6 Sä%+Bybd]xQ6LgNYdD ށ'y,D7S2@@v}zǺ.2؇_q}z"'xl޲0{2'1 e\6i޾M*|Blno#-uF_az[V6٦m@Io8'Sm;Nϕ͡mӲ(H@毀E k0Z}ziO1{ A v _z#V}Ͷiȟ}lml-?!6gaʶ3n=-۝i ]۬]ϼpջe hZ942VBFYV 1xZ<߶B,1sc.Y},hq^+=\7i<^[rP.ˮS1,OM;_f1gC`o>Dg=ؾWb}laZmӲ"TYCI൲myc(h G0l)Qh=:M%.XXX ieP:#s]j'ESG26=-*!:Ko:°y6lDgܝ9TT:^Jb8`k}HxwO @>k=yֈEbkVOlDSˇb-_CwBl\DپͦWR7cR!v{=uҟAQT+hK`{PD yÔSdSŶOeQ6sAyں!Ba+hqlM +`rcRxy~0lÇU_}f:-CQ zlZΌobշM@*jez6=-}|_ >hfa<[=ֹn$v!p;f_\m͒T&uvmzZ:!u9cF)>\n6p.:M3SBuCSE1eu?=bb-@ތ^vAߊ{<^%k< ;}ǰ1@\S#1lTJ^>yzZ(_}+]BT ?kw1 l _O1_F >"N{' X΄Xeh([J짿nv7~-Rt\>+f!(]c5<콧1uE<#eVutڅi3B5nW>>KiX> m+˟Qo @ٴ]`b`X:}6,~n?WP6쥃ݐ(b?up۵nlZQvmO eFϛ3VOCF7=-|LRm},v0.@z{ O|}ie;@ i!&yh1gZgfsn Z=- gBlʹn636fg,eɞ"˙(;`83e{Hq^[= `=[^qÁ@һK C͘O|3_7K3VO\"N?da=-%u;cs\#w譛elwi_)sh11`-c[13B tyg`>C+ e"=-s#rt=O,M+30Sib!;y Yf2tnX O7gȲ4Q6Ce6c؋=|V-f$ #֖D|"&IJl~/nEi}9p&cYmpc6MT,_5!AfXͲ=mW1n[=6Q6hEYbHƞƵFY`cm{^ύ{,3N AuScK۰ux GxeC9+P.uFي.@ j"~>@; @ X֣Rfىv#ibV__},ʆe/z9W$IJ6lL7Kcbt%"˶D٘/͒X[[_ZQ6i=xO!D>rA7zLDٲ^N<_rcOb`D_+f'IJl/nimn6EKN@vi=D < K-Pʘ r3&vêb3c0.5fLܔ {Z-&?Zbf)ucXXoL%AM_C qm ʓfhe+$JwSFP~bǒQ tS:+e$YRf׷Cn:f`>$ɍ(nfJݚ>qG:f` %Q|mfJݞ"$,tuJ7;>hDY>qz@ttoLH,YQ,@mtP*QGOtfdzщ@ut͎aXDY.R/,@|ٱD&F7p|#>Q^Yjp9f͎gDY᭍:5M|PY[=QQ+f)I߰1f)-KeosI7 P*f!:QYtD7 Pn@kLNYsщ,@7KItRQãNY"V>QQf)nTBDY~uꉲ,L7KIt)UEPQY!R',@fKeYJMn'1j ʲ,uu>QQ#HItz,>ꤛ(CݬOhJeuYJ:Jy'QA@tqYFL7 Pݬb&ʲ ,RQJYvc(ˊtK7 _ ϛDYYY(Q>ݬ(tԠ/]nh1eو7Vꤛ(U.ݬ>ZL7KItf >A(˦tI7 |ʢ6,YpgfJC7k'HDYv!u(KFtD7 PBDYv"up&ʒ,%*nV1@DYv,R6,@Zp&ʒ .,@mf ʒSKG7 PY@%CcXKDYfm}DY2Y2l-D%=-%fcQ0w [%:,@m毛5Z m,i)n 9ݬ` QBiH7 PY},te@ YQziɓn akeac=-;n zZ>@>z)Ďttiea%eCY=iea1ߊG7 [B >Q`mhrcbֹ "}heazZ&CnŦeQYm'Qc@x_:_!l/} p"p^_!r<.E=-3fS qhe! zZgBtW(V2eYnFTZYsiCz,Mh2B7Њ@ W b fM4~8iZ!jczfRY Plfh_D/l=--Y 15!B᠛b2B 56@,O;K!v8lZYVL7 X`*,TDO[37)x0V~ VF7 @|eO{\{_e#zfmxkeGzbhegiKeؒ( L`=my_0&0x\iou>@+ \qI.߆K &u?GG@bfB,kexOtPwrVH7 ^W Q؈!=P5ϊ@DY`Sz(FZ(Y+ lz(PX G+ LO3,pj_ieis&ҴB,P2,=mnt:_:@{{CW GhsD&a<΁nt}ATiq/D+ ݋nDYnɺYXb#EnI7 K^G+,P,=t0_%ӮM7 \)B,as򌉯 0V@O,:XX+ `=t X}ie. 9tnk_f,JXYb2B ',(zکF=ux Q`DM ,1X o,cfw i͒9)Da<xuiq`sCt,LOG7s;i\( "i۬e1@YDYitlwe6Ͳy%A؁V7g P;Ǘ4fbbiePnk+,@Vj> >> stream xݽɕa6ə~ @ g.enr䬷 YCk˓:M]a5d%@AngwVdGVx5ʬzyr\.oQoMqh@$0'8 I`4Nqh@$0'8 I`*o~߸LV_@d۷o߾W_}W_v{7F_޽{ݑqr\H`*?~O~'۾gelŅ*G?[$0`|VJ`?~m;upp X%mxW5i v|_~e_w~d)0X9~~//̂hׅ6zpǏ?~LS`{$0XOLVz7VK`D#7/O ,͂ݍ@n?ӟ?iaV[&w_׿?9s^r@o$0(EꫯZwlv$pg-@$0`ؔ}۷}ir0&7Jk6r 5K,dݶN߿OCο>up㽛X*XX"fPX_S`)_\1BNw{ݻwVn$0`#M ll[ rS`Iz˶J aH`bS`m?|g7vς/,{ke2޼wKT,g*DʕKk~{ l`+ye[/8$0`qN3N`fʿƥc &BqrNFҟw{^-}K_@43Y{#ޱIh,p[K"|Jh,{UoBUV@|4*x)~nllnrkk  Xah&d^  X$M-~K-M6K}2@$0`5TvYi̺+0vD# ̧i, & X<v|* [@dt5!dϗ\yn+ ^Wu'؏)ف35, .Pd^9Koqp ?z@w_N@$0m'R|x&>.?mY,snSr $DBH'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh@$0'8 I`4Nqh{7؏x\.nwe ƙ&-:~ #@3\%Ѐ5*7%~ GH` hr#}+.~GTjۉ-_Lܖ/ :g I`< s#y#@ d H`ИtKJtbŏBuB\'@,w4 7ŏ"uj.~I`$s[DJ7e H`И@;޻ 6JL8S`D6I`P q!$h@.DRwwwwwwODc (RI8$i-[p *X@<pt?0OF^^_%g>aOfg:%MBG}H`е Sa aD @JW><<<|]8)_k濦0"@^_uWtkJxж۲׶_SOor\.A3Z?5~k{6V$0hКW~$0hʶ_~_5&]`P<90ys\.>R;XTlnkI9rk*ڑ&XJ*m{c&PBk\M3 G<5%p Vݗ65[?Ŭ`濦LPNp5kJjJL. aH`Y_I_K! gi_uWN a|3-)08ޫ˭F0aPg]TneA5M`-Zv; r|0~f v-~l~"\@]\_caH_'¬h)0XU&G$fνౄ)! l Z26 V?*!:|X,{_YS`@U&ݛ[D@]$0(G_j'+j50n0! > j_濎[/Df><y}9[oY>@L~DOj17%}/ #?kDBHxהuܥsGǒZh0$0:Wb+! &Hŗ[?>8)007UO108$0j$D Ь}ME:r7 D8@#F^m_mL~%ڸH a{T c<k'2#ڑ^5`[X۾'2DV$0C7!LXC2}N~%z as? =꾥a3¦0rmncO&"T>>~,`_K&$0N ~3mI! 85fm6 ay{&3zBuH15 r|0=+a ]_KbExBfįۘB3 U/g0Op#k=_%,|v[_K"&a@?$0b8ҙ;&0 Eįۘ.B* ,`ZBP/BZ˭̷,)0cV"_g>a@|ц\K0 2 SVax+=Ye k?fa/s&)0_>j!tA:/!I`f ! LhU2EcK,XH/ fv?G2+ rIa$0_dz m cH`0%0,u{ײzj!m!==Az18)7aV\ P+_ܥ $H`_[ٶTif?"7%^g0/+pS`܍ϫk6_a$0fj{ǖ_p! ؖp2۾b sN[k:D#kH`'h5~kD>0`pVWݷėBtSH`kiz5Nr+0`JQ?۾a?3ZWa j$%$0]x6Ż09 6&~f]ik-W8S.%B콛`Uo^e uS\.ƿ/rq[@?Lb}ALc\X!?濠BH`_I@~a8`濠mQ:w a6 w#//DI1_iU A0{7 mucz?{5_T a0 p\.>rvzc Hr+M@L|"~WJGa7oL@KL]>#Ә/ g~"\H:e\o M.%BE۴*激rBA:"~EKi[]i ؊._k~?激50׵5TĶהdCǵ+7%m-nޘ3aj䘟 S`@_ozSj&qap< Ī{~Wv! C#I`@.xdUgK apr2y/Ưa[^axgsara~n5L'WMnXm\Aޗ&` 8Tɶ/7%kM a@BlKb择f a@-Rn `) ؝Ya@B_LE_Q` ؘUL~=! | ΋+[:&{=>÷ߎ==__P paa\.|3l@b*Wgh" #71 XEbU a@B_LJ>s!~KyUL_u!9~ a9@ ًW.0+s)KOW_LE_{"dpU#?BEn^sBH Kbɯ۾^€8rQޥCnڅ0 ¦„0z Xu~z_[#BGne@$0`vGV0u! @o$0蚙/į0!L%tJbJBG.%Bm;Sބ0 >! I`xB@$0hUL:'Оr\m拉V0|-u|-3?<|]]GV:e\ξa\.0 2DX sa)~M>~m~Zb" 6H`)+{P"Mo65rOU! \ 3?t~VMo٫ !w.uE{r>C,.k\LAJVݻzcv&€Z(?@D1I`P%<2%~Dj&Z%Oj_L_=€Ż09 sw@dV3%{i|NWoY>УIzrag+8)0ʪ{/ka@DǓ <2%~Q~ a@BqH`Ŕ0 ًǗ5e{:p\.>@Lͪ{/h[:s粉0 0saH`G/"_&!  p// aI`"~1f=Pr a@B@d'+/7%K> au2E_0$0Nc)3_@ !Э@G //`&E u a1].NbBba[9}J@@yL۾WVC{#0 \77 e/{e=wN_sa@-R^ )Gcf2Cj&AccSp! O؃bf2E%ŔK!!گ/I`6a@|&֓Ȳ)V͇09 v\.ey$0)? a@ロnvdÀRϘb! E&EqI`|"~1%~=>a+Q a $BHa$)LH$NYu{۾/U!e 7oXu;3_%ag|#}^'{IXj~*ֲ| \Kaq&F$pֽϓ_nވ_AabP #a_۪?_оc'":f'Vͥ@|B3 j a濠GB' K ~e>aNz#5η>_?޺@ ロg@K$ΘjMf N&57~Xu_&~K!lz@$nj/4EnSKkoK=uF3BZ"uW[/ UƿR&~k͇09 ~&~ь?~763n ag"@|wr!;_|1U? J<>÷ߎVx|T_t~6ara˟cL5¿GӞa a@$F!O0.X|kiغ,sNk:_̇}V,3"x&^KrS[2`KO?g-^ 8)mGEyEoXOjBIhI`M0U m a@-r„0HXe|~0Bp;+^|{0Gz|| Yvaawk?Q w=K` mgIerkLq&}=H`2fw{p$  $> '0! j `[XE"~bLMd/jCMWfY>p >=3&XXUMva€L[n`[XP濢80 _7KSCgIX%GUB/! ؖ8/C=$z~ h͇09 gvA $Z_uo/mœ~֘*lH`Ezfh#!  nM_kn= * _\0濶eM>D"ed=@"G1ɇh$b?x?Jﶵ&bhH?hc,CX/0LMhF/ǹom! !=C@ !68bc& ͪs˪{&~=!6j_g޻ 6/ cwa!V!Ɣ>7=3\.ŭ2Q8OVruQ$\/8F|ZXǐ&%Qk+2`O]'UPmB8j[oPmc l$/KǿGFW-st:/Za1k [1͛_@S}4׵`BX.?.`!~A.6OEUBuڸm-t"?@N0 a`b_83=+A.Ẋ g!L_*w/[_)/n9p/[5TpXQ5TgS`gW5,lpw_,%115=Xn$u3vBp kvOi88y|GJqoBw߹zK=\8 p˭tǽcmq? Ðٸ:˪{X'C;060Y1k kr;4^Ln.DXzJr)j~JkOcdOagҳQDPl>~^rid{sKu/0HOgĬGI~h# X !zk7w5aim)}/Bnna0և{8į>U>i_&R{ĩyjSr_嚛nuUgcV_SBX&&9'Z f #[]Yŏ]rXNCS`[_5 !ѳ6v؝͑.?)U /#Q,X_"\/JoዸuKaϷXkzxxH͛%ۿUz>7!*=.es[ђr+}ZZ~?a>-}M5AGZeS`[_z=V<>y?9%~AD&js$/HrO{afS`/``Ö~CDOw&"Aw˿j/fI+wEDVNʥ |ZsY0 濠&trL{v,7U[jW+B.2Lij8K0E^?=TnS/@=g/ݧv aq _scNxR+{m~(ŽV8[i;.#k>b!:7ppۿ9^fl7vait񶰵9WU a-Vc6% ͿJ׎\1Um8x$h+^lˣJiKգ7?[xGBq/c *{>e [}/tc}G0, /e~(|s+ m,9V-8p l~Ki>_5(_ɾef l5Ȟr\DB^/cs\<%~( Q+wQ$ɦ i)ʚYk>k/s|0փ1r7bd`IB{J.<> 'G97ugV., J~x=k|?F ? CGǜ{Kooq+?F8~Tqi❭g?N aۡ[[~~ᡞXy׻w޽{7Xj4 au o> &hflۣo߉wQ YC16[\vH0Ŷǿ/bC|"KN`%)~Z{GEq-=;֟C=L\BV3[ʭΘ/ˏ?~qqC/kzCX_ dK #X.~ۏWl,~lTЪ}R^#LmbcK߿iJQ,JXnH%d ɯmwl𚾟?n/7@f/}[s,yLO58cWկ~t!e\ -bG=JM`Xq^-3?5"_?^{Jg"<^{叓="߿y{;ydz>۷o߾};M`wܲvQ6K_24Zi@<.%kE/{m=ʅ $-?Vss/'9̣7f;c+y;2kU.ߒ gG[cU %ON`7Dc"l,X.~+j"lA$xtn?ׅŦ&r9HŖj ~N3,?muZ팔k5 У5W=>ޒ^{41/_[?@ac??0~?|.:1aY<{xv"^a"4{=<}>B+?/k=tfzWNzE˔_IJ`E>=< a:>Tž(){}^Q?e[F0XBjms^uxSc?{4{O5jKk$~_~ezKzX]]Yrz|€-_Gc}SkRWyZԦk !Ҹ偱Ό>R z/&^u>+Ʀ(_kizwf-o8bDp1wtg|]?<5/E@{\̉_Ȗ|ǥm??>y?8 uqBX-_6yܞBH! #{+'NJ>m2Pcצ\OX*DX/s^-k[R]җD€)-?9Mg~)Wr?ەo9,7u|?߿ў/}>~ W~X"59&漘gX6M`G/6r<|} LCGz4 \O6Ž2{kl&rƁ%[K/sy^JOmekl}8ReOw?](hY>Ւ-]`2\G%$o[? ^\W?`E$y)~ a@4%xgԫ €Or7糎ܽ֩  w!|dm^&O_P#qK1OWJ濖f/G/8J "=IOv,xWnM;>͇i9h uK0 &ګ=)y$xQK-K0W` n|=[/8KG ,ds%ً Lct>}BDL3\ׂr\&O_!yt`?}X{ԙH`Ek! 9#*v1 !G/8[ MP< 6am;y`%ߺ$0n9$7ж9#'{-~|gao[_h bx&Hr@_x-5RZֿY0f~W\V ʃmn jLNh63Ɏy5mįqj?drkA a"! VokϧFNLr=v2]4r"I>^kad/B^'0ϗ%9w"c ׋7*#-.B1A{$|$~)2?}k/g/]`5IlKhڽYlMj{G_ J`{v5}n>+z^}ְ&<LIeO0?f ('E/yK#9WahOFPNm/4̳%,?9ree@yn 3Fo'G΅"Y0 (!@aB ^?G akH`,'%Bp 激r7~_vulqYe@9 n9kY?M`Kc&_p=&[edBL_/6ž>! `;[͂%#! O=qQ/` 9Pˬ̏,2Z'{gܒ5/^5Lqa@:&/`= C aY/8Ke ̇#s= ۶bgaIMav@/{n^6+ lD|\ؖ ! a[Ma./ G#! /o3D=4] svs?Y* Lž>9 W2-~A37<3&Q*@|AgnpF[caOMa5 j=s/  a j=s/ BRHhVQI` a3ת{ 6 VLKaBzF[trcz_@=ç)h̷, j=s/6h6_P9k=P3 q! °j=s'ǁ.|Ag VH`tWž>9 _P+~m0! "~AgH@_P9k: 0؀UP+~} M|Ag u@6?0J!~Ag\;1¼v0b3Wz%A’\8}H`I"=3WLSEKf3YEP2߲|"~Agp a@Z\ υpH#~A}m_e$0D8!xNZ\ ` ;0"~Ag  6#ΎǦ0_P+~J aD&~Ag !ḁ!~A}m_ۑ`,kG a3WؚGlaBXaB@/u#>gSa3Wؓ؏\ ~.`#wp, > 0n"{Agp bB/u#y$0wZfrXa3W8uNǠ8>+"~Ag)0}}#A ' j=s/$0t: ~Ag b6kG a3WuaBXaB@ j=s/zH`P ,TNY۾$AP j=s/I`,'~Ag Mmk~urm@/Z!AS0h/BHh$\ ȧ@[/ ]q a3@\ ]ȧ@/ AG0=_P+~Da[3W]`C@fGXr0;€_P9k=@$0@("{Ag/$0 aI. a/.0l # 8I`3B@"~Ag5.\ IYxBz {Ag/H`'=}>rPFZ\ %@gGcS j=s/3DP/ ;g۾k'a@]/-H`0 2 j=s]v$0`3q^;R /ؚuf$=ree0"DX p& =wZu$0`GBp9.~A]UEv'Ѳxc.Ύ$_P+~p 8lEZ\ 8M8F>}>./$0dBl\DB€磙/u#8ΎǦ0؟QI`@ B ~Ag@l.]yK#sMY&A۬Z\T NKr9Le瑙/u#u q6%/TCډ_P+~P?BUri$EY۾hTLȬZ\ I`@#r9,N{|0Zg j=s]@<ΎǦ0%~Ag@$0)BEZ\ >hK##\Y۾4Ng3WW! <|Ag t$’#sF/@:'%&|& sֶ/F&Ъ{ O`t\<k޺ ̯C.m/)0+rsaq&ž>sa?/` Kmw^! j=s/XG("Q; j=s][HiFeO,9*/{_ `!_P+~\ pܥɑH4Gu}$0Uℰ$Ä^P+~$0 aKZ\<Q8kK،Ƒ/ .؅K#sֶ/8#!-; j@ O̷, j=s/)0LGY۾@hBXd/5mq!$@h.HV j=s/h !@2ΥOOOH_P+~@$0 aq_P9k=Dv j=s|@^ [aOO+/W@#c_P+~@\ РܥɑHti5DhVrX&~A]$0 ac@gG5y@HJ;.9_Pm_r1 SBV8!"^P#<k@caOϺMaH֓&~A/`+...V{Ȫ=_PH`"kG0 jG`oEj as_1$0’&~ALp$ j aDc=p  agU޺ S6v!g}zyA`8!lnVlp!$] U#] G.0U@d; VrO}6XuB`w熰0 ށŅ*wid.-#  0U@\ *)̆2xK8Y!lnl ɪ{%'¬۾H` A*eӧm_n%vg~KɧU Ў aH`T B6IB!~=*V,ߚ|e@b *OY`)0K 3 F-\0e ?j"v0r$0!3 ` !hޗF5Fr ۾ʙA{OPNX;k",{p#m$0:aB_k2~FZzz/i0m_@9 N.6Vl.0eG`~̸`kЉ0;/}gramsa&xd .&OVO+ asȱ(.Wl{i"GsW3fM~/$0("{7g)y/Lr9|",XK/Ȭ VOY_/<g 6`"O@-$0=- ..]4E1P/ v a|j'z vC/k"~D a-JoU .vi"c@$08/NsۥmE)0$7f"l[@oL@ bV/>'̂ͳ B0@BHHk>Ta>l '_LI`P|On9v@r;’zf=%$0X!\ [sid/2_ԲAL6Іn arR۾_cS`Ь9,v0؊1mY[]/~ pK_? XY25Vp S;f=GkLJ0<p<ki| H`I\.)4HCX¬  Z\@LP_y#~,P26' "IK S`a~ &S`K 2S`4h@$0'8 I`4Nq; endstream endobj 96 0 obj << /Length 1907 /Filter /FlateDecode >> stream xYKoFWHfߏ4!h$" 4Ɂh-#.)^R"40`.Wٙo}K3P(,"\3^IIѼXK~]k VtAcl~5.SDY,{z)p8xrs(ʉ`N>7bR(w_bҽd noj6-ݭk/X֛/ފA+puy]m+t *KyT%ZVeL@[ ˶6)[|88u_~ɪ:\SbYWx݆h&` &sE/(RM"3ITٸ {sc'-Ɲ= sD*6) !yS^Gf&TŖ(Ylh40B##! AW,Q82ļ93ˉqn)-! 1 {FDr%'*X,Q*vbvf|q>pkz[c.AOi4Xx@I~ o;D&95օ4@|+#s2 NABl=6e|܅)tXnO-b e|sn}R3l9,?ڸ Һ粔+ Nq4Ne9ZbrJM/d!,*Yㅜ-9la~lX g"ﶋ:7[*ͳ}_c67J+J\Xː,D{OҚx` 8aSoI& g #`~}d8Ͷpx]r:oJ.Lz\Qm?Ja墬RF:aIGLjB=i!䚱#_kb wKN'5]b-j endstream endobj 87 0 obj << /Type /XObject /Subtype /Image /Width 543 /Height 899 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 17499 /Filter/FlateDecode /DecodeParms<> >> stream x=o-y6C[j'#\`J p2SL2)lh'nSp–}bHpxfpZ "S<~z^*MOt]D @t]D @t]D @t]D @t]D Fl ]?C2D6~v /5ЧtClxxxxxxOӟtz^Gy~ZV>O>O6 ; }駟~н 樿yڢ0޸Nj]`@q1-?я~Y:@n ~V_363.V0&udh`Flr]x4 Ç% 7fXm.?o 2!㱱VLt`4B ?Oӟ////w^SDV_/?M`炊 ӷCH=܀ Ûi$36e.%זLCU + e HߺlNBڏPtѥZM +E]Cecc˫\Ch @oD^Ys ~>.04*0^?DwX IL?^ʬx)y3!$eTl.6,Gm1cR+ @D.kI1Mt ɰe˸{ч @D Hgƛ1 )Dޭ}St+^j n綀g`byC30)g|oF @P9z.]1$@T -Ot脾Dp6$ˡE@ @ HD @-#4ɓ[hCbIt脾Df;$. @B 5]fH v.iH$} ]"oH]oZH!1l@.@Z7 i]D @t ݝpO>'@ O*~1NM,}>kl#ta]P qoq_b x$%@Ń^e.x~ߤ|X&4"_P\._zve01ÿ1!- *Ö?%!G Mcr\.>|,b @DJ_bX9^!#0GtBA<19I p-͟y3@.DUr9kc%d7[m1f %=wMzRb @, FFhRXq>!щ.7=Q=?b @D )+UԷn P30Rxz @DYzcj#TϨX:1 -ۈ1g]0*[c Z P)AXctcR.@Q"T94ގ{EY~cZ`5з`c6`Ld!iB>eZ`qte) ^%Q1KӁ.@A%:bb +c N)mкO*ҷ*kci]S d[3fkJGtq뒥1 ֫-^<ޜ[=b|?1Ǜ;Ӧo=F*P`ZUm5Zu?p$ p} !ҽ3х -qؔyIt:ў #ר.j }˘3 ]|| }]I|X~Wх[V[%Gnӽ:х*8ҞV+S\4.TJOQ߷@lei>aio#ҍ~߶zzuKBu%=~ ѷGbֽ*х8ҞVb- q^ DiiV.||`Y=}ߕ (Bt N|.]8">%B Pk<ǨPm"]8@ǨP'7M&:хB,ͧ=}-Ӻ_ =E[ >х[hO}^Kt`'aE\]Ψ4>*{!"х=L, [LeiD2\ݡ= :Btǥ&ǨS\t/Ot'DcT hZ.o!2} 秸i25]8@i{T ]ܷ^a,ͧ=F} Ct!#bǨ ]F@FI=D 홎[7F>{l YB@~Sх],ͧ=%#p0WehQ1KtP0*3.l$E{,n%7M Q""]X|ci>oٲt/%p} 1*]M@FŎ{$хhtT{[aTmhDvq^ Do)ABN I,ͧ=ox # Qf}˱ـlqz=;opz^Wۆ=.lo b%A> o0J{,` G]X@i29.̲4X[ .х\={X -aT #pk!|ؙ[^<ׅ$FŰWo{5_P[4u/y/օW,ͧ=^J\=w\.sgi[hWкH@F"ѽ ci>`TLc jlIзD5t/cÅz^m.XO,-1^#7Mf х\O=@t Qt/]fTAD^1*F{OB х} [7Q1}Kt.LtѷD{ѥ;bQ6^xMt dT,ry'?aJt鞾-LFZfi~t/<]:bi>=з7mZj^h&3&X.]4Z^]FmK-Doa*c{Ati[7FzMJtqoi%.Ͳ4c0O^b`8!.b5[-"z2t/|3z^M{.зQ1R,KzҞ騘~eT%>h]Q[XM!4|ci>oK-ǨS.MӷQ1`Wh=Fز^%tp1-L?-˻V.YO{,-Cui+ ǨX?~m`r^`+LB޽M]; cK-@\iQ1΢{Nt ơE{,)Da3Iy^"^]°4X㈭}IY3X4C*bi>^]ҷQ1Bp,K?40*F]t/.!BBBBt| [{|j],]*eTc sQ1Ku/]H b\WšE *D[L4\ѥ =Z{9bi>ps.'49.1*F{YD[L1*$|zo]RoK%.'4-NRykr<w˕!T@D2+{Q1X{It)K{bMBDFXн$N!ģoTߑ.,K}=u/,KiQ1vDtde0*FYOXGtIoٷ^.(߳gv+ɨEt|LJ3o])S݋֨#[#o~v̢K/?bؽ.-aT z]ty{tTLY{pbлeQ1az|ML-T{fEKYm9|@h{]nзb9n,L[x<*6׽J2*bi>40*Lѽh]f^TM|U1K)kE,޽h]&/$¨yLI˻w-b>Q1Ѻ,K;I/QzbZ/Q1L -o5\^뵶ﴣ|Β/Y[=b]uqembOyS;^uj{x!-{r.,+ӓU,u1*Ɯ ;ncjh(bi>4з}uqeKs|EKu/5,[(܇Tm0*0͑-g*sFe)_|гZb=;Y+C{5J0`bi>SeƷ}K} @+Ӵ|7D} qTt4X4{Q1"Z^ÇͰV} Fĵm -u/*} X: *˿ύC1@lU_޽\ 1fy=H>6ʺϼ\^͔ùxE`bT<,2= 1f P(`دo!ܽ61f!a+^Vз ]br3u1heʹ`91اf|BFK9V^el?[~~gF5Һ#]?Ae%ưnq&y #@l,XO ~b P OPMXGbi>`ccʨ@Q~U=E.A%m1f b.GhxfGH1*FŨXtz~1o8J6*L_S1V]-Prko͂.WBxGx33]JhCJ~e𲼯_UMz=>Z@cSS0*1u.-\hqEK?\ Q+1{7=h]\MBDbL@>G}#PbT],c IbU.u1*ӫ`R *{*vc(׹R pJ[}`U]-U b?~!G}۝̷ny(^ >VrY~('GKo HZƟ#W]ۨ03r\۩=dzz]} v5-Xf| D$<GQ|9Nl#@mB UԺڷ*1m<-}3.-7bLⲿ{ZXڳCsKKK`cz|xk"0cBOKQ1`ڣ>= --)Ƅ0sZKթht4_P_[oh^)B}lڪm_=KR[`@nb J=ʏ^jə_e+kCcO;sc,1irkm7yB 4،yf˹ .,7iz?ƫvZۓ{Qþr[#Nk]ʌ=(/,TwӂV8\"M`\?)/{t)41WD> %=B)NXlb 荧DF0ͱcmR()Hz@uY31&2{ K[G19t/2FF*)Ęr9ڷv/~8/uZܳ 9E[Q1A`?1\ˡ~o,}Q5xYKzb m1fsnG=Ccǔq ?+?v SZqߢW8Kzdҭ]C{M߲b6˶[{yc߿}mlK-| }k#Ĵ{Z69=/?8K31>7ÿߊ1-ncً@K7{zܝɶ@+x͑:Mob~3TvThV3W. @Lܯ,ei~0 'Вw~˟9Āt!u# +zc`.w~Ϭ> cmHBn0D!%$iW.,zZ ?2.C\.nrڧǴJt`@sscRƩ@n6 92Yc^9f%-r<>Fx{na~srDm *kߔ/}3:gޭ 0Gw0cB?]w{qVhAtVA3^!3@AT2:2|:o 3sG|P @ -GݯlnTl700W{+}ٺ7R_j]_ -c @qwcS(*6k"cxc}g}6 $ݡ0#%۲s%{[ioV\P[]O?O?N>3Lt ~xpe꫗i\#ŖMg,?gO1A_Bu=#y}w|tdZ(FŦf~xQ0 g}|c1DgV#b9k[L/G6___׿̞a8cE0י,eV]aޛ߿Qwk#bT<~3g><<<<< >qh??ÇO4! 3{Lo{}хjK}o_J1{si#ö2yqG b?ŏew2{~?O~d?f.0`u}giխ;#-BxG,sTP98<{V}xcTmDxCzօ9ݶ2!wwoY"Z Dx<<ѷ5a|P'A "Z5/]m_^Yhi2]\y=6>c.Xτj[KFˋA!i"po IPED)e ̽kpvM\(DԿ4LtY)fXD+R9*Iu D 뷰z -q6HPEcKVh%cpʓqAj$IPiI}@t$.tMTg ]p KDN%˵}% -ZѺp'e ѹ1F|εoqe蝾cRrLh" ,_&pqcַG1*6&PmFh4?Bg=mٷ ߕ4-Zqq5 ei~n<m mcsp2l軻QCb TP?Kת葔zoY%,oAfekN2.)FOe N9K=}d| O߲Y_xxٖ#.ڝȡL\gtڛ&Om1/V Mz3TU 0*_сTz9FW&_0Z: 0oc96,} CE{Y)3S] p4K ]5w4b г2Jw{oɧm^v4b жzM|DANl Ї~ %: ;D1@jUhC7\2"j5^m,/ebԽLicE8ВCխ˫o41Y e. 9Yr{i2b%U=06}L To`eBK>aZoeJ0w^[-i]ƻBԶ6 3.Jm{nZr ֺ<}ӺEmvc Q/º5K ]9cXmc3bgi* ԃ-b uUjxVtZ]~-b >6:_-]ocXK.O?|ۏ2JNt柧Xc`q$ 0QoTlGsA1ޏ`n FTtyt/෈1rDU|u/ÑoCe 8">/0t/1oCӽ~xfWcyѽ@Ǹu( ҇CܽW}FFj6Rs2A1%ƌ,1$kkZ"ӽT  o2<m4ۺwivG\靌6=ZjxC^Bp^ds@ D?-ͯOG`cHOj'E{UGv^`DWxzKD'L,bL^{&CURƗOir,oB{&CBKmk]~lK1Q_5`^ԨX:.O?u/MK1/0Sѫ>o |@tѽtA9 *{M}K]GM{Sb C8D V *~0Po;Mslؕ_Z PyC^Ƽl`ҽǠQh.vS c=1zz#OrkXϢA,͏ sc0eL\._ 0cZM{asA"ҽ@̨XdZYƼ5aJ -h]@Ƽicmӽ@N8%m31k *{A#Dͤ{=aFP {L.Y+)#}+0oni>}b@#nI}`-}K\;z l. j:_mh^..:%Gѽ@gfR;н@t/ttX"%ۡGӽ@g lsD0nӷHtUpn=hy6 T`LsOk蒑9{Zp{4ua {!b.UнP{^^».Uss:7M^)ѥ""PVcjKt/:7Mb]さ{FŘ#t/ 3*@t v^M8eK\cn ӽP']Br|t/MZ.@-t/+ %1bEti ^3t˔Yz{!/} o]ss:7M^(cNZ.8)+1 pѥt/:7M&KYKt +)O@nKX&^rѷ4,g%<:pdh8,WG4,gѥj{^^{҉.s|t/@6]0}Å-]d9{&Ct/+k.Npt/|?XD^8gӽ@4\feѥYXIynӷpN=нpw.ӽP&0Ǩ{.]pn ӽ[D N> ɼB*.qʠ/&*8^3?#tGByz{Etk$׹i2NKMt灕op,хWt/^un } 9.]Jӽ;]*^~# 'pd6XOI O\n ӽ; ]x{n !+%BҽDzQBWGt/pDnp꡼Fҽ[8 s^:Kt.zR,!J`L.{᜽Ns\ oJӽDaFD @R'} 5]H{<7MDVpn ӽS p|t/MfTz.{\ pхø N> {9:.l 0~}yo%p0W9gsdh]J`LkZO}Dнp^{ֹiY\ Jӽo>  @Lt0sd\n ӽ|'P{nˑFt! ';j{^^зP7х\' ~нl.d y`%0{I65]8s: MѷB!XIy9~tG=нeT.{<7M4DNpdh%D!PWG4yLBL qZ^Wu/.BuXGt/H, 'sҤF{46.TUp4Z{tHD Up<^-'P5 uh]?7M.T+)OƤq.7^mw/х^(M[NtRNMu-w/"{4YV.TMB-t/Ы6ֽ}JDBr=|t/ rbi>m]"ʻ`t/Ы݋ߡDt!0W9gsdh]K^% anDyX ܽ ^8gӽ@4%?#VR~.^} ]IByn ]U%jк:bFtAz?}dhBxNB*߽[B\' ~{q!.4)n *^ .хƹ 9{&C^3х^(+݋}Ct t/кsnoW JӽM[zP+= Z^40@@tqeC9n +ٽO ]H9ŋ1Er4Y ],C.նo"]Cn 灕Fb 0Uzbi>L.Cn =8{ѷ⁕XjoDH"Ɛz~VcFlcT  "ưzҽXD8̶#MtsH@.`.{P k> D({ȉ10^w V> l(iKh9̌z; Z8=z"2`` j=8G˴1m^c|_ .@c:`>|D .c{vߴ] ,4GQVA]Yij?* Dhcӽ@G^&@`偕p'@}M7c<vX G0i]׃_rMzF2^3ژ^- G`mt/1-]71pdX:"*:XA9&c߂ Gt6c΢{ cJҽ^-.Ę2t/"1^ *z P`3 GHJۑ!y`%gЫi]icӽp^'i]M,mL* 1@TBtQzl M9fT.@Hb7Mf~b @tct/WUhD)b@Gt%^a t{i^t`ir3~3c|VIm%kWxMdp9̴^#uHBK-[z jc&‚ D]"7M.U Mt8L{9r *.Yct/۷03.ct/[Fp6bvT#`vd`y$%ioSbL`J @tZƴԽ*ѺTgz9mc"t/zu&B(݋^7 @`bLm7MT]ql9]tT)ٽUX&4nO׽*%td[߽`?Sk3`*Kt`Gyi@n oc6 e8 a]> .@  .@  .@ m/ endstream endobj 88 0 obj << /Type /XObject /Subtype /Image /Width 842 /Height 892 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 21623 /Filter/FlateDecode /DecodeParms<> >> stream xݻn$ɝa"A# $SKȓYֺhbM]K ,s_A~?LA̵C1Un6&t:ʼq NTJJwP)*%@;`~駟~:w\XC2/KWM|kw&o͛7ozWֽs -|_۷o߾}= s4?aķ~/=N4x/w_F~lɸ|9- O?O?O>>Lm| l"X+; `~;/.;w*۷o߾ ?B矛| dۉp`).,/~_vFnu믿o/⋐sS~{xl., g.-xdv?4ޕnYLOM(vH77Kh֚l'P&$7o޼ys5Fa;m14۝.xxdtn!ޅ-tdxds?Q2vJ/t}3qxݱ%w@6ɻ_}۷oC›ܶ4?hxd3=r4ZM: Y6 E?Crt ic&c6vnnԫg  ٕN[vR?c5#&/x$<b,dosj!²YHvAlWRŤ]?` w9qR:-‹c @Dmc?683wsHKkG<Y6 WԜ*ۢrrZ_w𓚃eZ!ep-Bs.-;JsvrΙ;"Z#P؉FqRYLaSYKeٚ#\{x8u2ϥͺ*ė-;6<\ N5\l|lG;Mhxz=b)gG<:w%=fCj $<ݟN$?Fznk-.x<,۫^^t!S#@I&P|WDsiSx{0y&,N6+zRYwmrjbvV>w~.Z |Q\ܙ;Υ={K`XuW-İTHx5Q9\ fj\< YjxbNc /HŮvarZ-޳lG;|P@t:N'9-Mv}KůU4JÇ6 )`)w̲q)i%<`ll"vֵן%Oz8;\6;QH'zK^ :2g').Ix0Ghf+AsΗӺz@;v)Rv[ߏQJ $<wNhL<]+=>O!/DZHΥ.u.-#wͰ]2sv),Sx93Nhv)nHx{Q<j!}&ۥ(c'9Zr.Ho5C+cR] }FBs$"VTĜ]svkxvgP Hy掳j@dt/Mg G)ZLw3A؄]ҍm$<Ix@k;٥3gygG<`o@6]:n Oᡮx|>_ՏO/m)*(Rd{h9K<6lWR y$<&]dQ<᝟K{?yw-Yvݹ`'ەP KDf.9:Ix9wWXNygG< l®v- s Avk]5 9 >~s.--]ҙ도yJeyl:ٮoy$<`0.]FOxB>Gw~.MΉwY;eW999svّZKxIx@-.l]ƒ(=F?H;gW;RHx9JIx?NɅZ'إz|<߿øWx|y5ou%x~B3_.}zb'ۥX/~.Q\ Mv%AH^#]:ڱwwCUןx;?6 #hF,}aµJ vviQO$<x4]:svŹ9sP5.lG $<'<;@;:wyZ?.jgy,{9~}+QZ $<xT$eN QBiѓK #*XNEJx9KHxؙl"_+ AH;]ҥ;OxB>Gw~.a'4Ϯv)jysiHxpIYNӏXj^$<XG&v)j<~)dןgG<8'A3jήv@^sdeQJ $<xr:N U?쒙c ӟyxp/,^>}w;w~x9 W|צ i\;lNJK@s?60LAl 잯l:&n{:/Ş?[Sxu>fL:k;쒙$gs?R7eP.lɡ9J?Mvd;~y$<x"'^lw.;hyP %AQ`W *%v@$<$@Gb.9;' xo?&?GA82IxKvd;o^+缨9œx]:v<'IxKy v;`dox|~ӄHkϯ܇Ͽv_NP?wlNjQ*:K, .lpI=G=Fw N;.~#8$=X*s@ ;X,eN ,% =) /x XNX#>,`Q~q.-m l"_P$As_K Gw~.4@_;6gyl:9z%ޱ!.]菄y# jήvMƒGw~ĻX*;GbG<-9~*6RY s$%<xWMiʮv@$<'?BܙG艄ygG<`l]eF=B?Aٹs ?G) /QݟN?svlx|~3v^:_]Ǐ>GafÇ6]Hr|?O_gn]}b =GsxQwi@ Oȃ(wE2̝lÎx9Zr.DUKeC1Ix9Z xW]y?{ݝNӒJ6Rٔ`'05cj"Ix9J?:wټXCڻ =C-ZwTVOyR^ ?_}/fZv`v?CeدHϯǏ>Go^t!S]3/wT֮v>nWz\ZRY~PJշTV`xRԙ7eG'^`)Jk 6sǖwC-5ۭoxw_u QnW{X#Eq<9;#џ-ʦ>MC-;Kw?x 2$<4jD޹-x|~!Ǐuk<}t:N'#0e~Kee;?6d5)<񮞥u Ӕ#3y7Qvlv't^U{] C-XCFaz9;x<\'Agʎx0[*+-{$YiZVЊNͮ3g,!AHRټkZHxЊ]ޙ;g,l+q n{P pW)jyMW/RY(ǎxcʖx^KxBԩe˗bW3ޞ^o{)y+(d:O_~~:N+۩zz6s2g'@ZoMkVԲkSX cn m#T{4ޥO!vЧ>ΥKY:wm/<`;ŻRd;`<ܶwmW٧vV/1z`'\qMhWE.v_:;` KeaD^]l@^Oޅ;ZvyF|W b˕d;3wyUvЦDݵ %ښśv;ǻRsv퀻vKp{e֏SVӹe;3wRfd;^=dlNT‹RYUl֮v@ ߛԜ؂\9U;S 3'm=wYNOWpt pNHOx[$w[lhq R-坿 M(O;zS&dw(IQ)n*;XcH i;UHxә5nYK $ޖ˛* Pxm /״]=d;;M'\.WTnwkwKx!m7m7'RYڈw@GK2IswaTx|>-o[.,3w@mR\xߊw ߨ$?y\,()./';jv`{0w8߭/?sz“ŭӷq,vXY\ o)KeExV˕TGO.ehR~-;dl^L'ٮH7G4]x}~02 o ~W&-mtd, HUuBYh̥Kw[gyFt!Y$;R}nnq`|~{wKx; Qoi<}햲lfij+3wkHvK.$T*H9^r-5sG9+v=,]$Kk,/%|{1i.ᙿ ;t_[ <8RYX*e;3dY* PB<ᙹ:3w+] IʯM@Fn;3w[1Kea鴗zBG]kd;F$R;nS][ olX:sO;/<@.\X>sg_\\ʁr.]~ϧ Rv7]ӷcN«nmOjwA0%.wevq=mh-ꕼlsw>q<+^~^]ۂϏvmM4/%-mKJ oc-%oD[*WycJxquu.4]w4gg mlۯ;mp8&6kztl׺ʚ;O3LuR'qI~-Jj'psQiu|k>Vst٥i&T>MW|un{bq\^{?-E[?ggR]5K@n;aKxwPVN3=>mX.[x͛7o.O2{iZ4Z!T$]mz yЍ6o-̓k|"{6_N_ۣ̔"Ѓw޽{۷o߾=M_=]|ڕhk{e;Ƥ,mc,mA{ ˟BIyZ=_+aUjg\ԓ?'4l3-Z*m-F1׷y iSDQjo=??=˸~_WO>q~1jJ;͘jr^j{;,]`w[^;+

    > mv֋5כ׿MW8>ϦA0|!\~_~__O;@&8L1Mx閞Wt77@NR¦m'ʹt<7o>O>?ݍu3w5LU6fl[(hӏ?F+;~#oio<9wٺ1{-Ѯ];*U\zv7I5_`Jr<WGηS[yw-5ƻ <}Y Ke]Uǻx3sW'Keu Ļ@e4 9N>ܷp8^``L C-m{dy@zݔ)<jk  ;`Z r/$|:X6YW ie]{kf6!)߳km,fK]jw3㱜vuTxxWrKx^sv>B;mqUi,-j/b i`4gr[^wXBA< yзV]G%lDzٽ_Їv[XH{u3s,'2HxЩ}vB^U[Y6[_@v)w#dhgXϲٺ_@mznuvz5åĻ^$ *6ڜ]5OxWߐgEk祒2]UiOZ{K nbc$rtĜ%1M'@d;Jc M(qY x-Վrwl9jz %<9;Jcv`x=T@=fW;^#A;(qY @~D%<(®vd;U͘=fW;n%AkLȓ`)َ]XG6] V(qY @[N ;iwc,@lG{X%ſL9;z%Qؒ;6RÕlG;X'AQ |@^;v,`})i/< Q؏;7@jG;ͮvM{;,svj@M;hlG{Xc;T P;Pَl@L](wwO$<j`Ύ]hx\\Zʓ(qY @ky\1ū؂lG{LM&W` vܝfW;Z&I@.(q^wkv,/R%1cxH ήvd;%Hx\2gG{̮vAq.-%10LlG{X#F QNxlȎx(qY wwo\`;/SN!6%1 1Ю"ۑN<Ήw@Q@[Q |;`@d;Jck;`gΥlG{L4P `_vܝfW;XB*"gΎ]VP;!Q<y) 8َl9f  QN# 0gG{̮v hlG{Xؒx4ɹq%1' jG;ͮvPx4rZsvj{NHxd;Jc~;+0َ7萄ʮvd;xtKzbΎ]>9 hlG{̮vP+\ȓ:v,wp$Վrw]k; Ix.svjF؜-%1c4@!O=fy,xP4XN؁50gG{̮v:n$<؋lG{̮v@@K ev,*"jG;Mr#A.(qؒxP);%1&R%1cR;Hx'Q<؃x .v,%hE[Ĕ4'%1؛;9ѤDjَwЉ(;wСі^wЭ͞wЭwē;BOSxv` 'j=®vIA2gy,#`h5'wwxvKpEv90kgy,ݎx0y$Y?gy,,%B޵C-d;x(eXXCV'9AJU,Y x6&R&RTJJwP)*%@;xRTJJwP)*%@;xRT endstream endobj 103 0 obj << /Length 868 /Filter /FlateDecode >> stream xVK0WhwVRoۊn Bſgy"xxE׊,{q+f>^;t*8sRAG4$RĈ]ٝ B]y d/V6<+ %Ynhdơ1HQ@$E:QDjf[>.wowEtzj/?nq͋]\˰uX>H/P7R6OUnHhDʣFkD Db DxC,8{0{1c|-Qd 0hX0ⶌ[wQ'r:g \DԼ&R5Ҩy DCMC [fWzkOL{Q8&S>f )FU`گtV:EV6mծN2a|! z /}JuSta =(549zԯS2 %z9)y`uw|Gi맅6l4'" endstream endobj 92 0 obj << /Type /XObject /Subtype /Image /Width 941 /Height 900 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 24283 /Filter/FlateDecode /DecodeParms<> >> stream x;$Y툪,3Z@Y0-338:B駵[@0c`f 3=ok<4YyvNTC9 r0@`&M 4Ah 9 r0@`&M 4Aw@u>W_}W_9@ `io~8@ `i__& nв~~Ç&ovs1s_:vȁ=@z>~G 4ӧO>}ǯꫯA6@C7} 9hT~,ljM?s'Ш{sG0?~caq M&Cic|E[c@! ʙj%N"pwQ Tnvß=կ~_}7|??t ,'_׿_/믿:y7gk>b``9cAx#>DzIa` Tk,giÿsBWȾ:r0М~Ngt[;t@s0|ӧO{M_0?/s@3!u,0M*4pߧ #J'\ 9<ُ?~1lU?FR2 4g"ߊP U5o8C>#`!!~Ç"m L.5`/r0А 8b9vc @r0Pvz!C0p, o {_Cc:g+#t0Аe+#3u$ѥB0D2g:8ǞN?ގc( o +#Rۤc7 9,޶aW?Os';?.](!@}`!~xiƍwz@M``&tOoY%m P79hI99x\s &9hȜ t{B Dr0Pi<0omY? l0!Z0'ḲßzlJ/t0Мs!xui. M.Ncc98u¬ w臁R,s!cw0Єa2bÿ?C/0d:h1%N @#9gYD@C𜽺e2(m`f篌8?8J'?mΩjb: r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah 9 r0@`&M 4Ah Єb:=>v9la: d\L%^\o؟ K4MOYk/`p1 SmD []o@ r0pxKVOc.` 9('ɟO[,JMV%lYAdoi GDX!c.R޾ 9ȊA[@ ""S(UƾVsw@` @ݦ4 @=`pDNi_oF%Id֮{r0!ss)N'98HFSm "2@m -'n5VO db{ؒ^7f$q ^;J̰׵.kr P39 K?r 9k1gO`inߕ *??t/P9ޏᆱ8oX׿ N:Ll r뺮G4Z{V0&{^D5} r0 Sc繇L]C`x\.Üg8r0k@=`!Nn(f.`F Wbtπr>]i`^y'(g9W`Zu_?^OpBD5br`].ZS0` LӞSc` 4!&: :P.9QB0&uDүX r0@sBr8jM{1 Ŏ{}yoChLˬ [rs׽&Ea3B0-^]G?N P s6xKԋG!>֘O!x)Fn |}-?y_Ea` 0dM^ttxK( 9}j@`" m^1o M( ӬUN0@`b5Qx8#pQ XbI AȚ YA;7 3o4 P9 SB0lgMm&|ǗH0@`쌽`B0c78G;@`L`XA<:,/I"dA}Y㷎mCN:P90sUB0a.m~7-( pB0lqNXfqۿo@`^?> [캷n)D0@ `D&m-&mƂo~{;mtD"%D$ƶuC[G\N:+9 !wMl(t 'r0΄`HohǼmCN:9`7B0ڶ2s tˌDhr0`HÚHeo?%G6XDVFRV{~QW} cMxhNqN xk4D"!'f!-.∷_ 8`wL Y{YA/]~zN:9`K!ǖ~Mmkw0.6_ m`W^F>> R5og^{xݤ\q6kvCTi s^k"]wmr:OOoo{~xV;b^`9h yJ&Ñ#~N:0N%CY}A/(sCr0!rf.bH2~>gD 4D]K?#g@ MdnK/G,&D@liWF|ܢwfОK#^ k?}\u{s QN缾=0 P:k" <1X;D( |oȓ`YyQD( @\Mϼ0P9Ț -q =@3o@` SB0ʚG~;K]gp9 Wr0!ZqkDaK$@F`q+#*q%@>` B0S~+#^៖5#D8 LYoyK$a 98؋0$YQ_~ƗH0/98tv|>D{cp)@RB0X)ᱸmB'b_u.x: D4BEXip_+Q `_r0 &rVct}ۄ_.H{My|悁&DFv~ hz:=>:P\WF/x["! Cr0!ǽs[-yڊ/?@``!&8V ۄtOV>Hm~'bB0) }-.x;p , ӬAO [",B0N9k"܏AZ&r0ptv|9Yq: OIwDƗH0!``r%`hYOOώFw%^,vn7G e:x``tz|tnmMsP/96T^2u 5ުk{V`q{GOnBFM=}|9J?}(yv:P9~6UJ^2H@`h lQ^r @`h ˚Fe^J#C` k"eu/'r<8P+!4-¿}vn7G b:*$XԻAOiFxDr%CU` DtkcgGJ@lC( ܦꌤ0sݳIP'9` tz|tMmbFxu 8 _o80#;8r0IRqB0ޕ(4/ iP'B0R駏6὏@*r0` >3[KH@|r0dMUm,yd-8`G!85ocYK$`or0dG@NQ&eG@>Xu]O-?O3#QD! B0DvV 8"Q6/ kp0!#! ;` 9#y^OGG`)ۄp9O@i/,eG x I @8}Z{,8[" Ax쨈wK$b{@kB~z:>v4Govn2  @)bk{eD`p0u! !(5L# tVSRxQ3Q8KIh ;~(9&Hʈa&='r0l"& ۄ<,vr04DQhq8"K j$b{S& 'p%E`nDi <6_"! ?9f R2b.%( @&-^OG aqDםNOOOC^/piϐ_t]ׅ{:vn7ia:F @KܧY: st;`VD(DpIwTooyV8Dat0"q8 ៖5#.?O: Q` @J]%7 $h3,B0Pk"< Dۄ 9M`5@zee)^MQB0eae/Da⑃iB0P+k"Y\=ۄ۽,r0M~"%&8g_KۄktT`*'-3 Ў o֥z{ kCZS!QtN=wq m6|[Z !>`/vib\>р| —Km/8N!MǢp}wJvn7Gu~^[ؗL` dYk"Ƽ={;@r}@Tr/^_La`htnsq#S !S>D5AxoM vr0 aӜ +kMP Sңp\xcedm:;>`KaFɔ tz|t)2"%3%A1TFr36NJtm݅ u_0#us6evt]=_^` i#lM&r? >ޓ uńఫD~|t8`_Qß〜M{1y޽H¼˩NK*9Ls! 0̲ě]`NB0'swZ`Mv]9l1Ț5ȸ#G,|9_~{9WLVFLRB0Pܢ9DaH)Y=?O E&!IQV]ft/NtFᵟ 2H?^3}nb%:c)MVngy=ߜXz |Kd%tt]׽>L3LDB0@D%rU#؇ ,! .@:@36/}6g?ZQ.#TיnqzLߣn leKo8am9A{9<):~ }>^e 0Mo #gD'cnh;[2 e}ĩc䧾\.NDv "dz.xoYoir ??;CVFeUoG&a:謌;6խ`˄(ܟ&5+#'3HchYeD߷gZRDw_ @,`5R-[POeCڟ∼x@n 0ƚe6(}[޲ 핉-տ'w156aȇ K4_EtR +#.pG9\ "n[6푃Y Ω2_h lu׷<]w:gEG?Ʈ0mp$ Udd.xƖE l;d-/#:˾kW8EOL|;?DOupFر(ǻt0A%lNι]EvĻ%`Asۄ 59Ŷ0U5Zt= _N掱`bl@t<\aD)pVF]?o_G98-"HO^cᲈ`k1N? t9VFt02^yAz=IŘtsnއmyG)]K_¼OIJG`~b_0@N)<9lHoxA5r0 .;4 lYt~D7p::1p9D=7AZ%7;oK^H+##ʱ{5]Q8of` 9QeMx!xy Lޓ׉-IΓ62рnC, ~^:n-VFu^OG!70rK<"0 ȯRqqrK%8bVFMnHVFe&"G2oΔnHF^~<D&Sq8wkDil^αh܄` KOK$rfFx>+#j%ά {fq%7ܹ`Y,e i8c^!ZP;9ru;D/#X& h-:'Af P9Zu?l[š5-?%G8⽣cxvrpC}h B]NK~+yҳ&h<%^.܄Zk ɚu= Y"ۄh\߳;;p,suaͭFƼp,wDB(77 P#9b z=x Mrp%悽8r.g!sy\ bAr0ś~Y5@;,8m¯Kj$WoOJ9}\i¾`[ɽ<'Y%G85uv`0ܻU`'%K$ (@ 9?ke5@݄9V^OG(&K$8t2P&9c&dRq A8ڊ^{AxYKfx["ضHAq@`Y" [P9\Of>M2E2< vDe¼/F(5sI@Dy sf?axy& $Sr$Fo:;>c6-n6P 98SJbe5@`ҰDbGT(\ p,k",%kվMB 1 p,s@&_"! ;zSg';q"'KM<{lq? C&N:Dm#^^ZP9 :D)%ԾMY5q@zB0Dr&geVF9%gF@YLy@u %S7K$յ8a3 'k"4`aĸ: { '98;fZc뺮:8L/_,^B>wJwX'k{KQa+#&gĻ*k"Z`;ܳ:G9r`.,X H<K/@n`5=z=`_!u67 ?#3''5a``G +9X j{D ۄȇ|0SDz2>i HM\x/41%-}F&ҳ&ؗ jo^K\0@άhY7#C;\Qثc0`YkK$r&y3Or<ɚyt`!J\G0MNKM|X` %jcDy# NK[`CK$vȍL<)vX#C}Zw yw66,>Ú` -q^m~(r02 ,%Ckj<\yۄHI\pYl] =@j\"W~y]leUQCoDۄ8pk"9``L-K$r&l =9xce < ,eq)Qxsyq8`HM ȍ58_B0:s&5@Jr̙D :Xkd` 2煏&U3{يs Zi}` 2O:+# O(5,G+sDNۄHE^ll.XLȍ5,aYD- %9l;i@B0rHM@Qxsi^OGZ 9+gq#lHK^[;P?!(K K$&u7@lr&&Iaeɚh y4ۄs}M^ȋ @U>&5u^mVF" 7c!xΜ@r=#sn1`dMc:;>@r]"qLo@=`Xaș5P!hSK$m~VF#(+# `HM8` cMi/S/oe@ `Xȍ5P:!`Db}~YWʈ9! 9ABjs~ۄVR 9 D\#91HX8"᜷CL<1Z5#~ncA`_"1/ &l`fMx>!慷n2"'r!άtľv'0&IfvflMp$9,Xo#JZa"ȑ \_8@JB0l["v>Dw #9!l_"t Kךxr0Da0gMK K$eF\<8]xRu]uCGr-Xi4yzzzroϋ#tzz:>~]?\c',:HoɼmWFt0D^l_.۵t.xTg.e֚Ho,Kq&yQ?)ۙkZg:vS+R v9\OY#y'eFxI`βB`ruGa!͉UX\ʈ9c,gY@ܹ=׎%:&j5b;0eD"¿K_ug֭puZW!rY"Fn"lfhK/[An`Ӝ(<` 6& =!Z͟~^a.92.th( 92e!Oܰ/!6, ŃCCpk?in-_`?==== &'[EE &-6``i!"Bc`>h' -`Xt0490w>^kL`ʈ뺮s4Zox m~DiJrѿggXLDWӟ9&7`βir0Ƽp bGM(B0ŲiEt::BGWș` 87nͽ3H>[)9V ֚&@96(K H4hc2 IYQx!- %0ͩ6@HD2!30M,dpg%ε3g`5 }B0%Lm,aeDu]9%>tz|tm5B03Q)[xSg[;B0?هg`!#AJ!!rcG(`8L 8H<݋B۾t_ >" ;g/Ú4v/-@ Q؄#'9f%蜃v>XAݷ!fjYVM%@3P!j1u3g_Xf<Ț ٹ\.o]wv<-ެ5jx{(@J5B0} |}\r0TeKJOtuٕmkagӭ(\ y[Ff dt O0Zzk(gɆH p_` zϭwzuCy^"-4YؗKnmYDmFv#e'KZ/Q8h}"Z^..rڛ59^cc``Zt;6@bkxZ^Y@\#uȟePȻ4i>#Q[n#͹Njn#!ڸcQxgk7e>-ےTƧJn2_LsɆP}Si\p 駍睤c[b߳( oi׈qy׮C'f:( Y=ޘ ,zm} 'oo~}oGr}lpwsr޿\9 G]s`a^7ᄋl>a/?F f( 9 ӟr^.u1?U\y1/,Ǒ5rbF^JNszq^\ڸ:'l:ϯpR/_.pxCn5޺]c(?~so?lq}Ʋo!8t:}dFXk̽#rz/?.lx^g:v}ӧO?4\eן^^r0@Rc/= 4S9%{l[)O??d:dL|,9 !XzFXjKqL= dHd/$Eko>|0-c>=G,il5KQ(˒_͖XgYL%/ͬw%264OױK22=#bLXX!fh|wqҙbr5LH]_ O%36yZ?9 xnq󹧬 P~DK67"Rvǒn>҄9n,m0ekx f?r0@. |K}- -Z1~ooSK9Q8{%ޢ%dm6as%XAHɌv,yᱏ K*¿/ ~{ų Ӿ͋/#RuGJU80ӧO0?=e5 Ab IPa8<ֺ<'ɿÿoſ/~_k8~_urן ƶ ӄ] ~'I! }Őüpت?? ĥ`]~\׷G H@8.[-KMOC(r0iNMc'c۟@k]ӯ<: , O.P -o G8u0l!L(Xf_tMeH n0o;wz 8Krw)kEe)95\(A "!x6XC g/{7 A)6#K ۿ~/ ?/إuoZTbvr|>)#Olrpwv<V/ǒ`ʂ-E\F_r&rckp.Sғo؇ @ƢK(&Fv`:&k"xW5 /"IuXA۶8xf-|u_qu}=-Pa`ʜ; o <(̱hGȟRsWA=Vy? >0 <HOnr04a:o_=kze;^$]\ c״`UDrl&ulI3<,1K?$0KݗW0czwNGa!%` Z$œ( !C^NtJnIRo2NإV@;(kUļF{i N]`(<':Vљr P+#4 Ln,|k#)P9i3i¥\eW"aȟ ¤1 vc/(ܚ|pzs?QY҅vy{q+bwceyme .[{GR$ C%93­I9[`ytStYQ8#6GEUPkt+ @YA;DSi]r/uHÒ. Yے/X(9糍}|֜滕!x%C愿-'yDzV+lZ[v:<r b͔!8&[Q LΆKg~?f~5n#S/OOϰe+n2 Ya"=#\pxcȍend 3$`GJ4w2ƾY``/rpDVF]\Xwy_p %  Ybn.. 5 6^x>8|!5o.(K,۟  Ž]o;ݐX1B0ݺLAY?7 hfa!r8Rv SlȻ?˵#`VJi`(^o b:0VFPܹW-e.XZOEN$8Ѡ\/@!T p9(}@JVFPmqjbYĢ9(LYsf@M']4lXFN*lvVB0!#)e\0F4`-, Kc1zc0'\iAz|>gGҏ_3 90Ȧ B0 vo~6 02r\.G/K@ך#12%K!79N3 0 5/Ӱ?`ǚc\0Rrpv^r2wЦ9!\0^,8 &vmz"80 ` !oKΔ<AX1&1L:lM,Ȃ-awmX&` ?q`_B[c:Q'f.`;YAl/MΈ9(We&{`s\px\.-_^TOo"80 /98;|>gGM]u\.ou ҐxK:3@J&|Y\0@ rp1k m [\0p'=!(vt`!-k"Ⓝ3epi&[f`x!x5p|"(Yxns9 HE. µ2c3{K_3 5+#$ α~^ )Cjsi α~^8cہ`4p F(Xs9u-D缮f^/_K 4L4ʤsפ3P&! %96\0{c]v3l_0@`ίClsYngwp9 $0䭣edžs Lʈ;|k^&`k"&CR悁c΢0!=+0 p"J(ؓ^GgQZہNEtpa( cRY1B0>8/rs_8 4dN(EHOr WDjΗ5s, vݾv_ r&{%(J FdJ!& RD5y+$P\0@} RY!xgȓ +m2/ @<>A.w\a.N:y 393 @`ە_^ (\-RDjκ|>?`_cqoΛcЦ\J Vg:`gHhM!x P 9rVFf.iN:@PG/tr0")u"80 P9*S2 :H v-1 ,U}!-k"Jv6OZz>៛f]gIb~z^|qr66^!#sJd:Bb.,(W!-s哃asf@YZ B(e^VFl06ޜVJ Bc`%\`^ 7mN^iNWKLj( P'H\0@?H`d@`su+rJd@<&+js%9w?uk.c^&e.qr0񾱹`ya`` f.sP:!8WFx @1, `كw|y>K悭mzű悽``(%]HBp<^0MeHHtv|b_0,éۜ>f^ ҅c `9Q<0 9Bv}[;#S Ozu,Yrr0eY"{ !8bD0L{Du `-9w>``;K$`>!8OXJ&k,-!8WFFf%%0sf.u`fITc,7[f^| `_r0sIΟ`$sQ,BpnLvl%ds3\0=8| f2lB\^/_1r6%ࣼW1 Ls@Y,\BpnC`"x\0?',Bpn`RY,s@ |[ryB0d\0P.'#!8n۷޿ ]./_ 9ݬ5  %|!`V4`>K$H)\@0csDDئ?BQ`!@RH'!l.`s@k,`;!8OB0ydݓ3/:BpBQ(r0Y0 f!8O! r0Q IXw Gyy @ Oq|^w?S{[=zہ(`1 %-s#P*v2L.l.`9oXs Ff+er0viX.mMLEOҳD>Bpn`jb:R3fc^Kvݾv_\nMB03 U1/\!8 BfgO1y(|,!8 Ų\FVFGD"!^6"P#98W ¢0Qp #qL̫dINO. P;9W2Q cH&q^#P79W8K$d^8!k @K`ڙȘy2B0푃9*h^ Ks> @`"Ȓ(<W90@,#~]LWMK$d^o,K\?`xM&+ya,BpI!)j* d4,~ `LiWYK$Tw?v} \`xLW\sBp1!摃)Jl^ K e\`XBya,ǶBp.%! - d,%Bp!֒m@˸LWqY' e\CCװLWtQ cGa! iJo@RFa! {io^ cN:'~Y 1`^ S _B0'0@Ga!8TT`x}2tXs`HK%Y3/y16r8nv``8yauƞ#Yh P>9sIZ'X\` D`gA 5!;Ha.x/B0CY"Nc+@`(%}悷Mr0c ig5) -H6 B`(&Ur0T `*ayc.rq܌mM# Y"2!c:ڸ 1|\g)p`hya l9nB00 q9悧9M @cy`h%@-`'HyvX rr0% ^`K$  %0_sB0@ p%W⣞ 0t4`|>?r\. spsB0Me= `t$aY&HP78s[12 %p!`)9`HЂ|_UCyp^-GaK$Soa `( Pc炅`͉09Hؗ P悅``, O<D bfQFHCȂ%IH @|r\+{1͚! =2/ @`p9҈=,K(B0@`X"@ BG4% J0]ųD-b<,A%L(Rlȏ P!K$c`( P-`M0/ ` q9֌ݫoY!Kh%#Nh%Y7,A u-D'Hm\ P9;,(g!Vr0 a\ P79Y o 9t,sB,K|>Ï/rq)ם*@}`6 `, ǐfXtr_j)@KΞQ3؛d5`:lI md@B0`b~95|c?,g: Eg3ΐO`t0ɤs 3e #DDg o^]598\9X=r099炅`c悅`#Ft!<5gxEngKt=` Dx>|r0ժ;:{&Rr0l>:{:r0 DgJ&|pZ 4Ah 9 r0@`&M 4Ah 9 r0@`&M endstream endobj 93 0 obj << /Type /XObject /Subtype /Image /Width 835 /Height 878 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 21605 /Filter/FlateDecode /DecodeParms<> >> stream xݻơ.`\|Ç߿>wt@:"9(8 R_T)8~_|_X -@q~Q$q[akE8℉Had.rH *㖜dC詅?k0s??_׿_Wկ_!+3@<$ngͅHn.r1 "9(8 XX}5QW86 s0G$Vs>}ӧ^eBDrP`ka\k ޽{Z~g#&cn1 Ƒ\;ńqi @ -9j6w/0XK$?L@F_QnKWR Pa. \pm[ M#i9ؗHw޽{nn߿?WX6$:m/B$E.! -ޭ}8;@:"9H.Y6-]:k[M@ DrP{Ʌnr5FTs#u@;bӖ\Eߵ#c? @oBKnm$.r_>~9ӏvZrntq$A:Z^\b8 jL_?~\#9V`1!ڸ5rt. %[o(~Pln鉽!3@iDr\ 5v}10ޘ [޽>O;msK:L_˻9"98X|4nɭʕ+P;)jZM%rabydLkv"9(BL4mɍ㹹,=ny06`ӎXL4j+HŽt!Q`|_ai@$1M{cY'=iҏy[m8%obDoF`x+ W@@ឦ:a  1"9j vt:No|{M{t{?d"9vƝN_ZΫ?K3y9\u0n׃rOnm8Gxn} UhH;Չ+4cHy)WjHtRFr2^B?s@DrDщKgWZ$C;~7fv(C2ø=|>_Fr{ލ>, S#!hM÷'% bǖ}x^qzsFK8*6ו{|eko7@ގWa\ sK:yv0W#B<@j"9ĕѪ[xDrщ+~\N+<]yW>w{4|N#  -+4k92X-9C _y|Cs5d6zif+@.r1-_*xtXeywt:n}< _}z9x?yǜIK Fg–ʽvs@ʹЉͭ~0<=鸕oY4^W9hL'g¸Zm]~=P-9lnI%MWs_@I6щcJ׆=r1ׯ@{$"9޾d aIQuf* b8n-W`I3z݋rMh}LnEK :qЏ\ͯzsפ=,1sn*mՕ~% ^޴^Љ^e =7޷%11tp]Vbc*ǽV{y&-9k:ql";#==~7殯r|׹V{No`ЩKļ֨C~4 눮;?{6^w%tN08)q]ڬ+17{ CKNZe՞ӋiW.}K1uk%4N'nqG58-~>Ԙ{^ҒǾ]_KA{蕖85:+ژ{^}8gq=+`n<9&Ñ\?N$u7ߌ~$}*h&y!cDz+uM>,(HN9XVjWzs?EӉ#[a\=J]_^f0w}96"9P:qE?xew宯yn9{EP*+v*ǚ[!Vx.P>Ym+Ex;_qwD?N W[`nm׉vqŮ'gƽxθ@Drе FQrcmc@DrНx8`n^@Dr8z38 OOF2Օ sE!-"9hE%{;%틽"D0h~"9hVL'NG,@Z4c*:):q0ǒ,s⹭#+z|01q!tNZ|!;G0|([}|as0>\.@ZrP18Gz]`ʄִ=A'WnL0wsPTC'M>>ӓvz x# cV0{sH Zt:_ޒ^ݕA`@zVVS[j0ukʪ#Ϸv`}{<ƫ^t_c/ $fQqp3:soq7_{ђB8@?͍\)[b:V{LiatXgܨh̕%w n`J$YYr7 OOF\yc.{I<`LY7I}O_}=6m, hAB:q% Е{1W, ϴ ͡%d虮\Ms\YI{` `~H~X5~ŸLh]6ƌOW{x>`I'Џ@W.~ŸspdX!H=xt ~"EOn!rkF+`n.@|lzsM$8V7 OO!h靾ɱʭނۣM<@{ Q iI`]>ŸYuKwn?+-9x Y<; Ҳ,ӕ2rm7Grmϭ=@`۝8qAtNS?u ˧k!3 c~E} R9"A s-n/PsG$G,@hQ̵EǽxθHNtqpaxz22z-ssLzC$GGtfM;NtVs]ly/K@.] [] |8:Qϟ᫯W~8u_V{v>v@ Zr4K' tRhhsq93 '-9ZܭpTe-8ؗ\q Zmƺr%G#t`Y{; ׋XKW.ݸ?ؘ ږXƜ3FВX Gj>j49ƶIW.ZccnjmvcNWԴ䨒Ně i ]ԣ=>wxuIH,pN``|̍-s,r.@<xՏ'#S2f]jߕR5 E[{)+爆|t(%cm~*7҉0 [ t`_ xm4JXN|ͅ2[b@C0w>\5<3jU8r VE :9Ug*[<\.b 8`ӉEs}d>۾K?kOBg9e.l{c?n̥x)Fi}Frt=}8NTN#3j s{sHAWdyaЉB6GqqdA{Ru.к^o[kZw 91뾵JK$2h>9s門3F3^X'# tbµilRN?gi9>f``a]J'v״Za ;pϊqLLܳ `r1KO},Mp=_9Z+DrlZɤqPǦV׽su+1DrNKnOꜢ`6+w;H'cqdd#h{m>̕LWe"9{Cjv!nwFXr%cEKPⱿ>'MGHDW9"9n ^% [BzsmOY=0/aseѕ H=7%F85uЕ`J$Ѕ.Z=o{i{.ʢ+@ ww?Y6xGz¿ꝲ6݅`|ϟ᫯jr\"9fø|6VPMC1߭~0<=s'cМJwOk0 _s<¹y+@ ZL7GW6);w0lzj B@\9t0uMr"9DڽM[MJ6NaܘP:?yԗ q]9ڼakB?JrB2s>po;NTV= #n,aix nOr뙇o[c s]tw{}d ^Ә;ֺr}ɵQ37WzRޒ}s`nᨵ}. \Qv_9ڜ;#>-!/?RL_ߪ++\+0.Е׏koc[ۃ91\ V0v|uz%ƍAzǵG}k[WNWsž+\0ADr!G]G}]91\ǵ#+\0nLWs+p|Ɵ~?Ngk]9\Kǝ`nՕHVdA{r dQ#Ɵou:.s{@ODrmø1]9h%%6_MøYV0A$WϦ$ t qЖleɍm_+>+\ 5Uҕzv"1\{A`nԕh;CPzø9˧@ɄqTL<CQS8/=Na_vY HJq 1rʗ_o?xn=F0ECZ"+T]w[KWJvqddbM<tZ"+N{aQ Ľ-[\sNW]"݌ҕ-iN\<\s{ҕhH=qrP#K:@oRwZ$wtZ$;qA x⹶,sx#j';V;erP 8A9xVҕhH}qt^:B=N\<\ ѕH qrPaxz22ÑrߪO>ӓcIH:qx.s/߯@9DroC 6eI(U8ⷾxn9g%ƕOWYӉ#pV0wp&6k[W<"qe2C?e35^9geɽ ,ӏ<,@ zjD$?j!:q$K`Y4@iDroq~tBWSV@ :qK:qC1>8(x9gyT] ѕF)ddNLCzJ'/~r9]9튎q+4ϻ։>r9]9 օtDo:eq YԘsEqǺ0tt(O?Zlz?Wxn)KY>"9x9Yҁc887us`ޜ2+GqB' - jE%(rGitt]9OTujs+O$+ʱt0<=]ܑ9]9)ҕ#fO' Rpֱ6>ߣGjrǒC' 㹜9]91AWt,@N˝@Zy\`}NrӏX110 |9]9@$Qtؗ~%39e<0WjW]`]94:qZ)]K07+77*q!+Z)ddؗN@{ֺg0}cq&~`r!eO:q=8.[ ʉހ++G K:N@ώܖ\]w[wHv+2K:Ncy믥Ӝ}t嘣G :q,m ڽ8X}&1}a曹O8椏o&r@ ![1RssGtENC$Ii:eq 1m]xn\m]5e%ʱwOυsڬ㿛 꼯\4〭Dr\?,Zϝ0ݻ/c@j)-m]qd=~#1fIp8_<̵):"9HNWmq @]oە Xo|n叜j1& Y~#t:}s0w>WoC0x:},:cZ%f.U?^iն+@,-9H\L?nm4{y|'p#7`.sr@DrU\?zƵҏGcqi17 ŸݸЕ\ڸk[Low֘ kRg5qt ĭB6<1>k tBkIܾܳt8w(흸}z=wa\sz]9M7J$~_-aS{a\^q}`xn$ 8hp`;b*'>̙ @K2+7]Atx6l11q_{vZrpҺr[qh;axz*5nj|;Z=*qΚőt债 Vok3 b8ac9A꽯\xl9Hb="98@]堪~iӉ%kKq~\oGNHSoW5UjF$)+wl{M%w##!c\qٖ?>ӓ=|1vɝ81@K UNW.E1GhaQZ/2-9(B]N?gHgblڻO`&tʽ@Xju-`I\P2W %bø)ZiAʍm ꍺJ; V EKsTW.ŝn[*baT#y¸݊驍='O {0hPvtX0N 0&Fԕ˹̂%p8)Ti+gqAT-Drjmq)0 H(T8QBO$M9N9}dtv}&1}DrR|Smo?8Dr@?sK"^O/ژ+HG$P}Pwr@V"9J$Y +d%DrH@V"9J$Y +t:a_= t:N'ҒDrH@V"9J$Y +d%DrP b8H r:Nq}0PMK@V"9J$Y +d%DrH@@kDrP1!`/\.bdDr6ޖ)3qҒ`im77%Y +d%`w[K$Y +dЊwWkkQ.ri-+{A=GKm_-9Z9;kWoa[7}Lm;-9.}_n]FbM1-[{0nZ%s)a<ø%WZ.-F\ w9VkpD]8)-9|6~0^,EGKlKp t[Gf\qnEby"9u_f*9Z1$D[G]'K w>{:NYx%V8;n9tKo AL0?n"98D(m՞Ntٶ<M?ҊYuy ^%dp_7jF]Q ˖r8=KJsWcS$Ij-(OvU-E)rsmM-HTZs۝:>z[W}DrɚE97&[ [¸rt"94>n7oqYj.r;MG]~Vwv,ˆi$q;4l>ҭc.g(mc<~/Zr/گ!|trl -^Gh&΋ }lP/ƚ[G$@^ئUOө1*K#f)w+mH܍w]m]Lǣ&cSzk=Fė.繧 K$@魋ͺ.A 1B㮌0Z6=Ni 7-.rH S`:~é׳~h{}٦JSƶ5t*H˳/\=xn-ٞGl)S͔xNw޽{.~!];GE'@a\ V|ßO^~qYfIG >y~.JZe`.[qLݦ8~eJHW{++;EoFEN=q#9>Hi>K8@/Ç>|X.3y7m-wJئ"98?+GK^`[AUO{Q~v7Ǐ?~?1Hn9ӡ+1qhPɪ󏟞:ikn/F 5{y=߿bGt*gK䀄 .{㮜6ݚ\3Xmikܷ%\DwӔ.r㭰ee}B\;\Wnm0y1k.l}HoG_~%7m#` ˿=o_-0-Xc AR]\QLvѦ[ޞ"}Fi9ZiW}חק^{~;o¸z_F@Di Jxo~<ÌߎI7wDua\ѡ+ܗHH"~ɪ.*5Q/߲?{sN[\"& _ \x_?? kH8\WN?T1} zZmgilWO \; _Ǐq^"9 IGrdx+dp%JRFVbZrk\T7c>/+NHW r0'M4.s3cӧO~?sM%5EqI|{֮JN P2Q'],O4"9&n^#HM}đmqp/끕UrL"J 5[DraǙtvz+w|>7@MP [Dr@rs+ĺ=1Q%JFB7䀄¸WLh1n5Fp@YDiXK$$sruQkz=%74J"H\jss=%Pm4BF"9`g˓U:uý< ]XGkmʉ8H@Ik1u9%I YU @KpE$GEvN8y=P;X^RQ}+~ҨeDrTl9>R0lwY.{-DrTi9`o8"J-otDrl]Ə>FNYQ=KѳF^9 ?X MٿS4q@|7.<5O$hkb8a.aϟo[~|kHH$a"ֽy%ƭv(0{Y 54Drmڤq7քY׏';V{v j=Q z냳-?&p&0X\s'{pe-a( `-̵5-{=6tDrT`k-DĄ}e.C1l]ԃx"9H;M>2k^z+HE.뙋6K1z?۟:҃kϖXL]}MJ&A10nY1]7̶azpm0&7w+ԃôwV ϳ5ZFDјk}ߦoiטzp-dy21P#+ҊZKvT?nqM?aP/vnNES/fJ8="9ګtѩAtq@ƅNǜa0hHNG}J G~~0hHl_u[Ӻ{mӜ0{ %[zS[Y>gc`vu]}w0HL߮}$c 1=*Eoq*fo]xY DrpZq׶ ҅q%3qp@-Dr^p@L\N#NSVIÝ0`0nM=9ZrPc;t8CK C'DrP!0E AGpnDrF? wZMr@ +-9p-9J$Yh`2U۬ FKҒJn@ +d%DrH@V"9J$Y +dUP$w>M@.rMqWuh)ty]9ZUD$+@? mrHNWݒ thIqm%ІB#9]9ZUMK.ЕvEGrr\+@*thI-@WUІ[ru,ӕvշ]9jQe$+@irHNW5Ւ t(Yui%PF"9]9jlK.Е4MErr\+@9t(Y-@W4PZr ].~q]K.Е(rVE@or 6tڒ tJ`*Л.Zr@9pq@Knr9 |EhDW  :|vߢ ׀hɽ+}@H=^ct:@%w@N\㖯&|0߉L~`4!.~0虉L_b:q0nJ%]9-8a2-7bhɽ+i}q҉ \1%pĄqϰƹc M,ӒGВ}8wB$$104&@RLPE$w'=t:}qhr J +GFxnH4V L$+G~Nn-{p/72Pt`ӵ$Zr+Q哭"]9ƑsZK0^r9 ȳ,GxKlwکnp,-=QWԲ)Uf  -ʱ02@9.0 '-RWhi@PBq=`%0)Ya@Dr{Jx3AUP&\aՕc0{x6Ӊ q%ɥV]9f=xh5U'K9r`XP:q0"+0 8XtL(Gi1Uj!K?ĺreJ<@~evƄquɥb]. 4% ;q0F Aj~&>JF.b 0tr \8_Ssܧ.NK.?&{sk IK.p5ʝ㠴oJoZb`+;tk6DS9qK$wĠ5A5S9~֠s9U#;nu%6)@č Z%;nu*$V)@8}0G ?J9Jl||\/suz%wЕ+E-=c92މ qВ;\q=P;q9ђ+c3ɝ92щ ָ^h\tJ#G@ MK+WaC{ 8wHM2 Ayi'@$W&ѕΚ^s{6\FW. aUsA0&+u%&Лg"W e ֣}Y`r h\ٛGW.8%Оzv'.LKhrОzC'.0@K+0О:qcq HMe ֻzzىO$WϦҕ[ɚ@Ks@-z8նt"〶|8aնt" C<N\`MUչtf〞瀜qs ":7܄0`L<s 7f*ۉjxr0"8"yuߕ%Ƅq!W?/);,?2\ǬG7& -7ag]0N?`ОVD¸5}0 's\?q~s]0-щ2'ԴZِt9 'wYs^DrmmF`K<-щ# '\[049N\ w '\0|9(N28"kqVޕH<Љ!XV\mPkZ ^+K'nrhɵi-9}![&4Zrͪ+7vsnY̯qEK \|WΝ=[P>\5Xq9![@]Dr}lºr8`JL'ztqѳ. J'ډz؇v嬩 9 ɳwq%> sB'nٻr&mЉr^"^7|0 toP#9IxN'nVpn-*2 "9Zs-n:oiwNNngNI$Gxv6U'Ɂxv6I"9xyH`ȩ矛:qHDŏI<z&CE<3q11 F<0F#p `!$K¸qs L`I<@3αe"9Ōk HR`zs4A'%\xj|8aH8sT0΢ @j"98 P$aܔ3g`/"9(P88 ?zpN7<HG$59gMU8"9+a\I$596k{NP&r0X090p,x`XjB$9F AOxc8r׃_<ЍTA\ 0L"9'zs-i)hpxvm9N'hHxx.q:q@Dr 99kZ"$(GaN'QZ 㜣m;Q㚪:qHHH<B{a3R7"9 ^j0G$@<p68"9`98䀂pkBq)yMU6l'9Fq**)3ӉHA$TO<;#"jTNHhx(_-a3F}.ҔE$tG<0!@j"9k9 cTՉ(H'9 8gn:j0L"97-qb8VqI<YF"9瀠09@Dr;A򬩪@\ z9H 99hU0N'U"9sВtwӉhH09W0N'"9"8gkG<e7ӉHh9(A0ι@DrA~* TI<ƉTO<)l*`H)9nKgb%҅qθtA< tH;9K9`Hk9zvMU8"`E0ݾa)=@:"9fh0ιۉ"vaN9XMϥ#+0ZȪx._HP1^jqE$o%E94"9(/9I$!sn@DrΎ P P9FNd wr@V"9J$Y +d%Drvi4 endstream endobj 97 0 obj << /Type /XObject /Subtype /Image /Width 917 /Height 890 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 24834 /Filter/FlateDecode /DecodeParms<> >> stream xKn$י$U%2@ MxP;Q/@T#ax *+2'.Ĺ<@.XDD/?~yw^ ];)ȯIȯIȯIȯIȯIȯIȯIȯIȯIȯIȯ79+{8c/_~Ǐ BX;_~o޼y%`%'n>wmz:GP>n:S? Vɯ7_|_|&aӽ/Ӭ*g)Էo߾}?k80^C~-aE8 u_nӯ 0)̽\ACxǏ?~<JXqE~xa@kXDp7j$@ȯaRB0?Wе2%!Hɯ/O?_׿|W_}U3.z7WWe~1UWS19:۷oߦ^A~/@~x!a//(~F~xa<f{ +ݩ:v _^u_ l9[j 6)>>4Pӯ?Z)0~< u_~6̝ב: O+H~:v`+ͽ.2ɯ?_>|pb4+_C۽>҃Yɯ? /Щ}_>N",K~)u>5-O%QWLy?~ l` lnoy`L~|pNg4[+rT3Z̼g2T9~?9a~ Zud 0E~8hk vR|sځ2~ W(9Вk]rݒtOvھv` ue{LUxuLn:ap1sK̖zf`qd uaf})TvR_~6`jub=QG &N+Р)pi@X#^_z#_aqj:YOO~x c"6ȎW #TR;|;|+> 0O~.}ky+Đ_|BOֻ &8NMŽ8\@ +Ј-Khĺ_ St^,!Z2arTx] ua?~G C1bX> (]u^8W9Q t+@֥RWX[SëW @>+Ptsȯ@'̽ɯ@3̽e_x-Do )" I~mx0H^)PR~$lx+h{ oA:<,8Mi  @RkN+z: TGsxVuW >ck̿a`)OTMs7t:O]S 97Z5aO:y7r>ӓ?Or]9}K_ Ҙ~ͯ )*VY/g-<>~:wi(a 5a'}gY",_ ұڼuuYr}o7_V- @WTkkuyuD҈F~ cw9sȑ\bkezN"0)ɯФZV~="adc;Жq /o5Mx]|>N?iwEn9^)~flOH9I]Oӯ[%3 @N+4ZJx[[aK& (1֖\#–O Aͱul6b:",{_JC)B`/n2Çzk:p:O{|\~{XYgko5O"@LB` bBS+5o3lMׄyX3 `5;5 [93 r_ ixaM_o/]%axWl+{2 [3 kL@צTDjq6k<,/~N-;/{1 [3 K+t%}7YE=9h@?W| ٽ DV΢yXɯи:|96E\DV΢yX^ɯР} <m0 6*>5#a[z^Wbu{~\n?m|>ଥt\.ӻwAG3:~yfg*sԒ$lg<,@WKsIm P'hyf]Sl}h~v&W(TKbXDP0 5 P za[?M~"̺~:ﶇ[_A(ݯpc :62 әh_ p=iG3 YZ9_3%1 6 WȤG-`/^&ab ?k@Z\DؾN 8+$zu8֓g`{=/"lD) ;+m[_[;aso?,~LZ2PNxT'am{_`Kɸ<3"l~X=ȯR̒5[ f~kɯX-Kk sa,'@ͺ lDXqjX2@ 8",ˮ@W*`kZD Cec( @,X߭/6Z:",[sw^׫@9b 8JS.I|>?|uup&Ow>oGxy o/## ӯĒR 3iWyX+dXBec?, ab g)²2 'pK8az a_2 l!%@",]IK X{Z̒Giځyv> tVo?cDt<[WGR@ ӯ$dQӋnj9I<,ˮ$OA~`g Gaz$]ZK2^>`uA\u&~` ej+KYD \yUȯd@̽-",i*aȯ,d@xF3\;g8Iek<,p 3$²exI~K׼n=wv>maIN; %_==GRKg铭=<8w si<:~">vIX^ga?+?dW`",3a'+QPkR3~e@WY2DvK<,K~%qDX@[<&@?̺nj].|>}?}睔_^{tP2ӯ]^[%"ϼIXr_saf+@,HCk~X РYOi:",\yav4ŒVZ>`;a9Jez IxM2h}RɯdRX\-"@~X( P%K -?aa)*4 e?L K̺eځZREa_*` ,k$,\a+@,z REa /8? K֍5a)4 P `_vRui?,+@WhEx]ɯd^΂DXJ.X>p̛j@.r"l[[xmߵWWW^[bSx60WyXXK~HΒ∰p KX>YW/0W'x:/%T `W$Wֹ^OsdZeWOEWyX&ƒH5w @+~XE~A̬맳!Os?q'+& z#s?q`Kmy՚W+ %J a5 @W( 9_)O",]a 0ɒFk<,_ndcJ`KKWyXZ$`PKKWp=d_NJWYDk$= e_X2@q*_cU|GP2BvW@ 'N`@WI~geo}vDX_Aaee_fY2j9J_Ph%@oeu$ V3%^P6h%bv#yYD@yWz P;[_ٓEle',u^P*%cd'+ʽj-"<+PKYDWSv>b"–" հdJn#sd)z]@ez%c_m}-r<֯3>c5x:{7|is{EU]++֣`r2 ʒh+L_g," 5U$^ll,"8+PKg{;nO"lMWE жWVYD@+k WEUjR-"_Y2@ג kK," ݕ5 5'K," /8%@ϭE",o7mDرkAMרE +K荵"R__O9Ia4So\LX2J ," Ts͓Y[cɯ@r "Ri9iȯ@w_Ò:L,Iī3\/L}ɯ,`j+"\eOGEXYD@+K`L%UdKHI~6dX߂'j纴4zu b 8J~ ygmZ\.oZgغ \O|Mz +YWʿ9ʯE%o]::~_\j"5juW x%ܖLtʝ^iJ+.i;K<ᵗ+R`vY2 __'--WPɸŅ? jLHڣW#,ed%~kW<uݥ ˮB3lcxnk)$ |3 sWa:|}1<_Y2@N;8&p'R XCua:UuB/"v ݓ~o/.OΗ@| -"`W%)]x4_Zӎf0Oo: dȯK 3E[&MGL-՘*’E >":J451%\O~_~ԏ^;FnqEϷ[il{L޾ӟ4uHykkLBb DN evO7&Et@ӹ\"ɯ,KGeVr*J@ +ʒ(8Z;{޾^K`v{η;7#lיXW(% eaa C++^",93oo(%*|\r, pyC\虰0 dJ&Yw ?z[x"OE+ ,@W8%P97{}F?eV+txھr8 a#LB9VG|Xqקw>7J~kxSƿf|<5 -.k̷%’2 2y}966]~rd-O4lyx:{7Ilxބ1۞2R֧c]UK~ݚ{=Α}=|.n.)jZgm|# _agS?^^BOr%Gnocں}=hݯi:f,kɻRavx cv*mb',_OB~=nHk0_ߋ4i^wo_K a=ק2/"²_Z!-R[@ím ȓE^(n%W8燇$l\^COWQx!nX{^,"n=V۵ >/_2| e5jtp5 k$,@WX~9(@NkjVwKSFX󭤾~EX_=+@WXr94Ԧ~%_&nz ;'WuzDX:ɯwS)&N+s-wjaͷRU,²aj#k7" )ȯ["sK+aY{ȯ_aQ|x WHA~% 3[[T~]zVꢄ ",k+ܺaT^DX؋L}E\5׍ P^$* C",lg`9ͭN;_~>{,je,bWq =ewƇ;9Sotz|c%\OA-/a}Ŝ_1F(ǽC-שyjG'|/{Tx ߇:?@ L)|o/z>e$,K[b@~;WQ>.{M,V,"(JGxa!x_LrKyX6aXn{yp.X5,e+׬k v DXJ"8u5 Q]2yXj&wXDPf  @N c:=GXayEǑ_i ijr:j5yX|VaW"0 l}}d`F"ȯ4Bx]J Җ ,eڈı / Pf]c",WEG^ՁWxr\._]㭯w ҧWEYbk?"_=|ɷȻ~.ßOw˫BH+U^e o ,UuR"W*#)[2@5a@.+^S3K?k`>8V\EupN_Mh"% ۯ1 b+ijG~J-% _lw-òsih8ě de={,¶p.EX]kWO/K 5A\kW`8%yX -_"vW(yXa?",+ЛWk’(yXa(Z=1 3Z"lg , b+aX252Z"lgN'VIxz6^;,6e9cȯ^ ,cì+<,ˉu33@js͋%,!yDXNkWXJ,>e ע 0ϭ7ì+{aa;[f`ȯ^!E=]xnay[azȯ^a_",|d2kDX'Dx-F7f]udZbAl}ex[^e\b:O",P6`+ _2ppmav;",1# =3-"l g ,P*+a %a9 [aȯY kږwf<,/=߷a!f"PSayI-ܘJ"&'B B]2yXe( abkY2yX5iyȯI)@{"–{Vn=6 $Lx򙁅,z`ܳbpu7+E<,do"l,"zl'6u~{0ž[+#r tz.]xzz:v_7^vf`kak-,bW&az'$BKDXΒJ-LO  ^`Ȭ+:+R DXK Z1dAyEX`;yz,Ka'"?mE~W0 P2}a{]^_&K% )"lO^?J@`@,"%K}ԉsڠM[x,+dV~:Si:"0J@?,(HKZj~zƛ[Gpwmɬ@[LEo}dJP<m>O†^ͷm3 Д0s[Œ(Myө-N>1dV7+@A?];p'E<a,%X:*I@WvVWPO5X:eߜZځtz|~f`*3p-[)eL`jځ-څ;~y/ݷ$|+{Kc:Ŀ\W~z+NyX-1 Јf`*95 *ӯM)al꭯1AYx>k(ȯTì+Ppd*a%W6X>РKxJlOb@{L4+"ׇ-j3Ȭ=_:5ÐmsuJ@":x[Ú{_P>[_S|qS$`{xJs7_0`[’LMgٽOo'{VghMtd< ;&e3*c>w晙  u*5 ,4+YuL0 Нm o_x`^^!|x5:E~O(躭 T$ꉿ`ץ/ НOkf]Haj-]5pq ~h֖j+1B 淾?1W, α-f]Ha>{^S|'*p,k^b 14|>/O'jDWrX,cv/_x!D׹#YH+1 [_[~`(Q}),9pGqr /1 O~"v} }_̪@<K'0ijl RkIqhWKK _Z b+Y[ʑuDސbD@ mf`!ޖ9?ZL~ SfYk+i*_rPIn[ oaq 5eǒ_x[a=x787}g1wj%g J7gʩKɯBrfkMgj};YYaQ`ט'7.-yM k*'ݎDѱLj(YrOo-k5̡ou% 6v.% kY2GR\in[g:[M=AufkWH4C1oFZ:1Ģi _c_X |[G-R'ט%N}<,Z#[ΰ5Чȯb|oz _K5ƅZ7~qJyOfED~{H[mӸA#Y_'ɚXzL~zxӻ'C_{xX>[xW_6.=d|mS|x1Am;W^ꄻ7v2%r{VۥZkT෾,hhՖ\0J 76&W ګCF`J+n}O)[sg}g C[xud1嬨1WX>Ы5q=`/ _RR,jX}Ho޼y*5[_>$h՞bW^16g@̮Z\ѐ۶;}co_K3%Q-Ӗ%uAWojb(}'x:}%Oi%Sf϶'YV=Ԫ3U# ǭw^ļa~91ssdqrJ}rIvt[៧ΧǏ??*AXG"4b{ޝb@$WhC2\j?[ Gf>Nyya-+[ P:)"5\ y|\ 'FH=ZԿ^]Nꫯ꫷o߾}vqrg)Qm/ɯL%`^ǯ?6!"s$}yw@XP0^٩8 ^9_nju^p2L]-*F95=e5vo~ļ0Ŏ_2jl_S0ί?O?4eL_x=Y>pe~SZsr/u%^~1Avm6D]:v׆?+D'd{&a~6>¾#xbKck "Oyu{]Y~ /~_ou_y( P-R/^[zͷs̷0DލϯK0ۆ?s_|_a*//?Sm P}^IyWk͙Hl*/V"D~_Wo߾}_rj'g"t ,H:ob+0Gl.=OwN}aM6P1R/^xnIŸӯ+0Grɬ_4"qu1j$2$-fVx=̝'B-dVbȯ5.>gVv\.ɕX9~?f-Wꍟ- EnSdJ# vo+Y`*¾V"Bϙ>ů6mv"Է%vW>/?_Q {Y) I`if5 *3w&q\uJ]W(TfaFXv6c@Y  ALYi E!)7ױ mQ :{|󗿤{߻`JW+:;>zn#u;ۖ:t@WӾ,K~\0$wMȯY80E-;&w?ny 1g׽mW=HMk]wdLBζ < kԭIZD>^8^9SxMAr[qɯK1Z}ȧ?Fɕމm;x4rɯg-`׽ukbÏPlHBgNU!.ͦØ+l!$Wa;RKζ )5+K~M=ҭcolNJ8~_k5y,mr'13+@ [Uny*=zU7zζɝ%X>5_zsԬ|-W\녫1't@ޯ^`_KW_+:]>`gW8{{~o)T ^"NlWᕜ^ IrnkS[-@ 3+@Nz % _Q};=br].6s:ʯf`i:'ZIRןb}=R^\xM~֑ _Eu4扭@qӘJjlxuYG@o$0A ,scKrvSkJJ}[ގ u=*RqVs" <1JbT#IJf)A$Wl6?ɠe`ir< ,>c6rz{B« k*k]l-6DXjXjgy5 c9=>؃ Z쥭wVTr ƖשV W`_ f`A|ڛq-aY[tV*yjj{ͷ~+7boAzR,aHb%Wץ9k{ߘ l!Xz%F[n{x/Ǯ H7z} @J$3guua\KZ lW =",?mcK|??akS g`O߻ "m}]co3) kilݒGWuSR^(f`Igur qr-y2ks #. ’ξ׏qp_wˑ`*8 $׏(ͽһ_+=[\X62ВnIЧ@9uXDd|s=k|x=Lc+Pӯ@-sNr5@KoO|xXZx$nb= SsԾW ^O^Rɯ;aiCV d Ox`_oQu8p^(Y `+YMqԦC(^'wYD@1WZa@-WR_9_)J?W YZac R^+e\&aHx5?f`K"W#+}2 B̬^8WJ 1!S, Wʻ(EXv%[ǐ X2P#ȯwQʯDx!)Y W3u(& L`LxG +e_&aYHxԷ!@{,w.|8W+<,ЛYW+$P2ӯpe ֆ5d^+_ba^ݐ ϒ B~U~e@xoCR,P^ݯTcꎔ6 Z;~ $lWv:dɒ6K~ W~ mfDX 5n,_a; B!)ؗZ;D~Xm =ܢDX` K /b9+ybxk,m+\"lWp{ay ά+=_ia%#CkW!-VHx 3Kjg}_ia+!SX`Ȭk̺г{L݁y0O+0/AP;v+~݋{b6pg(+yX%dWZ-"( l'B̺ά+ɯq^XhZ;ȯq[DpHMzY2P;K JO،W ?)jaֵvf] ޽C@?<\' %L̴Z;2JIW4a Β+(yX8V̬{ %u^`WLxbdv ^WaW^z%dR_A~]LxZ"vf]k'@:+<D+*^kg&˛;Ax!Zz_Mx u1 o6Yp 5Er%P/x+@9DXr^kgj'¶PVx(K 1K-qP ݄ ί+@-DXbֵ@]WTX^%Ųmߣ6 ݜ +@DXbX25 ݜͯ+@X̺pH 7VxK }[ #BV+I%=r=.Vɯ榕8 =0#2h )o` " [Gav+DY2-/ of RRl]̺p $B۪+[>[G[ yorVx`_Rl9,6qȯ&_Waeֵ[GX G&"<KLB ؽmj<ȯp/:zH@:aӱdۈS<EWCݗYnI1W8F8a=< ?)v ߣ'`)ʸ)0"lT8h , PsxD~VbOxmyT!։yiR`Hxm @L1 @ k{g-H L`/k{gͣ7+ :k{gO+ @<ᵥxL~b"t< c1s4Dxm| C_ƙ <_"^8SM̓_Hm^8SGĐ_B^k?GGWR,@ϑG ;@bLZ9^0 T<,@zNv+P1Lkgǣ}ɯ@#X R_G^kpU+@r",p,#~8@WX '#8@?W@jki %gw(P ᵄ,WFV }f֑_"BKcl'4Kz a؋ 8"ulؗ )J&ul {1!f: ؗzԱ^H+@±G5p&=_#{EuO5ŽU+tj]^!@#'YL@ /Qɯ@  {            .N endstream endobj 98 0 obj << /Type /XObject /Subtype /Image /Width 833 /Height 889 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 22104 /Filter/FlateDecode /DecodeParms<> >> stream x?aj-Je8T/R3`ة3@2QTeKּA`Oyy= 췁+r ; ; ; ; ; ; ;g?`[2-x>lؖ sp!p~p!/˧~駟^@*8}'|Vd8 z.e>SrG>__Årg87 !ý~֐Søgx pa.dY |@syK |//??駟~駟}g}&\uBE~駟~d\9Xz( sa.\O>O}+n2p gVs87\5KKeP: zmR)9J#y..,M=h Y2\XW6)q} @id8`4~.,M>m lz.8z :}-hcSiB ! VN6+#b\륦,Ah K9+\JnRs*P;6ᆋR@d8Z…ώM a^l&nFu!@RQzgzD)y.|scWh 6,ƬR}W%lS2 a qjl2o`x&Mj5dkrԔ2z@S *,\- qkco)L@צgƦ9C0]ZaX&i8ZNÅ>l+G& fH O 7>8j$@SϘ63gW=\ʶi@SG5>goIN= Yj)g#EЩs7JNZ[}oXCF̍Mi[WL@r Ť(N? plEͽheJx))mٔz˂È68j3d8p9jJDZd8޲Ecϱi` Z&6Lg۲+?Ӗ gz@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@v2d'@vm`}@L@vh,Vۚ=@ d8I2Y @稭' p4#A'S4pspE1f6p4rTJ$ ,! l;fp,Dw2z/8< @_d8 spp%;3@d8pmSu@6m2hkz3@L]c-|<}b.K`i8;8┥pi8X`}.n3PFf ERː*gΞgJrFCǦ1h:חR2̶Jl91F$z|||;m|s>r?'PoR(Qkk~>n]t~t;s(w: s\X2l(Uc?aSnsw,zw[/=]?KMǵ3\nHrIfR2tzpcݖ( 9o?λ 7oʝK!p,X=~οˏ;TIr0  8ۭ8n>fId8y T$F>~I~I[d8عކ?g|u+Hr< ,d g*ýcu[Hr} oy|r~6O6ý/-}@K^[}{>?0v׿U͛oϽ|E?G9rh&ϷÀ@d8@j( n|/qMIr4cQ*&{i'[:,VuOٶzfp/7u$9Y I֟mKW2m W'9l.#ÙR$P#R-&Ŷ^zԢԩb-e*@d8 wz ^!v1 &91nj{S8Et-un̚s ?^^>meꜭ/_phmtlzc8].'g>{z/'O Sr۲(n.\t˯njR.߂ŢT.,qqb\v;\UK ETrގYvzǛ@meGՇ[ fQ*UJ%ٷtC.pm᜜d8*S˲Qp^cыq$p @Jo3\%O{;/S1d8U˲1X3qmʒ;+9b\%ĸ=$Mm2--VͿ%9?2i)ʟ9[p{pl~z ZpA]epdjYǪ$MVz}VpNc\͛k_q{샧WW]}%I8+5"o?0./l|oޜN|.8hczĆ}+,J`>ic94gKN?ɝNGӡ6.ːBKNb\{EfQ*wXvJm{™NoX/\ n-\ ,_r0  Rܚ -c&nz:ZǕL{xFKr!1n6JC 6[eH!-fOG#ƕ$9`k2@5z]Sŷ?+MocI8Ir|2@GRO7.#ĭ~ַ0'id8.}JeH!ƭ~Oǘ$%`n~=ib\OpMIYvz>F˵j-n}ajOa->f뽘z{/Jr&C-Bz=M\^._>seӛ77ğ{g/>9Ujf27 LåޣɸŪKSr\=]a w_1.ϞX='@k,J(Ze[`;GㅫpűBNju皆޻{b6)9hi8"5pdzm;nuLp2.0W5%0 p0L=]!wW2?:s\ؔ4O+8[yZpGp\9}lJjc`'QcM]3M@d85;]X-@Id8,z:_[w/q=9.^[`po?*m'>srpL\bU^/_7m[_RK7q~xJ.p45o=sY[ʝ{]+hq8n9p@w̾1Wom?sޏSr tAz=O-P=joXJsVRf}?cQR"UX @Od8Aƴ[WG2J=8RIֽ 6Hoлpo?qGwn{sf}-[嫓)9$U222\ĸQ[b%/m[4$@d8k,CoĸZ0]sn, oҢ`Ip@Ѥ7b7_Ο-.JWOSqMge-,PW6P8`ׇUӛ77ğ[%k[>ñ RiL\cָ,V nj:_|t}tL/!vK[ /'Jca2|O\pkVΔp,;eceOb\{,IۊsMr%JMofe6c\INjKrO8%Yv L\-^:E{jlrMuq'YHorTq=g[ԩc{rဍ9e5 H}=={qqSV8֓(pNK1 p=v=׿?W{rZۄ-_W~`XHzLm<;Ø>3Z,ո'^ ^>c\K[ȣJ` 20Cr 㘃c 1= ƽ$-9d8 I̾Q2p%Ƶ?[*s$q#7b-.ݫO91n| <[{5+w=\U60i8z,XmʪcƢ%GO|AVL cD% *sjg[}'2GaQ*tӐ~AMYc}۷Ï].ծŪ9ܶc*spoQf3>6b\{I_8ym@ۤd67T '|D7aRx@5Y~~rLu%)ĸ#'L44ȲS57RY^?@&ھ*[1Sp olf:o tϯ-b\?9Ū_Gz\ܺtm:s\PK] ls1b87T=uY)cWr)g[n%}BqOz=7k pGr8j,;5F}@u,+Mϟ~g )9Jl95 zmo)Q7k=1OWV]Mm;vsw^]!~EP(ҔyeR%ϗ?4u~j0D= TzeQ*S[>>>>>J0 Xv ˌͯk~@ݖ)8/&ArI}F3PsgJVn󎔧Gqܚ1@kd8i܀u:~ۤ|62~^ޞf5U{ze@fҝ /<>mKc!h텳)gZU{a*@ =oMN/5 xln{`;=K+Oϑwmғ֞}"Vݖ;dܱ{\8n?~(Etan?>q!1 r4ud8v,VE\(E4nYKa*g+k/2ze;nۨ{ݬehΑ{sTؓ:olqkns.$h68[lk4l5熫g? Oi>=mșܯP*V.&z5.G!ůofk|U3&k/ÍWߩq%12qp1DzV1.%ĘwTK?(k( GA.f& pii*?*ӷcľ]8hM\6$Ƶ/8pvbb5p%!obGm gޭci[Z QaZXz ] niI~S$Q]3^t82p}bbL[eľ-r.qH9,V{8 GfU.`9v}[y̻n>'Gq2ecd8}K?]I*<ŸZp2 gߦqNoMPvy+~hލ5Uksbd8> p11sppKwo|\MLؗ q_.e`Oc w|ӑNc1$մ8p{uކ8zf.Um Ir96-Vioq GnѥpB}tW_}?1Ͼ*_|ז'|>?s WﯔKN#\#hrTjaLώĶs\c0ɉqOXϢTXۈTi娰5So߿{G~t{ߚf*)rŪ' T0 i)Rނ)Lɱ.bycIɥh98X#Gz[6 7ƔOZ2p~ƶЛg|ǔ۹rҙ؂i8:f6e26]4 ti1q%3q[0 lNcO<%WV-u8[d8L/> 5,Ph[]N"ɱŪ1`RwHo@ݺ,m}K_j*bRDN2U9L1J;8Z:mz246)9X=;R27p@2@o[n6X=a*|t(HoE@ZW?m{0Vڢ,X}:iL!U8NaJ4L&BLN, s=X$Ϸ?1;g۪b̾Io{%܏q\ޭ73q1#fjgCz$-ub\ޭo*8 \K,P.@^8sq]Ekŧmb=9sќ- oq Az$ǓŪk;[s2\SاrTjUO,Vw[[ D@iӛ׏xwIE8цrIo \.rx0:.p:}C!_So/|8ݻ[l|>-֊ryt_{ƾb?eog=0 W%{d8[rXvVLb;o2\5,> ϲScjk*+RkIXVn-GuEY=X5 ?w,P`hkX 'e٩7aJ'ܲ&〞p؊RoLŪ&(rT$Q^:q q/VcŪ|=- Y 4\8r3²SZ2X5+Wb-ٚ&'1t.p:}kːCJz 7%ɵ˙ޚb.gۊ8;JOo-Ztq& %pYr\yU؎~32NۉGiusY֓ $U؂m2^|H!U 7g|e$V_j߂b γY7*t\/5 Շ2x`^|w_~mZ{roN;Jr\.ߟNso_[- |k`[ NqE* 1|Mx>N+CXzMJq qbv>1@-,J݀ŧQ ,#җZZUn5 TYnIo4Zj_>oNzE}J_jJ ^g@=L-$6n^\jaJ682lz0gai,<[ A$zX:gK EiIzcrT[+,Je5X5mY @88Nb\d8^>ӥpv}'6Lrbuq@dM#ג[tzvZ'1Wz qiHJp 8f*,<8  WKrj%ld7B2li8 r0W娦Z{>Jocx`9jAq2Gfmvjes pв3\ʰ[1W>g\pr9In;ĸŸ2j6Ù}qeZ{}~VDL/Vm#]¼rTz`b\idS~nA|ܾ+y[#ө+ pPQ-e(_N^p W3W\B+ֹ?^4&Wk\w%JMO1Δ|q\O1Ջ9z׹~bݘT43鎝}()s1W#W?[wU|nElqu>_9yqqn8\r9?sXwnnL8spл 'APq[X)So0fٔY4yWc^Ip ,C7%8\3ǵ?[\55 LQ\(L9G;lq^!|ug:p8&@|>Oĵd5-mE4 #rXIS{9cnzn_>2P(1n+s}$Csxd[6vÏ;JHzh$cnU8⫽Nyr2gy{Q:J[^v?Tm߿v_ p_uW:޼>r;ܭ؃[߬SR{f(Q^gngq~{nʪ垶K pK p@d8bewYv @ w1.>.Y=rӋpc[}zD!ƍ/PwBYʞ&aJnYM-VMr~dXb(d\&.p ۷_lKr7מt?g x4Pqs0؇ss>cWS kG-}z#Te2Q%2}ٞ3wO,GY Ti.0$PW;+\=3]M/Va_}>7~X4NܟGmLݻ:j|e՗q/V]b[R1rԱn zNze]uU/T)aꚉզ2P.Iz$l6\la>r\|1nIz_Nt[ sP ^?1n͛rrcVuyiK/ry8b w[Ԡn2Ј޿Yr&zy>G^K̾жI.Hʪs[2@z,?\Srk NǸnsp@S޼y@5_ kA{e`+rm%1.yuJE7`[2РlqX 5].. p@.PV/ jLrWe2eMz$T2HoPZ\8XC[ʩHm޼ހc 8(! pPS8gqHr.nFq! 'ǟ=OUF\n-GLvԨ)"ӺOQD(:ո%o#@-%`M"H7+MFzڥ' }VNt!Ti}ހ>pX}o#@?$1*ZĽGŸ[e8޾=v+Io@I.&=q-fx>6D7O2@ʹ,ֳ8I?&W6@0RT{^! ; ; ; ; ;.d8&1%ed86g\K'Ga f#ӷmp p Ʈed8Nd8M@޿\5{ϜuOբv 1d863vq5$'еx-}2n\,`aM_Y5lq2|,ɭ37z1=~.7l1ﶌG/ p m7+M/,ҹ/ gZ {6_/U;,P5G_\px%2$ɳ@-HB.`u T-D_m636'Po1Nęd8w?ǟhXDn=Ǹ`r̹|>j#Y ͽj}i[sy>ϗr嚎qA3[l,JL#^kmPanYkoIiM1kiz1j5pǾɸ-ǂV2LN"ϲ G< _awK&Z 0J8O ]/lO}såkX|o'ekH}!M/mک2Ti,ܚEvM @O]蚾LuWA aqb/H}c-ߙC2hךL_BL3asg͜G2@K!{rՔ{pQ<]kmkr;Gt.KEO.A_.s_?&eHr|d8_o+r,Sy{^9a{"#5 4\펊nC2,+V3f|ukVx6]Kw||_.oޜr:N}\G}Goǁ#%;@ڷoL ]sL+e({z%uN]ׯ?t6焹ڕe8BJ[hŒ+m[vw9~r矇in: sJp@5&Φ9guKқHo{,WyV8R ssp@bZ~8l-yMni;No].ݴIf[ qn繹-6XUBFŸ5Mk)lw?mݎB~OpgnmЯ믿?;9u֖.Ǹ8 p=i@i^^vnz W5 [<+QpqϲG8a.V̩ 4eUghp?^߸;%z~^ mWpO-s|_[/2 3GGE9d8AǒxꚦPn?}ׂ~g}Ypө.Ν~~s c1gޭ{Ғ\wR{Ÿ%#G\XT8?>E5@Zˮf@F@z+Si}!N;py&>?89|"̕F~8spw|wp/Sn97nsR\t+)mYzӏUdx~駟~>?O׿?;"p{wK ܖt(;Kg-g駟~)x|&;{v2|0~ėܽF) TŸcw_J CK)Rn+ 3K_Jf5b믾?޽{8؊VMmpf62гrl=(f;@6p0s-y}0#?9 juQppX3 Tz̹g}Dnʒeo-)䶞p@spL\lm[h(?Q hƐ 4+%Y5۪F(vQ23kjs\6]jjj,z[)wnen'PٶLt+߶g؊ 8+\{ϲ>l< ܗQLD[O,{s6!MYv&/Pf!Iڟ(L y.=9OWdƱd8[-)mqbꍖaÀcZ%Q[匣Ya&nn@tQl@:M֟nxsNuf\5ND1c-M}pt?k>n q˾Jl<7<ƿD1V/M=pЭrcyr۶!Os;6= C,5=>Sfe,5.p~ymڰr ے`Y8ǡ(?Q 1I$s\?J9o=vbp̏{EZs#wfrppǚ 81ۜݼ۷ϯ޳,|EJQ{|lbV8`[sp᳖ZL8:$Op:=>ϳ8ac#t:}L%> \s:`+C%b[2X`[SX2:Gn#ƵmYtK9r {X#|/ +!RXXK'[G4 hCi Q- p%' مkFWy]97nX?'2JO<ӷM~<ڐ/m{ h?;vŸm7l^p:=>>>ڧ=+ܞ{ mϑ-Kth՞L 3_aWҿϭX7^Tq@榷e3k_exKq2l`BeyhϨܶ߉@id8lRX*lm63kf 8 GwM6\߳~d8h܋BEtvl8%r}RTspP#0L]kWspPp}o@d8(Be\387 D8{ XmmXJw}ތ*pP8MǵsdW4ݗ_.,@?LaI7J&Mݯffc p@?LD2X4t98 rh pЩ;h 8 3Y8Z%w8&lM 2҆yNtg21WJd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nd8Nprةi81TBW4X3@9Y*P.*p2P,P4.J(G(Ahcup8ݢT197di3k ĸ!Ɲl+0:w0$!0r\[!}06Azt p@ =c*e- wЧ5-&C2lb@K7`2(ghV-&)d;,P~ᒈqX6&p3qeZ3~8 l^ާ$f&`P;n!1  pdU8Noׯ"G8>[  {NyMz;G{op@`mo( 11ݻw2{@"JZuTz ̾hOJ7 2@hձ-pىq@75^arQc p뙆[ mve*P2 R`*P8dÈqӛE)g-HD6ps8 [` EE@A(i֫16b0}dR[  lq7lq@P@zfb&m! pm*k-i\>4=xYl\U(yկv?Hopu61 ~$%VuTL7g%4\;L`MzpzRz F Nqpf3&@-Jo7dVv;~$I?)A6e_=&ڛ}  c'&>jLo7=p-T16RZ$9VN`2\VERVocQ[ Ek}qٷKLp q>!a[ Cc7z~1I> p 88NϾm$9& .l IrpGՐ$@]R[ -o&Ho$@} P/(n:$P[` ^2bM1I=v2OGBL fBPᨐW~Irg ZpIhp#Ñ ` >/bP2Nz`2{jb\8XLcIo)~W`[2{j#.r$Aΐ$Cz 8"ñg&xmߌMN+>ˆ$9` o8!Aiϻ!IH!e8sCIoPqHb[ P>A3qg$=7"QƁ(B1Iz *Mpt8qHo3:&AK(6"A$5JIo7P Jn5o(fJyjW$p}q ̾c$9(e@?d8j8LŸNr} G 7 k'@W*zc A>[` .cCp pyv8(%Yv d8IrpxXR p@?$9J#?+kp{p̾L8lEC'%ɱNzp~8$9%Yv %@7|A Ho >d8z:38`OR[`o?bp,I7 'A"Ioe$@ d8z=g8\ۤ|( GO'Kk'@d8qc7Ir5ҏ[|2p@K$'-N"ӓ!!p䎕o޽@d8x0=InOfߤ7 OI{\[:D$=In Nӏ"U2Hrݓҙ}@uO!I{ܐ~Tx7`$н~ x} SK^z s ,9@{Krқe\2Wo =$9R[`j` e<%9̾Iod8(i)t$'od8()*t/w4};{ !A=OWI4'M'9o'j~'9IUsżO%A+OfI{sƜ-Gؒ@ғ7}p\t~=p^hZJ~"AO~I!fߦo/P*gp3I.S Jcm@d8 $pGfOKIow@d8`I oC޵Hr}y D!Io@d8`'aNa-})68$`-^ Lzvp@A$9U)qWGx L %m0&@ 7ed82PVZv TLa10MaJ{NzA$h)Iop@$9`[fXF:"k}` $k#Ioǒ$9~[=!@n23` d8;Ü$=Io%f=)gevfؓ IRo%lL2ջTzh $%0@ d8Hr*I.``lx ,c p E-Nz@$1 p@d8Ir'0MhJz(_J:HH'4K^%Ͼ,b2@$9jQ{ 12@w$9JSS p]8Vo {7y227HrSZ؇ I.@`I8d8VN( $9 plLS .%?$X2;ZrA p&=Ir8vͲS%PI|8j( @q$rTz%2Er@d8!co@J\{8 pTO[cOh @Sғ\s7p4K#͍n!C \ ͻz&НޒVμ!еg "m$p6n 7Ԙ;Io(?ɥ8 "la._K_|*@ d8Xe$슥c}pIn?O,MrkP[7h {~@d88̚$'8E"L'9?v2d&d8Nd8Nd8N& endstream endobj 106 0 obj << /Length 1141 /Filter /FlateDecode >> stream xڥV[O#7~WHČ/3TP-]TZU,dBS_&VT%sFHÇdb*HV Yf#LYYʣ"'WLd!r7LiYq'FF&#c%k1c4z>=:$EFMYA%fBdyvf4fD_s6飺T#* +MU3sJwLe1 >D0!!h OuCla1 C+Z"oZYr o]I*{y?"'B0c XJ ǜ?NoY!B^ ([iLK.t Lnj)z0N&4>s,F=cŽ ?DNr9"sV3 TuTS0m`I:rŐH)|xKZ圮l2w#rYB0Za1@nQvKrN|loG~s*uky:MEuYCrc)-J.0%V኱]B tg6VYWZ\=_%үAh۵ol}T, ^bܪyl9gڪڗ[״o A &WP~Ztc)6jոd5"Ke{톞ƸI$zOA"*flSִ&]815qVkt[Nۖfmj^I j54'a \ū2sμD8ԗS$&/a.`D56PI $NZ _XNg5goWYu7>l!M'eXCdZ?By<+ng*1Lwmc >`4U<̢_7 sw~3xMryY _Sq^Q M?<=t endstream endobj 99 0 obj << /Type /XObject /Subtype /Image /Width 903 /Height 886 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 26167 /Filter/FlateDecode /DecodeParms<> >> stream xݻrֽa4Ei:.U).;S vlPE'' N|;؉]v'X DpY|_09r\.bwT HT HT dGؖT dt:N'ؖT dO?O`[R)n7o~󛻻;dl@f~~}>cr8G#S@f޼y͛~駟~B !'˟v,2M@=,͝Դ)G*2]'ER;}?v-VkثHZ>裏ttRT~ѥ>|Ko޼y` ]RiM?O>d,٥&h$iOJ!ϏTj>*l#iRmXC*O?O??//駟~ vRa$əN??'y]%Yt;n; &~*Mg6\ƾNp,p͛7o޼~w8w2tIY8T $d,M]yO>O>I+= GS]*/3V΍B*T);S_U+q _R)ESG}Gu4cz_3J Si}TlH %J Ow,3H@s2tN eR)p8=UڿKК03Sv,2H@BJ:-tH@1n,,~s쎥ï?1 ,Jݥtl~ kv,ޥtqώm& wg:%1m0fG*8l@T dfx^}e}vh|G.67ql}ȟF*@8HZH.C>H sI@T;J")l^@ҦSe>|[/g݃`[R)ػ#X*a^c|LbH;?NGc^sT $-KcSX8GRJDc_K? 'FcB &;Y6?UciG )N@Ʀ&g$h #w{ ɣI R Q!j 3A3"'ѭYzqLs\;/7XF*6=U:v'0 @*{~6 CR)a$ -Γ-;@lkltN>|3 l"d` RJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJwu:N>r|FȃR,ERja`g8=m>gFT P9y|+")<3U ܴ6DsIx0T)0aHZxR$L p"\fKg%-On5gXMȋw[M*vc1>ΤT 伭T <\kn$R)8>")lC*!?Jfu`K0nMr9S@HaM L>Kˢ=;P23h:r+Coy<]T @ֆ($ LKrlFcg%B*0]sJNJl:/W^CLP"m{|<Ѷm۶|>!q6$Ŏ]el,8y @H8YsG?Md#_}^'(R ~T$utN9o|ntay 775/ŎƎʹΝ=z6v#RŝS{/Y# lbknS0snk/+0T WLe,QM.q΍]WaCuw OSς)R7w~tbjs+pec+N*re5F043x]j]0eoS0m_}4M:L&PҺ"<2f]_mtH:8sh۶w]8MSIPpo}cHb*/LSHTeZ77t$]Dz,YPG)9RoGC17: ˦HTyҭO*eJ96^OWNnKR)H9TjϹѐ)jM-ݜiSHow, ?437:[\/ ,guzl% 3~%co4/Ŷ[g.#=>uLu6jR)E c|=O}->أ=-0:Lf>śӋ^q{Okn}>sΣ.ݒ.~U<SKj EZrlG=/Gtr W#c>R)XIvhG 4I{CZ*&;VkiRH`M$8}?ܻws(vB^'鼬*,s6L%" hwұ0FJsF es['~wn>7?v3_g#v=N_#c>2Ϸ~խJ!\cɩiۖ΍pϛcއytk ݹꫦLJ y4 ^~ys [ϿgN0(T lFcz=fK%D* Aq]G_.~0sѳm|9}wi !o eR)s;mɣ[bn4O?{<)@ʤR $n%1hyI0iSHdonȣc̍n<Sxq@ c'0i*@08T "i۶?3^ڗO{;{6[RytǟR)?z.{i ['#6ׯ7oYLS|[JN$VIty{ϯT ` `;xDmRJ| a+XmO\?#cϽLJB$GMK޶=÷/=}VSHlL$%}fKj۶Ζ ǟ` [IISw-k ]0={iw|^zYi׻>L46vuG3 KS|//ϑLHځlsbҔ/ڄ9S>DRU*`ӂ[?JA$T[ֽ͖\0 RGqC\~ H :þ[0[yk;:J@mRF۹B #snQ!pHJ ^G'fKޥt =SVR)/K)%SRLeSlR)IgƮRo1ligIӸPs_|yS&R)@DRr#ϝ-K#-wSR)@DҔ٥4fKznH*H#cl)sfK8sn(w!י>11msӼ45H FL`r\. ȋR*nbt;AN\3iҜ)&LHIbҔssqnrא*4W!T6r!K$-]J#eC_-/Zw\/OLII!}fK;k>N)/(")lm뿳.bR΢` F*(H {:viU0-`O@ڤR쉤epCϖ;aoM>f^^#% R)@DҲ5؟{,I?r Cؽs)iJ$͖λLJa-/qt;ʦQnm\$>%Nv|nݻdn~)>?i~w\.#T)@6DR٥h"|uDҗgڄ)y^2a I*ȀHZnsϯgb"鼣A~C8P$ O_,IYVHa۾~:*HH {}k'ݾ>0}֝׵[?9J@ J".̻Z^ X&LK<݄i7cS@LJ ұKi^Ζre&LHIqld-r`*II 1gK#&sv4Dž` aRإ9ߵIƏKK?N:;˘*ؕHʘyq>e&]N:R)NDRn"cb2ϴ[?[JIfK<'v/L :R)@D")@Ӛδ` ,%D!2 j1Lk9ӷl IIUQ SzܹSڞ~SO*،H xrfo5[ZYL[R @8iֳ.RUDR٥N??igL x",$]Jkf4ǣKr'G j#&syfH js/ORDR`[fKSb1~V0MR)@5RJsE.gI0?i~I7`R̖8{iST 0J$bYliׁ` 5JI-M<]`OP.۷AS[~r wR)~yV$e7t|.G.3&"@٤RHz-g2n?v)J*&X7[liWí`*@^N")ctći޿owﺷvm1jxz^:y*:ݫr\1HR:")K)̖{^k{qm>HʱR >^ʳNH limVH* '_)C*%rl)=W` 9J.g~>SƯ[T6cI@QDR fKvO\t?iW` GJB@ ̖JSHT dO$%v)e[fK8s*L R)1٥t[zЖL YIz--Kxu'G J̈{)sp\.Ł'^೭5ֶmwLgyևgkJLtS@DRNli^ʜkIӸ%IIɗyRboiy^ʼgbJD̖,nSC*#cP Yz[?R !")9K){>4[YLYl :R)إ4N_$)K Iœ2KSXG*#5nĺV0M`T @$ v)%fK>y4'SJ].SS#;{!Ck-KYC0R)t$u|ݕn/I@D")1[T6 _R)pH cRJ^- i޿owﺷvp,)i7/gݫr\ L)>vOs#) l)ӤRH").1~'raR:R)D$\إ4ecr1[JؕRB-MR^J!:@0%k?-@*DRj`߽4^5["/%1zIy1짤 eJa3") Yϸ\w/]v)bTnuhNR)l@$z,j ) :{I D7[ڶf(X05=nycw^_.(T),$B b}eWM!L@.RM$þܒz0*:^-R) @8Ys|T0͋[<C* ")ll)49Mi̖L*DR(]JaW5Ղ}aR)Iv)-%LCLS^yfK#")lwO_A{7aZeJd߽-T Ilv)T}T޻RJA$J٥, t\"iioR%BSY{iHgӱyrdTR)I 1[Ζ΍(N*("))(2|։{)<|3[ /B;ĻS ĽC@DRH@Ф5y} YL{q7t|nݻYs.X{m|>w~N\.QȅTJDR`8 @R TJDRtsPB|ӟ''9Ζ7al)͖{rN$r{QleغI^> /JɆH Z]1{)2[ ; ]JK96u#y 9[44W_)l-r!4=JM+^}ҽ|^e̖^$J$uQr,M7:gѶuYmfRI$G$2@BزLf#,n}S+ YOBDR` E;`tkڽx[ 2S$A$5[Go[Js!4[l)@>Lr0sZޏn14RSll)@R#04OpTSy;| XܖկvO2G0UʮDR 7t:m{=Yz1\yGF]E1UJ21Z@͝)_5͍p']EfK!jJ6!lvLKhGb|* R)хGY#MJȗ_<:`ʺl)@UatH`OO,ugzt>!Ye2{>7癴u|^ 0UJDc.:}&PUK)2Fc{)뮞y9lXJ"<->oԒ}uϖ1 1UJ̖BmDR`[2Nh^l)@JLe͖s٥N_nk?wߥ̍) Sl&ƿ|-™KƔ1en4s80l)@:Ly`kfdV`x!rY\F`Rr\D%ѢEcƖᷭ;wL]1OCO׌dU, Od!GhLV3` O6'3[ ˎM׎g4Rl慩燱ҝ;[: "0Z~0u~b̖T) ŋsJxןfZRlXSluY(KZGyNR™-؇Z^:R0Ց؆?`]BX*]o4c"z{)׊R}*e6GxTll6t}4gsaR3[ 'Y\.ER@g.Îp -GY=>]Kv/ֵb`/JȘlvSĞȚ:([{)˙-+aJJ6RJt*wWy}ϖʣyUڽWRLrC;v?e1v vL,a OܺDKfKNv)ɱSeÚbqB^V5aa &SNfKN"),vSfc0M%*4_}5 0d`[R)WIa8[ !6峱8co^ {=[itIl)dl S)G]v/qmpl)VrYtij_EҾSǐ#ti~ɲ[!R~K$;_O_ kLh/'1Ho){l) R)GkׄRIU+#-:#iwT6e_)%R,;7tmI֜){)ےJ+Uޢ{n ŋs?`^^ H)5}fKT{F,yy5\-`.I?`^SX0TZݛ-2إB$ ){Ly̖#VΤ@R I?`ʞ!R dJr$ J`*=t-XJ*-yR _DWeΔXufKBHl).@'H:LI0u-XB*yR /v)ڔIÿf^JiRi,[-ԔIÿ~8^ 0[ 0TZBHwLb|^# ;Hrs| A0ܛ-#¢e,Çtf:pBlS-Jp yqC'(H:[3enT/`T=-}SvOkl)@T1t'Lًu3[ pT 2[ GK)M$]F0e/i}l)84KIs ev)ey1I| fF$l)'nK0%>w32-J ILb|j'f<̖>R\ct!T6e3m%4"il$.#tݱ5gJlv/6R)2[ DaҚR:II3O I$M`J2|NRiD[]J!_"iSL8fKRaRHH 8-j#&<̖H#xTfK҄@jD܅Sٔ9FfKzHpRIKҝ5slbϮRVRi̓pC'HHZ6u1[ @*=H27t"y1uLٖKcT HZ)-ؽ.fKI1O glbrϫR&R+\,ÇRzk_YC$% LkZTRiBL/:;PQDRƄSٔ[r-J'ʢ- /")!)l)Pt'A _"),e\fKrI`٥%`RiYl)P:4:zv)}lK0e)/60͖HJ.SX3[ B*݀yR!7tDRr$F0-R GR*")!l)t Iɝ`J43gȟT 4s2-".d1fK؊HJBlZ7{̙-r&&LK)Qt׳9SY_@.Rl)٥BLI)`84sfȓT:yR Bvl)>4H20Lke<ϙR 7R)2|JeR'4k,/R eR IYBR C")LF0͓R R(̖F$eSL9O~6[ I*5Ia`*B̖iJ0Oʞ̖M$mus<1[y2[ @*}A$%6rC'I!6')ېJ! fK):Q3$D0 u#/ϑR R̓'@DR8`J0@Կ_t5")@0e컃ҴΐR UR(s ]JA$X2URIRrgR!BBlZ:4scHOԓ/H L{)!,<)\ufK$BZٽ4ssm(եRbRj#BZY+A*$- v)T")G0`Y1[ TjK$ L`_T$%fK~. aHfR&BBlZ{ʃR`ORl)9K)eInδ&w>̖)6Pv`,siYԙ-a>$J؇H LLkc-R`*5OJ,؊H L`ԙ-b+*KjЉ22i,OL-e>dl)pC'" uLeTjIm uLSb/T*R3!DR `*c?ݛ-b8]JɑH {>1gZ.8'RbRR&GL%}l),SHJ\DR iSY0[ ^X5[J=R:៫iS "qX$ |Բߨ_[I='-2Ic {eB0H Pܜir߽tn03GF6rLb Zy9cҍRj>CGGTqxR?1׶ns|~i޽5MeyG{t<-R&/cnJ{}")CE=y(CՔ~n۶}<*eag~0-cms")電K?;CfHOJH>,v-5sr?[e`^?4[ "`c!ultMl-z*Y,rcgP̖BbD3tT-;nwwmS`HMPbKg5M|}̓B*Ma;* eq 5\^_IS94Lύvy#Rs!(QS*5[ y- cRutožCzRUe&- S4_}eG۶m^)B^R ?2;C- +nTa*Ki%4tV4} i)|n뜏ϣLn|4gKn, ?'%Oۦҭn41?>7Į ͖B^̖ByDҹq_;CGG5K`M 4Բ,DRJ1,lk186[ y1[ZS>oGxy4kcTi-ip̲ t)OΝ* ɣ/KesP9NfK!/fK!w"iN MGy?Rs9Dk4Gt:n47N?ER`>/==!/]|1[7tq:|p2/ p诠) _lZa yx-'tv$k(wG}bȋ(k#u _mVGKy24{ 7\6oHu4_}W_ޕe=o~'-o:x1ҔTil)l)}<=1 `)vG{nѾm_G碮6b}28=I{; *Uƛi J[ yo)q $e@ |)Lݻ`Z6tn kXt>裏>GGH>leXrMv̖B^̖.=^tzy#tɫ^_~s`:׼uì轜=nI~?N}{ݎi-E. eyOːdH2إ47q"|! 5>>6Mێ)F0=µm b;;?otn=&Zt>>J-!O|aԄOy:][7")LޞtQ[yǖwin8ߡ~q{9:ʢ}ukl0 ?O|t)f-4-rI4TM4OޣH:v uk,v̙]?3isT;q-~wt*l:mlԙpy^L$'vI|7MP9Ӻny9h Y{=Sÿ JlGiJRHSCsk"Qӝ+H VS$5ULBLΣ1c!#vRiI9Rc~0ǭӑ4#l.#eSXYa[LC!sS$Lvr6]GYV?m{ }ÝFNk"$io޼yo]6?~^Xߝ_׿u|zB a, "|_S䓰?х?"Dұ(鞺<:]NvLϿp,e}>cyۿ& /nLʹL ?H J!0~,'=bhܫϾcOOt>;TH t%Gf]]GEVR}K!/[FOezLg6R/M}5,g.2ޫϾc6Șh}{u.//~4gY<ݧ-hPel)(n 9ĭ^K{/I>&<,2aw7g:L?ZV΢{s^{ٷ=u;[N0-z<ER~=ϐHjY2UAlR)|"RSliA^r}Uso17%y~$JҎP=f-]C-=3zsx*")J!\GYâܭbsISbo2}ȑ,ct>%cJ$`elcGݖE%)y>= ͖B^ҟ-[t?4L%q")rsc7wI(e0U pöѳ=ҼH >r>D=YtTj=xXcӟ- O-Qc_$XJ_r"T)lF/O1,?z<#E$#\OLo=<s_FR@:JfK!/)ϖ͖ƛW}zF]rsJER`OڌNI.n9FR\*a}v,i1~X,៦DR@ܟpIKl)إ4tfK]ƞZ0YγH )/!ܥI]:* H9 kv,_Ȼl}-|?BI9OD$RVl*5[J\}{Ζ}hIɋp?Ro$-E@>LNMvt{.rOiұ#^~Iه|?$gJfKa59=>{7V{9?EZ .򊤥Rj=JJ)2}MOIT 1^̽j|&I$_OP$i6E@HfKٟHb[U?sɗ{.=\30(C{-%u5q~rGX~7_>gJJο(4(IEl)˄57hY[CqAvEmH#|?g?|Oj{$-uҦ(KBco4|ҖG8~L= {1S[i0_νhY weLw)}J)'U|leDHIG)+9tEt=k:Yn(U{ٷ5\957cce}.\[LH:TJ͖b]J۾Ị{:6!JQʋeR&N@L`]Kǧ,βzs&L>j$=vaz,jPu*5[2:ژM1嗂)r9̝[δZtTsuWKY׏^h~[o'oE@=RbY !@?}T {3?l)A?iˑ53=7 '4}uJe_]{eco*PE0}ۊߢ{fR)筙r?`jn,@ uF=w)~E@}̖2&?k~#{+eL`+&IdoeT  '{~m%?l>(k/i߲)I_$5O J*l)1, ގ\z?BDR♾P$-yRfR Ip97wnGh(O04GH ضW] ȣA0N"i %4|Cj̓m<:$LeS T$u^R*fKg,h{?>4A[ K$v4wo^(T:Cjs:[{>k}wfOKaG'jXOmPٙo]9P?ϞHHEjнC0Wd,Byl4Aʺ,~~X0~L!_!1tGP9HW") 7#'izv5M 4tTBfKLBy~R I1U1i WRJת S'+yR T )e`>t3[JƮ.M+7OZw) z͙?$'coO!PD0`"iI,؊Tp̩HZ&F$]5J`h^$ZTG` 4<`8 qЭ)&LK$-E۱W[J.R' NtDRYtqe$l:K#|^IKe=@lJP#ׄ)@mDZXtT+I I!w)"i,؇ToZCuIf=V<)LJ"Ţ{[Dz$m왼ˣ"i,؟Tz&g::>e[t@lRN3O <eS5zI\ St:N÷m۶VDR`|>>>>>~np,S X @*M}K}-'S8R|#XF0HHZwHTE0HHZ;&B̓[L"Ei8y >Nim۶u|&7L:Vkur{4*Ŝ)@<")Mc=@Z҃}Kfؓ` -fL*̈QSDҚ=@$- )2"),HT 0O C0'b RiB̖2F$$LIq{H*!T6j#E9J_3O {^2g ұ GRi6,w;")>HJǢ{|IM @=DR 7Rif̖|͓9LYt;4iF J%I Riژ' eIb=@Τ wXtC0%2d=@IҌ-uLeS ")CG*͆o1O Ԡ{3g L$6J!fLbyN$$Ic=@ @S ")cPfK8_I:)pP/#2H+ ` I$eE5J4l)LDRYtPvb``*sc=@Nܳ?tm۶m17ߌ:Jc~(R Kˈ,a=@ٷ4eIbLp")_[tPI$DR¹=@ͤB-실f=@}RؘyRc ]$eEHE-X")@:Bl Iˢ{:Ri,N]05g 5'PM*-ܟyR PǯH4I1[QI$BIDRxJiT$TZ,`` IْEI!>DR2I 0F*DdSG$e+")kHJ gf)lK$e+")IpELLa=lE*Bl cGHJmI<)cL!HV"Q`.jfKC")SXvkHL!I 'TRD!HVDR!R5S$=Il)#RO*RI؟`JDR"po6\,NK۶mۖIH|>>>>>~DDR"p,S b0gJDR"+J}9b4 H$e+")J!R B$e+")J O0%e")[IHTly͖' G)IيH @ʤRn%H @SR I,ᆬ`*HVDRr!$1I(O]̜)IيH @^RVImT$)lE$ GR)3xYLٖHVDR%fK͓P'DR";쉤 HVDR 2˝-IيH @IR2fBlZ3G*ecgKM.3%I(TJQ̓`HVDR&2iDR"PlXt IيH @=R6p쾥I`.l")[ITJ,lE$NR) r$A$e+")5;Ɨt:oo۶m۹<)|>f}ֱJHʖ")u3Uƶz!%Ls!:R);qzȋ`2u\@5Bn80_$eP$Ht P;lsՉ' %&P/IYO$ܙ*Kb´c2EER]]")O* "!T$e%@),@Φ䋤I f1") *)Ƣ{\3") &SH﹬fDRT LxF$R`zmI E̻ZDR~8g`O")0`;N߻k۶m[G 2OJu"*%z@v%C$J)aWH 'aSK$"KIpz'/ t:m۶m+jckC$ BΉl*PkC$c>$NcDR &P3\*DR 2 PWH $B6SN")2s;^\' {J!K?H$ J!c!| /")pPCt:Nm۶m%Rc+Z$3 SP~ /")WH M* @.DR R)K0 eIIHP8Ԍ}IDR R)Tv06|I$Rv{؟Ni=ڶmֱ`[~ER mJ:aa>[")*&k͓M$")Yt_yIHS{4")xA0`KD$r'WזR@ǢϸH O*FMxlj&%9y;Nݵm۶P3uk(R`;0F$\@R`6$eJS:Ik9")P:XE0HZYI:Hnk?H)IHfpLJb+9yp:N{ݵm۶c+2U Dqv2R)` P%Y@*v#K$-̊OR`W)@$J0OZ9IJ~8`"iT$'Aݜ)!8yyt:Nww׶m۶@|p %C*N0> D*؉` lYI J0n<>DRIL-f_$T phbjIj%s=,̇Xt> !)Ƣ#H KR)@rSxDRHLlI9")R Pc.pT Zv@$ DN4wwm۶mXAj̓}ERJ26MSHHI|O$`  {)<~Y$` bI>C${l2v ܽCP. \O)!Lkj´kKG b0O呔G؋T P8$=z(DZpSKYNQa:n1' =Jacz}HLa+"cnXP>tiC0GȑRLBI0 @R~%B8T<Km/+1PS\15a1gJ'57 @mLpE?ytOVGRʛ'57 }R)3ԩH* ,ɧ,/™*`! yRsT *SI_~(\"Q؊2$̙v̍@ Jؘ.yRybJB0%GDR` $BQ8R3aJ'57 J؉`JF eKm/+J"@.Lp nO0%@R3L|b62XahjapFKZ*G07 2U @Bnϙ.sw7OHZ6Ojnj X46A6ms#< ^xw0 *:NcN%N%>{oy&@uގ(D*,I S윍.IXT f 0F*եXv~xh@*JJJJiX endstream endobj 100 0 obj << /Type /XObject /Subtype /Image /Width 938 /Height 898 /BitsPerComponent 16 /ColorSpace /DeviceRGB /Length 25464 /Filter/FlateDecode /DecodeParms<> >> stream xݻn%׽a%Kdðy `$rxrE3am:5d/P>>G}G `PJw޽{n~~2Z L ndͲ9 ~l5.@ 6_ ` Ř&ݷo߾}v+.ۑ?i@>_`C}3b@ 0s L _?G~??C ʷ3Y`?(8~7|͐?O>䣏>裏RSI~/P!a۷<Gl#Y[;!~|AE?w!E˩;^?n ӟ3kZ !EZ^ݻwޥ0hLl6;ߔݹeCt߾}! /p,(߹{ @4$7o޼y^+S}|@vBN뎝*_HsuX{;pmߖB4_0ǧ#} ˟92 q~nc4`4_ #~s?0.(/PSm=L ?2?(߱#k'AwY{4m (;MBV>57TzԶu@ 3Ns x:wM(4_?vb:`H :] aX; bwJd/Pߵ I8+ܹ.!8Y쉴۾;vMn,;7 !˚sΝ;M _sۻ- +pqQ؟( b;s_m.˦1iM W:]~Cc}"I ӕu=e Z`Pq o&'?6a/O;VD@_{֟Lioq _ k'smJݧX1qY@1ng,iCz әM~~wX_ jC?LG"oP(4mnC)‰@oHݶWJ'I-O杳}BLǟ'ȍ ӄq~ߎO>O_?vvZkc*$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TH P!B/@_ *$TC=};k@,Ck~_ L-_,ͺ=%e6hG]߇~+v`,HV>Kͦa"FvRI9}-1_8ڷ0MHyks3|Y9.ޭ[-Z@{T9>v|{!=Q3:|} 4w}?z;w%/@r\R]u]|-1e^;;Gk珍cwFhº17}=˱_ۗ}9?UkڄQ go P6ZC=em87[\7_ S᫘CV(ۥ~GPG( P0k{s-.m_'OZ.L߱R9і}/E8mIeI)vh:0@._-?nK`Z&1Go$4֝&63HFIxecEHRbfK. i_h>rޥc'!M}S)yb۪sLy kww9fߗ p4h {C7 5qmou˄*Fe/uӏݽ\_O0@_9/7k[IǑc] /vu[XO"Qrtds|u'昩w{Jm&Ⱦp~9{:2N  ;n ' J%x?/+׎10I@R^4aPߚHbߥsR.Y THȁU/Fi5KU<0*d/Đߴ߁mMez<;;@ˬ"BJgg_H'|s]$oWٙX CA=-_Nvi$@_x/9}! t;2wcXA@ac7J)@G@8 ")YJ&})O9'0P.8n>0PHj9 e/-$`,/ %3zmCu]~?u[%`/p2M؞;w77m E' Wsu$1 J@_ "m}%`f9?>8Z y(d_(iҵɿ_H7w|䖊Xs([*0A7OLM-} 05s? X:^Ϗgy_ (8 f pV!_hSQ˚_MWQy/4Gre GM!9>Pi@YNe LЄpߑcc'_ L z&I [~X/@ 7 A;LgGPVP/`}7G^$`h U}Y{q%/Tbyc7j_[w%`h [ξ6v6 5en\IP; &LjaGSzP/O8 * K=nn$` {-@cY 'B1d_`~n?LY{ J'B7vs|.L/dm9 3Z?ˌ{ٛOB0ILɾk.Q0F,?h}pB;L}dD,@ _(y 'BF"˾2~5!k r%Bd_Xww77_|8@k \0I-o[` 3 94n2 ?NF@>0AȾQL O0@ʾ~wwVBL ! ޶ L._HdA lc0Xb?]V%`HKd_ =qї "Ze/ Xξ6ví+m_Y{9 &&ppy 0Le_ =7= b!:ob3xԱ˙8/`a'`u 9(/") lcCC=|H -oiݹ8-;0l%jn@Z\&\&;bK 뉿 [zV$`XC %e_ 6~LHN]8ݝ`G)GGH^1*6` d_ >2H0G+7vs|co gH_xf9 ȁi@8Xp_%`x$d_^c rΓ /ܼOb/ɿQyh MG5~'!Xn/M{ '~ H|0mi `'`=[0-in~Jgo$`q}M\݀|_c-r|#s}xy~ѻ;G8s6y @ /P:b Tn `qlW򙓀Klɴ_ 6c[z$`"Rge1B&/}2hF@$`'R g>rINn꺮{':Jy(P&ɾ@L-j90),`-SD0e1e18GM鏷-90%))O`ȟuȟKad_2!&[xF%`r%RaDgT ?/Xξ6ve/#M09ɚ @JA%Sd_V07%[G /D<:O?jo=gW ㈿$%-3+|' P:c V<!n2~H!r@μC+spw_3[ν zb}LXC~xy>w ɵϹ\zaLngx}+IJ(ɿgKW4N{%*`Xl´_ã][wo `0Ⱦp2;gۿ"U,9 0Ǵ_V?!-8r p.9>Swwn!84osԚc!$`_6Zξ6v(wt~K #d_OGEdS_$`_$ _ș 6vέ%P6J9Keb>P7 /-?Nh+d_ |H^ qM47۷[W%`HCrcjLe@LG6v GuXb ?&"Dd/9>bj¤ 4vɾ =PJ1 \D _Jۨ 7sY9(l/V}v]׍?#ņ`r0Ⱦ|Y|,&wޤ2 sͰK([0  ɭYu cۣkH_߰=_ȟ) 72@ط"nn̄;M (`[KZ]us'@>9e L c>l;V{\aR};7#P`[g0=|?onr:fto!18i (8n z"!I͂5)폹t6ߩr_5$` m]MuׯqX[mZsk{ɾ>`ш7T&Z P+O2@M֦ҹ_;|D m46 x[Muˇ]G =7S+]u]hl?.oZ67>X#0 kE_>1&b5[kʗ0:+Τ[Z՝s^aDX[%J;%Qy( mb PrlUPqM.yl-jf'Y{w%22(C̎_\zt-x M3h>!p OV&m7RSc~@ƷG]u~ Ē7jpnx}?<*uH F<'۳w81 inbmV%J +7+,k.?櫯>J3#|ÐkhmoK- ?Ķ/_.s9}Abߘ{ϗn_܈ \E@9!ƥ}5 1r f"_&1 1ÑB1 ގOV_; 1ᄳL#~zbn!.Bvz[2[+j\u]M:YSr`oD6y]˃U?G K`?Kfb 9-k{:Q șMI)H̹麮pp HOo@4!1 1y$|%E p.7k~I)'JV.[ wM8anɿq۱K37+^onZJ1LM}" z]u=Oíeo 8UǛf!#Ms@YLVbC>ڼ+4LI3`/pV9Wp9{z8X P /˾:ŻnoryifsҐD(Vk0/Re/1.@IoP0a@>]rm ݙ#ջ?)O_Skp^8[ P9p ?'Lș[}?_n-`Q)X@ʾVn![ p [u$`ej9ofH.4 Ka/@J/M0V݄c\7ouZ+K\>,Q8{L owkg \gW()^Ya/@JiowkgD HCKm3| P+w) @L-X\/s:sgxC L}* ^0@(5 0Ǵ_}WXh wE0}\甀kdD% ô_cՑ}f VF@HE]* 0f@ %f_G;ngAYm#pB]U?u3(-dKi<=Z^. pOmɿocm$v˰bn1)wo-pwϲiF L-$W# @A oѐcoz?K;Z[ˈ̭}H1Qp8^ugYCP~y(pl@=>ԥkm8nsGO.g2((@L}Ӑa-i:z-q[j%'ߴL8*P~}:pgSL͂-g$Q:0[+R5~8:ȾY>p |n5qx9?g0RswnoJg/J!Լs`+i@dI%9Zp]*P ٷtpM=p⯷̑L|I2"4W-\R5m@YL!M.=QvH9j4Z2h$c V}a %J+ȟi@d_ϸ28$V_mOuV΃-_pVP ~v̭} $Hyk(ZӺ@ |#N.k==֫0z%r;Hyg2+Hn'p]=_!6yi@d_%pGAֳȇi@d_⑀seXAG,/i.K0u0`Y%=@ |3W% 8?f6/gs=/T L&o1(Ɂ[BFnFΉ0 `NWi@d_r&S.w.o]#R 8ne/k} WV NKL8K6y Osk~e_'_] b05~9d_ 5Gj߷V`^%ך_|G,ȚUX5\";p?\׍8s s!t1cJHɾA>-Ž%󊉿6y˙:G1ȟK$|X{Dp&)].˄cYd_\%8l'x4W5yGV) z?{L h{ GxmX&e 8)2,-08 |.x'1@tq%6p*?.(p(\# .|B L`!|@۸@ L |혔UZxď>/Ĺ^vvrL&?' 8U|O7k׵4bnnq{{s}rsBJ vm#)u(l2vZMs~Η@ZaO=j A9؇?.4y8}SZq옋i'%wfA |F@MA`i>w3 F͙弇VbtspY-Nn&|TM5iB 0mnݿ~.][˾5(cg˴AS+57M_6\Gǡ^[m(Ko\}yfzgŸxM7?3[u|DzԽ xg+哕? |׶:4./+Rҵrrļ^ۚ/j؏jL_NWe0Dvr5Rz,߹.\g_k~i1fFgi{!|&[>.mYk2bo,ycDZҼ> 8G[Or a,s\.W.ϗ۷o>^]95,~"@!=~r yo]G{9=c2}N]*m[;N!Z-ܶrSnA3x܊ڐ0v512u2./жRr~J[wx:1mp6j sk~Շ~!~=')C`/G1ڣrWt>϶U(ɾa'ܖ^w|_駟~sw9]b߸ ?[Ka Mk{v)1 /_P??Z~A]wsd]u_~0Wq ! xm^ څg۳.:sȪ%B\W<צW;+F2tLۂosǤG ך_?LT6c.'_#ӆQWկ~xCrZ$,_B\~>yۜ補eZ1|<$`+t;/Ⱦfp8֝Tp۱+Wo޼y Y(Z'sda[k~|cg \Ce_c؊s{CJ!C&1-c۷o߾};W!!xl4Rĸus] U&R9z npVߵwmۻ==Ϝ[Ӻ<'_9ɿcooIy8JU|c+SVf[c.y/iWΙ>kcm/ ϔZ[ߐϙ[;< oFg?g}g /˿sfD筻aۂ&ʾ\67;y%mIR8WBIu&v1/6vhOt{rj9+>Jtje/D7`0J퍤Ͼ///@Mkͽ|Ⱦ!k/s=7VjoہwH|ʾgk!wY[ jʾEJXK%  Osw90Cn1_R.Heߚ@DޖM0ͩ'_sCR_b糯5@k<-gxk~kfqÿ;+y/.Le X ګQ\? %[>ږ}HY~'e;t.kY0&ksY~2|]gy*) ˾Y[Ɔ}?~dd5Q?_rmIyf+|݀ZH7t\\6bsFrɻg/aJmߚy6e_`tK>&̾~T |HE^Εi5c0״ߺ597߳ R/%q-06}[+ϱ9+l(ki&qV+Oan)ݠ--˾mysKE^Jd 9vV>㳜rV/}!%Yξ9Gee  gG3s)|lΖ|5ϐz kmKe_,32oگMހ6Y Y[%ixٶ5fy:g<!R+AY`}ӿ-eiO |ZRdL?>w p$札˺agS%g-xS?P;+!zC9P8Lk{8G;d_e-bnok5@{ &nsMoˀU>ltɾ unJ̾NY ֗Qʥtg._ǫ,C>߫3[[b^{N5ner T.5ko]ZZ!B ZȾx9ayԩ2YJߪ+$l\+MbX!O{S{f 9n-{eߒN=|Xw+Jٜ{q֊_uyPZ1zďѡki=9۲Zܦjێ@YG)9@W ]e(Gg_ }>ؓF`X,BnG}ӿcqڱ{6nm]Yr޾ y"i/sξc1t*@庑cf_-1tY~s-SylG\'`v>0_2%2opr-z`[{{{{{= p6|noouC&ǗUo!'wwGԲi/VR q˾GYX*`6}O?.| VhUr, 6v;Mp;*`ɾqdjPg9O^~ֲ@kdߔ,P$`=&o51rYqY/mn-n_wZξjWzHYdA(Vùes29[~";že/j=,2 co}g>unv{{{{{;Wt#s!vݽ~|g@ltگ5T"u/Ue}Ӱ} ; =V \QȾk{1g&9X}}) wsi 9% pQ,g_k~28Mu¹HZbt:,'!F g+oJg/@vlpexlO|X S˫$`c 4a$;KO=Mb3Y IȾ0 ZT2u]79[63OK8r𝒀X7 ˃x/Y֒o,ȟ.S0@-WkMkIk}k 7/I5ݚ +ni7`? ڴBٷ&;I  Z}@-e7jϚ_` Z`cP7Ho`. }[c@_N#CMdߺ D. s=<dA-_7 '5@0b}o |(36yr C_eξ5%  ClN]W8mI|ȾPHp.ײ a`/ [fY[?J&bf1P Ґ}DF%C< DdVξ50}'@9߃5B0e"&ow.К_\0!Z k^0ǚ_҉QH璀!uv V/?2 ./A=@Yo*h cd_u#*%Z @A2j$6Ě_ ]e_Ƭ{wi˔MZ 6e0-pI0l90ZZ2Cm5c05} e@߃J5$`J_e5aJ!SjL#60eLʾ\g@(rxˌWtɟKIm5He-hTո ˛5==C|}h +HK%Qsj$`[~ҥqͯ 2LJ}///m` .E/cך_6ѥ[k@01Ⱦ}#a$`/ω=ך_H| 旱畲/׈Ļ@$`֒} 7LP`L$`B,/}Y<}OgݮMJ!%Gn0%@"0]el9Z 7wOf\˾ɾ!&o[ zo\6IY>2?ٗK_mߌl`/@}$}_?˲/7vmb  tsgJel9Z i܅B.K ,ù` 8es-k~{z'{mwLٗK @ o֬`{s$k~e_3%B>K 0>0%7wTe_Ɩ5&f]>IiȾ}ȁ[ k~!豅 y_|#f/cOk~e_&fC%﷼Kȥs="@$m}ʾ<<_sX^q$d_B,oʰ p 2} o$`⑀/c/&1d_&@  xw旱_/%!O xQKȥE goa$`i'ٗ痖\+?H0񴐀e_B,o &O x'}[ξP x0Ԕe_BȾD @<'Z7#.ݺN?-/,ӟi5\l˾j=@ =JYW%"P:r01䜀Ǻ}rٗ痖\+P 01䙀e_B,ou0S>3 x`"00 x.7˾,]VM^V6gls*`ٗ/%CsD o$`bH5==}h @cTٗK @ _~$ñ xx\}{ɾ<<_v<#Q X%n+$`bؓVel9Z @k_fIİ6˾}`J01$=.a9/+k~y|D_V!<˾=}`  @ Xely/0H ٗ1@8]$`#.!/F0 ۈFX> kL`-y!z/QHa/sd_' 2 yR|/N%: ac78K"0! |h 1$%0؏#r )k~['_N##=^^d_Cd0fq ɂ 2ڱ<8KF$`yD?QKv$`vX") &977/&5 j _ ==J}} =H @z/E7ϵQIp.r&R< DTBȇG_m} W/U ղ/FB0Yl}\+@_%Q'y p.k~Kgc7(K$`<ʾPHB:4G8Mj&@_%#aJ$4  k~K47Ar lR\/H56v &oAj$0}/̒Y[j'+$`1;w/J 0 @_XAZfQ@_XM 6v_ب <ɾ@H@<)Lɾ6# p0P~d_h Q,'`!̍z}"Z~-%7~_NJQJIgDŽ_O‰ sɾZ/@rHd_ RX{G/LI@><<}/dA`ly/@2"1!=G!;09GLIMIb!k0Gy}㈿P Vsd_`?!iܨ8 xˑ>(/Ib76)P0  'B$`ɾY_ aC / Uepe_ *$anԃ $B$``̽9_ ܈ 2(/'"@˧;/#O#B$`hV!B$`F=Ⱦ@n_@_܈$`ӄ_/ 0&+$`(={ɾ@i_` ю I^!@]k EH?5/P"XAj@_`5 rc# @-_`# ( Mv O#5Hp{ K#{L"IM5/P+B򱼱@_ " Rwj9Z MX=%h $"}V@R0auGI&'EȾ@_40g`n¯ LN&@G@$``k/ dD)~Ld_k_ ;0J'`577/_ ko%`.hȾs_0in¯ L #]?G=L$@ݖ5!_`0hgͯ p(r({'/>/P'H@e_#@U$`h` @ڼ+'Ւ(]k~7v`? @Z?ZξE @d__!07 >h @>ڹyMe_T_Q0yoܽ  4M,-M}$`8n!H\u |Xξ!NvxB{\.c6WHփ09s x 4wH8b/U1 Prn+Kxr!M#R&:Hc9||c/ kV1 `z/@ݬ(Ĝ Ú_k{Zc/@<-b9wͯ-"1!1{X 4GbNCbA/s9V1a3ĸH &1!1Qk~_ fsV12c6WHiH[ }"1!1 |_Ii䙘Vp P$9y8 ,96Gd%fHC g%f8 S q#TH P!B/@_ *$TH P!B/@V endstream endobj 120 0 obj << /Length1 1944 /Length2 11840 /Length3 0 /Length 13038 /Filter /FlateDecode >> stream xڍP nA.` $8 [wwM9ޫbfuݫwVSC qȪ8y1u1AP73D_ Y(aD5g@rs =5N3( ڹO GDDp Bj@w;D+#@ rbv.\\^^^@'7Ng ; n koui];gw/ V ,b `tT. dտ o'C ZY9;!`-h(rvg!ֿ@G7gX<vZ(Hk0s]85rNk)P*q2ݸAlLRՑ8 =m UOo'TkV;}pz?XJ.mB1窻6o]f ˴U drЗ-c/9\V+T]~LNi{Y|I%:Z?Q:sϺZ:oBl85ܪ1 Ov9ArAWE2'\4X.!]DB=+ч4P,Fv lz^Og &kꜲ&'۔=M|p%ܺK"4?ߔavyxvZx6k!A>I:ˢ*aW729 7=[s:Ƭ؟s rW4&Gɨ"5_NB/P--QAVٵΔ "-eș3CŌĢ3T3|)qótB_U$GUZ` )? n<5gib7ldEgEY<dH:º%6!{Qʂ""k|y @[X9˪…G|6MnP{B+wr_JCi3#}>ٙyrJL;NGt!R 2:/}`v 'G5N{GuZwUƴJKC5q~Sc^MAQb``ؽ>Tv2}m>OCd_0͑P[v!h ̭]_;EO3FrEVDx7-Uu~TvxşS@/E@k#b._폦Ry~; 1u ?JƦLzˀ*x=g+,H"$i9alcӑ(xo2?Gy5}F+cq#FN (N 9ˉ̒7-)?E< "oQEȋwHfW ː[hO eP>S+_Ǖw|365#$mIʺ4=L!CeP:IWy_e:^o8"|e'Ѿ6GkUOБq@q[ +vr}j2 =t|f}& 'Y6 C74xm#1\v_)^v/Bq }nRns} ¿hs@o .+!o7$;%lΟ5f}.F̞˿:lg*Zd@ccX)l.N_Ra5@hvG2PnOiI5ZYpadZjPEQiFbQvjwB;)緗S%]p /NL0Fi(~ ~q #u CQXMvv|qWҜQFn]@on9̝?x{3 i1E/wp6kVgrQTrpWJ3I2ޯNS-*Ъ%NQQS #꼊/rUt^B5G={]H,Gˣ)!&$Y+)\Pjw%i3pYs ^' qF]#.qssEj` jsD>1+ge1K7|d;3!]f񓹳s9Vn;4tܔӇ(ZC}Qt|'KRw[u(`{@9Ǿv!I~ἧneX54n.wTDoDr sI+׬J+M儵N\ixAFz VK56'a_m閸 Tu&%])>̱F,H)ن"V;ϔ~ʰ(:tiI~tdߵZ5OqȘ@Fq}sQevp mHV9\lвثc˯+qhS?:fC:@h3TTg6+6ayi9CU!X^ "Wc a b%Oo [ Ԡ3t6lYzQc%6^ St>i/lzL($oJ^U[Լ1)5\ۘawH&p߈ĉe9|( iVdHi 6^?.>pMwHO8En[~i|RDl,5zLz?Xg>! D1}[ 2A2e;Y:| XZ P̙&U+ڟXqޡ2mz-opX ^̢8C15fkWC;`8z^j/J+$2cޒmESk,wrMx'OZE8+p[[&[ɞsVl͆+}wzGD02WL9@ʟ-Sg$jroGܲ>ԒdRK5gfs>{[œ•|5Œ9;&9Pkճ7fi (" g ++[E ofbF& F+C* c ƶxGDKtIIf'޸-K4,㌐F\pjxޕ;FG 4``!,סe}vX.i9FYipӦN[QSp Xlz6t 8í"cް S슈n ׭?:A=4/%r,^nߴ 6}.(Kt9&;-ks%{_n m`:`~ZG[3pkY(Sm9{:α9ע WDNr[DLfڬ= zJ]O K7ه/)_)Y&uU4CP5%D֙z W<͞B;X# v('Cx󵥌oyg=Qxl=%w넂_^'>^4_>tkS~\~=O|nK˘(Z9)ߵ yM d ¾jQr,VCS-ܓyNRR𔭂-Ja mYd2Q9ik._1́w[ \Vk6Z$Ѝ<BBh%u\sLF,cVdGu3b%alOܥ t $:=Uz^WtsO{irq'_s=x̸2 y{BFu$|;C^qSZi܊5vG=-,w:k*ϥ&ɧOWGEџr/&l F&kt\61[ MQ>s'GmuKⴵ&Tx8I6.3hy.f1WƊ;p(2)eJj>+b,dUۨ^}S|w0 8 ?o@[_-D-oUq">v6ٱ zl_9.E-3^z(nMcߵ4t~~T==ߵL.# 8c7IcS_-$dhgo\UY2 &C,Um.FJg#\nDg*XϚv:ģ z:xr҅zASS޶PpLmFQNăь[4_tST)Eـǀ)[g?;m<'Ą$|1j3lf7c7v:hu~6zpءMWs!1h_YoOh|6~̦AŋYr1wreJ+ ;-F  E18Sؑ)h$)I܁DRşk{ѐuLT?2&sJvyS.pĴT=|p1@ŶI5顢p"hߢ,GHylKbpO@>S&m?:O~4g4_\ P*Ճ'}ȠrD ߟLb Ch sbl"L2I*Y)=lZHLEں/޲|pr>-r7!n3#pXE<~撸k0%81nJuIJҚ[ y&q7=FD^$\ZmzȦGw-vmMں^HUHpIJ/YQspobGy€e@ F|(y7 t(-v<_FTz0|ή/9NG 8F~{G"QyV^ i!߾=;i\yo.-|H,# NoBřݯX!y[4ӛMd?~EŔ[^e)f dy).r ċIA/=A"pѢUbһN.> anMƣ㍻`V+lSGBEJ>Y8>[Í!XKyهm2*!saorڊߡRLw `Qoؖ>}p6٢w4KƢZݜJ{>fCKad_<Й~#[Y#jK[:bk6!eSG_+ǬAɬ;ʛWS>#}:/c"~ך5`;i丫ˤ" _=MkX~" ێveY&BurGN`|)go'DZ0)yx=׍űH*xc LA y̾ԝ.W(dat.}N#[{./6.)z g/ttn(xtCq@,cAC?KJZͨjm4P$O9A90ޖx:.ϊ6. `zg)oQp]!?ҟfkzav1eTM xXOtęK/a9ѦW1 nTփ^M#h+ƻ`>Umz̮ݜ"U \ch`iWb&LUBdqtJZ5fdFǍS5LVvgE7Y/E{ FH l28|j zث#TT?6VpsھuOt;X"z LwW$۷ '_;{9;Zŋfmxy|>T}H S>5%GnYLj@I+Y>K"t5['"mAi(Ihwv0 7 9М_vG6xxCu B@9@-! rd+V<-k'6"&|zXcEqB58_,Y#eZǪ?u1߳$4H:6+ ]d,U&#)-g1=ho!J=VJ{Ыhqٿqn?Y :wԼ7𖩛K(79a /V pus}VM(";Vw3n/(xoq\Th?rQВ LH'b}+xlbIl.ߨ`3S_U;V#tY{__ϔN|D$no+LM͓ ٍ@IUJ!^Kv8=r~{*nē!g$i7~0!f.L.|r_TbSȅ2I&oU˃% ܸ)CNqOdϚդ (t=>ã^c}OizzZQ::-̑^E(|k_ôS,i &UySyNq5.V? "3D}QPd7@)1G5z{dqx;xȂBB2K$ CPcKkP vpM]?8?>JLLlV-zcAFd `s(EF<0[CJ+Ϊ4QPm)kK(9%ɜ*a9.hEjN!Wc%e}^'ƊnM+Bf=k3W3ؖMái 7QR c 3Xyz!$:y\o7pAs7G9uf$jܢ\TsH/۲Y9F]cj~ҚPD /ɛQ*ܱ|ǎMW{ Aԇ^4~*a6quMU՘@SN}) JM|psmTPF]h",nCD $ fxt"SQ/ct'ĉ^]*Yδk>3rL |{(,`` $bOg̟O6=-&l!b ۯV|,}<<("=7+T3 49£ԴcdN:?yFSFdԿ٢`KB ?e}5f #uYǶl2 Ny<7Tu+AY猼iYNBLR>F~{3}A'@7YIąC37ÒZ% J(/oWUJc|d21z0J\ $dq34-LW7jƉqh)0W$5\'`9h^~L 7M:rħ8g;}Y(mfD2^~ҽxUZ9pTo {g;OjR>f6q[Ѷ/^vzIsϱ͡'bJ j x~܌2.uc䥿A,ibKwjjFK'֭p5C-20┝QaaQ4Ubfs{:(LVb I,25zNI͹=)1WY#0-O ^|raMAR^[x+:\) d #y.GgIl8`3@ф~'>:_:qd{zKwл ץ]sFv>Uj{S%<'$TKAxǼL7 ?Hd^ne'g b{3oM}Ԫ>ӆh13e 2}Ol[J2)V6g,ikt-+)ˏAeҊpjfWr7C0B[(-W0STثX̷} [ nغ^׸ʠ0B]QZGx %ҬZ0edeyΆu;NQ&ƍ]hښ\ KL):σN4XJEGJNYHgr:2Ǚλ3Ý3}CjwpO}+vevހ9݈ _B>!XP`+6B3Yso 1>egsqS{qCYXfW?Z}ˁ( u$0Xu)&dGHSWoBg1˛er[]$`}Ursl}(&H: gXq8}|֍ԯ>~7>aR }LTx E~q:F(w2'MP/&psa%z#Y Mtq!Wl6 k[o&C}lIt$eή4(z [pJW|DH PqXd)8kܗug3 d8AvlZXbg4h7dHZtdžr)W\VZ_ٿfbȷh cԻ sW } 0oG> RQ4=lm~ݵ|I$V? c}_5l68M+ȶMoZ(96-7ܿ AJYI ?i1'6(#|x(zn{bLŒ$u!k.pbXzttӘGMwN^bUQ={C&AG@|Ի)#ZSpAj$7kDK$<[23LucZ4n`oӮ#%fEPd:{/#3py~i7֭IQK2 eq;SVeVa0}48/iOCrw%xrʶѰޏ4 xq`J`I!Z% |xYDd52 $6#&IKQ PuY.6Q ?Eh kMW֢$ [=^Roc13#JAiIʖ_o'Iloi  s+n< 56D/[tBp,w()-%J1Nl¾=j7=:߆H˵@PR/U{L&hvc vTV+;@M轪o{:Sy|t~YLñuSc'w2t`/AG4"f}1OIԖaK-'q ʢdp?OYZ?mt_tk0U@jEF!h+}Ꮄ@1J[X3{^tx'92q4`Sc$e'J/9h(yne` ɱ6D"~SyȜsJ+*ޚC駚F~v!W$n_1w[ endstream endobj 122 0 obj << /Length1 1561 /Length2 8130 /Length3 0 /Length 9155 /Filter /FlateDecode >> stream xڍT6LH,Hݒҝ..,4JJ Ht#ݭE+!''(F|OaP{_8!6@ܝp;T_;6[( .W =/go'/ ?g3Nf!q;?xy5` ~gF 0M /ϓݐApGoLVIQox^7  =w:V-0GB /w[ `ku]Bq7Pۿ+`Y}?/{$EwG nݑw [R :sw_ |(p[z sSyB!Z0ݟUܥwZ7دY;ܽ\.OnmAnZI>A!Ep7wHnP_D@?N» wɴvwuk ZLCX n<}>(vf=٩0jvYtsf 9̅CO U^' [ VnOǓ|NiԡыviEKCl;uYH||lJ`,TV ihj,|FE+jlխ.xI֊S\jYDgMK_{:ZTQ̡H2nڧsWYo}(d~@:(}lEK1i׻GŴ*(Z,+rLME^o(K "bJ*KD9bFlTXQٽ܇ ;ُ\riwup7m Tx`O4M˵'Tbj z6Ŀl WgXK2l x-ᣫ8{<c+.rxٶBzlMYcDZ:.U~S9<9Ít DE@d,⮝J9*XYl\Y/yM`+uE)'2lq(fF^Rn@`7)^3ȂsaYb@Bjg~[lהy Fu>o4fr!؅cۆVKkF,nƛ)Ёݾ;[G+[:<>=]o0fhb Pzlt5CϔigUa Cr_SH(67;HĿo qJC"AUNw`[$pm:p;6;ӑ\uȈVצ^$ziUsZi%~ТtC >KXCK˄(Ub):| toBؽ(%" ט]*c=¸'Ƿe}0{tX9F#r98)uܨ0/Y$1]YdlD׀ ȟ{^3F6'0Wi}ĥhLٖߪ!uQ`'eMS+ Y ֱ^v2!W= {dў,1hywW5=NNIPuX y1[=E*F4UZPDo pCa 4QYJ\=-,̧#'$ղ`rp 'PK2T#eh2qˉ a( T}C_`ﶁa% ۦuUEV1GwZ,f8/F)XwqX) ]ho9+}?u{v:u4aN & |m{"<8X~B*LxljlbLZył(#U&h&KUĸ.\8`bzu%6ۣ㬢;VH\9(YHNhxrKlP<N3]Qyr|{9o0~ant&Kg9\u9Ln٧w|Z-`C9Vjy)y1=  cWj}}ma_7U@2 N"A}6W~uk/~̺tɁ ',f#LV,&ȱn҇dqR͘uatM"=R8"Vݲv&).NwWRЈ-U&yM·_67[Jegl_[PYu[Q~{Rp=t&å}UyLa;qHݜRj"Zaԁػ.N9]twUdH5[`էw e)FɋP7h=Ib6Ǫ6ƨlL!fm{T"'u'}_:l TBk?p&~cU'"yJmZgRp=#:؀&CG9*w)/3&:+XJۄm 9׈omk"FO?ܬYa(+>m\bn,U3m}vlήl'K x1146ӉQOE?NV\=c0$d@{}>FP*v1߆KcG;UL Q:r,g԰ *MazNRrL3 Q3ekI]+J(?BN۳`>6Wd2z41\mTZAF 9pIEù\2'pg %<&vu–ZXp=֦-hBQYUNƅi]Qcn,m׶8 g5b4 {! K\,Y ?'u^?c4 %@G/sU=QK -[vnAI<}Vyuns3 Cx~,Lu{'Eba,aR~rt-!!IRh/qi8|7[S1tkX^@/-ۄ; L9nϥN0AZ'DP=**h)BZ8"PO5Pe麞ptߵ 슅OkJBrS߷dZV2$V}̑^֫h]}CD)cq/X%jyPLszYn VL橃QpS(Ic]7dm\=A>Cҭ1ؗ ܃yF?|lwQ9)c:J-㑮8-VvN }H#s^kdE*$lU*=?諒^Oo8 z}ʡTWĠzXFxC_K'+=#J[Ma;FA'0ED\d"oj5Gt֩ ~~lmhj ~Ջ_A駸TXcR>hiGb5H ;ǵ=7.RG7QmXz^ү%Oy'OSPכvAdSIU/:|G_nΒcZܚh&TaCc=mh8Ve!9%oR54&xeP",Cm._Kax&Mg&3۟0~3 <\u!ɻxUNbvYLd#R٠#O~ϧ4^`d+W"z(خrS#4L+:~thR^[Gx?7_{+@Wm4ҲQtj:!1z9AxiyɄ>֧f>6E{?wh.9'H8;sNIumc}H.heŽIpzqv탷Is ƎGyQOsSLQߊn/~:{Is|SHΫ0JGI ZBqr b 1y'FkDjm9KbdcזʬZ.GI5G;FO2Wk^Hfo&F-f NUqz,F@gPڄe,b{Xɰ?$CG\Sed೮WEf_[_+X`0čjw}apd'㧻fI)ч{|_5q)0˩ ^g̥|XoSOkA;YT].!/5aKgnXևV|NS4iIKHg~L pvԌY1%^7:2ӫ&+Z9nLN1!U[g}?aŊF*'+S /GE_?.8{3U.mh@P[ܖ_݆l8; >{ vP&i8 -~byֿ3|a /E[\lI1m.*M 3(G[$ɺ]@2?P"‰ȸW-u[XW'')>aV"G:Z̝9%h;ϣ8ͼȸqdH}0m`"%auh~&ui V2O諶Q38!{ѽܲ_N!JEE RcKˋ+6#{<5v_zċ52-k9 'wT=o~xq":2@mf ˀ>pȅ{J+"u;҉w<ƞBsPS@j t.Q&0n0 h]2Xɹ1괼L:Ok%jT 1QW%F{&AѪ.f(aʴ! I3s_3.?8OWWZ2܏m yX'"M$1 ${?`:TO[ lT6t)ޑ{`_^EEaZpwkGrT÷ ੘/f#UTLI ;a3JjMZenNܦRlgXtj@uɃ!37'(O!'l.f#`O~쒑m6;Át .d R0$JݘGb>aɿqE͖a~  ꟫3@х;M9P̩.$LA-˴Kg62?%%JE'a^WI.dK\M#LZHH@m'e 훷$ ƱVHp~1lh[  zYUEP`YDmzԗB%g̪$_㣐${աVo(# 5 0U](kh&= i#z2G9еtŀNۖlPý'GA^pSgC~9 Th^ɐnV61Bo6JW&, uzbFaM SOwDZ9zE0JR'ab6?q-PX, ??V{qpӉ_ufF3Ϩ-O>oP?/m:j2i-ڎ"c|Rޝj~FHX9Ϸ{d}CU2t_yܽ'?a y$vMdaqLU|jOQCʞ@vG,LY&  lgO J̑H _L}9Ibӓ`_S[Cgcq^>PV[ҡwB+5_$kM"ry >[t;4wo?^āʷ5}Y]\S'Ǡտmtcd1%MLUbjC^5c }5u(z7%̬^VR" * Ҽ燻Rj:}vBCJ[D ޢc/E#|df2\IUBr&RJh`Й&g/\<_=Sѱq&!| rT_/;/ NE~E[vJѤY.,GDŽ<LVlL/<Ȟs4jD~>xsO 22T-862t%A&4Kw8lզJLYѯ+' Ik;7c$Zl|BJX1i狑bp'wn4xj~l3gr |[sl.2\}:a"e'0D9Iv9_z'DH--&F+.D endstream endobj 124 0 obj << /Length1 1404 /Length2 5894 /Length3 0 /Length 6849 /Filter /FlateDecode >> stream xڍuT6U: {޻$B wiJo4 (J"]P@v}׺we{gyy+APuYBB"BB&0o;1CP*"n(.  I D  +CUH3 SGPr"a` B9C1 71 K{ N|_`"}/=;5bv3/1 BB {aB(0{@u4+ݟ_` 0NG#C@p/ `n  Au%C?/0(+ jp  Gy* c/gp/84d#jbE"փeQO$E9l׉C)IJǯ|>H"WwVy(1DN զ45Je+ML3y~2%?B~|zΚ\?mO+Z`} Dx43ۃb@Z%!\_dh|We/-(*G)]o2ׇW U-Vϻ*>:~MԕZ˱-=+f;ôx!ysNڣ}o/Obonɼ:2NI'g|֤}GAeL^ə  bl<.jfرI9wyf ^sVxr6zNB# ?ꄻA׃4]ˀ&/wXF. )Tfk-?  V39n\:y 19p2QvOSj^MERD{spkT^[TTO{V^t ]^n'v֝AYiN\M+t pDž-]=8HCCRk]gkWtz[QeѮuSCN4@&JأcBV"2F wqxSR 'nPȼګMUƃu7S4XF ecHFґYNtٛ"e-yҌ0 TFNg8q C eXapovd\$Q~/< /o=ܟ+f_Ob擮6KX=쨚aծSs2:C ^ˆ$ҡo9vST#V:0Xf.1$.rEh~}F &"/9KJ*i/ 5۩LߏY=-=㿘p*M\;^wӚ >_W Fqe _ӲU,N|8TU#ƀὩP;3ןnw;iVxjV,qn[־ة9zWVnyQ8Uy0F_1^p݇5wei-э^uk-<+Q g!Q3lUe6v;6K6ZYrTa[slja[nBLF6|^=G+qU9}>U_Y]ֹ)7F c_c޶*پG[žsHa F8Yu5\}1A^Eg RvkξaG. :A$ o׳OUڐ*ôywɫvSHٻH{w@F~6~ Q- &acN~vp3 l7b ?oRLһ2|`H+k e˿ѭy{HefCN<_peSftбIg+i7lo0~U]^h.m͒L=S8v= 4kǗ_5VX@V" H-?!/XmF|tLH2PetP2 bm/|1EX?l=6kokk!"TKL!1x;huaFLҝ[j1Ӊ5R3t BkLTA|Ŭ nTF y f &62v:Y!{$.('䍃S d=1~USB iYPi0~}zA219!VmlCc"H3q,و|"TdHm[z?fͦ&-O(m\/WocF_?X0g2p]{9 6"\s}^İDA&X3IJyiTJ 53/L0k O} hwKQк6@xc[9zw.v7,jpd8w1^Ὀg0qWߝچ%#ˣвr*_`k|KovjH3&Ғ頱^7h`9N/z]7Ҳ7m{KyhW Nqȗ/(Ⱥȡd1ׄ'G?sM~sy9i /[H_M+&W QGV+)ʃRrW&T 8,w 9FtOI M| 5r3/Sl~Ƒ-}73*+ hK\q<_z'W[;Kzxkߚm]@LR䗧(Y^ "/L<=tK hL %4 Z= )UV @W[ܒqn" $&-?#v,?#4x)>R,y|)_i3.O\:$@1yc3Rk7HR[XHj m{߻R)<Ҕ&Jgk>vlѤ-l2Y'䍌)F,tػ-iSGT U5|K7.kkcԋMv Kb^['KR16ȚNgvN)2MYs`GOk鲏| Ymo ²wN5Ly PR E.W7H[ @lט.՚:tتUx+"KkK`Iq~c\q3ZHDOI_"ۇڄ`bQR*m^ǹ%Zr*&=,ax3t+nChYDUA訦7gT`Yk7VDh։հW9GžVx.k OQ]ڕ2CuCOrI8n!g,YY9/#ԗ]ΌoxCƤQ ,'T5~qө`XWAKN$v>üN^TM8Hf'W ԴQ}!r/aK\^2ȩY3k12ᶘa<>-t.db%*\tRqLsBA,J5 @JEj 3DҞ(=ՋuA3cýVjzuY3j?R&lX]F-{|Gؗ_/YIߨ",57$!کs%k#"Ia11!+YEi}e{q$(Ͽ8#QS:'Nɗ/3c?FD]s@6J6D@o2x_bo&)Tm??SV3)vzWQVnPg3q@F6s %ɥn"Hy:G(1<_>6UQW=fAw72YzI=:L|A Wrd;^]UIABh {Y,k+r2+q}Es 3v9J,WQ:[`eRWvruSow.yAkgWk>U AEkУlҗ׃MXEut( insWv[}XY;0駹QJmʤr䞳^7|X郟_*l=•$Z9RA rQ=}1yA&2%NR&al [1*iRnjZXp~XԢ|yB92&Ghm|NL,BK}GHӻ5T endstream endobj 126 0 obj << /Length1 1614 /Length2 8904 /Length3 0 /Length 9967 /Filter /FlateDecode >> stream xڍvT\.H4HPJw4"]10 Рtww ) ݍt#)ݻֽk֚9ϳ&: miusprdUUxx|ܼLL:o=6k3 u_` P+;GPGH-#Y tWP0 I #}0[xDDHۃ!@*nGT0?R0Ꭲ\\nnn@{'Z0+  ciІZ݀`Ba;!. 3QPw;;x8yIWD?P{G`T8pvh"@G@&@>3A~c1fy,aO D݃}us[8~8r:@\Jr Tp [p.[uX!`} V` ]>^6,#`?e;CF9 :ysiȨʲ p FV;3*9XAyDH\_{jPo-mނ?BoH;hAh8b9TqoW= A\۪"DAt~Nn? Ҁ-m$߷aqk@a"lݳ|x\`;!U>,;+ :;=@H/p#B>+3FOI$"#!HsW#WpY#  /[?:Dup CtD G+PA Alm R1Kgg5bt<_`;{nj)h[rU%MƱ9,vt1g 76\0ͣ`jۮ&tB(-u9˜FM {Йȣ;֫K̾p:eu+T;;ac`~.m &#,MIUcT᜵uE* k/leHu~4RGJu >1/GУDH8z4'1!-[mY7&U 1}8~<؛NK]P5ƔVq\9ʇy\p)ۯ~;\f)$@Dv02E$*hHlg:]wj77Ps0;pS%gG2؋*)FNq}٘ŀSfB^"0a |Kiq49>=h>$Cǰ,f}{2.<T/:U*U*A>&up,rG1JVZAWrS\'יl*J>?TD(g[T8^=<;^r{%D/ݠrV}l?z{ Fɼ/یL܋ԂEv7'DŽl(赒ΰnfo@ IPz,Rn8NV%۽gxFjv;że ǜkciO@3$1GȬpTkxa=*s{`h8:y7ԟ1dTTo"a3Z:LWU* L^sz{KD*w9){w",*6j<؅qzNHfjCkk񽆗G %bCSE3RbJ}'{lf%.<ع {Q yUg6оt}5#)ld齅pMzlN4?H<1 Z/iNٱgmҁN-FgujJI! .|L=$޺|kBR2'p[xcVjAJ-ҸH˦t˺^zWB:6Yu9MLKo AoyO'ͧ䑶$*;=%Ǟ8ᑘg0GMV׽ y0`紆!"}-L Ji=@WO}' Ka3hK1? [wzzQI_ ='w'g[x91"y{?]/Bv=Õ'L i,EG{N^=yQbw(NkUX0dÝ١˺-I'RO s'4m`0u2|1ߧ3ϓKԵt-cDpy`N[ѥt߄`dョ"ZXܫ P'{BGzJč3-ñ62Ã6}O_^y}k$VP UpyD$=Ye?T3b7ġyV/@8 pKQDn[R(Yg& u.0Qΰ_=۬vu>t49uŸRf-qFd݌=1;@sI[4ˣ+ut5O Wҽ-5@}l&~Eψ׾|$Ҷ'z$EԂR[GJoܫJ)*]|j%>|LosC@gd ¶:Oh s^h>n3TEa?S1$i3_7&)<=*`6A0,5u}tS-)dHwd Zqqz1Pȸ~AVk\I f,yFbV>Vsʽe쐏 L扦f.~}.ؙ]F:c=%xj<>}8/jՎCYU\iE UE@4QĂKE#zOYt,( h޻uLNJ`ׂR-Ӗr =.r m̉)cy_>RyWrNIz7h^K(쌏ÜCNn(<#ڏs m_q U|CAf2C 꾏Ty|i;izFz (q[MGcװҋB?*D6 _w6B[7GtKXefh1p.7M!˶#~Cnsu̹4C-==@4r *E~z+>%M3~7)ZIX0Me)kudL~^`ΦG>i#k۸v_9ļ {awKABv~1f glF+~ѱDځM6u:wC--i5jظݏ}^CX=ILmcbWiH3BIAK ۛ#tPFY/ _+'@#-2|燸Ka R}EE51⧠XhRh.3ʘ݃S/}؁(SJ[ڕ4{qFbnGD^*BJoyn9c⾥k(sUw<&$|1 [<zFJ~ !;2hK/#j(z10gwg ,;Qj*'\7W}Qb!6#_5,K}\6ᛌUAPԓI]z(t? ;t@ɤ%}\>]MÈ%EnҤ?:oL2ҋZDĊdGFwϏTB 0 7gءB-QuBMߧR%:$8Y5dgno p trM`%dhS9*W3䋢d}ןZ? Kjt7pI}H6nQW ğY0o;P'hiAH-|;q dh~ju1njpT=Dv[!dld(6}3\ sjD'?V{z^{`܋la%1'~#׻=a<_m-:>[gXiertTx=@l9K>Ôd~ͳNY%gQO:ڢI*U7M#ٯ?l {/_gK @U3ӦHiXD@nN(٫JN+֯cl\}DИ}ҷ ߠ 9^$أ /[w2\=|z;9닠8IWTE>Rx-d`1RֱJA57,tUQi>st üT3?} ~eG|E)vYG^Dyskq -Ko`˔aǨḎs$–lcJFɃŶUU[_\ܠˋT5F9"'w}/9؀]rfzB'͹+UƝ;vᗢgx+&Xw3tnUVcc ut;8Qtc86jf+C" \[ib|Dfu0Ek9Mȭ4v볂nt7?j ;aخT% E)>e2BKBis[StJ?ɼ~V.]VĴn=)7 ӻwoxPX:ooI{Tg(bhl8$Q^D$C"e_w-? XLl^_Kt;Ťsql*K|̫mQk8H MXue~$S~yg-x;!M۝GC˰.Gh[C>Ǥub.eMx`ud%k^׆iabvt&H_IUṲf6QhO_UX/*]ᳵGObfs rVCTDwIRXDIj7nvcqq43bWp7K7TX ; 8o%4/5^x?iI`A.qlm{}ŋ75*T.MHko'AQ` Uճׯw֜^.J?fN(q'!̡cOO JM$6}d^P:[҈ݩ_`ԽcZMZP4^3Q-wl_:uutM[#ݓsSѦvY4}݃tJ] 4.GlyS'1pP &Mϡe]L3֌qF'@+ Db0wb!F:FZ ;{W'oňٲ0Rp jGRNW4_yyζcI2CIɏC ~>o,WijjwxҢq@-Dnﺷa_4PNj[_6.VE!EvU'<3-=<z=z';ٽ\E+dž(3dvw#j͂wTs95+;K'cB+pʘC{o,-vV۽4"´u*g*rt#8O(^JB; x,w,g:f]ddE89$$ӌ1|Ş 8/(lrӴ\]5BA1:ަCi"MX* ,Lc_ i].8 QȧofQnQzdQ(1}N^͸?W7K=o7'O 4nzg>/3.#~ꛂx <>CܱӴPQHbԋ7śIT!(Kb8㪗*isGb[WÒ endstream endobj 128 0 obj << /Length1 1435 /Length2 6455 /Length3 0 /Length 7429 /Filter /FlateDecode >> stream xڍtTk/H(RJC ]]R 0 0CKtHJ+ % - -! z{޻ֽkϳ{. Q0x`('_j|&/Y7(APh?u`!Q pA<`6un E3"\`v(tVk6XDDw8@=]EXà(`G\Dyx<==!Hn'@P7 `7>@EآUGgE@B||+em+ KFpآA@`P/ܡ~o  Q+ OvjGF xBs d hkhhiqA `0 >;.oZ_́ɨ EY~@@<_;w P?7 W!w'f q9y; vgա60w* ۡ9Ð 0/ emI] j!_O: /z =?&%C[>_+ Aф@K_0zom^ #Pk"B/Ic$-LA9B3kPЦ*ijOAqs#^W渨NQDݗYe 3`s 셩#՚G\6YOޜO=a$|g*C'Z։EMԊ'icשDt'!&֪,52:n5c e縐gi D{;hۢT<Qb4r8s{lgZ)ʒPw'7Q9d=Oߦ v'"3ak#>0;J~6ػtu5 uanCz a.t4tA&09LTp&XJP-ےΓN!:GN[{n,Jq ݳJQf)IiJ{8'o+j{ /&VӛP8۸5|8:87R靖^̔wzH3iTlI3;̒Q pV^A?o(r&7 : he+ܟ'w, r>,68QVraXc&+ֆ4d /tvJeQvXK|-IlͬtbFaг(HSTD<h/ ##R׷gz*8{݋2LM" ?_ZV7-Qvjm{Q ^ѝ ~`?-[|o+yUCKBjO׶ }boS=x.%z7ĵ}= ! t#)k&aEK©$H:z:F]UaGZK)i\1mCN7[u2|wZ:ƾ+S\Zˡ$EU& YַMKrr:{>ÒF)!H:~bS\f 65g ͫP-u{l6gNG:)23yթ `|ÇfFWg &#C1YB ewAO_|Nq\'=Ar`9u(8ϏbxD 9Y쑍+DV=u*R7hq8{sVYgYUeHΘE"BGy%h?cՓr8؄83eKϽ򮙆_ږzRw %y9ݹPŜScxbRznA#Y?)Zvס%Ȁ޵3e+9G][T FVA`ZJQG|7\y4]xeK4p8 b~UJS|,j~Y ~/_ohnߌiݢҏ J VH+ x\z4Y`f` ?#k{7AK5JXl~;c!;;]j6ݞnlNKF=է9~m,vHc~`'Rv}]Ql~]yoxܦƘ)KHEHcc2y"W\Yzcڈ4MJ.eeoT=^k=z#V[&ǯva`~HP0oo^fIO`Dҫ:࣫黱R%8}29 Se-reC>&+uFVYfҳvAv?P駨e4`I5?L8MYlu7fIx;Gd^sN^t2v|1wnE]͸ҨEw+xg_[7%Sw%2"wWsG!+&JQzͿL?aS@)\7ߐ;U ?M}\@U$:4vod9 xs?@LKNA;4cE}v})1,6&cL6(Aavm{]Z1aCgbdo4k79łA m-W T1;ձGP'}?0r9K\Y 1{D"{{#190zΌNiNKSL w2shwq$$ r~eyM1It)l܊ 1UryWm='$a]~%/{g*}ARSЈm ;^9O k/8z[ ̬x}pr4S=ỊDI*\<<?}ƩP GݍkU{os['læ褻6$n S0kձ8bo}ѲfؖYy;뾛|@ KkQ"LS%OE(_6zD94]fb PpQ)z\TN12Ei@IMXuYFggDlH%{.dkw~uj1 l(|hē? ot_Vɳr86a43k=o꾹]̾ST[x-QSH3QlPVj=]~1b;ˇA粫[kvƵ4ܛ=T&1E m5zCkν106$ ^R2!*]_#{^i^ Ky4ftC,Ma啄|u\O~q W+`ev'R7xhw*;l+,#]</*ü"}7|Buh aJ~1 "[(w̼~{ֳ je/c- `-F3(f_@+h~c1ܠEzʸ'?,v R#f#*[noq`Tp#.J3P!{3 [2'/Lu."կa$k뼉Qc<p#O7CuFV^2хv[׹gž<>Mު>EzoԱI{zLn9P+T *XC~my.>(UĄT6V}BJcezi8r) "i.<`k94K䩡&so٬9爾@$ur`?(Ib1yKs"zM2p'pg-BQm@ h^2Ŗ tDJ@~KH!iv[ǖ_Bŏ ;/acL%4Sv_1M؃0664XFG/TQ9vF$J6I1]0 +鮍zvR_nAu|T!$җ`4*rG+.&E>5JHԶ0*Rh69jA{?6t{9G:]1rj1x>37YWˉcKd~|͟*PAen`MOXC ZeCf|cuˤ8=S#u~mkX0y2{-i;=–Qgdad@4;o*[>Y3 {]'ځw~bk3?pԌ;0UJT|r8a&Л`rj#߶PX;9aYJH+3Iϖo6gjDCXl42Vf>;}UQ-4rWI_蓸Е~tu d{6$I s +qh]C% ()w3ySl_H(sWVt,i-4BAIs>P+,&gӔD `i?(qWPIҧ.#IE:e.:tU&n)F-SQW^et%_s *՜L(Xtl3 .>4:FIiKfӒ =2,OVVP\kk'z6یi̝:-*_R)co[1:ZH蕔Q1N#0"vA]iw ?=ƌ=4\vm}”(QA_/%PU_~dtk1 zgDa)bN@Yjۗ/s_qf >%pZ9>sг Y哼؍3IpJ;Zbrwv7YNXlK78u%+-Nrޓ5P* m0 NԴ {tЩ{&ÑGNձ{39Ltc$aI.ŸVZPb`[BPS燮 95aއzG)*mP4؈_ c5F%rj*l%F5ت>fxYx{UaJ[Тc=p0u:wq*#a?#gj{@K5̷u>Fit<+P'N,yǁ"ƪӢ\`AICsLlyj!%B\ f aWʕs뙤5.Q}2F1fo)$GP|twiA+åĖgvUp,ܧcmّyW㑝rݽVmq#Ź{IM #|-d5FӭӀcѷd۸ CAE/t= T?p2 F% y;+ņ$X6h9,Qz L΋U=¥ts@`g%fe"ײ˱ȝ&Hu5̪(#Iq+DR*#qF[Zנ{} w+Nַ$rbFUqhW5u5tO%y}`c^O~.e9ztpOTޮ'?*AlM endstream endobj 130 0 obj << /Length1 2552 /Length2 18800 /Length3 0 /Length 20261 /Filter /FlateDecode >> stream xڌP #ww/!@pw(S8EKq-Pf}nf$y?]%ꚬN Y'GwV  @JE bDۃ#F0rCdf;'G= 985trHy-*lE'G2+_  +bnrd0h:YA>AYˋZvh@ K_f!ln5ܽ\Alrtxx8Z\Me3c X 7 vh ۃjl,3G˿ ݜ ff`{3sߕd%^ C"_a ]qrrp9!U4di?'k`v3# \ o k8VC9;9 $@`+pw_ ,s5wtd+2{@_A. uN?V.n+' oRu3jP HK?SaoU'( 'ߐ<M-Ho5?Ipld7.MVY=V & Y-l$=98ov rV@uߔ2N'/2^<<? dA-AO6 X9"u _-Il(XeYB ,rH؋`4`-2jIe(K h-qz'oO£{DBD>aE_W֝ȁ: Uf6C~o ;/rzNd%5Zz57^"'Ւ F4#&B<ՓO2nUKb:ٕss9z$ %ԁw'|^gp  -0f>2G;YQ/6?΅(9ё}urH$wMl4ź̧Lix>Z?AλUpp}L?@hz@ /e}/1&+;śYb+>qnT,G@cZpڍb~\DctVu!$l2A'8xBk<ێ QJ M8 /L%4;APB:PA(UVkf9qԎk >yͤe-B*13޵(Tcڟt/G_^ꟓ0H]b1UU|>^iv'w& V$r mO]uZFt<2ll3+ńA0ɦwp> oW4ByZ'2%3ln "Ʋ83p+hQ_Q_r3@LQ;1{{ND4Nb-qaI f%$1urt^q&`؉4L876 Xkcul"7v?#xĸZ l1 w# Wʳsgjv|_:n[f%bZ ũ18pF' UD'`-V]≫GxcLǴ)1k~+/9.kg2u ')N'Tk~,XZa}kzQb9% Jcs"3ys+x||8wGBK"2z$jMb<D[k|iD›Bs1i1Խ7Xa}3 S]BM$QudjLƭEu6ΡsO6//rE_Eudz|uBlre]M uvB`rff7(t%q'I,s_CG"Kƅ [MeݏPyJ4b^=0/]!_I(>_1ng`ClشQ# 骱" |䜢' j40Kq# (1>xɘ-[5o;ssש|'~w#A/ϋj5Ew=I>L$ ug!%i$fޅᏖ(i9o[~ h K[ح 4<2v%oʫF*#o`7SD D}%\6BPG9`fhTlm7ࣷ[IiTﻼ.4j51UZuU:"z^65Pc/߻pApDLQC`SiTqʃyX\cirI#ֲ{kyPef-q9%, OZцg@7 #$TN72LIŞ5_:)jER]9 CMAu<5 ')Q@lFTzy G1焄3LW>(3Z.[l`s=1րo`Aoj͵=Ug nxm7#s!dhxVe[vIg D @Ѵ}dxt220bmKwR_2G5ҼUBJ߿9m(nWrȚr&M~X#CjBӂmI4'N=*$FQ Ho$>cޫ74Z_ 0QmڷCRjlG2^0]nÒI;Kc-ٜ0K_,\(:/$JPm9OBws;&+ IJ 95dnzY˗yK0OZp =W]FGD8 De&7ܟ*9F*e1mj7e;F3NOd  ZPE+{;] `` OO23 ;jN^}jEEpH&l1:aBG+Y``yZn '"Z| ^f$ $',:j[!w}ʕc-uOc;+@'5)^R7!Aj G2_z[O,Giku|-.h߻l#b (ω\S¾ǃN0M=)xh-^Ukk{T Rсug)3F8>qFa^ɳ)5M6p;"\Dd~3`wAQT@ 5.ݷ!Pr \B]\/k_D[g9 J]΄TBKIxA\rIvٓ*_4DHT",%=:ƆrLg 49qGqAJYqpn7C97J?\f"hIqcfbO?5F. >I{9SU lxP4maئ mKuI1:pC}FŮ@@b-tʡbE췒K )5>TK9@ەUihPeMf$:Ap&ŌE%s6MjdtRcSdz ¹9\e90Bhmnuf_ļ ;)QO-e9Z-{: *{VL[%a&-֌3s5xFkkd憩69/D=FyF1g "!쾜":0e OV7(rhܝ|Ep8])~wCnL+vVR8ahhZX#a`>jζ|MhGF/6bkoŨ{dr:smi_GTPǠ|@0[Gǻdv3}%@}ѿﶚ5}xEp6Z"eXJ uULMKjp!D >g 2EN^ЄZ$O]FǽuBZ&+#D5෉{V=vEآK;mQ&3M{/p/uq*輪~1Ќ'qM޽|ufJj$u2jd|<:qZwBq[l85 4B2ҡK=K֛K%3aׄ"̅l'&s,A.?W2cp;/jƵUΆHF\ "] #ME[fmLsv|eSxhg5#ٮG}/{?\0hxtzhԳlM^Wj{RsP[+˵f={Di= |9NrsNP-A4hyn EϛS8SQ;P'Sf~#8#컏$3Z@3 +#-Ywۺ*1G" I$ġsv99C񈠅x; %ټvs&Oqvآ؛ؗyҍ _/ݹeۈe'ſWo`U@nӵOWyz~_~j#=@5]/t f\HC:*&nukw9L(WqTA$kU:1R׈Zrk1='ZMSsnIΚqRM.! x#y?_F.1.%Cm-jGS@0҈]rDiq1﬈VI㝵F*wp^\<%` "er#p]#fGI=7_4v$8UC-QzB"\9c(7PU &!xDaCWO}t$3à7/ʌ(^ Yr}k2VGSɔe5tT\y,ilo@] ll7hȦ?Fߴ$:l_@yAԎj 0ϫ^6|JӓHsYEHSNM`5+ԗCw/>R?vJ<%dģ 1pI1GG:1BU (Gnr7!` Rkgi±m:Z"j_I2a2$ŷnFQnT|i%:ley`msD+>qks}VB*,WD3jq-A?wwg!yx+N!kN&~ޮnf& YzόysX:Ag|H-GWW|%诺Q'ϖoՃٶxpyO*`Ɋ{F N8!g\{E՘W=" l%sS3N \Xqb0d6&炙 934eO1jD.|K-ed y-NFB,UU]*Mwh ~7 Ud}c}D\zG).l^cJyrUW wN l:*"6}C<$w!B$"C5IJ>-횴U``G]GN:D{16%ѱRʢXk`Kuլst%|B녠Wu xjHK|,d7 r; SDIfh6^׽qedիO;uחqW24.&+p^h_z9 _ʲ>»,);<X~&`(9c*Ɲ4hKB QlE13*2kqQsH:Bwa!"_ka!0@Ƴq@9{o8}<2j1L#)LݘO#e;lipA7Йw2A{H]^7n_흐VT~>:FoZz< SQEzF tc>jL:6?-9!RY]:7/Ux!L?׾g1)l?cq>1DDBm,qڎR_}E-hS' !A<+I4BpFj ntc0t'&Uھ Ͻ!*e^ձgwr !k-!E?eo7e8Kc/uCr^Ʋ)< Ái2:PIR7:T@ k Y5lk?PUfKKӓw䓟Ҥ8I**_ 0&4%C 5ږԄyzToR =#/fF:I:^PoWSH7|aỏYF%B8Ґ5-Z⵺}T?4x!g_%FUt9*b.a| ΍ڤUiE"ו/sέkU>J=e@}?d\qyC#S _CjXw/7Bú%Gl[@ ,p #+k(?!Q_)lc]Ox#1%gsA: ׾a&¹=GKxaOH>?4/]( "0J&4rO_sB #_VFiWo7 T1׌"!'vomb~ԏ*`CӃF ߥ:&3kY8V}ä4G1ڜC;KtJ~)"[&BPbV&W\!juY] G}SpY梊"Bٟ6[LfGhGZL3~0NyDfRYavdΝ  EQ,ibL>"kt.VWM{|%;TI_7RR?K܇ ;e)3/ mМSPg$!sKzGj-]~ & ̶[v܊ՐjJu*XӏxEk|Ia6A=@!ngz]Z}HHcPA(Tk}U9jA`9-gp>^uٮ/M58o8[6]$ѷ.`X/{ʨjx^) ԸiҙJ a5raUs휝}K*ҹXXn2*w?(E~ޠHqrxI.UJ'gbKȪZpc2+sgUiuº!v&Ig|7}`ưejwMlQ4,ϡ)KlfVO)cZJ(=d.=VF&R@?ZOP&uḾcVB̲uo,>F5mj_> GƏO, u 0r9F*Jv_P[F:D ^ "Fu(=3R.)de]a#- 6Cppy5-"ϖf[ )uzEMLNhkˍ(I0xeWmIk 1]N ;+6(O|׫ruxiU u+?6ϐtz >)/*Ev\}Cd(&!CAFOb:i`\3]oMSqo aGsEX9kp`c l-`\>|p8־#msd8_/Jby|~~vCPfMm3~Y5,_뽸^i1[WeAeSnhqG0R,Q۰˧SsГc]/_jI}p :Đ<X c9-qaLQ5\TsC@]0R2wHP U](ERcV!hG]C!m*s5q:B ]dJeHP }Y(w asQ4R]IP=r;FixuBc 0bt$rAMལUHqv2 jĦU:.vsS*Ƕء mn>مo-J?\zl5;zgÝfg\b~Fs/U_>ޣ0'lB<ޡ=S&6@ j})LDټĿ,_߁WPT6%lIv X/^c7Xp}Բ`v;l7͉zՊޣDGc5άEhD%۟wgFH=(M-V`dJS0ؘCsscUҦe췟;XN͊$\݊|R,9{9fm\.(BAA |~mYG|r7 %ݚiY[Fv\.:$d6k#%r-௧*2*p:׫hn3|G-1_O(mc6 #&l[7Eĵ<}A%4ԃՌ2t%QPTCduu|X=8{;c^2+(0q=Fp"{t TVׇEQlݪ/tItcun7lԛ?1XҠp鯘 hA[&/Nv;W65| tZ;" :ɚzwxۃX7L_`_Șa{qǒf|#|eij%Y Qd^YW|!RUI'ga~v}SSB'4Si}ㆍ20+'jv Ϫ:džퟒ1S56J$_#f&Bk:o;66=43&ka2ν]:.5Ax{lW~<np L *ٌ ~<"8(_и;~~"i<ᎁs{LWCJЭM1I%.x`[3"@hDC+m+sq^o@NZCR`o8ln?pk Wv>MM j)WNC$aH'җ7k4;_pٱܟz Ixy&4ߩtu?(>H날)u,#J~Xd0D~_{̑~zki3C\+u`6io$ygY-%ӆ|˩-{2ර|}~\.Tj`9}Kfmy[i)SF6= fHZn\7z#ؕ0)P[$f {mi.ĪUlB8i bilGg y)/rj4w,3ȣ>+/p&X:,痖e`$c̫DJ{z,hl%]+x>v'[k*{y=jL6'Iud33t21щAj}? ㋺d蹞&aQvz-$D  UFWӌy)SL|.)?22&S<^k,Qo՛%38V XFW4ȩ$-CAtȋ2_\ `_ <`N膦ђH1Fէb)jX\Ua`&5Tsݙk?j%bS{LZ\>{FN!Cu'W5kY#@l_qL]\,+Q(UmxVu[S:d#/#r ǐ1I~1 tUGJKia}Isp%z:fwmv'7s廨W3HXݧTB,_HWh<8pc +u$3|nnAN:[/ݬ:UWʫOIޮe#.1S&1< ǝ3.ݕQ4\]oB}-`F̆:h>X"S{!֖pOc^}ɭQl7|ںE{X;/{[.J ~\2y2ޡ)$5ˬ⬭*,) ' Fs؇}1_Nk:Ej] 'L>06"VJ! 7@h֝F2`0/L:ʲ~Kǡ󞈵"o9jZf2*z|Z{ZmPo3 5!#?=6EXȷr颫3Nh~[r;e_Җ ]r[T(w!& HkNEQzOB,$`ѧm^%2SOE"wuF&Gz 6Y4?XH+SupuwW{'PQYCbb-KBKiBb:\fD[Wv{@kPvz%t~i0+OrPڽ9wŐ,jǽ:R&HdZ1ǐ7z};#arܟ]VQB֋p\Q^% q]!YXTU*jئ mo(_gE z@bi`,x^!Ag&h"& p= _b_鶽#zf&yC<+DġG%5It>lˢ Hqf93 6v9s"g< AO{F Fslr3GIFYmAh}ͮ>3 T/uP ϭdH0q}b{`=6yfE\ ^2Q)o|RՊzfmBƋvZ?Hnߕ$XÇJ e x @ 9a gC7#ҡ?gʕܔ P |)W$t P: dԆP`.$g9*FW. ۳aҔ)Heim5/=DzQ@oUfo4*XmRnicm 1cjZ"H%X{b3"RZf:N?S+_ eOG=ȼ~Ӵ>:lXR gW.h܂_'x;ٜw>W#bzgCWSQc<8凇!o7ݻc/53'XȲ9 `XNbʲrR},45ƇQP΁wlIqN riS5!oUœ=j5F1 %i:zܯԇ$/^i S[=A] Y f/Y࠳B5܌q`R%,gGم]TvvxRR-q=8 )+['SFﶁ*a}J"']v=וUK(vJґ4Xf顸h_{Lo.Ayֶ˖b1xwL&IR:0 i/:qc +Tmqȡnŷ?E&r >}89#kv;}s8 XBn|]w)HWCJ,vgM3lZftzA&CVonsE #Vsn6xx\!s];ꌤ3ޑ 7eh_ZsbVêMޡ99]ޘdw;F1K ?S$5W QjI(n0} ܘm"ۘdہ(AO ]AۦiLf+ Y !/[//{&o^xE)pƃE ޢh^L/G!w+_ai>(-ߏm+@-9n͟:+)g!JeAٟu=+*Es:l]H0U,r@g8}3R=/! ef+о,.Am^z,EA>;Bϥ@' t\(wP /sm]2fzPC`-K,[h;8^N,꒣;O= jd:vAA nQ1:tI.I ,Lɘ 9mȈ“6>5?Zy9V 3ɪ|@!VUKV*-Dst!\tJvno?oq۟AE WDS&> VVEBi)2\*jK\@}Zi|p&"@uEz-}jd%:.#qWٺTU|%ְ/ iJMdEp_hHvyp[bK$!Py_De]R24ێB\y㫳5wO ֈf};*8@4dDbLit?6?)\cĹS$w X`.=Vu3_ h $L^g^cߓ6j Uj~d")$.CU*!|Tδxnw>:m _R<ګ/lzhxMۃ޳ Dߢ߽7[s*K#BK˪K)k..<^ O_(Vz[[͕7IVa@׵Z ?:ӻv¥<yyJcW.tXVl o֖Di@A-=u{MxbۤH{T PTCsJ"i^uD"YЩwcwoD-Zg f k웆o2*2y2}7-M B+6+PXܡGWGa[#pewH4g'&JzȃgYqh~alrqOx9l&6ϛK ؘ KXׅ+KbSQ7}++cJ-nDوE}\X/{ͧ全OmRĬHFh@8V/qv7;?JD|g!#U5|,tgsW4 5 rH?˲b#sԨۻ sL7{FΝ`AfnUvc 'BMER҈~JAӍP!9Mi [{JL`LN._tFb Ywu#2Hhe}7{6Ӌg1X"RrWYIwwn*7lJ l/G(.Vџ9[uvr>A#zǪuwNp([{~d5$l } 3 @Wj| F3,GbcoZH(@a+DC+Ĥ2O*N7,nۘuoF&L9zĘ5-ı4eW ⨸eɡ ͩ9μ>0(Zjxmm 7wHbc~ sR18U>wsمzv"]e62o oWDerkfb^{zQaDٙUo endstream endobj 132 0 obj << /Length1 1677 /Length2 9259 /Length3 0 /Length 10326 /Filter /FlateDecode >> stream xڍP\.Lp ޸4H7܂w Hp`]B;3{uoɷZBMEb]Y8XR*|vv.VvvNd-=/32 +@hb6s}Sn.  ;;]?gA; P.4RG/g2[08HH8Af` eE 3{&t/ zaWWGA66V3V(3j݁߂f?"l@.5!Vf@dd-΀ ʀ7@0:+te&H688@`kx# 0[4w䛹_ع@VB`"/y. GWVoli^NYl)qp]]O x9v/?+kx}V onl`PA?6k+Ot=-l~ky9pr6(q8^D@V;2d 0ZV;</`e^?ԗMOJ_AEO$%!.. ';@-oGV53_{cPl)#kb*䥕:-;sYouM6s{n/Sy d% f/!A. OO^A`pe,^Z/)X;N^2K{q|8^GgXחR$-マN:Av0ͯ:i osy5;LwUcv{BӥЀkdGG"Oh&a΂GlHE z>cJ҇WQׁ~޲mRuuCϏ d#ٯ -1gZkCZVļww$ P sO!$]1rƖ4)?:f3Lo֢UH@!`y~e>5Uw9'`]-xSF3.=˯:^ܪYe̬ߓ i3V̆Svz]2+JĻ̈fu^-8I$rh2d# v^z(x -X |N"nP5~G|ˋ9=A1$OQ@eh:];sߦ(UI r2.RrJÖJqu#P (+ 0.zՊßjF3^aTe%hW(-em/jW^W(b7}BN#n0ޔڃt#W晸|(Ʉ]xN[cDqrgw,cRIJoDQPε茪S4_owG'I_'kM.(Y_њ >Iݱ:Ò U$C5 ?k-.րФHؒQT6h[J&ᗝ*WQkfGO<:rq7q5B$p^{q]DWZmA;YZB? 9:f%:9Ϊaޙ\ π46O Gv`bߖ4-8W$(|z8}Tʒ//A8J*h`P 7]>m y}T/&ಎJHqy |LIGzRUnq=I._ϫ5uv=7ֲsy8,Mo` 6t4:. ~ƪ`=+fY"w Tjr颥`P@jd#57vee\SaU[ޘ|ƴao-,Q)56w9b#!Vg| m\Vp/s:$:`IoפVަ&6tKP! {tb^N]|Zj߉y:cQ,j+?&)iE:Hy"BCOa!N{ m^jTtwX,{] mDZeU$5y1c#503M :~l[;mLޥĢD~7U  !F)`A U_fzVژHAgݴlԗ SaW\S1Gm>.tӅ߾$Kz y.#$p_Wzwzź 1cES8KߴQ `f,W71ˇrZ< cߛ8zUՉ6>"ڷ\{eo/v?l/QO#5鼎$gH=*%D_ _ wH_>U8j"bD:\@VqڐM*5E&Kj}!W5{D ?ukWT.;€ FS,z Fu\gcomve)4;l#Z”$.}BU@$w4wQJm|,&þahx]6\C2Y`ʣ7: 1RYw[ -QoQ5q0npt |4ͮRNܠ1v ْxckccJEifbf$yb%^@w{q%\/9.^U-U֫52J@< \/Pt+k1!)nTs|.J_ `SodSr0M'DpZ Ϩ&b9zH<sFgھG2Dm״ؽwۚyj5 ^?tþz6] ѫЏᘾ01M TϳO}u%~1?nA |K7W ?ѭb~Mrn}fshۨ9[zT3[}n 4;~~U: /%V߼:^4RVX_%aǥo ېnivs_PTr!ZkU9^<$>ff{vHa2|L Ǵ;cUWՕG,祛9boV=q uU^Be|u$(a^3S]F)kl}, GM`]? Cq繾I3}t6yæ+XgdpQdh({>j,҃Tn:@@9wẀ)jYl;}2Q8hrP7[6{5: g.x9 6;)ݔ6>A@ lsӓ|)A\,QͫrR @OyvN 8mڮj 1uxDB }ep},Ivц5[$B-}шoNJ}5 jya\2S/W9Sk0r[7;udfuzɏ&j1[0D0IG_gn|I%)mZaU.[t[NE+N7#r,IFappTa =6,8SپIj; ?G k;Z+Mp+MTYQ-Eypt2a}gcj+F'Ȩ5isT`A\YX!~KAEɫNSyTO42DʣGMEl'_IUiYT Oj8到aF u& >O1nU :s䬉^qrpUĸZkK,Rͭo>r+C4#ˊ9#;H*I]TPo艳 =rQ&|;vNbMPF@RSZ3aF |ŨBCq٢Xz"ؕ= )8WU|܈n<C]YBDNZ+$z`E-͓"4E@D&ԨOk7Knj^x߹9{*][B]|ilR7OH7;mW}51VgĴYkzKD0HrjeS^G<[ LJiv浼MA$]K:4G=a)[xS%pr@/%@`Ψ-&Xbpf.@^`0Ab&*V ~w6㺜zᬯ|Ǽ1 ei-xg(zFFB;3:.aʒv$on;l;c<%tb٫EWfq'>G(?kzd ._K2&![lHڌ$1;dr MJI"A=%!'ߨBX.&,O'nzso0?svl6o3KWؐ 4sNvJJX|qaC#;ޔHO5r%GU,YհvCUArHydQ7gfCojqҊc>=Wi(areZx6f5!TD&S2oB#kR$bɘMG8Mo"NuD=}ƾ1 k/ S̞ԘӷmRqNDU&:z-7BE}۸@[&/2Ʈϭj4A)(vwp#'t/ǀզbӥG[e3#şQh&9{αO'x: %N).W{WH,{{ip슉#g>wZLJpBY's".F5ۙ\Y,^?K Oȷpƅi&6NScETWib)duCB%3?E bLw-i!E]Jw_08ڱW)jk_p>C`dwL`='/L; Try5l%W peb _q~e=ΌWZaWA1n;]ߨBI3a[+e\_)h ׿̊q[p.r8e)+i#l}V}\io X}M^uZI&ViLSkk cx)N+ W~&]9ٵ薱CwOT0CB5.s1u3)6>㆜[噋KѦ=V; DB?oMMHuRflkWux DX/?ZZđw$tf::i/F/%&KuMqF3 FsEZuo6áCs XظKtBHtSc(\7LɁu0IB(!3ڶخY6‘ӄFbPgAJl8Ue`\bݬw^TgLQs q +]9M8|/ `H3GH ycnZ0U}P.ADG"vcJFj&i>Z]o,˥W/?|GZ @Y絨huղ{)%R/bhz^UXAҫfy;9Ku/BOKT+8IBxħ˓f sh<]|OKU>z(aӕc +\r Q#~k 5^"c^YS~ Q[BN ίDƓoyI8v20ϺFP H蘒acF"‹q-c/LM7$kiTO)7$fd$Coձ\j,$}|hSe=g2vf.}R+c|'S@0Hsc f$VUKk@⋏ Xv6EK D? [vC:\x+WVQ1½&0t}Beda%qm|l&ڴ!ZB >]s@0{ \?׼W]( ďLQ}J/L)>J\gX|,voPꭘ9͎O=: |A]Va"3B9 |MȵGLhޱMZvYrXQI7e+rA#k<$>dZ$^)m9La Q?Zs&FBxS*;ΔN[Z7q dQwN}yx2o­Q$ Z`(wW2nL4SBXWRD:Yj+άjj}Tל@!P]=ҵ <89B2JW>vF<@OB%HU2Xp-9`DC۬~$Ih:f$CBh>C&ԠΧq,1+!qWLME!7 -qa_҅>lϚ31bnz"l0=BMݵC,lQ}9( q4^f!Q ~,׵% Y8"u_,Y^,IG2C&ERO endstream endobj 134 0 obj << /Length1 1379 /Length2 5962 /Length3 0 /Length 6901 /Filter /FlateDecode >> stream xڍWTS@Q` - %1`%!H ""%i"- Js{s~O|{΀FB*NG&M 0$FP?d@ (7 Fae`LDRrr @ }aN}a&!<1H+ #P"a0FB=!`w)0UpE>C cc}v/ij cN0jP]D& u2  _=»P#7g $ k7۩*(vRA891I)cȰ$t5@D@a]XzAgW?"(?/!ٿ!>H$v~7͆BP"y!N妟ʰpP 甒867|C%ce ޣ۟.6[=4~yxnj2(}Hɦ,n^xZv |d(ih}=bZ+K~^1.h`VX7Ab!῱pcFNYVxiXɤ|w75# эck: J&;>{#׿21j',I(cO#ۛYDknu4L]K7TMLHO5W.1aL/œɍN5MY3w\k{s-bj L;\Dq䶸 !{\:ƫo W=1<_YE\݇ ϞO0=K0(<<"Ys׬5Ҵ U7a/]a֙FUžDX~rG0X(3qZa%oߺbshFc#(bAAHdAWFH0} yқ~.ա釔)%}F:d9 N.->Kk j7:ZB"U&fqDGtX *j`7FU|d}(`ZAcv Wpg3i3Y*'\Eܪ\+WUgٝnW J꾇ޯN-';ZÛd_,LF`NQzZm2}-1~>=˓RlȒ,nYU)ɪnʼn蚤Bwf+bq#@k2%E?vy W2M>j4;fn> d{`gR xz`>j"mk\ٝ/,7uAפ^rMƧT)¼\HD(_LRT1dv'l>P5 W \uu𯮿hLɜ}znm{X[~0kwW6 ;Lvv67_tU/to_JUK%OZe/b\'^}gkE\y#zg6՜5r$O5F1p[HFEx/uՕʾPB&Ȓ,l&?- ƥ1$ݚc|4G{`xRa-At<ޖԪ+VfRvB~W`q|F$soF}˕nZ) ?)Bv0wː<,z"%(,s'l-qAބn#o4ST߶y:DwZ+#*ZjAqޝ.CĜρt2'%/[.ZRҗEL8yBbfP'*a ?3N/jbCFBŢ@W;szrEK"S]JAQE64<ܦ8\?f>I ;i+N;m۳}e+vToO!Tn|.zKZprvŚh[ӝU_ʐoR4/+\#++@XP\d]Dwk8]-sJ˼oC/$&6W]{>TfF;iQE V0g|뀬/]Zw`HΓW@IڴݧN*4 Lj:, T6.=*mA9(jЁӷe f#sfgЙ&(Rchl;@Ȇ9W˙%}<סd_d]!oOqv&qז` t,PtP)3k'뢐}~V 7}DsUI(=|~?5x&HF![Tl[-ׇ5=ʳ':$;JEe/)%mT2)o}) ҩ[ӾLnaR hʐb@P[ iI7cF&;6V6 v$i$]>eu+3~DVg眄a=q&Eka 'Ϩ;^LH[*2F)1j!*INzX~zG'>9>n w02fii_dtQd>]j 7/\<%*_͎oV9:>K9ٶlBLJwu7Dh<2:U`4pTUQ7_ ^;  ;bPS:n ʛ/כrHF{52rLbPQCwm}f>0US3Mzu^PˆFmNDip*'D"Ěj (K4,LҾRИyPz{{4W湣enۆE:O!:,j9 ^i>bra6XfP #xK!ϟgLY"^2)%npwnK-be#蟷]^8*}([`B^K^9nFU&cCƴ v7h+6'nEfSFi -LdBWWBWĩRrvީ'F|ueCV*;]w*4hOdhV0O|ws\ցU09L j7bvLYĐ)Itп|VSttnd~rmącVE'_ZrZϋO?]!@0Jr"=>}јR"s2e"cx <5 #_W*҄C EWTZoZ<{rc[7AѬ‥Iou;58k$9܍ri Y旌R p㽺=32(UDt[|qvU3m}EKvN8=)2%ꭰSF3AEb|j8U8+_5EN[7P Aٻco"'an6̂ SYI ɷ%i𜿭W#xJp-Ἰg2PWu7h=:M-"7 eEi߲z-C @H@EW MU؝TI6,.ݐ MNWJ1b= PL(~eUuNW||SqYڍڤT ^FzN cȫX ~izWt̠oh66){Ig'/d:iFFs'T l'LqyZOG{j}T^y0A|l2ɏ3O)&kO0IC;mŴ"=)RO~ x |۵(zݏw0 W7E8RaݾoTtTORKP+ /n|_MڪB/22v۫vZ$˅FxݼjU{ݢT_s?.M-I nJ1!fT3(qb8 }! V,Q\>953hLAfqEǖ-ՠ>SY|!CJi5 v7cI2X3윽ͳoJLRP -]p[`mgyNy&wYnbDL7beN.*ύ+FY|C&97-sOkԌAHkNQlBjZxC[ C`銟Ӊo`Ng^صr胇4W cT +!h*#c2 FlӋܫOsubS~01Y!l]ިkYY/!)ьo#PegQK~@Ŷ-]yS=a%^SlF$UJ> stream xڍtT]6H#]2 CJIw "%RHJHKt%SZ߷f{}}ʤk+g )àH^ @AK!@@@O@@0 *v8 )Z!QnZ0(@  @1 _0@l à > w@uppb<r 8 вB:Qm  W )$EÃ?x}w~h[9~g: `vH+8R@6 (5M '`hAPVV`5wVe9= ߟ6p C~!uJP[3DO ٠n݋X0g;0[7PHMO = @^.jT~>.0 lB A$ K@ lXP ?d`Ox@'slaP?od&yy'WH+(" Pg_ku&OF5 ONp.WІx pC{3&e_h(A  ӎbZ0^@ %قݜ۪Bm%`O.i*= _ ( _6Ԯ8jRM *fkEDVp>j(ID--7|P@),G=Ve|phPo_mp:߻ylf`6/k^WynHOn>y3os$I|?K@YDvkSNXs^˕ef 1тr= x[7FANM9nt=UI'Bj#ڧHʔ^q$I;} 2P$5ζI6B!2wFJ^]Є7rܸd{)ޣWuq $Ѥ;znh_ kTҶ0@\Lqb5Hjk)waPBݷs LF 3;ȫ[$~l.vv s1vWssl376Nu,ns!`/IZsGH^KOYo।bA1u#߹N\̤̯N53G Өy&X֤+ZmƐ@KئHUk{;Qu=R1Rx[)L^wMz8W+A4&~bOE Mz9`}*2Vjnm؎O!7q>^=ѭ5t+c|16p~9zo iSH7=j8\7;3Z09) T(2TAIS=Qٹ'@F.XX>>pBl6%A2֛+}hg#㼤y_ߵ][=cx`[H-̴cjTs4q2NbYңR}~#9 2k;;*lYkuIgwvu|l}I/%_wWxg{]S'D1memb\L1q/or{W};S^jхyWWo SB w;iz-"n2WnAT8'EXUp.&X=?ls83㢣将>uqC7)SeF.pIʫ֞ӓEo~=蛞/˳|VIFywǂL{EN "z2qG[)l,ES<} l{ʮcC\\ \qRH;dTWzJv پU[s(Y[8'oF`4xHi)&LjBM39Z\0O6~5I{9i&#Y~pt+77 0/%~A:F4s$7 c$L^ļX̉$QEbgyXG.vQY'ЕN((S<@ǙGej= /m_O޳DgQug&;{<.*iZ} HތHK|{5c9^ 鬣'n!dY&9b}Pb'FCX)X[fS:v쳱ͫQc8K%gg'r<)Ժ\YPu5N>Y"i{f{גMiI>-/tи /- (S;H7L"0 =_B 6BNls99#Gޛ&;3dl ያ4? M%>tgUO QTҤb2G(cu۰*,;hٰ)#B6qev*~}l f.k "i34j|nrڃ> G^oqKzteZ4u}[ob<5w>+6?J.S KnW|{#c49{j y}>[RgJgLsڂ̤X #|%a™N|Zp"M/UÞwZ#,6,a>3{|p>d//XDGT7Lxr>Ķ $gI6CK2%6Zˌri`ڕ7ʬʚg6JVqWBLOsf~JX;*,QWqۧ>h{VZ5!k~van<0=?/v݄}),43 Kw߁X2[ SMei%!=uF FO Np㥋ћE-Fi~`G'o콼5E8 ;5)>U7cv<b$Ʌ~q0ўmP i qloS)']|[qmmzؤ(P -pd$<廏Aa3HRhI6_P-"f]fDJDCmql6g$'߫BGRSl23mwǑm \'?1)89GJ1ҞsbN8| RH/^Q#ˊǥF^ؤ>qm?Cʘ\m&z-R{eK7N@&52Ǹn+t~ wVҾ&;,nϧW?kUgٜnog]#vPR-&7gOg7 DFQ!3+S>KȍԾ--EEzawsHjgX(JY|z{A "nBܥ3 6A'&DQSns-BU~QKAG>\pt,Dv% ߋNu &D9zݙ\0Dk֦S~;В=}^6%u[z0JNz#/bi )$.^28L2zgfxck^W; gBK68j@oi7䃑927 ? EA.;ZR@7 t+ǖ8?9h!H|g^OIf.JtuB* O-c4<ܧ.$Ֆ'_tv/YMhe#IEhmdaWtB| Y8ͱ20;*Lk+ڶEm}|Sڏ.wK"(yw `aJv{• yqQPb6!e 8x;EFrTrAWKIrr3H+ lC>t"9QIDyTlseV>SU3Ɔ] k[gpk-:a{Sd *7Uyn8BUu1;wseyEᢳas4`@Id+d7H%ri2`4Syeկ!QgKK?jd#c4CDgIG>{d[6> 5yo&+Ij_lGt %]S티mЂ鴪뇟|vw-SȺ~D<݇recnNA+:]QDj(jۅ0Vn  ?haM:_y;4dx쳱[ǷF%lEu1/@ڜȢƥC$h> k1'[Z䡆F_5vQ#r҆up(R?*:I[h7(9[tfm^m7Ea8~QheZb78gW'm2̇CD5 @4Vh,ir1&X5{pHmT;o6mNAYI/algjPZ-H|vVr~inu؉w%׆۱UHF1_nk#ZkL]gw50Vó׮Jl.:{d;77:U} xyT.Nu@!נ)3nYJiRW~lV84#`$cy8>˄) ܴQ JhoܴX=/8;Sk&|f#s:oټEx"Yy#^ꝴ+c/&{XORa#AR<7,bk=3{^;"]QNJt{zUWaHZzgI.C&6qDh_fp:%d`M"N(E2txxPIAj78DE2%2Fa`t],>Lx59rd34ݎ!&RJov endstream endobj 138 0 obj << /Length1 1448 /Length2 6134 /Length3 0 /Length 7118 /Filter /FlateDecode >> stream xڍxT6M@Jn@zH.RB AztAzޕ* ]4Ͻ_VJ=~<V&=C^y;-DG$چ@ +m'`5# ! ڦB8@ "@Q @@ h4pUupDs<.w(hPtE00D?RpH9P^^^| $AE9 H'2@C`E0Dأ@!p$:nq յ_` Gx^Cvhyánu?6 , ."" @o#F>f4?W+M? O O?W@  Fl!P8Ch^zD+jf(˩ xE@ P ** g[@?p{@/epN?+ z8-`<CH A.PZ(lh#o)䯁ֆA=\۫gD9/!ÿP bE@׀A=AG =z`g݂D UvFPPXrw^ Yx8@Ch{; ]p/oC?*D@Hy@A;w~;zV+˿׿/&A%Ü^_yn.tF'E f_9jeN)UQ͕ELq\z?~P[S8vhuM^#;Lg `O1|H|(>'eJCvb=5gbYA ?&nansӧw9}B'="U4L4I9MH 6sŲDf"%lѥSmIB :wtoCHv/[g}'nNvIgQ`88P1p:jO!JJ/̵c Y}J ZJ>Tу1ۛ.\KiYԱuV<}}0?j~>y`9` N4IjR>@f¥,՜EtYs&&LuJ>gN0"7"5йm..4EJL|PjR fT 'GJ{ kwݲJu?ķ|hSîzmMR0 >YSahM^q}g yfuQ`Ϻ&׬_gxOf|=u[vHUb9Vј ܪ2آ~֌޾!BzVΡr7%]pq* 6q?(@%bw@ !3p> GFuU+UףO䭵 zB?銼Gt<ݴ4uS n2\rLV`0LOHFpZNUKB-Տx{bp݃ƿ Aty~es KI~fKwgk*?ja8_1WpGˆ/-EaӈPn1u0Yz0RAUAruВ0rx&;^ߤj@5e*8cCA9} 9~k_6TJaةb8txd5SU:DC&Eܽdg%J _+|\15ބ-OԹ"}%G)9kTqMyK=+L,b;A5_gPDƘ=!c=:{?Ѳ$m8yu{>ۄ1sZrj)w5^/z&M3;h˞ʮr̈́zޓ^"TIR uR6[#>ő-aDS_&Yo^%$?="Srx&^:3p>)hϮx곴Zc=jꕜ%Q,N+JS3r3ƀҏ0OzK8c}"wöX`ݻjۚzh eib8=$&7!['Zqf1mNV*V; %R=0 O2E <ዙFkU ce#~QrySiO鳠Ę7e`Ш+|pq~_9NYơ#+[Q.evE*d}da}t Tey%;Cbʇd8$ԍ.5~_'hgw6]dQݣu9FqgBxdWIZ5@>0g\ ̲S,3k?SVmڈHp˗8;mٱWlt4Dw}G2^蚶@Xl|xa A1UVUic.gW<\EOjH[Q^6&^:<&7tg9ce(B;Of8: oU椶Ҷ{ 9ǬXIo\0bGIa.w{ei7Z)}$,x޿{$0r8ydYs]\8$+b^O~S`YU$x//ײ//M3nJh=){wUf?fڀb.ڈC_uZ=[0|[Pwm}dx|*?YUnfY~YvT&(9]U)K(/r^fTr&@{CX~WBލ=*c`2%}ƭ佃Miܛ,Lq[mFQK'I}J \cONN|ypG.m53 {ԳaJZ/xሳvqe\86O48KYA]q!">R\m_(V[N1xuT!N4>ŹpȉCfbvjD?9{҅%dc.Il+~]w}s8L3 Myy(W\Q>S`E>\^+nM 2SmV߰)j-sfB(uΗ|8S,R2*=PZUQv)]wn. SH6m/UMg&sSf=KkdIk$G< $G&ys|A>١Fk'LkѤw{y;uFz2F5vO7GH)#1~6 ۵0q =-׃?.aXH"`vpy+T!(L8"u00!}4o_neX eL!t" zYqq=9ЈDԮ>ڑ *YէR`49{r$\J$MRPV5EʁTW [{wW:^ _~4/10qJϞSþ<[/ K,>LP=YW*<1;58֩2 \S"M]֞}r>\M/hVYD6uO/e̘޹BFaTĦ?'Mն.}p7tK2Gǃ o S_|M,nyO$ѰOyxmH.nf4[)U<@5Xdi_jy0qvϝrg`⪠F'>.{HL`qW&N:٪+2dJG8Y߅ h+I\cv‰ٚs0ϋqm=q.D\b|Fu%(y\Zv%RڽSN*y.<>LEhەRJ~S̆F)n*b8?ɒ~hJJMwY@EߏQ. "[t/"<4Dԟxtj.hO- &ĕiX~0 NqlUV%f |z+꒲yLFQ;MH=scWf1?$ ׿ rFHWGp*bw>"@ɻ/SO1] kc륰P$XN'%<8$>u{v ]U|R'ۥƟ,bW# uQS*LyhbBz7а\-gzu-/injw8Pdu5hL12$LYPo Q^𵪻ê1n/{X6'Trwq=79JBזDclQ>}sIQ.|/㫎nXt@H9==dXE>GF2>Qc9HByẋQ8e}[e$r9Fsf~M}̀N<"rRNقnznfJ6mi=܁]ܲQl03=qmuM nԳD\CcQp?E ]Q`g+碂aj T9$R%guŴvNYb!Hti(vT;Jqne#u\LX1>˓X4wIsf)h=icEp%?dT{."u#_=b~됢1G(Oi ;$*G>S_roՍU{f:Y1{HڥɨG6>AҾ$sb'n,P6gUljFALOB߫ 楫aOγ1-}}ƒYp Eit;=p9D[>2]GQ2WI՛>r_~\KGMrv$`+ZcbNh=%W0.gc}1F v!J&Eqz_ZMzF9פR;s%HjP]Onk~~xjM[n6l9,W6Cg쭷;ѮڄMrr7/R3`=C(Ë/ [Koʙ<2!—ܽ5ȒG'-%_3>oF鿦=;1s;$y`.>a#}CyvAdz1$־ |.5hF;Ka&7m}{u"!V>pY9ǹ1]ѻ̩3/ ÇԗUbRsddY|:\Z?Ge'i?3o,+0_x}Fs8(-=Ϧ.$9'_ɰޞ7EIUodxW!\ƙ Ms.WtEâ E9ORL& Yg6H?ͨCvJ嗑`G s|?pgN/=^`rc~+vD8ͨM*WF𓈉g5|u%+ԊUvxb mIDǚ;Νrޞ 9/bOE7Ӯ>KlJ \5&}T'O5P˷|<4VxFmȅ3tU>K}JVإ*-{rHg"ącI|;m #3ۻimM͗/P^}im4{Q't]~ 5:RL$V:OWOD( endstream endobj 140 0 obj << /Length1 1399 /Length2 6090 /Length3 0 /Length 7044 /Filter /FlateDecode >> stream xڍuT6RIi.6`RJNAZBPJx~9{vcg5S"ma H@ m`&  g3BÑ1X2F"@AaPH@@@$J C Cؕ(G (())+C!`Pq`;B@$x* AH7/q0  `:ѿH;'b p f#0hq!~k P$r#~%!+ G0- #?h$6;mn>PCCPpW ; v*? G ر{ެs#v?A@]p7w  HHan@āgyCoW/O3+h?_4Ġa@PC0@[=: }.Z`'ϓ^P$_7R43|H//ORT(((! 7_V]0C%cohG2wxr~x}ο\w;+ m$V56 wwo:Kq>Ao;1D{pL|`ˇU VAcÊ}U$Dŀ` L_AL0_H 6C?*(GboX_!(V}hma0/0;H9ֆT+0x}yGs[tYO(cLq7GЊۃi3/#ƦxO,;R՞apTzwN;awHze'zd,-8L]w U^%]/n12`+}Í5cfykfy+enn4r ?Vl;^x;?ߟۓ&U%VAIG;GG$[á(z2%%c5k!f˾x m3|Pݞyb` 4= 0o0E|)5?(gϞ.S'|xiᾋ(C:hJd_Ff&q$rmĬgX0[&}XBdYn|xT9v>>: 16Ƣ<#T'jedU 72 ~wH*nv>u)rE_("9H|$BD(J7E7|1,sNǭc.Alu_ՌA<"-8=p%IM 'rUZw-dEm&ޕ~]2R1S'x궣(%Y1Yj?5/(id_>myF v8=F!ů@O^[Х5.^@^#!Ʒyvf]~ꛣ_( |6d͵l-LP;/\4뚅}Ð( dٴxyW/a1oOaL$7L+Aӻ-xnlmNr!Ds% _ze $v$\F.q|Ƴn1nO"4snȻ9Y( eK"Ԝ;Q|Pk+5J_ jĩТ˼qP }8Fj\3J"hq,-jpMQHA9}2G8r]V iiczUU|^* "Q dMc鱋?'A 5[m=#,?1$:c,oy'a ܵBKֿi}|ep8p5yU`%eҾ^ /=e[I3`%,J׃}u` }73JXC`h<'UX."7IUL:& VsRH]x->G΢ tai0QZz9GKTci?l,F3UUvHarRR$rS#ʣs3c5fߟQ U)y_Gʥ"ѽܡ.>cy"Ngg}KI.؅:ԥGfX7!wxg( ]O6anަVbֈ#D[HF#L~$20@Bgg4 wlg/+t:  r*B7Գ^OJ"D3贉MZxTv2dgajtGzn;JZvzM?{6Olh ~gB­&&wYs4NS7}ܙkf)3 78n^gk_NC.s᝘=W!uFJdW%d\:;*/5 ⤼͡MkjrQYw̐9*ĿMZb殚x;>oiZ/Xm)xKx8U;|"ְt_܌MjDO8y#HܑF1%ڱ1F?A~iC[ߴ( Qìdk\ޭ uXA3-rXs5K2GWO~̌s%[8 \V6SuziJ+iu3l1׊4IJ|[ZuGzi~j48Ak \I~[Y*&XVl6z2L4OgM+꥛QL2|Πǹ3؟+CBlaܺGV/l^W">G}e,?iPub D{닋)jHUoi[.|il<`v(CRRc+gL{;^S] )'wPNfoSxT=mar'Dk+2d-X

    ]SqVc eu=_?`cj^=(Y6n6Jo#o MjL9əLdS՘l.}q.\Xp |;MmtY c;6K3EFS͇=N$Rs7HY͑.G}0 ׃_#XԈ_VQk.7ᅏ)ؿ~QYtĜH'=&E=/rSk =_ CqKKA핐9xw)d!5/QUY+ Idj?Ln y†zF&}uwh2M HLTw~o懈YN>KR6HX$7;{4A6d8{y HY:.InQпP(/tɽ߅χXp, K8TzS[̯ @M5[EI/`!?I 㿺G&17_] >7I;OxG_lń]YMDCJMLPDtU~@@6 O-^ͼ(li|Z#¿eGv/G$"ibQrm7woQ[ﻵ4C#7PzCYG!s}-PD<6AR-en6jx6,A\ ™f!b/N#cݹf{KG:d>E߈jR7zyS) \)D'r۲W.LCI|betЅsFMpvEzpDԐ= )qB,Tt1*>I?[ȗ>|RLӖlb?*J'oh DsLMil[|guS'a?Wz,Kwه>Ci/1y/bmK E} )m:$dmVm0أ d@]S5!I@jURtT>_ǻ/-v v .gNg!ؘL:&@wy;`~m p:f#Lr8-ƣh-Ḣ3:?_ªr_E@1QPb*h v|y&[#7Jۈq`|(}YPERЦu@.hDD/_L8^*te40US:ku 5hk^XQHczMH=s{@ MG<>ϋd V~^eMI y=})` HMյq ޼q>R͖0@tVC'A|EjdU'ߴz;쟱sխFZUK2[ #;1Lk D4_ے% NH@Jΰ4ޛޑt_k0x4xvR L~G3޳I-o$b׭)5p ˰eŤxy%?q&PiJjk:q'O.Q{|o#*98ӲV$pſZpHR,C7vW0-{n"[Ni!V9Zvt::*3(`bxPibȀDǵj43 ZdbtBņPIO%[k-?

    xZ}p#xo;MP@ʣSEy6)aVHW!,WAןoqh7hHE1dv{3ȯ lPbE\׸u O1m7W7sN!pt .4['M~ѩ  w[z[CF9?>% > {0E>d@O^H$#m˗u &P$Ȣ;6x4Ӣ|ťgiJm1RK8MR߼ّIɞ˗!Wۉ4m> stream xڍTm.,%HJIÐ3t) C3ttJHHww# RJ7s֬53k{L AaP' (Q@^. YaGͬq"X8ALH)i ^H@$(x@ aN"YS @e`N6VdX aaA_= P3EXCM0s?!XŬnnWWW.S{8JjhA''ecS{Ը:60K٘Cp3@fh+ пU2 or657;BmVK;@]^ B-~aHSS;S3M`M)N68'GamZ!Pg}6Nsdݹ>\[(ZXa qt(maYA~ ( 8 n?;@~)A?H^0%@'g矊"l`acAlؿ#˿0l@!'sm눹t+iuVX8V a0Fm 6s_1 @!0 G\9s[G/Q(5Y\=~;69_<OrG- nF!.$;/% Bn 9i[7p+nOE Rg EH9٘$||?%v;_/zGgvAҲ,?0g?&V@dQ@~Ign$a$-??atG,yC [!;FD>l0^B9 $}o ?)9yIng d- nACp@p"{D Az@53wvB6 &D?qc} h>/SrcpΛ> nX!)}hk29\\u3gcD◻pUg 6P ZRldi b,g%kpQG"1ɅxqQZi-ɩV%&~ErZ|j2qڎDV1$N9׬~f(-uv|+(/hcƝeFZ&x[Œ8#){Lͱ7R916v#N/ b!=kY=>CM,"=-Iu2];o$~i܋܋~b{f7*r|g2(EoK+Qf/}2Ȕ\dˮfSeU$;Qd }>_ѥ.ݩ(RC#%:l_ d=m8z.axt?G^fW6>jP/v?QҤVxe+ Ekr!9g{(sKQfg+LXF,E7 y +[u'JB+K;42y\lmE8#WO Um:>v~px" 2[ĘX؄5W[f T:HrXyE6VfZl)͎n з,[nf7 %蜿ܑdt:6R&0O.9hȡn4kO><6+qT1 3E,vq>b\M-]Tg3*Ꝟ_sig0?;pi~~Wߩs*9D >WF錋2ޤ6b{Ɩ::e{Q|>*?3 LM}YzWC j)GPi,QfϜhs+x^񣷶V| xJ*&G^r % d͡u͕d@6%DykRz؅V} BemWꋅukJHJV1Mw|3͋צkUXެ .Dl+zR$SZ0aK̆0ۻmkP)dJ&HPR3Y7k勱syA:+B,Cv^Q|t^?z37@I.Uͧ F1qja1Жd%~{sCRrʍ6| :[RSJ|39 r|۳`̅ O#TF!w>xt;1X/[~2پե45$#9{$-l/+.laxao<3|hF:`[%“@P%2t4ʆ`3s|Ue._ O3o.|oK(>s*A_ l$T7*PμutS!Uvrc3isL; IuSf'["oȽ\>hs|P(I1MRG%< ["L5͘)ՑIY?aS }Lw`ޓa-_>Jo\p2V / 93d$}pY݊$k(".9RvWW Le_ڽYZ6pM'c44 2)@WtPq7d>bz \y,<*H,צ%O}_*aW}d|-Xԙ՛D* {4sE%)J]2aˆP^Q\e͹I;&JGO*9<+ELҗ B(́Q{i}S:gA"ux!6w"&`b{Py{<#'vXMRbScJ>>S 8DI߱l!?yAٿV1qMU&z0ZC.r=AKpL*%юls9r9XA~'_#ET8K2™YM$6Ze7-wהny3ϸ9䔇L->BG%0WuJEVQ4:W;NۉbXR`^>&hڹ(t_zu^ȃ˙-Ţ( ڜ<{{#q]2䛠[pg߹ LG!ڢC#F$(ۤλ Nɫ嘻zoW~Z N)Ȱ%/4`NJx#7zo%S!Gw4" SNy6yr=eS4e 0?.z+~;;I8.Vzn-6C=3l9l^2 Yo0.|opm@[ K *Xf2 #W=uΗ+A.Dx*xEv-i7إSeyF_tTjgCקhc+=I:nM4Tx{]46dr[@9XON\ff&EKpyy/mQ8ճ|"1d=\ v!AVs-.Ev[i < >oTےV+06$h4i/ bmAʮ8dH`^gͬZ͋4ѭbjAΚp#|kΊI?%5LǓ3]Cas<Ѵ*ͬ'^w觨w}dgyŐ =| QkA U'X~e$W|ޥ&ɹyW#1)Ҡەpi鼙=|83~T $i"Ye^鏬ؗAۦ=|i*wﲿQ#źfW/ч^Z.UlauJϟfVܫw]y뀾1@ `S+Ԕ <[B4+#.2B?(1qw7 @i=5F+w7!&;ZF6bXd^a9/0T5@uHN9.ꓱso­wVnEUxsKdg|saTan6e ~A@O:iv| 5R]L#AfZu-%,k.}|91%G풄ױ~^MF%p@ls-N^=!VBknV+[@U%hf(NJY"`%} LZlUOdK)Xkgi1.qMF$`vSsfh- $TfNGOBpA('>c %D-Q3g%R.CO½^Psx,,s|dM斺bO79\dc4֨"vpl)<1$N%8R{0=~Bz02*%W)+|(&%8tob8*,y|w'љ`.ڼUu]:3a\Q~GDΗQСʊjТHr;0C;6R}R{ύ>7+lU!;~!:d>&\ި$2UH0 #/gǏ/[Ρ5WI5%JpsK]Ȭ >giv=mƠ27jJ}\>/]GMḯSB X=o eVei0mm . Wt:6T'h~D4?B}PAT3;51Z:9x.\ i5Vnt/ 6b3)S4>e?\hPJ"(buU 4 sz^J]EL-I=:lX_ʡ=)榟/upZ'{#gLQ)I;4ǎn9r>S^ Q)[2̞p+Lp" 7lGx̧A6i>EQ=%n"S%br*H=JeձIido4b|̡Ѐnj\wܾ= #SIkXb^sf$3=)7@ń-T~/S_(F/40@]M0 DiVhfO/#^"votSٕTPYi%v]޾?^Hr./]}?hH)<6 })~#E$ 8ElGU,ųY"D mm< 8Unم=]WRwB}FkIʥtmF1:CO [:7@s|u9j ęh35 83y h6fSvP1:#)pstVj1g{.F+|dVjt;: D3x{)\yˆ|Bi)WY%Tou(ub(OڒvEֳ7lXIܬ]i"s0$ynʰ~1V4gH{Ueeo_ Ol,ZsqIl7Cqy͕}+'{\uwtC4G%S(ǘ>HH[wVG8XJ^ 1M:R vQ+3>8TxHQuhc^#l|pJt>^CO9;y.•}/::4 ŧ_?ʵv7c`PF)/&!ӵϜuqϙO}?HDK0O4!&lQRiWVyjQ-Dd8CэXhś̋f( QvK" aO]E"KB\ƺ L^dLQ5Y'^9*>҂9 q(q fa[{t7(-W=8DL497P hnjO1#X'h"d?kemfb_?͞trb'I8h,(_+-J$bb#S(=5i5<+kO>\MXk x֬nH&;޴k~ߖ9`|8ς^9ۡC 2ca? (|Su~L|ʔȡk疴$ A[u3w2)I؎c)vsw+]Xg5vz*.q+tцRGτ8]řZ ۶棥u@aL endstream endobj 144 0 obj << /Length1 1343 /Length2 6806 /Length3 0 /Length 7726 /Filter /FlateDecode >> stream xڍvTk6C CHH(C %HHtw) H ((!)z<}kf{k}]V=C A2@mCmaDF0#8!!2PBB蛘2 5\¢@a aI(I D e`7-@( Cyr[%H5N7;Zkܲvh %@ah;EA!_:`'j Wav## Gݔ!P$fw-3X/?p‚S lmpr=ap[  UD{`8Bԃ0G @U} ~(k$Dqf*p GΧ CBo)rw+bYsq>P  Qai)a 3ww3hsC Q`7(tzw+0F08?oP7yA7~}yz|0+24W3C"-0PF@g> q<kxAq#g(?o=&_]'Ruut N0GϿ*P@r6suh1ඎRy@!z0_Xߵ*pkwD%`$ DD\-|c26Bp _W"% rPc8z'ݸ6֮H䍅~^+,"V)0 lޛ0y#ཀlw='Oc<+ F~wYPs1I{IY$26y WΟWvM- x=g1bvzKV̸/l{Pym©{w#|~wkX8e\!(߷KР)vO-[LI4.A-sM/ns(dw{v7n2suu%!헉\ F1m>ay>ӯZ[j2XJ}&ܹ.sR`t3$4o{־] 0Kmv{#Eo^uI>LffBqU9, }\c3R,mFFM<%LmJ69]yr5pIVUafʄ*;4.=DQ-Yggж7!p|_B$D9ٛBE-hsw{<+ d!mJ8ius=0ΏxlukܚPH|<\Ԋ_ FSCI,6ܻ"JUizm`GW #$Wj2fFx <1SEtbSZl KBn法ؒ_w|9!iOBQ/#4sR2겯2(6*}A͏|qɄw!2I#P+Z,5):G#MeJ(էKf9녉uUO?=Z+ϯƹ4IQس\ӓRהJLs-O@<|\aŋ9x?pTY>Ig2CTEnk}zi/ɜ[dnUgRR0>-E{vxyw׺dq #_O:eY,z<ҕ>"D\M"YM=}PYJMlL#ĶHl齭U t0\7[YJ껈l!N>#^ӹn~w^k~K,*|T⊢y|Y"tlkc3xdcﮓ<{lNع1 Ke/oO_EMn6.KG;N ؛n1lKy=|GI@g'4XgirSJsJϲ\oHAZ3u?6's4D~ϒ>_t 4>PA)F1=Q*t79Ty~OVJU+:~TkS.YC+a͈n-uSwX }1E6,6<@6 WSܓ(3[i4eS ۓ~" E\;ogYNR[ϓ6&GK>M =lMrC-ZUCN(}78'auT|2̓G$ `/8)AVy' %ӱ}.U\uz06Gd3n0|CѴ^*Z_TdݜN*rp6D2wPK:("cgA\2o(w&N9%a8ba$qcYhű+/>nhh Lꋒ8E рsuOyb[bku?RzơUᚥ 0P[ݬI|yOƆ+7Re>Ua*Uf`߸p*$lRݸ_~,87&2Ny=~K!)|Aw]Ad`9{}%Bbs"01;Ny(ф(gvt_˳1z 5:^ٹhz=`Oa^ei>+0M>ƥnvRk˒pp$ݍhOx[lY!5R W}˃ZD5ĕYhU %cD>'3BN+[*/?+B>m/4n̵UqzA"c*iK\ٵ,UdgqCxs"AdvN|.KوRH@c4u`Iμ ;m'96ƳB.䟑&='ٿ -G}W,+XBjOY/kQ)w~%iXeugc+q*7}&YcmF as/L~ީ;˿!f?ͨcF,2M;~P[#}mJy1h/z>w9LP[L%VfE1zڈeRF -ٰKKӁG1Nw?*'q\u V##*Y~5eYBopѷ2p˲PV5~]Pv<奔6RcB=,pNWAi*2ϏWM}W?Ah] bwi(ߚmx5BS+{ч k&P*)Xy$ֈk׌Wsj~x{yCnu)|B-ts'CR~w"?{sj]\EH7z{j vxbe\ ks٤ج2َmy=,3g:Ӎ=<W.F-]vVFGRA3wN vxð"T*m]%.qج=Xsq5r>U&"Gc6Q.ݮ>O BSCxcђ" i=S?[.,*(cMKjbsF%(Fn1,﯌ J[Vଙmh7<ۖ1U m~} )3C`GUa`;AI 8>WDKÏjԝ$ ܦ$?ucL&piZy_~$&]J3ϼ[[VoUaSW`sL񚔝)X;*|a>;stsb؇ hϪ˾Z QCtH\%yHhQ3b ;w{4vT1S9w)AR)! !8Vtą=)N:dɤMqI˒EgL8}{&@OuGd.rޡJp6ǀ,|ZK^v]\8xGVΛjAdC[-w :İ7ФGt;Eb}aK]+3dn6@"am-C=?翊Z#F skEJx3_eԨ*ozS*a3VGE%0TrZX{|74!BB&{xUzwPEPX/z ́{fpt$A6'?ɈFM\$dvcNUXރuWG#8Xn>Y0kv[bX $OxÖl~ґ3zbJ|!/Dj5`q 3A̒l^]j4S;9 } b E#.x8i,{0ՔܾzE~'!\þ)<.Q)qg@*:MOսvt =vmuv TV}PEstN#i:qklЪ@JC*L/Tzo/@d@5aqO}UΑDz& ?^92 W$Gm"T-˖-׶4 m˺gH^|shzRe+DAf;7R͝&%%Q1@[QoJրZT[#b{yؾfERu׆"*%Oqj|vcy5țI6LӐlIkm2k1g55,*z񬩙#i/M-%}S }**Q I/u@{<7`VS;-~8uh;i (xс;aGྩTYIw̓)k:cQHau $cw3RqnGRthdm,-jr[-q ؙ,G}̷ ?uԙ_b 6Y1͹p@ K+aa2g^s=(caxRuQ=Q:-+pV%HSVˑژkAXE?喑6{-sZTԱ)?^f<:1M^?h>.aO.$:GĶ;`<ϣ(֥,# 2Ϫ ^1ܗJqΥ/ ?L;A§CfhBݐra},Us;2& e-.m~FVO"K endstream endobj 148 0 obj << /Producer (pdfTeX-1.40.13) /Creator (TeX) /CreationDate (D:20140528164350+02'00') /ModDate (D:20140528164350+02'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) kpathsea version 6.1.0) >> endobj 6 0 obj << /Type /ObjStm /N 78 /First 659 /Length 3234 /Filter /FlateDecode >> stream x[[s~ׯs*~ReLAcINH~gZ6rD*U<0bZ 4%0> MF%\R`Љ"%I"';NhVhp4^"FZ謳t>@Y8$B3PqfhTFvrL"faU"+a .-Ƴ{'6x;XcLYP]z84j3AbX!lZYBG .'qCӪ NB 507Ul@x l| Tm\`+þT}.N{H&1Bߊ'5EWC5QyC JZr%)cWC jP!6858l%5?,D聺/5N Y])lr;oIɭN_@@ڊ_vUp ,+rS4=ra 8%aok".A Z;СqCJQ bDZhƹ}MKyf˾B(7׏.-GZLL^;D_ a64u0mPEdsħ C gDR#= ENCʚy/M2D@p2m$iުL!47a޴(C!t ޶EsQk$4WƓ쇢b,ڭܪ8N,B#(8 Y:AAՕ.z>IoJ~^LMX/HI6kv>V&Zo<Tdaa Bb~13:K=Et0o-;&%؂-=k#u!FO<(ìGEe6<6ON7ӫkɒ΀U R|1":\ٛǜ"%;_KPcPY_81Qlq5 ljjKY6pJs\ 4xNໞǣ+qg _0WdF(LE*=j[K,7Az;(urM] aM56?~" GyY Q*PR,d3 5Tp<kS~6h#" D] O <-ۜFryڇs_{ү[!"t"qf˽~1X Đ9ޘ@Hז_F'˜MZVi[3ڡ*DM+ rLљ2'㧊S[,ϲo ^kd^eZ6J..i Th.|N+W{+S̱HKRvO|MfV0Bh2^>/-#z0[pc0i(/GSZ$XWDu,_4:|2iP qlvT_~{HvܬGrN'zDz-P9p} *%['N:>f'|2-GOӝÇ7G3ʌ]>xV3=G ;:w{.SHRCix>:\WB f;dtܕ#AȓɧO#QV_/* Tɳ?.Ϫ 9sI^ȋE%'rR^V䣜ʙUalElZUrD^/N]G]r^gӝG`oxOkCQ x*{8VٳKTuѴCp.>OFUDnDq[M~l[PߋPFgm?Vy5l˱fgpj>Z lϟ2v('mgӟפ/ { |x#hDA>OSL#z,ǧR-a::W)>rZL>_)2Rp,>{CVĽfjW3Y~̫yL)& vfOذǰ8jvN a}amV]g0lprA@%ԫ7O=tzLx0݊''0*O?>9x@Pzb MRT[C/CWAm9xst*{a81%,`[<OEu:'%=yrF/^3>:qwY]|BrG?9e_OG'Cgp$[D &cYB# o~] x7b~wps$qo! Lx O US`Z Ü/iwGa[;:8OxlNty6/4ٌX٣vOi6=tzWۖ~n5~wUcr6W)z;^NaUuW{W5mt~'n^7~ܼnᶛV]F6fs흢ܭ9^t\!vwWٕ8gwsXWϥvK(wdF\QkЋOj?ĻF!O"J%ԈRRJU?HP}6Oz*sHm)Ie?y,(f'_5? endstream endobj 149 0 obj << /Type /XRef /Index [0 150] /Size 150 /W [1 3 1] /Root 147 0 R /Info 148 0 R /ID [<467A3F816024381BC8C9C3AC9B69D921> <467A3F816024381BC8C9C3AC9B69D921>] /Length 477 /Filter /FlateDecode >> stream x%]hq9dd'Se 5ܳgDKH oxBw,x3SdGe`*HhRTw[*RwV3z7vZvRM uQ=LrsP ^I-Aeu}:rK?V ԓ:dwv2~摹ȍ ºG}A5m' d>. b4dYL ,#d9۽^YZ_KWYZ5{-E|u-G퇥6v)KJ_,m/ZD}p ܕY endstream endobj startxref 1021674 %%EOF espresso-5.1/Doc/INPUT_PW.xml0000777000175000017500000000000012341373334017333 2../PW/Doc/INPUT_PW.xmlustar mbambaespresso-5.1/Doc/user_guide.aux0000644000175000017500000001442312341373045014667 0ustar mbamba\relax \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined \global\let\oldcontentsline\contentsline \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global\let\oldnewlabel\newlabel \gdef\newlabel#1#2{\newlabelxx{#1}#2} \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\ifx\hyper@anchor\@undefined \let\contentsline\oldcontentsline \let\newlabel\oldnewlabel \fi} \fi} \global\let\hyper@last\relax \gdef\HyperFirstAtBeginDocument#1{#1} \providecommand\HyField@AuxAddToFields[1]{} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}{section.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}People}{3}{subsection.1.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Contacts}{4}{subsection.1.2}} \newlabel{SubSec:Contacts}{{1.2}{4}{Contacts\relax }{subsection.1.2}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Guidelines for posting to the mailing list}{4}{subsection.1.3}} \newlabel{SubSec:Guidelines}{{1.3}{4}{Guidelines for posting to the mailing list\relax }{subsection.1.3}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.4}Terms of use}{5}{subsection.1.4}} \newlabel{SubSec:Terms}{{1.4}{5}{Terms of use\relax }{subsection.1.4}{}} \@writefile{toc}{\contentsline {section}{\numberline {2}Installation}{5}{section.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Download}{6}{subsection.2.1}} \newlabel{SubSec:Download}{{2.1}{6}{Download\relax }{subsection.2.1}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Prerequisites}{7}{subsection.2.2}} \newlabel{Sec:Installation}{{2.2}{7}{Prerequisites\relax }{subsection.2.2}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}\texttt {configure}}{7}{subsection.2.3}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.1}Manual configuration}{9}{subsubsection.2.3.1}} \newlabel{SubSec:manconf}{{2.3.1}{9}{Manual configuration\relax }{subsubsection.2.3.1}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Libraries}{10}{subsection.2.4}} \newlabel{Sec:Libraries}{{2.4}{10}{Libraries\relax }{subsection.2.4}{}} \@writefile{toc}{\contentsline {paragraph}{BLAS and LAPACK}{10}{section*.2}} \@writefile{toc}{\contentsline {paragraph}{FFT}{10}{section*.3}} \@writefile{toc}{\contentsline {paragraph}{MPI libraries}{11}{section*.4}} \@writefile{toc}{\contentsline {paragraph}{Other libraries}{11}{section*.5}} \@writefile{toc}{\contentsline {paragraph}{If optimized libraries are not found}{11}{section*.6}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.5}Compilation}{11}{subsection.2.5}} \newlabel{SubSec:Compilation}{{2.5}{11}{Compilation\relax }{subsection.2.5}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.6}Running tests and examples}{12}{subsection.2.6}} \newlabel{SubSec:Examples}{{2.6}{12}{Running tests and examples\relax }{subsection.2.6}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.7}Installation tricks and problems}{14}{subsection.2.7}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.7.1}All architectures}{14}{subsubsection.2.7.1}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.7.2}Cray XE and XT machines}{14}{subsubsection.2.7.2}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.7.3}IBM AIX}{15}{subsubsection.2.7.3}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.7.4}IBM BlueGene}{15}{subsubsection.2.7.4}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.7.5}Linux PC}{15}{subsubsection.2.7.5}} \@writefile{toc}{\contentsline {paragraph}{Linux PCs with Portland compiler (pgf90)}{16}{section*.7}} \@writefile{toc}{\contentsline {paragraph}{Linux PCs with Pathscale compiler}{16}{section*.8}} \@writefile{toc}{\contentsline {paragraph}{Linux PCs with gfortran}{16}{section*.9}} \@writefile{toc}{\contentsline {paragraph}{Linux PCs with g95}{17}{section*.10}} \@writefile{toc}{\contentsline {paragraph}{Linux PCs with Sun Studio compiler}{17}{section*.11}} \@writefile{toc}{\contentsline {paragraph}{Linux PCs with AMD Open64 suite}{17}{section*.12}} \@writefile{toc}{\contentsline {paragraph}{Linux PCs with Intel compiler (ifort)}{17}{section*.13}} \@writefile{toc}{\contentsline {paragraph}{Linux PCs with MKL libraries}{18}{section*.14}} \@writefile{toc}{\contentsline {paragraph}{Linux PCs with ACML libraries}{18}{section*.15}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.7.6}Linux PC clusters with MPI}{18}{subsubsection.2.7.6}} \newlabel{SubSec:LinuxPCMPI}{{2.7.6}{18}{Linux PC clusters with MPI\relax }{subsubsection.2.7.6}{}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.7.7}Mac OS}{19}{subsubsection.2.7.7}} \@writefile{toc}{\contentsline {paragraph}{Detailed installation instructions for Mac OS X 10.6}{19}{section*.16}} \@writefile{toc}{\contentsline {paragraph}{Compilation with GNU compilers}{19}{section*.17}} \@writefile{toc}{\contentsline {paragraph}{Compilation with Intel compilers}{20}{section*.18}} \@writefile{toc}{\contentsline {section}{\numberline {3}Parallelism}{21}{section.3}} \newlabel{Sec:para}{{3}{21}{Parallelism\relax }{section.3}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Understanding Parallelism}{21}{subsection.3.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Running on parallel machines}{21}{subsection.3.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Parallelization levels}{22}{subsection.3.3}} \@writefile{toc}{\contentsline {paragraph}{About communications}{23}{section*.19}} \@writefile{toc}{\contentsline {paragraph}{Choosing parameters}{23}{section*.20}} \@writefile{toc}{\contentsline {paragraph}{Massively parallel calculations}{23}{section*.21}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.1}Understanding parallel I/O}{24}{subsubsection.3.3.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Tricks and problems}{24}{subsection.3.4}} \newlabel{SubSec:badpara}{{3.4}{24}{Tricks and problems\relax }{subsection.3.4}{}} \@writefile{toc}{\contentsline {paragraph}{Trouble with input files}{24}{section*.22}} \@writefile{toc}{\contentsline {paragraph}{Trouble with MKL and MPI parallelization}{25}{section*.23}} \@writefile{toc}{\contentsline {paragraph}{Trouble with compilers and MPI libraries}{25}{section*.24}} espresso-5.1/Doc/user_guide.pdf0000644000175000017500000105455612341373046014660 0ustar mbamba%PDF-1.5 % 142 0 obj << /Length 1104 /Filter /FlateDecode >> stream xKoFuy c Tİ+Fc}d*u"Ё%. 0H@T"$Rj3{x+l"j~-y,%-b5N8"pL ;O~%*ZJF׀8K_!sk@3P eEޘJa_ׁduw48Ԝv}ӻdX: ;[ux_p=ZAizzm,_BEnSAc~zm,<7)gPC+)ۿ¶w7m}Ǧ8QsRr><*q endstream endobj 112 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./quantum_espresso.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 152 0 R /BBox [0 0 531 181] /Resources << /ProcSet [ /PDF /ImageB /ImageC /ImageI ] /XObject << /Im1 153 0 R >>>> /Length 53 /Filter /FlateDecode >> stream x+TT(TH-JN-()MQ( *NU5Tp endstream endobj 153 0 obj << /Length 154 0 R /Type /XObject /Subtype /Image /Width 531 /Height 181 /ColorSpace 155 0 R /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream xxTU'Bh*MAAlkWյ VA)R(IH%Hm~wWoE'aZ&r~4 @u:O>OS/lIb RO^&M" w촛%.$f> quA&M4itc{* L5zշ]u )s<.Sg뾳 M4i3u-lPaC`3Ԑ&M4i2/(\yFDպ4`b[/|M4itË^T`6[Ah1؄fhSu߹MԣI1@)xM4i'cRF;Ahc3f n^V %h-Xsb[kr}5t0c=@hI񄎌M4is,J &0Cg V-%rS!7hEki}7Rw겮iRCܘÍ4󴩀5rZJŶ2h'\ԉҤI&MWKV#֗ hj"1Yƴ/ğ 5Dnu{jv[U^D[1i-[HsmePƪ*UF+iRqT'ckţ]JrdZJ3LɆlϡ#uQ%f @JD-ºTUeu@d-[I8~hw0J;7ys_e[B8G0md`( <4ʵrm\B8#G@qX(9GfEQbQ4(FwƇDzxV~'@n2VL>],kuT2c=35QO ڝLg*pkh!/M4в}eCQ/wFjl^!nlV J$*K;:hE rh9ZF ~(p! Br!w;ײ@BPɍ㸡EiQZ.)2BHn-ڪHg=34q1;ecˌBBϫthФI_Jx~6Ë2Dl* /$c "_pETJ S?yG=iKƋpYu2w+xQ47.` @@dpno@K[3XO43727fڂv~ߍ@4)819q,'jI]iȣMYK .SQVv03M4D Аu6UN3h]ԟ|G24rPAXLkXC#WqT_LR ',XQ-{Yn7Y[&ܨ2)ή6[*ժktGU*j=3;AvB.wg"Y> pqgKXeTBmRUEY:Ȑ$ ]%Wd@4iҤ/%F UIxh_:IZ/(xMWS3e{_ v&ƽV%UP}*1aH ay !cK]ˍ9}641gnr:?jn;$u5:$} mq·()?ɀ\h) L AhL4ŏpvg ~T8 綳,k'SPkMw(NMmvaWB~dh+8CV `ch%Ǡ4.%F岩r8+՜y4i gD0ߋ]~TBۤ']+Q(!!OQ%m͘.IY +u%rJfف̃EGhiH '9mU\:-@9}lsNͥPW5P.W1]:.DÅC9pn )+ y;a3?՜4s w ع ۋxnG7)=Abx8Ju4sY,ic1a\bKwa8&Hf\N\*&,N/%gV`ZHY[v3 E˥'9YM*f&wɨbZf5NtM4r c w/dlU=9ZCp{!qxvd̽,mjȹ<{$&`KC9(? e$FxI{XP>;($.T:dz=)؏D!-=8Ǐk >K:6K>D!}-ZIij1/41U6ԛ+%;G+8],'p,iNMLX"qj 1pŷPJ4T$5c?.mQyurk-k[kCs>4! 1A]*LO0Y7b$ib9{Z Z|]:j21(ZF;&Tex4i.沴q-f?#H;Uv1fߏT>=ߔ^ݻduVH-煆,2^: E1!/%_83o#'.SVϘwּp,a*KXpU@kN*b-LJI n#eB+юZgg@WrlWi.0C6jR*!Rnf7CZÔI\BBJ\IN *eDhCۮI?Y\"+!it+)=vhD %DH‘7OMgױ?`¾)&x>}3w1 q)$,FWpj..u,{ b4 +17MtZrk̽fjd=܈ 疨TL3.+;"9ɢp)@IǠSy;!g3ⰠIK 9"H^߳͘ V* }jҠ!sN7ZoC&M] яhd? OBS8O!g?顷ĕ`TLmL_=lͨlWv>xBsb+,˒$iV9*bkza=t?C2HOO!泄ZNdn!982iR~4A%vP!U5u=n9]Q)CD wgsةE4N&gм(5"˘\&M7T.q+k6@jBrclݰz,|hX|,OW '@ rtfDh55BGkT P| GAN0Fֈ)K!-}+%$YNCPkhCTA{ E$'uXX[%i*H} I"q(܏XV:Gl8>N|,HeosȅZ|Ys!t\A%!TzQWV&MC!;ˏ:U Z~ i!yMX,ϩN c7_. a'GhNRئ"h&0upd"Q*KzG%C*;WcYoeTFvDŽxnrv%Z_Y;MfVQ ;ЗI¡T/I6iҤIӟ iǦ*8Hp)Z,")0*OTGüFD*Z,c3Vab_U2 b87k60?__'afj xRΚL*VoI?-8Ȫqfp웦C"qxk5_4(EG OԵpj1 }'>Kg8b.ݫLLl'חLrIIdzn~kQ$h5U|է+lwff#cC<,H wayYnl,.S Rws M4CUWzeHӲ>[HsWo48)́bfE[%19@N,?.=bkwJ&M<b`r ^Wb|"\zS9Cr;,ur^()<+h}6m.Z|Q0J(7vUܽk";H}F^.5OU8Ø;CB'p4g'GaVcChm&MX4֌-ppM`"IiZ.C8#; }A$G? >$_XmJK'em[+r cfdZ@!~P+U@hW"W%xդx()[pǩy4 z8>\^Hs[.#YyXDj&M4aNA/5iRi ) LvCvCgC&1JamŘѐ;^)*X*EWqݪ2PY [ `?)ԪJS!@vK gpJ134KLN]{vӢäXD:pؗ6n]&MO}eQ.( AOm`j"R ހ)X9S_a hv4:wo$^ \v~ > Z/KO$C9vO'0oNgasnE+oca4`p5<Jc^+N1~,p=89 QȅѤ 4dF z܉  jl9@` 8/6Jb4vydnY '\%GhqZsz9;D#dnTݐE&MZJO0,JR5pSX4Am

    f f ?>N"KFcjD!)d ̀ a)i%;2DC_/^!%`g_[ :qr0$FʿeFΎRRae/¾;7PAO@]:_+y!1P&M5rc:e(=lO]"|!6L~V:^/`zlr$ o FCN#aS y8&K~"{ң o NB&vTsMӪDh8meX!8ܕJ}*5—ou2~ -Ԑ-Uő&cz51t krrw͊@U 4WuU-|M4xKDs[+> {!w'0M[c,׷,qIZ:1 #G? ngo W~P҂;ף/#ựU6x OeGfB2\8}CR&^`2]"pHᘯlZv^X{S ÉOY7m҃PKVdʆ_dZ\&MfC"&Xe"?XahlUء=-BR)ļ ރCo\};捦_EwA${N_!rh$U mD7YWnhUI(85[,d2pp=gΎ`83L:(f+M4yJ<`j Mre )>]3ةos696~]x"v04x4,Pj dcWL sva%k#Ln ҥX!?L>b;f`u,?|0VjФIJ lO\)#f1y-Æ{a=X?4~+p(UUGɳGwÎDž@"ڎorik pZ7 E͒ZNJY q)?Kw v _b w$Ck,]u 4phҤw>1zI?ɹ0zBAc"c~KW%h|=ۅɆas!ggLmdtˮd>E](|*Y.؏ _Á7i$q}ȎI8,KBMGY$FB+C&M236L|8I^ h{ ~ЭcMwȫƱ%w⢍c1; 8G10,z.ycp|rvBQʁ FPWlV? Wä)L|l g2]XopC4sdb>O/2ʓC$ 84iOg?K0n& C'D> uNhw> ># =}43Tz}~g·a?kȁ*J_ݔTԤI#)FC>%+1$? KbN獀φçwC)ƍ5y@2m{u :^LgP#h81IZ eG9Zڥ/D0"\5?ĥpxyNt/N!fu Wb J;:5=פIHiV% $~6?[&'‚1Šn? op:H^O/ЗWAlz{8|8> oM!~KTV..;jp&5 ~VC #H mXtdqZٳ&M~ǡH0Dؾ@olDNz6`b?B>nbOOI7ӷs?o/ Ӹ?2Bw7~\R-E MOl}۠@ganxJ?M: $~#eNBkyJYM46p# ;c 8ˑhzk:^H & Gzzz>p? fOޏ=& DZ-p1ZzE38@ˁGJЀÐ/⑰2~;h2@a$4d6nOj5iڥMPm{#!ڭ8#nD@:&}a/vG|.6Η;ߛ=C& ?OOk](O:ĕ^_Jٿ?FY2rJ=r*n~3 wqѷ:{T e?qhФIop0BJx?C φ~}aܧ1^0ҝΆrh07os0Fa}"ecEǡ( T 8ӏ_ʲ6ZK鶗R]"Bs$[iL K_ oӵ'`5eEQ<=Z&M~8LK!lÃ򲻅9H ɤ!?6яxa 't|ɁuH77~0 )npQo,  y 4\u# d&7=G~諵ʎ,)+8.xH5X=H^~0NfG>ya.ʯ@&M~#8 (5%w×##A0fx'}6_ {B/wso'W[pA7Hoqe~t<;2]>TrIsʔ} Qe2jÝ vدDdfZb>~?$r]5ԇpF!MF ::Mu}8L.fMj@OM{(M9⅃rr9vc<6xg̼ V';eˎP}1@' 5i[ȡxŃc`D/6SCݡ;qc~Nf1lh̎%v`I,EwKۆbȹKXg^`"Oj(Mn>k.@WF}IۍJH9Ü@]ſ+5 I%̘AwryM==e{Py$ ~uA3|+lT^ Z;^ ei,gK3w-!l2DKJrs.vZ&M=āy 0s }2}OǛ#8p^PGkjkAttNGtʂ(wmtN诃i`S05ٸƓ^E @/~R*0s eP6)2aN:Ϟ\` [okWg>{vl]"m#]"{Dyy9{pcN$?aܖH@zdYTvwvV]P_ʯ¾?/qsRu6tPiҤ鷝J ,Kǿe0{/#tٓf V` XW nL1XcB' %HUIJj7z`J,JT&6Oy֋s;l7*9 }e9ciRKDqODyeHac{9faafbjfލu׮W__U}v7E9SB]}f㻳ϰf Ǐ rT9lz>BOޭ0NaN#Ӵ5rI aITiҤ7C=jd~8:q=a'E&:1󂳀Gnmm VVM+:A7"ߓw|Lj0F_4F(77fϜ;hkG]A#'SX';X1GBi'&j>[%yd8|v3ԭG{^'`ǽ~a>va~a!n{89qr vrฮN}NQn w;LmRk2AĜh("H\ 3G~~2g{>kФIo UJJbQp {cFہ8X0KfR\e\i5XRXb/O k'ѓL1cnv 1B7Ν:.!6Ǭ=­=ږ] X1U0Fdu0{nl>4ᱵV^ /,]#-ݣ|;;zrp߫s rgG~'gthmo^++7㈅P=ZGX:xrqyuCdĤEGT ,`=}͑lp?~Q&M~[k,Jq/ ew-܃,TjWQC>KKNgA//2kyd5dmAQVT&*8Z#zܲko^@O-A6.[ F#Uwpd4K {vއt^G[9E8pqᆀXgsc?vMcPy @ڀc?"nc2BMmG|bK/{N[?]n<8Y8FyDm3`(0nV`__Wa靰IzCNGFt5it# Eb%LrԐ =%pI hwu6Bl}]|=v<*A0*j6`4mtǜ}#\Ý"ݼw۸v8奆8XZEJZ*C[1b6&9DZisiߊ9(#s}^>ېwQ ՘Jot< x?]0 6 ^V h4iALX&$㾆o燳QnleMuVܕPbPȉaiam]]FŦB+s 1l '߽~ZYF8 rwtK|%hkc)8fI6.йg[k3wzw“6AukjSQ* Ezp['_XUn^N֎\\{࿊Bu]o x]@x&d8,+W XMVUI"DD06톽{vƦ *;uCWXX|e`"` spJ6aZ< tfuSNk`G} P* v8ncO0k(k/w`?1ǡNҭDo_\Өm//knimj,mHK9z('r#g&;6lyF3* bx í:؟= A+4y))?/M4iw jxb, cY?Wpg[fc_Iaiv554%X \tRg> UG@nbW zg>Xgu6 [Ֆcӷ 䇟sd53)smqUfhcx.v%AfKi{{G]]C{m]c}Cus륶KmuuS^{.{]í=E>|k l #þ@(f.n}. Czrco}.9l3inL 17\I~zup ttr 1`P] bJ]<_L4  tHT׬l7fPd z|BsCTIpb*׾, ׆'|Ʉ8v3eG=Zcïj8&KbCuֲmT&w^< R-?DHzT]Br:5Y + 2_⾆(@CG&\}\,Cm}E=1:d()-UI@_E(g$CccsMM7qT4U5ڀq.$ B͘F7 2O!KOQ.n6nuAzv,dx?9PL7Lddۡ!CIdeWpxogl7Ó q-s,8Dk Y)"WfC8QG^G1xtC=SYqr,‟ͻ?pPsģwK>[>T1B#&Bi ~-  kp7뛚ZD +3B8:ڕߣ(7ߞM-ogs.;g2@/nY *4iRD}c 飽>./ r$nvі9؂ j.wL<`Ð>G215 Q:odzph 4i[B4&5`uz>l '‡ׇD6xB?=ݰ1=htZΪ>(\}N%|yҍU~ QW& H35vg7 Ќuc@ܨ3\uIDDE+ehhh_،8yWff@/NV&bQIXI2/r3-Oߌ7}468@~/{&^H76g2n}rkkC[RkK̞7ל~^ܓ!ahF{ZSOu;<Ӹǟ|ӏ#)"kSG7mD9s5_Ojkkiknoxum]]]GG`4O|7/=T'վ=}ax|ÔNqF;cg_OIh5iteJ UA)a)L#~0&;'-`#\a3 teGqXЃome7k%ƏWBE^M;Ŋ-A[ݷכ6غm١s<'̱O.kO9ݶ׾Vg(+]7 qǺ cW3MMM*8Fkk {ȯecUo?j}wo@K '\{g7Lfoǰ YlVv2U)A[EI+O-e@O'ah5> o 37C=` {Z^Li3XMֲF88=CTFJu-H,"5<7ukbu:N=wxq8mss@-)г&׾t$w Uthii &_RC}ƓCDVR,u {ν::ٖx3tydz8W4+c4phҤW-bv8.OGq0g |< |L< }~pooƔ* |1F95985;+hs{xbhtɭf/v}oӃpQ_,UJ5I&MR&0N}QA賰>j"~,w;t8Ӈi}褾d:ԃY!8dKؾ,u;L} Xڸzx{xnw`mc=n'pgv=zD8r{_{8L`UݍE*8FP} K Mkl9yx9y-30^,-/[͑<焝784it t)RBld.`4|9f,=H~{bx~0ElHΖC`4tXȗ㡾@dP:)n?.s>E>WHG!Na=\|~~{Gm-Ĺ c0VWʍэ[qqTg'D"uDcB4";9~˻Os~[[ar;&vb%GC&M1ԦA6zj"^GaݰN?Cl9 oׇӻd:GjkǭO[ #dbD?CAMuoNvvyȹgvK`ۭ܂}ٺmsw斠uÈ`2Ꮓd2 jjL&J۹AY&,9R\k)(k^;H{ >]O:G@;a`H8*M4]- *Д!,GC$y8;&a:v=> >&${V`BtmhAlaCT6xqQFrS-6JyZ pid~;=9';8tu {=STx~>n'}:~CGsS;!_JY#¯M4Ds۫G::gGiUتH8 iҤIenH:$\ = ނi4x1^~<]=V^yᮎoGѦywȓ(C-L֢9dK[Nbk>4]f7^ ÊRʃ[;"k?]yzDx:xmtqﳧ@tW:XˢB|KijnkoVR7 tܫ#z=G k,U({߀*G?TNw.]ّxZzPه 8IK#d߉&MejzVN8|ނ iq㤧kDdtJam p?hbQY,%jGWG`+wݶ^l|J|}e}Z[(746WUs474֫3F;A;[#UUUF2P`9oS{W0+‘;aj^"UjҤJyH|J@NH]V3!z: ž=`c~q{̟燐tT$YZrp0+Jk ؔPqWߖ3)ܱ6{ȁwBE/M_PH`FeU Zeau5G#G:{GڨY_~a순lgwAk7C~t1`4phҤ'_Qg vAR8 B?ad~$ö`Ac7BqpN>Knܾ󢘴ӱowafbs1h݀&_/0U!S 鹗qǡBr]]+N?I4D;=`_?]^d2٨$L~1IKkҤ闱*Afhʣe>iY"9;>LATw9i"5\6`fEX9nPu7DQlkhim簨toV5D] ^P4yke1|=Q;| debM4phҤ骃*@_Aj2xKwu$y MKcgץCBTULVJӟ%$kdR14'1c'%Ɲ>,C\qyqݧsi\Rq9t=V8`-010UaUܱef):۔ڀkXyqbc_ 8JM42V̴SxZǠ !e$.S \8|88b>>Iaӽ _enLpk\Mes;]_79`lbͯ@˓GsssSSSCw"jkjjqeC5WB5vu@f\ a{CΞܷ;98{ZW|L}/`4`2]&Mz2v+C픺\tVѦ'؅H έ!iYpx'! CY#kɿ:{#'1cU8'\$L7Vzwf+y/Vu~*5T/_C'9'nhl掆}*(8y?v40No+0kA[r%Tx84i+~+I֚6$ZK C~dC.H&m!~pXs`8,1?:ߋ3q؁]q2Ԕn9&{.'7{Q]kmW/ 65 %<  tL51Ih)@BHBܛlY{\d[ͽWV_mo{Wb#/3z5sӾ',&WcO*Sֆ’$$ժ4ѓubhq R d X{vER0o;.o(_Ǯ\**);"v??yh[h ,&ݢ }++NjlxѤsU|Úm6d<|e|WTؔ#=\`П(\ pֈ<%YVhOJ^D+27HPMvKnFz+*Ԣ$뼌%9e\lCؖI?d?Z|f^7s*W"iv)󒑽$AF̃LuDvSN VBil^RE;Q e=Z-k1Ǩ Y_3yui"ixL>q}RNS0No_S8#IH;.jzQ{ȳf= 6t o𻲡+ʵ-?58;9| 8WJȉe|mT:*,^[F.1'j[Bu(8<˃*/>D]74X~1AM$ZI;ts"t}RIU U&ڟifx^ *jH1^U ^;׬"j0uUNêMk'w4  sdC\Yq"Gy#(q#J((8섯v493+: s/%ns U8eo-?ʘ@Rǝˑ?]tNАI٩ЇT&Dóu괌,[o-^ZV^yl/ZjufV2NwI]GNj%Y_2Qžqr`ւk+ïTMY6i:{ށ%T=}ӧ\KΉD=)EY>.WYN*V&_&${Yb ՗/+SOUi'$wZBI6MVe}*xY^,Udʘ' =?""9{%1ѴWz;ޭpf{?/LqQsxet#7ة*MxmN.3T[ĕh"~t7dt‰DB`,f}x,Q+:ٌ_|j6;."طQyH<<iTz;:;є@|ƼOj1b*s;v#TU21L_4Opq[GU5h_adfQ8g?~Ű,rfeE%)i3c j vTVV96 ;:p:'޵6 !q$0W0&93vRa|mL)q!.Sgu VOEC¡xO8EƄ4uRGsQEJ(ǯhDlP蓺>@yQ9.p$fZuuA"ԆqQn$DZh''' hq ,ឹX]VRҸ?WysQȴ'^ %m Q'Sب]2vފh%:)7.}/Qrf w}=h Ӥ&6b+I]C|<XP6<𸦰gܧS#j 1GRp#dw@##kfDB&zM8"DV&>/pU%҃6X8.cX,%!v$_`셀íU ZcnQG|H.;)p gZž7>.Y0Yg֊j.vuxJoo9;aW/YwߡfT~n.黁W&uU8贴 )jj-da;:Y<%eeZIi%>fQˀEv%AϏL-mea _@^4=98$͋FH,%*C3s%.3d}sW :ආZEҴ4%/ɿ[- 4X6C6VGN _B*kpb"!ye,-<^Qe⒆2U]z"АЖ=49Q%4RݡT0gW;T7Fq9Hd&ȢC.*Ð0%JL 7=P#p0ǰɌ؁o }zy$6~WF3 \}lP_aȏB4LbEcK{|8+G`sb=LoW4 y{nxѤ:!{;\6!;2_؅* ~ɊUKSR,vx<]T.㕗lۚGZ6 wM|" XI$ fM_G;BC*P]$J&N0?0!%.*v!HfvyY. ?FP+)Tj.gWF_|~VgF8C8+ɃT}Uq{g͒OG^!($atR`f5j1'$qsCt=mAf8^zE"Ci͟zy8{EkQA-]ܺKK]iVտ87y>)8!4b͟Ky~! " (M+W]jՆ5aɟIʪ 4M}SυEe9ǵ=o8 J}Dpzhz82 9ڄФۈ 8 v۞Y .vJW|>ySv*f pN%g4mtZ\X)OL Ӵ)22B41=bE4agB MbJn<)+|@X s3M$C+?7ibJ[g<階>`"qy"KLt_Av9~-/BPh~SXyN pd<[[xDyY?EĆ#f+av44, -6r{N73R|X8+gBǜ t 84,das"o\/Z!Uq׮}eUht8ؒ7 .c7[,!T^WP>CT"b?8e5?SM)*DqWf<ApY9k;?Eɍʛ;>WY'unr6)t{VZWEgX{EJ2\W- 5c%ϩP"pD&^b|לy`m$Q y04t -E|bU/wFKB,fอi~Ĕ 麘*URG: 4]TUwo8LZ"phH*zM!RUe_E (p铜2SQSYVEqY&FDۋ2GVFeL֦9E,D8 yZ}aU "_A='n(+9b.qc(o.!pXm.' ~Sq1Lr!14/ҿδusok;yJrK&m6tNR )ƒ%;a.iH{IS兪ٗ^S-ʗG*D|}F# ڂDdn TI}Cn^hjTz$*Fu +j&W$"ֽ0I4F(MHN!]|}e|⪰i ǷN<4!^̹HSZE-GiBƐm>07Nd y:(4L/)W+ (&v@` p!X0CVHC|Ec\8HF})g yڄ\J 8?pTV!pdAZzC 8P-#,G}qI4pKYa88J44v̙!jCz_@R` =_H%uEkUFrњtҞYsUU*k֨-FhXD潌]UK _xjhpLϒ>YX8>6'~cC=pPp #dfHA #3I I=(}PN.RŴ`8ubA~&~=ˉpM'G0c|!࠷"G5%kM筿r"1_E 9=pZ I1aWa'n(꛲۝2pCǷf lO8_p󍱛2LBY ^P1eqiFBL9e6M #9)C3]eΖg,7WɞVI0 p|+C`ΚrT)^/V>ݏwr=h8pl|uB;?C*?j8v ʟ`0C6W6슯<ށaa+5Z&_⠹8iCqD la3̹q,\l¥{P!>p 0WjPD&4XZWߌ Bb.Z6"]NA+{ DilYQĔ]r#GqMv읻@7'B޽'\[LX/-F[_LۧtK)^pěBs 5Oumj#Ӣ I+ zY89-{$[m%{x NI1ɣ]#S(iy͛rYqčoȬg1KxS^&ުWJ`7_/"t\Z 3CsՆ!{AR䕨Ok::7I* d0 n){ryh2ըkL/rD }Yf+7o^1'!m@Җ,ljj(02uV7HE `Kng{߱cgEy 8P2}GSxF0JQ4yEJVZd |/(a-[l yE~,B`2؛E-]lWn<4--p5YθhLu /nl+W','x]0ZPsc\"(2&Y5R^:wi[mLt'k#t:\ϊeщuDIy, FO^ݲB .$g!E8IHjJcw}y(=/9mAqyׂ[-?5+,gůa}w:W޹NPn T|J0xRCD ^Գh|B&B*G E/Ljƀcp4,rRNCWip4 _BR|5pЄ)3K#bjh^\@,v\Tgd:}V,$zoާrYv\,Ď@6Z)-ZXW Ξ=EU#LTU3]qIŅ Q8/_p/y֭[reZZj _,X@ dIϴ QXlgrŌÜ4$fԷ+g\C|@-Ja -B6k2?d8}}d$M`]9TU@h9چ?xV5ewroVM2&UZ|wW ]R!N B2_XO*jqrbQ9IÉiH1yNUB 0S)%v/3xF_MX6ti~~=\|pKtq]a"YA SIq-cn=i!:%D}V_>FCM)LY Tã* ci$5__|~8 U0!}c/Rai8ɤ43?)W$H;yue]ʰ∸s/(,EP_ +hN:s9'ްq j?+SRRp~dك2o޼Դ2Tv"pmmmhn;8JJoEpR֎MR+:3:ہ3sQhg@JAu xdedX8Bc70!,链ۨ]L -NGp* ߛWIT7_wߟ%_(\w_q% k6⪴u~px͆5×EIQ!0^Syo,8;VΊ-HYٚrclE&= =yyjCu%*IJn.rAxY~);QQ.+׊j9cdxȱ'7nڌP^Qwvw6~Pزm:C5Q6-iݾO;7w3ܶmMMMogaSNڵuGh sUUU&yI ;c̴aK6#[?p/>Xm>'+1BQy~7ד[1G۞zĪ|rn~@{%3*~SNdE}G Rp3rjij`0nP)ʊG K?q/=0^-yz;]_>hG!hcҕ!ʱ¼tmhy2EB@YJDĶ?r}OϾ_?l{+XXa{X 3n&EaM_{:1ڧh [- Sb˿c.uE h2k?h"- c AA?)#_⺑hkyBclZWڟA&lHY$HǷUPV#lz%: XU&0 d<-ߔ:t)2-8Q$ߞ(DJld^G8?7W'pI*"M5Cwݘ9/ߪC^rǺ^6 dOtVSV[|hN|_/>ehĀ~r/U|qĠ!\Z7|IՉo5Jc } LK&D{|>! 3P YcX #p9htb:4"&ӾI ,A&;VOfIfy(? 8DmVFjN nĽ4Q:xߞ3$٨"Zq E uϒ! EX*ZD&ŊmzIJ]m&. eE+uxûRH}@=J^0)1W>\M/CO?7NN#a)1[#wPu>4culTF],V%V͙'z憄Ze2ReR!|XvAcTO~gŊ5N  KuC?pu[r4Su2mDJ9 rhcC*?37dv q*aVƗn@ _>a\߅ᗡ -sl)ry&V[0Qd3P/urX[ FS9!1׉vQ SX/5B@A$lcgBdWQRXY"'YO{|%&HEZ{Bx+GOQC+[jQNwғpJ:Yʅwe׾@),j9a!gtڵ}AS%ʏL.VEk .-(~e:Aiw;ӓ;; .>0 g8ց z֣ug3J4F]eDBnOKD;!h dWfnl, ?;",%r~pJ&Μf#nM&7fBAԄ򫮄&30΢.-/n`a8\'@X0^<2n'1Ε`壴e̙[Cc3⌅qx5%[eH/p^ 8 t$96cF"pTz% 7_WWڂ[p AGAǫō`OW OM;F&=q= 1,u=Q-4F5UaƒsGnQ :\NV!>08KJaT؁XVF p =< ^496qn d7ʟ}`?#>1nܲnex|Exla5f {>YN`e<[_8$EجLۣ?AM9(񗙳7NqqCQʴs' ߸:QqX:9aڏZ1աI%S QպĔK-@XE/bbd:'>~`_gsf q=EMU'U849[DGƩ_F@#Y~+ad@`:I;McDh3HfҌL娩ZЬNJӗ%6]u{veW ccAC%fw2AcSLF(xeE$侭 e[P$d'ϿE~ZsIi2bt~ $8B`6?bxx-%e_9_Y"M4Dy-/Q984f.z^ ЏPgqlxs OR%(Aw#aŸx{?߽vgGIKٿ_ /]/Z%V)e8R/q̴^YͷLhp=iW-<|cbJXc`.p9%3ڇex đ QֿCV|dY4ME8<"1%19ؤL?ƧÞ͊0)C0(A M*v fAߡ(ǫ=nf([g }c56'.݇iB, foǖk*T%Qɹ2}B*վ(NY Lefw_ v|߿C"$'H&bhԱgTƚU]1>bJJOY\W tA ?(GtxOmvV6 uC|?]?k'/S0^(2'n.]c|-TZZүp|ШPH&U\IDjޖ^07vao.l JKg_wB@ʑRwb; rԶѢ9%;2vP<ѶrUjm\^dt.jY|2m̦l$=E3k>{@ف~0]$k){I`]W<~=gL&t;=X4B8yWs"&GŖG$VJN=}t?[^sag" p%(A&x4O>VC:tꞅ e?F(x6+^#l52JjIc5t$):we^4MBJ,)6_YhOSd']0نzFm#1`0F0O$$W⢊^ \ICNQv;=#kw`ijI[M(Dt 8,OzZ@M!aFM:.'t\' ⧠Uq;m\%(9 |fr υC3}'Xi ^}Ci],N턑 _dyԟYicSU?Uq8t )W~[?zY@龞#V,JV|]^}ŕ E i40?v1ȰN|Y~m㢛ˣS5<>":G \ K;_ɛl`?Fqxl:(hU=wɋf_+ngaߡ+E8C1Շ;HFs׬rUyҨ4ո*2@}y竿n]?l9}rp_k}v,@b}{zMgVw;R ) Ld.S o[jE{MP'x'+c JP-VdY`c9(}LY}ZXz3< o@GB8 &ƚAad놼ߚOn O(GkukU]|*2_xCW+;l - ]sX"l%n8!d ?mvTWos%c }aD즨%I1_.w,Ywu3o%zD}?FGKDE>j=mrsF1N|6IJåз l'efi"p.j^8!yﮈLȏXU$ڸ26zMdlAX\*H7ew~7պu$;H6IaDBU{8N9۾ƽ.)Y uqڨ]TVdLFxde%yژjUcCƋ(,ͽ)ASƗ֏e?W $.z nоD0K5rWYc(%4Fj_$ȒO7} 1%.97 X -:od"3tƌ,PU3#Ⲍ'\;os`և?|Ye;o5k S2Cuh\cul%ps+r2M&>(A JPc±N"w|zxX'M{ g@Ɲ[!s:>+lO{2rT*A% /-KqQ9ڿwopeMDdxmITAK@K,NDT! \c\!X-l“K&4%BMx~XXX)W8?:a+`;J3q/b7l>?P$vW r`QζJGareGJP/Lμ 7IK=7{I^(}[SrWJ$ƂJ,[@ }Gg'w-2LLM* -*6&tՆJ]Li$B_6hjt1_\S G󔎥$ê7P9Sλ[ȾCʽ _o΅"T8|Dr ))Y$G;QsJ#q6/OJ5%+ns{Sn%: st҈0Cuxd6TYkl!C_̍Q%W^47{SC8{*'׋JEuoz*+gC3*lt.г Gȯ%(߼({5vFe_c!_R nP"l])*N|GHV@쎱crrox Wѧx$+J=y(wo|GקLM7N3LO.TTM. / O('&eGN*pUU74cӕ ‘A2 a*> A}PɈhg‰V%(ߴ>VƁ$;hԕl KwCP h~ρ=҉l9m=h$f$DqSNsoD^ ր. z6sf츪8¿E =*}7e"*ʂP{ @H&I6 spwwC\16G~(!ս7!+w.C%pz+ R v JPr0 o[ OnCG* #Խ ŏ忄Wêc)(vr5ʪS3)V)hY2E`9)픏6c1lŒGJ3cew.epٲ|Rݡ(\%"\W|+\4/N<^NI%kV氞Z,SE/M޶^l|[;UyQhr80-@͖`FPZ$<e)o}Y)l%4N}^){J'v옯YGk@؏7 2O0H2>f6WEdvgicn -pAyߠq(!-alZ GVtLZ}D8q%(A}X".+C{3еvU6{ Ď_Ao`бDW$"Y{Hg#jiA!Ӓ}xb͇6d#ȇ%i&T!U=4Vsk (Sl=*72|*(A JP.:HoGPf8PHRm`?5zʟT:WK{qf S=;Hsse4! )xJ%{F$G??OkNU+iD}Y)p5!t{Po`>=%(?8l;w'#U5Dmy~T>'W> /Aй:g<= K%x|!ȒWFd[!Ux_U~4.maorP<^/~Iou JPX:KDͧM9GaO&t.m$6װO D=wI#{7i;H'[pf/O{"WѡQo:4!Cer[*wD9Y'C,)Kw9A JP.zL$Twq1LW'`Myʖw oAPoR|iW:,c3B2rTMSv{<òs@I=۔5v˭sa{J ͍o*( L г%TNyB*/7A JPƠ(#eзS9+ݙ鞚I'tIqxK+66v%wO%T2~nz睻;7y&H=wzo4gs!T{TrZ5BmaM(HF4η6T!wDeowfQv'5**b(Wf)l*>J'4wS϶G?6ΣW/@$GT%VqƦڤE444' YsR%&X\{yF?r'95;HJ{d!"W/խ&EJNIEX>~[Eu<@yPѠ\͚(Ģ[%)·AnM_GL f N)/5<2􌸆{&9]#u;z殑"N#b)~*5e.j- smEn6,X]xgzow+Q^ ϯUf^;*O*ZϢjS14:+yF{xZ̓QgV]xCA}$W̼V&*zhC M%9 RLihDcUU27ރZq|bOg6_tpXoѫ,<";)cr1f1W!7|~z V|*z%ܤ(Y Z͡hk{P՞㝿malu,-vAW@ Qv{?׫hbdPsߛ'fj\fq2kˮzϛ444>@lZXSkUz) &%&@8E&O/eUcVU*Vw\zW@ݾ$-V_[e36J g)x z+bNØ\ j9ƎY{Im೴d6ƲHS; 8twa;(+wA Q%_>#VH &?;CU2Y9Wôy2og1sChTUM$qH*r 6*?%KAUKFnNwDCCC=HiSQKvrJR*QjAuftI3d?B_ C=>wb@fZJsշj$,P;\Mumj3}+j9LuԄ0]&Xq&у,7g4-1;b?R1PK$`Lwc]jhh|JƥU\\6=11~7r'o?n*X%^̄MKR*|fVnDlhU5֬DV n샴 rQ .諠->_,UӴr>wv "hv}4}X\̴B(=˓/¤(MjVxpUp |nڢ`o ݥuSHO|A1rF%wE܏r)*=+,h$͵h.'9UV jMwNG/@5T~\FSdoD62-2_arM&ͅG&sb]Q޳iRm_(I+w9=R3>Y4Jd[bHg444>l@Z pEj<,"k{pd]F~Tھc`˹t~6 (3%jI_RTUi_͡0,QV 1*a TS{BlfhD=-+ aVO2T;jXOsdh@F\h181 mf2o.J^j2Ƈ N4a*Y Czd,1&=LW/aeZL} X&(܏qm+m*z!d!XW<Ȫ5e 6VUra}@&mcC̵<3YO$Z2!Yޑ)8K xbQ^)>caI7:CދJ1)xJ*?X(&U{*j]N ]vd$uQ6XT/Xl}wep9|O9I \@]C? .gל>m:OS!9 } r>sW&Xefh% ԰c?cH]FajUVﴽ][uW\*QK9e&)B.`\n:C~b;dvV^T ^ VFQ)!8X^Ȏ#?\yEPO=J C3YE&?ta+?O90qq:\h 9[3l<{h)<ve+[Y\h=/[;}Y rwIu foo *Z̘*EV%qelHZTqn>fg֎obf{()̉(m3p#(Uwf#?0{]F: ٤Kj"tu0]*ttJDdѯXYdq|BaGr_rQq|QK`zp/&8[j\h> stream x}OHQǿ%Be&RNW`oʶkξn%B.A1XI:b]"(73ڃ73{@](mzy(;>7PA+Xf$vlqd}䜛] UƬxiO:bM1Wg>q[ 2M'"()Y'ld4䗉2'&Sg^}8&w֚, \V:kݤ;iR;;\u?V\\C9u(JI]BSs_ QP5Fz׋G%t{3qWD0vz \}\$um+٬C;X9:Y^gB,\ACioci]g(L;z9AnI ꭰ4Iݠx#{zwAj}΅Q=8m (o{1cd5Ugҷtlaȱi"\.5汔^8tph0k!~D Thd6챖:>f&mxA4L&%kiĔ?Cqոm&/By#Ց%i'W:XlErr'=_ܗ)i7Ҭ,F|Nٮͯ6rm^ UHW5;?Ͱh endstream endobj 113 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./democritos.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 158 0 R /BBox [0 0 262 76] /Resources << /Font << /F0 159 0 R>> /XObject << /Im0 160 0 R >>/ProcSet [ /PDF /Text /ImageI ] >> /Length 39 >> stream q 262.047 0 0 76.2857 0 0 cm /Im0 Do Q endstream endobj 160 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [/FlateDecode] /Width 313 /Height 89 /ColorSpace 161 0 R /BitsPerComponent 8 /Length 162 0 R >> stream x|pUd_~{즊ԲQ7""6 *]ȈXhVk֗e %3 Q R/$H`E%1 ѐa Iȅ=}dz>s?(QQQQQQQQQQQot4]Ӭ2ۧ޵:#=Lepf2~NsgsIiuIq0 Ll x2="Gtrу-xB7gY}=>u8 5S=nq'qzwds8n^'#dKXDz<ҶنxOM,Qpy7#<~iu}Gp3#/x^)ۍUy?{DނrbX{a#-wڈH)a (tbWn(85X2xě۳ȼ(^nB,Eg2MhC;*M^W}nxZL)#RƈU܉ichN2h"S)cy1taBy*lݺ&RsQ1q#RG$yU:?\h4!T7u[\׮PugP5*. +9qH D⺋!q0p$J8=ìÞGۯc`%{L ]p=b3Ĭ&oέ/ٱH2aBs݀8,dU o>B!•,Ǖje)4B(pr Qwa>Vq=f9n}5D:ifˎR+4I{jvH<*p.V#prDHbxw$(| ڭ6"|Ns6>N;H4 D$#Ct4m"nb8vsё88x}ߪD>/k~;96n8cJw`hmU8MP28ՙc'cTi?/?~DɈCBgb Ct;`pcû#DJE8/V2{֩35}"ز<$)jֈ0ɭGСqޓc莩v:Uynh 1s7Ӕ*xLsݓ+RpkpEJx=%[)R<+7dW5IUC= 0Hgr k!Y)4ؘ:5#R."**l54LFR6` ov7@b$#ݞFb=BB/ 41MDDsqRe!5:]AKm6&sDw=~By0تTUdݸu"htce8#Gdnؐo#]9]a(vjOCQa8Lls'f_AdiT+$zYHHlUs9^5ODpwYؚb䛅AhN)n!SjaLLh%l̉" qo nQT4![h9~UqEUmWCc E G14E>>47 S+k1Z =̎;qYi' {' 'Y=M(t4SI6b#Isq%LO:q9L4rb ; I3%Se8ą=jNJE3Ýt wsƤaIŃD4M>1oQٗ-LF Y59Ks8|s}'Qq?P蓖8v"[`~/?nSݿ#jg'ㄉ5uǼs@w͛QDzıhYjg^AY4Re!B{Xy@E\fvv6;kM{QʖғGY#1($50ӉȮ,&Gs^pZ;'봄gTأ7y[AD>{9kg`)eg"B>^=4}SYU@9]x8u{t %ٕrnAlOS5o ݏdFGi²捘0Yc __8=7;wCQQ"pfIO{FMg؎]6Č{MMU\#egO/9KGy\='b*P<ٱĹNM>BB`Tɍ s$Ɓǘ$9-NjɯNՐJl#B EDH%VVI>]Rt nIҵ)G""{%6??j\\֥БRÏB5UV C6lo<أ__((x1ҡpiRI9a:B*oN}t˄wM%)-.//OP{jċWJk ?8P&;ebJl9ZÁo  ߽[ II꥽40߲Yag8 ZjRj4j@dHV'ɥh_:|- ?($Kp\N[qdA1,IPޠSZid F@OɕTwEVqdf5a3?ļ/ t߇ őZVc]=ز%˞M5~&vJnhh8NO͛RYPWT^u4ta3Yy_S0l_Wr%Ny༂ qJ bjڌ=YY' Lݑ7C/YQVHtKɂGOom%_Pd~ȼEl{a„ 7b,(~Ao^aQ_em]m6*.fGlȓ#b,Vkʎx[Rы=ғ_)S(Ze|?U@V*,23Z(S1EȊZ|*"_H4V*ȫRqk/U .S+F|>OڡU+ۢr9W{˅pd8 gX_G^w˿zeX+&n(n1CUvT.% U-I{Z`Ah&#?NCǤ]얛\~*C)WP\:"o|*t<,!wuUGjWSRo T{ZhSop0r1Ǵ;uÅ^=ς g1;Vz e5Tbc |BX\!%ʐn>~B IP!!zH{VJI] &WM@zE-ň81@))X3,Ѥm0J`Z2CR$xPٸ6|\Ilu*9>Pyۘ)w-Zv풢M=}z+dS=]+6m9WPv@܀RR޽|$}a+lWYDI:~- ߔx@~L+COїR9:IDI8[0`"N[5␎jyoކ* 9ȈSRU'{k‹Z:&4pL 2w^4f̘RUz|,BO q[qyS8;u ?-BwLh)wWeW#~RDR9VKwH.ݥ௠ZیP>6urTq WtK0KEZ|X^QW=אjgZg\3ZNID-Th佧V ?,joxNp ֲ@m8WN-ty3*d tu2ԟ q8;9X_/J8K"gzׄ qMtF[R%+>Eq1Zxn֢IChC>f,˓ʵNY-/A^D Q>܂[*)>EZ9f182dơJ-m=fJyǠ:/<'kl5Cos:+z#>lF_0uK{rf^ލ8W"nM ?Ȩ;@6TbU{)ԣ?[{'V;&ڨTl=C,ޅZ\ա*ӴU ݶ[۠{}*J#u+vCKŖn m[iv8iC·a :TR=J,r:?B#onӶmU SKw݋(*w}/B)N(U{4V8c9 \FĀ^Fc}jQGx(z̢hַ ^ MӏY,1Y 'etiZ4s-4Z DEΌ[+!"0\9&YSbqW'tm)h`>%evMB˜_1|/8q{5[֢!VGC%7|M9G}B A 4VWiqRi^\}];@ hX*oX#aR\ !g ;o9#J7:]?Yrj[ E.mrq P:ιZ>hJ#CG78/EW]+}Ъ{1ZN@LEU`mBwTmaQꕢŷ)ZHvr:މ &;|j n;lz /8@f|\fP04Fv\jU/5xVYm"#\Czo薾Ղ+H\*}GX9\87^tׂsbt#DrĐlv SOZV+hh{ wSzr*مWz^@<}`<[Z{SZQ тQq1 VmeU-'F"c:ЛA#K,kc;P'aDwXUQ%^#5 *巈F{ YxǨd/ɧ6T:D7ѣwH*K>JAemST79fZ _tK~{Z.fYt-rT&\v+.F/|)U:WW 0RB}TGi!Ic@Hj"_*gz`6^| i%Bc"m+fQHZjҬiD#:ClI/kURn 3V^ uih˚0"KogqeD|c"6 ~hg0ϓ @")~${I+ޔqy(K=̳ Sg@݂O+z+ P_z츕Wjz$,cЍf4ف B?(+)8AaWW] 3|lUZg 9_/b{Л_{zf.tЅ9ߧ`e6kkз 5O5C~=F:G:YL;I:Zi+AO08YWՈiӆ~@޴lډ\ߎiֺB!ldGE1>Pt©:c'ƪ*a_Yvtz.٨}]4w#GLY;/a)C֭%vYUI•t Y ^ e2իTVLt\ɍLP3e vz&|8dZ A4'F4\ .cWi(dn`vRe22L3F25I%`W~)ȿ!F/RI|gd2ȏ> stream 32f06i54h64i88g;;j?>nA@pEDuHGw HJt!OIuKMw( )!)OQ{$0RT~UV-1WY.2\Y0819_\3:b^:<;Aaefc=Che>D?EeiFLjnnnHNKOrrQWuuSXyxUZZ[}}\b_eydfz{fi|w}x~hpmrosptrvvxxz߀⃆ነ䋋㌒厔⑕唗留䙚曜眝¬鞟蟥ĭ褢礨馪ꧫ쩭͵魯ļϸ믱Ǿɽ endstream endobj 168 0 obj << /Length 2092 /Filter /FlateDecode >> stream xڭXKw۶WhIsbvv,'iDsLBz)R DIdoly|3 .W^_|/`Q8Y'I0I Y:Y9l2D·rʙjU?W?fф1/'n{,W[UO݈ΦU!w649nԢ4H/G/J~kJ@lt9rU֍( av"cEBP#L(dep\zahU/7UIҝ~^˪Y"Cu?BGlB+M;nd-6;4J2/d)UFFZ-SgvUKZIc%yZVJ*&YS@j SD1ϜPtx 5b ى}ݐ'5%I}%w1!4cBKڎCKt󣨻iq[g1xqPȹBҽwd0DC-evVe H CZ"GOو',%}5\lH̷B LhJY&:`"k ./{u ̊67|V4|L3K ;jNfpG~Ŋ?Aiy3Pʻ$vȶ7;@Kд'_ C!PWf{Omy!/@~_d!so\k${"c/e#_ԝ= "„ I(HA4D]0kC`\p%!9.j; "ct(L_.oW7geٕf]-LrvJKKtu^]/VbsϏFbѠIJZiP8 ѭeb V& lB՜45s|{ZwGtvA?NOD4s87 XbU.`3k.|[Ef&O."$*mCP $h `)c?` ~1[0GMNzVrC IqH^/]6DSTvvαe*^K'_ߏ(6h&(f`~! d`p %\I6fNh莘%?\5F;߾xv59248r > .(5W5(Xw4;eEzO'ho".E,׏Hkϖt'6}& a=?ibl|צiP&alcC6 51)5[_˿[Iԑ|mMK)u5i_i+ 94i['CC}ye3NRhZ"y^7c/%D*GUG Lo B;I$۫&C*D'_BrC~&g{)JW1 x3^})cI뷢,Kqr;If,*6}8fbζF7lx,='4N `*fk'J7=_{j4B>9x<jz  ?K45=j7`eyKDJ`p ͷt6},Ea t62 ]Ok^,uBȹ车!r ԭ8cl5C)gp'A݇7e+;nzTȐ+ ޼h7 GZ 2秏7ް0SoպjI ōyV7.Xh]_ n9<G{Gl~c> 8=f,\z5_ endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 802 /Length 2051 /Filter /FlateDecode >> stream xڵYioF_QbadG`ZOd-D eq!(aK 3hկ_]Ք$ȒXIA!$!$=~xHI?)+H9w1TEf-hQ I{2F O$h<1*2ûH6\b59cd=yAxO>)@ǝA"xTh4EP Rth]LB,Ziph!)Ē"5G,DN*b%3gH+Dd,"@K /:t @  p")J4Jb:VeJAX)xabLBhGgӚAzJ a05 x1B+(5dTphF@Pqc<ÀA )X^7Uax.ؒPZ/B"ZʗF@ /`b6ȌE1A'oRiC!y_6u*7Gu6lΫ˻j|wU(.:jZi?SP]2/+ʮgNvQsE)cw!'P"?GhWeWE71dcWU ُFl@*h3tllg7]ޔ[NVu=zAm)MMUm9m-m.bM7$*5T1Vc7&ُgJ0hm3܏دVŇ.f7W4;f{<ժ닶?gGO{,oO8||l?z0vpa>7 I_k+/E5z Pe'l"fΛޗ{6N)(埋$\pBl3NYvq(XѦc4ċZ=vW $5uc6m\J[5zlGyjFyjFyjGyzGyzGyzGyzGyzg.Ƀ9IMP lS]f[4 !JM /u-yvtpw//Ze_aElm7NoW{OGަ#aW-aDgX"9='뫲*V]uװAݳE3J8mz/䑅jnLK~'}(}9ϓz Ǔfכ',tl";,>~deN Ļ`p .ɛ;8~ʎs2q.4TVgR nEU @'M٩H]O6)kh9->aNrr; E)i@aNj=S:fE#In F,2h ^7:8jRlRo!,V`#W Ś4J>@4Ƞ"`)[΂*lDg9[괟wor'okU>Vwiw̪֜hRg,θ-Wd>i^,"[z`=Z>@y<1!4*Ԗ/O :(ܶ6^^NbF&a:l1FZN9|*^ivKٙ K('7,lh 75^OC}J/J= r M\ܧBi(e]0 #U[a*Z–iˆhOp$41C_~%/tT~<q&F?7 =p3v<7LؼOJqmh}y11,hɟy9?m 0H=em\ |9w0=CRpeahyqA܈x܂^Bz endstream endobj 176 0 obj << /Length 3334 /Filter /FlateDecode >> stream xڥYv6+̊~dV,{d[OfNDwM,}ܪq&Y,Pu+77[bo.j^leVWht+ 4YmQK-hyXj[)ɒri<{h ʞɰ{0nT>51Ҕκy4^S^ksvn;r DyDV;U:om֜V fE;tHM-Jۺ5~{8\9nPB8a4?l{\tGή>;3w{,CۍY=wg &vglq v ]yx?tshmzr6ܜ(i״idhL; /]5Oӳhio4ĹB `ݵ BemXsֵE#mzᒧɕph;䚋3=Y-Rv3=MEck?" F2rY)[D/*k`8Dӹ3^۹L7-g!{ ‡ CL]2Lsک28S0omz+0^ēXȤ)TZ8L:KeIP^.uT1=lf3axaQdAcYt%VZs6$=1&0Ht6yd`_ n0 n312A@Ѧwf<)+Pa)^UhKյrP;Ժ^I#]׺^3g! ِVMeD̓ ڔ5Q'7>Ib<Ó00tAnvQ9i 0Sk0tRNJA&?H5ft{p%9L(~h ]C;^>zj4^+nJhɫjM6$oRĮ:(aAuz~95s<Hذrƒ$ ) )t[zvX`lR)I147kmw08G6ro#o2g0?N\p vXap,~(8NiLK=Tx^_(zTQ7yQO]^n+UuYBUUTЫ۟~l]w|ķz,JX/ԶnO53/hJ *Q9~7HblF&h\^|.GϢ72'žid~^XXJp/`]MbI$z@1%*UK6ƴ'Ĩˍ!q:X7H~0ǽ(ya*}23K4$P=Bذ..pGx13PaLk9v0 TZ+R##_FɎxozjE1` ?!gmnSA©")/ȱRneWhZ)43H> Ӄ^h~2ZAÅC6H*X0`ShȈz|S8×wzZ3\__GEVU󀲊o[eBx"Ke SY0.yJ,bҎYkbVqd+Z]s[=s Q:7;q F)"~C9Kfи~BborӲP[=lx v_{~ #dDuS5^Nm2GPL@EW/r0R!'CkIb~PCQ8% endstream endobj 182 0 obj << /Length 3065 /Filter /FlateDecode >> stream xڭYIϯt1Fc)-%lI3I^z& ph2ʟW]p4c_Fz˛*)qn3(?LY~jXZuhHwX~(_]^F[z2}IOڻggMeit.-nM+ꪨyKs9Y0[ȏOiKЖʫo;E{cM|4su0Q#ߩڻy{Ff躺'ܶ{ٙJ[ڕme}r̘Sm˂sE@T`*~xhz}3L7G˴faN>2Ezd[Ve]7lӹ^z(qkO/ ckky⩉ab*5liXan!ڢ2N!dǫda1ȻT]ă{u6W: 9'LjvÃ,lol~M\M'~*|{oKkZ۲#:OSUtΑ֩:7KlUfee꺩w2qGf/jdW2皇F6V2gc7XRn-?PH{.'uwq3r=*ly Vy 5 v֙BąJ.|+r^17Cu%nYdar* 3]r:)?USLQ GX?ɣ"W$n(5!LӟFD h]c~ Tt5LbS+9CDzUb#TB =:SP%NoSP"E_rˆ(.PРB4 A>v(5u^p*}@c6]44㦕}ezY~"AP: }d%sUT\(Dd[JRm@#oOS϶[$P&" 08Mߺ Wu12>(;Q" s G b {[w."dCa w0_mLQf_m 8y@Cd_t)wdJTA' VFMDb0%GXC{2#.wh65ztw~`ِ!=fD!u7J=?z9"kOs)Mz;ꂿ;;B7\ TՆ}ivً,h]#)TbC!O*ӎ-]5VfO6-f[Kvmɔ3 0SATk9v{AE: XAy> stream xڭXKs8WTUH)98QS[3sIHBL @ZtpfwDCw7" O((,>[e&I7*O_(~"iaX$IHTOܳkm3?^5vd[ZUz^2zyb#i64HkJQz0cDoy aV||A2 M$n-(*FgEÉP)͸M+F# D|lNW٪FtJ5zE%\v(EFRXUc-)I `#2b`, ϶c/[~r@IBH3 ԡY6xTQN/6) q-7E$ }h i`##%M^vAa0EaDY<2=!F4^hYU2d4seNL ¬na>vmV󆎶s`jqs7y2(sQZp 4~/%S44;^ߴ3 [E(ڣ>*G%VwCO6P[a\K$A ̹pݻ?d endstream endobj 191 0 obj << /Length 2641 /Filter /FlateDecode >> stream xڵY[w۸~PR' S͞ݬv6m@SĚ8 f@ 84/00~?:9 `q^$" 3lqZB- "E{wTm:W2ZH)(2;2qB/:,H;K oJ7E%l5[~fe|_^^b%A}eTI~q+$^ЇBxv_fE[gqȗ(b)D*A(0"וFpԿȿ.sG K"䝦kQ)˕.I,BK^ߌKIlW Y{"/Yy nxزL/u !O OuRk6Gٚܲ?2 YG1I?,J(7Z0•U$5ebo]*#_I"TlidAMQyeN$,yo4vMɔwA_ݥ_͵d=4qb쌔U 7DB!5i&+htF8XF^䰖?@*Z­[vgtÙK|iG@ 'CKȄ__ANn-?j'ΥnIVXlG*p[uTІ[&yͣln%Eٜӻj4+:ilv9\g~54"(c_6p!P" j;ȻǤqMk??ſ,{w@6;=b*muCs`HǾq~;b^Q v;QzV~fHLJ<!fp',(XЭ"-t@jI!h ȃ2hm h*? &){ޟj\onjnܗ;t[_r俴+;NSP܇s8d4.>Y fmYUcԳADؔ!E 9rxZXdq7%(} eJH藬[1<9{Xǒh89H.G+]S 2ψ h2~rq9ldtF;]6jzf.`Hvrvo QLDrXN nh65+A$@,`<(\8dʲlRU%-n$ց w<vMc IuVw1||.awҟq#=4.D0=BcN ='H~:YenfR(.+TVFKkG(X!z17;ڰmY?i.QΦ~ M ~b@ЕZؖ39AȩDqfKCR. #Dg↜HXSu/G^~ D"'3ݜ"5™ =&ǹ",9"XP^!%^<*Mc|9+w Aj}'睠^Sj6"3D>ªYCQP3w붪8}Vpv=7%a)4T+C6F?30{ofо$Gj`un"M 5W\6 7!9մf]b{͉EH0Y9sֱPt Զ/1#QVg>߬w]'ȫ AXF~bZ)_'ou{JCTRȭTz=0奩A45Fœ? a QSnxrmqf㨾:prd*~S_H.? >}k U˓_O[ٜB d"8{5bZ;~|BWi=Yg "?ӦAv3)5Pg2% 繃GȞ?aZܷL*͊"v9sط2Hpz~i Bd-a-p/Fr@]%/168KjK@lL1ISIM2xܰagm;o`PBB\`r}jt14"4R%05-,RḱPZR_k7]^N<A"i e=7e&9M"r;pV+fI`S^r9pܭi$YD!d^k6nDQOXP]2*u7/R 2cK Sc6Fqf%{9fT$6nKjbež!Ka QD^!GhF) . z(׻%mgM<> t.pVo? /eo-`x(}癳oa;?틉{7k.6&46cC[;ߥ^{wz~ `cjU ial endstream endobj 195 0 obj << /Length 2878 /Filter /FlateDecode >> stream xڭY[w8~ϯI9[3P=i9M멓3NAi['xt ,J$ ~ۓ7?q;]MH~4 d$Mn?7igiZ/OZ˴:u,4exgo8vYXNwDv*ؚWE\ .lwiAcELûןiBm@ ۤ ~дjNb+3>ģ؇g;C>ƆcK޶پ:;v"1_gȇ9Upec0шMR'Umj@3&_M.Z[ >GM]6A3ʚ2ef6^W[n]yX,j 7ɳ h/._i\rX#M{]=%u۲u}Ƿ_"_'gę8-\Ǜ([ ܖ'iO6py';ÚO<"\M'\`==dANtX @UT ƍ$Q(ŷJW=0v)KǤ0 j w}XH̿L4mtA \7:J mQ@tQ'70ZE);kt e`*J:fzbK'A/R=e $1jF>n f*4OË4;{Hr$/RGW9K CI0 bϺf&qIr=nM0 LF$Ę`eBQq/ДR)>MT-5 } H^ * U^& }eNԁԴ~>jP[׫Cp~ KtJ9ڢ}ALt0 HM6j(>3;U 'K ХV\-¼kgh~K&Ĩ ; $}g6Z/}+gҨLQ LyNNSs̀Vf"c<*GC? Y]Q[4E$^c3#j`UYkOBל0o>wq/K=ttVДy]0e8[0B]]w﨟t2l) W 48 =[c+`tgtv9z -m5dqҴՃ빫m Fv\{`C}htT> MECP[+ n;]0.W"E!>{hb$ޙBGCX640 ‚?3>W4D˩Җԡ!Oe0gSeTHYa= )`CxkPDT[]9r7|ߥ fʆ5yY>suk)9]t[.yOb@5ۡ)khe]g]d7ں*kϡ|`y>_XYBťx痬OY9oL]% Mзsu,gedД6:h꿑q|hÍs=IHx;I! Q}X|bq׺'@{/ TP;PER9i_3cBw= 1$1K'Н!ƣ\O 8FOWo:9ȅqׁ $!B@ԡHi(p~&2a/&108ע+h}uhCˏ,  [Bk`dCKzP{;(P"y6qv%͛+eذ8bgiqon cRMЌs3#0ZpJ|iLd@;05x'ol{l4;F/8^=G0<2 !]AAn)5af^@G>ˠ)D݃E^rc44P3޾cGX͎[* d^3`;T _<D:Ԍ_=P6z/I?>4rJ+_~>w/43H1'^B'Iv_iH6 /u}se|V4y(1 _ IZ*ոx{6۷k]6a$è'> qXT?r|[ֱ PqӉ endstream endobj 201 0 obj << /Length 2879 /Filter /FlateDecode >> stream xڥr]_}fMK2XjN0 HV _2 g,j,LĜ ,gyy~ҧt~yqƣxѼlRE] T“ܫ4X5~ՒfDƸ4q` hRMe,; ԃPd,s0J,ZQlG.-j{:RnޖȭW)Zkdp!=[TJ- .ItHoZ b;S%3G0m)0n[S Zȼ|j3>I28) 囓~gKi0Kgf$k䗓m'%h4`Y;n4bk1UdV-m#-NؓM!oKoւ[ühZ<7(حʧiͿ7~wD8f!,[Ⱦ͔0psAhg5Ve? #dem@ZEU4ԍr*k( :Cν@Nv\aW)ηz(Nӌk4bt6%Y+oqUM ʺZ F0. 1KLOJY, RwXߩuۖ ES`RF=DKZ*/fՊn4JJ;{RRT0Bv}HO"/oiIOa.':EvD2u9`*T:t TJEI%.9( %I=00.bxF7?Q'j5„ZQG4~W`MhZۡcVo 21ee[żbqeܸ̚Kx&,>;c`<&6x~tTcpnI8>#5z|R"9,ʍXdtL]Hve{0_ QwA;x!5 v޿|/@?yYmAϜ>ƶ BܻSZɆ^,AzHV02eb߀yN,ǐ.gj|2\q(D`M:@ttlP<߈40Nc!lěp]qW?pW U4%ʓ]n@,$5Y{Ϧ+Q{yj>)(C("qџ |#2$#eQ쨘>0`Q=zr@!ca匀IO3T)$j; x!0cɸDip m *8tς]w}X̥4n3\K\ÊNN 5(L'vVT3BjXܴkceMK [PH\j8BD`9AJ.d+ݾmn.٤(`dts`ߞCaj5x?n 1dÇ>? kv6@1~D֦I2y1Ucr,|b@b|ή 'lB1} oCa2_<7]LչӪ^/EQSFEj{5(ƾHAG0=3wp澢8^tY˂H,yILl482C]zwzl z{aOztSb?{Vo,7[HL~b665Z=vtMo,ll֊0K4JZY5͕ $bk6U/;ޯ7&g64a$j ͂FE8T9{,1;JD! fDS`|\ZymE 8w]_o`3;L Sjm 4c甆w5u/Bm7Rz>9A.:vob4?.žw$,51s$x}I~ x7wEwܙ ,L؆xUYe)KX邺){X&iLG\DYsue.mՕ4}_'ѪJT?ł׿&SfilU'-vP}g4Vq Q\|,K#Τ+ endstream endobj 205 0 obj << /Length 2795 /Filter /FlateDecode >> stream xڭZ[wH~ˠsBn[rAvgyyВ `~dMtݫ*u'z1<$8>줓?,v_Ϲy]SXʧ+|Mz'6+TC;qsbʭpU\'{IQ_MCn;p#t`t$u:ƻky;zF^Ƨ8!YUƁvs7s`T7 q 's%{}]߳"-{ Wfqm(? eIl/wJ}')^Ӎ<VYD3en$I!_N^Ncfyx ?*^w/?K ]򉁭[@5v n7<;,:<ϜHL<I: ".t#&}qV* e/fJ9< d@~.dMs6t[%eC6-*=(./3pU4*>\^\͑#[ZBY\٧_,nu:-eT5uUiRG1GlgAD:1PC)m;ڒ;Oh=iX1(0 5:ϊ8ތV89No٤,4n.I,isp(st1-d+Hv֣\Xxh,!0q":l۪oreQBy:e? nVz6..ԃJC9݇Mt⧩Z}ꁻ [fE++U t)PE)ävhnRC|9˳;ABjnIh#r GZXT?mtVPW 'ӴZwa+3,KX{zNOzLwϷkˍ8ۻKrH*]wKܠ&-}W/ASmUWRYw8!i۸'CiB24y## BΪO]Y G:køUVHЯb ϳqutN^vVa<ׂ :NuKҏ!cm^wrqvvoo&6tZ#l:O⧌N1ƣ`)z`U.wgLi|6yJA. O3 i5=hiGgdzV.ix 1B!01GIjr)NKiTU7XiaKxҔqM.c][b1.Xe8`Z@ࡔP\$IYBR1qҠ3-MX*pEZ#Pk1%niHLJ,~nqɱTLL[@xYkl{k@ :a4wYk7LcA8Юo5WFLp( DT/H,r"D8R 1>!eth5 774(mQ5v,=qB+>`l' .r3izJK`(tNHSDX+P`[cPg1 #]I7pt@Rx]Ҫ-|XX=/؂Szxڹ j]{}->`+]IGv}k%&t |3s $4N#\SlhZ9$xe |h`Ƹ[~?R"cځ~xڼcx c/}ϯ-GUn|4w.'S$sQN̳2c4J8сsOJ{zIY}qe'BCpxĸ0V%'jЕߑ}aTVd3˃s{_Y9֝>_Sw Y۳N>%Y7>blHj[LCOClC:S b Y[wZ44OIQM v@N@[Po Zs tjw f278.@z[KAЇ&hA_9fx?>˦?8GHUֺ%ydpzcluXG endstream endobj 210 0 obj << /Length 2044 /Filter /FlateDecode >> stream xڝX]wۼ |N̈]YuMn{vwL:}$,;jJ"D<w72^H)8VvEseXo ^* a,xʂg<qm3em;hZ/2Eo74Gu$cJlռxD6_ʠmvY+ ڢ9<˦8FE DZ$JJJ}k|sd6 RJ$UL2|; nũm*hy K^{9KWP5eWӛwW"Mnn|ꘌ/8Do8wq6]ObA?`$hXfz\i-y3{>]mhZ J~>|J'&Qv}[4 0`.Oi`hkZie`s_ً94jP@MӮ E gvfx=MacpeI>fۣ}8奴ՆQf;Kxܙ&xy|Rr yx /XgË$ z(i2=詓د+ z5㦎/2x "2qAzডv`y*ɄJӋ=}&U՗?fmLBZm<3MtMm}Γ2/_Fw.nSe0%B6d&H>++Ľ5躽BwӢ~qCc,BW*ia!;+jPӴ(\.UnvS*xt`+%HϢf{w:.]]c5ty.6)^Mv= X|o*=sn_v(S2l_֔8w>!9CԆK#1L KN@#Y-ZȨ"֮?%$)r4Q Eae8le{IvN6&%CT_XV,73}jFP}r tC& +hPo|cj_D!`G^aN ?MoETLɇP!~կ(Mv3\ԃ=r;afa"&fx'?sW$C*G3OFj%"z@r q0b"awn 3ɶ#>9B^bM Ѡ?f.-DFOg'KdFf侠e[G|~qHʴ_O邦4>u4?{21=)4Ŕ)C,Is#{{`%(/lۜ*K5fEBR$ زi7;0KYЛNnޓ%s1vKOED~*ъ Jv"^ ;R=>[ endstream endobj 216 0 obj << /Length 2638 /Filter /FlateDecode >> stream xY[s~ׯ%PG\a/ɵJi& .% ;{ )Ajk' ~sx~}tV陔""5^5KL&f׋ˋ㹎dP7mޖ;ӷ2* YM}yky6yUmyR[ / [nM_65OF᦮l$h6k'q.0&fBc* lT7U_KY9B8G5lU ږv: oߕNX@:AeI7L=$j)de~:dBfP7+՛\]}ҾԡB5ZJ^JbA+^lIi[/fg.ߟ%)"%&?G&*SPIpvwKDfݗr%s0 inz, {C)1CrC8Mga 늶\euO֙oxutw\9 0i*ф&i qts%#Bn/#y#s!zr0ߺبywU^8猕 q pQ;clW)E 3W A6PҌPzT+:v#ZgrDDI݄"̬XK8[`D pNh8918H a1i*`دŵ¼Z$(tJck[ιqQy<έj"d~=~nmQJ򛪬$/ =ixKvׅp|5\bJ{q@"y͇REh侽ⱸ2@JDs)UvUiL)-Ǣi V^4]B`̝d$VHIk$5 ,tXft9l4AM\uZeXqeGi J蔻 4X5iDBqgd% MCЀf$'rңŶWeA "ϴ74 R(w!>w 2 po!1qgQk `f9$oZ 2d ŏb${vq3gYqI3Ҧ,+@W#l]mKt 61SQFTN4U TQB~vQ2!Zms [켭d <㮱8 |}x0Lyq9ߩ, B#΅nt| ^HA1aJ{pwonxi[j90r/s\UFJ0W(FxݐC~0{@tKAZ>V F'u#5iyvBP\- ܁YK(ԹeʗkH!N#c9U?urg<~ׅ)ׯv~I۶ aTH__N JbH߲YS  ƂjE7YSN=}E4p(Zxsx =7;Gd|SdbJf5B#e2s){bYKWUtFoU>%0V)鶭л.Ppm'CfZ}n HKM=osȾ>4upΆ^]|"|%$ endstream endobj 224 0 obj << /Length 2316 /Filter /FlateDecode >> stream xY[s6~ϯ#5cA`MݎwԍݺMQ67RY~gfE8\!=aRՉI$'˓PuwP]s6K&݌d09|GI"xή,fs&ͪ<*`N[:(f vdQ5`EpT k`a| ȐH7߮d (U,UY,vζΓvm2mNR\<2H2\$Q{5SEoUqP櫢l/~f;M'sJ1u2g hFNyt]ZfnzҦNnݮ(HJulto&Őj5fs^y[D,V;L|hNx`l 0<3~Ur{b'AH13 t0 Cx[chy|V`a }Cp0XJ_ՄU2=I:_u fe\ ?`5-̄ue۱yKޚݪ.uR1FQ' yR>/4^ 1xWcH=,DR FAHUgqpPu&| KN{#2 exڶ&$"{Y$ :a{eK ՝{VHC@61Jd|Zs}ļR (ş–+RE8D s"(Ѭ39_Q^3``Jر1 TE`9]FNdͳrdIdи@iML8%(&(n%-vƓd=;*2OjJC5fXgb d38D,}X0XPe71]tB#>JcEfCȶ)"\a@ɶ6&4GXnMp=^/&tE#!W%k"8$b2~ccmTC6 ,0jCXt04S~B.'m  [I z<&A~E2N}~ uкwCNj˳-l?ÕzkqeΞrkcyBSu.F+\ͭ(@Cr1?SgBl nv6Rk/vTbg/Ʃb]*&F~'沸xu}7Y/`N3 ]qmMUKH3¡AgT?chf%6/J\pGHVE^[h{l(lqmړK\E"pdph @z#~*ލ(K;uO[ҭb&bO.[;,Y:r~Xbc)茻VMe !0 T JTvR^ <p[ۙdkP)e5GGt7wܶ} c(D;K>+[ 5䶕0׃HN I5Oy~u'qo ^k-xl?XٟؗMZR $O P5kD ՘qtl$ ɷ<4.m#D0V,Rۓ}ǿ SnΗ;6ۏgU=j{ëm:K E~X9 l:(0oί( endstream endobj 229 0 obj << /Length 3174 /Filter /FlateDecode >> stream xڭZob{(8Ӣ("3ꢱ WWVHw3J|1|sf8ߌR+)EuY塈uJ\2_]uqxvC;۹׫ՑE'P7v}z'>̟E"ӺsmveSwG* ņ LUH6=< lQ!ʸtٜB%!]cOe[[;\} J$*RZo~5\0 l g{tR"q[]YX5BќՋ?}"VIꞩ1 %YbfvfwxÍ!T4KjV"N9W?\,X.$ОĉU:&U$(/3Yd;[P0cnYvwpe!ċ4 "UPW;C GaEz`Q-_) <'\ezSDsJ`{_%l )ݦ+f|$@-8P_ P;Vm >}%pdqo)ۀwOp=Aƺ0mAcʬm' ɲfG:CV x$^f ϊᬽ-2wz(*2v LUG^,FQjpvܸoKdž.SFBDYM4(t!5톦 BYϤ%;@s46#%]_ۂ毑޿gQ|~ ھ0%RҮ+j^e[ wߔ!Nϧl akjdG uX +q4w{vrymE,2>-$gWY#ه!ޯ P\7t)k)>8@2ȶRV;֕AtThϩ?T:R~<_H4˂;IK0JGsDm/@sTuR@=@,yh]=PgȢc]70׸=vvۚ-uﮧ[BlmI҃YP48 Qa fin#yt(!nSwm8]bx!?_AK3x'J!hp𯓱wu| >1!ҽv3pb ܂jN/ffnc>27mC<}5./ЛXh>xuG1}YW9FxWp-[tfy(Bx{Ҡ0#5~Tyk8Hct ]* Gt~h 9 +~6!*  mZ&W!5l(h{2ljNh€mڕC΅KREoSy `}#` טk~ CZ_,@_r0 CZz>t[>kS) 1F&bH4xѢ Tȥ-@ε5<}C ;/˔7Eb-v3s^ Y֜rS<%LM^+g#/lBtK:+̀E8ILΚ\ӂK"!XT}`C!5R#W b h5(EiO?,88*LrؕKû/;#7.( Yr7c5n>FIQYJJvO9@!δ|Ba?TTL 2ҞE[*C{'r>qN=8y%'02p M709aW444p25͏ 8nx"l=ÅpO'ǑXb =7ʕ_(M}) h8  ͺfkpmk٧7uA5/*#&D yAC#):$2 59Wbl%A6MJ/GW@GX:Yov\3TCqa[J |`"+&bvZO:$\zFYzG$rY0pxpRP F GXDF"di4T2|ؓe幽Uaϙ!^S[{OgŰ ^{]ȗ3> stream xڝ]s6ݿBӗo, ~$5wiMAkЁT\.vI N" `]~}E'j]jƹezج~ HR*oڮ뢫lsRt*#<4/ >^@\kAZ+%d9w_uN0(#%s(S+dY$nL=Uzd#@fk(oh^ñ͵ \;Ac64nc ILIh%2x{^|JD*=u"j cv`eO~ QO >~jk/ ` A\uPfS Nly' :֞pJq ı ;ӤT 74 X@_(kDe?8A,BZeѳT PXx'(|k}b7yꍆ\f[4T" q%Ƶtx_032L4665PO5Oψ+=WR"UrM!ltq4 UP³ ,=/ISE9.Xhml5xC,!t`6pk=uUo ^c_h$(%9Byl,yCzSBL?#wiJC;YL EGPwj/7*x;/=9 OJ$hr,MK0*\e8S -{ а.!sÃz:#|]kAc't;R ZxI`::\1 ;X }0f>|d%oČen\H]Hϡ"Ȣ<-S +U_ȋҀ sv\ nVs2W Ank."U@ihj>+,y8=Taغ%hA6WmKV1 6QU^epk{o5e=dSR ˄%RyCy]]=Vq^www~lPH:+nY _^Nƾ̐Ua^ VPb5+ ("n8V૿{wdY(l%Pw;$xy8Z '=4襄Hq4'Sd{qRi.o֬-yQ}ՠ~7DCOKQ1vdA#sR%": gڃ;hct1"rKԞz=`:LJQA.RʗB_8u}ꮱA>闓mEtɶq Ր/!ٵ64TXr:X-N! $<ٴuL{ji$2:ĕ\p-~/PIhhCIMtt;ɱSAӖ:v=лj,!ݜJ\d6.zO)hL3yDಎ E*mP3<ƖؗjNHPE7vLkO80nUqӍ Liݞx IqÍqiYlВy z PЭYLR\%i@Ww{{aN]GiǗq>ռrS:j!uABhj2jA4(F ezq+8EG9q`0GW$Ӏܞ:!mV$}LS3ƹ'Q.7vb-Cb[ ՗THK_[Vƶ|sU+SOog_r?=??E?NeNr}@}DԖ:I*" rKH">g?c endstream endobj 240 0 obj << /Length 2960 /Filter /FlateDecode >> stream xڭr8=_JVQ[CHĉ=2l2E E*9ΔPζ|*.ڜ~nc^OLHWp@}. ym6mefHr=+w rܥU:pLs3 :]28M N5[Mh [}٫77?MԏgHeLa(=yP( "=9]=DLD\0 @ēɧ߽I$P ܖOO~H$XhN՛ǜ"v/9}79 N1H* :Ѧ +EƐzL3F`vɋ)scџBdV@(7l ('4P 10ddvibo~Ʇ/w>l@罙t=茡tnR3Ed']i2憯%"Wdx+F5UYlq;;I?q^ Ce<8[+y X%~_,gۯ(uS'usc9YH"oJK]J^OrǼ¶$OxTL@S҉ fj)6aܐ5FHl&QR.n2i\鵱ޔmn!bY}y6v$;`%>jJ{fv^ , .v[mDʖW;3 jxx#aD;dhiz&s3wӱ}(Kv[W`fDcǮ.wf>cd_Nƞ9}X7:t,5 zcMJWsҙ_Ӏo [:?.]? ;Y#Uw&ϙ4D$`˓1/z[?($عլ !׌P DK>t=#yћsC)^+?WUp ,•y%Б۝5ѪљA \YnB[ )g-D֕n tWy q/~"oh)Z]ͮbmtkֵE+^ ŚaJȣ"tH-%X5%<c(2 nݐA ]#rZmUL_t}Heܿ[~LtVlMޝOr RF)`'0/QC]WU6 "7r_Xpbb܉Y3*5A@ atgp98;;}9Gs=)TwhlQ}l$|(fS9Y0aЫ5^FL}BY\3ّ4B jWM'6R*WH +&#H*R4=r blrQVًp^F G3* 4ر`? .d?-Hr8Z2++tE6BƳ Уt@>LVԅԊ aЇ q_"`@³šl R c mEAxxZR%&+TAIL>g+7 7[/!p.ck3JFyRhmM6Z0O}H5vPή6;;:/F3T OШo, i]'~RsdqH@OǴ3as_gKo\g3^bwJTeB{IBbɜ ]/ɜP]_ endstream endobj 244 0 obj << /Length 3484 /Filter /FlateDecode >> stream xڭZ[w~`Ԅmlv;SyIrz r)%˿BAvr'̀?>:%~Enf~eDev?[ l-;vǼ,i0nuM.^iuku*]ņ7Noyt&<9e;DmЄݡ,.ִ|"EzrVk=4|t':- 3o{W畻N(uP;4Gyg͘͠vhHq`?Ew1{^QˏE+Ig LJ,;u{dPƓ1_A`2$ |pi͵KD1!U~}D"q3-Rջ.yf_VޛCFA U8:TŊ4D"Q|;z:E Ot&{} e7íW,LɓA>uhqz//>%F m&ԫF,5k ?3huYP% =dz6y@Na`xg[&OL%hy<> }nJMѠcO6~ #jGNcᚕ*^100&r;tIoEDLܑ,Hh@ۀ=FnP 7Ifw~PxI(˜GuZl\ho'l2/~R?\a+tKA)LE]kjX vf4 Uaj_`KN*y54hK((pxo6:VYFpX f0_!{ȩ*+إ3qy?X EYe9g(y( T6#۲]~MacE%76l TBlhݍ{FEi-;-fW_ et[6BqzA%cA%]ljG.dAx0&GZ(OQع7E3 E2a(Fhpӣ%+LRMCfVhRO?E~_$:uQ4aANYMON7uMOcn_,O4ǍJ i#.؛dyCul Ho@$lyIDnH7:kZǰ`ysԻ~ e^vO˗ !-m ,&~&I gFGfu8.S~@nhМ2 cQ]ݎ,9iJT|ݮ]fR&3}4|O\;q'_|Sׅ-E?C^$_SkNc{f9tElP-w`ň< )NWͬ' 纙%IPT<~*qǩqAQtM(eYV ߺ˜@D$/3qkn>0P{9jp(y„794MɫfCCX 3H}W'۰O&1q}> C,*Op09 lB}LfPCd.mGI q Jk8Eaq S4 &(| IJYws//k GFJ<{ / 4y̟4&!7CK  Q_Q 2{"r_~6~(_ջg/C5eDvt(3 ꋅfQ =䊘:T@al>z6nvKX 6ySBwrي1> 7!tj&ZZ_o.(!^- "?Lbܽm-7 )"^Xn_#$S^\ӽ5 W hc8cs1 ,})%yMs,Ѷtp׀q6H7Wt%'] S( _科偈-} endstream endobj 252 0 obj << /Length 3499 /Filter /FlateDecode >> stream xڭZY~ׯ`mUܪ%*NJR$eVU` X?\N*/˞_/-x4z$LKgwy ]Y\/U:߷}U:iL' R{d~hy}'lyۛ~mvo*S+\/b?mD6z]WB_flNƲ{|L!2s3ݖye4m'I7$ fuC;-γZ7UeIі?9= 8f^Fٚ.'7rMU5ø~A;ID2qS֛#liMn'<\:e7RݶBr"4u|,K@¶ʬSnNA;3}O^^y۬M];n2N=7rΦ6zs?Hԏ`N܏yVBڷb}GJh|9tx9Jw=Wob'Nmq|Rf}mOF:p)/,[lϬa@'ÜMT4't(|z3Sȣӡ8|֊bK[mzE.۲)MC]00D ¹i"Z& ]/ٟ{gd̛j'g? nNfNg{)Q eaw/?yz:u2qzNr1wjaeOʃFgr2@.L#!EbߚJH҅F!VA=#\ 0 6_`x+'yǩw~хaGS|GO@h P2Oфgh 9, b.6/ѾqãḣW:hjgj[^0zؤ:'L8zCrBbrE^pp0i<qtB:rT ~X.&0_ q>.BO8YV5oSH]e%GU:MgQ;!;L#:_Pm aY#zWr3`[3CR&ޓ6u cdvBH#4*Mb^lXa⊎:NCD?N !ܶ?6T< $iǃ%PH-u:K9{)Ȕg!z>e<~CY5{gk]/'7AE1m7Pf&8_mVbRc`-=4AV?q EUQs@Ĩ2`~!z&,AzKzKf<7= 41EA HvB%q5!B-HHAGsJr%z'O}fI[+Qmadno҄-/k:Y &r9],#5A /lɽ"gUY;6:U?6MLe3{ ;!Ț> ő%/wj#}#83!g~lT[S|ᬋ]0y tg2xT87.FXGa*Opv^ˁ]Cteʧ ѡ,x(Hu7Ec̀Pz+B=5[؅Lʼn#9ٮ`y>۔zqֽuǩDݮD'y0ݤ$(k v$AhC>8ȗ$Oܚ1 ,KMM8/w*!o G%* ^g+Ȅ,xa(b^plХ+֡<1"0֙TcS/rŭ3J C/kQx*bmZcTNbVM&,C'ίn}8lv&)-#%h"l W mٕu-M!!@ ʁ0ug Q"NMĦnka\>o^@ 1_dL: d$azZ ț $>n5vRg&&Ж;> qVlm1][uUKwW֑ (`79<= {.@2k{,[خ1[^H'. S$Ǣԟ?RV+lUe6ḩgO$3ǩfXY@HjTTkSUT_TUm{Y +.^뼻 jM -=q|X~IHxD+z]OFo \hB`o8ܔ7M^pd3Kq l_]iP!Kj|&\W:.#:pH_ Z:Sİ1XPL2ATje cd*Jā~+W쳎@ dH#ǎGT<4;? ~7_'8(#;Ed~fXshh2EQK獎quB!2{pR˽Ag=rE})M=[BTPNd͠Eew %8.뻫Iпi1(qQ&}?1 endstream endobj 261 0 obj << /Length 3190 /Filter /FlateDecode >> stream xڽYrF}Wr<%obolŒ+Uh&)E C6*OlЫ۳72\ gJnfR*2?v+wMރ/jM~zkuN@xB`[zZxeWPV/{k[64n 2:5-FvmsM"|(I_z'i ϴJyykf 2MҗDAٽk!oZD}u. ˵PdDKHf\d |nPp7`ALPX  i.T}5ϻ8>{}{ۙ`%V"M, W vϿ-L~G^~jus+"~D,%SwYh, / fg}iZ|qwy_0G{>b@pp?IwZYHR?rnG< fKam_h3lu,fب؊+M#殴Ծij`ؾ^g_2oK.&c*o ܸ.Ih;ب1Ɨ8!r;6^Ϸ\d1mGG|vMawKz4{kߝwfg!e#f4CxykTv6jzoδK:$\Tu@٫ɓHﰘ &Є9sGs7oni -z)1p>fJFv[/R7HhT /[ .Gn]('+"W[Щt #XGtxE5M`W[}Dk` HQ9[ @U(C"`=I}+ 3ꚉdz?]-\ _si  ͜^z/v$Sw)l?9.S3>Dloȥpj"9%HN'ϊ2Ih2`M%9 arp7@:G]iKTk75͎Fi5>')Yi:%+2M2Y Y ؚQl?t)_l ĪOMgIk, ~Y=Os` p˫ S9TX rt!"P $Im0gomHDED\DHB s־Ͱxu#{kj F+$¡))Kq#Or@k>}Kg,R(qX:M@Z>1dsމ| :Oao9H>8I5iuQ8Ƨd1-~oҒXK-'EEjYpA9Nɋco( Pܣy_;2layл'iO T%qP t͛{huԣZ̰5qho wLVm8ՄS*L]v4gB_cvI4:yEHd"hd Q yc؂؂k^i"(}Z"RQ*\O 3 3o2E0 tR .6 9F(7CQ=`wE[%i=C _r ,Xu'- 3vG]T2SC,2n*4&0<=\B|]C ˲EGZ1r uH8TȜ2>;ыpldb[NĪZ(߇<[o`Ū{+Kk2>b x0L%vGK, 񯬜RANc=vEeff4‰+VatrWaaC\Vw)H6g:A&p+y~]Ͻ4MakWk]"g7,_\J1O y"5m", NeQf' D gMR2v7yNrTV݋%ufQ&/1꼜ఁRbெJ 4ptuw endstream endobj 270 0 obj << /Length 2465 /Filter /FlateDecode >> stream xڽr񮯘ĩ@*J],:[e@$|XFሱ|ʅF7~xrvՂs(%E0E$&yxx閫G޺K}ٮ ]4C\rƥXD>Ʉwn߄pE/˝)tK'UNgdnu֋U]e Xg2J+.!v˕</˕$Ysd69Mtɽʭ)0'S-Wq{7հዕI|ŏV*߉HF k Ԥ9# 1 TJ\nORSrY -up3[McvMZcyk&;Ek!e8&C0W>`) xi. 'cpݓvnKQ qfu K7Y]+a׊ ?5Yj^)aʇg.0jtڢxVmSŠmH5]v47k &D CG)[ݘ,Gt֣GRynョp#l-@Gjh6 )BpW갂 kLGg*3*qH*@N r7ծExy Մm`gRW pѺ#&$I:DIPDh+Kф/ܴ-"6S ,6DG022kn ʃ٨<=Xfe@e&a1Y_ιGDp2 Gn`+΅n Gʻ{S60?hz%D6 Ļ)E#SYC8$Z ;utpCao ?;BV)88 :'' mV`"|DZL[s*աqB6(PMie&QTqM)1J'! "R4Z:#׿|kOyHe&9(!8Ȩ@gL/FMc˚ңe}ӘjC[])NJAu5yesJ $ Ќ=7$1[ܝl]M i d*5'S@PhB "X"?)7u_eC5 #JILi@O4JݾFOLA\Lw ){ 9cD4nf(_XbFUxsu_紐98k:u:mFVzV" UŨ֓'຿ C&\(?f2括<7"0ς$^<[rbp{ԧCy%bA?; J, ÁQ_d?Fן. гxZ`~L caYL=C{p@a ꆳS%bcN J޹FKV܂˷"H -M0Ydlofm ?kJѕs %94T؍lÃ=g!:Em<<*9J[Է􎠯m_uA UA87\CXvn +,e8r 3s^8rsWIUTnG%x 15xsF(VCs ronR":z[Vܮ>3wvgg I#UV7Yo]kA> Wi,3\p6Su=bj2xe'7w;|jq`f[$5b*YAa{p Ŋ ][ h.(\Wx`jqRU'lOTX uK.ILۨ Q!@q H,i ް SDnhb7H3wr[[G{<0aJ)#sŒr/6A3b|eoFĶ=}צĥnkbaWۑ {Ҕ=)ri*c6SU3lT6BGE;$B(@̇ꅪdxE endstream endobj 178 0 obj << /Type /ObjStm /N 100 /First 868 /Length 1681 /Filter /FlateDecode >> stream xYɊGWѾdglhA!`[AKcŴUZU|Wbb!Hj ,hȂR([@P@JG1s ܣbiR d ixT+5'^Qrd{T< pO0Fq`Eᇥ1䬾fSptNXB3XN IːC2` ,1  OOEJYLJLQ`R{T€wr$p %؂24A0cb>A$5ZB`=A- L7Q`T} ~]&8)6ʦ%u܌<]>&0Ce3U`VS@j ml\8UNul2 v`ȝ>[Ƥ@TwlpmSdc.n*:xC_ȭǶP J!r( eg(!ݧ@utW ov'˛5;|/͋Xo> @@WXEDp./wXuOe\|7J?^t$ۛ.6wWWtqk ]nk2Vxo*ݙrT{<a.lo^ȑ,k{UL0@9VR̶$ Sh=:yba y5$:)+wFdb/ȭ&gp~gAg`?Y0D?1; u`ݻ[Yؼ~:+\]s8xoFM$&ekԚX 2Vč&S^Ɖ:י~`ƩN12)6<գP +RD15#u,գ0{:bʘ]CݍT<%CqbN3sƂҢ4*ӢDdaO,7̌Y#Y"I%|gCWd1NjlHK8u庌3"$E*4oL.u^H=դm]iRbZbq,p 0=5pt=5zkT&=D%Yiy][9z?5?h96{ɖN:'Ab]ę9"E_#'bu@߲invbZ6RZRoJ|KG8jEli8%*Y^(>xQ$ ;> stream xڝX[oܶ~ϯIFZԵ FRMjE4}j6@Jv_f8jrZKOKWEe~UQn{סYPu N@vu-ݵ(6:Bc7;o!@YUݚfۇڟ.I?΍{XɎ׵24S-yҦkWW*dI$9SE0IpjQ-簲pMllpAߛ|k?^ RAY˾w.;X-NzULoա~jɳ՟`p"pޝ(al@Ƃwf`ŸӃU)2;x‚.`-5q`ti|nv]2<\뭑F xxbHĨ#Iޣt0Y{ž9 3ס` 4-j%¿$r$ohW@U5INDKzYrpt[Ccw.v HFaZ^4#h| 0]rL.]e~usD"NV!o₼6`^paʒ⡪¦H( >~xY2 B|_>10"*0|c[zp[KK \tXe/,9Yx XdY qZ0AMө٥qlJ;W8d3PU$@5= 'f*Y/IbO.m:3Pyf +؞~GMQ@gK< ַe/4$M-f#L|`4NM?>9nNefvK!P8K1 2l/Yv7ݶV%yI]+Zz3)^^|,SwOzjBp"uAƾ.i"3qٗFڮBW |0`_` =lb"\vME O--)aR%5z$?hYRFE**P#!Xq _/4탢S̩N:A#(ן'\rՓF5ZX GkaF*C!}'$y# *%ѱ̎E9G鍜LwpMGãgzAs9mseT&`;ɎuHEK.>ksA6@n6ԛ+k4l 6zz:`OGJjQ9>raf9:֩)4D`?8 Vo|pBZB}pDyb1Bu48YO |Uؗ(PZrʤ_\Q7uAV)0/Py py .o)\(R{;7]Ց9a q;Y<3Bpmhf(gX8~xx#мơk ToP83MƟuun+bL,Y(:MU2CؕG0=K3!FY. WF×NU#|,][;*yߍ%9R=) PN[uCb 5@Igus[;UL&~N>'}@qI F)=I/}5 @wL^W|n&`2[ʓ: n2 zw;T6e=k"s*MlqW," endstream endobj 284 0 obj << /Length 2975 /Filter /FlateDecode >> stream xڭYYsܸ~ׯJLpuewyU٪_oK#XpUHV ~l Ce? vl1;%d0* à8AK(lP MFĢ=;ˍ{`jY*[;-q'L'F A?y35/W^___T n3{s6(Ij D:K Ai|oWy߳|e.uOa0L}Sv\$w<8[nov7m"=^]}|V"=amFU{ֱ*,&-!b>uH X_7p#s)_:DA>X&q÷ȇ1]fڮk26V:ǽZVͣzK.amS496`bV=/r*o+mIxXvb H!Xe5͈ㆷI"m*oOh1Dn-wiՉ!WzPegw]"lc9 H0~;TV_#I^ΟۉCAi,c"Ӯ)D&X ވO" _74/=t,'k/0cjY;˝] :sH":ْ_h.9#_v@1c<|sh6l^LXO[Au~JQ颅؋g[лk8l* wuY9|&ap#AQH곟 7 !WZo0\xPe+69B?CXw|ȠM.MNᆤ  A(=Zi%c 4Ŕ8v{L \xF`i/e6pOW['u/K"&J3z?=ZI/W6hH46Yo^E>=4*K:'4CqCRC2e[pMnP fs-#R3|!Py:Gunɔ3)J=f^U¨-wn;7|sdǙ0% ;`R!7k$w;W$ "Aح8}Sl-?m78l D&# 'm;CvnQ-Ba@?o?94\x[URf Y1 rt,v)3[,q!7}o}Q|O%oܠD0E7mLF>B5؄0sJ&f, %yۀ߁$=7;ֹvg ~G6\'M|2KȦVw3޼{lx앣,6F܎39y# "Kς&DqR1ҊV,~NLbOV@3XB-&B584@bu(rn]K|7K iG yUԽ/nɡ9Ɛ q lLz @09y,esԇ"x&hA,+O&i&tٝEJ*6pUKT||4\eq{= yMր>ҽCֳBQŻ<̩< PӔybZWS-K1A~A59xV)j-U(A~:PYԗ]c `=p#mxA4qonE7Oc8%ߕrD3wvT(䏂Q .jM۞DepK+Kǭokn(m\O*sKɾtVw/@O&? ۸-#:ؿĒ2mNFfx8ik8Q}HZ6ـ$6QVbU.,V1C| @d 1>;YĀ2TP#Hȃa#߻o XdE1t(9Mz(m6R!n)]w"anC[=> stream xڭZK6ϯΉKɎ-o؉ʇ8ŒX1Azr#.(( ܣu?VMmV^Z L8w͌?ft"11+lK15)TtbC/qJjp$n襻?=:]oD[8%ݍ3ܱ]ura;t7ue"f* *m sң:5[Wvi@{;[:M@vp~vU]n3+P'!&u :pR*Nk g@4&TP%%8TY.h,A_x Lђ ~ 8 cRҴ4x8T%큫{p 'Yf3/M] DCn Hiz%ա47ɎO&eɝ"k;R$ޞ-ݙ.fI [ȡv0Q 6zŻ+=^,"F mn" ,8xU?F(CSkhbt`5r_AH`_Kw[P&8߶E#T0_B~2Xz4Kc0+A X@qQ]<3`&Pzqs w=DR <_ǫ?V{z[hqÔܱzgKAJY d3rgd|, ȨH웎:;|,)rip떆nYpɕ[8-Or&oŒxڮrk͞Mh+1a .J9[nwQgt Qg=+W+,*q ^3L ׸4Ȫs)'ħ4ђЅLGa&E9.Q1d0'VHwp)2hvHMǙ{N7`GD4N`z|}/&s,$D)݉OG DRs!|p.K; Ԯw|\dE1#ⅉXJ _3Y`aaϤK{h6aWAl5aqD3ѓa 7>ۡ!щ , o[UGrMMɼ}t):5>+`!diLW1v^+ N?G L!)̼鮫ί!mf@"4EOWC4H7PIxsb(9{/_/|_%@8 ޘLIZ4!G:TK%+"c9QH Ys$q}\aϹHb&M=;qv(\QSDmFwb8;[~0M@XƜfDakDP,Ui`r Tmq,(mJ°Qrqm${ W;y32͘!xd#"J*;NWy##p[$ZO%LL;#:%v2&cQAj*Ĕf)tgd45fgq^ f+[Wy_%DQ T L%ŵL$xI X(0Oc?|"Š1ymOnt5{-"2gNh ṇp!@Ǒ)v}^!}ͯfPKΤi{?g&1C6*zKR|d2NAsva xA8ms؍_^BbVĈ/;84>}>E?s ;m&[P,p0e'L\U]k{!z!gj c׸l%lXaiE!! endstream endobj 303 0 obj << /Length 3478 /Filter /FlateDecode >> stream xڭZY۸~P©`๩ML+5In( %)ۓ_>@`|_D6F =~ )Ejq]jFd,~ .Zͱg*8v]߮腌\d \VtKFAQo| utus\QzKNupЙ~p4SP P[޲&SDED>VHXtb߅ +Υ,D" ӯᳱS%#a%Hdմ=Y"(<6:tYsgbx f^{D'2J3l 7K'bhG ./q }g6e>`]cQ09xϺƶ) `Gɱ2{6/X,Z,! TAXFx0Q'0hȆOn] c1o]F1nGfNƈeTd0"8<E2$ O^*$` zA "vwDA>!@`+,Kw@ ;*zl2 (wʁxخo- 0ۺm:K35fFC]l&K(l+Dߵv=qZSV Xn]iabJ:h #NsaX[M($@G׻T2HRX5ven8w?qm[ܳUpw" .AFWE{IcO8x[?R\Y*A<)N&h葊hnHqϴɃ& Uജ ֔\RCP4fH7&o ]EC¾׹QR$750iTk7N ݡ WZHP蠈ϻ&ՃIh\['1N@^oz˩I(d Cǟ Ү8 ~.(WdrWl%^-OcKb`c oG赦K*`8s$5B 9]X`-8CNX9ܛ@Ug+1ζn!`R%1o2­s@+[r喇FcPFGiRqO,q.y{oq nBۃywcNBCBԨG|rS&(N.6s`x iY`Awq 89<)7n4"BY 5si>ؙu0]8 @A'y@76XŶ" N&3.V9Lt*B9J,Cl@7SWQNsųBc1w:W<\M}@zP*`߄XC} bѹ!P#/H7`@#oVij[~y?=Upa&4÷z /K@i0޷hҍ~߻cl߽_p_"Z} ?\2'&Z~!cqN/dDs}$He`ou(9zچ_ڽND۰K2qf3 4KU~[ 9+)dJ,d<Ӄj~@ Om" FE $!$$3Zv$Qxfϯ^],XK7y |-OhXxTe;6HL#D$RX sտ|ӿ|8{̊yf~:ڔA!1RcQv`9;7=| b˯NwLt[uRόAX)tJ- endstream endobj 310 0 obj << /Length 3464 /Filter /FlateDecode >> stream xڥZ[sܶ~ׯܙ,MA:'gԎRI@rwI ^V_8\o.^P*ٯZY:W7/A&aı2l]WԻ}I 8#._o?fJ3Zm 2zI>V'YPQnjoڠ,kemҹCӪs<Bm){^+G~LPoIUW{^6|]Y%LMtPv[ K;Ze=./e$[C[u]Y 5m>ܯQeqG!-qpBXȸ7M|ԓ;Af[æ!5 nuۢ65uÕL[O Η-< 7uI4պ؆:ѠzpH% fpu^'zWn %TJF5Q)A)qe6%6?%v` D#@+ۺ8ȾiO(92X~0wz+ө ́:ft.ZV/Ψ!.h5p MWrS8 1/*f#Պ"l]^d8uo.sQ+m0UJ&LZmOv0 &yzU9~v\]_{LPi!uaK,L'a2C xAx9GIYKbײp?LK-Va; 8\YSsy#$I"1{ѺZP > tDQ]b `vWQ^ ގ S#bY0-Rqs2bX)wtҲ-n#fh1 ;>b@|{?:Jܦ/JHگaՠ¥Y,qDot}"0 B;5">M |4"\I:fgW`qDǂ#C1)si\ u`K`8_lqfăd5)2KTB;FVnLuC|cVZCD9q dDʬ׆n2Ta«2?v;!&1/ U{^'ߏ଍Q@G>2>JBc>;ґ)߈*I ^~ښ͒ޑmc7Vja9ϛSKIR&}UpUa'P ɌרJ 2΃]I#[in!: r6"^-(D FPM1S^%~C9F>TGaTZX+ E\3c79bN;m6gHVg@``3SƵn#p@i9z*=$[!dCX RI]La$7RaC7hah*6LMHa<G/PK Z2j42+<0 MP\{L; =  YZ[A/ecM $Q& - "`U)\(҉j<'ck ~[ŀo$1ֺMn>*`JYX]}3[!$};,c/sbx'.%qr l+˿NtY`KcjPŃfɅ)O|*̟`\jdrT`ezHe-ӻܐ\bQ+b\I_CaJL!/|e,eCQrȡ 2ZB:pE9Y`9Q\zm~Ԏz''yI5sK*C1H&:Al'}wcET$Ec1ep XC&Ubʒ0Q#(F1ՀMB2c݃s& cWzp0$G1g'> 31>HzGK@. n5 ;s6XY5ʇU X;=Yc̑beK>LRܔRp[ =%ZXeO߆{H_Y#.12f@ Eey\xQt`ymx)Q8b,5g%G> stream xڭnF]_1ȋ(C/~l]%>K"g#qcC[9CRnU]lO`u7m2?':VVVhւ(x \4 H "*DP\2tK ; Pཽ8/wEVδˁ-[~;?AɳeZWÄdWS7ey۷"I ",d@~DA%~8ڴ_<N2[#4AM:-wMʱBo S'l_z `^_|}qa;e]<|f%o?YZj`8Jah尜| 69 r:Ϭ atQr7}v7j;<7|o0A<T.O5uϾ&rޗ #-M7%gEg AψC+=:I#k$ޛ{^Y@Lf(m *hMbcF" BH:CVox[q~iAy<~GBi4z" ,;=omO4ݳ/Ĉ!)XR^X{Ċ L&L캭s7u5:킗nO@)K"#pB-KEˣ~X9|ċ/\) bqqL,⊔ܹPu~. >>B—)"[pMʉP)zN@|1^eȖںM6d+e]ڦO@0l<21DGo;&RKS*5yb1iЎILp,,28S \ԫI3%|;p̰LOH[@AKw  $h!*ծs ^|@0}͟sbL )q8MdB&`Lw<#Fr!3ɍE4`0#Ռot@ :GL?b8ǖ˾7o.yfY ];%0ːh3OLR& Y5]퀜Lo({iE&dX)KskRIcը% q$uV쨸i;(я"%BNA!6MAsUqGQS_ep¡JӢ'H| "}&\DJ0@ɚzA쥽)' `I0JzsoE5ɮ g bA%/sW%€QAsd"/Oh#l0i 4%= ; YUƙp);Ji' y!cjmx=dg}rõ e3A €ݴk,ʛ@ d5Ӂ L4< n~Aًy~ka)?fJ؅[b,^z&|HL`#,:ԄWX> =>d-%d rwp&NY`:0e9ҿR<1t1Dnԃ<SցyX( H}> 668^H˧L/O]lס&S-1ݓ>jT6Ub;i gvb#~:wN}t$gVcN9?W(TNALۓq^D(IA?|:gKDe3?Hz1.E> stream xڌP ww!wdpww w-[pw  n\99*նݽjrU fq 3ؕM $`cdac@kGtv9! 4u}I*9nvvN;;)Sw@  RK:8z9]x@gN`eW:@ 27L]ov sJ Y: zxxڻ88[3<@u hK2@i,Mk˿@d-΀7v"@wirdSss{GSl*2,LS_v.o ;S #0}S}. GW_Y*fi=@@{rm`"K/nZ`PN?1o&?6++t=ͭY"rM#Md |b:|_̀V 0of;<lo`Oof+fUדS`保fnN37;:weU5tl*ʁ-ֽ qdgmˠ6@ݟ7`f3y o:D2nvv;ojO<톒ۆo6 -`g}ro" 'Bjn!-.3;휹ۣvWrV)7 m8>oKjlXYo)7q~KgĿn*߈*X% >`Xe v `7>?OzSTF|o|JAo|Uzc7>zAog1ukooB۪A?ܜbof |Sb&d[*m -ow~+Zo$8=ۗ.?4M˟h[7Û;Sx#sljxSnot|?-?[7Tnor=+悡6_C;jʼn<&}V;~¥dpOC_ۑ[%{9imhKVk}6>׎<;8D~YSlC-T+DbC 'Y29Z`{ļWWB ^kk!Jc67=,{_s<ЈĠ`9pwO{gwl/Yˋ)A*^W'⳪z !BFiWɂz-BPY͵B҇^J BFMbB[|rJ& Y每U]e%2x?g"72w1M郔sMjouƼBcc –MEzvAY4\C`bf?sp֎  YÜڵf57) w \gPMYLq3l^$8vMƹw?ڬmdPEno,z\/Jfy?+)n+(H`A,$޿ڨbBKsß/U68qj>6#>8ι.f@DT߶a",=PJf&4G/=:t^pt%x܋B:\0X :YҤw]:m Y+v -Dč"Ď#w)-mO CzCCvј'X~ș; P&/9?ROdQxߑ ABx91nW\7"۰:O/f葨sZ.28GS%7<;.Tű>yXuI7۟zߧI+ІR :hym)3Z"Tn丱yʶıwA'^L'u g''JJSqe-x i zT'H!◖8׈&M*&2C N`ǬskBf${(D fiZ7d+8Qu m"O"]!MՏnW`-‹},5bw%6!ڲF`x\BȤg<[CA\XY? *RS_-&[7s,4w2 ح6$$DD3UG `:0S̤?7~x4c Ppa0K4%l;%x۰5M9XCha o^6#L3Zũ{waĜ, 5h蒕;/琄Ե Qw93J 8x#Po{0gIAȏK{P8q(D s[2I/%z̔ITg(<3>+ doNI~"R{[5̣cJ"Q$%I~=Bk[&MF?M n^Va}U0=yVJ+ '9R>`T~JCʃpJn~/*ܻ*OAշV@[!-k5uxYY#pcൠ#y vl~;fS$Ûz^߷SoU^R{3ō6.cy&yWa1?t翼\D^7xkZ|ح4hD˔ǘkLA3o腦E<ҍz,E'qwT1^6F> %4B$jNO+AReIWߦ/p6z> R 6UF_ZF˾f.zS# F囗^m.N.׽ϭq2W^W{4>jzIN-[bH;`6J`iK9d{RuY-]0Ңh"o%EqhYl{|TDX w· !;W|dkhnƚ9ǙMd4?`hJ|oC_) -4.*x jc٩aJCd 93~o+SnyL⯇dHW  Т.3%J|SVj,@ŀ޽-9_+gE;N\RWVJ*Y  7Xӏ},ۭs~=: -9})iOe:0qK?_9l%{'>jP%ȫwdM./^${+zD/IOް헏P$ެ'pOՋxZ@F,nr{KVӅxGerZCP&sɌxFMOeM';M X-5 "vCν:[L l;g<ӷݼL)/T_~{Gi*YueްlnX_C1_RihV,عuS材Hvj1}™DǨBTztCe傒Ý Fhfdo8oM[͏u܈ǣ+DT ݧ& w処{5̆a؋M(V4/ ggMxhs$#d8ُǶ.h}Q){_}g.KȾ9aUQ+z8K$P߬}4\). ɧNU 7`ObW#vl •÷=;O%Dʂ2"m2 ݁]wC}qfLuZ߄]ǙI͓qͲf7u@nJ>VPr,D ĮS";\dW .qTft&67,Vh0MҒCnGE`TF8Ji͐ڵm\p$ԆJ=ei]2#8>72^r'>V?gn㋟Ovp 86R8,xWXp S%ca;سK}c:xYa4!´ sIœT2KhBvIv1f"3vfh$GdD- wӷ]R}eA8W 1F˜~t\1$Nt 5A(FI3U;fM<;$ldJ9Y-8bEXS S\%7;$7.FGxLI2>xgT+dz޸  %hzh"Tv~gN98|+;1x>ێU^`@WH( ]:eKzBbҋ[L]+k 8p30l=R^_B;)4g.aP3%lαjT *niK}&/}Vlʋt`j7sƑ4@I1| a\{8֏2b̓IZ56E?~F#JNye#~d,CR,JXGAUwSU2QY*'l@-잇'=G$G݀gN&n8SV6ޕ"~@5SԀyֳ\_*es NfA>hh8+ , χ2,Q97>bf_EU[ђênB2m[d!]X=<Ŏnmeu+K6Q^L6hEVr_@?>łIJfe#Dַaû5Dl:%+UA/ jTbm;7El× .]5 EeWPSݽ؛-(sR,I!+%skMHQA*+}ҏ nEא?ܸՒyL*yn[ƳdwrrmȽ jhT"QR }N~K2I98{6 i6:ӊO?2-8N(v(uxO3;gsJhNx ؏ާz5 RK 8ĉ,q@sXY %xN~@:w:dʲ0@cG[aNK As)v:^Dd-ɠ0W'%t, ++!V Ѹ`]m7Br>ii!D9FTH rHy9S8]{Y-gaj,s'`IH͹roHW \N fDSN+O0e!V9kkha̻!oMk7y &O;E[ uCGD{h[9x&_h)f`h]-Г6o[eiR8QK~3򵠂R lؤ:2'CNLŐJc=U^^]!?/*vVxvvLvA0BYznxkfLx› yn`err*% xv2ύc$FB>]dzLJ(fzdk,h:d'*%rBB",MG)VB1y0 ftއ@n+qM/ۍL\PZQ)r3QV>*#??1$½>gppvb OEWfN'j4!&pt:eaFG[lNu?jeqt}™ QϮ(f SlFM' m S(fJ,]JL/='&/pk" i/.qH(BECDlB~$X!^g1UH&ӎrlgA">d ^a{. b9Zn َ[ 3dx9k.ݤ9t++*=nr4M}LKU질 4BNg<1Sև H?XhT[,jGq>S(&eB9^׶2*$} |=xp޻M픑O܈R M7 }O13 v^y6څQZO}Wxuwcj-kL_9tĝ%{ʹ4uюFfd|~7Ʊ*S9݆'5Oy60cjy央aCNsŖ}o"@jpޔ! q,d}՝ovi'Pu։k1Wgo`MSO'| A*XpnwI@~K;INJPngufCDtHۢ"+[UVJ4^c24! 1H7&R] iĪ\~XeWy>dvxRzj"G5?4sܠ%E,ex`\Qsu0cŷ Y4o`.-MsLS1ӹH Ôt0ȶWku?``\q1$BK %]RmL B d9tь/z8 'F-FMuSSbDrw(T#]lb }YGp-Biԭj:7R[,сR6+9JtIl4wlQ ZmZt\kH'-${ "PBs`7ݏwC?y^pFJdF]AVR/%]A()qfBRI'  vKk8_?mb(2AM,ZTROQ^r{\6uxRO2K7M͋(pAr9!3^_S}y!JDN-w[w7eT)M]}@4'A%w{2iz<觃Z#̝.V_%+u vQ 2 uFwcP{╇ P}iy!WNW7k޴m+{s L!QP SF]ƧS[m;܏X(Ǖ?66c5 30ĉ/?50=BL%Ke9Ra{9fDzqECvh'߯nS+x?+IUx{Dk/"0TrT.R~uI tO֕f|4xj2#^HL_Q), 27*xrX;c6wwҟ/`7>BxCGu(ctc.$?f$dC8WaBJ8B ^#@.> iD[X/Su x5%?^inP<6\I\ (,ݜ|[Hq$s0#{aeIxscz*)=!e]s~,~toΚGyD 'pBK=O҇ly,Mkgq/se3:9՚a6[i-L,O3WX" 5 G5OdPw!;9oSDeјah*Oo:wL # 7--1:jɾHtY wC>!3-;g=I,ѶY3j]H;6>ߋ@l˰8F>- 3ѥ,c0տƘŀgx xoD8c:QS}2^"p_Tm 9>( G0SD_j[‰4!-Z'qw=ʓ+}A"qPL`;0N*!D:j`jxaI`|Hj GL[D|N/z\.o5V. .u<5h~E ,ڛ:$w^^$=N:c/pzQHrJUWDߒqDvT{8?:ULsn(M3mlma*{Ï8"W2m*!%bw3 7+J(FgF`э3+B U.M5Ixqt9 QB";D{m/! Vwgj `u|#-X4>c\A;akҬG *! A3I eIHs~+ebs>}qN@!QO EĈտ:5'f_JCD5+0^cm~fz:^j0f|Ψ;d眨 KǘIA2m NZfYBF=ug9gb+_Ӂ'JE/-Bci+ )m "yFuR೉G̵rTgc`e37P|d f|2,]"*(wxԎrݵ%+%NF17:+sxGAzwdԩ q_ 0ŞjÉ1#ery𢩳ʭ|XXy;/]w7k-ղm"*!Ҭb#uoig9(cf8'Xi̬GY{9 [5a} >yk ZlCIZ`C 0 J$6.ql}ȶOd a^8^;\t?Pǐ;@נqD>ύ %v~\b9IEC7[߷.vO L"^hh jyk +B> >} Oއ][ŜN8O_b"Ec-] ZGuі3Th@.oPF;8^&d[2uiDs: ?Bu M¼+؄ "9er âQiKV-;l=cr߯c[czE(VV4=qnnՠG|B}b).e=L|1C(07"7`fwCnNQzqÏ` }dEEUT73>>O+ " Y/?t"gV>[_.eNk@]l_* .RBzk {.wY$03-XAZt($W2fSø OԱFJ]RoC&BlHNMn=D/TS`#kFyy;6"ws_䢾:I:X;|jktu7dk5Y;χ >=EW+a_f&Ld!OH٨ڑ2CG]*N@a#OvwkoR(׌kmoBb -+ntF|1^.~s$FPN.$Pvl nm'%MNGU|$E[\>LztYWQh th;XV˚fpI.!kjWur?7QBF Cddxq'ZS،G4,-9-VoV $ptHр2dR}jEcI3Z1rrmu>UܗRirf&"c@olEO(oWS,MZXRiVzs~z{Ǫ:Nմ%)ގ l{J)jn`Ü')7V+$tx4m|PVMfE 3Rky!qO؅"^1?lEF V7qIA%r;; /I*A'?Ҍ~S7>R;p!)MR=ʻ',Z֗_gWֿJ :=O, #Tc|3rR5f͌rA;/lT'Q-kskN6=PՇ}`\N W+3"×PhAyeX\|GKj'kt(0fok'jOڮ.߭YyVŴ C(qk{ QQr%_;ޕ޾xkiȮJcTh9ƫ5՟>2F u7VQ Gth_(ܝmS`0G}U yC'*18q|9LxDLS&%d009D`0qB[m=i"~-6KA{Jd2Kfǡx~ L#MFZx7gki)H3mXd) =5F*.V 6P?C4~ӂ=3hl> E$u<-BMq" ?+ ,| nL-*KUc͈ɤf/Z]HyQ~ToPOI7gQ_JHg)`dS5oцY fCC$T&gD76AV&g &v$mF+~-gZ37@-l woSpe0Y3a}e0;E|u2f9G)eG p)PʢI7C"Nv%4e[ bwzG|B!Qbe£wPf7xǝJ L$툆:<X K#elt"FVPn`Re\E\oPZv|(Kɝ3NsCa 9hoCxYlf~K3D'+׹Y7;wYg-f/U`A.N|Ȭ^Jo8!3:I__!GtYH IBPQ\?m_y?#Kɔ|ZbM;اw-!I<uض1!ө^ڹj1Y^Fu9ŵM-r!7#M ?JR klLXXy)ܗ:q]A䫪0GQ,BJs.SoCnG0]\rsVe0 nN_6f^E?)P?ο,Z]ԿI%MR\Gwi"̓f=،SF*\ɹ3d(c60o[3PԲ4,.Bڡh;;P\!ZMӥ4%L:|`WxFkraߦwu$4مRWy}IaGw ӨF8Fj*c`kW*QWZ 7!B-T5;,' 0|c)7K}rK͸ǁ}6v.~hi_fHud"f3j)F_V-G珥dM ii8IpKIPdf)C?ta]`e-˫C_>jw,H4P~lTQjTLrgbmae]GǶDS.S0>g$T~V"X zB2A )8LwwrhtFN`ױI("ϻ){F֔.A*CvCF"'m^Њ'[C"3Hqp}@t8^W2.F=^yVJکB2BS4x[3]iK_v 6lP j쌸pZJ\@8<%dov+2GRr ̠S'>J&`ٽ}KV^ڪϚICu9 \$O;.u5ٙ-): ub|&Z0|SNi UY-E\kv3ŊβhGf Q.BR28' Zq%X>Y)QfO\ )j@!Z!fY.8A8BҝlYE ~ҰZ`ݘVy4uqwvy˿*"lBXJXmœGz9qUbw&r N}x7F`(@ Z*o$E}Id? jur;E#xD>HBo:UûWxkF?r /wnsG$]:0]dyq/3^AɩN5LĢ)6\eRΑ` ]'Igpq/@"JtlI*yNZd0mv|)sI $lgHg^Vxuk-še,`N%]j9iGn]8%Y?]坔C1+~o}lLSpo2"SW$z}̅Sa;zdhf[&sC¶ԣc"6۷s~mV!;9#<淇eDBNU>!FCG~qs^*R 7 -ݘ8\!]LNeb +p.JA15S{'x{KкQzKNv.l7_ߪQdd$F* >RP4Txا endstream endobj 334 0 obj << /Length1 1561 /Length2 8130 /Length3 0 /Length 9155 /Filter /FlateDecode >> stream xڍT6LH,Hݒҝ..,4JJ Ht#ݭE+!''(F|OaP{_8!6@ܝp;T_;6[( .W =/go'/ ?g3Nf!q;?xy5` ~gF 0M /ϓݐApGoLVIQox^7  =w:V-0GB /w[ `ku]Bq7Pۿ+`Y}?/{$EwG nݑw [R :sw_ |(p[z sSyB!Z0ݟUܥwZ7دY;ܽ\.OnmAnZI>A!Ep7wHnP_D@?N» wɴvwuk ZLCX n<}>(vf=٩0jvYtsf 9̅CO U^' [ VnOǓ|NiԡыviEKCl;uYH||lJ`,TV ihj,|FE+jlխ.xI֊S\jYDgMK_{:ZTQ̡H2nڧsWYo}(d~@:(}lEK1i׻GŴ*(Z,+rLME^o(K "bJ*KD9bFlTXQٽ܇ ;ُ\riwup7m Tx`O4M˵'Tbj z6Ŀl WgXK2l x-ᣫ8{<c+.rxٶBzlMYcDZ:.U~S9<9Ít DE@d,⮝J9*XYl\Y/yM`+uE)'2lq(fF^Rn@`7)^3ȂsaYb@Bjg~[lהy Fu>o4fr!؅cۆVKkF,nƛ)Ёݾ;[G+[:<>=]o0fhb Pzlt5CϔigUa Cr_SH(67;HĿo qJC"AUNw`[$pm:p;6;ӑ\uȈVצ^$ziUsZi%~ТtC >KXCK˄(Ub):| toBؽ(%" ט]*c=¸'Ƿe}0{tX9F#r98)uܨ0/Y$1]YdlD׀ ȟ{^3F6'0Wi}ĥhLٖߪ!uQ`'eMS+ Y ֱ^v2!W= {dў,1hywW5=NNIPuX y1[=E*F4UZPDo pCa 4QYJ\=-,̧#'$ղ`rp 'PK2T#eh2qˉ a( T}C_`ﶁa% ۦuUEV1GwZ,f8/F)XwqX) ]ho9+}?u{v:u4aN & |m{"<8X~B*LxljlbLZył(#U&h&KUĸ.\8`bzu%6ۣ㬢;VH\9(YHNhxrKlP<N3]Qyr|{9o0~ant&Kg9\u9Ln٧w|Z-`C9Vjy)y1=  cWj}}ma_7U@2 N"A}6W~uk/~̺tɁ ',f#LV,&ȱn҇dqR͘uatM"=R8"Vݲv&).NwWRЈ-U&yM·_67[Jegl_[PYu[Q~{Rp=t&å}UyLa;qHݜRj"Zaԁػ.N9]twUdH5[`էw e)FɋP7h=Ib6Ǫ6ƨlL!fm{T"'u'}_:l TBk?p&~cU'"yJmZgRp=#:؀&CG9*w)/3&:+XJۄm 9׈omk"FO?ܬYa(+>m\bn,U3m}vlήl'K x1146ӉQOE?NV\=c0$d@{}>FP*v1߆KcG;UL Q:r,g԰ *MazNRrL3 Q3ekI]+J(?BN۳`>6Wd2z41\mTZAF 9pIEù\2'pg %<&vu–ZXp=֦-hBQYUNƅi]Qcn,m׶8 g5b4 {! K\,Y ?'u^?c4 %@G/sU=QK -[vnAI<}Vyuns3 Cx~,Lu{'Eba,aR~rt-!!IRh/qi8|7[S1tkX^@/-ۄ; L9nϥN0AZ'DP=**h)BZ8"PO5Pe麞ptߵ 슅OkJBrS߷dZV2$V}̑^֫h]}CD)cq/X%jyPLszYn VL橃QpS(Ic]7dm\=A>Cҭ1ؗ ܃yF?|lwQ9)c:J-㑮8-VvN }H#s^kdE*$lU*=?諒^Oo8 z}ʡTWĠzXFxC_K'+=#J[Ma;FA'0ED\d"oj5Gt֩ ~~lmhj ~Ջ_A駸TXcR>hiGb5H ;ǵ=7.RG7QmXz^ү%Oy'OSPכvAdSIU/:|G_nΒcZܚh&TaCc=mh8Ve!9%oR54&xeP",Cm._Kax&Mg&3۟0~3 <\u!ɻxUNbvYLd#R٠#O~ϧ4^`d+W"z(خrS#4L+:~thR^[Gx?7_{+@Wm4ҲQtj:!1z9AxiyɄ>֧f>6E{?wh.9'H8;sNIumc}H.heŽIpzqv탷Is ƎGyQOsSLQߊn/~:{Is|SHΫ0JGI ZBqr b 1y'FkDjm9KbdcזʬZ.GI5G;FO2Wk^Hfo&F-f NUqz,F@gPڄe,b{Xɰ?$CG\Sed೮WEf_[_+X`0čjw}apd'㧻fI)ч{|_5q)0˩ ^g̥|XoSOkA;YT].!/5aKgnXևV|NS4iIKHg~L pvԌY1%^7:2ӫ&+Z9nLN1!U[g}?aŊF*'+S /GE_?.8{3U.mh@P[ܖ_݆l8; >{ vP&i8 -~byֿ3|a /E[\lI1m.*M 3(G[$ɺ]@2?P"‰ȸW-u[XW'')>aV"G:Z̝9%h;ϣ8ͼȸqdH}0m`"%auh~&ui V2O諶Q38!{ѽܲ_N!JEE RcKˋ+6#{<5v_zċ52-k9 'wT=o~xq":2@mf ˀ>pȅ{J+"u;҉w<ƞBsPS@j t.Q&0n0 h]2Xɹ1괼L:Ok%jT 1QW%F{&AѪ.f(aʴ! I3s_3.?8OWWZ2܏m yX'"M$1 ${?`:TO[ lT6t)ޑ{`_^EEaZpwkGrT÷ ੘/f#UTLI ;a3JjMZenNܦRlgXtj@uɃ!37'(O!'l.f#`O~쒑m6;Át .d R0$JݘGb>aɿqE͖a~  ꟫3@х;M9P̩.$LA-˴Kg62?%%JE'a^WI.dK\M#LZHH@m'e 훷$ ƱVHp~1lh[  zYUEP`YDmzԗB%g̪$_㣐${աVo(# 5 0U](kh&= i#z2G9еtŀNۖlPý'GA^pSgC~9 Th^ɐnV61Bo6JW&, uzbFaM SOwDZ9zE0JR'ab6?q-PX, ??V{qpӉ_ufF3Ϩ-O>oP?/m:j2i-ڎ"c|Rޝj~FHX9Ϸ{d}CU2t_yܽ'?a y$vMdaqLU|jOQCʞ@vG,LY&  lgO J̑H _L}9Ibӓ`_S[Cgcq^>PV[ҡwB+5_$kM"ry >[t;4wo?^āʷ5}Y]\S'Ǡտmtcd1%MLUbjC^5c }5u(z7%̬^VR" * Ҽ燻Rj:}vBCJ[D ޢc/E#|df2\IUBr&RJh`Й&g/\<_=Sѱq&!| rT_/;/ NE~E[vJѤY.,GDŽ<LVlL/<Ȟs4jD~>xsO 22T-862t%A&4Kw8lզJLYѯ+' Ik;7c$Zl|BJX1i狑bp'wn4xj~l3gr |[sl.2\}:a"e'0D9Iv9_z'DH--&F+.D endstream endobj 336 0 obj << /Length1 1487 /Length2 6613 /Length3 0 /Length 7611 /Filter /FlateDecode >> stream xڍuTj.(RJ4 t7HHt 03Ct HwÀpKB$Cs|ufyaa咵Y`P$78@^]]+ˏ¢A:<Ty@$ZDaP3OXOD+# .PB܀g0("sCl: 6p#u 숮:ta vH87 Jq H;?!4?иYzvo.h"!.Pk0UQh:~;p\t&@A l `7 B:0t<qZ~(jh!@p83 0GG0ٟ݃p_@anP%' k'}( ;Ȏg='/#O5 `؀?^+}>B(`2zp;M?>?'34ìaP1`/.>/_ >;?77_Z- OwɨF럽a Mh0?7W??)88v?@G4]PW߮8U D/,Mt.>An^zB ւ Av45 P xyˆ= @ @/"x`E(fs'@8聏Zxn( 1l`p|׀6x^# x~?( =`/տ  va ꠦn\+wR~s "G,ffL(M}S2oՐs5?q\CC;Һ-_Niljc$щ0h#mtYWwNƻ=_$,I8C!EdUފ1EǘWi-gqn =}$h#3 I%ziq*^fnzY)?UeСKߣ0d1ߢ jK[+% u&ga 𲖜Sk!?зpm5ۮen}[1Ax,)i2_{VWaJK>dd*^Ne=IӚk Ëd|[RFXNBbn7yt|^V]ae؏CgW$=9k#C6 W{!_ uDlHm ; X'*>Q4y*րzy1f:HD#s4<8QZ#^\D9D_M)J_ y2zy4 đT|Ppo/S-DgaJNzje2f' ݨpkSE"!)ߨ[ͺ(UE7HU%:'$ͮO߮(uOhޮeg_J\PҨO.x~p?ڣxsE z 0IxR@etӔ|J9dt/(CU9qpFo6lSRlDj48qGM *C39ƈrE5Ʈg1Zk ԉ]*CsSsԴyZDt\g$N{h >I|:@[q3m5v=*_tyc*_rP48"8=dƲE*Sd_tf `>y[4;#t CP>ns6@T0hQ&-Pc3Fv0fW]S]OVb9[Z_ξhLlz4 r+)}B9!޹ô/~TLڏŎlB1lUG<7%m/ i}TYx GGsn z 7U)}]ݤwiޚw??_KV7-{eu޷KGpkl.|qhOZqF j37;[-Ffgo+/DTز;Hs^Jwܜc]Łr8*,2)܄)/x^j=2Y0pJAҔ p[<5`RPQgUJTuqdGWKِAx2r~Hшݥw}-!'q-C&C\ȑYQ4"rck<>T S;(i}ˤ؅?}V ~Aez7;x&S'c[DF<Mw[d=AˮYݡ!\@M1܅mƴ B=fll·L Db )y/`uHI["E2#T`l*UdBS.bO@FObUmK67jHշEN93%Lwm,ёRsc`F:}y=^'Ƹ^(EOz'Q W: hŹgp|;[ͱOӅx#D^NB=ߔrp1.E[ϱcҽjB3, [I7jjg3F>Qjʕ.)ƍ>< ^/MQAe̷?9qXWDu\7`;z/z3?BE&`%t#~lj>+ӽ(cJ]ڰ?&Vc)_g;^#ȐowaڕQ?µU 1#6.ukvۢ[V <.F9F@ ٱM!swTOƃ2 9cYZJ!4ib9sed2 ."ƟK^ w3<0C5tkT5qUZ:`拯/1[ߧ2ioY!0)̪P2T4$P/GЙEvb"篭u\=Vau@fuZ =<*M_:˹Ւl%`υjf\0KKbQLS/W U|G[F Sސ񓆏8^#\,Lk F; 3狨mCXSM|CSC4Ql_#W=IFJDtE)knvDg$J%ok'_ PcvQi8IZq/Ω蛖'\,N{B{Z Mvrv=oI>+Rʗ1kAU@Ṗgo/,7 NrANYaD!;r2ߵIg mhuOhzdzR{'joQy24LbF=o5!>?]ߟ+2=:PdBY??3΋ 1H~#ٿT}}G@yD*ArdؔDl]8Hve YHT(%Fɱ@d!;k^M>-̨t#0uRS}b @)͹ےxfA-n兊bC˨gP;fvA# E]Bng|W靯6ؙ_]BU+U j='EL4 ~v"oWCw 1G,t0QO"]xܬVDҿbp뛪eHl2T=rR=^S8\Z.7pSBl*01VԑJA AmUm<+,X}- k˜dkjG9ea:`i=* %%. )u|}fAb ӻĵ"ȭh?6#n{]P%@n`ƈ7ع3\GbRZuH." K{99Zwr }%d!HJX})͆LN\=[$P;!lw3}$wazṎ\Snd< jW1I=֭Ҹzr[A`*QJ)*#?µ̆8o2a)m=& &%MeT$[l5M(%WvxWgJ*9G@+f%7T0?U><="uy(ޡд踟p7ZS7+\B6_FCN֔DKeuOOW˫HLNs}׼{=w=p?Ha!, aٙa `: FB BpUy*OP{i,ϻ}"ŴԒSʊǯB 7n6}仈oШ*)ߪ8Nљ_m$Gsw*X Fڤ_Xc>۩նjòBf.: AM{"xMK\Z_;k$AB\JcW\LAL 6GQ 'wn안|*C6@kιsH!1M[iLA" ifN8)0_^.4:CKCY=5Icc Eu3[*}9 ~«v\P x5JLR/7cc0}N^uԁӅG+?PʼIreNYe]|I8R8Iݍh/,4xײlp8/F;f7f]gtAвyUq`䴡)[7$ėsd-{;٤}k6Y\hA:L볍4 3O!nyÒ~ɋ$S|$fPBqI7|Y 7ۉ&*#Larw縞FE|&rIW1?W|߫ 0_sրj&1X3(DH|Ift"s># ~yFbV)M,|ʘнPx)U~ܗ%T ÝdxkaT[FZ&뗏Uԃ QkY[H=-l\sxlо+p}Rs>wIOZu¸WWTwga&3-NGSjKPsw>1.Sc"mM@ 5r#ؼȱvpL@CNvvB@.E>F['w.V Og$sQ,~}o\fD4!|۩.%0\IJ0`$A7_4dt'86 1fz4kp{KK7#ԑHތxev?8oA54g}ߩL[uBM#~I!i FVHMDQSWZy_V~L|F7W9E} źk'' MO6,2G:yH2ϲbRa8{;.9@r%ѯ"F[PP)o-]ѻo7HI+,8lTch|i’HMEل>==!dāMOI4s:^x,SOzNncB 8hX%j씪{;[nr- Ju0,SG-q ]MROuH_੭;?s G.0RCn4:NIPjJ23,x(# uZѾ߽M ]ޮ_F]ՇIUcυM ;I4'ի Q8UbS4D2Pޛiڟ_ȹaMujPȰP*Lw)Ff7eBd:aDrtk1D>@o=*8"j!Sqw vICa8GFwIw;t];0PcT2MD.唱|l :mTvi ? K[8a%oPC^۝D6x4110zv*?9 {7ϨXz~W-tex[L3$@mP缛Ҟw?5 \{2ܺ2vK"ik@;c;Sm':~n\8^SLnDOg{. _;BQ%N:7y˨^mH7#":eX endstream endobj 338 0 obj << /Length1 1850 /Length2 13939 /Length3 0 /Length 15097 /Filter /FlateDecode >> stream xڍPi- A%wwwww݃{KwL{UUkW+( lA LaY%f&+ 9/1Ζ@CлLn'kg r0ٹ9,LL\6s:[dRv@G8ra;{7 3s{\\tmƆYC9=5@rT =7# #?5dP:&? m1c#[8%W3:k c㻇 ,)e,_030'ܿdaa&Z;ڽ:ZXY!@LP`N_,A Pd#{EmMll G?pݍZڹz ZؚAɞQPR_&"ef@ 3^;/{;{; )3rpzyS`ba ,l.߇` fz=f?}_/;[k/2_sxfг1X2RCv87<T:jg{e abc2~|Qo9Y[SQXX}@g!k~ke&N6h(f 4QC{xk [ }`{?8c}V)EmL8<6vBM6x0scF?D"6]'70q#ÿ'?YSf&FߐhjFF-߳[rm?7~ot(=ߥpX{8KCKw1]ѫwownt+퉱%/ѿ5 4[3 |w7CJM cuMÝ`H/(խ2ыI[ǐŎgqJS{pX' U=_zYA"ĉ/0P2<_. |>J5Rǯd<(kDOCv<{{73F$G uZ䡵8V؍KCq66E!t,QZ:[DHJpȒQcaW<żDM+kw ǬЏ@ձZ L:zL-S>-sM7f5O|[{<?x|̅F\;|u; 4[(B0R yI|/\h Yk4݀v7)欢Ty=ay1<ـrƋ*,27"m!ϒ}{ #:n\ ԪT;b wO#L**0/\BFT8º|s#>9۴ =wv+!,Z> \])í me&@MAmEO_Y!}oaz|uNV[duŽoUdix뺪`򧺌AoL?O%e2Eo ٖYOD1|Վ:A|:ݚd"_BUa''L)UেZԐ'f/LɰaigPGiFQb $_*+sסRnN "I!0@- KQyp@DzMMvK'\G0"-%Ƹ\*yּ)<?e̛ET qds򸘹>b~Qu T[e5G X.vR5g9k>ă22"{Z[s0E:V~j pۘ\g빯N{g 51#6*des4*b=7purC$fLkJ3JPaJ{ k g#$p[B cgQKfT #~>zlO9D< J-P%ոK9yV㸯;ŧ̲Ӥw#"VLq}Y@:˘΅YKNDͳ-ʉ˷N\9֌ŸwE,D_eLwNw#nΈ{4'|O`loڕm_H@v:%ČlS6~߽ C, đeSr(?w(:ߥ{m.8+@Jeq6h*&==hQ )Y5"gZJy2H?؟hzۗe\A%PMZYHqzp`}5OǏnx*E ([1xT@NExԞ~l]}F>Ҟv3)!V}7e31f]%6#.LhiCTOD@âY?VJW!Մbԅ>yQB*X+ab}(pMrG_Z(*bn ۭs@#p.u/<5 260Ҁx?/`Ί'`<厫:_31ULHS;V#K;ddV>WȊuƳ9:V- iAY1Opdç÷)@"$-gץmMemVݓl4]FzX>,9zZ<[|qzc[yblHbR/M eԡD@ 0X\A]#V)mTۡ(WWg'Ebઢׯ3sMZ?%6Aoəڥ]sf!iRή6]Rj8n1&AHaP% Lj#kXг0Z=:3)ЅY1,To}.ھ99FcFMZ_]G<< 0Q1 V9>-}B ] ^hmO #ʹ?JܫGCroX8v@8]7, ĝ+K^ 1sY"')ব}!Nh2(9˙%\,amW膡v郂g_\LyV 1P4IXnؖ?lIThC?0'L;3f{*gznrdlFuS抩H׮Owh&R"eǠ}qh w9S/W#P2~ڠ]&[Rk<#ztGrO3eaR׺A Omd%c ªNX9%O(7~0]w@rP2)_ױV0⛼cx k'JB/؁=D5qp*}fx>*R"r ,1\+DGy~c(~]6hBv“vqd-#̜`KunĤ;2m>oBeqx d$k˙&2v4 0ܓoeq0\"jSmSRh UdͤcGYpIYͽҙ\iC"њS >1I]|_eh{L;9Ҙby&ë!@VASln 2.d&VDoCf?|V_@ˈeH>ʎ#j2>C/|MMބUJu?Er )rz0tjW=àeK1E2Tg/H-'_'rցk*Ab7Zlc d -FS/֍䌓C;$eɨUSg4U_~5j7E.[KtGKG?6GۖjuC]%#[XB)lŏ-7P煠Gmϥ@BNlae/=Fqx𑵝:x,U XK ¤gjvJI:y3 Т5|? O Z~e?ERR[pK\vPUԺ^NBcW:nӋsn]deHhǨ9/v"Nlr#Snmfé8i!E?xO` !g:bժpqL;dÀF9+1d#+Av^jIF܉M_̎1m"x1\g8tטhvA ^ԩ!!>Bŕa 6hsA׀+z3Ǵ=T&[$/ZeIhgD2SR^_kG˿;F98U*gdDٵmGT >umvl6n(;ۇZ^9ቦð/,K%3z&3SUϮ'9O $lc?V ry+2^dn}$5nM 2 &^iї5DOKQ'HhV95 k`>B[ PL/ J!V~oA[FM#cwWSD #]Iy ʻG1l5qy:,GJM=ֲ}#wȕZ"e { ZzFΡ%5lg(BțpLMDj3]kD!|{PeXpCjA|T8L 8$'{<x4nc%N?,d*e"+ik45w y+H*##hۯLu^\W6N~&]_G6.탼I1:9RJtp:9+I/*gbro5z֘x+;7}6mi1YaXlP@ 5EOdB%*9) ~Ss lr`ցk^jn`ygD@f{FPj7  ΣKQ0?WE#5ӤCⱈ sΪ>x9+i 1TtQ:J-ʉ[(Ʌ =YMKҢUP_2;!9bvH<'C>?= eË}Ml:KzYc/YpLZ~Ke6`V}2>] e<5!xY=U;&K'M {4 ;C1Q{uWGc;:3U!e6lCε]=2z2@ t!5fxdNCU{oQ0C 0c%]Kxg"ۨhNaŧN[ic!/>们+iۆ*#Ik@ڬ̫A=оQ‰L1E9x|q35C:gwg*ZϹJ69A峉ϡtGs(:0 ]-b ٺh8@2ŝ{|ih{ pͱ2\Ž݄;E1ް 4;2GP̧nK}?Zb{,^МVqD$&4Sׇ3T<>NJ @.'m癯N";3-na{l&F}:ى <"a0yM 4"Bbp+I 'qMzv z$[(%ൄY5sbR>p^O17!L*-ږ郉8cxe[R+ԀQz^Wc?KDռ`Y(xFbiahh|"֕%([慛~#nX7KE%_x&:JY<'o<Α|}O`%Eس8` *,WNleE1|0L*v{m끠RH'*N܁-8ņnyh! 5@ϙ4&Գ59jm2*_~ع~ Q$<7:x)lU7/a*VB!4_ )"No8:orqMqF`:f= c!F$ h|_(w WެP9U(į*zdp4jDdQ=~ /`4f<`xRM+W5Ϛm;%U=7iݨ3h 3CT\!X`dn =xSf{co;odA/%׳٢A j$XS*3`6<1D즗clLw5K L}V6"X H A~f[]Mq8,m^^""_镒 ) .0aNb_\ru%#q|\ar @y^s-3-2{ [c L7"V"ojI뢈U]}O$x2|{r+?<211\#m@7>wD2H F}#QH*HA[ȞY~Jݨ+j+zC(\0I,|Éz7rʸ{C "j;ՙmi+O3fF7q2E>Dĩ6W5daIe(GJT H=Vky[F1=DfHbEп/" <֚J ~T0o<57ZtTNEqwm')3cnڦw 4ᨵ'Xz# ہ?& 6C@j(O2DKci8К)Rr68Mqfy)@ߢYHK[Yp-ƣbxydc>Թ XOg̝a%X5<9Uo=}FݦDROAڳk;Q:QIB5!1T?oS#>8CEXU gEh_.$xغR")=7%ݎ ~^,8[Hn+dW eZ|PSf3K綯f= Gr-lEfr\;9w),cdJ/rogE_:`.~ ˉSXl $n|BCʫVY`r¥L B-}4?_$G@!b@ \t#֡@ɿEk`TA;IS97)1<%>9Kfh\)o% !,V5Ce5k5j:\7,y$L`G<[8ч.߾CuI 6A4gzV`,!B/?pM.:&Ev [OCĝbJ/'u%EJ{'pCy`gw _V^\C_5ZFvW?؅ۑ#d{$QOִؑ;7>ШŲr(xdΐ"E3Ou\XhbwE4DDo.t 4]cj50U8.߀)x!wݩ.`/uw(K4bEL#km Kjrwh0s`$xa.*@Eafu̫aa)bX߁}1(ii+ 1ێHEaFX`K9YO!r4;2 9C^ٹ-̚|}2b4<륺gIH(gk)&VKuH"T MCGv`qVB9譞ZFwO֓W%:U;Vm@|YKpb:^0ǤW.jEp\~ʳ֩3 V t1 cUk?T Tl{A3WR3[4::%hPZ,yoɵn7_%+Cъ")Rd,.w# |D+T11Jba)߶jɷ|zlp!>: vSChm{_kIR | zM&I>U @$yw1?A6ދY7 |Q:@dXp[#ZܡAf2M" ټ0Veuq8z4b]z+-0qiɲEq-5@ ?B 9JbI7R4CQ(=<ǦUNb$csM{ƱgtWkў3kn=2E;Ll&/] dʞiu!cע>qef6dnjz%FUb)sp=* AwDX f4$tnzHXo(g(%*Lo[>Q(L;y>U\6UfM,a/QVUmj9W"lnt %~SA2IX]Y>IwznDpQϚ>k|fM%k* \0 R@]1+ ئ VwFu1& 8d/2h }0. $ m 0Aӑ,7H@<$9^]}-x)/7Ii{ j~kE„\ry7 y/ryi G,ǮN•mrkWf{ƛG6;+m\}ւv Մ%`,Nv"77iX^_ |VL)EM0.;d2y0,bɌa>ŗ'XrnL-څ!y&]C^=R!|8%;.n5~rҲy?69IiQw78ILV7"/ d.c=[: ՘9*I͋T|2}aITp\C*곬DzA!= 5e";ENA?őAY5 ~I.) cW kVYj M`SH/}.f%e +@8qGճaBf\mTnsZ^8jjP-i,`3/7ôMqpGocDc; e=tE1 V]ʗ=ʼn֯,fs%͓NZT&Kgt} 9fR?4ɷ0TV>w6n$ /] Z)^az{T"NtCB\QJ(zPp/,h^~ma6yɒeǿ.}g>Cb+ U@:'A5QŪ宑W>?lꄼ1KؓHry~|Tv#OP]6މ9m*bck@P͞+2T'뛨$ ٢rFGҜl0cfX,tǻUL&l_ϴi~5W4>w@$}IMa&룟(Z_v~o؁@1N 9\n !\. )J!jF<V;;+xr߶w{ RZOь\$JEZ-)Rd+&WgFe͠'0a}Oxnq5oDw)A_eH7IBBRDJ+KFSUz)`0Xĸla˃e\4a4WJ}$ /:S\q{~my K8d"b>#c\#} ,-wxWg]e?jՆkbeJ;zy![}soË9sAzkԷKwݹ酬!ѐQ+qR`o]V!,"'\>PZწp`̞d0EDRQlP$,U ,Veh#aBEhX . [Vl΄\BBACͦxUaqt31-#vl4ɬ;cnBs[}iD]) TLn<}|҈g܊(9[0CTxȭ;ƿh4U|\L:OR*o~{78J]()m_ش?Ckfa/DJY/leԑm0HUd`HۗA~Fw1w`){Ӟ%/J#,WGJfg]cF>p<_Q?}A%_D35={,ՈFat҇缱~Z3Y.8q Ur {}֊%y67H"N$Txm_’ JMu288{:J+rMn?QC~,e>B-t.΀2>Xg:W 9R5%0"k^H g ;\g.Wj` Fxqϛe3Ệ)IW"-˜ZyL|)" eI(xi17VpcSb*T/6j$e"rҹkDQf`^{acO$RX:m2SfmkL3W٨,~}kjիC:獆$hd\!q +&f %'_e <&.a("=Š-pst9I8Njl'!^hs(.1G`JyleB?7K>0u=zG~).p# MK(Mr6ϸh+# ᜧi#N=':~DFO._tyRQ]ےhاcY-wt6j9=_jm4ܚ}eU Mw2Kc@(g'^uQ6ԼD 6Kik)i\M'B78kgެh} Qg+wiRJ:(T")rD TRqpmS;ZUǵ=eLSEA.㺿\O 1D0pn|DZ- #$ ,y4]†5`Z5hϹwb/\vØbq~jv{6&$i[kNG-.J ;"5wWfJ8>l%uFr.px惮>I&\$ށė/F頇/0.Y:kri^?>oΠCܨ5"/ ~6g-rC79#tgss[nwb@3OIL7qeZ Zd_>Q endstream endobj 340 0 obj << /Length1 2850 /Length2 21637 /Length3 0 /Length 23227 /Filter /FlateDecode >> stream xڌT -.FflA:$DZAn.鮳߷9˵5)P&PRgqq QSkZ#Qk]@H8M\2IW f` 8g,4q6(@@$j G/gkK+Wp 32:[J&V@{pF3;5?!脬\]XY=<n6|Y: .^Xy9ZAXe0b ЃB5<58#gywu8Sd/ n9__4s)\v~UJh+f/gο?/z<^r{ ܿm[)!.v/;;/<3+7p ? x@03?6Bw<fnٺdʀ@O`MUHMI-zfyV;4$U+N )KGD{xf1DbfMmG'_@[F6yl'7>4\nꞯa3[j< _'c~1͜&se&A`:D}&gD;,[㈽^.piEJkxG||&ggo|boGd$W#bruu|??6cfbj!l[JdN,7!MΓ&X_HA!>]3RL>;@na3L݅Zr tLL/dn|^Sc5ԼJ b_ԉe5Q膐-{K๡{^]g  P<{LJdaBѿU'((U\-*6Ll]nrNQUK=i6>p;ZXG_>`X" OkU|Irb yTKd%GZk"v1J*,8ݼwu"ٟMqx ڦ.,5CERnp:#C^60El6R6Pd7忞3a1Z;GJuӮE՗^i$ KiB>%%Ĉ$o*!+G=(7`x^kB@djȇ/()\Ȣ\t -,#dƟ'hK'6=GtªDcpbJ$}͙̊ci:us &`hn+za4E&agh7P/4 |^Al~*ϮPrN4_Uť,d _.O51+Y}A-ZY&ibh(-H4`e 1}roq[=TP5[Gm+B+ވ*~S\xpZ< 5, : 6r<$j_LyOMFV"f"aD+O#IS-hdd.WClM<Z8~7&blxrj_ %߻ Oo8E^(T=ip׏ҮD\a,' ƴJ #sO8m4Qʊ >wp1wI};'t2/ =}rQ1z²x%3b,Z[8M#ѧ>ϲFoP Z[DDQ|c0Sibl;ӄ2n7?{7ʱ{xhㄐ)ѯG+A6,I4%|[SYޕ=2Sn1=} {п{HZTNΈ"b5-S~>%LVXj<=۫ ,QKMnym=k2΋V޵aL\89($Ѷgvy9y:2tZlMl|Isl۹.S;Ӿ+ݲ Tyh ^bV#<),Pz@ h~Fbn'ZDnP=$:RP|} 1!QRy^vkeЗrVR/A#ԉ=m=zRFsrޘ/Ӆ0|q17SS5 cLJ$PDY L~26gPBCҴ{lLdDy;jQ"=qA)qeA^}c`qtO2>7bt={ i('A"R&NQooi里I))g5ymhMJו}4BVm2YHd'İj%됺T}~ݔ ‘\<4lͷ &'זrCñky$qݵ6d܈2m\S`8!zf8W%x cS?*kS8&f\#"xK-nis,]QdR~ 봁 wC7T 3^WOQ$/b[XdƵvO.ZLN<`-OT̫T`Ɯb+M9!f-.0uΘ@6]eGO\pZ.1̊;׬ eÎ&s6=o>oi'HIAeԙaH,&V1SSr_'qRƣKmI 2 O х&;L9]1 =!*4S)N> -DMwZP ˎTK8wLZ ym TO)s Yb!;*H7w+@ҡ",V.̏o-|c92LXYʟcO9bF.Vr0cBJd[IZYy` ld4N[O{&6Gba3 [A9τ]( \m2Egԯhk_jYSu̐Q縳XQfഛ6ʿ\i: `0#$AQ%ڎm`{8~оnjiwb^Y [7WzAQY1$3X4=h+μuj-@EH5#V(VbĠu7[2ݣw6CL6:;xkPol¢8ȗN^;'X#auWqSVji> [,Bo1O06̲;<,փ{cT#f5p7UP=mWsVA_ÒRߔ%6A/ Rw6@Mt+EkSb=٫@rc13q NKkwIiJb, nZU233WwkHL3O}׈aٕuh+VPUM>I(\ Xﴞq &*}7TPޟmnZ5SÑDB c uo`*Y&<%*mKޭR*VWYI-wٔ,}9Ic5aFlS#jtZ' }5k66-VBx:qv 3ԹGܙ=>Dܞb-D ~y@^o)KYeL Md;L~h a:C6f&RrF cǩch'Oc\ƴ!|_B iëvr$.].@0W?3V+wǸ0Y^νp/[ CEt`< %$ۚױ.)HM*߱\t^ݠJdA>Q3/ c[,~ A,:!dI,~Whr])`n9ˍHfݢ?{Q+[|JD7ܵlNK_ W||3yl@v{Hj"60bmcgy_ .0/?~CtWI-SJ@^ea@A5CE-3Yd~uFUϰ:84;E?f*Ңgs8R3a $ wǣBj`ok˶[®sfߎ?9-Ǟ7i#3h규Ϙ8.|!̘ͲjT;DPةJp>3$:N,U62 st]xx$9 +:i!;5Xei#<6ge!dW>]=q4Z9J ϶ҝoOV廳7vgt-pSvR 3! պv8$upr? 7r(AnE2ggoVu=v@XIoqsಽ&;S;lF4 U8_hvz(EiW%B 'loӟcS1L17dby3ҙs5o/7v喯ꑡs԰V3!%+mo\>ZK32)V{gCZ?VF.I1p\*53| f9#T 2 #:(f.*  Jϯa뇰8Iޡ0YɌD 8 _F&\.aYȺeOjdd%Q#C*I)hg>-Q $Ҥ1ò͸Ii`L1D쵍ϰKEClXJ{\3rr"gPFD,$9zWط EzZ%~gEi>CōA,*3Y;oTӉc 4٬tEn0KFc?( zkTqLS\y\_l Z>,'$cPjw%N+I00`6!wq~gAKh ֫>mdE~´M}Eֿ-!ﰹu'r>9*[r3t!x qjs7ˑ$tF Sd%^XJ 8'g@? Sxׯm+C?'}ti h8CJ;~([4bJuQ~d052WVTe=̙.Gx˗G1\ikGbrP6H}\6l[9wt[e7q}Vs0|wuY(&qJdBL:4迩bj9Q^aIWԨVtsՅϰT9M#ʯiMNg̸tLjv 48Gu'0Kr>3*8}^;{w=NIl@Hﺪ }"8y3zeoDbA3ᆋ_*ޖP##S@[}܌bN/bbLq t. "V ;Ѭ0(d<]U1XBN5R r8YPGLE:I,8{VZS0W\{L06:r訰=vC0᠊mz8'Ocg}~YyhCUF؇yC#wH%?*"{)) >uUcI Q<~"05{ _?Hua+ œbM)1EiQSBY\!.y$6BkĞh":sꡣW1XܺƝM6={Ztaըzi(^w6QًM .Gm jBw0=GWToFX ' ŻhqJH.O\+9|ڪP-X|_K m: ()YK+MZŵ_tyތZnx3 7.gʣ~Iپ ]mߐNP>M1'_xl)Ǹu"8ss4U?^j! Ūj`e%rQBăL0]4'L1jqb#qÚ6-?cQ<-;L֙)0f-󯩧9LX+Ӻ}AIn^ qO\jIe=5SJ .V,,AhO~KIZ6$8)\N5)l2"s)#w#)9Jکr VxoPq֚)940*$ #Ixdsd*$nޓ\TY$=w`웊g= B7dj-IE)>Ȋ†Jkb.$4tL6G6vj+2kp-su~bPJ+c'P$zC\HTh)FNŠ=sÅG틙 ]<,~*D4TAI [v Í(Q7NW;F^>Q w8w5ǣ`r>MT=0QrDI1B !e"ҧ…R[B[ޏȀ+'w-V.}$ni4#lWDu#;#܏hI42~Ψ]:& -V|6jaBAyeZG)v,8Q\-Ml719򿸩3*& .\NqɴR{C?gdrüy0) @>/hs1Иoc7 T{2>5O9\:SV_==7sv a*TWCKI]\K^'a|ّ/}C`90NkU=%|fֱU|3$U dn"k)zoꏧ́*t2*4n%˭/Ձp\ʮvQ1q,{1aqU:aɘ"I./:EҊs8S(Tjeq#>GT0ߤsOqT"[2ئ})@JF@3z! %/Z~?2e|poĕ3#ڂ>003TLpT؎E7C|9eb%T) w 25j( kFwyv:zLv $"X~*ɥo:4.Y-FGm tw)~|ys* C}86T 0aFPHڂ0zf0Q7ۍ64JbW{sA)13Vm$#hJRBbC@#~gkգLXtDڳJc;nS3pXA >ֺЮ%@1=Gn#LK\PT7<.yU a- cf} 8cV2a\$< mp3ńUe!,#[OAEϑo<y]VFb~m!ȫ_5{6 ѷZWT#Ü%A rcH)pZc g2fkg'6(GEaF\b+6"اoL6\QgFJ/R \X?S ` <7k%KہlaMc Ss䯃3ja],/|DҘ'vnt3݅\HhcGv5qfb懐zt.hFv[ ?nr5aڙyv#" j]৘ڄLqTO+d9  &vށRkf(Icm#%/E#^MoA@Y7~ƾZ2l oK:)j d9@$a=mƙQW= vaO3+g'>E2NeK%UUǸiڄ~Sk/۸mtiq 9Hହ*P4>Exh)@R3A:y}C.+@26Ogm*xcGս@]Lݲ=\&n!|ob(3a]`SVʱ"LZ/ih# 71]C5$9Je^(mEǎC<%cHfsP.`Iu):h%ԅ;䕦 N2< Ilndc|[yjZPxOm :Ua&K=5LָMO'}T|>F}GuԟMAW⁂Tv뗜}A5+t,]A֥sݸT~=$/Rk/Y|q=a&4oZeW$ТImNpSSRXZ ܘ^@%q0OIVX[1{aK逨ÉNWȤ>iK;X%=O^j5"?0)Md-m ۱͚ 9|a9;3n^'NfgR\TKi&BIzaMJjЅ0Dd}Y}8fEFi|`1ussb]EE-]?t9r.9d~+QUix6ID{仕vwl~<;/=2\KaNg1N(Xq7G8J uiJ~M5>~]>4.* Ԝ29&619X  $Ptk1ӻWz<*Deqߤ,!$l>gu4Ti$r {VI$W&1`Dެ@q,}Ec.lOS8YU hsҟx Rk\W^")|F0kGaO)&f.L n2_dj8[哵V-V~Q2@x(Jwr(TzAƹxo hD2/ϝĥnaJVO)0}O,Y$]+cx63W߀vAU66H BpB{5Zg2dNMci F/BTit g%ҳ hNV[b4JGls6B[m}Zߵf4-ƅ΍l#*7[_*ʌ]y=Sa:Vgw d,y&3/Bps{ͬ/ֽ8݀v'ҙud"Pub9˾;>zڻtsM!8D 2>tXbCAiZxz\~ld)Y[)GG4R.]Bz̃xpkӸ]$/ 䏣n6Tw]ƅVЍT23G:>?e̵ĆcY As"OJ':CE : }xX h)f0*5K 5o1^ie CSAzª*}cN>sYK(V&g#WI7n^T=|豥cT(2bA`s],ڙ\Egȏ` ,Dim{R{^VԑdR_;IqNwYShrxkt#6~yQw j(l{8ڽl5K\I5ڂho;8]7pU gk=7%oٞb#BFHOəvt@~ 0׿W,{Mdv'(7fHIL4܆UɑC51-UB~ϴ h][Ι!r3irppzwYA ҸTf g$| mE>.6q;#9EIK _ICfНˍR|.`8| NZF]'0MΜg"pB ~TUQU6+%׾+ Ny_-;e2]G_ ΁Yw\whdۖ ]zZ*u4`Po׋G'H?S;^sQp{vT,, $@(C`䙵QHT+Q>?r}]5_5F=3׸glX#:o յZ,o5Y8Y\ |M(4!7M pV(v{Zf32TH(?&㡼P/C8H Q$j?Xd?J뢤Spp% 5reqTY[bXSxʠ>KuuQ*')TD7IpC\xz`ԱpV]h_p3Z gue3CluIF"^@ئUNF}j M)rH?erpr'%ʹIu?3yUF*1$%Q}Æ9TWx:@`GI}\颹n!V4-W_#Ɋa4c] ZԮ0s S\l!5j|_`>t}$>3ZMrA-ÚBr-^0 ^vzڒFU{DۢE>gA!<^?'Y|؎c餻6;YNZ\hQLsn}lCn&7aF䂄#9XsA NśSo{&=E' rvTے}QF.iPa)A0ϵ%G ډ>P4& %qG b91ĝY}Dc_0|6a1(,.}Z|qk<|wSBJAsmu@kLs2ؕ^\Br,;^OI uX ?&ic0a/?G +/:39 0+2{up0yg +mcy]}bޭ}0 #Qd 3xa7sŎ.AW TEg";AZ>eҝch|z\L>׉7PKs.R; d s5ŮR!@T=x5p0S1]"J1N~_.N4̰-@<_b>$-')xO l&xM}plQd؝+]h^O (>SЂO?`܈WD0fe3 ێ=@b@b> c5 _97WsJCopd눭E1 NHK>UE pk8ڑ۷3{x_ECd>(]oaXY26ɔnŧ^+ ,29E ۱k9)v>o!0oΥGaKIx)0WB_J>S6+ɚrtE0| N/iFN]DD %9wD&W8rbu8e sЕ]L?#zAGR)4m )eBWr܉[ Lk }}K{r;߁p'a%K=%S^3u",%k79(p{; N鍈 L(^:@je&vZ㥧x)D&Y2n`56 h lTVЧ\ITɴ[?oX^mxpn:vTA)JjC=Bsn~) #oiD[xqDU3jNiƍ/ވ$0kO u4eyU$W:l DoL+]bDqn5{s$](E*htF&[9Z yw:5²ZT"$*rK+&t[ڎ%xAg>ͬC/8ؖtqf&ФJωepܝzE ;Ie,960 *5&0ϕ)湾^#jvaoag.Z8(Y-:Xj'wC;oT lr8,]#^]):67>Au"Q(-Ҁ cp4?= V8p) YkXe?KJ;7ɪAMk;FF^1@xONOdVƈ'7jTxMu/1 ϩнk8?+lfF먷rg[5Qm.WOd2`4!(;PGJ&"Lse6-lIyn|a ֚1a`WϨ,TQ]`jDR5|DM͵|ifEd1FkfcÛ(3aa)@)f𻄓=63@}-E-:ں9l8Ѧy*qXx[>žpzX[l::8>+}hWzf^E$mVusZz]=ZP"EH"K.Si|JbM9.:FjsO⪤6boe%6}FWTJbJ^`r5zX{aӚB%cwHӘES~:qخ: zҊE,&MNx['J5<;t&PLȻYc5i Q"4'_t`YH;djDg,6 qg!o(6t .p۠`)窮O  ƴʇ/Y3وD]KڧTWGXJ^+1Gj+YT=a`|PS:&1r+)׸(a-r0_A5v?퀛 jIvqFԺYl P $${^II= dV ]nmH.[>kkk1c:`̅ 4TƩNG{**ŷuCEk__An zJ[4q*B(r!?Bѭ95JÌ؂LQmvǤ }ھWdkzY"/9?>TPg \Zٸg$K{d'9> O-Ovp?Aw)68 j(7Ԟoz *!fpDxĘPu\Vsr1J;4Cvټ~+zwG V #+mꠊYoj cނq2ΨCm- sL- ._ +N}/X?b x)\E~P?<lYXhSF-CiB *"֒Z3 sN@T"z"`R& `_cK8inG'B*ǽcZS+O;צq] +l~le2CpZ @[]Hy8xC 4y/}5hKwԨb炒n\5\#bRz^^S~/1zԯ-*\q4ƺnN<'-叞\).Pqa|[LZ Z5c?AT7B \t~K wH$.LnFv~ U([94)޲8h% `uIoYCM*d~ ևMf;rNH[5 PniYK'=)n吓:I;qFw}s.pY :d= ,͘PK{:M599;U{\?f\z9aOW $ Z C`cS[5 ªAT{pM/ܡ12C ľ)9Az-g"L@yG[&n;wjo& fPf^ޭ6ͬ[:nqY~ TEY~5n[![`y8Fn'Jz\lx2meTs}6D#K:s;J,VGkntwGuF\u"H\'w^YWչQ+J '*6eFK}d/~f] 6S2ʳ@bsy|(mXBsldlsjwBv9zTLJWauj[2!φ$7Q@n~ R o^d\*B4a-n037:+\c kfzbٷ'FRjYȘ{ț8w;en9kSZ-?)~ 7Z_;&^\D1~m_g`75zwCzI[34iT6alw $jwqp> i<:CDH{\(S_f'mڈ+ 6x昡{XjEH4Zjz5.ziy/ب1aBzc=uZiL*B3# CR?BK(p Dd&'W]nĪ3x^ps?{'qfkzfLy$4<6fR^DTU7ԩ)z|8%ż)2j/WD|3f`Skx9fxkh|H=~l:1UV=qlN^<11#a2?QOܱ ߖئBr9ŢJI >wơ(م g\DAO U{I½f<%}}_vw 8ƌU1o $)-3P^I]8pj] `*NrKZ$mpm7e8 p籈GҎ̺t28PU8d<.6QjJjHh~/G fN쪆=+xRR0WY9!gn1TY.sGіAMYuG!f5Zljsy3((-)b_g.P; gb@WC 3*xG~W#=;*vȧ_Ĥ`n|U' PEθ5d~YF:dIQ CPul9"N**" 81/O0'Kkקy ܦ V>RБL1mAW"97VVnbQAdG] Kbr&_sb@ 0osDS-,Dbbb?w@kYo%74nv $ܧ IUvj K8]Y1i: ??BdhCµn߱pQ,fPG.}P"߹cl0S+L& OV0 4Ac )j+h^#)$y'?=ԛ{}Be@8z0NGhX14)PUfjPDnW ҝBb`@xKڗ^;>) kX3 .Ŏ9/gނ9D.MVcKbجEa ᤸZY^CqNdDjzp9ZGPu'+ pN~@~8Q"kً\igEjlR{z`O-MzYhn!/Ӭj}.J^.Lm3#f]M]X vhS`F^GFgy.`q M U:l<2d\%4zŧL7 /ZكѺ>jq>{V^emvTKށhs.1H!a' r$x>gX&h{^{?ߑu#<.K-00SLkćt'|MZ\K'YY?];b@h8 mAhJg )2_PJawA0m<݂_ҲxWMלTqXVf:hYjs _8 BQ@Bt Q]yX~II1Wrh?H_jBYف7id$X(֋R\𺇠7*]#ci5σX5{ 3O|YQK_J^QI#-qs00*tDRO @ADap-[˅H>n[gP%ڐiskuu\<1aDtdU"ynN(bf'Q1{w- Ԫo`"H@,,M—-Z%P xVl]#1em4 V1w\:Iާpg ~z JFK Nd}6sWQ[N~}/Wd%1&YSx?*¤eʒCжy#W(NP( endstream endobj 342 0 obj << /Length1 1668 /Length2 8803 /Length3 0 /Length 9883 /Filter /FlateDecode >> stream xڍTT6t % CIwww ҂ HH(!JwH߷Y}~>{.-%$ J< @؃4j0(N 3G#O Ȼ9y@4s[X0(VqyWr0\l@-0 0?!m\\Y ά0'kaf;r9, (A@TƊJ д;a׀Y9{j r.nQ[U' dz ?UA02Q ?7r-Oߔ Ivf矄G% UxqdO(%?r>st=?Lvv.ӿc<6A^o#puzLP<i[d $`=WMi\LkJ62A9i'y# TZ+P_ޘԗiL8,]Msː!{w]|&~%|z}uɝsk6c \aUdr fJNqj|wKz'Gz6Un$^|]|̬Y1IaލbڧiD'6OR9u>8QA{wLYfCsT 2 _Lq;=JdR{'ci}벒9)ؔ뷢Vߔ3ikfߘ9`p ƭC4rke=7\mYo79GD yQ#,Nڟv彋싼re}·}'Zeb4h$OLX) ;h\yy*rkٹaXTd3aƤ .0qZ^:" : Tb^&rfDoVoibuJBJ:I_aF 9S'0)QeF\f5 7B8pem]\IŔC4|_l/!4Ǜ7ɌvB,\Itu7v91Z>Bga&݋^^3DkYA{oMIɰ9> JpȾ~JU̅Ȍ.hN&m]!LOdoARJg(Cex.^Z떙t:*\D6H;k &aJg>ZK)';gZT= MN;/Vxt4^4⡻_r^iGꂍ/m$;'͠t MMbrM yjǥ7KA`ê{ hj:$L94/qܟKxZK̎Ufeɖ\!B$Œୗ_7 PyYSk]hvZl'r-)h^X!{BRt~ͦ'z`"P(I"oy&Uەԇz <\wFڇDC:\Ƹ8mB85Λt?\ߨm`w>(*U[4=u}ᬩwk#Oymd& x<6J>E7!!ui>RWIV{8n$wת>s6Ee2[Xxu]U @wXZkȓ6M_jߑx9aUkCqܿGnB\/8qx5ڕh=qz O+%! 4>#t,Epe0^gG`J[L5ͬueMj3puv"oZ=Kh8ݤ)rnjRpXrY[ ZPsɰWE=\Ġɺv|U `=~hK7y9ߢP i3INAi('Մ:S7ofO-'XfL7ٶlS8ÉvۇYJTC1Me2Ok_ w&;Z˂ l< k /$]ߣyncMXkN#ծ"Үg9xP-'iDSb;Ub?AsjZ3HV>f]yd6)ȁXHkDD*1i.@*ryG_6?]j,b@2OQe<ҀM"GE2 [U҂|iY/9^KISߒc1bNS)׭^k+2bri#Qx.hUEFy<@y} !~_Z,ej=Ov.£a"Mhl3l獒|˲ bRD;)^S!3A6t{~m)0e;^ f8~QUk8J+֪կ @'`qǔ88T-|I0M#-BUX_9/")uoY>xeg [ZwMd;$Ȥ<@{K =?R 6,C{W)[\&.}73Eg#rj-kBeɢć|o@%[~rl,骻xlOZOZNK~d|1T}1VK8B|+䔙l2RQ}S~mba)4X5o C/'l` ž5FW`ElBtA`1ge3jvدzobjD/Ι-c4&b4غ6h;Ebu^$ټڎ/ol0%p^H"핾d&*Wzdw <\.0[G8 g*K8=i7]Q*"#U;s#Jv,%t1V]W!CVO#A_̿f%@Ccﶄ]("XCuT%ݖ3>ڻx>'T~+jg1V ?ɞ9e ,yflTHMM~ah %);DUlg||Fb$D0<ػ!iZnUQh^(HЁ891~nC  -6?7;(7 H+܌Ҡy(k;D[>3sj-⇖cfMt|^*9lcy&Ttwy@Ӕ~!?:4/$n;e=JIS`Mu$6Nt8;C^K^/L>/'xcO!S]Qcо_f#ڋCG csEsXk-جh\,2Bhw9SFd6WW^Oէ?1i6u澣>_hM`+M,ʾf(Y֕)J[mxej0$$EGJ:Z)t O'kɷGϽVqLz(EI>S졘[P?iF>M&yg$;+Q!h:@tJEGg_{ fmvUWڄk";T,:k0.!oQ'hoCՍ(eE凛%:.)߹f_KMˍLͽPG= Z|NZF@ZmǷ#Z=wodIL/0X+e\R*)ksиVx.q ;ɒf$PsJe|JI.d"i1BBv+c̀,__3d>4uix}2Kh8I##FegQȸLsб$P.GYڎ̧ѰŠmr&وgJD: -Tp*(v"aQk#ϗP E'^63,SgjpaتoR*Q H)MvWI}E->[JG̛޶svy$ol뙥p&\A.cxh*@vEf_| ̸D籮 u}Iwn|7hp#ͭfE_+Kxѓ]DHs}nܹ$uAk CҦaQnxD8? e1;:2Rڣ9i-ؗa8TLP _ 8lFNߞF" @S} 3i˰2݁V[6Uk9+|ֵYp 9Q,m=?Q ]Eյ$K+?`9RA[gؓ%`iYR›I ^޷V}s.l> 1oΫHx1,}[ŌI(a;V ҟ?xH_WFcy0ҝJp{Yv1vNJ cfH)s-Te}z; u L0say,g;V3B^Fjx;=!x#w UiP /8J >Di6V<*B \T"dH̽u5.0N@[̪ WU3IZ4$ |L>6dB `Qʤr1 x[}RrKCѮy mƶְO(xﯸ?Ue.3f3z h/i,r%rgRuDDČGU@ew]1|D~.C8V<|Eڥ*a*֝)D7(/IفgxHDQѫۃҗYӂ1b#_q ALȤNǻ}gV,=zs$cLՌ8hl[ۯzP sEE| ?KCWޝnMP=LHXE֗26 r|w(ViIRb8Ah$,޼_]1Ø:k;7@ HdԘ肜aE"q]%XC<,CrcjXJԅٲVe Ͻxʽ؋7A{ ^[D<~'Go(KEsl>6ny?Y?;f6L ]Qټri#"2|R[\;:c{Y:r8^mhi{@P[LgSݡp/5ȻCMi8zYv!AYKߵ"t$;o)(ގ X`)G#Ofkq]mL\Ȱ `ґX=H^$9KSO\r /Ѭ V,V8PH KO`5r3Qq9H2LڇjNtݲ)4"Iy-GB1K?{6`r+*{=m`4Y/.LB4?oro u| :95ZTRx#ڶ]~K(|%Њ+'כ~gθg^XQ8u.jJ+br_M e+J9`P7l=MynJ [\JُGQ&pZ%e1|{&F}W^üw+pT'vd<[T%6ρΌg:Ҙ>S!}w?bWch0#Ơڼ8X`Ɨ;VSqDWX|s*}޲#Ŵ+x)L\3'ÒS_ &9sG@7gW?_˨2x5JJU4;z<-ڼOzb|!uKB밵gSWfB6 1ZOVtbd@pL۠ꋾaĩ#N/G+&!clCE" C~8vDK7ȭaN01s+-`d^mn #xΆMnsbVZÃy ׼S>Bɉ:^b~jGS($#P/",[ I 3#%cEΘ+o&|L*f"Pf5kԟ{͋qre_zc+ skWH#[^޸ޥ`F<W>i/뭠uQn1U4k!+H K endstream endobj 344 0 obj << /Length1 1379 /Length2 5946 /Length3 0 /Length 6883 /Filter /FlateDecode >> stream xڍVPݳI HG~R*(WMZ$j&*HSAtE҉H"ERyѯ{=gﹻ{'M-$0 ' ( "#H-8V5ĠEpD Gt3Ơ*@啠 J (*Z@`,`&7DTQQAw8B`p0<(bF8\ȿ(DxpJ`pPP /zJAH'`G`n/ -L $ Xz"0[`qA0, |pڟvC`bnB@lP)tF"Bp A=wc$ I0/G? !}`D:fOup,/xh7M @AΧ"[.7vGIp [~}?=&?6@  _! xp/p'J@#pD8ށP $;ьpcO< \ @~}^9{ wqF ih` )-Pii@7j Cy6?hw %#Ϟs\Dg097m  C!}Bĉ]#N18tA17d?Q}8h/鯃 F"qp?}h)$`Y{b~C(;6q5sr '<8n} 1 1XЯz*`c1<%=D0/zy^:ObQI)*MyV vW=ザȎ$1~UlCYaؑsb#h|U* Rر_ oz\K {AUw1cfK iKޱJtQ<"xS'G-Ʋ8;̒3po, _#S?驥+='˻ xtx$c4 WBɗ^v_B[׋ЍLt,Q~—Lni}i?WRR艂ޫg# s++\Lޞ WJ87a0~Ap!od G #XUG4n)Nշx($AxhWy{y] ZiFF}A"eY5ồ89nQM\hvJm~V~>";K i.wզvYӦUS^Q}N]!x`7GVtmC^D5W1"n4Ȋ%ֽ}iJgX>NsҚYݦ]n%ZmEa~m.ڴ2q=Yh 3-7qfԻ\!t+%E s3C&WNr<-8+/7{T_JҘ%e`:ػ=6zd*~@3rdL;J%$X`4p̿͘NڞGف>Igjܠ _?>~hUs׊6iU\O*H""Tnk~=:j˽ ]it|jLٌQ|}/ iĝԍWa{Otymkz~ؼyB}0<^ֲ*7Dy>(oK >xgx`dAjUyZ]*?_[z;;Uy%wؓd0*DٍC&RՑʹ7j y;@b5}QQṔѤW*Έ[i 'OV6_P(q_P?#4V!.S5*Gg#kK !/iepJ򊵓9O /12->wv6ky51,Nx}P1[Fh:K) q|L{aWocrs b,/'1yj4?1~r .S|&[ ۦ:݋xLhi|4)~^n" ܛ؅i{*e/PTa% DAE;hcG4Sٹ2A_=U@:QMydl4HJ/>$riWH퉆tܳS% `';&[˰'W֤C&_-Uhz ri?Nv:+›OLx 6eq썋,b_k.U?/[sYٕ%BڻqkRc(Y%6 z>SyKҜ6IWtBjzn= fQeD/>9gαT#y,hWijԵoz^SےMj6vȹ]WLbQQ4Vp'Ø~E:3jJ()_p wp`?`3N`#,Un}YL^ےxҦ\@5%~q]H:&La뫱P\85݁Ԕreu'MC\_C@car͇fkֶٛiRE:oñ5!v8'GvG55Qkڻ5Cyۈҷ.W3| Wʗ<;7iANIjJ 3Ϝt$ڴ+I^h|֋$"OKPk>/zHrY`ս" m}_ja#}G{YjL󒛵ZEsM1b_K3C؏ seTRdHT8٪ޖq"c OQDQ\|ݯ2 G u/TD5S@yRiV]"wPTo;N.rK̠Okʭ+Am=5?4@em;OḟrNZh#7mRw6 {&6Uo*ܼk"}F'Fut?Kj̺}olZ9ΧAL^Ä$𲄝Z>i3Ql*lmÒ]?J8;eTGyn!X} aYܖQh?_?TmKAy r#|6$F' ɜ7f #ɸ]}i hfK/OZX3LR݉3SpI,׎Df_@ʃ$⋌}/_C|P7EK]qV)d[.{w[FDš8B[gFԡH-,\Yfj6󭀭GNkcn=+-Zh7U]ܴzyGWdxE"+;g=Iۻ%+fv%",5˱)stdgP="em`1WZS:(7-8jLNs8TW`)IIKĤ*YsƕyrUë Pؑgb zKBT^TE|FU?]#ˢ8E4& *nu:(To[%\X'wQ:S*2pf ԣ}LM@:MἵƲ޹\[(8b1\a^h` `,Պؕ|&%!\x+_Bn9*d,Wn-0(3# <~'1oqg&}EeTO"NegHţivK,՟MSZvw92Vl3yTL铋p$F]RdTZq|{pFG¨$뛱KD., ݔcLCJM|_ױS|>SZ:S`y|S31X`%?%0/ÒǜW,5#]7_C.X3JX9d>2ܓR.űAjU6zzK2& Ltd\V1A+3CVzIF/6gfLwي-@T6+ѻ ux̧PZvv6vzDZ  =jGGbI.YگԎA޼NQE/5= ӊ$7;)Տ)G.iڃN Pi;)1s}j`[=I2,lbih짌)5_:矀-c062s5ʄ]DBd:_\ur^Qb6ĉk[.Yֽ5ȑ>N=oߦsZW<'1+U۞S78P=MnP]|+ZO"γ]("?w.]`Po"m+j۰`ԩrՐV L2X§C紐>͟ Zb>[}GM.Xql `B?-Dz ]u+XN}^(xL,]w |vwSUS}˵,ME(|a䰢r]8?_>w7Z,CЗ>1rkzclH$(?(jj=Fyvoney _iN^q}_:;#4tXG6%ie#F^)ESOF*GSV z²Sz丠uN`0(HOװc`x /^:# QsO٫hܳjȋP^Qѝ$0ʒgu&ۤk`%L͡I U ByMUv\{Ew<]a:K{7X{蜢p$4F(җ΃Y-/K2Skx{- ~D|+K'F<]p}oG86tTrD K^Ky{oz4p#Ϋ{LN֤Y@, i-T4绖&_c< ";1VLb8}ܩ:휌린P[͚%UۦomEv[JiC&1S}}$* jWCYaDqbiU|Vo](U e|Rs0pb};2rZ[7IrA#~n{Y2^S^zﰷ1}D^8Ėw>$z H1VLӳ.4M[B$L:?|HCH7mO='THW.9?K&<]xư} );V_p LKoLLIݭcX?ݧvj1 3; SkQz6,fKV3osݵk)B|@ɁH:P,]Nj.2IA>keotՎSs7ɝ`ȓsq TGp}) W/69P*+O^?(yꅠW *NDqltFNc`FLH~Z/`h~}^#_yxi¿xQArb/`ɧt_l*άknj¢褹"W5bL '1&a:4Еۮ) F.Dƚ1.~$9Z`ݶwL &8A\3Y>eaޖ'UWLqsA]XHo yniV3`W?&J _Tf +  c/#=PTc* {ˀlFh7 endstream endobj 346 0 obj << /Length1 1395 /Length2 6093 /Length3 0 /Length 7039 /Filter /FlateDecode >> stream xڍtTm.]%Ȁ9H#) 00--J#tJK(~uΚw׾Xt 6`e8 (h BPPZ"6c0 $]:E ݡ#PT(&)((< v-~:F)]GG-(!!; F@lA0vAWAp[Q(WIOOO~ px `$ 'b:B (O @+[0 pفtm&@ YO^_WIWD`-(ɏB@0_ (y P w :-B#!_~A_NDS [=VgUqs)VGFD$e(++ݿ+`؃DHB}آ6`?j2zLM< @[vp?+k?&yy(OHD &j0{8@O_k] G Em78+ݏ;XA._v4QЂ߮O.V5r0?A*Cv{P GB~=3>лf~JI6ѫJ0[ݯ7zhI D/708 @D),@?Vet'Bz~MDp[Pֳj9OQ)ͧ\|6 R4+>+q.0_~kÏhNkJҟl!8N7\m/!#ߵq3vf:[8nՙgWmopVƝI8XiW63tx(>&n/)ʗcIC6 nslj!v~ZIr `SĮ4&$ |R_R)dI@jHz&j3ڐR[iuӃr+Q^ujяza~(It)i/9K:*J(9镤+;xz$LiR8΀ہFmCRn|qnV.CǤ1K 2/tx;\<+1R]0sߕD55bM;EJp@*δ;3Ŧn(rD>IE7,(sA%V=0!J%a8.aS>h;Y&`=uʚK#H|!PSynf/1T4Shn^B!KIi!! 5J-#Q(ͼNqE3Ɠ#GZHLwW$wC>4l(B~ב:S6!U/~5&, YOlj hy̥U1 N\Id:v@ SQ/]tCG2uk@uѝ,$ ?c}Q0@u=44mg z{ I.DmX6WD(LkEhni(9}d{az 1,Ũe(ǻ3e,3&—$O^u'5oU;ЫM-([t` ?Rl}1Đ7N.ĩ2t7?ER=zYbf6]pD`@g31,ܹRo>3kMonFJy_^t.~X] |N"K#вMd Cb.ך"&z B##]],P A1±V^aV36~jzwQu0<~՚ζoULby[p#i:m:w \!ܾ-onVIz6(JhqSnuߧpk#Eq",_U@i CF)(؁XkaD5lPB- ^K=&j2}EHLjq2٩Y 13̾< fGSiU[x"5O-ݎ7u>1^E.)a&'ѩ' J:^DN.E\&mدg#bCbv^~v& -ޔ*,lc@+nNG)d_LQ0:}_U-!8]0ˎqksm1m 6. Ǒ$2Z{ګvZG7Ym&Ќw#0Gf}P${Ǖ])fDDzGbez"uO>sl"ɑÌ?xG^IĺO4Z >A[0OT_q"2Wng]ŸխTw ΧRټos`bA=swǴ-Wer{*RP)N{^Ou/|fYڏzΜ~4N NA)lV#xbg&G=We\[i3SSM/:Xа*s|^4OA#~kR2Vq`L׬=GY¨Eg dw%nMz.+1T SFv7rTr]LRSux·{pD+6:5YE#05.h߸=0п# lD)cZ͓_g)'IXg6}ܕM))=fL#C~}wiZ'I*屨{lּ.嵐]-u$#] pdi+t}%-ޮJ=ƭ? _(UwR&x@fTf֏;;Om-(a C䛨LQO'_y}#kjɔB̞UlU$uw:yx4tJlRB7Z+&2Y'cdy䴧}+ݔfmycj'DUzkɟX ܝ=XE-*b7x2G>[<9ЬOgș}u^=?XecYʀߨS0z@\)"Jҙ/~nwY1z:|wZpaťM*)j/b-HΫIƹ A’C _?cG>o\}ѭ$JrxdU=_!;YH}U, - o'PWoܳ L|] :Ut&UZl¥RFQ'iSW%bgGO i,CG_ޱwȓRi[J)`\R!zB+l[4Ct?4wSK5uƾ>VkS#9c^z`J"BNu0Y,e,5v;4fc>ج]™kXp8Hx>:4"9 P6!K@Hf./+w52:' 8G'0c@|#bySb?C(sv,l_}cu (g&1y6Qyt+z4TtHHVaGR#ikTʻe;m2 h v2\pIc!@ڻ˛xԑm Pܽwyn@.=| joKLy[0c-lrF2[f1*1^5$WlyNvGZm A>Nh$!JRt6ܴѵ)cԄC]7ĔgWGScmVKZeWІI3/}FUTּXkꋪO%y~@5drjoSXz_yecvФ%^Fw ΂4:[Ay~Q5ewWHG)]3YgwIR!&y:gB;!]| +V\8t\GuX mz}mNv-N?(mۇS3o ;z?lt `VɊen" eԭ$ca~f6Us< /Gl#ڿhD;M2slFp^b*U yµR69 }$ܓlF_7(u"R%k9y:t5׼I bKc`UGܾ̃#-EKqiDr&"ViJ|Yςc9(C"U)7ݣ6%{5!9i!E͘0o"ؒ]3{Vp_} v Jv|'n`#uAAUc?mͰw!}> _!1+m%O=XX%cpW/QjpAeRQ}zsJrKCy3PE5,('v\W`68cZ >,.hAQ Pgt}h=,J\"a.hR;LRXk:2#[\eCQiV[ٶ--dÛwQ+Bƒߕ^ȩԼUq)ey`ɖwڑ-^l7f@7-lHW0p+ YMyGQym!FF 2JcX>c3V<,oΦ jc-v/enHy.Qiʎ8UP*!ᅀfOnux\'x>|\vLgEO~ ͙T' CMk?n&_~5*^o5$ʽa]-M'}6qx,ez4rtxglޗt͛=!pk1!Z%xu@.;R Ϳ9sp Lo1;8!Z#xnÛxectk->g)6pzE ~F u`2٬ojrVS8tl-\5\KF PÑ4AM7=G6}S[C]IT"2VմV.^ۡ9 xW_-]` =1AD3M&ī^?-~){?g>cAM]Q?a|&_5jzhg4D\%&J=^Dt[)þN>ET mM$m}'݅{M0}C4C$M'{@͖L BN5S7R*9?ziZr. 8$x7{HH=5=ۊs]và)~YN8?S7 -) ʩb ?I#C>u"Љ*m9[OQE >OwmX3z`Ќ%}]nk;1Eq*- IuF%Jz{rAdEګgJ. Җ`^]e|lw3`(=y'Ǎ!գg'8Ы|[qM` e#&"VUp[&(D$_a1vy$J- endstream endobj 348 0 obj << /Length1 1443 /Length2 6325 /Length3 0 /Length 7311 /Filter /FlateDecode >> stream xڍx8m۾Ufڡ"{o5jD$HTbS{ޫ֢n)5[(jV/}Gkuםd32PvB:B4 Poj% @1' sZ@WP 9 s@i qa vUp @z  @!$(? \ ``4 C;;@Zc b' z0'$oG,daj**H_@4@@ZHJ_oȨ"to"glx`Ł`̛y~+*ޑc~<0zBcfCރ5'[ ̌(#1:P0_ vKK!Q_& /fn9&fYWF:Aq GQf%̪B$p @ĿVX F7$raB(U ?Čo`6B3HlˈZeF#+]V}1h'.zT2 dz6{u~RV!KoM@h3 <&FbL`gÝvo2RGtƳ.ԦPzBɈNP.ydƱOx&L| ,T#o&1ghqm~_ano(*zjz|fjEF2;}{ҏQFgЛ5y#g z΅HoƺܭPq:ޯѲ>\O!Op m>sHM͐K |z"ag[P1pRix ߹+iʒ5 qc'f24ٲ3wvJ{J >u t,۞7 i*ؤϨKSZIzn=BȌrLo+ۀJ&R9dkjwOZ3B?`&Qԭ49ay $Bh[ePfK5$_nXMH,4*x#q~r}5<6{2x;NDW㻽Z'xTC2%$6~Xs~^q g;h9ͩzVǏ*j[sҢkCHb,HK"7 \MpEG-q'LTmuLB:Sܒ0 F? YJSFv}}i{Z~+~rQT eUbK#+5{֛[+Ztԃ^Hҳ{&釥{9IS8?ײ״(qL\_h8~+}> 'U=|!`N#cwXNL`M7l+ݣ)"t+ 'ٴoƿzcwʟ{9ex)ܩD+i$? pw gr8nFב/^5#It=竲l K?IUۆ-Y vS{Ye?*܍_+^uޔK7awD5c/XͅlJnp>y-G(|SY>g>I{Pߍ|*#%n0ttH;Z1b$:bUQ':i̦KaNVxT-%#DSs4+(yDHz0Fi)=3H;͈5\/m0FF4V%6&9""4I]?::~ Tsx,^1=t%V=[Zx1B"V`|Ns)f(OJiZ~whn }$\6Ӌѹ0YfGRfT+WDkU;\6oB@G8+_WhC;Mًd2.Lcs$T)?{#>䘭>I`8 T*Ĕ #þF=>MTTap+ZgW цXXUo)N%;tDӲ]($R c{MN6{Nfu;YNߞ!3lU+8~j;=EaMp{/`#tod9P*Oy1#O؎,Lp&.hNEחgp(-' {Cr{ fS0úǫD!T*ex. oLfE{X'NºnUU\ @J+bv@pGLy:gG|ToNlMڝgjw߇zxhU[4rEH"n>ąJ0Z|TȕYc$JrR]ehځD ʩν|ۡ=8,筏)3/!ݬ6HI7LN V~eSz {EyE`VsqyР@\q@^-T2Ġi|!wkヨtT >MYӘ5D,EHquX6_idg򁐸0w<ϸ{~ՉF6(֭f^l+O|Va8~q ^F*OVP8F=iWz*9[yUV:;&g]~4!H,y #DGwgL %:n0=|VfIGcݏ`SMBƈ1ћқ>ui䤃krSo? efk"ƣ4?(ןҩkUT{ې(5cnt)7 HA%}8h71p-nڶѼtgMVF|ir>DKK@ѾgY], {+dCqr̿J{ww,|_.5l_@W>նHRA_q^m/D,AʜъG}^oQ[r5 # (Vk4IgYI'c2͎ӓTG>+94+. 777[0袆]^'Yp'i9x+4BG؍GOtiLHVLFP'.vM 򗕛.u?\Ime6-8v(DX!N[0<=nXY->óVPHQa̒/B-C7U=/۠' ur\pf6$ 楰d$۞fbeRR t%ƠG'}0U%Ew 8Ō>]Ug=k.e1o4OE^IM}6\M5C˟E Q>fF^)3GW?ʪn~fޮ;_1iRVdœsd_H;UafsCyPKœ+-fGv;\zO84gjZ0(zMdR-qjȷ D̟i?4hiߎ Q%<0_mMe_b;aՅgt;V9LPAAGH/I +O-*&%TڞܣfMȾa*{#B5(̒*IhE[VY @f3vvExeϛW B];RO% : z#%-x5S־VW$/K[)#56e{s憣~2WUwOU n.J+:q-k_~e.'3/{9kAJ5K&J@s[2ÉF_]`0)^*0޽P4o4%N p2O~ =娿1z,=Ո\z9{k4}F_eU쌓 +DϻTnև{!q9ɶ !?fsZv 1zSYR8z`p{be6KvHf??.f,.^g3N/9o Bk4C@Q~7"A7MǢ親"ʨ@3ą64Szq.8Vhyn4?phǺ[;xAhiRGs)j-1~;҄=[Id:kO?|~\Wr/GڏǪtDcLJ>O;?) zg4Q{Ӫ;kqDvn yf,kKЩf^ >v&8d U⣔ZlO]̑-Ky7HG)D6:xY67'ܿNnTP e/X^sӪpܴ׼W@}xlS%y{ˏYpuɞ(zin uP! ffm8e)^+kr}NQƶ> stream xڌtk 'ilضm4jLl۶m'hllys΃}kfھ!EN(nkDD Sbb02322Ò;Y#% tp4C&ja(gkv0ع8̌\1uҶ6@GX2[;wsS3< 40qqq: ̀ ʶF@' AkdJo`Ho`OE p5w2(.@c_S%;Klkj|̍6.6@Gv,@h/c}8&z_mv6023q71[ NnN m? \ ̭ ? . .0`o~FvNVqd+1Z[maOhq n_4Tm흁Rl\=fdWw;J=l&4&XOG O"X&&hjn'h/s71zDŽX1 j_$TUhMJaa[7' ; `cxo-b`D1p˿'kC  PmF6F7K+ߊĝSGo`mnoyvv 9ۏ j-j >vDcXY%7w7w1w22,9m_lw>c,?Ǐ~l15ksdUc#`up|p:Xv6_!v`8 A쿈 1$ A }d>2(q2A +A}d}S>iq}>4> ?"G;# gbf쿐>d(:ҭ@Bc1GvvO+)ӿ +h`XX>;~lX21}0v';G+G|5 NPx8~?GŇ?YH#gNߜt./Y? O0" \E@*>^F. uD>nf.{oTdJ\nl01ܥB{(| եbcly]iFp r>/*s(zxH(lNNxj:ٹN)R+D_l;+xv27YiG2SY^18ʀ JC1eJJmǮ>{Rqv,4Q Z";yT5lv7L33r3M/@,ԚAgqEO[L-=H"#Adž\,wϥлy/Jcή&t;Sev*qK. {)BL~Z)ѫ*VyHE[{(i"PRU3fiR&~4Hv(@}eX\T(Lz,$V9=8 ]2D IZ9ORߞ_nFaŋׇ sԠ3`[ԫrбW'\kŹqB؊>\d.5& K7V)NV_G`%kknt Xou]) ytvN][hS@ B{=%F8ZL2j](ώhH蒰GG3b= "GF")ec-2a xdV,Pj;Ъr~2vͥh_HLeH^Q!kwVP"㝓uM 8 bf(qRN]P*s.ZJ=k4J`"eM '%m?QbȚ'BZ1%+4]#@+վӫi ap8,ä6"g6 7Rԍz H"KGG`+d-hE 2, ,Pj….'#YkG: 1Nٽ&@NLtT žl|Hp0H*'WS+'h@eyN owZqؤC]!p?};`Xnc#b K`\ 'Ɛن9307;0r^0-v_ ѭ_vLOLJl5dq F4JѢTcu:X&,pTR8r,Ua(P<}w9%]$3gq)r/~@LN[EϣT%VDY܎Ɨ.}GWz{~j\]B5Rb'jw2u,BdNpp~ۺo *_c + '_J RjzZDqa#uvx8,*r3V n<%u Q=4Nzbק=-* R>BbEEhňǒhB9p[O7&Qᩡߤ3lДSCҵؔ0z._v37cjJYHs"`%ޭ:F'Zx4QB3K(mD.K0r^β/FR=ZeV[XcDH.EˉFăႽmI<]o`Ldͼ>`A6&_CRի|&4qNy] ThY03}g|X}ƃs -r7,60KU&[ĥP_b1׏bXyi^k7>;ަjLNȼboN]-*]ăJ ە fW.Ln]U~O4=뇇7@Q"#5;X{XB>d۞Gۀ֊ҷmUV`B5#12 &6j:6R$Ŀ"C]]Wڝ%yPd&)g $%mFd=.i !vq,yc;U CaokE(pNu^ֆg#B&]]bYVZoEF MLf/M2i* &m0M9ӵ ÷ElP} &ӑ;?HErh2z.9Da2%7]y.ށ E=`K=j+}h)|DެJDtbp֓ڛ>ΉUJMm5RdmT!ryÇO5tP;͜hॴd' g+ sLPH~m9wvdg )u59^X*e;d'ubVǧ f M^aB |CK 2e %=);1 j{kWK,rIm@t>BSI;8Ak8=0_Ut8,m"ă5_].W7OA> ߨSr5) Z5 b39M zÚƉ%bFđY<[Y@mΧ R@nآ@{- oOqex|ҍ!(p&eJd-P2oFG ًG]α6éMjo}ߋWGVe 9٘+'z .Zj, Uh}l`4ɽOLq >F-#_ݮVW>9!DE"NG So+{/3Gș4qoQ.tڬU_jq7 ||PYlqEt)XpF+ 9Hd8"FQl@s6 2Az^\aT8#4PG{ X0a)QA ˒t\V!`R]jĒT#dS>E`kE ݂#JC+9Q {Mwttܐ>zv1]Q`5`aK 8+Ӊ@m0SƟV_ baǭYW5RdLLV!Q+bс{J4p%z1 uTE[Hqu=-Dyy<,IJky.H) . $slX݃̂7&ƽY,òzO9J#mA Mv~hqbJ(#$dUFo46z ӗ2aX|鐁[]T^x 5z&svuBcl%[0KN0M-r^ؾUkIRz]jKSK̉=c/ %V:kWYр*r б9V}sW~~(ZVvNUGf3H^c"I,R)59y2GAD!bq"40 4xAid0\ w}$msCK*eFَżDV1Ch9X~Vݨs!\AF( {#giQNI[Z9 ]fb dϘMDh31)ܞ>[K2Ck%r%lsLWfSB6Cx7tQO+wTCwKevT;\'EE8FtF)2xr?XQfW]vN%VB*#vw{z ~d(&:,Ԗ#Eob*hdQ, Y[b1tg[8cK z^c-+;ȭ= Q]%puªw:6Ym\~2f' uD^ľZ(PfoBۿ݅Que7q:i8 4lJXw\ 7v,l5VC1`f\ 4.S5U5ɵܤɴ;2'7}:DG*6VWS}&kŋD<.uT# $|!="}hvjYSڅߗ1 1(/@;ݵO"9:+5n0$-uår&`3ֿ[W˫d7fo>dED)Hґg!0PW]eOu :!>nQ1Gͫ}Дg VU?Ji>>WsQO|Y?qMH{io/Baj LQ GxJC:=)YytRrQD(>4w4-TL )fAxyjSc$WB)S?adpHr*`9*o*)x q(>i߭J+HN㖑9穃069y'olRz˦ƭ݄HG#jȦp2Yuc n*w&`bqlL{:bYx6{n9U$ w >5:;}Bh@ =C8݆Yx%DNcGg~SRjVpmaI4T GBDhiôé@Ӣ~lLI< `^;Jͣ{o&wnt54(R[w@d; ۽z1Fj~<%D";65Eǥ>p Mc1xY~5 !z_ $yax_{v!b|V k)˘>OL(1aX`\r"a(rVF88lj;3hm1ub/:%TTcb015}ғd^'tBzRz %^G_=/60I`}ܸ6q!wYkK_#0H+nEL{qL@Ow7 LE_ YvYˀf1QFz+)Vuyg/2w H LA)4뙤#R?wY2C֊WbG82\#7G4+Oh_џ |dP~'~Y6dJߖ''!ANWvps&E`ECj.oqvwO:98}5i-9%"5kӄe<.gW_ H^@ r5f1ݘ8嫴2(} 4;zt:?<ӆ3OS #RfsYǃ"5}FxupSubS[@z8l΍2X㕽(%BTu JY?ЀJ83N;bԖ_E:kҥI>]\~v)- (0yEsYh̙3 9u=#[h \d_(XrRb$\D\\ ;k*\FV@S1|6|Eh5&M6*Њ(&!%jr2C ɪn3FE+^rdE)}?ー66IC a6R]44Ӯ3 88OW]/RHS̮^;UnHBD'Ÿ[pm\״^60PG\%JlB ɳ6Es2ELQFab시pE}KΧQ(8ΟHCyecy6 ;z|pFnw&nOmZv:27pNRvC*Hy$W579jA!^N"Q0X|^ďYeP`Žr># ؋qj VHvG 'VRWl( 93Y12}?ts2\:idɹ`sJTOǏR1#AJWE>2z 譩 MRHZHG69uNso0_\{w^W#КnID^1'_G,1<`kXnol!_, O'Xr]}PK R2Nrt])›ƫ}GqIE" &-EAͲ%𭥑u07,ہ Zd&Uсh+dٿ~"ܝٕ׹FmSΊe]s" [* q?I6;,@=}q{# N1T[`WHF|viVxZн~tWQsZ'KߖI;}fܘbh__/^k83:=6IE{*GbW'7l\6uR va"Wqc1f\; 0\cM)ܦ-DW6A3_3'ESV;_|^F It.µaZiސ2*_iZdZrszW7Lh^iLɿ#|5%w Ql3144 Vx2I(TIv`oK~ !ƧPtZFhmK'WƉ^Xu.R7ںqd,IP '#yJ>ʽB92(!3 *G㙀dszy-%'[2֟ZXvV&`'^,n[] < L8j쮙AP֊o pBa 'IyKx=~ᘗLV|̃P Qgd߾{sӡ\yn\<~[x=ܜNQ54YUYn> НaAҲ:С-(zmj@6.~wC \GGA ; yY $ąܫw$71Bosrm!%Pxb+B )ª٥g\k g/CzD~Y0}~9dcb}qƌ*xWdT!?r19>tvx-<fN/{a\jG66yyἳa> {63HD^_ȯ^~"M SNYMUF&]n`_Ln$b +WvN7} s>hHLVr[ UuҪ:y{ -쨮2}x$@Ahݝ HXzt\gxnp3F(+B*ހkPTQ%ơ۱9{ty !L0!\UEсla\ `|Zv{pkt'H+N>ۋI_]A9)l޸h9EO͒Q-tCJ~0.mCF[1?D0FaoM Sm}m9.[zk並Cfm9+;س}3~z_׻3fΣJFxL~!CM }na4jn;ih'v(`^~ifΠ%xs`:"'F+ Q. MgqO 5) g:Q.n%$GhIlz|R:kX`oAV%F9! ?^X;KyoExlmyK#}oIZڥH=$ xU}~NاM(tP5lN\/g}b}y M1Lm8.2`!~B >-g)>!)P<Ov9ʪZ!7xa n2O|OaBf>e*ho:'P)Q(fJ`^= )I S{.uT+vz*W.-ɤz&Mz}a޸>in;f#g&.R ,w%4TTH~T5 }NqS>ɗ[ 5)/Q䦅"uf;UMgtS!"ѧ=Sg&d+ҁb)wpʑ= gGM(ٌV]}XL訯3_3璉ݙdhz$J)盫"@?'k̺ž)'K2ABTx)EIR}< QZmmʇcM,^I0~"0?fWb.5NpúMwZ[$gOM@ќkND""Qv#~ anKjGr?t߅l7]oě/IJH+ 8,{4F ב1FA\vNSz 3,Wl`$tCUգTABΟ*iu 3+% یꂣUZHQ1h %yĵ~,S QH +Zs~a =V%RO};jƒd7^]<ؘ{.x0AmfuWgյFDE{8)B0.5 7T`(ޕ<L ׽ӈDɭФEyUN%b!Qg m wN@x~%5^Pn!3|U\J ܌ 4eYp>]s̔O'JvБՉL}ɟx~Xphih'Ќ80Ob, KR) ~/JU>yV,j%[2X9!оUFT4߫5#9};RqY_C[_lwJ<&`?vYF|W 1% $9̑ UUt`Weu&h}wZ\eՃSv7˄0>|#o-R)K0[WŪbF*ۏ8`0p ]^ TRY vk3.Ka3b B:lkLC7!AO;`/b8LV^Л( ݺ[GQEM g=Dnu zR\KrIy;x&ڎ0ҷ݆y4)fp\dɉǠb(Nj\HI\GjR&ӧaG /Pd1Nl-3Y|6Ce}~Cr%] mRb+[b`ȭ7r1M*ad`4P HŮTv={ Xx]aLb="El)Os_Lo\@+3'M>P3sYSgMz^>#N?F/ߩ &ԓL2U|U^%:#"Htx~&KVϯbuź_Q^2L]㩂GCN5EMՍؕ~h>(DH(8{I*bMoб%8!2,#dF>[݋AV4qn8i{v$S6%@J92avh64Q ^62$HwmZ:c<d1 ~+ 5 \@ DG岒0REJG\kÓWW(n $sN=eL0~~PR*Ҳ ;q#Jh]5/p3#ᱤIٶx05I2P'#^!npd1'h.3Nl4L&-^ڛ:vA񎈃քhꭐ*NV^U:Er 4IR)YyA^MM>CwHR zo !$pZ6sU/-w&c}xQ U{L<7 %i-'( KfMR*CX %c ^W]/dvT> -ʶvhh,q @]T:xC΃%Ak]/oc7ԭT0[4Dxr^^(TYSit#K4C0.M!7&(_aj/k[(n LqA/ U9F@ێ`g[%Bph!)֧o+&_hn!Ŏy_%3ώ`:5H8x\E E &*]JײՆл Un : A(cЭKY1U{ ҍu3 C+&+٧SxXjGdao}O^kc%y(ɈxqqxF xo;`UÙAr۟i>ջ%CU}MLVm?@J@ t$ѶpPax%~MϚ|z^R:Bu)FbbGi&tI1Ϳ|72 jJ`omv~{dkk#jeALСٔI6%cc҈Yr(dq A清6A /*9mg6 V$&y3ց-{N%%y_#2SXøVX#DAog-1]OںHi71a{7d [_fep K>Ez#wuKcRrtPfpr&ۤIV*]V, Ox=$ϊ>241 ;;+60;\ */=4)y.`yRVPK;;n9ij Q7+ubbx[I03iԾ~}Pqkc.A3 3A"lf={Z!uDXP_`}c _9+ozJbK #ad$^r7\fyP/̶V0;!$q T.5#)[ $ki!!V }QS~U N7{ S:xr%~Ո hwGn1p8.ȁ /3aĸ NREQyIt?"x2MG1~ʔ,69=9ׁky!'ZB? W~(S@RU ~ePe X~` \Bd7Z$v͙/UyX- ?bM\@uP' L$YtDLah;ܢ5柞Mֹ5\ū'w"j8ji [XB )y~ק Y mBuL1[XH<^td9ѿ!u:zDi}ldz 8BÚ\D{TI!l VAv|!4ɓOWVG&$"ˢ䟀 օ칚|<&PLwHZfc}wȪUahx.3nr*z2Xn@|[>~2ux9ʽM |y*9aJnT*g+k wK+q&TyTϩܶ;1L_d<ؔ7ҡ(aN{XVe vqmH$1{U3SXb@ \] endstream endobj 352 0 obj << /Length1 1451 /Length2 7878 /Length3 0 /Length 8854 /Filter /FlateDecode >> stream xڍTk6LHK7 HCK H#C ]Jt"JI7%% ‡soZ<{ku~XtxdK"э(W@A^ PEfǏâsq#!G=_/,/"@qS P a8,'o}^t;n60=@ܼ8'/b- a02@/ @W@a vp> sw(4`p>?/O2A88+= ;B|n P}3+ ͑wcVp#`n8{ wAݛ˵sDx:"P4N|zpgwӿ1.an0/ N?A{~H'nA=`7w?mpf ww{7/]^߿+ p7i*i(pM_A99#Eb/p?);Z!bQ?hx 4j-@r^?)]*HO/'v{Wf#Y;oT |!:H" ՂAl(knwi!\῿7~ b+_֟~#z aח@(G>^G}  Jm`6A>0E|6 rds??o  5.di_`%sTfMz~& \֒<^{bgnw,_GWf~z3j K([ n%ڞЙ[ª7%y^NYdt{I|E8us8gA% Z=xU rgLWʘxx)B1,*Zy2 EYajg<7QS&ڻ̋) 3~Աpq'TTzTm}UFn?83?S?34ZY'[j[~+ُTtK76vikKco7wtG$ ",g$B/+Z-Q_tr P-(-:o  ^xz{'(,l!deh܉"93%eT2#a%yP\5WOw#L jjL58#x2[ؐ4 ID%Qyo24ʚ%3}?+f !UcIy Ibvjq8II;زOJMi?%ΛV=~6l~J|#m`»,i&ˬ[y:4fh{fV^HkGL1žz{(0/KI])!H'>\.| u"|He9Zoi\qɆ~EF>&C-T&~*s4mFn濸sJ&ƹMɵ} sx^BiТt=C]9gKOTPʟv[83y&Z?bX1ՍU.u|f-ǑO?g6.؊W؟<(5oY:W}@ CłN#+Q{c]fJD;r}]]YY.;s< LYp<7V:rvo쫞QOBk;ޝb!_rvL!^ki#l:] C|GRoYHd}^(d^oQG5c#d5(N?#tȗM|egCA] Šu,MƎ[޼Ox9DfYp"VZl1޾*sV@p`q)8ކssTWJmka2Ǯvi5F\?znDV h|\:!Mz&+5f>/kh8<5 R ѧs}%t]DTKՅSNL$gfJb=^HlAjA6rk=%V'7JaL׽_JR@:$݁M^NN%f~׷gJ~0)柯=/5H@v_|j*EakD# sl O.0[zU4W%v@($BD>u_T3N2O-o42,]ʀR6i,㶥FɒQ:B˚x[`-Wgd>ZLJ4iƠӨM\ghGBqtO6PZ+DqzH<;aäsabNuf QmvTa]C!Ƭ o# 6_+IJdZ2YF1=&hu+ v?;e&? H ?r{Ԩ.nDȿ,Lw` o _&T Clmr{?A4/<9W*b&W^G=19"eJAq\6f'E;_:Mb KYQߥE/_H"w{Li\y<:8BfⓑA  p^==C y},q'cك .[,tl(aR.4K= ӁbPn1 *?覜Lj ֞Ld{Ml:\kuikm,]s{i-o8Z*Ks{ɩ2)]/Y%s]QZ|YY@ĸz%3wS\8BĪ xyrI@|Uru}K)ih()y5Ք  DMAKiQ#6L-]}7u%RB\8 @+OTuO5;6!oy?\\=vusMPū6YtRvqr}΄,eY3<&DŴc` CmI\rZ6Mԏ+ [\uX0qbiHX%*FCu0UɥIIz2- w~ok4O}ĕ=5dT:$@gt#o~x}Dֻw9lOeUүșo؄Ǔ6e.+5WE2qf|y.#^V4yETV&f/g';toP -OB, @Uw}(P,g j.a~OXt#)Ywwu :͝ /3Xi͙qE;s6yB";@oK~\&4](MSӖ7~T D/3#}Ŭe#ϯ;Z# /Ft5_?S j~z5l ?\*w`dRƤOޝ]P~ ^&yqUrZӑMlিZa*M65ظ`M[4YS)o_L s$OQLiCZ q:gB1?^]u:paf4 T.R]&$=\E_smC8+̔ktּ*I=koJI;)c^sM˦}fҲKn&[j'hfErг-ljHcRoՎ \>Mk`nJ]>&NP]BJR;=*Ah{-Y YS+mF-8ڝka(mԸCƢBy^i3rĮFv£!^m @yI0e,[g; C9#]Gi00uti9chVdS9SG\nIy3ȕ٪"-Cũ:ڛPNm{CXKہbR4Ϗ=蔴Jz~|ZnuM[ugےtSNVS+Ȣ$,a|q'(*71uw  qF?F^?#=4,pnP@[/iT^6sa3J:(5{D{[Ť w _F˔t\uоl˩]*¨aC_WؖZ h$ԋ Ih>`|E_++-}* 0Iُ$Rjh꧶{}U.޷!{En?Kxf&;!7ȯKM+>3aW#()QĆ]0P0eY51{L R(f>OI[gbʗKh43͌ Oc)ZGg:Z07uA<~"NtfrR4)W"Ce#VL"SKDĎQM%)z7Щ}.݆8ͯ#!gpX^YUf:> kׁ}}Yu^ꗯHaY vGQX~A1 /Vk.yI|&n9&SfeY/! z6_Z5  a;6BWiLp]rVz7Bi:_Ev?M\tb̜2e,t'K};Л(1p~ '\KRNH3TMA3wjRקzrā#3h)9- )+ [PfˌaCw\*CFMf0y]7Q#p"۫Md|h6chX}U#Ӵ8Z"\;?ɴ:ލ/ 4c-_bg ϺAiy$op5C sɗҭ [:sQ[ձ20f Xz)vM_M6co؀|Pߠ֪wE^^;ag}F (:q ;M.ˢOHAfPDBkzJ0~PjI`[ ӽ LycJHqUG}`v`(c[\G~7d7pLXvr jCV3|Or7RL/X4׏R⯠JDE<9Pݪg?euEt&; ֋Vƍ/1SGHqv<'9h̹Jӷ̭+RaߥVhtP(ž2 ,h[gp S2ԷG~ſ" Ijb|SLJns2,7+'3B=BGnC^)$ey98eC8ͣOq,_`7H.96uz!y>7/ <ݭWu_2Noi2e99{m(0 ;kͻQNp3- ̙F_92VkOQKޮܶ }ДoÊT=XQ{9pwN ׇѶK1w @[!)⋒L)fj~;%j& *!AC}*o6 VȎ-$xb1K_7$ яMq_B`3,(c(1<EW3&]d{M MiC9%A>CM8q޻KeN[=ɪ:E*uNkb%.zYJH?l~d_̳ :S]V!xS^oR1kD Ga#v0tib+:ɉZZ^ES> stream xڍTj.L7"=twwww) -tR҈4! %%psw{k wdz}5%( 11$45̬(_kں9#Gy tqАpAdfnE%0 `qYYvHyZ` ?_t6>>ƿb@[ 3@ha[ݼ? '+3ZifP]<)ƌicl- W;Dh)TV`S3ۿ m X:*Ҋn^n3oE3W0u3 ?Z:2:ΑH@`GG 7?I[,4Yق,~aĢuvI<ˬn.VVV^a@ !o1$?_'  j|XAhcH '[ rZ=Wd`Ͻs#w_wʿ9 n@K9wL66`d b t -\'_ڐbA{ yXl\ Rn? >ܟ0`? iB݁8Bz!y t].^2B~^@ Y@]}hM';'y%ΖǮZGQXNWO-ko2q7L;pUtgQ7YZ㞴y^N1:mٗn9Ai>dFF@ 锣r=;J&޿aX,g]$I2p^7`V}me{hWՄV-U(B\Zd+*7D.5yB 1ő?n7#%Ҷ 1IEL[W|/B*NW댆tlvNkÏ-HYmQqa-|D'\y/ꜲU) xs Vx}ӷaQ^cćԖΒ.*B1&Q5l}=S3ԨZ/V2XYKg*.]FLVZWNnBoYNmp (ݯM~ŌHX&eg ,"f]Fmn Q8sx{| j͸}`VK+tzZ s IZJ1*6Uh.aVYΨs|{?iJ_LZa#v*4=\h\-o#*U"Sǹ*]6z<1<45P 'XdQI5JpEz jCP-'*9֏pd3s!D/4ċRs/^9OP^SZ ~1! j:oQEe2:#: m䞳1ú3L:h,&R#&+(`O|3-55o!uXo=mKwSW ;Nq#)A"pg$ 6[cYG_M lytVԛNaD}&0ZQ ԭX.1V%oVc%2Og0 U.AoyE㣆Qg#ΥZGC7>|ىu{H C & Da V9rk$pY"!s*M 0[ܕhn[ۼj80Ok)˼&]ɊoKeSs 9s][s}T?mqJʰs -ɫT'ƪ7+-*z YY)ME$ vs{VFva|(/ .W7l U~Ug,}Zm$؀6F?ywoe äyCDD*@=BdO9Ck;8(fp&>r&3멹:\0Gk$HL)1Ē+2:5  wbcku>57蠪LsYB2~AfYmj]n8 x<[b,WQ2fǂ%wʋm;SH}9*`o6+0|g'">R/ƞ 0,so(gw&Ixu#EAɏ!AFT|>;aEn ʎpHw#7Yz>ҏvX}vr3$^IIj÷x/ݤRՄW7y?h_0(' r&p, +)bU=IqoPGdHֵ&8NOz~Tv)AF_J?9#+%#;<*wFAk!x#o q~qzNݽ(UaXŵDu$ d ԓ\u6m7~DbjDȪ3tL冐QpBVFqOէ\.{(˭C`łQ<<ܖ0reЛ8S/kmJ&vNi椀}ȷ|n\a+ SDC+)V]6#OѨQB81<(˂_bcoLӡO?YK&&=[hUe7"h\ebN+;.GN &:>h}YX&;xD![r;e$4n2hc'S=!/+4 x%x,)bεa.Is뵿W!\ @gAd-? PX'./2kq@W 9iqVdghO%MhvLFZ:KyZq (,-+x\3[ O?PH2fg%zB@̇$"0]*wbUY&Ϧ<4>/$y1C( []}FbPS3>$rc)G/:F|N8ou9˗&Bᛰ J{oUCx}ukB9#ԏI.3NHNϊ_Tm fnp̰qEfͺL5ҬC0k$fH͗a!a9%ZI&QxAx`zu89G`F]!-gH(FW `SM$x\\.J)8!`s:50֤+S2E'pőo&%wRG˷2Ҕ&JE6pq #~!~v.6"0oȣѲSe2..Br|-zQxBXXsw`C0ܞٯ=gtNJ/goMv {,v _=ND^p8q4l)n \epnXи>|ql*;!4Xło:7NhYqꔇsd{p& _3㈬/(9m-l|wxې}Ti}bfe1u[5][\(woQ>ɛH^PV,OXlGBP Ư XRfIF_xPծҖYN%+"8vs7Jx|d? /yWwmZP.89¨n0r3^ʭ>~9TKJZЧU;2W"nj|`*6e2'[O_˂_MH"ٺCi>.H.`@I8`E`T(J&U{vx7QnCgXTHPt@= *1iJ]\%$e$Ve;~Х?Uob,50X7r43z4PY8OM2]'M)o]|)%47((- i8GG锈, +L`Rd6XL@/@:pqqzV>)CȐ&WaS_9Z{s!Lpdj'W9;ʻNOx{M̽m Ciep81Kf٭oSxD /%YknR`ޝf2WA#0˄u:Ko*VIXrle#t)rRJ5ٹ0,!r4(vRkIy-Q԰cz܉Ѝ M2c8 FQ6jSl-vIND|d4>3FqCOPDo78 LGY}-rt6˖*z{Oi6ORҾi wt_4DM WDG;{\9p r5χY.I0B6f{oMn;)ԧ$dd i=58v?vI4/Z8\xl}[/5"4%]Y ̷i|uo`;*2NHO 8Bi̐ֆ yTMaux(Y>eyU;" % -avqŹIM# c9, ,_~Kh53 I[V#v}$;=.K4jQfU b)8wx\5pOcZ3g<ܠv8%ξ8܌~=d&cCM"Vj)TUgLI {hש;@XUTTv {ČyoGXFfO5;xYWLJgXQwV;j1QHfk( &èY+8IJRpuǥ[IdW3m aF iVy^9еel΋NqNV\)ґ4i_h3G_Y}뷽g)Kb|H(Y$5ިHTv[a)]=PmTІjG4S%=4aQr"2Rx3=/~=z Wf734h`@`aLsn"b48\6PXVa! tּWNiݑe$s!i:3K[E.pz`*á44Z4A8GQYKPO/]讔bNP/.k(S;QL P&Bؿ{Y~/@@^axi|F_z%M t$gi ~y%ѧ] YMQ`pW>=IEꅱ64FwN'?Ushsy7v-j7k0,k͔<kMX[7lA:TjiZ}w2Y۰<5]qWnMkTc tם>Ya|:jCODt^pO|G.l~gM4xOXZFO481̦h#=PqˌknX+jxyD4Lr_ 4ބ~/a9dù,$eᙄ-':fYZ rSwϘ ,d#BRXizq6u>GԻG#$Js!\}kOIۧÃ9۬zbpb#1yAze`ʛEh0gô囂 S?Ī p9~)82*?tu_tM¯x6n*-J?m?3Se5ȏ+!8*vAWwZ 2f'@^ͨg}P"km)SC2Hm1 &q}pnb)^F.B%Tk۳T*]_JH`<@lQB0,#|wD+TuH}D_rўVT<5j 3WalQ~s/-(|X/b/EܒnҎ&cΠW$MX Lp SQ҆f Nz!-9-Df{2_%VPBk*h>0 vuS~DQa$J [8jv|7"(﨣H#@#<07BƁ;8rHdI}K]ҷc99+,q>jQ~5̟x{GARt? ǴsO+ncA/?51vD)y1?mqy9˄RvX S˕ * B1rY4Z GiD7z6)0XAQ˓G L)V$-n6wHT/&13 2~b/ؿ2P$PuyCaed \Lʽo -Y x?Oa1$DܖAh*/\wv)^gG+zfY6Y{!L<סگ'd\m̩yc I_j]oikhR֑|f~Eƅ.ӛ Ug֦Kbj~NǺzʙq#>ؘ#_F ]^pȈ_UQ΅l`k.$x܄n*2JADKx|+\^2 ϰ*!FU8'*?39}le߽%ŨhOvT^9OdqE4E+~Sj &t /K[ykvJP9~3mA LEysbOgSn+Ma&oc.b6l \Nj@9֛H}ܽU]A/;-IbwYXQrwx."ii2|5f**7 Avl.@إo '2X1N8]1/ ѿ(6!W+2\c%>؇"ie:x f:jQԉsU% z]m\g?/F{P 8vX O?Hd|~I=Ay:m↎W4L) ׏ƶ"*lH}¡c@*]3HJR|B& m(ϭEcAnb~%+;"&r!?y ca5A/q oB*2F7lv9<[ƊlPSxɀRMhRۘ7O+w$m5LMQydX<؃,L;F-ӫ,N}Gys!=AicjZͤR38=vjb-hqACI>}^nB&>Es1$U_!Eܭ8nvz#sl4E킊:bPuAIՔ` ,jqI5HUU4ơ$eVOoUm>S[zI[s(S[!n:_ pcNi.ܿF-/y~u!A<5Y2 5fk:m_ke^|dmWASLyt In GCϫm[r9{K _RDWҩc+CoƂ9 MP]?VDy'x`H)CIc-KO?%&ZwZdV[LXrov)zJ7j:KEY d_FYc1͈/3.tH0pCz'1ˇe ѿʠ6*R7&6م8D5ordX/oV?AECGátmKkǮ܎PH>je mėaB~Ƌ"ݘfKBj'Qw90C~b&R>f!g~+Pe38:i~azA5>G_0EPj*lf83b_肕CgnQ )TM-"^5H0Rڶ'Ϊ^_hr 9hh'9}֏ ꫜ ӡ PS k߭W赋+,\+LKxwC5!=a1jWM/w" hWMStLP!+K "9NoМ|6uCa E4T,v({9+:h7]A;r^uC k1’nN'z`X=fؑH`WJ.6~%|"L U넘[9kc@_(?~ vtM&#!Q(k ѓ8\2X]hsܺM:7*gy S}..GqzWʺQ2(3spL#5qah7,ˏjc&#Frg"+Ҷb<Uo̤/CQYܝ6o8ˎ=k4jJ.tv~!7W%", $ ȖS'`Xk&(83rLL-?>{#w>AS5I!<)aבIVEv@[x5sң8P[7P8Zʲ y+Dbqܒ»Xmg\.6H2sM /ބ:E*If7}zߎPt8`p(B ?)U_td0|>%M'pR;|{!<"WBǧMH 70B5[I +<^P" D[rS-S2xԛp@aGമG 7K>-D!^0|ֲ{F 5M{OJ!ǵ¯wLS.k13"<4Srힶ}hZ$H[BGXTH“QrEKĻΒ;M\hn31ĀxRKϕm@K,CyTY&u$$pK{S~pA /W堎LFq2T& TmF'kƖ}A*Dzd]w קsTNiIG\e)FZ2>tVEO 9ڷϪ?9[5, KA <Ҕ&F^?w ?{9XZyѕWAo-ӦwWЛ! <Еؔ{U$=FrB(\{m/ ?dchff҅*c2{=T37~b왚"]̓B_Z/]Cl~C8ےr)׷B pKg TjOX,KY% ^ ū&87GzUKQ~l5e-(s^۶w21x,kgr3RFW{@4sC#{%_lmDa઀Yf΁MgGu ժ.jpEǕy+(-OSðÃ~~l8ѠFVc,:M[K^|ɍ s!xGGƝ/$V~c[m_+sҶ? Zn~qc6XBхHu'} كpH ~繼?:ASF#6i͛G Ȝ\%GUMȃZTf_e Tyn4C:%27$۸z*QJ2Y:WNjl7(&ZLR( \-WzY"3noM[H_KC̒xWa[P61/P rފej1%D\ wqXGy?tX0ʙK<0J+11Ghwy4Itm#*U')yl`҆w 1O+]i[kP)& =>Gv$hrڄnƶ Gyr[v+ e-oV! xwE0Y}Kd_&~"X)I ?bjȢa~ELVS< #'Vc4ur lk{UbD#95 EFjT=K5@__UJ-A]%ջӎ1Ơ3}DCuiY`X_Fq%~ !xCHh*-Β@mxX@<-Bfη(nE.$Z<+ł:VƮlz?{ed@ٚ1Po&iH'MK.".Xj)U4$ڷi`ӏɪ†ci( KmzP݉Vk@4jz1ȃ0CO;9Q,563)]N]BR`f /qKLmFfnX">A#]S41+_ܘ@|C,V9\HTɑ:_M<@^Ÿސxak[˖񗯳`8wUpu pž]oMt۱1uQ[?З+@(zWglYQ [bQIでL_3z_FFg)A:CP(>-$i~[|[m=g&dzGSFЛ$) endstream endobj 275 0 obj << /Type /ObjStm /N 100 /First 900 /Length 3869 /Filter /FlateDecode >> stream x[Ys7~ׯq_U3Kv|hi,sC I%v~~ g$J޷A`Fh4 RJGY[UttUP N$UD|w@fBIV)ѷ$dP D+wtJ2c56@Hrm$yC[`,*@DeYU 3&c$4E3STP4'(>tAȈJ'rwa h\4;FO4~I5I̒S ,M4ZhXmĜuCaraL7Ab ۄ*M4T1U#8öI̠K:#abRݍR¾FԼ$Kn pP2zJ*(RJCx$}m<8 @oɼ4"N9M`S)ئ҆ Ujj4³y!v!hD+.xP p< i‘( bC±PLty"(O2h*ƣq^W=T駝ΗO?U !#:0FnF KC2څ,٨|v|X/xQ%o˪{FC}\Yʎx]/fz=O&ٷ#sɍ+Z5`QՈH!BX$|Hif=(Āk5Xi[CC@)5;?G4d~69}G'%Ox*>pt e#o1FJ3rɀl<Ѭxe6[BZ=R$d:Fcx=:FHg|#܍tPʆtУdouE3?܂rnK iWskH\q)y(Dc}OZ2A&mdRI#7ef-eH۬>jnQbK}~.wE_u}Ow5=SҚl;D_clfe1%({Уc#۔nf$Pus=v *ј)%Qd=ы| -G]C${eF<֝HUKe-R2n_gzWMlG"sASe~BiNY-OZ(wXv`k:j_x.én;:]땢ZfVѩwO{6+O)LRP$ :Q>س+h霽q|+^2@h)-)'cEF!H&ӘGTق3fXI{Z a[27cCuD۝ [l|XQKI*I@|D$r4ggJ@ZZXn 93c qP25~WW9wTI^فLGj*ɫ49m~eES-yf:n1F=/Hgjg/!33Yz癆WLe~2g!WܩNZj7t yt届,hCO}j9ݦTo=Sh)yeI>(:k5 2B4Sl_NmE m}f6ӦQrw zO-h H#5oؐ2 <֔K7Qz+}p)V-bͱuHOW=:r-Uk}s՗:BMp(⤊^9pL5vS;2S@9AT~FRU›^L+*mۡphk6eؙkʰuNlhSv׌?΢LDF5D[]G(1$#r*-%Rͥ+[9j}6(#ڗ(L'*<<2B^ʼ[B) )S$P^q8'<>)y|ϴJ1#ԙ;Ez.="[$'8JнHNx-xKd9zNmZn[hAҺHI^IZO̲ː.qL{'mt '~PM4Z`WH)<#M'YBed{BI!^>ɜ=[XGS|&-ͧR4؛yQC/4ԋb9/gya;1.*)}ͮ3ծ_ ~X@y0xRON 1Էr<NJe}~ pxN/L!ľ8CH<O/x.^x-őx#~X|D2ߟ.T|__|D.Ly-fbB\лieksىCB,?1|1&Xy]_3q)o[]gX=@CctM?e}`px4B}7+nT1[˾nv~}t{t_ ~e]B"+FOxY%eUۨś7 ۵PhЧ헥 c61YIY ed~6CC_s B޾{xmc 6fG^t/o9¼x,~%GRϱ~<;;I=8M9 ETߎ3^7YicN4vj|1\ qY/s4f6<[:iK{~燄ƴ@z]_LgIᵀZ m}VhP"H4lsWh$``,glk[`Kx$7˳|19Kv+_[n'~>ܸlPE?_ uI+wI,HwR rZN;(ciZ:Jt;9T:oQ.migo?,4EJfx IFvXZ`RL@d'\0{y"Yת]{*YiN(,`~բE3ռe[ ֽUC\JVs3]SuҬ]VmWЊ׈=qW;M~}dlэ}pyVS(EѱPQg];Z и W([[yd"u68kt1j68l|p޾k.}U ^vxbw5yUG@9i}am'7]hmaE{u/, endstream endobj 380 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.13)/Keywords() /CreationDate (D:20140528164349+02'00') /ModDate (D:20140528164349+02'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) kpathsea version 6.1.0) >> endobj 358 0 obj << /Type /ObjStm /N 32 /First 259 /Length 1077 /Filter /FlateDecode >> stream xڕWMo61[ 1/A AѢmZTMTc{E;Od68dZZRWl1VLܱce$ȓeGQQ.Fwag%HPvBUA&ѤVd*r7NQ@I/; ۱FwArx#H5HYmE`.$DE?Y#emvDS׻_]3~ݼULw?/4>|Û79 4 YsX핚&V>>^l!{xw~T⥖ޮebV%t3M)42Mi0)ib̛:_4Z.P yh!o kқ,-)ѾE15l^\ɓbr_M9Dv&p/ϟ^284y>п OC?%<#>qakm#e|tq/p 9%5\V@! bF"`1R͕Z.Q`+/M# !/*w9wB㸡+쟣ں B{ ]I.9) 5砶*M̧.*MGL".x>}5[hpeq+akgkfs5 {J&ЅzQLBM}E8F8&3ϨklMGi1 ] /Length 933 /Filter /FlateDecode >> stream x%OVWϺE <_Xͧ >)}P1q\4tHjMGmR'M:i&c:뤳o9eu=}7RʒF-.bf H7:-hьh 9-`+Z3gM`.4lGۍƪm/[VhQ؉NM+ ]`74mNЅ6NtAEzΣ${H~yHhhQ|Hz& > =r ix8w$i/xt ep *OkV {8<Ep \WUp ,` WzޠwVRrpWKI\R]_J:S`Z߭̀NOs26ݴr~Q+߳<S|I|vkf ]G]П0kf/U=;;i4ϣGA~Rc`J{`bbRw9#ŬtGZx ÷Us/1v ltࡸ&}k^ 8,PHO>.0\`b7>5ˋ~wʫhE&=qZ9-N;6Zi\wn;9MB+ h!jA-:AoHf~~@g-p[:܌põڍzes8:^Qeu4׎Uф*s:Tecє*8VɲU^ :*rt,J(vI,)vTԹP+ZiIK[鿕O%/A/ endstream endobj startxref 283849 %%EOF espresso-5.1/Doc/INPUT_LD1.xml0000777000175000017500000000000012341373334020345 2../atomic/Doc/INPUT_LD1.xmlustar mbambaespresso-5.1/Doc/developer_man.toc0000644000175000017500000001014612341373044015341 0ustar mbamba\contentsline {section}{\numberline {1}Introduction}{3}{section.1} \contentsline {subsection}{\numberline {1.1}Who should read (and who should {\em write}) this guide}{3}{subsection.1.1} \contentsline {subsection}{\numberline {1.2}Who may read this guide but will not necessarily profit from it}{3}{subsection.1.2} \contentsline {subsection}{\numberline {1.3}How to contribute to {\sc Quantum ESPRESSO}\ as a user}{3}{subsection.1.3} \contentsline {section}{\numberline {2}{\sc Quantum ESPRESSO}\ as a distribution}{4}{section.2} \contentsline {section}{\numberline {3}How to become a developer}{5}{section.3} \contentsline {subsection}{\numberline {3.1}About \texttt {qe-forge.org}}{5}{subsection.3.1} \contentsline {subsection}{\numberline {3.2}{\sc Quantum ESPRESSO}\ on \texttt {qe-forge.org}}{5}{subsection.3.2} \contentsline {subsection}{\numberline {3.3}Contributing new developments}{6}{subsection.3.3} \contentsline {subsection}{\numberline {3.4}Hints, Caveats, Do's and Dont's for developers}{7}{subsection.3.4} \contentsline {subsection}{\numberline {3.5}Guidelines for reporting bugs}{8}{subsection.3.5} \contentsline {section}{\numberline {4}Stable releases and development cycle}{8}{section.4} \contentsline {paragraph}{Preparing a release}{9}{section*.2} \contentsline {paragraph}{Updating web site}{9}{section*.3} \contentsline {section}{\numberline {5}Structure of the distribution}{9}{section.5} \contentsline {subsection}{\numberline {5.1}Installation Mechanism}{10}{subsection.5.1} \contentsline {paragraph}{make.sys}{10}{section*.4} \contentsline {paragraph}{Makefile}{11}{section*.5} \contentsline {paragraph}{PW/Makefile}{11}{section*.6} \contentsline {paragraph}{PW/src/Makefile}{12}{section*.7} \contentsline {subsubsection}{\numberline {5.1.1}Preprocessing}{13}{subsubsection.5.1.1} \contentsline {subsubsection}{\numberline {5.1.2}How to edit the \texttt {configure}\ script}{14}{subsubsection.5.1.2} \contentsline {subsubsection}{\numberline {5.1.3}How to add support for a new architecture}{15}{subsubsection.5.1.3} \contentsline {subsection}{\numberline {5.2}Libraries}{19}{subsection.5.2} \contentsline {section}{\numberline {6}Algorithms}{20}{section.6} \contentsline {subsection}{\numberline {6.1}Gamma tricks}{20}{subsection.6.1} \contentsline {subsection}{\numberline {6.2}Restart}{20}{subsection.6.2} \contentsline {section}{\numberline {7}Format of arrays containing charge density, potential, etc.}{21}{section.7} \contentsline {section}{\numberline {8}Parallelization}{22}{section.8} \contentsline {subsubsection}{\numberline {8.0.1}Usage of \#ifdef \_\_MPI}{22}{subsubsection.8.0.1} \contentsline {subsection}{\numberline {8.1}Tricks and pitfalls}{22}{subsection.8.1} \contentsline {subsection}{\numberline {8.2}Data distribution}{23}{subsection.8.2} \contentsline {section}{\numberline {9}File Formats}{23}{section.9} \contentsline {subsection}{\numberline {9.1}Data file(s)}{23}{subsection.9.1} \contentsline {subsubsection}{\numberline {9.1.1}Rationale}{23}{subsubsection.9.1.1} \contentsline {subsubsection}{\numberline {9.1.2}General structure}{24}{subsubsection.9.1.2} \contentsline {subsubsection}{\numberline {9.1.3}Structure of file "data-file.xml"}{25}{subsubsection.9.1.3} \contentsline {subsubsection}{\numberline {9.1.4}Sample}{26}{subsubsection.9.1.4} \contentsline {subsection}{\numberline {9.2}Restart files}{31}{subsection.9.2} \contentsline {section}{\numberline {10}Modifying/adding/extending {\sc Quantum ESPRESSO}}{31}{section.10} \contentsline {subsection}{\numberline {10.1}Programming style (or lack of it)}{31}{subsection.10.1} \contentsline {subsection}{\numberline {10.2}Adding or modifying input variables}{32}{subsection.10.2} \contentsline {section}{\numberline {11}Using SVN}{33}{section.11} \contentsline {subsection}{\numberline {11.1}SVN operations}{34}{subsection.11.1} \contentsline {subsection}{\numberline {11.2}Removing conflicts}{34}{subsection.11.2} \contentsline {subsection}{\numberline {11.3}Merging branch and trunk}{35}{subsection.11.3} \contentsline {subsection}{\numberline {11.4}Including a repository into the trunk}{35}{subsection.11.4} \contentsline {section}{\numberline {12}Bibliography}{36}{section.12} espresso-5.1/Doc/Makefile0000644000175000017500000000362312341373034013453 0ustar mbambaLATEX = pdflatex LATEX2HTML = latex2html PDFS = constraints_HOWTO.pdf developer_man.pdf user_guide.pdf plumed_quick_ref.pdf brillouin_zones.pdf AUXS = $(PDFS:.pdf=.aux) LOGS = $(PDFS:.pdf=.log) OUTS = $(PDFS:.pdf=.out) TOCS = $(PDFS:.pdf=.toc) all: pdf html pdf: $(PDFS) html: user_guide developer_man $(PDFS): %.pdf: %.tex $(LATEX) $< $(LATEX) $< clean: - rm -f $(PDFS) $(AUXS) $(LOGS) $(OUTS) $(TOCS) *~ - rm -rf user_guide/ developer_man/ - rm -f INPUT_*.html INPUT_*.txt INPUT_*.xml qe-input-ref.html developer_man: developer_man.pdf rm -rf developer_man/ latex2html \ -t "Developer's Manual for Quantum-ESPRESSO" \ -html_version 3.2,math \ -toc_depth 3 -split 3 -toc_stars -show_section_numbers \ -local_icons -image_type png \ developer_man.tex cd developer_man; \ for file in *.html; do \ cp $$file /tmp/$$file; \ cat /tmp/$$file | sed 's/HREF="http/NAME="http/g' | sed 's/mathend000#//g' - > $$file; \ rm -f /tmp/$$file; \ done @echo "" @echo "***" @echo "*** Developer's Manual created in developers_manual/developers_manual.html" @echo "***" @echo "" user_guide: user_guide.pdf rm -rf user_guide/ latex2html \ -t "User's Guide for Quantum-ESPRESSO" \ -html_version 3.2,math \ -toc_depth 5 -split 5 -toc_stars -show_section_numbers \ -local_icons -image_type png \ user_guide.tex cd user_guide; \ for file in *.html; do \ cp $$file /tmp/$$file; \ cat /tmp/$$file | sed 's/HREF="http/NAME="http/g' | sed 's/mathend000#//g' - > $$file; \ rm -f /tmp/$$file; \ done @echo "" @echo "***" @echo "*** User's Guide created in user_guide/user_guide.html" @echo "***" @echo "" brillouin_zones: brillouin_zones.pdf espresso-5.1/Doc/INPUT_DOS.html0000777000175000017500000000000012341373334020032 2../PP/Doc/INPUT_DOS.htmlustar mbambaespresso-5.1/Doc/INPUT_bgw2pw.xml0000777000175000017500000000000012341373334021070 2../PP/Doc/INPUT_bgw2pw.xmlustar mbambaespresso-5.1/Doc/developer_man.pdf0000644000175000017500000115116512341373044015335 0ustar mbamba%PDF-1.5 % 200 0 obj << /Length 1317 /Filter /FlateDecode >> stream xXo6_@K.ÊM={`l&K$7H*-^"MMx?(a# 3e#D4 waD8lM%9% $!Q}ecQbk?]zCTF9RZ*#L"A g&Xd'ˌUE7+;[﫦y hZ02eac~ofQ ai?nK>a 0$A Dp/{HI@Ag N #"y!`Itb-s,f0,GG:1_yMcj6"[gv|MVoɫ*>,nζe]'Lxju/ {Нʢ?7ÛxF9w-)7A^Lt ]F&c `l:BRNCf?7 5P|?G'}ˆו\ǢCC(Yi#_{vvBcqt ˡyv6M52#ٱ̼+pd D vd%CgW@-_:,)KW_ز5!)bPswЃ0?2F9##@M#SH+$x%o<(}Y/cw8>kT{v/)P'SOQ`#T~ҼHU^Ӌr78gOCFiHD']wtu7mȌ!tY›F)&y369@N罽"rsH٥ulvE rl HFZh7m\E.\)bbCj1Ylje},l]vPT[=0ADGj-!u2C>H~b7@ dV->]$ASY*>'YDHݼ-AfKр[w5 %}ؿgNmjK?6]ɢm瞧Vp%D`de;D>]Q-/[LBʕ+ΣT&'`G^W˦-z wJhN̡4!Gxke:A ?7SQY3,OABEqmVɶmlS-9?p!L}[]As;3,fg&}-m\?&RO~=dn:+@JHͣӋߩ endstream endobj 172 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./quantum_espresso.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 211 0 R /BBox [0 0 531 181] /Resources << /ProcSet [ /PDF /ImageB /ImageC /ImageI ] /XObject << /Im1 212 0 R >>>> /Length 53 /Filter /FlateDecode >> stream x+TT(TH-JN-()MQ( *NU5Tp endstream endobj 212 0 obj << /Length 213 0 R /Type /XObject /Subtype /Image /Width 531 /Height 181 /ColorSpace 214 0 R /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream xxTU'Bh*MAAlkWյ VA)R(IH%Hm~wWoE'aZ&r~4 @u:O>OS/lIb RO^&M" w촛%.$f> quA&M4itc{* L5zշ]u )s<.Sg뾳 M4i3u-lPaC`3Ԑ&M4i2/(\yFDպ4`b[/|M4itË^T`6[Ah1؄fhSu߹MԣI1@)xM4i'cRF;Ahc3f n^V %h-Xsb[kr}5t0c=@hI񄎌M4is,J &0Cg V-%rS!7hEki}7Rw겮iRCܘÍ4󴩀5rZJŶ2h'\ԉҤI&MWKV#֗ hj"1Yƴ/ğ 5Dnu{jv[U^D[1i-[HsmePƪ*UF+iRqT'ckţ]JrdZJ3LɆlϡ#uQ%f @JD-ºTUeu@d-[I8~hw0J;7ys_e[B8G0md`( <4ʵrm\B8#G@qX(9GfEQbQ4(FwƇDzxV~'@n2VL>],kuT2c=35QO ڝLg*pkh!/M4в}eCQ/wFjl^!nlV J$*K;:hE rh9ZF ~(p! Br!w;ײ@BPɍ㸡EiQZ.)2BHn-ڪHg=34q1;ecˌBBϫthФI_Jx~6Ë2Dl* /$c "_pETJ S?yG=iKƋpYu2w+xQ47.` @@dpno@K[3XO43727fڂv~ߍ@4)819q,'jI]iȣMYK .SQVv03M4D Аu6UN3h]ԟ|G24rPAXLkXC#WqT_LR ',XQ-{Yn7Y[&ܨ2)ή6[*ժktGU*j=3;AvB.wg"Y> pqgKXeTBmRUEY:Ȑ$ ]%Wd@4iҤ/%F UIxh_:IZ/(xMWS3e{_ v&ƽV%UP}*1aH ay !cK]ˍ9}641gnr:?jn;$u5:$} mq·()?ɀ\h) L AhL4ŏpvg ~T8 綳,k'SPkMw(NMmvaWB~dh+8CV `ch%Ǡ4.%F岩r8+՜y4i gD0ߋ]~TBۤ']+Q(!!OQ%m͘.IY +u%rJfف̃EGhiH '9mU\:-@9}lsNͥPW5P.W1]:.DÅC9pn )+ y;a3?՜4s w ع ۋxnG7)=Abx8Ju4sY,ic1a\bKwa8&Hf\N\*&,N/%gV`ZHY[v3 E˥'9YM*f&wɨbZf5NtM4r c w/dlU=9ZCp{!qxvd̽,mjȹ<{$&`KC9(? e$FxI{XP>;($.T:dz=)؏D!-=8Ǐk >K:6K>D!}-ZIij1/41U6ԛ+%;G+8],'p,iNMLX"qj 1pŷPJ4T$5c?.mQyurk-k[kCs>4! 1A]*LO0Y7b$ib9{Z Z|]:j21(ZF;&Tex4i.沴q-f?#H;Uv1fߏT>=ߔ^ݻduVH-煆,2^: E1!/%_83o#'.SVϘwּp,a*KXpU@kN*b-LJI n#eB+юZgg@WrlWi.0C6jR*!Rnf7CZÔI\BBJ\IN *eDhCۮI?Y\"+!it+)=vhD %DH‘7OMgױ?`¾)&x>}3w1 q)$,FWpj..u,{ b4 +17MtZrk̽fjd=܈ 疨TL3.+;"9ɢp)@IǠSy;!g3ⰠIK 9"H^߳͘ V* }jҠ!sN7ZoC&M] яhd? OBS8O!g?顷ĕ`TLmL_=lͨlWv>xBsb+,˒$iV9*bkza=t?C2HOO!泄ZNdn!982iR~4A%vP!U5u=n9]Q)CD wgsةE4N&gм(5"˘\&M7T.q+k6@jBrclݰz,|hX|,OW '@ rtfDh55BGkT P| GAN0Fֈ)K!-}+%$YNCPkhCTA{ E$'uXX[%i*H} I"q(܏XV:Gl8>N|,HeosȅZ|Ys!t\A%!TzQWV&MC!;ˏ:U Z~ i!yMX,ϩN c7_. a'GhNRئ"h&0upd"Q*KzG%C*;WcYoeTFvDŽxnrv%Z_Y;MfVQ ;ЗI¡T/I6iҤIӟ iǦ*8Hp)Z,")0*OTGüFD*Z,c3Vab_U2 b87k60?__'afj xRΚL*VoI?-8Ȫqfp웦C"qxk5_4(EG OԵpj1 }'>Kg8b.ݫLLl'חLrIIdzn~kQ$h5U|է+lwff#cC<,H wayYnl,.S Rws M4CUWzeHӲ>[HsWo48)́bfE[%19@N,?.=bkwJ&M<b`r ^Wb|"\zS9Cr;,ur^()<+h}6m.Z|Q0J(7vUܽk";H}F^.5OU8Ø;CB'p4g'GaVcChm&MX4֌-ppM`"IiZ.C8#; }A$G? >$_XmJK'em[+r cfdZ@!~P+U@hW"W%xդx()[pǩy4 z8>\^Hs[.#YyXDj&M4aNA/5iRi ) LvCvCgC&1JamŘѐ;^)*X*EWqݪ2PY [ `?)ԪJS!@vK gpJ134KLN]{vӢäXD:pؗ6n]&MO}eQ.( AOm`j"R ހ)X9S_a hv4:wo$^ \v~ > Z/KO$C9vO'0oNgasnE+oca4`p5<Jc^+N1~,p=89 QȅѤ 4dF z܉  jl9@` 8/6Jb4vydnY '\%GhqZsz9;D#dnTݐE&MZJO0,JR5pSX4Am

    f f ?>N"KFcjD!)d ̀ a)i%;2DC_/^!%`g_[ :qr0$FʿeFΎRRae/¾;7PAO@]:_+y!1P&M5rc:e(=lO]"|!6L~V:^/`zlr$ o FCN#aS y8&K~"{ң o NB&vTsMӪDh8meX!8ܕJ}*5—ou2~ -Ԑ-Uő&cz51t krrw͊@U 4WuU-|M4xKDs[+> {!w'0M[c,׷,qIZ:1 #G? ngo W~P҂;ף/#ựU6x OeGfB2\8}CR&^`2]"pHᘯlZv^X{S ÉOY7m҃PKVdʆ_dZ\&MfC"&Xe"?XahlUء=-BR)ļ ރCo\};捦_EwA${N_!rh$U mD7YWnhUI(85[,d2pp=gΎ`83L:(f+M4yJ<`j Mre )>]3ةos696~]x"v04x4,Pj dcWL sva%k#Ln ҥX!?L>b;f`u,?|0VjФIJ lO\)#f1y-Æ{a=X?4~+p(UUGɳGwÎDž@"ڎorik pZ7 E͒ZNJY q)?Kw v _b w$Ck,]u 4phҤw>1zI?ɹ0zBAc"c~KW%h|=ۅɆas!ggLmdtˮd>E](|*Y.؏ _Á7i$q}ȎI8,KBMGY$FB+C&M236L|8I^ h{ ~ЭcMwȫƱ%w⢍c1; 8G10,z.ycp|rvBQʁ FPWlV? Wä)L|l g2]XopC4sdb>O/2ʓC$ 84iOg?K0n& C'D> uNhw> ># =}43Tz}~g·a?kȁ*J_ݔTԤI#)FC>%+1$? KbN獀φçwC)ƍ5y@2m{u :^LgP#h81IZ eG9Zڥ/D0"\5?ĥpxyNt/N!fu Wb J;:5=פIHiV% $~6?[&'‚1Šn? op:H^O/ЗWAlz{8|8> oM!~KTV..;jp&5 ~VC #H mXtdqZٳ&M~ǡH0Dؾ@olDNz6`b?B>nbOOI7ӷs?o/ Ӹ?2Bw7~\R-E MOl}۠@ganxJ?M: $~#eNBkyJYM46p# ;c 8ˑhzk:^H & Gzzz>p? fOޏ=& DZ-p1ZzE38@ˁGJЀÐ/⑰2~;h2@a$4d6nOj5iڥMPm{#!ڭ8#nD@:&}a/vG|.6Η;ߛ=C& ?OOk](O:ĕ^_Jٿ?FY2rJ=r*n~3 wqѷ:{T e?qhФIop0BJx?C φ~}aܧ1^0ҝΆrh07os0Fa}"ecEǡ( T 8ӏ_ʲ6ZK鶗R]"Bs$[iL K_ oӵ'`5eEQ<=Z&M~8LK!lÃ򲻅9H ɤ!?6яxa 't|ɁuH77~0 )npQo,  y 4\u# d&7=G~諵ʎ,)+8.xH5X=H^~0NfG>ya.ʯ@&M~#8 (5%w×##A0fx'}6_ {B/wso'W[pA7Hoqe~t<;2]>TrIsʔ} Qe2jÝ vدDdfZb>~?$r]5ԇpF!MF ::Mu}8L.fMj@OM{(M9⅃rr9vc<6xg̼ V';eˎP}1@' 5i[ȡxŃc`D/6SCݡ;qc~Nf1lh̎%v`I,EwKۆbȹKXg^`"Oj(Mn>k.@WF}IۍJH9Ü@]ſ+5 I%̘AwryM==e{Py$ ~uA3|+lT^ Z;^ ei,gK3w-!l2DKJrs.vZ&M=āy 0s }2}OǛ#8p^PGkjkAttNGtʂ(wmtN诃i`S05ٸƓ^E @/~R*0s eP6)2aN:Ϟ\` [okWg>{vl]"m#]"{Dyy9{pcN$?aܖH@zdYTvwvV]P_ʯ¾?/qsRu6tPiҤ鷝J ,Kǿe0{/#tٓf V` XW nL1XcB' %HUIJj7z`J,JT&6Oy֋s;l7*9 }e9ciRKDqODyeHac{9faafbjfލu׮W__U}v7E9SB]}f㻳ϰf Ǐ rT9lz>BOޭ0NaN#Ӵ5rI aITiҤ7C=jd~8:q=a'E&:1󂳀Gnmm VVM+:A7"ߓw|Lj0F_4F(77fϜ;hkG]A#'SX';X1GBi'&j>[%yd8|v3ԭG{^'`ǽ~a>va~a!n{89qr vrฮN}NQn w;LmRk2AĜh("H\ 3G~~2g{>kФIo UJJbQp {cFہ8X0KfR\e\i5XRXb/O k'ѓL1cnv 1B7Ν:.!6Ǭ=­=ږ] X1U0Fdu0{nl>4ᱵV^ /,]#-ݣ|;;zrp߫s rgG~'gthmo^++7㈅P=ZGX:xrqyuCdĤEGT ,`=}͑lp?~Q&M~[k,Jq/ ew-܃,TjWQC>KKNgA//2kyd5dmAQVT&*8Z#zܲko^@O-A6.[ F#Uwpd4K {vއt^G[9E8pqᆀXgsc?vMcPy @ڀc?"nc2BMmG|bK/{N[?]n<8Y8FyDm3`(0nV`__Wa靰IzCNGFt5it# Eb%LrԐ =%pI hwu6Bl}]|=v<*A0*j6`4mtǜ}#\Ý"ݼw۸v8奆8XZEJZ*C[1b6&9DZisiߊ9(#s}^>ېwQ ՘Jot< x?]0 6 ^V h4iALX&$㾆o燳QnleMuVܕPbPȉaiam]]FŦB+s 1l '߽~ZYF8 rwtK|%hkc)8fI6.йg[k3wzw“6AukjSQ* Ezp['_XUn^N֎\\{࿊Bu]o x]@x&d8,+W XMVUI"DD06톽{vƦ *;uCWXX|e`"` spJ6aZ< tfuSNk`G} P* v8ncO0k(k/w`?1ǡNҭDo_\Өm//knimj,mHK9z('r#g&;6lyF3* bx í:؟= A+4y))?/M4iw jxb, cY?Wpg[fc_Iaiv554%X \tRg> UG@nbW zg>Xgu6 [Ֆcӷ 䇟sd53)smqUfhcx.v%AfKi{{G]]C{m]c}Cus륶KmuuS^{.{]í=E>|k l #þ@(f.n}. Czrco}.9l3inL 17\I~zup ttr 1`P] bJ]<_L4  tHT׬l7fPd z|BsCTIpb*׾, ׆'|Ʉ8v3eG=Zcïj8&KbCuֲmT&w^< R-?DHzT]Br:5Y + 2_⾆(@CG&\}\,Cm}E=1:d()-UI@_E(g$CccsMM7qT4U5ڀq.$ B͘F7 2O!KOQ.n6nuAzv,dx?9PL7Lddۡ!CIdeWpxogl7Ó q-s,8Dk Y)"WfC8QG^G1xtC=SYqr,‟ͻ?pPsģwK>[>T1B#&Bi ~-  kp7뛚ZD +3B8:ڕߣ(7ߞM-ogs.;g2@/nY *4iRD}c 飽>./ r$nvі9؂ j.wL<`Ð>G215 Q:odzph 4i[B4&5`uz>l '‡ׇD6xB?=ݰ1=htZΪ>(\}N%|yҍU~ QW& H35vg7 Ќuc@ܨ3\uIDDE+ehhh_،8yWff@/NV&bQIXI2/r3-Oߌ7}468@~/{&^H76g2n}rkkC[RkK̞7ל~^ܓ!ahF{ZSOu;<Ӹǟ|ӏ#)"kSG7mD9s5_Ojkkiknoxum]]]GG`4O|7/=T'վ=}ax|ÔNqF;cg_OIh5iteJ UA)a)L#~0&;'-`#\a3 teGqXЃome7k%ƏWBE^M;Ŋ-A[ݷכ6غm١s<'̱O.kO9ݶ׾Vg(+]7 qǺ cW3MMM*8Fkk {ȯecUo?j}wo@K '\{g7Lfoǰ YlVv2U)A[EI+O-e@O'ah5> o 37C=` {Z^Li3XMֲF88=CTFJu-H,"5<7ukbu:N=wxq8mss@-)г&׾t$w Uthii &_RC}ƓCDVR,u {ν::ٖx3tydz8W4+c4phҤW-bv8.OGq0g |< |L< }~pooƔ* |1F95985;+hs{xbhtɭf/v}oӃpQ_,UJ5I&MR&0N}QA賰>j"~,w;t8Ӈi}褾d:ԃY!8dKؾ,u;L} Xڸzx{xnw`mc=n'pgv=zD8r{_{8L`UݍE*8FP} K Mkl9yx9y-30^,-/[͑<焝784it t)RBld.`4|9f,=H~{bx~0ElHΖC`4tXȗ㡾@dP:)n?.s>E>WHG!Na=\|~~{Gm-Ĺ c0VWʍэ[qqTg'D"uDcB4";9~˻Os~[[ar;&vb%GC&M1ԦA6zj"^GaݰN?Cl9 oׇӻd:GjkǭO[ #dbD?CAMuoNvvyȹgvK`ۭ܂}ٺmsw斠uÈ`2Ꮓd2 jjL&J۹AY&,9R\k)(k^;H{ >]O:G@;a`H8*M4]- *Д!,GC$y8;&a:v=> >&${V`BtmhAlaCT6xqQFrS-6JyZ pid~;=9';8tu {=STx~>n'}:~CGsS;!_JY#¯M4Ds۫G::gGiUتH8 iҤIenH:$\ = ނi4x1^~<]=V^yᮎoGѦywȓ(C-L֢9dK[Nbk>4]f7^ ÊRʃ[;"k?]yzDx:xmtqﳧ@tW:XˢB|KijnkoVR7 tܫ#z=G k,U({߀*G?TNw.]ّxZzPه 8IK#d߉&MejzVN8|ނ iq㤧kDdtJam p?hbQY,%jGWG`+wݶ^l|J|}e}Z[(746WUs474֫3F;A;[#UUUF2P`9oS{W0+‘;aj^"UjҤJyH|J@NH]V3!z: ž=`c~q{̟燐tT$YZrp0+Jk ؔPqWߖ3)ܱ6{ȁwBE/M_PH`FeU Zeau5G#G:{GڨY_~a순lgwAk7C~t1`4phҤ'_Qg vAR8 B?ad~$ö`Ac7BqpN>Knܾ󢘴ӱowafbs1h݀&_/0U!S 鹗qǡBr]]+N?I4D;=`_?]^d2٨$L~1IKkҤ闱*Afhʣe>iY"9;>LATw9i"5\6`fEX9nPu7DQlkhim簨toV5D] ^P4yke1|=Q;| debM4phҤ骃*@_Aj2xKwu$y MKcgץCBTULVJӟ%$kdR14'1c'%Ɲ>,C\qyqݧsi\Rq9t=V8`-010UaUܱef):۔ڀkXyqbc_ 8JM42V̴SxZǠ !e$.S \8|88b>>Iaӽ _enLpk\Mes;]_79`lbͯ@˓GsssSSSCw"jkjjqeC5WB5vu@f\ a{CΞܷ;98{ZW|L}/`4`2]&Mz2v+C픺\tVѦ'؅H έ!iYpx'! CY#kɿ:{#'1cU8'\$L7Vzwf+y/Vu~*5T/_C'9'nhl掆}*(8y?v40No+0kA[r%Tx84i+~+I֚6$ZK C~dC.H&m!~pXs`8,1?:ߋ3q؁]q2Ԕn9&{.'7{Q]kmW/ 65 %<  tL51Ih)@BHBܛlY{\d[ͽWV_mo{Wb#/3z5sӾ',&WcO*Sֆ’$$ժ4ѓubhq R d X{vER0o;.o(_Ǯ\**);"v??yh[h ,&ݢ }++NjlxѤsU|Úm6d<|e|WTؔ#=\`П(\ pֈ<%YVhOJ^D+27HPMvKnFz+*Ԣ$뼌%9e\lCؖI?d?Z|f^7s*W"iv)󒑽$AF̃LuDvSN VBil^RE;Q e=Z-k1Ǩ Y_3yui"ixL>q}RNS0No_S8#IH;.jzQ{ȳf= 6t o𻲡+ʵ-?58;9| 8WJȉe|mT:*,^[F.1'j[Bu(8<˃*/>D]74X~1AM$ZI;ts"t}RIU U&ڟifx^ *jH1^U ^;׬"j0uUNêMk'w4  sdC\Yq"Gy#(q#J((8섯v493+: s/%ns U8eo-?ʘ@Rǝˑ?]tNАI٩ЇT&Dóu괌,[o-^ZV^yl/ZjufV2NwI]GNj%Y_2Qžqr`ւk+ïTMY6i:{ށ%T=}ӧ\KΉD=)EY>.WYN*V&_&${Yb ՗/+SOUi'$wZBI6MVe}*xY^,Udʘ' =?""9{%1ѴWz;ޭpf{?/LqQsxet#7ة*MxmN.3T[ĕh"~t7dt‰DB`,f}x,Q+:ٌ_|j6;."طQyH<<iTz;:;є@|ƼOj1b*s;v#TU21L_4Opq[GU5h_adfQ8g?~Ű,rfeE%)i3c j vTVV96 ;:p:'޵6 !q$0W0&93vRa|mL)q!.Sgu VOEC¡xO8EƄ4uRGsQEJ(ǯhDlP蓺>@yQ9.p$fZuuA"ԆqQn$DZh''' hq ,ឹX]VRҸ?WysQȴ'^ %m Q'Sب]2vފh%:)7.}/Qrf w}=h Ӥ&6b+I]C|<XP6<𸦰gܧS#j 1GRp#dw@##kfDB&zM8"DV&>/pU%҃6X8.cX,%!v$_`셀íU ZcnQG|H.;)p gZž7>.Y0Yg֊j.vuxJoo9;aW/YwߡfT~n.黁W&uU8贴 )jj-da;:Y<%eeZIi%>fQˀEv%AϏL-mea _@^4=98$͋FH,%*C3s%.3d}sW :ආZEҴ4%/ɿ[- 4X6C6VGN _B*kpb"!ye,-<^Qe⒆2U]z"АЖ=49Q%4RݡT0gW;T7Fq9Hd&ȢC.*Ð0%JL 7=P#p0ǰɌ؁o }zy$6~WF3 \}lP_aȏB4LbEcK{|8+G`sb=LoW4 y{nxѤ:!{;\6!;2_؅* ~ɊUKSR,vx<]T.㕗lۚGZ6 wM|" XI$ fM_G;BC*P]$J&N0?0!%.*v!HfvyY. ?FP+)Tj.gWF_|~VgF8C8+ɃT}Uq{g͒OG^!($atR`f5j1'$qsCt=mAf8^zE"Ci͟zy8{EkQA-]ܺKK]iVտ87y>)8!4b͟Ky~! " (M+W]jՆ5aɟIʪ 4M}SυEe9ǵ=o8 J}Dpzhz82 9ڄФۈ 8 v۞Y .vJW|>ySv*f pN%g4mtZ\X)OL Ӵ)22B41=bE4agB MbJn<)+|@X s3M$C+?7ibJ[g<階>`"qy"KLt_Av9~-/BPh~SXyN pd<[[xDyY?EĆ#f+av44, -6r{N73R|X8+gBǜ t 84,das"o\/Z!Uq׮}eUht8ؒ7 .c7[,!T^WP>CT"b?8e5?SM)*DqWf<ApY9k;?Eɍʛ;>WY'unr6)t{VZWEgX{EJ2\W- 5c%ϩP"pD&^b|לy`m$Q y04t -E|bU/wFKB,fอi~Ĕ 麘*URG: 4]TUwo8LZ"phH*zM!RUe_E (p铜2SQSYVEqY&FDۋ2GVFeL֦9E,D8 yZ}aU "_A='n(+9b.qc(o.!pXm.' ~Sq1Lr!14/ҿδusok;yJrK&m6tNR )ƒ%;a.iH{IS兪ٗ^S-ʗG*D|}F# ڂDdn TI}Cn^hjTz$*Fu +j&W$"ֽ0I4F(MHN!]|}e|⪰i ǷN<4!^̹HSZE-GiBƐm>07Nd y:(4L/)W+ (&v@` p!X0CVHC|Ec\8HF})g yڄ\J 8?pTV!pdAZzC 8P-#,G}qI4pKYa88J44v̙!jCz_@R` =_H%uEkUFrњtҞYsUU*k֨-FhXD潌]UK _xjhpLϒ>YX8>6'~cC=pPp #dfHA #3I I=(}PN.RŴ`8ubA~&~=ˉpM'G0c|!࠷"G5%kM筿r"1_E 9=pZ I1aWa'n(꛲۝2pCǷf lO8_p󍱛2LBY ^P1eqiFBL9e6M #9)C3]eΖg,7WɞVI0 p|+C`ΚrT)^/V>ݏwr=h8pl|uB;?C*?j8v ʟ`0C6W6슯<ށaa+5Z&_⠹8iCqD la3̹q,\l¥{P!>p 0WjPD&4XZWߌ Bb.Z6"]NA+{ DilYQĔ]r#GqMv읻@7'B޽'\[LX/-F[_LۧtK)^pěBs 5Oumj#Ӣ I+ zY89-{$[m%{x NI1ɣ]#S(iy͛rYqčoȬg1KxS^&ުWJ`7_/"t\Z 3CsՆ!{AR䕨Ok::7I* d0 n){ryh2ըkL/rD }Yf+7o^1'!m@Җ,ljj(02uV7HE `Kng{߱cgEy 8P2}GSxF0JQ4yEJVZd |/(a-[l yE~,B`2؛E-]lWn<4--p5YθhLu /nl+W','x]0ZPsc\"(2&Y5R^:wi[mLt'k#t:\ϊeщuDIy, FO^ݲB .$g!E8IHjJcw}y(=/9mAqyׂ[-?5+,gůa}w:W޹NPn T|J0xRCD ^Գh|B&B*G E/Ljƀcp4,rRNCWip4 _BR|5pЄ)3K#bjh^\@,v\Tgd:}V,$zoާrYv\,Ď@6Z)-ZXW Ξ=EU#LTU3]qIŅ Q8/_p/y֭[reZZj _,X@ dIϴ QXlgrŌÜ4$fԷ+g\C|@-Ja -B6k2?d8}}d$M`]9TU@h9چ?xV5ewroVM2&UZ|wW ]R!N B2_XO*jqrbQ9IÉiH1yNUB 0S)%v/3xF_MX6ti~~=\|pKtq]a"YA SIq-cn=i!:%D}V_>FCM)LY Tã* ci$5__|~8 U0!}c/Rai8ɤ43?)W$H;yue]ʰ∸s/(,EP_ +hN:s9'ްq j?+SRRp~dك2o޼Դ2Tv"pmmmhn;8JJoEpR֎MR+:3:ہ3sQhg@JAu xdedX8Bc70!,链ۨ]L -NGp* ߛWIT7_wߟ%_(\w_q% k6⪴u~px͆5×EIQ!0^Syo,8;VΊ-HYٚrclE&= =yyjCu%*IJn.rAxY~);QQ.+׊j9cdxȱ'7nڌP^Qwvw6~Pزm:C5Q6-iݾO;7w3ܶmMMMogaSNڵuGh sUUU&yI ;c̴aK6#[?p/>Xm>'+1BQy~7ד[1G۞zĪ|rn~@{%3*~SNdE}G Rp3rjij`0nP)ʊG K?q/=0^-yz;]_>hG!hcҕ!ʱ¼tmhy2EB@YJDĶ?r}OϾ_?l{+XXa{X 3n&EaM_{:1ڧh [- Sb˿c.uE h2k?h"- c AA?)#_⺑hkyBclZWڟA&lHY$HǷUPV#lz%: XU&0 d<-ߔ:t)2-8Q$ߞ(DJld^G8?7W'pI*"M5Cwݘ9/ߪC^rǺ^6 dOtVSV[|hN|_/>ehĀ~r/U|qĠ!\Z7|IՉo5Jc } LK&D{|>! 3P YcX #p9htb:4"&ӾI ,A&;VOfIfy(? 8DmVFjN nĽ4Q:xߞ3$٨"Zq E uϒ! EX*ZD&ŊmzIJ]m&. eE+uxûRH}@=J^0)1W>\M/CO?7NN#a)1[#wPu>4culTF],V%V͙'z憄Ze2ReR!|XvAcTO~gŊ5N  KuC?pu[r4Su2mDJ9 rhcC*?37dv q*aVƗn@ _>a\߅ᗡ -sl)ry&V[0Qd3P/urX[ FS9!1׉vQ SX/5B@A$lcgBdWQRXY"'YO{|%&HEZ{Bx+GOQC+[jQNwғpJ:Yʅwe׾@),j9a!gtڵ}AS%ʏL.VEk .-(~e:Aiw;ӓ;; .>0 g8ց z֣ug3J4F]eDBnOKD;!h dWfnl, ?;",%r~pJ&Μf#nM&7fBAԄ򫮄&30΢.-/n`a8\'@X0^<2n'1Ε`壴e̙[Cc3⌅qx5%[eH/p^ 8 t$96cF"pTz% 7_WWڂ[p AGAǫō`OW OM;F&=q= 1,u=Q-4F5UaƒsGnQ :\NV!>08KJaT؁XVF p =< ^496qn d7ʟ}`?#>1nܲnex|Exla5f {>YN`e<[_8$EجLۣ?AM9(񗙳7NqqCQʴs' ߸:QqX:9aڏZ1աI%S QպĔK-@XE/bbd:'>~`_gsf q=EMU'U849[DGƩ_F@#Y~+ad@`:I;McDh3HfҌL娩ZЬNJӗ%6]u{veW ccAC%fw2AcSLF(xeE$侭 e[P$d'ϿE~ZsIi2bt~ $8B`6?bxx-%e_9_Y"M4Dy-/Q984f.z^ ЏPgqlxs OR%(Aw#aŸx{?߽vgGIKٿ_ /]/Z%V)e8R/q̴^YͷLhp=iW-<|cbJXc`.p9%3ڇex đ QֿCV|dY4ME8<"1%19ؤL?ƧÞ͊0)C0(A M*v fAߡ(ǫ=nf([g }c56'.݇iB, foǖk*T%Qɹ2}B*վ(NY Lefw_ v|߿C"$'H&bhԱgTƚU]1>bJJOY\W tA ?(GtxOmvV6 uC|?]?k'/S0^(2'n.]c|-TZZүp|ШPH&U\IDjޖ^07vao.l JKg_wB@ʑRwb; rԶѢ9%;2vP<ѶrUjm\^dt.jY|2m̦l$=E3k>{@ف~0]$k){I`]W<~=gL&t;=X4B8yWs"&GŖG$VJN=}t?[^sag" p%(A&x4O>VC:tꞅ e?F(x6+^#l52JjIc5t$):we^4MBJ,)6_YhOSd']0نzFm#1`0F0O$$W⢊^ \ICNQv;=#kw`ijI[M(Dt 8,OzZ@M!aFM:.'t\' ⧠Uq;m\%(9 |fr υC3}'Xi ^}Ci],N턑 _dyԟYicSU?Uq8t )W~[?zY@龞#V,JV|]^}ŕ E i40?v1ȰN|Y~m㢛ˣS5<>":G \ K;_ɛl`?Fqxl:(hU=wɋf_+ngaߡ+E8C1Շ;HFs׬rUyҨ4ո*2@}y竿n]?l9}rp_k}v,@b}{zMgVw;R ) Ld.S o[jE{MP'x'+c JP-VdY`c9(}LY}ZXz3< o@GB8 &ƚAad놼ߚOn O(GkukU]|*2_xCW+;l - ]sX"l%n8!d ?mvTWos%c }aD즨%I1_.w,Ywu3o%zD}?FGKDE>j=mrsF1N|6IJåз l'efi"p.j^8!yﮈLȏXU$ڸ26zMdlAX\*H7ew~7պu$;H6IaDBU{8N9۾ƽ.)Y uqڨ]TVdLFxde%yژjUcCƋ(,ͽ)ASƗ֏e?W $.z nоD0K5rWYc(%4Fj_$ȒO7} 1%.97 X -:od"3tƌ,PU3#Ⲍ'\;os`և?|Ye;o5k S2Cuh\cul%ps+r2M&>(A JPc±N"w|zxX'M{ g@Ɲ[!s:>+lO{2rT*A% /-KqQ9ڿwopeMDdxmITAK@K,NDT! \c\!X-l“K&4%BMx~XXX)W8?:a+`;J3q/b7l>?P$vW r`QζJGareGJP/Lμ 7IK=7{I^(}[SrWJ$ƂJ,[@ }Gg'w-2LLM* -*6&tՆJ]Li$B_6hjt1_\S G󔎥$ê7P9Sλ[ȾCʽ _o΅"T8|Dr ))Y$G;QsJ#q6/OJ5%+ns{Sn%: st҈0Cuxd6TYkl!C_̍Q%W^47{SC8{*'׋JEuoz*+gC3*lt.г Gȯ%(߼({5vFe_c!_R nP"l])*N|GHV@쎱crrox Wѧx$+J=y(wo|GקLM7N3LO.TTM. / O('&eGN*pUU74cӕ ‘A2 a*> A}PɈhg‰V%(ߴ>VƁ$;hԕl KwCP h~ρ=҉l9m=h$f$DqSNsoD^ ր. z6sf츪8¿E =*}7e"*ʂP{ @H&I6 spwwC\16G~(!ս7!+w.C%pz+ R v JPr0 o[ OnCG* #Խ ŏ忄Wêc)(vr5ʪS3)V)hY2E`9)픏6c1lŒGJ3cew.epٲ|Rݡ(\%"\W|+\4/N<^NI%kV氞Z,SE/M޶^l|[;UyQhr80-@͖`FPZ$<e)o}Y)l%4N}^){J'v옯YGk@؏7 2O0H2>f6WEdvgicn -pAyߠq(!-alZ GVtLZ}D8q%(A}X".+C{3еvU6{ Ď_Ao`бDW$"Y{Hg#jiA!Ӓ}xb͇6d#ȇ%i&T!U=4Vsk (Sl=*72|*(A JP.:HoGPf8PHRm`?5zʟT:WK{qf S=;Hsse4! )xJ%{F$G??OkNU+iD}Y)p5!t{Po`>=%(?8l;w'#U5Dmy~T>'W> /Aй:g<= K%x|!ȒWFd[!Ux_U~4.maorP<^/~Iou JPX:KDͧM9GaO&t.m$6װO D=wI#{7i;H'[pf/O{"WѡQo:4!Cer[*wD9Y'C,)Kw9A JP.zL$Twq1LW'`Myʖw oAPoR|iW:,c3B2rTMSv{<òs@I=۔5v˭sa{J ͍o*( L г%TNyB*/7A JPƠ(#eзS9+ݙ鞚I'tIqxK+66v%wO%T2~nz睻;7y&H=wzo4gs!T{TrZ5BmaM(HF4η6T!wDeowfQv'5**b(Wf)l*>J'4wS϶G?6ΣW/@$GT%VqƦڤE444' YsR%&X\{yF?r'95;HJ{d!"W/խ&EJNIEX>~[Eu<@yPѠ\͚(Ģ[%)·AnM_GL f N)/5<2􌸆{&9]#u;z殑"N#b)~*5e.j- smEn6,X]xgzow+Q^ ϯUf^;*O*ZϢjS14:+yF{xZ̓QgV]xCA}$W̼V&*zhC M%9 RLihDcUU27ރZq|bOg6_tpXoѫ,<";)cr1f1W!7|~z V|*z%ܤ(Y Z͡hk{P՞㝿malu,-vAW@ Qv{?׫hbdPsߛ'fj\fq2kˮzϛ444>@lZXSkUz) &%&@8E&O/eUcVU*Vw\zW@ݾ$-V_[e36J g)x z+bNØ\ j9ƎY{Im೴d6ƲHS; 8twa;(+wA Q%_>#VH &?;CU2Y9Wôy2og1sChTUM$qH*r 6*?%KAUKFnNwDCCC=HiSQKvrJR*QjAuftI3d?B_ C=>wb@fZJsշj$,P;\Mumj3}+j9LuԄ0]&Xq&у,7g4-1;b?R1PK$`Lwc]jhh|JƥU\\6=11~7r'o?n*X%^̄MKR*|fVnDlhU5֬DV n샴 rQ .諠->_,UӴr>wv "hv}4}X\̴B(=˓/¤(MjVxpUp |nڢ`o ݥuSHO|A1rF%wE܏r)*=+,h$͵h.'9UV jMwNG/@5T~\FSdoD62-2_arM&ͅG&sb]Q޳iRm_(I+w9=R3>Y4Jd[bHg444>l@Z pEj<,"k{pd]F~Tھc`˹t~6 (3%jI_RTUi_͡0,QV 1*a TS{BlfhD=-+ aVO2T;jXOsdh@F\h181 mf2o.J^j2Ƈ N4a*Y Czd,1&=LW/aeZL} X&(܏qm+m*z!d!XW<Ȫ5e 6VUra}@&mcC̵<3YO$Z2!Yޑ)8K xbQ^)>caI7:CދJ1)xJ*?X(&U{*j]N ]vd$uQ6XT/Xl}wep9|O9I \@]C? .gל>m:OS!9 } r>sW&Xefh% ԰c?cH]FajUVﴽ][uW\*QK9e&)B.`\n:C~b;dvV^T ^ VFQ)!8X^Ȏ#?\yEPO=J C3YE&?ta+?O90qq:\h 9[3l<{h)<ve+[Y\h=/[;}Y rwIu foo *Z̘*EV%qelHZTqn>fg֎obf{()̉(m3p#(Uwf#?0{]F: ٤Kj"tu0]*ttJDdѯXYdq|BaGr_rQq|QK`zp/&8[j\h> stream x}OHQǿ%Be&RNW`oʶkξn%B.A1XI:b]"(73ڃ73{@](mzy(;>7PA+Xf$vlqd}䜛] UƬxiO:bM1Wg>q[ 2M'"()Y'ld4䗉2'&Sg^}8&w֚, \V:kݤ;iR;;\u?V\\C9u(JI]BSs_ QP5Fz׋G%t{3qWD0vz \}\$um+٬C;X9:Y^gB,\ACioci]g(L;z9AnI ꭰ4Iݠx#{zwAj}΅Q=8m (o{1cd5Ugҷtlaȱi"\.5汔^8tph0k!~D Thd6챖:>f&mxA4L&%kiĔ?Cqոm&/By#Ց%i'W:XlErr'=_ܗ)i7Ҭ,F|Nٮͯ6rm^ UHW5;?Ͱh endstream endobj 173 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./democritos.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 217 0 R /BBox [0 0 262 76] /Resources << /Font << /F0 218 0 R>> /XObject << /Im0 219 0 R >>/ProcSet [ /PDF /Text /ImageI ] >> /Length 39 >> stream q 262.047 0 0 76.2857 0 0 cm /Im0 Do Q endstream endobj 219 0 obj << /Type /XObject /Subtype /Image /Name /Im0 /Filter [/FlateDecode] /Width 313 /Height 89 /ColorSpace 220 0 R /BitsPerComponent 8 /Length 221 0 R >> stream x|pUd_~{즊ԲQ7""6 *]ȈXhVk֗e %3 Q R/$H`E%1 ѐa Iȅ=}dz>s?(QQQQQQQQQQQot4]Ӭ2ۧ޵:#=Lepf2~NsgsIiuIq0 Ll x2="Gtrу-xB7gY}=>u8 5S=nq'qzwds8n^'#dKXDz<ҶنxOM,Qpy7#<~iu}Gp3#/x^)ۍUy?{DނrbX{a#-wڈH)a (tbWn(85X2xě۳ȼ(^nB,Eg2MhC;*M^W}nxZL)#RƈU܉ichN2h"S)cy1taBy*lݺ&RsQ1q#RG$yU:?\h4!T7u[\׮PugP5*. +9qH D⺋!q0p$J8=ìÞGۯc`%{L ]p=b3Ĭ&oέ/ٱH2aBs݀8,dU o>B!•,Ǖje)4B(pr Qwa>Vq=f9n}5D:ifˎR+4I{jvH<*p.V#prDHbxw$(| ڭ6"|Ns6>N;H4 D$#Ct4m"nb8vsё88x}ߪD>/k~;96n8cJw`hmU8MP28ՙc'cTi?/?~DɈCBgb Ct;`pcû#DJE8/V2{֩35}"ز<$)jֈ0ɭGСqޓc莩v:Uynh 1s7Ӕ*xLsݓ+RpkpEJx=%[)R<+7dW5IUC= 0Hgr k!Y)4ؘ:5#R."**l54LFR6` ov7@b$#ݞFb=BB/ 41MDDsqRe!5:]AKm6&sDw=~By0تTUdݸu"htce8#Gdnؐo#]9]a(vjOCQa8Lls'f_AdiT+$zYHHlUs9^5ODpwYؚb䛅AhN)n!SjaLLh%l̉" qo nQT4![h9~UqEUmWCc E G14E>>47 S+k1Z =̎;qYi' {' 'Y=M(t4SI6b#Isq%LO:q9L4rb ; I3%Se8ą=jNJE3Ýt wsƤaIŃD4M>1oQٗ-LF Y59Ks8|s}'Qq?P蓖8v"[`~/?nSݿ#jg'ㄉ5uǼs@w͛QDzıhYjg^AY4Re!B{Xy@E\fvv6;kM{QʖғGY#1($50ӉȮ,&Gs^pZ;'봄gTأ7y[AD>{9kg`)eg"B>^=4}SYU@9]x8u{t %ٕrnAlOS5o ݏdFGi²捘0Yc __8=7;wCQQ"pfIO{FMg؎]6Č{MMU\#egO/9KGy\='b*P<ٱĹNM>BB`Tɍ s$Ɓǘ$9-NjɯNՐJl#B EDH%VVI>]Rt nIҵ)G""{%6??j\\֥БRÏB5UV C6lo<أ__((x1ҡpiRI9a:B*oN}t˄wM%)-.//OP{jċWJk ?8P&;ebJl9ZÁo  ߽[ II꥽40߲Yag8 ZjRj4j@dHV'ɥh_:|- ?($Kp\N[qdA1,IPޠSZid F@OɕTwEVqdf5a3?ļ/ t߇ őZVc]=ز%˞M5~&vJnhh8NO͛RYPWT^u4ta3Yy_S0l_Wr%Ny༂ qJ bjڌ=YY' Lݑ7C/YQVHtKɂGOom%_Pd~ȼEl{a„ 7b,(~Ao^aQ_em]m6*.fGlȓ#b,Vkʎx[Rы=ғ_)S(Ze|?U@V*,23Z(S1EȊZ|*"_H4V*ȫRqk/U .S+F|>OڡU+ۢr9W{˅pd8 gX_G^w˿zeX+&n(n1CUvT.% U-I{Z`Ah&#?NCǤ]얛\~*C)WP\:"o|*t<,!wuUGjWSRo T{ZhSop0r1Ǵ;uÅ^=ς g1;Vz e5Tbc |BX\!%ʐn>~B IP!!zH{VJI] &WM@zE-ň81@))X3,Ѥm0J`Z2CR$xPٸ6|\Ilu*9>Pyۘ)w-Zv풢M=}z+dS=]+6m9WPv@܀RR޽|$}a+lWYDI:~- ߔx@~L+COїR9:IDI8[0`"N[5␎jyoކ* 9ȈSRU'{k‹Z:&4pL 2w^4f̘RUz|,BO q[qyS8;u ?-BwLh)wWeW#~RDR9VKwH.ݥ௠ZیP>6urTq WtK0KEZ|X^QW=אjgZg\3ZNID-Th佧V ?,joxNp ֲ@m8WN-ty3*d tu2ԟ q8;9X_/J8K"gzׄ qMtF[R%+>Eq1Zxn֢IChC>f,˓ʵNY-/A^D Q>܂[*)>EZ9f182dơJ-m=fJyǠ:/<'kl5Cos:+z#>lF_0uK{rf^ލ8W"nM ?Ȩ;@6TbU{)ԣ?[{'V;&ڨTl=C,ޅZ\ա*ӴU ݶ[۠{}*J#u+vCKŖn m[iv8iC·a :TR=J,r:?B#onӶmU SKw݋(*w}/B)N(U{4V8c9 \FĀ^Fc}jQGx(z̢hַ ^ MӏY,1Y 'etiZ4s-4Z DEΌ[+!"0\9&YSbqW'tm)h`>%evMB˜_1|/8q{5[֢!VGC%7|M9G}B A 4VWiqRi^\}];@ hX*oX#aR\ !g ;o9#J7:]?Yrj[ E.mrq P:ιZ>hJ#CG78/EW]+}Ъ{1ZN@LEU`mBwTmaQꕢŷ)ZHvr:މ &;|j n;lz /8@f|\fP04Fv\jU/5xVYm"#\Czo薾Ղ+H\*}GX9\87^tׂsbt#DrĐlv SOZV+hh{ wSzr*مWz^@<}`<[Z{SZQ тQq1 VmeU-'F"c:ЛA#K,kc;P'aDwXUQ%^#5 *巈F{ YxǨd/ɧ6T:D7ѣwH*K>JAemST79fZ _tK~{Z.fYt-rT&\v+.F/|)U:WW 0RB}TGi!Ic@Hj"_*gz`6^| i%Bc"m+fQHZjҬiD#:ClI/kURn 3V^ uih˚0"KogqeD|c"6 ~hg0ϓ @")~${I+ޔqy(K=̳ Sg@݂O+z+ P_z츕Wjz$,cЍf4ف B?(+)8AaWW] 3|lUZg 9_/b{Л_{zf.tЅ9ߧ`e6kkз 5O5C~=F:G:YL;I:Zi+AO08YWՈiӆ~@޴lډ\ߎiֺB!ldGE1>Pt©:c'ƪ*a_Yvtz.٨}]4w#GLY;/a)C֭%vYUI•t Y ^ e2իTVLt\ɍLP3e vz&|8dZ A4'F4\ .cWi(dn`vRe22L3F25I%`W~)ȿ!F/RI|gd2ȏ> stream 32f06i54h64i88g;;j?>nA@pEDuHGw HJt!OIuKMw( )!)OQ{$0RT~UV-1WY.2\Y0819_\3:b^:<;Aaefc=Che>D?EeiFLjnnnHNKOrrQWuuSXyxUZZ[}}\b_eydfz{fi|w}x~hpmrosptrvvxxz߀⃆ነ䋋㌒厔⑕唗留䙚曜眝¬鞟蟥ĭ褢礨馪ꧫ쩭͵魯ļϸ믱Ǿɽ endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 813 /Length 1866 /Filter /FlateDecode >> stream xڭXko_1ظ >v@b'uq&W2%)꯿g(ʊvE=sff$(!-(8!KFğ!Z1)HexaH+AJNDi Pb2))/+TXR V YQRf*LF$&1&)%c%T @VdhSR*bd9^Z/%epQŚ0T*< ZbZ<< xJj4d/h^Rx ? 2U6Kt ȔK4a3H| dIc@B>i%?`i-#Jh a1V%C1PM 3vFQ _#X#!R:fo<@@FT %B☕r̡2*xDÓ"b*fH;j)$W)W6&B*%?'- B_![Jvș̉R0iepP3d 406Fp;-E5iy_6u(駟ob1]ڲZҼm&eOQD&QPȞpuчӳ習Ѣ6-n#cJ>ofoqu͞}d8m%_b/P_L2)K vEAbqBlqm~bi$#D1 6Xnfs&]kuf3GPe#6M(s!7/EIöʟ 5A@e?n(ݡ_LQ%RrvMnc˽r2vS5g/:G$[WKl+ p~VfqSn')VO,\7;XlfڢprkC/,E? ʻxfIe=xՂm>T> FoJCtD5CcMʼi8fɉoֺ:jySeZ "a?rӴKř@#uUr7oF_WEǿ}DsO)V  p<2͢Ňգ;}sO<&Xq5 .ɰ`̳xզc[j[9jl؎xf3#̈gF<;ώxvij#]]B8X<qp1S!LSr:}K{'._E! ظ0 \Dq)*-oGeH\l}Wp^L"۠]+10˻ Mv)!¿ӏѢkfMuÛ~V2# u?2~q3~'1}խч:ojY3s C.ѡ-svBnvdƐ_`-|;$>Eg{d(DLqjBVqgX-;~{$?ea f'XPBi2{ķDgaD$/`?KUpNC)&GeLmPX҆frk<N9q endstream endobj 244 0 obj << /Length 918 /Filter /FlateDecode >> stream xMo8D{b8M-4vr"T^YmP)mʴ4yЧɹY-I.H,S`lA^Sg2@]窪\_MJ89G)$)ਲqI 8} 7F9m~r(>l6s!sf! rI[N ™=Z4tr7 2!N= Y+X /.'in9eI_.5<&S3K=gsڕsnrEH(?oA? "{z-uߕכL?oL)LkKRjS t^VDrMhծe6n5}7TUᚯ~oQXCsWCp>KQ}DkXbslCdZtV.td>T}GMx$_,FkªkL4~$զNr]鮇}4,.{GyNJQqc}2ć~l7:**P^z[=]s0]v__ws 6LzFj2;Tͼ_> stream xڵXK۸Wj!>7M88J=`HHBL3iӍnPllW"G_Oo(&Ci&O0S]4xne }=VO P& Na|>7g4nljZQ'盽|DEY?ܛAGfam%4:qLSwt',,0VZDQcmt[ x7hP56iAi(ŷkA!?.,PdgEr^ Jiٳk5(ZC8wgﲪ0w*dz{@EfSYu@Ԡ]\awNi#'S(Vɐ4n"~{õEaV@$̐F)S,RfZ'BΙ0b0%-q 4 ڎI7 Jx^}wDv(E¢Wf TiϽV#RӸR/4f0nPet%x^d:w\uइ#>K[QӋ-/G xݥלTfHua2_oḋ a&Fo$t'۝5}AE`Ŵ7w{d{eaj;3(cWu 7 d3=MZ1EEg8-LJ1T7T부} vGOIfWWva-&΀׵}/pdɯSw}mZ_&$7/@fAc?L״ĄC9ݿDzRXKCvE EJ1&u5 \ % -N{pn 9gY`űP \k"(燱 )+4pD9G]8P?lw ՚ w*mPzbsE :S'=` ) [_ TՁL)vb0&:;,d3ܽHA|ޕ$3FoZy?KSCKhv]nԍ$+ͩ6qD"NC+T8n{,Kq6OGnY#gaP!J")JJG깃 ?qi:sCFJ6Z=+|}\ C5?$֨Dl o3"b$ ~j(Dy1iTk*fVaB9/vU3=?zͲb^z<̙l8]R4SF-d+F]/(R#PUަۈTã(&ko> 9X endstream endobj 257 0 obj << /Length 2258 /Filter /FlateDecode >> stream xڭY[s~_5c!HÈ;x G,hL }PMY4ᴢ4*2," }!lZ{Ƅf,Lぞ'ۗY${(Y%~PfAۗEi`v4arq!@=8Av;BRSH4W\yz%$N +&t*Ѹ\R.Mrs.sM}{SØ%2ة٠6҃O ֈ乘ܪ3Vo\-n"Fd(eI>_^rWH|;iyIެߎ5F7'YXN!O`j g 3UԎ!h}x-¹, f"MI~}- x FS`Zw.~[_|x{V0qzD˪aO|fwV ,bzs87q/̴iļ$c t(~#E*XSy[U#z 9Da 0MS [KMq-V?=4?Ƃ SG}D0j m8Svg|Ʊ FC]Q?ˌ ǟoI|yGۿY'祷Sr~5/sBbHV<ycƿgM?:3HHթnßhҺ2sw5@.'"!8HNuA?Kچ$%%V798)U v >mNSn|钾3׻q7`utD\և.uG;Ÿm4z}BҼփ;a`Uk>oP[&Ūʉ:&`nY\1.79g{QǂgM;Y<*(oFQOPiB;hwH6a!FF<Ɔ =A26EmUѸ숔zrn3yB|t\"y&"gB(':T93UG> stream xڭnF_Ҁa7eId'{I(%qMVKf0/b]uW͛QUowHo"?q|l/wg+Sjn,G )rЦO 7_`FT֡1kr#aPVZRۄvF }S3›AҖ!R"UKT4P`UpY͈bwZu2db5>i)]<n- YoV8Jd`V'tmH{\1 /0Mz'W%/bx $pXD'cfoYb9hd9adXZHF.'p+ӪzÇwhRvQt&sw OC_]QW&qߍ7^kPn :#F!ӖA>f{3lMi .=x1-JbBV6R^:ONs^nOif~Ⱥ&%:Z[4+J{ EG0D.DWV ixc}Ki;Ȍoͮ/%a +(DC:ٮ]ZTy"RHfYO+ hib@ ĄYSQ^2Z.KR3c AQ]gU9΂14oZS"Љxɔp8!|xB `7=)`}87rT8Exc#)CF?0pQ'AEcZ6ϲƖV pߔ1/A\\ݚ\HWS'paܹS'VVb|:Fn<ʜݷr!:`#߂D@W^*~[Uz4<lO=ғJVuSAa#G;pY?O\ c,Cq"3:R5:0ЙڝJvrP%HL+wI*tZ@s_g,]۞ϮXߎ+1N˱'"_3V9kYl<1eDBI v|QZ y7!<㬸 zpZm{e4Pew.syA \#z$Dj.~QB6SAr%Y-á СoSE_Fr &RI9(vB*{2&m2%Aǒ;eZ=NlF}ѵeEO (/{/Z?K*H5~- Hk\ r 9ƶlavexpUdByM-:ٲBO8hw`7ѺwqboHEv3iLgo[^-]eBǹ5WϽ}| S0׽m/)#\Y_>3C/xD VΌ&͘u[~[^DI(X2kQBi'qFw7n wO] =Eo/M:^oy@Mrp[K 9Q.]5jw%GEILְ#Lj T} CX o3+ <.3!DzE':b%ⳏX01Ix|(ό&<[b+nYN)=4뽱0;`/~BnMJ H9-`Ued:s0נؖ4/ڬ> stream xڭYIϯ%*M6>Ů*%qU*M%)BvW|pf2I.-~}(i<vI䠡gʝN8`ʌn7'J.nXLWsAݹɛlkOxsMhkcG*h,J]Yedq:8 w?lM9Bƅ]]xI0 tnLnj$9S"sֲw'.M,H\4E`*'y⁽mA`I#X!ke{7/rSf,\-}dʻO Ϟ4xeU^^`:'n2ѐH > *L673/Lut\'?%1Ӵ VZ0l=M"rhl`y{MLö&9rLLP܃mwOB]0ai4 8K@lBW\t8T}f>I/vܲmQ;9c]kwD6qQ~QSlL,[Iu&rGq rt\] qb ,ޏ-GTԫ8\O(KuB)M4VG% eB PĹI 4Nv<2TAh :+’iU VP&^tOmLδXNL`Kg B]2:'Sp^^rU^ёIJ>"@)sptS[o:f,@NaQ|]vn3S",%\ܣ߁kߡ2NmPs'ŬC|y(ij{ O^B aπcTհՐ~]S'.,Gr&^i*7aQ@j7yw?~b9|L"IA@i[.A ؆7RR }4'/Z4K? BDgd3VaO^NqF8CҠ/\ݞE'@71Pe93􍛐4TbTzbR~AH41~e 9?Ѻ(yFzh[%J,U,OQoqsyu29X'5ƂP=7+tW–CȎ،8 2ZHQusԾL4-[NF2l$J< OffW{ӿ~1%s;n'|X-鏝(8=7u-_Q6Ў%+@/)PCHvptU~+L-h| ≯ S BPwi1>(,M@I﹵5-|#X$j+`$Pqus=7!;O Ŏr%F4]z < a(cM߱ZU_Atzok >'0p-n2rw akw3B(yZsZtwҤkYMw N&@G= U b@%iz!ym & әrMyGW?|Kuh |2i`w\ģk'1#?_g1g, '!@ ,υTHb~Ah^nyfUYXWnv8x5v-n-M7 (?:>G |ֳ3lT=&rBE4ͦᓤ1> YXbg_]&rSuF/QWB^&8P64wS;Ht5kcҙPrX`Dh(&!0N+ 29vYa{: ‡i/gFȝ ZVy:5/'N(r4̢LX]AS,Oe4akb3%Pʆ icW )"%.Vj'83nn2zhŰvU7rG fzm` ڎM%. fh(o=  6n_Q|j A !~y:}m:)S"w@TD->4^(Ly0*REd!Re_ 9h].XPv#ŧW^ :my zXZFB|;x qLI!WD X3r#^ >cfVk" W,z/Ks)_fVI<{TGa哋F.GXcKC9B!5~£9lxe*_7jnejFůU\qE(zqixfBZ*ܰ8x4B(521d Xa2-=鶝GƬؿD*Yvy߄| endstream endobj 277 0 obj << /Length 3104 /Filter /FlateDecode >> stream xڭZIϯ`b0%b4VdYRE:`UMI=ɟ9Pltb{7aCHhq]䅟$" ?}{#+F[í C;T2ʽvok꫃,k]w`'9mf=OU/~v[^74r3B3iQ.VaF[)?oKORo_5xTo'&lyW֧/N9sams/nWm6y7$T߅*ag[S?ʎpMOK@TQi.ۏn~z}wP0"Hݺ|b͈{~l쎃߃5D g.'~'SEܭ}E㈩)EDn[zqm] OWW=^~gn jR)RzPUr3wZ<-2V|'H{8‹p Q6`fG\dnMKϩ7>DVHZm%A-`/tlFEmAFc%?y?׏h=dىv3GփJnW=yI44s|CDZ#XյC_5GnFф@=5XwJN=vC)a:)!WG9,AqDu{$.H- *N&(IU Sd^4hFWW[`w {chWͰY /X18UaͲ3s5:f ΫfMXp͎ݽ*77A(E;7dVÑ,6Qw9PV Y8q8 H,x73X`O.>>cQ3 F rg]^{쌵v\S99Dw՚ExS!E93,?+߯ XlU 27ߟӲUX(?6YEg!$u=N]uΐ4&(, 7:3ǭ얋ku[4TX(}jf6"lj'cMJ<4#$O; al mѥp+ ]Hr 1JGKfA}pțE4('Y;km Hg@Pg<7~%W|lAL\@T$A`eOV5k%\iG;jqɧ~"r]/砘sHaxS!i3b9h `84$sڌ :q# j{sm6OZ1CT46 R8e78o*AO@Ц\<,x ȝOb.9 ]˧g@"2s3E13SD.,3ḾĨ*)vc#ME=p F'[çEj[~`lꡄWގ)tFֳ*OQ] 0,s4y9YeE/ÆPmO:w;ke Qr0u15#ǀ^Rڞ(Z.m,Om<]9 sήq9+ISgr-2N`val_sR~@g!dc<$su(@aIJ(+'B9GlhTQR2iq!̓>sj{qY(p p7P(f#ߙb8@2X7LIƒ x+ߜ#; !jٵn)sʦY'vm-7-6~kmGň`dQ^,圮\=,̻.m> stream xڭYKFW rY Q$/yK{6{ȖT3ߪj9v 2$[W_|wj67q4On7ErS07fu'YA5U4(`kz /qk톃Y"penSެ$% gqXf}'@Z']+O4 6l2;GX3W+ZiJ߆&QhPQPi &OӌTk@H-;ݢ1WIJQYYAX vk{Z" $XKʪhz*,xQ7 (>8'9d['`\i-ʏ[Љ8V4p>};wсϩYRiF`ÝxZ'H\:m׳{7ȎlDᤴC`qYbc|S'va\dso!IwCS1/gfnp@`cEɍ;9M'Q"Β(>A2 檮Yu .)OG G a>>ՙѰ3KGOjUtn='Z+e0lwcغG<-;T6h?<Kb>ܭ4K l R'5(:H5I6䶢Cw2YK8? 0%,21Ixj"hi)8Xέug6P=\OF.A^.nSQ/qxTв`ՆqF$S9)P_CYuE8|)m>-on0  őGT%7lu[rW"Ge# ^žαP"Qp º)C`F>m>AinpII&%SHӸDqiUBF r<{y Trxs'c ˱U uGHMQ4a{,39A6P4v5|v%!d@*0BDl9xjy`F;  "b,洘gC!59T{ɑS@,˶s]\>]ֻ;U4Uw74Hl:|AGZ֐͒ aD1}?Ґq4 #bdDV# JwVA[y$l|D|M;#m<N=VrNϬGFgJ=W 8Hy¼a&x}GR [tR݅Y~~y2&ӷ'0 㯽]0m<޻ɨl(²ObEG}txnON|E$a!BJa Aˎ7#k[^[tI>C*g ]|r~*\;VnZIq/%(=㼏!zJ{v_s-igSԞ4VaB}cR^&=^[}Q~-*h;^߿j ޾[4X׃AuزK O(6 wܑyz0%]y\ݏ 0/ڌ>_ 9Zֶ>z}:;ې aMT‹*N_)pt=F~iėG6ws-ad*2 ~Nʋbb"&PubߢDf²ǰwaQT^j_qqXVLru"82NUaj2AQ',_,>(56^p}ڠf~b:::1}1AyZIcӼğ^Ԑ endstream endobj 287 0 obj << /Length 2470 /Filter /FlateDecode >> stream xڭXK6ϯPDUY$㔷<<{S[HIHFv~v$I.~~oooeR$aEq@&l[thcT& &9MU[Keo?,)'&פxo7ym_\L"Y$ }{S:I*Hmɢs;e| ?ێJXqX@AD/d#j8[TJږ{Ztk4v9G_Vw0_ 0AiMN<ñFzD=R"tOjW5\Ϝ6c-N Px?XGQ?G(Ŗ9.Wy mnN|!I'++AI[%hG-(OW\GlRb21|]򻲨 rS Fہ:S|Gk@n K[Ʌ%MN]ޔ),0DU[fyM 0"]_DaeȳӖorڴTVNSX4/c,M)Lp8:TvK+6hL ?| \%E#wvѪ󆏧tdva`P:"㌴" Nm{(Isq P<A D XT89D!<5g;ln "j@u%_I UC4թ̈#2 #hWpt {Z ޝzPM|L}^ z:NI%`vkذ%]SIb!h]=ͧԙ )!U6o~_d ,qEbqwͷXLQ( hi~bfs}0|O9耤 kz˶H;!ˌ KN8GJƐ;f^κh|C#Z@ ӓ˷ ?3xP1mօݬNul1o=DhpWđ>%P_&$ΈB{\eO|,t"ce*Z:~F\]h"͎|,Uqz\RkC ^&d̘KiCj)__ T!7G:a`G8gbG3 AP onh҂f߄APvM,< prpy NrSK9rǖ<88D #\p"hk[ց4C`gɷP{N G:ON9< Di0Z$"OP:vs7 zMddY&!ەRs[ iNVWxv#CzQMyP"KD9Bͻ9mSQ ˸/IȪH(dl NGǥ`j]x0ש=]pһϳ`CIt>-}rC{P^x~ k*[Z&<:D¼m[2.R(h.MRZi<+ wX Y.YH+߰4 |% ;XlIn̄Ԗp/_QټI/嚎7'r'fw%|g"! rڍ.B " DP UV:`s U1~-TBGbpe˕9lgp3 -NYޟ=ꏾ;[RUWUE c-vzˉOheHyn|v,.,*mS`lAs\bT]q6빃4zNEy,h7Pa#jg ?vjXf)%L<̨'|PR<)%LW \h+͈wSh8+S}"p{d[XNO0PuQ,am s; w.gXFUGb"mu@58~)~)_眩Lݓ&c{hsrI p6A'XBeP:_ҵoP#=ů%;y:gg~ќr:73D9=ϻ s> stream xڭYKoϯme`)R6f 2awvzכ?*EIv{)W_=ׇwJ,gJ7ZLa{K3lZ]ǡM;iTT]3o5Px뭒Ql6udJke9}5eߴt=s6I3IѩJ槦\;延 qWӏI!~҇L&rg:;e`-!O9izRmp5/79?Qf^8YOGB9I  ؓʠfr;d$Z]Ҙb Jq:@O$R,I>/mqp%@;ʨLy ˼R3 n:W(˺* dJDyDy }+M0&SR%GyOxqg@Y¬ 'r7+< 54Ν ;נ:XX5uiOX/gwwf?g@4#[հ5׳Š&Jy"xY .?ϳLP`D.U1,ȎTĵ D|lClE<}'K@2Z!竸E9MI#}y̕)vl.zށKc?xTQX N%J]WCf)YQ}? (gZ`IrΘtةݻ i1'J\mD T(?{GTPkgw<½9{f Z1Ηll/Cv3+E ?Iک SKj jNGCߕ6$xR4Lk -W5\' _E]7#'"DS0{ $c[~l6j-n˄\c|o endstream endobj 299 0 obj << /Length 2291 /Filter /FlateDecode >> stream xڥYY6~_all:@N !,dn -q oEҒv/&EY:*ontA)IÐ-$%E,XxpL VHrYUYn,ZvK^X(4q'q_>ٗ [gϒtnN8L%0I,;6y5p_+/{_YUͱ, QsmY9%#M6Nr y;+PVvPM #ʔEV0Rʮ  /T!"dY(Cj`}-N?fJSZ=Sqg99a`2ws%gK'O[->XT~A] WzlRTjFјPLUPװ+DJͤ(_֊9jJzغZ?Iib{ԪHYLS#OŽUO:c`zܲzp[gN"nD$v&%Hf֜P+K4;3Gޯ+IC^,Ok.`f!WNpvh.,^ORYgŞ@g!5]U6Ϻlx@?Ă!J$6҃OYg >ahL\@C^p ¹@C*œͮoX09DDҧF$S?e~jïLYB(enHrd[kJmnkRSr U 0[Є%N!ћtBNoq?%g=H?[Uľ{c؝)!dN k' o¶Z'LW;SQsO'FMMUvv[eٚUו P wM šZV ڞq>Aa0oOT"@)nuzkuP!GŜt,"m^ %nbx͏:"qo?< 3 E/϶u wL.la;@O`30oZ ?1EEoM!g !BMCgdk$M~s9L2X,F:)+D sB1N wv洛{}vN^@^l-`O>DX]{H N}rvӒ^ulL7X9e)m ey͠&H[mRЩ gIu&X{{tHdݰY#y#NN [;w,]Bi&.X*Li[xy.LP'tY[_&BЀ:4|g$9PEK㌈IxoT>9 8|jܕ?KSNE3?d^XcLa)cfڴF흜f3!Tۑ+X#7%2X2DԾ`kWクlj%0}.L瓐;pPDgM]Y|fg=d70`lz<@9'w=;>!ÁrF;)9fXkǛ?o4`A (&D ,^SZ fd ~:Ocw?}Fu ;@] Tׇ#LB VQ:itPVȎw0>­ÔtxjϿF]ϿP?WGY z;JZIm \ތh ~Bmn_q[Y00,ZwUV`wS_7y#v G7g1|[ CTw&JqMKϪ?pwP)IR'bȄ endstream endobj 224 0 obj << /Type /ObjStm /N 100 /First 877 /Length 2153 /Filter /FlateDecode >> stream xڽZMoGWqI HFCC&Bp쐢ICzS>_u##%vȩck1jj0Z=Q|RWRI6e)Y|7v%sHkVqEÒ8^Ɒ#DC - `h͇%5L ǁPR0mޖa W͆iC֒7X|T(@9 @&Kj5-5;1qPs\a8ikPE0*zX ܕjԹܴ3.pS%V1^K\e8p / 4_`SG3JkB%AK$û uz$_^]2?W_xesZ=;!g"<o?ɴ{F BJIȄgH(9;9'};2? x6df]bkPӾׇ! Fjk)s&Shk(">myX&k!~UE 9Ut=u`3tA$hOFzg>Q#|"-D&Ӿ|pN&{2P\N75zdp xsEI $5:H`ms'EP-QlIT$DDgMuL\s5ej-hԊ|E,DNaXc~z5D 4Cys>eyhǡtquecPےLelQMrlm_1"> 1q,h_ Þ^%s!{zmY@1mRL["u)9 **W?bpb]AUL0wX"ỦՓ]e.2;W26EG'\[D6%NO) W!Ǡ4)ԎOߞPخ9#Ee,K3˄c@2b-/Fco]/}YA&01h,hg]=!پajgp2+#ﺽ%\JEU'pX'՞}{L6/i~$=εOmGڞmjl!B{D@sWJϝd^qT n+ðiX=ʶ꒽͐( DrѳG;<˧{u~d/ %E'kY?:?wa.]aMޔ;sa{Ag\&GF߸9}{r I/.@ endstream endobj 306 0 obj << /Length 1813 /Filter /FlateDecode >> stream xڕXmO8ίNjVbMyiŇrS{ v~h+⒍yacMA%Dly{2?81R3ZV$=kY_2N0|\NdMO|!W9iz#.Õ?K9~(j\1WIb݈Db !xhn5|r{k0 6ؙ%ޖGYĥRN^آع!2=;ڍKK,̙j]WvRdȡ왬ZIYBk)W(Ƨ m嬒{6!Z-O7%f)8.Ey+uP8-r2{Xڕ{ 0{p>*mw !:) Va]ȚdzQޱ peK(fg\߂k\cbN,AhG`hY:8Q{, iYǢ%;J6e= q L0S\- z*+8Z(eJ\YI{&O>8yeЁa;RidBW?eQ't$|@@m^WnH }6l6/iPNQl]ZȢ30͌"1wqy_~ryzUDY+Tk@aϾ 59==os]:-+Qko;d߸Fҷx7D])B IQ CE|s ,xqdm4Hm5;>8yw>M:({3-ub^R5- oF6Zw٪LF=OoyE^QgW[Q(Euho͛\m d 0x JY <멮^A="@g/RgoՒsE1}2*շ57MV$&$ԱW\<iW^2u@{Vbdi@g',;1I_>$g }^=Z'0zATq9aǤ2'ac~2\A,RF2O1V! y%t&5y>M0SUԉq9?Lȍmy/EiKm;mUc/cāj$W#u?t endstream endobj 312 0 obj << /Length 2148 /Filter /FlateDecode >> stream xڝXoܸ A8gվKVzUKN; wC=#E<37vW8s ,Ntv˪ٗV8znd F\3]}32[yy}˙g?:qӕbo;ʬ'H'&V&U:.l>WakDf:-IY4"껏Nv^ wWa['d\ ]6^Š데;ҶEr8x.Њܪ ]Ӥk}.1k IF_yۖso|tBDhfK.CpwAHs++l$E`4Iےp̸хҁ󴎁BO P劋eOju]mm0w&m;dqMNǁ'ë #=805ԃ(ĻL}>΁k%E넲8OOlU ~s~_q*JO%HWPg^`uB-Q(ՁgN<_ CxV@ :^42mnKUZhqqZ/olurom8HY.@ )o.?n_pfR>Ck XA Kcl\Fzfkir+F%bP5sj 0~@;^L^p ]|qE r"i(mtMAJenEͭ@-UL0=҄o?XFGl3$߮v*8e}0505sW&ȷni8FQ5V`&ƍl&'lMT߱YHnp6 z PAo6Ga/Ә M]UiUN{#kb*-k|Pck%-\5Htif`-cKi81_57DY9a\;LCvr|B>`7Z dHf QXz Ӣx52 6ГBո[oK >D6~B}OdA5ʸ6mA_iXҢ| uNkg endstream endobj 318 0 obj << /Length 2593 /Filter /FlateDecode >> stream xڝYY~_KV c; YlCXpD"SդDˈ}1onnKZfERx[/~ & YzbS*aK=.޾{`,fz" M\8XyQmq.ˇ:7kUi)[)YVV6XN91}i[G`-ڷfӗ4Վ,~*d\hǻ[G|&pѕyWK=g9NIem@c%#WTNWϬi&w7t1^M+ODh;X_J [9iX"CdeiJYP" Zw}WÎΆh+GeYvFniTn篡 fϚb8R ߌ~ Y*wfƎ_4@xd?e+ 5юZ p̿hE$ܓ${C{2+d`nGXunh6Sdw4x( <6(JKПFL#TU*TY_?d >GeR1KE|_^ks6o+t8_#4g2bwzC RjR%^дZ˃~.Mt"">@mR+f}9b?X!_"cPG:+s&Ōμ XJ&S5޼ o6j:]h'Ep5)#Y<؝dQǛݼ:PDXۛx 5Չֹ}[b]| 5. TwO;vAYW[Ӹǥba2b >0g(0.\Y+i6ߌIQ {N* ,5|!Ӫ {KUK9-*ܼ!0U#,FGx Ys#~i (p+9vJ*Pq 6} B|b;("p뫷H_.,"B-Kz@r|6:nh /Xy@wLhPh-x f&"3R!@ "pKvy‘˗Mj/8an|+'Lnϸ.{ o>ؕ"y\`唑պ@28>G9Ln &e$`FbP$ӵ֓~뵃`@|K^/z(.7>&㥈ԦH3qjȉ _ةV^Ux! Ǎc,jz}>ػtR,d<=G V~`V>6;,Mq!-jCQ]߁9H j,0@L7YI ' g9[K(a Ifm0C: S쳭ji4V,\S}A(.ӻZcs,k 섬KTr.貦)XZ}'C_ƛ]oy媤dW ޖLؘ#m7-Z 8Qm]}dbP4/:-ak>s؋ >4Q|ʌ#ji`#h6&@ֵa.5!a2 D*1 >uȚvHs KdZQ]BW)H8d""ފȇKPd}тn;T(l"?\{PV9x9 ?wC:Rsz1Jfpsɵ{&ɰz:. g%h :Ulk^`. S cU6 kEk*V]i'ebYú<Y|qL1.hXrDHا8<0qH'D^phl bۗkއH;cՋ uDsm߬? %J1ze˔$.jLֶ endstream endobj 322 0 obj << /Length 2697 /Filter /FlateDecode >> stream xڭYy? X3<HƉukE%1_RrS) Xs͛wޱo>}U̘pu_2&[%:S:V7O6[^n6W*]`-ȼE~P6ݗÑGnrͷW_\v|,Ri]1ܕW?vWQh BUﯞ?f;E9kfv^(P:E^6o=<'n CN6^mIyڮU7=KQqlj|< 6L$z :fZG_6 cohQǢVLK?=Ph;&n;K4dRm730늺݄0 8y^$p$/@&iz/HxYhZA^U=T8'> "~?ba8I:x3|<㩨SZHnӓ~Gܤ!-IWBǂ~fBݛ2HAN~gv}+7m'W͞qy6ȴtQ۷zU6K'!k/Ң2PS;vy?d}ߢ,>Ox9~np3t#Yrz"pB9,Çsl{(Ce5I4:.G<1@?ҡ \h:oݕذq䤄c/_QU=:n/m)wc'g־,kEy2?|$0dʒ4MrQGr 3 XZ=7CVq**n~lVD747>r s^EuECgڽ< ŚWˆWWs0ht Q-]XMCLx0.26F{evdspukKyfXt&uP^ɟҤZʀ֬Iaaas`X܃Ҡ3_uY&`%oAR%oIA3#oF/I\wmt[f mOt*p~"YF]}rΙpv`+c<.1Xr_ďEZHE1МRUYl(+}c|cECL>8X0 jb] ;LLjj+9wL|N GP,(YAMDs,9 [AC cױobyesJq ,gÇ~Hm3x_+r_]_c1*H&K"/%ajaFTA'Ӌ|Qr(SGfN2t2 fU{E$v~ " !$W )/r(ƏƙP!RBD.HHU16TUK}G<:ģahc$Vs'h*Nѿj‘rt=rėO7m1ٿ8n/Ȉ$b0:64HDFF*@vC9+'fяw(W&3j B`hQa(.a%j;F^8Q1޴sv)||l45rB?h IB0Bp6Q61ߐѹvK"/:@hf{pU eiWf1hCW!T ۓDK3X-=bOE|Rf!"௔8UW|HeBSr/oAz8wmPيO&uD\C[2Կ@iQ/ 0Z{ӓQcqXb5w@_)b-ܮ/&GaB1).PP'-FXmW\LϠ*l-$MԑSb4C" EsC4<Y C6WBh(;eD89J'ūX| M 0F&]ҵJYc3o-7L^ѵ4\Rϔv5)PI9^@.H#\ Gq͓G{:QٌҪ9ii|t 䓋`icd Oow"F̏)Dg->4^%(3vAL@]LH88OpDd| Uj:U7e&5u(pŒQ[pME r%7;{xP/H%Β <Xh\?"RVF+YG^{'3Cl"=ZcpȐx/dlr{,Rn Vq_ 3q.4޲ ɬHhZ4~HJ^>ׯAkIqzki_C{90UL~t4R${ JX:ȴdA]ٿyÝyގS] <~&B* D3 r|e*`;s.%|`)ۺॽK!`]gϸD][ p3N zqaZ(v8Vm*WdRS<(ğ)IE(B 2 -ϸ&IK endstream endobj 328 0 obj << /Length 1819 /Filter /FlateDecode >> stream xڭXmo6_!*5#%E?k3dX ma( %W؏-W.֥_l;û^\^Hqwd:LH%LĻʽwLsgiO_ig^4-N떾([GI[u5ٲLm3px3R! q^ $ح+n50*?O8y(.AFXY\;-`B zS4jU 8(N/kRǚLIB~/nr E&`խ6q1X7f2<7,< f|`n1/BG$il lY@-[ y3@A" ˴:ESa#'Q1a^qJBO G@"]DKo\E,R;.|ˀ{:, YŲObR ,_)HP,'g$Ԉ )GX"%DJmișV_Km6m{ma\~A sQNsgn*ȝ-E.Su,Ė4 x䚈#FeGp1Xd"!aes,#++rdNNW䖜@ڱ>g]!#1%&vs֥qkēot)c{(ͦ] Ύ~Vz ̩{>YJzd,fyvnd Ƶ hW|*]eC^;boLϞ>ءA@!i:=j{fM@s2Bj q`aV4߾<8@G'轇>x~Kg7oe~E@<"a˞);8-=XO7gk7ge<ɿ,xI<.q~s9@*~H43BAt>_b endstream endobj 332 0 obj << /Length 1847 /Filter /FlateDecode >> stream xڭXoF _!x&z_Ї6XņykBαY$iɶ%[Ew<Յ =)4 wB/6i`d]G|e/-f)+vFi̒qsvsbڮB|0=9MJha<Ȫ(͖0_Pcr"z˔s4U"Mr4Hw*&}{%_w\!>8 oq&$d<NYΘe=%L7,: R)|hq1j< )Wj%NVθ1o PMjxKwXp*{@%2q[WDVn7m n2[xFBŔS)Ft-1Lºħ{|J(( c=A#`-/s'q Sufx fPRe 3Qr_fYYc$΅AzYuGP˓N$!< aQ{(j!+`T txĺtJpmdh/wQ8Xz&41J&4E  FP:i oaf. bq.sjzG.tmDΟD\';1 CGhnPx"X2je= ӄ@( W}!%vݛ T1HMaV;=8>dz0[?V .2Zh9U\8)ȜX^0ߒxɟ-Ip9t/?o{nnV={$fuSj"daU6lCY:2B 2s oVi9.䱚}y ypÏ+q_9_l()]Jg]l"`$+^/̅°O݋;?wQ0u츓IH8&u $G}6=Ż:h1T-q=`F"Ba@Ɂ&ȆqG v[]E(g?"IidS=>]Jᄻd"p18ʫWE= x8*t$|6ɽqŴtU8^0۴:aк]<J?* Eq1!;**N*+jď8Aclyn:YP/nz@Wm~3>;|8Fj56RWm֖L$0/,F!_txśc'+Bt`0 >Y endstream endobj 337 0 obj << /Length 1756 /Filter /FlateDecode >> stream xڭWoH޿UAx>*TTtH*޴9vup*7}=?z>9K@8}D8J3ϝO7d~=z3?z>pəBs"[g2[uHppۥbqo/>v0f<0û.lr24r7/Ғlҋj"Yg(S r"x>{>@^A/_prXˉ^ [Bz~u߁VY983ghSDū?wU/"o28U]:ʷ$aRV.]= vvyiQ?KFMxOH2dw >tɻز M>$iѣ ,(&&99ӓ"*CV K z&Gp?uQ'*m#R}?-/BP"<.?rA<2gZ6}\ qS^dclCm#و.ܯB%"F@3׼6xGvS]}R>.T} 햑i1B@R_ :7P億0ma'*-ot5,8kdahfu{™FqҐck"!;ӛ#] tff|icy֕%c)9>=Z o*22 ŁDs ܗVXǏTlྍLMĞo?^][G: 9-N,zWC]C״-ٶGYQQUM}P!i\o/ڂ j)JZF;:K> stream xڭXms_tT#$/j7n|9$ MA{lbA$X>xWoqba MɔgadzϤrT\yYpz7?Mym&+xcn]/~z̟-y@4Qhz8P'+bY̹ۡ܎G_qZT?Ӿm</ibT&kH9S lCln7`7CKXJZR 큵zs8_\?\rA?3eWhks6)nfɦ݃!Ȼ^w^38fHPL !uMǯȲeAƿ[0;b9t|PtK629M%Z}: B;(X{"M]cqZ^Oέ2w^&|5T[C{D(P&PasĤ`̅c[wlsz5JyI'a!^/"W8Qd 5 !02 -'"rii `:#M9 .DP6|06{ B77@ (Tu Dܪ R}919Lh}tTt'Mӡ)+Ҽ8+LamD%ً? Ȇ5 FӦ3>ivc7D8^NaVa3t=rۘ`m<$_{,}wRଁwB,K#G@,E'mAֲ F毖|@"KkS54Paa,d?Q8%*@if3,sI\pߦ-p3X#4~rNq  .֮:Kۖ9% >%2|gw/'C9ȼrtݶ-RFA$-muMq eaz!P˝?Է` D~aN4;$iJBs*fDcϠ6,ۂRR)鈝YH0-wDwi D+bcC%4XV) YUQ{ZzdV` ,dnI-!^ѲR_ҋ $[|s‚6/+2udL $qm-ǂE1i֦[ohjdԯzyh5 @JdC5m3'%OQB5>zi;n{<]a )Tw> VW ._ĥCe:kFQvsCbO#$X$$ˠ>KZ>WL, >wPO]v4TH|l x?%ZJ(a C^m+Fy c/*)h)x!vKF,P[D\Mty{*feɾxrOѶmDS@'ymHu:Pܘ>Wp>@rO y3/94}=fY=uW%yoOY Q ZwB/ÿ6ͤ<=CpT|Yi!F; Ŏ]fEݳ?Wr,j@K۪rOIH(d?\q8291!.ʃkn5~MQ/6/\R'=6kbk߫ʶ S=BN[v /_B0#`Y$Dkc& 8q(Gs sI?j{,GfWu^gp.?!BJϴ*(vve[Wz))Eqg^ endstream endobj 347 0 obj << /Length 3703 /Filter /FlateDecode >> stream xɒ>_#3Ď3)W-A-z(MR$?MtX޾'ي42ޭN%3+T|u]o?{)3]1'=0V|KU49<oW,]S+UO 8Ru˿:Y3'zG 8rz״Wk)t}ԱjӀ0)m[7=6LMƎֵݦiByãVk!lq 2 `,2(d$;T\Lܚj Hy <Y.rlB?us뉺82 <ϯ#r,\Gjt Qy0u"U^\%a21a\Eb#:wZ+ÓCiE/WRwUF$8XФوҲTǭlsZ #*IɬFCAGnݮK1J\p13yxPQU{25?I/)Gfa! 'pY&tC&bI; Pܖ`'vm# `Ǩ"a=B+owQR6ϑO‘MQaK$͎Fzb!l,2 o=töStgS+u@C6)C%k`o{qwrP6]y67ō)\(60x@;w'd#He P kHV/KGœx2e?4Į THTL57"5Z"'p}\dɋi~覵*cz<,8 8dIߖ+ɓ7] p\ j_T#PluG+Cl65QIE¡c"nhJҡ4 9 I  Uf__Cغ);W [ɰJuلx6>P.oMjb14۔əvXl/vodc䩘lhL&v2kbe0̇yLNV`j9BL.?Z\F,i/AZ cIpIE cy,=,Xc[!FH8@Mwp׳-pȁGՋ˗yQDptPɠhpBVEq@]>}T*N+{n,* ʡ%+=n2?%#Q T8J0k\<<=&4{rlU. 4+=NxhS cݒ:[ۓG-9mʤee`U.'(Dm? fQIm,(̉rDLE"99xNԋ? h!+Z.ObG@ 7d9`VTK#SszCdc\C~/tp g!8x!#Zs=m.q6SCɿa4dG5@1dkffm>J2#Y̤*3A3G9;_`aeT4zQob,V/]+pwZi!wR`h-tU"x.0H ޯaj8c܈,$l7/;2Ly@+۸kZp53ɋnt=t1Ԕ֝j 8Ev~Ruj ض#zz;{[6>iX@(_&'^J1ʅAQ#>s|RP ?B9b^%,Ukؓަ`F\a? !D0BO w66τ&[G{싰iЛX{h+{⼮o[_kw}g7NKo,#a''IoQ jsmlh},_0@sԨɭ;A4DLy$< 7~/Ã?I "ci(EG^w)M*SIі(9eɦ"[pDe1UyI >͔=Vbx*mc!ylKvEչtǶ=Axh~Ůj "^XG KGT٬ȁhKT=ujmCԭ 1_}N%[Gɭ {;{"ۨ3YeP#<}`b"E ~]44"G|.`XP;2m(n,xWl! T+*ӤQ 0+bŵ@[T8.( ~/Ѕ:wG2Q/@~}9i8E<4hpmĽQmInH3$0:MzH/-} c$$|rd( *Exn:iZ*ǰawՊ-@Go}Gl6bJ:TbBYgSFgvkSmLBF`fKn>H?̂]s9@n௄8D8'N0y2{o*'8;#pBA3eI[|ǼJK^RO2jE4 HƔ]i%?^F&>1xKo* 7%} >aYʌ l; endstream endobj 358 0 obj << /Length 2315 /Filter /FlateDecode >> stream xڽr`ʈSs$Y紳[H-I|}ѠDz YM" "Ye" bW:%~/)dῊ:[H\Ŧ~acdj+"Eώv1kv<-JEw7 ~U`Gxlx[׋_oQS*'?;\G6l%PF;* yhtI+]eȁTNi\G>J(g*>>~ݰmЭ v{'~0J0*~ЊyCR DnHZcɰA9[9wBbFߡ =!&퍝Dͺ?T)ˌ!*Ÿr[@e .\CoʲzKŐ(ؖ\lm:FCulƌwpoQc RnN$~S"~  #S*K7 ||#cyNPs|ԟ٘z"'κ gtv{#1/_+zg2;QHYZ gsOƸ~McS)&I=PU _Tzz9 dYmu+({ZsY:6g*6(E*E`n cvuM~+p`7Ǧ } ?ax z"h;{hz9q*gw|޾@֐IB,/'#uxnAx^7QpҎlip|JyfWCO΍o"ܞgdb 2*69 endstream endobj 362 0 obj << /Length 2678 /Filter /FlateDecode >> stream xڭَ}b,?,ء/y)VHɋmCǘVO]擲1_`jhDŽއRֵVԀ`UUZrд6U"Mɥ}kžM"\*Iqy4 c+9s>o} +}IPRgfJג=]Fzx9 rz63qO|sEߗڣ$o'MAJ`=e-n:Y%ED"<$xtPebo;}vr]wJ'ܵEjdt ۳b?+\6A34뇣Ĉ%wH(Y8d\J~o6ڋ87nMZ]`8jg|_$z:F4?Jȍ€hih!+>NkW!#f,- 1 x`$ {ɹ,ᛙ؀gPVSqpkOZxyʖr1B!dߡoAb/ | }xV*J M1 9o\jڌߤs#<ܩ(94V:!#TçF|*ىwhʒ i[9Au,&g 3ݢfPQ!؉_aXC1n< ]<7-ij?|>L}I1, AMv#|#~g7V )˰&x: !!`sԦ7TdOsΓ:3R%G>j/ .+ -+ @Y[MmSq #7I(*32)!NrB,\$XA<Ěc^D.f'[dH\H8LZȹ%Î(HQ89ղ͓LAҍR^Ci *:):o Dd k>{/1;k®Pi(ݱʌ1)TKYp€dKJb2MDp  J ϭC. P^des$uu $'A^@jUB4J:mbS=@Њn)Dcxf} 6 OSw !XCV#G` +) ̽ 8+ܛ+t,Ȱ/:% lB;I2p=oZ "|-'7- bu{'L@Ts#&YܵIUʢS'#Sl K9 uxjNkV.NKKF ɴ<91v%iK>ϧZS&خ}E&6 %P:ywx8|'޳kJ>F`fUXAйQ3?"ܖ*{CjlrMzgmlH) (N[.BU?@Fd( 2<`X* z! tGm6sOn>Fy"dcV2N)3AhgzcnRhOBbZ{3w7k@ύ!Բ)' 5ʃ0y,-.$~#h(.;al!}1D]Vy^wb7A5kK+nQ@̮5HMB_`;G>o`+㊈/{1MdW;Xz`Qw852ZnnGF\ &Ϯ2"WmI]ү(2b;N#k~Ճ#;o*-ٿ\H Y=,Hw\׽ћwܾs^ ` kǼzWzy;r{e%B0aQcoE5mZ2ki^\Įǯˆr6" j( i= n endstream endobj 366 0 obj << /Length 1708 /Filter /FlateDecode >> stream xXKoFWRB|"qhS۷XRq %R p8ofǛWo.E"(Dn+@* ZڏгZ[zzlZ/3O5}T{z-@Y^f/ͥV f,(('@}!dSeWv0怶%FsR"͈ot8$Wﯯe}O,QC0џѭ&ޠ%$騧agh 5[x7BlH0 (=@f6YvHTk$HByr`t Dւ0He:rH!.&viN *BGGXUZ:< :ڄ$L(o4hЀ̖'W>K;s);} \/kƤ0rNu}$n4lݪPoO?qb,q҈{WBIrvp)gRձ\k_I'aç0 G h_L+wĒZ>"r@:(m"ܚØWl,r9 ?tЖI%< e[e^.V:F2cs)j3SĜ-(q씷 3,twQV'IM˳ ͧ ¤Gar ]Z2aQ ׏!TďfWr09î3*xE@VeؕOtiya{82;'3DRQI[*^/0R@?Mmh$5'ڱHouz2;b"Џ޺ |PvXl8ܢGZZU&!=5% gGK&Y[{Mrv|3p6pr=Sc%C9Pk Ap,8y,""v@ǵ̹8&1#'1 \1̎jNWP]Wwh׋áiE|ɵ<%_/YuIL?ታ|Q&bm_uq>b8O߱җA2)|qzţQ(J JeFW֕F|*t@ F+06c5gCTISIx֯?ݟEHHen=OSBU R(8afyPœRsw}ܵz\<ߑIqf Υz=8AN? q:o2 2L\f.g}2³Wo^rz endstream endobj 370 0 obj << /Length 1743 /Filter /FlateDecode >> stream xWmo6_a&wK]1/ЭR$EAKMD\ݑGJu2`KG^{xzuu6=AEF /$N~bpU >zp6|oׅbHo`"DSjWL0 pm$G'oчξ!A8gbE| 5(`kv/\}8{#ZlI*B۳NǃK&<ś"cuGCX.8M]%ЃC|7t A^,G9fQV/9~< pD,D5T&0D2%U8Ow] xL4v5c 9U-Wڊ%a (7*v=LkQFN֢ow=ٴъn <&E EX> stream xڝX[o6~ϯ0$o"܀tk]%P Em!IP5md<\7kObw&$t&['lrgMҩuqVOgr!RiW5[ ʹ\'@YMf,Mje 05 _Eh3j3:"i/Agy^ bJZ!QҔ&"Å>Ȫ'ǨRox=V,/HB0/ll_}kِ7|ܨȴh0 nőm!DZh4_)R~egg.˗\lz. vOZБhпjw*p(3s$iՍ*s3a࿄a0 +#`~4R>{gȯ sg䑸`U%s+2O[5kqLO2O=uk*|PCLMnx*0?^@#ԉds CAhB/pF(±026޺* \ ޢ$j AC.LJYZu'X)`Ctvi\O>s+vQ:'(ѷGoGAem[ݽ=`q4yRWˉḱU1=VrP tX ")TKСBs-F ժBժz4S@($q lܟq?U3+ȭ=ؕVIumfI  ۶&2j5#!߁$-Trr`T@[bY.?s|kiVQ_ؕ̐8r* Bfcj~ysJwt|érTޮB 5uC#ڟhs˶`hV 0!Wy%QÜ6mr졺Ӡ8s}qI/p7[F$&_tR-~krD2ܾ`)ŗQ&TEhq6*T U &m.2Ȕ}v9B;dudWoK{kK'+܃xV0.1 G}K?``-5*My`qd E& *AR&05 `PUT3ݬ jwnhKZ>cd̺wUɻTF~ AǶKDʿYki:h؅Q#O]u߫]e8WJD"8腔%ĸ)5 <bCZw5X$J׷Qsiѷe endstream endobj 379 0 obj << /Length 1402 /Filter /FlateDecode >> stream xڕWm6_d&v'/e'pI 6p7,jwg.|znzl셻Mn^tCav "A^ 5iTA0FW)9jIuВoMfVsC>{)onYZˏ!Pm- 9y>WfXEmdT~`60}&\odJbygɡ[z%$C&G%F1m{p eZ(Q/=}8Mn t pF ʳ}ogqȥ rd.U~Ŏ׬tL /lD#4BI3|'qq;㶝u(B оcDp8 eTJO+%29ܞprXN^I2L D!b)#^i ef+r˴ 3dyJk;`ٕC o? < 2ɨ1rPT S|t{fR^7c NTcU}@6uZ FJ8G*1JS|Y #ڳʋ-X@SE%w;z>n+O_61HQF&h͑o ~U'!S16*b3}E/ޣ& 4h'<:YR)@2ljت iIa2>fh*"BWFՎP,Jǜәv2iTkF%0-{Y %:2E2Aj{b0FnJDGHG\پ_S>&R|AѓPV7s߹n"ZQ>LhQ=@n~kM+H!Z-uIL7W^ {#_ 5ʉ(_ f e[-ƤJSQɊ}7k=uv\`9OԥFS>YWEuF')m/r5WUثmLuh/:e@*T`|b\t:wmy-9hrv m'O>h|*9w3oJLNUs2B+4 endstream endobj 383 0 obj << /Length 713 /Filter /FlateDecode >> stream xڝV]o0}@UL dbJ'jMȥnF -~6"L{˵9>>^cM@5MdE7.@} l(MU?dM%`(j@`]ß "P%U]NM y1js63$1Cm.٣8@Dmz +F36)-wb1Gq|;ng)zC'BYnK*=E0Tmґ47ެWTW͹\;;/ 9Xm+vo̵gkGU=r9%[Zخ׺lP~p֕~#x֚CW=r\{n,K{?jo:8z-"<ss&Ozk읪;ϥDyǞ lv'1=T|RQdUjXzŧܰ ^CG endstream endobj 387 0 obj << /Length 574 /Filter /FlateDecode >> stream xڕU0WU ΂TdƦfV֪IQRQ!$kzͼ1cZ9 ~~bG-{\@e> stream xڍU]0}W>J jPP SN'bTfW[7 jLHNνs+ G7%UU,$<چ7 I7ILYuTw]%,o01}_$PZͶ$bf~v0 m8@U!*;%l%t~{߼vjVzOn7H0X]uo__Zn7yBz0a,ЄXƒ( j4Ex[WJ ]'EOڊa"M]8 c/ئiD|#]1f='g6Ge^D}eZXZ^ ]S [`NrVF~eqQnb֡T zKTQ)w 71hNJ_ ncKB]B/DH 5ri2I>0v!0Sj3 \H~ .#C.t qnh S"Ǚ,9Y{7( Ɵ^$T;&4D]!>$D!9k5Ok8Ok򿟮tuEV endstream endobj 395 0 obj << /Length 589 /Filter /FlateDecode >> stream xڍU]o0}ϯ@Ui> u1;m4Mۄ"B jBEۿ&{9\_ˌ ƞaIؖKl%iM;VL͖R6,"0%Y*5᫩椡'0)$Sejk :}CaGwd_cşjQ!e#mH,b$ZdEoC<rD6΋בliV5\$قڿ2-y[gۛE֗H a$2瘟nwe-k:kg)H7CY~XbeNU2F/Ä\0xhbj)\8ӵGKtRԯ3cH䲈"EQ0l9*6F:M?hQ t1]CV ϦuGpt/}bb &yY7alf7 JK endstream endobj 399 0 obj << /Length 1636 /Filter /FlateDecode >> stream xWo6 L*ZEWIk"`d:$9NG9v`}lx<w{ulE;yǶ8 NF̵tl&`ouZw?;N.l8&yc򐅑%7 7,ٞ!DߖE7DR. xt6eGpx<9Xݒxnyz?G']3>7$%xM_ט'$>={2H}?wB=5tfSyu7rh:wki`r5^yknj86͐;׼흌YT5fR252ɵ0.F$yߐ򕸓eZ{iIϨY,Ƌ逌T6gvLו%bk6QF'@m7qsQ J|G;Om̒34'+c*;T#A*wK7 |2ﴤ=HHWM%L9.`{']+SwnҪ7}oU~l?[ YVײ A7eUɼc)} n^XT ,W=:1w]2-ʮD@6X} Q,I^tF*^QTHS&ͮDJ1*o4 'CcEM$lzIs쭎0qUw|; ܂]2:>+YVtM,뚮C2E E,ʤiԻ"D>,j^,g㢒5<O0Yj3ӽ?{-q߃{8`(+%usnK\oVqS?Z!`@]>}|C];]>F~2:*c E=a6TU5)"6YMu11JoONH.2, n<1[GJua"ZZɻ}Sdc^_]waNJ$.&RhH@'0E%%Eh.E,zۀ^8C4U.DZ%8 5+ }H,H&ayxv(B?7]Un~L#(:N^$e{JU,E%Қz?MpYjDԡP0! e,u'Ɨ|нRn7}/XwAy_S_-DCT;r&2k壤XU" 莉4wB&3ԥŽ@ ^jM%*kwCk DLo  6t 0Cc)@ݍa8h|e8y.Ⓦ@)lu8e&QP* D!CGZF_,Rbƥer#xj Bc.WDдP]BވZb#@0|FE'@WLZYUI3܌qHr_Xsc3_N endstream endobj 404 0 obj << /Length 2741 /Filter /FlateDecode >> stream xڵrF]_CU07U-o))oTe+X. ޭbޜz穅R*fWȇZ-6W7GEo~xNc\ưaXzA`ejkÐN.gYx)RS aؘʢe:/G;Ļ} \Ϻ>tᘛFR&]9?pT!s\?ڬ2prf7^Y'˜BYCOtŃp<<^Qތə]VY?)αdtV7 YeJaJIcD_.U?7'p2PL*'NKl%z:He<N prS `T3csC5f$T;yzxd(* eU4-mo,.%`_s9M l )\s%YCڒ`t9+Һ/^oG@eLN#ȥȧ2:g$]#AG tw'58)9ޗm2gƌ?_ _.PR|/>Vfk#0+^wl g7?ΐWg~ۑ- _$_w),E*^<aفra/uT~.y3؎o)L%blG ]9aж-$5!oחݽL/l"03Ҟ. x̳$kL~UsƤw[B&1OrDf{%12ym"O7сm۾vX+>$m;VpYa=Ə/{=YOYA,g›$QHL1Ӱ4"]x׷QƼߵn?| iloz0@D z0 "@b&ULĈI(NQ11f.>썄.!b>r>$ihʖ+" k \(ft r^:A^0T6>@ GbڻAG՟Թ[2[W`+@•5-̱Dv:Jhs@Dr E`@ JR) +RZH IOL{d&PQ%Nb ך.D1չ0:űdLGeDצ/u{JAw31n 6)Qu| W缶4(BR!|0:I%hIy"ㆫ8h|BN`ףC4/*R^=Wr iNJ',GO9^9 Mae(kH`D5H#r}t־>`Nu\<X <϶>`x$m[Vȁ7u#R(D&=m/_Wȅ]( HN8 zڤy)ϺlV읊<(j.?W+p}pD{Om!%æk3F&i0Sn}z j$ҋ-LTY%\&dyH-4guDKRO|u=\vޙ{l ^ 0`b-{zn`q:Z-\0_dPөH#МXDՇl^WJ'#I?`*^e!8/wϓ4bͱ` )$E1-(bD8ҼV w5acd򅲔 b1̩݅#jft!dx>R S1.TD^Q=^,aTEPIVk {OSI@8nk3N%%c nGSjlvɨ5T蚪*)RqSoU$~$!y|NhW>mģNKGsToő<Zon78SQr^<AV,3 B3rgm}`XS1*T'ݫ'Zhݮ77 r! {`GVPIN+e#8YKdxK&!U=6<'[Uy@0umFҢABY!`$[S^1g/|^ڞ/T>/\ٱ 4\pJ v圣bj f2o6ek7PKD<\uvAgHpI [)k ?Ϩ)@1L .YS!j̨ E+1lKb>W ];vXԣP#ZNd,j'zbAz |=8 )$gQ`r*5μ[UU"L`աMzf0y: qfߦY.Vys0a+̸ʳ0~f\|zˠCaP5%nk<r}f#0c 0S"AȠ VBS.:z[4?buĩ) ]!L׀?J gr 7b{Ɩ*M =0) Ft,Wt ?B1<gn! 4U_}qE\/v:;d⹝ endstream endobj 408 0 obj << /Length 2243 /Filter /FlateDecode >> stream xڵXYsF~ׯ%` CJx)Rp8,kאWֻ^@LOwuW w3vn%$ww(]Uξ qZ~7q{Âُ׻/._ Egn/z_xnGZ/BWQ?eS,ߛS=MS*6n}ld^ J?%)Nc۶c9`nBQQWB Mg}`hLx6s ? UJ00Tau/EIǁ OCx8~J%T&3EU^Ou@DHX^ε_%ߕޙwy[ןsR~ )p'xY 7sPCn@9?\ܾVQ RYz0a:W?\6} 2J>d|@פBJk)B @/[pނot.̞x){Z 篆T^Iny|p,LǮ6x=>g=68pnZA``_DZix=X- 3}5Ѧ=ԚtnPTy֍dvgRЮ1kҖg:)1K&hIOd[o+:WO@!#W}CӢ_uϿlzC׾dra) Ӫmy֍ 7 p`sq5kƿS^@<<21IaQny羠&R:HA^RA2T#ɫi~0A~mA!$'ŷ($#>qB $|x:9mC*]Jփw*MkLk$| <ɖ煀5ڈ)a]V @K[mdD49$[36"k Fb*LhRʜgaMvtPPgk̏mwBU[ qnpf[m;ڤ0sE:Su~5T\qn-3I Yl׳'pBxwc7m@nc8Ax*Rc"vj說oyjܕy?Xcz\ld2%4kԪm~4v%v=zǒ[*{V  LS EC.3sBeߍ@9qfg#q|ٺdC3 Y>@+1~+.aQ+E?UMLeҏep* )`Ğ@0mJe!7k%nFȅhl0n*H,s\15EFpg8Ee_sux4C#/e{꘍PZ˱D* ~de8Tń&%;|nj5~BD>Xh QE|8=|pCWHzZVҋ9^Yc?B|YGH牳獴Z8௱ lm®*N-Coos#7:7+͎n7+?4WnpІPRCo9rxҳ3~!8Q&&I1~ ں'/`DBɍ L`CJs(^)0~MM/9^P놿=pn1>P^A ߊB7, endstream endobj 303 0 obj << /Type /ObjStm /N 100 /First 872 /Length 1313 /Filter /FlateDecode >> stream xřn6z >$`d,Y(؅܉$$\x5ts{HɜrV$ymdM%J+ɼ%kCB9Nb떪Z\zj_D]\% }qIapqpq{@6x'욿7wno>OWie}OO~=|k~waШn~í_駛o*\`|-|by@r3X TKO@{ 1 dJ.d_5Ȅl AN`` ) Աn 4<~GΥSVBFXzmKoN0PSOtGeO[K8osÒsdsdsd8imL|tXJӰڪTai^ρ.5SfuAdS\PWkSy,:We TczinB8=ġ"H(,Y6]7ʲde4ZHs]y#9i\gn:'qpz|OO][2U~3cͽ2}n%pNǞsDdv%OS&m^I0D}Rt*0`,s@&z6t×I]aRΕkݹ,LXTȢ?SV,m_ئ6k&$&[#OtuiV4 .[qG߱1WXV/V:>YrhOmyxW86Hyp6:[,;\ uOc{:3.=4cGH12 endstream endobj 416 0 obj << /Length 1653 /Filter /FlateDecode >> stream xڝWKs6W>Q3B4=IrID$\],,'NtA`|vrslA*4Y`SB_9*Z*46mk͕DZƓN٬2%QƉ$vVG!_2" D8Xw=yA@LF1Ye? prFb3G ;e9@2`{/ Káۺ!Ū>j)0Vg뵞n7Ԡq鮻{{OSPJDZ"";ߣ9t8g ԕsyh1 %LmVхhvCO %y!ūſf"e[ŻQP"d,emɒ탫/^".YƢ,`ӥ~|9K8cݙaQ ⫯q{s-ˎg4YSyvHR$ ,,ۄ̨ \cRE[' j$"#SWaVrۯl 0wGɣʺNS㪵]NwE{k+ t˼=Dm%n]q*0SG|4&Z$@4NÎ-םh$bZM Hl,ЖX|=Pv7`q, ʖ9rϡҖy3Z{&ÎFnc@A),lY} Y*0Pr~Kk(k (K&(o휮 ѼMf}< : Nm#ƅSjZVYc|}~lwIP*0X]:d(j u2ؘeH2}ntz[Vq1X|$ǦÀ%bFw7|ٝY[sOɥklMKCKbu~|&\33Yb̐嚫sX=ﭞ`BHl~TӑO>{:K:}]İnχ,cqs#dGÜP,v-qQcR DcF, :,r(HL@|I/*on endstream endobj 422 0 obj << /Length 2724 /Filter /FlateDecode >> stream xڕYYs~_!%!xSTj]x7^9TWAC #^Cק/ps@4_wCFWJyyW۫4J܋T~u_\yۮ uǕFS6 sƖ{`C9Wqfccur$hnQ 7NJ9Rs^6Sqmڮ)Z/G߮+WE^%|C2c;m_=ՁiC[=ኦ>nǧNQny֦զA*MtOJ @.ʒ ^Gx^,=|QJT]/?.{` k6~ ]Y`oPUJt3ٓĚvICq륥,ný$9L.XV[2Bc/ B\wl=#Fk=0az=vRyqpac qd"8dkv 3ԩBkqG~o7#Kp?;&t[@E،sۏcw^2.`xm]D9OYtO|.+ bvQh7U*泩Q✡M4xUJye+JɑQSS !H6ۂ?4 #p.wۉ᭩Zr8h 肔\8+r|Az텳*>ر۰HEy>3%Z? *aMn=(v1Y`'~ BENDnʑlzFyeT,eZW۩ Q.9a1 gSYN8 O"wQTMz!0^f"b@I$10B&ӏ Q;R sSv&N6h(-q&89.w{TPO_੨$5 68`cp1a^,y!XwXi<%U"֠@9x_= Sm=)BI >`܀}â ")~uUt8ʫMYv?9 P=y&Iߥ3Ix|/>P]eyE 6]ztb|&uU:;^+ڇ]o c۶(}Jv $H@jDyM1}iJ1g lI8c6!-a_1=&t}ۃAǷQ(*e/ N1N8I)asC<.ASrЋ6g%oY3r8 AFmÇw}:-_(op ~,Ȍ>"Tz*I@7q3 ܁>}HR)k4,,Nx sF _ppaz<@>C*3n@E`C5keS ,?0"| rߢ=+s{k^F7nuM -y?Ť=3^ RA&5+iP"s>| e(sǏ&C?'w. ;|5</6ңt>MX_w/ӘE(σ$$atP ?3X>nZ g.X"8ϭ˕~^@}/tn7=TF w/R1߅ endstream endobj 426 0 obj << /Length 791 /Filter /FlateDecode >> stream xڵUR0+g&`IiqN`{ɐ贔n$Y{9:W e %ܳfs+VE#5ˬPgHH^dtٹ{BE80G4RL*gh`;ChkݮccC|0 4ֻHeiަI1?9e.#=\doGܥ31y\~㼖vUv.:0!vRFCLz͡axˤz!/:l=6zgR$ZѴvReFjO#4=3Q{L?c SŐ=6,) bŦIui23˗ӟU&E讚:51T0k}lEpt])F0|aq݋@6ek)E.b5FdF[>wM8x* `K.a0LM[Kl9vr[uCi,J;'6 s e1MV*pi^@Xo=g"A`폪$lcbXq"L#+-7w` ܌XZvgi1 QaŃ}e" p9 PHq٩&>ژ2x|2uF4mVѪj7k"!EiD6G& >XTZKl),r8S΢H Z ڣ#Qk0 t"Q endstream endobj 444 0 obj << /Length1 2429 /Length2 17156 /Length3 0 /Length 18568 /Filter /FlateDecode >> stream xڌT%z vM5l۶dlۘ\5ٶ&۶9<[}Wkuۤ ʴƶ@1['ZF:.# T 9,ֆ@Ӈ @ `dbdb`010pց bbn HaImM͜>+ˆN;@`nd`5p2Zd42('=+#)% t:QXMbf/!278~8ʒ2y;Ϳee@wst ol`ddkmg`nnc 01dܜh6X9~[~]@LP`ͭHW6 Z[maOhww?/v6@I|`LNVv6Nt32+o%_ޞvv@os?XOG O"XFFhjn'h/1s717 3rcEUMJ!![7'-+3 `gexov?*:?%mLl"ѽqfPl(Ac?`vE][z ͭmN!kq!6T2:I' 1o݀ NFfZL# P@t7gd8~o7_0pp0peX0&VV'Ǒm=Ӈ 7~_!68"'^@/1 & >Ad|rEJGL?@}S>A8?`k_3$,,I5KzD_k_5p4M| ?1.2%> L?Qfvf@X|?:dYbpX ?B8[#ǓIobv9>~l&Zotvퟩ0t hlh/4+fdGG?X8!kh̘? >Hz'3?V僣?>b8~Lṗ?Gxnz)#_1rvh?;=4]5j}uMLI@Y3`N0aye[V`*9^E/Nijva"XVE`K C4ޙQ!Wܭxy4dnWqMx6J5Rۿ`40}҉ i7j;T5IsSj c' &6>-Aּg_&s |mH,U<##؇zHS!1F[BCVʙبY5ӯze3?-NBSz[} l?=Hg[&+dipp=1!nuOeo`ь0R4C}ݒ(j Lbj]G.(IgQlc^e9hX 8j%eiD9I9Rq_!*h,hmP5{EA^bXPӛ{|کopB߽$'ς%t]"LEDKs;F';0gyUpdN)pJ024-rꨓU\+/a_jIbwz&7)ԦںQ!fdCڣM 7: 7Pz9c+(ex͊gEf"t  :;g`wh =TƖ0mKbz*rA m0rk.uN*Lʣζ*%@/Fu"sQ /'uT"'$r?)Sh#5|]H}!@'$_欉Tk^y\ա>cAi |mZ`NCMD"G>bN# %/p"pezXM hrgòDҪc_:v u.Nsa"@+d,Әkc.UYiGա\&+{&oi}g( u^Vp# ЄSOZ,讌ba/->j% M-} cG#S[2WჂC+Q<]/zb&25:|q<ġ*䦏Olt"zcKA (p3Z7#/^3N= ~d( XƬs<9k,-h1i_Kft4ѱԖ,ZQ5Όr}ūóbKhi~X}- Gm1NaҠxGe#*S_@q2yA @7J.j|! a\-&g~j+ STQi}s&j(ie &\>(p53xd6 Bʷ>OPx %kDxH _h' Wom_ 4"omײOk(KfpS͹?i#+]q%f!YnK%. HSU8}j1g?{isQd[&wZf+I\oQ>ߌ:mϝ KRRְxR8lݖ8hsDr}.  Zw(p:4U|҉t?M#YTAc^߶q U~F!ƣԘadk)t -;#(]A(&uu ">ܑ}2|8ًު̫p$?e> cA~_q;{to8Uwy@UlW>n:<<ŽiV oujcOVonzQ*@RwmZeN ŨtmVE ;x>6M)e5i8r IޒVtQ':|;z KY=)y@EZZl?4>˼xAuHG!(h{" 1~?$ŒY6gBZ-PԪV|3#J#U,07%NïqN|xvtF5a;l(2q |P(uɯ&!AՌP)a~~&crm"6C_ 2y|T`0kaKI#@ + t}K1Sa",Hڼ9 # ∕{fq|P}ԥNA]>9,ڴO~k~+b*"R#͵O]P0m*k 7Lj8qrWHBKfW$x4|{m$'*g%LBȅcRU-iSWeF tVY3Cb g-LCU~k AM&4D+>w9]e#J~{6xRBx6{l fJb*s9d$\#7focd-: 3pOHcԂޗo 4@+smsIG뇐|8J@"FVyk &՗ EChߜ 8"y &BOZ_e'Df+qNȵ-#Ѐhpup$ZQ{>+Bt@xBeMF*71 OόڹƞxFn@xmxn(a9+0>~]f p]o=KrN9K=g4O-*"{9]k6P$ &Ӏ[m t>271$UѺ*u^#fެ"0k~X?Nj=rL8 | {C}˵{eԜ?-9-P՟mUhq.<nr#Қ~?* ʣtMvM{} )L ~~ҙ5 "D(9hͮ zS|$Z-;(D+K VB~Ncţ!M Qa5qR=c\+)uok:@ #FU/fCԨ9OzuiX4NUSoMWb8/kd9 ˅̙"fQڙ|MzgabzS)Fri369O.L )wHO<Ρ_J\nUO:`I LkgO-|Qf0V׵>wGj^!{#$W)O.^;>sivZD`.O+SxD%-Ox?<ԉE3-Q dFz7_7Hܒs_m+)[)-jI =`PhOh9dsX&`<8Gk6-ެ\nngA]lݷḯs/ )`ER49V.1Yv9$giy͜m4Qȵm8MKNxƦGi06t>D6z4j_=v*7>[9gSV&i/ 4mFB!,%gc;~hl?iIIiMpA'H)L >-5-w"@vʶP }\^3p9"(F9HS}?v8c·:.-y6vݼ(Pl+KskWE-jp9Mp646&pJj"Vpt>c澧K#s aIa Yvz( v'l)lڴ~ ܾJDG'XCrSI?Je' ;8Kz>Q1qc)C]t?O^\d!Mi1l¥jzzDܬaßr kv#nHϔfy\D ˥H&g0`V|/eF۹!VBYS>{Ypr?1ԍZb&ð"}h@I:(urt6Nd:~ %f{4(Ҷn G6$O$߅7nEO qe@TqP7;Bsʾ%=deyY+!ϨP׭8N1υb{h4|Vxag4l8K^W8ZLE{7z5xmުIq"ZV鐲4?vv=2j&UuW'BCvŚ+6q0d+ZmO!-ÿ8'rmڦI}xVFܒ /8&mI~t5ju+ԆAMֹr 6sQ5ݾlvO?7V~^ۈIݶ".B8l.V^eX!-_M{>AδGZ&쵴$H?W7]<]8.T̗hd"8we3A=zfF1⻦JD~@6FilI6}*2h`=V%3lJcxrȸvHhC/1yovdcwa= eAKN:ixqe(CzPer\8 I #"<ߤYR.8!BP*k6{4 讣s0Ҋ gJ+ieL6O>5L*W]~3gT'xVegVo)q0hmV/Ѵ~ɭP"f{͟d5ӝ#B]V35z?0F0iԆ|S5_0Gbnf$C{Y *Q,W )̷MǀWWͳz(3rtk+''bOacU<N;SPYOe\ą;h0bI_;3l*!=ޕZR5G̎Ȫ@TMm2jMwT/shȗn"ĥ(_%`K8p+vzQÜsvl]h2-h%PV#tjwaSS !N\`9~e)S0ajpBW91a +yipW75*1pd|ZY;?@SqU&(-y*dЉ7ĉ+2,*>˞Wc $r'63E&SkiI0/ #oB9bĺPuv]CIȼS)h7(*M'ߝX_č.Sl :1ɯ16tʻoߌ:FOW`NR+vZ<"ߢH/iSb-d,Q0֊/6 N%ӨU37%hO" <( ӱ)9楥'*p0ξΝec[֊] ,x=篁v;IK7 EE녳 ֱ1T53>C0*١p!+Y1+S8c1l+ln>A2K ӂ\ѴCŢQFBTyhm>1I/dKZXdNO1Ӛ *Oh]CxO:{ \̎N c&MUCQ=L^R}ϖ"h +ኛ0yKоxcgV~_^PSQ>:A-M -K+h^uۦV=_zY3+1aO睨*7ζ҆ p`ni|9 WԲ5GH}.iږSX>;W }J#9QaP7 GaNm 坿|Yܗ[i͓-jtCIyX9`X<$6MQ^\FOvFӄE. NxwTĈHAtuyEo[ \Fi|UO U}*Եz!d_X0ۺČ1lHz= wH~Uw no b:Djn_RS;H=ϊ Hi!ke&*Gδ8 # AZu?hI[`MpԊS˜l}Œk D$6g%}7Zzթ=z}-Qkod9UꮿJ^g M=ŃMG?[iil9߈" @倒!٥$g+43YvǂR,L8pC*w0q T[`7~ 2=\4m3WNEqE5'@vTf:Qeq[?z2[rZ, @SUU\w.. ƜwHVS B y0 pS JzR#it ,"ae X~nq@_W@:fꅑu:2渟}VW 6K(Ñi0INyJ[ uoC*p?†Z#a>$zCn9RR g N[DOSD4 $ʁKU?Ƹ +iH*!PJL( N?Ѷ>_0Y Wfb[zl2m)k`/`ĉvDʾ r 5}9#rz0T#(2Sm7Ȍobfr.b9>ק I"rj:` Gcj'&ˑ8aGiYθǤgKƽ3^h W{\ۺ3".Ͽ?nF{֤fʽ>DSn ׆È_?LEqBwl >k#Vqg~FiG_X3ػ&rɟ%BsUJ0]:KAƝ[wN@*$b Ll+]X6- `B#^=r3Otm~yHvpz$ lxJn1ZbD0L@UP?+"!M AS1u}Dwϼԓ8;a14>.4 JDhOvh&5a)-z2zxc yk}p6wJUA %sՇɭlOff]υ.ISIRm‰uwW %Sja21P(P xoe2WPwoJl^Odm5R@г8mR? Rzv& èڢ(MLo1' ʎN+ijKꈞaL)hp4cpC*K 3ls㯝6c,(pu.. U ls{_, k<6%?cN+Mz/x\um WўRUHl_f̟<9Ba\X[` u=˭̏*Q0BN LQW'?2たHtٚ,~EU^W? ؄8,0}hȅ`mYdI ԐKu@VW(IUOA3ivz੽m7s⍞j ||qɉg?I2WEh8R$l+s!ah&;{w $X'2}픷c&}VxVFc,=/}A)32ĬEV RF:g=$յێ[punȷ$<4B9j NkV r4Z疮һVą ~sDyI8'elpkyی{ 8ZBmYj Unk v~EEvHb5tࠔѦ+弓,&؉e?eU\W? :{6[NOem X}V)S%jf"v|ipRZfuLe|GaE؆>Յ*3&$y;@8,vq7RxdG>At0Hb[ZՒC*oEh lIrzߝ Rigjп j[[F.,sㅊw{lK̀0pF11v᳖=6 4-Hhft?Qheg(@QWC;ִ=Yb2DIfaj1Y{fP<+*XDyxΡl\O7&%I ;唀W|k@OrメT` 9~)# Ovh5#`&s=6fj8v[vb 3̰^[e$&5/Ng+Jgh{):2rt/ Ij"R3?UU_Z,|DknFI2ɀT0,]D?C<ǰt [Ziϣ7S-X41$`qyeJ BO}*[/:Z &I7㐻 BbpX(l PZ ؉wv2ς Q yG:sX.sxb YdI'7da` ao՟;7 M'LIO֮jd`ӭ}eI8&kS;»%yOWL$*R>u n6%0v".:ƺ @f&k7؇qEj8xb4m8 `XԷ.ԤlÃY$<6M Ws[ВfUkY >EUK[ &o#JiAHws foxCD>&Q,CyI8i>.sߤ8`QFqE)5Pʣ*]u52+fSܩ? :;Y"Xl` 瑹7}7Bm8>3r%Ԓ}pP19v o!y>v&~BhU9`"bc!\~RkNl1l"4&M);?6sfUyy}s8Z!jLTa, 0'UTa{QH!6#XwO)pcC`J!m-lŴ,PF-(Q@-,ṆُOXѨ oABtApp|}8қ$P ]sxu7SY>DI␭_7?r vqK!ԐNb|:fHIhq}W@ݱi{8mvOA4;UИJ rvg_V eII*qw^+z|2H"%)ULGq motCGK P;mz@(=ʟ#3|ox&DЕ[Ƨ&ElO3PIZjԉ\mWxef{R8/]}^+D }R<DiRXW2o5|ߓ$IoSMr m P9o͢Xe"d(<8B*`{!{F#AakWxo[uM5#wRWxtGWLrܢ=%c{SsV.0$EL %(*JmDgPpvÓ/Ex(b9R=:,!hI1Qݰ^3 My)Pojyc(;Xv\X,=%=yC3Jmq f mR.JD+{TKMMjkil%^8. rX.Q-KcZǰdfqEHqt/" St_)Z^J*>"󋥡yqܝWwH$|/]p54~3 o:Tnn.<ВW+`6e sϹ\ڸS?exٚ+w*BI#.AP--:!D+M$!ByוcsM&|`N=Oyr' d(-(d^8OqEvESZ. y ީ{B"VPAdFt% ?^:5 Pc&PG_dz%WU ]c>$<L@d3It>6xBki)C)o[50>mu)r-'5ÊtTŤ&@rEjȷ( Dr #0ÿ[ LH؇ufUGm#8{Rhww'}(/{Ql∡akY0v`sNN\;ˉ2,6Pq؊sWG-RLy94 6 VB !g2cW6D)ޡ@ 5(Yx~ݯ+^_i >Nd|2D[a~ߐe!R ̟ňٍ85IW(l0ᱱƬ9=TC#LEI`~>E?荡\6imR@uۘ;N"GXJ"˔4?㥧#C1:L5UлG ZEC(cS (zʯ8X31Æfb,A CCd(z$%P|d3Lcr^o9'hJ89u]~] Z"&HCM K\W۴!`VNrC-;6B/@&F>t.-DԼ>vwY(dU79t5ܔӠ c@U/ۡRʵZ!lNeFBxLΆרuhӁV?nlnU/ȾĀ:T*I˂&eze.`i!S'a; endstream endobj 446 0 obj << /Length1 1473 /Length2 6678 /Length3 0 /Length 7656 /Filter /FlateDecode >> stream xڍWuTۦK.A!C&smt twtw ӧ~}xپ}_w}>=g,| vp0C JM Մ"DO@B0(! ڧ BZp@ K IH ePH"v%'BwiPxF@lA0~h  0_%8eQ(giwww~3$? p`$Z z{9~"v#Gnr! Ð$W@it?x@_rf*NŸ9`t(/Apt> lЀÃ@="mg RWAϞa($ѯ!-=b'mZYqq)B9Q1AAA !u;ۍ G؃?DHB}3oHH`El?n6BMB!OVhaP/Zho>a) @HXB !& w{uA?j0{8@5*nOpA5 ,m_Bo1N4C= g4]QhhZ7P@h(|A!`;]>uP GB~YCK A/wVؿlv(,&! O"4Ж[Y;oap:`GZ!4|b?(@8@@l]|=_w%=j:/S`p$,Jsd]mK/PIljHvĴBfďe=Z'SAK>o#ifpmx})\!5]75Z[ͭE`v4_OǸhy]6&RwTeו;~O)*NRR+Y!D\alE y,i?.pb= $rIw4c*t1MA6A7ӗ4oU|tl(dj5p >M2qU0rFduIE\ Q֘G (&kqL.a$.|gWk*1^gC3N>y'&,|9$ٛҖLP<˿^h@3SŃ#O OͶ|(3;我kL᱈Lݯ%$ĞW(w>gNGk=s7qCsg?hPE<}Q}hnJ)ŅQ@YNSs "/O@6D Y}\0@;ǫ Ñlęv;6VAL[_i$gA H ? qEEƒ]a}Z?AGi_p`M1vN!4&iVIBt'No2/)osDZ/'^Qv;A*bɮiC_S+d|?R1hZ*3hWvn 8)q{_p+WLNFmBrXdNOcx喻@LR>B~w~zCM⑈˴q֖7ݡБ*6Ya8dEr)*}uwO1{EU<8 ICWLDZy XբK9mpѯF?+d*#;5$[8Sf-յ&T־wu1% lfRz{ M( z1*?w"MmC5H&ߌ󵳝H=bnp%tU.eT*u ?c] Am1LZh_Z-qu6T :Xρv8Do|kFNݩ94̊?Z)RVx X«R=:Opt}ZxM_A <ƪhj][GKQM>eIBpm#`18qW'=ufNjܾ!^lAq%|g1a,Ѝ<7k|D#æɪ.2Wd5@h'wScYnt%= 9Kj n e@٘gTj]0:p"ERMHl1n7Q>l'+CӇ_>wd?(,Es\5Ҭz2v=yj+("]c=e&U,G𶹃0&ja}cf lYQHϷK}|.h?]:{TO[ mQ\z쯽ʳ*SԮ,DDxU="%8쎞]b2x$IOLF+!Y6~ffv+'Kbk(pi|˯쐼`ǺLUk7)q~p1Wk `w3,_'>zϟȟYj°%TSW 1Z+C?]S=r%&[`@0clBiH 1@ MK<ֵDUI{S9pw'K*g7rdɚG|eP|-"L%Bܖtʪd gꪄl46JF-._o\;-*xOqKiPOɆǤ Hf toM#:7Md:I9Bӂu+ nă13j0) j ]}6思RW-l{4\gS C5x$Kg; ktOiV$U`ϷƭYEp{oaw@7ٲk8:>'_?./E=WWx8.K|sjY01u^ =5 dYw9Щ(My!q.-~ ⬍ι*xk%B/dʧ|XTXN>cRbQjh.к){z(q^غi0)^yl6wկX%@ O[hQ^.z7ƒΟ|?2qh-"S#tB2uLJYNE_,i 0`0qڗmmei' Z}!:C¶PsEJK2]v;ANuG Rjݓ7\F|B9^hpnu5 mP`c4C^ {1)lf^4m4I$&3_!4/fP}PqQ:X2܆B>W!&k$q|7c(ҧpzqvS}Oʱ[ByhϽ3ƒ\>&b6chKѫH4Fq|+zď?\q;|+l6y''ZzJ;ʼnyN;(q\$RQ[ ({޷bqXCNI+Qős=nCiUXϋU ?s)rv&e[}4){MANJf}[ r] xYC􊸽pUdI2.<۫ 5yX: GdGJ)Q&ɞfLч1ЈS.iϖW@VB(6m@*c^ y 5T%!J+ w {3u5 ے\((5̈́b* &7Z{J2߼d`R9ר/$Uz)/|o#w Elk[WD'Rf0 _n9.Fn+(ܹQ9xqȩ(w%-f#ht(~Wrكhg"DOg,z/O0oHBWpX .mRI]F|+a.}H٫_:7ev}|{0Ys^Dy,;cHWz2B2\&N@ŕ?#:͍H4ȔOT_ěS+CFF|>KX}&A4YyFfh[Fvtv<Y酚O" 3dEґQ72f@z̦#\4rg/OaMBCgOy֋9*E!b"Xpe𣦾ރ2-[sq~4ҧxqEtj{sWnjrI2qpjc%7q/SLTo'< l'Av #}{oY}ER\ F#!d4{WiO`JO8#Ԇy Dk'f 0S2z&Q4dL:p'ϳ7 z9"\PR͡O!.5||=>ϱ ^܁wXb{w_EgDVoFdm26B 7=d;jvV5зvIMI gO`qcH psY%aQ Os:,\ak.{}z.!e23Ĺ[(9/OQ(0 F5ae $Frbo> Q]{GS>JT֎6.I-qgNK9]#'Ve挃'*l}TЯ )~/ w(%*.^H-מ̛KLP١?MoI8ڠc<ҙNE*魅< EWV kY{`Rauv{WWl8{xa^4,_,e$& JKm<U ʘ1PVM.'[H2HP:]f5\!wD^^nzhBG|F}SDHGvkOvuNx7oPg mV^bU:o' )u}\ݦ0|&6hq\(H3\C _۹,wIN endstream endobj 448 0 obj << /Length1 1580 /Length2 8328 /Length3 0 /Length 9369 /Filter /FlateDecode >> stream xڍP6[8((P<ݝť@!@ \ZKKKq-^ݥ)Z(W?}<93F:u-) DCppq22Z2\  q02jCv8'g(&'`#p@ D0@ r03 jex%ٜ%$$G8@5`5aGs@ n <+5 q9NV,7( q8B,!Ɖж:т["Nj9?ĸ, NZJ*؟d? 쀿'_ѿAa`fA/U8vfs?ă]P;ᏳRClu@8s:C~ r0 =p}>Ywy-0 ߅X8u`PG_ο6+q 5?\Ux9@|/g+prxjA0?! 8Ar@?DfyK㖁R/_髱]?^ii;p O:#*w%ajMCd<w] 0P;(vA< *aL`KՃ9֪ zAYK<bE[!Q;C?<.|gn8?\؟."0i}99HrNN`=< y<̮08!P@ߦ?z".P_ jx@&AD|H]Z^7e@!8sps@r)*7aQ }nX.q8O(mӢ&x8sڃV~ˊ,f y2)4~R^4pS:u8A+U#ʎx7&AMjͭ?=]Dԛj[ ~^wVPZ$eF'C HgQ(*~YK`*Up/&NIܥm_62,OmhUg6+ngd*r& }"=C1_>2z5J_Ҷx6 Uo"uQ+o=$[9rә_tkKKG)CnЛ_&ĸ#p2hewx ̖e<)`,-$ME#9)3rOzjc zq~-[l9zFTcH5XE4q`σCzfW?ݘM7^ MznМ& aAxuXg j>\0QF<XFEt?pO tpS^6n,7"ݓ‹OBG+ޙ+$J99%ɪ'\G܇V s7QA;Dz|Uy&c]Ի7UŐK=*V4 9]c,I&0tQ0f_Ɔ;n.>L+8E֘U=~~z_2XDIIIȣؽ%ˌ?ƞI$deFŽ| ;:ا;bC6y>ڎܘ#ǛC3G_@WTeP]̶x2mU2z gx=+i΢#?Pw1cYr7.$BQ?3 2HB_xOѪYTtX UM7wPZi'u:'A=9-Yi1IhEuYC3&[ݡIq88K=u вUC#}@?Bo] FJ5LRԵz3 zm&S;kbeq8CnZ;ˉIflck ~CݐV~ CgWW0Wtܐ؁\R/JLs9nzCkm4ыYGNchCi Msi?C]M1$Ky;\|iW2,֤IuXԌZVY/*q\kWR3Gk}/%feeS=R3rPn8.~>}2lf{CTUotß$yt=֞n}{‹E4՗fFrsʻ)f[zErlB>=W}\*:~J"7Ѹ 91PGq;Iřn}kK驤F-bx9 \MU0qՅ۠!ߖIX{.O$槏7^>D`9cѳbA!Nс郕\<h~KƄtL/K페%&լI`1gCƣ*+F]0Ƴ^g)g#Q-&^_} 5m)VltMyol86WZ+ =T9Z" B`Оw9b,F!G߂՘ح̪;¥Orb5{P[ _M^G>r&KuHv iR,mNLO`4kX*8SbdbRQ}܌+oWL}VʏJlVZ#XS>]f{Kć4teaK{#66쵌F1}ݡWx^^O.2D|a]ǝ3Յc*L<[-|M{rvIe8F,\Rt [W7[csS6Ͷd8Bj7,hۏviY2g\Ԡ|OqqG>ٸ&UG^/{cta<@H\ *zō҉ZӡC-x.NNu:Nj^,qnYQ$jCZm@]"Lh?2 &{MYm񺶔hzbP~sciy5ifB|N_*3Ł *CשXҷ5ZEC:w֟c_3/[(gQSK^B.& "ܨk3S?fř]4 D!??4>- t!xhw2lruHk_ޒ<7{E{0/ׁu_&k{ݳPC 1-u*3YЖ ~d2y'qYsd9Д'l Jݳ1pRHǥ^\|pЉn~&"b#ZG5EhAħ-ʣ#IdAכX@JKv*xW:"ҥWIܷZjB(_i W ,D __&Y!IKHsPU,'>iCuqOY 6gtFR vEcٷ(z{D[ .ϩ2Ҍ"Úwզ'xv>2+^űMxMiW[a,ޢ#Imr/Q=I۟6#32tY9R;.^/cmSSM'?,0`Wx4Fx.G2HE0H$zYp6E1hm6+EWiQ/ -/k|q%Ҷ0;Ξ ޓöoe%C 2s.[:+t=7(ܹ▋ ;Dҗh7)bg{_O:~P/m{Ye'-KqSH>xy8${K#YZBFQQZn+xe'g \K?݌] g+_@3y LHefODNH#a꼤xgǾvo]Yd])>]cnn&%DVs#֞ n@&(cF1U\#"iKf ֌DTOŮ 0@󤎈c <-\XKBsLJ Ii(|ĥ6.̹02h20)ŷ_b H(P̸g)S&)lTC_|/L;̨jvَ97Fx 'rWtq5e-V[Uf7S;3TܷuHj\ɆxK+h dev=kr[9s>bIQ`D#ֶ)kJ:@}Uʼ!MgoQgx?T}^Ynr,!GNocy,ENdUC&lre݄ʮVU s;6ړJhAM])C-nY'̀1ON[CD-PLmƠP3*=))OH[3907c3nq%8.G)+b.O9LoT|ny;ez#jhk8`_%/rft+RO~>6AziMȋ,A1"ﺉsΚgO%iV55B8(V?U^<ŪK80wX14ukUMpxA)TX| ^Tu=.[ʹ{I߼~+9FWHr{M`wdXIa]NarRhoEfRHsx;0AF7_oh;3v)$r'K&O.]]36ࡘ(UhF&(JELd.5Vwkq-V(FH'ͅC=ԢMLE_`ͶR[kEaM2u 2x$2ącIH0)]O Լ.l[N{}BM{}:_{SG<>헵v8ȕ?O;KmhtKj;m,x+i*C^]pb`3ZM=Ш!-UaG_tK>iepl aj9ZX)45om,}'uN}cm9Dgɱdlg ɟeh\s5ۑB#^ äv,iU@f)3H#]'wq*5@#tj5Z_FFM?b7959r<ԋs {b7|e's]ܙBc]{~4P¸coSbq;VN}e5;`UNClMA ٕDIkG&V-MMoorPQTcTA^ endstream endobj 450 0 obj << /Length1 1497 /Length2 2482 /Length3 0 /Length 3435 /Filter /FlateDecode >> stream xڍT 8\۔좼ieK\{3/2f,dKR!I%˽(J"kJ,-y=|9|Ϋ䢻Lqt[D+ zH4+ වdAtK&Hd>+"F4C0zcdFX4dHgVp ,H&DaÍ_ &111YMLD"ID*B'A ;;(l6@CYH:3h)>2A2Bp ܐj+b}D&*Di,8C#LnGH n 1ʭehD "!ZQAgds:F^,:O 'BTb X=;q05,bYHD]!Z)߳5lI il &H/>>= h"d x5 ـ6220( p5Yq,t@bAQ?~1 @фW`WhXNF~NekaJ{󷨅 D]uzz `hbD\_:PO &_9#|Mk +4/Mo_/P5C!j4 / PwR@2 w&kK]DC,NDYU4T:YʧNB^XVC [?%D&)u50o+J@!it6@:Sxe&FZ0Q& 4PL}Cŀ'I'G` 뻉E?a2^h^ $ If7~#GE}t*S$-ِ2yw' :)zxd[EX4!HM2`*:+qoݺ%+M6p2j,]Хb~z2Q@~ !Ǘ&ҟM;RcMvܰBJkn%R; Q$f0}xF]= YfdzҴONI9:% |1**B r%Aɑ2!cOWcҢlM>ze/ 4C-w 2wUqw@XS)hC4#hFl}xIl{^Ft&csF-ɺGtzj˓ IW=pEy* Fͅj3/'0}:%o,CkX]Yί&[+Qgܾ/yAηm K?ŬdT.+L@- ] M1Ql Z>]ʫMf keY؈i|qg9N6-_s\\k".PY\+wȇk^]¹& kXi&/A#;ڀu)ښOG1n1٩ӛc^Uq8@l*'G7ӾXKڙN='_p)*MDTB%z:G@Vvkl-Ӟzkf1M#D:>b%_,IrfeDUl 8/ml];ܘ:uͼiԪ:Sqwk¾wll3lZMmkv倓w$:TJue㡃?9-7Gj3~`?Yg/^(qX>CDLE9, 3h˂T7s~]^I|IDyYWCN+ҩh-/U0},vcm1[ҸOmH}Z)>~"x4RecmqZQaSGj J+kWo>P3>\*|G(jrCkU_d;?H0Œ_LMmxB"r0 2G%m/ޥݝ7ZؼL+gjm e;e4He͕L{+_V;}]boiiHKx̟]c< TB Sb&cA;Hͥqvy˞Ǭ0f2p|謣qDі|O=GS,w`Nvw͎|gOrPJEh-olZ 1>x ƎبQy[z&òU)mI?[e;WOH0{eQ!ִQ6]%ySҐjt*BJMO C#s><Җ[ %F*㝞g=UВ31x}{\Hv"ץ;V-&T_86p=r_.w='r^72fKZ҈ڑrtU貿>V3TQ= ޠRs;mo9}B-E9XB+x˷-JqVLkCQuI DQ~tFYnֶxո)e͹_7Uؑ_;" C-z3թ)2@\@lbSҡ ^Z*ޕֳޅkް^MnKѭA,B.}S3aPS~'dw=WD}Nn)pwǟ,2>;E,҄|OwU~[L)(e2f咁c=e>K/MMToe#Y^qѯug]z7GD(;)Ȟ q+%8%cfR8zBoKypp}GKrO{*݅G{mum x_d3Ww80;}Fę`9ԅaKK:?Wv:Ysܫ儘wq*mȨ*UiQH(9,@՛tNo*mRw+gK=$}(?t+,H*NpKVAnGc`C9\ z_}^ endstream endobj 452 0 obj << /Length1 1602 /Length2 9509 /Length3 0 /Length 10565 /Filter /FlateDecode >> stream xڍT. (t ) !"0 03tHwtww#-"-H y]57tTjf0S, !RVpppqppiAނ 0DHكO6iS2 Pppr8888\@g@ `n Kǧ>@NAA~?6`{(-6OA@k& ;W KGG[!vv6Bqh`3o /jlt-KßM  x2XC@`S lxДWڂ+k8N6G2nb *9:P߁@kS>>qt @VB|b?=сb#2OcIllPG瓆؃AOswcrCa.P9jf-6b+Ʉ`W%Zn?OӇgêu:+CaOud48% -T`Oտ/y H*Wd3m nE< i9aO+P 68W$P'rqi8B\fjGb6zXC`5?z\Oij}(f{'x@{{$/iyh9>8{a/.'+* ^A` `[|*_$/v@.şZ>fw2NidHi\?,0 Bjڮ%H]XFDq:Ljf/(pY}V\=w߬wJ)kAiq'T V\N$P}/y8v'E&ǫ8zbY~6t%2ͦZ[Dm7" BTRE:nc]Wpzȿ*8m9IT]ż*r>Hu7Ó"TΡ Bʍo>&2Aygj~@՞S` IHʚs7Yh  GZܴ~9ʐNaY^|MB3*ʦ erqu8v؃ACO-ʴFܛ E%xU&ǰm#Y9ϖƸ#3iqYoar֯t-NJG ?w%k~{# R4ay/D.HHxkhǘ 'B;Ho{~I5wZR69cB|C:箮4>Vs`'NhPv~uڹrb1C#PE_\(kG{ڃ7 Ȱ=G%Qb:;i>w[S, Z !VsK1=*`R\do8ڠҸƏiGW^m7orvUO6dy #"AU ˮ 5-;@ŭ7e_6-~n7:r٬:Lf?6掴-WL;2=_M\pieō$֠ zfA3:ӌ0y#ZF-8(eKp []%HWu+ßIzmC{_dz7 .]li|>L /傳fׯm_\ˬi|ԘNGzYCՅߧs< dU몗F6{#3F/w+aQN(v[݌8A!nJ M |% EԆt#q/E.Vjo/u=#|*ddgtu{޲x@F6'8}H rZ!WcX&wہ- <6 c+2^h+^3`bXNsBcAɻ9Q[7R$Ni6SpOv :9䘩^a`9JgX1oL|R뜑U٬v#g3F[xnJwaг&D,h9GTqx3;Y,1t'zq2_,9vqiM'҈>-35m!5&yBہ?O(< -ocHFtgV uM9L@6) # |"hq54hEo2<3WZHs^Zf?vAݜhyG%y1TM@jYXk'SxEcد[O}Kk{|[>\tv}:YcePM3Czd _]Ȣ A$iNGt x򳗿>8Ћe7V)¹.lZ'8,8yv;%>0,%7\xC$hhX?x uPЩ?K$k:{(}8JC i gJJ.D.Mi׶:Y&uxA=QLXUJ/E H?"'~\Q(PQMB3yGZ2:V!<QߺlXse 򨁎]ӑ ,#H +eEqQ.7 RΔ{o Q=.1RFZxj ,*V˓&ԁ /|iȨ5$1SmX{[WnaQ/KiO4#uQǒ9:n+X2 70}Nhɹuڤ>mRm7~,6,2;{{ZWH!9ITd6U"YЏ*%[B:*EBRإk.0XsX_f_{| a_31G?wh&7&+fkeo=pjOȚZt/-]+\~Qfx}8&y6)JsnսW0t5HO)qOv1Y#TOfla &l&ѯ@NcBmrlWGa 8"3dL JAWsGv|¡_BslYƭŧH2C3(M'#Lɷn_eFjVQ{3lOnfBC &Yd%ڒhؑ!1dA$Ci)jm\QRUCG5W]$[ ' n YǰQɞO|P )̈́CWr8UK.LϜsu+c?JDD]uXgh +ЊP 4$ݿٮ*Ƹ89qyv{ya9ykJ˜c&0h ә(^Q B;?ct)!a Ox|8+sZvV a}hmjW߻jvf_MK MBjJw~^P#cG-цx\*?:,7gA`hlW}H!L߼3vr 47#j?5.x^&  JN}@fsjQ"˻>$UL̦`%ZS$":F#i෈.sڀFpLd/fAQbA5ތ ^nԓ[s$'}]y,::Hzd7Zq,ia8QjF5 %_eC]=EX} ,[A'fKry9vϣmʬRݫ %\rE|ʒe@88/ yc[93qWuw'|iB$ $k#/|7qY10e}o ,9n yBfYa"Ymw TGb{%I^GҦsB~j}78bxvW}T W$ymS~l\)pb{u~$.HLA~&Ъ{dA^9 ?pfsy}g;y])θ'wډ5m8lg:dwK#FPN<&s3P2M !&Z{7b3q]ÝdJ5?GVa_7mwdJ[WV7To|}x |K_Yc//d6 ,?b9z!1y>L)F JoHj`ˡMk9xԟw8w5&|1VEhjh}0sڃ ;"+t197a3s™I:^!sLuBa/"z5ri*M2U ohf̹˞#D3+s1v~B1z-Md>%U؇-+9 4DG'+7#L _+r^ ͺwe3Yg )}}pٰY@@Y 3 tDb !P-nE.緽-MA .n^`eS pz~+Ir! 5M`}ts,XkT_W@yB}ɴDԓƺ7(FF@-^P'xoڶ:k]VA)|ҿQbS)x .tDµ0R~}oΧvq'={qytziyt‘C=%K]Ti&})Yail ]ÀsD Tp*/z>+zO }@pUYuTQ?:r]%I7Z^V N(1^;J?wSa$-x|+Q0B\$!)*dV#2uo͏vC5;IQtk=ۗ&CzFVcB*䷭AM0i<ں Mh؉ȁQM%洓#]m K]4!/O oVc>AӀCQlo+ėY/j}/-}ﳷ*熚)Qiv$ G_9d%j*^!X>ŖwesAm,LOmCAוu_PwnGEkB[ԑ !->mz66Su7nO3R|?IACxk$}0o|/$(^<+W˻$-Od+?~k+(_ 3,z Sg+gN74RT1uX#'_ڰsL Wua:x^ ~FFFu sWCs>4 ]˗)Z1Z ULgq\mkS*aZ9D*C:sz7EnmK?XsppaEbxx‚KULZP_9pd}8Mޕ1ԪLN`M>c_Fu'kWāj` 2Gzh+.77mP~9iʴK{.(kQi֨I =3=s>2,{SU06m1[/[sr5glt|?XAm~1exNXDH+<˒ijgT^7Cf\^;}[^o`腯7; >4u*JQ-kN?.ED8I9F}88cU<7ղݚ@,am-P-5`Pi[#~= /%K,1SVbu?MmT7>qA!؟堐VSSXJ B1r/aP22.嫥Op.U@&8o@,'}t~g -j2߸]RwUړ̔&i,ո$<{#: *QU *0ܳWLl61a>,9rnJp9Ŋ $ڬJu;f[GIqB=w{eсޫs]I~/dtOcoX*e|: 1wni +CVxOj[f6<",rM,N檬O&\pFq{Γˏ+^ۏ*qlH!_~N(kT2(0Hg䔈,ǯlighʹ{ _ÍjEv k//(uϼj7g(=$}i^3r*KD?QqrC0E@`*hlb79("d$f\2p s\=]oF 2WWS:x㬓mw@$ZKW?D.w9rV'ة9 Ӈ]3k5}!˺ݭV Y87ʇ?bsW#^RsGK@Ng. ,On`޴P<U *`XrQ!#|KTB;wh""Ǐt|p;S,J&i7cfp*LI_WQ3_:kdTvU8AitmpOwO ~8mTzeΩi.kux? & ?xGM 2;7_5fyxon7hCB*G-,'}JBi.,=G K_oُwMc2FE agE=K[Φu ;E_3+G<I` < SN.hC3v<$.i+&|nYq8268>F{j:D\FتdYGRnX} @P4l+]BLI fNШ-ETÊUbB!$Q"R'jgD~Y&;[jk=<6Pfۄɨԍ5/Q?ll`tEyU ?;v}3]HE|c"0-K0G /XqWko'h,!VTPH5O-$H_O8wv@ei|:@tCc+{~CLm6RVbyA$ϧn"h [>SsE(j'l󋸙+x{Eg$I35BЮC ,FKI)C ĵ hE`(( yco<[5iB SS]:F2;Bނ~kM[a> stream xڍ4[6,D0z{-`t3bF{/;!JтkA(7Iy{_֬̾׾k3kpIY#,a8 Ȩ) @ >nIˍǤsE#" >Y( ݜ`>X@,(xA "Y5@ÐxL2/W{[;zV+6XXXw9@joԠ(;3zG+@aeCy " uFr#\m8(;6 suY~Caq1t:@;`p$ n s7(4\`?ɪ8 O5.ZY!]p/{- АWFy8PDC흠'䥴P4!\]PHn/<ڠoYn-pvQH_瓵wY݋d_=k7=S7_)h?>[  `O0O+;_u\`_n4_  koC 0 ߁[x`0 vl{@~Ye;y{<*2*'&-px!    Wj@tT .Aoo /Ͱ:Mf +%=0' uw+e7Zj:je5FPP>hsAHy{O=z'{8L䠫@eg~V Ah ~ C球[!ɑ"BЄ@[[kox A ۂx wAc{7LZ./ڦY[ZXۚ6e䘜%o9>sIdz&X9^G E@ea(b9~jY~B2$> dk'7:dG%}%'|[~Jϛb[h3>8Av:29ʚ |foHJ'!ʘ 6󠠇 F.[|*g8zu)~eAA]~'MqX=+-V'fu>@@]4$3)DfYfX…}jԣzM%CFedxgǹ㯟OW0 bQR~3B\*UaH&16pP M 8h';uzW%EcpÉΒ77UCmʂgq0OO<'Ntr>(Hޤgsx^w**O㭫2!yWI X - Յ,AlC՞NЪFi#-_N-v6u? M%mMc|ˡ E%2 k 2Kӥ'1x>xHŭG sa+D|T=壗Ly S0ܥJ m_Niݻ5K8f~{  NK.37/Koz3u-1`}ӻ *aZB,VԚafGs-_S7|N\ƘyO(8/M=@CIZ?}T`t%pj[uZUkQ=sv#Y&cfb/ ;[syCo` &?&r'?&+-`|XXj:*f{NcSA"pu4sBZBĐZ4H쥧b99D̻h+C 1kQQfbDV\;ދ:Λfz[` 5|7\ŏ puMwWg2xfwwʋO ֥30O"Iap|`!۷LJҴ8aƉlĤ[><ɡn/LzĠCO7jVzZCނͮkOYWR?c N>:6"{$GQ,&x.e`)HQy g1BzYGڒ$|oh h:o^jYijW|t9$Yމ3$G0M&<(6M&AboKU5&]+W?jdL%a򦨆A9,ifј'+nlq/薙,;?<[G`'dsGk9l@ldkYKI;YUHkkh3SP;2҃ة`/oȜj%-TBTCiIq&_OŹ$4 맼C=^pB*EZ "[uXm r$!y^kߗN @ӷ1[mN`|jp87 f֬PFq9>nFrN]ޘQZf䠓`:{#$3EY61n bci"aNNڎ$OrM8f5.$S:1#{9;u&N3V//ear%pmjo)<0 #'gj/L|zGlSoO 1vnyIPѣ]={8n ~~[l 8Dm>sʲF `~neʻ뎕$xP+sקqe6ܑ8ovV/n GrXcx #Ε/KgiSUڇR"L۩ 'ܫ " /CZK<ۏ_11a<0wQ.|\ߩ0|1p+Bu"1ǧ'e"GC-ސMS"16"y=1Gw~4?cXwySuY oD'$`N!0Wp%3WC_\^h/%/PP]~-4l:\ɗ{~'Z]f2&F1uzrϵ r,Vޔ+]8e˳JDZ8í%1\J:/!ΚdfRZմo.O$S}|'O'<-;]0{:X'ŽG/6tX%A1ki@#@g1ְ%]Ȑxȋm;,7ZvYݝa5wک]2=wP )fJ̓8!eOs.bMJUzIo$aUFwwVE ˸1uodb𦿰Y=Y+yCTjߖWN"e9̣\Vܞ,ڔxȫ{Cᇏ@6\c+*%* F; orհ:Oc7pci\qykӨ{mHҝ8[0`B偾_Qi^?rpVƘ{hF*2 !D*S$*]sȃ&~"f/nhpR1)tVV|fsCG:=MR`z2O%{c?p_ )M.AP U(=_Sϫ wm&6TQRV 2'@س@^#cаl~%`i?Qjzz9h80" bwvǕRre}8a2~΄ܫ{՜I@i#/Kd ~1܌H/n>JǕ LfFW;,򹢱)C,\>`JKA_oJ %%IŽ;#x\joOJ8lO=NߑF%eHyZx[ׯ_}`/| pT؟̀t@☒RJ/q{k+kߢn$97"ۣ\q $Tc0/-:b Ht'c/ޫojQ߈@Ӑ kIb0jX6;bŊI$3&S@w?7t͸rά[cЮ/2 GJ^\N/\68C5;IfP}U.#7@SܘgDM24pu&u*C|mizAB4T#}Kvu98g'j$Bf_`cIC*SuЧ h<(];ʚK#~"hwQx bNj %LH3%B#H2_f2r:B>x*d04FM &O7ɉWJxdag3-RDYK3?Ͽc)s X%73]-j{ѥ_ N+$zG/Bf49md})=eWO'S9ou='߫= $n=rp#LFb`sц=|9#՛:97Ɔ:vlq ew:(A (p -vqu_,5\?)3y=UY[RݳjqʧLl'd4BJ^|6!`'Ĕ{|17|E9xG>Co.ڐH3@&TÎMY¸Is rIR/9B^iL˾'l|pl0dR?_vhD#yfHa?(lԒL ~)G.sdR}b4WRR#SO~qzf76\}t;5zrUZ!ph#U쁽9TJrʈny,0# 7 /;Kǘ 6kGQ}NJ+O+){o1Y-\y ii2^b!X !%wa, kŜO`" N+?5v0 F<Φ<'nEs_8ݻTڹ;YX{_Ng?,<ncMr-qH84+͉pܓm1P,텐vG`dzzwRz RqD/x7WUK_Ӡ^RF: ϶*E6iq­f0Pgw1) wMjOFז_ :S4q fBrM!Wӭt wƶ)##;t@1ᾘ`EB7=Ј-IjEd~7CgyN102-iju:|f,VUW\ e i2I ˈBC}GOq/iEѯu xUƨZ=Wෟ6" ֤b8'ҷP$p黭uM,~QPbcnFXUDFXN`}s#V빱:[[e쁧eueD?ݒqV,'/OM@6 endstream endobj 456 0 obj << /Length1 2926 /Length2 22929 /Length3 0 /Length 24562 /Filter /FlateDecode >> stream xڌP .-ݝgp܂k%xp dwK}UU0~߁BME (re`eH*kppٹX9Qhhl\Qht`G`+&e Sv\^vv';;)Sw 2+@tAttXYB#ޜqlcn (Z M6@Wvuu`c`5upau[00:P8863 9; C.l xϿ !p{=ulLwOB r_V5S?'Y:n2*+8B ?+ ;79gugS%$fo/\![ @ 7w5l81ڸx-l\ͭnTstpd ]B%A` zC ,/eXA#H{~KG06xlψ&lRψ&/e<#5up0}vsM)<#9g! 䔟3SA=#yBMAi>#5g t3T{Fj"~H` N D6.v㇐1u}9i =M퀐לQ\Rl`iܐwW[lԹ cp7!|N '%D.>y8w!|3Wspg77oL9w۟}Az Tr ? d<<2ܐ yXJ 7Om?3GHN?NqӳR I_AqA(@t G(_6? 5!g%B89-SX[oQ<r:Wܿc$7$󢼂4b~98 Bނl``cof@GHZ? D@Y?AN{!z?d.r!+?7< h8h.b[~]#N=! մ&H2ï"uo!'JI uذn*Cf^[uD&nvx\Xrco`e H`+D>҇~9|vlX.Zn)bct<MbЋ(PS%(ɧ7P>'ͼJ}C an#NNw?4݆mX`Xµn3_v.GN A⮕r3 vy!Gc9)axVoaRPn_YD<:eҜ"D謀Q腚#P"sf|wIC)AǑxf"^l_&gaLkDsrej3TBT. djz7l\®~ݡ8U0xn1qƌ$c`uB\1M ㄬVT'ts:SӜɦxD;s?[z-~+>YB&H>:~y^|Sm:0Sz'#7L %SpEJLŋ릌M_gp$3GVF.6y隣;i5˾뾽-7E!]8XNђ|7}l@|.h)@RweS!;^)W'qOƱuoVrP/+5uE)c+8pTYqCx o=&D[`$VsStpy62.+QTcd_v-f&Eh>Wa 'L[gF\\%'`]-F_L6kB#JGz!eE(؎jQ~y-Q{­g#Mr qy 4Tr9O=ԯDOlc&Wb393xPxïc*P0B$ލ QW~CbǗWO":ZDHs:A]sq Y~$O𑦆L=yd׏ھBZq* )%0SZ}1] я/\L {1y5X^wK<Wr2|+C7x,viPvh0R~ʺ|#1sAD3$eгjX7( 3"NYe1!91͉ LfJ~BKudыD&Cҙ㨦MUyÇl]0CtkP%އ2:YCK}y'}@y5Y ">aJF'ܣ ۞ϒu4"x3׀¨󳇴e&1^U<_*.pmw`VZO*gԷ`y1 ;6T XP$)͐jxR[PthB'eGd|bJ}q~ T4jSl캩3V~ԛ:QW>Ỷf6pez!bT?pIl$wBR=@bw0RjO"@j\Cfb)~u^ZhSzxbú,|. c@LΧ-a9qZԐi1#JrӻϮq]թxk> y⁏q߶s(ITLbS)lAu{LD@7 UƊW5P4-H>ܑ(}):kK7'F--5'j(< ]() | `8*_߹+xUSqLybh&hMâ$}ņWT5c)f0th$A+VZ&'P!5.r`:/o"5\GeU|PZ *=>+*dD@}bl#Uqa#'Ʀrdڗݘ0dqF(_S[Hi̽AkZ JUeݕ0ӄiu@[ji p98t9^_r?v U((>P[U_El][Hs|3i)[ڟ{ɕJ|HHRBZdgEFy'E`0 |t ngW球rq}G?F|[Z]<9*e'rOl( 9^|$lhs:%%-AY/dɩDHvbXߦ;!Ie>g"wG|MG!Cvo r_rA&Ny&>t"<"2PF ~ 'd,vˑ~w>vb֌m\r(L1t)Noqa4[x`g^*}d'$ _@VlIH SSgcrRE=o]Sz.akP'QCςTvf8QG̦oHn*rtb ut)xfzmgl~.^YG~G][.i}Wn;5.^o $OriW#iH6s:3wv;u-P*.Rhaĺx{S#]mG~s[Ґ潪kMB{vq;čUm+]ͿzDp _>=shA)c.z~P8grL]4!̔˺ji.GaKI6qkn꘯fE|>1Lo+ۙﴲmI4Z5Z ώoNӀ+}[ZSz'@+t{iCĦhsz={Rznٲ-df0ۑUe=OTi&v <\Tu`{-~cpu⹡oߔ{rpM\";q]Mc_ p6y/5xLւ]ٛͽ:wW;0My+gYRgwv.)"&91ej5omiԪšE0Q>'+N¤go}uS| =;L:EtP,m,54JYz򛇋Oa]ݸ/C^F2Q&n4.5lE'\,}]ʹlתvcuҌF薬u@ #jxK†zjα0iQܛP.?qglӾ 6G=%lpme+=3LBBzh:y7E|-PU-fPe [qN&`P2< Y1&f TTHH7{vɭ |ɱ)pOcW\śaB fzUo>+ןɛۓ.+IYL#O)JX|.4t<X1WU@֏1G4&](&'C{ AL2P#k- t㰅ZFƨ2xaiS0_)W9\8u?qz:5lf2X-ƲhՇUE>#)g\Iี}+r6=)Wq 7|.+w (oh߯9a'g,P&aii X l@?KxCS[G/PͧQ Cuq't܍ 2ͨO5܏GYGj qY&g1t"Zn "yҕ#•)˻SZlu&:Awq:5oo?kvQl65rr3UCcuz mf1UqՂI"Zq.޺GJ{D9׾bC7f[.|Fj ͸$?C> gZ8K՟Bq#3jYB7:[&umMA-&̞`ښHG³EqIXM?"~D&PtV\"bbu\L!:h+P,` -AdO!E6mgWҦUIɨ1C 4R*gTEBws;y0xZY~V$kHuڎrVI|hJ<:rX@Z!=7IM8-Uxts:BjURVL6$8Մ. 7z)?,q*UP5~ZIW;%$: Imz87=zut.>5$S1 F `RL\Ɖz4no:ɴn"2͝4/M`"@o_x/^2^r[0ql -P+FH0 0 ~Gp.zHUWVzR2z!@_읯{\&H-'^V\au*e޶E$IU†ZVwEqrc*WK8T_Ex%F|ۮJ/c )Z^}=1 EA˿il\fww<](k{r/4DcEfF9V4E氻S9 z0`g{y^% ZMl妿N!}hLA'ό>eO nP5K+jX֦uC%e$ba1r^}t:)88Lv^k]|;),0J5_e<@q] ٻMjc{8fL70wpTTzhXH`hpɛgQAt.RObH A2DB*D& H2mxGCcTߔ{D\m^mQ֣)F#>_-il~eф4SH7IAG86"$wtDF)_[>x/rn:-\’ !`2(ˏcsCHHlN;sMbsɤVL:L]w fFBe?BF{dڛP=ۗۛJt7qz^)A EL~uM9~qD&,=kJ}K\.vP AIƘUԃaIOZ'lRVF/[*3Jp淘Lo7j^+\*LH2)WS&syLl|gX)c?1/K7sЌE^9eҧNR`Q ouG2%9K*Ό7N[WЪDȏʙ0au: R,>q]E57s}$ǯ&޽kc2`U rq\zG`3n=z*g/o{XbCG{)Vn1X~WeM ox]$t8^Tg+԰i‚7RdߧBgCoŗPcFY%DE0w7ѿ񯢟K~E!Mԯʻ"E8P ~ɫrvxg)]xK>|dƶ$4&EcJGly~lP , U`XeS v `Feh{ hsIl'-,,ʫ2z8^}_"ܪƙgvy"X9?&l㆜.U({̽sZ b_^ .x#؜ȳ\L0/`Ҹݢ|j?VY^V6;ϲgnlg߱8L)rf6X>mіx=wTAה*f[49\J9 [$؟b4":%Rɟ,13~snd-Ͻܵ;ɻ@K V=P uut?L"&'6lx88uv( Bګڤ!|xI=w; aa=}@thU4LnjkVˎh_&]M$Unln(sR2Jxa#BzBd#vIHN{V~N=`2GIV^=,qZ aGvS i . 4P5 :6E&pˇK(4tVE^6|9r%Lb>kʕuA~Eɮk]}rd_}sfj!ݣU$HKkXOm$Zѳ)Da5 k:0 [,vBRZ\g9;g ,cU`_`5Bu( \'6ݮQ>dDgi6m~7/({/yb"ًUXHßVM)/^r}G<PFSR*iŦk㪸KpGaoj cJ^_"d5ϔQE7 kԈT2< e5 _Znʵ;?U,4AQ-|ۗQuk=}aTq9Fyq U;Fua("~n~\[ݚv4s d3||ے.asyÒqN 'Jk[ZI&0[WRѕ¹}ww@RN 2B Z3LI~.!NCi񪛭L3i1f;&~:#aN1UD?k,svLM 6Txcl'J,#E@ƦoEŁ.h,y\ }{5]d_* N19-ؒ4BKgD5XbêmϬUJ2M~_JоE$Xx_1ܩ3#&ry?BmY2F]薫2zcI]KD۪=@ƷGp͒q'j?[74ٶ1}g@HzU>5+ W58U^vQ;؁[FdBt#eHk(DpGۂx{ #L8ٸ(ބjlwz#!K&Rᅤ S,^=eӞ;lwiG$AzFbn)N~gcCYNB\TB~*sL4^LEk4 8jԱ(k+MRoFxFYhG|v?Un͓C16m sg;߅uK{p*Cc额1$%Sw$i3kP+ܙh!lu y #0\noLw \r%%8R^;0Mo?7]*j1b_Z!E5옪ncmi&`9.=Y8~ML\G#*o>,dT4oy'ۣ-r$kޕzMyJfg&6 >HO𗕢Tu2(i \ygwMCǫ8°S.9==9iKmڦx;%іvdNɻR3(F:6l$o 'o^Аabx5だ}{^YT__+}&7"C4ղFE0DY yAD(\"0zƖя)\X$8{51N㋡mj3-0̝8|'Ǖ7B[oM[03e6a4#U}Rǒ(.l-רAjm,ĀU7[2T-"VO("[. q>K( y۶Z|BcUPٚX٣|b:LLpJV Ngw =&CC<5C@qWdꕥ?n(!tGDVp8b fwim O<Bkǵ;w}}ϝcds9}Q$RH>-4}#|,!t{TK;s{YG/b<\aQ~&'<F{~?3%oo!lDYQ3\ѷ~K7:d4' !ľ> \VџݒRߞO$sWO ( ]$O)0江3S^YbFQCl~֭l^mRbIsѩۚ|PٻrV)#l$lG'j?dty2h WRvyΗr\}zyBxP &}/.EWHĺ_XKkmf')Nѩi(~TV-2Q)Ntz3Bu~{GYyKg! n6d5auyO{wʶ_H?*=y&ؑ@ݹ`2Ӧ\TM'BPɠS[ muKz}pcD`hf-: )Ot=d:݈D8\мە6G %2нY\'>O{7\q_L> 41flV)>꿂ل;4cenZ07]M_fV*h\bx;|o >3\8&}>U#GHN`}|*^fj`uVL|,)pߤ$R^ƶ%Ò7B뚂NZҰ8q'##yڱlGv/uRꣽ̜J>,WG`_)U29 W/lMtHܰ1KL0fpòU@EfwX0\-h;axC5AN@ۗ/F 1#KYukO%,‡7)޳f KH<}R4' :c2V6JammF{q_Ruɠ'K? [dxߨ3+FK|=W~Lҽ5Ղ;< 813y}FAFS%樏u>&zt?z{k8[S$x*T2M1;-܎rUfA eXFyWL%z(<㰐[7[4n57?3/OiDRquIڼs^BdwT)tOb7RiTV񞧴fEqj-J$S] 5V(W}l:t>@@4kig 褞2+n\Vv3[[k`C$oR yK61vwYRmq-2ou\Ǯ8bP5%|M DЇ m E -K+HWOPx-Hu\́w}<ߑ߻#6?~㾟NRVsgmX}&Ê0{ e@8&pwѣ>DLΉ,(bv;MAdŔS1ۮUXRUߝT= f"f _)D_Da#8n{WavC~(,{o ˮzaJÊ軎ij.{8BaAm(vGNh(USjgdJ*{ g!Я]N |ѨEF7lhKY=Tra5ֻPU ѧ{ {\?&}ͼң^mQ`zC[8k1 S;'֫[cS9?7T@fJ(9`}wj BXXNϭ3w)0JQ.$=( 6lؤ |yya38▘L{9J5mF"RSn%Cee+x*Yx)ccJoh.n=?/mof`⍻:+7hzF;Ly}MUۃA}8!ڿ9Q!* EKk1}JTEEHG ޮ>G{1"L*Jѿy%o}V׺kL Ѱ1K`Ɗ(tɻEK4GMu߃G}O&7ԡI`Ϗ.y̸ ?u^E좆تxskON]@PKb D(GTF; By}3% #[IKFthKքlGj!pGi>3"kk%J. ZSӸs jgG {@_8TDIdK wɂcyr~T<@ }Ik;i$a$0]$(k%(|S8VGo 7LJDhY/'wULyP>qU3\nTf=sWMmTDE/qԍ\n-3He] q+%X$?,aQ~m:E}:c֛i2kAO&.:Auoˊ Ϭc.B~5ڞG_5zxz )fQڈ:AS8}|3T9eZSBDiTOYfåm/-hcr-ĭr=iq䕰*ڕ}̶ݲ6-7量建b/J+m`i}B@|3 }xL+ =ģ-usiW vXgmpnQ=VyqV|.SLcʳvl>:A;Go# h:|i[72յ}xRYE b,ܬh;UR\|I>쨳|9Pq_E]y%M(`0f^hNT?}C(KQ>'N`'!QL4s|/c Xϛ,2f/MݐS}twos+r\p؈+`ݶw̶m2nxGZX5Z  #Co{8Kd{s|׋8LѰ|JfvI_'(> 1ꯄr\E1b&TN 9\tw|)Ec^ .{OPIQl_;H¤~ vodĈ&|QO E PM*$#Nv菥-Z+ c{jr ĘQ&e('jnmg{hղx:qWYn_F6Kn`V7kJq6@`9MnCY7u2's`_kXmѱ]=a.xiM@\/d7a;%ml> \]aYVRhGbjH 26ONJj™14MߧVCۯV!sXP-0.a80`fQߞtB~^k?@pl$Zоd9 Y0ϓ5e"y)تtfedP" hoL ^62-k3ʐ؊zsǸ(Z!Hzҙ =(A(,-!G0`J/Wmԣ,<@D᎓x ɛKjwI'rDS- un-ui}pk3 kdЖm2)%N=gN 7R-mqaO%8ػ2JrTGV-klRIn\~PUe4vH2kL^Qb:Cv Pя\A="9?/fϕkuu!4{z^ߘ*)sNٲ(⳻bB3àa IER¸cu_vG.ӏ p 6ЇIt 3k7w+fvjp'7iG9oDG,1{<u;U3=GhωwL"#S>4H#/r+=@$Bq&Ook԰ׂ3}F&Z\:@`(7SofQ8SVɸ ,@IXe-pG}#v Cak'`W 5߯hr؎Tp>No3/3YDi2|e`ފ3VŴG. %f]}7-N/i>zY.&d+z 5䱖Bk Cs}nRfjO*>G4^|;#WB]ɢ`UTШ\ptM\kY:1֨TjY_Qr k:M/ژnx:q`w5\j\&U[j6[0?$!^~>yo[H=5Nn}FG!MѮ>x;ˑX@NT2#|2: >'981LJg+m2%JX(U+\yj.uqs)N,uOiJ,\Q0p B:WQ)֯f6xJ Sj|}X6I)ظ_,RZm~({)2Y Uep6)2%cB pSuԽYM_\`ȩ[Y d ]D!fvt3Ni`Ӫ6{lJEn'[sZ:,gX[Mڔ+jKeIe'3 5mS\Sk.QKI1ӗ|r)2DrnrDjm@ YY\ްz*hOS[+/ö-'JNFed7 =ߓޣR7KkZ˛rGn`Wx|j7y[ϥ$^l wR9Dk/OEyx!>h)rjLP?\:}dY;s޽<+A@B -5^"GuEQ oS3/Y\Vb޺)~&{=FOAn %ƃIVm{f2>5\?xr@nLJH,݆><P) BQL^ >aL)@SY2MS!lH$htp#W#~ WaX d>ԩ"¥i-bӜT1Y 4J#iR;sm2$V?R5dsUSjѩ,>rm_yDFKE} &â)*zpo}Plc 4) {]TM>$,Ε,Se5Ltc$aGm}}4 & Z-q G)<+f^ K n:ﷇNAq_5v:֫]:s6SX7BR%7Fm1ttjmK\rGNn!p=(!6WW@|n{ bB$BU-5 N`ka"8 fgPXxݯ  gNUnirN%!YK6ثxMml!iߛ=T$@N7'Hj#2>b:iyZsH&U^.&7"a/ucm>~a}hSPE7O4I7,9}V%?3}TBs?Irv(&pܳ:_og<\6fYF wADž<"LO\ûp⦢Cgw9 >=!&8OI-fFv4lp릮0ȹAAL -oz+˕%a!,3gtMBd|ʟ).kq:L" ֫ؠ\?`4Ea{'|Ţ3@Sݭa,Ih328*WULnJ**X-gR"&š6>}zmSqNr)2uy!}k4քwe0p?Dgq6LDjՄv2z.)AՕ0+.5=a61ag:h4J`AD5#!#MrodB$~[Qd+;ÂA'{@ #?(v9J{A3) nX>P˚T%[VpbU%[b*]DiU}K8~<TE3$zEYE\ 6[7IZ&O=lʢeߤP䤤]XY"ʅy*)6g &KjtQq$ [GT[T}0k$"؃.~'~;. zuv^Uo(^0kl&R֩+ hY[IjVlۑLǦ5Q8kTCA P?H,,w _mu\UV#E4r_)Ι ((\]SxĪ0K lKI  zu/AXc{sI0[ 9ezzIKVr d 8%teRQ1rd~OӮU,A.7_iJΠN[xʋ}&MΠwb fHNL߼5L{ҹc53Le+wcU,"q@aIxt'DGBͩXo#e;DYYIҔ&V+7xQ+F~z;_ObMx S/wEo7O3Ԁ~4 #_AGkS€l‹vN4f;&#,u-\/WNl:GgcER_WSQ=)=GS7}gD#m Ǿ{xxJřcw 0'"S&f90]N_@6)eo9l+0 SvT}r^j/F#_(R)JLez 0i)/򂎻\7eζJܙdZc6$ГaeaT"Zqîz9c+=Eo2YyII!e4`"_l]v֠^ĺ ՉVQE HL%lkB0s-ۇH&`Вwі&=9[p%>φ1pGHWg7D/ڔ ҴP#d69F4 hq00`ҪJU&zwyǝZ'GBNOɵ\P71]늤 azI Hcj9 y ?!K>-g28:3c+XE9C\NNЫ|xHSv =}l.aRjTim,lM`"o?UrFj7Rwy0p:qN-l{MAb&,YG6ѱ鯐f'Br6f=}燧`T^BiyX&9cHé_w';|f@; {YSګ(cڂZX6Ft|f{=ҴZ_1-㡶|)TJ\&M1O &R|oslG#lL)NndK/@2hIFyK\PK5_50Fxa30ÆÜ=Aψ;f k'*5 j=NY%xF|gm:/FuבwG$){¥8k Qxw2z÷n0=*FJ)+8/700v/}W%kTX8pfAr|9" $Jtb0")yu9-Nγ/ PguaHP~bϠ;:G2ͥ+`6`\sx>4_ d>݁ -Ynʄ+<{ Ԉal!%Ҫ fgL fŗMVpKVbqlAܦ],T8Tt tQayJZ`cmlSQE2Ij5bO7У[vZj̠ [}g`yr)m#uM);!ngu)<,- x:6[-~B(oir*w[4\ JFOl.mnߑΖ\?Tv㷅MDQ]ɶ}ZyE6l?PYsw(E!B&nҐA!٪7ӷ#{i'.*/W5Ly/ sL>WmUU& 09/wwQiTW< n3TgȀiOLah?,,Sk6eucS7Gؘ5Na=¢oF΄ '̭RP#Q8Z/ lG% V_`\ᤣ>4IU WvI1ycӴrsrS+1TCOܶ2fz TU5fp9|_#觔";/iJpQ=JLBU^Q`+A7rE峍7tH=h-ܤJ/Me~aS|wg·D&269gZJXzzSNn@e{ASyfz|~Һc}tbűU)}]uc=bWo ('9`x[o)UhF@c"q@ V\@D&:Zh 3'a_a4g|yA\[ s6x l(fUC.g+4 WCr6AY2mCN$k!f GEz|~gq}0` Eʈcԕ${h&9b`Q[ʉF})8'^>lK!{з cۿ[v 7E kjE`mR^,Qu)0gU_ I?hY ʻdw|B_tZzi_9@kk'eݪis B:bC%M sT$ xTO1uQv݌):^_}ӒJ((%g"G, `Dn >;8 endstream endobj 458 0 obj << /Length1 1699 /Length2 9119 /Length3 0 /Length 10209 /Filter /FlateDecode >> stream xڍP\-;NpwwwinqwOpw-D#3sgzY]RME bX8Xvv.VvvN4ZZ-/3 +@hl2w{S P;;?; Ph'/2y[28yH;]@`-yEKs&tBnnNll掮ft T2cEhق\kB<]gv}΀.JU' `? re.lni qt2{6k* 0[4wp<盻-ع9@F\`L/z. '7WVWol<4Jޟh|^lv A`+$Nl`3(/Wȳ  :lky9pr6?3q8I@?4Wsw   dڀhT6wy ٟ`Y^V?MA\FBOO$$ .. ';*?j栿OAy5' TA0{ȳon)]ݐ 7WnS y de^y78} W'J fiӅ 0P }X8jC6V09L` qA7|6ߦ?//MoFϚd rج<\ose ; /\ 7|)/sqϹNwh/,,&PsW+/`s||*'%yOns@O%QD/fӎ5 *-ș#Brc!Ca9ĚɛxPH`B;zc3ZEDCd@H3:E##U`C vgBAڢ%nqndˍh:O`xȷ@?$o6:oa-ꤐ䡗psCL|E ({Zst+4<4zܲw~POB(/|/_쭫͈.c#~UZ&bcrJ'1X:v^FKynB}&”l{XJ*ʹ+?{g9L 6qkpmݹ [mdNÉBR|'\:?3>=ȓއC&W#ke40߯ vĆb֪@1[cֲF"ysT^FLl9K36*)||Y*IQ60!tfT4̈Ut{pwAxGmG˞Қo3ϻ ilމY7_dm 43dsB`hLi?µ]Nޮv@qi:hLQ :p`ԏ>)'Zvj8K}Edg_ 9;xXxp$N-עd\"_;B8"&Е0gNj {$E/yۑ" 9h]&+.dM=mT ,n._5qGrT̸D!*#4\unŧMT(Zbc;8+yWN09 J*j',c!I1l+_9Db89b`I\o$}avyq*yV@^@{;3R~Ʌ!ONwkZs9)K0|*f1wܗ#QAG?zm\x4͞:\ϯ1e0'+~y+PkJGVZv 2#"?Oy%$kv̪3+ZȦ/)~üu'( LO?itZ Q rOFDX9!V,laAB*FbKȎ> b\i/U0}wAAڣ2Xͮ8"Q^*;9r5rcĻeccuC54k-.ր쇣WcaDNԶH/_un)G\t*_.jKEe02-tOy:vVڌ`"zۮ* ։\JN;Z?8:;sCX hչil??Q&A2*ibi|"A ]\e$}Pr]+KV_ڒbm'*]|pP~=L/&RWǕ(ᢣPkؒLQ]쥄bzS\O|5#u(T=62x,MO)F6`ta4:/ ^"ĩ R$TͶBh毆m&Ejm;[}(x#X| mր͚ _s3GތMĻw)wy"$(.vO(g1nek0Z0&vai2F%"a:yUlDDuY/  tǑoKIΨ/ih{ђ=nÑiXfNLR8BEK@!0l}iM Bc6.EщY $Y{yQbr砸FMݳaKI23I(BOiKcj< htYكT*ع8BfgѢ1:aVN5gLebhgq%Nc^2[bza/cj/~J]o4 ;*om3$r+%UƤ汖TP9LDL=Ux|Iڔ.l>heUb RA1 `3\͚) i\,M9E N|Tb~-b*Ӂ8;SNea]:Ʌ,cKeG"07' J;'DNVb}EH /.pZb~,& cJĴitQXiJ+KG_ȯ|DA6!֟epBY7+8R~ፘ&۪ `Cdp!٦+C`7/Yd+$Vs?6v N A#n75N1RG |Pp&ynS$X&Uc[ Ҥnup<@K}/ќґ{<"we,$Aiu:q岆T9c4]Henqy״Ϻ'n3-G"[$Pf $pTEi( }Wsн&#[(iZ 9cv_-Xx Rx`i4a`\^wlq>,㼩ڹ({3vњcLWK_1>ݥoB"ꎙ.B?QG[Dܽc9#e!ې+zbʃkKQ2S9wK-1o1 ,>QȫHPKI}vAc(%0SkcSJEƬYVR0”fYb%_w[{+7&zU^7ٰS?Hj*5%/y,a^KſĥBy]132 ߥ-Ec{VЦy؏}zq'$"Se9D28 >ԔXHc}1pG KCY1 =O+n'%00GL,̹!P5P?^;T/sIҪH-QC6?cMqn}bsoۨ9[yT3[K5>Č$`?W.BoP&WNqۆΫ-.y .9}Ě<<{yUV2ߡ(Wف]Y'-Jm%6BC-*,VW(ՂT3 WH q%+6Jb=.^# &gWGu_|.ZIcCI]jq<ӗ[qXvtsض^:ckK 솏Xc!=ՋA}/0҆5\*_0jiL<5wh<Ҥʢ7_8_foQ|Ob8-xQu(p#w22ETlľĵ/4;. ,ܾI!Ӽ<+y]?~ 詣ZWB1;s-?!URUw{B~\_@S%AR6HV.ߢzr\$qK|y!:\b9rBE^ڟyP9B|al _x1/q5Ŋm}F>k֎<pjwCًT7oHgǽ]=LWȎmy5g O!3~yVDX%x$zN [1{4pɠKEӂ3PϫW`o#;u2sͺ = Bo~ɍ+%jdd`߉dz~NTjsƩPhlhSʬYú)]kM5Bkx# rJ_ EOAlQgXvQu5`I3G p\3QAY_xƈRkRjD -Mל:DP0 ܏f6%w I\ Df5^9n ;e\HׂUZ%hc!R)[j]^qXSgPFH#U?o-<,D #o뤜pf,3?hec|>\8R6f9$հ\DL' ,# fF!f(n3T /wc5㜕Jt2{2we0Ssç}&q^+o=ױ|v\l<%.2?@lx h~Ovxn@ciH[ze_ٽZ]Z z -d Qi?2{Y .3~vTu~59qq0dlF<:Jx)'x̧K {"mK?(t=˛R<a$١Yj;?WXQEb1A'F`Tv D NyTxҐv+F'ȸ5ys njABIu<|0ےl6͓/?'>Q^Sי1Y*=[zj1 [ O !Iví\(oj*f!+B>~RY QэQwtn+ѽ .ei8ϒ }S1MQʪ=A?Hu=~nfZF9v_ҵ}'Έ G"gsiDXQGOyTνtq,mQJamiл ;[͏xT,Qն@r)9y(SϦo2$! {<>z.OlWXxMUaj51A2$#oqTo|ۍ(Ӎ.*}FwPSGtgaTGP.)%D9"b 'g_b)̷ZNm5)x[I>̟E T{-Ml3Or 8i-E2_5_zdϾս&I27T+{} s( U?'Н3sTԭlXzh1ә`fRAF1>nBD⺬sy ϩ݄}:BXᨻ{r25u*DܯIqI5*'qA=#o2-& _C\W]oZ4L`3Hro%R ,.Nh'ekrB$aY)?",hJ8Yt(*L۔JNR;+af}3h3bh_V:U}ڕ%(?P͔ɜa`Z&ҿfݦ{m:?:EE0%^7lUo9nR;E̝Ԯ<G 6wR<=@ɒkKY%4241\04bC鲕Sn%UZ`TPDeŀ:M:)бG4]-c֒GQ6HYv D*,";bk3}5\5SYE>tݭókeInڬʊɕYRHзV]I5pʶLI= 0mDH3-f7j5XI!z o^kWw LOn~[K޴5$HCӁMnlS|YWIЖ4\zs-\HŸ˾9ʼI1-x♦w}uXOefU&t`$6IV2u(Os>e9ʖ'Lj0Ťil:cfRx]* IC0kCO#Qs̸kZ/JN:>^{Y 5 wkd0upׄHK 2bQ!M hݠ;mawMHrb6(csRu!Yu5AxL[dhH+KJApD+|xr NedYĆms3*ݒ/<`!de#T>yX#9խ 0͞9-e>eni[qC),tP s69`V$ةNZ4~eht!c1̀Rq;%ė>D\p:Y~ysbMBa*fn?{NG*3X> 7ft9J>W f_9]8 ɜZ7V{9Bb_[1ɬuWC:bZE~8h{Z6!9B"bY]!Zad%2Vkc)^T hIi1d縁`KRXQAL-㻁O3JƃO&@Nk`˘:7|#ˏC$cC *!z) e3nϕ\{,wUSFQzzծ! '5^hms,%&zo\'e=3ɨ)/8/ x`_c{)t0qGP{ ];W+ZDĚFm.jBtr'׷z7212ǙvS^GeUnK"VuPD y`JMN(v Q }0+rdj[p046[̪g2l[c0O(Iń8ZQG:'sQ5tm( rSk! z5n' 5_2fmr9Fz8A]01&\fd$lE(v–P=`9Tm>D\َY` n'DPs]Fl@,UQͫirFÜ/3󄛴0ܫ p^QeQHcS`!sx!+[弫I\sYKIнƇBI9+)X@wP"ʛ4)wL춟>p1|izc[gu= xR3F@"S#WD8Gcn^5fr,"cUՀg!bC&<믪]j9kKコ"?e?vfb#MQavv}',<@~RJq_δ-h?GC HکBp(K:8S̈{jγU=~ ,Fs3jtqfKwoǽݍjXp [LBWN+ܱ=T{Qy,zx}z/peA8<&cKlA>MdB܏]N@v:?ʙ-G=WGjOk1-:2Fu]* TjD L+S`!D-= 5#%ݪB&d[dw贚1:)LfoP]^LARQS3`n$Ɔxe$ jE:ʾKi& |nX؟B.: k>{V0MO:%qwql} tL1:8dQb岊4Ŗx.Kѓ;\E1V&6ZM{dsi&,amrIo_5j_GvZk&`xk+&˜diy:qMZRMNƪՁpBPG 0Cً{|`UHfZN(`~Y`Q`bplaK $s)-A9F endstream endobj 460 0 obj << /Length1 1413 /Length2 6286 /Length3 0 /Length 7242 /Filter /FlateDecode >> stream xڍwT6"!膍n0 ƀii )I FB@w}9s}=u?猓TP@Q ! @UD "df0-CeîQXuG:n($!"@_ @ s tp*9U:x p; }0ꎭLW 9CFXW%@:+ |a( :~ݡ q\`^MN(_0 *`(  w"Sm=?_``c`pg 0BQ0# an` ecOt^$%sPW%UP8ʋWj0$uﱺp?N0/p7T[O3R'Jn6~{ <NX@CPHoh-@Gp:ddǪN#ah5K<-G 32563 o  EāHZ =;[kp'@ػ ϟs]x` 6@q ?w/~4~[y~+ӎe7 ^CamF wva^04AfMC^_ @ kWS⅝oJ. 휈D1dc%q?Po^6pB ~SL }~)\_o_!H$vS_݇BP "1^e<8.7l]9}y޳\o5G?2~3.db8}Xɶ7wHo )\xXvpzzKQӜD?{S6jfxNBrR0<&gC4J ߍ}4ջS7 ƮXtRwEKVDNDz9x;寲ssi2m4}G4ߪ r}.1Fa|ZvTrT":hom^+C7F25ۻ&F(EQ rn2HOJ Mӯ43T|%Q8ڝJVrUPn0M=F3X/"-'*ـI1Q櫒kgWMo~Lq6u}OH" zQB>i qΉUwz挮 ZU4<̜86k&?E5Ew:knp9tՍ0KbW*<0_E¯Χ K}q{9jTJi U3L_F9YC2dz+ aOc 3=a7x,>oV]vj\|#^҆q"k^H*t^v隹]{*+2^9}dz\X4~iR /4\ oKil@](o /H|-;" s{yp!;vQaM2c[&)}D{?ݔ_{f"əc}oREcv0[h<7E*vI>GݗzX+>4ȸr!83'Y}mRA2F)F5Ԥsy+ߜʰ^U8r}FKkTcA/#oM#i|y+x˰E ԂdL搵Xx+1ޅRpz\%qz"]'"pt7Ck7 /)j1Q^=s:~qoEK8@ι/G悹u,T6/xnʫY;*/qB3xٟΧg*˟p09}L>[n;'B: VQ1SFLTzwΜqzZԤ[c\}-z?OKoNo&K跽}UDoIZ[pT~wa(.h1!) vD)d\j2;aj9l~ tЇ[@GdR1xz ^j"o>ז9̫l[n'3MkI)-_O1rU|3yl#?)ؿѪ8@t8 2 S Xu4<4%g,[\/GU\+ ՝a릭 &;; 9c:ͻU'&)撍p#{"קfW^~x Q{?9W`fѥշp׾۪N깡gq K$7ƅy.{KU^CNHr2|! ]@K=fH3U!mZ-ZɤȣMixlj}H=9[be~5:ϥWwE~Rڥ\)|1Q!y^yTr`Yş4y&y6!xS{EY^Y<߯&R6Tڵ b#}#*8GSNJa vΝK(4R$$/2Lf5"fPޖ'ʖ}r? 79\D,v?r6Xa/r=S='U`QdMEsXwQeډgl. NRdB[~:O˜ e^;N7peo[wa5R ^AG>73m-.F٘i'Pxz%3@ @6UtQb?ʶ6^eS~z~UtOLpgj[iuڳx0] >4-uBk5|zwtk4xW=x4镪FZ;6^剝KJ=b d} 2{:r&8 wjBnIef'<|Hb8P JhŕǝR hi;r$А :/7˿I .V2nݛua4r$KumZ=}q[B (|UKIoJ3L1y *LH͗s;[VA3ai_"=OZ$CU~h<`L 7!66K>zKm>G B3í.d421+6|^yϢS{kNym _1SqvOPJhNqy$\X^`CO a2P_M9" 8ĺwbk[sf=ҵY 2T˃61>B0!tik}/8*>C?,</wɋωH\V߭3A³X7Dy?p$,/6ޠbla!dLy@• DV(;v8c<B2aL7BeD=_x׭K*Wm0BokQ §>jG=LU3I ɿq.GshqiP%tBp-Ἰw:@Gm/p3*E527c/q҈u!#R1'?B Zk74=PifuT&&خt~]*hp$RЏmo x`Z);k..t%EdT~6PxX6g݄Q`q~kc' @S/g~͏OO KKhjr~z\cT1m77}bOI%rJY6  _Q {\ғqm mA~`FztȉaSpu=#x}VX70}i?JW\7{x q?rQ!N?^ a$5b/ONz&F#tZ\S܇\%uTD':vYbʄDxR>˻zւz@T_r疸edyglX%nz!z Gz8l,? ɗFXw@RhS_ѱa>T^^`v\8AI2_3Z˳kNLR'-]r[bme b Q m(٭bETr (操5y` "e>5X"e`Jq !;c*!xu-5GP{Α_]FugӼ骯O@NW^ h#sCːs1*Ñ8v-pC\vQ%2ךE:CF&~OdmWV[ ?qYh-lm DO4e %T\ @[|a-xU"O 81[CZX_67ϫ]nHMlq'>XP{GX"^oN'1J6;<<נ+| #*d Q'c۷jkT"%ڇE{u~x)A%O2oth{JcqȔ@uA?嚍%Jˇȷ_8g=x _ sW?֧H2kX* u+G=eԾ`@Н(a E V[ЪG֢rcb*f%tAu 0r0Ffo.JsF5çx8y okdvBW;닽e;|I)siNjcm1@'jQnZ)kLS-.N.r5mE*eQ@n&c -_e!Ae=7>$v ϸ,!jGμ$D"3. B[luy^0?ؕTfzK^ݗCxLI[!K6E9^ ^'1cN-O"Ů;% vuHi]9 Eyq)nРۡ701 )P< X:}XNh|2*3޲piZV;LpuVTs2t9 P^v}_R~9;C|l{VcO!72> jy .!$Ixi< 屳ƸV}hc \Vd>xWۧ$̊(P,~&P}$`CfXmqD2}HIgQ?o.y6ۼV (>$Q`/w !!") endstream endobj 462 0 obj << /Length1 1490 /Length2 6891 /Length3 0 /Length 7888 /Filter /FlateDecode >> stream xڍTTݷiICSbN.FBBBR:[@:Di7ޚ~s>{=\&z-].iHsy:"^^~n^^>\&&=0e2aPuY‘%T xyE ,6un re9{]ZX@QQai'+ Pۃ;Z[B0k0/ 'p7)' @ / K'oaܸL={.a  uC& 6 Wro@#XNWr3;l C` s,6-!n0d%bi }pK6Oun֮`gK!/%CmdaNN ( k{.#cm `pч] e?#?@.=/r=/gooy~?g3)!p},A+p@ ف#a6`O /_Wf޲A!^..&odd`.~! /+ F.F,Fe- %Ϟ`s\Ac7F~/< ䷗x-?.FC?Cbu ^e%r2v/h4_5@CP pyyÇ5kGS↬o9JRj 5s|BKWWK/\dᑖ NpCapd )` sUO= ߮l^3ŀB@PG>C@ kYxCMHE4ֳ֨46.y6O|ʬ+g)?oȳJ-|m oNnHԙj4N7tm/- ԶA#Zj S B_+£Gѳtq8lvK{RHu$W~iP4SU &ȓ`lJ"~,*_R['%#1-)+s>%+é3m#kN/V- Lcb/K' WfLzyN$VBj`? W9\Z]HiLAF7}bј,W:^)nlJ+N(J~y>̤".buIkܝҙlogghISY^6,+AUo&bѪ_0)j>,j>yΐA/p)+lޜ,77BP҇[ٓ|X7lβNfE-ƃ]BDBkz=QZa(' Mf*ϔap%ex= U$ƞ0'l1aO9ǖyHDPi43%I+vDj6O=2Shpǎo^W8j#Ƨ  XEӨȌ aq;M 2P00֎q= )cEoC&$ a޿h/hZ/!1 ЙPq{H4HlFhо4ILCӨaǪfCooR'.8X)Wl7<Р~5\0qzoor>&7L<88a՘3],q>NwSs\sBA:FX#N)|hX~3aL('3Fia4 ejQo.[p+Eڽ)weS`-SeqP:v_˵'KdU:VJ.ޙ9J(P3Lz ʧ")h}p!|/{noOt{fvd-׍NUc\w>/Bn%I_153s1˵ή /KL !FP ⍳ı #0Z 3u#ɷ+d%㛜s+WSӼ֤ӡEMf4MҔ00۶4&ņZQhF R'C=Oe])V 7&BXI@~{bc(v$vhxBǫ\4Q0MqI3/&1'{GORBaet=՚ۣ#'̂[,&&ࡒsJM5<ʠ](3R6T ".lU^xʗ1kuw; z=c:Cɱ  ^kzuPp* g4lCˣ^}峁Ƌ.`/I.Xm@ o}GLp8|]}npmuWC,rOjѦƁB~נ9mTse>m 2( C5tW "o>DU-[AvvJX.g; @+)xtKB)Ǿ^N\#\C߳ۆ*y>V>٭ѐ>Vȅ+>D&7~ay9^Y ='Ax?Kfz:+zWdoSIk6>l3k29w8kvtJ.B p}P0sÙY!lLӼX]+j@ӃEwɘr陔H-U)N zJ}JS: kvZ0b*[7 =r'w8E=xw~ . aD4=oy IPJw ЊkLa ] ovUvKrosEU]%/ty΢S"?P}jiEqH8Ox(}=VuKlrWn",t+7')͸;N; @rCw~0rg1J*Ne}mu7 JSvBOp22.,UoJj_>^nEg|>̊ʌM;h?lDH5Ms&"QS#qB g\\ZѮ3j1CC1sw3l$vߺBANOi5^&yY{V{׷[LSܖ^a^2P6];`7lgjQm_<ْΩf k~GyNx&:M}GhH7WqEUb NVlIeK]mՖnmRKVVzc%wY 5Ⱦk lc 2{cD6qUF*x,U-2ѝdMݝh/J+-f)C? K]"2L|[ <wƿSFxܩކ|^Ӕa0*6IXI!Ng3ev9ʷm+]) 2SSr^5՟/q XvR%GclIREZ?Ifzw}x5|9;OmCya[ATuP{ d6)qB&ԘPOaY, -.XG%ꅰO֕cg?YQ.5)b'H6  n0`$&l)e6p.r$NWt jb4@u̫Š}#k #BZp>=!K2d`ަXN]iWqmerԤ-RBq$L8:]N|G(^9uw)[p8{:>E3EgwY.|q&gB#:Y9*nF)`h̀%p[~胓(vCZ4oRV ֜RD-Fe3JVIWS%MtO\l֦ <3>9J7MB9{pT39ݚ8XP+RaUL[,an>$O{S&M:PZ#qb4he^qZ29c.D1b /_ʽ@o\};*8yTD뽩 >XϸSK;A7wRK8z ;ʩǣ1i*%- EBNG'@?IL;[oOZq(5![=Vo5*IƗ>9y }xfCӤ$cA>k=WD3ŪzO_J+/OKԇtS),[Nc&L ?P߼ƬHtAl}dQ0w:*Lj+v$n~,@ɿ\dͲjVڝ<̮[99_?ylthEMP 7jC;q\걮[c\(8։C)S[Nk젎U]A)ΕS=IrbIF/lr6k-*,?R"!dheRF݇(.Z+p'ER|LrVK]^bj=H+lC >t*>2jQ*64L&q^boRX/Ek>_c} l&,[i'7[]Y E3/4[mBd?2$iiѭՆ[PQu;vhCUkMګ FNTPnI{WR{nOK!GW#1Iޣ]l^#|yR#up ѪG ]F}AQ ݽPoK3oH(qHcNzMq9 H"d~)}Be&q꼥Z|ˠݹ[. 0Q|nL7B:YPwStȣNz>c/Ӂ=Qi}*oܳT)(3`G]Zwv_CףϗjnkO2mN 戞r,mxdfXrjv)K lgQ"\WJ-_]$. KTJD|tP{:*PLzՍ'_= TܞJ~rcfnMSC+;_Fڨi؆Un ]y7]›*"j#\{Jwwy:tEXwљ[m>:_\mdsx[ Bʲ2{tŘx Ӿ?bJ.!1 MC"x$  lP:۰v T[Ov ( ]>zʛdLFtk6]Uæ8HjxH]^kCa=܂'mַ] +jX qa܋mX'fI)O">'}73Slu_q>e訝΋25)7@[\ 4{Y: Ѹ~8LUoG%q%PMӍd*Am hŚ݊,fw\UA(g.n(C*H9%fՄ\фR:c3?X5^Kk+t|Zթqr<9adOV(eM9jjq\ogEtgVIWp2Vj*bh>)XoxdFֳbAy1G'1N:[c9NSXt%#QQ~"KllA~vyzӲj`QE'f\ SWX5UG,GXIkgUNn2^B c#E{񺾌>ԬB;#w9;5a^; '>5.,}AG-so9콌iT1%ӝD0#8;GF <թ3̝wW)<~^Lpn> stream xڍvT[Ӯ"5t=*H/ҋ  7)U,H&HHG;]3g3{]HHe SC!1B`a PYH, ĄA Q1mp݃=(B(aP Φ:($P 2@# B!a.e/kKKK *p;(8\q+&#"- uFpC{쁿(u?Ԅ\@c'_#qx"ah :HSC s8@0?DJG١\ݠH_8Gzj "3 / Pݱ9DtA#k ΄߿ʃz/`iEՎЋU8#N ?H'I7 Ԋ+QB2 V2RV,)m2HCB8燻t+E<Ko;hyN3"I)cs4%" Ǧvv6It!ߡb,2jؗ҅jxl+Qf*LI[BhN=FUVd*@T >jr?zd(`~w-f4DZʹ02K3$6t 7 zڵ.# ՂKnVaT!7ޟ' /a鄮-椏Ҏ;NH*$z}8[VԘ%~$IPP qe"ъB8ہm2O±|7$iYYN;H ~Ihzr UGJ;Ot{/Y8J+GG.'|viR[u󸒚ҩ# 76}AjfZGpK@z^q"c2pt%8Z).:ʽ4naf|FSPa 3;P%g7d8Hv%mЅ'V{MT$+MH 0ZL9g/ 8xzcЏ{|ȒU]}*f*"=M(5D@YG@UT@ Fa,!1:7侲{ y6\ =<,`0ƒDkF*>r{Џf(W5G+H#`">Elf{e" ]~V-E_gؤQa`ɭ5|udNHk`*l؎.U[ێ50dwOF-=jz=w4d_Ez{0)JV=fJʻKUGmzl۲7aҋE>7Oʥ/UCwx%9Zk ;7r:oQ;$(_h;ݛYލIkpW껮#zղ+e|¦=‘+rx|l KsU0F$z$dϺ ٓ";9nALcu: ǵ[|w|ɡⱚ; \cvEKN^4%ヱJs 1dXyfgV{mIi Z'kҙqi0~Zy$f ,uf{ dDvFlio57hEMb}½(Sbr{WSdOE0mĔ;[S: iպ)N) jBJlnQvt^ K@{+Nx,,zoIn$_FDu3uɢrjr5GS!dCsfꗰ3+7UoN@&*I`<<97zKK doQ἖ E%zpk݂Żc伎+%z$Zs}2%X>clpux]}ja9WrЧ|mc*ay.ݢ42gIYRs>=p> /Ԕ-[P42_#l l[nI^I\qM6Qvdm:75!~(^q?ǼЌ:5lٵ&^X4$%[x`n xFW\Da=ŧ5lfO^sqӐvFOFEO@ԫ CAr I 0Qկ 1oq%tDY¥|d&EļO\pm7|~zi'lY>~՝d3fK3`) z% 1QK#o:mj<ѳ*&[/٨b/6P,B1k+׿Cs",AN je;&5*Sg|e"8=ÚN8H/!{5P xث%瓵%]&l}~.gR/Ӿ)=R/j'1YX!4fz $rJnqF1*Wf{@ı]8{?;dI0ƄJ;h`4 (O$LwvrJEQeZC{$̝w84M%sW&s{UH4_<L2Tb\P`I&Rs¡sSzT( z;[F~fsw cnHŻ|DM#[e&ԍ1;Frݛj(#:\Ŕ7Dy?H7h+%y &K,*NE9 .ΌOGRr2\?=#U{L-f-<d 467TgIC 8e!HI6#6Ztr cXHZ'S +!#n&BgW"i -4Tk4x-?Fb$7u^*^+ĦOwWi[2yXyY;-nqЕ"aس,ڃR$X,u۞䦮~8̥NRkdH<[cEyh\q5!qJ)02D'/}t9$9\wv.^L ǹ aNYhHޟ*H~TLz1ӫ_q6:cs)7KrPv9挮;Ks>Rt`sCep̾es+}6M$w 1~O%}8r!l$P}ac3/|_#pG\5lLvPȦ糠`(soL/ȀfF{$I} g/͘O7oQ y#ie#24Qv.w1}\ dd#7+˗@o$4;I1Pڈ2oiԦqDk|CFz5y KؚLנILЅLY~f}Y0:s.RwrHEq?}9_sI@]=ymFB9z*=܉<׀o2ۼu3έ/~*,+BwךMd׮y"2l!DvN?"W \K<}5 C|V\?v /Ek>x;g% JYkZnA[[$rx7to^2]in^:j`׵~RWbC>z[:N-ެT5i|_D'9+"Sk-u7n jnMYuL 3rSJ/ѐ&c ;Rc_sŚ A3?oFϬn;pZy`Ѳ%iYb%&lHn\laSN{_P]Ҕw[{s.ҤGi;sS 6̢.h -u:W3ӷ$\QC3{m O; Y?PmpUX(g>_йMǵuKx3^CO\M|ظ#k0}9>EvZ(]Q =)C{ kI G2%o+=m˰^5_䝣lWy,w=2}T9KNz81Ͻ;{|B{XGg 6`@ s4_J&K7fݯlAwH?uX @3` KR \li#ۤ웍w6>lޜ ijr W~6!VOxn~Em~uGqy+Aoh8t`yv4߭ ~!dBϳzѯ Ҵιu] |bt+ZZ9#nBpێL刷,kbcz+:ȝ4J3!rvOwN〒=b8ɽyJ>X ~B4NW/'6<1T(+N! #A~y)Vo3F2JQ}vS*/*s oDT0`;73P:x%YwgzcBQϽxP;bɻTU,@櫭`N)c[ wB0#,Sfb}π5=DNl*eB*dnA?}%/@#MOS#4**!Ң9hABFX…>tYcW 1 kzSO#%OiE-JS 8Sku`zGҪ@.Hb}8uҲ|cu7U:i,)L8!e|J c׶KW4vmW7a JТ]8t G*imstHE5WX~sCy8%VeJ9/<01֣ջd% mlWL,Wk_at{o{Wyh;a7O\axPP};|^k UNvM2ݚ,52YKLpݝ"̌K~Qs/%21>)]^a8rHRN#j;2 Ӄ칦GK\BW+|li !P@?P8ڇUG:ؕFSXjXYT:OO9<ܭ$-Ǯ4P]Q{5@5TȰ;ci\ExRi3tr*ۻ*.U^q˽ Ϯ]"*(~vAQ%_r6MX/JHf $ ػluY6i5\0(OuS^CW3:*i+։x:/m)\o Wn|-vCV4ijR, GB&*?PgH0zGUZ)Ubx~2uSgyЯzt/!ӣ*@1':JO(ڳn_ !.)7NY=1A<YƗAf]@n` SӁ貾)ׄK\*?~p' 1J{ziWDƋaxZb+sWƱaL 5HS endstream endobj 466 0 obj << /Length1 1489 /Length2 6649 /Length3 0 /Length 7653 /Filter /FlateDecode >> stream xڍx8m۾UjP{^Z[$AD%6gJ=EQRjE>}}8q$}yVC%D2= a E88Lah8oꁂ!21*qC"ڞp(@XBFXR;"=d /'F"("#Prz @va*Ap  }3.#$-rC "=y03zxA!_ 7jDSg/  0"POTh ܡur9 n / pu]AB@~9($&A[ԕ ?P`;%qsj @~OcWOs]Ho+G] { Rチ9Aq0; *`m c8#@#AyAhOh"@``4C;;:b' z0 Y/2/ " % 7jdB8"D(YA3o[Ł`̛y~+*ޑ'c<0zDcfCއ5zPZhfFN  a(ubCԀPC$ DeÌs0-mb&u`$K@ _"0+q0fV!P "hL1 Xa@¡_?6 #-Bzb7`Oo;{zx`0t^AP(h~ wyqQ-1d-|Y Gcꡲ=v$p"rr6bǺ'/d)Cֿ|$P8 A;KfƬQ&1[Zqޟ| i) pf0v[-n{Xeyj_a?%+w}]JM@qN_DM$%?mA:<(,Ne3$6H%{ɥEɃMN*! ml@.3ڭ~"mIqdW樅` g֊ p ] ?e~IIK ~z,agvq^:P Ges.g,ӭ7ýQGH&9w_j0U@Gv$'NwiZ*JM%R7ҿi!TV&㚋] %6R%*u4*2rvl&Z+|.ڵbK]謏#e[=$T]ꇗ'o|v7m?dP kŏ[.;l(Hy[PHJdNVMkR3ݟHgWw']@;}}&iikYpAϙ֌EIT.l% ܄^30>q<}s#w)6ȸM[:;XYNT֭/~l~5COߗ~%kSn%m-yk_D78]'R> SJ5 ̗&ITچ#2RzXdFʪ٪5Lyϕ:ёN+Ruަwpo*i]bW6d{PB4\a>?cBL u*FQB{^=V?[t9 w5"So[2J~6Љs5ٿR5/?"/|v~K*I+cs[P/96Nm(/Q=BI<9A$'+ +!&l[闞X&1DJr E^l5š J!Q@Ɂ!ł nj90W`И;bhaqӌ%~E(֡3[Q>~1uFnPE ?1L. ګ׮ xmt pfOyyGlIeV+/Euf,5@ ݾpބ̑qM\? 6o֭Qc-/[e~vLP;Ufhm&~#%57HC6QkyIHTj|OW|%7(] (6o_1pOUMʇ PRrYE>wտdj_}ޖr`CƶkB>q[9r ՞[x;V6<- 9fBh& e@j/ۇ| _5޽I}/TsDԄD4n{liH4 *$K ج^o5Q^ qdoɣn_?WH=@)w7m_z}!bCߔnex@k 1o+@}XzK-'J+QՄ oVZZ{:1ͫB+,Ԙ^Sa oS("Ա C-0$ay"-~04wXg};dSj?D4'>ms òN*t'ɇsrnHoF, F?jKϊ+C2gJ xh=.DԚQ s}O+{hd#rl(@vwrݛ\Ƈ ]Ḧ́D})F&dۨTʳ_sb}lÚs}'#ddy,دm1=Wؖ4Tp66Xn=ỵ7?//HAc$6wJ+1ѯ:O`& @` >Ka}3ci>VDXȵmǠ"BЏR9 ØF~Ӵ/Z| NߍJ[zW]h{:oU,CiBqb Q:a׮M%]&Gx>NP,?U;0&:ޝ: \~'o>Dj1HNZ[&=<޶U_Yɠ=Ylerg,{@.V]oỎf; C/~`~or1'o19+TS J~!N9̨mʜc$R/g`jeVbtݤOnQFźՌvG;JSAeFT槏؏Պڨ\({ڑ8Mw7=QZS*I&X⤉熎nVϚHu1>(.JeG.SWӿ aH`-6/ŻkhԵW{>\%IT^m)&dHڅW2v1 9Q>U|3ՖГ t㍞g!wS<(F>tgqW/P>{$_Vl% oýNU:=yw48ńN:_Uhs9ÿγcɡ(⩟n[tKO!gs>V%?6^waOIMEzfl:c|US]PIJ`w! (J sBK )n끬 g BMOW,4SV5[m-&sHT?6Wp?&lcġ.;86V3gHѪWkn':XȔoi{iq!70j³\W+oⓅ|.Xqu, =%E4{t,ӛ^Ux_wlM> /,x,)7cP& h*GoDQ᜙٬?K|{}*EUlGZW6w-A-I'Aɣ|_~yr|`Q7{70S&>qp2,ғmAIzFWWG aB)lfu@M|SEp tդn~Rf}%[K ѻ#AGE# |%/k^]2I6BsV nn N%0-SpZ5M.=1*33.;QG9Z|=entY2x~͘Msnqjn[uLd!LxCrl Q^,4^,"r2[Y') bR1.ϴ: 0:c 7 TfS52/543굔lY2/HOxH4.}P~tzSK}SF6obf0 uQq*Te )zkIQE'ȃZLydT^_EB\PIEɣ䉳2ɘDs=HPIIfCmZEB>BE;"Ny͚v!q [nSr쓸yÃSYe[DToݼʷD<8/Hw~CdZ 2z] WڙkL缎c[p}j}nGh.j<>N@C/Y+ti]49cM*6wgN5 9窵!r_Z1#%|u(:g[Kedi_[YӃY!+iXT cZ~f=u9}[XnK&-o'ir;+__xWİ_/{MĨcYuDc&Fl7&9=; p˺]; jgTFvCbo|k{=%˿e\KF%CJGȻawύ~0O$PdyU޲I-|]-U~42YˇZS},a(;M#ӌ%~ ?73# 1J–Źo f^KxM nUf(\n'EoR^Gq߶mɔDozM26"&aڲ}8ݳV~)3PLҞ=w}uɵ|'B ?螯d'O"a:ws}w3[V9p`cϖJ6Z&O,5h:T1=ֲY6^ПՙoȗWqRY) ߼\;V!_LQ )yh?Lћ͋L GFmtid1^mpZ8eގܮ4 Ƴ7G;Jaet<˷+$6 `еL;6)fJ3BCer&4WMT]Ƭr_cݭ`+uP1>KFg!+kY]`# xN5u\'ٓ'{oKљww|v{?})z/5U2ܷ8a}D.=[|A5ʵX}Jwmiw(Եm!jv/Xjc m wIqgy\ Ru+]G8?l+SB8>i%H#pc1uЇ݄yxNaK$=18Ix!EiN>2,2Ctkc0yHp]ˊs ӇNx 5@m۫P؍\UUdoC7}T~g9Ybex]l %1#ƛckjD3.X~ >aLZ endstream endobj 468 0 obj << /Length1 1417 /Length2 6171 /Length3 0 /Length 7140 /Filter /FlateDecode >> stream xڍvT6)%2Ftw(mm!tt# t*JJt{s>uxL%`h'AJuC[rHIQ X p`*+8@:0 gF`iXN ,@ ſ%zhK%c.8BPXQQ^w8@ s# w9J!y(IJ!H,q&"A\fp, ~A?̀T Wnv@0ppG@(,! cs]8௻+W"w0 E#= (<pFZ@/NA~9BܱhB<p8~wh B1E(+ 5Q0u4 GT@`Pµ%L AupF`οH<$-QO/_.ȂdpO*+{=@3C叅x8<}0p PTd'p?g1_=0y(w?+ig+l7o}2 E\ rgFM zP(@ix 6F FhoA _oW!-/wf A"9#l!vdC8 o.B5 A` Hj!|0GGP_/B_6A/,a`MpN& Z>)Y9@I-} Dqc 5Vi$K'H \/_%^ a+¡ThU+8|$f[#nu'k+ܟbExᐯ}Gdfכ[?w:\Wa+.S"2~bEhGj'`=~")Td@ x9p1j٭kQxq}b/aR,t-ߝG!bn6GM뛞|ە"B,O'?I^H8^d jqWC_;BNn,OwJ:1j'0|c S292 _`{mvijEcǪ|b|XXA(БY֦L)ni~vjbGLz;(_R:rq#'i@yuS =Ɓn l}o_ TYA5*w'fo>+C$J}֌?^2Q\џ)wߦ?2t"nH9ÊuvA\K,0Z$ܤcϼǽh8)NKQ~v1!{>DT7;QxuUJ`DC8"#X`7Ckr_ܛ>%ʿ7Qy|ƪ۽'c1BE&Dᄒw4:Ek{J*?@uE o$_:jWk9`މgHuecJ'"Gߗ]b{zy8wtdQ՟YA&2ﵭ*˰í@Ѝ"| 8jT_r:}a=gL(\&8ڸslu҇KFǯRR'08N)%F8]~z9sj~C]&=G2] "s^ݳ Ly> ы]wY9VtYhQn:|qD|A;q{/ G͔}T2t9Xr`̗6f rt FGqطIAe*:rE7ӲND+7m\E+(IhjO _]wpUQ5o . uPbOpȗT_Pm&L"28c'1<ɹ*k^;8k_=W;+˻Y_DwۑM L_%Okvl>j 5 %EQs sK}P/|`Bȶ6CG [mNGS͖. β`RY&z>~@q-VZ̧̀l>ˬXr^ 85j{n\]:`V kV,rECrmtٙb&T+ tdtT!l={=ɵ Wt>>%yV5_B]-$r`mj~]>5aE1Oqn3Zv95/R:U '|P, .-2KI: UFݏ ]>eמ 0)u?{ +s;`&汘jx"TI^DDa? *TR2oGe{j)n=/ H>. $.! K2]L\B=eVO[ \'Y`}V#a.UU[6ٹ<'&m>7I.-9M><$ R}[s+9Wg y6t׎<9yW^6 p#$ΚyюQP[ЛEa鈴'gЏx!|5JbnMY=MAYl['2$IlCP2JsChm&a1TStXR~|L"0+C bGv;g7}UrF]H{e smCOn+ u> \ysf\̹0)2WP=8 58n4x}3r\3'ЬURx2 \;k1*M(=@&$̈딻N&#O.4sާ>ҏNITsڊ[`*;|P 9e͑fdh39eʙ^#3hVIuTdAŸ;*B'Pvե@3fxΤӌg)<^z FY 8jG.ÿ}h33}rXB=ns[Q* Neb wh&%b款䢬 αIXn wɽ=O,7aUQ^Du8&е7/P3Ijy-<,pp|gr'`NÕ[vo< Qk!W@:kljhPs Yi$;SJZ߱tb1?gR㕠%//N"E̯wQԏ|Kri? n :>Fv] Aoc13t7@sL A\QZZR)3L=2H\ߤc99[TLɝ*gMkdb?P{9A7]OXI\CeS'V oxM Z|{#a{02:G }Mܷf {0G]Y0+M4jP(33awy8bd}Xy.Q }TIN!#0YxX{tN Εrb4Tن7M}ho5 &ajٸt_|}u{F&#l{λdfDs26 gJɘ (5 @ 91X,*?VHg3xc3R r/[ \oQǜ1Wg(Fw (qמ_Z\ ֪%.sųl:-܅g1Ǐy"2GEGE{K)M|+J[BR޵ldɪ^{]O|72q2Ő5yxu"cOV{bdhf+toi_o|zgڭցtVL>ƾu3 \#fәU_q6Cap0ln(-ؗ7  0^>#|5H0PRe8}oAS4FɰsGDC UJ$TzhAcCjj9UpMfW-+=j.Ds2YTF=!yE[զw B1 1)V*iu)ޭMn pjjRX˒+Z^Xk9'>D x|^ dK oW,gŅ52;̛%CZ=M:3ޞfDgt=G?0o_b*i]`i.ڲ8/mvdksJi-Y@$:4w'ޠ+hm&M0ӈޟ/yG7ݛsʓRˁV|;MpK7XZ`+K#twA[CYO/<Õyޒ,>_LNT–'G/vN[ >3 DRwvj|mN@HNAm[;5ϰ).Jƞ`v+ kknTu?9D=|85)Տ~˖Ƒ )$]/o|W8!vV"5»!.͝_rkYdR&YjR 0p!:Nn_J-|% Oqr'Ӯ^H`1͓*V:_d;fr2_(?5PmxnwQ6k0 k W)39'< ȣ3k/rTH9:EyiG噠8-^d860Z*.4SC~I%(:eSzM{I@!r+-&}u`z3N=O-SJDcD126*Jrw` m)[{CY3 N9^3*m1q:H+'Α6d, [5V]{N^&tl;+'#A߇D G%LVCx8bn2٪Ik<;{f!nn$$r#7|VXb,ybnw/L4e.c }E endstream endobj 470 0 obj << /Length1 1435 /Length2 6218 /Length3 0 /Length 7194 /Filter /FlateDecode >> stream xڍu4]MMVMY[ڔM IgTkzMUETQjO}yߓsNVcAe. U- $ 4A``AA `qC!ڮ@1,dvDej7 'F!*Edd~hAvp'\E(h"Xbe݅ N!VW8 $ qf&!0qcc; G"\08+4;Ñu; PDHt&B CP3@#@BXt8bPxys9xWCE#! 'EipH,?5]: QH?$O0WgaS$±@ {@7t2q |Q8p_c8X+}a(n@>㆏Fx Dq򂡐q5_a3]sSmߌ<ނb PDDZ(%%w.oPOsdB>Fe~s]<Ȃ] e8?ҷI/,/wCw]y~3 'eW,n-P@9*aWja!PF$.(".#0wp -G@ P7. /n 7_&8n]W E~n$FC< Dq*) K@a!$ 8Ѐc C08n v?pP tK=Dm/u{(\*efwoH|m莐rMӽ1V~c `e3ѐU{Vls,zʖ`Nn-6 d;,@`x!|,TClb)l)tP0c(gD[r|žF\ML *M1Ǟ 33}Y=ݩb;:a4^ڬt Y<.՗lNa\Ώ`U,1ʓ̈́wY-Scڂ0G[ݯf:R4G@Of6WyH)Z$c}cvLPU %a4noԬl Pd/-/yKͣz&,Z>$2d2c} #uO}K{{uT)f.N71+pC"OΓ~iX"}_ $qU}KG5&ĞfY݉ip,߆9Ll \K#=e-onE*OM 6{tN] y\t , 'o<-x rd=IT`Mqgm2uQK8 I=W E=Q|Hf;N 2( xny ariUp&[ц[~~!dPL,U85`-dArlN@F<< 9+QSԒTGbp͝5hm-۵O{*5o+6~ͭTj^nfuS $7?m-f-hW[i~r!U`0Dɔ/.5@j8Lr_4hSEp>c-^v.]+!0}** J :xEFkzּzNL:X\8jtRYi+իBypЍ^hbWuIɄɊSPhsj5zFgᐿiIw-`eyb^KdQlw;-ya.&w6i M湸fE4"f2Mihֺr@^maȴa<( IlG{⍍Hz囀lWtF;OFUC2?zSwe Xs@=P\3.3B3LR%PׅZT{E^}zT;3< ִ&:2˓XayxUW%*F ]DWrS?KgU&aSȘ? (+1~,J?E[YE>+s j?݂-ab1 |eֶ|^JL%KƟcG&^ H#}Ýcp,L";8o^Β1t+R/1Mv62y8(m}!(9GaHϡW4*vwZEd]~ssȗ @d Ol,WŐ]^끕Go*_#1*g2]Go@44`Tї>\׳z3E rխ]B9dIhq%R^-Zg]]ħlAh(O-/S5=as3:7Y\\8]4^a{%yûJM泉̚'jjkߤվp`i\ bM-~a2 B''=4eHV1ET:2zgc)[Qka0 Ic8! 숓s7 [&~ܳvv 5Y'~I%kh3M4Xr0C6[!m RQs .}S^;lI|@;5AP[ zLBB^]ȞB6WoZhTͅ&ͦċK4ꆠhLc4ItAJ $U ;o H.R/֜O][}QğyJ~hOʞ`U畕L ε#GqpIFI=^0Bku1&l %Ť{R,/h^WH{Hީc;IL 7sGId~ KiQi9)H5Tښ[pr~`1 6}+;y=N6]Y5[ɏB(1|HJ,̧\;[fqњ!dcB] #n7S?\_q@#%#ZoQ캴P9>7I g>2n#n $ O!9s<5ysf:oQrJ8h>&ɔIBSV/{6ˏ(5{ހ{-#֘%;]gx-ɓٲۤG Tw.2~8 $n JJ1fOu Y]n}N0։Au~mY!iøh>z\DP_mp7S,a&1z}i'7-7Ue,㓻"tc&޷՟,ʅ{f}UjOY! YihzJ`sFXz=\Iň=!Qe -/_MSMA@Ju/jdD`/n8:ѕ& 'D83ĜE>7ߡ*O<#Yܟi%b'L4k6zVSϫ|ln"`}+ThgJD: u5fz0mAD01_PWSM"P4c%9rA+DrgLVr#G[ Ew COnhc(19rc[Z]*t|75:19jc3,V~B;2j/*]4)m7w&~|t]-*Ǵ 䌩җehOfug",Wv[ LbyQI9ݭ)h>^s,{Q\+ W $,YWV޼ve_V%ޒ$/{4K~ -<-Mǹ䦒(Sh쵙1!꺫#Kt_|ЮgE}I{kp$p0kF&y_{QB+ 7R!myT- )dD̬}WGRDیAhMt.3`66ae}hDbHNWP A/V̡Fu7 &?]t O endstream endobj 472 0 obj << /Length1 2365 /Length2 17388 /Length3 0 /Length 18779 /Filter /FlateDecode >> stream xڌP[ Awpww![p -8\̙əg&"D+hlgh"fgLHQ22HI-M##U5qtLP b `d0q1s108ch1p0$lMH=-̝?+ˆN/w-@#5@BP;;sӻ89Q,&N&&ƀ(d lLFG P6pB!02upq56q|d(r&6 oY `jamsvweh`doj`am`a b s2rwvs#_a>,jk,lgccbW}"&F}{Vvn^AƦ0vWpp1m!#33q200p0qL&F%P7//{;{  S8/'W?FC3 [??&wph1|#|l^BQTEPoU ٹhLFFf;+a/15pGC͠P7>(6+C/WX[KOoq6d>N5U311pZ5sZF:-,M-KGk [y;'/8zFVw28YW#0pt4c3&VVY56q׊l?\}vp @/߈ @/  /bgЋAz?@>2HAd G" G?#W/`_>Fld#迈Cgdg1`Kbc'_c7(OB. G6Ga?_J?51]M!1(O677Ňc(=?GQ9?Y?\m?.v\l|61u#e[+*?Fg^<#Ddfߠ̜kW0?,?Ll,w3? ;Go\?#vh?Q?iTs;8~_we]pC $ u-ڮ(B0 sAԒ`~& S{:&wFrC4Ӊ ӾTw>Eۭ,%#qJ hS:ɘ(`:jg纀$NgIbGcLۃ+4[LjRߎp})o;( ƕxZ褓ۏ|wiWZAۓ]լ<3hIu32_o]TH-ԘCe|k>v: )Xi e+|O/\WElN1Gw#Q>o3%6Jj1+n`|3_E22R!bV!irb 6w#Q҅ J3N)G+ܰ rЪ,k^6_ $CHPD|`";*0?j=C*|s[l&/s=$N1^ |U >b(]LhĕfpmX^1>t NkrKlrH9M^}]sR33V7o1<&%`е9CH R^, ׃XiwaT**ޫfQSdN$"hdPѪpʙl[v]i_= ٞ"ن*\X4FE@JdѾS<47>R*+$5%]Jy Jz!oN8-ϜhmzCg/SU}$:~b0K1&0Q`:4%`V.4k!5yhW TByC |5D3a#%]@> 5Jݹ9yʗcexaeeiv(*) T4phjE7mPp';F.y$@L1$\~@;}s`!Ưȝv,! 008XC|[ަ4̄KHV9jp@=WC P?$>I=R=RkBDЍM[hY~ªc ͢xnrA";lI_8th> .};n}h~/֐)Y~o?v-V-8}U-%SKl!HT_Og现OYM,"B\\W;\eiPǥ&S,(f}%ěwG=w/ !wpLssQd:#TBmхɱOu^Ffo3"ToưېmF7 D ON} [PJgЕ{GDз*۱ULՋfG;װmv$gNY$Q-|NvԜ?'-fY[ ] ,qV4q$jҔP6|In6m8ZzKM&ʗBB33^9q|i;/G$w3$ 07Xq;ڏ›IPۛ)i#c\g0C@8&A1*ԞoC?)1g7`ywCL}uByd;s1=).#ę-Cfdf+&w }Am1 iڊ卣_8o16*do;wGvH,ҞDqӛM9E߶+8"}F;)uKgF~:+}Re4L!vJRoLnUIw3IQ[x:Nk!|GE}bܵ<DԄ.e+=|dzUBvC7-HC4KT;2&fBS6܉`.G{ ]x DCcNB!V7Lr u}*(3Rs4MVSiɂW˿ẗV%fs2o7Pl1ݱ&uȣ[ l dnnS&˧Gۮ<1if=k+gPKxlq?z!oa%_nnZ%SKJ) h#BxÇ,h] htĞ9*/ĉC; +v{CCl64R˺Bz/(=yǓ.3 5IW Ȉ_*;E~t;CVlP۱mJ3*zq䗶x9|S? D֐؅9: k{G(g,|fqC941ٔa$ K>|xb'?wlQ5FV4+Vwɩ!dyD@T!s#/ƹ3k-CivobqN;,601kp6|&XŰ9uYqǖaʹ ؉#PmwASN8shrew.1S /<@, d0k)ZV-c8UbT:72'+pӥ 쬕`Ei8"K~\t ]fX\FySf2KiFZ)P?("N/\n $\7ȷOUXJɷdܜ?K&֓h $뽘"%PWԐ<ۀjt. B9ۘR2@wR A!:t'O'& d.3pEG~y=,-^yo^9ڨ:Q!IKA 2GةܭA:5"bKM$C={/lS"$Ovv;x;_B$Cp~S@1p"dL1ʒ+<`ݵkG]tu5D`کl}F[զ"F5 6=MF݁2isQ 5 ՗شPB PkM)}NIwUqP0PG:1ϯO6 =C/!?Q q,) [~lci).c=\ |mXyL{K/]]7t?<Юvz5džI Ñ1ΎC/J wD7!1丗8rG`6 O tJq]!/qL]4*&D`=g*1$;vz5I~YpʻEx i[Ok dq`cz%MT,J@Cw{H:q >hFZXoh͇ >'fVʟHElV%Hbg25-EX}OL$L7D#s;Ǚ pbum-#a,J܇ݫ){T訦$#>$ڀqxNϰv=4)sJ&OMRg#$_twX0;kU!`fBk/`.[9Ӭ*~6ЁleaZlnMח &T5h]A+Qbb)+Kd<Mt҈/Ob)v䶞<'m/]?M G` K%}jP2FA %hbw{=w[ + g`Z$l=_+UY쬦c=:]U,H]}> xWi_t;p-wNZI}t"飒۴d'cQZaXg_@zFK9Eqa;_ŜiS^ nIW-*6ފ" )E{u8|"6ϖv_[x&Á ? ^ȕ(A1dR61%} X)Fs!st[bx+/gUT4hVp+Tt #XV-SܱK-Ay*y?kx[w{h.COznHS}~3]gSZ]E˃5+_ 8.v{pGߚc_xPiEm]Z /4R&#Uaf?2~)0&ɉ| d0/uQ;#-TV|`u[<@m+0]Y< c:!bCtGDal  Dӣ (<{Q,څ=*-I[(l>scQz0D߅ cb$K  1GG '+YneR/3ߺM)~rvՈ9/stÊD2^Ϧځ;k߆/3l aJ?VNr@e[=Z;+SM0חC?HԨCdtW"j3vǩ)^2|]751e%znx_Kh C.~ AaI8/aO)u|cb*! J$<kNOmi65)L?Sıug{c&+nϐ^p SS+wpd'X:~m$2X;.)Px^JΦ450;-xFJts{H%L  ޺@ i-7@䥗vThj_.$9)kLF8Qp?+-I Y(eB{OngJۊ槁_ <}&G-O1Yi%MVi~2?s)Xo=@.r :a|uS Gi,zQv8c"fa,emuӦv+I"OuKt#X^H;$Cךԇ8-X 8rP}|n} 3ٝMyaϺZND$plSi GP4F%)Z"nG8f[(T:g|-:{B튳J[cFA*eLͼw!Whfj_LWkWֵn\pVVӌk:iHLty[p} 8D P͔h)\ o,R> mF`;tKy{ғil-^%G ]eq@9g`PC>Zbf!b=O[~L YϺ^@z~F09$)js{O^W`0zKtp I>jD-FRJŲURPGgb*>Ά!=פ֐[ͪ#NAyڋ U܏ъ d_WO`c;Y1DY^TfL}->!“=l&ʯoBdټVMjlGB(ta>Xؿ,k"-8:`b?%Dv[TƮοAW{3Հ9?ֳّ'7yֳ*``JY^@0jCu9mؐ=r~NR_{@f]b* {24bkr'h9/2]J֯|l]V(-|9n׫C56:ΏMtL_P"##_r=EhyiDXd-S% ~+NӝZLtrjL DR/} Wg%4H60J:װ;aȑ<<_U{mӱ;3h'N2W4DA^of/.I xXʳ06{]D˘(z6c'LJ \ ߒKpqbO8XB ݸ F$&hz!9O|@qm*[@b̌gWF)`xf߇1TwiPtD`_ZC>!Iۗݗ[0F܉LiGCy>$Ôi䏥a%c풀k|C3f_9O;UOq}do=fs=7rU tUolCPz8HGFy1b3VXVexHAE>T;hdr[q3cn&c[NG#1H*jZ#c̶U=@y;jcA!]=݄EgDyjsi"R~[)ϋAl o"}(ߣ^WdCg"TʘyHj#jd@!@t Pyz\nY,E+לB@~o ϩo9e7pNL omK}fA[(@x^,#i `SjբOZbOD)u~VpqzmY{d(>/Om<>5l2FP+,1'+}(7%ա tmv摒;=_o\ ĕ[rv5K`HqWAw}f!1"mf)RBQ+R3Y`3XyrR& loJ\ܠ|+.R];#én%ٽ+YWd/J ˬzKE[*'x2?5}XIVT{ÇyWrHbgzg04k'8qB9Uae觖 1zn@9HG](/1vgPнTO <~IRr6:F^9js.\J#t;3?gFʡ0U%p9b,V*hUdcPAKn+@;$=)PA^VVtA4—ʪK`Ҁg)&6I1AR @6}8zB8Bd!u E{Z˓l$-' Ϗq㣹C.z@,#^ nu>6 ;F*N$o?b'uoםe~J?=X]@z$!:`dt?9A;@xؽi2?>{* hn*9QuzQQxQ(Yp8N,Pi FT-3USq#tٻ!szD>hJ{VOMRگ%taF,# r0%g$j\ܡAۿ\q)}݆Bܠ<_%vqAl[ѓU#vJU7kb0!v؝%ԢJ7!7N>4sּҬ|9n qDJOٍjjbT@A[9z z1R2̱ڶS xIFf!_Ce eWn>bمM|lP'C~ïgAL١=i-ޞ5y$Xә,7"ҵ$t F9DpwR-S"THG ꖑۡt;Vȁ?J=ʸ/ e`lbŒ1xeS$ :@{pa+^/~V}]--$;Hd x`?(Az$)Uw\ `tk4Xk,Bnڋކ J,]`S(fޕ LB6bI=xP̐~[ X8!cOomcZk [4@<]>ڼ.} &ȄupWvcFI֏:Buev__"eYkJiw"E\ AWZgF= 6nSW dO)?q|Kp"({bxvg|3>n&- *6砃]xt}NXPG\Ҿ6f|9^((16{=͎@ ڋ)Outtsjd.v8GCf 7;/RA$dzP+ɂ㓦3ț?[ $ԺtWJDYv3˔&9-DBhPg9SwēՆUN}&U* -p[sN1` IB^_^(]2g{[=ީLklq3Y#`|IWtOkGNM68;:j (OծKVOB+*ѤBA2nNS~Fà6 }?V^,TY).6iXTf~Tx.Wx8M݅x)_^eUkY~tI%?o-z@`z*;h;WS__A72 c=Vjzr7~IЪG32-[և@Q~zMY_(w5VIѬ1.yp&y` M2riär%:Yy$YB*$RiDhl? z热$*yў|hjN3$Qd]i@:֦*ҲĹxC3a@%`vsmNt^pL/38 U~pTW#IDSi5[ [\4Už:ò~isv斩Y軞ϓnOʜbsX>(>>m!nm;hV?V5j|F"(; @ח.%xsҘ_P[E"zUi\ezc6u'0¥6?E@,4Z&;aњ4k(C+ djmQex%.>rW ZnM%܄{vsF Ure0u2E\¹YAvRBZ4U\^GԚgYTo$el;jȧF65jdbQE Ld_Ǩ=pK%_F~Lܓ'*eŧ8;İk 3JE%D% ^PZNsk.m t钒a@\ Jf8,1G-Y+l u o®2,bB1_;4C@O0ZZ]gQukG_cuډyaڼ+Z_2-gQ&F_^58Uc`y(Q^uP7s*P~v}SNTՒ!S7o-S3PWpwG;/`_-,F8f}EUCEę d +bY0Ýp~vFduLd_e fB" YUj3& NJgha|9/%[ʽv`,r<;| `Gcv]UF-[}ѷD2 fڙJ*Ͱ#@)NlȑS Xũ`X1xo=a=zuѯ*\S~j[h~-+)Jo2cY/۠ce# ੣_%S͕傇[Q?r(*hB?zPU|2SN9,.j)>*}"A9BK?Tcm&O_*->~f#K]ȗƻ/]wH'`ZUl}uBX`~Tq^tq$ϩ:Vg}o0 ~,3I&XA;_mN+5ݳK6qoJh9r)nP!͉43&Qz:BraX8գ)cP2R9rJ-{3ٗeMhxFs p8,,%zʨA?c.b)y' F]iGzʼ=\E r/zn$UM~<4j~“<¤TU>@_y!iOJhmwD+h #-x_ÁTt 9?8湙\Zg0PMsK<XɒdQ8aLoul\hsy!_0ަkw 7ymuqԃZf+1%W^u2')>SG=b%(J-Xz^#J+HK$]*coUDƅL<yµ打_ç1-OǾhӚ\uY zR_U/^,/Ʒ7Kuf)smJ@Ul履qӛ%&O$&" Qv' vDV$W+ 6SqAq-g7ZP"0z+O#YU3H5a,r "ٚd\qLB*HB+J骝{"]"Uكu,(T!-s9[4&%؞؈&)bfqeKݽۨ e'߷?LnxZf$Sx([7rw$=yIN34s5 R` ,-ɀ(wъ2Go9B4+e<6P2P|Xf)bA7_׼u^ܷ'k|"qįS⠕Vh3)={ *דΓgfkjOVP6+&<Cl գW&_y Jof!67d/^sJ[OFH5;=ɖw.Qo9pt)D.`ɜHX eOkaZ@οK7#Z !8N 1"@dz&f\ =}zAcÙۏ`͓ d~U]EAq{9h{W-h$j.Q$$ܑ{&,k Bo.¨)ĐDšlFf7%kCy?ݪ;{juFq $}W|ZPSp-䗒WR& ςzzYuyGV| ðr"U+ϕ CL9ҴSCٙ'CFy:{G/vqJ@Ah>D(5f|b4ͳ(I'8e{bI2 3HJJܙo')À1H m. $4(vtF?1G P[.^EʨOa c,"?*tuRB6dp'5Vol%bv_y׻VCY"=O8'+s\qSMVueb`HeYO:*Sﵡ1Z0Tg1XK%XR}3m]v,ȈbLE͘i=I|fLDzh d`M ,۹^uL?cS \tQ>IQ[&6.*jw19F87?s?=k"AJkY ]%/'ģqW)N9QZzy*^TR 9EVx }9[ ^\= !0' +'OKL* R_PW[MB_Bu>8aF#rܞ_)H$-_"?H^)9'L C@U#z,\\lj>x"I\?I]׍Tڑb(/>;KK.i`EO & k6XÂXnk;1wF$ϙԟdտ_|qC'h}&6 sO?[>?ևaD5u(ԅME$}խ3')jl9"_0<j~vr$](C_:IyIeoQH k5iUC1L'p\3G&Uض?ܡzlVe^{fdE"vޫ6k)(=\";̹9 )SW(tx >T/V?m1a9*Sj&a5XHWrhZIZ>r Ao4#A"$m{{{՝#p9;DG%.r-`k?SV+ӰӓIԙPOZ_BgJ^cUmJ=.Ag1%31tE\%.o`ƛSgCd\ %ĮMe,# D˜z]e}ݓIV[ %0ڕw6q=8݂Kjl,nEb3H9e%R^ե}w& ]]fN냦!'K 6ϙ1Lq66PcF NN.98AM ®96ࢊ=h98nPЗ=6N%vja#)1z9ڗJIR~'>6*2etUjLAkoƀo|jOhsb$h_'My ,ֿ\o뙂Iq!8Sɠ2v|{7"HN:մ 'GP/x$*0)zYi@v7 M$TeCCC0A&NJߓb\xb!Qntk~i Led5,7O H b%Op JO o0F" 0 V(-.BʳJ~!y;P*K?)-WN}v2Е(%x DΒ+OP{Τ <~pdj =Z߆$?I0- MAL_sSo;e}eZ3[NU}A1e#I-0=Z.~%aa?`%rMi{lDP*٧yiNG<}k4L78. =0x&[ s^ endstream endobj 474 0 obj << /Length1 2835 /Length2 13473 /Length3 0 /Length 15065 /Filter /FlateDecode >> stream xڍT.t7Ҳ@@;${nSC$r}6c;x|ޘs~酌m 6֎ L<9f+ " _9"dc󇅈=,5pX,̬ffN&&  my c@H!bcf25s*#j377'_!+= ghg42(n Agh```co*@Mp9@{g1wy+ߥ1 RT@Q(ۘ8`%hvq6R[ec@9f;/g##+[k7)d (28: X:؀ @`ą d]#06YXY}wc{6.E& kce;2Z윀RۀE/2S#]'Pqd-akc 0= G{'ǟ#Dff1`4Y#D&ۃ\ZLc0?X[5bFIquy%)ڿKG),l gгYGonL/Ml)ܻ^P}h of eؙ_.;u_zV K->r6a9r@cj 'DFA@ G#6cGY?8~7zf&сNq/|Qca!2 >@׿V`mv#);Q?(8"/ (b N& b0J  V b0J 0"\^ sQq|xA`./E( 0\^\4A`./gbXقk0 #dodo# = ,, [lbn=~0M?gr;8%xa[beҁR:+BcK?H0/BƗbWRz;'7q3$ӗ` Kk`fk,A[x!.~у;Ǥ/WK _¦P56/1mb/jp[fߓeWSˬMtKᯋl6@c×vr-wNff#aW{;8u6^҂_(FG3{;N/[ׇ&aur FNY9<⿾@WҼoy}`Z!B/,l(CWwE.Y "zf"60YJ[,_3Y{E^j11ܦ?vubٓg66}Ui 5.ݏݹC >*pO!DEqq"Cv evV vI;\r@,~x68¾5\N Fxtb+sy$zA ?{2t[F`rr\@gzZ#9YQɲ=-xtHcˀ,+ _ݶe O^,t[شzH\)|_Pfbb8U3" :˯ ܼ_ϳ}%-м=v x3ju P#;Im~j&MIz]F+J㤬y;Q{2TH=%l$s TE5r,s^Wczk3U(W{F#o{H >I]w~"hڪP! [A I6s4/nqT}h=a8rwkB]Kf>YWڷB2^9_!.+>@Ѽyd:6~^UPƻ!\?m]$)c]Y&Q 7@?_cQqև˼F3 z={TOW;WTVEۿ˅]qLV ?>LLhHF5M#Z%ŸFjٰ>;b؄20h2PNzO٭si,\(^F~m7Ei)8KY[f2{)02e:*[c4imW&xPqXc82 uz]6'> U%`>ŧfYj%LTDꖼjx,Rơ7kذsmG-,kAYa#)Suddeg\M]/5N!'L\I礡ydDF}'s\bzm9jHF 3x>M9m4We%N.7L aR=ڔ_DZFtK؃8U3KQPo4V}By[aQﯰM/"<<j4Y9E*(GXcV"K$ҩ+v"eB$ঞkH֌tRvgF2~8L3Wܦ-c1- j8kOG~"DWɤzxw^rv.;7.]>?oPz%yn!=?Mm s^&a+Qp$'D~XM갵7@b]5J 2ӌE/ue[ItA5-F T^RSTߌ'+vp_ =X(cB]1B53+j JL΁11w#18z4àL n|j$+Tn c! :uBƥi'Fji V*!דs-{YciCX S8bw>{;1I>2ZR~óQ*fhVnCR =CS]f&"Ae}G/C^e<"kҹH:_ׁB87:AH5d0x)hUU T0݁\L5uōiwnے3۶|3/y<E3PS P}EM)7t*ZrZ , aBxpq_$Y5pL`&#B.؜4E)/@~'?߸Y#lUBҁ c_ 6d!j#R2-[޹/e+r0𦸒gA~xmwsL=EZ/VB[A )4iMkﯶ.a}H- ƭi+aފ̂o(RC|WǾ&ePoP#k | w Q +|s)[iZ.=˥ q3Z M8 zJ0HljbYS{U:zABҴT0 {rH*p,+>D::ścEu$%L>9KZՕ׷a0o$; 'UP> ku|vʳW>uuwM7Y: ii,mWo62 gUŬ&N/12q/ҳF#Hvc;cnE0G?}7.MI LoL"pkQeukenGYZөό" M)#^ciK߸UM+\ Z-zmw5rW4%ӅHngT$w5sz]/ $$*6S^tdwEQ9t~tc-'J$dK6]ks'ӲAT7Lݍ, k */D~>@#zq;k2<#CvHh}Kq؄>.j/GY#e͎y%"!]C+]ӢkĝٟT#(Y?iE>&cB>{ɓ"i/xRG2e!03}HqO+]]E23rOc4aI(Щ\6U,Vb)Xѵ^ņoEܹj:?ro'g8ψ/NoI{h>OEigDm$+Kw?SsfN;IV8՚Vl|f lTj*6z :4Ut>O!@D&%<@\2zGCɈs{+[r+Tj@iBNlJcFY[=!G CX1(1H|lzC$!i45Yu&Bx3܏kCϻ֌;!A6GSZ*#|jUmHԨ*E+)gd-:=Mɲze!Q$! ܨ;Xg]߲5X c%X|M?=z#&Zlh-S _x.&\ځ3e~?ppKsͯ&?/dƖ8TWkg3&1,#D_=#&/!|ȇe ɕ`ԗf9 iY`8ݍG-_5s?I=,>m)Td{Hf ֣uˤZP2dÏ F7.hpHKҬdlaGPrL,=r3~NZ5m"$,#}p$3`>5G[小f*l.,h8YVajkYjVkPv8EAg>䊷OrPnq.Ͼʑh0v؁zniK6QΒ1JBv4U<ܜA)MRc7[ЩrlKn'>ɇ?%v QNk}"KoDrS`2 |0H~ |xznv?Es6v>Llk5 ɴd¯o{: mVb7-zkdOC ve.UasRZq#JY}Ref|ۣzMVJpm#X5Fǹֈ}sy~WREP3dsu /FcHA5LJ_ ?DuۂIv7_cuC澶Єmxw7͠5x%jW3XZ$N"y3" v׵ *i.=s\`%``q^zGIhW%e@;[:mѵazU_Fg"^&jx$:QY鬋77}~1 'I] XP I<fXgM)eM;*dz])cf[HȵҘ3{Cr!e^F;j4a]5Ԣ~9:dQ88G3QqkN %wGѴ';i;ģ>hM.o5$M@vOnԂt ߇8D>-b7\^nuzEkPH9hOr)j& >Y[]B!\R 'hbSTŝ s@?:T%qE<܌HйgNP!܎W<]?] xW z bWG?Zl6KX^~ s{QJ3m bk˻rRhrWlKҥV&BG'7&d~ANv@߹m1O5֌a_@)3c{H>sW3Z*M?](bd\?;f!&o~1iY Ϳ%Zo"CS;ż G+F =s5`\9fhD-Fm0#<ШU*ý~x@ 37Wjhl15ÉxR>N"ӍNLkQ!Le|.a6佾r!SYL$\yWRI#rLweҧ[t_^/!8__{ 2=3tH`6JWJ%{}Ðʺ\ Jr Γ!طٮ6kVyZy ׉^Bk"㕣{[JK@8Y(Ώnh?\{|/jCG2{΃ >xEX,6OuxB#G \g=P:W&\̾qюuxJ&c 񑷔]O,=2 @ ҈ 뙣`%b7^3gj)' ^]ܩkui%HӠ2Um #} B44fWdHcmJ*y\wi7_{z-[{!nb2޺ٶzF\ JYPO$:BLl9"OLգ$ޠO#_18Gx8nD"JCُ>x/{X6hUqhCZI*]fs]RA =wW*v.i$Pz/a~5VSPEEMߌn!hBi)*7uMt!+\((8RguarXK%z4k-S6ȽkEʂ M.>ث?a7֞}[7IvT|=.YWr^hҹ*ֹ$KnH46E-' z@|+9?":klBJ{fw)m&֯7q~Y@D]y6bvGDn($gM,[h("v]ɼZHC봷X)joGg+yQeg/Mumå]8pqkjttk&|5G{IgO&HۇVߺlVޭR i*ܽcTrC:ӮuOty|^!ٗJrԅ/ޒDL90xvqΧH1Q#׀ qihafyAL#&>t0ԘvdH-o7y~<М7#' 4L&,,y]B/4[oSTCP| V1÷Dӕ枲Ce>TJ2AO.fV axŗWߜEo |7JQg⋔1>0V$2J\KKOb"̓5|N=X10n:~<}PdxkF =[f'B1u$+͉*gӪu~\ )^5 KV<l06}+Q!2ds4F%|\x\/7^uam\^Ԗlٻo=V"Vl|]rT;׫Jvh-,b9=56H'Zь0f؁43o6E:'aHV s2[ $,u=.Z[F]>zlS5ߥivK_o/#*Y! JD6XD3A&~rusE)c1L0=uյYe:\A͏Y?7Γ Ԛq# u5]F_sVǼp>OJ"*@}iɀ 40ԧm#y Sc1ogN"kq~?Vb&G`Rk`(zB ֵ\ӈhhQ7V!W%VF]nBTshՖV!Y"%w4P̚}i?u)0>! )PaK}teyRUQO+{5f\@ɘ -`Az:HYJӣdSư)ȀjHNWV=8zNԸ,sᓃ2q+2\}o)0XbFe^\mfai`&Ŷ,۪1{˫ P֤ ј?@?!rTUoCPufd#.f )v_XznET 6GZ5BA(!Q5+(XtO11–!Ckt(|J@~N%3cxh_AZjOn-RE.Q_C-Ō ;g6\nDD3hS8((/[h%d@uDPys iѢ#>pY +T., ٣MY`wن $K5Ŧc [TI, ^Ղ#f?ƂKO\1Q_0ЂLOnQgᷖ-dž2hI-!|G "emRU긹RsOd8My>GIgT{/NZtD'fKJImPo\¾[ 5);g4t.fM >nBf{裡͛Wa#7Vd|&s9^ms r!g~p n q|^zA6lꬱNpŏ)coD$-[DiVi1՘0Q>%gͤ~ֹFn7܏N\gЮkDR $,ʂ?n 0qQ/ad]_/|"q ( l9x>&1 eUN:>&OMdKG¼PAZ6 W\ '7㰷-'¹}uf77Bf;b'cm%lJ-Y. ǁ,@ 3SrZ,bfC[RÈH6% >*8}o9Bc-ivfmEF}r4?ԆywFxQdS,TnL/kY rYw J&ߒ+"z1A4wHz{U;92 'I܀5I$h}:P9X?S'g͏K7UNIp=oy:,:|&m{Cdj8{𴟝 =;n[{lLο?&\VBŞFe"; ژGEsgE/c>Ϻ5n+:lzbzCVQ|J4RpJo!-Ujo>V#bqq)4KZpiYx!$ݵe (wz<4˦Fb*e,բ?"SFԦT$vYp#,FꨫLԛ-oh'?2ِEP}Dlcq^U'xKj:y^K.YVxɱtb*[YoXbHFst BJ`E !/hQTǕh0PGJ?|vFA)$A$f,tq Oce?_MȋbR!X~W !yYGΠ}kLN/0QJM\||_f̃-؝/SlYQRM!wa:t@j)~r+.yWQMeNfHt"5 :/Va[﹒@eͬ?1~EfҙVz1/ X/RȜIK$r3xQ+ Mzb;8CYLX]q$DdVrE^6|YŽV3a}uSThM(g"α)eհ/G?(Sө2[7 zX|aeePS>,s ׸-i Nia(zd- qے甥xrSz*t0|5wyy=yߙ K#tjP061hWq :IL`_O[li´[~Q62%/bWQI1b$G}4.<j\ GBd>_qخ<H endstream endobj 413 0 obj << /Type /ObjStm /N 100 /First 929 /Length 4441 /Filter /FlateDecode >> stream x[Ys~ׯsT}J*/Kh'ZJo 3P"T h75J;4ZF9h5FNUci6Gʥ{(ih\6jvM$­wJmA'6J)`L11Q&#kKDC\HK@ˍkDp;Ba0:KF%kE:$֑Q'4ItRd%CDݙ&*pNa*4tdˤM)H $%$:~CIUziQ@)5lT HiiXKҠVDĦ&:bDɤS$XqzL 1F 'r$M=d|DxRĽ>d0gYVg 9HfEGV>2 ,S$a +R\$=ŊYHi8X2.Iu3K Jx)Ucì zgmFKDX$EIdV<#B C0o0d<#qbc#ﰤl^a]<µڱ˓UoyDS{ML?͎avZg*Glyy8-9Г|zkNҀKnI{c{6]Vxry~bI!&]\&&&kLO~-SMNI$7udnu5EAFhUɪmу:8~Du7ָMz7p9M}Wj}Oc&N(}QzcJ8z ;P5L?|Ҏ.1MLkbH}$Ĕ6Fn59`'qFf IB2R# j@Ld@pݯ!2D N5TjsXBErgR x2V>%Dʐ @Ojh*4"1by\Q8 2.S  .`;=) _==8"BY҄)0EJO$r7(]r&ma6uigzKc&E:Ɖ&٘&E>7@sqiQ 'we<WY- p(;q[lD+Va|Ň֎}:Qw6gTWEKɌρE#TyH M\#N$`%pEC2#cqtsA-F`r4(:lz,2,bpD(:h=k!)P,MtBxcEJAr8. X6`om;:y {7i)~J^߲ fhK( q$fHrs!X\b2S wHN"!Ey!dAR[xxy8HÍC'UrSZ9(A d31E:pN&=aҬ #({.)QnNxw6#6$˜PDPS7??-N KxˆHI%[G+9E(3i1qh^ǴssHgljTn1x\3h"+)Gv^3s2p~ ~-ey萱.k2 xGZ=ph6*[`嘄!KiJ4aҖ}W?Sqk<%.]Eu.G$ (r[4ER>峜t&i0sW&*+ nZ܀28H~p)'z1ڙcgW\k躹>m GHsH5Ƣs4Fj7H@mU\9()PkӨ g[ATֽޤ-+XZYq[9fk'T5KFvܲ{>0ʮTnur?)\9Bぷ X^nn}l:6jp!)\h "d5l|X粆r` 3\e8#(~K6ryWNlR>))D_d:rBJͥ\3Dƛ몿Pp*!;kq6El619>0>\7yhhl6{<3Jq56ܥ-wp†(<췴OfZ6 N˧94. Hc)f E܀#|ʫK?IșBmzcfɘOChLY#RE7R5Nij};Ζ'"_?̭o=;'_+MgOfs4?h qĭ ~M LBL q1rB\K"U-b~y*\N?A~݅XO"3ϋLWO*-./Czn<|-,n{~P]݌ ֛go_?%3"E*BHe:3]cT-=i:p^%HD3|e7zqm7|sJ*޽sr~ ñxbTk?'^ݨt?qAb.K^`{gY,c}s:ď1KGaT(|'C!pOؾd{Ř^IbԔ6E0y;OSH<.)yٰmx-ސOũ.銒ȇي}PNe8:x6:H4gg0ד9(!C=8Ak?>Z?։dnW,h暟 [oþF|]n6ط܈o9S}.l3Gi^VH(m(IhFw]zBRwn?02_'t] ~T(VbWN8~pR˟GjVRSRH7dr _*xvovsùute9+G%Bvم(l|~q싽WzGY I i Bq3|,,糾l{ŚWG,ؾ`*g=,o&naŽ_o"NjnU1.Y]yYcbWMqy]nV-^1O_`ѩhX|*~$p67dtBob@<]?m~ĿO~^f@`@:L8@!iȀu=ҀޟƀS}@ ɛ!y{ۊ۟:`H}\QopdR=Ӽ,/;=Vgqt5qWq7<.6(}xp8S6S`H}*~y>$pq[NAm vH|T/à Z?@a6$rv,̘- /,JՕP^~y> endobj 478 0 obj << /Type /ObjStm /N 38 /First 308 /Length 1251 /Filter /FlateDecode >> stream xڍXێ6 }߯c@I݀ @@6 41 ;mGR=k|0>y4 0D Y C B2zdB+&F &&[k!2βlsc[6Gd owER8s \hA~0IY-l,egZ,qI"g) &oG=39'eg LK$A)īW?]nv|~#_OE-.IsOPpz:s;|WzYx5oJtlQ<)d@*Y-sǷ803ymdzӶ'P)ؚFwhÀ־R&+nѳ#$4!bu!Iw"W_ɚ.퍚]͵ךN즣unR^ѭZ2Yǻl|.ǧAB5/~ w;j [}B؆ AFPS:ݝ.Ӓ۸@ ^+ 8Έ2NF}NAux(Og 1@Z,@xi컔8a3ZQ8?t<$jeA!Af03Rm^jY,I#EPtdH;T7xóU <09E1FD8E55F775FD373985EBD585C2C2>] /Length 1239 /Filter /FlateDecode >> stream x%YlVURm-ej @'J[h;ƘhB|W=U cb> &FL4F[Ͻwm$i%v$PghhOAs@m/"mtPv!4Q].>/R݈'hڪ،v[J)4=FPv'Mkh @onJP؅VxpWhW@Z#eh3Ђ֎v uAhD[v]hh+ns@xs{. і{1pnq:C;pI86=@tgC. ch砇Qy#? hcqE Ei80vm z8gih8 .Ѧ3M) @esT՝k2NU- 8:t ?bE\a"3Wp+.<^mIRquWQ>a:yKt_deK}Gb׿-WHȑH7dƛ-6Tx@{%?|{t,x{,S]BR1űϒoiS;CsO(@_8f Y]igQ*\3f ZeAKO}άrzic$_6o%_2eq-`3'!1{TΜE@j6ē(6\XAˀRJ f~F@uہZH;zhAsWt?K 0ha٫#ZdmQs5DfXt6Ui+4,y0`vS CfIcӠ挚}<&7:A5~] Aal .$7aҦ`a71}_pqshaU\*pbۃ,Dh X Wbib_|5n4d,E8Gl>bg6rsjU͖PbuZ-6KWn:,#U{.˽܃TXvUFUUipqLed!/hDF#2шFd4"hDF#2шFd4"QdD#k}j{E_Ob endstream endobj startxref 314526 %%EOF espresso-5.1/Doc/INPUT_CP.xml0000777000175000017500000000000012341373334017365 2../CPV/Doc/INPUT_CP.xmlustar mbambaespresso-5.1/Doc/developer_man.tex0000644000175000017500000023144412341373034015361 0ustar mbamba\documentclass[12pt,a4paper]{article} \def\version{5.1.0} \def\qe{{\sc Quantum ESPRESSO}} \def\qeforge{\texttt{qe-forge.org}} \textwidth = 17cm \textheight = 25cm \topmargin =-1 cm \oddsidemargin = 0 cm \usepackage{html} % BEWARE: don't revert from graphicx for epsfig, because latex2html % doesn't handle epsfig commands !!! \usepackage{graphicx} % \def\htmladdnormallink#1#2{#1} \def\configure{\texttt{configure}} \def\configurac{\texttt{configure.ac}} \def\autoconf{\texttt{autoconf}} \def\make.sys{\texttt{make.sys}} \def\Makefile{\texttt{Makefile}} \def\qeImage{quantum_espresso.pdf} \def\democritosImage{democritos.pdf} \begin{htmlonly} \def\qeImage{quantum_espresso.png} \def\democritosImage{democritos.png} \end{htmlonly} \begin{document} \author{} \date{} \title{ \includegraphics[width=5cm]{\qeImage} \hskip 2cm \includegraphics[width=6cm]{\democritosImage}\\ \vskip 1cm % title \Huge Developer's Manual for \qe (v.\version) \smallskip } \maketitle \tableofcontents \newpage \section{Introduction} \subsection{Who should read (and who should {\em write}) this guide} The intended audience of this guide is everybody who wants to: \begin{itemize} \item know how \qe\ works internally; \item modify/customize/add/extend/improve/clean up \qe; \item know how to read and use data produced by \qe. \end{itemize} The same category of people should also {\em write} this guide, of course. \subsection{Who may read this guide but will not necessarily profit from it} People who want to know about the capabilities of \qe, or who want just to use it, should read the User Guide instead of (or in addition to) this guide. In addition to the general User Guide, there are also package-specific guides. People who want to know about the methods or the physics behind \qe\ should read first the relevant literature (some pointers in the User Guide). \subsection{How to contribute to \qe\ as a user} You can contribute to a better \qe, even as an ordinary user, by: \begin{itemize} \item Answering other people's questions on the mailing list (correct answers are strongly preferred to wrong ones). \item Porting to new/unsupported architectures or configurations: see Sect. \ref{SubSec:Inst}, "Installation mechanism". You should not need to add new preprocessing flags, but if you do, see Sect. \ref{SubSec:CPP}, "Preprocessing". \item Pointing out bugs in the software and in the documentation (reports of real bugs are strongly preferred to reports of nonexistent bugs). See Sect. \ref{SubSec:Bugs}, "Guidelines for reporting bugs". \item Improving the documentation (generic complaints or suggestions that "there should be this and that" do not qualify as improvements). \item Suggesting changes: note however that suggestions requiring a significant amount of work are welcome only if accompanied by implementation or by a promise of future implementation (fulfilled promises are strongly preferred to forgotten ones). \item Adding new features to the code. If you like to have something added to \qe, contact the developers via the \texttt{q-e-developers[.at.]qe-forge[.dot.]org} mailing list. Unless there are technical reasons not to include your changes, we will try to make you happy (no warranty that we will actually succeed). \end{itemize} \newpage \section{\qe\ as a distribution} \qe\ is not organized as a monolithic code, but rather as a {\em distribution} (integrated suite) of ``packages'', with varying degrees of integration, that can be installed on demand, or sometimes independently. There is a ``shell'' structure, with at the center the {\em core} distribution, including \begin{itemize} \item scripts, installation tools, libraries, common source files; \item basic packages \begin{itemize} \item \texttt{PWscf}: self-consistent calculations, structural optimization, molecular dynamics on the ground state; \item \texttt{CP}: Car-Parrinello molecular dynamics; \item \texttt{PostProc}: data analysis and plotting (requires \texttt{PWscf}). \end{itemize} \end{itemize} Note that some libraries are downloaded on demand from the web during the installation of the core distribution. Then comes a first outer shell of {\em additional} packages, that can be downloaded and installed from the core distribution using \texttt{make}: \begin{itemize} \item \texttt{atomic}: pseudopotential generation \item \texttt{PHonon}: Density-Functional Perturbation Theory \item \texttt{NEB}: reaction pathways and energy barriers \item \texttt{PWCOND}: ballistic conductance \item \texttt{XSPECTRA}: calculation of X-Ray spectra \item \texttt{TDDFPT}: Time-dependent DFPT (requires \texttt{PHonon}) \end{itemize} All these packages use routines from the core distribution. A second shell of additional packages, also downloaded and installed on demand from the core distribution, includes \begin{itemize} \item \texttt{GIPAW}: calculation of NMR coefficients and chemical shifts, \item \texttt{EPW}: electron-phonon (under development, requires \texttt{PHonon}). \end{itemize} The only difference between the ''first'' and ''second'' shell is that the latter are stored in separate SVN repositories. In a third shell of additional packages we find \begin{itemize} \item \texttt{GWL}: GW calculations using Lanczos chains. \end{itemize} This also uses routines from \qe, but it must be separately downloaded and installed. There is then a shell of {\em external} packages, which typically read data produced by \qe\ but do not need it to work. Some of them (notably Yambo and WanT) can be automatically downloaded and installed from the core distribution using \texttt{make}. Finally there are {\em plugins}: these modify \qe\ packages, adding new functionalities. The only plugin currently released is Plumed (metadynamics), but other may come soon. \section{How to become a developer} If you want to get involved as a developer and contribute serious or nontrivial stuff (or even simple and trivial stuff), you should first of all register on \qeforge\ as a developer for the \qe\ project. \subsection{About \qeforge} \qeforge\ is the portal for \qe\ developers, contributors, and for anybody else wanting to develop a project in the field of atomistic simulations. \qeforge\ provides for each project a repository, mailing lists, a wiki, upload space, a bug tracking facility, various other tools that are useful for developers. Once you have obtained an account ({\em please} follow the instructions and introduce yourself when you register: the site administrator has to be sure that you are a real person!) you may open your own project, retaining all rights on it (including the right not to release anything): at the end of the "projects" page, click on the link "add new project", fill the form (note that the Unix name given to the project cannot be modified). You have the choice between a repository using CVS, SVN, \texttt{git}, plus other choices. You may as well register as a developer in an existing project: go to the project page, click on button ''Request to become a developer'' under the ''Activity'' graph on the top of the column at the right, to obtain the permission from the administrator of the project. You need to register your SSH keys in order to have read-write access the repository (if you have such permissions). Generate keys on your work machine if you haven't already, using command \texttt{ssh-keygen -t rsa}. The keys are typically found in file \texttt{.ssh/id-rsa.public}. Then \begin{enumerate} \item login to your \qeforge\ account \item click on My stuff (menu on top line) \item click on My account (menu on the left) \item click on Edit SSH Keys, add your keys (be careful not to add blanks, breaks, etc.). \end{enumerate} \subsection{\qe\ on \qeforge} Currently \qe\ uses the following development tools: \begin{itemize} \item SVN server (with web interface to browse the repository) \item Bug Tracking facility \item Upload space (with download counter) \item Mailing lists, currently \begin{itemize} \item \texttt{pw\_users} (low traffic): for announcements. Restricted: only a few developers can post messages here. \item \texttt{pw\_forum} (high traffic): for ordinary users, requests for help, problems, discussions, etc.. Only registered users can post. \item \texttt{q-e-gpgpu} (low traffic): specific to GPU-based architectures. Only registered users can post. \item \texttt{q-e-developers} (low traffic): for communications among developers and people interested in the development of \qe. Only registered users can post but messages from unregistered users are monitored and approved if relevant. \item \texttt{q-e-commits}(medium traffic): for automatic commit messages. Note that replies to commit messages go to the mailing list: in case of doubts or questions or remarks over a specific commit, feel free to reply. \end{itemize} \end{itemize} Everybody is encouraged to explore other capabilities of \qeforge. All \qe\ developer are {\em strongly} invited to subscribe to the two mailing lists \texttt{q-e-developers} and \texttt{q-e-commits}. Those who don't lose i) the opportunity to follow what is going on, ii) the right to complain if something has gone into a direction they don't like. Note that subscription to mailing lists is not automatic when you register: you should subscribe using the links in \texttt{http://www.qe-forge.org/gf/project/q-e/mailman/}. Please also consider subscribing to the bug tracker: select the "Tracker" item on the left, then select "Bugs", then click on "Start monitoring". You will receive an e-mail every time a bug is filed. \subsection{Contributing new developments} Various procedures can be followed to contribute new developments. It is possible to contribute: \begin{itemize} \item a small (or large) piece of code to an existing package; or \item a new package that uses \qe\ as a library; or \item a ``plugin'' that modifies \qe, adding a new functionality; or \item a new ``external'' package that just reads data file produced by QE. \end{itemize} The ideal procedure depends upon the kind of project you have in mind. In all cases, you should learn how to use SVN: see Sect.\ref{Sec:SVN}, "Using SVN". The three typical cases are: \begin{itemize} \item[a)] If your project involves changes or additions affecting only a small part of \qe, it is usually convenient to work directly on the main SVN repository (the "trunk"). \item[b)] If your project involves major or extensive changes to the core of \qe, it may be a good idea to make a SVN "branch" and work on it. Note that your branch will necessarily be public, since the SVN trunk is public. \item[c)] If your project involves a major new addition (e.g. a new package), or if you do not want it to be public during its development, it may be a good idea to register it as a new \qeforge\ project with a separate SVN repository. It is possible to restrict access to selected \qe\ developers; or to keep it private; or to have two repositories, one public and one private. It is possible to have the public repository automatically downloaded into the SVN copy of \qe\ (see Sect.\ref{SubSec:propedit}). \end{itemize} For case a), you should from time to time update your copy (using command \texttt{svn update}), verify if changes made meanwhile by other developers conflict with your changes. Conflicts are in most cases easy to solve: see Sect. \ref{SubSec:Conflicts} for hints on how to remove conflicts and on how to figure out what went wrong. Once you are happy with your modified version, you can commit your changes, or ask one of the expert developers to do this if you do not feel confident enough. For case b), you should from time to time align your branch with the trunk. See Sect. \ref{SubSec:Merge} for hints on how to do this. For case c): if your project is ``loosely coupled'' to \qe, that is, it just uses the \qe\ installation procedure and/or data files, there shouldn't be any major problems, since major incompatible changes are very rare (note however that the files produced by the phonon code change more frequently). If your project is ``tightly bound'', i.e. it uses routines from \qe, it is prudent to notify the other developers. \subsection{Hints, Caveats, Do's and Dont's for developers} \begin{itemize} \item Before doing anything, inquire whether it is already there, or under development. In particular, check (and update) the "Road Map" page \texttt{www.quantum-espresso.org/road-map}, send a message to \texttt{q-e-developers}. \item Before starting writing code, inquire whether you can reuse code that is already available in the distribution. Avoid redundancy: the only bug-free software line is the one that doesn't exist. \item When you make some changes: \begin{itemize} \item Check that are not spoiling other people's work. In particular, search the distribution for codes using the routine or module you are modifying and change its usage or its calling arguments everywhere. Use the commit message to notify all developers if you introduce any ``dangerous'' change (i.e. susceptible to break some features or packages, including external packages using \qe). \item Do not forget that your changes must work on many different combinations of hardware and software, in both serial and parallel execution. \item Do not forget that your changes must work for a wide variety of different case: if you implement something that works only in some selected cases, that's ok, as long as the code stops (or at least, issues a warning) in all other cases. There is something worse than no results: wrong results. \item Do not forget that your changes must work on systems of wildly different computational size: a piece of code that works fine for crystal silicon may gobble a disproportionate amount of time and/or memory in a 1000-atom cell. \end{itemize} \item Document your contributions: \begin{itemize} \item If you modify what a code can do, or introduce incompatibilities with previous versions (e.g. old data file no longer readable, old input no longer valid), {\em please} report it in file \texttt{Doc/release-notes}. \item If you add/modify/remove input variables, document it in the appropriate \texttt{INPUT\_*.def} file; if you remove an input variable, update tests and examples accordingly. \item All newly introduced features or variables must be accompanied by an example or a test or both (either a new one or a modified existing test or example). \end{itemize} \item Please do not include files (any kind, including pseudopotential files) with DOS \^{}M characters or tabulators \^{}I. \item When you modify the program sources, run the \texttt{install/makedeps.sh} script or type \texttt{make depend} to update files \texttt{make.depend} in the various subdirectories. These files are under SVN as well; if modified they should be committed. \end{itemize} \subsection{Guidelines for reporting bugs} \label{SubSec:Bugs} \begin{itemize} \item Before deciding that a problem is due to a bug in the codes, verify if it is reproducible on different machines/architectures/phases of the moon: erratic or irreproducible problems, especially in parallel execution, are often an indication of buggy compilers or libraries \item Bug reports should preferably be filed using the bug tracking facility at \qeforge:\\ \texttt{http://qe-forge.org/gf/project/q-e/tracker} \item Bug reports should include enough information to be reproduced: the error message alone is seldom a sufficient piece of information. Typically, one should report \begin{itemize} \item version number, hardware/software combination(s) for which the problem arises \item whether it happens in serial or parallel execution or both (if in parallel only, how executed), \item an output for a test case showing the presumed bug \item all the needed info and data to re-run the test case showing the bug \end{itemize} The provided input should be simple and quick to execute. \item If a bug is found in a stable (released) version of \qe, it must be reported in the \texttt{Doc/release-notes} file. \end{itemize} \section{Stable releases and development cycle} When a sufficient number of new features or improvements are available, a stable release is packaged. There is no well-defined procedure or rule to decide when it is time to package a new release: the decision is taken after informal discussions of developers on the mailing list. Note what open-source conventional wisdom says: {\em release early, release often}. When the decision is made, development of new stuff is temporarily stopped: nothing new or potentially ''dangerous'' is added, and all attention is dedicated to fix bugs and to stabilize the distribution. This phase should last a few weeks or so, a few months at most. Releases are labelled as $N.M.p$, where $N$=major, $M$=minor, $p$=bugfix. The logic goes more or less as follows: \begin{itemize} \item {\em Major}: when something really important changes, e.g. \begin{enumerate} \item[v.1] First public release of PWscf \item[v.2] Conversion from f77 to f90 \item[v.3] Merge with the CP and FPMD codes (beginning of \qe) \item[v.4] New XML-based data file format \item[v.5] Major package and directory reorganization \end{enumerate} (the above numbers are a slightly idealized versions of how things have gone until now) \item {\em Minor}: when some important new functionality is being added \item {\em Bugfix}: only bug fixes; occasionally, minor new functionalities that don't break any existing one are allowed to sneak into a bugfix release. \end{itemize} It may be convenient to make a SVN branch at release $N.M.0$: this allows to go on with the development while keeping track of bug fixes. Releases are stored to \qeforge. Given the size of the complete distribution, the release is split into a ``core'' distribution and ``add-ons'', additional packages, that can be downloaded and installed on demand from the core distribution. ``External'' packages can be independently released, as long as there is no compatibility problem. The automatic downloading of packages from the web suffers a catch-22: the core distribution must know the location of all packages it downloads, but these are known only {\em after} packages are uploaded to \qeforge. The workaround is that the core distribution looks for generic names, written in file \texttt{install/plugins\_list}. These names are translated by \qeforge\ into specific names. After all packages have been uploaded, file \texttt{/var/lib/gforge/archives/index.php}, residing on \qeforge, must be edited and links updated. Only the sys.adm. can do this. \paragraph{Preparing a release} {\bf to be written} \paragraph{Updating web site} After the release has been uploaded to \qeforge, the online documentation must be copied to directory \texttt{/var/www/quantum\_wp\_db/wordpress-3.1.4/wp-content/uploads/Doc} on the web site (only the sys.adm. can do this). \section{Structure of the distribution} Since v.5, the directory structure of \qe\ reflects its organization into packages. Each package is stored into a specific subdirectory. In addition, there is a set of directories, common to all packages, containing common code, libraries, installation utilities, general documentation. Common files and directories in the \texttt{espresso/} directory are: \begin{verbatim} install/ configure include/ make.sys archive/ Makefile dev-tools/ License pseudo/ README Doc/ environment_variables clib/ flib/ Modules/ upftools/ \end{verbatim} Apart from \texttt{License} and \texttt{README} whose meaning is obvious, the other files and directories are related to \begin{itemize} \item {\em Installation} (i.e. compilation and linking):\\ \texttt{install/}, \texttt{dev-tools/}, \texttt{archive/}, \configure, \make.sys \item {\em Testing} (running tests and examples):\\ \texttt{pseudo/}, \texttt{environment\_variables} \item {\em General documentation} (not package-specific): \texttt{Doc/} \item {\em C and Fortran Libraries, modules} (F95): \texttt{clib/}, \texttt{flib/}, \texttt{Modules/} \end{itemize} The core distribution also contains the three package-specific directories \texttt{PW/}, \texttt{PP/}, \texttt{CPV/}, for \texttt{PWscf}, \texttt{PostProc}, \texttt{CP}, respectively. Typical subdirectory structure of a directory containing a package (e.g. \texttt{PW/}): \begin{verbatim} Makefile examples/ tests/ Doc/ src/ \end{verbatim} Note that: \begin{itemize} \item \texttt{tests/} contains automated post-installation tests (only in \texttt{PW/} and \texttt{CPV/}) while \texttt{examples/} are not suitable for automated checks; \item other packages may have a slightly different structure (in particular, \texttt{PHonon} has three directories for sources and none is called \texttt{src/} ). \end{itemize} \subsection{Installation Mechanism} \label{SubSec:Inst} Let us review the files related to compilation and linking: \begin{itemize} \item[--] \texttt{install/}: documentation and utilities for compilation and linking \item[--] \configure: wrapper for \texttt{install/configure} script \item[--] \make.sys: produced by \texttt{configure}, contains machine-specific compilation and linking options \item[--] \Makefile: contains dependencies and targets used by command \texttt{make}. \item[--] \texttt{include/}: files to be included into sources, to be pre-processed. \end{itemize} \texttt{./configure} {\em options} runs \texttt{install/configure}, produces file \make.sys. Its behavior can be changed by modifying file \texttt{install/configure.ac} (see Sec.\ref{SubSec:conf} for more details) and running (in \texttt{install/}) command \autoconf. This produces a new version of \texttt{install/configure}. \texttt{make} {\em target} checks for dependencies, recursively goes into subdirectories executing \texttt{make} again. The behavior of \texttt{make} is thus determined by many \Makefile's in the various directories. The most important files are \Makefile's in the directories containing sources, e.g. \texttt{Modules/Makefile}, \texttt{PW/src/Makefile}. Dependencies of Fortran files are contained in \texttt{make.depend} files in each source directory. These files {\em must be updated} if you change the sources, running script \texttt{install/makedeps.sh} or using command \texttt{make depend}. \paragraph{make.sys} This file is produced by \configure\ using the template in \texttt{install/make.sys.in} and contains all system-specific information on \begin{itemize} \item C and Fortran compilers name, pre-processing and compilation options \item whether the Fortran compiler performs C-style preprocessing or not \item whether compiling for parallel or serial execution \item available optimized mathematical libraries, libraries to be downloaded \item Miscellanous stuff \end{itemize} The \make.sys\ file is included into all \Makefile's, using the corresponding syntax. The best documentation for the \make.sys\ file is the file itself. Note that if you want to change something or to add more documentation into this file, you may need to modify the template file \texttt{install/make.sys.in}. \paragraph{Makefile} The top-level \Makefile\ contains the instructions to download, unpack, compile and link what is required. Sample contents (comments in italic): \begin{verbatim} include make.sys \end{verbatim} {\em Contains machine- and \qe-specific definitions} \begin{verbatim} default : @echo 'to install, type at the shell prompt:' ... \end{verbatim} {\em If no target specified, ask for one, giving a list of possibilities} \begin{verbatim} pw : bindir mods liblapack libblas libs libiotk libenviron if test -d PW ; then \ ( cd PW ; $(MAKE) TLDEPS= all || exit 1) ; fi \end{verbatim} {\em Target {\tt pw}: first check the list of dependencies {\tt bindir mods ...} etc., do what is needed; then go into {\tt PW/} and give command {\tt make all}. Note the use of {\tt exit 1}, which is required to forward the exit status of the sub-directory make to this makefile, since the section in parenthesis is run in a subshell and the {\tt if / fi} block will otherwise ``hide'' its the return status and make will continue in case of errors. } \begin{verbatim} neb : bindir mods libs pw ( cd install ; $(MAKE) -f plugins_makefile $@ || exit 1 ) \end{verbatim} {\em Target {\tt neb}: do all of the above, then go into directory {\tt install/} where {\tt make neb} using {\tt plugins\_makefile} as Makefile will check if NEB is there, download from the network if not, compile and link it} \begin{verbatim} libblas : touch-dummy cd install ; $(MAKE) -f extlibs_makefile $@ \end{verbatim} {\em Target {\tt libblas}: this is an external library, that may or may not be needed, depending upon what is written in {\tt make.sys}. If needed, go into directory {\tt install/} where {\tt make libblas} using {\tt extlibs\_makefile} as Makefile will check if BLAS are there, download from the network if not, compile and build the library} \paragraph{PW/Makefile} Second-level \Makefile\ contains only targets related to a given subdirectory or package. Sample contents: \begin{verbatim} sinclude ../make.sys default : all all: pw pwtools pw: ( cd src ; $(MAKE) all || exit 1 ) pwtools: pw ( cd tools ; $(MAKE) all || exit 1 ) ... \end{verbatim} {\em Target {\tt pw}: go into {\tt src/} if it exists, and (apart from \texttt{make} wizardry) give command {\tt make pw}. It is important to note that {\tt pwtools} has to depend on {\tt pw} or else this makefile will break when calling parallel make using {\tt make -j\# } Other targets are quite similar: go into a subdirectory, e.g. {\tt Doc/} and '{\tt make} something', e.g. {\tt make clean}.} \paragraph{PW/src/Makefile} The most important and most complex Makefile is the one in the source directory. It is also the one you need to modify if you add something. \begin{verbatim} include ../../make.sys \end{verbatim} {\em Contains machine- and \qe-specific definitions} \begin{verbatim} MODFLAGS= $(MOD_FLAG)../../iotk/src $(MOD_FLAG)../../Modules $(MOD_FLAG). \end{verbatim} {\em Location of needed modules; {\rm \texttt{MOD\_FLAG}} is defined in \texttt{make.sys}} \begin{verbatim} PWOBJS = \ pwscf.o \end{verbatim} {\em Object file containing main program (this is actually redundant)} \begin{verbatim} PWLIBS = \ a2fmod.o \ ... wannier_enrg.o \end{verbatim} {\em List of objects - add here new objects, or delete from this list. Do not forget the backslash! It ensure continuation of the line} \begin{verbatim} QEMODS=../../Modules/libqemod.a \end{verbatim} {\em Objects from {\rm\texttt{Modules/}} are available from the above archive. The directory where F95 modules are must also be specified to the compiler!} \begin{verbatim} TLDEPS=bindir mods libs liblapack libblas libenviron \end{verbatim} {\em TLDEPS=Top-Level DEPendencieS: a machinery to ensure proper compilation with correct dependencies also if compiling from inside a package directory and not from top level} \begin{verbatim} LIBOBJS = ../../flib/ptools.a ../../flib/flib.a ../../clib/clib.a ../../iotk/src/libiotk.a \end{verbatim} {\em All needed QE-specific libraries} \begin{verbatim} all : tldeps pw.x generate_vdW_kernel_table.x \end{verbatim} {\em Targets that will be build - add here new executables} \begin{verbatim} pw.x : $(PWOBJS) libpw.a $(LIBOBJS) $(QEMODS) $(LD) $(LDFLAGS) -o $@ \ $(PWOBJS) libpw.a $(QEMODS) $(LIBOBJS) $(LIBS) - ( cd ../../bin; ln -fs ../PW/src/$@ . ) \end{verbatim} {\em Target {\tt pw.x} - produces executable with the same name. It also produces a link to the executable in {\tt espresso/bin/}. Do not forget tabulators even if you do not see them! All variables (introduced by \$) are either defined locally in {\tt Makefile} or imported from {\tt make.sys}} \begin{verbatim} libpw.a : $(PWLIBS) $(AR) $(ARFLAGS) $@ $? $(RANLIB) $@ \end{verbatim} {\em This builds the library libpw.a - again, do not forget tabulators} \begin{verbatim} tldeps: test -n "$(TLDEPS)" && ( cd ../.. ; $(MAKE) $(TLDEPS) || exit 1) || : \end{verbatim} {\em second part of the TLDEPS machinery} \begin{verbatim} clean : - /bin/rm -f *.x *.o *.a *~ *.F90 *.d *.mod *.i *.L \end{verbatim} {\em There should always be a ''clean'' target, removing all compiled (*.o) or preprocessed (*.F90) stuff - compiled F95 modules may have different filenames: the four last items cover most cases} \begin{verbatim} include make.depend \end{verbatim} {\em Contains dependencies of objects upon other objects. Sample content of file {\tt make.depend} (can be produced by {\tt install/makedep.sh}):} \begin{verbatim} a2fmod.o : ../../Modules/io_global.o a2fmod.o : ../../Modules/ions_base.o a2fmod.o : ../../Modules/kind.o a2fmod.o : pwcom.o a2fmod.o : start_k.o a2fmod.o : symm_base.o \end{verbatim} {\em tells us that the listed objects must have been compiled prior to compilation of a2fmod.o - {\tt make} will take care of this.} {\bf BEWARE:} the Makefile system is in a stable but delicate equilibrium, resulting from many years of experiments on many different machines. Handle with care: what works for you may break other cases. \subsubsection{Preprocessing} \label{SubSec:CPP} Fortran-95 source code contains preprocessing option with the same syntax used by the C preprocessor \texttt{cpp}. Most F95 compilers understand preprocessing options \texttt{-D ...} or some similar form. Some compilers however do not support or do not implement properly preprocessing. In this case the preprocessing is done using \texttt{cpp}. Normally, \configure\ takes care of this, by selecting the appropriate rule \texttt{@f90rule@} below, in this section of file \texttt{make.sys.in}: \begin{verbatim} .f90.o: @f90rule@ \end{verbatim} and producing the appropriate file \make.sys. Preprocessing is useful to \begin{itemize} \item account for machine dependency in a unified source tree \item distinguish between parallel and serial execution when they follow different paths (i.e. there is a substantial difference between serial execution and parallel execution on a single processor) \item introduce experimental or special-purpose stuff \end{itemize} Use with care and {\em only when needed}. See file \texttt{include/defs.README} for a list of preprocessing options. Please {\em keep that list updated}. {\em Note:} \texttt{include/f\_defs.h} is obsolete and must not be used any longer. The following capabilities of the C preprocessor are used: \begin{itemize} \item assign a value to a given expression. For instance, command \texttt{\#define THIS that}, or the option in the command line: \texttt{-DTHIS=that}, will replace all occurrences of \texttt{THIS} with \texttt{that}. \item include file (command \texttt{\#include}) \item expand macros (command \texttt{\#define}) \item execute conditional expressions such as \begin{verbatim} #ifdef __expression ...code A... #else ...code B... #endif \end{verbatim} If \texttt{\_\_expression} is defined (with a \texttt{\#define} command or from the command line with option \texttt{-D\_\_expression}), then \texttt{...code A...} is sent to output; otherwise \texttt{...code B...} is sent to output. \end{itemize} In order to make preprocessing options easy to see, preprocessing variables should start with two underscores, as \texttt{\_\_expression} in the above example. Traditionally ''preprocessed'' variables are also written in uppercase. \subsubsection{How to edit the \configure\ script} \label{SubSec:conf} The \configure\ script is generated from its source file \configurac\ by the GNU \autoconf\ utility (\texttt{http://www.gnu.org/software/autoconf/}). Don't edit \configure\ directly: whenever it gets regenerated, your changes will be lost. Instead, go to the \texttt{install/} directory, edit \configurac, then run \autoconf\ to regenerate \configure. If you want to keep the old \configure, make a copy first. GNU \autoconf\ is installed by default on most Unix/Linux systems. If you don't have it on your system, you'll have to install it. You will need a recent version (e.g. v.2.65) of \autoconf, because our \configurac\ file uses recent syntax. \configurac\ is a regular Bourne shell script (i.e., "sh" -- not csh!), except that: \begin{itemize} \item[--] capitalized names starting with "AC\_" are \autoconf\ macros. Normally you shouldn't have to touch them. \item[--] square brackets are normally removed by the macro processor. If you need a square bracket (that should be very rare), you'll have to write two. \end{itemize} You may refer to the GNU \autoconf\ Manual for more info. \texttt{make.sys.in} is the source file for \make.sys, that \configure\ generates: you might want to edit that file as well. The generation procedure is as follows: if \configurac\ contains the macro "AC\_SUBST(name)", then every occurrence of "@name@" in the source file will be substituted with the value of the shell variable "name" at the point where AC\_SUBST was called. Similarly, \configure\texttt{.msg} is generated from \configure\texttt{.msg.in}: this file is only used by \configure\ to print its final report, and isn't needed for the compilation. We did it this way so that our \configure\ may also be used by other projects, just by replacing the \qe-specific \configure\texttt{.msg.in} by your own. \configure\ writes a detailed log of its operation to \texttt{config.log}. When any configuration step fails, you may look there for the relevant error messages. Note that it is normal for some checks to fail. \subsubsection{How to add support for a new architecture} In order to support a previously unsupported architecture, first you have to figure out which compilers, compilation flags, libraries etc. should be used on that architecture. In other words, you have to write a \make.sys\ that works: you may use the manual configuration procedure for that (see the User Guide). Then, you have to modify \configure\ so that it can generate that \make.sys\ automatically. To do that, you have to add the case for your architecture in several places throughout \configurac: \begin{enumerate} \item Detect architecture Look for these lines: \begin{verbatim} if test "$arch" = "" then case $host in ia64-*-linux-gnu ) arch=ia64 ;; x86_64-*-linux-gnu ) arch=x86_64 ;; *-pc-linux-gnu ) arch=ia32 ;; etc. \end{verbatim} Here you must add an entry corresponding to your architecture and operating system. Run \texttt{config.guess} to obtain the string identifying your system. For instance on a PC it may be "i686-pc-linux-gnu", while on IBM SP4 "powerpc-ibm-aix5.1.0.0". It is convenient to put some asterisks to account for small variations of the string for different machines of the same family. For instance, it could be "aix4.3" instead of "aix5.1", or "athlon" instead of "i686"... \item Select compilers Look for these lines: \begin{verbatim} # candidate compilers and flags based on architecture case $arch in ia64 | x86_64 ) ... ia32 ) ... aix ) ... etc. \end{verbatim} Add an entry for your value of \$arch, and set there the appropriate values for several variables, if needed (all variables are assigned some reasonable default value, defined before the "case" block): - "try\_f90" should contain the list of candidate Fortran 90 compilers, in order of decreasing preference (i.e. configure will use the first it finds). If your system has parallel compilers, you should list them in "try\_mpif90". - "try\_ar", "try\_arflags": for these, the values "ar" and "ruv" should be always fine, unless some special flag is required (e.g., -X64 With sp4). - you should define "try\_dflags" if there is any "\#ifdef" specific to your machine: for instance, on IBM machines, "try\_dflags=-D\_\_AIX" . A list of such flags can be found in file \texttt{include/defs.h.README}. You shouldn't need to define the following: - "try\_iflags" should be set to the appropriate "-I" option(s) needed by the preprocessor or by the compiler to locate *.h files to be included; try\_iflags="-I../include" should be good for most cases For example, here's the entry for IBM machines running AIX: \begin{verbatim} aix ) try_mpif90="mpxlf90_r mpxlf90" try_f90="xlf90_r xlf90 $try_f90" try_arflags="-X64 ruv" try_arflags_dynamic="-X64 ruv" try_dflags="-D__AIX -D__XLF" ;; \end{verbatim} The following step is to look for both serial and parallel fortran compilers: \begin{verbatim} # check serial Fortran 90 compiler... ... AC_PROG_F77($f90) ... # check parallel Fortran 90 compiler ... AC_PROG_F77($mpif90) ... echo setting F90... $f90 echo setting MPIF90... $mpif90 \end{verbatim} A few compilers require some extra work here: for instance, if the Intel Fortran compiler was selected, you need to know which version because different versions need different flags. At the end of the test, - \$mpif90 is the parallel compiler, if any; if no parallel compiler is found or if \texttt{--disable-parallel} was specified, \$mpif90 is the serial compiler - \$f90 is the serial compiler Next step: the choice of (serial) C and Fortran 77 compilers. Look for these lines: \begin{verbatim} # candidate C and f77 compilers good for all cases try_cc="cc gcc" try_f77="$f90" case "$arch:$f90" in *:f90 ) .... etc. \end{verbatim} Here you have to add an entry for your architecture, and since the correct choice of C and f77 compilers may depend on the fortran-90 compiler, you may need to specify the f90 compiler as well. Again, specify the compilers in try\_cc and try\_f77 in order of decreasing preference. At the end of the test, - \$cc is the C compiler - \$f77 is the Fortran 77 compiler, used to compile *.f files (may coincide with \$f90) \item Specify compilation flags. Look for these lines: \begin{verbatim} # check Fortran compiler flags ... case "$arch:$f90" in ia64:ifort* | x86_64:ifort* ) ... ia64:ifc* ) ... etc. \end{verbatim} Add an entry for your case and define: - "try\_fflags": flags for Fortran 77 compiler. - "try\_f90flags": flags for Fortran 90 compiler. In most cases they will be the same as in Fortran 77 plus some others. In that case, define them as "\$(FFLAGS) -something\_else". - "try\_fflags\_noopt": flags for Fortran 77 with all optimizations turned off: this is usually "-O0". These flags must be used for compiling flib/dlamch.f (part of our version of Lapack): it won't work properly with optimization. - "try\_ldflags": flags for the linking phase (not including the list of libraries: this is decided later). - "try\_ldflags\_static": additional flags to select static compilation (i.e., don't use shared libraries). - "try\_dflags": must be defined if there is in the code any \#ifdef specific to your compiler (for instance, -D\_\_INTEL for Intel compilers). Define it as "\$try\_dflags -D..." so that pre-existing flags, if any, are preserved. - if the Fortran 90 compiler is not able to invoke the C preprocessor automatically before compiling, set "have\_cpp=0" (the opposite case is the default). The appropriate compilation rules will be generated accordingly. If the compiler requires that any flags be specified in order to invoke the preprocessor (for example, "-fpp " -- note the space), specify them in "pre\_fdflags". For example, here's the entry for ifort on Linux PC: \begin{verbatim} ia32:ifort* ) try_fflags="-O2 -tpp6 -assume byterecl" try_f90flags="\$(FFLAGS) -nomodule" try_fflags_noopt="-O0 -assume byterecl" try_ldflags="" try_ldflags_static="-static" try_dflags="$try_dflags -D__INTEL" pre_fdflags="-fpp " ;; \end{verbatim} Next step: flags for the C compiler. Look for these lines: \begin{verbatim} case "$arch:$cc" in *:icc ) ... *:pgcc ) ... etc. \end{verbatim} Add an entry for your case and define: - "try\_cflags": flags for C compiler. - "c\_ldflags": flags for linking, when using the C compiler as linker. This is needed to check for libraries written in C, such as FFTW. - if you need a different preprocessor from the standard one (\$CC -E), define it in "try\_cpp". For example for XLC on AIX: \begin{verbatim} aix:mpcc* | aix:xlc* | aix:cc ) try_cflags="-q64 -O2" c_ldflags="-q64" ;; \end{verbatim} Finally, if you have to use a nonstandard preprocessor, look for these lines: \begin{verbatim} echo $ECHO_N "setting CPPFLAGS... $ECHO_C" case $cpp in cpp) try_cppflags="-P -traditional" ;; fpp) try_cppflags="-P" ;; ... \end{verbatim} and set "try\_cppflags" as appropriate. \item Search for libraries To instruct \configure\ to search for libraries, you must tell it two things: the names of libraries it should search for, and where it should search. The following libraries are searched for: - BLAS or equivalent. Some vendor replacements for BLAS that are supported by \qe\ are: \begin{quote} MKL on Linux, 32- and 64-bit Intel CPUs\\ ACML on Linux, 64-bit AMD CPUs\\ essl on AIX\\ SCSL on sgi altix\\ SUNperf on sparc \end{quote} Moreover, ATLAS is used over BLAS if available. - LAPACK or equivalent. Some vendor replacements for LAPACK that are supported by \qe\ are: \begin{quote} mkl on linux SUNperf on sparc \end{quote} - FFTW (version 3) or another supported FFT library. The latter include: \begin{quote} essl on aix ACML on Linux, 64-bit AMD CPUs SUNperf on sparc \end{quote} - the MASS vector math library on aix - an MPI library. This is often automatically linked by the compiler If you have another replacement for the above libraries, you'll have to insert a new entry in the appropriate place. This is unfortunately a little bit too complex to explain. Basic info: \\ "AC\_SEARCH\_LIBS(function, name, ...)" looks for symbol "function" in library "libname.a". If that is found, "-lname" is appended to the LIBS environment variable (initially empty). The real thing is more complicated than just that because the "-Ldirectory" option must be added to search in a nonstandard directory, and because a given library may require other libraries as prerequisites (for example, Lapack requires BLAS). \end{enumerate} \subsection{Libraries} Subdirectory \texttt{flib/} contains libraries written in fortran77 (\texttt{*.f}) and in fortran-90 (\texttt{*.f90}). The latter should not depend on any module, except for modules \texttt{kinds} and \texttt{constants}. Subdirectory \texttt{clib/} contains libraries written in C (\texttt{*.c}). There are currently two different ways to ensure that fortran can call C routines. The new and recommanded way use the fortran-95 intrinsic \texttt{iso\_c\_binding} module: see \texttt{flib/wrappers.f90} for an example of usage. The old way uses macros in C routines: \begin{enumerate} \item \texttt{F77\_FUNC (func,FUNC)} for function \texttt{func}, not containing underscore(s) in name \item \texttt{F77\_FUNC\_(f\_nc,F\_NC)} for function \texttt{f\_nc}, containing underscore(s) in name \end{enumerate} These macros are defined in file \texttt{include/c\_defs.h}, included by all \texttt{*.c} files, and are automagically generated by \configure. The goal of these macros is to choose the correct case (lowercase or uppercase, the latter probably obsolete) and the correct number of underscores. See file \texttt{include/defs.h.README} for more info. % \subsection{Adding new directories or routines} \section{Algorithms} % \subsection{Diagonalization} % \subsection{Self-consistency} % \subsection{Structural optimization} % \subsection{Symmetrization} \subsection{Gamma tricks} In calculations using only the $\Gamma$ point (k=0), the Kohn-Sham orbitals can be chosen to be real functions in real space, so that $ \psi(G) = \psi^*(-G). $ This allows us to store only half of the Fourier components. Moreover, two real FFTs can be performed as a single complex FFT. The auxiliary complex function $\Phi$ is introduced: $ \Phi(r) = \psi_j(r)+ i \psi_{j+1}(r) $ whose Fourier transform $\Phi(G)$ yields $ \psi_j (G) = {\Phi(G) + \Phi^*(-G)\over 2}, \psi_{j+1}(G) = {\Phi(G) - \Phi^*(-G)\over 2i}. $ A side effect on parallelization is that $G$ and $-G$ must reside on the same processor. As a consequence, pairs of columns with $G_{n'_1,n'_2,n'_3}$ and $G_{-n'_1,-n'_2,n'_3}$ (with the exception of the case $n'_1=n'_2=0$), must be assigned to the same processor. \subsection{Restart} The two main packages, \texttt{PWscf} and \texttt{CP}, support restarting from interrupted calculations, Restarting is trivial in \texttt{CP}: it is sufficient to save from time to time a restart file containing wavefunctions, orthogonality matrix, forces, atomic positions, at the current and previous time step. Restarting is much more complicated in \texttt{PWscf}. Since v.5.1. restarting from interrupted calculations is possible ONLY if the code has been explicitly stopped by user. It is not practical to try to restart from any possible case, such as e.g. crashes. This would imply saving lots of data all the time. With modern machines, this is not a good idea. Restart in \texttt{PWscf} currently works as follows: \begin{itemize} \item Each loop calls \texttt{check\_stop\_now} just before the end. If a user request to stop is found, create a small file \texttt{restart\_*}, containing only loop-specific local variables; close and save files used by the loop if any; set variable \texttt{conv\_elec} to false; return \item After each routine containing a loop has been called, check if the code was either stopped there or no convergence was achieved; if so, save data (if needed) for the current loop as well, return. \item Return after return, exit all loops and go to main program, which must save needed global variables to file. The only difference with normal exit is that temporary files are kept, while files in portable format are not saved. \item if variable \texttt{restart} is set in input: \begin{itemize} \item starting potential and wavefunctions are read from file \item each routine containing a loop checks for the existence of a \texttt{restart\_*} file before starting its loop \end{itemize} \end{itemize} As of April 2013 only the electronic loop is organized ths way. Loops on nuclear positions will be organized in the same manner once their re-organization is completed. To be done: \begin{itemize} \item wg and et should be read from data file \item rho(+paw/U/metagga info) should be written to and read from unformatted data file similar to the file used in \texttt{mix\_rho}; portable format should be written only at convergence. \end{itemize} %\section{Structure of the code} % \subsection{Modules and global variables} % \subsection{Meaning of the most important variables} % \subsection{Conventions for indices} % \subsection{Performance issues} % \subsection{Portability issues} \section{Format of arrays containing charge density, potential, etc.} The index of arrays used to store functions defined on 3D meshes is actually a shorthand for three indices, following the FORTRAN convention ("leftmost index runs faster"). An example will explain this better. Suppose you have a 3D array \texttt{psi(nr1x,nr2x,nr3x)}. FORTRAN compilers store this array sequentially in the computer RAM in the following way: \begin{verbatim} psi( 1, 1, 1) psi( 2, 1, 1) ... psi(nr1x, 1, 1) psi( 1, 2, 1) psi( 2, 2, 1) ... psi(nr1x, 2, 1) ... ... psi(nr1x,nr2x, 1) ... psi(nr1x,nr2x,nr3x) etc \end{verbatim} Let \texttt{ind} be the position of the \texttt{(i,j,k)} element in the above list: the following relation \begin{verbatim} ind = i + (j - 1) * nr1x + (k - 1) * nr2x * nr1x \end{verbatim} holds. This should clarify the relation between 1D and 3D indexing. In real space, the \texttt{(i,j,k)} point of the FFT grid with dimensions \texttt{nr1} ($\le$\texttt{nr1x}), \texttt{nr2} ($\le$\texttt{nr2x}), , \texttt{nr3} ($\le$\texttt{nr3x}), is $$ r_{ijk}=\frac{i-1}{nr1} \tau_1 + \frac{j-1}{nr2} \tau_2 + \frac{k-1}{nr3} \tau_3 $$ where the $\tau_i$ are the basis vectors of the Bravais lattice. The latter are stored row-wise in the \texttt{at} array: $\tau_1 = $ \texttt{at(:, 1)}, $\tau_2 = $ \texttt{at(:, 2)}, $\tau_3 = $ \texttt{at(:, 3)}. The distinction between the dimensions of the FFT grid, \texttt{(nr1,nr2,nr3)} and the physical dimensions of the array, \texttt{(nr1x,nr2x,nr3x)} is done only because it is computationally convenient in some cases that the two sets are not the same. In particular, it is often convenient to have \texttt{nrx1}=\texttt{nr1}+1 to reduce memory conflicts. \section{Parallelization} In parallel execution (MPI only), N independent processes are started (do not start more than one per processor!) that communicate via calls to MPI libraries. Each process has its own set of variables and knows nothing about other processes' variables. Variables that take little memory are replicated, those that take a lot of memory (wavefunctions, G-vectors, R-space grid) are distributed. \subsubsection{Usage of \#ifdef \_\_MPI} Calls to MPI libraries require variables contained into a \texttt{mpif.h} file that is usually absent on serial machines. In order to prevent compilation problems on serial machines, the following rules {\em must} be followed: \begin{itemize} \item All direct calls to MPI library routines must either be \#ifdef'ed, or wrapped into calls to routines like those in module \texttt{mp.f90}. \item Routines that are used only in parallel execution may be either called and \#ifdef'ed inside, or not called (via an \#ifdef) and not compiled (via an \#ifdef again) in the serial case. Note that some compilers do not like empty files or modules containing nothing! \item Other \#ifdef \_\_MPI may be needed when the flux of parallel execution is different from that of the serial case. \item All other \#ifdef \_\_MPI are not needed, may be removed if already present \item \#ifdef \_\_PARA is obsolescent: it should be removed from existing code, it must not be used in new developments. \end{itemize} \subsection{Tricks and pitfalls} \begin{itemize} \item Replicated calculations may either be performed independently on each processor, or performed on one processor and broadcast to all others. The first approach requires less programming, but it is unsafe: in principle all processors should yield exactly the same results, if they work on the same data, but sometimes they don't (depending on the machine, compiler, and libraries). Even a tiny difference in the last significant digit can eventually cause serious trouble if allowed to build up, especially when a replicated check is performed (in which case the code may ''hang'' if the check yields different results on different processors). Never assume that the value of a variable produced by replicated calculations is exactly the same on all processors: when in doubt, broadcast the value calculated on a specific processor (the ''root'' processor) to all others. \item Routine \texttt{errore} should be called in parallel by all processors, or else it will hang \item I/O operations: file opening, closing, and so on, are as a rule performed only on processor \texttt{ionode}. The correct way to check for errors is the following: \begin{verbatim} IF ( ionode ) THEN OPEN ( ..., IOSTAT=ierr ) ... END IF CALL mp_bcast( ierr, ... , intra_image_comm ) CALL errore( 'routine','error', ierr ) \end{verbatim} The same applies to all operations performed on a single processor, or a subgroup of processors: any error code must be broadcast before the check. \end{itemize} \subsection{Data distribution} Quantum ESPRESSO employ arrays whose memory requirements fall into three categories. \begin{itemize} \item {\em Fully Scalable}: Arrays that are distributed across processors of a pool. Fully scalable arrays are typically large to very large and contain one of the following dimensions: \begin{itemize} \item number of plane waves, npw (or max number, npwx) \item number of Gvectors, ngm \item number of grid points in the R space, dfft\%nnr \end{itemize} Their size decreases linearly with the number of processors in a pool. \item {\em Partially Scalable}: Arrays that are distributed across processors of the ortho or diag group. Typically they are much smaller than fully scalable array, and small in absolute terms for moderate-size system. Their size however increases quadratically with the number of atoms in the system, so they have to be distributed for large systems (hundreds to thousands atoms). Partially scalable arrays contain none of the dimensions listed above, two of the following dimensions: \begin{itemize} \item number of states, nbnd \item number of atomic states, natomwfc \item number of projectors, nkb \end{itemize} Their size decreases linearly with the number of processors in a ortho or diag group. \item {\em Nonscalable}: All the remaining arrays, that are not distributed across processors. These are typically small arrays, having dimensions like for instance: \begin{itemize} \item number of atoms, nat \item number of species of atoms, nsp \end{itemize} The size of these arrays is independent on the number of processors. \end{itemize} % \subsubsection{Parallel fft} \section{File Formats} \subsection{Data file(s)} \qe\ restart file specifications: Paolo Giannozzi scripsit AD 2005-11-11, Last modified by Andrea Ferretti 2006-10-29 \subsubsection{Rationale} Requirements: the data file should be \begin{itemize} \item efficient (quick to read and write) \item easy to read, parse and write without special libraries \item easy to understand (self-documented) \item portable across different software packages \item portable across different computer architectures \end{itemize} Solutions: \begin{itemize} \item use binary I/O for large records \item exploit the file system for organizing data \item use XML \item use a small specialized library (iotk) to read, parse, write \item ensure the possibility to convert to a portable formatted file \end{itemize} Integration with other packages: \begin{itemize} \item provide a self-standing (code-independent) library to read/write this format \item the use of this library is intended to be at high level, hiding low-level details \end{itemize} \subsubsection{General structure} Format name: QEXML \\ Format version: 1.4.0 \\ The "restart file" is actually a "restart directory", containing several files and sub-directories. For CP/FPMD, the restart directory is created as "\$prefix\_\$ndw/", where \$prefix is the value of the variable "prefix". \$ndw the value of variable ndw, both read in input; it is read from "\$prefix\_\$ndr/", where \$ndr the value of variable ndr, read from input. For PWscf, both input and output directories are called "\$prefix.save/". The content of the restart directory is as follows: \begin{verbatim} data-file.xml which contains: - general information that doesn't require large data set: atomic structure, lattice, k-points, symmetries, parameters of the run, ... - pointers to other files or directories containing bulkier data: grids, wavefunctions, charge density, potentials, ... charge_density.dat contains the charge density spin_polarization.dat contains the spin polarization (rhoup-rhodw) (LSDA case) magnetization.x.dat magnetization.y.dat contain the spin polarization along x,y,z magnetization.z.dat (noncollinear calculations) lambda.dat contains occupations (Car-Parrinello dynamics only) mat_z.1 contains occupations (ensemble-dynamics only) A copy of all pseudopotential files given in input Subdirectories K00001/, K00002/, etc, one per k-point. \end{verbatim} Each k-point directory contains: \begin{verbatim} evc.dat wavefunctions for spin-unpolarized calculations, OR evc1.dat evc2.dat spin-up and spin-down wavefunctions, respectively, for spin polarized (LSDA) calculations; gkvectors.dat the details of specific k+G grid; eigenval.xml eigenvalues for the corresponding k-point for spin-unpolarized calculations, OR eigenval1.xml spin-up and spin-down eigenvalues, eigenval2.xml for spin-polarized calculations; \end{verbatim} in a molecular dynamics run, also wavefunctions at the preceding time step: \begin{verbatim} evcm.dat for spin-unpolarized calculations OR evcm1.dat evcm2.dat for spin polarized calculations; \end{verbatim} \begin{itemize} \item All files "*.xml" are XML-compliant, formatted file; \item Files "mat\_z.1", "lambda.dat" are unformatted files, containing a single record; \item All other files "*.dat", are XML-compliant files, but they contain an unformatted record. \end{itemize} \subsubsection{Structure of file "data-file.xml"} \begin{verbatim} XML Header: whatever is needed to have a well-formed XML file Body: introduced by , terminated by . Contains first-level tags only. These contain only other tags, not values. XML syntax applies. First-level tags: contain either second-level tags, OR data tags: tags containing data (values for a given variable), OR file tags: tags pointing to a file \end{verbatim} data tags syntax ( [...] = optional ) : \begin{verbatim} values (in appropriate units) for variable corresponding to TAG: n elements of type vartype (if character, of length k) \end{verbatim} where TAG describes the variable into which data must be read;\\ "vartype" may be "integer", "real", "character", "logical";\\ if type="logical", LEN=k" must be used to specify the length of the variable character; size="n" is the dimension.\\ Acceptable values for "units" depend on the specific tag. Short syntax, used only in a few cases: \begin{verbatim} . \end{verbatim} For instance: \begin{verbatim} \end{verbatim} defines the value of the FFT grid parameters nr1, nr2, nr3 for the charge density \subsubsection{Sample} Header: \begin{verbatim} \end{verbatim} These are meant to be used only by iotk (actually they aren't) First-level tags: \begin{verbatim} -

    (global information about fmt version) - (miscellanea of internal information) - (information about the status of the CP simulation) - (lattice vector, unit cell, etc) - (type and positions of atoms in the unit cell etc) - (symmetry operations) - (details for an eventual applied electric field) - (basis set, cutoffs etc) - (info on spin polarizaztion) - (info about starting or constrained magnetization) - - (occupancy of the states) - (k-points etc) - (info for phonon calculations) - (specialized info for parallel runs) - - (positions, velocities, nose' thermostats) - (dimensions and basic data about band structure) - (eigenvalues and related data) - (eigenvectors and related data) * Tag description
    (name and version of the format) (name and version of the code generating the file)
    (whether the file can be used for post-processing) (whether kpt-data are written in sub-directories) (whether augmentation terms are used in real space) (optional) (number $n of steps performed, i.e. we are at step $n)
    next up previous contents
    Next: 3.4 Tricks and problems Up: 3 Parallelism Previous: 3.2 Running on parallel   Contents

    Subsections

    3.3 Parallelization levels

    In QUANTUM ESPRESSO several MPI parallelization levels are implemented, in which both calculations and data structures are distributed across processors. Processors are organized in a hierarchy of groups, which are identified by different MPI communicators level. The groups hierarchy is as follow:

    • world: is the group of all processors (MPI_COMM_WORLD).
    • images: Processors can then be divided into different "images", each corresponding to a different self-consistent or linear-response calculation, loosely coupled to others.
    • pools: each image can be subpartitioned into "pools", each taking care of a group of k-points.
    • bands: each pool is subpartitioned into "band groups", each taking care of a group of Kohn-Sham orbitals (also called bands, or wavefunctions) (still experimental)
    • PW: orbitals in the PW basis set, as well as charges and density in either reciprocal or real space, are distributed across processors. This is usually referred to as "PW parallelization". All linear-algebra operations on array of PW / real-space grids are automatically and effectively parallelized. 3D FFT is used to transform electronic wave functions from reciprocal to real space and vice versa. The 3D FFT is parallelized by distributing planes of the 3D grid in real space to processors (in reciprocal space, it is columns of G-vectors that are distributed to processors).
    • tasks: In order to allow good parallelization of the 3D FFT when the number of processors exceeds the number of FFT planes, FFTs on Kohn-Sham states are redistributed to "task" groups so that each group can process several wavefunctions at the same time.
    • linear-algebra group: A further level of parallelization, independent on PW or k-point parallelization, is the parallelization of subspace diagonalization / iterative orthonormalization. Both operations required the diagonalization of arrays whose dimension is the number of Kohn-Sham states (or a small multiple of it). All such arrays are distributed block-like across the ``linear-algebra group'', a subgroup of the pool of processors, organized in a square 2D grid. As a consequence the number of processors in the linear-algebra group is given by n2, where n is an integer; n2 must be smaller than the number of processors in the PW group. The diagonalization is then performed in parallel using standard linear algebra operations. (This diagonalization is used by, but should not be confused with, the iterative Davidson algorithm). The preferred option is to use ScaLAPACK; alternative built-in algorithms are anyway available.
    Note however that not all parallelization levels are implemented in all codes!

    3.3.0.1 About communications

    Images and pools are loosely coupled and processors communicate between different images and pools only once in a while, whereas processors within each pool are tightly coupled and communications are significant. This means that Gigabit ethernet (typical for cheap PC clusters) is ok up to 4-8 processors per pool, but fast communication hardware (e.g. Mirynet or comparable) is absolutely needed beyond 8 processors per pool.

    3.3.0.2 Choosing parameters

    : To control the number of processors in each group, command line switches: -nimage, -npools, -nband, -ntg, -ndiag or -northo (shorthands, respectively: -ni, -nk, -nb, -nt, -nd) are used. As an example consider the following command line:
    mpirun -np 4096 ./neb.x -ni 8 -nk 2 -nt 4 -nd 144 -i my.input
    
    This executes a NEB calculation on 4096 processors, 8 images (points in the configuration space in this case) at the same time, each of which is distributed across 512 processors. k-points are distributed across 2 pools of 256 processors each, 3D FFT is performed using 4 task groups (64 processors each, so the 3D real-space grid is cut into 64 slices), and the diagonalization of the subspace Hamiltonian is distributed to a square grid of 144 processors (12x12).

    Default values are: -ni 1 -nk 1 -nt 1 ; nd is set to 1 if ScaLAPACK is not compiled, it is set to the square integer smaller than or equal to half the number of processors of each pool.

    3.3.0.3 Massively parallel calculations

    For very large jobs (i.e. O(1000) atoms or more) or for very long jobs, to be run on massively parallel machines (e.g. IBM BlueGene) it is crucial to use in an effective way all available parallelization levels. Without a judicious choice of parameters, large jobs will find a stumbling block in either memory or CPU requirements. Note that I/O may also become a limiting factor.

    Since v.4.1, ScaLAPACK can be used to diagonalize block distributed matrices, yielding better speed-up than the internal algorithms for large ( > 1000 x 1000) matrices, when using a large number of processors (> 512). You need to have -D__SCALAPACK added to DFLAGS in make.sys, LAPACK_LIBS set to something like:

        LAPACK_LIBS = -lscalapack -lblacs -lblacsF77init -lblacs -llapack
    
    The repeated -lblacs is not an error, it is needed! configure tries to find a ScaLAPACK library, unless configure -with-scalapack=no is specified. If it doesn't, inquire with your system manager on the correct way to link it.

    A further possibility to expand scalability, especially on machines like IBM BlueGene, is to use mixed MPI-OpenMP. The idea is to have one (or more) MPI process(es) per multicore node, with OpenMP parallelization inside a same node. This option is activated by configure -with-openmp, which adds preprocessing flag -D__OPENMP and one of the following compiler options:

    ifort -openmp
    xlf -qsmp=omp
    PGI -mp
    ftn -mp=nonuma

    OpenMP parallelization is currently implemented and tested for the following combinations of FFTs and libraries:

    internal FFTW copy requires -D__FFTW
    ESSL requires -D__ESSL or -D__LINUX_ESSL, link with -lesslsmp

    Currently, ESSL (when available) are faster than internal FFTW.

    3.3.1 Understanding parallel I/O

    In parallel execution, each processor has its own slice of data (Kohn-Sham orbitals, charge density, etc), that have to be written to temporary files during the calculation, or to data files at the end of the calculation. This can be done in two different ways:
    • ``distributed'': each processor writes its own slice to disk in its internal format to a different file.
    • ``collected'': all slices are collected by the code to a single processor that writes them to disk, in a single file, using a format that doesn't depend upon the number of processors or their distribution.

    The ``distributed'' format is fast and simple, but the data so produced is readable only by a job running on the same number of processors, with the same type of parallelization, as the job who wrote the data, and if all files are on a file system that is visible to all processors (i.e., you cannot use local scratch directories: there is presently no way to ensure that the distribution of processes across processors will follow the same pattern for different jobs).

    Currently, CP uses the ``collected'' format; PWscf uses the ``distributed'' format, but has the option to write the final data file in ``collected'' format (input variable wf_collect) so that it can be easily read by CP and by other codes running on a different number of processors.

    In addition to the above, other restrictions to file interoperability apply: e.g., CP can read only files produced by PWscf for the k = 0 case.

    The directory for data is specified in input variables outdir and prefix (the former can be specified as well in environment variable ESPRESSO_TMPDIR): outdir/prefix.save. A copy of pseudopotential files is also written there. If some processor cannot access the data directory, the pseudopotential files are read instead from the pseudopotential directory specified in input data. Unpredictable results may follow if those files are not the same as those in the data directory!

    IMPORTANT: Avoid I/O to network-mounted disks (via NFS) as much as you can! Ideally the scratch directory outdir should be a modern Parallel File System. If you do not have any, you can use local scratch disks (i.e. each node is physically connected to a disk and writes to it) but you may run into trouble anyway if you need to access your files that are scattered in an unpredictable way across disks residing on different nodes.

    You can use input variable disk_io to reduce the the amount of I/O done by pw.x. Since v.5.1, the dafault value is disk_io='low', so the code will store wavefunctions into RAM and not on disk during the calculation. Specify disk_io='medium' only if you have too many k-points and you run into trouble with memory; choose disk_io='none' if you do not need to keep final data files.

    For very large cp.x runs, you may consider using wf_collect=.false., memory='small' and saverho=.false. to reduce I/O to the strict minimum.


    next up previous contents
    Next: 3.4 Tricks and problems Up: 3 Parallelism Previous: 3.2 Running on parallel   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/node13.html0000644000175000017500000001503312341373051016122 0ustar mbamba 2.6 Running tests and examples next up previous contents
    Next: 2.7 Installation tricks and Up: 2 Installation Previous: 2.5 Compilation   Contents


    2.6 Running tests and examples

    As a final check that compilation was successful, you may want to run some or all of the examples. There are two different types of examples:

    • automated tests. Quick and exhaustive, but not meant to be realistic, implemented only for PWscf and CP.
    • examples. Cover many more programs and features of the QUANTUM ESPRESSO distribution, but they require manual inspection of the results.
    Instructions for the impatient:
       cd PW/tests/
       ./check_pw.x.j
    
    for PWscf; PW/tests/README contains a list of what is tested. For CP:
       cd CPV/tests/
       ./check_cp.x.j
    
    Instructions for all others: edit file environment_variables, setting the following variables as needed.
    BIN_DIR: directory where executables reside
    PSEUDO_DIR: directory where pseudopotential files reside
    TMP_DIR: directory to be used as temporary storage area
    The default values of BIN_DIR and PSEUDO_DIR should be fine, unless you have installed things in nonstandard places. TMP_DIR must be a directory where you have read and write access to, with enough available space to host the temporary files produced by the example runs, and possibly offering high I/O performance (i.e., don't use an NFS-mounted directory). NOTA BENE: do not use a directory containing other data: the examples will clean it!

    If you have compiled the parallel version of QUANTUM ESPRESSO (this is the default if parallel libraries are detected), you will usually have to specify a launcher program (such as mpirun or mpiexec) and the number of processors: see Sec.3 for details. In order to do that, edit again the environment_variables file and set the PARA_PREFIX and PARA_POSTFIX variables as needed. Parallel executables will be run by a command like this:

          $PARA_PREFIX pw.x $PARA_POSTFIX -i file.in > file.out
    
    For example, if the command line is like this (as for an IBM SP):
          poe pw.x -procs 4 -i file.in > file.out
    
    you should set PARA_PREFIX="poe", PARA_POSTFIX="-procs 4". Furthermore, if your machine does not support interactive use, you must run the commands specified above through the batch queuing system installed on that machine. Ask your system administrator for instructions. For execution using OpenMP on N threads, you should set PARA_PREFIX to "env OMP_NUM_THREADS=N ... ".

    Notice that most tests and examples are devised to be run serially or on a small number of processors; do not use tests and examples to benchmark parallelism, do not try to run on too many processors.

    To run an example, go to the corresponding directory (e.g. PW/examples/example01) and execute:

          ./run_example
    
    This will create a subdirectory results/, containing the input and output files generated by the calculation. Some examples take only a few seconds to run, while others may require several minutes depending on your system.

    In each example's directory, the reference/ subdirectory contains verified output files, that you can check your results against. They were generated on a Linux PC using the Intel compiler. On different architectures the precise numbers could be slightly different, in particular if different FFT dimensions are automatically selected. For this reason, a plain diff of your results against the reference data doesn't work, or at least, it requires human inspection of the results.

    The example scripts stop if an error is detected. You should look inside the last written output file to understand why.


    next up previous contents
    Next: 2.7 Installation tricks and Up: 2 Installation Previous: 2.5 Compilation   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/node3.html0000644000175000017500000001053212341373051016040 0ustar mbamba 1.1 People next up previous contents
    Next: 1.2 Contacts Up: 1 Introduction Previous: 1 Introduction   Contents

    1.1 People

    The maintenance and further development of the QUANTUM ESPRESSO distribution is promoted by the DEMOCRITOS National Simulation Center of IOM-CNR under the coordination of Paolo Giannozzi (Univ.Udine, Italy) and Layla Martin-Samos (Univ.Nova Gorica) with the strong support of the CINECA National Supercomputing Center in Bologna under the responsibility of Carlo Cavazzoni.

    Main contributors to QUANTUM ESPRESSO, in addition to the authors of the paper mentioned in Sect.1.4, are acknowledged in the documentation of each package. An alphabetic list of further contributors who answered questions on the mailing list, found bugs, helped in porting to new architectures, wrote some code, contributed in some way or another at some stage, follows:

    Åke Sandgren, Audrius Alkauskas, Alain Allouche, Francesco Antoniella, Uli Aschauer, Francesca Baletto, Gerardo Ballabio, Mauro Boero, Pietro Bonfà, Claudia Bungaro, Paolo Cazzato, Gabriele Cipriani, Ismaila Dabo, Jiayu Dai, Cesar Da Silva, Alberto Debernardi, Gernot Deinzer, Marco Govoni, Thomas Gruber, Martin Hilgeman, Yosuke Kanai, Konstantin Kudin, Nicolas Lacorne, Stephane Lefranc, Sergey Lisenkov, Kurt Maeder, Andrea Marini, Giuseppe Mattioli, Nicolas Mounet, William Parker, Pasquale Pavone, Mickael Profeta, Guido Roma, Kurt Stokbro, David Strubbe, Sylvie Stucki, Paul Tangney, Pascal Thibaudeau, Antonio Tilocca, Jaro Tobik, Malgorzata Wierzbowska, Vittorio Zecca, Silviu Zilberman, Federico Zipoli,
    and let us apologize to everybody we have forgotten.


    next up previous contents
    Next: 1.2 Contacts Up: 1 Introduction Previous: 1 Introduction   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/quantum_espresso.png0000644000175000017500000011316612341373050020273 0ustar mbambaPNG  IHDRj pHYsddFtEXtRaw profile type app12 app12 15 4475636b79000100040000003c0000 u vpAgIDATxymYUǘZk7}PT H"*!1gQ_4jg>QIg)D SR@uf51s}O5*V[g֜kRU6=^ID *'Cd $JR_졯b_ Oeu'0h J՟d >BsO*}^&h. V̱ƒ=L%(L1zO= YW̱ +XAB8!zN ]Iݵ +Vq>S@=X5)X-D` P{9 +|6`+V?RsgF#e2cg +o k}0)! *$ CU{DDD-,"M@@lA e?VX3sL6Is"7,U~0狜s "r5S&"j.d+oC (CIsO9 .x"{x C2$#'H@ HV*i&$$$RUePED571\bd@, 6d@!j*`6 l01,)B ++ BTJ (xdW[_ (RDDXZB$";#CXX$db@>B5|^`a~(19M%1G5Ǽυ`Lttht+XaNJ9z rHT2Xb[MeZXm* TH,9T5'^s6PH(H *P9T*/d=Sr`32 Y%)u"XBXD`e){WXa1@G:HOY" "f)Wd>sޯk,S ɜ栒5H 9jHP4ŻT!PE>XG u(ٺ>)q`R rd4lZ#ĖۅaL@fjap)V+IbHZJ)r$Da&dj 6?ѢCTzHS$AsXd,$ 5G9̡ |Je}8wvoDeY_ 9P vrj[Lla-$@<"V1AA@=}+قs<SHF2@ 3` JD)Ң>" H 9$3!=$RM A9A稒He?΁e}~yC%`ia4DP&q`{bL@:v?nj`5(ю{b;v4Xzh&Va0d[;O9 T 9 #RPJSIrO](GL9F*^)H(=b*5\e h Fa#\쀘, UdҬ˓ 5Vقð d^'z df`F@h>b4%gfK"{fӨO Ф9j { I);NG!A ͚i"a,-[3(b|Q8QHdř$f dLQ([HqVI-)p$!oXf+)b(`rI.@2NOM?AE 5`q 7LTH4*=QBq(/ (N#e bHK#rO"ϑ{GaZ'AMD `E^,AD3,ܕkfBQ"TETKf>;"AH[fW85L%Tȸ&Fa݋aojWXa1 gSRSfKi L=Fq")\1h֔Eb@#RC:@$ͽ^I#k!c"d QE0 1e*v#&kPlRfw Ė9"' gT4kJj$J 856"pЬEU ҽ ++dq[p՜ I<#5&U(MM=l'&&۸8NjR PNii), i"H)$Xd2k%~ca=]BWʀ2Uyo o(/!R s! B!d*+P$HP Y5H{Mmxr5'Kedr[CI4cH0.Z +` A$sl52sΔI;hd+&IPB80o9G3) qN9dm(Ð1c`7la>s;^Ѓ0(QҫIbXp,se[AD4B9"gp_{ؓHk9*ܫe XҠSDb uD X=*/_a="*"'{vgI l@1 ٳ|y4A8ܛ{ aAJ>jk؊ب$"eGƩq0^%lDDظa2JD`/ X TP|V T`HFfz =E,$")HΜ3rDaJ A#INu  )+på sR95q.LӔ$" 2 J0p{o!O;s=3)H@Wn-PCl k`erׄ Uv%cL%c m([q2` Ed91a"dI#r@$=gt+ T{ɁrfI=r7DA:iʰ us\8dL̐D5t-r$ epNDJ`+r.bPr(kQ?4G!vHa퐧H3̞Lzr ZRb7URcEa%eK@ϣ>"y_ Q8pB"I$"ڋ$\q0=93gRjIze=r@"cfd [3JqbaEPIQCoRG1#0s&!X9B#[lak8- 0JUaرX6lCvW@Yd<%b,$vX$o((ϗKw.(2bb$Hf! B3RVi5LȤEQB#jiQ-Q^2tVq A-R ւ PkRK3A":0ư@CO%F 8h!E-B4EI&m}'`@Nhz՘݀LΓdFfȶ}5""f6|wo!{gx@a3RDZA,dJSo[Z_#'΂͆0BT+CURPR!*_\"lrX1E\֖NPTR1HHC"!͐f002VdjX&Sdd5l SzpXaAna4(@BB3B2RԮ DJ 1ZXq7V9.8HC 0/sD 3Ei9~Hn;6հ%b\xcًTk0 eb ,\#<;d59kJh jHG9J9%4* d J0 YQ UX1 m@N-aaJqJ簇#fŮZ5dkTc**H[{^D#A &,AA-u&/7&hE%#^SO*9W6I3HU# % @(b\+Ys<\PQ0R4AAE?AS H=a&)23WTP5`m﷨] &6d(\ 40e)$IUKCD< ]a2VC靧*"& џEC?E(ȽVR$2jkrkpCn6jruCClEvRJHq>@Fty",)]LN92ϕ.OւRQT9eŐIh-k U>p}Wx(R}S՜3l 4 g[#SѨd@uvh`P5"75`r8ܤMeNEU Qm j@0y6%"3$9GeD*3~%hgVE1;(%58Jb'DU֕dkF۸e|W{bdZha~ӾWJ [ c@-ڤ="EY(xS2#)AR(5ʕ1*KjZacE}馅v, S@SB,'x;=f6vz!9Fr{ M#7jKqɵD SPmn#5ӌM5ƹVPYbq!8Şp7)^t` VœBZVVt;$a[`2NB-Cub=h C>\j "wd &v#8ęRCgB־.۱b Y%CL9Ŏr; ]0toZ3)YYX%PF6@] {hwrGq91pVGQïsf_]PƙKYe;B3Qr|[A"  d Tx\1 @wk\aVqAHC {S)*uHLs@663v4OIHF3 z yuoffO0-[6Pm:咚B:Kؘ '!T"E @XKIÊ`!vLcKbYs\ttvS-Cj"Q@{GVpDF>RP$4U%UA(ǬCw{$hEÍT;7Bz ~ ~[AZHA!H6̖l b9Y ]4Дd Q sCdP#,ȒYU cb#̥$L"sS*a&"DzJB($pqD b(QA3[^˃CL 7Dz n [+[ -!@>l#ʲ Jq2k֜˘vF)q7dP{Py󰝱VX1ņ.VCG7Elg!R /D!"p P,9Glbޏ~$ |+H!srB kS|| "FhT:T({{&#p-:Zfc5NP+<b K\0~JiZS{H39dv9v$i}K hzFT RVp %5V0F-e14Yn]ixz'~qUf@s o=2oBѹ`{6B!.NxWƆݎBጶX `aÌ2 k^\+b R((~ơ[h_drk$Hla1I{|&"XbL9+5l;TUcm c +> 8a7eUS FӜ$"jgD܀cg3VMGvX1/,a vQj$ǜթȡ)r4338+ AQPj~~CpvwQ5T1"s-M B5(pDҀL[^ag+渠0A =”=vߥiGqJ)Dlۘ@Hf*n(9RunPo:z :\wN}("LD\B38Uhx@fz,SV Ba5gFE4GLJ,PdJ Ē{|UUQykz &&܆ ǨF(}fM/V%KȢbn&l*!j*pB,dVx` 1C$ &vy" H,HR" IA% *9j &M7k5`kU*;sէ RJqdX|6` y~{m ZW[ҪjWxX`e7r@?~=t;^gH=$MKȂ!x2~ 5[#TPmPzAv.fnvqiH]RIpq[1.h"g-R md{p S2Dd*jVq!EbR?7!Z%g=') BDbgɡE!PYx kC!~yeΐrҽ!*j8Wk@ʦc6ar# Z>cX1ɻɬwLn3wўd=0Q8e6@"@VTB =d4r$K9Td$h<=l_TitHG4ZxɁN+,A5w^(x՗U+IjbD37˱fU_q=Ie 25hw4iEEU܍{ +P ȿptL4H] b֐4ej"JQHADJE`3i`=#M%bYr' b&yr |[Ԏm%Sk%Θ|[:=+^!s\(`%r񬆳;v%)"Y!"YDJ }'1 gx 51Mi|οp:]c{Ɍ\ecSg v8v08\ mV r,ewПϢۦAt,B)qLhp֢wN &&&L`)kA5f8BKu&Zv /+< 0P#!lPPդ4kxeƨFdҴbbVq st;ܞnm.i@A(dʂ.,*RG!VdJC~ H6]׋e~ ZZ? (iԬ7y8² ;-ܘZ"ī+;Eb:#g0߁'-\noNJ9.tX$h瘷:L:M4O)z JNvHY3-ձY1 c1Q5&5#r(鷺/NU@mZCS7G\oO[ޱs{0v{觨WX1j{Srn(].Q')zhȒD@9k bg&"bff^&;asUo`r habˬn~+%[605UAz*#^I+mX- &[lcXډsA(>):2""Md g0F:o)-l t_s8WFw0hQEȒ RJ6D@5*Yʀ"90J UB N`#h  h!7 H"r@ 0BVvP">]/Ʉz 8naj:kݙ}3u4aHNṽU*T~n +j2z Dm"" D `Fv1P7dkؚMæ!< +yᴱ3# |LI"B HA1FkmXSη(6$[ٓz>q[w ;mh#f֏ Qz' N;`NW~ |}Bh}6PkP`f[Ι UC+PPc] dKh,t>k5VuU  "m0@hfj c2lxV:[čI@`, LFJ "95p虌Ax"Z+k>K?|`֒T.c]XTT;P9gOڹm5~%S_q>|{bQNmXz/HO9.Cnj;3a&'2F MsiƒŠ9.H3`T4&l",ܚO -̡5T# ;ұ->[Guh몰 tbe(T3<5>> {rm??:K gDIW̩5W]:ku)xqّE_pW^Ǎ}6Py0Z@Ȃo;{l$ 8?ݱw?=_߿U_*ң8]CSa<ޥi,TǨ`Ow!sХg §KkYy8Z,2r풛kAqI)4*!J0焏 00x1i0Np_u9grcqӾmiрdUL;$!(ZY)_/fTO|Ϥ2Z3XM6 G,&rסk%4͍P}VX[V9'8+Ad L)If"T腔x_GqNrcA `1\;G qi }QA!9+1:~>g{;Oۿ?}i: v!N僵O^cۑU_D]iVnVGuv.nhѫ i03@/gPTjqh9j….AiY71`siD18'ޥҥn4Csc~վ WLѭaD?_? U=@uV#C˟o?Qڒ˵AD3*윳v]'\e gO#o8z٨q7{G֦9z;7spt}6#B/ؙ>dH}s\ CeEN #,5@T"*ռX~`|!`86Եq5c)6 KI@- c}ΟvKqDӬ'>a>O"7?~MCu̴BgS+]# k$iٸ$%m6c.t6vk^?gM_׆);o՟؋e:`wit0Ӽv~~bX1Dž¾@PQCBJ PT({tFik [55frئYfե%Ya-bDGNk6Bl2'G< "v߻;ZUU3Q*>J&1U!뺮K)H3tͨ2Nc~sZL$ɴ1s&Sm}+VXc $h*Y{&FmB'Y*hU%̭R(|3;rG7yj%Q@]z&~Fy$uw_zÓz7I뱗1C?~ž+b .>5=ƖbD*Y]$#US Q*_!P(01!vdCK*E19D0 ZL +7}buZ5>=w/_kv)3@T؞wBH]}Ɔ3{ 0~!00| ~/]7qMu޳}4WE2:g;3݊9VxhR >lQ,0axscXъkjwԥ܇% -b߇VxP$7G5'Svvp\v2o%T:> "zASH9g;ӫ؞]583ѰvTKqU ^*\ 8\["Yu Btk_}ףLP4{?w|՗d?zvglӗ]oz5zZ~Ҷ83/]Ji6]df&sch84McA.*`?=oʿWybtW=9|˖NS'lڱvCdB0C+@F:xK3AGC@d6΀1ZP% !);\#t_τo̺jp_G_t_ f-[k?U7z~ ~bi1SU9gϷ0v/͟h,6|zo0ߨj M^5VgY޺x &í}a2醪$l@IgM (,*h(Ȣ^OyJ?\'j* ý$cXIsM/;_GݼGZ~zș>_=}_/&<}mGʺ/"!B AD9=^LD1#ٵѱu񊝄lKTw[Н;Yʳ]LN#%Wn? IaGkԛ~ӽCOߥW^ xDR]21{"KR|to ܛ9ߴG0>e [vS%9Bz +TU5\[]遌nLm:?֨Z:wjNOO11&h.5yq$bVXpɭ8W$;pGF]c9L0oAiejXwaukz0Q <ўF쵏Hl_rѹa$+؊u9%C3 d rGMMY5sWp/*F fHΙ1! 2)+HfPCYRt:N'O);:P fg<'2Reh]4@>fJ8咻+pX}T/O"8Ͼf_7}eTy큷;7ݜDfciQ`sm\aƥY}B S54qL@d X Y@o\G Pi]<^̡ԫvNv<Ιq'5M6[W\2T4/?-˽ZUK( ""yr`g>-ћ]41!Nn[!s\ r! ~zqtXl` LM-%5lY~9Ώdc!\)Vq-H† iQb2LBS*|A*$(֏%Y]!jB5k)օy$^S GާO6PZ8(?](A"w 1Xֲs]1SysݵnFI7Ȁ- @ vb߶V԰b R()kZU l8"U-yDLG dB 0v K1\%0ؔSf6n |fiVʵ??#Dz|%(S@Oc49kmUUq W<`s(>_u_ N"Ev +0.g֣qF 6Qmoz oQ ?jV. !0 ?ɛbM6&Xo9doc{{{gggooo2mB(f2}`pX/O61"躿UF I.ٳm k*zS%s\(`PX\M~;p!:5lΗEE"RX]8 _D+\쭣_κ:$)YC֦}Q ]>ɖ of4mlllmmmllFC =Z,\ Oj&Q]U s3y23,4CT `k$^2c(g fv>(YB(KpQ.GĔ1{ }+_H}_X.;sZVEi*2)iJj-b"CH1ff$8*(Ov}G gC :R"e1u3DZ7SR{DpbVd= #Yg ٜ0.٬Gst4@ ㄽӠvYjw\@@8)r +z7h{i}zZĻ!(XTnYbjuow &,YXНa"M!`󜱿_jj܎XvTO Q*B~pĝکFOirBdY է?"~oJ!A*'$%1,Wb@ܯ%$ ѡu{fCttƓN]go?tꜫj6]y7pÕW\vɓu]e/r-{ 7]B~m^ל>}:Uu΍F>=ɣ?2Ƭ7|C-oyG>fN~JsUzd:/'ֆ/zыN8a ->xM71w~׷ۛURի~vU9@z0~w۶F?}眿9POp[?<ˎ4MmphZC{:ņ=Dwىn:=m>\OˆLS=W»_Y mI|c-/;q}= w8hm2V3m 61U=?A'frcG_GC7VAS-=rw ͽO|~O#Vd|F R^oߩwLZk_gݺ e&|=~9={WNCwEx\rSV6r'j ՖVZmِf]ԬZG!Q9QK09'SU]p'[@15d%D5hdϊ{4ݧV}ަƽ;>H|죽(ȒR~UU1:ux_蝝m1ՋeϜ9u]1'O|BPuV*]/Tޔڔ}I@]9^ Bwuigzlrk EK҇_7-֭w]LI`x<F6 G2e?!l+ԉ?}P6=;t[WL'7-?~ `m/;USݳn9$kT9ƵNfX6Ĭ6/oO˳1O_5 /۷?{0sW? Dn?X;sxm3䴽wp79淼~A.+/EUU'(%sS>mΛg7ǐS2֖F]"φFl6wrYPv}Z&*[c5~1ƽ|4ͽ+sMӈ?g=hu]@|folۖo"j&%qvITZ+'\^/rkD0uִ֪j6ywԩj^ -53~3oT mzE"q?k:uϿcauson~;$B?gIoz^}3oۙ׾IX@!f_md@ΘZSV(Yd 4ʄ#z`2(KI _/GW_>ѵ׀ XOWN}).I)A?վyiDt+R*B>YqB1~W#/n#t܉E/P x\\l6; )GQ`)xo#0 +{?L]I{r|\q+vwwNb,XluAcYU m$"Re,-l2sG()m 1k( naqvc䪁V-dtC sv8:o uУ-9Kd6uǒ!GE* 4iu9l{W٦_ڰ AC-dFL E b " 5[Irs *qf+nUnեwnR  ``M3H0Wy|,w5 FN15l7K/ʖb ¬ޏO՗uGr@:+f._"*\٧VGׅtYC%cՔՄ$^ڟJj4l ˓PBwZjl;쾶㹢{W.afc%LV3Kkdh4:XdB_eJG1TL#٘,(F*Ƙ,3gō7X". ќH۬H wS:SWcLh TɢDk92d{B}`o}Neրzmnlu'M[{0w!`XV0fX"RF<ѭdooNS0&C]@}7&ܨȬ۱4Xud=@SC<2zT?yG\=9CH@H[aAG=]0?=iF0zf5L(PI ;2lBԭr.Q(t&Xc H ȁ/9dXļXD-y(Kg1"D|BŤw.|i|`̾IJȺ:g}7es]R@ۥ;{,>e屻;;{luؖPHnvMo>wxDXld^Ukߋ}ZBk8IՔDfr87 o=DD}CppUNs" b8{NUmg9iPT3tLm|p3`EIq@K;O#ic32$QY$py4o͛sXjqbKJثy=,c:gd(#!UgbBPWJ^,Ў $DY , LZrAq6M,*՗ǿBAI&ѬL$VRsv=uQ`E nSNGѲ>}[~7~[/x__?ݽ9Ò1tQOyk>6蕯ɧ>11@j礐l6s,A&ݮڅ౪TA)TOξ sUM!c'@'BHvyo__MI))P2:#g=jzԫo_?hv4L`?+_k'3ï+p˭S{c( (,ݒ0!32T1VX*Ƀ 0y18rI/ne%Xa'0GHF4w,NWwo1[L`pu$||+EDI#Dž 1c5{Pa IB1<3;9W/|;sC0YR&}C󮞄o?_n9uj>~ ۅy* !v[`zfˎzæx̋C$X+j!H~p/W\U/λ_}=3JTJO>[ng7_>kg}8% 4)Y"XAM^($"3_U3M $(-&YbOx?g~>%}Q\U9ݎEu!2{?v!rKn|>2^c2Mu]$8=n%J)y677|fwhx^ܸQ%@&g͕w竿_?|ӿou󇙀ʙk֏д{/c~omW#9 mٶ3>-NyY0*uԮ / Oi=j~ 5Pnr9?=xw_q?5_}40`[E4bk^? Kqgh雾+؍xh,7 Hل$XkFzmwtsc[qZ&-Thay2i/Ť|>Yp8F9p!eo䗁S"~xy`0(($ǽ"c\_ M /6S)5?rHIoɃgBkEg>ӞV_ef6!7[>6ؐQ]1C_abVP g>酯P ]v#c1I, 4؝!?9JEUwla9A26$ _ٯz6<>X.`@d*5\]{5?_nX,K8k5ƍe[Ec75H Rb4qhfcT*D̩'?A:* 8 RV)Iumۖզi6ҍ_X*|6pӚEI*Z(Jd ?( zTWW|;s'}4i":qNh6+㒆öhnAڜzF|`h42H)s2݅t-ŦF)PNEe`-rTRƁ4\"dU9%s`4$(g|2r3gkw?IEDpUW]SUUmllÇ/O\2.&&v b' .{X 8vAutRrW3*έoaTL ̨XvyL[yxojq_p}wĘ"T)B`0MQBlW{T(uṖIpv襵}T!y$~ {"#xLfo)"C4*L7y`Sys$clSv| *zl8 yT\3=sۧ6?[j?M<#*fvww۶` 5M5 WJuQg'CV41'H9xgHy|p:B=B.t0AS 2D&%)Kt|OKBr]ClJ¼p|yK!zEX f'b?,Č+rccR}L4:{TtIX*"eFS @E sNF âyFC?FtՕ3w4GL5 E2Ylȣ3yö m@FFh`G_9+i㺳Y# MOo Uۓp @]1 f* q8_լ}TH᪌ZFLm;0*HZj?Ox}勿UlQ$$X` Q߰g(kgǚfԑ5J8 EGíhVުKXǾF=C‰$;3o=dT?+ Yj,FbzjXr5/Q_XGwU 7~F|ƬmU:Ȣ {0j Z(|+8`>[ktVUs/\rFRLr. }o]JeO:e٬i=n_Ij[k暣GZka۶ׯ:@zmKݡ|C8ղ{/Y8ߍL"! M<01;C8' u |Dc\w\L H0zJ(P{8ծs¶E%׆d;@1؝s fԒv&g޵mx{ԍLs\`k[h8xؽINofz{:vGOu!AUIij64qG?u؞z%Pԟ^QL*m8皦4p@iH'"X_Ƿ߃< [BmzߺHGZyYS-"yc[pHD~{}^?k)@)73gqP11|b,-H({OĈ}q ,ONGЇ>4N_W;v,P.>ڐ, 967ח7;KS}Ĥre3>7/mI5_/y£LEEMW^};ٴs#/O_ 9MPRh\ !`v~ljF.ϣ}⣪Mz#oG|wRPRF%7Y1ɟՍl֟yO߿G%@DwӾt: WΦ{3| E?-6z|_xGgYΎj`ѥ(~ ί> >ݾnQCfYErFNwkxiC*`~4{dBMfx$d3"NӒ-:dLrIJ_u*²}G!:;wQNArE.Gҕ!U]_yUck;o[6"I!trK,˽嗟8|xkmm}ԩcǎ-IB1TziJmgEDR+E撦R o,5"u$F_~ȑibwq7LD]ve]VZ ,)")ѨGY[E #$ m<}[r ~߱W^5Mg]qW߶X>rSed R#̻t[ }= H1bzӄ`+ eOx\Ó=֡4ȑz1{rg?[^g=AP x Uf_5[Ϳ9|/b4 D@oSS<{mg'h_-P5$r _ũz=};oi4l|Ke9q)C@P~#zm2 p70žO D&o{~oxs:#|'rY/.{i{Z-ΥY?Jb؊U7r J`.5[G6~wq-²{gaUU!q{뭷>}sر/xh4q?~Y[[{#)"E@w9G9R;-~ss󪫮*>'V9>|nٹcUUmnn^s5ǎB*p8c N5[_gvxc8~աgoxU 5碻'˵G&" <<`oQ0ѵ_U" 3&K|78)˛qpX <_+?b.u//97(B_wӎ_Gk3v_krB*L\P_pË??~GgwI?yԑ9G_䇌lgd!?MNN /6 r/ST\!?jY_ͻ_?04s֝b!ιx<^4ѻ7&缷BY_[[[n_#$V]oGwޫK&>~~g 3Rl33;%d)WK@y6 ʒ RB{Z#5u618u; HlZ2]=ȯSB*sMIeR?8޶m)AU$ Q :R@ h>y ӔEq`)"x =cGE l+Dt 1x@'mH@>gpaA2fY8S0aH#YPz,>ČZJ _ z%1z !8X%DɎ;"( {DpB#@5AJ0m; Mۢ/+R,0 i\Zƨ2kǩ$lߎSsh^9Ԝɚ|ɏw4{FzӾt@9F2JaʹCj߱NƘt׃;Opb mI)|gl0`  1/JٱĢRXX˳ 0\*_TU&nF9gkpP`1χ[ k]์1)I)Dμ%kimC)I)I:# ".Q̮EHΏ8!a %XsֹӐ!8޻[_}ߵۯsϽtiI3}N8<`"ĨeYps;9m/]!"( \ hQ=VYB}'+07K PiB^ K C7eea,͋3ꝟoO<,&dg -A=J0ћoekMif  #DLB툎 >+͑S%$KyHI@hxT 4{GBQ1 fmns5kJLß9%#O1[u ]eS.?#OԔRow}]'tPnϑ zO@?lWuw<+UcixsQh7MYzhn޹d2z'V̞ԃ}wwi(L " ,FiX*V=/|io|ϾuP##_X SZT@s\gOh*]ꦏz|q'PKj=٬pʆa*[}wy7?YW֑0.Ͻ[yo {U?>vAU,_EwA890ta+.]x7Y"x'|D5ikK./7k} rذқBr¶6FcC1UJ>8phs8w&>)|Q$凿;3ko@kN>_}27Vx?i.GT.G8(n(g>g~eM3y7`WtFrF]9q^`4\и4~*xz/p &oi;Z#C(~{TKd|M,y^CjPVKCEN΂cauOHdp0b,}Hg݂z7@oF饛Ѝ|v10@ն 4n 0a3' ~_}_2|ߜo`c?##O$42d́!7Tףk9鼴lAD*FT0}3?Ղ&:^TͿ42r0*mu}bJS*7@QǛ6Z_%AbާS4gL孏w}-u T|G>Aٕ‘ :u6#m%Pfe5+7}koX]$3{E7MȺGu9qB_%JKU*pAF1kbvbglhS|/ݷoOʿh EBa`*X 7}z>"8#j f 'o}F@dg~{}4yi]Q ޠӓDyAF]gj KQڠrASP4p(s,h (㴌4%?pκti]oƺam."exCo *N?k*p>viP#!BKVIY- +.ZV{}/>}GV9Y{ydk3Vl4#Q9n[VCɂ= ʩ57ND3̎;ų:{%d <Ѧf2f-{>gF$PF009[ ǯۢ_$?4ɦ!X ^՝ذmX|gǖY^z.=gn@_5##sdࡳv)seJjBX"Bkg"-OIuԈ=w ?-\FJz(ݤO&h^Hiz]XsCC9uG/ex gИ4erV_J_?xeCx?͙/f uTnrGFϨ)@3D]Y+Π:rbUIIIQ`ѣ=~e̟^wąl^SL7+~>z:Ly;?B8(2QmuxRv_pXuɤK9HO_u;"Mګ쁷j&WirI2S 0C?C10BC;5B-I,y/KY#⢙P(cWADA=շ2AA F ڸ{>tΰH cO _mY]P_Y Α0&R3ί\B`n "#PMAI.&[UEDllGBO>끏֑4BEC~6=}z^Lߘm݇Elܓ%]iy>r2fnH!ȉ[9"hZ WB&$$ @0J;?~#_,—O艏||{߃M.HX`K5ˎ&hD,(SN͏Fl:μfB 0w G//B|oyy~o|Lh,y.yr&94Q9FN5r:2C;-i ma%vFF955DQ0@e@l?wƯѕ=ual?7;bz{&|ҾvirJ{{q@'r`I|LEҥ?^'TF$޿oHNyF-W?Tʽn&:nZ.}_HW7|ՄiWJ]NVKgA)DفxpZ(T,'JJrA4%.O_K?~?sqa+3>P󆷿G.b[SSazw~~4g0&oz8rB 4Y9u5}dj %9Q.3\fOf='*$;?P.l*ggՍτBsSC  @АÕˇIa$j/+IJP]~3??ēUS;ڝPSoo?׾5g_3F3N~>;\,$f٪󍌼MFn; NgI:>i˫xJGw Gl]C<'3ؼ9MHXS."δ'/^>鋓~g\p۔ỵ|=C\5Kyj9}뺜FU?gͿM=Qr U}yv.} Zij6vE-H::udTSjt!{8zVfOᓘ]%x~Vl1=^%L/Y ̙}t XF~)Y:|'݋W/}ퟣ.q_{׿}/wosE `0(Xw]Lq8|y1Ǯ|6"!yq^3ּ;GGFU{ -:svM_Vy5Y^|uYN X-1ȩfTSFN`9=a~Y0d8ϼm4ur Rnr:y 8;@2]G/?O5. f`,Y&XSS{'^<*(,Y]/| H 0e"cbP#>??2FrB>ffvfV`f I lVr }s5Y)iBS?G=}{st9,4)]]ccXc_ӗufا9{BbҬDɌa׳8*=xm ꖷ/n7.36*کdf6QlJbr/ȗ18u$3yem-v1De,JTsvPmbz hvؐpL&_le Stt'$``Rx[sM,R*s Lt3 V34ZYZR\_ (PyrCP"T* apGTFS !JfEVXЗy,u܇E-$063F@<2@ &V;:qtlZs{HC,by>7qR֨(S6 . 2ȝξS iEZ77"-ATIb=e[T]xiܢQݗswHUw<~Ap(PNPLoR܄Fh&`gA贔FF^r!!B4dSAԈqiu{nfCV*{Qc{;%9G%CK.C~0Tg(Q6&9lrآr|xO0K`T;2( !5ifؑ b;ZNh-ẅ X4*y ?fhBZg;@rGinҘ ѠEW#LQmQרoDMt\ :xTT*өEO0XKI %p F5ϡ0UR( {Ь}Gqi!w  Wk (J )&)xAW㚃݌qǐlP4E94jj3͙ \Ah01؝Ol8~nqAq88~iRgLGE?H/JV 3ܩqpAlq(!P_AknI]%OYR݄S6b)N\zn[+덩"33Jzhb9Rib1siA@׸Y9{ ̐\rP{j S-7ܢP2GFtF!7eȲFVAY4#PEj/W@LA @D:nNq;q|Mp5\IE-E_@VY##wrMB/Z`D.#;t wC#U ٛxv"FF+Nmoe愌a@#HKKKˑӂb8CxxD˽!85PC)5mڰ 2FNjD)Clp hR` B; =cJ(L`4C C!dqR6c?aHqDZRؒ&#J-=39mr(F}#EWڐ*7j_?1E5rW1*N|I-p809C/(".ab HRz  3lljaIyn39R"Hs4;@j?D\B3H [=:~„BI| >j#wr _b#K-GƁA\~3ԐڕXR\x) Ha |KS7 2ؐJ=rf9r~DZ`y 56IҘ4S+6(TjH9=Α#wr0z1UD`JE3@2Ŗb ˊl(וr0R.!ޜ@bdt@H;@9d#f8#.)/(.  L$‘+ S*6+x0_qCCW2`oUKCJ 5B%$H $ !1+3@t ۍ4e=RC{ʉ4RNZN-q~-ufX!B! K{@07vdZL tܹ=r˫zKGgshF[rԱvdP%+L sX8L@<有7q8s`v 9dun0ޖfrsIOh 04242zRsRK=$s#t shZē/͕"_X5,]Mnݎ1] h(&rD$1۽#4[7#{0WFg9 ))Q'"ȁ1]S_[S"]7~,XNf)%LM/ *rϚF"%RG 15ؑ \  $oK^w522Q9^\8bDY̌\T-Ui;X R W9 H 1/"a|p~h0:f3)icKh2˔j"jqIM#ҒsܓEt ܑJS18H )LJæ9 53Q9V r8MH\@*rsAZNz0/5C "`$DBD""0l1j# Ph6dR3a,[Δ{h"Sh6]%&bdjlL+R 4 \ OY[pa YcC j;MŨeYn)'hι[4Qi5GC[a|X\k]}dd]`kAX8ULșsSo\/L[>Ƙc: 3D"T IYBAzhLL74dl@`Ɗdg}]orsmP!HĘPCsIL<8%_ Hƿ V8X c!=(2L)!J$m fǩǕ?ohȘ`zVxb9LAvl~B h652cF!)PԠ=R"4B* 92TX_jc yM&CD?V 1}Ž؁Ac,AG,p@n\>2c: _A84Q!zb'ʐW!HZ'Ì+|l'@$2$6$ f8y# DbDw?3r+8)%& u)0%˖iȲY\lNO`_~qa|D4D?Ƭ06&XBنI*T%%8k1xxުHtg|=@W} 0ua),eޠ.®KUqX9#1(Hc C\B Oz@صvd0#7Nq 'DPB~g92r71*ȗ|ыs)?iK2[еOlWlddddu& 1 Introduction next up previous contents
    Next: 1.1 People Up: User's Guide for Quantum-ESPRESSO Previous: Contents   Contents

    1 Introduction

    This guide gives a general overview of the contents and of the installation of QUANTUM ESPRESSO (opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization), version 5.1.

    The QUANTUM ESPRESSO distribution contains the core packages PWscf (Plane-Wave Self-Consistent Field) and CP (Car-Parrinello) for the calculation of electronic-structure properties within Density-Functional Theory (DFT), using a Plane-Wave (PW) basis set and pseudopotentials. It also includes other packages for more specialized calculations:

    • PWneb: energy barriers and reaction pathways through the Nudged Elastic Band (NEB) method.
    • PHonon: vibrational properties with Density-Functional Perturbation Theory.
    • PostProc: codes and utilities for data postprocessing.
    • PWcond: ballistic conductance.
    • XSPECTRA: K-edge X-ray adsorption spectra.
    • TD-DFPT: spectra from Time-Dependent Density-Functional Perturbation Theory.
    The following auxiliary packages are included as well:
    • PWgui: a Graphical User Interface, producing input data files for PWscf and some PostProc codes.
    • atomic: atomic calculations and pseudopotential generation.
    • QHA: utilities for the calculation of projected density of states (PDOS) and of the free energy in the Quasi-Harmonic Approximation (to be used in conjunction with PHonon).
    • PlotPhon: phonon dispersion plotting utility (to be used in conjunction with PHonon).
    A copy of required external libraries is also included. Finally, several additional packages that exploit data produced by QUANTUM ESPRESSO or patch some QUANTUM ESPRESSO routines can be installed as plug-ins:
    • Wannier90: maximally localized Wannier functions.
    • WanT: quantum transport properties with Wannier functions.
    • YAMBO: electronic excitations within Many-Body Perturbation Theory: GW and Bethe-Salpeter equation.
    • PLUMED: calculation of free-energy surface through metadynamics.
    • GIPAW (Gauge-Independent Projector Augmented Waves): NMR chemical shifts and EPR g-tensor.
    • GWL: electronic excitations within GW Approximation.
    Documentation on single packages can be found in the Doc/ or doc/ directory of each package. A detailed description of input data is available for most packages in files INPUT_*.txt and INPUT_*.html.

    The QUANTUM ESPRESSO codes work on many different types of Unix machines, including parallel machines using both OpenMP and MPI (Message Passing Interface) and GPU-accelerated machines. QUANTUM ESPRESSO also runs on Mac OS X and MS-Windows machines: see section 2.2. A GPU-enabled version of most important codes is available on GitHub: https://github.com/fspiga/QE-GPU.

    Further documentation, beyond what is provided in this guide, can be found in:

    • the Doc/ directory of the QUANTUM ESPRESSO distribution;
    • the QUANTUM ESPRESSO web site www.quantum-espresso.org;
    • the archives of the mailing list: See section 1.2, ``Contacts'', for more info.
    People who want to contribute to QUANTUM ESPRESSO should read the Developer Manual: Doc/developer_man.pdf.

    This guide does not explain the basic Unix concepts (shell, execution path, directories etc.) and utilities needed to run QUANTUM ESPRESSO; it does not explain either solid state physics and its computational methods. If you want to learn the latter, you should first read a good textbook, such as e.g. the book by Richard Martin: Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press (2004); or: Density functional theory: a practical introduction, D. S. Sholl, J. A. Steckel (Wiley, 2009); or Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods, J. Kohanoff (Cambridge University Press, 2006). Then you should consult the documentation of the package you want to use for more specific references.

    All trademarks mentioned in this guide belong to their respective owners.



    Subsections
    next up previous contents
    Next: 1.1 People Up: User's Guide for Quantum-ESPRESSO Previous: Contents   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/next.png0000644000175000017500000000036512341373051015631 0ustar mbambaPNG  IHDR%wu PLTEooo[tRNS@fIDATxm1 0 EQF >k>B>N3=k?d M53kARM9Nl :C5tl]oD/ܡ_\lE6tU{Ccs=@uwzGB-RIENDB`espresso-5.1/Doc/user_guide/img1.png0000644000175000017500000000031312341373051015501 0ustar mbambaPNG  IHDRyi-PLTEMJK# b``mkkXUV856C@@wuvXtRNS@fLIDATc```(`@L6'f< L , k<4@Zp l^vC8U&JyIENDB`espresso-5.1/Doc/user_guide/node8.html0000644000175000017500000001553012341373051016050 0ustar mbamba 2.1 Download next up previous contents
    Next: 2.2 Prerequisites Up: 2 Installation Previous: 2 Installation   Contents


    2.1 Download

    Presently, QUANTUM ESPRESSO is distributed in source form; some precompiled executables (binary files) are provided for PWgui. Packages for the Debian Linux distribution are however made available by debichem developers. Stable releases of the QUANTUM ESPRESSO source package (current version is 5.1) can be downloaded from the Download section of www.quantum-espresso.org. If you plan to run on GPU machines, download the GPU-enabled version, also reachable from the same link.

    Uncompress and unpack the base distribution using the command:

         tar zxvf espresso-X.Y.Z.tar.gz
    
    (a hyphen before "zxvf" is optional) where X.Y.Z stands for the version number. If your version of tar doesn't recognize the "z" flag:
         gunzip -c espresso-X.Y.Z.tar.gz | tar xvf -
    
    A directory espresso-X.Y.Z/ will be created.

    Additional packages that are not included in the base distribution will be downloaded on demand at compile time, using make (see Sec.2.5). Note however that this will work only if the computer you are installing on is directly connected to the internet and has either wget or curl installed and working. If you run into trouble, manually download each required package into subdirectory archive/, not unpacking or uncompressing it: command make will take care of this during installation.

    Package GWL needs a manual download and installation: please follow the instructions given at gww.qe-forge.org.

    The bravest may access the development version via anonymous access to the Subversion (SVN) repository: qe-forge.org/gf/project/q-e/scmsvn, link ''Access Info'' on the left. See also the Developer Manual (Doc/developer_man.pdf), section ''Using SVN''. Beware: the development version is, well, under development: use at your own risk!

    The QUANTUM ESPRESSO distribution contains several directories. Some of them are common to all packages:

    Modules/ source files for modules that are common to all programs
    include/ files *.h included by fortran and C source files
    clib/ external libraries written in C
    flib/ external libraries written in Fortran
    install/ installation scripts and utilities
    pseudo/ pseudopotential files used by examples
    upftools/ converters to unified pseudopotential format (UPF)
    Doc/ general documentation
    archive/ contains plug-ins in .tar.gz form

    while others are specific to a single package:

    PW/ PWscf package
    NEB/ PWneb package
    PP/ PostProc package
    PHonon/ PHonon package
    PWCOND/ PWcond package
    CPV/ CP package
    atomic/ atomic package
    GUI/ PWGui package

    Finally, directory COUPLE/ contains code and documentation that is useful to call QUANTUM ESPRESSO programs from external codes.


    next up previous contents
    Next: 2.2 Prerequisites Up: 2 Installation Previous: 2 Installation   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/footnode.html0000644000175000017500000000213712341373051016647 0ustar mbamba Footnotes
    ... MKL,1
    Beware: MKL v.10.2.2 has a buggy dsyev yielding wrong results with more than one thread; fixed in v.10.2.4
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    
    espresso-5.1/Doc/user_guide/node11.html0000644000175000017500000001674412341373051016132 0ustar mbamba 2.4 Libraries next up previous contents
    Next: 2.5 Compilation Up: 2 Installation Previous: 2.3 configure   Contents

    Subsections


    2.4 Libraries

    QUANTUM ESPRESSO makes use of the following external libraries:

    • BLAS (http://www.netlib.org/blas/) and
    • LAPACK (http://www.netlib.org/lapack/) for linear algebra
    • FFTW (http://www.fftw.org/) for Fast Fourier Transforms
    A copy of the needed routines is provided with the distribution. However, when available, optimized vendor-specific libraries should be used: this often yields huge performance gains.

    2.4.0.1 BLAS and LAPACK

    QUANTUM ESPRESSO can use the following architecture-specific replacements for BLAS and LAPACK:
    MKL for Intel Linux PCs
    ACML for AMD Linux PCs
    ESSL for IBM machines
    SCSL for SGI Altix
    SUNperf for Sun
    If none of these is available, we suggest that you use the optimized ATLAS library: see
    http://math-atlas.sourceforge.net/. Note that ATLAS is not a complete replacement for LAPACK: it contains all of the BLAS, plus the LU code, plus the full storage Cholesky code. Follow the instructions in the ATLAS distributions to produce a full LAPACK replacement.

    Sergei Lisenkov reported success and good performances with optimized BLAS by Kazushige Goto. The library is now available under an open-source license: see the GotoBLAS2 page at
    http://www.tacc.utexas.edu/tacc-software/gotoblas2/.

    2.4.0.2 FFT

    QUANTUM ESPRESSO has an internal copy of an old FFTW version, and it can use the following vendor-specific FFT libraries:
    IBM ESSL
    SGI SCSL
    SUN sunperf
    NEC ASL
    configure will first search for vendor-specific FFT libraries; if none is found, it will search for an external FFTW v.3 library; if none is found, it will fall back to the internal copy of FFTW.

    If you have recent versions (v.10 or later) of MKL installed, you may use the FFTW3 interface provided with MKL. This can be directly linked in MKL distributed with v.12 of the Intel compiler. In earlier versions, only sources are distributed: you have to compile them and to modify file make.sys accordingly (MKL must be linked after the FFTW-MKL interface).

    2.4.0.3 MPI libraries

    MPI libraries are usually needed for parallel execution (unless you are happy with OpenMP multicore parallelization). In well-configured machines, configure should find the appropriate parallel compiler for you, and this should find the appropriate libraries. Since often this doesn't happen, especially on PC clusters, see Sec.2.7.6.

    2.4.0.4 Other libraries

    QUANTUM ESPRESSO can use the MASS vector math library from IBM, if available (only on AIX).

    2.4.0.5 If optimized libraries are not found

    The configure script attempts to find optimized libraries, but may fail if they have been installed in non-standard places. You should examine the final value of BLAS_LIBS, LAPACK_LIBS, FFT_LIBS, MPI_LIBS (if needed), MASS_LIBS (IBM only), either in the output of configure or in the generated make.sys, to check whether it found all the libraries that you intend to use.

    If some library was not found, you can specify a list of directories to search in the environment variable LIBDIRS, and rerun configure; directories in the list must be separated by spaces. For example:

       ./configure LIBDIRS="/opt/intel/mkl70/lib/32 /usr/lib/math"
    
    If this still fails, you may set some or all of the *_LIBS variables manually and retry. For example:
       ./configure BLAS_LIBS="-L/usr/lib/math -lf77blas -latlas_sse"
    
    Beware that in this case, configure will blindly accept the specified value, and won't do any extra search.


    next up previous contents
    Next: 2.5 Compilation Up: 2 Installation Previous: 2.3 configure   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/prev_g.png0000644000175000017500000000050712341373051016133 0ustar mbambaPNG  IHDR?JtRNS-Mc%IDATx͔u D?~5m9`D:p9cm.BBb$9db`HUI:Bu:ΓE-'} C|,t%}yFsP=T.+9dG+WZ~panP895il u9'ͩβ ֒_+xe U+i@iZfG-Κ6)nsU~!L,cwmP,vzSH=hyW:C>G'oi=Q)IENDB`espresso-5.1/Doc/user_guide/node15.html0000644000175000017500000000635612341373051016134 0ustar mbamba 3 Parallelism next up previous contents
    Next: 3.1 Understanding Parallelism Up: User's Guide for Quantum-ESPRESSO Previous: 2.7 Installation tricks and   Contents


    3 Parallelism



    Subsections

    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/internals.pl0000644000175000017500000000237512341373051016504 0ustar mbamba# LaTeX2HTML 2008 (1.71) # Associate internals original text with physical files. $key = q/Sec:Installation/; $ref_files{$key} = "$dir".q|node9.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Contacts/; $ref_files{$key} = "$dir".q|node4.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Terms/; $ref_files{$key} = "$dir".q|node6.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Examples/; $ref_files{$key} = "$dir".q|node13.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:badpara/; $ref_files{$key} = "$dir".q|node19.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Guidelines/; $ref_files{$key} = "$dir".q|node5.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:manconf/; $ref_files{$key} = "$dir".q|node10.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:LinuxPCMPI/; $ref_files{$key} = "$dir".q|node14.html|; $noresave{$key} = "$nosave"; $key = q/Sec:para/; $ref_files{$key} = "$dir".q|node15.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Compilation/; $ref_files{$key} = "$dir".q|node12.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Download/; $ref_files{$key} = "$dir".q|node8.html|; $noresave{$key} = "$nosave"; $key = q/Sec:Libraries/; $ref_files{$key} = "$dir".q|node11.html|; $noresave{$key} = "$nosave"; 1; espresso-5.1/Doc/user_guide/node14.html0000644000175000017500000006641712341373051016137 0ustar mbamba 2.7 Installation tricks and problems next up previous contents
    Next: 3 Parallelism Up: 2 Installation Previous: 2.6 Running tests and   Contents

    Subsections

    2.7 Installation tricks and problems

    2.7.1 All architectures

    • Working Fortran-95 and C compilers are needed in order to compile QUANTUM ESPRESSO. Most ``Fortran-90'' compilers actually implement the Fortran-95 standard, but older versions may not be Fortran-95 compliant. Moreover, C and Fortran compilers must be in your PATH. If configure says that you have no working compiler, well, you have no working compiler, at least not in your PATH, and not among those recognized by configure.
    • If you get Compiler Internal Error or similar messages: your compiler version is buggy. Try to lower the optimization level, or to remove optimization just for the routine that has problems. If it doesn't work, or if you experience weird problems at run time, try to install patches for your version of the compiler (most vendors release at least a few patches for free), or to upgrade to a more recent compiler version.
    • If you get error messages at the loading phase that look like file XYZ.o: unknown / not recognized/ invalid / wrong file type / file format / module version, one of the following things have happened:
      1. you have leftover object files from a compilation with another compiler: run make clean and recompile.
      2. make did not stop at the first compilation error (it may happen in some software configurations). Remove the file *.o that triggers the error message, recompile, look for a compilation error.
      If many symbols are missing in the loading phase: you did not specify the location of all needed libraries (LAPACK, BLAS, FFTW, machine-specific optimized libraries), in the needed order. If only symbols from clib/ are missing, verify that you have the correct C-to-Fortran bindings, defined in include/c_defs.h. Note that QUANTUM ESPRESSO is self-contained (with the exception of MPI libraries for parallel compilation): if system libraries are missing, the problem is in your compiler/library combination or in their usage, not in QUANTUM ESPRESSO.
    • If you get an error like Can't open module file global_version.mod: your machine doesn't like the script that produces file version.f90 with the correct version and revision. Quick solution: copy Modules/version.f90.in to Modules/version.f90.
    • If you get mysterious errors ("Segmentation faults" and the like) in the provided tests and examples: your compiler, or your mathematical libraries, or MPI libraries, or a combination thereof, is very likely buggy, or there is some form of incompatibility (see below). Although the presence of subtle bugs in QUANTUM ESPRESSO that are not revealed during the testing phase can never be ruled out, it is very unlikely that this happens on the provided tests and examples.

    2.7.2 Cray XE and XT machines

    For Cray XE machines:

    $ module swap PrgEnv-cray PrgEnv-pgi
    $ ./configure --enable-openmp --enable-parallel --with-scalapack
    $ vim make.sys
    
    then manually add -D__IOTK_WORKAROUND1 at the end of DFLAGS line.

    ''Now, despite what people can imagine, every CRAY machine deployed can have different environment. For example on the machine I usually use for tests [...] I do have to unload some modules to make QE running properly. On another CRAY [...] there is also Intel compiler as option and the system is slightly different compared to the other. So my recipe should work, 99% of the cases. I strongly suggest you to use PGI, also for a performance point of view.'' (Info by Filippo Spiga, Sept. 2012)

    For Cray XT machines, use ./configure ARCH=crayxt4 or else configure will not recognize the Cray-specific software environment.

    Older Cray machines: T3D, T3E, X1, are no longer supported.

    2.7.3 IBM AIX

    v.4.3.1 of the CP code, Wannier-function dynamics, crashes with ``segmentation violation'' on some AIX v.6 machines. Workaround: compile it with mpxlf95 instead of mpxlf90. (Info by Roberto Scipioni, June 2011)

    On IBM machines with ESSL libraries installed, there is a potential conflict between a few LAPACK routines that are also part of ESSL, but with a different calling sequence. The appearance of run-time errors like ON ENTRY TO ZHPEV PARAMETER NUMBER 1 HAD AN ILLEGAL VALUE is a signal that you are calling the bad routine. If you have defined -D__ESSL you should load ESSL before LAPACK: see variable LAPACK_LIBS in make.sys.

    2.7.4 IBM BlueGene

    The current configure is tested and works on the machines at CINECA and at Jülich. For other sites, you may need something like

      ./configure ARCH=ppc64-bg BLAS_LIBS=...  LAPACK_LIBS=... \
                  SCALAPACK_DIR=... BLACS_DIR=..."
    
    where the various *_LIBS and *_DIR "suggest" where the various libraries are located.

    2.7.5 Linux PC

    Both AMD and Intel CPUs, 32-bit and 64-bit, are supported and work, either in 32-bit emulation and in 64-bit mode. 64-bit executables can address a much larger memory space than 32-bit executable, but there is no gain in speed. Beware: the default integer type for 64-bit machine is typically 32-bit long. You should be able to use 64-bit integers as well, but it is not guaranteed to work and will not give any advantage anyway.

    Currently the following compilers are supported by configure: Intel (ifort), Portland (pgf90), gfortran, g95, Pathscale (pathf95), Sun Studio (sunf95), AMD Open64 (openf95). The ordering approximately reflects the quality of support. Both Intel MKL and AMD acml mathematical libraries are supported. Some combinations of compilers and of libraries may however require manual editing of make.sys.

    It is usually convenient to create semi-statically linked executables (with only libc, libm, libpthread dynamically linked). If you want to produce a binary that runs on different machines, compile it on the oldest machine you have (i.e. the one with the oldest version of the operating system).

    If you get errors like IPO Error: unresolved : __svml_cos2 at the linking stage, your compiler is optimized to use the SSE version of sine, cosine etc. contained in the SVML library. Append -lsvml to the list of libraries in your make.sys file (info by Axel Kohlmeyer, oct.2007).

    2.7.5.1 Linux PCs with Portland compiler (pgf90)

    QUANTUM ESPRESSO does not work reliably, or not at all, with many old versions (< 6.1) of the Portland Group compiler (pgf90). Use the latest version of each release of the compiler, with patches if available (see the Portland Group web site, http://www.pgroup.com/).

    2.7.5.2 Linux PCs with Pathscale compiler

    Version 3.1 and version 4 (open source!) of the Pathscale EKO compiler work (info by Cezary Sliwa, April 2011, and Carlo Nervi, June 2011). In case of mysterious errors while compiling iotk, remove all lines like:

    # 1 "iotk_base.spp"
    
    from all iotk source files.

    2.7.5.3 Linux PCs with gfortran

    Only recent versions (at least v.4.4) of gfortran properly compile QUANTUM ESPRESSO. Older versions often produce nonfunctional phonon executables (segmentation faults and the like); other versions miscompile iotk (the executables work but crash with a mysterious iotk error when reading from data files).

    "There is a known incompatibility problem between the calling convention for Fortran functions that return complex values: there is the convention used by g77/f2c, where in practice the compiler converts such functions to subroutines with a further parameter for the return value; gfortran instead produces a normal function returning a complex value. If your system libraries were compiled using g77 (which may happen for system-provided libraries in not-too-recent Linux distributions), and you instead use gfortran to compile QUANTUM ESPRESSO, your code may crash or produce random results. This typically happens during calls to zdotc, which is one the most commonly used complex-returning functions of BLAS+LAPACK.

    For further details see for instance this link:
    http://www.macresearch.org/lapackblas-fortran-106#comment-17071
    or read the man page of gfortran under the flag -ff2c.

    If your code crashes during a call to zdotc, try to recompile QUANTUM ESPRESSO using the internal BLAS and LAPACK routines (using the -with-internal-blas and -with-internal-lapack parameters of the configure script) to see if the problem disappears; or, add the -ff2c flag" (info by Giovanni Pizzi, Jan. 2013).

    Note that a similar problem with complex functions exists with MKL libraries as well: if you compile with gfortran, link -lmkl_gf_lp64, not -lmkl_intel_lp64, and the like for other architectures. Since v.5.1, you may use the following workaround: add preprocessing option -Dzdotc=zdotc_wrapper to DFLAGS.

    If you experience problems in reading files produced by previous versions of QUANTUM ESPRESSO: ``gfortran used 64-bit record markers to allow writing of records larger than 2 GB. Before with 32-bit record markers only records <2GB could be written. However, this caused problems with older files and inter-compiler operability. This was solved in GCC 4.2 by using 32-bit record markers but such that one can still store >2GB records (following the implementation of Intel). Thus this issue should be gone. See 4.2 release notes (item ``Fortran") at http://gcc.gnu.org/gcc-4.2/changes.html." (Info by Tobias Burnus, March 2010).

    ``Using gfortran v.4.4 (after May 27, 2009) and 4.5 (after May 5, 2009) can produce wrong results, unless the environment variable GFORTRAN_UNBUFFERED_ALL=1 is set. Newer 4.4/4.5 versions (later than April 2010) should be OK. See
    http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43551." (Info by Tobias Burnus, March 2010).

    2.7.5.4 Linux PCs with g95

    g95 v.0.91 and later versions (http://www.g95.org) work. The executables that produce are however slower (let us say 20% or so) that those produced by gfortran, which in turn are slower (by another 20% or so) than those produced by ifort.

    2.7.5.5 Linux PCs with Sun Studio compiler

    ``The Sun Studio compiler, sunf95, is free (web site: http://developers.sun.com/sunstudio/ and comes with a set of algebra libraries that can be used in place of the slow built-in libraries. It also supports OpenMP, which g95 does not. On the other hand, it is a pain to compile MPI with it. Furthermore the most recent version has a terrible bug that totally miscompiles the iotk input/output library (you'll have to compile it with reduced optimization).'' (info by Lorenzo Paulatto, March 2010).

    2.7.5.6 Linux PCs with AMD Open64 suite

    The AMD Open64 compiler suite, openf95 (web site: http://developer.amd.com/cpu/open64/pages/default.aspx) can be freely downloaded from the AMD site. It is recognized by configure but little tested. It sort of works but it fails to pass several tests (info by Paolo Giannozzi, March 2010). "I have configured for Pathscale, then switched to the Open64 compiler by editing make.sys. "make pw" succeeded and pw.x did process my file, but with "make all" I get an internal compiler error [in CPV/wf.f90]" (info by Cezary Sliwa, April 2011).

    2.7.5.7 Linux PCs with Intel compiler (ifort)

    The Intel compiler, ifort, is available for free for personal usage (http://software.intel.com/). It produces fast executables, at least on Intel CPUs, but not all versions work as expected. ifort versions < 9.1 are not recommended, due to the presence of subtle and insidious bugs. In case of trouble, update your version with the most recent patches, available via Intel Premier support (registration free of charge for Linux): http://software.intel.com/en-us/articles/intel-software-developer-support. Since each major release of ifort differs a lot from the previous one, compiled objects from different releases may be incompatible and should not be mixed.

    If configure doesn't find the compiler, or if you get Error loading shared libraries at run time, you may have forgotten to execute the script that sets up the correct PATH and library path. Unless your system manager has done this for you, you should execute the appropriate script - located in the directory containing the compiler executable - in your initialization files. Consult the documentation provided by Intel.

    The warning: feupdateenv is not implemented and will always fail, showing up in recent versions, can be safely ignored. Warnings on "bad preprocessing option" when compiling iotk and complains about ``recommanded formats'' should also be ignored.

    ifort v.12: release 12.0.0 miscompiles iotk, leading to mysterious errors when reading data files. Workaround: increase the parameter BLOCKSIZE to e.g. 131072*1024 when opening files in iotk/src/iotk_files.f90 (info by Lorenzo Paulatto, Nov. 2010). Release 12.0.2 seems to work and to produce faster executables than previous versions on 64-bit CPUs (info by P. Giannozzi, March 2011).

    ifort v.11: Segmentation faults were reported for the combination ifort 11.0.081, MKL 10.1.1.019, OpenMP 1.3.3. The problem disappeared with ifort 11.1.056 and MKL 10.2.2.025 (Carlo Nervi, Oct. 2009).

    2.7.5.8 Linux PCs with MKL libraries

    On Intel CPUs it is very convenient to use Intel MKL libraries. They can be also used for AMD CPU, selecting the appropriate machine-optimized libraries, and also together with non-Intel compilers. Note however that recent versions of MKL (10.2 and following) do not perform well on AMD machines.

    configure should recognize properly installed MKL libraries. By default the non-threaded version of MKL is linked, unless option configure -with-openmp is specified. In case of trouble, refer to the following web page to find the correct way to link MKL:
    http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/.

    Recent MKL versions also contain optimized FFT routines and a FFTW interface.

    For parallel (MPI) execution on multiprocessor (SMP) machines, set the environmental variable OMP_NUM_THREADS to 1 unless you know what you are doing. See Sec.3 for more info on this and on the difference between MPI and OpenMP parallelization.

    2.7.5.9 Linux PCs with ACML libraries

    For AMD CPUs, especially recent ones, you may find convenient to link AMD acml libraries (can be freely downloaded from AMD web site). configure should recognize properly installed acml libraries, together with the compilers most frequently used on AMD systems: pgf90, pathscale, openf95, sunf95.


    2.7.6 Linux PC clusters with MPI

    PC clusters running some version of MPI are a very popular computational platform nowadays. QUANTUM ESPRESSO is known to work with at least two of the major MPI implementations (MPICH, LAM-MPI), plus with the newer MPICH2 and OpenMPI implementation. configure should automatically recognize a properly installed parallel environment and prepare for parallel compilation. Unfortunately this not always happens. In fact:
    • configure tries to locate a parallel compiler in a logical place with a logical name, but if it has a strange names or it is located in a strange location, you will have to instruct configure to find it. Note that in many PC clusters (Beowulf), there is no parallel Fortran-95 compiler in default installations: you have to configure an appropriate script, such as mpif90.
    • configure tries to locate libraries (both mathematical and parallel libraries) in the usual places with usual names, but if they have strange names or strange locations, you will have to rename/move them, or to instruct configure to find them. If MPI libraries are not found, parallel compilation is disabled.
    • configure tests that the compiler and the libraries are compatible (i.e. the compiler may link the libraries without conflicts and without missing symbols). If they aren't and the compilation fails, configure will revert to serial compilation.

    Apart from such problems, QUANTUM ESPRESSO compiles and works on all non-buggy, properly configured hardware and software combinations. In some cases you may have to recompile MPI libraries: not all MPI installations contain support for the fortran-90 compiler of your choice (or for any fortran-90 compiler at all!).

    If QUANTUM ESPRESSO does not work for some reason on a PC cluster, try first if it works in serial execution. A frequent problem with parallel execution is that QUANTUM ESPRESSO does not read from standard input, due to the configuration of MPI libraries: see Sec.3.4. If you are dissatisfied with the performances in parallel execution, see Sec.3 and in particular Sec.3.4.

    2.7.7 Mac OS

    Newer Mac OS-X machines (10.4 and later) with Intel CPUs are supported by configure, with gcc4+g95, gfortran, and the Intel compiler ifort with MKL libraries. Parallel compilation with OpenMPI also works.

    Mysterious crashes, occurring when zdotc is called, are due to the same incompatibility of complex functions with some optimized BLAS as reported in the "Linux PCs with gfortran" paragraph. Workaround: add preprocessing option -Dzdotc=zdotc_wrapper to DFLAGS.

    2.7.7.1 Detailed installation instructions for Mac OS X 10.6

    (Instructions for 10.6.3 by Osman Baris Malcioglu, tested as of May 2010) Summary for the hasty:

    • GNU fortran: Install macports compilers, Install MPI environment, Configure QUANTUM ESPRESSO using
        ./configure CC=gcc-mp-4.3 CPP=cpp-mp-4.3 CXX=g++-mp-4.3 F77=g95 FC=g95
      
    • Intel compiler: Use Version > 11.1.088, Use 32 bit compilers, Install MPI environment, install macports provided cpp (optional), Configure QUANTUM ESPRESSO using
       ./configure CC=icc CXX=icpc F77=ifort F90=ifort FC=ifort CPP=cpp-mp-4.3
      

    2.7.7.2 Compilation with GNU compilers

    . The following instructions use macports version of gnu compilers due to some issues in mixing gnu supplied fortran compilers with apple modified gnu compiler collection. For more information regarding macports please refer to: http://www.macports.org/

    First install necessary compilers from macports

       port install gcc43
       port install g95
    
    The apple supplied MPI environment has to be overridden since there is a new set of compilers now (and Apple provided mpif90 is just an empty placeholder since Apple does not provide fortran compilers). I have used OpenMPI for this case. Recommended minimum configuration line is:
      ./configure CC=gcc-mp-4.3 CPP=cpp-mp-4.3 CXX=g++-mp-4.3 F77=g95 FC=g95
    
    of course, installation directory should be set accordingly if a multiple compiler environment is desired. The default installation directory of OpenMPI overwrites apple supplied MPI permanently!
    Next step is QUANTUM ESPRESSO itself. Sadly, the Apple supplied optimized BLAS/LAPACK libraries tend to misbehave under different tests, and it is much safer to use internal libraries. The minimum recommended configuration line is (presuming the environment is set correctly):
      ./configure CC=gcc-mp-4.3 CXX=g++-mp-4.3 F77=g95 F90=g95 FC=g95 \
                  CPP=cpp-mp-4.3 --with-internal-blas --with-internal-lapack
    

    2.7.7.3 Compilation with Intel compilers

    . Newer versions of Intel compiler (>11.1.067) support Mac OS X 10.6, and furthermore they are bundled with intel MKL. 32 bit binaries obtained using 11.1.088 are tested and no problems have been encountered so far. Sadly, as of 11.1.088 the 64 bit binary misbehave under some tests. Any attempt to compile 64 bit binary using v.< 11.1.088 will result in very strange compilation errors.

    Like the previous section, I would recommend installing macports compiler suite. First, make sure that you are using the 32 bit version of the compilers, i.e.

    . /opt/intel/Compiler/11.1/088/bin/ifortvars.sh ia32
    
    . /opt/intel/Compiler/11.1/088/bin/iccvars.sh ia32
    
    will set the environment for 32 bit compilation in my case.

    Then, the MPI environment has to be set up for Intel compilers similar to previous section.

    The recommended configuration line for QUANTUM ESPRESSO is:

     ./configure CC=icc CXX=icpc F77=ifort F90=ifort FC=ifort CPP=cpp-mp-4.3
    
    MKL libraries will be detected automatically if they are in their default locations. Otherwise, mklvars32 has to be sourced before the configuration script.

    Security issues: MacOs 10.6 comes with a disabled firewall. Preparing a ipfw based firewall is recommended. Open source and free GUIs such as "WaterRoof" and "NoobProof" are available that may help you in the process.


    next up previous contents
    Next: 3 Parallelism Up: 2 Installation Previous: 2.6 Running tests and   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/images.pl0000644000175000017500000000036712341373051015751 0ustar mbamba# LaTeX2HTML 2008 (1.71) # Associate images original text with physical files. $key = q/sim;MSF=1.6;LFS=12;AAT/; $cached_env_img{$key} = q|$ \sim$|; 1; espresso-5.1/Doc/user_guide/node16.html0000644000175000017500000001236112341373051016126 0ustar mbamba 3.1 Understanding Parallelism next up previous contents
    Next: 3.2 Running on parallel Up: 3 Parallelism Previous: 3 Parallelism   Contents

    3.1 Understanding Parallelism

    Two different parallelization paradigms are currently implemented in QUANTUM ESPRESSO:

    1. Message-Passing (MPI). A copy of the executable runs on each CPU; each copy lives in a different world, with its own private set of data, and communicates with other executables only via calls to MPI libraries. MPI parallelization requires compilation for parallel execution, linking with MPI libraries, execution using a launcher program (depending upon the specific machine). The number of CPUs used is specified at run-time either as an option to the launcher or by the batch queue system.
    2. OpenMP. A single executable spawn subprocesses (threads) that perform in parallel specific tasks. OpenMP can be implemented via compiler directives (explicit OpenMP) or via multithreading libraries (library OpenMP). Explicit OpenMP require compilation for OpenMP execution; library OpenMP requires only linking to a multithreading version of mathematical libraries, e.g.: ESSLSMP, ACML_MP, MKL (the latter is natively multithreading). The number of threads is specified at run-time in the environment variable OMP_NUM_THREADS.

    MPI is the well-established, general-purpose parallelization. In QUANTUM ESPRESSO several parallelization levels, specified at run-time via command-line options to the executable, are implemented with MPI. This is your first choice for execution on a parallel machine.

    Library OpenMP is a low-effort parallelization suitable for multicore CPUs. Its effectiveness relies upon the quality of the multithreading libraries and the availability of multithreading FFTs. If you are using MKL,1you may want to select FFTW3 (set CPPFLAGS=-D__FFTW3... in make.sys) and to link with the MKL interface to FFTW3. You will get a decent speedup ($ \sim$ 25%) on two cores.

    Explicit OpenMP is a recent addition, still under development, devised to increase scalability on large multicore parallel machines. Explicit OpenMP can be used together with MPI and also together with library OpenMP. Beware conflicts between the various kinds of parallelization! If you don't know how to run MPI processes and OpenMP threads in a controlled manner, forget about mixed OpenMP-MPI parallelization.


    next up previous contents
    Next: 3.2 Running on parallel Up: 3 Parallelism Previous: 3 Parallelism   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/images.aux0000644000175000017500000000001012341373050016113 0ustar mbamba\relax espresso-5.1/Doc/user_guide/labels.pl0000644000175000017500000000507112341373051015743 0ustar mbamba# LaTeX2HTML 2008 (1.71) # Associate labels original text with physical files. $key = q/Sec:Installation/; $external_labels{$key} = "$URL/" . q|node9.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Contacts/; $external_labels{$key} = "$URL/" . q|node4.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Terms/; $external_labels{$key} = "$URL/" . q|node6.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Examples/; $external_labels{$key} = "$URL/" . q|node13.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:badpara/; $external_labels{$key} = "$URL/" . q|node19.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Guidelines/; $external_labels{$key} = "$URL/" . q|node5.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:manconf/; $external_labels{$key} = "$URL/" . q|node10.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:LinuxPCMPI/; $external_labels{$key} = "$URL/" . q|node14.html|; $noresave{$key} = "$nosave"; $key = q/Sec:para/; $external_labels{$key} = "$URL/" . q|node15.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Compilation/; $external_labels{$key} = "$URL/" . q|node12.html|; $noresave{$key} = "$nosave"; $key = q/SubSec:Download/; $external_labels{$key} = "$URL/" . q|node8.html|; $noresave{$key} = "$nosave"; $key = q/Sec:Libraries/; $external_labels{$key} = "$URL/" . q|node11.html|; $noresave{$key} = "$nosave"; 1; # LaTeX2HTML 2008 (1.71) # labels from external_latex_labels array. $key = q/Sec:Installation/; $external_latex_labels{$key} = q|2.2|; $noresave{$key} = "$nosave"; $key = q/SubSec:Contacts/; $external_latex_labels{$key} = q|1.2|; $noresave{$key} = "$nosave"; $key = q/SubSec:Terms/; $external_latex_labels{$key} = q|1.4|; $noresave{$key} = "$nosave"; $key = q/SubSec:Examples/; $external_latex_labels{$key} = q|2.6|; $noresave{$key} = "$nosave"; $key = q/SubSec:badpara/; $external_latex_labels{$key} = q|3.4|; $noresave{$key} = "$nosave"; $key = q/SubSec:Guidelines/; $external_latex_labels{$key} = q|1.3|; $noresave{$key} = "$nosave"; $key = q/SubSec:manconf/; $external_latex_labels{$key} = q|2.3.1|; $noresave{$key} = "$nosave"; $key = q/SubSec:LinuxPCMPI/; $external_latex_labels{$key} = q|2.7.6|; $noresave{$key} = "$nosave"; $key = q/Sec:para/; $external_latex_labels{$key} = q|3|; $noresave{$key} = "$nosave"; $key = q/SubSec:Compilation/; $external_latex_labels{$key} = q|2.5|; $noresave{$key} = "$nosave"; $key = q/SubSec:Download/; $external_latex_labels{$key} = q|2.1|; $noresave{$key} = "$nosave"; $key = q/Sec:Libraries/; $external_latex_labels{$key} = q|2.4|; $noresave{$key} = "$nosave"; 1; espresso-5.1/Doc/user_guide/node19.html0000644000175000017500000001500212341373051016124 0ustar mbamba 3.4 Tricks and problems next up previous contents
    Next: About this document ... Up: 3 Parallelism Previous: 3.3 Parallelization levels   Contents

    Subsections


    3.4 Tricks and problems

    3.4.0.1 Trouble with input files

    Some implementations of the MPI library have problems with input redirection in parallel. This typically shows up under the form of mysterious errors when reading data. If this happens, use the option -i (or -in, -inp, -input), followed by the input file name. Example:
       pw.x -i inputfile -nk 4 > outputfile
    
    Of course the input file must be accessible by the processor that must read it (only one processor reads the input file and subsequently broadcasts its contents to all other processors).

    Apparently the LSF implementation of MPI libraries manages to ignore or to confuse even the -i/in/inp/input mechanism that is present in all QUANTUM ESPRESSO codes. In this case, use the -i option of mpirun.lsf to provide an input file.

    3.4.0.2 Trouble with MKL and MPI parallelization

    If you notice very bad parallel performances with MPI and MKL libraries, it is very likely that the OpenMP parallelization performed by the latter is colliding with MPI. Recent versions of MKL enable autoparallelization by default on multicore machines. You must set the environmental variable OMP_NUM_THREADS to 1 to disable it. Note that if for some reason the correct setting of variable OMP_NUM_THREADS does not propagate to all processors, you may equally run into trouble. Lorenzo Paulatto (Nov. 2008) suggests to use the -x option to mpirun to propagate OMP_NUM_THREADS to all processors. Axel Kohlmeyer suggests the following (April 2008): "(I've) found that Intel is now turning on multithreading without any warning and that is for example why their FFT seems faster than FFTW. For serial and OpenMP based runs this makes no difference (in fact the multi-threaded FFT helps), but if you run MPI locally, you actually lose performance. Also if you use the 'numactl' tool on linux to bind a job to a specific cpu core, MKL will still try to use all available cores (and slow down badly). The cleanest way of avoiding this mess is to either link with
    -lmkl_intel_lp64 -lmkl_sequential -lmkl_core (on 64-bit: x86_64, ia64)
    -lmkl_intel -lmkl_sequential -lmkl_core (on 32-bit, i.e. ia32 )
    or edit the libmkl_'platform'.a file. I'm using now a file libmkl10.a with:
      GROUP (libmkl_intel_lp64.a libmkl_sequential.a libmkl_core.a)
    
    It works like a charm". UPDATE: Since v.4.2, configure links by default MKL without multithreaded support.

    3.4.0.3 Trouble with compilers and MPI libraries

    Many users of QUANTUM ESPRESSO, in particular those working on PC clusters, have to rely on themselves (or on less-than-adequate system managers) for the correct configuration of software for parallel execution. Mysterious and irreproducible crashes in parallel execution are sometimes due to bugs in QUANTUM ESPRESSO, but more often than not are a consequence of buggy compilers or of buggy or miscompiled MPI libraries.


    next up previous contents
    Next: About this document ... Up: 3 Parallelism Previous: 3.3 Parallelization levels   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/user_guide.html0000644000175000017500000001576312341373051017176 0ustar mbamba User's Guide for Quantum-ESPRESSO next up previous contents
    Next: Contents   Contents

    Image quantum_espresso Image democritos
    User's Guide for QUANTUM ESPRESSO

    (version 5.1)





    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/node10.html0000644000175000017500000003272112341373051016122 0ustar mbamba 2.3 configure next up previous contents
    Next: 2.4 Libraries Up: 2 Installation Previous: 2.2 Prerequisites   Contents

    Subsections

    2.3 configure

    To install the QUANTUM ESPRESSO source package, run the configure script. This is actually a wrapper to the true configure, located in the install/ subdirectory. configure will (try to) detect compilers and libraries available on your machine, and set up things accordingly. Presently it is expected to work on most Linux 32- and 64-bit PCs (all Intel and AMD CPUs) and PC clusters, SGI Altix, IBM SP and BlueGene machines, NEC SX, Cray XT machines, Mac OS X, MS-Windows PCs, and (for experts!) on several GPU-accelerated hardware. Detailed installation instructions for some specific HPC machines can be found in files install/README.sys, where sys is the machine name.

    Instructions for the impatient:

        cd espresso-X.Y.Z/
        ./configure
         make all
    
    Symlinks to executable programs will be placed in the bin/ subdirectory. Note that both C and Fortran compilers must be in your execution path, as specified in the PATH environment variable. Additional instructions for special machines:

    ./configure ARCH=crayxt4 for CRAY XT machines
    ./configure ARCH=necsx for NEC SX machines
    ./configure ARCH=ppc64-mn PowerPC Linux + xlf (Marenostrum)
    ./configure ARCH=ppc64-bg IBM BG/P (BlueGene)

    configure generates the following files:

    make.sys compilation rules and flags (used by Makefile)
    install/configure.msg a report of the configuration run (not needed for compilation)
    install/config.log detailed log of the configuration run (may be needed for debugging)
    include/fft_defs.h defines fortran variable for C pointer (used only by FFTW)
    include/c_defs.h defines C to fortran calling convention
      and a few more definitions used by C files

    NOTA BENE: unlike previous versions, configure no longer runs the makedeps.sh shell script that updates dependencies. If you modify the sources, run ./install/makedeps.sh or type make depend to update files make.depend in the various subdirectories.

    You should always be able to compile the QUANTUM ESPRESSO suite of programs without having to edit any of the generated files. However you may have to tune configure by specifying appropriate environment variables and/or command-line options. Usually the tricky part is to get external libraries recognized and used: see Sec.2.4 for details and hints.

    Environment variables may be set in any of these ways:

         export VARIABLE=value; ./configure             # sh, bash, ksh
         setenv VARIABLE value; ./configure             # csh, tcsh
         ./configure VARIABLE=value                     # any shell
    
    Some environment variables that are relevant to configure are:

    ARCH label identifying the machine type (see below)
    F90, F77, CC names of Fortran 95, Fortran 77, and C compilers
    MPIF90 name of parallel Fortran 95 compiler (using MPI)
    CPP source file preprocessor (defaults to $CC -E)
    LD linker (defaults to $MPIF90)
    (C,F,F90,CPP,LD)FLAGS compilation/preprocessor/loader flags
    LIBDIRS extra directories where to search for libraries

    For example, the following command line:

         ./configure MPIF90=mpf90 FFLAGS="-O2 -assume byterecl" \
                      CC=gcc CFLAGS=-O3 LDFLAGS=-static
    
    instructs configure to use mpf90 as Fortran 95 compiler with flags -O2 -assume byterecl, gcc as C compiler with flags -O3, and to link with flag -static. Note that the value of FFLAGS must be quoted, because it contains spaces. NOTA BENE: do not pass compiler names with the leading path included. F90=f90xyz is ok, F90=/path/to/f90xyz is not. Do not use environmental variables with configure unless they are needed! try configure with no options as a first step.

    If your machine type is unknown to configure, you may use the ARCH variable to suggest an architecture among supported ones. Some large parallel machines using a front-end (e.g. Cray XT) will actually need it, or else configure will correctly recognize the front-end but not the specialized compilation environment of those machines. In some cases, cross-compilation requires to specify the target machine with the -host option. This feature has not been extensively tested, but we had at least one successful report (compilation for NEC SX6 on a PC). Currently supported architectures are:

    ia32 Intel 32-bit machines (x86) running Linux
    ia64 Intel 64-bit (Itanium) running Linux
    x86_64 Intel and AMD 64-bit running Linux - see note below
    aix IBM AIX machines
    solaris PC's running SUN-Solaris
    sparc Sun SPARC machines
    crayxt4 Cray XT4/XT5/XE machines
    mac686 Apple Intel machines running Mac OS X
    cygwin MS-Windows PCs with Cygwin
    mingw32 Cross-compilation for MS-Windows, using mingw, 32 bits
    mingw64 As above, 64 bits
    necsx NEC SX-6 and SX-8 machines
    ppc64 Linux PowerPC machines, 64 bits
    ppc64-mn as above, with IBM xlf compiler
    ppc64-bg IBM BlueGene
    arm ARM machines (with gfortran)

    Note: x86_64 replaces amd64 since v.4.1. Cray Unicos machines, SGI machines with MIPS architecture, HP-Compaq Alphas are no longer supported since v.4.2; PowerPC Macs are no longer supported since v.5.0. Finally, configure recognizes the following command-line options:
    -enable-parallel compile for parallel (MPI) execution if possible (default: yes)
    -enable-openmp compile for OpenMP execution if possible (default: no)
    -enable-shared use shared libraries if available (default: yes;
      "no" is implemented, untested, in only a few cases)
    -enable-debug compile with debug flags (only for selected cases; default: no)
    -disable-wrappers disable C to fortran wrapper check (default: enabled)
    -enable-signals enable signal trapping (default: disabled)

    and the following optional packages:
    -with-internal-blas compile with internal BLAS (default: no)
    -with-internal-lapack compile with internal LAPACK (default: no)
    -with-scalapack=no do not use ScaLAPACK (default: yes)
    -with-scalapack=intel use ScaLAPACK for Intel MPI (default:OpenMPI)

    If you want to modify the configure script (advanced users only!), see the Developer Manual.


    2.3.1 Manual configuration

    If configure stops before the end, and you don't find a way to fix it, you have to write working make.sys, include/fft_defs.h and include/c_defs.h files. For the latter two files, follow the explanations in include/defs.h.README.

    If configure has run till the end, you should need only to edit make.sys. A few sample make.sys files are provided in install/Make.system. The template used by configure is also found there as install/make.sys.in and contains explanations of the meaning of the various variables. Note that you may need to select appropriate preprocessing flags in conjunction with the desired or available libraries (e.g. you need to add -D__FFTW to DFLAGS if you want to link internal FFTW). For a correct choice of preprocessing flags, refer to the documentation in include/defs.h.README.

    NOTA BENE: If you change any settings (e.g. preprocessing, compilation flags) after a previous (successful or failed) compilation, you must run make clean before recompiling, unless you know exactly which routines are affected by the changed settings and how to force their recompilation.


    next up previous contents
    Next: 2.4 Libraries Up: 2 Installation Previous: 2.2 Prerequisites   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/node1.html0000644000175000017500000001011512341373051016033 0ustar mbamba Contents next up previous
    Next: 1 Introduction Up: User's Guide for Quantum-ESPRESSO Previous: User's Guide for Quantum-ESPRESSO


    Contents



    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/index.html0000644000175000017500000000000012341373051026150 1espresso-5.1/Doc/user_guide/user_guide.htmlustar mbambaespresso-5.1/Doc/user_guide/node9.html0000644000175000017500000001034412341373051016047 0ustar mbamba 2.2 Prerequisites next up previous contents
    Next: 2.3 configure Up: 2 Installation Previous: 2.1 Download   Contents


    2.2 Prerequisites

    To install QUANTUM ESPRESSO from source, you need first of all a minimal Unix environment: basically, a command shell (e.g., bash or tcsh) and the utilities make, awk, sed. MS-Windows users need to have Cygwin (a UNIX environment which runs under Windows) installed: see http://www.cygwin.com/. Note that the scripts contained in the distribution assume that the local language is set to the standard, i.e. "C"; other settings may break them. Use export LC_ALL=C (sh/bash) or setenv LC_ALL C (csh/tcsh) to prevent any problem when running scripts (including installation scripts).

    Second, you need C and Fortran-95 compilers. For parallel execution, you will also need MPI libraries and a parallel (i.e. MPI-aware) compiler. For massively parallel machines, or for simple multicore parallelization, an OpenMP-aware compiler and libraries are also required.

    Big machines with specialized hardware (e.g. IBM SP, CRAY, etc) typically have a Fortran-95 compiler with MPI and OpenMP libraries bundled with the software. Workstations or ``commodity'' machines, using PC hardware, may or may not have the needed software. If not, you need either to buy a commercial product (e.g Portland) or to install an open-source compiler like gfortran or g95. Note that several commercial compilers are available free of charge under some license for academic or personal usage (e.g. Intel, Sun).


    next up previous contents
    Next: 2.3 configure Up: 2 Installation Previous: 2.1 Download   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/node5.html0000644000175000017500000001125512341373051016045 0ustar mbamba 1.3 Guidelines for posting to the mailing list next up previous contents
    Next: 1.4 Terms of use Up: 1 Introduction Previous: 1.2 Contacts   Contents


    1.3 Guidelines for posting to the mailing list

    Life for subscribers of pw_forum will be easier if everybody complies with the following guidelines:
    • Before posting, please: browse or search the archives - links are available in the ``Contacts'' section of the web site. Most questions are asked over and over again. Also: make an attempt to search the available documentation, notably the FAQs and the User Guide(s). The answer to most questions is already there.
    • Reply to both the mailing list and the author or the post, using ``Reply to all'' (not ``Reply'': the Reply-To: field no longer points to the mailing list).
    • Sign your post with your name and affiliation.
    • Choose a meaningful subject. Do not use "reply" to start a new thread: it will confuse the ordering of messages into threads that most mailers can do. In particular, do not use "reply" to a Digest!!!
    • Be short: no need to send 128 copies of the same error message just because you this is what came out of your 128-processor run. No need to send the entire compilation log for a single error appearing at the end.
    • Avoid excessive or irrelevant quoting of previous messages. Your message must be immediately visible and easily readable, not hidden into a sea of quoted text.
    • Remember that even experts cannot guess where a problem lies in the absence of sufficient information. One piece of information that must always be provided is the version number of QUANTUM ESPRESSO.
    • Remember that the mailing list is a voluntary endeavor: nobody is entitled to an answer, even less to an immediate answer.
    • Finally, please note that the mailing list is not a replacement for your own work, nor is it a replacement for your thesis director's work.


    next up previous contents
    Next: 1.4 Terms of use Up: 1 Introduction Previous: 1.2 Contacts   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/images.log0000644000175000017500000001154612341373050016117 0ustar mbambaThis is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) (format=latex 2013.10.8) 28 MAY 2014 16:43 entering extended mode restricted \write18 enabled. %&-line parsing enabled. **./images.tex (./images.tex LaTeX2e <2011/06/27> Babel and hyphenation patterns for english, dumylang, nohyphenation, it alian, loaded. (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo File: size12.clo 2007/10/19 v1.4h Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC) ) (/usr/share/texmf/tex/latex/html/html.sty Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count87 \c@lchapter=\count88 \c@chapter=\count89 \c@lsection=\count90 \c@lsubsection=\count91 \c@lsubsubsection=\count92 \c@lparagraph=\count93 \c@lsubparagraph=\count94 \c@lsubsubparagraph=\count95 \ptrfile=\write3 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live ) Package graphics Info: Driver file: dvips.def on input line 91. (/usr/share/texlive/texmf-dist/tex/latex/graphics/dvips.def File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) \Gin@req@height=\dimen103 \Gin@req@width=\dimen104 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/color.sty Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/color.cfg File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive ) Package color Info: Driver file: dvips.def on input line 130. (/usr/share/texlive/texmf-dist/tex/latex/graphics/dvipsnam.def File: dvipsnam.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR) )) (/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty Package: inputenc 2008/03/30 v1.1d Input encoding file \inpenc@prehook=\toks15 \inpenc@posthook=\toks16 (/usr/share/texlive/texmf-dist/tex/latex/base/latin1.def File: latin1.def 2008/03/30 v1.1d Input encoding file )) \sizebox=\box26 \lthtmlwrite=\write4 (./images.aux) \openout1 = `images.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 146. LaTeX Font Info: ... okay on input line 146. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 146. LaTeX Font Info: ... okay on input line 146. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 146. LaTeX Font Info: ... okay on input line 146. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 146. LaTeX Font Info: ... okay on input line 146. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 146. LaTeX Font Info: ... okay on input line 146. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 146. LaTeX Font Info: ... okay on input line 146. latex2htmlLength hsize=349.0pt latex2htmlLength vsize=721.41339pt latex2htmlLength hoffset=0.0pt latex2htmlLength voffset=0.0pt latex2htmlLength topmargin=0.0pt latex2htmlLength topskip=0.00003pt latex2htmlLength headheight=0.0pt latex2htmlLength headsep=0.0pt latex2htmlLength parskip=0.0pt plus 1.0pt latex2htmlLength oddsidemargin=0.0pt latex2htmlLength evensidemargin=0.0pt LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 210. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 210. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 210. l2hSize :tex2html_wrap_inline2354:7.75pt::0.0pt::9.92088pt. [1 ] (./images.aux) ) Here is how much of TeX's memory you used: 1144 strings out of 495049 14736 string characters out of 3181577 57798 words of memory out of 3000000 4370 multiletter control sequences out of 15000+200000 6376 words of font info for 23 fonts, out of 3000000 for 9000 14 hyphenation exceptions out of 8191 25i,5n,19p,185b,145s stack positions out of 5000i,500n,10000p,200000b,50000s Output written on images.dvi (1 page, 340 bytes). espresso-5.1/Doc/user_guide/node6.html0000644000175000017500000000622412341373051016046 0ustar mbamba 1.4 Terms of use next up previous contents
    Next: 2 Installation Up: 1 Introduction Previous: 1.3 Guidelines for posting   Contents


    1.4 Terms of use

    QUANTUM ESPRESSO is free software, released under the GNU General Public License. See http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt, or the file License in the distribution).

    We shall greatly appreciate if scientific work done using QUANTUM ESPRESSO distribution will contain an explicit acknowledgment and the following reference:

    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009), http://arxiv.org/abs/0906.2569
    Note the form QUANTUM ESPRESSO for textual citations of the code. Please also see package-specific documentation for further recommended citations. Pseudopotentials should be cited as (for instance)
    [ ] We used the pseudopotentials C.pbe-rrjkus.UPF and O.pbe-vbc.UPF from
    http://www.quantum-espresso.org.


    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/democritos.png0000644000175000017500000002310112341373050017013 0ustar mbambaPNG  IHDR9Yr-PLTE32f06i54h64i88g;;j?>nA@pEDuHGw HJt!OIuKMw( )!)OQ{$0RT~UV-1WY.2\Y0819_\3:b^:<;Aaefc=Che>D?EeiFLjnnnHNKOrrQWuuSXyxUZZ[}}\b_eydfz{fi|w}x~hpmrosptrvvxxz߀⃆ነ䋋㌒厔⑕唗留䙚曜眝¬鞟蟥ĭ褢礨馪ꧫ쩭͵魯ļϸ믱Ǿɽ{ pHYsVTbU vpAg9Y"IDATx|pUd}ӯi2"hԍ jsSQf.DdDW( q2,}\!*A $$RB0HHB.tխwnwtObj8J2}swϿWddrF*W\AnrF*W\AnrF*W\AnrF*W\Anr?#n,}졝N5v8 \:#})cW+Ǝelw/qv1ɲ*rKtWڌ{^hyPXA{D>㡏RriЃ ,ox\W7kO#>u Se1OXw7^D.S$ ߒ.2Ly͋l9u֮]`j&ű}e|xY;z!Kvnۉ.M97'f,yO#>c vCd<-Qߡw0< zQ+^≸y.&i%`{܂87 M67"nA6VqIc]8X}߭kE>w庤=5+ @6}ncNw`h%V8 ` ۇ3N 08_~𐣃9.$Bgǹinw#Gvzܼħpsldȼ;eQj=<3nǘpE<&q`i1A  bW[q97d9ɉ .k">S[[j/ '1ӔBΝJM\7n ZU᧐n 1lΡ 8׃b/@&'߁s m%4΋L{"BXTyd5= PuJ!gQualr2\Ρ'}ACH^艿>cRfJ Jks5҂ _Ĩd w)YMH\kyo<7ųS?\iЇw51VVǢii\ @9=&x`@{CHKΝ_ ]هRTwI/,/ s4T_L\ \,EbO|:>B6nݨ<СĴsCf&5w{*Svm,h^*ħ9:֭dn.A"#[X(I%o:xwFj4`&ǡ%|PY'Jh>;5pxvw'J .z0V6(Lttf8}Ns%BsmM 0Vf]Ӕp1c344r,%F[["]>7SjxV{H_"g9m"M3)$"DF7vԍc0kǻ9=8 )3^8q@v[¶h7DNG )FtR?ì>)Xm!8n!eJ<M)~Ufso;k5pwx7^1:pѬԛJqPXԜLA}h(l,na{[ph&VӄxvT1T0'ػ}p6kCf5bltz05vQT$G{/ s-hO6vBKぽ!/Fc"J{:/5GJT c6<A`l4Zs{5d3F;m\VIvN.gR p}BzjQŴu]'quq 17+EF{߳|;Fϟ!0vCqpxaeEu>K"/8V4\?pA.!$*{-? maaz 4+y[Gp>HwΡJ8XI,xTs,p{F<q|v\2lvdL"GBAμd`aʸ^*2D.Qg7rV85n{<եG-9 `'^"Y'XˉT-x-/;9a|ed*'Ų:-q!if014X4Ffӯe!l$NFiV+P9ά鰉 /Pbz2dbTZä'Z#;3a҃eՂĞ(ՒQa~:7=^(=f9i[r_[,0Nǭd.j79Zs(8SH&\j1Jq|r݇)kR@Ř#<~Ss3<:NV0V{ͣcgHS‚:Y(gc**UQ^? I"ʦ`o!Gp=uIGu3sK<6oGE|BEwN=Ty.AD>sYzV3zQZx{ oǿÇ Ѫz&[gG-a1fgm9 bŹ_|~to$ɺVnPxvĝ'TV/k egfOz*U5j#NW.51gqg{ި? PK k)8g9;Crh}7YD0F4SDBg˒';%_5Ubxs8w?E#DTݩ뉰PUո߇]}ˮ-U:=X4ek114˫Ch2fJ-4FIb.V7WJЈzITA4/?|?7%Ӻ t__,}. oIrse:B*iHu{'r˸+rp.Kd(:0BOQK?z )|uTk6D^U7.n J YxA|r!Ci γՠ02z MZ7@0:\A7E]hcZI7~P,(k(JKKs\N럎_apB>8d <{zYɑғrw ~q̨ mFގiRlUA9FyOÏ.]T{AA TQ[[{;,U(-CsWSyd)znu*|v^QGB/Q[\ ]80w UldEJ>T]8幡^mC-H; Zt\[ \dkǍwFb􍯘7Toծvtr'69RPvK'$9A)咻!%p,RBVXO) ڣz L䔊J }Y8%+YzPz{RH``QzTQV+jR )JTT<]0"]%X[ZR5"qU=׸\cGJszUǾ7[\ڀ"' p(|S5RQ9ni{o X+y!O6"ZBΡrAsV{VwcYF5>S^~R:*" H9nQFc|ᯐg ';1,w5@蔩-rȹrVfu5R@22V4)ejqUR5O?%sa\(OEw0Ðd( |XBʉ@, RlTx?A~p Mo<)UBH9LSV<#*9Iyjwas4Z8gUB3xxԟ r8;  S!IQc,^pq>.rABe/`pN>JKMǝdE13:h,l9藼^Iގ|0}QO*dyrw yvd?&*"GcqNLVYs RPqn+w(T"s^qF;\>DgX:SB(Ѝι{7\:`˙{6XPL9SjCjY5p]*gLNT4v[W4oiVlQ&k.-fVK7wiBaU;c71|Hz5Ƣ/ՠv.ŝNǽoЭӛuvH l"Tlҝ:h O kMP}o-rzɨLhBO/i`d:F`k^g: wzŞn4cZOTHSX`Ka0+DՏmuiZ88s Z$Gδ[WD`ry/߈dt+_HT5Ou|ߔC:RqnwVA# vqIBˆh.R= I!5o/)mZvt8^t {Qdmιt};tyg {)ց4Rrt3H?'}6,c#Z5 -S/l^[׶.֮%_E,ׯ0\\!g>g5< NָH1ynpA pΡ h_39.ppNVUcdtr3Zm_o 'Oyzj]R ꃴqEK'Rk%Fx'-SsGslwoaV19 e# szsTڴc$ 0QVn)!e=8Xtsd+ L"ћ^]S'8\;7\tp90W9G: vsU$TeQ]]{>r,O-y.w>ͭpNߜ >}»$Rk;k<+r6Jmi^mZa3M<QmwY$Y@3-#'r؟sȹޕ~pQUsiUlº( #FIn 9^s/ 9y׺F\~L>o+_yDV(JH-WV/)$_żb\8+/җ\D0"&J9 M2-Š@W6ɥJׁWn0 ytYT0(0_WΚK[cOH劲\r5W|yRVʣVjw"m6&s4j6DwLCq. K@{{+FJz%J9 )y*m@TJIlr.Hjve/fBwP&1ӳW.  oCB]"E V)VrA8(2?csIČGY}$1sh.9QNw;+tHi"+,"wI/eܮZ d9> >@F}`<[ {ZQB 9?Adu %y JzUxXͥsz ƽ ?3۠T^5314ӈ\/3,5ud‡7絋98ۅ(Mv:7jlv+8ҾsdQJys3t 5o>Awzu\ru{oӉ;F+&͚؛-AȒBJa.r_\@zFi0^6kC{YrV.e%}OTӧ,5ѭJ.MKu~+Sn@~ OsQizX^pɌ˟tyq4C+|]M=JM7"9$A9rceu՝J=K[BJ@uRsa[%]^o 4y cJ~ Kx~THI<챚"].%7' jx}T jI T)H1/{ܙYȢB fga{EqhfnL7-d퇶vOB_T4"MxQBU0A}AY;ܧH ΁V =WqzS0Dek.^ HT`DP#B {d;ҴhZWk$Oe[Mkqp:~qkU(7]W?qVoW;]Ji ӯLpK8L{W T5n`:BMaյXS3ik`~DU: l7v'im.Z=\Duu{f]q6_oڱ+ ?ѪLM|3>mKt{C aON :O4T >8{U% 'hKWʚ5kY;~|9 >NfC}7bB|Ț?J"Ia}#32K$kLb ,7tcG08L|Yq1yYrCP1Mٽрh!Th"&{a/YWFf#_TѩrO;a'hB>3<`}o j ". g]hIENDB`espresso-5.1/Doc/user_guide/WARNINGS0000644000175000017500000000036612341373050015320 0ustar mbambaNo implementation found for style `graphicx' ? brace missing for \ Substitution of arg to newlabelxx delayed. redefining command \ ? brace missing for \oldcontentsline ? brace missing for \oldnewlabel There is no author for this document. espresso-5.1/Doc/user_guide/contents.png0000644000175000017500000000042612341373051016506 0ustar mbambaPNG  IHDRAH PLTEooo[tRNS@fIDATx= 0 _jUTK>Yw:x *VK7Hϟd !xx8!2 *dqM #la"d2ʋz9mٺኝCSr-$𡡗BD`GR wAsV tGIENDB`espresso-5.1/Doc/user_guide/next_g.png0000644000175000017500000000042012341373051016127 0ustar mbambaPNG  IHDR%/[:tRNS-Mc%IDATx C?y2N6AKdуqHCudS. l`N#Q[O 2.5 Compilation next up previous contents
    Next: 2.6 Running tests and Up: 2 Installation Previous: 2.4 Libraries   Contents


    2.5 Compilation

    There are a few adjustable parameters in Modules/parameters.f90. The present values will work for most cases. All other variables are dynamically allocated: you do not need to recompile your code for a different system.

    At your choice, you may compile the complete QUANTUM ESPRESSO suite of programs (with make all), or only some specific programs. make with no arguments yields a list of valid compilation targets:

    • make pw compiles the self-consistent-field package PWscf
    • make cp compiles the Car-Parrinello package CP
    • make neb downloads PWneb package from qe-forge unpacks it and compiles it. All executables are linked in main bin directory
    • make ph downloads PHonon package from qe-forge unpacks it and compiles it. All executables are linked in main bin directory
    • make pp compiles the postprocessing package PostProc
    • make pwcond downloads the balistic conductance package PWcond from qe-forge unpacks it and compiles it. All executables are linked in main bin directory
    • make pwall produces all of the above.
    • make ld1 downloads the pseudopotential generator package atomic from qe-forge unpacks it and compiles it. All executables are linked in main bin directory
    • make xspectra downloads the package XSpectra from qe-forge unpacks it and compiles it. All executables are linked in main bin directory
    • make upf produces utilities for pseudopotential conversion in directory upftools/
    • make all produces all of the above
    • make plumed unpacks PLUMED, patches several routines in PW/, CPV/ and clib/, recompiles PWscf and CP with PLUMED support
    • make w90 downloads wannier90, unpacks it, copies an appropriate make.sys file, produces all executables in W90/wannier90.x and in bin/
    • make want downloads WanT from qe-forge, unpacks it, runs its configure, produces all executables for WanT in WANT/bin.
    • make yambo downloads yambo from qe-forge, unpacks it, runs its configure, produces all yambo executables in YAMBO/bin
    • make gipaw downloads GIPAW from qe-forge, unpacks it, runs its configure, produces all GIPAW executables in GIPAW/bin and in main bin directory.
    For the setup of the GUI, refer to the PWgui-X.Y.Z /INSTALL file, where X.Y.Z stands for the version number of the GUI (should be the same as the general version number). If you are using the SVN sources, see the GUI/README file instead.

    If make refuses for some reason to download additional packages, manually download them into subdirectory archive/, not unpacking or or uncompressing them, and try make again. Also see Sec.(2.1).


    next up previous contents
    Next: 2.6 Running tests and Up: 2 Installation Previous: 2.4 Libraries   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/up.png0000644000175000017500000000032312341373051015271 0ustar mbambaPNG  IHDR5 PLTEooo[tRNS@fuIDATx]10 Ed&Cwr,'k7n)IT xOm'<Q1A BP+ :׊pۭYh/iO.c7Np_/11Ab$}IENDB`espresso-5.1/Doc/user_guide/node20.html0000644000175000017500000000554212341373051016124 0ustar mbamba About this document ... next up previous contents
    Up: User's Guide for Quantum-ESPRESSO Previous: 3.4 Tricks and problems   Contents

    About this document ...

    Image quantum_espresso Image democritos
    User's Guide for QUANTUM ESPRESSO

    (version 5.1)

    This document was generated using the LaTeX2HTML translator Version 2008 (1.71)

    Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
    Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

    The command line arguments were:
    latex2html -t 'User's Guide for Quantum-ESPRESSO' -html_version 3.2,math -toc_depth 5 -split 5 -toc_stars -show_section_numbers -local_icons -image_type png user_guide.tex

    The translation was initiated by paolo giannozzi on 2014-05-28


    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/node17.html0000644000175000017500000000607712341373051016136 0ustar mbamba 3.2 Running on parallel machines next up previous contents
    Next: 3.3 Parallelization levels Up: 3 Parallelism Previous: 3.1 Understanding Parallelism   Contents

    3.2 Running on parallel machines

    Parallel execution is strongly system- and installation-dependent. Typically one has to specify:

    1. a launcher program (not always needed), such as poe, mpirun, mpiexec, with the appropriate options (if any);
    2. the number of processors, typically as an option to the launcher program, but in some cases to be specified after the name of the program to be executed;
    3. the program to be executed, with the proper path if needed;
    4. other QUANTUM ESPRESSO-specific parallelization options, to be read and interpreted by the running code.
    Items 1) and 2) are machine- and installation-dependent, and may be different for interactive and batch execution. Note that large parallel machines are often configured so as to disallow interactive execution: if in doubt, ask your system administrator. Item 3) also depend on your specific configuration (shell, execution path, etc). Item 4) is optional but it is very important for good performances. We refer to the next section for a description of the various possibilities.



    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/node4.html0000644000175000017500000001122012341373051016034 0ustar mbamba 1.2 Contacts next up previous contents
    Next: 1.3 Guidelines for posting Up: 1 Introduction Previous: 1.1 People   Contents


    1.2 Contacts

    The web site for QUANTUM ESPRESSO is http://www.quantum-espresso.org/. Releases and patches can be downloaded from this site or following the links contained in it. The main entry point for developers is the QE-forge web site: http://qe-forge.org/, and in particular the page dedicated to the QUANTUM ESPRESSO project: qe-forge.org/gf/project/q-e/.

    The recommended place where to ask questions about installation and usage of QUANTUM ESPRESSO, and to report problems, is the pw_forum mailing list: pw_forum@pwscf.org. Here you can obtain help from the developers and from knowledgeable users. You have to be subscribed (see ``Contacts'' section of the web site) in order to post to the pw_forum list. Please read the guidelines for posting, section 1.3! NOTA BENE: only messages that appear to come from the registered user's e-mail address, in its exact form, will be accepted. Messages "waiting for moderator approval" are automatically deleted with no further processing (sorry, too much spam). In case of trouble, carefully check that your return e-mail is the correct one (i.e. the one you used to subscribe).

    Since pw_forum has a sizable traffic, an alternative low-traffic list, pw_users@pwscf.org, is provided for those interested only in QUANTUM ESPRESSO-related news, such as e.g. announcements of new versions, tutorials, etc.. You can subscribe (but not post) to this list from the web site, ``Contacts'' section.

    If you need to contact the developers for specific questions about coding, proposals, offers of help, etc., please send a message to the developers' mailing list: q-e-developers@qe-forge.org. Do not post general questions: they will be ignored.


    next up previous contents
    Next: 1.3 Guidelines for posting Up: 1 Introduction Previous: 1.1 People   Contents
    paolo giannozzi 2014-05-28
    espresso-5.1/Doc/user_guide/images.tex0000644000175000017500000001762112341373050016136 0ustar mbamba\batchmode \documentclass[12pt,a4paper]{article} \RequirePackage{ifthen} \usepackage{html} \usepackage{graphicx} \textwidth = 17cm \textheight = 24cm \topmargin =-1 cm \oddsidemargin = 0 cm % to be decided \usepackage[dvips]{color} \pagecolor[gray]{.7} \usepackage[latin1]{inputenc} \makeatletter \makeatletter \count@=\the\catcode`\_ \catcode`\_=8 \newenvironment{tex2html_wrap}{}{}% \catcode`\<=12\catcode`\_=\count@ \newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}% \newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}% \expandafter\renewcommand\csname #1\endcsname}% \newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}% \let\newedcommand\renewedcommand \let\renewedenvironment\newedenvironment \makeatother \let\mathon=$ \let\mathoff=$ \ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi \newbox\sizebox \setlength{\hoffset}{0pt}\setlength{\voffset}{0pt} \addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt} \addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt} \addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt} \addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt} \setlength{\textwidth}{349pt} \newwrite\lthtmlwrite \makeatletter \let\realnormalsize=\normalsize \global\topskip=2sp \def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float \def\@float{\let\@savefreelist\@freelist\real@float} \def\liih@math{\ifmmode$\else\bad@math\fi} \def\end@float{\realend@float\global\let\@freelist\@savefreelist} \let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float \let\@largefloatcheck=\relax \let\if@boxedmulticols=\iftrue \def\@dbflt{\let\@savefreelist\@freelist\real@dbflt} \def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}% \def\phantompar{\csname par\endcsname}\normalsize}% \def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}% \newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }% \newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }% \newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup % \let\ifinner=\iffalse \let\)\liih@math }% \newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}% \expandafter\box\next\egroup}% \newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}% \newcommand\lthtmllogmath{\dimen0\ht\sizebox \advance\dimen0\dp\sizebox \ifdim\dimen0>.95\vsize \lthtmltypeout{% *** image for \lthtmlmathenv\space is too tall at \the\dimen0, reducing to .95 vsize ***}% \ht\sizebox.95\vsize \dp\sizebox\z@ \fi \lthtmltypeout{l2hSize % :\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}% \newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist \lthtmlmathtype{#1}\lthtmlvboxmathA}% \newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}% \newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup \let\@savefreelist\@freelist \lthtmlhboxmathB}% \newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}% \newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox \global\let\@freelist\@savefreelist}% \newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}% \newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}% \newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}% \lthtmldisplayA{#1}\let\@eqnnum\relax}% \newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}% \newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB} \newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA \vrule height1.5ex width0pt }% \newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}% \newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}% \newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline} \newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath} \newcommand\lthtmlindisplaymathZ{\egroup % \centerinlinemath\lthtmllogmath\lthtmlsetmath} \def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{% \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{% \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt% \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt% \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\centerinlinemath{% \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1 \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax} \def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill \else\expandafter\vss\fi}% \providecommand{\selectlanguage}[1]{}% \makeatletter \tracingstats = 1 \providecommand{\Beta}{\textrm{B}} \providecommand{\Mu}{\textrm{M}} \providecommand{\Kappa}{\textrm{K}} \providecommand{\Rho}{\textrm{R}} \providecommand{\Epsilon}{\textrm{E}} \providecommand{\Chi}{\textrm{X}} \providecommand{\Iota}{\textrm{J}} \providecommand{\omicron}{\textrm{o}} \providecommand{\Zeta}{\textrm{Z}} \providecommand{\Eta}{\textrm{H}} \providecommand{\Omicron}{\textrm{O}} \providecommand{\Nu}{\textrm{N}} \providecommand{\Tau}{\textrm{T}} \providecommand{\Alpha}{\textrm{A}} \begin{document} \pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}% \makeatletter \if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}% \else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi% \lthtmltypeout{}% \makeatother \setcounter{page}{1} \onecolumn % !!! IMAGES START HERE !!! \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsubsection} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsubsection} \stepcounter{subsubsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{section} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline2354}% $ \sim$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{subsubsection} \stepcounter{subsection} \stepcounter{paragraph} \stepcounter{paragraph} \stepcounter{paragraph} \end{document} espresso-5.1/Doc/user_guide/node7.html0000644000175000017500000001277312341373051016055 0ustar mbamba 2 Installation next up previous contents
    Next: 2.1 Download Up: User's Guide for Quantum-ESPRESSO Previous: 1.4 Terms of use   Contents

    2 Installation

    For machines with GPU acceleration, see the page qe-forge.org/gf/project/q-e-gpu/ and the file README.GPU in the GPU-enabled distribution for more specific information.



    Subsections

    paolo giannozzi 2014-05-28
    espresso-5.1/configure0000755000175000017500000000310512341373036013212 0ustar mbamba#! /bin/sh # # This script is a simple wrapper calling the autoconf configuration # script (configure) in install/ # Dependencies may be also directly generated # # Courtesy of A. Ferretti and G. Bussi # #================================================================ # MANUAL=" Usage configure [-h, --help] [] -h, --help print this manual these flags will be passed to the autoconf configure After configuration, the make.sys file will created in the QE home (current) directory --------------------------------------------------------------- Manual from autoconf configure : --------------------------------------------------------------- " # #================================================================ # # run from directory where this script is auxdir=`echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname if [ "$auxdir" != "configure" ] ; then cd $auxdir ; fi # # detect the simplest cases # case $1 in ("-h" | "--help" ) echo "$MANUAL" ; ./install/configure --help ; exit 0 ;; esac # # run the autoconf configure with the # given cong_flags # test -e ./install/make.sys && rm ./install/make.sys test -e ./install/configure.msg && rm ./install/configure.msg ./install/configure "$@" # # copy make.sys in the home dir # and final clean up # test -e ./install/make.sys && mv ./install/make.sys . test -e config.log && mv config.log ./install/ test -e config.status && mv config.status ./install/ test -e configure.msg && mv configure.msg ./install/ # exit 0

    >( >M3"١!~+÷h80 Fb2L!oԆ6 yQ0h[lj!8gֹ\"YQ+ Bf6|>F!i`N)ju6!+i`Ҙ c7:0]+y}f"3"cr5]sg;\!Ve.2kP+ @30cfMϪΌTm5HR3z~9fqeD́A$lD֕з1ٍUT; SW JcWcD"[K՛TjSkە fTJ21J*lb& m8ZynGaPF,NQsRnkPyϏ^[e.XvՖ=l,ǒ}z2g'A?](B-W 2WԒ@B+ᐌs@+?NHV; P%ݯ҇V MWTa\+vX01)TӍpPr4bPhuD$= M?&GϡI.ԞVDyxV: JR*G%C"< wAvT#i?H~< E_EL(-g::5Tj[Ȍ {(:4vĵ[7XEw=<-)>EDjGD{xLه@j 1ں`PHe57~F^#cärA4p Ƭuv-2!I{xշ@oD~ P&#20.":"cʤ3_, WI|4Ŭ؋U>82멑H%EY1GKF3*bĎw-<:%\$Fkp%Zd"'vĈ\b.o%'KT&/OH ߲e nZS"A<`xz;]tV*fbt>G{ĊA G6uhk{\\3l嘿tT-o ve`[ t֋4"u7hBP,Mw q ֶQ*kx r̯ !cA+TRmI X mvG4k0ToXH$ eƀ,ma$r.h*XQTfO+\A  XGuywP*;%2A7ևQ$ϸB/:F2҂J7R;I> S[ԋ!TWDQrT@~@Z`Jy(B"'+M([\7Ԟouc'hWhq6NtTgx"b +*L4G7FiC2(!cje[Z9$wuU 8|F(r<_{tѲF2Pi<23#er ; n#.X?@,K0.xqfG t#¥RzD@H)HjCۊþPK $)rԅlFnhTLf?o_@myKyQeR&h@3)`#BکtHcf/c#-896Jvl80A 2GK뤏*%l)NoAraY1 8ӸoHXG(2_A A/9iLj5 AƤV9PH0"wM*②<ӨPX{4.ƥU+>R }OR wҘ4*E4!ƤT8J`lDT# yQ64qi ƥ*84.v.'I Ic;@y4*rn8VF-_Ihf4* 0'JB. k|P A04xi]b<p^֬ᆇ`_D!B2Lw{)'B +dJi|=gNfERd\ ʤ2ܴ "(n"-ȋ`_z%x Y9{뿑aCX6XHQ  B"7}K%*d}'A|3/aLܐ'j~Zi5g2),cE(") W)Q̂PIm<0!H<`'DcT"IG Q 1TVs:" 4vĊ`$R)-Q. h{ǠYkǺpʲQ鼻Cd _\eA͓%\9JI6fF8K5^pJ*b@Jr9"0&ohd3,+,BvSεXM_o2a}@8``%r @R];z4ZJmV@P?,EZ*_6)2૱)Qe'#4pPb<' ܭԃ .γ̐C,t_Zw%"=VRydF01tȓ8GmGD*YB hxzk;DWse2\ 'q82tZA8=)uh8WS!g=hD(PUyI”R9[g8"@LXKPg6 Hjy)xc9 QiO;jiH$6 G~60T VÓpTDy8i#wJi͚Հ8(ձƄr3&5jD^>]p{螒@J.t5-{<*П=4 NdZ2K)nW؀qQ5 Tv; ۀl#1yT>,3 zy@$V*y Q 4 5ش&5MNl7of^t2Ew|yKJDcIb7Rd9(D>_M6 Lg $K@${|a~X#K/dK0iCB$ܸ L[X&#okgC$A !JKd#bEIiH8QE8Z~#'!8""\& /?;\uD~DcR:;M韭Ձx1DRi; Fɘs"cO3ГժS$@-{]\(.S) K<7܉dž @eC7ymqfgFH۫'sy[HmenfGM `qf@:yT*m< Ѓ]{-DRۍ&CmP$u! v$"tJ9^5It@.Q#߾z @;(I/9EC Bm~2#c޹~ɞ7 Xj>`C"qJRZ?`<8ƶg=cQ& iIؗy;êc6t;N8,պ}ooߌ|@:h_hQFj7H& Y~D< }ȴGh"i,""A{pNq錫,"Fu# G I:B&ev3Q7,B:]3Y̋O)FL/`c 4 fB%}i<xDH3ƃ eBFB$gA~`#& cNw::7>{8 #p>#9 t$UvI04*D'a"6bp!0&nΧg \4*֠$3!? `(OVhFALh`}OB y˜HO8H4&.0 B1ith$0$`F",„9A ٭z!Fòug/!8"(oxC07-WȰނ|VH 9E`.#ݢ@@̰/G5v]hH]Dsq:>C׺2-d4\ZL*ˏ^&:ڙ> an]|F}&&st(쌃L(a%Z[sm̄@rZpc1L4u[7kJ]'BG{\X5@XZ3!]j!ݤRXP!(ģ.Aіf[ُø6^@p+^Lte|Fٓ x.r7Ѫ׉ 5An=Z)\ Pg4V "gHf+dA|(s{D-%s Jm9@LƵYBA<{l(@ #C7JGQlG@Ο3&& : w_HcEUN9$3+ʩDb :CBf5TBD &s+Q)$o"4˪9&8(Fδ;`ܸЎj߻{]D*@LN7\pf qk;w ض-ۀHjC]bL†Qd4Rĉ@W\Vqd6ƈD oB,tDpB9/,^tud L{V(" _~0%a:h/0jw(CE4#H*;JĀEqE4]Q$GIfD0,- HXic%E [-EäG>(K$d+%F+p{I ~GK<$ &)!ƤT;Pp<5Vy ( HLC='xR'K '!3KV#$LGHa=aTJIcR@OFh$yҘu\㆓^Ih b}OV9'+!凗 PI(C%yҨ:H VG-V 3NR^& q9pF{xId+UT3EtX aSHNnI$=P$Wx'M8B)G‘ ͜IDů3KTZΕ̝p`Ȥ3}Y5O0KnVHI1_[@".#{BAƼŠתAN / jӫoi̕<.1?ukd$ R'/t%r1>lnA|'DY]^B1iAJX1Ԇ(b iB">FDH=3Kd(DP$oZ4s/ [^AiC\?Q%RXQ IC|Ξ~>!nx},*Ϧv*vR9 (F6u[d%s|2r9\ImDŽ/Z84U1Б.yI24ƊRANP:SoH 2S(΅dtӫnM5R֙!FFUb'.s"@n TxF/ wm.d2#$5'i@J AԶ %{'L{M#rTm׵YǙq1m`qlϹz B ՜eb{gɽL4vs)/o\"'S&Uv5 iQ@q f~oJYnI6H1o`BWh40.kL5\0eaOag`1'04B f f%@N x/#M* IW 1|:<(i*X@L8h*|ԋEJmi 쀘D?jNn~xҰƅRZ1@^Gj|gB)-b a&]c.a`li2@URY9VP)srcP̡ezqS~V^})̼"&4}6x6#JqDռNB 440 = c?uhRBN(k{EHv({YHJSD ODRZ_Lp܈𲹳n21-M׶ &tֺ/QȤ3}2i)L廘yðfyb`WH @EcHevhǙPP;Y2-*@k2B$) 2uY$B%p} ˫`9@2lgFkX&|ҸP+>RGK4'o i\:`$yH/ T@+A͂? 3J.k:YP"6C w74J CB"HX (P t$(Hj;['\ `ɤK lHmWFDTք0$Ҷ'.˨S$,EISZavm#)tA\bimCBS8Ufg^|xS00g\$#L )'R4vQO 񮉹u% )7㓉bQ պ!)޾L3&Q`n_$_b jf݀A՞&s)4(n_bbS0HUOss@3D^v\"C73nf]g#FydJ kol99OIqJY^DϠ~gP4=D#HLT0iB}?/g>v |P( j'B]"R/2\gٙYnve r*÷Z!mUxW9Oӭ,2=Ki~1YkqJ,s`Ί.sR? E<=JK6] 1+\ʭ6IքTJ].ZIʧ|)j;=[0+U‰VmrF %}3҆ZD f?dDpFs{.>pS(%6- lÆ݊RY1S+%JifgW L L 0sqOjű1T^WkQ$-qyIDR D)RfTv)Pey) =<↑D ؎Ich͈^Ih͜.tBՈ/u@jfr?VTwZU_EKa^A7mtQV5pбJi!3 !Lif }"]?&*tf{=Hi6>̪@ȍt/.Jy;?͛wȍ 4eٔ~dqyqURE~+7Hzb0ϱ#wPK_VW0quT\"ծRV f8k4Ft߆sXjc+W Ңb Ƈ?@^{J=nka|@1W(TnU%mXjc;#l5M .3!÷hJ  U\"~q>b%s{qtn`ҞqIg=X0JAI4[-+swԳ'ҙ FfQTeR^ HpNZ@HL!>H7r%)kIgycW8.MnIgh~W % zn50_cW)C/22-k*i=矕8̫8ZzI̩(8ZJ/|T5Ӟ(ܝQWqiJ"¾ĻGWV!e?6F$+6Rtp;rTƍ!a~٘ƥU+Et>Ӹ4ZeI[aߓƥ:OB z0&Y&W1itB'JUʄt=iTʒ0'J4tx;VZeK2gF4+Zq$q^Ȕ09'JTFkAx*)Ihi|7+%1ܬ Dِ!AHzSpL:ݞwFZ02]F Y2La#] Ԁ[0cK\ ٦2A-" c-)J@%,BL e7{Cq KцdҙںA-aJY"wat~$4ulnIgT `IiLY&")Y(,l˙[uh'`-)oۏ;ڸHj@N6xx%lQ0> U~ek+$8;vן Z(~A*MkBa@ß5!Ka_K+W$.,A[ nd{bƞBV6rԆ̘ D}zDt6Gˬ *2| LwWH pfƻcdyqq Ӂ^K!"]8I׿(. څz$r7Ҧ̺xp6;zu r8FXl)I7M+FG6[ 1iuJ~kHY#%T? &Hifm }롺t3gZ4%`[禺Haca,LYMR[J1ucAByGR1(^3 2zN$8^*y#O $S\&Fy>!Ϸ%tڟ S&RXOơJT`trJuRw0T e@[3!RWo3q|Y@,w%2Bzg*Vȴ/myP#a A+5:37^\$&jt`s9i0Pi2;ŞgV gXϊq5纼+]Q$$[n#jt `R{ݱ 06 :>Q%DRxW0~Et5̯`OCuIg[W0nՓq~x[ LZSEcm@&gvYb24"4\xp`Bim_aCBqn\[(-xt^,S0q|UľxVʜ0pTeH cҨ91~g"_.b)6IZ9R4A}OR -wҘLjAƤ9c,%jހHjˏq s1geZԙ9+8dfN`԰MWkB*'k񄈋'H)ύsvxKueRE"%4)ʖud2qTr @/PJI": @@*ŀoK\*l[X [C0Bhw7@L&(ήTw?UCG}zlή?@B,,!ԶΛ"dL V^^RVcF\ R!ݜ z~"Ȁ DE\B-kV H}\-v HUOTKL\(S@tZrml(@.:etɁ5q/=4%Ҙ'hLQ8/`{7D81=" `16uU&" 28Lեhc(ibiFe>Yp;zBa݉@K,iDJbHbN^Xc GwXbIIgPPT/S"պx>Fj?&i4]Q&5@DNuFΫ!@d98ki Rm23ly* RIcqZ)qJj-Hݽ& 24 ;L2uR:F$3.Y^WV #QWJi[ @.[-} Ke t2ʏ.ҚfTZ` }Tj[;20C#VM @,0Bf R]@*ŌPmH$E)rS֍qTvZ=24=:g>t RS:ҸoPÄ *n󻝓IqFd QmIJ^ѳϓ\u !H뗞Ǧ Tom/F'yt+%wl398ѵ~g " cx)Ii7_f0FŜ7l4T$T.zigQ3`qŐQw]Yw G̯fg *?sD,z~7S"yZAv yWQ=" 3\]Tѻ {M2Ÿ3BΙXjc/C w'Lg@ZjMk$2GȬR?QQR#4?UIi+؈ 1F…1g_Cn;Qz\ H0=w.źv ,mџ;TJ*?qzן˂sx45|gusX9^dh( hIH"vj=CIiw$:k,!4NB:7EnL$`_ER vff\T@Ѥ4=C$+7vaifz%F:GcᴴpJ(&h"S n+DTZr*4(TO 2uhB&^K XeXڋ (2)M3Š3~ӝ`/p8VZ#S G` crW.u#i•j8j?fVsnP|iӒ NnngƓj}=_벽Mwm>$";EɁ LK @db[lvsxաlPZ'Y_RP,5=i3t";D! &4MRL5 v<^Ԃҙ Ćb '9ze0nsu@!?XjĆ"5eG߄ bl!>bR*OE2[i?IegnLPT4" qZefH%7IV<$j(fej@#-SCI TA~U%')[p ԰o."5~j.h3c)IP! M\ զbi D?E'(HP 9/#Ԫ/c{ R`j41Ԯ@?@Pf)v;0<)q @uPJ H;-޴qg['Æg~ÆTZ%H. * >BC4( ЦQI6ZeU g" MD[Hi.FRx<^juq"#3Tl@:;n _R^sYÁ:+ZTvKLhͼs3cK'' 8^M{gDP/`Io ڒǫՔǬ Lc,2-aymBLzؙ ƥEOWc i4%3SUq2&E?Z~0@qGoN % 1҅pDB|{n8B<.z~T'"4נ cҨY2A9xvsA8{T#^C cua&H ʤ]S5m toq8G\1?-+&'x̏Ϫ|]a9#j(L!lR9@;4BJ*O9 ̕ }T"2"i"%&&Rhokgs|mDj0k;UeC"gT Ң:0$o& pXJ0Ϻ0IYû*H )v 4NR^z}ޝ+55[T[$~P*eLQ dP rB 8޵ CfKi[EFi(tT٭4zJqfGL(N *0;Rmg2h(b&0Tvbv&zd%R'MH*Ë/(] NF*7%tǤ'uFj? 1"7Fn sqǤS*L 99?rj"gǤR YI 4L3\*?-B1L*fLxWEo+`͜/L +p AW efq4F !,rlJ"i FnMcE*Ca(3Zsoa l~"6-"AgHLĪS&vFVH7KJgT"W+PBoYr3^TV] Evt`5S,a?C @kDnf"A+S ]W pTFqЕh7@ #/֒9$EY%5r^471NLԖv}әAS7/BlNQi= `67$>+ēs'u4.5 1:>'H+Hjñ*S+=jLj}~2BX3NdҙV&+)4juPzV r!p(Yv5EjAV8,F/Ia +Uc?+_*q>ia7 ǪTLoeQ:U`Ԗ4fvK4\d1x*,7MfQYY9 9=>FgKa.l`ܘJWW@o.lUP @- T ]/gn$˱P@\|ܨHjC#eliv[L&Xۏ(*ҢO{1=Q:S=߯R=!PlMF/svA|3_ح|Bp:LDF;|R{) (D@g0Fvp0BN 0vt.39H8V>fdNS*^dh88;LZ {2AgVk?tp0eҸjd2CgNmp"p"\\e9ӒX tNd\4.zhI'JI7&\+Ffh8q)Ճ*sR;-Q3qGhi|,wf0eQ$\'r~1&daDDLOȀD:PPOɸDj9AȄD:;7 KAk|O@$-AqD:>_g"oUNB<'xca>^$R$tg"/D 3 $e=@$ݺ )Ե{+#XϜڪ-W>C^% t/>"+(V?G DDQImi2:q|;y g:qL\2㕀Ðg8oGkt[X&HRE21] lrXК;a:!RtBzN!՘xqj"34+(c34皋u8f)"g, @-x@ +3iI BQ@%7PB/Te՞y.!6u$Hr?,M,Hm3NZ筀x]!7\oȌH/U4CIg]+d\,S5eq$Ru0e(?M;<3\{+9xR+nz^@S4r~2m,^M^W/zIieR(p'$rL܊@qEЩj5Rr ԆWd|*'HjC[ ŵpY|Q/u0J"/R;%= )ݾAh (=n|ݛLh8pdu,uQ?T*KmHHMD;kD+Z=GgFx`D ?>bEwn8@nID1)dM>41\1+ =HX}6f1%47}oJK[E=<9xn+&=b`{(1AI:ՔȞWD`ҘdkzqNW"RtXWXOPiև1PND:'x&Ҋ޳> 13]P߸3k![Xy-{h0KqK6uh"&oAaPHa?9,7W.𙽶JC=%?Q \"_@PZ=npq0PR8 `Fђ|A ݩ| ;xG~d008LCUn6|EFo 2kKH7HfǥU[]$3!0ƥvClL890sҸj72{Ҩ497¸ 4*?c}8Z'62() K ᜪM/:!*|:4&Ҋ*LH&B_THe`Na>~fLDTaHۨhde0b@t~oĸ{({TLPV3Lj˧qHb`! 4p7Ñ|5K5^L$ݢ 3OP&!lv!rc`'k7&j(f"oIf zdY)m4Uff"Jq}u7&1tHa<"+%6 *3o mZ؞dO2\>Z$x ӻ=W陟vA+Ge0GY-N57z$HߺmGt~OK4U䄕0DY)-e0jO쎚HD՘`9qF&rxOs!'HUbIqhAkgH%a z,\>!l^t2ٞcb:x/ h#|^-#;Cqc*kl\-qu?dnƣtocDҰIa=d2/a#Aaj %e1`2Ca@ RR _}7@*5PuPPxm\7Wx?a0c ?:V*+J I%wG'3ojjI` ${ v~(6E[J:~-ŦLX}DDT y Jw~ePKxL~@B4FdVC?X*c@D_3Pe{ĥƺ|kn}_!25ߵPqvHK d Y8ۏpblYٛ?R07ע$n,1vCA#WIg07 &Z8j V*`'@n()VĴҸ4jme ʡ|Q>jiZ`9hLYh f[` 'B~BZ}_#J+R2sj <b%TiRm"0↿08L*vAb0M϶Q! `ޔFi]+LJ>C`8J 96.vQ.39`t D7!uf>X@ Zt vn1jR[oBs fxdžY9,!Ii.O(ĥWN tv[MDι>yImW1ӹx1\ޙ @҅;J2gt(]`ԖIqb 6kAb_P$n_@ZfE 6H[C"Lcf'bڥMHmujAiM{Q$!8`cs(Ic8ALPX isQ+Ga2LGHD J ׂСL𤤓ƥTF!CcJrPkIU&ŀ Du0!1I)"1l B HB2Axd 妏85bw(RWHa ȁ.N NWn1TIy!+ ű[^+9kXm(^r1kqxIiiu0q, p5ԄDR3v|#ex c;[O?D-ՎY';7oE_Imi+7^#M ,xas!?߂Q&_Fť}2sEHjY_ %K6{(N4P w+Ntv0g̲\鿮URZ~Q;ŻwCK&3(;uYO%#؏e[4!·?Ʊ dʦ*E%)5$ӍD>rԁҒ} "i,F8-M1EMZmz  K n! CXdO+3d= ] CXz̾ Fb$"Ӧx.}ڢSZ>5]u2s㉊)t'AW&$n8PK˼ѐ녿7r , $*lP׽~AtCY5w,Rj8n\wzĕ:>~Ϥn IPyKMT*˧b*@pݠ 2|ګȍʦLxrzWi tR;>-v䆲ڗ&VMԖƏ f(FJmy*5"P )8Hy?$sd{="J㫕O|tZuf3fYXj]ln('+SDe'k|Ym0OdVqTN&)V*ؓ@bUF{x E:KX*[cG8ZR@ϋ46k_)c ,š-:8ﬞV&YIawڗh;)ݝqt 175濪i ;2a]nmW%7q"hN/07׶sΔ2&(} (t],pwU -b݀ڴt\mۋMDk)!JSFn (A5[$қ@rTnB&7 F&f;8hhL7 要2)M5 ~lL"31 D/MH34 8Z /nй@k΄PNr. hIka8Lq0Jހ/K6 &8}qԎ0Kv$QthT<.^i\Zb'9_|! 2 sѨ4:CcA׋F~ A ׉ѮO x^CK+t ߤ/V2 MtL"l88a,^WX$,ui‰",_TUťRȤ}`X5fbx.AO7^w%kT"hgz$Rm|j"i 4cFo0Y6 k?ZF`5V0t"7:NJ$fP1'c!6Ϸ7OHy֑FN(J˛- G`X(!dp8Rfk+HjgAHiC9:G2AT!٩LDHQ ,5V;Yaea{)f#ٯP*@PH):4gmtC:iB.}X!n"-$ֶ2rÑ+Xj( o P;dSIW/{PKlK @/}?'2<ŃL" D w忾#^FEז"†|F-_f] u\Nꬫ@nei@o0$~+o TF-&&"f6,0>!)@vWfABa?|eHed?n<@ CTJ0rf6}Nv~!RT-E );E iλ1RqR`\|3tnXmV0A҆SuDRB1?+I:9 S@S"UK $C5ٴgl0m7DXno F.!y1Vn&tdK6t/kD]fgp T8]ZRx ImwPAl(bAo{JS[f&EC-wDa/Qi:[GeӚ:>(RDDQIc yPՐ1*%s6Reqc҆+NE^5?4K1rFN^T kS(6u71)Ҫ _)y~ѸZ`2}WVm, 8}ѸjelAߋF%^AϋȜ/Yq66щA1iTs*w!oJimƟhH;Z:'[Q!&2*NǎC͔MepXi\6ߞC"57`D:;x v &'*Đ #|fNI!c{+}"ngnk0 {FJ/]$-H"W931j0Oٙ_뢸T*S$R; E6m|lM){9xڰ~e㽽qH2}cϦ2м _qKmH!\*H1`aHo+يӄP(ДJen5sF1hBY&BP  1T*S[c"k x^!;XJCH oP,$m(RϯeA) GԼgW-hO%z~kv4i Od҅RF!JQ|4 +R[Ha2.Җ0}r (He1՝+@;ks;F|JNCcrl") O#2Qa=vC(Iix*\ Eh#9=9\e7!`k fjg/lRm8FD3E(Hm/-R53Q&TRh[F}%J0z3 ]Qc !?ips^ ?V^'15ǫ0h^DDŽ݊p^BlVlB$^RQ ~NveRĀ M14vNh"z`+a'`FرR06$c>XyzHfyJ7} _m!2v4vex&4*P$+!",$ƥ:Q[<.Fgqi`BEaHe {56Եbf8JT3THJ\Q.Foga ynVp"1t\*uv"ԓR @e"LQ}10s)cT)26PdRwFe0m@xoC yð:`0VMgHf'e ixZmwpoHmq2>[)$R `gh@yfЫ2sb 5Qd81_pwkB+l5C&ʮI xޯ;{.*cnh d$ 3D*]B;ʧ_~Ď$]'0jx'B ~Z,a @] Pw\q84'L6'!0n-́;ht׷ ȟV0`1J  6ԺU|q. ԎݏTz]a"<V*W;/eGįH- {d^(S閲itrzvĺeEkAԶq‘KPB.B*dy:(JY< .C$~(T* b\DƠ˗9̑9Mf4*vqA]+Ǝgqa%21q$,2#ׂG/^}0߂I{{(ұ``FAs'Ik C.H(ֆ2,mC2a.w@mdq:E  (fV ȘHj;]%%bK<,RtKD('ݗvﰊ)͢ R.$KQ2$9)Ӈeldp@$%2̅X,[jS]0APZ 9Cq x]XH%'Uq%%;h%^l2Q.v7@2<̿-5& f!Oo/|2)OM 'Vt>'oY[#? h%P'Ń/B) CmB-VT |Xykc=}p/|K]%RN"*/|XW {a=2L00/qF$~sʋݮ_PpkS)a1~"å0ĸp >1~j3aX=8C); O1SNlw'ud0v d.k)ҙ A.8E݄JRӳvҤTti TZٔH[r>#D@'[Zr,~N8 čKQ;DR> :)Y6'2Ivcm[/ĂCKlE,"Ff)B-mZ*1b)~>C>[Á vH=KCC-2oe)N{%bfMsb\ M$RCYrR:JdDRƼu[9oqD eK"|r/25̣x034BbԴo^B7e\&RҌ~QB6E qDy6+.V[> 3)0ْi/Le"]RH6{W zĨJ(e0,0ۑXI;*&:D y@`T҈",aXRIchL&f0bxij&d-J!b2*"&Ge08LZ cWA ƤypҨZV2/W:BJ$W^_4.{e^4.z^昙IKV~hTX7_aZ=/V 2y4*a ƤQMbl"ü0"FGcaVFybcȳjhi2R5v>ZK'1Qa£vr%C1ؐ O؅j2-_61a|+0gFw9[#c /B41(1Cq-^" mI c0ŘD e"Hav27o+H˞xD0HiFD$tsaVrs}c*Mͤ 3 h%vT Xc|9") ]Q&RPH*M$CA="T$r}qfGRXH iWk6xY|旻!3y @:3801ch71P9 Ǭ 1kT ϧvΉ|Mb괜bm.IsRO{wnws;tn%"tQ5#XTL`_P*Co:RPHy>mrZӂPK;a{9 u^qHeFb{8zOv'yEH,B)-[D(~_@j+oE@B,Ka ORNFS]gVK:` f3k5 `wC(Y26R64>H XJcgHH+RMVt ԥ=KϔJmk182ZvDàn8M~xnd+0_;胭<: zc\~KZEE) bg O)gJF3TOove )0t $3]S'$Rmmf~bb!0=1 >/ܬ ;͒*@B,Pe̪ԳkSJ?Df01)UUnNJx)|Nc<$Rڽ; )z5o!ЖI6sH/ǣn&qNN$PrR59:B ) ;R;cd _`PKĿO!)e0P}oG$&$RJ,0,1ŀX*I.C_C, a\y`#$2wrc i0͂U8Zpb*^%n +K2HL/*p&-&Ҵb%dImx\:3%̲Eҩ*a/FIXJh*A]/FLEcҨ)a~/VaA ƤQD 8^4&(İƥD;DE˗x캸 ,HTJ-xOL`NQih1B)GKtJbY(/;àLz[+MW72iMoVY0011y eR[jB/L:8Ԃq--"nq PgHv27`VKjHM׆eKB2)-gNK#N޺#pgR`cI`CDjMDPڙ00ds7a5y p ?Ά@ܬv}_9Τ}!p67#*/α`N "}q^,eRY:Q4 {f]B%!%ȴ@NO@12!:|`mÏMx,Λ޸JeZ1ı@1V-19O̵0<&;̒RjWc9UBY^V[0,qۨZ)}_ڥNR%RN 躳S[/lL"սa DYh,Ɂy!3}aE!f7X)̼A+ӃO!LkXeį@r*eIg,c,JYER)` eT~blaW(T.@T?[ E2:GG)Rl VМ P Զؙj+|JQX^)N̷j%լR;F'i-r? qԶE M@*iW SHe5 @/2RY-r%\: )9| ̢~1CuVc|)2RZYOĦxr43'3`5] S af S B%RYL qu([;H$]L^SvL"8t'ܶpS 'MPBHx)Cԯ3*VNOfHf^fJףD#(c%tFa?3‘:g[zʤ3}ZU0P|H@$v[@Sj]D2LZQ"#LvUJ"-=O 06PTZکr23PXT"EȔ =hAN0‘K6V0*GKȬ)R4K)X2H/$^hX1iug|}4.>$ƥ:HrҸjI_aƥ*P z^0&IsEƌEc'Ax/F( +wј4*H]AϋFDhTj0ep|4.ڸE^h˗xLb<0+Q@b*k;$X*%_IV0hGKV'*^wX&32"9 PJ/ P@S#$IeWٔj\Ig+HDpXHj D 1o*cFTےDFRܽ\Mij'rFS8}$t&)3VE:uKPx,ѥ ~o/b)4GĊD#4&4V} A$ԷtW&hƊb6'DΎ{efL&"(&tt)DX0):Xu 4nIx-i!x?H0|?*x4\zWlƤRY>@ÆC*n"ú%}vnq57(6_nѼ nʼogu-=韠N9~3S,{D4 :`O=$ZRuP DQQ}\a4K}ٍ(8BfZ5C)VC4%MAJY5C0r* fhdЌʆ;֑SX(BOt{$4|m"` vJ!6CXjc;&>c;E]9̿WeJb;Y_Hgj:j{E)hR,Vk8Sem9]<FX?RJ0Q-N< Hv6t )"Vsp4{P4Q<N/DJ3@1IVAl7 yHi)R NNCTVO:1!\$1A#+JטD ML-D 0Jkk/I7&&YB*-a,1Dj $)r(51~o+G &){&!|A Wѻ0Blc(,Y(lxي@/SYnw'`f@eݜ Ȥ3h ‘ :7۬0¡b;m8<|yMY0l)" U j,")-Ǻ  KW^XBDLV64KBJװD)gP+0 YHLx<^;gl-y4*eLg ƤQ)a< :^4*Z1iuFd%\4*Zqƭ$/FSa"KJgcZ& $e*%i'BQ .D!N^Bݷ'*Hѫ'8^0PVojf1BIj^r4FQxjZ춴xn$nROH צv]̨hs6j^b]_Ie-2BQmYySʥVm}@pɭ3nhYdW Ks|bTB CrMqk!.SI%MpRLĎ )x:ҩMԦ(%?8J^n}#f4l!\2SIw(Y~~#A+P9/N8b،b\#;$sٚKi|*ã)J`js 9dV<صP5O#OcAfM}i2t xZO@teY3AT@P$yזRPB$E SHS+?@*#=$^CEM_gsڃ + 41%RY͒3xD%O{<hNe @H$V nVyIDefb&)i3@  I?S צ@V\ŃtHRaH}'URѭTR[n(ά,;6 x̔HݞF5ddœ =ALt$ S+zS3b~_BF1I:yS"t=+!+4bu PR3DRm7Z(ESû̊) F s49o'%cE Q 12[!X2mA+)txy% f[t7 d$BB#K1`.vض#fߙ}m.Ÿ 12?ռ^bx E&hD2- d(^V0./Gfj`j Yq-LB-d^*H ']3AUVr&!d Y1+a}ј*FWAϋF:7´ ^4*R̩ƥю/<*z4:M'N/Fq*xѨJeGUA ƤQ5¤J8^4&Θ̪ƥ5´ {_4.ֹ̪ƥU+´ ;_4.V&\" .l:ɼq_$`*%I $S0j1dJKNDzࣥqҿq.xv9|j!U-8$Rَ;&Q(eQ$hI =QHfjYzkM3QEZZ?`>)(l2k'.c;KVa-" 1`xB+:3?qe;")UIiw a:硏lȌД|rԆN1i>~$1[bP7~@3v*,{I8_{(t=lVQ [P%om@ EvZU m@m}ͼg$ffI{?HL(rՆqHe&pXC1I|Q{N`g$}Y#`--k@f^^)JtjuGHmf̤xp64w)+-l,#)6Ƴ/^7Eh*S[C0Q0f!0c- $VM716Kd7)px+qГZc=ݚvF}BQ U5Z4yO FѦ@!'1\mǧ/2Hg\0Y82c^ R&s$uN T|0_Yʑ +2m=F0_CSHJ$(&4b\˄Wç @^rkLRm_Jxfa,& 0>݀lU-C&°]Q*M8qwLnCЖI4=&$(R)L E*Tr۠ϧ{9ŦdT.f͘N(Ŭ;KegM0n+oXWp̡KK pa X9C)N K:ʮ8S vQ2Kkx)|YĆHЇK0;'#QcDIeg̗PpH:C40V:cG{BB ݽd!̈ .΁5_)s1!&Y;V~M? PJ94Rm7'"bZp"Cxj9DZ{͍y Igoqfuu2-w%w602fMaBjAڄstRN0C$wJqDM8JMD`C0;0"!H`X;!iMk m1x[`tEt^+3 vZ;^L0H9xH{*h 6d ǵsU؃钔$ m@-8G=3EOK0,$M9$y!dK"(HgȗK2R'3%Ѡt\HB&Ja+$i̜ Shŋ*$TJ}HI_)äPBh\ U!=/JHBߕFQ* ^4.V$M1I+$$.V7.3DcҨhQ&wј4*c>3!ϋF ^4*iLƥS; {_4.ZLQɺ &yѨJG6=+$/.p5DgD rѨtJ'F-AߊJ4 L24f\b55Dj3}>Hx #a/VOILL0(!(b YOfn_EY:I[Բ34DK",ݿߜbgx ꣍Y[Q[]v1eR<`\MioMHt LY%dR[jĖ`X DF_LӍkUI:g"3IinQA8b)4!&)}1G :7։m(=;aBo)@kۤm91R9> Nq.fd 2Mȗ?,ON[Z)J)_Bp=Z\uLPV$WHr϶y>s%keYIgy"+ĖPRsWs|3qahDJ 'P$ng̕PD"b]BaݶҎjf3`A٪;nwՕb2Ba2X`dP0jyOK(d&0'3>X&|Q$%PbX_R(`(8yc DŽDj;[zcQ7|v݀<oO R NO/1,~o[bœ~cN\!׼.1)JV+R^e)5?'%-7f}f^n0Qý耣䁚yZ5־ȤPH)z-I6U.(<6'yI (9R)LģP!/4/͏APșT<} 1FgRM3)azMV4Q(Pɓ잟bl1)7h:tކxI <@*ʺJTE!C"٩]I_)d3yPjPtqMUyT>yg(k2kDjBQʆom2P2V#z{4 $0dL0>7$V"'(")+s)ϞDJL FUUhD P XaeEZ!(9&z!n;ID5,Pg@xo>MzJ[K ͱ; t6)$֫rֳ &'K#I'ubFH(.=~]6[ .$SXDι`X0J1HQ:=WUdQCOk %1XW@ ~JĒ`Vf=ӝtQ~0EI꽮wY[$%MbH jvf TNf7!Up 8]Ǜ q^uD9úJ]B+$D]O}nUd`Ie7NBA槿o{H*;)uǢ DJTꇰζbbf/,l5}Mp}PkeT""CʏkhWp<D]XqBkf(\ēx3\{^Ysry!BN]C~QlwXP^ c".MƷsحHedK|Dp-@j+Bq, >i]sfyJ!U3LcRY v'G+?Z7:P$"P|d 2|ycE<%Ev14eFA7?_}ѫ&4(pOV,@HQZ[D\LHHJO+C#C`0+eʤܽJ $Ȁ.擜.S# gI0I'] lT¡$vk&XQZ,I(y]UlD, e|W>DL~iymI0L LX;uY%8W/*uY #(iu=+dqcqknͬ1\H"%8P"d5,pb_VFq)wIm7M3DQLpLno"..2>aP3gt^L zjeBizG`c"q.㡸; aҊJEtp 1 Kq4ff$&EHH$pXHj;!c]!ϪN "&kܡG YB,lRA,GKX*͏C{kTu0<ۀcҨƒ:$w4*h ]0"IqPG1iut @IRhLERj`}/ZGGJҩ`|/VH#{Ѩdap2Ž0G%; $Q|W4ayQK#{pHX1/\!H3^-,g3 P//+aI&IJ{iJ<0+M,o3 cquh]DmA|Rz{fA pdIjLd; 2V~bJY^&$z×P+Ax PXt6߾"a6%V2@־xpj(xgC%rWlם^ @.ۗD ];1! XB*'] c;x-Rv ] @8f8e_Xs.e\ 3FGD ϹB+c){9jM~b )F~ k[!d5JkQFA RDYCP-iT4ERٝ17邃*&/Idd; WJd5y.!\he|c1A0=QB8O/bUw5Ha֛A3V ģR)LoٔTc-ʥ3:C Ŏl2lŋv loFЊYlߺrDJ&2RA9+_)nژy׶ 8> Sň"$Ra]rpt3 HJ6wB6He`He]!=Ё"Y ہ_)ia[|A~^5Ab;]T$yDHxO08A1#^ŒG(j9GJ7:Ty`xgS\"v|MG@"v0̪fLZI* |PImgM< XT- tf _x Hgb oa`#b~,B"݄"(b,):6ԋw`M ƓCԎM%b 6ͼ9(5/<8( n" 'kWX&aTIJDưEZj<8#dR[5$*#h\ ÏEȄ!YplK%ѿM:M_zdQ8L*]0J"x4*E/ ΑphLZycҨƢ7Cwј4*. NjFUv^0&ΐ zF:r;_4.ڡ F=Qi ]d]4.V g2A4}$@tc<8t7Ϊ` 6վΨ#y:ah)@;r(cP>eR[/֮aH;C!(^~2R~lͷԭB Lz`/4G3?1aͱ#P:Dz&tG-81cG'3QޣQGD$:|փW* a 3!B-*'1!GŲ/ocLu(*ʬҒT<'57v${ O+P14U6B"d@` oއTB"i+A FKER>Vքbg. \97fQ޺NѕHeLPp.&}~s&Q1)BqLw >/R9 +AHa" ܬ# b BD ؠ6ܭP#)C\$kP (MT`iH6/ `f$b~BB"$f~!BL"~4!"D|&DRZ~'X Kf 2nTfvZ(RPA",!OMOb2-#GJhΌ<ϠXlvbRDzC!T$q^ZrrA0eXjX@R`wH2)L$GIdR[B`\z$V"8~æ6vIj5)C /G=SAuuf7X[0H$b-;H(i_1ZԎ6L lj?J{x@(oD5F&2RY:@$槮vfB),߶"Q59krkBi#`YE݆)F@XsI64M1 >"bt41Vi@ 2|˦0!J(`$Uٍˆ?i BA%"R:i󚄁x0}=>(|u+ b~?Pѽ覮 ʝ8 !Jm۾<4h?>!{jRWjtZ 9Rdpl3" n~e#@ n":cw]DE}L:bƉCaQBD;v;\ _}u (NQKB(h|2Rڌ1c!7aPJa/:Te4ղl")֦ ޟ+F|RJ&CdGJҪ."$9W%_(a7ƅwĊRq&q4.ZI)LJ@$ݞ%aJjc^=|$B$Z$ҙnBA?&HjC렍dECڹԊNVf8`!?>HJ^=p%LJϗe cD{Q"g`@Ø0 _'`,MϦhY: yİXexi&C0.Y;Ճ_9_=~@&Ӻ^o-V|_rދa<@B Rc&|8 ,@Gk˾ k(d:YlɂwuHi#D@R .M$Bz8;$3 _pIgip~/} |");ș^οUxuo6L1(R`g+E\ᤞ`*5: ?;ma/!s}, jɿ t!+й[?q!؏l x)Aef 1Fltl%ʕpN9s$|^ktRP}\C[T}/銓R"}Xhۚ2n{҄V .Ae/w@H ,Bgi_ 8>^3Ҡ[|!V3c!4WhNjbЙZӌĂh`Z&2[V~n) TcYq6})AB5fۄYg* IīXD"2ANP.APvwnWq|<gfA4^ZG'&A<؎MMO~Ng*jS9 6s&LMVTA0NCyRC2NTCRRCĕ!UJ'4 A5:g32#UjTztJ3 Q!uEhd*GU\:Z_BsP Y}< !!5:4 A54*3 !5:g32¾#QP.DQkvN eB{Hڨ%BwHΈ!HرFB' &%) 3&=Ǣ; HHP 4ze(m>YF&NIg*$83[ڋ4.ֱ(IԗrIRj1IHk%ُٚE$ߕNY}1*˓]Q%Cl^-ZhKG#!m F|p#Bg f'8Bd6 ژI?]a!Kq]KP e`Ccӹe&=ClƝ*?E|NN/H],N{$?4F4*4OfD/y4c$dJQY`F?V>48t퍩̇dmgݝmtM3{dbdϗ?"A|P`XAk!Ee=(nKv6n0D65,N= I\& Qy_N-C;`:=5ndb D5fcl@2DvP33E?$Ю[!Bm8ڄ}P;{M2"R6 jmg@fŴc?8j]Iٔ)Cg1@b=fCS#vWp 0ґyzzuQ $6s5q>$  &A8/ j$NfJE΋R $flN?8,1eRG;r5!#7]"Tf%vPY6sW8u/.BmgAfƻp7  }p..J/\xv0#D%[2ftI۳$CzCdL AG < ;\pm3Qi"&s f=Gp\G8WMI~\&tZ?~arῙJDۉ1Y BWt b+>jt2Bvy)Οพ zG'Ka pPtvJ*JF$D-љ$ KLH$D( O62!Na&W@&਴:?'bV*`#B;x]\$A67C@(1n,vd6,aR#~^ J/'m=և&$k$ kP޶w<{ (}~y bofV%_}aI Io\.P?<pPyg *3[EX9zYps;;H bMsZbM+ɱ"3%7.&ۖݴ.GgO*./-$g@Tfu+,Bmxr?!Be ),e":'{B v966/O8(XTf>9 @m:]}{>>_kO<]u&bZz0a'v?|+,Biףr+m͎L_noP%m0½bXQ'9t>.A&lAkAq[dw|?V )j[k2{cdZ$K>Ut Mw&+li Dqp1 9U*#"Y-`ga~) 2 mSW 44Iܷ ?.j1& <+Y5ܐX`ba/lNnH:]dBvV[b3ÀJ'θۦrdP[޼Äpgdmz?*K|+<௏yz#}^)^sR;[$CCְM5(GjOH<9QRt콿y m R!|4:/JĆ&@!Ck:SGPEҎtZYڮb54jKg}kp\B>hhP[.D##jE)BgoǮF :ӹ L&;#&[XNnB Sʒ ^Z =| p * ݈[]1&Wo?gC?"\&F8VFG07^|mƉMsE8V;(!Dg:_qPܶ4ݭk|&gメM vL̀<}6axp7PyBMsPhkmx-)!7S 1*[q%}< 5党ؒ)jZlbNi:vtևNYM YP6;VÅG'`do[%r'$ٗ`dlǾ>.tf7A1Ct qVJ6 j+&bfJPYݤbom+̻g(AA=m]-0OAi[q{%WB ∴-`XX{Bsh!T D( c3ep9„֗QTIl9Ĩs#r!UHQN6%*Ĩl< RԦ~H smܘcg)Ա"6ߘry16K`):ݖRvι7Btpf=5A̐Рri uHf^7X"T?o_H` 2z`I ٸv$^5R6y{4~so 蠤n)P{&Yύu%]vA,D f*lrs0LqHQ Й)Pa5Ւ 'ukp wDh 8SN}c)mr6跶l ֮&+ZmF78H9ы?0%5#lR[/զw dCx%Bm_PrPT5YQ&v ,%^"Cgjˡ=<{cU9)G(; 5BJG!Baz](QFP~\d-,!Ck\Xt4vNbC(DCh^q|ōE&78b3x4^NQ(IC8PBqkψXMM vTCAG RC2" TCy >m*ZsLoZבhNPdvCG:QJo:js;v㩃OVmdyHx b7sP Y#/!5:c)`A54*(!5:'(2#QPzCQkq# )kf,C19Q&CzdLF1(q-d, 18H*̈6^*1i K8D %|.ˆ0E9lKOyrTgec04.UĈ Qgp)V>KZ`nYvm?11: ɇ}., 1醸9Ƹ{t*хP@0$Ǵ9ړ%|(+fی(,.ωk+~!uߴuwɩ0(tۄ6$<-fJ1)j'Yn")b" be7WQ",9.Vf^ N"Dɞ~ů َ_[]Hv#/[ƠD2ݷ)4qhI36u_<澋AHQZk4(/Ңr;63A}z/ =In0Ylf&Ko5Hdg 6}!<$ bQ UhsTQJ[ըm##hm)/dm_ecmUc(Ls}}޹'aot@'r,+Eeiox!$Eej_? xH\BE|peQؾb6b~kuq!vvzyc . :/s\@WEj2AQPڑH3Xv*?oMB2tWqv"|^2fp2\Ķ@]WQ[#X(eP XX0Z0G>V[b j;hJW4d-6g|^49R ݌_ztM z'.+3Öf>5b H./2!aFt<-DX+n?eCmunsSGv=J}h$9Zd H.r .% GYn -!$#b1 .7(Qfo+I/8"n>8/cD,SScvh3|y$`ƫ ]C>8J M;b6A ׽)/joP>8p :;#bp42l&CRa|4'/М Q%C C#'P$s=h]d#\X,xLCpRC2TC>A$œZ(nCjhuajhT_(q))QCs"C;R >{Hv` PCѪ P}Tu˰SP A54*C0 !54*/`!UhPTj;TG^b=N=! >wHZ(Cht!jhTo +)! |ېZ }Z|ppAȬzx(JR!qDHPʉM0XI|Ɨ73$C Y~1vIPYx;(&ݭe{Q|%]㪖$Bmh[ mM"TvyCڬoeiP \Jڶ#d.cJ/_L%6)*" +c̐lXŷ'E-jC9y3f21!FiP p)3Ėj?YK: 4fx 9Zi_Q]m;_P(vwbj9Ūdpg@E9z꠴EKppFʳ-[4;JT9FIJ7FDthbK5٢$O6-jW{v4}#`q_R3%ǧSsKEϮbiQ>F9(OvhQy2\hQfL5:K|@ E8VBӦ엃dɗχY/D0@l*BD( W4'9(H5erd5H^v!$pp&63MrpP6kazE=?'jB2Ԗs|Bg#~-dh,kanB1hb_B*AQhXս15KGZLnD `78J+uB%*;o J9ppP:#jՅ&%"tmGphrS&?i84]$jGRTCay4Ivi<vl6'{kG98*"P;Nͪȍ[(}}`S4~tɅz=+Rޘm*I*!/'_H| U*H 2!YT1~PjRJoj*`A54**n۠ [dz#܆'DvTC>~CjhT+ z@<h4>H hOgIBδd"Cgʘ w#\"v׊tw IP ̝ y&4v~_*áe48+]->$Bi0];‘X.({ț¾R:/*MUF˫v~@ Iե}^$Bgx-gpT$vJgDȶ]Y TNސ83yOzA"T?/oi,= .28=-gm}9~rLcÐ8#Fv#h&3MrM cE)R+Ywԇ{çQ},Fek(1eJQY.t$+ζ8sd%jW $R_: AAl͑2)B^i솾 ,jE J9bttߛ";kdD֢rXh^K}jQm}f,"LN(' @E+(ohVKϿSU+}2 %*G{)KAYVTb, n|qC}XYa^L*%$EmRh!v6# gQ#8n_ڳChHӊTPSVO-oZRپ0+(=9]^?.˵M<})i!ao ,(?yu6v}ъЃ,Aen ;_3W6faP Rʔ3=jj6:Nņ1awTfkD$ bI U[fsɢB мֶCOyw )!SE7J 8_2?)8- J+:HAA<_zlFLzd5V<:h%Jh%*"&XT*"nߙh((O͞g$E:(]Cu!BP&@| TlEx Q| QmOF+4ĄkhT;(]ChN;0cjhuN%:Rv~$"{tJCꨵ|)0:1LX*LWߠ B:R(YnCjhu:0[jhTN9(YCjhud}GtERG]C*y::P!u4Zc`A5#!54*홪`A54*!54:IT{@딍hL[XdA*8nn>OZlYf'UH+T!a[@=%D-E]LU[w kC2>RHx6ÑEk{vRPf?;.}m^Їg[Afl;| )(OA6!K #bmއM]dm?4YBԖ=a;]s$]d>?Aqn/*M![<*YcQFiHр2[_7Cӿ4V/Sy+V2gmuH0S+堽k8>m^<1dLak)Ei0E \H**%@`9)l :xn V2~B9PAY@3{|(%(c1Ũ}{ 40:_h1p밌;0}]쇄RHgڝ>'b?^Tkx0cQBb;&, J$b ͸[Dp 04\ߗ(؛<ĘX2wYWq8*wa_LM( ODUD]ؽz5ɶ%!D1a77:>6z?k` H)(8`5kB $B`4\XD3Qu$ q8IA:`\L{X9( RVPeB-aQ6Wltb+q!Agg+z(%%fO<|qeLc(8LW3X"t^L)q#J%D-}*q2hGkK1q/F);ec1Ԯo ) 4B@Wq8.;oø!} C0檻1L!AzrmabX'jd2Ϩ)M4J>"Yn.oTHX˂T<&s,>ՍCdLҞȊ. W6A!+8 8mp JSQr㘄3Uhkk;[sD /Y芈%놺>l8_Xw\Er4N[X[ڽ BWhPoǏg]+]AAJt"$Amv/A^v쇭,ֆ, "tc+80VdL_>K$2,Ciɹ&,4p;oED%Xd%hf"bu$ޮaI /` : &+NZ7N;WF+*#W8,@F빯&`Yj]\VM TC2 Y +QD.~Z=_^ߐ _*B(ChAd*;NP0{Hz_*J5+QT BШY^ߐ^*Z `ZCבhAdBG: `:j!2|#h aB]U !U,B rRC3( vTCrBpRCs"C;RP0{Hv`ԆY$Ch !tC<+Tь(WPB5X$ЅU6iFHИYLYpTNd(L1a ְāLTcg櫺YPPO݅Zog!Az NRHA," PK)u`P"b 0GǶOm99Vp\&;< ĭiwIt1,B]q M4@B2ԖV!q}tRk PYeM76 \S]n+C>`ot/ TPQm{Dx؁+$<*(nhܔ5ĥ,}iT 3:ztbf[.DcibEYLb!{@ b8?L?B4!(2 hPqVc@l83 -Kp 1&(M}۞ +AnO] +{sDh Ă@d{+n[X挨PՠDx P}>ՊKPX=OpĊB$í>mbt6^ mɷFĨlgGP_ ,Fe$$Ҿ@/z n'c;<ퟁIp<'j]{Y$..焍}=5.^?s"\\煊X!vzz),*u\&"f#.&~ڊmW{+olWB>]s>jX1ڎs@oRsiڔ/VD/P?AF4ym!vY Ip\8K" }YQ +](` (ZNGبr9 uώ6n!3gǮY|oT&d``BUQ&D TƠDx Q QCă'rP jL;USa&uP хMHUZG24#ҁ6CꨵbU&rhP&uPP&oPYA=22nCjhu4jhT/02Cjhu.dh}G؄z.t!KZ L*/(8Ch/dhGS/A RGB;RgP8FgJ` ⻡m@':vXcVǣuA;4BӊSWQtbl&04vDDL8E6DpLlIP1DIH$ vZc6c; 6{۶-{VCȻ?[NܝcZ!X!nD~|EZhl&0@iF5qA9ɇecn~ֶ>17=|-|oycl3sγ$f Q>>) 1PFVTۨc{01?>(YǦCBDu5jmB+kaj>o)*ӫ3g{٩V-AH] XnDHo<9@k8lfbF=e*P8M?Uؙf'¾`Cʘ_.DehgXQ;tCj)*S襤ݧ$\'Z"mFJ.c[̤Ċ/Ӝ2|\hq/(Ǽug +Q9Np6 ND[6c Jj~ Drs6I((?uWOf J]OlgzwL: oq_=E.Av܄&fwfאi؞!<|q\WjOH\J"4g)&1?0 :;R #( ;6le߷yC'"JሉM *wLF "1xYRnw'K7"Cg';BC0ao;=`Z; PHu4ZPAU4:%Adż`^p@ F+ms}PRBѹͶऊQ{YKM$4倰p;D.@et#"GVWp\!lc(f #"$2Ka 0 H"go p)]q{6 (]w )+A(a]!BKKOEɗGa}l$Bgh܉0jlL"Toxbqr=֐mW`&߉[ĿSFeaQUD( _9E={BE:X!y[}[߷Dr.Jnߛ 3k Q19{|& ~> ٹ*mMzcuڀzf"VLKV)>2bZ|Ovf,PWq@!4#X,)jS_W8Y,):[a+;ģ> Q[^wH\ĊCW = tQNEY"Tv'cCHPXy #vjhTSvLJ.lS>z)!5k-EHhK3nxy_lzN7t|;QxjeWӖ",g;/_Zd,@C6_q~NR5$HV? Bqwo4Q[҈JHv><)AiF+GOL \҄B$(=9UcJP~jX(?Q X"vv⚰ ـK )㞐 Ko89"4g2MPY 1*G%(BUFn a2tNDkQB2tHbTk9>xI+8|8im; PqxԿ]v`G!*tM< B6?XS7^Iod+KAAbYia#R2Ԗs_?wLtD$TCVC-zmzh r>!5ȼFj#|(n~N= &;4[q0Cq mPY!!5&Шab"qH "uHZg`!UZ'2ЩRGvJ!=NmgJF*J D* E'*"ШSP*T*R`6]OdDTE#g1Fd!uI*(#hW`2B]UX`2"UApRCsVTCsJ!:RGHGt J!>ZBf#y::dHCh+0j(5F+(nCjhTo/d QWL"*qbG6c3 ?jQ|8*Tzf"$h̶Y8怛p j0!-7#lȗ=D5tv~uNMau@NC 4RA"TfN %ЉPxNk"b#u=j+Q]$HsgF}@" z"T=e eSD^ۻ*%P; נ;&5v3.Aau/A5̷(CS`mg {иtI|z8smj+ z8kaRDh\$AiX3Ym6!)>քSBr;p"tɸC8_ t2CHAU/ؑ9<X"4jpj;yNC,I|w}I( *h:ىq-1cSwlCdT,k)T @TE\SN23aL&M iTAv'J:אcAШGEYRCr2AiRŁeyHɃDVPBV3Ű r;PB bཀbgq ;P\b)jSuߛ@{/t0t0&@Y{ZW~\o{,%j׵OSȷ2B@ _a[/R&)j۳D 1:cCp?pYRT7S#t? qgaz) jlRԦ)6cH}{I. >Ou!f 2r:z9.UrB(k;/o, yl1~c63 U(fs$.o ߳)$@ߛ]wb>@0| ِ8 e]_3RΚ*YځF sOe>p 66| 'S2^2l>p vm9]օ撠6D>D]6TٿPd D8. 958;@Fʅ.BgiwC%!vE{HinX<]`u6 x!D} !Bki tUJ@k@v6VY% :?:ށ*EcLrP t,Y t8&V qtG`8o S.!s,,g׃!uJ#s`!U4:v`A54*cvA$Ń)$!܆W9VAu*ZvP@Ć>ZL:HutI(ChF0j(OZ:S0:Zsvߑ8;{ԃU;{N{Hz2<*JQJ;*`ШUs&oH J'z`!UZ2#Ѫ;ătJyP!uI dށ}GăC +6V q9V\Cu*Z| .8 #*>G@C%ǡPۥ?#xxf$ lQDҷ3堑z* _i^ȵL-nX"v2Q"Bmhs09o$]18Lrp yD9pam  $,cD( WW$V;ڿ}|ݐDn'_ !&20Fn!*~Zh@PYb{0FP;^smew2y%;Sm}XSyH 8]'~7;$-17cv]\:AWɗ' QZ>~>3mjN crg|Dg(<>[{lq_)*GQP%Eez=PX۲Bf?@ahְMtË;fMΕ|?Kl\;RTIq%*٤AN;HnjB@3wC }^3wCvm䰇k+Kvh@Ah㱤La$Ɓ'vVHTƙg$D8 #'Ĩip;tRT@j)f3m_;ha&Lg~k a~2*ܾ,{X99OPZmsa\u}l#+N0mgWO0C]ΐ?'7&?j vsM~sנvhE(iv>bltv9WY߂1\r=pXBmH60;kN?g lrmG#G{(t?2 f܁pmu0_fW֗tFMd BzD( 7 A13 t@5V=_/;l H"}\~WsLS{ͪCxD umv:{ND R^3~/נ4[-2Qb,$Au9'F m3aƒ:hC(3GIl ANݍk^uZNXCښw\==oIPyԄ4p-Hih ,`K c5ի- %8Ψ[WX83 S%hzə##[>`"=Zn. :CyJ49kI6kv ,Ca(4i*CKH!X:h@DH+JxEMBX W٫W/;/ػZf!>iЃ ЙC RG5TC1 AqpRC2 TC<\xШ?P=Tqu@vREu CvN^}myLye$)KV3@1w1~O/.LVS,A"m5w&.n0~B(pK<ͪ^n6DB1e۶D-ZfJ3pBHQY^3 ׵DMD^\_D^2I\!bogweXAB %*ϓ2H^ D GR u*, *3Tbh%Aid~byk_#^\CzbرYp=/HT\CA^Xic>!Dmy1jJm\)L!*+YŠjlg>{KSZ0(=NHQB }hWZ@q[B1C^aRL/NhN=樹6|s aӰ?^ܮbCm2@QFV#/H͖`Xt|Ij!ZG(?& *7Tء ˼m\Sx h7'MИXô{rO-S,+(ݰ@ 2BDMoob )'IүeBi;ZAiNf^ _5mZ$Q *d%:SJŕ35: 0aM'+~PåBp !Ai6sA-@t~܂c$ht^s> S'c/NyO}$M0̰TG%±*8">0@BӔ~<8RG. *<ɤ*fXAШ ! XU ;_ 6V 9V@.<mq4 Qr7)7 M`Bhֹ_*~wO~rI؝K([v]#_gB"ԆW#HK0Izھ>X?o$,A lr;\e!d;_!@az7sanh-tc aEp`/VeK|K8+jB@V Z콰%Eeaf́}xC(nK=Gt^Js]ھ.@u5SR"*ou& NsDB8e3}n~" ޶K$lgkvBꐄY7eVXOXFiOPTr0jmMF0lKgDHK {7ШzkIPgAo`jC'2Hq9_|Cݙ2 A43ӵs{ba I7vx"| ta1hH24wd̀p5q נ[[ DVı66(s{PfAaZql;;phң_wbng :m3hhtZ;3n#Qk'Yg oP F kH 2n~jhTA8w:ЁU{::8P!u 0nj(5(n{foڪmP.HBpF#Ѩ@yh`w!HQNa`o-teCwl?0@ZDV/$c P9}>ODЌQh ͛ nf!8f 9 o<0T9(5>)"N6j69 &s $Ae6f 8f[ٴM|[\X# 26W;:~guf' "9|}nB0Dj; HR>]_ ^ xok[UJP W=Al}y- 觭e:*6I.&%xW=1*[_$EJ 1j ;@j읽.aJQ7^b "kDKv`{ۅD9` }mGZPb U$jp'A qp jiPPTOgbs ꄁC[%Dm)8׷P;^4XJK7iφێv0ynđk^ f8"0|NooϓT IQQ/I B4.4d74@yvrErFo ,s]cm/=Coƒ~^"OjmA w{Zq{K&H{h&1(6ÛH0-ID myL0Pm:T0-AS6l_([ٕy~h%^ $me8O1sn8o]$ !e$ d^D,2)2]4]p_S\ IoA@:q_ @UU :˗*(?ItO @h=4&em瞻2YqN^7Few{@54*߽Wb=Tq-`!UyᓙqV;H#ҁ>5Cꨵs?{ u4Zgf@]Ul'TAVpSD ېZ7`j=#ITE} $@C;J :jc;Rv++ChϤ{!kI+'~Cjhu0-jhTΑ(-Cjhuΐ$^@|G@ $!uj߹ϼ{TG :jgZ=Pjl_IpRC]|oP ~mPY!7+-~Cj8P=;V;`hվkiu?k^iRG;J *QL ` 0y! ` Ej>_XWFO(¬ݾ}^[G5/+( vcwNt^װD ޗ8/@1v~v {ipO}?0 pF"^@yX@3h_GAe!kt1^Xlh]Jt)!Ciy^C62@F!؅j13u;) |ƇFw~n`T"a2,;}RCi-s't'j˧$Hq2HEs'zMڅK#'^5T,@](tx k;CWA״]{6"׼x"` cQH t䈌5^M2g?nDV6yUlvTC~F mPIq(!5:g=|c?#wN UZHztJOP~ y:: 9?9[%tm8F Zog}G@'+P!ujLR #ѩ yHvn3Pj(5 A Q>7F $!54*W=TqM} yH HujLLG: yR ~ sH6&`A54*g Utk~F mH η)`A5:o5pVP"{#P:>C}Hvng}G-~ t&?7Ra5Fu츿4Xqm3;@dBđ_ؿ@h^5 -t >8{F]ٶ_#?jBh D,-dJEƂ@87hpwh сl0娘(sd;@TfA7V26@};z (_ZUFljXS罯 p30)2x ]f>]>Iab,ߏߏsN4D 77ohgx>M P<oF^sk!t8wXa@s|<|!egbA_iكaiPZ/-e-2?A a1!Cf@CnA H+Өn ~*l1V gX8][Ƞ*[+(CAƛOf.H}q R?z3JwAlph9K⻶78m@ڵ~\ p2P/ {,#{|._J=_<*u@ZN]| *4~a4C v|x\Ay`79cǸG`܃nqp}r=o$AxaS?ık5@! ȇ,3npE!Ln(G}<}y(oOL>VAgih@AWht26 u= zF@v*ԙߜh8gޝ v#n *wCMPqWNܬ;DH{o 4Z7mWs o~!Hm7h8O }Ne4A٥A~O(ը!wiUP5ͤ1w| dF5 :QD\:S\+u\\MLA uLu@&uLi/[f kREy&IC-?MѨ!u@}a㾗H` S2ڧxH7I=Ơb_= 8 j'va#5;:C;OHy[G--fJE%qbK*K?2 ͕NH)q^r`'Q1 qlr|g& ^dao"ݗ0Aiwg' Oy% ~L?axo;*ܪ|<~#`:O ЕhKu۔)اZXEC8VlO!0xZ A7dzܲt:Aʽ}߀Bh?:|=>s|;T7;cͩB[N29PZ7(3X̀t񩃗+#)v e^-ԇ|D=>u? p#8'ƿkGu[:,e!Vuߟ3XSjt%(3I1?{20 Hvaj4,{:>s5؞gO4|-sjw< ܪ6gٴշ<^ G=j1AOJaOP3~dp:9o؀_<bHˣKsdb'lls|>Q4םOXsԬzS k3u? Pa^e_V'v/Ĺ77 YžU9!A6rq_}p?u`ه0}2 ]V|k.'on|˖[ΡVmn|Yg P*'D}}#t|}мa|_ІGÍ23Zoy Pgh'u`8ߨ#S 7&\x@Ц7/C@ϊ: ^Wk=D K# *yB\:kb[E L\'3_AF0~n?̑Wo-P4N,{V&#?' d=o'P䃈{ &WUߢg+(@6h=E;'Qm5.\ˠc٪L H[\ ^MAW3EDʽ 2CM=䡙\0IWʼ@^V[cȺ)U1@*(e@LjH_ce&UYgl1FL+ndu@&uesg9U1 @* ^_Ljs5)&0b6DhRØ2 \+u\,@19f[cJ//sJ6.7S4͸ 0jR0b*DiRE6|٤1.0Jc:||P+nM 3MryF5 )<4 jby$ϤdLDPjsDQT1f׉e[-Ff^gnRG]n0J}vzPQC=$Ϩ6{J@LjRDJ4a̅iZb̆ʶr.yo&bh/A3?W%'W`]T:EPa~9i4G8 mʆ~2&M(||BGV{hOtG7RMތՔ¸x?6m3PAcGud&-kݎ}/mjv9߻3fKwAv2p?v=aX?)xAmg1}}@F~C:F`}a;߈߿U?iB 4n4nq0;~O\·GbDD?5OC~}By쑄W Bˣ~jϧo=Z{Q4:"u?*-FaFOT(WBw=9?~"z1lz|~/!=T"}}A/:!$>5^?4pzfdװ*?vcaGQN4; ƹTI٨蘎TNdAnOw:v~8 (kטg467׶ wOʼZBOQ'{t7 ĄMqߔwQ -j݁~~˟ oz\=>= $o/L@G*~ޔ2 KJ>(9D ]N?irA*6ؽ0Dj}nw?C~XFDoaک@hxgqS3@ף%s.2"[l?70b̺gLjFګOI c.;f0»WT+Uٰ+ WboRǘ *:2b ٤>,<~ffOI C<~03aH{WL*.a3٤13Jc:?/t+W%j ۤ.,~fT1ijgQ C=<UP־0¾gQ cn=ON?V1Qa[-F]g{VWQC<U&ܾOI C*<~&0»W۟T+U٘_V!f@Ic:{q¶Rǔ^^MógQ m=~ާkR3Ϩ!*8gd'Ja_&u0jm1}_뼀қ  ?t@u?4Sq%A-?|_2W<!tݗV|so)<}c ~n?rك'@C ׁ sҾ %n5O~#ýA-_[>yK-xީFz'F:_DK#JzaA0-_:m`3:~p_[ո]Ng?ͷ9 Hfn w[V7K2pLsEp} SbB# cO e Om|gZG-RwtP0gol :?[\l`U>7r^>̌,Ѡ79~cƍGUpAugAnW]9׿oa{3Nr[5n44poи)_.k&fIfV=7|,>~bi񹘜6xoGYe}Ʒ}a.CNjlUmz|~VƄ~R/M 2D5y鿗qw8X++ ˼uNF$OM湺T7+x=.~V;?_wpF~}ܤ `?C=l{U0hs~P}wϗߣG-*?;],&jMd%S6xs3V֏{x=7Hw3TƎS_~F|r_iw=.^?S+qkVhU%4++cڲ|S2 NR[w!4Zgۦݢ~N:վոJ7Nu>Aeө ] 茅3`}aد,Hcz̈WQc2j0BW\+u\CWIc:d{̶Rǘ^Eҭ\p ^DM.U Ӥ!DjRY'ͨfRØ ΪF5U'Jc6d{ʶrZ~g]?sg]/T*wR3&h{I3a_L4aHrW͟D\*k|wJ7cLI3JSŻB6.N_F5fRÐrΚyF5 ,gT9SWџL+U\CWIc:T{̶Rǘяn [hwmRG\]0MrY3Ѩ!5Ҍ*^5LjHt&UU3Jc:6t_V@KmM':(f,'ڰO͎_,kh3ǁd uдP'Wvsi=Je=_.#9P,)>{n2ާ1 m<`hQÓ&z;$!#`ǽuD>{n㰂7O<0: ta|5Gb09[A`IןOVhvF=#EFN8WnGA"f.|y^oa uxxZʴ&\w* Ѳ6t4\:}fwեK#*o1'b   v(GlQd:2b&R+⫸"hP?^5y6AFDKxgpt;+f'Sn0s+7rR~{_LA Ő6ޱAzTPQ8)_b &ܧ,Mw:߯Ւgy;&ɠ.Ւk7OC<{bBrߔ2~YZ㱞ŘsC?3{qkq||PP1ba|?cjZף'}A]y(rA6ŕs(Os& US.'my!L]=4ϴ_pGɵeYPlUcnح1.^Q'YW U_^!_ 7ba"ͅkR)*kы6:.U+ݤ1sf[cL\V@KϕnRG]jsZ.\FU 9`m< jW4'I c:Q C*4$0BaWy\+u\Cb@WIc:4v̶Rǔ^2[幒MKh:gQ m*T'ͤ!#΅gTÐZ]ΉhRØ &U\dCdDgIc6$vLRǘ]ҭ\pB[M~ssfT1|jRIͨU'Ϥdl5b̆ʮVӡFW+nU+ݤ>v̵RGu-]FU 9 N< ڄ+m2aHfD\Гj1*te[P_|:!$Йl>>WI}+R+ؤFUͫpl/\o[!ɛ3YW%UgWc -n 3FA@KM_NM< P"pZ楍ܬS w-XlQ/& v_ ^u?٠˹޾[?n$5Nl"+S OhUfKBqurn>>to$>⮬rj_FaqiI(w QՏg(>ϖ"h8w_߶\zo-Oξ|7q<6` 0s唀mwF GNIP9-V ChޤCp?t:6ʴsɐ+Ѳs,T4uB/GzWGNk(7pnŏM,?Y&г⣮ rc\CZ'i]n= .ċጣkzpn3XEh-Bf KAף^ہ_>}zK+Ёen0O_0PϿӛJ47-}|? ߏ1^'߫zg|FMqEcUk f?'HK/G=8oj#bQ=ޣs h}Rν>OPH110^7RZjj]„f87XTaAbP x6g5b8pm8/)zo+_K .Gyf>ch0Gܮ[KWۑ%WTO{|=&Hy^u( ""RO*.16J\&uQ1CJ!^V!ĴJq1CMW!l+uL%U+٤>$5pff\Q OI C5p0߯2ׂzQܪȽ)vg-Mt}Ot^?䷴лJ1FGoUweȓ6!l_ׅUE Omw߼:uz`F|/W%t0?honBmw.Nweﯿͷ6R%~+6 _ KCߍ{-D:QgiߧHy~ ewt/6? aB>[9c'%;{fsqM ;B[[i˅y_8 8r?]sB{ ⻅q]$&)4 P>H' .{Lkb[SvB=r +{[ʹl2t_δ׬7o$w>U|%۟\cBnnf9+ Of< M'nfjbh(&-\lb=W*ojT6Pn›=~hs0!RQnzCy27+@i%֦exN)ḼOVs Է([Ϋ) K}syu`;Fͺp#]Hoщ$Q\v\;IxNI C*|3{n&0B8Wٝx+UUu+ ᢻoRǘ:t(確 h ne%~VL*+hVL4aHf՝4 jW[ѝ4\hg4aCUIRŘ h GewgtVK=VQC3KUP.*0B;fQ c.sUIRŘᇪm \bBtw1C:-l+uL饞Uu+٤>3nff\?NI C3n0BdZ"" ۤ1na[cLp[V@Km[&ut%Ur3Ӥ!E7jRYt'ͨEt'Ϥd @FIc6F:tH碻 h Uw+ۤ.jnfT疀fD쯖fTA5ƓeZ%]=5ymk2*boZC겕H ѷĹwk0^?^%ڨIګwtW]bSq5:Уd$5@x6)?|bUTN۾2鞘1=D[v6?>c濝Yes+L(@6;[o6wEaM |ZsH)Уlj瞶7.@ZR5v(~zWĹFak;o巭?^k#z5; lUU+ﶊv: -2 ots;q=$^|8TvYM.͌j#jɓh)raVŗg3G,Wi{B!gQk 0:F ċO"ѹ:); /lҩvq=*gYbѩG}) Lfw^!LHi\:7z\< un/߯HcՍ:umocoEChq;l$Ͼs~E=tn4[s aBV.5ϓ8+ˋOfșS߮lէk7h^H=/&ەDH =N]4Hk(0AC" /g#p/Bi>Bh7ֹ]@ĬK8{mlܫI{8>=VHVl:t8ۙm1λv[-޻wg|W.\+uɴQC 8UPVϞ4zogQ c.d0|W\+u\}wWIc:/sg:S^&uɸ Ө6\m{LjRٸ3Ϩ![{Mjsasg:.aջ+ݤ1޻:wf[cL,FuJrZ-:6K..]&U 9wܙhTÐr=iFDYЭ=y&5\$À{gIc6w5LRǘMyW+ޏj ۤ.wBRG]}Rrٷ'Ϩ6\]{LjRaٸ3Ѩ1޻Zb̆]V!0^|:\]V˂o/T*ۓgTAp =Y&5 )ۙgTÐZ3U~ڮ{Ur>.TQ7_ƪ֙߬vr!upgby EEsy;(umTQ.\&gJrn7~Z-eer{bɹ]DJΏS'z'u9W!m}>UN=T1f!{BaP&ID'g-lP77*;)>mB g^-?zq vyޞ>#hP%-S:ZRBhqa Kv6eGn*߄黪Ѹ0"/.l{~qΨsU=?B-M^Eho8]~ip3hi>8߯[)=5ŊgߣՆ3Jm6VUZ/5ܭL|*ŹIc Q Cn=4a=)cL5b>֚u̜w KI~QZXYsNcK`oWJ_PEǭӊ fka5Ek 2x=%. 7=S [4,V C}MۏBQ =2dvv7cOoro|VeFbg"Ƴ֓#8ֲiVp abƹl)ՋK2KgK =O/W0L3ܤ1Z pM᧫Z[W+oSWI]rju4bȹf/DM^8jR>-AVhFIJaŊϤd85b̆nVaW+nSWI]rju4-[VF5 )x4 ڄOJ'I C*5yq!0{W/T+U 99ues]_KgAݲsb)2h5 cx*›T]xG >.J?$Pnִ8>C77׶g-ʟ͸f"hpoG‡FR+m9K`-'ꛚN/]sjקV.+3lff\0NI C2l0B,NI c.Ff:.1 JMӡ:uʶrmeUJ6K.&U 9W̬hTÐr*;iFԄ,|*;y&5\$cA6sM1P1C+]V@KmB[&utɥUd3Ӥ>3l&0\1NQmjd03Ed6js1Pd6QT1fC(]V!oRǘv\U6g`fT*R̬gTAp;Y&5 )̬gTÐцW3YR"F&*.!EgIcz=CN2٦?{WlJ~S ~ܲ.Z|v+h~{L쵰ΟIZ eMbKF~8~&<;l7+ZbCЬC1,m˼_|D06=zkheE! $s͍$;t[g6k6ϟj{p ->"'ox_s$0MJZ[_{A틸&zãjF ]V6COB<A_3lU&\.NI C2l0B*NI c.rU̵RE>l1c5~U̶RǘEe+KUمmRG\zY563MrYe3Ѩ!zUvҌ*ZUvLjHRV\*l䪲l1 Ue+h x*MK*I}nieL4aHVf}4 ڄ eU2aHLfD\h*j1 le[jP|:ƴ;}-d+u%I_Q}nie3MTVu,Ke:5 ,gT9O;VH{U6cLC¶Rǘv\ua[McUѥTVu<ke3aHO"gT)+NI ʪkRŘQ*l1 Ed+ޏgj66g;fܸ6sj̲M,%-:Y̏͏g⩅w[ߓsћ8A/:|3_մv+<_j"o:im4n 4%]zKq揵x[_q꿬r-p ~?֢6 ;1?Hqn4.;UM9p!EO7|OB awN%6onS #6z3{?Yh(N~=<3^9w OV賮Y4QC0fUPVY5sLjs~Y73Ө1ҷZb̆YV!į*g1]Vd+uYW"jTEs ̲xF W"eRÐr̲yF5 gT9S%WݜL+U\CpVIc:o̶Rǘv[UsWfUѥf0\lQ C0UPe}p 9rM}rf:tߪn [ߢmRGtY&U%I6 Ѩ! Ҍ*hU5'ͤ1W3SM!~rf:t*n \BxVIcrf:/ cY]FWC^tybI2`L-,晉5 C ef^#Z gq MnB}vd;oWb`u$>o (YMk/z&.X׿A6/֛쏹ո"UM5]fR;nv,+oRD I[mrǯтo)kK*;dZO+u4iBOSƗMNF52C}j08bfOj;qq'*l9AQc:$m̶RǘvU[尲\&ʖrRKڪNI CGX3Ϩ!cfTAMgRE2djbT1fCVId+uPU+h -lU+ۤ.afT疶e=DNQmGD ˤ!jsi N*lH*m \B~^MӮkf:쒶jTEsm+z8yF 5L,T[B4a̅} Lι,CVA\+u\CҪ"VIc:$m̶RǘvU[尲\& rRfQ3_7% 1{f 2'ʹ!߂ꇕjZǘ>/yaZf֮ 'HwrÅ%E!v͒-ca&lIolR n%̍}uV^n,>;k5$Fn\tB!L[o 9(6;!4c-}he#8p₩x]"pW'FN!"Ѩ (Eߵan4n0*!LFŰ63ͭa&0ꢈh\C{?XߓT³KӪ%"M_~c~']02˼dOЧf_ЧVsѾɛEIrxa+*6X[/)}Ɋ݂ZcȖσD G,iΠd’>sd<=W{w.vElP]HXaƾX6 g Cqrj^k+! Voi7L)ʪW9Vˍj {tJ7Ɖ9P;}צp^Oʙ,rOyC9O*ު/ \?u>To|0\MI }j X3O-ˢ7iF *yeRÐrʢyF5 *zhRØ[Oe:.]uo1C+l+uiU*h^Y*ר.ԫ*0\eQ C+KޤUPHp /W&UE Jc:TkJrZm W6K.r&U]Y2Ѩ!ڕnҌ*h.\U&ˤ!ʟ/js%*lH"x  jUɫ|:ƴ֪wl>+]Uve< ڄKWU2aHM"xhTØ ϒ7F3ڶJ^bZ"U4oa1CVl+ui׭U*h]?GQ]jWջ3aHxe<z6MQ̏VHn[&u鐭U2Jc:tkJrZmKW6K.&UrY2Ѩ!+Y '6e"Qui+2Êeq Cο2Ӵ!<~WUr[Ԋeq :}O-f||{ !~ʛ!V5hs)5̻~u9̣Yp^w@ע<_jcq5jqɇ@W6WPG3ج#-^ wXm2ȎZRlcI1yۛhQjaɸIBhpa5jZI5ЦqN a.k-jKV,MrqYeW'c)9YaˌMd1+}LrX2Ө)Ɛm*8g*ihRE2f'T\VTR`ąҕYǷJr;>TJfu(!LHҩm-$?o`qAE}sj[Ѽ0"Vm71 pյr 1вxWm9kL}YrY{#޶5SH Z4Bu_XRNƕb͚N浓 ڕ;tb5q-ZkRŐ ;(ռ#gz]sʏ{V*{]S Cʏ*D*m PB4,5i&5 )WZgTÐrɪ5iFDYê5y&5\$CyneIc6tgULRǘ^oNUV@KTZ&ut%>E Ӥ>'KV&0\~dMQ5!+XU&ͤ1ړU+3js!uklnf9=ObM3v,MNc*-?;|9_J ƛZ4*7<)Ŕ&XK4eU&ͤ1(3js'M*l*Fm \BQUIc5eբLRGuY)ZTFU9וEgTApU)JX&5 )EgTÐ EZ4&5ГU2JГ*GnRǘ=Y(1}qբʶr-d%k5K-])Rx&5 ),FgTÐr]b4iFDYb4y&5\$CS eIc6eգLRǘIYҭ\p UYM.+U Ӥ>%Q!0\WMQm"4jѤ0BQeIc6dULRǘ=Yըҭ\ BHʟ IcڥyLRGu]bPsKX%QmeJd0BUeQ c.$4ᜓ5g5\+u\COUIc:V W1l+uiE+o[V-\*ҕ*EgRÐr]byF5 ПFgT9D:+dS#k=wͿHŸ0T?*L*ZT*TUIwdIgY[49 ai5 ꔼ(,+ ,Evc,ftaH3}Tޅ]3%gc~pBQŸ&bWɼFh9fͩ7C(=jk`\5tl3+YNq ]oΒ:W0dՉ*97ƗN-]Irj2"7e\YZ',+2LqMfo2] &LkɭXLNO!`zMeZŐ N\9O{ol:'d:ld|#\:,fu%SMhsL4bſ$3gѶ#pf2[p='RFRܬuw˒r]ZţvrEЧc4 .Z1Y&5 jQxF5 |hRØ W"sqŧQ&uP|U.2JcE_Uʶrm ?V5K-b1y&5 ),gTÐrLrhFDY(rx&5\$C`dIc6_LRǘWҭ\pۢO墲MKTdI}uhE&0\;V$QmbUH4\>4a̅r1V!\T+pAͧQ&uiW}U-2J}v ?VJ5Ϲ< ڄ gъ2aH#(D\h>Ջ4+\d:.!T/*ݤ1Ef[cLbQV@m3rR.VLI C3E0B\$Q̽qr1VHSŨl:tH*m1}|~8Ee[MEE%%]L*>֊B4aH#H4 DH>I3a̅ϨT*! +2Ѹ6slX\".Zw[H-y.5ʹ6ⶇkh\rCrnTh\&4aI6aR$W5bq C]%3E IO.Vk< e+r|8V,*ܱ_@%WY*y5hY,-yU\'Ei͸?şsʹsѤܪ۶jTÔZT%Ѥ9cQ sn=bŗD _huyl\O&+Z46U+ ~MyǵNճFET1fςOJ;+DV!ʰ<; hy!3uv7biRŘKI Ө!L$LjRT1Ѥ&y5j2KKI C:0\KQ5kKI N&UِeE Jc:tYuJrZmK3u6K.m&UX1Ѩ!]Ҍ* ^wW]LjsnY1Ө1ʶ:Zb̆,+\ B(3u7cL6VKSQ}n3t3M:SE,U+F5PiR9WVY'\+u\CSIc:Yu̶RǘvqVU\&UrRKKI C:0BKQ献VH8_Mӡͪc:tn gmRG\MU3MsKcQ COK3MUU4\H\vB5b̆2+NV!ͪS+pApN&u YgjRE[EjSKKQmWKI C*-:!0B#I 眿[*:Z"#E)៿s2n^Yx:6UNUtBNh4n q+h">tLM,V\Lkr-vNu%)ײ!u6qrI3M ;1˸.XݦZJc-8bЦ}i5sAW2 J7aHjߘg\C65J3EO !pOfn'c7y!"-H$LvpL׿U ~(˸1%gY%ߒf\9-1\cec}ěmJ髩O'/kmߋ2gm4ͅ]VaԻ)ۤ1^z6f7>HH vr._%aJ-"G1mUWEW!Z+=:Ws͆/j Zny`1d=V",7S`Ɯ.iL4aHR<4&T$oaئ Ѩ.x4Чb<.6iI3&dz0mOcQ c.ViIRŘ]/'l+W^ZթIcViBRG]mRsrMKQm d0oMcQ C*̖ڴ$0jU\+u\íSSIc:ji¶RǘvUlZa[M4UѥR<[.i3aHb< ]jv2jɴRE:-iF[jӒfRØ N&Upը1Jc:k1jn \m/&ui[է1J}vY.iJ5->-yF w\ҒeRÐ FF5p[?Ӥsnը1J0 ݤ1f4![cȺR\:m[.i4,˥.-i&5 )\ӘgTÐ F-yF3dԒitUjmRǘkV1)X]VcUg\9Kkh3o K5fYV&ICa_P+SK}Tcq CnӘiZŐoYUj5IoFjM5nD%ɸ.LDӌkrkUc4YVPKJ#%]*5)ګJcq Cg%Ș>cq ]JZ3VcFLy5kjlz/цB%eWrˠN+L*rhE1մ!LZ]'f^&pt"5]W0Z4H1۲6q5lI*M9,n}P&֞x;)Ѥsn)>:.*ܞ-ݤ1]ڣa[cLWvoV@K7h&q)eJd0b 'i3aa#{Fh Ι%sb5$p\OZgL5a̭jQg4a̭'igL5"b%SjR.T%Ϥ>jKjSXͨ6ZKLjR.X1Ϩ!:KZMjsDc:.T)ݤ1*J4f[cL"ĪДm 4[-VhkTEZjKLjR.X1Ϩ!^D%Ϩs,SD.!T1פ124&[cLΪ"M_ugkYu%/ P1ԤefLA`3K:p}f|%}j$$CÀHԘDŤmI\FAP2=׽gg2ז\?k޿ρ #"Ƴ(9-eSQ9EKaeEh! -B0 >8FTLz=Ȋ!MHǤۃtZ:"i<IūBc({"-Jsh"DAag! ZD &}gq2i8BYt`:&f6h4"^U#x%CGZY2A-B0 . (>y@4L<Т-Qp)׿b2!Rqۣ,x60nbF!164@h<(GjQQQr9rX3DÄB-BEY4`&}dqFSz4 I@) 215KNpƜ0B81#o؎[ &!h< çL&\Qvjp$2_8q3\E#gRcUL8W3RUQvZE̓ఽEa  Vj4 á/BPc@}E0&W1#5 TńQTX&P .(Vcy@5Fk RYD,g! .x"PNB@5]8> MaAi4 , V)>cY@5zFK1$,f4 ] L*&v1xF3j(Mbh< c < &t[R1 *Jx*e#V< ˪8 Y4L\06FhyZ1 IS!jS<|1*fc4"n˩b2Ƴ!j*Jx.%#V<`&\XQ6FhpyrJXh'#89cdQ60nObBF!1*&d<(&zZ t1 LEec4 }DA)#c$ ITT`*&Pt&CcULx:D-pJeUŔt`:&Wq2FS(l&Pv9fEXH谼sLÄRBX" >ϩD&0 >m<ͅH)~Ϩ8tL-MHDŽײ*x.0'VL JG8 i4L,3l01D'z+c$"=⌌g1*&d4"n˪b>Ƴ!j+x.%_<`ʮ}א433׏(S?w\fvM5nF̧.Yw٧G_/̬j6R%ά3.86ͬdE]]bf]o\pe'KL׌FWO짪-};R>ӟZ+/ ?9?ӎ]QӏJQqRT+E=OyhS7}jeO^0yş[Ze7e[~Ɖ՟==|bx拧[\xs졹g=O68ƪz$Ek7;5k.A.+ޗD]eE6j5q~倠\jڞTn9ANhٟO \[fI/Ҹf@ݼ(}/on j6})GhoT ZyR̈́dS ?oΫoiWjҬWnn׫8Ȫ.kmKsNРTn7*֙]Q_eS}"g<'6آ*2י&k6@=juF?6khr]eKyNuKwb~Wu:Y~]TƖNYΐJ3A[uEDFiƑOZ/ٵXwe^Tj2g9j, u֑-2f8t*ZrgYu>1Uq5m*Btiϫ,)#[[#hYו&N/H4S`o?} m^yiu׆/n_:SDG'o٩mU;^QYɤv@61ߑ1JnHWy;m͸ʻk#scjYjH~qP/eCi^l V|#OUUh#?ɚ0LOjf=˶jus#iUekv Ӱ{@RKx n2elpЉq'[@ 7nQ'PWv髑zimSd#u^jۢ醓q#ݵ:d-j/'GS~K`kY^q2+K6+.ujڝ)h JVꤚhˤVt#Z_&/ZiW m躊_݌Nij:A檽ޙg߼Mm9K. ^VۺY+zp;y*nj(@ tꠚ5Nu-XkZQ'nRC#5wF ;R/zHI 굅ޙjIelgYU1 nJVcaB-0?]kj(+%|!͘v/(ysqQNe |pEO aZ5$$á<'Z?:k?dS-m/> л+ׂ9M{jbŠJf22K|uCZW<ә,4fpEOBi fzaց⊶ o:"iS*Pݾgo/?BheNgM_lCHPoB,,i{l*-̩C_t1w@;*uPpU/*sG˳텖[Q0uQXu.R={)v=APn.3yg uZVU+^eֿ|讗>í˻72l|#L=1ɛ8##;?xǬ9mLJ D~}$nWۦGtq_{.m߶^[nPzvs}'mkwdy~k7y[8Ůb^7]陼[]@ڭ3']mnak7ѿjڽ;cy2? O߿3ߛ}+C]}y}7mrݯ承DWۦkG3>}qמo[G_yG^܃,?m\n˾tg3y`~wyf>Z*åjT?Syڅ.MA+ݾ:}ġv_rţxRa5̨r{DXuK6)ʼJu})|u7nCu[W jI-f^zo\3j endstream endobj 271 0 obj << /Length 3003 /Filter /FlateDecode >> stream xڵYKs6WhoT%ădrq23+!Imm"=$5F|Ȑf*`ht/DeZNj"5L$r)-ů=}=fSX1'߸lyb].ET/%/kz>>t_㒉]A]W]Qq4Ma25~_B by#oy_nz%Eb)--lmY"y$F.΅bJbF2r2*-4U=p&$0-VTe B08K2IdA^]}E2u< zbHuZ}:b!cl/2fٟ;_l 9CU[t,1ϯܽ횾HAV[ϫx&>?LV"=?ZYmMO۔|QY6k+zyuWẸ <"核YBUAE`-w}Ođ%[EyNH0,'L!HL q9r@=oѣ-.XoO1!|@98iiRH+3 iiy)/W8>y8sds4Fn՟`H3}t WanUpTɩ\I(\HpDc :Dn>)6JzmqqJ=t@I?g1|u"i!FvC[@^Cb.Wѧ.{|<(і?mIL0ѧ0͞o2*emn0&a[m[li[M*4 lYy3=kXGY7!u8N Oy9 mf+tkHJOzapClRato!%HEԴP='H߼!0b+q #CnBPzStxypĿD&-4W$ @Y9-& (MHSSB )@?uH j@t@1Ӊ%?ޤqm`#c)q۷ջW²B1r$ئsܔ7$AS; K34Qnnmkb4mO/RnxvzI8*.l}xeŃMvB  A<@e,&ؤv@I-/+R`Q]|*t p>З/.^ZCi겦g":߅0C©FvRQwl$Dik@|Un:0=s1OWPAgx~:I<^,q@uPX95%{a<&8o=&59Hww]`0,sHXw$9QsfeUyp*{^MP@0i@4ĈXȿ%ҨiKj$:AM{ؔ~)FpVDzxޞ{9gЁ ]JBQ BUPf-AFL&MPl?ub9Z%^N:A{ qӎ(t\,Ŭ[d ~״`n[F/;^miu&ԃ*je_WA|-O9'ȫέmpҸ/n`iiW! \Au\"(x=(މaý:@x+}!!% ט@X<}BI_(d mKj|Wre zZU-l.ز ^K*v>18H?a]xW%ƣUv`v`2Ta.t35 v|?\njk}pzeЅ|ʑY]~fMv?#.@yd)W'wW+-5=bw^xiVnz:c2J%wH#8;"o6apbVիIcWjBl@p=iͤ?pTg?_Lz(p4t6P6z_㝨kK~pХ y:}A"`J':2G&p2e:$\IU Gʪ^l:*UW,Ln޵l*t]~;ͦ{8G5HsڱA7k̈́~|}哗uwd\m}i},a/ endstream endobj 280 0 obj << /Length 1326 /Filter /FlateDecode >> stream xڥWKF W(dޏ6 r b(ҠP-Dz_pwg!!)ȼ٬^11FR<2F%eF:"6U%JԚ)UB)6$/y`JʜҚtu!Y$RFqnL#M  :MB{IEV2zwXI 0x++>1 nǡ55L,PxhOq)d*]V"\u6߂257y7e[Fɇ鈔ǃG4 uH/ M7D="T<`d "$9x3D)w"n.yV1UΔAŮn o91iov~ U9.i HԒ\x zYb@˘rVNZm/_iVjgS=fh>kϫO7 `yT%T,f) !|mۭ H~9*T(:<}{LPvLmx?ߑ!??vx=Xol6gu/ Rr bbyGa_u%Z{tBpy@mlvJ3=zf߽lKm=똔1bcs}f_4^:fQRbK5 i0 v!mD}rqJY=]~ _L_Q&|S@0-mPiH~jC֖iG5 -iడYVz5hPS endstream endobj 276 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./pic/hh_fes.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 283 0 R /BBox [0 0 348.8 210] /Resources << /ProcSet [ /PDF /ImageB ] /ExtGState << /R7 284 0 R >>>> /Length 5051 /Filter /FlateDecode >> stream xWu(h 3Tt0q&qD*8v+ Aad:jǎM*؆1&dWVt1fddu Pv_=[+)w{{O5X;oC/vFk\&ǂ]mR;ۤ2&}oo s{ۢT .9k:{㶎k:ipe#_5m^88R/;JEw Tᖒ7Tp+|o5cncf8se?̋l=؜/ {C)oٷ(mr承ƍL1Yipgܫ&qlt'݉ӭ zS#L͔laD.7y]]g55WQ",OELgn;i-)khOAJ;D?FEw#i1-8}8N5}n`#}oF_p7QE40I51ύsJ6vKߟh7u\Gӊ7NT0i|'c[fV_-=[.>@ѻ~P_O[ѵ} ޶X׽c_ݴi['ڮR>fIL[ Nذ۰7ZlXfG6҆16i|ఴ[v@౩kS t8v`oOow#/nZlNMԚf!٩uh6ZfG6a9̇HbBN,2X$tƺ!9m>):.0lITeDQKq}H>DO*}F`!e3E'/ظ}^a8c/5f6KIGt- ٲeɡ~t6cruYC3}K&9/}9e̢FZOȤϑs&aPB`vi}~wRT#'Τ%yYGڑqlS85urtw`VQ =oaڰa1F-gL8Uq27+*)y TLq|镢?84"~5-I"t+ 4s㎞ggorL%4W#'+wx׿זWFϏܻlsߖn~~[?5 b=醓n\| t?nrO|wO1J syӢ2ۊqR%==;Wl9_8i-"C.zք^p߶w'P5Nf/|xk]G5vҌii쉉_p3M8+L9wFiS:;355*#`ZHy⚳k|sq+>n5x5v.{kwgQn\4-Ƒ÷bK5_ꉍC{o_ )[HFf|Ҭj~ysv͊?>k泛ͽ躿qPs뒬Nƺl|;->ο< C^6,ܰ'tjXM1eZ35l?gnڲ  ?WzƎZ[ݳsNʃ,x7X E'C+܅CvFHPMw<ɖB?V[?m_&}M?g,'vqȿ_Ήm4rje Oxw@E_vŕjf/#+GБi]GꫝkWNluse[ނGǽzm?h93O_~l] !wam:<f#E d7n)ر7Nݗ/ZEOoˇ6!kHVuBk۳bc9JumrٸHҭ+or4,_k_\=[ucEצvm6[۶ߴ0tN 18hLi4^{ֵo8:8cEOC|f2+([bW?_<߿?,޽/]7u<ݽBJvF-9RѻQKȋaC[zѝ軖1w#[~ń \gu`7KO8#)_0=ݟAo=e=2%s0s}f;~XOY/o4уsxI;tu1}4TVNCbi ! E DmITA0 2o 3 Zz3gb0W5&&^̒w$)NCkw@=CAKD΍!̋kÉy1Lĺ#b8tR&9␞xo {61%BI дD|7 TPq.M^ 4t% ]$M̠y] wA4aÂx.3&q=e+=)4u hRrNjqP0"Z XsՖX|0!" J:XiNGn'FEjaiaBH=]+ B= W:ulgH<05,P %GTJa:xS=I $lh580SNxХF)sp.9c3T^ӳUp!ѱAVS 1oNx5L'"^\ rU24XJb+rA.06`1˓]g9h9hN0xYb Qa֧GGz "z+zZT'jyDڰZHffruA" !m e-,cm28:cTYoD.W#q5dvJ![MD\HIug"q̉KFH\7c]րI,6P7iE] spr[7:1$uulH5.P8Kf%uI@,2R$eI@e2J?^/, %T>ϑ=f_0ڹa\*_rI?O!1*y }>}N }gM,W,{%9BGYI@ժBuBG9p \ J;|u,E@;?碤''ޕNZ|vNR$ēFU;{S.c9Lΐo8<`%D: sjѥW:FRtYd:n+ҥHY'kgX'6cH2ҙas9R]#|G@ўFHW2P T"e0 yT>NC@Z}QdIЏ> P -}&=gR0gƔ:ϊB= /-ϙ$!Lz4 ZOp]O$q'=ȧ4+Yʝ#g0$Dȩgz`gY Ax$Bp a"i% Z]J@#d@< (tOjLS0DZC8D@cІvArE!|*eTjWDN:~ˊbDHg"5A !P i , qoBC<!l&%} j|U' LKuľ<)rL-*/yHTaў?F `cO3cc`5{kk%@X9Q%yHG %)I c@ ` :Qvbj}TGRԏUВ^U% Yy.,_FR^Ih]0FԒa pPբTG"K!Z| b0mrrHAl KP1F)Z,Wa 5Ր#S(@>v#d`Yd@>yQPe;tgWۜ1И,!n\g nsI@lmNM7'!"0OS9~ l*B' J5BMfY`a,AH7rbBB]"Nb9] 8Y^ @DphpCL6oۜbMT &ёhlICѐ*&: :*#d$8L̩7Aԉmό=_⠡^WgƜX1]FAFz̩瓺̉NgN? ,Dba{B^^3ͳ5fWdz$6@S9'iUE Xs"¯.pOsӯ~n?;Tm p endstream endobj 289 0 obj << /Length 980 /Filter /FlateDecode >> stream xڭUKo6WV XS|'Nmzm)A=Uc}"MD F"%< vHD`&ۼ]?9fG`N %'+_FES7 s{{Yͼ69]ZeYMDewy^v#EBIS޾H:%Ӭh >vUJۢ4,\"?~t<9J?`u&鴅\]S[DUbB\,!Ÿ$iI |# OF1}hAJb)>1΁hx2]YpԃwcOqnsdҀ4r$$S rkT< ʀJ2BU*w+v }!L :BBF F"",q(vyKA c_d[6_1L}_>a$ f n9 Ң 1n#Nw6&oԑАZ^:W :!a.3=ttCf߂}Sc٤YIV g-w3HS H 2"Up"!NL`;2[J8Y\R004 d\!eF.~ZOUCt(A7F;|ԯ;C4E t97XXU8s-oz*j؄kӅ˺+i @gZ9O'̋}'xٱw-SE_`1Qāo&ڿW#+գnwZ%VGk7Oˠ%eRaEW*y̮W])"m3К!X!,АBҟ~;Go}9 RB6QH"ݹ«?zDS endstream endobj 306 0 obj << /Length1 2171 /Length2 15052 /Length3 0 /Length 16337 /Filter /FlateDecode >> stream xڍT%z gkٶkmmN8&MnrMm`wVu㷣$UVc5K\YXb Y,,L,,l֮v#Pj;Xa!lt}] @Y7;+;C3@nmP`Ȃ](@^֖Vy@cJ `f jolm t(]3j SksW A#`wa9[ 2<].f(Ƅ@ PvB dt6 M\]̝j2%GsˀXXvhj w:xY;X,JL _@;л?hm4y7t @RT|go~.֎.L.vqd+{%@.'nlnw/da`f 37Gf k'7sۼ,],,,\s'_ ԽV%~rX00t7:S`fm 01v@]ln/>gkOX' 39y1{̢򚚢_Ǐ O#'; dov?*]˟2 Hw?D4>ZfP9pb|Ho=Ϳ @{k;[ﳛm(/j?N~!vmտ?Sxng` r0͙ھ?*.[e~RRdqr@/c߻ `fr,@M} q?Af?,_`;YzJE<1{L?j?j"|?=]g {o$I5f@V ˶B 7|/O94a.|gkNO(wW%Owg߫w~~tc}O?p~ckjl~pᝃ?;}wŻ?C_Lݜ߿~~?:ssOsS9)M]h}(θ/4ZFENGd5[h+[47"K$/>G mI*OF S; ߎD Ev}_|5l![e)sxP1=~Jy-Vs!>M3~ֈ*3ɞ%qe$C?D3F"@wGw-aw:K.. Yy8" "ùfNTG-i@QXTx&ǡ;.\zVlʙ,~[evġ740])\ x} o" l&yz>@O. )z:'B`CaV+~㓯ZUoB lFkdQ~(~=2 ^2}AXwRq ]0+3Ͱu{"gS˯rԗ]xB<Z]]~Ķo.S&o*x`V,wJl4LjU9kv9VRAO$U,6| @:1YP3. ^bLf][F4W귋-ZLb4g[?@ψ _*+7ߕ!vzYyluaF9_֫<mXB3X2A7L^%]⽣1;N21e Գ 7 &#]@W k!Sny&<pڞg(j!|pȥy2A/s;ZoȍY?uu3}Mq@AC2`_wNnsX^,2栒;~-;ͬA^% J A~f.4J Ox+~TG- mȇ8ݝLxD:IFr[ ֽ+Z7?6ՄKLJod[Y(¤X)X[>$XtҔvWx>tTϊPAD̤s2 F?R)c^37cۇhul}c׎'i nU@;+K1㛴6ŚKy{R`6t+ݮ6^5j>` _Ajk$|X'Rza7 #) v#B^a PUZ(^FLPTx ݇lV0>!U1Me]pxr{sq멌O\m _x$zi`ixp8W9ʠ91HΑ2aj$eoc˻f 0qR2ZfF to[۞t'gD2֢;^D-ܶZ!aCkzU7ߌ5w2+zЂDw@Ob 9E10-3vnb2u(9rIo-#4Wgye5op;ZJ9 %6UAřjN瀜K7$Vu[;l6:_HS_hjz1n9ZKM]"ea+vc"ڐkN-,$g FGc+ț] n;q2+V2;s|;?Vx,I˜<3礎5 hQ#vo*rT'Q3B!Lb}(^c+TۣXʋs!4Νel \ \PPRwMQ!hkx  T_jfKRtY}D dsLA8ϰq%:K]"ΞFAD+㦖i:k'Ȝ4eUqd2n3$IiS܀zm6TU@o/?`@_6;RpĸJB(PaKU$oMOU9ZX|ȵU7M›MlI1e$f'A`ac5#>YsGѦ!Mrܑ:wzMGpֻ6Bx)&gm.,V-BRbrFK=$yo&(C_J>hCk@(8/JT7g?YgkF&L C 1lyr\ptI?mb< %D0'IuׯKM6f)nhDŽ㙋xc2A5r9Kp?6m yd[TDX-w*lSc៫;~KUelK!E <_2 Q gC?D2=[B۹}XY ْʙ 'RןgW_j֌hБuT8*.`z(|zcxu #FA E!7ٺQydTzI:h`#lM'CڀQlBK8Ch#o3Db/W iZ!,B$bfo;{Y2M1Ʒjh.ۼ`o_'{Ze ^{15Jp)ɎlVSM෰\2Ȟ#n;heY?LhκU4 $i4nj{9}O`>5K˖MA~0z\Yդ/~qEhw@ g0vf_.8Bhhk'VwڶBIJB;IФ5+ U09yRDb-DQ#6IRgTB{Mbʡ 6c` ,aI))(ꦃᒒBV?WϢF]{ ?4;:NÝB>!!>/hͫMu,9Pb.Ie]{ш9^eI!5S">G*b~f=p [Ր/9S71n_ i(\FZ>V cCgC̑S6{j~ӯ'ވS.QMQs68%ޙ>N`V|ފjm 2HOHL;>?) ) #O#ϻIpսw .3Bs@ Rq:PWJzsu]x/;H6Q&Ssηy^;7Tg>W*zQN-"g[ k6 2H%RDP :(<3pJ ޲Т ~~HZև((uG=/tk#<=Ux$T!(|á.d2#'dEH=0 !UC(Ki#""xyew* %2#Aɸ$Szda,`^ot}|?^%a E:n҅o3RZ!ěli͔iz_G+f2&O 섚*7L {>NcBz1"v)Bgiaah;MbE|d0 ק/p%TWT?hqo @7S8 PI P;& ߮}g3CAy~JHpu UAsrS.24FRW{@~LFL@Y(c-Ef ;",ur1Ǝ9e@[ۯc(o6'z_n,9R&ڊx4ٙ+dX) m,D!U\6a>ߑռy釚[ P0B뙋 jzeAh:a"i΄8=ԏ$#|ƅbqFi]Rۢ?] W͐HX7֠MqjjʝuNjr(,.5>q/(u]=h.ǃxKU<s_^,:,o?rI! }L&~4>oļmՖ: 5Bo7ϱS)z%J Ϥ?BT^U1'J2/Vy@pAYƷ0!v)Bֳwk@XobZXм.]{䒲[SQek/@ڄeE; i'Ufξ4ݏ )> y)nOa7п}N;Yoŗ&56bP%ȭ {`E.+Z$u#|H/FKڰ闋 W(ڬwՋT[VNjVR]ro}()]:k20r.3") 5.CUwr쌏 <)|Q <"o =p8NӀ 9͙̪ebphsQ_`e3m H~b3@gT#M{i邜͙J+ob`g8ESӏywYvncd4"͗&5w>CMQ}eՙAu+#b YS<{\©Cn lH vÑ_T(doS$n$?0Cau+)Dű(t5! V H(s)S-3p+Uc,ڂepBuNԿ~cmWfBR?Jsج{ PiVtf㉥YMw8Sho:;- Jb^+q˻xCI9ϯ[k:Vb4۪7B0a`+MG_zK{DdZoit2[C.ħLl}]+R-0Ơ0sv:v"ipbE -~!4S d鲓gkԜyXg֞ZmGk81ŒQ^'lT5rHsioQvzM 5r!lZ8}0zL PB/#?wbTiH+u%>Љ["lQY UYV%QLGHjǝl&]$ՆmlLLӻ)My<٪n,G+qʿ54WM!oq~78A.Ԯ9Q,=DqBf/LJT8O2#_jk\":4 $9j[;[ʿGe~ {3-hXܚ\n7ޘrQC|1?YEvNM&Og7':SDd* $V :]1*XecE E =)5@}'JIRi|-|CK~jc1ns:ܠm- FL9bm(j Rk똕UvY" M$ -.gwTy F<@:;6I]б[^ J?Q@MhBZЛ(n+5\I)Jn{aaK8Sasr4 ,eCjdB-AO ,oZl%Eo:_[c :ӄW8i-D;k4 1>]ռPq4B6 "|J/}4ŁG|0WWndq8'Ax9P$ {ATT{q spҚ SpRtӲYF|UTvCXzBqWM6f'gIy{j1w] vF}i YZe˦#%IF̒t@R24LD ck%@9Ɖ+ԇa'_Ϸ<\]{#}$ " br}m;:CzjZyD]=bL f8RW*\ICTnƯNYi*SmskLR(Jw~u W9Gbs9T9џIA: R-5RNJɦZUz;/:PKiD'vNF0t?VAƫP H_ J7$+A\NX@`1'VQ {҉, vWN@ȸϪ8E{wI=h-&}x _99jRbkHwisR$.^0b49M^zDr ܊'Mo*{T~5 / 5õy*SA8x/Įvg{2T<~~ P ؠ5H/u&/"{rG,,bQ!FJUyoI-i)KhOXt>ze!DK?6mfM',o>dn+~DQ'h7:\(wFPE spr҉]o#sִJ/{< -V6̛bN%c,{w0#ʀZ1qnE9MydxEuКM'[E勺ksIć( v[Y-GZ݀qJ.u5w^Cc,fJGf~1u%(硯F?]_7F) 5g0b5ɦLmSطnur_yF#ĜՑvGrUG]49q<9MNL,ICCesba6^-.P}-C\r$Q\ud\8H"cj7\{ iݮKlu1RSMQ@ٰA)-++g^#;ҫԉT4m`'9l`HhS$m~CݭDэyPhi=GRWJ,taŝDeџ˕O3J3!!^L7è:ژ-P6v:5/=m3' gK?,N֜usROJ+ӎ j./:g7E5CG!W_q l)n@WjM`I-~_1 ww "I'Y4rA?(} "Eoݲ%l~4{ML5Bwr=r2WY6 o ֈ=SO?|ģ}a^?u4Q[;Iǔ)֡?hǔVn'#d@lV ب CANˢz6n NΓI?{TP|K#[6+k}VNڟ#mؽ~'m+Q̂UN Xx@7R}0#n&o% ӶI( dljN6 e4dpJ)#H5C:] Oqc.WY{(`B^J tU~=|48ˉI;< >qcpyAU4y Y nQNV"/CԈfWOӟO} 6X .Ss>q:u3]!)=/=L՞E5&'MZA~ " bhXH]Yk#<<3cz` i{8:dچ,ig},V38>؉AFXRl?%6Q/%]NH3߬ݾ6FWj z3BHܳvg2Z q97)5TD+7hŚZSn&֩QYZ_r43DV_0鬋OヹYaeچUZ_5X-VHH̀DtدüH"ڇ3dH#-I g,$v2}ycBA9BWNݬV@k:Z i̙buwI,ʩobɛ "ނr .BrifjմO:L6*>@IH$vaR4C"$ ,MH/]~+q>0pt5jH a/2f 7F@.~h̾*( B[ g8O -#~Uaq&s ݴד3Ts rlX.S`LD;'C21*n_ȑNϢ4#cc1uew)Qv{bϟUUOW.xgZ׶ui/JQ)c+_@*Z.rϝ)dtp紀 B#3byVfB*,f1.fToߒUzbf z@<.0;E%llWc}9zX+#31%@4IFFtew=`A0;?$ Dk^SV,nOC6iuիA#,2<H@k$"橵ל,{De%&M5^e1﫶ŠA&0᪉:gхl&kWl`A8p>7$4`{(Z|PE E9=!D:UMkso4ck$u)}˃K=CAF݄5qA Xf0 ? ˗k;W˺%D̄#&]7ʆ|*v[k]$7%˨Y܊ё}ߏDR#tH5$9ꠊFdpZ_C'~gofz*,T# CY-_AB}eF_ E)9$X#P#<(-(Jxخ-!HܹV8Bngo4oU뢏!>µ,ʿl U%>׋hazCNᬧnoO7S,PM@aD%}U)%K5jpzrWEOuܟ/xF(;Jy:UQtcbstRh:/\}OYoȄ_ ´B)K a D>^v.BɩvD5zgkYH+o^0=P$5e,[cܟ5̾ iSB~n̉1 y'> 6 ύx?c (zJ*(J~lH 4}UVN^(04]ZD*i%w endstream endobj 308 0 obj << /Length1 1561 /Length2 8130 /Length3 0 /Length 9155 /Filter /FlateDecode >> stream xڍT6LH,Hݒҝ..,4JJ Ht#ݭE+!''(F|OaP{_8!6@ܝp;T_;6[( .W =/go'/ ?g3Nf!q;?xy5` ~gF 0M /ϓݐApGoLVIQox^7  =w:V-0GB /w[ `ku]Bq7Pۿ+`Y}?/{$EwG nݑw [R :sw_ |(p[z sSyB!Z0ݟUܥwZ7دY;ܽ\.OnmAnZI>A!Ep7wHnP_D@?N» wɴvwuk ZLCX n<}>(vf=٩0jvYtsf 9̅CO U^' [ VnOǓ|NiԡыviEKCl;uYH||lJ`,TV ihj,|FE+jlխ.xI֊S\jYDgMK_{:ZTQ̡H2nڧsWYo}(d~@:(}lEK1i׻GŴ*(Z,+rLME^o(K "bJ*KD9bFlTXQٽ܇ ;ُ\riwup7m Tx`O4M˵'Tbj z6Ŀl WgXK2l x-ᣫ8{<c+.rxٶBzlMYcDZ:.U~S9<9Ít DE@d,⮝J9*XYl\Y/yM`+uE)'2lq(fF^Rn@`7)^3ȂsaYb@Bjg~[lהy Fu>o4fr!؅cۆVKkF,nƛ)Ёݾ;[G+[:<>=]o0fhb Pzlt5CϔigUa Cr_SH(67;HĿo qJC"AUNw`[$pm:p;6;ӑ\uȈVצ^$ziUsZi%~ТtC >KXCK˄(Ub):| toBؽ(%" ט]*c=¸'Ƿe}0{tX9F#r98)uܨ0/Y$1]YdlD׀ ȟ{^3F6'0Wi}ĥhLٖߪ!uQ`'eMS+ Y ֱ^v2!W= {dў,1hywW5=NNIPuX y1[=E*F4UZPDo pCa 4QYJ\=-,̧#'$ղ`rp 'PK2T#eh2qˉ a( T}C_`ﶁa% ۦuUEV1GwZ,f8/F)XwqX) ]ho9+}?u{v:u4aN & |m{"<8X~B*LxljlbLZył(#U&h&KUĸ.\8`bzu%6ۣ㬢;VH\9(YHNhxrKlP<N3]Qyr|{9o0~ant&Kg9\u9Ln٧w|Z-`C9Vjy)y1=  cWj}}ma_7U@2 N"A}6W~uk/~̺tɁ ',f#LV,&ȱn҇dqR͘uatM"=R8"Vݲv&).NwWRЈ-U&yM·_67[Jegl_[PYu[Q~{Rp=t&å}UyLa;qHݜRj"Zaԁػ.N9]twUdH5[`էw e)FɋP7h=Ib6Ǫ6ƨlL!fm{T"'u'}_:l TBk?p&~cU'"yJmZgRp=#:؀&CG9*w)/3&:+XJۄm 9׈omk"FO?ܬYa(+>m\bn,U3m}vlήl'K x1146ӉQOE?NV\=c0$d@{}>FP*v1߆KcG;UL Q:r,g԰ *MazNRrL3 Q3ekI]+J(?BN۳`>6Wd2z41\mTZAF 9pIEù\2'pg %<&vu–ZXp=֦-hBQYUNƅi]Qcn,m׶8 g5b4 {! K\,Y ?'u^?c4 %@G/sU=QK -[vnAI<}Vyuns3 Cx~,Lu{'Eba,aR~rt-!!IRh/qi8|7[S1tkX^@/-ۄ; L9nϥN0AZ'DP=**h)BZ8"PO5Pe麞ptߵ 슅OkJBrS߷dZV2$V}̑^֫h]}CD)cq/X%jyPLszYn VL橃QpS(Ic]7dm\=A>Cҭ1ؗ ܃yF?|lwQ9)c:J-㑮8-VvN }H#s^kdE*$lU*=?諒^Oo8 z}ʡTWĠzXFxC_K'+=#J[Ma;FA'0ED\d"oj5Gt֩ ~~lmhj ~Ջ_A駸TXcR>hiGb5H ;ǵ=7.RG7QmXz^ү%Oy'OSPכvAdSIU/:|G_nΒcZܚh&TaCc=mh8Ve!9%oR54&xeP",Cm._Kax&Mg&3۟0~3 <\u!ɻxUNbvYLd#R٠#O~ϧ4^`d+W"z(خrS#4L+:~thR^[Gx?7_{+@Wm4ҲQtj:!1z9AxiyɄ>֧f>6E{?wh.9'H8;sNIumc}H.heŽIpzqv탷Is ƎGyQOsSLQߊn/~:{Is|SHΫ0JGI ZBqr b 1y'FkDjm9KbdcזʬZ.GI5G;FO2Wk^Hfo&F-f NUqz,F@gPڄe,b{Xɰ?$CG\Sed೮WEf_[_+X`0čjw}apd'㧻fI)ч{|_5q)0˩ ^g̥|XoSOkA;YT].!/5aKgnXևV|NS4iIKHg~L pvԌY1%^7:2ӫ&+Z9nLN1!U[g}?aŊF*'+S /GE_?.8{3U.mh@P[ܖ_݆l8; >{ vP&i8 -~byֿ3|a /E[\lI1m.*M 3(G[$ɺ]@2?P"‰ȸW-u[XW'')>aV"G:Z̝9%h;ϣ8ͼȸqdH}0m`"%auh~&ui V2O諶Q38!{ѽܲ_N!JEE RcKˋ+6#{<5v_zċ52-k9 'wT=o~xq":2@mf ˀ>pȅ{J+"u;҉w<ƞBsPS@j t.Q&0n0 h]2Xɹ1괼L:Ok%jT 1QW%F{&AѪ.f(aʴ! I3s_3.?8OWWZ2܏m yX'"M$1 ${?`:TO[ lT6t)ޑ{`_^EEaZpwkGrT÷ ੘/f#UTLI ;a3JjMZenNܦRlgXtj@uɃ!37'(O!'l.f#`O~쒑m6;Át .d R0$JݘGb>aɿqE͖a~  ꟫3@х;M9P̩.$LA-˴Kg62?%%JE'a^WI.dK\M#LZHH@m'e 훷$ ƱVHp~1lh[  zYUEP`YDmzԗB%g̪$_㣐${աVo(# 5 0U](kh&= i#z2G9еtŀNۖlPý'GA^pSgC~9 Th^ɐnV61Bo6JW&, uzbFaM SOwDZ9zE0JR'ab6?q-PX, ??V{qpӉ_ufF3Ϩ-O>oP?/m:j2i-ڎ"c|Rޝj~FHX9Ϸ{d}CU2t_yܽ'?a y$vMdaqLU|jOQCʞ@vG,LY&  lgO J̑H _L}9Ibӓ`_S[Cgcq^>PV[ҡwB+5_$kM"ry >[t;4wo?^āʷ5}Y]\S'Ǡտmtcd1%MLUbjC^5c }5u(z7%̬^VR" * Ҽ燻Rj:}vBCJ[D ޢc/E#|df2\IUBr&RJh`Й&g/\<_=Sѱq&!| rT_/;/ NE~E[vJѤY.,GDŽ<LVlL/<Ȟs4jD~>xsO 22T-862t%A&4Kw8lզJLYѯ+' Ik;7c$Zl|BJX1i狑bp'wn4xj~l3gr |[sl.2\}:a"e'0D9Iv9_z'DH--&F+.D endstream endobj 310 0 obj << /Length1 1462 /Length2 6354 /Length3 0 /Length 7340 /Filter /FlateDecode >> stream xڍTk6LJ#] CwtC0--RJI#J( J ԇ{Z߷y׎{8ٌLUHG& 5"1!QbNN38#PCk:} G"w}@1PR(%+"Dp(@_pys!=Ppgu?<^PFFJ9@C>L8 /<.h[rV.7 ~Q=` s\)LNh?0 !0 CLu0_`?q#81Azxp3 j 0 vF^ۃ}pw5w`1|?o (u5P5 &:\=@OsH?uE)l{t`EȜah$C\0 V9c<k`Eh,ߊ@Aap?ޯ0G"z0(wUlPRUEe$E@q q( ߎS/:'$@/7G0@^4 ۉH@[oyf[{ }A/FàpKpvO!ޚp5Gڽ;3Bz9Av}x_w vU OTBFͿ>I0=7@XD_(_=_Cޞ_:ith?4@]VJ B]okAg(ƨΓz[~k# 8,y13.uc7/(V4xgY/0[m;΂uOҽz_4Lt[Ly=+" ./ir"ZMLI꒜W &'څOp:M2@ 2Qߜ8:@U~$R͒hd|w/Ff#wc\կw?b*J'ؒtFa[Z7۪HawH=-~[qc0do74$ڵB I#lJK% rTW(IJF.}^P}ÑCi(fëS0Td31'\S 45*KM,;̫FyrŜ Tr6UreAFRZϻQ[ӧtMâГsBm=<8{I lٺ|Eqʍ /frc@H%}79qey C9 :0ǀ ?.+?ąd=֡ICU,awGR%cIp\K T:]ПEԘ::sj2)&ӝw:xԠ-:c Uu ഩ۩"NCZNy-}4L&%M4\W-$Ǥ'n% OV7/ {2 /oq*1_.`uSg^jzTpEl*T1%dЩw3kWR&VK%.eLI%3{]uVJ?zo|G>/K_KTkg"ްOj泾.[D=&a߂͖ssat@V59iGa﫹6Sx#EDU91؆f3&s+YjJ!&/=MJ*n2, جL܍[b3-30x.K\; wӖ 1 _ e~΅3ԧ_UUrD=vkz0O[Q=W_NC7z'4Kt 9mKsNs%1PmE <YI`_aǢT ǜ76D#n`UGY I |{ ZᤙQk%s+ Q@dܪ-^b#e5ПX0QY1A~_rT*3]A ggq̻* % #o '-خ9 3{g҆%elAC%qAu,Chо_GPFYL 6HP)>M9F?>=`}c#z[F,vTujg3n] zQT9^mdG 3 b&؏s9;op";>|q8Fa~ 5y!jr+RB.,II;ɀfipgV+9wxMg\ь9p+lp47D /2`G OY#{61q tyOWlvtڔ5fi.-L񽌲Z4+Qߵwc,mL/[+(fh[~B{7#> ᙑ1ReQ2cmlZxM!-m C$پ>2kok2h!"HL$|5qp(JIFlҭUzIcd`"˹QwNҒ*'F!iFD%Z3};9s5ЁmWr&ڙ%qNWrp~%]u,R=hx[fzOqTlrlnQqzoiѽ4VIKv9WpzvߧYod׾|X9}QO1~ 4hf@g[*UKE׫eof~xשZc6jz]<}>qćT5@RT|SHK܇(Q3T_è};'w)qQ,jC&XhbMG}j#{X5GHGj@kiARU3Qya;7 U<];OmtЯ~Rl?ٲQepCd(~E G=W"gP$Gp$J4I ro{j` 6b9 )) e*:hȿƺ{ӡ䬀-y#(ѣjG@S?̮-Ť•4"88SxݝذݑGZzXbÎx̔T!ИF㨌yD[4썓b"XUdjCZrI,qIid֫L|QJ'S:c32{yF*#W!'y>4ӫ6KZ&,fb}y`&dsnyϪ((]ۤKF7Ru!>T9eOc@O0>(8ڷၐNi' y?塓Ozҗ!ƅ N,Z#&֢/kDG0v+lMoÒQSjY]g;JI($LVy[GYS;6'7 ~N #>z3=ѽVYQer&PX~ꔄ~mCFֳOWE#]"H?kvRf}l { cܶDM儒yrzehyjX& \IW*lO#4^ldmj̝0Ԡ7rMtZ{MHznbWްWΈ".rYϱKHs*4 z9x_%.}x5$ ͬdR{ᧈloQe8e. /)B/HGVgyDwT[`G˭iɸ7㟠 뭿d\6!.3l?X!4x_ )>P{/ʴk0FrQv.^y+ PBl76%~Ƴ[RS6Gj7ג-U =K0V7b[) s~km-aD favj:]8}et,4ͥ\?5<&J?MH[&meoi,~+h\a98&!dvCHa"5_ {vg>?ŷQcsPkؓkҨ&WsC6$֖L\5g H.B#J 19sރKD1C/^v:6=kwqs:;uɇ:%CYGBT#z⹮4m-u+^I׽*S%:CzU'[8bniXwGG 4 |Ė]OtW.p'Bᤓ D/(K''sE(GyF,miZĖt''xuSI_(+l-?5j#DV!=M_U2"(!`zRyԴ=|cA5yLDY*]vY$qx<d(l<]uےs_ Zqy&vg//# kA6#&8Ղd&׵||MvٍގG ԦcX Bq"#ɮ`+k,u%2]m󕺁%$דŖ08iT-z\PQVnTboSa(Y 3%oiBd!4<}֮yP^W sǍQMٙ]= YjUۆkl}$f~(9y2ǍMђLk媤`\x̹䝡ry֕AtHHވb͙apv^y%hbB\#"t!C {wDLHP'zkOhkZŢOxf1P"!fz/V3<%Օ~jzgS~.4g"l~v'>1F䑱ӞR9jIK>g.^r^J]޴ lgW 1 ;-+UFƃEtDDTU9zW95gg_ԌxZ5b>]kdUG(U'6RYeٝFְ}ME-BRϓS .H6:xGR2w͡P6j7GaCM1՟Buٗ,=MK|Vovh5'!W$lrDZMZ`e}wroOc濫l&M NtYt?S=my^>le38> endstream endobj 312 0 obj << /Length1 1904 /Length2 13399 /Length3 0 /Length 14593 /Filter /FlateDecode >> stream xڍP ܃  [ {-ȽUWT ղݛBME(kof`eH)+spٹX9hh@`H4N {;EH9Mo6i[@dgp 'I m 2(H4RN K+[||$lN 3; hVio=^ vdcsssc5ufwe`V 3hC2@4V$/ x3؀̀vo).v@'[u@hW_̀_ lbffo`bXlUY%V;`bgG[ -M7s6s9YA6hde̥mmv`g?9݃dgfd3C(/w̛ % a@w3+? hy8tra~`xY!y9`'׿88 30h C ݿ`6~?e6av6ylrJLKSR`aps>|'ZL@w_*ގ?J\ %Tg y~8?o)ɺ+ob ;m]oˡl"v7TF+A.+6y[ ;˷Agfer@`3?VdTwe}z{\/"?0m;3{?v`d6o@?gjg~KiX;!qѼ<6?L!>?H&_`qAo, ^?SƩ_Ʃi*hlZ Aotޖo??NFn;/&/Vӿ ?_ r鰷Zmi-mA[=Bηr  }k_)og'l)?̏ۀo͐̈́J Þr#e>JZR]5TtYڮ'oe!ݷ$7{I#CoI$,uP#B3פAڻFS&˧ҦU[G"xSb:sM@ieA()ccpxh;2@5p:)#4D" _~)(T[ OS9BiH ^:+* c?7OOj eg/sUY )E؍m䮉YTVUe~?%4#Ӿ鳰ؑZ8Rs.:BASB]j{LN=g 5q&X6S,w? U}wHOJNZҊ^4>Hg $1<%K:|\j[}BwBkһz+͝+/y+`b(& *c07h 3ʜfnD2΀;t EvEu3,TsBo/;29 UK%x#|v_ I6vILWAg KQ b3m4~\>FB"ED`&UwDvT EdZu%ʁH 1HX%Hi|*LZԫ64ʤvy~ <}4|= 釮j{KAXũګXL]i٬wHzW5~PFb$95Tyj-<,&y].dyb]Ls0hRH/S6 P:6=_p9hc>f #~_@9;-Vy?5#mRsLGXW*p%@R䤢!gJ+G=QD3HUVBR^kS_~EFdo$:[)^)B"{Bu.btٓ&h0&Ex5ZAz.s*GJ%Y#!&јt{e5m>!鯽3jPHj}\Ӽ,'Ms]gU"WX"6 OPՓ-ڹZDڏ eP|pΣz$aT{{WbVF<8Zq#:WTX @̣Xnf++Flcq|="5Jo`XԎS~K]'.8%Q2Gi^O3[@ +y}*@Xi~ƾV$1ea5~Wz }XIrYwk'\RygTk5af{2bCn+ǻzDLKケVRO* 橐O3ge Ej<~DrFBCmOP;7W;q7>A7@߱{KId0:Ϋ$X+2I^]=5ܒW$naV]]|`STK&u7\yǍ}%y̙\톌=#Z/,Rjs ma^1(8=!u[N]Br4Ic{+=N3},f5\GR(&`g2tTT'Ib_%Қ.|CQF9up:Ï6![Ԧ% HdސjKDl[l:uBY"2S(*cf{nMxrרr3 Eo::Q)[)^H1uAêɰMZEb%eP6.0(|"?ས\pQnƌb¥lF(| g3~ak顪 7sd.]O,g`n@O^,*y58SF\pce-!~B#/YXSƋyQ"jgnNxEL7I;eyLKsٛEp ׋%I0*hT-#Äf%pLLµ>\1CȎľW)hbVb_n?# z:w`~%bmϩIŝ:BS@IgN+W⼢"8Ɲ Xi4ϣ"r[4`ԡH PHR-Ka09^|1AqM޼ױR ľ'\ y \f]b7}t86^`9[ pgqԿڄ7 UG~kڞ 2 1 ?jc.n/DQ0y[>Nmx`b &T\P`^$P;=mU\i^L6<; D*?E/5Ro]GIi?/VT9#8Ӧ+0ka}.g o[H|Ե&I'{B㷄=$?dA Lk`a ކ#ZA:钠% ~KGa/_cG/k#Y7o22jpZ6sB5hUB7L}tŭkVs]_iVVPtXe'қ8aJ)ZM9$Ag*7c=vht0',*6Oq{x)qVK *cYu#А4 B^d |w1T/wdn[VsIٰjfYpxVO vHFVSk\j+7Jcx~c%Ky$w|];`&z^|n )S'N>6ҩPPlLeLpc|JQ *=ՂX2xfçkz1`mxSl4ML&߽߄nLrYl%@aݧøSu~:<'PC4 |Dn5Xl1S.Y\< q%a@biiOhٷZ5q^`oy\Wi%7= Ls'$-c[VuؚV<ߵG_#ZSLVv{TQ͆SyLQ?N\*9Ŭ؈(oλcx=P~X9:ӈlaZ YF 1~^';0@=C/ JP;E[ *5woJC4BT>nASFt+C[ ""VeqzU|(4'<$[^xpj0)zv@eNf Q='ڴVi; Ӭ Hc} uy,Me5Ft F<*!ْ0GV`cY)~ÔZm\ijMcw-gi `7%\QqdH Ձ7obg2d)_jRU+N! Ԯra0E#**ŃjšJRx뙖ƐW7D/yeOgਘcϹrxVZ2e9^C2UHTURN(YU%[[Ywڏ!K>‹r2QazPm?8 bWIGUCjS5v[#ɸL G|Ԛ6.Ұ h ?@@ ^Av}*mg!V?Ԟ@ClbQ3{Y7O7+-k2ZR4 rGLEa~q;_v|Vd0>&=hEHod X{Lj C #JϢ+az0v"╆ +;f'#"lQ& Am?g)evviipYQyܟf҇(++ՉL+υw,aE1vL{72Hm@TO0G&|E }\PShJüq./NQֹsGOaqNCǶN~7٭V6|ސM1EjueAKLtyvn>, ?Ê/0 )\ +r]f>:,˝ ^5F#En2fИOF%<\ )Ư9r6^u %$aߴkíҸڋ.ۏCۖ#4eUqh9GPO}2wAC-XXPz&kfAh0 [NgQ{pL.I {:\\^ܟ/'uLl=/1Kβl`1^3WԎǛ6D1'(\ֹ<+*MxЃ;觖Y4H }}/Щ6a8_i  K8II $SJm.E2+̘Q†K*AS4:&!- NΑeurxi+\yaXҁn/N;G{L{Ch"JtG徚Yqy.Шҋ(RR'I})_K*J`Y-qD Hc.8Q=VIAX zzPƪfzv+6.hހY}\>ynL"dIvGڳW z폠1f7e?jgpfȨ/_AsJ:l8)e5MRg pL8v&oL6AWDt9m~`=9x5w.-5%M a#x1aizVԶe ٬@ _5yޅ?U8b!2sDd) 2~!X\}TEWׄ z8@.xU8{ .cl;YUoSѿ3:aQpɖj+̶N2ASB.0}v>9tE ]$ C%=o ] it;=A{vߟM]lI}ҲL?} wϣkHA!Le檊xqbˤ; |? cٞ<; y/K'uγBP^=Rx?RŒYGvcK" MdΫs*Xe6ԡ!g5 5ysn0)Xn|"v\NaKl##KёՕNUG\4;p`U|5 oϜiY%&i *igWP;ŠN8P1MԄۗ2ۃ i.+(d' ˭q(nBh_RW Y /J&񯚧3>cy>AT.J4| &.XqJ/%3vU/9*+XBѳJ+$`ctB_dOb_ pp"+1]hL#1a"!P?٬"OcmJP bB?soBH{Dam+S;iPqϞT>wAr UO*8Dsn7Ó&Rś,~O- PFE1lgKKku6rPՋ47)D5Ϫ?Y#.t9P8 A3AI5du~|8_Gآփ9Ќo~3ÔQpBUeт[Cx\/fߵm<\:qx{1!I֐ 9zZRzEEi;gjy@4Hamxbnn?r6)G p`T({G MJȍ<653@]S t}%3ˌ,y!}De9Sc }لAF)fDSsFAV/\U>I尋,,~}Uxъ "x~beV+,ԶV5ѐH51<$r˽n9 ;|X-({w[ ٔn[Os;P=b\$6tgj#?a.fq:5Sl|0S9zKM*o4w1LMU<&oqS=j܂ˊY|BE~}]SqH0Q0Sɗ2(5O-]]:FhwtXCծi5Y_{+TQoA_nC^0ۍBZwg`c0bKa0?,O Sp2CsK!wc6 ]xH.u2ԑzҘr]I2p]x j_M[6HŔdmw *=#w &+S0PZ3G1"&c0ekшLx#)[OBF_M5,͢W㉕IVd3ڞyEԤu rfYp+Z&ܦt2:3Wpꁗ(H$o7aqN H8,|7.%S_ѽ%AN^Fc!~l.|/,o lۼƠ3{0Ů\Y^W^X1Q|EP Gm-b]8yDĴ4f߁ LYo6qW}"P9 yR}Al>hswR0$^RKὋXFW n ?ʚm{D)7RzʹP{9kf!SO{5USEֻ6l ~ɫ<4%w3C+r Y7t X~K5 'w'09K&]L z1%xUͪeJd,Kv2zMoo Nn7{[M587Fo?@Fn0荥e!yA} `P!B20bBɒ3R?,?+[^xQtuyQC b"YKoݞ$̾=] {-_T6SYÑ8T>]C`-W f#w^IA #;XdפMRzm7Ze\2~xT]0itQ\V9a?oR'CgyJq]a* ~6~Pc$8 tZ/LģIawG~ܜ%)UST7&L8fװ+ɍv&C6Y'5ޓ^j, /z!̶7^+'ß_: &1=> ~ihO<3ebCx@J:F'l\<DS_ޑqRHf)%Tț)-A4L$lfºWb6Z񘬥D mY\ޠu>ls8,F?U@XfPtO)ΫxEr$IXi3u:.teM % ' {Ml~9cGp/Vz>Ayq F7BrROwxI2c^~(둞 lˏ^s5 /ҿ5BQ*{cFOPSSlg%.: b΋tꊇ0gc닮+g-8NS%兤B X G䪏`@(sxdîY'?𩛴v;\k+P5^s2ɌUm ^ǀ '>]Ky;jXL O}ˢJq;-M<^CP|=w &Ew3S$89 ]5K*W<Y#%&O%boT1ʻ~:\ҁee`*#SGgwm9;%=ig Ki_O[j޷!Ϭ5YxuJ$i%b?<;Qmk!~¡eCL#֍w<,b×[]bq =f^yFRE7>%K…#S &q K9 s-SB ^$\ U>)~QOFmk|S]W=pvKfH-ʆf8)N$YhŢI E}#.#h&y3^T43)֏ESߔQ0Dώv/&44ceڧ)relwbϊs"IGev@t)c=FmW1yE ?QR~& Ib?MřJt]iOԝD p6׏hfV0R*ȤeZ_٪f}qᤞ cG˖%y6pɵ,yCbrYPi2 B*YEHisޏW j^?Vr EZp[}.惟8?: %tWD2Y9U.e׫O&Qg.W!~ )/K+ FzC!l(a'o^N4_g}˥i#y52noW'xqФYoOm`%ldSmBMZG%cw;o(MfdJ}N eKrI:*ZngfDۭ)1E{c,dG).,g`3B?zDF{R |⛰2v(BuT$PNㅧMpc?tD0n<&H~gi0`&9IWǜٺ*dy7|wFLCnB{8Mų -}mYFN.Ɲ<@j1RI^eXE3bRI>_0t9z2 L'0dfG0 fhp +Th'mx} )'O눺A ɨ-WN=}(CM:V؇F={Voh܉:Qnk%QTH*@ODXh1:<0(o/ }ڶ#=íNZ&Ĩbm+7`m^l_S֐>`X(f{qJSpzoԫkSw ?hl/dIJiI¶*Tvc .΀䳓)AǞԴN#^~`$b4@t%mXv=n#p/'XFBL \~C3zhɩ}"-ɫtP&Beh׿;/"{`bc!m52!ǩ6?3ژaL:/%ȟev!0t f:cxbZgq&};T;V9,~":hrNUm;UU^$nAoY6`0ǎ ~"7b7Bu8軳 j=x|;Sg-)~P^2s )@"A0Xp: f(uR%Sb0#R9T@8(Ay(MS϶iR+s -" P4ӂᵷTĢTBoceLj@SgzE)B"Oy0k wxvr~^mwjtI$Z4s _/tϏSŞVŶYX A&}n?*ÌOQ/[Aƛ +̣geޢIb!e w( D8Ça&x~'V Tavc r;Crh!^$Boo.q-95Sy 03fH) 0hZZȢ U#B0L;D*=/yRzluicV'x'7YCuF 64\05F*jg\qrtL- ̧Zaׇ+7`rzڶ|i{GΗhB:'Ѣ:lm *GFOtdu;pN;Ut-c)vp5Ol?l''wû/OB؈( ~!MHd~$*]_y% E{KV#! i7PmD[ƳqUBq4}4{<Ñ`h xfkP6 ;ؔHCkMq"ލ 1WxƁ[]N=$i$\9&yn^[L^",}i&r!(bZ\/K_D;oPڎ}'J6YrmR-ѽ:r~D>+# endstream endobj 314 0 obj << /Length1 1406 /Length2 6154 /Length3 0 /Length 7106 /Filter /FlateDecode >> stream xڍtP[.M;ADj$(%4]zC Mi4HA)A* sޙ{'3oY箑mQX18P@)q PuF7E`ܑhr XN%A(3$*@$#Єz"8@BSk]}0H{,GLRPPsA`0( b.03 C">J!ź*JHxyyC]{aQ0D#08`>8?GozA1Aጄ!Ptw\?zD $O%B~Ca0+D8+ hB<t~w P0HW;D_ik]\(;կ4p>&B{(/pW  AEA s[M@v@ v;b<~o 0,aDQF @@N Q>ĭ{Fc?cSWG{5$e4 G8;.Wo/Z2€GC}+ Fw =~3XZ@Є@*Cp[uPz I`7~9!߳ pFw_/! /a`NWŝ0?&;aKF}h`hm@1I޿G?5f9@B_ia o6j-xDÔ^{-)_N=2zۥ5f`9s8꫻e|s5w7x͞6nx<$m=QY:b.g77]F:r!M-o^g1q(n.bl{eXs]bSӯVn9J2;{-2@3pSU-^MiJ˧9Et~LF<C^g ,V掙T,8c) k~p9ᓖ}ċ>;Si}PVQQcjBL,1IIw >l({gw=Mm Q4q:s70"99gж4qB]xfҀ i[I (rn=*Rywd?݆s-GH,l4k ]'Y7n@1˧òG?y5SMۨ:'[LoLڭv%}ӋhVqFs6?m2Q}Gp*;D9 JO4s4ԀTsur'#(~X=9g c!p^|!Ѧ 3~FK3TCÛ~@Um6* ԮWWgYY _OW[s_%x G?n5cUۯNrRL-'f55ǙX8ʿ$jRB-M^ț1qUѡlmYO!C[c7fʍ7 X(0mQR`tp!:C+2MؗcFV[Jw)0>rkJulzeծ(fSOH(,ܨ9@=8FC:?E͎<7&Xe}ʐ0w45*i:y]/<ߵm?;R|9] Q}(6E_I&iZu8s $ka~Sf;ڗ&nVU/AYQ0rx=[c ,ϐJtJD^tXVn:fNiP\1hV1:'dvA;7['hqV (6.[Y2M]KqJD?2WݣYq}} A`Qmar 4[2ÆVuRV5B>z:r?ԙMu0`WRk/e9t3Jo37dh&)mR Wnn!L 򵱳_ō Eﺓ\h./BRqVmqzUf)X㽯l4*mgz$%f>f@d{yX/ٜln4Xd]yZ[I9Rj9Q?v]FuFj$o J6k8V*yf({d:Vz>t/W FwR ē̓`ZHrRf7amVxTd,SQ^8ݭyj `فQ`0Km)ubrΗ3>qM?~^q%0İPhTkO\bV}mr¶Kю*qOK4qZ:@A"%!|4TnJw%|yQKe3M c5Gibu[:T`:ec}A[lϖ/2y(ɌH,MW?F7V$#1ix!6aE`yrpYer2ݬ?~n)t0ӕ4`r'Bc?xyW+'7buQU|zۢEMQLЂ 6(K.'˹E|@^q҅(`Lޓ@0␥rwrX<ܺ=."8OrLa?G 2:lx̆g 0];ۡ6J_a6 r Wprϙ/LvQ)6T!aF&`c3OǙ>^)Ƞ= T^fEP0&0 vcEKC40 Uʻ_T=e‡lmkf< H& rG#tȈ##%6/w];#Ng:;yLu u/<$P,Zgg }XؤGٹ֪z4mW{_Ok<Ļ:ԟo7L(]H".12X=<&洌 IVSX (% win0j" W `0*3gPvd/NhP)ys\W=*k5C>m[f@b6Elv.h>u$Ie/kڍ/MoE ES Q ko_j{Vڴ+|GdJχjSŹ:q\) $)EpTOğ0Bjx9>ʜU?iU`&ycHwhAK,ޤPeu_` z`HDyxR6:u]䧘sE/$L|VhRV&lإ n/A"ĩۣ֞" CEܽ +I;6#?$۴lӗ>55B]bW)tnp>nL}M &JWc񘥅&'\KǬ=M5qFlg!Z"db/UgGvA> U'|YȟD&6X"j:JK#M->$[8m\k!ޒ]ӣФ՗],n6=cL{/&x}"0Z\F{4pkFj8V'1& >_h@;FN"el4յ( 1nM; "}$=([hQ'>?$r%:0f*tsr~~;Rlz205[-[&ulvo7#G`P$mK7YZuoVΉ5Uf$\MmA/._-@@ w*%;hk9<`}m4(Z][7q%_e -޵4y!xYOEڥL,\z~W hז]hikĭ*.9E:p,eޚJ <>Fwcl6]7T7 sJuQ:7{Ù qT Qklkt܅[Kn:ʦ{ Mzdgڎ3;/2JWc"/q-< 3_A}gqe 2:lDA( EAwh1u5 = 7-e+q_})һ w}( aqRHC]6V]X20xmͭdO㪅r~2^3'[(=Ybtd=;2lN ReㅍзüWK3+'3_*NS;Ծ߼xT*v!f7XXn`!wOJںO֧jnx蕏<vAbok/ֆ6>!(%7 =/'-N̡VPT/G{8_]Ώ 9 Zs(T1.MRyWN_zVMBpa y2z^B,~rq=Ik\d`n'KuJK;fCt>Dh"m6tתN5]OU΄_ @(5Y6@ٲ=tM}ˆόl`F2)&o=^IWxMLj,\t-7ZheJ$/fY5׵;)=tf[,QVZuоoBi  zy/?P^&1L[yz.7>Zt`tDV\kH2r.Rب<*n2/eݽ-SHW{K-Hn$:>K5nJњ?fؑu<ܶظ{;7 -5wR;ݛ$-*`\م~;NefsF<C>К{8y1"Gߚ7zI3|uBE~yAFt?Y_PsRo(qJs.6<:WP}'%;K4 YD-}W@͈nG\Q`F΃)`|9cu>MteGrW7\C$FJbt he7FG%AO.mH>71g>.69v"9$L.@gyXxk8Zv4[hcy!s ';G'8-/w[K8$NԔ`O/a";7Ւw|Ϙ1O g wCtcFYL?Tyv,qNw⚀];mwH-==Y[TCa\x)vo_ R8~(NYgatx4CAͧ4Z:5YVGGKlP6Ph'1SwLMzp9cQ endstream endobj 316 0 obj << /Length1 1640 /Length2 8919 /Length3 0 /Length 10000 /Filter /FlateDecode >> stream xڍPj6LH7*!t.twwKÒ.KKwwHw* ))R"(-%-|xy937;\w=u3z2vp"Er* efwBB!q !'8L_rkLyoT=?$( |@ ykO';@ pn>Nksٲ@""B\d\!N05z5u }+#&c;Hs] & дvɌSGzYC-ATZn؟p ;_޿9pY|`{'(΃Frav ̭2:{Cغ;!<'oWYf'wu;Clgg]`p/_ fgDE/{?2  o[G} (A n{'{@{@o l bNހ?cGyu9dNV p;?N%' _sΰ M0Cl̾ ?o.;m7!E(5 ,{ B~55;'ժ Cp? r'7N i$w@`m8s~l]}TY#wGscw 0[u ݭ}p~x1^yn WO$U J#a W$ 5xFk usG{r;ݿ /xOZU;޽~g[ =O_pw/c_?6bin+^ʋ{8aOc>AiEjO E nMg?̟m45s)n;$ݝΤ]P3A)2ʐpDѦ%sc&zпRQH5C2WZpMf3 >`-XsM ]3fPM#^y72D2@y$Q3\*&UPṗMgPLO^wX8#snc*Qgq2GxP%?/T8`!!N|YQ7m>rdg-ʓQXZ[SnBâR/[ E(S;$+\p!,s-ycEE]HME"Y:Q$]ImKx=򬚔6znREauN"RxүN3&9`+G"tB |;g~6kt&A(cTğtLY 0rIhDA0 i; ٯh o2vw[#I:32-$_`TϒkBiڱ muÄEf(ndut>2u^}9dޟv8=V)uoFݮԝisg'WRC3(g=']to+q@rw"k-i*6ط?0-$Ėb\?T4r,yQ6I*uPm9`c/C/luаs_Sa[]k4]H磹2$_?]h}g?qxDU4ߋ U!"2}kk!Ҡw9Z u^^ @yfؖ T-'aCD$8;#:g=@Nc>׵7k|jaU-M箛FN7#}O$eQCFakOXa{WURR (joB#PuYC!_ڑkoė.lGp>{>B< +b](lF1ҾF9rW=WUx}NUQzn#ySv 7)xu7csZ7BH9~p]~o<{muY`:Y-:WT% {> CGlϟTs?5tf ;"(y2rϥsӓunq(҉VnC17Mo"`e!q[k /&&11Q SaUw:d#l8-]"w!J|!\) KHx3r5*'P R J0jc{J{.^Ċy0hl3_ٯ {T(eǼ$՟F>#fp`lXzW*OXk*g >O=_A܊+je!L}Jm=[+?{-2ލ#^sTJZ*CB1\cMy}.3++@׊{hm^]e̟u-r&$K=7EUnZJBOIlUE}/I,ɵEa+R̙Wd(o]RTkr Y|ݳ'm W`M|0r\vLG3ßA*ȀxJb%ev ?"Ocs}'a!Hrri"]Ly7cx=i*L59"ڕkfg~Uʾ_0_->UeF0 }G[Rv,mR kсޏ_>;{n eO k$8?&H8Ay>K4M JÀ{HZ.4꣱[aLqӆüoL5(w-oXt}zs3g[1 _rSI@/d+^kʿ#Rl~p0j8>\qbB'.q\##ڬ@!wjV{U X^(((k: ?pI-֘|!`^8~U;]^ZѦV̸p:*|pE kq'L(m<#<tk oAhI'FkdwC,pciJdN7+-iO9:X%xii پ#Ja}e(=س֦Rg Q<20tvJo%](qm.eC>B7I)a%fryj40E[)űx|+W.X(e,r˷s*?N63L5qx8|X[HSn@7]Nw3hn_ӡqCxzύ ,LFe}gq7%)XybwE7XUV;PRߌgj[pZ4a6w/{IHd[\􌕷lf`Q}5bS}Wy 8sk+(%|#ϮO9Z_D څqFyebD#+>%4ݬ?r뭡$yA*.ɲuWqLԞ1qޑcU"T6/<H%_[<ͽ?M Kd( ]hhʡosGo4f-]1R6S23Zc& '''pedp*{ȴ' t5_&r PP>pcIy9S0gYF,~pWty3PkQ3Cg&@&W\vaٙb^KUE`Oi0߲'hwnU[#cSfF'S{[EvdLInbᶮh55b  ,yRqqKKxLNZ7F2ё6٘jzTH '2nMRH뻋[:ʕ֯q,Si"g2#[np= ,;d~A!.(4LJH!%P>P& JQ!d r) yN44]z}v킨JL8y0mUo+gqRKWfmG畦_2T^/??ƹA^s -ܽ훡ОSl~П}y[^heʧsA F%KP ^w2 WBkboj6CDuC2AiA7q'jf`C:6kUO>KQ.>?I|Y]"Jy|X紣Uञr9dk>t:Qd/"aXPAk?[=#_1erگh:\]ugt;|WĠV-$_itz#%J(,>i;ByK'i"9lܓprg!?;ln+e:.)LPuܝf+땯ਲ਼c}{˳Wb˗ɓdG)W™}dSQ$ PY==>vF]_Tr^}^:şo R&ـ+hśK) LݹSvӭ&2= W-O}FVHp)(>a8Dtb7XJ"Ǵ;߀1v+"lN SwDN;a6^ܵ'~Z=tOj>S\h#I3l>$rtC 4f -&p,\ls|u墳/8cr^O,Tkx3њ8} j A> W(-Su@MT&em&֬tGCzgAHl/0hA8F_K&dMTeTM/$'H49ig[XfR O'l92fSb)9fVΧ:Eu*XwfIt%u'.% rbU!\- 'xwN),~vzQf} [P#g$UHKh*;wKzEB4pa#$U"Rv.؋c삤a7Wυcl;'3-5d[4dWsARX,SgD]'XޜeA]Aͷd;OJe 7dJaD1^`*AEMޖ>ޟn/I I%ngbn H{hd6wn+4%= 9ޛ`'h*xsm%׫ĵ﷛3s+_qg=ꘒٔtG?u3rmPeKb ΂ mtM[CSXlbq5R~UwJHm endstream endobj 318 0 obj << /Length1 2726 /Length2 20524 /Length3 0 /Length 22061 /Filter /FlateDecode >> stream xڌPX #]3[pnIpww  Nnw&սEݧs %US{c  #3/@L^ GAfbG Gtr@ h66 '/ /33Nq#7KS<#@ G!fdinG [@h b41ڛX]<゚Łݝ֙\nbP:܀_ lgGPt[jon6&@;g W;SDP(:6ۀOm,,/Gv621u03Yr..#;_F6FnF6F "7H(@ 3ͯ~UYTh +>qK' Lw`figj+ SW&u;KGW?& o9:&Lܫy:R2vwZA༝܀'W"8 hni;H 4de Ͽ@ejog2J+):QQ{7; `˿/JFۡ=@_nL?C/=hߓu67 IWF6&ݰ7Yhjj2.F3Β@S%KG]*;[k ,G7k} _* hK)agbokX98FNNFp̠bxd]@G|fNp:`%qF70F& m\~yL".foXLҿI7b0FF~#Pp(8⿈obW@쪿]7F vĮE< ﺰAelo*5,+{ULE g&6 wF _zGW:>J7Ao fd%㗹l ? ȿ@ta JT?S@t @Lvƿ.A?"U1|qWI~A?ggG~qM`w!W_7˿sKh45/W_j64jv؜~]B"hk1et Π,Aw1r1=(L.N?fTXw?|Aw"sclA= @P~t?.=oF@nqބ/Ī6Zߝa Ůf: SL MUVкӍHH/ʶQK=LxkrۣϓAn$DёH!,ϳF5d x,E+7R{G@Xܮ^;iX_f)򍳿B0E;@A˝x%M=e䭳wk\չWml[ U{޻ӺXwMdj]; }J ^j\&H VD/$g+2\-􊉖6\u*<=u^0ԘZ*)uv}uHCOkLVGW1y %[:̳jWHFVKF5!kFYOrS0C9 RO y,b&N.giTpCM di(CݩX/ crPU=tN%byd>2fF'_ӄ-4t{V g!S4u^-j5w>2ްZs{MJ?{D̵U*z@m`6g};kPl}L%9QFF4t w=ӸVz)2!ugi^"my87d wij H G3~LbL# %1l<\;Tj+2.8Sʣ poeTWe|hǯjFӋT*IQ֌x'uĕT`0Tud)jPFom[6'N$&[zYn?,t[9Fzd3i,5CYJm:s{k1z|U*FfI-7zʔ̫X!&Ɋ9 $t*AJ؉FX)VstŃeFP~$F$OboR513sJeMi/c?m,d&EW o&qN[dpB².7Ll_elٴ+Ph 5#ٞΗe Pc]9&~_V *MMe%s0Κ\g5]^ ;u"A;O8aδC6G۸oXP8!oZ~㇆xZs-اM $Q} LksU]b1}}1ߥFG֩upMg&(w($ u%L~k6*R!i&4%i6Ί]yzIqڕH(#]H$`UI] (xrﷶj՛o\C\iR!+s^KÛ~n^ka}FHR߼vJVR³˵c!/{@vī4fx+?; 9W_& "=6L^mZV$ߜKF9:͇fVjqG%Q+,Fps䃃 vE55֕[/K=MHջpbOoSSzP26jl 81/Rq&V i+Kr99Tt{%*EdI؜y"?V t^J%blM&K{#f.)[S<*wZґ"¬Ŋ5S9#aho̭lt,\?|bexI/ĝƑ餺MQ~d/C8Rȭ][lv'eqcVkLXVpꗮDI wsզ8,.5LA쨢Z[]6&ن&NOu؎b*yƀ{LH IrNһA_W)Q$E{Mtv{͊< NH50EUGQWx]qi7#w<"Dn޾?:b"f=o936\[z01E6 =yF`NH!.n }*싄LM49ј%t]臟1qi-o E⺊\;ܢ/{!iv=Jy@r cfn#xRA̻kJwMl,n@LS'Smi =Ƅ(edk;T7*]c).W_ٙ,`.@#ݩo8|;o&tf`} ECMxǥ#'NjTre'RL 4kG5D## 657<?.p味`U ޿k׫OF'TBHd*;1y8Q,~-fRB[dIhsJ @F; 崡\\ Co*a~ tPɩEoNfg:䎺hGbf?kO| 8ٞi"`(C>^KBT\=tUFP"*D(W\p=ICDg11S:qr& 麝V9Kx{]B;E1,MlsM}1j(ץ %nl_ܫ98ѐȮO]$8#kPz] jö*{،H̶ڢT(515* ^K640}4 DeIZLgBhhݮr"0(V_LA /9/϶,9+ 8# {*킛+\XȈ9=4J53'.v?&G2 nDnRP+ T'/*+UVX*K\mwV6paQl$+g).#7ޙ D EKG$6o턁QwKZGL%O^߄)˩"v3Z2fSMq}ז[7W.$b24k|Ny4O$zlԚpH~$QaK䋝 `㽖N["(Fк.f*'L><@ .%K|:۩q 1hR!&pzFYU}0ZuQS>TAG8'M'!5~y_:HΫECXzHճ[Sqw2=yR˂VO Q 2G!cglFF0o9O\=5ƿE[i m|uWǦXgZk?[k3b1!0DD5c_B,XSjLiTz^-tmCȎ= Ә߸ {]d6rUF:;,Ō!fh]2:yggP/Dt0w8/GCߺBE]aW;J!zF/ˣ \ﶕ7HWXy^O-7י*~|qnJ[4RUOۻJ8ȵfz]?nؘXl n66 GL4nB\jbP@Έ{&gݳ4X"Ԑ@OpHτ p*56xrW=6 eܥm\ '5K9SŦoty. T{h.'8Πnk:̓{24OF_rc>*8nGCm~c;ăk%t3-`QPǹ'3gwp p-խo_| 4h#|3BpeTeA\˕ G ȘUXI [TYn9HSEKy&1 7jIT)SU╞O+G M(}$K;|Ui̗طXw"s LﯷjdVoF !.kf\>Z9X6f&Ŗ(USYQ(U5"5HiڤN A|i8|f5'H<%&(v!5VuC1HwF4 W4:ҤfR-騏K ,RKQ[je# }1e=buypA<<@h=o/V!OV9= 52'C@ uB5H.%A~הja*͝jG)'8|ﻶ $ 55Lýc%*NVe@֊j FCƛ D$8Cav,d;eJFݽƚb5b{+5ITWr^Gj֑ To3 U3醱);Ougk(}rX4ɜhê] x,B́y%!2l|H,no[1&&el(R4TzmHev=1~LOlP9n 鲇7Wi-gyl`'N*|BB_QCћ$$[9}Xݍ$GjB_rJC'/`a:49 :ڍ_VX<}e_Hy;؉:  M)Qq:"9\~')-UJ[}: jΤ{~ԝ*Ei$M>(>_}II0ʤ^B!~U/6(_5κ3~Sj|:4*v TJS^LNښ,)50 g}f3-~h<gfmϯuCoz]&ޝc1|0ӄ!([6> Zura(J)ug~Nq-YdY2i+XybR: *|λm%a Gkê ZWP^e˟Q%0)j &iyWrZ'拸k⑩*J Șΰ'i&Q;ӓ=-91/@Y_H$*&ƌ" <KłHz׫dm-(reTnI7ϥLƆ̌,=y c aT7).g*ZQHރN*X8ê,!j͂QjΩY|O֓8r`(=21?/Oaqde V,wz#CP8J& SqSkJU4klqj_/S"_b?;٨s'-*$ ~cbDni)r8p+t]=O l) z5wp}Het6w_dw1Q)&m +W4dSuF*FWA/[AFsaN\8|XO2ίy`-Q>YθÈbTwIv+f޴emQUt6kf儫w#n徎2Q}:* 6*)_V ,Z mksgʃ" 5!+ D׸O[ߝldQTN-UO"H_ #\ 4c*l<^2soDJkݮw\~+S+.~؎@~+j7/˙[֨ŽpC|cHq}[4pΟ OTBCnv.t$ In2I߾6[I*3p0/12aytsȊD\FҼ#69:!uq"13MuºmLF`LJkW4:P%o7x>dM{Vnr&GɌ],5O밺,쀾Is O)մ=w};V2fޜo&*aUⱩi{a|)7|v cr,rm_&xtXY.ۮiG kNT[m%h=11x1ؼAnq0ujoM/w7%$Q/Ϭ?j6x0SѹѦ<6CUyOG؝X.;MI a* _6NѝDC"-4>cy^$2$4T0Ы {s_.cFR006SS:a"" 2r(35Z'dג;Qkk*_Zڏ~脱4=8N刬xL t(PaƟcJr9 1C̤ScavS"ax|.ڋD|܃Yf8 n)5\VL1,J⋾w(Q&=jWKMNL"(3Uqb(\&*G?|%c&%%)״+Y5(:8|1 Gr2H1ee8$#2?c{(!!IRɽBm^(;N9<5ݧeu/gGi4!(&N/Ʌ{x&/M%;}=qF oB#wsZMD tEt./?5 P_rXY! GL?9 vLn#pjB8%hg) WD+&/<J>|X#jD &`vj~>"چd1bT5I$ؖd`H6hK;ϣ"7kӵ-UDqArߘ4ZT$4"ߓ5T@6`Ju'.8l0X5A)2u+m$WOmUmm QFk~Qof/Ζ@3dZf'b~RĹYP <|ARKwg#G:AΨwmicaN7z6~pP'bU}uf 0-wQ!D)dqJ`kkK9I3udL944S OtiuӟS 3$q()'-V?牏Pm]'B픆PuY:^ Y:rY -C#5;ħUlbmMv1i`V[_Nl{3on@>pE)"{b%2̻lPWr*8ְAci5Egzh&l>t'ͩ-'p2>H+;X12wX\ +~UisR+;=6pJ3Rb^͏~b=N`&KLӠ-q`E]iqӾ6[1tfOu ?E]o!ݶk|lC ]S۱V jxݓY{(Sۨ؁/'q6[잚]VaDۼk ")v_`_!yҺd(h{I]hwIb/a8+ą.tT `汍]1>t׭]&T.9M!#Ty%ԫP;Eqo[܇z{g.Y>9\5W1!O,4d)|Zk9lۛuq0HբJRݸ=RMzr@& ӼwD 'jJ43b{/^֗ޣnAnuWZg#yؾNy8kT 7D2Kkޏ%cc1ILdkm&Hs>|n<MB߾G{9c#!4#pyS#K0vm7ިKz[$I̧xO.O;CRXqghLݗٳrcI*Ћ []&,~@>lI6%ovփVm]zIT[1|v0xsP̲&yG Z* 6=vN=0:HxῪQn{T}w,(2`Ou2"z>5CC0VYjzjB )C h_S-V߬/ltÛLie$O9˕AɒH;un=.PJ%2@Yr!I{-0]m>#n{8o< WUG#[unʘJp? ^6~xUQ?ř6-{hiRz=hӫ)`?LPՈE qv&|pO<+ž 0F_V7.£L4zyk>u}2 K>GYGP[1`FV#?.AԧvwCrKĂVZMP#Vs##볪FL ɛq^:.;ziτ^$.p^Ub,h72v|zyp^@eG9&UdDkM&$~J2gG#rQj.5vocyAmt l *j3ZU]S%EW$G*5.鶕󧌄VG4f^#_&M*"u2v)q,?>;cy>Reʅ FvnvCR{9KE@w}\][Y (>^p_Y]=?d zNϑR]Q\dž1y֑!C Q~a羢cHL1SCuìlHI29ED*[ s*@O`V$}:&DOUb-FrOɖV#*w[beVa47DI/jSWdcP̅fqua %&~IB#8d^H[gD#&Nز F]iOx򦪧IL}P$cE{Ey4#]̑X~scczZZ#jIjjrFepߡ,"ךb+R7\nO .7 ژ<^g/aM@N4.52Rx4:çp{rC^YbBL㭐F`-ud V|n: EL?,Cptiu|rgm-w-E.5d=QK"V1|z,.kSa>smqeՍkV{9?,ě_#*geO*'jZMf' JsyK["hu4vQy -$wͣsjv\ʊ :[NNS " SNC1Q+1tZ6]*'k;AIwRj[@lj4OfJ'ߪ1A"c$y?f]Ci Zg;:-@ooQBR*⮣z\ 3ݥd:#ҫ鵣U2χ+&염{wӷ8Ů0ڝ|Zu{뷣9Nj5VWAQ4j#wLQ,BL#lҬwMܼ祉yGdbNaA-?)DSyÇ/$˸׶>?|DT>$VΔ1|nOty{5艨߅VeVij,ݾHf{m{VGǪL a29x9XsUzY,`,uAw.k•<2 CGe[ە]nP;ҫPt_f>!ղ΀E1=s?O+Ϲ9{7J)ЕDˣ`$F3>)LP+ɢzRHJ'{7Nrx'ُSSjv n-s1=z h:'mtۯ*k^k_,3Tj84/u|b+2|ysWD4Ke{ujhݵia'r"0X: RKK ͔HVWLqLAZ3+kpGbTw="ͷyQq1Xh!3mA+vϗew{B;_rrO2E(2j{wjUJۀܵ#o1GΝ"߾&N>h۠ ~uH(jco1 /1zpCf.w8z5@J 1C{wo$G~}{<wf+ ,.Xýt$5˶uWtѴF,ZjW1付OҌiCU\9)S%1B Pě$FQA/yCl5u/~hJq8~kuQ9x6EgTObw*MΖ>9$' | p" cV- :xppUPXMy^u;Iu/9wVjP-XE=J˲|*4JMHHj]xUؕˡy,F!ɻd|k~twzR;& >C--wwk=Z d[^R|7v~8͸X?2qk_Hx1$ 2n8W6fE 4r}7Wm̹a=9~Rw6.&*Ғ `\O9M|ѼEd/ ѶtMҰ_z C𱏥yB0רh}ڰM(jk+t^4|j 4:fCf`k&7ҤTt|\n4:i~Z9ڕ}k:f].x@"SEM{F1UWfvXBY4ټč'FBgwnXd _б!g}cSɩ#g$s!>jZё:M;_:-֋Q$Ɏ0(f +ml/q%%3ݪws}3~ TٛID={]%ckEM/ ^q^$[Uto :J/䐹B`hı\j݉ov˭W΍B #+H/ī-h#,:ˑ;=R};=I{p~55>7JS˜CI7#șW/W1$Pfi;ߣXr*4`p]O, .5o-+r'pDSE7ÒH9ܮTiB1:z WvxP/$CH gEPtW[n RUFɬeA Bvy-7pӁ{Y:KMQ1h£_EqK0?\YpypV1@BĆ!9 zyWs6bBrhED0:ʤW. =4^'~$2K}ž\s< ߐ7k["v&Vu!.s*ПaٔFdrn sEq ̓Ýf/vir9w?Ѱr!*䌵1>ҒAt6* ajVD'.K%#¾<\LWxNQV<~^Մ`XO.uD&s`ǒ-fvjq a4~]{ʏjaō ?ţN[ E*O MME2 ˳z0 Iq#>ri-/3YqnbZs5U tAeӡ"z7c¡ޢ?ЀNcY 3_Oʼ'v &xD:s]3:3}|+~O\Z$lOUD:TF\QW{A,eH<ܭewٶ$}t b-[SqԨCVr&9E)eJ(-s&ۑi'XMxr9)3gO(}Ҵ9䱨xz҆AaiV8Fk7!7xpys뵔H!M3YEORa~%IeH0OnJc2ɗBL[~dl^]D?oAt6e5.x-iĴa{L*[v=_G+ BU|xlL+(I]p]*uYjC%hctAդpNA.UEK{OeffNI趟i<$B~< "_lFBWR0@>Ϯp 0"uU`ꍘfN! LȜD?9f3tN"Y} Gغv 1.d)߆o s+~֧oy dnU+ۥ.-!sj^8 PbCcѦ^'bDt`3㴟m~lLLHެF 7Z$Bm38,e\Uh頎f]nz(6>Po.bc,&e'MN!{?OqM9[gWsdg~:&/0O' ! [\)kc"?h nm_紱u 247M <"-K`"; u?tA"/([Ҷ!3ƪ󽠪s?m7- f _"KԃnlU{dq^OΑ$DM`1~Cr/+cb~{f)΋?zYZ Rj,&Cw:tHXc 2į`n}c*L?Jo·:zt p 9.><8+ \:< ;F#co&#:vF'B5(-:tE(7d;Urj?I#o Fv0IҰiaLJpzO7܅Ymy{vPМQ-QNplQh4XA:jx^ k},GE9 UN'~p@j{8 Z˰Hrֵs<߭OKd1MkI%0f'WT(t)"߉0z62/Ub& S=dU1zeae3DV.7@4_72i|@5,567ܾ;*]KÆC>fk;Cgĭ\TuAed';Svzτ3BDX]} FuIVk^/EWS FM}H7])6J.k!X-QK9-6KR唝WL} @=Dtr6)H|ʃeijkŲ3?~ja* n&)'iUnjt4ɹc_O nON ,=&QI$T7&l7.^ )r1ʾiwŋ C  $i\?% 9RnؗQ"SXA_ʃm!^աQ)yFsPkZMP4XYB>"%}\4(Bno~}P,ufA[w3&}~ӧ(ۋ8%U1?c͍t8XmfJW~**nǷ+x[)T15XH>AW,f#P,*n1D:[+ UHi>I Jbl92\.dI5{C+5N"5rI&vȄ \hl-|]-6c?F폹N_'x8g2ƻIYnLgϮltRm XZYppfR@Ⱦ|&y6TrX6Sa]}oΝ!J.@9K/-l=\[ǐz`n3; kYD+>﵏b"!D(un@%ɗ sPWI$_lȆ[#CrP_vv'H\̓Zs}n6w9? |s"¢h_(xK@]'gJ0w!$}+ȥRBnaߔYLL uq_TLL[iUi~+oĥ/EAkfscJ&ǔY[:\7Bİm2BoB1%q^j@R{F-o;"Cs 4p˫2)׀SCIxljeZN|#lx3qPT@j&{ݼS2؝rg8zBLHX̣:hxagŁQL6(`/ctpuh{eCWA3ןEn1KaxUE<:Ʉ5}ᙻ `dyb3OK~@CMQ=+ۊ&_$j{㺕U& .hR6/W5p% %>bwC!'0HZഺn6 Ιd7SHU/d+ៅHDRKt7n\d'Y=@nzSf$zC;8s/tg”Ӹ)kyӁWk^CrKK.t50۷Yc,FZ{U[AnOcg?#0j_o}l_3wimU_l Sd)XƈasK^SQw'M/AB) GK*)H`EX4%R.iÊ՛a -)Q*sMpеOe \+) 0:;mg]&]۩R$#^2ď'􋆸o<4za&3&'@kd)r-S &XRU&, >|u@y2JOd +eMog|e|PKRuuJm^Mi"@-򛶮gQ197R7.ZT(lO2DWHR !/HnևPQ hbx[-)sv՞,"׳`K\b*7v m(6kYqBRF-]xmQFѮ:hYX ^}n='fTGKb-G/}j>|)bd=pbCF,VL^&Jƫƌ"py:2] UVa"t{o/2\p`[drn故fjaiZP,f;PHMg s~[;),gr}3Z#[49er7tʀV+`U|[/A ofUW B ")tJ><2c95wE9Lk=@㬨9.. endstream endobj 320 0 obj << /Length1 1593 /Length2 8601 /Length3 0 /Length 9632 /Filter /FlateDecode >> stream xڍPZ-Xph,4H7.]<!hp ޙ3WW]Ez>kFC]jB<ع8BiU-.~r10=@@n`(Dn Kgs*Ptp^ q n P_P7!PB@h P_7s0Y3$An`kK@ <|'7;N hAn^ o5Kg_8:`P[oK7Aܟ3]^ }& ۂ-@7OP?и6`k AOg3/|n`1Y{\Ͽ> qOT64d}RRP; ʿ%SPb Eyv*fwP>K`M|@?\'Uoy:9q3ܖ`'߿݀o>MVـ=׫a;.h=пnṼҀ5v. |f?y,j{^,,}рq=/ 珲s ^F 8~9 p8@~ s#?s#?s)NRGCX@> kEpCCxM$7þ~3ߊ[rsmNەd~]YKUGMQ)IZ3h˟K~H6QRH|t qoP)Q=(8Ty"rq_KKeY׺&! V $H(,x>WsxOJIhymq]x^KJOjDB 71O[%%q8mEJ1hJ4Lf~S}2W[/|@_PN_uI7}я0p֤~将1y4SE ƜlǾ!tK'@c3ʫH `^.9+qh25:ԘO_-*A߃%]"gW')ka,PE9՝iwe pt{K3Fݩg4:uv xćDI~Տ~7b7ZGo_/\|bٱjT~9,'#xjȣG+kdQ!i=ZTUna`C'>MqjbcL. sC/p^&|;˩UcSg\ Fl~sId!ZY0 ٦c1_krW}d2S/z%l X;Il9к.)zŝN"/v_5_@ݧC~Ɗ*7__p:O2F|+?z={-.So/P 9'tTldMw(*/Zٲ7tJ2H/R$*.ȝ$wAfg,M uי:;QK6h C[.?P+sEe`/[A " rݦuC/qgܽiSHYUfi /kŘmKBLlfbV!< ©j{AE$f%x~ Uu+<(29f6^BF=_:A^&8L~/ ʓ}&H6KÔOW"/ߖDUkZ1h:i},j">ƎR_\҂d1vR񻏝ieޥ:a4?GYYf }*ygo;E^exF(hj0(꾃Ip $. N^L+v^MxC*ֆl\Vw=}GSƂ٨"(k1(W'AnhFYs2:荫tNo լn-\;#m++ш _:v2B _ԅξs ÎfՋ]؍ʅ8#ӾY 瞼:78iN1RBnp)NO @1z@Gٵ gSPpb]Iw\guVz`_{OtH&yX.SUIJ||uHvCBެݯ6Ep*lLbt(mY-7<8d8+;$yFg&#Z|Nrww_8qur/ XF+a uy)4UwuYzzﰤրSۧeI:+M8@eWZ0,mz"Fk&ˉ,'KsnUQ}A;'W*`r`Dֽ"y=d?ЖZ*uʮ9o c#g*zid5eJ5)Jm=e>l!Fma7)smOj FW*SB'HCh0FO꤬[5{,Ҡ,s<1π 5ArA 7; B4? NEQ?vK mm~)PSР#mw~T@N> IoIprn0^q/t_>8y[22-R4Тm|$hJSǕxVJjY",;92|HkxkJycIiaޠ2 Cfwxhɳ|-:罶ӷmY2QR(sEƜIx4P^W?_yND2;h;{lg W|i0#kZmp̯{v&NW^6f]M#.;sM_4M 5Y#USHm Fc%`(cH70.'ȾoWA?-[{T?h-Nibyk#A]-]7$*YeyCit` &Qjm .4[OE~bVaf#f!Dy+8>ui ')6`o⥖FZ#T ]H6 .ie v'DJkww\~ _@N0:#B&`Sh#QbDcZɳ#ђ>Vȟ~ mWY1TWz2$\|a~i~:M E}9rF'σLs>k/`6@FыlĔgbRa8Gڲaޛ6td ^#9XRa贠Mt^;=!>ƘD&as`.,W$ݼN(\x2JUGh H6 N `cV!ƻE\:R-ؒ|C3xS6$-ܾ$Kl#'"2ҿ _sJ,zi($s!FGut Sq*f;PU/-Fci1fc7LS|fI'^e@% F#&_O"9B(4$EtJSGe/p웛bMF7`x\-r I0I~!MG A_$J_)y]dzg|hޣJ}]K`$3(3=p5mz5a —/PwۋcIn"Sz*3!CB@8YVE'ҴbE7bow'+ˈNMԹYzYs?oxp!HUdr6kf^4k piaV VmO}&WMo2rn+蘔^K0|=x8c>*} Q:9vij}}{7z\g>"];'N=M5ӊm(_Q0z]\5k$;V[j_aԕpCtv덅v(KH,z#^X DQ EopxHj.y|'G"qZ<.&vMJΊ)RI5u҃j1~ż桒TVN\3ƀO CnFc:)LQkSdE\d^WP{b26~X|cMŲM2.O q^g|RD\ w^AΕ w6WWFytiB񑥂I?Z2w$=zG1Qڟ :(tfvS*JEf:ےպhx jtz_*N&2gC9ʏs1?1YsC !5}wg.{Þ)t+y"'(DvaWTIDT.ɪGJ$?S2r$f~E @A6mi]ݱh~ҵb#];/Q6C[ex2-Q8rW0)=x_)󞗊3TˋʑN"+#;K|*g9Չ>5~Q3HӜgn樭wK|i2}YFameU o^{$eU6kJ>sJ #XNCK G{OػOQ_n|NnF~W? qƊ|2v9.jV3Z"G>&zsHm2Dm+tȹٴazY52!6NL:KK>rD%1slnvo!5A]7I{RUU& [RI,n6,AXjss$?8XZ/Xb7Bz Y@> E~aDCA}R’XB1̝̊[&ANzBޗۑ~еڣS<ͣ~֟^E8SK۽H̋ G(+}8|X/xWYJFM3|/ <ȑ| C UQ(߀sĔJCWvB[`*'~J ih'|DyD,ߓȁ ׀_zCYp҂-Z=ZZZqkywN6? @Ro$}3v~e^LdyIU$BE,l.?d+'-o&_ [ʦ˰OLhOدM+fHyPPGC2$9Kdžn1J o[֋W&eQע3Cbo>я$ e>K Ai|.&֫yy1mt.)Ls)ȸ0$fYY/We@M6Le" +ihR[S-opD!A7GJU?A+6[>t/7I\Ո{rn5‘c e?% `wE>PY?$L$$x/UA/1QV,=,w,dfDآ0'9$ oiYO-*(4D(hxDY(*ܯ9jx6 gzDW6i5ЦV]> stream xڍvT\6]J4J J: L) "%!!HHK(]rG׺wZ3<;~~Ynh,da(A @E]( ' pH&v` Mh()HGTA;@#I8U^# s_K-/(--%;F@lA0vh 0_)x9P2B  +H0lEr&&D 0q ( P-av`s6XK` ϫ3W"w0 yA`{ 0PBy /G ăA(p@]qE!/¿`.Y fwqPH_B`[̭{ n3 cm`v~Zz` 00 !"""% `O[G_M\aL~>pW=b A` ; `El?10='\#< @%F[vp606UMo2#(& EDR߿/QCDɨh ?DžTb\\{Wgт>'#Lx8VJ@ϑ,ە׆°$ KkM$F躇_}Ub!f4Q\r5 rmnqC%3̣>*Z3ZԹqY2& "h3&s%BGI>qtԲndj 2< †}ϯuS~ jq#mR| p]m hߔ+ U4kP8lBIdH^~(/.Xn)lkfp p49% 1H~dcDjٹS^xaQ#s:y2~bHIYOq95[n ?8HƧ7;!D Zji<]mZ,!:=Ș0g MC˓n#3Pn`Ϥ?Aá.ém紜OKN)} Rm+Z?]lo鐮$Z5wޝkǫW>$:="Ebف ̉~v@K3! V`AʉF^~z醅}#UPCVٷE)i% K'%pER29^J$~^o'4a~=<[HJAjPgD;g +Ԧg4\To1k{R=7?ΏQ1vF׫o;cG&xvdw4ZũBȷᤸof??S7wzch8~A!acߨhd}Vwہ6;Z\c[89A/ mX 9+D6(,k;Jx_l3_U&β̹KR=Nӷ$+}wr;Ү2X5ǨXtvE͑zynzꙘ.^!4gGО1yėE,IS.fn'enF^KUˬι,_9N7 ϏoV6P"j9O1RCsz~q Vcp{ƀƶ*dqĢ*W.VHy7trqoF<#O{OLz9DcvY%rKx#sPN ,9[r} n=J㋍@~?Nq3c&UY;AY}8t:U󰯻҈Qs&oI]?w݄[K)>4c~U@ɶoR8O n%Q{݊9vS ~l Ʃ|eZP~A{ 3Wi rWbYd̲b-DRh'$jӪJwv/'ζw1bX!БFL(Y-B}8Q ]i5$kbxi Jѓ ί矛LfX3KizR r;{nTj肾|ԍ<_HM|} [%Q 崓=01b U*;d9̶OxU6Z7>]RXۏNF.nN)20#|[FJu0ܢ IZ/- H*]uk2yXJ3Q)eEkۘ̏ylBy2ΔGihM3D> &- lL S%.)LuOQSbBWfvfH'^] w^;{o}]?O`,K_٧Kbh(lzY6 QKr5wva&9Yv(W/0vl_OߡH1Ըy58Tj\0kA)M@G wmրP>,mm[CsOW8sUt Hg[_Xop'WWבԈƅ5=" 5=2cu ~ =.7ptĚnuz]0›zHcZcٳg0NGUma_BLŭO3O,Tz+ лG:-OJ*bgGs*&p UVveӧЌp"n>}5A!VGbGx2ۊ8.s}{HgOǬ&{GDr؍Vԗ?_ݩ"7gN_ڝyqhr 8wnW~clP2 {m˸̭gy'~.~L/OkCz+DždڢQF T8|A{nQ2;VPfi ם>g{q O-%Ѳ\zd􍄧;,ȌtΛBWᝣYL1\O)ƌӢG5/WGѥ&fCZnnFbbq,(M}CIT2B^%2ȧҗVEODc@9ئJЪ;\nճJى0KئTlJF&|mʝ9&ᬕ~QA>|ٵV}[%':S]=p>!D#Tfl^χ4E(~Ko4ϟ"iSX~݇ۯHgA9İ콡wlqΘF&$jȡxNCs3F+h/*? %]@Ω-k*O6_2@:m^iVP~r;9(I1BQHO=1œDlxoW~ayl%>q$06#WQ79G<}1E/z!DP2%]I]VkAVn^]޲)'!jmh/r5sĢx7ۯt2u\^37o+W(}}'O~E] dXD1cS!#N%-ݽSӛl̠AdOO4wR=L@i| e2?2 RvבV{~ z\8,}SC$̘ow@]7]{٤ ;Sbh&i=>dA-`[:0~ QS,y.눲tб]pY"'B꒷yΤ>\={!lu  bki @[֎!H;YEzX?lYb?MoCk/^ .4(> Dd^\D/ǃv*8Kx=SOu7]Ī"km[Ӄ'^$KD?kQ9?Op*o=/KTBxw yw 8ȂvH}હa{&뢓̂$7Ɲ?6uW9֛CFD)Qsq}[En@ψB-}_VKO.d엍j7/c]RS-#?t ?uLtE&fr@gduɣgH3^O,| ]:}R}襥n_zX&?My/xGFNuP#P!ݭ&Z {3Βl݈%F0b:ņ\Os􆸿IԋWW6w?Jmuln[S'Sub+y'WE|r[ cϴ=nQշaX %tT-.f`՗Go \WKNR`xY4w]@}|T28@qՆbsf^z>P7˰m`se5}@zjE&\4˧Elntm7fr}~WSISNR,1\Ѱ\zXMc,qaKY-pt^gH\\2ѽOiQr-, %?bbے>k哦_j ?͠ˉj`R݅l=? Џb`9W\f95$}D[ԵvP02UK^Sjqb*D1;f5tD2SrU!2W.Z۽c['FK~& &UYd'j#5i3c:|{q"B4yN>/=w-9b!6s&\w`n/̚m `qifyӌ88/OU*Pƛْ,d JMpw~,͟K25iÔNkdVcC9BaQRݵ""OVϺiO,q R͞k򞆿![ ' b]m?5AͻUqBvc -DX4"RD>qX m‚۴Ѐ(L+O"[oAF ݔ:4oT9"9E+vFQJé;@o=k9OНN2؅(p"rodsωa/K$d$7o9TN>k[LcR9~⸟uS+Ft~PQ&RI endstream endobj 324 0 obj << /Length1 1464 /Length2 6435 /Length3 0 /Length 7428 /Filter /FlateDecode >> stream xڍx8m۾V;ԞY{ゥHԞU{S6-jV]FiR_ڧ9w׺:;9΢oį"(~Pcd@a PA M!H(.J;SCup $A@ @) P:t8Ip:9u~p q7'lء!n`;BP~H%BK ع!N|(`ABxQן.goiWU#U/췝/n@ zBjku P/j3wB$" "U}( n #_: /zno=Y#~ΏJBϪp @s 8"< ~5VX B.7 ڣoHD   {!= ,!R./#:.}?ᬮu&Y Ĉ8 qsԦ=mӌf/TFM\> ]P/@a l( ?q09 &3c7 Il--9S"{_l\w!Heg,' ]-XP#IzZfykL\c>&+v~۰LM@qV_(rZ Mє!Z>SӇ1:-]I5tY\ּF |{66gN~ny1}`;`M2I~!z̔GE U5NO 6,oRz /0ɚh*LRdL6oo!2CJLzPbFmLXLɣ[{w z߶N<³*zl[˩I6&]}V=[)PilC^a ߶O bbӺ7le|0zr3}W ~DMr5Vݜ(ڦa2rNϳcwB幔f&CUʀ$ uB8$ cLݿKd7&4pvl&؄i-QZ=n#kTs?:c@V 9>* S[_GAs=7~ GVfa:81"'Q-doU6lZ_j`Y2]I6Bnh\nKmHcJ˫}/1Q^{szmoCR<egZy!9e\spILqá{F#& ZcHHƒ1ڎ}= ˢ L-zEQwW94.{' 5:ȝ6ʭE{S,냐Aj$%)GƟ;E ʢ[#j3[đj%)ONDOZ);?,^WLݙ |=rT:[Yz1B t?N'NuK+JUOzg =>B +lbq<,%W g"ì^q:9"KO|l刈LZ_a1bGtVs8ٰFiZ$9(@A8[LQlm<;~5r꼒Jg?8( fjpX`&1Cu%n>8q6H2 ЙQ>u~M*lSPx]egY>Bc{T,5˙T,F/ƻצ$#5>9~OyyGTiÃ݃ L~d TM)~RtT}PޤaU͇\{5%9V@ȇRcbOFK ?mj|=ܙrosgMߧnzf7B Aы F#k\kߟx}2/}` k[~\]SkzӼɳJQp ܇zsJlrpsW]& ҟ26,s-NX -1"1I3o*Eh >Q>({J|QRISJ8EygTH+uHNԢRo݃mV5 ²=܂|&Pu4:Vٯqj500-Gz3 }jU"Q:2nCZ ͋}"[co1 |_7=0l9QZixFТӉuՏ_Yb"u#cy !2Dz. ץh u8^E"daqghcuXݥ7.~9OBL݆2h=:)&$.n˹%qJ`?Q[@Vr#~DĬ"KɾKQ>=nW>\,f}~8㸓SzҢs¿ /Q`T%K߉e2 cK;~cc| >)^v`4>BS_NV/i3⃓ K; id}IĚ_זeGH[zYRD_bd.j8et~5(s=+߇#)!hS*#B__LK(pxY”Ìڦ`/í aZ[+ЙX?9~|h_9Q._7ҭdzHB*Eౕ۵6$祪N3 "O?o)TT]x9q4J¼zeJ 7)$iBߑ~ ߜ@FmBϒr=޶ ;<>=Wc)(ݙ*j6U.ձ4p]}Nr G[8۸[:t942?<5gy:"?"6a6UR|;W~y^Dvi;e(KW hnj fEx]Y ơd+<:ǫ@.)7;Ui`!E8&_B%Yl0 :mr5Β%{bx~"l.Y/"{yN$ނKu>]c~ X^De N$]ʑҾ>kdlkt3W6WW6+ZJ#cKe-iYg0TXl JA[M' Ʃ]Sm~*tw i%pKIvㄺoXBNP5=Cuab| ~w=ērp>TY=DM-9i1<1xvRc|܎0J.xgaG'H.KióÞu U2:p$y0͝9<bYҦ;::mM D͵#Ju1 |muy>,2yYB]k<*cڢ "N.J?Ã:h7J9JOپv e;K0.pBڴޮ>>dhm1CKGPȦZ.C]yؔNo*B]U=whP1lHMkA߹ne ƈNLޑ1ʴ#6LFZU-[ hNzm!>IRÊu]!Wb`ҝcﵝ`e<a':V%h(ȼ"InKݎPdN-7'O_Ӑ+`1.y:3|"3euhLmFV#kNg}b,aP"TqK_JIdd +/n/ R3z;G)=j oLQe3n`2ҲTO~E~YEhZW 8?;,JvTl>Z[CV+FdX΋AO#JWjN&8o39P\CTTi˅U :Q k5n5`֌&Ro!.ƍX Y#|C.,˽-a įI"?qI.@"6d0i8EcW|.&!3Irڝjh},~qKtr_Bz}۞[+G8,Z85o՗;knKpL.BJneC].]K+;1Gk9_0QPJ]ppYF Ffߣ14OwU?v0`uT0WR:oQ8g?}_YU!h&]I$֏8*=X?H8R6HԫLͣxG! ގjUcxFsU۰ ~ JO: |麦[L{ΛXVqeG_wmv.2yIP Uuy1E?+Ku5Vʚq£fҵ oL똪REoy]5> I:fUN^7 oڊ\YN -)g 0,R6p/ D])WcUOyW;xEKjmlF/w.@l&ÍoeوDbqMWu#2}t?=mUIƲ]艮oFLƪXVc'GY?M}w)wTrg9uUC*n}k{w=%+eBCZ)CZ KЧnwl/ ~0M)i$Pf*cTmYɽA5bS%Uv,*YdR>x0 ǪiBd'/;+`Lφ⥱kj3{(XGN1 1JZLz=ю\N>Ve٣;vA߿0Y({zO24 &$dܲr9 \@a,eD,6T:+`g5)$sL(fS2vO~kd_ }RC#i?E{J obmwxE˝^;1z0X9F)YdPu<}F=J/NoR԰]<SEk\*XљTk}C=;:q{! ӳ`}#(~v}ςC+XiT )uǜtx߲>n;=3-p8$zb?b KQ}qN˷1&ѡFsSjL?HNә, Mbߤt]J&n9qU[p\_X OۑfAxvhOA>.'w6.{)Ш+xC( ӽq Pտϔׁq넱 3Nޔ׺{[dfK{T*"wlԮd﷞>-y}7b,-gv qK~wð;EkI'7!>Co4ieVE -O(k>xwAco; UoQ?^M"8Be}'|`Չ5\+@R Aս6 w,1as\˷=`,3E8ӓRQOgg}} 6_zZFBZMܵr &Ζ=Z48_+$|+A6/x0TPb{}ڕC NKR9f{sF9׹%g Ӆ$C*UI%mBl2"lBg0{"F"%u=BjG15Kw^.{QypyhEb -k5~ |o::8~RYbGpTje endstream endobj 326 0 obj << /Length1 1393 /Length2 5926 /Length3 0 /Length 6880 /Filter /FlateDecode >> stream xڍvT-ҫ4Ԑ{E!$"$:JҋtPRW JSH)s}oFH\k/"cPàq"` Hkl) ā / +Lkp"1hPvG@q b-XKɂ@1Ho ]D@R*c\}ܑN80XFFJw9@pG h.@' .c *+*@-a0B`8a H 0qBbč18/; a4_၆#cM+ l` ?] 0(W(v8 ]}5 ' ῀P,_"]xCj(_0w+ "]~Qʪh2BqX_SA#`csh﯅ wE*jFy 4UC8$#))!@0'_M|\_a<?W+Ot@(PO߉(` H4?aß5ݑk^{`?Owc.>߯))a~" i\dRҒw@ OCM *r0x)#(_o.W{Cj..GB+w. C#=PAPD;.$đX57npA, _Wo:3_UE0_HP ^cbw)[Q ×w_׊;OWk;wobf _r\%d/:fyش?oά8J;"?:ko"?K0䠵&d>}*%Z j% @Rp9mі\7p6tqWܭ=L4MߞF#㎔ZbX|N-~])Yŕ3ʔU%S*?Of-B'7ްPȈKy ׷W(' f,0Fyeз'\0+wܶ&KcD2U|?-t=H%릻ؤk͜ӣGI|=«;IȵVl.o6ͺ8,ez=FlTL_lyPCjQi X})եNoﵙ''_7M9\.S8="ͺmQxbg]V]|f!K1 7$>&*s~{Sz[ gm^`%cq)4ǛTυeG)S$5QiEIIveG> V>gOp%eKFE߿^ 5e1d1-5*3Ae[@ZxWkM4}RdL✵*el+].ݕg FyVDUf=m#9|չ@-[ɮ޼BA`޻z)#\?H6YMBSJ4}׼O%]~Bx.88RU2}L^:XGic})FK<@$ / ' ֶN X^F1pPj1Y-_kLh1B,e3zGrK?]y,Ӝ٣f[‚۪ۘ NÝlfCO{TܰSV@No6\RzXWìu~P9K%L `q2!X~6OR[gzߡe+L*4oo^=|˭\jQ~(eW+8;lBדok?BadwչF)Zu eS(-p (5y2lĥV+n^ n`Z(DY%ߚv pL8MwN竴{E :Nd^\|p%cz9ac} [M- 3nqLt1pװ*ɥbJ$%~fuM&ϛzNvR]RO k=U4+ӠC i7v$ѥׁ: ᇽfl6 rjQq-Ʌ;~gobY/}SgDT 7uWwdL Njh-9.Aވ, ndXJ4IQMQ ׇ_j5I-puJVo]Rh1%Jv4//PDOeWs]_C#,unӯʸ@Cpu ] iX?eܥeɥl~oZM^D,P8^@{Ee7ߕ9`ŁU:VǜKƳ%6'NoMlA*m)j6OuAJ%cXRV(ʜ}!L$R' gk&d7RpuE^yD*׈zB?Fxoƚq)5 /MxY[8l~w g69*uܾ0(" lUsw>] Ṗ.GqDױ'U}6`bF΍!w3k܃bR#-k^ȣR<™{B,3_M i/OfVF :5_^fEw2d$EDa* 3?VpΚYiC8`);r<]hه9 lfS 3| Jb~50o䟯cTY}0쨑sdZ|׶[O9ť"tu1J\wYfz5%!rt t xJFTQWl^Xy[dsN^f;8KXTĸ0Tb&oO\=PI5 t&X%s3o S-(!^xnC| ?q ͨP][EeT-Jd]$ztN9u9[}Ͼ+Wjlڗ#a| .p4/:aej?!VXL»|eCU=6,"<#$n=)4M)_/=Jζ &L cFiwyˀgv665caAC unG MϵG# Houq w`Ug#zHcBH/)`UlP ssvV90qᮏLb6˃`9#g sqFBVjqĐr7*n.{OAIϜkp^R1蕮`y&v3-S%;Aܡ)AþN([ˋ#ywnvS^I?Wz1B[ Ow-(|Tly}1u5h&w%j:iLjWh-ɬVӬFf==7 cև.?t3JKoPOH-%ĉ(#6i.I(bӺ岀a֐HOIT-O 承Y<+;wtbpuBse"}1/inl'&5/҆Xjy|S:;sk~%DXnKke JS ;h? DX\`?*_fxIǚ\S&Fw+hoC\C -- ѹs:C_P)/RL(w5'h x}rZnĈ֕R,snJ䑙K׍ Q{:ĥ` zL\DfV8_7}_dVoTF|͗ݞkzJݲLٟ7:ʨY)u\ٓ/U`#mĮܵx):[vט#t=H"qo5."fUr%^[X`Ҭw"7p_[&LB+?fO]K&MAӢ ttVh8,]GKJ{и]G2/2ƪY2WQ_|Jig[TB2M~],+7\~ 2KR ntˆJ&;w[Yn,J .~qL@uϓ 1{ңw|\09s6±'x%MGKĜٿdU#[i{NG62ߑ& ^݈^/3M L^6Q`:= I:[m3s8L̠߰TkZGVфR)ƣ]`*/j0IJd^@AHJj­ !QbOP!QSYRu9>voDmB'V~QEo$؀9?& W6DgËi,o45@%r-U&oS}vnh|fc5r_F9+{GZ5.>y$iۨ~>!*c浛YA+>}-Ueδw<;7l$wmq Lc=x{{=~E9pQJv) ?X+0xVm@+qRf/r芃fuXFy!̦q/tu_^Tq aˮa>$)$sBmonCW(NY*!=!`.Gx;E\BF+ f21z4ؒ[]Pf\CX i [#.drpS Ӫ+f?)_HyLetM0]ZSNW·mJXbxҒk[Xu8𚇷rcN ҕ͑/Tqy=sq-!̯隿{z@`fDלy6qxcfֶQŤʡvx* j| U($].isV[E\7]њnJ7V7~chd8d r/\J 7ˎk(= Ѝ)6QvwQO2p"cn$3yFUw;6-WOƥҬ %| e7SnwlO +:ȌlNU8#~g^?.I>V {3v9[Q|:#~"DmS~>"7gUÓpv]&F};=}Llt滕Ɏt TBϮ穸sϚAZ|Ȱ@2=@5B=m(s Îjr<{`2C^=S]Wj'kIqB:V&LTQAmR dt,hvjI="Gɼ;L[-=8烓{8&TBI endstream endobj 328 0 obj << /Length1 1455 /Length2 6327 /Length3 0 /Length 7315 /Filter /FlateDecode >> stream xڍvT6-N atrlFlA@AAJ$DBABnSglOuq (A{HF@$$T5 Dp+/a CHJPA, `t+PX(,!#,)#$;P.D/ nW 7(,--C!`Pqaw]FHW n9' ]FPvC(G~74a(/0> 4vFH7bW8@c+<P hs!$Iu7@aU _8w0>~ vE#`/0lM}r0%=4wǠAh/`oY UA4T({&@z#Z8P_$&'LS,saBb@q;( 2wG$`p{', phs#t0?kQpV{@_| D{f|' ŁR@IIi`&:?5H_2<p2 ą 7o.W@<]]0 WVʞ-tXs ; ʺ0(0JG@Bbp8Շc N({0}$뉃uS k陼 '".P`_Vd"X cm 7P@b%@,@5VQQ gXo+ A8k(8vB@A78OP/_xPX?"`003F8E(1x |{O=6ɢ7F9IZhtҨޭaΜ4g%NGI8"D++'f]U+UK@7`KRn8 /wd ( OcMK8x±rk<ݩUB滹9}{QtT~Z,tԏs8G*It/ܢ83Vo1`kkB`>=% 魛ӻJ!ܺI>Zn$hH-Lh_s0e|ЯBJLG/i٧ٰM(\&S>P9!;O˧2*98:#x*bùv薯%Oc9yi!;~f@5l@,3J^8(ĺK&aUy^83o}^s/v.S[7|`lOJaԊMk~1U wOP~?=p!r$S'|/Iy-?𯛼 ! vR(nV&ʹ{WOh 5"_=83n_hEC0$^9-AJw5 . 13G}+3#FdƐ'̜.Q'(AC왎:iI^Fe's&so=\̙! scOWix` g{_H]]mPR\U5][yf_v hӄ٦! AnEe  uJ.mq>Jd=:u+q&/BK~$9%q"Vh6!;I+[p]#{PY Sr^4!qla+.eo <)Gћ6&n'v׸^h#xEFl$3Hd&Qǔ9Xe28A䄺)NtUyHzm"k9 "Fr 0jt+~PGC،_[ѥ퇯/Rk}"^ EH:놠 nݾccYGx? ,{BGQ1dս|5BH'?B,1DiHn^<>1(6@ݰ_ߙq\4/tKAsV|v'̹⒆/^5By:P.#¾۶IL wRlX[Z}ےŢr%ohO,>lVo\tTe8(JbZ7zSXVl9vy*k:dQ`rӞG. +8} !.kzb:lI֚2pY~yP[cnm;1yĝJ^Ϟ\/-&~v^ [H´ ^vO͏1 ϶pNy.Xm-|dKpnXO0,UH &F\rU Alȃ9QjDt?fSUIgu:P8zxAGG2@?%̋U ٬:%ʯ)O->d"K4jk%{ ʋ"BhߡdEFd܋$qMm8hYWor@B!enVH9&]F'T$Ohsb>`/T7=z@ ^Aij=&6 $/"_#+Dѓ|~ʂ h\+~UՆ΋C\޲ceP$PRN|P[OꬊcSھo~So;V lW9:Ϳ}̜W5caYʧSH>Xt'G>;T97O#2 N WH[z^o~S]\w-Yj G{(nxܲC{hU<1n1Jo3 o OnJ={:4n͒5 \6$VoׄiJэNTqYK1%-B}\^2Kx~<1~0K$\z(@ƛwlƏtSp_zK G iyva/57뚸 Ԃ>GH]H˜?Vxl[h,F6$ͧ%D \LF )mazPψ>>`sڨJ*RןM4% fm{w!-~ؙqJj/'/)P2&j@}Di|K<~\bŹ&*TKi 1 ڇn4n*%&|BY/򒓧CL_w?-L e<=o:1|o. )v9p w8{qyd6 7y'3u+Q*S)0&Ǘ\% RmFau0+^Ō /[ޮܧMc> 0E䏜(N=S㥨5C~$ B"fPY !A9G;KF*EFj7[ߍU7ijzxpӈO$5y]/zK#2}q7e](LYt+t]VgDFζk՞LO&l>UJט2h{{w{.pSrewObɷk6 *#$%M^=(ᨎ!M>-ɬqb/Tl1&mC(`?}]Imo΃'%^}:܎SnOL }Y6w] # (뒇o(x]38fX}? o۬=QJ{ItT|1[KYk7+[ Y>@Hh3 a3y^l&{hI:lTb{'?3M;[}D]"J>|+p3> ΀)y9tNOhpJHW1w R?6"3, V6s}jB5OSM\bzN !Bף ~XꡤKdH{9 %xZ7OSF!7n"卮DWw ڜ.L7x)yz|mȚh)gnxVW}z m\yp=kV,/$@8fG^E'kMP *\J?'m)ƭkɛ7^ c5{Z͏>vVYUV/g /dY%M\!/tplI#x !݌)kw47:Qս֣"u+d">fq@{Q'_uO]y؜=RLUB<dkֱ%/=,u3P{hܾ">ZH]*> stream xڍT5Lt C7R 30 - Hw#- JwZfgϹw߻3lL 6`U8̃O(P1@.WäPrtO}[wuQWcV)]\0)Cw#:^0=fgKUuC5܅p9=@ PBHvm!0qN isd\? pG/Am=6`( waݡs_,f9C}*F<J; D@a(>_GOG = Ksl]A~g0[Ew_C_;RE:;sAA.Pg?w~Fz͆nB`K51:`;(Q9OP(GPzB=l!x˸[ ?#;wU@F݂)dw]- @ \τDE~wjmq? qWX1qүo$~tFw73_P /( J@o("p_z;ǿV"^mzw4o#0l;;u m9R!9:1YW$sq$=>}LMg)h)ٺL{5ާ#$HM6'0;FO^\nYj2g=l]~|hl* a|V jCIB=sЕtڝWN1'#qN-A6CFx~gv;^/]Յ%xb$̃Vr?pU]p$Ռ0e:죔iMUAҳ"yx CuJ3[Ct/=^r4/qy/u-rGmũwC1.番hmBbymc3FgKĜ;i̛q_1֭@uy=)M ;_p$ ^2"h 2='}/HuWHԂ߸y'3m.?Xcq'ҌStfJ,p7n7(PEq8.?YHݭ~IdIdggm3Țd$馜U vy߻3кbAueCBVgc>KT:AiADT0Uv…yWhu,hxhmCc 6Qu9 7aXDWjo%TtlZFI\/Sv.Q!j ip+,\+` ,13H/Xp#0j}m_[bپ\ A[ bܯAY?ǩ]{ ȗ֚)7-Ѩ޳'֧R$%=S/!̻a~cC л_Nkzڡ#ۚHec}];Z! 㻱2>+c͆+%1ID[;R)venq@:N-eZɋ۴gR-d㗕THݾl(7>?) Z)&IX# xh|'p/"&Dqޚ;Ze 2^dhBs s&gZL$[HRa#aa[i'5sf~3rfIf ERfPw=)w+Y%IP;8?42 #έngvİOZGq\QUCIƳ5Х ^3cc(G8^Jc6Ǻrf.^E1z`g!c&ގ!)0ڿejm+@i{u";sIR۪netVB`èN4}/B͉h}|7-pl+LL1l&KIeכ>149ќ1u;./3zu9bw>K]PJk,Qo2SԿ/TX+ZoeI.0!A#K-BTu1Ґ<64 @#2:*"WfQ qNxdHtfpnu-i1=U&1к:duQݥIͼfqY{_'|ca.c&ĝhRK~"B [2OdFt?`KX)qx;`xI+I!ɩ}ү6x?bKÁAui^&;\sߒzL[ 'TX6sygT7( ݓ\|֡7hOK#ԶB[;w+ǺlhR[CK(.bg-Y5D]~#-PFʮ11p=H`۵%ᮆb$˜w)H+O82^,S-zvݷ|Πl`^2A"${kKI^P`ؒLg0)*|T!Kg#vbg\H RLMWhy@k(0ʉwSW }t}ߐ3x A ΕF'ˍ!R%l4.̫vyRIAKfy>~$=I0^Dã~J.Q k1CÙS& 4"x>ȭ ^X:=\DZS[ٞ+Ǯ\%M lv` -w?Wy*8=DF_Q{_Ӵݾ=Sߺ-|/4>xY0)f]2ڭ_spYWH&%vIQ]x b1y+bmH._;:dpw"]6V\֙+4-v`xzʽF|7|d~ Ń_#{4A\cm_ɮs1iy.ښK?49п&,10w >fa%0Ȕ N 08j֭k Ů\G秵C4F}cPW|i mۧrDWăţz6P$9Zwģtwͤx6 ОKľXߜ}jΆ진og j[U•7M`_PjzU%3>R׬_ VOgtТt.|aWb%.xd筓҉hr j}7f̽݊a_96V'Se\/s/y}0|0X2NLk]R-stֶߛ40&lot/%ʱh j;vy@&' VIV#ȴ 6bGu{T|KWmS"Hݥ7?)ZۣBPb :h8U/q? &l_=2M׳WžcUNq`p K;IDpmq"9/~dz G-om,!iloRC7 okYK-&dA'}u^}ZQd!?X ͨmşĚ[U&ځysy}t^3)x IBWq1 exE2ާX %B:k <&g)7ޛdI읍؜Uő%={6( z&jyZ (}>k *j/{3qWR(jH:bg.oUlCȌ֐]ԙ9֧ږb]{+b=І^oE:^}vjym-76Z V|xJ9Rbb_ʍo/ƯEfI -7>YDPkvڠ- %obM\. #Z&9&I- lwrcC9!eIiV𐉼N}Ζ"IrKR!Erˎ3vekqu bCě8../trTМa H]Y7V %/&{#2EjF$ަ3ogG40VzmbĞN1H _%<~Eu(=T8obhLɇ4UCSSfvzX Zr:M;*pϑQYfQ5>Q%Jzgi}'Wy *j5t0< PHؗܡA t+.EGů >pn;/$(S g 'vdF.3a7~Wܙ=a[}?i+lH;%pKyN^'.6|tI`[%꣢TA9bu]؛y>:!n׍]FM,~vV.g:0!"!׵ݭw0֍+B9Șty2?JM cg_Ūaa0mB aK]Ohޖ44%Rqb^Q"GN],;BdJEbUJ*ϷPb og۔J50t[cu0=!l8ӀWO:{渰!1<܀iFґ/J1Wf[{VEdXFޛϽz;eJO|$Ên@&uZ-_Rf'S~J7O1sLҁz#06҅@x~z+q |.`HLEޟgQjS(pHW=qPqzbD5F;1+r,>ARbA|_WRht|M617-hͤeD/kV!{խ.Aq{H}""afam'v_BeiexQn1J9`}v2!ڮFgXI(]9i z=}ȯ3yMD*d)Cߓ&3{cŸ>kA}~.'{rE$i̸~k3^h>. *ZX1+:tW]BB‚XosΗp,WЁUoaR]NzHg cвL_i90*{a',s9&`NVc +&#)8E#9޾NՔuN2[**|gBMPa<^͕5.Uw>N8Kk(SUR7^.BRȞF:wE2w鱩̔gti qz fSqMdqK*1Յ^G L9ZDjMT_*ˆ,Ǧ |W UP' >PG84<鰑Y5j-ut=Vvmzrj}Xu>q+Rc>ժgO7Ï+AVo8x2K 1 s- <K}5wEi6dz/(,q+%Giug`_8VegĒH2S6CvU/ļ?Se6o|t;YꪪdUf8* $@})W-@[+#U? xNdn$Q=Z1}OO7ӶHe0mFُ/F ݢi(V펐i-'_tx#" fI &rh})w})6 /0 cI`x5-.jl0h /-7S:^(]~(fTC^qDWKo͓ڭ6ySʋɩ [X$ sD g2F`}\Nl{ cYgKk&:" QR vbvgu}^nU jō.gNtd(wzNP*\rŒ:tW$͌4$ feF3%OfHUpE T@'I42e<,w&l5,p.7w[~uM1?ȪO;E>Q$1FԸ]b3eFDLNak DL)vơDj%*Wl+.<% F/NS9%ޝX{/hFn<,kW%w\/omd zu6(C^h[7gZ_-jC l^Ma ENܢ@x0OJ+YPRy4zQsE=p˂BT{iDc3oBi*wz6[ XE~\P,8䲽7cӳiKbegL%&lDgc 􃈜~v647,1(@B~Yɱc9E5?-5UMT9W!vs£65{*x.W;J v>S/,z#?W׫[<%x\HbtC6}FR馂I Yj%gah8.fmy+Qj#$cwqX,ra.-Ub`gdБ9d?(3qnN/OR-"z^>?_IUpC_6:ӵ9PDk~/R]zdi3V!b:6r"!dt^"bO0ˆ' =0 NE)Eylą+%؄N~8 Nl3M,~S\".NI-?ZhDl@$ ,MZQ:n endstream endobj 332 0 obj << /Length1 2650 /Length2 11934 /Length3 0 /Length 13441 /Filter /FlateDecode >> stream xڍT  %4Hww )ݍtw7H;{zZ0g9%2 (922DdUTX,,L,,lH*ɑ(Հ`"@CGLb( V.^Vn^ QCg ,@ : Qm-!<1p3u d06d ́6FcCk24掎...L6L`{  Gsh 4N gh'5&$J e=X[A#N =PAm8V&s# _ 6 7 artudL~Z;! - nRB2'?c{ [G& 92v)Dlc9: Oh ?͵]@C i82,윀@DH23#-;;h3&Pqd-a BzZ!< G{'ǟ"$VV#hfBzMƐ[Y `']ȄAnYLREJTU ]F6v'_/*Z˳?I)w / 查A f yuX8Y!X?_GMo/#wKO 4;9B6C 5Uβ@ 't4lBZ8[M,T;Xo,,GY9c+ȝi_* d(2^=6N. d8955f&r` GR.No߈ ,"-Y@_`Ffg`̒. 2. r./z aWxF>gS~FfgaW}FvgaWFvga@صῈr/m R+dM Ր[!O㳜_[l I88~Kll=i&@%0p9A @/ʛ>{XZ8d3 DoMi9Hĺ?, 2? V@H5悤m{+7'YC@N6F/@?b(!>b̶j-1H[H/ c~jgs;M?geQNVHsB9m,;.mԘH.ֆ8L 4 N# 1A@!n@HݟcxrPc'{Hz __e@W1,ؘ߲ƿJЅqg" A}[ yOO=/l^sz7nF+ +)a8 umpF[ 1:8JwthLpN]hqwfҿKS5U(7?}IpĄ 3[vd/B_*%).Gſߥqn-0@[lJ_O"6LQnw=D]9 +Dp\48ɓ7l+-cۚRQ:3ӎaB]Fhٴgk@Vid 6) t̖8&Sed:V1~l{~u[qq?>V0CJak_\_wnd?Lni&ìEWuTQ3u'>JtDe1g'jOF,.\?R Շ3udED fHgj GgJS^eS9Jrlc`>"(Fы]gU"AuZ{), z}fUF%a]PefNSDVws>ut0 s) N`2I*r! iVhBTW>sʫ%Uz;ǘO5룻=nw:QFr4CB rtng=D 6ZI7~]NxJ\}nTj]VbF%||\w?C\#6^ ܻ|yioRLJ9Jiu{,gne>lQݍ:~M.C29'bB}Z78zZi>Ư7oaj}808U!LL:G]L⟨ RuE]* ˮs-j\ۍamy*NnP>NPeWRu!IId6 G1G.Q~IޒF TJg΢{*1ݔNوI k8G2 3 |_hrdh1'1/0b5͐1 c1~OzziPHj|96K^(8M\5 <}IՁi*HS76UqknWAzot!u -Q#$XbGjfg)q?}^2@@嫣)/l|i|_PD;M/wpmX͕Q݋*ȓ+ۻ#v8A<+!众ttZXPKS WrQgmP ENđ:e{.Ӑ3-h]_Ji%g[RC SkϼLpuPęТC5~6q,GW`q;,1%m(:fD`Y%Ʃ_LPݷabRByXCG+H]am*LFPH"kAV $dA+{!5:%Y)7$AܺNv/!q6uˤf#dh+׌]PpAQ JzX\ )/+𶗵j>GWUU9?'j?XۑR}d ٙunU\ jYgXn~C{8{u|uFk- :hgT" b9ܡPկl|ĈBM?0yВ,Q3"Ip*Ӭۮ6Nm2`|"?3k%s/A-IPexkDxa%quatemwOdhRqp|&=*1h+Av#"s8Cٽ'm6%^@\A@xR\6f\k9+?Y@ɣQBqrWȗH\NmKB r$^$j'] ޔ oؕ(Y溡tU ?͍iLRVXy<V|{KTݭ~ep䋎$i^<m['ibd=>/8~~$̮n~.ռH^}m^JJ:\S HZmu UlU8+`>-ܱ_+t•I ,O#}2 7_=%|<)vS[otX_ĻpW]QvK4l`o61tͼC!6*0u'_4sjcu}v귥_~x}9XarF.&8m5j(^9?qRq_@S2RW$AcqXDn[an{ɉ{ӱW=1p1?+2B̴ Գa"@c^V3_=z鐐PУtkm"H?E>; SY÷t|w7Rk]9Q?"; WLM#X99:c`% xpMϾ~C\$L,>b0j;d;,tWS@@[8'?0vj.5N*uk*G~AHe`H6K_z M#7:й Ê.aTϷ Һ8a-d]J~=ej@ifhaS)$.P ]uݫ&yШNsS DzDX~o2bDUitHM#e1ğ3(tQ/+zlvc&{˘:~F_Jа_ܾ EKmZMyV) *қvVP˸59;|88F 1q u_6"Em, h} [6rDM}͗ՊullR'aeXK ׇSMӊ7灓5:ɱ$~GݷlwY<0SVc^?P84+q.Gub?kKclt S;Fj>Ir9.[_hk |RhzY[z`ԓ95vI6kB_q)k̡hHTN]nY -=/KқSgy#/WE"]:wvȬ_[jX5 D3堇||h2U8>#+(kγ^yn '~IÖK&v1uʅ̠6 7^eۓu`4NAȕR[^+O<:#1 [/ K2zD}3yĘyƹ΋ ΔFTN|9ƜxEkWDú&CTX:zO_ͿEKƏ3 :5Y=ȞFĿb-9#]!R(M"l1# `]p~sFoϫ,[aD>v^̤Cxi2(3M+Ɨ5d.kI$BY8;T_tGgry#S' Ef;P5?0 ~|c#@^/.ilu4g {ZN׿|1>Og$w>U*6o䛘 Xbmm1@^r@q 7\ֵP's5į="w)V3Dͩ?^JU>𧲫1@c3h iμq3CKc`b"`4W/a;r聥B_2v]X1DgiN0hv= ӺCip/6an0I/D>W \u2aZuU0@_.ْ 5Fc"MxުpqB>xBO@u)ra[=*7ͶM=,kVC[z;q{F`Qry>jEWL9Eٯ$QqR, -# bz! ܳ1sRMVWG^CF۪'*-hzpoIFud8oH˦Jz2>ҒzHrXHGȠf_cJ+T>٘q;yOk5ֆѓe`+:K.8rɂ dxE_EF)LغmTK§n$f=:>4Lr;v IScoK~ kJZ߬U Z~ӁSbs$ϢPQU}6cNx/0u Ǎ Vx&#RXf\oj\.Ԍz y[+EtZuXs.wy";:qcDv\Y3]o`0b5r&Q]w.=AE/BF,)~! MɔdG[6wF[1A ﶊGr4R訣3D,Jcg-J6Um"fyc-2ug?2҉_,Kո1&{Lh3{ 9KlMN*is\~\:l*r感Usx$Txa' O1YCRR\B7./=Tڠdk~Q^lϋ#1N"z毓,᫓KҤdtWZ/|4X$~g9Ⱦ#jv7 @H \)f@iB%h"# ܫ!e$fZ+%pL%@)=V|g/xGF^ձҽ!U5'Vtƒ= GYȿD+ŘIR>ªwI2;-g:P Bk*V8Jy=8BJ'j9k/^4Q%AC<\B)Z R Mk&ͤ@⦻[sVntVՋiAѝRRs#'77mju,N;.ҖQaAmݦɂ5_B2HMcq ?LTiW~W**T6{5-.ڼw:nYvH?f 9x~gtm1md=/0v%XLXm5^Zi{zPF.ц}tp銩 LPBX&+~N%VJՈL~T(h9$wҖk/SXNI!_J 5BjO"kp,i^A ۺ(1תT:$Q6D]Ѕ*8 K\RUh|-x/pmR8qlOaYW21৤M-L^宗!|߷(+jSznL3;]~;JKNmV},£ape?2ӻ׽Yld5h[_H1=SL盽nrЯ|_KQ\oP _O% %ct0SnOjM!s[Uzp} $F+l8"0}UddbtԼQDjULZU[qW< XLr6,z ߾Ka?I8ϝшD>lZ9`A{ykb6-;ۿpBy2qAҫk(BՊ/z]]^5sĒb-bf u0-K:3Cs1ɼ}1CcWӢIX!f*;1 o޳v}p,jg.-Q"l=,MSz:ԅ=y)LMv,p(>^g6xG`UPx#Σ޴fxYh8&ʢ؇ㄮx^GM1'2"zlsH8i]CMO0xhRv~VH)9Y t>Q'b@p '\$vbr=qP>{:+#b_"y`ʽoBn5k\twz׳L(Jo\4\/SqV1XGAsD?/&|{bkvs\lvcc(sKYǾLNK-R)奣^ {R5S_"h>*YqTX;yAZؿ3+n0@ˬ)΁٫&%Ƹ/H)8%-'ͫ{ZD&ZLMƫec YO}mrZO=5GTR68d>]LskХl,8i؛ioøxY%<΅+H_8{m.B]܁JG*0L׈L%G1:̼os&len?&JY JeIK+>  Dڙjh4R>VF@v UOU3#/::L]Ա56 "ZȈiFH %_7IrȦP1Pt8mߐdbfFN̟'hG/v57>gur}KJb+ǏQy/\Cz;-tÐ.4jd ]m܂(gYx+bS-kҍq@^}C/5c>yކaZ~aB_׹M0[~bAj8qPLQŚ#c=];^G(0<7[tuO01yE/λGf'D_O1!1>6z$DDR"ɩ1 5kKw4kAY'&MW!iw|iWՎRT5&'|zR@eũ~54(x&͝HU\DAGo?/-*|0Qj\q^K@c8fx;Fp#M(; RCY^ EjCYlΣ=i]PQ8vG2גU0 %˽GӊoZ-xG01͝uuK 6 =[7 cSY|`+hvD~fI$1Iıq^P".6YB囂WK>T`(Ԥm=RId~BeˮwFTxAiJήcss"<l|u?si'A PjHV8},n`Pi X5E #a)ex nFX b?Qbc]BKњ|jtBnWog/ࠂwwCMlHLBMB%7,Tta,~ sxoU yo?JtN+^'韓D %ٹ6\3Bog,\\^Z%{~Mnt'H~=v_{SE7Q%zbV Pp5ҹ mw۱egeRRJ&2I$uf;BV5C&[Iլ=$uT(.̧"Mg6 "&!\ƞW=V/\ [{kjtāɛC"+.n g#qXǑmiÔR*etİ:3{ů9(GLzMSגT|;c=O%=\0o|U;%UK"^jح*\(IdM7~il,oa΃ "DJ,>]S7Tz͑eяv2S 4:<7*Pf(Y:u;2~Ė奌ztH#Z7L(ڜ,#DDf~+8֋wCyɧ^}&|YZ.]LT$<#XTw+5J(2DQMKNb0qo+˷͸ <GlA>=TLHC[טy'Ql)dĦwGVgaHtW*ScD0<}4y ;RwByNDU37 kr `s5>o!2%,KSYd& Eq/=A~5tpa֙>\0yw05eFTtXlW?F;\DʷጝYdPm<34ȣ!_3${=~Uj ߯J4 @˰ӄjo<]UJFCASk5Yx&aJ,( N5r:7CwT"@7r gU)4dd#gĺ_/& 2gXP5 `*Jl(M/&2|J )UGcTwz/*ؕU/h<\tTj}ƴ7sN[jlD׽]ӝJ^昺*yp' R/c'] :R~N妫+teڸ^ 6.QSNHYs\v*TJU[omsÎP8XiZuJ^ !sڤ׆qŹ_3b'Am/`HS+6P  ͵s/[9jt Z~2sZ×Oz<Q0>_ `^p4Xm"pf9 /֦ jEak ;v߽LXx10n,c6 ΠL)!i)LA T$q˼Y!ҫ4d(M Z^rDUVs,7;Ǔi K޽=ӹIXVXzjK.( W✨CR 6ݳwm )5d_@WvIx2N-hW2/O ,jpJ\Vyl2A=ƪx_dkB򵚠=F|jO$l~9~3Rs twC./qo@D\$N9sb_?awкzdZ1(+n~!GbZxV] {>ڭɪ]zax%'FHi[EKi-,I5Z#Sa@37 tk(ho$Q\o?">bա.W{;k?ŜNl>/2cu< #L0Keep ?;f;cͫS* Z-Rl*xFy jp[/z{aS%adGqj{қ4*:+%0#I]H~=Ks$~uvbK9m؊sjtG``}DEvr;کTE6F#%A*Fu(F]DRqIL WE`Ys'7)} ŞZ^XMaIM |toS!Mq]mFϦT$>ff# x#5Q " 6y/^k|I5a_b-LIT[qj5 ^+â֎x6 lԅUWtsc|;yX+w SH! X$,֠>g%>+%K ._>TYUg+PjT8^3'#K~MeMD?!B.L endstream endobj 224 0 obj << /Type /ObjStm /N 100 /First 899 /Length 4386 /Filter /FlateDecode >> stream x[io_1b#}FWkk}ޕ/hj,1KZ+;>OU!E@꺫zFZBZBk_(qiW mda.Nxfb.T-mM]8PR. %O$6.ҼƺXG  ;̊TJ1Q8*E iQ Kl&:ҴY|@L.u"5 3&+nQ|(T,uX7h',Soe -^@ D0JG@[Xj,j5<4FpC,S#:^0+X&aL,XN; `HA)Nc 9go),,rX;̓ K[{%e >tݎ)TF ])=&S%TЖ,Qi(CX:m:];'jXđ?#] p0 ,Ϻ*|?HnUn+#c\NeO1*Hѭ"dG)#'A­ݕ{Ѩ x<ψ, Y RCZ]>dMGYL(AH.RFiWw0=u/q^o9D[&}7( 74ME\{$R۽A^ &y>= 00Ʀ7x`tGd@{MZtTLؽgPqvq!"3DFC]KT[[eKܐ% yY*E?ѫvw,[v[Z7f,6o f2ckpF`Fb!>llCxĠvW!ywU ڀzػ =wQQ52i $Vʘj.X摱J(K۾To-:|11#]44{zLeIft@1룔4bP2GJJƂ -I6f,;OjaeyK2沛~r~3H48ZӨ%a!^ ) 2.צfVǬ!Xc 1V;$8 %xhIjWTe$NoT1p g.H 8z::ɦI[^tHvHL'K $IK(g m\&PRu7doBkAI,Z:˱̑$ =cRo(yv6XGg#5ŽW$ J5)ݲ=:KHfQ9etM-Yo swf:>[u)) (Q[a޻{k;c KJ r[ɿq$D l*1-N")Gf$!F2\bz=DžOu'^Weس.K 'WZ_{tnT7ln}M:J7dܯ?e>OTʯ$|KNV_*ŨbOw)v]tr?aOo_Tu/.t(zx4nE*dK_Ζ8Nָl{b_<|{,~Nfů- z>ګ8W+&Cq!.˪/wW/~%bZ\W\ H?7~c1V D)n7]f~vAЏ{r FH6kktFyyfŤI[܆O?kHD[2 ^ge6Y5ٰn\] ۽>Wb4 ih%!W h5?0s3ޭ%|wj/Gx{oݻlm۰l}1. {5t/8GdކW?}<9=~ϼSéS/mHy{pIw:т4h q--{ HܔqULY7Mڷa{?y[6!]n  2) ?O|`H,_ոW}C  }|ӣB]2?+wKg3'W_!=s/7?jį# n ݡvʮEPmm5۷/Ow?b5aQ$K'icpkÙbȺbIh_Y"CqKگrO>:$"-E_YI]I{uN> x&gsm7YLc~w]\uQ֭/O>|xδvP_{=R>!v&9[9ߎ޼|yM znF`H!9"ҭ<Ó=$ޯϺLɺZRj("_CԼXNV褔5GL+ՠnTjjAv]=EDa |g[׾⊎m]5\8չof8> endobj 334 0 obj << /Type /ObjStm /N 39 /First 319 /Length 1273 /Filter /FlateDecode >> stream xڝWr6}W1n' 'ėc;v-{Y3Jd}wIXs<ȕ@?P9 0SHr#\" BR`Jy4"j!TĔ&TJ( TR2TBE@ WT)N#R fl6 iNdҐjP>MȁOr"!A4rT,T Hv).J)f: X*́RsTPjdzS)'e=Κϵ}dL=bz9Ëk3Gf՚ 5٫>RiyRlHo߾Sž.'f<`g;C^7 k{س¾90G9Rހ?>pt7QіC iso#*f2=\5FįuI3>lݳ~#Զ"ZxH(ΣcI/9hGaJkffd1ߪ)ӶZ4^6Ct.5.p$dĪ~(;}N'ŧ]bR Vi'Q*\!T@]yQX Kٖq?*28>>ʰN0~ɒ@'תXyw^X2@#S,"ev(;ʦk42.3nٵ[jwOGv{kȮri,rvqa.'Zd_ ?%&V׳X{"MU]/|^@أ BjzμyأNl6֗.x v'!yQ_TU=`;NjE X6p{;=>X4}v/)jܗrO ,3ɇZ9#9Wqwp COɜU-uɲX4;C}.iAǢ<_'1, ^ɐ QsτYjCLeh&I`9yumL1!^pk6d!ӁWQF]3r6圗'^_Z#싢&v5׺E|y0bݒ ycp m X)؉ T\\L!h^GE/9L;8*uw/?7P]4\vV?>quZLܵ}{ooۮ;7`XݗM_>way endstream endobj 352 0 obj << /Type /XRef /Index [0 353] /Size 353 /W [1 3 1] /Root 350 0 R /Info 351 0 R /ID [ ] /Length 953 /Filter /FlateDecode >> stream xKlTuwLӗ-҂GABRh @Blq! nF#6 ( DE j  ( !@ =O=;BQ,Xz)P͵i*̣U&zӨ zSPeCћLzUtJhNBvANl >şuIBx=fd>0vl3^x=8.P1i f|~jqIۍ10 g~8w8ظXe\61Nwhu%ؘzH]0FM194-2eXh0V6>'cqcI {x3owhk|ŏ2اƗ,c;cc,qnm|w[dD. Babel and hyphenation patterns for english, dumylang, nohyphenation, it alian, loaded. (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2007/10/19 v1.4h Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo File: size12.clo 2007/10/19 v1.4h Standard LaTeX file (size option) ) \c@part=\count79 \c@section=\count80 \c@subsection=\count81 \c@subsubsection=\count82 \c@paragraph=\count83 \c@subparagraph=\count84 \c@figure=\count85 \c@table=\count86 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf/tex/latex/html/html.sty (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty Package: hyperref 2012/05/13 v6.82q Hypertext links for LaTeX (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty Package: hobsub-hyperref 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty Package: hobsub-generic 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO) Package: hobsub 2012/05/28 v1.13 Construct package bundles (HO) Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO) Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO) Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO) Package ifluatex Info: LuaTeX not detected. Package: ifvtex 2010/03/01 v1.5 Detect VTeX and its facilities (HO) Package ifvtex Info: VTeX not detected. Package: intcalc 2007/09/27 v1.1 Expandable calculations with integers (HO) Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO) Package ifpdf Info: pdfTeX in PDF mode is detected. Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO) Package etexcmds Info: Could not find \expanded. (etexcmds) That can mean that you are not using pdfTeX 1.50 or (etexcmds) that some package has redefined \expanded. (etexcmds) In the latter case, load this package earlier. Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO) Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO) Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO ) Package pdftexcmds Info: LuaTeX not detected. Package pdftexcmds Info: \pdf@primitive is available. Package pdftexcmds Info: \pdf@ifprimitive is available. Package pdftexcmds Info: \pdfdraftmode found. Package: pdfescape 2011/11/25 v1.13 Implements pdfTeX's escape features (HO) Package: bigintcalc 2012/04/08 v1.3 Expandable calculations on big integers (HO ) Package: bitset 2011/01/30 v1.1 Handle bit-vector datatype (HO) Package: uniquecounter 2011/01/30 v1.2 Provide unlimited unique counter (HO) ) Package hobsub Info: Skipping package `hobsub' (already loaded). Package: letltxmacro 2010/09/02 v1.4 Let assignment for LaTeX macros (HO) Package: hopatch 2012/05/28 v1.2 Wrapper for package hooks (HO) Package: xcolor-patch 2011/01/30 xcolor patch Package: atveryend 2011/06/30 v1.8 Hooks at the very end of document (HO) Package atveryend Info: \enddocument detected (standard20110627). Package: atbegshi 2011/10/05 v1.16 At begin shipout hook (HO) Package: refcount 2011/10/16 v3.4 Data extraction from label references (HO) Package: hycolor 2011/01/30 v1.7 Color options for hyperref/bookmark (HO) ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks14 ) (/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO) ) \@linkdim=\dimen103 \Hy@linkcounter=\count87 \Hy@pagecounter=\count88 (/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2012/05/13 v6.82q Hyperref: PDFDocEncoding definition (HO) ) \Hy@SavedSpaceFactor=\count89 (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive ) Package hyperref Info: Hyper figures OFF on input line 4062. Package hyperref Info: Link nesting OFF on input line 4067. Package hyperref Info: Hyper index ON on input line 4070. Package hyperref Info: Plain pages OFF on input line 4077. Package hyperref Info: Backreferencing OFF on input line 4082. Package hyperref Info: Implicit mode ON; LaTeX internals redefined. Package hyperref Info: Bookmarks ON on input line 4300. \c@Hy@tempcnt=\count90 (/usr/share/texlive/texmf-dist/tex/latex/url/url.sty \Urlmuskip=\muskip10 Package: url 2006/04/12 ver 3.3 Verb mode for urls, etc. ) LaTeX Info: Redefining \url on input line 4653. \Fld@menulength=\count91 \Field@Width=\dimen104 \Fld@charsize=\dimen105 Package hyperref Info: Hyper figures OFF on input line 5773. Package hyperref Info: Link nesting OFF on input line 5778. Package hyperref Info: Hyper index ON on input line 5781. Package hyperref Info: backreferencing OFF on input line 5788. Package hyperref Info: Link coloring OFF on input line 5793. Package hyperref Info: Link coloring with OCG OFF on input line 5798. Package hyperref Info: PDF/A mode OFF on input line 5803. LaTeX Info: Redefining \ref on input line 5843. LaTeX Info: Redefining \pageref on input line 5847. \Hy@abspage=\count92 \c@Item=\count93 \c@Hfootnote=\count94 ) Package hyperref Message: Driver: hpdftex. (/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def File: hpdftex.def 2012/05/13 v6.82q Hyperref driver for pdfTeX \Fld@listcount=\count95 \c@bookmark@seq@number=\count96 (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty Package: rerunfilecheck 2011/04/15 v1.7 Rerun checks for auxiliary files (HO) Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2 82. ) \Hy@SectionHShift=\skip43 ) Package: html 1999/07/19 v1.38 hypertext commands for latex2html (nd, hws, rrm) \c@lpart=\count97 \c@lchapter=\count98 \c@chapter=\count99 \c@lsection=\count100 \c@lsubsection=\count101 \c@lsubsubsection=\count102 \c@lparagraph=\count103 \c@lsubparagraph=\count104 \c@lsubsubparagraph=\count105 \ptrfile=\write3 ) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/graphics.cfg File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live ) Package graphics Info: Driver file: pdftex.def on input line 91. (/usr/share/texlive/texmf-dist/tex/latex/pdftex-def/pdftex.def File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX \Gread@gobject=\count106 )) \Gin@req@height=\dimen106 \Gin@req@width=\dimen107 ) (./developer_man.aux) \openout1 = `developer_man.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 33. LaTeX Font Info: ... okay on input line 33. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 33. LaTeX Font Info: ... okay on input line 33. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 33. LaTeX Font Info: ... okay on input line 33. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 33. LaTeX Font Info: ... okay on input line 33. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 33. LaTeX Font Info: ... okay on input line 33. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 33. LaTeX Font Info: ... okay on input line 33. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 33. LaTeX Font Info: ... okay on input line 33. \AtBeginShipoutBox=\box26 Package hyperref Info: Link coloring OFF on input line 33. (/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty Package: nameref 2010/04/30 v2.40 Cross-referencing by name of section (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/gettitlestring.sty Package: gettitlestring 2010/12/03 v1.4 Cleanup title references (HO) ) \c@section@level=\count107 ) LaTeX Info: Redefining \ref on input line 33. LaTeX Info: Redefining \pageref on input line 33. LaTeX Info: Redefining \nameref on input line 33. (./developer_man.out) (./developer_man.out) \@outlinefile=\write4 \openout4 = `developer_man.out'. (/usr/share/texlive/texmf-dist/tex/context/base/supp-pdf.mkii [Loading MPS to PDF converter (version 2006.09.02).] \scratchcounter=\count108 \scratchdimen=\dimen108 \scratchbox=\box27 \nofMPsegments=\count109 \nofMParguments=\count110 \everyMPshowfont=\toks15 \MPscratchCnt=\count111 \MPscratchDim=\dimen109 \MPnumerator=\count112 \makeMPintoPDFobject=\count113 \everyMPtoPDFconversion=\toks16 ) (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf (/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO) ) Package grfext Info: Graphics extension search list: (grfext) [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE G,.JBIG2,.JB2,.eps] (grfext) \AppendGraphicsExtensions on input line 452. (/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv e )) File: quantum_espresso.pdf Graphic file (type pdf) Package pdftex.def Info: quantum_espresso.pdf used on input line 44. (pdftex.def) Requested size: 142.26378pt x 48.49115pt. File: democritos.pdf Graphic file (type pdf) Package pdftex.def Info: democritos.pdf used on input line 44. (pdftex.def) Requested size: 170.71652pt x 49.52296pt. LaTeX Font Info: External font `cmex10' loaded for size (Font) <14.4> on input line 44. LaTeX Font Info: External font `cmex10' loaded for size (Font) <7> on input line 44. (./developer_man.toc LaTeX Font Info: External font `cmex10' loaded for size (Font) <12> on input line 2. LaTeX Font Info: External font `cmex10' loaded for size (Font) <8> on input line 2. LaTeX Font Info: External font `cmex10' loaded for size (Font) <6> on input line 2. [1 {/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map} <./quantum_espresso.pdf> <. /democritos.pdf>]) \tf@toc=\write5 \openout5 = `developer_man.toc'. [2] LaTeX Font Info: Try loading font information for OMS+cmr on input line 55. (/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 55. Overfull \hbox (6.47005pt too wide) in paragraph at lines 93--98 \OT1/cmr/m/sc/12 ESPRESSO\OT1/cmr/m/n/12 , con-tact the de-vel-op-ers via the \ OT1/cmtt/m/n/12 q-e-developers[.at.]qe-forge[.dot.]org [] [3] [4] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <14.4> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 166. [5] [6] Overfull \hbox (3.47255pt too wide) in paragraph at lines 302--306 \OT1/cmr/m/n/12 tic-u-lar, check (and up-date) the "Road Map" page \OT1/cmtt/m/ n/12 www.quantum-espresso.org/road-map\OT1/cmr/m/n/12 , [] Overfull \hbox (11.75719pt too wide) in paragraph at lines 335--340 []\OT1/cmr/m/n/12 If you add/modify/remove in-put vari-ables, doc-u-ment it in the ap-pro-pri-ate \OT1/cmtt/m/n/12 INPUT[]*.def [] [7] [8] Overfull \hbox (122.187pt too wide) in paragraph at lines 421--429 \OT1/cmtt/m/n/12 qe-forge.org \OT1/cmr/m/n/12 into spe-cific names. Af-ter all pack-ages have been up-loaded, file \OT1/cmtt/m/n/12 /var/lib/gforge/archives/i ndex.php\OT1/cmr/m/n/12 , [] Overfull \hbox (83.6218pt too wide) in paragraph at lines 433--437 \OT1/cmr/m/n/12 men-ta-tion must be copied to di-rec-tory \OT1/cmtt/m/n/12 /var /www/quantum[]wp[]db/wordpress-3.1.4/wp-content/uploads/Doc [] [9] Overfull \hbox (0.73294pt too wide) in paragraph at lines 485--488 []\OT1/cmtt/m/n/12 tests/ \OT1/cmr/m/n/12 con-tains au-to-mated post-installati on tests (only in \OT1/cmtt/m/n/12 PW/ \OT1/cmr/m/n/12 and \OT1/cmtt/m/n/12 CPV /\OT1/cmr/m/n/12 ) while \OT1/cmtt/m/n/12 examples/ [] [10] Overfull \hbox (48.34207pt too wide) in paragraph at lines 573--577 \OT1/cmr/m/it/12 Target \OT1/cmtt/m/n/12 neb\OT1/cmr/m/it/12 : do all of the ab ove, then go into di-rec-tory \OT1/cmtt/m/n/12 install/ \OT1/cmr/m/it/12 where \OT1/cmtt/m/n/12 make neb \OT1/cmr/m/it/12 us-ing \OT1/cmtt/m/n/12 plugins[]mak efile [] [11] [12] [13] LaTeX Font Info: Font shape `OT1/cmtt/bx/n' in size <12> not available (Font) Font shape `OT1/cmtt/m/n' tried instead on input line 768. [14] [15] [16] Overfull \hbox (37.42511pt too wide) in paragraph at lines 919--922 []\OT1/cmr/m/n/12 - $mpif90 is the par-al-lel com-piler, if any; if no par-al-l el com-piler is found or if \OT1/cmtt/m/n/12 --disable-parallel [] [17] [18] [19] Overfull \hbox (1.48471pt too wide) in paragraph at lines 1154--1159 \OT1/cmr/m/n/12 The two main pack-ages, \OT1/cmtt/m/n/12 PWscf \OT1/cmr/m/n/12 and \OT1/cmtt/m/n/12 CP\OT1/cmr/m/n/12 , sup-port restart-ing from in-ter-rupte d cal-cu-la-tions, Restart- [] [20] [21] Package hyperref Warning: Difference (2) between bookmark levels is greater (hyperref) than one, level fixed on input line 1261. [22] [23] Underfull \hbox (badness 10000) in paragraph at lines 1399--1401 [] Overfull \hbox (0.39813pt too wide) in paragraph at lines 1402--1409 []\OT1/cmr/m/n/12 The "restart file" is ac-tu-ally a "restart di-rec-tory", con -tain-ing sev-eral files and sub-directories. [] Overfull \hbox (16.47841pt too wide) in paragraph at lines 1430--1430 [] \OT1/cmtt/m/n/12 - general information that doesn't re quire large data set:[] [] Overfull \hbox (22.65341pt too wide) in paragraph at lines 1430--1430 [] \OT1/cmtt/m/n/12 - pointers to other files or director ies containing bulkier[] [] Overfull \hbox (35.00342pt too wide) in paragraph at lines 1430--1430 [] \OT1/cmtt/m/n/12 data: grids, wavefunctions, charge density, potentials, ...[] [] Overfull \hbox (4.1284pt too wide) in paragraph at lines 1430--1430 []\OT1/cmtt/m/n/12 spin_polarization.dat contains the spin polarization (rhoup -rhodw) (LSDA case)[] [] [24] [25] Overfull \hbox (4.1284pt too wide) in paragraph at lines 1765--1765 [] \OT1/cmtt/m/n/12 - (info about starting or constra ined magnetization)[] [] [26] [27] [28] [29] [30] Overfull \hbox (16.47841pt too wide) in paragraph at lines 1765--1765 [] \OT1/cmtt/m/n/12 link to file "./K$n /evcm.dat" (optional)[] [] Overfull \hbox (28.82841pt too wide) in paragraph at lines 1765--1765 [] \OT1/cmtt/m/n/12 containing wavefunc tions at preceding step[] [] [31] [32] [33] [34] [35] Package atveryend Info: Empty hook `BeforeClearDocument' on input line 2066. [36] Package atveryend Info: Empty hook `AfterLastShipout' on input line 2066. (./developer_man.aux) Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 2066. Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 2066. Package rerunfilecheck Info: File `developer_man.out' has not changed. (rerunfilecheck) Checksum: 7402421AF69F9D9CCD2E36FE07E9BF7D;3082. LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right. Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 2066. ) Here is how much of TeX's memory you used: 5426 strings out of 495048 79277 string characters out of 3181554 164421 words of memory out of 3000000 8490 multiletter control sequences out of 15000+200000 11875 words of font info for 42 fonts, out of 3000000 for 9000 14 hyphenation exceptions out of 8191 36i,5n,29p,226b,517s stack positions out of 5000i,500n,10000p,200000b,50000s < /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy8.pfb> Output written on developer_man.pdf (36 pages, 316021 bytes). PDF statistics: 503 PDF objects out of 1000 (max. 8388607) 438 compressed objects within 5 object streams 101 named destinations out of 1000 (max. 500000) 347 words of extra memory for PDF output out of 10000 (max. 10000000) espresso-5.1/Doc/quantum_espresso.pdf0000644000175000017500000013234312341373034016125 0ustar mbamba%PDF-1.3 % 2 0 obj << /Length 4 0 R /Filter /FlateDecode >> stream x+TT(TH-JN-()MQ( *NU5Tp endstream endobj 4 0 obj 53 endobj 1 0 obj << /Type /Page /Parent 7 0 R /Resources 3 0 R /Contents 2 0 R /MediaBox [0 0 531 181] >> endobj 3 0 obj << /ProcSet [ /PDF /ImageB /ImageC /ImageI ] /XObject << /Im1 5 0 R >> >> endobj 5 0 obj << /Length 6 0 R /Type /XObject /Subtype /Image /Width 531 /Height 181 /ColorSpace 8 0 R /Interpolate true /BitsPerComponent 8 /Filter /FlateDecode >> stream xxTU'Bh*MAAlkWյ VA)R(IH%Hm~wWoE'aZ&r~4 @u:O>OS/lIb RO^&M" w촛%.$f> quA&M4itc{* L5zշ]u )s<.Sg뾳 M4i3u-lPaC`3Ԑ&M4i2/(\yFDպ4`b[/|M4itË^T`6[Ah1؄fhSu߹MԣI1@)xM4i'cRF;Ahc3f n^V %h-Xsb[kr}5t0c=@hI񄎌M4is,J &0Cg V-%rS!7hEki}7Rw겮iRCܘÍ4󴩀5rZJŶ2h'\ԉҤI&MWKV#֗ hj"1Yƴ/ğ 5Dnu{jv[U^D[1i-[HsmePƪ*UF+iRqT'ckţ]JrdZJ3LɆlϡ#uQ%f @JD-ºTUeu@d-[I8~hw0J;7ys_e[B8G0md`( <4ʵrm\B8#G@qX(9GfEQbQ4(FwƇDzxV~'@n2VL>],kuT2c=35QO ڝLg*pkh!/M4в}eCQ/wFjl^!nlV J$*K;:hE rh9ZF ~(p! Br!w;ײ@BPɍ㸡EiQZ.)2BHn-ڪHg=34q1;ecˌBBϫthФI_Jx~6Ë2Dl* /$c "_pETJ S?yG=iKƋpYu2w+xQ47.` @@dpno@K[3XO43727fڂv~ߍ@4)819q,'jI]iȣMYK .SQVv03M4D Аu6UN3h]ԟ|G24rPAXLkXC#WqT_LR ',XQ-{Yn7Y[&ܨ2)ή6[*ժktGU*j=3;AvB.wg"Y> pqgKXeTBmRUEY:Ȑ$ ]%Wd@4iҤ/%F UIxh_:IZ/(xMWS3e{_ v&ƽV%UP}*1aH ay !cK]ˍ9}641gnr:?jn;$u5:$} mq·()?ɀ\h) L AhL4ŏpvg ~T8 綳,k'SPkMw(NMmvaWB~dh+8CV `ch%Ǡ4.%F岩r8+՜y4i gD0ߋ]~TBۤ']+Q(!!OQ%m͘.IY +u%rJfف̃EGhiH '9mU\:-@9}lsNͥPW5P.W1]:.DÅC9pn )+ y;a3?՜4s w ع ۋxnG7)=Abx8Ju4sY,ic1a\bKwa8&Hf\N\*&,N/%gV`ZHY[v3 E˥'9YM*f&wɨbZf5NtM4r c w/dlU=9ZCp{!qxvd̽,mjȹ<{$&`KC9(? e$FxI{XP>;($.T:dz=)؏D!-=8Ǐk >K:6K>D!}-ZIij1/41U6ԛ+%;G+8],'p,iNMLX"qj 1pŷPJ4T$5c?.mQyurk-k[kCs>4! 1A]*LO0Y7b$ib9{Z Z|]:j21(ZF;&Tex4i.沴q-f?#H;Uv1fߏT>=ߔ^ݻduVH-煆,2^: E1!/%_83o#'.SVϘwּp,a*KXpU@kN*b-LJI n#eB+юZgg@WrlWi.0C6jR*!Rnf7CZÔI\BBJ\IN *eDhCۮI?Y\"+!it+)=vhD %DH‘7OMgױ?`¾)&x>}3w1 q)$,FWpj..u,{ b4 +17MtZrk̽fjd=܈ 疨TL3.+;"9ɢp)@IǠSy;!g3ⰠIK 9"H^߳͘ V* }jҠ!sN7ZoC&M] яhd? OBS8O!g?顷ĕ`TLmL_=lͨlWv>xBsb+,˒$iV9*bkza=t?C2HOO!泄ZNdn!982iR~4A%vP!U5u=n9]Q)CD wgsةE4N&gм(5"˘\&M7T.q+k6@jBrclݰz,|hX|,OW '@ rtfDh55BGkT P| GAN0Fֈ)K!-}+%$YNCPkhCTA{ E$'uXX[%i*H} I"q(܏XV:Gl8>N|,HeosȅZ|Ys!t\A%!TzQWV&MC!;ˏ:U Z~ i!yMX,ϩN c7_. a'GhNRئ"h&0upd"Q*KzG%C*;WcYoeTFvDŽxnrv%Z_Y;MfVQ ;ЗI¡T/I6iҤIӟ iǦ*8Hp)Z,")0*OTGüFD*Z,c3Vab_U2 b87k60?__'afj xRΚL*VoI?-8Ȫqfp웦C"qxk5_4(EG OԵpj1 }'>Kg8b.ݫLLl'חLrIIdzn~kQ$h5U|է+lwff#cC<,H wayYnl,.S Rws M4CUWzeHӲ>[HsWo48)́bfE[%19@N,?.=bkwJ&M<b`r ^Wb|"\zS9Cr;,ur^()<+h}6m.Z|Q0J(7vUܽk";H}F^.5OU8Ø;CB'p4g'GaVcChm&MX4֌-ppM`"IiZ.C8#; }A$G? >$_XmJK'em[+r cfdZ@!~P+U@hW"W%xդx()[pǩy4 z8>\^Hs[.#YyXDj&M4aNA/5iRi ) LvCvCgC&1JamŘѐ;^)*X*EWqݪ2PY [ `?)ԪJS!@vK gpJ134KLN]{vӢäXD:pؗ6n]&MO}eQ.( AOm`j"R ހ)X9S_a hv4:wo$^ \v~ > Z/KO$C9vO'0oNgasnE+oca4`p5<Jc^+N1~,p=89 QȅѤ 4dF z܉  jl9@` 8/6Jb4vydnY '\%GhqZsz9;D#dnTݐE&MZJO0,JR5pSX4Am